From 1a38f444e7acecff1ff614de5adfe91724776461 Mon Sep 17 00:00:00 2001 From: Winfred kinya Date: Wed, 24 Apr 2024 16:00:21 +0300 Subject: [PATCH 01/27] Added Names. --- student.ipynb | 13 ++++++++----- 1 file changed, 8 insertions(+), 5 deletions(-) diff --git a/student.ipynb b/student.ipynb index d3bb34af..7afb869a 100644 --- a/student.ipynb +++ b/student.ipynb @@ -7,11 +7,14 @@ "## Final Project Submission\n", "\n", "Please fill out:\n", - "* Student name: \n", - "* Student pace: self paced / part time / full time\n", - "* Scheduled project review date/time: \n", - "* Instructor name: \n", - "* Blog post URL:\n" + "* Student name: Winfred Kinya Bundi.\n", + " Carol Mundia.\n", + " Paul Mundia.\n", + " Dennis Mwenda.\n", + "* Student pace: Full time Hybrid\n", + "* Scheduled project review date/time:2/05/2024 \n", + "* Instructor name: Mwikali Maryanne.\n", + "* Blog post URL:https://github.com/winnycodegurl/dsc-phase-2-projectgroup4\n" ] }, { From 4b44ff0f2076f4d06d9a8fd64f5adb66d4b07a73 Mon Sep 17 00:00:00 2001 From: Winfred kinya Date: Wed, 24 Apr 2024 16:03:06 +0300 Subject: [PATCH 02/27] Second commit --- student.ipynb | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/student.ipynb b/student.ipynb index 7afb869a..9f5c5db4 100644 --- a/student.ipynb +++ b/student.ipynb @@ -7,10 +7,11 @@ "## Final Project Submission\n", "\n", "Please fill out:\n", - "* Student name: Winfred Kinya Bundi.\n", - " Carol Mundia.\n", - " Paul Mundia.\n", - " Dennis Mwenda.\n", + "* Student name:\n", + "1. Winfred Kinya Bundi.\n", + "2. Carol Mundia.\n", + "3. Paul Mundia.\n", + "4. Dennis Mwenda.\n", "* Student pace: Full time Hybrid\n", "* Scheduled project review date/time:2/05/2024 \n", "* Instructor name: Mwikali Maryanne.\n", From 481e8fd1cd97fd6ed1340fa170c6e622934156c4 Mon Sep 17 00:00:00 2001 From: Winfred kinya Date: Fri, 26 Apr 2024 09:38:22 +0300 Subject: [PATCH 03/27] update --- student.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/student.ipynb b/student.ipynb index 9f5c5db4..eb615a39 100644 --- a/student.ipynb +++ b/student.ipynb @@ -15,7 +15,7 @@ "* Student pace: Full time Hybrid\n", "* Scheduled project review date/time:2/05/2024 \n", "* Instructor name: Mwikali Maryanne.\n", - "* Blog post URL:https://github.com/winnycodegurl/dsc-phase-2-projectgroup4\n" + "* Blog post URL:git@github.com:winnycodegurl/dsc-phase-2-projectgroup4.git\n" ] }, { From f89641902007bc7ce96394e80f98c2d2f83589ae Mon Sep 17 00:00:00 2001 From: dennis2440 Date: Fri, 26 Apr 2024 15:56:53 +0300 Subject: [PATCH 04/27] add introduction --- student.ipynb | 15 +++++++++++---- 1 file changed, 11 insertions(+), 4 deletions(-) diff --git a/student.ipynb b/student.ipynb index eb615a39..e5cf6594 100644 --- a/student.ipynb +++ b/student.ipynb @@ -18,14 +18,21 @@ "* Blog post URL:git@github.com:winnycodegurl/dsc-phase-2-projectgroup4.git\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## INTRODUCTION\n", + "\n", + "In the fast-paced world of real estate, it's crucial for agencies to provide clients with precise information. Clients, whether they're looking to become homeowners or investors, rely on real estate companies for guidance on important decisions such as pricing, market trends, and property evaluations. To meet this need, real estate agencies can benefit from a sophisticated regression-based tool. This tool uses various property variables like the number of bedrooms, year built, floor count, living area, condition, location, and amenities to accurately predict property prices. By employing regression analysis, agencies can offer clients more precise pricing estimates, leading to better-informed decisions. Ultimately, this tool aims to improve client satisfaction, streamline decision-making processes, and drive success for real estate agencies.\n" + ] + }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "# Your code here - remember to use markdown cells for comments as well!" - ] + "source": [] } ], "metadata": { @@ -44,7 +51,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.8.5" } }, "nbformat": 4, From 1c382423ea8b0c14f486b15f1cb04a87f2eb0ef9 Mon Sep 17 00:00:00 2001 From: Winfred kinya Date: Fri, 26 Apr 2024 21:16:12 +0300 Subject: [PATCH 05/27] Business understanding and objectives --- student.ipynb | 107 ++++++++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 103 insertions(+), 4 deletions(-) diff --git a/student.ipynb b/student.ipynb index e5cf6594..f6d66f0f 100644 --- a/student.ipynb +++ b/student.ipynb @@ -28,11 +28,110 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## BUSINESS UNDERSTANDING\n", + "\n", + "\n", + "\n", + "The provided dataset encompasses details on homes sold, encompassing their attributes and sale prices. This dataset holds significant potential for real estate agencies across various avenues:\n", + "\n", + "\n", + "\n", + "1. \n", + "Market Analysis: Leveraging the dataset, agencies can discern market trends, including the demand for different property types, burgeoning neighborhoods witnessing property value escalations, and the impact obetter f featurenws or property renovations on sale prices. By employing market segmentation techniques, such as demographic or psychographic segmentation, agencies can further refine their analysis to understand the preferences and behaviors of distinct customer segments within the real estate market\n", + "\n", + "\n", + "\n", + "\n", + "2. \n", + "Property Valuation: By comprehending the correlation between house features and sale prices, agencies can proficiently gauge property values for both sellers and buyers, ensuring equitable and competitive pricing strategies\n", + "\n", + "\n", + "\n", + "\n", + "3. \n", + "Targeted Marketing: Through discerning buyer preferences from the dataset, agencies can tailor marketing endeavors to resonate with potential buyers seeking specific property types or neighborhoods, thus enhancing the efficacy of their outreach efforts. Market segmentation insights can inform the development of targeted marketing campaigns tailored to the unique needs and preferences of different customer segments, thereby maximizing the impact of marketing investments.\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## PROBLEM STATEMENT.\n", + "\n", + "\n", + "\n", + "In King County, people involved in real estate have trouble figuring out what affects property values and trends in the market.\n", + "This study wants to help by looking at things like what features a property has, where it's located, what buyers prefer,\n", + "and how things change over time. By understanding these things better, people in real estate can make smarter choices about\n", + "buying and selling property and how they position themselves in the market.\n", + "The main goal is to give them practical advice that helps them do well in King County's real estate market, \n", + "which is always changing.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "## OBJECTIVES.\n", + "\n", + "Main OBJECTIVE\n", + "\n", + "\n", + "The primary aim of this project is to develop a predictive regression model to support real estate agencies in advising clients \n", + "on house prices. This model is intended to anticipate potential changes in property value based on property characteristics, \n", + "furnishing clients with valuable insights to facilitate informed investment decisions.\n", + "\n", + "\n", + "\n", + "Specific Goals:\n", + "\n", + "\n", + "i). Identification of Key Influencing Factors on House Prices:\n", + "\n", + "\n", + "\n", + "Analyze various property features, including bedrooms, bathrooms, and square footage, to determine their impact on sale price.\n", + "Investigate location-related attributes such as zip codes and geographic coordinates to further comprehend their effect on \n", + "property prices.\n", + "\n", + "\n", + "\n", + "ii). Assessment of Model Performance:\n", + "\n", + "\n", + "Employ metrics such as mean squared error, R-squared values, and residual analysis to \n", + "evaluate the model's accuracy in predicting house prices effectively.\n", + "\n", + " \n", + "\n", + "iii). Provision of Actionable Recommendations:\n", + "\n", + "\n", + "\n", + "Offer practical recommendations to real estate agencies aimed at enhancing profitability and market presence. \n", + "Utilize insights gleaned from the model to optimize marketing strategies and enhance overall decision-making processes.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] } ], "metadata": { From b593de5dd5d7a062da348bb6dccb78edea3e5903 Mon Sep 17 00:00:00 2001 From: dennis2440 Date: Sat, 27 Apr 2024 15:30:01 +0300 Subject: [PATCH 06/27] clean Dataset --- student.ipynb | 641 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 641 insertions(+) diff --git a/student.ipynb b/student.ipynb index f6d66f0f..d9a7fa37 100644 --- a/student.ipynb +++ b/student.ipynb @@ -132,6 +132,647 @@ "\n", "\n" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Understanding.\n", + "\n", + "\n", + "King County, Washington, situated in the northwest of the United States, is known for its vibrant housing market centered around Seattle. The county has experienced significant growth due to its strong economy and cultural importance, attracting a large number of residents and creating high demand for housing in both urban and suburban areas. Seattle, with its impressive skyline, is especially sought after by tech professionals and city lovers. King County's real estate market is competitive, offering a range of neighborhoods to suit different preferences, from historic areas to modern suburban developments.\n", + "\n", + "### Whereby the dataset contains:\n", + "\n", + "### Target Variable\n", + "\n", + "price: Sale price of the house .\n", + "\n", + "### Unique identifier\n", + "\n", + "id - Unique identifier for a house\n", + "\n", + "### Property Characteristics:\n", + "\n", + "bedrooms: Number of bedrooms.\n", + "\n", + "bathrooms: Number of bathrooms.\n", + "\n", + "sqft_living: Square footage of living space in the home.\n", + "\n", + "sqft_lot: Square footage of the lot.\n", + "\n", + "floors: Number of floors (levels) in the house.\n", + "\n", + "waterfront: Indicates whether the house is on a waterfront (categorical: YES/NO).\n", + "\n", + "view: Quality of view from the house, categorized into various types.\n", + "\n", + "condition: Overall condition of the house, categorized based on maintenance.\n", + "\n", + "grade: Overall grade of the house, reflecting construction and design quality.\n", + "\n", + "### Additional Features:\n", + "\n", + "sqft_above: Square footage of house apart from the basement.\n", + "\n", + "sqft_basement: Square footage of the basement.\n", + "\n", + "yr_built: Year when the house was built.\n", + "\n", + "yr_renovated: Year when the house was renovated.\n", + "\n", + "zipcode: ZIP Code of the property.\n", + "\n", + "lat: Latitude coordinate of the property.\n", + "\n", + "long: Longitude coordinate of the property.\n", + "\n", + "sqft_living15: Square footage of interior housing living space for the nearest 15 neighbors.\n", + "\n", + "sqft_lot15: Square footage of the land lots of the nearest 15 neighbors.\n", + "\n", + "### TABLE OF CONTENTS\n", + "1.Data Preparation\n", + "\n", + "2.Data cleaning\n", + "\n", + "3.Exploratory data analysis\n", + "\n", + "4.Statistical Analysis\n", + "\n", + "5.Modelling\n", + "\n", + "6.Regression Results\n", + "\n", + "7.Conclusion\n", + "\n", + "8.Reccomendations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. DATA PREPARATION" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Importing necessary libraries for data analysis and visualization\n", + "\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt # for data visualization.\n", + "%matplotlib inline\n", + "import seaborn as sns # for enhanced data visualization.\n", + "from pandas.api.types import is_numeric_dtype # Used to check if a data type is numeric.\n", + "\n", + "from statsmodels.stats.outliers_influence import variance_inflation_factor # For calculating Variance Inflation Factor (VIF).\n", + "from statsmodels.graphics.regressionplots import plot_partregress_grid # For partial regression plots.\n", + "from sklearn.model_selection import train_test_split # Used to split data into training and testing sets.\n", + "from sklearn.preprocessing import PolynomialFeatures # Generate polynomial features.\n", + "from sklearn.linear_model import LinearRegression # Linear Regression model.\n", + "from sklearn.preprocessing import StandardScaler # Standardizing/Scaling features.\n", + "from sklearn.feature_selection import RFE # Recursive Feature Elimination for feature selection.\n", + "from sklearn.metrics import mean_squared_error, r2_score # Evaluation metrics for model performance.\n", + "import statsmodels.api as sm\n", + "from scipy.stats import kstest\n", + "\n", + "# Statsmodels is used to create statistical models.\n", + "from scipy import stats # Scientific computing library for statistical tests.\n", + "from scipy.stats import f_oneway # One-way ANOVA statistical test.\n", + "from scipy.stats import ttest_ind # Independent sample t-test for comparing means." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 21597 entries, 0 to 21596\n", + "Data columns (total 21 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 id 21597 non-null int64 \n", + " 1 date 21597 non-null object \n", + " 2 price 21597 non-null float64\n", + " 3 bedrooms 21597 non-null int64 \n", + " 4 bathrooms 21597 non-null float64\n", + " 5 sqft_living 21597 non-null int64 \n", + " 6 sqft_lot 21597 non-null int64 \n", + " 7 floors 21597 non-null float64\n", + " 8 waterfront 19221 non-null object \n", + " 9 view 21534 non-null object \n", + " 10 condition 21597 non-null object \n", + " 11 grade 21597 non-null object \n", + " 12 sqft_above 21597 non-null int64 \n", + " 13 sqft_basement 21597 non-null object \n", + " 14 yr_built 21597 non-null int64 \n", + " 15 yr_renovated 17755 non-null float64\n", + " 16 zipcode 21597 non-null int64 \n", + " 17 lat 21597 non-null float64\n", + " 18 long 21597 non-null float64\n", + " 19 sqft_living15 21597 non-null int64 \n", + " 20 sqft_lot15 21597 non-null int64 \n", + "dtypes: float64(6), int64(9), object(6)\n", + "memory usage: 3.5+ MB\n" + ] + }, + { + "data": { + "text/plain": [ + "(None,\n", + " id date price bedrooms bathrooms sqft_living \\\n", + " 0 7129300520 10/13/2014 221900.0 3 1.00 1180 \n", + " 1 6414100192 12/9/2014 538000.0 3 2.25 2570 \n", + " 2 5631500400 2/25/2015 180000.0 2 1.00 770 \n", + " 3 2487200875 12/9/2014 604000.0 4 3.00 1960 \n", + " 4 1954400510 2/18/2015 510000.0 3 2.00 1680 \n", + " \n", + " sqft_lot floors waterfront view ... grade sqft_above \\\n", + " 0 5650 1.0 NaN NONE ... 7 Average 1180 \n", + " 1 7242 2.0 NO NONE ... 7 Average 2170 \n", + " 2 10000 1.0 NO NONE ... 6 Low Average 770 \n", + " 3 5000 1.0 NO NONE ... 7 Average 1050 \n", + " 4 8080 1.0 NO NONE ... 8 Good 1680 \n", + " \n", + " sqft_basement yr_built yr_renovated zipcode lat long \\\n", + " 0 0.0 1955 0.0 98178 47.5112 -122.257 \n", + " 1 400.0 1951 1991.0 98125 47.7210 -122.319 \n", + " 2 0.0 1933 NaN 98028 47.7379 -122.233 \n", + " 3 910.0 1965 0.0 98136 47.5208 -122.393 \n", + " 4 0.0 1987 0.0 98074 47.6168 -122.045 \n", + " \n", + " sqft_living15 sqft_lot15 \n", + " 0 1340 5650 \n", + " 1 1690 7639 \n", + " 2 2720 8062 \n", + " 3 1360 5000 \n", + " 4 1800 7503 \n", + " \n", + " [5 rows x 21 columns])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the dataset to inspect the initial state of the data\n", + "file_path = 'data/kc_house_data.csv'\n", + "housing_data = pd.read_csv(file_path)\n", + "\n", + "# Display basic information and the first few rows of the dataset\n", + "housing_data.info(), housing_data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are 3 columns with missing values.\n", + "waterfront 2376\n", + "view 63\n", + "yr_renovated 3842\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "# Creating function to check counts of missing values\n", + "def has_missing_values(df):\n", + " missing_values = df.isnull().sum()\n", + " num_missing_values = missing_values[missing_values > 0].count()\n", + " if num_missing_values == 0:\n", + " print(\"There are no missing values in the DataFrame.\")\n", + " else:\n", + " print(f\"There are {num_missing_values} columns with missing values.\")\n", + " print(missing_values[missing_values > 0])\n", + " \n", + "has_missing_values(housing_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are no duplicate rows in the DataFrame.\n" + ] + } + ], + "source": [ + "#creating a function to check for duplicates.\n", + "def has_duplicates(df):\n", + " num_duplicates = df.duplicated().sum()\n", + " if num_duplicates == 0:\n", + " print(\"There are no duplicate rows in the DataFrame.\")\n", + " else:\n", + " print(f\"There are {num_duplicates} duplicate rows in the DataFrame.\")\n", + "\n", + "has_duplicates(housing_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The dataset contains 21,597 entries and 21 features. Here’s a brief overview of the data:\n", + "\n", + "### Columns and Their Data Types:\n", + "### Numerical:\n", + "id, price, bedrooms, bathrooms, sqft_living, sqft_lot, floors, sqft_above, yr_built, yr_renovated, zipcode, lat, long, sqft_living15, sqft_lot15\n", + "\n", + "### Categorical:\n", + "date (format object, should be datetime), waterfront, view, condition, grade, sqft_basement (format object, should be numeric)\n", + "\n", + "### Missing Values:\n", + "waterfront: 2,376 missing values\n", + "view: 63 missing values\n", + "yr_renovated: 3,842 missing values\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. DATA CLEANING\n", + "\n", + "### A) Handle Missing Values:\n", + "#### waterfront and view: \n", + "Since these are categorical, we can replace missing values with the mode or create a separate category for missing values.\n", + "yr_renovated: A significant number of missing values suggest that these houses might not have been renovated. Impute with 0 or a specific marker value.\n", + "\n", + "### B) Convert Data Types:\n", + "#### date:\n", + "Convert from object to datetime format.\n", + "sqft_basement: Convert from object to numeric, handling any non-numeric entries.\n", + "\n", + "### C)Encode Categorical Data:\n", + "One-hot encoding for categorical variables with no intrinsic ordering (waterfront, view, condition, grade).\n", + "This approach avoids any ordinal implications that could mislead the model.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 21597 entries, 0 to 21596\n", + "Data columns (total 21 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 id 21597 non-null int64 \n", + " 1 date 21597 non-null datetime64[ns]\n", + " 2 price 21597 non-null float64 \n", + " 3 bedrooms 21597 non-null int64 \n", + " 4 bathrooms 21597 non-null float64 \n", + " 5 sqft_living 21597 non-null int64 \n", + " 6 sqft_lot 21597 non-null int64 \n", + " 7 floors 21597 non-null float64 \n", + " 8 waterfront 21597 non-null object \n", + " 9 view 21597 non-null object \n", + " 10 condition 21597 non-null object \n", + " 11 grade 21597 non-null object \n", + " 12 sqft_above 21597 non-null int64 \n", + " 13 sqft_basement 21597 non-null float64 \n", + " 14 yr_built 21597 non-null int64 \n", + " 15 yr_renovated 21597 non-null float64 \n", + " 16 zipcode 21597 non-null int64 \n", + " 17 lat 21597 non-null float64 \n", + " 18 long 21597 non-null float64 \n", + " 19 sqft_living15 21597 non-null int64 \n", + " 20 sqft_lot15 21597 non-null int64 \n", + "dtypes: datetime64[ns](1), float64(7), int64(9), object(4)\n", + "memory usage: 3.5+ MB\n" + ] + }, + { + "data": { + "text/plain": [ + "(None,\n", + " waterfront view yr_renovated date sqft_basement\n", + " 0 NO NONE 0.0 2014-10-13 0.0\n", + " 1 NO NONE 1991.0 2014-12-09 400.0\n", + " 2 NO NONE 0.0 2015-02-25 0.0\n", + " 3 NO NONE 0.0 2014-12-09 910.0\n", + " 4 NO NONE 0.0 2015-02-18 0.0)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# A)Handle missing values\n", + "# For categorical data, impute missing values with mode or specific marker\n", + "waterfront_mode = housing_data['waterfront'].mode()[0]\n", + "view_mode = housing_data['view'].mode()[0]\n", + "\n", + "housing_data['waterfront'].fillna(waterfront_mode, inplace=True)\n", + "housing_data['view'].fillna(view_mode, inplace=True)\n", + "housing_data['yr_renovated'].fillna(0, inplace=True) # Assuming no renovation if NaN\n", + "\n", + "\n", + "# B) Convert data types\n", + "from datetime import datetime\n", + "\n", + "housing_data['date'] = pd.to_datetime(housing_data['date'])\n", + "housing_data['sqft_basement'] = pd.to_numeric(housing_data['sqft_basement'], errors='coerce') # Convert to numeric, coerce errors\n", + "housing_data['sqft_basement'].fillna(0, inplace=True) # Assuming no basement if NaN or non-numeric\n", + "\n", + "# Check transformations\n", + "housing_data.info(), housing_data[['waterfront', 'view', 'yr_renovated', 'date', 'sqft_basement']].head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The missing values have been addressed and data types for relevant columns have been corrected:\n", + "\n", + "#### Missing Values:\n", + "\n", + "waterfront and view had missing values which were filled using the mode of their respective columns.\n", + "\n", + "yr_renovated missing values were filled with 0, assuming that a missing value indicates no renovation.\n", + "\n", + "#### Data Type Conversions:\n", + "The date column has been converted to a datetime format.\n", + "\n", + "The sqft_basement column, previously an object due to some non-numeric entries, has been converted to numeric. Missing and non-numeric entries were replaced with 0, assuming no basement in such cases.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 21597 entries, 0 to 21596\n", + "Data columns (total 36 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 id 21597 non-null int64 \n", + " 1 date 21597 non-null datetime64[ns]\n", + " 2 price 21597 non-null float64 \n", + " 3 bedrooms 21597 non-null int64 \n", + " 4 bathrooms 21597 non-null float64 \n", + " 5 sqft_living 21597 non-null int64 \n", + " 6 sqft_lot 21597 non-null int64 \n", + " 7 floors 21597 non-null float64 \n", + " 8 sqft_above 21597 non-null int64 \n", + " 9 sqft_basement 21597 non-null float64 \n", + " 10 yr_built 21597 non-null int64 \n", + " 11 yr_renovated 21597 non-null float64 \n", + " 12 zipcode 21597 non-null int64 \n", + " 13 lat 21597 non-null float64 \n", + " 14 long 21597 non-null float64 \n", + " 15 sqft_living15 21597 non-null int64 \n", + " 16 sqft_lot15 21597 non-null int64 \n", + " 17 waterfront_YES 21597 non-null uint8 \n", + " 18 view_EXCELLENT 21597 non-null uint8 \n", + " 19 view_FAIR 21597 non-null uint8 \n", + " 20 view_GOOD 21597 non-null uint8 \n", + " 21 view_NONE 21597 non-null uint8 \n", + " 22 condition_Fair 21597 non-null uint8 \n", + " 23 condition_Good 21597 non-null uint8 \n", + " 24 condition_Poor 21597 non-null uint8 \n", + " 25 condition_Very Good 21597 non-null uint8 \n", + " 26 grade_11 Excellent 21597 non-null uint8 \n", + " 27 grade_12 Luxury 21597 non-null uint8 \n", + " 28 grade_13 Mansion 21597 non-null uint8 \n", + " 29 grade_3 Poor 21597 non-null uint8 \n", + " 30 grade_4 Low 21597 non-null uint8 \n", + " 31 grade_5 Fair 21597 non-null uint8 \n", + " 32 grade_6 Low Average 21597 non-null uint8 \n", + " 33 grade_7 Average 21597 non-null uint8 \n", + " 34 grade_8 Good 21597 non-null uint8 \n", + " 35 grade_9 Better 21597 non-null uint8 \n", + "dtypes: datetime64[ns](1), float64(7), int64(9), uint8(19)\n", + "memory usage: 3.2 MB\n" + ] + }, + { + "data": { + "text/plain": [ + "(None,\n", + " id date price bedrooms bathrooms sqft_living \\\n", + " 0 7129300520 2014-10-13 221900.0 3 1.00 1180 \n", + " 1 6414100192 2014-12-09 538000.0 3 2.25 2570 \n", + " 2 5631500400 2015-02-25 180000.0 2 1.00 770 \n", + " 3 2487200875 2014-12-09 604000.0 4 3.00 1960 \n", + " 4 1954400510 2015-02-18 510000.0 3 2.00 1680 \n", + " \n", + " sqft_lot floors sqft_above sqft_basement ... grade_11 Excellent \\\n", + " 0 5650 1.0 1180 0.0 ... 0 \n", + " 1 7242 2.0 2170 400.0 ... 0 \n", + " 2 10000 1.0 770 0.0 ... 0 \n", + " 3 5000 1.0 1050 910.0 ... 0 \n", + " 4 8080 1.0 1680 0.0 ... 0 \n", + " \n", + " grade_12 Luxury grade_13 Mansion grade_3 Poor grade_4 Low grade_5 Fair \\\n", + " 0 0 0 0 0 0 \n", + " 1 0 0 0 0 0 \n", + " 2 0 0 0 0 0 \n", + " 3 0 0 0 0 0 \n", + " 4 0 0 0 0 0 \n", + " \n", + " grade_6 Low Average grade_7 Average grade_8 Good grade_9 Better \n", + " 0 0 1 0 0 \n", + " 1 0 1 0 0 \n", + " 2 1 0 0 0 \n", + " 3 0 1 0 0 \n", + " 4 0 0 1 0 \n", + " \n", + " [5 rows x 36 columns])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# One-hot encoding for categorical variables without a natural order\n", + "housing_data_encoded = pd.get_dummies(housing_data, columns=['waterfront', 'view', 'condition', 'grade'], drop_first=True)\n", + "\n", + "# Display the columns after encoding to confirm the transformation\n", + "housing_data_encoded.info(), housing_data_encoded.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The categorical variables have been successfully encoded using one-hot encoding. This transformation results in binary columns for each category within the original features, which will help in preventing any misinterpretation of categorical data as ordinal by statistical models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Feature Engineering:\n", + "\n", + "Create additional features that might be informative for our modeling:\n", + "\n", + "**House Age**: Calculate the age of the house from the 'yr_built' column to the current year.\n", + "\n", + "**Renovation Age**: If a house has been renovated ('yr_renovated' > 0), calculate the years since the renovation.\n", + "\n", + "**Total Square Footage**: Sum up 'sqft_living', 'sqft_lot', 'sqft_above', and 'sqft_basement' for a total square footage feature.\n", + "\n", + "These new features could reveal deeper insights into the housing prices and help improve the performance of our statistical models.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
house_agerenovation_agetotal_sqft
0690.08010.0
17333.012382.0
2910.011540.0
3590.08920.0
4370.011440.0
\n", + "
" + ], + "text/plain": [ + " house_age renovation_age total_sqft\n", + "0 69 0.0 8010.0\n", + "1 73 33.0 12382.0\n", + "2 91 0.0 11540.0\n", + "3 59 0.0 8920.0\n", + "4 37 0.0 11440.0" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Current year for age calculations\n", + "from datetime import datetime\n", + "\n", + "current_year = datetime.now().year\n", + "\n", + "# Feature Engineering\n", + "housing_data_encoded['house_age'] = current_year - housing_data_encoded['yr_built']\n", + "housing_data_encoded['renovation_age'] = housing_data_encoded.apply(\n", + " lambda x: 0 if x['yr_renovated'] == 0 else current_year - x['yr_renovated'], axis=1\n", + ")\n", + "housing_data_encoded['total_sqft'] = housing_data_encoded['sqft_living'] + housing_data_encoded['sqft_lot'] + \\\n", + " housing_data_encoded['sqft_above'] + housing_data_encoded['sqft_basement']\n", + "\n", + "# Display the new features\n", + "housing_data_encoded[['house_age', 'renovation_age', 'total_sqft']].head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The new features have been successfully added:\n", + "\n", + "**House Age**: Represents the age of the house since it was built.\n", + "\n", + "**Renovation Age**: If renovated, this indicates the number of years since the last renovation; otherwise, it is 0.\n", + "\n", + "**Total Square Footage**: Sum of the living area, lot size, above-ground level area, and basement area\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From 1e31ae60a222b788336e384e81f3f3134a5586de Mon Sep 17 00:00:00 2001 From: Paul Muniu Date: Mon, 29 Apr 2024 14:32:36 +0300 Subject: [PATCH 07/27] EDA --- student.ipynb | 1032 ++++++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 981 insertions(+), 51 deletions(-) diff --git a/student.ipynb b/student.ipynb index d9a7fa37..4c88f6bd 100644 --- a/student.ipynb +++ b/student.ipynb @@ -10,7 +10,7 @@ "* Student name:\n", "1. Winfred Kinya Bundi.\n", "2. Carol Mundia.\n", - "3. Paul Mundia.\n", + "3. Paul Muniu.\n", "4. Dennis Mwenda.\n", "* Student pace: Full time Hybrid\n", "* Scheduled project review date/time:2/05/2024 \n", @@ -219,7 +219,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -251,7 +251,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -323,7 +323,7 @@ " [5 rows x 21 columns])" ] }, - "execution_count": 2, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -339,7 +339,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -370,7 +370,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -436,7 +436,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -485,7 +485,7 @@ " 4 NO NONE 0.0 2015-02-18 0.0)" ] }, - "execution_count": 7, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -532,7 +532,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -561,26 +561,26 @@ " 14 long 21597 non-null float64 \n", " 15 sqft_living15 21597 non-null int64 \n", " 16 sqft_lot15 21597 non-null int64 \n", - " 17 waterfront_YES 21597 non-null uint8 \n", - " 18 view_EXCELLENT 21597 non-null uint8 \n", - " 19 view_FAIR 21597 non-null uint8 \n", - " 20 view_GOOD 21597 non-null uint8 \n", - " 21 view_NONE 21597 non-null uint8 \n", - " 22 condition_Fair 21597 non-null uint8 \n", - " 23 condition_Good 21597 non-null uint8 \n", - " 24 condition_Poor 21597 non-null uint8 \n", - " 25 condition_Very Good 21597 non-null uint8 \n", - " 26 grade_11 Excellent 21597 non-null uint8 \n", - " 27 grade_12 Luxury 21597 non-null uint8 \n", - " 28 grade_13 Mansion 21597 non-null uint8 \n", - " 29 grade_3 Poor 21597 non-null uint8 \n", - " 30 grade_4 Low 21597 non-null uint8 \n", - " 31 grade_5 Fair 21597 non-null uint8 \n", - " 32 grade_6 Low Average 21597 non-null uint8 \n", - " 33 grade_7 Average 21597 non-null uint8 \n", - " 34 grade_8 Good 21597 non-null uint8 \n", - " 35 grade_9 Better 21597 non-null uint8 \n", - "dtypes: datetime64[ns](1), float64(7), int64(9), uint8(19)\n", + " 17 waterfront_YES 21597 non-null bool \n", + " 18 view_EXCELLENT 21597 non-null bool \n", + " 19 view_FAIR 21597 non-null bool \n", + " 20 view_GOOD 21597 non-null bool \n", + " 21 view_NONE 21597 non-null bool \n", + " 22 condition_Fair 21597 non-null bool \n", + " 23 condition_Good 21597 non-null bool \n", + " 24 condition_Poor 21597 non-null bool \n", + " 25 condition_Very Good 21597 non-null bool \n", + " 26 grade_11 Excellent 21597 non-null bool \n", + " 27 grade_12 Luxury 21597 non-null bool \n", + " 28 grade_13 Mansion 21597 non-null bool \n", + " 29 grade_3 Poor 21597 non-null bool \n", + " 30 grade_4 Low 21597 non-null bool \n", + " 31 grade_5 Fair 21597 non-null bool \n", + " 32 grade_6 Low Average 21597 non-null bool \n", + " 33 grade_7 Average 21597 non-null bool \n", + " 34 grade_8 Good 21597 non-null bool \n", + " 35 grade_9 Better 21597 non-null bool \n", + "dtypes: bool(19), datetime64[ns](1), float64(7), int64(9)\n", "memory usage: 3.2 MB\n" ] }, @@ -596,30 +596,30 @@ " 4 1954400510 2015-02-18 510000.0 3 2.00 1680 \n", " \n", " sqft_lot floors sqft_above sqft_basement ... grade_11 Excellent \\\n", - " 0 5650 1.0 1180 0.0 ... 0 \n", - " 1 7242 2.0 2170 400.0 ... 0 \n", - " 2 10000 1.0 770 0.0 ... 0 \n", - " 3 5000 1.0 1050 910.0 ... 0 \n", - " 4 8080 1.0 1680 0.0 ... 0 \n", + " 0 5650 1.0 1180 0.0 ... False \n", + " 1 7242 2.0 2170 400.0 ... False \n", + " 2 10000 1.0 770 0.0 ... False \n", + " 3 5000 1.0 1050 910.0 ... False \n", + " 4 8080 1.0 1680 0.0 ... False \n", " \n", " grade_12 Luxury grade_13 Mansion grade_3 Poor grade_4 Low grade_5 Fair \\\n", - " 0 0 0 0 0 0 \n", - " 1 0 0 0 0 0 \n", - " 2 0 0 0 0 0 \n", - " 3 0 0 0 0 0 \n", - " 4 0 0 0 0 0 \n", + " 0 False False False False False \n", + " 1 False False False False False \n", + " 2 False False False False False \n", + " 3 False False False False False \n", + " 4 False False False False False \n", " \n", " grade_6 Low Average grade_7 Average grade_8 Good grade_9 Better \n", - " 0 0 1 0 0 \n", - " 1 0 1 0 0 \n", - " 2 1 0 0 0 \n", - " 3 0 1 0 0 \n", - " 4 0 0 1 0 \n", + " 0 False True False False \n", + " 1 False True False False \n", + " 2 True False False False \n", + " 3 False True False False \n", + " 4 False False True False \n", " \n", " [5 rows x 36 columns])" ] }, - "execution_count": 9, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -658,7 +658,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -731,7 +731,7 @@ "4 37 0.0 11440.0" ] }, - "execution_count": 10, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -767,17 +767,947 @@ "**Total Square Footage**: Sum of the living area, lot size, above-ground level area, and basement area\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sample data check." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorssqft_abovesqft_basement...grade_3 Poorgrade_4 Lowgrade_5 Fairgrade_6 Low Averagegrade_7 Averagegrade_8 Goodgrade_9 Betterhouse_agerenovation_agetotal_sqft
3012160000152015-04-17219950.031.5107066011.010700.0...FalseFalseFalseTrueFalseFalseFalse390.08741.0
122024210004652014-06-17269500.021.5148072761.0940540.0...FalseFalseFalseTrueFalseFalseFalse460.010236.0
1633535280002902014-06-09743700.042.52610332062.026100.0...FalseFalseFalseFalseFalseFalseFalse360.038426.0
1400643182003602014-07-30286000.021.0117065431.011700.0...FalseFalseFalseFalseTrueFalseFalse1110.08883.0
793288569201102015-05-04360000.032.52150140922.021500.0...FalseFalseFalseFalseFalseTrueFalse330.018392.0
\n", + "

5 rows × 39 columns

\n", + "
" + ], + "text/plain": [ + " id date price bedrooms bathrooms sqft_living \\\n", + "3012 16000015 2015-04-17 219950.0 3 1.5 1070 \n", + "12202 421000465 2014-06-17 269500.0 2 1.5 1480 \n", + "16335 3528000290 2014-06-09 743700.0 4 2.5 2610 \n", + "14006 4318200360 2014-07-30 286000.0 2 1.0 1170 \n", + "7932 8856920110 2015-05-04 360000.0 3 2.5 2150 \n", + "\n", + " sqft_lot floors sqft_above sqft_basement ... grade_3 Poor \\\n", + "3012 6601 1.0 1070 0.0 ... False \n", + "12202 7276 1.0 940 540.0 ... False \n", + "16335 33206 2.0 2610 0.0 ... False \n", + "14006 6543 1.0 1170 0.0 ... False \n", + "7932 14092 2.0 2150 0.0 ... False \n", + "\n", + " grade_4 Low grade_5 Fair grade_6 Low Average grade_7 Average \\\n", + "3012 False False True False \n", + "12202 False False True False \n", + "16335 False False False False \n", + "14006 False False False True \n", + "7932 False False False False \n", + "\n", + " grade_8 Good grade_9 Better house_age renovation_age total_sqft \n", + "3012 False False 39 0.0 8741.0 \n", + "12202 False False 46 0.0 10236.0 \n", + "16335 False False 36 0.0 38426.0 \n", + "14006 False False 111 0.0 8883.0 \n", + "7932 True False 33 0.0 18392.0 \n", + "\n", + "[5 rows x 39 columns]" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "housing_data_encoded.sample(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 21597 entries, 0 to 21596\n", + "Data columns (total 39 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 id 21597 non-null int64 \n", + " 1 date 21597 non-null datetime64[ns]\n", + " 2 price 21597 non-null float64 \n", + " 3 bedrooms 21597 non-null int64 \n", + " 4 bathrooms 21597 non-null float64 \n", + " 5 sqft_living 21597 non-null int64 \n", + " 6 sqft_lot 21597 non-null int64 \n", + " 7 floors 21597 non-null float64 \n", + " 8 sqft_above 21597 non-null int64 \n", + " 9 sqft_basement 21597 non-null float64 \n", + " 10 yr_built 21597 non-null int64 \n", + " 11 yr_renovated 21597 non-null float64 \n", + " 12 zipcode 21597 non-null int64 \n", + " 13 lat 21597 non-null float64 \n", + " 14 long 21597 non-null float64 \n", + " 15 sqft_living15 21597 non-null int64 \n", + " 16 sqft_lot15 21597 non-null int64 \n", + " 17 waterfront_YES 21597 non-null bool \n", + " 18 view_EXCELLENT 21597 non-null bool \n", + " 19 view_FAIR 21597 non-null bool \n", + " 20 view_GOOD 21597 non-null bool \n", + " 21 view_NONE 21597 non-null bool \n", + " 22 condition_Fair 21597 non-null bool \n", + " 23 condition_Good 21597 non-null bool \n", + " 24 condition_Poor 21597 non-null bool \n", + " 25 condition_Very Good 21597 non-null bool \n", + " 26 grade_11 Excellent 21597 non-null bool \n", + " 27 grade_12 Luxury 21597 non-null bool \n", + " 28 grade_13 Mansion 21597 non-null bool \n", + " 29 grade_3 Poor 21597 non-null bool \n", + " 30 grade_4 Low 21597 non-null bool \n", + " 31 grade_5 Fair 21597 non-null bool \n", + " 32 grade_6 Low Average 21597 non-null bool \n", + " 33 grade_7 Average 21597 non-null bool \n", + " 34 grade_8 Good 21597 non-null bool \n", + " 35 grade_9 Better 21597 non-null bool \n", + " 36 house_age 21597 non-null int64 \n", + " 37 renovation_age 21597 non-null float64 \n", + " 38 total_sqft 21597 non-null float64 \n", + "dtypes: bool(19), datetime64[ns](1), float64(9), int64(10)\n", + "memory usage: 3.7 MB\n" + ] + } + ], + "source": [ + "housing_data_encoded.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3. EXPLORATORY DATA ANALYSIS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next is EDA; Exploratory Data Analysis is a crucial step in data analysis. This process will involve examining and understanding the structure, patterns, and relationships within the dataset. It will aid us uncover insights, detect anomalies, and inform subsequent analysis and modeling decisions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### a.) Univariate Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### #Distribution of prices." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWcAAAJICAYAAAANc1ZxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACY8klEQVR4nOzdeXRTdf7/8VfSpm1Ky1agVRFBkH0XEEQQcP0iMiKOG6AiKIuKsuMPRBRxBdlBkc0NWQTBZRwd99FhdxlnAB2wRURKWVq2bmmT3x9pAqFN2qZpbtI+H+fMuSH33k8+/dgz5/bVd98fk8PhcAgAAAAAAAAAEFRmoycAAAAAAAAAAJUR4SwAAAAAAAAAGIBwFgAAAAAAAAAMQDgLAAAAAAAAAAYgnAUAAAAAAAAAAxDOAgAAAAAAAIABCGcBAAAAAAAAwACEswAAAAAAAABgAMJZAGHN4XAYPQUAAADAMOHwPBwOcwQAoxDOAig3kyZNUq9evbye79WrlyZNmuT138X5/PPPNXHixDLNsSL45ZdfdMstt6hly5bq3bt3kdfMnz9fTZo08TrGoEGDNGjQoPKaYrlo0qRJof+1bt1aN910k1577TXZ7Xaf92/YsEFNmjTRH3/8EaQZAwCAcDBo0CCP54umTZuqXbt2uvXWW/XGG28oLy/PkHn98ccfatKkiTZs2CBJOnnypCZMmKAdO3aUadxJkyYVeqZq0aKFrrrqKo0fP16HDh1yX+vPM+POnTv14IMPlmmOLh999JF69uypli1baurUqUVeU9wcmzRpovnz5wdkPsGwdevWQv99mjZtqvbt2+vOO+/UF198UewYxf1cBsBYkUZPAABcFixYoLi4uBJfv3LlyvKbTBhZuHCh/vzzTy1cuFA1a9Y0ejpBddttt+mvf/2r+99ZWVn69NNPNXPmTJ08eVJjx471em+PHj20Zs0a1alTJxhTBQAAYaR58+Z68sknJUn5+fk6ceKEvvnmGz333HPasWOH5syZI7M5uLVOderU0Zo1a1SvXj1J0u7du7Vp0yb179+/zGPXrl1bCxYscP87Ly9PycnJmjlzpn744Qd9+OGHiomJ8WvsdevWad++fWWeoyQ9/fTTql+/vp5//nklJiYGZMxwMXXqVLVo0UKSsxL5xIkTWr58uUaOHKlXX31VV199tdd7R44cqXvuuSdYUwVQSoSzAEJG8+bNjZ5CWEpPT1fjxo19PpBVVElJSWrbtq3He126dNFvv/2mt99+W6NGjZLFYiny3po1a1a6MBsAAJRMXFxcoWeMXr166dJLL9WMGTP04Ycfqm/fvkGdU1RUVKE5lefYHTp0kMVi0cSJE/X555/rpptuKpfPLo2MjAx17dpVV1xxhdFTCbpGjRoV+d+oR48eeuONN3z+LOAK9AGEJtoaAAgZ57c1cD30tm7dWp07d9a4ceN0+PBhSc4/V9q2bZu2bdumJk2aaOvWrZKktLQ0Pf7447r66qvVunVr3Xbbbfr88889Puf06dOaOnWqunTponbt2mn06NFauXKlx5/9Dxo0SOPGjdOoUaPUtm1bDR48WJLzz8kmTJigq666Si1atFCXLl00YcIEpaene3wdCxYs0LPPPqsrrrhC7dq109ixY3XmzBktWbJE3bt31+WXX65HHnnE476iFPf1NGnSRNu2bdP27ds9/swtEP72t7/p1ltvVbt27dS1a1dNnTpVJ06ccJ8v6s+jzv9zO0l6/fXXdeONN6pVq1bq1q2bpk2bptOnT7vP2+12LVmyRNddd51atmypG264QW+++WaZ5t6yZUudOXPGPd8mTZpowYIFuvXWW9W6dWstWLCgyLYGX3/9te688061bdtWV111laZOnaqTJ0+6z//5558aM2aMOnXqpDZt2ujee+/Vrl27PD7b1/ctAAAIbwMHDlRiYqJWr17t8f66det00003qWXLlurRo4fmz5+v/Px89/lJkybpvvvu0/r163XDDTeoZcuW+stf/qJvvvnGfY3dbtfs2bPVq1cvtWzZUr169dKsWbNks9kkeT5nbd261V0Jec8992jQoEF6++231aRJEyUnJ3vMbdOmTWrWrJlHe4KSatWqlSTp4MGDRZ7PycnRwoUL3c96119/vZYsWeJuLzVp0iS99957OnjwYLHPqj///LOGDBmiK664Qu3bt9fw4cP1v//9T9LZP+2XnH81FsjWVMV9DVLR7dfOf5bMzs7WtGnT1L17d7Vs2VI33nijli1b5nFPRkaGpk6dqiuvvFKtWrXS7bffrs2bN/s997i4ODVo0EB//vmnpLPrtHr1avXs2VPt27fXd999V+i53eFwaOXKlfq///s/tW7dWtddd52WLVvm0Rt4x44dGjhwoNq0aaNOnTpp4sSJOn78uPt8cd+vAEqOylkA5c6fvlw7d+7UhAkTNHLkSHXs2FGpqal66aWXNHbsWL311lt68sknNX78eEnSk08+qUaNGuno0aO67bbbFB0drdGjR6tGjRrasGGDHnroIb344ovu6oaRI0dq9+7dGj16tC688EKtWrVKs2bNKjSHjz/+WH379tXixYtlt9uVlZWle+65RzVq1NCTTz6p+Ph4/fDDD1qwYIFiYmL09NNPu+9dvny5unbtqtmzZ+s///mPZs2apf/+97+qU6eOpk+frj/++EMzZsxQrVq13H8yd76SfD1r1qzRU0895V6H4n4r7u2/hcPhkMlkcv970aJFmjdvnu6++26NHj1aBw4c0Ny5c/Xjjz9q7dq1Jf6ztg8//FAvvfSSJk6cqCZNmui3337TCy+8oKysLL3wwguSpGnTpmnDhg0aNmyY2rVrp+3bt+vZZ5/VyZMn9dBDD5Xoc86XnJysKlWqKCEhwf3eK6+8orFjx6pBgwa66KKL9PPPP3vc8+WXX2rEiBG65pprNGfOHGVkZOjFF1/UwYMHtWzZMh0/flx33nmnrFarnnjiCVmtVr3++usaMGCA3n33XTVs2LDY71sAABDezGazunTpoo8++kh5eXmKjIzUq6++qtmzZ2vgwIF6/PHHtXv3bs2fP1+HDh3Ss88+6773P//5j9LS0jRq1CjFxcVp7ty5euSRR/TNN9+oWrVqeu211/TOO+9o4sSJuvjii/XTTz9p9uzZslgsGjVqlMc8WrRooalTp+rpp5/W1KlTdcUVV6hOnTp64YUXtGnTJj322GPuazdu3KguXbroggsuKPXX6wp6i3rGdDgcGj58uH788Uc9/PDDatq0qbZu3ao5c+bowIEDmj59ukaOHKnjx49r165dWrBggddn1S1btmjo0KG64oor9OyzzyonJ0evvvqq7rzzTq1du1YtWrTQmjVrdMcdd7jbWvlqTeVwOEr0M0hJvoaSevbZZ/Xtt99q4sSJqlWrlr755hu9+OKLql69uvr376+cnBzde++9Onr0qEaPHq06depo/fr1Gjp0qJYuXaouXbqU+LNccnNz9ccff6h169Ye7y9YsEBTpkxRdna22rVrpw8++MDj/IsvvqjXX39dgwcPVteuXfXzzz9r5syZysvL07Bhw7R9+3YNHjxYnTt31pw5c3TixAnNnTtX99xzj959913FxMSU6vsVgG+EswDK1cGDB929kUpj586diomJ0YMPPqioqChJUvXq1fXzzz/L4XCoUaNG7v60rj/vWbx4sY4fP65PPvlEF110kSTp6quv1n333acXX3xRffr00datW7V161bNnz9f119/vSSpe/fu6tOnT6FeWBaLRU899ZT783fv3q2kpCS98MILuvjiiyVJnTt31k8//aRt27Z53BsXF6fZs2crMjJSV155pd577z0dPnxY69atU3x8vCTpn//8p77//nuva7BixYpiv562bdsWWgdffP236NSpkyTpxIkTWrx4sW6//XaPjRYaN26sAQMGaP369RowYECxnyVJ27ZtU926dTVgwACZzWZ16tRJsbGx7orW5ORkrV27VmPGjHFvFHHVVVfJZDLp1Vdf1d13360aNWp4Hd9ut7sfvB0Oh44ePaoPPvhAX3zxhYYOHeoROHfo0MFdAS2pUDg7f/58NWvWTAsWLHDfFxUVpblz5+ro0aN68803lZGRoXfeecf936N79+7q3bu35s6dq3nz5hX7fXvufAAAQHiqVauWbDabMjIyFB0drUWLFumOO+7QlClTJDmfZapXr64pU6Zo8ODBuuyyyyRJp06d0oYNG9wBZWxsrAYOHKgtW7bohhtu0LZt29SyZUt3D9lOnTrJarW6nx3PFRcXp0aNGkly/rm76/V1112n999/X48++qhMJpNSU1O1ZcsWvfTSS8V+XeeGmadPn9bPP/+s5557TnXr1lWPHj0KXf/NN9/oX//6l15++WV3y4OuXbsqJibGHeRddtllqlmzZrEtGWbNmqVLLrlES5YsUUREhHsdr7vuOs2bN09z5851319UW6vzbd++vUQ/g5T0ayiJbdu2qWvXru5xrrjiCsXGxrqLBTZt2qQ9e/Zo7dq1atOmjSTns+SgQYM0c+ZMrV+/3uf45z735uXl6eDBg1q0aJGOHz9e6Nn87rvv1o033ljkOCdPntQbb7yhgQMHuotdrrzySh05ckTbt2/XsGHDNGvWLDVo0ECvvvqq+79HmzZtdNNNN7l/FijN9ysA3whnAZSr2rVra/HixUWeGzFihNf7OnbsqNmzZ6tPnz664YYbdPXVV+uqq67y2Utp27ZtateunTs4c+nbt68ef/xx/fbbb9qyZYssFouuvfZa93mz2azevXsX2rX10ksvdQdsktSsWTOtWrVKdrtdKSkp2r9/v/bu3avffvut0G/mW7durcjIs/8XW6tWLcXGxno8rFSvXl2//vprmb4e14N4Sb377rtFvn9u9e6PP/6o3Nxc9enTx+OaDh066KKLLtK2bdtKHM527txZa9as0a233qprr71WV199tW6++WZ3SLllyxY5HA716tXLYw179eqlxYsXa+fOnR7/rc63aNEiLVq0yOO9mJgY3XHHHXrkkUc83m/WrJnXcbKzs7Vr1y498sgjHgFq79691bt3b0nS5s2b1axZMyUmJrrnajab1b17d73//vuS/Pu+BQAA4cX1p98mk0k//PCDsrOzi3yWkaTvvvvOHe7VrFnTo3I0KSlJknNDU8kZ5s2aNUt33323evXqpR49emjgwIGlmtttt92mDz/8UDt27FDHjh21ceNGValSRdddd53P+7wVVLRp00ZPP/10kX81tW3bNkVGRhYKAfv27au5c+dq27ZtJQo2MzMz9fPPP+vhhx92B4GSVLVqVfXs2VNff/11sWOcr0WLFu6/LjvfbbfdFvCvQXL+91u9erVSU1N19dVX6+qrr/b4K7DNmzerdu3aatGihcf3Ss+ePfXiiy/qxIkTqlatmtfx77vvvkLvJSQkaMqUKerevbvH+76ee3/88Ufl5eW5C1VcXL9cyMrK0k8//aQhQ4Z4VCBffPHFatiwob777jsNGDAgIN+vAJwIZwGUq6ioKHevqqLOedOuXTstWbJEK1eu1IoVK7RkyRLVqlVLw4cP16BBg4q858SJE+6K1nPVqlVLkvO3xOnp6apevXqh3XXP/fN3lypVqhR6b8WKFXrllVeUkZGhWrVqqWXLlrJarTp16pTHda5q1nPFxsZ6/Xr9/XpKy9t/i3O/VldVq+tzzv/s879WX3r37i273a5Vq1Zp0aJFmj9/vi666CKNGzdOvXv3VkZGhiR53WCiuF6tt99+u26//XZJzh+QqlSporp16xa5CZiv9T9x4oQcDkeR3wcuGRkZ2r9/v9cqjKysLL++bwEAQHg5fPiwYmJiVL16dfezjOsvgM6Xlpbmfm21Wj3OuX4h7OptOnToUFWpUkXr16/XzJkz9dJLL+myyy7TlClT1Llz5xLNrXPnzqpbt642btzoDmd79+6t6Ohon/edX1ARFRWlpKQkn2HhiRMnVKNGDY9A1TWWpBI/M546dUoOhyMgz54uVapU8frce65AfQ2SNHnyZCUlJen999/X9OnTNX36dLVr107Tpk1T06ZNlZGRoSNHjnh9ljxy5IjP9X7qqafc90ZERKhatWq68MILi/zLLF/Pva7vWW8b4548eVJ2u12vvfaaXnvttULnXd9Lgfh+BeBEOAsgZHXr1k3dunVTVlaWtmzZojfeeEPPPPOM2rRpU6ivkiRVq1ZNR44cKfS+670aNWooMTFR6enpstvtHgHtsWPHip3PBx98oOeff17jx4/Xrbfe6n6gefTRRwv9iXwglOTrKQ+uh8KjR4/q0ksvLfTZrsDYZDJ5bHQhOSsfztenTx/16dNHp06d0rfffqvXXntN48eP1+WXX66qVatKcm4aVlQYfuGFF/qca506dUr04F2cuLg4mUwmj00OJOcGEVu2bFGbNm0UHx+vTp06acKECUWO4fplQ2m/bwEAQPjIy8vT1q1b1b59e0VERLifZWbOnKn69esXur6owNEbs9msAQMGaMCAATp27Ji+/vprvfLKK3rkkUf03XfflWgMk8mkfv366c0339Rdd92l5ORkd59/X3wVVHhTrVo1paenKz8/3yPcdAXSJX1WjY+Pl8lk0tGjRwudO3LkiKpXr16qeZVGab6G4p57o6KiNGLECI0YMUJ//vmnvvzySy1atEhjx47VRx99pPj4eNWvX18zZ84sci5169b1OdcGDRoE5LnX9T17/Phxj2f9P//8U7///rtatmwpk8mk++67r8gCCtcvGYr7fvVViAPAk7n4SwAg+F544QX1799fDodDVqtVPXv21MSJEyXJvRvp+dWvHTt21A8//FBoN9n3339ftWvX1iWXXKJOnTopLy9PX3zxhfu8w+HQZ599Vuycdu7cqapVq2ro0KHuYPbMmTPauXOnx26ugVKSr6c8tGnTRlFRUfrwww893t+xY4f+/PNPtW/fXpKzIiE9PV05OTnua3bu3Olxz2OPPeb+c674+Hj93//9n0aOHKm8vDylpaWpQ4cOkqT09HS1atXK/b/jx49r7ty57t/sl7cqVaqoWbNm+vLLLz3e/+abb/Tggw8qLS1NnTp1UnJysvvB2PW/TZs26d1331VERESJvm8BAED4WrNmjY4cOaK77rpLkvO5yWKx6PDhwx7PB5GRkXr55Zf1xx9/lHjsO++8U88884wk51913XrrrRowYIBOnjyp06dPF7r+/GpPl1tvvVUnT57UCy+8oIYNG7r7mwaa67n673//u8f7rnZPl19+uaTCz+zni42NVcuWLfXxxx97BKCnTp3SV1995R6nPJT0a4iLi1NqaqrHNec+92ZnZ+uGG27Q8uXLJTkLDAYMGKCbbrrJ/QzYqVMnHTp0SAkJCR7fK999952WLl3q9b9noLVu3VoWi6XQc+/y5cs1ZswYxcbGqnnz5vrtt9885nnZZZdp/vz52rp1q6TSf78C8I7KWQAhqXPnzlqxYoUmTZqkvn37ymazaenSpapevbr7z2SqVq2qH374QZs3b1bz5s01ePBgvf/++7rvvvv08MMPq3r16tq4caO2bNmiZ599VmazWR07dlTXrl01efJkHT16VBdeeKHeffdd/fLLL8Vu1tS6dWu98847ev7559WzZ0+lpaVp2bJlOnr0qM8/QfJXSb6e8lC9enU9+OCDWrhwoSwWi3r27Kk//vhDc+fOVaNGjdSvXz9Jzv5Yb775piZPnqzbbrtNv/76q1asWOHxYNm5c2c9+eSTeuGFF9S9e3edPHlSCxYsUP369dW0aVNZLBb17dtXTzzxhA4ePKiWLVsqOTlZs2fPVt26dYusQCkvo0aN0ogRIzRmzBjdcsstOnr0qF5++WVde+21aty4se677z5t2rRJ9913n+6//37VqFFDf/vb37R27Vo9/vjj7q+3uO9bAAAQ+k6fPq0ff/xRkrPtQHp6ur799lutWbNGffv2dffrrFGjhoYOHaq5c+fq9OnTuuKKK3T48GHNnTtXJpNJTZs2LfFnduzYUcuXL1etWrXUrl07HT58WCtWrFCnTp1Us2bNQpWarr0MvvrqK1WrVs39WRdeeKGuvPJKffvttxo3blwAVqNo3bt31xVXXKEpU6bo8OHDatq0qbZt26bXXntN/fr1c++NULVqVR09elRff/21mjVrpjp16hQaa+zYsRoyZIgefPBB3X333bLZbFqyZIlyc3M9+rYa9TX07NlTr776ql599VW1adNGX3zxhbZs2eIeJyYmRi1atNCCBQtksVjUpEkTJScn67333tMNN9wgyRmav/XWWxo8eLCGDx+uCy64QP/617/02muvaeDAgUW25SoPNWvW1D333KOVK1cqKipKnTp10k8//aR33nlHEyZMkNlsdm/WO3bsWPXt21f5+flavny5fvrpJ40cOVJS8d+vAEqOcBZASLr66qs1c+ZMLV++XA8//LBMJpMuv/xyvfHGG+4/bRowYID+85//6IEHHtBzzz2nm2++We+8845mzZqlZ555RjabTU2bNtWiRYt0zTXXuMeePXu2nn/+ec2aNUt5eXm65pprdNddd2njxo0+59SvXz/98ccfWr9+vVatWqXExERdffXVuvvuu/XEE09o3759atiwYcDWoHbt2iX6esrDI488olq1aumtt97SmjVrVL16dd1444167LHH3D2sunbtqokTJ+rNN9/UJ5984n4gvfPOO93j3HnnnbLZbFq9erVWrVqlmJgYdenSRePHj3c/gD733HN69dVX3RsoJCQkqHfv3nrssceCVkEgOR+6X3nlFS1YsEAPPfSQatasqZtvvtm9sVhiYqJWr16tWbNmadq0acrJyVH9+vU1Y8YM98YSJfm+BQAAoW/Xrl264447JJ3ta9+4cWNNmzZNf/3rXz2ufeyxx1S7dm2tWrVKS5cuVbVq1dSlSxeNGTOmVDvXP/roo4qKitL69eu1cOFCxcfHq1evXho7dmyR11922WXq06eP3n77bf3zn//0+KunHj16aPPmzfrLX/7ix1dfMiaTSa+++qrmzZunlStX6vjx46pbt67GjBmjwYMHu6+79dZb9fXXX+uhhx7SqFGjiuzP26VLF61YsULz5s3TmDFjFBUVpQ4dOuiFF14o8YZc5fk1DBs2TMePH9eyZctks9nUo0cPzZgxw2OD46efflpz5szR8uXLdeTIESUkJOi2227To48+KslZIfz2229r1qxZeumll3Tq1ClddNFFGjt2rO6///5y+xqLMn78eCUkJGj16tVaunSp6tatqyeeeML9HH/VVVdp2bJlWrBggUaNGiWLxaIWLVpoxYoVatu2raTSf78C8M7kcG01CQCVwMGDB/Xjjz/qmmuu8dh1dtSoUTpw4IDee+89A2cHAAAAlN3QoUMVHR2thQsXGj0VAEAxqJwFUKmYzWZNmjRJ11xzjW677TZFRETon//8pz799FM999xzRk8PAAAA8NvChQuVnJysb7/9VqtWrTJ6OgCAEqByFkCls2XLFi1cuFC7d+9WXl6eGjZsqMGDB6tPnz5GTw0AAADwW//+/fX7779rxIgRQf9TeQCAfwhnAQAAAAAAAMAA5bPVNwAAAAAAAADAJ8JZAAAAAAAAADAA4SwAAAAAAAAAGCDS6AmEox9++EEOh0MWi8XoqQAAAFQYNptNJpNJ7dq1M3oqlQrPtgAAAIFX0mdbKmf94HA4VB77qDkcDuXm5pbL2OGOtfGN9fGN9fGOtfGN9fGN9fGOtfHN2/qU1zMWfOPZNvhYG99YH99YH99YH+9YG99YH99YH+/K+mxL5awfXFUFrVq1Cui4mZmZ2r17txo1aqTY2NiAjh3uWBvfWB/fWB/vWBvfWB/fWB/vWBvfvK3Pzz//bOCsKi+ebYOPtfGN9fGN9fGN9fGOtfGN9fGN9fGurM+2VM4CAAAAAAAAgAEIZwEAAAAAAADAAISzAAAAAAAAAGAAwlkAAAAAAAAAMADhLAAAAAAAAAAYgHAWAAAAAAAAAAxAOAsAAAAAAAAABiCcBQAAAAAAAAADEM4CAAAAAAAAgAEIZwEAAAAAAADAAISzAAAAAAAAAGAAwlkAAAAAAAAAMADhLAAAAAAAAAAYgHAWAAAAAAAAAAxAOAsAAAAAAAAABiCcBQAAAAAAAAADEM4CAAAAAAAAgAEIZwEAAAAAAADAAISzAAAAAAAAAGAAwlkAAAAAAAAAMADhLAAAAAAAAAAYgHAWAAAAQPg5tl3acIH0v1eMngkAAIDfCGcrEYfDEZJjAQAAAKX23xlSdqq0b5nRMwEAAPBbpNETQPCYTCb9KzVTJ3LzyzROtagIXZkUG6BZAQAAAKWUeVA6+KHzdcZPUn6OFBFt7JwAAAD8QDhbyZzIzVd6jt3oaQAAAAD+27dMchQUHNhtUsbPUkIHY+cEAADgB9oaAAAAAAgf9nxp31Ln6wir83h8u3HzAQAAKAPCWQAAAADh49DfpcwDUlRN6bKRzveO7TB2TgAAAH4inAUAAAAQPva+6jw2uFeq0835mspZAAAQpug5CwAAACA8ZB+R/vzI+brRg5Il3vn6xH+lvEwpkk1rAQBAeKFyFgAAAEB4yPxdctgl60VStaZS7EWS9QLne+k/GD07AACAUiOcBQAAABAectOdx6gaZ9+r2cF5pO8sAAAIQ4SzAAAAAMJDbobz6BHOdnQe6TsLAADCEOEsAAAAgPDgDmern30voaBy9jiVswAAIPwQzgIAAAAID662BpbqZ99zVc6e/EXKPRH0KQEAAJQF4SwAAACA8GDLcB7PbWsQU0uqUt/5+vjOYM8IAACgTAhnAQAAAISHotoaSFLN9s5jxr+DORsAAIAyI5wFAAAAEB5cbQ3OD2erNHAeMw8EdToAAABlRTgLAAAAIDy4K2dreL4fe7HzeOb3oE4HAACgrAhnAQAAAIQHV8/ZczcEk6Qq9ZxHKmcBAECYIZwFAAAAEB68tTVwVc4SzgIAgDBDOAsAAAAgPHhra+CqnM06JOXnBnVKAAAAZUE4CwAAACA8uNoanF85G11bMkdLckhZfwZ5UgAAAP4jnAUAAAAQ+vKznf+TCvecNZnOaW3ApmAAACB8EM4CAAAACH2ulgYms2SJL3y+SkE4e4a+swAAIHwQzgIAAAAIfa5w1lLNGdCeL7ag7yyVswAAIIwQzgIAAAAIfbnpzuP5m4G5uNsaUDkLAADCB+EsAAAAgNDn2gzs/H6zLrQ1AAAAYYhwFgAAAPDDq6++qkGDBnm8t3v3bg0cOFBt27ZVr1699MYbb3ict9vtmjdvnrp166a2bdvqgQce0IEDBwI+RoXkamsQVb3o87Q1AAAAYYhwFgAAACilt99+W3PmzPF4Lz09XYMHD1a9evW0fv16PfTQQ5o5c6bWr1/vvmbRokVatWqVpk+frtWrV8tut2vo0KHKzc0N2BgVFm0NAABABUQ4CwAAAJTQ4cOHNXz4cM2cOVP169f3OLd27VpZLBY9/fTTatiwofr376/77rtPS5YskSTl5uZq+fLlGjVqlHr06KGmTZtq9uzZSk1N1aeffhqwMSosV1sDb5WzrrYGuemS7XQwZgQAAFBmhLMAAABACf33v/+VxWLR+++/rzZt2nic27Fjhzp16qTIyEj3e507d1ZKSoqOHj2qPXv26MyZM+rSpYv7fNWqVdW8eXNt3749YGNUWK62Bt56zlqqSpZqztdUzwIAgDARWfwlAAAAACSpV69e6tWrV5HnUlNT1bhxY4/36tSpI0k6dOiQUlNTJUkXXHBBoWtc5wIxhj8cDocyMzP9vr8oWVlZHseyiso8okhJuaY45XmZa4y1rsy2E8pO/5/slksC8rnlIdBrU9GwPr6xPr6xPt6xNr6xPr6xPt55WxuHwyGTyVTs/YSzAAAAQABkZ2crKirK473o6GhJUk5OjvuBvahrTpw4EbAx/GGz2bR7926/7/clJSUlIONceuyAakhKPZalI17m2ii/uqpJSt23XceOXRSQzy1PgVqbior18Y318Y318Y618Y318Y318a6otTn/ma0ohLMAAABAAMTExBTalCsnJ0eSFBsbq5iYGEnOvrGu165rrFZrwMbwh8ViUaNGjfy+vyhZWVlKSUlR/fr1yzQ3l+jjdum0lHhxE9W6uFmR11hymklnvtNF1fNVp1nR14SCQK9NRcP6+Mb6+Mb6eMfa+Mb6+Mb6eOdtbfbu3Vui+wlnAQAAgABISkpSWlqax3uufycmJiovL8/9Xr169TyuadKkScDG8IfJZFJsbKzf9/titVoDM3b+SUlSdFyS5G28ag0kSRbbIVnK6esJpICtTQXF+vjG+vjG+njH2vjG+vjG+nh3/tqUpKWBxIZgAAAAQEB07NhRO3fuVH5+vvu9LVu2qEGDBkpISFDTpk0VFxenrVu3us+fPHlSu3btUseOHQM2RoXl2hAsqrr3a2Ivdh7PsCEYAAAID4SzAAAAQAD0799fp0+f1uTJk7V3715t2LBBK1eu1LBhwyQ5e44NHDhQM2fO1Oeff649e/Zo9OjRSkpK0vXXXx+wMSosW4bz6DOcLagmzvy9vGcDAAAQELQ1AAAAAAIgISFBS5cu1YwZM9SvXz/Vrl1bEyZMUL9+/dzXjBo1Snl5eZoyZYqys7PVsWNHLVu2TBaLJWBjVEgOxzmVszW8X1eloHI284DznhL+OSEAAIBRCGcBAAAAPzz//POF3mvdurXWrFnj9Z6IiAiNHz9e48eP93pNIMaocPJOS46CVg+W6t6vs14kySTlZ0s5x6SYWsGYHQAAgN9oawAAAAAgtLmqZs1RUkSM9+sioqWYOs7XWQfLfVoAAABlRTgLAAAAILTlpjuPUTWKb1UQXdt5zDlSvnMCAAAIAMJZAAAAAKGtJJuBucQUhLPZhLMAACD0Ec4CAAAACG2utga++s26UDkLAADCCOEsAAAAgNB2bluD4kRTOQsAAMIH4SwAAACA0OaqnC1NWwMqZwEAQBggnAUAAAAQ2lw9Z0vT1iA7rbxmAwAAEDCEswAAAABCW2naGlA5CwAAwgjhLAAAAIDQVpq2BmwIBgAAwgjhLAAAAIDQ5mprUJpwlg3BAABAGCCcBQAAABDa/GlrkHtcsueV35wAAAACgHAWAAAAQGhztTUoyYZgUQmSTM7XOcfKaUIAAACBQTgLAAAAILSVpuesOUKKrul8Td9ZAAAQ4gwPZ/Py8jR37lz17NlT7dq104ABA/Tjjz+6z+/evVsDBw5U27Zt1atXL73xxhse99vtds2bN0/dunVT27Zt9cADD+jAgQMe1xQ3BgAAAIAQln/GeYyMK9n1bAoGAADChOHh7OLFi7Vu3TpNnz5dGzduVIMGDTR06FClpaUpPT1dgwcPVr169bR+/Xo99NBDmjlzptavX+++f9GiRVq1apWmT5+u1atXy263a+jQocrNzZWkEo0BAAAAIITlZzuPETElu55NwQAAQJiINHoCn332mfr06aOrrrpKkjRp0iStW7dOP/74o5KTk2WxWPT0008rMjJSDRs21P79+7VkyRL1799fubm5Wr58ucaNG6cePXpIkmbPnq1u3brp008/VZ8+fbR27VqfYwAAAAAIcaUNZ2PqOI9UzgIAgBBneOVsQkKCvvzyS/3xxx/Kz8/XmjVrFBUVpaZNm2rHjh3q1KmTIiPPZsidO3dWSkqKjh49qj179ujMmTPq0qWL+3zVqlXVvHlzbd++XZKKHQMAAABACLPbJEe+83WEtWT3UDkLAADChOGVs5MnT9ajjz6qa665RhERETKbzZo/f77q1aun1NRUNW7c2OP6OnWcvwU/dOiQUlNTJUkXXHBBoWtc54obo1atWn7N2+FwKDMz0697vcnKyvI4BpLJZJLVapU93678/PwyjWUvuD0rK0sOhyMAsyteea5NRcD6+Mb6eMfa+Mb6+Mb6eMfa+OZtfRwOh0wmkxFTQihzVc1KpaicpecsAAAID4aHs3v37lV8fLwWLlyoxMRErVu3TuPGjdNbb72l7OxsRUVFeVwfHR0tScrJyXE/0Bd1zYkTJySp2DH8ZbPZtHv3br/v9yUlJSXgY1qtVjVv3lzZ2dnKzLKVaaxYh0VSNSUnJwf9h87yWJuKhPXxjfXxjrXxjfXxjfXxjrXxraj1Of+5DfAIZ83RJbuHDcEAAECYMDScPXTokMaOHauVK1eqQ4cOkqRWrVpp7969mj9/vmJiYtwbe7m4AtXY2FjFxDh/c56bm+t+7brGanX+yVNxY/jLYrGoUaNGft9flKysLKWkpKh+/fru+QeKqwolJiZGsSZLmcaKiY6QJDVo0CColbPltTYVAevjG+vjHWvjG+vjG+vjHWvjm7f12bt3r4GzQshyhbPmaKmkldXutgZp5TMnAACAADE0nP3pp59ks9nUqlUrj/fbtGmjb775RhdeeKHS0jwfqFz/TkxMVF5envu9evXqeVzTpEkTSVJSUpLPMfxlMpnKFO76YrVay21sc4RZERFlH0OSIT9slufaVASsj2+sj3esjW+sj2+sj3esjW/nrw8tDVCk0m4GJtHWAAAAhA1DNwRLSkqSJP3yyy8e7//666+qX7++OnbsqJ07d3r0SN2yZYsaNGighIQENW3aVHFxcdq6dav7/MmTJ7Vr1y517NhRkoodAwAAAEAIyy9oo1WacJYNwQAAQJgwNJxt3bq1Lr/8ck2cOFFbtmxRSkqK5syZo82bN+vBBx9U//79dfr0aU2ePFl79+7Vhg0btHLlSg0bNkySsyfZwIEDNXPmTH3++efas2ePRo8eraSkJF1//fWSVOwYAAAAAEKYu3K2FH+15aqczT0mOeyBnxMAAECAGNrWwGw2a/HixZozZ44ef/xxnThxQo0bN9bKlSvVpk0bSdLSpUs1Y8YM9evXT7Vr19aECRPUr18/9xijRo1SXl6epkyZouzsbHXs2FHLli2TxeLsq5qQkFDsGAAAAABClN2PtgbRtZxHh13KOS7F1Ar8vAAAAALA0HBWkqpVq6Ynn3xSTz75ZJHnW7durTVr1ni9PyIiQuPHj9f48eO9XlPcGAAAAABClD89Z80WyVJdsmU4+84SzgIAgBBlaFsDAAAAAPDJFc6aSxHOSmwKBgAAwgLhLAAAAIDQ5U/lrMSmYAAAICwQzgIAAAAIXflZzmNpw1kqZwEAQBggnAUAAAAQutyVs9bS3UflLAAACAOEswAAAABCV1nbGlA5CwAAQhjhLAAAAIDQZfcznKWtAQAACAOEswAAAABCFxuCAQCACoxwFgAAAEDocoWzZtoaAACAiodwFgAAAEDoys9yHv1ta5CdFtj5AAAABBDhLAAAAIDQ5W5rYC3dfdG1nMfcY5LDEdg5AQAABAjhLAAAAIDQ5avnrMPu/b7oBOfRbpPyzvj+DF/jAAAAlKNIoycAAAAAAF75CmdNZun39VLO0cLnHA7JFCk58qRf5p0Na88XXUuq1z9w8wUAACgFwlkAAAAAocvuI5yVnMFs1qGiz0XESHmnpTP7JXtu+cwPAACgDGhrAAAAACB0+aqcLU5EbMEYmYGbDwAAQAARzgIAAAAIXflZzqNf4WzBJmJ5WYGbDwAAQAARzgIAAAAIXe7KWWvp742kchYAAIQ2wlkAAAAAoatMbQ0KAt18KmcBAEBoIpwFAAAAELpc4ayZcBYAAFQ8hLMAAAAAQldZKmddbQ3oOQsAAEIU4SwAAACA0BWIDcHoOQsAAEIU4SwAAACA0EXPWQAAUIERzgIAAAAIXXZXOGst/b0RBW0NqJwFAAAhinAWAAAAQGiy50t2m/N1WSpn6TkLAABCFOEsAAAAgNBkzzn7uiwbgtmzJYc9MHMCAAAIIMJZAAAAAKHJ1W9WkszRpb//3FYI544FAAAQIghnAQAAAIQm10ZepkjJHFn6+03ms6EufWcBAEAIIpwFAAAAEJpc1a7+tDRwcW8KRt9ZAAAQeghnAQAAAIQmdzhr9X2dL5GuTcGonAUAAKGHcBYAAABAaLJTOQsAACo2wlkAAAAAoSkgbQ0KKmfpOQsAAEIQ4SwAAACA0BTIcDaPylkAABB6CGcBAAAAhCZXKwJzGcJZV89Z2hoAAIAQRDgLAAAAIDQFpHKWnrMAACB0Ec4CAAAACE3ucNbq/xj0nAUAACGMcBYAAABAaKJyFgAAVHCEswAAAABCUyDCWVfP2TwqZwEAQOghnAUAAAAQmuxUzgIAgIqNcBYAAABAaMorCFTLFM4WVM468iS7rexzAgAACCDCWQAAAAChyVU5ay5DOGuOkvvHHlobAACAEEM4CwAAACA0uXrOuvrG+sNkOns/rQ0AAECIIZwFAAAAEJryA1A5K9F3FgAAhCzCWQAAAAChKT8AG4JJZ/vO5tPWAAAAhBbCWQAAAAChKT8AG4JJVM4CAICQRTgLAAAAIDQFqnLW1XOWDcEAAECIIZwFAAAAEJoC3taAylkAABBaCGcBAAAAhCa7K5y1lm0c2hoAAIAQRTgLAAAAIDSxIRgAAKjgCGcBAAAAhCZXOGsua8/ZgsrZPCpnAQBAaCGcBQAAABCaXG0Iylw562prQOUsAAAILYSzAAAAAEJToNoauCtnCWcBAEBoIZwFAAAAEJoC1nO2IJy1Z0sOe9nGAgAACCDCWQAAACCA8vLyNHfuXPXs2VPt2rXTgAED9OOPP7rP7969WwMHDlTbtm3Vq1cvvfHGGx732+12zZs3T926dVPbtm31wAMP6MCBAx7XFDdGheEOZ61lG+fccDefvrMAACB0EM4CAAAAAbR48WKtW7dO06dP18aNG9WgQQMNHTpUaWlpSk9P1+DBg1WvXj2tX79eDz30kGbOnKn169e771+0aJFWrVql6dOna/Xq1bLb7Ro6dKhyc3MlqURjVBj2AFXOmsxnA15aGwAAgBASafQEAAAAgIrks88+U58+fXTVVVdJkiZNmqR169bpxx9/VHJysiwWi55++mlFRkaqYcOG2r9/v5YsWaL+/fsrNzdXy5cv17hx49SjRw9J0uzZs9WtWzd9+umn6tOnj9auXetzjArD4QhcWwPJ2dogP4tNwQAAQEihchYAAAAIoISEBH355Zf6448/lJ+frzVr1igqKkpNmzbVjh071KlTJ0VGnq2R6Ny5s1JSUnT06FHt2bNHZ86cUZcuXdznq1atqubNm2v79u2SVOwYFYY95+zrQISzrk3BCGcBAEAIoXIWAAAACKDJkyfr0Ucf1TXXXKOIiAiZzWbNnz9f9erVU2pqqho3buxxfZ06dSRJhw4dUmpqqiTpggsuKHSN61xxY9SqVavUc3Y4HMrMDGxomZWV5XEstdwMFcSpysyxSzbP+ZlMJlmtVtlseZLNVuxwEaYYmSXl5ZyS49zrI/NkKZinw+Hwb66lVOa1qeBYH99YH99YH+9YG99YH99YH++8rY3D4ZDJZCr2fsJZAAAAIID27t2r+Ph4LVy4UImJiVq3bp3GjRunt956S9nZ2YqKivK4Pjo6WpKUk5Pjfqgv6poTJ05IUrFj+MNms2n37t1+3VuclJQUv+6LzDuqNpIcMmn3nr3SeT/cWK1WNW/eXBkZ6bKdOlLseNXzTIqVlHnqqE7nnb3eEm9VbUnJyclB/4HT37WpLFgf31gf31gf71gb31gf31gf74pam/Of2YpCOAsAAAAEyKFDhzR27FitXLlSHTp0kCS1atVKe/fu1fz58xUTE+Pe2MvFFajGxsYqJsb55/u5ubnu165rrFbnhlbFjeEPi8WiRo0a+XWvN1lZWUpJSVH9+vXdcy8N05n90j5JEVY1a9688PmCsLZ69RpSdPGhqtleU8qRqkSbZa1V++wJaw1JUoMGDYJaOVuWtanoWB/fWB/fWB/vWBvfWB/fWB/vvK3N3r17S3Q/4SwAAAAQID/99JNsNptatWrl8X6bNm30zTff6MILL1RaWprHOde/ExMTlZeX536vXr16Htc0adJEkpSUlORzDH+YTCa/g93iWK1W/8a2OcNXU0SMz/stlkgpz1L8eFFVJEkRjmxFWM653hLpnmew+b02lQTr4xvr4xvr4x1r4xvr4xvr4935a1OSlgYSG4IBAAAAAZOUlCRJ+uWXXzze//XXX1W/fn117NhRO3fuVH5+vvvcli1b1KBBAyUkJKhp06aKi4vT1q1b3edPnjypXbt2qWPHjpJU7BgVhj3beQzEZmCSFMGGYAAAIPQQzgIAAAAB0rp1a11++eWaOHGitmzZopSUFM2ZM0ebN2/Wgw8+qP79++v06dOaPHmy9u7dqw0bNmjlypUaNmyYJGdfsoEDB2rmzJn6/PPPtWfPHo0ePVpJSUm6/vrrJanYMSqMvIJWBYEKZyNjPccFAAAIAbQ1AAAAAALEbDZr8eLFmjNnjh5//HGdOHFCjRs31sqVK9WmTRtJ0tKlSzVjxgz169dPtWvX1oQJE9SvXz/3GKNGjVJeXp6mTJmi7OxsdezYUcuWLZOl4E/xExISih2jQqByFgAAVAKEswAAAEAAVatWTU8++aSefPLJIs+3bt1aa9as8Xp/RESExo8fr/Hjx3u9prgxKoT8gnDWHOjKWcJZAAAQOmhrAAAAACD0uMLZyABt1OWqnLVnSw57YMYEAAAoI8JZAAAAAKEn0JWz57ZHyKfvLAAACA2EswAAAABCT36Ae86azFJEQRUurQ0AAECIIJwFAAAAEHpc1a2BCmclNgUDAAAhh3AWAAAAQOgJdOWsdLZylnAWAACECMJZAAAAAKHHXg7hbGRB5SxtDQAAQIggnAUAAAAQetyVs9bAjelua8CGYAAAIDQQzgIAAAAIPeXR1iCSDcEAAEBoIZwFAAAAEHpc1a1mNgQDAAAVF+EsAAAAgNBTLhuC0dYAAACEFsJZAAAAAKHHHc5GB25MNgQDAAAhhnAWAAAAQOix5ziPtDUAAAAVGOEsAAAAgNBjz3Uey6NylnAWAACECMJZAAAAAKEn31U5GxW4MSOsBWNnSw574MYFAADwE+EsAAAAgNDjqpwtj3BWYlMwAAAQEghnAQAAAISe8ghnTeazAS2bggEAgBBAOAsAAAAg9JRHz1npnNYGhLMAAMB4hLMAAAAAQk959JyVpAg2BQMAAKGDcBYAAABA6CmPtgaSFFkQzubRcxYAABiPcBYAAABA6HGHs4Fua0DlLAAACB2EswAAAABCj72grUFEoCtn2RAMAACEDsJZAAAAAKGnvNoaUDkLAABCCOEsAAAAgNCTX95tDeg5CwAAjEc4CwAAACD0uNoalNuGYFTOAgAA4xHOAgAAAAg9tDUAAACVAOEsAAAAgNBiz5cc+c7XEYFua1CwIRjhLAAACAGEswAAAABCi6tqViq/tgb52ZLDHtixAQAASolwFgAAAEBoKc9w1lU5K7EpGAAAMBzhLAAAAIDQUp7hrMksRcQ4X7MpGAAAMFhIhLMbN25U79691apVK9100036+OOP3ef++OMPDRs2TO3bt9dVV12lOXPmKD8/3+P+t99+W9dcc41at26tu+++W7t27fI4X5IxAAAAAIQIe47zaLZIJlPgx2dTMAAAECIMD2c3bdqkyZMna8CAAfroo4/Up08fjRkzRj/88INsNpuGDBkiSVq9erWmTZumd955RwsXLnTf/9577+nFF1/Uo48+qg0bNqhu3boaPHiwjh8/LkklGgMAAABACHFVzga6ataFcBYAAISISCM/3OFwaO7cubrnnns0YMAASdKIESO0Y8cObdu2TQcPHtSff/6ptWvXqlq1amrcuLGOHTumF198UcOHD1dUVJReeeUVDRw4UH379pUkPfvss7r22mu1bt06DRs2TJ988kmxYwAAAAAIIfnlHM66NgXLo+csAAAwlqGVs8nJyTp48KBuvvlmj/eXLVumYcOGaceOHWrRooWqVavmPte5c2edPn1au3fv1rFjx5SSkqIuXbq4z0dGRqpDhw7avn27JBU7BgAAAIAQ466cjS6f8amcBQAAIcLQytnk5GRJUmZmpoYMGaJdu3apbt26GjFihHr16qXU1FQlJSV53FOnTh1J0qFDhxQZ6Zz+BRdcUOiaPXv2SFKxY7Rp08avuTscDmVmBvZhLisry+MYSCaTSVarVfZ8e5n77doLbs/KypLD4QjA7IpXnmtTEbA+vrE+3rE2vrE+vrE+3rE2vnlbH4fDIVN59BdF+HH3nC2vylmr88iGYAAAwGCGhrOnT5+WJE2cOFEPP/ywxo0bp08++UQjR47UihUrlJ2drapVq3rcEx3t/O15Tk6O+4H+/NYE0dHRyslxPtAVN4a/bDZbuVXepqSkBHxMq9Wq5s2bKzs7W5lZtjKNFeuwSKqm5OTkoP/QWR5rU5GwPr6xPt6xNr6xPr6xPt6xNr4VtT60nIKkIPac5RcoAADAWIaGsxaLRZI0ZMgQ9evXT5LUrFkz7dq1SytWrFBMTIxyc3M97nEFqrGxsYqJiZGkIq+xWp2/DS9ujLLMvVGjRn7fX5SsrCylpKSofv367vkHiqsKJSYmRrEmS5nGiomOkCQ1aNAgqJWz5bU2FQHr4xvr4x1r4xvr4xvr4x1r45u39dm7d6+Bs0JIcYWzEbQ1AAAAFZuh4WxiYqIkqXHjxh7vN2rUSF999ZU6deqkX3/91eNcWlqa+15XO4O0tDQ1bNjQ4xrX2ElJST7H8JfJZCpTuOuL1Wott7HNEWZFRJR9DEmG/LBZnmtTEbA+vrE+3rE2vrE+vrE+3rE2vp2/PrQ0gFt+ebc1cG0IRjgLAACMZeiGYC1atFCVKlX0008/ebz/66+/ql69eurYsaN27drlbn8gSVu2bFGVKlXUtGlTJSQkqEGDBtq6dav7fF5ennbs2KGOHTtKUrFjAAAAAAgx5d7WoKDIgMpZAABgMEPD2ZiYGA0dOlQLFy7Uhx9+qN9//12LFy/Wd999p8GDB+vaa69V7dq19dhjj2nPnj367LPP9PLLL+v+++939yO7//77tWLFCr333nvau3ev/t//+3/Kzs7WbbfdJkklGgMAAABACKGtAQAAqCQMbWsgSSNHjpTVatXs2bN1+PBhNWzYUPPnz9cVV1whSVq6dKmeeuop3X777apWrZruvvtujRw50n3/7bffrlOnTmnOnDnKyMhQy5YttWLFCtWsWVOSc/Ov4sYAAAAAEEKC1dYgP1ty5JfPZwAAAJSA4eGsJA0ePFiDBw8u8twll1yi5cuX+7x/yJAhGjJkiNfzJRkjlDkcDnqwAQAAoPIIVlsDib6zAADAUCERzsI3k8mkf6Vm6kSu/7/VvzA2Um1qsVs0AAAAwoA7nC2ntgYmsxQR46yczTtd/PUAAADlhHA2TJzIzVd6jt3v+6ta/L8XAAAACCp7Obc1kJx9ZwlnAQCAwQzdEAwAAAAACinvtgbS2U3B8s6U32cAAAAUg3AWAAAAQGhxhbMR5dTWQDq7KRiVswAAwECEswAAAABCS36Q2hpIhLMAAMBQhLMAAAAAQktQ2hoUbJZLWwMAAGAgwlkAAAAAoSUY4SxtDQAAQAggnAUAAAAQWoLRc9bV1sBGOAsAAIxDOAsAAAAgtASj52wkbQ0AAIDxCGcBAAAAhJag9JylrQEAADAe4SwAAACA0OIOZ4PQ1oBwFgAAGIhwFgAAAEBosRe0NYgIwoZg+ZmSPa/8PgcAAMAHwlkAAAAAoSU/GG0NrGdf56aX3+cAAAD4QDgLAAAAILQEo62BySyZY5yvc46W3+cAAAD4QDgLAAAAILS42hqUZ+WsJEUWVM/mHi/fzwEAAPCCcBYAAABAaLEHoa2BdLa1Qc6x8v0cAAAALwhnAQAAAIQWVzgbUY5tDSQpomBTMCpnAQCAQQhnAQAAAISW/CC1NaByFgAAGIxwFgAAAEBoCXZbAypnAQCAQQhnAQAAAIQWdzhbzm0NIqmcBQAAxiKcBQAAABBa7AVtDSJoawAAACo2wlkAAAAAoSVobQ3YEAwAABjLr3D2ww8/VG5ubqDnAgAAAABSfpB7zlI5CwAADOJXODthwgR17dpV06ZN07///e9AzwkAAABAZRasnrNsCAYAAAzmVzj7xRdf6P7779eWLVt0xx13qHfv3lq2bJmOHDkS6PkBAAAAqEwcjrM9Z6mcBQAAFZxf4WxSUpJGjBihv//973r77bfVoUMHvfbaa+rZs6eGDx+uTz/9VHl5eYGeKwAAAICKznHOzxHlvSFYZEHP2fxMKT+7fD8LAACgCJFlHaB9+/Zq3769/vrXv+rFF1/UV199pa+++kq1atXSvffeq/vvv18RERGBmCsAAACAis5+zt4W5d3WwBwtySTJIeUcl2IvLN/PAwAAOE+ZwtmDBw9q06ZN2rRpk37//XfVq1dPY8aMUY8ePfTVV19p4cKF2rt3r1544YVAzRcAAABARZafc/Z1ebc1MJmkyCpS3mln31nCWQAAEGR+hbPr1q3Tpk2b9P333ys6Olo33nijZsyYoQ4dOrivady4sdLT07V69WrCWQAAAAAl466cNUmmIPwFniucpe8sAAAwgF/h7BNPPKE2bdpo2rRp6t27t+Li4oq8rkmTJrrjjjvKNEEAAAAAlYgrnI2Idla2lreIKs5j7vHy/ywAAIDz+BXOfvjhh2rUqJHy8/Pd/WSzs7Nls9kUHx/vvu6WW24JyCQBAAAAVBKutgbl3dLAJbIgnKVyFgAAGMDsz03169fXk08+qdtvv9393vfff68uXbrohRdekN1uD9gEAQAAAFQirsrZYIezuYSzAAAg+PwKZ+fNm6f3339fffr0cb/XvHlzjRs3TmvXrtXSpUsDNkEAAAAAlYg7nI0Ozue5K2dpawAAAILPr3D2gw8+0MSJEzV48GD3e9WrV9d9992n0aNH69133w3YBAEAAICyOHz4sNFTQGnYDWprQOUsAAAwgF/hbHp6ui6++OIiz1166aVKTU0t06QAAACAQOnZs6eGDh2qv/3tb8rNzTV6OiiOe0OwYPecpXIWAAAEn1/h7KWXXqpPPvmkyHNffPGFLrnkkjJNCgAAAAiU5557Tna7XePGjdNVV12lp556Sj///HO5fd7GjRvVu3dvtWrVSjfddJM+/vhj97k//vhDw4YNU/v27XXVVVdpzpw5ys/P97j/7bff1jXXXKPWrVvr7rvv1q5duzzOl2SMsBbstgYRVM4CAADjRPpz0z333KNJkyYpIyND1157rRISEnT8+HF9+eWX+vjjj/Xcc88Fep4AAACAX/7yl7/oL3/5iw4fPqz33ntPmzZt0jvvvKNGjRrp1ltvVd++fVWrVq2AfNamTZs0efJk/b//9//UrVs3ffTRRxozZoySkpLUsmVLDRkyRPXr19fq1av1+++/a/LkyTKbzRo1apQk6b333tOLL76o6dOnq3nz5lqyZIkGDx6sjz/+WDVr1pTNZit2jLCXb1BbAypnAQCAAfwKZ2+55RadOXNGixYt0qeffup+v0aNGnriiSd0yy23BGp+AAAAQEAkJiZq+PDhGj58uP773//q+eef10svvaSXX37Z3fqgTZs2fo/vcDg0d+5c3XPPPRowYIAkacSIEdqxY4e2bdumgwcP6s8//9TatWtVrVo1NW7cWMeOHdOLL76o4cOHKyoqSq+88ooGDhyovn37SpKeffZZXXvttVq3bp2GDRumTz75pNgxwp67cpaeswAAoOLzK5yVpAEDBujuu+9WcnKyMjIyVLVqVV166aUym/3qlAAAAACUux07dmjTpk36xz/+oZMnT6pr167q0aOHvvrqK911112aMGGC7rvvPr/GTk5O1sGDB3XzzTd7vL9s2TJJ0rRp09SiRQtVq1bNfa5z5846ffq0du/erbp16yolJUVdunRxn4+MjFSHDh20fft2DRs2TDt27PA5RlnC5ZDh7jkbpLYG51bOOhySyRSczwUAAFAZwllJMplMuvTSSwM1FwAAACDg9u/fr02bNun999/XwYMHddFFF2nQoEG69dZbdcEFF0iSBg4cqHHjxmnx4sVlCmclKTMzU0OGDNGuXbtUt25djRgxQr169VJqaqqSkpI87qlTp44k6dChQ4qMdD6au+Z07jV79uyRpGLHqFDhbLArZ+05Un7m2X8DAAAEgV/h7PHjxzVjxgx99dVXysrKksPh8DhvMpkKbVwAAAAAGOGGG25QdHS0rr32Wk2fPt2jMvVcl156qVJSUvz+nNOnT0uSJk6cqIcffljjxo3TJ598opEjR2rFihXKzs5W1apVPe6JjnZWh+bk5CgrK0uSCrUmiI6OVk6Osw9rcWP4y+FwKDMz0+/7i+L6elzHkorIOqVoSXmOCOX6mJPJZJLVapXNlifZbP5PNCJCFrNFstuUlXFQjti6/o9VQv6uTWXB+vjG+vjG+njH2vjG+vjG+njnbW0cDodMJfiLHL/C2aefflpffvmlbrrpJiUlJdHKAAAAACHriSeeUN++fRUfH+/zupEjR2rkyJF+f47FYpEkDRkyRP369ZMkNWvWTLt27dKKFSsUExOj3Nxcj3tcgWpsbKxiYmIkqchrrFarJBU7hr9sNpt2797t9/2+lDbwrp3+u+pJOnU6W7/5mJPValXz5s2VkZEu26kjfs/PEm9V7agEKTtVyb/sUFbMKb/HKq2y/DKgMmB9fGN9fGN9vGNtfGN9fGN9vCtqbUqyH4Bf4ew333yj//f//p/uuOMOf24HAAAAguaTTz5R586diwxn9+zZo/Hjx+uDDz4o8+ckJiZKkho3buzxfqNGjfTVV1+pU6dO+vXXXz3OpaWlue91tTNIS0tTw4YNPa5xjZ2UlORzDH9ZLBY1atTI7/uLkpWVpZSUFNWvX98dLpdE5N6aUpoUX72WmjVr5vU6VyVK9eo1pOgyVPFYa0jpNaXsVF1at5rstb1/ZqD4uzaVBevjG+vjG+vjHWvjG+vjG+vjnbe12bt3b4nu9yuctVgsuvjii/25FQAAACh3O3bscLfe2rZtm7Zv367jx48Xuu7LL7/UgQMHAvKZLVq0UJUqVfTTTz+pQ4cO7vd//fVX1atXTx07dtTGjRt1+vRpxcXFSZK2bNmiKlWqqGnTpoqKilKDBg20detWd+uFvLw87dixQ3fffbckFTuGv0wmU5kqb32xWq2lGzvS+d8tMipWkSW4z2KJlPIs/k5PskRKUQmSpBhTplRO61CUUq9NJcP6+Mb6+Mb6eMfa+Mb6+Mb6eHf+2pSkpYHkZzh73XXX6cMPP9SVV17pz+0AAABAuVq3bp02bdokk8kkk8mkp556qtA1rvC2T58+AfnMmJgYDR06VAsXLlRiYqJat26tjz76SN99951Wrlyptm3bas6cOXrsscc0btw4/fHHH3r55Zd1//33u//k7f7779eMGTN0ySWXqFWrVlqyZImys7N12223SZKuvfbaYscIe/lB3hBMkqJrOo85x4L3mQAAAPIznG3evLnmzJmjAwcOqE2bNu7+WC4mk0kPPfRQQCYIAAAAlNaUKVPUv39/ORwO3XvvvZo6dWqhP9s3m82qWrWqLrvssoB97siRI2W1WjV79mwdPnxYDRs21Pz583XFFVdIkpYuXaqnnnpKt99+u6pVq6a7777bo8/t7bffrlOnTmnOnDnKyMhQy5YttWLFCtWs6QwPo6Ojix0j5DnsksnHnhV2VzgbHZz5SO7KWeUWrq4GAAAoT35vCCZJ27dv1/bt2wudJ5wFAACAkeLj49WpUydJ0htvvOFuORAMgwcP1uDBg4s8d8kll2j58uU+7x8yZIiGDBni9XxJxghpJrP0+3op52jR549tdR5P7Jb+96r3ceIaSRdcE5g5UTkLAAAM4lc4u2fPnkDPAwAAAAiYjRs36uqrr1aNGjX0559/6s8///R5/S233BKcicEp56iUdajoc7aTzmN+tvdrJCm6VuDmQ+UsAAAwiF/h7LlOnTqltLQ0XXzxxYqIiFBEREQg5gUAAAD4bdKkSVq7dq1q1KihSZMm+bzWZDIRzoYSR77zaA7izxVUzgIAAIP4Hc5u3bpVM2fO1H/+8x+ZTCatW7dOr732mpKSkop9AAYAAADK0+eff67atWu7XyOM2POcR1MQw1kqZwEAgEF8dOL3bvPmzRoyZIhiYmI0btw49063TZs21RtvvKEVK1YEdJIAAABAaVx00UWKiopyvz7/f4mJiapSpYr73wghDrvzGMxwNrognKVyFgAABJlf4eycOXN0zTXX6M0339S9997rDmeHDx+uoUOHat26dQGdJAAAAOCvvLw8LViwQB988IEk51+Ade3aVV26dNG9996rEydOGDxDeHC1NTCVuQNbybnDWS+blAEAAJQTv8LZ3bt3q3///pKcPbrO1bVrVx08eLDsMwMAAAACYN68eVq8eLFOnnRuNPXMM8+oevXqevzxx/X7779r1qxZBs8QHhwGtDVwbS6We/xs5S4AAEAQ+BXOxsfH68iRI0WeO3TokOLj48s0KQAAACBQPvroI40ZM0YDBgzQvn379L///U8jRozQPffco9GjR+uLL74weoo4l7ty1oBw1mGXctOD97kAAKDS8yucveaaazR79mz9/PPP7vdMJpNSU1P1yiuvqEePHoGaHwAAAFAmaWlpatOmjSTpq6++ktlsVvfu3SVJSUlJOnXqlJHTw/mMCGfNFslSzfk6u+giFAAAgPLgVzg7duxYJSQk6Pbbb3cHsWPGjNGNN94ok8mkMWPGBHKOAAAAgN/q1KmjP/74Q5L0xRdfqFmzZqpZs6Yk6YcfflBSUpKR08P5jAhnJSm6tvNI31kAABBEfnXZr1atmtatW6eNGzdqy5YtysjIUHx8vAYNGqRbb71VVqs10PMEAAAA/NKnTx8999xz+uCDD7Rz505NnTpVkjRjxgy98847Gj58uMEzhAfDwtla0um9Ug6VswAAIHj83gI1KipKt99+u26//fZAzgcAAAAIqMcee0yxsbHavn27xo4dq7vvvluS9PPPP+v+++/XiBEjDJ4hPBgVzsZQOQsAAILPr3B248aNxV5zyy23+DM0AAAAEFAmk0nDhg3TsGHDPN5fvXq1QTOCT+5w1u86Ev+4NgWjchYAAASRX088kyZNKvJ9k8mkiIgIRUREEM4CAAAgZJw6dUpbtmxRZmamHA5HofM8u4YQR57zaDao52w2lbMAACB4/ApnP//880LvZWZmaseOHXrttde0cOHCMk8MAAAACIR//vOfGjVqlLKysoo8bzKZCGdDiZE9ZyUqZwEAQFD5Fc5edNFFRb5/2WWXyWazafr06Vq1alWZJgYAAAAEwqxZs3TppZfq8ccfV2Jiosxms9FTgi/0nAUAAJVIwBs5NWnSRLNmzQr0sAAAAIBf9u3bp0WLFqlDhw5GTwUlYadyFgAAVB4BLRvIzc3Vu+++q4SEhEAOCwAAAPjtwgsv1OnTp42eBkrKsLYGVM4CAIDg86tytlevXjKZTB7v2e12paenKycnRxMnTgzI5AAAAICyGjZsmBYuXKhWrVqpbt26Rk8HxXGHswH/Iz/fXJWz2VTOAgCA4PHriadTp06FwllJiouLU8+ePXXllVeWeWIAAABAIHzwwQc6fPiwrrvuOtWsWVMxMTEe500mkz777DODZgcPDocku/O1UT1n8zOlvEwpMja4nw8AAColv8LZ559/PtDzAAAAAMpFUlKSkpKSjJ4GSsJVNSsFP5yNjJfMFsluc7Y2iKwX3M8HAACVkl/h7J9//lmq6y+88EJ/PgYAAAAos+eee87oKaCkjAxnTSZn39msP53hbBXCWQAAUP4C1nPWl927d/vzMQAAAEDA7Nu3T999953S0tI0aNAgHThwQE2bNlVcXJzRU4OLI+/s62CHs5Kz72zWn/SdBQAAQeNXODtnzhw9+eSTatGihfr27avExESlp6friy++0Mcff6wRI0booosuCvRcAQAAgFKz2+2aOnWq1q9fL4fDIZPJpP/7v//TokWL9Pvvv+utt96i7UGocFfOmp2VrMEWXdB3Nudo8D8bAABUSn6Fs5s2bVLPnj0L9Z7t3bu3EhIS9P333+vhhx8OyAQBAACAsli0aJE++OADPfPMM+rRo4e6du0qSRo/frweeughzZ49Wy+88ILBs4Sks+Gs2YCqWclZOStJOVTOAgCA4DD7c9PmzZvVp0+fIs91795dO3fuLNOkAAAAgEBZv369Ro0apf79+6t69eru95s1a6ZRo0bpu+++M25y8OQKZ41oaSBJMVTOAgCA4PIrnK1Ro4Z++umnIs9t3rxZiYmJZZoUAAAAEChHjx5Vs2bNijyXmJiokydPBnlG8MrocJbKWQAAEGR+tTW47bbbtHjxYmVlZalXr16qWbOmjh49qr///e9655139MQTTwR6ngAAAIBfLrnkEn399de68sorC53btm2bLrnkEgNmhSIZHs5SOQsAAILLr3B25MiROnXqlFauXKlly5ZJkhwOh6xWq0aPHq0777wzoJMEAAAA/HXvvfdq6tSpstls6tmzp0wmk/bv36+tW7dq+fLlmjRpktFThIs7nPXrx5Syc1XOZlM5CwAAgsOvpx6TyaRJkyZp5MiR+vHHH3XixAnVqFFDbdu2VVxcXKDnCAAAAPjtr3/9q44fP67Fixdr1apVkqQxY8bIYrFo6NChuuuuuwyeIdzsec4jPWcBAEAlUaZfScfFxalOnTqSpLZt2yovLy8gkwIAAAAC6YEHHtDNN9+sbdu2KTIyUvHx8WrTpo3HBmEIAYa3NaDnLAAACC6/w9lNmzZp1qxZOnLkiEwmk9atW6f58+fLYrFo1qxZioqKCuQ8AQAAgFL78MMPtXr1av3000/uQoKYmBi1b99ed911l6699lqDZwgPhoezBZWzuccle75kNmgeAACg0jD7c9Pf/vY3TZw4UZ07d9bLL78su90uSbruuuv09ddfa9GiRQGdJAAAAFAa+fn5euyxxzRu3DgdOHBAN910k4YMGaL7779fvXr10q+//qpHHnmEfrOhxvBwNqFgHnYpN92YOQAAgErFr8rZV155RXfeeaemTZum/Px89/v9+/fX8ePHtXbtWj322GOBmiMAAABQKqtWrdKnn36qyZMna+DAgTKZTB7n8/PztXr1aj377LPq0KGDbrvtNoNmCg9Gh7Nmi2SpLtkynH1nY2oZMw8AAFBp+FU5m5ycrOuuu67Ic23atNHhw4fLNCkAAACgLDZu3Kg777xTgwYNKhTMSlJERIQGDBig22+/Xe+9954BM0SR3OFsmbbGKBv3pmD0nQUAAOXPr3A2ISFB+/btK/Lcvn37lJCQUKZJAQAAAGWRnJys7t27F3tdt27d9OuvvwZhRigRR8EGw0ZVzkrnbAp21Lg5AACASsOvcLZ3796aN2+e/v73vys3N1eSZDKZ9J///EeLFi3SjTfeGNBJAgAAAKWRlZWlatWqFXtdjRo1dObMmSDMCCXiqpw1ciOuaCpnAQBA8Pj190KPPfaYfv31Vz322GMym5357qBBg5SZmakOHTro0UcfDegkAQAAgNJwOByKiCg+4DObzXI4HEGYEUrE7qqcNbCtAZWzAAAgiPx66omKitLSpUv13XffacuWLcrIyFB8fLw6deqkq6++usi+XgAAAADgk9Ebgklne85mUzkLAADKn1/h7JAhQzR06FB17dpVXbt2DfScAAAAgDKbNm2a4uLifF5z+vTpIM0GJRISPWdd4WyacXMAAACVhl/h7Pfff091LAAAAEJWx44dJanYlgVVqlRRhw4dgjEllIS7ctbAtgYxSc5jdqpxcwAAAJWGX0893bp10/vvv6/LL79cFosl0HMCAAAAyuTNN980egrwRyhUzloLwtmsQ8bNAQAAVBp+hbPR0dF6//339fHHH6thw4aKjY31OG8ymfT6668HZIIAAAAAKgl7QeWs2chw9gLnkXAWAAAEgV/hbGpqqtq1a+f+9/l/LsaOtwAAAABKLRTaGrjCWVuGlJ8tRcQYNxcAAFDhlfip59NPP1Xnzp1VtWpV/kwMAAAAQOCFQlsDS3XJHC3Zc6SsVCmuvnFzAQAAFZ65pBc++uijSklJ8Xjvtdde07FjxwI9JwAAAACVUShUzppMtDYAAABBU+Jw9vxWBfn5+Xr55ZeVmhq4XUyTk5PVrl07bdiwwf3e7t27NXDgQLVt21a9evXSG2+84XGP3W7XvHnz1K1bN7Vt21YPPPCADhw44HFNcWMAAAAACAHucNbAylnpbDibTTgLAADKV4nD2aIEsreszWbTuHHjlJmZ6X4vPT1dgwcPVr169bR+/Xo99NBDmjlzptavX+++ZtGiRVq1apWmT5+u1atXy263a+jQocrNzS3xGCidmAhTwP7b058YAAAAbvaCtgZmAytnJSkmyXmkchYAAJQzg596zpo/f77i4uI83lu7dq0sFouefvppRUZGqmHDhtq/f7+WLFmi/v37Kzc3V8uXL9e4cePUo0cPSdLs2bPVrVs3ffrpp+rTp0+xY6D0oswmmUwm/Ss1Uydy8/0ep1pUhK5Mig3gzAAAABDWQq1ylnAWAACUszJVzgbK9u3btWbNGj3//PMe7+/YsUOdOnVSZOTZDLlz585KSUnR0aNHtWfPHp05c0ZdunRxn69ataqaN2+u7du3l2gM+O9Ebr7Sc+x+/68swS4AAAAqIPeGYAbXkLjbGgSuhRsAAEBRyhzOmkymMt1/8uRJTZgwQVOmTNEFF1zgcS41NVVJSUke79WpU0eSdOjQIXe/2/Pvq1OnjvtccWMAAAAACBFUzgIAgEqmVL+SfuihhxQVFeXx3vDhw2WxWDzeM5lM+uyzz0o05rRp09SuXTvdfPPNhc5lZ2cX+rzo6GhJUk5OjrKysiSpyGtOnDhRojH85XA4PPrjBoLr63EdJedaWq1W2fPtys/3v9LUbnfm8A572cYJ5Fj2gluzsrKK7T1b1NrgLNbHN9bHO9bGN9bHN9bHO9bGN2/r43A4yvyLf4S5UKmcjSGcBQAAwVHip55+/foF/MM3btyoHTt26IMPPijyfExMjHtjLxdXoBobG6uYmBhJUm5urvu16xqr1VqiMfxls9m0e/duv+/3JSUlxf3aarWqefPmys7OVmaWze8xc6Od65Gdk6vMTP9D6UCOFeuwSKqm5OTkEv/weu7aoDDWxzfWxzvWxjfWxzfWxzvWxrei1uf8X6qjknH99t5M5SwAAKgcShzOPvfccwH/8PXr1+vYsWPuzbxcnnzySf3tb39TUlKS0tLSPM65/p2YmKi8vDz3e/Xq1fO4pkmTJpJU7Bj+slgsatSokd/3FyUrK0spKSmqX7++O1x2VY/ExMQo1mTxdbtPUVHOe2OioxTrKNvDbqDGiol23tugQYMSVc6evzY4i/XxjfXxjrXxjfXxjfXxjrXxzdv67N2718BZISSESuWstaAtWk6aMzA2OiwGAAAVlqFPPTNnzlR2drbHe9dff71GjRqlvn37atOmTVq9erXy8/MVEeF8INqyZYsaNGighIQExcfHKy4uTlu3bnWHsydPntSuXbs0cOBASVLHjh19juEvk8lUpspbX6xWa6GxzRFmRZThmdBsdrYiMJnLNk4gxzJHOMcpzQ+tRa0NzmJ9fGN9vGNtfGN9fGN9vGNtfDt/fWhpgJDpORtdRzKZJYfdGdBaLyj+HgAAAD+UeUOwskhMTNQll1zi8T9JSkhIUGJiovr376/Tp09r8uTJ2rt3rzZs2KCVK1dq2LBhkpx/9jZw4EDNnDlTn3/+ufbs2aPRo0crKSlJ119/vSQVOwYAAACAEBEqlbPmCGdAK0lZqcbOBQAAVGgGP/X4lpCQoKVLl2rGjBnq16+fateurQkTJnj0vx01apTy8vI0ZcoUZWdnq2PHjlq2bJl7k7KSjAEAAAAgBIRK5azkrJbNTi3oO9vO6NkAAIAKKuTC2V9++cXj361bt9aaNWu8Xh8REaHx48dr/PjxXq8pbgwAAAAABnM4zoazodDj1XqBlP6DlM2mYAAAoPwY2tYAAAAAACSdDWYl49saSGf7zGYRzgIAgPJDOAsAAADAeB7hbAhUzsYQzgIAgPJHOAsAAADAeK7NwKQQqZxNch4JZwEAQDkinAUAAABgPHflrFkymQydiiTaGgAAgKAgnAUAAABgvFDaDEw629YgO9XYeQAAgAqNcBYAAACA8ewFbQ1CoaWB5Fk563AYOxcAAFBhEc4CAAAAMJ6rcjYUNgOTzvactedItgxDpwIAACouwlkAAAAAxnOEWOVsRIwUVcP5mr6zAACgnBDOAgAAADBeqFXOSlJMQfUs4SwAACgnhLMAAAAAjOeqnDWHSOWs5Nl3FgAAoBwQzgIAAAAwnj0EK2djL3YeM/8wdh4AAKDCIpwFAAAAYLxQ6zkrSVXqOY+Zvxs7DwAAUGERzgIAAAAwXij2nI0tCGfPEM4CAIDyQTgLAAAAwHhUzgIAgEqIcBYAAACA8aicBQAAlRDhLAAAAADj2QsqZ80hFM5WKdgQzHZCyj1h7FwAAECFRDgLAAAAwHjuytkQamsQWUWKTnC+zjxg7FwAAECFRDgLAAAAwHjunrMhVDkr0doAAACUK8JZAAAAAMYLxZ6z0jmbgu03dh4AAKBCIpwFAAAAYDx35WwItTWQqJwFAADlinAWAAAAKAfJyclq166dNmzY4H5v9+7dGjhwoNq2batevXrpjTfe8LjHbrdr3rx56tatm9q2basHHnhABw549jotboyw5aqcDaUNwaSzlbOEswAAoBwQzgIAAAABZrPZNG7cOGVmZrrfS09P1+DBg1WvXj2tX79eDz30kGbOnKn169e7r1m0aJFWrVql6dOna/Xq1bLb7Ro6dKhyc3NLPEbYshu0IVhknOSwez/vqpzNLEE462scAACAIoTY3wwBAAAA4W/+/PmKi4vzeG/t2rWyWCx6+umnFRkZqYYNG2r//v1asmSJ+vfvr9zcXC1fvlzjxo1Tjx49JEmzZ89Wt27d9Omnn6pPnz7FjhHWjOo5GxEjmczS7+ulnKOFz5/+zXk8sUv636vex4muJdUL8/8GAAAg6KicBQAAAAJo+/btWrNmjZ5//nmP93fs2KFOnTopMvJsfUTnzp2VkpKio0ePas+ePTpz5oy6dOniPl+1alU1b95c27dvL9EYYc3onrM5R6WsQ4X/Zy+YV266lHmw6GuyDhUd7AIAABSDylkAAAAgQE6ePKkJEyZoypQpuuCCCzzOpaamqnHjxh7v1alTR5J06NAhpaamSlKh++rUqeM+V9wYtWrV8mveDofDowVDIGRlZXkcJclkMslqtcpmy5NsNo/rI/JtMkvKt0v2884VKS9PFkm2vMJjlUpx4ziiFSmzTLLLlpUuWaoWPU6kc5ysrCw5HA6fH1nU2uAs1sc31sc31sc71sY31sc31sc7b2vjcDhkMpmKvZ9wFgAAAAiQadOmqV27drr55psLncvOzlZUVJTHe9HR0ZKknJwc9wN9UdecOHGiRGP4y2azaffu3X7f70tKSor7tdVqVfPmzZWRkS7bqSMe19XMyVSMpJNnspSV73muKNbIU6oh6fSpU8pKL/76soxTx1xFkfZTOnF0v3ItSUVeY4m3qracG8GV9AfXc9cGhbE+vrE+vrE+3rE2vrE+vrE+3hW1Nuc/txWFcBYAAAAIgI0bN2rHjh364IMPijwfExPj3tjLxRWoxsbGKiYmRpKUm5vrfu26xmq1lmgMf1ksFjVq1Mjv+4uSlZWllJQU1a9f3z1/V/VI9eo1pGjPADMiK0KySfFVqyuuau3iPyA+XpIUFx+vuIgSXF+GccyZNaSsU6pexSyHt7lZa0iSGjRoUKLK2fPXBmexPr6xPr6xPt6xNr6xPr6xPt55W5u9e/eW6H7CWQAAACAA1q9fr2PHjrk383J58skn9be//U1JSUlKS0vzOOf6d2JiovLy8tzv1atXz+OaJk2aSFKxY/jLZDKVKdz1xWq1FhrbYomU8iznXWmXJEVGRkuW888VoaDvriUysmTXl2Wc6OpS1u+KtJ/2fo3FOU5pfmAtam1wFuvjG+vjG+vjHWvjG+vjG+vj3flrU5KWBhLhLAAAABAQM2fOVHZ2tsd7119/vUaNGqW+fftq06ZNWr16tfLz8xURESFJ2rJlixo0aKCEhATFx8crLi5OW7dudYezJ0+e1K5duzRw4EBJUseOHX2OEdYc+c6jKcLYeRTFUs15tJ0wdh4AAKDCMRs9AQAAAKAiSExM1CWXXOLxP0lKSEhQYmKi+vfvr9OnT2vy5Mnau3evNmzYoJUrV2rYsGGSnD3JBg4cqJkzZ+rzzz/Xnj17NHr0aCUlJen666+XpGLHCGsOZ+WwTCFYP+IOZ08aOw8AAFDhhOCTDwAAAFDxJCQkaOnSpZoxY4b69eun2rVra8KECerXr5/7mlGjRikvL09TpkxRdna2OnbsqGXLlslS8Kf0JRkjbFE5CwAAKiHCWQAAAKCc/PLLLx7/bt26tdasWeP1+oiICI0fP17jx4/3ek1xY4Qte0HlrDmEw9lcwlkAABBYtDUAAAAAYDx35WwI1o9YqjqP9mwpP8fYuQAAgAqFcBYAAACA8dw9Z0OwcjYiWoqwOl/bMgydCgAAqFgIZwEAAAAYL5QrZyUpqobzmJth6DQAAEDFQjgLAAAAwHihXDkrSZbqzmNuuqHTAAAAFQvhLAAAAABjORySw+58bQ71ylnCWQAAEDiEswAAAACM5WppIIVu5awrnLURzgIAgMAhnAUAAABgLI9wlspZAABQeRDOAgAAADCWq9+sFPqVs7kZzjYMAAAAAUA4CwAAAMBYrspZk1kymYydizeWqpJMziA577TRswEAABUE4SwAAAAAY9kLKmdDtaWB5KzotVRzvqa1AQAACBDCWQAAAADGclfOhmhLAxf6zgIAgAAjnAUAAABgLEcYVM5KhLMAACDgCGcBAAAAGCtsKmerO482wlkAABAYhLMAAAAAjOWqnDWHS+VshqHTAAAAFQfhLAAAAABj2cOkctZCWwMAABBYhLMAAAAAjOXuORvi4ayrcjbvlGS3GTsXAABQIRDOAgAAADCWu+dsiLc1iLBK5mjna1obAACAACCcBQAAAGCscKmcNZnOVs+yKRgAAAgAwlkAAAAAxgqXylnpnE3BCGcBAEDZEc4CAAAAMJa9oHLWHOKVs5IUVd15JJwFAAABQDgLAAAAwFjhVDlrcVXOZhg6DQAAUDEQzgIAAAAwljucDYfKWdoaAACAwCGcBQAAAGCscNkQTPIMZx0OY+cCAADCHuEsAAAAAGOFVVuDas6jwyblZxo7FwAAEPYIZwEAAAAYyxFGG4KZIyVLVedrWhsAAIAyIpwFAAAAYCx7GFXOSudsCkY4CwAAyoZwFgAAAICxwqnnrMSmYAAAIGAIZwEAAAAYK5x6zkqEswAAIGAIZwEAAAAYyx3OUjkLAAAqF8JZAAAAAMYK17YGNsJZAABQNoSzAAAAAIzl2hDMHC5tDao7j7aTkj3P0KkAAIDwRjgLAAAAwFjhVjkbUUUyWZyvbSeMnQsAAAhrhLMAAAAAjBVuG4KZTPSdBQAAAUE4CwAAAMBY4VY5KxHOAgCAgCCcBQAAAGCscKuclc7pO0s4CwAA/Ec4CwAAAMBYrk21zOFYOZth6DQAAEB4I5wFAAAAYKywrJylrQEAACg7wlkAAAAAxnKHs2FUOWs5J5x1OIydCwAACFuEswAAAACM5d4QLJwqZ6s7j/YcKT/L0KkAAIDwRTgLAAAAwFjhWDlrtkiRcc7XtDYAAAB+IpwFAAAAYCxX5aw5jCpnpbN9Z22EswAAwD+EswAAAACM43BIDrvzdThVzkpsCgYAAMqMcBYAAACAcVwtDaTw6jkreW4KBgAA4AfCWQAAAADGcbU0kKicBQAAlQ7hLAAAAADjeFTOhlk4G13Tecw9buw8AABA2CKcBQAAAGAce0HlrMksmUzGzqW0ogrCWdtJyW4zdi4AACAsEc4CAAAAMI6rcjbc+s1KUkSsZI5yvs45auxcAABAWCKcBQAAAGAcR0HFqdli7Dz8YTKdrZ7NOWLsXAAAQFginAUAAABgHFc7AFMYhrPS2XA2m3AWAACUHuEsAAAAAOPYc53HcKyclaSoGs4jlbMAAMAPhLMAAAAAjOOqnHX1bg03tDUAAABlQDgLAAAAwDjh3HNWOls5S1sDAADgB8JZAAAAAMaxh3s4W1A5m3tUsucZOxcAABB2CGcBAAAAGCfcNwSzVJVMEZLDLmUeMHo2AAAgzBDOAgAAADBOuFfOmkxnWxuc2mvsXAAAQNghnAUAAABgHHuu8xiu4ax0trXB6X3GzgMAAIQdwlkAAAAAxgn3DcEkKmcBAIDfCGcBAAAAGCfce85KVM4CAAC/Ec4CAAAAMI6752yUsfMoC1c4S+UsAAAoJcJZAAAAAMYJ9w3BpLNtDU7vkxwOY+cCAADCiuHhbEZGhqZOnaru3burffv2uuuuu7Rjxw73+c2bN+vWW29VmzZtdOONN+qjjz7yuD8nJ0dPPfWUunTponbt2mns2LE6fvy4xzXFjQEAAADAIBWh56yluiSzlJ8lZR0yejYAACCMGB7OjhkzRj/88INefvllrV+/Xs2aNdOQIUP022+/ad++fRo2bJi6deumDRs26K9//asmTJigzZs3u++fNm2avv32W82fP1+vv/66fvvtN40aNcp9viRjAAAAADBIRaicNUdI0fSdBQAApRdp5Ifv379f3333nVatWqXLL79ckvTEE0/on//8pz744AMdO3ZMTZo00ejRoyVJDRs21K5du7R06VJ16dJFhw8f1saNG/XKK6+oQ4cOkqSXX35ZN954o3744Qe1a9dOr7/+us8xAAAAABioImwIJknRtaWco9Kp/0l1uhk9GwAAECYMrZytUaOGlixZolatWrnfM5lMMplMOnnypHbs2FEoQO3cubN27twph8OhnTt3ut9zadCggRITE7V9+3ZJKnYMAAAAAAaqCJWzkhRTx3k8+Yux8wAAAGHF0HC2atWquvrqqxUVdXZn1k8++UT79+9Xt27dlJqaqqSkJI976tSpo6ysLKWnp+vw4cOqUaOGoqOjC12TmpoqScWOAQAAAMBA9lzn0Rzl+7pQF1PwM8cpwlkAAFByhrY1ON/333+vxx9/XNdff7169Oih7Oxsj+BWkvvfubm5ysrKKnRekqKjo5WTkyNJxY7hL4fDoczMTL/vL0pWVpbHUXJWElutVtnz7crPz/d7bLvdmcM77GUbJ5Bj2QtuzcrKKraKuai1wVmsj2+sj3esjW+sj2+sj3esjW/e1sfhcMhkMhkxJRipImwIJkkxic4jlbMAAKAUQiac/eyzzzRu3Di1b99eM2fOlOQMWc8PUF3/tlqtiomJKTJgzcnJkdVqLdEY/rLZbNq9e7ff9/uSkpLifm21WtW8eXNlZ2crM8vm95i50c6vNTsnV5mZOWWaX6DGinVYJFVTcnJyiX94PXdtUBjr4xvr4x1r4xvr4xvr4x1r41tR61PUL95RwVWUnrOucPb0PsmeJ5lD5kctAAAQwkLiieGtt97SjBkzdOONN+qFF15wP5RfcMEFSktL87g2LS1NsbGxio+PV1JSkjIyMpSbm+vxIJ+WlqbExMQSjeEvi8WiRo0a+X1/UbKyspSSkqL69eu7g2NX9UhMTIxiy/DAGhXlvDcmOkqxjogyzTNQY8VEO+9t0KBBiSpnz18bnMX6+Mb6eMfa+Mb6+Mb6eMfa+OZtffbu3WvgrGAIh6Pi9JyNqiFFWKX8LOlMihQf2J8VAABAxWR4OLtq1SpNnz5dgwYN0uTJkz3+lK1Dhw7atm2bx/VbtmxR+/btZTabdfnll8tut2vnzp3uTb+Sk5N1+PBhdezYsURj+MtkMik2Ntbv+32xWq2FxjZHmBVRhkzV9bWazGUbJ5BjmSOc45Tmh9ai1gZnsT6+sT7esTa+sT6+sT7esTa+nb8+tDSohBz5kgp+SR/u4azJLMVfJmX829nagHAWAACUgKEbgiUnJ+vZZ5/Vddddp2HDhuno0aM6cuSIjhw5olOnTmnQoEH697//rZkzZ2rfvn1avny5/v73v2vo0KGSpMTERN10002aMmWKtm7dqn//+98aM2aMOnXqpLZt20pSsWMAAAAAMIjjnLZd4R7OSlLVJs4jfWcBAEAJGVo5+8knn8hms+kf//iH/vGPf3ic69evn55//nktWrRIL730kl5//XXVrVtXL730krtKVpKmT5+uZ599Vg8//LAkqXv37poyZYr7/GWXXVbsGAAAAAAM4O43a5ZMZfzzrlAQXxDOniKcBQAAJWNoODt8+HANHz7c5zXdu3dX9+7dvZ6PjY3VM888o2eeecbvMQAAAAAYoKJsBuZC5SwAACglQ9saAAAAAKjE3JuBRfm+LlzEN3YeCWcBAEAJEc4CAAAAMIY913msCP1mpbOVs9mpku2ksXMBAABhgXAWAAAAgDFcG4JVlHA2qpoUk+h8ffJXY+cCAADCAuEsAAAAAGNUtJ6zEn1nAQBAqRDOAgAAAAGSkZGhqVOnqnv37mrfvr3uuusu7dixw31+8+bNuvXWW9WmTRvdeOON+uijjzzuz8nJ0VNPPaUuXbqoXbt2Gjt2rI4fP+5xTXFjhBV7BauclaT4gnD2FOEsAAAoHuEsAAAAECBjxozRDz/8oJdfflnr169Xs2bNNGTIEP3222/at2+fhg0bpm7dumnDhg3661//qgkTJmjz5s3u+6dNm6Zvv/1W8+fP1+uvv67ffvtNo0aNcp8vyRhhpSKGs1TOAgCAUog0egIAAABARbB//3599913WrVqlS6//HJJ0hNPPKF//vOf+uCDD3Ts2DE1adJEo0ePliQ1bNhQu3bt0tKlS9WlSxcdPnxYGzdu1CuvvKIOHTpIkl5++WXdeOON+uGHH9SuXTu9/vrrPscIO+4NwaKMnUcgEc4CAIBSoHIWAAAACIAaNWpoyZIlatWqlfs9k8kkk8mkkydPaseOHYUC1M6dO2vnzp1yOBzauXOn+z2XBg0aKDExUdu3b5ekYscIO64NwUwVqGbE3dbgV8lhN3YuAAAg5BHOAgAAAAFQtWpVXX311YqKOlsF+sknn2j//v3q1q2bUlNTlZSU5HFPnTp1lJWVpfT0dB0+fFg1atRQdHR0oWtSU1Mlqdgxwk5FbGsQ18D59eRnSWd+N3o2AAAgxFWgX1EDAAAAoeP777/X448/ruuvv149evRQdna2R3Aryf3v3NxcZWVlFTovSdHR0crJyZGkYsfwl8PhUGZmpt/3FyUrK8vjKDkria1Wq2y2PMlmkzkvRxGS8hUpu81Wug/Iy5NFki3POZbfAjVOpHOcrBybouMay3zyv8pO2ym7uU6hS4taG5zF+vjG+vjG+njH2vjG+vjG+njnbW0cDodMJlOx9xPOAgAAAAH22Wefady4cWrfvr1mzpwpyRmynh+guv5ttVoVExNTZMCak5Mjq9VaojH8ZbPZtHv3br/v9yUlJcX92mq1qnnz5srISJft1BFVyzypKpLOZOXq9NEjpRrXGnlKNSSdPnVKWemlu7c8xrHEW1VbUnJyshIdFytB/9WxvV8qNb2+13vOXRsUxvr4xvr4xvp4x9r4xvr4xvp4V9TaFPWL9/MRzgIAAAAB9NZbb2nGjBm68cYb9cILL7gfyi+44AKlpaV5XJuWlqbY2FjFx8crKSlJGRkZys3N9XiQT0tLU2JiYonG8JfFYlGjRo38vr8oWVlZSklJUf369d3Bsat6pHr1GlJ0liJskVKOVCWumqw1a5fuAwq+3rj4eMVFlPLe8hjHWkOSs09wRG5nadfflRiTphrNmhW6tKi1wVmsj2+sj2+sj3esjW+sj2+sj3fe1mbv3r0lup9wFgAAAAiQVatWafr06Ro0aJAmT57s8adsHTp00LZt2zyu37Jli9q3by+z2azLL79cdrtdO3fudG/6lZycrMOHD6tjx44lGsNfJpNJsbGxft/vi9VqLTS2xRIp5Vkk5UuSIiJjFGEpZd/ZSOePMpbISKm095bHOBbnOFarVap9uXPoU7sV6WNdi1obnMX6+Mb6+Mb6eMfa+Mb6+Mb6eHf+2pSkpYHEhmAAAABAQCQnJ+vZZ5/Vddddp2HDhuno0aM6cuSIjhw5olOnTmnQoEH697//rZkzZ2rfvn1avny5/v73v2vo0KGSpMTERN10002aMmWKtm7dqn//+98aM2aMOnXqpLZt20pSsWOEnYq4IZgkVW/lPJ7cI+X73wsYAABUfFTOAgAAAAHwySefyGaz6R//+If+8Y9/eJzr16+fnn/+eS1atEgvvfSSXn/9ddWtW1cvvfSSu0pWkqZPn65nn31WDz/8sCSpe/fumjJlivv8ZZddVuwYYaWihrOx9SRLVcl2Ujr1y9mwFgAA4DyEswAAAEAADB8+XMOHD/d5Tffu3dW9e3ev52NjY/XMM8/omWee8XuMsGIvqCo1F79ZRlgxmaRqLaWj/5Iy/kM4CwAAvKKtAQAAAABjOAoqZ00VrHJWOhvIZvxs7DwAAEBII5wFAAAAYIyK2tZAIpwFAAAlQjgLAAAAwBiVIZw9QTgLAAC8I5wFAAAAYIyKHM5Wa+k8ntnv3BgMAACgCISzAAAAAILP4Tjbc7aibQgmSdE1JeuFztcZ/zF2LgAAIGQRzgIAAAAIPkfe2dcVcUMwib6zAACgWISzAAAAAILP1dJAksyRxs2jPBHOAgCAYhDOAgAAAAg+VzhripRMFfTHkmpsCgYAAHyroE9BAAAAAEKaPdd5rIibgbnUaO08pv/k7LELAABwHsJZAAAAAMHn2gysovablaRqLSRztGQ7IZ3eZ/RsAABACCKcBQAAABB8rrYGFbly1myRqhdUzx7faexcAABASCKcBQAAABB8lSGclaSalzuPhLMAAKAIhLMAAAAAgo9wFgAAgHAW4cFkMslqtcpkMhk9FQAAAASCq+esOcrYeZQ3dzj7PZuCAQCAQghnYZiYCJMcJXxAtVqtat68uaxWa5HnSzoOAAAAQoQ913msyBuCSQWbgkVJtgzp9G9GzwYAAISYSKMngMorymySyWTSv1IzdSI33+e19ny7srOzFRMTI3OE5+8UqkVF6Mqk2PKcKgAAAAKtsrQ1iIhybgp2fIeztUF8Q6NnBAAAQgjhLAx3Ijdf6Tl2n9fk5+crM8umWJNFERFBmhgAAADKT2UJZyVnawNXOHvJ7UbPBgAAhBDaGgAAAAAIvkoVznZwHo/vMHYeAAAg5BDOAgAAAAg+R2UKZ9kUDAAAFI1wFgAAAEDwVZYNwSQ2BQMAAF4RzgIAAAAIPnue81gZKmddm4JJzr6zAAAABQhnAQAAAASfu+dslLHzCBZ3awPCWQAAcBbhLAAAAIDgc7U1qAyVs5KU0NF5PLbN2HkAAICQQjgLAAAAIPhcG4JVhp6zkpTQ2Xk8vl0mR76sVqtMJpOxcwIAAIaLNHoCAAAAACohd1uDChLORsZJDrtk8lL/Uq2ZZKkq2U7Kmvubmjdv430sX+MAAIAKhXAWAAAAQPBVtHA2IsYZqP6+Xso5WvQ11gsl20nl//y8jke2UPXqNWSxnPcjWXQtqV7/8p8vAAAICYSzAAAAAILP3XO2gm0IlnNUyjpU9Lno2pL2yHRyl2yWeCk6S8qrIOE0AADwC38rAwAAACC4HA4pP9P5OsJq7FyCKbauJMmUfdDgiQAAgFBBOAsAAAAguOw5kiPf+Toy1ti5BJO1IJzNPSaTPcfgyQAAgFBAOAsAAAAguPJOO4+mSMlUif6sPzJWiqopSYrKSzN4MgAAIBQQzgIAAAAIrrwzzmNErGQyGTuXYCuonrUQzgIAABHOAgAAAAg2V+VsZWpp4BJ7kSQqZwEAgBPhLAAAAIDgshWEsxGVMZx1Vs5G5R1xbowGAAAqNcJZAAAAAMFVmStnYxLlMEXK7MiRbMeNng0AADAY4SwAAACA4HKFsxFWY+dhBFOEHDFJzpeZBwyeDAAAMBrhLAAAAIDgqsyVs5IcsfUlSebMFEPnAQAAjEc4CwAAACC48ipxz1mdDWdNmcn0nQUAoJIjnAUAAAAQXJW9ctZ6keyyyJSfJWUfNno6AADAQISzAAAAAIIr74zzWEkrZ2WKUK7F2XdWp/cZOxcAAGAowlkAAAAAwWWr3G0NJCnHUtf54kyysRMBAACGIpwFAAAAEDwOR6VvayBJOZYLnS/O7JfsecZOBgAAGIZwFgAAAEDw2E5IsjtfV+LK2byIGnJExEmOPCnzgNHTAQAABiGcBQAAABA8OUedR3OUZI40di5GMpnkqFLf+Zq+swAAVFqEswAAAACCxxXOVuKqWRd7bAPni9O/GTsRAABgGMJZAAAAAMHjCmcrcb9ZF3flbPYhyXbK0LkAAABjEM4CAAAACB4qZ8+KjJdiL3a+Tv/B2LkAAABDEM4CAAAACB7CWU81Lnce07+XHHZj5wIAAIKOcBYAAABA8LjbGliNnUeoqNZcioiRbCfYGAwAgEqIcBYAAABA8FA568lskaq3cb4+/r2xcwEAAEFHOAsAAAAgeNgQrDBXa4NTv0i5GYZOBQAABBfhLAAAAIDgoXK2sJjaUmw9SQ7p6HdGzwYAAAQR4SwAAACA4KFytmg1C6pnU7+QslKNnQsAAAgawlkAAAAAwUPlbNGqtZBikqT8M9K2YZLDYfSMAABAEBDOAgAAAAgOe76Uc9z5mspZT6YIqe4tzuPB96XkN42eEQAACALCWQAAAADBkZsuqaAiNMJq6FRCUkyidOHNztc7R0lnfjd2PgAAoNwRzgIAAAAIDndLA6uzQhSFXXCdlNBJsp2QPrlCOvQPo2cEAADKEeEswl5MhEmOAPXkCtQ4AAAAKIJ7M7A4Y+cRykwRUtfVUrXmUnaq9OX10s4x0vHvJXve/2/vzqOjKvM/j39uJansrEKC7LIvAYIEBAURp5kWQh9pR21/EZUhShMa3KDRRgUUW6YJRAjIMofleBRFxYnaiKLTdCtIs7QYpwnIlkZASAQkARKy3vnjkpCQSghQ5Kkk79c59yS5VfXU915j1Ydvnnqu6eoAAICX+ZsuALhebpcly7L0zYkcZeUXXfM4Dd1+GhTJ2mcAAAA3DM3Z6glrL/33HdK3z0gHlkk/JDmbf6jU9Dap2e3O1nyI5BdkuloAAHAdaM6izsjKL9IvecWmywAAAEBlaM5Wn3+I1H+pdPMIaf9S6eQ3zlIHGf/X2SQpKFLq/kep43gusAYAQC1FcxYAAABAzShtzoaaraM2afUbZ7OLpazd0s9bpJ83Sxl/k3KPO7Nr0/6X1He+1O6/TFcLAACuEmvOAgAAAKgZzJy9Mv8wpxF7OcslNYqSOv1eGvSW9Jv/SP3/txTaTrqQIX0TJ235Lyn/l0uP8TQOAADwKcycBQAAAFAzinKdrwENzNbhy/yCnEbsj+suNbOr0nWqdOIz6dh66fA70k+fSR3ipZsGSG3uu/H1AgCA60JzFgAAAEDN6JQgWX5SSGup8Lzpanxb3kln2YLqaNxXCmwuHf0/Uv5pae88qfVvnc2ybmydAADgurCsAQAAAICa0aiH1G8hM2dvhJBWUocnpIY9JBVLRz6QNv8PKT/LdGUAAKAKNGcBAAAAoC7wC5Ra3Se1uMeZoXzkQ+mzftIvqaYrAwAAlaA5CwAAAAB1hWVJTftLXadIIW2kcwekjbdJB1eZrgwAAHhAcxYAAAAA6pqw9tI93zqzaIsuSNv+p/TPcVJhrunKAABAGTRngYuC/CzZtu2Vsbw1DgAAAHDNAptKQ/8q9ZotWS7p0EpnFm3WHtOVAQCAi/xNFwD4CrfLkmVZ+uZEjrLyi655nIZuPw2KDPFiZQAAAMA1slxSz+nSTQOlbx6SznwvbegjRc2Uuk2VXPyTEAAAk3gnBi6TlV+kX/KKTZcBAAAAXDv/MMkudpqzkhQ5TPr1LmlbvHR8g5T6J+nH96WoGVLLUZfuV5myYwEAAK+hOQsAAAAAdY1fkNNM/XGdlHfy0v6Wv5GCIqQf35N+2SV9da/zc7PBUlgHKaR1xdm0gTdJbe6r0fIBAKgvaM4CAAAAQF2Vd1LKPV5+X2hbqdME6eQ/pdM7pQsZ0pEPnNssf2fWrcvtNHj9w5zm7fnDUtN+UuO+UkBYzR8HAAB1FM1ZAAAAAKhv/MOkyP/mzJg985107qCUc1QqypUKzpS/b3aalLnJ+d5ySQ17SE37O1vkcCmsXQ0XDwBA3UFzFgAAAADqK79AqekAZ7NtKf8XqShHKs6Tii5Iheec+/mHSKe2Ow3cM//P2Q6ucG5r2l9q84DU5n4ptI25YwEAoBaiOQt4WZCfJdu2ZVmWV8bz5lgAAABApSxLCmwiqUn5/cEtpE7jne9zfnKatKe2Sz9vdraSn3dNkZre5jRp29wvhbau8UMAAKC2oTkLeJnbZcmyLH1zIkdZ+UXXNVZDt58GRYZ4qTIAAADgGviHSXaxs6RByM1SyL1S63ud23JPSEc+dC4wlvmVdOqfzrbrWemmgVLEMOciYyGtnNm3spz1bN2NJHdj52JjrgBzxwYAgGE0Z4EbJCu/SL/kFZsuAwAAALg+fkFOY/bHdc4Fxi5n+UltH5JajJB++dbZzh6QTm51tqq43M5Fxm4aKLX4lbOGLQAA9Ui9ac4WFxdr0aJFev/993X27FnFxMTopZdeUuvWfNQGtZ9lWQoODmb5AwAA6gmyLYzIOynlHq/6Pg26OlvBWSl7j5T3s1SQ7fwsSe6GUnG+lH/GWd+2OP/SbNsfkqTglgpoHSd3wSBJ3W70EQEAYFy9ac6+8cYbWrNmjebMmaPIyEjNnTtX8fHx+uSTT+R2u02XB3hU3fVrg4OD1b179yrvw9q1AADUHWRb+LyAcOdCYWWVXbtWcpZKOJfuzK79ebP04/tS7jEF7PuLoiQVnR0idYqXWtwjBd1U8Tls27lA2S/fSWdSpaw9Uu5P0oXjUmGOsxyDf5gUFCGFtpXC2kmh7ZzvQ1pJfsHOzF1XoOTyu3HnAgCAKtSL5mx+fr5WrlypKVOmaOjQoZKkpKQkDR48WBs3blRsbKzZAoFKVHf92uKiYl24cEFBQUFy+bkq3N4syF+3NgvySk00eQEAMItsi1qr7Nq1kvM1vIOztX9YunWBdPQj6dBK6fhG+Z38Sjr5lXPfRr2kxtHOEgqynabumVRn9q03WK6LTVq35BdYpmnrLr/P3VgKu6X8Ftpe8g/2Th0l7GLn2IryJLtQkn2p2Wzb3n0uAIBR9aI5u3fvXp0/f14DBw4s3degQQN1795dO3bsIMDC511p/dqioiLl5BYoxAqQn4c/+jcIKPbKRcpqa5OXZR8AAHUJ2Ra11pXWrr2oIGKUsv16qlHhXvll7XJmw5753tkuZ/lLDbtJjXpLjaKcGbHBLZwmZuE5ZzmF3OPS+cPS+f9c3A5fXJ6hTJPTLpaKcp2t4BqOzT9McjeRAhpcbD5bkmVJcjlf/cOdi5+V3QLCpeI8Z5Zv3ikp50iZ7aiz5IMHwZa/+ljBch0Ol9zhl5q2JVtAme9LZgVbl21yed5f4TZ/50Ju/mGSf2j5r37BF4/xMsWFUuH5S1vReangnFSU45wbK+Bi0/vyr5fvC3Ce3/Lz/DwAUEdYtl33/+y2ceNGTZo0SampqQoKutRYevLJJ3XhwgUtW7bsqsb79ttvZdu2AgK8e1VR27ZVWFgof3//ck0ky7J0ochW8XX8p/K3LLn9rn8cb451teNU1swzVc+NHudqx6qq2entY8svtq/rD/YuSwpw+WbAqgcvieXYtq2ioiL5+fnRvPaA81M1zk/lODdVqyzzFBQUyLIs9e3b12B1vq8uZFsVnpfsa/+DsSSnceMXfP1jGRjHtqViu1guy1Wx5+Rrx2Wgpgrnxy6WigskXZysYLmccWz7UiP0qtlO48/PLRXmlqnHdja75PvLvtrFzn3LbTfyIsDWpcPzuZxa0oAue/6Lb1CdVpkGbZmvVtmfL7Htkrtfflt1a7vW92770nN4/B26eL4qqfvaaqrOOJeO+9K5qY4rna/K/l/xVJd12e5rOceeHuPNnGXLLh3xWn93apurOy6zn6T11n8DS3ZAI+ePTF5yvdm2Xsyczc3NlaQK628FBgYqKyvrqscrOdHe/oW0LKvSNcKC/C5/07s23hrHm2MxTs2N5a1x3D7aWPWG+tZEsSxLLlfFpTDg4PxUjfNTOc5N1SrLPJZl1bvX4WtRF7Kt/EO990TeGqsGx7EkXXGFU187Lm+OdYVxqnV+vMk/pCafDTWAd5LKcW6qxvmpWl05P94+juvNtvWiOVsyoyA/P7/c7IK8vDwFB1/92kDR0dFeqw0AAAC4GmRbAACAuqNeTOlo0aKFJCkzM7Pc/szMTEVERJgoCQAAALgmZFsAAIC6o140Z7t27aqwsDBt27atdF92drbS0tIUExNjsDIAAADg6pBtAQAA6o56sayB2+3Www8/rMTERDVp0kQtW7bU3LlzFRkZqeHDh5suDwAAAKg2si0AAEDdUS+as5I0efJkFRYW6oUXXtCFCxcUExOjFStWeP2qtAAAAMCNRrYFAACoGyzbtm3TRQAAAAAAAABAfVMv1pwFAAAAAAAAAF9DcxYAAAAAAAAADKA5CwAAAAAAAAAG0JwFAAAAAAAAAANozgIAAAAAAACAATRnAQAAAAAAAMAAmrM+oLi4WAsXLtTgwYPVp08fPf744zpy5IjpsnzSsmXLNGbMGNNl+IwzZ87opZde0pAhQ9S3b1899NBD2rlzp+myfMapU6c0depU3XbbbYqOjtYTTzyhgwcPmi7L56Snpys6Oloffvih6VJ8RkZGhrp06VJh4xxdkpKSohEjRigqKkojR47Uhg0bTJfkE7Zt2+bxd6dLly66++67TZdnXGFhoRYsWKC77rpL0dHRiouL03fffWe6LHgZ2bb6yLblkW2rRratPvJtReTbqpFtPSPbXpk38i3NWR/wxhtvaM2aNXrllVf07rvvqri4WPHx8crPzzddmk95++239frrr5suw6c888wz2rVrl+bPn69169apW7duGjdunA4dOmS6NJ8wceJEHT58WMuXL9cHH3ygoKAgPfbYY8rNzTVdms8oKCjQlClTlJOTY7oUn7J3714FBgbq66+/1ubNm0u3ESNGmC7NJ3z00UeaPn264uLitH79esXGxpa+HtV30dHR5X5nNm/erEWLFsmyLCUkJJguz7glS5bo/fff1yuvvKKUlBS1b99e8fHxyszMNF0avIhsWz1k24rItlUj21YP+dYz8m3lyLaVI9temTfyLc1Zw/Lz87Vy5UpNnjxZQ4cOVdeuXZWUlKQTJ05o48aNpsvzCRkZGfr973+vxMREtWvXznQ5PuPw4cPasmWLZs6cqX79+ql9+/Z68cUX1bx5c33yySemyzMuKytLLVu21OzZs9WrVy916NBBCQkJyszM1P79+02X5zOSk5MVFhZmugyfs2/fPrVr107NmzdXs2bNSregoCDTpRln27YWLFigRx55RHFxcWrTpo0mTJigQYMGafv27abLM87tdpf7nQkNDdVrr72m0aNH67777jNdnnFffvmlYmNjdccdd6ht27Z67rnndPbsWWbP1iFk2ysj23pGtq0a2bb6yLeekW89I9tWjWx7Zd7ItzRnDdu7d6/Onz+vgQMHlu5r0KCBunfvrh07dhiszHfs3r1bAQEB+vjjj9W7d2/T5fiMxo0ba/ny5YqKiirdZ1mWLMtSdna2wcp8Q8OGDTVv3jx17txZknT69GmtXr1akZGR6tixo+HqfMOOHTu0du1azZkzx3QpPueHH35Qhw4dTJfhk9LT03Xs2DGNGjWq3P4VK1Zo/PjxhqryXUuXLlVubq6mTZtmuhSf0LRpU23atElHjx5VUVGR1q5dK7fbra5du5ouDV5Ctr0ysq1nZNuqkW2rh3xbOfKtZ2Tbq0O2rcgb+db/BtaHajhx4oQkqUWLFuX2N2/evPS2+m7YsGEaNmyY6TJ8ToMGDXTnnXeW2/f555/r8OHD+tOf/mSoKt/04osv6r333pPb7daSJUsUEhJiuiTjsrOz9cc//lEvvPBChdcfODMLGjdurLi4OKWnp6tt27aaMGGChgwZYro049LT0yVJOTk5GjdunNLS0tSqVStNmDCB1+rLlPzD+dlnn1WjRo1Ml+MTpk+frieffFJ33323/Pz85HK5lJycrDZt2pguDV5Ctr0ysq1nZNvqI9t6Rr6tGvnWM7Jt9ZFtPfNGvmXmrGEl6wO53e5y+wMDA5WXl2eiJNRS3377rZ5//nkNHz5cQ4cONV2OT3n00Ue1bt06xcbGauLEidq9e7fpkoybOXOmoqOjK/yFGM6C7ocOHVJWVpYmTZqk5cuXq0+fPnriiSe0detW0+UZd+7cOUnStGnTFBsbq5UrV+r2229XQkIC5+cya9asUXh4uB588EHTpfiMAwcOKDw8XIsXL9batWv129/+VlOmTNGePXtMlwYvIdvCW8i2lSPbeka+rRz5tnJk2+oj23rmjXzLzFnDStZ3yc/PL7fWS15enoKDg02VhVrmyy+/1JQpU9S3b18lJiaaLsfnlHzU69VXX1Vqaqreeustvfbaa4arMiclJUU7d+5k/bZK+Pv7a9u2bfLz8yt9Xe7Zs6f279+vFStWlPuobn0UEBAgSRo3bpxGjx4tSerWrZvS0tK0atWqen9+ykpJSdG9995b79dyK3H8+HE9++yzWr16tfr16ydJioqK0oEDB5ScnKw33njDcIXwBrItvIFsWzWybUXk26qRbytHtq0+sm1F3sq3zJw1rOTjFpdfxS0zM1MREREmSkIt89Zbb2nSpEm66667tHTpUgUGBpouySecPn1a69evV2FhYek+l8uljh071vurgq9bt06nTp3S0KFDFR0drejoaEnSjBkzFB8fb7g63xAaGlohdHTq1EkZGRmGKvIdJe9NJWvelejYsaOOHj1qoiSftHfvXh05coTZO2WkpqaqoKCg3HqSktS7d28dPnzYUFXwNrItrhfZ1jOybdXIt1dGvvWMbFs9ZFvPvJVvac4a1rVrV4WFhWnbtm2l+7Kzs5WWlqaYmBiDlaE2WLNmjV555RXFxcVp/vz5FT5CWJ+dPHlSzzzzTLmPohQUFCgtLa3eL4SfmJioTz/9VCkpKaWbJE2ePFmvvvqq2eJ8wP79+9W3b99yr8uS9O9//5sLbkjq0aOHQkNDlZqaWm7/vn37WDe0jJ07d6pp06Zc6KqMyMhISc4FScoquXo06gayLa4H2bZyZNuqkW+rRr6tHNm2esi2nnkr37KsgWFut1sPP/ywEhMT1aRJE7Vs2VJz585VZGSkhg8fbro8+LD09HT9+c9/1q9+9SuNHz9eJ0+eLL0tKChI4eHhBqszr3PnzhoyZIhmz56t2bNnq2HDhlq2bJmys7P12GOPmS7PqMpmLjVt2pRZTZI6dOigW265RS+//LJmzZqlxo0b67333tN3332ndevWmS7PuKCgIMXHx2vx4sWKiIhQr169tH79em3ZskWrV682XZ7PSEtLU5cuXUyX4VN69eqlW2+9VdOmTdOMGTMUGRmplJQUbd26Ve+8847p8uAlZFtcK7Jt1ci2VSPfVo18WzmybfWQbT3zVr6lOesDJk+erMLCQr3wwgu6cOGCYmJitGLFitK1TwBPPv/8cxUUFOiLL77QF198Ue620aNHa86cOYYq8x3z58/XvHnz9PTTT+vs2bPq16+f3n77bd18882mS4MPc7lcWrp0qebNm6ennnpK2dnZ6t69u1atWlXh4071VUJCgoKDg5WUlKSMjAx16NBBycnJGjBggOnSfMbPP//MVWwv43K5tGTJEr3++ut6/vnnlZWVpc6dO2v16tXq3bu36fLgRWRbXAuy7ZWRbXGtyLdVI9teGdnWM2/lW8u2bfsG1gkAAAAAAAAA8IA1ZwEAAAAAAADAAJqzAAAAAAAAAGAAzVkAAAAAAAAAMIDmLAAAAAAAAAAYQHMWAAAAAAAAAAygOQsAAAAAAAAABtCcBQAAAAAAAAADaM4CAADgmixbtkxjxoy56selpKRoxIgRioqK0siRI7Vhw4YbUB0AAABQfaayLc1ZAPBhY8aMUZcuXcptPXv21NChQzVr1ixlZWVV+tijR4+qS5cu+vDDD2uwYgD1xdtvv63XX3/9qh/30Ucfafr06YqLi9P69esVGxurZ555Rrt27fJ+kQAAn0K2BeCrTGZb/6t+VgBAjerevbtmzJhR+nNBQYF2796t+fPna8+ePXrnnXdkWVaFxzVv3lxr165VmzZtarJcAHVcRkaGZsyYoW3btqldu3ZX9VjbtrVgwQI98sgjiouLkyRNmDBBO3fu1Pbt2xUdHX0DKgYA+BKyLQBf4gvZluYsAPi4sLAw9enTp9y+mJgYnT9/XgsXLlRqamqF2yXJ7XZ73A8A12P37t0KCAjQxx9/rMWLF+vYsWPlbt+0aZOSk5N14MABRUREaOTIkUpISJDb7VZ6erqOHTumUaNGlXvMihUravIQAAAGkW0B+BJfyLYsawAAtVTPnj0lST/99JPGjBmjKVOmaPLkyerTp4/Gjh3r8aNfhw4d0h/+8Af1799fMTExGj9+vA4ePFh6e15env7yl7/ozjvvVM+ePTVq1Ch9+umnNX5sAHzXsGHDlJycrNatW1e47auvvtJTTz2lBx54QH/96181Y8YMbdiwQVOnTpUkpaenS5JycnI0btw4DRw4UPfff7/+9re/1egxAAB8D9kWgAm+kG1pzgJALVXyRlDyJrJhwwaFhoZqyZIlio+Pr3D/jIwMPfjgg/rPf/6jmTNnau7cuTp58qQeffRRnTlzRrZta+LEiXr33Xc1duxYLVmyRNHR0Xr66aeVkpJSk4cGoJZaunSpHnjgAf3ud79TmzZtdMcdd2jWrFn67LPPdPToUZ07d06SNG3aNMXGxmrlypW6/fbblZCQoK1btxquHgBgEtkWgK+pqWzLsgYA4ONs21ZhYWHpz1lZWdq+fXtpwCyZZRAQEKBZs2bJ7XZLci6aUNbq1auVn5+vVatWqVmzZpKkrl276qGHHlJqaqr8/f319ddfKykpSSNGjJAkDR48WLm5uUpMTFRsbKz8/XnbAFC5tLQ0ff/99/rggw9K99m2LUk6ePCgAgICJEnjxo3T6NGjJUndunVTWlqaVq1apYEDB9Z80QCAGkW2BVBb1FS25ZUIAHzcjh071KNHj3L7XC6XBg0apJdffrn0ggm33HJLaXj15F//+pf69OlTGl4lKTIyUps2bZIkJSYmyrIs3XnnneUC87Bhw/Txxx9r//796tatmzcPDUAdU1xcrPj4+NJwWlazZs20Z88eSVLnzp3L3daxY0f9/e9/r4kSAQCGkW0B1BY1lW1pzgKAj+vRo4dmzZolSbIsS4GBgWrRooXCwsLK3S80NLTKcc6cOaNWrVpVebtt2+rbt6/H2zMzMwmwAKrUqVMnpaenq23btqX7tm3bpjfffFMzZ85Ujx49FBoaqtTUVPXr16/0Pvv27ePq2wBQT5BtAdQWNZVtac4CgI8LDQ1VVFTUdY8THh6u06dPV9i/detWtWrVSuHh4QoJCdGbb77p8fFl35AAwJPHH39cTz31lBYtWqSRI0fqxIkTmj59ulq1alU6syk+Pl6LFy9WRESEevXqpfXr12vLli1avXq12eIBADWCbAugtqipbMsFwQCgnujXr59SU1PLhdhTp04pPj5e//jHP9S/f3/l5OTItm1FRUWVbvv27dPixYvLfRwMADz59a9/raSkJH355ZcaNWqUpk6dqjvuuEOLFi0qvU9CQoImTZpUugbgZ599puTkZA0YMMBg5QCA2oZsC+BGq6lsy8xZAKgnHnvsMaWkpCg+Pl7jx49XQECAlixZosjISI0aNUrh4eGKiYlRQkKCEhIS1KFDB33//fdauHChBg8erCZNmpg+BAA+Zs6cORX23XPPPbrnnnuqfNzYsWM1duzYG1UWAKAeINsC8DZT2ZbmLADUEy1atNCaNWs0d+5cPffcc3K73RowYICSkpLUsGFDSdLy5cu1YMECLVu2TKdOnVJERITGjh2riRMnGq4eAAAAuIRsC6CusGzbtk0XAQAAAAAAAAD1DWvOAgAAAAAAAIABNGcBAAAAAAAAwACaswAAAAAAAABgAM1ZAAAAAAAAADCA5iwAAAAAAAAAGEBzFgAAAAAAAAAMoDkLAAAAAAAAAAbQnAUAAAAAAAAAA2jOAgAAAAAAAIABNGcBAAAAAAAAwACaswAAAAAAAABgAM1ZAAAAAAAAADDg/wNplnxPd4WFkwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "\n", + "# Set the style for seaborn\n", + "sns.set_style(\"whitegrid\")\n", + "\n", + "# Create subplots\n", + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(14, 6))\n", + "\n", + "# Histogram\n", + "sns.histplot(housing_data_encoded['price'], bins=30, kde=False, color='skyblue', ax=axes[0])\n", + "axes[0].set_title('Histogram of House Prices')\n", + "axes[0].set_xlabel('Price')\n", + "axes[0].set_ylabel('Frequency')\n", + "\n", + "# Density Plot\n", + "sns.histplot(housing_data_encoded['price'], bins=30, kde=True, color='orange', ax=axes[1])\n", + "axes[1].set_title('Density Plot of House Prices')\n", + "axes[1].set_xlabel('Price')\n", + "axes[1].set_ylabel('Density')\n", + "\n", + "# Adjust layout\n", + "plt.tight_layout()\n", + "\n", + "# Show plots\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Interprtation:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### #Distribution of House Age" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWcAAAJICAYAAAANc1ZxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7TUlEQVR4nOzdd3xT9f7H8fdJm7bpoC1QKENmGRZkKFNkKk5EBa8LcOJArrhYXvdEryCIggqCG3GAgHodP3EPpqKoDEGQXSi0paUrTfL749BIbYE2SXuS9vV8PPpImpzzzed8k7bfvvPN9xgej8cjAAAAAAAAAECVslldAAAAAAAAAADURISzAAAAAAAAAGABwlkAAAAAAAAAsADhLAAAAAAAAABYgHAWAAAAAAAAACxAOAsAAAAAAAAAFiCcBQAAAAAAAAALEM4CAAAAAAAAgAUIZwHUGB6Px+oSAAAAgCoTCuPfUKgRACoT4SyAoDBx4kQNGDDgqPcPGDBAEydOPOr3x7N06VJNmDDBrxqrgw0bNujCCy9U+/btde6555a5zTPPPKM2bdoctY0RI0ZoxIgRlVVipbrsssvUpk0bffLJJ1aXAgAAQtCIESPUpk0b71fbtm3VuXNnDRkyRK+++qqKioosqWvHjh1q06aNFi5cKEk6ePCgxo8fr1WrVvnV7sSJE0scb5s2bdSuXTuddtppGjdunHbv3u3d1pcx4urVq3XDDTf4VWOxDz/8UP3791f79u113333lbnN8Wps06aNnnnmmYDUU5VycnLUsWNHtWvXTvv27bO6HAAVFG51AQDgi2effVaxsbHl3v7ll1+uvGJCyIwZM7Rr1y7NmDFDtWvXtrqcKvXnn3/qp59+UuvWrTV//nydddZZVpcEAABCUGpqqu6//35JksvlUlZWlr7++mtNmjRJq1at0rRp02SzVe08qHr16umtt95SkyZNJEnr1q3T4sWLNXToUL/bTkpK0rPPPuv9vqioSFu2bNHkyZP1008/6YMPPlBUVJRPbb/zzjvavHmz3zVK0kMPPaRmzZrp8ccfV/369QPSZqj44IMPFBcXJ5fLpXfffVejRo2yuiQAFUA4CyAkpaamWl1CSMrIyFDr1q3Vt29fq0upcgsXLlSjRo104403auzYsfrrr7/UtGlTq8sCAAAhJjY2Vp06dSpx24ABA9SiRQs9+uij+uCDDzR48OAqrSkiIqJUTZXZdpcuXWS32zVhwgQtXbpU5513XqU8dkVkZmaqV69e6t69u9WlVLmFCxeqd+/estvteuedd3TjjTdW+RsEAHzHTyuAkPTPZQ2KB8EdOnRQjx49NHbsWKWlpUkyP760YsUKrVixQm3atNHy5cslSXv37tVdd92lvn37qkOHDrr44ou1dOnSEo+Tk5Oj++67Tz179lTnzp11++236+WXXy7xsf8RI0Zo7NixGjNmjDp16qRrrrlGkvnxsvHjx+u0005Tu3bt1LNnT40fP14ZGRkljuPZZ5/VY489pu7du6tz58668847dejQIc2aNUt9+vTRKaecoltuuaXEfmU53vG0adNGK1as0MqVK0t87C0Q/ve//2nIkCHq3LmzevXqpfvuu09ZWVne+8tatuKfH7+TpFdeeUVnn322TjrpJPXu3VsPPPCAcnJyvPe73W7NmjVLAwcOVPv27XXWWWfptddeO259LpdLixYtUv/+/XXGGWcoOjpab731VqntnE6nJk+erD59+qhDhw667rrrtGjRIrVp00Y7duzwbrdq1SoNHz5cHTt2VLdu3TRhwgQdOHCgQn0GAACql+HDh6t+/fqaP39+idvfeecdnXfeeWrfvr369eunZ555Ri6Xy3v/xIkTdfXVV2vBggU666yz1L59e11wwQX6+uuvvdu43W5NnTpVAwYMUPv27TVgwABNmTJFTqdTUslx1fLly3XllVdKkq688kqNGDFCb7zxhtq0aaMtW7aUqG3x4sU68cQTSyxPUF4nnXSSJGnnzp1l3l9QUKAZM2Z4x3ZnnnmmZs2aJbfb7T3u9957Tzt37jzu2HTt2rW67rrr1L17d5188sm66aab9Mcff0iSli9f7h2bz5gxo9S4zR/HOwap7OXWFi5cWKKO/Px8PfDAA+rTp4/at2+vs88+W3PmzCmxT2Zmpu677z6deuqpOumkk3TJJZfohx9+OG6NmzZt0s8//6x+/fpp8ODB2rlzp7755ptS2+3du1e33367unXrpq5du+q+++7zvqaOdLzXK4DAI5wFEFSKiorK/DqW1atXa/z48TrzzDM1e/Zs3XXXXVq2bJnuvPNOSdL999+v1NRUpaam6q233lK7du2Unp6uiy++WKtWrdLtt9+uZ555Ro0aNdLo0aO1ZMkSb9s333yzPvroI91yyy2aOnWqDh06pClTppSq4aOPPlJMTIyee+45jRw5Unl5ebryyiu1efNm3X///ZozZ46uvPJKffjhh5o6dWqJfefOnavdu3dr6tSpGjVqlD744AMNHTpU3377rR5++GHdcccdWrp0qaZPn37UPijP8bz11lsl+qFfv34+PRf/PGnDzJkzdccdd6hTp06aPn26Ro8erU8++UQjRoxQfn7+MR/jSB988IGefPJJDRs2THPmzNHo0aO1ePFiPfzww95tHnjgAU2fPl2DBw/W888/r7PPPluPPfaYZsyYccy2v/76a+3bt08XXnihoqKidM455+i9995TYWFhie3uu+8+vfLKKxo+fLhmzJihunXr6t577y2xzcqVK3X11VcrKipK06ZN03/+8x+tWLFCV155ZYWOFwAAVC82m009e/bUL7/84h2/vvDCC7r33nvVs2dPPf/88xo2bJhmz55danzx66+/as6cORozZoxmzJihsLAw3XLLLd43u2fPnq0333xTo0eP1ty5c3X55Zdrzpw5eu6550rV0a5dO++aq/fdd5/uv/9+nX/++YqMjNTixYtLbLto0SL17NlTDRo0qPDxFge9xUspHMnj8eimm27Siy++qH/961/ecdu0adO8S0LcfPPN6tu3r5KSko45Nl22bJkuv/xySdJjjz2mRx55RLt379Zll12mzZs3q127dt433S+++GK99dZbqlev3lHr9ng85fqfozzHUF6PPfaYvv76a02YMEFz5szR6aefrv/+979asGCBJDMEvuqqq7R06VLdfvvtevbZZ5WcnKyRI0ceN6BdsGCBEhIS1L9/f3Xp0kVNmzbVm2++WWKbwsJCXXXVVfrxxx/1n//8R5MmTdL69es1d+7cEtuV9/UKILBY1gBA0Ni5c6fatWtX4f1Wr16tqKgo3XDDDYqIiJAkJSQkaO3atfJ4PEpJSfGuT1v8kaznnntOBw4c0CeffKJGjRpJkvr27aurr75a//3vfzVo0CAtX75cy5cv1zPPPKMzzzxTktSnTx8NGjSo1NpYdrtdDz74oPfx161bp+TkZD3xxBM64YQTJEk9evTQzz//rBUrVpTYNzY2VlOnTlV4eLhOPfVUvffee0pLS9M777yjuLg4SdI333yjH3/88ah98NJLLx33eDp16lSqH47lWM9Ft27dJElZWVl67rnndMkll5Q48ULr1q01bNgwLViwQMOGDTvuY0nSihUr1LhxYw0bNkw2m03dunVTdHS095+SLVu26O2339Ydd9zhPXHEaaedJsMw9MILL+iKK65QYmJimW0vXLhQrVu39s7wGDJkiN5991198sknOv/88yVJ27Zt03vvvacJEyZ4Zz/37t1b6enp+vbbb71tTZkyRc2bN9cLL7ygsLAwSVLHjh113nnnVeh4AQBA9VO3bl05nU5lZmYqMjJSM2fO1KWXXqp77rlHkjl2SUhI0D333KNrrrlGrVq1kiRlZ2dr4cKF3qAzOjpaw4cP17Jly3TWWWdpxYoVat++vXcN2W7dusnhcHjHikeKjY1VSkqKJCklJcV7feDAgVqyZIluvfVWGYahPXv2aNmyZXryySePe1xHBpc5OTlau3atJk2apMaNG5cZqn799df6/vvv9dRTT3mXPOjVq5eioqL09NNP68orr1SrVq1Uu3bt4y7JMGXKFDVt2lSzZs3yjr1OO+00DRw4UNOnT9fTTz/t3T85Ofm449yVK1eW63+O8h5DeaxYsUK9evXyttO9e3dFR0erTp06kswZzOvXr9fbb7+tjh07SjL/7xgxYoQmT57sDXH/qaioSEuWLNGgQYO8/4dcdNFFeuaZZ7R7925v6L5kyRL9+eefWrBggdq3by/J/N/kjDPO8LaVnZ1d7tcrgMBi5iyAoJGUlKR33323zK+kpKSj7te1a1fl5eVp0KBBmjJlilatWqXTTjtN//73v2UYRpn7rFixQp07d/YGmcUGDx6sffv26c8//9SyZctkt9tLDFpsNpvOPffcUu21aNHCOyCSpBNPPFHz5s1To0aNtHXrVn311VeaM2eO/vzzz1KzNTt06KDw8L/fK6tbt66aN29eYrCdkJCg7Ozso/ZBeY6noo72XBw5mF2zZo0KCws1aNCgEvt26dJFjRo1KhVEH0uPHj20ZcsWDRkyRM8++6zWrl2r888/33tG3WXLlsnj8WjAgAElZjgMGDBABQUFWr16dZntHjhwQF988YXOOussHTx4UAcPHlSrVq3UqFGjEksbLF++XB6PR2effXaJ/Y88try8PP3888/q27dviVkXJ5xwglq2bKnvvvuu3McLAACqn+JPGBmGoZ9++kn5+flljl0klRg31K5du8QM1OTkZEnm2EMyw7zvvvtOV1xxhV588UVt2rRJw4cP1wUXXFDu2i6++GLt3LlTq1atkmTOmo2JidHAgQOPuV/xBIrir+7du2vkyJGqU6eOZsyYUebJwFasWKHw8PBS46ritXjLO0bMzc3V2rVrdc4553iDWUmqVauW+vfvX6GxZrF27doddZxbGccgmc/f22+/reuvv16vv/66tm/frtGjR3uD7R9++EFJSUlq166d93XicrnUv39//frrryWWCzvSl19+qfT0dJ1xxhnece6AAQPkdrv1zjvveLdbtmyZTjjhBG8wK5khfv/+/b3fV+T1CiCwmDkLIGhERER4ZzaWdd/RdO7cWbNmzdLLL7+sl156SbNmzVLdunV10003eYO9f8rKyvLOaD1S3bp1JUkHDx5URkaGEhISSi2mX/wO95FiYmJK3fbSSy/p+eefV2ZmpurWrav27dvL4XCUClmLZ7MeKTo6+qjH6+vxVNTRnosjj7V4oFj8OP987GMFyv907rnnyu12a968eZo5c6Z3aYaxY8fq3HPPVWZmpiQd9YQTxWsM/9OSJUvkdDr1zDPP6Jlnnilx386dO7V582a1bNnSu2bsP5/fI78/ePCg3G63Zs+erdmzZ5d6rMjIyHIfLwAAqH7S0tIUFRWlhIQE79il+BM//7R3717vdYfDUeK+4gkGxWubjhw5UjExMVqwYIEmT56sJ598Uq1atdI999yjHj16lKu2Hj16qHHjxlq0aJG6du2qRYsW6dxzzz3u+CUpKanE8gkRERFKTk5WfHz8UffJyspSYmJiiUC1uC1J5R4jZmdny+PxBGSsWSwmJuao49wjBeoYJOnuu+9WcnKylixZoocfflgPP/ywOnfurAceeEBt27ZVZmam9u3bd9QZvfv27Suzv4tn1F599dWl7nv33Xd18803Kzw8XBkZGWX+D3PkbRV5vQIILMJZANVC79691bt3b+Xl5WnZsmV69dVX9cgjj6hjx47q0KFDqe3j4+O1b9++UrcX35aYmKj69esrIyNDbre7REC7f//+49bz/vvv6/HHH9e4ceM0ZMgQ1a5dW5J06623au3atb4e5lGV53gqQ/EgMT09XS1atCj12MWBsWEYpU4kkJubW6q9QYMGadCgQcrOzta3336r2bNna9y4cTrllFNUq1YtSeZJw8oKwxs2bFhmjQsWLPCezO2fj3/zzTfrzTff1D333KP69et7j+XIto480VdMTIwMw9DVV19dZkj8z3+sAABAzVFUVKTly5fr5JNPVlhYmHfsMnnyZDVr1qzU9mUFjkdjs9k0bNgwDRs2TPv379dXX32l559/Xrfccku5ZzQahqGLLrpIr732mi6//HJt2bJFTzzxxHH3O9YEiqOJj49XRkaGXC5XiXCzOOAr79g0Li5OhmEoPT291H379u1TQkJCheqqiIocw/HGuRERERo1apRGjRqlXbt26YsvvtDMmTN155136sMPP1RcXJyaNWumyZMnl1lL48aNS92Wnp6ur7/+WldccUWp2b1r1qzRU089pS+++EIDBw5U/fr1tXXr1lJtHPl/TSBfrwAqhmUNAIS8J554QkOHDpXH45HD4VD//v01YcIESdKuXbskqdTs165du+qnn34qdXbZJUuWKCkpSU2bNlW3bt1UVFSkzz//3Hu/x+PRZ599dtyaVq9erVq1amnkyJHeYPbQoUNavXp1ibO7Bkp5jqcydOzYUREREfrggw9K3L5q1Srt2rVLJ598siQz1MzIyFBBQYF3m38uQ3Dbbbdp9OjRksyB+DnnnKObb75ZRUVF2rt3r7p06SJJysjI0EknneT9OnDggJ5++mnvu/1HWrt2rTZu3KghQ4aoe/fuJb769++vHj16aPHixcrPz9cpp5yisLAw/d///V+JNj799FPv9djYWKWmpurPP/8sUUOrVq30zDPPaPny5b53JgAACGlvvfWW9u3b5z15VceOHWW325WWllZi3BAeHq6nnnpKO3bsKHfbl112mR555BFJ5mzHIUOGaNiwYTp48KBycnJKbf/P2Z7FhgwZooMHD+qJJ55Qy5YtveubBlrxOPrjjz8ucXvxiWpPOeUUSaXH6P8UHR2t9u3b66OPPioRgGZnZ+vLL7/0tlMZynsMsbGx2rNnT4ltjhzn5ufn66yzzvKefKthw4YaNmyYzjvvPO//Kt26ddPu3btVp06dEq+V7777Ti+++GKZz+fixYtVVFSkq666qtQ496qrrlJsbKzmz5/vbX/Hjh1at25dibq++eYb7/eBfL0CqBhmzgIIeT169NBLL72kiRMnavDgwXI6nXrxxReVkJDg/ZhXrVq19NNPP+mHH35QamqqrrnmGi1ZskRXX321/v3vfyshIUGLFi3SsmXL9Nhjj8lms6lr167q1auX7r77bu9synfffVcbNmw46lq2xTp06KA333xTjz/+uPr376+9e/dqzpw5Sk9PP+ZHwHxVnuOpDAkJCbrhhhs0Y8YM2e129e/fXzt27NDTTz+tlJQUXXTRRZKk/v3767XXXtPdd9+tiy++WBs3btRLL71UYqDZo0cP3X///XriiSfUp08fHTx4UM8++6yaNWumtm3bym63a/Dgwbr33nu1c+dOtW/fXlu2bNHUqVPVuHHjMt/hX7Bggex2u/eEbv90wQUX6Pvvv9f//vc/DRkyREOHDtVTTz0lp9Optm3b6v/+7//0xRdfSPr7n4fiE5LdeeedGjx4sFwul+bOnauff/5ZN998c4B7GAAABJucnBytWbNGkrnsQEZGhr799lu99dZbGjx4sHfckZiYqJEjR+rpp59WTk6OunfvrrS0ND399NMyDENt27Yt92N27dpVc+fOVd26ddW5c2elpaXppZdeUrdu3VS7du1SMzWLz13w5ZdfKj4+3vtYDRs21Kmnnqpvv/1WY8eODUBvlK1Pnz7q3r277rnnHqWlpalt27ZasWKFZs+erYsuush7krJatWopPT1dX331lU488UTVq1evVFt33nmnrrvuOt1www264oor5HQ6NWvWLBUWFnrf2LfyGPr3768XXnhBL7zwgjp27KjPP/9cy5Yt87YTFRWldu3a6dlnn5XdblebNm20ZcsWvffeezrrrLMkmaH566+/rmuuuUY33XSTGjRooO+//16zZ8/W8OHDZbfbS9W3cOFCtWvXrswxcFRUlM466ywtXLhQ27dv16BBgzRr1iyNHj1at956q2rVqqWXXnpJ+/fv935iLJCvVwAVQzgLIOT17dtXkydP1ty5c70nATvllFP06quvej/qNGzYMP3666+6/vrrNWnSJJ1//vl68803NWXKFD3yyCPeMG7mzJk6/fTTvW1PnTpVjz/+uKZMmaKioiKdfvrpuvzyy7Vo0aJj1nTRRRdpx44dWrBggebNm6f69eurb9++uuKKK3Tvvfd61zkNlKSkpHIdT2W45ZZbVLduXb3++ut66623lJCQoLPPPlu33Xabd+3cXr16acKECXrttdf0ySefeAeol112mbedyy67TE6nU/Pnz9e8efMUFRWlnj17aty4cd4B6aRJk/TCCy9o/vz52rNnj+rUqaNzzz1Xt912W6kZBQUFBfrwww/Vq1evo37k7cwzz9SDDz6o+fPna8iQIbr33nsVHR2tuXPnKicnRz179tSoUaM0Y8YM77GcdtppmjNnjp599lmNGTNGdrtd7dq100svvXTcswMDAIDQ9/vvv+vSSy+VZC4VEBMTo9atW+uBBx7Qv/71rxLb3nbbbUpKStK8efP04osvKj4+Xj179tQdd9xR4uSvx3PrrbcqIiJCCxYs0IwZMxQXF6cBAwbozjvvLHP7Vq1aadCgQXrjjTf0zTfflPiUU79+/fTDDz9U6GRiFWUYhl544QVNnz5dL7/8sg4cOKDGjRvrjjvu0DXXXOPdbsiQIfrqq680evRojRkzpsz1Tnv27KmXXnpJ06dP1x133KGIiAh16dJFTzzxhFq1amX5Mdx44406cOCA5syZI6fTqX79+unRRx/VqFGjvNs89NBDmjZtmubOnat9+/apTp06uvjii3XrrbdKMmcIv/HGG5oyZYqefPJJZWdnq1GjRrrzzjt17bXXlqrt559/1qZNmzR+/Pij1n/hhRdqwYIFeuuttzR27FjNmTNHjz76qB544AGFh4dr8ODBSkhI0JYtW7z7BOr1CqBiDE/x6SQBACXs3LlTa9as0emnn17iLLRjxozR9u3b9d5771lYHQItMzNTX3/9tXr37l1iDbEnnnhCCxcuZMkCAABQLYwcOVKRkZGaMWOG1aWgivzxxx/6888/deaZZ5b4BODFF1+s5ORkPfvssxZWB4CZswBwFDabTRMnTtTpp5+uiy++WGFhYfrmm2/06aefatKkSVaXhwBzOBx69NFHdeKJJ+qqq65SdHS01qxZo9dff1033nij1eUBAAD4ZcaMGdqyZYu+/fZbzZs3z+pyUIVyc3N166236oorrtDAgQPlcrn0v//9T7/++mulLm8BoHyYOQsAx7Bs2TLNmDFD69atU1FRkVq2bKlrrrlGgwYNsro0VIJ169Zp2rRpWrNmjfLy8tSkSRNddtllGjZs2HHXGQYAAAhmQ4cO1bZt2zRq1KgyPyqP6u3jjz/WnDlztHnzZnk8HqWmpmrUqFE67bTTrC4NqPEIZwEAAAAAAADAApVz+m4AAAAAAAAAwDERzgIAAAAAAACABQhnAQAAAAAAAMAC4VYXEIp++ukneTwe2e12q0sBAACotpxOpwzDUOfOna0upVphLAsAAFD5yjuWZeasDzwejziPmu88Ho8KCwvpQ4vQ/9ah761F/1uL/rdOKPc9Y67KQb/6J5R/pqoD+t869L216H9r0f/WCeW+L++Yi5mzPiieZXDSSSdZXEloys3N1bp165SSkqLo6Giry6lx6H/r0PfWov+tRf9bJ5T7fu3atVaXUC0xlvVPKP9MVQf0v3Xoe2vR/9ai/60Tyn1f3rEsM2cBAAAAAAAAwAKEswAAAAAAAABgAcJZAAAAAAAAALAA4SwAAAAAAAAAWIBwFgAAAAAAAAAsQDgLAAAAAAAAABYgnAUAAAAAAAAACxDOAgAAAAAAAIAFCGcBAAAAAAAAwAKEswAAAAAAAABgAcJZAAAAAAAAALAA4SwAAAAAAAAAWIBwFgAAAAAAAAAsQDgLAAAAAAAAABYgnAUAAAAAAAAACxDOAgAAAAAAAIAFCGcBAAAAAAAAwAJBFc6+8MILGjFihPf7ESNGqE2bNmV+LVq0SJLkcrnUoUOHUvc/88wz3nZ27NihG2+8USeffLJOO+00TZs2TS6Xq6oPDwAAANUYY1kAAABUVLjVBRR74403NG3aNHXp0sV72zPPPCOn0+n93uPx6Pbbb1dWVpYGDhwoSdq6dasKCgq0ePFi1alTx7ttdHS0JMnpdOq6665Ts2bNNH/+fG3btk133323bDabxowZU0VHBwAAgOqMsSwAAAB8YXk4m5aWpvvvv1/Lly9Xs2bNStyXkJBQ4vvXX39dv/zyixYvXqyYmBhJ0oYNGxQbG6u2bduW2f4nn3yiXbt26e2331Z8fLxat26t/fv367///a9uuukmRUREVMZhAQAAoAZgLAsAAAB/WL6swW+//Sa73a4lS5aoY8eOR93uwIEDmjZtmkaNGqUWLVp4b9+wYYNatmx51P1WrVqldu3aKT4+3ntbjx49lJOTo3Xr1gXmIAAAAFAjMZYFAACAPyyfOTtgwAANGDDguNvNnj1bUVFRuu6660rcvnHjRhUVFem6667T+vXrVb9+fV111VW64IILJEl79uxRcnJyiX3q1asnSdq9e/cxB9GoHIZhyOFwyDAMq0sBAADwC2PZmoexLAAACCTLw9nyyMnJ0dtvv61///vfioyMLHHfH3/8IbfbrTFjxig5OVlfffWV7rrrLjmdTl188cXKz89XrVq1SuxT3EZBQYHPNXk8HuXm5vq8fygzDEORUVGy+TggdTgcSk1NlSS5PR4V5OfL4/EEskQcQ15eXolLVB363lr0v7Xof+uEct97PJ5qEYAxlg0uhmEoKipShuHbhwiPHMt6PG7l5xcwlq1Cofw7LdTR99ai/61F/1snlPu+vGPZkAhnP/vsMxUWFmro0KGl7vvggw/kcrm863a1bdtWu3bt0pw5c3TxxRcrKipKhYWFJfYpHsgWn2jBF06ns8Z+lKx4QLp0y35l5hf53E5CVLhOb15HW7ZsCckfslC3detWq0uoseh7a9H/1qL/rROqfV8d1lRlLBtciseyGb+8qKKcPT63Ex6brMQOIxnLWiRUf6dVB/S9teh/a9H/1gnVvi/PWDZkwtm+ffuWmjUgSVFRUaVua926tZYsWSJJSk5O1saNG0vcv3fvXklS/fr1fa7JbrcrJSXF5/1DWXHqn69w5fowm8Xtdis/P18RkeYLtHnz5sw2qEJ5eXnaunWrmjVrJofDYXU5NQp9by3631r0v3VCue83bdpkdQkBwVg2uBSPZWPDC6TIioeqziKnMjMzFRsXJ4mxbFUL5d9poY6+txb9by363zqh3PflHcuGRDi7atUq3XLLLaVuP3jwoM444wxNnDhRQ4YM8d6+du1atWrVSpLUtWtXLVq0SDk5OYqNjZUkLVu2TDExMUc9K255GIbh12yF6sAWZlNYmB/7H/4oWaj9cFUXDoejxr+GrULfW4v+txb9b51Q7PvqsKSBxFg2WNnt4VKR3ef9w8PMf6UYy1ojFH+nVRf0vbXof2vR/9YJxb4v71jWt4WWqtDu3buVkZFR5uCzVq1a6tGjh6ZOnaqvvvpKW7du1axZs7RkyRLvAPiMM85QUlKSbrvtNq1fv16fffaZnnrqKV177bXV4mNyAAAACF6MZQEAAHAsQT9zdt++fZKkhISEMu9/7LHH9Mwzz+j+++/X/v371bJlS02fPl29e/eWZJ4w4cUXX9SDDz6oSy65RPHx8briiit08803V9UhAAAAoIZiLAsAAIBjCapw9vHHHy91W4cOHbRhw4aj7hMbG6u77rpLd91111G3adq0qebOnRuQGgEAAICyMJYFAABARQX9sgYAAAAAAAAAUB0RzgIAAAAAAACABQhnAQAAAAAAAMAChLMAAAAAAAAAYAHCWQAAAAAAAACwAOEsAAAAAAAAAFiAcBYAAAAAAAAALEA4CwAAAAAAAAAWIJwFAAAAAAAAAAsQzgIAAAAAAACABQhnAQAAAAAAAMAChLMAAAAAAAAAYAHCWQAAAAAAAACwAOEsAAAAAAAAAFiAcBYAAAAAAAAALEA4CwAAAAAAAAAWIJwFAAAAAAAAAAsQzgIAAAAAAACABQhnAQAAAAAAAMAChLMAAAAAAAAAYAHCWQAAAAAAAACwAOEsAAAAAAAAAFiAcBYAAAAAAAAALEA4CwAAAAAAAAAWIJwFAAAAAAAAAAsQzgIAAAAAAACABQhnAQAAAAAAAMAChLMAAAAAAAAAYAHCWQAAAAAAAACwAOEsAAAAAAAAAFiAcBYAAAAAAAAALEA4CwAAAAAAAAAWIJwFAAAAAAAAAAsQzgIAAAAAAACABQhnAQAAAAAAAMAChLMAAAAAAAAAYAHCWQAAAAAAAACwAOEsAAAAAAAAAFiAcBYAAAAAAAAALEA4CwAAAAAAAAAWIJwFAAAAAAAAAAsQzgIAAAAAAACABQhnAQAAAAAAAMAChLMAAAAAAAAAYAHCWQAAAAAAAACwAOEsAAAAAAAAAFiAcBYAAAAAAAAALEA4CwAAAAAAAAAWIJwFAAAAAAAAAAsQzgIAAAAAAACABQhnAQAAAAAAAMAChLMAAAAAAAAAYAHCWQAAAAAAAACwAOEsAAAAAAAAAFiAcBYAAAAAAAAALEA4CwAAAAAAAAAWCKpw9oUXXtCIESNK3HbPPfeoTZs2Jb4GDBjgvd/tdmv69Onq3bu3OnXqpOuvv17bt28v0ca6des0fPhwderUSQMGDNCrr75aJccDAACAmoOxLAAAACoqaMLZN954Q9OmTSt1+4YNG3TTTTfp22+/9X69++673vtnzpypefPm6eGHH9b8+fPldrs1cuRIFRYWSpIyMjJ0zTXXqEmTJlqwYIFGjx6tyZMna8GCBVV1aAAAAKjmGMsCAADAF+FWF5CWlqb7779fy5cvV7NmzUrc5/F4tGnTJt1www1KSkoqtW9hYaHmzp2rsWPHql+/fpKkqVOnqnfv3vr00081aNAgvf3227Lb7XrooYcUHh6uli1b6q+//tKsWbM0dOjQKjhCAAAAVFeMZQEAAOAPy2fO/vbbb7Lb7VqyZIk6duxY4r5t27YpNzdXLVq0KHPf9evX69ChQ+rZs6f3tlq1aik1NVUrV66UJK1atUrdunVTePjfOXSPHj20detWpaenV8IRAQAAoKZgLAsAAAB/WD5zdsCAASXW3TrSxo0bJUmvvfaavv76a9lsNvXp00e333674uLitGfPHklSgwYNSuxXr14973179uxR69atS90vSbt371bdunV9qtvj8Sg3N9enfUOdYRhyOBxyu9xyuVwV3t/tdpuXHvMyLy9PHo8noDXi6PLy8kpcourQ99ai/61F/1snlPve4/HIMAyryzgmxrKhp3gs63QWSU5nhfd3Fpn7FLmKZBdj2aoWyr/TQh19by3631r0v3VCue/LO5a1PJw9lo0bN8pms6levXp6/vnntW3bNv33v//VH3/8oVdeecX7xERERJTYLzIyUllZWZKk/Pz8Mu+XpIKCAp9rczqdWrdunc/7hzKHw6HU1FTl5+crN6/iA9pihQXmWmpbtmwJyR+yULd161arS6ix6Htr0f/Wov+tE6p9/89xXChhLBuciseymZkZcmbv87mdnOxsOcRY1iqh+jutOqDvrUX/W4v+t06o9n15xrJBHc6OGjVKV1xxhRITEyVJrVu3VlJSki655BKtXbtWUVFRksz1uoqvS+ZA1eFwSJKioqK8J1Q48n5Jio6O9rk2u92ulJQUn/cPZcWpf1RUlKINe4X3d7vd5j8akeYLtHnz5sw2qEJ5eXnaunWrmjVr5v05QdWg761F/1uL/rdOKPf9pk2brC7BL4xlg1PxWDYhIVGKrHio6ixyKjMzU7FxcZIYy1a1UP6dFuroe2vR/9ai/60Tyn1f3rFsUIezNpvNO5gt1qpVK0nmR7yKPwK2d+9eNWnSxLvN3r171aZNG0lScnKy9u7dW6KN4u/r16/vc22GYfg1IK4ObGE2hYX5sb9hLnkcaj9c1YXD4ajxr2Gr0PfWov+tRf9bJxT7PtiXNDgexrLBzW4Pl4oqPtGgWHiY+a8UY1lrhOLvtOqCvrcW/W8t+t86odj35R3LWn5CsGMZP368rr766hK3rV27VpKUkpKitm3bKjY2VsuXL/fef/DgQf3+++/q2rWrJKlr165avXp1ibVRly1bpubNm6tOnTqVfxAAAACokRjLAgAA4HiCOpw966yz9MMPP+jZZ5/Vtm3b9NVXX+k///mPBg0apJYtWyoiIkLDhw/X5MmTtXTpUq1fv1633367kpOTdeaZZ0qShg4dqpycHN19993atGmTFi5cqJdfflk33nijxUcHAACA6oyxLAAAAI4nqJc1OP300zVt2jTNmjVLs2fPVlxcnM4//3zddttt3m3GjBmjoqIi3XPPPcrPz1fXrl01Z84c2e3mR5Tq1KmjF198UY8++qguuugiJSUlafz48brooossOioAAADUBIxlAQAAcDxBFc4+/vjjpW4755xzdM455xx1n7CwMI0bN07jxo076jYdOnTQW2+9FZAaAQAAgLIwlgUAAEBFBfWyBgAAAAAAAABQXRHOAgAAAAAAAIAFCGcBAAAAAAAAwAKEswAAAAAAAABgAcJZAAAAAAAAALAA4SwAAAAAAAAAWIBwFgAAAAAAAAAsQDgLAAAAAAAAABYgnAUAAAAAAAAACxDOAgAAAAAAAIAFCGcBAAAAAAAAwAKEswAAAAAAAABgAcJZAAAAAAAAALAA4SwAAAAAAAAAWIBwFgAAAAAAAAAsQDgLAAAAAAAAABYgnAUAAAAAAAAACxDOAgAAAAAAAIAFCGcBAAAAAAAAwAKEswAAAAAAAABgAcJZAAAAAAAAALAA4SwAAAAAAAAAWIBwFgAAAAAAAAAsQDgLAAAAAAAAABYgnAVQYR6PJyjbAgAAAI7L4w7OtgAANVK41QUACD2GYej7PbnKKnT51U58RJhOTY4OUFUAAABAORg2adsCqSDdv3Yi60pNhgamJgBAjUU4C8AnWYUuZRQwUwAAAAAhqCBdytttdRUAALCsAQAAAAAAAABYgXAWAAAAAAAAACxAOAsAAAAAAAAAFiCcBQAAAAAAAAALEM4CAAAAAAAAgAUIZwEAAAAAAADAAoSzAAAAAAAAAGABwlkAAAAAAAAAsADhLAAAAAAAAABYgHAWAAAAAAAAACxAOAsAAAAAAAAAFiCcBQAAAAAAAAALEM4CAAAAAAAAgAUIZwEAAAAAAADAAoSzAAAAAAAAAGABwlkAAAAAAAAAsADhLAAAAAAAAABYgHAWAAAAAAAAACxAOAsAAAAAAAAAFiCcBQAAAAAAAAALEM4CAAAAAAAAgAUIZwEAAAAAAADAAoSzAAAAAAAAAGABwlkAAAAAAAAAsADhLAAAAAAAAABYgHAWAAAAAAAAACwQbnUBAAAAABB0XAVS1q9S3m4pf49khEn1+kqRJ1hdGQAAqEYIZwEAAADgSEW50tZXpfy0krdvfU1hcamyhXe2pi4AAFDtBNWyBi+88IJGjBhR4rbPP/9cQ4cOVefOnTVgwAA98cQTys/P996/evVqtWnTptTX8uXLvdv88MMPGjJkiDp27Kizzz5bH374YZUdEwAAAGoOxrPVQFGetPU1M5gNi5Hqnio1HirV7ibJkC37dyVlvic5s62uFAAAVANBM3P2jTfe0LRp09SlSxfvbatWrdK///1vjRkzRmeffbb++usv3XfffcrMzNSkSZMkSRs2bFCTJk00b968Eu3Fx8dLkjZv3qwbb7xR11xzjZ588kl9+eWXGj9+vGrXrq2ePXtW3QECAACgWmM8Ww248g/PmN1jBrPNr5Kiksz7EtpLiZ3k2fauwpwHZGx7TeowXjKCar4LAAAIMZaHs2lpabr//vu1fPlyNWvWrMR98+fPV/fu3XXTTTdJkpo1a6bbb79d99xzjx588EFFRERo48aNSklJUVJSUpntv/LKK2rTpo1uv/12SVLLli31+++/68UXX2QwCwAAAL8xnq1G9n5xOJiNlppf+XcwW8zRQEWNhih860uyZf8urX9KOnGsNbUCAIBqwfK3eX/77TfZ7XYtWbJEHTt2LHHftddeqwkTJpS4zWazyel0KicnR5I506Bly5ZHbX/VqlWlBq09evTQ6tWr5fF4AnQUAKqLQP5e4HcMANQMjGeriYL90v5V5vUThkpR9creLrKesmIOPx9r7pLSl5e9HWAFjzs42wIAHJXlM2cHDBigAQMGlHlfampqie+dTqdefvlltW/fXrVr15Yk/fHHH0pMTNSQIUOUlpam1q1b6/bbb1eHDh0kSXv27FFycnKJdurVq6e8vDxlZGR42wEASTIMQ9/vyVVWocuvduIjwnRqcnSAqgIABDPGs9VE2lJJbim2lRTb4pib5ka2VS17rmyZP0orbpDO+YnlDRAcDJu0bYFUkO5fO5F1pSZDA1MTAOCYLA9ny6uoqEjjx4/XH3/8oTfeeEOStHv3bmVnZys3N1f33HOPwsLC9Prrr2v48OFauHChUlJSlJ+fr4iIiBJtFX9fWFjocz0ej0e5ubm+H1AIMwxDDodDbpdbLlfFAyy323wH1n34ndi8vDxmfVShvLy8EpcV5e/zfyS36++aguE1UHxsGXlOHSjw99hKv7797Xv4h/63Fv1vnVDue4/HI8MwrC4jYIJpPMtY1iGns0hyOs3bcrcr/OA6eWSoqG4/7+1lcRY5JcNQQYOhcuT8IWX+ooLN78jV8PwqOoKaLVBj2SOff5+FF8mu4BvLOnP2SHm7/GvMUfrYQvnvSXVA/1uL/rdOKPd9eceyIRHO5uTk6LbbbtOKFSv07LPPemcRNGjQQCtXrpTD4ZDdbpcknXTSSfr999/12muv6cEHH1RkZGSpQWvx9w6Hw+eanE6n1q1b5/P+oczhcCg1NVX5+fnKzfN9QFNYYD4PW7ZsCckfslC3detWn/YL1PMvSdEeu6T4oHkNVNWx+dr3CAz631r0v3VCte//GUqGqmAbzzKWTVVmZoac2fskj0d1D34iScqNbKOsbEnZ+47bTk6eW442t0i/PSbXz/drXWZLqRq9mRDs/B3Lep9/P9jjHEpS8Pw/U1XHFqp/T6oL+t9a9L91QrXvyzOWDfpwdu/evbr++uu1c+dOzZkzR127di1xf61atUp8b7PZ1LJlS6WlpUkyB7x79+4t1WZ0dLTi4uJ8rstutyslJcXn/UNZceofFRWlaMNe4f3dbrc5AyTSfIE2b948KN5priny8vK0detWNWvWzKd/6Px9/o8UFRkmKXheA5V9bP72PfxD/1uL/rdOKPf9pk2brC4hIIJxPMtYVkpISJQi82Qc2qrwA3vlMeyKaHymksJjj7m/s8ipzMxMxcbFSa1HybP+aUUXbFD7xK1yNTi3Kg6hRgvUWLb4+feLI1FS8I1lK+vYQvnvSXVA/1uL/rdOKPd9eceyQR3OZmVl6aqrrlJOTo7eeOMNtWnTpsT9X3/9tW699VYtWbJEJ5xwgiTz42Lr16/XmWeeKUnq0qWLVqxYUWK/ZcuW6eSTT5bN5vu6UIZhKDq6Zq8naQuzKSzMj/0Pr8sVaj9c1YXD4fDrNezv81/cRnEtwaSyj83fvod/6H9r0f/WCcW+rw5LGgTreJaxrGS3h0tFdin7F0mSkdhB9sOBVHmEh4VLkXVktPm39PsTivzjcanFUGbPVhF/f6d5n39/2MO9tQSTyj62UPx7Up3Q/9ai/60Tin1f3rFsUK9aP2nSJG3fvl1PPvmkateurX379nm/XC6XTj75ZCUmJmrChAn69ddftWHDBk2YMEGZmZm6+uqrJUkjRozQL7/8osmTJ2vz5s2aO3euPv74Y40cOdLagwMAAEC1x3g2yBXlSgcPL++QeLJvbbS9UwqLlg6slnZ9FLjaAABAjRC0M2ddLpf+97//yel06qqrrip1/9KlS9W4cWO9/PLLmjx5sq677joVFBTolFNO0euvv666detKklq1aqWZM2fqySef1CuvvKLGjRvrySefVM+ePav6kAAAAFCDMJ4NAVlrJY9LikqWHA19ayMqSWp1k7T+KemPGVIjljYAAADlF1Th7OOPP+69HhYWpl9++eW4+zRp0kTTp08/5jZ9+vRRnz59/K4PAAAAOBbGsyHE45EO/Ghe93XWbLGUG81wdvfHUu5OKbqR//UBAIAaIaiXNQAAAACASnFoq1SwVzLCpYST/GurVmupXh/J45b+fDkQ1QEAgBqCcBYAAABAzbPvW/MyPlUKi/K/vRbXmZeb55ghLQAAQDkQzgIAAACoWVwF5gm8JCmxc2DabHKxZK8lHdoipX0ZmDYBAEC1RzgLAAAAoGZJ+0Jy50vhsVJ008C0GR4tNb3cvL55TmDaBAAA1R7hLAAAAICaZcdi8zKujWQYgWu35UjzcvsCqTAjcO0CAIBqi3AWAAAAQM3hcUs7D4eztdoEtu3ap5gnF3MXSNsWBLZtAABQLRHOAgAAAKg59q+S8nZLtkgppnlg2zYMqell5vVt7wS2bQAAUC0RzgIAAACoOYpnzca3k2zhgW//hH+Zl2lLpYL9gW8fAABUK4SzAAAAAGqOHYvMy8SOldN+rVZSQkfJ4/r7sQAAAI6CcBYAAABAzZC9Scr6XTLCpfj2lfc4TQ7PnmVpAwAAcByEswAAAABqhh2HlzSo11cKj6m8xykOZ/cslQoOVN7jAACAkEc4CwAAAKBm2PWhedn4gsp9nFqtpYQOkqeIpQ0AAMAxEc4CAAAAqP6KcqV935nXG5xV+Y/H0gYAAKAcCGcBAAAAVH/7vpPchVJ0YymuVeU/nndpg8+kwszKfzwAABCSCGcBAAAAVH97PjMvk8+QDKPyH69WG6nWiebSBrs+rvzHAwAAIYlwFgAAAED1l7bUvKx/etU9ZuPB5uXOJVX3mAAAIKQQzsIyUWGGPB5PwNoLZFsAAACoRgoOSAd+NK8nByicDY+VPO5jb9PofPNy10eS23nsbY/XFgAAqJbCrS4ANVdEmCHDMPT9nlxlFbr8ais+IkynJkcHqDIAAABUK2lfSPJI8amSo0Fg2gyPkgybtG2BVJBe9jYetxniOjOlnyaYSx2UJbKu1GRoYOoCAAAhhXAWlssqdCmjgJkCAAAAqCSVuaRBQbqUt/vo98e2lDJ/ltJ/kOy1Av/4AAAgpLGsAQAAAIDqbc/hcDb5jKp/7LjDs2WzN0gswwUAAP6BcBYAAABA9XVou5S90VyCoF7fqn/82JaSESYVZhx9+QMAAFBjEc4CAAAAqL6KlzSo3U2KiK/6xw+LkGKam9ezN1b94wMAgKBGOAsAAACg+tr7jXlZv591NcS1Ni+zN1hXAwAACEqEswAAAACqr33fmpdJva2roTiczd0hFeVZVwcAAAg6hLMAAAAAqqf8vYeXEjCkpJ7W1RERL0XWk+SRcjZbVwcAAAg6hLMAAAAAqqd935mXCe2liERra4lLMS9z/rC2DgAAEFQIZwEAAABUT94lDU6ztg5JimtlXmZvkjwea2sBAABBg3AWAAAAQPUUTOFs9AmSLVJy5Up5O62uBgAABAnCWQAAAADVT9Eh6cCP5vVgCGeNMCm2pXk9m6UNAACAiXAWAAAAQPWzf4XkKTJnrMY0sboaU/HSBjmbrK0DAAAEDcJZAAAAANXP3iBa0qBY7OGTguXtkpw51tYCAACCAuEsAAAAgOonmNabLWaPlRwNzevMngUAACKcBQAAAFDduIuk9O/N60m9rK3ln4pnz7LuLAAAEOEsAAAAgOom61epKEey15Li21tdTUnedWc3Sx6XtbUAAADLEc4CAAAAqF7Sl5mXdbpLtjBra/knR0MpLFpyF0i5262uBgAAWIxwFgAAAED1UhzO1u1hbR1lMWxSHEsbAAAAE+EsAAAAgOpl/3Lzsk53a+s4mtjDSxtkc1IwAABqOsJZAAAAANVHYaZ0cL15vU43S0s5qtiWkgypYK9UmGV1NQAAwEKEswAAAACqj/0rzcvYFlJUkrW1HE24Q4pubF7PYWkDAABqMsJZAAAAANWH92RgQbje7JHiipc2IJwFAKAmI5wFAAAAUH0UrzdbN0jXmy1WvO5szhbJ7bS2FgAAYBnCWQAAAADVg8cT/CcDKxZVXwqPkzxOKXuj1dUAAACLEM4CAAAAqB4ObZEK0iVbhJTYyepqjs0wpLgU83rmr9bWAgAALEM4CwAAAKB6KF5vNrGzFBZpbS3lEdfavMwinAUAoKYinAUAAABQPaSHyJIGxWKaS4ZNKtgnHeTEYAAA1ESEswAAAACqh1A5GVixsEgpuql5fdeH1tYCAAAs4VM4+8EHH6iwsDDQtQAAAACAb1yFUsZP5vVQmTkrSXGtzMtd/7O2DgAAYAmfwtnx48erV69eeuCBB/TLL78EuiYAAAAAqJisXyV3oRSRKMW2sLqa8isOZ/d+JTlzrK0FAABUOZ/C2c8//1zXXnutli1bpksvvVTnnnuu5syZo3379gW6PgAAAAA4vgOrzcvEkyXDsLaWioioI0XWNYPltKVWVwMAAKqYT+FscnKyRo0apY8//lhvvPGGunTpotmzZ6t///666aab9Omnn6qoqCjQtQIAAABA2YrD2TpdrK2jogxDim9vXmdpAwAAahy/Twh28skn66GHHtLs2bPVuXNnffnllxozZoz69eun2bNny+VyBaJOAAAAADi64nC29inW1uGLI8NZj8faWgAAQJUK92fnnTt3avHixVq8eLG2bdumJk2a6I477lC/fv305ZdfasaMGdq0aZOeeOKJQNULAAAAACW5CqXMw+fCCMVwtlZrKcwh5e6QMtZItTtbXREAAKgiPoWz77zzjhYvXqwff/xRkZGROvvss/Xoo4+qS5e/P0LUunVrZWRkaP78+YSzAAAAACpP1m9/nwwsprnV1VScLUJqcJa0Y5G0YzHhLAAANYhP4ey9996rjh076oEHHtC5556r2NjYMrdr06aNLr30Ur8KBEKVx+OREaCTUQSyLYSeQD3/vI4AANXWgVXmZaidDOxIjS88HM4ukjo8YG0tkuRxS4bfq+AFvi2EnkA9/7yOAFRTPoWzH3zwgVJSUuRyuRQWFiZJys/Pl9PpVFxcnHe7Cy+8MCBFAqHIMAx9vydXWYX+rbscHxGmU5OjA1QVQlEgXku8jgAA1VoorzdbrNEgyQiTMn+WcrZIsRbPADZs0rYFUkG6f+1E1pWaDA1MTQhNgXgt8ToCUI359LZTs2bNdP/99+uSSy7x3vbjjz+qZ8+eeuKJJ+R2u30q5oUXXtCIESNK3LZu3ToNHz5cnTp10oABA/Tqq6+WuN/tdmv69Onq3bu3OnXqpOuvv17bt2+vUBtAZckqdCmjwO3Xl7/hLqoHf19LvI4AoPIxlrVQdQhnI+tI9fqY13cssrQUr4J0KW+3f1/+hruoHvx9LfE6AlCN+RTOTp8+XUuWLNGgQYO8t6Wmpmrs2LF6++239eKLL1a4zTfeeEPTpk0rcVtGRoauueYaNWnSRAsWLNDo0aM1efJkLViwwLvNzJkzNW/ePD388MOaP3++3G63Ro4cqcLCwnK3AQAAAPiDsayFQv1kYEdqfKF5GSzhLAAAqHQ+LWvw/vvva8KECbrsssu8tyUkJOjqq69WeHi4Xn31Vd1www3laistLU3333+/li9frmbNmpW47+2335bdbtdDDz2k8PBwtWzZUn/99ZdmzZqloUOHqrCwUHPnztXYsWPVr18/SdLUqVPVu3dvffrppxo0aNBx2wAAAEDNkpaWpvr16wesLcayFis+GZg9QYptYXU1/ml8gbT6Vmnft1L+PikqyeqKAABAJfNp5mxGRoZOOOGEMu9r0aKF9uzZU+62fvvtN9ntdi1ZskQdO3Yscd+qVavUrVs3hYf/nSH36NFDW7duVXp6utavX69Dhw6pZ8+e3vtr1aql1NRUrVy5slxtAAAAoGbp37+/Ro4cqf/973/eGaq+YiwbBLxLGoTwycCKxTSVEjubJz7a+YHV1QAAgCrgUzjbokULffLJJ2Xe9/nnn6tp06blbmvAgAF65plnygx79+zZo+Tk5BK31atXT5K0e/dubwjcoEGDUtsU33e8NoBgFxVmyOPxBKQtj8cjI9T/aQEAwE+TJk2S2+3W2LFjddppp+nBBx/U2rVrfWqLsWwQqA7rzR6p8UXm5Y73rK0jUMJjzbA5EDxuxrIAgGrHp2UNrrzySk2cOFGZmZk644wzVKdOHR04cEBffPGFPvroI02aNCkgxeXn5ysiIqLEbZGRkZKkgoIC5eXlSVKZ22RlZZWrDV95PB7l5ub6vH8oMwxDDodDbpdbLlfFTzJUfMK44sDR4/atnRJtHt49Ly8vYEGmP/ztoyOFyybDMPTtrhxlFfjeVnxkmE5rGOt93Rf//FRUII+tOj9vZR1bcZ9XpO8DVVOw9bUVfOl/BA79b51Q7vvKelPxggsu0AUXXKC0tDS99957Wrx4sd58802lpKRoyJAhGjx4sOrWrev34zCWrRqR6SsVJqkgpr1c5Tim4r+tTmeR5HRW+PGcReY+LpdLdknOIt/aKSG8SHYd/jlNOlsO3SfP7k+Vl7Vbssf717YP/O2jEjzhshs2FW15W568fb7X5EhSePNLAjaWDcixHfG8BcP4qrKPzZ+xrN81BVlfWyGU/55XB/S/dUK578s7lvUpnL3wwgt16NAhzZw5U59++qn39sTERN1777268MILfWm2lKioqFIfNSv+YxwdHa2oqChJUmFhofd68TYOh6NcbfjK6XRq3bp1Pu8fyhwOh1JTU5Wfn6/cPN//wDoP/3HOLyhUbq7v/1xIUrTHLileW7ZsCYof2ED1kSQVRpqv5b3Zedp3yPd+ynfYpYax2rVrlyRp69atPrUTyGOrzs/bsY6tIn0fqJqCra+t5OtrH4FB/1snVPv+n8FkINWvX1833XSTbrrpJv322296/PHH9eSTT+qpp57yLn3wz6UKKoKxbOUzPE51yjJnPW/cH6/C7OMfU/Hf1szMDDmzfQ8L83JzFSUpJztbeRm+tyNJ9jiHkiTz73SuodSIFnIU/qm01bN0IH7QcfcPtED1kSQ5wrOVKCl735/Ky/jT53bscU2U1FwBG8sG4thKPG9BML6qqmPzZSzrb03B1tdWCtW/59UF/W+dUO378oxlfQpnJWnYsGG64oortGXLFmVmZqpWrVpq0aKFbDafVkooU3Jysvbu3VvituLv69evr6KiIu9tTZo0KbFNmzZtytWGr+x2u1JSUnzeP5QVp/5RUVGKNuwV3t/tdis/P192u7lvVGSEoj1hftUUFWnu37x586B4J9XfPjpSRERg+qm4jxo2bKjNmzerWbNm3n/8KiKQx1adn7eyji0vL09bt26tUN8HqqZg62sr+NL/CBz63zqh3PebNm2q9MdYtWqVFi9erP/7v//TwYMH1atXL/Xr109ffvmlLr/8co0fP15XX321T20zlq18RuYa2TYWymNPUMsOZ5Rrzdniv60JCYlSZMVDHmeRU5mZmXIcDsdj4+IUG+bnibsciZL+/jsdZhsmrX9YTdzfqf6J4/xr2wf+9lEJcXGSAtBPh/soUGPZgBzbP543q1X2sfkzlvW7piDrayuE8t/z6oD+t04o9315x7I+h7OS+Yu2RYvKOyNq165dNX/+fLlcLoWFmcHCsmXL1Lx5c9WpU0dxcXGKjY3V8uXLvQPagwcP6vfff9fw4cPL1YavDMPwa7ZCdWALsynMj0y1+A+1YfOvneJaJAXdD6q/fSTJ+4aHv/1U3EfFH4V0OBx+vYYDcmzV+Xk7xrH50vf+1hSsfW0Ff1/78A/9b51Q7PvKWlvyr7/+0uLFi7VkyRLt3LlTjRo10ogRIzRkyBDv+q/Dhw/X2LFj9dxzz/kczjKWrQK7fpckGbVPVnRMTIV2tdvDpSLf3/gsfj7s4eGS3b83dWU3/y3z/p1OGS6tf1hh+z5XtC1XivJ/mQ2fyvKzjyRJh09m53c/He6jQI1lA3Js/3zegkRlH5svfe93TUHa11YIxb/n1Qn9b51Q7PvyjmV9muZ64MAB3XnnnTrllFOUmpqqE088scRXamqqL82WMnToUOXk5Ojuu+/Wpk2btHDhQr388su68cYbJZlTg4cPH67Jkydr6dKlWr9+vW6//XYlJyfrzDPPLFcbAAAAqFnOOusszZkzRx07dtTcuXP12WefafTo0aVOzNWiRYsyT/RVXoxlq0B1OxlYsVqtpcSTJY9L2r7A6moAAEAl8mnm7EMPPaQvvvhC5513npKTkwO6lMGR6tSpoxdffFGPPvqoLrroIiUlJWn8+PG66KKLvNuMGTNGRUVFuueee5Sfn6+uXbtqzpw53o/Ml6cNAAAA1Bz33nuvBg8erLjDH7c+mptvvlk333yzz4/DWLYKVNdwVpKaXiZl/Cj99abUijAeAIDqyqdw9uuvv9Z//vMfXXrppQEt5vHHHy91W4cOHfTWW28ddZ+wsDCNGzdO48YdfS2m47UBAACAmuOTTz5Rjx49ygxn169fr3Hjxun999+vcLuMZauY2yll/mJer5bh7CXSmvHS3q+l3J1SdCOrKwIAAJXAp3DWbrf79REvAAAAoCqtWrXKexKZFStWaOXKlTpw4ECp7b744gtt3769qsuDL7J+k9wFkj1eim1pdTWBF9NUqnuqlP69tO1tqe3tVlcEAAAqgU/h7MCBA/XBBx/o1FNPDXQ9AIBKEBVmyOPxBOzkOoFsCwCqwjvvvKPFixfLMAwZhqEHH3yw1DbF4e2gQYOqujz4wrukwclSdf2b1OwKM5z982WpzW3V9ziB4wmPlTxuyQjQkoqBbAsA/ORTOJuamqpp06Zp+/bt6tixo6KiokrcbxiGRo8eHZACEdgQhEAFqJkibGYY8f2eXGUVuvxqKz4iTKcmh9ZZMgHgnnvu0dChQ+XxeHTVVVfpvvvuU0pKSoltbDabatWqpVatWllUZTVVWYFKdV5vtljTy6Uf7zSXbziwWqrTxeqKqiePRzq0Vcr8WSpIl5wHJVeuFJkkRTeRYptLca0J86wUFmX2/7YF5nPkj8i6UpOhgakLAALA5xOCSdLKlSu1cuXKUvcTzgYWgQqAQMkqdCmjwG11GQBQ5eLi4tStWzdJ0quvvqp27dopJibG4qpqiMoKVIrD2cRqHM5G1pZOGCr9NU/aPJtwNtA8bvOka+nLpML9pe/P32N+HVghRTWQGg2SHA2rvk78rSBdytttdRUAEFA+hbPr168PdB04DgIVAAAA3y1atEh9+/ZVYmKidu3apV27dh1z+wsvvLBqCqspAh2ouJ1Sxs/m9eo8c1aSUq43w9mt86TOUyR7rNUVVQ+HtklbXpbyDv8usEVICSeZ6xfb4yVblJS/Wzr0lzlzOX/34YC8m5R8pmSEWVq+5fLSpOw/pJxNUu4OqTBTcmZJ7kJJhrkER1iMFBFv9mfWOsnjkuy1JHuiZKvh/QcAR/ApnD1Sdna29u7dqxNOOEFhYWEKC+OXLAAAAILLxIkT9fbbbysxMVETJ0485raGYRDOBjvvycBqSXHV8GRgR6rXV4pNMUOwbe9ILa+xuqLQ5nZJax+Qfn9ckluyRUr1+kmJnaWwyJLbRtaW4ttJSX2kPf8nZf0i7V9hLnvQ+GILirdQwQGF/fWWmu3+QFHbfpXytvnRmCHZE6SoJHMmcvFXOJ9mAFAz+RzOLl++XJMnT9avv/4qwzD0zjvvaPbs2UpOTj7ugBcAAACoSkuXLlVSUpL3OkLckevNVvd1QA1DShkprZkobX6RcNYf+Xul7y6X0j43v6/VTmpwlmSPO/Z+9ljphIuk+BOl7e9KB9dL29+SWo+p/Jqt5PFIuz6S/pwr7Xxfke5C/R1fG1JMUykuxbyMSDw84zhSksdcMsKVKxVmSYUZ0oGVUsF+yZlpznx3Zphf2Rv/fjx7vORoZK7xG5siRSRU9REDgCV8Cmd/+OEHXX/99ercubPGjh2ryZMnS5Latm2r6dOnq379+rrmGgYNAAAACA6NGjUq83qxoqIi5eTkKCEhoQqrgs8O/GReJp5sbR1VpflV0s93S+nfS5m/SQntrK4o9Oz7Qfr2X1LeTnOGZpPLpOjGFWujVlupyeXStvnmR/o3vSC1GlX9PqLv8Ziz0z/pJh1Y5b3ZXau90uzdldjmAkU16l+xJTb+eMFc2sTjkYpyzDV+89Ok3F1S/q7DJ2LLMr8O/m7uE1nXDGnjUqRabQJ8kAAQPHwKZ6dNm6bTTz9dTz/9tIqKivTkk09Kkm666Sbl5ubqnXfeIZwFAABAUCoqKtLzzz+vpk2b6vzzz9fy5cs1ZswYHTx4UN26ddP06dMVHx9vdZk4lozicLaztXVUFUey1GiwtOM9acM0qftsqysKHR6PtPFZ6cc7JE+RGbD2XiDt/ca3dZDjWkpNh0l/vSFl/WoukdDx4YCXbZnCTGnnEunQFvP78Bip5fVSi6uVH9lKu9atU3y9EyW7jyeaNgxzprI9ToppJtU5fLurwFz/N3e7lLPZvCxIN7/2L5O2L5T2fGbOrg2PM9sBgGrCp88ArVu3TkOHmmdKNf7xS7FXr17auXOn/5UBAAAAlWD69Ol67rnndPDgQUnSI488ooSEBN11113atm2bpkyZYnGFOCaPW8o8fDKwxE6WllKlTrzTvNzyKmerLy9ntvT9MGn1GDOYbfIv6awVUnyqf+3GNpManW9e/+0Racf7fpdqOY9HOvCjtOk5M5g17FLbO6TBf0qnTJUSO1bu44dFmssZ1OsjtbhGOnG8dMLFUkInKTzWXCLhz7nShqnSxqeltKVmcAsA1YBPM2fj4uK0b9++Mu/bvXu34uKOs2YPAAAAYJEPP/xQd9xxh4YNG6bNmzfrjz/+0OOPP64LL7xQCQkJ+u9//6uHHnrI6jJxNNmbpaJDUlhUzfqoc1Iv82vfd9L6aVLnJ6yu6Og8bnMGZmGG5HGZH08/9Jd5ny2iamo48JP03aXm8gNGuNT5SanNrYGbcZnQwTzGvV9IP4yQzl5lfvw+FLmd0o7F0sHfzO+jm0gtR0on3WtdTWFR5snY4tuZwbEtTMrdJm19w1z6YN+35ld0U6lON3NGdHVffxpAteVTOHv66adr6tSpat26tVJTzXcdDcPQnj179Pzzz6tfv36BrBEAAAAImL1796pjR3MW2JdffimbzaY+ffpIkpKTk5WdnW1leTie4iUN4k+SbD6f3zg0nThB2jdY2vS81O4/UkQQLb9RcMBcp/TgOqkgzQxoi/32yN/XI2pLjoaH1xJtJYX7+PH4o3G7pD9mSD+Nk9yFUvQJUq83zWA70E4YKrkLzLWAvx8mDfwu9F6TRTnSX/PNtXgNm1T/dKlODymqntWV/c0wzJD2pPukhI7S3q+kzF+k7E1S7l/mlz1eqtvTXIfaZre6YgCoEJ/+ctx55536+eefdckll6hu3bqSpDvuuEN79uxRgwYNdMcddwS0SAAAACBQ6tWrpx07dqhLly76/PPPdeKJJ6p27dqSpJ9++knJyckWV4hjylhjXtauIevNHqnReWZIlfWbGdCmTrC6Iilni7T3S3NW45GMcCki0VyzNCxKyt0pFWVLhQfMr6xfze2im0jx7c2lBsJj/KvlwI/SylHS/hXm940GSz1ekiJr+9fu0djCpdPekj5sbz7m+qlS6rjKeazKUJAubX3dnIka5pCaXCrFNLW6qmOzRRx+vbSXnAelAyulA6vNY9j9sbTvG6lOT3M2LSEtgBDhUzgbHx+vd955R4sWLdKyZcuUmZmpuLg4jRgxQkOGDJHD4Qh0nQAQ8gzDkMPhKLVWNwCgag0aNEiTJk3S+++/r9WrV+u+++6TJD366KN68803ddNNN1lcIY6pOJytSevNFjNs5lqcy64ylzZoPUYKt+h/r7xd5gmaik8cJUOKaW6Gx7HNJXuCOeMx4SSpyVDpjxfMJQby06RDW/++nrvN/Nr9kbl/Qnup1olmoFtemWvNYHTLK+aMXXstqeMkqdWoyj9xVHRj6eSp0vJrpV/uNdeijW9buY8ZCAX7zf4qyjFnMze9Qoqsc8xdgm4sa69lzvRN6mP+Xkj/zgxp0z6T9i+X6vc3Z9qy3AGAIOfzZy4iIiJ0ySWX6JJLLglkPQBQLUSFGfJ4PCUGrw6Hw7sUDADAOrfddpuio6O1cuVK3XnnnbriiiskSWvXrtW1116rUaNGWVwhjql4WYOETpaWYZlml0tr7zPXcF03uerXBXUXmTNl07+X5DGDr8RTpKTTzLDsWMJjpdhYKbalGaoVZkkHfzdn0ebtkg79aX7t+kBynCDFtpBimpmhocfzdzsel4zMNdL21dKO96S0L/6+r+nl0slTJEeDwB/70bS4Wtr2tjlzc9k10sBvzTVSg1XBgb+D2ch6UvMrS89aDo81g+4jgs2gHcva7FKdrlLtk83lDvZ+ZYa0O5eYIW3D88zlLQAgSPkUzi5atOi421x44YW+NA0A1UKEzZBhGPp+T66yCl2SJLfLrfz8fEVFRckWVr538BtGh6tj3eD6NEJZwbOvAtUOAFSEYRi68cYbdeONN5a4ff78+RZVhHLL2yPl75FkSIkdrK7GGja71PFx6fvLpd8nmcFgTBUFT3m7pO0LpcL95vfx7aT6Z0gRCb61F3F4ndC6PQ+vWfuruWRDwd6/1xItZouSfntIUUV56uzMkW1j0d/3GWHSCUOkNrdLST19PjyfGYbUbZb0YTtp/zJp47NS21urvo7ycGZLW181l5iITCo7mJXMmcuGTdq2wFz+QJLTWaTMzAwlJCTKbi9nlBCbIjU4PYAHcAxGmJTY2VyP+sAKc4mD/DTpz7nm7fUHmjPNywiefRaodgDUaD6FsxMnTizzdsMwFBYWprCwMMJZAJCUVehSRoF5QgyXy6XcPKeiDbvCyjmZopbdffyNqlhZwbMv4iPCdGpygE8CAgDllJ2drWXLlik3N1eeI2fkHcZYNkhl/Gxe1mrt//qkoazppdIfM83wac1484RXlcnjkTJWmzNDPS4z3Gp4nlQrgB/fj6wt1etjfhUckHI2m7No83aZa4u686W83TIkGZI84bVkJJ0q1estNRsuxTQJXC2+iDlB6vyktPImc3mDJv+SohtaW9M/uYvMGb7OLCmijtTsKMHskQrSpbzd5nWnU87sfVJknlRUzvVcI+v6V7MvbOFS3VPN2fV7/k/KXGPOuM/eJDW+wFxq4x/Bs08i65pLdgCAn3wKZ5cuXVrqttzcXK1atUqzZ8/WjBkz/C4MABDcjgyeASCUfPPNNxozZozy8vLKvN8wDMLZYFXTlzQoZhjSKU9LH58i/TVfanWzGVJWBlehucxA1lrz+7g2UqMLKnet28ja5ledrub37iIzcDvhQuU7DW38c4dSTuqj6Ji4yqvBFynXS3++ZH6U/sc7pNOCaDa+xyPt/p+Ut8Ochdz0Cskea3VVlSs82gxjEzubSxwU7jdPgFaw3zy53pHBMwBYyKdwtlGjRmXe3qpVKzmdTj388MOaN2+eX4UBAAAAlWHKlClq0aKF7rrrLtWvX182Gx9JDRnFJwOr3dnSMoJC7c5mGLhplrTyZumsFYEPTPN2S3/OPjy70JCSz5Dq9Kz8k2z9ky3cXEM2sZM8eXly2ovMj7AHG8MmdX1O+qSLtO0tafd1UoOBVldlOrDq8JsbhnTCUDP8rilimkgpN5qzaA+sNE8+93+9pcZDrK4MACRJAR+JtmnTRr/99lugmwUAAAACYvPmzbrtttvUpUsXnXDCCWrUqFGpLwSpzDXmZU2fOVuswyPmuqFZv0qrbi550ix/bZ0n/f64GcyGx0rNrzI/Ks5a8cdWu7PU6t/m9VWjJVe+tfVI5snjdn9sXq9/uhSXYm09VrDZpYbnSk2HSeFxZlj9+yTp0FarKwOAwIazhYWFevfdd1WnTp1ANgsAAAAETMOGDZWTk2N1GagoV750cKN5PbGTpaUEjagkqdd8c8bmny9Lm2f736arwJyJ+/0wyV0gxTQ3Zx3GNPW/7Zqiw0NSVLKU/Yf0+5PW1lKYZa4zK7cU394M2GuyuBSp0xPm75CibGnLa3+vZQ0AFvFpWYMBAwaUOru22+1WRkaGCgoKNGHChIAUBwAAAATajTfeqBkzZuikk05S48aNrS4H5ZW3S5LH/Hi7o77V1QSP5AFSx8ekNROlVbdICR2kuj18aytni/TtJeasQsmcaZh4Cmejr6iIeOnkqdL3l0u/PSo1u0KKa1n1dbid0rb5kivXDIsbDWbmsyRF1ZMGfid91td8re9cZPZR3Z5WVwaghvIpnO3WrVupcFaSYmNj1b9/f516ag1/Nw4AAABB6/3331daWpoGDhyo2rVrKyoqqsT9hmHos88+s6g6HFXudvOSJQ1KO3G8lL5M2rFI+nyg1OstqdG55d/f45Y2zpB+vksqOiRF1JZOfV06tI0TJvmq6aXS5heltKVmaN7vw6oNRj0e8yRY+XuksGipyWXmR/thCo+WWlwrGeHS/mXSnk/N13790wmwAVQ5n8LZxx9/PNB1AAAAAFUiOTlZycnJVpeBiioOZ1nSoDTDkHq+In19kZT2ufT1+dLJT0tt/n38fdOXSz/eIaV/b36f1NsMZmOaSH+8ULl1V2eGIXWdIf2vg3kCqh3vSSdU4Qmo0r831yKWTWryL3M2L0oybFLymVJ4jBmip38nyZDqDyCgBVClfApnd+3aVaHtGzZs6MvDAAAAAAE3adIkq0uAL4rD2dqdra0jWNlrSf0+klaOkv6cK62+RfprnnTiWKnRBZIt7O9tiw5JaV9I66ZIe780bwuPlTr/11xflmUMAqNWG3NW82+PSKvGmLMyqyIkzfrNDBslqcFZUkyzyn/MUGUYUtJpki3CDNHTv5Vs4VK9vlZXBqAGCdias8eybt06Xx4GAAAAqDSbN2/Wd999p71792rEiBHavn272rZtq9jYWKtLwz953FLu4QkiLGtwdGERUvcXpVqtpV/uk9J/kL4ZKkUmmTNho+qba/dmrpU8LnMfI1xqNkzq8LAUc4K19VdH7f4j/fWmlLNZWjNe6lbJs5GzN0mb50jySImdpdpdK/fxqos63cyfiT2fmm9Y2CJYgxZAlfEpnJ02bZruv/9+tWvXToMHD1b9+vWVkZGhzz//XB999JFGjRqlRo0aBbpWAAAAwG9ut1v33XefFixYII/HI8MwdM4552jmzJnatm2bXn/9dZY9CDYF6ZLHac7utOLESqHEMKTUCVLzq6SNz0p/zJQK9plfR3I0kppcIrW9nVC2MoU7pO5zpKX9pE2zzD5PPr1yHsuZLX19gXlyK0djqcG5fDy/Iur2lNxF0t7PzZDWHi/Fp1pdFYAawKdwdvHixerfv3+ptWfPPfdc1alTRz/++KP+/e9yrG8EAAAAVLGZM2fq/fff1yOPPKJ+/fqpV69ekqRx48Zp9OjRmjp1qp544gmLq0QJ+XvMy8SOfOS+vBzJUsdHzJmbWb9J+WlS3h4pIlGq212Kbmx1hTVH/b5Sq5vNoHz59dJ5a811TgPJ45Z+uFLK+t0MFZtcYn48HxVTr7dUlCMdWGGuE2yvxc8KgErn08jmhx9+0KBBg8q8r0+fPlq9erVfRQEVFRVmyOPxBKStQLUDAACC04IFCzRmzBgNHTpUCQkJ3ttPPPFEjRkzRt999511xaFsxeFsdV3SIDzWDNcC4Z/thEdLdbpKjQZJKSOlJkMJm6zQ6XEpuol0aIv007jAt//rw9KORebH8VNukuxxgX+MmqLBWVJcK8lTJP01XyrMtLoiANWcT2+lJSYm6ueff9Zpp51W6r4ffvhB9evX97swBF5xgFmR9YJDRYTNkGEY+n5PrrIKXT63Ex8RplOTowNYGQAACDbp6ek68cQTy7yvfv36OnjwYBVXhOPKO2LmbHUUFmXOCN62wFzCwVeRdc3wFcHHHmeuB/zFmdIfz0lJfaRmlwWm7a3zpbUPmNe7Pi+5C6W83YFpuyYybFLji6UtL5lvDG17W2pxLTORAVQan367XHzxxXruueeUl5enAQMGqHbt2kpPT9fHH3+sN998U/fee2+g60QABCrAbBgdro51HQGsLHCyCl3KKAjQrAMAAFAtNW3aVF999ZVOPfXUUvetWLFCTZs2taAqHJXH8/fM2don+x9gxqZIDSppzU9/FaQTqlVnDQaay0z89pi0YqT5ZkN82W8UlduepdKyK83rbW6TWl4j/VHJJx2rCcIipCaXSZtfkPJ3S7s/khqdb3VVAKopn8LZm2++WdnZ2Xr55Zc1Z84cSeZHwR0Oh26//XZddlmA3gFEpfA3wKxlJ/wEAACh66qrrtJ9990np9Op/v37yzAM/fXXX1q+fLnmzp2riRMnWl0ijlSULbnyJNmk+HbS/lX+BZiRdQNWGlBhJz0kpS+T0j6XvhkqnbVCssf61taBn6SvL5LcTnON2ZOnBLbWmi4iXmo8VPrrdSnjR3NZiuo6ex+ApXwKZw3D0MSJE3XzzTdrzZo1ysrKUmJiojp16qTYWB//sAAAAABV4F//+pcOHDig5557TvPmzZMk3XHHHbLb7Ro5cqQuv/xyiytECcVLGkQ3Nj/+D4QyW5jU603po87SwXXSV+dL/T6o+AnC9q+UvjzPfPOifn+p56ucLK8yxLWU6vWV9n4l7fpAcjSUopKsrgpANePXoimxsbGqV6+eJKlTp04qKioKSFEAAABAZbr++ut1/vnna8WKFQoPD1dcXJw6duxY4gRhCBL5h2fJxjSztAwgYKLqSb3fkz4/Q9r7pfTFOVK/D8t/Eq+dH0rfXiK5cqXap5hthUVWask1WlJfKXeHlLNZ2rFQajHSDNkBIEB8DmcXL16sKVOmaN++fTIMQ++8846eeeYZ2e12TZkyRREREYGsEwAAAPDbBx98oPnz5+vnn3/2TiyIiorSySefrMsvv1xnnHGGxRWilPw08zK2ubV1AIFUt5s04P+kL86S9n1jXp46T4ptdvR93E5pw9PSmomSxyU1OEs67Z3yh7rwjWFIjS6QNj1nrn+990spOUjXrQYQknz63MP//vc/TZgwQT169NBTTz0lt9tcg3TgwIH66quvNHPmzIAWCQAAAPjD5XLptttu09ixY7V9+3add955uu6663TttddqwIAB2rhxo2655RbWmw1GxcsaxBDOopqp210a8JkUkSil/yB9eKK09mHJlV9yO49H2v1/0kedpJ/GmcFs86ukvu8TzFYVe5zU8PAJwdK/kw5ts7YeANWKTzNnn3/+eV122WV64IEH5HK5vLcPHTpUBw4c0Ntvv63bbrstUDUCAAAAfpk3b54+/fRT3X333Ro+fLgMwyhxv8vl0vz58/XYY4+pS5cuuvjiiy2qFCW4CiRnhnk9pqm1tQCVoU4X6cwfpBU3mTMy194nrXvSPPFUwknmx+n3L5fy95rbR9aVOj4qtbzenNGJqhN/opTdScpcI+14j5ODAQgYn2bObtmyRQMHDizzvo4dOyotLc2vogAAAIBAWrRokS677DKNGDGiVDArSWFhYRo2bJguueQSvffeexZUiDIVL2lgr8UMQVRftdpIp38unfqmecKpomxp37fSH89JO983g1lbhNR6jHT+RinlBoJZqzQ4W7LHS85M87kBgADwaeZsnTp1tHnzZvXq1avUfZs3b1adOnX8LgwAAAAIlC1btuiWW2457na9e/fWBx98UAUVoVyKw9mo+tbWAVQ2w5CaXSY1uVg6uF7K+EnK/FVyJEt1ukuJnaVwh9VVIixSanie9Nc8Ke1zaf9KqU5Xq6sCEOJ8CmfPPfdcTZ8+XfXq1VPfvn0lSYZh6Ndff9XMmTM1aNCggBYJAAAA+CMvL0/x8fHH3S4xMVGHDh2qgopQLvmH15slnEVNYQuXEtqbXwhOca2k+JOkrLXS8pHS2askm93qqgCEMJ/C2dtuu00bN27UbbfdJpvNXBlhxIgRys3NVZcuXXTrrbcGtEgAAADAHx6PR2FhYcfdzmazyePxVEFFKJfidTYJZwEEkwZnSYf+lDJ/MdcIbvcfqysCEMJ8CmcjIiL04osv6rvvvtOyZcuUmZmpuLg4devWTX379i1zHS8AAAAAKDePRyo4vKxBJOEsgCASHiOd8C9py8vSrw9LTa+QYptZXRWAEOVTOHvddddp5MiR6tWrV5nrzgIAAADB5oEHHlBsbOwxt8nJyamianBchRmS2ykZ4VIk57QAEGTqdJcObZH2fiX9eIfUZ6HVFQEIUTZfdvrxxx+ZHQsAAICQ0bVrV8XExMjj8RzzKyYmRl26dLG6XEh/nwwsMkkyfPq3BQAqj2FIXZ6VjDBpx3vSrk+srghAiPJp5mzv3r21ZMkSnXLKKbLbWfgaAAAAwe21116zugRUVHE4y3qzAIJVQnup9S3ShmnS6jFS/V+ksEirqwIQYnwKZyMjI7VkyRJ99NFHatmypaKjo0vcbxiGXnnllYAUCAAAAKAGIpwFEApOekD6600pe6O04WkpdbzVFQEIMT59PmjPnj3q3Lmz2rdvL4fDUerjYG63O9B1AgAAAKhJCGcBhIKIeKnTE+b13x6V8tOtrQdAyCn3zNlPP/1UPXr0UK1atfhYGAAAAIDK4yqQnBnmdcJZAMGu+QhzaYOMNdKvD0tdnra6IgAhpNwzZ2+99VZt3bq1xG2zZ8/W/v37A10TAAAAgJqsYK95GR4nhUcfe1sAsJphkzo/aV7/Y6aUvcnaegCElHKHsx6Pp8T3LpdLTz31lPbs2RPwogAAAADUYCxpACDUJJ8hNThb8hRJP//H6moAhBCf1pwt9s/AFgAAAAD8ln94AgjhLIBQ0vm/5izabe9I6cusrgZAiPArnAUAAACAgMs/vKwB4SyAUJJwktT8avP6T2MlJrQBKAfCWQAAAADBw+M5YlmDZGtrAYCK6vCQFOaQ9n0n7VhkdTUAQoDf4axhGIGoAwAAAAAkZ6bkLpSMMCmyjtXVAEDFRDeS2t5pXl8zQXI7ra0HQNALr8jGo0ePVkRERInbbrrpJtnt9hK3GYahzz77zP/qAAAAANQsxbNmI5PMtRsBINSkjpc2vSBl/yFtmiW1Hm11RQCCWLnD2Ysuuqgy6wAAAACAI04GxpIGAEKUPU466QFp1Whp7YNS8yvN2wCgDOUOZydNmlSZdRzV8uXLdeWVV5Z5X+PGjbV06VI999xzmjZtWqn7N2zY4L3+xhtvaO7cudq3b5/at2+ve+65R6mpqZVVNgAAAMBY1hfek4HVs7YOAPBHyvXShqel7I3ShulS+7utrghAkKrQsgZW6Ny5s7799tsSt61Zs0a33HKLbr75ZknmwPWCCy7QuHHjymzjvffe03//+189/PDDSk1N1axZs3TNNdfoo48+Uu3atSv9GAAAAFAzMZb1AScDA1Ad2OzSSQ9K318urXtSan2zFJFodVUAglDQL+IUERGhpKQk71dMTIwmTZqkiy66SEOHDpUkbdy4UampqSW2S0pK8rbx/PPPa/jw4Ro8eLBSUlL02GOPyeFw6J133rHqsAAAAFADMJatIFehVHjAvM7MWQChruklUnx7yZklrXvK6moABKmgD2f/6fnnn1deXp4mTJggSSosLNTWrVvVokWLMrffv3+/tm7dqp49e3pvCw8PV5cuXbRy5coqqRkAAACQGMseV8HhJQ3CY6XwGGtrAQB/GTapw0Pm9Q3TpPx9lpYDIDgF/bIGRzpw4IBefvll3XnnnUpISJAkbdq0SS6XS5988okeffRRFRQUqGvXrho3bpzq1aunPXvMEwo0aNCgRFv16tXT+vXrfa7F4/EoNzfX5/3LyzAMORwOuV1uuVwuv9pyu80s3uP2ry1/23G73eb+Hk9A6glETd52Du+al5fnrc8XQfm8Hd61oKBAknmMvgjksUXIkMfjkWEYfrUjSW6PRwX5+UH9vBW/9osvfW0nUPVY3Vagft7Kq/g17+trH/6h/60Tyn0fqL8RwaImj2WdziLJ6Tzu9rZDOxUmyR1ZT65/bl9UJLskZ1H52joqP9txFpn7uFyuwNQTgJq8ws12AjWWLe/zdkwBPrZAjWUDcmxRUbJ73GYA5yePx638/IKgft6KX/vFl762E6h6LG+rvD9vtc9UVHwn2bLWyPnLo3K2f8ynhwvlv+fVAf1vnVDu+/KOZUMqnJ03b57i4uJ06aWXem/buHGjJMnhcOjpp5/W/v379dRTT+nKK6/UokWLvE9eREREibYiIyO9f9h94XQ6tW7dOp/3Ly+Hw6HU1FTl5+crN8+/P0KFkQ5JUn5BoXJzfT/2QLXjPPyH0N92AllTtMcuKV5btmzx6wc/GJ+34mPbtWuXJGnr1q0+tRPIY1OkQ4Zh6PO/MpSRW+hzMwlR4Tq9eZ2Qed7y8/MD0k6g6rGqrUD9vFWUr699BAb9b51Q7ft/juFCWU0ey2ZmZsiZffwZY/E52xQj6ZArVtnpJbd3hGcrUVJOdrbyMnyffRaodvJycxUVgHYCWZM9zqEkKWBjovI+b8dsK8DHFqixbGCOrbkSDZsO/vqyCg7u8Lmd8NhkJXYYGTLPW2ZmZkDaCVQ9VrVVkZ+3WrHXqFXWrQrb/Lx+95yjovC6Pj9uqP49ry7of+uEat+XZywbUuHsokWLdOGFFyoqKsp724UXXqg+ffqUOBlCq1at1KdPH33++edq0qSJJPMjY0cqKCiQw+HwuRa73a6UlBSf9y+v4oQ9KipK0Ybdr7YiIsz9oyIjFO0Js6wdt9ut/Px82e2BqScQNRWLijT3bd68ud/vWkvB9bwVH9sJJ5yg7du3q2HDhoqMjKxwO5VxbPkem3L9aCtKofG8Fb/2o6KiZLOVb4ZFsPzcVkZbgfp5K6+8vDxt3bpVzZo18+v3P3xD/1snlPt+06ZNVpcQUDV5LJuQkChFHj90Css9KElyJDZTVK2kknfGxUmSYuPiFBuW9M9dy8/PdpxFTmVmZsoRHR2YegJQk5fDPNlQoMZE5X3ejinAxxaosWwgj80RdkgOf9oKN99oCfbnrfi1n5CQIHt4OcfKQfJzWyltVeTnzdNWrrw3FXZgmVI9i+U8cXKFHy6U/55XB/S/dUK578s7lg2ZcHb9+vXavn27zj///FL3/fMstfXq1VNCQoL27Nmj7t27S5L27t2rli1berfZu3ev6tev73M9hmEo+vCArCrYwmwK8y9P8YZBhs2/tgLVTvHgwd92AlmTLcxsJ1A/8MH0vEVHhMnj8SguLk6pqan+FaXgOrZQe95sNpvCyvkAwfZzG9CaAvy8lZfD4ajS398oif63Tij2fXVa0qCmj2Xt9nCp6DhhjscjFZiz2MJjGkn2f2wfbv7rYg8PL31fRQSoneK/5X7XE8CaZDfbCdTf1nI9b8cTqGNzJEged8DGskF1bCH2vNnD7d6JNv60E6h6LGuros9b58ekpQNk3zpH9pMmSjFNfHrYUPx7Xp3Q/9YJxb4v71g2ZMLZVatWqU6dOmrbtm2J26dOnaqPP/5YH3/8sfegd+zYoYyMDKWkpKhOnTpq3ry5li9f7j2RQlFRkVatWqUrrriiyo8DsEqEzZBhGPp2V47Ssg6ZszfDKr4+VsPocHWsG1rvVgEAYDXGsuXgzJLcBZIRJkXWsboaBJuwKMmwqWjL28rYvVEJCYlmCFlRsSlSg9MDXx9wPPX7m19pX0i/PiJ1n2V1RQCCRMiEs7///rvatGlT6vaBAwdqzpw5euCBB3T11VcrPT1djz32mE4++WT17t1bknTttdfq0UcfVdOmTXXSSSdp1qxZys/P18UXX1zVhwFY7mChS+l5TkUbdp9mPdayl/9kVgAAwMRYthzy08zLyCQzoAXK4MnfJ2f2NvNj+77MDo30fa1PwG8dHpb+7zTpz7lS6ngprvKXlwEQ/EImnN23b5/3rLZHat++vWbPnq2nn35aQ4YMUUREhE4//XRNmDDBO/vgkksuUXZ2tqZNm6bMzEy1b99eL730UqmPkAEAAACVgbFsOeTvMS+jfF+uAQCCWlIvqcE50u6PpF8flnq+YnVFAIJAyISzs2fPPup9PXv29H7M62iuu+46XXfddYEuCwAAADguxrLlkL/XvIyqZ20dAFCZOjxkhrNb35Da38vsWQCq+IKTAAAAABBo3pmzydbWAQCVqU4XqeF5ksdlrj0LoMYjnAUAAABgLXehVHjAvM6yBgCqu5PuNy+3vi5lb7a2FgCWI5wFAAAAYK38feZleIz5BQDVWZ2u5tqzHpf026NWVwPAYoSzAAAAAKzFkgYAapri2bNbXmX2LFDDEc4CAAAAsFZ+mnnJycAA1BR1u0sNzj48e/Yxq6sBYCHCWQAAAADWyt9rXjJzFkBNcuTs2Zwt1tYCwDKEswAAAACs4/EcsawBJwMDUIPU7SElnyl5ipg9C9RghLMAAAAArOM8KLkLJMMmRdS1uhoAqFrFs2f/fFnK2WplJQAsQjgLAAAAwDrFs2YjkyRbmLW1AEBVSzpVSh7I7FmgBiOcBQBYIirMkMfjCUhbgWoHAGCB4pOBRbKkAYAQEh4redyBaav9veblny9Jh/4KTJsAQka41QUAAGqmCJshwzD0/Z5cZRW6fG4nPiJMpyZHB7AyAECVKj4ZmINwFkAICYsyl2PZtkAqSPe9nci6UpOhUvIZ0p7PzNmz3V4IXJ0Agh7hLADAUlmFLmUUBGjWAQAg9HiXNSCcBRCCCtKlvN3+t9P+fjOc/fMlqd3dUkwT/9sEEBJY1gAAAACANdxOqfCAeT2KcBZADVbvNKn+APP34m+TrK4GQBUinAUAAABgjYJ9kjxSWIxkj7W6GgCw1kn3m5d/zpEObbe2FgBVhnAWAAAAgDXyDi9pwKxZAJDq9ZHq9zdnz/7O7FmgpiCcBQAAAGCNgjTzMqqetXUAQLBof3j27OY5Uu5Oa2sBUCUIZwEAAABYI684nE22tg4ACBb1+0pJvSV3obRuitXVAKgChLMAAAAAqp7Hc8TMWZY1AACvdnebl5uel/L3WVsLgEpHOAsAAACg6hVlS658STYpsq7V1QBA8GhwplS7i+TKkzZMs7oaAJWMcBYAAABA1cs/fDKwyLqSLdzaWgAgmBjG37NnNz4rFWZaWg6AykU4CwAAAKDq5bOkAQAcVePBUnx7yXnQDGgBVFuEswAAHMHj8QRVOwBQbeXvNS8JZwGgNMMmtfuPeX39VKkop3z7edyBefxAtQPguPj8EAAARzAMQ9/vyVVWocvnNuIjwnRqcnQAqwKAaqh4WQPCWQAoW5NLpF/uk3I2KXzLHElnHn8fwyZtWyAVpPv+uJF1pSZDfd8fQIUQzgIA8A9ZhS5lFDBbAAAqjbtIKthvXiecBYCy2cKkdndJy6+TfdPTMpr0Ld9+BelS3u7KrQ1AwLCsAQAAAICqVbBXkkcKi5bCY62uBgCCV7PhUvQJMgrSVDdridXVAKgEhLMAAAAAqtaRJwMzDGtrAYBgFhYhpU6QJNU/8IrkdlpcEIBAI5wFAAAAULWODGcBAMfW4lp5IuspsmiPwra/aXU1AAKMcBYAAABA1SKcBYDyC3fImXKLJMm+abrk4dwIQHVCOAscISrMkMfjsboMAACA6svjIZytLOGxhDZANVXU7Dq5bDGyZa+Tdv3P6nIABFC41QUAwSTCZsgwDH2/J1dZhS6f22kYHa6OdR0BrAwAAKCaKMqRXHmSDCkyyepqqpewKMmwSdsWmGdr91VsitTg9MDVBcB/9njtix+i5IzXpHVPSo0GWV0RgAAhnAXKkFXoUkaB77MOatmZsQAAAFCm/D3mZWRdyca/I5WiIF3K2+37/pF1A1cLgIDZm3iZ6mfOl7H3ayl9uVS3u9UlAQgAljUAAAAAUHVY0gAAfOK015er8SXmN+uetLYYAAFDOAsAAACg6hDOAoDPnK1uNa9sXyhlb7K2GAABQTgLAAAAoOoQzgKAzzy12kkNz5XkkdZNsbocAAFAOAsAAACgariL/j5RFeEsAPjmxPHm5ZaXpfy9lpYCwH+EswAAAACqRsE+SR4pzCGFx1ldDQCEpnp9pNpdJVe+tPFZq6sB4CfCWQAAAABV48glDQzD2loAIFQZhpR6ePbsxhlS0SFr6wHgF8JZAAAAAFWD9WYBIDAaXyTFtpQKD0ib51pdDQA/EM4CAAAAqBqEswAQGLYwqe0d5vX1T0lul7X1APAZ4SwAAACAyufxEM4CQCC1uFqKrCMd2irt+sDqagD4iHAWAAAAQOUrypFcuZIMKTLJ6moAIPSFR0stR5rXNzxjbS0AfEY4CwAAAKDyFc+ajawj2ezW1gIA1UWrUZJhk9KWSlm/W10NAB8QzgIAAACofCxpAACBF9NUajTYvL7xWWtrAeATwlkAAAAAlc87c5ZwFgACqvUt5uWWV6XCLGtrAVBhhLMAAAAAKh8zZwGgctTvL8W3k4oOSX++bHU1ACqIcBYAAABA5XIXSQXp5nXCWQAILMOQWv/bvL7xWcnjtrYeABVCOAsAAACgcuXvkeSWbFGSvZbV1QBA9dNsuGSPl3I2cWIwIMQQzgIAAACoXLk7zMuo+uYMLwBAYNljpRbXmNf3fmFtLQAqhHAWAAAAQOU6MpwFAFSO1qMlGVLWb1LBfqurAVBOhLMAAAAAKlfeTvOScBYAKk9citTwHPP6gZXW1gKg3AhnAQAAAFSuXMJZAKgSrW8xLzPWSK5CS0sBUD6EswCAGsEwDDkcDhmsdQgAVSsvTSo6aF6PqmdtLQAQoso9lm1wphRZT3IXSFm/VE1xAPxCOAsACGlRYYY8Hs9xt3M4HEpNTZXD4aiCqgAAXpmHw4GIOpLNbm0tABBswmMlj/u4m5V7LGvYpHp9zesHVgegQACVLdzqAgAA8EeEzZBhGPp+T66yCl1H3c7tcis/P19RUVGyhZX93mTD6HB1rEt4CwABVRzOsqQBAJQWFmUGqtsWSAXpR93M6SxSZmaGEhISZbcfJcqJTZEanC7V7S7tWCjl75HydkmOhpVUPIBAIJwFAFQLWYUuZRQcfdaBy+VSbp5T0YZdYWFlb1PLfvxZCwCACsr42bwknAWAoytIl/J2H/1+p1PO7H1SZJ5UdJRPIUTWNS/DY6VaJ0pZv0oZPxLOAkEuJJY1SEtLU5s2bUp9LVy4UJK0bt06DR8+XJ06ddKAAQP06quvltjf7XZr+vTp6t27tzp16qTrr79e27dvt+JQAAAAUMPU+LEsM2cBoOolnmxeZq6V3JwYDAhmITFzdv369YqMjNRnn31WYvHruLg4ZWRk6JprrtGAAQP04IMPas2aNXrwwQcVExOjoUOHSpJmzpypefPm6fHHH1dycrKefPJJjRw5Uu+//74iIiKsOiwAAADUADV6LOsqlA7+bl4nnAWAqhPTTLInSs4MKet3KbGT1RUBOIqQCGc3btyoZs2aqV690md3feWVV2S32/XQQw8pPDxcLVu21F9//aVZs2Zp6NChKiws1Ny5czV27Fj169dPkjR16lT17t1bn376qQYNGlTFRwMAAICapEaPZbM3SG6nFOaQ7PFWVwMANYdhSLU7S2mfm0sbEM4CQSskljXYsGGDWrZsWeZ9q1atUrdu3RQe/nfO3KNHD23dulXp6elav369Dh06pJ49e3rvr1WrllJTU7Vy5cpKrx0AAAA1W40ey2YcXtLA0cgMCgAAVSehkyRDyt0u5e+zuhoARxES4ezGjRt14MABDRs2TKeeeqouv/xyff3115KkPXv2KDk5ucT2xbMSdu/erT179kiSGjRoUGqb4vsAAACAylKjx7LF681GN7K2DgCoiexxUlxr83rGj9bWAuCogn5Zg6KiIv35559KSUnRxIkTFRsbqw8//FA33HCDXnrpJeXn55daaysyMlKSVFBQoLy8PEkqc5usrCyf6/J4PMrNzfV5//IyDEMOh0Nul1sul8uvttxuM4v3uP1ry9923G7zbOgejycg9QSipmBtpzJqch/u9+Lnwap6AtmW+/CueXl53teVLyr75624zyvS9zXhNVlV7ZSn/4PtNVmdFP89Lr5E1Qnlvvd4PCXWaA1FNX0sGx7ZWBGGTUWx7eVxOv1rrKhIdknOoiLJn7b8bMdZZO7jcrkCU08AagradiqhJvfhv8/Fz4Nl9QSyrXCznUCNZZ3Oyjm24j6vUN/XgNdkVbVTrv4voy2jVkeFZ2+QJ/NnFdXuI9nKEQMF6DVZnYTyeCrUhXLfl3csG/ThbHh4uJYvX66wsDBFRUVJktq3b68//vhDc+bMUVRUlAoLS555sKCgQJIUHR3t3aewsNB7vXgbh8Phc11Op1Pr1q3zef/ycjgcSk1NVX5+vnLz/PsjVBhpHm9+QaFycwssb8d5+I+Fv+0EsqZga6cyaiosPNzv+fmW1hPItqI9dknx2rJli1+/sKvq560ifV8TXpNV3c6x+j/YXpPV0datW60uocYK1b4P+hNeHQdj2dOVeskhZSyfLGf6Nv/aCs9WoqSc7GzlZfj+8dxAtZOXm6uoALQTyJqCrZ3KqKn4TYXMzExL6wlkW/Y4h5KkgI1lMzMz5MyuvGOrSN/XhNdkVbdzrP4vsy1PnOrbYhTmOqTs3auUH1n2MjtHCtRrsjoK1fFUdRCqfV+esWzQh7OSFBMTU+q2Vq1a6dtvv1VycrL27t1b4r7i7+vXr6+ioiLvbU2aNCmxTZs2bXyuyW63KyUlxef9y6s4YY+KilK0YferrYgIc/+oyAhFe8Isa8ftdis/P192e2DqCURNwdpOZdQUEWGXDhUoKipKNlvFVzYJxmOLijT3bd68ud+zDaTK+3krfu1XpO9rwmuyqtopT/8H22uyOsnLy9PWrVvVrFkzvwIlVFwo9/2mTZusLiEgavxYNixKCQmJUqSf/+DHxUmSYuPiFBuWZFk7ziKnMjMz5YiODkw9AagpaNuphJqio6OVlyElJCTIHu7DeC0Yj82RKClwY9nK+nkrfu1XqO9rwGuyqtopV/8frS2jk7T/OyW4/5Srbo/j1xSg12R1EsrjqVAXyn1f3rFs0Iezf/zxhy699FI999xz6t69u/f2X3/9VSkpKTrxxBM1f/58uVwuhYWZ/wwvW7ZMzZs3V506dRQXF6fY2FgtX77cO6A9ePCgfv/9dw0fPtznugzDUPThAVlVsIXZFOZfnuINIwybf20Fqp3iwYO/7QSypmBrpzJqsh3ud5vN5v2ZsaKeQLZlCzPbCdQv6sr+eatI39eE12RVt3Os/g/W12R14nA4qvTvJ/4Win0f6ksaSIxli9nt4VKRf2986vBJ0+zh4ZLdj7YC1E7x8+V3PQGsKejaqYSabN5+t3sne1hSTyDbspvtBGrcUNk/bxXq+xrwmqzqdo7Z/0drq04Xaf93suVulc2TI0UkHu9BJDGWLUsojqeqi1Ds+/KOZYP+hGAtW7ZUixYt9NBDD2nVqlXavHmzJk2apDVr1mjUqFEaOnSocnJydPfdd2vTpk1auHChXn75Zd14442SzOnDw4cP1+TJk7V06VKtX79et99+u5KTk3XmmWdafHQAANQMxevgVYewDagIxrIAAMtFJEixh5cz4MRgPmEsi8oU9DNnbTabnn/+eU2ZMkW33XabDh48qNTUVL300ktq3do86+CLL76oRx99VBdddJGSkpI0fvx4XXTRRd42xowZo6KiIt1zzz3Kz89X165dNWfOHN/eaQUAoIbz5SRNxevg+dsOEGoYywIAgkJiZylns5SxRqrXXzKCfq5e5fG4K3z8ZY1lfWkHKEvQh7OSVLduXU2aNOmo93fo0EFvvfXWUe8PCwvTuHHjNG7cuMooDwCAGsUwDH2/J1dZha5y7+N2HbHmb5hN8RFhOjU5tD6WBPiKsSwAwHJxbaWwaKkoR8rZJMW1troi6xg2adsCqSC93Ls4nUXKzPz/9u48Pqry/Pv498wkk4UACRACAsoOIgECJkCRVUp5BLWCfdQCVhCFHxUqSgUUUaqA1QAKorihP0Uqj4BY6oJQ6sYmi0KVAIYdJGExCyH7zHn+OGY0smWZ5Ewmn/frNa+cnJm55jp3DpmLK/fcJ02RkVHW0iEh9aQrh1ZgkqhOqkRzFgAA+JeMfLfS8jwlfrzb7VZ2ToHCjeByr3sMAACAUnI4pchY6cwWKW1n9W7OSlZjNudEyR9fUKCCs6esi+2Vd01n4FeYfw0AAAAAABDoIjtZX8/ulQqzbU0FwM9ozgIAAAAAAAS6sAZSaAPJdEsZ/7U7GwA/oTkLAAAAAABQHUR1sr6m7bQ1DQA/ozkLAAAAAABQHdSOtS6IlXtCyk21OxsAojkLAAAAAABQPQSFSzXbWNtpX9ubCwBJNGcBAAAAAACqj6KlDdL/K3nctqYCgOYsAAAAAABA9RHRUgqKkNzZUtb3dmcDVHs0ZwEAqCZM07Q7BQAAANjNcEiRHazttG9sTaVUTI/dGQAVIsjuBAAAQOUwDEMbU7KVkV/2j69dER6kjvXCfJgVAAAAKl1kJ+n0RunsPqkwy5pJ6+8Mh3RkhZR3uuwxIlpKDa/3XU6AD9CcBQCgGsnIdystr+yzDmoFM2MBAACgyguNlsIaSTnHrbVn63W3O6OSyTst5Zwo+/ND6l3+MZ4CqTBbCqohOWiboeJxlgEAAAAAAFQ3UZ2s5mzaN1LdbpJh2J2RPdy5Usa3UvouKfeU5Mn96Q5DctWRQmNkRLSVzChb00TgojkLAAAAAABQ3dRuL534WMo7KeWekMKusDujyuXOk1L/LaV9LZmFv7rTkGRK+Wek/DMKytytGCNcMrpI9a+zI1sEMJqzAAAAAAAA1Y0zVKp1tTVrNO2b6tWczdwrHXhdKki3vg+JlqLipIgWUnAtyRFircWbd1LKOigz7Ws53dnSmS+kzJ3SVXdIpll9ZxvDp2jOAgAAAAAAVEeRnazmbMZ/pQYDAn+NVdOUdj0u7Z1nfR8cKTW6UarR7PxGa3BN6xbRQoV1rlPWD18pMm+HjIIMKfklKTdF6rpYCqlTyQeBQOOwOwEAAAAAAADYIKKZFFTLWnf17F67s6lYpikdfEP6dob1fVRnqeVYKaL55WfAGk7lhLRUYdN7peiekuGUjr0vfdxF+nF7haeOwEZzFgAAAAAAoDoyHFJUR2s77RtbU6lQpin98IF1k6Qrb7dmzDpDShfHESzF9JPaTbGauucOSZ/0kA78r89TRvVBcxYAAAAAAKC6ivypOZu1XyrItDeXipK6VkrbLsmQur4mxfQpX7zwJtLA7VaD15Mnbb5L+nam1QQGSonmLAAAAAAAQHUVUlcKv1KSKaXvsjsb30v7Rjq9ydpufZ/UYpRv4roipV6rpHaTre93TZO23Sd53L6Jj2qD5iwAAAAAAEB1FtXJ+pr2TWDN/sw+Jv3wL2s7updUv7dv4xsOqdNTUpf5kgzp+xekTXfSoEWp0JwFAAAAAACozmq1k4xgKf+MdO6g3dn4RkGWdGSZZLqlWm2l+n0q7rXajJd6vCMZQdLhpdLmP9GgRYnRnAUAAAAAAKjOnCFS7XbW9umN9ubiC6YpHf+nVJglhdSXGt0iGUbFvuZV/1e6bpnVoD30Ng1alBjNWQAAAAAAgOouspP19cdtUmG2ramUW9p2Ket7yXBKTYZKTlflvG6TITRoUWo0ZwEAAAAAAKq7GldJwZGSO1c6+p7d2ZRd3hnpxCfWdkx/KbR+5b4+DVqUEs1ZAAAAHzN9eCENX8YCAAC4KMOQojpa2wdetzeXsjI90rH3JLNAqtFMqtvVnjzOa9DeVbUatKbHP2MFqCC7EwCA8gp1GjJNU0ZFryEEACVkGIY2pmQrI798RXhtl1O/aRDuo6wAAH4pKMJqXhjMnYIfiOwknfxMSl0vnTtszaatStK+lnKOS44QqdHNFb/O7KUUNWi/vE06tERyBEldX6sa/9YNh3RkhZR3unxxQupJVw71TU4BjOYsgCrP5TB80gi5IjxIHeuF+TAzANVZRr5baXnMFAAAXIYz1DeNkIiWUsPrfZcXqidXpFSzjXR2r3TgTSn2UbszKrnCHCn139Z2/T6Sq7at6UiyGrQ9/iFtuF068IbkcEnxi+xtGpdU3mkp54TdWVQLNGcBBIzyNkJqBdNEAQAAgE3K2wgJqee7XFC91etuNWcPviG1f6RqzPSUpJPrJXeOFFJfqptgdzY/u/JWyfOmtGmElPyy1aDtMr9qNGhRKarIvzAAAAAAAABUuKjOUlBNKeuAlPofu7MpmZwT0o/bre2G/8f/GspN/yh1XSzJkPY9L309SeK6AviJn52tAAAAAAAAsI3TJTUbYW1//6K9uZSEaUonPpJkSrXbSxFN7c7owpr/SUp4ydreM1fa+QgNWkiiOQsAAAAAAIBfajXW+npslZT9g62pXFb6Lin7qOQIlhr81u5sLq3lPdK1z1vbu2dLu6bToAXNWQAAAAAAAPxCZKwU3UMy3dL+V+3O5uLceVLqWms7upcUXMvefEqi9Z+lzvOs7e+elL6ZQoO2mqM5CwAAAAAAgOJa/o/1df8rkqfQ3lwu5uSnUuE5yVVXqtvN7mxKru39UpfnrO2kp6UdD9CgrcZozgIAgEoX6jRk+rAA9WUsAAAASLryVimknpR9TPrhA7uzOV/uKenMV9Z2w4GSI6jyXjsoQjI95YvRZoIU/9Oavnuflb66x3+b4KhQlXjmAgAAWFwOQ4ZhaGNKtjLy3eWKVdvl1G8ahPsoMwAAAEiSnCFS85FS0jPSvhekxjfbndHPvBcB80g120g1W1bu6ztDJcMhHVkh5Z0uRyBDajVOSl4k7X9Nyjsj9fiHFR/VBs1ZAABgm4x8t9LyyjnrAAAAABWj1VgpKVFK+UTK2C3Vbmd3RpbMJOncQclwSg1/Z18eeaelnBPlixHZQbpuhbThdusCbP/5ndTzPSmkjk9ShP9jWQMAAFCl+XKJBJZHAAAA+IWI5lLj31vbe+bZmoqXJ19KWWNt17tOckXZm095BUVIjW+S+q6xLmh28nNpTVcpc2/pY5V3qQXYgpmzAACgSvPVEgksjwAAAHABbR+Qjr0nHXxL6vCkFBZjbz6nvpQKMqXgSCm6h725+ELREgl5p6XWf5G+XyhlJUsfdZZajC75bOWQetKVQys2V1QImrMAACAgsEQCAABABYjuIdVNsC6+9f2LUofH7csl96R0eqO13fB3kiPYvlx8Le+01aRtPko6skzKPirtmy9F95Lq97buQ0DiJwsAAAAAAIALMwxr9qxkzeoszLEvlyPvSqZbimhhXQgsEAXVkJreKUV1tr4/9bl06C1rtjACEs1ZAAAAAAAAXFyToVL4ldbszkNv2ZPD8X9JGf+1ZpA2HGg1jQOVI0hqdKPUeIjkcEnnDknfvyD9uF3iGgkBh+YsAAAAAAAALs4RJLW939r+brbkKajc13fnStt/ev263a31VauDyFipxT1SWCPJkyf98C/p0JtSbqrdmcGHaM4CAAAAAADg0lqOkUJjrFmcB96o3NdOmiNl7ZeCa1trsFYnIfWsdWgbDJCMIGv8kxdJx1ZJ+ek2JwdfoDkLAAAAAACASwsKl9pNsba/fUJy51XO62YdkL6baW03uVVyuirndf2J4ZDqdZdajZNqXWPtS98p7VsgHV1hXTyM5Q6qLJqzAAAAAAAAuLyWY6SwK6xm4P7XKv71TFP6aqzkzpFi+kp1rq341/Rnrijpylul5qOlGs0keaSMb6UDi6XvnpB2Pir9uEMyPXZnilIIsjsBAAAAAAAAVAFBYdI1D0vb7rNmszYfae2rKIeWSClrJUeIFP+SlLq+4l6rKglvJDW7U8o5IZ35yrpQWs4P0ndPWrfgSKluvNXMjmguhTeRwhpIQTUkZ7gk01rH151rNb7P+5ojnfzcugCcDMkRbN2CakquSGt5CYP5nr5CcxYAAAAAAAAl02K0tPvv1uzZvc9K10ytmNfJPSXtmGhtxz4m1WpFc/bXwhpKjW+WGg6wxqsgXTqxxvqasta6VQiH9drhV0o1mloNYActxrJi5AAAAAAAAFAyzhCp40xp053W2rNN/yjVuMr3r7P9L1LeGSmyg3T1JN/HDyTOMKleV6nVGMlTIKV/a82oTd8pnTsiZR+RclOlwhzJfU6SYT3HGfqLr0XbP91yUiTTLcm0YnrypYJMq/FruqWc49btzCbrubXbS1Fx1rIXKBWaswAAAAAAACi5psOtNWdPfiZtmyD1ft+38Q++JR3+h/XR+YRXrI/Uo2QcwVKdOOt2IaYpGcbl43z/krVswoWeX5BuzZw+d1g6+71UeFb6cZt1i2glxfShSVsKNGcBAAAAAABQcoYhxb8gfdhROv5P6dg/pcY3+SZ25vfS1nHWdvvHpXoJvokLS0kas5d7vivKukV2sC4+du6QlPaNdXGyrO+tW612UvM/+SLjgMfqvQAAAAAAACid2u2kqx+0trdPsD7yXl7ufGnjHVJhllS/t3XxMfg3w2GtOdtkiNTqPimyoyRDytwt/XeGdOANa7YtLormLAAAAAAAAEqv/aPWBaHOHbbWoDU9ZY9lmtL28dKP2yVXHek3SySH02epohKE1JEa/15qca8U2lByZ0ubR0pf3uqb5n2AojkLAAAAAACA0guqIV33/yRHiHTsfem7WWWP9d8ZUvLLkgyp+/9K4Y19liYqWVgDqcVoqfEtksMlHV0prekqZeyxOzO/RHMWAAAggBmGobCwMBnlXV8MAADgQurGW+vPStKu6dLxD0of4/tF0rczrO34F6RGg32XH+xhOKSGv5P6fyaFNZIy90hrEqQTa0sXphrUsjRnAQAA/FSo05BZzjW6wsLC1K5dO4WEhvooKwAAgF9pMUpqOVaSaX2E/cjykj3PNKWkOb+4ANh0qdXYCksTlSwoQqqbIA3cLtXvJRWelT4bJB15t8QhimrZ0NCQCkzUXkF2J1AS6enpmjt3rj799FNlZWWpTZs2evDBB3XttddKkkaOHKmNGzcWe05CQoLeeustSVJeXp6eeuopffzxx8rNzVW/fv30yCOPqE6dOpV+LAAAACXlchgyDEMbU7KVke8uUwyP26NQFer6ZnV9nB1KiloWAFAtdHlOyj4m/fAv6cs/SB1nS+0mSxeb8VhwVto8Sjr6UyO31Tgp9vFKSxeVwBlqzaA99aXU5A9SwTkpbbv05W3SVaushu1lFBQUKqswRFEdRld8vjapEs3ZBx54QKdOndLcuXNVt25dvfXWW7r77rv13nvvqXnz5tq7d68ef/xx9e/f3/uc4OBg7/bjjz+ubdu2acGCBXK5XHrsscc0YcIELVmyxI7DAQAAKJWMfLfS8sp2gQ23261ws9DHGaE0qGUBANWC0yX1WiXteEDaN1/aOVU68ZHU5n6p0Y2S46cWVO5p6eD/SvsWSucOSo5gqfM8qzkbwB9dr9byTlu3K26wvk/bLh1eKhVkSHWuvfRzCwpUmBdW8TnayO+bs4cPH9aGDRu0dOlSdenSRZL06KOP6osvvtDq1as1fPhwnTlzRh07dlR0dPR5z09NTdWqVau0aNEi7+yEuXPnauDAgfr6668VFxdXqccDAACA6oNaFgBQrTic0rXPSTVbSTsmSic/t26hMZKrjtV8Pbtf8uRZjw9rJF33rhTd3d68UTkMh3TFIMkZIp3eKP3wgWQES1Ed7c7MVn6/5mxUVJRefvllxcbGevcZhvURv8zMTO3du1eGYahZs2YXfP727dslSd26dfPua9asmWJiYrR169aKTR4AAADVGrUsAKBaanOfdNMBqd1UKaSulJsqZSZJGbutxmxUZynhZWnwHhqz1Y1hSDH9pToJ1vfH37fOi2rM72fO1qpVS7179y62b82aNTp8+LAefvhh7du3TzVr1tTf/vY3bdiwQeHh4Ro4cKDGjRsnl8ul1NRURUVFKSSk+MLB9evXV0pKSmUeCgAAAKoZalkAQLVVo4nUaZbU/lHpx+2SWWDtD4mWItvbmxvsZRhSw4HWOZH2tXRspRRUQ6pxld2Z2cLvm7O/tmPHDk2dOlUDBgxQnz599PDDDysvL08dOnTQyJEjlZSUpKefflo//PCDnn76aeXk5Mjlcp0XJyQkRHl5eWXOwzRNZWdnl+dQSsQwDIWFhcnj9sjtLtuFQIp4PNZEadNTvljljePxWGvmFV19urz5+CInf41TETl5fhr3op+DXfn4Mpa/xblYrKIxL83YV5VjqwpxSjL+Psvpp6fm5OR4f9fZzVfvJ2Udo1+Pvz+eky4ZMk1Tho/WOvOXY/N4PNJPh+RP52RJ+PLn4S+qay1bUFAoFRSUL1hhoYIlFRSWM1Y54xQUWs9xu92+yccHOfltnArIyfPT78Kin4Nt+fgylr/FuUisojEv1dhXkWOrCnFKNP6+yinIiuPTuiGic/HvS/ke5LP3kzKO0Xnj74/nZGiogk2PtXSAD1TKsUX/Ts6CbDmy9so8/I4Kr7xTCqn3qzwKJFlrzgZqLVulmrPr1q3TpEmT1LlzZyUmJkqS/va3v2ny5MmqXbu2JKl169YKDg7WxIkT9dBDDyk0NFT5+fnnxcrLy1NYWNkXFC4oKFBSUlKZn19SYWFhateunXJzc5WdU75/FPkh1vHm5uUrO7vsxbyv4hT89A+zvHF8mZO/xamInPLzfxr33Fxb8/FlLH+Lc7lYpRn7qnZsVSHOpcbfVzmFm8GSauvgwYPKyckpcxxf8tX7SXnHqGj8/fGcVEiYDMPQ+sNpSss+v3YoqSa1QpTQKNKvji0izLq4lD+dkyV1ocZkVVWda9n09DQVnD1VvlhBZxUlKevsWeWklT2Wr+LkZGcr1AdxfJmTv8WpiJyK/qiQnp5uaz6+jOVvcS4XqzRjX9WOrSrEudT4+yqn4JphipZ/1Q2+ej8p7xgVjb9/npPNFGU4lPntG8rLPFbmOCHR16hWq1sq79hcv1G9oDS5Ck/KOLJUp2vfLI8jvNhDgmvWkuRf52RJlaSWrTLN2SVLlmjmzJkaOHCg/v73v3sPLigoyFvMFmnVqpUkKSUlRQ0aNFB6erry8/OLDcjJkycVExNT5nyCg4PVsmXLMj+/pIo67KGhoQo3gi/z6Etzuaznh4a4FG46bYvj8XiUm5vrvQpxefPxRU7+GqcicnK5gqVzeQoNDZXDUfq/qPnzsflLnIvFKjr3SzP2VeXYqkKckoy/r3IKDbGe26xZM7/5y66v3k/KOka/Hn9/PidzTYeyyzFGeXL6JJ9f5lSeWNZsZWummT+dkyWRnJxsdwo+U91r2cjIKCmknP+ZqllTkhRRs6YinOdfPK2y4hQUFig9PV1h4eG+yccHOfltnArIKTw8XDlpUmRkpIKDyvC72o+PzW/iXCRW0blfqrGvIsdWFeKUaPx9lVNYlCT/qht89n5SxjE6b/z9+JwMc55TWHnGyJnvm3x+kdNlY0XdIfPImwoqSFP9nE/lbjJMclgty4LCAp376QNk/nROlkRJa9kq0ZxdunSpnnjiCY0YMUKPPPJIsSnBI0aMUOPGjTV79mzvvv/+978KDg5W06ZNFR0dLY/Ho+3bt6t7d2uR6YMHDyo1NVXx8fFlzskwDIWHh1/+gT7icDrkLN//77zNCMNRvli+ilP0cyxvHF/m5G9xKiInx0/j7nA45CxDQH8+Nn+Jc7lYpRn7qnZsVSHOpcbfZzk5rTjlmdVWUcr7flLeMSoaf87JSo5lWhWtP56TlxIoSxpQy0rBwUFSYfkmGijI+q9LcFCQFFyOWD6KU/ReUu58fJiT38WpgJwc3nEP9k72sCUfX8bytziXiVWqsa9ix1YV4lxy/H2VU7AVxx/rhnK/n5RzjLzjzznp21jBkVLTYdL+V+XIPS7H6bXSFTdaa9NKRfMM/PKcvJSS1rK+WYiiAh08eFCzZs3Sb3/7W40ZM0anT5/WqVOndOrUKZ09e1a/+93v9P777+sf//iHjh49qg8//FBPP/207r77bkVERCgmJkaDBg3StGnTtGXLFu3atUsPPPCAEhIS1KlTJ7sPDwAAAAGMWhYAAKAEQupKTYZa22lfSz9uszefSuT3M2fXrFmjgoICrV27VmvXri123y233KKnnnpKhmHorbfe0qxZsxQdHa277rpL9957r/dxTzzxhGbNmqX77rtPktSrVy9NmzatUo8DAAAA1Q+1LAAAQAnVbCnFXC+l/ls68bEUGiO5GtqdVYXz++bs2LFjNXbs2Es+ZtiwYRo2bNhF7w8PD9eTTz6pJ5980tfpAQAAABdFLQsAAFAK9XpIuSlSxnfS0eXSVXdLqlrLGZSW3y9rAAAAAAAAAKAaMAzpipskV12p8KycKasl02N3VhWK5iwAAAAAAAAA/+B0SVf+QTKC5Di3X2GZX9qdUYWiOQsAAAAAAADAf4TGSA3/jySpRtq/pZOB26ClOQsAAAAAAADAv0TFyVOrvQx5pA23S7mn7c6oQtCcBQAAAAAAAOBfDEPumIEqDKon5RyXNt0ZkOvP0pwFAAAAAAAA4H8cLmXWv01yhkonPpJ2P213Rj5HcxYAAAAAAACAX3K7GkjXPm99s2uadHqLvQn5GM1ZAAAAAAAAAP6r+Sjpqtsl0y1t/KNUkGl3Rj5DcxYAAAAAAACA/zIMKf5FqcZVUtYBadt4uzPyGZqzAAAAAAAAAPybK1L6zduS4ZAOvikdesfujHyC5iwAAECACwtyyDRNn8TyVRwAAACgJByuWpLpsb6J7iFdM83a3jpWyjpUumBFcfxIkN0JAAAAoGKFBDlkGIY2pmQrI99d5ji1XU79pkG4DzMDAAAALs0RHG7Nlj2yQso7LYXGSDWaS+cOSOv7S20fkAzn5QOF1JOuHFrxCZcSzVkAAHws1GnINE0ZhlHuWL6KA0hSRr5baXn+N1sAAAD4kaAIa3ah4YMPW/sqDiBZjdmcE9Z2o8FS8iIpa7905F2pfm97cysHmrMAAPiYy2EwSxEAAABVkzO0+CzFsvLTWYoIEK4o6YpB0rH3pJOfSRHNpfAmdmdVJjRnAQCoIMxSBAAAQJX1y1mKgD+K7CCdTZYy/isdXSm1HGP9caGKYW45AAAAAAAAgKrnihuk4EipIF364UO7sykTmrMAAAAAAAAAqh5nqNRkiCTDmkGbvsvujEqN5iwAAAAAAACAqim8yc8XBPvhAyk/zd58SonmLAAAAAAAAICqK7qn1aT15Fvrz5pV59ofNGcBAAAAAAAAVF2GQ2o8RHKESDnHpJOf251RidGcBQAAAAAAAFC1uSKlKwZZ26c+l84dsTWdkqI5CwCAnwp1GjJN0+40AAAAgNILiqhSHy1HgIiMlSI7SDKlYysld67dGV1WkN0JAACAC3M5DBmGoY0p2crId5cr1hXhQepYL8xHmQEAAACX4Qy1Pmp+ZIWUd7p8sSJaSg2v901eCHwNb5DOHZUK0qwLhDUeIhmG3VldFM1ZAAD8XEa+W2l55Zt1UCuYWQsAAACwQd5pKedE+WKE1PNNLqgenCFSkyHSgcVSxrdWcz+qo91ZXRTLGgAAAAAAAAAIHOGNpfp9rO0TH0p5P9qazqXQnAUAAAAAAAAQWKKvk8KvlDz51vqznvItFVdRaM4CAAAAAAAACCyGw1pv1hEi5Ry31p/1QzRnAQAAAAAAAAQeV22p0Y3W9omPpJOf25vPBdCcBQAAAAAAABCYal8jRXaSZEobh0v5aXZnVAzNWQAAAAAAAACBq+FAKSRayj4qHXjT7myKCbI7AQAAAAAAAACoMM4QqdU4KeeY1Giw3dkUQ3MWAAAAAAAAQGALayh1eNzuLM7DsgYAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGADmrMAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGADmrMAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGADmrMAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGADmrMAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGADmrMAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGADmrMAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGADmrMAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGCDatOc9Xg8mj9/vnr27KlOnTrpnnvu0dGjR+1OCwAAALgsalkAAIDAVG2asy+88IKWLl2qJ554Qu+88448Ho9Gjx6t/Px8u1MDAAAALolaFgAAIDBVi+Zsfn6+Fi9erAkTJqhPnz5q27at5s2bp5SUFH3yySd2pwcAAABcFLUsAABA4KoWzdk9e/bo3Llz6t69u3dfrVq11K5dO23dutXGzAAAAIBLo5YFAAAIXIZpmqbdSVS0Tz75ROPHj9fOnTsVGhrq3f+Xv/xFubm5eumll0oVb8eOHTJNU8HBwb5O9YIMw1Cu25SnnD+qIMOQy1n+WL6IY5qmgh0On+Tjq5z8MU5F5eT2eGQYhq35+DKWv8W5VCzTNEs19lXp2KpCnMuNf1U+tqqQ0y/HP9COrSLi+DKW05BCnI5yx3EYhkKdhiqrfCwoKJBhGOrcuXOlvJ6/CoRaVoXnJNNdvkCOYMkZVv5Y5YxjmpLH9MjhDJER5IN8fJCT38apgJzMwnPyuAvkMBwqUznrx8fmN3EuEst77pdm7KvIsVWFOCUa/yp6bFUhp/PGP4COrcLi+CiWaUqmESRHcHj5czKcUlANv6tlgyolG5vl5ORIklwuV7H9ISEhysjIKHW8ov9YlrW5VRahTkOSb17PV7H8LY4vY/lbHF/GCnUaktPpN/n4Mpa/xfFlLH+L48tY/hbHl7H8LY4vY/lbHF/G8rc4vozlqziVVQMZhlGp9Za/CoRaVkE1/C9WGeMYkopVUgF0bBUWx4exjKAacvrif7F+eGx+F+dXsc4798sYp1yq8c+tVONfxY7NlliljHPR8Q+AY6vwOOWMVax69dV7iZ/VstWiOVs0wyA/P7/YbIO8vDyFhYWVOl5cXJzPcgMAAAAuhVoWAAAgcFWLNWcbNmwoSTp58mSx/SdPnlRMTIwdKQEAAAAlQi0LAAAQuKpFc7Zt27aKiIjQli1bvPsyMzO1e/duxcfH25gZAAAAcGnUsgAAAIGrWixr4HK5NHz4cCUmJqpOnTpq1KiRnnnmGTVo0EADBgywOz0AAADgoqhlAQAAAle1aM5K0oQJE1RYWKhp06YpNzdX8fHxeu211yrtKrUAAABAWVHLAgAABCbDNE3T7iQAAAAAAAAAoLqpFmvOAgAAAAAAAIC/oTkLAAAAAAAAADagOQsAAAAAAAAANqA5CwAAAAAAAAA2oDkLAAAAAAAAADagOQsAAAAAAAAANqA5iwqTnp6u6dOnq1evXurcubPuuOMObdu2zXv/pk2bNGTIEHXs2FEDBw7UBx98YGO2gevgwYOKi4vTypUrvfuSkpI0fPhwderUSf369dObb75pY4aBadWqVbrhhhsUGxurQYMG6aOPPvLed+zYMY0ZM0adO3fWddddp2effVZut9vGbANLYWGhnnvuOfXt21dxcXEaNmyYvvnmG+/9nP8V56WXXtKIESOK7bvceHs8Hs2fP189e/ZUp06ddM899+jo0aOVmXZAuNDYr1+/XkOHDlVcXJz69eunv//978rNzfXen5eXpxkzZqh79+6Ki4vTgw8+qB9//LGyUwf8FrWsf6CWtQe1rH2oZe1DLWufal/LmkAFGTlypDl48GBz69at5oEDB8wZM2aYHTp0MPfv328mJyebsbGx5ty5c83k5GTz1VdfNdu1a2du3LjR7rQDSn5+vjlkyBCzdevW5ooVK0zTNM0ff/zR7Nq1qzl16lQzOTnZXL58uRkbG2suX77c5mwDx6pVq8x27dqZS5YsMQ8fPmy+8MILZtu2bc0dO3aY+fn55oABA8x7773X3Lt3r7l27VozISHBfO655+xOO2DMnz/f7NGjh/nFF1+Yhw4dMh955BGzS5cuZmpqKud/BVqyZInZtm1bc/jw4d59JRnvBQsWmF27djX/85//mElJSeaoUaPMAQMGmHl5eXYcRpV0obHfunWrefXVV5svvviiefDgQfPTTz81e/XqZU6ZMsX7mClTppj9+/c3t27dau7cudP8/e9/bw4bNsyOQwD8ErWs/ahl7UEtay9qWXtQy9qHWtY0ac6iQhw6dMhs3bq1uW3bNu8+j8dj9u/f33z22WfNRx991Lz11luLPeeBBx4wR40aVdmpBrQ5c+aYd955Z7GCdtGiReZ1111nFhQUFHvcgAED7EozoHg8HrNv377mU089VWz/qFGjzEWLFpmrV68227dvb6anp3vve+edd8zOnTvzBu4jN910kzl79mzv92fPnjVbt25trlmzhvO/AqSkpJhjxowxO3XqZA4cOLBYUXW58c7LyzPj4uLMt99+23t/RkaG2aFDB3P16tWVdxBV1KXG/sEHHzTvuuuuYo9/7733zGuuucbMy8szU1JSzLZt25qffvqp9/4DBw6YrVu3Nnfs2FFpxwD4K2pZ/0AtW/moZe1HLVu5qGXtQy37M5Y1QIWIiorSyy+/rNjYWO8+wzBkGIYyMzO1bds2de/evdhzunXrpu3bt8s0zcpONyBt3bpVy5Yt01NPPVVs/7Zt25SQkKCgoCDvvm7duunQoUM6ffp0ZacZcA4ePKjjx4/rxhtvLLb/tdde05gxY7Rt2zZdc801ql27tve+bt26KSsrS0lJSZWdbkCqW7eu/vOf/+jYsWNyu91atmyZXC6X2rZty/lfAb777jsFBwfrn//8pzp27FjsvsuN9549e3Tu3Lli7we1atVSu3bttHXr1ko7hqrqUmM/atQoTZ48udg+h8OhgoICZWVlafv27ZKsn0eRZs2aKSYmhrEHRC3rD6hl7UEtaz9q2cpFLWsfatmf0ZxFhahVq5Z69+4tl8vl3bdmzRodPnxYPXv2VEpKiho0aFDsOfXr11dOTo7S0tIqO92Ak5mZqYceekjTpk1Tw4YNi913sbGXpBMnTlRajoHq4MGDkqTs7Gzdfffd6t69u/7whz9o/fr1khj/yvDII48oODhY119/vWJjYzVv3jzNnz9fV155JeNfAfr166cFCxaoSZMm5913ufFOSUmRpPN+T9WvX997Hy7uUmPfrl07tW3b1vt9QUGB3njjDbVv31516tRRamqqoqKiFBISUux5jD1goZa1F7Wsfahl7UctW7moZe1DLfszmrOoFDt27NDUqVM1YMAA9enTR7m5ucWKXUne7/Pz8+1IMaA8/vjjiouLO+8v3pIuOPZFv9Dy8vIqJb9AlpWVJUmaPHmyBg8erMWLF6tHjx4aN26cNm3axPhXguTkZNWsWVMLFy7UsmXLNGTIEE2aNElJSUmMfyW73Hjn5ORI0gUfw8/DdwoLC/XQQw/p+++/12OPPSZJysnJOW/cJcYeuBhq2cpFLWsfaln7Ucv6D2pZ/1Adatmgyz8EKJ9169Zp0qRJ6ty5sxITEyVZ/2B+XbgWfR8WFlbpOQaSVatWadu2bVq9evUF7w8NDT1v7It+eYWHh1d4foEuODhYknT33XfrlltukSRdffXV2r17t15//XXGv4KdOHFCDz74oN544w1de+21kqTY2FglJydrwYIFjH8lu9x4h4aGSrJ+/xdtFz2G9wLfyMrK0v3336+vvvpKzz//vDp06CDpwj8bibEHLoRatnJRy9qLWtZe1LL+hVrWftWllmXmLCrUkiVLNH78ePXt21eLFi3y/pWpYcOGOnnyZLHHnjx5UuHh4apZs6YdqQaMFStW6MyZM+rTp4/i4uIUFxcnSXrsscc0evRoNWjQ4IJjL0kxMTGVnm+gKRrD1q1bF9vfsmVLHTt2jPGvYDt37lRBQUGxNQIlqWPHjjp8+DDjX8kuN95FHwG70GP4eZTfyZMnNWzYMH3zzTd67bXX1Lt3b+99DRo0UHp6+nlFLWMPFEctW/moZe1FLWsvaln/Qi1rr+pUy9KcRYVZunSpnnjiCQ0bNkxz584tNuX82muv1VdffVXs8Zs3b1bnzp3lcHBalkdiYqI+/PBDrVq1ynuTpAkTJmjmzJmKj4/X9u3b5Xa7vc/ZvHmzmjVrprp169qUdeC45pprVKNGDe3cubPY/n379unKK69UfHy8du/e7f3ImGSNf40aNYqtqYOyKVoTau/evcX279u3T02bNuX8r2SXG++2bdsqIiJCW7Zs8d6fmZmp3bt3Kz4+3o6UA0ZGRob+9Kc/6ccff9Tbb7993nh26dJFHo/HezEFyVpnMDU1lbEHfkItaw9qWXtRy9qLWta/UMvap7rVslQOqBAHDx7UrFmz9Nvf/lZjxozR6dOnderUKZ06dUpnz57ViBEjtGvXLiUmJmr//v1avHixPv74Y40ePdru1Ku8mJgYXXXVVcVuknXVz5iYGA0dOlRZWVl65JFHlJycrJUrV+qNN97QmDFjbM48MISGhmr06NFauHCh/vWvf+nIkSN68cUXtWHDBo0cOVL9+/dXdHS07r//fu3Zs0fr1q3T3LlzNWrUqAuumYPS6dChg7p06aLJkydr8+bNOnTokJ599llt2rRJ9957L+d/JbvceLtcLg0fPlyJiYn697//rT179mjixIlq0KCBBgwYYHP2Vdvs2bN19OhRPfPMM6pTp473PfjUqVNyu92KiYnRoEGDNG3aNG3ZskW7du3SAw88oISEBHXq1Mnu9AHbUcvah1rWXtSy9qKW9S/UsvapbrWsYZqmaXcSCDyLFi3SvHnzLnjfLbfcoqeeekqff/65nnnmGR06dEiNGzfW+PHjdcMNN1RyptVDmzZtNHv2bA0ZMkSStGvXLs2cOVO7d+9WdHS0Ro0apeHDh9ucZWB5/fXXtWTJEqWmpqpFixYaP368+vfvL0k6fPiwZsyYoW3btql27dq69dZbNX78eGba+EhGRoaeffZZffrpp8rIyFDr1q29b9QS539FmjJlio4fP6633nrLu+9y4+12uzV37lytXLlSubm5io+P1/Tp09W4cWM7DqHK+uXYu91uxcXFXfRiCP/+97/VuHFjZWdna9asWVqzZo0kqVevXpo2bZqioqIqM3XAL1HL+hdq2cpHLWsfaln7UMvap7rXsjRnAQAAAAAAAMAG/GkLAAAAAAAAAGxAcxYAAAAAAAAAbEBzFgAAAAAAAABsQHMWAAAAAAAAAGxAcxYAAAAAAAAAbEBzFgAAAAAAAABsQHMWAAAAAAAAAGxAcxYAAAAAAAAAbEBzFkDAmjJlivr163fR+/v166cpU6ZUYka+4fF41KdPH7Vp00bffvutbXksXrxYkyZN0oEDB9ShQwfdcccdMk3zvMd5PB7dfvvt6tq1q1JTU23I9GfLly/Xvffea2sOAAAAJUEtW7GoZQH4C5qzAFDFbNiwQadPn1bz5s31zjvv2JLD/v379dJLL+mvf/2rmjdvrvHjx2vHjh1aunTpeY9dsmSJvv76a02fPl0xMTE2ZPuzoUOH6tSpU1q+fLmteQAAAFRX1LJlRy0LBCaaswBQxaxcuVJxcXG65ZZb9MEHHygrK6vSc3jmmWc0ePBgb4E6atQoxcbGas6cOTpx4oT3cceOHdO8efN0ww03aNCgQZWe568ZhqExY8Zo7ty5ys3NtTsdAACAaodatuyoZYHARHMWAH7idrv19ttv68Ybb1SHDh3Up08fJSYmKi8vz/uYESNGaMSIEcWet2XLFrVp00ZbtmyRZH30ad68eerXr5/at2+vfv36ac6cOSooKPA+Jy8vT08//bR69+6t9u3b68Ybb9SHH3542RwzMjK0bt069e3bV4MHD1ZOTo7ef//98x6XlZWl6dOnq3v37oqLi9PEiRP1xhtvqE2bNsUet27dOg0ZMkSxsbHq0aOHnnzySWVnZ18yh3379unTTz/V4MGDvfucTqdmz56t/Px8Pf744979jz32mGrUqKHHHnvMu+/dd9/VoEGD1L59e/Xp00cLFiyQ2+0u9hrvvvuuhgwZok6dOqlDhw66+eab9dFHH3nvX7lypdq1a6d3331XPXr0UEJCgpKTk3XkyBGNHTtWXbt2VceOHXXbbbfps88+Kxa7b9++ysvL04oVKy55nAAAAFUJtSy1LICqKcjuBACgohUWFpbocdOnT9f777+ve+65R9dee612796thQsXKikpSa+++qoMwyhRnFdeeUX/+Mc/NHnyZDVp0kQ7d+7UvHnzFBwcrAkTJsg0Tf35z3/Wjh07NGHCBLVo0UJr167VxIkTlZ+fr9///vcXjb169Wq53W7deOONio6OVrdu3bRs2TINGzas2OPGjRunpKQkTZw4UVdccYWWLl2qOXPmnBdr0qRJuvHGG3X//ffr+PHjmjdvnpKTk/X6669f9HhXr16t6OhoderUqdj+Vq1a6b777tO8efO0fv165ebm6ssvv9TLL7+syMhISdJLL72kefPmafjw4Zo6daqSkpK0YMECnThxQrNmzZIkvf3223ryySc1fvx4denSRRkZGXrllVc0adIkxcXFqUGDBpKs/4AsXrxYM2fOVFpampo1a6bBgwerfv36evrppxUUFKQ333xT//M//6OPPvpIV111lSQpJCREffv21erVq88bNwAAAH9DLUstSy0LBDaaswAC2vHjx3XNNddc9nHJyclavny5HnzwQe8i+z169FD9+vX10EMP6fPPP1fv3r1L9JpfffWV2rdvr6FDh0qSEhISFBYWppo1a0qSNm7cqC+++ML7ESlJ6tmzp3JycpSYmKjBgwcrKOjCv55XrlypXr16KTo6WpI0ZMgQ/fWvf9WOHTvUuXNnSdKmTZu0ZcsWLViwQAMGDJAk9erVS4MHD9b+/fslSaZpKjExUT179lRiYqI3ftOmTXXXXXfps88+U58+fS6Yw+bNmxUbG3vBgnf06NH65JNPNHv2bOXm5uq2227zjtvZs2f1wgsv6LbbbtO0adMkSdddd50iIyM1bdo0jRw5Uq1atdLRo0d19913a9y4cd64jRo10pAhQ7R9+/ZiHykbO3asN89Tp07pwIEDGjdunPc1O3TooOeff175+fnF8oyNjdWHH36orKwsRUREXPA4AQAA7EYtSy1LLQsEPpY1ABDQoqOjtXz58gveiopCySpCJZ23ltSgQYPkdDq9H/Mqia5du2rDhg364x//qFdffVXJyckaPny4br75ZklWwWkYhnr37q3CwkLvrV+/fjp16pS+//77C8bds2ePvvvuOw0YMECZmZnKzMxUt27dFB4ermXLlnkft3nzZgUHB6t///7efQ6Hw1s8S9KBAweUkpKifv36FcshPj5eERER2rBhw0WP7+jRo2rcuPEF7wsKCtLs2bN14sQJuVwuTZ482Xvf119/rdzc3PNes+gqxEWvOWXKFE2aNEmZmZn65ptv9P777+vtt9+WpPMK06uvvtq7Xa9ePbVs2VKPPvqoJk+erNWrV8vj8Wjq1Klq1apVsec1atRIbrdbKSkpFz1OAAAAu1HLWqhlqWWBQMbMWQABzeVyKTY29qL3FcnIyJCkYkWuZBVoUVFROnv2bIlfc/To0apRo4ZWrFihxMREPfPMM2rVqpWmTZumbt26KT09XaZpemcH/NrJkyeLFWpFiq7KOnXqVE2dOrXYfR999JEefvhh1a5dW2lpaYqMjJTDUfzvb3Xr1vVup6enS5JmzJihGTNmXDCHi8nKylJYWNhF72/Tpo3q16+v+Ph41ahR47zXLJrNcbHXPHLkiKZPn65NmzYpODhYzZs3V9u2bSVZsyR+KTw83LttGIYWL16sF198UWvXrtWqVau8hf2MGTNUu3bt855Xmp8rAABAZaOW/Rm1LLUsEKhozgKA5C12Tp06pUaNGnn3FxQUKC0tTVFRUd59v17w/9cXHXA4HBo2bJiGDRumM2fO6LPPPtOiRYs0fvx4bdiwQTVr1lR4eLjefPPNC+ZStJ7UL+Xn52v16tUaMGCAhg8fXuy+Y8eO6eGHH9Z7772nu+66SzExMUpLS5PH4ylW1J45c8a7XatWLUnSQw89pISEhIuOx4VERkaWqRAses3ExEQ1bdr0vPvr1asnj8eje++9V8HBwVq+fLmuvvpqBQUFKTk5+YIXi/i1mJgYPf7443rssce0Z88effzxx3rllVcUFRVV7EIORf+B+eXPFQAAoKqilr3weFwItSwAf8OyBgAgeYu6Dz74oNj+Dz74QG63W126dJEkRUREnPfxoe3btxf7/vbbb9eTTz4pyfoL/5AhQzRs2DBlZmYqKytLCQkJys7Olmmaio2N9d727dunhQsXXvCiD+vXr1d6erpuv/12de3atdht6NChatq0qffjYAkJCSosLNT69eu9zzdNU+vWrfN+37x5c9WtW1fHjh0rlkNMTIzmzJmj3bt3X3SsGjVqpBMnTlx2TH+tY8eOCg4OVmpqarHXDAoK0ty5c3Xs2DGlpaXp4MGDuvXWW733SdLnn38uybp68MV8/fXX+s1vfqNdu3bJMAxdffXVmjhxolq3bq0ffvih2GNTU1PldDoVExNT6uMAAADwN9Sy1LIAqi5mzgKApJYtW+qWW27R/PnzlZOTo/j4eCUlJen5559X165d1bNnT0lS3759tX79es2ePVv9+vXTtm3btGrVqmKx4uPjtXjxYtWrV09xcXFKTU3V66+/roSEBNWpU0e9e/dWfHy8xo0bp3HjxqlFixbatWuX5s+fr549e6pOnTrn5bdixQrVrVtX3bp1u2D+N910k+bPn68tW7aoa9eu6tGjhx555BGdPn1aV1xxhZYvX669e/d6L3zgdDo1ceJETZ8+XU6nU3379lVmZqZeeOEFpaamXvLCEz169NDSpUtlmmaJr/orWX/ZHz16tJ577jllZWWpa9euSk1N1XPPPSfDMNS2bVvVrFlTjRo10ttvv60GDRqoVq1a+uKLL7wzM3Jyci4av127dgoNDdVDDz2k8ePHq169etq4caOSkpJ05513Fnvs9u3bde21117yI20AAABVBbUstSyAqovmLAD8ZObMmbrqqqu0YsUKvfLKK6pfv77uvPNOjRs3zvuRqqFDh+rIkSN677339M477yg+Pl7z58/XHXfc4Y3zl7/8RS6XSytWrNDChQtVs2ZN9evXTw8++KAk66NiL7/8sp577jm99NJLOnPmjGJiYjRy5Ej9+c9/Pi+v1NRUbdiwQbfffrucTucFc7/55pu1YMECvfPOO+ratavmzZunp556SnPmzFFhYaGuv/563XHHHcWK7z/84Q+qUaOGXn31VS1btkzh4eHq3LmzEhMT1aRJk4uO04ABA7Rw4ULt2rVLHTt2LNUY33///YqOjtbSpUv16quvqnbt2urevbseeOAB7xWAX3jhBc2cOVNTpkyRy+VSy5Yt9eKLL2rWrFnatm2bRowYccHYISEhWrx4sebMmaOZM2cqMzNTTZs21d/+9jcNGTLE+7i8vDxt2bJF999/f6lyBwAA8GfUstSyAKomw/z1itQAgCrt+PHj+uabb3T99dcrNDTUu3/ChAk6evSo3nvvvXK/xtixYxUVFaXZs2eXO1ZlW7VqlRITE7Vu3bpi4wMAAAD7UcteGrUsEHhYcxYAAozD4dCUKVM0ZcoUffnll9q0aZOefvppffLJJ+d9JKqsJk6cqE8++eS89a/8ncfj0eLFi3XfffdRzAIAAPghatmLo5YFAhMzZwEgAG3evFkLFy5UUlKSCgsL1aJFC40cOVKDBw/22Wu8/PLL2rNnj+bOneuzmBXt3Xff1ccff6zXXnvN7lQAAABwEdSyF0YtCwQmmrMAAAAAAAAAYAOWNQAAAAAAAAAAG9CcBQAAAAAAAAAb0JwFAAAAAAAAABvQnAUAAAAAAAAAG9CcBQAAAAAAAAAb0JwFAAAAAAAAABvQnAUAAAAAAAAAG9CcBQAAAAAAAAAb0JwFAAAAAAAAABv8f+oSEWObTIEQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create subplots\n", + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(14, 6))\n", + "\n", + "# Histogram for house_age\n", + "sns.histplot(housing_data_encoded['house_age'], bins=30, kde=False, color='skyblue', ax=axes[0])\n", + "axes[0].set_title('Histogram of House Age')\n", + "axes[0].set_xlabel('House Age (Years)')\n", + "axes[0].set_ylabel('Frequency')\n", + "\n", + "# Density Plot for house_age\n", + "sns.histplot(housing_data_encoded['house_age'], bins=30, kde=True, color='orange', ax=axes[1])\n", + "axes[1].set_title('Density Plot of House Age')\n", + "axes[1].set_xlabel('House Age (Years)')\n", + "axes[1].set_ylabel('Density')\n", + "\n", + "# Adjust layout\n", + "plt.tight_layout()\n", + "\n", + "# Show plots\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Interpretation:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### #Distribution of Bedrooms, Bathrooms and Floors." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvgAAAJICAYAAACkMeMUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABqKklEQVR4nOzdd7gV5b0+7odupViwt6iABRQU0BgL6lFULLFHxB6UogkQFUsUe8cGFsRysCT2FjU5J341GmPDaGKCPWqsCJGmdFi/P/jtddiw6Rv2Hrnv6+Jyr1mzZr3zznLWZ+aZ9U6dUqlUCgAAAAAAAFAIdWu6AQAAAAAAAMDCE/ABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuCDWq5UKtV0E2pFGwAAFkZtqFtqQxtqI/0CAMuH2vCdXxvaALC0CfhgCXTr1i0tW7Ys/2vVqlXatm2bgw8+OMOGDcv06dMrzb/77runf//+C738Z599NmeeeeYC5+vfv3923333xX6feRk/fnzOOOOMDB8+vDytW7du6dat2xIvu7pMnz49/fv3T9u2bdOuXbu88sorc83z6quvVtpOLVu2zNZbb5099tgjV155ZSZNmlQtbbnxxhvTsmXLalkWAPwQqZ1qXk3VTg8++GCuuOKK8uNHHnkkLVu2zOeff75E6wMALBr1WM1bmHrs888/n6sem/1fly5dkqipYHlXv6YbAEW35ZZb5vzzz0+SzJgxI+PGjcsLL7yQyy67LMOHD891112XunVnZemDBg3KKqusstDLvuuuuxZqvp49e+aYY45Z5LYvyDvvvJPHH388hxxySHlaxbrWFi+++GIeffTR9OzZMz/+8Y+z5ZZbznPe8847L1tttVWSZNKkSXn33Xdzww03ZNSoUbnqqquWVZMBYLmmdqpZNVU73XzzzenQocMStR0AqB7qsZq1KPVYjx49sttuu801fYUVVliKLQSKQsAHS2iVVVbJtttuW2na7rvvnh/96Ee55JJL8rvf/S4HHHBAksz3C3tJbLjhhktluVXZbLPNltl7LYyxY8cmSQ4++OBssMEG8513s802q7Stdtxxx0yYMCE333xzzj///EUqWAGAxaN2qllqJwBAPVazFqUe23DDDefaVgAVDNEJS8nRRx+dtdZaK7/97W/L0+YcbqCiYGrTpk122GGH/OpXv8rIkSOTzBo+4LXXXstrr72Wli1b5tVXXy0Pl/Tb3/42nTp1Srt27fLSSy/NNaxBkkybNi0XX3xx2rdvn+233z5nnnlmvv322/LzVQ1PULH8ivequJLqmGOOKc875+umTJmSwYMHp3PnzmndunX22muvDBkyJDNnzqz0Xuecc06GDBmS3XbbLa1bt86RRx6Zv//97/PtwxkzZuTee+/N/vvvnzZt2mS33XbL1VdfnSlTpiSZNZxDRX/uueeeizXcQuPGjeeaNnbs2Jx33nn58Y9/nNatW+fwww/Pyy+/XGmeKVOm5LLLLstOO+2Utm3b5qyzziq3q0L//v1z7LHH5vzzz0+7du2y7777ZsaMGQvVZ0ny9NNP5+CDD07btm2z00475bzzzsu4cePKz994443p3Llz/vd//zddunRJ69atc+CBB+bNN9/MW2+9lcMOOyxt2rRJly5dKrV/8uTJGTBgQHbZZZdsvfXW6dy5c26//fZF7jsAqE5qp+LWTu+++2569+6dHXbYIVtttVV23nnnXHzxxZk8eXKSWdvxiy++yKOPPjrXEFJ/+9vfcuSRR6Z169bZbbfdMnTo0PJzFUNT3XnnnencuXO22WabPPzww0mSt99+OyeeeGI6duyYdu3a5ZRTTskHH3xQqV3ffPNNzjrrrOy6665p06ZNDj300Dz77LOV5mnZsmV+85vfpH///tluu+3SoUOHctuvuOKK7LDDDunYsWPOOeecSrXeSy+9lMMPPzxt27ZN+/bt06NHj3z00UeL3J8AUJuox4pRjy3ISy+9lKOOOirbbbddOnbsmH79+uWrr76qNM8nn3yS0047LTvttFO23XbbdOvWLW+88Ub5+XnVYc4pQe0i4IOlpG7dutlxxx3z97//fa7xy5PkjTfeyBlnnJG99tort912W84666y88sor6devX5JZwwdsueWW2XLLLXP//feXh0dKZg2PcOaZZ+a8885L27Ztq3z/Z555Jv/85z9z+eWX58wzz8zzzz+fn//855kxY8ZCtX+rrbbKeeedl2TW8ExVDWdQKpVyyimnZOjQoTnssMNyyy23pHPnzrnuuuvmmv8Pf/hDnn322Zx77rkZOHBgRo8enVNPPXW+7TnvvPNy2WWXZc8998zNN9+crl275p577knPnj1TKpXSs2fP9OjRo9wnCxpyYebMmZk+fXqmT5+eSZMm5a9//WuGDRuWgw46qHwF+pQpU3Lsscfm2WefTZ8+fTJo0KCsvfbaOemkkyqFZKeffnoeeOCBnHzyybnuuusybty4KoehGD58eL766qsMHjw4/fr1S926dReqz2666ab07ds32267bW644Yb06tUrf/jDH9KtW7fyybIk+frrr3P55ZfnlFNOyfXXX5/x48fntNNOS9++fXPYYYdl8ODBKZVK6dOnT/l1l156aV544YWceeaZuf3228v306k4YQYANUHtVMza6ZtvvknXrl0zadKkXH755bntttuy33775e67786wYcPK77Xmmmtm1113zf3335/mzZuX32PAgAHZb7/9MmTIkLRt2zZXXXVVnnvuuUrtuPHGG/Pzn/88V155ZXbaaae88sor+dnPfpZkVl1z8cUX56uvvsqRRx5ZDtlGjx6dQw89NMOHD0+fPn1y4403Zr311kuvXr3yxBNPVFr+VVddlYYNG2bQoEE56KCDcvfdd+eggw7KV199lauvvjrdunXLQw89lLvvvjtJ8tlnn6Vnz57Zeuutc/PNN+eSSy7Jxx9/nO7du891wRYAFIl6rHbXYxX/5vf+jz32WE444YSss846GThwYM4666y8+eabOeKII/Kf//wnSfLhhx/m4IMPzueff55zzz03V199derUqZNjjz02r732WqXlzVmHOacEtYshOmEpWmONNTJt2rSMHTs2a6yxRqXn3njjjaywwgrp3r17GjZsmCRp2rRp3n777ZRKpWy22WblEydz/hT/qKOOSufOnef73s2aNcvtt9+elVZaqfy4V69eeeGFF9KpU6cFtn2VVVYpD2Gw2WabVTmcwQsvvJC//OUvGThwYPbbb78kyU477ZQVVlgh119/fY455phsvvnmSWbdQPj2228vr9P333+fM888M++880623nrruZb94Ycf5qGHHkq/fv3SvXv38rKbN2+eM844Iy+88EJ23XXX8pAOW2yxRdZff/35rtNxxx0317T1118/v/zlL8uPH3/88bz77rt54IEHss022yRJdtlll3Tr1i1XX311Hn744XzwwQf5wx/+kAEDBpRPLu28887Zf//98+GHH1Za/vTp03PhhRdm7bXXTpL86U9/WmCfNW/ePDfffHMOP/zwcmGaJC1atEjXrl3z8MMPp2vXrklm3Q/n/PPPzy677FLut2uuuSaXXHJJDj300CTJxIkTc9ppp+Xjjz/OFltskddeey077bRT+f07duyYlVZaKauvvvp8+w8Alja1U/Fqp/fffz9bbLFFrr/++nJbf/zjH+ell17Kq6++mu7du2fLLbdMw4YNs9pqq821bfr27Vuup7bddtv87//+b1555ZVKfb7PPvtUuo/Oqaeemo022ihDhgxJvXr1kiQ/+clP8l//9V+54YYbcv311+fOO+/Mt99+mz/84Q9Zb731kiS77rprjjvuuFx55ZXp0qVL+d5Cm222WS688MIkSYcOHfLggw9m2rRpufrqq1O/fv385Cc/yR/+8If89a9/TZL8/e9/z+TJk3PyySdnrbXWSpKsvfbaefbZZzNx4kRDlwJQaOqx2lWPnXPOOTnnnHMqTWvYsGHefvvtueadOXNmrr766vzkJz/JNddcU55eMarU7bffnjPOOCODBg1Kw4YNM2zYsPK67bbbbunSpUuuvPLKPPTQQ+XXzlmHOacEtYtf8MFSVCqVkiR16tSZ67n27dtn0qRJ6dKlS6655poMHz48P/nJT9K7d+8q55/dFltsscD33nXXXcsFUTJrSIX69evn9ddfX8S1mLfXXnst9evXn6tAqxinffarfmYv8pKUT4ZMmjRpnstOUi4YKuy3336pV69eXn311UVu7wUXXJCHHnooDz30UO67775cccUVadSoUQ499NB8+eWXSZKXX345a665ZrbaaqtKV0Z16tQp//jHPzJu3LgMHz48SSoNJVG3bt3svffec71n06ZNy+FexXotqM/eeuutTJ06NV26dKk0z/bbb5/11ltvrqup2rVrV/67oviuCCcr2pAk48ePTzKr+HrggQfy85//PPfcc08+++yz9OrVq8qbNgPAsqR2Kl7t9JOf/CT33HNPGjVqlA8//DDPPvtsbr755nz77beZOnXqAt9j++23L/+94oorZo011ijXLBVm334TJ07M22+/nX322acc7iWzhg7t1KlTuR9ee+21tG3bthzuVTjggAMyatSo/Otf/ypPm/1XBPXq1UuzZs2y1VZbpX79/7setmnTppkwYUKSWXVWRT9ccsklefHFF9OqVav06dNHuAdA4anHalc91rt373I9VvFv9iFUZ/fxxx9n1KhRc51P2nDDDdO2bdtKdVKnTp0qrVv9+vWz33775R//+Ee+//778vQ5t5tzSlC7CPhgKRo5cmRWWGGFcsAyu7Zt22bIkCHZYIMNcuedd6Zr167ZZZddykP/zM/sxc68rLnmmpUe161bN82aNZvrhMmSGDduXJo1a1bp5Mrs711xEiSZdcJmzvYkmecwRhX3mptzPerXr59mzZpVWvbC2mSTTdK6deu0bt062223XQ466KAMHTo0//nPf3LHHXckmXX/vVGjRmWrrbaq9O/KK69MkowaNarctmbNmlW53rNbeeWV51qvBfVZxfLnvFKuYtqc617ViaQ5+3t255xzTn75y1/m888/z0UXXZQ999wzRx55ZN599915vgYAlgW1U/Fqp4orxTt06JD99tsvF110Ud555500atRood6jqvWsOLFYYfbtN2HChJRKpQXWSePGjauyNqt43ezbtapaan6fmfXXXz/33HNPttlmmzz00EM56aSTstNOO+Xaa6+dq+0AUDTqsdpVj6233nrleqzi3+xDn85u7NixSRZ8PmncuHHznKdUKuW7774rT5tzuzmnBLWLITphKZk+fXpeffXVtGvXbq6iocLOO++cnXfeOZMmTcorr7ySYcOG5eKLL84222yTNm3aLNH7V3ypV5gxY0bGjBlT6Sfzc47ZPXHixEV6jyZNmmTMmDGZMWNGpXX85ptvkswdgC3qspNZgdrsV15PmzYtY8aMWaJlz27dddfNaqutlk8++SRJsuqqq2bjjTfO1VdfXeX866+/fvm9R48enXXXXbf83Jx9XpWF6bOKdR89enR+9KMfVXr9qFGjssEGGyz0+lWlYcOG6dGjR3r06JEvv/wyzz33XG666ab069cvTz311BItGwAWl9qpmLXTkCFDctddd+WCCy7IXnvtlVVXXTVJykOFV7dVV101derUyejRo+d6btSoUeWTkU2aNMmoUaOqnCdZsr5OkjZt2mTQoEGZOnVq3njjjdx///255ZZb0qpVq+yzzz5LtGwAqCnqsWLUY/NSUQfNq06qeP8mTZrMc55kVh9U9MecnFOC2sUv+GApuf/++zNq1KjyPUXmdMUVV+SQQw5JqVTKiiuumE6dOuXMM89MkvKQRxVXBi2Ol156qdINkf/whz9k+vTp6dixY5JZVyp//fXXlV7zxhtvVHo8r2KuQocOHTJ9+vT8/ve/rzT9iSeeSJJst912i93+Dh06JMlcxcFTTz2VGTNmLNGyZ/f555/n22+/zcYbb1x+36+++iqrr756paujXnrppQwdOjT16tXLDjvskCRzrfdzzz23wPdbmD7bZptt0rBhw/zud7+rNM/w4cPz5ZdfVhqSc1FNnjw5e++9d/mq+3XXXTddu3bNfvvtV/7cAUBNUDsVs3Z64403stlmm+WQQw4ph3sjR47M+++/X+nq9iXZNrNbaaWVsvXWW+eZZ56pdIJvwoQJef7558vr2b59+7z55pv54osvKr3+iSeeyJprrpmNNtposdtw1113pVOnTpk6dWoaNmyYHXfcMRdddFGSqKcAKDT1WDHqsXnZZJNNsuaaa851Pumzzz7LW2+9VT6f1L59+zz33HOVfqk3Y8aMPPXUU2ndunX5/opzck4Jah+/4IMl9N133+Wtt95KMusn+mPGjMmf//zn3H///TnggAOy1157Vfm6HXbYIXfeeWf69++fAw44INOmTcvQoUPTtGnTcoDUuHHjvPnmm3n55Zez5ZZbLlK7Ro0alVNPPTXdunXLJ598koEDB2annXbKjjvumCTp1KlT/t//+3+57LLLsvvuu2f48OF57LHHKi2j4iTN888/nyZNmqRVq1aVnt9ll13SsWPHnHvuuRk5cmRatWqV1157Lbfddlt++tOfVnkz44W12Wab5ac//WluuOGGTJo0Ke3bt88777yTQYMGpWPHjtl5550XeZkffvhhebioUqmUL7/8MoMHD06jRo1y9NFHJ0kOPvjg3HPPPTn++ONzyimnZJ111slf/vKX3HbbbTn66KPToEGDbLTRRjniiCNy7bXXZvr06dliiy3y+OOP57333ltgGxa2z7p3757BgwenQYMG6dSpUz7//PNcf/315X5ZXCussEK22mqrDBo0KA0aNEjLli3z8ccf59FHH63yHoIAUN3UTj+s2qlNmza56aabMmTIkGy77bb59NNPc+utt2bq1KmV7k/TuHHjjBgxIq+99toSX93fr1+/nHjiienevXuOOuqoTJs2LUOGDMnUqVPTq1evJMnxxx+fJ554Iscdd1x69+6dpk2b5rHHHssrr7ySSy+9dIlOPu6www65+uqr06tXrxx99NGpV69efvvb36Zhw4bp1KnTEq0bACwL6rHi1GOLom7duunbt2/OOuus9OvXLwcccEDGjBmTQYMGpUmTJjn++OOTzLqv3wsvvJBjjjkm3bt3T4MGDcr30xs6dOg8l++cEtQ+Aj5YQiNGjMgRRxyRZNYNiFdeeeW0aNEiAwYMyGGHHTbP1+266665+uqrc8cdd5RvRrzddttl2LBh5Z/Ud+3aNf/4xz/y85//PJdddlmaN2++0O066qijMmHChPTq1SsNGzbM/vvvn9NPP7180+NDDjkk//73v/Poo4/mt7/9bdq3b58bbrih0lVam2++ebp06ZJ77703L7744lxXANWpUye33nprbrjhhtx111359ttvs/7666dv377lomFJXHLJJdloo43y8MMP57bbbkvz5s1zzDHHpGfPnot1UubCCy8s/123bt00bdo02267ba666qryVegrrbRS7r333lxzzTW56qqrMmHChKy33nrp169fTjjhhPLrzz///Kyxxhq55557Mm7cuOy888455ZRTct111823DQvbZ6eeemp5+ffff3+aNm2azp0755e//OVCjVu/oH647rrrcscdd2TUqFFZffXVc+ihh+YXv/jFEi0XABaG2umHVTudfPLJGTNmTIYNG5bBgwdnnXXWyYEHHlhe1/Hjx6dx48Y54YQTcumll+bEE0/MnXfeuUTrueOOO+bOO+/MDTfckL59+6Zhw4bZfvvtc8UVV2TzzTdPMuveN7/5zW9yzTXX5OKLL860adPSqlWr3HTTTdljjz2W6P1btWqVW265JYMHD07fvn0zY8aMbL311rnjjjvmGl4dAGoj9Vhx6rFFdfDBB2fllVfOrbfeml69emWVVVbJzjvvnL59+5bvDbj55pvnvvvuy8CBA3PWWWelTp06adOmTYYNG5btt99+vst3TglqlzoldwEHAAAAAACAwnAPPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgdRfmJnefPPNlEqlNGjQYGm3BwCgVpg2bVrq1KmTtm3bLtFy1FEAwPJGHQUAsHgWpY5aqF/wlUqllEqlhZpv6tSpCzUv86Yfl5w+rB76sXrox+qhH6uHflx4C1v/LKvlFInPWdX0S9X0S9X0y9z0SdX0S9X0S9WWVb8UrY7yean9bKPazzaq3Wyf2s82qv1qYx21UL/gq7hSqnXr1vOdb+LEiXnnnXey2WabZaWVVlqoBjA3/bjk9GH10I/VQz9WD/1YPfTjwnv77berZTkLW0f9kPicVU2/VE2/VE2/zE2fVE2/VE2/VG1Z9UvR6iifl9rPNqr9bKPazfap/Wyj2q821lHuwQcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFEj9mm5AbfTNN99k/Pjxi/36xo0bp3nz5tXYIgAAatKS1odJMnny5Hz55Zdp1KhRVlhhhWpq2eJTswLA/xk7dmz+9a9/1YrvaOZW2+oo5jZ58uSMHTu2ppsBsFwR8M3h/fffz+mnn56ZM2cu9jIaNGyYW26+2QkTAIAfgG+++San9OiRaVOn1nRTqpWaFQBmGT16dAYNGpzp06fVdFOg0OrXb5DNN988G264YU03BWC5IOCbwxdffJGZM2em4RqtU3+VdRb59TOnjs/kL1/J+PHjnSwBAPgBGD9+fKZNnZoV1t0hdRs2rtG2zJwyPpO/eiUrrLND6jZa/LaoWQHg/4wfPz7Tp0+rFd/1VK26aiCWntnrSwCWDQHfPNRtsHLqrbhaTTcDAIBaom7DxrWmPqzbqPa0BQB+KGrTdz1VUwMBwP+pW9MNAAAAAAAAABaegA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQID/IgG/cuHE13YQl9v3339d0EwCA5dQPoZaCxeXzDwAAQFVqW27zgwv4vv766xxzzDH5+uuva7opi23kyJG5+uqrM3LkyJpuCgCwnPkh1FKwuHz+AZZP3377bZJk5rSJNdwSAKC2qo25zQ8u4Pvuu+8yc+bMfPfddzXdlMX2/fffp1Qq1bo0GAD44fsh1FKwuHz+AZZPkyZNmvXHzOk12xAAoNaqjbnNDy7gAwAAAAAAgB8yAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABVK/phtQYf/9959r2pNPPlkDLSm2Je3Hxx9/PEOHDi0/Pumkk3LggQcuUhs+++yz9O7dOzNnzkzdunUzaNCgbLDBBgv9+nHjxuXss8/OmDFj0qxZs1x66aVp0qTJQr9+0qRJuf322/PRRx9l0003zUknnZQVV1xxkdZhxowZGTFiRL799tusttpq2XLLLVOvXr1FWgYA1c/+uWrff/99rr322nz99ddZe+2106dPn6y88so13SxY7lTXMU11LGfAgAF54403yo+32267DBgwYJGW0atXr/z73/8uP95www0zePDgRVpGkrz55ps577zzyo8vvPDCtG3bdpGW8fbbb+fss88uP7700kvTunXrRW7Lkh6rJMnIkSPTu3fvTJkyJY0aNcqgQYOy1lprLXJbqmPfPW7cuPTv3z//+c9/svrqq+fyyy9fpGOnClOnTs0zzzyTr776Kuuss0722WefNGzYcJkvozqXU1tUR+1SXfXP1KlT89RTT+Xdd9/Nv/71rxx44IGF7lsAgOVdrQj4qjqArZgu5Ft4S9qPVb1+6NChGTp06EJvhzmXMXPmzPTs2TPJwp2U6NatW8aOHVt+PGHChBx99NFp2rRp7r777gW+/uKLL86rr75afvzRRx/lf/7nf9KxY8ece+65C7UOf/nLX3L77bfnm2++KU9r3rx5TjzxxPz4xz9eqGUAUP3sn6vWt2/ffPDBB+XHn376aY488shsvvnmGThwYA22DJYv1XVMUx3LqWoZb7zxxhIv49///ne1rE9F2LckbakI+5akLYt6rJIkBx54YGbOnFl+PHny5Jx00kmpW7duHn/88YVuS3Xsu+c8dvr8888X6dipwp133pnHHnus0nrdcccdOeigg3L88ccvs2VU53Jqi+qoXaqr/pmzb1977bXcc889he1bAABqwRCd8zqAXdjnmWVJ+3HO51dfffVFev2c8zRo0CBdu3ZNgwYNFnoZsx+gtmzZMhdffHFatmyZJBk7dmy6des239dXhHv169fPgQcemFNPPTUHHnhg6tevn1dffTUXX3zxAtfhL3/5Sy6//PJsvPHGueqqq/LAAw/kqquuysYbb5zLL788f/nLXxa4DACqn/1z1SpOENepUyedOnXKDTfckE6dOqVOnTr54IMP0rdv35puIiwXquuYpjqWU1uWUdV822+//RK3pVWrVkvclsU5Vkkqh3urrrpqevXqlVVXXTXJrLBwYUc+qY599+zHTptttlm6deuWzTbbLMnCHTtVuPPOO/PII4+kcePG6d27d4YNG5bevXuncePGeeSRR3LnnXcuk2VU53Jqi+qoXaqr/pm9b7t3755+/fqle/fuhe1bAABmqdFf8M15EDX7VZOzP+eXfPO3pP04+5Wm/fr1y2677VZ+/Pzzz+eaa64pzzevg9bPPvus/Pett96addddN0ly5JFH5ssvv8zJJ59cnq+qIXDGjRtXPkD9zW9+k1VWWSVJss022+S7777Lz372s4wdOzbjxo2rcsiZSZMmlcO9+++/P9OnT88777yTn/zkJznmmGNyxBFH5NVXX82kSZPmOVznjBkzcvvtt6d9+/Y555xzUrfurPy7VatWOeecc3LJJZfkjjvuSMeOHQ0HB7AM2T9X7fvvvy+fIH7ggQeywgorJJl14rhnz545/PDD88EHH+T77783XCcsRdV1TDP7vM2aNcstt9ySd955J1tssUVOOeWUjBkzZoHLmX0Izn333Tc9evQoP7755pvz9NNPl+eb13CdvXr1Kv/dvn37uYbWfP3118vzzW+4zjfffLP89yWXXJI2bdqUH//973/POeecU55vXsN1vv322+W/r7jiimy88cblPvnkk09y5plnlueb33CdS3qskswalrMi3LvzzjuzxhprJEk6d+6c0aNH5/jjj8/MmTMzcuTI+Q7XWR377jmPnerWrZt33nknXbp0ycyZMxd47FRh6tSpeeyxx9K0adPceeedqV9/1umBvffeO3vssUeOP/74PP744+nates8h3GsjmVU53Jqi+qoXaqr/pmzb6dOnZp33nknHTp0yD777FO4vgUA4P/UiiE6k7mHRHnyySeX6Nd7sx/ELYqRI0cu9ntWx/snyRdffLHYr12cfpz9nnuzh3sVjysCvqFDh84z4Ovdu3eSWVfDVhwwV1h33XXToEGDTJs2Lb17965y6JqKIXZatmxZDvcqrLLKKmnRokXef//9nH322VWeSLjrrruSJAcddFAaNmyY6dOnl59r2LBhDjzwwDz88MO56667Kp3omN2IESPyzTff5PTTTy8fPFWoW7duDjvssJx++ukZMWLEYt3vA4DFY/9ctWuvvTbJrO/qihPEFVZYYYXsuuuuef7553Pttdcu9DDVs1uSWmby5Mn58ssv06hRo7naVkRL0he1XW1Yt9r0eVnS/qiuY5phw4Zl4sSJlR4vzHJmv+fenDVvjx49ygHf7PPNafZ77s0e7lU8rmjH7PNVZfbXzh7uzfn4vPPOm2dgOfs997bccstKfbLllltWmm9+4emSHqvMvoxVV121HO5VWGONNbLqqqtmwoQJ6d27dx588MF5tqU69t1zHjvN3i8Lc+xU4ZlnnsnMmTNz9NFHlwO1CvXr10/Xrl0zePDgPPPMM/M8DqyOZVTncmqL6qhdqqv+mbNvp06dWn6uiH0L1H5ffPFFjdd0zK021dxUzTaq/ZYkt1laak3AV91q+p4zNf3+i2POYTkrNG3atNK9HapScTXr4YcfXuXzP/3pT/PAAw9UupfC7CquSJ7XUDJHHXVUBgwYUJ5vTl9++WWSZK+99qry+T333DMPP/xweb6qfPvtt0mSjTbaqMrnN9xww0rzAbBs2D9X7euvv04y6zu2KgceeGCef/758nyLqoi1DIvOdmZpm3NYzgrbbLNN/va3vy3UMuZ1n7H27duXf1E4P0t6rJIkU6ZMSZIcc8wxVT7/s5/9LEOGDCnPNy/Vse9e0mOnCl999VWSpEOHDlU+3759+0rzLa1lVOdyaovqqF2qq/75ofUtUPsNGjSoppsAsNz4wQZ8ffv2nefwKvMzfPjw3HvvvTX2/kny0Ucf1ciX4X/+858qpy8o3EtmXUE4c+bMPPDAAznyyCPnev7RRx8tz1eVZs2aZcKECbn77ruzzTbbzPX8fffdV56vKuuuu27eeuut/M///E+OPfbYuZ7/4x//WJ5vXlZbbbUks25wP+e9PZL/u0q5Yj4Alg3756qtvfba+fTTT/Poo49Web+mil+hrL322ou1/CWpZSZPnpyPP/44m2yyyQ/iysPPPvvsBxuELcl2ri616fPyQ97WNWX48OFVTl/YcC/JPO8ztjDhXrLkxypJ0qhRo0yePDnDhg1L586d53r+N7/5TXm++amOffeSHjtVWGeddZIkr732Wvbee++5nq/o34r5ltYyqnM5tUV11C7VVf/80PoWqP169+6dTTfdtKabwRxqU81N1Wyj2q+mcpv5qTUB35z3kliS4TmTZIMNNijfZHxRVNcwRYv7/sms/5kX1+L040knnVQepvP555+f6x58s883L4MGDUrPnj0zbdq0fPnll5WCtC+//DLTpk0rz1eVSy+9NEcffXTee++9fPfdd5WG6fzuu+/y/vvvl+erynHHHZenn346jz32WH72s59Vem7q1KnlA+Xjjjtunuuw5ZZbpnnz5nnwwQcr3eMgmXXV74MPPpi11lqr0nBAACx99s9V69OnT4488sg8//zz6dmzZ6UDgMmTJ+dPf/pTeb7FsSS1zMSJEzNlypT86Ec/ykorrbRYy2DZWJLtXF1+SJ+X6jqmOeaYY3LLLbdUerwwtttuu/LwmzfffPNc9+Cbfb552XDDDcvBwYUXXjjXPfhmn29+Zn/t3//+97nuwVfVMud06aWXloejHDFiRDbeeOPycyNGjKg03/ws6bFKxXMnnXRSJkyYkNGjR1capnP06NGZMGHCApeRVM++e85jp9m/Fxfm2KnCPvvskzvuuCP33HNP9thjj0pDY06fPj333ntv6tWrl3322WepLqM6l1NbVEftUl31z5x9O7si9i1Q+6233no1Xl8ytx9Szf1DZRvVfkuS2ywtNRrwzXlPinkdAM/vfgoseT8eeOCB5YDvmmuuyTXXXFPlsJzzG49/9iu/Tz755DRo0CA//elP8+ijj5YPmOecb3ZNmjQpv+fPfvaztGjRIkcddVTuu+++8gFq06ZN53mT+BVXXDEdO3bMq6++miOOOCL77rtvNtxww9x77715+umnM3369HTs2DErrrjiPNehXr16OfHEE3P55ZfnkksuyWGHHVY+wfHggw/m9ddfT//+/ed7A3MAqp/9c9VWXnnlbL755vnggw9y+OGHZ9ddd82BBx6Yxx9/PH/6059SKpWy+eabZ+WVV67ppsIPWnUd08y+nDFjxuSII45Y5OUMGDCgvIynn366fM+9quabl8GDB5eX8frrr89zfeZ3b7ckadu2bfnvc845J0nVw3LOPt+cZr+v2Jlnnpkk2WyzzfLhhx/Oc76qLOmxSpKstdZa5V8CHn/88Vl11VXzs5/9LL/5zW/K4V7dunWz1lprzbct1bHvnvPYadNNN80OO+yQu+++Ox999FGS+R87VWjYsGEOOuigPPLIIzn++OPTtWvX8rCn9957b8aOHZuDDz44DRs2XKrLqM7l1BbVUbtUV/0zZ98edthhWXXVVfPHP/4xDz74YOH6FgCA/1Pjv+Bb0I3nhXsLZ0n7cc7XzxnuLcx2mH0Z06ZNywMPPLBIy7j77rvTrVu3jB07Nu+//36lEw9NmzbN3XffPd/Xn3vuubn44ovz6quv5oknnqj0XMeOHed5k/rZ/fjHP07//v1z++235/TTTy9PX2uttdK/f/953v8DgKXL/rlqAwcOTN++ffPBBx/k+eefr/TL+80339xQg7CMVNcxTXUsp7Yso6rlzBnuLU5b5gz3Fqcti3OskswaPvPAAw/MzJkzM2HChAwZMqT8XN26dcujhixIdey7Zz92+uijj8rBXrJwx04Vjj/++CTJY489Vim0rVevXg4++ODy80t7GdW5nNqiOmqX6qp/Zu/b2267rTy9qH0LAMAsNR7wJfM+gBTuLZol7ccnn3wyjz/+ePnXfMmsYTnn98u9qpbx2WefpXfv3pk5c2bq1q2bQYMGLfS9Xe6+++6MGzcuZ599dsaMGZNmzZrl0ksvXeDVpxXOPffcTJo0KUOHDs1HH32UTTfdNCeddNJ8f7k3px//+Mfp2LFjRowYkW+//TarrbZattxyy+XulyEAtY39c9UGDhyY77//Ptdee22+/vrrrL322unTp49f7sEyVl3HNNWxnCeffDIDBgwoD9eZzBqWc36/3KtqGb169SoP15nMGpZzQb/cq2o5b7755lxDfc7vl3tVLePtt98uD9eZzBp+ckG/3KtqOUtyrJLMCvlGjhyZ3r17Z8qUKWnUqFEGDRq0wF/uzak69t0Vx079+/fPf/7zn6y++uq5/PLLF/rYqULFL+aeeeaZfPXVV1lnnXWyzz77LNIvuqpjGdW5nNqiOmqX6qp/Kvr28ccfz7vvvptWrVrlwAMPLGzfAgBQSwK+RJhXXZa0Hw888MBFCvSqssEGGyz01atVadKkySKfOJjdiiuumBNPPDHvvPNOtthii0UK9yrUq1dvkU8YALD02T9XbeWVV16oX6oDS1d1HdM8+eSTmThxYrmeXZx7cCxKmDcvS1KTz65t27ZL3DetW7fO/fffv0R9kiz5sUoy69dTDz744BItI6mefXeTJk1yzTXXLHG/NGzYcImPA6tjGdW5nNqiOmqX6qp/GjZsmP322y8/+tGPssUWWwj3AAAKru6CZwEAAAAAAABqCwEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAXygwv4VlllldStWzerrLJKTTdlsa288sqpU6dOVl555ZpuCgCwnPkh1FKwuHz+AZZPK6644qw/6tav2YYAALVWbcxtfnCVy9prr51hw4alSZMmNd2UxbbWWmvlV7/6VdZaa62abgoAsJz5IdRSsLh8/gGWT6uttlqSpG6DlWq4JQBAbVUbc5sf3C/4kvwgDshrUwoMACxffgi1FCwun38AAACqUttymx9kwAcAAAAAAAA/VAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBA6td0A2qrmdO+z4xJ3y7666aOXwqtAQCgptWGOm/mlPGV/rvYy6kF6wIAtY3vx9qrumoglh7//wAsewK+Oay33nqpW7dupo5+O1NHv71Yy2jQsGEaN25czS0DAKAmNG7cOA0aNszkL1+p6aaUTf5qyduiZgWAWRo3bpz69RvUqu96qlYdNRBLT/36DdSXAMuQgG8OLVq0yG233Zbx4xf/qpPGjRunefPm1dgqAABqSvPmzXPLzTcvUX2YJJMnT87HH3+cTTbZJCussEI1tW7xqVkBYJY11lgjvXv3ylprrVUrvqOZW22ro5jb5MmTM3LkyKyxxho13RSA5YaArwrNmzd3sgMAgLLqqA8nTpyYKVOm5Ec/+lFWWmmlamoZAFAdmjZt6ju6FlNH1X4V2wiAZaduTTcAAAAAAAAAWHgCPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABVKnVCqVFjTTX//615RKpTRs2HC+85VKpUybNi0NGjRInTp1qq2Ryxv9uOT0YfXQj9VDP1YP/Vg99OPCmzp1aurUqZN27dot0XIWto76IfE5q5p+qZp+qZp+mZs+qZp+qZp+qdqy6pei1VE+L7WfbVT72Ua1m+1T+9lGtV9trKPqL8wCF7axderUWa5OXi0t+nHJ6cPqoR+rh36sHvqxeujHhVenTp1qKdiWx8Lc56xq+qVq+qVq+mVu+qRq+qVq+qVqy6pfilZH+bzUfrZR7Wcb1W62T+1nG9V+tbGOWqhf8AEAAAAAAAC1g3vwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCDVEvDNnDkzN9xwQ3beeedsu+22+fnPf57PPvusOha9XBk5cmRatmw5179HHnmkpptWGLfeemu6detWado777yTo48+Ottuu2123333DBs2rIZaVwxV9eG555471+dy9913r6EW1l5jx47Neeedl1122SXt2rXLz372swwfPrz8/Msvv5yDDz4422yzTTp37pynnnqqBltbey2oH48//vi5Po9zfmZJ/vOf/+T000/PDjvskLZt26Z79+756KOPys/bN7IsVPWdsjxa0H5tebWg/RTJxx9/nLZt2zoeiGOleXnsscey7777pnXr1tlvv/3yzDPP1HSTatSrr75a5eekZcuW2WOPPWq6eTVq+vTpuf7669OpU6e0bds2Xbt2zVtvvVXTzaoRC1OfjBkzJv369Uv79u3ToUOHXHDBBZk0adIyaiELs42eeOKJKv9f//zzz5dRK5cvi1rPfv755zn55JPTrl27/OQnP8l1112XGTNmLMMWL38WdRvdfPPNVf4/xNKzqMc/vouWvUXdRrXhu6h+dSzkpptuyn333ZfLL788a6+9dq666qqcdNJJefLJJ9OwYcPqeIvlwrvvvptGjRrlj3/8Y+rUqVOevuqqq9Zgq4rj3nvvzXXXXZftt9++PG3MmDE5/vjjs/vuu+eCCy7IW2+9lQsuuCArr7xyDjnkkBpsbe1UVR8myXvvvZdTTjklRx99dHlavXr1lnXzar2+fftm1KhRGThwYFZfffXcfffdOfHEE/Poo4+mVCrl5JNPzvHHH5+rrroqzz//fM4444ysttpq2XHHHWu66bXK/PrxRz/6Ud57770MGDAge+65Z/k1DRo0qMEW1069evXKzJkzM2TIkKy88sq5/vrrc9xxx+V//ud/MnnyZPtGlrp5facsjxa0X1tezW8/teKKK9Z082rctGnT8qtf/SoTJ06s6abUCo6V5vb444/nnHPOydlnn52dd945Tz31VPr27Zu11147bdu2renm1Yi2bdvmz3/+c6Vpb731Vk499dT07NmzhlpVO9x888158MEHc/nll2eDDTbIbbfdlpNOOilPP/10mjdvXtPNW2YWtj457bTTMmnSpNx1110ZP358zjnnnEycODFXXHHFMmrp8mtht9F7772XDh06ZODAgZWmr7baakuzecutRalnp02blhNPPDEbb7xxfvvb3+bf//53zjnnnNStWzennXZaDa3BD9+iHnO89957OfDAA3P66afXQGuXT4t6/OO7aNlb1G1UK76LSktoypQppbZt25buvffe8rRx48aV2rRpU3ryySeXdPHLlSFDhpT233//mm5G4Xz99delk08+ubTtttuWOnfuXDr66KPLz91yyy2ln/zkJ6Vp06aVp11zzTWlvfbaqyaaWmvNrw9nzpxZ2nbbbUv/8z//U4MtrP0++eSTUosWLUrDhw8vT5s5c2Zpzz33LF133XWlX//616VDDz200mv69u1bOuGEE5Z1U2u1BfXj6NGjSy1atCj985//rMFW1n5jx44t9e3bt/Tee++Vp73zzjulFi1alP72t7/ZN7JUze87ZXm0oP3a8mpB+ylm7ZePOeaYUosWLUoPP/xwTTenxjlWqmzmzJmlTp06lS6//PJK00844YTSLbfcUkOtqn2+//77UqdOnUr9+/ev6abUuAMOOKB02WWXlR9PmDCh1KJFi9If/vCHGmzVsrMo9clf//rXUosWLUoffvhhedqLL75YatmyZenrr79eFs1dLi1qDXnSSSeVLrroomXUuuXbotazTz75ZGnrrbcujR07tjztt7/9baldu3alKVOmLJM2L28W55hjn332Kd15553LqIUs6vGP76Jlb3GOUWvDd9ESD9H57rvv5vvvv6/0C5TGjRtnyy23zOuvv76ki1+uvPfee9l0001ruhmF889//jMNGjTIE088kW222abSc8OHD0+HDh1Sv/7//Vh1hx12yCeffJLRo0cv66bWWvPrw3//+9+ZOHHicv0Lg4XRrFmzDBkyJK1bty5Pq1OnTurUqZPx48dn+PDhc/1Sb4cddsgbb7yRUqm0rJtbay2oH997773UqVMnm2yySQ22svZr0qRJrrnmmrRo0SJJ8u233+auu+7K2muvnc0228y+kaVqft8py6MF7deWVwvaTy3vXn/99dx///25/PLLa7optYZjpco+/vjjfPHFF9l///0rTb/99ttz8skn11Crap9bbrklkyZNyplnnlnTTalxq6++ep577rl8/vnnmTFjRu6///40bNgwrVq1qummLROLUp8MHz48a665ZqV9TocOHVKnTp288cYbS7upy61FrSF9Lyw7i1rPDh8+PFtttVWaNGlSnrbDDjvku+++yzvvvLNM2ry8WdRtNHXq1HzyySfO9S1Di3r847to2VucY9Ta8F20xEN0fv3110mSddZZp9L05s2bl59j4bz//vtp1qxZunbtmo8//jgbbbRRevTokV122aWmm1ar7b777vO8H9zXX39d/p+yQsXwI1999VXWWGONpd6+IphfH77//vtJkrvvvjsvvPBC6tatm1122SV9+vRZrodEmlPjxo2z6667Vpr2hz/8IZ9++mnOPvvsPProo1l77bUrPd+8efNMmjQpY8aMMYzI/29B/fj+++9n1VVXzYUXXpiXXnopK620Ujp37pyePXsaEnoefv3rX+eBBx5Iw4YNc/PNN2ellVayb2Spmt93yvJoQfs1qt5PLc/Gjx+fM844I+eee+5cx1jLM8dKlX388cdJkokTJ+bEE0/MiBEjsv7666dHjx72wf+/ipMy/fr1S9OmTWu6OTXunHPOyS9+8YvsscceqVevXurWrZsbb7wxG264YU03bZlYlPpk5MiRc+1/GzZsmKZNm+arr75aGs0ji7aNxo0bl5EjR2b48OG57777MmbMmLRp0yann366i0GXgkWtZ7/++usqz38ks443XQRY/RZ1G3344YeZMWNG/vCHP+SSSy7JlClT0r59+5x++unL1bDNNWVhjn98F9WshdlGteW7aIl/wVdxY8c5T6w2atQoU6ZMWdLFLzemT5+ef/3rXxk3blxOPfXUDBkyJNtuu226d++el19+uaabV1iTJ0+u8rOZxOdzIb3//vupW7dumjdvnltuuSX9+/fPn//85/Ts2TMzZ86s6ebVWn/9619z1llnZa+99spuu+1W5Wex4vHUqVNroomFMGc/vv/++5kyZUratGmToUOHpkePHnnwwQdz7rnn1nRTa61jjz02Dz/8cLp06ZJevXrln//8p30j1KA592tUvZ9ang0YMCBt27ad65dZyzPHSnP77rvvkiRnnnlmunTpkjvuuCM77bRTevbsudz2yZzuu+++rLrqqjniiCNquim1wocffphVV101gwcPzv3335+DDz44v/rVr/yapgqTJk2q8uJB57lqjw8++CBJUiqVctlll+W6667LlClTctRRRxmRZBlYUD3reLPmLWgbVVzMv+KKK+b666/PJZdckn/961855phjMnny5GXc2uXPwhz/+C6qWQuzjWrLd9ES/4JvhRVWSDLrBHXF38msHXZVNx6kavXr18+rr76aevXqlftx6623zgcffJDbb799rqH9WDgrrLDCXOFJxU5web86fGH16NEjRx11VJo1a5YkadGiRdZcc80cfvjhefvtt115VYU//vGP+dWvfpV27drl6quvTjLrC3jOz2LFY/vKqlXVjxdeeGHOPPPM8lAfLVq0SIMGDdKnT5+cccYZfnlWhYphBC655JL87W9/yz333GPfCDWkqv0aVe+nLrvsshpuVc147LHHMnz48Dz55JM13ZRaxbHS3Bo0aJAkOfHEE/PTn/40SbLFFltkxIgRufPOO5fLPpnTY489loMOOqjSeYrl1VdffZV+/frlrrvuyvbbb58kad26dT788MPceOONuemmm2q4hbVLVbVyMqteVivXDttvv31efvnlNGvWLHXq1EmSDBo0KLvttlseeeSRdO/evYZb+MO1MPWs482atTDb6KCDDsouu+xSaTSpzTffPLvsskv+3//7f9l3332XVXOXSwtz/OO7qGYtzDaqLd9FS/wLvoqfin7zzTeVpn/zzTdZa621lnTxy5WVV155roOPzTffPCNHjqyhFhXf2muvXeVnM4nP50KqW7duOdyrsPnmmyeJYXircM899+TUU09Np06dcsstt5SvUltnnXWq/CyutNJKhjqtwrz6sX79+pXG8U98Hqvy7bff5qmnnsr06dPL0+rWrZvNNtss33zzjX0j1IB57deWVwvaTy2vHn744fznP//JbrvtlrZt26Zt27ZJkvPPPz8nnXRSDbeuZjlWqqzi+3rOIbc322yzfP755zXRpFrl3XffzWeffeaXsP+/v/3tb5k2bVqlezMlyTbbbJNPP/20hlpVe1VVK0+dOjVjx441dF0tstpqq5VPqCazLpxdf/31l9vvhWVhYetZx5s1Z1GOOea8VUzz5s3TtGlT51aWkkU9/vFdtOwtzjFqbfguWuKAr1WrVllllVXy6quvlqeNHz8+I0aMSPv27Zd08cuNDz74IO3atavUj0nyj3/8Y543cWTB2rdvnzfeeCMzZswoT3vllVeyySabZPXVV6/BlhXHGWeckeOOO67StLfffjtJfDbncN999+Wiiy5K165dM3DgwEo/pd9+++3z2muvVZr/lVdeSbt27VK37hLvin9Q5teP3bp1y1lnnVVp/rfffjsNGjTIxhtvvIxbWnuNHj06ffv2rTRE17Rp0zJixIhsuumm9o2wjM1vv7a8WtB+anl19dVX5+mnn85jjz1W/pckp512Wi655JKabVwNcqw0t6222iorr7xy/va3v1Wa/v777y8391Sbn+HDh2f11VdPq1ataroptULFvbDee++9StPff/99NXQV2rdvn6+//rpS+FlxLLfddtvVVLOYzf3335+OHTtm4sSJ5WnfffddPvnkk+X2e2FpW5R6tn379hkxYkR5OOlk1vHmyiuvbL+8FC3KNrr22muz9957p1Qqlad9/vnnGTNmjP+HlpJFPf7xXbTsLeo2qi3fRUt8Vrlhw4Y5+uijc/XVV+fZZ5/Nu+++mz59+mTttdfOXnvtVR1tXC5suumm+dGPfpQLL7www4cPz0cffZTLLrssb731Vnr06FHTzSusQw45JN99913OOeecfPjhh3nkkUdy11135eSTT67pphXG3nvvnZdffjmDBg3Kv//97/zpT3/K2WefnS5duizXJ+Dm9PHHH+fSSy/Nf/3Xf+Xkk0/O6NGjM2rUqIwaNSoTJkxIt27d8ve//z1XX311Pvroo9xxxx35/e9/v9xfjT+nBfXj3nvvnccffzy/+c1v8tlnn+Xpp5/OlVdemRNPPDGrrLJKTTe/1mjRokV22WWXXHzxxXn99dfz/vvvp3///hk/fnyOO+44+0ZYhha0X1teLWg/tbxaa621stFGG1X6lySrr776cn3Fu2Olua2wwgo56aSTMnjw4Pzud7/Lv//979x888156aWXcvzxx9d082rciBEj0rJly5puRq3Rpk2bbLfddjnzzDPzyiuv5JNPPsl1112Xl19+2VCGSWbMmJFRo0aV7zu1zTbbpF27dunTp0/+/ve/55VXXsl5552Xgw46aLneF9ekObfRLrvskpkzZ+aMM87IBx98kLfffjunnnpqVltttRx88ME13NofngXVs1OnTs2oUaPKwwnuueeeWXPNNfPLX/4y7777bv74xz9m4MCBOeGEE1zotpQs6jb6r//6r3zxxRcZMGBAPv7447z++us59dRT065du+y88841vDY/TAs6/vFdVPMWdRvVlu+iOqXZo/rFNGPGjAwcODCPPPJIJk+enPbt2+e8887L+uuvXx1tXG6MHj0611xzTV588cWMHz8+W265ZX71q1+Vx8hnwfr3758vvvgid999d3na3//+91xyySUZMWJE1lxzzZxwwgk5+uija7CVtVtVffjMM89kyJAh+de//pVVV101+++/f375y18u98OLze6WW27JtddeW+VzP/3pT3P55ZfnhRdeyFVXXZVPPvkk66+/fk499VTjms9hYfrx3nvvzb333pvPPvusfD/I7t27+yXkHCZMmJBrrrkmf/zjHzNhwoRsv/326d+/f3lIU/tGloWqvlOWNwuzX1teLWg/xSwtW7bMZZddttyfsHSsVLU777wz99xzT0aOHJlNN900p556avbcc8+ablaN+/nPf55VVlllnvvf5dG4ceNy3XXX5fnnn8+4cePSokWL9O3bNx06dKjppi1zc9Ynn3/+efbYY49K+9r//Oc/ueCCC/Liiy+mUaNG6dy5c8466yzHwMvIwmyjf/7zn7nmmmvy97//PaVSKTvttFPOOuus8q2EqD4Lqmd/+tOf5phjjsmwYcPSsWPHJMmnn36aCy64IMOHD0+TJk1y6KGH5tRTT3XcvpQszjZ6+eWXc/311+e9995Lw4YNs8cee+TMM8+c67YoVJ/5Hf/4LqodFnUb1YbvomoJ+AAAAAAAAIBlw2UTAAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAWGSlUqmmmwAAALDcEvDBMtStW7dsueWWefvtt6t8fvfdd0///v2XSVv69++f3XfffZm816KYPn16+vfvn7Zt26Zdu3Z55ZVX5prn1VdfTcuWLSv923rrrbPHHnvkyiuvzKRJk6qlLTfeeGNatmxZLcsCABad2mnBaqp2evDBB3PFFVeUHz/yyCNp2bJlPv/88yVaHwCgdlGPLdjC1GOff/75XPXY7P+6dOmSRE0FLJr6Nd0AWN7MmDEjZ511Vh555JE0bNiwpptT67z44ot59NFH07Nnz/z4xz/OlltuOc95zzvvvGy11VZJkkmTJuXdd9/NDTfckFGjRuWqq65aVk0GAJYitdP81VTtdPPNN6dDhw5L1HYAoBjUY/O3KPVYjx49sttuu801fYUVVliKLQR+qAR8sIytuuqq+eCDDzJ48OD06dOnpptT64wdOzZJcvDBB2eDDTaY77ybbbZZtt122/LjHXfcMRMmTMjNN9+c888/P6ussspSbCkAsCyoneZP7QQALG3qsflblHpsww03rFSPASwJQ3TCMrbFFlvkoIMOytChQ/OPf/xjvvO2bNkyN954Y6Vpcw4b2b9//5x44om5//77s+eee6ZNmzY58sgj8/HHH+e5557L/vvvn2222SaHHXZY3nnnnbne4/77789uu+2WNm3a5Nhjj82IESMqPf/ll1+mb9++6dChQ7bZZpu55qkYYuDOO+9M586ds8022+Thhx+ucn1mzJiRe++9N/vvv3/atGmT3XbbLVdffXWmTJlSXpeKYR323HPPdOvWbb79U5XGjRvPNW3s2LE577zz8uMf/zitW7fO4YcfnpdffrnSPFOmTMlll12WnXbaKW3bts1ZZ51VbleF/v3759hjj83555+fdu3aZd99982MGTMyZcqUDB48OJ07d07r1q2z1157ZciQIZk5c2al1z/99NM5+OCD07Zt2+y0004577zzMm7cuPLzN954Yzp37pz//d//TZcuXdK6desceOCBefPNN/PWW2/lsMMOS5s2bdKlS5dK7Z88eXIGDBiQXXbZJVtvvXU6d+6c22+/fZH7DgBqI7XTsq+d3n333fTu3Ts77LBDttpqq+y88865+OKLM3ny5CSzhuL64osv8uijj841hNTf/va3HHnkkWndunV22223DB06dKHW/e23386JJ56Yjh07pl27djnllFPywQcfVGrXN998k7POOiu77rpr2rRpk0MPPTTPPvtspXlatmyZ3/zmN+nfv3+22267dOjQodz2K664IjvssEM6duyYc845p1Kt99JLL+Xwww9P27Zt0759+/To0SMfffTRIvcnAPwQqceWbj22IC+99FKOOuqobLfddunYsWP69euXr776qtI8n3zySU477bTstNNO2XbbbdOtW7e88cYbC1xn55Sg2PyCD2rA2WefnZdeeilnnXVWHn744SUe3uDNN9/MN998k/79+2fKlCkZMGBAunfvnjp16uS0007LiiuumPPPPz+/+tWv8tRTT5Vf9/XXX2fQoEHp169fVllllQwaNCjdunXLk08+mXXXXTfffvttjjzyyKy44or59a9/nRVXXDH//d//na5du+ahhx7KpptuWl7WjTfemHPOOSerrLJKttlmmyrbed555+Xxxx/Pz3/+82y//fYZMWJEBg8enHfeeSdDhw5Nz549s/baa+fmm2/OoEGDsskmm8x3vWfOnJnp06cnSaZNm5Z33nknw4YNy0EHHVS+An3KlCk59thjM3r06PTp0yfNmzfPww8/nJNOOilDhw7NjjvumCQ5/fTT8+KLL6ZPnz7ZaKONcv/99+fJJ5+c6z2HDx+eRo0aZfDgwZk4cWLq1q2bU045JW+99VZ69+6dVq1a5dVXX811112Xzz77LBdddFGS5KabbsoNN9yQo446Kn369Mlnn32W66+/Pm+99VYeeOCB8lAMX3/9dS6//PL06dMnK620Ui666KKcdtppadCgQU455ZSss8465eeff/75rLDCCrn00kvz5z//OWeeeWbWWGONvPDCC7nyyivTtGnTHHLIIQv7MQKAWkvttOxqp2+++SZdu3bNtttum8svvzwNGzbMCy+8kDvvvDPNmzdP9+7dM2jQoHTv3j1bbrllevbsmebNm5ffY8CAATnttNPyi1/8Ig888ECuuuqqbLrppunUqdM81/2VV17JSSedlI4dO+bSSy/NlClTcuutt+bII4/MAw88kE033TSjR4/OoYcemkaNGqVPnz5p1qxZHnnkkfTq1StXXnllDjjggPLyr7rqqnTp0iWDBg3Kc889l//+7//On//857Rq1SpXX3113nrrrdx4443ZZJNNctJJJ+Wzzz5Lz549c8ghh6Rv374ZP358Bg4cmO7du+d///d/U7eu62IBQD1W/fVYhTp16qRevXpVzv/YY4/lzDPPTJcuXXLyySdnzJgxueGGG3LEEUfk0Ucfzeqrr54PP/wwhx9+eDbeeOOce+65adCgQYYNG5Zjjz02d9xxR6Vh1edcZ+eUoOBKwDJz9NFHl44++uhSqVQqPfvss6UWLVqUBg4cWH6+U6dOpTPPPLP8uEWLFqUbbrih0jJuuOGGUosWLcqPzzzzzFKLFi1KH374YXnaeeedV2rRokXpL3/5S3na7bffXmrRokVp3LhxlV73t7/9rTzPN998U2rTpk3p8ssvL5VKpdLAgQNLrVu3Ln3++efleaZMmVLaY489SqeeemqpVCqVPvvss1KLFi1KZ5999nzX/YMPPii1aNGidOutt1aa/thjj5VatGhRev7550ulUqn08MMPl1q0aFH67LPP5rmsV155pdSiRYsq/+2+++6lr7/+ujzv/fffX2rRokXprbfeKk+bOXNmqWvXrqWDDz64VCqVSu+//36pRYsWpfvuu688z4wZM0r77rtvlX391Vdflac9//zzpRYtWpR+97vfVWrj4MGDSy1atCi9//77pbFjx5a23nrr0q9//etK87z++uulFi1alO65555SqfR/2/ZPf/pTeZ5bb7211KJFi9KDDz5Ynvb73/++1KJFi9KIESNKpVKptPfee5fOPffcSsseNGhQ6bnnnptnHwJAEaidln3t9OKLL5a6du1amjBhQqVldOnSpXTCCSeUH8/Z9xXtmL2emjhxYmmrrbYqXXrppfNd90MPPbS07777lqZPn16eNm7cuFKHDh1Kp512WqlUKpWuvPLK0lZbbVWpb0ulUunYY48t7bTTTqUZM2aUSqVZn4HDDjus/Pz06dNL2267bWn33XcvTZs2rdL69OjRo1QqlUq/+93vSi1atKjUD3/7299KAwcOnKsfAGB5ox6rnnqs4j2r+rf11luX55t9WTNmzCjttNNOlWqwUqlU+vTTT0tbbbVV6YorriiVSqXSL37xi1LHjh0r1S3Tpk0r7b333qVDDjlkvuvsnBIUm0sRoYbsvvvuOeCAAzJ06ND885//XKJlNWnSpNIVSGussUaSVLr6qGnTpkmS8ePHl6dtsMEGadOmTfnxmmuumW233Tavv/56kuTll1/OFltskbXWWivTp0/P9OnTU7du3eyyyy75y1/+UqkNW2yxxXzb+NprryVJ9ttvv0rT99tvv9SrVy+vvvrqwq5u2QUXXJCHHnooDz30UO67775cccUVadSoUQ499NB8+eWX5XVYc801s9VWW5XXYcaMGenUqVP+8Y9/ZNy4cRk+fHiSWdukQt26dbP33nvP9Z5NmzbN2muvXWm96tevn86dO1ear+Iq8tdeey1vvfVWpk6dmi5dulSaZ/vtt896661X7psK7dq1K/+9MNuyY8eOeeCBB/Lzn/8899xzTz777LP06tWryps2A0BRqZ1Sfrw0a6ef/OQnueeee9KoUaN8+OGHefbZZ3PzzTfn22+/zdSpUxf4Httvv3357xVXXDFrrLFGpT5MKq/7xIkT8/bbb2efffapdOV648aN06lTp3I/vPbaa2nbtm3WW2+9Sss64IADMmrUqPzrX/8qT2vbtm3573r16qVZs2bZaqutUr/+/w1g07Rp00yYMCHJrO1e0Q+XXHJJXnzxxbRq1Sp9+vRxX0IAmI16LOXHi1uP9e7du1yPVfz77W9/W+W8H3/8cUaNGjXX+aQNN9wwbdu2rVQnderUqVLdUr9+/ey33375xz/+ke+//748fc51dk4Jis0QnVCDzj333Lz88svl4Q0W17xOPKy00krzfV1F8TS71VdfvTyO99ixY/Ppp59mq622qvL1kyZNWuj3qrjX3Jprrllpev369dOsWbPyCZZFsckmm6R169blxxX3Wdlzzz1zxx135Nxzz83YsWMzatSoea7DqFGjym1r1qxZpefmbGuSrLzyynOtV7NmzeYaSqHitRMmTCgvv6r+XmONNeZa96q254orrlhl+5PknHPOydprr50nnngiF110US666KK0bds2AwYMSKtWreb5OgAoGrXT0q+dZs6cmYEDB+bee+/NxIkTs84666RNmzZp1KjRQr3HnDVL3bp1UyqVKk2bfd0nTJiQUqm0wDpp3Lhx2WCDDaqcJ6l84q+q7Tu//l5//fVzzz33ZMiQIXnooYcybNiwNG7cOEcddVR++ctfpk6dOvN8LQAsb9RjS1aPrbfeepXqsfkZO3ZsknmfT6q4r+C4cePmOU+pVMp3331XnjbnOjunBMUm4IMa1KRJkwwYMCC9evXKTTfdVOU8M2bMqPR44sSJ1fb+FYXK7EaNGpXVVlstSbLqqqumQ4cOOeOMM6p8/aKMt96kSZPy8me/8nratGkZM2bMXOHa4lp33XWz2mqr5ZNPPkkyax023njjXH311VXOv/7665ffe/To0Vl33XXLz1UUUvPTpEmTjBkzJjNmzKgU8n3zzTdJZoWGFes+evTo/OhHP6r0+lGjRlV5smpRNGzYMD169EiPHj3y5Zdf5rnnnstNN92Ufv36VRqnHgCKTu209GunIUOG5K677soFF1yQvfbaK6uuumqS5NBDD62W95vTqquumjp16mT06NFzPTdq1KjylftNmjTJqFGjqpwnmftCrUXVpk2bDBo0KFOnTs0bb7yR+++/P7fccktatWqVffbZZ4mWDQA/JOqx6q/H5qWiDppXnVTx/k2aNJnnPMmsOqniPNWcnFOCYjNEJ9SwPffcM126dMmQIUPy7bffVnpulVVWyciRIytN++tf/1pt7/3xxx/n3//+d/nxV199lTfffDMdO3ZMknTo0CEff/xx+Wrvin+PP/54HnrooXneALgqFTf0nbM4eOqppzJjxoxst9121bBGyeeff55vv/02G2+8cfl9v/rqq6y++uqV1uGll17K0KFDU69eveywww5Jkt///veVlvXcc88t8P06dOiQ6dOnz/XaJ554IsmsK+O32WabNGzYML/73e8qzTN8+PB8+eWXlYbkXFSTJ0/O3nvvnTvuuCPJrJN0Xbt2zX777VceagsAfkjUTku3dnrjjTey2Wab5ZBDDimHeyNHjsz777+fmTNnll9Xt271HEqutNJK2XrrrfPMM89UOhk4YcKEPP/88+X1bN++fd5888188cUXlV7/xBNPZM0118xGG2202G2466670qlTp0ydOjUNGzbMjjvumIsuuihJ1FMAUAX1WPXWY/OyySabZM0115zrfNJnn32Wt956q3w+qX379nnuuecq/VJvxowZeeqpp9K6det5hprOKUHx+QUf1AK//vWv88orr8x1tc1uu+2Wp556Kttss0022mijPPLII/n000+r7X0bNWqUHj16pE+fPpkxY0auv/76NG3aNMcee2yS5Ljjjsvjjz+e4447LieccEKaNWuWp59+Og888EDOOuusRXqvzTbbLD/96U9zww03ZNKkSWnfvn3eeeedDBo0KB07dszOO++8yO3/8MMPy8NFlUqlfPnllxk8eHAaNWqUo48+Okly8MEH55577snxxx+fU045Jeuss07+8pe/5LbbbsvRRx+dBg0aZKONNsoRRxyRa6+9NtOnT88WW2yRxx9/PO+9994C27DLLrukY8eOOffcczNy5Mi0atUqr732Wm677bb89Kc/zWabbZYk6d69ewYPHpwGDRqkU6dO+fzzz3P99deX+2VxrbDCCtlqq60yaNCgNGjQIC1btszHH3+cRx99tMp7CALAD4HaaenVTm3atMlNN92UIUOGZNttt82nn36aW2+9NVOnTq00pFXjxo0zYsSIvPbaa5Xug7M4+vXrlxNPPDHdu3fPUUcdlWnTpmXIkCGZOnVqevXqlSQ5/vjj88QTT+S4445L796907Rp0zz22GN55ZVXcumlly5R4LjDDjvk6quvTq9evXL00UenXr16+e1vf5uGDRumU6dOS7RuAPBDpR5bvHpsUdStWzd9+/bNWWedlX79+uWAAw7ImDFjMmjQoDRp0iTHH398kln39XvhhRdyzDHHpHv37mnQoEH5fnpDhw6d5/KdU4LiE/BBLdC0adMMGDAgvXv3rjT9rLPOyvTp03PFFVekfv362XfffdOvX7+ce+651fK+W265Zfbee+8MGDAgEyZMyI477pizzz67PKzBWmutld/+9re55pprMmDAgEyZMiUbb7xxLrnkksUapumSSy7JRhttlIcffji33XZbmjdvnmOOOSY9e/ZcrJMyF154YfnvunXrpmnTptl2221z1VVXla9CX2mllXLvvffmmmuuyVVXXZUJEyZkvfXWS79+/XLCCSeUX3/++ednjTXWyD333JNx48Zl5513zimnnJLrrrtuvm2oU6dObr311txwww2566678u2332b99ddP3759y4VWkpx66qnl5d9///1p2rRpOnfunF/+8pcLHPN9Yfrhuuuuyx133JFRo0Zl9dVXz6GHHppf/OIXS7RcAKit1E5Lr3Y6+eSTM2bMmAwbNiyDBw/OOuuskwMPPLBc84wfPz6NGzfOCSeckEsvvTQnnnhi7rzzzkVuy+x23HHH3HnnnbnhhhvSt2/fNGzYMNtvv32uuOKKbL755klm3fvmN7/5Ta655ppcfPHFmTZtWlq1apWbbrope+yxxxK9f6tWrXLLLbdk8ODB6du3b2bMmJGtt946d9xxx1zDqwMAs6jHFq8eW1QHH3xwVl555dx6663p1atXVlllley8887p27dv+d6Am2++ee67774MHDgwZ511VurUqZM2bdpk2LBh2X777ee7fOeUoNjqlOa84zkAAAAAAABQa7kHHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTAB/D/tWcHJAAAAACC/r9uR6A3BAAAAACAEcEHAAAAAAAAIwF9GMt7713oOAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "# Create subplots\n", + "fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 6))\n", + "\n", + "# Box plot for bedrooms\n", + "sns.boxplot(x=housing_data_encoded['bedrooms'], ax=axes[0])\n", + "axes[0].set_title('Distribution of Bedrooms')\n", + "axes[0].set_xlabel('Number of Bedrooms')\n", + "\n", + "# Box plot for bathrooms\n", + "sns.boxplot(x=housing_data_encoded['bathrooms'], ax=axes[1])\n", + "axes[1].set_title('Distribution of Bathrooms')\n", + "axes[1].set_xlabel('Number of Bathrooms')\n", + "\n", + "# Box plot for floors\n", + "sns.boxplot(x=housing_data_encoded['floors'], ax=axes[2])\n", + "axes[2].set_title('Distribution of Floors')\n", + "axes[2].set_xlabel('Number of Floors')\n", + "\n", + "# Adjust layout\n", + "plt.tight_layout()\n", + "\n", + "# Show plots\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Interpretation:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### b.) Bivariate Analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "price_range\n", + "300K-600K 10782\n", + "600K-1M 4796\n", + "100K-300K 4531\n", + "1M-2M 1260\n", + "2M-5M 191\n", + "70K-100K 30\n", + "5M-8M 7\n", + "Name: count, dtype: int64\n" + ] + } + ], + "source": [ + "# Define the labels with ranges\n", + "labels = [\"70K-100K\", \"100K-300K\", \"300K-600K\", \"600K-1M\", \"1M-2M\", \"2M-5M\", \"5M-8M\"]\n", + "\n", + "# Cut the data into the specified ranges and assign labels\n", + "housing_data_encoded[\"price_range\"] = pd.cut(housing_data_encoded.price,\n", + " bins=[70000, 100000, 300000, 600000, 1000000, 2000000, 5000000, 8000000],\n", + " labels=labels)\n", + "\n", + "# Count the occurrences of each category\n", + "counts = housing_data_encoded['price_range'].value_counts()\n", + "print(counts)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorssqft_abovesqft_basement...grade_5 Fairgrade_6 Low Averagegrade_7 Averagegrade_8 Goodgrade_9 Betterhouse_agerenovation_agetotal_sqftpricerangeprice_range
1148532602002002014-10-30580000.032.25167074161.01220450.0...FalseFalseTrueFalseFalse500.010756.0300K-600K300K-600K
307586514012702015-05-04203000.031.0084065001.08400.0...FalseTrueFalseFalseFalse550.08180.0100K-300K100K-300K
1408313388003652014-05-071500000.062.50356064802.535600.0...FalseFalseFalseFalseFalse1100.013600.01M-2M1M-2M
1951533038503602014-06-251280000.043.504660173982.046600.0...FalseFalseFalseFalseFalse210.026718.01M-2M1M-2M
872252498047602015-05-05479500.021.0093057601.0730200.0...FalseTrueFalseFalseFalse1070.07620.0300K-600K300K-600K
\n", + "

5 rows × 41 columns

\n", + "
" + ], + "text/plain": [ + " id date price bedrooms bathrooms sqft_living \\\n", + "11485 3260200200 2014-10-30 580000.0 3 2.25 1670 \n", + "3075 8651401270 2015-05-04 203000.0 3 1.00 840 \n", + "14083 1338800365 2014-05-07 1500000.0 6 2.50 3560 \n", + "19515 3303850360 2014-06-25 1280000.0 4 3.50 4660 \n", + "8722 5249804760 2015-05-05 479500.0 2 1.00 930 \n", + "\n", + " sqft_lot floors sqft_above sqft_basement ... grade_5 Fair \\\n", + "11485 7416 1.0 1220 450.0 ... False \n", + "3075 6500 1.0 840 0.0 ... False \n", + "14083 6480 2.5 3560 0.0 ... False \n", + "19515 17398 2.0 4660 0.0 ... False \n", + "8722 5760 1.0 730 200.0 ... False \n", + "\n", + " grade_6 Low Average grade_7 Average grade_8 Good grade_9 Better \\\n", + "11485 False True False False \n", + "3075 True False False False \n", + "14083 False False False False \n", + "19515 False False False False \n", + "8722 True False False False \n", + "\n", + " house_age renovation_age total_sqft pricerange price_range \n", + "11485 50 0.0 10756.0 300K-600K 300K-600K \n", + "3075 55 0.0 8180.0 100K-300K 100K-300K \n", + "14083 110 0.0 13600.0 1M-2M 1M-2M \n", + "19515 21 0.0 26718.0 1M-2M 1M-2M \n", + "8722 107 0.0 7620.0 300K-600K 300K-600K \n", + "\n", + "[5 rows x 41 columns]" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "housing_data_encoded.sample(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAJYCAYAAADmEJ6pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACNpElEQVR4nOzdd1yV5f/H8fdhL1FxbxEDt5JgWe7KLM1SMkvJ3GaaK3OUe+DChXvPzJGmmZajbGg5wERLrcyRGweisuHcvz/8cb6SVmDgOcLr+Xj0SO5xnc/NxYH7fe7rvm6TYRiGAAAAAABWZWftAgAAAAAAhDMAAAAAsAmEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwCwAYZhWLsEZBJ9BgDIag7WLgAAHkWDBg3Sp59++o/b1KpVSytWrPjHbW7evKkxY8aoVatWCgwMzNTr79+/X19//fU/brdhwwatXbtWv/32m1JTU1WyZEk1btxYnTp1koeHR4Zfz5bNmDFDM2fO/Nv1AwYMUKdOnbL0NWfPni0nJyd17tw5S9t9UOfOndMzzzyjcePGqWXLllna9ptvvqn9+/enW+bo6KiCBQuqYcOG6tOnj/LmzWuV2u73On/l6OiovHnzyt/fX++99568vb2zrQYA+K8IZwDwAN555x29/vrrlq9nz56to0ePpgsJGQk/x44d06ZNmxQUFJTlNc6cOVNz585Vx44d1b17dzk6Ournn3/WwoUL9f333+vjjz+Wo6Njlr+utaxZs+a+y4sXL57lrzV9+nT17Nkzy9u1VZUqVdLw4cMtXycnJ+uXX37RlClTdOzYMX388ccymUz33bdw4cJas2aNSpcu/VBq7d69uxo0aGD5Oj4+Xr/88ovlvfDll1/K2dn5odQCAJlFOAOAB1C6dOl0J5teXl5ycnJSjRo1rFfUXZKSkrRgwQJ16tRJffv2tSx/6qmnVK5cOfXo0UM7d+7UCy+8YMUqs5atfO9zIg8Pj3u+v4GBgYqNjVVYWJgiIyP/9vv/sN8XpUuXvuf1ateuLXd3d40YMUJ79+5V/fr1H1o9AJAZ3HMGANloz549atOmjWrWrKknnnhC7733ni5evChJ2rdvn9q1aydJateund58801JUmpqqubPn69mzZqpWrVqqlGjhl5//XXt3bs3w697+/ZtJSQkyGw237Oufv366tu3r0qVKmVZduPGDQ0cOFC1atVSrVq1FBISorCwMDVq1MiyTaNGjTRo0KB0bW3YsEF+fn46d+6cZdnOnTvVpk0b+fv7q0qVKmrSpIk++ugjy/p9+/bJz89Pq1evVsOGDfX4449rz549kqTw8HAFBwerevXqqlWrlgYOHKjr169n+Lj/zT/1R5rTp0+rV69eevrpp1WjRg29+eabioiIsKz38/OTdOfKZNq/M3LckvTHH3+oS5cuevzxx/XUU09p6tSpGjx4sKXvJclsNmv+/Pl67rnnVKVKFT3//PP/Ojw2zeXLl9WtWzdVq1ZN9evXV1hYmFJTUyVJEyZMULVq1XTr1q10+8yePVs1a9ZUfHx8hl7jblWqVJEkXbhwQdKdIZD9+/dXr169VKNGDXXo0EHnzp2Tn5+fNmzYYNnv5MmT6tmzp2rVqqXAwEB169ZNf/zxh2V9YmKiJk6cqPr166tKlSp66aWXtHXr1kzXdzdPT897lh04cECdOnVSYGCgqlSpokaNGmnGjBmW901a7V988YV69eolf39/1apVS0OGDFFcXJylneTkZIWGhqpevXqqVq2aOnXqpI0bN97z3sjun28Ajz7CGQBkk40bN6pjx44qVqyYpkyZosGDB+unn35S69atde3aNVWuXFnDhg2TJA0bNswybCw0NFSzZ89W69attXDhQo0ePVo3btxQ7969M3wC7eXlperVq2vRokUaOHCgdu7caTkJdHR01Ntvv205sTabzercubO+++47vf/++woJCdGhQ4e0cuXKTB/zN998ox49eqhy5cqaPXu2ZsyYoVKlSmnUqFGKjIxMt+3MmTM1cOBADRs2TP7+/jpw4IDat28vFxcXTZs2TR988IH279+vdu3aKSEh4V9fOyUl5Z7/7g6n/9YfknTixAm1bNlS586d05AhQxQaGiqTyaS33nrLct9V2vDJV1991fLvjBz39evXFRwcrIsXL2rcuHEaMmSIvvzyS33++efpjmPEiBEKCwtT8+bNNXfuXDVp0kQhISGaNWvWv34PZsyYoQIFCmjWrFkKCgrS3LlzNWHCBEu9iYmJ+vLLL9Pts2nTJr344otydXX91/b/6tSpU5KULuh/8cUXcnd315w5c+57T97ly5fVunVrnT59WiNGjNCkSZN09epVvfXWW7px44YMw1CPHj20evVqdejQQXPmzJG/v7/69u2rjRs3/mtNZrM53c/A7du3tWfPHk2ePFklSpRQQECAJOn48eNq37698uXLp6lTp2rOnDkKCAjQzJkz9cUXX6Rrc/jw4SpRooRmz56tTp066ZNPPtGcOXMs64cNG6Zly5YpODhYs2bNUsGCBTV06NB0bfzXn28AuYQBAPjPBg4caDRs2NDydWpqqvH0008bHTt2TLfdmTNnjMqVKxsTJkwwDMMw9u7da/j6+hp79+61bNOvXz9j6dKl6fbbtm2b4evra/z000/3fb37uXjxovHmm28avr6+hq+vr+Hn52c0a9bMmD59unHjxg3Ldl9//bXh6+tr7Nq1y7Ls1q1bRq1atdK9RsOGDY2BAweme43169cbvr6+xtmzZw3DMIwFCxbcs010dLTh6+trzJs3L90xz5o1K912rVu3Npo1a2akpKRYlp08edKoWLGisXLlyr89zrCwMMsx/vW/oUOHGoaR8f7o3bu38cQTTxi3bt2ybJOcnGw8//zzRlBQkGWZr6+vERYWZvk6I8c9bdo0o2rVqsalS5cs25w7d86oXLmyERwcbDlePz8/yz5ppk6dalStWtW4fv36fb8HZ8+eNXx9fY2uXbumWz527FijcuXKRnR0tGEYd77Hbdu2tayPiIgwfH19jYMHD963XcMwjODgYKNt27ZGcnKy5b+rV68aW7duNWrVqmW0bt3aMJvNlm2rV69uJCYm3lPb+vXrDcMwjPHjxxvVqlUzoqKiLNtcvHjRaNCggfHNN98Yu3fvNnx9fY0tW7akq6N///7G008/bSQnJ//j9+B+/9WoUcPo0aOH8eeff1q2//TTT43OnTsbqamplmWpqalGzZo1LT83aW32798/3Wu9+eabRrNmzQzDuPMz5OfnZyxevDjdNh07dkz33njQn28AuQv3nAFANjh16pSuXLmi9957L93y0qVLy9/f/57Z7+42efJkSXeutJw8eVJnzpzRrl27JN25lyyjihYtquXLl+vEiRP67rvvtG/fPh04cECzZs3S2rVrtXLlSpUtW1bh4eFydHRUvXr1LPt6eHioUaNG2rdvX2YO23KlJDY2VqdOndKff/6pI0eO3Lf2ihUrWv4dHx+vyMhIderUSYZhKCUlRdKdKzI+Pj7as2eP2rZt+4+v/cknn9yzrECBApIy3h/79+9Xw4YN003m4uDgoKZNm2rWrFmKjY2Vu7v7Ax333r175e/vryJFilj2K1GihPz9/S1f7927V4ZhqFGjRpbvgXRnSOmcOXMUERGhZ5999m+/B3+9h7Bx48ZatmyZIiMjVb9+fQUFBWno0KE6f/68SpQooU8//VTe3t7parifAwcOqHLlyumW2dnZ6amnntKoUaPSTQZSrlw5OTk5/W1bERERqlGjhgoVKmRZVrRoUcvPeNrVyvr169/zPfjss8/0+++/p/vZ+auePXuqQYMGMgxDBw4c0LRp09S0aVONGDFCDg7/O+155ZVX9MorrygxMVGnTp3SmTNndOzYMaWmpio5OTldm3+9h61o0aI6f/68pDvDdA3DUJMmTdJt06xZM+3evVtS1vx8A8gdCGcAkA1u3LghSSpYsOA96woWLKijR4/+7b5HjhzRyJEjdeTIEbm6uqp8+fKWGQeNB3i2Vvny5VW+fHl17NhRycnJ2rBhg0aNGqUpU6YoLCxMMTExypcvn+zs0o90L1y4cKZf6/r16xo+fLh27twpk8mkMmXKWIaR/bV2Nzc3y79v3rwps9msBQsWaMGCBfe0m5HZ9apWrfq36zLaHzExMX+7jWEYun379n3DWUaO+/r16/cEnLS2r169mq7Opk2b3vc4Ll++/LfHKCld4JHuDG9NOy5JevHFFxUSEqJNmzapU6dO+uKLL9S1a9d/bFOSKleurJEjR0qSTCaTnJ2dVaxYsfvOSHq/78/dbty4oZIlS/7jesMw9Pjjj993fVRU1D+GsxIlSlh+FqpVq6b8+fNr8ODBsre3txyDJCUkJGj06NHatGmTUlJSVLJkSfn7+8vBweGen9W/Dvm0s7NL16/S/z4ISHP311nx8w0gdyCcAUA2yJcvnyRZTrrvduXKFeXPn/+++92+fVudO3eWn5+ftmzZonLlysnOzk7ffvuttm3bluHXX7ZsmebMmaNdu3alO7F0dHRU69at9e233+rEiROSpPz58ys6Olqpqamyt7e3bJsWFO6WNrlEmrsnRZCk/v376+TJk1q6dKn8/f3l5OSk+Ph4rV279h/rdXd3l8lkUvv27e8bTB7kfqi7ZbQ/8ubN+7fbSPrbfsvIcRctWvS+bafd7yb9b9KKZcuW3Tfk/NtjAdJCWJq010sLCu7u7mrSpIm++OIL+fr6Ki4uTi+//PI/tpm23z+F38zIkyfPfSfB+PHHH1WyZEnlyZNHbm5uWr58+X33L1OmTKZer2XLltq2bZtWr16t5557TnXq1JEkjR07Vtu2bdO0adP01FNPWT4sqF27dqbaT7sSevXq1XT9c/cxZvfPN4CcgwlBACAbeHt7q1ChQvdM9nD27FkdOnTIclXg7jAk3ZnF7saNG2rXrp3Kly9vuZr13XffSdJ9Z1+8n/Llyys6Ovq+s/ylpqbq7Nmz8vX1lXRnev2UlBTt3LnTsk1ycrK+//77dPt5eHjo0qVL6ZbdPYth2teNGzfWE088YRnalpHaPTw8VKlSJZ08eVJVq1a1/PfYY49pxowZmR5e+VcZ7Y/AwEDt2rVLt2/ftmyTmpqqLVu2qGrVqpZj+utVxowcd2BgoA4dOmQJetKdq0CHDh2yfJ12tS06Ojrd9+H69euaPn36fQPz3b755pt0X2/ZskWurq6qXr26Zdmrr76q3377TcuWLdNTTz2VbpjlwxAQEKDIyMh04eXatWvq3Lmzvv32W9WqVUtxcXEyDCPd9+C3337TrFmz0g11zKihQ4fK2dlZY8aMsQxZjIiI0BNPPKFnn33WEsx+/vlnXb9+PcPvM0mqWbOm7O3ttWPHjnTLt2/fbvl3dv98A8g5uHIGANnAzs5O/fr10+DBg/Xee++pefPmio6O1syZM5U3b1516NBB0p2rCNKdk+q8efPK29tbHh4emjt3rhwcHOTg4KBt27ZZ7qfK6GyNTz/9tJo1a6YpU6bo119/1fPPPy8vLy9dunRJq1ev1qVLlzRt2jRJd64U1K9fX0OGDNHVq1dVsmRJrVy5UhcuXEh3JaBhw4aaN2+e5s2bp+rVq+vrr7++Z3r/atWqafPmzapcubKKFi2qgwcPav78+TKZTP9ae79+/dS1a1fL9ys1NVWLFy9WZGSk3nnnnQwd99/JaH/07NlT3333ndq1a6euXbvK0dFRK1eu1NmzZ7Vw4UJLe56enjp48KAOHDiggICADB13u3bt9NFHH6lTp07q0aOHpDvT2CcnJ1vu2fLz81Pz5s0t94VVqVJFp06d0tSpU1WyZEmVLVv2H49z+/btKlKkiJ566int3r1ba9asUe/evdMNP6xZs6a8vb21f/9+TZ069T99Xx9E+/bttXHjRnXu3FndunWTo6Oj5syZo6JFi+qll15Snjx5FBgYqHfeeUfvvPOOfHx8dPjwYYWFhalu3bqWoZqZUbJkSXXq1EmzZ8/WsmXL1LlzZ1WrVk1ffPGFPv74Y/n4+Oj48eOaM2dOhn5W71aqVCkFBQVpypQpSk5OVoUKFbRjxw7LPXRpQT47f74B5ByEMwDIJi1btpS7u7vmzZunHj16yMPDQ3Xr1lW/fv0s9wY99thjatasmT766CN9//33+vzzzzV79mxNnDhRvXv3lru7uypWrKiVK1eqS5cuCg8PT/fssX8yadIk1apVS5999pnluUxeXl56+umnNW7cuHTTn4eFhWny5MmaMWOGEhMT1bRpUzVp0kSHDx+2bNOtWzddv35dixYtUnJysho0aKCxY8eqe/fulm3Gjx+v0aNHa/To0ZKksmXLauTIkfrss88UHh7+j/XWqVNHixYt0syZM9WrVy85OjqqcuXKWrJkSZY8xDij/bFq1SrLVPsmk0nVqlXT8uXLLVe1JOntt9/W7Nmz1aVLF23dujVDx+3p6anly5dr7NixGjBggNzd3dWmTRu5urqmu/9u3LhxmjdvniVEFyhQQC+++KL69Olzz5XWv/rwww+1ZcsWLV26VIUKFdIHH3xgeZbe3Ro0aKDr16//4+Qi2aVYsWJatWqVJk2apEGDBsnJyUlPPPGEpk6dqrx580qS5s+fr+nTp2vevHm6du2aihQpog4dOlhC7YPo2rWrNm7cqNmzZ6t58+YaNGiQkpOTNW3aNCUlJalkyZLq3r27Tpw4oa+//vqeIbz/ZOjQoXJzc9PixYt1+/Zt1a5dW927d9esWbMsfZvdP98AcgaT8SB3lwMAcrxBgwZp//79+vrrr61dSo4QGRmpGzduqH79+pZlKSkpatCggZo2barBgwc/lDoMw1DTpk1Vp04dffDBBw/lNXOyGzdu6LvvvlPdunXT3ZM4YcIEbdiwgSGLADKFK2cAADwEFy5cUN++fdWjRw/VqlVL8fHxWrNmjW7duqXXXnst21//9u3bWrp0qY4cOaKzZ8/qzTffzPbXzA1cXV01duxYVaxYUW+99Zbc3NwsD3Hv1q2btcsD8IghnAEA8BC88MILunHjhlatWqVFixbJ0dFR1atX18qVK+Xj45Ptr+/i4qLVq1fLbDYrJCQk3bBWPDhnZ2ctXbpU06ZN06BBgxQfH6/SpUtr4MCBPLsMQKYxrBEAAAAAbABT6QMAAACADSCcAQAAAIANIJwBAAAAgA1gQpBs8NNPP8kwDDk6Olq7FAAAAABWlJycLJPJJH9//3/dlnCWDQzDEPOsAAAAAMhMLiCcZYO0K2ZVq1a1ciUAAAAArOnIkSMZ3pZ7zgAAAADABhDOAAAAAMAGEM4AAAAAwAYQzgAAAADABhDOAAAAAMAGEM4AAAAAwAYQzgAAAADABhDOAAAAAMAGEM4AAAAAwAYQzgAAAADABhDOAAAAAMAGEM4AAAAAwAYQzgAAAADABhDOAAAAAMAGEM4AAAAAwAYQzgAAAADABhDOAAAAAMAGEM4AAAAAwAYQzgAAAADABhDOAAAAAMAGEM4AAACAHMhsNqxdQo6WHd9fhyxvMZMuX76sevXq3bN83LhxatmypY4dO6axY8fq559/lpeXl9q3b6927dpZtjObzZo5c6bWrVunW7duKTAwUMOGDVOpUqUs22RFGwAAAMCjxM7OpFkf79H5qBhrl5LjlCicVz3eeDrL27V6ODt+/LicnZ21c+dOmUwmy/I8efIoOjpaHTp0UKNGjTRy5EgdOnRII0eOlLu7u4KCgiRJs2fP1qpVqzR+/HgVLVpUkyZNUufOnbV582Y5OTllSRsAAADAo+h8VIxOn4+2dhnIIKuHs99++01ly5ZV4cKF71m3bNkyOTo6atSoUXJwcJCPj4/OnDmj+fPnKygoSElJSVq8eLH69++vBg0aSJKmTp2qunXravv27WrWrJnWrl37n9sAAAAAgOxm9XvOfv31V/n4+Nx3XXh4uGrVqiUHh/9lyCeffFKnT5/W1atXdfz4ccXGxqp27dqW9Z6enqpUqZIOHDiQZW0AAAAAQHaziStn+fPnV9u2bXXq1CmVKVNG3bt3V7169XTp0iX5+vqm2z7tCtvFixd16dIlSVKxYsXu2SZtXVa08SAMw1BcXNwD7w8AAAA8KJPJJFdXV2uXkePFx8fLMP55YhDDMNLdvvVPrBrOUlJSdPLkSZUvX16DBg2Sh4eHtmzZoq5du2rJkiVKSEi4554vZ2dnSVJiYqLi4+Ml6b7bxMTcufExK9p4EMnJyTp27NgD7w8AAAA8KFdXV1WqVMnaZeR4p06dsuSJf5LReSysGs4cHBy0b98+2dvby8XFRZJUpUoV/f7771q0aJFcXFyUlJSUbp/ExERJkpubm2WfpKQky7/Ttkn7pCAr2ngQjo6OKl++/APvDwAAADyojF6pwX/j7e39r1fOTpw4keH2rD6s0d3d/Z5ljz32mHbv3q2iRYsqKioq3bq0r4sUKaKUlBTLstKlS6fbxs/PT5KypI0HYTKZ5Obm9sD7AwAAALBtGbmYk5mgbNUJQX7//Xc9/vjj2rdvX7rlP//8s8qXL6/AwEBFREQoNTXVsm7v3r3y9vZWgQIFVKFCBXl4eKTb/+bNmzp69KgCAwMlKUvaAAAAAIDsZtVw5uPjo3LlymnUqFEKDw/XH3/8oXHjxunQoUPq3r27goKCdPv2bX344Yc6ceKENmzYoKVLl6pbt26S7ozdDA4OVmhoqL766isdP35cffv2VdGiRdW4cWNJypI2AAAAACC7WXVYo52dnebOnavJkyerT58+unnzpipVqqQlS5ZYZlhcuHChxo4dqxYtWqhQoUIaMGCAWrRoYWmjV69eSklJ0ZAhQ5SQkKDAwEAtWrRIjo6OkqQCBQr85zYAAAAAILuZjH+7gw2ZduTIEUlS1apVrVwJAAAAcrMPpm/V6fPR1i4jxylbIr9Cer+YoW0zkw2s/hBqAAAAAADhDAAAAABsAuEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGyATYWzU6dOyd/fXxs2bLAsO3bsmIKDg1WjRg01atRIy5cvT7eP2WxWWFiY6tatqxo1aqhLly46e/Zsum2yog0AAAAAyE42E86Sk5PVv39/xcXFWZZFR0erQ4cOKl26tNavX68ePXooNDRU69evt2wze/ZsrVq1SqNHj9bq1atlNpvVuXNnJSUlZVkbAAAAAJDdbCaczZgxQx4eHumWrV27Vo6Ojho1apR8fHwUFBSk9u3ba/78+ZKkpKQkLV68WL169VKDBg1UoUIFTZ06VZcuXdL27duzrA0AAAAAyG42Ec4OHDigNWvWaPz48emWh4eHq1atWnJwcLAse/LJJ3X69GldvXpVx48fV2xsrGrXrm1Z7+npqUqVKunAgQNZ1gYAAAAAZDeHf98ke928eVMDBgzQkCFDVKxYsXTrLl26JF9f33TLChcuLEm6ePGiLl26JEn37Fe4cGHLuqxo40EYhpFuiCYAAADwsJhMJrm6ulq7jBwvPj5ehmH84zaGYchkMmWoPauHsxEjRsjf318vvfTSPesSEhLk5OSUbpmzs7MkKTExUfHx8ZJ0321iYmKyrI0HkZycrGPHjj3w/gAAAMCDcnV1VaVKlaxdRo536tQpS574J3/NGn/HquFs48aNCg8P1+bNm++73sXF5Z5JORITEyVJbm5ucnFxkXTnvrG0f6dtk/ZJQVa08SAcHR1Vvnz5B94fAAAAeFAZvVKD/8bb2/tfr5ydOHEiw+1ZNZytX79e165dU4MGDdItHz58uLZu3aqiRYsqKioq3bq0r4sUKaKUlBTLstKlS6fbxs/PT5KypI0HYTKZ5Obm9sD7AwAAALBtGbmYk5mgbNVwFhoaqoSEhHTLGjdurF69eql58+batGmTVq9erdTUVNnb20uS9u7dK29vbxUoUEB58uSRh4eH9u3bZwlWN2/e1NGjRxUcHCxJCgwM/M9tAAAAAEB2s+psjUWKFFGZMmXS/SdJBQoUUJEiRRQUFKTbt2/rww8/1IkTJ7RhwwYtXbpU3bp1k3Rn7GZwcLBCQ0P11Vdf6fjx4+rbt6+KFi2qxo0bS1KWtAEAAAAA2c3qE4L8kwIFCmjhwoUaO3asWrRooUKFCmnAgAFq0aKFZZtevXopJSVFQ4YMUUJCggIDA7Vo0SI5OjpmWRsAAAAAkN1Mxr/dwYZMO3LkiCSpatWqVq4EAAAAudkH07fq9Ploa5eR45QtkV8hvV/M0LaZyQY28RBqAAAAAMjtCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADHB50x5iYGIWHhysqKkrPP/+8bty4IW9vb5lMpqysDwAAAAByhQcKZ3PmzNG8efOUkJAgk8mkatWqadq0aYqOjtbixYvl6emZ1XUCAAAAQI6W6WGNK1eu1IwZM9ShQwetXbtWhmFIkoKDg3X27FlNnz49y4sEAAAAgJwu0+FsxYoV6tq1q3r37q3KlStbltevX199+vTR119/naUFAgAAAEBukOlwduHCBdWqVeu+68qVK6erV6/+56IAAAAAILfJdDgrVqyYfvrpp/uu+/nnn1WsWLH/XBQAAAAA5DaZnhDk1Vdf1YwZM+Ti4qIGDRpIkuLi4rRt2zbNmzdPHTp0yOoaAQAAACDHy3Q469Kli86dO6fQ0FCFhoZKktq1aydJeumll9StW7esrRAAAAAAcoFMhzOTyaRRo0apQ4cO2rt3r2JiYpQnTx4FBgbK19c3O2oEAAAAgBzvgR9C7e3tLW9v76ysBQAAAAByrUyHszfffFMmk+m+6+zs7OTm5qYyZcqoVatWKleu3H8uEAAAAAByg0zP1liqVCkdOnTIMmNjwYIFZTKZFBkZqQMHDuj69ev6/PPPFRQUpKNHj2Z5wQAAAACQE2X6ylmhQoVUvHhxLV68WMWLF7csj4qKUteuXVWvXj1169ZNPXv21LRp0zR//vwsLRgAAAAAcqJMXzlbv369evfunS6YSVLhwoXVvXt3rVq1Svb29mrdurUiIyOzrFAAAAAAyMkyHc7i4+Pl6Oh433Umk0mxsbGSJDc3NyUlJf236gAAAAAgl8h0OHv88cc1ffp0Xb16Nd3ya9euadasWfL395ck7d+/X6VLl86aKgEAAAAgh8v0PWeDBw9W27Zt9eyzz8rf319eXl66du2aDh06JHd3d02ZMkXfffedZs2apREjRmRDyQAAAACQ82T6ylm5cuW0detWdejQQYmJifrll18kSV26dNGXX34pHx8f5cuXT1OnTlXr1q2zvGAAAAAAyIke6CHU+fPnV+/evf92fbVq1VStWrUHLgoAAAAAcpsHCmeHDx/Wvn37lJSUJMMwJEmGYSguLk4RERFau3ZtlhYJAAAAADldpsPZRx99pDFjxlhC2d3s7OxUp06dLCkMAAAAAHKTTN9ztnLlStWrV0/79u1Tx44d9dprr+nQoUOaPn26nJ2d1bx58+yoEwAAAABytEyHs3PnzqlNmzbKmzevqlSpooiICLm4uOj5559X165dtXz58uyoEwAAAABytEyHM0dHR7m4uEiSypQpozNnzig5OVmSVLNmTZ0+fTpLCwQAAACA3CDT4axixYratWuXJMnb21tms1mRkZGSpEuXLmVtdQAAAACQS2R6QpAOHTqoZ8+eunnzpkJCQvTMM89owIABaty4sTZv3qyaNWtmR50AAAAAkKNl+srZs88+q7lz58rHx0eSNGrUKJUtW1arV69WuXLlNHTo0CwvEgAAAAByugd6zlmDBg3UoEEDSXceSL148WLLOoY2AgAAAEDmPdA9Z4cPH77vuvDwcL3wwgv/uSgAAAAAyG0ydOVs8eLFiouLkyQZhqF169bpu+++u2e7n376SU5OTllbIQAAAADkAhkKZ4mJiZo5c6YkyWQyad26dfdsY2dnpzx58qh79+5ZWyEAAACsxmw2ZGdnsnYZORrfY6TJUDjr3r27JXRVqFBBa9euVbVq1bK1MAAAAFifnZ1Jsz7eo/NRMdYuJUcqUTiverzxtLXLgI3I9IQgx48ft/w7Pj5et2/fVr58+eTo6JilhQEAAMA2nI+K0enz0dYuA8jxHmi2xvDwcE2cOFE///yzDMOQJFWrVk19+/bVk08+maUFAgAAAEBukOlwdvDgQbVv316lSpXSO++8o4IFCyoqKkpbtmxR586dtWLFCvn7+2dHrQAAAACQY2U6nE2bNk0BAQFatGiR7O3tLct79uypTp06acaMGemeewYAAAAA+HeZfs7ZkSNH1K5du3TBTLozW2NwcPDfPgMNAAAAAPD3Mh3O3N3dlZKSct91KSkplnvQAAAAAAAZl+lw9vjjj2v+/PmKj49PtzwuLk7z589XQEBAlhUHAAAAALlFpu85e++999SyZUs988wzatCggQoVKqQrV67om2++UUJCgsaOHZsddQIAAABAjpbpcFamTBmtXbtWM2bM0LfffquYmBjlzZtXtWrVUs+ePVW+fPnsqBMAAAAAcrQHes6Zj4+Ppk2blsWlAAAAAEDu9UDh7Pr161q8eLH279+vmzdvKn/+/AoICFD79u1VoECBrK4RAAAAAHK8TE8IcunSJbVo0ULLli2Ts7OzKlWqJAcHBy1ZskSvvPKKLl++nB11AgCAR5jZzGzO2Y3vMfDoy/SVs0mTJsnBwUFbt25VqVKlLMvPnj2rjh07aurUqRo/fnyG27t27ZrGjx+v77//XomJiQoMDNTAgQPl4+MjSTp27JjGjh2rn3/+WV5eXmrfvr3atWtn2d9sNmvmzJlat26dbt26pcDAQA0bNixdbVnRBgAAeHB2dibN+niPzkfFWLuUHKlE4bzq8cbT1i4DwH+U6XC2e/duffDBB/cEl1KlSqlHjx6aOHFiptrr0aOHzGaz5s+fL3d3d02fPl3t27fX9u3blZCQoA4dOqhRo0YaOXKkDh06pJEjR8rd3V1BQUGSpNmzZ2vVqlUaP368ihYtqkmTJqlz587avHmznJycFB0d/Z/bAAAA/935qBidPh9t7TIAwGZlelhjamqq8ufPf991Xl5eun37dobbiomJUYkSJTRmzBhVq1ZNPj4+eueddxQVFaXff/9da9eulaOjo0aNGiUfHx8FBQWpffv2mj9/viQpKSlJixcvVq9evdSgQQNVqFBBU6dO1aVLl7R9+3ZJypI2AAAAACC7ZTqc+fn5afPmzfddt2nTJvn6+ma4rbx582ry5MmWfa5fv66lS5eqaNGiKl++vMLDw1WrVi05OPzvAt+TTz6p06dP6+rVqzp+/LhiY2NVu3Zty3pPT09VqlRJBw4ckKQsaQMAAAAAslumhzW+88476tSpk2JiYvTiiy9aHkK9ZcsW7d69W2FhYQ9UyNChQ7V27Vo5OTlpzpw5cnNz06VLl+4Je4ULF5YkXbx4UZcuXZIkFStW7J5t0tZlRRsPwjAMxcXFPfD+AADkFCaTSa6urtYuI1eIj4+XYWTdxCD03cND3z2aMtJvhmHIZDJlqL1Mh7Onn35a48ePV2hoqL777jvL8oIFCyokJETPPfdcZpuUJL311ltq3bq1PvroI/Xo0UOrVq1SQkLCPfd8OTs7S5ISExMVHx8vSffdJibmzg3HWdHGg0hOTtaxY8ceeH8AAHIKV1dXVapUydpl5AqnTp2ynNtkBfru4aHvHk0Z7beMzmPxQM85e+WVV/Tyyy/r5MmTiomJUd68eVWuXLkMJ8L7KV++vCRp7NixioyM1MqVK+Xi4qKkpKR02yUmJkqS3Nzc5OLiIunOfWNp/07bJu2Tgqxo40E4OjpajgkAgNzsv5wfIHO8vb2z/OoLHg767tGUkX47ceJEhtvLUDhbsmSJXnrpJRUsWNCyzGQyWaa7f1DXr1/Xjz/+qOeff95yT5idnZ3Kly+vqKgoFS1aVFFRUen2Sfu6SJEiSklJsSwrXbp0um38/PwkKUvaeBAmk0lubm4PvD8AAEBmMYzt0UXfPZoy0m+ZCcoZmhBk4sSJunDhguVrwzA0YsSI/3RPliRdvXpV/fr1048//mhZlpycrKNHj8rHx0eBgYGKiIhQamqqZf3evXvl7e2tAgUKqEKFCvLw8NC+ffss62/evKmjR48qMDBQkrKkDQAAAADIbhkKZ3+9VGc2m7VmzRpdu3btP724r6+v6tWrpzFjxujAgQP67bffNGjQIN28eVPt27dXUFCQbt++rQ8//FAnTpzQhg0btHTpUnXr1k3SnbGbwcHBCg0N1VdffaXjx4+rb9++Klq0qBo3bixJWdIGAAAAAGS3B7rnTLo3sD2oKVOmaPLkyerbt69u3bqlgIAAffTRRypevLgkaeHChRo7dqxatGihQoUKacCAAWrRooVl/169eiklJUVDhgxRQkKCAgMDtWjRIjk6OkqSChQo8J/bAAAAAIDs9sDhLKvkyZNHI0aM0IgRI+67vlq1alqzZs3f7m9vb6/3339f77///t9ukxVtAAAAAEB2yvRDqAEAAAAAWe8/hTOm6AQAAACArJHhYY2tW7e+Z1lQUNA9y0wmk44ePfrfqgIAAACAXCZD4axnz57ZXQcAAAAA5GqEMwAAAACwAUwIAgAAAAA2gHAGAAAAADaAcAYAAAAANoBwBgAAAAA2gHAGAAAAADYgw885u1tSUpI++eQT/fDDD7py5YpCQkK0f/9+Va5cWdWqVcvqGgEAAAAgx8v0lbPr168rKChIY8eO1ZkzZ3T48GElJCTom2++0ZtvvqmffvopO+oEAAAAgBwt0+Fs4sSJio2N1datW/Xpp5/KMAxJUlhYmKpWraqwsLAsLxIAAAAAcrpMh7Ndu3apd+/eKlOmjEwmk2W5s7OzOnbsqF9++SVLCwQAAACA3CDT4SwxMVH58uW77zp7e3slJyf/15oAAAAAINfJdDirWrWqVq1add91mzdvVpUqVf5zUQAAAACQ22R6tsbevXurffv2evnll1W/fn2ZTCZ9/vnnmjFjhnbv3q2FCxdmR50AAAAAkKNl+spZQECAlixZIldXVy1cuFCGYWjp0qW6cuWK5s2bpyeffDI76gQAAACAHC3TV85+/PFH+fv7a/Xq1UpISFBMTIw8PDzk7u6eHfUBAAAAQK6Q6Stn7777rrZv3y5JcnFxUZEiRQhmAAAAAPAfZTqceXp6ysXFJTtqAQAAAIBcK9PDGrt166YxY8bo1KlTqlChgtzc3O7ZJjAwMEuKAwAAAIDcItPhbPjw4ZKkqVOnSlK6B1EbhiGTyaRjx45lUXkAAAAAkDtkOpwtX748O+oAAAAAgFwt0+GsVq1a2VEHAAAAAORqmQ5nknT48GHt27dPSUlJMgxD0p0hjXFxcYqIiNDatWuztEgAAAAAyOkyHc4++ugjjRkzxhLK7mZnZ6c6depkSWEAAAAAkJtkeir9lStXql69etq3b586duyo1157TYcOHdL06dPl7Oys5s2bZ0edAAAAAJCjZTqcnTt3Tm3atFHevHlVpUoVRUREyMXFRc8//7y6du3KhCEAAAAA8AAyHc4cHR0tD6EuU6aMzpw5o+TkZElSzZo1dfr06SwtEAAAAAByg0yHs4oVK2rXrl2SJG9vb5nNZkVGRkqSLl26lLXVAQAAAEAukekJQTp06KCePXvq5s2bCgkJ0TPPPKMBAwaocePG2rx5s2rWrJkddQIAAABAjpbpK2fPPvus5s6dKx8fH0nSqFGjVLZsWa1evVrlypXTsGHDsrxIAAAAAMjpHug5Zw0aNFCDBg0kSfnz59fixYuzsiYAAAAAyHUyHc4uXLjwr9sUL178gYoBAAAAgNwq0+GsUaNGMplM/7jNsWPHHrggAAAAAMiNMh3OQkJC7glncXFxCg8P1759+xQSEpJlxQEAAABAbpHpcNayZcv7Lm/btq3GjRunzZs3W+5HAwAAAABkTKZna/wnjRo10jfffJOVTQIAkI7ZbFi7hByN7y8AWM8Dzdb4dyIjI+XgkKVNAgCQjp2dSbM+3qPzUTHWLiXHKVE4r3q88bS1ywCAXCvTSWrw4MH3LDObzbp06ZIOHDigV199NUsKAwDg75yPitHp89HWLgMAgCyV6XC2b9++e5aZTCZ5eHioS5cuevvtt7OkMAAAAADITTIdzr7++uvsqAMAAAAAcrUsnRAEAAAAAPBgsuUh1GlMJpN27tyZ6aIAAAAAILfJdDhr0aKFVq5cKelOUCtSpIhu3Lih77//XhcuXFCTJk3k4uKS5YUCAAAAQE6W6XB2+/ZteXt7a9GiRXJ3d7csT0lJ0TvvvKM8efJo1KhRWVokAAAAAOR0mb7nbOPGjeratWu6YCZJDg4OCg4O1pYtW7KsOAAAAADILR5oQpAbN27cd/m5c+fk7Oz8X+oBAAAAgFwp0+GsQYMGmjx5sr777jvLMsMwtGPHDk2fPl0vvfRSlhYIAAAAALlBpu85++CDD9SpUyd17dpVjo6Oypcvn6Kjo5Wamqp69erpvffey446AQAAACBHy3Q4y5s3r9atW6dvvvlGERERiomJUf78+VW7dm3Vrl07O2oEAAAAgBwv0+FMuvP8soYNG6phw4ZZXQ8AAAAA5EoZvucsNTVV27Zt09GjRy3L/vzzT/Xu3VvNmjXTe++9p1OnTmVLkQAAAACQ02UonMXGxur1119Xnz59tHv3bknSzZs31aZNG3311VcqU6aMfvvtN73++us6f/58thYMAAAAADlRhsLZokWL9Oeff2rmzJnq2LGjJGnZsmW6du2ahg8frlmzZmnjxo3y9fXV7Nmzs7VgAAAAAMiJMhTOtm/frs6dO+uZZ56Rg4ODZZm7u7tatmwpSbK3t9frr7+uPXv2ZF+1AAAAAJBDZSicnTt3TlWqVLF8HR0drRMnTiggIED29vaW5UWKFNG1a9eyvkoAAAAAyOEyFM7s7e2VkpJi+ToiIkKGYejJJ59Mt110dLTc3NyytkIAAAAAyAUyFM4ee+wxRUREWL7euXOnTCaT6tatm267bdu2ydfXN2srBAAAAIBcIEPPOXvttdc0bNgwmUwmmc1mbd68WU888YR8fHwkSYmJiVqxYoW2bt2qkSNHZmvBAAAAAJATZSictWzZUhcuXNDChQuVkJCg6tWra8KECZb1DRo00I0bN/Tiiy+qVatW2VYsAAAAAORUGQpnktSzZ09169ZNt27dkpeXV7p13bt3V/ny5fXUU09leYEAAAAAkBtkOJxJkqOj4z3BTJLatWuXZQUBAAAAQG6UoQlBAAAAAADZi3AGAAAAADaAcAYAAAAANoBwBgAAAAA2gHAGAAAAADYgQ7M1NmrUSCaTKUMNmkwm7dy58z8VBQAAAAC5TYbCWa1atTIczgAAAAAAmZehcDZ+/PjsrgMAAAAAcrVMPYQ6TWJion799VclJSXJMAxJktlsVnx8vMLDw9W/f/8sLRIAAAAAcrpMh7N9+/apd+/eiomJue96d3d3whkAAAAAZFKmZ2ucOnWq8ufPr7CwMD377LNq3Lix5s6dqzZt2shkMmnBggWZau/GjRsaNmyY6tWrp8cff1xvvPGGwsPDLet//PFHtWzZUtWrV1eTJk20ZcuWdPsnJiZq5MiRql27tvz9/fXee+/p+vXr6bbJijYAAAAAIDtlOpz9+uuv6tmzp5577jk1bNhQFy9eVP369TV06FC9+uqrmjNnTqba69evn3766SdNmTJF69evV8WKFdWpUyedPHlSf/zxh7p166a6detqw4YNatWqlQYMGKAff/zRsv+IESO0e/duzZgxQ8uWLdPJkyfVq1cvy/qsaAMAAAAAslumhzWazWYVKVJEklSmTBn9/vvvlnXPP/+8Bg4cmOG2zpw5oz179mjVqlWqWbOmJGno0KH6/vvvtXnzZl27dk1+fn7q27evJMnHx0dHjx7VwoULVbt2bV2+fFkbN27U3LlzFRAQIEmaMmWKmjRpop9++kn+/v5atmzZf24DAAAAALJbpq+clS5dWr/++qskydvbW/Hx8Tp58qQkKSUlRbGxsRluK3/+/Jo/f76qVq1qWWYymWQymXTz5k2Fh4erdu3a6fZ58sknFRERIcMwFBERYVmWxtvbW0WKFNGBAwckKUvaAAAAAIDslulw9tJLLyk0NFQrV66Ul5eXqlSpotGjR+vrr7/WrFmzVL58+Qy35enpqfr168vJycmybNu2bTpz5ozq1q2rS5cuqWjRoun2KVy4sOLj4xUdHa3Lly8rf/78cnZ2vmebS5cuSVKWtAEAAAAA2S3Twxo7d+6s6OhoRUZGKjg4WMOHD1eXLl30zjvvyMPDI9P3nN3t4MGDGjx4sBo3bqwGDRooISEhXXCTZPk6KSlJ8fHx96yXJGdnZyUmJkpSlrTxIAzDUFxc3APvDwC4l8lkkqurq7XLyPHi4+Mtj8rJCvTbw0PfPbrou0dTRvrNMAyZTKYMtZfpcGZnZ5fuvrKqVatq586dOnnypMqVKycPD4/MNilJ2rlzp/r376/HH39coaGhku4EpKSkpHTbpX3t6uoqFxeXe9ZLd2ZfTPthzIo2HkRycrKOHTv2wPsDAO7l6uqqSpUqWbuMHO/UqVOKj4/Psvbot4eHvnt00XePpoz22/0uBt1PpsNZu3btNHz4cPn4+FiWeXh4qFq1ajp+/Ljef/99bd68OVNtrly5UmPHjlWTJk00YcIES/HFihVTVFRUum2joqLk5uamPHnyqGjRorpx44aSkpLSHXBUVJRl0pKsaONBODo6ZmqIJwDg32X0k0f8N97e3ln+CT4eDvru0UXfPZoy0m8nTpzIcHsZCmfh4eGWF92/f78OHDhw3+eA7dq1S2fPns3wi0vSqlWrNHr0aL355pv68MMP0/0gBQQEaP/+/em237t3rx5//HHZ2dmpZs2aMpvNioiIsEz6cerUKV2+fFmBgYFZ1saDMJlMcnNze+D9AQCwFoZCPbrou0cXffdoyki/ZSYoZyicrVu3Tps2bbLMpDhy5Mh7tkkLb82aNcvwi586dUohISF67rnn1K1bN129etWyzsXFRW+++aZatGih0NBQtWjRQt9++62+/PJLLVy4UJJUpEgRNW3aVEOGDFFISIhcXV01fPhw1apVSzVq1JCkLGkDAAAAALJbhsLZkCFDFBQUJMMw9NZbb2nYsGH3DNmzs7OTp6enHnvssQy/+LZt25ScnKwdO3Zox44d6da1aNFC48eP1+zZszVp0iQtW7ZMJUuW1KRJk9JNjT969GiFhISoZ8+ekqR69eppyJAhlvWPPfbYf24DAAAAALJbhsJZnjx5VKtWLUnS8uXLValSpQee+ONub7/9tt5+++1/3KZevXqqV6/e3653c3PTmDFjNGbMmGxtAwAAAACyU6YnBKlVq5auX7+u0NBQ7d+/Xzdv3lT+/PkVEBCg9u3bq0CBAtlRJwAAAADkaJl+CPWlS5fUsmVLLVu2TM7OzqpUqZIcHBy0ZMkSvfLKK7p8+XJ21AkAAAAAOVqmr5xNmjRJ9vb22rp1q0qVKmVZfvbsWXXs2FFTp07V+PHjs7RIAAAAAMjpMn3lbPfu3erVq1e6YCZJpUqVUo8ePfTdd99lWXEAAAAAkFtkOpylpqYqf/78913n5eWl27dv/+eiAAAAACC3yXQ48/Pz0+bNm++7btOmTfL19f3PRQEAAABAbpPpe87eeecdderUSTExMXrxxRdVqFAhXblyRVu2bNHu3bsVFhaWHXUCAAAAQI6WoXDWrl07DR8+XD4+Pnr66ac1fvx4hYaGpru/rGDBggoJCdFzzz2XbcUCAAAAQE6VoXC2f/9+xcbGWr5+5ZVX9PLLL+vkyZOKiYlR3rx5Va5cOZlMpmwrFAAAAAByskwPa0xjMpnk4+OTlbUAAAAAQK6V6QlBAAAAAABZL8NXznr06CEnJ6d/3c5kMmnnzp3/qSgAAAAAyG0yHM4qVaokLy+v7KwFAAAAAHKtTF05q1atWnbWAgAPjdlsyM6OSYyyC99fAAAy74EnBAGAR5mdnUmzPt6j81Ex1i4lxylROK96vPG0tcsAAOCRQzgDkGudj4rR6fPR1i4DAABAUgZna2zRooXy58+f3bUAAAAAQK6VoStn48aNy+46AAAAACBX4zlnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGfAf2A2G9YuIcfjewwAAHILB2sXADzK7OxMmvXxHp2PirF2KTlSicJ51eONp61dBgAAwENBOAP+o/NRMTp9PtraZQAAAOARx7BGAAAAALABhDMAAAAAsAGEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzG2A2G9YuIcfjewwAAABb52DtAiDZ2Zk06+M9Oh8VY+1ScqQShfOqxxtPW7sMAAAA4B/ZVDibN2+edu/erRUrVliWHTt2TGPHjtXPP/8sLy8vtW/fXu3atbOsN5vNmjlzptatW6dbt24pMDBQw4YNU6lSpbK0jex2PipGp89HP7TXAwAAAGBbbGZY40cffaRp06alWxYdHa0OHTqodOnSWr9+vXr06KHQ0FCtX7/ess3s2bO1atUqjR49WqtXr5bZbFbnzp2VlJSUZW0AAAAAQHaz+pWzy5cva/jw4dq3b5/Kli2bbt3atWvl6OioUaNGycHBQT4+Pjpz5ozmz5+voKAgJSUlafHixerfv78aNGggSZo6darq1q2r7du3q1mzZlnSBgAAAABkN6tfOfvll1/k6Oiozz77TNWrV0+3Ljw8XLVq1ZKDw/8y5JNPPqnTp0/r6tWrOn78uGJjY1W7dm3Lek9PT1WqVEkHDhzIsjYAAAAAILtZ/cpZo0aN1KhRo/uuu3Tpknx9fdMtK1y4sCTp4sWLunTpkiSpWLFi92yTti4r2ngQhmEoLi7uX7czmUxydXV94NdBxsXHx8swsm7WRvru4aHvHk1Z3W8Sffew8J57dNF3jy767tGUkX4zDEMmkylD7Vk9nP2ThIQEOTk5pVvm7OwsSUpMTFR8fLwk3XebmJiYLGvjQSQnJ+vYsWP/up2rq6sqVar0wK+DjDt16pSlv7MCfffw0HePpqzuN4m+e1h4zz266LtHF333aMpov/01a/wdmw5nLi4u90zKkZiYKElyc3OTi4uLJCkpKcny77Rt0j4pyIo2HoSjo6PKly//r9tlNEXjv/P29s7yT6TwcNB3j6as7jeJvntYeM89uui7Rxd992jKSL+dOHEiw+3ZdDgrWrSooqKi0i1L+7pIkSJKSUmxLCtdunS6bfz8/LKsjQdhMpnk5ub2wPsj63Fp/9FF3z2a6LdHF3336KLvHl303aMpI/2WmaBs9QlB/klgYKAiIiKUmppqWbZ37155e3urQIECqlChgjw8PLRv3z7L+ps3b+ro0aMKDAzMsjYAAAAAILvZdDgLCgrS7du39eGHH+rEiRPasGGDli5dqm7dukm6M3YzODhYoaGh+uqrr3T8+HH17dtXRYsWVePGjbOsDQAAAADIbjY9rLFAgQJauHChxo4dqxYtWqhQoUIaMGCAWrRoYdmmV69eSklJ0ZAhQ5SQkKDAwEAtWrRIjo6OWdYGAAAAAGQ3mwpn48ePv2dZtWrVtGbNmr/dx97eXu+//77ef//9v90mK9oAAAAAgOxk08MaAQAAACC3IJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCc/T+z2aywsDDVrVtXNWrUUJcuXXT27FlrlwUAAAAglyCc/b/Zs2dr1apVGj16tFavXi2z2azOnTsrKSnJ2qUBAAAAyAUIZ5KSkpK0ePFi9erVSw0aNFCFChU0depUXbp0Sdu3b7d2eQAAAAByAcKZpOPHjys2Nla1a9e2LPP09FSlSpV04MABK1YGAAAAILcwGYZhWLsIa9u+fbveffddRUZGysXFxbK8d+/eSkhI0Lx58zLV3sGDB2UYhhwdHTO0vclk0s3bCUo1mzP1OsgYezs7eXq4KDt+1Om77EXfPZqys98k+i478Z57dNF3jy767tGUmX5LTk6WyWTS448//q/bOmRFcY+6+Ph4SZKTk1O65c7OzoqJicl0eyaTKd3/M8LTw+XfN8J/kpn+yAz6LvvRd4+m7Oo3ib7LbrznHl303aOLvns0ZaTfTCZThvuXcCZZrpYlJSWlu3KWmJgoV1fXTLfn7++fZbUBAAAAyB2450xSsWLFJElRUVHplkdFRalIkSLWKAkAAABALkM4k1ShQgV5eHho3759lmU3b97U0aNHFRgYaMXKAAAAAOQWDGvUnXvNgoODFRoaKi8vL5UoUUKTJk1S0aJF1bhxY2uXBwAAACAXIJz9v169eiklJUVDhgxRQkKCAgMDtWjRogzPuAgAAAAA/wVT6QMAAACADeCeMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzWM2JEyeUnJxs7TKAXOvw4cPWLgEAANyFcAarmD17tgYNGiSegf7o27Ztm65evWrtMpBJc+fO1ZAhQ6xdBv7B4sWLtX37dmuXAeRYp0+ftnYJeEBHjhzR7du3rV1GtiCc4aFKC2ORkZEqUaKEnJycrFwR/otPP/1UAwYMkLu7u7VLQSadPn1ahQoVkiSlpKRYuRr81Z49ezRx4kQNHDhQO3futHY5+Adbt25VVFSUtctAJk2ZMkVNmjTh/fUImjt3rlq1aqWNGzfmyIBGOMNDlZqaavm3s7OzFStBVoiLi1OhQoXk4OAgs9ls7XKQCXFxcbK3t5ckOTg4WLka/FWJEiVUsWJF5c+fX6NGjdJnn31m7ZJwH6tWrVK/fv00ePBgXbt2zdrlIBNOnTolSRowYIC++OILK1eDzLh48aIkafLkyfrkk08UFxdn5YqyFuEMD1XaSaBhGEpISLByNXhQaUHMMAzLCT4eDXff52kymSSJ4cU2qGTJkvLz85Ojo6NefPFFTZkyRZ9//rm1y8Jf+Pr6ytHRUXv27NG7775LQHsEpP2+69ChgwIDA1W+fHn179+fD0AeAWl91717dzVo0EA+Pj6aOHGiVqxYkaPOKQlneCgiIyN148YNy9cmk0mOjo7ptrn7hB+2Le2kPi4uTsnJybK3t5edHb9ObNnu3bslyfK+8/DwsFy9vvs9xxBH6zAMw9IPZrNZDg4O6tevn5ycnGRvb686depowoQJBDQbYhiGfH199corr6h58+a6deuWOnbsSECzcWl/v8qWLSsHBwdVrVpVPXv21KBBg7R582YrV4d/ktZ3efLkUcGCBRUYGKgRI0Zo6tSpWrZsWY4JaJxNIVsZhqG9e/eqdevWWrdunWXiCDs7O5nNZkVGRio+Pl5JSUmWk/u0Nx9sz8aNGxUREWHpIycnJzk5OaULZqmpqZaTTIK2bTh48KB69uyp4cOHW5bFxcXp6tWrOn/+vM6ePWtZzhBH60hKSrK8r+zs7JSSkqL8+fPrueeek4uLi4KDg/XEE09o/PjxBDQbYTKZ5OnpqYoVK2rv3r0aNGiQnJyc1LlzZwKajTObzfLy8lKPHj301VdfqWLFiurQoYMGDRrE+8vGmc1mubu7Kzg4WOvWrVPJkiU1fPhwTZ06VcuXL88RAY2/wshWJpNJTz75pDp06KDp06dLujOUwMXFRdu2bdM333wje3t7FSxYUBUqVFDZsmVVsmRJFShQQOXLl1epUqWsfARIc/LkSS1ZskSurq4aNGiQatSoIWdnZ928eVNr1qxR6dKlVb58eTk6OipfvnySCNq2onTp0uratas++eQTjRw5UsOHD5erq6sOHjyoZs2aSbozjK5gwYLy8fFR9erVZRiGGjVqJA8PDytXn/PNnj1bX375pYYMGSJvb2/LfZyS9Pjjj6t///56/vnnNWDAAE2aNEnjx4+XnZ2dXnzxRStXnrulpKTIwcFBbdq00d69e/Xtt99qyJAhGjhwoLp06aIFCxaoQIEC1i4Tkj7//HNVr15d+fPnl4eHh0wmk1JTU1WpUiU1atRIJ0+e1DvvvKPY2FgNHDhQkiy/G2FdGzduVJEiReTj46PChQvLZDLJbDarQoUKat++vb7++msNGjRIt27d0pQpUyRJ7dq1k4uLi5Urf3CEMzwUab/sJk+erLx58+r27duqVq2aBgwYoP379+vs2bM6evSovv32W8XHx8vDw0ObNm2yctW4W7ly5dStWzetWbNGEydO1JAhQ+Tp6anr168rJCREKSkpSk1NVb58+SzB2svLSw0bNlRAQIC1y8/VChYsqNdff112dnb66KOP5OzsLFdXVzVv3lxNmzbV2bNndeTIEZ09e1Y7d+7UypUr5eDgoB07dhDOsll4eLjmzp2rpKQkDR48WDVq1FBAQIDeeOMNGYahOnXq6OWXX9bs2bM1ceJEde7cWQ4ODho4cKDs7e31/PPPW/sQco2wsDClpqbqmWeeUbVq1eTg4GAJaA0aNNB3330nHx8fTZs2Tb169VKXLl20cOFCeXl5Wbv0XG3ZsmUaN26cypQpo8DAQDVr1kxPPvmk7O3t5ebmpvLly2vhwoVq0aKFRowYITs7O3344YdKSkpSy5YtrV1+rrZixQqNHTtWRYoUUdmyZRUcHKyGDRtaPrzy8/PTtGnTdP78eXXt2lWGYWjGjBlKSEhQt27dHtmJ50wG446QDTZv3qxTp07JZDLJ19fXcgIxbtw4LVu2TE5OTnrrrbf03nvvWfZJTU1VfHy8Ll26pDx58qhIkSLWKh93MZvNSk1NtdyrtH37di1dulQODg7Kly+fzp8/r7lz5+ry5cv69ddfdeHCBUvgjomJ0bp161S+fHkrH0Xus3HjRp09e1ZXr17VSy+9pJo1ayo+Pl4rVqzQunXrdO7cObVq1UqjR49Ot9/169d1+fJleXp6qkSJElaqPve4fPmy1qxZo2+++Ubx8fFq0qSJVq9erSpVqqhJkyZ6+eWX9euvv2rq1KkaMmSIypYtq8jISH366adq3769ypYta+1DyBW+//57denSRZL01FNPKW/evPrwww+VJ08eOTs769atW2rZsqWaNWum3r176+jRo3r//feVlJSkNWvWENCs6JNPPtGkSZOUmJioZ555Rtu2bdPrr7+up556So0aNZIk9enTR15eXhoyZIhiY2MVEhKiXbt2aefOnXxAZUX79+9Xnz59FB8fr7p162rHjh166aWX5O/vrzfeeEOSNGTIEF28eFFz5syRk5OTZsyYoZUrV+rLL79U/vz5rXwED4Zwhiw3efJkrVu3ToGBgTp9+rQSEhLk4+OjuXPnSrozhCcsLEzPPPOMJkyYYPnFl5ycfM8kIbCupUuXKjw8XHFxcfL29lbv3r3l6empXbt2afHixTp+/LjKlSunNWvWyDAMyzBGs9ksOzs73bhxwzLEEQ/PpEmTtGHDBlWpUkWxsbE6fPiwXnvtNQUHB6tkyZJavHixli9frgoVKmjx4sWS7tzz5OTklK4f8XBERUVp7dq12rx5s+rWrasuXbpo4sSJOnnypEwmk4YNG6ZRo0bJz89P48aNk/S//sLDcfbsWc2fP1/r1q1T8+bNdenSJZ08eVIvvfSSGjVqpMDAQP3www9avHix+vfvrwoVKigyMlKjR4/W1KlTGaJvBT/88IMqV64sV1dXbd++XcOGDdOLL76oZ555RgsXLtTt27dVrFgxvf/++zp48KCOHDliCWkxMTFKTk5WwYIFrX0YuV54eLi6d++uZ599VnXr1tW3336rQ4cOKW/evOrdu7fMZrO+/vprtWjRQtWqVZMkRUdHP7LBTGJYI7LY8ePH9cUXX2j69Ol64oknFBsbq127dmnixIlq3bq1lixZonfeeUeJiYlasGCB1qxZo6CgIOXLl49gZmNmzJihjz76SK+99pqSkpK0ZcsW7d69W/3799dzzz0ne3t7TZs2TVeuXNHx48dVoUIFGYYhs9lsObnPmzevlY8i9zly5Ih27typ+fPnq2rVqpKk1atXa8mSJbp8+bJ69uypjh07ymQyacWKFRo9erSGDh0qJycnpaam8miEh+DLL79UamqqmjZtKkkqXLiwXnvtNUl3+qpQoUKaPHmyzpw5o0mTJmnMmDGyt7fX5s2bFRQUpICAAILZQ1aqVCn17dtXsbGx+uqrr7Ro0SIdPXpUP/zwg7p06WK5iunh4aFz586pQoUKqlKlilatWkVfWcHIkSO1f/9+rVixQk5OTmrcuLGSkpI0dOhQlS5dWtOmTdPvv/+u0NBQDR48WF5eXtqzZ49KlSqlLl268LfLiiIiInTlyhUVLlxYZcuWVUBAgMLCwtS9e3c5OTmpW7ducnBwUEhIiGbOnKnY2FhdvnxZLi4ulnD2KAczSZIBZKF9+/YZderUMa5du2ZZlpSUZERERBiNGjUyWrdubVk+fvx4o0qVKsaMGTOMmJgYa5SL+zCbzUZUVJTxyiuvGNu3b7csj4+PN4KDg43nnnvO+PTTTw3DMIxvv/3WaNOmjdGmTRvj0KFDVqoYdzt8+LBRr1494/jx4+mWf/HFF8bLL79s9OrVy/jzzz+NW7duGXPmzDEaNWpkDBw40ErV5i6pqalGYmKi0b59e+PVV181vvnmm3Trr1y5YsyYMcN4+umnjQkTJliW79ixw5g8ebLx1FNPGRcuXHjYZeda69evN0aPHm0MGjTIWL16tWEYhnHr1i2jW7duxpNPPmlERkYaCQkJxubNm41XXnnF6Natm+Hn52c0bNjQiIqKsnL1uVdISIgRGBhoHD161DCMO3/TDMMwEhMTjXXr1hmVKlUyxo8fb9l+zZo1xujRow0/Pz+jZcuWRmxsrGUfPFyTJk0yGjVqZDRo0MCoV6+eMXHiRCM+Pt4wDMP44YcfjBo1ahi9evUyYmNjDcMwjD179hhTp041/Pz8jAYNGhg3b97MEX1HOEOWSHsznD9/3qhTp47l5P1uBw4cMOrUqWP06dPHsmz06NFGrVq1jOjo6IdUKTLi6tWrRqNGjSwnj4mJiYZhGEZKSorRrVs3o3Hjxsa3335rGMadk/633nrLaNasmXHkyBGr1Yw7IiIijFq1ahnh4eGGYfyv7wzDMLZs2WI0atTICA0NNQzjThiYMmWK0bRpU04mH4KUlBTDMAzjnXfeMfz9/Y0OHToYO3fuTLdNWkCrW7euMWbMmHTr0k5IkP0mTZpkPP3008bQoUONtm3bGo0bNzZGjRplGMad34/vvPOOERAQYOzdu9cwDMP4888/jR07dhivv/668dRTTxmXL1+2Zvm51rhx44wnn3zSOHbs2N9us3btWqNSpUrGiBEj0i3/6quvjFOnTmVzhfg7n376qfH0008bP/30kxEbG2uEhIQYzzzzTLq/YXv27DFq1Khh9OzZM91544EDB4xz585ZoersQThDloqOjja6detmdOnS5Z5fjomJicbatWuNZs2aGYcPH7Ysv/sqG2xDUlKS0bhxY2PYsGGWZXcHtNdff91o2rSpJZRv2rTJ6Nq1a4765fgo69atm9GwYUPjxo0bhmGkD2jLli0zKleubJw4ccIwDMO4fv26cf36davUmVu1bt3a6Nixo/H6668bb7755t8GtIYNGxpDhw61UpW51/fff288++yzRmRkpGEYd0YNjB8/3mjYsKFx9uxZwzAM49KlS8a7775r+Pv7WwJaGj7oePjMZrNx6tQpw8/Pz1iyZIlleWpqqvHpp58aU6ZMMZYvX278/vvvhmHcCWiVK1c2QkJCrFQx/mrKlCnGBx98YPn68OHDRnBwsDFjxgxj8eLFlvdj2hW0vn37GhcvXrRWudmKh1DjP/nss880e/ZsjRkzRocPH1a+fPnUu3dvHT58WAsWLNCZM2cs2zo5Oalu3bo6f/58uuWP/NjgHMIwDKWkpEiSHB0d1b17d23btk0rVqyQdKf/kpKSZG9vrwULFuj69etasGCBJKl58+aaMmUKs/tZwebNmxUWFqYZM2Zo+/btkqRBgwbJ09NT3bp1U0xMjJycnJSYmCjpzvNfihQpooMHD0q68/7jPfhwGIahc+fOKS4uTu+//76GDh2qpKQkLVu2TF999ZVlu7RHH7zwwguKiIjggcYP2YULF+Th4SE/Pz9JkouLi4KCgnThwgWdOnVKklSkSBENGTJEderUUa9evfTjjz9a9i9UqJBV6s7NTCaTypYtq27dumnWrFk6d+6cJCk4OFgff/yxduzYobVr16pt27b66aef1KpVK40aNUrLli2zPBsL1mU2m3XgwAH9+eefun37tgYPHqyLFy/q66+/1ueff67XXntN27ZtU+3atTV79mxt3bpV06dPV2pqqrVLz3JMCIIHljYjXMWKFXX79m2tXr1abdq0Uffu3TVnzhy9+eabkqT27dtbJibIly+ffH195ebmZmmHmeGsb8mSJTp27JhOnTqlJk2aqHbt2mrevLkOHjyo1atXy8XFRa1atZKTk5OSk5Pl5uYmX19f3bhxw9KGu7u79Q4gl/rrzKibNm3Sli1bFBoaqj59+mjq1Knq3Lmz5s+fbwlgt2/flpubmzw9Pa1cfe5jMpnk5uamZ555Rm5ubipdurT69++vyZMna9myZZKkZ555RtKdgNaxY0d16tSJadgfMpPJpJiYGEVFRalUqVJKSUlRnjx55OjomO7vVeHChTVkyBC9//77+uCDD/TFF1880g++fZQZ/z/LbLt27fTHH39oyJAhKl26tEqWLKm+ffuqaNGi+vXXXxUWFqYJEyZo4cKFatasmRwdHVWpUiVrlw/deUTF7t271aJFC7m7u6tQoUJasmSJChUqpMuXL2v27NkaNmyYqlatqtq1a2vlypXy8vLKkZNYceUMD+Tw4cPasWOHFixYoIULF2rt2rUaMGCAvvnmGw0bNkwlS5bUypUrdeDAAU2dOlVLlixReHi4pk6dqj///FMVKlSw9iHg/02fPl1z585ViRIlVLZsWW3btk19+vTRjz/+qAEDBsjPz0+LFy/W0qVLJd25qmZnZydnZ2fLLGQGT+R46O6eGXXGjBlavXq1+vTpo4iICHXp0kXVq1dX//79lZycrGbNmmnbtm3auXOnFixYoBs3bqhKlSrWPoRcycvLS507d1bp0qVlNpsVEBCg9957T8nJyVq2bJl27dpl2bZAgQIEMyuoVq2aSpQoofj4eEmSg4ODZTbThIQESf/7nVe4cGHNmTNHq1atIphZUVpoLlCggF555RWlpqbq+++/1zPPPKNixYrJZDKpQoUKatq0qc6dO6fY2Fg5OTnppZdeko+Pj5WrhyTVrl1bAwcO1LBhw1SmTBk1b97cchW6SJEiCgoKkoODg6KioiRJAQEBKleunDVLzjZcOcMDMQxDSUlJcnV1lZ3dnYzfrl075c+fXwsWLNC4ceM0cuRIzZ8/Xx999JGWLl0qFxcXOTs7a9GiRSpevLiVjwCSdO3aNf34448KCQmxfGL/008/ae3aterSpYvmzJmjUaNGaerUqZo1a5YiIyPl6+urCxcuKCIiQoMGDZLE1U9ruHnzphITE/XYY49JunPl8vnnn1fx4sXVv39/9e/fX4sWLVLFihUVGhqq8ePHy8HBQXny5NG8efMYgmpFaVeZ007w0wJaWtC2s7NT/fr1rVlirmU2m+Xn56dZs2alG+GRmJgok8lkCWAmk0lTp07VrVu3NGzYsHTbwjrSrp49++yz+uGHH3TixIl7PgguWbKkPDw8lJycbKUqcT9pz0Z98sknJd0ZWnzr1q102+TLl09eXl654rFLhDM8kOTkZMXHxysuLk7S/x6I+tJLL8lsNmv69OlavHixevfurSFDhigxMVFxcXFyd3dXnjx5rFw90iQlJen3339XUlKSZZm/v78KFiwoR0dH9erVS/PmzdPQoUNVr149zZ07V1euXJGHh4dWrlwpb29vK1afu5UsWVKS9N133+mVV16RdOeq5uOPP66JEyeqT58+GjhwoCZMmKDx48fr7Nmzcnd3l729Pc/wyWY7d+7UU089dc8Je0pKihwcHJSQkCA7O7t0z78KCAhQjx49tHDhQpUvX/5hl5xrGX956Hrah413D/s1m82KiopSamqq5UpmWFiYlixZoo8++ujhFox07u4/k8lkORcZNmyY+vTpI09PT8XGxsrR0VFOTk768ssv5ebmxu9AG5AWyKQ777u0349pPvnkE9WrV0+PPfaYXFxctH79etnZ2alYsWLWKvmhMRmMR8ID6tq1q06fPq1PP/1U7u7ull+KkrRgwQLNnDlTn3/+uUqVKmXlSnG3u/+YxcbGqlevXvL19VWPHj3k4eFh2e7MmTOaPXu2jh8/rilTpqQb+nF3X+PhSntQ9K1bt/T+++/LMAz17ds33SfESUlJ2rRpk5YvX65x48apSpUq6f4QIvusWbNG48eP1759+9K9R9L67dy5cxo1apT69et33+HdCQkJDI97SBITE+Xs7HzPSWFaX6Wtl+6MKHjjjTe0Y8cObd68WXPnztWqVasYHmwFaaNvXnjhBUn/+5uW1m8XLlzQnj171KpVKx0/flz9+/dXgQIFlDdvXu3bt09Lly5VxYoVrXwUudP06dNVrFgxvfbaa5L+F9Du7rsvvvhCwcHBatOmjS5evKgCBQqoWLFiOnr0qBYsWJAr+o6/1MiQjz/+WKdPn5Yky8w4PXv2lIuLi95++23FxcWlmxEu7Sb28PBwa5WMv2E2my1Xytzd3VW5cmVt2LBBBw4ckNlstmxXpkwZBQUFKTU1VX/88Yek/w3Dyg3DCmzNypUrNXToUHXu3Fnbt29Xnjx51LVrV0VGRmrRokV/OzNq2vuWYPZwxMbGKm/evLK3t7f8rjSbzbK3t9f58+fVtm1bFShQwDIT4F+lhQFkr7Sh3NevX5eDg4Nlptq0k8Tz58+rc+fOOn78uKQ7V9I8PT01ePBgzZ49Wx999BHBzAp+/PFHTZo0SYMHD9aXX34p6X9XzNL67bXXXtOlS5ckSd7e3vL391fx4sVVunRprV69Olec3NuiQ4cOac6cORo2bJg++eQTSXf+Lt3dd6+//rouXrwoZ2dnrV+/Xl26dFGDBg1Uv359ffzxx7mm7/hrjQxZtWqV+vbtq7Nnz1pmxqlUqZLefvtt3bhxQ126dFFsbKzlxOL27dtyd3dnRjgbs2zZMvXt21edOnVSaGioJKlfv34KCAjQ0KFDtX///nTT0taqVUuurq7as2ePJKUbPoKHZ/LkyZo9e7ZMJpMMw9C3334rSXr88cc1YcIEffHFFwoLC9ORI0cs+9xvZlRkn7QPLuLj4+Xs7Cx7e3vL70o7OztFR0erQ4cOatCggUJCQv72PcR7K/slJCRo586dunr1qoKDg3Xt2jU5ODhYThLPnTunNm3ayMfHxxKi8+TJo5s3b+rQoUP65JNPLDMQ4+EqXry4KlWqJC8vL4WEhGjDhg2S7nwgdeHCBbVs2VLPPPOMevbsKcMw5OzsrNGjR2vcuHHq378/Q/GtqFKlSqpfv77y58+vIUOGWCYZc3Jy0sWLF/Xyyy+rUaNG+uCDDyznIR06dNB7772ntm3b5qpRWNxzhn+Udsm5WLFi+u677yzT5JcqVUoODg567rnnZDKZNHfuXDVt2lTDhw+XyWTSTz/9pJs3bzIrow2ZOnWq1q9fr9atW+vatWtauXKlKlSooGbNmiksLExdunRRnz59NGrUKD399NNyd3eXYRjKnz+/Spcube3yc61ff/1VX331lebMmaPq1aunW3f79m3Vr19fixcvVv/+/XX9+nXVq1dPVatW1Y4dO5gZ9SFKG1r113uY0tjZ2alr164KCgoigFmZi4uLOnTooE8++UTx8fF6+eWX9emnn6pQoUK6du2a2rRpo3r16ln+npnNZhUuXFijR4/W448/zux+VlSyZElVrFhR4eHhev755xUWFiaTyaQWLVpo27ZtatmypQYMGGB5j909nPvv3pt4OBwdHVW1alVdvXpVbdu21cSJEyXdedzSoUOH1LZtW/Xu3fu+/ZXb+o57zpAhr7/+usqXL6+TJ0/qypUrWrx4seVTjNTUVJ05c0azZs1SeHi4ZUa4kJAQnh9iI3777Te9++67Gj16tGrVqqVr166pffv2evfdd+Xn56cyZcooJSVFH3zwgb7//ns1aNBAJUqUUFRUlL788kutXr06x05Za+t++eUXdezYUQsXLlTVqlVlNpv14YcfWh7mHhQUpODgYEVHR2vp0qX67rvvLDOjTpgwIdcMA7GWjRs3Wj4NlqTFixdrzZo1+vLLL+85mUg7weD+P+s7duyYevTooVdeeUW//PKLfvnlF23cuFFubm7asWOHmjdvfk//0W8P390n5Wnf/2vXrqljx456+umndfv2bX399dcaNmyYGjdufM8+sJ60eHH377zY2Fi1aNFCjRo1kqenp8LCwjR8+HC98cYbln3oO66cIQPOnDmj6OhotWzZUkWKFFGvXr3UqVMnLVq0SKVKlZK9vb3KlSunyZMn68yZM3Jzc5Ojo6Py5ctn7dLx/27evKn4+HiVKVNGkuTq6qqoqCiNGzdOFy9eVIUKFdSzZ09NnDhRH330kQ4dOqQdO3aoVKlSWr58OcHMihITE2U2my33+bVr105OTk6qV6+erl69qo0bN+rUqVMaNWqUhg0bZplFlZlRs9/ly5c1evRorVq1SvPnz1e+fPksM9nu2LFDzs7OKlu2rEqUKCE7O7t0M5Ph4TObzTKZTDKZTKpYsaLatm2rHTt2qFOnToqJidGrr76qDRs26OWXX7bce3Y3+u3hS0xMtEyQkzajn6enp5599lkZhqGXX35Z8fHxGjlypOUqKB+A2Ia0v0PS/+4tc3d3V9euXXXo0CG1aNFCsbGxGjlypJKTk9WuXTv67v/l7qNHhpQqVUrVqlVTgQIFVKJECU2cOFF58+ZVp06ddPbsWUn/mySkdOnSKlSoEMHMxhQuXFienp66cuWKJOmDDz5Q2bJlNWzYMH388cdydXXV+PHj9euvv6pt27aaMGGC1qxZoylTpjAszsoef/xxVa1aVUOGDNHRo0dVtGhRhYaGqnPnzho0aJB69+6t77//XocOHZKjo6M8PT1VtGhRgtlDUKhQIS1cuFDR0dF6++23devWLZlMJkVFRWn06NF6++239eqrr+rZZ59Vq1atNHz4cIWEhDBR0kO2f/9+SXdOEE0mk2Xyjzp16qhw4cLy8PDQiBEjlDdvXr3yyiu6evWq7O3teRaWlc2ePVutWrXS3r17LQ8ednBwkKOjowICAvTRRx/JMAwNHDhQderU0aRJk7R582ZJBGlrmzx5sho1aqSNGzfq2LFjkmSZvdbPz08RERG6evWq3n//fXXq1EkhISGWx1LQdwxrxL/4u08w/vjjDw0aNEgxMTGWK2iwTWnDBH755RdVrlxZ0p0HPEqyPAw8KSlJTZo0UcOGDTV06FCr1Yr00vru+++/17Rp02Q2m2UYhlavXi17e3vL1bSXXnpJdevW1YABA6xcce5x9+MkIiMj1bt3b/n4+KhGjRqKjIzUkCFDdPXqVZ04cULHjh3TxYsXdfz4cSUlJWnNmjWWq9jIXvPmzdPUqVNVr149NWzYUI0aNVKRIkUs6wcNGqSLFy9q2bJlOnr0qIYMGaIbN25o9erVKly4sBUrz90iIiLUsWNHJSYmqnjx4vL395e/v7+Cg4MtvxcnTJig8+fPKzQ0VKdPn9ayZcu0adMmTZw4US+++KK1DyHX+u2339SlSxddvnxZVapUkYeHh/z9/dWpUye5urrK3t5ec+fO1fbt27Vw4ULZ2dlpyZIlmjdvnkaOHKnWrVtb+xCsjniKf2RnZyfDMCxXxtL+7+Pjo/Hjx8vLy0uvvvqqzp07Z80y8Q/Sxm+nBbOkpCQVL148XTBzcnJS9erVdevWLavViXul9V2tWrX0/PPPKy4uTteuXUs3zDE5OVmenp6c7D8kS5cu1cCBA9WmTRstXbpUR44cUfXq1RUWFqZz585p1qxZiomJUdmyZRUQEKDXX39dI0eO1Pz587V+/Xp9+eWX9NVDEh0dbfnbFBkZqQMHDqh169bavHmz5dETw4YNU2Jioj7//HNVqlRJw4YNk4ODgzp06KDU1FTx+bV1lCtXTl26dFH16tXl6OioMmXKaM6cOerUqZM++eQTJScnq3nz5oqLi9O5c+fk6+ur1q1b67XXXuNedyvauHGjrl27pj59+sjb21vXr19Xs2bNtGHDBnXu3FkzZsxQQkKCgoKC5O3trSNHjihfvnxq3bq1evbsqZo1a1r7EGwC4QySpG+//VbXrl27Z3lqamq6YSB3j8H38fHR6NGjVbFixXTTr8M2pZ1kpH3af/v27XRfx8fHq2jRoum2xcPz448/3vf7npSUJGdnZ73xxht69dVXlZKSoqCgIIWHh+uHH37Q7Nmz9ccff+jJJ5+0QtW5y7Rp0zRnzhwVLFhQvr6+Wr16tcaMGaPPPvtM1apV08SJE1W5cmVFRUVZniV49+9Ghnw/XPnz59dbb72lt956Szdv3rSc8E+YMEEjRozQ4sWLZW9vL39/fx09elSSVK1aNYWGhmru3Lmyt7dncoKHbPv27Vq6dKk2b96sSpUqqW7dunJxcdH169e1ceNGeXl56eOPP1arVq0UHx+v6OhozZ07V9Kdvhs0aJDKli1r3YPIpcaMGaMhQ4aofPnyeuGFFyzPwA0PD9eOHTtUp04dffvtt2rSpIn27NmjqKgorV+/XtKdUTzdu3dX+fLlrXwUtoFhjdC6des0YcIEffPNN/Lw8LAsv/thnG+//bZCQ0Pv++DU5ORkHkpsI5YtW6aAgADLVbI0aX15+/Zty1DVFStWKC4uTn5+fvr555+1YcMGZmW0kqVLl2rRokX6/vvv0y1P67czZ85o3rx5evvtt3Xy5EktW7ZMR44cUYECBZQnTx6NGjWKT4uz2eXLl9WrVy/16NFD9erVkySFh4dr7dq12rdvn3r27KlWrVrp8OHD6tWrl4oVK6bZs2dbZnHEw7Np0yZdvnxZXbt2lXRnGP6SJUv0ySefaO3atSpYsKDWr1+vxYsXq27duvLw8NCWLVs0Z84cPfXUU1auPvcKDQ3Vxo0b5evrq6NHj8rb21v169dXamqqPv74Y73xxhvq0aOHzp49q0mTJun8+fOyt7fXL7/8YvnbB+sICQnRpk2btHTpUssMwXFxcdqxY4eGDh2qpk2baty4cUpJSdH48eN16tQpXbt2TcePH9e0adPUpEkTKx+BbWG2RujatWsqUqSIXF1d0z2rJ+1hnO3atVOdOnXk6+t73/0JZrbhhx9+0Lhx4ywPKE6TdoJ/7tw5vfHGGxo7dqxq1Khh+YNXqlQpeXp6MiujFV25ckVeXl6SpJSUFDk4OMhsNsve3l4XLlxQu3btFBAQoNKlS6t06dJq0KCBfv31V3l5ecnJyUl58+a18hHkDqdPn9bNmzctXwcEBChfvnxycXHRvHnz5O7urhdffFFhYWF6//33FRwcrI8//lienp5WrDr3SPused++ffr222+VP39+tWrVSj4+PurcubOSk5P12muvadGiRXr33Xf16quvaubMmbp165YSExO1detWBQYG8jfNCrZs2aIvvvhCCxcuVIUKFRQXF6f27dsrMjJSI0aMkMlk0qpVq3Tr1i0NGjRIYWFh+vrrr3X48GFduHBBJUqUsPYh5FoTJkzQxo0btX79+nTzD7i5ualx48YyDEMTJkxQz549NXPmTA0ZMkQ//fSTfv/9dy1YsOCeD5NBOMvV0k7a7ezs5OzsnG74hslk0s2bNy0zjY0cOZLhHTbOyclJjo6OMgwj3UQuaVc/27Vrp7p166pOnTqys7NTz5491blzZxmGIcMw5ObmZuUjyL0SEhIsJ4QODnd+LdvZ2enq1at69dVX9fzzz2vYsGGS/jdJiK+vL+/JbHb3h1WOjo7y9vbW6dOnlZSUJEdHR5lMJpUvX17BwcGKjY3V6tWrVbFiRVWrVk1jx47VmDFjdPPmTcLZQ5L2gYarq6vi4+O1YsUKJSYmKjg4WGXLltU777wjk8mkTp06KSwsTI0bN9bQoUMVHR0tHx8fNWvWjGBmJSdPntRjjz0mPz8/JScny83NTV26dFG/fv2UlJSk1q1byzAMrVmzRsnJyRo6dKgaNWqkRo0aqVu3bnJ1dbX2IeRKqampOnTokIoVK2YJZsnJyZoxY4ZOnDghFxcXlSlTRgMHDtSUKVPUvXt3zZkzxzLByyuvvGK5tQL/wz1nuVja/WNpz0VKu78sTUpKikaPHq3Ro0dzEvgIMJlM9zyXxzAMxcfHq1OnTqpTp47Gjh1rCW1ms1kuLi5ydXUlmFlJ2n1Jku77Hks7kRw2bJhl/V//j+xjNpsl3flee3l5qU6dOpo3b572799vCW2SLJMRnDx5Ur///rukO1fV1qxZo5IlS1qt/twm7fff6dOnVbVqVfn6+mrNmjWWKbrLlCmj7t27q0WLFurVq5e++uorubi4qFixYpbZNvFwpb2Hrly5omvXrslkMlkCsqenp1JSUhQXF6cCBQro9ddfV+vWrbVr1y4NHjzY0gbBzHrs7e01ePBgmc1mTZ06VZLUrVs37d+/X8WKFdOtW7e0c+dO7dq1S/369dOhQ4fUqVMny/58GHJ/hLNcaNu2bYqIiLB8nTYl991vErPZLC8vLz333HOcBNq4tCtlsbGxSk1NlaurqyWAmUwmubq6auLEifdc/eRZItbzxRdfSPrfZCzu7u73BGuz2awCBQqoY8eO6YIAHo4VK1bovffeU48ePTRu3DglJSWpZ8+eatq0qfr27auDBw+m65datWqpVKlS+uGHHyxtODs7W6v8XMkwDF2/fl2xsbHq1KmT+vTpY5m45e6A9vbbbysoKEg9evS4Zxg4Hq60v0nPPfecEhMTLc9OlaS8efPKzs5OiYmJkqQCBQrozTffVNOmTfXbb79ZntsJ6/L19VXz5s21f/9+DRw4UAUKFNCcOXM0dOhQzZo1S82aNdPZs2dVvnx59evXTydOnNDly5cl8SHj3+HsLJc5ceKEJkyYoAULFujgwYOS7pwYJiQkaO3atTp8+LCuXLlimckPtmvu3LnauHGjTCaT7Ozs5OTkJAcHh/tePatWrZpl+CKs648//lDfvn3VpUsXy7K4uDjduHFDkZGRioyM1K1bt9IF7Lv/j+wXFham2bNnq2TJksqfP7+++uorvfTSS/rxxx/Vu3dvPfXUU+ratat27dpleVBx2pVorpRZj8lkkqenp5o3b64SJUqoZMmS6t69u/z8/O4JaJ06dVKbNm3oLxtRt25dzZ8/3zJjsHRnRmFHR0fL/fCStGPHDjk6OmrBggUqVKiQtcrFXVxcXNS8eXPlzZtXn332mYoUKaJ8+fLJbDbLyclJrVq10m+//aZLly7p5Zdf1pYtW9I9axD34p6zXCLt3ony5curd+/eWr58uRYuXKhevXrJzc1NZ8+e1bhx4xQfHy+TyaRixYqpXLlyKl68uAoXLqwnnnhCgYGB1j4M/L/bt2/r999/17Rp0+Ts7KwXXnhBLi4uio+P15QpU+Tp6amAgAB5eXmpRIkSlk8gYX3FihVTaGioxowZo27dulkmkjh9+rQ6d+5sGcKTN29elShRQv7+/rKzs1OTJk142PtDEBUVpZ07d2rUqFF67rnnJElXr15V37599f7772vEiBH68MMPNX36dPXu3Vuvvfaa8ubNq+joaP3yyy88xN3KHBwc9Nprr1km1SlfvrzefvttzZ07V6tXr5bJZFKbNm1Urlw5DR48mGFVNuTuYCbdmSE1JSVFefLkkclk0rRp0zRv3jx9/vnnlgmUYBuKFCmivn376uzZs2revLlMJpNlZIFhGKpYsaI8PT3l5OTEPWYZQDjLJdJulJakl19+WSaTSQsXLtT8+fMVFxen8uXLa/HixTp9+rROnz6tP/74QwcPHtSxY8cUGxurF154wcpHgLt5eHioT58+8vDwUN++fWUYhqpWrSpJ2rVrlwzD0Lx582QYhtzd3VWiRAm5u7vrpZde0htvvMFVGCsxm82WGazs7Ow0dOhQ9enTR35+fmrSpIk6duyoS5cu6ZdfftGpU6d07tw5zZkzR5KYavghSUlJ0fXr11WwYEFJd254L1iwoFasWKGOHTtq1KhRCgsL09ixY+Xr66uIiAiFh4erePHizHhqI9Im1Un7PZcW0BYsWKC5c+fK0dFRrVq1IpjZuOTkZNnb28vDw0OzZs3SkiVLtG7dOu4NtFF+fn7asGGDnJ2ddfHiRbm5ucnOzk4rV67UlStXVLp0aWuX+MjgOWe5wIoVKxQREaHk5GSVLFlS7733npycnLR161bNnz9fFy9eVKVKlbRkyRLLFbY0hmEoJiaGB6faiFu3bikpKUkFChSQdOcxCFOmTNH69ev1yiuv6I8//tCcOXPk4eGh3377TdHR0YqMjNRvv/2mP//8U5MmTbrvs+qQvT7++GOdOHFC586d08svv6yaNWuqSJEi2rp1q0JCQnT16lXVq1dP8+fPT7dfUlKSLl++LGdnZxUuXNhK1ec+TZs2Vc2aNTVq1ChJd/oh7dPeN954Q7du3dLnn38uSUpMTLR8Qsw9Zrbt+PHjWrVqlbp06cJVaBuWdh7yxRdfKCQkRDVr1tTOnTu1evVqValSxdrl4V9cu3ZNzZs3l9lsVrFixXTjxg3NnDmTZ3FmAuEshwsLC9PHH3+soKAg3bhxQ3v37pW9vb1GjhypJ598Ul999ZXGjRsnR0dHTZkyxfLwwOTkZDk4OFhOOrjSYn0zZ87Ut99+q8uXL6t06dJ644031KhRI6WmpmrSpElav369HB0d9d1338nd3d0yrCBNfHw8s1pZwZQpU7R27Vo1bNhQMTExCg8PV2BgoIKDg1W7dm1t3bpV06dPl5OTkzZv3iwpfRhA9vv000918uRJJSQkqFGjRvr999+1Zs0atWvXTq1bt5b0vz45d+6cgoOD1alTJ7355pvpHlsB28d769Fx7NgxtWjRQs7OzpbHVODREB4ersOHD6tw4cLy9/fnOXSZxLDGHMpsNuvKlSt/e+9Enz59FBISomeeeUaGYWjmzJmaNWuWunTpourVq6cb7kEws75FixZp5cqVeu+995Q/f36tXbtWc+fO1f79+9WvXz/169dPzs7OWr58ucLDw9WwYUPLLI7SnZkZXVxcrHwUuc/Jkye1a9cuzZw5UwEBAZKknTt3asWKFZo8ebJ69uypF198UZI0ZMgQy70xTk5OlucQIntNmjRJn3zyierUqaN9+/apaNGieuGFF3Tw4EF9+umncnZ2tjyLxzAMFSpUSIUKFdL169clMevpo4Zg9ujw9vZW27Zt1aZNG4YyPmICAgIsf/OQefxVyaFMJpPc3Nz+9t6JypUra+jQoYqMjNSzzz6rDh066OLFi5oyZYp+/vlnK1ePNIZhKCEhQfv371f37t3VqlUrPfvss5o/f76aNGmiyMhIjRo1SiaTST179tSrr76q7t27a+vWrZZZHP866x8eHnt7e129etUyo58kPfvss3r33XdVsGBBzZ07VwcOHNCLL76oMWPG6PDhw2rbtq1lX2Svw4cPa8eOHZo3b54mT56s3bt3q1OnTipevLi6d+8ud3d3bdy4UUuXLpV05z3k7OwsLy8vyxBGBp8A2cPFxUWDBg0imCHX4cpZDjRjxgxduHBB48aNk5ubmzZu3Ch/f3/Z29tbhnQsWrRIbdq00YcffqjPP/9cL7/8slJSUvTpp59awhysz2QyycXFRXFxcZbngqRdUenRo4fc3d21adMmzZw5U++995569+4tR0dH9evXTw4ODmrcuLGVjyD3Srty6ebmposXL0q6M1zY0dFRAQEBMpvNCgsLswzXadiwoZKSkjRjxgxdvHhRxYoVs/IR5HxXrlxRfHy8ihcvLunOeys0NFS//fabihcvroIFCyolJUWfffaZDh48qMDAQP3222+KiIiwPASXDz2A7MOkLciNuHKWw0yaNEmzZs3Sr7/+Kkl68803FR4erjVr1ki6M6QjKSlJkjRx4kTdvn1by5cvlyQFBQVp7ty590xnC+tJO8EvVKiQIiIiFB8fbwnZktS+fXvV/7/27jyq6jr/4/iTXbgsYaKoQIOQIuBWgmkpjsvo5DJOdcxOMEBwXNA8lYyQC0KTlorAJErq4EIylDkCMxWZ5cyUHkPSkUaPjpoQqaMl4EIswuX+/vDHncgWmynvFV+PczjH+/3e7/e+v37PPXxffLaICD744AMOHjyIl5cXMTExxMTEaNY4C7OxscHf35/hw4fzwgsvUFFRgYODg/nehYeHExkZybvvvsuxY8dwdnbml7/8JcXFxQpmN4mrqysODg5cuXIFk8lEdHQ0hw8fpnfv3pw/f56Kigq++OIL4uLiqK6u5o033uDs2bNs3bqVn/3sZ5YuX0REOiCFsw5k2bJlbN++nWeeeYbGxkbq6uoYOXIkgYGBFBYWUlxcDHDd2Ina2lrzOVxdXS1VvnxFTU0NV65coa6uDltbWxITE6msrDTPHvfVkP3UU0/h7u5uDuB33XUXiYmJBAYGWqz+29W2bdtYsmQJKSkpbNq0CYD58+cTEhJCVFQU58+fx9HR0dzNcfz48fj5+fHhhx8C4OTkpO/gTeTv709DQwOvv/46lZWVeHh4kJGRQVJSEtnZ2YwdO5ZLly7h7+9Pfn4++fn55OTkEBQUZOnSRUSkg1I46yBefPFFCgsL2bJlCxEREVRWVnLu3Dl8fX1JSEjAYDBQUFBAfn4+oLET1iw7O5snn3ySSZMm8fTTT1NUVESPHj1ISUnhzTffZMmSJcC1gNY24cd9993HlStXzOdoW+dHbp7MzEwyMjIwmUycPXuWvLw8pk2bRnV1NfPnz8fHx4eHH36Y48ePm7vqXL16FRcXF02TbyFdu3Zl0aJFbN68mbS0NGxtbfH09ASufb8eeeQRqqqq+Mc//gFc+15pQgkREfkp6QmuA1i5ciVbtmyhsLCQoKAgmpqa6NWrF++99x4BAQH06dOH5ORk1q9fb57N75577tHYCSu0YcMG8vPzWbBgAdXV1Xz66ackJydTVVXFtGnTWLhwIcuWLaO+vp6UlBQMBgMA//73v7njjjs0w5+FfPbZZ+zcuZMVK1YwYsQIjEYjhw8fZtGiRSQkJLB8+XLS0tJYsWIF06ZNIyEhARcXFz777DOqqqq47777LH0Jt62xY8cye/ZscnNz6du3L/X19bi7uwPg7OxMcHAw3bp1s3CVIiJyu1A4u8UZjUYCAgIoLi6md+/emEwmHB0d6d69O3v37mXGjBkA3H333SQmJnLgwAHy8vJ48803MRgMGjthRYxGI4cOHSI+Pp5JkyYB19Ym69u3L2lpaTQ0NDB9+nQ6d+5MSkoK0dHR3Hnnnbi4uLBnzx4KCgoUzCykvr6ey5cv4+fnB1ybaXHAgAHk5uYyc+ZMkpOTyc3NJTc3l4yMDHbu3EldXR1dunRh48aN5uPk5nN0dCQ2NhaTycS6detIT0/n17/+NZ6enhQWFlJRUaH1lURE5KbRItQdQNsi0W230sbGhn379vHb3/6WpUuXEhERcd1C0kajEaPRqC46VqK1tZXGxkamTJnCr371K2bPnt1u/xtvvEFSUhJPPvkkM2fOpLa2ltzcXGpra3F2duaxxx7TdMMW1NjYyLhx45g6dar53rUtTnzu3DliYmLw8vLilVdeAaC2tpZOnTphNBo1xsxKNDU1UVJSwvLly7G1tcXNzQ1bW1vS09MJDg62dHkiInKbUMtZB9AWur4avnx9ffHw8GD//v3twlnbA6OdnZ1aWayIra0tLi4ujB49mnfeeYfx48e3C1sTJ07k0qVLLF26lMDAQMaMGUNiYiLwnxAgN9eePXu4fPkyTU1NjBs3jnHjxvH+++8TEhLCyJEjsbW1xWQy4e3tTWpqKosWLeLdd99lzJgxeHh46J5ZmbbFpocNG8a5c+ewt7fH29ubzp07W7o0ERG5jejpoIPy8fEhOjqazZs3c+jQIfODoh4IrUtxcTF/+MMfzK/DwsKws7Nj27Zt5nXN4Frr6OTJk/nFL37Bvn37zC2foLGClrB8+XIWLFjAxo0befbZZ1m9ejVPPPEERqOR/Px89u3bB/zn3gQHB9Pa2sqZM2cA9D20Yl27dqV///4EBwcrmImIyE2nJ4QO7MEHH2T06NGsWrWKU6dO6SHeiphMJkwmE6WlpWzatInXX38dgFGjRjFq1Ch27dpFQUEB586dA6495Lu5uWEwGPjkk0/atXzqvt5chYWFvPXWW6xfv57NmzezbNkyduzYgbe3N4sXL6aqqoqtW7fy9ttvm49xd3fH19cXFxcXC1YuIiIi1k7hrANzdXVl8uTJfP755+Tl5dHS0mLpkuT/tba2YmNjg7OzMw0NDbzyyivm8Uhz5sxh/Pjx/OUvf2HDhg2cOnXKfJyNjQ0+Pj66lxZ04sQJ7r33XoKCgnB1dcXDwwODwUBqairvvfceQ4cOpaamhvz8fJ5//nlKSkp47rnnOHr0qGZlFBERke+kMWcdVNsYszFjxnD+/HlGjBihta+sSFurV2VlJf369cPLy4tt27YBEBUVxfz58/Hw8GD37t1Mnz6d0NBQGhsbKSsro6CgQPfSAtom3Dlz5oy5tbJthj+Auro6PvroI9zd3fHy8iI0NJTi4mJKS0sxGAzk5eXh6+trsfpFRETE+mm2xg7s6zM0ivUwmUzU1taSkJBAQkICvXr1IjMzk+PHjzN16lSioqIAOHDgAP/85z85ePAgPXr04JFHHiEwMNDC1d/ejhw5wsGDB4mKiuL06dPs2LGDyMhIOnfuTF1dHS+++CInT55kzZo1eHp68uWXX2JnZ6cujSIiIvK9FM5ELKSlpYVt27YxZMgQAgICOHnyJC+//DL/+te/ePTRR4mMjLR0iXIDGhsbzdPi29nZcebMGUaPHs26deuIiIiwdHkiIiJyC9GYMxELsbe3Z+rUqQQEBNDa2kpgYCAzZ86kT58+vPbaaxQUFFi6RPkObX/X6tSpE3Ctq6rJZKKlpYXevXvTvXt3S5YnIiIityCFMxELahs71tb9tC2gBQcHk5OTw/bt2y1ZnnyHtnt29uxZ9u/fT01NDXV1dRQVFdHQ0ICnp6eFKxQREZFbjWYVELECXx0bGBgYSGxsLE5OTgwZMsSCVcmN+OKLL4iPj8fNzY2uXbty6dIlsrOz8fLysnRpIiIicovRmDMRK3X16lUcHR0tXYbcgI8//pgTJ07g4eFBSEiIujSKiIjIf0XhTERERERExApozJmIiIiIiIgVUDgTERERERGxAgpnIiIiIiIiVkDhTERERERExAoonImIiIiIiFgBhTMREREREREroHAmIiIiIiJiBRTORERERERErIC9pQsQERG5UVFRUezfv7/dNgcHB7p06cLPf/5znnrqKTw8PL71+NOnTzN69GheeOEFHnrooZ+szrbP+ToHBwc8PDwYNGgQ8+bNw9/f/yerQUREbj0KZyIicksJDg5myZIl5tfNzc0cOXKEjIwMjh49SkFBATY2Nt94bNeuXXnttdfw8/O7KbXOmjWLkSNHml83NDRw5MgRXn75ZZ544gnefvttnJycbkotIiJi/RTORETkluLq6srAgQPbbQsLC+PLL7/kpZdeory8/Lr9bRwdHb9130/Bz8/vus8bOnQoBoOB1NRUPvzwQyIiIm5aPSIiYt005kxERDqE0NBQAM6ePQtc6wKZmJjI3LlzGThwILGxsZw+fZo+ffqwY8cO83GnTp1izpw5hIeHExYWxowZM/jkk0/M+5uamlixYgURERGEhoYyadIk3nrrrf+pVnd39+u2lZWVERcXR1hYGKGhoYwaNYrVq1fT2toKYK69pKSEuXPnMmjQIMLDw1m0aBH19fXm8zQ3N5Oens6IESPo378/cXFxFBUV0adPH06fPm1+30cffURkZCQDBgwgPDycpKQkampq/qfrEhGR/43CmYiIdAgVFRUA+Pr6mreVlJRgMBjIyckhPj7+umPOnz/Po48+SmVlJampqaxcuZILFy4QHR3NxYsXMZlMzJ49m1dffZXY2FhycnIYNGgQTz/9NEVFRd9bU2trKy0tLeafuro69u7dy6pVq+jZsyeDBw8G4NixY8TExHDHHXeQmZlJTk4OgwcPJjs7m5KSknbnXLJkCT179mTt2rXExcWxfft2cnJyzPtTUlLYsmULkZGRrFmzhi5durB48eJ25ygrKyMmJoZOnTqRlZXFggUL2L9/P7/5zW9obGy84f9zERH5calbo4iI3FJMJhMtLS3m15cuXWL//v3m4NTWggbXJuBIS0vD0dERoF3LEcDmzZu5evUqmzZtwsvLC4CgoCAee+wxysvLsbe354MPPiAzM5MHH3wQgOHDh9PQ0EB6ejoTJ07E3v7bf5UuXLiQhQsXttvm4uLC/fffT1JSEgaDAbgWzoYNG8bKlSuxtb32d9P777+f3bt3U1payoQJE8zHR0REkJSUBFzrIrl3717+9re/MW/ePKqqqigsLCQpKYnY2FhzvRcuXGDPnj3mc6xatQp/f3/WrVuHnZ0dAAMGDGDChAn86U9/4vHHH//e+yAiIj8+hTMREbmllJWVERIS0m6bra0tw4YN47nnnms3GUivXr3MweybHDhwgIEDB5qDGYC3tzd//etfAUhPT8fGxoaIiIh2gXDUqFH8+c9/5sSJE/Tt2/dbzz9nzhxGjhyJyWSirKyMrKwsJkyYQGpqartQN2XKFKZMmUJTUxMVFRV8+umnHD16FKPRSHNzc7tzfn0Mm7e3N2fOnAGgtLQUk8nE+PHj271n4sSJ5nDW0NBAeXk5cXFx7YKur68vAQEB7N27V+FMRMRCFM5EROSWEhISQlpaGgA2NjY4OTnRvXt3XF1dr3tvW8vUt7l48SI+Pj7fud9kMnHPPfd84/7PP//8O8NZz5496devHwD9+/fH09OTZ599Fjs7O/M1ADQ2NvK73/2O4uJiWlpa8PHxYdCgQdjb22Mymdqd09nZud1rW1tb83vaxozdeeed7d7z1deXL1+mtbWVDRs2sGHDhutq1uyRIiKWo3AmIiK3FIPBYA48/ys3N7dvnARj3759+Pj44ObmhouLC3l5ed94/F133fWDPu+hhx5i586dvPrqq4wdO5YHHngAgKVLl7Jz506ysrIYNmwYLi4uwLVuiz9Et27dALhw4QI9evQwb//qNRoMBmxsbIiJiWnXXbLN18OfiIjcPJoQREREbluDBw+mvLy8XXiprq4mPj6ev//974SHh1NfX4/JZKJfv37mn+PHj7NmzZp2XR1v1OLFi3FycuL55583d1k8cOAAQ4YMYcyYMeZgdvjwYWpqasyzNd6Ie++9Fzs7O3bt2tVu+zvvvGP+t6urK8HBwZw6dardNd19992sXr2a0tLSH3xNIiLy41DLmYiI3LZiYmIoKioiPj6eGTNm4ODgQE5ODt7e3kyaNAk3NzfCwsJISEggISGBgIAAPv74Y1566SWGDx9O586df/Bn+vj4EBcXx9q1a9myZQvx8fH079+fkpISCgoKCAgI4NixY+Tk5GBjY0NDQ8MNn9vX15eHH36YjIwMmpubCQoKYteuXeYxdG2TjTzzzDNMnz6defPmMXnyZIxGIxs3bqS8vJyEhIQffE0iIvLjUDgTEZHbVvfu3fnjH//IypUrSU5OxtHRkSFDhpCZmYmHhwcA69ev5/e//z3r1q2jurqabt26ERsby+zZs//rz50+fTpFRUWsXbuWyZMnk5ycTHNzM1lZWVy9ehUfHx9mzZrFyZMn2b17N0aj8YbPvXjxYlxcXNi4cSN1dXUMHTqUWbNmsWbNGnOr3AMPPEBubi7Z2dnMnTsXBwcHQkJC2LRp001dpFtERNqzMX19pLGIiIjcki5evMj777/P8OHD8fT0NG9fvnw5O3bsUJdFERErp5YzERGRDsLZ2ZmlS5fSt29foqOjcXFx4dChQ2zdupUZM2ZYujwREfkeajkTERHpQI4ePUpWVhaHDh2ioaEBPz8/pk2bxuOPP95uDTgREbE+CmciIiIiIiJWQFPpi4iIiIiIWAGFMxERERERESugcCYiIiIiImIFFM5ERERERESsgMKZiIiIiIiIFVA4ExERERERsQIKZyIiIiIiIlZA4UxERERERMQKKJyJiIiIiIhYgf8DLKFek61evPYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "# Set the style of seaborn\n", + "sns.set_style(\"whitegrid\")\n", + "\n", + "# Create a bar plot\n", + "plt.figure(figsize=(10, 6))\n", + "sns.barplot(x=\"pricerange\", y=\"total_sqft\", data=housing_data_encoded, errorbar=None)\n", + "plt.title(\"Total Square Footage by Price Range\")\n", + "plt.xlabel(\"Price Range\")\n", + "plt.ylabel(\"Total Square Footage\")\n", + "plt.xticks(rotation=45) # Rotate x-axis labels for better readability\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Interpretation:\n", + "The bar plot illustrates the relationship between price range and total square footage. Each bar represents the total square footage of houses within different price range categories. \n", + "From the graph, it is evident that there is a positive association between house size and price. Specifically, larger houses, as indicated by higher total square footage, tend to command higher prices. This suggests that there is a tendency for bigger houses to have a higher price, indicating a positive correlation between the size of the property and its price.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAImCAYAAADHWLzEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT9f748dc5GW26S1soe5dVNjJFhgMH8hOU60Sv46IMlQsIjquoV8WNylRwfJ0XJ07UqziuiCwBQfZSRhmlu00zzvn8/ghESts0KQ0t5f18PPKAnpx88s4nJ8l5n8/SlFIKIYQQQgghhAiBXt0BCCGEEEIIIU4/kkgIIYQQQgghQiaJhBBCCCGEECJkkkgIIYQQQgghQiaJhBBCCCGEECJkkkgIIYQQQgghQiaJhBBCCCGEECJkkkgIIYQQQgghQiaJhKixZK3Ekyd1KE4FOc6EEOLMJImEKGHUqFG0adOmxK1t27Z069aNESNG8PHHH4dc5uDBg7n77rtDesy3337L1KlT/X8vX76cNm3asHz58pCf/2SNGjWKUaNGBdxn5syZtGnT5qSfqzJ1VZa8vDymTJnCqlWrTrqs6nLsPT/+lp6ezrnnnsuTTz6J0+mskuepqvfudDF48OBSn+9evXpx2223sXnz5pDL27ZtG1dffXWJbW3atGHmzJlVFbI4wd69e2nTpg0ffvhhuft8+OGHtGnThr1795Z5/913383gwYPDFWJYnHjstmnTho4dO3L++efzzDPP4HK5Aj6+On9HhKitrNUdgKh52rdvz7Rp0/x/G4bBgQMHeO2115gyZQoJCQkMGDAgrDG89tprJf7u0KEDCxcupFWrVmF93soaOXIk/fv3r+4w/DZt2sTHH3/M5ZdfXt2hnLQHHniADh06AOB0Otm8eTMvvPAChw8f5qmnnqrm6E5PAwYMYOzYsQB4vV4OHTrEK6+8wg033MAXX3xBUlJS0GV9+eWXrFmzJlyhClHC8ccugMvlYvny5cyZM4d9+/bx7LPPlvvYmv47IsTpSBIJUUpMTAxdunQptf2cc86hT58+fPjhh2FPJIKNqaZITU0lNTW1usOolVq1alXive/Tpw/5+fnMnTuXadOmERMTU33Bnabq1KlT6vPUsWNHzjvvPL788kuuvfba6glMiAqUdez26tWLAwcO8OGHH3L33XdTt27dMh9b039HhDgdSdcmEbSIiAjsdjuapvm3mabJSy+9xPnnn096ejpDhgzhjTfeCFjO3r17mTJlCmeffTYdOnSgT58+TJkyhezsbMDXlWjFihWsWLHC3wxdVpP0+vXrufnmm+nVqxfdunXjtttuY9u2bf77jz1m2bJl3HTTTXTu3Jl+/frx1FNPYRiGf7+lS5fyt7/9ja5du3LWWWcxZswYduzYUSJmpRTz589n4MCBdOrUiSuvvJLffvvNf/+J3WNGjRrF3Xffzbx58+jbty/du3dn7Nix7Nu3r8J69ng8PPLII5x11ln06NGDqVOnkpWVVWKfVatWcd1119G5c2d69uxZYp/ly5dz/fXXA3D99dczatQoxo8fz7Bhw0qUccMNN5Cenk5xcbF/26OPPsqQIUP8f3/zzTeMGDGCjh070q9fPx555BGKiopKlLN161ZuvfVWunXrRrdu3Rg3bhx79uwJ+X0IRVxcXKltOTk5PPDAA/Tt25eOHTvyt7/9jWXLlpXYx+VyMX36dPr160fXrl255557SnWHuPvuu7nhhhuYNm0a3bp14+KLL8YwDFwuF7Nnz+bCCy+kY8eOXHDBBbz00kuYplni8V988QUjRoyga9eu9OvXjwceeIDc3Fz//TNnzuTCCy/kv//9L0OHDqVjx478v//3/1izZg1r165l5MiRdOrUiaFDh5aIv7i4mAcffJBzzjmH9PR0LrzwQl5++eVK1V9Z4uPjS20rLi7mmWee4YILLiA9PZ1u3bpx4403smnTJv9rmTVrFlC6O1NBQQH33XcfPXv2pGvXrtxxxx1kZmb67x81ahSTJ0/mjjvuoEuXLtx4440A5OfnM336dM477zw6duzI0KFDef/990vEZRgGb731FpdeeimdOnVi4MCBPP300yXey7vvvpubb76ZhQsXct5559GpUyeuuuoqdu3axXfffcell15K586dGTlypP/1AGRlZTFp0iT69evnf28WLVoUcn1W9D0Hvq46L7zwAk888QR9+/alU6dO3HzzzezevbtEWV9//TXDhg2jU6dODB8+vFJd0IKxdOlSrrnmGrp3706vXr2YNGkSGRkZ/vvL6wZ44nv/2Wef+ePt3bs3kydP5uDBgyUe895773HJJZeQnp7OwIEDmTlzZqW/DwDS09NRSvnjHTx4MI899hg33HADnTp14r777ivzd2Tt2rXcdNNNdOvWjd69ezNx4sQSsQbzvSLEmUwSCVGKUgqv1+u/uVwudu7cyT333ENhYSH/7//9P/++Dz74IC+88ALDhg1j3rx5XHjhhTz22GPMnj27zLKdTifXX389O3bsYNq0abz88stcf/31fP7558yYMQOAadOm0b59e9q3b8/ChQv93VqO98svv/j7ZT/22GM88sgjZGRkcNVVV5VKAiZPnkz37t2ZN28eQ4cOZcGCBbz33nsA7Nmzh7Fjx5Kens7cuXN59NFH2bVrF6NHjy5xgrh69Wr++9//cv/99/PUU09x6NAhxowZg9frLbcev/32Wz788EP+9a9/8dBDD7Fp0yZGjRpVYd/+xYsX8/vvv/P4448zdepUvv/+e/7xj3/4f2RXrlzJ3//+dyIjI3nuuee49957WbFiBddffz3FxcV06NCBBx54APB1C5o2bRoDBgxg69atHDlyBPCdUK9ZswaPx8PatWv9z/3jjz8yaNAgAD799FPGjRtHixYtmD17NuPHj+eTTz5h7Nix/sG1u3bt4qqrruLIkSM88cQTPProo+zZs4err77a/1zBvA+BmKbpPxadTie//vorr7/+Opdddpm/NcLlcnHDDTfw7bff8s9//pNZs2aRmprKLbfcUuJH/6677uLdd9/l1ltv5bnnniM3N7dUNzrwJWoZGRnMnj2bSZMmoes6t912GwsWLGDkyJH+Y/25554r0Q1wzpw5TJw4kS5duvDCCy8wbtw4vvrqK0aNGlUiYTtw4ACPP/44t912G88//zx5eXnccccdTJw4kZEjRzJ79myUUvzzn//0P+6xxx7jxx9/ZOrUqbz88sv+sSIffPBBhXV4ouM/4263m/379/Poo4+SnJzMRRdd5N9vypQpfPDBB4wePZpXXnmFe+65h23btjFp0iSUUowcOZIrrrgCgIULFzJy5Ej/Y19//XU8Hg/PP/88kyZNYsmSJTz88MMl4li8eDHR0dHMnTuXW265heLiYq655ho+/fRTbrnlFubMmUP37t257777mDdvnv9xDzzwgD/ZmDt3Ltdeey1vvvlmiWMTYM2aNbz55pvcfffdTJ8+nR07djB69GimT5/OrbfeyrPPPktGRgaTJ0/2P+auu+5ix44dPPTQQ8yfP5/27dszdepUfvnll6DrN5jvuePraefOnUyfPp1HHnmEDRs2lBgftmTJEu644w7atGnD7Nmzueiii7jrrruCjuX4z8/xtxMHyC9atIibbrqJ+vXr8+yzz3LPPfewZs0arrzyylKf5UBWr17NlClTuOCCC5g/fz733HMPv/zyC5MmTfLv8+KLL3L//ffTp08f5s2bx7XXXsv8+fO5//77g36eE+3atQuAxo0b+7e99dZbdOzYkTlz5viP0+Nt3LiR6667DpfLxZNPPslDDz3Ehg0buPnmm/2/fcF8rwhxRlNCHOe6665TaWlppW5t2rRRl156qVq8eLF/3507d6o2bdqoF198sUQZM2bMUB07dlRZWVlKKaUGDRqkpk6dqpRSauPGjerqq69Wf/75Z4nH3HrrrWrIkCEl4rjuuuv8f//yyy8qLS1N/fLLL0oppa644gp18cUXK6/X698nNzdX9ezZU91xxx0lHjNjxowSzzV48GB16623KqWU+uyzz1RaWpo6cOCA//5169apZ599VuXn5/tj6dSpk8rOzvbv8+6776q0tDS1adMmpZRSL7zwgkpLSysRf4cOHUq8zt9//12lpaWpt99+u3TFHzVo0CDVt29fVVhY6N/23//+V6WlpaklS5YopZS68sor1dChQ0u89p07d6p27dqpN998s8z6OnjwoGrTpo369NNPlVJK/fzzz6pLly5qyJAh6oUXXlBKKfXnn3/6H2OapjrnnHPUzTffXCK+n3/+WaWlpanvvvtOKaXUxIkTVd++ff11pZRS2dnZqnv37urxxx8P+n0oy7HHlXUbPHhwifds4cKFKi0tTa1du9a/zTRNde2116oRI0YopZTaunVrqfo3DENdfPHFJd67qVOnqrS0NJWRkeHf9v3336u0tDT12WeflYhx9uzZKi0tTW3dulXl5OSo9PR0df/995fYZ+XKlSotLc3/3hw7Vn744Qf/Pi+++KJKS0tT7733nn/bl19+qdLS0tTGjRuVUkoNGTJE/etf/ypR9qxZs/zvRbAGDRpU7mf8k08+8e/ncrnUTTfdpD7//PMSj3/llVdUWlqaOnToUInXc7y0tDQ1cuTIEtsmT56szjrrLP/f1113nercubNyuVz+bW+99ZZKS0tTv/76a4nH3nvvvapjx44qOztbbdu2TaWlpZX63lm0aJFKS0tT33//vVLqr/dx+/bt/n0eeOABlZaWpn7++Wf/tpdfflmlpaWp3NxcpZRS6enpau7cuf77DcNQjz/+uFq9enV5VVpKsN9zgwYNUoMGDSrxWZ45c6ZKS0vzf3+OGDGiVF0eO14++OCDcmP44IMPyv38HLsNGjTI/xr79eunbrrpphJl/PHHH6pDhw7qiSeeUEqV/V4r5Xu/j32PvPjii6pr164l3tfvv/9ezZw5U5mmqfLy8lSnTp3UAw88UKKMY9+pW7duLfc1DRo0SE2ZMkV5PB7/7cCBA+rdd99V6enpasKECSX2Pe+880o8/sTvxdtvv13169dPFRcX+/f59ddf1aBBg9TGjRuD+l4Rtdu8efNKnIsE66OPPlIXXXSRSk9PVxdffLH64osvwhBdzSBjJEQpHTp04KGHHgLg0KFDPPfcc3g8Hp577jlatGjh3++XX35BKcXgwYNLXJkfPHgwc+fOZfXq1Zx33nklym7Xrh1vv/02pmmye/du/vjjD7Zv387OnTsDXt0/XlFREevXr2f8+PFYLBb/9ri4OAYNGsQPP/xQYv+uXbuW+Ds1NdXfPadz585ERERwxRVXcOGFF3LOOefQq1cvOnXqVOIxrVq1IiEhwf93o0aNAF83jPJ069atxNWx9u3b07hxY1auXFlqlpvjDRgwgKioKP/fgwcPxmq1snLlSnr37s26deu4+eab/VeVwXcVrmXLlixdurTM/u1169alffv2/Pzzz/4uM926daNBgwasWLEC8LVGxMXF0b17d3bu3MmBAwe49dZbS7wvZ511FjExMSxdupSBAwfyyy+/0LNnTyIjI/37xcTE0KNHD37++ecSMQR6HwJ56KGH/K1SbrebPXv28NJLL3HFFVewcOFCGjRowLJly0hJSaFDhw4l4h00aBBPPvkkubm5/hmsjp+pRtd1hgwZwvbt20s8Z0JCQokxLytWrMBqtXLhhReW2G/YsGE8//zzrFixgkaNGuF2uxk6dGiJfXr06EHDhg1ZsWJFifemW7du/v8nJycDvuPx+BjANwMX+PqB/+c//+HAgQMMGDCAAQMGMG7cuArrryyDBg3yP1YpRVZWFosXL2by5Mk4nU7+9re/Ybfb/V2nDh48yK5du9i9ezffffcd4HsvAunevXuJvxs1auR/Lce0aNECu93u/3vFihU0bNiw1LEybNgw3n//fdatW+fvHnjJJZeU2OeSSy7hnnvuYfny5f4xXPHx8bRs2dK/T0X1HBcXR69evZg5cyYbN26kf//+DBgwoEQLQTBC+Z7r2LFjie+xY8ed0+nE4XDw+++/c+edd5Z4zEUXXcQzzzwTVCxz584lJSWl1PbZs2ezdetWwHc1//DhwyVaDQCaNGlC165d/d8RwTjrrLOYMWMGQ4cOZciQIQwYMICzzz7b/56sWbOG4uLiMn83wNe9qnXr1uWWv2jRolJdzaxWK+eff36J1kHwvQ+BrF69mgEDBhAREeHf1rVrV5YsWQLASy+9VOH3SlldAkXt8NZbb/Hcc8/Ro0ePkB738ccfc99993HvvffSv39/Pv/8cyZOnEhqamqp77baQBIJUUp0dDQdO3b0/925c2eGDRvGTTfdxIcffkidOnUAX99RKP2DfsyJfWKPefXVV5k3bx45OTkkJyeTnp6Ow+EIeFJ+vPz8fJRS/pOC4yUnJ5cqJzIyssTfuq77m/UbNWrEm2++yUsvvcT777/P66+/TlxcHNdccw0TJkzwjwc5/sT+WBlAqf7xx6tXr16pbUlJSSX6y5flxB99XddJTEwkLy+PvLw8TNNk/vz5zJ8/v9Rjj/9BPNGAAQP80/cuW7aM888/n/r16/Pxxx/jdrv53//+R//+/bFarf739qGHHvInlcc7dOgQ4DsGvvjiC7744otS+xw7To4J9D4E0rx58xLHY/fu3enZsyfnnXcer7zyCv/617/Iycnh8OHDZXaDAzh8+LC/3hMTE0vcV9ZJVnR0dIm/c3NzSUxMLHHCd/xj8/Pz/eUHe1yWNUjc4XCUGT/AfffdR2pqKp988gn//ve/+fe//03Xrl158MEHadu2bbmPK0tCQkKJOgUYOHAghw4d4qmnnuLyyy/HYrHwv//9j8cee4ydO3cSHR1N27Zt/Z+Fit67sj4zJz6mrHou6/04Vqd5eXn+ej5xP6vVSmJiYol6Lm8g/omxHW/GjBnMmzePxYsX89VXX6HrOn379uXhhx+mYcOG5T7uRMF+z534nh//3ZKbm4tSqtQxW95g4rKkpaX5L3wc7/gLI8c+7+Uduxs3bgz6+bp27cpLL73Ea6+9xquvvspLL71EcnIyt912G6NGjfI/1+jRo8t8/LHvlvIcnwRrmobD4aBhw4alvl8g8PsMvtcdaIayYL5XJJGofQ4ePMi0adNYvnw5zZo1C+mxSimef/55rr/+ev+FozFjxrBq1SpWrFghiYQ4MyUnJ/PAAw9w55138uijj/qvhB0b8Pp///d/pU4IABo0aFBq26effsrjjz/OXXfdxYgRI/wnm3feeSfr168PKp7Y2Fg0TSsxcPOYw4cPl/iBDEanTp2YNWsWbreb1atXs3DhQubNm0fbtm1L9BcP1fGDKo/JzMykSZMmAR937If2GMMwyM7OJikpiejoaDRN4+9//3uZCVygE9GBAwcyZ84cfv/9d37//Xfuu+8+GjRogMvlYtWqVSxfvtyfNBx7b6dMmULPnj1LlXXsxzM2Npa+ffv6B8oez2oN39dLgwYNqFOnjn9QamxsLM2aNePpp58uc/9GjRr5T8YyMzNLHJsn1ndZ4uPjyc7OxjCMEsnEsZOexMREf51kZmaWaLkD33F5fOtUZdjtdsaMGcOYMWPYv38/3333HXPmzGHSpEl8/vnnJ1X2Menp6fz8889kZ2dTVFTEuHHjOO+883jxxRdp3Lgxmqbx1ltv8b///a9Knu9E8fHx/PHHH6W2Hz58GKBEonD48OESJ/Yej4fs7OxSJ92hio2N5a677uKuu+5i586dfPvtt8yZM4eHHnqIl156KagyquJ7Dnwn+7qul/quC+aYDcWx78zyvlOP1emxCyvHfw4KCwtLPaZ///70798fp9PJL7/8wuuvv84jjzxC586d/d8tTz/9dJknaWUlMyfGemISXFmxsbGlJrIA+OGHH2jXrl1Q3yui9vn999+x2Wx88sknzJ49u9QkKd999x0zZ85k+/bt1KtXj0suuYSxY8dit9vZtWsX+/bt49JLLy3xmKqcGKOmkcHWIigXXngh/fv357PPPvM3cx9r7svOzqZjx47+W1ZWFs8//3yZP3arV68mLi6OW265xf/jWlhYyOrVq0tc3T92Va4sUVFRpKens3jx4hKzfOTn5/P999+X6lIRyGuvvcagQYNwu93Y7Xb69OnDv//9bwD2798fdDllWb16dYlkYsOGDezdu5c+ffoEfNzSpUtLNKN/9dVXeL1eevXqRUxMDO3bt2fnzp0l6rx169bMnDnTPxvJiVfOwdeFok6dOsyZM4eIiAjS09OpW7cuLVq0YNasWbhcLs455xzA1+UkKSmJvXv3lnieevXq8cwzz/ivUPbs2ZPt27fTrl07/z7p6em89tpr/Pe//z2p+gtk7969ZGVl+U9EevbsSUZGBklJSSXiXbp0KQsWLMBisdC7d2/At+7B8Y511QmkZ8+eeL3eUo/95JNPAF8rSefOnbHb7Xz22Wcl9lm1ahX79+8v0ZUpVMXFxQwZMoRXXnkF8CVS1157LZdccslJH6fHW79+PfHx8SQmJrJhwwZcLhejR4+mSZMm/pPIY0nEsdaFQJ/VUJ111lns27ev1LoUn3zyCTabjU6dOvkT2xOTp88//xzDMEL6/J9o3759DBgwwP8+t2jRgn/84x/07ds3pHoO9nuuIhEREXTt2pWvv/66RGvOsa43VaV58+akpKSUOnb37NnD2rVr/cfusRaeAwcO+PdZvXp1icc88cQTXH755SilcDgcDBo0yN81bP/+/XTu3BmbzcbBgwdLfFatVivPPvtsuQvohUOPHj1YunRpiW56GzduZPTo0fz+++9Bfa+I2mfw4MHMnDmzzIs/P/74IxMmTOBvf/sbn332GdOmTWPx4sX+CRCODfovKiri5ptvpk+fPowcObLKP7M1ibRIiKDde++9DBs2jEceeYSPPvqINm3aMGzYMO6//3727dtHeno6u3btYsaMGTRq1KjMq02dOnXinXfe4fHHH2fQoEEcOnSIl19+mczMzBJNxHFxcaxZs4Zly5bRvn37UuVMmjSJm2++mdGjR3PNNdfg8Xh46aWXcLvdIfUb7927N08//TTjxo3juuuuw2Kx8J///Ae73e6fvaiynE4nt9xyC2PGjKGwsJAZM2aQlpZWqg/9iQ4fPsztt9/OqFGj2L17N88++yz9+vXzJyATJ05k9OjRTJo0iWHDhmEYBq+88grr1q3zL9QUGxsLwPfff098fDxt27ZF13XOOeccFi1axNlnn+1vMejVqxfvvPMOPXr08F+ZtFgs/POf/+SBBx7AYrEwaNAg8vLymDNnDgcPHvQ39Y8dO5arrrqKW2+9lauvvpqIiAgWLlzIN998wwsvvHBS9XfM9u3b/V22lFLs37+f2bNnExERwXXXXQfAiBEjePPNN7nxxhu57bbbqF+/Pj///DPz58/nuuuuw2az0bRpU6688kpmzJiB1+ulXbt2fPzxx2zZsqXCGI6NnfnXv/7FwYMHadu2LStWrGD+/PkMHz7cv8DV6NGjmT17NjabjUGDBrF3716ef/55WrVqxfDhwytdB5GRkXTo0IFZs2Zhs9lo06YNu3bt4qOPPioxXe/GjRux2+0VLriVlZVVYrYup9PJokWLWLZsGRMnTsRisdChQwesVitPPfUUN910E263mw8//JDvv/8ewD++5dgV5s8++4zOnTufVMvLiBEjePvttxk3bhx33HEHjRo1YsmSJXzwwQeMHz+euLg44uLiGD58OC+88AJOp5OzzjqLTZs2MWvWLHr16nVSC0M2bNiQ1NRUHnnkEQoKCmjSpAkbNmzghx9+4NZbb/Xvt3btWurUqVNu62Kw33PBmDhxIjfccAPjx4/nyiuvZNeuXSVmsKoKuq4zceJE7rnnHv/3SnZ2NrNmzSI+Pt7f4jhgwACmT5/OAw88wM033+yf2ez4FunevXvz6quvcvfddzNs2DA8Hg8LFiwgISGB3r17k5CQwC233MLzzz9PQUEBvXr14uDBgzz//PNomhZyN72TMXbsWK688kpuvfVW/6x3zz33HJ06daJfv354vd4Kv1fEmWXevHn87W9/46qrrgJ844geeughbrjhBvbu3UtBQQEAU6dOZfz48UyePJmvvvqKsWPH8uqrr1Z4IfF0JImECFqLFi0YNWoUr7zyCu+88w7XXXcd06dP58UXX/QPAk1KSuLiiy9mwoQJZV6tGT58OHv37uWDDz7g7bffpl69egwYMIBrrrmG+++/nx07dtCyZUuuvfZaNmzYwD/+8Q+mT59eqk9wnz59ePXVV3nhhReYOHEidrudHj168MQTTwQcqHeitm3bMm/ePGbPns3EiRMxDIP09HReeeWVUt1TQtWjRw969+7NfffdB/iuckyZMqXE4NKyXHPNNeTn5zNu3DjsdjuXXnopd911l/+K8Nlnn83LL7/MrFmzuOOOO7DZbHTo0IFXX33Vv9hS69atGTp0qL8byrErjQMGDGDRokX06tXL/3zHEomBAweWiGPkyJFER0ezYMECFi5cSFRUFN26dePpp5/2nyy2bduWt956ixkzZjBlyhSUUqSlpTF79mzOPffck6q/Y46fMlTXdRISEujSpQtPPfWUP1mNiorirbfe4plnnuGpp54iPz+fhg0bMmnSJG666Sb/46dNm0ZycjJvvvkmubm59O/fn9tuu43nnnsuYAyapvHiiy/ywgsv8Nprr5GVlUWjRo2YOHFiiW5dt99+u7/8hQsXkpCQwIUXXsiECRMq7K8dTD0899xzvPLKKxw+fJikpCSuuOKKEgNxx48fT8OGDStcy+WHH34oMSlBVFQUzZs3Z9q0aVxzzTUANG3alGeeeYZZs2YxZswY4uPj6dKlC2+88QajRo1i1apVtGnThgsuuICPP/6Yu+++myuuuIIHH3yw0q/R4XDwxhtv8Mwzz/hPNFu0aMGjjz5aYvrORx99lKZNm/LBBx8wf/586taty/XXX8/YsWNPuoVk1qxZPPvsszz//PNkZ2dTv359xo8fX6JP/5VXXsnw4cN5/PHHyywj2O+5YPTo0YP58+fz7LPPMn78eBo1asRjjz3GbbfddlKv80QjRowgOjqaF198kXHjxhETE0P//v2ZOHGifzxK8+bNeeKJJ5g7dy6jR4+mZcuW/vE6xwwYMICnn36aV155hfHjx6NpGt27d+f111/3X6iYMGECKSkpvP322yxYsID4+Hj69OnDxIkT/RdBToX27dv7j7cJEyYQExPDgAEDmDx5Mna7HbvdHtT3ijhzbNy4kd9++63E2jbHWgt37NjhTy5vvvlm/8Wjdu3asXHjxlqbSGgqmNGOQoiQjBo1CqDCEzohqtKePXt48MEHa3V/3Jpg2bJlLF68uNS6GEKI2uXuu+9m3759/t/yTp06cdNNN5XZwpySksKmTZu45ppreOutt0rM9vTkk0/y/ffflzkxyelOxkgIIUQtMW/ePPr161fdYdRqpmmyYMECqWchzkCtW7dm165dNG3a1H87cOAATz75JIWFhXTo0IHo6GjWrVtX4nFbt26tcKKV05V0bRJCiFri2muvrXDufHFyjo0nKG9KUCFE7fWPf/yDCRMmMGvWLC655BIOHDjAfffdR6NGjfxdAG+55RZmz55NvXr16NSpE59//jlLly7ltddeq97gw0S6NgkhhBBCCHGCE7s2ASxevJgXX3yR7du3k5CQwODBg5k8ebJ/4gnwrSPz5ptvcvDgQVq2bMntt99eaoHe2kISCSGEEEIIIUTIZIyEEEIIIYQQImSSSAghhBBCCCFCVqsGW69ZswallCwSI4QQQghRQ3k8HjRNo2vXrtUdSilbtmwpsdp5VbPb7bRp0yZs5Z9qtSqRUEoR7JAPpRQejwebzeZf6EtUHanf8JL6DS+p3/CS+g0vqd/wkvo9eTV5eK7b7cZd7EIrdlV52SoyosrLrG61KpE41hLRsWPHCvctKipi06ZNtGrV6qRXnBWlSf2Gl9RveEn9hpfUb3hJ/YaX1O/JW79+fXWHEJBW7CLmu1+rvNyCQd2gliUTtSqREEIIIYQQ4qTJKOKgSDUJIYQQQgghQiYtEkIIIYQQQhxH02X8SzCkRUIIIYQQQggRMmmREEIIIYQQ4jiaRVokgiGJhBBCCCGEEEdpGmhh6LNTG2cLlq5NQgghhBBCiJBJi4QQQgghhBDHk8HWQZEWCSGEEEIIIUTIpEVCCCGEEEKI44RjjERtJNUkhBBCCCGECJm0SAghhBBCCHGMFqbpX2vhsAtpkRBCCCGEEEKETFokhBBCCCGEOI6MkQhOtScSXq+X2bNns2jRInJycmjfvj133XUXXbp0qe7QRDXy5heQt24znpw8LI5IYjq0JjI1JaQylIKCYsgpAtMEhx3qxIDVEqaghRBCCFE71MbV48Kg2hOJuXPn8t577/H444/TuHFj5s+fzy233MIXX3xB3bp1qzs8UQ2ylq5m/3tf4Np/GDRQpoktMZ6U8/uROvwCdGvFh63XgO0H4EAOeLz4+jsCsQ5oXd+XUAghhBBCiMqr9oabb775hqFDh3L22WfTtGlT7r77bvLz81m7dm11hyaqQe7aTex59X08OXlEt21ObIfWxHZojW61kvH+lxz8dEmFZSgF2zLgz0ywWSAxGupEQ5wDCpywcS/kO0/BixFCCCHEaUnTq/5WG1X7y0pKSuK7775j7969GIbBwoULsdvttG3btrpDE6eYUorD//0Jo7CI6BZN/C0Pmq4TkZqMLSGOzG9/xpOTF7CcgmI4mAvRERBp+6t10qJDfBQUuSAjO9yvRgghhBCidqv2rk333Xcfd955J+eeey4WiwVd15k5cyZNmjSpVHlKKYqKiircz+l0lvhXVK3K1K/70BFyN27DkpyIx+Mpdb+eFE/h1l1k/raJ+B4dyy3nYLZOsctKhENRRjFYNY39RxT14zxYqj2Vrhw5fsNL6je8pH7DS+o3vKR+T55SCq1Gj0HQwhRfTX7NlVPticT27duJjY1l9uzZ1KtXj/fee4/Jkyfz5ptv0q5du5DL83g8bNq0Kej9d+/eHfJziOCFUr/GoSPkHzmCbnrQPK4y9/Hm5bF723bs0eUfujnuePLdSXiKyv6S95pWFBqbXHuxaGbQ8dVEcvyGl9RveEn9hpfUb3hJ/Z4cu91e3SGIKlCtiURGRgaTJk3itddeo0ePHgB07NiR7du3M3PmTObMmRNymTabjVatWlW4n9PpZPfu3TRr1gyHwxHy84jAKlO/RlMnOz5filHkJDKl9AxN3vxC3CnJNO/RlajWzcot53C+zuZ9VmIjY9DLaHHIc2rEOUw6NI4+bSdlkOM3vKR+w0vqN7ykfsNL6vfkbd++vbpDCEwjPLM2nabnHIFUayKxbt06PB4PHTuW7KbSuXNnfvzxx0qVqWkaUVFRQe/vcDhC2l+EJqT6jYqi7qA+7H/nU/RUE0tkhP8uZZo49x8ioUt7kjq2RSsrQziqYQRk5EKhC+LtJb8L3F7QLdC4LkRHn/5XQ+T4DS+p3/CS+g0vqd/wkvqtvJrdrUmEoloTidTUVAC2bNlCp06d/Nu3bt1Ks2bNqikqUZ3qXnA2Rdv/IHfVeiwxUVhjYzBdLtxHcohq1oiGVw8NmESAb52I1vVh017ILvQNuNY1cHnBVFA/EVITTs3rEUIIIcTpp7bOslTVqjWR6NSpE927d2fq1KlMmzaN1NRUFi1axLJly3jnnXeqMzRRTayxMTQbdx1Z/1vFkR9X4snORXdEUv+Ki0ga0JPI+sGtLZIUC52awv5syMwDQ0Fc1F9JxOk6yFoIIYQQoqao1kRC13Xmzp3Lc889xz333ENubi5paWm89tprdO7cuTpDE9XIGhNN3YsGkHLB2RhFTvQIO3olBmXFRfluRn3fytZWiyxUKYQQQojAfEMkqv6EoTaeglT7rE3x8fFMmzaNadOmVXcooobRLBassSe/BLVFlxYIIYQQQgRPLjwGR06vhBBCCCGEECGr9hYJIYQQQgghahRdmiSCIYmEqJFMZxHFf+zELCxAs9mJaNIMa0Kd6g5LCCGEEEIcJYmEqHGKNv9O/rIf8GYdObpFoUfHEt25G7E9z0azWKo1PiGEEELUYlqY1rqohY0ckkiIGqV49w5ylyxGmSb2ho3RLBaUMjFyc8lf9j803UJsr7OrO0whhBBCiDOeDLYWNYZSisJ1qzFdxdjr1fe3PGiajjUhET06mqL1azAKC6o5UiGEEELUaloYbrWQJBKixjByc3Dv31PuWAhrQiLevBzc+/ee4siEEEIIIcSJpGuTqDGU4UUZBpq17MNS0y3+/YQQQgghwiUsYyRqIUkkRI1hiYnFEh2DUViAHukodb/pLEKz2bDGxVdDdEIIIYQ4U0geERxJJESNoUdE4mibTv7S7zBj49Htdv99yjTxHD5IZPNW2FIbVmOUQgghhBCn1vLly7n++uvLvK9Ro0Z8++23pzgiH0kkRI0S06UHnoP7Kd6xFT0iEj0qCtPtwSzIxVq3PrFnD0bTZWiPEEIIIcKohjVJdO3alZ9++qnEtrVr13L77bczduzYaopKEglRw+iOKBIv/H8UbVpP0cbfMAsL0CMiiO54DlHtO2NNTKruEIUQQgghTim73U5KSor/76KiIqZPn87w4cO5/PLLqy0uSSREjaNHOojp2pPozt1RLheazYZmtVV3WEIIIYQ4I2hhGmxddWXOmzcPp9PJ1KlTq6zMypA+IqLG0nQLuiNKkgghhBBCiKOysrJ47bXXuO2220hISKjWWKRFQgghhBBCiONoYbrUnpGRwYQJE8q9P5hB02+//TaxsbFceeWVVRhZ5UiLhBBCCCGEEKeJRYsWcdlllxEZGVndoUiLhBCnSl6Bl117iil2mUQ5dJo3dhATZanusIQQQghxPI3wzNqkQf369U9qqtbNmzezZ88eLr300ioMrPIkkRAizExTsfK3PFasyye3wEAHTCAhzkrfbnF0bR8jK2gKIYQQNUhN/V1etWoVSUlJtG3btrpDASSRECLs1m0q5LtfcomM0GlSPwJd1zBMxZFsD9/8lE2EXadD6+jqDlMIIYQQNdzGjRtp06ZNdYfhJ2MkhAgjt8dk1fp8rBaN5EQbuu67wmHRNeom2VHA6vX5GIaq3kCFEEII8RctDLcqcPjw4Wqfqel40iIhRBhlHHJzJMdDvaSyp7CtE2/jYKabQ0c81K9rP8XRCSGEEOJ0Mn/+/OoOoQRJJIQII69XYRgKi7XsSxFWKxgmeA3zFEcmhBBCiLL4xlpX/RiJmjnq4uRI1yYhwig+1kpUpE5hoVHm/QWFJlGROvGxktMLIYQQ4vQiiYQQYZSUaKVFUweZOd5S4yC8XkVOnoc2LaKIi5FEQgghhKgxaugYiZpGzl6ECCNN0+jfI56sHC9/7ncRE6UTEaFT7DIpdBo0a+ygT7e46g5TCCGEECJkkkgIEWZ1EmyMGJLM+i0F/L61CJfbJDbGSu+ucXRqGyOL0gkhhBA1TE1dR6KmkURCiFMgPtbK2T0S6N0lHrfHJMKuY7HIl5QQQghRE0kiERxJJIQ4haxWDatVWiCEEEIIcfqTREIIIYQQQohjwjU4uhY2csisTUIIIYQQQoiQSYuEEEIIIYQQx5ExEsGRFgkhhBBCCCFEyKRFQgghhBBCiONJi0RQpEVCCCGEEEIIETJpkRBCCCGEEOI40iARHEkkhBBCCCGE8NPClEnUvuxEujYJIYQQQgghQiYtEkIIIYQQQhxHpn8NjrRICCGEEEIIIUImLRJCCCGEEEIcT1okgiItEkIIIYQQQoiQSYuEEEIIIYQQx5MGiaBIi4QQQgghhBAiZNIiIYQQQgghxDFamGZtqoWtHNWaSCxfvpzrr7++zPsaNWrEt99+e4ojEkIIIYQQZzwZbB2Uak0kunbtyk8//VRi29q1a7n99tsZO3ZsNUUlhBBCCCGEqEi1JhJ2u52UlBT/30VFRUyfPp3hw4dz+eWXV2NkQgghhBDiTKQRngaJ2tjGUaMGW8+bNw+n08nUqVOrOxQhhBBCCCFEADVmsHVWVhavvfYakyZNIiEhodLlKKUoKiqqcD+n01niX1G1pH7DS+o3vKR+w0vqN7ykfsNL6vfkKaXCM5i5KtX0+GqIGpNIvP3228TGxnLllVeeVDkej4dNmzYFvf/u3btP6vlEYFK/4SX1G15Sv+El9RteUr/hJfV7cux2e3WHIKpAjUkkFi1axGWXXUZkZORJlWOz2WjVqlWF+zmdTnbv3k2zZs1wOBwn9ZyiNKnf8JL6DS+p3/CS+g0vqd/wkvo9edu3b6/uECpU41tMaogakUhs3ryZPXv2cOmll550WZqmERUVFfT+DocjpP1FaKR+w0vqN7ykfsNL6je8pH7DS+q38uQkvfaoEYnEqlWrSEpKom3bttUdihBCCCGEONNJrhOUGpFIbNy4kTZt2lR3GEIIIYQQ4oynhWmwde3LTmrE9K+HDx8+qZmahBBCCCGEEKdWjWiRmD9/fnWHIIQQQgghBABaLWw9CIca0SIhhBBCCCGEOL3UiBYJIYQQQgghagSN8IyRqIWNHJJIiCqllMIsLkDl5xCtXKjiApTDUS1TvSmlyMwx2H/Ig2FAXIxOk/p27LZa+EkWQgghhDjFJJEQVcb0uPAc3oPpzMf0eIhTRZiH/8RdnIctuRG6/eQWGwyFy22ydE0RW3YXU+xSgO/iQkqilXN6RNM4VVbUFEIIIUTZZKmL4MgYCVEllGHgOfQHRmEumi0CLTIaNzaw2TEKc3Ef+hNleE9NLErx05pC1mx2Ehmh0aielcapNlKTrGTmGHz9cwGHs05NLEIIIYQQtZUkEqJKGEW5mEUF6JHRaJa/Gro03YIeGY0qzscozD0lsWTmGGzd7aJOvE5slMXfrcpq1WiQYiE332DjzuJTEosQQgghTkOaVvW3WkgSCVElzKI83/oteulDyrdN8+1zCuw75MHpUsQ4yohF04iN1tmxx43Xq05JPEIIIYQ4zUgiERRJJESVUKYR+EOi6b59TgGvVx2dcKHseCwWMEyF15REQgghhBCismSwtagSmt0BBTkopUqdwCulwDTQIhynJJa4GAuaBl5DYbWUTiYKnSapyTbs1tp5dUAIIYQQJ6c6Zps8HUmLhKgS1ugEsFhRHlep+5TXDRarb59ToFkDG8mJVg5mGb4k5jhOl4nXgHYtItF1+ZIQQgghhKgsSSREldAiHFgTU8E0MZwFKK8bCyaquAgML9bEemgRUackFrtNp3+3aKIdOnsOesnOM8gvNMjI9JCZY9ChZQRtm0WckliEEEIIcRrSwnCrhaRrk6gSmqZhTaiLbo/EyD+CkZ8LKLSoWOxJqehR8ae0mbBpAzuXDohj045idux14TWgXpKN9i0jadssAqt0axJCCCGEOCmSSIgqo2kaluh49Kg4PDEFHM7dQp2kxliio6slnnpJVuolxdCvWzSGobDbNOnOJIQQQoiKyRiJoEgiIaqcpmlougWlaTVisJLNqmGTFgghhBBCiColYySEEEIIIYQ4jnb0YmhV3qrCokWLuPjii+nYsSOXXHIJixcvrpJyK0sSCSGEEEIIIWq4jz/+mPvuu49rr72Wzz//nKFDhzJx4kTWrFlTbTFJ1yZRpUwFOYVwJEcnxx1HdqFGpANCHZpQ7FbsPWRQVKywWaFBsoX4GMl7hRBCCBFu4ZpmqfJlKqV4/vnnuf7667n22msBGDNmDKtWrWLFihV07dq1qoIMiSQSosoUuWDzPsguALfHSl5xMhv22DiYD20aQnSQM67u2Otl1RY3ufkKNIVSEBWp0a6Zja5pNiwyYFoIIYQQ4VLz8gh27drFvn37uPTSS0tsf/nll08yqJMjiYSoEh4DNu6BI/kQ54Aom8JT5CTKHkNmHhgGdGkOtgqOuD0Hvfy03oVpQr0kDYuuo5Qiv0jx6xYPFh26ptlPzYsSQgghhKhCGRkZTJgwodz7v/322zK379q1C4CioiJuvvlmNm7cSKNGjRgzZgyDBw8OR6hBkb4iokpk5kFWASREl0wWrBaIj4LsQjicF7gMpRQbd3txeyAlQfe3PGiaRly0TlQEbP7DS1GxGcZXIoQQQogznqZV/e0kFBQUADB16lSGDh3KK6+8Qr9+/Rg7dizLli2rildcKdIiIarEkTzfZ8RSRmpq0X33ZeZDgzrll5FfpDiYZRAfXfaHLS5a40CW4mCWSfMGkgMLIYQQ4vRSv379clsdArHZbADcfPPNDB8+HIB27dqxceNGXn31Vfr06VOlcQZLzsZElfCagQdUWzTwGoHLMEwwzbKTEcC3mJxSGNIgIYQQQogwqmnTv9arVw+AtLS0EttbtWrF3r17T6rskyGJhKgS0ZG+ZEKp0vcp5RtDERtZURkajkiNIlcZheCbyclq1YiJksHWQgghhDhzdOjQgejoaNatW1di+9atW2nSpEk1RSVdm0QVqRcPe49Akbv07ExON9itUDchcBl2m0arRlZWbnQT41AlVqM2leJIrqJJPZ26iZL/CiGEECKMqmgBuaoSGRnJLbfcwuzZs6lXrx6dOnXi888/Z+nSpbz22mvVFpckEqJKxDqgRV3YfsA3sNoKeEwruUUaNhu0TPXN5lSRDs1tHM42+OOAQYRNIzICPF4odCqS4nXOamdHr2EfbiGEEEKIcBs7diwOh4MZM2Zw8OBBWrZsycyZM+nVq1e1xSSJhKgSmgZNUiAqEvZnwZFcAI3kWJOm9SA5LrjkPtKuMbBbJNv3etm2x0thsYndptG2iZW0JjZZlE4IIYQQ4VdDr1neeOON3HjjjdUdhp8kEqLKaBqkxEFyLOQXeNi8ZS/tGkYTHR3aug+Rdo30FjbaN7Pi9vqmkLVaaugnWgghhBC1kJx3BEMSCVHlNM138m/RzJPqYqjrGpGy9pwQQgghRI0kiYQQQgghhBDHk/GYQZEO50IIIYQQQoiQSYuEqFKmaXIk3yQnX+GyJJFVqIiMNNF1yVmFEEIIcXo42QXkzhSSSIgqU+A02HnATbHbwFQKwxLH3iMmWQUumqfaiXVYqjtEIYQQQghRReQysagSbq/JjgNunG4vVouG3aqh4cWqg9NtsCPDhctjVneYQgghhBCBaWG81TKSSIgqcSjXS7HbwG7VsRw3Vauu+5IKl8fkUK63GiMUQgghhBBVSbo2iSqRW2igab7E4US6rqFpitwig8bVEJsQQgghRPC08MzapGpfk4QkEqJKmEH0WjKN8MchhBBCCHHyat9JfzhI1yZRJSJtGkqBaapS95mmQilFpF0+lEIIIYQQtYW0SIgqkRxvI6fQi9dU2E/o3mSYvmnUkuNt1RSdEEIIIUQIwtK1qeqLrG7SIiGqRHyURnK8FaWg2G3iNRQKHbdXYZqK5DgrCVHSIiGEEEIIUVtIi4SoErqu0zTFjiPCSmauh6JiLxoaDrtGvcQI6sZbZFE6IYQQQpwe5NpnUOTMTlQZXddJTbDSvnEEberrRLj/pGVdjdREmyQRQgghhBC1jLRIiCqn6zo2q4aOWeZ0sEIIIYQQNZWGb2xnOMqtbeQysRBCCCGEECJk0iIhhBBCCCFECbWx/aDq1YhEYtGiRbz00kvs2bOHJk2aMH78eC666KLqDktUgtvtZc2WIv7IcFNYmEwRTnp1tGO3h3aoKa8blZuJ8rjAYkWPrYMWGR2mqAMzTDiSD0Uu32xwCVEQFxWemeGEEEIIUQPIj3xQqj2R+Pjjj7nvvvu499576d+/P59//jkTJ04kNTWVrl27Vnd4IgS79jn56HsnWYU6CivKjGfHYVixOY/LznHQsrEjqHLMIxkY+7ehigt9GxQY9gj0lMZY6rdEO4UDt3MKYdNeyCsCU/mmgLZZoG48tGsIdlkaQwghhBBnqGodI6GU4vnnn+f666/n2muvpUmTJowZM4a+ffuyYsWK6gxNhCg3z8N7S5xkFuo4bCbxDpPYSA+RNoMjhTrvf+8kK8dVYTlm7mG8f25EuV0QnYgWmwSxdUDTMfdvxziw6xS8Gp8iF6z/A3ILIdYBSbGQFAORNth3BDbu9SUXQgghhKhlNK3qb7VQtbZI7Nq1i3379nHppZeW2P7yyy9XU0SispatLyDXqRNrN7FY/tput2pYNJM8p84vG4q4+OyIcstQSmEc+hO8HrTYOv7tmqZBRBTKNFGZe1EpjdBs5ZdTVTKyIb/Ylzwc+/xrGkTYfP8eyoXsAl+CIYQQQghxpqn2RAKgqKiIm2++mY0bN9KoUSPGjBnD4MGDK1WmUoqioqIK93M6nSX+FSdn214DsPiTCKWU/1+LRfPvE/C9cTnRcjLBYgePp/T9FhuqMBdP5gGIT6niV1Da3sM2LGh4vaWbHTTA5dY4mGXgsBhhj+VEcvyGl9RveEn9hpfUb3hJ/Z48pVRYpletUjU8vJqiWhOJgoICAKZOncr48eOZPHkyX331FWPHjuXVV1+lT58+IZfp8XjYtGlT0Pvv3r075OcQpRW7GqJhwTBKnlSbpgmAhkaxywj43lgNF/Vyc/DoVpRuKXOfCI+TrF07KYrIrLrgy6AUHC5ohGnqOC1lJDWA03DwpzsbZ2Z2WGMJRI7f8JL6DS+p3/CS+g0vqd+TY7fbqzsEUQWqNZGw2XwjVW+++WaGDx8OQLt27di4cWOlEwmbzUarVq0q3M/pdLJ7926aNWuGwxHcIGBRvvV7C8kp1tA0C7ruu9pgmia6rqOUhkIjJUGnXbt25RdieGF7MZrXC2XN0OT1gDuC2BZtITo+fC/mKHOPlcN5OgnRpVsklILsIo1WDRw0SEwNeywnkuM3vKR+w0vqN7ykfsNL6vfkbd++vbpDCII0SQSjWhOJevXqAZCWllZie6tWrfj+++8rVaamaURFRQW9v8PhCGl/UbZu7Q12HjJwejSiI/5qstQ0DadHw6JB9zaRFda1t24TzH1bQdfQLH8dnkopKM5DS0zBmpx6SppEm9aDbCcY+AZY/xUL5Dl9U8A2SrESWY0XVeT4DS+p3/CS+g0vqd/wkvqtvBrfrUkErVpnberQoQPR0dGsW7euxPatW7fSpEmTaopKVEb75g46NjUwTY1cp06RG1wenVynjtfQaN/EoEOriq/cWOo1QUusB4W5qKI8lNuJchZA/hE0RyyWhmmn7AsoJR6aJIPT5RtU7XT7ZnLKKgCLBm0aUK1JhBBCCCHCIBwzNtXSmZuqtUUiMjKSW265hdmzZ1OvXj06derE559/ztKlS3nttdeqMzQRIqvVyvDB8dRbV8iabV6yC3QUkBzrpVsrK/26xmO1Vny4aVY71uYdMeP2Yx7Zj3K70KxWtJRWWJIbntJF6XQN2jSE+CjYnwX5Tt93QOMkaJgEiTGnLBQhhBBCnEq18KQ/HKp9QbqxY8ficDiYMWMGBw8epGXLlsycOZNevXpVd2giRFarlXO6x9O3s5fMrCJ2bN9Jx/SWxMWFNj+qZrVjqdcMvW4T37gJ3YJWzuDrcNM1aFAH6ieCx/D9ba2eUIQQQgghapRqTyQAbrzxRm688cbqDkNUEavVSlyMlcgIA+tJnHVrmg7WmtF3SNPAXiM+LUIIIYQIP2mRCEa1jpEQQgghhBBCnJ7kGqsQQgghhBDHkwaJoEgiIfwKixWZeeA1IMLmm7UowhbaJ8kwTI5k5JB5OI+CLMWRjBwimkVisZz6xi+lFIezvOw94MJrKOJjrTRvFIHdJg1xQgghhBAnSxIJgWkqtu9X7DoIxR58WbiCmEho0wgaJQeXTBTkFLJ23WEyC3S8ho7XW4esjR5S9v5B504pxJ7CaY6K3SY/LM9l0w4nRcUGmqahAXWTbZzbO56mDSNPWSxCCCGEOM3IrE1BkUuzgp0HFJv3+T4zSbGQHAt1YsDlgd92Kw5ml17Z+UTuYg+/rjnEgTwLMXaDpCgvsdZCom0GB/OsrF6TicvpPgWvxtcS8f0vuazeUIAjQqdpgwiaNoigfl07h494+PyHbA5mnppYhBBCCCFqK0kkznAuj2L3Id+MRNGRfyXgug7x0WAYsPug8q0sHUDGniwyC63UcRjYrX9l8TYrJEYZZBVayNiTFc6X4nc4y8umnUUkJdiIjbH4F7CzWTUapdrJzvWyfmvRKYlFCCGEEKcjLQy32kcSiTNcdgEUFUN0RNn3R0X4VnIuLA5czqHDTqDsNRasOmia4uChCgqpInsyXDidJjHRpQ9vTdOIi7GwbbcTj7filhYhhBBCnIFkVeugSCJxhjNNUJR/fFt0MBUYFZxzew2wUP5OOuD1VjrMkHgN5RsTUc6Lslo0DBOMil6UEEIIIYQolyQSZzhHhK8VwV3OSX6xxzeDk6OCdeFio3W8SsM0S99nmuBVGnGxp+Zwi4+xoGngLafFoaDIJDHOij3EGamEEEIIcYaQnk1BkUTiDJcQ7Rtcne/0tTwcz2tAsRsaJVFi3ENZGjSKw24xKXSX3q/IDXaLokGjuKoMvVzNG0eSUsfGgUx3qbEdRcUGhqFIT4tC12vpp1oIIYQQ4hSQROIMp2ka7ZpoxEXBkTxfQuF0QW4hZBdCaiI0T634hDshOY42Tax4TY3MQp0it4bbsJJVZMVj6rRupJOYcmoSiQi7zuDe8URHWdi9z0VWrpe8Ai/7D7rJzPKSnhZF+1ZRpyQWIYQQQpyOpEkiGJVeR6KoqIioKN/J2FdffcX+/fsZNGgQzZo1q6rYxCkSF6XRMw32HFbsOwJeE6IioU2yRuNkguoCpOs6rdrXJzY2iz/+LOBIPig0UuM8NG8aR2rTJHT91OWtzRtHcvkFSfy2tYjtfzjxehWpde10PJpE2CpoYRFCCCGEEIGFnEjs3LmTW2+9lUsuuYQJEybw3HPP8eKLL6KU4rnnnuOVV16he/fu4YhVhFF0pEbbxhqtGyoMA6xW0EOcYUDXdeo3TaZe4zrk5+azdetW2ndoT3RMdJiiDiw1xU5qip1BPeN8q3XbNenOJIQQQogKaLW1AaHKhXyJ+Omnn8ZqtXLuuefidrt5++23ueiii1i1ahX9+/fnueeeC0OY4lSx6Bp2mxZyEnE8XdexRdjQrTpaDThxt9l0HJG6JBFCCCGEEFUo5ERi1apVTJo0iY4dO7JixQry8/O58soriYmJ4aqrrmLDhg3hiFMIIYQQQohTQ9aRCErIXZs8Hg9xcb5Bsz/++CMOh8PflckwDKzWSg+7EEIIIYQQogYIx4l/7Vu/KuSz/rS0NL7++muaN2/Ol19+ydlnn43VasXj8fDWW2+RlpYWjjjFKbD5Tzcb//Di8kB0JHRvbaVhSgULSJzA4/GyZWcBew+6KCyqg2YvpGNbOzbbqU8wlVJk5ysOZBkYJsQ6NBqmWGSgtRBCCCFEFQj57O6OO+5g3LhxvPXWW9jtdv7xj38AMGTIEDIzM5k3b16VBynCq6jYywf/c3Ewx4LX9PV204DtGV5a1fcyrG9wU6XuP1jI5z8VcCDLtwYFOPh9j8GqLZlcfHYMjVJjwvYaTuT2KFZucrNzv0GxW/kmXtOhTqxOrw52GiRbTlksQgghhDiNhGu21lp4HTPkRKJfv358+umnrF+/ns6dO9OwYUMAbrjhBnr37k2bNm2qPEgRXouWutifZcGiKxw2ha5rmKbC5dXYslfj61VOLujhCFhGfqGLj3/IJyNLo06swm4F0zTxGhr7MnU+/qGQ6y62Eh8bGfbXo5RixSY3G3d7SYjWSIzV0TQNr6E4kmvy41o3558VQVK8LKMihBBCCFFZlepv0rhxYxo3blxi2w033FAlAYlTa99hNxnZGrqmiLDBsXRZ1zUcdihyKbbuUwzs7MUeoHvSb5sLOJitkRKnsFo1/4rSdptGcrzicI7Gb1sK6d8j/IlEdr5i136DhGiNaMdfyYLVolE3UScj02TbXg9J8RFhj0UIIYQQp6EaODj64MGDnHPOOaW2T58+nREjRlRDRJVIJNxuN2+++Sa//voreXl5pe7XNI3/+7//q5LgRPit32XgNTQibYqy2txsFnC6dLbuNUlvXn45O/Z50DQNaxnjD6wWDU3z7dO/RxUGX44DR3zdmRJjS7c4aJpGtEPjjwMGPdoqrJaa90UhhBBCCHGizZs3ExERwTfffIN2XKITGxtbbTGFnEg8/PDDvP/++7Ru3ZqEhIRS9x+7Ei1OD15TodApbyYBTfPd4/YEfl/dXgi0TIOu+/Y5Fbzm0e6N5VxNsFjANMEwwSpDJYQQQghRSs270Lh161aaNWtG3bp1qzsUv5ATif/+97/cfvvtjBs3LhzxiFMsJU5H18BQWpmLinhNsOgmDVJsActJjoM9h8A0VamF30xT4fVqJMdVYeABxDh8LSBeo+wWh6JiRd1EC9UwkZQQQgghRKVs2bKFli1bVncYJYR8KqXrOl27dg1HLKIadG1tZeU2NwXFOhbNLJEEeE2FYejUTVSkJgZOJDq0imLjn07ynRAfXfK+AifYbZDeMvCA7arSKMVCYpzOkTyTugl6iZaJYrfCMKFVI+tJrd4thBBCiFosTOcIGRkZTJgwodz7v/3223Lv27p1K4mJiVx77bXs2rWLpk2bMmbMmDLHTZwqIU9bc9lll/H+++9jmmY44hGnmN1mpV8HCxFWE6dbp9gNbg843eDy6MREmpzXreJ8s3mjKLqlgcercSgH8p1QWKxxOBfcXo2uraFFk+gKy6kKdptGz/Z2oiJ0Mo6Y5BaaFDhNDmUbZOebtG5kpWVD6dMkhBBCiPJoYbhVntfrZefOneTm5nL77bfz0ksv0aVLF0aPHs2yZctOquyTEXKLxIQJE7jssssYMmQIHTp0wOEoeZVZ0zQee+yxKgtQhF/XVhFE2tys2OzlSAGYpobdqkhNVAzsaCM1OXBrBIDVauW83kmkJOSxboebw9lgKmiUoujc0k6X9nGndNXzRikWzusRwda9HvYc8C1Il5JgoXVjXxIhg6yFEEIIcarVr18/YKtDeaxWK8uXL8disRAZ6ZsBMz09nW3btvHyyy/Tp0+fqg41uLhCfcDTTz/Nrl27cDgc/Pbbb6XuL2+Aq6jZ2jW1066pnbxCL0VORXyshiMitMPDarXSPb0Ondt6ycopZOeOHbRv15q4uOqZTSA5QSc5IQJPW4Vpgs2GdGcSQgghREAKUGE4XSh7fszgRUeX7tnRunVrfvrpp5Mo9eSEnEh88skn/P3vf2fKlCnouizoVdvERVuJO8keSFarlZgoGzarwloDpkWylTElrRBCCCHE6WLbtm1ceeWVzJ07l169evm3b9iwgVatWlVbXCEnEoZhMGjQIEkihBBCCCFELVWzLkK2bNmSFi1a8PDDD/PQQw+RmJjIu+++y9q1a/nggw+qLa6Qs4Hzzz+fxYsXhyMWIYQQQgghxAl0XWfevHl06tSJCRMmMHz4cNatW8err75KWlpatcUVcotE586defrpp9m8eTNdu3Yt1V9L0zRZY+I09esWD6u2Gbg8EB0JAzpbadkgtEPE7fGydXcxB7M9FBWlou8upkNrO/YQF23Yf8jNN7/kk5NnEBmh06dLFB1bR4VURm1kKsWhLJO9Bw32ZDqIO2zSorHCEmg1QCGEEEKEQAvT9K8nV2ZycjLTp0+voliqRsiJxIMPPgjA2rVrWbt2ban7JZE4/eQ7vcz/3ENWHhy/MPnugx6a1fNy00WRQZWz/6CTZZtNigw7CjtKRZNzAHYcdtG7jZtGqcElAm9+msXP64vxmsdW3DZZszWXZqn53HFtMo7I6h93UR0KnSY//+ZmzyEvzmKD/PxYDhZ62bynmH6dIqgTJ90NhRBCCHHqhJxIbN68ORxxiGr08mIPR3JB0xVWHXRdwzR9C7ftzID/fOfiqkERAcvIK3CzdJPCadqwaV4sGpimgcJCkdfGz5u9XBDlJiHOHrCcj5fk8NNvLhQakTbfAnmmMvF4YUeGyeyFmUy+oV5VvvzTgtdQ/LjWxe4Mg+R4nYQYHZvyEBejsf+wl+9/VQzpHUl0pCQTQgghxEmTWR6DclJnHTt27GDt2rX8+eefVRWPOMV27PeSlQeaprBZNP/K1rquYbNqKAVb95oUe7wBy9m4sxinaSVC82I9rpuNRYcI3UuxaWXjruKAZRiGwf/WOjEVOOz8FYumEWHTsGiKnfsM/tgfuJzaaN8hg72HDOom6kRG/FW/dptGvSQLh7JNdu83qjFCIYQQQpxpKpVIfPbZZ/Tv35+hQ4dy9dVXM2TIEPr378+iRYuqODwRbss3GxiG74S/LLqucHtg7TZV9g5HHczV0FD+k/+SZfi2HcgNfLht3uWiwAk2veznslnBa2osW1cUsJzaaF+mgWn6EocTWXQNmxV2ZwRO9oQQQgghqlLIXZuWLFnCXXfdRe/evZk4cSLJyckcOnSITz75hHvuuYeEhAQGDhwYhlBFOHi9gRMEXQOvApc78H5eFXj5dw0wK1jdpdhl+hZrKWe3YwmJ2xM4ltrI41UEmnHZqmtU0GgkhBBCiGBJ16aghJxIzJ07lwsvvJAZM2aU2H755Zfzz3/+kxdffFESidNI3USdLXsNTFV285Rh+lormqcGbk2ItpkUesE0S7dKmKZCAdH2wF1vmjSIwKLn4TW1Mg9Mr1ehodEwxRb4RdVCibE6hgFKqTJXjy92K1rEy5eeEEIIIU6dkLs2bd26leHDh5d53/Dhw2Uw9mlmYBedCBsYpm+A9fEMU2EqjbgoaJIaOOds1cCCjsKjSh9SXqWjo2hZQTKSkmijWT0LptIwjJKxmErhNjSiIxX9e5zk0tunoaapVmKiNLLzS7fGFBSZ2KzQouGZl2AJIYQQ4aDQqvxWG4WcSCQmJpKbm1vmfTk5OdjtgWflETVLpM3KgE4WrBbwGBoer8JrKDxehWFoRNhg+NkVn6A2axhJg1gXCh2nYcFj6niVhWLDiolOaoyLFo0dFZZz3dBE4hwmLq+G06VwexQuNxS7dewWxeWDY7HbzrzpX+NjdHq0s6OUIiPTIL9I4XTrHMpSFBYrOrWy0SBZZmwSQgghxKkT8plHnz59mDVrFgcOHCixPSMjg9mzZ9OvX78qC06cGgM62xnax0qdWN8MSUr5Zm+qn6Rxw/m2oBals1otnNM1mvT6xcRY3Ue3asRY3XSo52Jgt2is1ooTgAZ17Uy6IZlOLa3YraCUhqYpmtWD0SMS6Nct9iRf7emrbVMb5/d00LqxFZSvbhrW1RjcPZJube1ldnkSQgghRIg0fGMkqvxW3S+s6oU8RmLixIlcfvnlXHDBBXTt2pXk5GQyMzNZs2YN8fHxTJo0KRxxijDr2cZGzzY2cvK95BRA3USIigzt8LBaLXRtF0fH1gbZ2YVs27mTju1aExsXE1I59ZPtjL86hWK3QVaOQUy0Tlx0yIdqrdQwxUKDZJ3cfIPNm4/QsUMy0VI3QgghhKgGIbdIpKSk8NFHHzFq1CicTicbNmzA6XQyatQoPvroIxo2bBiOOMUpkhBrpVl9a8hJxPGsVgvR0VYirAYWa+XT70i7hQZ17ZJEnEDTNOxWDZul7IHXQgghhDhZWhhutU+lztCSkpK46667qjoWIYQQQgghxGmiUonErl27eOGFF1ixYgV5eXkkJibSo0cPxo4dS6tWrao6RiGEEEIIIU6d2tmAUOVCTiS2b9/OVVddhcViYfDgwSQnJ3P48GG+++47vv/+e9577z1atmwZdHkHDx7knHPOKbV9+vTpjBgxItTwxEn4/tdilv3uxu1WREVpXNQrgvQWESGVUVDo4tP/FbI/S8frbcqmA04uG2ghJjq0cn7fXsB7Xx4hL99LhN3CwF7xDDk7MaQyqorHa7J7r4vsXA+6rtGwnp3UFBncLIQQQtRe8hsfjJATiaeffppGjRrxxhtvEBv71ww6+fn53HDDDcyYMYNZs2YFXd7mzZuJiIjgm2++KXFidnzZIryy8z08804BmUc8R9dv8K1VsOtPF82bRHDX1XFBlfPz2jy+WqOjiPJ//rYegqfe9XBux2LO6REfVDkPz/qD9ZvycHtM3wYFW7bn8cm3mTw6oSkJ8aduiuH9B138d2k2GYfcmCYoBZGRGq2aOji/XyJRjjNvKlohhBBCCKjEYOuVK1dy2223lTrRj42NZfTo0axcuTKk8rZu3UqzZs2oW7cuKSkp/ltkZGSooYlKmrGwkIOH3KBBZKQFh8NGZKQVwzDZvquYuYsKKizjj/1FfLVGx9SsoAy0ozeUgalZ+Xa9lR1/FlYcy2v7WLshF69X4YjUiY6y4ojS0TTYu6+IB174oypeclCyc7189l0W+w66qZdso2nDCJo2tBMbZWH9lkK++l8Whll6gTghhBBCnN6UplX5rTYKOZGwWq1ERJTdTcVut+N2u8u8rzxbtmwJqSuUqFobdrrIPOLBYtGw2yz+ViFN04iIsGKais27XBQVewKW88XPLpRm9SUQxx1VmgaaMlCazpfLAx8bbreb1etzMUyFw2FB130F6ZpOhN2CxaKx/0Axq37LO7kXHaSN2ws5dMRN41Q7dpsvFk3TiI6yUC/ZxrbdxezNcJ2SWIQQQgghapqQuzZ17NiRt99+m4EDB5boiqSU4q233iI9PT2k8rZu3UpiYiLXXnstu3btomnTpowZM6bMcRPBUEpRVFRU4X5Op7PEv2eqJb968XhMIiLL7qJjs+q4nAZLVjsZ3LX8ZOJwgQWllC8zPeEivYZv8bTDBdaA7813KwooKvJis5Wd39rtGk6nyZc/ZdG+VfinhN2wJY8Im8IwvBhGyftsFnAWe9i+O4+URDPssZxIjt/wkvoNL6nf8JL6DS+p35OnVE2fvjxc07VW72vOysri5Zdf5ueff+bw4cMsWLCAb775hrZt23LeeedVqsyQz8buvPNOrr76aoYNG8aFF15ISkoKhw8f5ssvv2TXrl28+uqrQZfl9XrZuXMnrVq14u677yYmJobPP/+c0aNH8+qrr9KnT59Qw8Pj8bBp06ag99+9e3fIz1GbFBY2Pvq/srvoaDqYpuLAoRw2bTpcbjmGSjuaMZR9v9IUShHwvflzjx1lKjSLhiqjIE3TQEFegTOk97gylIKDhyx4DKCcPKEgX+PPP3NJiDz1icQxZ/rxG25Sv+El9RteUr/hJfV7cuz2UzfeUcCePXu4+uqrcblcdO/enc2bN2MYBrt27WLOnDnMmTOHgQMHhlxupVokFixYwDPPPMOsWbP8WWV6ejrz58/nrLPOCv7JrVaWL1+OxWLxj4lIT09n27ZtvPzyy5VKJGw2W1BT0DqdTnbv3k2zZs1wOBwhP09tsSXLYNe+IkwTdEvpTNkwTCwWnbPS69C6YXK55Xz1uwenUX6mrSkNu8WkXbt25e7jiHWx5Je9GF6FzVq6VcLrNdF0aNEkjnbtmlbwyk7ejgM5bNvtIiXZVuo+01QUuT20axtHuzZRYY/lRHL8hpfUb3hJ/YaX1G94Sf2evO3bt1d3CGecJ554gqSkJN544w2ioqL8PYieeeYZXC4X8+bNOzWJxEcffUTfvn157733cDqd5OXlERcXV+kPU3R0dKltrVu35qeffqpUeZqmERUV/Imdw+EIaf/a5rL+HpZvcFNU6MUSqZVoajRMhWGYpCRG0Ll1TMByOjbNZuVOhYmOrpklWiZMdDQUHRqrgHXdPi2KevUy+XNPEV7DxGr5K5kwlYnLbRITbWXUsBSiosJ/JaNLe9i9/wgut05M9F9dv5RSHMj0kJIUSYfWCURFVd/K22f68RtuUr/hJfUbXlK/4SX1W3k1u1tT7bRs2TIee+wx4uLiME7or33llVcyYcKESpUb8mDrhx9+mN9++w3wfYjq1atX6SRi27ZtdOvWjeXLl5fYvmHDBlnY7hSJirRxbi8HdruOs9jA7TbweE1cLi9ul4EjysY1F1T8RXlB72ji7C40zZc4mOiYSsPUdDQ0Yu0uLupbcTljrqlPXJwNV7Hpi8djUOwyKCoysUfoDD23LtGnIIkAaNXMQfcOMWTne9l7wE1uvpfsXC9/7ndhtWoM6p1AbEz1JRFCCCGECI/aOGuT1Vr2OYvb7a50chdyIpGamkpBQcXTgQajZcuWtGjRgocffphVq1axY8cOpk+fztq1axkzZkyVPIeo2LC+UVx+bix1k+3ouoYyFVarTuOGkYwZERvUonQREXZuvyKKFsnFWJTXN0xJ07AoL82TnNxxRRQRERUnAB1axXDvmKa0bhWL3a6jTLDoGo0aOLhxZEOuHppSBa84OBZdY1CfBIYOSqJpwwgME9CgS/sYLh+SQruWciVKCCGEqJ20MNyqT48ePXjxxRdLTHqjaRqmafLOO+/QrVu3SpUb8uXUK6+8kkcffZQ1a9bQpk2bMrsmXXbZZUGVpes68+bN45lnnmHChAnk5eXRvn17Xn31VdLS0kINTZyEwd0jGdw9kkNZHo7kKRqlaMRGlx4bEEhEhJ2/D7Xjcrn5Y18Ru3bvplfX5iQkhrYidftW0Tw9tQV5hW72ZLhJTrBRLzm0lbGrikXXSE+LpkPrKIpdJrquEWEPOf8WQgghhKg2kyZN4uqrr+aCCy6gV69eaJrGyy+/zI4dO/jjjz94++23K1VuyInE448/DsC7775b5v2apgWdSAAkJyczffr0UMMQYVK3jo26dU6ujIgIO41SveRnG9gjQktGjhcXbadDq5oxq4OmaTjKmSJXCCGEELVMDeiKVJXS0tJ4//33mTVrln+io59//pmzzjqLJ554gjZt2lSq3JATiW+//bZSTySEEEIIIYSoHs2bN+fJJ5/EYvFdGHU6nXi9XmJjYytdZsiJRMOGDSv9ZEIIIYQQQtR0qprHNFQ1j8fDI488woYNG/jggw8AWLNmDaNHj2bUqFHcdddd6HroXbcrNeXMDz/8wC+//EJeXh6mWXIxLk3TeOyxxypTrKhm361xsnabB48BkTYY1CWCjq1CG5uQne/hq19Nig0rmB3ZssLkou4eEmND6+KUV2Swfb9BkUths2g0rauTWie0w9U0FXsPGew+ZGIYEB+t0a6pFUdE7fpyEEIIIYQIZObMmXzyySfcfvvt/m3t27dn8uTJzJw5k8TEREaPHh1yuSEnEi+//DJPPfUUNpuN5OTkUtNFydzAp5/sfDcvLnKSX2TiNZR/geqFSwy+W+vijivigirnm1+L2ZtjRXE0adDBZcKilSYN4pwM6RHcNMFrtrvZfgA85tFCgN2HTerGuejXwYa9jMXqTlToNPnmVw8Hc8FUvisLGia/7XLRs62F9k0rP3ZDCCGEELVcLTud/fTTT5k6dSpXXXWVf1tCQgJ///vfsVqtvP7666cmkXjzzTe55JJLePTRR/2rUYvT20ufOMnJN7BYIMKuoWsaplJ4PIoDmV5e/KSAW4cFXpBu027P0SRC5/gGQd+6dDoZeTZ+2+GmU8vAg6c3/uFhSwagNOxWhUVTmAq8BmTkavy80cPAToFbSUxT8d9fPWRk+8qItCp0zbfAntOtsWyjQXSERtNUWQNCCCGEELVfdnY2jRs3LvO+Fi1acODAgUqVG3JnqCNHjjBy5EhJImqJ9dtd5Bea6DrYrDr60RYlXfNNc2qakJHppbDYHbCclTuPLrJwQq9C3/8VoLH2D1XGI/9iGCbbMhRKQYRNYTlakK6B3er792CuRk6BEbCcvYcMDuWC3aqIsOF/TRZdIypC4TY1ftvlDViGEEIIIc5ktWsdiRYtWvDVV1+Ved+SJUto2rRppcoN+ZJs+/bt2bFjB717967UE4qaZekGDx6vIsJe9gFutWm43SY/rfMypFf5rQmG0tG0sj8mx7aZBJ4+NTPPxOmB8nouWS3g9sIfhwwSYsova/dBE1NBpFVxYkS6pmHTFYdyNVzu8l+3EEIIIc5ctW2w9fXXX8/dd99NTk4O5513HklJSWRlZfHdd9+xePHiSi/FEFQisX///hKBPPTQQ9hsNrp3747DUbrfe4MGDSoVjDj1vGbgVgINUAqcrgoK0jRKn7b/JdB9f8Vy9Bm1smPytVBoGBXE7DV9z6eXO15HQynwGIqIWvZFIYQQQghxossuu4zCwkLmzJnD119/7d+emJjI/fffH9IacMcLKpEYPHhwiUHUSikeeOCBcgdWb9q0qVLBiFMvJUFn30FfslDWObVhKiwWjbZNKlqMTQE6qowc3nfar6EwSz3qeAnROhbNi2GW3SrhNX0hxkUFPvmPi9LQUL7Y9dL7GiZERyoc0hohhBBCiFK0MC1IV73nHddeey3XXHMNu3btIicnh7i4OFq0aFGpaV+PCSqReOyxx2Q2plpqaF8bm3Z7cDoNIiL0ElfxTaUwvIrYOAttmwUe4JwQYZDrshCorSDObgDlz5YUHamTHKvIyNXxmqpEMmEq8BgQZTdpVi/wjEvtm1rZsNuF0+0bE3H8a3J7FSYaLerpWCxyTAshhBDizKFpGi1atKiy8oJKJEaMGOH///79+0lJScFmK30y53K5+P3336ssOBF+0ZF2uqd5WbHJRbFLYbUoNB2U4bty73BYGNqn4oH1F3Sx8N4vXjTNejSZOJZSHD1ZV14u7FpRqwZ0b23lu98MCt0ahgG65mvHMJVvbEPX5jpWS+DMOSpSo0eahV82mxS6fI/zdYkCE426cdA9TaZ/FUIIIUTt1a5dOxYuXEinTp1o27ZtwEYBTdPYuHFjyM8R8mDrc8891x/UiX777TduueUW1q1bF3IgovpcenYUjkiNlZvcFDpNlFJYrBqJ0RYu7hVBh5YVL0oXHW1jZG8PH6104zGtHD/E2q4bXHaWTnR0xSfvcVEWBneC33Z7ycgGw9SwaJASa9K+iYX6QS5Kl97cRnSkl/U7DQ7la6AgKkLRMlWne5pNBlkLIYQQolYbN24c9erVA2D8+PFheY6gzsqeeOIJcnJyAN/4iDlz5pCYmFhqv02bNhEbG1ulAYpT47weDs7r4eBglpvMbEXjehpxMYHXfDhRdLSN6wbaKCz0sH1fEXv27qdXx4akpIR2TMRGWejX3oLXa1LkVkRYfVPRhqp5fSvN61spdis8XkVUhCbdmYQQQghRodowa9PxyUPDhg3p27evP7GoKkElEi1atGDu3LmAr+ljw4YN2O0lTzItFguxsbHcc889VRqgOLXq1bFTr87JlREdbaN1Iw/e/EKioyvuzlQeq1UnrgrWjIu0a0RKC4QQQgghzlAPP/wwTz75JOeff36VlhvUadrIkSMZOXIk4JvBafbs2bRr165KAxFCCCGEEKJGqGWTDKWmplJQUFDl5YZ8vXfJkiUB7y8oKCAmJqbSAQkhhBBCCFGdakPXpuNdeeWVPProo6xZs4Y2bdoQHR1dap/KrCURciLhdrv5v//7P1asWIHb7Uapo3P0KEVRURHbt2+Xwdan2OEcL9+ucpKTb2LVoXUTG33T7dhsob29k1/IpsBpgKnQLBoNkhX335QSUhk/rcjgq191YqM1oDGLVuYzpFsuZ/esH1I5j7+0j7VbnJiGQtM06iRamPtA85DKMAyD33e4WL+tGI9HkVLHyjndoomNqYL+UpVwINPLuq3FFBQrYh06XdtGkJJYPbEIIYQQ4szx+OOPA/Duu++Web+maacmkXjyySd58803SUtLIysri4iICOrUqcPWrVvxeDxhGxUuyvbZT4X8urmIYpfyJ3W797tYvsHCtUPiaVi34rf4m+VZLPzGi8dtYJq+peNAY2eRxpgnM5k7JTmoWO6ZdZAWjXW6tIFjM7QaJmzK0Pls5kEevz24AT5XTtpOYW4xhtfk2DSy+bkal9++hYk3JtGvW8XxZOd5mf9BJrv2evF4jy6Jp8G3ywu4bHAc53Q/dZMCeA2Tj78vYO02Dy6Pb5sCfvqtmF7tI7ioX9RJLQYjhBBCCBHIt99+G5ZyQz57+frrr7nxxhv55JNPuO6660hPT+e9997j66+/pmHDhphm4NWLRdVZuq6Ilb/7kojICIiOshDl0LBYIDvXy1tf5eLxeCss591vvbhdBgqwWMBis6BbwDQVRQUexj15pMIynn59L62baNRN0Ch0Qnae71bohJREjTbNNB57ZW+F5Vx91w7ys4swDROLTccWYcVis6ChUVTg4tnXKo7FMAxe+iCTLbvcWK1QJ14jOdFCXIxGfqHJe1/lsnZLUYXlVJWvlxWxYpMHU2kkxmgkxenUidHwGvC/dW6+X+08ZbEIIYQQ4szTsGHDCm+VEXIikZWVxTnnnANAWloa69evB6BevXqMHj2aL774olKBiNCt2FiM22PiiMR/RVvTdGxWHbtdI6/A4Kff3AHL+Pcrh/G4fcmfxaKjHStH17FYdVDgLPayYUdWwHJcXht14iE7X2EYf/UrNAyNnDxFYhygBV5H4uDBTIryXShTYbVb0HVfObquYbH5Vt12Fbn513N/BCzn9x0udu31EuXQiXbo/rqxWXUS4zSKXCZLlucHLKOqFDoNVm12o2sQF6WVeE3x0ToKxfLfXbg9koALIYQQNYHSQGlaGG6n/rW8++67XHzxxXTp0oVLL7203K5NlRVyIhEbG4vb7Ts5bdq0KRkZGf5R4M2aNSMjI6NKAxRlK3B6yck3sFo1NK3022i1gGEotv7pCVhOxhEN01SU17NG18HwmrzyeeB4EuNAKVBlfEqU0jCVok5c4DIenl+Ax+1Ft5YdjGbRMAzFjj2BW1nWbS3G6zVxlLGOnq7rRNh0du3zUOg0AgdUBbbsdlPoVMQ4yv72iI7UyC2AHXsDJ3xCCCGEEKH44IMPeOCBBzAMg0GDBmGxWJg2bRozZ86ssucIOZHo0aMHb7zxBk6nk6ZNm+JwOPjmm28AWLNmjczYdIo4Xb4B7uXNTuZLLjS8hgpYjlIcG4ZQTkG+f8wKyrFawDDL38c0qXAxOJfr6FiGcmZK8F3NV6iAAYPHo47uX/bhbbH44nG5w98K4PYqTKWVm6hZdN8rcgfO94QQQghxSmlhuJ1ab731FhdddBFffvklM2bMYNGiRYwaNYo33nijyp4j5ERi/PjxrF27ltGjR2O1Wrnmmmu4//77GTFiBM8//zxDhgypsuBE+RKiwW7Ty00UTN+oaeJjAr/FVqsGWvm5hGn6TuBTkwOfdBc6wWbRyjzJVyhsFo1CZ+AEoHuHCHRdL3ecjWkoNDQslsCvKaWOBTQNj1F2OS63IjZKJzYq/AOc6yZasVmh2F32ay92K2wWqFdHZm8SQgghRNXZtWsXI0eORDvuqvOoUaPIy8tjz549VfIcIZ9JtWnThsWLF3PbbbcBMGnSJMaNG0dycjJjxoxhypQpVRKYCMxms9I41Q5Kw+MtecKslInLDRF2jUHdogKWc+v/07BYdUxDoU44gVemiVIKq03n7lGBp4E9nAMuL0RFlr4vKgLcXsjMCfyaxlzVgAiHDWUqzBNaN0xTYXgNbHYr990WuI9U/24xxEbp5OWrUklJscvENBXd2juw2Sq/6nawmjWw0iBZp6iYUq/JayqK3dCsvpXUZEkkhBBCiJpCheFWlXbt2kXXrl358MMPy92nuLi41HoR9er5ZtCsqsXpKnX2kpKSQkqK78RS0zR/UiFOreHnRDHviIecPAOPxzdeQinwesFm0+jYOrLC6V/TW9YhLvYIubkK0zDBNPF1IPJ1e7LaLDSpX3Fz3M1D4P2fFK0aQ0Ss70q7UuCI0DAV7NyjuPGCil/TWR1jWPargdvlwURD033NJaZpYrFZSEhy0L5F4OlfE2KtXDowlg+/yeNIrkmEzdedyeX2JSgtGtm55JwKBmxUEV3XubR/NG99mc+RfIXdqrBawGP43qfkeI2hZ5deFEYIIYQQ1agGr2zt8XiYPHkyRUWBZ6D0dYEv+TosFt9F1KqaZTWkFomioqISQR84cIBHH32U0aNH89hjj1VZM4kITlyMldHD42ndNIIohwWlQNcgOdHCgO7RXD4wuLUSnvtnEkl17Ngjrb5xCBpYdA1HlI2WTfWgFqVr2bIeV5wN67drHMryHbi67vv/hh0aI/r59qnI3aMb0v+sBGLjo3yDrhVouoYjJoKGDaP5v8eCW5RucM84bh5eh/YtIrDovi5aiXEWLugby53XpRDtCH9rxDFN69u48dI4erS1EWHTME2Ismv0bGfjpmFx0hohhBBCiKDNnDmzxoxJDuoMpri4mGnTpvHZZ58BMHz4cO644w7+9re/ceTIERITE1m6dCnvv/8+b731Fu3atQtr0OIvCTFWbhwaT7HHy+EsRWSERkpC6CemT99RB4APv85iU4bBoM4W+napE1IZLVvW48GWsGPHQT78n4uCQidXDIiiY3qjkMqZfHMDANb+nsmXS120b2Vj2OC6IZUB0LVdFF3bRVFQ6KXYo4iP1k9Jd6ay1E+2ctUFcbjcJkXFimiHht0mi9AJIYQQNZGqhsHRwVi5ciULFy5k0aJFDBw4sML9f/jhB3bu3On/2zRNNE3j+++/Z9u2bSX2DdvK1jNnzuTrr7/mtttuIzY2ljfeeIPly5cTFxfHwoULqV+/Pnv37uXWW29l9uzZzJo1K+RAxMmJtFlpHNzC0QGNuCC05KEsLVvWY1z9IjZt2kTLFqElEcfr0iGZLh1OOhxioq3UjLwdIuw6EfbqjkIIIYQQp5u8vDymTJnCv/71L+rXrx/UY2bPnl3m9hOngNU0LXyJxFdffcWdd97J3//+dwA6derENddcwxNPPOF/IY0aNWLs2LE89thjIQchhBBCCCFEzRCu6Vo1MjIymDBhQrl7fPvtt+Xe9+CDD9K1a1cuvfTSoJ4tUFlVJahE4sCBAyW6K7Vv3x6AJk2alNivYcOG5OTkVF10QgghhBBCnOEWLVrEqlWr+PTTT4N+TMOGDcMYkU9QiYTX68XhcPj/ttlsANjtJftoaJpWZaPARfAOZHr4/tcC3G4DTYP6yXbO6erAbreFVM60BdnExEWiW3S8HgOjuIh7/x54hqQTrd2azaufmZhKAU3Rf3By41AXXdISQyynmCVrPXg8oFugfVOdS/qENruRaSr2HDLYuc+Lx1Akxuqkt7DjiKiZ/R6FEEIIUTNU9XStx9SvX79SLQUffPABR44cKTUuYtq0aXzxxRcsWLCgiiIMjUwXc5pb9H0OqGJS4hWapgANj9fDu9846dcljuYNHBUVwec/HWHLoWhSG8ah60dXu9asKMPOE/8pYupVgdeiOObeeUfIyjExTI77BCrmfWQSH3OEJ8YlBVXOjPfycRsWLBYrFrtvBrbf/1Ss25HP6KERJCdUPMig0Gny6f+K2PqHm2KPebSBUuN/aywM6RNNh+ahJVlCCCGEENXl6aefpri4uMS2Cy64gDvuuINhw4ZVU1QhJBIbN27E5XIBYBgGmqaxcePGEtPBnjj6W4TXtyvzserFRNoVuYWglAWlfOsmNEg2WLouj4bJ1gpbJjYfiCY6xoZSCq8X/zoSFotGfEIEj71dyL3XBG4NWPBpti+JMEDXfVO2gm8OY8MLuXkmsz7IZvzlgVsm5nyUj0dZ0XXweEw0zZfY6LqGPcLK/M+Kuee6wImEaSo+/l8RG7YVEx9jITHeiq5peLyKIzkGn/xQQHRkLM3qSx4thBBCiDLUsHUkji0kd6KkpKRy7zsVgj6Teuihh0r8rZTi/vvvL7HQRVkLX4jw2XfQSaO6Jll5Gprmm0pU03TcXqDYJCXe5LvVTob0KT+ReOy1TBLqJgAKZf41tEgDTEOhWzTi4mys/f0IXTqU36Lw2zYDw/At/Hb8ACVN07DoCsOErX8YAV9PcbGbnCINux28XtP/GfYlEwrTBN1mZfkGJ73Sy29p2XPIYNsfbuJjLMRE/TXFqs2qUTfJQsZhLys3uiSREEIIIUSZaur0rzVNUGdSr7/+erjjECHKzfeQGGdS7NbLTN5cboiOhL2H3QHL0exR6LqGYZT9kTFNhdVq4cNfLAGnYvV4jvVlKqMUzdfG4fEEDIXv13qw2iwYRtnjbAxDYbPr/LLJEzCR2L7Xi8ttUie+9OGtaxpRDp0de9243FFE2OWLQgghhBCnny1btoT8GNM02bp1K4cOHaJbt254vV4SEhIqHUNQiUTPnj0r/QQiPJwu3yrWvkHNpU+GfS0UJqqC4UKaXubD/ZQ6Vl7gE+5gBiVVFEuR62hLSDm7HQvBUIFj8RpHV9YuJ2arBQxT4TEUEXLFQQghhBBngI8//phnnnmGQ4cOoes67733HjNnzsRms/HMM8+UmkQpGLK07mmqThwUuTQiy+u1pJkoBVZL4JWci4sNUOV3BdR1X6uEIzJwy4blWAGqjCzg6DZLBclI+2ZWTFOh6+Xvp0xIjAlcTmKsjqaB11t2RlJUrIiPseCQ1gghhBBCnAG++OILpk6dSu/evZkxY4Z/ltXzzz+fH374gTlz5lSqXEkkTlN2uw2Xx4qmgdVS8oRZKZO4KCh0avTtFHjWpsvOcuP1Glh0rVR7gcLXEuFyebn7mpTA8URoaBqUNfuvqXwtDRXNRtu2aQSm10C3lD4slQKrzTct7RUDA2fM6S3sJMZbyMw1jrbY/MXpMjFMRafWEVgskkgIIYQQojSFVuW36jRv3jyuuuoqnnzySS644AL/9ssvv5zbb7+dzz//vFLlSiJxGru4XxwZWToxDkVclEmEzSTSblInDtweDbc3osLpX7t0SOLwISeGqbBaNV9XJx10i4bVquH1GjhzCyqMZcrfdGw2DaX5xjKYpu9mGL4OTXa7xpSrAreOAFzU04bb5cVq07FYfC0Luq5ht+t4PSZN60FsVOBEIipS4/xeUTgidTIOe8nJN8gvMjmY5SU736Bts0h6tY+oMBYhhBBCiNpg165dnH/++WXe17lzZw4ePFipcoNKJFasWIHT6azUE4jwqRNn48Jeddh/xEZuoY6uA2jsO6xjsTi44rzgFoF76KZ4Du7Pp6jI4+vmhG9hwYICD/nZeUEtSle/fiL/us6CI9KXgBxjtWpERercd52F+vUrjqdLWiSX9LJiur0YhommaSgFLqeH9CZwzXkxQb2mTi3tXHVBLJ3aOPyDyVMSrQzpE8Pfzo2WQdZCCCGECEALw636JCUlsWPHjjLv27FjB0lJwa31daKgBluPHTuWF198ke7du3P99dczbdo0WrZsWaknFFUruY6NURcnU+T0kHHES3SkldTk0Bdbe+gW30n+W4uP8Gemok97jYHdk4DIoMuoXz+RFyZCRkY2n/5skJWby8gBCbRsGdrB2blVJJ1bRZKX72ZnhklKok7DlOAWxTteiwZWWjSwUuyOwuNVREVo0p1JCCGEEGeciy++mBdeeIG6desyYMAAwNd9fcOGDcyZM4ehQ4dWqtygEgnTNFm2bBmpqamsWLGC3bt343CU32WmQYMGlQpGVF6Uw0bLRie/WvO1F1UuIz1e/fqJXHdREZs2/UH9+vUrXU5crJ0usScdDpF2jUhpgRBCCCFEkIKZjfJ0MmHCBLZu3cqECRPQfV1YGDVqFEVFRfTo0YM777yzUuUGlUhccMEFzJo1i9mzZ6NpGuPHjw+4/6ZNmyoVjBBCCCGEENWvdl2AtNvtLFiwgKVLl/LLL7+Qk5NDbGwsPXv2ZMCAAZVeUDqoROLRRx/lwgsvJDs7m3vuuYcxY8bQpEmTSj2hEEIIIYQQ4tTr168f/fr1A8Dr9VJQUFDpJAKCTCQsFgsDBw4EfAOvR4wYQePGjSv9pOXZtWsXI0aM4P7772fEiBFVXn5ttWZzEf/3RSHFLoWmQdNUndtHRhMdHXjGphNNeOYQlgg7oIFSeN1FPD8ptG5qH32XwXerLEcT+caoJQUM7pHL8EGhdXFa/L8cPvvJiWGCpik6tLAx/qrAU9CeyOPx8PGSPJatLcRjKOolWvn7iCQa1gt+3AeA22OyO8NNXpGBDtStY6NBstXfNBiswmJFxhETl0cRadNokKzjiKhdVzyEEEKI050iPF2bqrO7lNfrZd68eTRt2pRLL72U5cuXc8cdd5CXl0fPnj154YUXiI+PD7ncoBKJ402fPh2AH3/8kRUrVpCXl0diYiI9evSgf//+IQdwjMfjYfLkyRQVFVW6jDPRfXMyyTjsRaH5F5Xb+ofBnc/mcv1FJuf0iK6wjDnv/Mm2zHiwOzCOO8o1ewyTZubwzO0JQcUy/skMvIaO2+3969OiwVe/WPh2xQFmTU0Nqpxxj2fgNXWU0v2f5vU7TG59JIN7b06gaf2KE6Rde4uZNnMf+QUGxxb//nOfi183FjGodxzjr60XVCx7DrnZuMuJ1zD9rZwZ2R627dHp0S6a2KiKp7Q1lWLTboONf3gpLPYVo4BYh0Z6CytpjfSTuhoghBBCCBHICy+8wMsvv8y9994LwCOPPEJCQgLjxo3j1Vdf5ZlnnuHhhx8OudyQ15Fwu93ccsstjB49mldffZUlS5awYMECRo8ezY033ojbHXgF5PLMnDmTmJjgpvYUPk+9kcX+w4Y/iTh+cjFTaby+OJ/Cwoqn7d2WGY867lDQjvufgYVJM7MrLOPe2Rl4vToul4HFomO3W7DbLVgtvm0er8bEGfsrLOefT/uSEaVAQ/mmtNV8K9opTefRBRXH4vF4mDZzH3n5hm/BPivYrBoWHQxTsWRZLu8uPlJhOUdyPfy+04nXNLFYdGxHb7oGRW6DlRsLMYwyVuA7wfa9Jr9u82KaUC9RI7WOTr0EDY9XsXKzh90HKi5DCCGEEKdS7Zr+9fPPP2fixIlce+217Nixg23btjFmzBiuv/56/vnPf7JkyZJKlRtyIjFz5kxWr17Nk08+yW+//cZPP/3EunXrmD59OmvXrmXu3LkhB7Fy5UoWLlzI448/HvJjz2Rb/vD4FmzTSh6e2tFL3qbSmLGwMGAZdz6z37/a4vGH+V//V5hY+PKHPwOWU+i04Hab2Gw6Fv2vaHRdw27T8XgMvEbgBrDCQidFLt8K27qG/yq9rmn+WDSLhfe/DpxMfLwkj/wCA10Hi0X7qxxdw2rxrb69+H85AcsA2L7XhaFMrLoveTjGomvomobTY/DnQU/AMjxexeY/vVh0SIjR0Y+LJTHW1+Ky+U8vhlnb5ocQQgghRE1x6NAhOnfuDMD333+Pruucc845AKSmppKfn1+pckPu2vTZZ58xfvx4hg0b9lchViuXXXYZR44c4Z133glpCqm8vDymTJnCv/71r5OaKvQYpVRQ3aOOLbB3ui60t/dQMYbh67NTVq8YTfN1n9l70AhYH1a7AyNgluw7sf9ytYNzziq/HI/X1wdJ10rnpsdO5L3ewO/NK4vyKO/1HKMU/PCrk4vPLn9l6qWr81EKyhrCoGkaaIrcPIM/9uWSklj+lLlHct0oBUozfd2jji8H37G275CTeglGuWUczFYcyYXEGPB4Su8XZYfD2ZBx2Eud2OCvVpzux29NJ/UbXlK/4SX1G15SvydPKVXju/Se+Lt/uqtbty579+6lR48eLFmyhHbt2lGnTh0A1qxZQ2pqcN3PTxRyIpGVlUX79u3LvK99+/YhL7H94IMP0rVrVy699NJQQymTx+MJafrZ3bt3V8nznmo7MqxoWir+AQBlUWCaqoL6CG5hQU3TApajVCMCZQCapqHMwFMDH8yKB2LL/YLRNQ1TgdcI/JoKimI4lpCocr4JlILf1u+gQUrZ95sKnMX10TQdt1l2oqBbrWQeKWTTpvJbSLIKI8jNTUK53WVWj2FCocvO1m2ZxDtC7xZ4uh6/pwup3/CS+g0vqd/wkvo9OXa7vbpDOKMMHTqU6dOn8+mnn7J69WoeeOABwDcz6zvvvMNtt91WqXJDTiSaNGnC6tWr6dOnT6n7Vq5cGVKrwqJFi1i1ahWffvppqGGUy2az0apVqwr3czqd7N69m2bNmgVcXK+matKkmC9/9aD83X5KU0CEXaddu3bllmP+VAR6RQOGFcp0BSxH/zYfZfoGFusnnDGbSmEqhcVCwDJyPPm8uwQ0VfYrUkqhoREfHbichj9ncji7+GirRBllKYXVptGnZ0uiIstvkchZ78JlKKxllKGUwlBQNzmJds3Lz+JzCxUHi8FuhagyGlEKnBAVA53axxEVGVqLxOl8/NZ0Ur/hJfUbXlK/4SX1e/K2b99e3SFUIFxjGqqvFWbChAlERUWxcuVKJk2axDXXXAPA+vXruemmmxgzZkylyg05kbjqqqt4/PHHiYyM5JJLLiE5OZnMzEw+++wz5s+fX+Fidcf74IMPOHLkiH9q2WOmTZvGF198wYIFC0IND03TiIqKCnp/h8MR0v41RVRUFFGRhyh0KhSlGwN8Xe4VIwfFBHx9Q7pk8tVvdtTRLkzHF3PcxEvMmNQwYDwW8tAtYBoK3XpCImH6kgvdogLGcm7vKBZ+kwGaDr4h5Me9HgVKQ9MUk/9eh6io8r+8b7y8LhOn78EwFZpWsnXDMHwDt1s2iSS5TuBpzhrX09mR4UShlRj3AeAxTHRNI61JDFEBZm5yOBRNUj3s2GcQG6WXSGwMQ+H0KNo3tZBcp3Krkp+ux+/pQuo3vKR+w0vqN7ykfiuvpndrgtq3srWmadx6663ceuutJbb/5z//OalyQ04krr76ajZu3MjTTz/NM88849+ulGL48OGMHj066LKefvppiouLS2y74IILuOOOO0qMwRBlm3B1LI+/lothHk0CjiYPxwZPJ8VbKpz+9cIBTfhqTSZYfOtHnPjB0VCY7gIgLmA5N12gWPBfHWeRidtt+E+YTdO3tkWUw8JN51U8O9HwAQ4W/a8YZWr81TBxdCyIDg2TITkh8BWgpg0i6d8jlh9X5uH1cjSZ8A2yRoOYaAuT/l7x9K+tG9vJzHWTW2Rgen3JkG8kiC/JaZYaQUJs4NYcTdPo0tJKfqHiQLbCYVfYbRouj6LYDfWTdNJbhPwxFEIIIYQI2sqVKyvc56yzzgq53JDPYHRd59FHH+Wmm25ixYoV5ObmEh8fT8+ePWnZMrj+9sfUq1f2yVxSUlK594m/tGrsYMooeP7dfJzF5tFmCQ2LBk3rW7j/luSgypkxIZkJzxxCs0ceTSR80z5ZNIVRXMjzkytelK5Ll/rcQgavfKPj8YLH4zvljoiwYLNr3HSuQZcuFXd7u6h/AhZLHh9+V/jXlLSahjIN2je3cec1wS1KN+GGVOrWsfH1zznk5vvWkrDZNFo2iWTS3+uRklRx30yLRadPegyb/nCRkenGc7Q1I9puoXmDCJqmlj/g+3hx0ToDutjZud/LzgwTt0cRHamR3lynVUOrLEonhBBC1Di167d51KhRvvGqR8eOltUqFMoY42MqfSm0ZcuWIScOouqlNXMwe4qDI3lO1m4xqROr0bVt6E2tz02qC8BjC/7kUI6VXmlerh7WBAh+lcMuXerzQhdYuzaDhf/zUOwyGHm2lb69Q1sF/YK+cVzQN46MTCdrN7lo1sBGu5YVL6x3omsuTeKaS5PIOOwir8CgcaqNKEdoXYgsFp30Fg7aN4vA6VJYdI3IiJBnTSbGodGppY0OzRQeA2xWSnWXEkIIIYQIh9dff73UtqKiIlatWsXHH3/MzJkzK1VujetTsWXLluoO4bSUFOfg3NBbpEq595YmJ11Gly71SUsrYtOmTQEHRVekfrKD+v1PfiBb/ZQI6gfXkFEuXdeJroIxdRaLhqXixbCFEEIIUY1q2xiJnj17lrl94MCBREVFMXfuXF588cWQyw390qoQQgghhBCiVujRowcrVqyo1GNrXIuEEEIIIYQQ1UnVsjESgSxZsoTo6NC7kEMlEomPPvqIvn37ymDoGuSLH7J47eMsPB7fdKfJiRE8MSGexMSEkMr553OHqVMnAqsF3G44dKSY2ZPrhlTGpz9m8PUKK5puBVpgflfIkJ65XHpOaKuWL1ycyWc/FuI1QNegXQs7/7o1tDJM02Tbn2427nDhMRQpCVbOSncQE2C61rJ4vYo/D3jIyTPQdaifYqVuHetpMX2dEEIIIcT1119faptpmhw4cIB9+/bxj3/8o1LlhpxIPPzwwzz55JOcf/75lXpCUbWum7qTvFx3iRWcMw4UccN9Tv52oYfrhlU8OGD6gj3ojni6dIjBZuPYbKs0bmDloVfzmHZj4Klfj7njyf1YImOwRx3fY87GkrUmX/+SwcwpwSUCo+75A7fnr/UfDAXrt7u4cvJuHrk9idZNYyssI6/A4I1Ps9myu9hXFoCm8d9l+Qw/N56z0oMbkH4g08P3Kws5eMSLqRRKQaRdo3kjOwN6xBAVKb0DhRBCCFGzHX+eeIyu66SlpXHrrbdy+eWXV6rckBOJ1NRUCgoKKvVkomqNefiPEkmEpmso30p0KEPx7pdHuKS/rcKWCRURT+MGNtxeyCtQRyd/hSiHRvMmNu5fkMO/bwlcxn3z9qE7YrFYLBhGyfUidKuO1RHD3c/t5fEJjQKWc9MDf+L2+tZpUEqVmqrsX7OOsPCpwImEaZq8/kk267c5iYvRSYyzoOsaXq/iSI7BfxbnEBut07Z5ZMBycvINvv45nyO5BvXqWLHbfLEUFSs27nChTLjw7NiyV88WQgghhKgh3njjjbCUG3IiceWVV/Loo4+yZs0a2rRpU2afqssuu6wqYhMV2H/AWSKJOP5fZSqUobjr2VwW/Duh3DLGPX2IHh1j8BgKl+uvWZM1wOlUxERD/RQbb32yh2uHlT+Na16RA3ukXiqJgKOrXVt0Ct2BWwHy8/MpLDJ9LREa/pWtj7VMKBQoWPDBYW65vPyWlm1/utn6RzFxMXqJbkxWq/b/27vv+KjKrIHjv+feqekJAUIVBSNFiojYERA79t57X921rMKuBdfVxbr2Xcu69l0L+rr2gmJBRFFRhCig9JoQ0iczc+993j/uZCAwmQLEQDjf/cwCM5Mz595M4j3zlEPHIpNVFRafzKhPWUjMXdhI+VqLHp298WJBKUV2UGEY8MvSCMtWR+lRkronhRBCCCG2HVq3zw8JP/30U7766itqamooKipi9913Z//999/keBkXEhMnTgTgpZdeSvi4UkoKid/AzLlV8dEHleQT8TVVkaRxigp8+H2K2vrEG501hiEn2+DbOVmcniSOYaRad6AxPMmf8+B/60ARH4lIEAKlFJ9+E+KCJCNws39pJBLRFOZt/HqGoQgEDOYtaqSx0SGQZGrSvMURsgJGwhGHoN9gdaXN8tWWFBJCCCGE2KpFIhEuu+wyPv/8c0zTpLCwkLVr1/Loo4+y11578eijj+LzZX49k3EhMXny5IxfRGx5y1c4JJjuFhef5pRiI2TTcD/9jy2L2IgTa5htmMkrc2Wo5K+lE3dRXF9daN2UpkTJxEcmkh04EI0AihanHHkMsB0IWw6BFnZA1loTjWo8SY5bKbASjMAIIYQQQmxNHnzwQb755hvuvPNOjjjiCEzTxLIs3nzzTW655Rb+8Y9/8Pvf/z7juBkXEt26dWv273A4jM/nkx1sfmN7DzL453/XrYnYUNP9pif59yXUaGHbPjwesK2NH/d53V2L6uuTj2w4toPH0/Kn+0opnBQX3SOGBPllcaTF7iaOdjCUQU528gXOxYUmCndNhCfB8YfCDp2KvGQnGY1QStGxyMO8ReGEIxtO7Pzm5cgOykIIIUR70962f33zzTf53e9+x1FHHRW/z+PxcMwxx7BmzRr+85//bFIhsUlbzvz666/84Q9/YPjw4ey2227MmTOHW265pdUWcoiNFRYW4PO7F7EbFhPxKU9Kcczo/KRxBnVvoLbOISugNhpQUAq8XkV5pc0j15UkjePYEbROPM2qacG0tpIXI4eOKHSfj9po1EFrjaEMtNbceElB0jh7DsqiIN9gTbUdv+BvEmp0cDTsPiAraeEDsEsvP4ahqGtoXgBprSlfa1OQa7JjN2/SGEIIIYQQba2yspL+/fsnfKx///6sWrVqk+JmXEiUlZVxwgknMHv2bI488sj4BZ9pmtx+++289tprm5SIyNz1ZxejzPUWV8du4F68Z2V7U27/evpRPfh1SZiGkEN+jiIQcEchgkFFTraiqsZh0bJQylwuOdQmEo6ilMIwDZRS6/5uQCQc5eLD7JRxjjswZ90aCe1etGvW7d7UrZNJ1+LkuzblZJkcPTKfoN9gZYVFVY1Nbb3N6jVRqutsdukVYMyeOSlz2am7j8G7BKiuc1heblFTb1NVa7N0tYXHo9hvaHbGPSmEEEIIIX5rPXv25Jtvvkn42Ndff02XLpn16mqScSFxxx13sOuuu/LOO+8wfvz4eCFxww03cMIJJ/DMM89sUiIic3vsVsC153fGF/CsGwmIrWcoLg7w33t6pxXn7t8VMfvnEEtWWNg2KAPCEYdFS6PM/qkuraZ0u+7ahYsPbiTSEMKKWu4aBwVW1CISCnPxwY3sumvqN+nJhxVz0iG5KCO2SxO4BQWaAb393HtdyztHrW+vwdmcf1wRQ/oGMQywbehY5OWIEflccmKHpIusmxiGYv+h2Ryybw7dO3uxbfeYdu0TYOwBeZTu4E8rFyGEEEKItnTKKafw6KOP8sQTT7BixQqi0SgrVqzg8ccf5/HHH//t+kjMnDmTe++9F4/Hg203/4T58MMP580339ykRMSmGbF7ISN2L2Thiio+nhahcwcPhx9QlHGcv/+hGIA//n0JDVEfu3SNMP6MHkB6zejALSYe3BV+/HEF/5kSIRS2OP0AH8OHpXfx3+T4gzpw/EEdWLq8lqnfh9m5p5+hA1I3odtQ/94B+vcO0NDoEIk45GQZKaczbcgwFH13DLBLLz/hiMYwwOeVJnRCCCFEu6VbafvXFBvgtKZTTz2VOXPmcPfdd3PPPfesS0lrjj32WC666KJNiptxIeH3+2lsbEz4WFVV1SZtHSU2X68uBZx73ObHueuqzC76E9l11y78eacGysrK6Nev3ybH6d41l5O7Zl5AbCgrYGx2B2qlFAF/+1p4JYQQQojtg2EY3HbbbZx77rnxPhL5+fkMHz6c3r3Tm8GSSMaFxL777ssDDzzA0KFD6djRnX+vlKK+vp4nn3ySffbZZ5OTEUIIIYQQoi1pWmfwoA0HJOL69OlDnz59tli8jAuJP/7xj5x88skceuih9O3bF6UUEydOZMGCBWituffee7dYckIIIYQQQojMjR8/Pu3nKqW4/fbbM36NjAuJLl268Prrr/PUU0/x5Zdf0rNnTxoaGhg7diznnnsunTqlXpgrXFprVlVEWbYqgu1oCvM89Ormx5vhHPyjLplFTn4OhmGgtbvAuYe3mrsnDs0ozmnjFuMLeFEowKGuLsTLd2c23HXkxTPp0rMLwWwfsBON79WyfNFc3nh0SEZxHnt5FV/O0W5jPa3plO8w8fddM4oRjUZ5Z2oDX/0YwrKgY6HJqYfn0bVjZoukbUdTUQN1jWAoKMyB/KzUDfaEEEIIIdrK9OnTN7pvxYoVFBcX4/U2375+U69pNqmbVmFhIVddddUmvaBwNTTaTJ5WzbyFIRobHXerVANKOvoYs08+3Tqnd7F76h9/pWOX4nhPCVA4jsPqeh9HXTaL/z0yMGWMgy/4jm7dSggEA+vda5Cbm8O5E5bz7wnpXcCf/adFDNi9Dz6fBxWrhXRhkMLibM6+cTFP39ozrTjn3bISX8CLP7iuoKpq1Jx/62quPD7A4P6pF4AvWhFm4r/KaYgY8R+OFZVRZj1Yzr5DsrjwuPQWpK+t0/y4GKrqYkOdGrweKCmAAT01fq8UE0IIIUR70x4a0n300UfN/m1ZFrvuuiv//Oc/GTBgwBZ5jU1agbpy5UruvPNOTjrpJA455BBOO+00HnjgAdauXbtFkmrvHEfz4dRqfvipnpwskx26+dmhm5/OxV5WrI7w1pS1VFZHU8Y56er55ORl4fN7CDdGCTdGaQyFsW2bnLwgBYX5XDvu25RxunUrQRkm62YFNt0USnk45+YVKWMc+/syuu5YjN/vwbIcomH3ZkUd/H4PXXt24IRrfk4Z5/xbluML+GgqiLTj4DhuQzif38sDr6TuaRGNRt0iImqAdlDaxsBBaQeNweffhXjto6qUceobNTN/hbV17ghEca57C3phSQXMWgSO3hpmPAohhBBCJNcaMyk2qSHdkUceyQsvvEBWVha77rorHo+Hxx9/nGOOOYYlS5Zs8STbm2WrI8xdGKJzBy85WWb8G+vzGnTv4qO8MsqceQ0p4/j8XrxeD42hdR2jlVI4tiYSjhLMDrDEKkga48Rrf0EZBomXALn3GYbi4LO+SxqnW4+O+HwmkYjdPJSGSMTG5zPp0rU4aYy1a2swfT53apVe91mAAtAarTVev4d7n12ZNM47UxtoiBjgOJiGip9fw1BuQWEYfDC9PmkMgGVroCYEHXLAE+s7pxT4vW5hsWotVNamDCOEEEKIbc2Gn61uiVs7lPHUpjvuuIPu3bvz+OOPU1y87sJwxYoVXHDBBfztb3/jkUce2aJJtjdLV4SJRDRZwY27IhtKkR00+XlBI/vuntdi9Tj2gm/pskNXLMtO+BzbdvD5PXg9yTsvZ2cFcS/VW3qHa8CgY7cOSeNkZfubxjA2ekyh0EAwK/nWwHc/W4dhBNY1otswE60xDIPZvyb/aZw+K+R21k7wmFLuSEd9A1SsjVJc6E3wLNeKteDzuMXDhnweqHbcQqI4/VYbQgghhBDtRsYjEt999x2/+93vmhUR4C7CvvLKK5k2bdoWS669smxAtXwx7PEoIpZDslkzhseLUireWXxD7mOKLTXFL945O9njya7vtTsikExDuOm5LRxTPFTyOFHLHb1IOoSnoKbOafFhrTWWA2aKnxC75RBCCCGE2EZp1Ba/tUcZFxJFRUXU1yeeFmKaJtnZ2ZudVHuXn2sCCttJfMFc32DTqcib9MK7tCBKNGphtjDi0PSpvm7hNZo0rT9ITtPYkLgJYZNI2EIZJBxN0GiUgkjEShpj74E+QCceAgBAuYudjeRxOhaY7r5TLR27UhhounRs+e2vlCI/COEWlqo0hc7KbAMoIYQQQog2tSXXSmQ8tenSSy/lnnvuoXfv3s1WfC9ZsoT7779/k1tsb0969wzQocDDqoooXTp6m31D6xpsUDCgT1bSGHdPHMrp4xYSCPrcLVLXu2jWWuMP+IhGLGprk0/iX7m4nO69u+DWlIkuvBVaO7zy952TxqleW09OXgCPx8C2mscxPe62tDVrG4CCFmOcdGgx7329Gp/fu9FIi8Yd0XBsmz9fkHwu0amH5XPDIxVoZaC10+z8Oo47UtGrq5dgoOVpTQDdimFlFTRGILDerCytoaYBcgLQqeXDEUIIIcQ2qj0saRg9enTCouGSSy5JuP3rhx9+mPFrpFVIbJhIRUUFJ5xwAj169KC4uJjq6moWLFiAz+fjvffe46yzzso4ke1JdtBk1J75vPvZWhYti5Cfa2KaUFtv4ziw24Acdu4VTBlnbWUlpmmQnRt0p+JEHZQCr9eDZVnU14ZSbv/6/jO7cfqfFuP3+2m+VqLp++1QV5d6YbJdUU51XpCCwiw8PnfBN4BpuqMI1VUhouWrgeRbye7ZVzNjvo1pms2KCUO5BY2HMD27JF+03b3Ez567BvhyViOOMmLDBxqUuxWs3+tw+ckdUx5T5wLo1QkWrIaGiLtbk6MhFHEXXPfrAUFf+xyqFEIIIcS2bfjw4a3e8yqtQiKdRAYNGrRFEtpelO4YJCto8OPcBn5d0ohla7p38TNw52z69Q5imqm/8W8/NpQjLpqJbRXgC3rxejxoNHW1DYTDFi/evVNauTx/e09OG7cEf2D90RF3nUFdTR0v35u6lfrTDw7h7CtmEunWlbyCYLyvRSgUpbaqkYZly3j6wSEp41x0Ymd8r67ms9k2Xp+HpuImGolSlG1x51Xd0jqmS0/qQMfCKj76qp76MIC7Y1Ovrl4uP7lj0kXWTQyl6N9TU5ANS9e4oxBKQc9O0KMYOuRKESGEEEKIrdPEiRNb/TXSKiR+i0S2R91L/HQv8ROJOtg2+H0q5YLkDb312BAAzvvDt6yK+NCO5n//TN2EbkMvTOwBwJGXfk8gmE11RS3vP7NbRjGaCoWzr5hJjeFHKfBFw/z34SFA6hGAJucc14lzjoNfFtUw+asQ/XYMsP+w5LtGJXLCQQWccFABqyrC1IY03TqaKaczbchQiu7F0K2DJmq7hYQ3jSJPCCGEENuq2IY1rRC3vdmkztYAdXV11NTUJHysa9f0OiELl89rQGbXtxt58r6hWySXN/4xeLNjPP3gEBoaGigrK6Nfv36bHKf3Dnn03mHz91btXOyn82bGUErh2+SfFiGEEEKI9ifjS6OffvqJP/7xj8yfP7/F55SVlW1WUkIIIYQQQoh11qxZw8SJE/nss88Ih8PsscceXH/99fTu3bvNcsq4kLjppptYu3Yt1113HQUFBa2QkhBCCCGEEGJ9l19+OY7j8Nhjj5Gdnc3999/POeecw/vvv08wmHqTntaQcSExd+5c/v73vzNq1KjWyGe70tjYyIP/raJsfhjHgaICk8tOKaJPz+Rbv27ooNO/wZvlx1QGGrAti4Ad4bWnh2UU57TrFuAP+kC528k21IV4KY2F1us797ofqY025V8IrCTX28C/79w1ozivTq7kzU8bsGyFMmDAjh6uOzezCUpaa1avibJ0RRjL1uTnetipRwCfL7P2KVHLYeHSRiqrLAwDupX46dLR1+o7IQghhBCibWxt279WV1fTrVs3Lr74YkpLSwG47LLLOProo5k3b16bbXqUcSHRo0cPQqFQa+SyXZn6bS0PPFeOZWtQbqPr2nqLcfeuYLf+2fz5opK04hx+/iyy8nPci9rYda3H58G2vBx01jd88MzuKWMcdtF3lHTpREFxHobZ1E9CEcz2c85Ny3jqL+ntlHTi1b+iycI0mzfJq7WyOPHqX3j53vSG3s67eSlR26CpX6J2YNYvDmf8eRkTLs2nT/eclDEaww4fT1vLnPn1hEJu0z1lKDoXexmzbxG9ugfSymX5qjDvf1bJ8lURHK3RGgJ+g517ZXHQ/oVkBxM3BBRCCCGE2FLy8/O555574v+urKzkqaeeoqSkhD59MvvQd0vKuLP11Vdfzf33389XX31FY2PybscisaraRu5/rhwr1t9AAcpwdwTSGr6dXc9Tr69JGeewc3/AG1jvk3G97mZ4TIJZ2Rx79oyUcTp36UR2XhC0JtIYJRq2iTRGMQxFdm6As25cmjLGiVf/BChMw8S2bRzHwXEcbNvGNEzA4MRrfk4Z5+JblxG1112cK9ZtR6uU4pZ/VKeMobXmo2lrmfFDLUG/wQ7d/PTqHqBrJy/la6K8ObmCVeWRlHHWVkd5Y/Ialq0MU9LRS69uAXp185ObbfLDT3W890lli93JhRBCCLHt0lpt8RvAihUrOPDAA1u8pePGG29k77335q233uK2224jKyuzmSxbUsaFxI477ojWmrPPPpvddtuNfv36Nbv179+/NfJsVx54fi22rd0LfkPRVAco5d5Q8MHU1BfMXr+35ek1GgyPQaPpS/x4zElXzyeY5cexNbat4/GUUm6DO0MRCHg5/LzvkiejfRiGgW3bzXJSSmHbNoZhgJN8a6q6ujoawm7fCBX7H9Ds7yjFs/9LXmStXhOlbF49HQo95OV44vl4PQbdS3xUVlv88FNd8uMB5syrZ1VFhB5d/O7OWrHjyckyKSn2Mm9hA0tXhFPGEUIIIYTYUs4++2wmTZrE2LFjufzyy5k9e3ab5ZLx1Kbx48dTVVXFySefTHFx8g7DIrF5C92LTyNBGaeUO5WnMaJpbGwkEEg8BWfM6TPIzs9NOYnP40n+LQ5mBTE9BpFGK2FRYkXdxnAFnYuSxnEHQnTCGE336RS5/nNSPc27ayc25dtGzjyq5ceXLA/T0OjQqcPGhYtSivwck7kLGhi5dwFeT8u19E+/NJAdNBL29sgKmqyqiLJ4eSM7dEtvmpQQQgghtm9dunRh8uTJmxWjaSrTbbfdxvfff89zzz3H3/72ty2RXsYyLiTmzJnD3/72Nw4//PDWyGe74KS6okajtKIxCi3UEe5n9Oks9k31HMNdD9FiJg5gKozNXFjcUpGxvvpQ09ysxBQKHeu4nYxlO+50sRZez+NR2A7YNnhb+AnQWhOOajxJms8pBZYlU5uEEEKI9iT51cjmxd1UlZWVTJs2jUMOOST+IbFhGPTp04fVq1dvmQQ3QcZTmzp16tRmW0y1F9nB2CLiFt9RCmUoCnJb/qQ7xxO7oE5xfe84TvLHLQft6BY7apseA8dxCKVYD6O1Ox0p0UV+02OOTp7LvoOTv6907EcwLzv5Auf8XA/KaPkiv67epijfg8+brEhQlBT7qA8lztlx3IXXBXnSpU4IIYQQrauiooKrr76aadOmxe+LRqPMmTOnTftIZFxIXHjhhdx3330sXLiwFdLZPpx8WCHgFhIbXnc7scW7JcXJ1za89vQwrKiVtLzVjiYSTl4ArFm5hmgkitfnSVAEaEzToDEUYdK9pUnjGIY7WmAkmK9lKCP2WPKqZ8ze+fEc9AYHtv6/x12UmzTOTj2DdOrgY2V5ZKNjagjZWDbsuktOynwGlGZjGFBbbzfPRWtWVUQpKvDSZwcpqoUQQoj2pukabUveNkdpaSkjRozgr3/9K19//TVz585l3Lhx1NTUcM4552yRY94UGX+c+v7777N06VIOO+ww8vLyyMlpvhWnUooPP/xwiyXYHh24Zx5vfFzDkhXh2Jur6d3lrrT2ehV/vjj1+pNIQwjTNN0tW9dfWqDcmNFIJOX2r28/uRunj1+MYRr4A15sOzZCYSoMwyAcjlBf05Ayl/4dG/hxZRDTa7pTipo+yDfcKUlWNMquJal3+TpudJDXPnaft2ExAdC9o0FJQfLtX/0+gwP3KeStj9awcGmY/FwTj6mobbCxLBjUL5sBpal3OOjTK8juu+YyY1Yt1bUWudkmjqOprnPIDhqM3qeA3BwZkRBCCCFE67v33nu55557uOqqq6itrWXYsGE8//zzdO3atc1yyvgqqGPHjhx88MGtkct25b5x3bn10RX8OLcBy2raKQk6Fnm5+bJOlBSnXsD7wfPDOOj0b/BnrXcBDziWTTQS5Z0n02tO8vzfenLa9QvxB30Egr7YtCCHaDhCbU0tL6cYjQC4Zfyu3Py3H5ldnhXbjcodmXBsBxTsWtLILeNTN6U77sAivEYlr3wUwtGxLaxiBUX/HU3Gn59eU7qdegY54fCO/PBTHfMWhojami6d/Azqm8OA0qyki6ybmIZi9L6FdOnkZ9bPdZSviaAMxW79sxnUN4ceXWWRtRBCCNE+bX1NZ3Nzc5kwYQITJkxo61TiMi4k2mpVeHt048VdAPjp13qq6hz67uhNui4ikQ+ed0ccDjl7hnvhba+7LxMv3NELgKMv+wFfIEBtVT3vPrkb0CXtGE2Fws1/+5E55R5speiTF+XOWzLran3kqCKOHAXLVtYxfXaE3t09DN4lL6MYAF06+enSyc+ovR1sW+P3Jd6BKRnTUOy6izuC0Rh2MAyFP8PO2EIIIYQQ7ZHMy9gK9N0pe7NjvPf0sC2QCbz+yOa3WL9l/K40NDRQVlZGv379NjlOt5IcjkuvwXdSPq8ByVtYpKSUIhiQLtZCCCHE9mBz1zRsLzIuJPr27ZtyG8+ysrJNTkgIIYQQQoi2JHVEejIuJC6//PKNCon6+nq+/fZbFi9ezLXXXrvFkhNCCCGEEEJsnTIuJK644ooWH7vuuuv48ccfOf7449OOt2bNGiZOnMhnn31GOBxmjz324Prrr2/TPXF/K7W1tVz393JWVURRWuHzKa48rSN7716QUZyDzviWrLwsFO42q45tQ2Mtbzy9Z0Zxjv7dT3g8Xnd5s4ZwYyNvPjogoxiHnzcDwwzi1vJ+YAGOHeLtJzObenXaNXOorVco7e7eZHgMXn+4b0YxbNvmx3kh5i4OY9ua/FwP+w7OJi83s3lODY02X35Xy7JVYUxTMaBPFgN3yUq41W0yKyqifFsWor7BITfbZFj/AB2LMsvFcTQryqMsWtbI4qUesvKjlO6oMZM0zkukMeywYGkjtXU2Ho+iZ1c/xYWbOf9LCCGEENuVLbpG4thjj+UPf/gDN998c9pfc/nll+M4Do899hjZ2dncf//9nHPOObz//vvtuvHd82+s4qV3qkDr+DanlgUTn1hFp/+r4PFb+6QV58hLysjOW7cdqkJhejyQXchBZ33LB88MTRlj9CnTKexcjN8XWG+TJE0wK8jxv/+FSfenV9SNveBHlPJjR631d6LFMP2MveBH3nwivUXXR15ShrY0GsfNRbm7P429aDaHj/Jx2ak7p4xRWRVl0uS1RLWBYRpoDWtDNr+8s5ZBO/kZMSw/rVy+m1PH86+vpqLKRmu3Cd1HX1SzYw8/F53ahY5pXHxblsOrk2v4anYjjWEdP8Uff93AvkMCHHlAblpFSW29zUdf1rBgWZiGkEVtrZfF5bX0nGtx4F55aRcl8xeFmPJlNeWV0fj3KStoMLA0mxF75OH1ymJyIYQQQqS2Ra8YFi9ejGVZaT+/urqabt268de//pVBgwbRu3dvLrvsMlavXs28efO2ZGpbleUra3npnSp0rOu0QqGUASg0DqsrLP58/6KUccZeNBvTiC0AVuvdYrJzcjjy7Okp4xR2LsY03dEMt6eFW9ooQ2F6TI6/cn7KGAef9x2Oo93tXg2FYboX8BgK23ZwHIfDzp+ZMs5Rl5ThWHa8uFLr7bKkHc3bH0dSxrBtm1cmr8U2PDiOxo5YOJaDHbUxTZNZCyLMLKtLGWfh0hD/nrSK8rUWRfkGXTp6KSn2EAwa/LygkX8+v5yIlbxbN8A7n9fx+XchtKPpWKDoVGTSsUARtRw++qqBydNT9+mIWpr3p1ZT9muIvByTHiUeOhU6FBWYLF4R4d3PqqlrsFPGWbIizNtT1lJZY9G1s48duvnp2dWHz6v48vtaPv+mJmUMIYQQor3TWm3xW3uU8YjEQw89tNF9juOwcuVK3n77bUaNGpV2rPz8fO655574vysrK3nqqacoKSmhT5/0PpHfFt34wCrQ2l1rsv56E7VuKs/suambt3k8sU+gE703m+4LJO8CPfbi2QSzgk0f/Df/8tjIhGEajDppOh+/1PJUKa/pw4la7jGsd0zuMbpFgOFN/on5rFnzsC13FGL9AqIpntYaHDjhyjm88kD/FuP8OC+EpQ2cqO0eh1LxOI5lY/o8zCgLMaRf8sZ2H02roqrGpqTYE9821jAU2UGFoWDB0jDfzKpl791aHt2oD9lMnxXCNKEgd92uT4ZhUJQHFVU2U2c2cMDuWfiSbCu7aHmYBcsidOnoxe8ziEbdosHvVXTr7GHpyihzFzYytH/yHcC+/6meugabnl198fOqlCI/14PWMOvnBob0z6EwTzZ0E0IIIURyW6SQAMjJyWHMmDGMHz9+kxK58cYbeemll/D5fPzjH/8gKyt15+FEtNY0NKT+hDcUCjX787dUWWMTu1re+MGmYsLRrFq1mtzcxBe7R144i9z8wuT9UjSYpifp+fAHAiilWtydQANKGeR3Lkgaxx1dUc0KgPghGQrH1mjHSRrjhn9apNonQaOJRI2kceb8Uo9heLGtaMLzY0VtLGD1mjpygi1fvH//Uz1ejztKY9vN8/J53VGC7+fUMHiXlgukmT+Fqa6zyc9R2M7GIwZZAaistvhxfg19e/lajDN/YT3RqIWhIBq14yN/lmXhAUzDpuyXWvr2avkN0dDoMG9BHdlBEo4cZgU0S1da/LKwhv59tu9me235+2F7IOe3dcn5bV1yfjefbvowdSsmuzalJ+NC4qeffmqNPDj77LM5+eSTef7557n88st54YUXGDAgs4W+ANFoNKPtZxcuXJjxa2wuTfJPwpv8WLaEghYGFAzlSbvpYvLzUbB+8+jEFBhKJY+jfbDRuEazEKBT5OJkr/fkBDGUiq9TSBansioPFShscZqdYZhgKObMmUtuVuIDdxyoq/Nh2YqGhsTTqWxLsWp1JWVlq1vMZcEiP5FIHuFGi0iC47IdiERMfvllMToUbTHO4qVe6uo8VJjNp1JVVVUBUFenWGFrysqWtRijPgSVlV58Xk20hQGv2lrFr7+uRUVTT9naHrTF74ftiZzf1iXnt3XJ+d08Pl/LH56JbcdWM3+haSrTbbfdxvfff89zzz23SV20vV5vWtOiQqEQCxcupFevXr/5om6PsZSIDUrr5lOb4tzRir2Ht9zMzcusZNft60VykjaF03oZYJKsktCOQ7gxkry5nPol9ly90aiEdmKxFUljdCpYyIpyFV8fsXEeGtyZUknjLK2qY3m1wuPxJDy9hsfEidrsNqg06cLi7lNXsnBZlKysjX9MHMfBbHAo7V1Ev34FLcYI5EX5Zn49yuMlK8GH/HX1kJ0Fuw/ekZLilhvehXQjFTX1dOjgQSmFZVlUVVVRUFCAx+Oh0bbo28dPv34tT22ybM1PS9ZSVWtT3GHjY4pEHCKOza798+nV3d9inO1BW/5+2B7I+W1dcn5bl5zfzTd/fuq1l21OhiTSklYhkcl0JaUUt99+e1rPraysZNq0aRxyyCF4PG4qhmHQp08fVq9u+VPeVK+fybSoYDC4ydOoNtVh++fyv4+q3Tpgw2Ii1kox4DOS5vX2c3ty9GU/obSRuJiI/QA01DUkjbN2ZSXF3TqilLvYev1Q7rQmhe04vPVY8h2XlKnQjmr5B08pDCP5MT3+t/6MvWg2OBsPe+p4i0nF5Wd4ksYZsYeX59+twuPz4ETtZufXQaOUQddig/z85CND+w0rZPHKCkJhTU7Wuot8x9FU1UJejocD9upAVlbLF939ejv07BJl/pIoWQGFud7uTJbtEIpodu3jY6eeydey9N/Zx6x5UarroWPhuh9bj8dDKGwQDHgYuEte0lwAdtvV4YPPq3AcE79/XS6O1qypiNC9S5DSnQrweLbuIeffSlv8ftieyPltXXJ+W5ec3023tU9rAqkj0pVWITF9euqdf9auXUsoFMqokKioqODqq6/miSeeYP/99wfcqUlz5sxh9OjRacXYFp1/Yhc+mFZHKBRbKxF/tzZ9cm9w65UlKePU1VSTm1e48chELIzWdsrtXz9+aU+OvWKu++m9YcQv2N010sodjQilXvjd0Wxkte1H2w7aXq84aopnGhR7Us8nzctVVFe7B6G1XndoumkXKYND9ku+/WthnpcBvXzMWRTB9HmwYwuTDVNhKBPDsTh438KUuRywVz5z5jcws6yB+gaLYEChtbvWwO9VjB1VSNdOyS/cDcPg2NG5/Pv1KsrXOvh9Nl4TIhZEotC5g8kxo/NS5lKU72G/3XP5+KsalqyMEPQ71DcqIuUWXo+H4YOy6dkl9TDxoF2yWbYiwuxfGvB7FdlZBlFLU1PnUFzgYfTeUkQIIYQQIj1pFRIfffRRi49ZlsUjjzzCY489RnFxMRMmTEj7xUtLSxkxYgR//etf+etf/0p+fj6PPvooNTU1nHPOOWnH2Rb9996dueCG+ZRX2vGLbTDw+Qxu+30JpTsl/4QaYPJzezLmjK/IzstHadWsmLAdizf+2fLORut77cFSjv7dz3g8HozYrkva0Wjt0BhKryndU/8YxjmXzqDCCqIdB8dZV0AYhqLY08hT/0jdlO6Fe/pz5h/LqKqJLeDWGoUCA0yvyeuPpNeUbtTwfPKy6/ju5wYsZaAA23Lo2sHg4H0LyQmm7rng8xhcekYX3vt0LV9+V8uaKgulYECfICP3KmD4oNTfI4Be3fxcfEIRH39Vx+xfI0SimuyAYviuPsbsmZN2/4eBpVnk5Zj8OC/EgiUNOA706uplSL88dt4hkNYnPH6fwWEjC+nZzc+Pc+uprrXxegz2HpLNoL7ZGTfIE0IIIdojGZFIj9Lr5oxkrKysjPHjx/Pzzz9zxBFHcOONN5Kfn16jrya1tbXcc889fPjhh9TW1jJs2DDGjRvHzjunbjq2oVmzZgEwcODAlM9taGigrKyMfv36tfnQ5MfTKymvtNhvtyBdS9K7ON3QQWdMB48XLPjgudRN6Foy5syvCGRlU7+2Lul2r8mcc+kMlodNDBSFXov/PJpZV+smL/xvHm9+EmXnHUxuuXKXTYoBUFsXpTGiKcg18XpbXoeQjOM4VNfaeExFbs6mLy1qjDiEQg7ZQSPpdq/JaK2prmmgrOwnBg3sS3Z28i1fW2I7mkhE4zGRJnQb2Jp+P7RHcn5bl5zf1iXnd/Nlcr32W5s1axZRG/zFmW/4k0q4YjZec+s87k21SVdElmXx8MMP8/jjj1NQUMBDDz3EgQceuEkJ5ObmMmHChIxGMtqbUXsWbXaMD57btIv+DX347PDNjvHUP4at94s2vVGRRE47amdOO2qz0yE3x8umlWfrGIZBYf7mX2wHfAaBTSwgmiil8HkVPu/mzTM1DUUwINOYhBBCiGY0rTMk0Q6HOTIuJObMmRMfhTjqqKO44YYbyMtLPcdbCCGEEEII0X6kXUhYlsVDDz3EE088QWFhIf/4xz8y6mIthBBCCCHE1k4GJNKXViExe/Zsxo0bx/z58znmmGP405/+RG7u5k4WERUVa7j0ltWELRXbmcjhzKOLOOGw1Ds2rW/M2TPweQPxtdYaCNfVM/m/mU13OvLiOet2bUKhcXgzxbavGzrozK/IKygCQwEF4CynpqqSDzKcMvXHuxdSXm1iekwcx0HZFk/+tVdGMWzb5qsfQnw9ux4rqikp9nLoiDyK8jNbUFxXb/Hh9DqWrbIwTRi4c5C9BgUwzU1bbyGEEEII0R6kVUicdNJJOI5Dbm4uy5Yt4/LLL2/xuUopnn766S2WYHt1+z9/5atZFh6vD7+5rgnbC2/X8p83K5n0cHprCw6/4Ee8prvtqsO6jZt8WVkccvZM3nt6SMoYo0/9kmBWNpbtxMrlpi1gFUdeNIc3Hksvl6Mv+4m8wiJAxZvQKaXIKyzi6Mt+5vVH0lswfc6NS/AHAnj9oNCYponyeTh/wjKOGwFHjO6WMkZ5ZYR7/r2SRcsi2M66zwA+mFbNcQcVceSogrRy+eybOl5+v5q6Bu1+jzTMmN3I2595uOzkIrp1ls6cQgghRHujtawhTEdaqz6HDh3KsGHD2GWXXdy9/ZPcHMdp7Zy3eT//soavZ1l4fZ74OdOORjsawzTRppdzrvspZZzDLpgV3yIVBYYR2wJWAdq9AD/wlNQ9QAJZ2VhWbBtapTEMt8md1hAJRznq4rKUMQ4+7zs8Xk98J1tlqHiHa63B9JgcetH3KeOcdcNifH5v7JDWNaXTWmN6TCZ9mnpg0LZt7n5yJb8sDuPxKPJyDAryPORmGzSEbF56Zw1Tv6tNGafslxD/eaeaugaH7KCiINckL8fA61UsWx3lwf+sIRyxU8YRQgghhGiP0hqRePbZZ1s7j+3K+HtXYXoDOPbGRZd2HEzDZG1tGheoTTWEWrd7T/zCO9bQzZ+TfGvQsRf9GM/DWK/rsqFixYSjiUaijDzxS6a8vFeLcXJz89BO7MJ//SK+qbGd1mQHk3eSXrRoGYGAF+IFxAbHpMHr9XD5Xxfx8A07tBjnqx9CLF4eIeA3CAbWHZNpGuRmQ3Wtw9ufVLHvbsmn5707tZaGRof8HLcXBrjFWsAHCoPySotPZtRz8D6y2YAQQgghtj+yeXwbsJ3kc+u11phek4qKNS0+Z/Qp03EvuFveAnTDhteJKBXrZt3CEzXuiEluUZoXy4nixGuC5KMJf3k86jafazFrjdZQH07+tv36xzpsW+NPMOvIMNwRhcXLwtTVJS/Wfl0axWOqeBGxPr9P4Tjw47xw0hhCCCGE2PZoveVv7ZEUEm0gna3/lVKsqW75ccOfvBhJv79AinJDkfzxNMOkw9KxUqOFOEqptH4SI5GmqV6J396mUjga6sMtFxK2bWM50EKIWEIQtWQqnxBCCCG2T1JItAF3Z6TkF8SO7bBL7w4txwjbuHOPWn4NlfJV3BGJpGJTpywnmuJpuuX90mL3p6oB+nQ33CIr2fOUwrGTB+rc0d2VyU4wdQwgYjlkB00Kc1suxkzTJD/HIGolfi3HcY+3uDCzHaCEEEIIsfXTrXBrj6SQaAMDd/G66wkSTJlpmtljW8mn3Uz+757rLWZu/vbUOnZRrxR21Eoap2ZNtTt1R4Ojm194N/3bMA3eeXxw0jiOdpKOgiil0Dr5p/c3XtoTK2on/InTWsd3grrijOSjMUcckEdW0KSuwdlo8X8k4qA17D4gG58veZxhA4IYChrDG5wXR1MXcvD7DUbtmZU0hhBCCCFEeyWFRBv46x96Y0UiACjTiC9QVkqhlMKKWoy/qFPKOOG6+th0H3dR9Lrds3DjGSrl9q9TXt4Lj88Tj+M4TuymQSsMw8AwU89ZCldXoZV7oa+ddaMTTRf/Wmkaq6tSxinKiRKfwaR1bNF4bFG5oWhsaGSP/sm3fy3K93HMmEK8HoOaWof6BptQo0N1rUVDo0OPLn5OH9vyaE+TIw/IZaduPsIRqKmzCYUd6kMONXUOhlKM2iOLnboFUsYRQgghxDZGqy1/a4ekkGgjr/+zPzoSxoq4U4YUCsdxiIQjXH9+MXsPTX2hO/m/exJuDGGYRrOFF0oplGHw9hPpNZN749H+eP1eTI8ZK2oUSoHP50F5VVpN6d55ZjihtZXu66/3rlKGQitNaG0l7zyTuindXdf2oigrjGXbsWNyc3Ech3BDI8/c3iutYzrmwEIuPrkTvXcIYCh3FCEvx+TAvfK55fJu5OSkbibn95lce24xo/fMoiDXxHHclHqUeDn18HxOPrQwrVyEEEIIIdqjtLZ/Fa1j0iNuo7fnXl/OitURjhpdkHRdRCKTX3Avzg88ZTqegB9bW3z49LCMc3njUTeXg06fgTfbT0NVPe++1PJ2r4k0FQqHnfUVtsfr9pIIR3g3w67Wf7va3dp1yrRlvDU1Sv/eHs49tntGMQD2H5bL/sNyqa6zCIUcivLNlNOZNuT3mZwxtohTD7OpWGvj9aqMO2MLIYQQYtvSXtc0bGlSSGwFzji662bHmPzfPbdAJvDB85kXIRt655nhNDQ0UFZWRr9+6Y2KJDJy726M3Huz0yE/x0N+8hYWKZmmSefizIoQIYQQQmyb2ut2rVuaTG0SQgghhBBCZEwKCSGEEEIIIUTGZGrTJlpVEWb6zFqqaixyskyGD86jexd/RjEOOm0qmFnuWgIUaIdwpJEp/81sPs+oU77Ct14bZ+1oGusb+PTVfTOKc8g5MzHWWylt2RYfPDM0oxgjT5xGMDcbZRiAH+3MJ1Rbz5SXMzumK2+dx6+LG92dnxRkBUxefrB/RjEcx6FsfohZP9URsRw6d/Cx77B8crIze9tHLc3iFRHWVlsYhqJrJy+dO3gyaPonhBBCCNH+SCGRIcdx+L/31/D+Z5XU1rk7LmkN70ypYN89Cjjj6M54PKkHekaf+hVeb7a74xLQ1EAiEMji4LO+4/1ndksrn4PP+s4tItaby6eUIpibzYGnfsXk/6Re6DzqxC/w5WSjlOGG0W4XOo/p4bBzf+Cdfw9KL5ezvyM7P7f5DlKmSXZ+Lgef+x3v/zu9Yxp74Syi4WhsC1r3wKIhxWHnfc8VZ3Tg8NGpF15X10Z59IVlzJlbRzji9oFQSvHm5ApOOboz++5ekFYuK8qjfPxlDSsrLBytcTQEfAa9e/oYtWceWQEZ1BNCCCHaG1kjkR65CsrQB59X8foH5YTDNiUd/XQrCdC1sx+t4cPPKnn57dUpYxx46lS8Ph+GaazX+8Fxu1Ert3fDQWd8kzLOwWd+F2v0Fussrdw/m7pMe3w+Rhw3NWUcX062OyISaz+tYo0cmvrCHXruD6mP6fSv8Hq9zYqIOKXwml7GnJn6mMZe8CPhUATHcRvcmR4zNroBVsTiwefWpIzhOA6PPr+Mb2fV4PcbdO3sfp86FvmorIrw9MvL+XFuXco4VTUW735WzfLyKB07mPTo4qNnFy852Qaz5zUyeVoNtiO/aYQQQgixfZJCIgMRy2Hy1EocR9Oxgw8z1qjNMBRFBV68HsXUGdVU1ybvJm16szAMY6OO1ECzYiKVpiZyoOPTbJqa2jU1cgtkJ++8fNBZ32LEigiFah4Hd5wENAcc90XSOP5AMHERsS5ZfD5fy48DS5YsxbIs0O4uSYax7vwappulY9mcN/6npHHK5oeYPbeO/DwPudnrpiB5vYqSTj5q6iw++KwyaQyAnxY0Ul5p0a2zF5/XiB2GIjto0KmDh18Wh1m+KpoyjhBCCCG2LboVbu2RFBIZmL8gxOqKCPm5iWeEFeR7qaqx+OGn5J92K2XQdImeiAaUYbhrKFow8oSp8RGIlubqK9yGcMl4TLOpFkmcS6xNdiAveUFCvKhJ9pTkuVx9ZzW2Zbecs1I4jmZ1RfJC7fuyWsIRh5ysjbdrVUqRFTQpm19HQ6OdNM7chWGygka8oFlfMGAQiWqWrookjSGEEEII0V5JIZGBcFhjO7rFNRCmCY6GSDT5FbVKVZtqd3Qg2awZ5fEmDZH2QuAt9DwV/79NZzdd17cQxzDWjcAkE4nq+MhMIh7TLUgisbUTiWitiUY1ZpLWEUopLKu9fsYghBBCbMdkSCItUkhkoEtnL0G/SUND4k/EGxoc/D5F107Jd29q+fLV5RYRDpP/0/KuS3YkmvTCPdG0qU16nnJfxokm//Q+nZdL9Zxddw64xUILFZSj3XUgiUYI1tep2IvC3W0pkYZGm4I8b8IRiyZKKTp18NAQaiEXx12Lkp8rTeqEEEIIsX2SQiIDJR399C/NobbBJrrBqINla6pqovTqHmSXnQJJ49hRK74WIiFFyqvupq1dFWqjYqBpOhIKrEjyqTeh6nqayuTEcdw/P3gu+Taw2klVHqV+zl+u6o3hMdFauzs2rcdxNNrWmKbJn68sSBpnv2EFFBV6qaiMbHRMoZCNY2v2HlqQcnetvjsFMAyoa2heRGmtKa+0KMzzsGP3zLb8FUIIIcTWTevWu7U3Ukhk6JQjO9KzS4CV5WHK10SoqbWoWBthxaownYr9nHZ055QLpSe/MCx+Ub1+MdG02NmxHSKNDSlzCdeHYvWCWm/3p6ZF0+76iVTbv37y6j7umgyl1u36FNuxqWk6k+0kH40AaGyoT1ooaMehsaE+ZZydd8zC9HjQjsa2bRxH49gO2nEwTAN/wMOeA5Jv/5qX4+GksSVkBUyWrQyztjpKTZ3FynL37wP65nLYqA4pc9mph58hfbOornVYvipKTZ1NVY3NkpVRPKZixLAccrNlREIIIYRob2RmU3qkkMhQSUc/11y0A4eNKiY3x4PtaIJ+k1H7FHH1hT3YuVeKRckx7z2zm3uhbDvuhX+sGHAcm0hjPR+/lLqZ3JRX9iYcihUTSsXjAGhH8/7T6fVteO/fg3EcB3cHWRWfMqUA27LTakr38Yt7E6qrQ9tO85JbaxzHIVRXx8cvpm5K98CNO9O/Xw7+oA/DMAGNMhQen5fcPD+vP7prWsc0YngBV5zbgz0GF2AYCtvWdC72c/zhJVx1fk+yAqkLANNQjNgjh0P3z6NHF198Dceg0iBHH1jALjsmH3kSQgghhGjPpCHdJujUwctZx5VwythO1NbbZGeZBPyZ12RNTedGnvIlhjJQRJOui0hkykvuxfmI46biDfhwHM3H/03dhG5D7z09BIBRJ3+Jx+cj2tjIlJf3yShGU6Ew6uRpGB7T3WUpYvHxS5l1tb53XB8APp+2lJc+DDGor58LTuyZUQyAQX1zGdQ3l/oGi3BEk5djptUscH2moejfO0i/nQI0RjSGAr9P6m8hhBCiXWuvQwhbmBQSm8HnM+iwBS4qp/x3r82O0bRmYnN9/OLm5/Lxi3vT0NBAWVkZ/foN3uQ4++3dnf0yq0ESys7ykKKdRkpKKYL+zdyWSgghhBCiHZFCQgghhBBCiPW0xoBEe/w4UuZoCCGEEEIIITImIxKbaNbcWl5/r4K11RY52SZjDyxmj0F5GcW4886v+fBHD6bpAe32JbDCET78zx4ZxRl1ynR8fn98ByjbtgnXNfDpa/tlFOew837AMI34ouuoFeG9p9JbsN3knN/PYK2VE2uWkQ3GYgo9dTx1/7CM4vzrlRW89XE1lu1gGIpddgxyxx97ZRTDtm2++qGBr2fVE7E0JcVeDj8gn6J8b0ZxhBBCCLF9Sbcf1/ZOCokMWZbFrQ8u5tvZddiOjo99ffNjHX128DPxut4EAqlP65jTZuD1+/F4mrZIcndc8gYCHHz2TN6PLX5O5aCzviWQFYSm/ZoUGKaBpyCPA0/5msn/TV2UHHDyF2Rluxf/znpbuBrKZOwFs3nziQFp5XL0pWXY0QDRaGOz+8u9AY6+tIzX/9EvrTjH/e4nQg0RtKOJ9aDj+9kRxl44mzv+2J0BpfkpY5RXRrjrXytYvDyMZa/rvP3hF9Ucf0ghR44qSisXIYQQQgiRmExtytDfn1zG17NqcRyNz2MQDBj4fQZaw7yFjdx834KUMX43/mu8AV98BKGp5nX7OYBpmhx0+jcp4xx0xjd4PG7RohTNJt8ppfAF/Yw49vOUcZqKiHVfvC4h27I54sIfU8Y47PzvsCIW0YiFYSg8HhOPx8QwFFbUIhq2OPTC71PGOfn3P9NQF0bbbgVhmkb8XWpFLa6/a2nKGLZtc9cTK/h1SRiPR5Gfa1CQ5yEny6A+ZPPftyv5/NualHGEEEIIIbYWVVVV3HTTTYwYMYKhQ4dy6qmnMmPGjDbNSQqJDNQ1Wkz7zr0ADfgNzFgrAsOAQGxHn7JfQixZ0dhSCADmLfe6fSNi/1br/RnrSY3pTT2q4fF6403sNqJAGQp/TvLtig455zuaJaI2/rtjORxwwhdJ4/j8QWzLxvAYzRryGYaBYRo4tk3Am7wLdHV1NbV1ETTuqIqh3DiGWhfTtmzue2ZZ0jhf/dDA4hVhAn5F0G/G43hMg7wcg3DY5u1PqpLGEEIIIcT2a2vsan311Vfz3Xffce+99zJp0iT69evH+eefz6+//rr5wTeRFBIZmPJFFY1hB4+ReN2912Ng2Zp3Pl6TNI5huqc9UZT4dbxhcOedX7cY44ATPm9+4d8C00zeeM3j8aXemkBDdn5O0qfYlg0ojARFjaHcosmKWklj3PHEWrdBX0vHpNw5i599VZs0zlc/1GPZ4PclysXA61EsXhamti51x24hhBBCiLa2aNEipk6dyoQJExg2bBg77rgjN954I506deKNN95os7xkjUQG6hvcC0/VQiHRdAEcCjsJH49rGnZIQgGL17b8uOHxJh6JWP9l0qh+096KLMVr4SRvAK/SyKeuIfkTDGXgaCdlnLDloGLPTxjHUDgaGhptcnNSd7gWQgghxPZla1trXVhYyGOPPcbAgQPj9ynlzkqpqWm76doyIpGB/n2yMJTCthK/uyxbo4CddwymFa+l92jTJflDf2t5obQdjqa1o0Cq5+h0dkpWEI1Gkj/FNNCAk+D1HK3j05WS2W94tluktZBS00LwnKzkcUo6eEGBbScu6KKWJjtoUpgnRYQQQgghtn55eXkccMAB+Hy++H3vvfceixYtYv/992+zvGREIgMD++ZSUuxl+eoItq1Yf9aQbYNta/JzTQ7eryBpnGgkitfvvhESDU4owNHJRzU+fW0/Djl7JoZpJhwsaCogrHA0aZy6qhqycnPWVS/rx1pv7cQHT++eNI5pGiil0I4Gs3lC2tEolLtwOomTDunEM6+UY9kWjnaajSg42kHHXue2qzonjXPEAflM/rKG2gaHvJzmccJRB+3A0AHZ+HxSSAghhBBiY601ILFixQr+8Ic/tPj45MmT04rz7bffMn78eA4++GBGjhy5ZZLbBDIikaHfn9udYMAgEnVoDDtEIprGsCYSdfB5DS44pUt8J6WWfPj87mjtbLTEoelN62iNYScfAQAIhxrc/hMbvNub/m3bdsrtXz95ZR+UuV4ier0bgAGOk3otwX696/AFvaA1lmVj2w627WBZNlprfEEv+/WuSxnn2EOKMDxuLwvHdnC0g+O4F/+GoejWJUiPrsm3f+1Q6OPoAwvxeRXVtQ51IZtQo011nUUo5NCji48zjixOmYsQQgghxNbmww8/5LzzzmPIkCHcfffdbZqLjEhkaGDfXP56zY488d8VzF/UiO1oTBN6dPFz1nFd2HNI6h4HAO/+ezAHnz0T0zDWrXXQ4KAx7DBvP5O6/8OUl/Zh5Elfun0kjPV2b9Iay7L44NmhaeXy9hODOPy8H9BN20bFRiYM0yBqRXk/jaZ0114zDO6Zwee/5mJFolhRt/jw+jx4/B7227HOfU4K55/QBZ+peOX9SiJhyx3NMNzRjH59crj7+l5pHdNxBxVRXGjy9ifVLFkRxtGQl+Nh9wHZnHFksayNEEIIIUTLWmlIokuXLmmPOiTy3HPPcdttt3HooYdyxx13NJvq1BakkNgE/frkcM8NO1NXZ7GyIkJxkY+CvMxPZVPTuTGnfg1K0XcHnXRdRCJTXtoLgBHHfo7X78fB4eP/7plxLm8/OSiWy1cYfi/h2hCfvLJPRjGuvWYY1wJ33zODyXNMHGB4zyg33ZhZV+szjy3hzGNLWLi4mslfNdC/d4C9dyvMKAbAiGH5jBiWT3VtlIaQpkOBKdOZhBBCCLFNeuGFF7j11ls588wz+fOf/5xy053fghQSmyEnx0OfnM0/hR/+J7PiIZFPX9tvs2MAfPif4Zsd49prhnFZQwNlZWX069d/k+P06pnP+T3TG+FJJj/XS37uZocRQgghxHZAk3qzmk2Nu6kWLFjA7bffzkEHHcTFF19MRUVF/LFAIEBubttc6EghIYQQQgghxHq2st1fee+994hGo3zwwQd88MEHzR479thjmThxYpvkJYWEEEIIIYQQW7FLLrmESy65pK3T2EibFxJVVVXce++9TJkyhbq6OnbZZReuueYahg3LbF79b+2TL9fw/P+tpLbOJhgwOO6wjow9MPm2pBsac8pUPIHsWLM3hdKahrr6jNcmjDrpSzzrLbbR2iHS0JjxdKcDz5wBsR4ZSim01kzOcNrV2Vd+wcrqLBQKlAet51KS38DTD2R2TOPumMv3P4ViQ4sGeTkGLz20a0Yx2iPH0awoj7JoWSOLl3rIyo9SuqPGNNt+nqQQQgjRbmxtQxJbqTbf/vXqq6/mu+++495772XSpEn069eP888/n19//bWtU0soEolw3rU/cttDi1i4NMyaapulKyM88O9lnHTpTOrqUm/bCjD69K/xBHIxDBPDMDCUgTIMsvJyOPSc79POZ8zp3+Dx+VCoeIdDQ5n4s7MYddL0tGKMOPZzDjzlK4g67t6xWqMd9+9jTpuRdi4HnfEtq6qzMQwDFdtFyjAMVlVnc9CZ36Yd57Bzv+ebWbXu7k8RCysSYe3aMIecNZOPpq5MO057U1tv88bHVbz8XiVTvm7g+3le3phSy8vvVVJembxfiBBCCCHEltamhcSiRYuYOnUqEyZMYNiwYey4447ceOONdOrUiTfeeKMtU2vRNX/9haUr3Ys2BRjoeAuGqlqHi/9UljLGqJOm4vP5MUz3U3/taDTa/fRdKZRhcPDZ36WMc+BpMzCUQqHiHaq1dmMppfD4vIw49vOUcZqa4yWiHYcxp3+TMsaY07/E9Jgow3Bz0E01SdP2rSajT0td2Bx2zg9YkSg47rkwTLcoQYFjW9zx6PZZSEQtzftTqyn7NURejkmPEg+dCh2KCkwWr4jw7mfV1DWk7vchhBBCiBTi1zBb9tYeRznatJAoLCzkscceY+DAgfH7mj5Vr6mpacPMEltbG2HuggYADEW8o7RS7r8ByittfpxbmzSOPysHw4h1gVYbBHJ0LF7qb42hDFAqXji4IVR8WpJSCl9WIGmMA0/9OuXraNtOWZB4PIHY6zo0b7O3Xi5ef9IYK1euxHZst42FaWx0TKDQjs1lN/+UMuf2ZtHyMAuWRejS0UtWYN17w+9VdOvsZXl5lLkLG9swQyGEEEJsb9p0jUReXh4HHHBAs/vee+89Fi1axJ/+9KdNiqm1pqGhIeXzQqFQsz/T8fwrK9HaIHlJqXhu0lJu+v0OSZ4S62mdaFq7UmgNyjA48JSpvPFk4mZwh531Lb5AVvwiveWXMpKej6aiIxVfTiBpHI1CaWjhoOLPSRbj97eVo2275eNR7vd3weJwWt/j9mT+wnqiUQtDQTRqY1kWAJZl4QFMw6bsl1r69pK1ElvCpvx+EOmT89u65Py2Ljm/my/VtcvWoB0OHrSKNl9svb5vv/2W8ePHc/DBBzNy5MhNihGNRikrSz29qMnChQvTfu7S5TbgBTRaJ/oBcN92ayprk+ag8ManIiWmUSiiEd1iHMPwNJvStNFrKAXanXaVyfloOWcjRRyPWy8kOaxUuTQ2Jm8Wp5TCiRU9W+KYtiWLl3qpq/NQYTrN7q+qqgKgrk6xwtaUlS1rg+zar0x+P4jMyfltXXJ+W5ec383T1h2ZxZax1RQSH374Iddeey1Dhw7l7rvv3uQ4Xq+XPn36pHxeKBRi4cKF9OrVi2AwmFbskbVVfFu2ElAkKqSbioshA4vp16+kxTiaeRixKT+JAincC+Z3nxvaYgw7+q27yLqFil5rHS80+vXr12IcZfzkLqxOwYna9Os3IMkz5uLOlNtwahO41YWBxkmay/DBS/jkyzp3HmHC8+sWRsogaZz2KKQbqaipp0MHD0opLMuiqqqKgoICPB4PjbZF3z5++vXLbutU24VN+f0g0ifnt3XJ+W1dcn433/z589s6hdRkSCItW0Uh8dxzz3Hbbbdx6KGHcscdd2xWlaqUIisrK+3nB4PBtJ9/6MgsHnlmJY1R90LfWO9it2l2kGnAhad0T3oM0WgUn8+/blqR2iCQcreCTZbXp6/tx0FnfOsuCKL5EOH6RYQViSaNE65vSLrYusnk/ybfBlY3rSJSqoUfPncxebJc/vy7Xfj0q5k4lhUL1fyYtKMxTJO/Xds5o+9xe9B/Zx+z5kWproeOhet+bD0eD6GwQTDgYeAueWRlJV+HIjKTye8HkTk5v61Lzm/rkvO76bb2aU1Aipkjokmbb//6wgsvcOutt3L66adz7733bvVDXb8/rycq9qm7o4nfdGxez6lHdUp5DJOfGwaO475Fjdh8oNin7SiF4zjU19alzCXa2OgWEU1rELSOf2ofu4OPX9ozaYxPX9sP5U1RT6bxAz92WAjHcdwRAwWxBvOxteTuMY0dlno+6W4DsjA8pruTle2s29XK0RiGIhAwGJxktKe9Ksr3sN/uuWitWbIyQnWdTX2jYnm5RV2Dw7Bds+nZZev+2RFCCCFE+9KmhcSCBQu4/fbbOeigg7j44oupqKigvLyc8vJyamuT73zUVg7cr5gbr9iRDgXN5/PnZsHlZ3XnrBO6pxXnnacGox0Hbcfm8TSNTjgODbV1fDpp35QxpryyD1Y4Et86VtG0FSw42uaD53dPK5cPnx0K3gRvhdii8HSa0l155T4csXsDjtY4zrpcHMftSXHE7g1ceWXqpnQTry9l+JAcvD4vyjDcekSB6TXJz/Pzv8cHp3VM7dHA0iyOHl1I/95B0ArHgV5dvRxxQD77DMnZJj7hEUIIIbYFrbL9azvUplOb3nvvPaLRKB988AEffPBBs8eOPfZYJk6c2EaZJbff8CL2G15EZWWEXxbV06NbFiWdMp9S8u5T7kXxASdOw/CaYEX5+KXUBcT6Pn55L8BtKmd63YXgH7+0V8a5TH7W7SR+wAlT8Xh8RMPhjDtjX3nlPlwJPPDAF/zvSwPHgYOHOIwbl1lX679evTMAX89cyaT3ahjSN5tTju6WUYz2aoeufnp28VFd46WsbAWDBuaQnS1zdIUQQgjx22vTQuKSSy7hkksuacsUNktRkY+ios2fTvLJy3tvdoxML/pb8skrmRUyiVx55T5ccEEDZWVlm7Uoeo8hJewxZPubxpSK25ND4fNuG/NMhRBCiG1OOx1B2NLafI2EEEIIIYQQYtuzVezaJIQQQgghxNaiva5p2NKkkNhEP/5cy6vvlbO22iIny+CoMR3ZY3B+RjEOOH4q/qxsDHPdrkuN9Q188kpmawpGnjANj99P095RAI11DXz2+v4ZxTn4rO8wTHeQSqGIhMNMfiH1Quv1HXHedAxvLqZpANnYzkKcSC1vPZl896gN/ePZpbw7tTb2g6zp1d3DAzeWZhRDCCGEEC3TWrN6jcWy1RFsW1OY52GHrj68iTZgESIBKSQyZFkWt9y/kO/m1GHb65o5fzu7jj47BLjj+j4EAqlP66hTphPMy8U0DNxdmzRoyM7L5ZAzv+O9Z3dLK5+DTp+BYZrY0Uh8hyNQ+LICjDxxGlPSWH8x4ripBHOzQGvsqBUvRkzTw2Hn/sA7/x6UVi6HnfcDgayCZmW8xzQgq4DDz/+Bt/+VXpyjLylzD0UZ8Z1nFy13OPKiOdx6VVeG9CtIK44QQgghEguFHaZMr2HuwkYaww4oMJSipNjLqD3z6F6yfW8pLn0k0iMlZ4bu/ddSvvmxDscBn1cR8Bv4ve6Wq/MWNHLTvb+mjHHA8VMJBIOYphnr/eC4vRK021jO9Ho46IxvUsYZc/o32JYdawanUGasKAEc28b0eNj/6M9SxgnmZqFtt7u1UsptHa3chna2ZXHYed+nzuXMbwhm+d1GciiUit1Q4GgCQT+HnPVtyjjHXV4Gyog362u6ocEwTW78+/KUMYQQQgjRMsfRfPRlDd//1EB20KBnFx87dPFT0sHLyooI73xWxZoqq63TbDOa1tn+tT2WJlJIZKCu0eLLb2sACPgMzFhra8NQBLwGKCj7NcSSZY1J4wSyszAMA+04Gz2mtUYZCtNjJvjKDZ7ruAUIgIrlogwV+7vCsR0COcm7bh542tdoh3jPCOLjEbEiQIMddRhx7NSkcbJzsmJNufW6EMTCGe5xBVJsU1pVVUXUArcL9gbHCm7TPsNg4j8WJo0jhBBCiJatrIgyb2GIjkUecrLM+A6AXq+iW2cfa6os5sxvaOMsxbZACokMTJlaSWPEiRcQG/J6FLalefuTiqRxlGE2v9jegNZgGCYHHN/yxfuIYz9zCxG1rohIFChV9evz+3EriZaSBdAE87KTxjHNprfSxrk0FSTuNK6WTXi4wi2wWkjane6kmPaD/HITQgghNtXSlREaI5qswMb/XTaUIidoMHdhI47THj9DT5NuhVs7JIVEBupCTdN/Ej/edHcolOTCnNin9qneUCnaAximJ+mOAvHiYku8ceNrLzaDUiljhBrsNPOR3glCCCHEprJs7f5nuYULGo+psGzN9lxHiPRIIZGB/n2yUArsFn6yLBswYOcdk0/h0VqnvKjWjuaTSS03h7OjVssjEbGvJ7bcIenrpFMlKEU4HEn6FCc2TUsnqG7c+3T8OS0ZsWeuO7UreTYEA1JICCGEEJsqP9cDKGw78fVMfcihuNCLuR1fJcqARHq247dI5gb1zaNzBy+Os3ExYTsa29HkZZscMqIwaZxwOBJfWJ2Igvji55Z89vr+8XUUeoNc4usmlEE0RQHQUFXnjhboRG9zHS96pvxneNI4Uatpt6cExxRbf2FZyUccTj+qa2y6VgvnRbkFy8Rrpdu1EEIIsal26u6nQ77JqjXRjT4AbAjZaKBf72CL1ylCNJFCIkN/OL8HwYBBJKppjDjun1H3T59XccFJXfB4km//+vF/hmPHLqqVodZN+4ntdGTbDg119SlzCYdCGKYJ6PjCa+047qJkBYbXTLn966ev7euOWigjPnLgjlM07SJlYFupd24Y3LEB23GPab0wsb+7oxGDOqY+psP3z8NxnNiuT+597qlRaA0FeYpe3QtSxhFCCCFEYsGAwcjheQT8BotXRFhbbVFTZ7N8dYQ11TaDSoPs0ivQ1mm2qfV3jtxSt/ZICokMDeqbx23X7kTf3ll4PO4WqabhVvfjL9uBMfsXpxXnvaeHYEWi8YICFFo72JZNQ00tn77a8rSmJp9O2g8rEsXj9aKMdYudDY+J6fHw4XO7p5nLbm4RY6zbPlbhbkNr2dG0mtLdftueDCiqxbbtplYW7tQqBbbtMKCohttvS92U7tIzu3PUyDy0Y9M0A0zHpkX1LDF49q6+aR2TEEIIIVrWZ4cAx4wpZLd+WSgDLEfTtbOPw/bPZ/Te+ZimjEaI1KQh3Sbo1yeHv99YSl2dxcqKMMWFPgryvRnHaWo6d8CJX6AME21ZSddFJPLJJLcL9v5Hf4bp84LWTH4psy7SAO8/M8TN5bgvMAMerMZoWsXM+poKhT/9eTpfLfZgAAM6Rfj7Q6mb4q3vwlO7ceGp3Zi/sIoPPquj/85ZHLBXUUYxhBBCCJFc104+unbyEYk62A74vQojyfrL7Ub7HDxoFVJIbIacHA99cjb/FH7y8j6bHeOz1/ff7BgAn7y6+bncftueNDQ0UFZWRr9+gzc5Tp9eBfTpVbDZ+QghhBCiZT6vTFDZUKvMRGqHNZq8c4QQQgghhBAZkxEJIYQQQggh4jSpW/puWtz2NiwhhcQmeuTpRbz5UQVRGzwGjBiez/jf9ckoxsgTpuLLzsJjemJbm2oa6uoynuo04tjPCeRmux2kAdu2aayr5/PXR2SWz6nTUbb7JleArR0+SbHr04b+9eJs/u8jFdu5KhfLWsgxozXnnzwgozhff1/Fky8tp6rGwu83OGxUB04+oktGMRzHoeyXED/8VEc0qulU7GW/3fPJyZa3vRBCCCHE5pIrqgzV1dVx4mU/E7HcvU014Njw4dS1TP7ia567tx8lJTkp44w66Uuy8vPcLVu1ju1QpMjOzeWQc2by3lND0srnoDO+IZiX4176x4pcj+EhOz+PESdM5dNXUi+YHnHcVIzYrk869v9N5cTok6bzUZqLtw8//3uCOdkEczzxetuLj7e/sJj0wSzefmJgWnEuv2EOcxeG3HMSC/TEf5bz0v9W8djf+tOhyJcyRnWtxWMvLGP23DrCESe2k5TirckVnHJkCfsOy08rFyGEEEJsh2SNRFpkjUSGTrlyLpGo26vBvdBV8QU5WivOvKYsZYyRJ0wlmJPdrJGcUireu8E0TMac8U3KOAeeNiPWRyJmvf4NylAEs7LZ7+hPU8ZZv4jQbjLxgsJxHEad/FXKGGf84TuCuTl4PB4cx8ZxnNjNxvR4yMrJ5sTLv0sZZ/ydc90iAjAMMIxYPwmtqa6zueTPc1LGcByHR59fxjezavD7Dbp29tOtS4COHXxUVkV5etJyfpybuqeFEEIIIYRomRQSGVi8oo5QY6zjtFJuMznWayqHxtGKNyevTBrHn5Mdb0yiYk3omv4ObhMUny/1drIej8f9+kQlbqyYCORkJ41xwInTALdw2CiXWEdqbduMOG5q0jh1kSCmacb6SKzLR6FwbBvDNIjqYNIYkUiE72bXggbTaJ6LYRooNFW1Np9Mr0wap+yXEHPm1ZGf5yEvxxPfys7nVZR09FFTa/HBZ8ljCCGEEGL7JQ3p0iOFRAYmPrQoPhKRiNbuG++pl5MXEp7YKEKi1vPr7lOMPKHli/f9jv20qVtbUub6IxaJHldG0iBNi41Mf/LCxvB4AN3iMSnA8CTP5Y3Ja7BtWhz6U4Y7+vPqO6uSxvmhzJ3OlJO18esZhiI7y6Rsfh0NjXaCrxZCCCGEEOmQQiIDdSE75ZQ5BUQtJ+lz0qlJU+0WYGAkHoloLSmSdgdkWs7HnQaW/O1WW5f8vLmjJBCJJk8mHHHjtNRUxzTche2RSPLXE0IIIcT2SbfCrT2SQiIDewzMR7FuAfBGYvf3KPEnDxRfU9Hy20qhmJJkobTjOKm3JtOpCxLS6mCpcKzkn947toNSiY9Ja+3uSmUnj7HH4Lz48xO+hqNRwA7dAknjdCr2oZQiaiWOE2p0KMjzJhyxEEIIIYSQSiI9Ukhk4Ipzd4gXC+svlG76t7szEEwct0PSOI31Dc3WQzSLozUKlbIA+Pz1EUkLER37X2NDQ9I4ViRKLO0WcnGjffJK8m1go+EIGh1fuL0+ZRhoNNFIJGmMAaW55OWY7sLzDc+v1qDdBdi/O6t70jj7DcunqMBLxZoIzgZxGkI2tqPZe2g+Ho+8/YUQQgghNpVcSWXomIM6uQutYzsJuRe4OjZKoRjSN5ucnOTbv3704p7NCoWNFuIoTUN1bcpcGmvrEhcTsWLHcZyU279++uq+KI/pHtN6uRAvIpLOWIr76+WKSGMktgjdcIdtYn9Xyn3sr5elDjTu0l6YJjiA7WgcR+PYjrsuRcFRYzqSk5N8+9e8HA8nje1EMGiyfGWYtVVRauosVpaHWVsdZUBpDoeN6pD6oIQQQgix3dG0zmLr9jgoIYVEhq44dwdOObIThmnQ1LiN2AZHI/cq4J6b+qcV550nB+Fop9niZBUrUOqra/lkUur+D5++tj+hWDHRrDBxNLZl88GzQ9PK5eP/Dkd5YjskxY/JLQK0Iq2mdEOGDGDChRaN9SEsy4rfb0ejhBsamXChxZAhqZvS7TG4gNv/2JuSDr51b06lyMkyOf/ELlx+Vs+0jmnE8EKuOLs7wwbnYxgKy9J07uDn+MM6c9UFPckKyLQmIYQQQojNIQ3pNsGFp/bkwlN7Mu+XOqZ/v5bB/fIZ2C8v4zhNTedGnjgtNp3HTrouIpFPX9sPgP2O/hTD6wHbid+XiY//4zadO+D4L8BQaMvm09cyy2XIkAH8758wc+Zs7nwyTGPY4dqzveyzz+CM4gzdtYDn7i9gbW2E+b820KWTj+5dsjKKATCoXy6D+uVS32ARjmjyckyZziSEEEKIlNrpbq1bnBQSm2Hn3jns3Dt1F+tUpqTxiX8qn78+YrNjAHwyaZ/NjjFkyACemNhAWVkZ/frtvMlxCnN97DE4dRfrVLKzPGRnXocIIYQQQogkpJAQQgghhBCiibtIonXitjMyz0MIIYQQQgiRMRmR2ETllRbfljVQXWuTFTQZ2j9A146ZTcOxbZvPvq5hxqxaoramZ4mfsaOKyM/PLM7qijAvv7+W1ZUWHlMxrH+Qg/bNw+ORb68QQgghRKba4eBBq5ArzQw5jsPbn9Xx0ZfV1NbZTQ0Y+PALk70G53DCIQV4zNQDPUtXNnL7I4tZtjKEbbu9I6YpeHtKJWcd15lDRqS3Penzb5Yz5ZswGCYo99u5+JNG3plax7XndqRnl+DmHK4QQgghxHZHFlunR6Y2ZWjK1/W8PaWScMShpKOXbp19dOnkw9Gaj6fX8L+Pq1PGiERsbntoMYuXNuD3GhTkeSgs8JKdZVJTF+FfL63gu9k1KeN8MHUtH38TcYsIx8JwLJQdRWuHkOPj7n+XN9uKVQghhBBCiC1FCokMRC2HT2bUYmvoWOTFNN3eC4ahKMr34vEovpxZT229nTTOB19UsXxViKwsD4GAGe8G7fUa5Od6aGiw+L/3y1Pm8+7UWpRpohwLI9aPQimFqQDHImR5ePfT1AWJEEIIIYRYT6w57xa9tUNSSGRgwdIo5WuiFOQmnhFWkOehqtZizi+NSeN8O6sW24GAf+PTbxgGXq/Bz7+GsO2WC5K6eovqRhPtNG9q10RpDYbBjDkNKY5KCCGEEEKIzMkaiQyEIw6Oo+MjERsyDdAOhKPJq85o1EElWcajFFi2xrbBbKEBc0OoqchIHEcp9xWidvusgIUQQgghWks7HUDY4mREIgOdi70E/MZ6F/HNNTQ6+H2KkmJv0jidin2AwnGchI9blqYgz4PP10IVARQVmJg4KJX4W+jEfgI6FkitKIQQQgghtjwpJDLQqchDv95B6uptohuMOli2pqrGYoduAfr0SF5IHHlgBwIBk9o6e6NiorHRLVL2GVqQNIbH46FPdxNQbDjooLUGwwO2xXEHJ48jhBBCCCGa063wvy3p0Ucf5cwzz9yiMTeFFBIZOnZMId27+lm1JkJ5ZZSaOos1a6OsXB2hUwcfxx9UEF883ZIdugU58sBiDENRXWNRV28RCllU1URpDDv02TGbU4/slDKXi07oSNCMoAwPNia2BlsrtOlFa82e/b2y/asQQgghRDvy/PPPc99997V1GoCskchYpyIPvzutEx99Wcu3c+oJNToE/CZ7DM7hwD1z6dYpvWZyZx1XQscOXt77pJIlKxqxHU1hgZe9h+Rz9nElBIMtT2tqkp/nZcLlnXni5TXMX27jKBPQZHsijNojh6MPLNrMoxVCCCGE2A5thWskVq1axc0338z06dPp1atXW6cDSCGxSYoLPJx0aCHHHJhPfcghK2Dg92U+uHPYAR047IAOVFZHCDdqOhQmXxeRSFG+n+su6Epj2GJlRYQsv0mnYn/GuQghhBBCiK3X7Nmz8Xq9/O9//+Phhx9m2bJlbZ2SFBKbw+c18Hk3f3ZYUb4P8jcvRsDvoVc3+XYKIYQQQmwu3UrbNq1YsYI//OEPLT4+efLkFh8bPXo0o0ePboWsNp1ceQohhBBCCLEe2f41PVJICCGEEEII8Rvo0qVL0lGHbc1WVUg8+uijfP755zz77LNtnUpKI0+chulZd/psy2LKy3tnFGO/Iz/Bn5OFYRqAQmtNY10dn79+QEZx9j/6MzxBP01t8rSjiYYa+fyNzOIccNKXmOvtOGVbFp+8sk9GMV54fS7P/F8IQxmgfDjOPM46JshpR5dmFOfb2XU890YFNXU2fq/BmL3zOPbgDhnF0FqzuiLC4uWN2LYmP89D755Z+DZhPYsQQgghtiMyJJGWraaQaNrKatiwYW2dSlLXXfcp3ywJYpgmjqNRuAv7DcNk1ClfURxs5OV/j0gZZ//jphIsyN1oq9is/DwOPO1rJr+wR1r5jDppOt5ggPW3F1CGwpcdZP9jPuOz/9s/dS7HfIbH78Pr8YCK/ewo8Cgvo0/5io/+OzytXA4/byaG6cEf8KNiVY3W8MKbEZ59fSbvPDkkrTjXTFzEwuVR94g0oGyefaOS1yZXct+4HSgqTL0zVmPYZvLUSmb/XEdDo43C7fbduaOPg0cUs2MP2RZXCCGEEGJztPlHs6tWreKSSy7h7rvv3mq2skrmmyVBHEevK1RjV8waUBrWhAIpY+x35CcEs4NuEaFpdlNKYXo8jDxleso4o06avq4QiX1tPBbgDfjZ78hPUsbx+H0Ypum2S3FiX+xolFIYhsGok79KGePcP87CMD2YXi+242BbtntzHEyvF9Pj5dTfz0wZZ8KDS1iwLIpGo7TGMNw/AepCiqvvXJwyhtaaDz+v5KvvqgkGDHp1D9CrR5CuJT7KKyL87/3VrCwPp4wjhBBCiO2PbsVbe9PmhcT6W1kNHjy4rdNJaszJn8ZX8Sul3Av39f7e9AbZ79jPksbx52ahmoqIDcUKAq8n9WCR+5oatEYZsVwM5f5dA6jYaEXLDjjhi/VGRVS8MCJ2PNr9KyNSHNOqNdotIiwrfuEPoLTGtixMj4fq2uRvt0gkwuz5jQAYClTs6coAwwC0prYepn5TnTTO6ooIc+bWUVzkJS/XE/8+eT0G3bv6qayO8v2cmqQxhBBCCCFEcm0+tWlLb2WltaahoSHl80KhULM/02HjT1lOag2+QCBpDoaRoleEBmUY7HfkJ7z/YuIpTgef/DX+7Cz3k3tDJXwOsceS5mJ63EpB63VFRLMQGsMwMLze5OfVcGMkyqRpzCZVLm9/Uo3tNE0WS0wD/zd5Dbv187b4nLm/1lFbF6Ew30c0Gt3o8eygZvbPNey1WxZeT0vnbuu2Ke9fkT45v61Lzm/rkvPbuuT8bj6tdfxDvq2S1q2z/WvT3PEtYOLEiVskzuZq80JiS4tGo5SVlaX9/IULF6b9XKVUWmtvFCTNIZ0fnqbntBRHGYY7GtHS1xsq9kOgkp8Pta6OSJ5QimMiRRO82EhLshgLF3uALHckJEE+TTO3autCyeMs1NTWwpqKxI/XN4CtYc7stfh8W/EvsjRk8v4VmZPz27rk/LYuOb+tS87v5vH5Uq93FFu/dldIeL1e+vTpk/J5oVCIhQsX0qtXL4LB9BbeOvb3GIaZdFBCAY7j0K/fgBafo3VZ8npUgXacFkcjALTzNcmqWu3o2MOafv36JcllVvJRFuUWJNpyksZxnPlu3gmyis2ywraTx/AEQ0ybvdYd2UhwaI4DKE3vnjn067djyyl7G5i3dA0FhT48CUYcIqsi7NDZx8CBHTFaHM3Zum3K+1ekT85v65Lz27rk/LYuOb+bb/78+W2dQmrtcUFDK2h3hYRSiqysrLSfHwwG037+lJf3ZvQpX+EuS2g+LBcfAlOwR89w0pjhUCOB7Kx1i6MTcBydNMbnbxzg5gJoh2bTm9wiQqGASGNj0jhOJILj96NMA5wNpjfF1l7YtuaTScm3gdWOg9ZgGAbacZo91rSo3NFO0lwG988iJ1hJbUjhOJr1N7TSDoDCUJpLT+1CVlbLn2QM6Bvg6x9ClK+J0L2rv9n3qSFkgzbZfWAROTnZSY9pW5DJ+1dkTs5v65Lz27rk/LYuOb+bbque1hTTWp2t25s2X2y9rXFsG6XcT911bA7dugXY4GjNnXcm3/7100n74tixi+31f5aUe3Mch8aaupS5ROpD8a/T2i0gtHZHIhTuhXuq7V8/fW1/HO3Edmlq2gHKXeugDIVjOzi2lTKXe/6YRaQx4u705PG4q6MNA8PjLnaONIa599rUv3B/f1YXDOUWNI5D/KaVQinNIfvkkpOdfDjU7zMYs38HcrI9LFjSyJq1UaprLZataKS8IsrgAbns2jcnZS5CCCGEEKJlUkhkaMrLe2NZtrs7UuyCXcXWGTiOzZQX90wrzofP744VjeI4TryA0FpjWzahqtq0msl9/sYBRNZf7LVeUeI4Dh+nmcuUF/fCtm1s245NK1I4WuPYDnY0vaZ0AwaUcs+1AaLhMFYk2nRIWJEokcYwd18bZMCA1E3phg7I4cZLutAx31hvAylFll9z2uFFXHhySVrH1HuHLE46soS9huZjGgrL0nTtHODIgzpy+OhivB556wshhBCiBVpv+Vs71O6mNv0WPn3F7WB9wAmforUHhcUnk1I3odtQU9O5/Y7+FGWYaMvKuBt1Uxfs/Y78xJ2epOGz11M3odvQlJf2AtzmdIZp4th2Ws3s1jdgQClvPwmzZ8/lricbqG+McN35WeyxR2bb+g7ul8Ojt+ZQXRfhl0URSoq9dO2cYjF3Al07++nauSMH7utg2xq/z9hm10QIIYQQQmxttqpCYmvZyipdn7ySefGQyOevb36cTAuQlmRaPCQyYEApj9zaQFlZGf367bTJcfJzfAwdsPm7Ovi8BrS8W6wQQgghRDPtdABhi5P5HUIIIYQQQoiMbVUjEkIIIYQQQrS1ZL26xDpSSGyiM343g6WrrNgWZpr8PIP/e2J4RjGWL1/O2X9c4nZzjr1fTzi8iMvOSt0HY33/984yHn1xNRp3jURBruaff+1FQUFBRnEWLGlgxg+11IdsCvM87DMsn45Fma9NEEIIIYQQ7Z8UEhlatmwZZ1y1BKUMTNPErQAMautg1IlfcsefejB8t24p4/zu5h8omxtGGR4Mo6mNm2bSu2t57Z2v+OA/6RUlR10wE0d58foD8R4QDVHNqVcv5vgxVVxwWq+UMcIRh6dfWc5X39cSCuumVHjnk0oOO6CIow/ulFYuQgghhBDtggxIpEXWSGTo9D8swTDM+EhE/KobUKbJ9bcvSRljxvfLY0VEUwMI4n8qpXCUwVHnzkidy++/x1E+lGHgOA6ObePYNlprvD4fkz6soaqqKmWcF/5vBZ9+XYNS0LnYpEtHL506mITCDv/3QQWTp1amjCGEEEII0V6s3ytsS93aIykkMvDp9GUbbB+qmv3pNnEz+NPE2UnjXD9xKSrW7XkjsebSdSEnwYPNralRGObGnaS11mjHwev1cuGfFiaNUV4ZZvr3tfi8kJ/ncbtQA6Zp0LHIS9SCyVMrsazU+QghhBBCiO2HFBIZ+MvfF8e6P7dUVbrN3KZ9U5MiUupeBsowWL58eYuPfz+rCo/HROvEF/huh2tFTUPy15o5u466Boe8XDPh47nZBisqoixYGkr4uBBCCCFEu6JbaUSiHQ5KSCGRATuNYSmNRqdRKCR9N8WWKSwvb/kpC5bWu0VN0pRSZxKJOmgNZgtP9JjgOJpIWEYkhBBCCCHEOlJIZKCkqKk5WsuX5wqFx0xecLjz5JJf4mutGTa4a4uPj9w7G8e23XUWSbNJXgB06eTH44HGcOKcGxodgn6DLp0DSeMIIYQQQrQbuhVu7ZAUEhn4zz+G4Th2rAbY8B3hjkRox+Hpe3omjdO7pz829aiFJyhanLLUpKCgAMeOrlvvvWEIw8CxbY4/uDBpnEF9c+jWyUdVrYOzwVqLSNQh1AiDdsmmqEBaQwshhBBCiHWkkMhQSQePu7hZNV29xwoK5e7AZHo03bol3/718TsHr1sgvWERoEA7mmsv6pEyl5uu6Ek0GsUwDAzDQCmFUgrDNEFrtB1Juf2rx2NwxrElFOaZrCy3qayKUltvUVEZZU2lTc+uPk4cK9u/CiGEEGL74G6mueXXSLTHQQkpJDL0n38MY4cSL47txKcoaa1xLJvcHPjghb3SivPRf4ejHQftrHtbaTSObXPNhd04fHTL05qa7L17B669oDPRxjC2bdNUlUTDEfxmlLee3C2tXPrvnMNVF/Rgv91z8fsMbBtys00OGVHAHy/qKU3phBBCCCHERqQh3Sb49/1DAXjrw2W8+cFqRuxdzKnHpB5B2NDkWNO5ex+dy5LVEU4/qijpuohEDtynMwfu05mFi6p465O1dOvo45jDUjfE21DvnllcdlYWDSGbUKNNbo4Hn1fqTCGEEEIIkZgUEpvhiDHdOGJM5hftG7r64tLNjtFrhwIuP6tgs+NkBU2ygom3ghVCCCGEaP9aq4Fc+5vcJB85CyGEEEIIITImIxJCCCGEEEKsp3VGJNofKSQ2UV29xS+LGqhvsAkEDHr3zCI/L7MtUh3H4fs5NcwqqyVqOXTvEmTf4UXkZLXNt2VtldvBOhx2yMk22alnFtlZMs1JCCGEEEJsTAqJDGmt+W52DZ9+Wcna6mjsPsjP9bDn0AL22b0QI2mTOFdFZYQH/vUrc3+pIxxxUAoMpXj93RWcc3JPhu+WvP/DlmTbmqkz1vL19zXU1lnxnW07FHg5YO8iBvbN/c1yEUIIIYRoczIikRYpJDJUNq+Odz4uxzQUPbsFMQ2F42gqq6JM/nwNPo9KWQRYlsN9j//C7J9rKcz30rGDF6UMIlGHVeVh/vnMQgoLvOy8Y85vckxfflfFlGmV5OZ42KFHAEMpbFuzek2Etz8uJ+A32HnH7N8kFyGEEEIIsW2QxdYZsB3N9JnVOLampKMfMzbyYBiK4iIffp/B1z/U0Bi2k8aZ8X0Vc3+po0OBl5xsD0q53waf16BLiZ+11VHem7K61Y8HoL7B5ttZNWQFTYoKvBix4QjTVHTp5CcS0Xz9fQ2OI5W5EEIIIbYPWm/5W3skhUQGytdEWLGqkQ6FvoSPdyj0UlEZYdnKcNI438+uIWppshKshTCUQcBv8P3sGpym7tetaOmKRtZWWxQVJF7fUVTgYdnKRiqroq2eixBCCCGE2HbI1KYMWJbGdjQeT+I1EB5TYTsay0peAEQsJ74OoaU40aiD44DRyqWebbt7Jbf0Oh6PgW3b2HY7LaWFEEIIITbUXocQtjAZkchAfq6H7KBJXb2V8PG6epusgElBfvLdmzoVBwCw7cQFRyjs0KmjH4+n9b89+Xke/D6DhlDiXOrqLbKzTPJypeYUQgghxPZBt8L/2iMpJDKQm+Ohf2kOldUW0Q1GHWxbU14ZofcOWXTqkHjqU5OR+xSRn+ulfE0ErZvHaSpS9h/eYcsm34Iunfzs0D3I6orIRusgIlGHmlqbXXfJIRiQbWCFEEIIIcQ68jFzhvYdVsSq8gjzF9aTneUhGDAIhx1q6i16dAkycp8OqGTzloDOxQFOOqorz01ayrIVYbKzTUwDGkLudKZhgws4eGSn3+R4DEMxet8iqmstFi5pJDfHxOczCIVsQo0OpTtlMXxIwW+SixBCCCFEm2utxdHtcFBCCokM5eZ4OP6IEn6YU8v3c2qoD9lkZXkYvlsBQwbkUZBmU7rDRnemqMDH+5+uZt6v9diOpltJkP32LGLsQSX4fb/dYFHnYj8njS3h+zk1zJlbTzjqUJjv5YC9chnUL5esoIxGCCGEEEKI5qSQ2AQ5WR72GVbInrsVEI44+Lxqk9Yz7Dm0kD2HFlJXZxGxHPJyPL/JuohEigq8jNqnA/sNLyQa1fj9Rnx7WyGEEEKI7Yostk6LFBKbwTTVFvm0Pidn6/k2eD0G3q0nHSGEEEIIsZWSS0YhhBBCCCHWo2VEIi2ya5MQQgghhBAiYzIiIYQQQgghxPpkRCItUkgIIYQQQgixHqkj0iNTm4QQQgghhBAZkxEJIYQQQgghYjS6VRZb63bYkU5GJIQQQgghhBAZkxEJIYQQQggh1ieLJNIiIxJCCCGEEEKIjMmIhBBCCCGEEOtpj+sZWoOMSAghhBBCCCEyJiMSQgghhBBCNNGxW2vEbWekkBBCCCGEEGI9rbH9a3ukdDs6U99++y1aa3w+X8rnaq2JRqN4vV6UUr9BdtsXOb+tS85v65Lz27rk/LYuOb+tS87v5otEIiilGDp0aFunspFZs2YRDkeIRLf87H+f18Hv9zFw4MAtHruttKsRiUx+oJVSaRUcYtPI+W1dcn5bl5zf1iXnt3XJ+W1dcn43n1Jqqy3Cmr63fn/rxm8v2tWIhBBCCCGEEOK3Ibs2CSGEEEIIITImhYQQQgghhBAiY1JICCGEEEIIITImhYQQQgghhBAiY1JICCGEEEIIITImhYQQQgghhBAiY1JICCGEEEIIITImhYQQQgghhBAiY1JICCGEEEIIITImhYQQQgghhBAiY1JICCGEEEIIITImhYQQQgghhBAiY9tdIeE4Dg888AD7778/Q4YM4cILL2TJkiVtnVa7sWrVKnbZZZeNbq+++mpbp7bNe/TRRznzzDOb3VdWVsYZZ5zBkCFDGD16NM8880wbZbftS3R+b7jhho3ey6NHj26jDLc9VVVV3HTTTYwYMYKhQ4dy6qmnMmPGjPjj06ZN47jjjmPw4MEceuihvPXWW22Y7bYn1fk999xzN3r/bvgeFy1bs2YNf/zjH9lrr73YbbfduOiii/jll1/ij8vvXyHA09YJ/NYeeeQRXnjhBSZOnEhJSQl33XUXF1xwAW+88QY+n6+t09vm/fTTT/j9fj788EOUUvH7c3Nz2zCrbd/zzz/Pfffdx7Bhw+L3rV27lnPPPZfRo0dzyy23MHPmTG655Rays7M5/vjj2zDbbU+i8wvw888/c8kll3DGGWfE7zNN87dOb5t19dVXU15ezr333kuHDh149tlnOf/883nttdfQWnPxxRdz7rnnctdddzFlyhSuu+46ioqK2Hvvvds69W1CsvO700478fPPPzNhwgTGjBkT/xqv19uGGW9bLr/8chzH4bHHHiM7O5v777+fc845h/fff5/Gxkb5/SsE21khEYlEePLJJ7n22msZOXIkAH//+9/Zf//9ef/99xk7dmzbJtgOzJ07l169etGpU6e2TqVdWLVqFTfffDPTp0+nV69ezR576aWX8Hq9/OUvf8Hj8dC7d28WLVrEY489Jv8hS1Oy86u1Zv78+Vx00UV07NixbRLchi1atIipU6fywgsvsPvuuwNw44038tlnn/HGG2+wZs0adtllF6666ioAevfuzZw5c3jiiSekkEhDqvN7xhlnsGbNGgYPHizv301QXV1Nt27duPjiiyktLQXgsssu4+ijj2bevHlMmzZNfv8KwXY2temnn36ivr6+2X+k8vLy6N+/P19//XUbZtZ+/Pzzz/Tu3but02g3Zs+ejdfr5X//+x+DBw9u9tiMGTMYPnw4Hs+6zwP22msvFi5cSEVFxW+d6jYp2fldvHgxDQ0N7LTTTm2U3batsLCQxx57jIEDB8bvU0qhlKKmpoYZM2ZsVDDstddefPPNN2itf+t0tzmpzu/PP/+MUoodd9yxDbPcduXn53PPPffEi4jKykqeeuopSkpK6NOnj/z+FSJmuyokVq5cCUCXLl2a3d+pU6f4Y2LzzJ07l8rKSk4//XT22WcfTj31VD799NO2TmubNXr0aB588EF69Oix0WMrV66kpKSk2X1NI0ErVqz4TfLb1iU7v3PnzgXg2WefZfTo0YwZM4a//OUv1NbW/tZpbpPy8vI44IADmk0Zfe+991i0aBH7779/i+/fUCjE2rVrf+t0tzmpzu/cuXPJzc3lL3/5CyNGjODQQw/lvvvuIxKJtGHW26Ybb7yRvffem7feeovbbruNrKws+f0rRMx2VUiEQiGAjdZC+P1+wuFwW6TUrliWxa+//kp1dTVXXHEFjz32GEOGDOGiiy5i2rRpbZ1eu9PY2JjwvQzI+3kLmDt3LoZh0KlTJ/75z38ybtw4Pv/8cy677DIcx2nr9LY53377LePHj+fggw9m5MiRCd+/Tf+Wi93MbXh+586dSzgcZtCgQTzxxBNceumlvPzyy9xwww1tneo25+yzz2bSpEmMHTuWyy+/nNmzZ8vvXyFitqs1EoFAAHD/I9X0d3B/6IPBYFul1W54PB6mT5+OaZrx87vrrrsyb948/vWvf8m85y0sEAhsdMHV9B+wrKystkipXbn00ks57bTTKCwsBKC0tJSOHTty0kknMWvWrI2mQomWffjhh1x77bUMHTqUu+++G3AvujZ8/zb9W34fZybR+f3LX/7C9ddfT35+PuC+f71eL1dddRXXXXcdxcXFbZnyNqVPnz4A3HbbbXz//fc899xz8vtXiJjtakSiaUrT6tWrm92/evVqOnfu3BYptTvZ2dnNijSAnXfemVWrVrVRRu1XSUlJwvcyIO/nLcAwjHgR0WTnnXcGkKmQGXjuuee44oorGDVqFP/85z/jn9p26dIl4fs3KytLdnnLQEvn1+PxxIuIJvL+TV9lZSVvvfUWlmXF7zMMgz59+rB69Wr5/StEzHZVSPTt25ecnBymT58ev6+mpoY5c+awxx57tGFm7cO8efMYOnRos/ML8OOPP8Y/0RFbzh577ME333yDbdvx+7788kt23HFHOnTo0IaZtQ/XXXcd55xzTrP7Zs2aBSDv5zS98MIL3HrrrZx++unce++9zaaCDBs2jK+++qrZ87/88kuGDh2KYWxX/2naZMnO75lnnsn48eObPX/WrFl4vd6NdigTG6uoqODqq69uNi03Go0yZ84cevfuLb9/hYjZrn5b+3w+zjjjDO6++24mT57MTz/9xFVXXUVJSQkHH3xwW6e3zevduzc77bQTf/nLX5gxYwa//PILf/vb35g5cyaXXnppW6fX7hx//PHU1dXx5z//mfnz5/Pqq6/y1FNPcfHFF7d1au3CIYccwrRp03jooYdYvHgxn3zyCX/6058YO3as7EyWhgULFnD77bdz0EEHcfHFF1NRUUF5eTnl5eXU1tZy5pln8sMPP3D33Xfzyy+/8OSTT/Luu+9ywQUXtHXq24RU5/eQQw7h9ddf5z//+Q9Llizh7bff5s477+T8888nJyenrdPf6pWWljJixAj++te/8vXXXzN37lzGjRtHTU0N55xzjvz+FSJG6e1snz3btrn33nt59dVXaWxsZI899uCmm26ie/fubZ1au1BRUcE999zDZ599Rk1NDf379+faa6/dqNGXyNy4ceNYtmwZzz77bPy+H374gdtuu405c+bQsWNHzjvvvGbN00T6Ep3fd955h8cee4xff/2V3NxcjjzySP7whz/Ep4+Ilv3zn//k73//e8LHjj32WCZOnMinn37KXXfdxcKFC+nevTtXXHEFhx9++G+c6bYpnfP7/PPP8/zzz7NkyZL4+p6LLrpIRnzSVFtbyz333MOHH35IbW0tw4YNY9y4cfEpYvL7V4jtsJAQQgghhBBCbD75WEIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBC/mTPPPJP+/fsza9ashI+PHj2acePG/Sa5jBs3jtGjR/8mr5UJy7IYN24cu+22G0OHDuXLL7/c6DnTp09nl112aXbbddddOfDAA7nzzjsJhUJbJJcHH3yQXXbZZYvEEkII0f542joBIcT2xbZtxo8fz6uvvorP52vrdLY6n332Ga+99hqXXXYZ++yzD/3792/xuTfddBMDBgwAIBQK8dNPP/HAAw9QXl7OXXfd9VulLIQQYjslIxJCiN9Ubm4u8+bN4+GHH27rVLZKVVVVABx33HHsscceZGdnt/jcPn36MGTIEIYMGcLee+/Nueeey7nnnsubb75JXV3db5SxEEKI7ZUUEkKI31S/fv045phjeOKJJ/jxxx+TPneXXXbhwQcfbHbfhtNtxo0bx/nnn8+LL77ImDFjGDRoEKeccgoLFizg448/5sgjj2Tw4MGceOKJlJWVbfQaL774IiNHjmTQoEGcffbZzJkzp9njy5cv5+qrr2b48OEMHjx4o+csXbqUXXbZhX//+98ceuihDB48mEmTJiU8Htu2ef755znyyCMZNGgQI0eO5O677yYcDsePpWlq15gxYzjzzDOTnp9E8vLyNrqvqqqKm266iX322YeBAwdy0kknMW3atGbPCYfD/O1vf2Pfffdlt912Y/z48fG8mowbN46zzz6bm2++maFDh3L44Ydj2zbhcJiHH36YQw89lIEDB3LwwQfz2GOP4ThOs69/++23Oe6449htt93Yd999uemmm6iuro4//uCDD3LooYfywQcfMHbsWAYOHMjRRx/Nd999x8yZMznxxBMZNGgQY8eObZZ/Y2MjEyZMYMSIEey6664ceuih/Otf/8r43AkhhMiMTG0SQvzm/vSnPzF16lTGjx/PpEmTNnuK03fffcfq1asZN24c4XCYCRMmcNFFF6GU4sorryQYDHLzzTdz7bXX8tZbb8W/buXKlTz00ENcc8015OTk8NBDD3HmmWfyxhtv0LVrVyorKznllFMIBoPceOONBINBnn76aU4//XReeeUVevfuHY/14IMP8uc//5mcnBwGDx6cMM+bbrqJ119/nQsvvJBhw4YxZ84cHn74YcrKynjiiSe47LLLKCkp4R//+AcPPfQQO+64Y9LjdhwHy7IAiEajlJWV8cwzz3DMMceQk5MDuAXC2WefTUVFBVdddRWdOnVi0qRJXHDBBTzxxBPsvffeAPzxj3/ks88+46qrrmKHHXbgxRdf5I033tjoNWfMmIHf7+fhhx+moaEBwzC45JJLmDlzJr/73e/o27cv06dP57777mPJkiXceuutADzyyCM88MADnHbaaVx11VUsWbKE+++/n5kzZ/LSSy8RCATi35OJEydy1VVXkZWVxa233sqVV16J1+vlkksuoUuXLvHHp0yZQiAQ4Pbbb+fzzz/n+uuvp7i4X1F4IwAACERJREFUmE8//ZQ777yTgoICjj/++HTfRkIIITKlhRDiN3LGGWfoM844Q2ut9eTJk3Vpaam+995744+PGjVKX3/99fF/l5aW6gceeKBZjAceeECXlpbG/3399dfr0tJSPX/+/Ph9N910ky4tLdVffPFF/L5//etfurS0VFdXVzf7uu+//z7+nNWrV+tBgwbpiRMnaq21vvfee/XAgQP10qVL488Jh8P6wAMP1FdccYXWWuslS5bo0tJS/ac//Snpsc+bN0+XlpbqRx99tNn9//d//6dLS0v1lClTtNZaT5o0SZeWluolS5a0GOvLL7/UpaWlCW+jR4/WK1eujD/3xRdf1KWlpXrmzJnx+xzH0aeffro+7rjjtNZaz507V5eWluoXXngh/hzbtvXhhx+e8FyvWLEift+UKVN0aWmpfvPNN5vl+PDDD+vS0lI9d+5cXVVVpXfddVd94403NnvO119/rUtLS/Vzzz2ntV73vf3kk0/iz3n00Ud1aWmpfvnll+P3vfvuu7q0tFTPmTNHa631IYccom+44YZmsR966CH98ccft3gOhRBCbD6Z2iSEaBOjR4/mqKOO4oknnmD27NmbFSs/P7/Z6EBxcTFAs5GBgoICAGpqauL39ejRg0GDBsX/3bFjR4YMGcLXX38NwLRp0+jXrx+dO3fGsiwsy8IwDEaMGMEXX3zRLId+/folzfGrr74C4Igjjmh2/xFHHIFpmkyfPj3dw4275ZZbeOWVV3jllVd44YUXuOOOO/D7/ZxwwgksX748fgwdO3ZkwIAB8WOwbZtRo0bx448/Ul1dzYwZMwCa7WJlGAaHHHLIRq9ZUFBASUlJs+PyeDwceuihzZ531FFHxR+fOXMmkUiEsWPHNnvOsGHD6NatW/zcNBk6dGj87+l8L/fcc09eeuklLrzwQp577jmWLFnC5ZdfzsiRI1OfRCGEEJtMpjYJIdrMDTfcwLRp0+JTnDZV0zSeDWVlZSX9uqaL1PV16NCBFStWAO7agkWLFsV3RtrQ+tuspnqtprUAHTt2bHa/x+OhsLCQ2trapF+fyI477sjAgQPj/959990ZPnw4Y8aM4cknn+SGG26gqqqK8vLyFo+hvLw8nlthYWGzxzbMFdho8Xd1dTWFhYWYppnwa2tra+PxE53v4uLijY490fczGAwmzB/gz3/+MyUlJfzvf//j1ltv5dZbb2W33XZjwoQJ9O3bt8WvE0IIsXmkkBBCtJn8/HwmTJjA5ZdfziOPPJLwObZtN/t3Q0PDFnv99Rf6NikvL6eoqAhwd5gaPnw41113XcKvz2RtR35+fjx+t27d4vdHo1HWrl270UX8puratStFRUUsXLgQcI+hV69e3H333Qmf37179/hrV1RU0LVr1/hjTTtIJZOfn8/atWuxbbtZMbF69WrALU6ajr2iooKddtqp2deXl5fTo0ePtI8vEZ/Px6WXXsqll17K8uXL+fjjj3nkkUe45pprmq2JEUIIsWXJ1CYhRJsaM2YMY8eO5bHHHqOysrLZYzk5OaxatarZfd9+++0We+0FCxawePHi+L9XrFjBd999x5577gnA8OHDWbBgQfyT/6bb66+/ziuvvLLRp/DJDB8+HGCjC9u33noL27bZfffdt8ARubtIVVZW0qtXr/jrrlixgg4dOjQ7hqlTp/LEE09gmiZ77bUXAO+++26zWB9//HHK1xs+fDiWZW30tf/73/8Ad5Rk8ODB+Hw+3nzzzWbPmTFjBsuXL282lSlTjY2NHHLIITz55JOAW0idfvrpHHHEEfHpXUIIIVqHjEgIIdrcjTfeyJdffklFRUWz+0eOHMlbb73F4MGD2WGHHXj11VdZtGjRFntdv9/PpZdeylVXXYVt29x///0UFBRw9tlnA3DOOefw+uuvc84553DeeedRWFjI22+/zUsvvcT48eMzeq0+ffpw7LHH8sADDxAKhdhjjz0oKyvjoYceYs8992T//ffPOP/58+fj9/sB0FqzfPlyHn74Yfx+P2eccQbg9qN47rnnOPfcc+O7Hn3xxRc8/vjjnHHGGXi9XnbYYQdOPvlk/v73v2NZFv369eP111/n559/TpnDiBEj2HPPPbnhhhtYtWoVffv25auvvuLxxx/n2GOPpU+fPgBcdNFFPPzww3i9XkaNGsXSpUu5//774+dlUwUCAQYMGMBDDz2E1+tll112YcGCBbz22msJ13gIIYTYcqSQEEK0uYKCAiZMmMDvfve7ZvePHz8ey7K444478Hg8HH744VxzzTXccMMNW+R1+/fvzyGHHMKECROora1l77335k9/+lN8alPnzp3573//yz333MOECRMIh8P06tWL2267jRNOOCHj17vtttvYYYcdmDRpEo8//jidOnXirLPO4rLLLsMwMh8g/stf/hL/u2EYFBQUMGTIEO666674iERWVhbPP/8899xzD3fddRe1tbV069aNa665hvPOOy/+9TfffDPFxcU899xzVFdXs//++3PJJZdw3333Jc1BKcWjjz7KAw88wFNPPUVlZSXdu3fn6quv5txzz40/74orrojHf/HFFykoKODQQw/lD3/4Q8r1Jemch/vuu48nn3yS8vJyOnTowAknnMDvf//7zYorhBAiOaW11m2dhBBCCCGEEGLbImskhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRsf8Hxfsub0KEw9YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Creating a scatter plot for the relationship between bedrooms, bathrooms, and house price\n", + "plt.figure(figsize=(10, 6))\n", + "plt.scatter(housing_data_encoded['bedrooms'], housing_data_encoded['bathrooms'], c=housing_data_encoded['price'], cmap='coolwarm', alpha=0.5)\n", + "plt.colorbar(label='House Price')\n", + "plt.xlabel('Number of Bedrooms')\n", + "plt.ylabel('Number of Bathrooms')\n", + "plt.title('Relationship between Bedrooms, Bathrooms, and House Price')\n", + "plt.grid(True)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Interpretation:\n", + "The scatter plot reveals a clear relationship between the number of bedrooms, bathrooms, and house prices. It indicates that houses with more bedrooms and bathrooms tend to command higher prices, reflecting buyer preferences for space and convenience. However, there's a diminishing return on the value added by additional bedrooms beyond a certain point. Understanding this relationship is crucial for both buyers and sellers in the real estate market, allowing them to make informed decisions based on their needs and market dynamics.\n", + "A house with a good balance of bedrooms and bathrooms tends to attract a wider range of potential buyers." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3EAAAImCAYAAAD9iAO3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gb5bn271HX9uot7uveFjC4YCAG7EBC7yE0B0w1JCRADmDypZxDIIdDt+m9JXQMgVCCCc3GxjaGdcXdXnt71666NN8fo3c06jPSqD+/6+LCq53VzqrN+7z389w3x/M8D4IgCIIgCIIgCCIr0KT7BAiCIAiCIAiCIAj5UBFHEARBEARBEASRRVARRxAEQRAEQRAEkUVQEUcQBEEQBEEQBJFFUBFHEARBEARBEASRRVARRxAEQRAEQRAEkUVQEUcQBEEQBEEQBJFFUBFHEARBEARBEASRRVARRxAEQRAEQRAEkUVQEUcQBJEh3HzzzZg0aRKeffbZdJ9KSjl48CAmTZqEt99+O+z33377bUyaNAkHDx5M8ZnFz2233YZJkyYF/Ddt2jQce+yx+P3vf4/W1taY9zFp0iQsW7YsqecZ67FPhNtuuw0nnnhixO+feOKJuO2221T/vcnG6/Xi+OOPx6RJk7B58+Z0nw5BEHmKLt0nQBAEQQAWiwWffvopJk6ciNdeew2XX345OI5L92kRCVBdXY3ly5eLX7vdbuzduxf33nsvNm7ciPfffx8mkyniz7/22muora1NxakSCli1ahW6urrQ0NCAV199FXfeeWe6T4kgiDyElDiCIIgM4P333wcA3HHHHdi3bx/WrFmT5jMiEsVgMODwww8X/zvqqKNw/vnn4/bbb0dzczNWrlwZ9ecPP/xwKuIykLfffhtHHHEEzj77bHzwwQcYHBxM9ykRBJGHUBFHEASRAbz11ls4+uijMXfuXIwePRqvvvqq+L0rrrgC55xzTsjPLFmyBGeccYb49fr163HJJZfgsMMOw+zZs3Hrrbeip6dH/P7bb7+NqVOn4o033sAxxxyD2bNnY9euXfB4PHjyySdx2mmnobGxEYcffjguvPDCkELy888/xznnnIPGxkacfPLJeP/99/HTn/40oOWvr68Pf/zjHzFv3jzMmDEDF1xwAb755hs1HyoAwL59+/Cb3/wGxxxzDA4//HBceuml2LBhg/j9tWvXYtKkSVi7dm3Az1166aW49NJLxa83b96MRYsW4cgjj8QRRxyBX/3qV/j+++8DfibW46qUGTNmAAAOHToEQGg7XLRoEf70pz9h5syZOOWUU+DxeELaKTs6OnDrrbfi6KOPxhFHHIFLLrkEGzduFL/v9Xrx5JNP4qc//SmmT5+Ok08+GS+99JKsc2pvb8c111yDxsZGzJ8/Hw8//DA8Hg8A4H//93/R2NgIi8US8DOPPvoojjzySNhstrgfCykejwevvPIKTj/9dDQ2NuL444/HvffeC4fDIR4T/PwBoc+11+vFAw88gBNPPBHTp0/HiSeeiPvuuw8ul0v8GYfDgXvuuQfz58/H9OnTcfrpp+Nf//pXzHPs7+/Hp59+ihNOOAGnnXYabDYb3n333ZDjBgcH8cc//lF8rn73u9/h+eefx6RJkwKO+/TTT3HOOedgxowZOOaYY3DnnXfCarUqetwIgshPqIgjCIJIMzt37sSmTZtw1llnAQDOOussrFy5El1dXQCAM844A1u2bMH+/fvFnxkYGMCXX36JM888EwCwbt06/OpXv4LJZMKDDz6IpUuX4ttvv8Vll10Gu90u/pzH48Gzzz6Lv/71r7j99tsxbtw43HvvvXj00Ufxi1/8Ak8//TT+53/+B319fbjxxhvFBfqaNWuwZMkS1NXVYdmyZbj44ovxpz/9KWC2y+FwYNGiRVi5ciV+97vfYfny5aitrcWVV14pq5Dzer1wu90h/3m93oDjdu3ahXPOOQcHDx7EH/7wB9x7773gOA6LFi3Ct99+K/txHxwcxJVXXony8nIsW7YMDzzwAGw2GxYvXiwWLHIfVyXs3bsXADBq1CjxtvXr16O1tRWPPPIIbr75Zmi12oCfGRoawi9/+UusXbsWv//977F8+XIYjUZcccUV2LdvHwDgz3/+Mx5++GGcccYZePzxx/Gzn/0Md911Fx555JGY57Rs2TJUVlbikUcewbnnnovHH38c//u//wsAOO+88+BwOPDRRx8F/My7776LU045BWazOep9h3tO3W53yHF//OMfcffdd2PhwoV47LHHcPHFF+Pll1/GkiVLwPN8zL+B8dRTT+Ef//gHrr/+ejz77LP45S9/iWeeeQaPPfYYAIDneVx//fV49dVXcfnll+Oxxx4TC60VK1ZEve9//vOf8Hg8OP3001FfX4+5c+fitddeCzluyZIl+PDDD/HrX/8aDzzwAIaGhnDfffeF3Nf111+PhoYGPPLII7jhhhvw3nvvKf57CYLIU3iCIAgirdx999387NmzeYfDwfM8z7e0tPCTJ0/mH3vsMZ7neX5oaIg//PDD+eXLl4s/88Ybb/CTJ0/m29raeJ7n+V/84hf8aaedxrvdbvGYPXv28FOmTOFffvllnud5/q233uInTpzIr1ixIuD333TTTfzzzz8fcNvHH3/MT5w4kd+4cSPP8zx/0UUX8WeccQbv9XrFY95//31+4sSJ/MMPP8zzPM+/9tpr/MSJE/nvv/9ePMbr9fIXX3wxf84550T8+5ubm/mJEyfG/K+5uZnneZ6/8cYb+Tlz5vAWi0W8D5fLxZ988sn8ueeey/M8z69Zs4afOHEiv2bNmoDfdckll/CXXHIJz/M8v3HjRn7ixIn8hg0bxO/v37+fv+eee/jW1lbZj2s4br31Vv6EE07gXS6X+F9vby//5Zdf8ieeeCJ/4okn8jabTTx24sSJ4u9kSB/bl156iZ80aRK/detW8ftWq5U/6aST+Ndff53fs2cPP2nSJP6JJ54IuI8HHniAnzFjBt/T0xP1sb/66qsDbv/rX//KT5s2je/t7RUfh4svvlj8/oYNG/iJEyfy3333XdTHINZzeuutt/I8z/M7d+7kJ06cGHL+K1as4CdOnMh//vnnPM8HPn+M4Of6iiuu4C+//PKAY1566SXxdf/111/zEydO5D/44IOAY2655Rb+mGOO4V0uV8S/6eyzz+avueYa8et333035DW0evVqfuLEifzHH38s3ubxePif//zn/MSJE3meF94XP/nJT/jFixcH3D/72f/85z8Rz4EgCILneZ6UOIIgiDTicrnw3nvvYeHChbDb7RgYGEBhYSGOPPJIvP766/B6vSgoKMDChQsD2r0++OADHH300aipqYHNZsMPP/yA+fPng+d5UekYOXIkxo0bh1WrVgX8zilTpgR8fd9992HRokXo6enB+vXr8dZbb+G9994DADidTjidTmzcuBEnnXRSgNnKz372M+h0fn+sb775BtXV1Zg2bZp4Dh6PByeccAI2b96M/v7+qI/FDTfcgDfffDPkvxtuuCHguG+//RYnnHACioqKxNt0Oh1OPfVUbN68GUNDQ7Ie+wkTJqCiogLXXnst/vjHP+Lf//43qqqq8Pvf/x61tbWKH9dgDh06hGnTpon/zZkzB1deeaWoeElNTcrKyqLOv23YsAEjRowIeO7MZjM+/vhjnH/++VizZg14nseJJ54YoHadeOKJcDgcAa2m4fj5z38e8PVJJ50El8uFH374AQBw7rnnYv369WIL6DvvvIOxY8fiiCOOiHq/1dXVYZ/TN998E9XV1eJxTEE99dRTA37+1FNPhVarDWmLjcacOXOwatUqXHTRRXj66aexa9cuXHLJJaJq/c0334DjOMyfPz/ksers7MTOnTvD3u/27duxZcsWnHTSSRgYGMDAwADmzp2LgoKCADVuzZo10Ov1WLhwoXibRqPBKaecIn69Z88etLW1hTxfs2bNQlFRUczXFkEQBLlTEgRBpJHPP/8c3d3d4sI2mK+++grz58/HmWeeiffeew/bt29HVVUV1q5di7vuuguA0Frp9Xrx1FNP4amnngq5D6PRGPB1QUFBwNebNm3CX/7yF2zatAlmsxnjx49HfX09AKH1rK+vDx6PB5WVlQE/p9VqUVZWJn7d19eHzs5OTJs2Lezf2tnZidLS0oiPxfDhw8V5MSnBi+r+/n5UVVWFHFdVVQWe52UbTRQWFuKVV17BY489hg8//BCvvfYaTCYTzjzzTPzhD39Q/LgGU11dLbbwAYLRSW1tbdjHoLCwMOp99fX1hTz+wd8HQosgRnt7e8xzlVJRUQEAYuF9yimn4K677sK7776LxYsX48MPP8TVV18d9T4B4W8O95yy7zHY7wk+D51Oh/Ly8pB5vGhceeWVKCwsxFtvvYV7770X//d//4cJEybgD3/4A+bOnYu+vj7wPI+ZM2eG/fmOjo6QjQ4A4vvz9ttvx+233x7wvQ8//BBLly5FaWkpent7UVZWBo0mcJ9c+vyx5+svf/kL/vKXv4Q9B4IgiGhQEUcQBJFG3nrrLYwcORJ//etfA27neR433HADXn31VcyfPx9HH300qqur8eGHH6K6uhpGoxEnnXQSAKEA4DgOv/rVr8Iu4qPNLLG5sEmTJuGDDz5AQ0MDNBoNvvjiC3z88ccAhMWnXq8XZ/QYXq9XXIwCQHFxMcaMGYN777037O8aMWKErMckFqWlpSHnAghFIgCUl5eL84PB83RDQ0MBBVNDQwP+7//+Dx6PB01NTXj33Xfxj3/8A6NGjcKFF14Y9+MKRC9glFJcXBw2J++7775DaWkpSkpKAAAvvPBC2IKQFeWRCFZJ2ePLCo/CwkL87Gc/w4cffoiJEyfCarWKypYasMK2s7MTw4cPF293uVzo7e1FeXm5eBszXGEEG4FoNBpcfPHFuPjii9Hd3Y0vvvgCjz/+OH79619j1apVKC4uRkFBAV588cWw5zJ69OiQ25xOJ/75z3/ipJNOwiWXXBLwvYMHD2Lp0qV455138Ktf/Qo1NTXo7e2F1+sNKOS6u7vFf7Pn67/+678we/bsiI8HQRBEJKidkiAIIk10dnbiq6++wqmnnoo5c+YE/Dd37lz87Gc/wxdffIH29nZotVqcfvrp+M9//oOPPvoICxcuFBW1oqIiTJ06FXv27MGMGTPE/yZMmIBly5ZFbUXbs2cP+vr6cNlll2H8+PHiovPLL78EIBRBWq0WM2fODLHE/+yzzwIMKmbPno3W1lZUVlYGnMeqVavw9NNPh5h1xMusWbPwn//8J0Bx83g8+OCDDzBjxgwYDAax1bKtrU08pr+/H7t37xa//uijjzB37lx0dnZCq9XiiCOOwJ///GeUlJSgpaUlocdVbY466ig0NzcHqJIOhwO//vWv8eabb+Koo44CAPT29gaca09PDx566KGAYjscn3/+ecDXH3zwAcxmMw477DDxtvPOOw87duzACy+8gHnz5qGmpka1v48VMh988EHIeXg8Hhx55JEAhNe69DkFENIqeuGFF4rZbZWVlTjnnHNw8cUXY2BgAIODg5g9ezasVit4ng94rHbs2IFHHnkkrOnKZ599hr6+Plx44YUh79Vzzz0XY8aMEVsqZ8+eDbfbjc8++0z8eZ7n8emnn4pfNzQ0oLKyEgcPHgw4h5qaGtx3333YunVrvA8lQRB5AilxBEEQaWLFihVwu90RW+DOOussvPHGG3j99dfx61//GmeeeSaeffZZaDSakPa+m266CVdffTVuvvlmnHHGGaIL5Q8//IAlS5ZEPIexY8eiqKgIjz/+OHQ6HXQ6HT7++GOxdYy5U/7mN7/BpZdeit/85jc477zz0NLSgoceeggAxDm5c845By+//DIuv/xyXHvttairq8Pq1avx1FNP4ZJLLoFer0/4MQOE2bkvv/wSl112Ga6++mro9Xq8/PLLaG5uxtNPPw0AmDRpEurq6vDII4+gqKgIHMfhiSeeCFDPZs6cCa/Xi+uvvx5XX301CgsL8eGHH8JisYgqZ7yPq9qcc845eOmll3DdddfhN7/5DcrLy/Hiiy/C5XLhoosuwsiRI3HGGWfg//2//4dDhw5h+vTp2Lt3Lx544AGMGDECY8aMiXr/n3zyCWpqajBv3jx8/fXXeO2113DjjTcGzB0eeeSRGDt2LL799ls88MADqv5948ePx9lnn42HH34YNpsNs2bNwrZt27B8+XLMmTMHxx13HADghBNOwGeffYa7774bJ554ItavXx/iKDlr1iw8++yzqKqqwhFHHIH29nY899xzmD17NioqKjB//nzMmjULS5YswZIlSzBu3Dg0NTXh4YcfxnHHHSe2kkp56623UFlZiblz54Y9/zPOOAMPP/ww1q5dizlz5uCYY47BHXfcga6uLtTX1+PNN9/Ejz/+KL5XtFotfve73+GPf/wjtFotTjjhBAwMDODRRx9Fe3t7xJZkgiAIBhVxBEEQaeLtt9/GhAkTMHHixLDfP/LIIzFixAi88cYbWLJkCSZPnoyJEyeit7cXRx99dMCxxx57LJ555hksX74cv/nNb6DX6zFt2jQ899xzOPzwwyOeQ3FxMR599FHcc889uPHGG1FYWIgpU6bg5ZdfxlVXXYX169fjxBNPxFFHHYVly5bhoYcewpIlSzB8+HD8v//3//C73/1ObN8rKCjAK6+8gvvuuw//93//B4vFguHDh+Pmm2/GFVdcodrjNmHCBPz973/H/fffj9tvvx0cx6GxsREvvviiqEhptVo8/PDDuOuuu3DTTTehqqoKixYtwp49e0SL/2HDhuHpp5/GQw89hDvuuAM2m01U2dhiPd7HVW2Kiorw8ssv45577sH//M//wOv14vDDD8eLL76IkSNHAgDuvvtuPPHEE3j11VfR1taGyspKnHLKKfjtb38bUwW944478MEHH+D5559HdXU1li5dissuuyzkuOOPPx49PT0Bph1q8de//hWjR4/GW2+9haeeegrDhg3DZZddhiVLlogK8bnnnosDBw7gnXfewauvvopZs2bh4Ycfxi9/+Uvxfm688UYYDAa89dZbeOSRR1BcXIwTTzwRN998MwCh3fLJJ5/EQw89hCeeeALd3d2oqanB5Zdfjuuvvz7kvNrb27Fq1SpceOGFER/HM888E8uWLcOrr76KOXPm4IEHHsDf/vY33HfffXC73ViwYAF++ctfBhSc559/PgoLC/H000/jtddeQ0FBAWbOnIl7771XfE4JgiAiwfE8hZEQBEEQ0Vm5ciVqa2sDFIKdO3fitNNOw6OPPooFCxak8eyIVMDzPE499VQce+yxWLp0abpPJ2M5dOgQvv/+eyxYsCDAgfQ3v/kNmpub8c4776Tx7AiCyBVIiSMIgiBi8vXXX+Nf//oXbrnlFowdOxbt7e147LHH0NDQgGOPPTbdp0ckkcHBQTz//PPYtGkTmpubcemll6b7lDIajUaD2267DQsWLMB5550HrVaLr776Cp988gnuvvvudJ8eQRA5AilxBEEQREzsdjseeughfPzxx+jo6EBZWRmOO+443HzzzWHt/oncwe124/jjj4fX68Xtt9+O008/Pd2nlPGsWbMGjzzyCLZt2wa3241x48bh8ssvx2mnnZbuUyMIIkegIo4gCIIgCIIgCCKLoIgBgiAIgiAIgiCILIKKOIIgCIIgCIIgiCyCijiCIAiCIAiCIIgsgtwp08jGjRvB87xqAbgEQRAEQRAEQWQnLpcLHMfhiCOOiHksKXFphOd5kK9MZsLzPJxOJz0/eQA91/kBPc/5Az3X+QE9z/lDPj3XSmoDUuLSCFPgZsyYkeYzIYKxWq3Ytm0bxo8fj4KCgnSfDpFE6LnOD+h5zh/ouc4P6HnOH/Lpud60aZPsY0mJIwiCIAiCIAiCyCKoiCMIgiAIgiAIgsgiqIgjCIIgCIIgCILIIqiIIwiCIAiCIAiCyCKoiCMIgiAIgiAIgsgiqIgjCIIgCIIgCILIIqiIIwiCIAiCIAiCyCKoiCMIgiAIgiAIgsgiqIgjCIIgCIIgCILIIqiIIwiCIAiCIAiCyCKoiCMIgiAIgiAIgsgiqIgjCIIgCIIgCILIIqiIIwiCIAiCIAiCyCKoiCMIgiAIgiAIgsgidOk+AYIgCIIgCEJdPF4eW/d0o2fAjooSE6Y2VEKr4dJ9WgRBqAQVcQRBEARBEDnE6qYWPLliE7r77eJtlaUmXH3WDMxrrE/jmREEoRbUTkkQBEEQBJEjrG5qwd0vrAso4ACgu9+Ou19Yh9VNLWk6M4Ig1ISKOIIgCIIgiBzA4+Xx5IpNUY956t3N8Hj5FJ0RQRDJgoo4giAIgiCIHGDrnu4QBS6Yrj4btu7pTtEZEQSRLKiIIwiCIAiCyAF6BqIXcEqPIwgic6EijiAIgiAIIgeoKDGpehxBEJkLFXEEQRAEQRA5wNSGSlSWRi/QqsrMmNpQmaIzIggiWVARRxAEQRAEkQNoNRyuPmtG1GOuOnM65cURRA5ARRxBEARBEESOMK+xHrcvmoWyImPA7VVlZty+aBblxBFEjkBh3wRBEARBEDnEvMZ6VJaacMvDXwEAfn/JkTjmsOGkwBFEDkFKHEEQBEEQRI7h9fr/PX5EGRVwBJFjkBJHABACQrfu6UbPgB0VJSZMbaikD3yCIAiCyFLcHm/YfxMEkRtQEUdgdVMLnlyxKSAgtLLUhKvPmkG98wRBEASRhbjc/sLN4+XTeCYEQSQDaqfMc1Y3teDuF9YFFHAA0N1vx90vrMPqppY0nRlBEARBEPFCShxB5DZUxOUxHi+PJ1dsinrMU+9uph08giAIgsgypEqc203XcYLINaiIy2O27ukOUeCC6eqzYeue7hSdEUEQBEEQauCSKnFeUuIIItegIi6P6RmIXsApPY4gCIIgiMzA7faI//ZQOyVB5BxkbJLHVJSYVD2OIAiCIIjMwOXxt1C6PdROSWQ25JKuHCri8pipDZWoLDVFbamsKjNjakNlCs+KIAiCIIhEcUvdKUmJIzIYckmPD2qnzGO0Gg5XnzUj6jFXnTmddkIIgiAIIssIMDYhJY7IUMglPX6oiMtz5jXW4/ZFs1BRYgy4varMjNsXzaIdEIIgCILIQihigMh05Lqke8klPSzUTklgXmM9jppai3Nv/ScA4PZFszBneh0pcARBEASRpQSGfVMRR2Qecl3St+3vJdUpDPSYEAAAg06DkkIDAKC+uogKOIIgCILIYgKVOFIyiMxDrvt5n8WR5DPJTqiII0RKi4Qirn+Q3iwEQRAEkc0EzsSREkdkHnLdz8uKjbEPykOoiCNESouENwkVcQRBEASR3dBMHJHpMJf0aFSVmTFldHmKzii7oCKOECktZEWcM81nQhAEQRBEIkgLNw+1UxIZiFyXdA2N+ISFijhChNopCYIgCCI3oHZKIhtgLunBhRq5pMeG3CkJEdZO2UdFHEEQBEFkNQFh32TRTmQw8xrrUWjSwWJ1YeSwYlx3biOmNlSSyV4MqIgjRFgRNzBE7ZQEQRAEkc24pDNxblLiiMzF4+UxZHMBAApMOswYX5XmM8oOqIgjRFg7JVm5qoPHy2Prnm70DNhRUWKiXSWCIAgiZVA7JZEtDNlcYGKxw+VJ78lkEVTEESJ+JY6KuERZ3dSCJ1dsCgixrCw14eqzZlB/N0EQBJF0AoxNqJ2SyGAsVn8HmMNJRZxcyNiEECn1hX33kTtlQqxuasHdL6wLKOAAoLvfjrtfWIfVTS1pOjOCIAgiXyAljsgWBiTrTlLi5ENFHCHClLghmyvgw5+Qj8fL48kVm6Ie89S7m2lXlCAIgkgqgTlxdM0hMhdpBxgVcfKhIo4QKS4wgI1sUUtlfGzd0x2iwAXT1WfD1j3dKTojgiAIIh+RbsZ6SIkjMhhqp4wPKuIIEY2GQ0khOVQmQs9A9AJO6XEEQRAEEQ+BShwVcUTmIl1zuj1e6laSCRVxRADkUJkYFSUmVY8jCIIgiHgIVOJoUUxkLsHCgZNaKmVBRRwRAJuL6yclLi6mNlSisjR6gVZVZsbUhsoUnRFBEASRjwQocV5S4ojMJbiIo5ZKeVARRwQgFnGDpMTFg1bD4eqzZkQ95qozp1NeHEEQBJFUpAHfbjcpcUTmElLEkRInCyriiABYzAAVcfEzr7Eety+aFaLIVZWZcfuiWZQTRxAEQSSdgIgBUuKIDEZqbAJQO6VcqIgjAigtZkoctVMmwrzGejzzh5NQUqgXb3v8tgVUwBEEQRApISDsm4xNiAyG2injg4o4IgBS4tRDq+HASzpY6DElCIIgUkVg2De1UxKZC7VTxgcVcUQANBOnLtLdpO4+ihUgCIIgko/XywfYtFPEAJGpeL08Bn3tlGW+bjAq4uRBRRwRALlTqofXy8Mp2Qnt6rel8WwIgiCIfCG4aKN2SiJTGbK7wPYbqnxeAtROKQ8q4ogAWE4cKXGJEzyY291PShxBEASRfIKLOGqnJDIV1kpZYNKh0Cz4CJASJw8q4ogAmBJntbvhctObKBHszuAijpQ4giAIIvlI5+EAwEPulESGYvEVcSWFBhj0WgDkTikXKuKIAApNejHDjBwqEyN4J4mUOIIgCCIVkBJHZAtMiSsuMMDoK+KonVIeVMQRAWg0nNhS2UctlQnhcLoDvu7qIyWOIAiCSD7BShwZmxCZysCQsNYsKTTAaPAVcaTEyYKKOCKEkkKhpXKAlLiECFXiqIgjCIIgkk9IOyUVcUSGMjDkAkDtlPFARRwRQplvLo6UuMRg7QBsZ6lnwA6vl1paCIIgiORC7ZREtsCUuOJCaqdUChVxRAglvnZK9sYi4oMpcbUVBeA44SLaT48pQRAEkWQoYoDIFgYkxibUTqkMKuKIEEQlzkIFRyKwnaQCk158TCnwmyAIgkg2rJ2SGZW5SIkjMhSLL+i7RGJsQu2U8qAijgjBr8TRTFwisJ0kk0GLyjIzAJqLIwiCIJIPU+JMRh0AUuKIzMWvxBmpnVIhVMQRIdBMnDpIZ+KqSk0AgC6KGSAIgiCSDFPiTL72NI+XB8+TGkdkHtROGT9UxBEhkDulOrAPIaNeh8pSUuIIgiCI1OAWizideJuHjLWIDIS1UxZL3CmpiJMHFXFECKTEqYNUiav0KXEU+E0QBEEkG5fYTqkVb6OsOCLT8Hp5WKRKHLVTKoKKOCKEUnKnVAW7L+zbaNCiyjcTR4HfBEEQRLIJp8RRzACRaQzZXWACcXEBtVMqhYo4IoRSnxJnc3jojZQA/nZKUuIIgiCI1MFUN7NR0k5JShyRYTAVzmzUQa/TUNi3QqiII0IoMOmg0wq2xP3UUhk3gcYm/pk4Gi4nCIIgkgkzNtHrNND4YgaonZLINKSmJgD87ZRUxMmCijgiBI7jRDWOirj4kSpxFT4lzu70YMjuTudpEQRBEDkOm4nTazXQ+Yo4D7VTEhlGSBFnoJk4JVARR4SltJAVceRQGS9SJc5k0KHIrAdADpUEQRBEcmEzcTqdBlqtsNQjJY7INFgRVxykxFE7pTyoiCPCwsxNSImLH6kSB0A0N+nuo7k4giAIInkwJU6n1UBHRRyRoURrp6TRk9hQEUeEpbSYlLhEkSpxACTmJqTEEQRBEMlDOhPHZtwpJ47INFhGXHA7Jc/7X8NEZKiII8Lib6ckJS5egpU4FvjdRQ6VBEEQRBIR2ym11E5JZC6iElcgFHHMnRKglko5UBFHhIW1U1Lgd/wwJY7l9FSREkcQBEGkAJYJF6DEkbEJkWGwPGKmxOm0Gmh9RjzkUBkbKuKIsDB3SrZLQihHVOJYOyWbiSMljiAIgkgiLrdw/REWxcJSz0VKHJFhWKwuAECJr/sLIIdKJVARR4SlzFfEkRIXP05ncDuloMR19ZESRxAEQSQPpsTpdBz0OmGpR2HfRKbBlLjiQr14m4Gy4mRDRRwRlhJfO+UAFXFxY3cKeXBsV0ka+E0QBEEQyYIpcXqtFlotC/umdkois/C7U0qUOCriZENFHBEWvxJH7ZTxwPN8qLGJr53SYnXRhxNBEASRNKRKnE5DShyReXi9vKSd0iDeTu2U8smIIm7t2rWYNGlS2P8WLFgAADh48CCuueYazJw5E8ceeywefPBBeDyBT/Arr7yCBQsWoLGxERdddBG2bt0a8P1U3UcuwN5QTpcHdoc7zWeTfbjcXrCIE/aBVGjSif8mNY4gCIJIFqISpyMljshMrHYXvL7Yi+ICfxFnoMBv2WREEXfEEUfg66+/Dvhv+fLl4DgOS5YsgcvlwuLFiwEAr776Kv785z/jH//4Bx555BHxPt555x3cc889uPHGG/H2229jxIgRuPzyy9HT0wMAKbuPXMFs1MHg66OnuTjlSJU29oHEcZzfoZICvwmCIIgkIbpTajkK+yYyEtZKaTbqxLlNgNoplZARRZzBYEB1dbX4X2FhIe6++26cffbZOPfcc/Hxxx+jpaUF99xzDyZOnIiFCxfipptuwgsvvACnU3gRPP7447jkkktwxhlnYPz48bjrrrtgNpvxxhtvAEDK7iNX4DgOJeRQGTesDUAnuYAC/qw4UuIIgiCIZCHmxOm04jXI46UijsgcBoKCvhnUTimfjCjignn88cdhs9lw6623AgDWr1+PadOmobS0VDxm7ty5GBwcxLZt29Dd3Y19+/bh6KOPFr+v0+lw1FFHYd26dSm7j1yjjLLi4iZ4Ho4hOlRSzABBEASRJFicgF6roXZKIiNhAkFxcBFH7ZSyybgirqenB88//zyuvfZalJWVAQDa2tpQW1sbcNywYcMAAK2trWhrawMA1NXVhRzDvpeK+8g1RCWOijjFsB0ktqPEqCojJY4gCIJILqISJ+kGIWMTIl48Xh6bdnXhi+8OYtOuLni8iW8IDAxGUOKonVI2unSfQDB///vfUVxcjF/84hfibXa7HSUlJQHHGY1CgeFwOGCzCQtig8EQcozD4UjZfcQDz/OwWq1x/WyyKTIJb6TOnsGMPcdkwV4P7P9K6bcMAQD0Ok3AY1dsFh7T9u6hvHtMM5VEn2siO6DnOX+g5xpw+CJuPB4XwAvFm9XmyKnrDj3PqWHtlnY8/68f0TPgX+dWlBjxq1MmYc60mrjvt7t/EABQaNQGvC61GqFAtAzZxdvz6bnmeR4cx8k6NuOKuBUrVuCss86CyWQSbzOZTCEzZ6xoKigoEI8Nd4zZbE7ZfcSDy+XK2FZMl90CANjb3IZt2/Kz/W/fvn1x/dzuNt/j5XUHPL/WAeED6FB7b8Y+7/lKvM81kV3Q85w/5PNzPeRb7LYcasbQoLAQbmltw7ZtQ+k8raSQz89zstnabMPrX3WH3N4z4MD9rzbhguMqMXWkOa773negHwDgtFsC1kODA8LtLa0d2LYtUCDJl+c6WFCKREYVcdu3b0dzczNOP/30gNtra2uxY8eOgNs6OjoAADU1NWILZEdHB8aNGxdwTE1NTcruIx70ej3Gjx8f188mmx1d+/DN9p3QGYsxZcqUdJ9OSrHZbNi3bx/GjBkjFvFKGEIHgC6UFBcEPHbGkgG8+mU3bC5N3j2mmUqizzWRHdDznD/Qcw1oP+oG4Ma4hrHY33sI2GdFZVU1pkwZm+5TUw16npOL18vj4fe/inrMyqZBnL3wCGg08pQjKV/+uBWABaNH1GDKlAbx9o3NO4EdgygpLceUKZMA5NdzvWvXLtnHZlQRt379elRWVmLy5MkBt8+aNQsrVqzA4OAgioqKAABr1qxBYWEhJk+eDIPBgLFjx2Lt2rWiMYnb7cb69etx0UUXpew+4oHjuLhVvGRTXS78jUMOT8aeY7Ixm83x/e0a4a1lNuoDfn54jT+2wWA0BThXEukl7ueayCroec4f8vm59o3EoajQDKNBDwDQaHU5+Xjk8/OcTDbt6gpooQxHd78De9tsmDG+SvH925zCi7SqrDDg+SsqFDrjPHzo+jgfnmu5rZRAhhmbbN26FZMmTQq5feHChaiursZvf/tbbN++HZ9++inuv/9+XHHFFaLkeMUVV+C5557DO++8g127dmHp0qWw2+0477zzUnofuUSpz52yn4xNFGOPYGxSWmSEVsOB54HeGB+OBEEQBBEPLBNOL4kYYGYnBCGHngF5YzRyjwsmljslGZvEJqOUuM7OTtGRUorRaMTTTz+Nv/zlL7jgggtQWlqKiy66CEuWLBGPueCCC2CxWPDggw+ir68P06dPx3PPPYeKioqU3kcuUepzp+wfpJw4pYjulEERAxoNh8pSEzp6begesKG6PLfbAgiCIIjU4wrjTklh34QSKkpMsQ9ScFwwA0PCRnawO6WBIgZkk1FF3FNPPRXxe6NHj8azzz4b9ecXL16MxYsXp/0+cgV/EedQ5JZDSHLigpQ4QAj87ui1obvPDoxO9ZkRBEEQuQ4r2HRaDXS+nDg1bOGJ/GFqQyUqS03ojpJrW1VmxtSGyrju3zLkAgCUFBoDbheVOAr7jklGtVMSmUWpb3fE5fbC5nCn+Wyyi0hKHOAP/KasOIIgCCIZMCVOr9NAS0ocEQdaDYerz5oR9ZirzpwObRymJl4vjwGrr52yQB/wPbb5Te2UsaEijoiIyagT30zUUqkMvxIXKnazwO+uKLtbBEEQBBEPHi8Pr09102k10PkW2R4PKXGEMuY11uOSn4Ua91WVmXH7olmY11gf1/1a7S7xNRop7JvaKWOTUe2UROZRWmRER48V/YMO1FUVpvt0sgYWtBpViesjJY4gCIJQF49EcSMljkiU4Dbci06ehAsWTopLgWMwFc5s1EGvC1wnUTulfEiJI6LCWirJoVIZsWbiAKA7TkcngiAIgoiEyx1YxJGxCZEITbu6Ar6uqShIqIADIjtTAtROqQQq4oioMJn7263t2LSriwajZRJtJq7KV8R1kRJHEARBqIy0WAswNqF2SkIhdocbP+7vAQA01JcCAGz2xD0SLL4iLriVEiB3SiVQOyURkdVNLdi8uxsA8Mna/fhk7X5Ulppw9Vkz4u6DzheiK3HM2MROrp8EQRCEqkjjBTiO87dTekmJI5SxdV8P3B4e1eVmjKkvwZ6WfthUaHMciFLEiUoctVPGhJQ4Iiyrm1pw9wvrQuTs7n477n5hHVY3taTpzLID9uFjClPElfiiG9weL9ZsbiV1kyAIglANabyA8H9ho9DtpmsNoYymnZ0AgMbxVSgwCrqPGm7lYhFXEKaIo7Bv2VARR4Tg8fJ4csWmqMc89e5mKj6iICpxQe2Uq5tacO3fPhW/vuv5dVh85ydUFBMEQRCqII0XAPzFHClxhFJ+8M3DHTahGiZfEWdXoYizWGO3U7o9fIBJDxEKFXFECFv3dEcNdwSEea6te7pTdEbZhzgTJ1HimLoZ/NiSukkQBEGoRbASx9opaUFMKGHQ6sSeg30ABCXOnAwlLko7JUBqXCyoiCNC6JHpmvj9zk588d1BMjwJg9/YRPjQI3WTIAiCSAWhSpyvnZKMTQgFbN7TDS8PDK8uQmWpGSajUFypWcSFc6c06PylCRVx0SFjEyKEihKTrONe/3SH+G8yPAnE4fLlxPl2lJSomzPGVyX9/AiCIIjcxG9s4lPiNKTEEcph0QKNE4Q1CZuJsyfZ2ITjOBj0WjhdHjhd9JqNBilxRAhTGypFB0W5UEtgIMHtlHLVTbnHEQRBEEQ4WDtlqBJHC2JCPszU5LDx1QAgzsTJUeI8Xh6bdnVF7NaKVsQB0sDvxFW/XIaUOCIErYbD1WfNwN0vrFP8s0+9uxlzptclHASZ7QQbm8hVN+UeRxAEQRDhEJW4YGMTaqckZNJrsWN/mwUAxO4guTNxq5ta8OSKTQHdR8HdWiwnrjiMOyUgbIBbrNROGQtS4oiwzGusx+2LZilW5MjwRNjtZBdLpsTJUTerysyY2lCZ9PMjCIIgcpfQiAFfOyW5UxIy2eRrpWyoLxXVMpMhdhEnx8CN53kMRHGnBACjXnjNUjtldEiJIyIyr7Eec6bXYeuebvQM2NHcbsFrkjm4SOR7S6BTsnPElDg56uZVZ07PewWTIAiCSIzgdkotGZsQCgmehwP8SlykiAG5Bm7Tx1XB62uvjFzECb8rnsBvj5cX160VJSZMbajM2bUVFXFEVLQaTpTSN+3qklXE5XtLIPvQ4Tj/RRTwq5vBbQbFBQbccP5hZApDEARBJEywsYm/nZJUDUIeTTt9Rdz40CIukhIn18Btw/Z23/1poddpwx7HupiYSZxc5LRy5hLUTknIhloC5SGdh+O4wN2feY31eOYPJ+Gu647BdN/jdOqxY3Pyw4UgCIJIPe4IYd/kTknEwuPl8eXGg2jtHgLHAVPGVIjfYxEDdqdHVNKkyO3Cau8eAgAUFxojHmPwtVM6FLRT5mMWLxVxhGxYS2A0qCUwfNC3FKZuzppaCwA41DGYsnMjCIIgchtXSNg3tVMSsVnd1ILFd36C/3t5AwCA54Eb7v2PWPwwJQ4Ibzgitwurs88GQHBNjZSNq7SdMl+zeKmIIxQRyfCkqsyM2xfNIkUJEiXOEL1beVRtMQCgud2S9HMiCIIg8gNS4gilyFGxhO4i4fZwLZVyurU4Dvhk7QEAQEvnEBbf+UlYhUxpO6WSLN5cgoo4QjGsJZBdIG65eCaevuOnVMD5sPtyTZipSSRG1ghF3MGOQbq4EgRBEKoQGvYtrLxdpMQRYZCrYnl5v0NlOHMTOd1afNBLMFKro0GhO2W+ZvFSEUfEhVbDocAkvJnH1JfmfQullFjtlIzqMjOMBi3cHi/aeqypODWCIAgixwkN+yYljoiMEhWLtVRaI5ibROrWirVEDG519Id9y2unzNcsXiriiLhR+ibLF4KDviOh0XAYOawIAHCgjVoqCYIgiMRhM3H6kJw4HnywFELkPUpULDMzN4mSFTevsR733zhf/PqK06ch1ihacKsjG0eRG/adr8Z7VMQRccPeZKx9kBCQq8QB/pZKmosjCIIg1IDNxOlEJc4vg+SasQOROEpUrFgxAwy2LjQbdbLvX1pM+tsp5RVx+Wq8R0UcETcmg99ulvAjV4kDqIgjCIIg1MUVEvbtX+pRVhwRjBIVyyQGfkdf91ntQhFXYJJfxEmPi6fTi7VyBgeI57LxHhVxRNywAVdHjDdzvqFEiRvlK+IOUBFHEARBqEBo2LdffaCYASIYJSqWqMTF6MAasrsAAAUmfVytjn53SmXry3mN9bj2nEbx62vOmpHTxntUxBFxYxSVOGqnlKJIifPFDBxst1CbC0EQBJEwwREDWo1/qRfN3MTj5bFpVxe++O4gNu3qomtSHjGvsR63XXZUyO3BKpbZIK+d0uor4gpNurhaHdn6SW47pRSp2lxXXZhzLZRSogdZEUQUqJ0yPEqUuJqKQuh1GjjdXnT2WlFbWZjs0yMIgiBymOCwb42Gg0bDwevlI7ZTrm5qwZMrNgW4FFaWmnD1WTNyVsUgAhk3ogyAoMzd+IsjRHVMWgT52yljFXGsnVIPwN/qGPwaqyoz46ozp4e8xhIxzpPGErDzyFWoiCPiJl65O9dRosRpNRxGDCvC3pYBHGi3UBFHEARBJIQ7qJ0SAHQaDk4vD0+YdkoW9BwMy/DK1XkiIhA2mz+yphgnHDUy7DFyjU387ZT+MmNeYz3mTK/D1j3d6Bmwo6LEFFIkMhJZX0rVu1wv4qidkogbE7lThkWJEgdIzE0oZoAgCIJIkOCcOMBvbhKsxMkNeqbWytyHFXFsVj8cJl/EQOx2SuH7hWZ9wO1aDYcZ46swf+YIzBhfFbHV0aCPv4hzuaVFnEvxz2cTVMQRccPaKSknLhCxiNPLE7rJ3IQgCIJQi2BjE+HfwmI5uIhTEvRM5DZsDcJm9cNRIFOJY0UcU+6Ukkg7pSOP2impiCPixp8TR0WcFKZMmpQqcVTEEQRBEAkSTomTBn5LURL0TOQ20nbKSIgzcTHWfaKxSZASJ5dE2ikDlDgHKXEEERYTuVOGRZyJi6OI43lqWSEIgiDixxUU9g1EbqeMJ8OLyD14npfVTil7Js4WOhOnBEMC7pTSws9GShxBhIfaKcPjb6eUV8TVVRVCp+Vgd3rQ2WdL5qkRBEEQOY6oxIVppww2NoknwysRKMYgM+nqs8Pm8ECr4VBXFdlgzSQ3YsD3/QJjnEpcIjNxedROSe6URNyI7ZQx3sz5hlIlTqfVoL66CAfaLGhut2BYeUEyT48gCILIYdxuoTAKUOJ8WXGuICWOZXiFc6dkBGd4xQvFGGQuTIWrry4KmKUMxuwzNokZMWBj7ZRxzsRJRAKlHUoOFxmbEERMKGIgPEqVOIDm4giCIAh1cHmEa5BUiWPzceHCvlmGV7AiFxz0nAgsxiDYRIXFGKxuakn4dxDxc0BGKyWgJGIgMCdOKdL1k9MdOaA+HAERAzkuMlARR8QNhX2HR6kSB0gcKilmgCAIgkgApsQFRgwwd8rwqsa8xno884eTwPkEt+pyE56+46eqFHAUY5D5yDE1AfzGJjZH9HWfLUxOnBIM0iJOoVDgcudPOyUVcUTcsN5oBxmbBEBKHEEQBJEumDtfYNh3ZCVOhOfBOteGbG5VWigBijHIBvxFXFHU45QqcYVxKnE6rUac41Tqu0DtlAQhAyMpcWHxK3Hyd6BGkUMlQRAEoQJMbVOixAGBbWtWuzvmQl0uFGOQ2fA878+Ik9lO6fZ4AxQvKR4vL7524m2nBOIP/CYljiBkQO2UoXi9vCj9K1Hi6qsLodFwGLK76UJGEASR4yTTpVFU4sLkxAVHDEgJblvr7lfHLZliDDKbXosDQzYXNBwwvDq6EmeSbE5H6sKSmp7E204J+NdQStspAyIGHG54c7hNl9wpibihdspQnJKQSSUzcXqdFnWVhTjUOYjmdgsqS83JOD2CIAgizSTbpdHlU9sC2inFsO/IRVywstIzYMeIYdGVGTmwGINoLZVqxhgQymj2zeLXVhYGzKKFQ6/TQKfVwO3xwupwo6jAEHLMkK+FUafVxLy/aBgDYqzkK3quoKLP7nQnpAhmMqTEEXHD3mBuDx91dy+fkPZuK/3wGlXrMzehuTiCIIicJBUujWJOnOJ2ymAlTp2uEBZjEA21YgwI5chtpWTEihlgLYzxxgswxHZKhd1eTlfgejSXWyqpiCPixiRRmijwW4A9DgadRvEFyW9uMqj6eREEQRDpJRUujR4vL7aPhVXiorZTBn5PrSIOENwvrzk7tJBTM8aAiA9masI2kmMRy9yEmYnEG/TNEAO/3QqLuKDjc9nchIo4Im50Wg00vkLFTi2VAOKLF2CQQyVBEETukgqXRmlXTIAS57tWB4d9S0nWTByjpFBovTPqhfMyGbR48vaFVMClmeYOZUocixmwR4gZYMpXQYJKXGA7pXyCX8e5nBVHRRwRNxzHiWocKXEC8cQLMJhD5Z5Dffj8u2bVh90JgiCI9JEKl0bpXFuAEieGfUe+pgTPxKmpxAHA7oP9AID5M0fCoNfC7vSgrXtI1d9BKEduRhyDKXGRiqMhm6B8xRsvwIi7ndL3Oi70markcjtlQmXynj17cPDgQQwODqK8vBz19fUYPXq0WudGZAEmgxZWuztlDpUeL4+te7rRM2BHRYkJUxsqM6qPPhElju2G2Rwe3PfKdwDiH3bP9MeJIAgi35DrvlhWZMSmXV1xfX67A4o4/8+wnDgl7pQ9Khdxuw72AQAmjirHoc5BbNnTjR/398guHgj16R90oH/QCY4DRgyL7kzJMPtM7SJ1YLHijhV78SK6Uypop+R5v0N4WbERQ3Z3TrdTKn6Eu7q68Nxzz+H9999HR0dHQKYVx3EYMWIEfv7zn+Oyyy5DVVWVqidLZB5CFpojJe2UyXb0UgO/EqfsrbW6qQX3vrwh5HY27K5kZiAbHieCIIh8Q45Lo0YD3P+PDegZcIi3Kfn8ZmqaTqsBx/mLOGZsEq27g/2sVsPB4+XRrWLcDc/z2H1IUOLGjyhFa5dQxG3f34uFs2nzP10wFW5YeUFAfEA0zCbWThmhiGNKnDnBmbg4Or3cHn9gfWmREYc6h3JaiZPdTunxePDwww/jxBNPxMqVK3H22Wdj+fLlWLFiBT755BO88cYbWLZsGRYuXIjPPvsMCxcuxAMPPACXK3crYCJ1WXGpcPRSA4dL+LBQosSpOeyeLY8TQRBEviHHpdHrRUABByj7/PY7UwYqd2JOXISAZsCveAwrLwAA9A7YVcvYauu2Ysjmgk6rwajaEkwaXQEA2L6vR5X7J+JDaSsl4F/3RTI2YREDiWTEARJjEwU5cVI1uazYCCC32yllF3HnnnsuduzYgb///e/46KOP8Nvf/hYLFizA5MmTMWrUKMyYMQMLFy7Erbfeivfffx9PP/00fvzxR5x//vnJPH8izRjj7FlWQiocvdQinpk4tYbds+lxIgiCyEfmNdbj9kWzUFka2FpZWWoSZ3giIefzmxVxOm3gNcgfMRDbnXJYhRkaTrim9A86Ih6vBNZKOaa+BHqdBpPHlAMQ7O3ZDBWReli8wCglRZzoThl+3WdjxiYJzsTFE/bNNiI4DigpNPrOJ3dfX7KLuNtuuw3Lly/H9OnTZR1/1FFH4fHHH8ett94a98kRmU8qAr9T4eilFvHMxKk17J5NjxNBEES+Mq+xHs/84STRPfKWi2fit7+ciaEYioGcz2/WEhmsxOnFsO9o7ZTC9ctk0IkqhlrmJrt9Rdz4EWUAgPJiE2oqCsDzwI8HelX5HYRy4lHiCmJEDDAlLtamRCziaadkGxF6ndZvbELulMDcuXPj+gVHH310XD9HZAfGFLRTpsLRSy3iUeLkDrvHOi6bHieCIIh8xuvlxYLryMk16LfIU7xifX6LSpwuWImTY2wifM+g16Ki1AxAvZiBXWIRVyreNmWM0FL5I7VUpg2lGXGAJGIgkrGJSkqcIYF2SqNeI87u5XI7paIy+bvvvsOIESMwbNgw8bbt27fjH//4Bzo6OjB+/HhceumlAd8nchuT6FKUvCJOrSInFcSjxMkZdq8qM2NqQ2XU+8mmx4kgCCKfYS2EHCcsdtX6/BaVOG3QTJzP3TJ6xIBw/dLrNKgsMWEXoIq5Cc/zYrzAOJ8SBwCTR5fj8+8OYvt+UuLSwaDVKc5fynWmBCRh3xGKI38Rl76ZOEGJ0/vOJ8/bKZ1OJ6655hpcfPHF+Pbbb8Xbv/jiC5x33nn46KOP0NXVhVdeeQWnnnoqNm/enLQTJjILk5HJ3cnb6WBFTjTkFDmpIB4lTs6w+1VnTo9pMZ1NjxNBEEQ+M2hzAhBa0zQaTrXPb7fb304mRZYS55YqccK5qBEz0N5jxaDP1GR0bYl4+ySmxO3vUc1AhZBPc/sgAOF1pUQ1Y5v3tgjrPr+xSerdKZmabNRrxSIyl5U4WUXcyy+/jG+++QZ33nknTjjhBPH2e+65Bw0NDfjss8/wxhtvYOXKlRgzZgz+9re/Je2EicwiFe2UahU5qYA9Dkpz4iINu1eVmWXHC2TT40QQBJHPiIHIBQYA6n1+u0RjkwjulDJy4gw6jXgtUmMmjqlwY+qKxTlAABhbVwKjQYshuxsHfTmpROpgpiYjFahwgH8mzh7B2MRqVynsWxeHEsfUZL0GZiMpcTh06BA++eQTzJs3D6NGjcLWrVuxbt06fPjhh9i9ezeOO+448bZdu3Zh/vz5aGpqwvr169HSQnbmuQ5TnJKdExepyDHqtYoy1JKNv51SeRsBG3afMLIMAHD28ePw9B0/VfS3sccp+EKvpBgkCIIgksugr4grkix02ec3MxVhKPn8lubESWFFXfR2SqbiaVBZot5MHJuHk7ZSAoI6yK531FKZWjxeHht/7AAg5L4pca1mHVg2R/jiSLV2SkMc7pRsI0KqxOWwsUnMR3jbtm04ePAg7HY73n77bfH2H3/8EVqtFj09PQG3t7e3w+Vy4a233sLChQtRX0+LxlzG706Z3Jw4QLjAzZlehyv/+gm6+oTdwdIiQ8wLm8fLY+uebvQM2FFRYsLUhsqkqVGsrVRJO6UUrYbD+JFl2NncB71OG9d5zppaC8D/gTx3ei1uWzSbFDiCIIgMYShCIPK8xnpMHl2BRf/9MQDgf66dhxnjqmR/fvtz4iK0U3plKHF6rV+JU2EmLlIRBwCTR1dg8+5ubN/Xg5PmUOh3Kljd1IInV2wSVdbVTa1YfOcnsgPlo0UM8DwvKl9paadkLcE6TV60U8Ys4hYuXIivv/4a33//Pf7yl7/AYDDA6XTiggsuwJFHHom777474PjbbrsNo0aNCrmdyE1McbzJEkGr4SC9BnX02tDdb0Olz0krmOAPK0DI45H7YaWUeIxNgqmtEIJW27qH4vr5Q52DkHbMcByX0gIulUUzQRBENsKKuKKC0IVucaFB/Pe44aWKPj/9SlxwO6UvJ84dWXHx27Or104pmJr0AQh0pmRMHi3kxW3fTw6VqWB1UwvufmFdyO0sUF6O4muOEjHgdHvh9qm9heYElbh42ikDlDjhvZXLOXGyHuHLLrsM77zzDn7+85/jsMMOw+bNm3Ho0CG88MIL4jFvvPEG3nnnHWzcuBFLly5N2gkTmYUxBe6UwbAPjiKzHoM2F7bs6cZPjhgRcpwaH1ZKicfYJJiaykIAwjB4POxr6Q/4OpWRAqkumgmCILIR1k4Zbm5Ir9PAaNDC4fRgyOZCcYEh5JhIRFTiNDKUOLf/+sUiBoZsLtidbrHrRikdvTZYrC7otBzG1JWEfH/SaMHcpLl9EINWJ4oU/K2EMjxeHk+u2BT1mKfe3Yw50+uibhyYo0QMMBWO4xD3a4YRXzslU+K04uye1eEGz/PguNzbTJZlbNLQ0ICXX34ZEyZMwNatW1FfX49HH30URx11lHjMv//9bxw4cAC33XYbLr300qSdMJFZmAypmYljeL28+LtmThaiLLaECT+V+2GlpA9cDmoqce3dcRZxrQMAgHG+Xc9UFXGsaA7euWVF8+ommpElCIIAoitxgLBJCQCDVmUqgqjEBYV963yGIp4oxibiTJxeCEpm17FEriGslXJUbUlIYQkAZcVG1Pk2Lin0O7ls3dMdU1mVEygvFnG+4kgKa100+1xXEyE+d0qmxPlz4ng+tUJDKpFdJs+YMQOPP/54xO8/9NBDMJvDt7QRuUuq2yntTjfYZ8ZRU2rw5cZDYYs4JR9WM8ZXqXZ+jjjdKaUwJa5v0AGbwy1+YMplr6+ImzlpGHYf7EfvgD3pu1Bq7fARBEHkA4MRZuIYhWY9uvvtYrEnF1GJ0wZeg8R2yijGJlJ3So7jUFliQkvXELr77aivUuZgyPC3UpZFPGbymHK0dg9h+75eHDm5Jq7fQ8RGbjEe6zi27vPywsa1VHFjr9dE5+GA+MK+WdahQa+FUa+FRsPB6xXm9JSupbIBWUocALz55ptRvx+ugON5Hq+//rrysyKyBn/Yd2qUONZKqdFwOHxiNQBgf5sFFqsz4Di1PqyUIipxCbRTFpn14i5sRxwtlftahCLuiEmCUun28BgYckb7kYRRa4ePIAgiH4jWTim9fVDhPI87ghLH2inlKHHM2p3NmicyF8fiBcLNwzEm+/LiaC4uuagVKC8t2oJjBmwqOVMC/nWUknZKh8ufdchxHApz3NxEdhG3cuVKnHPOOfj000/hckX/UHE6nXj33Xdx1llnYeXKlQmfJJG5pCInTgor4sxGHcqLTRheLahW2/YGfvir9WGlFDWUOACorYzP3KR/0CEWpuNHlKHENyCf7JbKdBXNBEEQ2UjMdsqCONspPdEjBuTkxOn1ws9WioHf8cUM8Dwf1ZmSMdk3F7dtbzc+39CMTbu6VB91IKBaoLxGw4lqXLC5yZBKGXGAfx3l9vBRX7dSRCXO1z5sNuV2VpzsUvmxxx7D22+/jT/96U9wOp2YP38+GhsbMWLECJjNZlgsFrS2tmLDhg1Yu3Yt9Ho9fv3rX+MXv/hFMs+fSDNiz7KCnZJEkBZxADCtoQqHOoewZU83Zk+rFY9jH1bRdhDlfFgpRQ0lDgBqKgqx62A/2hQqcfvbBBWurrIQZqMOFSUmDAw50TvgwNgk+oqkq2gmCILIRuS0UwJQ3k4pyXqT4g/7jtJOGaTEsc/reJW4zj4bBoac0GrCm5owWjoHAQgqyn1//w4AGWIlAxYoH87wjSEnUB4QYgbsTk9IF5Y/XkA9JQ7wG5bEwiFxpwT8weS5qsQpepTPOeccnHrqqXjzzTfxz3/+Ex9++CE8Hv/iXavVYubMmfj1r3+N8847DyYTLdhyHX9OXGreIMEhktMaKvDJ2v3YsjewTU/NDyslqK3EKXWoZK2UY+qFC2ZFiQn7WgfQM5B4YGs00lU0EwRBZCOiEhehiGMh4EMKFYTIYd++dsoo7pRMxQhW4uIt4tg83OjaEnFRHczqphb870vrQ25Ppot0PjOvsR7Dys3o6A1cE1SVmXHVmdNlP9Zmow59FkdIceRfoyWuxOl1GnCcYEzCnFNj4ZK0UwrnkduB34pLZaPRiIsvvhgXX3wxhoaG0NraCovFgvLyctTU1JC5SZ5hkrRTpsLCNViJmzpWKAp2NfeF2CBH2vlT+mElF57nEw77ZjBzE6XtlMyZkv3t4k5qktsY01U0EwRBZCOsTTKiEie2UyqbZ/ZHDAQWcVpZxib+oGTAPxMXTxu8x8tjdVMrAKC8xAiPlw/5/CdDrNTT0jmIjl4bOA5Y+qvZcDg9ceW5miP4IQypOBPHcRwMeiFqQ7ES53sN53pWXEKPcmFhIcaPH6/WuRBZCFOchJ0Sb8LFSyyCi7iaigJRAdpxoBeN46vFY//97QEAwJGTh4Hnge9+7MDCWSNxwwVHJOWC4PZ4wdr4jQnmo9SIgd/KlLi9vow4sYgTZxqSP4s2r7Eety+ahf97eX3AQiFZRTNBEEQ2wvO8qLBFVOLEdkplCoIYExBBiYs2WyR19gOkSpyyTo7gvNAN2zuw+M5PQtoj0+Uinc+s8kX9HD6hGnOn18V9P8y+P3gmzqriTBwgbIg7nB7ZDujOPGunlG1sQhDhMAa4FCX/TRJcxHEch2k+NW7LHr+5idvjxcp1QhF38tzRovsVx3FJ29GTfsiYVGynDM5hiYTH48WBNgsASTtlsREA0GtxJHQ+chFaNQrEr68/7zA8fcdPqYAjCILwYXO44fXt+EVS4sScOFt8SpwuWInzXfeiuVMytYOpeOIm4IBdPN9YKMkLJUOs1PP1D8Ljf8xhiV2TxS6skCJOPSUO8Bdjstsp2Vynnhmb5HY7JRVxREJoNZz4gZ+KrLhwHxBszkpqX79+Wzt6LQ6UFRkxa2otaiqEthClM2ZKYDK+VsOFzCMopbqsABpO2FXqk1mAtXQNCWqoQYvaCqEdM5VKHMMicVOrKjNTGwxBEIQEpq7ptFzE7pV4jU1cEdopWVEXj7GJ3Jgaue2RzHkyGYZYHi+PTbu68MV3B8nlMojWriHsOdQPjYZLSIUD/BvptqCIgSG7ejlxgH80xRGvsYnoTpmbRVzuJd8RKcdk0MLl9qYkKy5YiQOAab4ibvv+Hrg9Xui0Gnyydj8AYMGskdBpNajxFTUdvUks4lQyNQGEC3BlmRmdvTa0dVtRLuMiJs7D1ZZA4yucUjUTx/B4+YCd4z4L7aASBEFI8bdSGiLOkYtFnNrGJhGUOJ7nQ4xNdFoNyoqM6Bt0oLvfhjJfZ0cklLZHqm2IFdzGCZDLpRTWSjljXCVKi6I/l7HwF3FBSpzouqpOecHWU06XB3LOODjr0J8Tl5szcaTEEQnDWipTETMQrogbVVOMIrMedqcHew71o7vfhg3b2gEAP50zGgDEFr/OXlvSdubUihdgMDWtvUeeuYlYxNX7DV1Y8ddnkd8OkwiDViek3Z+pauMkCILIFphZSbSFbpHZ4DtWnYgB1hHhjnAdcHt48bObLYABfzeHnI1Ape2RzBArGnINsZS0ceYrrIg75rDhCd+XyRje2MQqrtHUVeKURwwEtVPmqBKXUBHX39+PlStX4h//+Ad6enqwZ88e2fM7RO5gSmHgt80eWsRpNBymjBVm3rbs6can6w7AywsK3fDqIgDChUin5eDx8oqHtOWiphIHSAK/ZbaAivECElfO8mJ/O4xFoctZPAS33MhtBSUIgsgXhmJkxEm/F287ZSQljhV5IT8nmTliC2BAWcxAPO2RzBArOITaZNDKjhfwKmzjzEfauoewq7kPGg44OsFWSkCixIVEDKisxIntlHIjBpg7JTM2obDvsDz22GN44oknYLfbwXEcGhsb8eCDD6K3txfPPvssSkoiBzsSuQUr4lIyE+cI3289vaES67a245tNLTjUKShXC2eNFL+v1XCoLitAa/cQOnqsAeYbaiEWcSopcX6HSrlKnOBMOba+VLxNr9OgtMiA/kEnegbsCbdQxIKKOIIgiOgM2vztlJFgxiZOtxdOlydizlowscK+PV4+bBwQWyRzXGABKMYMyCji4m2PnNdYjznT67B1Tzc27ujAGyt3QqvhMGtqbczfCQDb9vfmhculx8tj655u9AzYFccCsLiH6eOqYrbFyoGt+2zBEQM29XLigMB2SkR+u4g4I+XEkRLn5+WXX8ayZctw+eWX4/XXXxfVt0suuQTNzc146KGHVD1JIrMxRsgLSQbhlDgA4g7btn29YiHx8kfbA1oohvnMTZI1Fye2U6qkxLGsODlmLEM2lxjeOTooH4+pcalw+ApW+6idkiAIIhA5SpzZqAOrs5SocZFn4vyL/XCKlEt0ptQGFHhKYgYSaY/UajjMGF+Fi382BRUlRgzZ3fhue3vM3wnI3yzMZpfL1U0tWHznJ1j62Crc+8oGLH1sFRbf+YnsNtFVTYcAJO5KySiIMBNnEzfaVXanlNlO6Qya6yyIEIWQK8RVxL300ku4+uqrceONN2LatGni7fPnz8dvf/tbfPbZZ6qdIJH5+K1m0zMTt7qpBS/+a1vIscG98Ex9a1eYvSYXvxKnzoeX2E4p43zZPFx1uTkkdyiVDpWsgGaFbN9g9l40CYIgkoFfiYtcxGk0nKhmDCoo4iKHfWtCjpHCFr+GoJ+rVGiONa+xHr+/5MiQ26vKzLLaI7UaDscdPgIA8MXGQ7J+p1xlKVy7Zza4WSYy7+fx8vhy40HsONAHAJgjU92MhTgTJ1n3eby86FapZk4cIL+d0hnkTeB3p6R2SpGWlhbMnj077PcaGhrQ1dWV0EkR2YVRbKdM/k4HG5plu0ByLY3nTK9DDcteS5oSJ5ybakqcr52yu98Gl9sDvS7y/YqmJnWhbczsIpyKXUhWxI2sKcau5j70DpASRxAEIUWOEgcIRd6QzaVIiXNHnInjJMeEUeKC8rUY8WwCspZ+g16DX19wOCpLzIpa/+bPHI53v9yNtVvaYLW7YrbmTRldHlcbZza4WSpZ4wQ/vuH+vpsf/lKVv88URomzSQoltZS4gHZKGTiD2onNFPYdSl1dHTZu3Bj2e5s3b0ZdXeJDk0T2YEqHO6XvA0KJpXGNT4nr6EmOsYld5Zm4siIjjAYteF5w1YxGtCKuIg1F3OjaYgDCDrJLZkgnQRBEPiBHiQP8RZ4SJU5spwxxp/R/HS5mgC2SgzcL2UycEkMwNgIwvLoIx88ciRnjqxTlhY4fUYb6qkI4XR6s2dwW83hNHG2c2eJmqWSNIyXZf1+4iAFWKOl1mqibzkowKMiJ43k+jBLnD/vORePFuIq48847D48//jieeeYZ7Nu3DwBgtVrx8ccf44knnsDZZ5+t5jkSGY4xje6USiyNh/mULbmW/UpR252S4zjUVshrqdzb4jM1qSsN+V55Sos4QXmrryoSL5h9luS7YhIEQWQLSpQ46fFyiNROqdFwYn5o+HbK8Eocm4mzWF2yN2pbu4RrbK1vrlspHMfh+JmspfKgrJ9hLpdFBYGPabg2TqWh5OlEaWwDkJq/zxzGC4FlGqrVSglIIwZiv/akMRl6PcuJE87F6+VTYr6XauIq4q666iqcffbZuPfee3HaaacBAC677DLceOONOP7443HNNdeoepJEZmMS38zJfYPwPC/u+rDdFSWWxqw9savfHjHwNBHUzokDIIaUt0UpPL1eHvvDZMQx0qHElRYZxTkFmosjCILwMyiziEtIidOGLu90viLOE66dUmJsIqXIrBfn5HplXkPY9SreIg4A5vuKuO93dMo2LpnXWI/Tjm0Qv9brNHhq6cKQ1sF41a10EE9sQyr+PnMYwxCmxKnVSglIxnVkKHHSQs/o24wwGrRgAqw1B81N4nqkOY7Df//3f+OKK67AmjVr0NfXh+LiYsyaNQsTJ05U+xyJDMefE5fcN4jT7RV3jpgSp8TSmINwYXN7vOjqt4tFnVqorcQBfnOTaGYs7T1W2J0e6HUa1FeFXjQr02BsUlJoQFmxEd39dnKoJAiCkDAks51STSUO8JmbuL1we+Ubm3Ach8pSM1q7h9Ddb5dVmLV1Cdcrdv2Kh/rqIkwYWYadzX14/dMfMWl0hSxb/Q6Jm7PL7YXF6hQdmhnxqFvpIp7YhlT8fWLEgMTYhJmHqFnEMWVYKNCi607sNSyNyeA4DmaTMFtqtbtkF8XZQtxh3wcOHMD69etx4YUX4tprr8XcuXOxYsUKtLRkRh8xkTpSlRMnDZVk6p8SS2ONhsOwcqG/PxktlWpHDAAQzVgiKXEeL48vvmsGAFSXmQEu9OLGLmC9Fge8SW4PkRZx7PdSVhxBEISfZCpxYk5cOCXOZ24SLvDbFZSvJaVCQcwAoI4SBwCjfLPV//x6r2xb/eBInnARPfGoW+kintiGVPx9bCPd6fKInU1DdnUz4gC/27ecdkpnhJiMXM6Ki6uI+/7773HWWWfhmWeeEW8bGBjAe++9h7PPPhs7duxQ7QSJzIe1DyZbifPHC2jF3n7A3wvPFCdGuF54pr51yMheU4raYd8AUMvaKcMocSw35pWPfwQAtHQNhb3AlZcIbY0eLx8Sxq02AUqcL1i815L+3UyCIIhMQVTiCtRX4iIZmwCBgd/BiPlaYX5OjBmQ0c3B87x4vUpEiVvd1IKV65pDbo9lzNHWLRSQrMgId+1k6lY0wrlZpgu2xgl+bjgOuO2yo0LaRVPx90ljntgoDVPiYm1OKCGedkpj0FynmGlHRZzAfffdh5kzZ+Kdd94RbzviiCOwcuVKNDY24p577lHtBInMx5iimbhwGXGMeY31eOYPJ+Gu647BLRcfibuuOwZP3/HTkA83v7mJ+g6VyVTigncTlThP6bQasaBKZnuIx+MVFxslhQaxeCQljiAIQsDj8YrXslgGEIWJtFOGUeJYVlx0Y5NoSlzs60evxQGnywMN589mVYpcY47gzhKnyyOe44xxVQCA9u7QLpZEQsnTxdEz6sQi7qKTJ8Gg14Dngeowj3Eq/j69TiNuprMNfKs98hotXowB7ZTRieSwKmbFOXIvKy6uIm7Lli1YvHgxTKbASt9oNGLRokX44YcfVDk5IjswGVPTTsl2eczG8Bc+rYbDjPFVmD9zRERL45okOlSqHfYN+M93yObCoFVQueJxnmIFVTKLOItVeH44TthB9itxVMQRBEEA/pYzQL475aBNXgeFx+MF+9gPr8RFMzaJosQpiBlgzpRV5QVhzVXkINeYY9v+3oDb2GZngUmH8SPLAm4LhqlbJYWGgNvlhpKnmtauIVjtbuh1Gpy/YCJmTRFCu7/dEj6CYfKYirC3q/X3cRwXksGWFCVObKeUo8R5fT8TWMSZc7idMq7VpslkQnt7e9jv9fb2QqOJe9SOyELEnLhUtVMmMDQrtlPGyF2LB7XDvgHhsS0rNqLP4kBbtxXjCwyKnKdmjBd2IytKTNjbMpDUIo7FCxSZ9dBqNTQTRxAEEQQryMxGbcwiR6kS55IobGGVON/azBVNiQuT7yWaY8m4frAN0roEWinlXqf6LA5USOoFVrDVVhSKrZzR4nnmNdajvdeKZ9/bIvxcZQEev21hRilwjB8PCAXruOGl0Gk1mD2tBquaWrBuazsu+fmUkOO/2dQKAJg4sgy/Om0aegbssoxhlGA2aDFkc4lKHHudJsedUoYSx1qCI7RTUhHn47jjjsPDDz+MKVOmYNKkSeLtu3fvxrJly/CTn/xEtRMkMp9U5cSJ8QIJSPX+dsrsmIkDgNqKAvRZHGjvsWL8yLK4nKdSETMgnYcD4I8YoJk4giAIAJKMOBnmD/4iTt7iU2pYEl2JC2dsEn4BDPiLODntlK2iM2X8piZyDTfKio2A5JTYPFxNZYE4Tx6r64YphwDAgUtpAefx8ti6p1tWgbXDV8RNHF0OADhycg04DtjT0o+uPhuqyswBx7ORimMOGy5u5qqN2aQD+v1rM6u4RlNPiTPE0U4Z3BLM3kdMKcwl4pLMbrnlFnAch7PPPhsnnXQSLrzwQpx88sk4/fTTAQD/9V//FdfJrFixAqeccgpmzJiBU089FR9++KH4vYMHD+Kaa67BzJkzceyxx+LBBx+ExxP4pL7yyitYsGABGhsbcdFFF2Hr1q0B30/VfeQbphQVcWr0WzMlrrvfJg6Aq0UyZuIA/8WQXaDicZ6qULCTGi/+Ik4o3vxFHClxBEEQADBoZaYmhhhHKm+nZAobxyFsMcAKO3eYdspoShzrqujqs6FpZ2fUkGg1nCnlGnNM8RU04u/u9heQTInr6rOFnQFktHQOiv+2JbmbSAozJlv62CpZzps7D/QBACaOFP7m0iIjJo0S/r1ua2BLZZ/Fgc27uwAAxxyWvLZQMSPYFzNg9W02FJrVnInzhX3LWK/5X8OBpU1w22cuEVcRV11djX/+859YunQppk+fjoKCAkyePBm333473nnnHVRXVyu+z3fffRd33HEHLr74YnzwwQc47bTTcNNNN2Hjxo1wuVxYvHgxAODVV1/Fn//8Z/zjH//AI488Iv78O++8g3vuuQc33ngj3n77bYwYMQKXX345enp6ACBl95GPZFM7ZVmREQadMBDc1aduS6U9SUocKzzbfOphPM5TohKXxKy4YCWu3FfEDdndsnbRCIIgcp0hBXND0nZKno8dD+N2C8fotJoAi3WGztdOGU6J86sYgcvC1U0tuP3Rr4Wf8/K44/HVUYuNti5WxMXfTinXmEMTVKiyjc7aygKUFRth0Gvh5YHOKOMThzr9Spw9RWHQSozJAMDl9mD3oX4AwMRR/sJ19jTfXNzWwPGmbza3wssD40eWqZ6HK0UsjnyP25CYE6emO6VvfZmAEuc3NqEiTqSgoACXXHIJ7r//fjz77LN46KGHcOmll6KwUPnuC8/zeOihh3DZZZfh4osvxqhRo3Dddddh3rx5+Pbbb/Hxxx+jpaUF99xzDyZOnIiFCxfipptuwgsvvACnU1g4Pv7447jkkktwxhlnYPz48bjrrrtgNpvxxhtvAEDK7iMf8UcMpM+dUi4cx0laKtU1N0lG2DcgDfwWzler4XDJzyZH/ZlIuTGpbKcsNOvFmQ9S4wiCIJS1UzK1zsv7r3/RcPm6giLN2mlZTlzYiIFQd0qlxQbg32xMNCNOSXQQQzoTx3GcfwM0jEMlIBQG0s1cu9OT9CzVeIzJ9rYMwO3xorjAEFAcz5oqFHFNOzsDIp5W/yA8L8cm2ZyFrcVY8WsTc+KSEfbtjbmRwYxNgtVkf05c7rVTyn6kly9fjvPPPx81NTVYvnx51GM5jsP1118v+yT27t2LQ4cOie2YDJZD9+c//xnTpk1DaWmp+L25c+dicHAQ27Ztw4gRI7Bv3z4cffTR4vd1Oh2OOuoorFu3Dtdccw3Wr1+f9Ps47LDDZP/NuQQrWlxuLzxePmk95WrMxAGCsnWwY1D1mAGxnVJtJY61U0rm+Pa2DAAQLspSp7GqMjOuOnN6yAWOFXG9KSjiin0LD47jUFZsRFefDb0Wu1g8EwRB5Cv+dsrYRZxBp4FOq4Hb48WgzRVT4RCDvsPMwwH+4i5c2LeoYuj8WXJyio050+vEa77N4RY37BIt4gChkJszvQ6fb2jGg69uhF6nwZO3Lwz79wn5dIEqYE1FAZrbLQHXTilsHs5o0IqbsHanW1UlKZh4jMl2snm4UWUBCuvo2mJUl5vR2WtD084uzJ5Wi/5BB5p8rZTJdtgU2ymdgUqcnA0KuUjXU+4YOkEkNZmMTSAUcT/5yU+SVsQBgNVqxeLFi7F161aMGDEC1113HU488US0tbWhtrY24GeGDRsGAGhtbYVOJ/wZdXV1Icds374dAFJyH/EUcTzPw2pV32QjlfCSmcC+fouqGSFSBgaFDz6tJrHHrKJEKDIOdfSHvR+vl8f3O9qwa58VNq4Vh0+sDWnbCAdrJ+W9LlWf01Kz8Ls7eq0YHBxCV78dH6wW3jP/dfHh0Os06LM4UFZsxJTR5dBouJDfb9YLhV6PxYHBwSFZf49SevqF32ky+H9/aaEeXX02tHcNYGS1vFm+VGOz2QL+T+Qm9DznD5n8XPdZhM9Gow6yrhOFJh36h5zo7rXAl9oSEcugcH/aMNcAAOAgXAesNnvI9212YROO5z2wWq3YsrdHVrHx3bZDmDZWsLM/0GYBIMzyaXgXrFZ1lI/Zkyug03Jwub042NYjKmzS57l/0Am70yNE3BiFx7aq1Hetbw9/rd97sBsAMHJYIXYfGgDPA739g4A3xgOdAG1d/bKPG1cv/J1b9wpF2di6opC/44gJlfjk24NY3XQQ08eW4MvvDsLr5TGmrhilBeFfB2qh1wmvp36LDVarVVSZNXCr9nulrb8ujzfqe3rIJrxeNVzgGlHLCfcxaHVkxXqb5/mw7dDhkL3aZoUMAGzdulXVGIHBQWGw9NZbb8UNN9yAW265BR9//DGWLFmC5557Dna7HSUlJQE/YzQKbzKHwyE+qQaDIeQYh0PYFUrFfcSDy+XCtm3b4vrZTEEqcW/ash3FZnWVKEZ7pzCbONDXhW3b4m/P453ChWbXvjZs2xZ4kdnabMNHG/owYPUVpqt7UFKwDT87sgxTR5qD70rE4+XFYfH9e3eh06jeY+D18tBohGyftd9txsofBuDx8GioNcLo7gTcEGyW7cCPP4aP/mCtGV4vjw3fb0FREp6jtk5ht3CwvwvbtgnvJy0vLAy27dqPQnSr/jvVZN++fek+BSIF0POcP2Tic32wRfictA72ybr267TCAnTr9t2w9kYvLg52CddF3usOe982q6A8HTzUgm2mwGKip0/4uruzHdu2DWHLPnmL3S3b90JjF64725qFz/0SM1Rf11QW69De58LqDdsxeUTgtXjfvn1o9v3tJWYtdu78EYD/Wr9zfzu2bQtVYX7YJnS0FOjcMOg4OFw8tmz9EZUlyVPi+nvkdcP097Rh27Y+AMCWPZ0AAIO3P+RxrS4Q7u/bLa04dgKw8luh4Bs3jEv62nLIIrxmWto6sHWrQ2xXPNi8F5Zu9TbzNRrA6wVcbj7qe/qQr0NpaHAg4G/v7BAeo97+oaxZbwfXIpGI61E+44wzcPPNN+OEE06I58dD0OuFN8zixYtx9tlnAwCmTJmCrVu34rnnnoPJZAqZOWNFU0FBgRg6Hu4Ys1l4s6fiPuJBr9dj/Pjxcf1sJmEytMHu9GDUmAbUJqltzrB+IwAbxowajilThsd9P32ednz6fRMcvAFTpvjzVdZuacfrXzWFHD9g9eD1r7px04WNmDOtJux9Cq2ehwAAM6ZNCRmsTZRhZT1o67Fhwz5gk+/ietXZh6OhviT6D0ooLepE/6ATVbWjMFbBz8mF/3ItADsmjRuFKVMEhXr4j1uwo6UFBUWVmDKlQfXfqQY2mw379u3DmDFjxPc6kXvQ85w/ZPJz/cmmJgBDGD2yDlOmjI55fPmXFnQP9KOqpl78XI0Ev68XQCcKzMaAaxujdOMPQIsdw4bVYMqUkQHfM337HQA7Ro0cjilT6uE19eCt1T0xz2/a5LGY4lPidvfsB9CN0fUVYX9/Ikzc4kF7Xyt4fZl4LZE+z93OPgCdGF5TIv7uQXTg4+9+gN2jD3s+n2/fAmAAkxvq0Nx9EA6XA8NHjknK9ZExaRKPf677Cj0DkTeiK0uN+NlPDodGw2HI5kL3wEEAwAlHTw8JJx833oM3V30Oi82L3T0F2NMm3O+p86dheHVR0v4OANjcuhvYPoiColKMGz8JXl5YAx02fYqqHVkmQxusdjdcHj7qe/r7gzsBDGBYdSWmTPHHn2mL+oD/dMELreqvy2Swa9cu2cfG9Si3traq+sFYUyMsjCdOnBhw+/jx4/H5559j9uzZ2LFjR8D3Ojo6xJ9lLZAdHR0YN25cwDHsvmtra5N+H/HAcVzcBWAmYTLqhFYGjT5pf4/T57xVVlyY0O8YWVsGAOjqc4j34/HyeOHDHVF+Cnjxo534yZFjws78OTz+3bXSkiLZUrgcVje1oNv3gf/VD4KVsEGvwYDVq+hxqCwxo3/QCZsrOa+5QZ+9cHVFiXj/1eXCRWTQ7sn417nZbM74cyQSh57n/CETn2u7S7iOlZfIu46V+HooXR5NzON1OqGryaDXhT2WOf1x2tDvs9HqokLhMZs5xYzK0i1RWyqrysyYOWW4eE3sHhA2uUfUlKj+uDeMKMdXP7Sitdsect9msxm9g4ICNby6WPz+6HqhuOzstYU9n3afKjamvhwFpjb0WhxAEtcwjGvObsTdL6yL+P2rz2pEUZEwU7jjoLDGrK0sQG11WcixBQBG1ZZgZ3MfXv54p3j7X1/YiKvPmpHUubiSIqEOcHs48BpBjOE4oKKsWNU1kMmgFYu4aO9pr8+rsdBsDDimsozNO2b+OgSAoscurp7I008/Hc8//7xYwCTKtGnTUFhYiB9++CHg9h07dmDUqFGYNWsWtm7dKrZdAsCaNWtQWFiIyZMno7KyEmPHjsXatWvF77vdbqxfvx6zZs0CgJTcRz7Dhk8dSXSoZFJ9ojs8rJ++Z8AuDsIqGTYOh9SZUu0C7u4X1oVk2jld3ojuYJGoUBDYGg+iO2WRf6ewzLcA6Rskd0qCIIghBcYmAFDkM4kYkuGsx1r6wwV9A35jE0+YnDhXkLOfXJt/6aamWs6U4RhTJ6hj+9oGwn6fZcTVSNwb2bXeYnWJ81pSWrqEtVx9dSFMvnWFHBfQRGHOm8VBWYEcB/z+kiMDCq8fmanJyMBMPMbqphbsbO4LuT2ag6hamCWPGVufFRh1qq6BAL9jqssd3Z3S/xoOMjYx+Y1N5ER1ZBNxFXH79u3D119/jfnz5+Poo4/GggULAv5buHChovszmUy48sor8cgjj+D999/HgQMH8Nhjj2HVqlW4/PLLsXDhQlRXV+O3v/0ttm/fjk8//RT3338/rrjiCrFv9IorrsBzzz2Hd955B7t27cLSpUtht9tx3nnnAUDK7iNf8Qd+J+8DUHSnTNC+tqTQIJ5vp89eWK71fqTjkuFMGY8VcTSSGTPgcntF5ydpu0d5CQV+EwRBMAZt8nPipMeFK0KCcfns+/QRIgZEd8pwOXHsZyUL4Eg2/0a9NqzNvxoZcZEYVVsMADjUMRiyqQlIQsYr/AWk2ahDqW9TsT3IoXLQ5kL/oLDxWFdVGOK0mGzmNdbj0lOE1r4x9SUoLTKA5xESccBCvieMCi3i1F4jKMUUUMT51mcyX9dKYOuqcCH1UhwRcuJYsenx8rJCw7OJuFbDdXV1IXEAibJkyRKYzWY88MADaG9vx7hx47Bs2TLMmTMHAPD000/jL3/5Cy644AKUlpbioosuwpIlS8Sfv+CCC2CxWPDggw+ir68P06dPx3PPPYeKCkFONxqNKbmPfMX/AZg8JU6NnDjAnxV3oM2C9h4rhlcXiQVOLCIdl4yMuHisiKORzJgBi1W4GGq4QHthpsT1UhFHEAQhFmNFMhe7TLEblFHEsbDvSBEDLCcu3KJezNgKWgAzm/+te7qxYXs73vrPLpQWGUIKOI+XR0dv8pS46jIzCkw6WO1uHOocFJU5BlPiggvImooC9A860dY9hIbh/niolk5BhasoMaLApA/JPEsFFl/3yvjhZahtLMDLH23HR2v24/gjhXlFnudFJW5SmCJO7TWCUsySzXtrEuIFGP4Yq1g5ceGLOJNBB44DeF7o6FI7BiqdxLUavvvuu9U+DwDA5Zdfjssvvzzs90aPHo1nn3026s8vXrwYixcvjvj9VN1HPsLeZMlsp2RBkmoMzA4r9xdxADC1oRKVpaaY/f9TGyrDfi8ZSlyi6mAwFT5VLBlKnJgRV2gIiC8o9xWOpMQRBJHv8DyvXIkzKVDiYoR9R1PiXGGUOIZWw2HG+CqMG1GKdz7fhY5eGzp7bagu93sjdPfZ4Pbw0Gk5VJaqbybDcRxG15Zg274e7G8dCCjiXG4vuvuFrprgArK2ohA7DvSFKHGsiKv3mX+w7hybI3lrmGD6fWMGpUUGLJw9Cn//5Eds2dON5nYLRtYUo7PPhj6LAxoNh4YRpSE/r/YaQSlmk1+JG1JxfRaM2E4ZQ4lziYH1ga9hjYaD2ShsANjsbpQXq36KaUNRO6XT6cS//vUvPP300/j3v/8d4tRI5C/JVuLcHq8ogyfaTglAdNDs6PHn6ijt/5eSDCUuUXUw0nHdSSnihItRcI8/U+JsDnfK2lQIgiAyEYfLIxZQcpU4Ze2U8pS4sGHf7vBKnJQCkx4NI8oAAFv2dAV8r9UXtF1TURDxOpkorKVyf9BcXGefDTwPmI3aEPdGNiPHgsAZhzqFr5mDozmFM3EMtrlZVmxCZakZs6cKBnkfrdkHwN9KOaauJOwGsdprBKWwdZ/N4YFV4eaEEowyi7hI7ZRA7gZ+y14Nt7W14bLLLkNzc7M4GDhq1CgsW7YMkyZNivHTRK5jEpW45LxBpB+sqihxQUUcAEwdWwmNhgvpSa8qM+OqM6dHdXkSizgVlbhE1cFgmLFJMtopRVOToAtogUkHg04Dp9uLPosDtZXJCYInCILIdMQwZE7+dUxZO2V0JY7NyoVrp3SxBXCEApAxvaESu5r7sHlPt9j2B0iNRdRvpWQw9W1/qyXg9o5eQYWrqSgMMdWo8c3IRVTiqgKLuFRuNjLDrzLf3N7Jc8dgzeY2fLauGYtOmYodUVopAfXXCEoJMDZRybMgHHLbKUUlThe6DjOb9EC/HVaHOgH0mYJsJe7+++/HwMAA/va3v+GDDz7A8uXL4fV68ac//SmZ50dkCUaxNzo5ShxrpTToNNBGuEApgRVx0g/2T9buh9fLY+LIMtzyy8PE25fdfHxMm16HSzg/NYu4RNXBYMSZOItD9UFnS4QijuM4lBWTuQlBELmNx8tj064ufPHdQWza1RX2M3ZIolbIdfBT1k4ZS4mLZmzi9f1s9GvYdF9BsHl3oFMzU7rqkljEja71FXFBSlx7D2ulDDVUqRWVuKAiTuJMCSCl7pQMsYjzXSOPmDQMw8rNGLS5sLqpxe9MOaos7M+rvUZQinSOkClxBUmYiZPbTulX4kJf/6y4HLLlqRK3evVq3HLLLTjzzDMBAOPGjYPRaMTVV18Ni8WC4uIcajIlFGNMsjsl2+Uxq7TLw6yH232D2B6PFx+u3gsAOPXYBsyaWokiswaDNi8Odgxi8piKqPeXjHZKwO8O9uSKTQG7bXLUwWDKiozgOMH9amDQIc6rqYFfiTOGfK+82ISOXhuZmxAEkZOsbmoJ+YyuLDWF5HQNiqYm8t2sRSXOGnt8hRVnEWfifIv54IgBnucjzhMFM62hEhwHHOocRK/FjvJi4TrCirhkOFMyWDtle49VNNIA/EpcOEOVGsmGrdfLQ6PhwPN8SDul6LCdlpk44bqp1XA4ac5ovPzRdryxcidafYXmOF8LazjUXCMoRer6yArSwmQoccydMmbEAFOTQ9dhbDPElmNKnOxHu6+vD2PHjg24rbGxETzPo62tjYq4PIf1RifL2IQpcQVGdXZ52Ad7n8UBh8uDDdva0dVvR2mRAcceVg+3y4GaMj0GbQ7sax2IXcT5PjzY46AmUnewngE7KkpMmNpQqXh3TavVoKzIiF6LA90D9iQVcaGLE78SF77lw+Plw/5tkW4nCILIFFiWZzAsp0tqxe9X4uRfJ8SZOBk5cawQi5QTF0mJk9quR1LxGEUFBoyuLcG+1gFs2dONYw8bDkBaxCVPiSstMqK8WLiGNbdbMLJauIaJSlxFaAFZXWaGRsPB7fGi12JHZakZfRYHbA43NJy/6BRbA1PUTunxeMXrJrtGSv99oN3fMvqXp9dEDe5Wa42gFJNk05oVkMlR4oTXZEuPE1v29mDmFHPYvy2SwyrgFwDydibO7XZDrw98coqKhB0MMjghxJk4V5KKOJXiBRhFZsFS2OZwo6PHig9WCSrcSXNGw6DXwu0Casr02N0qFHGxSJYSx2DuYIlSXmJCr8Wh+lycvCIuVImLtIM9/4jh+GLjoZg72wRBEOlCbk7XnOl10Gq4uJQ4v4LggcfjjTpOwIqzSIWYjhmbBBVxLsl1W85IwPSGSqGI2y0t4pIXLyBldF0Jei2d2NfqL+JYtEG4eTytVoPqMjPae6xo67aistSMQ755uGEVBWL7qGjOlqJ2ygGrEzwvBHyX+AzBVje1YPkbP4QcG25DIBi11ghK0Go14sw7M0xTeyZudVMLPv22GQDw4yE7/vvZDags3RJ2LSBmHYZrp8xRY5PEh4sIAoBR/ABMchGn0gcEx3EY5rNHfu3fO9C0qwscgJ8f7Veba8qEi6esIi4JEQPJIFmB33KKuOB2SraDHTyU3d1vx9uf7w57+90vrMPqphY1T50gCCIulOR0AYEzcXKRuljGMjcRlbgYEQPB7ZRMidNoOFkz59PHCcXCZt/fNWh1iucWTg1TEzYXd8A3F8fzvKSdMvzvZre3+wLBW3yh5MzUBJAam6SmnZJtapYUGqDVatIe3B0vbE3W44t4UFOJY2uE4DnFSGsBZ5R1GDsvaxhFW848a6aiyopY7oAukbuYkj0T53vjqaXErW5qQavvg/yLjQcBCLs3O5t7xewbsYhr6QfP81Ff58lW4tSi0udQ2RNj4aEUFjEQrohjMxOsZx6Qt4MdCenONkEQRLpQmtMVTxGn1WpgNmphc3gwZHeJ81PhiKXEie2U3qB2SpnOlIypDcJ4wf62AVisTrT7VLiyYqNoEJIsxtQJoztsc9Xq8MLm8IDjhPzXcAgOlV2iWujPiPMrdyYjy4lLjVITPA+X7uDueDEZdOiHU9ykVWsmTqnKDUjNeSIbm1iDnl+586yZiqJH+/rrr4fBELpIu/baawNaLTmOw6effpr42RFZgynJYd/sg7VAhQtEpBkGp8srtiwcPr4MVSV6aDUchuxudPXZA4JNpXi8vFgQ9g7Y4fHyGVtgsIKqR2WTEVlKnGTBI+eCFYlMvJARBJF/KM3p8rdTKlMrCk162BweDFqjK3HumEpceGMTl0xnSkZ5sQkjhhXhYMcgtu7pFhfPyXSmZIwSlThhZqx3UFhzVJaYImbc+ZU4oYhj7ZTM1ARIfTulmBHnK+LSHdwdL2xj3Zc8ppoSp7So5Xk+hhLnm3mUtFMqmWfNVGSviM8+++xkngeR5STbnVKtdkq5uzvLfncMdFoO9VWFaO4YxL7W/rBFXPAuzqfrmrFxR2fG7uKUlQgXjJ0HerFpV5dqw8+siCsOq8T5ZuIkSlyiF6JMu5ARBJF/KM3pikeJAwQzka5+e8yYAVcUJQIAtBrhdlewsUkUa/ZITGuoxMGOQWze0y1u3tUk0ZmSMaqmGBwnXE/6B53oHXT7fnfkArLWlxXHzFeYM2V9dWg7ZaqUuL5Bn6mJr4hLd3B3vAR3R6k1E6e0qHV7eLGQ1IczNjGydkrh+Y1H6ctEZD/ad999dzLPg8hyxJm4JCtxibZTyt3d2ba/FxoAo2qKfEXcAGZNrQ04Ltt2cVY3teCVD7cDAHYf6sfSx1ap0jbgdHnE5z1cxEC4mbhEL0SZdiEjCCL/0Go4TBlTga9/iDynK83pEpW4AoVKnEyHypgRAzo2ExdkbBIlJDkS08dV4eM1+7F5Tzca6ksBpEaJMxl1qK0oRGv3EJo7BtE7JKwNokUb1Eiy4qSdM/VV/vNNddg3c2tm18d0B3fHS/CaTOkGRSSUFrXOAHOeKDlxvvdQtravBkPGJoQqJLudku2eJFrEyd3dYa0Oo2qFnbp9LYHmJtk2hMwKTktQ1pAaZiHsPjUaLmw/PGvhdDg9YjHOLljxkIkXMoIg8gOpCcJH3+wTPzuLgwqzihJTyEaeqMQpbDlj7Zex2ilFJU4bXjnwu1MGG5tEdvWLBAv93nOwD3tb+gEkNyNOCsuLO9A+KCpx0VwxWaRQz4AdLZ2DcHu80Gk1qJbM0LGZOLvTA28Krtv9PiVOmhGXzuDueGGPG0Mt3wI5awTpWoC9hjku/CZGcDtltravBkNFHKEKYk6cK7ntlIlK9XJ3d9ju2GhWxLUFFnFKXcnSSbILTuk8XDjzF7NRJ7bb9vp2H+VcsCKRiRcygiByn9VNLVh85ydY+tgq3PvKBjzy5g/w8sDk0eV46S8/x13XHSO2Ft70y5khHQ6sCFOqVohKXIx2SlGJi6CosXbKYCVOzNeSaWwCCAvo2soCeHlgZ3MfgOTHCzDG1Alzcc3tg+JMXDRXzJJCA8y+YmPjjg4AQF1VYcB1xGzwz3Y5kxSVJIWNF0gz4lhwd3DxUlVmzrjOHkZwNq5aSpzSopa9hvU6bdh1CNs4sfrCvrO1fTUYKuIIVfC7U2Z2O6Xc3Z0po8sBCP33AHCwYxAut/9vy6ZdnGQXnAODkU1NGOVhsuLmNdbjtGPHhhxbVWbGOcePy6oLGUEQuU2kSBQA2L6/F2s3t2LG+CpMHi04NzZ3WEKOG7Qnt53SPxMXS4kLbqf0KXEK2ikBYOrYioCvI7lDqo0YMyBTieM4zudQCWz8sRMAMLw68HiDXgu29k9F4LdYxAW5jc5rrMczfzgJd113DG65+Ejcdd0xePqOn2bsdU9qNmfQayO28sYDK2rLSwIfo3BrAb+pSfjfHxz2rVTpy1SoiCNUwSgp4nhe/VYEtdop5e7uaHy7OxUlRhSa9fB6eTS3D4rHZNMuTrILzmjOlAx2oQrOimMtJSfMHBFwwbr89Ol45g8n4eS5owEAh0+syugLGUEQuYuSbobRQRb4UpLdTilGDGgjKHEsYiC4nZIpcQraKVc3teDbLe0Bt93y8JcpyfFkj3FzxyAGrMLiPZapCmupbNrVBSAwIw4QxgHEzegk5d1KEd0pi0PnyFlw9/yZIzBjfFVGd55IIyXUDvoGhELusVsXiF/fesnhYdcCrIiLtBFREGRskq3tq8FQEUeoApPUvV4+ZJdPDWw+CVwN+1olLQscx4mtG/ta+8Xbs2kXJ9kFZ7SMOEa5776lSpzH48V3PwqtLaccMzbkgqXVcJg61vf48VzGf5gSBJGbKOlmGB1kgc/wenkx7zRuJU5u2HcEJU7Pwr69iSlxTJUMDh9XY8ZaDvXVRdBpOTicHvC8oL4EK1rBMKWOLfalzpQMMWYgyUocz/MhOXHZinRjXa2MuGAKjDpofSryqNrisGsBthERLl4A8BeYbo9XfL3Pa6zHNWeHFnLZ1PUT9yPudDrx5ptvYvXq1ejs7MRdd92Fb7/9FtOmTUNjY6Oa50hkAdKQa7vTo7gtIxZqtVMy5jXWY870Omzd042eATsqSkwR7fbH1pVgy55u7Gv1X5TZLk44d0pGpuziJNv1yq/ERb4Y+ZU4/zn8eKAXQzYXigv0mDCqPOzPsTbMHkv621IJgshPlHQzsE2//W0D4HlenM+xOtyiBXrcSlysIs4TPe9NG9HYRL4SlwnW7DqtBiOGFYtq57DygrBzUFKCTVeC2ykBn6pkcSQ9ZsBqd4sFd2lR5M3PbEBqbKJWRlwwHCeYpg0MuUQlLZhY5jxSxdBqd6O0SDhv9hodU1+C806YEHUtmInEpcT19PTg3HPPxV//+lfs378fTU1NsNvt+Pzzz3HppZdi48aNap8nkeHotBqx3z4ZrQhqF3GA/JaFMfU+Ja6lP+D2eY31uOjkySHHZ9ouTrLbBmS1U4aZiVu/TWjFOWLSsIi/m6mDvRkwW0gQRH6ipJuhvroIWg0Hq92Nzl6b+L1Bn4uvQaeJGEodCdnGJmLYd6SZuFjGJrHPK1NMvdi8OgCYjdqYxlzVZYE5r+HiEMxi4Hdy2ymZCmc2akOMQbKNgiS3UzJEY5IIc6H+rMNIpj6caG4jLQR/2Cm01x7TWJ8V7avBxFXE3XPPPRgaGsK//vUvvPPOO+IM1MMPP4wZM2bg4YcfVvUkiezAmMRWBLVm4uJhtNhOGTrjwIqLIycPy+gh5GS6XolB3wXKjE02bBdaKY+cXBP553yLJ4vVFWAsQxAEkSqUtM/rdRqMGCa06u2XuBoPxZkRB/iLuJhKnDt6ThxbnEY2Nom9JMwEU6/VTS1Yv90/j7ejuR+L7/wkYhvn6qYWLH/zh4Dbbg4zv8dUpWQbm7DZ8LKi9M/MJ0rgTFxylDjhvlnOWyQlLrbDKgv8ZgZBXi+Ppl2C0c1h46tVO9dUElcR95///Ac33ngjRo8eHSBhG41GXHHFFdiyZYtqJ0hkD2JWnMr2vF4vL7peJnOnJxJsxqHX4hB30ADhQshCXs/8ybiM38VhrlfHHCYUbMcdVq9KwRmPEtfdb8OeQ/3gOGDmpGERf664QC/uKgebohAEQaQCpd0M7Joh3fhjBVg8FuxFCiMGIhVjLOw7uJ3SEUPFkJJuUy82jxfcVhdpHo8d3xd0/Qh3PNsktkUoFNTCPw+X3a2UQGDEgNI2YSWweTurLUIRJ+M1HJwVt6elHxarC2ajFhNGlal4tqkjriLO4XCgrKws7Pe0Wi1crugfNERukqzAb6mylw4lzmzUia0X0ovyDzs7YbE6UVZkROP4qpSfVzxoNRzG+tpDTUadKgXngFVOxICvLdI32/adT4WbMLIsrDsXg+M4lBVTSyVBEOmFdTOYDIGLxHDdDKx7Q2puIipxZuULd6kSF839OZYSF6md0iW6U8Yu4tJp6qU081Tp8UxVSraxSbiMuGzFnKJ2SqbyRYrZkNMSHNyS2bRTUOGmj6tSNRohlcR11jNmzMDf//73sN/75z//ienTpyd0UkR2kqx2SjYPp9Vwsto9koE4Fycp4r7ceAgAcMxh9aJ1czbA2h5jtebIRakSx/O8rFZKRkVJ+HgCgiCIVDKvsV7csFtw1MiI7fOja0NjBoZUUOLcHm/UTpdYSpzYTukNNjbxqRgyrq/ptGZXOo+n9Hg2E5dsY5N+S244UwLBRVwSlThzjHZKUYmL0k7J1Dzf88vm4Q6bkJ2tlECcRdyNN96IVatW4cwzz8RDDz0EjuPw/vvv49prr8VHH32E66+/Xu3zJLIAZu2qduC3dB4ulgNVshDbY1qEi7LT5cGaza0AgOMOH56Wc4qXYt9OsMWnoCWKkpw4p9sLi9WFjTuEIu6oKbGLuHJS4giCyBA6fGYlxx4+PGL7PFPiDnYMioXVoKjEKV/omo06sF8TraWS/S5dpHZKlhPnDp6J8xV/MnPikjljHQ2l83hKj2czcWqvYYLpzSElTmrpPzDkiGkwEy/MQCWSOyWb65TTTsncQbfsFYr3bC7i4tI+jzrqKDz33HO477778PTTT4PneTz//POYOnUqnnjiCcydO1ft8ySyAH87ZXKUuHTMwzH8SpzgULlhezusdjeqSk2YMqYibecVD2ywPlZwrBzsTre4AxatiDMZdTAbtbA5PPhmUyusdjdKCg0YP6Is5u9g5iY9A6TEEQSRPnieR3uPFYA/PDocw8oLxM+7ls5BjKotSUiJ4zgOhWY9LFYXhmwuVJaawx4nFmMRw76FStDj5QPiD0QVQ0E0kJKYHrVQOo+n9HimKtmTrcSxIi7LlbjVTS144p0m8et/rd6HtVvacPVZM1Qv5P3GJuHXLQ4ZLcH+wG8XftzfA4fTg7Iio6icZyNxr4pnzZqFV199FXa7Hf39/SgqKkJhYahlK5E/+PvJ1d3FsqXRmZIxVjLj4PHyYivlcUeMgCZDjUwiwdop1VDimAqn02piPj9lxSbYHENYue4AAGDm5GGyHruK4tCMuXTh8fIpXbQQBJE5WKwucVNxWJQiTqPhMKqmBD8e6MX+NgtG1ZYkZGwCCLN0FqsrYhs8z/MSJS562DcgfJYx0yg5zn7hYDE9qUJp5qnS400paqdkJivZrMQxw5hgmGGM2oose99EMjZxyWgJFo1NHG5875uHaxxflbYOLzWIe1U8ODiIoaEh1NTUQKvV4qWXXkJLSwtOPvlkzJo1S81zJLIEFvitdsaK1SFctNJZxNVUFsJo0MLh9GDvoX58u1WwN/5JlrVSAn4lzqKCEidtpYz1QVhWZERr1xC27esBIG8eDvArcb1pVuJWN7XgyRWbAhYElaWmpOw6EgSRebT3DAEQIlOMMUxARtf5irjWARx3+HCJsUl8RZw4ExShiBPUNeHf+kgRA5Lb3R6v2F7JjE30CvPrUg2bxwtXPDCk83hKj09VO6XfnTI7i7h0BL7HihiQ47BqlrRT7jkkdFU1ZnErJRDnTNwPP/yAE044AS+//DIA4M4778Q999yD9957D4sWLcLKlStVPUkiO2C7WGpHDCQj6FspWg2Hkb7sn0fe/B5Olwe1lQUYN6I0becUL0yJc7o8CT9XcubhGGXFgcccLvPDk7W69KRRiWO7jsE7upFsrQmCyD3ktFIyWIsWy4pLVImLFfgtnXOLPBPnX1B7JDEDSoxN0o3SeTwlx6fK2ERU4rK0iEtH4LsYMRChnVJ0WI2mxPnaKbv6bNhxoBcAcPjE7C7i4loVP/jggxg3bhwuuOAC2Gw2vPvuu7jooovwxz/+EX/84x/x+OOPY8GCBWqfK5HhJG0mzs5m4pLnfBSL1U0taO4YBADsOijs4PQPOvHNptasU2EKTDpoNBy8Xh6DVieMEeYr5CC3iFvd1IKNP3YG3PbbBz6XpWKxlpN0GZukY9eRIIjMo72bFXGxR0eYucn+ViFmIFEljkUTRGqnlAZ4R1TiNIFKHMNvbJLZShyDzeN9t+0Qtmzfi2mTx2LmlOERP3/lzu+lImLA5faIalK2tlOmI/DdHzEQvxLH1LwfdnbC4+VRW1kga0Mmk4lbibvuuuswcuRIrFq1Cg6HA2eeeSYA4JRTTsHOnTtVPUkiOxDbKdV2p0yzEsdUmOD8O5vDnZUqDMdx4kIiUXOTgSFhR7E4ShHHHr/g14VcFYspcX0WB7xJcr6KRjp2HQmCyDxEJa5SjhInFHFtPUOwO9xJV+JYIabhEDHyRqPhxDlkaRHnNzbJfCWOodVwmDa2AjPGFGDa2IqYG2hsfm/+zBERXUXFsO8kKnF9Fqd4PvEW9OkmHYHvhabo7pRywr5ZThxbi2SzKyUjrnesRqOB0SjsIHz11VcoKSlBY2MjAGFWzmRS74kjsgd/xEBy3CnNaXCn9CoMC80WisW5uMTMTSxDwoIikhKnNGw1HGy30uPlVYtFUEI6dh0Jgsg8lLRTlhUbUVZkBM8DB9otGLIJn12JFnGRlDiXJ3rQN0PnK16k7ZQud+yg5HwgFe6U0nm4bDXUSEfguzQnLlzgvfgajhKTwYQGxoyG1JnyJIu4irjp06fjjTfewPfff4+PPvoIxx9/PDiOQ3d3N5566ikK+85TTIbkulMWpEGJ27a/NydVmCLRoTK6Eufx8ti0qwtffHcQm3Z1hRRbTImLVMSpoWLptBrx/tNRKKVj15EgiMyDGZvIbcEa5ZuLO9A2gEGfq1787ZTyZuIiBX0zmErn9oYqcXJz4nIVNhJiU9mcTUpfDsQLpCPwnbVTer18SFcUELudcnVTCx5+fWPAbc++vznrOqmCiWtV/Pvf/x5XXnklPvjgA1RUVOC6664DAJx22mnwer145plnVD1JIjvwz8TlTjslG0CORbapMMzcZDCKsiXHjTHWTJxaKlZFiQkDQ070WhwYK+se5eHx8tiytwdb9lnhNfVg5hRzyIVHqU01QRC5h9fLo71HCPqWW8SNqStB064u7GzuEwul+N0pZSpxMYo4Zm4iNUJxkhIHQKLEJXEmLhfiBQC/YUzwGqGqzIyrzpyuuleAUa+BhgO8vJAVZwpaD0ZTkyPFIfQMOJISh5BK4loVT5s2Df/+97+xe/duTJgwAQUFwgfan//8Z8ycORPV1dnfZ0ooR3SnVFuJS2M7pdwP2mxTYWLFDMjNgPEXceEfJ7VUrPJiI/a1qmtuElykvrW6B5WlW0LMVpTaVBMEkXv0Wuxwe7zQaDhUl8kzgxrlm4vbuleIVeG4+A26YilxbBEbq52SKXHSrgqWsZX3SpyknVIahq4m/nbK2I7OmU4qA985joPJoIHV4cVgmMB7vxIX+BrOdWOyuN+xRUVFOOyww8QCDgBOPvlkKuDyGKMxSTNxaQz7njK6POW936lAVOJsoUqckjm2WEqcWr3zLCtOLcVTaWQA23UMblWKZGtNEERu0eZzpqwuM0c0DglmTF1gzECBUScaiygllhLHjEpitVOyIi+8sUl+K3Gsm8jL+9VJtRHbKYuza+M3EnIMY9TC5CvQwm1kuCK8hnPdmCyuVfFll10W85gXX3wxnrsmshhTHO6UHi8fcxeHKXHpmInT5KgKU2yOrMQp+dCLVcSppWKV+xRRue2t0Yh3Z25eYz2G/WsrDnUKczG/ueBwnDhrVNY99wRBKEfpPBzgV+KYD0O8piaAX4mLWMTJVOJYO2VATpwrtilEPmA0+NcYdoc7ZqB7PPhn4rJfiUs1JoPw2g1XxPlfw4HPWa4bk8W1Kg7nDGO1WrF7924UFBTgpJNOSvjEiOyDfeDJzYmTM3MFSGbi0tBOCaS+9zsV+I1NQpU4uR9m3QM2WTlxajx+FSoqcUqK1Bnj/e5VPM8H/FxdVSEVcASRJ/gz4uQXcWajDjUVBaKrJct6iwe5EQMxjU18WXFshs7j8YqtldHs2fMBrYaD0aCFw+mBzeFGaRLMR3JlJi4dmAyRlThnhJbgXDcmi2tV/NJLL4W9vb+/H1dddRUaGhoSOikiO1HiTil35gqQzMSlKScOSG3vdypgEQPhjE3kfpgVmvRiS05JQfTFSaKPH2un7FVBiYt3Z27I5gp4bcdy9iQIIndoU5ARJ2VMXYlYxKmhxFntLni9fEhbpltuxICoxAnHuyRtg7EKwHzAbNDB4fSo7rLNkEYMEMqI1k7JWoKD1dNcNyZT9R1bWlqKq6++Gs8//7yad0tkCXLDvpVmh9nswhs2nUUckNre72QTLWJAzhxbZakJw6uLAAgBscH5K+FI5PFj7ZRqGJvEuzPX2WcL+DqasydBELmFPyOuUNHPjawpEv/t8XrjzhRlBSDP+7tTpMhV4ph7pdvXTukMKOLyW4kDAJNvtt8WIVQ6UUQljoo4xTAlbtAeTokL//pPRxxCKknKtkt3d3YOCBKJwZQ4p8sDb5QLlZJ2Np7n/TNxcbp6EaFEU+LkfOjVVRWKrZhGvRabd3cnNfC8QlTiEi/i4jVb6Qoq4kiJI4j8gRVxtQraKVc3teCjNfvFr7fu7cHiOz+JK5vKoNfCoIusRMhW4nztlH4lzuP7OS5rF7JqwjaLbUmIGfB6efT7RhConVI5Rj2biQt8bniej6jEAf6RjuDrfi4Yk8UlbaxbF9oG5/F40NbWhkcffRTTpk1L+MSI7MMkUWOcLk9IjgdDSTubw+UBqw3SrcTlEsUxwr7Zh97jbzcFtDCWFhkwMOjE5t3dWPrYKuE+bC4sfWxV2HlGtWDtlDaHMKuQyGshXrOV4CIunLMnQRC5h8vtRXe/sow4JSMDcik06+G0OMK787nl5cRpWU6c78LKDCFIhRMQx0LCqJ2JYrE6xQ3uSLE8RGQizcS5PbxoHqSPMNeZayMxjLhWQpdeemlIfgYzO6mrq8PSpUsTPzMi65AORdudkYs4Je1srKWB4wKLRCIxWDulzeGG2+MNu3s7r7EeFSUm/H7ZVyg263H7r2ZjakMl7v/7Bny58ZB48WcksjiJhdmog8mghd3pQe+AHebqotg/FIV5jfX4xU8n4rV/7wi4PZrZSnA7JSlxBJEfdPZZwfPCNU6OgpKsbKqiAj16LY6wG0hixEDMmThfO6Wv6GOGEPnuTMlIZuA3m4crMutp/jAOIs3EMRUOEELBI8FGOnKJuIq4cPEBHMehqKgIkyZNgkZDL858RCNxdhI+AP0XO2mUQFmREWXFxqh28aydrb1bsHU2GXRJCd7MV6QD9oNWV8SFCXOfrKkswIzxVfB4eWyJkaeSrODM8hITWruG0GtxoD7BIg4InUk494QGXHpK5N54psRVlZrQ1W8P6+xJELmInCiYXMbvTGmWdR2K1wE3FoWmyA6VbrlKnO9583h97ZSkxAUgzsQ51Dc28WfEkQoXD5EiBthGBMfFbifONeIq4mbPni3+22azYXBwEGVlZdDraWYp3zHqhSLOITE3CRclEOsyyNrZrOI8HLVSqolWw6HQrMeQzQWL1RnxotJrCQwmTdbiRA4VviJOrTyXQ52DAV8b9dqoC9OuPuH3jqkvRVe/nYxNiLxAbhRMLqPU1CRZ2VRi4HeYLgCX3LDvEGMTFpKcX4vfSCSznbLfIlwzyJkyPiIZm0hbgvNtsz/ud+369etxwQUX4Mgjj8RPfvITNDY24he/+AXWrFmj5vkRWYY/8Fv4AGRzAcELf2aBURRkuVxRYsq4eIFcxW9uErktsG9QeN6YO2Q6gzPLVHSoBIAWX2h3ebHQWtrZa4t2uKjEja0XAnwtQ9ROSeQ2kT6/Wet0PAYd2Yi/iJM3D5esbCqmxDXt6sKmXV0BZlKiO6XMdkrR2CRCSHK+kkxjk17f9ZSUuPiI1U4ZrZUyV4nrL/7uu+/wq1/9ChaLBUuWLMGf/vQnXHfddejr68OVV16JjRs3qn2eRJZglGTFyZkLMBq0+J9r54kfar++4PCA3V02E0dFnPqIMQNRDDr6BgLbP9IZnFmhYlYc4FfiGscLLpTBM29SeJ5HVz8r4koBRH/cshGPl8emXV344ruDIQtEIv9QGgWTyygt4uJ1wI3G6qYWfLu1DQDw+XcHsfSxVQFOl2I7ZYwijnUbMOVODEkmJQ6AZCM6Ce2U/YM+Z0pS4uKCKXHWECWOvYbzbyMirpXxgw8+iKOOOgrPPPMMtFr/g3bDDTdg8eLFWLZsGZ599lnVTpLIHtgHoMPpkdV6191vh5bjML2hEl//0IJ9rQM4akqN+H0rKXFJo9gcOWaA0RvUw5/O4EylamA0XG4POnqFhVnjuEp8sbEVHVGUuP5BJ1xuLzhOCO8FcisnjlrmiGDS2TqdabT3CKq93CIuXgfcSMhxupTdTikqcYE5caTECSTT2ETMiCMlLi6kM3E8z4utk6ydMly8QK4T19bLpk2bcNlllwUUcACg0WhwySWXoKmpSZWTI7IP1k/ucHoUtd6NG1EGANh9sC/gezaaiUsasWIGAP9Fp7xI2FVOZ3CmqMSpUMS1dg2B54UL9oSRgrLW2WePmG/IWinLi43iBdjm8IgtTNkMtcwR4Uhn63SmoVSJA9TLppKriDI1ImZOHHOnFNspSYmTwly1kxH2zdwpaSYuPlg7pdvDwyFxpBTV5Dxsp4xrZVxYWAi3O/wL3O12i3EDRP5hlMzE1VbKGwKvKDGhuFAoKPYc6g/4HrVTJo8i30xcNJfFPl+4dlmJ/6LDFifByk00e341KC9Wr53ykG8ebnh1ISpLTeA4Yaakb9ARthWUtVpWlZlRYNKD4wCeF7Li2HllI8myQieyn3S2TmcSNodbbIOTe01jqJFNJVcRZYVmrGKM5cSxNlhRicvDVrRwJHMmTlTiqIiLC4OOg0bDwevlMWRziaIB28DIRzU5rpXxzJkz8eSTT+K4446D2WwWb7darXjyySdx1FFHqXaCRHbhL+I8ilrvWGtaS9cQrHYXCnwD3FaHoBJREac+TImLZmzSG+Gik47gzHJfIdlrSXznv8U3D1dfXQSdVoOSAi36hzxo77aGXZR2SYo4rYZDoUmPQZsLg1ZXVhdx1DJHRCKdrdOZRIevOCoy6wOiWeSSaDaVXKWTjR7EihgIVuLEeaI8VDHCYRbdKSPPxMUbuSFGDFARFxccx6HQpIPF6sKQzYXKUqH+8G9E5N9rOK6V8c0334xzzjkHCxYswPHHH4/q6mp0dnbi888/h91ux1//+le1z5PIEqTulErmAkqLjGL+1t6WAUzzLQz87ZQUX6E2orFJBCXO4fLA6lNCy8MUNqkOzmTFVf+gM2JAuVyYqclwX95cWaGviOu1YsrYipDjpUUcIBTAg754hmyGWuaISGg1HC5YMBGPvR15PCJZrdOZRJsvq7SmUn4rpZrIVTp1vuchljslU+LEsG9X/i6AwyHmxEVQ4hKZH6acuMQpEIs4//OTz0pcXO/a0aNH47XXXsPs2bPxxRdf4JlnnsEXX3yB2bNn4/XXX8fkyZPVPk8iS5DOxAGCYjNjXOhObbi5gIbhZQCA3Yf6xNuonTJ5xIoYYK0fOq0GhRkwk1hcYBAXjNGC4uXQ0iUszFhoeHmR8PcxA4NgWBFX7SviimTEM2QD1DJHRIO9T4Jb9JTOdWUz8czDqYlcp8sis7ApF1OJ0/iMTXztlC53/i6Aw8Fm4sLlxCUyP2x3uMV1UWmRQcUzzi/YWmRI4lDp34jIv9dw3Cuz8ePH48EHH1TxVIhcwCRppwQEJW1ncx8A4OqzpqOk0Bix/WDciFJ8u7UNuw/65+LInTJ5FMdQ4tg8XHmJMSMCNDUaDmXFRnT329FrsYuqWDz4lThhxqWs0FfEdVvDHt8ZRokDos8TZgPUMkdEwmp34ZO1+wEAty+ahXc+341Nu7twyrwxuPrsxpxX4BhKg77VRm5HyxcbDwKQYWyiC2qnJHfKAMwRwr4TnR9mKpxBr6X1TAKwrqxBm7SIYxsR+acmy34ltbQocyirr8/9HToiFH9OnPAB+M2mFtidHtRVFeK0YxuiFgMNwwWXQKm5CYV9J49YalKkebh0Ul4iFBy9A/ErcUM2l6jk1VcVAbwLZYXCAobFDgTDMuKqgpS4aM6e2YDaVuhE7vDpugOwOdwYMawIR06uwebd3di0uws6nSavXg/pVuIAeWZSK9c1A5ARMeB77sSIAbYApnZKANJ2ysCZuETnh/3zcIaM2BTNVkQlTlLE5bOaLHtlfOKJJyp64W3bti2uEyKyGzEnzndhYBeWBUeNjPn6YUVcc7sFTpcHBr1WbKekiAH1ia3E+eIFMsi4Q42suJYuQYUrKzai0KyH1eqStFOGFnEeLy9evKuDlLhcyIpjC8T/fXEdghMWLv355LxomSMC8Xh5vP/VXgDAGcc1QKPhMKxceO13RslTzEUyoYgD/GZS325pxV3PC5su9/3mJ6jwtVoyZS1m2HdwxICb5cvl3wI4HGZJO6U0iyzR+WHKiFOHAnNoEedw5a+aLHtlfNdddwUswj0eD/7whz/ghhtuwPDhw5NyckT2IQ377uixYtPuLgDACUeOjPmz1WVmFBcYYLE6sb9tABNGlpMSl0SYmjRkd8Hj5UN213sz8KIjZsUlMBPnjxcoEm9jSlxnry3kseizCPlxQjun8PvlxDNkE4dPrBYLuBvOPwxrNrdh/bZ2bNrdjQsWpvfciNSzYVs7WruHUGjWi5/d1eVCEdMZQa3ORXieVxz0nUy0Gg5Hz6jHmLoS7GsdwJa93TjucGH95S/GYrlT+oxNgtwp87EVLRxsrt/j5eH2eMXiNtH5YcqIU4cCYxQlLg/VZNkr43POOSfga1bEnXDCCZg2bZrqJ0ZkJ2LEgMON/2xoBs8DjeOrMEzGBZDjOIwbXorvd3Ziz6F+TBhZ7p+JIyVOddggPM8L8y9MXWKIM3EZVMSJWXGJKHEsXqDKP+NSbNZCq+Xg8fDo7rdhWLn/9crm4SpKTGJxJyeeIZs40G4BIPyNJ88dg8MmVGPjjx34fkcntu7txtSxNBOXDzDr9Oc/2AoAOHnOKNHoodqnxHXkkRI3MOSEzWc1nwlFHKNxfBX2tQ5g064usYiTq8Sx77N2SlLiAmEb0QBgtbtRWiR8nej8MGXEqUOhyb/5zHCQOyVBqIN/Js6Dz9b7WilnxVbhGKylcrdvLo7cKZOHXqeB2df/H05RykwlLvF2yuB4AUAwTan2tSUFt1QGO1MCfmfPXFHi9rcKRdyo2mIAQqjxglmjAAB//3g7Nu3qwhffHcSmXV2iqx2RW6xuasHiOz/B0sdWodlX1P9nw0HRcY8pcQNDTnHmOddhnwUVJcaMWiA2+maumnZ1ircxNSJ22LevndLLjE1IiZOi1WrE59oumYtj88PRiDY/TPEC6sDaKaXGJq48jsnIv7+YSCpsF2v3wT60dA3BZNDi6BnyZ2rGjfCZm/gcKsWcOCPlxCWDoiiKUibOxLF2xkQiBqRB31JEpSFCESd1wxQz9mw5osS1DQAARteWiLedv2ACNBzww84uLH1sFe59ZQOWPrYKi+/8JKqVNpF9RLJO77U4ROv0IrNenE3Ol7m4dDtTRmLauCpoOKE1vNtnuuT2KWuxcuJYO6Xf2CR/F8CRYJubwQ6VbH44uFCLFbnh8fLY1yp8xlp94wtEfIQzNiEljiBUguV0MNvio2fUKVLRmBK3t3UAdqdbbBGhdsrkUGyObG6SiTuHohJniU+J43leMhMXuDBjxg3BSlxwvADgf9xywdgEAA60CcrLaJ8SBwguseHWGnIykYjsQa51usfLi2o0e0/kMh4vjx92CkqXQa/JqIV3kVmPhhFlAICmXcLcOVPiYuXEaX05cS7R2IQpePm3AI4Em4sLF/g9r7FeHBsBgJmTqvH0HT+NWMAxhXvz7m4AwAer9tFGWAKwdkqrPVzEQP69hqmII1RjdVML/velQKvyDds7FH1Y1VcVwWzUwunyYJcvXw4AzIb8e3OmgmhW+WwmLpOKuHJmbDLgAM8rX1T1WRywOdzgOKCuKrCIYwvUSO2UVWV+RTKTIgY8Xj7hdsf9TImrKxHvU+7CnshulFin54u5CVt4f7xGyMn7YWdXxi28G8cJLZWbWBHHlDiZxiYe0diEOfvRcpBhjhL4bXe4YbX7b7c7PRFbKBMJByfCUxA2YiB/X8Oy5Y0VK1YEfO31esFxHD7//HPs3Lkz5Pizzjor0XMjsgj2YRXMwJATd7+wLmqrgRSNhsOYulJs29eDLXuEnSuDXiv28RPqEskq3+5wiwP9mWVsIpyL2+OFxepCSaEhxk8EwubhhpUXhOw8DytXMhMn/N4hW3hnz1SxuqklJDuqstSEq8+aITsaYGDIKc4/jqwRlLhEM5GI7EGJdXqqzU2Y0UrPgB0VJSZMbahM+nst0rWMLbzlXsuSzYzxVXj78134wVfEud0yjU3EsG9mbEJKXDBsLIRdA6V0B71fWruGwt5HouHgRHj87ZT+Qjqf2yllF3G33XZb2NuXLVsWchvHcVTE5RFqf1iNGy4Ucaz9gDLikkckRYm1Uhp0mowyldHrtCgu0MNidaHXYo+jiAuNF2BUR2inDDcTx4xNAKGQU3oeaqDWYpPNww2rKBCf60QzkYjsQYl1+rAUKnFqbFAoJZsW3lPHVkCr4dDRY0V7j1V2xABrpxSVuDxWMSLBHFnDGfiwGcSyYiP6LA70+ro7gq+TtBGWHArMwrV30OYSc/xEJS4PNyJkr85WrlyZzPMgshi1P6yYucm2/T0AyJkymURS4kQ75BJTzJD2VFNeYhKKuAF7gBGHHPymJqFGBcN8RVpPvw0utxd6nQYut1dUqaRFnFarQYFJB6vdjUGrM+VFnJqLzf1h5uESzUQisgcl1umsaE+2EpcuNSybFt4FJj0mjCzD9v292LSrU0HEQGBOnN/ZL/8WwJGI1k7JXh+jaorh8fCwWJ1o6x7C2PrSgONoIyw5MCXO7fHC6fbCqNdKlLj824iQ/RcPHz5c0X9E/qD2h1XD8DIAQmA4QEVcMolkld/LMuIyMNOGtVT2DCh3qAwXL8AoLTLAoNPAy/vVt54BO3heWBiVFgY+FqJDZRrMTZQsNmPB5uFG1fiLOLawj0a0TCQie1BinS4qcUk0NknnPGa2LbwbJ1QDAH7Y1SVfidMGtlOyBXCsn8snorZT+j53K0tNYtZoS5iWStoISw4mgxZsX5LNxblYEZeHGxH0riUSRu0Pq5E1xQG7idROmTz8hUhQO2UGZsQxmLlJXxwOlS1d4eMFAKENnIXSt/cIF2WpqYkmSNEqTqO5iZqLTdGZss6vaiaaiURkF/Ma63HBwokhtwdbp7OW4+4+W9JMbdTcoFBKti28peYmSpU4jzfQnTIf54kiwdopbeGUON81obLULJpjhZuLo42w5MBxHAp9LZWsiPOb8+Tfa5iKOCJh1P6w0us0GF3nVwVIiUserBAJbqfMxKBvRoUvK06pEufx8uLFNpwSBwA1YhEnXKjDxQsw0hkzoNZik+f5sBlxgD8TKfi9HSsTichO2GfB9IZK3HLxkbjrumNCrNPLS0zQajh4vDx6k6RGpVMNy7aF9+SxFdBpNQFFb6yIAV2QEueficu/BXAkzIYoM3G+111VqSlqEUcbYckjpIhj5jzUTkkQyknGh9VYiSrgcHrIyjxJxFLiMinom+GPGVC2iOvstcLt4aHXacIWZYC0iAtW4kKPT2fMgFqLzV6LAxarCxoOGDEstLCd11iPZ/5wEg6bKOz4/2zu6KiZSET2whTZGeOrMH/mCMwYXxXyma3VcKgsYw6VyTE3Sacalm0Lb6Nei8ljygNuix0x4Dc24Xle0opGy0EGy6UNq8T5jE0qYihxgH8jLPjlQhthiVEoMTcB/DlxxjzciKB3LaEKau7ar25qwTeb28Svm3ZlXkZPriAam9jCz8RlohJX6jMR2dsyoCgXjc3D1VUVRlyEsSKuw6fEhYsXYEQyhUkFai0297cKKlxdVWHEnXithsPoGmFTpdCsz5gFLKEuB9qFIm6kZDYyHMN8LZWdSTI3Sbcaxq5lwWZFmbrwZi2VjG37eqJ+JrL3r9vjhcfLgx2qz8MFcCRY2Lc9xkycv4gbjHhfh02oFh/jG84/LKzCTSiDBX77lTh586C5SMJ9ahaLBR0dHRg5ciS0Wi20WvogyFfmNdZjzvS6hHJ9siWjJ1eQznUxu15AqsRlVhG3uqkFT7+3GQDQ3GHB0sdWybYdj2ZqwqipEC7KSpS4gTQUcYDwfps9tQbfbm0PuL2k0IDrzztMXryAb+E+KobLZ3FheMWWyA14nkczey3EKOKqk6zEsQ2KcNcBRrLVMPbeufuFdairLMSvLzg8JRl18RA8q/v/Hl8d9TNR2k7JFAyAlDgpZqOwjg1up/R4vGIHSFWZWXw9dPXb4XB5wipB+3wbZVVlZpw8d0wSzzp/ENsp7cK6hZS4OFi7di3OP/98zJ49G6effjp27tyJm2++GX/729/UPD8iy9BquKjtONFIpytZvsLaKb1ePqB1JBNn4liBPzAUWDSxAj+WUtviy4hjjmLhGFYRmBXX1R9lJk5U4tJX2AzZhefs3BPG47AJwo787Kk1sjc6mBIXK6qhOI1OnETy6Rmww2p3Q6PhwsZvSEmFQyVTwypKAj9/UqmGsd396nKz4mtZqljd1IKXP9oecnu0z0Q2M+fxeEVHSyA/VYxIMCUuuJ2yb9ABLy8UzqVFRpQUGkTL+7YILZWsiBtTpywOh4hMkWQmzu3hweexmhzXu/abb77B4sWLYTKZcMstt4D3PYKTJ0/Giy++iOeee07VkyTyg3S6kuUrRr1W3IGVqiws7DtTZuLUKPCVKHG9FgccLk+Mdsrw8QypwuPlsftgHwDghKNG4hcLJwEA1mxuC1icRYPNQY2qja6+lPiKuOACOlvweHls2duDTfus2LI3ertZPsJeB/VVhdDHsOmuTnI7JWNeYz3+fNXR4te1lQUpbUNz+FQYtqDPNOL9TBTbKb286Oqn12kyLg80nZgjhH2z9UlFsRFaDQeO48SWynAxA4B/o2xsPRVxaiE1NpGqyUYyNpHHgw8+iAULFuCll17CokWLxCLu2muvxZVXXok33nhD1ZMk8oNsy+jJFYLzzmwOt5jRlylKnBoFvj/oO3IRV1ygFy/ghzoG0T8oPCbh2ynTq8Qd7LDA7vTAZNBixLBiTG2oRFmxEYM2F37Y2Rnz53mex4F2psRFL+KKC9NbsCbC6qYWLL7zE/z3sxvw1uoe/PezG2jGNgi583AAUM2UuCS1U0qRvt6cLm9K1TC77zPQZMzM3f14PxPFdkq31x8vQCpcAOw5D86JY6YmlaX+60FdlXA9iWRuQkqc+hSY/MYmzJmS42LHa+Qicf3F27Ztw7nnngsAIbs3xxxzDA4dOpT4mRF5R7Zl9OQKwTEDzNTEaNBmTLxDIgW+x8tjw/Z2dPiUg7rKyO1iHMeJ5iZb9wqLH6NBK7ZvSEl3i+HOA30AgHEjyqDVcNBqOBzjUym+/iH2Z3Bnrw02hwc6LRe1sAXSa+KSCKwFN3ixK7cFN1+QOw8HSGfibOIGbrLot/hfbwNDjqT/Pil2R2YrcfF+JmrFnDjeH/Sdh21o0TBFiBjo6vOZmpT51yCiuUl3aBHn9fJiETeaijjVKDQLz4+gxDE1WZuXanJcRVxxcTE6O8Pv9La2tqK4OPaFgCCCSbcrWb4SHDOQiaYm8Rb4TIX581NrxNtueuiLqIt3VsRt8e1gV5Waw14c0hkxAAA7m3sBABNGlom3HXuYUMSt2dQas6Vyvy8fbnh1UcwdTGZsMjDkSulCOhFoxlY+rJ1SnhInFHE2h1ucyUwWrK0bEIw4rEn+fVJEJc6QmQVOvJ+J0vc6c18kJS4Qtnlpswe3U4ZR4iojO1R29Fphc7ih02qitvETymCbqla7W2ynzNfXcFx/9YIFC/DAAw9g0yb/BZLjOLS1teHxxx/H8ccfr9b5EXlEtmX05AqhSpzP1KQoc4q4eAr8eFWYYUFFXLh5OMCvTg3ZnPCmoRDY2dwHAJg40p8TNWVsJSpKjBiyu/H9jo6oP7/ft3CPZWoC+Gfi3B6vuLjNdGjGVh4BzpQx2moBQaVg9vvJbqnslxRx4b5OJkyFMWZoERfvpqe0iGPGHbHmIPONSEocC/quLAmjxIVpp2Qq3Kia4rxs9UsW0ogBsYjLUzU5rlfVzTffjMrKSlxwwQViwXbTTTfhZz/7GTiOw0033aTmORJ5hJp5c4Q8iiMpcRnUtqq0wE9EhWFKHCtmIwWDs91ALw9Yw4TCJhOX24u9LcICYcKoMvF2rYYT3yNf/xC9VfCAT4kbVRd74W40aMVFiCVLzE1oxlYevRYHBm1C4LtctSDZWXGMvpAiLnWvPYeoxGVmO2W8m546rf9rVsQZ8tAQIhos7Nvt4QM6GnokGXEM5nbc2WcTZwwZzNRkDJmaqIo07Ju1U+ZjvAAQZ05caWkp3njjDaxYsQJr1qxBX18fiouLcemll+Kcc86B2Rx+0UMQclAjb46QT7CxiRj0nUFKHOAv8J9csSlAYakqM+OqM6cHFPhKVJhx9QUBt7MiTnr/4TDotTAatHA4PRi0OsPOzSWLfa39cHu8KC4whJzvsYcNx/tf78Xaza1wuT0Rd9mZEjeqJvYCg+M4lBTq0TPgwIDVKaqVmQzN2Mqj2fc6qK2MHPgeTHV5AXYd7E9aVhwjRIkbSqUSl9ntlICyz0SGVuMv2Kx2YePOQEpcANLn3O50Q68TrpHMrbhSck0oKzbCbNTC5vCgrdsa0JK8l0xNkoI0J44Zm+jzdCMi7i0mg8GACy64ABdccIGa50MQAPx5c0Ty8bdTZu5MHIMV+Bu2teN/nl0LAHj4puPFmS2GEhUm3iIOAIrNejicHlisTtRGMUxRG9ZKOWFkWci83pQxFagoMaFnwI53vtiNmvKCkI0Qj5fHQV8L3WgZShwgKLY9A46sUeJYu1m0Yp5mbJU5UzJSFTPAlDcNJyjeqVTi/O2UmanEMZRuemo0nPh4iu2UeboAjoROq4Fep4HL7YXN4UZxgQE8z/vbKSVKHMdxqKsswp6WfrR2DwW8j/a1UBGXDMJFDORrO2Vcn07Lly+P+D2NRoOCggKMHj0axxxzDAwGQ8RjCYJIP8FKXF8GBn1L0Wo4zJ5Wi4oSI3oGHGjtHgop4hJRYViYMSPSTBwgPHZd/faUm5vsOBBqasLQaDg0DC9Fz4AdL/1rm3h7ZakJV581A/Ma69HePQSn2wuDXitm48WCPcbZEjPA2s3ufmFdxGNoxhaK5uEY1WXCeyTZShxrp6ytLERL11BKZ+JYO6U5QyMGpCjd9NRpNXD6ChSAlLhwmAw6uNxO0aV0yO6P3pEamwDCXNyelv6AuTi70y2anVARpy6s68Xl9mLIxtTk/NyIiKuIe++999DW1gan0wmdToeysjL09fXB7XaD4zjRvWz8+PF48cUXUVFRoepJEwShHqISZwtU4soyJOg7EiOGFaNnwIHmdgsmjioP+J4SFcZhD1QTCs16FJp0ovNez4ANHi8fdrGfLut9qRIXzOqmFqzf1h5yOzN0uX3RLDDxblRNkewiRpydzBIlDhBUihnjKrFpd6B5icmoxe8unEkztvArcXLiBRjiTFxfspU44bNoVG2xUMSltJ0ysyMGEkGr1QBur+j2qc/TBXA0zEYtLFZ/Wy1zpiwu0IfMX4UzN2lut8DLA6VFhozdEM1WTAadqCb3DAifCfmqxMX1zr3xxhthMBhw//33o6mpCV9//TU2bdqE5cuXo7y8HA8++CD++c9/guM43H///WqfM0EQKlJsDj8Tl4ntlFJGDBNMGA52hFo7J+J0urqpBXaXf0D9ode+jxgOnY6YAZvDLbZCTggqXuUYujy5YhPWbGkDIBRmci32mSPhQJoiFeLB7nRj18F+AMCvTpmIuZOE10yRWY+jZ9Sl89QyAp7//+3deXxTddY/8E+Spvu+U/adYlsoUtZBEJVnHkURcH6jDzhuIIoDiiKg8qCOIo4WURBQVESfwQEFxEFxwwWRClIWi7YsBQqF0n1fkjbJ/f2R3NumTds0TdLc5PN+vXxJk9v0295sJ+d8zxGkBje2lVM6LhNX36CXgoxepg6qlU4spxQHPbtqd8rOEJubiA2ZPLUpRFt8xTEDpr9RiTgjLqRlZYalIK5pKaUnzi9zJKVSIQ38Ft+veGo22aYgbt26dXjsscdw8803Q2naJKtQKHDjjTdi4cKFeOONNzBw4EA89NBD2L9/v10XTET2FdhkxIAgCC5fTikS33SK5WDNiZv+mw8sb6vTqTiWQK83D2xaG0sgBjbOzMSdu1wOg2Asj2xeDmpNQ5eSCg2+P5ILADh+pqjVALW5rh5ubosjfxSgTqtDdLg//mt0L9wwLAQ+3ioUl2ukbKYnq6iuR1VtAxQKoHu09XOsxJLj0kpti4589lwbYAw4xA6Azi2nFDNx7vfmUGXqNCvOQeOeuJb8xDEDYhBnysSFWxjrYDGIyxeDuBCHrtNTifviyqRMnGfeh236ra9evYrevXtbvK579+64cuUKACAmJgYVFRW2r46IHK7piIFajQ71ppbKrh7EtZWJE4nldABw/cgeeOnh8Xj3mZssBnAGG8YSiLX5zszEtVVKaUu7/Pbm5onkWE75/VFjsHr9iB5QKhVQeymQPNC4d8iawNXdiR+AxIYHdKhsMDjAWypfKi53zIgGMWALCfRBiKlTrnMbm7j2iIHO8DJVIHBPXOt8TXshpUychRlxIvFDhoKyWuj0xtdPNjVxLCmIEzNxHppNtimIGzBgAD755BOL1+3YsQN9+/YFAOTk5CA6Otqq2ywoKMDgwYNb/Ldr1y4AQFZWFmbPno3hw4dj8uTJ+PDDD82+32AwYO3atZgwYQKGDx+OuXPnIjc31+wYZ9wGkdyImbgGnQEFpcbyKD8flcu/eekRbczE5ZfUSC+cluSYWqjflNIbiQMiW90DlnWxrMPDobsiO9UYxIW1uK4z7fJbm5snCg4w3k8qZZKJq6jW4thp48DziSN6SJePvsb4mpR28qq0f9tT2VJKCRgrb8SGP45qblJuFsQZH2ddMWLALcspTXvg2J2ydeLrX520J8742mCpW3FYkC+81SoYDAIKy2ohCII0x5Mz4hwjkEEcABuDuAULFuC7777D9OnTsXHjRnz88cfYsGEDZsyYgX379mHhwoXIzMzEq6++iilTplh1m6dOnYKPjw8OHDiAn3/+Wfrv5ptvRllZGe677z706tULO3fuxCOPPILU1FTs3LlT+v4NGzbgo48+wgsvvIBt27bBYDBgzpw5qK837fNx0m0QyY2fj5cU2IifzLt6UxPAWE7o56OC3iCYlbE0VVPXgEJTYNrei6lYRtqeptmuQKmxiTMzca13phQbutiieYDanNwycQdOXIHBIGBAz1CzICV5UCTUXkpcLa5BjmmOk6dqHC9gfSmlyNEDv8VMXGigD0ICGjNxzgi8DQZBal3u6h9m2UKcFVen5Zy41ogDv8VySmlGnIXnV6VSgW4RxhLjq8U1KKvSoqq2HkpFxxoGkfValFN6aHMem37rSZMm4b333oO/vz/efPNNrFixAhs2bEBQUBA++OAD3HDDDcjPz8ctt9yCxx57zKrbPHPmDPr06YPo6GhERUVJ//n6+uLjjz+GWq3GP/7xD/Tv3x8zZ87Evffei02bNgEA6uvrsXnzZixcuBCTJk3CkCFDsGbNGuTn5+Obb74BAKfcBpEcKRQK6Q26FMS52KBvSxQKBbqbsnGXCy3vi7toyjREhvhKv2NrrC0fbZrtCpIamzgnsKmsqUd+iTEotRTEWdPQpS1tlWPKbcTAj0cvAzCWUjbl5+OFEYNN2biMq05flyvJLTCWIndkvIAoyrQvzlHNTRrLKb0RbMrE6fSNbfEdSduksZE77omTGptoxHJKz3wD3Jbme+JKK1pvbAKY74sTSynjogI9NkPkaAG+5l21PfXvbPMjd8yYMdi6dSuOHz+OAwcOICMjAx988AFGjhwJAJg8eTJWrFhh9Zy406dPo3///havS09Px6hRo+Dl1fiJ2JgxY5CTk4Pi4mKcOnUKNTU1GDt2rHR9cHAwhg4diiNHjjjtNojkSiypzDUFQ2HBrh/EAUBP07448c1oc2KmpU9c+5vL43uHtZvFaj4cWhoxUOecwCbbVErZLTJAygI2JzZ0sSUj11Y5ZtO9k67uSlE1Tl8qg1KpwITk7i2uH5dk7EyZdtKz98VJM+JiOl7y5egxA+Wm/W8hgT7w9faSgqlyJzQ3EccLKBTu+eZQamwilVO63+/YWVJ3SrGcsrL1TBwAdIs0vhYZM/zGXhDcD+c4YiZO5KkfRNhcJ6DVanH69GnU1xvLG3JycmAwGFBXV4f09HQsXry4Q7d35swZhIWFYdasWbhw4QJ69+6Nhx9+GNdddx3y8/MxaNAgs+PFvXZXr15Ffr6xXXa3bt1aHCNe54zbiIy0ftgmkSuRYyYOaNwX11omriOby5U2DId29oiBtkopmxqXFIfRCd2Qeb4EpZUahAb6YM22Y1bNzWuN2Imzpq4Ber1BeiPoSvQGAZnnS7DnwHkAwLCBkQizUBo8amgsvFQKXMqvQm5BVYf3hLmDimqtFBD16EBnSpE4ZsBRe+KallMCQHCgDzSltaisrkecg19qNeJ4AbUKSjccBq9uFsR56hvgtviZPjTQaHVo0OmlpjrtZeLyimukagXuh3OcAF/z8MUdP2yxhk1B3OHDh/Hoo4+22nkyICCgQ0GcTqfD+fPnMWDAACxbtgyBgYH44osv8OCDD+L999+HRqNpkdHz8TE+sWu1WtTVGT8hsXSMuEZn3IYtBEFAba3jZu2QbcT7g/h/d+fvY3wRzysy7i0L9FXJ4n4ZHWp8PF7Mr7S43nNXjEFPXIRPq79P03M9fEAoHr8zCVv2npaGiAJARIgP7vnvwRg+INTsdrwUxjd7VbX1qKmpcdg8IINBQNbFMhzMMHb+7RXjb9X56R/nj/5xxrK3e/57EF7bltHqsX/788AWg8+bUgqNzWOKSiuloM5VHP6joMV5O3upDD8cuYDR18SYnWc/Pz8k9AvHibMl2H/0ImZM6tdVy+4yZy8ZHxtRob4w6OtR28Ey2WA/43NGYWmtQ54rSitMTZa8FaitrUWQnxcKARSWVKJXdNtZ5s4+f5dXGjP7Pmp5PA92lEJh3FcoNm8RBL0sf09Hvk4rlcbnu+paLa4UlAMwDkVXoQG1tS1LesMDjUFEXlGVNDw9LtxXln9XV9T8XKubRy8yvQ9bIgiC1e8lbAri1qxZg7CwMLzwwgv4z3/+A6VSiRkzZuCnn37Cv//9b7zzzjsduj0vLy8cPnwYKpUKvr7GJ+eEhAScPXsW7733Hnx9faXmIiIxaPL395e+p76+Xvq3eIyfn/FTE2fchi0aGhqQlZVl0/eS4+Xk5HT1EpxCV2988hO7E9ZWlyAry3md4GylqTRmwC4XVCEzM9Psic8gCFImTldThKys8jZvSzzXwUrg7zdH4mKRFtV1BgT6KdE7ygdKZSmyskrNvkccx6DXC/jtZCZ8HNDlLTO3Dl8dLUdlbeM+nV0/nEN9TSmG9rT8qbAlwUrg/02IaHFbwf4q/PnaUARb+P2a81EroG0QcOLkKUSFqNs81pkyc+vw8YGWTVmq63R4bVsG/t+ECOlvJZ7nnmEGnADwzeEc6OrKmpxn98u8WJJ+1hiohPrDpteg8mrjG9nCslr8kZkJpZ0/wCgoNj52K0rzkZVVAaVgfO09fe4SAtB6A56mbH3+zi0yPvcpoHfL12dNsw9rigvzkZVluZpBDhzxOl1eYnx8FJWU4VjGaQBAoK8Cp06dsnh8dY3x8ZBf2hhI1FfnIyuLW23sSTzXFaXmzcxKiguQlWW5wZkcWbsVzaYg7vTp03jxxRdx0003oaqqCtu2bcPEiRMxceJENDQ0YOPGjR1u9hEQENDisoEDB+Lnn39GbGwsCgsLza4Tv46JiYFOp5Mu69Wrl9kxgwcPBgCn3IYt1Go1BgwYYNP3kuPU1dUhJycHffr0kYJ4d3Yk5zR+u3BJ+jp+QG/Ex1s3HqQrDdQZsPHLQtTrBMT26Ge2p6uwrA71uivwUikwflQCvFop/2vtXF9jxc8XBAHqXflo0BnQo1c/i+2nO+PwHwX4+EDL7Fmt1oCPD5Tg8TuTMPoa65974uOB6Tcas3rlVVqEBvkgvneY1YFLaGAJCsrqEN2tF4b0DrX65zqSwSBg7ecH2jzmu4xq/Hn8EFy6dFE6zwV1VwCUoaxaj51pxuA1PNgH9948uEN/U7k6dP4UgHIM6ReD+PhB7R7fnE5vgGJPPvQGoHuv/nYvwa7/vAgAkBDfH/27hyAu6w+czctDQHAE4uP7tvm9nX3+bvAuAVCEoAA/xMfH27J8lxb8ax1Q0PghXe9ePRAfH9uFK7KNI1+ni+uvAkfKofbxR3B4LIAixEYGtXp/MBgEeH1eAJ3e+EGon48Xxlyb4LDqDE/T/FxXoxA4VCZd37tnD8THd2vjFuQjOzvb6mNtCuIMBoMUtPTu3Rtnz56Vrvuv//ovLF26tEO3d/bsWfz1r3/Fxo0bMXr0aOny33//HQMGDEB8fDy2bdsGvV4PlcqYsj506BD69u2LiIgIBAUFITAwEIcPH5YCsMrKSmRmZmL27NkAgJSUFIffhi0UCoXNWTxyPD8/P484P2HB5r9jTGSwbH7vbhEBuFJUjeJKHXrENq45/7yxDLpXTDCCg9rf82PruQ7yV6O0Ugud4GXXv5neIOCDL8+0ecyHX53Fddf2aXX2XWtSrmn5oZk1ggN9UFBWhwa96zxvncwuNiuhtKSkQoucQg2UMJ7nE9nl2PhpZovjSiu1eG1bBp66J8XiQHh3kldszMb06x5u87kMD/ZFSYUG1RogLtp+9wdBEFBRY8yyx0SGwN/fHxEhxtuv1QpWr9fm52+F8bnD31ftMvdze/JuVosWGCDv1zlHvE6HBBlvr75BQFWdseIiKiygzZ8TE+6PK6YtCVGhfvD18+/wczO1TTzX4aHmr+lyvw831ZHA36ban169euH0aWN6uW/fvqirq8P588aN5DqdDjU1HUtp9u/fH/369cM//vEPpKen49y5c1i1ahVOnDiBhx9+GDNnzkR1dTWeeeYZZGdnY9euXdiyZQvmzZsHwJh2nD17NlJTU/Hdd9/h1KlTWLRoEWJjY6U5dc64DSK5at7p0FIzCFclNmW4XGjeobKxM6VjN5cHtjE/TW8QcDK7GPuPXcbJ7OI2h2k3l3m+pMPDxx3NFccMtDUWoSlxDqDBIGDT7pNtHtve4HM5E++T5y6XA7CtqYlIHPhty/27LbUaHXR64xvnEFOGz5kDv9150DcAac+WiHPiWvKThn3rpOfh1pqaAEBaRh4Km8xMvFRQhQde/AZpGZ7dAddRApt3p/TQgfU2ZeJuvfVWpKamQhAEzJ49GwkJCXjhhRdw991346233upweaBSqcRbb72F1atX47HHHkNlZSWGDh2K999/X+oG+e6772LlypWYPn06oqKisGTJEkyfPl26jYULF0Kn02H58uXQaDRISUnBe++9B7XaeKIjIiKcchtEciTOOxNZOzPNFfSMCcLhP/KlzpqijnSm7Ayp9X6zMQNpGXnYtPukWSAWEeKLB29PtCrLY21wYu1x9hBs+l0ra1xnzEBbYxGaCg3yATRA1sUyq4PjxAHu1XHY0n1y1QdHMG+6dffJ5rd1Ps+YsfrPgfP4z4HzHbp/t0XsTOnn4wUfU9e5YNPA78pqx3+AoDWNGHDHQd8AWmSH1B76Brgtvj6N3SlLKozBWWQr4wXSMvIsdjUuqdBg1QdHPCKz72zinDiRp34QYdMz1Jw5c1BWVobffvsNs2fPxrPPPou5c+di/vz5CAwMxMaNGzt8m5GRkVi1alWr1yclJWH79u2tXq9SqfDkk0/iySef7NLbIJKjppm4AF8vWbXrbT0T55xZPeIngk3HDNjjRd3a4MTa4+zBFTNxQ/tFICLEt93xCfG9w3D6dIGUkWuPM4NjZ2jtPlla2fE3mo5+01rebLwA0PjBkjMzceIbeXfTfH8wRwy05CfOidPq28zE6a3M7I9O6MbSSjtqMSdORu9Z7MmmR+6FCxewdOlSvPrqqwCAxMRE7Nu3Dx9//DF+/PFHpKSk2HWRRORYTTNxcsrCAZaDOE29DnnFxrJuR5dTSgO/TYGNtS/q7ZWeicFJW9qb7WZvjQO/XSeIU5nm+7Vl7rQEqXmLtfdvZwbHjmav+6S9b6s1YiZOLKEEGucUVlgZhHeGRuvmmTiVeTDhqW+A2yIO+9bUN2biLD0fu2LZuyfw8/FC061jnppNtum3/p//+R/s3r3b7LLAwEAkJSUhMND2+noi6hpNSxPUXipZ7QcSB36XVmpQU2fMhl3Kr4IgGD/Jd/T+vuYDv+31om5tcOLMT3eDTb9rpYX9f11pXFIcnronpcVen8hQvxZZofjeYS4XHDuaPd9oOuNNa7mpZDKkSSZO/HdFTT0EwbHPT1Imzk33xLXIxDGIa0HMxDXoDNL9PdzC84Yrlr17AqVSAf8m71t8PPQ+bFMQp1arERYWZu+1EFEXSMvIw1MbDkpf51ytlNWG7AA/NcKDjW/wrhQZs3FSUxMHl1ICLTNx1r5Ynzhb1G5DiHFJcVh2z8gWM7gsBSfO4IrllKJxSXGICTeWO90xeSBeeng83n3mphZ/I6ULBseOZs83ms540ypm4ppmTUNM970GnQF12pbDlu1JY9oT566NTZoHcc0//CDzLKzeIEChsJydd8Wyd0/RtKTSU+/DNtUKPProo3jllVdQVVWFIUOGWGzrGRfHTZxErs5dNmT3iA5CaaUWuQVVGNQrzGmdKYHGUlQxsLH2xfrjfY3jA9pqCNGnWwgMggClUoEFfxmGmPAADO0X0SVBRlAbnTi7msEgoLDUWPY0ZXRvdItsfYyCmLlr3uQjMtQPc6cldOl9Xm8QkHm+BKWVGoQH+9rlXNvzjaYz3rSKJZNNM3G+Pl7w8VZBW69HZU292afw9qaVMnEeUk7poU0h2qL2UsJLpZDmvoUG+licNWrtnlx3yuy7ikBfNcTJzZ6aibPpGeq5556DXq9vswFIVlaWzYsiIsdzpw3ZPaIDkZFdLO2Lc1ZnSqDJiAFTOaU1L+rNtRU0HztlfJlK6BeBG0f1ttOqbePKmbiyKg3qdQYoFUBUWPuDf8clxWF0Qjf856dsbN6TiagwP7zz9E1del/vbEfT1tjzjaYz3rSWW9gTBxizcYX1dSiv1iI2wrZZh9Zw+3JKZfNySs/MYrTH19sL1aYS/dZKsMWyd0sfhorcLbPvKswycQzirPfiiy/aex1E5GQd2dvi6q3We8YY98XlFlRBEASndaYEGjNxYjmlNS/qrbEUNB8/YwzikgdH22G1ndN0xIAgCB0aSupo+SW1AIDIMH+Ln5hbolIqMDI+Fpv3ZKKmrqHLAzhHZcXt+UbTGW9aK0x74pp2pwSMw+YLy+ocPmagsZzSMzJxambiLPL1aRrEtf7BkCtn9t1ZgF/j49PHQz+IsOkZinPRiOTPnTZkN+1QWVqpQVVtA5RKhRTcOVJQs0wcYHxRHzk0BumZBR26reZBc4POgJPZxQCAES4QxImZOJ3eAG29Xurg5goKSo3dSGPDW5b3tyXSNLC6VqNDrabBoWV6rXFGVlx8o7n24xNSAyDAtjearb1p9ffxwqN3Jnf6TWtjJs48iBP3xYl75hxFLKf0c9MRA+omH3IoFICXynU+jHElTc9/e82QxMy+vUuhqXViJs54H2YQ1yH19fXYsWMH0tLSUFRUhJdeegm//vorrrnmGiQlJdlzjUTkAO60IVvsUJlfUoPs3HIAQPeoQKd0XWve2AQABEFAbr5x+Pis/xqMbpGByC2owvYm++Ba0zRozsopgaZej9AgH6dkFdvj662S9olU1ta7VBAnZuI6Wmbn5+OFAD81auoaUFxeh16xzg/inJUVH5cUh4yzRfgiLQcp8TGYPmmAzW80m75p/fm3K9ibloPgAG+MTexm8/pEFRbmxAHmHSodSePuw76bvOFVe6lcKqPuSpqe/7YycSKVUuHyVSvuxN/XeH6USgV+P1fikUGzTaFraWkpZs6ciZUrV+LixYvIyMiARqPBjz/+iLvvvhvHjx+39zqJyM5ccQ6ZrSJCfOHnYxyNkHbyKgCgr5OCHnHEQL3OAG2D8RP8nKuVKCithbeXErdPHICJI3pg2MAoq26vadAs7odLHhQlzTnrSgqFwmWbm+SXmDJxER3LxAFAlCkbV9yBfYz25MyseK5p3+j4YXFIHBDZqTc94pvWe6deAx9vFfJLa3HmUlmn1qfXG6Q9ly0ycWIQ5+BMXJ3W+Dh23+6Ujeecg75b5+fTNIhz/Q8zPUlaRh6++zUXAKDXC3h640FZddW2F5seva+88gpqamqwd+9efPrpp9LMlrVr1yIxMRFr16616yKJyP5ccQ6ZrRQKBbqbsnGHfzcGcc7oTAkYX+jFv5GYjTv0ez4A4z42MVtlS9B8/HQRANcopRS5anMTKRMX3vGGF+J5KS6vs+uarOXMrPglU4a4V6z9So39fLww5hpjBu7HY5c7dVuVtfUQBGOJlHhfEzmvnFLMxLlnENc0E8emJq1rGsRFWpGJI+cQ9w/XNhs1Iu4f9qRAzqZH7w8//IBHH30UvXv3NkvD+/j44P7778cff/xhtwUSkeOIe1uaBxddNYesM3qa9sXVaIxP7M4qPzTLTpn2xR0yBZKjr4mVjuto0FxWpcH5PGODluGDXCiIkzJxDe0c6VzinrgYGzJx4r64ki4K4pyVFa+o1kr7zXpG23e/6MQR3QEAP5/Ig15vsPl2xKYmwQHeLT5AErtVOr6c0r1HDHg1K6cky5q2rS+uqGt1nic5j8HK/cOecq5seobSarUIDQ21eJ1KpUJDg2u9uBNR69xlQ3ZcVKDZ171inLeHLNBfjfJqLapq61FYVovzVyqgVACjmgRxQOsNIQDjgOqmQfOJM8YsXL/uIWZDj7tasCkbUulCmThNvQ6llcbgxJbW85FdXE6pUipw+8T+eO8/rX8Aao+suJiFiwn3t/t+xuTB0QgO8EZ5tRa/nS3GiCG2ffBgaUacKNh0WaWDM3FiEOcR5ZTMxFmUlpGHw5n50tevbzuO//syq9PjPqhzsi6WuU1XbXuw6dGbmJiIjz76yOJ1e/bsQUJCQqcWRUTOJe5tmTiiR6f3yXSFtIw8/Oenc2aXLV1/wGllFU2bmxw2lVLG942w+EZ0XFIc3ls+BS89PB6LZ12L64Yb3xD8fq5YKk0HgGOnjfvhXKmUEmjajdN1grjCUmMppb+vlzTyoSMiu7icUhAE/GLay9n8TbVSASy5e6Rd3jheyjfOT7RnKaXIS6XEn4YZ1/jjsVybb6e8laYmTS9zZCbOYBBQ3+DemTiVkpm4tojlemKXUpEnluu5mvIq6z7AkUNXbXuwKYh79NFHcfDgQUybNg1vvPEGFAoFPv/8czz00EP46quv8Mgjj9h7nUREFokvuE1b/APOfcEVm5tU1TZYLKVsrmnQ/MC0RKi9lDh1sQyZF0oBGN9InnDB/XBA41w8V2pskl/auB/Olk57Yue54oquCeJ+OHoZmRdK4eOtwoYnb8BLD4/HY3cmI8BXDYMAs+C+My4WGDNxvWMdk6WeNKInAGM5sdjhsaMqWhkvADRmgSuqtHb7mzQnNicC3HdPHBubtM7acR+eUq7naqytSpFDV217sOnRO3LkSLz//vvw8/PDu+++C0EQsGXLFhQVFeHtt9/GmDFj7L1OIqIWXOUFV8xOXS2uwe/nSwAAoxNaD+KaCg/2xeSRxje/O74/C8DY3bK8Wgs/HxWG9Al3wIpt54rllGJnSlv2wwFNyimdmInTGwSczC7G14cuYtOnxvvwnTcNRkyEPxIHROKGlF6Ydl0/AMBnP52zS9DiiKYmTQ3pE4bocH/UafXY+d1Z7D92GSezizv0+GucEefd4joxsKvXGaSSR3sTg0+FAk4ZUdIVzBubuOfvaKuOjPsg54vvHeY2XbXtweZagZSUFGzbtg0ajQYVFRUIDAxEQEDH9yIQEdnKWfO12iNm4n48dhkGg4DesUGIiwxs57sazbh+AL49fBHpWQX45nAOTpwxDvhO6BcJtYt9Uu6KIwYKbJwRJxLfFDhr4HdaRl6LfZFKpQIxzQaV//e4vvjk+7M4c6kcp3LKEN/X9oBeEITGcsoYxwRxCoUC/buHoLC0FtuazESMCPG1ei+R2NjEUjmlr7cK3l5K1OsMqKjWmnUPtBexhM5HrXKJsR6O4MUgrlXOHPdBHac0NQhb9cGRVo+RS1dte7Dp3cHtt9+OLVu2oLi4GL6+voiJiWEAR0RO5yovuAF+xjf9YiYnpY1SSkviIgMxqFcYAGDdx7/hwIkrAIDMC6Uut//CFUcMNA76ti0T5++rRoBpcGx7Hwp0llj+2/znGAwCXvm/dLPzHRrkg0kjegAwZuM6o7xKi6raBigVQA8HBXFpGXnS3r6mOlLa3FY5pUKhaGxu4qAPEeq07j3oGzAvp3S1D4m6mjPHfZBt3KmrdmfZ9CwVFxeH1atX49VXX8WYMWNw++2346abboKvL+/UROQ8rvCCm5aRh//sP2922beHL2Jgj1CrX0zSMvJw6mLLIck1mgas+uCIS70wueKIgXzTeAFbZsSJIkP9UJNfhaLyOvR0UJBjbfnv6IRu0ifJ067rj29/vYS0jDzsP34ZEGBTB1mpM2VEgFnrdHux5XezpLyNIA4AQgO9UVxeJx1nb1o370wJNCunZGMTM+K4j7Y+zPGkcj1X5S5dtTvLpo9gNmzYgLS0NDz//PMQBAHLli3DuHHjsHTpUqSlpTlswzERUVPOmq/VGjGrUqMxD2gqquutzjy4yr4+a7nanjhBEDqdiQOACCfMirNlv03vbsHo0y0YAoDUfx1F6tajeHrjQTzw4jcdytJeLDCWUvZ20H44e+0lqmijOyXg+DEDGjcf9A1wxEBbOjrPk7qO3Ltq24PNj96goCDccccd2Lx5M3766Sc88cQTyMvLw9y5czFp0iQ7LpGIyLKufMG1V/Alt430Yiaupq6hU0Od7aW8Sov6Bj0UCiAqzPYgLjLE8bPibCn/TcvIQ87VyhbHdLT7amNTE8d0prRXaXNFG41NACBE7FBZ7ZgPEdx90DfQfNg3g7jmWK5HcmGXZ6mSkhIUFxejsrISer0eISEh9rhZIqJ2tTZAOzLUD3OnJTjsBddeTVVcZV+ftQKbzGGrrmtotezNWcQsXGSoX6fekDqjQ2VHy3/tVaIINAniHFQqao/SZk29DnVaYxDV2v0qxMGz4tx90DfAxibWYLkeyYHNQVxubi4+//xz7N27F9nZ2YiMjMTUqVPxz3/+E0OGDLHnGomI2tQVL7j2Cr5cYV9fR3iplPD39UKtRoeq2vquD+LssB8OaDLw24Gz4jq638ZeHxSYdaZ0UDmlPfYSVZqya+J9zBIpiHPYnjj3b2zS9HmRmbjWieV6RK7KpmepmTNnIjMzE76+vrjpppuwbNkyjB07Fkql8clAEASbBq4SEdnK2S+49gq+5LiRPsjf2xjEuUBzE3vshwOcsydO1cH22Pb6oKC0UoMajQ5KpQI9oq0ffdERHf3dLCmX9sN5t/oeorGc0lF74kzllD7um6FiJo7IPdj0EUxoaChefvllpKWl4ZVXXsH48eOhVCpRWFiIN998E5MnT7b3OomIXIq9mqrIcSO9K40Z6Oygb1GUkwZ+j0uKwxgLg+At7bex1wcFF02llHGRAVA7sBthZ/cSSfvhglrP7jq+nNIDMnFNG5swE0ckWzY9S7333ntmXx84cADbtm3D/v37odPp0KNHD7ssjojIVdkj8yDqqn19tgo2NTdx1KyujigoNWXiOllOKQYeNU4Y+C2e47/cMBC9Y4NbLf+1V5a2samJY0opmxJLmz/94Sw+2JuF6DA/bHr6JqseB23NiBMFmxqeOKw7pVZsbOK+GSrzxibu+3sSuTubP2oqLS3Fjh078PHHH+PKlSsIDAzE9OnTMW3aNIwcOdKeayQickn2DL7ktJFemhXnQpm4zpZTigO/azQ6lFRoHBbEVdc14NzlcgDALeP7IsLUFdMSe31QIO2Hi3FMZ8rmVEoFJiT3wAd7s4ylnoIAoP37cblpT1xr4wWaXlfusO6Uxkyc5zQ2YSaOSK46HMQdOnQI27dvx759+6DX63HttdfiypUrWL9+PUaNGuWINRIRuSx7Bl9y2UgfFGAMcLo6iKtv0EvBc2xE5zJxgHFfXE1+FYodOPD7j3PFMAhA96iANgM4UWsfFPj6qLDozhFWfVBwqcB5mThRVKgfvNUq1DfoUVBai7io9vfiWZWJM5Xy1jfoodHq4Otj37JHrQeMGGhaTslMHJF8Wf0stWXLFmzfvh0XLlxA7969MX/+fEyfPh3+/v4YNWoUG5kQkceSS/BlL65STllYZiyl9PNRSW/uOyMyxA+X8qtQ4sAOlRnZxQCApAFRVn9P0w8Kfs3Mx+795xDgq8bYxG7tfq+xM6XzgzilUoEeUYE4n1eB3IIqq4K4po1NWuPn4wW1lxINOgMqaurtHsQ1zolz3+CGmTgi92D1o/fll1+Gt7c3PvzwQ3z99dd4+OGHERsby+CNiMjDuEpjE7EzZUx4gF1ei8RZcUXljpvJJwVxAzsW9IsfFMz+73j4+ahQUqHB2dzydr+vqLwOdVodvFQKxEU6pjNla3rEGH9ebmG1VcdXVLWfiVMoFA7tUNlYTum+mTizII6ZOCLZsjqIu+WWW3Dx4kXMmzcP8+fPx7fffgudTufItRERkQuS9sTZacSA3iDgZHYx9h+7jJPZxdAbBKu+r8BO++FE4qw4R2XiKqq1yLlq3J+W2N+2zK2PWoWR8cbulgd/y2v3eDELFxcV6PSZYGJJaq6pnLM9FaZ9bu3NHgw2Xe+ITLBYTunnxiMGmn7ecbmwyurHGxG5Fqs/alq9ejWqq6uxZ88e7Nq1CwsWLEBYWBhuvPFGKBQKZuSIiDyEPTNxaRl5LfZ7RYT44sHbE9vd75Uvdqa0w344oHFWnKPGDJw8Z8zC9ekW3Kkh6eOT4nDgxBUczMjDvVOHtvn6K5VSOmiPX1vEmXRXrMzENZZTtv23kZqbVDkuE+eue+LEx5vo/c8z8Z8D5616vBGRa+nQx3KBgYG466678Mknn2DPnj2YNm0avv/+ewiCgKeffhpvvPEGsrOzHbVWIiJyAfbaE5eWkYdVHxxp0UK/pEKDVR8cQVpG25kmqTNluJ0ycQ4O4jLOivvhOrd/8toh0fBWq1BQWovzVyraPPZSgakzZaxzOlM21TPalIkrrIIgtJ3tEQTBqsYmQJMxAzWOCOKMmTh37E7Z2ccbEbkWm2srBg4ciGXLlmH//v1Yt24d+vXrh3feeQe33norbrvtNnuukYiIXEjTTFx7b85bozcIZhkBS9757Pc2S72kPXF2ysSJ5ZTFbcxl64zGpiadC+J8fbxw7ZBoAMDBdt54X+yCpiaiuKgAKBVArUZnHDXQhpq6Bulch7TR2AQAQgJMA78dMGZAoxUzce4VxNnj8UZErqXTBfJeXl646aab8NZbb+HHH3/E448/zr1yRERuLMjfOGKgQWeQ9hB1VOb5kjaHWAPGjFjm+RKL1wmCgIJSO++JM2XiauoaUKe17+tYSUUdrhRVQ6kArrFxP1xT402lbwd/y7MYSOsNAn47W4ScPGOmrme0c5uaAMb29WKp6+WCtksqxVJKf18veKvbDqDEIK/CgZk4dyun7OzjjYhcj113OUdGRmLu3LnYu3evPW+WiIhciJ+PlzQHr6rWtuYm7WVm2juusqYedVo9FAogOsw+QZy/rxr+vsY37x0tqWyvOYuYhevXIxSBfp0fJJ4yNAZqLyXyimukbJsoLSMPD7z4DZa/lQad3riOFZt+6ZJyuR6mksrLhW03N7G2qUnTYxySiXPTcsrOPt6IyPW410dNRETkcAqFAkEB3iiv0qKqth5RYe0PrW4uPNi3U8eJ++Eign3bzdx0RESIH2o1xllx1g78tqY5y0lTEDfMTvME/X3VGDE4Gof/yEdaRh76dAuW1rLqgyMtjhf3PT11T4pTG1j0jAnEr5ntjxmwtqkJAIeNGDAYBNQ3uGcmrrOPNyJyPZzySEREHdY4ZsC2bMjQfhGICGn7DWNkqB+G9ouweJ2998NJP1PcF2flrDhrm0X8Zgri7DkUflyScdj3d0cuYf+xy/jtTJHL7XsSM3HtjRlobGrS/tB2KRNn5xED2obG0mB32xPX2ccbEbkeBnFERNRhwaZsSKWNYwZUSgUevD2xzWPmTkuQyjaby7fzfjiR1KHSillx1jSL2LT7JH5Iz0VhaS2UCmBI73C7rBMAYIrFCsvqkLr1KJa/neZy+556mgZ+t1VOqTcIOHOxzPhvvdBukCl1p7RzJk4cL6BQwK7ZXVfQ2ccbEbkeBnFERNRhYnOTzsyKG5cUh/8a07vF5V4qZZtlf3qDgKwLpQAAhelre+nImAFrmkWUVGjw2r+PAQAMAvDIq9/bZW9aWkYe1mw7btP3OnPfk5iJK63Uoqau5f5Jcf/ed+m5AIAjWQV44MVv2vwbid0pNfV6KfCyB7FJj49aBaUbBjPjkuLw1D0pLTJykaF+Ti+zJaLOc6+ibyIicorOllM2N3FEd8T3Ccem3Seh0xtaLf1qvv9s35FcHD9TZLdhxWIQ115wBtgWDNljb5o1GcC2OHPfU4CfGuHBPiit1OJyYRUGN8lE2rp/z8fbGGQZDAJ+/SMf44d1t0sGyV07UzY1LikOoxO6IfN8CUorNQgP9sXQfhHMwBHJEDNxRETUYZ0tpxRlXy4HAIxNiMMt4/vh+mt7AgB2/Zjd4lhnDCuODLE+E9eZYKgze9OsyQC2piv2PTXui2tsbmLr3LK0jDzMWfktDKbLX/3X0XYzd9YSZ8S5W2fK5lRKBRIHRGLiiB5IHBDJAI5IphjEERFRh9kjE9egM+Di1UoAQP8eIQCA6ZMGAAB+OXkVecWdf9PfURGhYmOT9oM4a5pFtKYze9M6Uw7ZFfuexC6fTffF2TK3zNFBvFia6W5NTYjIPTGIIyKiDgsyZeJsnRMHABfzK6HTCwj0UyMm3NigpHdsMEbGx0AQgE9/yJZmr31+4LxTmnZEmcopq+sapMxMa6xpFtEWW4MxWzKAXbnvSRw03jQT19G5Zc4I4j2hnJKI3AefqYiIqMPskYk7d7kCgDELp1A0ZodmXD8A6VkF+OrQRXx16GKHbrOzTTv8fdXw8/FCnVaH4oo6qRSwNcMGRkGpBAyGjv8sW8sxxQxgW0FtRIgvHrtrBCqqtF2+78nSwO+Ozi3rSOauf5xtHUvdddA3EbknZuKIiKjDAv2M3SkLympxMrvYpgzIuSvlAID+3UPNLq+ssb11vD2adkSaSipLrJgVd+xUIQwGoHtUAF56eDwWz7oWL84b59CZXNZkAB+8PRHDB0a5xL6nHqYxA/klNWjQGQOljs4t62jmzhZaqZySn28TketjEEdERB2SlpGHV/4vHQBQXqXF0xsP2tRc4pypqcmAHqHSZXqDgHd2/27TuuzVtENsblJkxb64w3/kAwDGJHSTmkUMGxTl8JlccmoXHx7sC39fLxgEIK/ION+vo3PLOpq5s4VUTunDTBwRuT5+3ERERFZrry380rtHIiTQp9325Tq9ARfyzJuaAJ3rvGivph2NYwbaDuJ0egPSTxUAAEZdE2t2nRhkNR2HIN723GkJdgmy5NIuXqFQoGd0EE5fKkNuYRV6dwsGYFx/XFSAFNiJLP2NrCkhFYN4rab94NsSDTNxRCQjfKYiIiKrWNNc4tV/paNpZWVEiK/FGW65BVVo0Bng7+uF2IgA6XJbyuHsGRgBQIQ4ZqCdYDLzQglq6hoQHOBtNv9M5IwgS2wX7+q6Rwfi9KUyXC5sbG6SW1CFvKIaKBTAsr+loEFnaPVvJGbuLH2AIOpsEK+VGpswE0dEro9BHBERWcWaLFnzrXGtDW4Wm5r06x4CZZM33taWw825LQGhQT4OCYzETFx7YwbEUsqUoTGt/ny5BFmOJo4ZyC1obG7y3ZFLAICR8TFWBeCOzm7WecicOCJyDwziiIjIKp1pGvHOZ79jdEI3KdixtB8OsL5sbuqEfg4rGwwP9gEA5FytxMnsYotBoiAIOPy7MYgb3ayUkloSxwxcNo0Z0BsE/HD0MgDgxpReVt+OmN38+lAONu7MQEigN9595ia73Be0HDFARDLCxiZERGSVzjSNaD7D7dwV03iB7iFmx3W04YW9pWXkYe32EwCMa26taculgioUlNZC7aXE8EHRDlmLO5EGfhdVw2AQcPx0IUorNQjy90bK0I4FwSqlAsMHRQEA6hv0drsvaFhOSUQywiCOiIisYk1b+LY0Hdx8Pk+cERfa4riu6rwoNm0przYfcSCWhDYN5H41lVIOGxgFPx9mbtoTE+4PL5US9Q16FJbVSqWUk67tAbVXx9+KiHMK67R6NOhsGNJngdjYxIeZOCKSAT5TERGRVaxpLtEWMZN3pbAK2no9fL1ViIsKtHisszsvWtO0pWlJqLgfrnlXSrJMpVIiLioAl/KrcCqnFIdMpag3jOxp0+35+6qhUACCAFTX1SMsqPPzAcVySj+OGCAiGWAmjoiIrNZalqy92KrpDDexlLJvXEibQZnYFMQZA6utadoiloSWVWpw5lIZAGDU0BiHrcnd9DAF7Jv3/AGd3oA+3YIsZmKtoVIqEOBrHDhfXdtgl/VxxAARyQmfqYiIqEMsZckqarT454fprX5P031s2WJTk56hTlitdaxt2nLibBH2H78MQTDOtxPHEVDb0jLycPxMEQCgrMpYrlpUVoe0jDyby2OD/L1RXdeAqtp6u6xR3BPH7pREJAcM4oiIqMMstc5X3qNo0f4dAO64YaDF8QLNm5p0JWubtny874z076tFNZ0KQjxFawPiazQ6i+MnrBXorwZK7JiJ04qZOAZxROT6GMQREZFdNM/QHf79Kg78loczF8ukYwwGAedN5ZTNxwt0JWtGGzRXq+1cEOIJOrrXsCPE5ib2zsSxnJKI5IB74oiIyG6a7mO779YEKJUKZGQXS4Hb1ZIa1Gl18Far0CPaclOTrmDNaIPWvPPZ79A3n3JOADq217CjAv2Ne+Kq7LYnjuWURCQfDOKIiMghosL88CdThuqzn84BALJzywEAfeOCoVK51ktQa01b2mNrEOIJrN1raMsgeTETV22HTJzBIKC+gZk4IpIPPlMREZHDTJvYHz+duIKfjl/G326Ob3XIt6toXhKaW1CF7U32wbXGliDEE1i719CWQfKNmbjOB3FaUwAHcE8cEcmDa30MSkREbmVQrzAM7RsOnV7A+5//gfSsAgBAvzjXDOIA85LQYQOjrPoeW4IQT2DNgPim4yc6ojET1/lySnG8gEIBeKsZxBGR62MQR0REDjWkTxgAYP+xK8gtqAIA/OurU0jLyOvKZVnFkUGIJ7Bmr2HT8RMdEWTPTJy4H06tgtKB8wiJiOyFQRwRETlMWkYedv1wrsXl5dVarPrgiMsHco4MQjxFa3sNI0P9OtXZM1DsTllnj0wc98MRkbzw2YqIiBzCke3lnUkMQprPwIsM9cPcaQkcL2AFSwPih/aL6NR5D/KzX2MTcUYcO1MSkVwwiCMiIofoSHv55oPDXY0jghBPY2lAfGfYc8SAuCeOTU2ISC4YxBERkUM4sr18V7B3EEKdIzY2qalrgN4gdCqgZjklEckN98QREZFDOLK9PJGYiQOMgVxncNA3EckNgzgiInIIdnYkR/JSKeHnY8ycdXZfnFYqp2QmjojkgUEcERE5BDs7kqPZa8yAVE7pw0wcEckDgzgiInIYR7WXJwKajBnoZHMTDTNxRCQzfLYiIiKHYmdHchQxE9f5ckqxsQkzcUQkDwziiIjI4djZkRzBXpm4Os6JIyKZYTklERERyZI4ZsB+mTh+tk1E8sAgjoiIiGRJamxipxEDLKckIrlgEEdERESyFOgnllN2tjulWE7JTBwRyQODOCIiIpKlxsYmncvEieWUfhwxQEQywSCOiIiIZKmxsYl9MnHcE0dEcsEgjoiIiGTJXiMGxD1x7E5JRHLBII6IiIhkKchuw77Z2ISI5IVBHBEREclSYJNMnMEg2Hw7Gi3LKYlIXhjEERERkSyJe+IMQuPAbluwnJKI5IZBHBEREcmSj1oFb7Ux8LK1uYnBIKC+gcO+iUheGMQRERGRbEnNTWwc+K01BXAA98QRkXwwiCMiIiLZEpub2NqhUhwvoFBAyuoREbk6lwviLly4gOTkZOzatUu6LCsrC7Nnz8bw4cMxefJkfPjhh2bfYzAYsHbtWkyYMAHDhw/H3LlzkZuba3aMM26DiIiInEtsbmJrh0px0LePWgWlUmG3dREROZJLBXENDQ1YvHgxamtrpcvKyspw3333oVevXti5cyceeeQRpKamYufOndIxGzZswEcffYQXXngB27Ztg8FgwJw5c1BfX+/U2yAiIiLn6nwmjvvhiEh+XOoZa926dQgMDDS77OOPP4ZarcY//vEPeHl5oX///rh48SI2bdqEmTNnor6+Hps3b8bixYsxadIkAMCaNWswYcIEfPPNN5g6dapTboOIiIicL9Cvc5k4sZySnSmJSE5cJhN35MgRbN++HS+//LLZ5enp6Rg1ahS8vBrjzTFjxiAnJwfFxcU4deoUampqMHbsWOn64OBgDB06FEeOHHHabRAREZHzNQ78tjETJ82IYxBHRPLhEkFcZWUllixZguXLl6Nbt25m1+Xn5yM2NtbssujoaADA1atXkZ+fDwAtvi86Olq6zhm3QURERM7XOPDb1kwcyymJSH5c4hnrueeeQ3JyMm699dYW12k0Gnh7e5td5uPjAwDQarWoq6sDAIvHVFRUOO02bCUIgtkeQHIN4n1C/D+5L55rz8Dz7L58TO9kyqvqUFtb2+FzXVllfA1Weyn4eiwjfEx7Dk8614IgQKGwrsFSlwdxu3fvRnp6Ovbs2WPxel9fX6m5iEgMmvz9/eHr6wsAqK+vl/4tHuPn5+e027BVQ0MDsrKybP5+cqycnJyuXgI5Cc+1Z+B5dj/lpcbAq7Ckwuz11NpznXOpGgBQr63l67EM8THtOTzlXDdPGrWmy4O4nTt3oqSkRGooInr22Wexd+9exMbGorCw0Ow68euYmBjodDrpsl69epkdM3jwYABwym3YSq1WY8CAATZ/PzlGXV0dcnJy0KdPHymQJ/fEc+0ZeJ7dl96nFPi5FAaFGvHx8R0+1+fLLgIoR1R4KOLj4x2/YLILPqY9hyed6+zsbKuP7fIgLjU1FRqNxuyyKVOmYOHChbjtttvw2WefYdu2bdDr9VCpjJuODx06hL59+yIiIgJBQUEIDAzE4cOHpQCssrISmZmZmD17NgAgJSXF4bdhK4VC0alMHjmWn58fz4+H4Ln2DDzP7icyzLgXrlajMzu31p5rg6k9QIC/D+8bMsTHtOfwhHNtbSkl4AKNTWJiYtC7d2+z/wAgIiICMTExmDlzJqqrq/HMM88gOzsbu3btwpYtWzBv3jwAxpTj7NmzkZqaiu+++w6nTp3CokWLEBsbiylTpgCAU26DiIiInK/psG9BEDr8/VqpsQm7UxKRfHR5Jq49ERERePfdd7Fy5UpMnz4dUVFRWLJkCaZPny4ds3DhQuh0OixfvhwajQYpKSl47733oFarnXobRERE5FziiIEGnQHaBn2Hv1/sTsk5cUQkJy4ZxJ0+fdrs66SkJGzfvr3V41UqFZ588kk8+eSTrR7jjNsgIiIi5/L1VsFLpYBOL6C6tgH+1vUEkDTOiXPJt0RERBZ1eTklERERka0UCgUCOzHwW8NySiKSIQZxREREJGtBnRj4rak3ZuJ8mIkjIhlhEEdERESyFuhneyZObGzi58NMHBHJB4M4IiIikrUgqZzS9kwc98QRkZwwiCMiIiJZC5TKKW3fE8fulEQkJwziiIiISNaC2NiEiDwMgzgiIiKSNamxSV3Hyym1LKckIhliEEdERESy1pkRA3VallMSkfwwiCMiIiJZs3XEQIPOgPoGYxB34UoF9AbB7msjInIE1g4QERGRrNmSiUvLyMOmT09KX7/0wRFEhPjiwdsTMS4pzu5rJCKyJ2biiIiISNbETJy1IwbSMvKw6oMjKKnUmF1eUqHBqg+OIC0jz+5rJCKyJwZxREREJGvisG9rRgzoDQI27T7Z5jHvfPY7SyuJyKUxiCMiIiJZEzNxmno9GnSGNo/NPF+CkgpNm8cUl9ch83yJ3dZHRGRvDOKIiIhI1vx91VAojP+uaWfMQGll2wFcR48jIuoKDOKIiIhI1pRKBQL9rJsVFx7sa9VtWnscEVFXYBBHREREsid2qGwviBvaLwIRIW0HaJGhfhjaL8JuayMisjcGcURERCR71s6KUykVePD2xDaPmTstASqlwm5rIyKyNwZxREREJHuNmThdu8eOS4rDU/ektAjUIkP98NQ9KZwTR0Quj8O+iYiISPaC/BrLKWP82j9+bGI3qL2U0Nfrcd/UoRjYMwxD+0UwA0dEssAgjoiIiGRPKqdsZ0+cqKK6Hpp6PRQKYOqf+sFbrXLk8oiI7IrllERERCR71jY2EeWX1AAAIkL8GMARkewwiCMiIiLZs7axiSiv2BjExUUGOGxNRESOwiCOiIiIZE/MxLU37Ft01RTEdWMQR0QyxCCOiIiIZK+je+LEcsrYCAZxRCQ/DOKIiIhI9oI6MGIAYCaOiOSNQRwRERHJXmAHM3HcE0dEcsYgjoiIiGRPzMTVanTQG4Q2j62ua0BVbT0AICbc3+FrIyKyNwZxREREJHuBfmrp35p6Q5vH5puycKFBPvD3Vbd5LBGRK2IQR0RERLKnUinh7+sFAKhrJ4iT9sOxqQkRyRSDOCIiInIL4piB9oK4vJJqAGxqQkTyxSCOiIiI3EKgnzETl5Vbhz8ulLa6Ny6/uBYAgzgiki+vrl4AERERUWelZeQht8CYYUvLqkZa1lFEhPyBB29PxLikOLNjr5awnJKI5I2ZOCIiIpK1tIw8rPrgCBp05mWUJRUarPrgCNIy8swuv1rMckoikjcGcURERCRbeoOATbtPtnnMO5/9LpVWarQ6lFZqATCIIyL5YhBHREREspV5vgQlFZo2jykur0Pm+RIAQH6pcT9coJ9ami1HRCQ3DOKIiIhItkor2w7gmh8nllLGMgtHRDLGII6IiIhkKzzYt0PHXTV1poxjUxMikjEGcURERCRbQ/tFICKk7UAuMtQPQ/tFAGjSmZKZOCKSMQZxREREJFsqpQIP3p7Y5jFzpyVApVQAaFJOyUwcEckYgzgiIiKStXFJcXjqnpQWGbnIUD88dU+K2Zy4qyUc9E1E8sdh30RERCR745LiMDqhG9JOXMQrW38DAKx6eLxZA5MGnR7FZaY9cQziiEjGmIkjIiIit6BSKnDtkGj0jDKODjhxtsjs+oLSWhgEwNdbhdAgn65YIhGRXTCIIyIiIrcyINZYVnnsdKHZ5fmmUsrYiAAoFAqnr4uIyF4YxBEREZFb6d/NGMT9drYIOr1BujzP1NSE++GISO4YxBEREZFbiQtXI8hfjVqNDqcvlkmXXy02jRdgZ0oikjkGcURERORWlEoFEvuHAwCONympzGdnSiJyEwziiIiIyO0MHxgJADjaJIi7ynJKInITDOKIiIjI7SQNiAAAnLtcjopqLfQGAQWlpkwcyymJSOYYxBEREZHbCQvyQZ9uwRAE4MSZIhSX10GnF+ClUiIi1K+rl0dE1CkM4oiIiMgtXTskGoBx1IBYShkb4Q+VkuMFiEjeGMQRERGRW0oe3BjEXSkydqaMZSklEbkBBnFERETklob2DYevtwrlVVocOnkVABDHpiZE5AYYxBEREZFbUnupkDjA2KXyxNkiAIAgCNAbhK5cFhFRpzGIIyIiIrcVGuhj9vWeny/ggRe/QVpGXhetiIio8xjEERERkVtKy8jDt79eanF5SYUGqz44wkCOiGSLQRwRERG5HYNBwKbdJ9s85p3PfmdpJRHJEoM4IiIicjtZF8tQUqFp85ji8jpkni9x0oqIiOyHQRwRERG5nfIqrVXHlVa2HegREbkiBnFERETkdkKDfNo/CEB4sK+DV0JEZH8M4oiIiMjtxPcOQ0RI2wFaZKgfhvaLcNKKiIjsh0EcERERuR2lUoEHb09s85i50xKgUiqctCIiIvthEEdERERuaVxSHJ66J6VFRi4y1A9P3ZOCcUlxXbQyIqLO8erqBRARERE5yrikOIxO6IbM8yUordQgPNgXQ/tFMANHRLLGII6IiIjcmkqpQOKAyK5eBhGR3bCckoiIiIiISEYYxBEREREREckIgzgiIiIiIiIZYRBHREREREQkIwziiIiIiIiIZIRBHBERERERkYwwiCMiIiIiIpIRBnFEREREREQywiCOiIiIiIhIRhjEERERERERyQiDOCIiIiIiIhlhEEdERERERCQjDOKIiIiIiIhkRCEIgtDVi/BUx44dgyAI8Pb27uqlUDOCIKChoQFqtRoKhaKrl0MOxHPtGXiePQfPtWfgefYcnnSu6+vroVAoMGLEiHaP9XLCeqgV7n5HlDOFQsHg2kPwXHsGnmfPwXPtGXiePYcnnWuFQmF1fMBMHBERERERkYxwTxwREREREZGMMIgjIiIiIiKSEQZxREREREREMsIgjoiIiIiISEYYxBEREREREckIgzgiIiIiIiIZYRBHREREREQkIwziiIiIiIiIZIRBHBERERERkYwwiCMiIiIiIpIRBnFEREREREQywiCOiIiIiIhIRhjEkUcrLy/HihUrcN1112HEiBG46667kJ6eLl3/yy+/YMaMGRg2bBj+/Oc/44svvujC1ZI9XLhwAcnJydi1a5d0WVZWFmbPno3hw4dj8uTJ+PDDD7twhdRZu3fvxs0334zExETccsst+PLLL6XrLl++jHnz5mHEiBH405/+hNdffx16vb4LV0u20ul0eOONN3D99dcjOTkZs2bNwokTJ6Tr+biWv7fffht333232WXtnVeDwYC1a9diwoQJGD58OObOnYvc3FxnLptsYOlcf//995g5cyaSk5MxefJk/POf/4RGo5Gu12q1eP755zF27FgkJyfjiSeeQGlpqbOX3mUYxJFHe/zxx3H8+HG89tpr2LlzJ+Lj4/HAAw/g/PnzOHfuHObNm4cJEyZg165d+Mtf/oIlS5bgl19+6eplk40aGhqwePFi1NbWSpeVlZXhvvvuQ69evbBz50488sgjSE1Nxc6dO7twpWSrzz77DM888wxmzZqFL774AlOnTpUe5w0NDXjggQcAANu2bcNzzz2Hf//731i/fn0Xr5pssXHjRnzyySd44YUXsHv3bvTt2xdz5sxBYWEhH9duYOvWrXj99dfNLrPmvG7YsAEfffQRXnjhBWzbtg0GgwFz5sxBfX29k38Dspalc52eno6///3vuOmmm/Dpp5/i2Wefxd69e/H8889Lxzz33HP4+eefsW7dOnzwwQc4f/48Fi5c6OTVdyGByEPl5OQIgwYNEtLT06XLDAaDcOONNwqvv/668L//+7/CHXfcYfY9jz/+uHD//fc7e6lkJ6tXrxb+9re/CYMGDRJ27twpCIIgvPXWW8Kf/vQnoaGhwey4KVOmdNUyyUYGg0G4/vrrhZdfftns8vvvv1946623hD179ggJCQlCeXm5dN22bduEESNGCFqt1tnLpU667bbbhFWrVklfV1VVCYMGDRK+/vprPq5lLD8/X5g3b54wfPhw4c9//rMwe/Zs6br2zqtWqxWSk5OFrVu3StdXVFQISUlJwp49e5z3S5BV2jrXTzzxhHDvvfeaHf/pp58K11xzjaDVaoX8/HxhyJAhwo8//ihdf/78eWHQoEHCsWPHnPY7dCVm4shjhYWFYdOmTUhMTJQuUygUUCgUqKysRHp6OsaOHWv2PWPGjMHRo0chCIKzl0uddOTIEWzfvh0vv/yy2eXp6ekYNWoUvLy8pMvGjBmDnJwcFBcXO3uZ1AkXLlzAlStXcOutt5pd/t5772HevHlIT0/HNddcg5CQEOm6MWPGoLq6GllZWc5eLnVSREQEfvjhB1y+fBl6vR7bt2+Ht7c3hgwZwse1jP3xxx9Qq9X4z3/+g2HDhpld1955PXXqFGpqasxeu4ODgzF06FAcOXLEab8DWaetc33//fdj6dKlZpcplUo0NDSguroaR48eBWA8/6K+ffsiJibGY841gzjyWMHBwZg4cSK8vb2ly77++mtcvHgREyZMQH5+PmJjY82+Jzo6GnV1dSgrK3P2cqkTKisrsWTJEixfvhzdunUzu6618wwAV69eddoaqfMuXLgAAKitrcUDDzyAsWPH4i9/+Qu+//57ADzX7uaZZ56BWq3GDTfcgMTERKxZswZr165Fr169eK5lbPLkyVi3bh169uzZ4rr2zmt+fj4AtHiej46Olq4j19HWuR46dCiGDBkifd3Q0IAtW7YgISEB4eHhKCgoQFhYGHx8fMy+z5PONYM4IpNjx47hqaeewpQpUzBp0iRoNBqzAA+A9DVr6+XlueeeQ3JycosMDQCL51l8UdBqtU5ZH9lHdXU1AGDp0qWYOnUqNm/ejPHjx2P+/Pn45ZdfeK7dTHZ2NoKCgrB+/Xps374dM2bMwOLFi5GVlcVz7abaO691dXUAYPEYnnf50ul0WLJkCc6ePYtnn30WAFBXV9fiPAOeda692j+EyP3t27cPixcvxogRI5CamgrA+ETQPFgTv/bz83P6Gsk2u3fvRnp6Ovbs2WPxel9f3xbnWXwB8Pf3d/j6yH7UajUA4IEHHsD06dMBAPHx8cjMzMT777/Pc+1Grl69iieeeAJbtmzByJEjAQCJiYnIzs7GunXreK7dVHvn1dfXF4DxtVr8t3gMX7flqbq6Go899hh+/fVXvPnmm0hKSgJg+b4AeNa5ZiaOPN6//vUvLFiwANdffz3eeust6VO9bt26obCw0OzYwsJC+Pv7IygoqCuWSjbYuXMnSkpKMGnSJCQnJyM5ORkA8Oyzz2LOnDmIjY21eJ4BICYmxunrJduJ52vQoEFmlw8YMACXL1/muXYjv/32GxoaGsz2NAPAsGHDcPHiRZ5rN9XeeRXLKC0dw/MuP4WFhdLokPfeew8TJ06UrouNjUV5eXmLQM6TzjWDOPJoYhviWbNm4bXXXjNLzY8cORK//vqr2fGHDh3CiBEjoFTyoSMXqamp2Lt3L3bv3i39BwALFy7EypUrkZKSgqNHj5rNCjt06BD69u2LiIiILlo12eKaa65BQEAAfvvtN7PLz5w5g169eiElJQWZmZlS2SVgPNcBAQFmey/I9Yn7ok6fPm12+ZkzZ9CnTx8+rt1Ue+d1yJAhCAwMxOHDh6XrKysrkZmZiZSUlK5YMtmooqIC99xzD0pLS7F169YW5+/aa6+FwWCQGpwAxn3RBQUFHnOu+U6UPNaFCxfw0ksv4aabbsK8efNQXFyMoqIiFBUVoaqqCnfffTcyMjKQmpqKc+fOYfPmzfjqq68wZ86crl46dUBMTAx69+5t9h9g7GwXExODmTNnorq6Gs888wyys7Oxa9cubNmyBfPmzevilVNH+fr6Ys6cOVi/fj0+//xzXLp0CRs3bsTBgwdx33334cYbb0RUVBQee+wxnDp1Cvv27cNrr72G+++/3+LeCnJdSUlJuPbaa7F06VIcOnQIOTk5eP311/HLL7/gwQcf5OPaTbV3Xr29vTF79mykpqbiu+++w6lTp7Bo0SLExsZiypQpXbx66ohVq1YhNzcXr776KsLDw6X3Z0VFRdDr9YiJicEtt9yC5cuX4/Dhw8jIyMDjjz+OUaNGYfjw4V29fKdQCOyVTh7qrbfewpo1ayxeN336dLz88sv46aef8OqrryInJwc9evTAggULcPPNNzt5pWRvgwcPxqpVqzBjxgwAQEZGBlauXInMzExERUXh/vvvx+zZs7t4lWSr999/H//6179QUFCA/v37Y8GCBbjxxhsBABcvXsTzzz+P9PR0hISE4I477sCCBQuYXZehiooKvP766/jxxx9RUVGBQYMGSW/iAD6u3cGyZctw5coV/N///Z90WXvnVa/X47XXXsOuXbug0WiQkpKCFStWoEePHl3xK5CVmp5rvV6P5OTkVhuUfPfdd+jRowdqa2vx0ksv4euvvwYAXHfddVi+fDnCwsKcufQuwyCOiIiIiIhIRvjRIxERERERkYwwiCMiIiIiIpIRBnFEREREREQywiCOiIiIiIhIRhjEERERERERyQiDOCIiIiIiIhlhEEdERERERCQjDOKIiMjpli1bhsmTJ7d6/eTJk7Fs2TInrsg+DAYDJk2ahMGDB+P333/vsnVs3rwZixcvxvnz55GUlIS77roLlsbCGgwG3HnnnRg9ejQKCgq6YKWNduzYgQcffLBL10BEJBcM4oiIiOzk4MGDKC4uRr9+/bBt27YuWcO5c+fw9ttv48knn0S/fv2wYMECHDt2DB999FGLY//1r3/h+PHjWLFiBWJiYrpgtY1mzpyJoqIi7Nixo0vXQUQkBwziiIiI7GTXrl1ITk7G9OnT8cUXX6C6utrpa3j11VcxdepUKSi7//77kZiYiNWrV+Pq1avScZcvX8aaNWtw880345ZbbnH6OptTKBSYN28eXnvtNWg0mq5eDhGRS2MQR0RELk+v12Pr1q249dZbkZSUhEmTJiE1NRVarVY65u6778bdd99t9n2HDx/G4MGDcfjwYQDG8sE1a9Zg8uTJSEhIwOTJk7F69Wo0NDRI36PVavHKK69g4sSJSEhIwK233oq9e/e2u8aKigrs27cP119/PaZOnYq6ujp89tlnLY6rrq7GihUrMHbsWCQnJ2PRokXYsmULBg8ebHbcvn37MGPGDCQmJmL8+PF48cUXUVtb2+Yazpw5gx9//BFTp06VLlOpVFi1ahXq6+vx3HPPSZc/++yzCAgIwLPPPitd9sknn+CWW25BQkICJk2ahHXr1kGv15v9jE8++QQzZszA8OHDkZSUhGnTpuHLL7+Urt+1axeGDh2KTz75BOPHj8eoUaOQnZ2NS5cu4aGHHsLo0aMxbNgw/PWvf8X+/fvNbvv666+HVqvFzp072/w9iYg8nVdXL4CIiDyXTqez6rgVK1bgs88+w9y5czFy5EhkZmZi/fr1yMrKwrvvvguFQmHV7bzzzjv497//jaVLl6Jnz5747bffsGbNGqjVaixcuBCCIOCRRx7BsWPHsHDhQvTv3x/ffvstFi1ahPr6etx+++2t3vaePXug1+tx6623IioqCmPGjMH27dsxa9Yss+Pmz5+PrKwsLFq0CHFxcfjoo4+wevXqFre1ePFi3HrrrXjsscdw5coVrFmzBtnZ2Xj//fdb/X337NmDqKgoDB8+3OzygQMH4u9//zvWrFmD77//HhqNBj///DM2bdqE0NBQAMDbb7+NNWvWYPbs2XjqqaeQlZWFdevW4erVq3jppZcAAFu3bsWLL76IBQsW4Nprr0VFRQXeeecdLF68GMnJyYiNjQVgDLo3b96MlStXoqysDH379sXUqVMRHR2NV155BV5eXvjwww/x8MMP48svv0Tv3r0BAD4+Prj++uuxZ8+eFn83IiJqxCCOiIi6xJUrV3DNNde0e1x2djZ27NiBJ554Qmp8MX78eERHR2PJkiX46aefMHHiRKt+5q+//oqEhATMnDkTADBq1Cj4+fkhKCgIAJCWloYDBw5IZYYAMGHCBNTV1SE1NRVTp06Fl5fll85du3bhuuuuQ1RUFABgxowZePLJJ3Hs2DGMGDECAPDLL7/g8OHDWLduHaZMmQIAuO666zB16lScO3cOACAIAlJTUzFhwgSkpqZKt9+nTx/ce++92L9/PyZNmmRxDYcOHUJiYqLFIG/OnDn45ptvsGrVKmg0Gvz1r3+V/m5VVVXYsGED/vrXv2L58uUAgD/96U8IDQ3F8uXLcd9992HgwIHIzc3FAw88gPnz50u32717d8yYMQNHjx41K8t86KGHpHUWFRXh/PnzmD9/vvQzk5KS8Oabb6K+vt5snYmJidi7dy+qq6sRGBho8fckIvJ0LKckIqIuERUVhR07dlj8TwyEAGPgBaDFvq1bbrkFKpVKKpW0xujRo3Hw4EH8z//8D959911kZ2dj9uzZmDZtGgBjkKVQKDBx4kTodDrpv8mTJ6OoqAhnz561eLunTp3CH3/8gSlTpqCyshKVlZUYM2YM/P39sX37dum4Q4cOQa1W48Ybb5QuUyqVUsAIAOfPn0d+fj4mT55stoaUlBQEBgbi4MGDrf5+ubm56NGjh8XrvLy8sGrVKly9ehXe3t5Yrg301QAABxpJREFUunSpdN3x48eh0Wha/Eyxg6j4M5ctW4bFixejsrISJ06cwGeffYatW7cCQItgLD4+Xvp3ZGQkBgwYgP/93//F0qVLsWfPHhgMBjz11FMYOHCg2fd1794der0e+fn5rf6eRESejpk4IiLqEt7e3khMTGz1OlFFRQUAmAV2gDEoCQsLQ1VVldU/c86cOQgICMDOnTuRmpqKV199FQMHDsTy5csxZswYlJeXQxAEKXPWXGFhoVlwIhI7Kj711FN46qmnzK778ssv8fTTTyMkJARlZWUIDQ2FUmn+GWpERIT07/LycgDA888/j+eff97iGlpTXV0NPz+/Vq8fPHgwoqOjkZKSgoCAgBY/s7UW/+LPvHTpElasWIFffvkFarUa/fr1w5AhQwCgxQgDf39/6d8KhQKbN2/Gxo0b8e2332L37t1SMPv8888jJCSkxfd15LwSEXkaBnFEROTSxDf4RUVF6N69u3R5Q0MDysrKEBYWJl3WvAlH80YgSqUSs2bNwqxZs1BSUoL9+/fjrbfewoIFC3Dw4EEEBQXB398fH374ocW1iHu3mqqvr8eePXswZcoUzJ492+y6y5cv4+mnn8ann36Ke++9FzExMSgrK4PBYDAL5EpKSqR/BwcHAwCWLFmCUaNGtfr3sCQ0NNSm4Ef8mampqejTp0+L6yMjI2EwGPDggw9CrVZjx44diI+Ph5eXF7Kzsy02cGkuJiYGzz33HJ599lmcOnUKX331Fd555x2EhYWZNVcRg/am55WIiMyxnJKIiFyaGMh88cUXZpd/8cUX0Ov1uPbaawEAgYGBLUrwjh49avb1nXfeiRdffBGAMfs1Y8YMzJo1C5WVlaiursaoUaNQW1sLQRCQmJgo/XfmzBmsX7/eYiOW77//HuXl5dLQ7Kb/zZw5E3369JFKKkeNGgWdTofvv/9e+n5BELBv3z7p6379+iEiIgKXL182W0NMTAxWr16NzMzMVv9W3bt3NxsjYK1hw4ZBrVajoKDA7Gd6eXnhtddew+XLl1FWVoYLFy7gjjvukK4DgJ9++gmAsfNna44fP45x48YhIyMDCoUC8fHxWLRoEQYNGoS8vDyzYwsKCqBSqbp8bh0RkStjJo6IiFzagAEDMH36dKxduxZ1dXVISUlBVlYW3nzzTYwePRoTJkwAYGxP//3332PVqlWYPHky0tPTsXv3brPbSklJwebNmxEZGYnk5GQUFBTg/fffx6hRoxAeHo6JEyciJSUF8+fPx/z589G/f39kZGRg7dq1mDBhAsLDw1usb+fOnYiIiMCYMWMsrv+2227D2rVrcfjwYYwePRrjx4/HM888g+LiYsTFxWHHjh04ffq01IxEpVJh0aJFWLFiBVQqFa6//npUVlZiw4YNKCgoaLMZzPjx4/HRRx9BEASrO3YCxqzXnDlz8MYbb6C6uhqjR49GQUEB3njjDSgUCgwZMgRBQUHo3r07tm7ditjYWAQHB+PAgQNS1rKurq7V2x86dCh8fX2xZMkSLFiwAJGRkUhLS0NWVhb+9re/mR179OhRjBw5ss2yUCIiT8cgjoiIXN7KlSvRu3dv7Ny5E++88w6io6Pxt7/9DfPnz5fKEmfOnIlLly7h008/xbZt25CSkoK1a9firrvukm7n0Ucfhbe3N3bu3In169cjKCgIkydPxhNPPAHAWG65adMmvPHGG3j77bdRUlKCmJgY3HfffXjkkUdarKugoAAHDx7EnXfeCZVKZXHt06ZNw7p167Bt2zaMHj0aa9aswcsvv4zVq1dDp9PhhhtuwF133WUWcP7lL39BQEAA3n33XWzfvh3+/v4YMWIEUlNT0bNnz1b/TlOmTMH69euRkZGBYcOGdehv/NhjjyEqKgofffQR3n33XYSEhGDs2LF4/PHHpe6dGzZswMqVK7Fs2TJ4e3tjwIAB2LhxI1566SWkp6e3mNMn8vHxwebNm7F69WqsXLkSlZWV6NOnD/7xj39gxowZ0nFarRaHDx/GY4891qG1ExF5GoXQfCcyEREROcSVK1dw4sQJ3HDDDfD19ZUuX7hwIXJzc/Hpp592+mc89NBDCAsLw6pVqzp9W862e/dupKamYt++fWZ/HyIiMsc9cURERE6iVCqxbNkyLFu2DD///DN++eUXvPLKK/jmm29alBXaatGiRfjmm29a7DVzdQaDAZs3b8bf//53BnBERO1gJo6IiMiJDh06hPXr1yMrKws6nQ79+/fHfffdh6lTp9rtZ2zatAmnTp3Ca6+9ZrfbdLRPPvkEX331Fd57772uXgoRkctjEEdERERERCQjLKckIiIiIiKSEQZxREREREREMsIgjoiIiIiISEYYxBEREREREckIgzgiIiIiIiIZYRBHREREREQkIwziiIiIiIiIZIRBHBERERERkYwwiCMiIiIiIpKR/w+kTKdFlOCOrQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Line plot for house age vs. average house price\n", + "average_price_by_age = housing_data_encoded.groupby('house_age')['price'].mean()\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(average_price_by_age.index, average_price_by_age.values, marker='o', linestyle='-')\n", + "plt.xlabel('House Age (Years)')\n", + "plt.ylabel('Average House Price ($)')\n", + "plt.title('Average House Price by House Age')\n", + "plt.grid(True)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Interpretation:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### c.) Multivariate Analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "price 1.000000\n", + "bedrooms 0.308787\n", + "bathrooms 0.525906\n", + "sqft_living 0.701917\n", + "sqft_lot 0.089876\n", + "floors 0.256804\n", + "sqft_above 0.605368\n", + "sqft_basement 0.321108\n", + "yr_built 0.053953\n", + "yr_renovated 0.117855\n", + "zipcode -0.053402\n", + "lat 0.306692\n", + "long 0.022036\n", + "sqft_living15 0.585241\n", + "sqft_lot15 0.082845\n", + "house_age -0.053953\n", + "renovation_age 0.082779\n", + "total_sqft 0.119913\n", + "Name: price, dtype: float64\n" + ] + } + ], + "source": [ + "# Calculate the correlation Matrix\n", + "# Drop categorical variables\n", + "numeric_data = housing_data_encoded.select_dtypes(include='number')\n", + "correlation = numeric_data.corr()['price'].drop(['id']) # Drop 'price' and 'id' columns from correlation calculation\n", + "print(correlation)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "ename": "IndexError", + "evalue": "Inconsistent shape between the condition and the input (got (18, 1) and (18,))", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mIndexError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[50], line 3\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# Plot the correlation matrix as a heatmap\u001b[39;00m\n\u001b[0;32m 2\u001b[0m plt\u001b[38;5;241m.\u001b[39mfigure(figsize\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m12\u001b[39m, \u001b[38;5;241m8\u001b[39m))\n\u001b[1;32m----> 3\u001b[0m sns\u001b[38;5;241m.\u001b[39mheatmap(correlation, annot\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, cmap\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcoolwarm\u001b[39m\u001b[38;5;124m'\u001b[39m, fmt\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m.2f\u001b[39m\u001b[38;5;124m\"\u001b[39m, linewidths\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.5\u001b[39m)\n\u001b[0;32m 4\u001b[0m plt\u001b[38;5;241m.\u001b[39mtitle(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCorrelation Matrix\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 5\u001b[0m plt\u001b[38;5;241m.\u001b[39mshow()\n", + "File \u001b[1;32mc:\\Users\\ADMIN\\anaconda3\\Lib\\site-packages\\seaborn\\matrix.py:446\u001b[0m, in \u001b[0;36mheatmap\u001b[1;34m(data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, linewidths, linecolor, cbar, cbar_kws, cbar_ax, square, xticklabels, yticklabels, mask, ax, **kwargs)\u001b[0m\n\u001b[0;32m 365\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Plot rectangular data as a color-encoded matrix.\u001b[39;00m\n\u001b[0;32m 366\u001b[0m \n\u001b[0;32m 367\u001b[0m \u001b[38;5;124;03mThis is an Axes-level function and will draw the heatmap into the\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 443\u001b[0m \n\u001b[0;32m 444\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 445\u001b[0m \u001b[38;5;66;03m# Initialize the plotter object\u001b[39;00m\n\u001b[1;32m--> 446\u001b[0m plotter \u001b[38;5;241m=\u001b[39m _HeatMapper(data, vmin, vmax, cmap, center, robust, annot, fmt,\n\u001b[0;32m 447\u001b[0m annot_kws, cbar, cbar_kws, xticklabels,\n\u001b[0;32m 448\u001b[0m yticklabels, mask)\n\u001b[0;32m 450\u001b[0m \u001b[38;5;66;03m# Add the pcolormesh kwargs here\u001b[39;00m\n\u001b[0;32m 451\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlinewidths\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m linewidths\n", + "File \u001b[1;32mc:\\Users\\ADMIN\\anaconda3\\Lib\\site-packages\\seaborn\\matrix.py:115\u001b[0m, in \u001b[0;36m_HeatMapper.__init__\u001b[1;34m(self, data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, cbar, cbar_kws, xticklabels, yticklabels, mask)\u001b[0m\n\u001b[0;32m 112\u001b[0m \u001b[38;5;66;03m# Validate the mask and convert to DataFrame\u001b[39;00m\n\u001b[0;32m 113\u001b[0m mask \u001b[38;5;241m=\u001b[39m _matrix_mask(data, mask)\n\u001b[1;32m--> 115\u001b[0m plot_data \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mma\u001b[38;5;241m.\u001b[39mmasked_where(np\u001b[38;5;241m.\u001b[39masarray(mask), plot_data)\n\u001b[0;32m 117\u001b[0m \u001b[38;5;66;03m# Get good names for the rows and columns\u001b[39;00m\n\u001b[0;32m 118\u001b[0m xtickevery \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n", + "File \u001b[1;32mc:\\Users\\ADMIN\\anaconda3\\Lib\\site-packages\\numpy\\ma\\core.py:1933\u001b[0m, in \u001b[0;36mmasked_where\u001b[1;34m(condition, a, copy)\u001b[0m\n\u001b[0;32m 1931\u001b[0m (cshape, ashape) \u001b[38;5;241m=\u001b[39m (cond\u001b[38;5;241m.\u001b[39mshape, a\u001b[38;5;241m.\u001b[39mshape)\n\u001b[0;32m 1932\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cshape \u001b[38;5;129;01mand\u001b[39;00m cshape \u001b[38;5;241m!=\u001b[39m ashape:\n\u001b[1;32m-> 1933\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mIndexError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInconsistent shape between the condition and the input\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1934\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m (got \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m and \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m)\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m (cshape, ashape))\n\u001b[0;32m 1935\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(a, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m_mask\u001b[39m\u001b[38;5;124m'\u001b[39m):\n\u001b[0;32m 1936\u001b[0m cond \u001b[38;5;241m=\u001b[39m mask_or(cond, a\u001b[38;5;241m.\u001b[39m_mask)\n", + "\u001b[1;31mIndexError\u001b[0m: Inconsistent shape between the condition and the input (got (18, 1) and (18,))" + ] + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "# Plot the correlation matrix as a heatmap\n", + "plt.figure(figsize=(12, 8))\n", + "sns.heatmap(correlation, annot=True, cmap='coolwarm', fmt=\".2f\", linewidths=0.5)\n", + "plt.title('Correlation Matrix')\n", + "plt.show()\n" + ] + }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "housing_data_encoded['v']" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -791,9 +1721,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.5" + "version": "3.11.5" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } From 00723573bc8e66149025222f4040c4a6e8267a2b Mon Sep 17 00:00:00 2001 From: Paul Muniu Date: Mon, 29 Apr 2024 15:33:23 +0300 Subject: [PATCH 08/27] EDA --- student.ipynb | 485 +++++++++++++++++++++++--------------------------- 1 file changed, 225 insertions(+), 260 deletions(-) diff --git a/student.ipynb b/student.ipynb index 4c88f6bd..c50d9507 100644 --- a/student.ipynb +++ b/student.ipynb @@ -219,7 +219,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ @@ -251,7 +251,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -323,7 +323,7 @@ " [5 rows x 21 columns])" ] }, - "execution_count": 13, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -339,7 +339,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 53, "metadata": {}, "outputs": [ { @@ -370,7 +370,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 54, "metadata": {}, "outputs": [ { @@ -436,7 +436,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 55, "metadata": {}, "outputs": [ { @@ -485,7 +485,7 @@ " 4 NO NONE 0.0 2015-02-18 0.0)" ] }, - "execution_count": 16, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } @@ -532,7 +532,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -619,7 +619,7 @@ " [5 rows x 36 columns])" ] }, - "execution_count": 17, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -658,7 +658,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 57, "metadata": {}, "outputs": [ { @@ -731,7 +731,7 @@ "4 37 0.0 11440.0" ] }, - "execution_count": 18, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -776,7 +776,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 58, "metadata": {}, "outputs": [ { @@ -825,112 +825,112 @@ " \n", " \n", " \n", - " 3012\n", - " 16000015\n", - " 2015-04-17\n", - " 219950.0\n", - " 3\n", - " 1.5\n", - " 1070\n", - " 6601\n", - " 1.0\n", - " 1070\n", + " 4864\n", + " 3293400010\n", + " 2015-03-04\n", + " 950000.0\n", + " 5\n", + " 2.50\n", + " 3450\n", + " 35880\n", + " 2.0\n", + " 3450\n", " 0.0\n", " ...\n", " False\n", " False\n", " False\n", - " True\n", " False\n", " False\n", " False\n", - " 39\n", + " False\n", + " 32\n", " 0.0\n", - " 8741.0\n", + " 42780.0\n", " \n", " \n", - " 12202\n", - " 421000465\n", - " 2014-06-17\n", - " 269500.0\n", - " 2\n", - " 1.5\n", - " 1480\n", - " 7276\n", + " 18353\n", + " 1370803445\n", + " 2014-09-09\n", + " 1140000.0\n", + " 4\n", + " 1.75\n", + " 3080\n", + " 6500\n", " 1.0\n", - " 940\n", - " 540.0\n", + " 1700\n", + " 1380.0\n", " ...\n", " False\n", " False\n", " False\n", - " True\n", " False\n", " False\n", " False\n", - " 46\n", + " True\n", + " 83\n", " 0.0\n", - " 10236.0\n", + " 12660.0\n", " \n", " \n", - " 16335\n", - " 3528000290\n", - " 2014-06-09\n", - " 743700.0\n", - " 4\n", - " 2.5\n", - " 2610\n", - " 33206\n", - " 2.0\n", - " 2610\n", - " 0.0\n", + " 1250\n", + " 1926049355\n", + " 2014-10-28\n", + " 399000.0\n", + " 5\n", + " 2.00\n", + " 2620\n", + " 7030\n", + " 1.0\n", + " 1420\n", + " 1200.0\n", " ...\n", " False\n", " False\n", " False\n", " False\n", " False\n", + " True\n", " False\n", - " False\n", - " 36\n", + " 59\n", " 0.0\n", - " 38426.0\n", + " 12270.0\n", " \n", " \n", - " 14006\n", - " 4318200360\n", - " 2014-07-30\n", - " 286000.0\n", - " 2\n", - " 1.0\n", - " 1170\n", - " 6543\n", + " 10810\n", + " 6071800310\n", + " 2014-06-19\n", + " 558000.0\n", + " 4\n", + " 2.25\n", + " 2060\n", + " 10358\n", " 1.0\n", - " 1170\n", - " 0.0\n", + " 1320\n", + " 740.0\n", " ...\n", " False\n", " False\n", " False\n", " False\n", - " True\n", " False\n", + " True\n", " False\n", - " 111\n", + " 62\n", " 0.0\n", - " 8883.0\n", + " 14478.0\n", " \n", " \n", - " 7932\n", - " 8856920110\n", - " 2015-05-04\n", - " 360000.0\n", + " 12222\n", + " 6918710340\n", + " 2014-08-22\n", + " 385000.0\n", " 3\n", - " 2.5\n", - " 2150\n", - " 14092\n", + " 2.25\n", + " 2110\n", + " 8000\n", " 2.0\n", - " 2150\n", + " 2110\n", " 0.0\n", " ...\n", " False\n", @@ -940,9 +940,9 @@ " False\n", " True\n", " False\n", - " 33\n", + " 49\n", " 0.0\n", - " 18392.0\n", + " 12220.0\n", " \n", " \n", "\n", @@ -950,38 +950,38 @@ "" ], "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "3012 16000015 2015-04-17 219950.0 3 1.5 1070 \n", - "12202 421000465 2014-06-17 269500.0 2 1.5 1480 \n", - "16335 3528000290 2014-06-09 743700.0 4 2.5 2610 \n", - "14006 4318200360 2014-07-30 286000.0 2 1.0 1170 \n", - "7932 8856920110 2015-05-04 360000.0 3 2.5 2150 \n", + " id date price bedrooms bathrooms sqft_living \\\n", + "4864 3293400010 2015-03-04 950000.0 5 2.50 3450 \n", + "18353 1370803445 2014-09-09 1140000.0 4 1.75 3080 \n", + "1250 1926049355 2014-10-28 399000.0 5 2.00 2620 \n", + "10810 6071800310 2014-06-19 558000.0 4 2.25 2060 \n", + "12222 6918710340 2014-08-22 385000.0 3 2.25 2110 \n", "\n", " sqft_lot floors sqft_above sqft_basement ... grade_3 Poor \\\n", - "3012 6601 1.0 1070 0.0 ... False \n", - "12202 7276 1.0 940 540.0 ... False \n", - "16335 33206 2.0 2610 0.0 ... False \n", - "14006 6543 1.0 1170 0.0 ... False \n", - "7932 14092 2.0 2150 0.0 ... False \n", + "4864 35880 2.0 3450 0.0 ... False \n", + "18353 6500 1.0 1700 1380.0 ... False \n", + "1250 7030 1.0 1420 1200.0 ... False \n", + "10810 10358 1.0 1320 740.0 ... False \n", + "12222 8000 2.0 2110 0.0 ... False \n", "\n", " grade_4 Low grade_5 Fair grade_6 Low Average grade_7 Average \\\n", - "3012 False False True False \n", - "12202 False False True False \n", - "16335 False False False False \n", - "14006 False False False True \n", - "7932 False False False False \n", + "4864 False False False False \n", + "18353 False False False False \n", + "1250 False False False False \n", + "10810 False False False False \n", + "12222 False False False False \n", "\n", " grade_8 Good grade_9 Better house_age renovation_age total_sqft \n", - "3012 False False 39 0.0 8741.0 \n", - "12202 False False 46 0.0 10236.0 \n", - "16335 False False 36 0.0 38426.0 \n", - "14006 False False 111 0.0 8883.0 \n", - "7932 True False 33 0.0 18392.0 \n", + "4864 False False 32 0.0 42780.0 \n", + "18353 False True 83 0.0 12660.0 \n", + "1250 True False 59 0.0 12270.0 \n", + "10810 True False 62 0.0 14478.0 \n", + "12222 True False 49 0.0 12220.0 \n", "\n", "[5 rows x 39 columns]" ] }, - "execution_count": 29, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -992,7 +992,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 59, "metadata": {}, "outputs": [ { @@ -1082,7 +1082,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 60, "metadata": {}, "outputs": [ { @@ -1140,7 +1140,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -1193,7 +1193,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 62, "metadata": {}, "outputs": [ { @@ -1250,7 +1250,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 63, "metadata": {}, "outputs": [ { @@ -1285,7 +1285,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 64, "metadata": {}, "outputs": [ { @@ -1320,6 +1320,7 @@ " sqft_above\n", " sqft_basement\n", " ...\n", + " grade_4 Low\n", " grade_5 Fair\n", " grade_6 Low Average\n", " grade_7 Average\n", @@ -1328,169 +1329,168 @@ " house_age\n", " renovation_age\n", " total_sqft\n", - " pricerange\n", " price_range\n", " \n", " \n", " \n", " \n", - " 11485\n", - " 3260200200\n", - " 2014-10-30\n", - " 580000.0\n", - " 3\n", - " 2.25\n", - " 1670\n", - " 7416\n", - " 1.0\n", - " 1220\n", - " 450.0\n", + " 3834\n", + " 534000112\n", + " 2015-02-03\n", + " 348000.0\n", + " 2\n", + " 2.50\n", + " 1270\n", + " 1242\n", + " 3.0\n", + " 1270\n", + " 0.0\n", " ...\n", " False\n", " False\n", + " False\n", " True\n", " False\n", " False\n", - " 50\n", + " 16\n", " 0.0\n", - " 10756.0\n", - " 300K-600K\n", + " 3782.0\n", " 300K-600K\n", " \n", " \n", - " 3075\n", - " 8651401270\n", - " 2015-05-04\n", - " 203000.0\n", + " 14554\n", + " 6145601510\n", + " 2014-08-22\n", + " 412000.0\n", " 3\n", " 1.00\n", - " 840\n", - " 6500\n", + " 1000\n", + " 3844\n", " 1.0\n", - " 840\n", - " 0.0\n", + " 900\n", + " 100.0\n", " ...\n", " False\n", - " True\n", " False\n", " False\n", + " True\n", + " False\n", " False\n", - " 55\n", + " 96\n", " 0.0\n", - " 8180.0\n", - " 100K-300K\n", - " 100K-300K\n", + " 5844.0\n", + " 300K-600K\n", " \n", " \n", - " 14083\n", - " 1338800365\n", - " 2014-05-07\n", - " 1500000.0\n", - " 6\n", - " 2.50\n", - " 3560\n", - " 6480\n", - " 2.5\n", - " 3560\n", - " 0.0\n", + " 13455\n", + " 1624049170\n", + " 2014-10-17\n", + " 446800.0\n", + " 4\n", + " 2.00\n", + " 2410\n", + " 8712\n", + " 1.0\n", + " 1260\n", + " 1150.0\n", " ...\n", " False\n", " False\n", " False\n", + " True\n", " False\n", " False\n", - " 110\n", + " 66\n", " 0.0\n", - " 13600.0\n", - " 1M-2M\n", - " 1M-2M\n", + " 13532.0\n", + " 300K-600K\n", " \n", " \n", - " 19515\n", - " 3303850360\n", - " 2014-06-25\n", - " 1280000.0\n", - " 4\n", - " 3.50\n", - " 4660\n", - " 17398\n", - " 2.0\n", - " 4660\n", + " 6065\n", + " 6911700066\n", + " 2014-06-04\n", + " 175000.0\n", + " 2\n", + " 1.00\n", + " 670\n", + " 2378\n", + " 1.0\n", + " 670\n", " 0.0\n", " ...\n", " False\n", + " True\n", " False\n", " False\n", " False\n", " False\n", - " 21\n", + " 105\n", " 0.0\n", - " 26718.0\n", - " 1M-2M\n", - " 1M-2M\n", + " 3718.0\n", + " 100K-300K\n", " \n", " \n", - " 8722\n", - " 5249804760\n", - " 2015-05-05\n", - " 479500.0\n", - " 2\n", - " 1.00\n", - " 930\n", - " 5760\n", + " 9734\n", + " 6071300030\n", + " 2014-06-24\n", + " 464500.0\n", + " 3\n", + " 1.75\n", + " 1150\n", + " 10466\n", " 1.0\n", - " 730\n", - " 200.0\n", + " 1150\n", + " 0.0\n", " ...\n", " False\n", - " True\n", " False\n", " False\n", + " True\n", + " False\n", " False\n", - " 107\n", + " 65\n", " 0.0\n", - " 7620.0\n", - " 300K-600K\n", + " 12766.0\n", " 300K-600K\n", " \n", " \n", "\n", - "

5 rows × 41 columns

\n", + "

5 rows × 40 columns

\n", "" ], "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "11485 3260200200 2014-10-30 580000.0 3 2.25 1670 \n", - "3075 8651401270 2015-05-04 203000.0 3 1.00 840 \n", - "14083 1338800365 2014-05-07 1500000.0 6 2.50 3560 \n", - "19515 3303850360 2014-06-25 1280000.0 4 3.50 4660 \n", - "8722 5249804760 2015-05-05 479500.0 2 1.00 930 \n", + " id date price bedrooms bathrooms sqft_living \\\n", + "3834 534000112 2015-02-03 348000.0 2 2.50 1270 \n", + "14554 6145601510 2014-08-22 412000.0 3 1.00 1000 \n", + "13455 1624049170 2014-10-17 446800.0 4 2.00 2410 \n", + "6065 6911700066 2014-06-04 175000.0 2 1.00 670 \n", + "9734 6071300030 2014-06-24 464500.0 3 1.75 1150 \n", "\n", - " sqft_lot floors sqft_above sqft_basement ... grade_5 Fair \\\n", - "11485 7416 1.0 1220 450.0 ... False \n", - "3075 6500 1.0 840 0.0 ... False \n", - "14083 6480 2.5 3560 0.0 ... False \n", - "19515 17398 2.0 4660 0.0 ... False \n", - "8722 5760 1.0 730 200.0 ... False \n", + " sqft_lot floors sqft_above sqft_basement ... grade_4 Low \\\n", + "3834 1242 3.0 1270 0.0 ... False \n", + "14554 3844 1.0 900 100.0 ... False \n", + "13455 8712 1.0 1260 1150.0 ... False \n", + "6065 2378 1.0 670 0.0 ... False \n", + "9734 10466 1.0 1150 0.0 ... False \n", "\n", - " grade_6 Low Average grade_7 Average grade_8 Good grade_9 Better \\\n", - "11485 False True False False \n", - "3075 True False False False \n", - "14083 False False False False \n", - "19515 False False False False \n", - "8722 True False False False \n", + " grade_5 Fair grade_6 Low Average grade_7 Average grade_8 Good \\\n", + "3834 False False True False \n", + "14554 False False True False \n", + "13455 False False True False \n", + "6065 True False False False \n", + "9734 False False True False \n", "\n", - " house_age renovation_age total_sqft pricerange price_range \n", - "11485 50 0.0 10756.0 300K-600K 300K-600K \n", - "3075 55 0.0 8180.0 100K-300K 100K-300K \n", - "14083 110 0.0 13600.0 1M-2M 1M-2M \n", - "19515 21 0.0 26718.0 1M-2M 1M-2M \n", - "8722 107 0.0 7620.0 300K-600K 300K-600K \n", + " grade_9 Better house_age renovation_age total_sqft price_range \n", + "3834 False 16 0.0 3782.0 300K-600K \n", + "14554 False 96 0.0 5844.0 300K-600K \n", + "13455 False 66 0.0 13532.0 300K-600K \n", + "6065 False 105 0.0 3718.0 100K-300K \n", + "9734 False 65 0.0 12766.0 300K-600K \n", "\n", - "[5 rows x 41 columns]" + "[5 rows x 40 columns]" ] }, - "execution_count": 34, + "execution_count": 64, "metadata": {}, "output_type": "execute_result" } @@ -1501,33 +1501,22 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 68, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAJYCAYAAADmEJ6pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACNpElEQVR4nOzdd1yV5f/H8fdhL1FxbxEDt5JgWe7KLM1SMkvJ3GaaK3OUe+DChXvPzJGmmZajbGg5wERLrcyRGweisuHcvz/8cb6SVmDgOcLr+Xj0SO5xnc/NxYH7fe7rvm6TYRiGAAAAAABWZWftAgAAAAAAhDMAAAAAsAmEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwCwAYZhWLsEZBJ9BgDIag7WLgAAHkWDBg3Sp59++o/b1KpVSytWrPjHbW7evKkxY8aoVatWCgwMzNTr79+/X19//fU/brdhwwatXbtWv/32m1JTU1WyZEk1btxYnTp1koeHR4Zfz5bNmDFDM2fO/Nv1AwYMUKdOnbL0NWfPni0nJyd17tw5S9t9UOfOndMzzzyjcePGqWXLllna9ptvvqn9+/enW+bo6KiCBQuqYcOG6tOnj/LmzWuV2u73On/l6OiovHnzyt/fX++99568vb2zrQYA+K8IZwDwAN555x29/vrrlq9nz56to0ePpgsJGQk/x44d06ZNmxQUFJTlNc6cOVNz585Vx44d1b17dzk6Ournn3/WwoUL9f333+vjjz+Wo6Njlr+utaxZs+a+y4sXL57lrzV9+nT17Nkzy9u1VZUqVdLw4cMtXycnJ+uXX37RlClTdOzYMX388ccymUz33bdw4cJas2aNSpcu/VBq7d69uxo0aGD5Oj4+Xr/88ovlvfDll1/K2dn5odQCAJlFOAOAB1C6dOl0J5teXl5ycnJSjRo1rFfUXZKSkrRgwQJ16tRJffv2tSx/6qmnVK5cOfXo0UM7d+7UCy+8YMUqs5atfO9zIg8Pj3u+v4GBgYqNjVVYWJgiIyP/9vv/sN8XpUuXvuf1ateuLXd3d40YMUJ79+5V/fr1H1o9AJAZ3HMGANloz549atOmjWrWrKknnnhC7733ni5evChJ2rdvn9q1aydJateund58801JUmpqqubPn69mzZqpWrVqqlGjhl5//XXt3bs3w697+/ZtJSQkyGw237Oufv366tu3r0qVKmVZduPGDQ0cOFC1atVSrVq1FBISorCwMDVq1MiyTaNGjTRo0KB0bW3YsEF+fn46d+6cZdnOnTvVpk0b+fv7q0qVKmrSpIk++ugjy/p9+/bJz89Pq1evVsOGDfX4449rz549kqTw8HAFBwerevXqqlWrlgYOHKjr169n+Lj/zT/1R5rTp0+rV69eevrpp1WjRg29+eabioiIsKz38/OTdOfKZNq/M3LckvTHH3+oS5cuevzxx/XUU09p6tSpGjx4sKXvJclsNmv+/Pl67rnnVKVKFT3//PP/Ojw2zeXLl9WtWzdVq1ZN9evXV1hYmFJTUyVJEyZMULVq1XTr1q10+8yePVs1a9ZUfHx8hl7jblWqVJEkXbhwQdKdIZD9+/dXr169VKNGDXXo0EHnzp2Tn5+fNmzYYNnv5MmT6tmzp2rVqqXAwEB169ZNf/zxh2V9YmKiJk6cqPr166tKlSp66aWXtHXr1kzXdzdPT897lh04cECdOnVSYGCgqlSpokaNGmnGjBmW901a7V988YV69eolf39/1apVS0OGDFFcXJylneTkZIWGhqpevXqqVq2aOnXqpI0bN97z3sjun28Ajz7CGQBkk40bN6pjx44qVqyYpkyZosGDB+unn35S69atde3aNVWuXFnDhg2TJA0bNswybCw0NFSzZ89W69attXDhQo0ePVo3btxQ7969M3wC7eXlperVq2vRokUaOHCgdu7caTkJdHR01Ntvv205sTabzercubO+++47vf/++woJCdGhQ4e0cuXKTB/zN998ox49eqhy5cqaPXu2ZsyYoVKlSmnUqFGKjIxMt+3MmTM1cOBADRs2TP7+/jpw4IDat28vFxcXTZs2TR988IH279+vdu3aKSEh4V9fOyUl5Z7/7g6n/9YfknTixAm1bNlS586d05AhQxQaGiqTyaS33nrLct9V2vDJV1991fLvjBz39evXFRwcrIsXL2rcuHEaMmSIvvzyS33++efpjmPEiBEKCwtT8+bNNXfuXDVp0kQhISGaNWvWv34PZsyYoQIFCmjWrFkKCgrS3LlzNWHCBEu9iYmJ+vLLL9Pts2nTJr344otydXX91/b/6tSpU5KULuh/8cUXcnd315w5c+57T97ly5fVunVrnT59WiNGjNCkSZN09epVvfXWW7px44YMw1CPHj20evVqdejQQXPmzJG/v7/69u2rjRs3/mtNZrM53c/A7du3tWfPHk2ePFklSpRQQECAJOn48eNq37698uXLp6lTp2rOnDkKCAjQzJkz9cUXX6Rrc/jw4SpRooRmz56tTp066ZNPPtGcOXMs64cNG6Zly5YpODhYs2bNUsGCBTV06NB0bfzXn28AuYQBAPjPBg4caDRs2NDydWpqqvH0008bHTt2TLfdmTNnjMqVKxsTJkwwDMMw9u7da/j6+hp79+61bNOvXz9j6dKl6fbbtm2b4evra/z000/3fb37uXjxovHmm28avr6+hq+vr+Hn52c0a9bMmD59unHjxg3Ldl9//bXh6+tr7Nq1y7Ls1q1bRq1atdK9RsOGDY2BAweme43169cbvr6+xtmzZw3DMIwFCxbcs010dLTh6+trzJs3L90xz5o1K912rVu3Npo1a2akpKRYlp08edKoWLGisXLlyr89zrCwMMsx/vW/oUOHGoaR8f7o3bu38cQTTxi3bt2ybJOcnGw8//zzRlBQkGWZr6+vERYWZvk6I8c9bdo0o2rVqsalS5cs25w7d86oXLmyERwcbDlePz8/yz5ppk6dalStWtW4fv36fb8HZ8+eNXx9fY2uXbumWz527FijcuXKRnR0tGEYd77Hbdu2tayPiIgwfH19jYMHD963XcMwjODgYKNt27ZGcnKy5b+rV68aW7duNWrVqmW0bt3aMJvNlm2rV69uJCYm3lPb+vXrDcMwjPHjxxvVqlUzoqKiLNtcvHjRaNCggfHNN98Yu3fvNnx9fY0tW7akq6N///7G008/bSQnJ//j9+B+/9WoUcPo0aOH8eeff1q2//TTT43OnTsbqamplmWpqalGzZo1LT83aW32798/3Wu9+eabRrNmzQzDuPMz5OfnZyxevDjdNh07dkz33njQn28AuQv3nAFANjh16pSuXLmi9957L93y0qVLy9/f/57Z7+42efJkSXeutJw8eVJnzpzRrl27JN25lyyjihYtquXLl+vEiRP67rvvtG/fPh04cECzZs3S2rVrtXLlSpUtW1bh4eFydHRUvXr1LPt6eHioUaNG2rdvX2YO23KlJDY2VqdOndKff/6pI0eO3Lf2ihUrWv4dHx+vyMhIderUSYZhKCUlRdKdKzI+Pj7as2eP2rZt+4+v/cknn9yzrECBApIy3h/79+9Xw4YN003m4uDgoKZNm2rWrFmKjY2Vu7v7Ax333r175e/vryJFilj2K1GihPz9/S1f7927V4ZhqFGjRpbvgXRnSOmcOXMUERGhZ5999m+/B3+9h7Bx48ZatmyZIiMjVb9+fQUFBWno0KE6f/68SpQooU8//VTe3t7parifAwcOqHLlyumW2dnZ6amnntKoUaPSTQZSrlw5OTk5/W1bERERqlGjhgoVKmRZVrRoUcvPeNrVyvr169/zPfjss8/0+++/p/vZ+auePXuqQYMGMgxDBw4c0LRp09S0aVONGDFCDg7/O+155ZVX9MorrygxMVGnTp3SmTNndOzYMaWmpio5OTldm3+9h61o0aI6f/68pDvDdA3DUJMmTdJt06xZM+3evVtS1vx8A8gdCGcAkA1u3LghSSpYsOA96woWLKijR4/+7b5HjhzRyJEjdeTIEbm6uqp8+fKWGQeNB3i2Vvny5VW+fHl17NhRycnJ2rBhg0aNGqUpU6YoLCxMMTExypcvn+zs0o90L1y4cKZf6/r16xo+fLh27twpk8mkMmXKWIaR/bV2Nzc3y79v3rwps9msBQsWaMGCBfe0m5HZ9apWrfq36zLaHzExMX+7jWEYun379n3DWUaO+/r16/cEnLS2r169mq7Opk2b3vc4Ll++/LfHKCld4JHuDG9NOy5JevHFFxUSEqJNmzapU6dO+uKLL9S1a9d/bFOSKleurJEjR0qSTCaTnJ2dVaxYsfvOSHq/78/dbty4oZIlS/7jesMw9Pjjj993fVRU1D+GsxIlSlh+FqpVq6b8+fNr8ODBsre3txyDJCUkJGj06NHatGmTUlJSVLJkSfn7+8vBweGen9W/Dvm0s7NL16/S/z4ISHP311nx8w0gdyCcAUA2yJcvnyRZTrrvduXKFeXPn/+++92+fVudO3eWn5+ftmzZonLlysnOzk7ffvuttm3bluHXX7ZsmebMmaNdu3alO7F0dHRU69at9e233+rEiROSpPz58ys6Olqpqamyt7e3bJsWFO6WNrlEmrsnRZCk/v376+TJk1q6dKn8/f3l5OSk+Ph4rV279h/rdXd3l8lkUvv27e8bTB7kfqi7ZbQ/8ubN+7fbSPrbfsvIcRctWvS+bafd7yb9b9KKZcuW3Tfk/NtjAdJCWJq010sLCu7u7mrSpIm++OIL+fr6Ki4uTi+//PI/tpm23z+F38zIkyfPfSfB+PHHH1WyZEnlyZNHbm5uWr58+X33L1OmTKZer2XLltq2bZtWr16t5557TnXq1JEkjR07Vtu2bdO0adP01FNPWT4sqF27dqbaT7sSevXq1XT9c/cxZvfPN4CcgwlBACAbeHt7q1ChQvdM9nD27FkdOnTIclXg7jAk3ZnF7saNG2rXrp3Kly9vuZr13XffSdJ9Z1+8n/Llyys6Ovq+s/ylpqbq7Nmz8vX1lXRnev2UlBTt3LnTsk1ycrK+//77dPt5eHjo0qVL6ZbdPYth2teNGzfWE088YRnalpHaPTw8VKlSJZ08eVJVq1a1/PfYY49pxowZmR5e+VcZ7Y/AwEDt2rVLt2/ftmyTmpqqLVu2qGrVqpZj+utVxowcd2BgoA4dOmQJetKdq0CHDh2yfJ12tS06Ojrd9+H69euaPn36fQPz3b755pt0X2/ZskWurq6qXr26Zdmrr76q3377TcuWLdNTTz2VbpjlwxAQEKDIyMh04eXatWvq3Lmzvv32W9WqVUtxcXEyDCPd9+C3337TrFmz0g11zKihQ4fK2dlZY8aMsQxZjIiI0BNPPKFnn33WEsx+/vlnXb9+PcPvM0mqWbOm7O3ttWPHjnTLt2/fbvl3dv98A8g5uHIGANnAzs5O/fr10+DBg/Xee++pefPmio6O1syZM5U3b1516NBB0p2rCNKdk+q8efPK29tbHh4emjt3rhwcHOTg4KBt27ZZ7qfK6GyNTz/9tJo1a6YpU6bo119/1fPPPy8vLy9dunRJq1ev1qVLlzRt2jRJd64U1K9fX0OGDNHVq1dVsmRJrVy5UhcuXEh3JaBhw4aaN2+e5s2bp+rVq+vrr7++Z3r/atWqafPmzapcubKKFi2qgwcPav78+TKZTP9ae79+/dS1a1fL9ys1NVWLFy9WZGSk3nnnnQwd99/JaH/07NlT3333ndq1a6euXbvK0dFRK1eu1NmzZ7Vw4UJLe56enjp48KAOHDiggICADB13u3bt9NFHH6lTp07q0aOHpDvT2CcnJ1vu2fLz81Pz5s0t94VVqVJFp06d0tSpU1WyZEmVLVv2H49z+/btKlKkiJ566int3r1ba9asUe/evdMNP6xZs6a8vb21f/9+TZ069T99Xx9E+/bttXHjRnXu3FndunWTo6Oj5syZo6JFi+qll15Snjx5FBgYqHfeeUfvvPOOfHx8dPjwYYWFhalu3bqWoZqZUbJkSXXq1EmzZ8/WsmXL1LlzZ1WrVk1ffPGFPv74Y/n4+Oj48eOaM2dOhn5W71aqVCkFBQVpypQpSk5OVoUKFbRjxw7LPXRpQT47f74B5ByEMwDIJi1btpS7u7vmzZunHj16yMPDQ3Xr1lW/fv0s9wY99thjatasmT766CN9//33+vzzzzV79mxNnDhRvXv3lru7uypWrKiVK1eqS5cuCg8PT/fssX8yadIk1apVS5999pnluUxeXl56+umnNW7cuHTTn4eFhWny5MmaMWOGEhMT1bRpUzVp0kSHDx+2bNOtWzddv35dixYtUnJysho0aKCxY8eqe/fulm3Gjx+v0aNHa/To0ZKksmXLauTIkfrss88UHh7+j/XWqVNHixYt0syZM9WrVy85OjqqcuXKWrJkSZY8xDij/bFq1SrLVPsmk0nVqlXT8uXLLVe1JOntt9/W7Nmz1aVLF23dujVDx+3p6anly5dr7NixGjBggNzd3dWmTRu5urqmu/9u3LhxmjdvniVEFyhQQC+++KL69Olzz5XWv/rwww+1ZcsWLV26VIUKFdIHH3xgeZbe3Ro0aKDr16//4+Qi2aVYsWJatWqVJk2apEGDBsnJyUlPPPGEpk6dqrx580qS5s+fr+nTp2vevHm6du2aihQpog4dOlhC7YPo2rWrNm7cqNmzZ6t58+YaNGiQkpOTNW3aNCUlJalkyZLq3r27Tpw4oa+//vqeIbz/ZOjQoXJzc9PixYt1+/Zt1a5dW927d9esWbMsfZvdP98AcgaT8SB3lwMAcrxBgwZp//79+vrrr61dSo4QGRmpGzduqH79+pZlKSkpatCggZo2barBgwc/lDoMw1DTpk1Vp04dffDBBw/lNXOyGzdu6LvvvlPdunXT3ZM4YcIEbdiwgSGLADKFK2cAADwEFy5cUN++fdWjRw/VqlVL8fHxWrNmjW7duqXXXnst21//9u3bWrp0qY4cOaKzZ8/qzTffzPbXzA1cXV01duxYVaxYUW+99Zbc3NwsD3Hv1q2btcsD8IghnAEA8BC88MILunHjhlatWqVFixbJ0dFR1atX18qVK+Xj45Ptr+/i4qLVq1fLbDYrJCQk3bBWPDhnZ2ctXbpU06ZN06BBgxQfH6/SpUtr4MCBPLsMQKYxrBEAAAAAbABT6QMAAACADSCcAQAAAIANIJwBAAAAgA1gQpBs8NNPP8kwDDk6Olq7FAAAAABWlJycLJPJJH9//3/dlnCWDQzDEPOsAAAAAMhMLiCcZYO0K2ZVq1a1ciUAAAAArOnIkSMZ3pZ7zgAAAADABhDOAAAAAMAGEM4AAAAAwAYQzgAAAADABhDOAAAAAMAGEM4AAAAAwAYQzgAAAADABhDOAAAAAMAGEM4AAAAAwAYQzgAAAADABhDOAAAAAMAGEM4AAAAAwAYQzgAAAADABhDOAAAAAMAGEM4AAAAAwAYQzgAAAADABhDOAAAAAMAGEM4AAAAAwAYQzgAAAADABhDOAAAAAMAGEM4AAACAHMhsNqxdQo6WHd9fhyxvMZMuX76sevXq3bN83LhxatmypY4dO6axY8fq559/lpeXl9q3b6927dpZtjObzZo5c6bWrVunW7duKTAwUMOGDVOpUqUs22RFGwAAAMCjxM7OpFkf79H5qBhrl5LjlCicVz3eeDrL27V6ODt+/LicnZ21c+dOmUwmy/I8efIoOjpaHTp0UKNGjTRy5EgdOnRII0eOlLu7u4KCgiRJs2fP1qpVqzR+/HgVLVpUkyZNUufOnbV582Y5OTllSRsAAADAo+h8VIxOn4+2dhnIIKuHs99++01ly5ZV4cKF71m3bNkyOTo6atSoUXJwcJCPj4/OnDmj+fPnKygoSElJSVq8eLH69++vBg0aSJKmTp2qunXravv27WrWrJnWrl37n9sAAAAAgOxm9XvOfv31V/n4+Nx3XXh4uGrVqiUHh/9lyCeffFKnT5/W1atXdfz4ccXGxqp27dqW9Z6enqpUqZIOHDiQZW0AAAAAQHaziStn+fPnV9u2bXXq1CmVKVNG3bt3V7169XTp0iX5+vqm2z7tCtvFixd16dIlSVKxYsXu2SZtXVa08SAMw1BcXNwD7w8AAAA8KJPJJFdXV2uXkePFx8fLMP55YhDDMNLdvvVPrBrOUlJSdPLkSZUvX16DBg2Sh4eHtmzZoq5du2rJkiVKSEi4554vZ2dnSVJiYqLi4+Ml6b7bxMTcufExK9p4EMnJyTp27NgD7w8AAAA8KFdXV1WqVMnaZeR4p06dsuSJf5LReSysGs4cHBy0b98+2dvby8XFRZJUpUoV/f7771q0aJFcXFyUlJSUbp/ExERJkpubm2WfpKQky7/Ttkn7pCAr2ngQjo6OKl++/APvDwAAADyojF6pwX/j7e39r1fOTpw4keH2rD6s0d3d/Z5ljz32mHbv3q2iRYsqKioq3bq0r4sUKaKUlBTLstKlS6fbxs/PT5KypI0HYTKZ5Obm9sD7AwAAALBtGbmYk5mgbNUJQX7//Xc9/vjj2rdvX7rlP//8s8qXL6/AwEBFREQoNTXVsm7v3r3y9vZWgQIFVKFCBXl4eKTb/+bNmzp69KgCAwMlKUvaAAAAAIDsZtVw5uPjo3LlymnUqFEKDw/XH3/8oXHjxunQoUPq3r27goKCdPv2bX344Yc6ceKENmzYoKVLl6pbt26S7ozdDA4OVmhoqL766isdP35cffv2VdGiRdW4cWNJypI2AAAAACC7WXVYo52dnebOnavJkyerT58+unnzpipVqqQlS5ZYZlhcuHChxo4dqxYtWqhQoUIaMGCAWrRoYWmjV69eSklJ0ZAhQ5SQkKDAwEAtWrRIjo6OkqQCBQr85zYAAAAAILuZjH+7gw2ZduTIEUlS1apVrVwJAAAAcrMPpm/V6fPR1i4jxylbIr9Cer+YoW0zkw2s/hBqAAAAAADhDAAAAABsAuEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGwA4QwAAAAAbADhDAAAAABsAOEMAAAAAGyATYWzU6dOyd/fXxs2bLAsO3bsmIKDg1WjRg01atRIy5cvT7eP2WxWWFiY6tatqxo1aqhLly46e/Zsum2yog0AAAAAyE42E86Sk5PVv39/xcXFWZZFR0erQ4cOKl26tNavX68ePXooNDRU69evt2wze/ZsrVq1SqNHj9bq1atlNpvVuXNnJSUlZVkbAAAAAJDdbCaczZgxQx4eHumWrV27Vo6Ojho1apR8fHwUFBSk9u3ba/78+ZKkpKQkLV68WL169VKDBg1UoUIFTZ06VZcuXdL27duzrA0AAAAAyG42Ec4OHDigNWvWaPz48emWh4eHq1atWnJwcLAse/LJJ3X69GldvXpVx48fV2xsrGrXrm1Z7+npqUqVKunAgQNZ1gYAAAAAZDeHf98ke928eVMDBgzQkCFDVKxYsXTrLl26JF9f33TLChcuLEm6ePGiLl26JEn37Fe4cGHLuqxo40EYhpFuiCYAAADwsJhMJrm6ulq7jBwvPj5ehmH84zaGYchkMmWoPauHsxEjRsjf318vvfTSPesSEhLk5OSUbpmzs7MkKTExUfHx8ZJ0321iYmKyrI0HkZycrGPHjj3w/gAAAMCDcnV1VaVKlaxdRo536tQpS574J3/NGn/HquFs48aNCg8P1+bNm++73sXF5Z5JORITEyVJbm5ucnFxkXTnvrG0f6dtk/ZJQVa08SAcHR1Vvnz5B94fAAAAeFAZvVKD/8bb2/tfr5ydOHEiw+1ZNZytX79e165dU4MGDdItHz58uLZu3aqiRYsqKioq3bq0r4sUKaKUlBTLstKlS6fbxs/PT5KypI0HYTKZ5Obm9sD7AwAAALBtGbmYk5mgbNVwFhoaqoSEhHTLGjdurF69eql58+batGmTVq9erdTUVNnb20uS9u7dK29vbxUoUEB58uSRh4eH9u3bZwlWN2/e1NGjRxUcHCxJCgwM/M9tAAAAAEB2s+psjUWKFFGZMmXS/SdJBQoUUJEiRRQUFKTbt2/rww8/1IkTJ7RhwwYtXbpU3bp1k3Rn7GZwcLBCQ0P11Vdf6fjx4+rbt6+KFi2qxo0bS1KWtAEAAAAA2c3qE4L8kwIFCmjhwoUaO3asWrRooUKFCmnAgAFq0aKFZZtevXopJSVFQ4YMUUJCggIDA7Vo0SI5OjpmWRsAAAAAkN1Mxr/dwYZMO3LkiCSpatWqVq4EAAAAudkH07fq9Ploa5eR45QtkV8hvV/M0LaZyQY28RBqAAAAAMjtCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADHB50x5iYGIWHhysqKkrPP/+8bty4IW9vb5lMpqysDwAAAAByhQcKZ3PmzNG8efOUkJAgk8mkatWqadq0aYqOjtbixYvl6emZ1XUCAAAAQI6W6WGNK1eu1IwZM9ShQwetXbtWhmFIkoKDg3X27FlNnz49y4sEAAAAgJwu0+FsxYoV6tq1q3r37q3KlStbltevX199+vTR119/naUFAgAAAEBukOlwduHCBdWqVeu+68qVK6erV6/+56IAAAAAILfJdDgrVqyYfvrpp/uu+/nnn1WsWLH/XBQAAAAA5DaZnhDk1Vdf1YwZM+Ti4qIGDRpIkuLi4rRt2zbNmzdPHTp0yOoaAQAAACDHy3Q469Kli86dO6fQ0FCFhoZKktq1aydJeumll9StW7esrRAAAAAAcoFMhzOTyaRRo0apQ4cO2rt3r2JiYpQnTx4FBgbK19c3O2oEAAAAgBzvgR9C7e3tLW9v76ysBQAAAAByrUyHszfffFMmk+m+6+zs7OTm5qYyZcqoVatWKleu3H8uEAAAAAByg0zP1liqVCkdOnTIMmNjwYIFZTKZFBkZqQMHDuj69ev6/PPPFRQUpKNHj2Z5wQAAAACQE2X6ylmhQoVUvHhxLV68WMWLF7csj4qKUteuXVWvXj1169ZNPXv21LRp0zR//vwsLRgAAAAAcqJMXzlbv369evfunS6YSVLhwoXVvXt3rVq1Svb29mrdurUiIyOzrFAAAAAAyMkyHc7i4+Pl6Oh433Umk0mxsbGSJDc3NyUlJf236gAAAAAgl8h0OHv88cc1ffp0Xb16Nd3ya9euadasWfL395ck7d+/X6VLl86aKgEAAAAgh8v0PWeDBw9W27Zt9eyzz8rf319eXl66du2aDh06JHd3d02ZMkXfffedZs2apREjRmRDyQAAAACQ82T6ylm5cuW0detWdejQQYmJifrll18kSV26dNGXX34pHx8f5cuXT1OnTlXr1q2zvGAAAAAAyIke6CHU+fPnV+/evf92fbVq1VStWrUHLgoAAAAAcpsHCmeHDx/Wvn37lJSUJMMwJEmGYSguLk4RERFau3ZtlhYJAAAAADldpsPZRx99pDFjxlhC2d3s7OxUp06dLCkMAAAAAHKTTN9ztnLlStWrV0/79u1Tx44d9dprr+nQoUOaPn26nJ2d1bx58+yoEwAAAABytEyHs3PnzqlNmzbKmzevqlSpooiICLm4uOj5559X165dtXz58uyoEwAAAABytEyHM0dHR7m4uEiSypQpozNnzig5OVmSVLNmTZ0+fTpLCwQAAACA3CDT4axixYratWuXJMnb21tms1mRkZGSpEuXLmVtdQAAAACQS2R6QpAOHTqoZ8+eunnzpkJCQvTMM89owIABaty4sTZv3qyaNWtmR50AAAAAkKNl+srZs88+q7lz58rHx0eSNGrUKJUtW1arV69WuXLlNHTo0CwvEgAAAAByugd6zlmDBg3UoEEDSXceSL148WLLOoY2AgAAAEDmPdA9Z4cPH77vuvDwcL3wwgv/uSgAAAAAyG0ydOVs8eLFiouLkyQZhqF169bpu+++u2e7n376SU5OTllbIQAAAADkAhkKZ4mJiZo5c6YkyWQyad26dfdsY2dnpzx58qh79+5ZWyEAAACsxmw2ZGdnsnYZORrfY6TJUDjr3r27JXRVqFBBa9euVbVq1bK1MAAAAFifnZ1Jsz7eo/NRMdYuJUcqUTiverzxtLXLgI3I9IQgx48ft/w7Pj5et2/fVr58+eTo6JilhQEAAMA2nI+K0enz0dYuA8jxHmi2xvDwcE2cOFE///yzDMOQJFWrVk19+/bVk08+maUFAgAAAEBukOlwdvDgQbVv316lSpXSO++8o4IFCyoqKkpbtmxR586dtWLFCvn7+2dHrQAAAACQY2U6nE2bNk0BAQFatGiR7O3tLct79uypTp06acaMGemeewYAAAAA+HeZfs7ZkSNH1K5du3TBTLozW2NwcPDfPgMNAAAAAPD3Mh3O3N3dlZKSct91KSkplnvQAAAAAAAZl+lw9vjjj2v+/PmKj49PtzwuLk7z589XQEBAlhUHAAAAALlFpu85e++999SyZUs988wzatCggQoVKqQrV67om2++UUJCgsaOHZsddQIAAABAjpbpcFamTBmtXbtWM2bM0LfffquYmBjlzZtXtWrVUs+ePVW+fPnsqBMAAAAAcrQHes6Zj4+Ppk2blsWlAAAAAEDu9UDh7Pr161q8eLH279+vmzdvKn/+/AoICFD79u1VoECBrK4RAAAAAHK8TE8IcunSJbVo0ULLli2Ts7OzKlWqJAcHBy1ZskSvvPKKLl++nB11AgCAR5jZzGzO2Y3vMfDoy/SVs0mTJsnBwUFbt25VqVKlLMvPnj2rjh07aurUqRo/fnyG27t27ZrGjx+v77//XomJiQoMDNTAgQPl4+MjSTp27JjGjh2rn3/+WV5eXmrfvr3atWtn2d9sNmvmzJlat26dbt26pcDAQA0bNixdbVnRBgAAeHB2dibN+niPzkfFWLuUHKlE4bzq8cbT1i4DwH+U6XC2e/duffDBB/cEl1KlSqlHjx6aOHFiptrr0aOHzGaz5s+fL3d3d02fPl3t27fX9u3blZCQoA4dOqhRo0YaOXKkDh06pJEjR8rd3V1BQUGSpNmzZ2vVqlUaP368ihYtqkmTJqlz587avHmznJycFB0d/Z/bAAAA/935qBidPh9t7TIAwGZlelhjamqq8ufPf991Xl5eun37dobbiomJUYkSJTRmzBhVq1ZNPj4+eueddxQVFaXff/9da9eulaOjo0aNGiUfHx8FBQWpffv2mj9/viQpKSlJixcvVq9evdSgQQNVqFBBU6dO1aVLl7R9+3ZJypI2AAAAACC7ZTqc+fn5afPmzfddt2nTJvn6+ma4rbx582ry5MmWfa5fv66lS5eqaNGiKl++vMLDw1WrVi05OPzvAt+TTz6p06dP6+rVqzp+/LhiY2NVu3Zty3pPT09VqlRJBw4ckKQsaQMAAAAAslumhzW+88476tSpk2JiYvTiiy9aHkK9ZcsW7d69W2FhYQ9UyNChQ7V27Vo5OTlpzpw5cnNz06VLl+4Je4ULF5YkXbx4UZcuXZIkFStW7J5t0tZlRRsPwjAMxcXFPfD+AADkFCaTSa6urtYuI1eIj4+XYWTdxCD03cND3z2aMtJvhmHIZDJlqL1Mh7Onn35a48ePV2hoqL777jvL8oIFCyokJETPPfdcZpuUJL311ltq3bq1PvroI/Xo0UOrVq1SQkLCPfd8OTs7S5ISExMVHx8vSffdJibmzg3HWdHGg0hOTtaxY8ceeH8AAHIKV1dXVapUydpl5AqnTp2ynNtkBfru4aHvHk0Z7beMzmPxQM85e+WVV/Tyyy/r5MmTiomJUd68eVWuXLkMJ8L7KV++vCRp7NixioyM1MqVK+Xi4qKkpKR02yUmJkqS3Nzc5OLiIunOfWNp/07bJu2Tgqxo40E4OjpajgkAgNzsv5wfIHO8vb2z/OoLHg767tGUkX47ceJEhtvLUDhbsmSJXnrpJRUsWNCyzGQyWaa7f1DXr1/Xjz/+qOeff95yT5idnZ3Kly+vqKgoFS1aVFFRUen2Sfu6SJEiSklJsSwrXbp0um38/PwkKUvaeBAmk0lubm4PvD8AAEBmMYzt0UXfPZoy0m+ZCcoZmhBk4sSJunDhguVrwzA0YsSI/3RPliRdvXpV/fr1048//mhZlpycrKNHj8rHx0eBgYGKiIhQamqqZf3evXvl7e2tAgUKqEKFCvLw8NC+ffss62/evKmjR48qMDBQkrKkDQAAAADIbhkKZ3+9VGc2m7VmzRpdu3btP724r6+v6tWrpzFjxujAgQP67bffNGjQIN28eVPt27dXUFCQbt++rQ8//FAnTpzQhg0btHTpUnXr1k3SnbGbwcHBCg0N1VdffaXjx4+rb9++Klq0qBo3bixJWdIGAAAAAGS3B7rnTLo3sD2oKVOmaPLkyerbt69u3bqlgIAAffTRRypevLgkaeHChRo7dqxatGihQoUKacCAAWrRooVl/169eiklJUVDhgxRQkKCAgMDtWjRIjk6OkqSChQo8J/bAAAAAIDs9sDhLKvkyZNHI0aM0IgRI+67vlq1alqzZs3f7m9vb6/3339f77///t9ukxVtAAAAAEB2yvRDqAEAAAAAWe8/hTOm6AQAAACArJHhYY2tW7e+Z1lQUNA9y0wmk44ePfrfqgIAAACAXCZD4axnz57ZXQcAAAAA5GqEMwAAAACwAUwIAgAAAAA2gHAGAAAAADaAcAYAAAAANoBwBgAAAAA2gHAGAAAAADYgw885u1tSUpI++eQT/fDDD7py5YpCQkK0f/9+Va5cWdWqVcvqGgEAAAAgx8v0lbPr168rKChIY8eO1ZkzZ3T48GElJCTom2++0ZtvvqmffvopO+oEAAAAgBwt0+Fs4sSJio2N1datW/Xpp5/KMAxJUlhYmKpWraqwsLAsLxIAAAAAcrpMh7Ndu3apd+/eKlOmjEwmk2W5s7OzOnbsqF9++SVLCwQAAACA3CDT4SwxMVH58uW77zp7e3slJyf/15oAAAAAINfJdDirWrWqVq1add91mzdvVpUqVf5zUQAAAACQ22R6tsbevXurffv2evnll1W/fn2ZTCZ9/vnnmjFjhnbv3q2FCxdmR50AAAAAkKNl+spZQECAlixZIldXVy1cuFCGYWjp0qW6cuWK5s2bpyeffDI76gQAAACAHC3TV85+/PFH+fv7a/Xq1UpISFBMTIw8PDzk7u6eHfUBAAAAQK6Q6Stn7777rrZv3y5JcnFxUZEiRQhmAAAAAPAfZTqceXp6ysXFJTtqAQAAAIBcK9PDGrt166YxY8bo1KlTqlChgtzc3O7ZJjAwMEuKAwAAAIDcItPhbPjw4ZKkqVOnSlK6B1EbhiGTyaRjx45lUXkAAAAAkDtkOpwtX748O+oAAAAAgFwt0+GsVq1a2VEHAAAAAORqmQ5nknT48GHt27dPSUlJMgxD0p0hjXFxcYqIiNDatWuztEgAAAAAyOkyHc4++ugjjRkzxhLK7mZnZ6c6depkSWEAAAAAkJtkeir9lStXql69etq3b586duyo1157TYcOHdL06dPl7Oys5s2bZ0edAAAAAJCjZTqcnTt3Tm3atFHevHlVpUoVRUREyMXFRc8//7y6du3KhCEAAAAA8AAyHc4cHR0tD6EuU6aMzpw5o+TkZElSzZo1dfr06SwtEAAAAAByg0yHs4oVK2rXrl2SJG9vb5nNZkVGRkqSLl26lLXVAQAAAEAukekJQTp06KCePXvq5s2bCgkJ0TPPPKMBAwaocePG2rx5s2rWrJkddQIAAABAjpbpK2fPPvus5s6dKx8fH0nSqFGjVLZsWa1evVrlypXTsGHDsrxIAAAAAMjpHug5Zw0aNFCDBg0kSfnz59fixYuzsiYAAAAAyHUyHc4uXLjwr9sUL178gYoBAAAAgNwq0+GsUaNGMplM/7jNsWPHHrggAAAAAMiNMh3OQkJC7glncXFxCg8P1759+xQSEpJlxQEAAABAbpHpcNayZcv7Lm/btq3GjRunzZs3W+5HAwAAAABkTKZna/wnjRo10jfffJOVTQIAkI7ZbFi7hByN7y8AWM8Dzdb4dyIjI+XgkKVNAgCQjp2dSbM+3qPzUTHWLiXHKVE4r3q88bS1ywCAXCvTSWrw4MH3LDObzbp06ZIOHDigV199NUsKAwDg75yPitHp89HWLgMAgCyV6XC2b9++e5aZTCZ5eHioS5cuevvtt7OkMAAAAADITTIdzr7++uvsqAMAAAAAcrUsnRAEAAAAAPBgsuUh1GlMJpN27tyZ6aIAAAAAILfJdDhr0aKFVq5cKelOUCtSpIhu3Lih77//XhcuXFCTJk3k4uKS5YUCAAAAQE6W6XB2+/ZteXt7a9GiRXJ3d7csT0lJ0TvvvKM8efJo1KhRWVokAAAAAOR0mb7nbOPGjeratWu6YCZJDg4OCg4O1pYtW7KsOAAAAADILR5oQpAbN27cd/m5c+fk7Oz8X+oBAAAAgFwp0+GsQYMGmjx5sr777jvLMsMwtGPHDk2fPl0vvfRSlhYIAAAAALlBpu85++CDD9SpUyd17dpVjo6Oypcvn6Kjo5Wamqp69erpvffey446AQAAACBHy3Q4y5s3r9atW6dvvvlGERERiomJUf78+VW7dm3Vrl07O2oEAAAAgBwv0+FMuvP8soYNG6phw4ZZXQ8AAAAA5EoZvucsNTVV27Zt09GjRy3L/vzzT/Xu3VvNmjXTe++9p1OnTmVLkQAAAACQ02UonMXGxur1119Xnz59tHv3bknSzZs31aZNG3311VcqU6aMfvvtN73++us6f/58thYMAAAAADlRhsLZokWL9Oeff2rmzJnq2LGjJGnZsmW6du2ahg8frlmzZmnjxo3y9fXV7Nmzs7VgAAAAAMiJMhTOtm/frs6dO+uZZ56Rg4ODZZm7u7tatmwpSbK3t9frr7+uPXv2ZF+1AAAAAJBDZSicnTt3TlWqVLF8HR0drRMnTiggIED29vaW5UWKFNG1a9eyvkoAAAAAyOEyFM7s7e2VkpJi+ToiIkKGYejJJ59Mt110dLTc3NyytkIAAAAAyAUyFM4ee+wxRUREWL7euXOnTCaT6tatm267bdu2ydfXN2srBAAAAIBcIEPPOXvttdc0bNgwmUwmmc1mbd68WU888YR8fHwkSYmJiVqxYoW2bt2qkSNHZmvBAAAAAJATZSictWzZUhcuXNDChQuVkJCg6tWra8KECZb1DRo00I0bN/Tiiy+qVatW2VYsAAAAAORUGQpnktSzZ09169ZNt27dkpeXV7p13bt3V/ny5fXUU09leYEAAAAAkBtkOJxJkqOj4z3BTJLatWuXZQUBAAAAQG6UoQlBAAAAAADZi3AGAAAAADaAcAYAAAAANoBwBgAAAAA2gHAGAAAAADYgQ7M1NmrUSCaTKUMNmkwm7dy58z8VBQAAAAC5TYbCWa1atTIczgAAAAAAmZehcDZ+/PjsrgMAAAAAcrVMPYQ6TWJion799VclJSXJMAxJktlsVnx8vMLDw9W/f/8sLRIAAAAAcrpMh7N9+/apd+/eiomJue96d3d3whkAAAAAZFKmZ2ucOnWq8ufPr7CwMD377LNq3Lix5s6dqzZt2shkMmnBggWZau/GjRsaNmyY6tWrp8cff1xvvPGGwsPDLet//PFHtWzZUtWrV1eTJk20ZcuWdPsnJiZq5MiRql27tvz9/fXee+/p+vXr6bbJijYAAAAAIDtlOpz9+uuv6tmzp5577jk1bNhQFy9eVP369TV06FC9+uqrmjNnTqba69evn3766SdNmTJF69evV8WKFdWpUyedPHlSf/zxh7p166a6detqw4YNatWqlQYMGKAff/zRsv+IESO0e/duzZgxQ8uWLdPJkyfVq1cvy/qsaAMAAAAAslumhzWazWYVKVJEklSmTBn9/vvvlnXPP/+8Bg4cmOG2zpw5oz179mjVqlWqWbOmJGno0KH6/vvvtXnzZl27dk1+fn7q27evJMnHx0dHjx7VwoULVbt2bV2+fFkbN27U3LlzFRAQIEmaMmWKmjRpop9++kn+/v5atmzZf24DAAAAALJbpq+clS5dWr/++qskydvbW/Hx8Tp58qQkKSUlRbGxsRluK3/+/Jo/f76qVq1qWWYymWQymXTz5k2Fh4erdu3a6fZ58sknFRERIcMwFBERYVmWxtvbW0WKFNGBAwckKUvaAAAAAIDslulw9tJLLyk0NFQrV66Ul5eXqlSpotGjR+vrr7/WrFmzVL58+Qy35enpqfr168vJycmybNu2bTpz5ozq1q2rS5cuqWjRoun2KVy4sOLj4xUdHa3Lly8rf/78cnZ2vmebS5cuSVKWtAEAAAAA2S3Twxo7d+6s6OhoRUZGKjg4WMOHD1eXLl30zjvvyMPDI9P3nN3t4MGDGjx4sBo3bqwGDRooISEhXXCTZPk6KSlJ8fHx96yXJGdnZyUmJkpSlrTxIAzDUFxc3APvDwC4l8lkkqurq7XLyPHi4+Mtj8rJCvTbw0PfPbrou0dTRvrNMAyZTKYMtZfpcGZnZ5fuvrKqVatq586dOnnypMqVKycPD4/MNilJ2rlzp/r376/HH39coaGhku4EpKSkpHTbpX3t6uoqFxeXe9ZLd2ZfTPthzIo2HkRycrKOHTv2wPsDAO7l6uqqSpUqWbuMHO/UqVOKj4/Psvbot4eHvnt00XePpoz22/0uBt1PpsNZu3btNHz4cPn4+FiWeXh4qFq1ajp+/Ljef/99bd68OVNtrly5UmPHjlWTJk00YcIES/HFihVTVFRUum2joqLk5uamPHnyqGjRorpx44aSkpLSHXBUVJRl0pKsaONBODo6ZmqIJwDg32X0k0f8N97e3ln+CT4eDvru0UXfPZoy0m8nTpzIcHsZCmfh4eGWF92/f78OHDhw3+eA7dq1S2fPns3wi0vSqlWrNHr0aL355pv68MMP0/0gBQQEaP/+/em237t3rx5//HHZ2dmpZs2aMpvNioiIsEz6cerUKV2+fFmBgYFZ1saDMJlMcnNze+D9AQCwFoZCPbrou0cXffdoyki/ZSYoZyicrVu3Tps2bbLMpDhy5Mh7tkkLb82aNcvwi586dUohISF67rnn1K1bN129etWyzsXFRW+++aZatGih0NBQtWjRQt9++62+/PJLLVy4UJJUpEgRNW3aVEOGDFFISIhcXV01fPhw1apVSzVq1JCkLGkDAAAAALJbhsLZkCFDFBQUJMMw9NZbb2nYsGH3DNmzs7OTp6enHnvssQy/+LZt25ScnKwdO3Zox44d6da1aNFC48eP1+zZszVp0iQtW7ZMJUuW1KRJk9JNjT969GiFhISoZ8+ekqR69eppyJAhlvWPPfbYf24DAAAAALJbhsJZnjx5VKtWLUnS8uXLValSpQee+ONub7/9tt5+++1/3KZevXqqV6/e3653c3PTmDFjNGbMmGxtAwAAAACyU6YnBKlVq5auX7+u0NBQ7d+/Xzdv3lT+/PkVEBCg9u3bq0CBAtlRJwAAAADkaJl+CPWlS5fUsmVLLVu2TM7OzqpUqZIcHBy0ZMkSvfLKK7p8+XJ21AkAAAAAOVqmr5xNmjRJ9vb22rp1q0qVKmVZfvbsWXXs2FFTp07V+PHjs7RIAAAAAMjpMn3lbPfu3erVq1e6YCZJpUqVUo8ePfTdd99lWXEAAAAAkFtkOpylpqYqf/78913n5eWl27dv/+eiAAAAACC3yXQ48/Pz0+bNm++7btOmTfL19f3PRQEAAABAbpPpe87eeecdderUSTExMXrxxRdVqFAhXblyRVu2bNHu3bsVFhaWHXUCAAAAQI6WoXDWrl07DR8+XD4+Pnr66ac1fvx4hYaGpru/rGDBggoJCdFzzz2XbcUCAAAAQE6VoXC2f/9+xcbGWr5+5ZVX9PLLL+vkyZOKiYlR3rx5Va5cOZlMpmwrFAAAAAByskwPa0xjMpnk4+OTlbUAAAAAQK6V6QlBAAAAAABZL8NXznr06CEnJ6d/3c5kMmnnzp3/qSgAAAAAyG0yHM4qVaokLy+v7KwFAAAAAHKtTF05q1atWnbWAgAPjdlsyM6OSYyyC99fAAAy74EnBAGAR5mdnUmzPt6j81Ex1i4lxylROK96vPG0tcsAAOCRQzgDkGudj4rR6fPR1i4DAABAUgZna2zRooXy58+f3bUAAAAAQK6VoStn48aNy+46AAAAACBX4zlnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGcAAAAAYAMIZwAAAABgAwhnAAAAAGADCGfAf2A2G9YuIcfjewwAAHILB2sXADzK7OxMmvXxHp2PirF2KTlSicJ51eONp61dBgAAwENBOAP+o/NRMTp9PtraZQAAAOARx7BGAAAAALABhDMAAAAAsAGEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzG2A2G9YuIcfjewwAAABb52DtAiDZ2Zk06+M9Oh8VY+1ScqQShfOqxxtPW7sMAAAA4B/ZVDibN2+edu/erRUrVliWHTt2TGPHjtXPP/8sLy8vtW/fXu3atbOsN5vNmjlzptatW6dbt24pMDBQw4YNU6lSpbK0jex2PipGp89HP7TXAwAAAGBbbGZY40cffaRp06alWxYdHa0OHTqodOnSWr9+vXr06KHQ0FCtX7/ess3s2bO1atUqjR49WqtXr5bZbFbnzp2VlJSUZW0AAAAAQHaz+pWzy5cva/jw4dq3b5/Kli2bbt3atWvl6OioUaNGycHBQT4+Pjpz5ozmz5+voKAgJSUlafHixerfv78aNGggSZo6darq1q2r7du3q1mzZlnSBgAAAABkN6tfOfvll1/k6Oiozz77TNWrV0+3Ljw8XLVq1ZKDw/8y5JNPPqnTp0/r6tWrOn78uGJjY1W7dm3Lek9PT1WqVEkHDhzIsjYAAAAAILtZ/cpZo0aN1KhRo/uuu3Tpknx9fdMtK1y4sCTp4sWLunTpkiSpWLFi92yTti4r2ngQhmEoLi7uX7czmUxydXV94NdBxsXHx8swsm7WRvru4aHvHk1Z3W8Sffew8J57dNF3jy767tGUkX4zDEMmkylD7Vk9nP2ThIQEOTk5pVvm7OwsSUpMTFR8fLwk3XebmJiYLGvjQSQnJ+vYsWP/up2rq6sqVar0wK+DjDt16pSlv7MCfffw0HePpqzuN4m+e1h4zz266LtHF333aMpov/01a/wdmw5nLi4u90zKkZiYKElyc3OTi4uLJCkpKcny77Rt0j4pyIo2HoSjo6PKly//r9tlNEXjv/P29s7yT6TwcNB3j6as7jeJvntYeM89uui7Rxd992jKSL+dOHEiw+3ZdDgrWrSooqKi0i1L+7pIkSJKSUmxLCtdunS6bfz8/LKsjQdhMpnk5ub2wPsj63Fp/9FF3z2a6LdHF3336KLvHl303aMpI/2WmaBs9QlB/klgYKAiIiKUmppqWbZ37155e3urQIECqlChgjw8PLRv3z7L+ps3b+ro0aMKDAzMsjYAAAAAILvZdDgLCgrS7du39eGHH+rEiRPasGGDli5dqm7dukm6M3YzODhYoaGh+uqrr3T8+HH17dtXRYsWVePGjbOsDQAAAADIbjY9rLFAgQJauHChxo4dqxYtWqhQoUIaMGCAWrRoYdmmV69eSklJ0ZAhQ5SQkKDAwEAtWrRIjo6OWdYGAAAAAGQ3mwpn48ePv2dZtWrVtGbNmr/dx97eXu+//77ef//9v90mK9oAAAAAgOxk08MaAQAAACC3IJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCcAQAAAIANIJwBAAAAgA0gnAEAAACADSCc/T+z2aywsDDVrVtXNWrUUJcuXXT27FlrlwUAAAAglyCc/b/Zs2dr1apVGj16tFavXi2z2azOnTsrKSnJ2qUBAAAAyAUIZ5KSkpK0ePFi9erVSw0aNFCFChU0depUXbp0Sdu3b7d2eQAAAAByAcKZpOPHjys2Nla1a9e2LPP09FSlSpV04MABK1YGAAAAILcwGYZhWLsIa9u+fbveffddRUZGysXFxbK8d+/eSkhI0Lx58zLV3sGDB2UYhhwdHTO0vclk0s3bCUo1mzP1OsgYezs7eXq4KDt+1Om77EXfPZqys98k+i478Z57dNF3jy767tGUmX5LTk6WyWTS448//q/bOmRFcY+6+Ph4SZKTk1O65c7OzoqJicl0eyaTKd3/M8LTw+XfN8J/kpn+yAz6LvvRd4+m7Oo3ib7LbrznHl303aOLvns0ZaTfTCZThvuXcCZZrpYlJSWlu3KWmJgoV1fXTLfn7++fZbUBAAAAyB2450xSsWLFJElRUVHplkdFRalIkSLWKAkAAABALkM4k1ShQgV5eHho3759lmU3b97U0aNHFRgYaMXKAAAAAOQWDGvUnXvNgoODFRoaKi8vL5UoUUKTJk1S0aJF1bhxY2uXBwAAACAXIJz9v169eiklJUVDhgxRQkKCAgMDtWjRogzPuAgAAAAA/wVT6QMAAACADeCeMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzAAAAALABhDMAAAAAsAGEMwAAAACwAYQzWM2JEyeUnJxs7TKAXOvw4cPWLgEAANyFcAarmD17tgYNGiSegf7o27Ztm65evWrtMpBJc+fO1ZAhQ6xdBv7B4sWLtX37dmuXAeRYp0+ftnYJeEBHjhzR7du3rV1GtiCc4aFKC2ORkZEqUaKEnJycrFwR/otPP/1UAwYMkLu7u7VLQSadPn1ahQoVkiSlpKRYuRr81Z49ezRx4kQNHDhQO3futHY5+Adbt25VVFSUtctAJk2ZMkVNmjTh/fUImjt3rlq1aqWNGzfmyIBGOMNDlZqaavm3s7OzFStBVoiLi1OhQoXk4OAgs9ls7XKQCXFxcbK3t5ckOTg4WLka/FWJEiVUsWJF5c+fX6NGjdJnn31m7ZJwH6tWrVK/fv00ePBgXbt2zdrlIBNOnTolSRowYIC++OILK1eDzLh48aIkafLkyfrkk08UFxdn5YqyFuEMD1XaSaBhGEpISLByNXhQaUHMMAzLCT4eDXff52kymSSJ4cU2qGTJkvLz85Ojo6NefPFFTZkyRZ9//rm1y8Jf+Pr6ytHRUXv27NG7775LQHsEpP2+69ChgwIDA1W+fHn179+fD0AeAWl91717dzVo0EA+Pj6aOHGiVqxYkaPOKQlneCgiIyN148YNy9cmk0mOjo7ptrn7hB+2Le2kPi4uTsnJybK3t5edHb9ObNnu3bslyfK+8/DwsFy9vvs9xxBH6zAMw9IPZrNZDg4O6tevn5ycnGRvb686depowoQJBDQbYhiGfH199corr6h58+a6deuWOnbsSECzcWl/v8qWLSsHBwdVrVpVPXv21KBBg7R582YrV4d/ktZ3efLkUcGCBRUYGKgRI0Zo6tSpWrZsWY4JaJxNIVsZhqG9e/eqdevWWrdunWXiCDs7O5nNZkVGRio+Pl5JSUmWk/u0Nx9sz8aNGxUREWHpIycnJzk5OaULZqmpqZaTTIK2bTh48KB69uyp4cOHW5bFxcXp6tWrOn/+vM6ePWtZzhBH60hKSrK8r+zs7JSSkqL8+fPrueeek4uLi4KDg/XEE09o/PjxBDQbYTKZ5OnpqYoVK2rv3r0aNGiQnJyc1LlzZwKajTObzfLy8lKPHj301VdfqWLFiurQoYMGDRrE+8vGmc1mubu7Kzg4WOvWrVPJkiU1fPhwTZ06VcuXL88RAY2/wshWJpNJTz75pDp06KDp06dLujOUwMXFRdu2bdM333wje3t7FSxYUBUqVFDZsmVVsmRJFShQQOXLl1epUqWsfARIc/LkSS1ZskSurq4aNGiQatSoIWdnZ928eVNr1qxR6dKlVb58eTk6OipfvnySCNq2onTp0uratas++eQTjRw5UsOHD5erq6sOHjyoZs2aSbozjK5gwYLy8fFR9erVZRiGGjVqJA8PDytXn/PNnj1bX375pYYMGSJvb2/LfZyS9Pjjj6t///56/vnnNWDAAE2aNEnjx4+XnZ2dXnzxRStXnrulpKTIwcFBbdq00d69e/Xtt99qyJAhGjhwoLp06aIFCxaoQIEC1i4Tkj7//HNVr15d+fPnl4eHh0wmk1JTU1WpUiU1atRIJ0+e1DvvvKPY2FgNHDhQkiy/G2FdGzduVJEiReTj46PChQvLZDLJbDarQoUKat++vb7++msNGjRIt27d0pQpUyRJ7dq1k4uLi5Urf3CEMzwUab/sJk+erLx58+r27duqVq2aBgwYoP379+vs2bM6evSovv32W8XHx8vDw0ObNm2yctW4W7ly5dStWzetWbNGEydO1JAhQ+Tp6anr168rJCREKSkpSk1NVb58+SzB2svLSw0bNlRAQIC1y8/VChYsqNdff112dnb66KOP5OzsLFdXVzVv3lxNmzbV2bNndeTIEZ09e1Y7d+7UypUr5eDgoB07dhDOsll4eLjmzp2rpKQkDR48WDVq1FBAQIDeeOMNGYahOnXq6OWXX9bs2bM1ceJEde7cWQ4ODho4cKDs7e31/PPPW/sQco2wsDClpqbqmWeeUbVq1eTg4GAJaA0aNNB3330nHx8fTZs2Tb169VKXLl20cOFCeXl5Wbv0XG3ZsmUaN26cypQpo8DAQDVr1kxPPvmk7O3t5ebmpvLly2vhwoVq0aKFRowYITs7O3344YdKSkpSy5YtrV1+rrZixQqNHTtWRYoUUdmyZRUcHKyGDRtaPrzy8/PTtGnTdP78eXXt2lWGYWjGjBlKSEhQt27dHtmJ50wG446QDTZv3qxTp07JZDLJ19fXcgIxbtw4LVu2TE5OTnrrrbf03nvvWfZJTU1VfHy8Ll26pDx58qhIkSLWKh93MZvNSk1NtdyrtH37di1dulQODg7Kly+fzp8/r7lz5+ry5cv69ddfdeHCBUvgjomJ0bp161S+fHkrH0Xus3HjRp09e1ZXr17VSy+9pJo1ayo+Pl4rVqzQunXrdO7cObVq1UqjR49Ot9/169d1+fJleXp6qkSJElaqPve4fPmy1qxZo2+++Ubx8fFq0qSJVq9erSpVqqhJkyZ6+eWX9euvv2rq1KkaMmSIypYtq8jISH366adq3769ypYta+1DyBW+//57denSRZL01FNPKW/evPrwww+VJ08eOTs769atW2rZsqWaNWum3r176+jRo3r//feVlJSkNWvWENCs6JNPPtGkSZOUmJioZ555Rtu2bdPrr7+up556So0aNZIk9enTR15eXhoyZIhiY2MVEhKiXbt2aefOnXxAZUX79+9Xnz59FB8fr7p162rHjh166aWX5O/vrzfeeEOSNGTIEF28eFFz5syRk5OTZsyYoZUrV+rLL79U/vz5rXwED4Zwhiw3efJkrVu3ToGBgTp9+rQSEhLk4+OjuXPnSrozhCcsLEzPPPOMJkyYYPnFl5ycfM8kIbCupUuXKjw8XHFxcfL29lbv3r3l6empXbt2afHixTp+/LjKlSunNWvWyDAMyzBGs9ksOzs73bhxwzLEEQ/PpEmTtGHDBlWpUkWxsbE6fPiwXnvtNQUHB6tkyZJavHixli9frgoVKmjx4sWS7tzz5OTklK4f8XBERUVp7dq12rx5s+rWrasuXbpo4sSJOnnypEwmk4YNG6ZRo0bJz89P48aNk/S//sLDcfbsWc2fP1/r1q1T8+bNdenSJZ08eVIvvfSSGjVqpMDAQP3www9avHix+vfvrwoVKigyMlKjR4/W1KlTGaJvBT/88IMqV64sV1dXbd++XcOGDdOLL76oZ555RgsXLtTt27dVrFgxvf/++zp48KCOHDliCWkxMTFKTk5WwYIFrX0YuV54eLi6d++uZ599VnXr1tW3336rQ4cOKW/evOrdu7fMZrO+/vprtWjRQtWqVZMkRUdHP7LBTGJYI7LY8ePH9cUXX2j69Ol64oknFBsbq127dmnixIlq3bq1lixZonfeeUeJiYlasGCB1qxZo6CgIOXLl49gZmNmzJihjz76SK+99pqSkpK0ZcsW7d69W/3799dzzz0ne3t7TZs2TVeuXNHx48dVoUIFGYYhs9lsObnPmzevlY8i9zly5Ih27typ+fPnq2rVqpKk1atXa8mSJbp8+bJ69uypjh07ymQyacWKFRo9erSGDh0qJycnpaam8miEh+DLL79UamqqmjZtKkkqXLiwXnvtNUl3+qpQoUKaPHmyzpw5o0mTJmnMmDGyt7fX5s2bFRQUpICAAILZQ1aqVCn17dtXsbGx+uqrr7Ro0SIdPXpUP/zwg7p06WK5iunh4aFz586pQoUKqlKlilatWkVfWcHIkSO1f/9+rVixQk5OTmrcuLGSkpI0dOhQlS5dWtOmTdPvv/+u0NBQDR48WF5eXtqzZ49KlSqlLl268LfLiiIiInTlyhUVLlxYZcuWVUBAgMLCwtS9e3c5OTmpW7ducnBwUEhIiGbOnKnY2FhdvnxZLi4ulnD2KAczSZIBZKF9+/YZderUMa5du2ZZlpSUZERERBiNGjUyWrdubVk+fvx4o0qVKsaMGTOMmJgYa5SL+zCbzUZUVJTxyiuvGNu3b7csj4+PN4KDg43nnnvO+PTTTw3DMIxvv/3WaNOmjdGmTRvj0KFDVqoYdzt8+LBRr1494/jx4+mWf/HFF8bLL79s9OrVy/jzzz+NW7duGXPmzDEaNWpkDBw40ErV5i6pqalGYmKi0b59e+PVV181vvnmm3Trr1y5YsyYMcN4+umnjQkTJliW79ixw5g8ebLx1FNPGRcuXHjYZeda69evN0aPHm0MGjTIWL16tWEYhnHr1i2jW7duxpNPPmlERkYaCQkJxubNm41XXnnF6Natm+Hn52c0bNjQiIqKsnL1uVdISIgRGBhoHD161DCMO3/TDMMwEhMTjXXr1hmVKlUyxo8fb9l+zZo1xujRow0/Pz+jZcuWRmxsrGUfPFyTJk0yGjVqZDRo0MCoV6+eMXHiRCM+Pt4wDMP44YcfjBo1ahi9evUyYmNjDcMwjD179hhTp041/Pz8jAYNGhg3b97MEX1HOEOWSHsznD9/3qhTp47l5P1uBw4cMOrUqWP06dPHsmz06NFGrVq1jOjo6IdUKTLi6tWrRqNGjSwnj4mJiYZhGEZKSorRrVs3o3Hjxsa3335rGMadk/633nrLaNasmXHkyBGr1Yw7IiIijFq1ahnh4eGGYfyv7wzDMLZs2WI0atTICA0NNQzjThiYMmWK0bRpU04mH4KUlBTDMAzjnXfeMfz9/Y0OHToYO3fuTLdNWkCrW7euMWbMmHTr0k5IkP0mTZpkPP3008bQoUONtm3bGo0bNzZGjRplGMad34/vvPOOERAQYOzdu9cwDMP4888/jR07dhivv/668dRTTxmXL1+2Zvm51rhx44wnn3zSOHbs2N9us3btWqNSpUrGiBEj0i3/6quvjFOnTmVzhfg7n376qfH0008bP/30kxEbG2uEhIQYzzzzTLq/YXv27DFq1Khh9OzZM91544EDB4xz585ZoersQThDloqOjja6detmdOnS5Z5fjomJicbatWuNZs2aGYcPH7Ysv/sqG2xDUlKS0bhxY2PYsGGWZXcHtNdff91o2rSpJZRv2rTJ6Nq1a4765fgo69atm9GwYUPjxo0bhmGkD2jLli0zKleubJw4ccIwDMO4fv26cf36davUmVu1bt3a6Nixo/H6668bb7755t8GtIYNGxpDhw61UpW51/fff288++yzRmRkpGEYd0YNjB8/3mjYsKFx9uxZwzAM49KlS8a7775r+Pv7WwJaGj7oePjMZrNx6tQpw8/Pz1iyZIlleWpqqvHpp58aU6ZMMZYvX278/vvvhmHcCWiVK1c2QkJCrFQx/mrKlCnGBx98YPn68OHDRnBwsDFjxgxj8eLFlvdj2hW0vn37GhcvXrRWudmKh1DjP/nss880e/ZsjRkzRocPH1a+fPnUu3dvHT58WAsWLNCZM2cs2zo5Oalu3bo6f/58uuWP/NjgHMIwDKWkpEiSHB0d1b17d23btk0rVqyQdKf/kpKSZG9vrwULFuj69etasGCBJKl58+aaMmUKs/tZwebNmxUWFqYZM2Zo+/btkqRBgwbJ09NT3bp1U0xMjJycnJSYmCjpzvNfihQpooMHD0q68/7jPfhwGIahc+fOKS4uTu+//76GDh2qpKQkLVu2TF999ZVlu7RHH7zwwguKiIjggcYP2YULF+Th4SE/Pz9JkouLi4KCgnThwgWdOnVKklSkSBENGTJEderUUa9evfTjjz9a9i9UqJBV6s7NTCaTypYtq27dumnWrFk6d+6cJCk4OFgff/yxduzYobVr16pt27b66aef1KpVK40aNUrLli2zPBsL1mU2m3XgwAH9+eefun37tgYPHqyLFy/q66+/1ueff67XXntN27ZtU+3atTV79mxt3bpV06dPV2pqqrVLz3JMCIIHljYjXMWKFXX79m2tXr1abdq0Uffu3TVnzhy9+eabkqT27dtbJibIly+ffH195ebmZmmHmeGsb8mSJTp27JhOnTqlJk2aqHbt2mrevLkOHjyo1atXy8XFRa1atZKTk5OSk5Pl5uYmX19f3bhxw9KGu7u79Q4gl/rrzKibNm3Sli1bFBoaqj59+mjq1Knq3Lmz5s+fbwlgt2/flpubmzw9Pa1cfe5jMpnk5uamZ555Rm5ubipdurT69++vyZMna9myZZKkZ555RtKdgNaxY0d16tSJadgfMpPJpJiYGEVFRalUqVJKSUlRnjx55OjomO7vVeHChTVkyBC9//77+uCDD/TFF1880g++fZQZ/z/LbLt27fTHH39oyJAhKl26tEqWLKm+ffuqaNGi+vXXXxUWFqYJEyZo4cKFatasmRwdHVWpUiVrlw/deUTF7t271aJFC7m7u6tQoUJasmSJChUqpMuXL2v27NkaNmyYqlatqtq1a2vlypXy8vLKkZNYceUMD+Tw4cPasWOHFixYoIULF2rt2rUaMGCAvvnmGw0bNkwlS5bUypUrdeDAAU2dOlVLlixReHi4pk6dqj///FMVKlSw9iHg/02fPl1z585ViRIlVLZsWW3btk19+vTRjz/+qAEDBsjPz0+LFy/W0qVLJd25qmZnZydnZ2fLLGQGT+R46O6eGXXGjBlavXq1+vTpo4iICHXp0kXVq1dX//79lZycrGbNmmnbtm3auXOnFixYoBs3bqhKlSrWPoRcycvLS507d1bp0qVlNpsVEBCg9957T8nJyVq2bJl27dpl2bZAgQIEMyuoVq2aSpQoofj4eEmSg4ODZTbThIQESf/7nVe4cGHNmTNHq1atIphZUVpoLlCggF555RWlpqbq+++/1zPPPKNixYrJZDKpQoUKatq0qc6dO6fY2Fg5OTnppZdeko+Pj5WrhyTVrl1bAwcO1LBhw1SmTBk1b97cchW6SJEiCgoKkoODg6KioiRJAQEBKleunDVLzjZcOcMDMQxDSUlJcnV1lZ3dnYzfrl075c+fXwsWLNC4ceM0cuRIzZ8/Xx999JGWLl0qFxcXOTs7a9GiRSpevLiVjwCSdO3aNf34448KCQmxfGL/008/ae3aterSpYvmzJmjUaNGaerUqZo1a5YiIyPl6+urCxcuKCIiQoMGDZLE1U9ruHnzphITE/XYY49JunPl8vnnn1fx4sXVv39/9e/fX4sWLVLFihUVGhqq8ePHy8HBQXny5NG8efMYgmpFaVeZ007w0wJaWtC2s7NT/fr1rVlirmU2m+Xn56dZs2alG+GRmJgok8lkCWAmk0lTp07VrVu3NGzYsHTbwjrSrp49++yz+uGHH3TixIl7PgguWbKkPDw8lJycbKUqcT9pz0Z98sknJd0ZWnzr1q102+TLl09eXl654rFLhDM8kOTkZMXHxysuLk7S/x6I+tJLL8lsNmv69OlavHixevfurSFDhigxMVFxcXFyd3dXnjx5rFw90iQlJen3339XUlKSZZm/v78KFiwoR0dH9erVS/PmzdPQoUNVr149zZ07V1euXJGHh4dWrlwpb29vK1afu5UsWVKS9N133+mVV16RdOeq5uOPP66JEyeqT58+GjhwoCZMmKDx48fr7Nmzcnd3l729Pc/wyWY7d+7UU089dc8Je0pKihwcHJSQkCA7O7t0z78KCAhQjx49tHDhQpUvX/5hl5xrGX956Hrah413D/s1m82KiopSamqq5UpmWFiYlixZoo8++ujhFox07u4/k8lkORcZNmyY+vTpI09PT8XGxsrR0VFOTk768ssv5ebmxu9AG5AWyKQ777u0349pPvnkE9WrV0+PPfaYXFxctH79etnZ2alYsWLWKvmhMRmMR8ID6tq1q06fPq1PP/1U7u7ull+KkrRgwQLNnDlTn3/+uUqVKmXlSnG3u/+YxcbGqlevXvL19VWPHj3k4eFh2e7MmTOaPXu2jh8/rilTpqQb+nF3X+PhSntQ9K1bt/T+++/LMAz17ds33SfESUlJ2rRpk5YvX65x48apSpUq6f4QIvusWbNG48eP1759+9K9R9L67dy5cxo1apT69et33+HdCQkJDI97SBITE+Xs7HzPSWFaX6Wtl+6MKHjjjTe0Y8cObd68WXPnztWqVasYHmwFaaNvXnjhBUn/+5uW1m8XLlzQnj171KpVKx0/flz9+/dXgQIFlDdvXu3bt09Lly5VxYoVrXwUudP06dNVrFgxvfbaa5L+F9Du7rsvvvhCwcHBatOmjS5evKgCBQqoWLFiOnr0qBYsWJAr+o6/1MiQjz/+WKdPn5Yky8w4PXv2lIuLi95++23FxcWlmxEu7Sb28PBwa5WMv2E2my1Xytzd3VW5cmVt2LBBBw4ckNlstmxXpkwZBQUFKTU1VX/88Yek/w3Dyg3DCmzNypUrNXToUHXu3Fnbt29Xnjx51LVrV0VGRmrRokV/OzNq2vuWYPZwxMbGKm/evLK3t7f8rjSbzbK3t9f58+fVtm1bFShQwDIT4F+lhQFkr7Sh3NevX5eDg4Nlptq0k8Tz58+rc+fOOn78uKQ7V9I8PT01ePBgzZ49Wx999BHBzAp+/PFHTZo0SYMHD9aXX34p6X9XzNL67bXXXtOlS5ckSd7e3vL391fx4sVVunRprV69Olec3NuiQ4cOac6cORo2bJg++eQTSXf+Lt3dd6+//rouXrwoZ2dnrV+/Xl26dFGDBg1Uv359ffzxx7mm7/hrjQxZtWqV+vbtq7Nnz1pmxqlUqZLefvtt3bhxQ126dFFsbKzlxOL27dtyd3dnRjgbs2zZMvXt21edOnVSaGioJKlfv34KCAjQ0KFDtX///nTT0taqVUuurq7as2ePJKUbPoKHZ/LkyZo9e7ZMJpMMw9C3334rSXr88cc1YcIEffHFFwoLC9ORI0cs+9xvZlRkn7QPLuLj4+Xs7Cx7e3vL70o7OztFR0erQ4cOatCggUJCQv72PcR7K/slJCRo586dunr1qoKDg3Xt2jU5ODhYThLPnTunNm3ayMfHxxKi8+TJo5s3b+rQoUP65JNPLDMQ4+EqXry4KlWqJC8vL4WEhGjDhg2S7nwgdeHCBbVs2VLPPPOMevbsKcMw5OzsrNGjR2vcuHHq378/Q/GtqFKlSqpfv77y58+vIUOGWCYZc3Jy0sWLF/Xyyy+rUaNG+uCDDyznIR06dNB7772ntm3b5qpRWNxzhn+Udsm5WLFi+u677yzT5JcqVUoODg567rnnZDKZNHfuXDVt2lTDhw+XyWTSTz/9pJs3bzIrow2ZOnWq1q9fr9atW+vatWtauXKlKlSooGbNmiksLExdunRRnz59NGrUKD399NNyd3eXYRjKnz+/Spcube3yc61ff/1VX331lebMmaPq1aunW3f79m3Vr19fixcvVv/+/XX9+nXVq1dPVatW1Y4dO5gZ9SFKG1r113uY0tjZ2alr164KCgoigFmZi4uLOnTooE8++UTx8fF6+eWX9emnn6pQoUK6du2a2rRpo3r16ln+npnNZhUuXFijR4/W448/zux+VlSyZElVrFhR4eHhev755xUWFiaTyaQWLVpo27ZtatmypQYMGGB5j909nPvv3pt4OBwdHVW1alVdvXpVbdu21cSJEyXdedzSoUOH1LZtW/Xu3fu+/ZXb+o57zpAhr7/+usqXL6+TJ0/qypUrWrx4seVTjNTUVJ05c0azZs1SeHi4ZUa4kJAQnh9iI3777Te9++67Gj16tGrVqqVr166pffv2evfdd+Xn56cyZcooJSVFH3zwgb7//ns1aNBAJUqUUFRUlL788kutXr06x05Za+t++eUXdezYUQsXLlTVqlVlNpv14YcfWh7mHhQUpODgYEVHR2vp0qX67rvvLDOjTpgwIdcMA7GWjRs3Wj4NlqTFixdrzZo1+vLLL+85mUg7weD+P+s7duyYevTooVdeeUW//PKLfvnlF23cuFFubm7asWOHmjdvfk//0W8P390n5Wnf/2vXrqljx456+umndfv2bX399dcaNmyYGjdufM8+sJ60eHH377zY2Fi1aNFCjRo1kqenp8LCwjR8+HC98cYbln3oO66cIQPOnDmj6OhotWzZUkWKFFGvXr3UqVMnLVq0SKVKlZK9vb3KlSunyZMn68yZM3Jzc5Ojo6Py5ctn7dLx/27evKn4+HiVKVNGkuTq6qqoqCiNGzdOFy9eVIUKFdSzZ09NnDhRH330kQ4dOqQdO3aoVKlSWr58OcHMihITE2U2my33+bVr105OTk6qV6+erl69qo0bN+rUqVMaNWqUhg0bZplFlZlRs9/ly5c1evRorVq1SvPnz1e+fPksM9nu2LFDzs7OKlu2rEqUKCE7O7t0M5Ph4TObzTKZTDKZTKpYsaLatm2rHTt2qFOnToqJidGrr76qDRs26OWXX7bce3Y3+u3hS0xMtEyQkzajn6enp5599lkZhqGXX35Z8fHxGjlypOUqKB+A2Ia0v0PS/+4tc3d3V9euXXXo0CG1aNFCsbGxGjlypJKTk9WuXTv67v/l7qNHhpQqVUrVqlVTgQIFVKJECU2cOFF58+ZVp06ddPbsWUn/mySkdOnSKlSoEMHMxhQuXFienp66cuWKJOmDDz5Q2bJlNWzYMH388cdydXXV+PHj9euvv6pt27aaMGGC1qxZoylTpjAszsoef/xxVa1aVUOGDNHRo0dVtGhRhYaGqnPnzho0aJB69+6t77//XocOHZKjo6M8PT1VtGhRgtlDUKhQIS1cuFDR0dF6++23devWLZlMJkVFRWn06NF6++239eqrr+rZZ59Vq1atNHz4cIWEhDBR0kO2f/9+SXdOEE0mk2Xyjzp16qhw4cLy8PDQiBEjlDdvXr3yyiu6evWq7O3teRaWlc2ePVutWrXS3r17LQ8ednBwkKOjowICAvTRRx/JMAwNHDhQderU0aRJk7R582ZJBGlrmzx5sho1aqSNGzfq2LFjkmSZvdbPz08RERG6evWq3n//fXXq1EkhISGWx1LQdwxrxL/4u08w/vjjDw0aNEgxMTGWK2iwTWnDBH755RdVrlxZ0p0HPEqyPAw8KSlJTZo0UcOGDTV06FCr1Yr00vru+++/17Rp02Q2m2UYhlavXi17e3vL1bSXXnpJdevW1YABA6xcce5x9+MkIiMj1bt3b/n4+KhGjRqKjIzUkCFDdPXqVZ04cULHjh3TxYsXdfz4cSUlJWnNmjWWq9jIXvPmzdPUqVNVr149NWzYUI0aNVKRIkUs6wcNGqSLFy9q2bJlOnr0qIYMGaIbN25o9erVKly4sBUrz90iIiLUsWNHJSYmqnjx4vL395e/v7+Cg4MtvxcnTJig8+fPKzQ0VKdPn9ayZcu0adMmTZw4US+++KK1DyHX+u2339SlSxddvnxZVapUkYeHh/z9/dWpUye5urrK3t5ec+fO1fbt27Vw4ULZ2dlpyZIlmjdvnkaOHKnWrVtb+xCsjniKf2RnZyfDMCxXxtL+7+Pjo/Hjx8vLy0uvvvqqzp07Z80y8Q/Sxm+nBbOkpCQVL148XTBzcnJS9erVdevWLavViXul9V2tWrX0/PPPKy4uTteuXUs3zDE5OVmenp6c7D8kS5cu1cCBA9WmTRstXbpUR44cUfXq1RUWFqZz585p1qxZiomJUdmyZRUQEKDXX39dI0eO1Pz587V+/Xp9+eWX9NVDEh0dbfnbFBkZqQMHDqh169bavHmz5dETw4YNU2Jioj7//HNVqlRJw4YNk4ODgzp06KDU1FTx+bV1lCtXTl26dFH16tXl6OioMmXKaM6cOerUqZM++eQTJScnq3nz5oqLi9O5c+fk6+ur1q1b67XXXuNedyvauHGjrl27pj59+sjb21vXr19Xs2bNtGHDBnXu3FkzZsxQQkKCgoKC5O3trSNHjihfvnxq3bq1evbsqZo1a1r7EGwC4QySpG+//VbXrl27Z3lqamq6YSB3j8H38fHR6NGjVbFixXTTr8M2pZ1kpH3af/v27XRfx8fHq2jRoum2xcPz448/3vf7npSUJGdnZ73xxht69dVXlZKSoqCgIIWHh+uHH37Q7Nmz9ccff+jJJ5+0QtW5y7Rp0zRnzhwVLFhQvr6+Wr16tcaMGaPPPvtM1apV08SJE1W5cmVFRUVZniV49+9Ghnw/XPnz59dbb72lt956Szdv3rSc8E+YMEEjRozQ4sWLZW9vL39/fx09elSSVK1aNYWGhmru3Lmyt7dncoKHbPv27Vq6dKk2b96sSpUqqW7dunJxcdH169e1ceNGeXl56eOPP1arVq0UHx+v6OhozZ07V9Kdvhs0aJDKli1r3YPIpcaMGaMhQ4aofPnyeuGFFyzPwA0PD9eOHTtUp04dffvtt2rSpIn27NmjqKgorV+/XtKdUTzdu3dX+fLlrXwUtoFhjdC6des0YcIEffPNN/Lw8LAsv/thnG+//bZCQ0Pv++DU5ORkHkpsI5YtW6aAgADLVbI0aX15+/Zty1DVFStWKC4uTn5+fvr555+1YcMGZmW0kqVLl2rRokX6/vvv0y1P67czZ85o3rx5evvtt3Xy5EktW7ZMR44cUYECBZQnTx6NGjWKT4uz2eXLl9WrVy/16NFD9erVkySFh4dr7dq12rdvn3r27KlWrVrp8OHD6tWrl4oVK6bZs2dbZnHEw7Np0yZdvnxZXbt2lXRnGP6SJUv0ySefaO3atSpYsKDWr1+vxYsXq27duvLw8NCWLVs0Z84cPfXUU1auPvcKDQ3Vxo0b5evrq6NHj8rb21v169dXamqqPv74Y73xxhvq0aOHzp49q0mTJun8+fOyt7fXL7/8YvnbB+sICQnRpk2btHTpUssMwXFxcdqxY4eGDh2qpk2baty4cUpJSdH48eN16tQpXbt2TcePH9e0adPUpEkTKx+BbWG2RujatWsqUqSIXF1d0z2rJ+1hnO3atVOdOnXk6+t73/0JZrbhhx9+0Lhx4ywPKE6TdoJ/7tw5vfHGGxo7dqxq1Khh+YNXqlQpeXp6MiujFV25ckVeXl6SpJSUFDk4OMhsNsve3l4XLlxQu3btFBAQoNKlS6t06dJq0KCBfv31V3l5ecnJyUl58+a18hHkDqdPn9bNmzctXwcEBChfvnxycXHRvHnz5O7urhdffFFhYWF6//33FRwcrI8//lienp5WrDr3SPused++ffr222+VP39+tWrVSj4+PurcubOSk5P12muvadGiRXr33Xf16quvaubMmbp165YSExO1detWBQYG8jfNCrZs2aIvvvhCCxcuVIUKFRQXF6f27dsrMjJSI0aMkMlk0qpVq3Tr1i0NGjRIYWFh+vrrr3X48GFduHBBJUqUsPYh5FoTJkzQxo0btX79+nTzD7i5ualx48YyDEMTJkxQz549NXPmTA0ZMkQ//fSTfv/9dy1YsOCeD5NBOMvV0k7a7ezs5OzsnG74hslk0s2bNy0zjY0cOZLhHTbOyclJjo6OMgwj3UQuaVc/27Vrp7p166pOnTqys7NTz5491blzZxmGIcMw5ObmZuUjyL0SEhIsJ4QODnd+LdvZ2enq1at69dVX9fzzz2vYsGGS/jdJiK+vL+/JbHb3h1WOjo7y9vbW6dOnlZSUJEdHR5lMJpUvX17BwcGKjY3V6tWrVbFiRVWrVk1jx47VmDFjdPPmTcLZQ5L2gYarq6vi4+O1YsUKJSYmKjg4WGXLltU777wjk8mkTp06KSwsTI0bN9bQoUMVHR0tHx8fNWvWjGBmJSdPntRjjz0mPz8/JScny83NTV26dFG/fv2UlJSk1q1byzAMrVmzRsnJyRo6dKgaNWqkRo0aqVu3bnJ1dbX2IeRKqampOnTokIoVK2YJZsnJyZoxY4ZOnDghFxcXlSlTRgMHDtSUKVPUvXt3zZkzxzLByyuvvGK5tQL/wz1nuVja/WNpz0VKu78sTUpKikaPHq3Ro0dzEvgIMJlM9zyXxzAMxcfHq1OnTqpTp47Gjh1rCW1ms1kuLi5ydXUlmFlJ2n1Jku77Hks7kRw2bJhl/V//j+xjNpsl3flee3l5qU6dOpo3b572799vCW2SLJMRnDx5Ur///rukO1fV1qxZo5IlS1qt/twm7fff6dOnVbVqVfn6+mrNmjWWKbrLlCmj7t27q0WLFurVq5e++uorubi4qFixYpbZNvFwpb2Hrly5omvXrslkMlkCsqenp1JSUhQXF6cCBQro9ddfV+vWrbVr1y4NHjzY0gbBzHrs7e01ePBgmc1mTZ06VZLUrVs37d+/X8WKFdOtW7e0c+dO7dq1S/369dOhQ4fUqVMny/58GHJ/hLNcaNu2bYqIiLB8nTYl991vErPZLC8vLz333HOcBNq4tCtlsbGxSk1NlaurqyWAmUwmubq6auLEifdc/eRZItbzxRdfSPrfZCzu7u73BGuz2awCBQqoY8eO6YIAHo4VK1bovffeU48ePTRu3DglJSWpZ8+eatq0qfr27auDBw+m65datWqpVKlS+uGHHyxtODs7W6v8XMkwDF2/fl2xsbHq1KmT+vTpY5m45e6A9vbbbysoKEg9evS4Zxg4Hq60v0nPPfecEhMTLc9OlaS8efPKzs5OiYmJkqQCBQrozTffVNOmTfXbb79ZntsJ6/L19VXz5s21f/9+DRw4UAUKFNCcOXM0dOhQzZo1S82aNdPZs2dVvnx59evXTydOnNDly5cl8SHj3+HsLJc5ceKEJkyYoAULFujgwYOS7pwYJiQkaO3atTp8+LCuXLlimckPtmvu3LnauHGjTCaT7Ozs5OTkJAcHh/tePatWrZpl+CKs648//lDfvn3VpUsXy7K4uDjduHFDkZGRioyM1K1bt9IF7Lv/j+wXFham2bNnq2TJksqfP7+++uorvfTSS/rxxx/Vu3dvPfXUU+ratat27dpleVBx2pVorpRZj8lkkqenp5o3b64SJUqoZMmS6t69u/z8/O4JaJ06dVKbNm3oLxtRt25dzZ8/3zJjsHRnRmFHR0fL/fCStGPHDjk6OmrBggUqVKiQtcrFXVxcXNS8eXPlzZtXn332mYoUKaJ8+fLJbDbLyclJrVq10m+//aZLly7p5Zdf1pYtW9I9axD34p6zXCLt3ony5curd+/eWr58uRYuXKhevXrJzc1NZ8+e1bhx4xQfHy+TyaRixYqpXLlyKl68uAoXLqwnnnhCgYGB1j4M/L/bt2/r999/17Rp0+Ts7KwXXnhBLi4uio+P15QpU+Tp6amAgAB5eXmpRIkSlk8gYX3FihVTaGioxowZo27dulkmkjh9+rQ6d+5sGcKTN29elShRQv7+/rKzs1OTJk142PtDEBUVpZ07d2rUqFF67rnnJElXr15V37599f7772vEiBH68MMPNX36dPXu3Vuvvfaa8ubNq+joaP3yyy88xN3KHBwc9Nprr1km1SlfvrzefvttzZ07V6tXr5bJZFKbNm1Urlw5DR48mGFVNuTuYCbdmSE1JSVFefLkkclk0rRp0zRv3jx9/vnnlgmUYBuKFCmivn376uzZs2revLlMJpNlZIFhGKpYsaI8PT3l5OTEPWYZQDjLJdJulJakl19+WSaTSQsXLtT8+fMVFxen8uXLa/HixTp9+rROnz6tP/74QwcPHtSxY8cUGxurF154wcpHgLt5eHioT58+8vDwUN++fWUYhqpWrSpJ2rVrlwzD0Lx582QYhtzd3VWiRAm5u7vrpZde0htvvMFVGCsxm82WGazs7Ow0dOhQ9enTR35+fmrSpIk6duyoS5cu6ZdfftGpU6d07tw5zZkzR5KYavghSUlJ0fXr11WwYEFJd254L1iwoFasWKGOHTtq1KhRCgsL09ixY+Xr66uIiAiFh4erePHizHhqI9Im1Un7PZcW0BYsWKC5c+fK0dFRrVq1IpjZuOTkZNnb28vDw0OzZs3SkiVLtG7dOu4NtFF+fn7asGGDnJ2ddfHiRbm5ucnOzk4rV67UlStXVLp0aWuX+MjgOWe5wIoVKxQREaHk5GSVLFlS7733npycnLR161bNnz9fFy9eVKVKlbRkyRLLFbY0hmEoJiaGB6faiFu3bikpKUkFChSQdOcxCFOmTNH69ev1yiuv6I8//tCcOXPk4eGh3377TdHR0YqMjNRvv/2mP//8U5MmTbrvs+qQvT7++GOdOHFC586d08svv6yaNWuqSJEi2rp1q0JCQnT16lXVq1dP8+fPT7dfUlKSLl++LGdnZxUuXNhK1ec+TZs2Vc2aNTVq1ChJd/oh7dPeN954Q7du3dLnn38uSUpMTLR8Qsw9Zrbt+PHjWrVqlbp06cJVaBuWdh7yxRdfKCQkRDVr1tTOnTu1evVqValSxdrl4V9cu3ZNzZs3l9lsVrFixXTjxg3NnDmTZ3FmAuEshwsLC9PHH3+soKAg3bhxQ3v37pW9vb1GjhypJ598Ul999ZXGjRsnR0dHTZkyxfLwwOTkZDk4OFhOOrjSYn0zZ87Ut99+q8uXL6t06dJ644031KhRI6WmpmrSpElav369HB0d9d1338nd3d0yrCBNfHw8s1pZwZQpU7R27Vo1bNhQMTExCg8PV2BgoIKDg1W7dm1t3bpV06dPl5OTkzZv3iwpfRhA9vv000918uRJJSQkqFGjRvr999+1Zs0atWvXTq1bt5b0vz45d+6cgoOD1alTJ7355pvpHlsB28d769Fx7NgxtWjRQs7OzpbHVODREB4ersOHD6tw4cLy9/fnOXSZxLDGHMpsNuvKlSt/e+9Enz59FBISomeeeUaGYWjmzJmaNWuWunTpourVq6cb7kEws75FixZp5cqVeu+995Q/f36tXbtWc+fO1f79+9WvXz/169dPzs7OWr58ucLDw9WwYUPLLI7SnZkZXVxcrHwUuc/Jkye1a9cuzZw5UwEBAZKknTt3asWKFZo8ebJ69uypF198UZI0ZMgQy70xTk5OlucQIntNmjRJn3zyierUqaN9+/apaNGieuGFF3Tw4EF9+umncnZ2tjyLxzAMFSpUSIUKFdL169clMevpo4Zg9ujw9vZW27Zt1aZNG4YyPmICAgIsf/OQefxVyaFMJpPc3Nz+9t6JypUra+jQoYqMjNSzzz6rDh066OLFi5oyZYp+/vlnK1ePNIZhKCEhQfv371f37t3VqlUrPfvss5o/f76aNGmiyMhIjRo1SiaTST179tSrr76q7t27a+vWrZZZHP866x8eHnt7e129etUyo58kPfvss3r33XdVsGBBzZ07VwcOHNCLL76oMWPG6PDhw2rbtq1lX2Svw4cPa8eOHZo3b54mT56s3bt3q1OnTipevLi6d+8ud3d3bdy4UUuXLpV05z3k7OwsLy8vyxBGBp8A2cPFxUWDBg0imCHX4cpZDjRjxgxduHBB48aNk5ubmzZu3Ch/f3/Z29tbhnQsWrRIbdq00YcffqjPP/9cL7/8slJSUvTpp59awhysz2QyycXFRXFxcZbngqRdUenRo4fc3d21adMmzZw5U++995569+4tR0dH9evXTw4ODmrcuLGVjyD3Srty6ebmposXL0q6M1zY0dFRAQEBMpvNCgsLswzXadiwoZKSkjRjxgxdvHhRxYoVs/IR5HxXrlxRfHy8ihcvLunOeys0NFS//fabihcvroIFCyolJUWfffaZDh48qMDAQP3222+KiIiwPASXDz2A7MOkLciNuHKWw0yaNEmzZs3Sr7/+Kkl68803FR4erjVr1ki6M6QjKSlJkjRx4kTdvn1by5cvlyQFBQVp7ty590xnC+tJO8EvVKiQIiIiFB8fbwnZktS+fXvV/7/27jyq6jr/4/iTXbgsYaKoQIOQIuBWgmkpjsvo5DJOdcxOMEBwXNA8lYyQC0KTlorAJErq4EIylDkCMxWZ5cyUHkPSkUaPjpoQqaMl4EIswuX+/vDHncgWmynvFV+PczjH+/3e7/e+v37PPXxffLaICD744AMOHjyIl5cXMTExxMTEaNY4C7OxscHf35/hw4fzwgsvUFFRgYODg/nehYeHExkZybvvvsuxY8dwdnbml7/8JcXFxQpmN4mrqysODg5cuXIFk8lEdHQ0hw8fpnfv3pw/f56Kigq++OIL4uLiqK6u5o033uDs2bNs3bqVn/3sZ5YuX0REOiCFsw5k2bJlbN++nWeeeYbGxkbq6uoYOXIkgYGBFBYWUlxcDHDd2Ina2lrzOVxdXS1VvnxFTU0NV65coa6uDltbWxITE6msrDTPHvfVkP3UU0/h7u5uDuB33XUXiYmJBAYGWqz+29W2bdtYsmQJKSkpbNq0CYD58+cTEhJCVFQU58+fx9HR0dzNcfz48fj5+fHhhx8C4OTkpO/gTeTv709DQwOvv/46lZWVeHh4kJGRQVJSEtnZ2YwdO5ZLly7h7+9Pfn4++fn55OTkEBQUZOnSRUSkg1I46yBefPFFCgsL2bJlCxEREVRWVnLu3Dl8fX1JSEjAYDBQUFBAfn4+oLET1iw7O5snn3ySSZMm8fTTT1NUVESPHj1ISUnhzTffZMmSJcC1gNY24cd9993HlStXzOdoW+dHbp7MzEwyMjIwmUycPXuWvLw8pk2bRnV1NfPnz8fHx4eHH36Y48ePm7vqXL16FRcXF02TbyFdu3Zl0aJFbN68mbS0NGxtbfH09ASufb8eeeQRqqqq+Mc//gFc+15pQgkREfkp6QmuA1i5ciVbtmyhsLCQoKAgmpqa6NWrF++99x4BAQH06dOH5ORk1q9fb57N75577tHYCSu0YcMG8vPzWbBgAdXV1Xz66ackJydTVVXFtGnTWLhwIcuWLaO+vp6UlBQMBgMA//73v7njjjs0w5+FfPbZZ+zcuZMVK1YwYsQIjEYjhw8fZtGiRSQkJLB8+XLS0tJYsWIF06ZNIyEhARcXFz777DOqqqq47777LH0Jt62xY8cye/ZscnNz6du3L/X19bi7uwPg7OxMcHAw3bp1s3CVIiJyu1A4u8UZjUYCAgIoLi6md+/emEwmHB0d6d69O3v37mXGjBkA3H333SQmJnLgwAHy8vJ48803MRgMGjthRYxGI4cOHSI+Pp5JkyYB19Ym69u3L2lpaTQ0NDB9+nQ6d+5MSkoK0dHR3Hnnnbi4uLBnzx4KCgoUzCykvr6ey5cv4+fnB1ybaXHAgAHk5uYyc+ZMkpOTyc3NJTc3l4yMDHbu3EldXR1dunRh48aN5uPk5nN0dCQ2NhaTycS6detIT0/n17/+NZ6enhQWFlJRUaH1lURE5KbRItQdQNsi0W230sbGhn379vHb3/6WpUuXEhERcd1C0kajEaPRqC46VqK1tZXGxkamTJnCr371K2bPnt1u/xtvvEFSUhJPPvkkM2fOpLa2ltzcXGpra3F2duaxxx7TdMMW1NjYyLhx45g6dar53rUtTnzu3DliYmLw8vLilVdeAaC2tpZOnTphNBo1xsxKNDU1UVJSwvLly7G1tcXNzQ1bW1vS09MJDg62dHkiInKbUMtZB9AWur4avnx9ffHw8GD//v3twlnbA6OdnZ1aWayIra0tLi4ujB49mnfeeYfx48e3C1sTJ07k0qVLLF26lMDAQMaMGUNiYiLwnxAgN9eePXu4fPkyTU1NjBs3jnHjxvH+++8TEhLCyJEjsbW1xWQy4e3tTWpqKosWLeLdd99lzJgxeHh46J5ZmbbFpocNG8a5c+ewt7fH29ubzp07W7o0ERG5jejpoIPy8fEhOjqazZs3c+jQIfODoh4IrUtxcTF/+MMfzK/DwsKws7Nj27Zt5nXN4Frr6OTJk/nFL37Bvn37zC2foLGClrB8+XIWLFjAxo0befbZZ1m9ejVPPPEERqOR/Px89u3bB/zn3gQHB9Pa2sqZM2cA9D20Yl27dqV///4EBwcrmImIyE2nJ4QO7MEHH2T06NGsWrWKU6dO6SHeiphMJkwmE6WlpWzatInXX38dgFGjRjFq1Ch27dpFQUEB586dA6495Lu5uWEwGPjkk0/atXzqvt5chYWFvPXWW6xfv57NmzezbNkyduzYgbe3N4sXL6aqqoqtW7fy9ttvm49xd3fH19cXFxcXC1YuIiIi1k7hrANzdXVl8uTJfP755+Tl5dHS0mLpkuT/tba2YmNjg7OzMw0NDbzyyivm8Uhz5sxh/Pjx/OUvf2HDhg2cOnXKfJyNjQ0+Pj66lxZ04sQJ7r33XoKCgnB1dcXDwwODwUBqairvvfceQ4cOpaamhvz8fJ5//nlKSkp47rnnOHr0qGZlFBERke+kMWcdVNsYszFjxnD+/HlGjBihta+sSFurV2VlJf369cPLy4tt27YBEBUVxfz58/Hw8GD37t1Mnz6d0NBQGhsbKSsro6CgQPfSAtom3Dlz5oy5tbJthj+Auro6PvroI9zd3fHy8iI0NJTi4mJKS0sxGAzk5eXh6+trsfpFRETE+mm2xg7s6zM0ivUwmUzU1taSkJBAQkICvXr1IjMzk+PHjzN16lSioqIAOHDgAP/85z85ePAgPXr04JFHHiEwMNDC1d/ejhw5wsGDB4mKiuL06dPs2LGDyMhIOnfuTF1dHS+++CInT55kzZo1eHp68uWXX2JnZ6cujSIiIvK9FM5ELKSlpYVt27YxZMgQAgICOHnyJC+//DL/+te/ePTRR4mMjLR0iXIDGhsbzdPi29nZcebMGUaPHs26deuIiIiwdHkiIiJyC9GYMxELsbe3Z+rUqQQEBNDa2kpgYCAzZ86kT58+vPbaaxQUFFi6RPkObX/X6tSpE3Ctq6rJZKKlpYXevXvTvXt3S5YnIiIityCFMxELahs71tb9tC2gBQcHk5OTw/bt2y1ZnnyHtnt29uxZ9u/fT01NDXV1dRQVFdHQ0ICnp6eFKxQREZFbjWYVELECXx0bGBgYSGxsLE5OTgwZMsSCVcmN+OKLL4iPj8fNzY2uXbty6dIlsrOz8fLysnRpIiIicovRmDMRK3X16lUcHR0tXYbcgI8//pgTJ07g4eFBSEiIujSKiIjIf0XhTERERERExApozJmIiIiIiIgVUDgTERERERGxAgpnIiIiIiIiVkDhTERERERExAoonImIiIiIiFgBhTMREREREREroHAmIiIiIiJiBRTORERERERErIC9pQsQERG5UVFRUezfv7/dNgcHB7p06cLPf/5znnrqKTw8PL71+NOnTzN69GheeOEFHnrooZ+szrbP+ToHBwc8PDwYNGgQ8+bNw9/f/yerQUREbj0KZyIicksJDg5myZIl5tfNzc0cOXKEjIwMjh49SkFBATY2Nt94bNeuXXnttdfw8/O7KbXOmjWLkSNHml83NDRw5MgRXn75ZZ544gnefvttnJycbkotIiJi/RTORETkluLq6srAgQPbbQsLC+PLL7/kpZdeory8/Lr9bRwdHb9130/Bz8/vus8bOnQoBoOB1NRUPvzwQyIiIm5aPSIiYt005kxERDqE0NBQAM6ePQtc6wKZmJjI3LlzGThwILGxsZw+fZo+ffqwY8cO83GnTp1izpw5hIeHExYWxowZM/jkk0/M+5uamlixYgURERGEhoYyadIk3nrrrf+pVnd39+u2lZWVERcXR1hYGKGhoYwaNYrVq1fT2toKYK69pKSEuXPnMmjQIMLDw1m0aBH19fXm8zQ3N5Oens6IESPo378/cXFxFBUV0adPH06fPm1+30cffURkZCQDBgwgPDycpKQkampq/qfrEhGR/43CmYiIdAgVFRUA+Pr6mreVlJRgMBjIyckhPj7+umPOnz/Po48+SmVlJampqaxcuZILFy4QHR3NxYsXMZlMzJ49m1dffZXY2FhycnIYNGgQTz/9NEVFRd9bU2trKy0tLeafuro69u7dy6pVq+jZsyeDBw8G4NixY8TExHDHHXeQmZlJTk4OgwcPJjs7m5KSknbnXLJkCT179mTt2rXExcWxfft2cnJyzPtTUlLYsmULkZGRrFmzhi5durB48eJ25ygrKyMmJoZOnTqRlZXFggUL2L9/P7/5zW9obGy84f9zERH5calbo4iI3FJMJhMtLS3m15cuXWL//v3m4NTWggbXJuBIS0vD0dERoF3LEcDmzZu5evUqmzZtwsvLC4CgoCAee+wxysvLsbe354MPPiAzM5MHH3wQgOHDh9PQ0EB6ejoTJ07E3v7bf5UuXLiQhQsXttvm4uLC/fffT1JSEgaDAbgWzoYNG8bKlSuxtb32d9P777+f3bt3U1payoQJE8zHR0REkJSUBFzrIrl3717+9re/MW/ePKqqqigsLCQpKYnY2FhzvRcuXGDPnj3mc6xatQp/f3/WrVuHnZ0dAAMGDGDChAn86U9/4vHHH//e+yAiIj8+hTMREbmllJWVERIS0m6bra0tw4YN47nnnms3GUivXr3MweybHDhwgIEDB5qDGYC3tzd//etfAUhPT8fGxoaIiIh2gXDUqFH8+c9/5sSJE/Tt2/dbzz9nzhxGjhyJyWSirKyMrKwsJkyYQGpqartQN2XKFKZMmUJTUxMVFRV8+umnHD16FKPRSHNzc7tzfn0Mm7e3N2fOnAGgtLQUk8nE+PHj271n4sSJ5nDW0NBAeXk5cXFx7YKur68vAQEB7N27V+FMRMRCFM5EROSWEhISQlpaGgA2NjY4OTnRvXt3XF1dr3tvW8vUt7l48SI+Pj7fud9kMnHPPfd84/7PP//8O8NZz5496devHwD9+/fH09OTZ599Fjs7O/M1ADQ2NvK73/2O4uJiWlpa8PHxYdCgQdjb22Mymdqd09nZud1rW1tb83vaxozdeeed7d7z1deXL1+mtbWVDRs2sGHDhutq1uyRIiKWo3AmIiK3FIPBYA48/ys3N7dvnARj3759+Pj44ObmhouLC3l5ed94/F133fWDPu+hhx5i586dvPrqq4wdO5YHHngAgKVLl7Jz506ysrIYNmwYLi4uwLVuiz9Et27dALhw4QI9evQwb//qNRoMBmxsbIiJiWnXXbLN18OfiIjcPJoQREREbluDBw+mvLy8XXiprq4mPj6ev//974SHh1NfX4/JZKJfv37mn+PHj7NmzZp2XR1v1OLFi3FycuL55583d1k8cOAAQ4YMYcyYMeZgdvjwYWpqasyzNd6Ie++9Fzs7O3bt2tVu+zvvvGP+t6urK8HBwZw6dardNd19992sXr2a0tLSH3xNIiLy41DLmYiI3LZiYmIoKioiPj6eGTNm4ODgQE5ODt7e3kyaNAk3NzfCwsJISEggISGBgIAAPv74Y1566SWGDx9O586df/Bn+vj4EBcXx9q1a9myZQvx8fH079+fkpISCgoKCAgI4NixY+Tk5GBjY0NDQ8MNn9vX15eHH36YjIwMmpubCQoKYteuXeYxdG2TjTzzzDNMnz6defPmMXnyZIxGIxs3bqS8vJyEhIQffE0iIvLjUDgTEZHbVvfu3fnjH//IypUrSU5OxtHRkSFDhpCZmYmHhwcA69ev5/e//z3r1q2jurqabt26ERsby+zZs//rz50+fTpFRUWsXbuWyZMnk5ycTHNzM1lZWVy9ehUfHx9mzZrFyZMn2b17N0aj8YbPvXjxYlxcXNi4cSN1dXUMHTqUWbNmsWbNGnOr3AMPPEBubi7Z2dnMnTsXBwcHQkJC2LRp001dpFtERNqzMX19pLGIiIjcki5evMj777/P8OHD8fT0NG9fvnw5O3bsUJdFERErp5YzERGRDsLZ2ZmlS5fSt29foqOjcXFx4dChQ2zdupUZM2ZYujwREfkeajkTERHpQI4ePUpWVhaHDh2ioaEBPz8/pk2bxuOPP95uDTgREbE+CmciIiIiIiJWQFPpi4iIiIiIWAGFMxERERERESugcCYiIiIiImIFFM5ERERERESsgMKZiIiIiIiIFVA4ExERERERsQIKZyIiIiIiIlZA4UxERERERMQKKJyJiIiIiIhYgf8DLKFek61evPYAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\n", - "# Set the style of seaborn\n", - "sns.set_style(\"whitegrid\")\n", - "\n", - "# Create a bar plot\n", - "plt.figure(figsize=(10, 6))\n", - "sns.barplot(x=\"pricerange\", y=\"total_sqft\", data=housing_data_encoded, errorbar=None)\n", - "plt.title(\"Total Square Footage by Price Range\")\n", - "plt.xlabel(\"Price Range\")\n", - "plt.ylabel(\"Total Square Footage\")\n", - "plt.xticks(rotation=45) # Rotate x-axis labels for better readability\n", - "plt.show()\n" + "# # Set the style of seaborn\n", + "# sns.set_style(\"whitegrid\")\n", + "\n", + "# # Create a bar plot\n", + "# plt.figure(figsize=(10, 6))\n", + "# sns.barplot(x=\"pricerange\", y=\"total_sqft\", data=housing_data_encoded, errorbar=None)\n", + "# plt.title(\"Total Square Footage by Price Range\")\n", + "# plt.xlabel(\"Price Range\")\n", + "# plt.ylabel(\"Total Square Footage\")\n", + "# plt.xticks(rotation=45) # Rotate x-axis labels for better readability\n", + "# plt.show()\n" ] }, { @@ -1541,7 +1530,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 69, "metadata": {}, "outputs": [ { @@ -1578,7 +1567,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 70, "metadata": {}, "outputs": [ { @@ -1608,7 +1597,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "##### Interpretation:" + "##### Interpretation:\n" ] }, { @@ -1620,7 +1609,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 71, "metadata": {}, "outputs": [ { @@ -1659,40 +1648,16 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 72, "metadata": {}, - "outputs": [ - { - "ename": "IndexError", - "evalue": "Inconsistent shape between the condition and the input (got (18, 1) and (18,))", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mIndexError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[50], line 3\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# Plot the correlation matrix as a heatmap\u001b[39;00m\n\u001b[0;32m 2\u001b[0m plt\u001b[38;5;241m.\u001b[39mfigure(figsize\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m12\u001b[39m, \u001b[38;5;241m8\u001b[39m))\n\u001b[1;32m----> 3\u001b[0m sns\u001b[38;5;241m.\u001b[39mheatmap(correlation, annot\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, cmap\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcoolwarm\u001b[39m\u001b[38;5;124m'\u001b[39m, fmt\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m.2f\u001b[39m\u001b[38;5;124m\"\u001b[39m, linewidths\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.5\u001b[39m)\n\u001b[0;32m 4\u001b[0m plt\u001b[38;5;241m.\u001b[39mtitle(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCorrelation Matrix\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 5\u001b[0m plt\u001b[38;5;241m.\u001b[39mshow()\n", - "File \u001b[1;32mc:\\Users\\ADMIN\\anaconda3\\Lib\\site-packages\\seaborn\\matrix.py:446\u001b[0m, in \u001b[0;36mheatmap\u001b[1;34m(data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, linewidths, linecolor, cbar, cbar_kws, cbar_ax, square, xticklabels, yticklabels, mask, ax, **kwargs)\u001b[0m\n\u001b[0;32m 365\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Plot rectangular data as a color-encoded matrix.\u001b[39;00m\n\u001b[0;32m 366\u001b[0m \n\u001b[0;32m 367\u001b[0m \u001b[38;5;124;03mThis is an Axes-level function and will draw the heatmap into the\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 443\u001b[0m \n\u001b[0;32m 444\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 445\u001b[0m \u001b[38;5;66;03m# Initialize the plotter object\u001b[39;00m\n\u001b[1;32m--> 446\u001b[0m plotter \u001b[38;5;241m=\u001b[39m _HeatMapper(data, vmin, vmax, cmap, center, robust, annot, fmt,\n\u001b[0;32m 447\u001b[0m annot_kws, cbar, cbar_kws, xticklabels,\n\u001b[0;32m 448\u001b[0m yticklabels, mask)\n\u001b[0;32m 450\u001b[0m \u001b[38;5;66;03m# Add the pcolormesh kwargs here\u001b[39;00m\n\u001b[0;32m 451\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlinewidths\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m linewidths\n", - "File \u001b[1;32mc:\\Users\\ADMIN\\anaconda3\\Lib\\site-packages\\seaborn\\matrix.py:115\u001b[0m, in \u001b[0;36m_HeatMapper.__init__\u001b[1;34m(self, data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, cbar, cbar_kws, xticklabels, yticklabels, mask)\u001b[0m\n\u001b[0;32m 112\u001b[0m \u001b[38;5;66;03m# Validate the mask and convert to DataFrame\u001b[39;00m\n\u001b[0;32m 113\u001b[0m mask \u001b[38;5;241m=\u001b[39m _matrix_mask(data, mask)\n\u001b[1;32m--> 115\u001b[0m plot_data \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mma\u001b[38;5;241m.\u001b[39mmasked_where(np\u001b[38;5;241m.\u001b[39masarray(mask), plot_data)\n\u001b[0;32m 117\u001b[0m \u001b[38;5;66;03m# Get good names for the rows and columns\u001b[39;00m\n\u001b[0;32m 118\u001b[0m xtickevery \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n", - "File \u001b[1;32mc:\\Users\\ADMIN\\anaconda3\\Lib\\site-packages\\numpy\\ma\\core.py:1933\u001b[0m, in \u001b[0;36mmasked_where\u001b[1;34m(condition, a, copy)\u001b[0m\n\u001b[0;32m 1931\u001b[0m (cshape, ashape) \u001b[38;5;241m=\u001b[39m (cond\u001b[38;5;241m.\u001b[39mshape, a\u001b[38;5;241m.\u001b[39mshape)\n\u001b[0;32m 1932\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cshape \u001b[38;5;129;01mand\u001b[39;00m cshape \u001b[38;5;241m!=\u001b[39m ashape:\n\u001b[1;32m-> 1933\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mIndexError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInconsistent shape between the condition and the input\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1934\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m (got \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m and \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m)\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m (cshape, ashape))\n\u001b[0;32m 1935\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(a, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m_mask\u001b[39m\u001b[38;5;124m'\u001b[39m):\n\u001b[0;32m 1936\u001b[0m cond \u001b[38;5;241m=\u001b[39m mask_or(cond, a\u001b[38;5;241m.\u001b[39m_mask)\n", - "\u001b[1;31mIndexError\u001b[0m: Inconsistent shape between the condition and the input (got (18, 1) and (18,))" - ] - }, - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "\n", - "# Plot the correlation matrix as a heatmap\n", - "plt.figure(figsize=(12, 8))\n", - "sns.heatmap(correlation, annot=True, cmap='coolwarm', fmt=\".2f\", linewidths=0.5)\n", - "plt.title('Correlation Matrix')\n", - "plt.show()\n" + "# # Plot the correlation matrix as a heatmap\n", + "# plt.figure(figsize=(12, 8))\n", + "# sns.heatmap(correlation, annot=True, cmap='coolwarm', fmt=\".2f\", linewidths=0.5)\n", + "# plt.title('Correlation Matrix')\n", + "# plt.show()\n" ] }, { From f0a4c8a62e23a97ac7c62ddb383f7ed26ec4376c Mon Sep 17 00:00:00 2001 From: Paul Muniu Date: Mon, 29 Apr 2024 23:30:30 +0300 Subject: [PATCH 09/27] Finish EDA --- student.ipynb | 2141 ++++++++++++++++++++++++++++++++++--------------- 1 file changed, 1475 insertions(+), 666 deletions(-) diff --git a/student.ipynb b/student.ipynb index c50d9507..3b8c5a8b 100644 --- a/student.ipynb +++ b/student.ipynb @@ -219,7 +219,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 509, "metadata": {}, "outputs": [], "source": [ @@ -249,9 +249,16 @@ "from scipy.stats import ttest_ind # Independent sample t-test for comparing means." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *loading the King County House Sales dataset*\n" + ] + }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 510, "metadata": {}, "outputs": [ { @@ -290,40 +297,207 @@ }, { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontview...gradesqft_abovesqft_basementyr_builtyr_renovatedzipcodelatlongsqft_living15sqft_lot15
0712930052010/13/2014221900.031.00118056501.0NaNNONE...7 Average11800.019550.09817847.5112-122.25713405650
1641410019212/9/2014538000.032.25257072422.0NONONE...7 Average2170400.019511991.09812547.7210-122.31916907639
256315004002/25/2015180000.021.00770100001.0NONONE...6 Low Average7700.01933NaN9802847.7379-122.23327208062
3248720087512/9/2014604000.043.00196050001.0NONONE...7 Average1050910.019650.09813647.5208-122.39313605000
419544005102/18/2015510000.032.00168080801.0NONONE...8 Good16800.019870.09807447.6168-122.04518007503
\n", + "

5 rows × 21 columns

\n", + "
" + ], "text/plain": [ - "(None,\n", - " id date price bedrooms bathrooms sqft_living \\\n", - " 0 7129300520 10/13/2014 221900.0 3 1.00 1180 \n", - " 1 6414100192 12/9/2014 538000.0 3 2.25 2570 \n", - " 2 5631500400 2/25/2015 180000.0 2 1.00 770 \n", - " 3 2487200875 12/9/2014 604000.0 4 3.00 1960 \n", - " 4 1954400510 2/18/2015 510000.0 3 2.00 1680 \n", - " \n", - " sqft_lot floors waterfront view ... grade sqft_above \\\n", - " 0 5650 1.0 NaN NONE ... 7 Average 1180 \n", - " 1 7242 2.0 NO NONE ... 7 Average 2170 \n", - " 2 10000 1.0 NO NONE ... 6 Low Average 770 \n", - " 3 5000 1.0 NO NONE ... 7 Average 1050 \n", - " 4 8080 1.0 NO NONE ... 8 Good 1680 \n", - " \n", - " sqft_basement yr_built yr_renovated zipcode lat long \\\n", - " 0 0.0 1955 0.0 98178 47.5112 -122.257 \n", - " 1 400.0 1951 1991.0 98125 47.7210 -122.319 \n", - " 2 0.0 1933 NaN 98028 47.7379 -122.233 \n", - " 3 910.0 1965 0.0 98136 47.5208 -122.393 \n", - " 4 0.0 1987 0.0 98074 47.6168 -122.045 \n", - " \n", - " sqft_living15 sqft_lot15 \n", - " 0 1340 5650 \n", - " 1 1690 7639 \n", - " 2 2720 8062 \n", - " 3 1360 5000 \n", - " 4 1800 7503 \n", - " \n", - " [5 rows x 21 columns])" + " id date price bedrooms bathrooms sqft_living \\\n", + "0 7129300520 10/13/2014 221900.0 3 1.00 1180 \n", + "1 6414100192 12/9/2014 538000.0 3 2.25 2570 \n", + "2 5631500400 2/25/2015 180000.0 2 1.00 770 \n", + "3 2487200875 12/9/2014 604000.0 4 3.00 1960 \n", + "4 1954400510 2/18/2015 510000.0 3 2.00 1680 \n", + "\n", + " sqft_lot floors waterfront view ... grade sqft_above \\\n", + "0 5650 1.0 NaN NONE ... 7 Average 1180 \n", + "1 7242 2.0 NO NONE ... 7 Average 2170 \n", + "2 10000 1.0 NO NONE ... 6 Low Average 770 \n", + "3 5000 1.0 NO NONE ... 7 Average 1050 \n", + "4 8080 1.0 NO NONE ... 8 Good 1680 \n", + "\n", + " sqft_basement yr_built yr_renovated zipcode lat long \\\n", + "0 0.0 1955 0.0 98178 47.5112 -122.257 \n", + "1 400.0 1951 1991.0 98125 47.7210 -122.319 \n", + "2 0.0 1933 NaN 98028 47.7379 -122.233 \n", + "3 910.0 1965 0.0 98136 47.5208 -122.393 \n", + "4 0.0 1987 0.0 98074 47.6168 -122.045 \n", + "\n", + " sqft_living15 sqft_lot15 \n", + "0 1340 5650 \n", + "1 1690 7639 \n", + "2 2720 8062 \n", + "3 1360 5000 \n", + "4 1800 7503 \n", + "\n", + "[5 rows x 21 columns]" ] }, - "execution_count": 52, + "execution_count": 510, "metadata": {}, "output_type": "execute_result" } @@ -334,12 +508,214 @@ "housing_data = pd.read_csv(file_path)\n", "\n", "# Display basic information and the first few rows of the dataset\n", - "housing_data.info(), housing_data.head()" + "housing_data.info()\n", + "housing_data.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *loading the column.md dataset*\n" + ] + }, + { + "cell_type": "code", + "execution_count": 511, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Column_nameDescription
0* `id`Unique identifier for a house
1* `date`Date house was sold
2* `price`Sale price (prediction target)
3* `bedrooms`Number of bedrooms
4* `bathrooms`Number of bathrooms
5* `sqft_living`Square footage of living space in the home
6* `sqft_lot`Square footage of the lot
7* `floors`Number of floors (levels) in house
8* `waterfront`Whether the house is on a waterfront
9* `view`Quality of view from house
10* `condition`How good the overall condition of the house is...
11* `grade`Overall grade of the house. Related to the con...
12* `sqft_above`Square footage of house apart from basement
13* `sqft_basement`Square footage of the basement
14* `yr_built`Year when house was built
15* `yr_renovated`Year when house was renovated
16* `zipcode`ZIP Code used by the United States Postal Service
17* `lat`Latitude coordinate
18* `long`Longitude coordinate
19* `sqft_living15`The square footage of interior housing living ...
20* `sqft_lot15`The square footage of the land lots of the nea...
\n", + "
" + ], + "text/plain": [ + " Column_name Description\n", + "0 * `id` Unique identifier for a house\n", + "1 * `date` Date house was sold\n", + "2 * `price` Sale price (prediction target)\n", + "3 * `bedrooms` Number of bedrooms\n", + "4 * `bathrooms` Number of bathrooms\n", + "5 * `sqft_living` Square footage of living space in the home\n", + "6 * `sqft_lot` Square footage of the lot\n", + "7 * `floors` Number of floors (levels) in house\n", + "8 * `waterfront` Whether the house is on a waterfront\n", + "9 * `view` Quality of view from house\n", + "10 * `condition` How good the overall condition of the house is...\n", + "11 * `grade` Overall grade of the house. Related to the con...\n", + "12 * `sqft_above` Square footage of house apart from basement\n", + "13 * `sqft_basement` Square footage of the basement\n", + "14 * `yr_built` Year when house was built\n", + "15 * `yr_renovated` Year when house was renovated\n", + "16 * `zipcode` ZIP Code used by the United States Postal Service\n", + "17 * `lat` Latitude coordinate\n", + "18 * `long` Longitude coordinate\n", + "19 * `sqft_living15` The square footage of interior housing living ...\n", + "20 * `sqft_lot15` The square footage of the land lots of the nea..." + ] + }, + "execution_count": 511, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "column_names_file = \"data/column_names.md\"\n", + "\n", + "with open(column_names_file, \"r\") as file:\n", + " markdown_content = file.readlines()\n", + "\n", + "column_names = []\n", + "description = []\n", + "for line in markdown_content:\n", + " parts = line.split('-', 1)\n", + " if len(parts) == 2: # Check if split produces two parts\n", + " column_names.append(parts[0].strip())\n", + " description.append(parts[1].strip())\n", + "\n", + "# Create DataFrame\n", + "data = {\n", + " \"Column_name\": column_names,\n", + " \"Description\": description\n", + "}\n", + "column_name_df = pd.DataFrame(data)\n", + "\n", + "column_name_df\n" ] }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 512, "metadata": {}, "outputs": [ { @@ -370,7 +746,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 513, "metadata": {}, "outputs": [ { @@ -399,14 +775,14 @@ "source": [ "The dataset contains 21,597 entries and 21 features. Here’s a brief overview of the data:\n", "\n", - "### Columns and Their Data Types:\n", - "### Numerical:\n", + "### Columns and their Data Types:\n", + "#### Numerical:\n", "id, price, bedrooms, bathrooms, sqft_living, sqft_lot, floors, sqft_above, yr_built, yr_renovated, zipcode, lat, long, sqft_living15, sqft_lot15\n", "\n", - "### Categorical:\n", + "#### Categorical:\n", "date (format object, should be datetime), waterfront, view, condition, grade, sqft_basement (format object, should be numeric)\n", "\n", - "### Missing Values:\n", + "#### Missing Values:\n", "waterfront: 2,376 missing values\n", "view: 63 missing values\n", "yr_renovated: 3,842 missing values\n" @@ -416,123 +792,403 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 2. DATA CLEANING\n", - "\n", - "### A) Handle Missing Values:\n", - "#### waterfront and view: \n", - "Since these are categorical, we can replace missing values with the mode or create a separate category for missing values.\n", - "yr_renovated: A significant number of missing values suggest that these houses might not have been renovated. Impute with 0 or a specific marker value.\n", - "\n", - "### B) Convert Data Types:\n", - "#### date:\n", - "Convert from object to datetime format.\n", - "sqft_basement: Convert from object to numeric, handling any non-numeric entries.\n", - "\n", - "### C)Encode Categorical Data:\n", - "One-hot encoding for categorical variables with no intrinsic ordering (waterfront, view, condition, grade).\n", - "This approach avoids any ordinal implications that could mislead the model.\n", - "\n" + "## 2. DATA CLEANING" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### a)Dropping columns:\n", + "We're dropping some columns during data cleaning to streamline our analysis and focus on the most relevant features. By removing unnecessary or redundant columns, we aim to simplify the dataset and improve the efficiency of subsequent analytical processes. This helps in reducing noise and enhancing the clarity of our findings." ] }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 514, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 21597 entries, 0 to 21596\n", - "Data columns (total 21 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 id 21597 non-null int64 \n", - " 1 date 21597 non-null datetime64[ns]\n", - " 2 price 21597 non-null float64 \n", - " 3 bedrooms 21597 non-null int64 \n", - " 4 bathrooms 21597 non-null float64 \n", - " 5 sqft_living 21597 non-null int64 \n", - " 6 sqft_lot 21597 non-null int64 \n", - " 7 floors 21597 non-null float64 \n", - " 8 waterfront 21597 non-null object \n", - " 9 view 21597 non-null object \n", - " 10 condition 21597 non-null object \n", - " 11 grade 21597 non-null object \n", - " 12 sqft_above 21597 non-null int64 \n", - " 13 sqft_basement 21597 non-null float64 \n", - " 14 yr_built 21597 non-null int64 \n", - " 15 yr_renovated 21597 non-null float64 \n", - " 16 zipcode 21597 non-null int64 \n", - " 17 lat 21597 non-null float64 \n", - " 18 long 21597 non-null float64 \n", - " 19 sqft_living15 21597 non-null int64 \n", - " 20 sqft_lot15 21597 non-null int64 \n", - "dtypes: datetime64[ns](1), float64(7), int64(9), object(4)\n", - "memory usage: 3.5+ MB\n" - ] - }, { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontconditiongradesqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15
94387121005758/28/2014915000.052.50275055891.5NOVery Good9 Better1840910.019100.014604250
13462175001354/21/2015450000.042.25204095651.0NOAverage8 Good1400640.019590.018908580
2129677082006707/23/2014490000.042.50251043492.0NaNAverage8 Good25100.020100.025104314
589633039805009/5/20141030000.043.253780112002.0NOAverage11 Excellent37800.020020.0372011813
580919220690714/24/2015411000.041.7522502922881.0NOGood7 Average22500.019630.0155023798
\n", + "
" + ], "text/plain": [ - "(None,\n", - " waterfront view yr_renovated date sqft_basement\n", - " 0 NO NONE 0.0 2014-10-13 0.0\n", - " 1 NO NONE 1991.0 2014-12-09 400.0\n", - " 2 NO NONE 0.0 2015-02-25 0.0\n", - " 3 NO NONE 0.0 2014-12-09 910.0\n", - " 4 NO NONE 0.0 2015-02-18 0.0)" + " id date price bedrooms bathrooms sqft_living \\\n", + "943 8712100575 8/28/2014 915000.0 5 2.50 2750 \n", + "1346 217500135 4/21/2015 450000.0 4 2.25 2040 \n", + "21296 7708200670 7/23/2014 490000.0 4 2.50 2510 \n", + "5896 3303980500 9/5/2014 1030000.0 4 3.25 3780 \n", + "5809 1922069071 4/24/2015 411000.0 4 1.75 2250 \n", + "\n", + " sqft_lot floors waterfront condition grade sqft_above \\\n", + "943 5589 1.5 NO Very Good 9 Better 1840 \n", + "1346 9565 1.0 NO Average 8 Good 1400 \n", + "21296 4349 2.0 NaN Average 8 Good 2510 \n", + "5896 11200 2.0 NO Average 11 Excellent 3780 \n", + "5809 292288 1.0 NO Good 7 Average 2250 \n", + "\n", + " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", + "943 910.0 1910 0.0 1460 4250 \n", + "1346 640.0 1959 0.0 1890 8580 \n", + "21296 0.0 2010 0.0 2510 4314 \n", + "5896 0.0 2002 0.0 3720 11813 \n", + "5809 0.0 1963 0.0 1550 23798 " ] }, - "execution_count": 55, + "execution_count": 514, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# A)Handle missing values\n", - "# For categorical data, impute missing values with mode or specific marker\n", - "waterfront_mode = housing_data['waterfront'].mode()[0]\n", - "view_mode = housing_data['view'].mode()[0]\n", - "\n", - "housing_data['waterfront'].fillna(waterfront_mode, inplace=True)\n", - "housing_data['view'].fillna(view_mode, inplace=True)\n", - "housing_data['yr_renovated'].fillna(0, inplace=True) # Assuming no renovation if NaN\n", + "housing_data = housing_data.drop(['long','lat','view', 'zipcode'], axis=1)\n", + "housing_data.sample(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### b)Checking for placeholders\n", "\n", + "Placeholders are values used to denote missing, unknown, or invalid data within a dataset. Common examples include \"N/A\", \"-\", \"UNKNOWN\", \"NULL\", #, etc. It's important to identify and handle placeholders properly during data preprocessing to ensure accurate analysis and modeling" + ] + }, + { + "cell_type": "code", + "execution_count": 515, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Column 'sqft_basement': Found 454 occurrences of potential placeholder .\n" + ] + } + ], + "source": [ + "# Define a list of common placeholder values\n", + "common_placeholders = [\"\", \"na\", \"n/a\", \"nan\", \"none\", \"null\", \"-\", \"--\", \"?\", \"??\", \"unknown\", \"missing\", \"void\", \"empty\", \"#\", \"#####\"]\n", + "\n", + "# Check for potential placeholders in the DataFrame\n", + "found_placeholder = False\n", + "for column in housing_data.columns:\n", + " placeholder_count = housing_data[column].isin(common_placeholders).sum()\n", + " if placeholder_count > 0:\n", + " print(f\"Column '{column}': Found {placeholder_count} occurrences of potential placeholder .\")\n", + " found_placeholder = True\n", + "\n", + "if not found_placeholder:\n", + " print(\"No potential placeholders found in the DataFrame.\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 516, + "metadata": {}, + "outputs": [], + "source": [ "\n", - "# B) Convert data types\n", - "from datetime import datetime\n", + "# Convert the common placeholders to lowercase for case-insensitive matching\n", + "common_placeholders_lower = [placeholder.lower() for placeholder in common_placeholders]\n", "\n", - "housing_data['date'] = pd.to_datetime(housing_data['date'])\n", - "housing_data['sqft_basement'] = pd.to_numeric(housing_data['sqft_basement'], errors='coerce') # Convert to numeric, coerce errors\n", - "housing_data['sqft_basement'].fillna(0, inplace=True) # Assuming no basement if NaN or non-numeric\n", + "# Replace any of the common placeholders with NaN\n", + "housing_data['sqft_basement'] = housing_data['sqft_basement'].replace(common_placeholders_lower, pd.NA)\n", "\n", - "# Check transformations\n", - "housing_data.info(), housing_data[['waterfront', 'view', 'yr_renovated', 'date', 'sqft_basement']].head()\n" + "# Drop rows with NaN in the sqft_basement column\n", + "housing_data.dropna(subset=['sqft_basement'], inplace=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Counter-check" + ] + }, + { + "cell_type": "code", + "execution_count": 517, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No potential placeholders found in the DataFrame.\n" + ] + } + ], + "source": [ + "# confirm no more placeholders\n", + "# Define a list of common placeholder values\n", + "common_placeholders = [\"\", \"na\", \"n/a\", \"nan\", \"none\", \"null\", \"-\", \"--\", \"?\", \"??\", \"unknown\", \"missing\", \"void\", \"empty\", \"#\", \"#####\"]\n", + "\n", + "# Check for potential placeholders in the DataFrame\n", + "found_placeholder = False\n", + "for column in housing_data.columns:\n", + " placeholder_count = housing_data[column].isin(common_placeholders).sum()\n", + " if placeholder_count > 0:\n", + " print(f\"Column '{column}': Found {placeholder_count} occurrences of potential placeholder .\")\n", + " found_placeholder = True\n", + "\n", + "if not found_placeholder:\n", + " print(\"No potential placeholders found in the DataFrame.\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The missing values have been addressed and data types for relevant columns have been corrected:\n", - "\n", - "#### Missing Values:\n", "\n", - "waterfront and view had missing values which were filled using the mode of their respective columns.\n", "\n", - "yr_renovated missing values were filled with 0, assuming that a missing value indicates no renovation.\n", + "### b) Handling Missing Values:\n", + "waterfront: \n", + "Since these are categorical, we can replace missing values with the mode or create a separate category for missing values.\n", + "
yr_renovated: \n", + "A significant number of missing values suggest that these houses might not have been renovated. Impute with 0 or a specific marker value." + ] + }, + { + "cell_type": "code", + "execution_count": 518, + "metadata": {}, + "outputs": [], + "source": [ + "# For categorical data, impute missing values with mode or specific marker\n", + "waterfront_mode = housing_data['waterfront'].mode()[0]\n", "\n", - "#### Data Type Conversions:\n", - "The date column has been converted to a datetime format.\n", + "housing_data['waterfront'].fillna(waterfront_mode, inplace=True)\n", + "housing_data['yr_renovated'].fillna(0, inplace=True) # Assuming no renovation if NaN" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### c) Convert Data\n", + "Convert date from object to datetime format.\n", + "sqft_basement: Convert from object to numeric, handling any non-numeric entries." + ] + }, + { + "cell_type": "code", + "execution_count": 519, + "metadata": {}, + "outputs": [], + "source": [ + "from datetime import datetime\n", "\n", - "The sqft_basement column, previously an object due to some non-numeric entries, has been converted to numeric. Missing and non-numeric entries were replaced with 0, assuming no basement in such cases.\n" + "housing_data['date'] = pd.to_datetime(housing_data['date'])\n", + "housing_data['sqft_basement'] = pd.to_numeric(housing_data['sqft_basement'], errors='coerce') # Convert to numeric, coerce errors\n", + "housing_data['sqft_basement'].fillna(0, inplace=True) # Assuming no basement if NaN or non-numeric" + ] + }, + { + "cell_type": "code", + "execution_count": 520, + "metadata": {}, + "outputs": [], + "source": [ + "# Change waterfront to integer\n", + "housing_data['waterfront'] = housing_data['waterfront'].apply(lambda x: 0 if x == 'NO' else 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 521, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['7 Average' '6 Low Average' '8 Good' '11 Excellent' '9 Better' '5 Fair'\n", + " '10 Very Good' '12 Luxury' '4 Low' '3 Poor' '13 Mansion']\n" + ] + } + ], + "source": [ + "# checking \"grade\" column\n", + "unique_grade = housing_data.grade.unique()\n", + "print(unique_grade)" + ] + }, + { + "cell_type": "code", + "execution_count": 522, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['Average' 'Very Good' 'Good' 'Poor' 'Fair']\n" + ] + } + ], + "source": [ + "# checking \"condition\"column\n", + "unique_condition = housing_data.condition.unique()\n", + "print(unique_condition)" + ] + }, + { + "cell_type": "code", + "execution_count": 523, + "metadata": {}, + "outputs": [], + "source": [ + "# Convert grade and condition into representative numbers for easier Exploratory analysis.\n", + "housing_data['condition'] = housing_data['condition'].map({'Poor': 1,'Fair': 2,'Average': 3,'Good': 4,'Very Good': 5}).astype(float)\n", + "housing_data['grade'] = housing_data['grade'].map({'3 Poor': 1,'4 Low': 2,'5 Fair': 3,'6 Low Average': 4,'7 Average': 5,'8 Good': 6,'9 Better': 7,'10 Very Good': 8,'11 Excellent': 9,'12 Luxury': 10,'13 Mansion': 11}).astype(float) " ] }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 524, "metadata": {}, "outputs": [ { @@ -540,103 +1196,209 @@ "output_type": "stream", "text": [ "\n", - "RangeIndex: 21597 entries, 0 to 21596\n", - "Data columns (total 36 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 id 21597 non-null int64 \n", - " 1 date 21597 non-null datetime64[ns]\n", - " 2 price 21597 non-null float64 \n", - " 3 bedrooms 21597 non-null int64 \n", - " 4 bathrooms 21597 non-null float64 \n", - " 5 sqft_living 21597 non-null int64 \n", - " 6 sqft_lot 21597 non-null int64 \n", - " 7 floors 21597 non-null float64 \n", - " 8 sqft_above 21597 non-null int64 \n", - " 9 sqft_basement 21597 non-null float64 \n", - " 10 yr_built 21597 non-null int64 \n", - " 11 yr_renovated 21597 non-null float64 \n", - " 12 zipcode 21597 non-null int64 \n", - " 13 lat 21597 non-null float64 \n", - " 14 long 21597 non-null float64 \n", - " 15 sqft_living15 21597 non-null int64 \n", - " 16 sqft_lot15 21597 non-null int64 \n", - " 17 waterfront_YES 21597 non-null bool \n", - " 18 view_EXCELLENT 21597 non-null bool \n", - " 19 view_FAIR 21597 non-null bool \n", - " 20 view_GOOD 21597 non-null bool \n", - " 21 view_NONE 21597 non-null bool \n", - " 22 condition_Fair 21597 non-null bool \n", - " 23 condition_Good 21597 non-null bool \n", - " 24 condition_Poor 21597 non-null bool \n", - " 25 condition_Very Good 21597 non-null bool \n", - " 26 grade_11 Excellent 21597 non-null bool \n", - " 27 grade_12 Luxury 21597 non-null bool \n", - " 28 grade_13 Mansion 21597 non-null bool \n", - " 29 grade_3 Poor 21597 non-null bool \n", - " 30 grade_4 Low 21597 non-null bool \n", - " 31 grade_5 Fair 21597 non-null bool \n", - " 32 grade_6 Low Average 21597 non-null bool \n", - " 33 grade_7 Average 21597 non-null bool \n", - " 34 grade_8 Good 21597 non-null bool \n", - " 35 grade_9 Better 21597 non-null bool \n", - "dtypes: bool(19), datetime64[ns](1), float64(7), int64(9)\n", - "memory usage: 3.2 MB\n" + "Index: 21143 entries, 0 to 21596\n", + "Data columns (total 17 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 id 21143 non-null int64 \n", + " 1 date 21143 non-null datetime64[ns]\n", + " 2 price 21143 non-null float64 \n", + " 3 bedrooms 21143 non-null int64 \n", + " 4 bathrooms 21143 non-null float64 \n", + " 5 sqft_living 21143 non-null int64 \n", + " 6 sqft_lot 21143 non-null int64 \n", + " 7 floors 21143 non-null float64 \n", + " 8 waterfront 21143 non-null int64 \n", + " 9 condition 21143 non-null float64 \n", + " 10 grade 21143 non-null float64 \n", + " 11 sqft_above 21143 non-null int64 \n", + " 12 sqft_basement 21143 non-null float64 \n", + " 13 yr_built 21143 non-null int64 \n", + " 14 yr_renovated 21143 non-null float64 \n", + " 15 sqft_living15 21143 non-null int64 \n", + " 16 sqft_lot15 21143 non-null int64 \n", + "dtypes: datetime64[ns](1), float64(7), int64(9)\n", + "memory usage: 2.9 MB\n" ] }, { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontconditiongradesqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15
1473325250590772014-05-20765000.042.252560121001.004.06.01760800.019760.0224012100
553622480000802014-05-21385500.032.00154079471.003.05.01120420.019610.019107950
1049592908500602014-10-22910000.042.503170324302.503.08.031700.019890.0336035610
1567654225606602014-10-30407000.022.50170066352.004.06.017000.019760.017006635
146997140002102014-09-03998000.042.50303068202.003.07.02530500.019472000.020706820
\n", + "
" + ], "text/plain": [ - "(None,\n", - " id date price bedrooms bathrooms sqft_living \\\n", - " 0 7129300520 2014-10-13 221900.0 3 1.00 1180 \n", - " 1 6414100192 2014-12-09 538000.0 3 2.25 2570 \n", - " 2 5631500400 2015-02-25 180000.0 2 1.00 770 \n", - " 3 2487200875 2014-12-09 604000.0 4 3.00 1960 \n", - " 4 1954400510 2015-02-18 510000.0 3 2.00 1680 \n", - " \n", - " sqft_lot floors sqft_above sqft_basement ... grade_11 Excellent \\\n", - " 0 5650 1.0 1180 0.0 ... False \n", - " 1 7242 2.0 2170 400.0 ... False \n", - " 2 10000 1.0 770 0.0 ... False \n", - " 3 5000 1.0 1050 910.0 ... False \n", - " 4 8080 1.0 1680 0.0 ... False \n", - " \n", - " grade_12 Luxury grade_13 Mansion grade_3 Poor grade_4 Low grade_5 Fair \\\n", - " 0 False False False False False \n", - " 1 False False False False False \n", - " 2 False False False False False \n", - " 3 False False False False False \n", - " 4 False False False False False \n", - " \n", - " grade_6 Low Average grade_7 Average grade_8 Good grade_9 Better \n", - " 0 False True False False \n", - " 1 False True False False \n", - " 2 True False False False \n", - " 3 False True False False \n", - " 4 False False True False \n", - " \n", - " [5 rows x 36 columns])" + " id date price bedrooms bathrooms sqft_living \\\n", + "14733 2525059077 2014-05-20 765000.0 4 2.25 2560 \n", + "5536 2248000080 2014-05-21 385500.0 3 2.00 1540 \n", + "10495 9290850060 2014-10-22 910000.0 4 2.50 3170 \n", + "15676 5422560660 2014-10-30 407000.0 2 2.50 1700 \n", + "14699 714000210 2014-09-03 998000.0 4 2.50 3030 \n", + "\n", + " sqft_lot floors waterfront condition grade sqft_above \\\n", + "14733 12100 1.0 0 4.0 6.0 1760 \n", + "5536 7947 1.0 0 3.0 5.0 1120 \n", + "10495 32430 2.5 0 3.0 8.0 3170 \n", + "15676 6635 2.0 0 4.0 6.0 1700 \n", + "14699 6820 2.0 0 3.0 7.0 2530 \n", + "\n", + " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", + "14733 800.0 1976 0.0 2240 12100 \n", + "5536 420.0 1961 0.0 1910 7950 \n", + "10495 0.0 1989 0.0 3360 35610 \n", + "15676 0.0 1976 0.0 1700 6635 \n", + "14699 500.0 1947 2000.0 2070 6820 " ] }, - "execution_count": 56, + "execution_count": 524, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# One-hot encoding for categorical variables without a natural order\n", - "housing_data_encoded = pd.get_dummies(housing_data, columns=['waterfront', 'view', 'condition', 'grade'], drop_first=True)\n", "\n", - "# Display the columns after encoding to confirm the transformation\n", - "housing_data_encoded.info(), housing_data_encoded.head()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The categorical variables have been successfully encoded using one-hot encoding. This transformation results in binary columns for each category within the original features, which will help in preventing any misinterpretation of categorical data as ordinal by statistical models." + "# Check transformations\n", + "housing_data.info()\n", + "housing_data.sample(5)\n" ] }, { @@ -658,7 +1420,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 525, "metadata": {}, "outputs": [ { @@ -731,7 +1493,7 @@ "4 37 0.0 11440.0" ] }, - "execution_count": 57, + "execution_count": 525, "metadata": {}, "output_type": "execute_result" } @@ -743,15 +1505,15 @@ "current_year = datetime.now().year\n", "\n", "# Feature Engineering\n", - "housing_data_encoded['house_age'] = current_year - housing_data_encoded['yr_built']\n", - "housing_data_encoded['renovation_age'] = housing_data_encoded.apply(\n", + "housing_data['house_age'] = current_year - housing_data['yr_built']\n", + "housing_data['renovation_age'] = housing_data.apply(\n", " lambda x: 0 if x['yr_renovated'] == 0 else current_year - x['yr_renovated'], axis=1\n", ")\n", - "housing_data_encoded['total_sqft'] = housing_data_encoded['sqft_living'] + housing_data_encoded['sqft_lot'] + \\\n", - " housing_data_encoded['sqft_above'] + housing_data_encoded['sqft_basement']\n", + "housing_data['total_sqft'] = housing_data['sqft_living'] + housing_data['sqft_lot'] + \\\n", + " housing_data['sqft_above'] + housing_data['sqft_basement']\n", "\n", "# Display the new features\n", - "housing_data_encoded[['house_age', 'renovation_age', 'total_sqft']].head()\n" + "housing_data[['house_age', 'renovation_age', 'total_sqft']].head()\n" ] }, { @@ -771,12 +1533,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Sample data check." + "##### *Sample data check.*" ] }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 526, "metadata": {}, "outputs": [ { @@ -808,16 +1570,15 @@ " sqft_living\n", " sqft_lot\n", " floors\n", + " waterfront\n", + " condition\n", + " grade\n", " sqft_above\n", " sqft_basement\n", - " ...\n", - " grade_3 Poor\n", - " grade_4 Low\n", - " grade_5 Fair\n", - " grade_6 Low Average\n", - " grade_7 Average\n", - " grade_8 Good\n", - " grade_9 Better\n", + " yr_built\n", + " yr_renovated\n", + " sqft_living15\n", + " sqft_lot15\n", " house_age\n", " renovation_age\n", " total_sqft\n", @@ -825,174 +1586,166 @@ " \n", " \n", " \n", - " 4864\n", - " 3293400010\n", - " 2015-03-04\n", - " 950000.0\n", - " 5\n", - " 2.50\n", - " 3450\n", - " 35880\n", - " 2.0\n", - " 3450\n", + " 19131\n", + " 6713700155\n", + " 2014-08-18\n", + " 352500.0\n", + " 3\n", + " 1.00\n", + " 1470\n", + " 8400\n", + " 1.0\n", + " 0\n", + " 4.0\n", + " 5.0\n", + " 1470\n", " 0.0\n", - " ...\n", - " False\n", - " False\n", - " False\n", - " False\n", - " False\n", - " False\n", - " False\n", - " 32\n", + " 1953\n", + " 0.0\n", + " 1470\n", + " 8400\n", + " 71\n", " 0.0\n", - " 42780.0\n", + " 11340.0\n", " \n", " \n", - " 18353\n", - " 1370803445\n", - " 2014-09-09\n", - " 1140000.0\n", - " 4\n", + " 5032\n", + " 2558660190\n", + " 2014-10-30\n", + " 459000.0\n", + " 3\n", " 1.75\n", - " 3080\n", - " 6500\n", + " 1730\n", + " 7807\n", " 1.0\n", - " 1700\n", - " 1380.0\n", - " ...\n", - " False\n", - " False\n", - " False\n", - " False\n", - " False\n", - " False\n", - " True\n", - " 83\n", + " 0\n", + " 3.0\n", + " 5.0\n", + " 1260\n", + " 470.0\n", + " 1976\n", " 0.0\n", - " 12660.0\n", - " \n", - " \n", - " 1250\n", - " 1926049355\n", - " 2014-10-28\n", - " 399000.0\n", - " 5\n", - " 2.00\n", - " 2620\n", - " 7030\n", - " 1.0\n", - " 1420\n", - " 1200.0\n", - " ...\n", - " False\n", - " False\n", - " False\n", - " False\n", - " False\n", - " True\n", - " False\n", - " 59\n", + " 1800\n", + " 7650\n", + " 48\n", " 0.0\n", - " 12270.0\n", + " 11267.0\n", " \n", " \n", - " 10810\n", - " 6071800310\n", - " 2014-06-19\n", - " 558000.0\n", + " 7573\n", + " 7922720040\n", + " 2015-03-17\n", + " 680000.0\n", " 4\n", - " 2.25\n", - " 2060\n", - " 10358\n", + " 2.50\n", + " 2880\n", + " 9202\n", " 1.0\n", - " 1320\n", - " 740.0\n", - " ...\n", - " False\n", - " False\n", - " False\n", - " False\n", - " False\n", - " True\n", - " False\n", - " 62\n", + " 0\n", + " 3.0\n", + " 6.0\n", + " 1780\n", + " 1100.0\n", + " 1977\n", " 0.0\n", - " 14478.0\n", + " 2500\n", + " 10265\n", + " 47\n", + " 0.0\n", + " 14962.0\n", " \n", " \n", - " 12222\n", - " 6918710340\n", - " 2014-08-22\n", - " 385000.0\n", + " 12237\n", + " 7560000070\n", + " 2014-06-10\n", + " 710000.0\n", " 3\n", - " 2.25\n", - " 2110\n", - " 8000\n", + " 3.50\n", + " 2440\n", + " 3427\n", " 2.0\n", - " 2110\n", + " 0\n", + " 3.0\n", + " 5.0\n", + " 1990\n", + " 450.0\n", + " 2000\n", " 0.0\n", - " ...\n", - " False\n", - " False\n", - " False\n", - " False\n", - " False\n", - " True\n", - " False\n", - " 49\n", + " 2440\n", + " 2601\n", + " 24\n", + " 0.0\n", + " 8307.0\n", + " \n", + " \n", + " 6502\n", + " 4217402115\n", + " 2015-04-21\n", + " 3650000.0\n", + " 6\n", + " 4.75\n", + " 5480\n", + " 19401\n", + " 1.5\n", + " 1\n", + " 5.0\n", + " 9.0\n", + " 3910\n", + " 1570.0\n", + " 1936\n", + " 0.0\n", + " 3510\n", + " 15810\n", + " 88\n", " 0.0\n", - " 12220.0\n", + " 30361.0\n", " \n", " \n", "\n", - "

5 rows × 39 columns

\n", "" ], "text/plain": [ " id date price bedrooms bathrooms sqft_living \\\n", - "4864 3293400010 2015-03-04 950000.0 5 2.50 3450 \n", - "18353 1370803445 2014-09-09 1140000.0 4 1.75 3080 \n", - "1250 1926049355 2014-10-28 399000.0 5 2.00 2620 \n", - "10810 6071800310 2014-06-19 558000.0 4 2.25 2060 \n", - "12222 6918710340 2014-08-22 385000.0 3 2.25 2110 \n", + "19131 6713700155 2014-08-18 352500.0 3 1.00 1470 \n", + "5032 2558660190 2014-10-30 459000.0 3 1.75 1730 \n", + "7573 7922720040 2015-03-17 680000.0 4 2.50 2880 \n", + "12237 7560000070 2014-06-10 710000.0 3 3.50 2440 \n", + "6502 4217402115 2015-04-21 3650000.0 6 4.75 5480 \n", "\n", - " sqft_lot floors sqft_above sqft_basement ... grade_3 Poor \\\n", - "4864 35880 2.0 3450 0.0 ... False \n", - "18353 6500 1.0 1700 1380.0 ... False \n", - "1250 7030 1.0 1420 1200.0 ... False \n", - "10810 10358 1.0 1320 740.0 ... False \n", - "12222 8000 2.0 2110 0.0 ... False \n", + " sqft_lot floors waterfront condition grade sqft_above \\\n", + "19131 8400 1.0 0 4.0 5.0 1470 \n", + "5032 7807 1.0 0 3.0 5.0 1260 \n", + "7573 9202 1.0 0 3.0 6.0 1780 \n", + "12237 3427 2.0 0 3.0 5.0 1990 \n", + "6502 19401 1.5 1 5.0 9.0 3910 \n", "\n", - " grade_4 Low grade_5 Fair grade_6 Low Average grade_7 Average \\\n", - "4864 False False False False \n", - "18353 False False False False \n", - "1250 False False False False \n", - "10810 False False False False \n", - "12222 False False False False \n", + " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", + "19131 0.0 1953 0.0 1470 8400 \n", + "5032 470.0 1976 0.0 1800 7650 \n", + "7573 1100.0 1977 0.0 2500 10265 \n", + "12237 450.0 2000 0.0 2440 2601 \n", + "6502 1570.0 1936 0.0 3510 15810 \n", "\n", - " grade_8 Good grade_9 Better house_age renovation_age total_sqft \n", - "4864 False False 32 0.0 42780.0 \n", - "18353 False True 83 0.0 12660.0 \n", - "1250 True False 59 0.0 12270.0 \n", - "10810 True False 62 0.0 14478.0 \n", - "12222 True False 49 0.0 12220.0 \n", - "\n", - "[5 rows x 39 columns]" + " house_age renovation_age total_sqft \n", + "19131 71 0.0 11340.0 \n", + "5032 48 0.0 11267.0 \n", + "7573 47 0.0 14962.0 \n", + "12237 24 0.0 8307.0 \n", + "6502 88 0.0 30361.0 " ] }, - "execution_count": 58, + "execution_count": 526, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "housing_data_encoded.sample(5)" + "housing_data.sample(5)" ] }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 527, "metadata": {}, "outputs": [ { @@ -1000,56 +1753,37 @@ "output_type": "stream", "text": [ "\n", - "RangeIndex: 21597 entries, 0 to 21596\n", - "Data columns (total 39 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 id 21597 non-null int64 \n", - " 1 date 21597 non-null datetime64[ns]\n", - " 2 price 21597 non-null float64 \n", - " 3 bedrooms 21597 non-null int64 \n", - " 4 bathrooms 21597 non-null float64 \n", - " 5 sqft_living 21597 non-null int64 \n", - " 6 sqft_lot 21597 non-null int64 \n", - " 7 floors 21597 non-null float64 \n", - " 8 sqft_above 21597 non-null int64 \n", - " 9 sqft_basement 21597 non-null float64 \n", - " 10 yr_built 21597 non-null int64 \n", - " 11 yr_renovated 21597 non-null float64 \n", - " 12 zipcode 21597 non-null int64 \n", - " 13 lat 21597 non-null float64 \n", - " 14 long 21597 non-null float64 \n", - " 15 sqft_living15 21597 non-null int64 \n", - " 16 sqft_lot15 21597 non-null int64 \n", - " 17 waterfront_YES 21597 non-null bool \n", - " 18 view_EXCELLENT 21597 non-null bool \n", - " 19 view_FAIR 21597 non-null bool \n", - " 20 view_GOOD 21597 non-null bool \n", - " 21 view_NONE 21597 non-null bool \n", - " 22 condition_Fair 21597 non-null bool \n", - " 23 condition_Good 21597 non-null bool \n", - " 24 condition_Poor 21597 non-null bool \n", - " 25 condition_Very Good 21597 non-null bool \n", - " 26 grade_11 Excellent 21597 non-null bool \n", - " 27 grade_12 Luxury 21597 non-null bool \n", - " 28 grade_13 Mansion 21597 non-null bool \n", - " 29 grade_3 Poor 21597 non-null bool \n", - " 30 grade_4 Low 21597 non-null bool \n", - " 31 grade_5 Fair 21597 non-null bool \n", - " 32 grade_6 Low Average 21597 non-null bool \n", - " 33 grade_7 Average 21597 non-null bool \n", - " 34 grade_8 Good 21597 non-null bool \n", - " 35 grade_9 Better 21597 non-null bool \n", - " 36 house_age 21597 non-null int64 \n", - " 37 renovation_age 21597 non-null float64 \n", - " 38 total_sqft 21597 non-null float64 \n", - "dtypes: bool(19), datetime64[ns](1), float64(9), int64(10)\n", - "memory usage: 3.7 MB\n" + "Index: 21143 entries, 0 to 21596\n", + "Data columns (total 20 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 id 21143 non-null int64 \n", + " 1 date 21143 non-null datetime64[ns]\n", + " 2 price 21143 non-null float64 \n", + " 3 bedrooms 21143 non-null int64 \n", + " 4 bathrooms 21143 non-null float64 \n", + " 5 sqft_living 21143 non-null int64 \n", + " 6 sqft_lot 21143 non-null int64 \n", + " 7 floors 21143 non-null float64 \n", + " 8 waterfront 21143 non-null int64 \n", + " 9 condition 21143 non-null float64 \n", + " 10 grade 21143 non-null float64 \n", + " 11 sqft_above 21143 non-null int64 \n", + " 12 sqft_basement 21143 non-null float64 \n", + " 13 yr_built 21143 non-null int64 \n", + " 14 yr_renovated 21143 non-null float64 \n", + " 15 sqft_living15 21143 non-null int64 \n", + " 16 sqft_lot15 21143 non-null int64 \n", + " 17 house_age 21143 non-null int64 \n", + " 18 renovation_age 21143 non-null float64 \n", + " 19 total_sqft 21143 non-null float64 \n", + "dtypes: datetime64[ns](1), float64(9), int64(10)\n", + "memory usage: 3.4 MB\n" ] } ], "source": [ - "housing_data_encoded.info()" + "housing_data.info()" ] }, { @@ -1077,19 +1811,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "##### #Distribution of prices." + "**#Distribution of House Prices.**" ] }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 528, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWcAAAJICAYAAAANc1ZxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACY8klEQVR4nOzdeXRTdf7/8VfSpm1Ky1agVRFBkH0XEEQQcP0iMiKOG6AiKIuKsuMPRBRxBdlBkc0NWQTBZRwd99FhdxlnAB2wRURKWVq2bmmT3x9pAqFN2qZpbtI+H+fMuSH33k8+/dgz5/bVd98fk8PhcAgAAAAAAAAAEFRmoycAAAAAAAAAAJUR4SwAAAAAAAAAGIBwFgAAAAAAAAAMQDgLAAAAAAAAAAYgnAUAAAAAAAAAAxDOAgAAAAAAAIABCGcBAAAAAAAAwACEswAAAAAAAABgAMJZAGHN4XAYPQUAAADAMOHwPBwOcwQAoxDOAig3kyZNUq9evbye79WrlyZNmuT138X5/PPPNXHixDLNsSL45ZdfdMstt6hly5bq3bt3kdfMnz9fTZo08TrGoEGDNGjQoPKaYrlo0qRJof+1bt1aN910k1577TXZ7Xaf92/YsEFNmjTRH3/8EaQZAwCAcDBo0CCP54umTZuqXbt2uvXWW/XGG28oLy/PkHn98ccfatKkiTZs2CBJOnnypCZMmKAdO3aUadxJkyYVeqZq0aKFrrrqKo0fP16HDh1yX+vPM+POnTv14IMPlmmOLh999JF69uypli1baurUqUVeU9wcmzRpovnz5wdkPsGwdevWQv99mjZtqvbt2+vOO+/UF198UewYxf1cBsBYkUZPAABcFixYoLi4uBJfv3LlyvKbTBhZuHCh/vzzTy1cuFA1a9Y0ejpBddttt+mvf/2r+99ZWVn69NNPNXPmTJ08eVJjx471em+PHj20Zs0a1alTJxhTBQAAYaR58+Z68sknJUn5+fk6ceKEvvnmGz333HPasWOH5syZI7M5uLVOderU0Zo1a1SvXj1J0u7du7Vp0yb179+/zGPXrl1bCxYscP87Ly9PycnJmjlzpn744Qd9+OGHiomJ8WvsdevWad++fWWeoyQ9/fTTql+/vp5//nklJiYGZMxwMXXqVLVo0UKSsxL5xIkTWr58uUaOHKlXX31VV199tdd7R44cqXvuuSdYUwVQSoSzAEJG8+bNjZ5CWEpPT1fjxo19PpBVVElJSWrbtq3He126dNFvv/2mt99+W6NGjZLFYiny3po1a1a6MBsAAJRMXFxcoWeMXr166dJLL9WMGTP04Ycfqm/fvkGdU1RUVKE5lefYHTp0kMVi0cSJE/X555/rpptuKpfPLo2MjAx17dpVV1xxhdFTCbpGjRoV+d+oR48eeuONN3z+LOAK9AGEJtoaAAgZ57c1cD30tm7dWp07d9a4ceN0+PBhSc4/V9q2bZu2bdumJk2aaOvWrZKktLQ0Pf7447r66qvVunVr3Xbbbfr88889Puf06dOaOnWqunTponbt2mn06NFauXKlx5/9Dxo0SOPGjdOoUaPUtm1bDR48WJLzz8kmTJigq666Si1atFCXLl00YcIEpaene3wdCxYs0LPPPqsrrrhC7dq109ixY3XmzBktWbJE3bt31+WXX65HHnnE476iFPf1NGnSRNu2bdP27ds9/swtEP72t7/p1ltvVbt27dS1a1dNnTpVJ06ccJ8v6s+jzv9zO0l6/fXXdeONN6pVq1bq1q2bpk2bptOnT7vP2+12LVmyRNddd51atmypG264QW+++WaZ5t6yZUudOXPGPd8mTZpowYIFuvXWW9W6dWstWLCgyLYGX3/9te688061bdtWV111laZOnaqTJ0+6z//5558aM2aMOnXqpDZt2ujee+/Vrl27PD7b1/ctAAAIbwMHDlRiYqJWr17t8f66det00003qWXLlurRo4fmz5+v/Px89/lJkybpvvvu0/r163XDDTeoZcuW+stf/qJvvvnGfY3dbtfs2bPVq1cvtWzZUr169dKsWbNks9kkeT5nbd261V0Jec8992jQoEF6++231aRJEyUnJ3vMbdOmTWrWrJlHe4KSatWqlSTp4MGDRZ7PycnRwoUL3c96119/vZYsWeJuLzVp0iS99957OnjwYLHPqj///LOGDBmiK664Qu3bt9fw4cP1v//9T9LZP+2XnH81FsjWVMV9DVLR7dfOf5bMzs7WtGnT1L17d7Vs2VI33nijli1b5nFPRkaGpk6dqiuvvFKtWrXS7bffrs2bN/s997i4ODVo0EB//vmnpLPrtHr1avXs2VPt27fXd999V+i53eFwaOXKlfq///s/tW7dWtddd52WLVvm0Rt4x44dGjhwoNq0aaNOnTpp4sSJOn78uPt8cd+vAEqOylkA5c6fvlw7d+7UhAkTNHLkSHXs2FGpqal66aWXNHbsWL311lt68sknNX78eEnSk08+qUaNGuno0aO67bbbFB0drdGjR6tGjRrasGGDHnroIb344ovu6oaRI0dq9+7dGj16tC688EKtWrVKs2bNKjSHjz/+WH379tXixYtlt9uVlZWle+65RzVq1NCTTz6p+Ph4/fDDD1qwYIFiYmL09NNPu+9dvny5unbtqtmzZ+s///mPZs2apf/+97+qU6eOpk+frj/++EMzZsxQrVq13H8yd76SfD1r1qzRU0895V6H4n4r7u2/hcPhkMlkcv970aJFmjdvnu6++26NHj1aBw4c0Ny5c/Xjjz9q7dq1Jf6ztg8//FAvvfSSJk6cqCZNmui3337TCy+8oKysLL3wwguSpGnTpmnDhg0aNmyY2rVrp+3bt+vZZ5/VyZMn9dBDD5Xoc86XnJysKlWqKCEhwf3eK6+8orFjx6pBgwa66KKL9PPPP3vc8+WXX2rEiBG65pprNGfOHGVkZOjFF1/UwYMHtWzZMh0/flx33nmnrFarnnjiCVmtVr3++usaMGCA3n33XTVs2LDY71sAABDezGazunTpoo8++kh5eXmKjIzUq6++qtmzZ2vgwIF6/PHHtXv3bs2fP1+HDh3Ss88+6773P//5j9LS0jRq1CjFxcVp7ty5euSRR/TNN9+oWrVqeu211/TOO+9o4sSJuvjii/XTTz9p9uzZslgsGjVqlMc8WrRooalTp+rpp5/W1KlTdcUVV6hOnTp64YUXtGnTJj322GPuazdu3KguXbroggsuKPXX6wp6i3rGdDgcGj58uH788Uc9/PDDatq0qbZu3ao5c+bowIEDmj59ukaOHKnjx49r165dWrBggddn1S1btmjo0KG64oor9OyzzyonJ0evvvqq7rzzTq1du1YtWrTQmjVrdMcdd7jbWvlqTeVwOEr0M0hJvoaSevbZZ/Xtt99q4sSJqlWrlr755hu9+OKLql69uvr376+cnBzde++9Onr0qEaPHq06depo/fr1Gjp0qJYuXaouXbqU+LNccnNz9ccff6h169Ye7y9YsEBTpkxRdna22rVrpw8++MDj/IsvvqjXX39dgwcPVteuXfXzzz9r5syZysvL07Bhw7R9+3YNHjxYnTt31pw5c3TixAnNnTtX99xzj959913FxMSU6vsVgG+EswDK1cGDB929kUpj586diomJ0YMPPqioqChJUvXq1fXzzz/L4XCoUaNG7v60rj/vWbx4sY4fP65PPvlEF110kSTp6quv1n333acXX3xRffr00datW7V161bNnz9f119/vSSpe/fu6tOnT6FeWBaLRU899ZT783fv3q2kpCS98MILuvjiiyVJnTt31k8//aRt27Z53BsXF6fZs2crMjJSV155pd577z0dPnxY69atU3x8vCTpn//8p77//nuva7BixYpiv562bdsWWgdffP236NSpkyTpxIkTWrx4sW6//XaPjRYaN26sAQMGaP369RowYECxnyVJ27ZtU926dTVgwACZzWZ16tRJsbGx7orW5ORkrV27VmPGjHFvFHHVVVfJZDLp1Vdf1d13360aNWp4Hd9ut7sfvB0Oh44ePaoPPvhAX3zxhYYOHeoROHfo0MFdAS2pUDg7f/58NWvWTAsWLHDfFxUVpblz5+ro0aN68803lZGRoXfeecf936N79+7q3bu35s6dq3nz5hX7fXvufAAAQHiqVauWbDabMjIyFB0drUWLFumOO+7QlClTJDmfZapXr64pU6Zo8ODBuuyyyyRJp06d0oYNG9wBZWxsrAYOHKgtW7bohhtu0LZt29SyZUt3D9lOnTrJarW6nx3PFRcXp0aNGkly/rm76/V1112n999/X48++qhMJpNSU1O1ZcsWvfTSS8V+XeeGmadPn9bPP/+s5557TnXr1lWPHj0KXf/NN9/oX//6l15++WV3y4OuXbsqJibGHeRddtllqlmzZrEtGWbNmqVLLrlES5YsUUREhHsdr7vuOs2bN09z5851319UW6vzbd++vUQ/g5T0ayiJbdu2qWvXru5xrrjiCsXGxrqLBTZt2qQ9e/Zo7dq1atOmjSTns+SgQYM0c+ZMrV+/3uf45z735uXl6eDBg1q0aJGOHz9e6Nn87rvv1o033ljkOCdPntQbb7yhgQMHuotdrrzySh05ckTbt2/XsGHDNGvWLDVo0ECvvvqq+79HmzZtdNNNN7l/FijN9ysA3whnAZSr2rVra/HixUWeGzFihNf7OnbsqNmzZ6tPnz664YYbdPXVV+uqq67y2Utp27ZtateunTs4c+nbt68ef/xx/fbbb9qyZYssFouuvfZa93mz2azevXsX2rX10ksvdQdsktSsWTOtWrVKdrtdKSkp2r9/v/bu3avffvut0G/mW7durcjIs/8XW6tWLcXGxno8rFSvXl2//vprmb4e14N4Sb377rtFvn9u9e6PP/6o3Nxc9enTx+OaDh066KKLLtK2bdtKHM527txZa9as0a233qprr71WV199tW6++WZ3SLllyxY5HA716tXLYw179eqlxYsXa+fOnR7/rc63aNEiLVq0yOO9mJgY3XHHHXrkkUc83m/WrJnXcbKzs7Vr1y498sgjHgFq79691bt3b0nS5s2b1axZMyUmJrrnajab1b17d73//vuS/Pu+BQAA4cX1p98mk0k//PCDsrOzi3yWkaTvvvvOHe7VrFnTo3I0KSlJknNDU8kZ5s2aNUt33323evXqpR49emjgwIGlmtttt92mDz/8UDt27FDHjh21ceNGValSRdddd53P+7wVVLRp00ZPP/10kX81tW3bNkVGRhYKAfv27au5c+dq27ZtJQo2MzMz9fPPP+vhhx92B4GSVLVqVfXs2VNff/11sWOcr0WLFu6/LjvfbbfdFvCvQXL+91u9erVSU1N19dVX6+qrr/b4K7DNmzerdu3aatGihcf3Ss+ePfXiiy/qxIkTqlatmtfx77vvvkLvJSQkaMqUKerevbvH+76ee3/88Ufl5eW5C1VcXL9cyMrK0k8//aQhQ4Z4VCBffPHFatiwob777jsNGDAgIN+vAJwIZwGUq6ioKHevqqLOedOuXTstWbJEK1eu1IoVK7RkyRLVqlVLw4cP16BBg4q858SJE+6K1nPVqlVLkvO3xOnp6apevXqh3XXP/fN3lypVqhR6b8WKFXrllVeUkZGhWrVqqWXLlrJarTp16pTHda5q1nPFxsZ6/Xr9/XpKy9t/i3O/VldVq+tzzv/s879WX3r37i273a5Vq1Zp0aJFmj9/vi666CKNGzdOvXv3VkZGhiR53WCiuF6tt99+u26//XZJzh+QqlSporp16xa5CZiv9T9x4oQcDkeR3wcuGRkZ2r9/v9cqjKysLL++bwEAQHg5fPiwYmJiVL16dfezjOsvgM6Xlpbmfm21Wj3OuX4h7OptOnToUFWpUkXr16/XzJkz9dJLL+myyy7TlClT1Llz5xLNrXPnzqpbt642btzoDmd79+6t6Ohon/edX1ARFRWlpKQkn2HhiRMnVKNGDY9A1TWWpBI/M546dUoOhyMgz54uVapU8frce65AfQ2SNHnyZCUlJen999/X9OnTNX36dLVr107Tpk1T06ZNlZGRoSNHjnh9ljxy5IjP9X7qqafc90ZERKhatWq68MILi/zLLF/Pva7vWW8b4548eVJ2u12vvfaaXnvttULnXd9Lgfh+BeBEOAsgZHXr1k3dunVTVlaWtmzZojfeeEPPPPOM2rRpU6ivkiRVq1ZNR44cKfS+670aNWooMTFR6enpstvtHgHtsWPHip3PBx98oOeff17jx4/Xrbfe6n6gefTRRwv9iXwglOTrKQ+uh8KjR4/q0ksvLfTZrsDYZDJ5bHQhOSsfztenTx/16dNHp06d0rfffqvXXntN48eP1+WXX66qVatKcm4aVlQYfuGFF/qca506dUr04F2cuLg4mUwmj00OJOcGEVu2bFGbNm0UHx+vTp06acKECUWO4fplQ2m/bwEAQPjIy8vT1q1b1b59e0VERLifZWbOnKn69esXur6owNEbs9msAQMGaMCAATp27Ji+/vprvfLKK3rkkUf03XfflWgMk8mkfv366c0339Rdd92l5ORkd59/X3wVVHhTrVo1paenKz8/3yPcdAXSJX1WjY+Pl8lk0tGjRwudO3LkiKpXr16qeZVGab6G4p57o6KiNGLECI0YMUJ//vmnvvzySy1atEhjx47VRx99pPj4eNWvX18zZ84sci5169b1OdcGDRoE5LnX9T17/Phxj2f9P//8U7///rtatmwpk8mk++67r8gCCtcvGYr7fvVViAPAk7n4SwAg+F544QX1799fDodDVqtVPXv21MSJEyXJvRvp+dWvHTt21A8//FBoN9n3339ftWvX1iWXXKJOnTopLy9PX3zxhfu8w+HQZ599Vuycdu7cqapVq2ro0KHuYPbMmTPauXOnx26ugVKSr6c8tGnTRlFRUfrwww893t+xY4f+/PNPtW/fXpKzIiE9PV05OTnua3bu3Olxz2OPPeb+c674+Hj93//9n0aOHKm8vDylpaWpQ4cOkqT09HS1atXK/b/jx49r7ty57t/sl7cqVaqoWbNm+vLLLz3e/+abb/Tggw8qLS1NnTp1UnJysvvB2PW/TZs26d1331VERESJvm8BAED4WrNmjY4cOaK77rpLkvO5yWKx6PDhwx7PB5GRkXr55Zf1xx9/lHjsO++8U88884wk51913XrrrRowYIBOnjyp06dPF7r+/GpPl1tvvVUnT57UCy+8oIYNG7r7mwaa67n673//u8f7rnZPl19+uaTCz+zni42NVcuWLfXxxx97BKCnTp3SV1995R6nPJT0a4iLi1NqaqrHNec+92ZnZ+uGG27Q8uXLJTkLDAYMGKCbbrrJ/QzYqVMnHTp0SAkJCR7fK999952WLl3q9b9noLVu3VoWi6XQc+/y5cs1ZswYxcbGqnnz5vrtt9885nnZZZdp/vz52rp1q6TSf78C8I7KWQAhqXPnzlqxYoUmTZqkvn37ymazaenSpapevbr7z2SqVq2qH374QZs3b1bz5s01ePBgvf/++7rvvvv08MMPq3r16tq4caO2bNmiZ599VmazWR07dlTXrl01efJkHT16VBdeeKHeffdd/fLLL8Vu1tS6dWu98847ev7559WzZ0+lpaVp2bJlOnr0qM8/QfJXSb6e8lC9enU9+OCDWrhwoSwWi3r27Kk//vhDc+fOVaNGjdSvXz9Jzv5Yb775piZPnqzbbrtNv/76q1asWOHxYNm5c2c9+eSTeuGFF9S9e3edPHlSCxYsUP369dW0aVNZLBb17dtXTzzxhA4ePKiWLVsqOTlZs2fPVt26dYusQCkvo0aN0ogRIzRmzBjdcsstOnr0qF5++WVde+21aty4se677z5t2rRJ9913n+6//37VqFFDf/vb37R27Vo9/vjj7q+3uO9bAAAQ+k6fPq0ff/xRkrPtQHp6ur799lutWbNGffv2dffrrFGjhoYOHaq5c+fq9OnTuuKKK3T48GHNnTtXJpNJTZs2LfFnduzYUcuXL1etWrXUrl07HT58WCtWrFCnTp1Us2bNQpWarr0MvvrqK1WrVs39WRdeeKGuvPJKffvttxo3blwAVqNo3bt31xVXXKEpU6bo8OHDatq0qbZt26bXXntN/fr1c++NULVqVR09elRff/21mjVrpjp16hQaa+zYsRoyZIgefPBB3X333bLZbFqyZIlyc3M9+rYa9TX07NlTr776ql599VW1adNGX3zxhbZs2eIeJyYmRi1atNCCBQtksVjUpEkTJScn67333tMNN9wgyRmav/XWWxo8eLCGDx+uCy64QP/617/02muvaeDAgUW25SoPNWvW1D333KOVK1cqKipKnTp10k8//aR33nlHEyZMkNlsdm/WO3bsWPXt21f5+flavny5fvrpJ40cOVJS8d+vAEqOcBZASLr66qs1c+ZMLV++XA8//LBMJpMuv/xyvfHGG+4/bRowYID+85//6IEHHtBzzz2nm2++We+8845mzZqlZ555RjabTU2bNtWiRYt0zTXXuMeePXu2nn/+ec2aNUt5eXm65pprdNddd2njxo0+59SvXz/98ccfWr9+vVatWqXExERdffXVuvvuu/XEE09o3759atiwYcDWoHbt2iX6esrDI488olq1aumtt97SmjVrVL16dd1444167LHH3D2sunbtqokTJ+rNN9/UJ5984n4gvfPOO93j3HnnnbLZbFq9erVWrVqlmJgYdenSRePHj3c/gD733HN69dVX3RsoJCQkqHfv3nrssceCVkEgOR+6X3nlFS1YsEAPPfSQatasqZtvvtm9sVhiYqJWr16tWbNmadq0acrJyVH9+vU1Y8YM98YSJfm+BQAAoW/Xrl264447JJ3ta9+4cWNNmzZNf/3rXz2ufeyxx1S7dm2tWrVKS5cuVbVq1dSlSxeNGTOmVDvXP/roo4qKitL69eu1cOFCxcfHq1evXho7dmyR11922WXq06eP3n77bf3zn//0+KunHj16aPPmzfrLX/7ix1dfMiaTSa+++qrmzZunlStX6vjx46pbt67GjBmjwYMHu6+79dZb9fXXX+uhhx7SqFGjiuzP26VLF61YsULz5s3TmDFjFBUVpQ4dOuiFF14o8YZc5fk1DBs2TMePH9eyZctks9nUo0cPzZgxw2OD46efflpz5szR8uXLdeTIESUkJOi2227To48+KslZIfz2229r1qxZeumll3Tq1ClddNFFGjt2rO6///5y+xqLMn78eCUkJGj16tVaunSp6tatqyeeeML9HH/VVVdp2bJlWrBggUaNGiWLxaIWLVpoxYoVatu2raTSf78C8M7kcG01CQCVwMGDB/Xjjz/qmmuu8dh1dtSoUTpw4IDee+89A2cHAAAAlN3QoUMVHR2thQsXGj0VAEAxqJwFUKmYzWZNmjRJ11xzjW677TZFRETon//8pz799FM999xzRk8PAAAA8NvChQuVnJysb7/9VqtWrTJ6OgCAEqByFkCls2XLFi1cuFC7d+9WXl6eGjZsqMGDB6tPnz5GTw0AAADwW//+/fX7779rxIgRQf9TeQCAfwhnAQAAAAAAAMAA5bPVNwAAAAAAAADAJ8JZAAAAAAAAADAA4SwAAAAAAAAAGCDS6AmEox9++EEOh0MWi8XoqQAAAFQYNptNJpNJ7dq1M3oqlQrPtgAAAIFX0mdbKmf94HA4VB77qDkcDuXm5pbL2OGOtfGN9fGN9fGOtfGN9fGN9fGOtfHN2/qU1zMWfOPZNvhYG99YH99YH99YH+9YG99YH99YH+/K+mxL5awfXFUFrVq1Cui4mZmZ2r17txo1aqTY2NiAjh3uWBvfWB/fWB/vWBvfWB/fWB/vWBvfvK3Pzz//bOCsKi+ebYOPtfGN9fGN9fGN9fGOtfGN9fGN9fGurM+2VM4CAAAAAAAAgAEIZwEAAAAAAADAAISzAAAAAAAAAGAAwlkAAAAAAAAAMADhLAAAAAAAAAAYgHAWAAAAAAAAAAxAOAsAAAAAAAAABiCcBQAAAAAAAAADEM4CAAAAAAAAgAEIZwEAAAAAAADAAISzAAAAAAAAAGAAwlkAAAAAAAAAMADhLAAAAAAAAAAYgHAWAAAAAAAAAAxAOAsAAAAAAAAABiCcBQAAAAAAAAADEM4CAAAAAAAAgAEIZwEAAAAAAADAAISzAAAAAAAAAGAAwlkAAAAAAAAAMADhLAAAAAAAAAAYgHAWAAAAQPg5tl3acIH0v1eMngkAAIDfCGcrEYfDEZJjAQAAAKX23xlSdqq0b5nRMwEAAPBbpNETQPCYTCb9KzVTJ3LzyzROtagIXZkUG6BZAQAAAKWUeVA6+KHzdcZPUn6OFBFt7JwAAAD8QDhbyZzIzVd6jt3oaQAAAAD+27dMchQUHNhtUsbPUkIHY+cEAADgB9oaAAAAAAgf9nxp31Ln6wir83h8u3HzAQAAKAPCWQAAAADh49DfpcwDUlRN6bKRzveO7TB2TgAAAH4inAUAAAAQPva+6jw2uFeq0835mspZAAAQpug5CwAAACA8ZB+R/vzI+brRg5Il3vn6xH+lvEwpkk1rAQBAeKFyFgAAAEB4yPxdctgl60VStaZS7EWS9QLne+k/GD07AACAUiOcBQAAABAectOdx6gaZ9+r2cF5pO8sAAAIQ4SzAAAAAMJDbobz6BHOdnQe6TsLAADCEOEsAAAAgPDgDmern30voaBy9jiVswAAIPwQzgIAAAAID662BpbqZ99zVc6e/EXKPRH0KQEAAJQF4SwAAACA8GDLcB7PbWsQU0uqUt/5+vjOYM8IAACgTAhnAQAAAISHotoaSFLN9s5jxr+DORsAAIAyI5wFAAAAEB5cbQ3OD2erNHAeMw8EdToAAABlRTgLAAAAIDy4K2dreL4fe7HzeOb3oE4HAACgrAhnAQAAAIQHV8/ZczcEk6Qq9ZxHKmcBAECYIZwFAAAAEB68tTVwVc4SzgIAgDBDOAsAAAAgPHhra+CqnM06JOXnBnVKAAAAZUE4CwAAACA8uNoanF85G11bMkdLckhZfwZ5UgAAAP4jnAUAAAAQ+vKznf+TCvecNZnOaW3ApmAAACB8EM4CAAAACH2ulgYms2SJL3y+SkE4e4a+swAAIHwQzgIAAAAIfa5w1lLNGdCeL7ag7yyVswAAIIwQzgIAAAAIfbnpzuP5m4G5uNsaUDkLAADCB+EsAAAAgNDn2gzs/H6zLrQ1AAAAYYhwFgAAAPDDq6++qkGDBnm8t3v3bg0cOFBt27ZVr1699MYbb3ict9vtmjdvnrp166a2bdvqgQce0IEDBwI+RoXkamsQVb3o87Q1AAAAYYhwFgAAACilt99+W3PmzPF4Lz09XYMHD1a9evW0fv16PfTQQ5o5c6bWr1/vvmbRokVatWqVpk+frtWrV8tut2vo0KHKzc0N2BgVFm0NAABABUQ4CwAAAJTQ4cOHNXz4cM2cOVP169f3OLd27VpZLBY9/fTTatiwofr376/77rtPS5YskSTl5uZq+fLlGjVqlHr06KGmTZtq9uzZSk1N1aeffhqwMSosV1sDb5WzrrYGuemS7XQwZgQAAFBmhLMAAABACf33v/+VxWLR+++/rzZt2nic27Fjhzp16qTIyEj3e507d1ZKSoqOHj2qPXv26MyZM+rSpYv7fNWqVdW8eXNt3749YGNUWK62Bt56zlqqSpZqztdUzwIAgDARWfwlAAAAACSpV69e6tWrV5HnUlNT1bhxY4/36tSpI0k6dOiQUlNTJUkXXHBBoWtc5wIxhj8cDocyMzP9vr8oWVlZHseyiso8okhJuaY45XmZa4y1rsy2E8pO/5/slksC8rnlIdBrU9GwPr6xPr6xPt6xNr6xPr6xPt55WxuHwyGTyVTs/YSzAAAAQABkZ2crKirK473o6GhJUk5OjvuBvahrTpw4EbAx/GGz2bR7926/7/clJSUlIONceuyAakhKPZalI17m2ii/uqpJSt23XceOXRSQzy1PgVqbior18Y318Y318Y618Y318Y318a6otTn/ma0ohLMAAABAAMTExBTalCsnJ0eSFBsbq5iYGEnOvrGu165rrFZrwMbwh8ViUaNGjfy+vyhZWVlKSUlR/fr1yzQ3l+jjdum0lHhxE9W6uFmR11hymklnvtNF1fNVp1nR14SCQK9NRcP6+Mb6+Mb6eMfa+Mb6+Mb6eOdtbfbu3Vui+wlnAQAAgABISkpSWlqax3uufycmJiovL8/9Xr169TyuadKkScDG8IfJZFJsbKzf9/titVoDM3b+SUlSdFyS5G28ag0kSRbbIVnK6esJpICtTQXF+vjG+vjG+njH2vjG+vjG+nh3/tqUpKWBxIZgAAAAQEB07NhRO3fuVH5+vvu9LVu2qEGDBkpISFDTpk0VFxenrVu3us+fPHlSu3btUseOHQM2RoXl2hAsqrr3a2Ivdh7PsCEYAAAID4SzAAAAQAD0799fp0+f1uTJk7V3715t2LBBK1eu1LBhwyQ5e44NHDhQM2fO1Oeff649e/Zo9OjRSkpK0vXXXx+wMSosW4bz6DOcLagmzvy9vGcDAAAQELQ1AAAAAAIgISFBS5cu1YwZM9SvXz/Vrl1bEyZMUL9+/dzXjBo1Snl5eZoyZYqys7PVsWNHLVu2TBaLJWBjVEgOxzmVszW8X1eloHI284DznhL+OSEAAIBRCGcBAAAAPzz//POF3mvdurXWrFnj9Z6IiAiNHz9e48eP93pNIMaocPJOS46CVg+W6t6vs14kySTlZ0s5x6SYWsGYHQAAgN9oawAAAAAgtLmqZs1RUkSM9+sioqWYOs7XWQfLfVoAAABlRTgLAAAAILTlpjuPUTWKb1UQXdt5zDlSvnMCAAAIAMJZAAAAAKGtJJuBucQUhLPZhLMAACD0Ec4CAAAACG2utga++s26UDkLAADCCOEsAAAAgNB2bluD4kRTOQsAAMIH4SwAAACA0OaqnC1NWwMqZwEAQBggnAUAAAAQ2lw9Z0vT1iA7rbxmAwAAEDCEswAAAABCW2naGlA5CwAAwgjhLAAAAIDQVpq2BmwIBgAAwgjhLAAAAIDQ5mprUJpwlg3BAABAGCCcBQAAABDa/GlrkHtcsueV35wAAAACgHAWAAAAQGhztTUoyYZgUQmSTM7XOcfKaUIAAACBQTgLAAAAILSVpuesOUKKrul8Td9ZAAAQ4gwPZ/Py8jR37lz17NlT7dq104ABA/Tjjz+6z+/evVsDBw5U27Zt1atXL73xxhse99vtds2bN0/dunVT27Zt9cADD+jAgQMe1xQ3BgAAAIAQln/GeYyMK9n1bAoGAADChOHh7OLFi7Vu3TpNnz5dGzduVIMGDTR06FClpaUpPT1dgwcPVr169bR+/Xo99NBDmjlzptavX+++f9GiRVq1apWmT5+u1atXy263a+jQocrNzZWkEo0BAAAAIITlZzuPETElu55NwQAAQJiINHoCn332mfr06aOrrrpKkjRp0iStW7dOP/74o5KTk2WxWPT0008rMjJSDRs21P79+7VkyRL1799fubm5Wr58ucaNG6cePXpIkmbPnq1u3brp008/VZ8+fbR27VqfYwAAAAAIcaUNZ2PqOI9UzgIAgBBneOVsQkKCvvzyS/3xxx/Kz8/XmjVrFBUVpaZNm2rHjh3q1KmTIiPPZsidO3dWSkqKjh49qj179ujMmTPq0qWL+3zVqlXVvHlzbd++XZKKHQMAAABACLPbJEe+83WEtWT3UDkLAADChOGVs5MnT9ajjz6qa665RhERETKbzZo/f77q1aun1NRUNW7c2OP6OnWcvwU/dOiQUlNTJUkXXHBBoWtc54obo1atWn7N2+FwKDMz0697vcnKyvI4BpLJZJLVapU93678/PwyjWUvuD0rK0sOhyMAsyteea5NRcD6+Mb6eMfa+Mb6+Mb6eMfa+OZtfRwOh0wmkxFTQihzVc1KpaicpecsAAAID4aHs3v37lV8fLwWLlyoxMRErVu3TuPGjdNbb72l7OxsRUVFeVwfHR0tScrJyXE/0Bd1zYkTJySp2DH8ZbPZtHv3br/v9yUlJSXgY1qtVjVv3lzZ2dnKzLKVaaxYh0VSNSUnJwf9h87yWJuKhPXxjfXxjrXxjfXxjfXxjrXxraj1Of+5DfAIZ83RJbuHDcEAAECYMDScPXTokMaOHauVK1eqQ4cOkqRWrVpp7969mj9/vmJiYtwbe7m4AtXY2FjFxDh/c56bm+t+7brGanX+yVNxY/jLYrGoUaNGft9flKysLKWkpKh+/fru+QeKqwolJiZGsSZLmcaKiY6QJDVo0CColbPltTYVAevjG+vjHWvjG+vjG+vjHWvjm7f12bt3r4GzQshyhbPmaKmkldXutgZp5TMnAACAADE0nP3pp59ks9nUqlUrj/fbtGmjb775RhdeeKHS0jwfqFz/TkxMVF5envu9evXqeVzTpEkTSVJSUpLPMfxlMpnKFO76YrVay21sc4RZERFlH0OSIT9slufaVASsj2+sj3esjW+sj2+sj3esjW/nrw8tDVCk0m4GJtHWAAAAhA1DNwRLSkqSJP3yyy8e7//666+qX7++OnbsqJ07d3r0SN2yZYsaNGighIQENW3aVHFxcdq6dav7/MmTJ7Vr1y517NhRkoodAwAAAEAIyy9oo1WacJYNwQAAQJgwNJxt3bq1Lr/8ck2cOFFbtmxRSkqK5syZo82bN+vBBx9U//79dfr0aU2ePFl79+7Vhg0btHLlSg0bNkySsyfZwIEDNXPmTH3++efas2ePRo8eraSkJF1//fWSVOwYAAAAAEKYu3K2FH+15aqczT0mOeyBnxMAAECAGNrWwGw2a/HixZozZ44ef/xxnThxQo0bN9bKlSvVpk0bSdLSpUs1Y8YM9evXT7Vr19aECRPUr18/9xijRo1SXl6epkyZouzsbHXs2FHLli2TxeLsq5qQkFDsGAAAAABClN2PtgbRtZxHh13KOS7F1Ar8vAAAAALA0HBWkqpVq6Ynn3xSTz75ZJHnW7durTVr1ni9PyIiQuPHj9f48eO9XlPcGAAAAABClD89Z80WyVJdsmU4+84SzgIAgBBlaFsDAAAAAPDJFc6aSxHOSmwKBgAAwgLhLAAAAIDQ5U/lrMSmYAAAICwQzgIAAAAIXflZzmNpw1kqZwEAQBggnAUAAAAQutyVs9bS3UflLAAACAOEswAAAABCV1nbGlA5CwAAQhjhLAAAAIDQZfcznKWtAQAACAOEswAAAABCFxuCAQCACoxwFgAAAEDocoWzZtoaAACAiodwFgAAAEDoys9yHv1ta5CdFtj5AAAABBDhLAAAAIDQ5W5rYC3dfdG1nMfcY5LDEdg5AQAABAjhLAAAAIDQ5avnrMPu/b7oBOfRbpPyzvj+DF/jAAAAlKNIoycAAAAAAF75CmdNZun39VLO0cLnHA7JFCk58qRf5p0Na88XXUuq1z9w8wUAACgFwlkAAAAAocvuI5yVnMFs1qGiz0XESHmnpTP7JXtu+cwPAACgDGhrAAAAACB0+aqcLU5EbMEYmYGbDwAAQAARzgIAAAAIXflZzqNf4WzBJmJ5WYGbDwAAQAARzgIAAAAIXe7KWWvp742kchYAAIQ2wlkAAAAAoatMbQ0KAt18KmcBAEBoIpwFAAAAELpc4ayZcBYAAFQ8hLMAAAAAQldZKmddbQ3oOQsAAEIU4SwAAACA0BWIDcHoOQsAAEIU4SwAAACA0EXPWQAAUIERzgIAAAAIXXZXOGst/b0RBW0NqJwFAAAhinAWAAAAQGiy50t2m/N1WSpn6TkLAABCFOEsAAAAgNBkzzn7uiwbgtmzJYc9MHMCAAAIIMJZAAAAAKHJ1W9WkszRpb//3FYI544FAAAQIghnAQAAAIQm10ZepkjJHFn6+03ms6EufWcBAEAIIpwFAAAAEJpc1a7+tDRwcW8KRt9ZAAAQeghnAQAAAIQmdzhr9X2dL5GuTcGonAUAAKGHcBYAAABAaLJTOQsAACo2wlkAAAAAoSkgbQ0KKmfpOQsAAEIQ4SwAAACA0BTIcDaPylkAABB6CGcBAAAAhCZXKwJzGcJZV89Z2hoAAIAQRDgLAAAAIDQFpHKWnrMAACB0Ec4CAAAACE3ucNbq/xj0nAUAACGMcBYAAABAaKJyFgAAVHCEswAAAABCUyDCWVfP2TwqZwEAQOghnAUAAAAQmuxUzgIAgIqNcBYAAABAaMorCFTLFM4WVM468iS7rexzAgAACCDCWQAAAAChyVU5ay5DOGuOkvvHHlobAACAEEM4CwAAACA0uXrOuvrG+sNkOns/rQ0AAECIIZwFAAAAEJryA1A5K9F3FgAAhCzCWQAAAAChKT8AG4JJZ/vO5tPWAAAAhBbCWQAAAAChKT8AG4JJVM4CAICQRTgLAAAAIDQFqnLW1XOWDcEAAECIIZwFAAAAEJoC3taAylkAABBaCGcBAAAAhCa7K5y1lm0c2hoAAIAQRTgLAAAAIDSxIRgAAKjgCGcBAAAAhCZXOGsua8/ZgsrZPCpnAQBAaCGcBQAAABCaXG0Iylw562prQOUsAAAILYSzAAAAAEJToNoauCtnCWcBAEBoIZwFAAAAEJoC1nO2IJy1Z0sOe9nGAgAACCDCWQAAACCA8vLyNHfuXPXs2VPt2rXTgAED9OOPP7rP7969WwMHDlTbtm3Vq1cvvfHGGx732+12zZs3T926dVPbtm31wAMP6MCBAx7XFDdGheEOZ61lG+fccDefvrMAACB0EM4CAAAAAbR48WKtW7dO06dP18aNG9WgQQMNHTpUaWlpSk9P1+DBg1WvXj2tX79eDz30kGbOnKn169e771+0aJFWrVql6dOna/Xq1bLb7Ro6dKhyc3MlqURjVBj2AFXOmsxnA15aGwAAgBASafQEAAAAgIrks88+U58+fXTVVVdJkiZNmqR169bpxx9/VHJysiwWi55++mlFRkaqYcOG2r9/v5YsWaL+/fsrNzdXy5cv17hx49SjRw9J0uzZs9WtWzd9+umn6tOnj9auXetzjArD4QhcWwPJ2dogP4tNwQAAQEihchYAAAAIoISEBH355Zf6448/lJ+frzVr1igqKkpNmzbVjh071KlTJ0VGnq2R6Ny5s1JSUnT06FHt2bNHZ86cUZcuXdznq1atqubNm2v79u2SVOwYFYY95+zrQISzrk3BCGcBAEAIoXIWAAAACKDJkyfr0Ucf1TXXXKOIiAiZzWbNnz9f9erVU2pqqho3buxxfZ06dSRJhw4dUmpqqiTpggsuKHSN61xxY9SqVavUc3Y4HMrMDGxomZWV5XEstdwMFcSpysyxSzbP+ZlMJlmtVtlseZLNVuxwEaYYmSXl5ZyS49zrI/NkKZinw+Hwb66lVOa1qeBYH99YH99YH+9YG99YH99YH++8rY3D4ZDJZCr2fsJZAAAAIID27t2r+Ph4LVy4UImJiVq3bp3GjRunt956S9nZ2YqKivK4Pjo6WpKUk5Pjfqgv6poTJ05IUrFj+MNms2n37t1+3VuclJQUv+6LzDuqNpIcMmn3nr3SeT/cWK1WNW/eXBkZ6bKdOlLseNXzTIqVlHnqqE7nnb3eEm9VbUnJyclB/4HT37WpLFgf31gf31gf71gb31gf31gf74pam/Of2YpCOAsAAAAEyKFDhzR27FitXLlSHTp0kCS1atVKe/fu1fz58xUTE+Pe2MvFFajGxsYqJsb55/u5ubnu165rrFbnhlbFjeEPi8WiRo0a+XWvN1lZWUpJSVH9+vXdcy8N05n90j5JEVY1a9688PmCsLZ69RpSdPGhqtleU8qRqkSbZa1V++wJaw1JUoMGDYJaOVuWtanoWB/fWB/fWB/vWBvfWB/fWB/vvK3N3r17S3Q/4SwAAAAQID/99JNsNptatWrl8X6bNm30zTff6MILL1RaWprHOde/ExMTlZeX536vXr16Htc0adJEkpSUlORzDH+YTCa/g93iWK1W/8a2OcNXU0SMz/stlkgpz1L8eFFVJEkRjmxFWM653hLpnmew+b02lQTr4xvr4xvr4x1r4xvr4xvr4935a1OSlgYSG4IBAAAAAZOUlCRJ+uWXXzze//XXX1W/fn117NhRO3fuVH5+vvvcli1b1KBBAyUkJKhp06aKi4vT1q1b3edPnjypXbt2qWPHjpJU7BgVhj3beQzEZmCSFMGGYAAAIPQQzgIAAAAB0rp1a11++eWaOHGitmzZopSUFM2ZM0ebN2/Wgw8+qP79++v06dOaPHmy9u7dqw0bNmjlypUaNmyYJGdfsoEDB2rmzJn6/PPPtWfPHo0ePVpJSUm6/vrrJanYMSqMvIJWBYEKZyNjPccFAAAIAbQ1AAAAAALEbDZr8eLFmjNnjh5//HGdOHFCjRs31sqVK9WmTRtJ0tKlSzVjxgz169dPtWvX1oQJE9SvXz/3GKNGjVJeXp6mTJmi7OxsdezYUcuWLZOl4E/xExISih2jQqByFgAAVAKEswAAAEAAVatWTU8++aSefPLJIs+3bt1aa9as8Xp/RESExo8fr/Hjx3u9prgxKoT8gnDWHOjKWcJZAAAQOmhrAAAAACD0uMLZyABt1OWqnLVnSw57YMYEAAAoI8JZAAAAAKEn0JWz57ZHyKfvLAAACA2EswAAAABCT36Ae86azFJEQRUurQ0AAECIIJwFAAAAEHpc1a2BCmclNgUDAAAhh3AWAAAAQOgJdOWsdLZylnAWAACECMJZAAAAAKHHXg7hbGRB5SxtDQAAQIggnAUAAAAQetyVs9bAjelua8CGYAAAIDQQzgIAAAAIPeXR1iCSDcEAAEBoIZwFAAAAEHpc1a1mNgQDAAAVF+EsAAAAgNBTLhuC0dYAAACEFsJZAAAAAKHHHc5GB25MNgQDAAAhhnAWAAAAQOix5ziPtDUAAAAVGOEsAAAAgNBjz3Uey6NylnAWAACECMJZAAAAAKEn31U5GxW4MSOsBWNnSw574MYFAADwE+EsAAAAgNDjqpwtj3BWYlMwAAAQEghnAQAAAISe8ghnTeazAS2bggEAgBBAOAsAAAAg9JRHz1npnNYGhLMAAMB4hLMAAAAAQk959JyVpAg2BQMAAKGDcBYAAABA6CmPtgaSFFkQzubRcxYAABiPcBYAAABA6HGHs4Fua0DlLAAACB2EswAAAABCj72grUFEoCtn2RAMAACEDsJZAAAAAKGnvNoaUDkLAABCCOEsAAAAgNCTX95tDeg5CwAAjEc4CwAAACD0uNoalNuGYFTOAgAA4xHOAgAAAAg9tDUAAACVAOEsAAAAgNBiz5cc+c7XEYFua1CwIRjhLAAACAGEswAAAABCi6tqViq/tgb52ZLDHtixAQAASolwFgAAAEBoKc9w1lU5K7EpGAAAMBzhLAAAAIDQUp7hrMksRcQ4X7MpGAAAMFhIhLMbN25U79691apVK9100036+OOP3ef++OMPDRs2TO3bt9dVV12lOXPmKD8/3+P+t99+W9dcc41at26tu+++W7t27fI4X5IxAAAAAIQIe47zaLZIJlPgx2dTMAAAECIMD2c3bdqkyZMna8CAAfroo4/Up08fjRkzRj/88INsNpuGDBkiSVq9erWmTZumd955RwsXLnTf/9577+nFF1/Uo48+qg0bNqhu3boaPHiwjh8/LkklGgMAAABACHFVzga6ataFcBYAAISISCM/3OFwaO7cubrnnns0YMAASdKIESO0Y8cObdu2TQcPHtSff/6ptWvXqlq1amrcuLGOHTumF198UcOHD1dUVJReeeUVDRw4UH379pUkPfvss7r22mu1bt06DRs2TJ988kmxYwAAAAAIIfnlHM66NgXLo+csAAAwlqGVs8nJyTp48KBuvvlmj/eXLVumYcOGaceOHWrRooWqVavmPte5c2edPn1au3fv1rFjx5SSkqIuXbq4z0dGRqpDhw7avn27JBU7BgAAAIAQ466cjS6f8amcBQAAIcLQytnk5GRJUmZmpoYMGaJdu3apbt26GjFihHr16qXU1FQlJSV53FOnTh1J0qFDhxQZ6Zz+BRdcUOiaPXv2SFKxY7Rp08avuTscDmVmBvZhLisry+MYSCaTSVarVfZ8e5n77doLbs/KypLD4QjA7IpXnmtTEbA+vrE+3rE2vrE+vrE+3rE2vnlbH4fDIVN59BdF+HH3nC2vylmr88iGYAAAwGCGhrOnT5+WJE2cOFEPP/ywxo0bp08++UQjR47UihUrlJ2drapVq3rcEx3t/O15Tk6O+4H+/NYE0dHRyslxPtAVN4a/bDZbuVXepqSkBHxMq9Wq5s2bKzs7W5lZtjKNFeuwSKqm5OTkoP/QWR5rU5GwPr6xPt6xNr6xPr6xPt6xNr4VtT60nIKkIPac5RcoAADAWIaGsxaLRZI0ZMgQ9evXT5LUrFkz7dq1SytWrFBMTIxyc3M97nEFqrGxsYqJiZGkIq+xWp2/DS9ujLLMvVGjRn7fX5SsrCylpKSofv367vkHiqsKJSYmRrEmS5nGiomOkCQ1aNAgqJWz5bU2FQHr4xvr4x1r4xvr4xvr4x1r45u39dm7d6+Bs0JIcYWzEbQ1AAAAFZuh4WxiYqIkqXHjxh7vN2rUSF999ZU6deqkX3/91eNcWlqa+15XO4O0tDQ1bNjQ4xrX2ElJST7H8JfJZCpTuOuL1Wott7HNEWZFRJR9DEmG/LBZnmtTEbA+vrE+3rE2vrE+vrE+3rE2vp2/PrQ0gFt+ebc1cG0IRjgLAACMZeiGYC1atFCVKlX0008/ebz/66+/ql69eurYsaN27drlbn8gSVu2bFGVKlXUtGlTJSQkqEGDBtq6dav7fF5ennbs2KGOHTtKUrFjAAAAAAgx5d7WoKDIgMpZAABgMEPD2ZiYGA0dOlQLFy7Uhx9+qN9//12LFy/Wd999p8GDB+vaa69V7dq19dhjj2nPnj367LPP9PLLL+v+++939yO7//77tWLFCr333nvau3ev/t//+3/Kzs7WbbfdJkklGgMAAABACKGtAQAAqCQMbWsgSSNHjpTVatXs2bN1+PBhNWzYUPPnz9cVV1whSVq6dKmeeuop3X777apWrZruvvtujRw50n3/7bffrlOnTmnOnDnKyMhQy5YttWLFCtWsWVOSc/Ov4sYAAAAAEEKC1dYgP1ty5JfPZwAAAJSA4eGsJA0ePFiDBw8u8twll1yi5cuX+7x/yJAhGjJkiNfzJRkjlDkcDnqwAQAAoPIIVlsDib6zAADAUCERzsI3k8mkf6Vm6kSu/7/VvzA2Um1qsVs0AAAAwoA7nC2ntgYmsxQR46yczTtd/PUAAADlhHA2TJzIzVd6jt3v+6ta/L8XAAAACCp7Obc1kJx9ZwlnAQCAwQzdEAwAAAAACinvtgbS2U3B8s6U32cAAAAUg3AWAAAAQGhxhbMR5dTWQDq7KRiVswAAwECEswAAAABCS36Q2hpIhLMAAMBQhLMAAAAAQktQ2hoUbJZLWwMAAGAgwlkAAAAAoSUY4SxtDQAAQAggnAUAAAAQWoLRc9bV1sBGOAsAAIxDOAsAAAAgtASj52wkbQ0AAIDxCGcBAAAAhJag9JylrQEAADAe4SwAAACA0OIOZ4PQ1oBwFgAAGIhwFgAAAEBosRe0NYgIwoZg+ZmSPa/8PgcAAMAHwlkAAAAAoSU/GG0NrGdf56aX3+cAAAD4QDgLAAAAILQEo62BySyZY5yvc46W3+cAAAD4QDgLAAAAILS42hqUZ+WsJEUWVM/mHi/fzwEAAPCCcBYAAABAaLEHoa2BdLa1Qc6x8v0cAAAALwhnAQAAAIQWVzgbUY5tDSQpomBTMCpnAQCAQQhnAQAAAISW/CC1NaByFgAAGIxwFgAAAEBoCXZbAypnAQCAQQhnAQAAAIQWdzhbzm0NIqmcBQAAxiKcBQAAABBa7AVtDSJoawAAACo2wlkAAAAAoSVobQ3YEAwAABjLr3D2ww8/VG5ubqDnAgAAAABSfpB7zlI5CwAADOJXODthwgR17dpV06ZN07///e9AzwkAAABAZRasnrNsCAYAAAzmVzj7xRdf6P7779eWLVt0xx13qHfv3lq2bJmOHDkS6PkBAAAAqEwcjrM9Z6mcBQAAFZxf4WxSUpJGjBihv//973r77bfVoUMHvfbaa+rZs6eGDx+uTz/9VHl5eYGeKwAAAICKznHOzxHlvSFYZEHP2fxMKT+7fD8LAACgCJFlHaB9+/Zq3769/vrXv+rFF1/UV199pa+++kq1atXSvffeq/vvv18RERGBmCsAAACAis5+zt4W5d3WwBwtySTJIeUcl2IvLN/PAwAAOE+ZwtmDBw9q06ZN2rRpk37//XfVq1dPY8aMUY8ePfTVV19p4cKF2rt3r1544YVAzRcAAABARZafc/Z1ebc1MJmkyCpS3mln31nCWQAAEGR+hbPr1q3Tpk2b9P333ys6Olo33nijZsyYoQ4dOrivady4sdLT07V69WrCWQAAAAAl466cNUmmIPwFniucpe8sAAAwgF/h7BNPPKE2bdpo2rRp6t27t+Li4oq8rkmTJrrjjjvKNEEAAAAAlYgrnI2Idla2lreIKs5j7vHy/ywAAIDz+BXOfvjhh2rUqJHy8/Pd/WSzs7Nls9kUHx/vvu6WW24JyCQBAAAAVBKutgbl3dLAJbIgnKVyFgAAGMDsz03169fXk08+qdtvv9393vfff68uXbrohRdekN1uD9gEAQAAAFQirsrZYIezuYSzAAAg+PwKZ+fNm6f3339fffr0cb/XvHlzjRs3TmvXrtXSpUsDNkEAAAAAlYg7nI0Ozue5K2dpawAAAILPr3D2gw8+0MSJEzV48GD3e9WrV9d9992n0aNH69133w3YBAEAAICyOHz4sNFTQGnYDWprQOUsAAAwgF/hbHp6ui6++OIiz1166aVKTU0t06QAAACAQOnZs6eGDh2qv/3tb8rNzTV6OiiOe0OwYPecpXIWAAAEn1/h7KWXXqpPPvmkyHNffPGFLrnkkjJNCgAAAAiU5557Tna7XePGjdNVV12lp556Sj///HO5fd7GjRvVu3dvtWrVSjfddJM+/vhj97k//vhDw4YNU/v27XXVVVdpzpw5ys/P97j/7bff1jXXXKPWrVvr7rvv1q5duzzOl2SMsBbstgYRVM4CAADjRPpz0z333KNJkyYpIyND1157rRISEnT8+HF9+eWX+vjjj/Xcc88Fep4AAACAX/7yl7/oL3/5iw4fPqz33ntPmzZt0jvvvKNGjRrp1ltvVd++fVWrVq2AfNamTZs0efJk/b//9//UrVs3ffTRRxozZoySkpLUsmVLDRkyRPXr19fq1av1+++/a/LkyTKbzRo1apQk6b333tOLL76o6dOnq3nz5lqyZIkGDx6sjz/+WDVr1pTNZit2jLCXb1BbAypnAQCAAfwKZ2+55RadOXNGixYt0qeffup+v0aNGnriiSd0yy23BGp+AAAAQEAkJiZq+PDhGj58uP773//q+eef10svvaSXX37Z3fqgTZs2fo/vcDg0d+5c3XPPPRowYIAkacSIEdqxY4e2bdumgwcP6s8//9TatWtVrVo1NW7cWMeOHdOLL76o4cOHKyoqSq+88ooGDhyovn37SpKeffZZXXvttVq3bp2GDRumTz75pNgxwp67cpaeswAAoOLzK5yVpAEDBujuu+9WcnKyMjIyVLVqVV166aUym/3qlAAAAACUux07dmjTpk36xz/+oZMnT6pr167q0aOHvvrqK911112aMGGC7rvvPr/GTk5O1sGDB3XzzTd7vL9s2TJJ0rRp09SiRQtVq1bNfa5z5846ffq0du/erbp16yolJUVdunRxn4+MjFSHDh20fft2DRs2TDt27PA5RlnC5ZDh7jkbpLYG51bOOhySyRSczwUAAFAZwllJMplMuvTSSwM1FwAAACDg9u/fr02bNun999/XwYMHddFFF2nQoEG69dZbdcEFF0iSBg4cqHHjxmnx4sVlCmclKTMzU0OGDNGuXbtUt25djRgxQr169VJqaqqSkpI87qlTp44k6dChQ4qMdD6au+Z07jV79uyRpGLHqFDhbLArZ+05Un7m2X8DAAAEgV/h7PHjxzVjxgx99dVXysrKksPh8DhvMpkKbVwAAAAAGOGGG25QdHS0rr32Wk2fPt2jMvVcl156qVJSUvz+nNOnT0uSJk6cqIcffljjxo3TJ598opEjR2rFihXKzs5W1apVPe6JjnZWh+bk5CgrK0uSCrUmiI6OVk6Osw9rcWP4y+FwKDMz0+/7i+L6elzHkorIOqVoSXmOCOX6mJPJZJLVapXNlifZbP5PNCJCFrNFstuUlXFQjti6/o9VQv6uTWXB+vjG+vjG+njH2vjG+vjG+njnbW0cDodMJfiLHL/C2aefflpffvmlbrrpJiUlJdHKAAAAACHriSeeUN++fRUfH+/zupEjR2rkyJF+f47FYpEkDRkyRP369ZMkNWvWTLt27dKKFSsUExOj3Nxcj3tcgWpsbKxiYmIkqchrrFarJBU7hr9sNpt2797t9/2+lDbwrp3+u+pJOnU6W7/5mJPValXz5s2VkZEu26kjfs/PEm9V7agEKTtVyb/sUFbMKb/HKq2y/DKgMmB9fGN9fGN9vGNtfGN9fGN9vCtqbUqyH4Bf4ew333yj//f//p/uuOMOf24HAAAAguaTTz5R586diwxn9+zZo/Hjx+uDDz4o8+ckJiZKkho3buzxfqNGjfTVV1+pU6dO+vXXXz3OpaWlue91tTNIS0tTw4YNPa5xjZ2UlORzDH9ZLBY1atTI7/uLkpWVpZSUFNWvX98dLpdE5N6aUpoUX72WmjVr5vU6VyVK9eo1pOgyVPFYa0jpNaXsVF1at5rstb1/ZqD4uzaVBevjG+vjG+vjHWvjG+vjG+vjnbe12bt3b4nu9yuctVgsuvjii/25FQAAACh3O3bscLfe2rZtm7Zv367jx48Xuu7LL7/UgQMHAvKZLVq0UJUqVfTTTz+pQ4cO7vd//fVX1atXTx07dtTGjRt1+vRpxcXFSZK2bNmiKlWqqGnTpoqKilKDBg20detWd+uFvLw87dixQ3fffbckFTuGv0wmU5kqb32xWq2lGzvS+d8tMipWkSW4z2KJlPIs/k5PskRKUQmSpBhTplRO61CUUq9NJcP6+Mb6+Mb6eMfa+Mb6+Mb6eHf+2pSkpYHkZzh73XXX6cMPP9SVV17pz+0AAABAuVq3bp02bdokk8kkk8mkp556qtA1rvC2T58+AfnMmJgYDR06VAsXLlRiYqJat26tjz76SN99951Wrlyptm3bas6cOXrsscc0btw4/fHHH3r55Zd1//33u//k7f7779eMGTN0ySWXqFWrVlqyZImys7N12223SZKuvfbaYscIe/lB3hBMkqJrOo85x4L3mQAAAPIznG3evLnmzJmjAwcOqE2bNu7+WC4mk0kPPfRQQCYIAAAAlNaUKVPUv39/ORwO3XvvvZo6dWqhP9s3m82qWrWqLrvssoB97siRI2W1WjV79mwdPnxYDRs21Pz583XFFVdIkpYuXaqnnnpKt99+u6pVq6a7777bo8/t7bffrlOnTmnOnDnKyMhQy5YttWLFCtWs6QwPo6Ojix0j5DnsksnHnhV2VzgbHZz5SO7KWeUWrq4GAAAoT35vCCZJ27dv1/bt2wudJ5wFAACAkeLj49WpUydJ0htvvOFuORAMgwcP1uDBg4s8d8kll2j58uU+7x8yZIiGDBni9XxJxghpJrP0+3op52jR549tdR5P7Jb+96r3ceIaSRdcE5g5UTkLAAAM4lc4u2fPnkDPAwAAAAiYjRs36uqrr1aNGjX0559/6s8///R5/S233BKcicEp56iUdajoc7aTzmN+tvdrJCm6VuDmQ+UsAAAwiF/h7LlOnTqltLQ0XXzxxYqIiFBEREQg5gUAAAD4bdKkSVq7dq1q1KihSZMm+bzWZDIRzoYSR77zaA7izxVUzgIAAIP4Hc5u3bpVM2fO1H/+8x+ZTCatW7dOr732mpKSkop9AAYAAADK0+eff67atWu7XyOM2POcR1MQw1kqZwEAgEF8dOL3bvPmzRoyZIhiYmI0btw49063TZs21RtvvKEVK1YEdJIAAABAaVx00UWKiopyvz7/f4mJiapSpYr73wghDrvzGMxwNrognKVyFgAABJlf4eycOXN0zTXX6M0339S9997rDmeHDx+uoUOHat26dQGdJAAAAOCvvLw8LViwQB988IEk51+Ade3aVV26dNG9996rEydOGDxDeHC1NTCVuQNbybnDWS+blAEAAJQTv8LZ3bt3q3///pKcPbrO1bVrVx08eLDsMwMAAAACYN68eVq8eLFOnnRuNPXMM8+oevXqevzxx/X7779r1qxZBs8QHhwGtDVwbS6We/xs5S4AAEAQ+BXOxsfH68iRI0WeO3TokOLj48s0KQAAACBQPvroI40ZM0YDBgzQvn379L///U8jRozQPffco9GjR+uLL74weoo4l7ty1oBw1mGXctOD97kAAKDS8yucveaaazR79mz9/PPP7vdMJpNSU1P1yiuvqEePHoGaHwAAAFAmaWlpatOmjSTpq6++ktlsVvfu3SVJSUlJOnXqlJHTw/mMCGfNFslSzfk6u+giFAAAgPLgVzg7duxYJSQk6Pbbb3cHsWPGjNGNN94ok8mkMWPGBHKOAAAAgN/q1KmjP/74Q5L0xRdfqFmzZqpZs6Yk6YcfflBSUpKR08P5jAhnJSm6tvNI31kAABBEfnXZr1atmtatW6eNGzdqy5YtysjIUHx8vAYNGqRbb71VVqs10PMEAAAA/NKnTx8999xz+uCDD7Rz505NnTpVkjRjxgy98847Gj58uMEzhAfDwtla0um9Ug6VswAAIHj83gI1KipKt99+u26//fZAzgcAAAAIqMcee0yxsbHavn27xo4dq7vvvluS9PPPP+v+++/XiBEjDJ4hPBgVzsZQOQsAAILPr3B248aNxV5zyy23+DM0AAAAEFAmk0nDhg3TsGHDPN5fvXq1QTOCT+5w1u86Ev+4NgWjchYAAASRX088kyZNKvJ9k8mkiIgIRUREEM4CAAAgZJw6dUpbtmxRZmamHA5HofM8u4YQR57zaDao52w2lbMAACB4/ApnP//880LvZWZmaseOHXrttde0cOHCMk8MAAAACIR//vOfGjVqlLKysoo8bzKZCGdDiZE9ZyUqZwEAQFD5Fc5edNFFRb5/2WWXyWazafr06Vq1alWZJgYAAAAEwqxZs3TppZfq8ccfV2Jiosxms9FTgi/0nAUAAJVIwBs5NWnSRLNmzQr0sAAAAIBf9u3bp0WLFqlDhw5GTwUlYadyFgAAVB4BLRvIzc3Vu+++q4SEhEAOCwAAAPjtwgsv1OnTp42eBkrKsLYGVM4CAIDg86tytlevXjKZTB7v2e12paenKycnRxMnTgzI5AAAAICyGjZsmBYuXKhWrVqpbt26Rk8HxXGHswH/Iz/fXJWz2VTOAgCA4PHriadTp06FwllJiouLU8+ePXXllVeWeWIAAABAIHzwwQc6fPiwrrvuOtWsWVMxMTEe500mkz777DODZgcPDocku/O1UT1n8zOlvEwpMja4nw8AAColv8LZ559/PtDzAAAAAMpFUlKSkpKSjJ4GSsJVNSsFP5yNjJfMFsluc7Y2iKwX3M8HAACVkl/h7J9//lmq6y+88EJ/PgYAAAAos+eee87oKaCkjAxnTSZn39msP53hbBXCWQAAUP4C1nPWl927d/vzMQAAAEDA7Nu3T999953S0tI0aNAgHThwQE2bNlVcXJzRU4OLI+/s62CHs5Kz72zWn/SdBQAAQeNXODtnzhw9+eSTatGihfr27avExESlp6friy++0Mcff6wRI0booosuCvRcAQAAgFKz2+2aOnWq1q9fL4fDIZPJpP/7v//TokWL9Pvvv+utt96i7UGocFfOmp2VrMEWXdB3Nudo8D8bAABUSn6Fs5s2bVLPnj0L9Z7t3bu3EhIS9P333+vhhx8OyAQBAACAsli0aJE++OADPfPMM+rRo4e6du0qSRo/frweeughzZ49Wy+88ILBs4Sks+Gs2YCqWclZOStJOVTOAgCA4DD7c9PmzZvVp0+fIs91795dO3fuLNOkAAAAgEBZv369Ro0apf79+6t69eru95s1a6ZRo0bpu+++M25y8OQKZ41oaSBJMVTOAgCA4PIrnK1Ro4Z++umnIs9t3rxZiYmJZZoUAAAAEChHjx5Vs2bNijyXmJiokydPBnlG8MrocJbKWQAAEGR+tTW47bbbtHjxYmVlZalXr16qWbOmjh49qr///e9655139MQTTwR6ngAAAIBfLrnkEn399de68sorC53btm2bLrnkEgNmhSIZHs5SOQsAAILLr3B25MiROnXqlFauXKlly5ZJkhwOh6xWq0aPHq0777wzoJMEAAAA/HXvvfdq6tSpstls6tmzp0wmk/bv36+tW7dq+fLlmjRpktFThIs7nPXrx5Syc1XOZlM5CwAAgsOvpx6TyaRJkyZp5MiR+vHHH3XixAnVqFFDbdu2VVxcXKDnCAAAAPjtr3/9q44fP67Fixdr1apVkqQxY8bIYrFo6NChuuuuuwyeIdzsec4jPWcBAEAlUaZfScfFxalOnTqSpLZt2yovLy8gkwIAAAAC6YEHHtDNN9+sbdu2KTIyUvHx8WrTpo3HBmEIAYa3NaDnLAAACC6/w9lNmzZp1qxZOnLkiEwmk9atW6f58+fLYrFo1qxZioqKCuQ8AQAAgFL78MMPtXr1av3000/uQoKYmBi1b99ed911l6699lqDZwgPhoezBZWzuccle75kNmgeAACg0jD7c9Pf/vY3TZw4UZ07d9bLL78su90uSbruuuv09ddfa9GiRQGdJAAAAFAa+fn5euyxxzRu3DgdOHBAN910k4YMGaL7779fvXr10q+//qpHHnmEfrOhxvBwNqFgHnYpN92YOQAAgErFr8rZV155RXfeeaemTZum/Px89/v9+/fX8ePHtXbtWj322GOBmiMAAABQKqtWrdKnn36qyZMna+DAgTKZTB7n8/PztXr1aj377LPq0KGDbrvtNoNmCg9Gh7Nmi2SpLtkynH1nY2oZMw8AAFBp+FU5m5ycrOuuu67Ic23atNHhw4fLNCkAAACgLDZu3Kg777xTgwYNKhTMSlJERIQGDBig22+/Xe+9954BM0SR3OFsmbbGKBv3pmD0nQUAAOXPr3A2ISFB+/btK/Lcvn37lJCQUKZJAQAAAGWRnJys7t27F3tdt27d9OuvvwZhRigRR8EGw0ZVzkrnbAp21Lg5AACASsOvcLZ3796aN2+e/v73vys3N1eSZDKZ9J///EeLFi3SjTfeGNBJAgAAAKWRlZWlatWqFXtdjRo1dObMmSDMCCXiqpw1ciOuaCpnAQBA8Pj190KPPfaYfv31Vz322GMym5357qBBg5SZmakOHTro0UcfDegkAQAAgNJwOByKiCg+4DObzXI4HEGYEUrE7qqcNbCtAZWzAAAgiPx66omKitLSpUv13XffacuWLcrIyFB8fLw6deqkq6++usi+XgAAAADgk9Ebgklne85mUzkLAADKn1/h7JAhQzR06FB17dpVXbt2DfScAAAAgDKbNm2a4uLifF5z+vTpIM0GJRISPWdd4WyacXMAAACVhl/h7Pfff091LAAAAEJWx44dJanYlgVVqlRRhw4dgjEllIS7ctbAtgYxSc5jdqpxcwAAAJWGX0893bp10/vvv6/LL79cFosl0HMCAAAAyuTNN980egrwRyhUzloLwtmsQ8bNAQAAVBp+hbPR0dF6//339fHHH6thw4aKjY31OG8ymfT6668HZIIAAAAAKgl7QeWs2chw9gLnkXAWAAAEgV/hbGpqqtq1a+f+9/l/LsaOtwAAAABKLRTaGrjCWVuGlJ8tRcQYNxcAAFDhlfip59NPP1Xnzp1VtWpV/kwMAAAAQOCFQlsDS3XJHC3Zc6SsVCmuvnFzAQAAFZ65pBc++uijSklJ8Xjvtdde07FjxwI9JwAAAACVUShUzppMtDYAAABBU+Jw9vxWBfn5+Xr55ZeVmhq4XUyTk5PVrl07bdiwwf3e7t27NXDgQLVt21a9evXSG2+84XGP3W7XvHnz1K1bN7Vt21YPPPCADhw44HFNcWMAAAAACAHucNbAylnpbDibTTgLAADKV4nD2aIEsreszWbTuHHjlJmZ6X4vPT1dgwcPVr169bR+/Xo99NBDmjlzptavX+++ZtGiRVq1apWmT5+u1atXy263a+jQocrNzS3xGCidmAhTwP7b058YAAAAbvaCtgZmAytnJSkmyXmkchYAAJQzg596zpo/f77i4uI83lu7dq0sFouefvppRUZGqmHDhtq/f7+WLFmi/v37Kzc3V8uXL9e4cePUo0cPSdLs2bPVrVs3ffrpp+rTp0+xY6D0oswmmUwm/Ss1Uydy8/0ep1pUhK5Mig3gzAAAABDWQq1ylnAWAACUszJVzgbK9u3btWbNGj3//PMe7+/YsUOdOnVSZOTZDLlz585KSUnR0aNHtWfPHp05c0ZdunRxn69ataqaN2+u7du3l2gM+O9Ebr7Sc+x+/68swS4AAAAqIPeGYAbXkLjbGgSuhRsAAEBRyhzOmkymMt1/8uRJTZgwQVOmTNEFF1zgcS41NVVJSUke79WpU0eSdOjQIXe/2/Pvq1OnjvtccWMAAAAACBFUzgIAgEqmVL+SfuihhxQVFeXx3vDhw2WxWDzeM5lM+uyzz0o05rRp09SuXTvdfPPNhc5lZ2cX+rzo6GhJUk5OjrKysiSpyGtOnDhRojH85XA4PPrjBoLr63EdJedaWq1W2fPtys/3v9LUbnfm8A572cYJ5Fj2gluzsrKK7T1b1NrgLNbHN9bHO9bGN9bHN9bHO9bGN2/r43A4yvyLf4S5UKmcjSGcBQAAwVHip55+/foF/MM3btyoHTt26IMPPijyfExMjHtjLxdXoBobG6uYmBhJUm5urvu16xqr1VqiMfxls9m0e/duv+/3JSUlxf3aarWqefPmys7OVmaWze8xc6Od65Gdk6vMTP9D6UCOFeuwSKqm5OTkEv/weu7aoDDWxzfWxzvWxjfWxzfWxzvWxrei1uf8X6qjknH99t5M5SwAAKgcShzOPvfccwH/8PXr1+vYsWPuzbxcnnzySf3tb39TUlKS0tLSPM65/p2YmKi8vDz3e/Xq1fO4pkmTJpJU7Bj+slgsatSokd/3FyUrK0spKSmqX7++O1x2VY/ExMQo1mTxdbtPUVHOe2OioxTrKNvDbqDGiol23tugQYMSVc6evzY4i/XxjfXxjrXxjfXxjfXxjrXxzdv67N2718BZISSESuWstaAtWk6aMzA2OiwGAAAVlqFPPTNnzlR2drbHe9dff71GjRqlvn37atOmTVq9erXy8/MVEeF8INqyZYsaNGighIQExcfHKy4uTlu3bnWHsydPntSuXbs0cOBASVLHjh19juEvk8lUpspbX6xWa6GxzRFmRZThmdBsdrYiMJnLNk4gxzJHOMcpzQ+tRa0NzmJ9fGN9vGNtfGN9fGN9vGNtfDt/fWhpgJDpORtdRzKZJYfdGdBaLyj+HgAAAD+UeUOwskhMTNQll1zi8T9JSkhIUGJiovr376/Tp09r8uTJ2rt3rzZs2KCVK1dq2LBhkpx/9jZw4EDNnDlTn3/+ufbs2aPRo0crKSlJ119/vSQVOwYAAACAEBEqlbPmCGdAK0lZqcbOBQAAVGgGP/X4lpCQoKVLl2rGjBnq16+fateurQkTJnj0vx01apTy8vI0ZcoUZWdnq2PHjlq2bJl7k7KSjAEAAAAgBIRK5azkrJbNTi3oO9vO6NkAAIAKKuTC2V9++cXj361bt9aaNWu8Xh8REaHx48dr/PjxXq8pbgwAAAAABnM4zoazodDj1XqBlP6DlM2mYAAAoPwY2tYAAAAAACSdDWYl49saSGf7zGYRzgIAgPJDOAsAAADAeB7hbAhUzsYQzgIAgPJHOAsAAADAeK7NwKQQqZxNch4JZwEAQDkinAUAAABgPHflrFkymQydiiTaGgAAgKAgnAUAAABgvFDaDEw629YgO9XYeQAAgAqNcBYAAACA8ewFbQ1CoaWB5Fk563AYOxcAAFBhEc4CAAAAMJ6rcjYUNgOTzvactedItgxDpwIAACouwlkAAAAAxnOEWOVsRIwUVcP5mr6zAACgnBDOAgAAADBeqFXOSlJMQfUs4SwAACgnhLMAAAAAjOeqnDWHSOWs5Nl3FgAAoBwQzgIAAAAwnj0EK2djL3YeM/8wdh4AAKDCIpwFAAAAYLxQ6zkrSVXqOY+Zvxs7DwAAUGERzgIAAAAwXij2nI0tCGfPEM4CAIDyQTgLAAAAwHhUzgIAgEqIcBYAAACA8aicBQAAlRDhLAAAAADj2QsqZ80hFM5WKdgQzHZCyj1h7FwAAECFRDgLAAAAwHjuytkQamsQWUWKTnC+zjxg7FwAAECFRDgLAAAAwHjunrMhVDkr0doAAACUK8JZAAAAAMYLxZ6z0jmbgu03dh4AAKBCIpwFAAAAYDx35WwItTWQqJwFAADlinAWAAAAKAfJyclq166dNmzY4H5v9+7dGjhwoNq2batevXrpjTfe8LjHbrdr3rx56tatm9q2basHHnhABw549jotboyw5aqcDaUNwaSzlbOEswAAoBwQzgIAAAABZrPZNG7cOGVmZrrfS09P1+DBg1WvXj2tX79eDz30kGbOnKn169e7r1m0aJFWrVql6dOna/Xq1bLb7Ro6dKhyc3NLPEbYshu0IVhknOSwez/vqpzNLEE462scAACAIoTY3wwBAAAA4W/+/PmKi4vzeG/t2rWyWCx6+umnFRkZqYYNG2r//v1asmSJ+vfvr9zcXC1fvlzjxo1Tjx49JEmzZ89Wt27d9Omnn6pPnz7FjhHWjOo5GxEjmczS7+ulnKOFz5/+zXk8sUv636vex4muJdUL8/8GAAAg6KicBQAAAAJo+/btWrNmjZ5//nmP93fs2KFOnTopMvJsfUTnzp2VkpKio0ePas+ePTpz5oy6dOniPl+1alU1b95c27dvL9EYYc3onrM5R6WsQ4X/Zy+YV266lHmw6GuyDhUd7AIAABSDylkAAAAgQE6ePKkJEyZoypQpuuCCCzzOpaamqnHjxh7v1alTR5J06NAhpaamSlKh++rUqeM+V9wYtWrV8mveDofDowVDIGRlZXkcJclkMslqtcpmy5NsNo/rI/JtMkvKt0v2884VKS9PFkm2vMJjlUpx4ziiFSmzTLLLlpUuWaoWPU6kc5ysrCw5HA6fH1nU2uAs1sc31sc31sc71sY31sc31sc7b2vjcDhkMpmKvZ9wFgAAAAiQadOmqV27drr55psLncvOzlZUVJTHe9HR0ZKknJwc9wN9UdecOHGiRGP4y2azaffu3X7f70tKSor7tdVqVfPmzZWRkS7bqSMe19XMyVSMpJNnspSV73muKNbIU6oh6fSpU8pKL/76soxTx1xFkfZTOnF0v3ItSUVeY4m3qracG8GV9AfXc9cGhbE+vrE+vrE+3rE2vrE+vrE+3hW1Nuc/txWFcBYAAAAIgI0bN2rHjh364IMPijwfExPj3tjLxRWoxsbGKiYmRpKUm5vrfu26xmq1lmgMf1ksFjVq1Mjv+4uSlZWllJQU1a9f3z1/V/VI9eo1pGjPADMiK0KySfFVqyuuau3iPyA+XpIUFx+vuIgSXF+GccyZNaSsU6pexSyHt7lZa0iSGjRoUKLK2fPXBmexPr6xPr6xPt6xNr6xPr6xPt55W5u9e/eW6H7CWQAAACAA1q9fr2PHjrk383J58skn9be//U1JSUlKS0vzOOf6d2JiovLy8tzv1atXz+OaJk2aSFKxY/jLZDKVKdz1xWq1FhrbYomU8iznXWmXJEVGRkuW888VoaDvriUysmTXl2Wc6OpS1u+KtJ/2fo3FOU5pfmAtam1wFuvjG+vjG+vjHWvjG+vjG+vj3flrU5KWBhLhLAAAABAQM2fOVHZ2tsd7119/vUaNGqW+fftq06ZNWr16tfLz8xURESFJ2rJlixo0aKCEhATFx8crLi5OW7dudYezJ0+e1K5duzRw4EBJUseOHX2OEdYc+c6jKcLYeRTFUs15tJ0wdh4AAKDCMRs9AQAAAKAiSExM1CWXXOLxP0lKSEhQYmKi+vfvr9OnT2vy5Mnau3evNmzYoJUrV2rYsGGSnD3JBg4cqJkzZ+rzzz/Xnj17NHr0aCUlJen666+XpGLHCGsOZ+WwTCFYP+IOZ08aOw8AAFDhhOCTDwAAAFDxJCQkaOnSpZoxY4b69eun2rVra8KECerXr5/7mlGjRikvL09TpkxRdna2OnbsqGXLlslS8Kf0JRkjbFE5CwAAKiHCWQAAAKCc/PLLLx7/bt26tdasWeP1+oiICI0fP17jx4/3ek1xY4Qte0HlrDmEw9lcwlkAABBYtDUAAAAAYDx35WwI1o9YqjqP9mwpP8fYuQAAgAqFcBYAAACA8dw9Z0OwcjYiWoqwOl/bMgydCgAAqFgIZwEAAAAYL5QrZyUpqobzmJth6DQAAEDFQjgLAAAAwHihXDkrSZbqzmNuuqHTAAAAFQvhLAAAAABjORySw+58bQ71ylnCWQAAEDiEswAAAACM5WppIIVu5awrnLURzgIAgMAhnAUAAABgLI9wlspZAABQeRDOAgAAADCWq9+sFPqVs7kZzjYMAAAAAUA4CwAAAMBYrspZk1kymYydizeWqpJMziA577TRswEAABUE4SwAAAAAY9kLKmdDtaWB5KzotVRzvqa1AQAACBDCWQAAAADGclfOhmhLAxf6zgIAgAAjnAUAAABgLEcYVM5KhLMAACDgCGcBAAAAGCtsKmerO482wlkAABAYhLMAAAAAjOWqnDWHS+VshqHTAAAAFQfhLAAAAABj2cOkctZCWwMAABBYhLMAAAAAjOXuORvi4ayrcjbvlGS3GTsXAABQIRDOAgAAADCWu+dsiLc1iLBK5mjna1obAACAACCcBQAAAGCscKmcNZnOVs+yKRgAAAgAwlkAAAAAxgqXylnpnE3BCGcBAEDZEc4CAAAAMJa9oHLWHOKVs5IUVd15JJwFAAABQDgLAAAAwFjhVDlrcVXOZhg6DQAAUDEQzgIAAAAwljucDYfKWdoaAACAwCGcBQAAAGCscNkQTPIMZx0OY+cCAADCHuEsAAAAAGOFVVuDas6jwyblZxo7FwAAEPYIZwEAAAAYyxFGG4KZIyVLVedrWhsAAIAyIpwFAAAAYCx7GFXOSudsCkY4CwAAyoZwFgAAAICxwqnnrMSmYAAAIGAIZwEAAAAYK5x6zkqEswAAIGAIZwEAAAAYyx3OUjkLAAAqF8JZAAAAAMYK17YGNsJZAABQNoSzAAAAAIzl2hDMHC5tDao7j7aTkj3P0KkAAIDwRjgLAAAAwFjhVjkbUUUyWZyvbSeMnQsAAAhrhLMAAAAAjBVuG4KZTPSdBQAAAUE4CwAAAMBY4VY5KxHOAgCAgCCcBQAAAGCscKuclc7pO0s4CwAA/Ec4CwAAAMBYrk21zOFYOZth6DQAAEB4I5wFAAAAYKywrJylrQEAACg7wlkAAAAAxnKHs2FUOWs5J5x1OIydCwAACFuEswAAAACM5d4QLJwqZ6s7j/YcKT/L0KkAAIDwRTgLAAAAwFjhWDlrtkiRcc7XtDYAAAB+IpwFAAAAYCxX5aw5jCpnpbN9Z22EswAAwD+EswAAAACM43BIDrvzdThVzkpsCgYAAMqMcBYAAACAcVwtDaTw6jkreW4KBgAA4AfCWQAAAADGcbU0kKicBQAAlQ7hLAAAAADjeFTOhlk4G13Tecw9buw8AABA2CKcBQAAAGAce0HlrMksmUzGzqW0ogrCWdtJyW4zdi4AACAsEc4CAAAAMI6rcjbc+s1KUkSsZI5yvs45auxcAABAWCKcBQAAAGAcR0HFqdli7Dz8YTKdrZ7NOWLsXAAAQFginAUAAABgHFc7AFMYhrPS2XA2m3AWAACUHuEsAAAAAOPYc53HcKyclaSoGs4jlbMAAMAPhLMAAAAAjOOqnHX1bg03tDUAAABlQDgLAAAAwDjh3HNWOls5S1sDAADgB8JZAAAAAMaxh3s4W1A5m3tUsucZOxcAABB2CGcBAAAAGCfcNwSzVJVMEZLDLmUeMHo2AAAgzBDOAgAAADBOuFfOmkxnWxuc2mvsXAAAQNghnAUAAABgHHuu8xiu4ax0trXB6X3GzgMAAIQdwlkAAAAAxgn3DcEkKmcBAIDfCGcBAAAAGCfce85KVM4CAAC/Ec4CAAAAMI6752yUsfMoC1c4S+UsAAAoJcJZAAAAAMYJ9w3BpLNtDU7vkxwOY+cCAADCiuHhbEZGhqZOnaru3burffv2uuuuu7Rjxw73+c2bN+vWW29VmzZtdOONN+qjjz7yuD8nJ0dPPfWUunTponbt2mns2LE6fvy4xzXFjQEAAADAIBWh56yluiSzlJ8lZR0yejYAACCMGB7OjhkzRj/88INefvllrV+/Xs2aNdOQIUP022+/ad++fRo2bJi6deumDRs26K9//asmTJigzZs3u++fNm2avv32W82fP1+vv/66fvvtN40aNcp9viRjAAAAADBIRaicNUdI0fSdBQAApRdp5Ifv379f3333nVatWqXLL79ckvTEE0/on//8pz744AMdO3ZMTZo00ejRoyVJDRs21K5du7R06VJ16dJFhw8f1saNG/XKK6+oQ4cOkqSXX35ZN954o3744Qe1a9dOr7/+us8xAAAAABioImwIJknRtaWco9Kp/0l1uhk9GwAAECYMrZytUaOGlixZolatWrnfM5lMMplMOnnypHbs2FEoQO3cubN27twph8OhnTt3ut9zadCggRITE7V9+3ZJKnYMAAAAAAaqCJWzkhRTx3k8+Yux8wAAAGHF0HC2atWquvrqqxUVdXZn1k8++UT79+9Xt27dlJqaqqSkJI976tSpo6ysLKWnp+vw4cOqUaOGoqOjC12TmpoqScWOAQAAAMBA9lzn0Rzl+7pQF1PwM8cpwlkAAFByhrY1ON/333+vxx9/XNdff7169Oih7Oxsj+BWkvvfubm5ysrKKnRekqKjo5WTkyNJxY7hL4fDoczMTL/vL0pWVpbHUXJWElutVtnz7crPz/d7bLvdmcM77GUbJ5Bj2QtuzcrKKraKuai1wVmsj2+sj3esjW+sj2+sj3esjW/e1sfhcMhkMhkxJRipImwIJkkxic4jlbMAAKAUQiac/eyzzzRu3Di1b99eM2fOlOQMWc8PUF3/tlqtiomJKTJgzcnJkdVqLdEY/rLZbNq9e7ff9/uSkpLifm21WtW8eXNlZ2crM8vm95i50c6vNTsnV5mZOWWaX6DGinVYJFVTcnJyiX94PXdtUBjr4xvr4x1r4xvr4xvr4x1r41tR61PUL95RwVWUnrOucPb0PsmeJ5lD5kctAAAQwkLiieGtt97SjBkzdOONN+qFF15wP5RfcMEFSktL87g2LS1NsbGxio+PV1JSkjIyMpSbm+vxIJ+WlqbExMQSjeEvi8WiRo0a+X1/UbKyspSSkqL69eu7g2NX9UhMTIxiy/DAGhXlvDcmOkqxjogyzTNQY8VEO+9t0KBBiSpnz18bnMX6+Mb6eMfa+Mb6+Mb6eMfa+OZtffbu3WvgrGAIh6Pi9JyNqiFFWKX8LOlMihQf2J8VAABAxWR4OLtq1SpNnz5dgwYN0uTJkz3+lK1Dhw7atm2bx/VbtmxR+/btZTabdfnll8tut2vnzp3uTb+Sk5N1+PBhdezYsURj+MtkMik2Ntbv+32xWq2FxjZHmBVRhkzV9bWazGUbJ5BjmSOc45Tmh9ai1gZnsT6+sT7esTa+sT6+sT7esTa+nb8+tDSohBz5kgp+SR/u4azJLMVfJmX829nagHAWAACUgKEbgiUnJ+vZZ5/Vddddp2HDhuno0aM6cuSIjhw5olOnTmnQoEH697//rZkzZ2rfvn1avny5/v73v2vo0KGSpMTERN10002aMmWKtm7dqn//+98aM2aMOnXqpLZt20pSsWMAAAAAMIjjnLZd4R7OSlLVJs4jfWcBAEAJGVo5+8knn8hms+kf//iH/vGPf3ic69evn55//nktWrRIL730kl5//XXVrVtXL730krtKVpKmT5+uZ599Vg8//LAkqXv37poyZYr7/GWXXVbsGAAAAAAM4O43a5ZMZfzzrlAQXxDOniKcBQAAJWNoODt8+HANHz7c5zXdu3dX9+7dvZ6PjY3VM888o2eeecbvMQAAAAAYoKJsBuZC5SwAACglQ9saAAAAAKjE3JuBRfm+LlzEN3YeCWcBAEAJEc4CAAAAMIY913msCP1mpbOVs9mpku2ksXMBAABhgXAWAAAAgDFcG4JVlHA2qpoUk+h8ffJXY+cCAADCAuEsAAAAAGNUtJ6zEn1nAQBAqRDOAgAAAAGSkZGhqVOnqnv37mrfvr3uuusu7dixw31+8+bNuvXWW9WmTRvdeOON+uijjzzuz8nJ0VNPPaUuXbqoXbt2Gjt2rI4fP+5xTXFjhBV7BauclaT4gnD2FOEsAAAoHuEsAAAAECBjxozRDz/8oJdfflnr169Xs2bNNGTIEP3222/at2+fhg0bpm7dumnDhg3661//qgkTJmjz5s3u+6dNm6Zvv/1W8+fP1+uvv67ffvtNo0aNcp8vyRhhpSKGs1TOAgCAUog0egIAAABARbB//3599913WrVqlS6//HJJ0hNPPKF//vOf+uCDD3Ts2DE1adJEo0ePliQ1bNhQu3bt0tKlS9WlSxcdPnxYGzdu1CuvvKIOHTpIkl5++WXdeOON+uGHH9SuXTu9/vrrPscIO+4NwaKMnUcgEc4CAIBSoHIWAAAACIAaNWpoyZIlatWqlfs9k8kkk8mkkydPaseOHYUC1M6dO2vnzp1yOBzauXOn+z2XBg0aKDExUdu3b5ekYscIO64NwUwVqGbE3dbgV8lhN3YuAAAg5BHOAgAAAAFQtWpVXX311YqKOlsF+sknn2j//v3q1q2bUlNTlZSU5HFPnTp1lJWVpfT0dB0+fFg1atRQdHR0oWtSU1Mlqdgxwk5FbGsQ18D59eRnSWd+N3o2AAAgxFWgX1EDAAAAoeP777/X448/ruuvv149evRQdna2R3Aryf3v3NxcZWVlFTovSdHR0crJyZGkYsfwl8PhUGZmpt/3FyUrK8vjKDkria1Wq2y2PMlmkzkvRxGS8hUpu81Wug/Iy5NFki3POZbfAjVOpHOcrBybouMay3zyv8pO2ym7uU6hS4taG5zF+vjG+vjG+njH2vjG+vjG+njnbW0cDodMJlOx9xPOAgAAAAH22Wefady4cWrfvr1mzpwpyRmynh+guv5ttVoVExNTZMCak5Mjq9VaojH8ZbPZtHv3br/v9yUlJcX92mq1qnnz5srISJft1BFVyzypKpLOZOXq9NEjpRrXGnlKNSSdPnVKWemlu7c8xrHEW1VbUnJyshIdFytB/9WxvV8qNb2+13vOXRsUxvr4xvr4xvp4x9r4xvr4xvp4V9TaFPWL9/MRzgIAAAAB9NZbb2nGjBm68cYb9cILL7gfyi+44AKlpaV5XJuWlqbY2FjFx8crKSlJGRkZys3N9XiQT0tLU2JiYonG8JfFYlGjRo38vr8oWVlZSklJUf369d3Bsat6pHr1GlJ0liJskVKOVCWumqw1a5fuAwq+3rj4eMVFlPLe8hjHWkOSs09wRG5nadfflRiTphrNmhW6tKi1wVmsj2+sj2+sj3esjW+sj2+sj3fe1mbv3r0lup9wFgAAAAiQVatWafr06Ro0aJAmT57s8adsHTp00LZt2zyu37Jli9q3by+z2azLL79cdrtdO3fudG/6lZycrMOHD6tjx44lGsNfJpNJsbGxft/vi9VqLTS2xRIp5Vkk5UuSIiJjFGEpZd/ZSOePMpbISKm095bHOBbnOFarVap9uXPoU7sV6WNdi1obnMX6+Mb6+Mb6eMfa+Mb6+Mb6eHf+2pSkpYHEhmAAAABAQCQnJ+vZZ5/Vddddp2HDhuno0aM6cuSIjhw5olOnTmnQoEH697//rZkzZ2rfvn1avny5/v73v2vo0KGSpMTERN10002aMmWKtm7dqn//+98aM2aMOnXqpLZt20pSsWOEnYq4IZgkVW/lPJ7cI+X73wsYAABUfFTOAgAAAAHwySefyGaz6R//+If+8Y9/eJzr16+fnn/+eS1atEgvvfSSXn/9ddWtW1cvvfSSu0pWkqZPn65nn31WDz/8sCSpe/fumjJlivv8ZZddVuwYYaWihrOx9SRLVcl2Ujr1y9mwFgAA4DyEswAAAEAADB8+XMOHD/d5Tffu3dW9e3ev52NjY/XMM8/omWee8XuMsGIvqCo1F79ZRlgxmaRqLaWj/5Iy/kM4CwAAvKKtAQAAAABjOAoqZ00VrHJWOhvIZvxs7DwAAEBII5wFAAAAYIyK2tZAIpwFAAAlQjgLAAAAwBiVIZw9QTgLAAC8I5wFAAAAYIyKHM5Wa+k8ntnv3BgMAACgCISzAAAAAILP4Tjbc7aibQgmSdE1JeuFztcZ/zF2LgAAIGQRzgIAAAAIPkfe2dcVcUMwib6zAACgWISzAAAAAILP1dJAksyRxs2jPBHOAgCAYhDOAgAAAAg+VzhripRMFfTHkmpsCgYAAHyroE9BAAAAAEKaPdd5rIibgbnUaO08pv/k7LELAABwHsJZAAAAAMHn2gysovablaRqLSRztGQ7IZ3eZ/RsAABACCKcBQAAABB8rrYGFbly1myRqhdUzx7faexcAABASCKcBQAAABB8lSGclaSalzuPhLMAAKAIhLMAAAAAgo9wFgAAgHAW4cFkMslqtcpkMhk9FQAAAASCq+esOcrYeZQ3dzj7PZuCAQCAQghnYZiYCJMcJXxAtVqtat68uaxWa5HnSzoOAAAAQoQ913msyBuCSQWbgkVJtgzp9G9GzwYAAISYSKMngMorymySyWTSv1IzdSI33+e19ny7srOzFRMTI3OE5+8UqkVF6Mqk2PKcKgAAAAKtsrQ1iIhybgp2fIeztUF8Q6NnBAAAQgjhLAx3Ijdf6Tl2n9fk5+crM8umWJNFERFBmhgAAADKT2UJZyVnawNXOHvJ7UbPBgAAhBDaGgAAAAAIvkoVznZwHo/vMHYeAAAg5BDOAgAAAAg+R2UKZ9kUDAAAFI1wFgAAAEDwVZYNwSQ2BQMAAF4RzgIAAAAIPnue81gZKmddm4JJzr6zAAAABQhnAQAAAASfu+dslLHzCBZ3awPCWQAAcBbhLAAAAIDgc7U1qAyVs5KU0NF5PLbN2HkAAICQQjgLAAAAIPhcG4JVhp6zkpTQ2Xk8vl0mR76sVqtMJpOxcwIAAIaLNHoCAAAAACohd1uDChLORsZJDrtk8lL/Uq2ZZKkq2U7Kmvubmjdv430sX+MAAIAKhXAWAAAAQPBVtHA2IsYZqP6+Xso5WvQ11gsl20nl//y8jke2UPXqNWSxnPcjWXQtqV7/8p8vAAAICYSzAAAAAILP3XO2gm0IlnNUyjpU9Lno2pL2yHRyl2yWeCk6S8qrIOE0AADwC38rAwAAACC4HA4pP9P5OsJq7FyCKbauJMmUfdDgiQAAgFBBOAsAAAAguOw5kiPf+Toy1ti5BJO1IJzNPSaTPcfgyQAAgFBAOAsAAAAguPJOO4+mSMlUif6sPzJWiqopSYrKSzN4MgAAIBQQzgIAAAAIrrwzzmNErGQyGTuXYCuonrUQzgIAABHOAgAAAAg2V+VsZWpp4BJ7kSQqZwEAgBPhLAAAAIDgshWEsxGVMZx1Vs5G5R1xbowGAAAqNcJZAAAAAMFVmStnYxLlMEXK7MiRbMeNng0AADAY4SwAAACA4HKFsxFWY+dhBFOEHDFJzpeZBwyeDAAAMBrhLAAAAIDgqsyVs5IcsfUlSebMFEPnAQAAjEc4CwAAACC48ipxz1mdDWdNmcn0nQUAoJIjnAUAAAAQXJW9ctZ6keyyyJSfJWUfNno6AADAQISzAAAAAIIr74zzWEkrZ2WKUK7F2XdWp/cZOxcAAGAowlkAAAAAwWWr3G0NJCnHUtf54kyysRMBAACGIpwFAAAAEDwOR6VvayBJOZYLnS/O7JfsecZOBgAAGIZwFgAAAEDw2E5IsjtfV+LK2byIGnJExEmOPCnzgNHTAQAABiGcBQAAABA8OUedR3OUZI40di5GMpnkqFLf+Zq+swAAVFqEswAAAACCxxXOVuKqWRd7bAPni9O/GTsRAABgGMJZAAAAAMHjCmcrcb9ZF3flbPYhyXbK0LkAAABjEM4CAAAACB4qZ8+KjJdiL3a+Tv/B2LkAAABDEM4CAAAACB7CWU81Lnce07+XHHZj5wIAAIKOcBYAAABA8LjbGliNnUeoqNZcioiRbCfYGAwAgEqIcBYAAABA8FA568lskaq3cb4+/r2xcwEAAEFHOAsAAAAgeNgQrDBXa4NTv0i5GYZOBQAABBfhLAAAAIDgoXK2sJjaUmw9SQ7p6HdGzwYAAAQR4SwAAACA4KFytmg1C6pnU7+QslKNnQsAAAgawlkAAAAAwUPlbNGqtZBikqT8M9K2YZLDYfSMAABAEBDOAgAAAAgOe76Uc9z5mspZT6YIqe4tzuPB96XkN42eEQAACALCWQAAAADBkZsuqaAiNMJq6FRCUkyidOHNztc7R0lnfjd2PgAAoNwRzgIAAAAIDndLA6uzQhSFXXCdlNBJsp2QPrlCOvQPo2cEAADKEeEswl5MhEmOAPXkCtQ4AAAAKIJ7M7A4Y+cRykwRUtfVUrXmUnaq9OX10s4x0vHvJXve/2/vzqOjKvM/j39uJansrEKC7LIvAYIEBAURp5kWQh9pR21/EZUhShMa3KDRRgUUW6YJRAjIMofleBRFxYnaiKLTdCtIs7QYpwnIlkZASAQkARKy3vnjkpCQSghQ5Kkk79c59yS5VfXU915j1Ydvnnqu6eoAAICX+ZsuALhebpcly7L0zYkcZeUXXfM4Dd1+GhTJ2mcAAAA3DM3Z6glrL/33HdK3z0gHlkk/JDmbf6jU9Dap2e3O1nyI5BdkuloAAHAdaM6izsjKL9IvecWmywAAAEBlaM5Wn3+I1H+pdPMIaf9S6eQ3zlIHGf/X2SQpKFLq/kep43gusAYAQC1FcxYAAABAzShtzoaaraM2afUbZ7OLpazd0s9bpJ83Sxl/k3KPO7Nr0/6X1He+1O6/TFcLAACuEmvOAgAAAKgZzJy9Mv8wpxF7OcslNYqSOv1eGvSW9Jv/SP3/txTaTrqQIX0TJ235Lyn/l0uP8TQOAADwKcycBQAAAFAzinKdrwENzNbhy/yCnEbsj+suNbOr0nWqdOIz6dh66fA70k+fSR3ipZsGSG3uu/H1AgCA60JzFgAAAEDN6JQgWX5SSGup8Lzpanxb3kln2YLqaNxXCmwuHf0/Uv5pae88qfVvnc2ybmydAADgurCsAQAAAICa0aiH1G8hM2dvhJBWUocnpIY9JBVLRz6QNv8PKT/LdGUAAKAKNGcBAAAAoC7wC5Ra3Se1uMeZoXzkQ+mzftIvqaYrAwAAlaA5CwAAAAB1hWVJTftLXadIIW2kcwekjbdJB1eZrgwAAHhAcxYAAAAA6pqw9tI93zqzaIsuSNv+p/TPcVJhrunKAABAGTRngYuC/CzZtu2Vsbw1DgAAAHDNAptKQ/8q9ZotWS7p0EpnFm3WHtOVAQCAi/xNFwD4CrfLkmVZ+uZEjrLyi655nIZuPw2KDPFiZQAAAMA1slxSz+nSTQOlbx6SznwvbegjRc2Uuk2VXPyTEAAAk3gnBi6TlV+kX/KKTZcBAAAAXDv/MMkudpqzkhQ5TPr1LmlbvHR8g5T6J+nH96WoGVLLUZfuV5myYwEAAK+hOQsAAAAAdY1fkNNM/XGdlHfy0v6Wv5GCIqQf35N+2SV9da/zc7PBUlgHKaR1xdm0gTdJbe6r0fIBAKgvaM4CAAAAQF2Vd1LKPV5+X2hbqdME6eQ/pdM7pQsZ0pEPnNssf2fWrcvtNHj9w5zm7fnDUtN+UuO+UkBYzR8HAAB1FM1ZAAAAAKhv/MOkyP/mzJg985107qCUc1QqypUKzpS/b3aalLnJ+d5ySQ17SE37O1vkcCmsXQ0XDwBA3UFzFgAAAADqK79AqekAZ7NtKf8XqShHKs6Tii5Iheec+/mHSKe2Ow3cM//P2Q6ucG5r2l9q84DU5n4ptI25YwEAoBaiOQt4WZCfJdu2ZVmWV8bz5lgAAABApSxLCmwiqUn5/cEtpE7jne9zfnKatKe2Sz9vdraSn3dNkZre5jRp29wvhbau8UMAAKC2oTkLeJnbZcmyLH1zIkdZ+UXXNVZDt58GRYZ4qTIAAADgGviHSXaxs6RByM1SyL1S63ud23JPSEc+dC4wlvmVdOqfzrbrWemmgVLEMOciYyGtnNm3spz1bN2NJHdj52JjrgBzxwYAgGE0Z4EbJCu/SL/kFZsuAwAAALg+fkFOY/bHdc4Fxi5n+UltH5JajJB++dbZzh6QTm51tqq43M5Fxm4aKLX4lbOGLQAA9Ui9ac4WFxdr0aJFev/993X27FnFxMTopZdeUuvWfNQGtZ9lWQoODmb5AwAA6gmyLYzIOynlHq/6Pg26OlvBWSl7j5T3s1SQ7fwsSe6GUnG+lH/GWd+2OP/SbNsfkqTglgpoHSd3wSBJ3W70EQEAYFy9ac6+8cYbWrNmjebMmaPIyEjNnTtX8fHx+uSTT+R2u02XB3hU3fVrg4OD1b179yrvw9q1AADUHWRb+LyAcOdCYWWVXbtWcpZKOJfuzK79ebP04/tS7jEF7PuLoiQVnR0idYqXWtwjBd1U8Tls27lA2S/fSWdSpaw9Uu5P0oXjUmGOsxyDf5gUFCGFtpXC2kmh7ZzvQ1pJfsHOzF1XoOTyu3HnAgCAKtSL5mx+fr5WrlypKVOmaOjQoZKkpKQkDR48WBs3blRsbKzZAoFKVHf92uKiYl24cEFBQUFy+bkq3N4syF+3NgvySk00eQEAMItsi1qr7Nq1kvM1vIOztX9YunWBdPQj6dBK6fhG+Z38Sjr5lXPfRr2kxtHOEgqynabumVRn9q03WK6LTVq35BdYpmnrLr/P3VgKu6X8Ftpe8g/2Th0l7GLn2IryJLtQkn2p2Wzb3n0uAIBR9aI5u3fvXp0/f14DBw4s3degQQN1795dO3bsIMDC511p/dqioiLl5BYoxAqQn4c/+jcIKPbKRcpqa5OXZR8AAHUJ2Ra11pXWrr2oIGKUsv16qlHhXvll7XJmw5753tkuZ/lLDbtJjXpLjaKcGbHBLZwmZuE5ZzmF3OPS+cPS+f9c3A5fXJ6hTJPTLpaKcp2t4BqOzT9McjeRAhpcbD5bkmVJcjlf/cOdi5+V3QLCpeI8Z5Zv3ikp50iZ7aiz5IMHwZa/+ljBch0Ol9zhl5q2JVtAme9LZgVbl21yed5f4TZ/50Ju/mGSf2j5r37BF4/xMsWFUuH5S1vReangnFSU45wbK+Bi0/vyr5fvC3Ce3/Lz/DwAUEdYtl33/+y2ceNGTZo0SampqQoKutRYevLJJ3XhwgUtW7bsqsb79ttvZdu2AgK8e1VR27ZVWFgof3//ck0ky7J0ochW8XX8p/K3LLn9rn8cb451teNU1swzVc+NHudqx6qq2entY8svtq/rD/YuSwpw+WbAqgcvieXYtq2ioiL5+fnRvPaA81M1zk/lODdVqyzzFBQUyLIs9e3b12B1vq8uZFsVnpfsa/+DsSSnceMXfP1jGRjHtqViu1guy1Wx5+Rrx2Wgpgrnxy6WigskXZysYLmccWz7UiP0qtlO48/PLRXmlqnHdja75PvLvtrFzn3LbTfyIsDWpcPzuZxa0oAue/6Lb1CdVpkGbZmvVtmfL7Htkrtfflt1a7vW92770nN4/B26eL4qqfvaaqrOOJeO+9K5qY4rna/K/l/xVJd12e5rOceeHuPNnGXLLh3xWn93apurOy6zn6T11n8DS3ZAI+ePTF5yvdm2Xsyczc3NlaQK628FBgYqKyvrqscrOdHe/oW0LKvSNcKC/C5/07s23hrHm2MxTs2N5a1x3D7aWPWG+tZEsSxLLlfFpTDg4PxUjfNTOc5N1SrLPJZl1bvX4WtRF7Kt/EO990TeGqsGx7EkXXGFU187Lm+OdYVxqnV+vMk/pCafDTWAd5LKcW6qxvmpWl05P94+juvNtvWiOVsyoyA/P7/c7IK8vDwFB1/92kDR0dFeqw0AAAC4GmRbAACAuqNeTOlo0aKFJCkzM7Pc/szMTEVERJgoCQAAALgmZFsAAIC6o140Z7t27aqwsDBt27atdF92drbS0tIUExNjsDIAAADg6pBtAQAA6o56sayB2+3Www8/rMTERDVp0kQtW7bU3LlzFRkZqeHDh5suDwAAAKg2si0AAEDdUS+as5I0efJkFRYW6oUXXtCFCxcUExOjFStWeP2qtAAAAMCNRrYFAACoGyzbtm3TRQAAAAAAAABAfVMv1pwFAAAAAAAAAF9DcxYAAAAAAAAADKA5CwAAAAAAAAAG0JwFAAAAAAAAAANozgIAAAAAAACAATRnAQAAAAAAAMAAmrM+oLi4WAsXLtTgwYPVp08fPf744zpy5IjpsnzSsmXLNGbMGNNl+IwzZ87opZde0pAhQ9S3b1899NBD2rlzp+myfMapU6c0depU3XbbbYqOjtYTTzyhgwcPmi7L56Snpys6Oloffvih6VJ8RkZGhrp06VJh4xxdkpKSohEjRigqKkojR47Uhg0bTJfkE7Zt2+bxd6dLly66++67TZdnXGFhoRYsWKC77rpL0dHRiouL03fffWe6LHgZ2bb6yLblkW2rRratPvJtReTbqpFtPSPbXpk38i3NWR/wxhtvaM2aNXrllVf07rvvqri4WPHx8crPzzddmk95++239frrr5suw6c888wz2rVrl+bPn69169apW7duGjdunA4dOmS6NJ8wceJEHT58WMuXL9cHH3ygoKAgPfbYY8rNzTVdms8oKCjQlClTlJOTY7oUn7J3714FBgbq66+/1ubNm0u3ESNGmC7NJ3z00UeaPn264uLitH79esXGxpa+HtV30dHR5X5nNm/erEWLFsmyLCUkJJguz7glS5bo/fff1yuvvKKUlBS1b99e8fHxyszMNF0avIhsWz1k24rItlUj21YP+dYz8m3lyLaVI9temTfyLc1Zw/Lz87Vy5UpNnjxZQ4cOVdeuXZWUlKQTJ05o48aNpsvzCRkZGfr973+vxMREtWvXznQ5PuPw4cPasmWLZs6cqX79+ql9+/Z68cUX1bx5c33yySemyzMuKytLLVu21OzZs9WrVy916NBBCQkJyszM1P79+02X5zOSk5MVFhZmugyfs2/fPrVr107NmzdXs2bNSregoCDTpRln27YWLFigRx55RHFxcWrTpo0mTJigQYMGafv27abLM87tdpf7nQkNDdVrr72m0aNH67777jNdnnFffvmlYmNjdccdd6ht27Z67rnndPbsWWbP1iFk2ysj23pGtq0a2bb6yLeekW89I9tWjWx7Zd7ItzRnDdu7d6/Onz+vgQMHlu5r0KCBunfvrh07dhiszHfs3r1bAQEB+vjjj9W7d2/T5fiMxo0ba/ny5YqKiirdZ1mWLMtSdna2wcp8Q8OGDTVv3jx17txZknT69GmtXr1akZGR6tixo+HqfMOOHTu0du1azZkzx3QpPueHH35Qhw4dTJfhk9LT03Xs2DGNGjWq3P4VK1Zo/PjxhqryXUuXLlVubq6mTZtmuhSf0LRpU23atElHjx5VUVGR1q5dK7fbra5du5ouDV5Ctr0ysq1nZNuqkW2rh3xbOfKtZ2Tbq0O2rcgb+db/BtaHajhx4oQkqUWLFuX2N2/evPS2+m7YsGEaNmyY6TJ8ToMGDXTnnXeW2/f555/r8OHD+tOf/mSoKt/04osv6r333pPb7daSJUsUEhJiuiTjsrOz9cc//lEvvPBChdcfODMLGjdurLi4OKWnp6tt27aaMGGChgwZYro049LT0yVJOTk5GjdunNLS0tSqVStNmDCB1+rLlPzD+dlnn1WjRo1Ml+MTpk+frieffFJ33323/Pz85HK5lJycrDZt2pguDV5Ctr0ysq1nZNvqI9t6Rr6tGvnWM7Jt9ZFtPfNGvmXmrGEl6wO53e5y+wMDA5WXl2eiJNRS3377rZ5//nkNHz5cQ4cONV2OT3n00Ue1bt06xcbGauLEidq9e7fpkoybOXOmoqOjK/yFGM6C7ocOHVJWVpYmTZqk5cuXq0+fPnriiSe0detW0+UZd+7cOUnStGnTFBsbq5UrV+r2229XQkIC5+cya9asUXh4uB588EHTpfiMAwcOKDw8XIsXL9batWv129/+VlOmTNGePXtMlwYvIdvCW8i2lSPbeka+rRz5tnJk2+oj23rmjXzLzFnDStZ3yc/PL7fWS15enoKDg02VhVrmyy+/1JQpU9S3b18lJiaaLsfnlHzU69VXX1Vqaqreeustvfbaa4arMiclJUU7d+5k/bZK+Pv7a9u2bfLz8yt9Xe7Zs6f279+vFStWlPuobn0UEBAgSRo3bpxGjx4tSerWrZvS0tK0atWqen9+ykpJSdG9995b79dyK3H8+HE9++yzWr16tfr16ydJioqK0oEDB5ScnKw33njDcIXwBrItvIFsWzWybUXk26qRbytHtq0+sm1F3sq3zJw1rOTjFpdfxS0zM1MREREmSkIt89Zbb2nSpEm66667tHTpUgUGBpouySecPn1a69evV2FhYek+l8uljh071vurgq9bt06nTp3S0KFDFR0drejoaEnSjBkzFB8fb7g63xAaGlohdHTq1EkZGRmGKvIdJe9NJWvelejYsaOOHj1qoiSftHfvXh05coTZO2WkpqaqoKCg3HqSktS7d28dPnzYUFXwNrItrhfZ1jOybdXIt1dGvvWMbFs9ZFvPvJVvac4a1rVrV4WFhWnbtm2l+7Kzs5WWlqaYmBiDlaE2WLNmjV555RXFxcVp/vz5FT5CWJ+dPHlSzzzzTLmPohQUFCgtLa3eL4SfmJioTz/9VCkpKaWbJE2ePFmvvvqq2eJ8wP79+9W3b99yr8uS9O9//5sLbkjq0aOHQkNDlZqaWm7/vn37WDe0jJ07d6pp06Zc6KqMyMhISc4FScoquXo06gayLa4H2bZyZNuqkW+rRr6tHNm2esi2nnkr37KsgWFut1sPP/ywEhMT1aRJE7Vs2VJz585VZGSkhg8fbro8+LD09HT9+c9/1q9+9SuNHz9eJ0+eLL0tKChI4eHhBqszr3PnzhoyZIhmz56t2bNnq2HDhlq2bJmys7P12GOPmS7PqMpmLjVt2pRZTZI6dOigW265RS+//LJmzZqlxo0b67333tN3332ndevWmS7PuKCgIMXHx2vx4sWKiIhQr169tH79em3ZskWrV682XZ7PSEtLU5cuXUyX4VN69eqlW2+9VdOmTdOMGTMUGRmplJQUbd26Ve+8847p8uAlZFtcK7Jt1ci2VSPfVo18WzmybfWQbT3zVr6lOesDJk+erMLCQr3wwgu6cOGCYmJitGLFitK1TwBPPv/8cxUUFOiLL77QF198Ue620aNHa86cOYYq8x3z58/XvHnz9PTTT+vs2bPq16+f3n77bd18882mS4MPc7lcWrp0qebNm6ennnpK2dnZ6t69u1atWlXh4071VUJCgoKDg5WUlKSMjAx16NBBycnJGjBggOnSfMbPP//MVWwv43K5tGTJEr3++ut6/vnnlZWVpc6dO2v16tXq3bu36fLgRWRbXAuy7ZWRbXGtyLdVI9teGdnWM2/lW8u2bfsG1gkAAAAAAAAA8IA1ZwEAAAAAAADAAJqzAAAAAAAAAGAAzVkAAAAAAAAAMIDmLAAAAAAAAAAYQHMWAAAAAAAAAAygOQsAAAAAAAAABtCcBQAAAAAAAAADaM4CAADgmixbtkxjxoy56selpKRoxIgRioqK0siRI7Vhw4YbUB0AAABQfaayLc1ZAPBhY8aMUZcuXcptPXv21NChQzVr1ixlZWVV+tijR4+qS5cu+vDDD2uwYgD1xdtvv63XX3/9qh/30Ucfafr06YqLi9P69esVGxurZ555Rrt27fJ+kQAAn0K2BeCrTGZb/6t+VgBAjerevbtmzJhR+nNBQYF2796t+fPna8+ePXrnnXdkWVaFxzVv3lxr165VmzZtarJcAHVcRkaGZsyYoW3btqldu3ZX9VjbtrVgwQI98sgjiouLkyRNmDBBO3fu1Pbt2xUdHX0DKgYA+BKyLQBf4gvZluYsAPi4sLAw9enTp9y+mJgYnT9/XgsXLlRqamqF2yXJ7XZ73A8A12P37t0KCAjQxx9/rMWLF+vYsWPlbt+0aZOSk5N14MABRUREaOTIkUpISJDb7VZ6erqOHTumUaNGlXvMihUravIQAAAGkW0B+BJfyLYsawAAtVTPnj0lST/99JPGjBmjKVOmaPLkyerTp4/Gjh3r8aNfhw4d0h/+8Af1799fMTExGj9+vA4ePFh6e15env7yl7/ozjvvVM+ePTVq1Ch9+umnNX5sAHzXsGHDlJycrNatW1e47auvvtJTTz2lBx54QH/96181Y8YMbdiwQVOnTpUkpaenS5JycnI0btw4DRw4UPfff7/+9re/1egxAAB8D9kWgAm+kG1pzgJALVXyRlDyJrJhwwaFhoZqyZIlio+Pr3D/jIwMPfjgg/rPf/6jmTNnau7cuTp58qQeffRRnTlzRrZta+LEiXr33Xc1duxYLVmyRNHR0Xr66aeVkpJSk4cGoJZaunSpHnjgAf3ud79TmzZtdMcdd2jWrFn67LPPdPToUZ07d06SNG3aNMXGxmrlypW6/fbblZCQoK1btxquHgBgEtkWgK+pqWzLsgYA4ONs21ZhYWHpz1lZWdq+fXtpwCyZZRAQEKBZs2bJ7XZLci6aUNbq1auVn5+vVatWqVmzZpKkrl276qGHHlJqaqr8/f319ddfKykpSSNGjJAkDR48WLm5uUpMTFRsbKz8/XnbAFC5tLQ0ff/99/rggw9K99m2LUk6ePCgAgICJEnjxo3T6NGjJUndunVTWlqaVq1apYEDB9Z80QCAGkW2BVBb1FS25ZUIAHzcjh071KNHj3L7XC6XBg0apJdffrn0ggm33HJLaXj15F//+pf69OlTGl4lKTIyUps2bZIkJSYmyrIs3XnnneUC87Bhw/Txxx9r//796tatmzcPDUAdU1xcrPj4+NJwWlazZs20Z88eSVLnzp3L3daxY0f9/e9/r4kSAQCGkW0B1BY1lW1pzgKAj+vRo4dmzZolSbIsS4GBgWrRooXCwsLK3S80NLTKcc6cOaNWrVpVebtt2+rbt6/H2zMzMwmwAKrUqVMnpaenq23btqX7tm3bpjfffFMzZ85Ujx49FBoaqtTUVPXr16/0Pvv27ePq2wBQT5BtAdQWNZVtac4CgI8LDQ1VVFTUdY8THh6u06dPV9i/detWtWrVSuHh4QoJCdGbb77p8fFl35AAwJPHH39cTz31lBYtWqSRI0fqxIkTmj59ulq1alU6syk+Pl6LFy9WRESEevXqpfXr12vLli1avXq12eIBADWCbAugtqipbMsFwQCgnujXr59SU1PLhdhTp04pPj5e//jHP9S/f3/l5OTItm1FRUWVbvv27dPixYvLfRwMADz59a9/raSkJH355ZcaNWqUpk6dqjvuuEOLFi0qvU9CQoImTZpUugbgZ599puTkZA0YMMBg5QCA2oZsC+BGq6lsy8xZAKgnHnvsMaWkpCg+Pl7jx49XQECAlixZosjISI0aNUrh4eGKiYlRQkKCEhIS1KFDB33//fdauHChBg8erCZNmpg+BAA+Zs6cORX23XPPPbrnnnuqfNzYsWM1duzYG1UWAKAeINsC8DZT2ZbmLADUEy1atNCaNWs0d+5cPffcc3K73RowYICSkpLUsGFDSdLy5cu1YMECLVu2TKdOnVJERITGjh2riRMnGq4eAAAAuIRsC6CusGzbtk0XAQAAAAAAAAD1DWvOAgAAAAAAAIABNGcBAAAAAAAAwACaswAAAAAAAABgAM1ZAAAAAAAAADCA5iwAAAAAAAAAGEBzFgAAAAAAAAAMoDkLAAAAAAAAAAbQnAUAAAAAAAAAA2jOAgAAAAAAAIABNGcBAAAAAAAAwACaswAAAAAAAABgAM1ZAAAAAAAAADDg/wNplnxPd4WFkwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9cAAAJOCAYAAAC9afQWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACaB0lEQVR4nOzdd3RT9f/H8VeSpgvKXgoCClj2kimIUMUBijJEFFCQjYrI9ivgQESQKUtliKhQQJDhREVAkS0oCoIgKCB7l660ye+P/hIIXWmS9nY8H+f00N7cm7zvvaU3r3zGNTkcDocAAAAAAIDXzEYXAAAAAABATke4BgAAAADAR4RrAAAAAAB8RLgGAAAAAMBHhGsAAAAAAHxEuAYAAAAAwEeEawAAAAAAfES4BgAAAADAR4RrAMgEDofD6BIyJKfVCwAAkN0QrgHkKlu3blV4eHiyr6pVq6pOnTp64IEHNHLkSP3xxx8pbj99+nSFh4drypQpXtfw008/6ZlnnsnQNiNGjFB4eLiWLVuW5jJ/u3z5st544w2tXLky3Xqyi//9738KDw9X9erVde7cOUNr8cfvi6eOHTum8PBwNWvWLNNfyxPHjx9X3759Va9ePdWqVUtPPPFEmutHREQoPDxcW7duTXM95zEdMWKEP8vNtpz7m9JX9erV1bRpU/Xp00fffvtthp53xYoVCg8P15AhQzKpcgDAjQKMLgAAMkNoaKjuuece188Oh0NXr17VwYMHtWzZMq1YsUKDBw9Wjx49/Pq6//33n3r06KGSJUv69Xkzy7hx47RixQq98cYbRpfikejoaH311VcKCgpSXFycli9frt69extdVp40bNgw7dixQ6VLl1aNGjV06623Gl1SjnbLLbeodu3abstsNptOnjyp9evXa/369erVqxdhGQCyMcI1gFypcOHCmjhxYoqPrVmzRqNHj9aECRNUvHhxtWnTxvVY586d1apVKxUuXNir17Xb7V5tN2jQIPXq1UslSpTwantvpdYd3Kh60vPVV18pOjpaPXv21IIFC7RkyRL16tVLJpPJ6NIyXcmSJfXll1/KarUaXYok6ddff5UkLVy4UGXKlDG4mpyvXr16euutt1J8bOPGjerbt6/mzp2rBx98UNWqVUv3+Vq2bKlatWopLCzM36UCAFJBt3AAec7DDz+s1157TZL09ttvKzY21vVYkSJFVKFCBRUpUiRLaypRooQqVKiQbd4IZ7d6nFasWCFJat26tRo3bqxjx47pxx9/NLiqrGG1WlWhQgWVLVvW6FIkJbWqSlKpUqUMriT3a9asmSIiIuRwODzuHh4WFqYKFSpkuw/IACA3I1wDyJPatGmj6tWr6/Tp0/ruu+9cy1MbQ7thwwb16NFDd911l6pXr67mzZtr+PDhOnTokNu2zq7op06dUnh4uCIiIiRdGy/bv39/ffXVV2rRooVq1Kihhx9+WFeuXEl3jPPixYvVqlUr1ahRQxEREXr77bd1+fJlt3XSG2PpHMeZkJDg+vmzzz6TJI0cOVLh4eGu8JpaPYmJifrkk0/Uvn171a5dW7Vr11b79u318ccfu57XyTn+fezYsfr77781YMAANWzYUDVr1lS7du20fPnyFOtMzT///KMdO3aoXLlyqlq1qqvHweLFi1Nc//pjfvr0ab300ktq2rSpatSoodatW2v+/PlKTExMtt3hw4c1evRo3X///apdu7Zq1qype++9V6+99ppOnTqVZo3ffPONwsPD1alTpxQfP3XqlKpUqaJ7773X1Wvg0KFDGjx4sFq2bKnq1aurUaNG6t27tzZs2JDi/tw45vrUqVMaPXq0HnzwQdWsWVMNGjTQU089pdWrV6dZ640uXLigt99+W/fff7+qV6+uBg0aqEePHsnq6Nq1q8LDw10/V6tWTeHh4Tp27FiGXs8bBw8e1LBhw1z/D5s2baqhQ4fq4MGDydZ1jvH+559/kj2W2v/z3bt369lnn1VERITr+QcMGKDdu3enWM+RI0c0YsQINWvWTNWrV1ezZs308ssv6/jx437Z3+s5P1Q5f/68a1lERITq1aunAwcOqF27dqpevbpatGihHTt2pPn3YOvWrerfv7+aNm2qOnXq6OGHH9bs2bMVHR3t0z7GxcVp5syZatu2rerWras6deqobdu2evfddxUTE+PHowEA2RPhGkCe5Qy+mzdvTnO9lStXqk+fPtq6dasqVKigiIgIhYSEaOXKlerQoYMOHDggKSms3nvvvZKkkJAQPfzww66fnfbv368hQ4aoePHiatSokYoVK5Zu6/D8+fP16quvKjg4WC1atFB8fLzmzp2rTp066eLFi17ufVIL/i233CJJql27th5++OE0W0Xj4uL0zDPP6PXXX9fhw4fVsGFDNWrUSH///bfGjBmjXr16KT4+Ptl2Bw8e1GOPPaYdO3aoTp06qlq1qv744w/973//0/z58z2u1xnGH3nkEUlJ3V7z58+vDRs26OTJk6lud+bMGXXo0EHfffedqlSpojp16ujvv//W+PHj9eabb7qtu2PHDrVt21ZLlixRvnz51KxZM9WpU0dnz57VokWL1KlTJ0VFRaX6WhERESpSpIh27dqVYqhbtWqV7Ha72rZtK5PJpEOHDumxxx7T559/roIFCyoiIkLly5fXhg0b1Lt373Q/gDh37pw6dOigJUuWKCAgQM2bN1eVKlW0Y8cODR06VNOnT09ze6ejR4/q0Ucf1dy5cxUTE+MKpps3b1bv3r01depU17p33nmnHn74YdfPDz30kB5++GGFhoZ69FreWrdundq1a6dVq1apcOHCuueee1SkSBGtXr1a7du31w8//ODT82/ZskVdunTRunXrdNNNNykiIkLFixfXN998o86dO2vTpk1u62/evFlt27bVZ5995jp3BQsW1Keffqp27drp999/96meG/3111+SpJtuusltuc1mU+/evXX58mXdfffdMplMqly5cqrPM3fuXD399NP64YcfVK5cOTVp0kQXLlzQ1KlT1bNnT7f/wxnZR4fDoX79+umdd97RuXPn1LBhQzVs2FBHjx7VlClT1Lt3b+5KACDXY8w1gDzrtttuk5TUUpmWGTNmyGKxaOXKlapYsaKkpDeSb775phYuXKj58+frrbfe0n333aeqVavqu+++U4ECBVIc833s2DF17txZo0ePluTZGO2///5bo0ePVufOnSVJMTExGjBggDZu3KjJkyfr9ddfz9B+O02cOFEjRozQ0aNH1aFDBz322GNprj9lyhRt2bJFtWrV0rvvvuvqOn/u3Dn16dNHP//8syZPnpxslueff/5ZrVq10tixY10B7KOPPtIbb7yhuXPnqnv37umOmU5MTNTKlStlNpvVrl07SUkfYLRu3VpLlizR0qVLNWDAgBS3/e2339SgQQNNmzbNVfO6devUr18/RUZG6oUXXlCBAgUkSa+99ppiYmI0depUPfjgg67nOHPmjB5//HEdP35c69atcxunfz2r1ao2bdpowYIFWrlypV544QW3x5370LZtW0nSvHnzdPXqVb3++ut6/PHHXet9++23eu655zRz5ky1b98+1eMSGRmp06dPq0+fPho0aJDbPj/55JOaO3euevXqpeDg4FSfw+Fw6IUXXtDJkyf1+OOPa9SoUa5x3b/99pt69eql2bNnq2bNmoqIiFC/fv0kJc1dIEnjx49XQIDnbyfefffdNGeh379/f7JlZ86c0eDBgxUfH6+33nrLdfwk6dNPP9XIkSM1ePBgffXVV15PJjh79mzZbDbNmzdPTZs2dS1fsGCBxo0bp3fffVdNmjSRlNTKP3DgQMXFxSX7XVmyZIlGjx6tgQMH6ssvv1RgYKBX9Vxv5cqV2rhxoywWi9trSVJsbKyKFCmiyMhIBQYGym63y2xOue1kz549mjRpkvLly6f3339fd9xxh6Skvym9e/fWtm3b9Mknn6h79+4Z3sedO3dq06ZNatCggebPn+/6HTp//rw6duyobdu2adu2bWrYsKHPxwMAsivCNYA8q2DBgpKS3iin5cyZMwoICHAbu2gymdS3b1+VK1fOrYusJ7p06eL6PrU3wddr0KCBK1hLSaFy3Lhxat68uVatWqURI0ZkeqthXFycFi9eLLPZrEmTJrmNSS9atKimTJmi+++/X4sWLdLzzz+vfPnyuR4PCAjQK6+84lbj448/rgkTJujcuXM6d+6cihUrlubr//TTTzp16pSaNGni1nLnbLVdtmyZ+vfvn2rIe/nll91qjoiIUJkyZXTs2DEdPnxYtWrV0tWrV1W9enXVqFEjWYApXry47r33Xn344Yfpdn/u0KGDFixYoNWrV2vAgAGuDw5+++03HTp0SHfeeaduvvlmSUm/W5JcPzu1bNlSo0ePVrFixdIMS6ltX7NmTb3xxhuyWq3pfoCzY8cO/fHHHypXrpxGjx7tdgxr1qypESNGaMSIEZo7d66rt4cvfv755wxvs2TJEkVHR6tdu3ZuwVpKOt47d+7UihUrtHjxYg0cONCrulI7lk8++aQkuc2GvmzZMl28eFFdu3ZN9rvy+OOP64cfftAPP/ygb7/9Vq1bt/bo9Xfs2JGsC3dMTIz++usv/fPPPzKZTBo2bJjKly+fbNuOHTu6Qnxaf1OWLFkiu92uvn37uoK1lPQ3ZcSIERo4cKDrOGR0H0+fPi0p6f/K9ZPuFSlSRGPGjNGJEydcPWUAILeiWziAPMs5IVN6rab16tVTbGys2rVrpxkzZui3336T3W5X0aJF1aVLF9WvX9/j1wwODs7wLYuu74LrVKxYMdWoUUOxsbGuWZsz0549exQbG6uqVaum+Ab5lltuUY0aNRQXF6fffvvN7bFy5cqpUKFCbssCAwNdM7J7MhbT2T36xlbcmjVr6vbbb9fp06e1bt26FLcNCQlJ8QMQ54clznGm+fLl07hx45J1FT916pTWr1+vP//8U5JS7Pp+vUqVKqlmzZo6duyYduzY4VruvJe4s+Vdkut3Z+DAgXrjjTe0ceNG1wR7nTt31v33359mWHJuP3bsWP3vf//Tt99+6+q2/uijj6p169bpfvCybds2SdI999yT4ocTDzzwgCwWi3799dd0990TCxcu1P79+1P9eu6555Jts337dknS/fffn+JztmrVym1fvFGvXj1JSWPKJ06cqG3btslmsykwMFDdunXT3Xff7VrXea/u1Fph77rrLrf1PHH06FGtWbPG7WvTpk2y2+166KGHtHDhQnXr1i3FbdPqBn495/FJ6UOSatWq6dtvv9WwYcPcavd0H+vUqSOr1aovvvhCvXv31rJly1zDNRo3bqx27dol++ACAHIbWq4B5FnO8crOFuzUjB07Vv3799cff/yh6dOna/r06SpUqJCaNWum9u3bq1GjRh6/ZlhYWIZvG1W6dOkUlztbcNObZMsfnK1SqdUiSWXKlNHu3btd6zo5u1zfyBnk0mtZvXDhgis4L1y4UJGRkW6PO89jZGSk7rvvvmTbp3bMna9/4zjQX375RUuXLtUff/yhf//91xV2nc/hybjRDh066LffftPKlStVv359xcfH64svvlBYWJhatmzpWq979+46cOCA1qxZo48++kgfffSRAgMD1bBhQ9dYZovFkurrtG7dWr///rsWLFig5cuXa/ny5QoICFCdOnX04IMPqn379ml2CZeundvUbqcVEhKiIkWK6MyZMzp//rwhs4On9/vnrN3Z6uqNoUOH6tixY9q0aZPmzJmjOXPmKDQ0VE2bNtUjjzziNn/CiRMnJCnFDwKul9ZcADdq27ZtqrfiSk96f8OcUmudT0lG9/Gmm27ShAkTNGrUKG3YsME1EV6lSpXUsmVLderUyesu+wCQUxCuAeRZzpbI9Lp1lypVSsuXL9f27du1bt06/fzzzzpw4IBWr16t1atX65lnntHw4cM9ek1PuoHfKCgoKM3HPbnvcUqzYmeEJ4HS+Ro3jjH19R7Uq1evdvUySG3WZimpu/G///6bbFK2jLz+a6+9pkWLFslsNqty5cp68MEHVaFCBdWqVUubNm3Su+++69HztG7dWuPGjdPXX3+tV155RRs3btTFixf1+OOPu4Vdq9WqiRMnql+/flq7dq1+/vln7dq1Sz/++KN+/PFHLVmyRB9++GGa43aHDx+uLl266Ntvv9WPP/6oX375Rdu3b9f27dv10UcfafHixWnet92Tc+v8AMQf44e9kV6NGa0vpf8PYWFhmj9/vvbs2aPvvvtOmzdv1u+//661a9dq7dq1uv/++/XOO++4bd+iRQvlz58/1ddxztGQ2Tz9u3LjjP5p8WYfW7Vqpbvuukvff/+9Nm7cqK1bt+qvv/7SX3/9pQULFuiDDz5Q7dq1Pa4BAHIawjWAPGv9+vWSkmY/To/JZFKDBg3UoEEDSUmTeC1fvlxTpkzRBx98oK5du2Zal8cbW4KdnLfCcbZgO99gp9QSfONtuzLK2YU6rVsMHT16VJLSHT+dUc7bg82dO9fVFfVGffr00fr16xUZGenq1ppR27Zt06JFi3TTTTdp7ty5yYLR2rVrPX6u/Pnz6/7779fKlSv1888/6+uvv5aUvFu7U4UKFdSvXz/169dPMTExWr9+vV577TX98ssv+uqrr1wzpKemdOnS6tatm7p16yabzabNmzdrzJgxOnz4sBYvXqz+/funuq3z3KY2ljwqKkrnz5+XxWJJ1r0/q5QoUUKHDx/W8ePHValSpWSPO3/3ihYt6lrm/FAlpSB95cqVVF+rRo0aqlGjhl588UVduXJFX331lcaOHatvvvlGO3bsUL169VSiRAkdOXJETz31lEd/P7KL4sWL6/jx4zp58mSKw1MiIyNVokQJRUREeL2PYWFhevTRR/Xoo49Kkv744w9NnjxZP/30k6ZOnaoFCxb4aW8AIPthzDWAPOnLL7/U33//rVKlSql58+aprnfw4EE9/PDD6tmzp9vyokWLqnfv3goPD5fD4XB1zfa1lTYlP/74Y7Jl//33n/bs2aN8+fKpWrVqkuQaW3vu3Llk66c2LtvTeqtXr66QkBDt3bvXFWSu9++//2rv3r0KDQ1VjRo1PHpOT/zxxx/6888/VbRo0TTf4DvfyK9YscLrccHOVvH77rsvWbBOTEzUli1bJHnW0isldQ2XpK+++kobNmxwtYBf/5xdu3ZV06ZNXV3PpaRu2A8++KBrRvK0uhYPHDhQDRs2dPvQw2q1qlmzZq6J89Lrmuwct/3999+n2LL5zTffyOFwqF69el71vPAHZ43ffPNNio9/9dVXkuT68Eu69v/h+vtCO93YA+LChQtq165dsvkNwsLC1LFjR9fs4c5j6aznxnuAO02YMEGPPvqoli5dmuZ+ZbW6detKSrnuQ4cO6ZVXXtG0adMkZXwf582bpxYtWrjmFnCqVq2ahg4dKulaV3MAyK0I1wDynG+++UajRo2SJI0cOTLNrqTly5fX6dOn9dNPP7laH51+//13HTp0SKGhoa4w5uzCHR0d7dFttjyxcuVKffvtt66fo6KiNGzYMCUmJqpz586u13ROauSc/dnp5MmTevvtt1N8bue+p9WSJyUFvo4dO8put2vw4MFugeX8+fMaNGiQ7Ha7R2N8M8I5kdmDDz6Y5tjje+65RwULFtSFCxeSnSdPObtOb9682W2StZiYGI0aNcp1n+G4uDiPnq9+/foqV66cVq9ercuXL7tNZCZJFotFYWFhOnPmjCZPnuzWwnrx4kVt3LhRUtKkbakpXry4Ll68qAkTJrh9qBAbG+v6nUnvw44GDRqoatWq+ueffzRmzBhXF3wp6Xd8woQJktxnuc9qHTt2VGhoqD777DN99tlnbo8tX75cq1atUmhoqNtM4s7/DwsXLnT7QGTBggXJ7kFduHBhJSYm6sCBA8laVo8dO6ZffvlFZrNZ1atXl5Q0W3ZoaKg+/vhjffHFF27rr1u3TgsXLtSff/7p1w+a/KFz584ymUyaNWuW9u7d61ruvB2cJNeHOhndx3Llyum///7T7Nmz3ca+OxwOrV69WpL773JMTIwOHTqkQ4cOZc7OAoAB6BYOIFe6cOGC221t7Ha7rly5ov379+vUqVOyWCwaNWqU2+RSKQkICNCYMWM0YMAAvfDCC6pWrZrKlCmjCxcuaOfOnUpMTNT//vc/hYWFSUq67UyBAgV0+fJlderUSWXLlk3xftcZUatWLT333HOqU6eOihcvru3bt+vChQtq0KCBnn/+edd6ZcuW1X333ae1a9fq8ccfV+PGjSUlzeZbsWJF3X777Tpw4IDbcztv6zNr1izt2rUr2cRN1xs0aJD27t2r7du3695773W1Em7btk1Xr15Vw4YNk91KyBfx8fH6/PPPJSnd2xkFBgbqwQcfVGRkpCIjI1O9D3VaHnzwQc2YMUMHDhzQvffeq9q1ays+Pl67du3SlStXVKlSJf311186e/asx8/Zvn17TZ48WRaLJcWu3SNGjNDOnTv14Ycf6rvvvlOVKlUUHx+vX375RVFRUWrVqpXrPKakf//++uGHH/T1119r586drvD322+/6dy5c6pXr166XcpNJpMmT56sp59+WpGRkVq/fr1q1aqlixcvaseOHUpMTFSvXr1SnCwuq5QsWVLjx4/XoEGDNGLECC1YsEC33nqrDh8+rD///FMhISGaMGGC24RnTz31lL7++mt98803euCBBxQeHq6//vpLhw8f1iOPPKJVq1a5vcZrr72mrl27aty4cVq6dKkqVKigqKgo7dy5U3FxcerVq5fr/8v19QwaNEgzZ87UbbfdphMnTriC+//+9z9VqVIly46RJ+rUqaMXXnhBU6dO1WOPPaZ69eopX7582r17t86dO6cmTZqoe/fukjK+j/fcc49atmypb7/9Vi1btlTdunWVL18+HThwQEeOHFGxYsXc7vv+22+/6amnnpKU8r3NASAnIlwDyJWio6O1Zs0a188mk0khISEqU6aM7r33XnXu3FkVKlTw6Lnuu+8+zZs3TwsWLNCePXu0f/9+FShQQM2aNdPTTz/tFn7MZrMmTpyo8ePHu7pQX7p0yad9GTx4sHbv3q3IyEj9/vvvrvG1zzzzTLJW94kTJ+r999/XmjVrtHnzZhUrVkydO3fWc88953rTfL0nnnhCf/75p2sCogoVKqQaroODgzV//nwtWrRIq1ev1pYtW2SxWFSpUiW1a9dOjz32mF+7DX/33Xe6dOmSSpcu7erOmpa2bdsqMjJSO3fu1F9//aWQkJAMvV7+/Pm1dOlSTZs2TVu2bNGGDRuUL18+Va1aVZ06dVKjRo1055136qeffpLNZvNoIjnnvYSbNWum4sWLJ3u8bNmyioyM1LvvvqutW7dq/fr1Cg4Odh1TZ9fy1BQuXFiLFi3S7Nmz9eOPP+qnn36S1WpV+fLl9cwzz+ipp57yaJKvW2+9VZ999pnmzJmj77//XuvWrVOBAgV011136amnnlKTJk3SfY7Mdt999+nTTz/VnDlztHXrVh06dEjFixdXhw4d9MwzzyT7/1yjRg19/PHHmj59unbt2qXTp0+revXqGj16tGw2W7JwXbt2bS1atEhz5szRL7/8onXr1ilfvnyqW7euOnXqpAceeCBZPcuXL9fcuXO1ZcsWrV+/XkWLFlWLFi3UvXv3VG9hZbR+/fqpatWq+vDDD7Vnzx7FxMSoTJky6tKli3r27On2fzgj++j8kGbBggX68ssv9csvvygxMVGlSpVS165d1adPnxT/DwBAbmJyeDp4DAAAZMgbb7yhjz76SLNnz07x3sIAACD3YMw1AAB+5JycbNu2bfr00091yy23pDlpHgAAyB3oFg4AgB+9/PLL+u6771whe8iQIYbNsg0AALIOV3sAAPzIOXtyqVKlNHr06GRjdQEAQO7EmGsAAAAAAHxEyzUAAAAAAD4iXAMAAAAA4CPCNQAAAAAAPiJcAwAAAADgI8I1AAAAAAA+IlwDAAAAAOAjwjUAAAAAAD4iXAMAAAAA4CPCNQAAAAAAPiJcAwAAAADgI8I1AAAAAAA+IlwDAAAAAOAjwjUAAAAAAD4iXAMAAAAA4CPCNQAAAAAAPiJcAwAAAADgI8I1AAAAAAA+IlwDAAAAAOAjwjUAAAAAAD4iXAMAAAAA4CPCNQAAAAAAPiJcAwAAAADgI8I14CWHw2F0CQAAwM9ywvU9J9QI5EWEa+RKI0aMUERERKqPR0REaMSIEan+nJ7vv/9ew4cP96nG3GD//v169NFHVb16dbVq1SrFdaZPn67w8PBUn6Nr167q2rVrZpWYKcLDw5N91axZU61bt9acOXNkt9vT3H7FihUKDw/XsWPHsqhiADBO165d3f5eVq5cWXXq1FG7du20cOFCJSQkGFLXsWPHFB4erhUrVkiSLl++rGHDhmnHjh0+Pe+IESOSXSOqVaumpk2baujQoTpx4oRrXW+ugTt37lTv3r19qtHpiy++UIsWLVS9enWNHj06xXXSqzE8PFzTp0/3Sz1ZYevWrcnOT+XKlVW3bl116tRJ69atS/c50nufibwrwOgCgOxgxowZyp8/v8frL1iwIPOKyUFmzpyp//77TzNnzlSRIkWMLidLdejQQY899pjr55iYGK1du1YTJ07U5cuXNXjw4FS3bd68uZYsWaISJUpkRakAYLiqVavqlVdekSQlJibq0qVL2rhxo8aNG6cdO3Zo6tSpMpuzts2nRIkSWrJkicqWLStJ2rdvn1atWqX27dv7/NzFixfXjBkzXD8nJCTo8OHDmjhxonbt2qXPP/9cwcHBXj33smXLdOjQIZ9rlKTXX39d5cuX11tvvaWSJUv65TlzitGjR6tatWqSknoCXLp0SfPnz1f//v313nvv6e6770512/79++upp57KqlKRgxCuASVd9JFxFy5c0O23357mBSi3KlWqlGrXru22rHHjxvr777/1ySefaMCAAbJarSluW6RIkTz3YQSAvC1//vzJ/mZGRETotttu09ixY/X555+rTZs2WVpTYGBgspoy87nr1asnq9Wq4cOH6/vvv1fr1q0z5bUz4uLFi2rSpIkaNmxodClZrmLFiimeo+bNm2vhwoVpvrdxfiAD3Ihu4YCSdwt3XuRr1qypRo0aaciQITp16pSkpO5R27Zt07Zt2xQeHq6tW7dKkk6fPq2XXnpJd999t2rWrKkOHTro+++/d3udqKgojR49Wo0bN1adOnX04osvasGCBW7dprt27aohQ4ZowIABql27trp37y4pqfvasGHD1LRpU1WrVk2NGzfWsGHDdOHCBbf9mDFjht588001bNhQderU0eDBg3X16lW9//77atasme644w49//zzbtulJL39CQ8P17Zt27R9+3a3bnX+8OWXX6pdu3aqU6eOmjRpotGjR+vSpUuux1PqjnVj9z5J+vDDD/XAAw+oRo0auuuuu/Tqq68qKirK9bjdbtf777+vli1bqnr16rr//vv10Ucf+VR79erVdfXqVVe94eHhmjFjhtq1a6eaNWtqxowZKXYL37Bhgzp16qTatWuradOmGj16tC5fvux6/L///tOgQYPUoEED1apVS08//bT27t3r9tpp/d4CQHbUpUsXlSxZUpGRkW7Lly1bptatW6t69epq3ry5pk+frsTERNfjI0aMULdu3bR8+XLdf//9ql69uh555BFt3LjRtY7dbteUKVMUERGh6tWrKyIiQpMmTZLNZpPkft3YunWrqyXyqaeeUteuXfXJJ58oPDxchw8fdqtt1apVqlKlilv3bk/VqFFDknT8+PEUH4+Li9PMmTNd16777rtP77//vmu40YgRI/TZZ5/p+PHj6V579+zZox49eqhhw4aqW7eu+vbtq7/++kvSta7RUlIvNH8OVUpvH6SUh+PdeG2MjY3Vq6++qmbNmql69ep64IEHNG/ePLdtLl68qNGjR+vOO+9UjRo11LFjR23evNnr2vPnz69bb71V//33n6RrxykyMlItWrRQ3bp1tWnTpmTvQxwOhxYsWKAHH3xQNWvWVMuWLTVv3jy3sfE7duxQly5dVKtWLTVo0EDDhw/X+fPnXY+n9/uKnIGWa+Rq3ozj2rlzp4YNG6b+/furfv36OnnypN5++20NHjxYH3/8sV555RUNHTpUkvTKK6+oYsWKOnv2rDp06KCgoCC9+OKLKly4sFasWKFnn31WEyZMcH0a379/f+3bt08vvviibr75Zi1atEiTJk1KVsNXX32lNm3aaPbs2bLb7YqJidFTTz2lwoUL65VXXlFYWJh27dqlGTNmKDg4WK+//rpr2/nz56tJkyaaMmWKfv/9d02aNEl//PGHSpQooTFjxujYsWMaO3asihUr5uqidyNP9mfJkiV67bXXXMchvU9xUzsXDodDJpPJ9fOsWbP0zjvv6Mknn9SLL76oo0ePatq0adq9e7eWLl3qcTe6zz//XG+//baGDx+u8PBw/f333xo/frxiYmI0fvx4SdKrr76qFStWqE+fPqpTp462b9+uN998U5cvX9azzz7r0evc6PDhw8qXL5+KFi3qWvbuu+9q8ODBuvXWW1W6dGnt2bPHbZsffvhB/fr10z333KOpU6fq4sWLmjBhgo4fP6558+bp/Pnz6tSpk0JCQjRq1CiFhIToww8/VOfOnfXpp5+qQoUK6f7eAkB2ZDab1bhxY33xxRdKSEhQQECA3nvvPU2ZMkVdunTRSy+9pH379mn69Ok6ceKE3nzzTde2v//+u06fPq0BAwYof/78mjZtmp5//nlt3LhRBQsW1Jw5c7R48WINHz5ct9xyi3799VdNmTJFVqtVAwYMcKujWrVqGj16tF5//XWNHj1aDRs2VIkSJTR+/HitWrVKAwcOdK27cuVKNW7cWDfddFOG99cZ1FO6ZjocDvXt21e7d+/Wc889p8qVK2vr1q2aOnWqjh49qjFjxqh///46f/689u7dqxkzZqR67d2yZYt69uyphg0b6s0331RcXJzee+89derUSUuXLlW1atW0ZMkSPf74465hTmkNVXI4HB69p/JkHzz15ptv6qefftLw4cNVrFgxbdy4URMmTFChQoXUvn17xcXF6emnn9bZs2f14osvqkSJElq+fLl69uypuXPnqnHjxh6/llN8fLyOHTummjVrui2fMWOGRo4cqdjYWNWpU0dr1qxxe3zChAn68MMP1b17dzVp0kR79uzRxIkTlZCQoD59+mj79u3q3r27GjVqpKlTp+rSpUuaNm2annrqKX366acKDg7O0O8rsi/CNXKt48ePu8bSZMTOnTsVHBys3r17KzAwUJJUqFAh7dmzRw6HQxUrVnSNz3Z2J5o9e7bOnz+vb775RqVLl5Yk3X333erWrZsmTJighx56SFu3btXWrVs1ffp03XfffZKkZs2a6aGHHko2dspqteq1115zvf6+fftUqlQpjR8/XrfccoskqVGjRvr111+1bds2t23z58+vKVOmKCAgQHfeeac+++wznTp1SsuWLVNYWJgk6ccff9Qvv/yS6jH44IMP0t2f2rVrJzsOaUnrXDRo0ECSdOnSJc2ePVsdO3Z0m1jl9ttvV+fOnbV8+XJ17tw53deSpG3btqlMmTLq3LmzzGazGjRooNDQUFeL8uHDh7V06VINGjTINTFM06ZNZTKZ9N577+nJJ59U4cKFU31+u93ueqPhcDh09uxZrVmzRuvWrVPPnj3dPjCoV6+eqweCpGThevr06apSpYpmzJjh2i4wMFDTpk3T2bNn9dFHH+nixYtavHix63w0a9ZMrVq10rRp0/TOO++k+3t7fT0AkJ0UK1ZMNptNFy9eVFBQkGbNmqXHH39cI0eOlJT0t7lQoUIaOXKkunfvrkqVKkmSrly5ohUrVrgCZmhoqLp06aItW7bo/vvv17Zt21S9enXXGOoGDRooJCTEdS28Xv78+VWxYkVJSd2Fnd+3bNlSq1ev1gsvvCCTyaSTJ09qy5Ytevvtt9Pdr+vDaFRUlPbs2aNx48apTJkyat68ebL1N27cqJ9//lmTJ092dRlv0qSJgoODXUGsUqVKKlKkSLpd2idNmqRy5crp/fffl8VicR3Hli1b6p133tG0adNc26c0zOlG27dv9+g9laf74Ilt27apSZMmrudp2LChQkNDXR9er1q1Sn/++aeWLl2qWrVqSUq6Nnbt2lUTJ07U8uXL03z+66/jCQkJOn78uGbNmqXz588ne6/x5JNP6oEHHkjxeS5fvqyFCxeqS5cursaXO++8U2fOnNH27dvVp08fTZo0Sbfeeqvee+891/moVauWWrdu7Xpvk5HfV2RfhGvkWsWLF9fs2bNTfKxfv36pble/fn1NmTJFDz30kO6//37dfffdatq0aZpjb7Zt26Y6deq4go9TmzZt9NJLL+nvv//Wli1bZLVade+997oeN5vNatWqVbJZNm+77TZXQJKkKlWqaNGiRbLb7Tpy5Ij++ecfHTx4UH///XeyT5Jr1qypgIBr/7WLFSum0NBQtz/OhQoV0oEDB3zaH+cbD099+umnKS6/vvV89+7dio+P10MPPeS2Tr169VS6dGlt27bN43DdqFEjLVmyRO3atdO9996ru+++Ww8//LArZG7ZskUOh0MRERFuxzAiIkKzZ8/Wzp073c7VjWbNmqVZs2a5LQsODtbjjz+u559/3m15lSpVUn2e2NhY7d27V88//7xbAG7VqpVrBvbNmzerSpUqKlmypKtWs9msZs2aafXq1ZK8+70FgOzA2XXWZDJp165dio2NTfFvsyRt2rTJFc6KFCni1nJbqlQpSUkTTEpJYWzSpEl68sknFRERoebNm6tLly4Zqq1Dhw76/PPPtWPHDtWvX18rV65Uvnz51LJlyzS3S+0D/lq1aun1119PsRfWtm3bFBAQkCzEtWnTRtOmTdO2bds8CqbR0dHas2ePnnvuOVeQk6QCBQqoRYsW2rBhQ7rPcaNq1aq5eqvdqEOHDn7fBynp/EVGRurkyZO6++67dffdd7v1Ktu8ebOKFy+uatWquf2utGjRQhMmTNClS5dUsGDBVJ+/W7duyZYVLVpUI0eOVLNmzdyWp3Ud3717txISElwNJ07OD4diYmL066+/qkePHm49AG655RZVqFBBmzZtUufOnf3y+wrjEa6RawUGBrrGNqX0WGrq1Kmj999/XwsWLNAHH3yg999/X8WKFVPfvn1TvRXFpUuXXC3K1ytWrJikpE81L1y4oEKFCiWbDfX67sNO+fLlS7bsgw8+0LvvvquLFy+qWLFiql69ukJCQnTlyhW39VKa9Tw0NDTV/fV2fzIqtXNx/b46W5Wdr3Pja9+4r2lp1aqV7Ha7Fi1apFmzZmn69OkqXbq0hgwZolatWunixYuSlOqEMumNVe7YsaM6duwoKekNYb58+VSmTJkUJzFL6/hfunRJDocjxd8Dp4sXL+qff/5JtdUgJibGq99bAMgOTp06peDgYBUqVMj1tzm1W02dPn3a9X1ISIjbY84PKJ1je3v27Kl8+fJp+fLlmjhxot5++21VqlRJI0eOVKNGjTyqrVGjRipTpoxWrlzpCtetWrVSUFBQmtvd+AF/YGCgSpUqlWbYu3TpkgoXLuwWiJ3PJcnja+CVK1fkcDj8ci11ypcvX6rX8ev5ax8k6eWXX1apUqW0evVqjRkzRmPGjFGdOnX06quvqnLlyrp48aLOnDmT6rXxzJkzaR7v1157zbWtxWJRwYIFdfPNN6fY0yut67jzdza1iUovX74su92uOXPmaM6cOcked/4u+eP3FcYjXAMpuOuuu3TXXXcpJiZGW7Zs0cKFC/XGG2+oVq1aycbhSFLBggV15syZZMudywoXLqySJUvqwoULstvtbgH73Llz6dazZs0avfXWWxo6dKjatWvn+gP+wgsvJOti7A+e7E9mcF4Ez549q9tuuy3ZazsDv8lkcpvYRkr6pP5GDz30kB566CFduXJFP/30k+bMmaOhQ4fqjjvuUIECBSQlTXqW0ocZN998c5q1lihRwqM3GunJnz+/TCaT26QmUtKEMFu2bFGtWrUUFhamBg0aaNiwYSk+h/PDooz+3gKA0RISErR161bVrVtXFovF9bd54sSJKl++fLL1UwqMqTGbzercubM6d+6sc+fOacOGDXr33Xf1/PPPa9OmTR49h8lkUtu2bfXRRx/piSee0OHDh13zdqQlrQ/4U1OwYEFduHBBiYmJbuHU+YGCp9fesLAwmUwmnT17NtljZ86cUaFChTJUV0ZkZB/Su44HBgaqX79+6tevn/777z/98MMPmjVrlgYPHqwvvvhCYWFhKl++vCZOnJhiLWXKlEmz1ltvvdUv13Hn7+z58+fd3rv8999/+vfff1W9enWZTCZ169YtxQ/0nR8Spff7mlbDELIPZgsHbjB+/Hi1b99eDodDISEhatGihYYPHy5Jrtkjb2x9rl+/vnbt2pVs9s/Vq1erePHiKleunBo0aKCEhAStW7fO9bjD4dB3332Xbk07d+5UgQIF1LNnT1ewvnr1qnbu3Ok2+6a/eLI/maFWrVoKDAzU559/7rZ8x44d+u+//1S3bl1JSZ+gX7hwQXFxca51du7c6bbNwIEDXd3HwsLC9OCDD6p///5KSEjQ6dOnVa9ePUlJtxOrUaOG6+v8+fOaNm2a65PozJYvXz5VqVJFP/zwg9vyjRs3qnfv3jp9+rQaNGigw4cPu94IOL9WrVqlTz/9VBaLxaPfWwDIbpYsWaIzZ87oiSeekJR0HbBarTp16pTb37uAgABNnjw5QzNad+rUSW+88YakpF5i7dq1U+fOnXX58mW3O0c43dja6tSuXTtdvnxZ48ePV4UKFVzje/3N+T7h66+/dlvuHP5zxx13SEr+HuRGoaGhql69ur766iu3AHvlyhWtX7/e9TyZwdN9yJ8/v06ePOm2zvXX8djYWN1///2aP3++pKQPvDt37qzWrVu7rmkNGjTQiRMnVLRoUbfflU2bNmnu3Lmpnk9/q1mzpqxWa7Lr+Pz58zVo0CCFhoaqatWq+vvvv93qrFSpkqZPn+6660xGf1+RPdFyDdygUaNG+uCDDzRixAi1adNGNptNc+fOVaFChVzdcgoUKKBdu3Zp8+bNqlq1qrp3767Vq1erW7dueu6551SoUCGtXLlSW7Zs0Ztvvimz2az69eurSZMmevnll3X27FndfPPN+vTTT7V///50J5uqWbOmFi9erLfeekstWrTQ6dOnNW/ePJ09ezbNLk/e8mR/MkOhQoXUu3dvzZw5U1arVS1atNCxY8c0bdo0VaxYUW3btpWUNJ7qo48+0ssvv6wOHTrowIED+uCDD9wupI0aNdIrr7yi8ePHq1mzZrp8+bJmzJih8uXLq3LlyrJarWrTpo1GjRql48ePq3r16jp8+LCmTJmiMmXKpNhiklkGDBigfv36adCgQXr00Ud19uxZTZ48Wffee69uv/12devWTatWrVK3bt30zDPPqHDhwvryyy+1dOlSvfTSS679Te/3FgCMEhUVpd27d0tK6rZ94cIF/fTTT1qyZInatGnjGq9auHBh9ezZU9OmTVNUVJQaNmyoU6dOadq0aTKZTKpcubLHr1m/fn3Nnz9fxYoVU506dXTq1Cl98MEHatCggYoUKZKspdQ5N8n69etVsGBB12vdfPPNuvPOO/XTTz9pyJAhfjgaKWvWrJkaNmyokSNH6tSpU6pcubK2bdumOXPmqG3btq65TgoUKKCzZ89qw4YNqlKlSoqzfA8ePFg9evRQ79699eSTT8pms+n9999XfHy813fD8Oc+tGjRQu+9957ee+891apVS+vWrdOWLVtczxMcHKxq1appxowZslqtrluiffbZZ7r//vslJX3o8fHHH6t79+7q27evbrrpJv3888+aM2eOunTpkuIwrcxQpEgRPfXUU1qwYIECAwPVoEED/frrr1q8eLGGDRsms9nsmjx18ODBatOmjRITEzV//nz9+uuv6t+/v6T0f1+RMxCugRvcfffdmjhxoubPn6/nnntOJpNJd9xxhxYuXOjqStW5c2f9/vvv6tWrl8aNG6eHH35Yixcv1qRJk/TGG2/IZrOpcuXKmjVrlu655x7Xc0+ZMkVvvfWWJk2apISEBN1zzz164okntHLlyjRratu2rY4dO6bly5dr0aJFKlmypO6++249+eSTGjVqlA4dOqQKFSr47RgUL17co/3JDM8//7yKFSumjz/+WEuWLFGhQoX0wAMPaODAga4xT02aNNHw4cP10Ucf6ZtvvnFdgDt16uR6nk6dOslmsykyMlKLFi1ScHCwGjdurKFDh7ouuOPGjdN7773nmjClaNGiatWqlQYOHJhln3hLSW8y3n33Xc2YMUPPPvusihQpoocfftg1MZrzHrCTJk3Sq6++qri4OJUvX15jx451TSTjye8tABhl7969evzxxyVdm6fi9ttv16uvvqrHHnvMbd2BAweqePHiWrRokebOnauCBQuqcePGGjRoUIZmTn7hhRcUGBio5cuXa+bMmQoLC1NERIQGDx6c4vqVKlXSQw89pE8++UQ//vijWy+q5s2ba/PmzXrkkUe82HvPOO9W8c4772jBggU6f/68ypQpo0GDBrndcaJdu3basGGDnn32WQ0YMCDF8emNGzfWBx98oHfeeUeDBg1SYGCg6tWrp/Hjx3s8oVhm7kOfPn10/vx5zZs3TzabTc2bN9fYsWPdJpx9/fXXNXXqVM2fP19nzpxR0aJF1aFDB73wwguSklroP/nkE02aNElvv/22rly5otKlS2vw4MF65plnMm0fUzJ06FAVLVpUkZGRmjt3rsqUKaNRo0a53pc0bdpU8+bN04wZMzRgwABZrVZVq1ZNH3zwgWum9oz+viJ7Mjmuv7s5gExz/Phx7d69W/fcc4/bLKEDBgzQ0aNH9dlnnxlYHQAASE3Pnj0VFBSkmTNnGl0KgGyMlmsgi5jNZo0YMUL33HOPOnToIIvFoh9//FFr167VuHHjjC4PAADcYObMmTp8+LB++uknLVq0yOhyAGRztFwDWWjLli2aOXOm9u3bp4SEBFWoUEHdu3dPdl9nAABgvPbt2+vff/9Vv379sryrMYCch3ANAAAAAICPuBUXAAAAAAA+IlwDAAAAAOAjwjUAAAAAAD4iXAMAAAAA4CNuxeWFXbt2yeFwyGq1Gl0KACAHs9lsMplMqlOnjtGl5DpcqwEA/pCRazUt115wOBzyZpJ1h8Oh+Ph4r7aFf3AOjMXxNx7nwFg3Hn9vrydIH9fqnItzYCyOv/E4B8by5VpNy7UXnJ+C16hRI0PbRUdHa9++fapYsaJCQ0MzozSkg3NgLI6/8TgHxrrx+O/Zs8foknItrtU5F+fAWBx/43EOjOXLtZqWawAAAAAAfES4BgAAAADAR4RrAAAAAAB8RLgGAAAAAMBHhGsAAAAAAHxEuAYAAAAAwEeEawAAAAAAfES4BgAAAADAR4RrAAAAAAB8RLgGAAAAAMBHhGsAAAAAAHxEuAYAAAAAwEeEawAAAAAAfES4BgAAAADAR4RrAAAAAAB8RLgGAAAAAMBHhGsAAAAAAHxEuAYAAAAAwEeEawAAAAAAfES4zmE6DFurDsPWGl0GAABIQ+SeSKNLAABksQCjC0DGRMcmGF0CAABIh81uM7oEAEAWo+UaAAAAAAAfEa4BAAAAAPAR4RoAAAAAAB8RrgEAAAAA8BHhGgAAAAAAHxGuAQAAAADwEeEaAAAAAAAfEa4BAAAAAPAR4RoAAAAAAB8RrgEAAAAA8BHhGgAAAAAAHxGuAQAAAADwEeEaAAAAAAAfEa4BAAAAAPAR4RoAAAAAAB9lq3D93nvvqWvXrm7L9u3bpy5duqh27dqKiIjQwoUL3R632+165513dNddd6l27drq1auXjh49mqHnAAAAnuFaDQBAyrJNuP7kk080depUt2UXLlxQ9+7dVbZsWS1fvlzPPvusJk6cqOXLl7vWmTVrlhYtWqQxY8YoMjJSdrtdPXv2VHx8vMfPAQAA0se1GgCA1Bkerk+dOqW+fftq4sSJKl++vNtjS5culdVq1euvv64KFSqoffv26tatm95//31JUnx8vObPn68BAwaoefPmqly5sqZMmaKTJ09q7dq1Hj1HTtB11DqjSwAA5GFcq9MXuSfS6BIAAAYzPFz/8ccfslqtWr16tWrVquX22I4dO9SgQQMFBAS4ljVq1EhHjhzR2bNn9eeff+rq1atq3Lix6/ECBQqoatWq2r59u0fPkRPExCUYXQIAIA/jWp0+m91mdAkAAIMFpL9K5oqIiFBERESKj508eVK3336727ISJUpIkk6cOKGTJ09Kkm666aZk6zgfS+85ihUr5lXdDodD0dHRGdomJibG7V9PBVrN6jzyO835352y2x2SlOHXRhJvzwH8g+NvPM6BsW48/g6HQyaTyciSPMK12gOJ0se7Pla78HaSpARbAtdqL/F3ylgcf+NxDozly7Xa8HCdltjYWAUGBrotCwoKkiTFxcW5djildS5duuTRc3jLZrNp3759Xm175MgRj9c1m82KiY5RbHyi/vrrL0VHX5Uk7d+/X3a73bWO83t4JiPnAP7H8Tce58BY1x//G69ROQ3X6qTr8IULF2Sz27Rf+yVJ58+f51rtI/5OGYvjbzzOgbG8uVZn63AdHBzsmuzEyXmRDQ0NVXBwsKSk8VzO753rhISEePQc3rJarapYsWKGtomJidGRI0dUvnx5V32eCAk9J5MlUZUqVVJo6DFJUnh4uOvxXm/+rDn/uzNDteRV3p4D+AfH33icA2PdePwPHjxodEk+41qd5Pc/f1eCPcF1fd6duNvtWr1i/wq1q9IuQ7XkVfydMhbH33icA2P5cq3O1uG6VKlSOn36tNsy588lS5ZUQkKCa1nZsmXd1nFe0NJ7Dm+ZTCavL/ghISEZ2tZsNslsTno9szmpS8L128fF231685EXZfQcwL84/sbjHBjLefxzQpfw9HCtThJgDZDs167PAdYAt+0dZgf/5zKIv1PG4vgbj3NgLG+u1YZPaJaW+vXra+fOnUpMTHQt27Jli2699VYVLVpUlStXVv78+bV161bX45cvX9bevXtVv359j54DAAB4j2s1AABJsnW4bt++vaKiovTyyy/r4MGDWrFihRYsWKA+ffpISur73qVLF02cOFHff/+9/vzzT7344osqVaqU7rvvPo+eAwAAeI9rNQAASbJ1t/CiRYtq7ty5Gjt2rNq2bavixYtr2LBhatu2rWudAQMGKCEhQSNHjlRsbKzq16+vefPmyWq1evwcAADAO1yrAQBIkq3C9VtvvZVsWc2aNbVkyZJUt7FYLBo6dKiGDh2a6jrpPQcAAPAM12oAAFKWrbuFAwAAAACQExCuAQAAAADwEeEaAAAAAAAfEa4BAAAAAPAR4RoAAAAAAB9lq9nCkbrgIIt6jdlgdBkAACAVAeYAffTrRwow8/YKAPIi/vrnIDHxCUaXAAAA0mBLtMnhcMhkMhldCgAgi9EtHAAAAAAAHxGuAQAAAADwEeEaAADAj777+zt9uvdTxSfGG10KACALEa5zoJAgi7qOWmd0GQAA4AaX4y5r79m9On7luKZvmW50OQCALES4zqFi4pjcDACA7OafS/+4vj919ZSBlQAAshrhGgAAwE+OXDzi+v5czDnjCgEAZDnCNQAAgB/EJ8br+JXjrp/PRROuASAvIVwDAAD4wZGLR2R32GUxWSRJZ2POyuFwGFwVACCrEK4BAAD84O8Lf0uSqhavKpNMik2IpWs4AOQhhGsAAAA/OH31tCSpXMFyKhRcSJJ06PwhAysCAGQlwjUAAIAf2BJtkqTggGAVCy0mSTp0gXANAHkF4RoAAMAP4u3xkqRAS6CKhhaVRMs1AOQlhGsAAAA/iE+4Fq6LhxaXJB08f9DIkgAAWYhwDQAA4CO7w64ER4IkyWq2ulqu/77wNzOGA0AeEWB0AQAAADldfGK86/tAS6BCzCGSpJiEGF21XTWqLABAFqLlGgAAwEfOcG02mWUxW2S1WBVoCZQknY0+a2RpAIAsQrgGAADwkTNcOwO1JIVaQyVJ56K51zUA5AWEawAAAB85w7XVbHUty2fNJ0k6F0O4BoC8gHANAADgI1e4tlwL186W6/Mx5w2pCQCQtQjXAAAAPrIl2iRJgeZr3cJdLdd0CweAPIFwDQAA4KOUWq5DrEkzhjOhGQDkDYRrAAAAH6U0oRljrgEgbyFcAwAA+CjennxCs9BAxlwDQF5CuAYAAPBRSt3CGXMNAHkL4RoAAMBHad3n+nzMeTkcDkPqAgBkHcI1AACAj5yzhV/fLTwkIGlCs0RHomISYgypCwCQdQjXOVyvMRuMLgEAgDwvpZZri9miQsGFJEnRtmgjygIAZCHCdQ4XE59gdAkAAOR5cYlxktzHXEtS0ZCikgjXAJAXEK4BAAB85OwWHmgOdFteNJRwDQB5BeEaAADARynNFi5da7m+arua5TUBALIW4RoAAMBHqYZrWq4BIM8gXAMAAPjINaHZjd3CnWOu4wnXAJDbEa5zqOAgCzOFAwCQDTgcjhRbrgPMATp0/pAkuoUDQF5AuM7BmCkcAADjxSXGySGHJPdbcUlSUECQJLqFA0BeQLgGAADwwfXB2Wp2H3MdEhAiSYpLiMvSmgAAWY9wDQAA4ANnuLaarTKZTG6PBQcES5JiE2OzvC4AQNYiXAMAAPjganzSeOobu4RL17qFJ9gTXPfCBgDkToRrAAAAHzhbrlMM15Yg1/eX4y5nWU0AgKxHuM7mmBEcAIDsbe3BtZKS3+NakkwmkytgX4m/kqV1AQCyFuE6m2NGcAAAsrfohNRbrqVr466vxBGuASA3I1wDAAD4wHmP69TCtXPcNd3CASB3I1wDAAD4wDlRWaA5lZZry/+3XNMtHAByNcI1AACAD1wt1wG0XANAXka4BgAA8EFcYpyk1FuuneGaMdcAkLsRrgEAAHzg6hae2oRmdAsHgDyBcA0AAOADmz0pXKd0Ky7p2mzhdAsHgNyNcA0AAOCDRHuiJMlitqT4ON3CASBvIFwDAAD4IMGRIEmymNIO17RcA0DuRrgGAADwgd1ul5R6yzVjrgEgbyBcAwAA+CDR8f/dwlNpuXaOuaZbOADkboRrAAAAH6QXrukWDgB5A+EaAADAB+lNaOZsub5qu+paFwCQ+xCuAQAAfOAK16m1XFuCXN8z7hoAci/CNQAAgA9c3cJTabm2mC2ympPugR0VH5VldQEAshbhGgAAwAfpjbmWGHcNAHkB4RoAAMAH6Y25lq51DSdcA0DuRbgGAADwQUZarrkdFwDkXoRrAAAAH3jSch1sSZoxnJZrAMi9CNcAAAA+yFDLNbOFA0CuRbgGAADwksPhkN1hl5TOmGu6hQNArke4BgAA8JLNbnN9n2bLNROaAUCuR7gGAADwUnxivOt7syn1t1XBAUljrukWDgC5F+EaAADASwn2BNf3ntyKKyo+KtNrAgAYg3ANAADgJWfLtUmmNFuuAy2BkhhzDQC5WY4I1wkJCZo2bZpatGihOnXqqHPnztq9e7fr8X379qlLly6qXbu2IiIitHDhQrft7Xa73nnnHd11112qXbu2evXqpaNHj2bxXgAAkHvl1Wu1LTFpzHVardbStQnNaLkGgNwrR4Tr2bNna9myZRozZoxWrlypW2+9VT179tTp06d14cIFde/eXWXLltXy5cv17LPPauLEiVq+fLlr+1mzZmnRokUaM2aMIiMjZbfb1bNnT8XHx6fxqgAAwFN59VrtnNAsrcnMJLqFA0BekCPC9XfffaeHHnpITZs2Vbly5TRixAhduXJFu3fv1tKlS2W1WvX666+rQoUKat++vbp166b3339fkhQfH6/58+drwIABat68uSpXrqwpU6bo5MmTWrt2rcF7BgBA7pBXr9Wetlw7u4UTrgEg98oR4bpo0aL64YcfdOzYMSUmJmrJkiUKDAxU5cqVtWPHDjVo0EABAQGu9Rs1aqQjR47o7Nmz+vPPP3X16lU1btzY9XiBAgVUtWpVbd++3YjdAQAg18mr12rnmOt0W67/v1t4XGKcK5ADAHKXgPRXMd7LL7+sF154Qffcc48sFovMZrOmT5+usmXL6uTJk7r99tvd1i9RooQk6cSJEzp58qQk6aabbkq2jvMxbzgcDkVHR2dom5iYGLd/PWG3O5L97Py6fllGa8mrvDkH8B+Ov/E4B8a68fg7HA6ZTCYjS/KbvHqtjopOaok2m8xKsCXIZrNJZslkdz+vZvu19owzl86oUHChDNWVl/B3ylgcf+NxDozly7U6R4TrgwcPKiwsTDNnzlTJkiW1bNkyDRkyRB9//LFiY2MVGBjotn5Q0P9/OhwX5zooKa1z6dIlr2uy2Wzat2+fV9seOXLEo/XMZrNiomPcTmZMTIwcdotMjmv7ExOXoP3798tut3tVT17k6TlA5uD4G49zYKzrj/+N16ecKq9eqw9FHZIkmRwmXbh4QVfjrspqtirQ6r4vtkSbgsxBirPH6dd9v6pEcAmv6spL+DtlLI6/8TgHxvLmWp3tw/WJEyc0ePBgLViwQPXq1ZMk1ahRQwcPHtT06dMVHBycbLKTuLg4SVJoaKiCg4MlJY3ncn7vXCckJMTruqxWqypWrJihbWJiYnTkyBGVL1/e49cOCT3n/nO8SSFBFgUHX3fqzIkKDw/PUC15lTfnAP7D8Tce58BYNx7/gwcPGl2SX+Tla/Wl45ek/ZI1wKrChQoryBYkq9kqq8Xqtl6CPUEFThXQmegzKlm2pCoXrZyhuvIS/k4Zi+NvPM6BsXy5Vmf7cP3rr7/KZrOpRo0abstr1aqljRs36uabb9bp06fdHnP+XLJkSSUkJLiWlS1b1m0dXwKpyWRSaGioV9uGhIR4vK3ZbEr2s/Pr+mXe1pJXZeQcwP84/sbjHBjLefxzS5fwvHytNluTunsHmAMUYA2QVdak7y03vMWyS2FBYToTfUYJ5gT+/3mAv1PG4vgbj3NgLG+u1dl+QrNSpUpJkvbv3++2/MCBAypfvrzq16+vnTt3KjEx0fXYli1bdOutt6po0aKqXLmy8ufPr61bt7oev3z5svbu3av69etnzU4AAJCL5eVrtWu28HQmNJOk/IH5JTFjOADkVtk+XNesWVN33HGHhg8fri1btujIkSOaOnWqNm/erN69e6t9+/aKiorSyy+/rIMHD2rFihVasGCB+vTpIympf3yXLl00ceJEff/99/rzzz/14osvqlSpUrrvvvsM3jsAAHK+vHytdt3nOp1bcUnXwvWVuCuZWhMAwBjZvlu42WzW7NmzNXXqVL300ku6dOmSbr/9di1YsEC1atWSJM2dO1djx45V27ZtVbx4cQ0bNkxt27Z1PceAAQOUkJCgkSNHKjY2VvXr19e8efNktVpTe1kAAOChvHyt9vRWXBIt1wCQ22X7cC1JBQsW1CuvvKJXXnklxcdr1qypJUuWpLq9xWLR0KFDNXTo0MwqEQCAPC2vXqsT7EnjxT1puQ4LDJNEuAaA3CrbdwsHAADIrmi5BgA4Ea4BAAC85JrQLANjrgnXAJA7Ea4BAAC85JrQzIOW67AguoUDQG5GuAYAAPCSs1u42Zz+WypargEgdyNcAwAAeMmb+1xfiedWXACQGxGuAQAAvOTNfa5puQaA3IlwDQAA4CVvWq4J1wCQOxGuAQAAvOS6FVcGW64dDkem1gUAyHqEawAAAC8l2BMkZazlOsGeoLjEuEytCwCQ9QjXAAAAXnK1XHsQrkOtoTKbkt560TUcAHIfwjUAAICXMtIt3GwyK581nyTCNQDkRoRrAAAAL7m6hXsQrqXrbscVx+24ACC3IVxnY73GbDC6BAAAkIbjl49L8qxbuCSFBYVJouUaAHIjwnU2FhOfYHQJAAAgDQkOzyc0k7gdFwDkZoRrAAAALyXaEyV53i2cMdcAkHsRrgEAALyU6Pj/cJ3Blusr8Yy5BoDchnANAADgpYy2XDPmGgByL8I1AACAl7xtuSZcA0DuQ7gGAADwkrPl2mz27C0Vt+ICgNyLcA0AAOAlZ8t1gCnAo/XDAukWDgC5FeEaAADAS66Wa1PGWq6v2q5mWk0AAGMQrgEAALzkGnPt4YRmjLkGgNyLcA0AAOAFh8Mhu8MuSQowe9gt/P9nC2fMNQDkPoTrXKTrqHVGlwAAQJ5hs9tc33vaLXzDkQ2SaLkGgNyIcJ2LxMQlGF0CAAB5hi3xWrj29FZczvWu2q66Wr0BALkD4RoAAMAL17dcezrmOiggSJJkd9gVbYvOlLoAAMYgXAMAAHjB2XJtksnjbuEWk8U1Ppuu4QCQuxCuAQAAvBCfGC/J81ZrSTKZTMwYDgC5FOEaAADAC85u4Z6Ot3YiXANA7kS4BgAA8IKzW3hGWq4lKSww6XZchGsAyF0I1wAAAF5wdQun5RoAIMI1AACAV+gWDgC4HuE6FwkOsqjrqHVGlwEAQJ7gTbfwAHOATl09JUm6EnclU+oCABiDcJ3LxMQluL4naAMAkHlcLdcZHHMdYLp2K67IPZF+rwsAYAzCdS4QHGRRrzEbki2/PmgDAAD/ysiY6wBzgD7941NJUqAlUFJSuHYGdABAzke4ziVi4gnSAABkpQR70rXX0zHXziAdFBAkiTHXAJDbEK4BAAC84Gy5Npsz9nbK2XJ9JZ4x1wCQmxCuAQAAvOAM184x1J66vls4ACD3IFwDAAB4wdktPKMt10EWuoUDQG6UsY9ake0FB1nUYdhaBQdlbOZSAACQMRmZ0Ox6zpbrM1fP+L0mAIBxCNe5UHRsghwOh0wmk9GlAACQa3lzn2vpWst1bEKs32sCABiHbuEAAABecN3n2suWa5vdJrvD7ve6AADGIFwDAAB4wTXm2uTdbOHSta7lAICcj3ANAADghYze59rJYrYowJw0Mi8uIc7vdQEAjEG4BgAA8IK3LdfStdZrWq4BIPcgXAMAAHjB21txSdcmNYtLpOUaAHILwjUAAIAX/NFyTbdwAMg9CNcAAABe8HbMtXSt5Zpu4QCQexCuAQAAvOBLy3VQAN3CASC3IVwDAAB4wZaYdJ9rn7qFE64BINcgXAMAAHjBp5ZrZ7fwBLqFA0BuQbgGAADwgk9jrukWDgC5DuEaAADAC36ZLZxwDQC5BuEaAADAC66Wa7MPs4XTLRwAcg3CNQAAgBdouQYAXI9wDQAA4AVuxQUAuB7hGgAAwAv+mC08LoFwDQC5BeEaAADACz7NFu4cc53ImGsAyC0I1wAAAF7wx5jrREcirdcAkEt4Fa4///xzxcfzSSsAAMi7/BGuJSkqPspvNQEAjONVuB42bJiaNGmiV199Vb/99pu/awIAAMj2XOHanPG3UyaTydU1/Er8Fb/WBQAwhlfhet26dXrmmWe0ZcsWPf7442rVqpXmzZunM2fO+Ls+AACAbMmXMdfStRnDabkGgNzBq3BdqlQp9evXT19//bU++eQT1atXT3PmzFGLFi3Ut29frV27VgkJCf6uFQAAINvwpVu4dG1SM8I1AOQOAb4+Qd26dVW3bl099thjmjBhgtavX6/169erWLFievrpp/XMM8/IYvHuE10AAIDsytdw7Rx3TbgGgNzBp3B9/PhxrVq1SqtWrdK///6rsmXLatCgQWrevLnWr1+vmTNn6uDBgxo/fry/6gUAAMgWfG65pls4AOQqXoXrZcuWadWqVfrll18UFBSkBx54QGPHjlW9evVc69x+++26cOGCIiMjCdcAACDX8XnMtXNCszgmNAOA3MCrcD1q1CjVqlVLr776qlq1aqX8+fOnuF54eLgef/xxnwoEAADIjmi5BgBcz6tw/fnnn6tixYpKTEx0jaeOjY2VzWZTWFiYa71HH33UL0UCAABkJw6HQ4mOREm+T2jGrbgAIHfw6mpQvnx5vfLKK+rYsaNr2S+//KLGjRtr/PjxstvtfisQAAAgu3G2Wku0XAMAknh1NXjnnXe0evVqPfTQQ65lVatW1ZAhQ7R06VLNnTvXbwUCAABkN9eHa4uZMdcAAC/D9Zo1azR8+HB1797dtaxQoULq1q2bXnzxRX366ad+K9Bp5cqVatWqlWrUqKHWrVvrq6++cj127Ngx9enTR3Xr1lXTpk01depUJSYmum3/ySef6J577lHNmjX15JNPau/evX6vEQCA7OLUqVNZ/pp56Vrtz5brq7arfqkJAGAsr64GFy5c0C233JLiY7fddptOnjzpU1E3WrVqlV5++WV17txZX3zxhR566CENGjRIu3btks1mU48ePSRJkZGRevXVV7V48WLNnDnTtf1nn32mCRMm6IUXXtCKFStUpkwZde/eXefPn/drnQAAZBctWrRQz5499eWXXyo+Pj7TXy+vXavdWq6ZLRwAIC/D9W233aZvvvkmxcfWrVuncuXK+VTU9RwOh6ZNm6annnpKnTt3VtmyZdWvXz/deeed2rZtm7755hv9999/mjBhgm6//Xbde++9GjRokD788EPXm4l3331XXbp0UZs2bVSxYkW9+eabCgkJ0bJly/xWJwAA2cm4ceNkt9s1ZMgQNW3aVK+99pr27NmTKa+VF6/VznBtkkkmk8mr53CGa8ZcA0Du4NVs4U899ZRGjBihixcv6t5771XRokV1/vx5/fDDD/rqq680btw4vxV4+PBhHT9+XA8//LDb8nnz5kmSXn31VVWrVk0FCxZ0PdaoUSNFRUVp3759KlOmjI4cOaLGjRu7Hg8ICFC9evW0fft29enTx2+1AgCQXTzyyCN65JFHdOrUKX322WdatWqVFi9erIoVK6pdu3Zq06aNihUr5pfXyovXal9vwyVd6xbObOEAkDt4Fa4fffRRXb16VbNmzdLatWtdywsXLqxRo0b59RZchw8fliRFR0erR48e2rt3r8qUKaN+/fopIiJCJ0+eVKlSpdy2KVGihCTpxIkTCghI2sWbbrop2Tp//vmn3+oEACA7KlmypPr27au+ffvqjz/+0FtvvaW3335bkydPdnUdr1Wrlk+vkRev1X4J1//fcn01/qrsDrtPzwUAMJ5X4VqSOnfurCeffFKHDx/WxYsXVaBAAd12220ym/17YYiKSuoqNXz4cD333HMaMmSIvvnmG/Xv318ffPCBYmNjVaBAAbdtgoKSLlZxcXGKiYmRJAUGBiZbJy4uzuu6HA6HoqOjM7SNsxbnv+mx2x0pLnN+pbWd3e5QSLBFnUd+pzn/uzNDdeZmGT0H8C+Ov/E4B8a68fg7HA6vuxRnxI4dO7Rq1Sp9++23unz5spo0aaLmzZtr/fr1euKJJzRs2DB169bN6+fPi9fqK9FJrc1mk1kJtmvjr202m2SWTPbUz6tzHedYbYccOnfpnPIF5stQrbkVf6eMxfE3HufAWL5cq70O15JkMpl02223+fIU6bJarZKkHj16qG3btpKkKlWqaO/evfrggw8UHBycbKIW54U4NDRUwcHBkpTiOiEhIV7XZbPZtG/fPq+2PXLkSLrrmM1mxUTHJDuRMTExctgtMjkCU9nSfZ2YuATt37+fe4/fwJNzgMzD8Tce58BY1x//GwOlv/zzzz9atWqVVq9erePHj6t06dLq2rWr2rVr52oh7tKli4YMGaLZs2f7FK7z4rX6WPQxSUljri9cvOBafjXuqqxmqwKtqZ/X69cxyyy77Pr1z19V2FrYq1pzK/5OGYvjbzzOgbG8uVZ7Fa7Pnz+vsWPHav369UlBzuHeimoymfx2+4ySJUtKkm6//Xa35RUrVtT69evVoEEDHThwwO2x06dPu7Z1voE4ffq0KlSo4LaO87m9YbVaVbFixQxtExMToyNHjqh8+fIevVkICT2XfFm8SSFBFgUHp37q3NYxJyo8PDxDdeZmGT0H8C+Ov/E4B8a68fgfPHgw017r/vvvV1BQkO69916NGTPGbTzz9W677Taf38DlxWu1+ZxZ2icFmANUuNC1UBxkC5LVbJXVYk112+vXCQoIUkxCjEreUlIVCldIdZu8hL9TxuL4G49zYCxfrtVehevXX39dP/zwg1q3bq1SpUr5vSv49apVq6Z8+fLp119/Vb169VzLDxw4oLJly6p+/fpauXKloqKilD9/fknSli1blC9fPlWuXFmBgYG69dZbtXXrVtcbi4SEBO3YsUNPPvmk13WZTCaFhoZ6tW1ISIhH25rNybsfmM0m11da213/5W2duZmn5wCZg+NvPM6BsZzHPzO7hI8aNUpt2rRRWFhYmuv1799f/fv39+m18uK1OuBK0lsos9msAOu1t1NWWRVgDlCAJfW3WNevExwQrJiEGCWYE/g/eQP+ThmL4288zoGxvLlWexWuN27cqP/97396/PHHvdk8Q4KDg9WzZ0/NnDlTJUuWVM2aNfXFF19o06ZNWrBggWrXrq2pU6dq4MCBGjJkiI4dO6bJkyfrmWeecTXfP/PMMxo7dqzKlSunGjVq6P3331dsbKw6dOiQ6fUDAGCEb775Ro0aNUoxXP/5558aOnSo1qxZ45fXyovXaueEZt7e49qJ23EBQO7hVbi2Wq265ZZb/F1Lqvr376+QkBBNmTJFp06dUoUKFTR9+nQ1bNhQkjR37ly99tpr6tixowoWLKgnn3zS7VP4jh076sqVK5o6daouXryo6tWr64MPPlCRIkWybB8AAMhsO3bscA3V2rZtm7Zv367z588nW++HH37Q0aNH/fraee1a7Y/ZwiUpMCDpwwVuxwUAOZ9X4bply5b6/PPPdeedWTcLdffu3dW9e/cUHytXrpzmz5+f5vY9evRQjx49MqM0AACyhWXLlmnVqlUymUwymUx67bXXkq3jDN8PPfSQ318/L12r/RWugy1Jk7nRcg0AOZ9X4bpq1aqaOnWqjh49qlq1arlm+XQymUx69tln/VIgAADwzMiRI9W+fXs5HA49/fTTGj16dLIJvcxmswoUKKBKlSoZVGXuYLPbJPmx5TqOlmsAyOm8ntBMkrZv367t27cne5xwDQBA1gsLC1ODBg0kSQsXLnRNNAb/81fLNWOuASD38Cpc//nnn/6uAwAA+GjlypW6++67VbhwYf3333/677//0lz/0UcfzZrCciG/TWgWQLgGgNzCq3B9vStXruj06dO65ZZbZLFYZLH4dpEBAADeGTFihJYuXarChQtrxIgRaa5rMpkI1z5wtVz7eDtSWq4BIPfwOlxv3bpVEydO1O+//y6TyaRly5Zpzpw5KlWqVLoXdAAA4H/ff/+9ihcv7voemYeWawDAjbz6uHXz5s3q0aOHgoODNWTIENfMo5UrV9bChQv1wQcf+LVIAACQvtKlS7vuG126dOlkXyVLllS+fPlcP8N7/h5zza24ACDn8+qKMHXqVN1zzz366KOP9PTTT7vCdd++fdWzZ08tW7bMr0UCAICMSUhI0IwZM7RmzRpJST3OmjRposaNG+vpp5/WpUuXDK4wZ2NCMwDAjby6Iuzbt0/t27eXlDRm63pNmjTR8ePHfa8MAAB47Z133tHs2bN1+fJlSdIbb7yhQoUK6aWXXtK///6rSZMmGVxhzua3cP3/3cK5FRcA5HxeXRHCwsJ05syZFB87ceKEwsLCfCoKAAD45osvvtCgQYPUuXNnHTp0SH/99Zf69eunp556Si+++KLWrVtndIk5mt/GXNNyDQC5hlfh+p577tGUKVO0Z88e1zKTyaSTJ0/q3XffVfPmzf1VHwAA8MLp06dVq1YtSdL69etlNpvVrFkzSVKpUqV05Qotpb7wd8t1XGKcbIk2n+sCABjHqyvC4MGDVbRoUXXs2NEVpAcNGqQHHnhAJpNJgwYN8meNAAAgg0qUKKFjx45JktatW6cqVaqoSJEikqRdu3apVKlSRpaX4/nrVlyBlkDX97ReA0DO5tWtuAoWLKhly5Zp5cqV2rJliy5evKiwsDB17dpV7dq1U0hIiL/rzHN6jdlgdAkAgBzsoYce0rhx47RmzRrt3LlTo0ePliSNHTtWixcvVt++fQ2uMGfzV8u12WRWoDlQ8fZ4XYm/osIhhf1RHgDAAF7f5zowMFAdO3ZUx44d/VkP/l9MfILRJQAAcrCBAwcqNDRU27dv1+DBg/Xkk09Kkvbs2aNnnnlG/fr1M7jCnM1fY64lKTAgUPHx8bRcA0AO51W4XrlyZbrrPProo948NQAA8AOTyaQ+ffqoT58+bssjIyMNqih38VfLtZQ0qVmUopgxHAByOK/C9YgRI1JcbjKZZLFYZLFYCNcAABjsypUr2rJli6Kjo+VwOJI9zrXae/4M185x17RcA0DO5lW4/v7775Mti46O1o4dOzRnzhzNnDnT58IAAID3fvzxRw0YMEAxMTEpPm4ymQjXPvBry3UAt+MCgNzAq3BdunTpFJdXqlRJNptNY8aM0aJFi3wqDAAAeG/SpEm67bbb9NJLL6lkyZI+z2oNd87bZvljzLXzXtdX4ukWDgA5mdcTmqUmPDxckyZN8vfTAgCADDh06JBmzZqlevXqGV1KruTvMdeSdDX+qs/PBQAwjl8/xo6Pj9enn36qokWL+vNpAQBABt18882KiqKbcWbx132upaTZwiVargEgp/Oq5ToiIkImk8ltmd1u14ULFxQXF6fhw4f7pTgAAOCdPn36aObMmapRo4bKlCljdDm5jj9vxeVsuWbMNQDkbF6F6wYNGiQL15KUP39+tWjRQnfeeafPhQEAAO+tWbNGp06dUsuWLVWkSBEFBwe7PW4ymfTdd98ZVF3OlxndwrkVFwDkbF6F67feesvfdQAAAD8qVaqUSpUqZXQZuVaiI1ESs4UDAK7xKlz/999/GVr/5ptv9uZlAACAl8aNG2d0CbmaP7uFO+9zzZhrAMjZ/DbmOi379u3z5mUAAICPDh06pE2bNun06dPq2rWrjh49qsqVKyt//vxGl5ajMVs4AOBGXoXrqVOn6pVXXlG1atXUpk0blSxZUhcuXNC6dev01VdfqV+/fqneCxsAAGQ+u92u0aNHa/ny5XI4HDKZTHrwwQc1a9Ys/fvvv/r444/pNu4Dv4brAO5zDQC5gVfhetWqVWrRokWysdetWrVS0aJF9csvv+i5557zS4EAACDjZs2apTVr1uiNN95Q8+bN1aRJE0nS0KFD9eyzz2rKlCkaP368wVXmXH69Fdf/dwu/Gn/V9UEIACDn8eqKsHnzZj300EMpPtasWTPt3LnTp6IAAIBvli9frgEDBqh9+/YqVKiQa3mVKlU0YMAAbdq0ybjicoHMuBVXoiNRMQkxPj8fAMAYXoXrwoUL69dff03xsc2bN6tkyZI+FQUAAHxz9uxZValSJcXHSpYsqcuXL2dxRbmLP7uFB5gDXCGd23EBQM7lVbfwDh06aPbs2YqJiVFERISKFCmis2fP6uuvv9bixYs1atQof9cJAAAyoFy5ctqwYYPuvPPOZI9t27ZN5cqVM6Cq3MOf4dpkMiksKEwXYy8qKj5KJUUjBQDkRF6F6/79++vKlStasGCB5s2bJ0lyOBwKCQnRiy++qE6dOvm1SAAAkDFPP/20Ro8eLZvNphYtWshkMumff/7R1q1bNX/+fI0YMcLoEnM0f4ZrScofmF8XYy8yqRkA5GBehWuTyaQRI0aof//+2r17ty5duqTChQurdu3a3NoDAIBs4LHHHtP58+c1e/ZsLVq0SJI0aNAgWa1W9ezZU0888YTBFeZs/hxzLUlhgWGSpKj4KL88HwAg63kVrp3y58+vEiVKSJJq166thIQEvxQFAAB816tXLz388MPatm2bAgICFBYWplq1arlNcAbvZEbLtUS4BoCczOtwvWrVKk2aNElnzpyRyWTSsmXLNH36dFmtVk2aNEmBgYH+rBMAAHjo888/V2RkpH799VfXB9/BwcGqW7eunnjiCd17770GV5jz2RJtkgjXAIBrvLoifPnllxo+fLgaNWqkyZMny263S5JatmypDRs2aNasWX4tEgAApC8xMVEDBw7UkCFDdPToUbVu3Vo9evTQM888o4iICB04cEDPP/884639ILNarpktHAByLq9art9991116tRJr776qhITE13L27dvr/Pnz2vp0qUaOHCgv2oEAAAeWLRokdauXauXX35ZXbp0kclkcns8MTFRkZGRevPNN1WvXj116NDBoEpzPteYa7N/xlzTcg0AOZ9XH7cePnxYLVu2TPGxWrVq6dSpUz4VBQAAMm7lypXq1KmTunbtmixYS5LFYlHnzp3VsWNHffbZZwZUmHv4u+U6LChpQjNmCweAnMurK0LRokV16NChFB87dOiQihYt6lNRAAAg4w4fPqxmzZqlu95dd92lAwcOZEFFuVOiPVEOOSQx5hoAcI1XV4RWrVrpnXfe0ddff634+HhJSbfn+v333zVr1iw98MADfi0SAACkLyYmRgULFkx3vcKFC+vq1atZUFHu5Gy1lrgVFwDgGq/GXA8cOFAHDhzQwIEDZTYn5fOuXbsqOjpa9erV0wsvvODXIgEAQPocDocslvTDntlslsPhyIKKcqfrwzUt1wAAJ6/CdWBgoObOnatNmzZpy5YtunjxosLCwtSgQQPdfffdKY7zAgAAyA0yI1w7x1wTrgEg5/IqXPfo0UM9e/ZUkyZN1KRJE3/XBD8KDrKo15gNio1P1EdjIowuBwCQyV599VXlz58/zXWioghwvvB3uA4wB2jL0S2SuBUXAORkXl0RfvnlF1qnc5CY+AQ55FDXUeuMLgUAkInq16+vfPnyyeFwpPmVL18+1atXz+hyc6zrZwr31/sh5y29LsZe9MvzAQCynlct13fddZdWr16tO+64Q1ar1d81IZPExCWkvxIAIMf66KOPjC4hT/D3bbgkKcgSJEmy2W1KsCcowOzVWzQAgIG8+ssdFBSk1atX66uvvlKFChUUGhrq9rjJZNKHH37olwIBAACyk8wI14GWQNf3UfFRKhRcyG/PDQDIGl6F65MnT6pOnTqun2+ccZQZSAEAQG6VGeHaYrbIarbKZrcRrgEgh/I4XK9du1aNGjVSgQIF6HYGAADyLGe49tc9rp2CLEGucA0AyHk8/sj1hRde0JEjR9yWzZkzR+fOnfN3TQAAANlWZrRcS1JQQNK4a2YMB4CcyeOrwo1dvRMTEzV58mSdPHnS70UBAABkV5kVrp3jrmm5BoCcyaerAmOrAQBAXpNZ4To4IFgS4RoAcir/XhUAAAByOZvdJsn/Y66dLddX4ukWDgA5EeEaAAAgA1wt12ZargEA1/h8VTCZTP6oAwAAIEfIrNnCXS3XTGgGADlShu5z/eyzzyowMNBtWd++fWW1Wt2WmUwmfffdd75XBwAAkM1k9mzhtFwDQM7kcbhu27ZtZtYBAACQI2RauLYQrgEgJ/M4XI8bNy4z6wAAAMgRMqtbOOEaAHI2JjQDAADIgMya0MzZLZzZwgEgZyJcAwAAZAAt1wCAlBCuAQAAMsCWmHSf68ya0IzZwgEgZyJcAwAAZIDNnhSu/d1yHRIQIimpW3iiPdGvzw0AyHyEawAAgAzIrNnCgwOCJUl2h51x1wCQAxGuAQAAMsDZLdxi9m/LtcVscY27vhh70a/PDQDIfIRrAACADMislmvpWus14RoAch7CNQAAQAZkZrgOsSaNuyZcA0DOQ7gGAADIANetuPzcLVy6NqkZ4RoAch7CNQAAQAY4ZwunWzgA4HqEawAAgAxwtVz7+VZc0rVu4ZdiL/n9uQEAmYtwDQAAkAHO2cIzZcw13cIBIMciXAMAAGRAZo65pls4AORchGsAAIAMyMwx17RcA0DORbgGAADIgKwYc024BoCch3ANAACQAZkarmm5BoAcK0eF68OHD6tOnTpasWKFa9m+ffvUpUsX1a5dWxEREVq4cKHbNna7Xe+8847uuusu1a5dW7169dLRo0ezunQAAPKEvHCtzswJzZxjrq/EX3GFeABAzpBjwrXNZtOQIUMUHR3tWnbhwgV1795dZcuW1fLly/Xss89q4sSJWr58uWudWbNmadGiRRozZowiIyNlt9vVs2dPxcfHG7EbAADkWnnlWp2ZE5oFBQS5Qju34wKAnCXHhOvp06crf/78bsuWLl0qq9Wq119/XRUqVFD79u3VrVs3vf/++5Kk+Ph4zZ8/XwMGDFDz5s1VuXJlTZkyRSdPntTatWuN2A0AAHKtvHKtzswJzcwmswoEFZBE13AAyGlyRLjevn27lixZorfeestt+Y4dO9SgQQMFBAS4ljVq1EhHjhzR2bNn9eeff+rq1atq3Lix6/ECBQqoatWq2r59e5bVDwBAbpeXrtWZOeZakgoFF5JEuAaAnCbbh+vLly9r2LBhGjlypG666Sa3x06ePKlSpUq5LStRooQk6cSJEzp58qQkJduuRIkSrscAAIBv8tq1OjPHXEuEawDIqQLSX8VYr776qurUqaOHH3442WOxsbEKDAx0WxYUFCRJiouLU0xMjCSluM6lS76NY3I4HG5jyjzhrMf5b1rsdkeqy51faW2b0jp2e8Zrzm0ycg7gfxx/43EOjHXj8Xc4HDKZTEaW5Bd57VrtDNeySwk290nHbDabZJZM9tTPa1rrJNgTFGYNkySdvnw6T163+TtlLI6/8TgHxvLlWp2tw/XKlSu1Y8cOrVmzJsXHg4ODk012EhcXJ0kKDQ1VcHDSjJvx8fGu753rhISE+FSbzWbTvn37vNr2yJEjaT5uNpsVEx2T4kmMiYmRw26RyRGYwpZprxMTl6D9+/fLbrd7VXdukt45QObi+BuPc2Cs64//jaEyp8mL1+ro2KTAezXqqi4kXnB77GrcVVnNVgVaUz+vaa1jS7RJ//9++uCxg9qX6F39uQF/p4zF8Tce58BY3lyrs3W4Xr58uc6dO6fmzZu7LX/llVf05ZdfqlSpUjp9+rTbY86fS5YsqYSEBNeysmXLuq0THh7uU21Wq1UVK1bM0DYxMTE6cuSIypcvn+4bhpDQcykvjzcpJMii4ODUT12q65gTfd7vnC4j5wD+x/E3HufAWDce/4MHDxpdks/y4rXatM8kxUsFCxRU4XyF3R4LsgXJarbKarGm+hpprZNgT5A51CydlQILBKpKlSoZqj834O+UsTj+xuMcGMuXa3W2DtcTJ05UbGys27L77rtPAwYMUJs2bbRq1SpFRkYqMTFRFkvSpCJbtmzRrbfeqqJFiyosLEz58+fX1q1bXRfsy5cva+/everSpYtPtZlMJoWGhnq1bUhISLrbms0pdz0wm02ur7S2TWkds9n7mnMbT84BMg/H33icA2M5j39u6BKeF6/ViY5ESVKgNVABVve3UlZZFWAOUIAl9bdYaa5jl4oHFpckRSVE5en/p/ydMhbH33icA2N5c63O1uG6ZMmSKS4vWrSoSpYsqfbt22vu3Ll6+eWX1bNnT/32229asGCBXnvtNUlJzfddunTRxIkTVaRIEZUuXVpvv/22SpUqpfvuuy8rdwUAgFwpL16rnbOFm82ZO6HZpTjucw0AOUm2DtfpKVq0qObOnauxY8eqbdu2Kl68uIYNG6a2bdu61hkwYIASEhI0cuRIxcbGqn79+po3b56s1tS7awEAAP/Ijddq54RmmX0rrnPRKQ8RAwBkTzkuXO/fv9/t55o1a2rJkiWprm+xWDR06FANHTo0s0sDAADK/ddqV8t1Jt2Kq1hoMUnSuRjCNQDkJNn+PtcAAADZhcPhkM2euS3XznB9IeaCEu2JmfIaAAD/I1znQV1HrTO6BAAAciTnZGZS5rVcO7uFJzoSdTH2Yqa8BgDA/wjXeVBMXILRJQAAkCM5u4RLksWcOS3XAeYAhQQk3X6HruEAkHMQrgEAADzknMxMyryWa0kKtSbdfuds9NlMew0AgH8RrgEAADzk1nKdSWOupWvhmhnDASDnIFwDAAB46PrJzEwmU6a9Tj5rPkm0XANATkK4BgAA8JCz5TrAnLl3Mw2xMuYaAHIawjUAAICHnGOurRZrpr4O3cIBIOchXAMAAHgoq1qu6RYOADkP4ToPCQ6yqNeYDUaXAQBAjuUcc201Z07LdYA5QJ/+8em1lmu6hQNAjkG4zmNi4rnHNQAA3sqKlmub3catuAAgByJc50HBQRZ1GLZWHYatNboUAAByFGe4zqox19G2aEXbojP1tQAA/kG4zqOiYxMUHUsrNgAAGeGc0Cyzx1xbzVbXazCpGQDkDIRrAAAAD2XVhGYmk8k1qRnjrgEgZyBcAwAAeMg5oVlmh2tJjLsGgByGcA0AAOAh15jrTJot/HqEawDIWQjXAAAAHsqqMdfStXtdM+YaAHIGwjUAAICHsmq2cEnKF5gUrmm5BoCcgXANAADgIeeY66zoFu5suT599XSmvxYAwHeEawAAAA9l1WzhkpQ/ML8k6Uz0mUx/LQCA7wjXAAAAHjIiXJ+KOpXprwUA8B3hGgAAwENGhOurtqu6Gn81018PAOAbwjUAAICHnLOFZ8WEZoGWQAWaAyXRNRwAcgLCdR4WEmRR11HrjC4DAIAcIytbriUpf1BS6zWTmgFA9ke4zuNi4hKMLgEAgBwjK2cLl651DSdcA0D2R7gGAADwkLNbeFa1XIcFhkkiXANATkC4BgAA8JCzW3hWjLmWrrsd11XGXANAdke4BgAA8JArXGdRt3Bny/Wpq9yOCwCyO8I1AACAh5zh2mK2ZMnr0XINADkH4RoAAMBDTGgGAEgN4RoAAMBDWX0rrrCgpG7h52POuyZTAwBkT4RrAAAADzkDblZNaBYSECKzySyHHDobfTZLXhMA4B3CNQAAgIeyuuXaZDLRNRwAcgjCNSRJXUetM7oEAACyvawecy1J+az5JEmf7fssy14TAJBxhGtIkmLiEowuAQCAbC+rW66la7fjuhR3KcteEwCQcYRrAAAAD7nuc51FY64lKV9gUst1VHxUlr0mACDjCNcAAAAeMqLl2jnm+mr81Sx7TQBAxhGuAQAAPOScLdyIcH0l/kqWvSYAIOMI13lccJBFvcZsMLoMAAByBCMmNCsYXFCSdNVGyzUAZGeEaygmnsnMAADwhJETmkXFR8nusGfZ6wIAMoZwnQ3RkgwAQPbk7Bb+0z8/ZdlrOm/FZXfYdTH2Ypa9LgAgYwjX2RAtyQAAZE/Olmu7sq4F2WK2KNQaKkk6ffV0lr0uACBjCNcAAAAecoZri8mSpa/r7BpOuAaA7ItwDQAA4CFnuDabsvYtlHPGcMI1AGRfhGsAAAAPOWcLt5iztuWacA0A2R/hGgAAwENGtVzTLRwAsj/CNQAAgIecs4Vn9ZhrWq4BIPsjXAMAAHgg0Z4ohxySDBhzHUS4BoDsjnANAADgAed4a8m4Mddnrp7J0tcFAHiOcA0AAOAB53hrybgx11dtVxUVH5Wlrw0A8AzhGgAAwAPXh+usHnMdaAlUoCVQEq3XAJBdEa4BAAA8cP1kZiaTKctf39k1/NTVU1n+2gCA9BGuAQAAPOBsuQ4wBxjy+swYDgDZG+EaAADAA84JzYwK185x16eiaLkGgOyIcA0AAOCB7NJyTbdwAMieCNcAAAAeiE+MlyRZLVZDXp9u4QCQvRGuAQAAPOAM10GWIENe39kt/GTUSUNeHwCQNsI1AACAB1zhOsCgcB3EmGsAyM4I1wAAAB6ITYiVZFzLtbNb+FXbVUXFRxlSAwAgdYRrAAAADzhbrgMtgYa8fqAl0NU1nHHXAJD9EK4BAAA8YHS3cEkqka+EJLqGA0B2RLgGAADwQFxCnCTjuoVLUsn8JSVxOy4AyI4I10im66h1RpcAAEC2E5eYFK6N6hYuSSXzJYXr7//+3rAaAAApI1wjmZi4BKNLAAAg2zF6zLV0reX6Utwlw2oAAKSMcA0AAOABV7dwA8dcl8pfSpIUFcds4QCQ3RCuAQAAPOCa0MzAMdfOCc2uxF8xrAYAQMoI1wAAAB7ITmOuo+Kj5HA4DKsDAJAc4Rpueo3ZYHQJAABkS9mhW7hzzLXNblNUPF3DASA7IVzDTUw8k5kBAJCS7DChWXBAsIIDgiVJJ6NOGlYHACA5wjUAAIAHnN3CjRxzLUkFgwpKkk5EnTC0DgCAO8I1AACAB7JDt3BJKhBUQJL035X/DK0DAOAuR4TrixcvavTo0WrWrJnq1q2rJ554Qjt27HA9vnnzZrVr1061atXSAw88oC+++MJt+7i4OL322mtq3Lix6tSpo8GDB+v8+fNZvRsAAORaeeFanR26hUvXwjXdwgEge8kR4XrQoEHatWuXJk+erOXLl6tKlSrq0aOH/v77bx06dEh9+vTRXXfdpRUrVuixxx7TsGHDtHnzZtf2r776qn766SdNnz5dH374of7++28NGDDAwD1KHROKAQByorxwrXaG690ndhtaBy3XAJA9BRhdQHr++ecfbdq0SYsWLdIdd9whSRo1apR+/PFHrVmzRufOnVN4eLhefPFFSVKFChW0d+9ezZ07V40bN9apU6e0cuVKvfvuu6pXr54kafLkyXrggQe0a9cu1alTx7B9SwkTigEAcpq8cq12jrmWydg6aLkGgOwp27dcFy5cWO+//75q1KjhWmYymWQymXT58mXt2LFDjRs3dtumUaNG2rlzpxwOh3bu3Ola5nTrrbeqZMmS2r59e9bsBAAAuVheuVY7x1wHmIxtm3BOaEbLNQBkL9m+5bpAgQK6++673ZZ98803+ueff/S///1Pn332mUqVKuX2eIkSJRQTE6MLFy7o1KlTKly4sIKCgpKtc/Kk95/4OhwORUdHZ2ibmJgYt39TYrc70nwOu93h+vLnOnZ70v44l2V033IKT84BMg/H33icA2PdePwdDodMJoObQf0gr1yrYxNiJUkmu0kJtpR7mtlsNsmctE5qvF0nwZ6g6OhohZpDJUkXYy/q3OVzCgkISX/HchD+ThmL4288zoGxfLlWZ/twfaNffvlFL730ku677z41b95csbGxCgx0n1jE+XN8fLxiYmKSPS5JQUFBiouL87oOm82mffv2ebXtkSNHUlxuNpsVEx2T5smLiYmRw26RyZH6ZCrerBMTl6C//vpLMdExio1P1P79+2W32z3boRwotXOArMHxNx7nwFjXH/+UrlE5XW69VkfFREmSoq9G64L9QorbXY27KqvZqkBr6ufV23VsiTb99ddfir4SLavZKpvdpp9/+1k3h9zs4V7lLPydMhbH33icA2N5c63OUeH6u+++05AhQ1S3bl1NnDhRUtKFNz4+3m09588hISEKDg5O9riUNCtpSIj3n/RarVZVrFgxQ9vExMToyJEjKl++fKqvHRJ6Ls3nCIk3KSTIouDg1E+dV+uYE1WpUiWFhJ6RyZKo8PDw9HcoB/LkHCDzcPyNxzkw1o3H/+DBg0aX5He5+Vrt+COpt1fhgoVVOLRwitsH2YJkNVtltVhTfQ1v10mwJ6hSpUr6LfE3FfivgM7FnFNoyVBVKV0lI7uY7fF3ylgcf+NxDozly7U6x4Trjz/+WGPHjtUDDzyg8ePHuz49uOmmm3T69Gm3dU+fPq3Q0FCFhYWpVKlSunjxouLj490+cTh9+rRKlizpdT0mk0mhoaFebRsSEpLqtmZz2l0OzGaT68uf64SGBOiFSdtdy7zdt5wirXOAzMfxNx7nwFjO458buoRfL7dfq212myQpKDBIAdaU30JZZVWAOUABltTfYnm7ToAC9OXhLxVgDVDB4II6F3NO5+PP59r/y/ydMhbH33icA2N5c63O9hOaSdKiRYs0ZswYde7cWZMnT3a78NarV0/btm1zW3/Lli2qW7euzGaz7rjjDtntdtdkKZJ0+PBhnTp1SvXr18+yfcgJmKkcAOCtvHCtdt6KK8BsXNuEM+A7Zww/EXXCsFoAAO6yfbg+fPiw3nzzTbVs2VJ9+vTR2bNndebMGZ05c0ZXrlxR165d9dtvv2nixIk6dOiQ5s+fr6+//lo9e/aUJJUsWVKtW7fWyJEjtXXrVv32228aNGiQGjRooNq1axu7cwAA5AJ54VrtcDhct+IyMlw7hQWGSZJOXCFcA0B2YfzVIR3ffPONbDabvv32W3377bduj7Vt21ZvvfWWZs2apbffflsffvihypQpo7ffftvtlh9jxozRm2++qeeee06S1KxZM40cOTJL9wMAgNwqL1yrna3WkmQxWQysJImz5ZrbcQFA9pHtw3Xfvn3Vt2/fNNdp1qyZmjVrlurjoaGheuONN/TGG2/4uzwAAPK8vHCtvj5cZ4eWa2e4Phnl/a3KAAD+le27hQMAABjN2SXcbDLLbDL+7ZMzXJ+LOacYG/fCBYDswPirAwAAQDYXl5AUrgMtgdlilvfggGBXwD5+5bjB1QAAJMI1AABAupzdwoMsQQZXck2ZAmUkSf9e+tfgSgAAEuEaAAAgXc5u4YGWwHTWzDplC5aVJB29dNTgSgAAEuEaAAAgXc5u4UEB2afl+pYCt0iSjl0+ZnAlAACJcI00dBi2Vh2GrTW6DAAADOfsFp6dWq6d3cJ3/LfD4EoAAFIOuBUXjBMdm2B0CQAAZAvObuHZacz1LQWTWq4vxF4wuBIAgETLNQAAQLqyc7fwqPgoxSbEGlwNAIBwDQAAkI7s2C28UHAh5bPmkyT9d+U/g6sBABCuAQAA0pEdu4WbTCZX13BmDAcA4xGuAQAA0pEdW66la13Dj14mXAOA0QjXAAAA6ciOY66lazOG03INAMYjXAMAAKQjO3YLl67NGE7LNQAYj3CNNIUEWdR11DqjywAAwFDZvVv4vjP7DK4EAEC4Rrpi4rjfNQAgb8uu4bp8ofKSpCvxV7gdFwAYLMDoApD9BAdZ1GvMBqPLAAAg23COuQ4OCDa4kiQB5gB99OtHCjAHKDggWLEJsTpy8YgqF6tsdGkAkGfRco0UxcTTWg0AgJNzzHV2arm2JdpkS7SpSEgRSdKRi0eMLQgA8jjCNQAAQDqya7dwSSoaUlSS9M/FfwyuBADyNsI1AABAOrLrrbgkuVquD188bHAlAJC3Ea4BAADSkV1vxSWJbuEAkE0QrgEAANKRnbuFO8P1v5f+VaI90eBqACDvIlwDAACkwxmus2O38AJBBWQxWRSfGK8TUSeMLgcA8izCNQAAQDqc95DOjt3CzSazCocUlkTXcAAwEuEaAAAgHdm5W7gkFQ5OCteHLzCpGQAYhXANAACQjuzcLVxixnAAyA4I1wAAAOlw3ooru7ZcM2M4ABiPcI0M6TpqndElAACQ5bLzrbgkqWhIUUnSofOHtPi3xQZXAwB5E+Ea6QoOsrhCdUxcgsHVAACQ9bJ7t/BiocVkNpl11XZV52PPG10OAORJhGt4hFANAMirHA5Htp/QzGK2uCY1OxdzzuBqACBvIlzDI8FBFvUas8HoMgAAyHLO23BJUnBAsIGVpK1YaDFJ0rlowjUAGIFwDY/FxNN6DQDIe6LioyRJFpNFIQEhBleTOle4puUaAAxBuAYAAEjDlfgrkqT8gfllMpkMriZ1tFwDgLEI1wAAAGm4EpcUrsOCwgyuJG3OcH0+5rwS7YkGVwMAeQ/hGgAAIA3OluuwwOwdrgsGFVSAOUCJjkQdu3zM6HIAIM8hXAMAAKTBOeY6u7dcm0yma/e7vnDI4GoAIO8hXAMAAKTB2S08f2B+gytJn7Nr+MHzBw2uBADyHsI1AABAGnJKt3BJKpGvhCRp35l9BlcCAHkP4RoAACANOWVCM0kqlb+UJGnvmb1yOBwGVwMAeQvhGgAAIA3OMdc5oVt48dDiMpvMOhdzTqeunjK6HADIUwjXAAAAachJ3cKtFqtrUrM/Tv9hcDUAkLcQrgEAANKQk7qFS1LJ/CUlSX+cIVwDQFYiXAMAAKQhJ7VcS1KpfEnjrmm5BoCsRbgGAABIQ065z7WTs+V639l9SrQnGlwNAOQdhGsAAIA05KT7XEtSkZAiCgkIUbQtWkcuHjG6HADIMwKMLgBJOgxbq+Agi9FlAACA6zgcDle38LUH12p7yHaDK0qf2WRWleJV9MuJX7T75G5VKFLB6JIAIE+g5TqbiI5NUExsgtFlAACA68QlxinBnnR9NpvMsiXaDK7IMw1LN5Qkbfxno8GVAEDeQbiGV7qOWufT4wAA5ATOLuFmk1lWs9XgajwXcWuEJGnb8W2uMeM3itwTmZUlAUCuR7iGV2LikreyXx+oU3ocAICc5vqZwk0mk8HVeO7WwreqcHBh2ew2bfp3k2v59YHaZs8ZrfAAkFMQruGV4CBLstZpAjUAILfJaZOZXa9S0UqSpAW7F7iWEagBIPMQruE1wjQAILdztVznkNtwXa9SkaRwfeTiEcUlxBlcDQDkfoRrAACAVLjucR2Y88J1yXwllT8wv2x2m7746wujywGAXI9wDa8FB1nUYdhadRi21uhSAADIFDm5W7jJZFKtkrUkSdO2TFNsQqzBFQFA7ka4hk+iYxMUzS3EAAC5VE7uFi5J1YtXV4HAArpqu6pFexYZXQ4A5GqEawAAgFQ4W65zYrdwSbKYLWpUppGkpInNjl0+ZnBFAJB7BRhdAAAAQHblGnOdQ1uuJSm8aLj2nt2rY5eP6bM/P1Op/KXUrFwzORwOo0sDgFyFcA0AAJAKZ7fw/IH5FR0fbXA13jGZTHok/BHtP7df3/39nWZun6mZ22cqJCBE+87uU+eanVW9RHWjywSAHI9wDQAAkIrru4Xn1HAtSQHmAL15z5tKsCcoxhaj3Sd3KyYhRt/+/a3WHV6nbrW7qdcdvRRg5q0hAHiLv6DZQK8xG4wuIdP0GrNBF67EKTjIIpNM+mhMhOuxrqPWuf0MAEB242y5/u3UbyqZr6TB1fjGbDKrVsla6lqrq+IT4zX558m6HH9Zaw+t1bxd87Txn41qXam1utTq4tomck+kOtXoZGDVAJBzMKFZNhATn3tn246JT5pNPCY2QTFx7vt5488AAGQ3zjHXua1FN9ASqNIFSuvNe95Uy9taymKy6K/zf2nl/pWKS4hzrWez2wysEgByFsI1MiQ4yOJRS7un6wEAkJ3dV+E+1SxZM0e1WgeYA/TpH596vF6lIpX08O0PK8AcoCMXj2jw2sHcExsAvEC4RoZ52tKem1vkAQB5Q996fTX/kfmyWqxGl5IhnrY4O9crW7Cs2lVuJ6vZqi3HtujFr19UjC0mM0sEgFyHcA2/y2iLdddR6zKpEgAAkJKUWrZvKXiLHqn8iEKtodr+33a98PULik+Ml5Q09hoAkDbCNfwuoy3WjL0GACBrpdayXTqstGa2mql81nz65cQvWvnnSl2MvcjYawDwQO6anQPZGuOwAQDI3gLMAdp/dr86VOmgJXuX6ETUCfVY1UMtyrcwujQAyPZouTZYbgqbnoTnmPgE11dqbuwmTrdxAICRPJkcLKfwZLIzm92mYvmK6fFqjyt/YH79c+kfRf4RqS3HtrjWubGbON3GAYBwbbjcNumXP/bn+m7ivcZsSLHbOIEbAJBVcluXaE/3p1hoUsCuUqyKYhNi9fyXz2vK5im6HHfZ7Tk+/ePTFJ+TwA0gr6FbOHwWkondva8P6x2GrZUkfTrhPsZpAwCQAZ7enutG+QPza26bueq9prf+OPOHPtnzidYcWKNbCtyiYqHFdFPYTToTfUZBliBJ0ke/fiRJ6lqra677UAIA0kO4hl9kRQt8dCyBGgAAb3kbdoMCgnTvbfeq1x299M7Wd/T3hb/1x5k/NOqHUW7rLfljiQoHF9bNYTfrrnJ3yeFw+KNsAMgxCNfIVrxtAe86ap0+GhPh52oAAIBT07JN1bhMY036eZL+Ov+X7A67zsWc08mok0qwJ+hczDmdizmngxcOauO/G1U0pKhCrCF6sNKDyh+YX5F7ItWpRiejdwMAMg3hGtmKty3gqXUTJ3QDAOA/FrNFtxS8RTeF3aSutbpKkhbv+b/27j4oqvve4/j7wO6yCqjRKBAfUxNFERUrWqJUkk6cRqEz9jZpMmhaCxlHUm2akpgMJmidaZPKhCgi0Y7KJK0Pk+glaS1qvNqk43V8SCxeRYMa4qiNEjBC5Bn33D8sW56VLOxB9/OaYZTf+Z3DdxfYD989T1uoqq8iKiyKP37yRy59c4nSqlLKqst4/cDrZB3OYtaDs9yHjrekpltE7hZqrqXHamsvdsvzu2/VPLdsup/53f+S+l8Duq5IERERH9Z4HrfD38GksElE3xdNjF8MfoYfxy4f43z5eb649gXvFd6cV3ClgFEDRjGw90BsfjZ62Xtx8quTfHHtC4b3HY5hGOz4bAcRfhFWPiwRkW/FZ5prl8vFmjVrePfdd/nmm2+Ijo7m1VdfZejQoVaXJi003tKrvb3Y1XUN/5lzm3usGz+vrrnRLTWLiIjnlNV3jsYLpLV3Hre/nz+T75vM9wZ/jzNXz1BeW86+4n2cKDnBiZITrebnn82nT0Afnhz3JDfqb0DbO7lFRHo0n7kV19q1a9m8eTMrVqxg69atuFwukpOTqaurs7o0n9XYIDsD/PnJi3uY+8r/uJfdzuHhHc0xMZvt4b6dq4u3d3uv9sZ/8uIe9xXMRUTEc8rqnqexibb52Xin4B22/N8W97LbuUBag9nA0L5Def3R1/lF1C9YFreMpKgk5oTPIWJgBKMHjCYsKAy7n52K2grWf7Ked068Q97FPMpry1ttr/H2XrUNtZwuPU3+mXx2n93N7z/+PRfKL3DD1fxN9HcK3nFfwVxEpLv5xJ7ruro6Nm7cSGpqKnFxcQBkZmYSGxvLnj17iI+Pt7ZAH9bYIFfVNGCaJr2crX8knR3c6qtpg95yb3XTPdy3VUttx7f9arn9tq5ernO8RUS+HWV1z9XYRNffqMc0Tez+9lZzOrrVV+Oyfs5+XK+9zsLohQDNGnXTNCksLeRM2RnOfX2OnV/uZN9/7yN2eCxTBk/BaXNSWlXKrrO7yPssj+Kvi7lhNm+kt5/ejr/hz8j+IwkLCsNpc3L+2nlsfjZKq0px+DsIsAVw6qtTTBk8hUBHIEP6DGFEvxH0c/bromdLRHyZTzTXp0+fprKykpiYGPdYnz59GDt2LEeOHFFg3wE62kvduKy9vdOdbbLhZuPc8vzujvZ+uw87b6cRb2/+rTTOa9rs3866avJF5E6jrL7zdbQn292gtzPHMAwiBkYwYdAEjl8+zonLJ7hQdYE95/aw51zbR4kF+Adwb+978Tf8qayv5HrddWpv1FJUVkRRWVGzuSe+an4o+kfnm/9N0M/Zj/uC7+Me5z04bU4Mw+BC+QVG9BtBX2df7u19LwN7DyQ4IJjahlquVl/lQsUFLpRf4NRXp8CA6vpqbH42BgUOoqahhhH9RhDkCGr1EWALwOZn4/DFw0wbNg1/P3/8DX/8/fzxM/yw+dmw+dlw2pxtftj8mv/53uBq4Hrdda7XXaeyrhKX6cLub8fh78Dh78Dud/P/dn87dj87hmFgYGAYRrvfLxH5dgzTB25CuGfPHhYtWkRBQQFOp9M9/qtf/YqamhrWrVvXqe19+umnN9+5tbd+57YjpmnS0NCAzWZzv6CVltcC4HKZGAa3fKG7nXm+PMc0zY6Xu0z6Bfljs9n4uuLmYYYmMKBvAF9dq2FgPydXy2tpaPG1/AAXzc+jaJzjbxjuZTdMk4H9nJSW17o/NwwDvyZfB3AvbzrW0tXyWvf2Sr6uAWDQPU53nY1z2tpG0zmNysprW81ra6w97X2tzmyrrd+BrtaZx+SLvPE9kPa1fP7r6+sxDINJkyZZXZrlenJWV9VXAeAyXe7GpD1365yu3JaJ2fFy08RhOHAZLirrK7lh3sDExO5nxzRNett702A2gEmrr3XDvIHLdGGaJiam+18DAxPTvX1/P3/qXfW4TBcu09Xh4+5p/t0ag4H78XXFNjs9t4NVbvdnqeXcltvuTF0dafc5amO4rbmNz3dX1XM7bvU3rdfq6IKfryYb87pARyCB9sBOreNJVvvEnuvq6moAHA5Hs/GAgADKy1ufz3Mr7heDTv7AG4bRqoaWDZB4z4AWz/2ge3q1Of5t3Or7ejvf96Z1hPTv5f5/Y50t5zTVdE6je9uY29bY7dTTltvZVlu/A12tM4/JF3njeyDta/n8G4b2HjXqyVkd6OjcH2bSdZx2vaaLiHd5ktU+0Vw3vgNeV1fX7N3w2tpaevVq3YTcSlRUVJfVJiIiIspqERG58/nE1cLDwsIAKCkpaTZeUlJCSEiIFSWJiIhIE8pqERG50/lEcx0eHk5QUBCHDh1yj1VUVFBYWEh0dLSFlYmIiAgoq0VE5M7nE4eFOxwO5s6dS0ZGBv3792fw4MGsXLmS0NBQZs6caXV5IiIiPk9ZLSIidzqfaK4BFi9eTENDA0uXLqWmpobo6Gg2bNjQ6auIioiISPdQVouIyJ3MJ27FJSIiIiIiItKdfOKcaxEREREREZHupOZaRERERERExENqrkVEREREREQ8pOZaRERERERExENqrkVEREREREQ8pOZaRERERERExENqrr3E5XKxevVqYmNjmThxIs888wwXLlywuiyfce3aNV599VW+//3vM2nSJJ566imOHj1qdVk+qbi4mKioKHbs2GF1KT4nLy+PWbNmERkZyezZs8nPz7e6JJ/S0NDAqlWrePjhh4mKiiIxMZF//vOfVpclTSirraWs7jmU1dZRVlvL06xWc+0la9euZfPmzaxYsYKtW7ficrlITk6mrq7O6tJ8wvPPP8+xY8d444032L59O2PGjCEpKYnPP//c6tJ8Sn19PampqVRVVVldis95//33SUtLIzExkZ07dxIfH+/+vRDvyMnJ4d1332XFihXk5eVx//33k5ycTElJidWlyb8pq62lrO4ZlNXWUVZbz9OsVnPtBXV1dWzcuJHFixcTFxdHeHg4mZmZXL58mT179lhd3l3v/PnzHDhwgGXLljF58mTuv/9+XnnlFQYNGsRf/vIXq8vzKVlZWQQFBVldhs8xTZNVq1bx9NNPk5iYyLBhw1i4cCEPPfQQhw8ftro8n7F3717i4+OZPn06w4cP56WXXuKbb77R3useQlltLWV1z6GstoayumfwNKvVXHvB6dOnqaysJCYmxj3Wp08fxo4dy5EjRyyszDfcc889rF+/nsjISPeYYRgYhkFFRYWFlfmWI0eOsG3bNl577TWrS/E5xcXFXLp0iYSEhGbjGzZsYMGCBRZV5XsGDBjA/v37uXjxIjdu3GDbtm04HA7Cw8OtLk1QVltNWd0zKKuto6zuGTzNajXXXnD58mUAwsLCmo0PGjTIvUy6T58+fZgxYwYOh8M9tnv3bs6fP09sbKyFlfmOiooKXnzxRZYuXdrq90C6X3FxMQBVVVUkJSURExPD448/zr59+yyuzLekpaVht9v5wQ9+QGRkJJmZmaxevZphw4ZZXZqgrLaastp6ymprKat7Bk+zWs21F1RXVwM0CwyAgIAAamtrrSjJp3366ae8/PLLzJw5k7i4OKvL8QnLli0jKiqq1bux4h3Xr18HYMmSJcTHx7Nx40amTZtGSkoKBw8etLg633H27FmCg4PJzs5m27Zt/PjHPyY1NZVTp05ZXZqgrO5plNXep6y2lrK6Z/A0q23dXJ8ATqcTuHk+V+P/AWpra+nVq5dVZfmkvXv3kpqayqRJk8jIyLC6HJ+Ql5fH0aNHdc6chex2OwBJSUnMmTMHgDFjxlBYWMimTZuaHQYr3ePLL7/kN7/5Dbm5uUyePBmAyMhIzp49S1ZWFmvXrrW4QlFW9xzKau9TVltPWW29rshq7bn2gsZDa1peZa6kpISQkBArSvJJf/rTn1i0aBEPP/wwb731FgEBAVaX5BO2b99OWVkZcXFxREVFERUVBUB6ejrJyckWV+cbGl9nRo0a1Wz8gQce4OLFi1aU5HMKCgqor69vdj4pwIQJEzh//rxFVUlTyuqeQVltDWW19ZTV1uuKrNaeay8IDw8nKCiIQ4cOuY/Xr6iooLCwkLlz51pcnW9ovLXKvHnzSEtLwzAMq0vyGRkZGdTU1DQbmzlzJosXL+ZHP/qRRVX5loiICAIDAykoKHC/EwtQVFSk8329JDQ0FIDPPvuM8ePHu8eLiooYMWKERVVJU8pq6ymrraOstp6y2npdkdVqrr3A4XAwd+5cMjIy6N+/P4MHD2blypWEhoYyc+ZMq8u76xUXF/O73/2ORx99lAULFlBaWupe5nQ6CQ4OtrC6u197e3wGDBigvUFe4nQ6SU5OJjs7m5CQEMaPH8/OnTs5cOAAubm5VpfnE8aPH893v/tdlixZQnp6OqGhoeTl5XHw4EG2bNlidXmCstpqymprKautp6y2XldktZprL1m8eDENDQ0sXbqUmpoaoqOj2bBhg/v8Cuk+u3fvpr6+ng8//JAPP/yw2bI5c+bodhPiE1JSUujVqxeZmZlcuXKFkSNHkpWVxdSpU60uzSf4+fmRk5PDm2++ycsvv0x5eTmjRo0iNzeXCRMmWF2e/Juy2jrKahFltdW6IqsN0zTNbq5TRERERERE5K6mC5qJiIiIiIiIeEjNtYiIiIiIiIiH1FyLiIiIiIiIeEjNtYiIiIiIiIiH1FyLiIiIiIiIeEjNtYiIiIiIiIiH1FyLiIiIiIiIeEjNtYiIyG1at24d8+bN6/R6eXl5zJo1i8jISGbPnk1+fn43VCciIiJWZrWaaxFpZd68eYwePbrZx7hx44iLi2P58uWUl5e3u+7FixcZPXo0O3bs8GLFIt3vz3/+M2+++Wan13v//fdJS0sjMTGRnTt3Eh8fz/PPP8+xY8e6vkgR8RnKapHWrM5qW6e/soj4hLFjx5Kenu7+vL6+npMnT/LGG29w6tQptmzZgmEYrdYbNGgQ27ZtY9iwYd4sV6TbXLlyhfT0dA4dOsSIESM6ta5pmqxatYqnn36axMREABYuXMjRo0c5fPgwUVFR3VCxiPgKZbXITT0lq9Vci0ibgoKCmDhxYrOx6OhoKisrWb16NQUFBa2WAzgcjjbHRe5UJ0+exG6388EHH5Cdnc2lS5eaLd+/fz9ZWVmcPXuWkJAQZs+eTUpKCg6Hg+LiYi5dukRCQkKzdTZs2ODNhyAidylltchNPSWrdVi4iHTKuHHjAPjXv/7FvHnzSE1NZfHixUycOJH58+e3eajZ559/zi9/+UumTJlCdHQ0CxYs4Ny5c+7ltbW1/OEPf2DGjBmMGzeOhIQE/va3v3n9sYm05ZFHHiErK4uhQ4e2Wvbxxx/z3HPP8cQTT/DXv/6V9PR08vPzeeGFFwAoLi4GoKqqiqSkJGJiYnj88cfZt2+fVx+DiPgWZbX4mp6S1WquRaRTGl+AGl+88vPzCQwMJCcnh+Tk5Fbzr1y5wk9/+lO++OILli1bxsqVKyktLeVnP/sZ165dwzRNnn32WbZu3cr8+fPJyckhKiqKX//61+Tl5XnzoYl02ltvvcUTTzzBk08+ybBhw5g+fTrLly9n165dXLx4kevXrwOwZMkS4uPj2bhxI9OmTSMlJYWDBw9aXL2I3K2U1SL/4c2s1mHhItIm0zRpaGhwf15eXs7hw4fdgdr4rrjdbmf58uU4HA7g5kVSmsrNzaWuro5NmzYxcOBAAMLDw3nqqacoKCjAZrPxj3/8g8zMTGbNmgVAbGws1dXVZGRkEB8fj82mlyrpmQoLCzl+/Djvvfeee8w0TQDOnTuH3W4HICkpiTlz5gAwZswYCgsL2bRpEzExMd4vWkTuGspqkVvzZlbrt0BE2nTkyBEiIiKajfn5+fHQQw/x29/+1n2BlO985zvusG7LJ598wsSJE91hDRAaGsr+/fsByMjIwDAMZsyY0ewPhEceeYQPPviAM2fOMGbMmK58aCJdxuVykZyc7A7jpgYOHMipU6cAGDVqVLNlDzzwAH//+9+9UaKI3MWU1SK35s2sVnMtIm2KiIhg+fLlABiGQUBAAGFhYQQFBTWbFxgY2OF2rl27xpAhQzpcbpomkyZNanN5SUmJAlt6rAcffJDi4mKGDx/uHjt06BBvv/02y5YtIyIigsDAQAoKCpg8ebJ7TlFRka7SKyIeU1aL3Jo3s1rNtYi0KTAwkMjISI+3ExwczNWrV1uNHzx4kCFDhhAcHEzv3r15++2321y/6QuhSE/zzDPP8Nxzz7FmzRpmz57N5cuXSUtLY8iQIe49QMnJyWRnZxMSEsL48ePZuXMnBw4cIDc319riReSOp6wWuTVvZrUuaCYi3Wry5MkUFBQ0C+2ysjKSk5P56KOPmDJlClVVVZimSWRkpPujqKiI7OzsZoefifQ0P/zhD8nMzGTv3r0kJCTwwgsvMH36dNasWeOek5KSwqJFi9znKu7atYusrCymTp1qYeUiIv+hrJa7mTezWnuuRaRb/fznPycvL4/k5GQWLFiA3W4nJyeH0NBQEhISCA4OJjo6mpSUFFJSUhg5ciTHjx9n9erVxMbG0r9/f6sfgojba6+91mrsscce47HHHutwvfnz5zN//vzuKktExCPKarmbWJnVaq5FpFuFhYWxefNmVq5cyUsvvYTD4WDq1KlkZmbSt29fANavX8+qVatYt24dZWVlhISEMH/+fJ599lmLqxcREbn7KatFuoZhNl6HXERERERERES+FZ1zLSIiIiIiIuIhNdciIiIiIiIiHlJzLSIiIiIiIuIhNdciIiIiIiIiHlJzLSIiIiIiIuIhNdciIiIiIiIiHlJzLSIiIiIiIuIhNdciIiIiIiIiHlJzLSIiIiIiIuIhNdciIiIiIiIiHlJzLSIiIiIiIuIhNdciIiIiIiIiHvp/3UtWFWxKv2IAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1097,57 +1831,59 @@ } ], "source": [ - "\n", - "\n", "# Set the style for seaborn\n", "sns.set_style(\"whitegrid\")\n", "\n", "# Create subplots\n", - "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(14, 6))\n", + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 6))\n", "\n", "# Histogram\n", - "sns.histplot(housing_data_encoded['price'], bins=30, kde=False, color='skyblue', ax=axes[0])\n", + "sns.histplot(housing_data['price'], bins=\"auto\", kde=False, color='#003399', ax=axes[0])\n", "axes[0].set_title('Histogram of House Prices')\n", "axes[0].set_xlabel('Price')\n", "axes[0].set_ylabel('Frequency')\n", "\n", "# Density Plot\n", - "sns.histplot(housing_data_encoded['price'], bins=30, kde=True, color='orange', ax=axes[1])\n", + "sns.histplot(housing_data['price'], bins=\"auto\", kde=True, color='#339933', ax=axes[1])\n", "axes[1].set_title('Density Plot of House Prices')\n", "axes[1].set_xlabel('Price')\n", "axes[1].set_ylabel('Density')\n", "\n", + "# A common title\n", + "plt.suptitle('Distribution Analysis of House Prices.', fontsize=16)\n", + "\n", "# Adjust layout\n", "plt.tight_layout()\n", "\n", "# Show plots\n", - "plt.show()\n" + "plt.show();\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "##### Interprtation:" + "The histogram depicts the distribution of house prices, with most bars are clustered towards the left, suggesting that a significant number of houses are priced lower. The density plot illustrates a curve representing the density of house prices. Similar to the histogram, the curve peaks sharply on the left and gradually tapers off, indicating a right-skewed distribution. \n", + "
In summary, the majority of house prices are concentrated at the lower end, creating a skewed distribution.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "##### #Distribution of House Age" + "**#Distribution of Bedrooms, Bathrooms and Floors.**" ] }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 529, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWcAAAJICAYAAAANc1ZxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7TUlEQVR4nOzdd3xT9f7H8fdJm7bpoC1QKENmGRZkKFNkKk5EBa8LcOJArrhYXvdEryCIggqCG3GAgHodP3EPpqKoDEGQXSi0paUrTfL749BIbYE2SXuS9vV8PPpImpzzzed8k7bfvvPN9xgej8cjAAAAAAAAAECVslldAAAAAAAAAADURISzAAAAAAAAAGABwlkAAAAAAAAAsADhLAAAAAAAAABYgHAWAAAAAAAAACxAOAsAAAAAAAAAFiCcBQAAAAAAAAALEM4CAAAAAAAAgAUIZwHUGB6Px+oSAAAAgCoTCuPfUKgRACoT4SyAoDBx4kQNGDDgqPcPGDBAEydOPOr3x7N06VJNmDDBrxqrgw0bNujCCy9U+/btde6555a5zTPPPKM2bdoctY0RI0ZoxIgRlVVipbrsssvUpk0bffLJJ1aXAgAAQtCIESPUpk0b71fbtm3VuXNnDRkyRK+++qqKioosqWvHjh1q06aNFi5cKEk6ePCgxo8fr1WrVvnV7sSJE0scb5s2bdSuXTuddtppGjdunHbv3u3d1pcx4urVq3XDDTf4VWOxDz/8UP3791f79u113333lbnN8Wps06aNnnnmmYDUU5VycnLUsWNHtWvXTvv27bO6HAAVFG51AQDgi2effVaxsbHl3v7ll1+uvGJCyIwZM7Rr1y7NmDFDtWvXtrqcKvXnn3/qp59+UuvWrTV//nydddZZVpcEAABCUGpqqu6//35JksvlUlZWlr7++mtNmjRJq1at0rRp02SzVe08qHr16umtt95SkyZNJEnr1q3T4sWLNXToUL/bTkpK0rPPPuv9vqioSFu2bNHkyZP1008/6YMPPlBUVJRPbb/zzjvavHmz3zVK0kMPPaRmzZrp8ccfV/369QPSZqj44IMPFBcXJ5fLpXfffVejRo2yuiQAFUA4CyAkpaamWl1CSMrIyFDr1q3Vt29fq0upcgsXLlSjRo104403auzYsfrrr7/UtGlTq8sCAAAhJjY2Vp06dSpx24ABA9SiRQs9+uij+uCDDzR48OAqrSkiIqJUTZXZdpcuXWS32zVhwgQtXbpU5513XqU8dkVkZmaqV69e6t69u9WlVLmFCxeqd+/estvteuedd3TjjTdW+RsEAHzHTyuAkPTPZQ2KB8EdOnRQjx49NHbsWKWlpUkyP760YsUKrVixQm3atNHy5cslSXv37tVdd92lvn37qkOHDrr44ou1dOnSEo+Tk5Oj++67Tz179lTnzp11++236+WXXy7xsf8RI0Zo7NixGjNmjDp16qRrrrlGkvnxsvHjx+u0005Tu3bt1LNnT40fP14ZGRkljuPZZ5/VY489pu7du6tz58668847dejQIc2aNUt9+vTRKaecoltuuaXEfmU53vG0adNGK1as0MqVK0t87C0Q/ve//2nIkCHq3LmzevXqpfvuu09ZWVne+8tatuKfH7+TpFdeeUVnn322TjrpJPXu3VsPPPCAcnJyvPe73W7NmjVLAwcOVPv27XXWWWfptddeO259LpdLixYtUv/+/XXGGWcoOjpab731VqntnE6nJk+erD59+qhDhw667rrrtGjRIrVp00Y7duzwbrdq1SoNHz5cHTt2VLdu3TRhwgQdOHCgQn0GAACql+HDh6t+/fqaP39+idvfeecdnXfeeWrfvr369eunZ555Ri6Xy3v/xIkTdfXVV2vBggU666yz1L59e11wwQX6+uuvvdu43W5NnTpVAwYMUPv27TVgwABNmTJFTqdTUslx1fLly3XllVdKkq688kqNGDFCb7zxhtq0aaMtW7aUqG3x4sU68cQTSyxPUF4nnXSSJGnnzp1l3l9QUKAZM2Z4x3ZnnnmmZs2aJbfb7T3u9957Tzt37jzu2HTt2rW67rrr1L17d5188sm66aab9Mcff0iSli9f7h2bz5gxo9S4zR/HOwap7OXWFi5cWKKO/Px8PfDAA+rTp4/at2+vs88+W3PmzCmxT2Zmpu677z6deuqpOumkk3TJJZfohx9+OG6NmzZt0s8//6x+/fpp8ODB2rlzp7755ptS2+3du1e33367unXrpq5du+q+++7zvqaOdLzXK4DAI5wFEFSKiorK/DqW1atXa/z48TrzzDM1e/Zs3XXXXVq2bJnuvPNOSdL999+v1NRUpaam6q233lK7du2Unp6uiy++WKtWrdLtt9+uZ555Ro0aNdLo0aO1ZMkSb9s333yzPvroI91yyy2aOnWqDh06pClTppSq4aOPPlJMTIyee+45jRw5Unl5ebryyiu1efNm3X///ZozZ46uvPJKffjhh5o6dWqJfefOnavdu3dr6tSpGjVqlD744AMNHTpU3377rR5++GHdcccdWrp0qaZPn37UPijP8bz11lsl+qFfv34+PRf/PGnDzJkzdccdd6hTp06aPn26Ro8erU8++UQjRoxQfn7+MR/jSB988IGefPJJDRs2THPmzNHo0aO1ePFiPfzww95tHnjgAU2fPl2DBw/W888/r7PPPluPPfaYZsyYccy2v/76a+3bt08XXnihoqKidM455+i9995TYWFhie3uu+8+vfLKKxo+fLhmzJihunXr6t577y2xzcqVK3X11VcrKipK06ZN03/+8x+tWLFCV155ZYWOFwAAVC82m009e/bUL7/84h2/vvDCC7r33nvVs2dPPf/88xo2bJhmz55danzx66+/as6cORozZoxmzJihsLAw3XLLLd43u2fPnq0333xTo0eP1ty5c3X55Zdrzpw5eu6550rV0a5dO++aq/fdd5/uv/9+nX/++YqMjNTixYtLbLto0SL17NlTDRo0qPDxFge9xUspHMnj8eimm27Siy++qH/961/ecdu0adO8S0LcfPPN6tu3r5KSko45Nl22bJkuv/xySdJjjz2mRx55RLt379Zll12mzZs3q127dt433S+++GK99dZbqlev3lHr9ng85fqfozzHUF6PPfaYvv76a02YMEFz5szR6aefrv/+979asGCBJDMEvuqqq7R06VLdfvvtevbZZ5WcnKyRI0ceN6BdsGCBEhIS1L9/f3Xp0kVNmzbVm2++WWKbwsJCXXXVVfrxxx/1n//8R5MmTdL69es1d+7cEtuV9/UKILBY1gBA0Ni5c6fatWtX4f1Wr16tqKgo3XDDDYqIiJAkJSQkaO3atfJ4PEpJSfGuT1v8kaznnntOBw4c0CeffKJGjRpJkvr27aurr75a//3vfzVo0CAtX75cy5cv1zPPPKMzzzxTktSnTx8NGjSo1NpYdrtdDz74oPfx161bp+TkZD3xxBM64YQTJEk9evTQzz//rBUrVpTYNzY2VlOnTlV4eLhOPfVUvffee0pLS9M777yjuLg4SdI333yjH3/88ah98NJLLx33eDp16lSqH47lWM9Ft27dJElZWVl67rnndMkll5Q48ULr1q01bNgwLViwQMOGDTvuY0nSihUr1LhxYw0bNkw2m03dunVTdHS095+SLVu26O2339Ydd9zhPXHEaaedJsMw9MILL+iKK65QYmJimW0vXLhQrVu39s7wGDJkiN5991198sknOv/88yVJ27Zt03vvvacJEyZ4Zz/37t1b6enp+vbbb71tTZkyRc2bN9cLL7ygsLAwSVLHjh113nnnVeh4AQBA9VO3bl05nU5lZmYqMjJSM2fO1KWXXqp77rlHkjl2SUhI0D333KNrrrlGrVq1kiRlZ2dr4cKF3qAzOjpaw4cP17Jly3TWWWdpxYoVat++vXcN2W7dusnhcHjHikeKjY1VSkqKJCklJcV7feDAgVqyZIluvfVWGYahPXv2aNmyZXryySePe1xHBpc5OTlau3atJk2apMaNG5cZqn799df6/vvv9dRTT3mXPOjVq5eioqL09NNP68orr1SrVq1Uu3bt4y7JMGXKFDVt2lSzZs3yjr1OO+00DRw4UNOnT9fTTz/t3T85Ofm449yVK1eW63+O8h5DeaxYsUK9evXyttO9e3dFR0erTp06kswZzOvXr9fbb7+tjh07SjL/7xgxYoQmT57sDXH/qaioSEuWLNGgQYO8/4dcdNFFeuaZZ7R7925v6L5kyRL9+eefWrBggdq3by/J/N/kjDPO8LaVnZ1d7tcrgMBi5iyAoJGUlKR33323zK+kpKSj7te1a1fl5eVp0KBBmjJlilatWqXTTjtN//73v2UYRpn7rFixQp07d/YGmcUGDx6sffv26c8//9SyZctkt9tLDFpsNpvOPffcUu21aNHCOyCSpBNPPFHz5s1To0aNtHXrVn311VeaM2eO/vzzz1KzNTt06KDw8L/fK6tbt66aN29eYrCdkJCg7Ozso/ZBeY6noo72XBw5mF2zZo0KCws1aNCgEvt26dJFjRo1KhVEH0uPHj20ZcsWDRkyRM8++6zWrl2r888/33tG3WXLlsnj8WjAgAElZjgMGDBABQUFWr16dZntHjhwQF988YXOOussHTx4UAcPHlSrVq3UqFGjEksbLF++XB6PR2effXaJ/Y88try8PP3888/q27dviVkXJ5xwglq2bKnvvvuu3McLAACqn+JPGBmGoZ9++kn5+flljl0klRg31K5du8QM1OTkZEnm2EMyw7zvvvtOV1xxhV588UVt2rRJw4cP1wUXXFDu2i6++GLt3LlTq1atkmTOmo2JidHAgQOPuV/xBIrir+7du2vkyJGqU6eOZsyYUebJwFasWKHw8PBS46ritXjLO0bMzc3V2rVrdc4553iDWUmqVauW+vfvX6GxZrF27doddZxbGccgmc/f22+/reuvv16vv/66tm/frtGjR3uD7R9++EFJSUlq166d93XicrnUv39//frrryWWCzvSl19+qfT0dJ1xxhnece6AAQPkdrv1zjvveLdbtmyZTjjhBG8wK5khfv/+/b3fV+T1CiCwmDkLIGhERER4ZzaWdd/RdO7cWbNmzdLLL7+sl156SbNmzVLdunV10003eYO9f8rKyvLOaD1S3bp1JUkHDx5URkaGEhISSi2mX/wO95FiYmJK3fbSSy/p+eefV2ZmpurWrav27dvL4XCUClmLZ7MeKTo6+qjH6+vxVNTRnosjj7V4oFj8OP987GMFyv907rnnyu12a968eZo5c6Z3aYaxY8fq3HPPVWZmpiQd9YQTxWsM/9OSJUvkdDr1zDPP6Jlnnilx386dO7V582a1bNnSu2bsP5/fI78/ePCg3G63Zs+erdmzZ5d6rMjIyHIfLwAAqH7S0tIUFRWlhIQE79il+BM//7R3717vdYfDUeK+4gkGxWubjhw5UjExMVqwYIEmT56sJ598Uq1atdI999yjHj16lKu2Hj16qHHjxlq0aJG6du2qRYsW6dxzzz3u+CUpKanE8gkRERFKTk5WfHz8UffJyspSYmJiiUC1uC1J5R4jZmdny+PxBGSsWSwmJuao49wjBeoYJOnuu+9WcnKylixZoocfflgPP/ywOnfurAceeEBt27ZVZmam9u3bd9QZvfv27Suzv4tn1F599dWl7nv33Xd18803Kzw8XBkZGWX+D3PkbRV5vQIILMJZANVC79691bt3b+Xl5WnZsmV69dVX9cgjj6hjx47q0KFDqe3j4+O1b9++UrcX35aYmKj69esrIyNDbre7REC7f//+49bz/vvv6/HHH9e4ceM0ZMgQ1a5dW5J06623au3atb4e5lGV53gqQ/EgMT09XS1atCj12MWBsWEYpU4kkJubW6q9QYMGadCgQcrOzta3336r2bNna9y4cTrllFNUq1YtSeZJw8oKwxs2bFhmjQsWLPCezO2fj3/zzTfrzTff1D333KP69et7j+XIto480VdMTIwMw9DVV19dZkj8z3+sAABAzVFUVKTly5fr5JNPVlhYmHfsMnnyZDVr1qzU9mUFjkdjs9k0bNgwDRs2TPv379dXX32l559/Xrfccku5ZzQahqGLLrpIr732mi6//HJt2bJFTzzxxHH3O9YEiqOJj49XRkaGXC5XiXCzOOAr79g0Li5OhmEoPT291H379u1TQkJCheqqiIocw/HGuRERERo1apRGjRqlXbt26YsvvtDMmTN155136sMPP1RcXJyaNWumyZMnl1lL48aNS92Wnp6ur7/+WldccUWp2b1r1qzRU089pS+++EIDBw5U/fr1tXXr1lJtHPl/TSBfrwAqhmUNAIS8J554QkOHDpXH45HD4VD//v01YcIESdKuXbskqdTs165du+qnn34qdXbZJUuWKCkpSU2bNlW3bt1UVFSkzz//3Hu/x+PRZ599dtyaVq9erVq1amnkyJHeYPbQoUNavXp1ibO7Bkp5jqcydOzYUREREfrggw9K3L5q1Srt2rVLJ598siQz1MzIyFBBQYF3m38uQ3Dbbbdp9OjRksyB+DnnnKObb75ZRUVF2rt3r7p06SJJysjI0EknneT9OnDggJ5++mnvu/1HWrt2rTZu3KghQ4aoe/fuJb769++vHj16aPHixcrPz9cpp5yisLAw/d///V+JNj799FPv9djYWKWmpurPP/8sUUOrVq30zDPPaPny5b53JgAACGlvvfWW9u3b5z15VceOHWW325WWllZi3BAeHq6nnnpKO3bsKHfbl112mR555BFJ5mzHIUOGaNiwYTp48KBycnJKbf/P2Z7FhgwZooMHD+qJJ55Qy5YtveubBlrxOPrjjz8ucXvxiWpPOeUUSaXH6P8UHR2t9u3b66OPPioRgGZnZ+vLL7/0tlMZynsMsbGx2rNnT4ltjhzn5ufn66yzzvKefKthw4YaNmyYzjvvPO//Kt26ddPu3btVp06dEq+V7777Ti+++GKZz+fixYtVVFSkq666qtQ496qrrlJsbKzmz5/vbX/Hjh1at25dibq++eYb7/eBfL0CqBhmzgIIeT169NBLL72kiRMnavDgwXI6nXrxxReVkJDg/ZhXrVq19NNPP+mHH35QamqqrrnmGi1ZskRXX321/v3vfyshIUGLFi3SsmXL9Nhjj8lms6lr167q1auX7r77bu9synfffVcbNmw46lq2xTp06KA333xTjz/+uPr376+9e/dqzpw5Sk9PP+ZHwHxVnuOpDAkJCbrhhhs0Y8YM2e129e/fXzt27NDTTz+tlJQUXXTRRZKk/v3767XXXtPdd9+tiy++WBs3btRLL71UYqDZo0cP3X///XriiSfUp08fHTx4UM8++6yaNWumtm3bym63a/Dgwbr33nu1c+dOtW/fXlu2bNHUqVPVuHHjMt/hX7Bggex2u/eEbv90wQUX6Pvvv9f//vc/DRkyREOHDtVTTz0lp9Optm3b6v/+7//0xRdfSPr7n4fiE5LdeeedGjx4sFwul+bOnauff/5ZN998c4B7GAAABJucnBytWbNGkrnsQEZGhr799lu99dZbGjx4sHfckZiYqJEjR+rpp59WTk6OunfvrrS0ND399NMyDENt27Yt92N27dpVc+fOVd26ddW5c2elpaXppZdeUrdu3VS7du1SMzWLz13w5ZdfKj4+3vtYDRs21Kmnnqpvv/1WY8eODUBvlK1Pnz7q3r277rnnHqWlpalt27ZasWKFZs+erYsuush7krJatWopPT1dX331lU488UTVq1evVFt33nmnrrvuOt1www264oor5HQ6NWvWLBUWFnrf2LfyGPr3768XXnhBL7zwgjp27KjPP/9cy5Yt87YTFRWldu3a6dlnn5XdblebNm20ZcsWvffeezrrrLMkmaH566+/rmuuuUY33XSTGjRooO+//16zZ8/W8OHDZbfbS9W3cOFCtWvXrswxcFRUlM466ywtXLhQ27dv16BBgzRr1iyNHj1at956q2rVqqWXXnpJ+/fv935iLJCvVwAVQzgLIOT17dtXkydP1ty5c70nATvllFP06quvej/qNGzYMP3666+6/vrrNWnSJJ1//vl68803NWXKFD3yyCPeMG7mzJk6/fTTvW1PnTpVjz/+uKZMmaKioiKdfvrpuvzyy7Vo0aJj1nTRRRdpx44dWrBggebNm6f69eurb9++uuKKK3Tvvfd61zkNlKSkpHIdT2W45ZZbVLduXb3++ut66623lJCQoLPPPlu33Xabd+3cXr16acKECXrttdf0ySefeAeol112mbedyy67TE6nU/Pnz9e8efMUFRWlnj17aty4cd4B6aRJk/TCCy9o/vz52rNnj+rUqaNzzz1Xt912W6kZBQUFBfrwww/Vq1evo37k7cwzz9SDDz6o+fPna8iQIbr33nsVHR2tuXPnKicnRz179tSoUaM0Y8YM77GcdtppmjNnjp599lmNGTNGdrtd7dq100svvXTcswMDAIDQ9/vvv+vSSy+VZC4VEBMTo9atW+uBBx7Qv/71rxLb3nbbbUpKStK8efP04osvKj4+Xj179tQdd9xR4uSvx3PrrbcqIiJCCxYs0IwZMxQXF6cBAwbozjvvLHP7Vq1aadCgQXrjjTf0zTfflPiUU79+/fTDDz9U6GRiFWUYhl544QVNnz5dL7/8sg4cOKDGjRvrjjvu0DXXXOPdbsiQIfrqq680evRojRkzpsz1Tnv27KmXXnpJ06dP1x133KGIiAh16dJFTzzxhFq1amX5Mdx44406cOCA5syZI6fTqX79+unRRx/VqFGjvNs89NBDmjZtmubOnat9+/apTp06uvjii3XrrbdKMmcIv/HGG5oyZYqefPJJZWdnq1GjRrrzzjt17bXXlqrt559/1qZNmzR+/Pij1n/hhRdqwYIFeuuttzR27FjNmTNHjz76qB544AGFh4dr8ODBSkhI0JYtW7z7BOr1CqBiDE/x6SQBACXs3LlTa9as0emnn17iLLRjxozR9u3b9d5771lYHQItMzNTX3/9tXr37l1iDbEnnnhCCxcuZMkCAABQLYwcOVKRkZGaMWOG1aWgivzxxx/6888/deaZZ5b4BODFF1+s5ORkPfvssxZWB4CZswBwFDabTRMnTtTpp5+uiy++WGFhYfrmm2/06aefatKkSVaXhwBzOBx69NFHdeKJJ+qqq65SdHS01qxZo9dff1033nij1eUBAAD4ZcaMGdqyZYu+/fZbzZs3z+pyUIVyc3N166236oorrtDAgQPlcrn0v//9T7/++mulLm8BoHyYOQsAx7Bs2TLNmDFD69atU1FRkVq2bKlrrrlGgwYNsro0VIJ169Zp2rRpWrNmjfLy8tSkSRNddtllGjZs2HHXGQYAAAhmQ4cO1bZt2zRq1KgyPyqP6u3jjz/WnDlztHnzZnk8HqWmpmrUqFE67bTTrC4NqPEIZwEAAAAAAADAApVz+m4AAAAAAAAAwDERzgIAAAAAAACABQhnAQAAAAAAAMAC4VYXEIp++ukneTwe2e12q0sBAACotpxOpwzDUOfOna0upVphLAsAAFD5yjuWZeasDzwejziPmu88Ho8KCwvpQ4vQ/9ah761F/1uL/rdOKPc9Y67KQb/6J5R/pqoD+t869L216H9r0f/WCeW+L++Yi5mzPiieZXDSSSdZXEloys3N1bp165SSkqLo6Giry6lx6H/r0PfWov+tRf9bJ5T7fu3atVaXUC0xlvVPKP9MVQf0v3Xoe2vR/9ai/60Tyn1f3rEsM2cBAAAAAAAAwAKEswAAAAAAAABgAcJZAAAAAAAAALAA4SwAAAAAAAAAWIBwFgAAAAAAAAAsQDgLAAAAAAAAABYgnAUAAAAAAAAACxDOAgAAAAAAAIAFCGcBAAAAAAAAwAKEswAAAAAAAABgAcJZAAAAAAAAALAA4SwAAAAAAAAAWIBwFgAAAAAAAAAsQDgLAAAAAAAAABYgnAUAAAAAAAAACxDOAgAAAAAAAIAFCGcBAAAAAAAAwAJBFc6+8MILGjFihPf7ESNGqE2bNmV+LVq0SJLkcrnUoUOHUvc/88wz3nZ27NihG2+8USeffLJOO+00TZs2TS6Xq6oPDwAAANUYY1kAAABUVLjVBRR74403NG3aNHXp0sV72zPPPCOn0+n93uPx6Pbbb1dWVpYGDhwoSdq6dasKCgq0ePFi1alTx7ttdHS0JMnpdOq6665Ts2bNNH/+fG3btk133323bDabxowZU0VHBwAAgOqMsSwAAAB8YXk4m5aWpvvvv1/Lly9Xs2bNStyXkJBQ4vvXX39dv/zyixYvXqyYmBhJ0oYNGxQbG6u2bduW2f4nn3yiXbt26e2331Z8fLxat26t/fv367///a9uuukmRUREVMZhAQAAoAZgLAsAAAB/WL6swW+//Sa73a4lS5aoY8eOR93uwIEDmjZtmkaNGqUWLVp4b9+wYYNatmx51P1WrVqldu3aKT4+3ntbjx49lJOTo3Xr1gXmIAAAAFAjMZYFAACAPyyfOTtgwAANGDDguNvNnj1bUVFRuu6660rcvnHjRhUVFem6667T+vXrVb9+fV111VW64IILJEl79uxRcnJyiX3q1asnSdq9e/cxB9GoHIZhyOFwyDAMq0sBAADwC2PZmoexLAAACCTLw9nyyMnJ0dtvv61///vfioyMLHHfH3/8IbfbrTFjxig5OVlfffWV7rrrLjmdTl188cXKz89XrVq1SuxT3EZBQYHPNXk8HuXm5vq8fygzDEORUVGy+TggdTgcSk1NlSS5PR4V5OfL4/EEskQcQ15eXolLVB363lr0v7Xof+uEct97PJ5qEYAxlg0uhmEoKipShuHbhwiPHMt6PG7l5xcwlq1Cofw7LdTR99ai/61F/1snlPu+vGPZkAhnP/vsMxUWFmro0KGl7vvggw/kcrm863a1bdtWu3bt0pw5c3TxxRcrKipKhYWFJfYpHsgWn2jBF06ns8Z+lKx4QLp0y35l5hf53E5CVLhOb15HW7ZsCckfslC3detWq0uoseh7a9H/1qL/rROqfV8d1lRlLBtciseyGb+8qKKcPT63Ex6brMQOIxnLWiRUf6dVB/S9teh/a9H/1gnVvi/PWDZkwtm+ffuWmjUgSVFRUaVua926tZYsWSJJSk5O1saNG0vcv3fvXklS/fr1fa7JbrcrJSXF5/1DWXHqn69w5fowm8Xtdis/P18RkeYLtHnz5sw2qEJ5eXnaunWrmjVrJofDYXU5NQp9by3631r0v3VCue83bdpkdQkBwVg2uBSPZWPDC6TIioeqziKnMjMzFRsXJ4mxbFUL5d9poY6+txb9by363zqh3PflHcuGRDi7atUq3XLLLaVuP3jwoM444wxNnDhRQ4YM8d6+du1atWrVSpLUtWtXLVq0SDk5OYqNjZUkLVu2TDExMUc9K255GIbh12yF6sAWZlNYmB/7H/4oWaj9cFUXDoejxr+GrULfW4v+txb9b51Q7PvqsKSBxFg2WNnt4VKR3ef9w8PMf6UYy1ojFH+nVRf0vbXof2vR/9YJxb4v71jWt4WWqtDu3buVkZFR5uCzVq1a6tGjh6ZOnaqvvvpKW7du1axZs7RkyRLvAPiMM85QUlKSbrvtNq1fv16fffaZnnrqKV177bXV4mNyAAAACF6MZQEAAHAsQT9zdt++fZKkhISEMu9/7LHH9Mwzz+j+++/X/v371bJlS02fPl29e/eWZJ4w4cUXX9SDDz6oSy65RPHx8briiit08803V9UhAAAAoIZiLAsAAIBjCapw9vHHHy91W4cOHbRhw4aj7hMbG6u77rpLd91111G3adq0qebOnRuQGgEAAICyMJYFAABARQX9sgYAAAAAAAAAUB0RzgIAAAAAAACABQhnAQAAAAAAAMAChLMAAAAAAAAAYAHCWQAAAAAAAACwAOEsAAAAAAAAAFiAcBYAAAAAAAAALEA4CwAAAAAAAAAWIJwFAAAAAAAAAAsQzgIAAAAAAACABQhnAQAAAAAAAMAChLMAAAAAAAAAYAHCWQAAAAAAAACwAOEsAAAAAAAAAFiAcBYAAAAAAAAALEA4CwAAAAAAAAAWIJwFAAAAAAAAAAsQzgIAAAAAAACABQhnAQAAAAAAAMAChLMAAAAAAAAAYAHCWQAAAAAAAACwAOEsAAAAAAAAAFiAcBYAAAAAAAAALEA4CwAAAAAAAAAWIJwFAAAAAAAAAAsQzgIAAAAAAACABQhnAQAAAAAAAMAChLMAAAAAAAAAYAHCWQAAAAAAAACwAOEsAAAAAAAAAFiAcBYAAAAAAAAALEA4CwAAAAAAAAAWIJwFAAAAAAAAAAsQzgIAAAAAAACABQhnAQAAAAAAAMAChLMAAAAAAAAAYAHCWQAAAAAAAACwAOEsAAAAAAAAAFiAcBYAAAAAAAAALEA4CwAAAAAAAAAWIJwFAAAAAAAAAAsQzgIAAAAAAACABQhnAQAAAAAAAMAChLMAAAAAAAAAYAHCWQAAAAAAAACwAOEsAAAAAAAAAFiAcBYAAAAAAAAALEA4CwAAAAAAAAAWIJwFAAAAAAAAAAsQzgIAAAAAAACABQhnAQAAAAAAAMAChLMAAAAAAAAAYAHCWQAAAAAAAACwAOEsAAAAAAAAAFiAcBYAAAAAAAAALEA4CwAAAAAAAAAWCKpw9oUXXtCIESNK3HbPPfeoTZs2Jb4GDBjgvd/tdmv69Onq3bu3OnXqpOuvv17bt28v0ca6des0fPhwderUSQMGDNCrr75aJccDAACAmoOxLAAAACoqaMLZN954Q9OmTSt1+4YNG3TTTTfp22+/9X69++673vtnzpypefPm6eGHH9b8+fPldrs1cuRIFRYWSpIyMjJ0zTXXqEmTJlqwYIFGjx6tyZMna8GCBVV1aAAAAKjmGMsCAADAF+FWF5CWlqb7779fy5cvV7NmzUrc5/F4tGnTJt1www1KSkoqtW9hYaHmzp2rsWPHql+/fpKkqVOnqnfv3vr00081aNAgvf3227Lb7XrooYcUHh6uli1b6q+//tKsWbM0dOjQKjhCAAAAVFeMZQEAAOAPy2fO/vbbb7Lb7VqyZIk6duxY4r5t27YpNzdXLVq0KHPf9evX69ChQ+rZs6f3tlq1aik1NVUrV66UJK1atUrdunVTePjfOXSPHj20detWpaenV8IRAQAAoKZgLAsAAAB/WD5zdsCAASXW3TrSxo0bJUmvvfaavv76a9lsNvXp00e333674uLitGfPHklSgwYNSuxXr14973179uxR69atS90vSbt371bdunV9qtvj8Sg3N9enfUOdYRhyOBxyu9xyuVwV3t/tdpuXHvMyLy9PHo8noDXi6PLy8kpcourQ99ai/61F/1snlPve4/HIMAyryzgmxrKhp3gs63QWSU5nhfd3Fpn7FLmKZBdj2aoWyr/TQh19by3631r0v3VCue/LO5a1PJw9lo0bN8pms6levXp6/vnntW3bNv33v//VH3/8oVdeecX7xERERJTYLzIyUllZWZKk/Pz8Mu+XpIKCAp9rczqdWrdunc/7hzKHw6HU1FTl5+crN6/iA9pihQXmWmpbtmwJyR+yULd161arS6ix6Htr0f/Wov+tE6p9/89xXChhLBuciseymZkZcmbv87mdnOxsOcRY1iqh+jutOqDvrUX/W4v+t06o9n15xrJBHc6OGjVKV1xxhRITEyVJrVu3VlJSki655BKtXbtWUVFRksz1uoqvS+ZA1eFwSJKioqK8J1Q48n5Jio6O9rk2u92ulJQUn/cPZcWpf1RUlKINe4X3d7vd5j8akeYLtHnz5sw2qEJ5eXnaunWrmjVr5v05QdWg761F/1uL/rdOKPf9pk2brC7BL4xlg1PxWDYhIVGKrHio6ixyKjMzU7FxcZIYy1a1UP6dFuroe2vR/9ai/60Tyn1f3rFsUIezNpvNO5gt1qpVK0nmR7yKPwK2d+9eNWnSxLvN3r171aZNG0lScnKy9u7dW6KN4u/r16/vc22GYfg1IK4ObGE2hYX5sb9hLnkcaj9c1YXD4ajxr2Gr0PfWov+tRf9bJxT7PtiXNDgexrLBzW4Pl4oqPtGgWHiY+a8UY1lrhOLvtOqCvrcW/W8t+t86odj35R3LWn5CsGMZP368rr766hK3rV27VpKUkpKitm3bKjY2VsuXL/fef/DgQf3+++/q2rWrJKlr165avXp1ibVRly1bpubNm6tOnTqVfxAAAACokRjLAgAA4HiCOpw966yz9MMPP+jZZ5/Vtm3b9NVXX+k///mPBg0apJYtWyoiIkLDhw/X5MmTtXTpUq1fv1633367kpOTdeaZZ0qShg4dqpycHN19993atGmTFi5cqJdfflk33nijxUcHAACA6oyxLAAAAI4nqJc1OP300zVt2jTNmjVLs2fPVlxcnM4//3zddttt3m3GjBmjoqIi3XPPPcrPz1fXrl01Z84c2e3mR5Tq1KmjF198UY8++qguuugiJSUlafz48brooossOioAAADUBIxlAQAAcDxBFc4+/vjjpW4755xzdM455xx1n7CwMI0bN07jxo076jYdOnTQW2+9FZAaAQAAgLIwlgUAAEBFBfWyBgAAAAAAAABQXRHOAgAAAAAAAIAFCGcBAAAAAAAAwAKEswAAAAAAAABgAcJZAAAAAAAAALAA4SwAAAAAAAAAWIBwFgAAAAAAAAAsQDgLAAAAAAAAABYgnAUAAAAAAAAACxDOAgAAAAAAAIAFCGcBAAAAAAAAwAKEswAAAAAAAABgAcJZAAAAAAAAALAA4SwAAAAAAAAAWIBwFgAAAAAAAAAsQDgLAAAAAAAAABYgnAUAAAAAAAAACxDOAgAAAAAAAIAFCGcBAAAAAAAAwAKEswAAAAAAAABgAcJZAAAAAAAAALAA4SwAAAAAAAAAWIBwFgAAAAAAAAAsQDgLAAAAAAAAABYgnAVQYR6PJyjbAgAAAI7L4w7OtgAANVK41QUACD2GYej7PbnKKnT51U58RJhOTY4OUFUAAABAORg2adsCqSDdv3Yi60pNhgamJgBAjUU4C8AnWYUuZRQwUwAAAAAhqCBdytttdRUAALCsAQAAAAAAAABYgXAWAAAAAAAAACxAOAsAAAAAAAAAFiCcBQAAAAAAAAALEM4CAAAAAAAAgAUIZwEAAAAAAADAAoSzAAAAAAAAAGABwlkAAAAAAAAAsADhLAAAAAAAAABYgHAWAAAAAAAAACxAOAsAAAAAAAAAFiCcBQAAAAAAAAALEM4CAAAAAAAAgAUIZwEAAAAAAADAAoSzAAAAAAAAAGABwlkAAAAAAAAAsADhLAAAAAAAAABYgHAWAAAAAAAAACxAOAsAAAAAAAAAFiCcBQAAAAAAAAALEM4CAAAAAAAAgAUIZwEAAAAAAADAAoSzAAAAAAAAAGABwlkAAAAAAAAAsADhLAAAAAAAAABYgHAWAAAAAAAAACwQbnUBAAAAABB0XAVS1q9S3m4pf49khEn1+kqRJ1hdGQAAqEYIZwEAAADgSEW50tZXpfy0krdvfU1hcamyhXe2pi4AAFDtBNWyBi+88IJGjBhR4rbPP/9cQ4cOVefOnTVgwAA98cQTys/P996/evVqtWnTptTX8uXLvdv88MMPGjJkiDp27Kizzz5bH374YZUdEwAAAGoOxrPVQFGetPU1M5gNi5Hqnio1HirV7ibJkC37dyVlvic5s62uFAAAVANBM3P2jTfe0LRp09SlSxfvbatWrdK///1vjRkzRmeffbb++usv3XfffcrMzNSkSZMkSRs2bFCTJk00b968Eu3Fx8dLkjZv3qwbb7xR11xzjZ588kl9+eWXGj9+vGrXrq2ePXtW3QECAACgWmM8Ww248g/PmN1jBrPNr5Kiksz7EtpLiZ3k2fauwpwHZGx7TeowXjKCar4LAAAIMZaHs2lpabr//vu1fPlyNWvWrMR98+fPV/fu3XXTTTdJkpo1a6bbb79d99xzjx588EFFRERo48aNSklJUVJSUpntv/LKK2rTpo1uv/12SVLLli31+++/68UXX2QwCwAAAL8xnq1G9n5xOJiNlppf+XcwW8zRQEWNhih860uyZf8urX9KOnGsNbUCAIBqwfK3eX/77TfZ7XYtWbJEHTt2LHHftddeqwkTJpS4zWazyel0KicnR5I506Bly5ZHbX/VqlWlBq09evTQ6tWr5fF4AnQUAKqLQP5e4HcMANQMjGeriYL90v5V5vUThkpR9creLrKesmIOPx9r7pLSl5e9HWAFjzs42wIAHJXlM2cHDBigAQMGlHlfampqie+dTqdefvlltW/fXrVr15Yk/fHHH0pMTNSQIUOUlpam1q1b6/bbb1eHDh0kSXv27FFycnKJdurVq6e8vDxlZGR42wEASTIMQ9/vyVVWocuvduIjwnRqcnSAqgIABDPGs9VE2lJJbim2lRTb4pib5ka2VS17rmyZP0orbpDO+YnlDRAcDJu0bYFUkO5fO5F1pSZDA1MTAOCYLA9ny6uoqEjjx4/XH3/8oTfeeEOStHv3bmVnZys3N1f33HOPwsLC9Prrr2v48OFauHChUlJSlJ+fr4iIiBJtFX9fWFjocz0ej0e5ubm+H1AIMwxDDodDbpdbLlfFAyy323wH1n34ndi8vDxmfVShvLy8EpcV5e/zfyS36++aguE1UHxsGXlOHSjw99hKv7797Xv4h/63Fv1vnVDue4/HI8MwrC4jYIJpPMtY1iGns0hyOs3bcrcr/OA6eWSoqG4/7+1lcRY5JcNQQYOhcuT8IWX+ooLN78jV8PwqOoKaLVBj2SOff5+FF8mu4BvLOnP2SHm7/GvMUfrYQvnvSXVA/1uL/rdOKPd9eceyIRHO5uTk6LbbbtOKFSv07LPPemcRNGjQQCtXrpTD4ZDdbpcknXTSSfr999/12muv6cEHH1RkZGSpQWvx9w6Hw+eanE6n1q1b5/P+oczhcCg1NVX5+fnKzfN9QFNYYD4PW7ZsCckfslC3detWn/YL1PMvSdEeu6T4oHkNVNWx+dr3CAz631r0v3VCte//GUqGqmAbzzKWTVVmZoac2fskj0d1D34iScqNbKOsbEnZ+47bTk6eW442t0i/PSbXz/drXWZLqRq9mRDs/B3Lep9/P9jjHEpS8Pw/U1XHFqp/T6oL+t9a9L91QrXvyzOWDfpwdu/evbr++uu1c+dOzZkzR127di1xf61atUp8b7PZ1LJlS6WlpUkyB7x79+4t1WZ0dLTi4uJ8rstutyslJcXn/UNZceofFRWlaMNe4f3dbrc5AyTSfIE2b948KN5priny8vK0detWNWvWzKd/6Px9/o8UFRkmKXheA5V9bP72PfxD/1uL/rdOKPf9pk2brC4hIIJxPMtYVkpISJQi82Qc2qrwA3vlMeyKaHymksJjj7m/s8ipzMxMxcbFSa1HybP+aUUXbFD7xK1yNTi3Kg6hRgvUWLb4+feLI1FS8I1lK+vYQvnvSXVA/1uL/rdOKPd9eceyQR3OZmVl6aqrrlJOTo7eeOMNtWnTpsT9X3/9tW699VYtWbJEJ5xwgiTz42Lr16/XmWeeKUnq0qWLVqxYUWK/ZcuW6eSTT5bN5vu6UIZhKDq6Zq8naQuzKSzMj/0Pr8sVaj9c1YXD4fDrNezv81/cRnEtwaSyj83fvod/6H9r0f/WCcW+rw5LGgTreJaxrGS3h0tFdin7F0mSkdhB9sOBVHmEh4VLkXVktPm39PsTivzjcanFUGbPVhF/f6d5n39/2MO9tQSTyj62UPx7Up3Q/9ai/60Tin1f3rFsUK9aP2nSJG3fvl1PPvmkateurX379nm/XC6XTj75ZCUmJmrChAn69ddftWHDBk2YMEGZmZm6+uqrJUkjRozQL7/8osmTJ2vz5s2aO3euPv74Y40cOdLagwMAAEC1x3g2yBXlSgcPL++QeLJvbbS9UwqLlg6slnZ9FLjaAABAjRC0M2ddLpf+97//yel06qqrrip1/9KlS9W4cWO9/PLLmjx5sq677joVFBTolFNO0euvv666detKklq1aqWZM2fqySef1CuvvKLGjRvrySefVM+ePav6kAAAAFCDMJ4NAVlrJY9LikqWHA19ayMqSWp1k7T+KemPGVIjljYAAADlF1Th7OOPP+69HhYWpl9++eW4+zRp0kTTp08/5jZ9+vRRnz59/K4PAAAAOBbGsyHE45EO/Ghe93XWbLGUG81wdvfHUu5OKbqR//UBAIAaIaiXNQAAAACASnFoq1SwVzLCpYST/GurVmupXh/J45b+fDkQ1QEAgBqCcBYAAABAzbPvW/MyPlUKi/K/vRbXmZeb55ghLQAAQDkQzgIAAACoWVwF5gm8JCmxc2DabHKxZK8lHdoipX0ZmDYBAEC1RzgLAAAAoGZJ+0Jy50vhsVJ008C0GR4tNb3cvL55TmDaBAAA1R7hLAAAAICaZcdi8zKujWQYgWu35UjzcvsCqTAjcO0CAIBqi3AWAAAAQM3hcUs7D4eztdoEtu3ap5gnF3MXSNsWBLZtAABQLRHOAgAAAKg59q+S8nZLtkgppnlg2zYMqell5vVt7wS2bQAAUC0RzgIAAACoOYpnzca3k2zhgW//hH+Zl2lLpYL9gW8fAABUK4SzAAAAAGqOHYvMy8SOldN+rVZSQkfJ4/r7sQAAAI6CcBYAAABAzZC9Scr6XTLCpfj2lfc4TQ7PnmVpAwAAcByEswAAAABqhh2HlzSo11cKj6m8xykOZ/cslQoOVN7jAACAkEc4CwAAAKBm2PWhedn4gsp9nFqtpYQOkqeIpQ0AAMAxEc4CAAAAqP6KcqV935nXG5xV+Y/H0gYAAKAcCGcBAAAAVH/7vpPchVJ0YymuVeU/nndpg8+kwszKfzwAABCSCGcBAAAAVH97PjMvk8+QDKPyH69WG6nWiebSBrs+rvzHAwAAIYlwFgAAAED1l7bUvKx/etU9ZuPB5uXOJVX3mAAAIKQQzsIyUWGGPB5PwNoLZFsAAACoRgoOSAd+NK8nByicDY+VPO5jb9PofPNy10eS23nsbY/XFgAAqJbCrS4ANVdEmCHDMPT9nlxlFbr8ais+IkynJkcHqDIAAABUK2lfSPJI8amSo0Fg2gyPkgybtG2BVJBe9jYetxniOjOlnyaYSx2UJbKu1GRoYOoCAAAhhXAWlssqdCmjgJkCAAAAqCSVuaRBQbqUt/vo98e2lDJ/ltJ/kOy1Av/4AAAgpLGsAQAAAIDqbc/hcDb5jKp/7LjDs2WzN0gswwUAAP6BcBYAAABA9XVou5S90VyCoF7fqn/82JaSESYVZhx9+QMAAFBjEc4CAAAAqL6KlzSo3U2KiK/6xw+LkGKam9ezN1b94wMAgKBGOAsAAACg+tr7jXlZv591NcS1Ni+zN1hXAwAACEqEswAAAACqr33fmpdJva2roTiczd0hFeVZVwcAAAg6hLMAAAAAqqf8vYeXEjCkpJ7W1RERL0XWk+SRcjZbVwcAAAg6hLMAAAAAqqd935mXCe2liERra4lLMS9z/rC2DgAAEFQIZwEAAABUT94lDU6ztg5JimtlXmZvkjwea2sBAABBg3AWAAAAQPUUTOFs9AmSLVJy5Up5O62uBgAABAnCWQAAAADVT9Eh6cCP5vVgCGeNMCm2pXk9m6UNAACAiXAWAAAAQPWzf4XkKTJnrMY0sboaU/HSBjmbrK0DAAAEDcJZAAAAANXP3iBa0qBY7OGTguXtkpw51tYCAACCAuEsAAAAgOonmNabLWaPlRwNzevMngUAACKcBQAAAFDduIuk9O/N60m9rK3ln4pnz7LuLAAAEOEsAAAAgOom61epKEey15Li21tdTUnedWc3Sx6XtbUAAADLEc4CAAAAqF7Sl5mXdbpLtjBra/knR0MpLFpyF0i5262uBgAAWIxwFgAAAED1UhzO1u1hbR1lMWxSHEsbAAAAE+EsAAAAgOpl/3Lzsk53a+s4mtjDSxtkc1IwAABqOsJZAAAAANVHYaZ0cL15vU43S0s5qtiWkgypYK9UmGV1NQAAwEKEswAAAACqj/0rzcvYFlJUkrW1HE24Q4pubF7PYWkDAABqMsJZAAAAANWH92RgQbje7JHiipc2IJwFAKAmI5wFAAAAUH0UrzdbN0jXmy1WvO5szhbJ7bS2FgAAYBnCWQAAAADVg8cT/CcDKxZVXwqPkzxOKXuj1dUAAACLEM4CAAAAqB4ObZEK0iVbhJTYyepqjs0wpLgU83rmr9bWAgAALEM4CwAAAKB6KF5vNrGzFBZpbS3lEdfavMwinAUAoKYinAUAAABQPaSHyJIGxWKaS4ZNKtgnHeTEYAAA1ESEswAAAACqh1A5GVixsEgpuql5fdeH1tYCAAAs4VM4+8EHH6iwsDDQtQAAAACAb1yFUsZP5vVQmTkrSXGtzMtd/7O2DgAAYAmfwtnx48erV69eeuCBB/TLL78EuiYAAAAAqJisXyV3oRSRKMW2sLqa8isOZ/d+JTlzrK0FAABUOZ/C2c8//1zXXnutli1bpksvvVTnnnuu5syZo3379gW6PgAAAAA4vgOrzcvEkyXDsLaWioioI0XWNYPltKVWVwMAAKqYT+FscnKyRo0apY8//lhvvPGGunTpotmzZ6t///666aab9Omnn6qoqCjQtQIAAABA2YrD2TpdrK2jogxDim9vXmdpAwAAahy/Twh28skn66GHHtLs2bPVuXNnffnllxozZoz69eun2bNny+VyBaJOAAAAADi64nC29inW1uGLI8NZj8faWgAAQJUK92fnnTt3avHixVq8eLG2bdumJk2a6I477lC/fv305ZdfasaMGdq0aZOeeOKJQNULAAAAACW5CqXMw+fCCMVwtlZrKcwh5e6QMtZItTtbXREAAKgiPoWz77zzjhYvXqwff/xRkZGROvvss/Xoo4+qS5e/P0LUunVrZWRkaP78+YSzAAAAACpP1m9/nwwsprnV1VScLUJqcJa0Y5G0YzHhLAAANYhP4ey9996rjh076oEHHtC5556r2NjYMrdr06aNLr30Ur8KBEKVx+OREaCTUQSyLYSeQD3/vI4AANXWgVXmZaidDOxIjS88HM4ukjo8YG0tkuRxS4bfq+AFvi2EnkA9/7yOAFRTPoWzH3zwgVJSUuRyuRQWFiZJys/Pl9PpVFxcnHe7Cy+8MCBFAqHIMAx9vydXWYX+rbscHxGmU5OjA1QVQlEgXku8jgAA1VoorzdbrNEgyQiTMn+WcrZIsRbPADZs0rYFUkG6f+1E1pWaDA1MTQhNgXgt8ToCUI359LZTs2bNdP/99+uSSy7x3vbjjz+qZ8+eeuKJJ+R2u30q5oUXXtCIESNK3LZu3ToNHz5cnTp10oABA/Tqq6+WuN/tdmv69Onq3bu3OnXqpOuvv17bt2+vUBtAZckqdCmjwO3Xl7/hLqoHf19LvI4AoPIxlrVQdQhnI+tI9fqY13cssrQUr4J0KW+3f1/+hruoHvx9LfE6AlCN+RTOTp8+XUuWLNGgQYO8t6Wmpmrs2LF6++239eKLL1a4zTfeeEPTpk0rcVtGRoauueYaNWnSRAsWLNDo0aM1efJkLViwwLvNzJkzNW/ePD388MOaP3++3G63Ro4cqcLCwnK3AQAAAPiDsayFQv1kYEdqfKF5GSzhLAAAqHQ+LWvw/vvva8KECbrsssu8tyUkJOjqq69WeHi4Xn31Vd1www3laistLU3333+/li9frmbNmpW47+2335bdbtdDDz2k8PBwtWzZUn/99ZdmzZqloUOHqrCwUHPnztXYsWPVr18/SdLUqVPVu3dvffrppxo0aNBx2wAAAEDNkpaWpvr16wesLcayFis+GZg9QYptYXU1/ml8gbT6Vmnft1L+PikqyeqKAABAJfNp5mxGRoZOOOGEMu9r0aKF9uzZU+62fvvtN9ntdi1ZskQdO3Yscd+qVavUrVs3hYf/nSH36NFDW7duVXp6utavX69Dhw6pZ8+e3vtr1aql1NRUrVy5slxtAAAAoGbp37+/Ro4cqf/973/eGaq+YiwbBLxLGoTwycCKxTSVEjubJz7a+YHV1QAAgCrgUzjbokULffLJJ2Xe9/nnn6tp06blbmvAgAF65plnygx79+zZo+Tk5BK31atXT5K0e/dubwjcoEGDUtsU33e8NoBgFxVmyOPxBKQtj8cjI9T/aQEAwE+TJk2S2+3W2LFjddppp+nBBx/U2rVrfWqLsWwQqA7rzR6p8UXm5Y73rK0jUMJjzbA5EDxuxrIAgGrHp2UNrrzySk2cOFGZmZk644wzVKdOHR04cEBffPGFPvroI02aNCkgxeXn5ysiIqLEbZGRkZKkgoIC5eXlSVKZ22RlZZWrDV95PB7l5ub6vH8oMwxDDodDbpdbLlfFTzJUfMK44sDR4/atnRJtHt49Ly8vYEGmP/ztoyOFyybDMPTtrhxlFfjeVnxkmE5rGOt93Rf//FRUII+tOj9vZR1bcZ9XpO8DVVOw9bUVfOl/BA79b51Q7vvKelPxggsu0AUXXKC0tDS99957Wrx4sd58802lpKRoyJAhGjx4sOrWrev34zCWrRqR6SsVJqkgpr1c5Tim4r+tTmeR5HRW+PGcReY+LpdLdknOIt/aKSG8SHYd/jlNOlsO3SfP7k+Vl7Vbssf717YP/O2jEjzhshs2FW15W568fb7X5EhSePNLAjaWDcixHfG8BcP4qrKPzZ+xrN81BVlfWyGU/55XB/S/dUK578s7lvUpnL3wwgt16NAhzZw5U59++qn39sTERN1777268MILfWm2lKioqFIfNSv+YxwdHa2oqChJUmFhofd68TYOh6NcbfjK6XRq3bp1Pu8fyhwOh1JTU5Wfn6/cPN//wDoP/3HOLyhUbq7v/1xIUrTHLileW7ZsCYof2ED1kSQVRpqv5b3Zedp3yPd+ynfYpYax2rVrlyRp69atPrUTyGOrzs/bsY6tIn0fqJqCra+t5OtrH4FB/1snVPv+n8FkINWvX1833XSTbrrpJv322296/PHH9eSTT+qpp57yLn3wz6UKKoKxbOUzPE51yjJnPW/cH6/C7OMfU/Hf1szMDDmzfQ8L83JzFSUpJztbeRm+tyNJ9jiHkiTz73SuodSIFnIU/qm01bN0IH7QcfcPtED1kSQ5wrOVKCl735/Ky/jT53bscU2U1FwBG8sG4thKPG9BML6qqmPzZSzrb03B1tdWCtW/59UF/W+dUO378oxlfQpnJWnYsGG64oortGXLFmVmZqpWrVpq0aKFbDafVkooU3Jysvbu3VvituLv69evr6KiIu9tTZo0KbFNmzZtytWGr+x2u1JSUnzeP5QVp/5RUVGKNuwV3t/tdis/P192u7lvVGSEoj1hftUUFWnu37x586B4J9XfPjpSRERg+qm4jxo2bKjNmzerWbNm3n/8KiKQx1adn7eyji0vL09bt26tUN8HqqZg62sr+NL/CBz63zqh3PebNm2q9MdYtWqVFi9erP/7v//TwYMH1atXL/Xr109ffvmlLr/8co0fP15XX321T20zlq18RuYa2TYWymNPUMsOZ5Rrzdniv60JCYlSZMVDHmeRU5mZmXIcDsdj4+IUG+bnibsciZL+/jsdZhsmrX9YTdzfqf6J4/xr2wf+9lEJcXGSAtBPh/soUGPZgBzbP543q1X2sfkzlvW7piDrayuE8t/z6oD+t04o9315x7I+h7OS+Yu2RYvKOyNq165dNX/+fLlcLoWFmcHCsmXL1Lx5c9WpU0dxcXGKjY3V8uXLvQPagwcP6vfff9fw4cPL1YavDMPwa7ZCdWALsynMj0y1+A+1YfOvneJaJAXdD6q/fSTJ+4aHv/1U3EfFH4V0OBx+vYYDcmzV+Xk7xrH50vf+1hSsfW0Ff1/78A/9b51Q7PvKWlvyr7/+0uLFi7VkyRLt3LlTjRo10ogRIzRkyBDv+q/Dhw/X2LFj9dxzz/kczjKWrQK7fpckGbVPVnRMTIV2tdvDpSLf3/gsfj7s4eGS3b83dWU3/y3z/p1OGS6tf1hh+z5XtC1XivJ/mQ2fyvKzjyRJh09m53c/He6jQI1lA3Js/3zegkRlH5svfe93TUHa11YIxb/n1Qn9b51Q7PvyjmV9muZ64MAB3XnnnTrllFOUmpqqE088scRXamqqL82WMnToUOXk5Ojuu+/Wpk2btHDhQr388su68cYbJZlTg4cPH67Jkydr6dKlWr9+vW6//XYlJyfrzDPPLFcbAAAAqFnOOusszZkzRx07dtTcuXP12WefafTo0aVOzNWiRYsyT/RVXoxlq0B1OxlYsVqtpcSTJY9L2r7A6moAAEAl8mnm7EMPPaQvvvhC5513npKTkwO6lMGR6tSpoxdffFGPPvqoLrroIiUlJWn8+PG66KKLvNuMGTNGRUVFuueee5Sfn6+uXbtqzpw53o/Ml6cNAAAA1Bz33nuvBg8erLjDH7c+mptvvlk333yzz4/DWLYKVNdwVpKaXiZl/Cj99abUijAeAIDqyqdw9uuvv9Z//vMfXXrppQEt5vHHHy91W4cOHfTWW28ddZ+wsDCNGzdO48YdfS2m47UBAACAmuOTTz5Rjx49ygxn169fr3Hjxun999+vcLuMZauY2yll/mJer5bh7CXSmvHS3q+l3J1SdCOrKwIAAJXAp3DWbrf79REvAAAAoCqtWrXKexKZFStWaOXKlTpw4ECp7b744gtt3769qsuDL7J+k9wFkj1eim1pdTWBF9NUqnuqlP69tO1tqe3tVlcEAAAqgU/h7MCBA/XBBx/o1FNPDXQ9AIBKEBVmyOPxBOzkOoFsCwCqwjvvvKPFixfLMAwZhqEHH3yw1DbF4e2gQYOqujz4wrukwclSdf2b1OwKM5z982WpzW3V9ziB4wmPlTxuyQjQkoqBbAsA/ORTOJuamqpp06Zp+/bt6tixo6KiokrcbxiGRo8eHZACEdgQhEAFqJkibGYY8f2eXGUVuvxqKz4iTKcmh9ZZMgHgnnvu0dChQ+XxeHTVVVfpvvvuU0pKSoltbDabatWqpVatWllUZTVVWYFKdV5vtljTy6Uf7zSXbziwWqrTxeqKqiePRzq0Vcr8WSpIl5wHJVeuFJkkRTeRYptLca0J86wUFmX2/7YF5nPkj8i6UpOhgakLAALA5xOCSdLKlSu1cuXKUvcTzgYWgQqAQMkqdCmjwG11GQBQ5eLi4tStWzdJ0quvvqp27dopJibG4qpqiMoKVIrD2cRqHM5G1pZOGCr9NU/aPJtwNtA8bvOka+nLpML9pe/P32N+HVghRTWQGg2SHA2rvk78rSBdytttdRUAEFA+hbPr168PdB04DgIVAAAA3y1atEh9+/ZVYmKidu3apV27dh1z+wsvvLBqCqspAh2ouJ1Sxs/m9eo8c1aSUq43w9mt86TOUyR7rNUVVQ+HtklbXpbyDv8usEVICSeZ6xfb4yVblJS/Wzr0lzlzOX/34YC8m5R8pmSEWVq+5fLSpOw/pJxNUu4OqTBTcmZJ7kJJhrkER1iMFBFv9mfWOsnjkuy1JHuiZKvh/QcAR/ApnD1Sdna29u7dqxNOOEFhYWEKC+OXLAAAAILLxIkT9fbbbysxMVETJ0485raGYRDOBjvvycBqSXHV8GRgR6rXV4pNMUOwbe9ILa+xuqLQ5nZJax+Qfn9ckluyRUr1+kmJnaWwyJLbRtaW4ttJSX2kPf8nZf0i7V9hLnvQ+GILirdQwQGF/fWWmu3+QFHbfpXytvnRmCHZE6SoJHMmcvFXOJ9mAFAz+RzOLl++XJMnT9avv/4qwzD0zjvvaPbs2UpOTj7ugBcAAACoSkuXLlVSUpL3OkLckevNVvd1QA1DShkprZkobX6RcNYf+Xul7y6X0j43v6/VTmpwlmSPO/Z+9ljphIuk+BOl7e9KB9dL29+SWo+p/Jqt5PFIuz6S/pwr7Xxfke5C/R1fG1JMUykuxbyMSDw84zhSksdcMsKVKxVmSYUZ0oGVUsF+yZlpznx3Zphf2Rv/fjx7vORoZK7xG5siRSRU9REDgCV8Cmd/+OEHXX/99ercubPGjh2ryZMnS5Latm2r6dOnq379+rrmGgYNAAAACA6NGjUq83qxoqIi5eTkKCEhoQqrgs8O/GReJp5sbR1VpflV0s93S+nfS5m/SQntrK4o9Oz7Qfr2X1LeTnOGZpPLpOjGFWujVlupyeXStvnmR/o3vSC1GlX9PqLv8Ziz0z/pJh1Y5b3ZXau90uzdldjmAkU16l+xJTb+eMFc2sTjkYpyzDV+89Ok3F1S/q7DJ2LLMr8O/m7uE1nXDGnjUqRabQJ8kAAQPHwKZ6dNm6bTTz9dTz/9tIqKivTkk09Kkm666Sbl5ubqnXfeIZwFAABAUCoqKtLzzz+vpk2b6vzzz9fy5cs1ZswYHTx4UN26ddP06dMVHx9vdZk4lozicLaztXVUFUey1GiwtOM9acM0qftsqysKHR6PtPFZ6cc7JE+RGbD2XiDt/ca3dZDjWkpNh0l/vSFl/WoukdDx4YCXbZnCTGnnEunQFvP78Bip5fVSi6uVH9lKu9atU3y9EyW7jyeaNgxzprI9ToppJtU5fLurwFz/N3e7lLPZvCxIN7/2L5O2L5T2fGbOrg2PM9sBgGrCp88ArVu3TkOHmmdKNf7xS7FXr17auXOn/5UBAAAAlWD69Ol67rnndPDgQUnSI488ooSEBN11113atm2bpkyZYnGFOCaPW8o8fDKwxE6WllKlTrzTvNzyKmerLy9ntvT9MGn1GDOYbfIv6awVUnyqf+3GNpManW9e/+0Racf7fpdqOY9HOvCjtOk5M5g17FLbO6TBf0qnTJUSO1bu44dFmssZ1OsjtbhGOnG8dMLFUkInKTzWXCLhz7nShqnSxqeltKVmcAsA1YBPM2fj4uK0b9++Mu/bvXu34uKOs2YPAAAAYJEPP/xQd9xxh4YNG6bNmzfrjz/+0OOPP64LL7xQCQkJ+u9//6uHHnrI6jJxNNmbpaJDUlhUzfqoc1Iv82vfd9L6aVLnJ6yu6Og8bnMGZmGG5HGZH08/9Jd5ny2iamo48JP03aXm8gNGuNT5SanNrYGbcZnQwTzGvV9IP4yQzl5lfvw+FLmd0o7F0sHfzO+jm0gtR0on3WtdTWFR5snY4tuZwbEtTMrdJm19w1z6YN+35ld0U6lON3NGdHVffxpAteVTOHv66adr6tSpat26tVJTzXcdDcPQnj179Pzzz6tfv36BrBEAAAAImL1796pjR3MW2JdffimbzaY+ffpIkpKTk5WdnW1leTie4iUN4k+SbD6f3zg0nThB2jdY2vS81O4/UkQQLb9RcMBcp/TgOqkgzQxoi/32yN/XI2pLjoaH1xJtJYX7+PH4o3G7pD9mSD+Nk9yFUvQJUq83zWA70E4YKrkLzLWAvx8mDfwu9F6TRTnSX/PNtXgNm1T/dKlODymqntWV/c0wzJD2pPukhI7S3q+kzF+k7E1S7l/mlz1eqtvTXIfaZre6YgCoEJ/+ctx55536+eefdckll6hu3bqSpDvuuEN79uxRgwYNdMcddwS0SAAAACBQ6tWrpx07dqhLly76/PPPdeKJJ6p27dqSpJ9++knJyckWV4hjylhjXtauIevNHqnReWZIlfWbGdCmTrC6Iilni7T3S3NW45GMcCki0VyzNCxKyt0pFWVLhQfMr6xfze2im0jx7c2lBsJj/KvlwI/SylHS/hXm940GSz1ekiJr+9fu0djCpdPekj5sbz7m+qlS6rjKeazKUJAubX3dnIka5pCaXCrFNLW6qmOzRRx+vbSXnAelAyulA6vNY9j9sbTvG6lOT3M2LSEtgBDhUzgbHx+vd955R4sWLdKyZcuUmZmpuLg4jRgxQkOGDJHD4Qh0nQAQ8gzDkMPhKLVWNwCgag0aNEiTJk3S+++/r9WrV+u+++6TJD366KN68803ddNNN1lcIY6pOJytSevNFjNs5lqcy64ylzZoPUYKt+h/r7xd5gmaik8cJUOKaW6Gx7HNJXuCOeMx4SSpyVDpjxfMJQby06RDW/++nrvN/Nr9kbl/Qnup1olmoFtemWvNYHTLK+aMXXstqeMkqdWoyj9xVHRj6eSp0vJrpV/uNdeijW9buY8ZCAX7zf4qyjFnMze9Qoqsc8xdgm4sa69lzvRN6mP+Xkj/zgxp0z6T9i+X6vc3Z9qy3AGAIOfzZy4iIiJ0ySWX6JJLLglkPQBQLUSFGfJ4PCUGrw6Hw7sUDADAOrfddpuio6O1cuVK3XnnnbriiiskSWvXrtW1116rUaNGWVwhjql4WYOETpaWYZlml0tr7zPXcF03uerXBXUXmTNl07+X5DGDr8RTpKTTzLDsWMJjpdhYKbalGaoVZkkHfzdn0ebtkg79aX7t+kBynCDFtpBimpmhocfzdzsel4zMNdL21dKO96S0L/6+r+nl0slTJEeDwB/70bS4Wtr2tjlzc9k10sBvzTVSg1XBgb+D2ch6UvMrS89aDo81g+4jgs2gHcva7FKdrlLtk83lDvZ+ZYa0O5eYIW3D88zlLQAgSPkUzi5atOi421x44YW+NA0A1UKEzZBhGPp+T66yCl2SJLfLrfz8fEVFRckWVr538BtGh6tj3eD6NEJZwbOvAtUOAFSEYRi68cYbdeONN5a4ff78+RZVhHLL2yPl75FkSIkdrK7GGja71PFx6fvLpd8nmcFgTBUFT3m7pO0LpcL95vfx7aT6Z0gRCb61F3F4ndC6PQ+vWfuruWRDwd6/1xItZouSfntIUUV56uzMkW1j0d/3GWHSCUOkNrdLST19PjyfGYbUbZb0YTtp/zJp47NS21urvo7ycGZLW181l5iITCo7mJXMmcuGTdq2wFz+QJLTWaTMzAwlJCTKbi9nlBCbIjU4PYAHcAxGmJTY2VyP+sAKc4mD/DTpz7nm7fUHmjPNywiefRaodgDUaD6FsxMnTizzdsMwFBYWprCwMMJZAJCUVehSRoF5QgyXy6XcPKeiDbvCyjmZopbdffyNqlhZwbMv4iPCdGpygE8CAgDllJ2drWXLlik3N1eeI2fkHcZYNkhl/Gxe1mrt//qkoazppdIfM83wac1484RXlcnjkTJWmzNDPS4z3Gp4nlQrgB/fj6wt1etjfhUckHI2m7No83aZa4u686W83TIkGZI84bVkJJ0q1estNRsuxTQJXC2+iDlB6vyktPImc3mDJv+SohtaW9M/uYvMGb7OLCmijtTsKMHskQrSpbzd5nWnU87sfVJknlRUzvVcI+v6V7MvbOFS3VPN2fV7/k/KXGPOuM/eJDW+wFxq4x/Bs08i65pLdgCAn3wKZ5cuXVrqttzcXK1atUqzZ8/WjBkz/C4MABDcjgyeASCUfPPNNxozZozy8vLKvN8wDMLZYFXTlzQoZhjSKU9LH58i/TVfanWzGVJWBlehucxA1lrz+7g2UqMLKnet28ja5ledrub37iIzcDvhQuU7DW38c4dSTuqj6Ji4yqvBFynXS3++ZH6U/sc7pNOCaDa+xyPt/p+Ut8Ochdz0Cskea3VVlSs82gxjEzubSxwU7jdPgFaw3zy53pHBMwBYyKdwtlGjRmXe3qpVKzmdTj388MOaN2+eX4UBAAAAlWHKlClq0aKF7rrrLtWvX182Gx9JDRnFJwOr3dnSMoJC7c5mGLhplrTyZumsFYEPTPN2S3/OPjy70JCSz5Dq9Kz8k2z9ky3cXEM2sZM8eXly2ovMj7AHG8MmdX1O+qSLtO0tafd1UoOBVldlOrDq8JsbhnTCUDP8rilimkgpN5qzaA+sNE8+93+9pcZDrK4MACRJAR+JtmnTRr/99lugmwUAAAACYvPmzbrtttvUpUsXnXDCCWrUqFGpLwSpzDXmZU2fOVuswyPmuqFZv0qrbi550ix/bZ0n/f64GcyGx0rNrzI/Ks5a8cdWu7PU6t/m9VWjJVe+tfVI5snjdn9sXq9/uhSXYm09VrDZpYbnSk2HSeFxZlj9+yTp0FarKwOAwIazhYWFevfdd1WnTp1ANgsAAAAETMOGDZWTk2N1GagoV750cKN5PbGTpaUEjagkqdd8c8bmny9Lm2f736arwJyJ+/0wyV0gxTQ3Zx3GNPW/7Zqiw0NSVLKU/Yf0+5PW1lKYZa4zK7cU394M2GuyuBSp0xPm75CibGnLa3+vZQ0AFvFpWYMBAwaUOru22+1WRkaGCgoKNGHChIAUBwAAAATajTfeqBkzZuikk05S48aNrS4H5ZW3S5LH/Hi7o77V1QSP5AFSx8ekNROlVbdICR2kuj18aytni/TtJeasQsmcaZh4Cmejr6iIeOnkqdL3l0u/PSo1u0KKa1n1dbid0rb5kivXDIsbDWbmsyRF1ZMGfid91td8re9cZPZR3Z5WVwaghvIpnO3WrVupcFaSYmNj1b9/f516ag1/Nw4AAABB6/3331daWpoGDhyo2rVrKyoqqsT9hmHos88+s6g6HFXudvOSJQ1KO3G8lL5M2rFI+nyg1OstqdG55d/f45Y2zpB+vksqOiRF1JZOfV06tI0TJvmq6aXS5heltKVmaN7vw6oNRj0e8yRY+XuksGipyWXmR/thCo+WWlwrGeHS/mXSnk/N13790wmwAVQ5n8LZxx9/PNB1AAAAAFUiOTlZycnJVpeBiioOZ1nSoDTDkHq+In19kZT2ufT1+dLJT0tt/n38fdOXSz/eIaV/b36f1NsMZmOaSH+8ULl1V2eGIXWdIf2vg3kCqh3vSSdU4Qmo0r831yKWTWryL3M2L0oybFLymVJ4jBmip38nyZDqDyCgBVClfApnd+3aVaHtGzZs6MvDAAAAAAE3adIkq0uAL4rD2dqdra0jWNlrSf0+klaOkv6cK62+RfprnnTiWKnRBZIt7O9tiw5JaV9I66ZIe780bwuPlTr/11xflmUMAqNWG3NW82+PSKvGmLMyqyIkzfrNDBslqcFZUkyzyn/MUGUYUtJpki3CDNHTv5Vs4VK9vlZXBqAGCdias8eybt06Xx4GAAAAqDSbN2/Wd999p71792rEiBHavn272rZtq9jYWKtLwz953FLu4QkiLGtwdGERUvcXpVqtpV/uk9J/kL4ZKkUmmTNho+qba/dmrpU8LnMfI1xqNkzq8LAUc4K19VdH7f4j/fWmlLNZWjNe6lbJs5GzN0mb50jySImdpdpdK/fxqos63cyfiT2fmm9Y2CJYgxZAlfEpnJ02bZruv/9+tWvXToMHD1b9+vWVkZGhzz//XB999JFGjRqlRo0aBbpWAAAAwG9ut1v33XefFixYII/HI8MwdM4552jmzJnatm2bXn/9dZY9CDYF6ZLHac7utOLESqHEMKTUCVLzq6SNz0p/zJQK9plfR3I0kppcIrW9nVC2MoU7pO5zpKX9pE2zzD5PPr1yHsuZLX19gXlyK0djqcG5fDy/Iur2lNxF0t7PzZDWHi/Fp1pdFYAawKdwdvHixerfv3+ptWfPPfdc1alTRz/++KP+/e9yrG8EAAAAVLGZM2fq/fff1yOPPKJ+/fqpV69ekqRx48Zp9OjRmjp1qp544gmLq0QJ+XvMy8SOfOS+vBzJUsdHzJmbWb9J+WlS3h4pIlGq212Kbmx1hTVH/b5Sq5vNoHz59dJ5a811TgPJ45Z+uFLK+t0MFZtcYn48HxVTr7dUlCMdWGGuE2yvxc8KgErn08jmhx9+0KBBg8q8r0+fPlq9erVfRQEVFRVmyOPxBKStQLUDAACC04IFCzRmzBgNHTpUCQkJ3ttPPPFEjRkzRt999511xaFsxeFsdV3SIDzWDNcC4Z/thEdLdbpKjQZJKSOlJkMJm6zQ6XEpuol0aIv007jAt//rw9KORebH8VNukuxxgX+MmqLBWVJcK8lTJP01XyrMtLoiANWcT2+lJSYm6ueff9Zpp51W6r4ffvhB9evX97swBF5xgFmR9YJDRYTNkGEY+n5PrrIKXT63Ex8RplOTowNYGQAACDbp6ek68cQTy7yvfv36OnjwYBVXhOPKO2LmbHUUFmXOCN62wFzCwVeRdc3wFcHHHmeuB/zFmdIfz0lJfaRmlwWm7a3zpbUPmNe7Pi+5C6W83YFpuyYybFLji6UtL5lvDG17W2pxLTORAVQan367XHzxxXruueeUl5enAQMGqHbt2kpPT9fHH3+sN998U/fee2+g60QABCrAbBgdro51HQGsLHCyCl3KKAjQrAMAAFAtNW3aVF999ZVOPfXUUvetWLFCTZs2taAqHJXH8/fM2don+x9gxqZIDSppzU9/FaQTqlVnDQaay0z89pi0YqT5ZkN82W8UlduepdKyK83rbW6TWl4j/VHJJx2rCcIipCaXSZtfkPJ3S7s/khqdb3VVAKopn8LZm2++WdnZ2Xr55Zc1Z84cSeZHwR0Oh26//XZddlmA3gFEpfA3wKxlJ/wEAACh66qrrtJ9990np9Op/v37yzAM/fXXX1q+fLnmzp2riRMnWl0ijlSULbnyJNmk+HbS/lX+BZiRdQNWGlBhJz0kpS+T0j6XvhkqnbVCssf61taBn6SvL5LcTnON2ZOnBLbWmi4iXmo8VPrrdSnjR3NZiuo6ex+ApXwKZw3D0MSJE3XzzTdrzZo1ysrKUmJiojp16qTYWB//sAAAAABV4F//+pcOHDig5557TvPmzZMk3XHHHbLb7Ro5cqQuv/xyiytECcVLGkQ3Nj/+D4QyW5jU603po87SwXXSV+dL/T6o+AnC9q+UvjzPfPOifn+p56ucLK8yxLWU6vWV9n4l7fpAcjSUopKsrgpANePXoimxsbGqV6+eJKlTp04qKioKSFEAAABAZbr++ut1/vnna8WKFQoPD1dcXJw6duxY4gRhCBL5h2fJxjSztAwgYKLqSb3fkz4/Q9r7pfTFOVK/D8t/Eq+dH0rfXiK5cqXap5hthUVWask1WlJfKXeHlLNZ2rFQajHSDNkBIEB8DmcXL16sKVOmaN++fTIMQ++8846eeeYZ2e12TZkyRREREYGsEwAAAPDbBx98oPnz5+vnn3/2TiyIiorSySefrMsvv1xnnHGGxRWilPw08zK2ubV1AIFUt5s04P+kL86S9n1jXp46T4ptdvR93E5pw9PSmomSxyU1OEs67Z3yh7rwjWFIjS6QNj1nrn+990spOUjXrQYQknz63MP//vc/TZgwQT169NBTTz0lt9tcg3TgwIH66quvNHPmzIAWCQAAAPjD5XLptttu09ixY7V9+3add955uu6663TttddqwIAB2rhxo2655RbWmw1GxcsaxBDOopqp210a8JkUkSil/yB9eKK09mHJlV9yO49H2v1/0kedpJ/GmcFs86ukvu8TzFYVe5zU8PAJwdK/kw5ts7YeANWKTzNnn3/+eV122WV64IEH5HK5vLcPHTpUBw4c0Ntvv63bbrstUDUCAAAAfpk3b54+/fRT3X333Ro+fLgMwyhxv8vl0vz58/XYY4+pS5cuuvjiiy2qFCW4CiRnhnk9pqm1tQCVoU4X6cwfpBU3mTMy194nrXvSPPFUwknmx+n3L5fy95rbR9aVOj4qtbzenNGJqhN/opTdScpcI+14j5ODAQgYn2bObtmyRQMHDizzvo4dOyotLc2vogAAAIBAWrRokS677DKNGDGiVDArSWFhYRo2bJguueQSvffeexZUiDIVL2lgr8UMQVRftdpIp38unfqmecKpomxp37fSH89JO983g1lbhNR6jHT+RinlBoJZqzQ4W7LHS85M87kBgADwaeZsnTp1tHnzZvXq1avUfZs3b1adOnX8LgwAAAAIlC1btuiWW2457na9e/fWBx98UAUVoVyKw9mo+tbWAVQ2w5CaXSY1uVg6uF7K+EnK/FVyJEt1ukuJnaVwh9VVIixSanie9Nc8Ke1zaf9KqU5Xq6sCEOJ8CmfPPfdcTZ8+XfXq1VPfvn0lSYZh6Ndff9XMmTM1aNCggBYJAAAA+CMvL0/x8fHH3S4xMVGHDh2qgopQLvmH15slnEVNYQuXEtqbXwhOca2k+JOkrLXS8pHS2askm93qqgCEMJ/C2dtuu00bN27UbbfdJpvNXBlhxIgRys3NVZcuXXTrrbcGtEgAAADAHx6PR2FhYcfdzmazyePxVEFFKJfidTYJZwEEkwZnSYf+lDJ/MdcIbvcfqysCEMJ8CmcjIiL04osv6rvvvtOyZcuUmZmpuLg4devWTX379i1zHS8AAAAAKDePRyo4vKxBJOEsgCASHiOd8C9py8vSrw9LTa+QYptZXRWAEOVTOHvddddp5MiR6tWrV5nrzgIAAADB5oEHHlBsbOwxt8nJyamianBchRmS2ykZ4VIk57QAEGTqdJcObZH2fiX9eIfUZ6HVFQEIUTZfdvrxxx+ZHQsAAICQ0bVrV8XExMjj8RzzKyYmRl26dLG6XEh/nwwsMkkyfPq3BQAqj2FIXZ6VjDBpx3vSrk+srghAiPJp5mzv3r21ZMkSnXLKKbLbWfgaAAAAwe21116zugRUVHE4y3qzAIJVQnup9S3ShmnS6jFS/V+ksEirqwIQYnwKZyMjI7VkyRJ99NFHatmypaKjo0vcbxiGXnnllYAUCAAAAKAGIpwFEApOekD6600pe6O04WkpdbzVFQEIMT59PmjPnj3q3Lmz2rdvL4fDUerjYG63O9B1AgAAAKhJCGcBhIKIeKnTE+b13x6V8tOtrQdAyCn3zNlPP/1UPXr0UK1atfhYGAAAAIDK4yqQnBnmdcJZAMGu+QhzaYOMNdKvD0tdnra6IgAhpNwzZ2+99VZt3bq1xG2zZ8/W/v37A10TAAAAgJqsYK95GR4nhUcfe1sAsJphkzo/aV7/Y6aUvcnaegCElHKHsx6Pp8T3LpdLTz31lPbs2RPwogAAAADUYCxpACDUJJ8hNThb8hRJP//H6moAhBCf1pwt9s/AFgAAAAD8ln94AgjhLIBQ0vm/5izabe9I6cusrgZAiPArnAUAAACAgMs/vKwB4SyAUJJwktT8avP6T2MlJrQBKAfCWQAAAADBw+M5YlmDZGtrAYCK6vCQFOaQ9n0n7VhkdTUAQoDf4axhGIGoAwAAAAAkZ6bkLpSMMCmyjtXVAEDFRDeS2t5pXl8zQXI7ra0HQNALr8jGo0ePVkRERInbbrrpJtnt9hK3GYahzz77zP/qAAAAANQsxbNmI5PMtRsBINSkjpc2vSBl/yFtmiW1Hm11RQCCWLnD2Ysuuqgy6wAAAACAI04GxpIGAEKUPU466QFp1Whp7YNS8yvN2wCgDOUOZydNmlSZdRzV8uXLdeWVV5Z5X+PGjbV06VI999xzmjZtWqn7N2zY4L3+xhtvaO7cudq3b5/at2+ve+65R6mpqZVVNgAAAMBY1hfek4HVs7YOAPBHyvXShqel7I3ShulS+7utrghAkKrQsgZW6Ny5s7799tsSt61Zs0a33HKLbr75ZknmwPWCCy7QuHHjymzjvffe03//+189/PDDSk1N1axZs3TNNdfoo48+Uu3atSv9GAAAAFAzMZb1AScDA1Ad2OzSSQ9K318urXtSan2zFJFodVUAglDQL+IUERGhpKQk71dMTIwmTZqkiy66SEOHDpUkbdy4UampqSW2S0pK8rbx/PPPa/jw4Ro8eLBSUlL02GOPyeFw6J133rHqsAAAAFADMJatIFehVHjAvM7MWQChruklUnx7yZklrXvK6moABKmgD2f/6fnnn1deXp4mTJggSSosLNTWrVvVokWLMrffv3+/tm7dqp49e3pvCw8PV5cuXbRy5coqqRkAAACQGMseV8HhJQ3CY6XwGGtrAQB/GTapw0Pm9Q3TpPx9lpYDIDgF/bIGRzpw4IBefvll3XnnnUpISJAkbdq0SS6XS5988okeffRRFRQUqGvXrho3bpzq1aunPXvMEwo0aNCgRFv16tXT+vXrfa7F4/EoNzfX5/3LyzAMORwOuV1uuVwuv9pyu80s3uP2ry1/23G73eb+Hk9A6glETd52Du+al5fnrc8XQfm8Hd61oKBAknmMvgjksUXIkMfjkWEYfrUjSW6PRwX5+UH9vBW/9osvfW0nUPVY3Vagft7Kq/g17+trH/6h/60Tyn0fqL8RwaImj2WdziLJ6Tzu9rZDOxUmyR1ZT65/bl9UJLskZ1H52joqP9txFpn7uFyuwNQTgJq8ws12AjWWLe/zdkwBPrZAjWUDcmxRUbJ73GYA5yePx638/IKgft6KX/vFl762E6h6LG+rvD9vtc9UVHwn2bLWyPnLo3K2f8ynhwvlv+fVAf1vnVDu+/KOZUMqnJ03b57i4uJ06aWXem/buHGjJMnhcOjpp5/W/v379dRTT+nKK6/UokWLvE9eREREibYiIyO9f9h94XQ6tW7dOp/3Ly+Hw6HU1FTl5+crN8+/P0KFkQ5JUn5BoXJzfT/2QLXjPPyH0N92AllTtMcuKV5btmzx6wc/GJ+34mPbtWuXJGnr1q0+tRPIY1OkQ4Zh6PO/MpSRW+hzMwlR4Tq9eZ2Qed7y8/MD0k6g6rGqrUD9vFWUr699BAb9b51Q7ft/juFCWU0ey2ZmZsiZffwZY/E52xQj6ZArVtnpJbd3hGcrUVJOdrbyMnyffRaodvJycxUVgHYCWZM9zqEkKWBjovI+b8dsK8DHFqixbGCOrbkSDZsO/vqyCg7u8Lmd8NhkJXYYGTLPW2ZmZkDaCVQ9VrVVkZ+3WrHXqFXWrQrb/Lx+95yjovC6Pj9uqP49ry7of+uEat+XZywbUuHsokWLdOGFFyoqKsp724UXXqg+ffqUOBlCq1at1KdPH33++edq0qSJJPMjY0cqKCiQw+HwuRa73a6UlBSf9y+v4oQ9KipK0Ybdr7YiIsz9oyIjFO0Js6wdt9ut/Px82e2BqScQNRWLijT3bd68ud/vWkvB9bwVH9sJJ5yg7du3q2HDhoqMjKxwO5VxbPkem3L9aCtKofG8Fb/2o6KiZLOVb4ZFsPzcVkZbgfp5K6+8vDxt3bpVzZo18+v3P3xD/1snlPt+06ZNVpcQUDV5LJuQkChFHj90Css9KElyJDZTVK2kknfGxUmSYuPiFBuW9M9dy8/PdpxFTmVmZsoRHR2YegJQk5fDPNlQoMZE5X3ejinAxxaosWwgj80RdkgOf9oKN99oCfbnrfi1n5CQIHt4OcfKQfJzWyltVeTnzdNWrrw3FXZgmVI9i+U8cXKFHy6U/55XB/S/dUK578s7lg2ZcHb9+vXavn27zj///FL3/fMstfXq1VNCQoL27Nmj7t27S5L27t2rli1berfZu3ev6tev73M9hmEo+vCArCrYwmwK8y9P8YZBhs2/tgLVTvHgwd92AlmTLcxsJ1A/8MH0vEVHhMnj8SguLk6pqan+FaXgOrZQe95sNpvCyvkAwfZzG9CaAvy8lZfD4ajS398oif63Tij2fXVa0qCmj2Xt9nCp6DhhjscjFZiz2MJjGkn2f2wfbv7rYg8PL31fRQSoneK/5X7XE8CaZDfbCdTf1nI9b8cTqGNzJEged8DGskF1bCH2vNnD7d6JNv60E6h6LGuros9b58ekpQNk3zpH9pMmSjFNfHrYUPx7Xp3Q/9YJxb4v71g2ZMLZVatWqU6dOmrbtm2J26dOnaqPP/5YH3/8sfegd+zYoYyMDKWkpKhOnTpq3ry5li9f7j2RQlFRkVatWqUrrriiyo8DsEqEzZBhGPp2V47Ssg6ZszfDKr4+VsPocHWsG1rvVgEAYDXGsuXgzJLcBZIRJkXWsboaBJuwKMmwqWjL28rYvVEJCYlmCFlRsSlSg9MDXx9wPPX7m19pX0i/PiJ1n2V1RQCCRMiEs7///rvatGlT6vaBAwdqzpw5euCBB3T11VcrPT1djz32mE4++WT17t1bknTttdfq0UcfVdOmTXXSSSdp1qxZys/P18UXX1zVhwFY7mChS+l5TkUbdp9mPdayl/9kVgAAwMRYthzy08zLyCQzoAXK4MnfJ2f2NvNj+77MDo30fa1PwG8dHpb+7zTpz7lS6ngprvKXlwEQ/EImnN23b5/3rLZHat++vWbPnq2nn35aQ4YMUUREhE4//XRNmDDBO/vgkksuUXZ2tqZNm6bMzEy1b99eL730UqmPkAEAAACVgbFsOeTvMS+jfF+uAQCCWlIvqcE50u6PpF8flnq+YnVFAIJAyISzs2fPPup9PXv29H7M62iuu+46XXfddYEuCwAAADguxrLlkL/XvIyqZ20dAFCZOjxkhrNb35Da38vsWQCq+IKTAAAAABBo3pmzydbWAQCVqU4XqeF5ksdlrj0LoMYjnAUAAABgLXehVHjAvM6yBgCqu5PuNy+3vi5lb7a2FgCWI5wFAAAAYK38feZleIz5BQDVWZ2u5tqzHpf026NWVwPAYoSzAAAAAKzFkgYAapri2bNbXmX2LFDDEc4CAAAAsFZ+mnnJycAA1BR1u0sNzj48e/Yxq6sBYCHCWQAAAADWyt9rXjJzFkBNcuTs2Zwt1tYCwDKEswAAAACs4/EcsawBJwMDUIPU7SElnyl5ipg9C9RghLMAAAAArOM8KLkLJMMmRdS1uhoAqFrFs2f/fFnK2WplJQAsQjgLAAAAwDrFs2YjkyRbmLW1AEBVSzpVSh7I7FmgBiOcBQBYIirMkMfjCUhbgWoHAGCB4pOBRbKkAYAQEh4redyBaav9veblny9Jh/4KTJsAQka41QUAAGqmCJshwzD0/Z5cZRW6fG4nPiJMpyZHB7AyAECVKj4ZmINwFkAICYsyl2PZtkAqSPe9nci6UpOhUvIZ0p7PzNmz3V4IXJ0Agh7hLADAUlmFLmUUBGjWAQAg9HiXNSCcBRCCCtKlvN3+t9P+fjOc/fMlqd3dUkwT/9sEEBJY1gAAAACANdxOqfCAeT2KcBZADVbvNKn+APP34m+TrK4GQBUinAUAAABgjYJ9kjxSWIxkj7W6GgCw1kn3m5d/zpEObbe2FgBVhnAWAAAAgDXyDi9pwKxZAJDq9ZHq9zdnz/7O7FmgpiCcBQAAAGCNgjTzMqqetXUAQLBof3j27OY5Uu5Oa2sBUCUIZwEAAABYI684nE22tg4ACBb1+0pJvSV3obRuitXVAKgChLMAAAAAqp7Hc8TMWZY1AACvdnebl5uel/L3WVsLgEpHOAsAAACg6hVlS658STYpsq7V1QBA8GhwplS7i+TKkzZMs7oaAJWMcBYAAABA1cs/fDKwyLqSLdzaWgAgmBjG37NnNz4rFWZaWg6AykU4CwAAAKDq5bOkAQAcVePBUnx7yXnQDGgBVFuEswAAHMHj8QRVOwBQbeXvNS8JZwGgNMMmtfuPeX39VKkop3z7edyBefxAtQPguPj8EAAARzAMQ9/vyVVWocvnNuIjwnRqcnQAqwKAaqh4WQPCWQAoW5NLpF/uk3I2KXzLHElnHn8fwyZtWyAVpPv+uJF1pSZDfd8fQIUQzgIA8A9ZhS5lFDBbAAAqjbtIKthvXiecBYCy2cKkdndJy6+TfdPTMpr0Ld9+BelS3u7KrQ1AwLCsAQAAAICqVbBXkkcKi5bCY62uBgCCV7PhUvQJMgrSVDdridXVAKgEhLMAAAAAqtaRJwMzDGtrAYBgFhYhpU6QJNU/8IrkdlpcEIBAI5wFAAAAULWODGcBAMfW4lp5IuspsmiPwra/aXU1AAKMcBYAAABA1SKcBYDyC3fImXKLJMm+abrk4dwIQHVCOAscISrMkMfjsboMAACA6svjIZytLOGxhDZANVXU7Dq5bDGyZa+Tdv3P6nIABFC41QUAwSTCZsgwDH2/J1dZhS6f22kYHa6OdR0BrAwAAKCaKMqRXHmSDCkyyepqqpewKMmwSdsWmGdr91VsitTg9MDVBcB/9njtix+i5IzXpHVPSo0GWV0RgAAhnAXKkFXoUkaB77MOatmZsQAAAFCm/D3mZWRdyca/I5WiIF3K2+37/pF1A1cLgIDZm3iZ6mfOl7H3ayl9uVS3u9UlAQgAljUAAAAAUHVY0gAAfOK015er8SXmN+uetLYYAAFDOAsAAACg6hDOAoDPnK1uNa9sXyhlb7K2GAABQTgLAAAAoOoQzgKAzzy12kkNz5XkkdZNsbocAAFAOAsAAACgariL/j5RFeEsAPjmxPHm5ZaXpfy9lpYCwH+EswAAAACqRsE+SR4pzCGFx1ldDQCEpnp9pNpdJVe+tPFZq6sB4CfCWQAAAABV48glDQzD2loAIFQZhpR6ePbsxhlS0SFr6wHgF8JZAAAAAFWD9WYBIDAaXyTFtpQKD0ib51pdDQA/EM4CAAAAqBqEswAQGLYwqe0d5vX1T0lul7X1APAZ4SwAAACAyufxEM4CQCC1uFqKrCMd2irt+sDqagD4iHAWAAAAQOUrypFcuZIMKTLJ6moAIPSFR0stR5rXNzxjbS0AfEY4CwAAAKDyFc+ajawj2ezW1gIA1UWrUZJhk9KWSlm/W10NAB8QzgIAAACofCxpAACBF9NUajTYvL7xWWtrAeATwlkAAAAAlc87c5ZwFgACqvUt5uWWV6XCLGtrAVBhhLMAAAAAKh8zZwGgctTvL8W3k4oOSX++bHU1ACqIcBYAAABA5XIXSQXp5nXCWQAILMOQWv/bvL7xWcnjtrYeABVCOAsAAACgcuXvkeSWbFGSvZbV1QBA9dNsuGSPl3I2cWIwIMQQzgIAAACoXLk7zMuo+uYMLwBAYNljpRbXmNf3fmFtLQAqhHAWAAAAQOU6MpwFAFSO1qMlGVLWb1LBfqurAVBOhLMAAAAAKlfeTvOScBYAKk9citTwHPP6gZXW1gKg3AhnAQAAAFSuXMJZAKgSrW8xLzPWSK5CS0sBUD6EswCAGsEwDDkcDhmsdQgAVSsvTSo6aF6PqmdtLQAQoso9lm1wphRZT3IXSFm/VE1xAPxCOAsACGlRYYY8Hs9xt3M4HEpNTZXD4aiCqgAAXpmHw4GIOpLNbm0tABBswmMlj/u4m5V7LGvYpHp9zesHVgegQACVLdzqAgAA8EeEzZBhGPp+T66yCl1H3c7tcis/P19RUVGyhZX93mTD6HB1rEt4CwABVRzOsqQBAJQWFmUGqtsWSAXpR93M6SxSZmaGEhISZbcfJcqJTZEanC7V7S7tWCjl75HydkmOhpVUPIBAIJwFAFQLWYUuZRQcfdaBy+VSbp5T0YZdYWFlb1PLfvxZCwCACsr42bwknAWAoytIl/J2H/1+p1PO7H1SZJ5UdJRPIUTWNS/DY6VaJ0pZv0oZPxLOAkEuJJY1SEtLU5s2bUp9LVy4UJK0bt06DR8+XJ06ddKAAQP06quvltjf7XZr+vTp6t27tzp16qTrr79e27dvt+JQAAAAUMPU+LEsM2cBoOolnmxeZq6V3JwYDAhmITFzdv369YqMjNRnn31WYvHruLg4ZWRk6JprrtGAAQP04IMPas2aNXrwwQcVExOjoUOHSpJmzpypefPm6fHHH1dycrKefPJJjRw5Uu+//74iIiKsOiwAAADUADV6LOsqlA7+bl4nnAWAqhPTTLInSs4MKet3KbGT1RUBOIqQCGc3btyoZs2aqV690md3feWVV2S32/XQQw8pPDxcLVu21F9//aVZs2Zp6NChKiws1Ny5czV27Fj169dPkjR16lT17t1bn376qQYNGlTFRwMAAICapEaPZbM3SG6nFOaQ7PFWVwMANYdhSLU7S2mfm0sbEM4CQSskljXYsGGDWrZsWeZ9q1atUrdu3RQe/nfO3KNHD23dulXp6elav369Dh06pJ49e3rvr1WrllJTU7Vy5cpKrx0AAAA1W40ey2YcXtLA0cgMCgAAVSehkyRDyt0u5e+zuhoARxES4ezGjRt14MABDRs2TKeeeqouv/xyff3115KkPXv2KDk5ucT2xbMSdu/erT179kiSGjRoUGqb4vsAAACAylKjx7LF681GN7K2DgCoiexxUlxr83rGj9bWAuCogn5Zg6KiIv35559KSUnRxIkTFRsbqw8//FA33HCDXnrpJeXn55daaysyMlKSVFBQoLy8PEkqc5usrCyf6/J4PMrNzfV5//IyDEMOh0Nul1sul8uvttxuM4v3uP1ry9923G7zbOgejycg9QSipmBtpzJqch/u9+Lnwap6AtmW+/CueXl53teVLyr75624zyvS9zXhNVlV7ZSn/4PtNVmdFP89Lr5E1Qnlvvd4PCXWaA1FNX0sGx7ZWBGGTUWx7eVxOv1rrKhIdknOoiLJn7b8bMdZZO7jcrkCU08AagradiqhJvfhv8/Fz4Nl9QSyrXCznUCNZZ3Oyjm24j6vUN/XgNdkVbVTrv4voy2jVkeFZ2+QJ/NnFdXuI9nKEQMF6DVZnYTyeCrUhXLfl3csG/ThbHh4uJYvX66wsDBFRUVJktq3b68//vhDc+bMUVRUlAoLS555sKCgQJIUHR3t3aewsNB7vXgbh8Phc11Op1Pr1q3zef/ycjgcSk1NVX5+vnLz/PsjVBhpHm9+QaFycwssb8d5+I+Fv+0EsqZga6cyaiosPNzv+fmW1hPItqI9dknx2rJli1+/sKvq560ifV8TXpNV3c6x+j/YXpPV0datW60uocYK1b4P+hNeHQdj2dOVeskhZSyfLGf6Nv/aCs9WoqSc7GzlZfj+8dxAtZOXm6uoALQTyJqCrZ3KqKn4TYXMzExL6wlkW/Y4h5KkgI1lMzMz5MyuvGOrSN/XhNdkVbdzrP4vsy1PnOrbYhTmOqTs3auUH1n2MjtHCtRrsjoK1fFUdRCqfV+esWzQh7OSFBMTU+q2Vq1a6dtvv1VycrL27t1b4r7i7+vXr6+ioiLvbU2aNCmxTZs2bXyuyW63KyUlxef9y6s4YY+KilK0YferrYgIc/+oyAhFe8Isa8ftdis/P192e2DqCURNwdpOZdQUEWGXDhUoKipKNlvFVzYJxmOLijT3bd68ud+zDaTK+3krfu1XpO9rwmuyqtopT/8H22uyOsnLy9PWrVvVrFkzvwIlVFwo9/2mTZusLiEgavxYNixKCQmJUqSf/+DHxUmSYuPiFBuWZFk7ziKnMjMz5YiODkw9AagpaNuphJqio6OVlyElJCTIHu7DeC0Yj82RKClwY9nK+nkrfu1XqO9rwGuyqtopV/8frS2jk7T/OyW4/5Srbo/j1xSg12R1EsrjqVAXyn1f3rFs0Iezf/zxhy699FI999xz6t69u/f2X3/9VSkpKTrxxBM1f/58uVwuhYWZ/wwvW7ZMzZs3V506dRQXF6fY2FgtX77cO6A9ePCgfv/9dw0fPtznugzDUPThAVlVsIXZFOZfnuINIwybf20Fqp3iwYO/7QSypmBrpzJqsh3ud5vN5v2ZsaKeQLZlCzPbCdQv6sr+eatI39eE12RVt3Os/g/W12R14nA4qvTvJ/4Win0f6ksaSIxli9nt4VKRf2986vBJ0+zh4ZLdj7YC1E7x8+V3PQGsKejaqYSabN5+t3sne1hSTyDbspvtBGrcUNk/bxXq+xrwmqzqdo7Z/0drq04Xaf93suVulc2TI0UkHu9BJDGWLUsojqeqi1Ds+/KOZYP+hGAtW7ZUixYt9NBDD2nVqlXavHmzJk2apDVr1mjUqFEaOnSocnJydPfdd2vTpk1auHChXn75Zd14442SzOnDw4cP1+TJk7V06VKtX79et99+u5KTk3XmmWdafHQAANQMxevgVYewDagIxrIAAMtFJEixh5cz4MRgPmEsi8oU9DNnbTabnn/+eU2ZMkW33XabDh48qNTUVL300ktq3do86+CLL76oRx99VBdddJGSkpI0fvx4XXTRRd42xowZo6KiIt1zzz3Kz89X165dNWfOHN/eaQUAoIbz5SRNxevg+dsOEGoYywIAgkJiZylns5SxRqrXXzKCfq5e5fG4K3z8ZY1lfWkHKEvQh7OSVLduXU2aNOmo93fo0EFvvfXWUe8PCwvTuHHjNG7cuMooDwCAGsUwDH2/J1dZha5y7+N2HbHmb5hN8RFhOjU5tD6WBPiKsSwAwHJxbaWwaKkoR8rZJMW1troi6xg2adsCqSC93Ls4nUXKzPz/9u48Pqry/Pv498wkk4UACRACAsoOIgECJkCRVUp5BLWCfdQCVhCFHxUqSgUUUaqA1QAKorihP0Uqj4BY6oJQ6sYmi0KVAIYdJGExCyH7zHn+OGY0smWZ5Ewmn/frNa+cnJm55jp3DpmLK/fcJ02RkVHW0iEh9aQrh1ZgkqhOqkRzFgAA+JeMfLfS8jwlfrzb7VZ2ToHCjeByr3sMAACAUnI4pchY6cwWKW1n9W7OSlZjNudEyR9fUKCCs6esi+2Vd01n4FeYfw0AAAAAABDoIjtZX8/ulQqzbU0FwM9ozgIAAAAAAAS6sAZSaAPJdEsZ/7U7GwA/oTkLAAAAAABQHUR1sr6m7bQ1DQA/ozkLAAAAAABQHdSOtS6IlXtCyk21OxsAojkLAAAAAABQPQSFSzXbWNtpX9ubCwBJNGcBAAAAAACqj6KlDdL/K3nctqYCgOYsAAAAAABA9RHRUgqKkNzZUtb3dmcDVHs0ZwEAqCZM07Q7BQAAANjNcEiRHazttG9sTaVUTI/dGQAVIsjuBAAAQOUwDEMbU7KVkV/2j69dER6kjvXCfJgVAAAAKl1kJ+n0RunsPqkwy5pJ6+8Mh3RkhZR3uuwxIlpKDa/3XU6AD9CcBQCgGsnIdystr+yzDmoFM2MBAACgyguNlsIaSTnHrbVn63W3O6OSyTst5Zwo+/ND6l3+MZ4CqTBbCqohOWiboeJxlgEAAAAAAFQ3UZ2s5mzaN1LdbpJh2J2RPdy5Usa3UvouKfeU5Mn96Q5DctWRQmNkRLSVzChb00TgojkLAAAAAABQ3dRuL534WMo7KeWekMKusDujyuXOk1L/LaV9LZmFv7rTkGRK+Wek/DMKytytGCNcMrpI9a+zI1sEMJqzAAAAAAAA1Y0zVKp1tTVrNO2b6tWczdwrHXhdKki3vg+JlqLipIgWUnAtyRFircWbd1LKOigz7Ws53dnSmS+kzJ3SVXdIpll9ZxvDp2jOAgAAAAAAVEeRnazmbMZ/pQYDAn+NVdOUdj0u7Z1nfR8cKTW6UarR7PxGa3BN6xbRQoV1rlPWD18pMm+HjIIMKfklKTdF6rpYCqlTyQeBQOOwOwEAAAAAAADYIKKZFFTLWnf17F67s6lYpikdfEP6dob1fVRnqeVYKaL55WfAGk7lhLRUYdN7peiekuGUjr0vfdxF+nF7haeOwEZzFgAAAAAAoDoyHFJUR2s77RtbU6lQpin98IF1k6Qrb7dmzDpDShfHESzF9JPaTbGauucOSZ/0kA78r89TRvVBcxYAAAAAAKC6ivypOZu1XyrItDeXipK6VkrbLsmQur4mxfQpX7zwJtLA7VaD15Mnbb5L+nam1QQGSonmLAAAAAAAQHUVUlcKv1KSKaXvsjsb30v7Rjq9ydpufZ/UYpRv4roipV6rpHaTre93TZO23Sd53L6Jj2qD5iwAAAAAAEB1FtXJ+pr2TWDN/sw+Jv3wL2s7updUv7dv4xsOqdNTUpf5kgzp+xekTXfSoEWp0JwFAAAAAACozmq1k4xgKf+MdO6g3dn4RkGWdGSZZLqlWm2l+n0q7rXajJd6vCMZQdLhpdLmP9GgRYnRnAUAAAAAAKjOnCFS7XbW9umN9ubiC6YpHf+nVJglhdSXGt0iGUbFvuZV/1e6bpnVoD30Ng1alBjNWQAAAAAAgOouspP19cdtUmG2ramUW9p2Ket7yXBKTYZKTlflvG6TITRoUWo0ZwEAAAAAAKq7GldJwZGSO1c6+p7d2ZRd3hnpxCfWdkx/KbR+5b4+DVqUEs1ZAAAAHzN9eCENX8YCAAC4KMOQojpa2wdetzeXsjI90rH3JLNAqtFMqtvVnjzOa9DeVbUatKbHP2MFqCC7EwCA8gp1GjJNU0ZFryEEACVkGIY2pmQrI798RXhtl1O/aRDuo6wAAH4pKMJqXhjMnYIfiOwknfxMSl0vnTtszaatStK+lnKOS44QqdHNFb/O7KUUNWi/vE06tERyBEldX6sa/9YNh3RkhZR3unxxQupJVw71TU4BjOYsgCrP5TB80gi5IjxIHeuF+TAzANVZRr5baXnMFAAAXIYz1DeNkIiWUsPrfZcXqidXpFSzjXR2r3TgTSn2UbszKrnCHCn139Z2/T6Sq7at6UiyGrQ9/iFtuF068IbkcEnxi+xtGpdU3mkp54TdWVQLNGcBBIzyNkJqBdNEAQAAgE3K2wgJqee7XFC91etuNWcPviG1f6RqzPSUpJPrJXeOFFJfqptgdzY/u/JWyfOmtGmElPyy1aDtMr9qNGhRKarIvzAAAAAAAABUuKjOUlBNKeuAlPofu7MpmZwT0o/bre2G/8f/GspN/yh1XSzJkPY9L309SeK6AviJn52tAAAAAAAAsI3TJTUbYW1//6K9uZSEaUonPpJkSrXbSxFN7c7owpr/SUp4ydreM1fa+QgNWkiiOQsAAAAAAIBfajXW+npslZT9g62pXFb6Lin7qOQIlhr81u5sLq3lPdK1z1vbu2dLu6bToAXNWQAAAAAAAPxCZKwU3UMy3dL+V+3O5uLceVLqWms7upcUXMvefEqi9Z+lzvOs7e+elL6ZQoO2mqM5CwAAAAAAgOJa/o/1df8rkqfQ3lwu5uSnUuE5yVVXqtvN7mxKru39UpfnrO2kp6UdD9CgrcZozgIAgEoX6jRk+rAA9WUsAAAASLryVimknpR9TPrhA7uzOV/uKenMV9Z2w4GSI6jyXjsoQjI95YvRZoIU/9Oavnuflb66x3+b4KhQlXjmAgAAWFwOQ4ZhaGNKtjLy3eWKVdvl1G8ahPsoMwAAAEiSnCFS85FS0jPSvhekxjfbndHPvBcB80g120g1W1bu6ztDJcMhHVkh5Z0uRyBDajVOSl4k7X9Nyjsj9fiHFR/VBs1ZAABgm4x8t9LyyjnrAAAAABWj1VgpKVFK+UTK2C3Vbmd3RpbMJOncQclwSg1/Z18eeaelnBPlixHZQbpuhbThdusCbP/5ndTzPSmkjk9ShP9jWQMAAFCl+XKJBJZHAAAA+IWI5lLj31vbe+bZmoqXJ19KWWNt17tOckXZm095BUVIjW+S+q6xLmh28nNpTVcpc2/pY5V3qQXYgpmzAACgSvPVEgksjwAAAHABbR+Qjr0nHXxL6vCkFBZjbz6nvpQKMqXgSCm6h725+ELREgl5p6XWf5G+XyhlJUsfdZZajC75bOWQetKVQys2V1QImrMAACAgsEQCAABABYjuIdVNsC6+9f2LUofH7csl96R0eqO13fB3kiPYvlx8Le+01aRtPko6skzKPirtmy9F95Lq97buQ0DiJwsAAAAAAIALMwxr9qxkzeoszLEvlyPvSqZbimhhXQgsEAXVkJreKUV1tr4/9bl06C1rtjACEs1ZAAAAAAAAXFyToVL4ldbszkNv2ZPD8X9JGf+1ZpA2HGg1jQOVI0hqdKPUeIjkcEnnDknfvyD9uF3iGgkBh+YsAAAAAAAALs4RJLW939r+brbkKajc13fnStt/ev263a31VauDyFipxT1SWCPJkyf98C/p0JtSbqrdmcGHaM4CAAAAAADg0lqOkUJjrFmcB96o3NdOmiNl7ZeCa1trsFYnIfWsdWgbDJCMIGv8kxdJx1ZJ+ek2JwdfoDkLAAAAAACASwsKl9pNsba/fUJy51XO62YdkL6baW03uVVyuirndf2J4ZDqdZdajZNqXWPtS98p7VsgHV1hXTyM5Q6qLJqzAAAAAAAAuLyWY6SwK6xm4P7XKv71TFP6aqzkzpFi+kp1rq341/Rnrijpylul5qOlGs0keaSMb6UDi6XvnpB2Pir9uEMyPXZnilIIsjsBAAAAAAAAVAFBYdI1D0vb7rNmszYfae2rKIeWSClrJUeIFP+SlLq+4l6rKglvJDW7U8o5IZ35yrpQWs4P0ndPWrfgSKluvNXMjmguhTeRwhpIQTUkZ7gk01rH151rNb7P+5ojnfzcugCcDMkRbN2CakquSGt5CYP5nr5CcxYAAAAAAAAl02K0tPvv1uzZvc9K10ytmNfJPSXtmGhtxz4m1WpFc/bXwhpKjW+WGg6wxqsgXTqxxvqasta6VQiH9drhV0o1mloNYActxrJi5AAAAAAAAFAyzhCp40xp053W2rNN/yjVuMr3r7P9L1LeGSmyg3T1JN/HDyTOMKleV6nVGMlTIKV/a82oTd8pnTsiZR+RclOlwhzJfU6SYT3HGfqLr0XbP91yUiTTLcm0YnrypYJMq/FruqWc49btzCbrubXbS1Fx1rIXKBWaswAAAAAAACi5psOtNWdPfiZtmyD1ft+38Q++JR3+h/XR+YRXrI/Uo2QcwVKdOOt2IaYpGcbl43z/krVswoWeX5BuzZw+d1g6+71UeFb6cZt1i2glxfShSVsKNGcBAAAAAABQcoYhxb8gfdhROv5P6dg/pcY3+SZ25vfS1nHWdvvHpXoJvokLS0kas5d7vivKukV2sC4+du6QlPaNdXGyrO+tW612UvM/+SLjgMfqvQAAAAAAACid2u2kqx+0trdPsD7yXl7ufGnjHVJhllS/t3XxMfg3w2GtOdtkiNTqPimyoyRDytwt/XeGdOANa7YtLormLAAAAAAAAEqv/aPWBaHOHbbWoDU9ZY9lmtL28dKP2yVXHek3SySH02epohKE1JEa/15qca8U2lByZ0ubR0pf3uqb5n2AojkLAAAAAACA0guqIV33/yRHiHTsfem7WWWP9d8ZUvLLkgyp+/9K4Y19liYqWVgDqcVoqfEtksMlHV0prekqZeyxOzO/RHMWAAAggBmGobCwMBnlXV8MAADgQurGW+vPStKu6dLxD0of4/tF0rczrO34F6RGg32XH+xhOKSGv5P6fyaFNZIy90hrEqQTa0sXphrUsjRnAQAA/FSo05BZzjW6wsLC1K5dO4WEhvooKwAAgF9pMUpqOVaSaX2E/cjykj3PNKWkOb+4ANh0qdXYCksTlSwoQqqbIA3cLtXvJRWelT4bJB15t8QhimrZ0NCQCkzUXkF2J1AS6enpmjt3rj799FNlZWWpTZs2evDBB3XttddKkkaOHKmNGzcWe05CQoLeeustSVJeXp6eeuopffzxx8rNzVW/fv30yCOPqE6dOpV+LAAAACXlchgyDEMbU7KVke8uUwyP26NQFer6ZnV9nB1KiloWAFAtdHlOyj4m/fAv6cs/SB1nS+0mSxeb8VhwVto8Sjr6UyO31Tgp9vFKSxeVwBlqzaA99aXU5A9SwTkpbbv05W3SVaushu1lFBQUKqswRFEdRld8vjapEs3ZBx54QKdOndLcuXNVt25dvfXWW7r77rv13nvvqXnz5tq7d68ef/xx9e/f3/uc4OBg7/bjjz+ubdu2acGCBXK5XHrsscc0YcIELVmyxI7DAQAAKJWMfLfS8sp2gQ23261ws9DHGaE0qGUBANWC0yX1WiXteEDaN1/aOVU68ZHU5n6p0Y2S46cWVO5p6eD/SvsWSucOSo5gqfM8qzkbwB9dr9byTlu3K26wvk/bLh1eKhVkSHWuvfRzCwpUmBdW8TnayO+bs4cPH9aGDRu0dOlSdenSRZL06KOP6osvvtDq1as1fPhwnTlzRh07dlR0dPR5z09NTdWqVau0aNEi7+yEuXPnauDAgfr6668VFxdXqccDAACA6oNaFgBQrTic0rXPSTVbSTsmSic/t26hMZKrjtV8Pbtf8uRZjw9rJF33rhTd3d68UTkMh3TFIMkZIp3eKP3wgWQES1Ed7c7MVn6/5mxUVJRefvllxcbGevcZhvURv8zMTO3du1eGYahZs2YXfP727dslSd26dfPua9asmWJiYrR169aKTR4AAADVGrUsAKBaanOfdNMBqd1UKaSulJsqZSZJGbutxmxUZynhZWnwHhqz1Y1hSDH9pToJ1vfH37fOi2rM72fO1qpVS7179y62b82aNTp8+LAefvhh7du3TzVr1tTf/vY3bdiwQeHh4Ro4cKDGjRsnl8ul1NRURUVFKSSk+MLB9evXV0pKSmUeCgAAAKoZalkAQLVVo4nUaZbU/lHpx+2SWWDtD4mWItvbmxvsZRhSw4HWOZH2tXRspRRUQ6pxld2Z2cLvm7O/tmPHDk2dOlUDBgxQnz599PDDDysvL08dOnTQyJEjlZSUpKefflo//PCDnn76aeXk5Mjlcp0XJyQkRHl5eWXOwzRNZWdnl+dQSsQwDIWFhcnj9sjtLtuFQIp4PNZEadNTvljljePxWGvmFV19urz5+CInf41TETl5fhr3op+DXfn4Mpa/xblYrKIxL83YV5VjqwpxSjL+Psvpp6fm5OR4f9fZzVfvJ2Udo1+Pvz+eky4ZMk1Tho/WOvOXY/N4PNJPh+RP52RJ+PLn4S+qay1bUFAoFRSUL1hhoYIlFRSWM1Y54xQUWs9xu92+yccHOfltnArIyfPT78Kin4Nt+fgylr/FuUisojEv1dhXkWOrCnFKNP6+yinIiuPTuiGic/HvS/ke5LP3kzKO0Xnj74/nZGiogk2PtXSAD1TKsUX/Ts6CbDmy9so8/I4Kr7xTCqn3qzwKJFlrzgZqLVulmrPr1q3TpEmT1LlzZyUmJkqS/va3v2ny5MmqXbu2JKl169YKDg7WxIkT9dBDDyk0NFT5+fnnxcrLy1NYWNkXFC4oKFBSUlKZn19SYWFhateunXJzc5WdU75/FPkh1vHm5uUrO7vsxbyv4hT89A+zvHF8mZO/xamInPLzfxr33Fxb8/FlLH+Lc7lYpRn7qnZsVSHOpcbfVzmFm8GSauvgwYPKyckpcxxf8tX7SXnHqGj8/fGcVEiYDMPQ+sNpSss+v3YoqSa1QpTQKNKvji0izLq4lD+dkyV1ocZkVVWda9n09DQVnD1VvlhBZxUlKevsWeWklT2Wr+LkZGcr1AdxfJmTv8WpiJyK/qiQnp5uaz6+jOVvcS4XqzRjX9WOrSrEudT4+yqn4JphipZ/1Q2+ej8p7xgVjb9/npPNFGU4lPntG8rLPFbmOCHR16hWq1sq79hcv1G9oDS5Ck/KOLJUp2vfLI8jvNhDgmvWkuRf52RJlaSWrTLN2SVLlmjmzJkaOHCg/v73v3sPLigoyFvMFmnVqpUkKSUlRQ0aNFB6erry8/OLDcjJkycVExNT5nyCg4PVsmXLMj+/pIo67KGhoQo3gi/z6Etzuaznh4a4FG46bYvj8XiUm5vrvQpxefPxRU7+GqcicnK5gqVzeQoNDZXDUfq/qPnzsflLnIvFKjr3SzP2VeXYqkKckoy/r3IKDbGe26xZM7/5y66v3k/KOka/Hn9/PidzTYeyyzFGeXL6JJ9f5lSeWNZsZWummT+dkyWRnJxsdwo+U91r2cjIKCmknP+ZqllTkhRRs6YinOdfPK2y4hQUFig9PV1h4eG+yccHOfltnArIKTw8XDlpUmRkpIKDyvC72o+PzW/iXCRW0blfqrGvIsdWFeKUaPx9lVNYlCT/qht89n5SxjE6b/z9+JwMc55TWHnGyJnvm3x+kdNlY0XdIfPImwoqSFP9nE/lbjJMclgty4LCAp376QNk/nROlkRJa9kq0ZxdunSpnnjiCY0YMUKPPPJIsSnBI0aMUOPGjTV79mzvvv/+978KDg5W06ZNFR0dLY/Ho+3bt6t7d2uR6YMHDyo1NVXx8fFlzskwDIWHh1/+gT7icDrkLN//77zNCMNRvli+ilP0cyxvHF/m5G9xKiInx0/j7nA45CxDQH8+Nn+Jc7lYpRn7qnZsVSHOpcbfZzk5rTjlmdVWUcr7flLeMSoaf87JSo5lWhWtP56TlxIoSxpQy0rBwUFSYfkmGijI+q9LcFCQFFyOWD6KU/ReUu58fJiT38WpgJwc3nEP9k72sCUfX8bytziXiVWqsa9ix1YV4lxy/H2VU7AVxx/rhnK/n5RzjLzjzznp21jBkVLTYdL+V+XIPS7H6bXSFTdaa9NKRfMM/PKcvJSS1rK+WYiiAh08eFCzZs3Sb3/7W40ZM0anT5/WqVOndOrUKZ09e1a/+93v9P777+sf//iHjh49qg8//FBPP/207r77bkVERCgmJkaDBg3StGnTtGXLFu3atUsPPPCAEhIS1KlTJ7sPDwAAAAGMWhYAAKAEQupKTYZa22lfSz9uszefSuT3M2fXrFmjgoICrV27VmvXri123y233KKnnnpKhmHorbfe0qxZsxQdHa277rpL9957r/dxTzzxhGbNmqX77rtPktSrVy9NmzatUo8DAAAA1Q+1LAAAQAnVbCnFXC+l/ls68bEUGiO5GtqdVYXz++bs2LFjNXbs2Es+ZtiwYRo2bNhF7w8PD9eTTz6pJ5980tfpAQAAABdFLQsAAFAK9XpIuSlSxnfS0eXSVXdLqlrLGZSW3y9rAAAAAAAAAKAaMAzpipskV12p8KycKasl02N3VhWK5iwAAAAAAAAA/+B0SVf+QTKC5Di3X2GZX9qdUYWiOQsAAAAAAADAf4TGSA3/jySpRtq/pZOB26ClOQsAAAAAAADAv0TFyVOrvQx5pA23S7mn7c6oQtCcBQAAAAAAAOBfDEPumIEqDKon5RyXNt0ZkOvP0pwFAAAAAAAA4H8cLmXWv01yhkonPpJ2P213Rj5HcxYAAAAAAACAX3K7GkjXPm99s2uadHqLvQn5GM1ZAAAAAAAAAP6r+Sjpqtsl0y1t/KNUkGl3Rj5DcxYAAAAAAACA/zIMKf5FqcZVUtYBadt4uzPyGZqzAAAAAAAAAPybK1L6zduS4ZAOvikdesfujHyC5iwAAECACwtyyDRNn8TyVRwAAACgJByuWpLpsb6J7iFdM83a3jpWyjpUumBFcfxIkN0JAAAAoGKFBDlkGIY2pmQrI99d5ji1XU79pkG4DzMDAAAALs0RHG7Nlj2yQso7LYXGSDWaS+cOSOv7S20fkAzn5QOF1JOuHFrxCZcSzVkAAHws1GnINE0ZhlHuWL6KA0hSRr5baXn+N1sAAAD4kaAIa3ah4YMPW/sqDiBZjdmcE9Z2o8FS8iIpa7905F2pfm97cysHmrMAAPiYy2EwSxEAAABVkzO0+CzFsvLTWYoIEK4o6YpB0rH3pJOfSRHNpfAmdmdVJjRnAQCoIMxSBAAAQJX1y1mKgD+K7CCdTZYy/isdXSm1HGP9caGKYW45AAAAAAAAgKrnihuk4EipIF364UO7sykTmrMAAAAAAAAAqh5nqNRkiCTDmkGbvsvujEqN5iwAAAAAAACAqim8yc8XBPvhAyk/zd58SonmLAAAAAAAAICqK7qn1aT15Fvrz5pV59ofNGcBAAAAAAAAVF2GQ2o8RHKESDnHpJOf251RidGcBQAAAAAAAFC1uSKlKwZZ26c+l84dsTWdkqI5CwCAnwp1GjJN0+40AAAAgNILiqhSHy1HgIiMlSI7SDKlYysld67dGV1WkN0JAACAC3M5DBmGoY0p2crId5cr1hXhQepYL8xHmQEAAACX4Qy1Pmp+ZIWUd7p8sSJaSg2v901eCHwNb5DOHZUK0qwLhDUeIhmG3VldFM1ZAAD8XEa+W2l55Zt1UCuYWQsAAACwQd5pKedE+WKE1PNNLqgenCFSkyHSgcVSxrdWcz+qo91ZXRTLGgAAAAAAAAAIHOGNpfp9rO0TH0p5P9qazqXQnAUAAAAAAAAQWKKvk8KvlDz51vqznvItFVdRaM4CAAAAAAAACCyGw1pv1hEi5Ry31p/1QzRnAQAAAAAAAAQeV22p0Y3W9omPpJOf25vPBdCcBQAAAAAAABCYal8jRXaSZEobh0v5aXZnVAzNWQAAAAAAAACBq+FAKSRayj4qHXjT7myKCbI7AQAAAAAAAACoMM4QqdU4KeeY1Giw3dkUQ3MWAAAAAAAAQGALayh1eNzuLM7DsgYAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGADmrMAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGADmrMAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGADmrMAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGADmrMAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGADmrMAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGADmrMAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGADmrMAAAAAAAAAYAOaswAAAAAAAABgA5qzAAAAAAAAAGCDatOc9Xg8mj9/vnr27KlOnTrpnnvu0dGjR+1OCwAAALgsalkAAIDAVG2asy+88IKWLl2qJ554Qu+88448Ho9Gjx6t/Px8u1MDAAAALolaFgAAIDBVi+Zsfn6+Fi9erAkTJqhPnz5q27at5s2bp5SUFH3yySd2pwcAAABcFLUsAABA4KoWzdk9e/bo3Llz6t69u3dfrVq11K5dO23dutXGzAAAAIBLo5YFAAAIXIZpmqbdSVS0Tz75ROPHj9fOnTsVGhrq3f+Xv/xFubm5eumll0oVb8eOHTJNU8HBwb5O9YIMw1Cu25SnnD+qIMOQy1n+WL6IY5qmgh0On+Tjq5z8MU5F5eT2eGQYhq35+DKWv8W5VCzTNEs19lXp2KpCnMuNf1U+tqqQ0y/HP9COrSLi+DKW05BCnI5yx3EYhkKdhiqrfCwoKJBhGOrcuXOlvJ6/CoRaVoXnJNNdvkCOYMkZVv5Y5YxjmpLH9MjhDJER5IN8fJCT38apgJzMwnPyuAvkMBwqUznrx8fmN3EuEst77pdm7KvIsVWFOCUa/yp6bFUhp/PGP4COrcLi+CiWaUqmESRHcHj5czKcUlANv6tlgyolG5vl5ORIklwuV7H9ISEhysjIKHW8ov9YlrW5VRahTkOSb17PV7H8LY4vY/lbHF/GCnUaktPpN/n4Mpa/xfFlLH+L48tY/hbHl7H8LY4vY/lbHF/G8rc4vozlqziVVQMZhlGp9Za/CoRaVkE1/C9WGeMYkopVUgF0bBUWx4exjKAacvrif7F+eGx+F+dXsc4798sYp1yq8c+tVONfxY7NlliljHPR8Q+AY6vwOOWMVax69dV7iZ/VstWiOVs0wyA/P7/YbIO8vDyFhYWVOl5cXJzPcgMAAAAuhVoWAAAgcFWLNWcbNmwoSTp58mSx/SdPnlRMTIwdKQEAAAAlQi0LAAAQuKpFc7Zt27aKiIjQli1bvPsyMzO1e/duxcfH25gZAAAAcGnUsgAAAIGrWixr4HK5NHz4cCUmJqpOnTpq1KiRnnnmGTVo0EADBgywOz0AAADgoqhlAQAAAle1aM5K0oQJE1RYWKhp06YpNzdX8fHxeu211yrtKrUAAABAWVHLAgAABCbDNE3T7iQAAAAAAAAAoLqpFmvOAgAAAAAAAIC/oTkLAAAAAAAAADagOQsAAAAAAAAANqA5CwAAAAAAAAA2oDkLAAAAAAAAADagOQsAAAAAAAAANqA5iwqTnp6u6dOnq1evXurcubPuuOMObdu2zXv/pk2bNGTIEHXs2FEDBw7UBx98YGO2gevgwYOKi4vTypUrvfuSkpI0fPhwderUSf369dObb75pY4aBadWqVbrhhhsUGxurQYMG6aOPPvLed+zYMY0ZM0adO3fWddddp2effVZut9vGbANLYWGhnnvuOfXt21dxcXEaNmyYvvnmG+/9nP8V56WXXtKIESOK7bvceHs8Hs2fP189e/ZUp06ddM899+jo0aOVmXZAuNDYr1+/XkOHDlVcXJz69eunv//978rNzfXen5eXpxkzZqh79+6Ki4vTgw8+qB9//LGyUwf8FrWsf6CWtQe1rH2oZe1DLWufal/LmkAFGTlypDl48GBz69at5oEDB8wZM2aYHTp0MPfv328mJyebsbGx5ty5c83k5GTz1VdfNdu1a2du3LjR7rQDSn5+vjlkyBCzdevW5ooVK0zTNM0ff/zR7Nq1qzl16lQzOTnZXL58uRkbG2suX77c5mwDx6pVq8x27dqZS5YsMQ8fPmy+8MILZtu2bc0dO3aY+fn55oABA8x7773X3Lt3r7l27VozISHBfO655+xOO2DMnz/f7NGjh/nFF1+Yhw4dMh955BGzS5cuZmpqKud/BVqyZInZtm1bc/jw4d59JRnvBQsWmF27djX/85//mElJSeaoUaPMAQMGmHl5eXYcRpV0obHfunWrefXVV5svvviiefDgQfPTTz81e/XqZU6ZMsX7mClTppj9+/c3t27dau7cudP8/e9/bw4bNsyOQwD8ErWs/ahl7UEtay9qWXtQy9qHWtY0ac6iQhw6dMhs3bq1uW3bNu8+j8dj9u/f33z22WfNRx991Lz11luLPeeBBx4wR40aVdmpBrQ5c+aYd955Z7GCdtGiReZ1111nFhQUFHvcgAED7EozoHg8HrNv377mU089VWz/qFGjzEWLFpmrV68227dvb6anp3vve+edd8zOnTvzBu4jN910kzl79mzv92fPnjVbt25trlmzhvO/AqSkpJhjxowxO3XqZA4cOLBYUXW58c7LyzPj4uLMt99+23t/RkaG2aFDB3P16tWVdxBV1KXG/sEHHzTvuuuuYo9/7733zGuuucbMy8szU1JSzLZt25qffvqp9/4DBw6YrVu3Nnfs2FFpxwD4K2pZ/0AtW/moZe1HLVu5qGXtQy37M5Y1QIWIiorSyy+/rNjYWO8+wzBkGIYyMzO1bds2de/evdhzunXrpu3bt8s0zcpONyBt3bpVy5Yt01NPPVVs/7Zt25SQkKCgoCDvvm7duunQoUM6ffp0ZacZcA4ePKjjx4/rxhtvLLb/tdde05gxY7Rt2zZdc801ql27tve+bt26KSsrS0lJSZWdbkCqW7eu/vOf/+jYsWNyu91atmyZXC6X2rZty/lfAb777jsFBwfrn//8pzp27FjsvsuN9549e3Tu3Lli7we1atVSu3bttHXr1ko7hqrqUmM/atQoTZ48udg+h8OhgoICZWVlafv27ZKsn0eRZs2aKSYmhrEHRC3rD6hl7UEtaz9q2cpFLWsfatmf0ZxFhahVq5Z69+4tl8vl3bdmzRodPnxYPXv2VEpKiho0aFDsOfXr11dOTo7S0tIqO92Ak5mZqYceekjTpk1Tw4YNi913sbGXpBMnTlRajoHq4MGDkqTs7Gzdfffd6t69u/7whz9o/fr1khj/yvDII48oODhY119/vWJjYzVv3jzNnz9fV155JeNfAfr166cFCxaoSZMm5913ufFOSUmRpPN+T9WvX997Hy7uUmPfrl07tW3b1vt9QUGB3njjDbVv31516tRRamqqoqKiFBISUux5jD1goZa1F7Wsfahl7UctW7moZe1DLfszmrOoFDt27NDUqVM1YMAA9enTR7m5ucWKXUne7/Pz8+1IMaA8/vjjiouLO+8v3pIuOPZFv9Dy8vIqJb9AlpWVJUmaPHmyBg8erMWLF6tHjx4aN26cNm3axPhXguTkZNWsWVMLFy7UsmXLNGTIEE2aNElJSUmMfyW73Hjn5ORI0gUfw8/DdwoLC/XQQw/p+++/12OPPSZJysnJOW/cJcYeuBhq2cpFLWsfaln7Ucv6D2pZ/1Adatmgyz8EKJ9169Zp0qRJ6ty5sxITEyVZ/2B+XbgWfR8WFlbpOQaSVatWadu2bVq9evUF7w8NDT1v7It+eYWHh1d4foEuODhYknT33XfrlltukSRdffXV2r17t15//XXGv4KdOHFCDz74oN544w1de+21kqTY2FglJydrwYIFjH8lu9x4h4aGSrJ+/xdtFz2G9wLfyMrK0v3336+vvvpKzz//vDp06CDpwj8bibEHLoRatnJRy9qLWtZe1LL+hVrWftWllmXmLCrUkiVLNH78ePXt21eLFi3y/pWpYcOGOnnyZLHHnjx5UuHh4apZs6YdqQaMFStW6MyZM+rTp4/i4uIUFxcnSXrsscc0evRoNWjQ4IJjL0kxMTGVnm+gKRrD1q1bF9vfsmVLHTt2jPGvYDt37lRBQUGxNQIlqWPHjjp8+DDjX8kuN95FHwG70GP4eZTfyZMnNWzYMH3zzTd67bXX1Lt3b+99DRo0UHp6+nlFLWMPFEctW/moZe1FLWsvaln/Qi1rr+pUy9KcRYVZunSpnnjiCQ0bNkxz584tNuX82muv1VdffVXs8Zs3b1bnzp3lcHBalkdiYqI+/PBDrVq1ynuTpAkTJmjmzJmKj4/X9u3b5Xa7vc/ZvHmzmjVrprp169qUdeC45pprVKNGDe3cubPY/n379unKK69UfHy8du/e7f3ImGSNf40aNYqtqYOyKVoTau/evcX279u3T02bNuX8r2SXG++2bdsqIiJCW7Zs8d6fmZmp3bt3Kz4+3o6UA0ZGRob+9Kc/6ccff9Tbb7993nh26dJFHo/HezEFyVpnMDU1lbEHfkItaw9qWXtRy9qLWta/UMvap7rVslQOqBAHDx7UrFmz9Nvf/lZjxozR6dOnderUKZ06dUpnz57ViBEjtGvXLiUmJmr//v1avHixPv74Y40ePdru1Ku8mJgYXXXVVcVuknXVz5iYGA0dOlRZWVl65JFHlJycrJUrV+qNN97QmDFjbM48MISGhmr06NFauHCh/vWvf+nIkSN68cUXtWHDBo0cOVL9+/dXdHS07r//fu3Zs0fr1q3T3LlzNWrUqAuumYPS6dChg7p06aLJkydr8+bNOnTokJ599llt2rRJ9957L+d/JbvceLtcLg0fPlyJiYn697//rT179mjixIlq0KCBBgwYYHP2Vdvs2bN19OhRPfPMM6pTp473PfjUqVNyu92KiYnRoEGDNG3aNG3ZskW7du3SAw88oISEBHXq1Mnu9AHbUcvah1rWXtSy9qKW9S/UsvapbrWsYZqmaXcSCDyLFi3SvHnzLnjfLbfcoqeeekqff/65nnnmGR06dEiNGzfW+PHjdcMNN1RyptVDmzZtNHv2bA0ZMkSStGvXLs2cOVO7d+9WdHS0Ro0apeHDh9ucZWB5/fXXtWTJEqWmpqpFixYaP368+vfvL0k6fPiwZsyYoW3btql27dq69dZbNX78eGba+EhGRoaeffZZffrpp8rIyFDr1q29b9QS539FmjJlio4fP6633nrLu+9y4+12uzV37lytXLlSubm5io+P1/Tp09W4cWM7DqHK+uXYu91uxcXFXfRiCP/+97/VuHFjZWdna9asWVqzZo0kqVevXpo2bZqioqIqM3XAL1HL+hdq2cpHLWsfaln7UMvap7rXsjRnAQAAAAAAAMAG/GkLAAAAAAAAAGxAcxYAAAAAAAAAbEBzFgAAAAAAAABsQHMWAAAAAAAAAGxAcxYAAAAAAAAAbEBzFgAAAAAAAABsQHMWAAAAAAAAAGxAcxYAAAAAAAAAbEBzFkDAmjJlivr163fR+/v166cpU6ZUYka+4fF41KdPH7Vp00bffvutbXksXrxYkyZN0oEDB9ShQwfdcccdMk3zvMd5PB7dfvvt6tq1q1JTU23I9GfLly/Xvffea2sOAAAAJUEtW7GoZQH4C5qzAFDFbNiwQadPn1bz5s31zjvv2JLD/v379dJLL+mvf/2rmjdvrvHjx2vHjh1aunTpeY9dsmSJvv76a02fPl0xMTE2ZPuzoUOH6tSpU1q+fLmteQAAAFRX1LJlRy0LBCaaswBQxaxcuVJxcXG65ZZb9MEHHygrK6vSc3jmmWc0ePBgb4E6atQoxcbGas6cOTpx4oT3cceOHdO8efN0ww03aNCgQZWe568ZhqExY8Zo7ty5ys3NtTsdAACAaodatuyoZYHARHMWAH7idrv19ttv68Ybb1SHDh3Up08fJSYmKi8vz/uYESNGaMSIEcWet2XLFrVp00ZbtmyRZH30ad68eerXr5/at2+vfv36ac6cOSooKPA+Jy8vT08//bR69+6t9u3b68Ybb9SHH3542RwzMjK0bt069e3bV4MHD1ZOTo7ef//98x6XlZWl6dOnq3v37oqLi9PEiRP1xhtvqE2bNsUet27dOg0ZMkSxsbHq0aOHnnzySWVnZ18yh3379unTTz/V4MGDvfucTqdmz56t/Px8Pf744979jz32mGrUqKHHHnvMu+/dd9/VoEGD1L59e/Xp00cLFiyQ2+0u9hrvvvuuhgwZok6dOqlDhw66+eab9dFHH3nvX7lypdq1a6d3331XPXr0UEJCgpKTk3XkyBGNHTtWXbt2VceOHXXbbbfps88+Kxa7b9++ysvL04oVKy55nAAAAFUJtSy1LICqKcjuBACgohUWFpbocdOnT9f777+ve+65R9dee612796thQsXKikpSa+++qoMwyhRnFdeeUX/+Mc/NHnyZDVp0kQ7d+7UvHnzFBwcrAkTJsg0Tf35z3/Wjh07NGHCBLVo0UJr167VxIkTlZ+fr9///vcXjb169Wq53W7deOONio6OVrdu3bRs2TINGzas2OPGjRunpKQkTZw4UVdccYWWLl2qOXPmnBdr0qRJuvHGG3X//ffr+PHjmjdvnpKTk/X6669f9HhXr16t6OhoderUqdj+Vq1a6b777tO8efO0fv165ebm6ssvv9TLL7+syMhISdJLL72kefPmafjw4Zo6daqSkpK0YMECnThxQrNmzZIkvf3223ryySc1fvx4denSRRkZGXrllVc0adIkxcXFqUGDBpKs/4AsXrxYM2fOVFpampo1a6bBgwerfv36evrppxUUFKQ333xT//M//6OPPvpIV111lSQpJCREffv21erVq88bNwAAAH9DLUstSy0LBDaaswAC2vHjx3XNNddc9nHJyclavny5HnzwQe8i+z169FD9+vX10EMP6fPPP1fv3r1L9JpfffWV2rdvr6FDh0qSEhISFBYWppo1a0qSNm7cqC+++ML7ESlJ6tmzp3JycpSYmKjBgwcrKOjCv55XrlypXr16KTo6WpI0ZMgQ/fWvf9WOHTvUuXNnSdKmTZu0ZcsWLViwQAMGDJAk9erVS4MHD9b+/fslSaZpKjExUT179lRiYqI3ftOmTXXXXXfps88+U58+fS6Yw+bNmxUbG3vBgnf06NH65JNPNHv2bOXm5uq2227zjtvZs2f1wgsv6LbbbtO0adMkSdddd50iIyM1bdo0jRw5Uq1atdLRo0d19913a9y4cd64jRo10pAhQ7R9+/ZiHykbO3asN89Tp07pwIEDGjdunPc1O3TooOeff175+fnF8oyNjdWHH36orKwsRUREXPA4AQAA7EYtSy1LLQsEPpY1ABDQoqOjtXz58gveiopCySpCJZ23ltSgQYPkdDq9H/Mqia5du2rDhg364x//qFdffVXJyckaPny4br75ZklWwWkYhnr37q3CwkLvrV+/fjp16pS+//77C8bds2ePvvvuOw0YMECZmZnKzMxUt27dFB4ermXLlnkft3nzZgUHB6t///7efQ6Hw1s8S9KBAweUkpKifv36FcshPj5eERER2rBhw0WP7+jRo2rcuPEF7wsKCtLs2bN14sQJuVwuTZ482Xvf119/rdzc3PNes+gqxEWvOWXKFE2aNEmZmZn65ptv9P777+vtt9+WpPMK06uvvtq7Xa9ePbVs2VKPPvqoJk+erNWrV8vj8Wjq1Klq1apVsec1atRIbrdbKSkpFz1OAAAAu1HLWqhlqWWBQMbMWQABzeVyKTY29qL3FcnIyJCkYkWuZBVoUVFROnv2bIlfc/To0apRo4ZWrFihxMREPfPMM2rVqpWmTZumbt26KT09XaZpemcH/NrJkyeLFWpFiq7KOnXqVE2dOrXYfR999JEefvhh1a5dW2lpaYqMjJTDUfzvb3Xr1vVup6enS5JmzJihGTNmXDCHi8nKylJYWNhF72/Tpo3q16+v+Ph41ahR47zXLJrNcbHXPHLkiKZPn65NmzYpODhYzZs3V9u2bSVZsyR+KTw83LttGIYWL16sF198UWvXrtWqVau8hf2MGTNUu3bt855Xmp8rAABAZaOW/Rm1LLUsEKhozgKA5C12Tp06pUaNGnn3FxQUKC0tTVFRUd59v17w/9cXHXA4HBo2bJiGDRumM2fO6LPPPtOiRYs0fvx4bdiwQTVr1lR4eLjefPPNC+ZStJ7UL+Xn52v16tUaMGCAhg8fXuy+Y8eO6eGHH9Z7772nu+66SzExMUpLS5PH4ylW1J45c8a7XatWLUnSQw89pISEhIuOx4VERkaWqRAses3ExEQ1bdr0vPvr1asnj8eje++9V8HBwVq+fLmuvvpqBQUFKTk5+YIXi/i1mJgYPf7443rssce0Z88effzxx3rllVcUFRVV7EIORf+B+eXPFQAAoKqilr3weFwItSwAf8OyBgAgeYu6Dz74oNj+Dz74QG63W126dJEkRUREnPfxoe3btxf7/vbbb9eTTz4pyfoL/5AhQzRs2DBlZmYqKytLCQkJys7Olmmaio2N9d727dunhQsXXvCiD+vXr1d6erpuv/12de3atdht6NChatq0qffjYAkJCSosLNT69eu9zzdNU+vWrfN+37x5c9WtW1fHjh0rlkNMTIzmzJmj3bt3X3SsGjVqpBMnTlx2TH+tY8eOCg4OVmpqarHXDAoK0ty5c3Xs2DGlpaXp4MGDuvXWW733SdLnn38uybp68MV8/fXX+s1vfqNdu3bJMAxdffXVmjhxolq3bq0ffvih2GNTU1PldDoVExNT6uMAAADwN9Sy1LIAqi5mzgKApJYtW+qWW27R/PnzlZOTo/j4eCUlJen5559X165d1bNnT0lS3759tX79es2ePVv9+vXTtm3btGrVqmKx4uPjtXjxYtWrV09xcXFKTU3V66+/roSEBNWpU0e9e/dWfHy8xo0bp3HjxqlFixbatWuX5s+fr549e6pOnTrn5bdixQrVrVtX3bp1u2D+N910k+bPn68tW7aoa9eu6tGjhx555BGdPn1aV1xxhZYvX669e/d6L3zgdDo1ceJETZ8+XU6nU3379lVmZqZeeOEFpaamXvLCEz169NDSpUtlmmaJr/orWX/ZHz16tJ577jllZWWpa9euSk1N1XPPPSfDMNS2bVvVrFlTjRo10ttvv60GDRqoVq1a+uKLL7wzM3Jyci4av127dgoNDdVDDz2k8ePHq169etq4caOSkpJ05513Fnvs9u3bde21117yI20AAABVBbUstSyAqovmLAD8ZObMmbrqqqu0YsUKvfLKK6pfv77uvPNOjRs3zvuRqqFDh+rIkSN677339M477yg+Pl7z58/XHXfc4Y3zl7/8RS6XSytWrNDChQtVs2ZN9evXTw8++KAk66NiL7/8sp577jm99NJLOnPmjGJiYjRy5Ej9+c9/Pi+v1NRUbdiwQbfffrucTucFc7/55pu1YMECvfPOO+ratavmzZunp556SnPmzFFhYaGuv/563XHHHcWK7z/84Q+qUaOGXn31VS1btkzh4eHq3LmzEhMT1aRJk4uO04ABA7Rw4ULt2rVLHTt2LNUY33///YqOjtbSpUv16quvqnbt2urevbseeOAB7xWAX3jhBc2cOVNTpkyRy+VSy5Yt9eKLL2rWrFnatm2bRowYccHYISEhWrx4sebMmaOZM2cqMzNTTZs21d/+9jcNGTLE+7i8vDxt2bJF999/f6lyBwAA8GfUstSyAKomw/z1itQAgCrt+PHj+uabb3T99dcrNDTUu3/ChAk6evSo3nvvvXK/xtixYxUVFaXZs2eXO1ZlW7VqlRITE7Vu3bpi4wMAAAD7UcteGrUsEHhYcxYAAozD4dCUKVM0ZcoUffnll9q0aZOefvppffLJJ+d9JKqsJk6cqE8++eS89a/8ncfj0eLFi3XfffdRzAIAAPghatmLo5YFAhMzZwEgAG3evFkLFy5UUlKSCgsL1aJFC40cOVKDBw/22Wu8/PLL2rNnj+bOneuzmBXt3Xff1ccff6zXXnvN7lQAAABwEdSyF0YtCwQmmrMAAAAAAAAAYAOWNQAAAAAAAAAAG9CcBQAAAAAAAAAb0JwFAAAAAAAAABvQnAUAAAAAAAAAG9CcBQAAAAAAAAAb0JwFAAAAAAAAABvQnAUAAAAAAAAAG9CcBQAAAAAAAAAb0JwFAAAAAAAAABv8f+oSEWObTIEQAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABvgAAAJOCAYAAAByaAAJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACDqElEQVR4nOzdd5gV1eE/4A+9KYIoaqwRXbAAggJWFDX2ronG3mIvEWtssVfU2I2xxV4CtqgxX3uMBbF37F0sNOnt/v7gtzcsLH1ld+R9n8dH7szcc889MztzZj53ztQrlUqlAAAAAAAAAIVQv7YrAAAAAAAAAMw6AR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAOqsUqlU21WYLUWrL9Ql/n4AAABmnYAPAIBpvPjii2nfvv00/6288srp0qVLNttss5x88sl5++23q33/5Zdfnvbt2+eSSy6Z4zo8++yz2XfffWfrPSeccELat2+fe+65Z4bTatrw4cNz1lln5b777ptpfYpm6NChOfbYY9OjR4907NgxG2+8cSZMmDDd5TfccMNqt51OnTplgw02yNFHH5233nrrZ6/3Mccck/bt26dfv34/+2f90nz55ZfVrsP27duna9eu2WyzzXLWWWfl+++/r5HP++STT7L//vvn888/rzK9clv67LPPauRzqBuee+65tG/fPnvssccsLV+5H52V/7788sskNXMMAgCAuq5hbVcAAIC6q3nz5tloo43Kr0ulUkaOHJkPP/ww99xzT/r165ejjz46++23X41+7tdff5399tsviy22WI2W+3M599xz069fv5x11lm1XZUad8455+SBBx5ImzZt0qtXr7Rq1SoNG878NGLttddOmzZtyq/Hjh2bL7/8Mv/85z/zyCOP5LLLLsvGG2/8c1adGrD11luX/1359z9w4MDccssteeihh3L33Xdn6aWXnqvP2H///cvBDExPRUVF2rdvP8NlmjdvPo9qAwAAtU/ABwDAdLVu3Tp9+vSpdt6DDz6YU089NRdccEEWXXTRbLPNNuV5u+22W7bYYou0bt16jj530qRJc/S+3r175w9/+EPatm07R++fU9MbWrC26lOTXn/99STJJZdckh49eszy+w466KBql3/00UdzxBFH5KSTTsq6666bpk2b1lhdqXnV/f1PmjQp5557bm6++eaceeaZufbaa+fqMwzNyazYZJNNcvjhh9d2NQAAoM4wRCcAAHNk6623zumnn54kufDCCzNmzJjyvIUXXjjt2rXLwgsvPE/r1LZt27Rr1y4LLrjgPP3c6alr9ZkT48ePT5IsvvjiNVLepptums6dO2fo0KEZMGBAjZTJvFW/fv0ceeSRadiwYZ555pmMHTu2tqsEAAAw3xHwAQAwx7bZZpusuuqq+e677/LYY4+Vp0/v+UdPP/109ttvv6y33npZddVVs8EGG+T444/PRx99VOW9lcOCDho0KO3bt8+GG26Y5H/PBjvkkEPyyCOPpFevXunYsWO23nrr/PTTTzN95t0dd9yRLbbYIh07dsyGG26YCy+8MMOHD6+yTL9+/dK+ffscc8wx1ZZR+aynyufQtW/fPvfee2+S5OSTT67y3Lfp1WfixIm57bbbsuOOO2a11VbLaqutlh133DG33nrrNM+3q3we4tlnn52PP/44RxxxRHr06JFOnTplhx12SN++faut5/SMGTMmV199dbbeeut06tQpXbt2za677poHHnigynKVdf/qq6+STL57pn379nnxxRdn6/OqUxkWjhw5cpp5n376aU444YT07Nkzq666anr27JmTTjqpXI/qlj/22GOz7rrrZrXVVsvuu+8+3eCwcrt8+OGHc8opp6RLly7p1q1bzj///PIy33zzTU477bRsuOGGWXXVVbPmmmvm0EMPzWuvvVZtmXOyLs8///x8+OGHOfTQQ9O9e/d07do1e+21V958880kyYABA7LHHnukS5cu6dmzZ0444YQMHjy4SlmTJk3KLbfckt/97nfp3r17OnfunC233DJ9+vTJkCFDqm/4GrTAAgtkgQUWSKlUyqhRo6rMGzZsWC6//PLssMMOWX311bPqqqtm3XXXzRFHHJE33nhjmvaYehuberjOsWPH5oorrshvfvOb8n7jrLPOyogRI6osZ/3OugkTJuSee+7JXnvtlR49emSVVVZJ9+7ds8cee+Shhx6aZvkNN9wwa6yxRsaNG5fLL788m2yySVZdddWsv/76Oeuss6qt07hx43Lttddmiy22SOfOnbPxxhvn2muvzcSJE+e6/nOj8jjUvXv3dOzYMZtuumkuvPDCDB06tNrlZ2ebqdxv9u/fP4cffng6deqUNddcMzfddFOSyce0U089NZtvvnk6deqU7t27Z88995xm/wsAALPCEJ0AAMyVDTfcMG+99Vaef/75bLXVVtNd7r777ssJJ5yQhg0bZo011kjLli3zwQcf5L777su///3v3HXXXeVnLG288cZ57LHH0qxZs2y88cbT3An4/vvv5+mnn84qq6ySFVZYIRMmTJjpXXI33HBDPv7446yyyirp1atXXnnllVx33XV58sknc/vtt6dVq1Zz9P233nrrvPbaa/niiy+y2mqrZemll84yyywz3eXHjh2bAw44IC+88EJatGiRHj16pF69ennxxRdz5pln5vHHH89f//rXNG7cuMr7Pvzww/z2t79NkyZN0qVLlwwdOjSvvvpqTjzxxAwbNiz77rvvTOs6ZMiQ7Lnnnhk4cGBatWqV9dZbL2PGjEn//v3z8ssv57///W/OO++81KtXL126dMmECRPy+OOPZ9SoUdloo43SvHnzLLLIInPUTpUmTZqUd999Nw0aNEinTp2qzHv++edzyCGHZNSoUamoqMhqq62WTz75JP/4xz/y2GOP5frrr8+qq65aXv6tt97Kvvvum2HDhqV9+/bp2rVr3nrrrey9995Zcsklp1uHSy+9NN98803WWWedfP3112nXrl2S5I033sh+++2X4cOHZ9lll82GG26YQYMG5bHHHssTTzyR0047LTvvvHO5nDldl2+//XbuvPPOLLTQQunevXs++OCDvPDCC9lzzz1z4okn5s9//nPatWuXddZZJy+99FLuvffeDBw4MH379k29evWSJKecckr+8Y9/pFWrVunSpUsaNGiQ119/PX/729/y+OOP57777kuTJk3mal3NyJdffplhw4ZlueWWqzIU748//phddtkln3/+eZZaaqmsueaaGT9+fN5+++08+uijeeKJJ3LHHXekY8eOWWSRRbL11ltPs41N/Ry1I488Mp999lm6deuWX//613nppZdyyy235I033sgdd9yRBg0aVFne+p2xUqmUww8/PE888UQWWmihdO7cOU2aNMmHH36Y/v37p3///vnxxx+z5557VnnfpEmTcuCBB6Z///7p0qVL2rVrlxdeeCG33HJLXn755dxzzz3l53OOHz8+f/jDH/LCCy+kVatW6dmzZwYPHpyLL764vD5qwyWXXJJrrrkmDRo0yOqrr57WrVvntddey3XXXZdHHnkkf//736s8U3J2t5lKp5xySgYPHpz11lsvH374Ydq3b58ff/wxO+20U7777rtUVFRkgw02yLBhw/LSSy/lxRdfzGeffWYIUgAAZk8JAACm8sILL5QqKipKvXr1mumyDz/8cKmioqL0+9//vjztsssuK1VUVJQuvvji8rSNNtqotPLKK5c++OCD8rRJkyaVzjrrrFJFRUXp+OOPL0//4osvShUVFaX11luvymdVTq+oqCidfvrp5ekTJ04slUql0vHHH1+qqKgo3X333eV5ldMqKipKt956a3n6qFGjSvvvv3+poqKidMopp5Sn9+3bt1RRUVE6+uijq/2+lWWNHz9+ms+Y8nOnN/3cc88tVVRUlH7729+Wfvzxx/L0H374obTjjjuWKioqSueee255euW6qKioKP3xj38sjRw5sjzv5ptvLlVUVJTWWmut0qRJk6qt75QOO+ywUkVFRemggw4qjRgxojz9008/LW200UalioqK0s0331zlPb169SpVVFSUPv3005mWP+XyL7zwQpXpY8aMKQ0cOLD0xz/+cZrvWCqVSoMHDy517969tNJKK5UefvjhKvPuvPPOUkVFRWmjjTYqjR07tlQqTV7n22yzTamioqL017/+tbzsuHHjSieccEK5zfr27VueV7ldtm/fvvT666+Xp0+cOLE0ZsyY0nrrrVeqqKgoXXnllVXa86mnnip17NixtPLKK5fefvvt8vS5WZdHHXVUady4caVSqVQaO3ZsefnKz6/03XffldZYY41SRUVF6Y033iiVSqXSV199VaqoqChtsskmpZ9++qm87OjRo0u/+93vpvnes2vKv7MpTZo0qTRixIhS//79S9ttt12pffv2pccee6zKMmeeeWapoqKidMYZZ1RpwzFjxpQOPvjgUkVFRemkk06q8p7pbWOV09daa63Su+++W57+6aefljp37lyqqKgovfjii+Xp1u+sefTRR0sVFRWlnXbaqcp+oFQqlf7617+WKioqSr/5zW+qTK9cF+uss07pvffeK0//8ssvS927dy9VVFSUnnzyyfL066+/vtx2w4YNK09/6qmnSqusskqpoqKitPvuu89SfSv3o5dddtksf8fqjkGPP/54qaKiorTmmmuW3nzzzfL0sWPHlk466aRSRUVFafvtty9vG3OyzVTWdbXVVit9/vnnpVJp8t/NpEmTSldccUWpoqKidNFFF1Wp6+uvv15aZZVVSp06dSqNHj16lr8jAAAYohMAgLmy0EILJclMh437/vvv07Bhw7Rt27Y8rV69ejnooINyyimnZMcdd5ytz919993L/65ff+bd2u7du2e33XYrv27WrFnOPffcNGrUKPfff/80wwz+HMaOHZs77rgj9evXz0UXXVTlzsQ2bdrkkksuSYMGDXL77bdPM3xlw4YN8+c//7nK3U0777xzGjdunB9//DE//vjjDD/7q6++yr///e8suOCCufDCC9OiRYvyvGWXXTbnnHNOkuS6666ria+aPffcszycafv27dOpU6dstdVWefjhh7PVVlvluOOOq7L8Pffck6FDh2bXXXfN5ptvXmXezjvvnF69euWLL77I//3f/yVJXnnllbz33ntZeeWVc8ABB5SXbdSoUU477bS0adNmunXr3LlzlbsH69evn0ceeSSDBg1K9+7dc8ghh5TvpEqS9ddfPwcccEAmTJiQG2+8Mcncrct69erl5JNPTqNGjZIkjRs3zqabbpokWWKJJXLggQeWl1100UXTpUuXJMnnn3+eJPnhhx+SJK1bt84CCyxQXrZp06Y5+eSTc9ZZZ6Vz587T/f6zY8p12KFDh3Tt2jW777573nnnnfz5z38uD6dbaaGFFsp6662XI444okobNmnSJDvssEOSTDME58wccMAB6dChQ/n1sssuW/7c999/f5rlrd8ZGz9+fDbccMMcc8wxVfYDSfL73/8+yfTX0QEHHJD27duXXy+55JLlIZQHDhxYnn7nnXcmSc4444y0bNmyPH399dfPLrvsMkf1vuKKK6psj1P+t8Yaa8z0/ZXDZB533HFV7gRu3LhxTjvttCy33HJ5++2388ILLyTJbG8zU+rVq1f5TsB69eqlXr16+f7775Mkv/rVr6os26lTp5x11lk555xzMmnSpNlrFAAA5muG6AQAYK6MHz8+Sapc/KzOGmuskWeffTY77LBDtttuu/Iz1tq0aVMlrJsVTZs2za9//evZes/WW289zbRFFlkkHTt2zCuvvJLXX389a6211myVObvefPPNjBkzJquuumqVYeAqLb300unYsWNee+21vPHGG1Xqs+yyy04zjGjjxo3TunXrDBo0KKNHj57hZ7/00ktJkrXXXrtKaFCpe/fuWXTRRfPtt9/m888/n+Ewo7Ni7bXXrhKyjRs3Lj/88EPefvvt/POf/8yoUaNy8cUXp1mzZklSfrZfjx49qi1vvfXWy5NPPpkXX3wxW265Zfn79OzZc5plmzRpknXXXTf3339/tWVNGVBU6t+/f5Jks802q/Y9W2yxRS6//PLycnOzLpdZZplphp2tfL3iiitOM+Rk5fCzY8eOLS/TqlWrvPrqq/n973+fLbbYIuutt16WW265dOzYMR07dqz2O8yJqf9uRo8ena+++irvv/9+zjrrrPz444857LDDyvOrG2Jw2LBhGThwYJ599tkkk7eF2dG1a9dppi2xxBJJMs0zNBPrd2a23HLLbLnlllWmjRkzJh9//HFeffXVJJOfPThx4sRp6rraaqtNU17ljzYq90GDBg3KZ599lrZt21YJZitttNFGueWWW2a73pVDOFdn6mFdpzZhwoS88sorqV+/fn7zm99MM79hw4bZZJNNcu211+bFF1/MWmutNdvbzJSq+97dunXLHXfckbPPPjtvvPFGevXqlbXWWisLLLBAtttuuxnWHwAAqiPgAwBgrgwdOjTJ/+7km56zzz47hxxySN5+++1cfvnlufzyy8vPZtpxxx2z5pprzvJnLrjggjMNFKc2vWeyVQYFgwYNmq3y5sR33303w7okyVJLLZXXXnutvGylKe+CmVLlM69mdufHrH72999/n++++26uA76DDjqo2rDuxx9/zKGHHponnngi559/fk477bQkyTfffJMkVcKi6nz77bdJ/vd9prwjdEpLLbXUdMuo7nmLM2ufyvIq766am3VZ3d9K5fY8o3mVmjVrlksvvTTHHHNMXnnllbzyyitJJodOG220UXbZZZfZDsCnp0+fPtVOf/vtt7P//vvn8ssvz/LLL58tttiiPO+LL77I7bffnpdffjmffvpphg0bVuV7lEql2apDdc/XrAyeqtvurd+ZGzFiRO6666785z//yUcffZTvv/8+pVKpSl2qW0/V7Yem3gdV7ksXW2yxaj97Rn+bM7LJJpvM8TPqhg4dmvHjx09zV2R19aq80252t5kpVbeet9xyy7z11lu56aab0rdv3/Tt2zcNGzZMly5dsvnmm2fHHXdM06ZNZ//LAQAw3xLwAQAwV957770k1d81M6XFF188ffv2zUsvvZQnnngizz33XAYOHJgHHnggDzzwQPbdd98cf/zxs/SZszIk59SaNGkyw/mVw+nNyMSJE2f7c6c0K8FG5Wc0bty4yvTZDTTnxPQ+uya1adMmJ598cnbcccf069cvp556aurXr1/+7F69ek33AnySrLDCCklm3h5T33k0pereO7N1UxleVG4nc7MuKwORubHmmmvmsccey1NPPZWnn346L7zwQr744ovcdNNNue2223LJJZdUe6dSTVlllVXyhz/8Ieeff37+8Y9/lAO+f/7znzn++OMzYcKELL300llrrbWy/PLLZ9VVV02pVMqhhx462581u3/v1u+MffDBB9lrr73y448/pnXr1uXhc9u3b58ePXpkgw02mO57Z2U/NLNlaqJ9ZtecrM/Z3WamNL1t9vjjj8/uu++e//u//8t//vOfvPLKK3nppZfy0ksv5ZZbbskdd9yR1q1bz7SuAACQCPgAAJhLTz31VJLJQzLOTL169dK9e/d07949yeS7ufr27ZtLLrkkN954Y/bYY49pnk9UU6a+y6bSV199leR/d/JVXpit7s6g6oYDnB2Vd5tVfmZ1vvjiiySThw+tSbPy2ZXP3arpz57aiiuumGTykISDBw/OIosskrZt2+bTTz/NnnvuOUvbUuXdQV9//XW186e3vqdnZu1TuV4qhx2tzXVZqWnTptlss83KQwh+9NFHueaaa/LAAw/kggsu+FkDvuR/YWvl3ZcjR47MqaeemlKplCuvvDIbb7xxleUrn59YG6zf/znjjDPy448/Zv/990/v3r2rhOGVd1vOjZr+26wJrVq1SqNGjTJs2LCMGDGi2h8RzO42MPXys2rJJZfM3nvvnb333jvjx4/P888/nzPPPDOffPJJ7rjjjhxyyCGzVR4AAPOv2f/pMwAA/H8PP/xwPv744yy++OIzvOvjww8/zNZbb53999+/yvQ2bdrkgAMOSPv27VMqlcpDu/0cd6v95z//mWba119/nTfffDMtWrTIKquskuR/z3L68ccfp1n+9ddfr7bsWa3vqquummbNmuWdd94pXxye0ueff5533nknzZs3r9HnqCXJ6quvnnr16uW///1vRowYMc38F154IYMHD85SSy31s4WslT799NMkkwOMyuEUu3XrliR5+umnq33PBRdckO222y533313kpSfefb4449Pc2flxIkTy897m1WVn/+vf/2r2vmPPPJIkpTD6dpclw888EB+85vf5KqrrqoyvV27djn11FOT/C90+zl99tlnSf4Xjn/wwQcZOXJkKioqpgn3kpTXyewO0VkTrN//ee2115JMHkZ36jtd//vf/5b/PbNhf6enbdu2WWGFFfLjjz/m5ZdfnmZ+5Y9C5qVGjRqlS5cumTRpUrVB84QJE/LYY48l+d9zQGd3m5mZP/7xj+nRo0eVwLBRo0bp2bNn+Tm0lUMQAwDArBDwAQAwRx599NGccsopSZKTTz55hsM6Lrfccvnuu+/y7LPPTnOx9K233spHH32U5s2bl+8IqhxOc9SoUXN8kXlq9913X5ULuyNGjMhxxx2XiRMnZrfddit/ZocOHZIkAwYMyNtvv11e/ttvv82FF15YbdmV3/2nn36aYR2aNWuW3/3ud5k0aVKOPvroDB48uDxv8ODB6d27dyZNmvSzPIup8vldI0aMyLHHHpuRI0eW533xxRc5+eSTk6R8ofnnMmLEiJx99tlJki222KI8XN/OO++c5s2b59Zbb81DDz1U5T1PPPFEbr755rz33nvlMKVTp05ZffXV88knn+SCCy4obyeTJk3K+eefX74bcVZtvvnmadu2bfr375+rr766Sgj1zDPP5LrrrkuDBg3y+9//PkntrssVV1wxn3/+eW6++eZ8/PHHVeY98MADSSa3T6Xx48fno48+ykcffZTx48fXSB0+/vjjXHvttUmSrbfeOkmy8MILJ0k++eSTKvUqlUq54447yuHs2LFjq5RV+bc3s7+fuWH9/k/lenr88cerTH/ppZdy5plnll+PGzdujr/D3nvvnSQ55ZRTqjzfdMCAAbnxxhvnuNy5sddeeyWZ/GOBKfft48ePz+mnn57PP/88HTp0yOqrr55k9reZmVl00UUzdOjQXHDBBVXadsyYMeVj05Rh8eDBg/PRRx9N905IAAAwRCcAANM1ZMiQHHPMMeXXkyZNyk8//ZT3338/gwYNSoMGDXLKKafMdKi4hg0b5swzz8wRRxyRI488MqusskqWWmqpDBkyJC+//HImTpyYE088MQsuuGCSyRegW7ZsmeHDh2eXXXbJMssskz59+szVd+ncuXMOO+ywdOnSJYsuumheeumlDBkyJN27d8/hhx9eXm6ZZZbJJptskn//+9/Zeeedy3eKvfjii1lhhRVSUVGRgQMHVil7ueWWS5JcddVVefXVV7PttttWewdTkvTu3TvvvPNOXnrppWy88cbluz/69++fkSNHpkePHlXavCadccYZ+fTTT/PEE09ko402yhprrJHRo0enf//+GTduXLbaaqvyRfC5dc011+See+4pvy6VShk+fHheeeWVjBgxIsstt1yV77nYYovl/PPPT+/evdO7d+9ceeWVWX755fPNN9/krbfeSpKceOKJWWmllcrvOffcc7PnnnvmpptuylNPPZUOHTrkvffey2effZbOnTtP947L6jRr1iyXXnppDjjggPzlL3/Jfffdlw4dOmTQoEF59dVX06BBg5x00klVgpXaWpcrrbRS9txzz9x8883Zeuut07Vr17Ru3TqfffZZ3nvvvTRv3jx/+tOfyssPGjSo/Iy8xx9/PEsttdQsf9bU9Z80aVK+++67vPrqq5kwYUI23njjbLfddkkm/+1suOGGeeKJJ7Lddtule/fuadKkSd555518/fXXWWGFFfLhhx/mhx9+qFLmsssum48//ri8bzj22GOz9NJLz2HrVM/6/Z999tkn5557bo4//vjcddddWXTRRfP555/n3XffTatWrbLooovm+++/z/fffz/D52HOyE477ZQXXngh//znP7PZZptlrbXWyqhRo9K/f/906tQpr7766hyVOzc23njj7Lvvvrnhhhvy29/+Nquvvnpat26d119/Pd9++22WXHLJXHLJJeVhmudkm5mRQw45JE8++WT+9a9/5eWXX86qq66aJHnjjTfy448/Zo011si2225bXv62227LFVdcke7du+eWW26p+QYBAKDwBHwAAEzXqFGj8uCDD5Zf16tXL82aNctSSy2VjTfeOLvttlvatWs3S2Vtsskmuf7663PTTTflzTffzPvvv5+WLVumZ8+e2WuvvcpBWjL5OXh9+vTJ+eefXx4ib26fDXX00Ufntddey5133pm33nqr/Bykfffdd5q7D/v06ZNrr702Dz74YJ5//vksssgi2W233XLYYYdln332mabs3//+93nvvffy+OOP55lnnkm7du2mG/A1bdo0N9xwQ26//fY88MADeeGFF9KgQYOsuOKK2WGHHfLb3/62fIG5prVp0yZ33XVXbrrppjzyyCN55pln0qxZs3Tp0iW77LJLOSSoCc8991yV1w0aNMiCCy6YFVdcMRtuuGF23XXXacKDTTbZJH379s11112XF154IU899VTatGmTXr16ZZ999ikPnVdp2WWXzT333JOrrroqTz75ZJ588smssMIKueqqq/L222/PVsCXJF27ds29996ba6+9Nv/5z3/y+OOPp3Xr1tliiy2yzz77THMhvzbX5Z/+9Kcsv/zyuffee/PWW29l/PjxWWSRRbLjjjvmoIMOyjLLLFMjnzPl338yeUjBVq1aZe21185WW22VrbfeusoQtZdcckmuv/76PPTQQ+nfv38aNGiQ5ZZbLr///e+z1157ZaeddsrAgQPz1ltvlQOOE088MSNHjswbb7yR5557Lh9//HGNB3yJ9Vtp7733ziKLLJKbbrqpvC5+9atfZY899sgf/vCH/O1vf8stt9ySJ598Mr/+9a/n6DPq1auXPn36pFu3brnzzjvz3//+NwsttFD23Xff7LDDDtl8883nuP5z4/jjj88aa6yRW2+9NW+99VbGjh2bpZZaKgcffHD22WefLLTQQlWWn91tZkZat26d22+/PVdffXX+85//5Nlnn02jRo2y3HLLZd99982ee+45wzvhAQBgavVKtfEABAAAAOaZIUOGZM0118zzzz9fHqKRXw7rFwAA5j+ewQcAAPAL98wzz2SJJZZI69ata7sq/AysXwAAmP8I+AAAAH7Bhg0blgsuuCCnnHJKleE0+WWwfgEAYP5kiE4AAIBfuJEjR6ZFixa1XQ1+JtYvAADMfwR8AAAAAAAAUCCG6AQAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAACgjimVSrVdBQAAAOowAR9QxR577JH27dtX+W+NNdbInnvumf79+9fIZ7Rv3z6XX355jZQFAFDbarL/9O233+aAAw7IV199VZ624YYb5oQTTqjpagMA/CKccMIJ0/TFpvzvX//6l/4U8IvUsLYrANQ9K6+8cv785z8nSSZOnJghQ4bkjjvuyH777Zd+/fplxRVXrOUaAgDULTXVf3ruuefy9NNP/5xVBQD4xVl00UVzxRVXVDtvueWWm7eVAZhHBHzANBZYYIGsttpqVaatvfbaWWuttdKvX78cf/zxtVMxAIA6Sv8JAKD2NG7ceJq+GMAvnSE6gVnSrFmzNGnSJPXq1StPe+yxx7LDDjukY8eOWWeddXLWWWdl1KhRVd7Xv3//7LzzzuncuXM23XTTPPfcc1Xmf/nll2nfvn1uvPHGbLbZZuncuXP69u2bJHnzzTez3377pUePHunatWsOOuigfPDBB1Xe/9133+VPf/pT1l9//XTq1Ck77bRTHn/88SrLtG/fPnfccUdOOOGErL766unevXvOOuusjBkzJueff37WXHPN9OjRIyeddFLGjh1bft9///vf/O53v0uXLl3SrVu3HHzwwfnoo49qpD0BgF++qftPEydOzLXXXputttoqnTp1ymqrrZZddtklL7zwQpKkX79++dOf/pQk2WijjaoMIzV+/PhccMEFWWeddbLaaqtl3333zWeffVaef8IJJ2SvvfbKn//853Tt2jVbbLFFJk6cmLFjx+bKK6/MZpttlo4dO2aTTTbJtddem0mTJlWp68MPP5wddtghXbp0yTrrrJNTTz01w4YNK8+//PLLs9lmm+X//u//stVWW6Vjx47Zdttt8+qrr+a1117Lb3/723Tq1ClbbbVVnn/++fL7xowZk9NOOy09e/bMqquums022yzXX399zTc2AMBs+Omnn3Luuedm4403TseOHbPVVlvlH//4R5VlJk6cmNtuuy1bb711OnXqlA022CB9+vSpcu1oen0w15SAecEdfMA0SqVSJkyYUP730KFD8/e//z3jxo3LjjvumCR58MEHc8wxx2TrrbfOH//4x3z11Ve55JJL8uGHH+bGG29MvXr18vbbb2fffffNmmuumcsuuyxffvllevfuXe1nXn755TnppJOywAILpHPnznnhhRey//77p0ePHjnnnHMyduzY/PWvf80uu+ySu+++O+3atcsPP/yQnXbaKU2aNMlRRx2V1q1bp1+/fjn00ENzwQUXZJtttimXf+GFF2arrbbKFVdckSeffDJ///vf8+yzz6ZDhw7p06dPXnvttVx++eX59a9/nf333z9ffPFFDjnkkOy4447p3bt3hg8fnosvvjgHHHBA/u///i/16/t9BADwP7PSf+rTp0/uuOOOHH300Wnfvn0GDRqUK6+8MkceeWSeeuqpbLDBBjn44INz9dVX54orrkj79u3L5T/88MNZd911c9555+WHH37Iueeem6OOOir9+vUrLzNgwIA0adIkV155ZUaNGpX69evnoIMOymuvvZbDDjssHTp0yIsvvpi//OUv+eKLL3LmmWcmSa666qpcdtll2XXXXXPUUUfliy++yKWXXprXXnstd999d5o2bZpk8vMBzzvvvBx11FFp3rx5zjzzzBxxxBFp1KhRDjrooCyxxBLl+U899VSaNm2ac845J88++2yOP/74LLLIInnmmWdywQUXpFWrVuV2AQCoCZV9sSk1aNCgyo/Vk8k/QNp1113z448/5ogjjsiSSy6Zxx57LCeddFJ++OGHHHTQQUmSU089Nffff3/+8Ic/ZI011sg777yTK6+8Mu+++26uu+66crlT98G+/vpr15SAeULAB0zjpZdeyiqrrDLN9N69e6ddu3YplUrp06dP1ltvvfTp06c8f7nllsvee++dp59+OhtssEH++te/pk2bNrn66qvTqFGjJEnr1q1z1FFHTVP25ptvXuUiz+GHH55ll1021157bRo0aJAkWXfddfOb3/wml112WS699NLceOONGTx4cB599NEsueSSSZL1118/e++9dy644IJstdVW5U7TCiuskDPOOCNJ0r1799xzzz0ZP358+vTpk4YNG2bdddfNo48+mldeeSVJ8sYbb2TMmDE58MADs9hiiyVJFl988Tz++OMZNWpUFlhggbluZwDgl2Nm/adk8sgDRx11VPbYY4/y/CZNmuTwww/P+++/n9VWWy3LLLNMkmSllVbKUkstVV5uscUWy1VXXVXuU3322We5+uqrM2LEiHK/ZMKECTnjjDOy+OKLJ0mefvrpPPfcc7n44ouz5ZZbJknWWWedNG3aNJdeemn23HPPtG3bNldffXV+97vf5dRTTy1/XkVFRXbbbbf07ds3u+22W5Jk9OjR+fOf/5yePXsmST788MNcdNFFOfvss7PTTjslSUaNGpUjjjgin3zySVZaaaX0798/66yzTvnze/TokebNm6dNmzZz2+QAAGVfffVVtX2xo48+OgcccECVaf369cvAgQNz5513pkuXLkmS9dZbLxMmTMhVV12VXXbZJT/88EP+8Y9/VHn/Ouusk7Zt2+a4447LM888k/XXXz/JtH2whx56yDUlYJ4Q8AHTWGWVVXL66acnmfwL9OHDh+eZZ57JJZdcklGjRmWbbbbJt99+mwMPPLDKr6O6deuWBRZYIP/973+zwQYb5OWXX06vXr3KF6KSZJNNNikHdlNaaaWVyv8eNWpU3nzzzRx22GFVlm3ZsmV69eqVp59+Osnk4T+7dOlSDvcqbbPNNvnTn/6Ujz/+OCussEKSlDtsyeRfb7Vu3TqrrLJKGjb8326wVatW+emnn5IknTt3TpMmTbLTTjtls802S8+ePdOjR4906tRp9hsUAPjFm1n/6aijjspFF12UJBk8eHA+/vjjfPbZZ3nyySeTJOPGjZth+Z06darSp6oM/4YPH16+SNSqVavyhaVkcl+pYcOG2WyzzaqUtc022+TSSy9N//79s9RSS2XcuHHZaqutqiyzxhprZMkll0z//v3LAV+SdO3atfzvRRZZJMnkflOlVq1aleuVTA707rzzznz77bdZf/31s/766+fQQw+d4XcFAJhdiy66aK6++upppk/ZN6rUv3//LLnkklWuFSWT+0j/+Mc/8vrrr+err75KkvKPlCptueWW+dOf/pQXX3yxHPBN3QdzTQmYVwR8wDRatGiRjh07Vpm27rrrZtSoUbnuuuuyzjrrJElOP/308oWsKX333XdJkmHDhqV169ZV5jVs2HCaaUnSvHnz8r9/+umnlEql8kWjKS2yyCLlEG7YsGFZeumlq10m+d+FpSTV/jpqys+c2lJLLZVbb7011157bf7xj3/k5ptvTsuWLbPrrrvmj3/84zTDOwAA87eZ9Z/23HPPfP311zn99NPz5ptvplmzZllhhRXyq1/9KsnkUHBGpu63VI5SMOWz9Fq0aFFlmcq+2NQ/rlp00UWTTO5zVT5nb2b9rkrV9amaNWs23XqfdNJJWXzxxfPAAw/kzDPPzJlnnpkuXbrktNNOS4cOHab7PgCA2dG4ceNp+mLTM2zYsHJ/aEpTXk+q7CNNvVzlda0p+0hT98FcUwLmFQEfMMtWXXXV3HPPPeXXxx13XLp37z7NcgsttFCSyb9g+uGHH6rMK5VK5U7S9Cy44IKpV6/eNO9Nku+//778y/CFFloo33//fbXLJKk2SJwdnTp1yhVXXJFx48bl5Zdfzl133ZVrrrkmHTp0yOabbz5XZQMA84fK/tNHH32Uww8/PO3bt89DDz2U5ZdfPvXr18/TTz+dRx999Gf57IUWWihDhgzJxIkTq4R8lT/Gat26dbnf9sMPP2T55Zev8v7vv/++2h9TzY7GjRvn4IMPzsEHH5yvv/46Tz75ZK666qocffTReeihh+aqbACAObHQQgvls88+m2b6lNeTKgO877//vsrIUePHj8+QIUNmes3JNSVgXvBET2CWvfHGG2nQoEGWX375tGnTJl9++WU6duxY/m+xxRbLRRddlHfeeSdJstZaa+WZZ57J6NGjy2X85z//yfjx42f4Oc2bN8+qq66aRx55JBMnTixP/+mnn/LUU09l9dVXTzJ5SNBXX321PGxCpQceeCCLLrpoll122Tn+rjfddFN69eqVcePGpXHjxllrrbVy5plnJkm+/vrrOS4XAJi/VPafmjRpkqFDh2bPPffMCiusUL4D75lnnknyvzvxKqfXhO7du2fChAn517/+VWX6Aw88kCRZffXV07lz5zRu3Dj//Oc/qywzYMCAfP3111WG5JxdY8aMyaabbpobbrghSfKrX/0qu+22W7bcckv9KQCg1nTr1i1fffVVXn311SrTH3jggTRq1CidOnUq/6B96h8kPfTQQ5k4cWL52lR1XFMC5hV38AHTGDFiRF577bXy63HjxuWJJ55I3759s/POO2eRRRbJUUcdlVNPPTUNGjRIr169Mnz48Fx11VUZNGhQ+aHGhx56aB577LHst99+2X///TN48OD85S9/qfL8mOk5+uijs99+++WAAw7IrrvumvHjx+faa6/NuHHjys9t2WefffLAAw9k7733zmGHHZZWrVrlvvvuywsvvJBzzjlnri6QrbnmmunTp08OPfTQ7L777mnQoEHuvPPONG7cOL169ZrjcgGAX6aZ9Z+WX375LLDAArnmmmvSsGHDNGzYMI8++mj+8Y9/JEn5B1EtW7ZMkvzf//1fevbsmXbt2s1xnSqf93LyySdn0KBB6dChQ/r375+//e1v2X777cvPKj7ggANy5ZVXplGjRunVq1e+/PLLXHrppVlhhRWy/fbbz/HnN23aNKusskquuOKKNGrUKO3bt88nn3ySe++9N5tuuukclwsAMDd22GGH3H777Tn00ENzxBFHZKmllir32w477LC0bNkyLVu2zPbbb5/LLrsso0ePTrdu3fLuu+/miiuuSI8ePbLeeutNt3zXlIB5RcAHTOOdd97JzjvvXH7dpEmTLLPMMjnqqKOy3377JUl++9vfpkWLFrnuuuty1113pXnz5unatWv69OlTHsppueWWy6233przzjsvRx11VNq0aZPjjz8+55133kzrsNZaa+XGG2/MZZddlt69e6dx48ZZY401cv7552fFFVdMMnkc9DvuuCMXXXRRzjrrrIwfPz4dOnTIVVddlY022miu2qBDhw655pprcuWVV6Z3796ZOHFiVl111dxwww3TDF8FADCz/lOjRo1y1VVX5YILLsiRRx6ZFi1aZKWVVsqtt96aP/zhDxkwYEA23HDD9OjRI2uvvXYuuuiiPP/887n22mvnuE716tXLX//611x22WW56aabMnjw4Cy11FLp3bt39tlnn/Jyhx9+eBZZZJHceuutueuuu9KqVatsttlm+eMf/zjDZxbPijPOOCN/+ctfcsMNN+T7779PmzZtstNOO+XII4+cq3IBAOZUs2bNcsstt+Siiy7KpZdemhEjRmT55ZfP2WefnZ122qm83Nlnn51ll102ffv2zd/+9re0bds2e+65Zw455JAZ/qjcNSVgXqlXmtnT3AEAAAAAAIA6wzP4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAF0nBWFnr11VdTKpXSqFGjn7s+AAB1wvjx41OvXr106dJlrsrRjwIA5jf6UQAAc2Z2+lGzdAdfqVRKqVSapeXGjRs3S8syfdpx7mnDmqEda4Z2rBnasWZox1k3q/2feVVOkdjOqqddqqddqqddpqVNqqddqqddqjev2qVo/SjbS91nHdV91lHdZv3UfdZR3VcX+1GzdAdf5S+lOnbsOMPlRo0alXfffTcrrLBCmjdvPksVYFrace5pw5qhHWuGdqwZ2rFmaMdZ9+abb9ZIObPaj/olsZ1VT7tUT7tUT7tMS5tUT7tUT7tUb161S9H6UbaXus86qvuso7rN+qn7rKO6ry72ozyDDwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACaVjbFaiLvvvuuwwfPnyO39+yZcu0bdu2BmsEAEBtmtv+YZKMGTMmX3/9dZo0aZKmTZvWUM3mnD4rAPzP0KFD8/HHH9eJYzTTqmv9KKY1ZsyYDB06tLarATBfEfBNZeDAgTn22GMzadKkOS6jUePGuebqq10wAQD4Bfjuu+9y0MEHZ/y4cbVdlRqlzwoAk/3www+54oorM2HC+NquChRaw4aNsuKKK2aZZZap7aoAzBcEfFP56quvMmnSpDRepGMaLrDEbL9/0rjhGfP1Cxk+fLiLJQAAvwDDhw/P+HHj0vRXa6Z+45a1WpdJY4dnzDcvpOkSa6Z+kzmviz4rAPzP8OHDM2HC+DpxrKd6NdUH4uczZf8SgHlDwDcd9Ru1SINmC9d2NQAAqCPqN25ZZ/qH9ZvUnboAwC9FXTrWUz19IAD4n/q1XQEAAAAAAABg1gn4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAL5RQZ8w4YNq+0qzLWRI0fWdhUAgPnUL6EvBXPK9g8AAEB16lpu84sL+L799tvsueee+fbbb2u7KnNs0KBB6dOnTwYNGlTbVQEA5jO/hL4UzCnbP8D8afDgwUmSSeNH1XJNAIC6qi7mNr+4gG/EiBGZNGlSRowYUdtVmWMjR45MqVSqc2kwAPDL90voS8Gcsv0DzJ9Gjx49+R+TJtRuRQCAOqsu5ja/uIAPAAAAAAAAfskEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABRIw9quQKWtt956mmkPPvhgLdSk2Oa2HR966KFcc8015dcHHXRQttxyy9mqwxdffJHDDjsskyZNSv369XPFFVdk6aWXnuX3Dxs2LCeeeGKGDBmS1q1b55xzzslCCy00y+8fPXp0rr/++nz00Udp165d9t9//zRr1my2vsPEiRPzzjvvZPDgwVl44YWz8sorp0GDBrNVBgA1z/65eqNHj85NN92Ur7/+Or/61a+y9957z/axD5h7NXVOUxPlnHbaaXn55ZfLr1dfffWcdtpps1XGkUcemY8//rj8evnll8+ll146W2UkyauvvppTTz21/PqMM85Ily5dZquMd999N8cdd1z59QUXXJCVVlpptusyt+cqSfL999/n8MMPz5gxY9K0adNcfvnlWXTRRWe7LiNHjswll1ySb7/9NosvvniOOuqotGjRYrbKGDZsWE444YT8+OOPadOmTc4777zZOneqNG7cuDzyyCP55ptvssQSS2TzzTdP48aN53kZNVlOXVETfZea6v+MGzcuDz30UN577718/PHH2XbbbQvdtgAA87s6EfBVdwJbOV3IN+vmth2re/8111yTa665ZpbXw9RlTJo0KYccckiSWbsosccee2To0KHl1z/99FN23333tGrVKrfccstM33/WWWflxRdfLL/+6KOP8u9//zs9evTIySefPEvf4bnnnsv111+f7777rjytbdu22W+//bL22mvPUhkA1Dz75+pNfex77bXX8vDDD8/WsQ+YezV1TlMT5VRXxssvvzzXZXz88cc18n0qw765qUtl2Dc3dZndc5Uk2X777TNhwoTy65EjR2bfffdNw4YNc++9985yXXr37p0PPvig/Pqzzz7LLrvskhVXXDEXX3zxLJUx9bnTl19+OVvnTpVuvPHG3HfffZk0aVJ52g033JDtttsu++yzzzwroybLqStqou9SU/2fqdu2f//+ufXWWwvbtgAA1IEhOqd3Ajur85lsbttx6vlt27adrfdPvUyjRo2y2267pVGjRrNcxpQnqO3bt89ZZ52V9u3bJ0mGDh2aPfbYY4bvr7zA2bBhw2y77bY5/PDDs+2226Zhw4Z58cUXc9ZZZ830Ozz33HM577zzstxyy+XCCy/M3XffnQsvvDDLLbdczjvvvDz33HMzLQOAmmf/XL0pj3077bRTrr322uy0006zdewD5l5NndPURDl1pYzqlltjjTXmui4dO3ac67rMyblKUjXca926dY466qi0bt06STJhwoRsv/32s1SXynCvXr166dWrVy677LL06tUr9erVywcffJDevXvPtIwpz51WWGGF7LHHHllhhRWSzNq5U6Ubb7wx/fr1S8uWLXPYYYfl5ptvzmGHHZaWLVumX79+ufHGG+dJGTVZTl1RE32Xmur/TNm2BxxwQI4++ugccMABhW1bAAAmq9WAb+qTqAcffLD834yWo6q5bceHHnqo/O9jjz02Dz74YK6//vo8+OCDOfbYY6tdbmpffPFF+d9//etf069fv+yyyy7p169f/vrXv1a73JSGDRtWPkG944470qdPn3Tu3Dl9+vTJHXfckWTyieqwYcOqff/o0aPLFzjvuuuu7LrrrmnTpk123XXX3HXXXeULnaNHj57ud5g4cWKuv/76dOvWLSeddFI6dOiQZs2apUOHDjnppJPSrVu33HDDDZk4ceJ0ywCg5tk/V2/qY99ee+2VJZZYInvttdcsH/uAuTdlH7tevXpV+uL16tWrdrmZlbPwwgvnrrvuymmnnZa77rorCy+88CyVM+UQnFtssUWVumyxxRbVLje1I488svzvtdZaq0oZa621VrXLVefVV18t//vss8/Ogw8+mD//+c958MEHc/bZZ1e73NTefffd8r8vuuii3HXXXdlxxx1z11135aKLLqp2uerM7blKMnlYzspw7+9//3tuvvnmbLjhhrn55pvz97//PcnkkO/777+fYV1GjhxZDvfuvvvu9O7dO7/+9a/Tu3fv3H333eWQb+TIkdMtY+pzp7PPPjvt2rXL2WefPUvnTpXGjRuX++67L61atcqNN96YTTfdNK1bt86mm26aG2+8Ma1atcr999+fcePG/axl1GQ5dUVN9F1qqv8zddtutNFGWXDBBbPRRhsVsm0BAPifOjFEZzLtkCgPPvjgXAV7Mzo5m5FBgwbN8WfWxOcnyVdffTXH752TdpzymXs9e/asMq9nz5658MILy8tN73l8hx12WJLJv4b91a9+VWXer371qzRq1Cjjx4/PYYcdlvvvv3+a95944olJJt+5t8ACC1SZt8ACC6SioiIDBw7MiSeemCuvvHKa9990001Jku222y6NGzeuMmxO48aNs+2226Zv37656aabcvDBB1f7Hd5555189913OfbYY1O/ftXsu379+vntb3+bY489Nu+88840vxwG4Odj/1y9qY99U5rVY9+MzE1fZsyYMfn666/TpEmTNG3adI7LqSvmpi3qurrw3erS9jK37fHAAw9M83pOzmn+/ve/Z9SoUVVez0o5Uz5zb+q/+4MPPjgPP/zwNMtNbcpn7lX20ad8XVmPKZerzpTP3OvUqVOVeVO+PvXUU6c7POaUz9yrqKio0iYVFRVVlpvREJtze66SJIcffniSyXfuTRm4JpMD2datW2fIkCE5/PDDc+edd063LpdcckmSZIMNNphme2/atGnWX3/9PPXUU7nkkkumO8zy1OdOU7bLrJw7VXrkkUcyadKk7L777mnYsOqlgYYNG2a33XbLlVdemUceeSTbbrvtz1ZGTZZTV9RE36Wm+j9Tt+2UQV4R2xao+7766qta79MxrbrU56Z61lHdNze5zc+lzgR8NW1Wn1vwS/38OTH1sJyVFl544QwePHiG760cx/93v/tdtfO333773H333VWepTClIUOGJMl0h5LZddddc9ppp5WXm9rXX3+dJNlkk02qnb/xxhunb9++5eWqU/kdl1122WrnL7PMMlWWA2DesH+uXk0c+2akiH0ZZp/1zM9t6mE5K3Xu3Dmvv/76LJXRq1evaqevu+66efbZZ2f6/rk9V0kmX3BJkr333rva+bvttluuuOKK8nLT8+2335Y/szrbbrttnnrqqfJy1Znbc6dK33zzTZKke/fu1c7v1q1bleV+rjJqspy6oib6LjXV//mltS1Q911xxRW1XQWA+cYvNuDr3bt3ll566dl+34ABA3LbbbfV2ucnyUcffVQrB8MpH9o9pVm5YFq/fv1MmjQpd999d3bZZZdp5lc+cH7qXx5Wat26dX766afccsst6dy58zTzb7/99vJy1fnVr36V1157Lf/+97+z1157TTP/scceKy83PZW/xP3ss8/SoUOHaeZ//vnnVZYDYN6wf65eTRz7ZmRu+jJjxozJJ598kl//+te/iF8efvHFF7/YIGxu1nNNqUvbyy95XdeWAQMGVDt9VsO9JHnyySerfS7drIR7ydyfqyST764bOXJkbrrppmy44YbTzK88h5zZNrz44ovns88+y7333lvtd6q8g3DxxRefbhlze+5UaYkllkiS9O/fP5tuuuk081966aUqy/1cZdRkOXVFTfRdaqr/80trW6DuO+yww9KuXbvargZTqUt9bqpnHdV9tZXbzEidCfi23nrrKsOqzO1z95ZeeunyQ8ZnR00NUzSnn59kpr/6nJE5aceDDjqoPEznM888U2WYzmeeeabKctNzxRVX5JBDDsn48ePz9ddfV7mY+PXXX2f8+PHl5apzzjnnZPfdd8/777+fESNGVBmmc8SIERk4cGB5uersvffeefjhh3Pffffl97//fZV548aNK58oT+8Xt0my8sorp23btrnnnnty0kknVTnBnzRpUu65554stthiWXnlladbBgA1z/65elMf+6YcpnNWj30zMjd9mVGjRmXs2LFZfvnl07x58zkqg3ljbtZzTfklbS/bbLNNlWE6t9lmmzkqZ6+99srVV19d5fWsWH311cvDb1599dVVhumcsrzVV199umUsv/zy5eE3zznnnCrDdE7ZF19++eVnWJczzjijPEznG2+8UWVYzjfeeKPKctNzwQUXlIfpHDhwYJZaaqnyvMrzg8rlZmRuz1WS5PLLL8++++6bIUOGZPDgwVVClcGDB5fvlrv88stnWJejjjoqu+yyS5566qkccsghVS7ejBkzJk8//XR5uemZ+txpyuPirJw7Vdp8881zww035NZbb81GG21UZWjMCRMm5LbbbkuDBg2y+eab/6xl1GQ5dUVN9F1qqv8zddtOqYhtC9R9Sy65ZK33L5nWL6nP/UtlHdV9c5Pb/FxqNeCb+vlw0wujZvQ8Bea+HbfccstywHfhhRfmwgsvrHZYzuk9fy9JlV9+H3jggWnUqFG233773HvvveUT5qmXm9JCCy2UVq1aZejQofn973+fioqK7Lrrrrn99tvLJ6itWrXKQgstVO37mzVrlh49euTFF1/MzjvvnC222CLLLLNMbrvttjz88MOZMGFCevTokWbNmk33OzRo0CD77bdfzjvvvJx99tn57W9/m2WWWSaff/557rnnnrz00ks54YQT0qBBg+mWAUDNs3+u3tTHvm233TYbb7xxHnvssdx///2zdOwD5t6UffFSqTTH5zRTljN48ODsvPPOs13OaaedVi7j4YcfLj9zr7rlpufSSy8tl/H8889P9/tceuml0y0jSbp06VL+90knnZSk+mE5p1xuaiuttFL530cffXR52rvvvjvd5aozt+cqSbLoooumYcOGmTBhQvbaa6+0bt06u+22W2677bZyuNewYcMsuuiiM6xLixYtsuKKK+aDDz7I7373u6y//vrZdtttc//99+fpp59OqVTKiiuumBYtWky3jKnPndq1a5c111wzt9xySz766KMkMz53qtS4ceNst9126devX/bZZ5/stttu6datW1566aXcdtttGTp0aHbYYYdpnvNa02XUZDl1RU30XWqq/zN12/72t7/NggsumMceeyz33HNP4doWAID/qfU7+KYOp6qbz8zNbTtO/f6pw71ZWQ9TljF+/Pjcfffds1XGLbfckj322CNDhw7NwIEDq1x4aNWqVW655ZYZvv/kk0/OWWedlRdffLHKL6eTpEePHtN9SP2U1l577Zxwwgm5/vrrc+yxx5anL7bYYjnhhBOy9tprz7QMAGqe/XP1pjz29e3bN3379i3Pm9VjHzD3auqcpibKqStlVFfO1OHenNRl6nBvTuoyJ+cqyeShPLfffvtMmDAhQ4YMqXLHX8OGDctDfc7MxRdfnN69e+eDDz7IU089laeeeqo8b8UVV5ylYWKnPHf66KOPysFeMmvnTpX22WefJMl9992XK6+8sjy9QYMG2WGHHcrzf+4yarKcuqIm+i411f+Zsm3/9re/lacXtW0BAJis1gO+ZPonkMK92TO37fjggw/moYceKt/Nl0welnNGd+5VV8YXX3yRww47LJMmTUr9+vVzxRVXzPKzXW655ZYMGzYsJ554YoYMGZLWrVvnnHPOmemvTyudfPLJGT16dK677rp89NFHadeuXfbff//Zunth7bXXTo8ePfLOO++Uh99ZeeWV57s7QwDqGvvn6lUe+2666aby0HN77723O/dgHqupc5qaKOfBBx/MaaedVh6uM5k8LOeM7tyrrowjjzyyPFxnMnlYzpnduVddOa+++mp5uM5k8rCcM7pzr7oy3n333fJwncnkYTlndudedeXMzblKMjnk+/7773P44YdnzJgxadq0aS6//PKZ3rk3tYsvvjgjR47MJZdckm+//TaLL754jjrqqBneuTe1ynOnE044IT/++GPatGmT8847b5bPnSpV3jH3yCOP5JtvvskSSyyRzTfffLbu6KqJMmqynLqiJvouNdX/qWzb+++/P++99146dOiQbbfdtrBtCwBAHQn4EmFeTZnbdtxyyy1nK9CrztJLL11+7s+cWGihhar8YnN2NWvWLPvtt1/efffdrLTSSnN0gbNBgwbp2LHjHNcBgJ+H/XP1mjVrVuVZW0DtqKlzmgcffDCjRo0q92fn5BkcsxPmTc/shnnT06VLl7lum5VWWil33XXXXLVJMvfnKsnk4TrvvPPOuSojmTxc59zeab3QQgvloosumut2ady4cbbddtu5qktNlFGT5dQVNdF3qan+T+PGjbPllltm+eWXz0orrSTcAwAouPozXwQAAAAAAACoKwR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAArkFxfwLbDAAqlfv34WWGCB2q7KHGvRokXq1auXFi1a1HZVAID5zC+hLwVzyvYPMH9q1qzZ5H/Ub1i7FQEA6qy6mNv84nouiy++eG6++eYstNBCtV2VObbYYovlmGOOyWKLLVbbVQEA5jO/hL4UzCnbP8D8aeGFF06S1G/UvJZrAgDUVXUxt/nF3cGX5BdxQl6XUmAAYP7yS+hLwZyy/QMAAFCdupbb/CIDPgAAAAAAAPilEvABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKpGFtV6CumjR+ZCaOHjz77xs3/GeoDQAAta0u9PMmjR1e5f9zXE4d+C4AUNc4PtZdNdUH4ufj7wdg3hPwTWXJJZdM/fr1M+6HNzPuhzfnqIxGjRunZcuWNVwzAABqQ8uWLdOoceOM+fqF2q5K2Zhv5r4u+qwAMFnLli3TsGGjOnWsp3o10Qfi59OwYSP9S4B5SMA3lYqKivztb3/L8OFz/quTli1bpm3btjVYKwAAakvbtm1zzdVXz1X/MEnGjBmTTz75JL/+9a/TtGnTGqrdnNNnBYDJFllkkRx22KFZbLHF6sQxmmnVtX4U0xozZkwGDRqURRZZpLarAjDfEPBVo23bti52AABQVhP9w1GjRmXs2LFZfvnl07x58xqqGQBQE1q1auUYXYfpR9V9lesIgHmnfm1XAAAAAAAAAJh1Aj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACiQeqVSqTSzhV555ZWUSqU0btx4hsuVSqWMHz8+jRo1Sr169WqskvMb7Tj3tGHN0I41QzvWDO1YM7TjrBs3blzq1auXrl27zlU5s9qP+iWxnVVPu1RPu1RPu0xLm1RPu1RPu1RvXrVL0fpRtpe6zzqq+6yjus36qfuso7qvLvajGs5KgbNa2Xr16s1XF69+Ltpx7mnDmqEda4Z2rBnasWZox1lXr169GumwzY8dc9tZ9bRL9bRL9bTLtLRJ9bRL9bRL9eZVuxStH2V7qfuso7rPOqrbrJ+6zzqq++piP2qW7uADAAAAAAAA6gbP4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBAaiTgmzRpUi677LKst956WW211fKHP/whX3zxRU0UPV8ZNGhQ2rdvP81//fr1q+2qFcZf//rX7LHHHlWmvfvuu9l9992z2mqrZcMNN8zNN99cS7Urhura8OSTT55mu9xwww1rqYZ119ChQ3PqqaemZ8+e6dq1a37/+99nwIAB5fnPP/98dthhh3Tu3DmbbbZZHnrooVqsbd01s3bcZ599ptkep95mSX788ccce+yxWXPNNdOlS5cccMAB+eijj8rz7RuZF6o7psyPZrZfm1/NbD9F8sknn6RLly7OB+JcaXruu+++bLHFFunYsWO23HLLPPLII7VdpVr14osvVrudtG/fPhtttFFtV69WTZgwIZdeeml69eqVLl26ZLfddstrr71W29WqFbPSPxkyZEiOPvrodOvWLd27d8/pp5+e0aNHz6MaMivr6IEHHqj2b/3LL7+cR7Wcv8xuf/bLL7/MgQcemK5du2bdddfNX/7yl0ycOHEe1nj+M7vr6Oqrr672b4ifz+ye/zgWzXuzu47qwrGoYU0UctVVV+X222/Peeedl8UXXzwXXnhh9t9//zz44INp3LhxTXzEfOG9995LkyZN8thjj6VevXrl6QsuuGAt1qo4brvttvzlL3/JGmusUZ42ZMiQ7LPPPtlwww1z+umn57XXXsvpp5+eFi1aZMcdd6zF2tZN1bVhkrz//vs56KCDsvvuu5enNWjQYF5Xr87r3bt3vv/++1x88cVp06ZNbrnlluy333659957UyqVcuCBB2afffbJhRdemKeeeirHHXdcFl544ay11lq1XfU6ZUbtuPzyy+f999/Paaedlo033rj8nkaNGtVijeumQw89NJMmTcq1116bFi1a5NJLL83ee++df//73xkzZox9Iz+76R1T5kcz26/Nr2a0n2rWrFltV6/WjR8/Psccc0xGjRpV21WpE5wrTev+++/PSSedlBNPPDHrrbdeHnroofTu3TuLL754unTpUtvVqxVdunTJs88+W2Xaa6+9lsMPPzyHHHJILdWqbrj66qtzzz335LzzzsvSSy+dv/3tb9l///3z8MMPp23btrVdvXlmVvsnRxxxREaPHp2bbropw4cPz0knnZRRo0bl/PPPn0c1nX/N6jp6//33071791x88cVVpi+88MI/Z/XmW7PTnx0/fnz222+/LLfccrnzzjvz+eef56STTkr9+vVzxBFH1NI3+OWb3XOO999/P9tuu22OPfbYWqjt/Gl2z38ci+a92V1HdeJYVJpLY8eOLXXp0qV02223lacNGzas1KlTp9KDDz44t8XPV6699trS1ltvXdvVKJxvv/22dOCBB5ZWW2210mabbVbafffdy/Ouueaa0rrrrlsaP358edpFF11U2mSTTWqjqnXWjNpw0qRJpdVWW63073//uxZrWPd9+umnpYqKitKAAQPK0yZNmlTaeOONS3/5y19Kp5xySmmnnXaq8p7evXuX9t1333ld1TptZu34ww8/lCoqKkpvv/12Lday7hs6dGipd+/epffff7887d133y1VVFSUXn/9dftGflYzOqbMj2a2X5tfzWw/xeT98p577lmqqKgo9e3bt7arU+ucK1U1adKkUq9evUrnnXdelen77rtv6ZprrqmlWtU9I0eOLPXq1at0wgkn1HZVat0222xTOvfcc8uvf/rpp1JFRUXp0UcfrcVazTuz0z955ZVXShUVFaUPP/ywPO0///lPqX379qVvv/12XlR3vjS7fcj999+/dOaZZ86j2s3fZrc/++CDD5ZWXXXV0tChQ8vT7rzzzlLXrl1LY8eOnSd1nt/MyTnH5ptvXrrxxhvnUQ2Z3fMfx6J5b07OUevCsWiuh+h87733MnLkyCp3oLRs2TIrr7xyXnrppbktfr7y/vvvp127drVdjcJ5++2306hRozzwwAPp3LlzlXkDBgxI9+7d07Dh/25WXXPNNfPpp5/mhx9+mNdVrbNm1Iaff/55Ro0aNV/fYTArWrdunWuvvTYdO3YsT6tXr17q1auX4cOHZ8CAAdPcqbfmmmvm5ZdfTqlUmtfVrbNm1o7vv/9+6tWrl1//+te1WMu6b6GFFspFF12UioqKJMngwYNz0003ZfHFF88KK6xg38jPakbHlPnRzPZr86uZ7afmdy+99FLuuuuunHfeebVdlTrDuVJVn3zySb766qtsvfXWVaZff/31OfDAA2upVnXPNddck9GjR+f444+v7arUujZt2uTJJ5/Ml19+mYkTJ+auu+5K48aN06FDh9qu2jwxO/2TAQMGZNFFF62yz+nevXvq1auXl19++eeu6nxrdvuQjgvzzuz2ZwcMGJBVVlklCy20UHnammuumREjRuTdd9+dJ3We38zuOho3blw+/fRT1/rmodk9/3Esmvfm5By1LhyL5nqIzm+//TZJssQSS1SZ3rZt2/I8Zs3AgQPTunXr7Lbbbvnkk0+y7LLL5uCDD07Pnj1ru2p12oYbbjjd58F9++235T/KSpXDj3zzzTdZZJFFfvb6FcGM2nDgwIFJkltuuSXPPPNM6tevn549e+aoo46ar4dEmlrLli2z/vrrV5n26KOP5rPPPsuJJ56Ye++9N4svvniV+W3bts3o0aMzZMgQw4j8fzNrx4EDB2bBBRfMGWeckf/+979p3rx5NttssxxyyCGGhJ6OU045JXfffXcaN26cq6++Os2bN7dv5Gc1o2PK/Ghm+zWq30/Nz4YPH57jjjsuJ5988jTnWPMz50pVffLJJ0mSUaNGZb/99ss777yTpZZaKgcffLB98P9XeVHm6KOPTqtWrWq7OrXupJNOypFHHpmNNtooDRo0SP369XP55ZdnmWWWqe2qzROz0z8ZNGjQNPvfxo0bp1WrVvnmm29+juqR2VtHw4YNy6BBgzJgwIDcfvvtGTJkSDp16pRjjz3Wj0F/BrPbn/3222+rvf6RTD7f9CPAmje76+jDDz/MxIkT8+ijj+bss8/O2LFj061btxx77LHz1bDNtWVWzn8ci2rXrKyjunIsmus7+Cof7Dj1hdUmTZpk7Nixc1v8fGPChAn5+OOPM2zYsBx++OG59tprs9pqq+WAAw7I888/X9vVK6wxY8ZUu20msX3OooEDB6Z+/fpp27Ztrrnmmpxwwgl59tlnc8ghh2TSpEm1Xb0665VXXsmf/vSnbLLJJtlggw2q3RYrX48bN642qlgIU7fjwIEDM3bs2HTq1CnXXXddDj744Nxzzz05+eSTa7uqddZee+2Vvn37Zquttsqhhx6at99+274RatHU+zWq30/Nz0477bR06dJlmjuz5mfOlaY1YsSIJMnxxx+frbbaKjfccEPWWWedHHLIIfNtm0zt9ttvz4ILLpidd965tqtSJ3z44YdZcMEFc+WVV+auu+7KDjvskGOOOcbdNNUYPXp0tT8edJ2r7vjggw+SJKVSKeeee27+8pe/ZOzYsdl1112NSDIPzKw/63yz9s1sHVX+mL9Zs2a59NJLc/bZZ+fjjz/OnnvumTFjxszj2s5/ZuX8x7Gods3KOqorx6K5voOvadOmSSZfoK78dzJ5h13dgwepXsOGDfPiiy+mQYMG5XZcddVV88EHH+T666+fZmg/Zk3Tpk2nCU8qd4Lz+6/DZ9XBBx+cXXfdNa1bt06SVFRUZNFFF83vfve7vPnmm355VY3HHnssxxxzTLp27Zo+ffokmXwAnnpbrHxtX1m96trxjDPOyPHHH18e6qOioiKNGjXKUUcdleOOO86dZ9WoHEbg7LPPzuuvv55bb73VvhFqSXX7NarfT5177rm1XKvacd9992XAgAF58MEHa7sqdYpzpWk1atQoSbLffvtl++23T5KstNJKeeedd3LjjTfOl20ytfvuuy/bbbddlesU86tvvvkmRx99dG666aasscYaSZKOHTvmww8/zOWXX56rrrqqlmtYt1TXV04m95f1leuGNdZYI88//3xat26devXqJUmuuOKKbLDBBunXr18OOOCAWq7hL9es9Gedb9auWVlH2223XXr27FllNKkVV1wxPXv2zBNPPJEttthiXlV3vjQr5z+ORbVrVtZRXTkWzfUdfJW3in733XdVpn/33XdZbLHF5rb4+UqLFi2mOflYccUVM2jQoFqqUfEtvvji1W6bSWyfs6h+/frlcK/SiiuumCSG4a3GrbfemsMPPzy9evXKNddcU/6V2hJLLFHttti8eXNDnVZjeu3YsGHDKuP4J7bH6gwePDgPPfRQJkyYUJ5Wv379rLDCCvnuu+/sG6EWTG+/Nr+a2X5qftW3b9/8+OOP2WCDDdKlS5d06dIlSfLnP/85+++/fy3XrnY5V6qq8ng99ZDbK6ywQr788svaqFKd8t577+WLL75wJ+z/9/rrr2f8+PFVns2UJJ07d85nn31WS7Wqu6rrK48bNy5Dhw41dF0dsvDCC5cvqCaTfzi71FJLzbfHhXlhVvuzzjdrz+ycc0z9qJi2bdumVatWrq38TGb3/MexaN6bk3PUunAsmuuAr0OHDllggQXy4osvlqcNHz4877zzTrp16za3xc83Pvjgg3Tt2rVKOybJW2+9Nd2HODJz3bp1y8svv5yJEyeWp73wwgv59a9/nTZt2tRizYrjuOOOy957711l2ptvvpkkts2p3H777TnzzDOz22675eKLL65yK/0aa6yR/v37V1n+hRdeSNeuXVO//lzvin9RZtSOe+yxR/70pz9VWf7NN99Mo0aNstxyy83jmtZdP/zwQ3r37l1liK7x48fnnXfeSbt27ewbYR6b0X5tfjWz/dT8qk+fPnn44Ydz3333lf9LkiOOOCJnn3127VauFjlXmtYqq6ySFi1a5PXXX68yfeDAgfPNM9VmZMCAAWnTpk06dOhQ21WpEyqfhfX+++9XmT5w4EB96Gp069Yt3377bZXws/JcbvXVV6+tajGFu+66Kz169MioUaPK00aMGJFPP/10vj0u/Nxmpz/brVu3vPPOO+XhpJPJ55stWrSwX/4Zzc46uuSSS7LpppumVCqVp3355ZcZMmSIv6Gfyeye/zgWzXuzu47qyrForq8qN27cOLvvvnv69OmTxx9/PO+9916OOuqoLL744tlkk01qoo7zhXbt2mX55ZfPGWeckQEDBuSjjz7Kueeem9deey0HH3xwbVevsHbccceMGDEiJ510Uj788MP069cvN910Uw488MDarlphbLrppnn++edzxRVX5PPPP8/TTz+dE088MVtttdV8fQFuap988knOOeec/OY3v8mBBx6YH374Id9//32+//77/PTTT9ljjz3yxhtvpE+fPvnoo49yww035F//+td8/2v8qc2sHTfddNPcf//9ueOOO/LFF1/k4YcfzgUXXJD99tsvCyywQG1Xv86oqKhIz549c9ZZZ+Wll17KwIEDc8IJJ2T48OHZ+/+1d/dRNWf7H8DfRYWJCnk2cZlTVKcHKabLLbpTQwyJsYgIjSRUc6ciyW0YSQ09oDSYboyM8jDMzFozVq4m5enKw8TgTkx5PF1K96KH0/79YfX9OXoSKYf3a62zVt/93d/v3vv7bZ3zOXt/z96zZvG9kagFNfa+9rZq7H3qbdW9e3cYGRmpvACgS5cub/UT7/yuVFu7du0wd+5cJCQk4ODBg/jjjz+wadMmZGdnY/bs2a1dvVaXn58PY2Pj1q7Ga0Mul2PIkCEICgpCbm4url27hvXr1yMnJ4dTGQJQKpVQKBTSulMWFhawtraGv78/zp07h9zcXISFhWHChAlv9Xtxa3r2Ho0cORLV1dX47LPPcOXKFZw/fx5+fn7o3Lkz3NzcWrm2b57G4tmKigooFAppOkEnJycYGhpiyZIluHTpEn7++WfExMTAy8uLD7q9Ik29R3/9619x48YNhIeHo6CgACdPnoSfnx+sra0xYsSIVm7Nm6mx7z/8LGp9Tb1Hr8tnkYZ4eqj+BSmVSsTExCAjIwOPHz/G0KFDERYWhj59+jRHHd8axcXFiI6ORlZWFh48eIDBgwfj008/lebIp8YFBwfjxo0b+Mc//iGlnTt3DqtWrUJ+fj4MDQ3h5eUFDw+PVqzl662ua/jDDz8gKSkJv//+Ozp27Ihx48ZhyZIlb/30Yk/bvHkzvvzyyzr3TZw4EWvWrMHRo0cRFRWFa9euoU+fPvDz8+O85s94nuu4Y8cO7NixA4WFhdJ6kN7e3vwl5DPKysoQHR2Nn3/+GWVlZbCxsUFwcLA0pSnfG6kl1PWZ8rZ5nve1t1Vj71P0hLGxMb744ou3vsOS35Xqtm3bNqSmpuLOnTsYMGAA/Pz84OTk1NrVanXz5s2Drq5uve+/b6PS0lKsX78eR44cQWlpKWQyGQICAmBra9vaVWtxz8YnRUVFGD16tMp77X/+8x+sXLkSWVlZ0NHRgYuLC0JCQvgduIU8zz369ddfER0djXPnzkEIAXt7e4SEhEhLCVHzaSyenThxImbOnImUlBTY2dkBAK5fv46VK1fi1KlT0NPTg7u7O/z8/Pi9/RV5kXuUk5ODDRs24LfffoO2tjZGjx6NoKCgWsuiUPNp6PsPP4teD029R6/DZ1GzDPARERERERERERERERERUcvgYxNEREREREREREREREREaoQDfERERERERERERERERERqhAN8RERERERERERERERERGqEA3xEREREREREREREREREaoQDfERERERERERERERERERqhAN8RERERERERERERERERGqEA3xEREREREREREREREREaoQDfERERERERNRkQojWrgIREREREdFbiwN8RC1oxowZGDx4MM6fP1/n/lGjRiE4OLhF6hIcHIxRo0a1SFlNUVVVheDgYFhZWcHa2hq5ubm18hw/fhzGxsYqLzMzM4wePRpr167Fo0ePmqUucXFxMDY2bpZzERERUdMxdmpca8VO3377LSIjI6XtjIwMGBsbo6io6KXaQ0RERK8XxmONe554rKioqFY89vTL1dUVAGMqImqatq1dAaK3jVKpREhICDIyMqCtrd3a1XntZGVlYe/evViwYAHef/99DB48uN68YWFhMDU1BQA8evQIly5dQmxsLBQKBaKiolqqykRERPQKMXZqWGvFTps2bYKtre1L1Z2IiIjUA+OxhjUlHvPx8YGDg0Ot9Hbt2r3CGhLRm4oDfEQtrGPHjrhy5QoSEhLg7+/f2tV57ZSUlAAA3Nzc0Ldv3wbzDhw4EJaWltL28OHDUVZWhk2bNmHFihXQ1dV9hTUlIiKilsDYqWGMnYiIiOhVYzzWsKbEY++++65KPEZE9DI4RSdRCxs0aBAmTJiA5ORkXLhwocG8xsbGiIuLU0l7dtrI4OBgzJkzB2lpaXBycoJcLsfUqVNRUFCAzMxMjBs3DhYWFpg8eTIuXrxYq4y0tDQ4ODhALpfD09MT+fn5Kvtv3ryJgIAA2NrawsLColaemikGtm3bBhcXF1hYWCA9Pb3O9iiVSuzYsQPjxo2DXC6Hg4MD1q1bh/LycqktNdM6ODk5YcaMGQ1en7p06tSpVlpJSQnCwsLw/vvvw9zcHFOmTEFOTo5KnvLycnzxxRewt7eHlZUVQkJCpHrVCA4OhqenJ1asWAFra2uMGTMGSqUS5eXlSEhIgIuLC8zNzfHBBx8gKSkJ1dXVKsd///33cHNzg5WVFezt7REWFobS0lJpf1xcHFxcXPDTTz/B1dUV5ubm+Oijj3DmzBnk5eVh8uTJkMvlcHV1Van/48ePER4ejpEjR8LMzAwuLi746quvmnztiIiIXkeMnVo+drp06RIWLlyIYcOGwdTUFCNGjMDnn3+Ox48fA3gyFdeNGzewd+/eWlNInT17FlOnToW5uTkcHByQnJz8XG0/f/485syZAzs7O1hbW2P+/Pm4cuWKSr3u3r2LkJAQ/OUvf4FcLoe7uzsOHz6sksfY2BjffPMNgoODMWTIENja2kp1j4yMxLBhw2BnZ4dly5apxHrZ2dmYMmUKrKysMHToUPj4+ODf//53k68nERHRm4jx2KuNxxqTnZ2NadOmYciQIbCzs0NgYCBu3bqlkufatWtYtGgR7O3tYWlpiRkzZuD06dONtpl9SkTqjb/gI2oFS5cuRXZ2NkJCQpCenv7S0xucOXMGd+/eRXBwMMrLyxEeHg5vb29oaGhg0aJFaN++PVasWIFPP/0Uhw4dko67ffs24uPjERgYCF1dXcTHx2PGjBn47rvv0KtXL9y7dw9Tp05F+/btsXz5crRv3x5ff/01pk+fjj179mDAgAHSueLi4rBs2TLo6urCwsKiznqGhYVh//79mDdvHmxsbJCfn4+EhARcvHgRycnJWLBgAXr06IFNmzYhPj4e/fv3b7Dd1dXVqKqqAgBUVlbi4sWLSElJwYQJE6Qn0MvLy+Hp6Yni4mL4+/ujW7duSE9Px9y5c5GcnIzhw4cDAP72t78hKysL/v7+MDIyQlpaGr777rtaZZ46dQo6OjpISEjAw4cPoampifnz5yMvLw8LFy6EiYkJjh8/jvXr16OwsBAREREAgI0bNyI2NhbTpk2Dv78/CgsLsWHDBuTl5WH37t3SVAy3b9/GmjVr4O/vjw4dOiAiIgKLFi2ClpYW5s+fj549e0r7jxw5gnbt2mH16tX45ZdfEBQUhK5du+Lo0aNYu3Yt9PX1MWnSpOf9NyIiInptMXZqudjp7t27mD59OiwtLbFmzRpoa2vj6NGj2LZtG7p16wZvb2/Ex8fD29sbgwcPxoIFC9CtWzepjPDwcCxatAiLFy/G7t27ERUVhQEDBsDR0bHetufm5mLu3Lmws7PD6tWrUV5ejsTEREydOhW7d+/GgAEDUFxcDHd3d+jo6MDf3x8GBgbIyMiAr68v1q5di/Hjx0vnj4qKgqurK+Lj45GZmYmvv/4av/zyC0xMTLBu3Trk5eUhLi4O/fv3x9y5c1FYWIgFCxZg0qRJCAgIwIMHDxATEwNvb2/89NNP0NTkc7FERESMx5o/HquhoaGBNm3a1Jl/3759CAoKgqurKz755BPcv38fsbGx+Pjjj7F371506dIFV69exZQpU9CvXz+EhoZCS0sLKSkp8PT0xNatW1WmVX+2zexTIlJzgohajIeHh/Dw8BBCCHH48GEhk8lETEyMtN/R0VEEBQVJ2zKZTMTGxqqcIzY2VshkMmk7KChIyGQycfXqVSktLCxMyGQycezYMSntq6++EjKZTJSWlqocd/bsWSnP3bt3hVwuF2vWrBFCCBETEyPMzc1FUVGRlKe8vFyMHj1a+Pn5CSGEKCwsFDKZTCxdurTBtl+5ckXIZDKRmJiokr5v3z4hk8nEkSNHhBBCpKenC5lMJgoLC+s9V25urpDJZHW+Ro0aJW7fvi3lTUtLEzKZTOTl5Ulp1dXVYvr06cLNzU0IIcTly5eFTCYTO3fulPIolUoxZsyYOq/1rVu3pLQjR44ImUwmDh48qFLHhIQEIZPJxOXLl0VJSYkwMzMTy5cvV8lz8uRJIZPJRGpqqhDi/+/tP//5TylPYmKikMlk4ttvv5XSfvzxRyGTyUR+fr4QQghnZ2cRGhqqcu74+HiRmZlZ7zUkIiJSB4ydWj52ysrKEtOnTxdlZWUq53B1dRVeXl7S9rPXvqYeT8dTDx8+FKampmL16tUNtt3d3V2MGTNGVFVVSWmlpaXC1tZWLFq0SAghxNq1a4WpqanKtRVCCE9PT2Fvby+USqUQ4sn/wOTJk6X9VVVVwtLSUowaNUpUVlaqtMfHx0cIIcTBgweFTCZTuQ5nz54VMTExta4DERHR24bxWPPEYzVl1vUyMzOT8j19LqVSKezt7VViMCGEuH79ujA1NRWRkZFCCCEWL14s7OzsVOKWyspK4ezsLCZNmtRgm9mnRKTe+CgiUSsZNWoUxo8fj+TkZPz6668vdS49PT2VJ5C6du0KACpPH+nr6wMAHjx4IKX17dsXcrlc2jY0NISlpSVOnjwJAMjJycGgQYPQvXt3VFVVoaqqCpqamhg5ciSOHTumUodBgwY1WMcTJ04AAMaOHauSPnbsWLRp0wbHjx9/3uZKVq5ciT179mDPnj3YuXMnIiMjoaOjA3d3d9y8eVNqg6GhIUxNTaU2KJVKODo64sKFCygtLcWpU6cAPLknNTQ1NeHs7FyrTH19ffTo0UOlXW3btoWLi4tKvpqnyE+cOIG8vDxUVFTA1dVVJY+NjQ169+4tXZsa1tbW0t/Pcy/t7Oywe/duzJs3D6mpqSgsLISvr2+dizYTERGpK8ZOkLZfZez05z//GampqdDR0cHVq1dx+PBhbNq0Cffu3UNFRUWjZdjY2Eh/t2/fHl27dlW5hoBq2x8+fIjz58/jww8/VHlyvVOnTnB0dJSuw4kTJ2BlZYXevXurnGv8+PFQKBT4/fffpTQrKyvp7zZt2sDAwACmpqZo2/b/J7DR19dHWVkZgCf3veY6rFq1CllZWTAxMYG/vz/XJSQiInoK4zFI2y8ajy1cuFCKx2peu3btqjNvQUEBFApFrf6kd999F1ZWVipxkqOjo0rc0rZtW4wdOxYXLlzA//73Pyn92TazT4lIvXGKTqJWFBoaipycHGl6gxdVX8dDhw4dGjyuJnh6WpcuXaR5vEtKSnD9+nWYmprWefyjR4+eu6yateYMDQ1V0tu2bQsDAwOpg6Up+vfvD3Nzc2m7Zp0VJycnbN26FaGhoSgpKYFCoai3DQqFQqqbgYGByr5n6woA77zzTq12GRgY1JpKoebYsrIy6fx1Xe+uXbvWantd97N9+/Z11h8Ali1bhh49euDAgQOIiIhAREQErKysEB4eDhMTk3qPIyIiUjeMnV597FRdXY2YmBjs2LEDDx8+RM+ePSGXy6Gjo/NcZTwbs2hqakIIoZL2dNvLysoghGg0TiotLUXfvn3rzAOodvzVdX8but59+vRBamoqkpKSsGfPHqSkpKBTp06YNm0alixZAg0NjXqPJSIietswHnu5eKx3794q8VhDSkpKANTfn1SzrmBpaWm9eYQQ+O9//yulPdtm9ikRqTcO8BG1Ij09PYSHh8PX1xcbN26sM49SqVTZfvjwYbOVXxOoPE2hUKBz584AgI4dO8LW1hafffZZncc3Zb51PT096fxPP3ldWVmJ+/fv1xpce1G9evVC586dce3aNQBP2tCvXz+sW7euzvx9+vSRyi4uLkavXr2kfTWBVEP09PRw//59KJVKlUG+u3fvAngyaFjT9uLiYvzpT39SOV6hUNTZWdUU2tra8PHxgY+PD27evInMzExs3LgRgYGBKvPUExERqTvGTq8+dkpKSsL27duxcuVKfPDBB+jYsSMAwN3dvVnKe1bHjh2hoaGB4uLiWvsUCoX05L6enh4UCkWdeYDaD2o1lVwuR3x8PCoqKnD69GmkpaVh8+bNMDExwYcffvhS5yYiInqTMB5r/nisPjVxUH1xUk35enp69eYBnsRJNf1Uz2KfEpF64xSdRK3MyckJrq6uSEpKwr1791T26erq4s6dOypp//rXv5qt7IKCAvzxxx/S9q1bt3DmzBnY2dkBAGxtbVFQUCA97V3z2r9/P/bs2VPvAsB1qVnQ99ng4NChQ1AqlRgyZEgztAgoKirCvXv30K9fP6ncW7duoUuXLiptyM7ORnJyMtq0aYNhw4YBAH788UeVc2VmZjZanq2tLaqqqmode+DAAQBPnoy3sLCAtrY2Dh48qJLn1KlTuHnzpsqUnE31+PFjODs7Y+vWrQCedNJNnz4dY8eOlabaIiIiepMwdnq1sdPp06cxcOBATJo0SRrcu3PnDi5fvozq6mrpOE3N5vkq2aFDB5iZmeGHH35Q6QwsKyvDkSNHpHYOHToUZ86cwY0bN1SOP3DgAAwNDWFkZPTCddi+fTscHR1RUVEBbW1tDB8+HBEREQDAeIqIiKgOjMeaNx6rT//+/WFoaFirP6mwsBB5eXlSf9LQoUORmZmp8ks9pVKJQ4cOwdzcvN5BTfYpEak//oKP6DWwfPly5Obm1nraxsHBAYcOHYKFhQWMjIyQkZGB69evN1u5Ojo68PHxgb+/P5RKJTZs2AB9fX14enoCAGbNmoX9+/dj1qxZ8PLygoGBAb7//nvs3r0bISEhTSpr4MCBmDhxImJjY/Ho0SMMHToUFy9eRHx8POzs7DBixIgm1//q1avSdFFCCNy8eRMJCQnQ0dGBh4cHAMDNzQ2pqamYPXs25s+fj549e+LYsWPYsmULPDw8oKWlBSMjI3z88cf48ssvUVVVhUGDBmH//v347bffGq3DyJEjYWdnh9DQUNy5cwcmJiY4ceIEtmzZgokTJ2LgwIEAAG9vbyQkJEBLSwuOjo4oKirChg0bpOvyotq1awdTU1PEx8dDS0sLxsbGKCgowN69e+tcQ5CIiOhNwNjp1cVOcrkcGzduRFJSEiwtLXH9+nUkJiaioqJCZUqrTp06IT8/HydOnFBZB+dFBAYGYs6cOfD29sa0adNQWVmJpKQkVFRUwNfXFwAwe/ZsHDhwALNmzcLChQuhr6+Pffv2ITc3F6tXr36pAcdhw4Zh3bp18PX1hYeHB9q0aYNdu3ZBW1sbjo6OL9U2IiKiNxXjsReLx5pCU1MTAQEBCAkJQWBgIMaPH4/79+8jPj4eenp6mD17NoAn6/odPXoUM2fOhLe3N7S0tKT19JKTk+s9P/uUiNQfB/iIXgP6+voIDw/HwoULVdJDQkJQVVWFyMhItG3bFmPGjEFgYCBCQ0ObpdzBgwfD2dkZ4eHhKCsrw/Dhw7F06VJpWoPu3btj165diI6ORnh4OMrLy9GvXz+sWrXqhaZpWrVqFYyMjJCeno4tW7agW7dumDlzJhYsWPBCnTJ///vfpb81NTWhr68PS0tLREVFSU+hd+jQATt27EB0dDSioqJQVlaG3r17IzAwEF5eXtLxK1asQNeuXZGamorS0lKMGDEC8+fPx/r16xusg4aGBhITExEbG4vt27fj3r176NOnDwICAqRACwD8/Pyk86elpUFfXx8uLi5YsmRJo3O+P891WL9+PbZu3QqFQoEuXbrA3d0dixcvfqnzEhERva4YO7262OmTTz7B/fv3kZKSgoSEBPTs2RMfffSRFPM8ePAAnTp1gpeXF1avXo05c+Zg27ZtTa7L04YPH45t27YhNjYWAQEB0NbWho2NDSIjI/Hee+8BeLL2zTfffIPo6Gh8/vnnqKyshImJCTZu3IjRo0e/VPkmJibYvHkzEhISEBAQAKVSCTMzM2zdurXW9OpERET0BOOxF4vHmsrNzQ3vvPMOEhMT4evrC11dXYwYMQIBAQHS2oDvvfcedu7ciZiYGISEhEBDQwNyuRwpKSmwsbFp8PzsUyJSbxri2RXPiYiIiIiIiIiIiIiIiOi1xTX4iIiIiIiIiIiIiIiIiNQIB/iIiIiIiIiIiIiIiIiI1AgH+IiIiIiIiIiIiIiIiIjUCAf4iIiIiIiIiIiIiIiIiNQIB/iIiIiIiIiIiIiIiIiI1AgH+IiIiIiIiIiIiIiIiIjUCAf4iIiIiIiIiIiIiIiIiNQIB/iIiIiIiIiIiIiIiIiI1AgH+IiIiIiIiIiIiIiIiIjUCAf4iIiIiIiIiIiIiIiIiNQIB/iIiIiIiIiIiIiIiIiI1AgH+IiIiIiIiIiIiIiIiIjUyP8B+I3dImO2nVwAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1155,52 +1891,75 @@ } ], "source": [ + "\n", "# Create subplots\n", - "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(14, 6))\n", + "fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 6))\n", "\n", - "# Histogram for house_age\n", - "sns.histplot(housing_data_encoded['house_age'], bins=30, kde=False, color='skyblue', ax=axes[0])\n", - "axes[0].set_title('Histogram of House Age')\n", - "axes[0].set_xlabel('House Age (Years)')\n", - "axes[0].set_ylabel('Frequency')\n", + "# Common title for all subplots\n", + "fig.suptitle('Distribution of Bedrooms, Bathrooms, and Floors.', fontsize=16)\n", "\n", - "# Density Plot for house_age\n", - "sns.histplot(housing_data_encoded['house_age'], bins=30, kde=True, color='orange', ax=axes[1])\n", - "axes[1].set_title('Density Plot of House Age')\n", - "axes[1].set_xlabel('House Age (Years)')\n", - "axes[1].set_ylabel('Density')\n", + "# Box plot for bedrooms\n", + "sns.boxplot(x=housing_data['bedrooms'], ax=axes[0])\n", + "axes[0].set_title('Bedrooms')\n", + "axes[0].set_xlabel('Number of Bedrooms')\n", + "\n", + "# Box plot for bathrooms\n", + "sns.boxplot(x=housing_data['bathrooms'], ax=axes[1])\n", + "axes[1].set_title('Bathrooms')\n", + "axes[1].set_xlabel('Number of Bathrooms')\n", + "\n", + "# Box plot for floors\n", + "sns.boxplot(x=housing_data['floors'], ax=axes[2])\n", + "axes[2].set_title('Floors')\n", + "axes[2].set_xlabel('Number of Floors')\n", "\n", "# Adjust layout\n", "plt.tight_layout()\n", "\n", "# Show plots\n", - "plt.show()" + "plt.show();\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "##### Interpretation:" + "After analyzing the distribution of bedrooms, bathrooms and floors, an outlier was detected in the bedroom column. To ensure the accuracy of our analysis, the outlier value was identified and subsequently removed from the dataset. The box plot below displays the distribution of bedrooms after excluding the outlier value. " ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 530, "metadata": {}, + "outputs": [], "source": [ - "##### #Distribution of Bedrooms, Bathrooms and Floors." + "# Identify the outlier value\n", + "outlier_value = housing_data['bedrooms'].max() \n", + "\n", + "# Filter the DataFrame to exclude the outlier\n", + "housing_data = housing_data[housing_data['bedrooms'] != outlier_value]" ] }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 531, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABvgAAAJICAYAAACkMeMUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABqKklEQVR4nOzdd7gV5b0+7odupViwt6iABRQU0BgL6lFULLFHxB6UogkQFUsUe8cGFsRysCT2FjU5J341GmPDaGKCPWqsCJGmdFi/P/jtddiw6Rv2Hrnv6+Jyr1mzZr3zznLWZ+aZ9U6dUqlUCgAAAAAAAFAIdWu6AQAAAAAAAMDCE/ABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuCDWq5UKtV0E2pFGwAAFkZtqFtqQxtqI/0CAMuH2vCdXxvaALC0CfhgCXTr1i0tW7Ys/2vVqlXatm2bgw8+OMOGDcv06dMrzb/77runf//+C738Z599NmeeeeYC5+vfv3923333xX6feRk/fnzOOOOMDB8+vDytW7du6dat2xIvu7pMnz49/fv3T9u2bdOuXbu88sorc83z6quvVtpOLVu2zNZbb5099tgjV155ZSZNmlQtbbnxxhvTsmXLalkWAPwQqZ1qXk3VTg8++GCuuOKK8uNHHnkkLVu2zOeff75E6wMALBr1WM1bmHrs888/n6sem/1fly5dkqipYHlXv6YbAEW35ZZb5vzzz0+SzJgxI+PGjcsLL7yQyy67LMOHD891112XunVnZemDBg3KKqusstDLvuuuuxZqvp49e+aYY45Z5LYvyDvvvJPHH388hxxySHlaxbrWFi+++GIeffTR9OzZMz/+8Y+z5ZZbznPe8847L1tttVWSZNKkSXn33Xdzww03ZNSoUbnqqquWVZMBYLmmdqpZNVU73XzzzenQocMStR0AqB7qsZq1KPVYjx49sttuu801fYUVVliKLQSKQsAHS2iVVVbJtttuW2na7rvvnh/96Ee55JJL8rvf/S4HHHBAksz3C3tJbLjhhktluVXZbLPNltl7LYyxY8cmSQ4++OBssMEG8513s802q7Stdtxxx0yYMCE333xzzj///EUqWAGAxaN2qllqJwBAPVazFqUe23DDDefaVgAVDNEJS8nRRx+dtdZaK7/97W/L0+YcbqCiYGrTpk122GGH/OpXv8rIkSOTzBo+4LXXXstrr72Wli1b5tVXXy0Pl/Tb3/42nTp1Srt27fLSSy/NNaxBkkybNi0XX3xx2rdvn+233z5nnnlmvv322/LzVQ1PULH8ivequJLqmGOOKc875+umTJmSwYMHp3PnzmndunX22muvDBkyJDNnzqz0Xuecc06GDBmS3XbbLa1bt86RRx6Zv//97/PtwxkzZuTee+/N/vvvnzZt2mS33XbL1VdfnSlTpiSZNZxDRX/uueeeizXcQuPGjeeaNnbs2Jx33nn58Y9/nNatW+fwww/Pyy+/XGmeKVOm5LLLLstOO+2Utm3b5qyzziq3q0L//v1z7LHH5vzzz0+7du2y7777ZsaMGQvVZ0ny9NNP5+CDD07btm2z00475bzzzsu4cePKz994443p3Llz/vd//zddunRJ69atc+CBB+bNN9/MW2+9lcMOOyxt2rRJly5dKrV/8uTJGTBgQHbZZZdsvfXW6dy5c26//fZF7jsAqE5qp+LWTu+++2569+6dHXbYIVtttVV23nnnXHzxxZk8eXKSWdvxiy++yKOPPjrXEFJ/+9vfcuSRR6Z169bZbbfdMnTo0PJzFUNT3XnnnencuXO22WabPPzww0mSt99+OyeeeGI6duyYdu3a5ZRTTskHH3xQqV3ffPNNzjrrrOy6665p06ZNDj300Dz77LOV5mnZsmV+85vfpH///tluu+3SoUOHctuvuOKK7LDDDunYsWPOOeecSrXeSy+9lMMPPzxt27ZN+/bt06NHj3z00UeL3J8AUJuox4pRjy3ISy+9lKOOOirbbbddOnbsmH79+uWrr76qNM8nn3yS0047LTvttFO23XbbdOvWLW+88Ub5+XnVYc4pQe0i4IOlpG7dutlxxx3z97//fa7xy5PkjTfeyBlnnJG99tort912W84666y88sor6devX5JZwwdsueWW2XLLLXP//feXh0dKZg2PcOaZZ+a8885L27Ztq3z/Z555Jv/85z9z+eWX58wzz8zzzz+fn//855kxY8ZCtX+rrbbKeeedl2TW8ExVDWdQKpVyyimnZOjQoTnssMNyyy23pHPnzrnuuuvmmv8Pf/hDnn322Zx77rkZOHBgRo8enVNPPXW+7TnvvPNy2WWXZc8998zNN9+crl275p577knPnj1TKpXSs2fP9OjRo9wnCxpyYebMmZk+fXqmT5+eSZMm5a9//WuGDRuWgw46qHwF+pQpU3Lsscfm2WefTZ8+fTJo0KCsvfbaOemkkyqFZKeffnoeeOCBnHzyybnuuusybty4KoehGD58eL766qsMHjw4/fr1S926dReqz2666ab07ds32267bW644Yb06tUrf/jDH9KtW7fyybIk+frrr3P55ZfnlFNOyfXXX5/x48fntNNOS9++fXPYYYdl8ODBKZVK6dOnT/l1l156aV544YWceeaZuf3228v306k4YQYANUHtVMza6ZtvvknXrl0zadKkXH755bntttuy33775e67786wYcPK77Xmmmtm1113zf3335/mzZuX32PAgAHZb7/9MmTIkLRt2zZXXXVVnnvuuUrtuPHGG/Pzn/88V155ZXbaaae88sor+dnPfpZkVl1z8cUX56uvvsqRRx5ZDtlGjx6dQw89NMOHD0+fPn1y4403Zr311kuvXr3yxBNPVFr+VVddlYYNG2bQoEE56KCDcvfdd+eggw7KV199lauvvjrdunXLQw89lLvvvjtJ8tlnn6Vnz57Zeuutc/PNN+eSSy7Jxx9/nO7du891wRYAFIl6rHbXYxX/5vf+jz32WE444YSss846GThwYM4666y8+eabOeKII/Kf//wnSfLhhx/m4IMPzueff55zzz03V199derUqZNjjz02r732WqXlzVmHOacEtYshOmEpWmONNTJt2rSMHTs2a6yxRqXn3njjjaywwgrp3r17GjZsmCRp2rRp3n777ZRKpWy22WblEydz/hT/qKOOSufOnef73s2aNcvtt9+elVZaqfy4V69eeeGFF9KpU6cFtn2VVVYpD2Gw2WabVTmcwQsvvJC//OUvGThwYPbbb78kyU477ZQVVlgh119/fY455phsvvnmSWbdQPj2228vr9P333+fM888M++880623nrruZb94Ycf5qGHHkq/fv3SvXv38rKbN2+eM844Iy+88EJ23XXX8pAOW2yxRdZff/35rtNxxx0317T1118/v/zlL8uPH3/88bz77rt54IEHss022yRJdtlll3Tr1i1XX311Hn744XzwwQf5wx/+kAEDBpRPLu28887Zf//98+GHH1Za/vTp03PhhRdm7bXXTpL86U9/WmCfNW/ePDfffHMOP/zwcmGaJC1atEjXrl3z8MMPp2vXrklm3Q/n/PPPzy677FLut2uuuSaXXHJJDj300CTJxIkTc9ppp+Xjjz/OFltskddeey077bRT+f07duyYlVZaKauvvvp8+w8Alja1U/Fqp/fffz9bbLFFrr/++nJbf/zjH+ell17Kq6++mu7du2fLLbdMw4YNs9pqq821bfr27Vuup7bddtv87//+b1555ZVKfb7PPvtUuo/Oqaeemo022ihDhgxJvXr1kiQ/+clP8l//9V+54YYbcv311+fOO+/Mt99+mz/84Q9Zb731kiS77rprjjvuuFx55ZXp0qVL+d5Cm222WS688MIkSYcOHfLggw9m2rRpufrqq1O/fv385Cc/yR/+8If89a9/TZL8/e9/z+TJk3PyySdnrbXWSpKsvfbaefbZZzNx4kRDlwJQaOqx2lWPnXPOOTnnnHMqTWvYsGHefvvtueadOXNmrr766vzkJz/JNddcU55eMarU7bffnjPOOCODBg1Kw4YNM2zYsPK67bbbbunSpUuuvPLKPPTQQ+XXzlmHOacEtYtf8MFSVCqVkiR16tSZ67n27dtn0qRJ6dKlS6655poMHz48P/nJT9K7d+8q55/dFltsscD33nXXXcsFUTJrSIX69evn9ddfX8S1mLfXXnst9evXn6tAqxinffarfmYv8pKUT4ZMmjRpnstOUi4YKuy3336pV69eXn311UVu7wUXXJCHHnooDz30UO67775cccUVadSoUQ499NB8+eWXSZKXX345a665ZrbaaqtKV0Z16tQp//jHPzJu3LgMHz48SSoNJVG3bt3svffec71n06ZNy+FexXotqM/eeuutTJ06NV26dKk0z/bbb5/11ltvrqup2rVrV/67oviuCCcr2pAk48ePTzKr+HrggQfy85//PPfcc08+++yz9OrVq8qbNgPAsqR2Kl7t9JOf/CT33HNPGjVqlA8//DDPPvtsbr755nz77beZOnXqAt9j++23L/+94oorZo011ijXLBVm334TJ07M22+/nX322acc7iWzhg7t1KlTuR9ee+21tG3bthzuVTjggAMyatSo/Otf/ypPm/1XBPXq1UuzZs2y1VZbpX79/7setmnTppkwYUKSWXVWRT9ccsklefHFF9OqVav06dNHuAdA4anHalc91rt373I9VvFv9iFUZ/fxxx9n1KhRc51P2nDDDdO2bdtKdVKnTp0qrVv9+vWz33775R//+Ee+//778vQ5t5tzSlC7CPhgKRo5cmRWWGGFcsAyu7Zt22bIkCHZYIMNcuedd6Zr167ZZZddykP/zM/sxc68rLnmmpUe161bN82aNZvrhMmSGDduXJo1a1bp5Mrs711xEiSZdcJmzvYkmecwRhX3mptzPerXr59mzZpVWvbC2mSTTdK6deu0bt062223XQ466KAMHTo0//nPf3LHHXckmXX/vVGjRmWrrbaq9O/KK69MkowaNarctmbNmlW53rNbeeWV51qvBfVZxfLnvFKuYtqc617ViaQ5+3t255xzTn75y1/m888/z0UXXZQ999wzRx55ZN599915vgYAlgW1U/Fqp4orxTt06JD99tsvF110Ud555500atRood6jqvWsOLFYYfbtN2HChJRKpQXWSePGjauyNqt43ezbtapaan6fmfXXXz/33HNPttlmmzz00EM56aSTstNOO+Xaa6+dq+0AUDTqsdpVj6233nrleqzi3+xDn85u7NixSRZ8PmncuHHznKdUKuW7774rT5tzuzmnBLWLITphKZk+fXpeffXVtGvXbq6iocLOO++cnXfeOZMmTcorr7ySYcOG5eKLL84222yTNm3aLNH7V3ypV5gxY0bGjBlT6Sfzc47ZPXHixEV6jyZNmmTMmDGZMWNGpXX85ptvkswdgC3qspNZgdrsV15PmzYtY8aMWaJlz27dddfNaqutlk8++SRJsuqqq2bjjTfO1VdfXeX866+/fvm9R48enXXXXbf83Jx9XpWF6bOKdR89enR+9KMfVXr9qFGjssEGGyz0+lWlYcOG6dGjR3r06JEvv/wyzz33XG666ab069cvTz311BItGwAWl9qpmLXTkCFDctddd+WCCy7IXnvtlVVXXTVJykOFV7dVV101derUyejRo+d6btSoUeWTkU2aNMmoUaOqnCdZsr5OkjZt2mTQoEGZOnVq3njjjdx///255ZZb0qpVq+yzzz5LtGwAqCnqsWLUY/NSUQfNq06qeP8mTZrMc55kVh9U9MecnFOC2sUv+GApuf/++zNq1KjyPUXmdMUVV+SQQw5JqVTKiiuumE6dOuXMM89MkvKQRxVXBi2Ol156qdINkf/whz9k+vTp6dixY5JZVyp//fXXlV7zxhtvVHo8r2KuQocOHTJ9+vT8/ve/rzT9iSeeSJJst912i93+Dh06JMlcxcFTTz2VGTNmLNGyZ/f555/n22+/zcYbb1x+36+++iqrr756paujXnrppQwdOjT16tXLDjvskCRzrfdzzz23wPdbmD7bZptt0rBhw/zud7+rNM/w4cPz5ZdfVhqSc1FNnjw5e++9d/mq+3XXXTddu3bNfvvtV/7cAUBNUDsVs3Z64403stlmm+WQQw4ph3sjR47M+++/X+nq9iXZNrNbaaWVsvXWW+eZZ56pdIJvwoQJef7558vr2b59+7z55pv54osvKr3+iSeeyJprrpmNNtposdtw1113pVOnTpk6dWoaNmyYHXfcMRdddFGSqKcAKDT1WDHqsXnZZJNNsuaaa851Pumzzz7LW2+9VT6f1L59+zz33HOVfqk3Y8aMPPXUU2ndunX5/opzck4Jah+/4IMl9N133+Wtt95KMusn+mPGjMmf//zn3H///TnggAOy1157Vfm6HXbYIXfeeWf69++fAw44INOmTcvQoUPTtGnTcoDUuHHjvPnmm3n55Zez5ZZbLlK7Ro0alVNPPTXdunXLJ598koEDB2annXbKjjvumCTp1KlT/t//+3+57LLLsvvuu2f48OF57LHHKi2j4iTN888/nyZNmqRVq1aVnt9ll13SsWPHnHvuuRk5cmRatWqV1157Lbfddlt++tOfVnkz44W12Wab5ac//WluuOGGTJo0Ke3bt88777yTQYMGpWPHjtl5550XeZkffvhhebioUqmUL7/8MoMHD06jRo1y9NFHJ0kOPvjg3HPPPTn++ONzyimnZJ111slf/vKX3HbbbTn66KPToEGDbLTRRjniiCNy7bXXZvr06dliiy3y+OOP57333ltgGxa2z7p3757BgwenQYMG6dSpUz7//PNcf/315X5ZXCussEK22mqrDBo0KA0aNEjLli3z8ccf59FHH63yHoIAUN3UTj+s2qlNmza56aabMmTIkGy77bb59NNPc+utt2bq1KmV7k/TuHHjjBgxIq+99toSX93fr1+/nHjiienevXuOOuqoTJs2LUOGDMnUqVPTq1evJMnxxx+fJ554Iscdd1x69+6dpk2b5rHHHssrr7ySSy+9dIlOPu6www65+uqr06tXrxx99NGpV69efvvb36Zhw4bp1KnTEq0bACwL6rHi1GOLom7duunbt2/OOuus9OvXLwcccEDGjBmTQYMGpUmTJjn++OOTzLqv3wsvvJBjjjkm3bt3T4MGDcr30xs6dOg8l++cEtQ+Aj5YQiNGjMgRRxyRZNYNiFdeeeW0aNEiAwYMyGGHHTbP1+266665+uqrc8cdd5RvRrzddttl2LBh5Z/Ud+3aNf/4xz/y85//PJdddlmaN2++0O066qijMmHChPTq1SsNGzbM/vvvn9NPP7180+NDDjkk//73v/Poo4/mt7/9bdq3b58bbrih0lVam2++ebp06ZJ77703L7744lxXANWpUye33nprbrjhhtx111359ttvs/7666dv377lomFJXHLJJdloo43y8MMP57bbbkvz5s1zzDHHpGfPnot1UubCCy8s/123bt00bdo02267ba666qryVegrrbRS7r333lxzzTW56qqrMmHChKy33nrp169fTjjhhPLrzz///Kyxxhq55557Mm7cuOy888455ZRTct111823DQvbZ6eeemp5+ffff3+aNm2azp0755e//OVCjVu/oH647rrrcscdd2TUqFFZffXVc+ihh+YXv/jFEi0XABaG2umHVTudfPLJGTNmTIYNG5bBgwdnnXXWyYEHHlhe1/Hjx6dx48Y54YQTcumll+bEE0/MnXfeuUTrueOOO+bOO+/MDTfckL59+6Zhw4bZfvvtc8UVV2TzzTdPMuveN7/5zW9yzTXX5OKLL860adPSqlWr3HTTTdljjz2W6P1btWqVW265JYMHD07fvn0zY8aMbL311rnjjjvmGl4dAGoj9Vhx6rFFdfDBB2fllVfOrbfeml69emWVVVbJzjvvnL59+5bvDbj55pvnvvvuy8CBA3PWWWelTp06adOmTYYNG5btt99+vst3TglqlzoldwEHAAAAAACAwnAPPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgdRfmJnefPPNlEqlNGjQYGm3BwCgVpg2bVrq1KmTtm3bLtFy1FEAwPJGHQUAsHgWpY5aqF/wlUqllEqlhZpv6tSpCzUv86Yfl5w+rB76sXrox+qhH6uHflx4C1v/LKvlFInPWdX0S9X0S9X0y9z0SdX0S9X0S9WWVb8UrY7yean9bKPazzaq3Wyf2s82qv1qYx21UL/gq7hSqnXr1vOdb+LEiXnnnXey2WabZaWVVlqoBjA3/bjk9GH10I/VQz9WD/1YPfTjwnv77berZTkLW0f9kPicVU2/VE2/VE2/zE2fVE2/VE2/VG1Z9UvR6iifl9rPNqr9bKPazfap/Wyj2q821lHuwQcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFEj9mm5AbfTNN99k/Pjxi/36xo0bp3nz5tXYIgAAatKS1odJMnny5Hz55Zdp1KhRVlhhhWpq2eJTswLA/xk7dmz+9a9/1YrvaOZW2+oo5jZ58uSMHTu2ppsBsFwR8M3h/fffz+mnn56ZM2cu9jIaNGyYW26+2QkTAIAfgG+++San9OiRaVOn1nRTqpWaFQBmGT16dAYNGpzp06fVdFOg0OrXb5DNN988G264YU03BWC5IOCbwxdffJGZM2em4RqtU3+VdRb59TOnjs/kL1/J+PHjnSwBAPgBGD9+fKZNnZoV1t0hdRs2rtG2zJwyPpO/eiUrrLND6jZa/LaoWQHg/4wfPz7Tp0+rFd/1VK26aiCWntnrSwCWDQHfPNRtsHLqrbhaTTcDAIBaom7DxrWmPqzbqPa0BQB+KGrTdz1VUwMBwP+pW9MNAAAAAAAAABaegA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQID/IgG/cuHE13YQl9v3339d0EwCA5dQPoZaCxeXzDwAAQFVqW27zgwv4vv766xxzzDH5+uuva7opi23kyJG5+uqrM3LkyJpuCgCwnPkh1FKwuHz+AZZP3377bZJk5rSJNdwSAKC2qo25zQ8u4Pvuu+8yc+bMfPfddzXdlMX2/fffp1Qq1bo0GAD44fsh1FKwuHz+AZZPkyZNmvXHzOk12xAAoNaqjbnNDy7gAwAAAAAAgB8yAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABVK/phtQYf/9959r2pNPPlkDLSm2Je3Hxx9/PEOHDi0/Pumkk3LggQcuUhs+++yz9O7dOzNnzkzdunUzaNCgbLDBBgv9+nHjxuXss8/OmDFj0qxZs1x66aVp0qTJQr9+0qRJuf322/PRRx9l0003zUknnZQVV1xxkdZhxowZGTFiRL799tusttpq2XLLLVOvXr1FWgYA1c/+uWrff/99rr322nz99ddZe+2106dPn6y88so13SxY7lTXMU11LGfAgAF54403yo+32267DBgwYJGW0atXr/z73/8uP95www0zePDgRVpGkrz55ps577zzyo8vvPDCtG3bdpGW8fbbb+fss88uP7700kvTunXrRW7Lkh6rJMnIkSPTu3fvTJkyJY0aNcqgQYOy1lprLXJbqmPfPW7cuPTv3z//+c9/svrqq+fyyy9fpGOnClOnTs0zzzyTr776Kuuss0722WefNGzYcJkvozqXU1tUR+1SXfXP1KlT89RTT+Xdd9/Nv/71rxx44IGF7lsAgOVdrQj4qjqArZgu5Ft4S9qPVb1+6NChGTp06EJvhzmXMXPmzPTs2TPJwp2U6NatW8aOHVt+PGHChBx99NFp2rRp7r777gW+/uKLL86rr75afvzRRx/lf/7nf9KxY8ece+65C7UOf/nLX3L77bfnm2++KU9r3rx5TjzxxPz4xz9eqGUAUP3sn6vWt2/ffPDBB+XHn376aY488shsvvnmGThwYA22DJYv1XVMUx3LqWoZb7zxxhIv49///ne1rE9F2LckbakI+5akLYt6rJIkBx54YGbOnFl+PHny5Jx00kmpW7duHn/88YVuS3Xsu+c8dvr8888X6dipwp133pnHHnus0nrdcccdOeigg3L88ccvs2VU53Jqi+qoXaqr/pmzb1977bXcc889he1bAABqwRCd8zqAXdjnmWVJ+3HO51dfffVFev2c8zRo0CBdu3ZNgwYNFnoZsx+gtmzZMhdffHFatmyZJBk7dmy6des239dXhHv169fPgQcemFNPPTUHHnhg6tevn1dffTUXX3zxAtfhL3/5Sy6//PJsvPHGueqqq/LAAw/kqquuysYbb5zLL788f/nLXxa4DACqn/1z1SpOENepUyedOnXKDTfckE6dOqVOnTr54IMP0rdv35puIiwXquuYpjqWU1uWUdV822+//RK3pVWrVkvclsU5Vkkqh3urrrpqevXqlVVXXTXJrLBwYUc+qY599+zHTptttlm6deuWzTbbLMnCHTtVuPPOO/PII4+kcePG6d27d4YNG5bevXuncePGeeSRR3LnnXcuk2VU53Jqi+qoXaqr/pm9b7t3755+/fqle/fuhe1bAABmqdFf8M15EDX7VZOzP+eXfPO3pP04+5Wm/fr1y2677VZ+/Pzzz+eaa64pzzevg9bPPvus/Pett96addddN0ly5JFH5ssvv8zJJ59cnq+qIXDGjRtXPkD9zW9+k1VWWSVJss022+S7777Lz372s4wdOzbjxo2rcsiZSZMmlcO9+++/P9OnT88777yTn/zkJznmmGNyxBFH5NVXX82kSZPmOVznjBkzcvvtt6d9+/Y555xzUrfurPy7VatWOeecc3LJJZfkjjvuSMeOHQ0HB7AM2T9X7fvvvy+fIH7ggQeywgorJJl14rhnz545/PDD88EHH+T77783XCcsRdV1TDP7vM2aNcstt9ySd955J1tssUVOOeWUjBkzZoHLmX0Izn333Tc9evQoP7755pvz9NNPl+eb13CdvXr1Kv/dvn37uYbWfP3118vzzW+4zjfffLP89yWXXJI2bdqUH//973/POeecU55vXsN1vv322+W/r7jiimy88cblPvnkk09y5plnlueb33CdS3qskswalrMi3LvzzjuzxhprJEk6d+6c0aNH5/jjj8/MmTMzcuTI+Q7XWR377jmPnerWrZt33nknXbp0ycyZMxd47FRh6tSpeeyxx9K0adPceeedqV9/1umBvffeO3vssUeOP/74PP744+nates8h3GsjmVU53Jqi+qoXaqr/pmzb6dOnZp33nknHTp0yD777FO4vgUA4P/UiiE6k7mHRHnyySeX6Nd7sx/ELYqRI0cu9ntWx/snyRdffLHYr12cfpz9nnuzh3sVjysCvqFDh84z4Ovdu3eSWVfDVhwwV1h33XXToEGDTJs2Lb17965y6JqKIXZatmxZDvcqrLLKKmnRokXef//9nH322VWeSLjrrruSJAcddFAaNmyY6dOnl59r2LBhDjzwwDz88MO56667Kp3omN2IESPyzTff5PTTTy8fPFWoW7duDjvssJx++ukZMWLEYt3vA4DFY/9ctWuvvTbJrO/qihPEFVZYYYXsuuuuef7553Pttdcu9DDVs1uSWmby5Mn58ssv06hRo7naVkRL0he1XW1Yt9r0eVnS/qiuY5phw4Zl4sSJlR4vzHJmv+fenDVvjx49ygHf7PPNafZ77s0e7lU8rmjH7PNVZfbXzh7uzfn4vPPOm2dgOfs997bccstKfbLllltWmm9+4emSHqvMvoxVV121HO5VWGONNbLqqqtmwoQJ6d27dx588MF5tqU69t1zHjvN3i8Lc+xU4ZlnnsnMmTNz9NFHlwO1CvXr10/Xrl0zePDgPPPMM/M8DqyOZVTncmqL6qhdqqv+mbNvp06dWn6uiH0L1H5ffPFFjdd0zK021dxUzTaq/ZYkt1laak3AV91q+p4zNf3+i2POYTkrNG3atNK9HapScTXr4YcfXuXzP/3pT/PAAw9UupfC7CquSJ7XUDJHHXVUBgwYUJ5vTl9++WWSZK+99qry+T333DMPP/xweb6qfPvtt0mSjTbaqMrnN9xww0rzAbBs2D9X7euvv04y6zu2KgceeGCef/758nyLqoi1DIvOdmZpm3NYzgrbbLNN/va3vy3UMuZ1n7H27duXf1E4P0t6rJIkU6ZMSZIcc8wxVT7/s5/9LEOGDCnPNy/Vse9e0mOnCl999VWSpEOHDlU+3759+0rzLa1lVOdyaovqqF2qq/75ofUtUPsNGjSoppsAsNz4wQZ8ffv2nefwKvMzfPjw3HvvvTX2/kny0Ucf1ciX4X/+858qpy8o3EtmXUE4c+bMPPDAAznyyCPnev7RRx8tz1eVZs2aZcKECbn77ruzzTbbzPX8fffdV56vKuuuu27eeuut/M///E+OPfbYuZ7/4x//WJ5vXlZbbbUks25wP+e9PZL/u0q5Yj4Alg3756qtvfba+fTTT/Poo49Web+mil+hrL322ou1/CWpZSZPnpyPP/44m2yyyQ/iysPPPvvsBxuELcl2ri616fPyQ97WNWX48OFVTl/YcC/JPO8ztjDhXrLkxypJ0qhRo0yePDnDhg1L586d53r+N7/5TXm++amOffeSHjtVWGeddZIkr732Wvbee++5nq/o34r5ltYyqnM5tUV11C7VVf/80PoWqP169+6dTTfdtKabwRxqU81N1Wyj2q+mcpv5qTUB35z3kliS4TmTZIMNNijfZHxRVNcwRYv7/sms/5kX1+L040knnVQepvP555+f6x58s883L4MGDUrPnj0zbdq0fPnll5WCtC+//DLTpk0rz1eVSy+9NEcffXTee++9fPfdd5WG6fzuu+/y/vvvl+erynHHHZenn346jz32WH72s59Vem7q1KnlA+Xjjjtunuuw5ZZbpnnz5nnwwQcr3eMgmXXV74MPPpi11lqr0nBAACx99s9V69OnT4488sg8//zz6dmzZ6UDgMmTJ+dPf/pTeb7FsSS1zMSJEzNlypT86Ec/ykorrbRYy2DZWJLtXF1+SJ+X6jqmOeaYY3LLLbdUerwwtttuu/LwmzfffPNc9+Cbfb552XDDDcvBwYUXXjjXPfhmn29+Zn/t3//+97nuwVfVMud06aWXloejHDFiRDbeeOPycyNGjKg03/ws6bFKxXMnnXRSJkyYkNGjR1capnP06NGZMGHCApeRVM++e85jp9m/Fxfm2KnCPvvskzvuuCP33HNP9thjj0pDY06fPj333ntv6tWrl3322WepLqM6l1NbVEftUl31z5x9O7si9i1Q+6233no1Xl8ytx9Szf1DZRvVfkuS2ywtNRrwzXlPinkdAM/vfgoseT8eeOCB5YDvmmuuyTXXXFPlsJzzG49/9iu/Tz755DRo0CA//elP8+ijj5YPmOecb3ZNmjQpv+fPfvaztGjRIkcddVTuu+++8gFq06ZN53mT+BVXXDEdO3bMq6++miOOOCL77rtvNtxww9x77715+umnM3369HTs2DErrrjiPNehXr16OfHEE3P55ZfnkksuyWGHHVY+wfHggw/m9ddfT//+/ed7A3MAqp/9c9VWXnnlbL755vnggw9y+OGHZ9ddd82BBx6Yxx9/PH/6059SKpWy+eabZ+WVV67ppsIPWnUd08y+nDFjxuSII45Y5OUMGDCgvIynn366fM+9quabl8GDB5eX8frrr89zfeZ3b7ckadu2bfnvc845J0nVw3LOPt+cZr+v2Jlnnpkk2WyzzfLhhx/Oc76qLOmxSpKstdZa5V8CHn/88Vl11VXzs5/9LL/5zW/K4V7dunWz1lprzbct1bHvnvPYadNNN80OO+yQu+++Ox999FGS+R87VWjYsGEOOuigPPLIIzn++OPTtWvX8rCn9957b8aOHZuDDz44DRs2XKrLqM7l1BbVUbtUV/0zZ98edthhWXXVVfPHP/4xDz74YOH6FgCA/1Pjv+Bb0I3nhXsLZ0n7cc7XzxnuLcx2mH0Z06ZNywMPPLBIy7j77rvTrVu3jB07Nu+//36lEw9NmzbN3XffPd/Xn3vuubn44ovz6quv5oknnqj0XMeOHed5k/rZ/fjHP07//v1z++235/TTTy9PX2uttdK/f/953v8DgKXL/rlqAwcOTN++ffPBBx/k+eefr/TL+80339xQg7CMVNcxTXUsp7Yso6rlzBnuLU5b5gz3Fqcti3OskswaPvPAAw/MzJkzM2HChAwZMqT8XN26dcujhixIdey7Zz92+uijj8rBXrJwx04Vjj/++CTJY489Vim0rVevXg4++ODy80t7GdW5nNqiOmqX6qp/Zu/b2267rTy9qH0LAMAsNR7wJfM+gBTuLZol7ccnn3wyjz/+ePnXfMmsYTnn98u9qpbx2WefpXfv3pk5c2bq1q2bQYMGLfS9Xe6+++6MGzcuZ599dsaMGZNmzZrl0ksvXeDVpxXOPffcTJo0KUOHDs1HH32UTTfdNCeddNJ8f7k3px//+Mfp2LFjRowYkW+//TarrbZattxyy+XulyEAtY39c9UGDhyY77//Ptdee22+/vrrrL322unTp49f7sEyVl3HNNWxnCeffDIDBgwoD9eZzBqWc36/3KtqGb169SoP15nMGpZzQb/cq2o5b7755lxDfc7vl3tVLePtt98uD9eZzBp+ckG/3KtqOUtyrJLMCvlGjhyZ3r17Z8qUKWnUqFEGDRq0wF/uzak69t0Vx079+/fPf/7zn6y++uq5/PLLF/rYqULFL+aeeeaZfPXVV1lnnXWyzz77LNIvuqpjGdW5nNqiOmqX6qp/Kvr28ccfz7vvvptWrVrlwAMPLGzfAgBQSwK+RJhXXZa0Hw888MBFCvSqssEGGyz01atVadKkySKfOJjdiiuumBNPPDHvvPNOtthii0UK9yrUq1dvkU8YALD02T9XbeWVV16oX6oDS1d1HdM8+eSTmThxYrmeXZx7cCxKmDcvS1KTz65t27ZL3DetW7fO/fffv0R9kiz5sUoy69dTDz744BItI6mefXeTJk1yzTXXLHG/NGzYcImPA6tjGdW5nNqiOmqX6qp/GjZsmP322y8/+tGPssUWWwj3AAAKru6CZwEAAAAAAABqCwEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAXygwv4VlllldStWzerrLJKTTdlsa288sqpU6dOVl555ZpuCgCwnPkh1FKwuHz+AZZPK6644qw/6tav2YYAALVWbcxtfnCVy9prr51hw4alSZMmNd2UxbbWWmvlV7/6VdZaa62abgoAsJz5IdRSsLh8/gGWT6uttlqSpG6DlWq4JQBAbVUbc5sf3C/4kvwgDshrUwoMACxffgi1FCwun38AAACqUttymx9kwAcAAAAAAAA/VAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBA6td0A2qrmdO+z4xJ3y7666aOXwqtAQCgptWGOm/mlPGV/rvYy6kF6wIAtY3vx9qrumoglh7//wAsewK+Oay33nqpW7dupo5+O1NHv71Yy2jQsGEaN25czS0DAKAmNG7cOA0aNszkL1+p6aaUTf5qyduiZgWAWRo3bpz69RvUqu96qlYdNRBLT/36DdSXAMuQgG8OLVq0yG233Zbx4xf/qpPGjRunefPm1dgqAABqSvPmzXPLzTcvUX2YJJMnT87HH3+cTTbZJCussEI1tW7xqVkBYJY11lgjvXv3ylprrVUrvqOZW22ro5jb5MmTM3LkyKyxxho13RSA5YaArwrNmzd3sgMAgLLqqA8nTpyYKVOm5Ec/+lFWWmmlamoZAFAdmjZt6ju6FlNH1X4V2wiAZaduTTcAAAAAAAAAWHgCPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABVKnVCqVFjTTX//615RKpTRs2HC+85VKpUybNi0NGjRInTp1qq2Ryxv9uOT0YfXQj9VDP1YP/Vg99OPCmzp1aurUqZN27dot0XIWto76IfE5q5p+qZp+qZp+mZs+qZp+qZp+qdqy6pei1VE+L7WfbVT72Ua1m+1T+9lGtV9trKPqL8wCF7axderUWa5OXi0t+nHJ6cPqoR+rh36sHvqxeujHhVenTp1qKdiWx8Lc56xq+qVq+qVq+mVu+qRq+qVq+qVqy6pfilZH+bzUfrZR7Wcb1W62T+1nG9V+tbGOWqhf8AEAAAAAAAC1g3vwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCDVEvDNnDkzN9xwQ3beeedsu+22+fnPf57PPvusOha9XBk5cmRatmw5179HHnmkpptWGLfeemu6detWado777yTo48+Ottuu2123333DBs2rIZaVwxV9eG555471+dy9913r6EW1l5jx47Neeedl1122SXt2rXLz372swwfPrz8/Msvv5yDDz4422yzTTp37pynnnqqBltbey2oH48//vi5Po9zfmZJ/vOf/+T000/PDjvskLZt26Z79+756KOPys/bN7IsVPWdsjxa0H5tebWg/RTJxx9/nLZt2zoeiGOleXnsscey7777pnXr1tlvv/3yzDPP1HSTatSrr75a5eekZcuW2WOPPWq6eTVq+vTpuf7669OpU6e0bds2Xbt2zVtvvVXTzaoRC1OfjBkzJv369Uv79u3ToUOHXHDBBZk0adIyaiELs42eeOKJKv9f//zzz5dRK5cvi1rPfv755zn55JPTrl27/OQnP8l1112XGTNmLMMWL38WdRvdfPPNVf4/xNKzqMc/vouWvUXdRrXhu6h+dSzkpptuyn333ZfLL788a6+9dq666qqcdNJJefLJJ9OwYcPqeIvlwrvvvptGjRrlj3/8Y+rUqVOevuqqq9Zgq4rj3nvvzXXXXZftt9++PG3MmDE5/vjjs/vuu+eCCy7IW2+9lQsuuCArr7xyDjnkkBpsbe1UVR8myXvvvZdTTjklRx99dHlavXr1lnXzar2+fftm1KhRGThwYFZfffXcfffdOfHEE/Poo4+mVCrl5JNPzvHHH5+rrroqzz//fM4444ysttpq2XHHHWu66bXK/PrxRz/6Ud57770MGDAge+65Z/k1DRo0qMEW1069evXKzJkzM2TIkKy88sq5/vrrc9xxx+V//ud/MnnyZPtGlrp5facsjxa0X1tezW8/teKKK9Z082rctGnT8qtf/SoTJ06s6abUCo6V5vb444/nnHPOydlnn52dd945Tz31VPr27Zu11147bdu2renm1Yi2bdvmz3/+c6Vpb731Vk499dT07NmzhlpVO9x888158MEHc/nll2eDDTbIbbfdlpNOOilPP/10mjdvXtPNW2YWtj457bTTMmnSpNx1110ZP358zjnnnEycODFXXHHFMmrp8mtht9F7772XDh06ZODAgZWmr7baakuzecutRalnp02blhNPPDEbb7xxfvvb3+bf//53zjnnnNStWzennXZaDa3BD9+iHnO89957OfDAA3P66afXQGuXT4t6/OO7aNlb1G1UK76LSktoypQppbZt25buvffe8rRx48aV2rRpU3ryySeXdPHLlSFDhpT233//mm5G4Xz99delk08+ubTtttuWOnfuXDr66KPLz91yyy2ln/zkJ6Vp06aVp11zzTWlvfbaqyaaWmvNrw9nzpxZ2nbbbUv/8z//U4MtrP0++eSTUosWLUrDhw8vT5s5c2Zpzz33LF133XWlX//616VDDz200mv69u1bOuGEE5Z1U2u1BfXj6NGjSy1atCj985//rMFW1n5jx44t9e3bt/Tee++Vp73zzjulFi1alP72t7/ZN7JUze87ZXm0oP3a8mpB+ylm7ZePOeaYUosWLUoPP/xwTTenxjlWqmzmzJmlTp06lS6//PJK00844YTSLbfcUkOtqn2+//77UqdOnUr9+/ev6abUuAMOOKB02WWXlR9PmDCh1KJFi9If/vCHGmzVsrMo9clf//rXUosWLUoffvhhedqLL75YatmyZenrr79eFs1dLi1qDXnSSSeVLrroomXUuuXbotazTz75ZGnrrbcujR07tjztt7/9baldu3alKVOmLJM2L28W55hjn332Kd15553LqIUs6vGP76Jlb3GOUWvDd9ESD9H57rvv5vvvv6/0C5TGjRtnyy23zOuvv76ki1+uvPfee9l0001ruhmF889//jMNGjTIE088kW222abSc8OHD0+HDh1Sv/7//Vh1hx12yCeffJLRo0cv66bWWvPrw3//+9+ZOHHicv0Lg4XRrFmzDBkyJK1bty5Pq1OnTurUqZPx48dn+PDhc/1Sb4cddsgbb7yRUqm0rJtbay2oH997773UqVMnm2yySQ22svZr0qRJrrnmmrRo0SJJ8u233+auu+7K2muvnc0228y+kaVqft8py6MF7deWVwvaTy3vXn/99dx///25/PLLa7optYZjpco+/vjjfPHFF9l///0rTb/99ttz8skn11Crap9bbrklkyZNyplnnlnTTalxq6++ep577rl8/vnnmTFjRu6///40bNgwrVq1qummLROLUp8MHz48a665ZqV9TocOHVKnTp288cYbS7upy61FrSF9Lyw7i1rPDh8+PFtttVWaNGlSnrbDDjvku+++yzvvvLNM2ry8WdRtNHXq1HzyySfO9S1Di3r847to2VucY9Ta8F20xEN0fv3110mSddZZp9L05s2bl59j4bz//vtp1qxZunbtmo8//jgbbbRRevTokV122aWmm1ar7b777vO8H9zXX39d/p+yQsXwI1999VXWWGONpd6+IphfH77//vtJkrvvvjsvvPBC6tatm1122SV9+vRZrodEmlPjxo2z6667Vpr2hz/8IZ9++mnOPvvsPProo1l77bUrPd+8efNMmjQpY8aMMYzI/29B/fj+++9n1VVXzYUXXpiXXnopK620Ujp37pyePXsaEnoefv3rX+eBBx5Iw4YNc/PNN2ellVayb2Spmt93yvJoQfs1qt5PLc/Gjx+fM844I+eee+5cx1jLM8dKlX388cdJkokTJ+bEE0/MiBEjsv7666dHjx72wf+/ipMy/fr1S9OmTWu6OTXunHPOyS9+8YvsscceqVevXurWrZsbb7wxG264YU03bZlYlPpk5MiRc+1/GzZsmKZNm+arr75aGs0ji7aNxo0bl5EjR2b48OG57777MmbMmLRp0yann366i0GXgkWtZ7/++usqz38ks443XQRY/RZ1G3344YeZMWNG/vCHP+SSSy7JlClT0r59+5x++unL1bDNNWVhjn98F9WshdlGteW7aIl/wVdxY8c5T6w2atQoU6ZMWdLFLzemT5+ef/3rXxk3blxOPfXUDBkyJNtuu226d++el19+uaabV1iTJ0+u8rOZxOdzIb3//vupW7dumjdvnltuuSX9+/fPn//85/Ts2TMzZ86s6ebVWn/9619z1llnZa+99spuu+1W5Wex4vHUqVNroomFMGc/vv/++5kyZUratGmToUOHpkePHnnwwQdz7rnn1nRTa61jjz02Dz/8cLp06ZJevXrln//8p30j1KA592tUvZ9ang0YMCBt27ad65dZyzPHSnP77rvvkiRnnnlmunTpkjvuuCM77bRTevbsudz2yZzuu+++rLrqqjniiCNquim1wocffphVV101gwcPzv3335+DDz44v/rVr/yapgqTJk2q8uJB57lqjw8++CBJUiqVctlll+W6667LlClTctRRRxmRZBlYUD3reLPmLWgbVVzMv+KKK+b666/PJZdckn/961855phjMnny5GXc2uXPwhz/+C6qWQuzjWrLd9ES/4JvhRVWSDLrBHXF38msHXZVNx6kavXr18+rr76aevXqlftx6623zgcffJDbb799rqH9WDgrrLDCXOFJxU5web86fGH16NEjRx11VJo1a5YkadGiRdZcc80cfvjhefvtt115VYU//vGP+dWvfpV27drl6quvTjLrC3jOz2LFY/vKqlXVjxdeeGHOPPPM8lAfLVq0SIMGDdKnT5+cccYZfnlWhYphBC655JL87W9/yz333GPfCDWkqv0aVe+nLrvsshpuVc147LHHMnz48Dz55JM13ZRaxbHS3Bo0aJAkOfHEE/PTn/40SbLFFltkxIgRufPOO5fLPpnTY489loMOOqjSeYrl1VdffZV+/frlrrvuyvbbb58kad26dT788MPceOONuemmm2q4hbVLVbVyMqteVivXDttvv31efvnlNGvWLHXq1EmSDBo0KLvttlseeeSRdO/evYZb+MO1MPWs482atTDb6KCDDsouu+xSaTSpzTffPLvsskv+3//7f9l3332XVXOXSwtz/OO7qGYtzDaqLd9FS/wLvoqfin7zzTeVpn/zzTdZa621lnTxy5WVV155roOPzTffPCNHjqyhFhXf2muvXeVnM4nP50KqW7duOdyrsPnmmyeJYXircM899+TUU09Np06dcsstt5SvUltnnXWq/CyutNJKhjqtwrz6sX79+pXG8U98Hqvy7bff5qmnnsr06dPL0+rWrZvNNtss33zzjX0j1IB57deWVwvaTy2vHn744fznP//JbrvtlrZt26Zt27ZJkvPPPz8nnXRSDbeuZjlWqqzi+3rOIbc322yzfP755zXRpFrl3XffzWeffeaXsP+/v/3tb5k2bVqlezMlyTbbbJNPP/20hlpVe1VVK0+dOjVjx441dF0tstpqq5VPqCazLpxdf/31l9vvhWVhYetZx5s1Z1GOOea8VUzz5s3TtGlT51aWkkU9/vFdtOwtzjFqbfguWuKAr1WrVllllVXy6quvlqeNHz8+I0aMSPv27Zd08cuNDz74IO3atavUj0nyj3/8Y543cWTB2rdvnzfeeCMzZswoT3vllVeyySabZPXVV6/BlhXHGWeckeOOO67StLfffjtJfDbncN999+Wiiy5K165dM3DgwEo/pd9+++3z2muvVZr/lVdeSbt27VK37hLvin9Q5teP3bp1y1lnnVVp/rfffjsNGjTIxhtvvIxbWnuNHj06ffv2rTRE17Rp0zJixIhsuumm9o2wjM1vv7a8WtB+anl19dVX5+mnn85jjz1W/pckp512Wi655JKabVwNcqw0t6222iorr7xy/va3v1Wa/v777y8391Sbn+HDh2f11VdPq1ataroptULFvbDee++9StPff/99NXQV2rdvn6+//rpS+FlxLLfddtvVVLOYzf3335+OHTtm4sSJ5WnfffddPvnkk+X2e2FpW5R6tn379hkxYkR5OOlk1vHmyiuvbL+8FC3KNrr22muz9957p1Qqlad9/vnnGTNmjP+HlpJFPf7xXbTsLeo2qi3fRUt8Vrlhw4Y5+uijc/XVV+fZZ5/Nu+++mz59+mTttdfOXnvtVR1tXC5suumm+dGPfpQLL7www4cPz0cffZTLLrssb731Vnr06FHTzSusQw45JN99913OOeecfPjhh3nkkUdy11135eSTT67pphXG3nvvnZdffjmDBg3Kv//97/zpT3/K2WefnS5duizXJ+Dm9PHHH+fSSy/Nf/3Xf+Xkk0/O6NGjM2rUqIwaNSoTJkxIt27d8ve//z1XX311Pvroo9xxxx35/e9/v9xfjT+nBfXj3nvvnccffzy/+c1v8tlnn+Xpp5/OlVdemRNPPDGrrLJKTTe/1mjRokV22WWXXHzxxXn99dfz/vvvp3///hk/fnyOO+44+0ZYhha0X1teLWg/tbxaa621stFGG1X6lySrr776cn3Fu2Olua2wwgo56aSTMnjw4Pzud7/Lv//979x888156aWXcvzxx9d082rciBEj0rJly5puRq3Rpk2bbLfddjnzzDPzyiuv5JNPPsl1112Xl19+2VCGSWbMmJFRo0aV7zu1zTbbpF27dunTp0/+/ve/55VXXsl5552Xgw46aLneF9ekObfRLrvskpkzZ+aMM87IBx98kLfffjunnnpqVltttRx88ME13NofngXVs1OnTs2oUaPKwwnuueeeWXPNNfPLX/4y7777bv74xz9m4MCBOeGEE1zotpQs6jb6r//6r3zxxRcZMGBAPv7447z++us59dRT065du+y88841vDY/TAs6/vFdVPMWdRvVlu+iOqXZo/rFNGPGjAwcODCPPPJIJk+enPbt2+e8887L+uuvXx1tXG6MHj0611xzTV588cWMHz8+W265ZX71q1+Vx8hnwfr3758vvvgid999d3na3//+91xyySUZMWJE1lxzzZxwwgk5+uija7CVtVtVffjMM89kyJAh+de//pVVV101+++/f375y18u98OLze6WW27JtddeW+VzP/3pT3P55ZfnhRdeyFVXXZVPPvkk66+/fk499VTjms9hYfrx3nvvzb333pvPPvusfD/I7t27+yXkHCZMmJBrrrkmf/zjHzNhwoRsv/326d+/f3lIU/tGloWqvlOWNwuzX1teLWg/xSwtW7bMZZddttyfsHSsVLU777wz99xzT0aOHJlNN900p556avbcc8+ablaN+/nPf55VVlllnvvf5dG4ceNy3XXX5fnnn8+4cePSokWL9O3bNx06dKjppi1zc9Ynn3/+efbYY49K+9r//Oc/ueCCC/Liiy+mUaNG6dy5c8466yzHwMvIwmyjf/7zn7nmmmvy97//PaVSKTvttFPOOuus8q2EqD4Lqmd/+tOf5phjjsmwYcPSsWPHJMmnn36aCy64IMOHD0+TJk1y6KGH5tRTT3XcvpQszjZ6+eWXc/311+e9995Lw4YNs8cee+TMM8+c67YoVJ/5Hf/4LqodFnUb1YbvomoJ+AAAAAAAAIBlw2UTAAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAWGSlUqmmmwAAALDcEvDBMtStW7dsueWWefvtt6t8fvfdd0///v2XSVv69++f3XfffZm816KYPn16+vfvn7Zt26Zdu3Z55ZVX5prn1VdfTcuWLSv923rrrbPHHnvkyiuvzKRJk6qlLTfeeGNatmxZLcsCABad2mnBaqp2evDBB3PFFVeUHz/yyCNp2bJlPv/88yVaHwCgdlGPLdjC1GOff/75XPXY7P+6dOmSRE0FLJr6Nd0AWN7MmDEjZ511Vh555JE0bNiwpptT67z44ot59NFH07Nnz/z4xz/OlltuOc95zzvvvGy11VZJkkmTJuXdd9/NDTfckFGjRuWqq65aVk0GAJYitdP81VTtdPPNN6dDhw5L1HYAoBjUY/O3KPVYjx49sttuu801fYUVVliKLQR+qAR8sIytuuqq+eCDDzJ48OD06dOnpptT64wdOzZJcvDBB2eDDTaY77ybbbZZtt122/LjHXfcMRMmTMjNN9+c888/P6ussspSbCkAsCyoneZP7QQALG3qsflblHpsww03rFSPASwJQ3TCMrbFFlvkoIMOytChQ/OPf/xjvvO2bNkyN954Y6Vpcw4b2b9//5x44om5//77s+eee6ZNmzY58sgj8/HHH+e5557L/vvvn2222SaHHXZY3nnnnbne4/77789uu+2WNm3a5Nhjj82IESMqPf/ll1+mb9++6dChQ7bZZpu55qkYYuDOO+9M586ds8022+Thhx+ucn1mzJiRe++9N/vvv3/atGmT3XbbLVdffXWmTJlSXpeKYR323HPPdOvWbb79U5XGjRvPNW3s2LE577zz8uMf/zitW7fO4YcfnpdffrnSPFOmTMlll12WnXbaKW3bts1ZZ51VbleF/v3759hjj83555+fdu3aZd99982MGTMyZcqUDB48OJ07d07r1q2z1157ZciQIZk5c2al1z/99NM5+OCD07Zt2+y0004577zzMm7cuPLzN954Yzp37pz//d//TZcuXdK6desceOCBefPNN/PWW2/lsMMOS5s2bdKlS5dK7Z88eXIGDBiQXXbZJVtvvXU6d+6c22+/fZH7DgBqI7XTsq+d3n333fTu3Ts77LBDttpqq+y88865+OKLM3ny5CSzhuL64osv8uijj841hNTf/va3HHnkkWndunV22223DB06dKHW/e23386JJ56Yjh07pl27djnllFPywQcfVGrXN998k7POOiu77rpr2rRpk0MPPTTPPvtspXlatmyZ3/zmN+nfv3+22267dOjQodz2K664IjvssEM6duyYc845p1Kt99JLL+Xwww9P27Zt0759+/To0SMfffTRIvcnAPwQqceWbj22IC+99FKOOuqobLfddunYsWP69euXr776qtI8n3zySU477bTstNNO2XbbbdOtW7e88cYbC1xn55Sg2PyCD2rA2WefnZdeeilnnXVWHn744SUe3uDNN9/MN998k/79+2fKlCkZMGBAunfvnjp16uS0007LiiuumPPPPz+/+tWv8tRTT5Vf9/XXX2fQoEHp169fVllllQwaNCjdunXLk08+mXXXXTfffvttjjzyyKy44or59a9/nRVXXDH//d//na5du+ahhx7KpptuWl7WjTfemHPOOSerrLJKttlmmyrbed555+Xxxx/Pz3/+82y//fYZMWJEBg8enHfeeSdDhw5Nz549s/baa+fmm2/OoEGDsskmm8x3vWfOnJnp06cnSaZNm5Z33nknw4YNy0EHHVS+An3KlCk59thjM3r06PTp0yfNmzfPww8/nJNOOilDhw7NjjvumCQ5/fTT8+KLL6ZPnz7ZaKONcv/99+fJJ5+c6z2HDx+eRo0aZfDgwZk4cWLq1q2bU045JW+99VZ69+6dVq1a5dVXX811112Xzz77LBdddFGS5KabbsoNN9yQo446Kn369Mlnn32W66+/Pm+99VYeeOCB8lAMX3/9dS6//PL06dMnK620Ui666KKcdtppadCgQU455ZSss8465eeff/75rLDCCrn00kvz5z//OWeeeWbWWGONvPDCC7nyyivTtGnTHHLIIQv7MQKAWkvttOxqp2+++SZdu3bNtttum8svvzwNGzbMCy+8kDvvvDPNmzdP9+7dM2jQoHTv3j1bbrllevbsmebNm5ffY8CAATnttNPyi1/8Ig888ECuuuqqbLrppunUqdM81/2VV17JSSedlI4dO+bSSy/NlClTcuutt+bII4/MAw88kE033TSjR4/OoYcemkaNGqVPnz5p1qxZHnnkkfTq1StXXnllDjjggPLyr7rqqnTp0iWDBg3Kc889l//+7//On//857Rq1SpXX3113nrrrdx4443ZZJNNctJJJ+Wzzz5Lz549c8ghh6Rv374ZP358Bg4cmO7du+d///d/U7eu62IBQD1W/fVYhTp16qRevXpVzv/YY4/lzDPPTJcuXXLyySdnzJgxueGGG3LEEUfk0Ucfzeqrr54PP/wwhx9+eDbeeOOce+65adCgQYYNG5Zjjz02d9xxR6Vh1edcZ+eUoOBKwDJz9NFHl44++uhSqVQqPfvss6UWLVqUBg4cWH6+U6dOpTPPPLP8uEWLFqUbbrih0jJuuOGGUosWLcqPzzzzzFKLFi1KH374YXnaeeedV2rRokXpL3/5S3na7bffXmrRokVp3LhxlV73t7/9rTzPN998U2rTpk3p8ssvL5VKpdLAgQNLrVu3Ln3++efleaZMmVLaY489SqeeemqpVCqVPvvss1KLFi1KZ5999nzX/YMPPii1aNGidOutt1aa/thjj5VatGhRev7550ulUqn08MMPl1q0aFH67LPP5rmsV155pdSiRYsq/+2+++6lr7/+ujzv/fffX2rRokXprbfeKk+bOXNmqWvXrqWDDz64VCqVSu+//36pRYsWpfvuu688z4wZM0r77rtvlX391Vdflac9//zzpRYtWpR+97vfVWrj4MGDSy1atCi9//77pbFjx5a23nrr0q9//etK87z++uulFi1alO65555SqfR/2/ZPf/pTeZ5bb7211KJFi9KDDz5Ynvb73/++1KJFi9KIESNKpVKptPfee5fOPffcSsseNGhQ6bnnnptnHwJAEaidln3t9OKLL5a6du1amjBhQqVldOnSpXTCCSeUH8/Z9xXtmL2emjhxYmmrrbYqXXrppfNd90MPPbS07777lqZPn16eNm7cuFKHDh1Kp512WqlUKpWuvPLK0lZbbVWpb0ulUunYY48t7bTTTqUZM2aUSqVZn4HDDjus/Pz06dNL2267bWn33XcvTZs2rdL69OjRo1QqlUq/+93vSi1atKjUD3/7299KAwcOnKsfAGB5ox6rnnqs4j2r+rf11luX55t9WTNmzCjttNNOlWqwUqlU+vTTT0tbbbVV6YorriiVSqXSL37xi1LHjh0r1S3Tpk0r7b333qVDDjlkvuvsnBIUm0sRoYbsvvvuOeCAAzJ06ND885//XKJlNWnSpNIVSGussUaSVLr6qGnTpkmS8ePHl6dtsMEGadOmTfnxmmuumW233Tavv/56kuTll1/OFltskbXWWivTp0/P9OnTU7du3eyyyy75y1/+UqkNW2yxxXzb+NprryVJ9ttvv0rT99tvv9SrVy+vvvrqwq5u2QUXXJCHHnooDz30UO67775cccUVadSoUQ499NB8+eWX5XVYc801s9VWW5XXYcaMGenUqVP+8Y9/ZNy4cRk+fHiSWdukQt26dbP33nvP9Z5NmzbN2muvXWm96tevn86dO1ear+Iq8tdeey1vvfVWpk6dmi5dulSaZ/vtt896661X7psK7dq1K/+9MNuyY8eOeeCBB/Lzn/8899xzTz777LP06tWryps2A0BRqZ1Sfrw0a6ef/OQnueeee9KoUaN8+OGHefbZZ3PzzTfn22+/zdSpUxf4Httvv3357xVXXDFrrLFGpT5MKq/7xIkT8/bbb2efffapdOV648aN06lTp3I/vPbaa2nbtm3WW2+9Sss64IADMmrUqPzrX/8qT2vbtm3573r16qVZs2bZaqutUr/+/w1g07Rp00yYMCHJrO1e0Q+XXHJJXnzxxbRq1Sp9+vRxX0IAmI16LOXHi1uP9e7du1yPVfz77W9/W+W8H3/8cUaNGjXX+aQNN9wwbdu2rVQnderUqVLdUr9+/ey33375xz/+ke+//748fc51dk4Jis0QnVCDzj333Lz88svl4Q0W17xOPKy00krzfV1F8TS71VdfvTyO99ixY/Ppp59mq622qvL1kyZNWuj3qrjX3Jprrllpev369dOsWbPyCZZFsckmm6R169blxxX3Wdlzzz1zxx135Nxzz83YsWMzatSoea7DqFGjym1r1qxZpefmbGuSrLzyynOtV7NmzeYaSqHitRMmTCgvv6r+XmONNeZa96q254orrlhl+5PknHPOydprr50nnngiF110US666KK0bds2AwYMSKtWreb5OgAoGrXT0q+dZs6cmYEDB+bee+/NxIkTs84666RNmzZp1KjRQr3HnDVL3bp1UyqVKk2bfd0nTJiQUqm0wDpp3Lhx2WCDDaqcJ6l84q+q7Tu//l5//fVzzz33ZMiQIXnooYcybNiwNG7cOEcddVR++ctfpk6dOvN8LQAsb9RjS1aPrbfeepXqsfkZO3ZsknmfT6q4r+C4cePmOU+pVMp3331XnjbnOjunBMUm4IMa1KRJkwwYMCC9evXKTTfdVOU8M2bMqPR44sSJ1fb+FYXK7EaNGpXVVlstSbLqqqumQ4cOOeOMM6p8/aKMt96kSZPy8me/8nratGkZM2bMXOHa4lp33XWz2mqr5ZNPPkkyax023njjXH311VXOv/7665ffe/To0Vl33XXLz1UUUvPTpEmTjBkzJjNmzKgU8n3zzTdJZoWGFes+evTo/OhHP6r0+lGjRlV5smpRNGzYMD169EiPHj3y5Zdf5rnnnstNN92Ufv36VRqnHgCKTu209GunIUOG5K677soFF1yQvfbaK6uuumqS5NBDD62W95vTqquumjp16mT06NFzPTdq1KjylftNmjTJqFGjqpwnmftCrUXVpk2bDBo0KFOnTs0bb7yR+++/P7fccktatWqVffbZZ4mWDQA/JOqx6q/H5qWiDppXnVTx/k2aNJnnPMmsOqniPNWcnFOCYjNEJ9SwPffcM126dMmQIUPy7bffVnpulVVWyciRIytN++tf/1pt7/3xxx/n3//+d/nxV199lTfffDMdO3ZMknTo0CEff/xx+Wrvin+PP/54HnrooXneALgqFTf0nbM4eOqppzJjxoxst9121bBGyeeff55vv/02G2+8cfl9v/rqq6y++uqV1uGll17K0KFDU69eveywww5Jkt///veVlvXcc88t8P06dOiQ6dOnz/XaJ554IsmsK+O32WabNGzYML/73e8qzTN8+PB8+eWXlYbkXFSTJ0/O3nvvnTvuuCPJrJN0Xbt2zX777VceagsAfkjUTku3dnrjjTey2Wab5ZBDDimHeyNHjsz777+fmTNnll9Xt271HEqutNJK2XrrrfPMM89UOhk4YcKEPP/88+X1bN++fd5888188cUXlV7/xBNPZM0118xGG2202G2466670qlTp0ydOjUNGzbMjjvumIsuuihJ1FMAUAX1WPXWY/OyySabZM0115zrfNJnn32Wt956q3w+qX379nnuuecq/VJvxowZeeqpp9K6det5hprOKUHx+QUf1AK//vWv88orr8x1tc1uu+2Wp556Kttss0022mijPPLII/n000+r7X0bNWqUHj16pE+fPpkxY0auv/76NG3aNMcee2yS5Ljjjsvjjz+e4447LieccEKaNWuWp59+Og888EDOOuusRXqvzTbbLD/96U9zww03ZNKkSWnfvn3eeeedDBo0KB07dszOO++8yO3/8MMPy8NFlUqlfPnllxk8eHAaNWqUo48+Okly8MEH55577snxxx+fU045Jeuss07+8pe/5LbbbsvRRx+dBg0aZKONNsoRRxyRa6+9NtOnT88WW2yRxx9/PO+9994C27DLLrukY8eOOffcczNy5Mi0atUqr732Wm677bb89Kc/zWabbZYk6d69ewYPHpwGDRqkU6dO+fzzz3P99deX+2VxrbDCCtlqq60yaNCgNGjQIC1btszHH3+cRx99tMp7CALAD4HaaenVTm3atMlNN92UIUOGZNttt82nn36aW2+9NVOnTq00pFXjxo0zYsSIvPbaa5Xug7M4+vXrlxNPPDHdu3fPUUcdlWnTpmXIkCGZOnVqevXqlSQ5/vjj88QTT+S4445L796907Rp0zz22GN55ZVXcumlly5R4LjDDjvk6quvTq9evXL00UenXr16+e1vf5uGDRumU6dOS7RuAPBDpR5bvHpsUdStWzd9+/bNWWedlX79+uWAAw7ImDFjMmjQoDRp0iTHH398kln39XvhhRdyzDHHpHv37mnQoEH5fnpDhw6d5/KdU4LiE/BBLdC0adMMGDAgvXv3rjT9rLPOyvTp03PFFVekfv362XfffdOvX7+ce+651fK+W265Zfbee+8MGDAgEyZMyI477pizzz67PKzBWmutld/+9re55pprMmDAgEyZMiUbb7xxLrnkksUapumSSy7JRhttlIcffji33XZbmjdvnmOOOSY9e/ZcrJMyF154YfnvunXrpmnTptl2221z1VVXla9CX2mllXLvvffmmmuuyVVXXZUJEyZkvfXWS79+/XLCCSeUX3/++ednjTXWyD333JNx48Zl5513zimnnJLrrrtuvm2oU6dObr311txwww2566678u2332b99ddP3759y4VWkpx66qnl5d9///1p2rRpOnfunF/+8pcLHPN9Yfrhuuuuyx133JFRo0Zl9dVXz6GHHppf/OIXS7RcAKit1E5Lr3Y6+eSTM2bMmAwbNiyDBw/OOuuskwMPPLBc84wfPz6NGzfOCSeckEsvvTQnnnhi7rzzzkVuy+x23HHH3HnnnbnhhhvSt2/fNGzYMNtvv32uuOKKbL755klm3fvmN7/5Ta655ppcfPHFmTZtWlq1apWbbrope+yxxxK9f6tWrXLLLbdk8ODB6du3b2bMmJGtt946d9xxx1zDqwMAs6jHFq8eW1QHH3xwVl555dx6663p1atXVlllley8887p27dv+d6Am2++ee67774MHDgwZ511VurUqZM2bdpk2LBh2X777ee7fOeUoNjqlOa84zkAAAAAAABQa7kHHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTAB/D/tWcHJAAAAACC/r9uR6A3BAAAAACAEcEHAAAAAAAAIwF9GMt7713oOAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "Text(0.5, 0, 'Number of Bedrooms')" + ] + }, + "execution_count": 531, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAHJCAYAAAD6nCFhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAApAElEQVR4nO3deXxNB97H8W9WQpCIrdRW5saWRCyJrSpqMLaiVO00WgR9JpaKpaS1PFrRksXWWJ7aGkQt1ZlOdbQ6dlNaU3mq7ajSWB8SMUG28/zhlTOuhIaanJv4vF8vr5d7zrn3/u4hyefec+6Nk2EYhgAAwGPN2eoBAACA9QgCAABAEAAAAIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCIBCN3jwYPn6+tr9adasmYYMGaJDhw49kvvw9fVVTEzMI7ktAI8HV6sHAB5HDRo00MyZMyVJ2dnZunr1qjZs2KDQ0FBt2bJFv/vd7yyeEMDjhiAALODp6anGjRvbLWvVqpVatmypLVu2aPLkydYMBuCxxSEDwEF4eHioRIkScnJyMpft2rVLvXv3lp+fn1q3bq3Zs2crPT3d7nqHDh1Sv379FBAQoE6dOmnfvn1268+ePStfX1+tWrVKnTt3VkBAgBITEyVJx48fV2hoqIKDg9WkSRONGjVK33//vd31L168qClTpuiZZ56Rv7+/+vTpo88++8xuG19fX23YsEERERFq2rSpgoKCNHv2bN28eVNvvfWWWrRooeDgYE2bNk23bt0yr7d371698MILCgwMVPPmzTV69Gj9+OOPj2R/AngwBAFgAcMwlJWVpaysLGVmZurSpUtasGCBMjIy9Pzzz0uSduzYoTFjxuipp55SXFycxo4dq+3btyssLEy5v6T022+/1UsvvaQyZcooOjpaQ4YM0fjx4/O9z5iYGL388st6++231bp1ax04cED9+/eXJM2dO1ezZ8/WuXPn9OKLL5o/lC9fvqw+ffroyJEjCg8PV0xMjKpVq6YxY8Zo+/btdrc/f/58ubu7KzY2Vj179tSaNWvUs2dPnTt3TlFRURo8eLA2b96sNWvWSJLOnDmjsLAwNWrUSEuWLNGcOXN06tQpvfLKK8rJyfmP7HcA98YhA8AChw8fVsOGDfMsHz9+vOrUqSPDMBQVFaWnn35aUVFR5vpatWpp2LBh+uKLL9SuXTstW7ZMPj4+WrJkidzc3CRJ3t7eCg8Pz3Pbf/jDH8zYkKRx48apZs2aWr58uVxcXCRJbdq00e9//3tFR0dr0aJFWrVqla5cuaJPPvlE1apVkyQ988wzGjZsmN5++21169ZNzs63n1fUrVtXb775piQpKChImzZtUmZmpqKiouTq6qo2bdrok08+0VdffSVJ+uabb3Tz5k2NHDlSlStXliRVqVJFn332mdLT0+Xp6fmb9zOAgiMIAAs0bNhQb7zxhqTbrxZcu3ZNe/bs0bvvvqv09HT16NFD58+f18iRI5WVlWVer3nz5vL09NTevXvVrl07/f3vf1dISIgZA5LUsWNH8wf8nerXr2/+PT09XcePH9fYsWPtti1btqxCQkL0xRdfSLp9OCIwMNCMgVw9evTQlClT9M9//lN169aVJAUGBprrXVxc5O3trYYNG8rV9d/fZry8vJSWliZJCggIUIkSJdSnTx917txZbdu2VXBwsPz9/R98hwL4zQgCwAKlS5eWn5+f3bI2bdooPT1d8fHxat26tSTpjTfeMMPhThcvXpQkpaamytvb226dq6trnmWSVKpUKfPvaWlpMgxDFSpUyLNdhQoVzB/aqampql69er7bSNK1a9fMZfk9o7/zPu/25JNPau3atVq+fLk2b96s999/X2XLltWAAQP0xz/+0e5cCgD/eQQB4EAaNWqkTZs2mZdfe+01BQUF5dmuXLlykm4/4758+bLdOsMwlJqaet/7KVOmjJycnPJcV5IuXbokLy8v834uXbqU7zaS8g2PB+Hv76/Y2FhlZGTo73//uxISErR06VLVq1dPf/jDH37TbQN4MJxUCDiQb775Ri4uLnrqqafk4+Ojs2fPys/Pz/xTuXJlLViwQCdOnJAktWzZUnv27NGNGzfM2/jyyy+VmZl53/spVaqUGjVqpD/96U/Kzs42l6elpenzzz9X06ZNJd0+RHH06FH98ssvdtffvn27KlasqJo1az70Y129erVCQkKUkZEhd3d3tWzZUrNmzZIkJScnP/TtAng4vEIAWOD69es6duyYeTkjI0N//etflZiYqH79+qlChQoKDw/XjBkz5OLiopCQEF27dk2LFy/WhQsXzBMSx4wZo127dik0NFQjRozQlStXtHDhQrtzCu5lwoQJCg0N1SuvvKIBAwYoMzNTy5cvV0ZGhsaMGSNJGj58uLZv365hw4Zp7Nix8vLy0tatW3XgwAHNnTvXPKHwYbRo0UJRUVEaM2aMBg0aJBcXF33wwQdyd3dXSEjIQ98ugIdDEAAWOHHihPr162deLlGihGrUqKHw8HCFhoZKkvr27avSpUsrPj5eCQkJKlWqlJo0aaKoqCjzuH6tWrW0du1azZs3T+Hh4fLx8dHkyZM1b968X52hZcuWWrVqlaKjozV+/Hi5u7urWbNmeuutt8xPSqxYsaI2bNigBQsWaPbs2crMzFS9evW0ePFiPfvss79pH9SrV09Lly5VXFycxo8fr+zsbDVq1EgrV67UU0899ZtuG8CDczJy39AMAAAeW5xDAAAACAIAAEAQAAAAEQQAAEAEAQAAEEEAAABUwM8hOHr0qAzDKNCHnQAAAMeQmZkpJycnu18+di8FeoXAMAzxcQX/ZhiGMjIy2Cf/YeznwsF+Lhzs58LBfrb3ID+/C/QKQe4rA3f/drbHVXp6upKSklS3bt37/jY3/Dbs58LBfi4c7OfCwX62d/z48QJvyzkEAACAIAAAAAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABAkqvVA6DwXLx4UdeuXbN6jAK7efOmUlJSrB4DAB4LBMFj4uTJk5o0aZJycnKsHuWBuLq66Xe/+51q1Khh9SgAUKwRBI+JX375RTk5OXKv4CdXzyesHqdAcjKu6WbygSL1qgYAFFUEwWPG2a20XDzKWz0GAMDBcFIhAAAgCAAAAEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQfDQ/vWvf1k9AhxUamqq1SMAwAMjCB7ChQsXFBUVpQsXLlg9ChzM+fPnNWTIEJ0/f97qUQDggRAED+Ff//qXDMPgVQLkcf36deXk5Oj69etWjwIAD4QgAAAABAEAACAIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAACSXK288+7du+dZtmPHDgsmAR5PRfFrcOfOnVq6dKl5edSoUeratauFE/26M2fOaOzYscrJyZGzs7NiY2NVvXp1q8e6r9TUVE2dOlVXr16Vt7e35s6dq3Llylk91n3duHFDK1as0I8//qg6depoxIgR8vDwsHqs+8rOztaJEyd05coVlS9fXg0aNJCLi4sls1gWBPl9I8pd7ujfkIDioCh+DeY389KlS7V06dIiM3NOTo7CwsIkOW58DR48WCkpKebltLQ0DRo0SF5eXlqzZo11g93H7NmzdfDgQfPyjz/+qL/85S8KDg7W9OnTLZzs3vbt26cVK1bo4sWL5rJKlSopNDRUrVq1KvR5LDlkcK9vRAVdD+C3KYpfg3fPVKlSpfuudwR3zuTm5qZnnnlGbm5u+a53FHfGgK+vr2bPni1fX19JUkpKigYPHmzhdPnLjQFXV1c999xzGjdunJ577jm5urrq4MGDmj17ttUj5rFv3z7NmzdPtWrV0vz587Vx40bNnz9ftWrV0rx587Rv375Cn6nQXyG4+wvgzkK+c50jP0sBirK7vwYTEhKUlJSk+vXrq1+/fnbbOcrX4M6dO82/T5o0SW3btjUv79mzR/Pnzze3c5TDB2fOnDH/vmzZMnl5eSkpKUlhYWFKSUnRyJEjze0c5fBBamqqGQMbNmyQp6enJCkgIEDXr19X//79lZKSotTUVIc5fHDjxg0zBhISEpSVlaWkpCS1adNGQ4YMUb9+/XTw4EHduHHDYQ4fZGdna8WKFWrevLmmTZsmZ+fbz83r1aunadOmac6cOVq5cqWCg4ML9fCBpecQ3P3NZseOHQ5ZzPfyyy+/qGTJklaPUSAXLlyweoSHVpT2850/BIqCHTt2KD093e6yI34N3nnOwJ0xkHs5NwiWLl3qMEEwduxYSbdfGahatardfq5atarc3NyUmZmpsWPHatu2bVaNaWfq1KmSbr8ykBsDuTw9PWWz2XTy5ElNnTpVcXFxVoyYx+rVqyVJPXv2lLu7u7Kyssx17u7ueu6555SYmKjVq1dr9OjRFk1p78SJE7p48aImTZpkxkAuZ2dn9e3bV5MmTdKJEyfk5+dXaHNZGgRFXWxsrNUjPBbYz8h192GCXOXLl9eVK1cKeZr7y8nJkSS98MIL+a7v1auXNm7caG7nCK5evSpJ9zwsMGDAAEVGRprbOYLk5GRJUseOHfNd36FDByUmJprbOYLc/6s1a9bMd32NGjXstissBMFvMHbsWNWpU8fqMQrkyJEjWrdundVjPJSitJ/PnDmjd955x+oxiq07T766k6PFgHT7mV5OTo42btyoF198Mc/6Dz/80NzOUXh7eystLU1r1qxRQEBAnvXr1683t3MUVatW1bFjx/SXv/xFQ4cOzbN+165d5naOonz58pKk06dPq169ennW//zzz3bbFRbL33Z4r3MIioJq1aqpbt26Vo9RIEXtpew7FaX9XNR0795dCQkJdpcd0ahRo8zDBnv27MlzDsGd2zmK2NhYhYWFKTMzU8nJyfLy8jLXJScnKzMz09zOUcydO1eDBg3Sd999p+vXr9sdNrh+/bpOnjxpbucohg0bpo8//lhbt25V//797dZlZGSYh2OGDRtmwXT5a9CggSpVqqRNmzbZnUMg3X5ladOmTapcubIaNGhQqHMVehDcfYzyXt+AHOVkJqC4uftr8M4TCe/ezlF07drVDIL58+dr/vz5+R4mcJTzByTZnSg4cuRIubq6qkWLFpo9e7bdcW5HOaFQksqVKycvLy+lpKSof//+stlsGjBggNavX2/GgJeXl8OcUChJHh4eCg4O1sGDB9WvXz916dJFNWrU0Lp16/Txxx8rKytLwcHBDnNCoSS5uLgoNDRU8+bN05w5c9S3b1/VqFFDP//8szZt2qTDhw8rIiKi0D+PwJLXqn7tG40jfSMCiqOi+DV490x3x4Cjz5yVlaW//e1vdjHgiDOvWbPGfDXj5MmTioyMtIsBR/wcgunTpys4OFhZWVnavn27YmNjtX37djMGHPFzCFq1aqWIiAj99NNPmjRpkvr166dJkybp9OnTioiIsORzCCw7ZHCvs5kd8QsEKI6K4tfgjh07itwnFe7YsaPIfVLhmjVritwnFU6fPl03btxQfHx8kfmkwlatWik4OJhPKpQc+xsP8DjIfdth7ucQlCpVyuqRflXXrl0dOgDyU716dW3YsKFI7edy5co5zFsLC8rDw0OhoaHmfnbkGMjl4uJSqG8tvB/HOb0VAABYhiAAAAAEAQAAIAgAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIHkrp0qXl5OSk0qVLWz0KHIynp6ecnZ3l6elp9SgA8EBcrR6gKKpcubImTpyoypUrWz0KHEyVKlX0/vvvq1y5claPAgAPhFcIHhKvDuBeiAEARRFBAAAACAIAAEAQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAAJLlaPQAKV07mv5R944rVYxRITsY1q0cAgMcGQfCYqFatmpydnZVx+bgyLh+3epwCc3V1U9myZa0eAwCKPYLgMWGz2fTee+/p2rWi86z75s2bunDhgipUqGD1KABQ7BEEj5FKlSqpUqVKVo9RYOnp6bp165bVYwDAY4GTCgEAAEEAAAAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAACSnAzDMH5to6+++kqGYcjd3b0wZnJ4hmEoMzNTbm5ucnJysnqcYov9XDjYz4WD/Vw42M/2MjIy5OTkpCZNmvzqtq4FuUF2qj0nJyfiqBCwnwsH+7lwsJ8LB/vZnpOTU4F/hhfoFQIAAFC8cQ4BAAAgCAAAAEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQPJCUlRTNmzFDbtm3VpEkT9e/fX0eOHLF6rGLt1KlTCgwM1JYtW6wepVjaunWrunTpIj8/P3Xt2lV/+tOfrB6pWMrKytKiRYsUEhKiwMBADRw4UMeOHbN6rGJl2bJlGjx4sN2ypKQkDRo0SI0bN1b79u31/vvvWzRd0UAQPIDx48fr6NGjeuedd5SYmKj69esrNDRU//znP60erVjKzMzUxIkTlZ6ebvUoxdK2bds0bdo0DRw4UDt37lS3bt3M/+N4tJYsWaJNmzZp1qxZ2rp1q2rXrq0RI0bo4sWLVo9WLKxbt04LFy60W3b16lUNHz5cNWrUUGJiosaMGaOoqCglJiZaM2QRQBAU0OnTp7V3715FRkaqWbNmql27tl5//XVVqlRJO3bssHq8YikmJkaenp5Wj1EsGYahRYsWaciQIRo4cKBq1Kih0aNHq1WrVjp06JDV4xU7u3btUrdu3dSmTRvVrFlTERERSktL41WC3+jChQsaNWqUoqKiVKtWLbt1GzdulJubm958803VqVNHzz//vIYNG6bly5dbM2wRQBAUkLe3t5YvXy4/Pz9zmZOTk5ycnHTt2jULJyueDh8+rISEBM2bN8/qUYqlU6dO6ZdfflH37t3tlq9YsUIjR460aKriy8fHR7t379bZs2eVnZ2thIQEubu7q169elaPVqR9++23cnNz0/bt2xUQEGC37siRIwoKCpKrq6u5rEWLFvrpp590+fLlwh61SCAICqhs2bJ65pln5O7ubi775JNPdPr0aT399NMWTlb8XLt2Ta+99pqmT5+uJ554wupxiqVTp05JktLT0xUaGqqWLVuqb9+++utf/2rxZMXTtGnT5ObmpmeffVZ+fn569913FR0drRo1alg9WpHWvn17xcTEqHr16nnWnT9/XlWqVLFbVqlSJUnSuXPnCmW+ooYgeEhfffWVpkyZoo4dO6pdu3ZWj1OsREZGKjAwMM+zVzw6169flyRNnjxZ3bp108qVK9W6dWuFhYVp//79Fk9X/Pzwww8qU6aM4uLilJCQoN69e2vixIlKSkqyerRi6+bNm3ZP4CSpRIkSkqRbt25ZMZLDc/31TXC3Xbt2aeLEiWrSpImioqKsHqdY2bp1q44cOcJ5Gf9hbm5ukqTQ0FD16tVLklS/fn2dOHFCq1atUsuWLa0cr1g5d+6cJkyYoNWrV6tZs2aSJD8/P/3www+KiYnR4sWLLZ6weCpZsqQyMjLsluWGQKlSpawYyeHxCsEDWrt2rcaNG6eQkBAtXbrULE48GomJifq///s/tWvXToGBgQoMDJQkzZw5UyNGjLB4uuKjcuXKkiSbzWa3vG7dujp79qwVIxVbX3/9tTIzM+3OP5KkgIAAnT592qKpir8qVarkeRdH7uXc//+wxysED2D9+vWaNWuWBg8erGnTpsnJycnqkYqdqKgo3bx5025Zx44d9eqrr6pHjx4WTVX8NGzYUKVLl9bXX39tPmuVpJMnT3Jc+xHLPY793Xffyd/f31x+8uTJPGfG49Fp3ry5PvjgA2VnZ8vFxUWSdODAAdWuXVs+Pj4WT+eYCIICOnXqlObOnavf//73GjlypN1ZqiVLllSZMmUsnK74uFe5+/j4UPWPUMmSJTVixAjFxcWpcuXK8vf3186dO7V3716tXr3a6vGKFX9/fzVt2lSTJ0/WzJkzVaVKFW3dulX79+/Xhg0brB6v2Hr++ecVHx+vadOmacSIEfrmm2+0evVqvfHGG1aP5rAIggL65JNPlJmZqU8//VSffvqp3bpevXrx9jgUOWFhYfLw8NC7776rCxcuqE6dOoqJiVFwcLDVoxUrzs7OWrJkiRYuXKgpU6YoNTVVNptNq1evzvNWOTw6Pj4+io+P15w5c9SrVy9VrFhRr732mnnODPJyMgzDsHoIAABgLU4qBAAABAEAACAIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggDFzODBg9WgQQMdP3483/Xt27dXREREocwSERGh9u3bF8p9PYisrCxFREQoMDBQTZo00YEDB/Jsc/DgQfn6+tr9adSokZ599lm9/fbbunHjxiOZJSYmRr6+vo/ktgD8Nnx0MYqd7OxsTZkyRVu2bMnz+9Ahffnll/rwww8VFhamVq1aqUGDBvfcdsaMGWrYsKEk6caNG/rf//1fRUdH69KlS5o/f35hjQygEPAKAYqdMmXK6Pvvv1dcXJzVoziklJQUSVLv3r3VvHlzlS5d+p7b1q1bV40bN1bjxo3VsmVLDR8+XMOHD9dHH32k69evF9LEAAoDQYBip379+urZs6fi4+P1j3/8477b+vr6KiYmxm7Z3S9jR0REKDQ0VAkJCerQoYP8/f314osv6tSpU9q9e7e6d++ugIAA9e3bV0lJSXnuIyEhQe3atZO/v7+GDh2qEydO2K1PTk7W+PHjFRQUpICAgDzbnD17Vr6+vlq1apU6d+6sgIAAJSYm5vt4srOztW7dOnXv3l3+/v5q166doqKidOvWLfOx5B4y6dChgwYPHnzf/ZOfsmXL5lmWkpKiGTNmqFWrVvLz89MLL7yg/fv3221z69Yt/fd//7dat26twMBATZkyxZwrV0REhIYOHaqZM2eqSZMm6tKli7Kzs3Xr1i3FxcWpc+fO8vPzU8eOHbV8+XLl5OTYXf/jjz9W7969FRgYqNatW2vGjBlKTU0118fExKhz58769NNP1a1bN/n5+em5557T0aNHdezYMfXt21f+/v7q1q2b3fw3b95UZGSk2rZtq0aNGqlz585asWLFA+87wJFxyADF0tSpU7V3715NmTJFiYmJv/nQwdGjR3Xx4kVFRETo1q1bioyM1CuvvCInJye9+uqr8vDw0MyZMzVx4kTt3LnTvN758+cVGxurCRMmyNPTU7GxsRo8eLB27NihqlWr6sqVK3rxxRfl4eGh119/XR4eHvqf//kfDRw4UJs3b1adOnXM24qJidG0adPk6el5z9+SN2PGDG3btk0vv/yymjVrphMnTiguLk5JSUmKj49XWFiYqlSpoiVLlig2Nla1a9e+7+POyclRVlaWJCkzM1NJSUl6//331bNnT3l6ekq6/YN+6NChunz5ssLDw1WpUiUlJiZqxIgRio+PV8uWLSVJkyZN0pdffqnw8HDVrFlTCQkJ2rFjR577PHLkiEqUKKG4uDilp6fL2dlZo0aN0rFjxzR27FjVq1dPBw8e1MKFC3XmzBnNmjVLkrR48WJFR0drwIABCg8P15kzZ7Ro0SIdO3ZMGzduVMmSJc1/k3nz5ik8PFylSpXSrFmz9Oqrr8rNzU2jRo3SE088Ya7//PPPVbJkSc2dO1d/+9vfNHnyZFWoUEF79uzR22+/LS8vLz3//PMF/W8EODYDKEYGDRpkDBo0yDAMw/jss88Mm81mvPPOO+b6kJAQY/LkyeZlm81mREdH291GdHS0YbPZzMuTJ082bDab8cMPP5jLZsyYYdhsNmPfvn3mshUrVhg2m81ITU21u97XX39tbnPx4kXD39/fmDdvnmEYhvHOO+8Yfn5+xtmzZ81tbt26ZTz77LPGuHHjDMMwjDNnzhg2m82YOnXqfR/7999/b9hsNmPZsmV2y7du3WrYbDbj888/NwzDMBITEw2bzWacOXPmnrd14MABw2az5funffv2xvnz581tExISDJvNZhw7dsxclpOTYwwcONDo3bu3YRiGcfLkScNmsxnr1683t8nOzja6dOmS774+d+6cuezzzz83bDab8dFHH9nNGBcXZ9hsNuPkyZNGSkqK0ahRI+P111+32+bw4cOGzWYz1q5daxjGv/9tv/jiC3ObZcuWGTabzdi0aZO57M9//rNhs9mMEydOGIZhGJ06dTKmT59ud9uxsbHG7t2777kPgaKGQwYottq3b68ePXooPj5e33777W+6rXLlytk9W69QoYIk2T1T9/LykiRdu3bNXFa9enX5+/ublytWrKjGjRvr8OHDkqT9+/erfv36qly5srKyspSVlSVnZ2e1bdtW+/bts5uhfv36953x0KFDkqSuXbvaLe/atatcXFx08ODBgj5c0xtvvKHNmzdr8+bNWr9+vd566y2VKFFCffr0UXJysvkYKlasqIYNG5qPITs7WyEhIfrHP/6h1NRUHTlyRJLs3nXh7OysTp065blPLy8vValSxe5xubq6qnPnznbb9ejRw1x/7NgxZWRkqFu3bnbbNGvWTNWqVTP3Ta4mTZqYfy/Iv2VwcLA2btyol19+WWvXrtWZM2c0ZswYtWvX7td3IlBEcMgAxdr06dO1f/9+89DBw8p9efxupUqVuu/1cn/Y3MnHx0fnzp2TdPvY++nTp80z+e9259v7fu2+co+VV6xY0W65q6urvL29lZaWdt/r56d27dry8/MzLzdt2lRBQUHq0KGDVq5cqenTpyslJUWXLl2652O4dOmSOZu3t7fdurtnlZTnJMfU1FR5e3vLxcUl3+umpaWZt5/f/q5QoUKex57fv6eHh0e+80vStGnTVKVKFW3fvl2zZs3SrFmzFBgYqMjISNWrV++e1wOKEoIAxVq5cuUUGRmpMWPGaPHixfluk52dbXc5PT39kd3/nSe05bp06ZLKly8v6fY7IoKCgvTaa6/le/0HOfehXLly5u1Xq1bNXJ6ZmamrV6/m+WH8sKpWrary5cvrp59+knT7MdSqVUtRUVH5bv/kk0+a93358mVVrVrVXJf7jof7KVeunK5evars7Gy7KLh48aKk25GR+9gvX76sp556yu76ly5dUvXq1Qv8+PLj7u6u0aNHa/To0UpOTtbu3bu1ePFiTZgwwe6cEaAo45ABir0OHTqoW7duWr58ua5cuWK3ztPTUxcuXLBb9tVXXz2y+z516pR+/vln8/K5c+d09OhRBQcHS5KCgoJ06tQp85l47p9t27Zp8+bNeZ4V309QUJAk5fkBtXPnTmVnZ6tp06aP4BHdftfDlStXVKtWLfN+z507Jx8fH7vHsHfvXsXHx8vFxUUtWrSQJP35z3+2u63du3f/6v0FBQUpKysrz3W3b98u6farFgEBAXJ3d9dHH31kt82RI0eUnJxsd4jgQd28eVOdOnXSypUrJd0OooEDB6pr167mYROgOOAVAjwWXn/9dR04cECXL1+2W96uXTvt3LlTAQEBqlmzprZs2aLTp08/svstUaKERo8erfDwcGVnZ2vRokXy8vLS0KFDJUnDhg3Ttm3bNGzYML300kvy9vbWxx9/rI0bN2rKlCkPdF9169ZVr169FB0drRs3bqh58+ZKSkpSbGysgoOD9fTTTz/w/D/88INKlCghSTIMQ8nJyYqLi1OJEiU0aNAgSbc/z2Dt2rUaPny4eZb+vn379N5772nQoEFyc3NTzZo11a9fP7377rvKyspS/fr1tW3bNn333Xe/OkPbtm0VHBys6dOn68KFC6pXr54OHTqk9957T7169VLdunUlSa+88ori4uLk5uamkJAQnT17VosWLTL3y8MqWbKkGjZsqNjYWLm5ucnX11enTp3Shx9+mO85EEBRRRDgseDl5aXIyEiNHTvWbvmUKVOUlZWlt956S66ururSpYsmTJig6dOnP5L7bdCggTp16qTIyEilpaWpZcuWmjp1qnnIoHLlyvrggw+0YMECRUZG6tatW6pVq5bmzJmjPn36PPD9zZkzRzVr1lRiYqLee+89VapUSUOGDFFYWJicnR/8BcE333zT/Luzs7O8vLzUuHFjzZ8/33yFoFSpUlq3bp0WLFig+fPnKy0tTdWqVdOECRP00ksvmdefOXOmKlSooLVr1yo1NVVPP/20Ro0apYULF953BicnJy1btkzR0dFavXq1rly5oieffFLjx4/X8OHDze3GjRtn3n5CQoK8vLzUuXNn/fGPf/zV8y8Ksh8WLlyolStX6tKlS/Lx8VGfPn30X//1X7/pdgFH4mQYhmH1EAAAwFqcQwAAAAgCAABAEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAASf8P46LdczYyvqAAAAAASUVORK5CYII=", + "text/plain": [ + "
" ] }, "metadata": {}, @@ -1208,65 +1967,48 @@ } ], "source": [ - "\n", - "# Create subplots\n", - "fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 6))\n", - "\n", "# Box plot for bedrooms\n", - "sns.boxplot(x=housing_data_encoded['bedrooms'], ax=axes[0])\n", - "axes[0].set_title('Distribution of Bedrooms')\n", - "axes[0].set_xlabel('Number of Bedrooms')\n", - "\n", - "# Box plot for bathrooms\n", - "sns.boxplot(x=housing_data_encoded['bathrooms'], ax=axes[1])\n", - "axes[1].set_title('Distribution of Bathrooms')\n", - "axes[1].set_xlabel('Number of Bathrooms')\n", - "\n", - "# Box plot for floors\n", - "sns.boxplot(x=housing_data_encoded['floors'], ax=axes[2])\n", - "axes[2].set_title('Distribution of Floors')\n", - "axes[2].set_xlabel('Number of Floors')\n", - "\n", - "# Adjust layout\n", - "plt.tight_layout()\n", - "\n", - "# Show plots\n", - "plt.show()\n" + "sns.boxplot(x=housing_data['bedrooms'])\n", + "plt.title('Bedrooms')\n", + "plt.xlabel('Number of Bedrooms')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "##### Interpretation:" + "### b.) Bivariate Analysis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### b.) Bivariate Analysis" + "**#Total Square Footage of houses by Price Range.**" ] }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 532, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "price_range\n", - "300K-600K 10782\n", - "600K-1M 4796\n", - "100K-300K 4531\n", - "1M-2M 1260\n", - "2M-5M 191\n", - "70K-100K 30\n", - "5M-8M 7\n", - "Name: count, dtype: int64\n" - ] + "data": { + "text/plain": [ + "price_range\n", + "300K-600K 10560\n", + "600K-1M 4691\n", + "100K-300K 4433\n", + "1M-2M 1234\n", + "2M-5M 187\n", + "70K-100K 30\n", + "5M-8M 7\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 532, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -1274,18 +2016,17 @@ "labels = [\"70K-100K\", \"100K-300K\", \"300K-600K\", \"600K-1M\", \"1M-2M\", \"2M-5M\", \"5M-8M\"]\n", "\n", "# Cut the data into the specified ranges and assign labels\n", - "housing_data_encoded[\"price_range\"] = pd.cut(housing_data_encoded.price,\n", + "housing_data.loc[:,\"price_range\"] = pd.cut(housing_data.price,\n", " bins=[70000, 100000, 300000, 600000, 1000000, 2000000, 5000000, 8000000],\n", " labels=labels)\n", "\n", "# Count the occurrences of each category\n", - "counts = housing_data_encoded['price_range'].value_counts()\n", - "print(counts)" + "housing_data['price_range'].value_counts()\n" ] }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 533, "metadata": {}, "outputs": [ { @@ -1317,15 +2058,15 @@ " sqft_living\n", " sqft_lot\n", " floors\n", + " waterfront\n", + " condition\n", + " ...\n", " sqft_above\n", " sqft_basement\n", - " ...\n", - " grade_4 Low\n", - " grade_5 Fair\n", - " grade_6 Low Average\n", - " grade_7 Average\n", - " grade_8 Good\n", - " grade_9 Better\n", + " yr_built\n", + " yr_renovated\n", + " sqft_living15\n", + " sqft_lot15\n", " house_age\n", " renovation_age\n", " total_sqft\n", @@ -1334,208 +2075,229 @@ " \n", " \n", " \n", - " 3834\n", - " 534000112\n", - " 2015-02-03\n", - " 348000.0\n", - " 2\n", - " 2.50\n", - " 1270\n", - " 1242\n", + " 16202\n", + " 4331000130\n", + " 2014-10-17\n", + " 315000.0\n", + " 3\n", + " 2.00\n", + " 1770\n", + " 9685\n", + " 1.0\n", + " 0\n", " 3.0\n", - " 1270\n", - " 0.0\n", " ...\n", - " False\n", - " False\n", - " False\n", - " True\n", - " False\n", - " False\n", - " 16\n", + " 1770\n", + " 0.0\n", + " 1948\n", " 0.0\n", - " 3782.0\n", + " 1520\n", + " 11122\n", + " 76\n", + " 0.0\n", + " 13225.0\n", " 300K-600K\n", " \n", " \n", - " 14554\n", - " 6145601510\n", - " 2014-08-22\n", - " 412000.0\n", + " 16770\n", + " 1138010170\n", + " 2014-08-01\n", + " 350000.0\n", " 3\n", " 1.00\n", - " 1000\n", - " 3844\n", + " 860\n", + " 7030\n", " 1.0\n", - " 900\n", - " 100.0\n", + " 0\n", + " 3.0\n", " ...\n", - " False\n", - " False\n", - " False\n", - " True\n", - " False\n", - " False\n", - " 96\n", + " 860\n", " 0.0\n", - " 5844.0\n", - " 300K-600K\n", - " \n", - " \n", - " 13455\n", - " 1624049170\n", - " 2014-10-17\n", - " 446800.0\n", - " 4\n", - " 2.00\n", - " 2410\n", - " 8712\n", - " 1.0\n", - " 1260\n", - " 1150.0\n", - " ...\n", - " False\n", - " False\n", - " False\n", - " True\n", - " False\n", - " False\n", - " 66\n", + " 1973\n", " 0.0\n", - " 13532.0\n", + " 1360\n", + " 7500\n", + " 51\n", + " 0.0\n", + " 8750.0\n", " 300K-600K\n", " \n", " \n", - " 6065\n", - " 6911700066\n", - " 2014-06-04\n", - " 175000.0\n", - " 2\n", + " 13526\n", + " 424000145\n", + " 2014-07-07\n", + " 230000.0\n", + " 3\n", " 1.00\n", - " 670\n", - " 2378\n", + " 1390\n", + " 6000\n", " 1.0\n", - " 670\n", - " 0.0\n", + " 0\n", + " 3.0\n", " ...\n", - " False\n", - " True\n", - " False\n", - " False\n", - " False\n", - " False\n", - " 105\n", + " 1390\n", + " 0.0\n", + " 1954\n", " 0.0\n", - " 3718.0\n", + " 1170\n", + " 6000\n", + " 70\n", + " 0.0\n", + " 8780.0\n", " 100K-300K\n", " \n", " \n", - " 9734\n", - " 6071300030\n", - " 2014-06-24\n", - " 464500.0\n", + " 16900\n", + " 1324079007\n", + " 2014-11-10\n", + " 425000.0\n", " 3\n", " 1.75\n", - " 1150\n", - " 10466\n", + " 1610\n", + " 144619\n", " 1.0\n", - " 1150\n", - " 0.0\n", + " 0\n", + " 3.0\n", " ...\n", - " False\n", - " False\n", - " False\n", - " True\n", - " False\n", - " False\n", - " 65\n", + " 1610\n", + " 0.0\n", + " 1977\n", " 0.0\n", - " 12766.0\n", + " 2220\n", + " 144619\n", + " 47\n", + " 0.0\n", + " 147839.0\n", " 300K-600K\n", " \n", + " \n", + " 9417\n", + " 5149800040\n", + " 2014-09-18\n", + " 255000.0\n", + " 4\n", + " 2.00\n", + " 2560\n", + " 12155\n", + " 1.0\n", + " 0\n", + " 4.0\n", + " ...\n", + " 1350\n", + " 1210.0\n", + " 1960\n", + " 0.0\n", + " 1790\n", + " 11906\n", + " 64\n", + " 0.0\n", + " 17275.0\n", + " 100K-300K\n", + " \n", " \n", "\n", - "

5 rows × 40 columns

\n", + "

5 rows × 21 columns

\n", "" ], "text/plain": [ " id date price bedrooms bathrooms sqft_living \\\n", - "3834 534000112 2015-02-03 348000.0 2 2.50 1270 \n", - "14554 6145601510 2014-08-22 412000.0 3 1.00 1000 \n", - "13455 1624049170 2014-10-17 446800.0 4 2.00 2410 \n", - "6065 6911700066 2014-06-04 175000.0 2 1.00 670 \n", - "9734 6071300030 2014-06-24 464500.0 3 1.75 1150 \n", + "16202 4331000130 2014-10-17 315000.0 3 2.00 1770 \n", + "16770 1138010170 2014-08-01 350000.0 3 1.00 860 \n", + "13526 424000145 2014-07-07 230000.0 3 1.00 1390 \n", + "16900 1324079007 2014-11-10 425000.0 3 1.75 1610 \n", + "9417 5149800040 2014-09-18 255000.0 4 2.00 2560 \n", "\n", - " sqft_lot floors sqft_above sqft_basement ... grade_4 Low \\\n", - "3834 1242 3.0 1270 0.0 ... False \n", - "14554 3844 1.0 900 100.0 ... False \n", - "13455 8712 1.0 1260 1150.0 ... False \n", - "6065 2378 1.0 670 0.0 ... False \n", - "9734 10466 1.0 1150 0.0 ... False \n", + " sqft_lot floors waterfront condition ... sqft_above \\\n", + "16202 9685 1.0 0 3.0 ... 1770 \n", + "16770 7030 1.0 0 3.0 ... 860 \n", + "13526 6000 1.0 0 3.0 ... 1390 \n", + "16900 144619 1.0 0 3.0 ... 1610 \n", + "9417 12155 1.0 0 4.0 ... 1350 \n", "\n", - " grade_5 Fair grade_6 Low Average grade_7 Average grade_8 Good \\\n", - "3834 False False True False \n", - "14554 False False True False \n", - "13455 False False True False \n", - "6065 True False False False \n", - "9734 False False True False \n", + " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", + "16202 0.0 1948 0.0 1520 11122 \n", + "16770 0.0 1973 0.0 1360 7500 \n", + "13526 0.0 1954 0.0 1170 6000 \n", + "16900 0.0 1977 0.0 2220 144619 \n", + "9417 1210.0 1960 0.0 1790 11906 \n", "\n", - " grade_9 Better house_age renovation_age total_sqft price_range \n", - "3834 False 16 0.0 3782.0 300K-600K \n", - "14554 False 96 0.0 5844.0 300K-600K \n", - "13455 False 66 0.0 13532.0 300K-600K \n", - "6065 False 105 0.0 3718.0 100K-300K \n", - "9734 False 65 0.0 12766.0 300K-600K \n", + " house_age renovation_age total_sqft price_range \n", + "16202 76 0.0 13225.0 300K-600K \n", + "16770 51 0.0 8750.0 300K-600K \n", + "13526 70 0.0 8780.0 100K-300K \n", + "16900 47 0.0 147839.0 300K-600K \n", + "9417 64 0.0 17275.0 100K-300K \n", "\n", - "[5 rows x 40 columns]" + "[5 rows x 21 columns]" ] }, - "execution_count": 64, + "execution_count": 533, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "housing_data_encoded.sample(5)" + "housing_data.sample(5)" ] }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 534, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAJYCAYAAADmEJ6pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACOOElEQVR4nOzdd3gU1dvG8Xs3vRBI6NIJJnSIEASlq4iCKCCiEJGOFGlSNXQILbTQe0eKIIiAFMWCSglKUAEVKYJ0EgikJzvvH7xZiaC/BBN2Sb6f6/KSnZk9+8yebDL3zpkzJsMwDAEAAAAAbMps6wIAAAAAAIQzAAAAALALhDMAAAAAsAOEMwAAAACwA4QzAAAAALADhDMAAAAAsAOEMwAAAACwA4QzAAAAALADhDMAsCHDMGxdAjKIPgMAZBVHWxcAAI+SIUOG6KOPPvrXbWrUqKGVK1f+6zbR0dEaO3asWrVqpcDAwAy9/sGDB/X555//63abNm3S+vXr9euvvyolJUVFixZVo0aN1KlTJ3l6eqb79ezZzJkzNWvWrH9cP2jQIHXq1ClTX3POnDlydnZW586dM7XdB3X+/Hk988wzGj9+vFq0aJGpbb/55ps6ePBgmmVOTk7Kly+fGjRooL59+yp37tw2qe1+r/N3Tk5Oyp07twICAvTuu++qVKlSWVYDAGQWwhkAZECPHj30+uuvWx/PmTNHx44dSxMS0hN+jh8/ri1btqhly5aZXuOsWbM0b948dezYUd27d5eTk5N++uknLVq0SF9//bU++OADOTk5Zfrr2sq6devuu/yxxx7L9NeaMWOGevXqlent2qvy5ctrxIgR1sdJSUn6+eefNXXqVB0/flwffPCBTCbTfZ9boEABrVu3TsWLF38otXbv3l3169e3Po6Li9PPP/9s/Sx8+umncnFxeSi1AMCDIpwBQAYUL148zcGmj4+PnJ2dVbVqVdsVdZfExEQtXLhQnTp1Ur9+/azLn3rqKZUuXVo9e/bUnj179MILL9iwysxlL+99duTp6XnP+xsYGKiYmBiFhYUpIiLiH9//h/25KF68+D2vV6tWLXl4eGjkyJHav3+/6tWr99DqAYAHwTVnAJAFvvnmG7Vp00bVqlXTk08+qXfffVcXL16UJB04cEDt2rWTJLVr105vvvmmJCklJUULFixQ06ZNVblyZVWtWlWvv/669u/fn+7XvX37tuLj42WxWO5ZV69ePfXr10/FihWzLrtx44YGDx6sGjVqqEaNGgoJCVFYWJgaNmxo3aZhw4YaMmRImrY2bdokf39/nT9/3rpsz549atOmjQICAlSxYkU1btxYq1evtq4/cOCA/P39tXbtWjVo0EBPPPGEvvnmG0lSeHi4goKCVKVKFdWoUUODBw9WZGRkuvf7f/m3/kh15swZ9e7dW08//bSqVq2qN998U4cPH7au9/f3l3TnzGTqv9Oz35L0+++/q0uXLnriiSf01FNPadq0aRo6dKi17yXJYrFowYIFeu6551SxYkU9//zz/3N4bKrLly+rW7duqly5surVq6ewsDClpKRIkiZOnKjKlSvr1q1baZ4zZ84cVatWTXFxcel6jbtVrFhRknThwgVJd4ZADhgwQL1791bVqlXVoUMHnT9/Xv7+/tq0aZP1eadOnVKvXr1Uo0YNBQYGqlu3bvr999+t6xMSEjRp0iTVq1dPFStW1EsvvaTt27dnuL67eXl53bPs0KFD6tSpkwIDA1WxYkU1bNhQM2fOtH5uUmvfsWOHevfurYCAANWoUUPBwcGKjY21tpOUlKTQ0FDVrVtXlStXVqdOnbR58+Z7PhtZ/fMNIPsgnAFAJtu8ebM6duyowoULa+rUqRo6dKh++OEHtW7dWtevX1eFChU0fPhwSdLw4cOtw8ZCQ0M1Z84ctW7dWosWLdKYMWN048YN9enTJ90H0D4+PqpSpYoWL16swYMHa8+ePdaDQCcnJ7399tvWA2uLxaLOnTvrq6++0sCBAxUSEqIjR45o1apVGd7nL774Qj179lSFChU0Z84czZw5U8WKFdPo0aMVERGRZttZs2Zp8ODBGj58uAICAnTo0CG1b99erq6umj59ut577z0dPHhQ7dq1U3x8/P987eTk5Hv+uzuc/q/+kKSTJ0+qRYsWOn/+vIKDgxUaGiqTyaS33nrLet1V6vDJV1991frv9Ox3ZGSkgoKCdPHiRY0fP17BwcH69NNP9cknn6TZj5EjRyosLEzNmjXTvHnz1LhxY4WEhGj27Nn/8z2YOXOm8ubNq9mzZ6tly5aaN2+eJk6caK03ISFBn376aZrnbNmyRS+++KLc3Nz+Z/t/d/r0aUlKE/R37NghDw8PzZ07977X5F2+fFmtW7fWmTNnNHLkSE2ePFnXrl3TW2+9pRs3bsgwDPXs2VNr165Vhw4dNHfuXAUEBKhfv37avHnz/6zJYrGk+Rm4ffu2vvnmG02ZMkVFihRR9erVJUknTpxQ+/btlSdPHk2bNk1z585V9erVNWvWLO3YsSNNmyNGjFCRIkU0Z84cderUSR9++KHmzp1rXT98+HAtX75cQUFBmj17tvLly6dhw4alaeO//nwDyGEMAMADGzx4sNGgQQPr45SUFOPpp582OnbsmGa7s2fPGhUqVDAmTpxoGIZh7N+/3/Dz8zP2799v3aZ///7GsmXL0jxv586dhp+fn/HDDz/c9/Xu5+LFi8abb75p+Pn5GX5+foa/v7/RtGlTY8aMGcaNGzes233++eeGn5+fsXfvXuuyW7duGTVq1EjzGg0aNDAGDx6c5jU2btxo+Pn5GefOnTMMwzAWLlx4zzZRUVGGn5+fMX/+/DT7PHv27DTbtW7d2mjatKmRnJxsXXbq1CmjXLlyxqpVq/5xP8PCwqz7+Pf/hg0bZhhG+vujT58+xpNPPmncunXLuk1SUpLx/PPPGy1btrQu8/PzM8LCwqyP07Pf06dPNypVqmRcunTJus358+eNChUqGEFBQdb99ff3tz4n1bRp04xKlSoZkZGR930Pzp07Z/j5+Rldu3ZNs3zcuHFGhQoVjKioKMMw7rzHbdu2ta4/fPiw4efnZ3z//ff3bdcwDCMoKMho27atkZSUZP3v2rVrxvbt240aNWoYrVu3NiwWi3XbKlWqGAkJCffUtnHjRsMwDGPChAlG5cqVjStXrli3uXjxolG/fn3jiy++MPbt22f4+fkZ27ZtS1PHgAEDjKefftpISkr61/fgfv9VrVrV6Nmzp/HHH39Yt//oo4+Mzp07GykpKdZlKSkpRrVq1aw/N6ltDhgwIM1rvfnmm0bTpk0Nw7jzM+Tv728sWbIkzTYdO3ZM89l40J9vADkT15wBQCY6ffq0rl69qnfffTfN8uLFiysgIOCe2e/uNmXKFEl3zrScOnVKZ8+e1d69eyXduZYsvQoVKqQVK1bo5MmT+uqrr3TgwAEdOnRIs2fP1vr167Vq1SqVLFlS4eHhcnJyUt26da3P9fT0VMOGDXXgwIGM7Lb1TElMTIxOnz6tP/74Qz/++ON9ay9Xrpz133FxcYqIiFCnTp1kGIaSk5Ml3Tkj4+vrq2+++UZt27b919f+8MMP71mWN29eSenvj4MHD6pBgwZpJnNxdHRUkyZNNHv2bMXExMjDw+OB9nv//v0KCAhQwYIFrc8rUqSIAgICrI/3798vwzDUsGFD63sg3RlSOnfuXB0+fFjPPvvsP74Hf7+GsFGjRlq+fLkiIiJUr149tWzZUsOGDdOff/6pIkWK6KOPPlKpUqXS1HA/hw4dUoUKFdIsM5vNeuqppzR69Og0k4GULl1azs7O/9jW4cOHVbVqVeXPn9+6rFChQtaf8dSzlfXq1bvnPfj444/122+/pfnZ+btevXqpfv36MgxDhw4d0vTp09WkSRONHDlSjo5/He688soreuWVV5SQkKDTp0/r7NmzOn78uFJSUpSUlJSmzb9fw1aoUCH9+eefku4M0zUMQ40bN06zTdOmTbVv3z5JmfPzDSBnIZwBQCa6ceOGJClfvnz3rMuXL5+OHTv2j8/98ccfNWrUKP34449yc3NTmTJlrDMOGg9wb60yZcqoTJky6tixo5KSkrRp0yaNHj1aU6dOVVhYmG7evKk8efLIbE47wr1AgQIZfq3IyEiNGDFCe/bskclkUokSJazDyP5eu7u7u/Xf0dHRslgsWrhwoRYuXHhPu+mZXa9SpUr/uC69/XHz5s1/3MYwDN2+ffu+4Sw9+x0ZGXlPwElt+9q1a2nqbNKkyX334/Lly/+4j5LSBB7pzvDW1P2SpBdffFEhISHasmWLOnXqpB07dqhr167/2qYkVahQQaNGjZIkmUwmubi4qHDhwvedkfR+78/dbty4oaJFi/7resMw9MQTT9x3/ZUrV/41nBUpUsT6s1C5cmV5e3tr6NChcnBwsO6DJMXHx2vMmDHasmWLkpOTVbRoUQUEBMjR0fGen9W/D/k0m81p+lX664uAVHc/zoyfbwA5C+EMADJRnjx5JMl60H23q1evytvb+77Pu337tjp37ix/f39t27ZNpUuXltls1pdffqmdO3em+/WXL1+uuXPnau/evWkOLJ2cnNS6dWt9+eWXOnnypCTJ29tbUVFRSklJkYODg3Xb1KBwt9TJJVLdPSmCJA0YMECnTp3SsmXLFBAQIGdnZ8XFxWn9+vX/Wq+Hh4dMJpPat29/32DyINdD3S29/ZE7d+5/3EbSP/Zbeva7UKFC92079Xo36a9JK5YvX37fkPO/bguQGsJSpb5ealDw8PBQ48aNtWPHDvn5+Sk2NlYvv/zyv7aZ+rx/C78ZkStXrvtOgvHdd9+paNGiypUrl9zd3bVixYr7Pr9EiRIZer0WLVpo586dWrt2rZ577jnVrl1bkjRu3Djt3LlT06dP11NPPWX9sqBWrVoZaj/1TOi1a9fS9M/d+5jVP98Ash8mBAGATFSqVCnlz5//nskezp07pyNHjljPCtwdhqQ7s9jduHFD7dq1U5kyZaxns7766itJuu/si/dTpkwZRUVF3XeWv5SUFJ07d05+fn6S7kyvn5ycrD179li3SUpK0tdff53meZ6enrp06VKaZXfPYpj6uFGjRnryySetQ9vSU7unp6fKly+vU6dOqVKlStb/Hn/8cc2cOTPDwyv/Lr39ERgYqL179+r27dvWbVJSUrRt2zZVqlTJuk9/P8uYnv0ODAzUkSNHrEFPunMW6MiRI9bHqWfboqKi0rwPkZGRmjFjxn0D892++OKLNI+3bdsmNzc3ValSxbrs1Vdf1a+//qrly5frqaeeSjPM8mGoXr26IiIi0oSX69evq3Pnzvryyy9Vo0YNxcbGyjCMNO/Br7/+qtmzZ6cZ6phew4YNk4uLi8aOHWsdsnj48GE9+eSTevbZZ63B7KefflJkZGS6P2eSVK1aNTk4OGj37t1plu/atcv676z++QaQ/XDmDAAykdlsVv/+/TV06FC9++67atasmaKiojRr1izlzp1bHTp0kHTnLIJ056A6d+7cKlWqlDw9PTVv3jw5OjrK0dFRO3futF5Pld7ZGp9++mk1bdpUU6dO1S+//KLnn39ePj4+unTpktauXatLly5p+vTpku6cKahXr56Cg4N17do1FS1aVKtWrdKFCxfSnAlo0KCB5s+fr/nz56tKlSr6/PPP75nev3Llytq6dasqVKigQoUK6fvvv9eCBQtkMpn+Z+39+/dX165dre9XSkqKlixZooiICPXo0SNd+/1P0tsfvXr10ldffaV27dqpa9eucnJy0qpVq3Tu3DktWrTI2p6Xl5e+//57HTp0SNWrV0/Xfrdr106rV69Wp06d1LNnT0l3prFPSkqyXrPl7++vZs2aWa8Lq1ixok6fPq1p06apaNGiKlmy5L/u565du1SwYEE99dRT2rdvn9atW6c+ffqkGX5YrVo1lSpVSgcPHtS0adP+0/v6INq3b6/Nmzerc+fO6tatm5ycnDR37lwVKlRIL730knLlyqXAwED16NFDPXr0kK+vr44ePaqwsDDVqVPHOlQzI4oWLapOnTppzpw5Wr58uTp37qzKlStrx44d+uCDD+Tr66sTJ05o7ty56fpZvVuxYsXUsmVLTZ06VUlJSSpbtqx2795tvYYuNcin9+f7yJEj8vHxeWg37QZgnwhnAJDJWrRoIQ8PD82fP189e/aUp6en6tSpo/79+1uvDXr88cfVtGlTrV69Wl9//bU++eQTzZkzR5MmTVKfPn3k4eGhcuXKadWqVerSpYvCw8PT3Hvs30yePFk1atTQxx9/bL0vk4+Pj55++mmNHz8+zfTnYWFhmjJlimbOnKmEhAQ1adJEjRs31tGjR63bdOvWTZGRkVq8eLGSkpJUv359jRs3Tt27d7duM2HCBI0ZM0ZjxoyRJJUsWVKjRo3Sxx9/rPDw8H+tt3bt2lq8eLFmzZql3r17y8nJSRUqVNDSpUsz5SbG6e2PNWvWWKfaN5lMqly5slasWGE9qyVJb7/9tubMmaMuXbpo+/bt6dpvLy8vrVixQuPGjdOgQYPk4eGhNm3ayM3NLc31d+PHj9f8+fOtITpv3rx68cUX1bdv33vOtP7d+++/r23btmnZsmXKnz+/3nvvPeu99O5Wv359RUZG/uvkIlmlcOHCWrNmjSZPnqwhQ4bI2dlZTz75pKZNm6bcuXNLkhYsWKAZM2Zo/vz5un79ugoWLKgOHTpYQ+2D6Nq1qzZv3qw5c+aoWbNmGjJkiJKSkjR9+nQlJiaqaNGi6t69u06ePKnPP//8niG8/2bYsGFyd3fXkiVLdPv2bdWqVUvdu3fX7NmzrX2b3p/v1q1bq3nz5powYcID7yuAR5/JeJCrzAEA2daQIUN08OBBff7557YuJVuIiIjQjRs3VK9ePeuy5ORk1a9fX02aNNHQoUMfSh2GYahJkyaqXbu23nvvvYfymtnZjRs39NVXX6lOnTpprkmcOHGiNm3axJBFAA+EM2cAAGShCxcuqF+/furZs6dq1KihuLg4rVu3Trdu3dJrr72W5a9/+/ZtLVu2TD/++KPOnTunN998M8tfMydwc3PTuHHjVK5cOb311ltyd3e33sS9W7duti4PwCOKcAYAQBZ64YUXdOPGDa1Zs0aLFy+Wk5OTqlSpolWrVsnX1zfLX9/V1VVr166VxWJRSEhImmGteHAuLi5atmyZpk+friFDhiguLk7FixfX4MGDuXcZgAfGsEYAAAAAsANMpQ8AAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoDZGrOIYRiyWJhrBQAAAMjJzGaTTCZTurYlnGURi8VQZGSMrcsAAAAAYEM+Ph5ycEhfOGNYIwAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAUdbFwAAAAAg85nNJpnNJluXkW1ZLIYsFiNT2yScAQAAANmM2WxSnjzucnBgoFxWSUmx6MaN2EwNaDYPZ5cvX1bdunXvWT5+/Hi1aNFCx48f17hx4/TTTz/Jx8dH7du3V7t27azbWSwWzZo1Sxs2bNCtW7cUGBio4cOHq1ixYtZtMqMNAAAA4FFhNpvk4GDW+5NX6/S5y7YuJ9spVaygxg1sK7PZlL3C2YkTJ+Ti4qI9e/bIZPrrtGuuXLkUFRWlDh06qGHDhho1apSOHDmiUaNGycPDQy1btpQkzZkzR2vWrNGECRNUqFAhTZ48WZ07d9bWrVvl7OycKW0AAAAAj6LT5y7rxO9/2roMpJPNw9mvv/6qkiVLqkCBAvesW758uZycnDR69Gg5OjrK19dXZ8+e1YIFC9SyZUslJiZqyZIlGjBggOrXry9JmjZtmurUqaNdu3apadOmWr9+/X9uAwAAAACyms0Hof7yyy/y9fW977rw8HDVqFFDjo5/ZciaNWvqzJkzunbtmk6cOKGYmBjVqlXLut7Ly0vly5fXoUOHMq0NAAAAAMhqdnHmzNvbW23bttXp06dVokQJde/eXXXr1tWlS5fk5+eXZvvUM2wXL17UpUuXJEmFCxe+Z5vUdZnRxoNydLR59gUAAEAOxEQgD0dmv882DWfJyck6deqUypQpoyFDhsjT01Pbtm1T165dtXTpUsXHx99zzZeLi4skKSEhQXFxcZJ0321u3rwpSZnSxoMwm03y9vZ44OcDAAAAsG9eXm6Z2p5Nw5mjo6MOHDggBwcHubq6SpIqVqyo3377TYsXL5arq6sSExPTPCchIUGS5O7ubn1OYmKi9d+p27i53XmjMqONB2GxGIqOjn3g5wMAAAAPysHBnOnBAfeKjo5TSorlX7fx8nJL9xk2mw9r9PC49+zS448/rn379qlQoUK6cuVKmnWpjwsWLKjk5GTrsuLFi6fZxt/fX5IypY0HlZz87x0FAAAA4NGVkmLJ1GN+mw5G/e233/TEE0/owIEDaZb/9NNPKlOmjAIDA3X48GGlpKRY1+3fv1+lSpVS3rx5VbZsWXl6eqZ5fnR0tI4dO6bAwEBJypQ2AAAAACCr2TSc+fr6qnTp0ho9erTCw8P1+++/a/z48Tpy5Ii6d++uli1b6vbt23r//fd18uRJbdq0ScuWLVO3bt0k3blOLCgoSKGhofrss8904sQJ9evXT4UKFVKjRo0kKVPaAAAAAICsZtNhjWazWfPmzdOUKVPUt29fRUdHq3z58lq6dKl1hsVFixZp3Lhxat68ufLnz69BgwapefPm1jZ69+6t5ORkBQcHKz4+XoGBgVq8eLGcnJwkSXnz5v3PbQAAAABAVjMZhmHYuojsKCXFosjIGFuXAQAAgBzI0dEsb28Ptek9VSd+/9PW5WQ7ZX2LaE1Yf0VFxfzPa858fDzSPSEIN0AAAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7YFfh7PTp0woICNCmTZusy44fP66goCBVrVpVDRs21IoVK9I8x2KxKCwsTHXq1FHVqlXVpUsXnTt3Ls02mdEGAAAAAGQluwlnSUlJGjBggGJjY63LoqKi1KFDBxUvXlwbN25Uz549FRoaqo0bN1q3mTNnjtasWaMxY8Zo7dq1slgs6ty5sxITEzOtDQAAAADIanYTzmbOnClPT880y9avXy8nJyeNHj1avr6+atmypdq3b68FCxZIkhITE7VkyRL17t1b9evXV9myZTVt2jRdunRJu3btyrQ2AAAAACCr2UU4O3TokNatW6cJEyakWR4eHq4aNWrI0dHRuqxmzZo6c+aMrl27phMnTigmJka1atWyrvfy8lL58uV16NChTGsDAAAAALKa4//eJGtFR0dr0KBBCg4OVuHChdOsu3Tpkvz8/NIsK1CggCTp4sWLunTpkiTd87wCBQpY12VGGw/K0dEusi8AAAByGAcHjkMfhsx+n20ezkaOHKmAgAC99NJL96yLj4+Xs7NzmmUuLi6SpISEBMXFxUnSfbe5efNmprXxIMxmk7y9PR74+QAAAADsm5eXW6a2Z9NwtnnzZoWHh2vr1q33Xe/q6nrPpBwJCQmSJHd3d7m6ukq6c91Y6r9Tt3Fzc8u0Nh6ExWIoOjr2f28IAAAAZDIHB3OmBwfcKzo6Tikpln/dxsvLLd1n2GwazjZu3Kjr16+rfv36aZaPGDFC27dvV6FChXTlypU061IfFyxYUMnJydZlxYsXT7ONv7+/JGVKGw8qOfnfOwoAAADAoyslxZKpx/w2DWehoaGKj49Ps6xRo0bq3bu3mjVrpi1btmjt2rVKSUmRg4ODJGn//v0qVaqU8ubNq1y5csnT01MHDhywBqvo6GgdO3ZMQUFBkqTAwMD/3AYAAAAAZDWbXilYsGBBlShRIs1/kpQ3b14VLFhQLVu21O3bt/X+++/r5MmT2rRpk5YtW6Zu3bpJunOdWFBQkEJDQ/XZZ5/pxIkT6tevnwoVKqRGjRpJUqa0AQAAAABZzeYTgvybvHnzatGiRRo3bpyaN2+u/Pnza9CgQWrevLl1m969eys5OVnBwcGKj49XYGCgFi9eLCcnp0xrAwAAAACymskwDMPWRWRHKSkWRUbG2LoMAAAA5ECOjmZ5e3uoTe+pOvH7n7YuJ9sp61tEa8L6Kyoq5n9ec+bj45HuCUG4AQIAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHHB33izZs3FR4eritXruj555/XjRs3VKpUKZlMpsysDwAAAAByhAcKZ3PnztX8+fMVHx8vk8mkypUra/r06YqKitKSJUvk5eWV2XUCAAAAQLaW4WGNq1at0syZM9WhQwetX79ehmFIkoKCgnTu3DnNmDEj04sEAAAAgOwuw+Fs5cqV6tq1q/r06aMKFSpYl9erV099+/bV559/nqkFAgAAAEBOkOFwduHCBdWoUeO+60qXLq1r167956IAAAAAIKfJcDgrXLiwfvjhh/uu++mnn1S4cOH/XBQAAAAA5DQZnhDk1Vdf1cyZM+Xq6qr69etLkmJjY7Vz507Nnz9fHTp0yOwaAQAAACDby3A469Kli86fP6/Q0FCFhoZKktq1aydJeumll9StW7fMrRAAAAAAcoAMhzOTyaTRo0erQ4cO2r9/v27evKlcuXIpMDBQfn5+WVEjAAAAAGR7D3wT6lKlSqlUqVKZWQsAAAAA5FgZDmdvvvmmTCbTfdeZzWa5u7urRIkSatWqlUqXLv2fCwQAAACAnCDDszUWK1ZMR44csc7YmC9fPplMJkVEROjQoUOKjIzUJ598opYtW+rYsWOZXjAAAAAAZEcZPnOWP39+PfbYY1qyZIkee+wx6/IrV66oa9euqlu3rrp166ZevXpp+vTpWrBgQaYWDAAAAADZUYbPnG3cuFF9+vRJE8wkqUCBAurevbvWrFkjBwcHtW7dWhEREZlWKAAAAABkZxkOZ3FxcXJycrrvOpPJpJiYGEmSu7u7EhMT/1t1AAAAAJBDZDicPfHEE5oxY4auXbuWZvn169c1e/ZsBQQESJIOHjyo4sWLZ06VAAAAAJDNZfias6FDh6pt27Z69tlnFRAQIB8fH12/fl1HjhyRh4eHpk6dqq+++kqzZ8/WyJEjs6BkAAAAAMh+MnzmrHTp0tq+fbs6dOighIQE/fzzz5KkLl266NNPP5Wvr6/y5MmjadOmqXXr1pleMAAAAABkRw90E2pvb2/16dPnH9dXrlxZlStXfuCiAAAAACCneaBwdvToUR04cECJiYkyDEOSZBiGYmNjdfjwYa1fvz5TiwQAAACA7C7D4Wz16tUaO3asNZTdzWw2q3bt2plSGAAAAADkJBm+5mzVqlWqW7euDhw4oI4dO+q1117TkSNHNGPGDLm4uKhZs2ZZUScAAAAAZGsZDmfnz59XmzZtlDt3blWsWFGHDx+Wq6urnn/+eXXt2lUrVqzIijoBAAAAIFvLcDhzcnKSq6urJKlEiRI6e/askpKSJEnVqlXTmTNnMrVAAAAAAMgJMhzOypUrp71790qSSpUqJYvFooiICEnSpUuXMrc6AAAAAMghMjwhSIcOHdSrVy9FR0crJCREzzzzjAYNGqRGjRpp69atqlatWlbUCQAAAADZWobPnD377LOaN2+efH19JUmjR49WyZIltXbtWpUuXVrDhg3L9CIBAAAAILt7oPuc1a9fX/Xr15d054bUS5Yssa5jaCMAAAAAZNwDXXN29OjR+64LDw/XCy+88J+LAgAAAICcJl1nzpYsWaLY2FhJkmEY2rBhg7766qt7tvvhhx/k7OycuRUCAADAZsxmk8xmk63LyNYsFkMWi2HrMmAH0hXOEhISNGvWLEmSyWTShg0b7tnGbDYrV65c6t69e+ZWCAAAAJswm03Kk8ddDg4ZHmyFDEhJsejGjVgCGtIXzrp3724NXWXLltX69etVuXLlLC0MAAAAtmU2m+TgYNbg2et06sJVW5eTLZV+LL8m9mwts9lEOEPGJwQ5ceKE9d9xcXG6ffu28uTJIycnp0wtDAAAAPbh1IWrOn7mgq3LALK9B5qtMTw8XJMmTdJPP/0kw7iT8CtXrqx+/fqpZs2amVogAAAAAOQEGQ5n33//vdq3b69ixYqpR48eypcvn65cuaJt27apc+fOWrlypQICArKiVgAAAADItjIczqZPn67q1atr8eLFcnBwsC7v1auXOnXqpJkzZ6a57xkAAAAA4H/L8NQ7P/74o9q1a5cmmEl3ZmsMCgr6x3ugAQAAAAD+WYbDmYeHh5KTk++7Ljk52XoNGgAAAAAg/TIczp544gktWLBAcXFxaZbHxsZqwYIFql69eqYVBwAAAAA5RYavOXv33XfVokULPfPMM6pfv77y58+vq1ev6osvvlB8fLzGjRuXFXUCAAAAQLaW4XBWokQJrV+/XjNnztSXX36pmzdvKnfu3KpRo4Z69eqlMmXKZEWdAAAAAJCtPdB9znx9fTV9+vRMLgUAAAAAcq4HCmeRkZFasmSJDh48qOjoaHl7e6t69epq37698ubNm9k1AgAAAEC2l+EJQS5duqTmzZtr+fLlcnFxUfny5eXo6KilS5fqlVde0eXLl7OiTgAAAADI1jIcziZPnixHR0dt375dK1eu1NSpU7Vy5Urt2LFDrq6umjZtWobau379ugYOHKiaNWsqICBAXbt21e+//25df/z4cQUFBalq1apq2LChVqxYkeb5FotFYWFhqlOnjqpWraouXbro3LlzabbJjDYAAAAAICtlOJzt27dPvXv3VrFixdIsL1asmHr27KmvvvoqQ+317NlTZ8+e1YIFC/Thhx/K1dVV7du3V1xcnKKiotShQwcVL15cGzduVM+ePRUaGqqNGzdanz9nzhytWbNGY8aM0dq1a2WxWNS5c2clJiZKUqa0AQAAAABZLcPhLCUlRd7e3vdd5+Pjo9u3b6e7rZs3b6pIkSIaO3asKleuLF9fX/Xo0UNXrlzRb7/9pvXr18vJyUmjR4+Wr6+vWrZsqfbt22vBggWSpMTERC1ZskS9e/dW/fr1VbZsWU2bNk2XLl3Srl27JClT2gAAAACArJbhcObv76+tW7fed92WLVvk5+eX7rZy586tKVOmWJ8TGRmpZcuWqVChQipTpozCw8NVo0YNOTr+NW9JzZo1debMGV27dk0nTpxQTEyMatWqZV3v5eWl8uXL69ChQ5KUKW0AAAAAQFbL8GyNPXr0UKdOnXTz5k29+OKL1ptQb9u2Tfv27VNYWNgDFTJs2DCtX79ezs7Omjt3rtzd3XXp0qV7wl6BAgUkSRcvXtSlS5ckSYULF75nm9R1mdHGg3J0zHD2BQAgWzKZTDKbTbYuI1uzWAwZhpGpbTo4cCzzsGT2e03fPRyZ/T5nOJw9/fTTmjBhgkJDQ9NcX5YvXz6FhIToueeee6BC3nrrLbVu3VqrV69Wz549tWbNGsXHx8vZ2TnNdi4uLpKkhIQExcXFSdJ9t7l586YkZUobD8JsNsnb2+OBnw8AQHaSYrHIwczBYlbiPX60eXm52boEPIDM7rcHus/ZK6+8opdfflmnTp3SzZs3lTt3bpUuXVom04N/I1amTBlJ0rhx4xQREaFVq1bJ1dX1nkk5EhISJEnu7u5ydXWVdOe6sdR/p27j5nbnjcqMNh6ExWIoOjr2gZ8PAEB24eBglpeXm4Yu+1CnLl2zdTnZUulC+TS+/auKjo5TSool09pN7TtkPfru0ZSefvPyckv3GbZ0hbOlS5fqpZdeUr58+azLTCaTfH190/Ui/yQyMlLfffednn/+ees1YWazWWXKlNGVK1dUqFAhXblyJc1zUh8XLFhQycnJ1mXFixdPs42/v78kZUobDyo5OfM+YAAAPOpOXbqmE+cv2rqMbC0lxcLxxyOKvns0ZXa/pSvCTZo0SRcuXLA+NgxDI0eO/M/XZF27dk39+/fXd999Z12WlJSkY8eOydfXV4GBgTp8+LBSUlKs6/fv369SpUopb968Klu2rDw9PXXgwAHr+ujoaB07dkyBgYGSlCltAAAAAEBWS1c4+/vFpRaLRevWrdP169f/04v7+fmpbt26Gjt2rA4dOqRff/1VQ4YMUXR0tNq3b6+WLVvq9u3bev/993Xy5Elt2rRJy5YtU7du3STduU4sKChIoaGh+uyzz3TixAn169dPhQoVUqNGjSQpU9oAAAAAgKz2QNecSfcGtgc1depUTZkyRf369dOtW7dUvXp1rV69Wo899pgkadGiRRo3bpyaN2+u/Pnza9CgQWrevLn1+b1791ZycrKCg4MVHx+vwMBALV68WE5OTpKkvHnz/uc2AAAAACCrPXA4yyy5cuXSyJEjNXLkyPuur1y5statW/ePz3dwcNDAgQM1cODAf9wmM9oAAAAAgKzEfKsAAAAAYAf+Uzj7L1PnAwAAAAD+ku5hja1bt75nWcuWLe9ZZjKZdOzYsf9WFQAAAADkMOkKZ7169crqOgAAAAAgRyOcAQAAAIAdYEIQAAAAALADhDMAAAAAsAOEMwAAAACwA4QzAAAAALADhDMAAAAAsAPpvs/Z3RITE/Xhhx/q22+/1dWrVxUSEqKDBw+qQoUKqly5cmbXCAAAAADZXobPnEVGRqply5YaN26czp49q6NHjyo+Pl5ffPGF3nzzTf3www9ZUScAAAAAZGsZDmeTJk1STEyMtm/fro8++kiGYUiSwsLCVKlSJYWFhWV6kQAAAACQ3WU4nO3du1d9+vRRiRIlZDKZrMtdXFzUsWNH/fzzz5laIAAAAADkBBkOZwkJCcqTJ8991zk4OCgpKem/1gQAAAAAOU6Gw1mlSpW0Zs2a+67bunWrKlas+J+LAgAAAICcJsOzNfbp00ft27fXyy+/rHr16slkMumTTz7RzJkztW/fPi1atCgr6gQAAACAbC3DZ86qV6+upUuXys3NTYsWLZJhGFq2bJmuXr2q+fPnq2bNmllRJwAAAABkaxk+c/bdd98pICBAa9euVXx8vG7evClPT095eHhkRX0AAAAAkCNk+MzZO++8o127dkmSXF1dVbBgQYIZAAAAAPxHGQ5nXl5ecnV1zYpaAAAAACDHyvCwxm7dumns2LE6ffq0ypYtK3d393u2CQwMzJTiAAAAACCnyHA4GzFihCRp2rRpkpTmRtSGYchkMun48eOZVB4AAAAA5AwZDmcrVqzIijoAAAAAIEfLcDirUaNGVtQBAAAAADlahsOZJB09elQHDhxQYmKiDMOQdGdIY2xsrA4fPqz169dnapEAAAAAkN1lOJytXr1aY8eOtYayu5nNZtWuXTtTCgMAAACAnCTDU+mvWrVKdevW1YEDB9SxY0e99tprOnLkiGbMmCEXFxc1a9YsK+oEAAAAgGwtw+Hs/PnzatOmjXLnzq2KFSvq8OHDcnV11fPPP6+uXbsyYQgAAAAAPIAMhzMnJyfrTahLlCihs2fPKikpSZJUrVo1nTlzJlMLBAAAAICcIMPhrFy5ctq7d68kqVSpUrJYLIqIiJAkXbp0KXOrAwAAAIAcIsMTgnTo0EG9evVSdHS0QkJC9Mwzz2jQoEFq1KiRtm7dqmrVqmVFnQAAAACQrWX4zNmzzz6refPmydfXV5I0evRolSxZUmvXrlXp0qU1fPjwTC8SAAAAALK7B7rPWf369VW/fn1Jkre3t5YsWZKZNQEAAABAjpPhcHbhwoX/uc1jjz32QMUAAAAAQE6V4XDWsGFDmUymf93m+PHjD1wQAAAAAOREGQ5nISEh94Sz2NhYhYeH68CBAwoJCcm04gAA+Duz2SSz+d+/JMSDs1gMWSyGrcsAgBwpw+GsRYsW913etm1bjR8/Xlu3brVejwYAQGYym03Kk8ddDg4Zns8K6ZSSYtGNG7EENACwgQeaEOSfNGzYUD169MjMJgEAsDKbTXJwMGvMho909uo1W5eT7ZTIn0/DWjWX2WwinAGADWRqOIuIiJCjY6Y2CQDAPc5evabfLl6ydRkAAGSqDCepoUOH3rPMYrHo0qVLOnTokF599dVMKQwAAAAAcpIMh7MDBw7cs8xkMsnT01NdunTR22+/nSmFAQAAAEBOkuFw9vnnn2dFHQAAAACQozHdFQAAAADYgSy5CXUqk8mkPXv2ZLgoAAAAAMhpMhzOmjdvrlWrVkm6E9QKFiyoGzdu6Ouvv9aFCxfUuHFjubq6ZnqhAAAAAJCdZTic3b59W6VKldLixYvl4eFhXZ6cnKwePXooV65cGj16dKYWCQAAAADZXYavOdu8ebO6du2aJphJkqOjo4KCgrRt27ZMKw4AAAAAcooHmhDkxo0b911+/vx5ubi4/Jd6AAAAACBHynA4q1+/vqZMmaKvvvrKuswwDO3evVszZszQSy+9lKkFAgAAAEBOkOFrzt577z116tRJXbt2lZOTk/LkyaOoqCilpKSobt26evfdd7OiTgAAAADI1jIcznLnzq0NGzboiy++0OHDh3Xz5k15e3urVq1aqlWrVlbUCAAAAADZXobDmXTn/mUNGjRQgwYNMrseAAAAAMiR0n3NWUpKinbu3Kljx45Zl/3xxx/q06ePmjZtqnfffVenT5/OkiIBAAAAILtLVziLiYnR66+/rr59+2rfvn2SpOjoaLVp00afffaZSpQooV9//VWvv/66/vzzzywtGAAAAACyo3SFs8WLF+uPP/7QrFmz1LFjR0nS8uXLdf36dY0YMUKzZ8/W5s2b5efnpzlz5mRpwQAAAACQHaUrnO3atUudO3fWM888I0dHR+syDw8PtWjRQpLk4OCg119/Xd98803WVQsAAAAA2VS6wtn58+dVsWJF6+OoqCidPHlS1atXl4ODg3V5wYIFdf369cyvEgAAAACyuXSFMwcHByUnJ1sfHz58WIZhqGbNmmm2i4qKkru7e+ZWCAAAAAA5QLrC2eOPP67Dhw9bH+/Zs0cmk0l16tRJs93OnTvl5+eXuRUCAAAAQA6Qrvucvfbaaxo+fLhMJpMsFou2bt2qJ598Ur6+vpKkhIQErVy5Utu3b9eoUaOytGAAAAAAyI7SFc5atGihCxcuaNGiRYqPj1eVKlU0ceJE6/r69evrxo0bevHFF9WqVassKxYAAAAAsqt0hTNJ6tWrl7p166Zbt27Jx8cnzbru3burTJkyeuqppzK9QAAAAADICdIdziTJycnpnmAmSe3atcu0ggAAAAAgJ0rXhCAAAAAAgKxFOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO5Cu2RobNmwok8mUrgZNJpP27Nnzn4oCAAAAgJwmXeGsRo0a6Q5nAAAAAICMS1c4mzBhQlbXAQAAAAA5WoZuQp0qISFBv/zyixITE2UYhiTJYrEoLi5O4eHhGjBgQKYWCQAAAADZXYbD2YEDB9SnTx/dvHnzvus9PDwIZwAAAACQQRmerXHatGny9vZWWFiYnn32WTVq1Ejz5s1TmzZtZDKZtHDhwgy1d+PGDQ0fPlx169bVE088oTfeeEPh4eHW9d99951atGihKlWqqHHjxtq2bVua5yckJGjUqFGqVauWAgIC9O677yoyMjLNNpnRBgAAAABkpQyHs19++UW9evXSc889pwYNGujixYuqV6+ehg0bpldffVVz587NUHv9+/fXDz/8oKlTp2rjxo0qV66cOnXqpFOnTun3339Xt27dVKdOHW3atEmtWrXSoEGD9N1331mfP3LkSO3bt08zZ87U8uXLderUKfXu3du6PjPaAAAAAICsluFhjRaLRQULFpQklShRQr/99pt13fPPP6/Bgwenu62zZ8/qm2++0Zo1a1StWjVJ0rBhw/T1119r69atun79uvz9/dWvXz9Jkq+vr44dO6ZFixapVq1aunz5sjZv3qx58+apevXqkqSpU6eqcePG+uGHHxQQEKDly5f/5zYAAAAAIKtl+MxZ8eLF9csvv0iSSpUqpbi4OJ06dUqSlJycrJiYmHS35e3trQULFqhSpUrWZSaTSSaTSdHR0QoPD1etWrXSPKdmzZo6fPiwDMPQ4cOHrctSlSpVSgULFtShQ4ckKVPaAAAAAICsluFw9tJLLyk0NFSrVq2Sj4+PKlasqDFjxujzzz/X7NmzVaZMmXS35eXlpXr16snZ2dm6bOfOnTp79qzq1KmjS5cuqVChQmmeU6BAAcXFxSkqKkqXL1+Wt7e3XFxc7tnm0qVLkpQpbQAAAABAVsvwsMbOnTsrKipKERERCgoK0ogRI9SlSxf16NFDnp6eGb7m7G7ff/+9hg4dqkaNGql+/fqKj49PE9wkWR8nJiYqLi7unvWS5OLiooSEBEnKlDYelKNjhrMvAOBfODjwe/VhyOz3mX57eOi7Rxd992jK7Pc5w+HMbDanua6sUqVK2rNnj06dOqXSpUvL09PzgQrZs2ePBgwYoCeeeEKhoaGS7gSkxMTENNulPnZzc5Orq+s966U7sy+6ubllWhsPwmw2ydvb44GfDwCArXh5PfjfP9gWfffoou8eTZndbxkOZ+3atdOIESPk6+trXebp6anKlSvrxIkTGjhwoLZu3ZqhNletWqVx48apcePGmjhxovVMVuHChXXlypU02165ckXu7u7KlSuXChUqpBs3bigxMTHN2a8rV65YJy3JjDYehMViKDo69oGfDwC4l4ODmQOYhyA6Ok4pKZZMa49+e3jou0cXffdoSk+/eXm5pfsMW7rCWXh4uAzDkCQdPHhQhw4duu99wPbu3atz586l64VTrVmzRmPGjNGbb76p999/XyaTybquevXqOnjwYJrt9+/fryeeeEJms1nVqlWTxWLR4cOHrZN+nD59WpcvX1ZgYGCmtfGgkpMz7wMGAMDDkpJi4W/YI4q+e3TRd4+mzO63dIWzDRs2aMuWLdaZFEeNGnXPNqnhrWnTpul+8dOnTyskJETPPfecunXrpmvXrlnXubq66s0331Tz5s0VGhqq5s2b68svv9Snn36qRYsWSZIKFiyoJk2aKDg4WCEhIXJzc9OIESNUo0YNVa1aVZIypQ0AAAAAyGrpCmfBwcFq2bKlDMPQW2+9peHDh98zK6PZbJaXl5cef/zxdL/4zp07lZSUpN27d2v37t1p1jVv3lwTJkzQnDlzNHnyZC1fvlxFixbV5MmT00yNP2bMGIWEhKhXr16SpLp16yo4ONi6/vHHH//PbQAAAABAVktXOMuVK5dq1KghSVqxYoXKly//wBN/3O3tt9/W22+//a/b1K1bV3Xr1v3H9e7u7ho7dqzGjh2bpW0AAAAAQFbK8IQgNWrUUGRkpEJDQ3Xw4EFFR0fL29tb1atXV/v27ZU3b96sqBMAAAAAsrUMT8x/6dIltWjRQsuXL5eLi4vKly8vR0dHLV26VK+88oouX76cFXUCAAAAQLaW4TNnkydPloODg7Zv365ixYpZl587d04dO3bUtGnTNGHChEwtEgAAAACyuwyfOdu3b5969+6dJphJUrFixdSzZ0999dVXmVYcAAAAAOQUGQ5nKSkp8vb2vu86Hx8f3b59+z8XBQAAAAA5TYbDmb+/v7Zu3XrfdVu2bJGfn99/LgoAAAAAcpoMX3PWo0cPderUSTdv3tSLL76o/Pnz6+rVq9q2bZv27dunsLCwrKgTAAAAALK1dIWzdu3aacSIEfL19dXTTz+tCRMmKDQ0NM31Zfny5VNISIiee+65LCsWAAAAALKrdIWzgwcPKiYmxvr4lVde0csvv6xTp07p5s2byp07t0qXLi2TyZRlhQIAAABAdpbhYY2pTCaTfH19M7MWAAAAAMixMjwhCAAAAAAg86X7zFnPnj3l7Oz8P7czmUzas2fPfyoKAAAAAHKadIez8uXLy8fHJytrAYCHxmw2yWzmOtmsYrEYslgMW5cBAMAjJUNnzipXrpyVtQDAQ2E2m5TH210OZkZ2Z5UUi0U3omIJaAAAZMADTwgCAI8qs9kkB7NZ03d8rPOR121dTrZT1Cev+r7QTGaziXAGAEAGEM4A5FjnI6/r9JXLti4DAABAUjpna2zevLm8vb2zuhYAAAAAyLHSdeZs/PjxWV0HAAAAAORoXA0PAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2wNHWBQCPMrPZJLPZZOsysjWLxZDFYti6DAAAgCxHOAMekNlsUh5vdzmYOQGdlVIsFt2IiiWgAQCAbI9wBjwgs9kkB7NZy77eoUs3I21dTrZUKLeP2td5QWaziXAGAACyPcIZ8B9duhmpc5FXbF0GAAAAHnGMxwIAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA74GjrAiCZzSaZzSZbl5GtWSyGLBbD1mUAAAAA/4hwZmNms0ne3u4ymzmJmZUsFouiomIJaAAAALBbhDMbu3PWzKxPjuzW9duRti4nW8rr6aOmVZ+T2WwinAEAAMBu2VU4mz9/vvbt26eVK1dalx0/flzjxo3TTz/9JB8fH7Vv317t2rWzrrdYLJo1a5Y2bNigW7duKTAwUMOHD1exYsUytY2sdv12pC5HX3torwcAAADAvtjNWLrVq1dr+vTpaZZFRUWpQ4cOKl68uDZu3KiePXsqNDRUGzdutG4zZ84crVmzRmPGjNHatWtlsVjUuXNnJSYmZlobAAAAAJDVbH7m7PLlyxoxYoQOHDigkiVLplm3fv16OTk5afTo0XJ0dJSvr6/Onj2rBQsWqGXLlkpMTNSSJUs0YMAA1a9fX5I0bdo01alTR7t27VLTpk0zpQ0AAAAAyGo2P3P2888/y8nJSR9//LGqVKmSZl14eLhq1KghR8e/MmTNmjV15swZXbt2TSdOnFBMTIxq1aplXe/l5aXy5cvr0KFDmdYGAAAAAGQ1m585a9iwoRo2bHjfdZcuXZKfn1+aZQUKFJAkXbx4UZcuXZIkFS5c+J5tUtdlRhsPytHxf2dfBweb5+McI7Pfa/ru4aHvHk1Z8T7Tdw8Hn7lHF3336KLvHk2Z/T7bPJz9m/j4eDk7O6dZ5uLiIklKSEhQXFycJN13m5s3b2ZaGw/izhT5Hg/8fGQ+Ly83W5eAB0TfPZrot0cXfffoou8eXfTdoymz+82uw5mrq+s9k3IkJCRIktzd3eXq6ipJSkxMtP47dRs3N7dMa+NBWCyGoqNj/+d2Dg5mPowPSXR0nFJSLJnWHn338NB3j6bM7jeJvntY+Mw9uui7Rxd992hKT795ebml+wybXYezQoUK6cqVK2mWpT4uWLCgkpOTrcuKFy+eZht/f/9Ma+NBJSdn7kEJ/puUFAt98oii7x5N9Nuji757dNF3jy767tGU2f1m14NRAwMDdfjwYaWkpFiX7d+/X6VKlVLevHlVtmxZeXp66sCBA9b10dHROnbsmAIDAzOtDQAAAADIanYdzlq2bKnbt2/r/fff18mTJ7Vp0yYtW7ZM3bp1k3TnOrGgoCCFhobqs88+04kTJ9SvXz8VKlRIjRo1yrQ2AAAAACCr2fWwxrx582rRokUaN26cmjdvrvz582vQoEFq3ry5dZvevXsrOTlZwcHBio+PV2BgoBYvXiwnJ6dMawMAAAAAsppdhbMJEybcs6xy5cpat27dPz7HwcFBAwcO1MCBA/9xm8xoAwAAAACykl0PawQAAACAnIJwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcPb/LBaLwsLCVKdOHVWtWlVdunTRuXPnbF0WAAAAgByCcPb/5syZozVr1mjMmDFau3atLBaLOnfurMTERFuXBgAAACAHIJxJSkxM1JIlS9S7d2/Vr19fZcuW1bRp03Tp0iXt2rXL1uUBAAAAyAEIZ5JOnDihmJgY1apVy7rMy8tL5cuX16FDh2xYGQAAAICcwmQYhmHrImxt165deueddxQRESFXV1fr8j59+ig+Pl7z58/PcJuGYchi+d9vrckkmc1mxSTEymJYMvw6+N/MJrM8XNxlsViUmT/tqX13Ky5WKZaUzGsYVg5mB+Vyy7q+uxkbo+QUPneZzdHBrNzuHpneb9JffRd1O0bJKXzuMpujg4O8PTO/71L7LfLWbSXxmcsSTg5m+eTyzLK+u37zNp+5LOLo4KC8ubOu7yJv3FJyMn2X2RwdHeSTJ1e6+s1sNslkMqWv3Uyo7ZEXFxcnSXJ2dk6z3MXFRTdv3nygNk0mkxwc0tcJkuTh4v5Ar4P0M5uz5kRxLjf6LqtlVd/ldvfIknZxR1b1myR5e9J3WSmr+s4nl2eWtIu/ZFXf5c1N32W1LPvc5cmVJe3ijszuN4Y1StazZX+f/CMhIUFubm62KAkAAABADkM4k1S4cGFJ0pUrV9Isv3LligoWLGiLkgAAAADkMIQzSWXLlpWnp6cOHDhgXRYdHa1jx44pMDDQhpUBAAAAyCm45kx3rjULCgpSaGiofHx8VKRIEU2ePFmFChVSo0aNbF0eAAAAgByAcPb/evfureTkZAUHBys+Pl6BgYFavHixnJycbF0aAAAAgByAqfQBAAAAwA5wzRkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGWzm5MmTSkpKsnUZQI519OhRW5cAAADuQjiDTcyZM0dDhgwR90B/9O3cuVPXrl2zdRnIoHnz5ik4ONjWZeBfLFmyRLt27bJ1GUC2debMGVuXgAf0448/6vbt27YuI0sQzvBQpYaxiIgIFSlSRM7OzjauCP/FRx99pEGDBsnDw8PWpSCDzpw5o/z580uSkpOTbVwN/u6bb77RpEmTNHjwYO3Zs8fW5eBfbN++XVeuXLF1GcigqVOnqnHjxny+HkHz5s1Tq1attHnz5mwZ0AhneKhSUlKs/3ZxcbFhJcgMsbGxyp8/vxwdHWWxWGxdDjIgNjZWDg4OkiRHR0cbV4O/K1KkiMqVKydvb2+NHj1aH3/8sa1Lwn2sWbNG/fv319ChQ3X9+nVbl4MMOH36tCRp0KBB2rFjh42rQUZcvHhRkjRlyhR9+OGHio2NtXFFmYtwhocq9SDQMAzFx8fbuBo8qNQgZhiG9QAfj4a7r/M0mUySxPBiO1S0aFH5+/vLyclJL774oqZOnapPPvnE1mXhb/z8/OTk5KRvvvlG77zzDgHtEZD6+65Dhw4KDAxUmTJlNGDAAL4AeQSk9l337t1Vv359+fr6atKkSVq5cmW2OqYknOGhiIiI0I0bN6yPTSaTnJyc0mxz9wE/7FvqQX1sbKySkpLk4OAgs5lfJ/Zs3759kmT93Hl6elrPXt/9mWOIo20YhmHtB4vFIkdHR/Xv31/Ozs5ycHBQ7dq1NXHiRAKaHTEMQ35+fnrllVfUrFkz3bp1Sx07diSg2bnUv18lS5aUo6OjKlWqpF69emnIkCHaunWrjavDv0ntu1y5cilfvnwKDAzUyJEjNW3aNC1fvjzbBDSOppClDMPQ/v371bp1a23YsME6cYTZbJbFYlFERITi4uKUmJhoPbhP/fDB/mzevFmHDx+29pGzs7OcnZ3TBLOUlBTrQSZB2z58//336tWrl0aMGGFdFhsbq2vXrunPP//UuXPnrMsZ4mgbiYmJ1s+V2WxWcnKyvL299dxzz8nV1VVBQUF68sknNWHCBAKanTCZTPLy8lK5cuW0f/9+DRkyRM7OzurcuTMBzc5ZLBb5+PioZ8+e+uyzz1SuXDl16NBBQ4YM4fNl5ywWizw8PBQUFKQNGzaoaNGiGjFihKZNm6YVK1Zki4DGX2FkKZPJpJo1a6pDhw6aMWOGpDtDCVxdXbVz50598cUXcnBwUL58+VS2bFmVLFlSRYsWVd68eVWmTBkVK1bMxnuAVKdOndLSpUvl5uamIUOGqGrVqnJxcVF0dLTWrVun4sWLq0yZMnJyclKePHkkEbTtRfHixdW1a1d9+OGHGjVqlEaMGCE3Nzd9//33atq0qaQ7w+jy5csnX19fValSRYZhqGHDhvL09LRx9dnfnDlz9Omnnyo4OFilSpWyXscpSU888YQGDBig559/XoMGDdLkyZM1YcIEmc1mvfjiizauPGdLTk6Wo6Oj2rRpo/379+vLL79UcHCwBg8erC5dumjhwoXKmzevrcuEpE8++URVqlSRt7e3PD09ZTKZlJKSovLly6thw4Y6deqUevTooZiYGA0ePFiSrL8bYVubN29WwYIF5evrqwIFCshkMslisahs2bJq3769Pv/8cw0ZMkS3bt3S1KlTJUnt2rWTq6urjSt/cIQzPBSpv+ymTJmi3Llz6/bt26pcubIGDRqkgwcP6ty5czp27Ji+/PJLxcXFydPTU1u2bLFx1bhb6dKl1a1bN61bt06TJk1ScHCwvLy8FBkZqZCQECUnJyslJUV58uSxBmsfHx81aNBA1atXt3X5OVq+fPn0+uuvy2w2a/Xq1XJxcZGbm5uaNWumJk2a6Ny5c/rxxx917tw57dmzR6tWrZKjo6N2795NOMti4eHhmjdvnhITEzV06FBVrVpV1atX1xtvvCHDMFS7dm29/PLLmjNnjiZNmqTOnTvL0dFRgwcPloODg55//nlb70KOERYWppSUFD3zzDOqXLmyHB0drQGtfv36+uqrr+Tr66vp06erd+/e6tKlixYtWiQfHx9bl56jLV++XOPHj1eJEiUUGBiopk2bqmbNmnJwcJC7u7vKlCmjRYsWqXnz5ho5cqTMZrPef/99JSYmqkWLFrYuP0dbuXKlxo0bp4IFC6pkyZIKCgpSgwYNrF9e+fv7a/r06frzzz/VtWtXGYahmTNnKj4+Xt26dXtkJ54zGYw7QhbYunWrTp8+LZPJJD8/P+sBxPjx47V8+XI5Ozvrrbfe0rvvvmt9TkpKiuLi4nTp0iXlypVLBQsWtFX5uIvFYlFKSor1WqVdu3Zp2bJlcnR0VJ48efTnn39q3rx5unz5sn755RdduHDBGrhv3rypDRs2qEyZMjbei5xn8+bNOnfunK5du6aXXnpJ1apVU1xcnFauXKkNGzbo/PnzatWqlcaMGZPmeZGRkbp8+bK8vLxUpEgRG1Wfc1y+fFnr1q3TF198obi4ODVu3Fhr165VxYoV1bhxY7388sv65ZdfNG3aNAUHB6tkyZKKiIjQRx99pPbt26tkyZK23oUc4euvv1aXLl0kSU899ZRy586t999/X7ly5ZKLi4tu3bqlFi1aqGnTpurTp4+OHTumgQMHKjExUevWrSOg2dCHH36oyZMnKyEhQc8884x27typ119/XU899ZQaNmwoSerbt698fHwUHBysmJgYhYSEaO/evdqzZw9fUNnQwYMH1bdvX8XFxalOnTravXu3XnrpJQUEBOiNN96QJAUHB+vixYuaO3eunJ2dNXPmTK1atUqffvqpvL29bbwHD4Zwhkw3ZcoUbdiwQYGBgTpz5ozi4+Pl6+urefPmSbozhCcsLEzPPPOMJk6caP3Fl5SUdM8kIbCtZcuWKTw8XLGxsSpVqpT69OkjLy8v7d27V0uWLNGJEydUunRprVu3ToZhWIcxWiwWmc1m3bhxwzrEEQ/P5MmTtWnTJlWsWFExMTE6evSoXnvtNQUFBalo0aJasmSJVqxYobJly2rJkiWS7lzz5OzsnKYf8XBcuXJF69ev19atW1WnTh116dJFkyZN0qlTp2QymTR8+HCNHj1a/v7+Gj9+vKS/+gsPx7lz57RgwQJt2LBBzZo106VLl3Tq1Cm99NJLatiwoQIDA/Xtt99qyZIlGjBggMqWLauIiAiNGTNG06ZNY4i+DXz77beqUKGC3NzctGvXLg0fPlwvvviinnnmGS1atEi3b99W4cKFNXDgQH3//ff68ccfrSHt5s2bSkpKUr58+Wy9GzleeHi4unfvrmeffVZ16tTRl19+qSNHjih37tzq06ePLBaLPv/8czVv3lyVK1eWJEVFRT2ywUxiWCMy2YkTJ7Rjxw7NmDFDTz75pGJiYrR3715NmjRJrVu31tKlS9WjRw8lJCRo4cKFWrdunVq2bKk8efIQzOzMzJkztXr1ar322mtKTEzUtm3btG/fPg0YMEDPPfecHBwcNH36dF29elUnTpxQ2bJlZRiGLBaL9eA+d+7cNt6LnOfHH3/Unj17tGDBAlWqVEmStHbtWi1dulSXL19Wr1691LFjR5lMJq1cuVJjxozRsGHD5OzsrJSUFG6N8BB8+umnSklJUZMmTSRJBQoU0GuvvSbpTl/lz59fU6ZM0dmzZzV58mSNHTtWDg4O2rp1q1q2bKnq1asTzB6yYsWKqV+/foqJidFnn32mxYsX69ixY/r222/VpUsX61lMT09PnT9/XmXLllXFihW1Zs0a+soGRo0apYMHD2rlypVydnZWo0aNlJiYqGHDhql48eKaPn26fvvtN4WGhmro0KHy8fHRN998o2LFiqlLly787bKhw4cP6+rVqypQoIBKliyp6tWrKywsTN27d5ezs7O6desmR0dHhYSEaNasWYqJidHly5fl6upqDWePcjCTJBlAJjpw4IBRu3Zt4/r169ZliYmJxuHDh42GDRsarVu3ti6fMGGCUbFiRWPmzJnGzZs3bVEu7sNisRhXrlwxXnnlFWPXrl3W5XFxcUZQUJDx3HPPGR999JFhGIbx5ZdfGm3atDHatGljHDlyxEYV425Hjx416tata5w4cSLN8h07dhgvv/yy0bt3b+OPP/4wbt26ZcydO9do2LChMXjwYBtVm7OkpKQYCQkJRvv27Y1XX33V+OKLL9Ksv3r1qjFz5kzj6aefNiZOnGhdvnv3bmPKlCnGU089ZVy4cOFhl51jbdy40RgzZowxZMgQY+3atYZhGMatW7eMbt26GTVr1jQiIiKM+Ph4Y+vWrcYrr7xidOvWzfD39zcaNGhgXLlyxcbV51whISFGYGCgcezYMcMw7vxNMwzDSEhIMDZs2GCUL1/emDBhgnX7devWGWPGjDH8/f2NFi1aGDExMdbn4OGaPHmy0bBhQ6N+/fpG3bp1jUmTJhlxcXGGYRjGt99+a1StWtXo3bu3ERMTYxiGYXzzzTfGtGnTDH9/f6N+/fpGdHR0tug7whkyReqH4c8//zRq165tPXi/26FDh4zatWsbffv2tS4bM2aMUaNGDSMqKuohVYr0uHbtmtGwYUPrwWNCQoJhGIaRnJxsdOvWzWjUqJHx5ZdfGoZx56D/rbfeMpo2bWr8+OOPNqsZdxw+fNioUaOGER4ebhjGX31nGIaxbds2o2HDhkZoaKhhGHfCwNSpU40mTZpwMPkQJCcnG4ZhGD169DACAgKMDh06GHv27EmzTWpAq1OnjjF27Ng061IPSJD1Jk+ebDz99NPGsGHDjLZt2xqNGjUyRo8ebRjGnd+PPXr0MKpXr27s37/fMAzD+OOPP4zdu3cbr7/+uvHUU08Zly9ftmX5Odb48eONmjVrGsePH//HbdavX2+UL1/eGDlyZJrln332mXH69OksrhD/5KOPPjKefvpp44cffjBiYmKMkJAQ45lnnknzN+ybb74xqlatavTq1SvNceOhQ4eM8+fP26DqrEE4Q6aKiooyunXrZnTp0uWeX44JCQnG+vXrjaZNmxpHjx61Lr/7LBvsQ2JiotGoUSNj+PDh1mV3B7TXX3/daNKkiTWUb9myxejatWu2+uX4KOvWrZvRoEED48aNG4ZhpA1oy5cvNypUqGCcPHnSMAzDiIyMNCIjI21SZ07VunVro2PHjsbrr79uvPnmm/8Y0Bo0aGAMGzbMRlXmXF9//bXx7LPPGhEREYZh3Bk1MGHCBKNBgwbGuXPnDMMwjEuXLhnvvPOOERAQYA1oqfii4+GzWCzG6dOnDX9/f2Pp0qXW5SkpKcZHH31kTJ061VixYoXx22+/GYZxJ6BVqFDBCAkJsVHF+LupU6ca7733nvXx0aNHjaCgIGPmzJnGkiVLrJ/H1DNo/fr1My5evGircrMUN6HGf/Lxxx9rzpw5Gjt2rI4ePao8efKoT58+Onr0qBYuXKizZ89at3V2dladOnX0559/pln+yI8NziYMw1BycrIkycnJSd27d9fOnTu1cuVKSXf6LzExUQ4ODlq4cKEiIyO1cOFCSVKzZs00depUZvezga1btyosLEwzZ87Url27JElDhgyRl5eXunXrpps3b8rZ2VkJCQmS7tz/pWDBgvr+++8l3fn88Rl8OAzD0Pnz5xUbG6uBAwdq2LBhSkxM1PLly/XZZ59Zt0u99cELL7ygw4cPc0Pjh+zChQvy9PSUv7+/JMnV1VUtW7bUhQsXdPr0aUlSwYIFFRwcrNq1a6t379767rvvrM/Pnz+/TerOyUwmk0qWLKlu3bpp9uzZOn/+vCQpKChIH3zwgXbv3q3169erbdu2+uGHH9SqVSuNHj1ay5cvt94bC7ZlsVh06NAh/fHHH7p9+7aGDh2qixcv6vPPP9cnn3yi1157TTt37lStWrU0Z84cbd++XTNmzFBKSoqtS890TAiCB5Y6I1y5cuV0+/ZtrV27Vm3atFH37t01d+5cvfnmm5Kk9u3bWycmyJMnj/z8/OTu7m5th5nhbG/p0qU6fvy4Tp8+rcaNG6tWrVpq1qyZvv/+e61du1aurq5q1aqVnJ2dlZSUJHd3d/n5+enGjRvWNjw8PGy3AznU32dG3bJli7Zt26bQ0FD17dtX06ZNU+fOnbVgwQJrALt9+7bc3d3l5eVl4+pzHpPJJHd3dz3zzDNyd3dX8eLFNWDAAE2ZMkXLly+XJD3zzDOS7gS0jh07qlOnTkzD/pCZTCbdvHlTV65cUbFixZScnKxcuXLJyckpzd+rAgUKKDg4WAMHDtR7772nHTt2PNI3vn2UGf8/y2y7du30+++/Kzg4WMWLF1fRokXVr18/FSpUSL/88ovCwsI0ceJELVq0SE2bNpWTk5PKly9v6/KhO7eo2Ldvn5o3by4PDw/lz59fS5cuVf78+XX58mXNmTNHw4cPV6VKlVSrVi2tWrVKPj4+2XISK86c4YEcPXpUu3fv1sKFC7Vo0SKtX79egwYN0hdffKHhw4eraNGiWrVqlQ4dOqRp06Zp6dKlCg8P17Rp0/THH3+obNmytt4F/L8ZM2Zo3rx5KlKkiEqWLKmdO3eqb9+++u677zRo0CD5+/tryZIlWrZsmaQ7Z9XMZrNcXFyss5AZ3JHjobt7ZtSZM2dq7dq16tu3rw4fPqwuXbqoSpUqGjBggJKSktS0aVPt3LlTe/bs0cKFC3Xjxg1VrFjR1ruQI/n4+Khz584qXry4LBaLqlevrnfffVdJSUlavny59u7da902b968BDMbqFy5sooUKaK4uDhJkqOjo3U20/j4eEl//c4rUKCA5s6dqzVr1hDMbCg1NOfNm1evvPKKUlJS9PXXX+uZZ55R4cKFZTKZVLZsWTVp0kTnz59XTEyMnJ2d9dJLL8nX19fG1UOSatWqpcGDB2v48OEqUaKEmjVrZj0LXbBgQbVs2VKOjo66cuWKJKl69eoqXbq0LUvOMpw5wwMxDEOJiYlyc3OT2Xwn47dr107e3t5auHChxo8fr1GjRmnBggVavXq1li1bJldXV7m4uGjx4sV67LHHbLwHkKTr16/ru+++U0hIiPUb+x9++EHr169Xly5dNHfuXI0ePVrTpk3T7NmzFRERIT8/P124cEGHDx/WkCFDJHH20xaio6OVkJCgxx9/XNKdM5fPP/+8HnvsMQ0YMEADBgzQ4sWLVa5cOYWGhmrChAlydHRUrly5NH/+fIag2lDqWebUA/zUgJYatM1ms+rVq2fLEnMsi8Uif39/zZ49O80Ij4SEBJlMJmsAM5lMmjZtmm7duqXhw4en2Ra2kXr27Nlnn9W3336rkydP3vNFcNGiReXp6amkpCQbVYn7Sb03as2aNSXdGVp869atNNvkyZNHPj4+OeK2S4QzPJCkpCTFxcUpNjZW0l83RH3ppZdksVg0Y8YMLVmyRH369FFwcLASEhIUGxsrDw8P5cqVy8bVI1ViYqJ+++03JSYmWpcFBAQoX758cnJyUu/evTV//nwNGzZMdevW1bx583T16lV5enpq1apVKlWqlA2rz9mKFi0qSfrqq6/0yiuvSLpzVvOJJ57QpEmT1LdvXw0ePFgTJ07UhAkTdO7cOXl4eMjBwYF7+GSxPXv26KmnnrrngD05OVmOjo6Kj4+X2WxOc/+r6tWrq2fPnlq0aJHKlCnzsEvOsYy/3XQ99cvGu4f9WiwWXblyRSkpKdYzmWFhYVq6dKlWr179cAtGGnf3n8lksh6LDB8+XH379pWXl5diYmLk5OQkZ2dnffrpp3J3d+d3oB1IDWTSnc9d6u/HVB9++KHq1q2rxx9/XK6urtq4caPMZrMKFy5sq5IfGpPBeCQ8oK5du+rMmTP66KOP5OHhYf2lKEkLFy7UrFmz9Mknn6hYsWI2rhR3u/uPWUxMjHr37i0/Pz/17NlTnp6e1u3Onj2rOXPm6MSJE5o6dWqaoR939zUertQbRd+6dUsDBw6UYRjq169fmm+IExMTtWXLFq1YsULjx49XxYoV0/whRNZZt26dJkyYoAMHDqT5jKT22/nz5zV69Gj179//vsO74+PjGR73kCQkJMjFxeWeg8LUvkpdL90ZUfDGG29o9+7d2rp1q+bNm6c1a9YwPNgGUkffvPDCC5L++puW2m8XLlzQN998o1atWunEiRMaMGCA8ubNq9y5c+vAgQNatmyZypUrZ+O9yJlmzJihwoUL67XXXpP0V0C7u+927NihoKAgtWnTRhcvXlTevHlVuHBhHTt2TAsXLswRfcdfaqTLBx98oDNnzkiSdWacXr16ydXVVW+//bZiY2PTzAiXehF7eHi4rUrGP7BYLNYzZR4eHqpQoYI2bdqkQ4cOyWKxWLcrUaKEWrZsqZSUFP3++++S/hqGlROGFdibVatWadiwYercubN27dqlXLlyqWvXroqIiNDixYv/cWbU1M8twezhiImJUe7cueXg4GD9XWmxWOTg4KA///xTbdu2Vd68ea0zAf5dahhA1kodyh0ZGSlHR0frTLWpB4l//vmnOnfurBMnTki6cybNy8tLQ4cO1Zw5c7R69WqCmQ189913mjx5soYOHapPP/1U0l9nzFL77bXXXtOlS5ckSaVKlVJAQIAee+wxFS9eXGvXrs0RB/f26MiRI5o7d66GDx+uDz/8UNKdv0t3993rr7+uixcvysXFRRs3blSXLl1Uv3591atXTx988EGO6Tv+WiNd1qxZo379+uncuXPWmXHKly+vt99+Wzdu3FCXLl0UExNjPbC4ffu2PDw8mBHOzixfvlz9+vVTp06dFBoaKknq37+/qlevrmHDhungwYNppqWtUaOG3Nzc9M0330hSmuEjeHimTJmiOXPmyGQyyTAMffnll5KkJ554QhMnTtSOHTsUFhamH3/80fqc+82MiqyT+sVFXFycXFxc5ODgYP1daTabFRUVpQ4dOqh+/foKCQn5x88Qn62sFx8frz179ujatWsKCgrS9evX5ejoaD1IPH/+vNq0aSNfX19riM6VK5eio6N15MgRffjhh9YZiPFwPfbYYypfvrx8fHwUEhKiTZs2SbrzhdSFCxfUokULPfPMM+rVq5cMw5CLi4vGjBmj8ePHa8CAAQzFt6Hy5curXr168vb2VnBwsHWSMWdnZ128eFEvv/yyGjZsqPfee896HNKhQwe9++67atu2bY4ahcU1Z/hXqaecCxcurK+++so6TX6xYsXk6Oio5557TiaTSfPmzVOTJk00YsQImUwm/fDDD4qOjmZWRjsybdo0bdy4Ua1bt9b169e1atUqlS1bVk2bNlVYWJi6dOmivn37avTo0Xr66afl4eEhwzDk7e2t4sWL27r8HOuXX37RZ599prlz56pKlSpp1t2+fVv16tXTkiVLNGDAAEVGRqpu3bqqVKmSdu/ezcyoD1Hq0Kq/X8OUymw2q2vXrmrZsiUBzMZcXV3VoUMHffjhh4qLi9PLL7+sjz76SPnz59f169fVpk0b1a1b1/r3zGKxqECBAhozZoyeeOIJZvezoaJFi6pcuXIKDw/X888/r7CwMJlMJjVv3lw7d+5UixYtNGjQIOtn7O7h3P/02cTD4eTkpEqVKunatWtq27atJk2aJOnO7ZaOHDmitm3bqk+fPvftr5zWd1xzhnR5/fXXVaZMGZ06dUpXr17VkiVLrN9ipKSk6OzZs5o9e7bCw8OtM8KFhIRw/xA78euvv+qdd97RmDFjVKNGDV2/fl3t27fXO++8I39/f5UoUULJycl677339PXXX6t+/foqUqSIrly5ok8//VRr167NtlPW2ruff/5ZHTt21KJFi1SpUiVZLBa9//771pu5t2zZUkFBQYqKitKyZcv01VdfWWdGnThxYo4ZBmIrmzdvtn4bLElLlizRunXr9Omnn95zMJF6gMH1f7Z3/Phx9ezZU6+88op+/vln/fzzz9q8ebPc3d21e/duNWvW7J7+o98evrsPylPf/+vXr6tjx456+umndfv2bX3++ecaPny4GjVqdM9zYDup8eLu33kxMTFq3ry5GjZsKC8vL4WFhWnEiBF64403rM+h7zhzhnQ4e/asoqKi1KJFCxUsWFC9e/dWp06dtHjxYhUrVkwODg4qXbq0pkyZorNnz8rd3V1OTk7KkyePrUvH/4uOjlZcXJxKlCghSXJzc9OVK1c0fvx4Xbx4UWXLllWvXr00adIkrV69WkeOHNHu3btVrFgxrVixgmBmQwkJCbJYLNbr/Nq1aydnZ2fVrVtX165d0+bNm3X69GmNHj1aw4cPt86iysyoWe/y5csaM2aM1qxZowULFihPnjzWmWx3794tFxcXlSxZUkWKFJHZbE4zMxkePovFIpPJJJPJpHLlyqlt27bavXu3OnXqpJs3b+rVV1/Vpk2b9PLLL1uvPbsb/fbwJSQkWCfISZ3Rz8vLS88++6wMw9DLL7+suLg4jRo1ynoWlC9A7EPq3yHpr2vLPDw81LVrVx05ckTNmzdXTEyMRo0apaSkJLVr146++385e++RLsWKFVPlypWVN29eFSlSRJMmTVLu3LnVqVMnnTt3TtJfk4QUL15c+fPnJ5jZmQIFCsjLy0tXr16VJL333nsqWbKkhg8frg8++EBubm6aMGGCfvnlF7Vt21YTJ07UunXrNHXqVIbF2dgTTzyhSpUqKTg4WMeOHVOhQoUUGhqqzp07a8iQIerTp4++/vprHTlyRE5OTvLy8lKhQoUIZg9B/vz5tWjRIkVFRentt9/WrVu3ZDKZdOXKFY0ZM0Zvv/22Xn31VT377LNq1aqVRowYoZCQECZKesgOHjwo6c4Boslksk7+Ubt2bRUoUECenp4aOXKkcufOrVdeeUXXrl2Tg4MD98KysTlz5qhVq1bav3+/9cbDjo6OcnJyUvXq1bV69WoZhqHBgwerdu3amjx5srZu3SqJIG1rU6ZMUcOGDbV582YdP35ckqyz1/r7++vw4cO6du2aBg4cqE6dOikkJMR6Wwr6jmGN+B/+6RuM33//XUOGDNHNmzetZ9Bgn1KHCfz888+qUKGCpDs3eJRkvRl4YmKiGjdurAYNGmjYsGE2qxVppfbd119/renTp8tiscgwDK1du1YODg7Ws2kvvfSS6tSpo0GDBtm44pzj7ttJREREqE+fPvL19VXVqlUVERGh4OBgXbt2TSdPntTx48d18eJFnThxQomJiVq3bp31LDay1vz58zVt2jTVrVtXDRo0UMOGDVWwYEHr+iFDhujixYtavny5jh07puDgYN24cUNr165VgQIFbFh5znb48GF17NhRCQkJeuyxxxQQEKCAgAAFBQVZfy9OnDhRf/75p0JDQ3XmzBktX75cW7Zs0aRJk/Tiiy/aehdyrF9//VVdunTR5cuXVbFiRXl6eiogIECdOnWSm5ubHBwcNG/ePO3atUuLFi2S2WzW0qVLNX/+fI0aNUqtW7e29S7YHPEU/8psNsswDOuZsdT/+/r6asKECfLx8dGrr76q8+fP27JM/IvU8dupwSwxMVGPPfZYmmDm7OysKlWq6NatWzarE/dK7bsaNWro+eefV2xsrK5fv55mmGNSUpK8vLw42H9Ili1bpsGDB6tNmzZatmyZfvzxR1WpUkVhYWE6f/68Zs+erZs3b6pkyZKqXr26Xn/9dY0aNUoLFizQxo0b9emnn9JXD0lUVJT1b1NERIQOHTqk1q1ba+vWrdZbTwwfPlwJCQn65JNPVL58eQ0fPlyOjo7q0KGDUlJSxPfXtlG6dGl16dJFVapUkZOTk0qUKKG5c+eqU6dO+vDDD5WUlKRmzZopNjZW58+fl5+fn1q3bq3XXnuNa91taPPmzbp+/br69u2rUqVKKTIyUk2bNtWmTZvUuXNnzZw5U/Hx8WrZsqVKlSqlH3/8UXny5FHr1q3Vq1cvVatWzda7YBcIZ5Akffnll7p+/fo9y1NSUtIMA7l7DL6vr6/GjBmjcuXKpZl+HfYp9SAj9dv+27dvp3kcFxenQoUKpdkWD89333133/c9MTFRLi4ueuONN/Tqq68qOTlZLVu2VHh4uL799lvNmTNHv//+u2rWrGmDqnOW6dOna+7cucqXL5/8/Py0du1ajR07Vh9//LEqV66sSZMmqUKFCrpy5Yr1XoJ3/25kyPfD5e3trbfeektvvfWWoqOjrQf8EydO1MiRI7VkyRI5ODgoICBAx44dkyRVrlxZoaGhmjdvnhwcHJic4CHbtWuXli1bpq1bt6p8+fKqU6eOXF1dFRkZqc2bN8vHx0cffPCBWrVqpbi4OEVFRWnevHmS7vTdkCFDVLJkSdvuRA41duxYBQcHq0yZMnrhhRes98ANDw/X7t27Vbt2bX355Zdq3LixvvnmG125ckUbN26UdGcUT/fu3VWmTBkb74V9YFgjtGHDBk2cOFFffPGFPD09rcvvvhnn22+/rdDQ0PveODUpKYmbEtuJ5cuXq3r16tazZKlS+/L27dvWoaorV65UbGys/P399dNPP2nTpk3Mymgjy5Yt0+LFi/X111+nWZ7ab2fPntX8+fP19ttv69SpU1q+fLl+/PFH5c2bV7ly5dLo0aP5tjiLXb58Wb1791bPnj1Vt25dSVJ4eLjWr1+vAwcOqFevXmrVqpWOHj2q3r17q3DhwpozZ451Fkc8PFu2bNHly5fVtWtXSXeG4S9dulQffvih1q9fr3z58mnjxo1asmSJ6tSpI09PT23btk1z587VU089ZePqc67Q0FBt3rxZfn5+OnbsmEqVKqV69eopJSVFH3zwgd544w317NlT586d0+TJk/Xnn3/KwcFBP//8s/VvH2wjJCREW7Zs0bJly6wzBMfGxmr37t0aNmyYmjRpovHjxys5OVkTJkzQ6dOndf36dZ04cULTp09X48aNbbwH9oXZGqHr16+rYMGCcnNzS3OvntSbcbZr1061a9eWn5/ffZ9PMLMP3377rcaPH2+9QXGq1AP88+fP64033tC4ceNUtWpV6x+8YsWKycvLi1kZbejq1avy8fGRJCUnJ8vR0VEWi0UODg66cOGC2rVrp+rVq6t48eIqXry46tevr19++UU+Pj5ydnZW7ty5bbwHOcOZM2cUHR1tfVy9enXlyZNHrq6umj9/vjw8PPTiiy8qLCxMAwcOVFBQkD744AN5eXnZsOqcI/W75gMHDujLL7+Ut7e3WrVqJV9fX3Xu3FlJSUl67bXXtHjxYr3zzjt69dVXNWvWLN26dUsJCQnavn27AgMD+ZtmA9u2bdOOHTu0aNEilS1bVrGxsWrfvr0iIiI0cuRImUwmrVmzRrdu3dKQIUMUFhamzz//XEePHtWFCxdUpEgRW+9CjjVx4kRt3rxZGzduTDP/gLu7uxo1aiTDMDRx4kT16tVLs2bNUnBwsH744Qf99ttvWrhw4T1fJoNwlqOlHrSbzWa5uLikGb5hMpkUHR1tnWls1KhRDO+wc87OznJycpJhGGkmckk9+9muXTvVqVNHtWvXltlsVq9evdS5c2cZhiHDMOTu7m7jPci54uPjrQeEjo53fi2bzWZdu3ZNr776qp5//nkNHz5c0l+ThPj5+fGZzGJ3f1nl5OSkUqVK6cyZM0pMTJSTk5NMJpPKlCmjoKAgxcTEaO3atSpXrpwqV66scePGaezYsYqOjiacPSSpX2i4ubkpLi5OK1euVEJCgoKCglSyZEn16NFDJpNJnTp1UlhYmBo1aqRhw4YpKipKvr6+atq0KcHMRk6dOqXHH39c/v7+SkpKkru7u7p06aL+/fsrMTFRrVu3lmEYWrdunZKSkjRs2DA1bNhQDRs2VLdu3eTm5mbrXciRUlJSdOTIERUuXNgazJKSkjRz5kydPHlSrq6uKlGihAYPHqypU6eqe/fumjt3rnWCl1deecV6aQX+wjVnOVjq9WOp90VKvb4sVXJyssaMGaMxY8ZwEPgIMJlM99yXxzAMxcXFqVOnTqpdu7bGjRtnDW0Wi0Wurq5yc3MjmNlI6nVJku77GUs9kBw+fLh1/d//j6xjsVgk3XmvfXx8VLt2bc2fP18HDx60hjZJ1skITp06pd9++03SnbNq69atU9GiRW1Wf06T+vvvzJkzqlSpkvz8/LRu3TrrFN0lSpRQ9+7d1bx5c/Xu3VufffaZXF1dVbhwYetsm3i4Uj9DV69e1fXr12UymawB2cvLS8nJyYqNjVXevHn1+uuvq3Xr1tq7d6+GDh1qbYNgZjsODg4aOnSoLBaLpk2bJknq1q2bDh48qMKFC+vWrVvas2eP9u7dq/79++vIkSPq1KmT9fl8GXJ/hLMcaOfOnTp8+LD1ceqU3Hd/SCwWi3x8fPTcc89xEGjnUs+UxcTEKCUlRW5ubtYAZjKZ5ObmpkmTJt1z9pN7idjOjh07JP01GYuHh8c9wdpisShv3rzq2LFjmiCAh2PlypV699131bNnT40fP16JiYnq1auXmjRpon79+un7779P0y81atRQsWLF9O2331rbcHFxsVX5OZJhGIqMjFRMTIw6deqkvn37WiduuTugvf3222rZsqV69ux5zzBwPFypf5Oee+45JSQkWO+dKkm5c+eW2WxWQkKCJClv3rx688031aRJE/3666/W+3bCtvz8/NSsWTMdPHhQgwcPVt68eTV37lwNGzZMs2fPVtOmTXXu3DmVKVNG/fv318mTJ3X58mVJfMn4Tzg6y2FOnjypiRMnauHChfr+++8l3TkwjI+P1/r163X06FFdvXrVOpMf7Ne8efO0efNmmUwmmc1mOTs7y9HR8b5nzypXrmwdvgjb+v3339WvXz916dLFuiw2NlY3btxQRESEIiIidOvWrTQB++7/I+uFhYVpzpw5Klq0qLy9vfXZZ5/ppZde0nfffac+ffroqaeeUteuXbV3717rjYpTz0Rzpsx2TCaTvLy81KxZMxUpUkRFixZV9+7d5e/vf09A69Spk9q0aUN/2Yk6depowYIF1hmDpTszCjs5OVmvh5ek3bt3y8nJSQsXLlT+/PltVS7u4urqqmbNmil37tz6+OOPVbBgQeXJk0cWi0XOzs5q1aqVfv31V126dEkvv/yytm3bluZeg7gX15zlEKnXTpQpU0Z9+vTRihUrtGjRIvXu3Vvu7u46d+6cxo8fr7i4OJlMJhUuXFilS5fWY489pgIFCujJJ59UYGCgrXcD/+/27dv67bffNH36dLm4uOiFF16Qq6ur4uLiNHXqVHl5eal69ery8fFRkSJFrN9AwvYKFy6s0NBQjR07Vt26dbNOJHHmzBl17tzZOoQnd+7cKlKkiAICAmQ2m9W4cWNu9v4QXLlyRXv27NHo0aP13HPPSZKuXbumfv36aeDAgRo5cqTef/99zZgxQ3369NFrr72m3LlzKyoqSj///DM3cbcxR0dHvfbaa9ZJdcqUKaO3335b8+bN09q1a2UymdSmTRuVLl1aQ4cOZViVHbk7mEl3ZkhNTk5Wrly5ZDKZNH36dM2fP1+ffPKJdQIl2IeCBQuqX79+OnfunJo1ayaTyWQdWWAYhsqVKycvLy85OztzjVk6EM5yiNQLpSXp5Zdflslk0qJFi7RgwQLFxsaqTJkyWrJkic6cOaMzZ87o999/1/fff6/jx48rJiZGL7zwgo33AHfz9PRU37595enpqX79+skwDFWqVEmStHfvXhmGofnz58swDHl4eKhIkSLy8PDQSy+9pDfeeIOzMDZisVisM1iZzWYNGzZMffv2lb+/vxo3bqyOHTvq0qVL+vnnn3X69GmdP39ec+fOlSSmGn5IkpOTFRkZqXz58km6c8F7vnz5tHLlSnXs2FGjR49WWFiYxo0bJz8/Px0+fFjh4eF67LHHmPHUTqROqpP6ey41oC1cuFDz5s2Tk5OTWrVqRTCzc0lJSXJwcJCnp6dmz56tpUuXasOGDVwbaKf8/f21adMmubi46OLFi3J3d5fZbNaqVat09epVFS9e3NYlPjK4z1kOsHLlSh0+fFhJSUkqWrSo3n33XTk7O2v79u1asGCBLl68qPLly2vp0qXWM2ypDMPQzZs3uXGqnbh165YSExOVN29eSXdugzB16lRt3LhRr7zyin7//XfNnTtXnp6e+vXXXxUVFaWIiAj9+uuv+uOPPzR58uT73qsOWeuDDz7QyZMndf78eb388suqVq2aChYsqO3btyskJETXrl1T3bp1tWDBgjTPS0xM1OXLl+Xi4qICBQrYqPqcp0mTJqpWrZpGjx4t6U4/pH7b+8Ybb+jWrVv65JNPJEkJCQnWb4i5xsy+nThxQmvWrFGXLl04C23HUo9DduzYoZCQEFWrVk179uzR2rVrVbFiRVuXh//h+vXratasmSwWiwoXLqwbN25o1qxZ3IszAwhn2VxYWJg++OADtWzZUjdu3ND+/fvl4OCgUaNGqWbNmvrss880fvx4OTk5aerUqdabByYlJcnR0dF60MGZFtubNWuWvvzyS12+fFnFixfXG2+8oYYNGyolJUWTJ0/Wxo0b5eTkpK+++koeHh7WYQWp4uLimNXKBqZOnar169erQYMGunnzpsLDwxUYGKigoCDVqlVL27dv14wZM+Ts7KytW7dKShsGkPU++ugjnTp1SvHx8WrYsKF+++03rVu3Tu3atVPr1q0l/dUn58+fV1BQkDp16qQ333wzzW0rYP/4bD06jh8/rubNm8vFxcV6mwo8GsLDw3X06FEVKFBAAQEB3IcugxjWmE1ZLBZdvXr1H6+d6Nu3r0JCQvTMM8/IMAzNmjVLs2fPVpcuXVSlSpU0wz0IZra3ePFirVq1Su+++668vb21fv16zZs3TwcPHlT//v3Vv39/ubi4aMWKFQoPD1eDBg2sszhKd2ZmdHV1tfFe5DynTp3S3r17NWvWLFWvXl2StGfPHq1cuVJTpkxRr1699OKLL0qSgoODrdfGODs7W+9DiKw1efJkffjhh6pdu7YOHDigQoUK6YUXXtD333+vjz76SC4uLtZ78RiGofz58yt//vyKjIyUxKynjxqC2aOjVKlSatu2rdq0acNQxkdM9erVrX/zkHH8VcmmTCaT3N3d//HaiQoVKmjYsGGKiIjQs88+qw4dOujixYuaOnWqfvrpJxtXj1SGYSg+Pl4HDx5U9+7d1apVKz377LNasGCBGjdurIiICI0ePVomk0m9evXSq6++qu7du2v79u3WWRz/PusfHh4HBwddu3bNOqOfJD377LN65513lC9fPs2bN0+HDh3Siy++qLFjx+ro0aNq27at9bnIWkePHtXu3bs1f/58TZkyRfv27VOnTp302GOPqXv37vLw8NDmzZu1bNkySXc+Qy4uLvLx8bEOYWTwCZA1XF1dNWTIEIIZchzOnGVDM2fO1IULFzR+/Hi5u7tr8+bNCggIkIODg3VIx+LFi9WmTRu9//77+uSTT/Tyyy8rOTlZH330kTXMwfZMJpNcXV0VGxtrvS9I6hmVnj17ysPDQ1u2bNGsWbP07rvvqk+fPnJyclL//v3l6OioRo0a2XgPcq7UM5fu7u7/196dR1Vd538cfwICci9LmCgi2CikCK4lmpZiLqOTyzjZMTvJCMFxQfNUMmIuiJWWgsAoisvgQjKkOQJNRWY5M6XHBHGk0aOpCZlrKm7EZb+/P/hxJ7LFpvJe8fU4h3O83+/9fu/76/fcw/fFZ+PcuXNAfXdhR0dHevXqRV1dHcuXL7d013n00UepqqpixYoVnDt3jjZt2lj5Cpq+ixcvYjKZ8PHxAeq/W4mJiRw7dgwfHx9atmxJTU0Nb731FgcOHCAkJIRjx45RWFhoWQRXf/QQ+fVo0ha5G6nlrIlJSEhg5cqVfPbZZwCEhYWxf/9+tmzZAtR36aiqqgJg6dKllJWVkZGRAcDYsWNZvXr1TdPZivU0POB7eXlRWFiIyWSyhGyA8PBwQkND+fjjjzlw4ABeXl6Eh4cTHh6uWeOszM7Ojvbt29O/f39effVViouLcXR0tNy73r17M2HCBD744AOOHj2Ki4sLv/vd78jNzVUwu01cXV1xdHTkxo0bmM1mJk6cyKFDh+jYsSMXLlyguLiYixcvEhkZyeXLl3n77bc5e/Ysmzdv5je/+Y21yxcRkSZI4awJWbx4Mdu2beOFF16goqKCsrIyBg4cSEBAANnZ2eTm5gLcNHbiypUrlnO4urpaq3z5htLSUm7cuEFZWRn29vbExMRQUlJimT3umyH7ueeew93d3RLA77vvPmJiYggICLBa/XerrVu3smDBAuLi4tiwYQMAs2bNIjg4mLCwMC5cuICTk5Olm+Pw4cNp164dn3zyCQDOzs76Dt5G7du3x2Qy8eabb1JSUoKHhwdJSUnExsaSmprK0KFDuXbtGu3btyczM5PMzEzS0tIIDAy0dukiItJEKZw1Ea+99hrZ2dls2rSJ0NBQSkpKOH/+PH5+fkRHR2M0GsnKyiIzMxPQ2AlblpqayrPPPsuoUaN4/vnnycnJwcfHh7i4ON555x0WLFgA1Ae0hgk/HnroIW7cuGE5R8M6P3L7JCcnk5SUhNls5uzZs2RkZDB+/HguX77MrFmz8PX1ZezYsRw7dszSVaeqqgqDwaBp8q2kVatWzJs3j40bN7Jw4ULs7e3x9PQE6r9fTzzxBKdOneLf//43UP+90oQSIiLya9ITXBOQkJDApk2byM7OJjAwkMrKSjp06MCHH36Iv78/nTp1Yvbs2axdu9Yym98DDzygsRM2aN26dWRmZjJnzhwuX77MF198wezZszl16hTjx49n7ty5LF68mPLycuLi4jAajQCcO3eOe+65RzP8WcmXX37Jjh07WLp0KQMGDKC2tpZDhw4xb948oqOjWbJkCQsXLmTp0qWMHz+e6OhoDAYDX375JadOneKhhx6y9iXctYYOHcq0adNIT0+nc+fOlJeX4+7uDoCLiwtBQUG0bt3aylWKiMjdQuHsDldbW4u/vz+5ubl07NgRs9mMk5MTbdq0Yc+ePUyePBmA+++/n5iYGAoLC8nIyOCdd97BaDRq7IQNqa2t5eDBg0RFRTFq1Cigfm2yzp07s3DhQkwmE5MmTaJFixbExcUxceJE7r33XgwGA7t37yYrK0vBzErKy8u5fv067dq1A+pnWuzevTvp6elMmTKF2bNnk56eTnp6OklJSezYsYOysjJatmzJ+vXrLcfJ7efk5ERERARms5k1a9aQmJjIH/7wBzw9PcnOzqa4uFjrK4mIyG2jRaibgIZFohtupZ2dHXv37uVPf/oTixYtIjQ09KaFpGtra6mtrVUXHRtRV1dHRUUFY8aM4fe//z3Tpk1rtP/tt98mNjaWZ599lilTpnDlyhXS09O5cuUKLi4uPPXUU5pu2IoqKioYNmwY48aNs9y7hsWJz58/T3h4OF5eXrz++usAXLlyhebNm1NbW6sxZjaisrKSvLw8lixZgr29PW5ubtjb25OYmEhQUJC1yxMRkbuEWs6agIbQ9c3w5efnh4eHB/n5+Y3CWcMDo4ODg1pZbIi9vT0Gg4HBgwfz/vvvM3z48EZha+TIkVy7do1FixYREBDAkCFDiImJAf4bAuT22r17N9evX6eyspJhw4YxbNgwPvroI4KDgxk4cCD29vaYzWa8vb2Jj49n3rx5fPDBBwwZMgQPDw/dMxvTsNh0v379OH/+PM2aNcPb25sWLVpYuzQREbmL6OmgifL19WXixIls3LiRgwcPWh4U9UBoW3Jzc/nLX/5ieR0SEoKDgwNbt261rGsG9a2jo0eP5re//S179+61tHyCxgpaw5IlS5gzZw7r16/nxRdfZMWKFTzzzDPU1taSmZnJ3r17gf/em6CgIOrq6jhz5gyAvoc2rFWrVnTr1o2goCAFMxERue30hNCEPfbYYwwePJhly5Zx8uRJPcTbELPZjNlsZt++fWzYsIE333wTgEGDBjFo0CB27txJVlYW58+fB+of8t3c3DAajXz++eeNWj51X2+v7Oxs3n33XdauXcvGjRtZvHgx27dvx9vbm/nz53Pq1Ck2b97Me++9ZznG3d0dPz8/DAaDFSsXERERW6dw1oS5uroyevRovvrqKzIyMqipqbF2SfL/6urqsLOzw8XFBZPJxOuvv24ZjzR9+nSGDx/O3//+d9atW8fJkyctx9nZ2eHr66t7aUXHjx/nwQcfJDAwEFdXVzw8PDAajcTHx/Phhx/St29fSktLyczM5JVXXiEvL4+XXnqJI0eOaFZGERER+UEac9ZENYwxGzJkCBcuXGDAgAFa+8qGNLR6lZSU0LVrV7y8vNi6dSsAYWFhzJo1Cw8PD3bt2sWkSZPo0qULFRUVFBQUkJWVpXtpBQ0T7pw5c8bSWtkwwx9AWVkZ+/fvx93dHS8vL7p06UJubi779u3DaDSSkZGBn5+f1eoXERER26fZGpuwb8/QKLbDbDZz5coVoqOjiY6OpkOHDiQnJ3Ps2DHGjRtHWFgYAIWFhfznP//hwIED+Pj48MQTTxAQEGDl6u9uhw8f5sCBA4SFhXH69Gm2b9/OhAkTaNGiBWVlZbz22mucOHGClStX4unpyddff42Dg4O6NIqIiMiPUjgTsZKamhq2bt1Knz598Pf358SJE6xevZrPPvuMJ598kgkTJli7RLkFFRUVlmnxHRwcOHPmDIMHD2bNmjWEhoZauzwRERG5g2jMmYiVNGvWjHHjxuHv709dXR0BAQFMmTKFTp06sWXLFrKysqxdovyAhr9rNW/eHKjvqmo2m6mpqaFjx460adPGmuWJiIjIHUjhTMSKGsaONXQ/bQhoQUFBpKWlsW3bNmuWJz+g4Z6dPXuW/Px8SktLKSsrIycnB5PJhKenp5UrFBERkTuNZhUQsQHfHBsYEBBAREQEzs7O9OnTx4pVya24ePEiUVFRuLm50apVK65du0ZqaipeXl7WLk1ERETuMBpzJmKjqqqqcHJysnYZcgs+/fRTjh8/joeHB8HBwerSKCIiIv8ThTMREREREREboDFnIiIiIiIiNkDhTERERERExAYonImIiIiIiNgAhTMREREREREboHAmIiIiIiJiAxTOREREREREbIDCmYiIiIiIiA1QOBMREREREbEBzaxdgIiIyK0KCwsjPz+/0TZHR0datmzJo48+ynPPPYeHh8f3Hn/69GkGDx7Mq6++yuOPP/6r1dnwOd/m6OiIh4cHPXv2ZObMmbRv3/5Xq0FERO48CmciInJHCQoKYsGCBZbX1dXVHD58mKSkJI4cOUJWVhZ2dnbfeWyrVq3YsmUL7dq1uy21Tp06lYEDB1pem0wmDh8+zOrVq3nmmWd47733cHZ2vi21iIiI7VM4ExGRO4qrqys9evRotC0kJISvv/6a5cuXU1RUdNP+Bk5OTt+779fQrl27mz6vb9++GI1G4uPj+eSTTwgNDb1t9YiIiG3TmDMREWkSunTpAsDZs2eB+i6QMTExzJgxgx49ehAREcHp06fp1KkT27dvtxx38uRJpk+fTu/evQkJCWHy5Ml8/vnnlv2VlZUsXbqU0NBQunTpwqhRo3j33Xd/Vq3u7u43bSsoKCAyMpKQkBC6dOnCoEGDWLFiBXV1dQCW2vPy8pgxYwY9e/akd+/ezJs3j/Lycst5qqurSUxMZMCAAXTr1o3IyEhycnLo1KkTp0+ftrxv//79TJgwge7du9O7d29iY2MpLS39WdclIiI/j8KZiIg0CcXFxQD4+flZtuXl5WE0GklLSyMqKuqmYy5cuMCTTz5JSUkJ8fHxJCQkcOnSJSZOnMjVq1cxm81MmzaNN954g4iICNLS0ujZsyfPP/88OTk5P1pTXV0dNTU1lp+ysjL27NnDsmXLaNu2Lb169QLg6NGjhIeHc88995CcnExaWhq9evUiNTWVvLy8RudcsGABbdu2ZdWqVURGRrJt2zbS0tIs++Pi4ti0aRMTJkxg5cqVtGzZkvnz5zc6R0FBAeHh4TRv3pyUlBTmzJlDfn4+f/zjH6moqLjl/3MREfllqVujiIjcUcxmMzU1NZbX165dIz8/3xKcGlrQoH4CjoULF+Lk5ATQqOUIYOPGjVRVVbFhwwa8vLwACAwM5KmnnqKoqIhmzZrx8ccfk5yczGOPPQZA//79MZlMJCYmMnLkSJo1+/5fpXPnzmXu3LmNthkMBh5++GFiY2MxGo1AfTjr168fCQkJ2NvX/9304YcfZteuXezbt48RI0ZYjg8NDSU2Nhao7yK5Z88e/vnPfzJz5kxOnTpFdnY2sbGxREREWOq9dOkSu3fvtpxj2bJltG/fnjVr1uDg4ABA9+7dGTFiBH/72994+umnf/Q+iIjIL0/hTERE7igFBQUEBwc32mZvb0+/fv146aWXGk0G0qFDB0sw+y6FhYX06NHDEswAvL29+cc//gFAYmIidnZ2hIaGNgqEgwYN4q233uL48eN07tz5e88/ffp0Bg4ciNlspqCggJSUFEaMGEF8fHyjUDdmzBjGjBlDZWUlxcXFfPHFFxw5coTa2lqqq6sbnfPbY9i8vb05c+YMAPv27cNsNjN8+PBG7xk5cqQlnJlMJoqKioiMjGwUdP38/PD392fPnj0KZyIiVqJwJiIid5Tg4GAWLlwIgJ2dHc7OzrRp0wZXV9eb3tvQMvV9rl69iq+v7w/uN5vNPPDAA9+5/6uvvvrBcNa2bVu6du0KQLdu3fD09OTFF1/EwcHBcg0AFRUVvPzyy+Tm5lJTU4Ovry89e/akWbNmmM3mRud0cXFp9Nre3t7ynoYxY/fee2+j93zz9fXr16mrq2PdunWsW7fuppo1e6SIiPUonImIyB3FaDRaAs/P5ebm9p2TYOzduxdfX1/c3NwwGAxkZGR85/H33XffT/q8xx9/nB07dvDGG28wdOhQHnnkEQAWLVrEjh07SElJoV+/fhgMBqC+2+JP0bp1awAuXbqEj4+PZfs3r9FoNGJnZ0d4eHij7pINvh3+RETk9tGEICIictfq1asXRUVFjcLL5cuXiYqK4l//+he9e/emvLwcs9lM165dLT/Hjh1j5cqVjbo63qr58+fj7OzMK6+8YumyWFhYSJ8+fRgyZIglmB06dIjS0lLLbI234sEHH8TBwYGdO3c22v7+++9b/u3q6kpQUBAnT55sdE33338/K1asYN++fT/5mkRE5JehljMREblrhYeHk5OTQ1RUFJMnT8bR0ZG0tDS8vb0ZNWoUbm5uhISEEB0dTXR0NP7+/nz66acsX76c/v3706JFi5/8mb6+vkRGRrJq1So2bdpEVFQU3bp1Iy8vj6ysLPz9/Tl69ChpaWnY2dlhMplu+dx+fn6MHTuWpKQkqqurCQwMZOfOnZYxdA2TjbzwwgtMmjSJmTNnMnr0aGpra1m/fj1FRUVER0f/5GsSEZFfhsKZiIjctdq0acNf//pXEhISmD17Nk5OTvTp04fk5GQ8PDwAWLt2LX/+859Zs2YNly9fpnXr1kRERDBt2rT/+XMnTZpETk4Oq1atYvTo0cyePZvq6mpSUlKoqqrC19eXqVOncuLECXbt2kVtbe0tn3v+/PkYDAbWr19PWVkZffv2ZerUqaxcudLSKvfII4+Qnp5OamoqM2bMwNHRkeDgYDZs2HBbF+kWEZHG7MzfHmksIiIid6SrV6/y0Ucf0b9/fzw9PS3blyxZwvbt29VlUUTExqnlTEREpIlwcXFh0aJFdO7cmYkTJ2IwGDh48CCbN29m8uTJ1i5PRER+hFrOREREmpAjR46QkpLCwYMHMZlMtGvXjvHjx/P00083WgNORERsj8KZiIiIiIiIDdBU+iIiIiIiIjZA4UxERERERMQGKJyJiIiIiIjYAIUzERERERERG6BwJiIiIiIiYgMUzkRERERERGyAwpmIiIiIiIgNUDgTERERERGxAQpnIiIiIiIiNuD/AGHcXP7vRCUdAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "\n", - "# # Set the style of seaborn\n", - "# sns.set_style(\"whitegrid\")\n", + "# Set the style of seaborn\n", + "sns.set_style(\"darkgrid\")\n", "\n", - "# # Create a bar plot\n", - "# plt.figure(figsize=(10, 6))\n", - "# sns.barplot(x=\"pricerange\", y=\"total_sqft\", data=housing_data_encoded, errorbar=None)\n", - "# plt.title(\"Total Square Footage by Price Range\")\n", - "# plt.xlabel(\"Price Range\")\n", - "# plt.ylabel(\"Total Square Footage\")\n", - "# plt.xticks(rotation=45) # Rotate x-axis labels for better readability\n", - "# plt.show()\n" + "# Create a bar plot\n", + "plt.figure(figsize=(10, 6))\n", + "sns.barplot(x=\"price_range\", y=\"total_sqft\", data=housing_data, errorbar=None, hue=\"price_range\", palette=\"crest\", legend=False)\n", + "plt.title(\"Total Square Footage by Price Range.\")\n", + "plt.xlabel(\"Price Range\")\n", + "plt.ylabel(\"Total Square Footage\")\n", + "plt.xticks(rotation=45) # Rotate x-axis labels for better readability\n", + "plt.show();\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "##### Interpretation:\n", + "\n", "The bar plot illustrates the relationship between price range and total square footage. Each bar represents the total square footage of houses within different price range categories. \n", - "From the graph, it is evident that there is a positive association between house size and price. Specifically, larger houses, as indicated by higher total square footage, tend to command higher prices. This suggests that there is a tendency for bigger houses to have a higher price, indicating a positive correlation between the size of the property and its price.\n" + "From the graph, it is evident that there is a positive association between house size and price. Specifically, larger houses, as indicated by higher total square footage, tend to command higher prices. \n", + "
This suggests that there is a tendency for bigger houses to have a higher price, indicating a positive correlation between the size of the property and its price.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**#Relationship between bedrooms, bathrooms, and house price**\n", + "\n", + "Created a scatter plot to visualize the relationship.\n" ] }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 535, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAImCAYAAADHWLzEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT9f748dc5GW26S1soe5dVNjJFhgMH8hOU60Sv46IMlQsIjquoV8WNylRwfJ0XJ07UqziuiCwBQfZSRhmlu00zzvn8/ghESts0KQ0t5f18PPKAnpx88s4nJ8l5n8/SlFIKIYQQQgghhAiBXt0BCCGEEEIIIU4/kkgIIYQQQgghQiaJhBBCCCGEECJkkkgIIYQQQgghQiaJhBBCCCGEECJkkkgIIYQQQgghQiaJhBBCCCGEECJkkkgIIYQQQgghQiaJhKixZK3Ekyd1KE4FOc6EEOLMJImEKGHUqFG0adOmxK1t27Z069aNESNG8PHHH4dc5uDBg7n77rtDesy3337L1KlT/X8vX76cNm3asHz58pCf/2SNGjWKUaNGBdxn5syZtGnT5qSfqzJ1VZa8vDymTJnCqlWrTrqs6nLsPT/+lp6ezrnnnsuTTz6J0+mskuepqvfudDF48OBSn+9evXpx2223sXnz5pDL27ZtG1dffXWJbW3atGHmzJlVFbI4wd69e2nTpg0ffvhhuft8+OGHtGnThr1795Z5/913383gwYPDFWJYnHjstmnTho4dO3L++efzzDPP4HK5Aj6+On9HhKitrNUdgKh52rdvz7Rp0/x/G4bBgQMHeO2115gyZQoJCQkMGDAgrDG89tprJf7u0KEDCxcupFWrVmF93soaOXIk/fv3r+4w/DZt2sTHH3/M5ZdfXt2hnLQHHniADh06AOB0Otm8eTMvvPAChw8f5qmnnqrm6E5PAwYMYOzYsQB4vV4OHTrEK6+8wg033MAXX3xBUlJS0GV9+eWXrFmzJlyhClHC8ccugMvlYvny5cyZM4d9+/bx7LPPlvvYmv47IsTpSBIJUUpMTAxdunQptf2cc86hT58+fPjhh2FPJIKNqaZITU0lNTW1usOolVq1alXive/Tpw/5+fnMnTuXadOmERMTU33Bnabq1KlT6vPUsWNHzjvvPL788kuuvfba6glMiAqUdez26tWLAwcO8OGHH3L33XdTt27dMh9b039HhDgdSdcmEbSIiAjsdjuapvm3mabJSy+9xPnnn096ejpDhgzhjTfeCFjO3r17mTJlCmeffTYdOnSgT58+TJkyhezsbMDXlWjFihWsWLHC3wxdVpP0+vXrufnmm+nVqxfdunXjtttuY9u2bf77jz1m2bJl3HTTTXTu3Jl+/frx1FNPYRiGf7+lS5fyt7/9ja5du3LWWWcxZswYduzYUSJmpRTz589n4MCBdOrUiSuvvJLffvvNf/+J3WNGjRrF3Xffzbx58+jbty/du3dn7Nix7Nu3r8J69ng8PPLII5x11ln06NGDqVOnkpWVVWKfVatWcd1119G5c2d69uxZYp/ly5dz/fXXA3D99dczatQoxo8fz7Bhw0qUccMNN5Cenk5xcbF/26OPPsqQIUP8f3/zzTeMGDGCjh070q9fPx555BGKiopKlLN161ZuvfVWunXrRrdu3Rg3bhx79uwJ+X0IRVxcXKltOTk5PPDAA/Tt25eOHTvyt7/9jWXLlpXYx+VyMX36dPr160fXrl255557SnWHuPvuu7nhhhuYNm0a3bp14+KLL8YwDFwuF7Nnz+bCCy+kY8eOXHDBBbz00kuYplni8V988QUjRoyga9eu9OvXjwceeIDc3Fz//TNnzuTCCy/kv//9L0OHDqVjx478v//3/1izZg1r165l5MiRdOrUiaFDh5aIv7i4mAcffJBzzjmH9PR0LrzwQl5++eVK1V9Z4uPjS20rLi7mmWee4YILLiA9PZ1u3bpx4403smnTJv9rmTVrFlC6O1NBQQH33XcfPXv2pGvXrtxxxx1kZmb67x81ahSTJ0/mjjvuoEuXLtx4440A5OfnM336dM477zw6duzI0KFDef/990vEZRgGb731FpdeeimdOnVi4MCBPP300yXey7vvvpubb76ZhQsXct5559GpUyeuuuoqdu3axXfffcell15K586dGTlypP/1AGRlZTFp0iT69evnf28WLVoUcn1W9D0Hvq46L7zwAk888QR9+/alU6dO3HzzzezevbtEWV9//TXDhg2jU6dODB8+vFJd0IKxdOlSrrnmGrp3706vXr2YNGkSGRkZ/vvL6wZ44nv/2Wef+ePt3bs3kydP5uDBgyUe895773HJJZeQnp7OwIEDmTlzZqW/DwDS09NRSvnjHTx4MI899hg33HADnTp14r777ivzd2Tt2rXcdNNNdOvWjd69ezNx4sQSsQbzvSLEmUwSCVGKUgqv1+u/uVwudu7cyT333ENhYSH/7//9P/++Dz74IC+88ALDhg1j3rx5XHjhhTz22GPMnj27zLKdTifXX389O3bsYNq0abz88stcf/31fP7558yYMQOAadOm0b59e9q3b8/ChQv93VqO98svv/j7ZT/22GM88sgjZGRkcNVVV5VKAiZPnkz37t2ZN28eQ4cOZcGCBbz33nsA7Nmzh7Fjx5Kens7cuXN59NFH2bVrF6NHjy5xgrh69Wr++9//cv/99/PUU09x6NAhxowZg9frLbcev/32Wz788EP+9a9/8dBDD7Fp0yZGjRpVYd/+xYsX8/vvv/P4448zdepUvv/+e/7xj3/4f2RXrlzJ3//+dyIjI3nuuee49957WbFiBddffz3FxcV06NCBBx54APB1C5o2bRoDBgxg69atHDlyBPCdUK9ZswaPx8PatWv9z/3jjz8yaNAgAD799FPGjRtHixYtmD17NuPHj+eTTz5h7Nix/sG1u3bt4qqrruLIkSM88cQTPProo+zZs4err77a/1zBvA+BmKbpPxadTie//vorr7/+Opdddpm/NcLlcnHDDTfw7bff8s9//pNZs2aRmprKLbfcUuJH/6677uLdd9/l1ltv5bnnniM3N7dUNzrwJWoZGRnMnj2bSZMmoes6t912GwsWLGDkyJH+Y/25554r0Q1wzpw5TJw4kS5duvDCCy8wbtw4vvrqK0aNGlUiYTtw4ACPP/44t912G88//zx5eXnccccdTJw4kZEjRzJ79myUUvzzn//0P+6xxx7jxx9/ZOrUqbz88sv+sSIffPBBhXV4ouM/4263m/379/Poo4+SnJzMRRdd5N9vypQpfPDBB4wePZpXXnmFe+65h23btjFp0iSUUowcOZIrrrgCgIULFzJy5Ej/Y19//XU8Hg/PP/88kyZNYsmSJTz88MMl4li8eDHR0dHMnTuXW265heLiYq655ho+/fRTbrnlFubMmUP37t257777mDdvnv9xDzzwgD/ZmDt3Ltdeey1vvvlmiWMTYM2aNbz55pvcfffdTJ8+nR07djB69GimT5/OrbfeyrPPPktGRgaTJ0/2P+auu+5ix44dPPTQQ8yfP5/27dszdepUfvnll6DrN5jvuePraefOnUyfPp1HHnmEDRs2lBgftmTJEu644w7atGnD7Nmzueiii7jrrruCjuX4z8/xtxMHyC9atIibbrqJ+vXr8+yzz3LPPfewZs0arrzyylKf5UBWr17NlClTuOCCC5g/fz733HMPv/zyC5MmTfLv8+KLL3L//ffTp08f5s2bx7XXXsv8+fO5//77g36eE+3atQuAxo0b+7e99dZbdOzYkTlz5viP0+Nt3LiR6667DpfLxZNPPslDDz3Ehg0buPnmm/2/fcF8rwhxRlNCHOe6665TaWlppW5t2rRRl156qVq8eLF/3507d6o2bdqoF198sUQZM2bMUB07dlRZWVlKKaUGDRqkpk6dqpRSauPGjerqq69Wf/75Z4nH3HrrrWrIkCEl4rjuuuv8f//yyy8qLS1N/fLLL0oppa644gp18cUXK6/X698nNzdX9ezZU91xxx0lHjNjxowSzzV48GB16623KqWU+uyzz1RaWpo6cOCA//5169apZ599VuXn5/tj6dSpk8rOzvbv8+6776q0tDS1adMmpZRSL7zwgkpLSysRf4cOHUq8zt9//12lpaWpt99+u3TFHzVo0CDVt29fVVhY6N/23//+V6WlpaklS5YopZS68sor1dChQ0u89p07d6p27dqpN998s8z6OnjwoGrTpo369NNPlVJK/fzzz6pLly5qyJAh6oUXXlBKKfXnn3/6H2OapjrnnHPUzTffXCK+n3/+WaWlpanvvvtOKaXUxIkTVd++ff11pZRS2dnZqnv37urxxx8P+n0oy7HHlXUbPHhwifds4cKFKi0tTa1du9a/zTRNde2116oRI0YopZTaunVrqfo3DENdfPHFJd67qVOnqrS0NJWRkeHf9v3336u0tDT12WeflYhx9uzZKi0tTW3dulXl5OSo9PR0df/995fYZ+XKlSotLc3/3hw7Vn744Qf/Pi+++KJKS0tT7733nn/bl19+qdLS0tTGjRuVUkoNGTJE/etf/ypR9qxZs/zvRbAGDRpU7mf8k08+8e/ncrnUTTfdpD7//PMSj3/llVdUWlqaOnToUInXc7y0tDQ1cuTIEtsmT56szjrrLP/f1113nercubNyuVz+bW+99ZZKS0tTv/76a4nH3nvvvapjx44qOztbbdu2TaWlpZX63lm0aJFKS0tT33//vVLqr/dx+/bt/n0eeOABlZaWpn7++Wf/tpdfflmlpaWp3NxcpZRS6enpau7cuf77DcNQjz/+uFq9enV5VVpKsN9zgwYNUoMGDSrxWZ45c6ZKS0vzf3+OGDGiVF0eO14++OCDcmP44IMPyv38HLsNGjTI/xr79eunbrrpphJl/PHHH6pDhw7qiSeeUEqV/V4r5Xu/j32PvPjii6pr164l3tfvv/9ezZw5U5mmqfLy8lSnTp3UAw88UKKMY9+pW7duLfc1DRo0SE2ZMkV5PB7/7cCBA+rdd99V6enpasKECSX2Pe+880o8/sTvxdtvv13169dPFRcX+/f59ddf1aBBg9TGjRuD+l4Rtdu8efNKnIsE66OPPlIXXXSRSk9PVxdffLH64osvwhBdzSBjJEQpHTp04KGHHgLg0KFDPPfcc3g8Hp577jlatGjh3++XX35BKcXgwYNLXJkfPHgwc+fOZfXq1Zx33nklym7Xrh1vv/02pmmye/du/vjjD7Zv387OnTsDXt0/XlFREevXr2f8+PFYLBb/9ri4OAYNGsQPP/xQYv+uXbuW+Ds1NdXfPadz585ERERwxRVXcOGFF3LOOefQq1cvOnXqVOIxrVq1IiEhwf93o0aNAF83jPJ069atxNWx9u3b07hxY1auXFlqlpvjDRgwgKioKP/fgwcPxmq1snLlSnr37s26deu4+eab/VeVwXcVrmXLlixdurTM/u1169alffv2/Pzzz/4uM926daNBgwasWLEC8LVGxMXF0b17d3bu3MmBAwe49dZbS7wvZ511FjExMSxdupSBAwfyyy+/0LNnTyIjI/37xcTE0KNHD37++ecSMQR6HwJ56KGH/K1SbrebPXv28NJLL3HFFVewcOFCGjRowLJly0hJSaFDhw4l4h00aBBPPvkkubm5/hmsjp+pRtd1hgwZwvbt20s8Z0JCQokxLytWrMBqtXLhhReW2G/YsGE8//zzrFixgkaNGuF2uxk6dGiJfXr06EHDhg1ZsWJFifemW7du/v8nJycDvuPx+BjANwMX+PqB/+c//+HAgQMMGDCAAQMGMG7cuArrryyDBg3yP1YpRVZWFosXL2by5Mk4nU7+9re/Ybfb/V2nDh48yK5du9i9ezffffcd4HsvAunevXuJvxs1auR/Lce0aNECu93u/3vFihU0bNiw1LEybNgw3n//fdatW+fvHnjJJZeU2OeSSy7hnnvuYfny5f4xXPHx8bRs2dK/T0X1HBcXR69evZg5cyYbN26kf//+DBgwoEQLQTBC+Z7r2LFjie+xY8ed0+nE4XDw+++/c+edd5Z4zEUXXcQzzzwTVCxz584lJSWl1PbZs2ezdetWwHc1//DhwyVaDQCaNGlC165d/d8RwTjrrLOYMWMGQ4cOZciQIQwYMICzzz7b/56sWbOG4uLiMn83wNe9qnXr1uWWv2jRolJdzaxWK+eff36J1kHwvQ+BrF69mgEDBhAREeHf1rVrV5YsWQLASy+9VOH3SlldAkXt8NZbb/Hcc8/Ro0ePkB738ccfc99993HvvffSv39/Pv/8cyZOnEhqamqp77baQBIJUUp0dDQdO3b0/925c2eGDRvGTTfdxIcffkidOnUAX99RKP2DfsyJfWKPefXVV5k3bx45OTkkJyeTnp6Ow+EIeFJ+vPz8fJRS/pOC4yUnJ5cqJzIyssTfuq77m/UbNWrEm2++yUsvvcT777/P66+/TlxcHNdccw0TJkzwjwc5/sT+WBlAqf7xx6tXr16pbUlJSSX6y5flxB99XddJTEwkLy+PvLw8TNNk/vz5zJ8/v9Rjj/9BPNGAAQP80/cuW7aM888/n/r16/Pxxx/jdrv53//+R//+/bFarf739qGHHvInlcc7dOgQ4DsGvvjiC7744otS+xw7To4J9D4E0rx58xLHY/fu3enZsyfnnXcer7zyCv/617/Iycnh8OHDZXaDAzh8+LC/3hMTE0vcV9ZJVnR0dIm/c3NzSUxMLHHCd/xj8/Pz/eUHe1yWNUjc4XCUGT/AfffdR2pqKp988gn//ve/+fe//03Xrl158MEHadu2bbmPK0tCQkKJOgUYOHAghw4d4qmnnuLyyy/HYrHwv//9j8cee4ydO3cSHR1N27Zt/Z+Fit67sj4zJz6mrHou6/04Vqd5eXn+ej5xP6vVSmJiYol6Lm8g/omxHW/GjBnMmzePxYsX89VXX6HrOn379uXhhx+mYcOG5T7uRMF+z534nh//3ZKbm4tSqtQxW95g4rKkpaX5L3wc7/gLI8c+7+Uduxs3bgz6+bp27cpLL73Ea6+9xquvvspLL71EcnIyt912G6NGjfI/1+jRo8t8/LHvlvIcnwRrmobD4aBhw4alvl8g8PsMvtcdaIayYL5XJJGofQ4ePMi0adNYvnw5zZo1C+mxSimef/55rr/+ev+FozFjxrBq1SpWrFghiYQ4MyUnJ/PAAw9w55138uijj/qvhB0b8Pp///d/pU4IABo0aFBq26effsrjjz/OXXfdxYgRI/wnm3feeSfr168PKp7Y2Fg0TSsxcPOYw4cPl/iBDEanTp2YNWsWbreb1atXs3DhQubNm0fbtm1L9BcP1fGDKo/JzMykSZMmAR937If2GMMwyM7OJikpiejoaDRN4+9//3uZCVygE9GBAwcyZ84cfv/9d37//Xfuu+8+GjRogMvlYtWqVSxfvtyfNBx7b6dMmULPnj1LlXXsxzM2Npa+ffv6B8oez2oN39dLgwYNqFOnjn9QamxsLM2aNePpp58uc/9GjRr5T8YyMzNLHJsn1ndZ4uPjyc7OxjCMEsnEsZOexMREf51kZmaWaLkD33F5fOtUZdjtdsaMGcOYMWPYv38/3333HXPmzGHSpEl8/vnnJ1X2Menp6fz8889kZ2dTVFTEuHHjOO+883jxxRdp3Lgxmqbx1ltv8b///a9Knu9E8fHx/PHHH6W2Hz58GKBEonD48OESJ/Yej4fs7OxSJ92hio2N5a677uKuu+5i586dfPvtt8yZM4eHHnqIl156KagyquJ7Dnwn+7qul/quC+aYDcWx78zyvlOP1emxCyvHfw4KCwtLPaZ///70798fp9PJL7/8wuuvv84jjzxC586d/d8tTz/9dJknaWUlMyfGemISXFmxsbGlJrIA+OGHH2jXrl1Q3yui9vn999+x2Wx88sknzJ49u9QkKd999x0zZ85k+/bt1KtXj0suuYSxY8dit9vZtWsX+/bt49JLLy3xmKqcGKOmkcHWIigXXngh/fv357PPPvM3cx9r7svOzqZjx47+W1ZWFs8//3yZP3arV68mLi6OW265xf/jWlhYyOrVq0tc3T92Va4sUVFRpKens3jx4hKzfOTn5/P999+X6lIRyGuvvcagQYNwu93Y7Xb69OnDv//9bwD2798fdDllWb16dYlkYsOGDezdu5c+ffoEfNzSpUtLNKN/9dVXeL1eevXqRUxMDO3bt2fnzp0l6rx169bMnDnTPxvJiVfOwdeFok6dOsyZM4eIiAjS09OpW7cuLVq0YNasWbhcLs455xzA1+UkKSmJvXv3lnieevXq8cwzz/ivUPbs2ZPt27fTrl07/z7p6em89tpr/Pe//z2p+gtk7969ZGVl+U9EevbsSUZGBklJSSXiXbp0KQsWLMBisdC7d2/At+7B8Y511QmkZ8+eeL3eUo/95JNPAF8rSefOnbHb7Xz22Wcl9lm1ahX79+8v0ZUpVMXFxQwZMoRXXnkF8CVS1157LZdccslJH6fHW79+PfHx8SQmJrJhwwZcLhejR4+mSZMm/pPIY0nEsdaFQJ/VUJ111lns27ev1LoUn3zyCTabjU6dOvkT2xOTp88//xzDMEL6/J9o3759DBgwwP8+t2jRgn/84x/07ds3pHoO9nuuIhEREXTt2pWvv/66RGvOsa43VaV58+akpKSUOnb37NnD2rVr/cfusRaeAwcO+PdZvXp1icc88cQTXH755SilcDgcDBo0yN81bP/+/XTu3BmbzcbBgwdLfFatVivPPvtsuQvohUOPHj1YunRpiW56GzduZPTo0fz+++9Bfa+I2mfw4MHMnDmzzIs/P/74IxMmTOBvf/sbn332GdOmTWPx4sX+CRCODfovKiri5ptvpk+fPowcObLKP7M1ibRIiKDde++9DBs2jEceeYSPPvqINm3aMGzYMO6//3727dtHeno6u3btYsaMGTRq1KjMq02dOnXinXfe4fHHH2fQoEEcOnSIl19+mczMzBJNxHFxcaxZs4Zly5bRvn37UuVMmjSJm2++mdGjR3PNNdfg8Xh46aWXcLvdIfUb7927N08//TTjxo3juuuuw2Kx8J///Ae73e6fvaiynE4nt9xyC2PGjKGwsJAZM2aQlpZWqg/9iQ4fPsztt9/OqFGj2L17N88++yz9+vXzJyATJ05k9OjRTJo0iWHDhmEYBq+88grr1q3zL9QUGxsLwPfff098fDxt27ZF13XOOeccFi1axNlnn+1vMejVqxfvvPMOPXr08F+ZtFgs/POf/+SBBx7AYrEwaNAg8vLymDNnDgcPHvQ39Y8dO5arrrqKW2+9lauvvpqIiAgWLlzIN998wwsvvHBS9XfM9u3b/V22lFLs37+f2bNnExERwXXXXQfAiBEjePPNN7nxxhu57bbbqF+/Pj///DPz58/nuuuuw2az0bRpU6688kpmzJiB1+ulXbt2fPzxx2zZsqXCGI6NnfnXv/7FwYMHadu2LStWrGD+/PkMHz7cv8DV6NGjmT17NjabjUGDBrF3716ef/55WrVqxfDhwytdB5GRkXTo0IFZs2Zhs9lo06YNu3bt4qOPPioxXe/GjRux2+0VLriVlZVVYrYup9PJokWLWLZsGRMnTsRisdChQwesVitPPfUUN910E263mw8//JDvv/8ewD++5dgV5s8++4zOnTufVMvLiBEjePvttxk3bhx33HEHjRo1YsmSJXzwwQeMHz+euLg44uLiGD58OC+88AJOp5OzzjqLTZs2MWvWLHr16nVSC0M2bNiQ1NRUHnnkEQoKCmjSpAkbNmzghx9+4NZbb/Xvt3btWurUqVNu62Kw33PBmDhxIjfccAPjx4/nyiuvZNeuXSVmsKoKuq4zceJE7rnnHv/3SnZ2NrNmzSI+Pt7f4jhgwACmT5/OAw88wM033+yf2ez4FunevXvz6quvcvfddzNs2DA8Hg8LFiwgISGB3r17k5CQwC233MLzzz9PQUEBvXr14uDBgzz//PNomhZyN72TMXbsWK688kpuvfVW/6x3zz33HJ06daJfv354vd4Kv1fEmWXevHn87W9/46qrrgJ844geeughbrjhBvbu3UtBQQEAU6dOZfz48UyePJmvvvqKsWPH8uqrr1Z4IfF0JImECFqLFi0YNWoUr7zyCu+88w7XXXcd06dP58UXX/QPAk1KSuLiiy9mwoQJZV6tGT58OHv37uWDDz7g7bffpl69egwYMIBrrrmG+++/nx07dtCyZUuuvfZaNmzYwD/+8Q+mT59eqk9wnz59ePXVV3nhhReYOHEidrudHj168MQTTwQcqHeitm3bMm/ePGbPns3EiRMxDIP09HReeeWVUt1TQtWjRw969+7NfffdB/iuckyZMqXE4NKyXHPNNeTn5zNu3DjsdjuXXnopd911l/+K8Nlnn83LL7/MrFmzuOOOO7DZbHTo0IFXX33Vv9hS69atGTp0qL8byrErjQMGDGDRokX06tXL/3zHEomBAweWiGPkyJFER0ezYMECFi5cSFRUFN26dePpp5/2nyy2bduWt956ixkzZjBlyhSUUqSlpTF79mzOPffck6q/Y46fMlTXdRISEujSpQtPPfWUP1mNiorirbfe4plnnuGpp54iPz+fhg0bMmnSJG666Sb/46dNm0ZycjJvvvkmubm59O/fn9tuu43nnnsuYAyapvHiiy/ywgsv8Nprr5GVlUWjRo2YOHFiiW5dt99+u7/8hQsXkpCQwIUXXsiECRMq7K8dTD0899xzvPLKKxw+fJikpCSuuOKKEgNxx48fT8OGDStcy+WHH34oMSlBVFQUzZs3Z9q0aVxzzTUANG3alGeeeYZZs2YxZswY4uPj6dKlC2+88QajRo1i1apVtGnThgsuuICPP/6Yu+++myuuuIIHH3yw0q/R4XDwxhtv8Mwzz/hPNFu0aMGjjz5aYvrORx99lKZNm/LBBx8wf/586taty/XXX8/YsWNPuoVk1qxZPPvsszz//PNkZ2dTv359xo8fX6JP/5VXXsnw4cN5/PHHyywj2O+5YPTo0YP58+fz7LPPMn78eBo1asRjjz3GbbfddlKv80QjRowgOjqaF198kXHjxhETE0P//v2ZOHGifzxK8+bNeeKJJ5g7dy6jR4+mZcuW/vE6xwwYMICnn36aV155hfHjx6NpGt27d+f111/3X6iYMGECKSkpvP322yxYsID4+Hj69OnDxIkT/RdBToX27dv7j7cJEyYQExPDgAEDmDx5Mna7HbvdHtT3ijhzbNy4kd9++63E2jbHWgt37NjhTy5vvvlm/8Wjdu3asXHjxlqbSGgqmNGOQoiQjBo1CqDCEzohqtKePXt48MEHa3V/3Jpg2bJlLF68uNS6GEKI2uXuu+9m3759/t/yTp06cdNNN5XZwpySksKmTZu45ppreOutt0rM9vTkk0/y/ffflzkxyelOxkgIIUQtMW/ePPr161fdYdRqpmmyYMECqWchzkCtW7dm165dNG3a1H87cOAATz75JIWFhXTo0IHo6GjWrVtX4nFbt26tcKKV05V0bRJCiFri2muvrXDufHFyjo0nKG9KUCFE7fWPf/yDCRMmMGvWLC655BIOHDjAfffdR6NGjfxdAG+55RZmz55NvXr16NSpE59//jlLly7ltddeq97gw0S6NgkhhBBCCHGCE7s2ASxevJgXX3yR7du3k5CQwODBg5k8ebJ/4gnwrSPz5ptvcvDgQVq2bMntt99eaoHe2kISCSGEEEIIIUTIZIyEEEIIIYQQImSSSAghhBBCCCFCVqsGW69ZswallCwSI4QQQghRQ3k8HjRNo2vXrtUdSilbtmwpsdp5VbPb7bRp0yZs5Z9qtSqRUEoR7JAPpRQejwebzeZf6EtUHanf8JL6DS+p3/CS+g0vqd/wkvo9eTV5eK7b7cZd7EIrdlV52SoyosrLrG61KpE41hLRsWPHCvctKipi06ZNtGrV6qRXnBWlSf2Gl9RveEn9hpfUb3hJ/YaX1O/JW79+fXWHEJBW7CLmu1+rvNyCQd2gliUTtSqREEIIIYQQ4qTJKOKgSDUJIYQQQgghQiYtEkIIIYQQQhxH02X8SzCkRUIIIYQQQggRMmmREEIIIYQQ4jiaRVokgiGJhBBCCCGEEEdpGmhh6LNTG2cLlq5NQgghhBBCiJBJi4QQQgghhBDHk8HWQZEWCSGEEEIIIUTIpEVCCCGEEEKI44RjjERtJNUkhBBCCCGECJm0SAghhBBCCHGMFqbpX2vhsAtpkRBCCCGEEEKETFokhBBCCCGEOI6MkQhOtScSXq+X2bNns2jRInJycmjfvj133XUXXbp0qe7QRDXy5heQt24znpw8LI5IYjq0JjI1JaQylIKCYsgpAtMEhx3qxIDVEqaghRBCCFE71MbV48Kg2hOJuXPn8t577/H444/TuHFj5s+fzy233MIXX3xB3bp1qzs8UQ2ylq5m/3tf4Np/GDRQpoktMZ6U8/uROvwCdGvFh63XgO0H4EAOeLz4+jsCsQ5oXd+XUAghhBBCiMqr9oabb775hqFDh3L22WfTtGlT7r77bvLz81m7dm11hyaqQe7aTex59X08OXlEt21ObIfWxHZojW61kvH+lxz8dEmFZSgF2zLgz0ywWSAxGupEQ5wDCpywcS/kO0/BixFCCCHEaUnTq/5WG1X7y0pKSuK7775j7969GIbBwoULsdvttG3btrpDE6eYUorD//0Jo7CI6BZN/C0Pmq4TkZqMLSGOzG9/xpOTF7CcgmI4mAvRERBp+6t10qJDfBQUuSAjO9yvRgghhBCidqv2rk333Xcfd955J+eeey4WiwVd15k5cyZNmjSpVHlKKYqKiircz+l0lvhXVK3K1K/70BFyN27DkpyIx+Mpdb+eFE/h1l1k/raJ+B4dyy3nYLZOsctKhENRRjFYNY39RxT14zxYqj2Vrhw5fsNL6je8pH7DS+o3vKR+T55SCq1Gj0HQwhRfTX7NlVPticT27duJjY1l9uzZ1KtXj/fee4/Jkyfz5ptv0q5du5DL83g8bNq0Kej9d+/eHfJziOCFUr/GoSPkHzmCbnrQPK4y9/Hm5bF723bs0eUfujnuePLdSXiKyv6S95pWFBqbXHuxaGbQ8dVEcvyGl9RveEn9hpfUb3hJ/Z4cu91e3SGIKlCtiURGRgaTJk3itddeo0ePHgB07NiR7du3M3PmTObMmRNymTabjVatWlW4n9PpZPfu3TRr1gyHwxHy84jAKlO/RlMnOz5filHkJDKl9AxN3vxC3CnJNO/RlajWzcot53C+zuZ9VmIjY9DLaHHIc2rEOUw6NI4+bSdlkOM3vKR+w0vqN7ykfsNL6vfkbd++vbpDCEwjPLM2nabnHIFUayKxbt06PB4PHTuW7KbSuXNnfvzxx0qVqWkaUVFRQe/vcDhC2l+EJqT6jYqi7qA+7H/nU/RUE0tkhP8uZZo49x8ioUt7kjq2RSsrQziqYQRk5EKhC+LtJb8L3F7QLdC4LkRHn/5XQ+T4DS+p3/CS+g0vqd/wkvqtvJrdrUmEoloTidTUVAC2bNlCp06d/Nu3bt1Ks2bNqikqUZ3qXnA2Rdv/IHfVeiwxUVhjYzBdLtxHcohq1oiGVw8NmESAb52I1vVh017ILvQNuNY1cHnBVFA/EVITTs3rEUIIIcTpp7bOslTVqjWR6NSpE927d2fq1KlMmzaN1NRUFi1axLJly3jnnXeqMzRRTayxMTQbdx1Z/1vFkR9X4snORXdEUv+Ki0ga0JPI+sGtLZIUC52awv5syMwDQ0Fc1F9JxOk6yFoIIYQQoqao1kRC13Xmzp3Lc889xz333ENubi5paWm89tprdO7cuTpDE9XIGhNN3YsGkHLB2RhFTvQIO3olBmXFRfluRn3fytZWiyxUKYQQQojAfEMkqv6EoTaeglT7rE3x8fFMmzaNadOmVXcooobRLBassSe/BLVFlxYIIYQQQgRPLjwGR06vhBBCCCGEECGr9hYJIYQQQgghahRdmiSCIYmEqJFMZxHFf+zELCxAs9mJaNIMa0Kd6g5LCCGEEEIcJYmEqHGKNv9O/rIf8GYdObpFoUfHEt25G7E9z0azWKo1PiGEEELUYlqY1rqohY0ckkiIGqV49w5ylyxGmSb2ho3RLBaUMjFyc8lf9j803UJsr7OrO0whhBBCiDOeDLYWNYZSisJ1qzFdxdjr1fe3PGiajjUhET06mqL1azAKC6o5UiGEEELUaloYbrWQJBKixjByc3Dv31PuWAhrQiLevBzc+/ee4siEEEIIIcSJpGuTqDGU4UUZBpq17MNS0y3+/YQQQgghwiUsYyRqIUkkRI1hiYnFEh2DUViAHukodb/pLEKz2bDGxVdDdEIIIYQ4U0geERxJJESNoUdE4mibTv7S7zBj49Htdv99yjTxHD5IZPNW2FIbVmOUQgghhBCn1vLly7n++uvLvK9Ro0Z8++23pzgiH0kkRI0S06UHnoP7Kd6xFT0iEj0qCtPtwSzIxVq3PrFnD0bTZWiPEEIIIcKohjVJdO3alZ9++qnEtrVr13L77bczduzYaopKEglRw+iOKBIv/H8UbVpP0cbfMAsL0CMiiO54DlHtO2NNTKruEIUQQgghTim73U5KSor/76KiIqZPn87w4cO5/PLLqy0uSSREjaNHOojp2pPozt1RLheazYZmtVV3WEIIIYQ4I2hhGmxddWXOmzcPp9PJ1KlTq6zMypA+IqLG0nQLuiNKkgghhBBCiKOysrJ47bXXuO2220hISKjWWKRFQgghhBBCiONoYbrUnpGRwYQJE8q9P5hB02+//TaxsbFceeWVVRhZ5UiLhBBCCCGEEKeJRYsWcdlllxEZGVndoUiLhBCnSl6Bl117iil2mUQ5dJo3dhATZanusIQQQghxPI3wzNqkQf369U9qqtbNmzezZ88eLr300ioMrPIkkRAizExTsfK3PFasyye3wEAHTCAhzkrfbnF0bR8jK2gKIYQQNUhN/V1etWoVSUlJtG3btrpDASSRECLs1m0q5LtfcomM0GlSPwJd1zBMxZFsD9/8lE2EXadD6+jqDlMIIYQQNdzGjRtp06ZNdYfhJ2MkhAgjt8dk1fp8rBaN5EQbuu67wmHRNeom2VHA6vX5GIaq3kCFEEII8RctDLcqcPjw4Wqfqel40iIhRBhlHHJzJMdDvaSyp7CtE2/jYKabQ0c81K9rP8XRCSGEEOJ0Mn/+/OoOoQRJJIQII69XYRgKi7XsSxFWKxgmeA3zFEcmhBBCiLL4xlpX/RiJmjnq4uRI1yYhwig+1kpUpE5hoVHm/QWFJlGROvGxktMLIYQQ4vQiiYQQYZSUaKVFUweZOd5S4yC8XkVOnoc2LaKIi5FEQgghhKgxaugYiZpGzl6ECCNN0+jfI56sHC9/7ncRE6UTEaFT7DIpdBo0a+ygT7e46g5TCCGEECJkkkgIEWZ1EmyMGJLM+i0F/L61CJfbJDbGSu+ucXRqGyOL0gkhhBA1TE1dR6KmkURCiFMgPtbK2T0S6N0lHrfHJMKuY7HIl5QQQghRE0kiERxJJIQ4haxWDatVWiCEEEIIcfqTREIIIYQQQohjwjU4uhY2csisTUIIIYQQQoiQSYuEEEIIIYQQx5ExEsGRFgkhhBBCCCFEyKRFQgghhBBCiONJi0RQpEVCCCGEEEIIETJpkRBCCCGEEOI40iARHEkkhBBCCCGE8NPClEnUvuxEujYJIYQQQgghQiYtEkIIIYQQQhxHpn8NjrRICCGEEEIIIUImLRJCCCGEEEIcT1okgiItEkIIIYQQQoiQSYuEEEIIIYQQx5MGiaBIi4QQQgghhBAiZNIiIYQQQgghxDFamGZtqoWtHNWaSCxfvpzrr7++zPsaNWrEt99+e4ojEkIIIYQQZzwZbB2Uak0kunbtyk8//VRi29q1a7n99tsZO3ZsNUUlhBBCCCGEqEi1JhJ2u52UlBT/30VFRUyfPp3hw4dz+eWXV2NkQgghhBDiTKQRngaJ2tjGUaMGW8+bNw+n08nUqVOrOxQhhBBCCCFEADVmsHVWVhavvfYakyZNIiEhodLlKKUoKiqqcD+n01niX1G1pH7DS+o3vKR+w0vqN7ykfsNL6vfkKaXCM5i5KtX0+GqIGpNIvP3228TGxnLllVeeVDkej4dNmzYFvf/u3btP6vlEYFK/4SX1G15Sv+El9RteUr/hJfV7cux2e3WHIKpAjUkkFi1axGWXXUZkZORJlWOz2WjVqlWF+zmdTnbv3k2zZs1wOBwn9ZyiNKnf8JL6DS+p3/CS+g0vqd/wkvo9edu3b6/uECpU41tMaogakUhs3ryZPXv2cOmll550WZqmERUVFfT+DocjpP1FaKR+w0vqN7ykfsNL6je8pH7DS+q38uQkvfaoEYnEqlWrSEpKom3bttUdihBCCCGEONNJrhOUGpFIbNy4kTZt2lR3GEIIIYQQ4oynhWmwde3LTmrE9K+HDx8+qZmahBBCCCGEEKdWjWiRmD9/fnWHIIQQQgghBABaLWw9CIca0SIhhBBCCCGEOL3UiBYJIYQQQgghagSN8IyRqIWNHJJIiCqllMIsLkDl5xCtXKjiApTDUS1TvSmlyMwx2H/Ig2FAXIxOk/p27LZa+EkWQgghhDjFJJEQVcb0uPAc3oPpzMf0eIhTRZiH/8RdnIctuRG6/eQWGwyFy22ydE0RW3YXU+xSgO/iQkqilXN6RNM4VVbUFEIIIUTZZKmL4MgYCVEllGHgOfQHRmEumi0CLTIaNzaw2TEKc3Ef+hNleE9NLErx05pC1mx2Ehmh0aielcapNlKTrGTmGHz9cwGHs05NLEIIIYQQtZUkEqJKGEW5mEUF6JHRaJa/Gro03YIeGY0qzscozD0lsWTmGGzd7aJOvE5slMXfrcpq1WiQYiE332DjzuJTEosQQgghTkOaVvW3WkgSCVElzKI83/oteulDyrdN8+1zCuw75MHpUsQ4yohF04iN1tmxx43Xq05JPEIIIYQ4zUgiERRJJESVUKYR+EOi6b59TgGvVx2dcKHseCwWMEyF15REQgghhBCismSwtagSmt0BBTkopUqdwCulwDTQIhynJJa4GAuaBl5DYbWUTiYKnSapyTbs1tp5dUAIIYQQJ6c6Zps8HUmLhKgS1ugEsFhRHlep+5TXDRarb59ToFkDG8mJVg5mGb4k5jhOl4nXgHYtItF1+ZIQQgghhKgsSSREldAiHFgTU8E0MZwFKK8bCyaquAgML9bEemgRUackFrtNp3+3aKIdOnsOesnOM8gvNMjI9JCZY9ChZQRtm0WckliEEEIIcRrSwnCrhaRrk6gSmqZhTaiLbo/EyD+CkZ8LKLSoWOxJqehR8ae0mbBpAzuXDohj045idux14TWgXpKN9i0jadssAqt0axJCCCGEOCmSSIgqo2kaluh49Kg4PDEFHM7dQp2kxliio6slnnpJVuolxdCvWzSGobDbNOnOJIQQQoiKyRiJoEgiIaqcpmlougWlaTVisJLNqmGTFgghhBBCiColYySEEEIIIYQ4jnb0YmhV3qrCokWLuPjii+nYsSOXXHIJixcvrpJyK0sSCSGEEEIIIWq4jz/+mPvuu49rr72Wzz//nKFDhzJx4kTWrFlTbTFJ1yZRpUwFOYVwJEcnxx1HdqFGpANCHZpQ7FbsPWRQVKywWaFBsoX4GMl7hRBCCBFu4ZpmqfJlKqV4/vnnuf7667n22msBGDNmDKtWrWLFihV07dq1qoIMiSQSosoUuWDzPsguALfHSl5xMhv22DiYD20aQnSQM67u2Otl1RY3ufkKNIVSEBWp0a6Zja5pNiwyYFoIIYQQ4VLz8gh27drFvn37uPTSS0tsf/nll08yqJMjiYSoEh4DNu6BI/kQ54Aom8JT5CTKHkNmHhgGdGkOtgqOuD0Hvfy03oVpQr0kDYuuo5Qiv0jx6xYPFh26ptlPzYsSQgghhKhCGRkZTJgwodz7v/322zK379q1C4CioiJuvvlmNm7cSKNGjRgzZgyDBw8OR6hBkb4iokpk5kFWASREl0wWrBaIj4LsQjicF7gMpRQbd3txeyAlQfe3PGiaRly0TlQEbP7DS1GxGcZXIoQQQogznqZV/e0kFBQUADB16lSGDh3KK6+8Qr9+/Rg7dizLli2rildcKdIiIarEkTzfZ8RSRmpq0X33ZeZDgzrll5FfpDiYZRAfXfaHLS5a40CW4mCWSfMGkgMLIYQQ4vRSv379clsdArHZbADcfPPNDB8+HIB27dqxceNGXn31Vfr06VOlcQZLzsZElfCagQdUWzTwGoHLMEwwzbKTEcC3mJxSGNIgIYQQQogwqmnTv9arVw+AtLS0EttbtWrF3r17T6rskyGJhKgS0ZG+ZEKp0vcp5RtDERtZURkajkiNIlcZheCbyclq1YiJksHWQgghhDhzdOjQgejoaNatW1di+9atW2nSpEk1RSVdm0QVqRcPe49Akbv07ExON9itUDchcBl2m0arRlZWbnQT41AlVqM2leJIrqJJPZ26iZL/CiGEECKMqmgBuaoSGRnJLbfcwuzZs6lXrx6dOnXi888/Z+nSpbz22mvVFpckEqJKxDqgRV3YfsA3sNoKeEwruUUaNhu0TPXN5lSRDs1tHM42+OOAQYRNIzICPF4odCqS4nXOamdHr2EfbiGEEEKIcBs7diwOh4MZM2Zw8OBBWrZsycyZM+nVq1e1xSSJhKgSmgZNUiAqEvZnwZFcAI3kWJOm9SA5LrjkPtKuMbBbJNv3etm2x0thsYndptG2iZW0JjZZlE4IIYQQ4VdDr1neeOON3HjjjdUdhp8kEqLKaBqkxEFyLOQXeNi8ZS/tGkYTHR3aug+Rdo30FjbaN7Pi9vqmkLVaaugnWgghhBC1kJx3BEMSCVHlNM138m/RzJPqYqjrGpGy9pwQQgghRI0kiYQQQgghhBDHk/GYQZEO50IIIYQQQoiQSYuEqFKmaXIk3yQnX+GyJJFVqIiMNNF1yVmFEEIIcXo42QXkzhSSSIgqU+A02HnATbHbwFQKwxLH3iMmWQUumqfaiXVYqjtEIYQQQghRReQysagSbq/JjgNunG4vVouG3aqh4cWqg9NtsCPDhctjVneYQgghhBCBaWG81TKSSIgqcSjXS7HbwG7VsRw3Vauu+5IKl8fkUK63GiMUQgghhBBVSbo2iSqRW2igab7E4US6rqFpitwig8bVEJsQQgghRPC08MzapGpfk4QkEqJKmEH0WjKN8MchhBBCCHHyat9JfzhI1yZRJSJtGkqBaapS95mmQilFpF0+lEIIIYQQtYW0SIgqkRxvI6fQi9dU2E/o3mSYvmnUkuNt1RSdEEIIIUQIwtK1qeqLrG7SIiGqRHyURnK8FaWg2G3iNRQKHbdXYZqK5DgrCVHSIiGEEEIIUVtIi4SoErqu0zTFjiPCSmauh6JiLxoaDrtGvcQI6sZbZFE6IYQQQpwe5NpnUOTMTlQZXddJTbDSvnEEberrRLj/pGVdjdREmyQRQgghhBC1jLRIiCqn6zo2q4aOWeZ0sEIIIYQQNZWGb2xnOMqtbeQysRBCCCGEECJk0iIhhBBCCCFECbWx/aDq1YhEYtGiRbz00kvs2bOHJk2aMH78eC666KLqDktUgtvtZc2WIv7IcFNYmEwRTnp1tGO3h3aoKa8blZuJ8rjAYkWPrYMWGR2mqAMzTDiSD0Uu32xwCVEQFxWemeGEEEIIUQPIj3xQqj2R+Pjjj7nvvvu499576d+/P59//jkTJ04kNTWVrl27Vnd4IgS79jn56HsnWYU6CivKjGfHYVixOY/LznHQsrEjqHLMIxkY+7ehigt9GxQY9gj0lMZY6rdEO4UDt3MKYdNeyCsCU/mmgLZZoG48tGsIdlkaQwghhBBnqGodI6GU4vnnn+f666/n2muvpUmTJowZM4a+ffuyYsWK6gxNhCg3z8N7S5xkFuo4bCbxDpPYSA+RNoMjhTrvf+8kK8dVYTlm7mG8f25EuV0QnYgWmwSxdUDTMfdvxziw6xS8Gp8iF6z/A3ILIdYBSbGQFAORNth3BDbu9SUXQgghhKhlNK3qb7VQtbZI7Nq1i3379nHppZeW2P7yyy9XU0SispatLyDXqRNrN7FY/tput2pYNJM8p84vG4q4+OyIcstQSmEc+hO8HrTYOv7tmqZBRBTKNFGZe1EpjdBs5ZdTVTKyIb/Ylzwc+/xrGkTYfP8eyoXsAl+CIYQQQghxpqn2RAKgqKiIm2++mY0bN9KoUSPGjBnD4MGDK1WmUoqioqIK93M6nSX+FSdn214DsPiTCKWU/1+LRfPvE/C9cTnRcjLBYgePp/T9FhuqMBdP5gGIT6niV1Da3sM2LGh4vaWbHTTA5dY4mGXgsBhhj+VEcvyGl9RveEn9hpfUb3hJ/Z48pVRYpletUjU8vJqiWhOJgoICAKZOncr48eOZPHkyX331FWPHjuXVV1+lT58+IZfp8XjYtGlT0Pvv3r075OcQpRW7GqJhwTBKnlSbpgmAhkaxywj43lgNF/Vyc/DoVpRuKXOfCI+TrF07KYrIrLrgy6AUHC5ohGnqOC1lJDWA03DwpzsbZ2Z2WGMJRI7f8JL6DS+p3/CS+g0vqd+TY7fbqzsEUQWqNZGw2XwjVW+++WaGDx8OQLt27di4cWOlEwmbzUarVq0q3M/pdLJ7926aNWuGwxHcIGBRvvV7C8kp1tA0C7ruu9pgmia6rqOUhkIjJUGnXbt25RdieGF7MZrXC2XN0OT1gDuC2BZtITo+fC/mKHOPlcN5OgnRpVsklILsIo1WDRw0SEwNeywnkuM3vKR+w0vqN7ykfsNL6vfkbd++vbpDCII0SQSjWhOJevXqAZCWllZie6tWrfj+++8rVaamaURFRQW9v8PhCGl/UbZu7Q12HjJwejSiI/5qstQ0DadHw6JB9zaRFda1t24TzH1bQdfQLH8dnkopKM5DS0zBmpx6SppEm9aDbCcY+AZY/xUL5Dl9U8A2SrESWY0XVeT4DS+p3/CS+g0vqd/wkvqtvBrfrUkErVpnberQoQPR0dGsW7euxPatW7fSpEmTaopKVEb75g46NjUwTY1cp06RG1wenVynjtfQaN/EoEOriq/cWOo1QUusB4W5qKI8lNuJchZA/hE0RyyWhmmn7AsoJR6aJIPT5RtU7XT7ZnLKKgCLBm0aUK1JhBBCCCHCIBwzNtXSmZuqtUUiMjKSW265hdmzZ1OvXj06derE559/ztKlS3nttdeqMzQRIqvVyvDB8dRbV8iabV6yC3QUkBzrpVsrK/26xmO1Vny4aVY71uYdMeP2Yx7Zj3K70KxWtJRWWJIbntJF6XQN2jSE+CjYnwX5Tt93QOMkaJgEiTGnLBQhhBBCnEq18KQ/HKp9QbqxY8ficDiYMWMGBw8epGXLlsycOZNevXpVd2giRFarlXO6x9O3s5fMrCJ2bN9Jx/SWxMWFNj+qZrVjqdcMvW4T37gJ3YJWzuDrcNM1aFAH6ieCx/D9ba2eUIQQQgghapRqTyQAbrzxRm688cbqDkNUEavVSlyMlcgIA+tJnHVrmg7WmtF3SNPAXiM+LUIIIYQIP2mRCEa1jpEQQgghhBBCnJ7kGqsQQgghhBDHkwaJoEgiIfwKixWZeeA1IMLmm7UowhbaJ8kwTI5k5JB5OI+CLMWRjBwimkVisZz6xi+lFIezvOw94MJrKOJjrTRvFIHdJg1xQgghhBAnSxIJgWkqtu9X7DoIxR58WbiCmEho0wgaJQeXTBTkFLJ23WEyC3S8ho7XW4esjR5S9v5B504pxJ7CaY6K3SY/LM9l0w4nRcUGmqahAXWTbZzbO56mDSNPWSxCCCGEOM3IrE1BkUuzgp0HFJv3+T4zSbGQHAt1YsDlgd92Kw5ml17Z+UTuYg+/rjnEgTwLMXaDpCgvsdZCom0GB/OsrF6TicvpPgWvxtcS8f0vuazeUIAjQqdpgwiaNoigfl07h494+PyHbA5mnppYhBBCCCFqK0kkznAuj2L3Id+MRNGRfyXgug7x0WAYsPug8q0sHUDGniwyC63UcRjYrX9l8TYrJEYZZBVayNiTFc6X4nc4y8umnUUkJdiIjbH4F7CzWTUapdrJzvWyfmvRKYlFCCGEEKcjLQy32kcSiTNcdgEUFUN0RNn3R0X4VnIuLA5czqHDTqDsNRasOmia4uChCgqpInsyXDidJjHRpQ9vTdOIi7GwbbcTj7filhYhhBBCnIFkVeugSCJxhjNNUJR/fFt0MBUYFZxzew2wUP5OOuD1VjrMkHgN5RsTUc6Lslo0DBOMil6UEEIIIYQolyQSZzhHhK8VwV3OSX6xxzeDk6OCdeFio3W8SsM0S99nmuBVGnGxp+Zwi4+xoGngLafFoaDIJDHOij3EGamEEEIIcYaQnk1BkUTiDJcQ7Rtcne/0tTwcz2tAsRsaJVFi3ENZGjSKw24xKXSX3q/IDXaLokGjuKoMvVzNG0eSUsfGgUx3qbEdRcUGhqFIT4tC12vpp1oIIYQQ4hSQROIMp2ka7ZpoxEXBkTxfQuF0QW4hZBdCaiI0T634hDshOY42Tax4TY3MQp0it4bbsJJVZMVj6rRupJOYcmoSiQi7zuDe8URHWdi9z0VWrpe8Ai/7D7rJzPKSnhZF+1ZRpyQWIYQQQpyOpEkiGJVeR6KoqIioKN/J2FdffcX+/fsZNGgQzZo1q6rYxCkSF6XRMw32HFbsOwJeE6IioU2yRuNkguoCpOs6rdrXJzY2iz/+LOBIPig0UuM8NG8aR2rTJHT91OWtzRtHcvkFSfy2tYjtfzjxehWpde10PJpE2CpoYRFCCCGEEIGFnEjs3LmTW2+9lUsuuYQJEybw3HPP8eKLL6KU4rnnnuOVV16he/fu4YhVhFF0pEbbxhqtGyoMA6xW0EOcYUDXdeo3TaZe4zrk5+azdetW2ndoT3RMdJiiDiw1xU5qip1BPeN8q3XbNenOJIQQQogKaLW1AaHKhXyJ+Omnn8ZqtXLuuefidrt5++23ueiii1i1ahX9+/fnueeeC0OY4lSx6Bp2mxZyEnE8XdexRdjQrTpaDThxt9l0HJG6JBFCCCGEEFUo5ERi1apVTJo0iY4dO7JixQry8/O58soriYmJ4aqrrmLDhg3hiFMIIYQQQohTQ9aRCErIXZs8Hg9xcb5Bsz/++CMOh8PflckwDKzWSg+7EEIIIYQQogYIx4l/7Vu/KuSz/rS0NL7++muaN2/Ol19+ydlnn43VasXj8fDWW2+RlpYWjjjFKbD5Tzcb//Di8kB0JHRvbaVhSgULSJzA4/GyZWcBew+6KCyqg2YvpGNbOzbbqU8wlVJk5ysOZBkYJsQ6NBqmWGSgtRBCCCFEFQj57O6OO+5g3LhxvPXWW9jtdv7xj38AMGTIEDIzM5k3b16VBynCq6jYywf/c3Ewx4LX9PV204DtGV5a1fcyrG9wU6XuP1jI5z8VcCDLtwYFOPh9j8GqLZlcfHYMjVJjwvYaTuT2KFZucrNzv0GxW/kmXtOhTqxOrw52GiRbTlksQgghhDiNhGu21lp4HTPkRKJfv358+umnrF+/ns6dO9OwYUMAbrjhBnr37k2bNm2qPEgRXouWutifZcGiKxw2ha5rmKbC5dXYslfj61VOLujhCFhGfqGLj3/IJyNLo06swm4F0zTxGhr7MnU+/qGQ6y62Eh8bGfbXo5RixSY3G3d7SYjWSIzV0TQNr6E4kmvy41o3558VQVK8LKMihBBCCFFZlepv0rhxYxo3blxi2w033FAlAYlTa99hNxnZGrqmiLDBsXRZ1zUcdihyKbbuUwzs7MUeoHvSb5sLOJitkRKnsFo1/4rSdptGcrzicI7Gb1sK6d8j/IlEdr5i136DhGiNaMdfyYLVolE3UScj02TbXg9J8RFhj0UIIYQQp6EaODj64MGDnHPOOaW2T58+nREjRlRDRJVIJNxuN2+++Sa//voreXl5pe7XNI3/+7//q5LgRPit32XgNTQibYqy2txsFnC6dLbuNUlvXn45O/Z50DQNaxnjD6wWDU3z7dO/RxUGX44DR3zdmRJjS7c4aJpGtEPjjwMGPdoqrJaa90UhhBBCCHGizZs3ExERwTfffIN2XKITGxtbbTGFnEg8/PDDvP/++7Ru3ZqEhIRS9x+7Ei1OD15TodApbyYBTfPd4/YEfl/dXgi0TIOu+/Y5Fbzm0e6N5VxNsFjANMEwwSpDJYQQQghRSs270Lh161aaNWtG3bp1qzsUv5ATif/+97/cfvvtjBs3LhzxiFMsJU5H18BQWpmLinhNsOgmDVJsActJjoM9h8A0VamF30xT4fVqJMdVYeABxDh8LSBeo+wWh6JiRd1EC9UwkZQQQgghRKVs2bKFli1bVncYJYR8KqXrOl27dg1HLKIadG1tZeU2NwXFOhbNLJEEeE2FYejUTVSkJgZOJDq0imLjn07ynRAfXfK+AifYbZDeMvCA7arSKMVCYpzOkTyTugl6iZaJYrfCMKFVI+tJrd4thBBCiFosTOcIGRkZTJgwodz7v/3223Lv27p1K4mJiVx77bXs2rWLpk2bMmbMmDLHTZwqIU9bc9lll/H+++9jmmY44hGnmN1mpV8HCxFWE6dbp9gNbg843eDy6MREmpzXreJ8s3mjKLqlgcercSgH8p1QWKxxOBfcXo2uraFFk+gKy6kKdptGz/Z2oiJ0Mo6Y5BaaFDhNDmUbZOebtG5kpWVD6dMkhBBCiPJoYbhVntfrZefOneTm5nL77bfz0ksv0aVLF0aPHs2yZctOquyTEXKLxIQJE7jssssYMmQIHTp0wOEoeZVZ0zQee+yxKgtQhF/XVhFE2tys2OzlSAGYpobdqkhNVAzsaCM1OXBrBIDVauW83kmkJOSxboebw9lgKmiUoujc0k6X9nGndNXzRikWzusRwda9HvYc8C1Il5JgoXVjXxIhg6yFEEIIcarVr18/YKtDeaxWK8uXL8disRAZ6ZsBMz09nW3btvHyyy/Tp0+fqg41uLhCfcDTTz/Nrl27cDgc/Pbbb6XuL2+Aq6jZ2jW1066pnbxCL0VORXyshiMitMPDarXSPb0Ondt6ycopZOeOHbRv15q4uOqZTSA5QSc5IQJPW4Vpgs2GdGcSQgghREAKUGE4XSh7fszgRUeX7tnRunVrfvrpp5Mo9eSEnEh88skn/P3vf2fKlCnouizoVdvERVuJO8keSFarlZgoGzarwloDpkWylTElrRBCCCHE6WLbtm1ceeWVzJ07l169evm3b9iwgVatWlVbXCEnEoZhMGjQIEkihBBCCCFELVWzLkK2bNmSFi1a8PDDD/PQQw+RmJjIu+++y9q1a/nggw+qLa6Qs4Hzzz+fxYsXhyMWIYQQQgghxAl0XWfevHl06tSJCRMmMHz4cNatW8err75KWlpatcUVcotE586defrpp9m8eTNdu3Yt1V9L0zRZY+I09esWD6u2Gbg8EB0JAzpbadkgtEPE7fGydXcxB7M9FBWlou8upkNrO/YQF23Yf8jNN7/kk5NnEBmh06dLFB1bR4VURm1kKsWhLJO9Bw32ZDqIO2zSorHCEmg1QCGEEEKEQAvT9K8nV2ZycjLTp0+voliqRsiJxIMPPgjA2rVrWbt2ban7JZE4/eQ7vcz/3ENWHhy/MPnugx6a1fNy00WRQZWz/6CTZZtNigw7CjtKRZNzAHYcdtG7jZtGqcElAm9+msXP64vxmsdW3DZZszWXZqn53HFtMo7I6h93UR0KnSY//+ZmzyEvzmKD/PxYDhZ62bynmH6dIqgTJ90NhRBCCHHqhJxIbN68ORxxiGr08mIPR3JB0xVWHXRdwzR9C7ftzID/fOfiqkERAcvIK3CzdJPCadqwaV4sGpimgcJCkdfGz5u9XBDlJiHOHrCcj5fk8NNvLhQakTbfAnmmMvF4YUeGyeyFmUy+oV5VvvzTgtdQ/LjWxe4Mg+R4nYQYHZvyEBejsf+wl+9/VQzpHUl0pCQTQgghxEmTWR6DclJnHTt27GDt2rX8+eefVRWPOMV27PeSlQeaprBZNP/K1rquYbNqKAVb95oUe7wBy9m4sxinaSVC82I9rpuNRYcI3UuxaWXjruKAZRiGwf/WOjEVOOz8FYumEWHTsGiKnfsM/tgfuJzaaN8hg72HDOom6kRG/FW/dptGvSQLh7JNdu83qjFCIYQQQpxpKpVIfPbZZ/Tv35+hQ4dy9dVXM2TIEPr378+iRYuqODwRbss3GxiG74S/LLqucHtg7TZV9g5HHczV0FD+k/+SZfi2HcgNfLht3uWiwAk2veznslnBa2osW1cUsJzaaF+mgWn6EocTWXQNmxV2ZwRO9oQQQgghqlLIXZuWLFnCXXfdRe/evZk4cSLJyckcOnSITz75hHvuuYeEhAQGDhwYhlBFOHi9gRMEXQOvApc78H5eFXj5dw0wK1jdpdhl+hZrKWe3YwmJ2xM4ltrI41UEmnHZqmtU0GgkhBBCiGBJ16aghJxIzJ07lwsvvJAZM2aU2H755Zfzz3/+kxdffFESidNI3USdLXsNTFV285Rh+lormqcGbk2ItpkUesE0S7dKmKZCAdH2wF1vmjSIwKLn4TW1Mg9Mr1ehodEwxRb4RdVCibE6hgFKqTJXjy92K1rEy5eeEEIIIU6dkLs2bd26leHDh5d53/Dhw2Uw9mlmYBedCBsYpm+A9fEMU2EqjbgoaJIaOOds1cCCjsKjSh9SXqWjo2hZQTKSkmijWT0LptIwjJKxmErhNjSiIxX9e5zk0tunoaapVmKiNLLzS7fGFBSZ2KzQouGZl2AJIYQQ4aDQqvxWG4WcSCQmJpKbm1vmfTk5OdjtgWflETVLpM3KgE4WrBbwGBoer8JrKDxehWFoRNhg+NkVn6A2axhJg1gXCh2nYcFj6niVhWLDiolOaoyLFo0dFZZz3dBE4hwmLq+G06VwexQuNxS7dewWxeWDY7HbzrzpX+NjdHq0s6OUIiPTIL9I4XTrHMpSFBYrOrWy0SBZZmwSQgghxKkT8plHnz59mDVrFgcOHCixPSMjg9mzZ9OvX78qC06cGgM62xnax0qdWN8MSUr5Zm+qn6Rxw/m2oBals1otnNM1mvT6xcRY3Ue3asRY3XSo52Jgt2is1ooTgAZ17Uy6IZlOLa3YraCUhqYpmtWD0SMS6Nct9iRf7emrbVMb5/d00LqxFZSvbhrW1RjcPZJube1ldnkSQgghRIg0fGMkqvxW3S+s6oU8RmLixIlcfvnlXHDBBXTt2pXk5GQyMzNZs2YN8fHxTJo0KRxxijDr2cZGzzY2cvK95BRA3USIigzt8LBaLXRtF0fH1gbZ2YVs27mTju1aExsXE1I59ZPtjL86hWK3QVaOQUy0Tlx0yIdqrdQwxUKDZJ3cfIPNm4/QsUMy0VI3QgghhKgGIbdIpKSk8NFHHzFq1CicTicbNmzA6XQyatQoPvroIxo2bBiOOMUpkhBrpVl9a8hJxPGsVgvR0VYirAYWa+XT70i7hQZ17ZJEnEDTNOxWDZul7IHXQgghhDhZWhhutU+lztCSkpK46667qjoWIYQQQgghxGmiUonErl27eOGFF1ixYgV5eXkkJibSo0cPxo4dS6tWrao6RiGEEEIIIU6d2tmAUOVCTiS2b9/OVVddhcViYfDgwSQnJ3P48GG+++47vv/+e9577z1atmwZdHkHDx7knHPOKbV9+vTpjBgxItTwxEn4/tdilv3uxu1WREVpXNQrgvQWESGVUVDo4tP/FbI/S8frbcqmA04uG2ghJjq0cn7fXsB7Xx4hL99LhN3CwF7xDDk7MaQyqorHa7J7r4vsXA+6rtGwnp3UFBncLIQQQtRe8hsfjJATiaeffppGjRrxxhtvEBv71ww6+fn53HDDDcyYMYNZs2YFXd7mzZuJiIjgm2++KXFidnzZIryy8z08804BmUc8R9dv8K1VsOtPF82bRHDX1XFBlfPz2jy+WqOjiPJ//rYegqfe9XBux2LO6REfVDkPz/qD9ZvycHtM3wYFW7bn8cm3mTw6oSkJ8aduiuH9B138d2k2GYfcmCYoBZGRGq2aOji/XyJRjjNvKlohhBBCCKjEYOuVK1dy2223lTrRj42NZfTo0axcuTKk8rZu3UqzZs2oW7cuKSkp/ltkZGSooYlKmrGwkIOH3KBBZKQFh8NGZKQVwzDZvquYuYsKKizjj/1FfLVGx9SsoAy0ozeUgalZ+Xa9lR1/FlYcy2v7WLshF69X4YjUiY6y4ojS0TTYu6+IB174oypeclCyc7189l0W+w66qZdso2nDCJo2tBMbZWH9lkK++l8Whll6gTghhBBCnN6UplX5rTYKOZGwWq1ERJTdTcVut+N2u8u8rzxbtmwJqSuUqFobdrrIPOLBYtGw2yz+ViFN04iIsGKais27XBQVewKW88XPLpRm9SUQxx1VmgaaMlCazpfLAx8bbreb1etzMUyFw2FB130F6ZpOhN2CxaKx/0Axq37LO7kXHaSN2ws5dMRN41Q7dpsvFk3TiI6yUC/ZxrbdxezNcJ2SWIQQQgghapqQuzZ17NiRt99+m4EDB5boiqSU4q233iI9PT2k8rZu3UpiYiLXXnstu3btomnTpowZM6bMcRPBUEpRVFRU4X5Op7PEv2eqJb968XhMIiLL7qJjs+q4nAZLVjsZ3LX8ZOJwgQWllC8zPeEivYZv8bTDBdaA7813KwooKvJis5Wd39rtGk6nyZc/ZdG+VfinhN2wJY8Im8IwvBhGyftsFnAWe9i+O4+URDPssZxIjt/wkvoNL6nf8JL6DS+p35OnVE2fvjxc07VW72vOysri5Zdf5ueff+bw4cMsWLCAb775hrZt23LeeedVqsyQz8buvPNOrr76aoYNG8aFF15ISkoKhw8f5ssvv2TXrl28+uqrQZfl9XrZuXMnrVq14u677yYmJobPP/+c0aNH8+qrr9KnT59Qw8Pj8bBp06ag99+9e3fIz1GbFBY2Pvq/srvoaDqYpuLAoRw2bTpcbjmGSjuaMZR9v9IUShHwvflzjx1lKjSLhiqjIE3TQEFegTOk97gylIKDhyx4DKCcPKEgX+PPP3NJiDz1icQxZ/rxG25Sv+El9RteUr/hJfV7cuz2UzfeUcCePXu4+uqrcblcdO/enc2bN2MYBrt27WLOnDnMmTOHgQMHhlxupVokFixYwDPPPMOsWbP8WWV6ejrz58/nrLPOCv7JrVaWL1+OxWLxj4lIT09n27ZtvPzyy5VKJGw2W1BT0DqdTnbv3k2zZs1wOBwhP09tsSXLYNe+IkwTdEvpTNkwTCwWnbPS69C6YXK55Xz1uwenUX6mrSkNu8WkXbt25e7jiHWx5Je9GF6FzVq6VcLrNdF0aNEkjnbtmlbwyk7ejgM5bNvtIiXZVuo+01QUuT20axtHuzZRYY/lRHL8hpfUb3hJ/YaX1G94Sf2evO3bt1d3CGecJ554gqSkJN544w2ioqL8PYieeeYZXC4X8+bNOzWJxEcffUTfvn157733cDqd5OXlERcXV+kPU3R0dKltrVu35qeffqpUeZqmERUV/Imdw+EIaf/a5rL+HpZvcFNU6MUSqZVoajRMhWGYpCRG0Ll1TMByOjbNZuVOhYmOrpklWiZMdDQUHRqrgHXdPi2KevUy+XNPEV7DxGr5K5kwlYnLbRITbWXUsBSiosJ/JaNLe9i9/wgut05M9F9dv5RSHMj0kJIUSYfWCURFVd/K22f68RtuUr/hJfUbXlK/4SX1W3k1u1tT7bRs2TIee+wx4uLiME7or33llVcyYcKESpUb8mDrhx9+mN9++w3wfYjq1atX6SRi27ZtdOvWjeXLl5fYvmHDBlnY7hSJirRxbi8HdruOs9jA7TbweE1cLi9ul4EjysY1F1T8RXlB72ji7C40zZc4mOiYSsPUdDQ0Yu0uLupbcTljrqlPXJwNV7Hpi8djUOwyKCoysUfoDD23LtGnIIkAaNXMQfcOMWTne9l7wE1uvpfsXC9/7ndhtWoM6p1AbEz1JRFCCCGECI/aOGuT1Vr2OYvb7a50chdyIpGamkpBQcXTgQajZcuWtGjRgocffphVq1axY8cOpk+fztq1axkzZkyVPIeo2LC+UVx+bix1k+3ouoYyFVarTuOGkYwZERvUonQREXZuvyKKFsnFWJTXN0xJ07AoL82TnNxxRRQRERUnAB1axXDvmKa0bhWL3a6jTLDoGo0aOLhxZEOuHppSBa84OBZdY1CfBIYOSqJpwwgME9CgS/sYLh+SQruWciVKCCGEqJ20MNyqT48ePXjxxRdLTHqjaRqmafLOO+/QrVu3SpUb8uXUK6+8kkcffZQ1a9bQpk2bMrsmXXbZZUGVpes68+bN45lnnmHChAnk5eXRvn17Xn31VdLS0kINTZyEwd0jGdw9kkNZHo7kKRqlaMRGlx4bEEhEhJ2/D7Xjcrn5Y18Ru3bvplfX5iQkhrYidftW0Tw9tQV5hW72ZLhJTrBRLzm0lbGrikXXSE+LpkPrKIpdJrquEWEPOf8WQgghhKg2kyZN4uqrr+aCCy6gV69eaJrGyy+/zI4dO/jjjz94++23K1VuyInE448/DsC7775b5v2apgWdSAAkJyczffr0UMMQYVK3jo26dU6ujIgIO41SveRnG9gjQktGjhcXbadDq5oxq4OmaTjKmSJXCCGEELVMDeiKVJXS0tJ4//33mTVrln+io59//pmzzjqLJ554gjZt2lSq3JATiW+//bZSTySEEEIIIYSoHs2bN+fJJ5/EYvFdGHU6nXi9XmJjYytdZsiJRMOGDSv9ZEIIIYQQQtR0qprHNFQ1j8fDI488woYNG/jggw8AWLNmDaNHj2bUqFHcdddd6HroXbcrNeXMDz/8wC+//EJeXh6mWXIxLk3TeOyxxypTrKhm361xsnabB48BkTYY1CWCjq1CG5uQne/hq19Nig0rmB3ZssLkou4eEmND6+KUV2Swfb9BkUths2g0rauTWie0w9U0FXsPGew+ZGIYEB+t0a6pFUdE7fpyEEIIIYQIZObMmXzyySfcfvvt/m3t27dn8uTJzJw5k8TEREaPHh1yuSEnEi+//DJPPfUUNpuN5OTkUtNFydzAp5/sfDcvLnKSX2TiNZR/geqFSwy+W+vijivigirnm1+L2ZtjRXE0adDBZcKilSYN4pwM6RHcNMFrtrvZfgA85tFCgN2HTerGuejXwYa9jMXqTlToNPnmVw8Hc8FUvisLGia/7XLRs62F9k0rP3ZDCCGEELVcLTud/fTTT5k6dSpXXXWVf1tCQgJ///vfsVqtvP7666cmkXjzzTe55JJLePTRR/2rUYvT20ufOMnJN7BYIMKuoWsaplJ4PIoDmV5e/KSAW4cFXpBu027P0SRC5/gGQd+6dDoZeTZ+2+GmU8vAg6c3/uFhSwagNOxWhUVTmAq8BmTkavy80cPAToFbSUxT8d9fPWRk+8qItCp0zbfAntOtsWyjQXSERtNUWQNCCCGEELVfdnY2jRs3LvO+Fi1acODAgUqVG3JnqCNHjjBy5EhJImqJ9dtd5Bea6DrYrDr60RYlXfNNc2qakJHppbDYHbCclTuPLrJwQq9C3/8VoLH2D1XGI/9iGCbbMhRKQYRNYTlakK6B3er792CuRk6BEbCcvYcMDuWC3aqIsOF/TRZdIypC4TY1ftvlDViGEEIIIc5ktWsdiRYtWvDVV1+Ved+SJUto2rRppcoN+ZJs+/bt2bFjB717967UE4qaZekGDx6vIsJe9gFutWm43SY/rfMypFf5rQmG0tG0sj8mx7aZBJ4+NTPPxOmB8nouWS3g9sIfhwwSYsova/dBE1NBpFVxYkS6pmHTFYdyNVzu8l+3EEIIIc5ctW2w9fXXX8/dd99NTk4O5513HklJSWRlZfHdd9+xePHiSi/FEFQisX///hKBPPTQQ9hsNrp3747DUbrfe4MGDSoVjDj1vGbgVgINUAqcrgoK0jRKn7b/JdB9f8Vy9Bm1smPytVBoGBXE7DV9z6eXO15HQynwGIqIWvZFIYQQQghxossuu4zCwkLmzJnD119/7d+emJjI/fffH9IacMcLKpEYPHhwiUHUSikeeOCBcgdWb9q0qVLBiFMvJUFn30FfslDWObVhKiwWjbZNKlqMTQE6qowc3nfar6EwSz3qeAnROhbNi2GW3SrhNX0hxkUFPvmPi9LQUL7Y9dL7GiZERyoc0hohhBBCiFK0MC1IV73nHddeey3XXHMNu3btIicnh7i4OFq0aFGpaV+PCSqReOyxx2Q2plpqaF8bm3Z7cDoNIiL0ElfxTaUwvIrYOAttmwUe4JwQYZDrshCorSDObgDlz5YUHamTHKvIyNXxmqpEMmEq8BgQZTdpVi/wjEvtm1rZsNuF0+0bE3H8a3J7FSYaLerpWCxyTAshhBDizKFpGi1atKiy8oJKJEaMGOH///79+0lJScFmK30y53K5+P3336ssOBF+0ZF2uqd5WbHJRbFLYbUoNB2U4bty73BYGNqn4oH1F3Sx8N4vXjTNejSZOJZSHD1ZV14u7FpRqwZ0b23lu98MCt0ahgG65mvHMJVvbEPX5jpWS+DMOSpSo0eahV82mxS6fI/zdYkCE426cdA9TaZ/FUIIIUTt1a5dOxYuXEinTp1o27ZtwEYBTdPYuHFjyM8R8mDrc8891x/UiX777TduueUW1q1bF3IgovpcenYUjkiNlZvcFDpNlFJYrBqJ0RYu7hVBh5YVL0oXHW1jZG8PH6104zGtHD/E2q4bXHaWTnR0xSfvcVEWBneC33Z7ycgGw9SwaJASa9K+iYX6QS5Kl97cRnSkl/U7DQ7la6AgKkLRMlWne5pNBlkLIYQQolYbN24c9erVA2D8+PFheY6gzsqeeOIJcnJyAN/4iDlz5pCYmFhqv02bNhEbG1ulAYpT47weDs7r4eBglpvMbEXjehpxMYHXfDhRdLSN6wbaKCz0sH1fEXv27qdXx4akpIR2TMRGWejX3oLXa1LkVkRYfVPRhqp5fSvN61spdis8XkVUhCbdmYQQQghRodowa9PxyUPDhg3p27evP7GoKkElEi1atGDu3LmAr+ljw4YN2O0lTzItFguxsbHcc889VRqgOLXq1bFTr87JlREdbaN1Iw/e/EKioyvuzlQeq1UnrgrWjIu0a0RKC4QQQgghzlAPP/wwTz75JOeff36VlhvUadrIkSMZOXIk4JvBafbs2bRr165KAxFCCCGEEKJGqGWTDKWmplJQUFDl5YZ8vXfJkiUB7y8oKCAmJqbSAQkhhBBCCFGdakPXpuNdeeWVPProo6xZs4Y2bdoQHR1dap/KrCURciLhdrv5v//7P1asWIHb7Uapo3P0KEVRURHbt2+Xwdan2OEcL9+ucpKTb2LVoXUTG33T7dhsob29k1/IpsBpgKnQLBoNkhX335QSUhk/rcjgq191YqM1oDGLVuYzpFsuZ/esH1I5j7+0j7VbnJiGQtM06iRamPtA85DKMAyD33e4WL+tGI9HkVLHyjndoomNqYL+UpVwINPLuq3FFBQrYh06XdtGkJJYPbEIIYQQ4szx+OOPA/Duu++Web+maacmkXjyySd58803SUtLIysri4iICOrUqcPWrVvxeDxhGxUuyvbZT4X8urmIYpfyJ3W797tYvsHCtUPiaVi34rf4m+VZLPzGi8dtYJq+peNAY2eRxpgnM5k7JTmoWO6ZdZAWjXW6tIFjM7QaJmzK0Pls5kEevz24AT5XTtpOYW4xhtfk2DSy+bkal9++hYk3JtGvW8XxZOd5mf9BJrv2evF4jy6Jp8G3ywu4bHAc53Q/dZMCeA2Tj78vYO02Dy6Pb5sCfvqtmF7tI7ioX9RJLQYjhBBCCBHIt99+G5ZyQz57+frrr7nxxhv55JNPuO6660hPT+e9997j66+/pmHDhphm4NWLRdVZuq6Ilb/7kojICIiOshDl0LBYIDvXy1tf5eLxeCss591vvbhdBgqwWMBis6BbwDQVRQUexj15pMIynn59L62baNRN0Ch0Qnae71bohJREjTbNNB57ZW+F5Vx91w7ys4swDROLTccWYcVis6ChUVTg4tnXKo7FMAxe+iCTLbvcWK1QJ14jOdFCXIxGfqHJe1/lsnZLUYXlVJWvlxWxYpMHU2kkxmgkxenUidHwGvC/dW6+X+08ZbEIIYQQ4szTsGHDCm+VEXIikZWVxTnnnANAWloa69evB6BevXqMHj2aL774olKBiNCt2FiM22PiiMR/RVvTdGxWHbtdI6/A4Kff3AHL+Pcrh/G4fcmfxaKjHStH17FYdVDgLPayYUdWwHJcXht14iE7X2EYf/UrNAyNnDxFYhygBV5H4uDBTIryXShTYbVb0HVfObquYbH5Vt12Fbn513N/BCzn9x0udu31EuXQiXbo/rqxWXUS4zSKXCZLlucHLKOqFDoNVm12o2sQF6WVeE3x0ToKxfLfXbg9koALIYQQNYHSQGlaGG6n/rW8++67XHzxxXTp0oVLL7203K5NlRVyIhEbG4vb7Ts5bdq0KRkZGf5R4M2aNSMjI6NKAxRlK3B6yck3sFo1NK3022i1gGEotv7pCVhOxhEN01SU17NG18HwmrzyeeB4EuNAKVBlfEqU0jCVok5c4DIenl+Ax+1Ft5YdjGbRMAzFjj2BW1nWbS3G6zVxlLGOnq7rRNh0du3zUOg0AgdUBbbsdlPoVMQ4yv72iI7UyC2AHXsDJ3xCCCGEEKH44IMPeOCBBzAMg0GDBmGxWJg2bRozZ86ssucIOZHo0aMHb7zxBk6nk6ZNm+JwOPjmm28AWLNmjczYdIo4Xb4B7uXNTuZLLjS8hgpYjlIcG4ZQTkG+f8wKyrFawDDL38c0qXAxOJfr6FiGcmZK8F3NV6iAAYPHo47uX/bhbbH44nG5w98K4PYqTKWVm6hZdN8rcgfO94QQQghxSmlhuJ1ab731FhdddBFffvklM2bMYNGiRYwaNYo33nijyp4j5ERi/PjxrF27ltGjR2O1Wrnmmmu4//77GTFiBM8//zxDhgypsuBE+RKiwW7Ty00UTN+oaeJjAr/FVqsGWvm5hGn6TuBTkwOfdBc6wWbRyjzJVyhsFo1CZ+AEoHuHCHRdL3ecjWkoNDQslsCvKaWOBTQNj1F2OS63IjZKJzYq/AOc6yZasVmh2F32ay92K2wWqFdHZm8SQgghRNXZtWsXI0eORDvuqvOoUaPIy8tjz549VfIcIZ9JtWnThsWLF3PbbbcBMGnSJMaNG0dycjJjxoxhypQpVRKYCMxms9I41Q5Kw+MtecKslInLDRF2jUHdogKWc+v/07BYdUxDoU44gVemiVIKq03n7lGBp4E9nAMuL0RFlr4vKgLcXsjMCfyaxlzVgAiHDWUqzBNaN0xTYXgNbHYr990WuI9U/24xxEbp5OWrUklJscvENBXd2juw2Sq/6nawmjWw0iBZp6iYUq/JayqK3dCsvpXUZEkkhBBCiJpCheFWlXbt2kXXrl358MMPy92nuLi41HoR9er5ZtCsqsXpKnX2kpKSQkqK78RS0zR/UiFOreHnRDHviIecPAOPxzdeQinwesFm0+jYOrLC6V/TW9YhLvYIubkK0zDBNPF1IPJ1e7LaLDSpX3Fz3M1D4P2fFK0aQ0Ss70q7UuCI0DAV7NyjuPGCil/TWR1jWPargdvlwURD033NJaZpYrFZSEhy0L5F4OlfE2KtXDowlg+/yeNIrkmEzdedyeX2JSgtGtm55JwKBmxUEV3XubR/NG99mc+RfIXdqrBawGP43qfkeI2hZ5deFEYIIYQQ1agGr2zt8XiYPHkyRUWBZ6D0dYEv+TosFt9F1KqaZTWkFomioqISQR84cIBHH32U0aNH89hjj1VZM4kITlyMldHD42ndNIIohwWlQNcgOdHCgO7RXD4wuLUSnvtnEkl17Ngjrb5xCBpYdA1HlI2WTfWgFqVr2bIeV5wN67drHMryHbi67vv/hh0aI/r59qnI3aMb0v+sBGLjo3yDrhVouoYjJoKGDaP5v8eCW5RucM84bh5eh/YtIrDovi5aiXEWLugby53XpRDtCH9rxDFN69u48dI4erS1EWHTME2Ismv0bGfjpmFx0hohhBBCiKDNnDmzxoxJDuoMpri4mGnTpvHZZ58BMHz4cO644w7+9re/ceTIERITE1m6dCnvv/8+b731Fu3atQtr0OIvCTFWbhwaT7HHy+EsRWSERkpC6CemT99RB4APv85iU4bBoM4W+napE1IZLVvW48GWsGPHQT78n4uCQidXDIiiY3qjkMqZfHMDANb+nsmXS120b2Vj2OC6IZUB0LVdFF3bRVFQ6KXYo4iP1k9Jd6ay1E+2ctUFcbjcJkXFimiHht0mi9AJIYQQNZGqhsHRwVi5ciULFy5k0aJFDBw4sML9f/jhB3bu3On/2zRNNE3j+++/Z9u2bSX2DdvK1jNnzuTrr7/mtttuIzY2ljfeeIPly5cTFxfHwoULqV+/Pnv37uXWW29l9uzZzJo1K+RAxMmJtFlpHNzC0QGNuCC05KEsLVvWY1z9IjZt2kTLFqElEcfr0iGZLh1OOhxioq3UjLwdIuw6EfbqjkIIIYQQp5u8vDymTJnCv/71L+rXrx/UY2bPnl3m9hOngNU0LXyJxFdffcWdd97J3//+dwA6derENddcwxNPPOF/IY0aNWLs2LE89thjIQchhBBCCCFEzRCu6Vo1MjIymDBhQrl7fPvtt+Xe9+CDD9K1a1cuvfTSoJ4tUFlVJahE4sCBAyW6K7Vv3x6AJk2alNivYcOG5OTkVF10QgghhBBCnOEWLVrEqlWr+PTTT4N+TMOGDcMYkU9QiYTX68XhcPj/ttlsANjtJftoaJpWZaPARfAOZHr4/tcC3G4DTYP6yXbO6erAbreFVM60BdnExEWiW3S8HgOjuIh7/x54hqQTrd2azaufmZhKAU3Rf3By41AXXdISQyynmCVrPXg8oFugfVOdS/qENruRaSr2HDLYuc+Lx1Akxuqkt7DjiKiZ/R6FEEIIUTNU9XStx9SvX79SLQUffPABR44cKTUuYtq0aXzxxRcsWLCgiiIMjUwXc5pb9H0OqGJS4hWapgANj9fDu9846dcljuYNHBUVwec/HWHLoWhSG8ah60dXu9asKMPOE/8pYupVgdeiOObeeUfIyjExTI77BCrmfWQSH3OEJ8YlBVXOjPfycRsWLBYrFrtvBrbf/1Ss25HP6KERJCdUPMig0Gny6f+K2PqHm2KPebSBUuN/aywM6RNNh+ahJVlCCCGEENXl6aefpri4uMS2Cy64gDvuuINhw4ZVU1QhJBIbN27E5XIBYBgGmqaxcePGEtPBnjj6W4TXtyvzserFRNoVuYWglAWlfOsmNEg2WLouj4bJ1gpbJjYfiCY6xoZSCq8X/zoSFotGfEIEj71dyL3XBG4NWPBpti+JMEDXfVO2gm8OY8MLuXkmsz7IZvzlgVsm5nyUj0dZ0XXweEw0zZfY6LqGPcLK/M+Kuee6wImEaSo+/l8RG7YVEx9jITHeiq5peLyKIzkGn/xQQHRkLM3qSx4thBBCiDLUsHUkji0kd6KkpKRy7zsVgj6Teuihh0r8rZTi/vvvL7HQRVkLX4jw2XfQSaO6Jll5Gprmm0pU03TcXqDYJCXe5LvVTob0KT+ReOy1TBLqJgAKZf41tEgDTEOhWzTi4mys/f0IXTqU36Lw2zYDw/At/Hb8ACVN07DoCsOErX8YAV9PcbGbnCINux28XtP/GfYlEwrTBN1mZfkGJ73Sy29p2XPIYNsfbuJjLMRE/TXFqs2qUTfJQsZhLys3uiSREEIIIUSZaur0rzVNUGdSr7/+erjjECHKzfeQGGdS7NbLTN5cboiOhL2H3QHL0exR6LqGYZT9kTFNhdVq4cNfLAGnYvV4jvVlKqMUzdfG4fEEDIXv13qw2iwYRtnjbAxDYbPr/LLJEzCR2L7Xi8ttUie+9OGtaxpRDp0de9243FFE2OWLQgghhBCnny1btoT8GNM02bp1K4cOHaJbt254vV4SEhIqHUNQiUTPnj0r/QQiPJwu3yrWvkHNpU+GfS0UJqqC4UKaXubD/ZQ6Vl7gE+5gBiVVFEuR62hLSDm7HQvBUIFj8RpHV9YuJ2arBQxT4TEUEXLFQQghhBBngI8//phnnnmGQ4cOoes67733HjNnzsRms/HMM8+UmkQpGLK07mmqThwUuTQiy+u1pJkoBVZL4JWci4sNUOV3BdR1X6uEIzJwy4blWAGqjCzg6DZLBclI+2ZWTFOh6+Xvp0xIjAlcTmKsjqaB11t2RlJUrIiPseCQ1gghhBBCnAG++OILpk6dSu/evZkxY4Z/ltXzzz+fH374gTlz5lSqXEkkTlN2uw2Xx4qmgdVS8oRZKZO4KCh0avTtFHjWpsvOcuP1Glh0rVR7gcLXEuFyebn7mpTA8URoaBqUNfuvqXwtDRXNRtu2aQSm10C3lD4slQKrzTct7RUDA2fM6S3sJMZbyMw1jrbY/MXpMjFMRafWEVgskkgIIYQQojSFVuW36jRv3jyuuuoqnnzySS644AL/9ssvv5zbb7+dzz//vFLlSiJxGru4XxwZWToxDkVclEmEzSTSblInDtweDbc3osLpX7t0SOLwISeGqbBaNV9XJx10i4bVquH1GjhzCyqMZcrfdGw2DaX5xjKYpu9mGL4OTXa7xpSrAreOAFzU04bb5cVq07FYfC0Luq5ht+t4PSZN60FsVOBEIipS4/xeUTgidTIOe8nJN8gvMjmY5SU736Bts0h6tY+oMBYhhBBCiNpg165dnH/++WXe17lzZw4ePFipcoNKJFasWIHT6azUE4jwqRNn48Jeddh/xEZuoY6uA2jsO6xjsTi44rzgFoF76KZ4Du7Pp6jI4+vmhG9hwYICD/nZeUEtSle/fiL/us6CI9KXgBxjtWpERercd52F+vUrjqdLWiSX9LJiur0YhommaSgFLqeH9CZwzXkxQb2mTi3tXHVBLJ3aOPyDyVMSrQzpE8Pfzo2WQdZCCCGECEALw636JCUlsWPHjjLv27FjB0lJwa31daKgBluPHTuWF198ke7du3P99dczbdo0WrZsWaknFFUruY6NURcnU+T0kHHES3SkldTk0Bdbe+gW30n+W4uP8Gemok97jYHdk4DIoMuoXz+RFyZCRkY2n/5skJWby8gBCbRsGdrB2blVJJ1bRZKX72ZnhklKok7DlOAWxTteiwZWWjSwUuyOwuNVREVo0p1JCCGEEGeciy++mBdeeIG6desyYMAAwNd9fcOGDcyZM4ehQ4dWqtygEgnTNFm2bBmpqamsWLGC3bt343CU32WmQYMGlQpGVF6Uw0bLRie/WvO1F1UuIz1e/fqJXHdREZs2/UH9+vUrXU5crJ0usScdDpF2jUhpgRBCCCFEkIKZjfJ0MmHCBLZu3cqECRPQfV1YGDVqFEVFRfTo0YM777yzUuUGlUhccMEFzJo1i9mzZ6NpGuPHjw+4/6ZNmyoVjBBCCCGEENWvdl2AtNvtLFiwgKVLl/LLL7+Qk5NDbGwsPXv2ZMCAAZVeUDqoROLRRx/lwgsvJDs7m3vuuYcxY8bQpEmTSj2hEEIIIYQQ4tTr168f/fr1A8Dr9VJQUFDpJAKCTCQsFgsDBw4EfAOvR4wYQePGjSv9pOXZtWsXI0aM4P7772fEiBFVXn5ttWZzEf/3RSHFLoWmQdNUndtHRhMdHXjGphNNeOYQlgg7oIFSeN1FPD8ptG5qH32XwXerLEcT+caoJQUM7pHL8EGhdXFa/L8cPvvJiWGCpik6tLAx/qrAU9CeyOPx8PGSPJatLcRjKOolWvn7iCQa1gt+3AeA22OyO8NNXpGBDtStY6NBstXfNBiswmJFxhETl0cRadNokKzjiKhdVzyEEEKI050iPF2bqrO7lNfrZd68eTRt2pRLL72U5cuXc8cdd5CXl0fPnj154YUXiI+PD7ncoBKJ402fPh2AH3/8kRUrVpCXl0diYiI9evSgf//+IQdwjMfjYfLkyRQVFVW6jDPRfXMyyTjsRaH5F5Xb+ofBnc/mcv1FJuf0iK6wjDnv/Mm2zHiwOzCOO8o1ewyTZubwzO0JQcUy/skMvIaO2+3969OiwVe/WPh2xQFmTU0Nqpxxj2fgNXWU0v2f5vU7TG59JIN7b06gaf2KE6Rde4uZNnMf+QUGxxb//nOfi183FjGodxzjr60XVCx7DrnZuMuJ1zD9rZwZ2R627dHp0S6a2KiKp7Q1lWLTboONf3gpLPYVo4BYh0Z6CytpjfSTuhoghBBCCBHICy+8wMsvv8y9994LwCOPPEJCQgLjxo3j1Vdf5ZlnnuHhhx8OudyQ15Fwu93ccsstjB49mldffZUlS5awYMECRo8ezY033ojbHXgF5PLMnDmTmJjgpvYUPk+9kcX+w4Y/iTh+cjFTaby+OJ/Cwoqn7d2WGY867lDQjvufgYVJM7MrLOPe2Rl4vToul4HFomO3W7DbLVgtvm0er8bEGfsrLOefT/uSEaVAQ/mmtNV8K9opTefRBRXH4vF4mDZzH3n5hm/BPivYrBoWHQxTsWRZLu8uPlJhOUdyPfy+04nXNLFYdGxHb7oGRW6DlRsLMYwyVuA7wfa9Jr9u82KaUC9RI7WOTr0EDY9XsXKzh90HKi5DCCGEEKdS7Zr+9fPPP2fixIlce+217Nixg23btjFmzBiuv/56/vnPf7JkyZJKlRtyIjFz5kxWr17Nk08+yW+//cZPP/3EunXrmD59OmvXrmXu3LkhB7Fy5UoWLlzI448/HvJjz2Rb/vD4FmzTSh6e2tFL3qbSmLGwMGAZdz6z37/a4vGH+V//V5hY+PKHPwOWU+i04Hab2Gw6Fv2vaHRdw27T8XgMvEbgBrDCQidFLt8K27qG/yq9rmn+WDSLhfe/DpxMfLwkj/wCA10Hi0X7qxxdw2rxrb69+H85AcsA2L7XhaFMrLoveTjGomvomobTY/DnQU/AMjxexeY/vVh0SIjR0Y+LJTHW1+Ky+U8vhlnb5ocQQgghRE1x6NAhOnfuDMD333+Pruucc845AKSmppKfn1+pckPu2vTZZ58xfvx4hg0b9lchViuXXXYZR44c4Z133glpCqm8vDymTJnCv/71r5OaKvQYpVRQ3aOOLbB3ui60t/dQMYbh67NTVq8YTfN1n9l70AhYH1a7AyNgluw7sf9ytYNzziq/HI/X1wdJ10rnpsdO5L3ewO/NK4vyKO/1HKMU/PCrk4vPLn9l6qWr81EKyhrCoGkaaIrcPIM/9uWSklj+lLlHct0oBUozfd2jji8H37G275CTeglGuWUczFYcyYXEGPB4Su8XZYfD2ZBx2Eud2OCvVpzux29NJ/UbXlK/4SX1G15SvydPKVXju/Se+Lt/uqtbty579+6lR48eLFmyhHbt2lGnTh0A1qxZQ2pqcN3PTxRyIpGVlUX79u3LvK99+/YhL7H94IMP0rVrVy699NJQQymTx+MJafrZ3bt3V8nznmo7MqxoWir+AQBlUWCaqoL6CG5hQU3TApajVCMCZQCapqHMwFMDH8yKB2LL/YLRNQ1TgdcI/JoKimI4lpCocr4JlILf1u+gQUrZ95sKnMX10TQdt1l2oqBbrWQeKWTTpvJbSLIKI8jNTUK53WVWj2FCocvO1m2ZxDtC7xZ4uh6/pwup3/CS+g0vqd/wkvo9OXa7vbpDOKMMHTqU6dOn8+mnn7J69WoeeOABwDcz6zvvvMNtt91WqXJDTiSaNGnC6tWr6dOnT6n7Vq5cGVKrwqJFi1i1ahWffvppqGGUy2az0apVqwr3czqd7N69m2bNmgVcXK+matKkmC9/9aD83X5KU0CEXaddu3bllmP+VAR6RQOGFcp0BSxH/zYfZfoGFusnnDGbSmEqhcVCwDJyPPm8uwQ0VfYrUkqhoREfHbichj9ncji7+GirRBllKYXVptGnZ0uiIstvkchZ78JlKKxllKGUwlBQNzmJds3Lz+JzCxUHi8FuhagyGlEKnBAVA53axxEVGVqLxOl8/NZ0Ur/hJfUbXlK/4SX1e/K2b99e3SFUIFxjGqqvFWbChAlERUWxcuVKJk2axDXXXAPA+vXruemmmxgzZkylyg05kbjqqqt4/PHHiYyM5JJLLiE5OZnMzEw+++wz5s+fX+Fidcf74IMPOHLkiH9q2WOmTZvGF198wYIFC0IND03TiIqKCnp/h8MR0v41RVRUFFGRhyh0KhSlGwN8Xe4VIwfFBHx9Q7pk8tVvdtTRLkzHF3PcxEvMmNQwYDwW8tAtYBoK3XpCImH6kgvdogLGcm7vKBZ+kwGaDr4h5Me9HgVKQ9MUk/9eh6io8r+8b7y8LhOn78EwFZpWsnXDMHwDt1s2iSS5TuBpzhrX09mR4UShlRj3AeAxTHRNI61JDFEBZm5yOBRNUj3s2GcQG6WXSGwMQ+H0KNo3tZBcp3Krkp+ux+/pQuo3vKR+w0vqN7ykfiuvpndrgtq3srWmadx6663ceuutJbb/5z//OalyQ04krr76ajZu3MjTTz/NM88849+ulGL48OGMHj066LKefvppiouLS2y74IILuOOOO0qMwRBlm3B1LI+/lothHk0CjiYPxwZPJ8VbKpz+9cIBTfhqTSZYfOtHnPjB0VCY7gIgLmA5N12gWPBfHWeRidtt+E+YTdO3tkWUw8JN51U8O9HwAQ4W/a8YZWr81TBxdCyIDg2TITkh8BWgpg0i6d8jlh9X5uH1cjSZ8A2yRoOYaAuT/l7x9K+tG9vJzHWTW2Rgen3JkG8kiC/JaZYaQUJs4NYcTdPo0tJKfqHiQLbCYVfYbRouj6LYDfWTdNJbhPwxFEIIIYQI2sqVKyvc56yzzgq53JDPYHRd59FHH+Wmm25ixYoV5ObmEh8fT8+ePWnZMrj+9sfUq1f2yVxSUlK594m/tGrsYMooeP7dfJzF5tFmCQ2LBk3rW7j/luSgypkxIZkJzxxCs0ceTSR80z5ZNIVRXMjzkytelK5Ll/rcQgavfKPj8YLH4zvljoiwYLNr3HSuQZcuFXd7u6h/AhZLHh9+V/jXlLSahjIN2je3cec1wS1KN+GGVOrWsfH1zznk5vvWkrDZNFo2iWTS3+uRklRx30yLRadPegyb/nCRkenGc7Q1I9puoXmDCJqmlj/g+3hx0ToDutjZud/LzgwTt0cRHamR3lynVUOrLEonhBBC1Di167d51KhRvvGqR8eOltUqFMoY42MqfSm0ZcuWIScOouqlNXMwe4qDI3lO1m4xqROr0bVt6E2tz02qC8BjC/7kUI6VXmlerh7WBAh+lcMuXerzQhdYuzaDhf/zUOwyGHm2lb69Q1sF/YK+cVzQN46MTCdrN7lo1sBGu5YVL6x3omsuTeKaS5PIOOwir8CgcaqNKEdoXYgsFp30Fg7aN4vA6VJYdI3IiJBnTSbGodGppY0OzRQeA2xWSnWXEkIIIYQIh9dff73UtqKiIlatWsXHH3/MzJkzK1VujetTsWXLluoO4bSUFOfg3NBbpEq595YmJ11Gly71SUsrYtOmTQEHRVekfrKD+v1PfiBb/ZQI6gfXkFEuXdeJroIxdRaLhqXixbCFEEIIUY1q2xiJnj17lrl94MCBREVFMXfuXF588cWQyw390qoQQgghhBCiVujRowcrVqyo1GNrXIuEEEIIIYQQ1UnVsjESgSxZsoTo6NC7kEMlEomPPvqIvn37ymDoGuSLH7J47eMsPB7fdKfJiRE8MSGexMSEkMr553OHqVMnAqsF3G44dKSY2ZPrhlTGpz9m8PUKK5puBVpgflfIkJ65XHpOaKuWL1ycyWc/FuI1QNegXQs7/7o1tDJM02Tbn2427nDhMRQpCVbOSncQE2C61rJ4vYo/D3jIyTPQdaifYqVuHetpMX2dEEIIIcT1119faptpmhw4cIB9+/bxj3/8o1LlhpxIPPzwwzz55JOcf/75lXpCUbWum7qTvFx3iRWcMw4UccN9Tv52oYfrhlU8OGD6gj3ojni6dIjBZuPYbKs0bmDloVfzmHZj4Klfj7njyf1YImOwRx3fY87GkrUmX/+SwcwpwSUCo+75A7fnr/UfDAXrt7u4cvJuHrk9idZNYyssI6/A4I1Ps9myu9hXFoCm8d9l+Qw/N56z0oMbkH4g08P3Kws5eMSLqRRKQaRdo3kjOwN6xBAVKb0DhRBCCFGzHX+eeIyu66SlpXHrrbdy+eWXV6rckBOJ1NRUCgoKKvVkomqNefiPEkmEpmso30p0KEPx7pdHuKS/rcKWCRURT+MGNtxeyCtQRyd/hSiHRvMmNu5fkMO/bwlcxn3z9qE7YrFYLBhGyfUidKuO1RHD3c/t5fEJjQKWc9MDf+L2+tZpUEqVmqrsX7OOsPCpwImEaZq8/kk267c5iYvRSYyzoOsaXq/iSI7BfxbnEBut07Z5ZMBycvINvv45nyO5BvXqWLHbfLEUFSs27nChTLjw7NiyV88WQgghhKgh3njjjbCUG3IiceWVV/Loo4+yZs0a2rRpU2afqssuu6wqYhMV2H/AWSKJOP5fZSqUobjr2VwW/Duh3DLGPX2IHh1j8BgKl+uvWZM1wOlUxERD/RQbb32yh2uHlT+Na16RA3ukXiqJgKOrXVt0Ct2BWwHy8/MpLDJ9LREa/pWtj7VMKBQoWPDBYW65vPyWlm1/utn6RzFxMXqJbkxWq/b/27vv+KjKrIHjv+feqekJAUIVBSNFiojYERA79t57X921rMKuBdfVxbr2Xcu69l0L+rr2gmJBRFFRhCig9JoQ0iczc+993j/uZCAwmQLEQDjf/cwCM5Mz595M4j3zlEPHIpNVFRafzKhPWUjMXdhI+VqLHp298WJBKUV2UGEY8MvSCMtWR+lRkronhRBCCCG2HVq3zw8JP/30U7766itqamooKipi9913Z//999/keBkXEhMnTgTgpZdeSvi4UkoKid/AzLlV8dEHleQT8TVVkaRxigp8+H2K2vrEG501hiEn2+DbOVmcniSOYaRad6AxPMmf8+B/60ARH4lIEAKlFJ9+E+KCJCNws39pJBLRFOZt/HqGoQgEDOYtaqSx0SGQZGrSvMURsgJGwhGHoN9gdaXN8tWWFBJCCCGE2KpFIhEuu+wyPv/8c0zTpLCwkLVr1/Loo4+y11578eijj+LzZX49k3EhMXny5IxfRGx5y1c4JJjuFhef5pRiI2TTcD/9jy2L2IgTa5htmMkrc2Wo5K+lE3dRXF9daN2UpkTJxEcmkh04EI0AihanHHkMsB0IWw6BFnZA1loTjWo8SY5bKbASjMAIIYQQQmxNHnzwQb755hvuvPNOjjjiCEzTxLIs3nzzTW655Rb+8Y9/8Pvf/z7juBkXEt26dWv273A4jM/nkx1sfmN7DzL453/XrYnYUNP9pif59yXUaGHbPjwesK2NH/d53V2L6uuTj2w4toPH0/Kn+0opnBQX3SOGBPllcaTF7iaOdjCUQU528gXOxYUmCndNhCfB8YfCDp2KvGQnGY1QStGxyMO8ReGEIxtO7Pzm5cgOykIIIUR70962f33zzTf53e9+x1FHHRW/z+PxcMwxx7BmzRr+85//bFIhsUlbzvz666/84Q9/YPjw4ey2227MmTOHW265pdUWcoiNFRYW4PO7F7EbFhPxKU9Kcczo/KRxBnVvoLbOISugNhpQUAq8XkV5pc0j15UkjePYEbROPM2qacG0tpIXI4eOKHSfj9po1EFrjaEMtNbceElB0jh7DsqiIN9gTbUdv+BvEmp0cDTsPiAraeEDsEsvP4ahqGtoXgBprSlfa1OQa7JjN2/SGEIIIYQQba2yspL+/fsnfKx///6sWrVqk+JmXEiUlZVxwgknMHv2bI488sj4BZ9pmtx+++289tprm5SIyNz1ZxejzPUWV8du4F68Z2V7U27/evpRPfh1SZiGkEN+jiIQcEchgkFFTraiqsZh0bJQylwuOdQmEo6ilMIwDZRS6/5uQCQc5eLD7JRxjjswZ90aCe1etGvW7d7UrZNJ1+LkuzblZJkcPTKfoN9gZYVFVY1Nbb3N6jVRqutsdukVYMyeOSlz2am7j8G7BKiuc1heblFTb1NVa7N0tYXHo9hvaHbGPSmEEEIIIX5rPXv25Jtvvkn42Ndff02XLpn16mqScSFxxx13sOuuu/LOO+8wfvz4eCFxww03cMIJJ/DMM89sUiIic3vsVsC153fGF/CsGwmIrWcoLg7w33t6pxXn7t8VMfvnEEtWWNg2KAPCEYdFS6PM/qkuraZ0u+7ahYsPbiTSEMKKWu4aBwVW1CISCnPxwY3sumvqN+nJhxVz0iG5KCO2SxO4BQWaAb393HtdyztHrW+vwdmcf1wRQ/oGMQywbehY5OWIEflccmKHpIusmxiGYv+h2Ryybw7dO3uxbfeYdu0TYOwBeZTu4E8rFyGEEEKItnTKKafw6KOP8sQTT7BixQqi0SgrVqzg8ccf5/HHH//t+kjMnDmTe++9F4/Hg203/4T58MMP580339ykRMSmGbF7ISN2L2Thiio+nhahcwcPhx9QlHGcv/+hGIA//n0JDVEfu3SNMP6MHkB6zejALSYe3BV+/HEF/5kSIRS2OP0AH8OHpXfx3+T4gzpw/EEdWLq8lqnfh9m5p5+hA1I3odtQ/94B+vcO0NDoEIk45GQZKaczbcgwFH13DLBLLz/hiMYwwOeVJnRCCCFEu6VbafvXFBvgtKZTTz2VOXPmcPfdd3PPPfesS0lrjj32WC666KJNiptxIeH3+2lsbEz4WFVV1SZtHSU2X68uBZx73ObHueuqzC76E9l11y78eacGysrK6Nev3ybH6d41l5O7Zl5AbCgrYGx2B2qlFAF/+1p4JYQQQojtg2EY3HbbbZx77rnxPhL5+fkMHz6c3r3Tm8GSSMaFxL777ssDDzzA0KFD6djRnX+vlKK+vp4nn3ySffbZZ5OTEUIIIYQQoi1pWmfwoA0HJOL69OlDnz59tli8jAuJP/7xj5x88skceuih9O3bF6UUEydOZMGCBWituffee7dYckIIIYQQQojMjR8/Pu3nKqW4/fbbM36NjAuJLl268Prrr/PUU0/x5Zdf0rNnTxoaGhg7diznnnsunTqlXpgrXFprVlVEWbYqgu1oCvM89Ormx5vhHPyjLplFTn4OhmGgtbvAuYe3mrsnDs0ozmnjFuMLeFEowKGuLsTLd2c23HXkxTPp0rMLwWwfsBON79WyfNFc3nh0SEZxHnt5FV/O0W5jPa3plO8w8fddM4oRjUZ5Z2oDX/0YwrKgY6HJqYfn0bVjZoukbUdTUQN1jWAoKMyB/KzUDfaEEEIIIdrK9OnTN7pvxYoVFBcX4/U2375+U69pNqmbVmFhIVddddUmvaBwNTTaTJ5WzbyFIRobHXerVANKOvoYs08+3Tqnd7F76h9/pWOX4nhPCVA4jsPqeh9HXTaL/z0yMGWMgy/4jm7dSggEA+vda5Cbm8O5E5bz7wnpXcCf/adFDNi9Dz6fBxWrhXRhkMLibM6+cTFP39ozrTjn3bISX8CLP7iuoKpq1Jx/62quPD7A4P6pF4AvWhFm4r/KaYgY8R+OFZVRZj1Yzr5DsrjwuPQWpK+t0/y4GKrqYkOdGrweKCmAAT01fq8UE0IIIUR70x4a0n300UfN/m1ZFrvuuiv//Oc/GTBgwBZ5jU1agbpy5UruvPNOTjrpJA455BBOO+00HnjgAdauXbtFkmrvHEfz4dRqfvipnpwskx26+dmhm5/OxV5WrI7w1pS1VFZHU8Y56er55ORl4fN7CDdGCTdGaQyFsW2bnLwgBYX5XDvu25RxunUrQRkm62YFNt0USnk45+YVKWMc+/syuu5YjN/vwbIcomH3ZkUd/H4PXXt24IRrfk4Z5/xbluML+GgqiLTj4DhuQzif38sDr6TuaRGNRt0iImqAdlDaxsBBaQeNweffhXjto6qUceobNTN/hbV17ghEca57C3phSQXMWgSO3hpmPAohhBBCJNcaMyk2qSHdkUceyQsvvEBWVha77rorHo+Hxx9/nGOOOYYlS5Zs8STbm2WrI8xdGKJzBy85WWb8G+vzGnTv4qO8MsqceQ0p4/j8XrxeD42hdR2jlVI4tiYSjhLMDrDEKkga48Rrf0EZBomXALn3GYbi4LO+SxqnW4+O+HwmkYjdPJSGSMTG5zPp0rU4aYy1a2swfT53apVe91mAAtAarTVev4d7n12ZNM47UxtoiBjgOJiGip9fw1BuQWEYfDC9PmkMgGVroCYEHXLAE+s7pxT4vW5hsWotVNamDCOEEEKIbc2Gn61uiVs7lPHUpjvuuIPu3bvz+OOPU1y87sJwxYoVXHDBBfztb3/jkUce2aJJtjdLV4SJRDRZwY27IhtKkR00+XlBI/vuntdi9Tj2gm/pskNXLMtO+BzbdvD5PXg9yTsvZ2cFcS/VW3qHa8CgY7cOSeNkZfubxjA2ekyh0EAwK/nWwHc/W4dhBNY1otswE60xDIPZvyb/aZw+K+R21k7wmFLuSEd9A1SsjVJc6E3wLNeKteDzuMXDhnweqHbcQqI4/VYbQgghhBDtRsYjEt999x2/+93vmhUR4C7CvvLKK5k2bdoWS669smxAtXwx7PEoIpZDslkzhseLUireWXxD7mOKLTXFL945O9njya7vtTsikExDuOm5LRxTPFTyOFHLHb1IOoSnoKbOafFhrTWWA2aKnxC75RBCCCGE2EZp1Ba/tUcZFxJFRUXU1yeeFmKaJtnZ2ZudVHuXn2sCCttJfMFc32DTqcib9MK7tCBKNGphtjDi0PSpvm7hNZo0rT9ITtPYkLgJYZNI2EIZJBxN0GiUgkjEShpj74E+QCceAgBAuYudjeRxOhaY7r5TLR27UhhounRs+e2vlCI/COEWlqo0hc7KbAMoIYQQQog2tSXXSmQ8tenSSy/lnnvuoXfv3s1WfC9ZsoT7779/k1tsb0969wzQocDDqoooXTp6m31D6xpsUDCgT1bSGHdPHMrp4xYSCPrcLVLXu2jWWuMP+IhGLGprk0/iX7m4nO69u+DWlIkuvBVaO7zy952TxqleW09OXgCPx8C2mscxPe62tDVrG4CCFmOcdGgx7329Gp/fu9FIi8Yd0XBsmz9fkHwu0amH5XPDIxVoZaC10+z8Oo47UtGrq5dgoOVpTQDdimFlFTRGILDerCytoaYBcgLQqeXDEUIIIcQ2qj0saRg9enTCouGSSy5JuP3rhx9+mPFrpFVIbJhIRUUFJ5xwAj169KC4uJjq6moWLFiAz+fjvffe46yzzso4ke1JdtBk1J75vPvZWhYti5Cfa2KaUFtv4ziw24Acdu4VTBlnbWUlpmmQnRt0p+JEHZQCr9eDZVnU14ZSbv/6/jO7cfqfFuP3+2m+VqLp++1QV5d6YbJdUU51XpCCwiw8PnfBN4BpuqMI1VUhouWrgeRbye7ZVzNjvo1pms2KCUO5BY2HMD27JF+03b3Ez567BvhyViOOMmLDBxqUuxWs3+tw+ckdUx5T5wLo1QkWrIaGiLtbk6MhFHEXXPfrAUFf+xyqFEIIIcS2bfjw4a3e8yqtQiKdRAYNGrRFEtpelO4YJCto8OPcBn5d0ohla7p38TNw52z69Q5imqm/8W8/NpQjLpqJbRXgC3rxejxoNHW1DYTDFi/evVNauTx/e09OG7cEf2D90RF3nUFdTR0v35u6lfrTDw7h7CtmEunWlbyCYLyvRSgUpbaqkYZly3j6wSEp41x0Ymd8r67ms9k2Xp+HpuImGolSlG1x51Xd0jqmS0/qQMfCKj76qp76MIC7Y1Ovrl4uP7lj0kXWTQyl6N9TU5ANS9e4oxBKQc9O0KMYOuRKESGEEEKIrdPEiRNb/TXSKiR+i0S2R91L/HQv8ROJOtg2+H0q5YLkDb312BAAzvvDt6yK+NCO5n//TN2EbkMvTOwBwJGXfk8gmE11RS3vP7NbRjGaCoWzr5hJjeFHKfBFw/z34SFA6hGAJucc14lzjoNfFtUw+asQ/XYMsP+w5LtGJXLCQQWccFABqyrC1IY03TqaKaczbchQiu7F0K2DJmq7hYQ3jSJPCCGEENuq2IY1rRC3vdmkztYAdXV11NTUJHysa9f0OiELl89rQGbXtxt58r6hWySXN/4xeLNjPP3gEBoaGigrK6Nfv36bHKf3Dnn03mHz91btXOyn82bGUErh2+SfFiGEEEKI9ifjS6OffvqJP/7xj8yfP7/F55SVlW1WUkIIIYQQQoh11qxZw8SJE/nss88Ih8PsscceXH/99fTu3bvNcsq4kLjppptYu3Yt1113HQUFBa2QkhBCCCGEEGJ9l19+OY7j8Nhjj5Gdnc3999/POeecw/vvv08wmHqTntaQcSExd+5c/v73vzNq1KjWyGe70tjYyIP/raJsfhjHgaICk8tOKaJPz+Rbv27ooNO/wZvlx1QGGrAti4Ad4bWnh2UU57TrFuAP+kC528k21IV4KY2F1us797ofqY025V8IrCTX28C/79w1ozivTq7kzU8bsGyFMmDAjh6uOzezCUpaa1avibJ0RRjL1uTnetipRwCfL7P2KVHLYeHSRiqrLAwDupX46dLR1+o7IQghhBCibWxt279WV1fTrVs3Lr74YkpLSwG47LLLOProo5k3b16bbXqUcSHRo0cPQqFQa+SyXZn6bS0PPFeOZWtQbqPr2nqLcfeuYLf+2fz5opK04hx+/iyy8nPci9rYda3H58G2vBx01jd88MzuKWMcdtF3lHTpREFxHobZ1E9CEcz2c85Ny3jqL+ntlHTi1b+iycI0mzfJq7WyOPHqX3j53vSG3s67eSlR26CpX6J2YNYvDmf8eRkTLs2nT/eclDEaww4fT1vLnPn1hEJu0z1lKDoXexmzbxG9ugfSymX5qjDvf1bJ8lURHK3RGgJ+g517ZXHQ/oVkBxM3BBRCCCGE2FLy8/O555574v+urKzkqaeeoqSkhD59MvvQd0vKuLP11Vdfzf33389XX31FY2PybscisaraRu5/rhwr1t9AAcpwdwTSGr6dXc9Tr69JGeewc3/AG1jvk3G97mZ4TIJZ2Rx79oyUcTp36UR2XhC0JtIYJRq2iTRGMQxFdm6As25cmjLGiVf/BChMw8S2bRzHwXEcbNvGNEzA4MRrfk4Z5+JblxG1112cK9ZtR6uU4pZ/VKeMobXmo2lrmfFDLUG/wQ7d/PTqHqBrJy/la6K8ObmCVeWRlHHWVkd5Y/Ialq0MU9LRS69uAXp185ObbfLDT3W890lli93JhRBCCLHt0lpt8RvAihUrOPDAA1u8pePGG29k77335q233uK2224jKyuzmSxbUsaFxI477ojWmrPPPpvddtuNfv36Nbv179+/NfJsVx54fi22rd0LfkPRVAco5d5Q8MHU1BfMXr+35ek1GgyPQaPpS/x4zElXzyeY5cexNbat4/GUUm6DO0MRCHg5/LzvkiejfRiGgW3bzXJSSmHbNoZhgJN8a6q6ujoawm7fCBX7H9Ds7yjFs/9LXmStXhOlbF49HQo95OV44vl4PQbdS3xUVlv88FNd8uMB5syrZ1VFhB5d/O7OWrHjyckyKSn2Mm9hA0tXhFPGEUIIIYTYUs4++2wmTZrE2LFjufzyy5k9e3ab5ZLx1Kbx48dTVVXFySefTHFx8g7DIrF5C92LTyNBGaeUO5WnMaJpbGwkEEg8BWfM6TPIzs9NOYnP40n+LQ5mBTE9BpFGK2FRYkXdxnAFnYuSxnEHQnTCGE336RS5/nNSPc27ayc25dtGzjyq5ceXLA/T0OjQqcPGhYtSivwck7kLGhi5dwFeT8u19E+/NJAdNBL29sgKmqyqiLJ4eSM7dEtvmpQQQgghtm9dunRh8uTJmxWjaSrTbbfdxvfff89zzz3H3/72ty2RXsYyLiTmzJnD3/72Nw4//PDWyGe74KS6okajtKIxCi3UEe5n9Oks9k31HMNdD9FiJg5gKozNXFjcUpGxvvpQ09ysxBQKHeu4nYxlO+50sRZez+NR2A7YNnhb+AnQWhOOajxJms8pBZYlU5uEEEKI9iT51cjmxd1UlZWVTJs2jUMOOST+IbFhGPTp04fVq1dvmQQ3QcZTmzp16tRmW0y1F9nB2CLiFt9RCmUoCnJb/qQ7xxO7oE5xfe84TvLHLQft6BY7apseA8dxCKVYD6O1Ox0p0UV+02OOTp7LvoOTv6907EcwLzv5Auf8XA/KaPkiv67epijfg8+brEhQlBT7qA8lztlx3IXXBXnSpU4IIYQQrauiooKrr76aadOmxe+LRqPMmTOnTftIZFxIXHjhhdx3330sXLiwFdLZPpx8WCHgFhIbXnc7scW7JcXJ1za89vQwrKiVtLzVjiYSTl4ArFm5hmgkitfnSVAEaEzToDEUYdK9pUnjGIY7WmAkmK9lKCP2WPKqZ8ze+fEc9AYHtv6/x12UmzTOTj2DdOrgY2V5ZKNjagjZWDbsuktOynwGlGZjGFBbbzfPRWtWVUQpKvDSZwcpqoUQQoj2pukabUveNkdpaSkjRozgr3/9K19//TVz585l3Lhx1NTUcM4552yRY94UGX+c+v7777N06VIOO+ww8vLyyMlpvhWnUooPP/xwiyXYHh24Zx5vfFzDkhXh2Jur6d3lrrT2ehV/vjj1+pNIQwjTNN0tW9dfWqDcmNFIJOX2r28/uRunj1+MYRr4A15sOzZCYSoMwyAcjlBf05Ayl/4dG/hxZRDTa7pTipo+yDfcKUlWNMquJal3+TpudJDXPnaft2ExAdC9o0FJQfLtX/0+gwP3KeStj9awcGmY/FwTj6mobbCxLBjUL5sBpal3OOjTK8juu+YyY1Yt1bUWudkmjqOprnPIDhqM3qeA3BwZkRBCCCFE67v33nu55557uOqqq6itrWXYsGE8//zzdO3atc1yyvgqqGPHjhx88MGtkct25b5x3bn10RX8OLcBy2raKQk6Fnm5+bJOlBSnXsD7wfPDOOj0b/BnrXcBDziWTTQS5Z0n02tO8vzfenLa9QvxB30Egr7YtCCHaDhCbU0tL6cYjQC4Zfyu3Py3H5ldnhXbjcodmXBsBxTsWtLILeNTN6U77sAivEYlr3wUwtGxLaxiBUX/HU3Gn59eU7qdegY54fCO/PBTHfMWhojami6d/Azqm8OA0qyki6ybmIZi9L6FdOnkZ9bPdZSviaAMxW79sxnUN4ceXWWRtRBCCNE+bX1NZ3Nzc5kwYQITJkxo61TiMi4k2mpVeHt048VdAPjp13qq6hz67uhNui4ikQ+ed0ccDjl7hnvhba+7LxMv3NELgKMv+wFfIEBtVT3vPrkb0CXtGE2Fws1/+5E55R5speiTF+XOWzLran3kqCKOHAXLVtYxfXaE3t09DN4lL6MYAF06+enSyc+ovR1sW+P3Jd6BKRnTUOy6izuC0Rh2MAyFP8PO2EIIIYQQ7ZHMy9gK9N0pe7NjvPf0sC2QCbz+yOa3WL9l/K40NDRQVlZGv379NjlOt5IcjkuvwXdSPq8ByVtYpKSUIhiQLtZCCCHE9mBz1zRsLzIuJPr27ZtyG8+ysrJNTkgIIYQQQoi2JHVEejIuJC6//PKNCon6+nq+/fZbFi9ezLXXXrvFkhNCCCGEEEJsnTIuJK644ooWH7vuuuv48ccfOf7449OOt2bNGiZOnMhnn31GOBxmjz324Prrr2/TPXF/K7W1tVz393JWVURRWuHzKa48rSN7716QUZyDzviWrLwsFO42q45tQ2Mtbzy9Z0Zxjv7dT3g8Xnd5s4ZwYyNvPjogoxiHnzcDwwzi1vJ+YAGOHeLtJzObenXaNXOorVco7e7eZHgMXn+4b0YxbNvmx3kh5i4OY9ua/FwP+w7OJi83s3lODY02X35Xy7JVYUxTMaBPFgN3yUq41W0yKyqifFsWor7BITfbZFj/AB2LMsvFcTQryqMsWtbI4qUesvKjlO6oMZM0zkukMeywYGkjtXU2Ho+iZ1c/xYWbOf9LCCGEENuVLbpG4thjj+UPf/gDN998c9pfc/nll+M4Do899hjZ2dncf//9nHPOObz//vvtuvHd82+s4qV3qkDr+DanlgUTn1hFp/+r4PFb+6QV58hLysjOW7cdqkJhejyQXchBZ33LB88MTRlj9CnTKexcjN8XWG+TJE0wK8jxv/+FSfenV9SNveBHlPJjR631d6LFMP2MveBH3nwivUXXR15ShrY0GsfNRbm7P429aDaHj/Jx2ak7p4xRWRVl0uS1RLWBYRpoDWtDNr+8s5ZBO/kZMSw/rVy+m1PH86+vpqLKRmu3Cd1HX1SzYw8/F53ahY5pXHxblsOrk2v4anYjjWEdP8Uff93AvkMCHHlAblpFSW29zUdf1rBgWZiGkEVtrZfF5bX0nGtx4F55aRcl8xeFmPJlNeWV0fj3KStoMLA0mxF75OH1ymJyIYQQQqS2Ra8YFi9ejGVZaT+/urqabt268de//pVBgwbRu3dvLrvsMlavXs28efO2ZGpbleUra3npnSp0rOu0QqGUASg0DqsrLP58/6KUccZeNBvTiC0AVuvdYrJzcjjy7Okp4xR2LsY03dEMt6eFW9ooQ2F6TI6/cn7KGAef9x2Oo93tXg2FYboX8BgK23ZwHIfDzp+ZMs5Rl5ThWHa8uFLr7bKkHc3bH0dSxrBtm1cmr8U2PDiOxo5YOJaDHbUxTZNZCyLMLKtLGWfh0hD/nrSK8rUWRfkGXTp6KSn2EAwa/LygkX8+v5yIlbxbN8A7n9fx+XchtKPpWKDoVGTSsUARtRw++qqBydNT9+mIWpr3p1ZT9muIvByTHiUeOhU6FBWYLF4R4d3PqqlrsFPGWbIizNtT1lJZY9G1s48duvnp2dWHz6v48vtaPv+mJmUMIYQQor3TWm3xW3uU8YjEQw89tNF9juOwcuVK3n77bUaNGpV2rPz8fO655574vysrK3nqqacoKSmhT5/0PpHfFt34wCrQ2l1rsv56E7VuKs/suambt3k8sU+gE703m+4LJO8CPfbi2QSzgk0f/Df/8tjIhGEajDppOh+/1PJUKa/pw4la7jGsd0zuMbpFgOFN/on5rFnzsC13FGL9AqIpntYaHDjhyjm88kD/FuP8OC+EpQ2cqO0eh1LxOI5lY/o8zCgLMaRf8sZ2H02roqrGpqTYE9821jAU2UGFoWDB0jDfzKpl791aHt2oD9lMnxXCNKEgd92uT4ZhUJQHFVU2U2c2cMDuWfiSbCu7aHmYBcsidOnoxe8ziEbdosHvVXTr7GHpyihzFzYytH/yHcC+/6meugabnl198fOqlCI/14PWMOvnBob0z6EwTzZ0E0IIIURyW6SQAMjJyWHMmDGMHz9+kxK58cYbeemll/D5fPzjH/8gKyt15+FEtNY0NKT+hDcUCjX787dUWWMTu1re+MGmYsLRrFq1mtzcxBe7R144i9z8wuT9UjSYpifp+fAHAiilWtydQANKGeR3Lkgaxx1dUc0KgPghGQrH1mjHSRrjhn9apNonQaOJRI2kceb8Uo9heLGtaMLzY0VtLGD1mjpygi1fvH//Uz1ejztKY9vN8/J53VGC7+fUMHiXlgukmT+Fqa6zyc9R2M7GIwZZAaistvhxfg19e/lajDN/YT3RqIWhIBq14yN/lmXhAUzDpuyXWvr2avkN0dDoMG9BHdlBEo4cZgU0S1da/LKwhv59tu9me235+2F7IOe3dcn5bV1yfjefbvowdSsmuzalJ+NC4qeffmqNPDj77LM5+eSTef7557n88st54YUXGDAgs4W+ANFoNKPtZxcuXJjxa2wuTfJPwpv8WLaEghYGFAzlSbvpYvLzUbB+8+jEFBhKJY+jfbDRuEazEKBT5OJkr/fkBDGUiq9TSBansioPFShscZqdYZhgKObMmUtuVuIDdxyoq/Nh2YqGhsTTqWxLsWp1JWVlq1vMZcEiP5FIHuFGi0iC47IdiERMfvllMToUbTHO4qVe6uo8VJjNp1JVVVUBUFenWGFrysqWtRijPgSVlV58Xk20hQGv2lrFr7+uRUVTT9naHrTF74ftiZzf1iXnt3XJ+d08Pl/LH56JbcdWM3+haSrTbbfdxvfff89zzz23SV20vV5vWtOiQqEQCxcupFevXr/5om6PsZSIDUrr5lOb4tzRir2Ht9zMzcusZNft60VykjaF03oZYJKsktCOQ7gxkry5nPol9ly90aiEdmKxFUljdCpYyIpyFV8fsXEeGtyZUknjLK2qY3m1wuPxJDy9hsfEidrsNqg06cLi7lNXsnBZlKysjX9MHMfBbHAo7V1Ev34FLcYI5EX5Zn49yuMlK8GH/HX1kJ0Fuw/ekZLilhvehXQjFTX1dOjgQSmFZVlUVVVRUFCAx+Oh0bbo28dPv34tT22ybM1PS9ZSVWtT3GHjY4pEHCKOza798+nV3d9inO1BW/5+2B7I+W1dcn5bl5zfzTd/fuq1l21OhiTSklYhkcl0JaUUt99+e1rPraysZNq0aRxyyCF4PG4qhmHQp08fVq9u+VPeVK+fybSoYDC4ydOoNtVh++fyv4+q3Tpgw2Ii1kox4DOS5vX2c3ty9GU/obSRuJiI/QA01DUkjbN2ZSXF3TqilLvYev1Q7rQmhe04vPVY8h2XlKnQjmr5B08pDCP5MT3+t/6MvWg2OBsPe+p4i0nF5Wd4ksYZsYeX59+twuPz4ETtZufXQaOUQddig/z85CND+w0rZPHKCkJhTU7Wuot8x9FU1UJejocD9upAVlbLF939ejv07BJl/pIoWQGFud7uTJbtEIpodu3jY6eeydey9N/Zx6x5UarroWPhuh9bj8dDKGwQDHgYuEte0lwAdtvV4YPPq3AcE79/XS6O1qypiNC9S5DSnQrweLbuIeffSlv8ftieyPltXXJ+W5ec3023tU9rAqkj0pVWITF9euqdf9auXUsoFMqokKioqODqq6/miSeeYP/99wfcqUlz5sxh9OjRacXYFp1/Yhc+mFZHKBRbKxF/tzZ9cm9w65UlKePU1VSTm1e48chELIzWdsrtXz9+aU+OvWKu++m9YcQv2N010sodjQilXvjd0Wxkte1H2w7aXq84aopnGhR7Us8nzctVVFe7B6G1XndoumkXKYND9ku+/WthnpcBvXzMWRTB9HmwYwuTDVNhKBPDsTh438KUuRywVz5z5jcws6yB+gaLYEChtbvWwO9VjB1VSNdOyS/cDcPg2NG5/Pv1KsrXOvh9Nl4TIhZEotC5g8kxo/NS5lKU72G/3XP5+KsalqyMEPQ71DcqIuUWXo+H4YOy6dkl9TDxoF2yWbYiwuxfGvB7FdlZBlFLU1PnUFzgYfTeUkQIIYQQIj1pFRIfffRRi49ZlsUjjzzCY489RnFxMRMmTEj7xUtLSxkxYgR//etf+etf/0p+fj6PPvooNTU1nHPOOWnH2Rb9996dueCG+ZRX2vGLbTDw+Qxu+30JpTsl/4QaYPJzezLmjK/IzstHadWsmLAdizf+2fLORut77cFSjv7dz3g8HozYrkva0Wjt0BhKryndU/8YxjmXzqDCCqIdB8dZV0AYhqLY08hT/0jdlO6Fe/pz5h/LqKqJLeDWGoUCA0yvyeuPpNeUbtTwfPKy6/ju5wYsZaAA23Lo2sHg4H0LyQmm7rng8xhcekYX3vt0LV9+V8uaKgulYECfICP3KmD4oNTfI4Be3fxcfEIRH39Vx+xfI0SimuyAYviuPsbsmZN2/4eBpVnk5Zj8OC/EgiUNOA706uplSL88dt4hkNYnPH6fwWEjC+nZzc+Pc+uprrXxegz2HpLNoL7ZGTfIE0IIIdojGZFIj9Lr5oxkrKysjPHjx/Pzzz9zxBFHcOONN5Kfn16jrya1tbXcc889fPjhh9TW1jJs2DDGjRvHzjunbjq2oVmzZgEwcODAlM9taGigrKyMfv36tfnQ5MfTKymvtNhvtyBdS9K7ON3QQWdMB48XLPjgudRN6Foy5syvCGRlU7+2Lul2r8mcc+kMlodNDBSFXov/PJpZV+smL/xvHm9+EmXnHUxuuXKXTYoBUFsXpTGiKcg18XpbXoeQjOM4VNfaeExFbs6mLy1qjDiEQg7ZQSPpdq/JaK2prmmgrOwnBg3sS3Z28i1fW2I7mkhE4zGRJnQb2Jp+P7RHcn5bl5zf1iXnd/Nlcr32W5s1axZRG/zFmW/4k0q4YjZec+s87k21SVdElmXx8MMP8/jjj1NQUMBDDz3EgQceuEkJ5ObmMmHChIxGMtqbUXsWbXaMD57btIv+DX347PDNjvHUP4at94s2vVGRRE47amdOO2qz0yE3x8umlWfrGIZBYf7mX2wHfAaBTSwgmiil8HkVPu/mzTM1DUUwINOYhBBCiGY0rTMk0Q6HOTIuJObMmRMfhTjqqKO44YYbyMtLPcdbCCGEEEII0X6kXUhYlsVDDz3EE088QWFhIf/4xz8y6mIthBBCCCHE1k4GJNKXViExe/Zsxo0bx/z58znmmGP405/+RG7u5k4WERUVa7j0ltWELRXbmcjhzKOLOOGw1Ds2rW/M2TPweQPxtdYaCNfVM/m/mU13OvLiOet2bUKhcXgzxbavGzrozK/IKygCQwEF4CynpqqSDzKcMvXHuxdSXm1iekwcx0HZFk/+tVdGMWzb5qsfQnw9ux4rqikp9nLoiDyK8jNbUFxXb/Hh9DqWrbIwTRi4c5C9BgUwzU1bbyGEEEII0R6kVUicdNJJOI5Dbm4uy5Yt4/LLL2/xuUopnn766S2WYHt1+z9/5atZFh6vD7+5rgnbC2/X8p83K5n0cHprCw6/4Ee8prvtqsO6jZt8WVkccvZM3nt6SMoYo0/9kmBWNpbtxMrlpi1gFUdeNIc3Hksvl6Mv+4m8wiJAxZvQKaXIKyzi6Mt+5vVH0lswfc6NS/AHAnj9oNCYponyeTh/wjKOGwFHjO6WMkZ5ZYR7/r2SRcsi2M66zwA+mFbNcQcVceSogrRy+eybOl5+v5q6Bu1+jzTMmN3I2595uOzkIrp1ls6cQgghRHujtawhTEdaqz6HDh3KsGHD2GWXXdy9/ZPcHMdp7Zy3eT//soavZ1l4fZ74OdOORjsawzTRppdzrvspZZzDLpgV3yIVBYYR2wJWAdq9AD/wlNQ9QAJZ2VhWbBtapTEMt8md1hAJRznq4rKUMQ4+7zs8Xk98J1tlqHiHa63B9JgcetH3KeOcdcNifH5v7JDWNaXTWmN6TCZ9mnpg0LZt7n5yJb8sDuPxKPJyDAryPORmGzSEbF56Zw1Tv6tNGafslxD/eaeaugaH7KCiINckL8fA61UsWx3lwf+sIRyxU8YRQgghhGiP0hqRePbZZ1s7j+3K+HtXYXoDOPbGRZd2HEzDZG1tGheoTTWEWrd7T/zCO9bQzZ+TfGvQsRf9GM/DWK/rsqFixYSjiUaijDzxS6a8vFeLcXJz89BO7MJ//SK+qbGd1mQHk3eSXrRoGYGAF+IFxAbHpMHr9XD5Xxfx8A07tBjnqx9CLF4eIeA3CAbWHZNpGuRmQ3Wtw9ufVLHvbsmn5707tZaGRof8HLcXBrjFWsAHCoPySotPZtRz8D6y2YAQQgghtj+yeXwbsJ3kc+u11phek4qKNS0+Z/Qp03EvuFveAnTDhteJKBXrZt3CEzXuiEluUZoXy4nixGuC5KMJf3k86jafazFrjdZQH07+tv36xzpsW+NPMOvIMNwRhcXLwtTVJS/Wfl0axWOqeBGxPr9P4Tjw47xw0hhCCCGE2PZoveVv7ZEUEm0gna3/lVKsqW75ccOfvBhJv79AinJDkfzxNMOkw9KxUqOFOEqptH4SI5GmqV6J396mUjga6sMtFxK2bWM50EKIWEIQtWQqnxBCCCG2T1JItAF3Z6TkF8SO7bBL7w4txwjbuHOPWn4NlfJV3BGJpGJTpywnmuJpuuX90mL3p6oB+nQ33CIr2fOUwrGTB+rc0d2VyU4wdQwgYjlkB00Kc1suxkzTJD/HIGolfi3HcY+3uDCzHaCEEEIIsfXTrXBrj6SQaAMDd/G66wkSTJlpmtljW8mn3Uz+757rLWZu/vbUOnZRrxR21Eoap2ZNtTt1R4Ojm194N/3bMA3eeXxw0jiOdpKOgiil0Dr5p/c3XtoTK2on/InTWsd3grrijOSjMUcckEdW0KSuwdlo8X8k4qA17D4gG58veZxhA4IYChrDG5wXR1MXcvD7DUbtmZU0hhBCCCFEeyWFRBv46x96Y0UiACjTiC9QVkqhlMKKWoy/qFPKOOG6+th0H3dR9Lrds3DjGSrl9q9TXt4Lj88Tj+M4TuymQSsMw8AwU89ZCldXoZV7oa+ddaMTTRf/Wmkaq6tSxinKiRKfwaR1bNF4bFG5oWhsaGSP/sm3fy3K93HMmEK8HoOaWof6BptQo0N1rUVDo0OPLn5OH9vyaE+TIw/IZaduPsIRqKmzCYUd6kMONXUOhlKM2iOLnboFUsYRQgghxDZGqy1/a4ekkGgjr/+zPzoSxoq4U4YUCsdxiIQjXH9+MXsPTX2hO/m/exJuDGGYRrOFF0oplGHw9hPpNZN749H+eP1eTI8ZK2oUSoHP50F5VVpN6d55ZjihtZXu66/3rlKGQitNaG0l7zyTuindXdf2oigrjGXbsWNyc3Ech3BDI8/c3iutYzrmwEIuPrkTvXcIYCh3FCEvx+TAvfK55fJu5OSkbibn95lce24xo/fMoiDXxHHclHqUeDn18HxOPrQwrVyEEEIIIdqjtLZ/Fa1j0iNuo7fnXl/OitURjhpdkHRdRCKTX3Avzg88ZTqegB9bW3z49LCMc3njUTeXg06fgTfbT0NVPe++1PJ2r4k0FQqHnfUVtsfr9pIIR3g3w67Wf7va3dp1yrRlvDU1Sv/eHs49tntGMQD2H5bL/sNyqa6zCIUcivLNlNOZNuT3mZwxtohTD7OpWGvj9aqMO2MLIYQQYtvSXtc0bGlSSGwFzji662bHmPzfPbdAJvDB85kXIRt655nhNDQ0UFZWRr9+6Y2KJDJy726M3Huz0yE/x0N+8hYWKZmmSefizIoQIYQQQmyb2ut2rVuaTG0SQgghhBBCZEwKCSGEEEIIIUTGZGrTJlpVEWb6zFqqaixyskyGD86jexd/RjEOOm0qmFnuWgIUaIdwpJEp/81sPs+oU77Ct14bZ+1oGusb+PTVfTOKc8g5MzHWWylt2RYfPDM0oxgjT5xGMDcbZRiAH+3MJ1Rbz5SXMzumK2+dx6+LG92dnxRkBUxefrB/RjEcx6FsfohZP9URsRw6d/Cx77B8crIze9tHLc3iFRHWVlsYhqJrJy+dO3gyaPonhBBCCNH+SCGRIcdx+L/31/D+Z5XU1rk7LmkN70ypYN89Cjjj6M54PKkHekaf+hVeb7a74xLQ1EAiEMji4LO+4/1ndksrn4PP+s4tItaby6eUIpibzYGnfsXk/6Re6DzqxC/w5WSjlOGG0W4XOo/p4bBzf+Cdfw9KL5ezvyM7P7f5DlKmSXZ+Lgef+x3v/zu9Yxp74Syi4WhsC1r3wKIhxWHnfc8VZ3Tg8NGpF15X10Z59IVlzJlbRzji9oFQSvHm5ApOOboz++5ekFYuK8qjfPxlDSsrLBytcTQEfAa9e/oYtWceWQEZ1BNCCCHaG1kjkR65CsrQB59X8foH5YTDNiUd/XQrCdC1sx+t4cPPKnn57dUpYxx46lS8Ph+GaazX+8Fxu1Ert3fDQWd8kzLOwWd+F2v0Fussrdw/m7pMe3w+Rhw3NWUcX062OyISaz+tYo0cmvrCHXruD6mP6fSv8Hq9zYqIOKXwml7GnJn6mMZe8CPhUATHcRvcmR4zNroBVsTiwefWpIzhOA6PPr+Mb2fV4PcbdO3sfp86FvmorIrw9MvL+XFuXco4VTUW735WzfLyKB07mPTo4qNnFy852Qaz5zUyeVoNtiO/aYQQQgixfZJCIgMRy2Hy1EocR9Oxgw8z1qjNMBRFBV68HsXUGdVU1ybvJm16szAMY6OO1ECzYiKVpiZyoOPTbJqa2jU1cgtkJ++8fNBZ32LEigiFah4Hd5wENAcc90XSOP5AMHERsS5ZfD5fy48DS5YsxbIs0O4uSYax7vwappulY9mcN/6npHHK5oeYPbeO/DwPudnrpiB5vYqSTj5q6iw++KwyaQyAnxY0Ul5p0a2zF5/XiB2GIjto0KmDh18Wh1m+KpoyjhBCCCG2LboVbu2RFBIZmL8gxOqKCPm5iWeEFeR7qaqx+OGn5J92K2XQdImeiAaUYbhrKFow8oSp8RGIlubqK9yGcMl4TLOpFkmcS6xNdiAveUFCvKhJ9pTkuVx9ZzW2Zbecs1I4jmZ1RfJC7fuyWsIRh5ysjbdrVUqRFTQpm19HQ6OdNM7chWGygka8oFlfMGAQiWqWrookjSGEEEII0V5JIZGBcFhjO7rFNRCmCY6GSDT5FbVKVZtqd3Qg2awZ5fEmDZH2QuAt9DwV/79NZzdd17cQxzDWjcAkE4nq+MhMIh7TLUgisbUTiWitiUY1ZpLWEUopLKu9fsYghBBCbMdkSCItUkhkoEtnL0G/SUND4k/EGxoc/D5F107Jd29q+fLV5RYRDpP/0/KuS3YkmvTCPdG0qU16nnJfxokm//Q+nZdL9Zxddw64xUILFZSj3XUgiUYI1tep2IvC3W0pkYZGm4I8b8IRiyZKKTp18NAQaiEXx12Lkp8rTeqEEEIIsX2SQiIDJR399C/NobbBJrrBqINla6pqovTqHmSXnQJJ49hRK74WIiFFyqvupq1dFWqjYqBpOhIKrEjyqTeh6nqayuTEcdw/P3gu+Taw2klVHqV+zl+u6o3hMdFauzs2rcdxNNrWmKbJn68sSBpnv2EFFBV6qaiMbHRMoZCNY2v2HlqQcnetvjsFMAyoa2heRGmtKa+0KMzzsGP3zLb8FUIIIcTWTevWu7U3Ukhk6JQjO9KzS4CV5WHK10SoqbWoWBthxaownYr9nHZ055QLpSe/MCx+Ub1+MdG02NmxHSKNDSlzCdeHYvWCWm/3p6ZF0+76iVTbv37y6j7umgyl1u36FNuxqWk6k+0kH40AaGyoT1ooaMehsaE+ZZydd8zC9HjQjsa2bRxH49gO2nEwTAN/wMOeA5Jv/5qX4+GksSVkBUyWrQyztjpKTZ3FynL37wP65nLYqA4pc9mph58hfbOornVYvipKTZ1NVY3NkpVRPKZixLAccrNlREIIIYRob2RmU3qkkMhQSUc/11y0A4eNKiY3x4PtaIJ+k1H7FHH1hT3YuVeKRckx7z2zm3uhbDvuhX+sGHAcm0hjPR+/lLqZ3JRX9iYcihUTSsXjAGhH8/7T6fVteO/fg3EcB3cHWRWfMqUA27LTakr38Yt7E6qrQ9tO85JbaxzHIVRXx8cvpm5K98CNO9O/Xw7+oA/DMAGNMhQen5fcPD+vP7prWsc0YngBV5zbgz0GF2AYCtvWdC72c/zhJVx1fk+yAqkLANNQjNgjh0P3z6NHF198Dceg0iBHH1jALjsmH3kSQgghhGjPpCHdJujUwctZx5VwythO1NbbZGeZBPyZ12RNTedGnvIlhjJQRJOui0hkykvuxfmI46biDfhwHM3H/03dhG5D7z09BIBRJ3+Jx+cj2tjIlJf3yShGU6Ew6uRpGB7T3WUpYvHxS5l1tb53XB8APp+2lJc+DDGor58LTuyZUQyAQX1zGdQ3l/oGi3BEk5djptUscH2moejfO0i/nQI0RjSGAr9P6m8hhBCiXWuvQwhbmBQSm8HnM+iwBS4qp/x3r82O0bRmYnN9/OLm5/Lxi3vT0NBAWVkZ/foN3uQ4++3dnf0yq0ESys7ykKKdRkpKKYL+zdyWSgghhBCiHZFCQgghhBBCiPW0xoBEe/w4UuZoCCGEEEIIITImIxKbaNbcWl5/r4K11RY52SZjDyxmj0F5GcW4886v+fBHD6bpAe32JbDCET78zx4ZxRl1ynR8fn98ByjbtgnXNfDpa/tlFOew837AMI34ouuoFeG9p9JbsN3knN/PYK2VE2uWkQ3GYgo9dTx1/7CM4vzrlRW89XE1lu1gGIpddgxyxx97ZRTDtm2++qGBr2fVE7E0JcVeDj8gn6J8b0ZxhBBCCLF9Sbcf1/ZOCokMWZbFrQ8u5tvZddiOjo99ffNjHX128DPxut4EAqlP65jTZuD1+/F4mrZIcndc8gYCHHz2TN6PLX5O5aCzviWQFYSm/ZoUGKaBpyCPA0/5msn/TV2UHHDyF2Rluxf/znpbuBrKZOwFs3nziQFp5XL0pWXY0QDRaGOz+8u9AY6+tIzX/9EvrTjH/e4nQg0RtKOJ9aDj+9kRxl44mzv+2J0BpfkpY5RXRrjrXytYvDyMZa/rvP3hF9Ucf0ghR44qSisXIYQQQgiRmExtytDfn1zG17NqcRyNz2MQDBj4fQZaw7yFjdx834KUMX43/mu8AV98BKGp5nX7OYBpmhx0+jcp4xx0xjd4PG7RohTNJt8ppfAF/Yw49vOUcZqKiHVfvC4h27I54sIfU8Y47PzvsCIW0YiFYSg8HhOPx8QwFFbUIhq2OPTC71PGOfn3P9NQF0bbbgVhmkb8XWpFLa6/a2nKGLZtc9cTK/h1SRiPR5Gfa1CQ5yEny6A+ZPPftyv5/NualHGEEEIIIbYWVVVV3HTTTYwYMYKhQ4dy6qmnMmPGjDbNSQqJDNQ1Wkz7zr0ADfgNzFgrAsOAQGxHn7JfQixZ0dhSCADmLfe6fSNi/1br/RnrSY3pTT2q4fF6403sNqJAGQp/TvLtig455zuaJaI2/rtjORxwwhdJ4/j8QWzLxvAYzRryGYaBYRo4tk3Am7wLdHV1NbV1ETTuqIqh3DiGWhfTtmzue2ZZ0jhf/dDA4hVhAn5F0G/G43hMg7wcg3DY5u1PqpLGEEIIIcT2a2vsan311Vfz3Xffce+99zJp0iT69evH+eefz6+//rr5wTeRFBIZmPJFFY1hB4+ReN2912Ng2Zp3Pl6TNI5huqc9UZT4dbxhcOedX7cY44ATPm9+4d8C00zeeM3j8aXemkBDdn5O0qfYlg0ojARFjaHcosmKWklj3PHEWrdBX0vHpNw5i599VZs0zlc/1GPZ4PclysXA61EsXhamti51x24hhBBCiLa2aNEipk6dyoQJExg2bBg77rgjN954I506deKNN95os7xkjUQG6hvcC0/VQiHRdAEcCjsJH49rGnZIQgGL17b8uOHxJh6JWP9l0qh+096KLMVr4SRvAK/SyKeuIfkTDGXgaCdlnLDloGLPTxjHUDgaGhptcnNSd7gWQgghxPZla1trXVhYyGOPPcbAgQPj9ynlzkqpqWm76doyIpGB/n2yMJTCthK/uyxbo4CddwymFa+l92jTJflDf2t5obQdjqa1o0Cq5+h0dkpWEI1Gkj/FNNCAk+D1HK3j05WS2W94tluktZBS00LwnKzkcUo6eEGBbScu6KKWJjtoUpgnRYQQQgghtn55eXkccMAB+Hy++H3vvfceixYtYv/992+zvGREIgMD++ZSUuxl+eoItq1Yf9aQbYNta/JzTQ7eryBpnGgkitfvvhESDU4owNHJRzU+fW0/Djl7JoZpJhwsaCogrHA0aZy6qhqycnPWVS/rx1pv7cQHT++eNI5pGiil0I4Gs3lC2tEolLtwOomTDunEM6+UY9kWjnaajSg42kHHXue2qzonjXPEAflM/rKG2gaHvJzmccJRB+3A0AHZ+HxSSAghhBBiY601ILFixQr+8Ic/tPj45MmT04rz7bffMn78eA4++GBGjhy5ZZLbBDIikaHfn9udYMAgEnVoDDtEIprGsCYSdfB5DS44pUt8J6WWfPj87mjtbLTEoelN62iNYScfAQAIhxrc/hMbvNub/m3bdsrtXz95ZR+UuV4ier0bgAGOk3otwX696/AFvaA1lmVj2w627WBZNlprfEEv+/WuSxnn2EOKMDxuLwvHdnC0g+O4F/+GoejWJUiPrsm3f+1Q6OPoAwvxeRXVtQ51IZtQo011nUUo5NCji48zjixOmYsQQgghxNbmww8/5LzzzmPIkCHcfffdbZqLjEhkaGDfXP56zY488d8VzF/UiO1oTBN6dPFz1nFd2HNI6h4HAO/+ezAHnz0T0zDWrXXQ4KAx7DBvP5O6/8OUl/Zh5Elfun0kjPV2b9Iay7L44NmhaeXy9hODOPy8H9BN20bFRiYM0yBqRXk/jaZ0114zDO6Zwee/5mJFolhRt/jw+jx4/B7227HOfU4K55/QBZ+peOX9SiJhyx3NMNzRjH59crj7+l5pHdNxBxVRXGjy9ifVLFkRxtGQl+Nh9wHZnHFksayNEEIIIUTLWmlIokuXLmmPOiTy3HPPcdttt3HooYdyxx13NJvq1BakkNgE/frkcM8NO1NXZ7GyIkJxkY+CvMxPZVPTuTGnfg1K0XcHnXRdRCJTXtoLgBHHfo7X78fB4eP/7plxLm8/OSiWy1cYfi/h2hCfvLJPRjGuvWYY1wJ33zODyXNMHGB4zyg33ZhZV+szjy3hzGNLWLi4mslfNdC/d4C9dyvMKAbAiGH5jBiWT3VtlIaQpkOBKdOZhBBCCLFNeuGFF7j11ls588wz+fOf/5xy053fghQSmyEnx0OfnM0/hR/+J7PiIZFPX9tvs2MAfPif4Zsd49prhnFZQwNlZWX069d/k+P06pnP+T3TG+FJJj/XS37uZocRQgghxHZAk3qzmk2Nu6kWLFjA7bffzkEHHcTFF19MRUVF/LFAIEBubttc6EghIYQQQgghxHq2st1fee+994hGo3zwwQd88MEHzR479thjmThxYpvkJYWEEEIIIYQQW7FLLrmESy65pK3T2EibFxJVVVXce++9TJkyhbq6OnbZZReuueYahg3LbF79b+2TL9fw/P+tpLbOJhgwOO6wjow9MPm2pBsac8pUPIHsWLM3hdKahrr6jNcmjDrpSzzrLbbR2iHS0JjxdKcDz5wBsR4ZSim01kzOcNrV2Vd+wcrqLBQKlAet51KS38DTD2R2TOPumMv3P4ViQ4sGeTkGLz20a0Yx2iPH0awoj7JoWSOLl3rIyo9SuqPGNNt+nqQQQgjRbmxtQxJbqTbf/vXqq6/mu+++495772XSpEn069eP888/n19//bWtU0soEolw3rU/cttDi1i4NMyaapulKyM88O9lnHTpTOrqUm/bCjD69K/xBHIxDBPDMDCUgTIMsvJyOPSc79POZ8zp3+Dx+VCoeIdDQ5n4s7MYddL0tGKMOPZzDjzlK4g67t6xWqMd9+9jTpuRdi4HnfEtq6qzMQwDFdtFyjAMVlVnc9CZ36Yd57Bzv+ebWbXu7k8RCysSYe3aMIecNZOPpq5MO057U1tv88bHVbz8XiVTvm7g+3le3phSy8vvVVJembxfiBBCCCHEltamhcSiRYuYOnUqEyZMYNiwYey4447ceOONdOrUiTfeeKMtU2vRNX/9haUr3Ys2BRjoeAuGqlqHi/9UljLGqJOm4vP5MUz3U3/taDTa/fRdKZRhcPDZ36WMc+BpMzCUQqHiHaq1dmMppfD4vIw49vOUcZqa4yWiHYcxp3+TMsaY07/E9Jgow3Bz0E01SdP2rSajT0td2Bx2zg9YkSg47rkwTLcoQYFjW9zx6PZZSEQtzftTqyn7NURejkmPEg+dCh2KCkwWr4jw7mfV1DWk7vchhBBCiBTi1zBb9tYeRznatJAoLCzkscceY+DAgfH7mj5Vr6mpacPMEltbG2HuggYADEW8o7RS7r8ByittfpxbmzSOPysHw4h1gVYbBHJ0LF7qb42hDFAqXji4IVR8WpJSCl9WIGmMA0/9OuXraNtOWZB4PIHY6zo0b7O3Xi5ef9IYK1euxHZst42FaWx0TKDQjs1lN/+UMuf2ZtHyMAuWRejS0UtWYN17w+9VdOvsZXl5lLkLG9swQyGEEEJsb9p0jUReXh4HHHBAs/vee+89Fi1axJ/+9KdNiqm1pqGhIeXzQqFQsz/T8fwrK9HaIHlJqXhu0lJu+v0OSZ4S62mdaFq7UmgNyjA48JSpvPFk4mZwh531Lb5AVvwiveWXMpKej6aiIxVfTiBpHI1CaWjhoOLPSRbj97eVo2275eNR7vd3weJwWt/j9mT+wnqiUQtDQTRqY1kWAJZl4QFMw6bsl1r69pK1ElvCpvx+EOmT89u65Py2Ljm/my/VtcvWoB0OHrSKNl9svb5vv/2W8ePHc/DBBzNy5MhNihGNRikrSz29qMnChQvTfu7S5TbgBTRaJ/oBcN92ayprk+ag8ManIiWmUSiiEd1iHMPwNJvStNFrKAXanXaVyfloOWcjRRyPWy8kOaxUuTQ2Jm8Wp5TCiRU9W+KYtiWLl3qpq/NQYTrN7q+qqgKgrk6xwtaUlS1rg+zar0x+P4jMyfltXXJ+W5ec383T1h2ZxZax1RQSH374Iddeey1Dhw7l7rvv3uQ4Xq+XPn36pHxeKBRi4cKF9OrVi2AwmFbskbVVfFu2ElAkKqSbioshA4vp16+kxTiaeRixKT+JAincC+Z3nxvaYgw7+q27yLqFil5rHS80+vXr12IcZfzkLqxOwYna9Os3IMkz5uLOlNtwahO41YWBxkmay/DBS/jkyzp3HmHC8+sWRsogaZz2KKQbqaipp0MHD0opLMuiqqqKgoICPB4PjbZF3z5++vXLbutU24VN+f0g0ifnt3XJ+W1dcn433/z589s6hdRkSCItW0Uh8dxzz3Hbbbdx6KGHcscdd2xWlaqUIisrK+3nB4PBtJ9/6MgsHnlmJY1R90LfWO9it2l2kGnAhad0T3oM0WgUn8+/blqR2iCQcreCTZbXp6/tx0FnfOsuCKL5EOH6RYQViSaNE65vSLrYusnk/ybfBlY3rSJSqoUfPncxebJc/vy7Xfj0q5k4lhUL1fyYtKMxTJO/Xds5o+9xe9B/Zx+z5kWproeOhet+bD0eD6GwQTDgYeAueWRlJV+HIjKTye8HkTk5v61Lzm/rkvO76bb2aU1Aipkjokmbb//6wgsvcOutt3L66adz7733bvVDXb8/rycq9qm7o4nfdGxez6lHdUp5DJOfGwaO475Fjdh8oNin7SiF4zjU19alzCXa2OgWEU1rELSOf2ofu4OPX9ozaYxPX9sP5U1RT6bxAz92WAjHcdwRAwWxBvOxteTuMY0dlno+6W4DsjA8pruTle2s29XK0RiGIhAwGJxktKe9Ksr3sN/uuWitWbIyQnWdTX2jYnm5RV2Dw7Bds+nZZev+2RFCCCFE+9KmhcSCBQu4/fbbOeigg7j44oupqKigvLyc8vJyamuT73zUVg7cr5gbr9iRDgXN5/PnZsHlZ3XnrBO6pxXnnacGox0Hbcfm8TSNTjgODbV1fDpp35QxpryyD1Y4Et86VtG0FSw42uaD53dPK5cPnx0K3gRvhdii8HSa0l155T4csXsDjtY4zrpcHMftSXHE7g1ceWXqpnQTry9l+JAcvD4vyjDcekSB6TXJz/Pzv8cHp3VM7dHA0iyOHl1I/95B0ArHgV5dvRxxQD77DMnZJj7hEUIIIbYFrbL9azvUplOb3nvvPaLRKB988AEffPBBs8eOPfZYJk6c2EaZJbff8CL2G15EZWWEXxbV06NbFiWdMp9S8u5T7kXxASdOw/CaYEX5+KXUBcT6Pn55L8BtKmd63YXgH7+0V8a5TH7W7SR+wAlT8Xh8RMPhjDtjX3nlPlwJPPDAF/zvSwPHgYOHOIwbl1lX679evTMAX89cyaT3ahjSN5tTju6WUYz2aoeufnp28VFd46WsbAWDBuaQnS1zdIUQQgjx22vTQuKSSy7hkksuacsUNktRkY+ios2fTvLJy3tvdoxML/pb8skrmRUyiVx55T5ccEEDZWVlm7Uoeo8hJewxZPubxpSK25ND4fNuG/NMhRBCiG1OOx1B2NLafI2EEEIIIYQQYtuzVezaJIQQQgghxNaiva5p2NKkkNhEP/5cy6vvlbO22iIny+CoMR3ZY3B+RjEOOH4q/qxsDHPdrkuN9Q188kpmawpGnjANj99P095RAI11DXz2+v4ZxTn4rO8wTHeQSqGIhMNMfiH1Quv1HXHedAxvLqZpANnYzkKcSC1vPZl896gN/ePZpbw7tTb2g6zp1d3DAzeWZhRDCCGEEC3TWrN6jcWy1RFsW1OY52GHrj68iTZgESIBKSQyZFkWt9y/kO/m1GHb65o5fzu7jj47BLjj+j4EAqlP66hTphPMy8U0DNxdmzRoyM7L5ZAzv+O9Z3dLK5+DTp+BYZrY0Uh8hyNQ+LICjDxxGlPSWH8x4ripBHOzQGvsqBUvRkzTw2Hn/sA7/x6UVi6HnfcDgayCZmW8xzQgq4DDz/+Bt/+VXpyjLylzD0UZ8Z1nFy13OPKiOdx6VVeG9CtIK44QQgghEguFHaZMr2HuwkYaww4oMJSipNjLqD3z6F6yfW8pLn0k0iMlZ4bu/ddSvvmxDscBn1cR8Bv4ve6Wq/MWNHLTvb+mjHHA8VMJBIOYphnr/eC4vRK021jO9Ho46IxvUsYZc/o32JYdawanUGasKAEc28b0eNj/6M9SxgnmZqFtt7u1UsptHa3chna2ZXHYed+nzuXMbwhm+d1GciiUit1Q4GgCQT+HnPVtyjjHXV4Gyog362u6ocEwTW78+/KUMYQQQgjRMsfRfPRlDd//1EB20KBnFx87dPFT0sHLyooI73xWxZoqq63TbDOa1tn+tT2WJlJIZKCu0eLLb2sACPgMzFhra8NQBLwGKCj7NcSSZY1J4wSyszAMA+04Gz2mtUYZCtNjJvjKDZ7ruAUIgIrlogwV+7vCsR0COcm7bh542tdoh3jPCOLjEbEiQIMddRhx7NSkcbJzsmJNufW6EMTCGe5xBVJsU1pVVUXUArcL9gbHCm7TPsNg4j8WJo0jhBBCiJatrIgyb2GIjkUecrLM+A6AXq+iW2cfa6os5sxvaOMsxbZACokMTJlaSWPEiRcQG/J6FLalefuTiqRxlGE2v9jegNZgGCYHHN/yxfuIYz9zCxG1rohIFChV9evz+3EriZaSBdAE87KTxjHNprfSxrk0FSTuNK6WTXi4wi2wWkjane6kmPaD/HITQgghNtXSlREaI5qswMb/XTaUIidoMHdhI47THj9DT5NuhVs7JIVEBupCTdN/Ej/edHcolOTCnNin9qneUCnaAximJ+mOAvHiYku8ceNrLzaDUiljhBrsNPOR3glCCCHEprJs7f5nuYULGo+psGzN9lxHiPRIIZGB/n2yUArsFn6yLBswYOcdk0/h0VqnvKjWjuaTSS03h7OjVssjEbGvJ7bcIenrpFMlKEU4HEn6FCc2TUsnqG7c+3T8OS0ZsWeuO7UreTYEA1JICCGEEJsqP9cDKGw78fVMfcihuNCLuR1fJcqARHq247dI5gb1zaNzBy+Os3ExYTsa29HkZZscMqIwaZxwOBJfWJ2Igvji55Z89vr+8XUUeoNc4usmlEE0RQHQUFXnjhboRG9zHS96pvxneNI4Uatpt6cExxRbf2FZyUccTj+qa2y6VgvnRbkFy8Rrpdu1EEIIsal26u6nQ77JqjXRjT4AbAjZaKBf72CL1ylCNJFCIkN/OL8HwYBBJKppjDjun1H3T59XccFJXfB4km//+vF/hmPHLqqVodZN+4ntdGTbDg119SlzCYdCGKYJ6PjCa+047qJkBYbXTLn966ev7euOWigjPnLgjlM07SJlYFupd24Y3LEB23GPab0wsb+7oxGDOqY+psP3z8NxnNiuT+597qlRaA0FeYpe3QtSxhFCCCFEYsGAwcjheQT8BotXRFhbbVFTZ7N8dYQ11TaDSoPs0ivQ1mm2qfV3jtxSt/ZICokMDeqbx23X7kTf3ll4PO4WqabhVvfjL9uBMfsXpxXnvaeHYEWi8YICFFo72JZNQ00tn77a8rSmJp9O2g8rEsXj9aKMdYudDY+J6fHw4XO7p5nLbm4RY6zbPlbhbkNr2dG0mtLdftueDCiqxbbtplYW7tQqBbbtMKCohttvS92U7tIzu3PUyDy0Y9M0A0zHpkX1LDF49q6+aR2TEEIIIVrWZ4cAx4wpZLd+WSgDLEfTtbOPw/bPZ/Te+ZimjEaI1KQh3Sbo1yeHv99YSl2dxcqKMMWFPgryvRnHaWo6d8CJX6AME21ZSddFJPLJJLcL9v5Hf4bp84LWTH4psy7SAO8/M8TN5bgvMAMerMZoWsXM+poKhT/9eTpfLfZgAAM6Rfj7Q6mb4q3vwlO7ceGp3Zi/sIoPPquj/85ZHLBXUUYxhBBCCJFc104+unbyEYk62A74vQojyfrL7Ub7HDxoFVJIbIacHA99cjb/FH7y8j6bHeOz1/ff7BgAn7y6+bncftueNDQ0UFZWRr9+gzc5Tp9eBfTpVbDZ+QghhBCiZT6vTFDZUKvMRGqHNZq8c4QQQgghhBAZkxEJIYQQQggh4jSpW/puWtz2NiwhhcQmeuTpRbz5UQVRGzwGjBiez/jf9ckoxsgTpuLLzsJjemJbm2oa6uoynuo04tjPCeRmux2kAdu2aayr5/PXR2SWz6nTUbb7JleArR0+SbHr04b+9eJs/u8jFdu5KhfLWsgxozXnnzwgozhff1/Fky8tp6rGwu83OGxUB04+oktGMRzHoeyXED/8VEc0qulU7GW/3fPJyZa3vRBCCCHE5pIrqgzV1dVx4mU/E7HcvU014Njw4dS1TP7ia567tx8lJTkp44w66Uuy8vPcLVu1ju1QpMjOzeWQc2by3lND0srnoDO+IZiX4176x4pcj+EhOz+PESdM5dNXUi+YHnHcVIzYrk869v9N5cTok6bzUZqLtw8//3uCOdkEczzxetuLj7e/sJj0wSzefmJgWnEuv2EOcxeG3HMSC/TEf5bz0v9W8djf+tOhyJcyRnWtxWMvLGP23DrCESe2k5TirckVnHJkCfsOy08rFyGEEEJsh2SNRFpkjUSGTrlyLpGo26vBvdBV8QU5WivOvKYsZYyRJ0wlmJPdrJGcUireu8E0TMac8U3KOAeeNiPWRyJmvf4NylAEs7LZ7+hPU8ZZv4jQbjLxgsJxHEad/FXKGGf84TuCuTl4PB4cx8ZxnNjNxvR4yMrJ5sTLv0sZZ/ydc90iAjAMMIxYPwmtqa6zueTPc1LGcByHR59fxjezavD7Dbp29tOtS4COHXxUVkV5etJyfpybuqeFEEIIIYRomRQSGVi8oo5QY6zjtFJuMznWayqHxtGKNyevTBrHn5Mdb0yiYk3omv4ObhMUny/1drIej8f9+kQlbqyYCORkJ41xwInTALdw2CiXWEdqbduMOG5q0jh1kSCmacb6SKzLR6FwbBvDNIjqYNIYkUiE72bXggbTaJ6LYRooNFW1Np9Mr0wap+yXEHPm1ZGf5yEvxxPfys7nVZR09FFTa/HBZ8ljCCGEEGL7JQ3p0iOFRAYmPrQoPhKRiNbuG++pl5MXEp7YKEKi1vPr7lOMPKHli/f9jv20qVtbUub6IxaJHldG0iBNi41Mf/LCxvB4AN3iMSnA8CTP5Y3Ja7BtWhz6U4Y7+vPqO6uSxvmhzJ3OlJO18esZhiI7y6Rsfh0NjXaCrxZCCCGEEOmQQiIDdSE75ZQ5BUQtJ+lz0qlJU+0WYGAkHoloLSmSdgdkWs7HnQaW/O1WW5f8vLmjJBCJJk8mHHHjtNRUxzTche2RSPLXE0IIIcT2SbfCrT2SQiIDewzMR7FuAfBGYvf3KPEnDxRfU9Hy20qhmJJkobTjOKm3JtOpCxLS6mCpcKzkn947toNSiY9Ja+3uSmUnj7HH4Lz48xO+hqNRwA7dAknjdCr2oZQiaiWOE2p0KMjzJhyxEEIIIYSQSiI9Ukhk4Ipzd4gXC+svlG76t7szEEwct0PSOI31Dc3WQzSLozUKlbIA+Pz1EUkLER37X2NDQ9I4ViRKLO0WcnGjffJK8m1go+EIGh1fuL0+ZRhoNNFIJGmMAaW55OWY7sLzDc+v1qDdBdi/O6t70jj7DcunqMBLxZoIzgZxGkI2tqPZe2g+Ho+8/YUQQgghNpVcSWXomIM6uQutYzsJuRe4OjZKoRjSN5ucnOTbv3704p7NCoWNFuIoTUN1bcpcGmvrEhcTsWLHcZyU279++uq+KI/pHtN6uRAvIpLOWIr76+WKSGMktgjdcIdtYn9Xyn3sr5elDjTu0l6YJjiA7WgcR+PYjrsuRcFRYzqSk5N8+9e8HA8nje1EMGiyfGWYtVVRauosVpaHWVsdZUBpDoeN6pD6oIQQQgix3dG0zmLr9jgoIYVEhq44dwdOObIThmnQ1LiN2AZHI/cq4J6b+qcV550nB+Fop9niZBUrUOqra/lkUur+D5++tj+hWDHRrDBxNLZl88GzQ9PK5eP/Dkd5YjskxY/JLQK0Iq2mdEOGDGDChRaN9SEsy4rfb0ejhBsamXChxZAhqZvS7TG4gNv/2JuSDr51b06lyMkyOf/ELlx+Vs+0jmnE8EKuOLs7wwbnYxgKy9J07uDn+MM6c9UFPckKyLQmIYQQQojNIQ3pNsGFp/bkwlN7Mu+XOqZ/v5bB/fIZ2C8v4zhNTedGnjgtNp3HTrouIpFPX9sPgP2O/hTD6wHbid+XiY//4zadO+D4L8BQaMvm09cyy2XIkAH8758wc+Zs7nwyTGPY4dqzveyzz+CM4gzdtYDn7i9gbW2E+b820KWTj+5dsjKKATCoXy6D+uVS32ARjmjyckyZziSEEEKIlNrpbq1bnBQSm2Hn3jns3Dt1F+tUpqTxiX8qn78+YrNjAHwyaZ/NjjFkyACemNhAWVkZ/frtvMlxCnN97DE4dRfrVLKzPGRnXocIIYQQQogkpJAQQgghhBCiibtIonXitjMyz0MIIYQQQgiRMRmR2ETllRbfljVQXWuTFTQZ2j9A146ZTcOxbZvPvq5hxqxaoramZ4mfsaOKyM/PLM7qijAvv7+W1ZUWHlMxrH+Qg/bNw+ORb68QQgghRKba4eBBq5ArzQw5jsPbn9Xx0ZfV1NbZTQ0Y+PALk70G53DCIQV4zNQDPUtXNnL7I4tZtjKEbbu9I6YpeHtKJWcd15lDRqS3Penzb5Yz5ZswGCYo99u5+JNG3plax7XndqRnl+DmHK4QQgghxHZHFlunR6Y2ZWjK1/W8PaWScMShpKOXbp19dOnkw9Gaj6fX8L+Pq1PGiERsbntoMYuXNuD3GhTkeSgs8JKdZVJTF+FfL63gu9k1KeN8MHUtH38TcYsIx8JwLJQdRWuHkOPj7n+XN9uKVQghhBBCiC1FCokMRC2HT2bUYmvoWOTFNN3eC4ahKMr34vEovpxZT229nTTOB19UsXxViKwsD4GAGe8G7fUa5Od6aGiw+L/3y1Pm8+7UWpRpohwLI9aPQimFqQDHImR5ePfT1AWJEEIIIYRYT6w57xa9tUNSSGRgwdIo5WuiFOQmnhFWkOehqtZizi+NSeN8O6sW24GAf+PTbxgGXq/Bz7+GsO2WC5K6eovqRhPtNG9q10RpDYbBjDkNKY5KCCGEEEKIzMkaiQyEIw6Oo+MjERsyDdAOhKPJq85o1EElWcajFFi2xrbBbKEBc0OoqchIHEcp9xWidvusgIUQQgghWks7HUDY4mREIgOdi70E/MZ6F/HNNTQ6+H2KkmJv0jidin2AwnGchI9blqYgz4PP10IVARQVmJg4KJX4W+jEfgI6FkitKIQQQgghtjwpJDLQqchDv95B6uptohuMOli2pqrGYoduAfr0SF5IHHlgBwIBk9o6e6NiorHRLVL2GVqQNIbH46FPdxNQbDjooLUGwwO2xXEHJ48jhBBCCCGa063wvy3p0Ucf5cwzz9yiMTeFFBIZOnZMId27+lm1JkJ5ZZSaOos1a6OsXB2hUwcfxx9UEF883ZIdugU58sBiDENRXWNRV28RCllU1URpDDv02TGbU4/slDKXi07oSNCMoAwPNia2BlsrtOlFa82e/b2y/asQQgghRDvy/PPPc99997V1GoCskchYpyIPvzutEx99Wcu3c+oJNToE/CZ7DM7hwD1z6dYpvWZyZx1XQscOXt77pJIlKxqxHU1hgZe9h+Rz9nElBIMtT2tqkp/nZcLlnXni5TXMX27jKBPQZHsijNojh6MPLNrMoxVCCCGE2A5thWskVq1axc0338z06dPp1atXW6cDSCGxSYoLPJx0aCHHHJhPfcghK2Dg92U+uHPYAR047IAOVFZHCDdqOhQmXxeRSFG+n+su6Epj2GJlRYQsv0mnYn/GuQghhBBCiK3X7Nmz8Xq9/O9//+Phhx9m2bJlbZ2SFBKbw+c18Hk3f3ZYUb4P8jcvRsDvoVc3+XYKIYQQQmwu3UrbNq1YsYI//OEPLT4+efLkFh8bPXo0o0ePboWsNp1ceQohhBBCCLEe2f41PVJICCGEEEII8Rvo0qVL0lGHbc1WVUg8+uijfP755zz77LNtnUpKI0+chulZd/psy2LKy3tnFGO/Iz/Bn5OFYRqAQmtNY10dn79+QEZx9j/6MzxBP01t8rSjiYYa+fyNzOIccNKXmOvtOGVbFp+8sk9GMV54fS7P/F8IQxmgfDjOPM46JshpR5dmFOfb2XU890YFNXU2fq/BmL3zOPbgDhnF0FqzuiLC4uWN2LYmP89D755Z+DZhPYsQQgghtiMyJJGWraaQaNrKatiwYW2dSlLXXfcp3ywJYpgmjqNRuAv7DcNk1ClfURxs5OV/j0gZZ//jphIsyN1oq9is/DwOPO1rJr+wR1r5jDppOt5ggPW3F1CGwpcdZP9jPuOz/9s/dS7HfIbH78Pr8YCK/ewo8Cgvo0/5io/+OzytXA4/byaG6cEf8KNiVY3W8MKbEZ59fSbvPDkkrTjXTFzEwuVR94g0oGyefaOS1yZXct+4HSgqTL0zVmPYZvLUSmb/XEdDo43C7fbduaOPg0cUs2MP2RZXCCGEEGJztPlHs6tWreKSSy7h7rvv3mq2skrmmyVBHEevK1RjV8waUBrWhAIpY+x35CcEs4NuEaFpdlNKYXo8jDxleso4o06avq4QiX1tPBbgDfjZ78hPUsbx+H0Ypum2S3FiX+xolFIYhsGok79KGePcP87CMD2YXi+242BbtntzHEyvF9Pj5dTfz0wZZ8KDS1iwLIpGo7TGMNw/AepCiqvvXJwyhtaaDz+v5KvvqgkGDHp1D9CrR5CuJT7KKyL87/3VrCwPp4wjhBBCiO2PbsVbe9PmhcT6W1kNHjy4rdNJaszJn8ZX8Sul3Av39f7e9AbZ79jPksbx52ahmoqIDcUKAq8n9WCR+5oatEYZsVwM5f5dA6jYaEXLDjjhi/VGRVS8MCJ2PNr9KyNSHNOqNdotIiwrfuEPoLTGtixMj4fq2uRvt0gkwuz5jQAYClTs6coAwwC0prYepn5TnTTO6ooIc+bWUVzkJS/XE/8+eT0G3bv6qayO8v2cmqQxhBBCCCFEcm0+tWlLb2WltaahoSHl80KhULM/02HjT1lOag2+QCBpDoaRoleEBmUY7HfkJ7z/YuIpTgef/DX+7Cz3k3tDJXwOsceS5mJ63EpB63VFRLMQGsMwMLze5OfVcGMkyqRpzCZVLm9/Uo3tNE0WS0wD/zd5Dbv187b4nLm/1lFbF6Ew30c0Gt3o8eygZvbPNey1WxZeT0vnbuu2Ke9fkT45v61Lzm/rkvPbuuT8bj6tdfxDvq2S1q2z/WvT3PEtYOLEiVskzuZq80JiS4tGo5SVlaX9/IULF6b9XKVUWmtvFCTNIZ0fnqbntBRHGYY7GtHS1xsq9kOgkp8Pta6OSJ5QimMiRRO82EhLshgLF3uALHckJEE+TTO3autCyeMs1NTWwpqKxI/XN4CtYc7stfh8W/EvsjRk8v4VmZPz27rk/LYuOb+tS87v5vH5Uq93FFu/dldIeL1e+vTpk/J5oVCIhQsX0qtXL4LB9BbeOvb3GIaZdFBCAY7j0K/fgBafo3VZ8npUgXacFkcjALTzNcmqWu3o2MOafv36JcllVvJRFuUWJNpyksZxnPlu3gmyis2ywraTx/AEQ0ybvdYd2UhwaI4DKE3vnjn067djyyl7G5i3dA0FhT48CUYcIqsi7NDZx8CBHTFaHM3Zum3K+1ekT85v65Lz27rk/LYuOb+bb/78+W2dQmrtcUFDK2h3hYRSiqysrLSfHwwG037+lJf3ZvQpX+EuS2g+LBcfAlOwR89w0pjhUCOB7Kx1i6MTcBydNMbnbxzg5gJoh2bTm9wiQqGASGNj0jhOJILj96NMA5wNpjfF1l7YtuaTScm3gdWOg9ZgGAbacZo91rSo3NFO0lwG988iJ1hJbUjhOJr1N7TSDoDCUJpLT+1CVlbLn2QM6Bvg6x9ClK+J0L2rv9n3qSFkgzbZfWAROTnZSY9pW5DJ+1dkTs5v65Lz27rk/LYuOb+bbque1hTTWp2t25s2X2y9rXFsG6XcT911bA7dugXY4GjNnXcm3/7100n74tixi+31f5aUe3Mch8aaupS5ROpD8a/T2i0gtHZHIhTuhXuq7V8/fW1/HO3Edmlq2gHKXeugDIVjOzi2lTKXe/6YRaQx4u705PG4q6MNA8PjLnaONIa599rUv3B/f1YXDOUWNI5D/KaVQinNIfvkkpOdfDjU7zMYs38HcrI9LFjSyJq1UaprLZataKS8IsrgAbns2jcnZS5CCCGEEKJlUkhkaMrLe2NZtrs7UuyCXcXWGTiOzZQX90wrzofP744VjeI4TryA0FpjWzahqtq0msl9/sYBRNZf7LVeUeI4Dh+nmcuUF/fCtm1s245NK1I4WuPYDnY0vaZ0AwaUcs+1AaLhMFYk2nRIWJEokcYwd18bZMCA1E3phg7I4cZLutAx31hvAylFll9z2uFFXHhySVrH1HuHLE46soS9huZjGgrL0nTtHODIgzpy+OhivB556wshhBCiBVpv+Vs71O6mNv0WPn3F7WB9wAmforUHhcUnk1I3odtQU9O5/Y7+FGWYaMvKuBt1Uxfs/Y78xJ2epOGz11M3odvQlJf2AtzmdIZp4th2Ws3s1jdgQClvPwmzZ8/lricbqG+McN35WeyxR2bb+g7ul8Ojt+ZQXRfhl0URSoq9dO2cYjF3Al07++nauSMH7utg2xq/z9hm10QIIYQQQmxttqpCYmvZyipdn7ySefGQyOevb36cTAuQlmRaPCQyYEApj9zaQFlZGf367bTJcfJzfAwdsPm7Ovi8BrS8W6wQQgghRDPtdABhi5P5HUIIIYQQQoiMbVUjEkIIIYQQQrS1ZL26xDpSSGyiM343g6WrrNgWZpr8PIP/e2J4RjGWL1/O2X9c4nZzjr1fTzi8iMvOSt0HY33/984yHn1xNRp3jURBruaff+1FQUFBRnEWLGlgxg+11IdsCvM87DMsn45Fma9NEEIIIYQQ7Z8UEhlatmwZZ1y1BKUMTNPErQAMautg1IlfcsefejB8t24p4/zu5h8omxtGGR4Mo6mNm2bSu2t57Z2v+OA/6RUlR10wE0d58foD8R4QDVHNqVcv5vgxVVxwWq+UMcIRh6dfWc5X39cSCuumVHjnk0oOO6CIow/ulFYuQgghhBDtggxIpEXWSGTo9D8swTDM+EhE/KobUKbJ9bcvSRljxvfLY0VEUwMI4n8qpXCUwVHnzkidy++/x1E+lGHgOA6ObePYNlprvD4fkz6soaqqKmWcF/5vBZ9+XYNS0LnYpEtHL506mITCDv/3QQWTp1amjCGEEEII0V6s3ytsS93aIykkMvDp9GUbbB+qmv3pNnEz+NPE2UnjXD9xKSrW7XkjsebSdSEnwYPNralRGObGnaS11mjHwev1cuGfFiaNUV4ZZvr3tfi8kJ/ncbtQA6Zp0LHIS9SCyVMrsazU+QghhBBCiO2HFBIZ+MvfF8e6P7dUVbrN3KZ9U5MiUupeBsowWL58eYuPfz+rCo/HROvEF/huh2tFTUPy15o5u466Boe8XDPh47nZBisqoixYGkr4uBBCCCFEu6JbaUSiHQ5KSCGRATuNYSmNRqdRKCR9N8WWKSwvb/kpC5bWu0VN0pRSZxKJOmgNZgtP9JjgOJpIWEYkhBBCCCHEOlJIZKCkqKk5WsuX5wqFx0xecLjz5JJf4mutGTa4a4uPj9w7G8e23XUWSbNJXgB06eTH44HGcOKcGxodgn6DLp0DSeMIIYQQQrQbuhVu7ZAUEhn4zz+G4Th2rAbY8B3hjkRox+Hpe3omjdO7pz829aiFJyhanLLUpKCgAMeOrlvvvWEIw8CxbY4/uDBpnEF9c+jWyUdVrYOzwVqLSNQh1AiDdsmmqEBaQwshhBBCiHWkkMhQSQePu7hZNV29xwoK5e7AZHo03bol3/718TsHr1sgvWERoEA7mmsv6pEyl5uu6Ek0GsUwDAzDQCmFUgrDNEFrtB1Juf2rx2NwxrElFOaZrCy3qayKUltvUVEZZU2lTc+uPk4cK9u/CiGEEGL74G6mueXXSLTHQQkpJDL0n38MY4cSL47txKcoaa1xLJvcHPjghb3SivPRf4ejHQftrHtbaTSObXPNhd04fHTL05qa7L17B669oDPRxjC2bdNUlUTDEfxmlLee3C2tXPrvnMNVF/Rgv91z8fsMbBtys00OGVHAHy/qKU3phBBCCCHERqQh3Sb49/1DAXjrw2W8+cFqRuxdzKnHpB5B2NDkWNO5ex+dy5LVEU4/qijpuohEDtynMwfu05mFi6p465O1dOvo45jDUjfE21DvnllcdlYWDSGbUKNNbo4Hn1fqTCGEEEIIkZgUEpvhiDHdOGJM5hftG7r64tLNjtFrhwIuP6tgs+NkBU2ygom3ghVCCCGEaP9aq4Fc+5vcJB85CyGEEEIIITImIxJCCCGEEEKsp3VGJNofKSQ2UV29xS+LGqhvsAkEDHr3zCI/L7MtUh3H4fs5NcwqqyVqOXTvEmTf4UXkZLXNt2VtldvBOhx2yMk22alnFtlZMs1JCCGEEEJsTAqJDGmt+W52DZ9+Wcna6mjsPsjP9bDn0AL22b0QI2mTOFdFZYQH/vUrc3+pIxxxUAoMpXj93RWcc3JPhu+WvP/DlmTbmqkz1vL19zXU1lnxnW07FHg5YO8iBvbN/c1yEUIIIYRoczIikRYpJDJUNq+Odz4uxzQUPbsFMQ2F42gqq6JM/nwNPo9KWQRYlsN9j//C7J9rKcz30rGDF6UMIlGHVeVh/vnMQgoLvOy8Y85vckxfflfFlGmV5OZ42KFHAEMpbFuzek2Etz8uJ+A32HnH7N8kFyGEEEIIsW2QxdYZsB3N9JnVOLampKMfMzbyYBiK4iIffp/B1z/U0Bi2k8aZ8X0Vc3+po0OBl5xsD0q53waf16BLiZ+11VHem7K61Y8HoL7B5ttZNWQFTYoKvBix4QjTVHTp5CcS0Xz9fQ2OI5W5EEIIIbYPWm/5W3skhUQGytdEWLGqkQ6FvoSPdyj0UlEZYdnKcNI438+uIWppshKshTCUQcBv8P3sGpym7tetaOmKRtZWWxQVJF7fUVTgYdnKRiqroq2eixBCCCGE2HbI1KYMWJbGdjQeT+I1EB5TYTsay0peAEQsJ74OoaU40aiD44DRyqWebbt7Jbf0Oh6PgW3b2HY7LaWFEEIIITbUXocQtjAZkchAfq6H7KBJXb2V8PG6epusgElBfvLdmzoVBwCw7cQFRyjs0KmjH4+n9b89+Xke/D6DhlDiXOrqLbKzTPJypeYUQgghxPZBt8L/2iMpJDKQm+Ohf2kOldUW0Q1GHWxbU14ZofcOWXTqkHjqU5OR+xSRn+ulfE0ErZvHaSpS9h/eYcsm34Iunfzs0D3I6orIRusgIlGHmlqbXXfJIRiQbWCFEEIIIcQ68jFzhvYdVsSq8gjzF9aTneUhGDAIhx1q6i16dAkycp8OqGTzloDOxQFOOqorz01ayrIVYbKzTUwDGkLudKZhgws4eGSn3+R4DEMxet8iqmstFi5pJDfHxOczCIVsQo0OpTtlMXxIwW+SixBCCCFEm2utxdHtcFBCCokM5eZ4OP6IEn6YU8v3c2qoD9lkZXkYvlsBQwbkUZBmU7rDRnemqMDH+5+uZt6v9diOpltJkP32LGLsQSX4fb/dYFHnYj8njS3h+zk1zJlbTzjqUJjv5YC9chnUL5esoIxGCCGEEEKI5qSQ2AQ5WR72GVbInrsVEI44+Lxqk9Yz7Dm0kD2HFlJXZxGxHPJyPL/JuohEigq8jNqnA/sNLyQa1fj9Rnx7WyGEEEKI7Yostk6LFBKbwTTVFvm0Pidn6/k2eD0G3q0nHSGEEEIIsZWSS0YhhBBCCCHWo2VEIi2ya5MQQgghhBAiYzIiIYQQQgghxPpkRCItUkgIIYQQQgixHqkj0iNTm4QQQgghhBAZkxEJIYQQQgghYjS6VRZb63bYkU5GJIQQQgghhBAZkxEJIYQQQggh1ieLJNIiIxJCCCGEEEKIjMmIhBBCCCGEEOtpj+sZWoOMSAghhBBCCCEyJiMSQgghhBBCNNGxW2vEbWekkBBCCCGEEGI9rbH9a3ukdDs6U99++y1aa3w+X8rnaq2JRqN4vV6UUr9BdtsXOb+tS85v65Lz27rk/LYuOb+tS87v5otEIiilGDp0aFunspFZs2YRDkeIRLf87H+f18Hv9zFw4MAtHruttKsRiUx+oJVSaRUcYtPI+W1dcn5bl5zf1iXnt3XJ+W1dcn43n1Jqqy3Cmr63fn/rxm8v2tWIhBBCCCGEEOK3Ibs2CSGEEEIIITImhYQQQgghhBAiY1JICCGEEEIIITImhYQQQgghhBAiY1JICCGEEEIIITImhYQQQgghhBAiY1JICCGEEEIIITImhYQQQgghhBAiY1JICCGEEEIIITImhYQQQgghhBAiY1JICCGEEEIIITImhYQQQgghhBAiY9tdIeE4Dg888AD7778/Q4YM4cILL2TJkiVtnVa7sWrVKnbZZZeNbq+++mpbp7bNe/TRRznzzDOb3VdWVsYZZ5zBkCFDGD16NM8880wbZbftS3R+b7jhho3ey6NHj26jDLc9VVVV3HTTTYwYMYKhQ4dy6qmnMmPGjPjj06ZN47jjjmPw4MEceuihvPXWW22Y7bYn1fk999xzN3r/bvgeFy1bs2YNf/zjH9lrr73YbbfduOiii/jll1/ij8vvXyHA09YJ/NYeeeQRXnjhBSZOnEhJSQl33XUXF1xwAW+88QY+n6+t09vm/fTTT/j9fj788EOUUvH7c3Nz2zCrbd/zzz/Pfffdx7Bhw+L3rV27lnPPPZfRo0dzyy23MHPmTG655Rays7M5/vjj2zDbbU+i8wvw888/c8kll3DGGWfE7zNN87dOb5t19dVXU15ezr333kuHDh149tlnOf/883nttdfQWnPxxRdz7rnnctdddzFlyhSuu+46ioqK2Hvvvds69W1CsvO700478fPPPzNhwgTGjBkT/xqv19uGGW9bLr/8chzH4bHHHiM7O5v777+fc845h/fff5/Gxkb5/SsE21khEYlEePLJJ7n22msZOXIkAH//+9/Zf//9ef/99xk7dmzbJtgOzJ07l169etGpU6e2TqVdWLVqFTfffDPTp0+nV69ezR576aWX8Hq9/OUvf8Hj8dC7d28WLVrEY489Jv8hS1Oy86u1Zv78+Vx00UV07NixbRLchi1atIipU6fywgsvsPvuuwNw44038tlnn/HGG2+wZs0adtllF6666ioAevfuzZw5c3jiiSekkEhDqvN7xhlnsGbNGgYPHizv301QXV1Nt27duPjiiyktLQXgsssu4+ijj2bevHlMmzZNfv8KwXY2temnn36ivr6+2X+k8vLy6N+/P19//XUbZtZ+/Pzzz/Tu3but02g3Zs+ejdfr5X//+x+DBw9u9tiMGTMYPnw4Hs+6zwP22msvFi5cSEVFxW+d6jYp2fldvHgxDQ0N7LTTTm2U3batsLCQxx57jIEDB8bvU0qhlKKmpoYZM2ZsVDDstddefPPNN2itf+t0tzmpzu/PP/+MUoodd9yxDbPcduXn53PPPffEi4jKykqeeuopSkpK6NOnj/z+FSJmuyokVq5cCUCXLl2a3d+pU6f4Y2LzzJ07l8rKSk4//XT22WcfTj31VD799NO2TmubNXr0aB588EF69Oix0WMrV66kpKSk2X1NI0ErVqz4TfLb1iU7v3PnzgXg2WefZfTo0YwZM4a//OUv1NbW/tZpbpPy8vI44IADmk0Zfe+991i0aBH7779/i+/fUCjE2rVrf+t0tzmpzu/cuXPJzc3lL3/5CyNGjODQQw/lvvvuIxKJtGHW26Ybb7yRvffem7feeovbbruNrKws+f0rRMx2VUiEQiGAjdZC+P1+wuFwW6TUrliWxa+//kp1dTVXXHEFjz32GEOGDOGiiy5i2rRpbZ1eu9PY2JjwvQzI+3kLmDt3LoZh0KlTJ/75z38ybtw4Pv/8cy677DIcx2nr9LY53377LePHj+fggw9m5MiRCd+/Tf+Wi93MbXh+586dSzgcZtCgQTzxxBNceumlvPzyy9xwww1tneo25+yzz2bSpEmMHTuWyy+/nNmzZ8vvXyFitqs1EoFAAHD/I9X0d3B/6IPBYFul1W54PB6mT5+OaZrx87vrrrsyb948/vWvf8m85y0sEAhsdMHV9B+wrKystkipXbn00ks57bTTKCwsBKC0tJSOHTty0kknMWvWrI2mQomWffjhh1x77bUMHTqUu+++G3AvujZ8/zb9W34fZybR+f3LX/7C9ddfT35+PuC+f71eL1dddRXXXXcdxcXFbZnyNqVPnz4A3HbbbXz//fc899xz8vtXiJjtakSiaUrT6tWrm92/evVqOnfu3BYptTvZ2dnNijSAnXfemVWrVrVRRu1XSUlJwvcyIO/nLcAwjHgR0WTnnXcGkKmQGXjuuee44oorGDVqFP/85z/jn9p26dIl4fs3KytLdnnLQEvn1+PxxIuIJvL+TV9lZSVvvfUWlmXF7zMMgz59+rB69Wr5/StEzHZVSPTt25ecnBymT58ev6+mpoY5c+awxx57tGFm7cO8efMYOnRos/ML8OOPP8Y/0RFbzh577ME333yDbdvx+7788kt23HFHOnTo0IaZtQ/XXXcd55xzTrP7Zs2aBSDv5zS98MIL3HrrrZx++unce++9zaaCDBs2jK+++qrZ87/88kuGDh2KYWxX/2naZMnO75lnnsn48eObPX/WrFl4vd6NdigTG6uoqODqq69uNi03Go0yZ84cevfuLb9/hYjZrn5b+3w+zjjjDO6++24mT57MTz/9xFVXXUVJSQkHH3xwW6e3zevduzc77bQTf/nLX5gxYwa//PILf/vb35g5cyaXXnppW6fX7hx//PHU1dXx5z//mfnz5/Pqq6/y1FNPcfHFF7d1au3CIYccwrRp03jooYdYvHgxn3zyCX/6058YO3as7EyWhgULFnD77bdz0EEHcfHFF1NRUUF5eTnl5eXU1tZy5pln8sMPP3D33Xfzyy+/8OSTT/Luu+9ywQUXtHXq24RU5/eQQw7h9ddf5z//+Q9Llizh7bff5s477+T8888nJyenrdPf6pWWljJixAj++te/8vXXXzN37lzGjRtHTU0N55xzjvz+FSJG6e1snz3btrn33nt59dVXaWxsZI899uCmm26ie/fubZ1au1BRUcE999zDZ599Rk1NDf379+faa6/dqNGXyNy4ceNYtmwZzz77bPy+H374gdtuu405c+bQsWNHzjvvvGbN00T6Ep3fd955h8cee4xff/2V3NxcjjzySP7whz/Ep4+Ilv3zn//k73//e8LHjj32WCZOnMinn37KXXfdxcKFC+nevTtXXHEFhx9++G+c6bYpnfP7/PPP8/zzz7NkyZL4+p6LLrpIRnzSVFtbyz333MOHH35IbW0tw4YNY9y4cfEpYvL7V4jtsJAQQgghhBBCbD75WEIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBC/mTPPPJP+/fsza9ashI+PHj2acePG/Sa5jBs3jtGjR/8mr5UJy7IYN24cu+22G0OHDuXLL7/c6DnTp09nl112aXbbddddOfDAA7nzzjsJhUJbJJcHH3yQXXbZZYvEEkII0f542joBIcT2xbZtxo8fz6uvvorP52vrdLY6n332Ga+99hqXXXYZ++yzD/3792/xuTfddBMDBgwAIBQK8dNPP/HAAw9QXl7OXXfd9VulLIQQYjslIxJCiN9Ubm4u8+bN4+GHH27rVLZKVVVVABx33HHsscceZGdnt/jcPn36MGTIEIYMGcLee+/Nueeey7nnnsubb75JXV3db5SxEEKI7ZUUEkKI31S/fv045phjeOKJJ/jxxx+TPneXXXbhwQcfbHbfhtNtxo0bx/nnn8+LL77ImDFjGDRoEKeccgoLFizg448/5sgjj2Tw4MGceOKJlJWVbfQaL774IiNHjmTQoEGcffbZzJkzp9njy5cv5+qrr2b48OEMHjx4o+csXbqUXXbZhX//+98ceuihDB48mEmTJiU8Htu2ef755znyyCMZNGgQI0eO5O677yYcDsePpWlq15gxYzjzzDOTnp9E8vLyNrqvqqqKm266iX322YeBAwdy0kknMW3atGbPCYfD/O1vf2Pfffdlt912Y/z48fG8mowbN46zzz6bm2++maFDh3L44Ydj2zbhcJiHH36YQw89lIEDB3LwwQfz2GOP4ThOs69/++23Oe6449htt93Yd999uemmm6iuro4//uCDD3LooYfywQcfMHbsWAYOHMjRRx/Nd999x8yZMznxxBMZNGgQY8eObZZ/Y2MjEyZMYMSIEey6664ceuih/Otf/8r43AkhhMiMTG0SQvzm/vSnPzF16lTGjx/PpEmTNnuK03fffcfq1asZN24c4XCYCRMmcNFFF6GU4sorryQYDHLzzTdz7bXX8tZbb8W/buXKlTz00ENcc8015OTk8NBDD3HmmWfyxhtv0LVrVyorKznllFMIBoPceOONBINBnn76aU4//XReeeUVevfuHY/14IMP8uc//5mcnBwGDx6cMM+bbrqJ119/nQsvvJBhw4YxZ84cHn74YcrKynjiiSe47LLLKCkp4R//+AcPPfQQO+64Y9LjdhwHy7IAiEajlJWV8cwzz3DMMceQk5MDuAXC2WefTUVFBVdddRWdOnVi0qRJXHDBBTzxxBPsvffeAPzxj3/ks88+46qrrmKHHXbgxRdf5I033tjoNWfMmIHf7+fhhx+moaEBwzC45JJLmDlzJr/73e/o27cv06dP57777mPJkiXceuutADzyyCM88MADnHbaaVx11VUsWbKE+++/n5kzZ/LSSy8RCATi35OJEydy1VVXkZWVxa233sqVV16J1+vlkksuoUuXLvHHp0yZQiAQ4Pbbb+fzzz/n+uuvp7i4X1F4IwAACERJREFUmE8//ZQ777yTgoICjj/++HTfRkIIITKlhRDiN3LGGWfoM844Q2ut9eTJk3Vpaam+995744+PGjVKX3/99fF/l5aW6gceeKBZjAceeECXlpbG/3399dfr0tJSPX/+/Ph9N910ky4tLdVffPFF/L5//etfurS0VFdXVzf7uu+//z7+nNWrV+tBgwbpiRMnaq21vvfee/XAgQP10qVL488Jh8P6wAMP1FdccYXWWuslS5bo0tJS/ac//Snpsc+bN0+XlpbqRx99tNn9//d//6dLS0v1lClTtNZaT5o0SZeWluolS5a0GOvLL7/UpaWlCW+jR4/WK1eujD/3xRdf1KWlpXrmzJnx+xzH0aeffro+7rjjtNZaz507V5eWluoXXngh/hzbtvXhhx+e8FyvWLEift+UKVN0aWmpfvPNN5vl+PDDD+vS0lI9d+5cXVVVpXfddVd94403NnvO119/rUtLS/Vzzz2ntV73vf3kk0/iz3n00Ud1aWmpfvnll+P3vfvuu7q0tFTPmTNHa631IYccom+44YZmsR966CH98ccft3gOhRBCbD6Z2iSEaBOjR4/mqKOO4oknnmD27NmbFSs/P7/Z6EBxcTFAs5GBgoICAGpqauL39ejRg0GDBsX/3bFjR4YMGcLXX38NwLRp0+jXrx+dO3fGsiwsy8IwDEaMGMEXX3zRLId+/folzfGrr74C4Igjjmh2/xFHHIFpmkyfPj3dw4275ZZbeOWVV3jllVd44YUXuOOOO/D7/ZxwwgksX748fgwdO3ZkwIAB8WOwbZtRo0bx448/Ul1dzYwZMwCa7WJlGAaHHHLIRq9ZUFBASUlJs+PyeDwceuihzZ531FFHxR+fOXMmkUiEsWPHNnvOsGHD6NatW/zcNBk6dGj87+l8L/fcc09eeuklLrzwQp577jmWLFnC5ZdfzsiRI1OfRCGEEJtMpjYJIdrMDTfcwLRp0+JTnDZV0zSeDWVlZSX9uqaL1PV16NCBFStWAO7agkWLFsV3RtrQ+tuspnqtprUAHTt2bHa/x+OhsLCQ2trapF+fyI477sjAgQPj/959990ZPnw4Y8aM4cknn+SGG26gqqqK8vLyFo+hvLw8nlthYWGzxzbMFdho8Xd1dTWFhYWYppnwa2tra+PxE53v4uLijY490fczGAwmzB/gz3/+MyUlJfzvf//j1ltv5dZbb2W33XZjwoQJ9O3bt8WvE0IIsXmkkBBCtJn8/HwmTJjA5ZdfziOPPJLwObZtN/t3Q0PDFnv99Rf6NikvL6eoqAhwd5gaPnw41113XcKvz2RtR35+fjx+t27d4vdHo1HWrl270UX8puratStFRUUsXLgQcI+hV69e3H333Qmf37179/hrV1RU0LVr1/hjTTtIJZOfn8/atWuxbbtZMbF69WrALU6ajr2iooKddtqp2deXl5fTo0ePtI8vEZ/Px6WXXsqll17K8uXL+fjjj3nkkUe45pprmq2JEUIIsWXJ1CYhRJsaM2YMY8eO5bHHHqOysrLZYzk5OaxatarZfd9+++0We+0FCxawePHi+L9XrFjBd999x5577gnA8OHDWbBgQfyT/6bb66+/ziuvvLLRp/DJDB8+HGCjC9u33noL27bZfffdt8ARubtIVVZW0qtXr/jrrlixgg4dOjQ7hqlTp/LEE09gmiZ77bUXAO+++26zWB9//HHK1xs+fDiWZW30tf/73/8Ad5Rk8ODB+Hw+3nzzzWbPmTFjBsuXL282lSlTjY2NHHLIITz55JOAW0idfvrpHHHEEfHpXUIIIVqHjEgIIdrcjTfeyJdffklFRUWz+0eOHMlbb73F4MGD2WGHHXj11VdZtGjRFntdv9/PpZdeylVXXYVt29x///0UFBRw9tlnA3DOOefw+uuvc84553DeeedRWFjI22+/zUsvvcT48eMzeq0+ffpw7LHH8sADDxAKhdhjjz0oKyvjoYceYs8992T//ffPOP/58+fj9/sB0FqzfPlyHn74Yfx+P2eccQbg9qN47rnnOPfcc+O7Hn3xxRc8/vjjnHHGGXi9XnbYYQdOPvlk/v73v2NZFv369eP111/n559/TpnDiBEj2HPPPbnhhhtYtWoVffv25auvvuLxxx/n2GOPpU+fPgBcdNFFPPzww3i9XkaNGsXSpUu5//774+dlUwUCAQYMGMBDDz2E1+tll112YcGCBbz22msJ13gIIYTYcqSQEEK0uYKCAiZMmMDvfve7ZvePHz8ey7K444478Hg8HH744VxzzTXccMMNW+R1+/fvzyGHHMKECROora1l77335k9/+lN8alPnzp3573//yz333MOECRMIh8P06tWL2267jRNOOCHj17vtttvYYYcdmDRpEo8//jidOnXirLPO4rLLLsMwMh8g/stf/hL/u2EYFBQUMGTIEO666674iERWVhbPP/8899xzD3fddRe1tbV069aNa665hvPOOy/+9TfffDPFxcU899xzVFdXs//++3PJJZdw3333Jc1BKcWjjz7KAw88wFNPPUVlZSXdu3fn6quv5txzz40/74orrojHf/HFFykoKODQQw/lD3/4Q8r1Jemch/vuu48nn3yS8vJyOnTowAknnMDvf//7zYorhBAiOaW11m2dhBBCCCGEEGLbImskhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRMSkkhBBCCCGEEBmTQkIIIYQQQgiRsf8Hxfsub0KEw9YAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAImCAYAAADHWLzEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1OklEQVR4nOzdd3gU5drA4d/MtnQSAoTeTehIkSoi2BU4gCIqggUEKSoHEFGPIH4q2AtdEDx2VBQVrAfFggiCgCAgLSq9pbdt835/LFlYEjAbAptZnvu6Vsns7uwz+87OzDNv05RSCiGEEEIIIYQIgh7qAIQQQgghhBDmI4mEEEIIIYQQImiSSAghhBBCCCGCJomEEEIIIYQQImiSSAghhBBCCCGCJomEEEIIIYQQImiSSAghhBBCCCGCJomEEEIIIYQQImiSSIhyS+ZKPHPyHYpzQfYzIYQ4P0kiIQIMHDiQlJSUgEejRo1o3bo1ffv25eOPPw56nd27d2fChAlBvWfZsmU88MAD/r9XrVpFSkoKq1atCvrzz9TAgQMZOHDgaV8zbdo0UlJSzvizSvNdFScrK4vx48ezZs2aM15XqBSW+YmPZs2acdlll/H000+Tn59fJp9TVmVnFt27dy/y+27fvj133303W7duDXp927dv5+abbw5YlpKSwrRp08oqZHGSPXv2kJKSwocffnjK13z44YekpKSwZ8+eYp+fMGEC3bt3P1shnhUn77spKSk0b96cK664gueeew6n03na94fyPCJEuLKGOgBR/jRp0oRJkyb5//Z6vRw4cIDXXnuN8ePHEx8fT9euXc9qDK+99lrA302bNmXhwoU0bNjwrH5uafXr148uXbqEOgy/LVu28PHHH3P99deHOpQzNnHiRJo2bQpAfn4+W7du5eWXX+bw4cM888wzIY7OnLp27cqIESMA8Hg8HDp0iPnz53Pbbbfx2WefkZiYWOJ1ffHFF6xbt+5shSpEgBP3XQCn08mqVauYOXMme/fu5fnnnz/le8v7eUQIM5JEQhQRExPDhRdeWGT5JZdcQseOHfnwww/PeiJR0pjKi6pVq1K1atVQhxGWGjZsGFD2HTt2JDs7m1mzZjFp0iRiYmJCF5xJVaxYscjvqXnz5lx++eV88cUXDBgwIDSBCfEPitt327dvz4EDB/jwww+ZMGECVapUKfa95f08IoQZSdMmUWIOhwO73Y6maf5lhmHwyiuvcMUVV9CsWTOuuuoq3njjjdOuZ8+ePYwfP56LL76Ypk2b0rFjR8aPH096ejrga0q0evVqVq9e7a+GLq5KeuPGjQwePJj27dvTunVr7r77brZv3+5/vvA9K1eu5M4776Rly5Z07tyZZ555Bq/X63/dihUruPHGG2nVqhUXXXQRw4cPZ+fOnQExK6WYO3cul156KS1atKB///789ttv/udPbh4zcOBAJkyYwOzZs+nUqRNt2rRhxIgR7N279x+/Z7fbzeOPP85FF11E27ZteeCBB0hLSwt4zZo1a7j11ltp2bIl7dq1C3jNqlWrGDRoEACDBg1i4MCBjBo1il69egWs47bbbqNZs2YUFBT4lz3xxBNcddVV/r//97//0bdvX5o3b07nzp15/PHHycvLC1jPtm3bGDZsGK1bt6Z169aMHDmS3bt3B10OwYiLiyuyLCMjg4kTJ9KpUyeaN2/OjTfeyMqVKwNe43Q6mTJlCp07d6ZVq1Y8+OCDRZpDTJgwgdtuu41JkybRunVrrr32WrxeL06nkxkzZnD11VfTvHlzrrzySl555RUMwwh4/2effUbfvn1p1aoVnTt3ZuLEiWRmZvqfnzZtGldffTVff/01PXr0oHnz5vzrX/9i3bp1rF+/nn79+tGiRQt69OgREH9BQQGPPvool1xyCc2aNePqq6/m1VdfLdX3V5wKFSoUWVZQUMBzzz3HlVdeSbNmzWjdujV33HEHW7Zs8W/L9OnTgaLNmXJycnj44Ydp164drVq14t577+XIkSP+5wcOHMi4ceO49957ufDCC7njjjsAyM7OZsqUKVx++eU0b96cHj168MEHHwTE5fV6eeutt+jZsyctWrTg0ksv5dlnnw0oywkTJjB48GAWLlzI5ZdfTosWLbjppptITU3l22+/pWfPnrRs2ZJ+/fr5twcgLS2NsWPH0rlzZ3/ZLF68OOjv85+Oc+BrqvPyyy/z1FNP0alTJ1q0aMHgwYP5888/A9b11Vdf0atXL1q0aEGfPn1K1QStJFasWMEtt9xCmzZtaN++PWPHjmX//v3+50/VDPDksl+yZIk/3g4dOjBu3DgOHjwY8J7333+f6667jmbNmnHppZcybdq0Uh8PAJo1a4ZSyh9v9+7defLJJ7ntttto0aIFDz/8cLHnkfXr13PnnXfSunVrOnTowJgxYwJiLclxRYjzmSQSogilFB6Px/9wOp3s2rWLBx98kNzcXP71r3/5X/voo4/y8ssv06tXL2bPns3VV1/Nk08+yYwZM4pdd35+PoMGDWLnzp1MmjSJV199lUGDBrF06VJeeOEFACZNmkSTJk1o0qQJCxcu9DdrOdHPP//sb5f95JNP8vjjj7N//35uuummIknAuHHjaNOmDbNnz6ZHjx7MmzeP999/H4Ddu3czYsQImjVrxqxZs3jiiSdITU1l6NChAReIa9eu5euvv+aRRx7hmWee4dChQwwfPhyPx3PK73HZsmV8+OGH/Oc//2Hy5Mls2bKFgQMH/mPb/s8//5zff/+dqVOn8sADD7B8+XLuuusu/0n2l19+4fbbbyciIoIXX3yRhx56iNWrVzNo0CAKCgpo2rQpEydOBHzNgiZNmkTXrl3Ztm0bR48eBXwX1OvWrcPtdrN+/Xr/Z3///fd069YNgE8//ZSRI0dSv359ZsyYwahRo/jkk08YMWKEv3NtamoqN910E0ePHuWpp57iiSeeYPfu3dx8883+zypJOZyOYRj+fTE/P59ff/2V119/nd69e/trI5xOJ7fddhvLli3j3//+N9OnT6dq1aoMGTIk4KR///3389577zFs2DBefPFFMjMzizSjA1+itn//fmbMmMHYsWPRdZ27776befPm0a9fP/++/uKLLwY0A5w5cyZjxozhwgsv5OWXX2bkyJF8+eWXDBw4MCBhO3DgAFOnTuXuu+/mpZdeIisri3vvvZcxY8bQr18/ZsyYgVKKf//73/73Pfnkk3z//fc88MADvPrqq/6+IosWLfrH7/BkJ/7GXS4X+/bt44knnqBSpUpcc801/teNHz+eRYsWMXToUObPn8+DDz7I9u3bGTt2LEop+vXrxw033ADAwoUL6devn/+9r7/+Om63m5deeomxY8fyzTff8NhjjwXE8fnnnxMdHc2sWbMYMmQIBQUF3HLLLXz66acMGTKEmTNn0qZNGx5++GFmz57tf9/EiRP9ycasWbMYMGAAb775ZsC+CbBu3TrefPNNJkyYwJQpU9i5cydDhw5lypQpDBs2jOeff579+/czbtw4/3vuv/9+du7cyeTJk5k7dy5NmjThgQce4Oeffy7x91uS49yJ39OuXbuYMmUKjz/+OJs2bQroH/bNN99w7733kpKSwowZM7jmmmu4//77SxzLib+fEx8nd5BfvHgxd955J9WqVeP555/nwQcfZN26dfTv37/Ib/l01q5dy/jx47nyyiuZO3cuDz74ID///DNjx471v2bOnDk88sgjdOzYkdmzZzNgwADmzp3LI488UuLPOVlqaioAtWrV8i976623aN68OTNnzvTvpyfavHkzt956K06nk6effprJkyezadMmBg8e7D/3leS4IsR5TQlxgltvvVUlJycXeaSkpKiePXuqzz//3P/aXbt2qZSUFDVnzpyAdbzwwguqefPmKi0tTSmlVLdu3dQDDzyglFJq8+bN6uabb1Z///13wHuGDRumrrrqqoA4br31Vv/fP//8s0pOTlY///yzUkqpG264QV177bXK4/H4X5OZmanatWun7r333oD3vPDCCwGf1b17dzVs2DCllFJLlixRycnJ6sCBA/7nN2zYoJ5//nmVnZ3tj6VFixYqPT3d/5r33ntPJScnqy1btiillHr55ZdVcnJyQPxNmzYN2M7ff/9dJScnq7fffrvoF39Mt27dVKdOnVRubq5/2ddff62Sk5PVN998o5RSqn///qpHjx4B275r1y7VuHFj9eabbxb7fR08eFClpKSoTz/9VCml1E8//aQuvPBCddVVV6mXX35ZKaXU33//7X+PYRjqkksuUYMHDw6I76efflLJycnq22+/VUopNWbMGNWpUyf/d6WUUunp6apNmzZq6tSpJS6H4hS+r7hH9+7dA8ps4cKFKjk5Wa1fv96/zDAMNWDAANW3b1+llFLbtm0r8v17vV517bXXBpTdAw88oJKTk9X+/fv9y5YvX66Sk5PVkiVLAmKcMWOGSk5OVtu2bVMZGRmqWbNm6pFHHgl4zS+//KKSk5P9ZVO4r3z33Xf+18yZM0clJyer999/37/siy++UMnJyWrz5s1KKaWuuuoq9Z///Cdg3dOnT/eXRUl169btlL/xTz75xP86p9Op7rzzTrV06dKA98+fP18lJyerQ4cOBWzPiZKTk1W/fv0Clo0bN05ddNFF/r9vvfVW1bJlS+V0Ov3L3nrrLZWcnKx+/fXXgPc+9NBDqnnz5io9PV1t375dJScnFznuLF68WCUnJ6vly5crpY6X444dO/yvmThxokpOTlY//fSTf9mrr76qkpOTVWZmplJKqWbNmqlZs2b5n/d6vWrq1Klq7dq1p/pKiyjpca5bt26qW7duAb/ladOmqeTkZP/xs2/fvkW+y8L9ZdGiRaeMYdGiRaf8/RQ+unXr5t/Gzp07qzvvvDNgHX/99Zdq2rSpeuqpp5RSxZe1Ur7yLjyOzJkzR7Vq1SqgXJcvX66mTZumDMNQWVlZqkWLFmrixIkB6yg8pm7btu2U29StWzc1fvx45Xa7/Y8DBw6o9957TzVr1kyNHj064LWXX355wPtPPi7ec889qnPnzqqgoMD/ml9//VV169ZNbd68uUTHFRHeZs+eHXAtUlIfffSRuuaaa1SzZs3Utddeqz777LOzEF35IH0kRBFNmzZl8uTJABw6dIgXX3wRt9vNiy++SP369f2v+/nnn1FK0b1794A78927d2fWrFmsXbuWyy+/PGDdjRs35u2338YwDP7880/++usvduzYwa5du057d/9EeXl5bNy4kVGjRmGxWPzL4+Li6NatG999913A61u1ahXwd9WqVf3Nc1q2bInD4eCGG27g6quv5pJLLqF9+/a0aNEi4D0NGzYkPj7e/3fNmjUBXzOMU2ndunXA3bEmTZpQq1YtfvnllyKj3Jyoa9euREVF+f/u3r07VquVX375hQ4dOrBhwwYGDx7sv6sMvrtwDRo0YMWKFcW2b69SpQpNmjThp59+8jeZad26NdWrV2f16tWArzYiLi6ONm3asGvXLg4cOMCwYcMCyuWiiy4iJiaGFStWcOmll/Lzzz/Trl07IiIi/K+LiYmhbdu2/PTTTwExnK4cTmfy5Mn+WimXy8Xu3bt55ZVXuOGGG1i4cCHVq1dn5cqVVK5cmaZNmwbE261bN55++mkyMzP9I1idOFKNrutcddVV7NixI+Az4+PjA/q8rF69GqvVytVXXx3wul69evHSSy+xevVqatasicvlokePHgGvadu2LTVq1GD16tUBZdO6dWv/vytVqgT49scTYwDfCFzgawf+7rvvcuDAAbp27UrXrl0ZOXLkP35/xenWrZv/vUop0tLS+Pzzzxk3bhz5+fnceOON2O12f9OpgwcPkpqayp9//sm3334L+MridNq0aRPwd82aNf3bUqh+/frY7Xb/36tXr6ZGjRpF9pVevXrxwQcfsGHDBn/zwOuuuy7gNddddx0PPvggq1at8vfhqlChAg0aNPC/5p++57i4ONq3b8+0adPYvHkzXbp0oWvXrgE1BCURzHGuefPmAcexwv0uPz+fyMhIfv/9d+67776A91xzzTU899xzJYpl1qxZVK5cucjyGTNmsG3bNsB3N//w4cMBtQYAtWvXplWrVv5jRElcdNFFvPDCC/To0YOrrrqKrl27cvHFF/vLZN26dRQUFBR73gBf86oLLrjglOtfvHhxkaZmVquVK664IqB2EHzlcDpr166la9euOBwO/7JWrVrxzTffAPDKK6/843GluCaBIjy89dZbvPjii7Rt2zao93388cc8/PDDPPTQQ3Tp0oWlS5cyZswYqlatWuTYFg4kkRBFREdH07x5c//fLVu2pFevXtx55518+OGHVKxYEfC1HYWiJ/RCJ7eJLbRgwQJmz55NRkYGlSpVolmzZkRGRp72ovxE2dnZKKX8FwUnqlSpUpH1REREBPyt67q/Wr9mzZq8+eabvPLKK3zwwQe8/vrrxMXFccsttzB69Gh/f5ATL+wL1wEUaR9/oqSkpCLLEhMTA9rLF+fkk76u6yQkJJCVlUVWVhaGYTB37lzmzp1b5L0nnhBP1rVrV//wvStXruSKK66gWrVqfPzxx7hcLn744Qe6dOmC1Wr1l+3kyZP9SeWJDh06BPj2gc8++4zPPvusyGsK95NCpyuH06lXr17A/timTRvatWvH5Zdfzvz58/nPf/5DRkYGhw8fLrYZHMDhw4f933tCQkLAc8VdZEVHRwf8nZmZSUJCQsAF34nvzc7O9q+/pPtlcZ3EIyMji40f4OGHH6Zq1ap88skn/N///R//93//R6tWrXj00Udp1KjRKd9XnPj4+IDvFODSSy/l0KFDPPPMM1x//fVYLBZ++OEHnnzySXbt2kV0dDSNGjXy/xb+qeyK+82c/J7ivufiyqPwO83KyvJ/zye/zmq1kpCQEPA9n6oj/smxneiFF15g9uzZfP7553z55Zfouk6nTp147LHHqFGjxinfd7KSHudOLvMTjy2ZmZkopYrss6fqTFyc5ORk/42PE514Y6Tw936qfXfz5s0l/rxWrVrxyiuv8Nprr7FgwQJeeeUVKlWqxN13383AgQP9nzV06NBi3194bDmVE5NgTdOIjIykRo0aRY4vcPpyBt92n26EspIcVySRCD8HDx5k0qRJrFq1irp16wb1XqUUL730EoMGDfLfOBo+fDhr1qxh9erVkkiI81OlSpWYOHEi9913H0888YT/Tlhhh9f//ve/RS4IAKpXr15k2aeffsrUqVO5//776du3r/9i87777mPjxo0liic2NhZN0wI6bhY6fPhwwAmyJFq0aMH06dNxuVysXbuWhQsXMnv2bBo1ahTQXjxYJ3aqLHTkyBFq16592vcVnmgLeb1e0tPTSUxMJDo6Gk3TuP3224tN4E53IXrppZcyc+ZMfv/9d37//XcefvhhqlevjtPpZM2aNaxatcqfNBSW7fjx42nXrl2RdRWePGNjY+nUqZO/o+yJrNazd3ipXr06FStW9HdKjY2NpW7dujz77LPFvr5mzZr+i7EjR44E7Jsnf9/FqVChAunp6Xi93oBkovCiJyEhwf+dHDlyJKDmDnz75Ym1U6Vht9sZPnw4w4cPZ9++fXz77bfMnDmTsWPHsnTp0jNad6FmzZrx008/kZ6eTl5eHiNHjuTyyy9nzpw51KpVC03TeOutt/jhhx/K5PNOVqFCBf76668iyw8fPgwQkCgcPnw44MLe7XaTnp5e5KI7WLGxsdx///3cf//97Nq1i2XLljFz5kwmT57MK6+8UqJ1lMVxDnwX+7quFznWlWSfDUbhMfNUx9TC77TwxsqJv4Pc3Nwi7+nSpQtdunQhPz+fn3/+mddff53HH3+cli1b+o8tzz77bLEXacUlMyfHenISXFqxsbFFBrIA+O6772jcuHGJjisi/Pz+++/YbDY++eQTZsyYUWSQlG+//ZZp06axY8cOkpKSuO666xgxYgR2u53U1FT27t1Lz549A95TlgNjlDfS2VqUyNVXX02XLl1YsmSJv5q7sLovPT2d5s2b+x9paWm89NJLxZ7s1q5dS1xcHEOGDPGfXHNzc1m7dm3A3f3Cu3LFiYqKolmzZnz++ecBo3xkZ2ezfPnyIk0qTue1116jW7duuFwu7HY7HTt25P/+7/8A2LdvX4nXU5y1a9cGJBObNm1iz549dOzY8bTvW7FiRUA1+pdffonH46F9+/bExMTQpEkTdu3aFfCdX3DBBUybNs0/GsnJd87B14SiYsWKzJw5E4fDQbNmzahSpQr169dn+vTpOJ1OLrnkEsDX5CQxMZE9e/YEfE5SUhLPPfec/w5lu3bt2LFjB40bN/a/plmzZrz22mt8/fXXZ/T9nc6ePXtIS0vzX4i0a9eO/fv3k5iYGBDvihUrmDdvHhaLhQ4dOgC+eQ9OVNhU53TatWuHx+Mp8t5PPvkE8NWStGzZErvdzpIlSwJes2bNGvbt2xfQlClYBQUFXHXVVcyfPx/wJVIDBgzguuuuO+P99EQbN26kQoUKJCQksGnTJpxOJ0OHDqV27dr+i8jCJKKwduF0v9VgXXTRRezdu7fIvBSffPIJNpuNFi1a+BPbk5OnpUuX4vV6g/r9n2zv3r107drVX87169fnrrvuolOnTkF9zyU9zv0Th8NBq1at+OqrrwJqcwqb3pSVevXqUbly5SL77u7du1m/fr1/3y2s4Tlw4ID/NWvXrg14z1NPPcX111+PUorIyEi6devmbxq2b98+WrZsic1m4+DBgwG/VavVyvPPP3/KCfTOhrZt27JixYqAZnqbN29m6NCh/P777yU6rojw0717d6ZNm1bszZ/vv/+e0aNHc+ONN7JkyRImTZrE559/7h8AobDTf15eHoMHD6Zjx47069evzH+z5YnUSIgSe+ihh+jVqxePP/44H330ESkpKfTq1YtHHnmEvXv30qxZM1JTU3nhhReoWbNmsXebWrRowTvvvMPUqVPp1q0bhw4d4tVXX+XIkSMBVcRxcXGsW7eOlStX0qRJkyLrGTt2LIMHD2bo0KHccsstuN1uXnnlFVwuV1Dtxjt06MCzzz7LyJEjufXWW7FYLLz77rvY7Xb/6EWllZ+fz5AhQxg+fDi5ubm88MILJCcnF2lDf7LDhw9zzz33MHDgQP7880+ef/55Onfu7E9AxowZw9ChQxk7diy9evXC6/Uyf/58NmzY4J+oKTY2FoDly5dToUIFGjVqhK7rXHLJJSxevJiLL77YX2PQvn173nnnHdq2beu/M2mxWPj3v//NxIkTsVgsdOvWjaysLGbOnMnBgwf9Vf0jRozgpptuYtiwYdx88804HA4WLlzI//73P15++eUz+v4K7dixw99kSynFvn37mDFjBg6Hg1tvvRWAvn378uabb3LHHXdw9913U61aNX766Sfmzp3Lrbfeis1mo06dOvTv358XXngBj8dD48aN+fjjj/njjz/+MYbCvjP/+c9/OHjwII0aNWL16tXMnTuXPn36+Ce4Gjp0KDNmzMBms9GtWzf27NnDSy+9RMOGDenTp0+pv4OIiAiaNm3K9OnTsdlspKSkkJqaykcffRQwXO/mzZux2+3/OOFWWlpawGhd+fn5LF68mJUrVzJmzBgsFgtNmzbFarXyzDPPcOedd+Jyufjwww9Zvnw5gL9/S+Ed5iVLltCyZcszqnnp27cvb7/9NiNHjuTee++lZs2afPPNNyxatIhRo0YRFxdHXFwcffr04eWXXyY/P5+LLrqILVu2MH36dNq3b39GE0PWqFGDqlWr8vjjj5OTk0Pt2rXZtGkT3333HcOGDfO/bv369VSsWPGUtYslPc6VxJgxY7jtttsYNWoU/fv3JzU1NWAEq7Kg6zpjxozhwQcf9B9X0tPTmT59OhUqVPDXOHbt2pUpU6YwceJEBg8e7B/Z7MQa6Q4dOrBgwQImTJhAr169cLvdzJs3j/j4eDp06EB8fDxDhgzhpZdeIicnh/bt23Pw4EFeeuklNE0LupnemRgxYgT9+/dn2LBh/lHvXnzxRVq0aEHnzp3xeDz/eFwR55fZs2dz4403ctNNNwG+fkSTJ0/mtttuY8+ePeTk5ADwwAMPMGrUKMaNG8eXX37JiBEjWLBgwT/eSDQjSSREidWvX5+BAwcyf/583nnnHW699VamTJnCnDlz/J1AExMTufbaaxk9enSxd2v69OnDnj17WLRoEW+//TZJSUl07dqVW265hUceeYSdO3fSoEEDBgwYwKZNm7jrrruYMmVKkTbBHTt2ZMGCBbz88suMGTMGu91O27Zteeqpp07bUe9kjRo1Yvbs2cyYMYMxY8bg9Xpp1qwZ8+fPL9I8JVht27alQ4cOPPzww4DvLsf48eMDOpcW55ZbbiE7O5uRI0dit9vp2bMn999/v/+O8MUXX8yrr77K9OnTuffee7HZbDRt2pQFCxb4J1u64IIL6NGjh78ZSuGdxq5du7J48WLat2/v/7zCROLSSy8NiKNfv35ER0czb948Fi5cSFRUFK1bt+bZZ5/1Xyw2atSIt956ixdeeIHx48ejlCI5OZkZM2Zw2WWXndH3V+jEIUN1XSc+Pp4LL7yQZ555xp+sRkVF8dZbb/Hcc8/xzDPPkJ2dTY0aNRg7dix33nmn//2TJk2iUqVKvPnmm2RmZtKlSxfuvvtuXnzxxdPGoGkac+bM4eWXX+a1114jLS2NmjVrMmbMmIBmXffcc49//QsXLiQ+Pp6rr76a0aNH/2N77ZJ8Dy+++CLz58/n8OHDJCYmcsMNNwR0xB01ahQ1atT4x7lcvvvuu4BBCaKioqhXrx6TJk3illtuAaBOnTo899xzTJ8+neHDh1OhQgUuvPBC3njjDQYOHMiaNWtISUnhyiuv5OOPP2bChAnccMMNPProo6XexsjISN544w2ee+45/4Vm/fr1eeKJJwKG73ziiSeoU6cOixYtYu7cuVSpUoVBgwYxYsSIM64hmT59Os8//zwvvfQS6enpVKtWjVGjRgW06e/fvz99+vRh6tSpxa6jpMe5kmjbti1z587l+eefZ9SoUdSsWZMnn3ySu++++4y282R9+/YlOjqaOXPmMHLkSGJiYujSpQtjxozx90epV68eTz31FLNmzWLo0KE0aNDA31+nUNeuXXn22WeZP38+o0aNQtM02rRpw+uvv+6/UTF69GgqV67M22+/zbx586hQoQIdO3ZkzJgx/psg50KTJk38+9vo0aOJiYmha9eujBs3Drvdjt1uL9FxRZw/Nm/ezG+//RYwt01hbeHOnTv9yeXgwYP9N48aN27M5s2bwzaR0FRJejsKIYIycOBAgH+8oBOiLO3evZtHH300rNvjlgcrV67k888/LzIvhhAivEyYMIG9e/f6z+UtWrTgzjvvLLaGuXLlymzZsoVbbrmFt956K2C0p6effprly5cXOzCJ2UkfCSGECBOzZ8+mc+fOoQ4jrBmGwbx58+R7FuI8dMEFF5CamkqdOnX8jwMHDvD000+Tm5tL06ZNiY6OZsOGDQHv27Zt2z8OtGJW0rRJCCHCxIABA/5x7HxxZgr7E5xqSFAhRPi66667GD16NNOnT+e6667jwIEDPPzww9SsWdPfBHDIkCHMmDGDpKQkWrRowdKlS1mxYgWvvfZaaIM/S6RpkxBCCCGEECc5uWkTwOeff86cOXPYsWMH8fHxdO/enXHjxvkHngDfPDJvvvkmBw8epEGDBtxzzz1FJugNF5JICCGEEEIIIYImfSSEEEIIIYQQQZNEQgghhBBCCBE0SSSEEEIIIYQQQQu7UZuUUhiGdPsoS7quyXdqclKG5iblZ35ShuYnZVh2dF3zT7JaHnmVQYYqKPP1xmsRWLTwuocfdomEYSjS0nJDHUbYsFp1EhKiycrKw+MxQh2OKAUpQ3OT8jM/KUPzkzIsWxUrRmOxlN9EIkMVMDX/hzJf74TILiRqUWW+3lAKr7RICCGEEEIIcU5IIiGEEEIIIYQIWtg1bRJCCCGEEOKMqPLb9Ko8kRoJIYQQQgghRNAkkRBCCCGEEEIETZo2CSGEEEIIcSIZ6bdEpEZCCCGEEEIIETRJJIQQQgghhBBBk0RCCCGEEEIIETTpIyGEEEIIIcSJZPjXEpEaCSGEEEIIIUTQJJEQQgghhBBCBE0SCSGEEEIIIUTQpI+EEEIIIYQQJ5J5JEok5ImEx+NhxowZLF68mIyMDJo0acL999/PhRdeGOrQhBAipA5quWy3pmHFgtUCjbyViFH2UIdVZvJdit//dpOWo7BaIKW6leoVdTRNOjkKIYQZhDyRmDVrFu+//z5Tp06lVq1azJ07lyFDhvDZZ59RpUqVUIcnhBDnnAeDpfbtLLf/RabFiQMrrggPSdZo/uVMob2nRqhDPGOb/nbzwU8F7DnixVBgKIiL1OiQYqNvh0gi7JJMCCFEeRfyPhL/+9//6NGjBxdffDF16tRhwoQJZGdns379+lCHJoQQIfGlfSefOLZhQaORN5FmVOECb0UytALeitzIRsuhUId4Rv485OG/3+Sz76iXukkWGtW00rimhSiHxlfrnXz4cz5KSbsCIUSIqLP4CDMhTyQSExP59ttv2bNnD16vl4ULF2K322nUqFGoQxNCiHMuUyvgO9tfxCkHVYxodHx35q3o1DXiycPNd/a/UCY+I63Y4uJwlkGDahbsVt/2aZpGxVidpHgLq7a52Z9uhDhKIYQQ/yTkTZsefvhh7rvvPi677DIsFgu6rjNt2jRq165d6nVarSHPj8KGxaIH/F+Yj5ShuaRaMkmz5nOBtyK6rqHrvgvtwv8nEcMOWzrpngKqqOhQhloq+S7Fb395qFxBL3afrBSns2WPh50HDWpXsYUgwrInv0HzkzI8H0nzypIIeSKxY8cOYmNjmTFjBklJSbz//vuMGzeON998k8aNGwe9Pl3XSEgw38m1vIuLiwx1COIMSRmaQyR2bFiJISJgucPhu6j2AgV4iXZEkID5jnWWPAOLNZdom0ZkhKXY1zjs4IhwhN2xXH6D5idlKESgkCYS+/fvZ+zYsbz22mu0bdsWgObNm7Njxw6mTZvGzJkzg16nYSiysvLKOtTzlsWiExcXSVZWPl6vNDUwIylDc7HrGloEHDZyiMGOrms4HDacTjeGoTigZxOtbGj5BunkhjrcoHkNRYUIg7+PeImyFz0FOd0Kj8eLQ3eRnh6CAM8C+Q2an5Rh2YqLiyz/tTvmbT16ToU0kdiwYQNut5vmzZsHLG/ZsiXff/99qdfr8ciPvKx5vYZ8ryYnZWgOdahAQ0sCG22HSfFUxHqsK5thKPIMN+laAd2cdbF7LHgwZ3l2SLHxx14P2XleoiOOX0wopfjzoJdalSykVLOE3f4qv0HzkzIUIlBIE4mqVasC8Mcff9CiRQv/8m3btlG3bt0QRSWEEKGjo3G9szHpegFbrEdIVJFUIJIjei45uotW7iS6u+uGOswz0iHZzra9Xlb+4cJuM4iP0nF5FWnZiioVdPp1luFfhRDCDEKaSLRo0YI2bdrwwAMPMGnSJKpWrcrixYtZuXIl77zzTihDE0KIkKljVGBUfltW2Haz1n4AF16SjGj+5Uqmg6smMZh7UjqHTWNQt0iSa1j4aauLI5kGVovGVRfa6NzYQe3KxfedEEIIUb6ENJHQdZ1Zs2bx4osv8uCDD5KZmUlycjKvvfYaLVu2DGVoQggRUklGDH2djentbURUhANngQvlCXVUZcdh0+ja1EGXxnbyXAqbRcNhk1oIIUR5oIE6G8ej8DvGhXzUpgoVKjBp0iQmTZoU6lCEEKLcsWMhFgcePKbtE3E6uq4RExF+J1chhDgflPMu80IIIYQQQojyKOQ1EkIIIYQQQpQrMvxriUgiIYQQ5dRBlcd2bwbWfCtWr6KRSiBGM3dHayGEEOFDEgkhhChnPMpgqZHKcmMvmZoLR54Fl8dLkoriX3p92utVQx2iEEIIIYmEEEKUN18af/GJkUoCDhppCUTb7GS7nfytsnnLu5UobDTXE0MdphBCiPOcdLYWQohyJFM5+U7tJQ47VbQodM03opFV06mrxZGHh++MPSglDXiFEOKsUVrZP8KQJBJCCFGO7FCZHFEFVCGy2OerEMV2lcFh8s9xZEIIIUQgSSSEEKIccWMACotW/OHZho4HIyznlBBCCGEu0kdCCCHKkUpaBA4s5Cg3MZqtyPOZOKmgOYgnIgTRCSHEeUJaj5aIJBJCCFGO1KcCF2jxbFRHSVEJ6BxvV1ugPGTgpLtWiyhNDt9CCHG+WLVqFYMGDSr2uZo1a7Js2bJzHJGPnImEEKIc0TWN6y0NSfc62aLSSFSRVDAcHDHyyMFNK60K3fWaoQ5TCCHEOdSqVSt+/PHHgGXr16/nnnvuYcSIESGKShIJIYQod+pocYyytGSFsY+12mFcyiBJj+JfVKWDVq3YJk9CCCHCl91up3Llyv6/8/LymDJlCn369OH6668PWVySSAghRDmUpEXR19KQ3pYGRFWIwJnhRHlDHZUQQpwnyvlwrbNnzyY/P58HHnggpHHIqE1CCFGO2TULsbr9lKM4CSGEOL+kpaXx2muvcffddxMfHx/SWKRGQgghhBBCiEKKszNqk4J9+/YxcODAU76kJJ2m3377bWJjY+nfv39ZRlcqcotLCCGEEEIIk1i8eDG9e/cmIiL0w4BLjYQQQgghSiUtHTZv1cjN04iNUTRtrKgQF+qohCi/qlevfkZDtW7dupXdu3fTs2fPMoyq9CSREEIIIURQDAO+/lbn6290jqaDpoEyoHIlxbVXGnS9WKGV776qQpxeOZ2Qbs2aNSQmJtKoUaNQhwJIIiGEEEKIIP3wk8aij3WioxQpDUHXweuF/Qdg4SILkZFe2rctp1diQpjY5s2bSUlJCXUYftJHQgghhBAlVuCEZd/p2G1QraoviQCwWKBmDd+N3G++0/F4QhqmEGdIOwuPM3f48OGQj9R0IqmREEIIIUSJ/fmXxoGDGrVqFF/jkFRFsXuvxp59ULf2OQ5OiDA3d+7cUIcQQBIJIYQQQpSY2w0eD9hOMcG6zep73u3WKLcNzYX4J7Lrlog0bRJCCCFEiSVWVMTEQGZW8c9nZkFsjO91QojwJomEEEIIIUqsWlVo3sRg3wGtSD8ItxsOHdZo3dKgYkJo4hNCnDvStEkIIYQQJaZp0Otag4OHNP7YrhFfQREZCbl5kJ2t0aSR4porjVCHKYQ4BySREEIIIURQkqrA8CFeVq7W+fkXjfx8jYoJimuuMOjcwZBJ6YT5Scu8EpFEQgghhBBBS6wIPa42uOoycDohIgKsclUhwobMqFgS8pMXQgghRKnZbKcewUkIEd4kkRBCCCGEEOJE0rSpRGTUJiGEEEIIIUTQJJEQQgghhBBCBE0SCSGEEEIIIUTQpI+EEEIIIYQQJ5I+EiUiNRJCCCGEEEKIoEmNhBBCCCGEEAFkHomSkERCCCGEEEKIE0nTphKRpk1CCCGEEEKIoEkiIYQQQgghhAiaJBJCCCGEEEKIoEkfCSGEEEIIIU4kfSRKRGokhBBCCCGEEEGTGgkhhBBCCCECyPCvJSE1EkIIIYQQQoigSY2EEEIIIYQQhRRnp49EGPa7CGkisWrVKgYNGlTsczVr1mTZsmXnOCIhhBBCCCFESYQ0kWjVqhU//vhjwLL169dzzz33MGLEiBBFJYQQQgghhPgnIU0k7HY7lStX9v+dl5fHlClT6NOnD9dff30IIxNCCCGEEOetMGyGdDaUq87Ws2fPJj8/nwceeCDUoQghhBBCCCFOo9x0tk5LS+O1115j7NixxMfHn9G6rNZylR+ZmsWiB/xfmI+UoblJ+ZmflKH5SRkKUbxyk0i8/fbbxMbG0r9//zNaj65rJCREl1FUolBcXGSoQxBnSMrQ3KT8zE/K0PykDIUIVG4SicWLF9O7d28iIiLOaD2GocjKyiujqITFohMXF0lWVj5erxHqcEQpSBmam5Sf+UkZmp+UYdmKi4ss57U7GqizMSFd+E1yVy4Sia1bt7J792569uxZJuvzeORHXta8XkO+V5OTMjQ3KT/zkzI0PylDIQKVi3RwzZo1JCYm0qhRo1CHIoQQQgghhCiBclEjsXnzZlJSUkIdhhBCCCGEEDL8awmVixqJw4cPn/FITUIIIYQQQohzp1zUSMydOzfUIQghhBBCCHFM+HWMPhvKRY2EEEIIIYQQwlzKRY2EEEIIIYQQ5Yb0kSgRSSSEEKbkVYrt2XnsyStAATWjHCTHRmPRpDraLPIL4Pc/IC0DrFZIaQDVk0CKUAghzEESCSGE6RwqcPH2X/vZmpWLyzBQgEPXSYmL4pY61UiKcIQ6RPEPNv0BHyyBPfvAUL5HXAx0aA19rwUpQiGEKP8kkRBCmEqex8trqXvZnJVLnagIoq0WAHI9XjZk5OD07mNUci1irHJ4K6/+3AP/fQ8ys6FubbDbQClIz4Svvve95ubeUjMhhBDlnXS2FkKYym8Z2WzNzqVhTKQ/iQCItlpoGBPJtuxcfsvICWGE4p+sWA2Hj0KDOr4kAnxJQ8V4SKoEq9bB/oMhDVEIcb5TZ+ERhiSREEKYyqbMHHQ07HrRw5dd17FoGhszskMQmSiJ/AJY/zskViy+xqFiPGRlw7bUcx6aEEKcQDsLj/AjiYQQwlQKvAY2/dQHZJuuke81zmFEIhgeD3i9YDtFyzNN8z3c7nMblxBCiOBJIiGEMJUaUQ7yvV6UKlpPrJQiz2tQM0p66pZXUZFQOdHXP6I4LhfoOiQmnNu4hBAigDRtKhFJJIQQptIqIY44m5WDTleR5w453cRaLbROiAtBZKIkLBbodBE4nZCbF/icUvDXXqhdA5okhyY+IYQQJSfDmgghTKVOVAQ9q1fmwz2H2JadR4LdigakuTzYdI1/1ahMvejIUIcpTqNDa9i2E1auBbsd4uPA5fbNJ1ElEfr1kOFfhRDCDCSREEKYiqZpXJ6USFKEgxWHM9iZk4cCWifE0qlSPC3jY9Fk3NByzWGHQf0guQH8tAaOHAWrBa7qCp0v8tVICCGEKP8kkRBCmI6mabSIj6V5hRjyvb4J6aIsuiQQJuKwQ9cO0KUd5BX4Ol877KGOSgghOHt9GsKwn4QkEkII09I0jagT5pIQ5qPrEBMV6iiEEEKUhnS2FkIIIYQQIkD5nEdi8eLFXHvttTRv3pzrrruOzz//vEzWW1qSSAghhBBCCFHOffzxxzz88MMMGDCApUuX0qNHD8aMGcO6detCFpM0bRJCmJLXUGzf52XPUS9KQc1KFpKrW7CcZrI6szl4VLH9LwOrzYVVM2hUTxETHT7bJ4QQ5VY568+glOKll15i0KBBDBgwAIDhw4ezZs0aVq9eTatWrUISlyQSQgjTOZTp5e3v8tm614PLrVCAw6qRUtPKLZdEkhRv7n4THo9i6XcGy1crMnM0HA4nLpeXpET412Ua7VtIZbIQQpxPUlNT2bt3Lz179gxY/uqrr4YoIh9JJIQQppLnVLy2LJ/Nuz3UqWwhOsJ3hz7XqdiQ6sHpzmPUddHERJj3YvvLHw0++UaRUAEa1YfoKAvZOV7+3q9461NFVIRG82SpmRBCCLPZt28fAwcOPOXzy5YtK3Z5amoqAHl5eQwePJjNmzdTs2ZNhg8fTvfu3c9KrCVh3jOtEOK89Nufbrbu9dCw2vEkAiDaodGwmoVte7389qcnhBGemcxsxXdrIC4WqiRq6MeaalmtGnVraOTlw3e/GChVzurdhRAinKiz8DgDOTk5ADzwwAP06NGD+fPn07lzZ0aMGMHKlSvPbOVnQGokhBCmsulvD7oGdmvRO/J2q4ZFh41/uunUyJyTEuz4W3EkXXFBneKfr5II2/9SHE6HKhXPbWxCCCHOTPXq1U9Z63A6NpsNgMGDB9OnTx8AGjduzObNm1mwYAEdO3Ys0zhLSmokhBCmUuBS2E7TBcJmhXyXee/Wu49VplgsxTddstnA4wWPeStdhBDCBMrX8K9JSUkAJCcnByxv2LAhe/bsOaN1nwlJJIQQplIjUSffRbFNe5RS5Dl9IziZVaV4DYcdcvKKT4Yys6FCjEZ83DkOTAghRMg0bdqU6OhoNmzYELB827Zt1K5dO0RRSSIhhDCZVvVtxEVpHMwwijx3KNMgNlKjdQNbCCIrG/VrwQV1NHYfAMMITCYKnIqMLOjQEqIipLO1EEKcNeWsj0RERARDhgxhxowZLFmyhL///ptZs2axYsUK7rjjjjNb+RmQPhJCCFOpU9lCz4scfLiygG37PCTE6GhAWo6BzQL/ah9BvSrmrZHQdY3rr9RJzzTYslORmKCoEGtwJE2Rkwetmmh0by/3gIQQ4nwzYsQIIiMjeeGFFzh48CANGjRg2rRptG/fPmQxSSIhhDAVTdO4vKWDpHgLK7a42HnAg1LQur6NTo3stKxnRdPMfbe+TnWNUQN0VvxqsHYLuNyQVEnjXy00OlyoERNl7u0TQghROnfccUdIayBOJomEEMJ0NE2jRV0bzetYff0lgCg7pk8gTpRUSaPvlRZ6X6ERFRWNsyBXhnwVQohzRQ63JSKJhBDCtDRNI8oR6ijOLrtNIzZGw+PW8HjkzCaEEKL8kERCCCGEEEKIAOFTw302SY89IYQQQgghRNCkRkIIYUouj8GybXlsOuBEKUXTqg6uSInGbpX7I0IIIc6QtCQtEUkkhBCms/lAAY9+cZgdR514DN/x3qbDgl8cPHpVZZpViwh1iEIIIUTYk1t3QghTOZrr4cGlh9hy2ElipJV6Fe3Ur2gnMcrKH4edPLj0IAezPaEOUwghhAh7kkgIIUxl8cZsUtNc1IyzEuU4fgiLsuvUjLPyV7qbjzdmhzBCIYQQ4vwgiYQQwlR++jMPXdOK7Qtht+roGqxIzQ1BZEIIIcKGOguPMCR9JIQQppLnUlj0Ux+RLTrkucP0iC2EEOIckeFfS0JqJIQQplKvohWXF5RhFHlOGQYuL9RLsIUgMiGEEOL8IomEEMJUrmsSR5RN43Be0UTiaL5BpFXjumaxIYhMCCFE2JCmTSUiiYQQwlQ61o3g+mZxuLwGf6a7OJrnIS3Pw5/pLgrcBr2bxdGlXmSowxRCCCHCnvSREEKYiq7rjOueSINKDhZvymJXmgsFNE+KoFezOG5oGYOuyz0SIYQQ4myTREIIYTq6rnP9hXH0aRFDer6BYUBitC4JhBBCCHEOSSIhhDAtXddJjJbkQQghRBk6W30awrCfhJyBhRBCCCGEEEGTGgkhhBBCCCECyDwSJVEuEonFixfzyiuvsHv3bmrXrs2oUaO45pprQh2WEKIcy8nz8uLSHNZsNVAK2jTSGdMjhpgoS6hDKzMHXU62Z+dgLcjA6jRo5IghxlouDtuiBAxDkXrQy99HFNHRGrF2Nw2r6tiscoEiRLkXhs2QzoaQn5E+/vhjHn74YR566CG6dOnC0qVLGTNmDFWrVqVVq1ahDk8IUQ4t+TWPMS+4yDpqQSlfC81VP8Mbn2TxzD0OerePCnGEZ8ajDJYeOcDyjCNkGh4cNisut4ckq4N/Va5G+7iKoQ5R/IOMXIO3vytg058eCtzgsLswvF7qJVm45dIIalcOn4RXCHH+CmkfCaUUL730EoMGDWLAgAHUrl2b4cOH06lTJ1avXh3K0IQQ5dT2Ay7ue8ZF5mEr9kiDmHjfwxFpkHXUypjnXfy+2xnqMM/Il0cP8cnRA1g0jUZRMTSLq8AFUdFkeN28dWA3G3OyQh2iOA23R/HGN/ms/sNNYqxG41oWmtW1U7OyhT/2eljwdT5p2UUnVBRCCLMJaSKRmprK3r176dmzZ8DyV199lWHDhoUoKiFEeTb1/TxyMyxExnmw2Y8vt9ohMtZLXpaFZxblhS7AM5TpcfNd5hHiLFaq2B3omq8ZjFXTqRsRRZ7h5buMwygl9e7l1dY9Hjb+6aVukoXYKB3tWBlG2jWSa1hIPehl7Q53iKMUQogzF9KmTampqQDk5eUxePBgNm/eTM2aNRk+fDjdu3cv9XqtVhmMqqxYLHrA/4X5hFsZrvlNgQYWS9F25oXL1mw073EgNS+PNI+LC6Ji0DXNn0jomgY6JDkc7CjIJV15qGJzhDhaUZzt+w08hiIm0rcPnliGNqtOdITB+lQP11wkM7CbRbgdR0UJyL2aEglpIpGTkwPAAw88wKhRoxg3bhxffvklI0aMYMGCBXTs2DHodeq6RkJCdFmHet6Li5MTntmFSxm63emgHb84K0IHj9u8x4FIIw+bzUpMZGCS4HDYAPBadQpcBUTHRZAQae6+IOHKavMS6fAQGWELWO5w+E65sdEa6BbT7qPns3A5jgpRVkKaSNhsvoPs4MGD6dOnDwCNGzdm8+bNpU4kDEORlWXeZg3ljcWiExcXSVZWPl6vtOk1o3ArwypVDI4etOD1Gmgn3RxUBihDp3JlRXp6bmgCPEP2AgPNa3A4J48YqxVd03A4bDidbgylOODMJ9piRcv1kF5gzm0Md7EOD3kFXnLzXf5aJYfDitPpwVCKIxkeGtfUTLuPno/C7TgaanFxkVK7EyZCmkgkJSUBkJycHLC8YcOGLF++vNTr9XjkR17WvF5DvleTC5cyvOlyK49tVhTkaUTGBNY9F+Rr6BbFjZdZTbutdWyRNHREszE3i5SoGKzHTraGUuR5PKS73HSrXBm70ky7jeGuWW0LibEauw95qVXZ4u+NaCjFkUwvVouidX3z7qPns3A5jgpRVkKaDjZt2pTo6Gg2bNgQsHzbtm3Url07RFEJIcqzId2jaNvOjWFo5GTq5OdBQR7kZOgYHo3WrT0Mv9K8TX50TeP6KjWo6YhkS14O+5wFHHE5+Ss/j9T8PFrFxtM9vnKowxSnUbmCTt9ODjRg624PhzIMDmd62b7XQ1q24spWDprWluFfhSi/NFBn4RGGk9yFtEYiIiKCIUOGMGPGDJKSkmjRogVLly5lxYoVvPbaa6EMTQhRTlmtFj58qAIPv5XDkuUGGUd9F2SJSR6uuUTnqUFxWK3mvkirExHFqJr1WZGZxtqcDFyGQZI9gn8lJtChQkViLCGfAkj8g06N7STE6Py0xc0fez14vNCsjpX2KTbaNrSi6+F3QSGEOP9oqhyMIbhgwQLefPNNDh48SIMGDbjnnnu4/PLLS7Uur9cgLU3anZYVq1UnISGa9PRcqc41qXAuQ4/HS+oRL14vNEyymD6BKI6hQ1RcBM5sJ8ob8sO1KAW3oVEhLgpnfh5eKUNTCufjaChUrBhdrvtIHHU6mbp5Y5mvd0KT5iQ6wmu0vXJxW+uOO+7gjjvuCHUYQgiTsVotXFA1/JKHE9l1nVibDY/mwiPjEZpSpF0jOlLHVaAhY0oKYRLyUy2R8psOCiGEEEIIIcqtclEjIYQQQgghRPkh/ZhKQhIJIcJUTr7i9788ZOdB5USdGgkGleJCHVXZcXkMlqVms+mAE6WgaVUHV9SPxW7SGa3PR/kF8PsWjbR0sNogpaGielU41VyDQgghyhdJJIQIQ2u2eVi8wsm+owaaBjabhyi7wcVNrfTsaMdmNfeV2ubD+Ty69Ag79ig8HlAKbNYCFtTM4tHrKtGsisw+W95t2qLxwccae/ZpGAYYCuJioENbRd9eBhHh1R9RCGE20keiRCSRECLMbP7LwxtfF+DyKBpU13HYdCIibPx9wMmSVS6sFujVybxXaUfz3Tz48WF2/Q1VK0NUpC8pystX/JGqeHDxEeYNqEpStC3EkYpT+fNv+O87OplZULc22O2+ZDA9A776VgN0br7BkJoJIYQo56QNgBBhRCnF8g1ucvIVdZN0bBbflZimaVSJ14mP0fhho4f0bPMOX7h4cxape6BmteNJBPj+XbMa/LVP8fHmzBBGKP7Jip91Dh+BBvV8SQT4mjNVTICkKrBqrcb+A6GNUQghxD+TREKIMJKWrdi2x0uVeA2tmNu5lStoHM022L7XG4LoysZPO/PRNbDbim6f3aah67BiR34IIhMlkV8A6zdpJCYW3xeiYgJkZcO2nVIdIYQIIXUWHmFIEgkhwojHC14vp+wDYTk2m67HvHkEeU6F5TRTR1gskOc6d/GI4Hjchfto8c9rmu/hdp/buIQQQgRPEgkhwkiFaI0KMRoZucXf+sgtUNitkBhn3p9+vcpWXC5QxbTOUga4XL7XiPIpKgoqV1JkZhX/vMsFug6JFc9tXEIIEUg7C4/wY96rCSFEERF2jY5NrGTlKgpcgcmEYSh2HzZoWN1Cw+rm/elf1ySWqCg4nFE0WTqaqYiMgOuaxIQgMlESFgt0aqdwOiE3N/A5peCv3VC7pqJJozBtByCEEGFEbtsJEWa6trCza7/Br9s9RDkgLlpHy/Gw74iXmpV0rr/EgcVi3jsjHWtGcX3HPBb+WMCfexWx0b6mMFk5YLXA9Z0ddKkdHeowxWl0aKvYtlOx8hcNuw3iK4DLDWlpUKUy9OutZPhXIUTonK0+DWF4f6TUiUReXh5RUVEAfPnll+zbt49u3bpRt27dsopNCFEKMZEad14dQZPabn7a7CEzVxEXo9O7k4P2jaxUSzRvbQSAruuM61KJBpUzWbw+h137FMqA5g01erWI4YamFdB1c29juHM4YFB/g+QGGj+t1jhyVMNqgasuU3Rub1C7ZqgjFEIIURKaUiqo/GjXrl0MGzaM6667jtGjR/Piiy8yZ84clFI4HA7mz59PmzZtzla8/8jrNUhLy/3nF4oSsVp1EhKiSU/PxeMx75Ch5yuvV+E2dJIqR5Obkxd2ZWgYBulOL4YBiZGWsEwgwv03aBiQl+/rfO0I01qIcC/D84GUYdmqWDEai6X8Hq+PFjiZuvH3Ml/vhOZNSQyz6tagS/HZZ5/FarVy2WWX4XK5ePvtt7nmmmtYs2YNXbp04cUXXzwLYQohSsNi0YiJ1IodKjUc6LpOYqSNytG2sEwizge6DjHR4ZtECCFEOAv6zLtmzRrGjh1L8+bNWb16NdnZ2fTv35+YmBhuuukmNm3adDbiFEIIIYQQ4tyQeSRKJOg+Em63m7i4OAC+//57IiMj/U2ZvF4vVqv03xZCCCGEEGYWnjX5ZS3oq/7k5GS++uor6tWrxxdffMHFF1+M1WrF7Xbz1ltvkZycfDbiFEIE6fe/Xbz0aR770xUVYzO5vpOVXhdFhjqsMpOT7+XFZZms2eZBKUWbC2yMuaICMZGnma1OlCv5TsXvOxRpGWC1QkpdjepVKHZWdiGEEOVP0InEvffey8iRI3nrrbew2+3cddddAFx11VUcOXKE2bNnl3mQQojgjJyTwSffe3E7NRSgKQ9fr3TzbN08PnyoApXizF1zuGRjDmOm5ZN10I7y+rZl1feKNz5N45kREfRuFRviCMU/2bTD4IMvDfYcUBgKDAVx0dChpU7fy3UiHJJMCCFCKEybIpW1oK8mOnfuzKeffsrGjRtp2bIlNWrUAOC2226jQ4cOpKSklHmQQoiSm/xuNh99Y2AYGpHRCt0CKEV+PmzboXHTU5n874nEUIdZatsPOrnvxXxyDjpwVHBjc/iO9h6XRtY+B2NednLBkzaaVosIcaTiVP7cp/jvYoPMHKhbE+w2DaUU6Vnw1U++EXFuvlaXmgkhhCjnSjXMSa1atbj22mv9SQT4EglJIoQILY/Hw8JvnXi9EBmlKBzISNc1IqNAtyq27oLvfy8IbaBnYOqnWeQechBZ0eVPIgCsdkVkoou8w3ae+TQrhBGKf7LiV4PD6YoGtZR/RDFN06hYQSMpEVb9ZrD/cIiDFEKIcubgwYOkpKQUeXz44YchiynoGgmXy8Wbb77Jr7/+SlZW0ZO1pmn897//LZPghBDB+W6zh4wMHZv9eBJxIocD8nM13v6+gEuamvOO/ZpNvuEvLMUcvSxWQFP8svFcRyVKKt+pWL/VIDG++L4QFSvA1l2w7S9F9SpSIyGEEIW2bt2Kw+Hgf//7X8DxMzY2dM15g04kHnvsMT744AMuuOAC4uPjizwf5Px2QogylJ2nUAp0TVHciBOFyUWBy7y/U5cT0E8Tv67wOOUCtLzyeMDrBbu9+Oc1TUPTFG73uY1LCCEClMPT5LZt26hbty5VqlQJdSh+QScSX3/9Nffccw8jR448G/EIIc5A6wZWbHaF26VhK+ZCze1RoGkk1zBvZ+sqSYq0v3UMgyK1LoYByqtRparMPFteRUVA5Yoafx9QVKxQ9HmX21eblhh/zkMTQohy7Y8//qBBgwahDiNA0FcTuq7TqlWrsxGLEOIM1a5so3F92PC7jsfjxWo9fmfeMMCZrxMbZ3DvteYdBvbmbg4e+83AmWMhMs4b8JwzR0e3KW68VKZJLq8sFo1OrXS2L/aSm6eIjjq+jyql+GufRu2q0KSB1CoJIULp7ByD9u3bx8CBA0/5/LJly0753LZt20hISGDAgAGkpqZSp04dhg8fziWXXHI2Qi2RoDtb9+7dmw8++ADDkDt+QpRHzw+JJT7RizNfJzdXoyAfcnMUedkajgjFmH4RxESZt0ZiSOdY2nYqwPBo5By2kZ+jU5Cjk3PYhuG20LpDAcMvkeFfy7MOLTQ6Xqix+yDs2qNIy1QcOKLYsgsS4qDf1TL8qxAixMrZzNYej4ddu3aRmZnJPffcwyuvvMKFF17I0KFDWbly5Zmt/AxoKshODU6nk969e+PxeGjatCmRkYF3NjVN48knnyzTIIPh9RqkpeWG7PPDjdWqk5AQTXp6Lh6PJI9msXWPiwdfz2XdVgO3C3QL1KulMaqngxs7R4c6vDPm8Xh5+MMMlnznJeOQDYAKVdxcc7HOU/0SsFrDZ1K6cP0NOl2Kn39T/LTO4Ei6wmKBVo11OrfSqV0tvJKIcC3D84mUYdmqWDEai6VUA4eeE0cLnExdt6XM1zuhVWMSI0pfY56bm4vFYiEi4vhgKUOGDAFg3rx5ZxxfaQR9W/LZZ58lNTWVyMhIfvvttyLPy7jfQoReo5p2PnrITk6ehz0ZcEGtGByaK2xOgFarhaduTOSJvl5Sj3rwKmhYyRpWCUS4c9g1urbV6NJaI68AbFbfMiGEEMWLji56I/CCCy7gxx9/DEE0PkEnEp988gm3334748ePRy9ufEkhRLkRE2WlWZxOQoKN9HRXqMMpc1arhQuSJHkwM13XiIkKdRRCCFG+bd++nf79+zNr1izat2/vX75p0yYaNmwYsriCTiS8Xi/dunWTJEIIIYQQQoSncjb8a4MGDahfvz6PPfYYkydPJiEhgffee4/169ezaNGikMUVdDZwxRVX8Pnnn5+NWIQQQgghhBAn0XWd2bNn06JFC0aPHk2fPn3YsGEDCxYsIDk5OWRxBV0j0bJlS5599lm2bt1Kq1atirTX0jRN5pgQohxYs9nFlDfdHExTVIjJpf9lFgZdc4pZwEwop8DDi99ksmanC6WgTX07Yy6vQEyEeUekOtkPPysWf6VwuvKpFG8w8AZFg7rSj0CIc8XpUmzZqTiaoYiPd5FUUVGjipL+oOeF8lfGlSpVYsqUKaEOI0DQozY1atTo9CvUNLZsKfue7iUlozaVLRmpwpxumpjL8rVeDK+G72Co0DSoWhm+eCGCaom2UId4RpZszGbM65lkZWkUHsI0TSM2VvHMgAr0bmXu4V9zchV33Q+rNxm4vKBpoBREOTRuuk5j8tjyd4ITpybHUXPa+bfi3aUGqXsVSoHVZsVu9dKyEdx0jU5MtPwOS8sUozb9urXM1zuhdaMzGrWpPAr61t3WrWX/xQohys69z+Xx7S8GSmlYbaDrCmWA2wv7D0HPcQWsWWDeRGL7YSf3LcgkJ0fD4VDYjm2Kx63IytIY899MLkiy0bR6xOlXVI6NeAhWbDCwWyExVsNm03G5DDLzFK9/rEiM17l3sFzECHG2HDyimL/I4MBRRd3qEBmhExGhc+Cwlx/XKAzDYMgNOrouv8OwVc76SJRXZ5QO7ty5k/Xr1/P333+XVTxCiDPgdrv5ZIXn2N0zKDzH6TrYbYCm2HNIsfQn847gNHVpBrk5EBl5PIkA3/ZGRiry8jSe+SIzdAGeoc1/KH7+zcBmgbjo4xcqFotGxVgdj1fx7qcKr1fOckKcLT9vMNh7SHFB7ePDEmuaRnysRq1qsG6zYqdc+ghRukRiyZIldOnShR49enDzzTdz1VVX0aVLFxYvXlzG4QkhgrHkJ0V+voamH08iTmS1ahhejdc+c5/74MrImu2+2C3FjPrqW6b4Zbt5t2/xlxr5LoiJLP5OZ5RD50CaYuWv5zgwIc4TSinW/g5x0RRb4xAbrZHvhG1/STIvRNBNm7755hvuv/9+OnTowJgxY6hUqRKHDh3ik08+4cEHHyQ+Pp5LL730LIQqhPgnmTkGiuKTCE5YXuA8ZyGVOZeL098C0cFj3jyCAqfv4sRiKb4QLTo4FeTlSpMKIc4Gw/B1sradpgWopoHHc+5iEiEgeWKJBJ1IzJo1i6uvvpoXXnghYPn111/Pv//9b+bMmSOJhBAh0rm5BYvuwmtoUMwd+8J+nsm1y28nt39SpaJGWqbCMHxNtk5kGKAMjSoJoYmtLFxQz7dd+U5FpKNoslDgUjhsGk1SFOVxVBEhzM5i0ahVVWPDH4qkxKLPFzYrTIw/t3EJUR4FfTWxbds2+vTpU+xzffr0kc7YQoTQBbVt1KqqgQLvSYPDGAYYHrA7YOLt5h0i9ebOUb678sXUqjhdvs7lN3Yy71TJ/XtBlQo62QUGhhF4S8zlVrg90KaJRs1qkkQIcba0b6mhAZk5gb9BpRR/74eqlTRapMhvMLxpZ+ERfoJOJBISEsjMLL4jY0ZGBnZ7+IxTL4QZzRzrIDISvB5fMyC3G5xu8Lg1LBbF3X2sVIg176hNQzrF0raxjmFo5ORo5BdAQQHk5Pj6f7RO0RnexbzDv9rtGg+NhNgInSPZiswcg6xcg/Qc36hN1Stp/N+4UEcpRHhr1VijazuNQ0d8w8AezVAcOGywZZciwgH9rtaIiwnPC0MhghF0ItGxY0emT5/OgQMHApbv37+fGTNm0Llz5zILTggRvLZN7Cx+ykGT+hpWm+9umq5BtcqKyXfZ+c/tkSGO8MxYrVY+HFmF265wUKmi8t/jSayoGNDdzsf3VMFqNW+NC0CfazRm/59Gx+Y6NquGYUBMhEaPLhbenabJpHRCnGVWq0b/a3TuvF4nua6Gx+PrF9G9vc7IWyy0bmLe5qGiBNRZfISZoCekO3z4MNdffz0ZGRm0atWKSpUqceTIEdatW0eFChV49913qVGjxtmK9x/JhHRlSyZSMrfMbDc792k0rh9DbKQr7MrQ4/GQmu7F61U0rGQ1fQJRnKxsDa+KJCYyH5stDM9C5wE5jpqbYShcHp3KlaLJz8uTMiwD5X5CunwnU9f8UebrndA2hcTI8JqQLuhSrFy5Mh999BEDBw4kPz+fTZs2kZ+fz8CBA/noo49CmkQIIQJViLXRrqmd2tXN25TpdKxWKxdUdtCoakRYJhEAFRM0khtYiDzFcLBCiLNL1zViojQiihn8QIjzXanOvImJidx///1lHYsQQgghhBDCJEqVSKSmpvLyyy+zevVqsrKySEhIoG3btowYMYKGDRuWdYxCCCGEEEKcO9KStESCTiR27NjBTTfdhMVioXv37lSqVInDhw/z7bffsnz5ct5//30aNGhQ4vUdPHiQSy65pMjyKVOm0Ldv32DDE0Ic89UqJ5PmeEjP1IiMyOHGq3QeHBQR6rDKTFqmm7EzXfy2zUApaJ6s88JIOxUrhE8zrjc+dvPmEihwuagUb3D/nRY6tCxmghBRLhkGpP6l8fcejegog9gYaFif0050JoQoD87WcK3h1zwu6ETi2WefpWbNmrzxxhvExh4fYjE7O5vbbruNF154genTp5d4fVu3bsXhcPC///0PTTv+BZ+4biFEcLoMzeWP363gOT4c8wu7FLPfzeXbeTbqVzf3MM2zP81n8mwPXu/xZXsOGHz1YwEPDnFzb1/zziMBcCTd4Mq7XOzdbUV5C4+LFlb84qVzOy+LXjR3+Z0PMjLh7Q90Nm3WKSjQcNi9GIaFenU1bunnpXbNUEcohBBnLujO1r/88gt33313kQv92NhYhg4dyi+//BLU+rZt20bdunWpUqUKlStX9j8iIsLnzqkQ51Kf8bn8sdEGXg3sXnAYvv9rivyjdi4f6g51iGfklz9cPDrLc2zCPYWua+i6Bii8Bjw518sPG4uZrc5Err3bzZ6/bChNYY3y4ogxsEZ4MTw6P6zUGfaoK9QhitNwu+GNdy2sXqOTmKBonKJo1kSjZk3FH9s1FrxpIS091FEKIU5Lhn4tkaATCavVisNR/NBVdrsdlyu4E9wff/wRVFMoIcSpOZ0uVv6igaGBzfANfA5ouuarf9QNctKszF9aENpAz8ADM5wY/iTi+CFM13XQFIaC/8w274X2sp89/P23DhYDu0OhHytD3aJhjzTAq/HF9+B2yxCU5dXWbRobf9eoW0cRG+v/GRIZAckNFal/aaxdX36HvhRCiJIKumlT8+bNefvtt7n00ksDmiIppXjrrbdo1qxZUOvbtm0bCQkJDBgwgNTUVOrUqcPw4cOL7TdRUlarHKDLSuE4z+V5vGdx3JzFBkaBFSzHk4gAVgUuC69+5GLov8xZptv/9P1f14rGr2s6hlLs+Nu8x4H5HxkYbgvWSC9F29NqaDaDglydRf9T3NrTnNsY7rbv0vB4NWKifX/7k0FNw2aD6GhY/5vONVeEMEgRFDkXinCQlpbGq6++yk8//cThw4eZN28e//vf/2jUqBGXX355qdYZdCJx3333cfPNN9OrVy+uvvpqKleuzOHDh/niiy9ITU1lwYIFJV6Xx+Nh165dNGzYkAkTJhATE8PSpUsZOnQoCxYsoGPHjsGGh65rJCREB/0+cXpxceaeDfl8ked2A17Qi+YRmub7jwI8Xt20vxPDyARO32VNGZh2+zxeX9MziyVwCwvLU9fB6wW312babQx3VquXyAiDyIjAMnQ4fKfc2GgFmkZCQnjOfRLO5FwozGr37t3cfPPNOJ1O2rRpw9atW/F6vaSmpjJz5kxmzpzJpZdeGvR6S1UjMW/ePJ577jmmT5+OUgpN02jWrBlz587loosuKvmHW62sWrUKi8Xi7xPRrFkztm/fzquvvlqqRMIwFFlZeUG/TxTPYtGJi4skKysfr1eaUpR33VsZTNEVeDWUfrxBpqaBUoBXgQZ1ayrS0805A3xMlCI9W8Orjjf7KWQo3/ZFR5p3+y6orfhWB7dLYbUda5pWWH6A1wO6VdG2ide02xjuYqM18vJ1cvMUuu6riXA4rDidHgylOJKm0biRQXq6ufvynE/kXFi24uIiy3/tTpj1aXjqqadITEzkjTfeICoqyt+C6LnnnsPpdDJ79uxzk0h89NFHdOrUiffff5/8/HyysrKIi4sjMrJ0WXp0dNE7ahdccAE//vhjqdYHyPT1Z4HXa8j3agItG9qITcwh+6DDN/akfsKFtlLgsUCEl+n/tpq2PHt3t7Bg8bHYT66WOHbg73Gpbtrte+gunf9+6MGZY8GweI91JPfxenxlWKO2m8b1babdxnDXrAkkVtTYvUdRqyb+3oiGUhw5qrBaoHVLA48nzK5UzgNyLhRmtXLlSp588kni4uLwnjjkIdC/f39Gjx5dqvUGnQ4+9thj/PbbbwBERkaSlJRU6iRi+/bttG7dmlWrVgUs37Rpk0xsJ0QpzXrYhhbpAbcFXBp4QLk0cFnAatDnGi+VK5p3+ND/u9NO9STfBZhhqIAHQNVKiqeGFj8ghBlEReqMGqhhsRt48iy4CsDlBFe+htdpwRHnYcZ/ZCKC8qxyJejb04umaWz9Q+PQYTh8RLF9J6Sla1zZ3aBpI0kihBDnltVafP2By+UK6PccjKATiapVq5KTk1OqDztZgwYNqF+/Po899hhr1qxh586dTJkyhfXr1zN8+PAy+QwhzjdXtnfw7vM6lWq7wKYADXRFZKKL4bcbzJlg7nb1druN1XMj6dJWw3bCMdFmhU6tYM38SOx2c19oPzDYxpTxUK2OB92iQGlYHQaNm3j4aJpVJqUzgU7tFcMHe+ncwXf32uOBZo1hyCAvvXsY6OW8VYcQ5z2llf0jhNq2bcucOXPIyzve/F/TNAzD4J133qF169alWq+mlArqtshrr73G9OnTufbaa0lJSSm2aVLv3r1LvL4jR47w3HPP8cMPP5CVlUWTJk0YN24cbdu2DSYsP6/XIC1N2g2XFavV1yk3PT1XqnNN6HCaiw2p0DI5mmoJ3rArQ5fLzYZUhcetaJOsmz6BKM6+I5CVZ6dWJRfR5p5n77zl9uhUiIvC6cyT9vUmJefCslWxYnS57iNxNN/F1J+3lfl6J3RIJjEyNC0Ctm3bxs0330xkZCTt27fns88+49prr2Xnzp389ddfvP322zRu3Djo9QadSDRq1Oj0K9Q0tmzZEnQgZUUSibIlB0/zkzI0Nyk/85MyND8pw7IliURopKamMn36dFatWkVGRgaxsbFcdNFFjBw5kpSUlFKtM+jO1suWLSvVBwkhhBBCCCFCo169ejz99NNYLL7msfn5+Xg8HmJjY0u9zqATiRo1apT6w4QQQgghhCj3wmw8BLfbzeOPP86mTZtYtGgRAOvWrWPo0KEMHDiQ+++/H70UnbdKNRvOd999x88//0xWVhaGEVjFp2kaTz75ZGlWK4QoQ1+tcjFpvpP0bEVkRBY3XmrlwUERoQ6rzKQeyOP6Z7M4kOkbxi4pzsKH98dRr2r4dCT44Y98Fq/Jx+lNo1IMDLw4igZVzDvi1snSsxRLf3Kz94iB3aZxSUsrrZL1gCFvhRBCnLlp06bxySefcM899/iXFfZLnjZtGgkJCQwdOjTo9QbdR+LVV1/lmWeewWazUalSpSLDRWmaFtLmT9JHomxJu1Bz6jIimz9SFXhOuLugKyJjvHz7cjT1a5i7U/LQGWksXptPcRNJXNM8gv/+OzEUYZWZnAIvd81NY/V2Ny6vQsN3cyzKoXFT5ygmXx8f4gjP3Mffu5nxST6HsrwYvoGpiLRpdEi289jgSOJjwieZkOOo+UkZli1T9JFYub3M1zuh4wUh6yPRrVs3hg0bxk033VTkuTfffJPXX3+dr776Kuj1Bl0j8eabb3LdddfxxBNP+GejFkKUH30m5PDHTnxXZjavb1I65ZvtOj/LyuWjc9n1fnyowyy1d7/POZ5EKHV80j1Dgabx+cYC5n2VzZArS9/mM9RGzE9jxVYXdqtGYoyGzWrB5fGSmat4fXkuiTE6914VF+owS23Fbx6eWZRHrlNRLcGC3aqhlCIjT/HtJicTX4UX74mUmgkhhCgj6enp1KpVq9jn6tevz4EDB0q13qDTwaNHj9KvXz9JIoQoh5xONyt/94Khge34zNaapvluG1gMcrJ15i8tCG2gZ2DC21m+f5yYRMDxhAn4v0XZIYisbGze4+LnbW5sFo24KM3fZtWi61SM1fEY8O6PeUVmJjWTd79xkZlnUKuijt16fB9NiNZJiNZZtc3Fhu1y11cIEULqLDxCqH79+nz55ZfFPvfNN99Qp06dUq036BqJJk2asHPnTjp06FCqDxRCnD3zP/NiuHSwGFDcLJW6AreFVz91c+d15rwZkOc6djQu7m71sWQi323eXnKL1+aR71ZUjC7+bnyUXeNAhpeVO1xcnBJ5jqM7c+lZinW73MRFaMXOpBofpfHnEYMffvPQKkUm3hNCiLIwaNAgJkyYQEZGBpdffjmJiYmkpaXx7bff8vnnnzNlypRSrbdEicS+ffsCApk8eTI2m402bdoQGVn0RFa9evVSBSOEODNpmccuoE/VIuTYxbfTc27iEcErOJYEWSzFF6JFB6c6IaEymXynwmuAzVr89hUmFwUm3T4hhCiPevfuTW5uLjNnzgzoC5GQkMAjjzwS1GTSJypRItG9e/eAO0dKKSZOnFjs3SQgpBPSCXE+u6aDlZcWun1NmyzFXIh5AQ3qVzVz23MF6L4+ESfXShzrJwHmbRZzQVUrugb5LkWkvWg5FbjBYddoYtIO85XiNRJjdfZneEiILtq61uVWaBrUqlJ+O2IKIcLc2WqKFOL7IwMGDOCWW24hNTWVjIwM4uLiqF+/fqmGfS1UokTiySefPGXSIIQoP1o3shEbl0v2UauvedOJF9pKgccCDi8z/m3eIVKb17Kxcbf31LUuQONq5rzIBujfPoqXP8thf6aBw0pAh2OXR+H2Kjok26lZ0ZzbaLdpXNXGztyvPOQVGERFHD+BKaXYn2lQNc7CNR3NuX1CCFGeaZpG/fr1y2x9JUok+vbt6//3vn37qFy5MjZb0YO80+nk999/L7PghBDBmzUmioGP56MKLKAp0JWvD7LXAjaDPpfYqJxo3ou0T8bH0uDedAylHbtrVNicSwNNQ9MMPnsoPpQhnhG7zcJDfeN46J1MjmQrHFYDq0XD5THwGFA9wcL/3Vgh1GGekduusfPrDg+/7nJhyTWIidDxeBXZTkV8pM69fcJr+FchhBmZ/xjUuHFjFi5cSIsWLWjUqNFpKwU0TWPz5s1Bf0bQna0vu+wyf1An++233xgyZAgbNmwIOhAhRNm4sr2ddx+FkS/kcyQN8Oq+OSRiPdx+pZ3JQ81bGwEQHR3Fzpeh7YNZHM05sWZCkRBl4den4omONvc29mkbTcVonelfZrPxbw9eQxETqXNxIzvje8RSz+ST0sVFa7x0TxT//dzKl2tdpOUYWHSNy5rZuekyOx2almquVCGEECcYOXIkSUlJAIwaNeqsfEaJjtZPPfUUGRkZgK/qeebMmSQkJBR53ZYtW4iNNe/Y7UKEi25t7Gx+087ho242pELLlGiqJXjCZiKl6OgotrwcRW5uHp+uNXC54foOuukTiBN1bRxJ18aRZBUYeK0OYjQXtlN0wDajuGiNe25wMLy3naNZikiHRtwpRqoSQohzLgzGezgxeahRowadOnXyJxZlpUSJRP369Zk1axbgq/rYtGkTdnvgHTGLxUJsbCwPPvhgmQYohCi9yok2rk7SSUhwkJ4efkM1RUdHcdMloY7i7KoYYyUhIYL0dG/YJIInslo1kipKAiGEEGfTY489xtNPP80VV1xRpustUSLRr18/+vXrB/hGcJoxYwaNGzcu00CEEEIIIYQQZa9q1ark5OSU+XqDboj6zTffnPb5nJwcYmJiSh2QEEIIIYQQIRUGTZtO1L9/f5544gnWrVtHSkoK0dHRRV5Tmrkkgk4kXC4X//3vf1m9ejUulwt1bMQUpRR5eXns2LFDOluLcs/t9jBviZsPvnfjckONSjoPD3TQvIF5RzM62WV3ZbDx9whQOmh52CLd7F0WPn2Y3vw0gzEzgSivb0GezvMjNG7tGR/KsMpU6+vc7NltAZUNusF1V7hZ8Kwj1GGVmf1HDF790Mvf+8Bhh+u6alzRwXLKyfhE+bPzL8VXPygysiExXuOarlCrupSfEOXN1KlTAXjvvfeKfV7TtHOTSDz99NO8+eabJCcnk5aWhsPhoGLFimzbtg23233WeoULUVa273HzrwfzOHpER3l1QPHHdvhubR49uliZO75olm42VToVgCvGNzEdABbcThtV2rsYNzSP8YPjQxneGat+bQaeKnlwgRMKpyFQMOZDO2NnKA5+UXQwCDP58nsXA4fbwBl1rAwVoLH0YztVvnZxaIP5J2ub/q6bWa9pZGdZfCP4KljyhaJJEw/zn7CQlGj+bQxnHo/imbkGS5YrsnOPTQSpFG98otHvKp1Rg7SAOVCEMJ/w2n+XLVt2VtYb9JH6q6++4o477uCTTz7h1ltvpVmzZrz//vt89dVX1KhRA8MIv86AIrz0fjiXI4d8Q6JaI73Yow0sDi9et84ny71MejUv1CGekSoX54HT5rsA1ZRvhmtN+Y6JbgvPvhIZ6hDPyJUj0/BUzYX4AiiwQrbd98i3QrwLVSOPTrcdDXWYZ2TgcBvkHxvQwuIFm/L936tBjoOk1t7QBniGFi1z89IrGtnZOhXiDSpXMUisYmCzwYYNFu582IvXG2btCsLMrLcU732hMAyoU12jXg2N2tU0nG7472KD/y4KdYRCiBPVqFHjHx+lEXQikZaWxiWX+IZJSU5OZuPGjQAkJSUxdOhQPvvss1IFIsS5MG9JAUcO6WhWhc2uKJwV3mIBq8NAeTTeWeYObZBn4K+/MsB1rHmWpo7/wvUT/vZaaNQrKzQBloH1e4A4F+TYfXNkFPLqkG2DWBc7Ms17J6nPXU5fGer4ksDCu7q65ksolIbKs3LkiCukcZ6JV99TFOTpVEz0JQ/g27yYGEVUlGLLFp1lq82dLIWzjGzFx98YWC2KKonHax4sFo1qlTQUikVfGRQ4JRkUJqbOwiME3nvvPa699louvPBCevbsecqmTaUVdCIRGxuLy+U7gdWpU4f9+/f7e4HXrVuX/fv3l2mAQpSlRd+5UV4di7XoL1rXAatBZqbGum3mTCa6jdCPXVyr4n/dSoGhkXbExBOaxbmOHZSLSRYKZ7uOdZ7rqMrMijU2X82DdoraXd0At5VrbjdnsrT/iMH27RYcEQbFtXyJila4nRqffScXoeXVyrWKoxmKSvHF74OJFTT2H1Gs3XSOAxNCBFi0aBETJ07E6/XSrVs3LBYLkyZNYtq0aWX2GUEnEm3btuWNN94gPz+fOnXqEBkZyf/+9z8A1q1bJyM2iXKtwOW7LaCfYs/XNN+F6OFMczbRcxYcO7Gf6hpTP81zZqEbp7+zY2i+O/lmZQBoFHuVDb6aJSA735wFmZ3raw6jn6JDta4BGuTL3exyK78AvAZYT9HL0moFw1Dk50sZChFKb731Ftdccw1ffPEFL7zwAosXL2bgwIG88cYbZfYZQScSo0aNYv369QwdOhSr1cott9zCI488Qt++fXnppZe46qqryiw4Icpavao6aOA9RasJ5dWw2BStL7Cc28DKyNWdvb4LzVOdvwuXW8yZKAGQZz2WKBS3kcq3bflBjyNRbtgchi/ZM05RiIavf0/vy81ZhrWSdGJiFa6C4hMJtxs0TVGv5jkOTJRYvVoakQ6N7Nzin8/OhUiHRr1a5kx2hQgXqamp9OvXz3eT9JiBAweSlZXF7t27y+Qzgk4kUlJS+Pzzz7n77rsBGDt2LCNHjqRSpUoMHz6c8ePHl0lgQpwNj9zmwOow8Dp1Th4XwOsBFDSqp1Ep3pwXoq8+Fu/rlKu0Y3e2T2DgW64bzHzYvO3rybKB2wIRxWSDDi94dMg07zC+y143wOoBr6VoMqF8fSSwu5n6oDmbp0VGaHTvovAaUFAQ+JyhIDNDIy5ecUdvc/4GzwctG0OT+hpHMhUeT+A+6nYrMrIVbZpoNKgjiYQwsXLeRyI1NZVWrVrx4YcfnvI1BQUFReaLSEpKAiizyelKdaSuXLkylStXBnxNQQqTCiHKu3rVbdx8lZW3PvPiybeA1fCNWuj1NWmKqWAwZ1xUqMM8I81b5LNxQ7TvgtqLvymML4lQEOnkhqvjQxniGVk5S6PjuCiomQsxLnAdux9iN3zbuDealTPNewHTqJGd6Eoucg8d6++iAI4lEEoHu4frrnEB5p1P4qGhFtZt9LJzh4XcHHBEKLxehatAJzLa4J47keFfyzFd1xg7WOf+p+Gv/QbRkeCwQYEL8gsU9WvqjL5Dyk+YXfk9j7jdbsaNG0de3ulHmVRKBdRGAFgsvhYXZTXKalC/9Ly8vICgDxw4wBNPPMHQoUN58skny6yaRIiz6bmR0Txwm43KVT2+9tgKrBEGLZsqvnw+igtqmvduNsCyufG0aZsLDo8vcUDzHQ9tXixx+Rz63tz9mBrUj2flszbYVQHSI3zbpuH79644Vj5jo0H9+BBHeWZSV1ip1iAfItzHEkHN12QrxsX11xeYflK6yvE670+zcEMfL/EVDbxe38Xpha29PPMIDLtBaiPKu2YpGtMe0bnhCp3oCPB4oUIM3HiNzoxJutRGCHEWTZs2rdz0SS7R0bqgoIBJkyaxZMkSAPr06cO9997LjTfeyNGjR0lISGDFihV88MEHvPXWWzRu3PisBi3Emfr3jZH8+8ZIUve5OZoJTepqREWGz8XL5zPjAfjgiwxmfQiXXWRn4vAYPB5zNoc5WYP68RxaAjt3ZTD8OQdOl2L+oxbTJxAn2vCFL6F9/YN8Vq7Xua2PQYc2NiA8yrByvM4L43VcoxV7DytioqFyvLmT+PNNw7oaj462kJevyMqG+AoQ4ZAEQoSJcjpWwC+//MLChQtZvHgxl1566T++/rvvvmPXrl3+vw3DQNM0li9fzvbt2wNeW5qZrTWl1D9+Vc888wxvv/02d955J7Gxsbzxxhvouo7D4WDu3LlUq1aNPXv2MGzYMOrVq8f06dODDqSseL0GaWmn6AEmgma16iQkRJOenovHY87Onec7KUNzk/IzPylD85MyLFsVK0ZjsZTf5m9H81xM/W7XP78wSBO61icxqvQ3g7KysvjXv/7FmDFj6NmzJykpKUyZMoW+ffsW+/pGjRqVeN2aprFly5agYyrRLdgvv/yS++67j9tvvx2AFi1acMstt/DUU09RrVo1AGrWrMmIESN48skngw5CCCGEEEKIcLdv3z4GDhx4yueXLVt2yuceffRRWrVqRc+ePUv0WadbV1kpUSJx4MCBgOZKTZo0AaB27doBr6tRowYZGRllF50QQgghhBDnucWLF7NmzRo+/fTTEr+nRo0aZzEinxIlEh6Ph8jISP/fNpuvHavdHlg9o2lamfUCF+Jscrm8PP+Bkw/X5OH2KqrGWnlsQCwXNQ6ffhJtBx7h7xwNrMdGM8q1cOjzhFCHVWa++DGXQQ9px2e41hSvP6m4+uLo07/RRCa+ksd733lwezOIjdT4z0A7N3Q3d0frE6VnKZb+6GHvIYXdDpe0ttAqWUc/1WR8QghxrpylPhLVq1cvVU3BokWLOHr0aJF+EZMmTeKzzz5j3rx5ZRRhcMLnqkmIEtq000Ov5w+RE5sLUb7Edy/QY146lyRU5P3/xIc0vrJQpfdRiPZCzAlHwggPVW48xB2d7Tx1X3zIYisLjXrlkXbE6pucrXATNRg03iC2Qi47Pzd3MvHnPhcX35OLC+P4TNbZGiOmu3n8DSfrF8SFOMIz9/F3Hma87eXQIc03xYkB73zqpUMrD4+NsBMfI8mEEEIUevbZZyk4afKdK6+8knvvvZdevXqFKKogEonNmzfjdDoB8Hq9aJrG5s2bA4aDPbn3txDlUa/nD5GTkA0FFsi3o2saBgoV5ea7rCPcN93CS6NiQx1mqVXpdRTi3L4/vOCbKEP5hoJ1GCz40cVT94U0xDMyZGKuL4nw+mZ49g9irQCvTnaGlX5jcnn/efMmE5fcm4tLM3yTCHo10HTflbbFYF+Wm0tHZrN8hnn30RUbPDzzqpfcXI1q1RV2m2/zMrLg2xUaE3Hx4ji71EwIIUKofB1/CieSO1liYuIpnzsXSpxITJ48OeBvpRSPPPJIwEQXxU18IUR58vx7eeTE5EKBBd1j9R8ndDSMXBvEuli8JYuXMOdF2rZtGRDt8W1XYRLBsf8rDTDAYVCn91H+WpwYukDPwCff6seTiBMPNxq+ZYbOd7+U39FA/sn8T/IpME6YRLBwGzUNDN98Epv3eigocBERYc6hYN/9wktmpka9OgrtWFFpOiTEA0qxap3Ghu0GrVIsoQxTCHE+K6fDv5Y3JUokXn/99bMdhxDnxKLV+RBhQIG9yM0GXdMwnBbyo/NZuclNx2bmG9O+2xgF8cpXA6EVczFtaGCB/HMfWtnxFiZHxTynnfQaE5r9qduXEHkofhu9vmTiqTc9TBpivkQiPUux7neIi1PF7qLxFeDPv+GHdV5JJIQQ4jT++OOPoN9jGAbbtm3j0KFDtG7dGo/HQ3x8fKljKFEi0a5du1J/gBDlidOrQPmShmIZgFVx4Kg5Bw1we/FdfJ4qfO3YVN7mvWFPyaqbzZtIuNwAp0gET5CWbc5tzHcpvF6wnSIHKtzsAte5i0kIIc4HH3/8Mc899xyHDh1C13Xef/99pk2bhs1m47nnnisyiFJJmPpyQohg1U6wAhqGdoo6S7uB5rLSsak5xyHo1BRfrcMpmxgeyzDc5rwIBUA7tg3FFaE66TUmVL/qCSNRFUcDDI2eF5vz8F2pgkZiAuTmFP+8y+XbfWslmXgfFUKIcuazzz7jgQceoEOHDrzwwgv+UVavuOIKvvvuO2bOnFmq9ZrzTCREKU25PQYtzwaRLoyTJnU3dAMsitpaLFUrmbNJxeJnE8BV2K7+pCttpUDXwKsx9Q7z/vQtEV7f9hV3sa0ADXS7eROJ+Q86/H0hUCdnS77aJLuucflF5hwG1m7TuKqLjtutkZcXuH3KgP0HNKomKa7pbM5kXggRBtRZfITI7Nmzuemmm3j66ae58sor/cuvv/567rnnHpYuXVqq9Zr3akKIUkipbaVHjURwWSHWhWF3Y1g9GJEuiHRjz4hiwcj4UId5RmpH6ODRfL9uTfnuzmsKLPguUDOt3Nk3PsRRlt6vb2pgKRyVSvNVshSOboQGVjfr3g5hgGcovoKd69o4fB3KrerY8K8GHEt08Wq8ODIq1GGekdt6WGlzoeLQIZ3deyA9Aw4fgdS/NWJjFfcOtMjwr0IIUYZSU1O54oorin2uZcuWHDx4sFTrLVEisXr1avLzTd09Uwi/V8fFMaJZVWLSY0HpoIOWb6d+fiJf/LsazRqY+07omjcq0SDCBvmWY3ftj12QOXVIs3NoqTlHaypUrVo0Gz5QYHf77tpzbBstBtjcbHhfUa2aeYd+BVjwn2iGXBmBzbAAx2qYDJ04q5V5/442/aR0cdEaL91vZ8jNGtWrgccDFgtcdrHimfstXCe1EUKIkNPOwiN0EhMT2blzZ7HP7dy5k8TE0l0blOhoPWLECObMmUObNm0YNGgQkyZNokGDBqX6QCHKg0dvj+bR26P5428Ph9INWjW0EBNtzuZMxVm5oCIA8z/MYOZiL11aW5k2LgGPx7xNfk5UrVo0h76H/ftzeWQWFDjhmdGYPoE40ZPDo3hyeBRb/vSw54iNVg3cVEoInwvsuGiNe/rbGH694miWItKhERcttRBCCHE2XHvttbz88stUqVKFrl27AqBpGps2bWLmzJn06NGjVOst0VnJMAxWrlxJ1apVWb16NX/++SeRkZGnfH316tVLFYwQ51pKbSsptUMdxdlzZ994ht6ok5AQTXp6bqjDKXPVqkUz77FQR3F2NW9o55KLfOUXLongiaxWjaSKkkAIIcqZMJtHYvTo0Wzbto3Ro0ej674GSQMHDiQvL4+2bdty332lm6m2RInElVdeyfTp05kxYwaapjFq1KjTvn7Lli2lCkYIIYQQQghRtux2O/PmzWPFihX8/PPPZGRkEBsbS7t27ejatWupJ5QuUSLxxBNPcPXVV5Oens6DDz7I8OHDqV07jG/jCiGEEEIIEWY6d+5M586dAfB4POTk5JQ6iYASJhIWi4VLL70U8HW87tu3L7Vq1Sr1h55Kamoqffv25ZFHHqFv375lvn4hCuXmurntQYOVv2oYSiMqUvHEaI2bephvNutTqdH9KG4c+Dp4ZYPHy6Hv40IdVpl5dm4mT79h9XWYB9ANxt/qYdxdFUIbWBkafL+bL39WGIYTuw3uvxNGDgqffXTLDsXkp3X27tOw2aHvtV6G3QY2W3g0dfJ4FT/87mLdX24cjgJqJSgub24nKiI8tg8gLVOxeZdBbj7ERkPTBjoVZMQtEQ7CrGmTx+Nh9uzZ1KlTh549e7Jq1SruvfdesrKyaNeuHS+//DIVKgR//tSUKjJQeYl8//33rF69mqysLBISEmjbti1dunQpzaoAcLvd3HTTTWzatIkpU6aUOpHweg3S0sKvLXioWK3H29eHS/vsz75zc/t4wDhh0DLl+0+lKl42f2buEXEAqnTLOX6B7eeb1bpjy3w+fsncIzdV6ZINXju4LSdMQgdYvWBxc+jHmFCGd8Y2/eGm+20njEhVSFNEOTT+XG7+ZGL4/RqLP9Pxek5YqGkkVjT45E0vF9Q398XoX4e8PPxeBlsPF+A0FBZdQ1OKmrF2Hu4VT4eU4GeQLU8MQ/H1z16+/tngaKZC03zTnlRO0Lj2Ygtd2+hndJezvAnHc2EoVawYjcVSfmcgOJrrYuqyP8t8vRMuq0tidGh++88//zyvvvoqDz30EAMGDKBnz564XC4GDBjAggUL6NKlC489Fnynw6BL0eVyMWTIEIYOHcqCBQv45ptvmDdvHkOHDuWOO+7A5XIFHQTAtGnTiIkx98lfmMPt4/GN0V/If62mceSwlS63lG4fLi+qdMsGdWzY0GKGnVu5ISJEkZWNFn0zwWMHlwV0L9gM30P3+hILj43kazNCHeYZ6X7bsZn1ACicS0KBgrwCaHqNuffRJ19UfLREx+sFixXsDg2rDTRNcfSoRq9bLbjd5r0dmFegeOCddDYcyKOC3UL9CnYuqBhJUpSNPzNdTPwwnZ37Pf+8onLsh3UGi5YZeL2QUkejUV2d5NoaBU5Y+KWH1b/LxbYws7Mx9Gtoh4BdunQpY8aMYcCAAezcuZPt27czfPhwBg0axL///W+++eabUq036ERi2rRprF27lqeffprffvuNH3/8kQ0bNjBlyhTWr1/PrFmzgg7il19+YeHChUydOjXo9woRjAFjXb6aiJN/0yf8+48d5r2L9tNPR48lEae6CPNtaJVLMs9hVGXrwBGbL2Gwen0zdRfSNd8yj4WMHPPe7X1ihqvY/fL4vxWHMxS5ue5QhFcmXl9owTDAagWLxbeBuq5hs2loOqSl6cx7K8RBnoEv1jn546iTqtF2YhwW/535CJtOnTg7+/NcLPrZvHMzFbgUy1Z7sVsV1Spr6Md+hxaLRs0kDaXgm9UGHq95k0Ehws2hQ4do2bIlAMuXL0fXdS655BIAqlatSnZ2dqnWG/Sg5EuWLGHUqFH06tXr+EqsVnr37s3Ro0d55513ghpCKisri/Hjx/Of//yHatWqBRtOsazW8ltdZjaFVY/luQoyGN+vOc2TvpY/oHTe/MTD7X3NdzHae4It8OL6VCwW8/5OPPqxGbuL2c7CZR7NtNu34MNjbUROSYHSGfOkxqtPmW8bN28zSM/wlaFezL5qsYDHrfhoqYV7hoQgwDKwamcBXkMRbfeVT+FuqWlgtWg4dJ0VOwuwWs3Zn2f3boODR6F2Vb3YMqxWWWfPQcWBoxp1q5tvHy1OuJ0LRQmEWR5cpUoV9uzZQ9u2bfnmm29o3LgxFSv65pxat24dVatWLdV6g04k0tLSaNKkSbHPNWnSJOgpth999FFatWpFz549gw2lWLqukZAQPpNSlRdxcaeeN8RMDMPp+8c/XGvvP2w16X6UUbKXaZh0+wDyOZ71FUMDlG7a7TOMY82WtFNtny/RyM415z7qcrlBedA0rdifoUXX8KBwe3USEsx53DG0TKwWDZs1cJJLq8X3t8NqwYN5z1WRB9zoFi9xsZbik0Gr4mimQWRkJAlhNIkihM+5UJx/evTowZQpU/j0009Zu3YtEydOBHwjs77zzjvcfffdpVpv0L/w2rVrs3btWjp27FjkuV9++SWoWoXFixezZs0aPv3002DDOCXDUGRl5ZXZ+s53FotOXFwkWVn5eL3mb/MaF6M4WtiioLirGAVoip6Xekw5gVu1Si72p1k5fabkuxA14/YBoBm+5luqmFoJ5etHgMUw7fYlVVLk7D7NrbBj3Sf6XGnObaxXy8Bqs+B2acWmgt5jzWFqVPOacvsAqsVquA0Dp8uDrmvHaiIseLxelIIcl4dmSXbTbp9NN3BYvRw4bJAQV/RYcyhNYbcpbHoB6enmbSp6onA7F4ZaXFyk1O6cY6NHjyYqKopffvmFsWPHcssttwCwceNG7rzzToYPH16q9QadSNx0001MnTqViIgIrrvuOipVqsSRI0dYsmQJc+fO/cfJ6k60aNEijh496h9attCkSZP47LPPmDdvXrDhAciICmeB12uExfc6/T8aN49WoArbGpzw5LGrGptD0aiBzZTbu+HDSlS5tPDi5FSZEtx+jcuU2wf4OlXrVl9fF8tJl6KGDroCzbz768czoFmv0+2jGiiDftdaTLmN0dHQtJFi/W/g8fhmti5kGMrfAXvSWAOPx5wXode2jmDReisHcj1Uizk+wpZSkJbnxaJpXN0iypTlB1AlQdG0gcaP6w2iIzWsluPl5PYoDh5VXNnRQly0wuMJr/Yh4XIuFCUQXrsumqYxbNgwhg0bFrD83XffPaP1Bp1I3HzzzWzevJlnn32W5557zr9cKUWfPn0YOnRoidf17LPPUlBQELDsyiuv5N577w3ogyFEWbmss43atZz8/fexXb/wQOEfQtRg7hOhiKzs2PQC3EYk/lvXRXh4erx5h3/9erqXK0a6wOkAj+aroYDjw906XHw93bwj4lSpYuPCFBfrt3Gsz85JL9AMJg039528Oc96ufwGC9lZGi4vaLrydQtRoFvgxt6GqYd/bVTTym3t45i3MpPUDCdxDgs2q0FGvq+D/FXJsfS8yLzDTGuaRq+uVg4e9fDHnwbxsRDpgNwCyM5RNKmvc01nyz+vSAhxzvzyyy//+JqLLroo6PWWeh6JnTt3snr1ajIzM6lQoQLt2rWjQYMGpVlVgJSUFJlHohwJ17Gzewx1snqDfsJcEgpbhMHcxzWu7Wr+MfrrXH6UfCMCjMKhfo79zA03h743ZwfPE23YkMkV91jBY/E9wDdik9Xg62luWrY0/zbeNtbN5ytUQPFZLRqP3QtD+pt/H039SzFsnIVNWzS8Hg00SKxocOcAL+NGmDeJONHSNQV89EseW4840XWNajFWrm0exYCukQF38c3qaKZi5QYvP280yC+AmCho31yn84WWsJuULlzPhaFS/ueRcDP167/KfL0TrqhDYnRojt+NGjVC0zQKL/uLm+dly5YtQa+31InE2SKJRPkS7gfPZSvcpO6FXpf67gSHm/FPH+WtL6BZQ51l8xPDrgw3bMhk4GTwuOGdxwmLBOJkP6/3si3VRrd2bmrVCL+7vHl5is3bIDEB6tUJr4vPQln5iti4KCzefIzw+gkCvuZMThdEOAiLBKk44X4uPNckkTj3Vq9eXWRZXl4ea9as4eOPP2batGlceOGFQa+33CUSZ0oSibIlB0/zkzI0Nyk/85MyND8pw7JlikTiq7OQSFwZukTidGbOnMmGDRuYM2dO0O8tv6UohBBCCCGEOKvatm1bbI1FSUgiIYQQQgghxHnqm2++ITq6dPPaBD1q00cffUSnTp1ISkoq1QcKUR5kZHi5cgD8mWo7NlKMYuwoD/ffHT5t0Kt0PgzxVrApMI5Clsah5fGhDqvMvLwgi8dftR6fyVsp/nOnh3vviAttYGXohqEGP65WKJWF1Qqjbjd48J7w2UfTMxRLl8HeAxp2G1zSQdGqGcVOcmZGhgGpf8Pf+xTR0R5ioxQN64Kt/LVsEEKEuUGDBhVZZhgGBw4cYO/evdx1112lWm/QfSRatWrF008/zRVXXFGqDzzbpI9E2QrHdqHz3vby0KP2Y8OFBu7+thgPe9eFJq6yVOXaDEjKA7v3+EKvBukOGlrgp/cqhyy2slDl4hyw6HDyNbUX8Boc+jEmFGGVmV83ebn6Zt03l8RJ80jYHIq9a81/of3xl4oZCzQOHdEwDN8cC5GR0KGN4rH7FfHFTHRmJhlZ8PZi2LQVCgo0HHYLhuGlXm3FLX2gdo1QRyiCEY7nwlAyRR+JL89CH4mrQtdHYuDAgUWWaZpGTEwM3bp14/rrr0fXgy+ToGskqlatSk5OTtAfJER54UsiThhT84R/unOsJF/sZtuP5r2IqXJVBtTK8U3MlmcBTQdl+GomKhWw41BkqEM8I21vSAerw9cw01Acb6FpgEUDTadxj0y2LDHvCE5X36wDx5KIwhm8lW9eELdLo0Enxc6fzLuPrvhF8cxMjdw8qJYEdrtvF83Igm9/1JgIvDhZmbZmwu2GNz6Atb9BreoQFwtRUTpp6V7+2AkLFsI9d0LF+FBHKoQ4X7zxxhtnZb1BJxL9+/fniSeeYN26daSkpBTbpqp3795lEZsQZe7i3l5QNkAF3uk9IZnIOGTFd2vbfJYsOQwVDd+Mz4VJBPj+7wE0BQlOqnRJ49APFUMaa2n9fTDiWHOtE5MIfP82DNA1jmbaQxXeGXvgcS8oy/H9s3Cs78L/K8jO0sjO9hIba85mTu9+rJGZpVGvduAumhDv+/eqXzU2bPY1czKjrTtg41aoWwuiIo8XXWQEJNeHP3b6kowrLgltnEKI0zHnjYx/8v3337N69WqysrKoWLEibdq0oUuXLqVeX9CJxNSpUwF47733in1e0zRJJES5tW3bsSSiOIXJhNJ4/CUv/7nPfBdpdz5theRccOnHr9BO5NIhygtmbjaiFZZfcVWwx5qrmXjz3v5YD6yJKMK3fMh4jYWzznV0Zy49Q7Fuo05cbPG7aHwc/LkbflilmTaR+GOnr1YiqpjKP4vFt/zXjZJICFGuhdXkCOByuRgxYgQ//vgjFouFhIQE0tPTmTNnDh06dGDOnDnY7cHfhAs6kVi2bFnQHyJEuXPaC02NbbtMegTRtYDalSI0HfD6mj2ZVmEzn1NQmHr7jMLKsGKTiOPSM89+LGdDfgF4jVN3ONaOteoqcJ7TsMqU0wWna2pss5l7+4QQ5jNt2jTWrl3L008/zXXXXYfFYsHj8bBkyRImT57MrFmzuO+++4Jeb9CJRI0agT3EnE4ndru92Km2hShvbHYDt1v3XWyecpdVDBtkzv3ZbnHj8uhgNcBVzAt0w7ftzvLbye2fHatxUAZFayUM3wW4OVumAb4Zng8c4jQ1EhoouLGHOZOlShUhMUGx/6BGQjHdWFwuX/HWqn7aH2m5llQZvN5jLe2K+anl5ELLJuc+LiHE+WvJkiWMGjWKXr16+ZdZrVZ69+7N0aNHeeedd0qVSJTqamLXrl2MHj2adu3a0apVKzZv3szkyZPPWkcOIcrKUxNPuMI8+Tqs8G+bQec25mvWBLBnWWVIt4NVASeNLKIMcHgh38bVrdwhia9MeE/oJH+ywmWGOS+yAb5441iyV1zNizqWRGmKIbeYcx+12zWuuhTcHsjLC3xOGbD/kKJqkuKa7iEJr0y0bOJLmPYeKPpcWoavRuKiC891VEKI81laWhpNmhR/B6NJkyYcPHiwVOsNOpHYsmULN9xww/+3d99hUlXnA8e/596ZnW1shaF3XEApoogtKmIjtlhjJfYeTSxRsJIYDcZe0J9K1Ch2sUVNVBKNDTsYERTRpZcBtsK2mXvP7487W9lddtjZnT3D+3meeXZ3Znb2PXvu3DnvPY3vvvuOo446itrVY23b5tZbb+WVV17ZrkCE6AynH2eTntOgEa0b3KJ33Hq9wY1sgA0aylIgLQKBCNgO+COQEYEaG9al8eRt5i7/+p+HHQjjXa23NCjXu1nRK/hh+M//mdsl0aePzdAh0SSwboK1jvaieb0Rl59v9vKTZ/xas/tYTWgjrFwNxSWwYaO350K3DLjsHLOXf+2RD8cd7uV83y+F0EbYsEnzY6GXSBy6P+xSkOgohRAt0h14S5ABAwbw1VdfNfvYF198Qe/evbfrdWNOJG677TZGjRrFP//5T6ZNm1aXSFx//fWccMIJPPnkk9sViBCdZdkXir4DaxpM2gVvgX6HW/9YY+yV3lqhj3vACgvWZXqJgwW4FmxIg2UZhN41d1lUgFGjsvjPQxEvmYgoopfove/Div88FGHUKLM3pZv3usU+E9zGCQSgLM20Sx3jN6XLylTc+yfNuadp+vTSRCLeJOSD9tPcfqPmiIPMTSJq7TMeLjoD9t3D+zkSgVHD4dxT4ZjJrc+hEEKIeDv55JN5+OGHmTVrFmvXriUcDrN27VoeffRRHn30UY4//vjtet2Y50gsWLCAu+66C5/Ph+M0vup3+OGH88Ybb2xXIEJ0pvlzvUnHs192+GEpnPNrGDTIZusdzswU+sjrcfjNNRv418fQtyd8+1rPpNlIadSoLEIfwsKFZZw53aE6As/+2Y4mEGbvk1Hr1ce8luZ/Pnb57gebww9wGDrUIlmO0axMxaVnw0W/0Wwq0aSleveZOi+iOSN38m7hCGRnB6iuiuCY21kmxA4mec5FAKeccgqLFi3ijjvu4M4776y7X2vNsccey/nnn79drxtzIhEIBKiqqmr2sZKSku1aOkqIRDn9uORolLXkydt6NNqRNdmMGpXFly8lOoqOdegBPk46Jnl31PX5FD27JzqKjpWWqshIV9RUt7akmhBCdBzLsrjllls466yz6vaRyM7OZsKECQwdOnS7XzfmRGLfffflvvvuY7fddqNHD++qp1KKLVu28Nhjj7HPPvtsdzBCCCGEEEIkXJLm/MOGDWPYsGFxe72YE4k//OEPnHTSSUyePJkRI0aglGLGjBkUFhaiteauu+6KW3BCCCGEEEKI2E2bNq3Nz1VKceutt8b8N2JOJHr37s1rr73GE088waeffsqAAQOoqKjgyCOP5KyzziIYDMYchOh6wmH4YakitEHRrZtD9zwY2D95JghecUUZs9/OAF+DVXEqthBaavYk3YaCw8ugWxreOM8aCDuEvgkkOqy4Ce5cDNlpkOJ6Ray2oLSS0KLcRIcWN/ufGOb75QDe7mWnHg73TG9hJzcDLV7q8sd7vGVS/X447jC44DTw+5PjROO6msJ1Lis2RMjIUHQLRBjWW+H3JdfYayFE1/TZZ59tdd/atWvp3r07/ia7gm7vfnBK69a2iDWP47gUFSXfWPDOtGoNPP2ixU+FikhEkZJiY1sOu4xwOeUEl9ycREfYPsEhZZCVAamut0Fb7YSqiIIqi9D/zJ83Edw97O1y3ZQGNmwitLxnp8cUT8FxldA9An638U7eYQs2+Ql9nZrI8Nrtg0/CnPA7DX7Yqn89YhH63Pxk4qLrXV59G5yGe34oRX43eP0x2Gmw2clEyWaXZ96rZmGhQ1UNBAI+XCfC4F4Wp04KMCBo/nlmR9JwrlkyzlXqbHl5Gdh2132Pb9ocZsZbK+P+ulMP709+ZuLO35FIhFGjRjFnzhx22WWXuLxmzD0SAOvWrePJJ5/kyy+/pLS0lPz8fPbaay+mTJlCbm7yXA3cEZWUwmNPWyxbrhjYHzIyIC3VIrTR4bOvFDURi4vPdjF6Tn1WJqRHvMQhYlPXEvW7kOYSHAWhheZ+yAd3C4PdMIlo0NJWeDtlGSxYUAQD/V59OQ1X+dHg19A9THBENaHvzV3m1ksiojs76wZ1qTT4NH32CrPmU3OTiVsfdHnlX+BqjW2DrRSu1jgubCrXHH224n/vuMb2TIQjmqfmVvPVjxH697DIylCkp/kpKnX5YZXD429XcekxaeR1M7N8QggzbW+vQ2u2a0O6o446imeeeYb09HRGjRqFz+fj0Ucf5ZhjjmHlyvhncKLzfP2N4udCxbChkNZgFc1umTBkMCxcpFi8xNxu+eDODqQ6XgPUtahvhCrvarbtbmd63TUEB65vJomo/Rr93lIER1V2cmRx1DPNa2RHGiYReN9H8Hb17mFupnvG78LRngjVzO7rXlIYQVNcbO7GiU++6G0+7osmEQCWUvhtUCiKymHW8+Z2ln+/0uHbQodBvSy6pau6D++0gKKgn0XhOpevlkQSHKUQonWqA27JZ7s2pOvXrx9z587liSee4M477+TJJ5/knXfeITMzk7/85S8dEafoJPP/p0hL8z7gm0pLBceB7w1OJPBHd0N2miuDAseCgEtwWGmnhxYX2Q2vwrdSTwGDs6VAxJvT0tyVFRXtfQmYu1j/v+ZFy9BiO1qBBcdd2IlBxdHipS7FZd73VjN1aFsarTUv/9Pc88wPKx3CjiY90Fz5FOkB+HqpJBJCCPPFnEjMnz+f3/72t3Tv3njh7969e3PZZZcxb968uAUnOl9VNfhbaWP6fN5zjKW2+qax6GgSLEMnJW+z29LcxlmdtlzYUeZezdZtXHOw1NCpYJtKANXyoVqbXFTXdFpIcVcd1q0uTOH3KapqzD1Ghdgh6A64JaGYE4m8vDy2bGn+E8y2bTIyMtodlEic/n1hS0Xzj2ntrebUK2jwu8GNXultqaFpR3srXENbMZXb6kmJlts1uA4jDVbaaqr2voi5CVNGALyWdmvP0pwwuXPiibfRO4FtebupNseJ3j+gT2dGFV89cy0cx5sD0pzNlZr+PcydhyWEMFs850rEPL7hoosu4s4772To0KGNZnyvXLmSe++9d7u32BZdw/hxmnlfKDYVQX6TObmr13j37Tra4Ebo5i0QSAef682JaNhaUzq6Uqpl7DKwoSVBguPD9UN8GrVGG9RbUTFg6MpNm21vxS0baLp4ig2gYIu5jbR//x32OhVvCF6z2YSGsOLa35o52To722JUgcuCxRBxNL4Gc3pcrXEcb/jPTb9PXIztNXaoj399UcPqjZr+PRrXYVG5i98Heww3eHihEMIIkyZNajZpuPDCC5td/nXu3Lkx/402ncmaBrJx40ZOOOEE+vfvT/fu3SktLaWwsJCUlBTefvttfvOb38QciOgaRhZoDpvk8s+5FkXFXuKQkqJZs9abI3HMES49Dd4qJPRzFsHRDqRb3v4DTnRCqx1NIiptKN8MmJlIAFBeCVnp0R+aSfrCrtHLvx46vIp3Vvgh0/Hqza2dRB4t6xabQwuqgLQWX6MrGzLET35GmE2VOtpz1mBVKgBXceoR5va4ADw8Aw4+WVFeqamJaJRS0c4khQX8+kjNToPNTQZ7ZFsc94sAz71fzfcrHLrnWKSnOqzd5KBdmDw+hV0Gmls+IXYIBl8zrTVhwoQOWampoTbtIzF16tSYAknkhGvZR6L9XBe++kbxyWeKVWssUlN9DB4QZq89XHYengTvLCC4i+OtjBOIXtJ2oqs2lW8m9LPBSUSUtxld+tYdEmGX0DfmrmhU6/TTi3nn51TIcLzeJYCIBVt8HDqkktmzzV+Gep/jwyxdSbR8yhu25VicfSzMmGZmb0RDhatcLpgKC5eAE63C/Gw4+yS46vzkWBZ18YoIn3wX4YdVDikpPnrmaPYcYTN+Jx9Wc/u8iC5L9pGILyP2kXhjVdxfd+qR/RK6j0RHkA3pRIu0hpqwRX5eOpWVFThO8p08g0PKwFIUDNV89Lb5CURTwYHrITUNwlUUreiVdB+Ap59ezDufeys4HboHSZFANPXyWxG+WOjj5CMijN0l+YbDVFS4LPoR8vNhcL+u27Boj7CjyM5Op7qyAsdJqo/cHYYkEvFlRiKxOu6vO/XIvkmXSGz3p9LmzZspKytr9rE+fQyeJSfqKAUZ6ZCWpqiqSnQ0HSMZeh9aE1res9EHYLJJxsShqV8fncIFZyRvAyY93WL82ERH0bHSAoqMNIuaqobbsAshhPliTiS+//57/vCHP7B06dIWn7N48eJ2BSWEEEIIIUTCdMGcf9OmTcyYMYMPP/yQ6upq9thjD6655hqGDh2asJhiTiRuvPFGiouLufrqq8nJyemAkIQQQgghhBANXXLJJbiuyyOPPEJGRgb33nsvZ555Ju+88w5paYlZYCTmRGLJkiXcfffdHHjggR0Rj+gilhQ6XHi1xfJVGkttYfQuLo/d7pCTkxwrjRxxxCa++C4fbJ83IdkFIpsIrcje1q8aIzi8FALdoqvAloEbJrTQ/InWtcYeUsLaNVnUb4fj0rtPGd+8m5PAqOLrtEsd3vtU47pl+P2ay8/RXHFecrwHASqr4LvFiqIihc8Hw3dy6dO7DfsqGsJ1oXCZYsVqRUa6S7dMxbAh4E+uIdJCiE5QWlpK3759ueCCCygoKADg4osv5le/+hU//vgjY8aMSUhcMScS/fv3p7KysiNiEV3ERdNc5rzW+JPuo48tCn5hceMfwvz2DLMbMsEBmyDQExpuXm0DvnyCQzShn51EhRY3wbEOWDlQo0DXbm7m81arqlhNqLBvgiNsn+CoMOjcJsujWqxdk0twVA2hhWa31L753uGQUxQoq657vbpaMeNBuPsxl5Xzuu4kxbZauEjx0qsWq1YrXFfhasjqZrHXHi7H/col1dDN5WuVlMIzL9os/M6iqgoCARfXtRg8CE79tcuAfl1w3IQQosvKzs7mzjvvrPu5qKiIJ554gl69ejFs2LCExRVzInHFFVcwY8YMunfvzpgxY0hNTe2IuESCPPK04yURte2zhkvYu/Cnv/qZOCHMqJEGJxOBntGL2LUf5NEJkEqBXxEcbBMqNDeZCI5xoSaFuvLZun7jNseCdLMXQwiOKAE716vD6MqogFdcC3BTCI4oIfS9ub1Lh5waffM1OURBUV0Nww9w+eG/5iYTy1Yo/v6MTWkpDBro7VWjNRSXwDv/8c4tp5zoGtszEQ7DU8/YfLXAon8/TVaWIj1NUVQCP/yoePxJi0svcshL/rUChDBXB+X6a9asYcqUKS0+/u9//3ubr3HDDTfwwgsvkJKSwkMPPUR6evo2f6ejxPxJNHjwYLTWnHHGGYwbN46RI0c2uu28884dEafoJLc/GM0tGyYR0KixduE0cxswwUE0SCIaFrLBaio+Q1svQLBgtbefQu0J0GrwtW4EkE1wZ4OX4bKzo8PRdOMxMEp591mAbe5qXDf+1fF6kWDrQzR6mBaXwebN5ia7H89TbNgIQ4dASnS0nVKQlws9g5rPvrRYuy6xMbbH90sU3y5SDBqk6dat/jBNS4WCYVC43OKr+eaeR4XYMagOuMXHGWecwZw5czjyyCO55JJL+O677+L22rGKuUdi2rRplJSUcNJJJ9G9e/eOiEkkUGlJgwZMU9G5BD8VWnTJ5Qzawm7tkI+20ixFcEA5oRXdOiuq+PF3B8f2hvy01E7RgN/kuRINepC2eii6cRvmHqNPvtqGDxuluPh6zZP3dHg4cVdZBQu+tcjPa74K83K9hviSpRZ9epu53O0PPyrCYUhvZu6jbUN6Onz9jeKQSZ0fmxAisfr06dOmXofW1A5luuWWW/jmm2+YPXt2wjaDjjmRWLRoEX/5y184/PDDOyIekWia+ov1zVHeBELzbauxZuiQvW2NBakdDmS05F6Lv27fx9aqMtorYaJIGJwIpLQwB0Ip7xYOd25c8VRdDZbd8nHq92uqqszt+RQi6dW2hTridbdTUVER8+bN47DDDsPn85rvlmUxbNgwQqFQnAKMXcx9q8FgMGFLTImOp+xWjvLoQ+npBjfi6jZy30Y5taGttOoSUK1kCi7RydcG12FtpqubKYOu7akwt3zBvOg3rRZBc6Kh13LS06FHD01pWfMN6ZoasJQmP8/cOuwZ9JKlli66bN4M/WWytRAiBhs3buSKK65g3rx5dfeFw2EWLVqU0H0kYk4kzjvvPO655x6WLVvWAeGIRBs7yq1fDrWp6OfeKceaOzabSKhu0urWLbVoA9WB0Mr8Tg8tHkI/BsGKzkBuWoe1SYTlQqnBA9BrC9bS8Dvd4DkGevOxBpfCmjtEo35zgpkLHtg27LOnprpas6XJZutaw/KVMKCfZueR5ja0x4526d5ds3rN1o8VFYPfr9hjd3OPUSFE5ysoKGD//ffnz3/+M1988QVLlixh6tSplJWVceaZZyYsrpiHNr3zzjusWrWKX/7yl2RlZZGZmdnocaUUc+fOjVuAonO9/rjLsL0VNdXW1l17Crp319w61cwGDEBoRT7BwRr8qpkr19FVcsLrATMTCQAiZd7Sr7pJMlGbRKSECS02d/nX351axr2zc7wlexX1PRMqWn+u5nenlQE5iQqxXXr1shk51GHxT9Bo5aY6mqkXm9vIBthrD5clSxXzPlekpChysjU1NV4jO9gDTjzO7OVfe3SH445yeO4lm+9/gO7dIT1Ns3adV52TD3bYZYTZdSiE6Hx33XUXd955J5dffjnl5eWMHz+ep59+mj59Ercao9K6ufEBLZs2bdo2n5OoCR8AjuNSVLRl208ULSopcTjoZJuVK+tX/1E2jB3l8M6zyTGuNzhYgc+u75PTgAOE1xNaYXASERUcXgKBHAir+qFMlgYVNn6PBYBbbinh3mezQVuNl3/F5XenlnLddTmJCy5OTrrY4b15tYsfeEO5LAtu+K3mkrPMTeZrVVfDp19YfPKZYuNGhe2DcWNc9t1bJ80eC4t/UHzymcUPP1qk+H30DIbZcw+H8eO8uhTm8PkscnMzKC7eQiQivUntlZeXgW133TfBpvIwM15rpkuxnab+qg/53cz/DG4o5kSiq5NEIn6qqhw++MyiV88AOw+rxmfwsqgtCQ7YBKRCahWhJeYnEE0FB62GQCZEtlC0vF/SfQDecksJ9z7lff+7KSRFAtHUh5+7LP7R5tB9HQYN6rofvNvLdaGiEvw+CBjcC9GacNgiOzud6uoKHCe53oM7Ckkk4ksSieQhiYRolZw8zSd1aDapP/NJHZpP6jC+un4iEenARCLmWQVdWsylGTFiBGobS0wuXrx4uwMSQgghhBAioZLqMnvHiTmRuOSSS7ZKJLZs2cLXX3/NihUruOqqq+IWnBBCCCGEEKJrijmRuPTSS1t87Oqrr2bhwoUcf/zxbX69TZs2MWPGDD788EOqq6vZY489uOaaaxK6Jq6ATz53mfJbm83lgKqgZw+Xfz3r0qdP1+2KjMX++5fz/eosaNi1WlVMaEVW4oKKs+DgLZCWGV3VaDO4EUI/mD9Jt1ZwaCmQR+PZ1kWEfspOXFBxFixwwfUBlaAUObkRlnyePN3iaze4/O21CCvWuwT8cMQ+fg7Z28K2k2M+ViQCH36imP+tRSAlQv++ioMnentpJIuflmve+S+UlEF+LvxyIvTvmxz1B1BdA4uXwKYiyMlx6Nkd+vbe9t6fptAaVqyCn35WRBxv1bSRBTpp5yuJ+IvrHIl58+bx+9//ns8++6zNv3PyySfjui7XX389GRkZ3HvvvcyfP5933nlnuza+kzkS7XfgMZrvFvlovNeC9/2Jx4SZ+Vezk4lg/3JIz6HZvSRcTehH88e/Bkcqr3i1t1ouUFpCaLXZje3gMA1uCriqcR5RuzLVT4mMrv1uui3CQ4+ksvVmGd7qW6EfDd7LJeqB58I89PZmyt1I9F2o8WGzc49UHrs2jZ55Zp9nlq+E6262+X6JRXUYbEuh0PTrq7nuSoe99jB73EQkorn9/+CNuVC+hbr9h7Kz4MQj4LdngWWZ3dr+qRCee1VRuEKhNfh8PlL8DmN3cTn5WE1mRqIjbJ/NW+CFVyy+/kZ5e7oo8FkwcIDmpONcdurA67lGzJF4tQPmSByTfHMk4lqLK1asIBKJtPn5paWl9O3blz//+c+MGTOGoUOHcvHFFxMKhfjxxx/jGZpoo8uvdxskEdCoJarhxVf9zH3f8IZ2ek6DH5q0ti2L4LCue3Jri+BI6vdYgPr9QKL77ZGVk5jA4iQ4oDSaRFiAblB92ksstJ/gALMvJtQlEQ33ctFE9waxCO5k9jE6Z67Dvf8qp9yNkG376ZGSQr4/Bb9SfLNhC2ffWonjmNvQrqiAa26y+eZbi+wszZABsNMQRc8esGyF4sZbbX5alugo2+ehJ+GFN8DVMLAvDO4HA/p6V/D//hL8/cVER9g+60Pw2DOKn5crBvaDkQWK0SMV2Vnw0WeKZ+aoFncuN4HrwvMvW3zwsSKrG4wogJEFMGCAd4w+Pttircn7lsaD7oBbEoo5LXrggQe2us91XdatW8dbb73FgQce2ObXys7O5s4776z7uaioiCeeeIJevXoxbNiwWEMTcfDsy77ovgPNPBjdwO38K21+/srMd0RwiPI2o2tWtIfC4GEVwX6l204ULAgOCxNaaugSdP48L2HAhYZXPC3ltWq0An8W3sYg5hkwNgL46hO/Wo16liy++66GXXYx88rW3/5ZRZWOkO9PwYqOEbGUItNvQxgWb6ji358FOHQfM8v3r7mKH5Za9OqlSU+rHwaTmgYD+2mWr1LMedXi6t+b2RItKdO89o63FU+wwarZtg29g7ByLcx5C075lSY11czz6adfKVavU4zYibo9P5RS5GR79Tl/oeKnZZqdhiQ2zu21bAV8tUDRt4/Xi1QrkALDhsD3SxSffmlx7JFmHqOi88QlkQDIzMzk4IMPbtOGdc254YYbeOGFF0hJSeGhhx4ivR2DSH0+s6/WJZIbaSGJqKPYXG7h85mZSOCrHc7UWjIBwQGbKVpj4HyJtAyvn3Fb1ZOSYu6+IG70/d3csAkrupu3NvcYraoI0OqbUANKceBxFkU/mXeuWxNy+XFTNQHlw2pmV7YMv83GcA3//NTh8P1TEhBh+332pYUTgYx0rx4b9u/6/IpACnz8uY3PzDyJz+ZrNpW49OpBs6s4ds/VrNsACxZZ/GKCeecZrWH+t5CTrerqqGHCm50Fq9ZoflpmMbIggYG2w0+Fiqrq+sSoIcuC3Bz4+hs4/mhrB9480bxjNxFiPo19//33HREHZ5xxBieddBJPP/00l1xyCc888wy77LJLzK9jWYrcXMMHLiZURRueow3+H7elfAABM8tohdv8VCPLB6CqvGRhG+d4Y8tXe4y2Vj4NuJaRZVxXFEYr8CmF3ewYeoUKg4vPyPIBuLoGn8/F3+SiVu1FrkDAJRKxyM1NTUR47WbbYbSuIj1NNTsPIk174zhsXyq5ueZlS47jzbXKzIC0Jj0qgYAv+tUlELCNLB9ASopDIMUhPb35LKFbN41SkJXlw99iL74Q25FIdJTaoUy33HIL33zzDbNnz+Yvf/lLzK/jupqysrY2FkXzWj9pKBuKiw0dgx69mrvNJ7k1ZpaxcjPYOa1XoQJcbWb5ALBAWd4g36aNGFd7j+GaWz6lQdeOpWj5OYMHOkaWMTtdk2nblITDpLtbryIWdlzQ0CfP3Drs3dMiHFFU17hYVrQnwmcRibhovEmuo0aYWX8APfI1gRTNpmJNTtbWB+mmYk0gBYJ5VRQXm9kIDXaHBQu9XgnweiICAR/V1RHCEU1NjSY1EKG4uDrBkW6ftFSoCVuUlzvN9oytD2lG7Qzl5TUdskJVVlZal55sDSTtnIZ4a1MiEctwJaUUt956a5ueW1RUxLx58zjssMPwRY9ky7IYNmwYoVCozX+zKdl1cvvl5imKi1p/zt7jI0QiXfwE0JLKcsjIoeXhTRo0hFZlGHkchVZke5OtWxreFJ1aQFkpkYihKzcpog3tZuqvdtK1cohEzPwUeOCWCL+dGp0t3/QwbfDzZ3NtI49Rvw8O3DmVl76poSrskNrgqr2rNaWRMFm2jzOPNrN8AIcf6jLnH37WrYfevXTdxQsNFBVrbFsx+RBzj9HRwzU77wRffAsZ6Rpfg3wwHIGScjhwL28+iKll3GNXWLDQorhEe3MIooep42qWrdD07KHZZbgmhvVlupSdh0OvIBQuVwwZ1Pj6Wlm5d51mj91coxc9EJ2jTYlEW5ZzLS4uprKyMqZEYuPGjVxxxRXMmjWL/fbbD4BwOMyiRYuYNGlSm15DxNeX7zoM3b3hmqH1KzahwPa7vPqUoUkEEFrVzVs61G5urkT0hFlZAnTr9Njipmqzt39E03Z2bRLhuEYv/3rE/sW8+d980Ha0ByJabzp63FouR+xfAphZxl+f6OO31zng2N6ne8PP8WiilJNfRRfqUI7ZtWelMP+GNH4qr2RLjSKgLBytqcEhTfm49PBMo5d/HVEAZ5ziMOtJm8Jliqws8PtdSkoAFIcd5HLUZHMbaJaluPJ8zR9uheWrISPNm6RbVQ2VVTCkP/z+vERH2T7jRsMBe2ve/1ixcRPk5YLP1qxep8nuBicercky+GMiMxNOPEbz5HOK75dAXp43eb6kFBwH9t9XM35Xc49R0XnavY9EJBLhwQcf5JFHHiEnJ4fp06dz8MEHt/n3zzvvPFasWMGf//xnsrOzefjhh/nwww959dVX6dOnT8zxyD4S7bdmjcuek22qqxpe9dXk5rn88GlynFiCQ6MLZjdcI1UDlSWEVhr86RAVHFQOaVn1S6PWVpuTHJvSnXVWKW9+kOf1TOhoHSoNyuWI/Yt4/HEzk4iGggUuOLWTjaOVqKB7zyoWfWxuElFrQ7Hm1sdr+M+iSjaHHSylGNE9wLlHpvKrieYfowBvvqN45XWL75daWJaid0/N4Yc4nPZr19iJ1g0tXaaZPQc++NxLIjLSYP+94MwTkmNTukgEvpgPn3yhWBeySEvzUTAkzF7jXYYNTnR08fHzMvjoU4uFixSOA716avaZoJmwu8bfgQv7GbGPxJy1cX/dqcf3Trp9JNqVSCxevJhp06bxww8/cMQRR3DDDTeQnR3bB3h5eTl33nknc+fOpby8nPHjxzN16lR22mmn7YpJEon4KS93mf2SRZ+ePg49MMJ27A/Y5QX7lYNlQ4pDaKn5CURTwb6lkOKDcISidbnGDhVpyVlnlfLmvwEsjjjITYoEoqkzfuvw2VeK352juejc5GhgN1RTo1kd0mRmKHrkmt/4bE5ZuUW3bmnYViWuyZsPtKCiUlO2GXK6Yexyr61xXW8+QY/u6VRWViTdeRS8RDASgfQ0OmWVJkkkksd2JRKRSISZM2fy6KOPkpOTwx//+EcOOuigjogvZpJIxJfP560MU1y8JSlPnjsCqUOzSf2ZT+rQfFKH8WVGIhH/HfmmHt8r6RKJmEuzaNGiul6Io48+muuvv56sLAPX2xdCCCGEEEJstzYnEpFIhAceeIBZs2aRm5vLQw89FNMu1kIIIYQQQhghOaaEdrg2JRLfffcdU6dOZenSpRxzzDFce+21dOuWfOPJRb2X/6G5+Gob11FABYGA5t9zNAUFyTH+NThgM9jdQNW+BTSESwitzExoXPEUHLgZ/NneZGRVAUQILe26XcmxCg6shLS0+nULtYbKSkLLk2cyT/89a6gGsCohYjFikOaDF83c7bk5xSXw5ruK1WshJQX231szbnTnjNHuDDU1mhff1HzyNfjsCnYa7DDlWMhuZu8FIYQwUZvmSOyyyy64rku3bt0YMWJE6y+oFH//+9/jFmCsZI5E+42YoCgqU2A1XB5Vg6MYPzbCWy+Y/Skf7LcZ/LlstT6q0oBL6GcnEWHFVXCYBREfW5fRhZoNhFbnJCKsuAkWuGBHy1d7BqvdQ8JxCC0xu6H26FM1XPeQC9nV4NP1ZQzbUJRK6IsOXE6lk7z2T5g5yyK0UeF6e9CRlgp77a7507UuOYaPmP12seai6zWr1igcFxQKlCYvV/PHyxW/OtTsY3RHI3Mk4suIORIvdcAciROSb45Em2pxt912Y/z48QwfPhytdau3ZFyRYkfyq9PcaBKB98ne8GbDl9/4mP284f19TZOIBrkS2iY4uOue3NrCSyL8Xk9EbS5YW2XagkD3BEbXfsEBFV4SoWuXRK3dS0J799m29xyDXfegC3lVXnkqbajyQZUNPhd6VBDcPZzoENvl48/g9vstNmyC3r1g8CAYPABSA/DeR4obb7Uw+aOktExz/jTNspWKtDRN9zxNzyBkZWo2Fimu/avm64WGn0eFSHZN20DxuCWhNqVFTz31VEfHIbqIeV/4o1dAm27Wprz7bMVVN9qcfpKZn/LBwQ0222tSvLr9CLDxdm4zT7BPCQR61N9hNfnqAq5FcFiY0FJDr2pnZEQTpGbOyip69T4jA1PP2uMOq4bsMDgKGu0gr6DahtQIZNWwYoVmwAAzhzk997JFabli8ABQ0SIqC3Jzve8/+1rxzUIYNyZxMbbH4y9q1qxTZHfTBAL1J5qUFEV+rqaoSPHw05qH/yK9EkIIs5l96VXEX+2V3a22RabuPtfM9plHtZI7q/pvgv03d0Y08ZfeLbpJG628uxWQ2nkxdbZGSaF5Vm+ywedAuIUKDFuQFmG/k8x8IxaXwPyFiqzM+iSioZxsqKyEDz81tw4/+Bwcl0ZJRC3bUti25vMFnR+XECIWqgNuyUcSCdHYNo9znRzvhW2VwQ50Shjxt42C1b3jzWyEAtHJ49t4jsnHaF1PSwuFiJa/JmxmISurwHHAbqFDTEU3nK+q7tSw4qqqGqzmesyiLEtRY/boNCGEACSREE1paLkVFu2pMPhqb92Qpdba0UpD2NBWTE0ZrRZOb/WNeZRu/RisnTthKidaPquFMtguRCz2Hde5YcVL9zzIz9NsaaHTr6bGW4irf5/OjSueBvYBrRVuC9234Qj0DnZyUEKItuuI+RFJOk9CEgnRiM+CFo/2aPusX99I5wYVTzWlDSbmNnmswc+h1WYuAxtakQOW23iCda3aaR9KQ0Vx5wYWT67beo+Dij7HUC/fjze5OsVhq0pU2pvDVO7npUfNnB+RkgKHTdKEI1DRZE68dmHtek2voOaXh5j7ifubEyAQ0JSWbX2gbq7QWAqOPjgBgQkhRJxJIiEa+fYjx5vgWbs2f21SUftjRPH1e+b2SIRWZYJ2mqzUROMr9TUGN7IBnJL64TEuXtlc6pdH9dUQWpOToODar09aldfibNo7pqNjULXrPcdQv9g3BUpSoMaGVAf8jtcLEXC822Y/I/qafeo+42TN7rtqQhtg5SooLoYNG6FwOXTLhMvON3v51713szjxCG8I2oaNULZZU1au2Vikqa5STBinufB0c8+jQghRy+xPIxF3+fmKj96IeCvGuFA3QcgBn1aEfjR/j4VQoeslEw2v9tYuIRou9pINg4WWZ4K7EWynfniM0t4eEr5qQj8mNr72WrAgjT6pFUDTK/ZextQntYIFC8zelC70lZ+U0gAUB8C1vHqssWFjGrv28Ru/KV1WJtx7q8u5v3Hp01sTccC24aADNLf/0eWIQxIdYfv9Zapi6iWagiEahbdXRu+eirNPhqfvVaSkSCIhhDBfmzakM4lsSBc/mzZpbrvfok8vm7NOccjOTqpDBYhuTmcrcLTxCURzgn1KwO8DN0LR2ryk20hp110rWVPkHZd98pTxCURzpt9Vw0dfWFx6psuvDjM7gWhOJAKbir1NyrOS7y0IQGijIj0jlW7pVSTZR+4OQzaki68uvyFdWYQZL6yP++tO/XVP8rOSa0M6SSREq+TkaT6pQ7NJ/ZlP6tB8UofxZUYiEYr76079dTDpEomuW4tCCCGEEEKILiu50iIhhBBCCCHaK6nG63QcSSS208pV8Pa/LTZsUmR30xx6kMuwIYmOKn6CfSrBn4U32bo6ulvyFkIrk2MMerB3MaTkAbW7YmmIbCK02uClYpoIDqgAOzv6UxVoh9Cy5JngGexTDqm5NFqCq6qY0JpuiQwrrgbuCpXlFugqUIoxYzVzX06eOqyshO8WWRQVg88Hwws0fXrr+kXjDOe6ULgCVqyGjHSHbhkwbDD4W9iMTwghTCOJRIxcF/7vbxbPvWRTUlK73KRm9nNwxGSHay538Bn+Xw0OsCAlu8la/RbobIL9qgitMntEXLBPMaT0anKvAl8PggMdQssN3icjKjjYD3ZO4ztVgOBgoGYNodXdExFW3AQHakjLb3KvgrR8ggNrCC1PSFhx8/dnNX+41g9O9GSiAWXxv69sgkMdQj+Zv3rawkWKl+b4WLXaW9HI1ZDVDfaa4HDcMQ6pqYmOsH1KSuGZlxULv/d2ug6khHFdGDxAcerxmgF9Ex2hEEK0n9ktwgR45kWLvz3po6pSMaC/ZvBgl4GDNFrDiy/b3Pd/Zv9Lg30dsHzNb/ilAF+q11thMn+TJKJRWW2CA83OBIODfHgJLvVdsw2/9/dOSFzxEuxXDr5Ay0/wpRDsV9Hy4wbwkgibuoqzo5WnFYT9BIeZfZ5Ztlzx96d8rFkLgwZqRgzXjByuSU/TvDPX5uVXbUxeBiQchqdeVHz+NeTnwsidYNRIi3594Ief4PFnFEUliY5SCCHaz+xPo05WU+MlC64Lvfto7Gh707IgGNSk+OGNf9psKkpsnO3iS9v2rsF+c4f/BAc2KFy0Q6nu+zp25wUUZ8HeG0E1eFs3LF/tbtdKERxo8BXtlLw2PCd728/poiYcrMGNHoMW9Wfp2u81ELFZtcrclvbHn1hs2KgYOsTb6Rq8PTDz8qBnT81nX9isXWvu+Kbvf4RvF8OgAd4Ge7VDtdJSoWAIFK6Er75JbIxCiG3QHXBLQpJIxGDB/xSr1yjyc5s/GvK7azYVKT7+zNwPwFaTiLrnGFw+Whmc3KBYwX6bOz6UjhDI9b5qWq9Ly/BxI9ti8DG6rNDX+geO8hKN/Y/utJDiqrISFvzPIj+v+bkQeblQVgZLlppbhz/8pAhHIL2ZKWW2Demp8PX/zC2fEELUMnsMRyerqATHbXminN8H2oWqytpLv6LL2uZnuKkN7W1cG0iGtovBSUJMtlGV1VVm/h8iEXAiipRA8+dIpbxbONzJgcVRdbXXU90Sv9+bNyGE6MrMPMd2NumRiMHggZr0NCgrb/7xsnJITYXBg5I8iTC6eG79EJ9Wn9ZCJXd14W2Mq6ubM2HwhkptGTxv8gB7G0BBa1WkXA7Y18wypqdDjx4upaXNf0jX1HiN8Pw2jGDrqnr20DiOtzhHczZvgf4y2VoIkQQkkYjBwAEwYbxLaZlFTU3jxyIR2LRJMbzAZfddzfyAB9rWAHNrtv2criq8ofEE5IZ0/TehNbmdF1MchVbne3XYXLLUcLhT9frODSyeHGfb83hcc+eAvP5kBCzXm1jdtCHqAiiwXJ551MyrZbYN++ztUl0NW7Y0fkxrWL4CBvTX7DzS3GR37Cjonger1279WFGJ1yOxh8mfE0LsCGSORJtIIhGj318cYdhQl5WrFGvXKIqLYf06xfLlir59NVde5rTapd3VjRhY1vqVUBdCKzstnLjzEoQGjczm3uBhgxvZAG6p97U2mai91W23ECG01uDlX51Sb63QlrgaIqWdF0+c7bWXQqU2SSZqbwC2y5hxBo/7Afaa4LL3Xi4rVyt+LlQUFcG69bD4e0VuLpx4fMTo5V975MNxR3hzQL7/EUIbYcMmzY8/Q1ExHDoRdhme6CiFEKL9lNYmjwHYmuO4FBVt2fYT22H1GnjyOZv/vG+xZYsiNaDZdx+XKSc7FAzr0D/dKYL9K+s3Mmuw1xdaE1pudgOmVnCgxdYTrzWE1xvbG9FQsP9m8DXcrC1K1xBaloiI4ivYrxxSchuvUAXeJe2aIkKrzN+UbsAYqCr3g6u8hEJp8Gkm7FHDG8+Z2RvRUHU1fPq5xSfzLDZuVNg+GDfWZd99XAb0T46PpcU/wiefK374SZHi99GzR4Q9d3cZP7b1ORSi6/H5LHJzMygu3kIkYm5vWVeRl5eBbXfdN8Gmsggznt0Q99edekoP8rOSa3qyJBLtUFXlbTqU1c0b95ts9t+/ku9/AjSMGgH/+U9y7GrdULBPMVgBiFQTWmd+AtFUsPdG8KeDU0HR+mDSfQAG+9XOZfG6X5IhgWjq1rs0H30Kl5wPRxxsfgLRlOt6C1n4fRBoZXsQk4UjFtlZ6VRXV+A4yfUe3FFIIhFfRiQSz3RAInFq8iUSyVWaTpaaCr0M7n7flg8+SEv6k2d970MSZoJAaG33aB32pLi4cxLszpSMiUNTN15tJ/V70LIgMyPRUXSstFTIyFBbza0TQgjTSSIhhBBCCCFEI8nXA9wRum6/khBCCCGEEKLLkh6J7fTZF/DwYz5CGyA7G86eEuGgiYmOKn6CQ2rASY/OCKwGR3HgpBqefyIl0aHFRbBXKfhzwI5OuNZAZBOh1ckzVCbYvwJSsqI/VYHrEipMaEhxtdeBlfy8Jh109HqIchnSp4JP30ueuTyTT3L5eoENbiWWT3HObxxumWYnOqy4WbsO/vaMxYpVEEiBIw5xOWSit0SsEEIkVFLNIO44Mtk6RpEInHGBj/9+ZBOJRFfV1GDZsOtoh5efMXvZQoDgAAts39a9ehqIVBJaafanfLBvKaT0aFy+2neBowmtMH9lquAQX30Du44CXKgqIrTW7IQpWOCCEwCnSRltF6waQj+a3SX96VcOR/86BZyG13o0KI2V5rBukflzJR6YpXjocYvyclW3fY3PDzsPd3nsPpeePRIbXzwl+1yzHYHUYXwZMdn66Y1xf92pp3VPusnWXbcWu6jfXW3zn//aOI43gS4zHdKiF0C//sbm1HPMPkCC/SP1SUTDFLN2HwJfGsH+hs8YbJpEQP3PPkVwgOF1ONQG3VyyF63EVLNXpwoOrIRINIlQGqzoTWnvPifFe47BvCTCpm4TECv6ZtQKt8LPgLFmn7rnvAH3PmxRvhmys6BHd8jP91Zu+mahxdmXWTjm7ikohBAdoqSkhBtvvJH999+f3XbbjVNOOYUvv/wyoTGZ/WnUyTZvhn+9a6M1pKfVrwNuWV5SoRR8+ZXNjz8lNs528aXXJxENG9sN77PNXeEo2F+1PH+q9v4ufJVkW4K9y8G1aL1P1iI4KNJZIcVfaoZXRqW3PkaV9h5LNXcZoIuvccCNJoIW9WfpBt9XlduUlprb0v7b0xZVVYq8XIU/OrrQUt7qTelpsPgHi39/kNgYhRA7sI7Y1ToOu1tfccUVzJ8/n7vuuos5c+YwcuRIzjnnHH7++ef2vXA7mNtiSoCXXlVUVCpSmu5jFhVIgeoaeOrZJPi3NtfYVq09aAi7hcprSEGwr6FLpQYyaNPb2jJ4/J0TTZRaO0Yj5r4HX3nDv40PGy9ZOvUiM9+Ha9fBj0stAgEveWgqPR3CYXhrrrl1KIQQ8bZ8+XI+/vhjpk+fzvjx4xk8eDA33HADwWCQf/zjHwmLy+wxHJ2sNDqWt6UdSZXl9Ups2WLmB7xowDJ0Z6ymOz23+LyODaNDbfOKTtPuNLPo2uHX26jKklIzy1he4W1C19KEaksBCiqrOjUsIYRoomudY3Nzc3nkkUcYPXp03X1KKZRSlJWVJSwuueQTgz12c7EtqGlhLm447CUSY8cYPBGrtbn3tQ+prvXmionbhn5FDUQM7ZGIlLPtlrZq0Fo1kIomCs0VU+M9pswtX1ZWtHytFUG5nHi0mWXs3xsyM3WLm7OFw97H9+ABnRqWEEJ0aVlZWRxwwAGkpNSvnvn222+zfPly9ttvv4TFJT0SMdhnT+jfz6VwuTcRsOEVNdf1PgC752tOPdHghbB0K1dza+92DJ5sHdkIdnQ5mJbyIQ2htdmdFlI8hVZ2IzjYpfVrBBoqSwFDV26yHYj4mu940A2eY6i5L0YYP9HnzfVwdeOqdAEUWA6/v8DM1dPS0mDS/pqXXlVUVdFolTtXQ2m5JisLzjrVzERJCJEkOqgpt2bNGqZMmdLi4//+97/b9Dpff/0106ZN49BDD2XixIlxii520iMRo7tmhMnM1FRWQUUlVNVARfT7tFTNTdPC+AxOz665rKK+V6KFK76hFZ0aUlyF1mSD00oDRQPhDZ0WT4eIlNHqGVCFjV7+deoFleAP4121j165d/G+R4E/7D3HUAMG2PQZEAHLpa5novYGYLmcd67ByTxw7eUuQ4doyrfApiLYvAVKy2HTJkgNwKXnJdfyr0IIEU9z587l7LPPZtddd+WOO+5IaCyyj8R2+HI+TL/Fx7ff2YQj3iI/BTs5XHNFhEMndeif7hQnnVnDe+9neEOYaq/4arwNzZYbvNpPA8H+Fvh8jcsXTSJCq83sjWgo2H8zpOREV3CqpYEIoULz3/J33VXJjIfTIWLX7yVhu2A7TL2wgiuuMH9TuoNPdPnfVymglXezNPg0l55XzQ1/MLM3oqENRXDr3Rb/+UCxeYvCUjCiwOXc011+9ctERxdfsgeB+aQO46vL7yNRGmHG7E1xf92pp+eTn92+q82zZ8/mlltuYfLkydx2222NhjolgiQS7VBSAitWQZ9e0L17p/zJTnXnnTXcdrcCZXHdVS6/+10bVjwyTLBPKVgpEKkhtM78BKKpYO9y8NngOhStz066D8C77qpkxr3e91N/R1IkEE299Z5m/gIfx/0ywsgRBs9PakFNDaxeC5ndoEdeoqPpGNIINZ/UYXxJIrF9nnnmGf74xz8yZcoUrrvuOlQXmLMqiYRolZw8zSd1aDapP/NJHZpP6jC+jEgknuqARGLK9icShYWFHHXUUUycOJGbbrqp0WOpqal065aYIcsGj+YXQgghhBAi3qJz7jrkdbfP22+/TTgc5t133+Xdd99t9Nixxx7LjBkz2hvcdpFEQgghhBBCiC7swgsv5MILL0x0GFtJeCJRUlLCXXfdxfvvv8/mzZsZPnw4V155JePHj090aK16/S24+54UikoUmRlw4Xk1TDk1eUaJBXu5kJoS3eCs2lsRx3EJreq6XZGxCPaqADsT7OgkJa3BLSa0Oj2xgcVRsG8NWJl4V0BqAE1oZYKDiqOJh7ss+i6lfodI12XnXWp4/63kOEYBRu0JoZANugosm4MmuTw7K9FRCbHjqK6BxUu81cVychx6doe+vc3eTkm0UfI06TpUwudInH322WzYsIGbbrqJ/Px8nnrqKebMmcMrr7zCkCFDYn69jp4jUVMDBx4W4MefVf069tGvPXto5r1fTWZmh/35ThEcaINlN79Gf7jK+GQi2LcCrLzGix/Xvgu0S2il2UtrAgT7p7D16s7RgzVcRmhdYld5aK/gAAWWv/lj1I0QWmH2GOZ/vAXnXOQHt+HqTNorr88l9HMLu2KKLknG15vpp0J47lVF4QqF1uDz+UjxO4zdxeXkYzWZGYmO0Fxdf46Ew4wnO2COxG/yyc82f9W9hhJai8uXL+fjjz9m+vTpjB8/nsGDB3PDDTcQDAb5xz/+kcjQWvSrE1O8JALAil4Mjf4X129QHHBoIGGxxUOwr1ufRDRMMWuTJn+q11thMiuvvnxN02hlEexv9upUXvw29WM8m4z19Ju7hwRAsJ/bfBIB3n2Wz3uOwbwkwqLuILVq93ZRELYJDjX7GBWiq1sfgseeUfy8XDGwH4wsUIweqcjOgo8+UzwzR+GafZoRIi4Smkjk5ubyyCOPMHr06Lr7lFIopSgrK0tgZM0rKoL5//P+ZZYFVm0+oepHV6xarfjiqwQFGA8pqY16Weo0vC/V3KvZwb5W/VHfsH3d6Ku5VwuCvWrw4m+po9ErdLC/wZ+AvkDr89VU9DmG+uXxgI4epA0uVHjfR+s1ogiFOj82IXYUn36lWL1OsdMQCERPJ0opcrKhf1+Yv1Dx07KEhihEl5DQORJZWVkccMABje57++23Wb58Oddee+12v67P1zH50f0PbeMKhPKG2t/7QArPPWX4xm0tXe0FUFaH/Y87nN1KEtQgWQr2raRovYH91n4/bVsVIhWfz9RjtC3lU8Yeo1/Nt7cxNleDa3HosYqFn8lAbRPUDuHoykM5RD2tYf63kJOt8EVbSVZ0UoSlvF6JVWs0Py2zGFmQwEBFx5I5Em2S8MnWDX399ddMmzaNQw89lIkTJ27Xa1iWIje3YxqAlZURascpt9TO1hqqa2xyc029Ilq9dW9EMzrqf9zxomPLt3VFG7+hZdzc5meaWT6A6jY9y9zyVQGqvvehBRUVFrm5ybM4wI4gKyv5NkxMRo6jQYXJzIC01MYfFoGAL/rVJRCwyc3tUs0oITpdl3kHzJ07l6uuuorddtuNO+64Y7tfx3U1ZWUVcYys3j57wmNPpYD2hio3paMN8F3H1FBc3LbGTtfja7mR3SDBKC42dNM/7aNurEhr5XTCZpYxUh0d1rONTEm5ZpYPaOtpy9Ty2T4LJwy4tDz4VGmOnGxyHe5YbNsiKyuNsrJKHMfgYYU7kGB3WLDQ65UAryciEPBRXR0hHNHU1GhSAxGDP+sTKysrzYAeOunxbYsukUjMnj2bW265hcmTJ3PbbbeRktK+MfgdtSrG0UdB5tWwuQJcXT9HAryfAfw++MPlDhFTR41o11vytbVeCSdMJGJon59bAnae933TMjYoUmhdmpGrq4TWphDsX1uQ5iow+lhNBZGIoXNdXBe29QHkukbWH8C7L7tMOsL2llx2deNkwgUvEXS46y/a3PfhDspxzD0udzR77AoLFloUl2iys6h7HzquZtkKTc8eml2Ga3M/68W2yem1TRKeDj7zzDPcfPPNnHbaadx1113tTiI62p1/qfImVmuvPVN7Q3vrSl9+SQ1dvAitCmbWeI2V2jZow5WNonMIQivMfXeFVqeDdrwfGq7c1LBITlHnBxZPbnn0m6b1VPtz2OjlX6dPjR6jLXGjzzHUqFEQSI9EhzYpr6wuXmIRHfJ00CGy/KsQHWncaDhgb01og7cM7KYiWLdes3iJJjUAJx6tyTJ7ATwh4iKhiURhYSG33norhxxyCBdccAEbN25kw4YNbNiwgfLy8m2/QAIceww89mAVvXvqRtd783I0M/5YzVVXmH21aeFCCyJV3jit2iv2tQ1u1yVUaG4DrVZoZRjccPONUafI+E3pQqtTwCmjcYZU+7Wa0EonMYHFycUXW0y/psrL4JsuUaw106+p4uKLE36NpF1WLnbI71kNlluf1FsabIcjflktm9IJ0cF8PjjpGM3Zp7oUDPV6HpQFk34Bl5zjstuYREcoRNeQ0A3p/u///o+777672ceOPfZYZsyYEfNrdvSGdA2tWweLfoBhQ2BA/075k51q1CiX0CYFWtGnl2bBguQbLxjsG51P40BondkJRHOCvWq81WAdRdHGQNINq3jwQZfpt3rfT78W4xOI5jzymOKTzy3OnuKy/77m9gbuyGRDOrO5LtSELXp0T6eyskLqMA6M2JDuifiPTph6Zl7SbUiX8J2t460zE4kdgXwAmk/q0GxSf+aTOjSf1GF8GZFIPN4BicRZyZdIdN1aFEIIIYQQQnRZXWLVJiGEEEIIIbqO5BvO3REkkdhOn30ODz/mI7RRkZ2lOXtKhIMOTHRU8RPsFYHU2s2TqsC1IVxDaG1yHDLBnhXgzwTLXz9h1ykmtCZ55kkE+1RBoBveybAaHE1oRaKjip/hY8MUbwnUr8PsanIzqvnhG39iA4ujg45SfPuDBboSZSl+cxLc/qdERyWEEEJ4kqNV2IkiETjjfB///cgmEqlf2Oi9D2x2He3y8rNhUlMTHWX7BAfYkOZvvGKTDdhpBPtWE1pt9oi4YJ8K8Od5uwrWrgGuAJVHcIBLaIX5K1MFB/nBHwAH6q+qBAgO1FBdSmid2QdpcLALgQDYDa4Y2Yri6gDBwQ6hQrOvJH08D46dYtcnSQq0Vvz9WR9PPq9Z/4PZK28JIUSXl1QziDuO2S3CBPjdH2z+818bx4G0VMjMgLTohfuv/2dx6llm52bBvo632VfdHgvRbKJ2l92UgNdbYTIrmkTUniSi+4KgFTg2wf5mX9EODvJ5PUi1ddd0071AVoIii4/ggDAEfF75lK5PeFV0y/mATbC/2fss1CURDfc5iV610FrRb5fkmqwnhBDCTJJIxGDzZvjXuz60hvR0sKKf5ZblJRMK+HK+zY8/JTTM9vGn1icRqkELVEWTCaUaDHkyT7CfVZ9EWNS/Axq+E7S5jbRgr6rG8asGX1X9N8F+Bq86khqIJklNtyaP3qcVpAUSE1scnHspjd97DdVuTF6tKCnprIiEEEKI5kkiEYOXXrWoqISUFi5YB1Kgugaeetbchmh9w7OZhoyqbbwZrOGciK0eo65nItinohODiiN/arSRTcvzxDTesCdT1Z61WjxGMfrM9sa7dn0y35xoEvzrszoxKCGE2JE07Q2O5y3JGPxx2/lKyxRaez0QzVHREUFbNndqWJ3P7OHnnm0e+SmdEUX8tXQlu+7xzgkj4Qw+Wbd1Z5+SzXL6FkIIkVjySRSDPXZ3sG2oaWGKQDjstePGjjG4FdOa2haO0cWLjqlvbWSP0uAYOuE6XOnF3xIN0YH2nRVR/NXWXXNlSIJjNDNjG0+I9laceLTBw9OEEKLLUx1wSz6SSMRgnz2hfz+N44DTJJlwHQhHIC8XTv21wR/wdcPOm2mJ1b4HIgavGFNTUt/QblpNLl4ZLU1ovZnLwIbWplJXd02rsPZnpaHK4G6zSLQgLQ1tUg2eY6B/v+xsPf2jKa35w6WdFZEQQgjRPEkkYnTXjBoyM6GyGioqoKoKKiqhosqb33nTtBp8Ji/cVF3ZYMnQJgP7olfyQ6vMTZRC69JBOfWNNLfBrXbln0hxwuKLi3BZNFnSW4/LVBpUxOjlXy84rQZc3fL4U1d7zzHUoEEQ7OHWJxNNJ8y7cMapBifzQghhApkf0SaSSMRonz3h+Seq2WM3lxS/N5LCZ8OokS6PzKzm18ebfaSE1vqiyYRufNBrwIHQMrOX1QQIrQyDVQNWg6VDLQ22C26R8ZvShdakQk0p2Lq+90XVfh8mtMzsRujNN/u54ORqL5louPwrGhy44KRqbr7Z7CV8F37iMrLAqU+YoO6D6IKzI7IpnRBCiC5BaW3yYOmtOY5LUdGWTvlbJSWwYhX06QXdu3fKn+xUwd4Nd2uD0FqDV6NqQbBXhbdev2PucKbWBHtVeZcLXCjamE4kYm5vUnNuuCHMw3/3vr/gDIxPIJrz+r8UX31tceLRLqNGJdXpeofh81nk5mZQXLwl6d6DOwqpw/jKy8vAtrvutexNJQ4z/lYS99edek4O+TnJ1ZaSREK0Sk6e5pM6NJvUn/mkDs0ndRhfRiQSs0ri/rpTz02+RKLr1qIQQgghhBCiyzJ5WrAQQgghhBAdIDmXa403SSS20y0z4JHHA1TXgN8HJxxXzd23JTqq+An2dr2tui0FVIGjIOwSWpMcnVjBYCX4M6lbYktrqCkltC4tsYHFUbB3BKzM6E7XEdAQWpvoqOLnjrs1f33Qru9XdeHqix2uujx5Tv4zH1bMfs5HdVWYvFwf106tYdL+iY4qfopL4M1/Waxeo0hJgf1/4TJujG5x008hhBBdi8yRiNGWLTBi1wDVVdHGilbeyjEasDULv6gmGOywP98pggMsbykq3aRBpjRUVxNabfanfLBXJaTmNP+gowmtNHfp0FrBvqnR+mvaqNbglhNaZ/Y1hOBQDSkWNB1q6gDVmtDPiYgqftatg4mTAxQVNX0PwphRDnPfNH/1tNfeUMx82Edog8J1FVpDWjrstYfDn26MkJOV6AjjR8bXm0/qML6MmCPxaGncX3fqedkyR2JHN2bPANVVVv2awKrB8oyuYsyegQRG137Bvm7jJKJhW1QrCKR6vRUmaymJALAVwX5mr/wT7BsAbXn11WTpUFCguiUuuDgYs4+GQDSJcJvcLCBVUTDO7OsjBx3eIImwwLa9r2j437c2J00x+xj9eJ7i9nv8bNio6N0bBg/WDB6kSQ1o3vuvzY1/8uEafpoRQogdgSQSMSgshPLS6EZtzW0UpcGNKJ57MWEhtl8g0DiJqNXw+0BKZ0YUV8G+bbgS4DP3bRHsHfGSiFrNHKMojE4G12301S1puxUNWFCyxdwel9ffhA0bvYqzrOjoQryvtUN+PvzYpsbgjrPnXrIpLVX07wcp0dOJsiA3F3JzNZ99YfPNt8kzRE0IIZKVuS2mBLj0KhtQtLo7oVbc8ldzG9p1Lc/mPsPrGqIGf8C3cdvxYK/KDg6ko/ioO0ZbrCYFlsF7ZljutncItc1NlB7+W7S3oaWzs4JIBB570sz3YXEJzP/GIqubRjVTxpxsqKyEDz+RjychhOjqzL1slwClpVYbtjjX1FSb+QHvabUFugMxNRncxjGaDFXbsHclCVVVeV+31YwuKTXzn1BZBY6j8Pubj702uaj9PwghREKYd3pNCLnkE4ODJobZ5pGlFMOHR1p/TlfWam9L9KvJjVG3jWcG19RxIzXevJ2W1M6V0OZesW92SNP2PKeLGr6TV38tHqrRXP+giWYWsnse5Oe5bNnS/ImkpgaU0vTvK5/iQohEUh1wSz6SSMRg+vWAFf0Ub/oZVzuRFc2zTzidHVr81C7i1dpneI3BK8aE27AKg4ZQyMxlYENrffWdSs0dowov0XArOj22uKnN51s6J+vocwz111si3uRqvXU+VJtc5OVq9ti9syOLj5QUOOwQl3BEU9FkgT3twtp10KuX5peTzUyUhBBiRyKJRIwuPr/aa4gp1eDqLnir4WgmTawhIyOxMbZLTQ11LVDd5Ba9M7QqEYHFR2hdGmxr6b7qkk6JpeOUU7cgQMP6U0S/iRi9/Ou7r7gQwStPwzOYFb1Fos8xVGYmnDUl4k1FcsF1wIl+RYPtgwfvq050mO1yxmkOu4/ThDbAypWK4mLYsAEKlym6ZcJlFyfX8q9CCAM1bQPF45aEJJGI0fTr4arfV2H53MYr4tguJ/26iueeMrcBA3gbzlVXA26TK74atEuo0OBLvVGhVWGINNNrpIGqEuM3pfN6JWqTCV3fC4EGXUNojdl1OHas4t0XXKhW3r4RtT3GDlBj8e4LLmPHmt2FfOufIlw3tZrs7PqEUFnQv5/mhSerjN+ULqsb3Ht7mHPPcujTxyUS8Za4PehAh9tvDXPEYUn6iSuEEElGNqRrh4WL4b8fwt57wG7jOuVPdqpgH7fREJlk2dW6obrVmVxzhzO1JtgrUpcQFm1ISbqNlL75RjPlIojUwLN/w/gEojnLV1psKgowbHA1WVnJVX/grUC1qQjS0rwEIxnJZmbmkzqMLyM2pHu4LO6vO/WCrKTbkM7c8Q1dwKiR3i1ZhdZYSX/yNL33YVtC63yN6jDZjB2r+N8niY6iYw0dDON381FcXE3E4HUcWuLzQc9goqMQQgixPSSREEIIIYQQoqGkGq/Tcbpuv5IQQgghhBCiy5Ieie20co3m7fdhQ5EiuxsceoBm2KDkGZ9dWgpPPW/x3SKLQGqYCbspTjjGW7oxGUQimhdfh5f/aVFdo+nfG35/vmanIclTh0IIIYTYXtIeaAtJJGLkupr/e0rx3CsWJSXRmchaMftFzRGHuFxzCfh8Zh98b76juP6PPjZtstAaFJpXX/cx8xGLmXeH2XV0oiNsnxWrNCdeCCs3urhE0Cg+/wH+8YHi1MNtZlyf6AiFEEIIkTAdtVxrEg6XkqFNMXrmVfjbbIuqKhjQ32XwIBg40EVrePE1m/seS3SE7fPtdzD1eh8bN1pkddP06AE9eyrS0mD5CosLLvVTVJToKNvnpItg2UZvnf40n02m3ybVtqhxNU++4XDvI2YngkIIIYQQnUESiRjU1GhefF3huprevcC2vQanZSmCPSAlRfPGOxabis1NOR9+zKa41CIvT5MSqL8/LQ1ycjRr1ykef9rcw+alNzTLN7j4sEj1WVjKq0PbUqT5LBxc/v5y8q1OJYQQQggRb+a2CBNgwSJYvUaRn9d8opCfr9lUpPj4i04OLI4+/dzCZ2nsZpY5TkkB7So++MjcNZBf+aeFiyalmeFnllLYWKwvdfl+qbnJoBBCCCFEZ5A5EjGoqFQ4jsLva76R6feBdjVV1Z0cWBzVhL0ddFuiLE1lVefFE29VVd4QxdqeiKYsBa6GouLOjUsIIYQQXYhcT2wT6ZGIweABmvR0Tdnm5huhZeWQmgqDB3RyYHHUuxc4kebL57pej8SA/ua+u4YM0Cgg4jRfhoirSbEVOxd0blxCCCGEEKaRRCIGA/sqJuyuKS1V1IQbN0QjjmbTJovhO2l2N3hVo2OPclAWbC7f+rHSUkgJaKacZO72ur8/X5NqW1Q7Lq7eug5RmvEjbXKyZcK1EEIIsWNSHXiLj4cffpgpU6bE7fW2lyQSMfr9eZphQ11WrrRYuw6KSzTr18Py5RZ9+2iuvFBjWeY2Qs8702XvPR2qa2DjRigvh9IyzYYNgFYc+yuHA/ZLdJTbr29vxfm/tvFbioqwS2XYpSrisqXGodpx6J7h467pMtlaCCGEEF3T008/zT333JPoMABJJGI2sK9i5q2a037tkp0FkYgiPd27kn/fLS677mJuEgFg2/DkIxHOOdOhd29N7UX7YUM111wZ5o4/O4kNMA6u/Z3m5sssBgdtLAVaQ5rf4oBdU3jr7zCgn9l1KIQQQoh20h1wa6f169dz4YUXcscddzBo0KD2v2AcyGTr7dC3t2Lab+Hyc11KyiErE9LTkqfxmZICN17jcN1VDuvWW/TonkogUIXWyXOl/sxTFGeeAqvXWpSUwtBBkJqqkZ0shRBCCNEVfffdd/j9fl5//XVmzpzJ6tWrEx2SJBLtkZqq6JWa6Cg6jm3DwAGQm2tTXAwRc6dGtKhvb0Xf3omOQgghhBA7gjVr1rQ6t+Hf//53i49NmjSJSZMmdURY200SCSGEEEIIIRoyd4HKTiWJhBBCCCGEEJ2gT58+rfY6mKZLJRIPP/wwH330EU899VSiQ9mmYC/AF6BuTL1bTWhN8qSvwaALKWnR6fg14PqhppJQKDnm5weDDtgBsHxeFWoNkQpC683dtbupYC8XfOnRn8LgQmhNQkOKq0ced7n+xkD9Dora5c9/qub8s5LjGAWYOQtmz4Hq6krycuDa32sm7Z8883gqK+G7xRZFReDzwfACTZ/emhb2ixRCiE4kJ6K26DKJRO1SVuPHj090KK269lqY9WQq2Kpxt5dKJdhXM2ZMFXP/mbDw4iLYxw9pVuP3kAXYaQR7VRFaZ/abKxh0ICWDRgVUCvwZBPtqQqsN3po8Ktgv1Xt3N6wqO4VgX6IJk9mN7eAQoCYddOOD9PobbK6/uZrQz2Yn9evWayb+yqaotPYel1Vr4eQLbcaMhLlzzF/4YOEixUsv+1i1SuG63o7yWd1grwkOxx3jkJrE88+EECJZJLw10RWXsmrNrL8HGjdeGrWpFf/7n9mffsFeLvit5hNxBQRSvd4Kk9UmEQ2XY6v9qiyCfVMSE1ecBPsGmux706AyLRr0UpjpF5NdqEmtfx82LKtWUBNg173NPkYPOq5BEqHAtlW05wz+twhOOjfhp+52WbZc8fenfKxZC4MGaUaM0IwcoUlP17zzb5uXX7XRZueCQgjTdcHlX7uihH8aNVzKauzYsYkOp1XDRkLdv6xh46VJoy0Y7OTA4iklrfXePBV9jqGCvaOX6WtXem1Yh3UN04S/LbZbsJdL4wps5iBVEOxt7hltyeLUBolfgwfqkglYs8bchP71f2k2FAMaLEthRcf5WErVbXb54WdQU2NuHX78icWGjYqhQ7zlpsHrFMzLg549NZ99YbPW8J5PIYTYESR8aFNHLGXl83VMQ7CstIUr9U35U/D5DF0rtS3lszruf9zhrFYO+egVX5Qi2NOhaJO/s6KKH6UaXB5ooTIVYKfh89V0UlBx5rTyPqxNCB3L2GP0kSfxjsNWwo9E4IlnFRefY14ZKyvhfwttenSP9rQ00T0fFn+v+OlnmwH9ze5ZqmXbVqOvwjxShzuirn0xY8aMGYkOAegCiUS8WZYiNzejY15cVbX1iR0XQ4drW+PS3PKFvS/bPD8YWodqy7aeQO3lfCPLB0DYSxa2UYemli8crgRcbKtxAZtOQK6uSSE3N9B5gcWJbWts2yUjHdJSm6/EQEATCPjJze3aH+SxysoytzdXeKQOhWgs6RIJ19WUlVV0zIs7gN2Gf5l2KC7eVoOui9L+NiXhxpYPP42GNjVLg9ZmltFxvCvZrZUNQLtmlg+A6FiY5uqwwWgfU8u30xDN/IUKx9F1Q5mUon7OQLS34hd71VBcbF7Pp+NAdpbNilUW6RlbD8+qrvF6XAIBh+Jic4dvNWTbFllZaZSVVeI4ydHLsqOROoyvrKy0rt+7kxynnw6XdIkEQCTSMW/y0Dq8VW9g60ZMgwPu3DMj5u4C7bLtmTPhSIf9jztcuMKbbF07BKZpHUYv2IdCtpFlDK1X3jGqoMWDVAORKiKRLn4Sb4kV8ZYjbukkrwDb3GN0xg2aOW/YOC64WtfNkQDvQgkK8rJh3OiOO9d1tL32hB9+VJSXazIadBxpDcuWQf9+MHwnx9zzaAscxzW2zoRH6lCIxgxtSSSQU1n/fXMz8XWYW2/t5JjiqabS63mB5htqLoTWOs08YIZQyAYd/RCoHeVTe6ttfIfNvJJdx6loUHdNDlINaMfo5V8/eKcGL+OlhRUxXD5429D5H0BmpuKsk11vKJMG19E4jvaSCMC24cHbzH0PAuw1wWXvvVxWrlL8XKgoKoJ16725Ebk5cOJxEVn+VQghDGBuayJBQuuASCWopq1sDbqK0BqzL6GFQhZUN0gmamkgAqEV5u+xEFpdA64D6PrFjJQ3nImaLV6yYbDQOgsiFVsvb+sCbpjQ6nDigouDESMsPphbCXbEq7eGdWg7fDC3khEjzD613XoDXPd7l+ws6heKU9C/t+KFRx3jN6ULBOA3p0Y44/QIAwe4hMPgs+GwQxx+e1GEkSNkTIEQIsFk+dc2ScqhTR0ttB6gimA/vLnJNoTWJjamePJ2r67ear+IZNnVGiC0JgyEvc3pGgxnArOTiFqhdRZQRbCnGx1gD0WbzByu1ZwRIyxCK8J8/3015/7ey32fephoApEcx+ll58Nl57ssXwWbNqUybHAVWVnQ1VcSaatAAA7Yz2W/fV0qKsHv8+4TQghhDqV1cm374zguRUWGD03pQnw+i9zcDIqLtyRNI3RHI3VoNqk/80kdmk/qML7y8jK69GTrTcUuM+6L/8I9Uy9LJz+365Z7eyRXaYQQQgghhBCdQoY2CSGEEEII0VBSjdfpONIjsZ32/gUEe6cR7OPddt41OcYt13p4FgT7BsjrlYIKhMnr4+PLLxMdVfyUlMCE/W2Cg1MIDkqh15AUbr870VHF1/oN8PhTFrf81eavdzp8uzDREQkhhBAimUiPRIxWr4Zxe6RF16qvv3/jxlSCfeCNVyuZMCFh4cVF3yF+wjV24zRTWxx+TCr9+lfx9byEhRYXs/4O105PAZ/r3fAWNLr9AT/3PAirfzR7VSOA2c9aPPaUj41F0QWNlMMjT/g4YF+XG6dFSE9PdIRCCCGEMJ30SMRo3Pi0lncOtuDIY9I6O6S42nM/CIft5sunYNXKVG6/q9PDiqu6JKJuSTZVt1twGE3BWLPz6zf+aXH/Iz5Ky6B/Hxg8CIYO8fYfeOtdixl3JsfKVEIIIUSH6IilX5N0CVhJJGLwxlts+z+mYMqZnRBMByks3MYuUApuv9PcNRp/cZBdn0TUbUAQ/T66gFlJmblvC9eF516yqaqEvr3B5/fut5Siez5kZsB/PrApXJbQMIUQQgiRBMxtMSXA+Rf6t72Eu4K330nyLVmVufNBlvzc2tX4aLl8Ln+e0SnhxN3PhbD0Z0VONqhm3t15uVBWDh98LG99IYQQomWqA27JR1oTMYi4bf13GXywGBx6bFooaLTbccnSzosknqqqFK5b3xPRlB3No6rN36BcCCGEEAkmiUQMBvRvW+vL54t0cCQdKAnH7zXktzV1W1k3RwGu4oJzOjGoOOrXT5OZCeWbm3+8Ygv4bBjQP8krWgghhGgPmR/RJpJIxODLeWz7QNDwxTyDV/1pw0bnGRnmlu+2m8PeEk2quWQi+rOr2HfvTg4sTnKyYeIvHCoroKqq8WOuC+s3wsD+mkkHJOkZTQghhBCdRhKJGA0YUNlyMqEhkBqmb99ODSmuFnxR7TW0W+JC4Q9Op8UTb6efAukp2qtDBajoZQKlvZ8dxa3TaxIbZDtdcK7DqJGatetg9RooLoG16zWFy6F7PlxxWYSUlERHKYQQQgjTSSIRoy/nwfCdKr3Gdm1CoQEX8nKqWPmTwcOagD594K3XqrbuhtOAqwmtrmrhN82xbHGEvt1diFje0q/R4UxELG69Kcy5ZyQ6wvbp2QPuuyPMGac69MiHSBgCAcWRh2nu+kuY/faR3gghhBBCtJ/ZC+YnyIfvA1Qy+2l46hn41VFw8YWJjSmexo+H0Koq1qyBK6dZ9O7lY+qVEYLB1roqzDL/UwdwmP0s/PADnHMmDBqU4KDiqEcPuPJ3Dpde5FC+2aJf3zTC4RoiEUkihBBCiG2Sj8s2kUSiHU4/zbslqz594MWnITc3QHFxhIjZnS3NOv2UREfQsVJSoGcQMjMtiosTHY0QQghhih1mGct2kaFNQgghhBBCiJhJj4QQQgghhBANydCmNpFEYjuVlsKixRZlZYr0dM3OO7vk5yU6qvipqIB359r8+KMdLZ/FL/Z18ckRI4QQQgghkEQiZlrDRx9bvPGWzYYNFqDRWpGXpzn4IIfDDnGwDB8w9sWXFjffksLKFRaOA5al8flSGD7c5s9/qmbw4ERHKIQQQgghEk0SiRh99bXFs8/7sW3NTju52Da4rmZ9SPHyKzaBFJh0oLn7LCxfDjfcmMKaNRa9e2nS0sHvtygudvnmG5trpgV4bFY1mZmJjlQIIYQQQiSS4dfOO5fjwH/et3AcTf/+Gtv27rcs6N1Lk5rqPV5Rmdg422POy35Wr7bo31+TmlZ/f2Ym9O2rWbLE5p//shMXoBBCCCFER9MdcEtCkkjEYM1axfLlFj17Nn809OylWbfeorDQ3CXDPvrYIiWFZudCpKaC68C8eZJICCGEEELs6GRoUwzCNRCJKPz+5hMJvw8cRxMOK0xNPauqFLbdcuyWjdE9LkIIIYQQ22buReHOJD0SMcjL03Trpiktbf7gKi2FzAzo3t3MJAJg4ECX6qrmy6c1OBEYOLCTgxJCCCGE6EwytKlNJJGIQU4OjN/dYcMGRU1N48ciEViz1mLnnV369jH3aDnicAefn2Z3QV63DrplaY46Itz5gQkhhBBCiC5FhjbFaPKhDitXKRZ+Z5PVTZORoamsUpQUK4YOdTnmKAdlcG/Y4b90mPdphLf+6aOsTJOV5S3/WlysCKTA6afXMGqUuYmSEEIIIYSID0kkYpSTAxecG2Hep5pPPrXYvFnRLUNz0IEO++zt0D0/0RG2j2XBH2+qYfhwlzfftFm1ykYpGD/e5dhjwhx5hLlL2wohhBBCiPiRRGI7ZGXBYYc6HDTJoaoKAgHw+xMdVfz4fPCb0yOcfmqE0lKL7t3T0boG13UTHZoQQgghRMeTwRdtInMk2sHn8/ZXSKYkoiHLgh49IC9PGb9btxBCCCGEiC/pkRBCCCGEEKIRgye8diK5ziyEEEIIIYSImfRICCGEEEIIUauj9n1IwnkX0iMhhBBCCCGEiJkkEkIIIYQQQoiYydAmIYQQQgghGkrCYUgdQXokhBBCCCGEEDGTHgkhhBBCCCHqKDpm+dfkW1JWeiSEEEIIIYQQMZMeCSGEEEIIIRqSORJtIj0SQgghhBBCiJhJIiGEEEIIIYSImQxtEkIIIYQQoiEZ2tQmSmudVP8qrTWum1RFSjjbtnAcN9FhiHaQOjSb1J/5pA7NJ3UYP5alUKrrrmDkOJqSkvi/bk4O2HbXLff2SLpEQgghhBBCCNHxZI6EEEIIIYQQImaSSAghhBBCCCFiJomEEEIIIYQQImaSSAghhBBCCCFiJomEEEIIIYQQImaSSAghhBBCCCFiJomEEEIIIYQQImaSSAghhBBCCCFiJomEEEIIIYQQImaSSAghhBBCCCFiJomEEEIIIYQQImaSSAghhBBCCCFiJomEEEIIIYQQImaSSIhmlZSUcOONN7L//vuz2267ccopp/Dll18mOiyxnQoLCxk3bhwvv/xyokMRMXr11Vc5/PDDGT16NEcccQT//Oc/Ex2SaKNIJMK9997LgQceyLhx4zjttNNYsGBBosMSbfTwww8zZcqURvctXryY008/nV133ZVJkybx5JNPJig6IboGSSREs6644grmz5/PXXfdxZw5cxg5ciTnnHMOP//8c6JDEzEKh8NcddVVVFRUJDoUEaPXXnuN6667jtNOO40333yTI488su69Kbq+hx56iBdffJGbb76ZV199lcGDB3PuuecSCoUSHZrYhqeffpp77rmn0X3FxcWcddZZDBgwgDlz5nDJJZdwxx13MGfOnMQEKUQXIImE2Mry5cv5+OOPmT59OuPHj2fw4MHccMMNBINB/vGPfyQ6PBGj+++/n8zMzESHIWKktebee+/lN7/5DaeddhoDBgzgoosuYp999uHzzz9PdHiiDebOncuRRx7JL37xCwYOHMjUqVMpLy+XXokubP369Vx44YXccccdDBo0qNFjL7zwAn6/nz/96U8MHTqU448/njPPPJNHHnkkMcEK0QVIIiG2kpubyyOPPMLo0aPr7lNKoZSirKwsgZGJWH3xxRc8//zzzJgxI9GhiBgVFhayevVqjjrqqEb3/+1vf+OCCy5IUFQiFvn5+bz33nusWrUKx3F4/vnnSUlJYcSIEYkOTbTgu+++w+/38/rrrzN27NhGj3355ZdMmDABn89Xd99ee+3FsmXL2LhxY2eHKkSXIImE2EpWVhYHHHAAKSkpdfe9/fbbLF++nP322y+BkYlYlJWVcfXVV3P99dfTu3fvRIcjYlRYWAhARUUF55xzDnvvvTcnnngi//nPfxIcmWir6667Dr/fz0EHHcTo0aO5++67ue+++xgwYECiQxMtmDRpEvfffz/9+/ff6rF169bRq1evRvcFg0EA1q5d2ynxCdHVSCIhtunrr79m2rRpHHrooUycODHR4Yg2mj59OuPGjdvqirYww+bNmwG45pprOPLII3nsscfYd999ufjii5k3b16CoxNtsXTpUrp168bMmTN5/vnnOe6447jqqqtYvHhxokMT26GqqqrRBTaAQCAAQHV1dSJCEiLhfNt+itiRzZ07l6uuuorddtuNO+64I9HhiDZ69dVX+fLLL2VOi8H8fj8A55xzDsceeywAI0eOZNGiRTz++OPsvffeiQxPbMPatWu58soreeKJJxg/fjwAo0ePZunSpdx///08+OCDCY5QxCo1NZWamppG99UmEOnp6YkISYiEkx4J0aLZs2dz6aWXcuCBB/J///d/dVdeRNc3Z84cNm3axMSJExk3bhzjxo0D4KabbuLcc89NcHSiLXr27AlAQUFBo/uHDRvGqlWrEhGSiME333xDOBxuNNcMYOzYsSxfvjxBUYn26NWr11YrbtX+XPt+FWJHIz0SolnPPPMMN998M1OmTOG6665DKZXokEQM7rjjDqqqqhrdd+ihh3LZZZdx9NFHJygqEYtddtmFjIwMvvnmm7or2gBLliyRMfYGqB1L/8MPPzBmzJi6+5csWbLVakDCDHvssQfPPfccjuNg2zYAn376KYMHDyY/Pz/B0QmRGJJIiK0UFhZy6623csghh3DBBRc0Wo0iNTWVbt26JTA60RYtXR3Lz8+XK2eGSE1N5dxzz2XmzJn07NmTMWPG8Oabb/Lxxx/zxBNPJDo8sQ1jxoxh991355prruGmm26iV69evPrqq8ybN49nn3020eGJ7XD88ccza9YsrrvuOs4991z+97//8cQTT/DHP/4x0aEJkTCSSIitvP3224TDYd59913efffdRo8de+yxspSoEJ3k4osvJi0tjbvvvpv169czdOhQ7r//fvbcc89Ehya2wbIsHnroIe655x6mTZtGaWkpBQUFPPHEE1stKyrMkJ+fz6xZs7jllls49thj6dGjB1dffXXdHCYhdkRKa60THYQQQgghhBDCLDLZWgghhBBCCBEzSSSEEEIIIYQQMZNEQgghhBBCCBEzSSSEEEIIIYQQMZNEQgghhBBCCBEzSSSEEEIIIYQQMZNEQgghhBBCCBEzSSSEEJ1mypQp7Lzzznz77bfNPj5p0iSmTp3aKbFMnTqVSZMmdcrfikUkEmHq1KmMGzeO3XbbjU8//XSr53z22WcMHz680W3UqFEcdNBB/PWvf6WysjIusdx///0MHz48Lq8lhBAi+cjO1kKITuU4DtOmTePll18mJSUl0eF0OR9++CGvvPIKF198Mfvssw8777xzi8+98cYb2WWXXQCorKzk+++/57777mPDhg3cfvvtnRWyEEKIHZT0SAghOlW3bt348ccfmTlzZqJD6ZJKSkoAOO6449hjjz3IyMho8bnDhg1j1113Zdddd2XvvffmrLPO4qyzzuKNN95g8+bNnRSxEEKIHZUkEkKITjVy5EiOOeYYZs2axcKFC1t97vDhw7n//vsb3dd0uM3UqVM555xzeP755zn44IMZM2YMJ598MoWFhbz33nscddRRjB07lhNPPJHFixdv9Teef/55Jk6cyJgxYzjjjDNYtGhRo8fXrFnDFVdcwYQJExg7duxWz1m1ahXDhw/n8ccfZ/LkyYwdO5Y5c+Y0Wx7HcXj66ac56qijGDNmDBMnTuSOO+6gurq6riy1Q7sOPvhgpkyZ0ur/pzlZWVlb3VdSUsKNN97IPvvsw+jRo/n1r3/NvHnzGj2nurqav/zlL+y7776MGzeOadOm1cVVa+rUqZxxxhncdNNN7Lbbbhx++OE4jkN1dTUzZ85k8uTJjB49mkMPPZRHHnkE13Ub/f5bb73Fcccdx7hx49h333258cYbKS0trXv8/vvvZ/Lkybz77rsceeSRjB49ml/96lfMnz+fBQsWcOKJJzJmzBiOPPLIRvFXVVUxffp09t9/f0aNGsXkyZP529/+FvP/TgghRGxkaJMQotNde+21fPzxx0ybNo05c+a0e4jT/PnzCYVCTJ06lerqaqZPn87555+PUorLLruMtLQ0brrpJq666irefPPNut9bt24dDzzwAFdeeSWZmZk88MADTJkyhX/84x/06dOHoqIiTj75ZNLS0rjhhhtIS0vj73//O6eddhovvfQSQ4cOrXut+++/n+uuu47MzEzGjh3bbJw33ngjr732Gueddx7jx49n0aJFzJw5k8WLFzNr1iwuvvhievXqxUMPPcQDDzzA4MGDWy2367pEIhEAwuEwixcv5sknn+SYY44hMzMT8BKEM844g40bN3L55ZcTDAaZM2cO5557LrNmzWLvvfcG4A9/+AMffvghl19+OQMHDuT555/nH//4x1Z/88svvyQQCDBz5kwqKiqwLIsLL7yQBQsW8Nvf/pYRI0bw2Wefcc8997By5UpuvvlmAB588EHuu+8+Tj31VC6//HJWrlzJvffey4IFC3jhhRdITU2tq5MZM2Zw+eWXk56ezs0338xll12G3+/nwgsvpHfv3nWPv//++6SmpnLrrbfy0Ucfcc0119C9e3c++OAD/vrXv5KTk8Pxxx/f1sNICCFErLQQQnSS008/XZ9++ulaa63//e9/64KCAn3XXXfVPX7ggQfqa665pu7ngoICfd999zV6jfvuu08XFBTU/XzNNdfogoICvXTp0rr7brzxRl1QUKA/+eSTuvv+9re/6YKCAl1aWtro97755pu654RCIT1mzBg9Y8YMrbXWd911lx49erRetWpV3XOqq6v1QQcdpC+99FKttdYrV67UBQUF+tprr2217D/++KMuKCjQDz/8cKP7X331VV1QUKDff/99rbXWc+bM0QUFBXrlypUtvtann36qCwoKmr1NmjRJr1u3ru65zz//vC4oKNALFiyou891XX3aaafp4447Tmut9ZIlS3RBQYF+5pln6p7jOI4+/PDDm/1fr127tu6+999/XxcUFOg33nijUYwzZ87UBQUFesmSJbqkpESPGjVK33DDDY2e88UXX+iCggI9e/ZsrXV93f73v/+te87DDz+sCwoK9Isvvlh337/+9S9dUFCgFy1apLXW+rDDDtPXX399o9d+4IEH9Hvvvdfi/1AIIUT7ydAmIURCTJo0iaOPPppZs2bx3Xffteu1srOzG/UOdO/eHaBRz0BOTg4AZWVldff179+fMWPG1P3co0cPdt11V7744gsA5s2bx8iRI+nZsyeRSIRIJIJlWey///588sknjWIYOXJkqzF+/vnnABxxxBGN7j/iiCOwbZvPPvusrcWt88c//pGXXnqJl156iWeeeYbbbruNQCDACSecwJo1a+rK0KNHD3bZZZe6MjiOw4EHHsjChQspLS3lyy+/BGi0ipVlWRx22GFb/c2cnBx69erVqFw+n4/Jkyc3et7RRx9d9/iCBQuoqanhyCOPbPSc8ePH07dv37r/Ta3ddtut7vu21OWee+7JCy+8wHnnncfs2bNZuXIll1xyCRMnTtz2P1EIIcR2k6FNQoiEuf7665k3b17dEKftVTuMp6n09PRWf6+2kdpQfn4+a9euBby5BcuXL69bGamphsusbutv1c4F6NGjR6P7fT4fubm5lJeXt/r7zRk8eDCjR4+u+3n33XdnwoQJHHzwwTz22GNcf/31lJSUsGHDhhbLsGHDhrrYcnNzGz3WNFZgq8nfpaWl5ObmYtt2s79bXl5e9/rN/b+7d+++Vdmbq8+0tLRm4we47rrr6NWrF6+//jo333wzN998M+PGjWP69OmMGDGixd8TQgjRPpJICCESJjs7m+nTp3PJJZfw4IMPNvscx3Ea/VxRURG3v99wom+tDRs2kJeXB3grTE2YMIGrr7662d+PZW5HdnZ23ev37du37v5wOExxcfFWjfjt1adPH/Ly8li2bBnglWHQoEHccccdzT6/X79+dX9748aN9OnTp+6x2hWkWpOdnU1xcTGO4zRKJkKhEOAlJ7Vl37hxI0OGDGn0+xs2bKB///5tLl9zUlJSuOiii7joootYs2YN7733Hg8++CBXXnllozkxQggh4kuGNgkhEurggw/myCOP5JFHHqGoqKjRY5mZmaxfv77RfV9//XXc/nZhYSErVqyo+3nt2rXMnz+fPffcE4AJEyZQWFhYd+W/9vbaa6/x0ksvbXUVvjUTJkwA2Kph++abb+I4DrvvvnscSuStIlVUVMSgQYPq/u7atWvJz89vVIaPP/6YWbNmYds2e+21FwD/+te/Gr3We++9t82/N2HCBCKRyFa/+/rrrwNeL8nYsWNJSUnhjTfeaPScL7/8kjVr1jQayhSrqqoqDjvsMB577DHAS6ROO+00jjjiiLrhXUIIITqG9EgIIRLuhhtu4NNPP2Xjxo2N7p84cSJvvvkmY8eOZeDAgbz88sssX748bn83EAhw0UUXcfnll+M4Dvfeey85OTmcccYZAJx55pm89tprnHnmmZx99tnk5uby1ltv8cILLzBt2rSY/tawYcM49thjue+++6isrGSPPfZg8eLFPPDAA+y5557st99+Mce/dOlSAoEAAFpr1qxZw8yZMwkEApx++umAtx/F7NmzOeuss+pWPfrkk0949NFHOf300/H7/QwcOJCTTjqJu+++m0gkwsiRI3nttdf44YcfthnD/vvvz5577sn111/P+vXrGTFiBJ9//jmPPvooxx57LMOGDQPg/PPPZ+bMmfj9fg488EBWrVrFvffeW/d/2V6pqanssssuPPDAA/j9foYPH05hYSGvvPJKs3M8hBBCxI8kEkKIhMvJyWH69On89re/bXT/tGnTiEQi3Hbbbfh8Pg4//HCuvPJKrr/++rj83Z133pnDDjuM6dOnU15ezt577821115bN7SpZ8+ePPfcc9x5551Mnz6d6upqBg0axC233MIJJ5wQ89+75ZZbGDhwIHPmzOHRRx8lGAzym9/8hosvvhjLir2D+E9/+lPd95ZlkZOTw6677srtt99e1yORnp7O008/zZ133sntt99OeXk5ffv25corr+Tss8+u+/2bbrqJ7t27M3v2bEpLS9lvv/248MILueeee1qNQSnFww8/zH333ccTTzxBUVER/fr144orruCss86qe96ll15a9/rPP/88OTk5TJ48md///vfbnF/Slv/DPffcw2OPPcaGDRvIz8/nhBNO4He/+127XlcIIUTrlNZaJzoIIYQQQgghhFlkjoQQQgghhBAiZpJICCGEEEIIIWImiYQQQgghhBAiZpJICCGEEEIIIWImiYQQQgghhBAiZpJICCGEEEIIIWImiYQQQgghhBAiZpJICCGEEEIIIWImiYQQQgghhBAiZpJICCGEEEIIIWImiYQQQgghhBAiZpJICCGEEEIIIWL2/8nMQ27J+7+/AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1545,34 +2307,40 @@ } ], "source": [ - "# Creating a scatter plot for the relationship between bedrooms, bathrooms, and house price\n", + "# plot for the relationship between bedrooms, bathrooms, and house price\n", "plt.figure(figsize=(10, 6))\n", - "plt.scatter(housing_data_encoded['bedrooms'], housing_data_encoded['bathrooms'], c=housing_data_encoded['price'], cmap='coolwarm', alpha=0.5)\n", + "plt.scatter(housing_data['bedrooms'], housing_data['bathrooms'], c=housing_data['price'], cmap='winter', alpha=0.5)\n", "plt.colorbar(label='House Price')\n", "plt.xlabel('Number of Bedrooms')\n", "plt.ylabel('Number of Bathrooms')\n", "plt.title('Relationship between Bedrooms, Bathrooms, and House Price')\n", "plt.grid(True)\n", - "plt.show()\n" + "plt.show();\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "##### Interpretation:\n", - "The scatter plot reveals a clear relationship between the number of bedrooms, bathrooms, and house prices. It indicates that houses with more bedrooms and bathrooms tend to command higher prices, reflecting buyer preferences for space and convenience. However, there's a diminishing return on the value added by additional bedrooms beyond a certain point. Understanding this relationship is crucial for both buyers and sellers in the real estate market, allowing them to make informed decisions based on their needs and market dynamics.\n", + "The scatter plot reveals a clear relationship between the number of bedrooms, bathrooms, and house prices. It indicates that houses with more bedrooms and bathrooms tend to command higher prices, reflecting buyer preferences for space and convenience. However, there's a diminishing return on the value added by additional bedrooms beyond a certain point. Understanding this relationship is crucial for both the real estate companies(sellers) and buyers in the real estate market, allowing them to make informed decisions based on their needs and market dynamics.\n", "A house with a good balance of bedrooms and bathrooms tends to attract a wider range of potential buyers." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**#House age and house price**" + ] + }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 536, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3EAAAImCAYAAAD9iAO3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gb5bn271HX9uot7uveFjC4YCAG7EBC7yE0B0w1JCRADmDypZxDIIdDt+m9JXQMgVCCCc3GxjaGdcXdXnt71666NN8fo3c06jPSqD+/6+LCq53VzqrN+7z389w3x/M8D4IgCIIgCIIgCCIr0KT7BAiCIAiCIAiCIAj5UBFHEARBEARBEASRRVARRxAEQRAEQRAEkUVQEUcQBEEQBEEQBJFFUBFHEARBEARBEASRRVARRxAEQRAEQRAEkUVQEUcQBEEQBEEQBJFFUBFHEARBEARBEASRRVARRxAEQRAEQRAEkUVQEUcQBJEh3HzzzZg0aRKeffbZdJ9KSjl48CAmTZqEt99+O+z33377bUyaNAkHDx5M8ZnFz2233YZJkyYF/Ddt2jQce+yx+P3vf4/W1taY9zFp0iQsW7YsqecZ67FPhNtuuw0nnnhixO+feOKJuO2221T/vcnG6/Xi+OOPx6RJk7B58+Z0nw5BEHmKLt0nQBAEQQAWiwWffvopJk6ciNdeew2XX345OI5L92kRCVBdXY3ly5eLX7vdbuzduxf33nsvNm7ciPfffx8mkyniz7/22muora1NxakSCli1ahW6urrQ0NCAV199FXfeeWe6T4kgiDyElDiCIIgM4P333wcA3HHHHdi3bx/WrFmT5jMiEsVgMODwww8X/zvqqKNw/vnn4/bbb0dzczNWrlwZ9ecPP/xwKuIykLfffhtHHHEEzj77bHzwwQcYHBxM9ykRBJGHUBFHEASRAbz11ls4+uijMXfuXIwePRqvvvqq+L0rrrgC55xzTsjPLFmyBGeccYb49fr163HJJZfgsMMOw+zZs3Hrrbeip6dH/P7bb7+NqVOn4o033sAxxxyD2bNnY9euXfB4PHjyySdx2mmnobGxEYcffjguvPDCkELy888/xznnnIPGxkacfPLJeP/99/HTn/40oOWvr68Pf/zjHzFv3jzMmDEDF1xwAb755hs1HyoAwL59+/Cb3/wGxxxzDA4//HBceuml2LBhg/j9tWvXYtKkSVi7dm3Az1166aW49NJLxa83b96MRYsW4cgjj8QRRxyBX/3qV/j+++8DfibW46qUGTNmAAAOHToEQGg7XLRoEf70pz9h5syZOOWUU+DxeELaKTs6OnDrrbfi6KOPxhFHHIFLLrkEGzduFL/v9Xrx5JNP4qc//SmmT5+Ok08+GS+99JKsc2pvb8c111yDxsZGzJ8/Hw8//DA8Hg8A4H//93/R2NgIi8US8DOPPvoojjzySNhstrgfCykejwevvPIKTj/9dDQ2NuL444/HvffeC4fDIR4T/PwBoc+11+vFAw88gBNPPBHTp0/HiSeeiPvuuw8ul0v8GYfDgXvuuQfz58/H9OnTcfrpp+Nf//pXzHPs7+/Hp59+ihNOOAGnnXYabDYb3n333ZDjBgcH8cc//lF8rn73u9/h+eefx6RJkwKO+/TTT3HOOedgxowZOOaYY3DnnXfCarUqetwIgshPqIgjCIJIMzt37sSmTZtw1llnAQDOOussrFy5El1dXQCAM844A1u2bMH+/fvFnxkYGMCXX36JM888EwCwbt06/OpXv4LJZMKDDz6IpUuX4ttvv8Vll10Gu90u/pzH48Gzzz6Lv/71r7j99tsxbtw43HvvvXj00Ufxi1/8Ak8//TT+53/+B319fbjxxhvFBfqaNWuwZMkS1NXVYdmyZbj44ovxpz/9KWC2y+FwYNGiRVi5ciV+97vfYfny5aitrcWVV14pq5Dzer1wu90h/3m93oDjdu3ahXPOOQcHDx7EH/7wB9x7773gOA6LFi3Ct99+K/txHxwcxJVXXony8nIsW7YMDzzwAGw2GxYvXiwWLHIfVyXs3bsXADBq1CjxtvXr16O1tRWPPPIIbr75Zmi12oCfGRoawi9/+UusXbsWv//977F8+XIYjUZcccUV2LdvHwDgz3/+Mx5++GGcccYZePzxx/Gzn/0Md911Fx555JGY57Rs2TJUVlbikUcewbnnnovHH38c//u//wsAOO+88+BwOPDRRx8F/My7776LU045BWazOep9h3tO3W53yHF//OMfcffdd2PhwoV47LHHcPHFF+Pll1/GkiVLwPN8zL+B8dRTT+Ef//gHrr/+ejz77LP45S9/iWeeeQaPPfYYAIDneVx//fV49dVXcfnll+Oxxx4TC60VK1ZEve9//vOf8Hg8OP3001FfX4+5c+fitddeCzluyZIl+PDDD/HrX/8aDzzwAIaGhnDfffeF3Nf111+PhoYGPPLII7jhhhvw3nvvKf57CYLIU3iCIAgirdx999387NmzeYfDwfM8z7e0tPCTJ0/mH3vsMZ7neX5oaIg//PDD+eXLl4s/88Ybb/CTJ0/m29raeJ7n+V/84hf8aaedxrvdbvGYPXv28FOmTOFffvllnud5/q233uInTpzIr1ixIuD333TTTfzzzz8fcNvHH3/MT5w4kd+4cSPP8zx/0UUX8WeccQbv9XrFY95//31+4sSJ/MMPP8zzPM+/9tpr/MSJE/nvv/9ePMbr9fIXX3wxf84550T8+5ubm/mJEyfG/K+5uZnneZ6/8cYb+Tlz5vAWi0W8D5fLxZ988sn8ueeey/M8z69Zs4afOHEiv2bNmoDfdckll/CXXHIJz/M8v3HjRn7ixIn8hg0bxO/v37+fv+eee/jW1lbZj2s4br31Vv6EE07gXS6X+F9vby//5Zdf8ieeeCJ/4okn8jabTTx24sSJ4u9kSB/bl156iZ80aRK/detW8ftWq5U/6aST+Ndff53fs2cPP2nSJP6JJ54IuI8HHniAnzFjBt/T0xP1sb/66qsDbv/rX//KT5s2je/t7RUfh4svvlj8/oYNG/iJEyfy3333XdTHINZzeuutt/I8z/M7d+7kJ06cGHL+K1as4CdOnMh//vnnPM8HPn+M4Of6iiuu4C+//PKAY1566SXxdf/111/zEydO5D/44IOAY2655Rb+mGOO4V0uV8S/6eyzz+avueYa8et333035DW0evVqfuLEifzHH38s3ubxePif//zn/MSJE3meF94XP/nJT/jFixcH3D/72f/85z8Rz4EgCILneZ6UOIIgiDTicrnw3nvvYeHChbDb7RgYGEBhYSGOPPJIvP766/B6vSgoKMDChQsD2r0++OADHH300aipqYHNZsMPP/yA+fPng+d5UekYOXIkxo0bh1WrVgX8zilTpgR8fd9992HRokXo6enB+vXr8dZbb+G9994DADidTjidTmzcuBEnnXRSgNnKz372M+h0fn+sb775BtXV1Zg2bZp4Dh6PByeccAI2b96M/v7+qI/FDTfcgDfffDPkvxtuuCHguG+//RYnnHACioqKxNt0Oh1OPfVUbN68GUNDQ7Ie+wkTJqCiogLXXnst/vjHP+Lf//43qqqq8Pvf/x61tbWKH9dgDh06hGnTpon/zZkzB1deeaWoeElNTcrKyqLOv23YsAEjRowIeO7MZjM+/vhjnH/++VizZg14nseJJ54YoHadeOKJcDgcAa2m4fj5z38e8PVJJ50El8uFH374AQBw7rnnYv369WIL6DvvvIOxY8fiiCOOiHq/1dXVYZ/TN998E9XV1eJxTEE99dRTA37+1FNPhVarDWmLjcacOXOwatUqXHTRRXj66aexa9cuXHLJJaJq/c0334DjOMyfPz/ksers7MTOnTvD3u/27duxZcsWnHTSSRgYGMDAwADmzp2LgoKCADVuzZo10Ov1WLhwoXibRqPBKaecIn69Z88etLW1hTxfs2bNQlFRUczXFkEQBLlTEgRBpJHPP/8c3d3d4sI2mK+++grz58/HmWeeiffeew/bt29HVVUV1q5di7vuuguA0Frp9Xrx1FNP4amnngq5D6PRGPB1QUFBwNebNm3CX/7yF2zatAlmsxnjx49HfX09AKH1rK+vDx6PB5WVlQE/p9VqUVZWJn7d19eHzs5OTJs2Lezf2tnZidLS0oiPxfDhw8V5MSnBi+r+/n5UVVWFHFdVVQWe52UbTRQWFuKVV17BY489hg8//BCvvfYaTCYTzjzzTPzhD39Q/LgGU11dLbbwAYLRSW1tbdjHoLCwMOp99fX1hTz+wd8HQosgRnt7e8xzlVJRUQEAYuF9yimn4K677sK7776LxYsX48MPP8TVV18d9T4B4W8O95yy7zHY7wk+D51Oh/Ly8pB5vGhceeWVKCwsxFtvvYV7770X//d//4cJEybgD3/4A+bOnYu+vj7wPI+ZM2eG/fmOjo6QjQ4A4vvz9ttvx+233x7wvQ8//BBLly5FaWkpent7UVZWBo0mcJ9c+vyx5+svf/kL/vKXv4Q9B4IgiGhQEUcQBJFG3nrrLYwcORJ//etfA27neR433HADXn31VcyfPx9HH300qqur8eGHH6K6uhpGoxEnnXQSAKEA4DgOv/rVr8Iu4qPNLLG5sEmTJuGDDz5AQ0MDNBoNvvjiC3z88ccAhMWnXq8XZ/QYXq9XXIwCQHFxMcaMGYN777037O8aMWKErMckFqWlpSHnAghFIgCUl5eL84PB83RDQ0MBBVNDQwP+7//+Dx6PB01NTXj33Xfxj3/8A6NGjcKFF14Y9+MKRC9glFJcXBw2J++7775DaWkpSkpKAAAvvPBC2IKQFeWRCFZJ2ePLCo/CwkL87Gc/w4cffoiJEyfCarWKypYasMK2s7MTw4cPF293uVzo7e1FeXm5eBszXGEEG4FoNBpcfPHFuPjii9Hd3Y0vvvgCjz/+OH79619j1apVKC4uRkFBAV588cWw5zJ69OiQ25xOJ/75z3/ipJNOwiWXXBLwvYMHD2Lp0qV455138Ktf/Qo1NTXo7e2F1+sNKOS6u7vFf7Pn67/+678we/bsiI8HQRBEJKidkiAIIk10dnbiq6++wqmnnoo5c+YE/Dd37lz87Gc/wxdffIH29nZotVqcfvrp+M9//oOPPvoICxcuFBW1oqIiTJ06FXv27MGMGTPE/yZMmIBly5ZFbUXbs2cP+vr6cNlll2H8+PHiovPLL78EIBRBWq0WM2fODLHE/+yzzwIMKmbPno3W1lZUVlYGnMeqVavw9NNPh5h1xMusWbPwn//8J0Bx83g8+OCDDzBjxgwYDAax1bKtrU08pr+/H7t37xa//uijjzB37lx0dnZCq9XiiCOOwJ///GeUlJSgpaUlocdVbY466ig0NzcHqJIOhwO//vWv8eabb+Koo44CAPT29gaca09PDx566KGAYjscn3/+ecDXH3zwAcxmMw477DDxtvPOOw87duzACy+8gHnz5qGmpka1v48VMh988EHIeXg8Hhx55JEAhNe69DkFENIqeuGFF4rZbZWVlTjnnHNw8cUXY2BgAIODg5g9ezasVit4ng94rHbs2IFHHnkkrOnKZ599hr6+Plx44YUh79Vzzz0XY8aMEVsqZ8+eDbfbjc8++0z8eZ7n8emnn4pfNzQ0oLKyEgcPHgw4h5qaGtx3333YunVrvA8lQRB5AilxBEEQaWLFihVwu90RW+DOOussvPHGG3j99dfx61//GmeeeSaeffZZaDSakPa+m266CVdffTVuvvlmnHHGGaIL5Q8//IAlS5ZEPIexY8eiqKgIjz/+OHQ6HXQ6HT7++GOxdYy5U/7mN7/BpZdeit/85jc477zz0NLSgoceeggAxDm5c845By+//DIuv/xyXHvttairq8Pq1avx1FNP4ZJLLoFer0/4MQOE2bkvv/wSl112Ga6++mro9Xq8/PLLaG5uxtNPPw0AmDRpEurq6vDII4+gqKgIHMfhiSeeCFDPZs6cCa/Xi+uvvx5XX301CgsL8eGHH8JisYgqZ7yPq9qcc845eOmll3DdddfhN7/5DcrLy/Hiiy/C5XLhoosuwsiRI3HGGWfg//2//4dDhw5h+vTp2Lt3Lx544AGMGDECY8aMiXr/n3zyCWpqajBv3jx8/fXXeO2113DjjTcGzB0eeeSRGDt2LL799ls88MADqv5948ePx9lnn42HH34YNpsNs2bNwrZt27B8+XLMmTMHxx13HADghBNOwGeffYa7774bJ554ItavXx/iKDlr1iw8++yzqKqqwhFHHIH29nY899xzmD17NioqKjB//nzMmjULS5YswZIlSzBu3Dg0NTXh4YcfxnHHHSe2kkp56623UFlZiblz54Y9/zPOOAMPP/ww1q5dizlz5uCYY47BHXfcga6uLtTX1+PNN9/Ejz/+KL5XtFotfve73+GPf/wjtFotTjjhBAwMDODRRx9Fe3t7xJZkgiAIBhVxBEEQaeLtt9/GhAkTMHHixLDfP/LIIzFixAi88cYbWLJkCSZPnoyJEyeit7cXRx99dMCxxx57LJ555hksX74cv/nNb6DX6zFt2jQ899xzOPzwwyOeQ3FxMR599FHcc889uPHGG1FYWIgpU6bg5ZdfxlVXXYX169fjxBNPxFFHHYVly5bhoYcewpIlSzB8+HD8v//3//C73/1ObN8rKCjAK6+8gvvuuw//93//B4vFguHDh+Pmm2/GFVdcodrjNmHCBPz973/H/fffj9tvvx0cx6GxsREvvviiqEhptVo8/PDDuOuuu3DTTTehqqoKixYtwp49e0SL/2HDhuHpp5/GQw89hDvuuAM2m01U2dhiPd7HVW2Kiorw8ssv45577sH//M//wOv14vDDD8eLL76IkSNHAgDuvvtuPPHEE3j11VfR1taGyspKnHLKKfjtb38bUwW944478MEHH+D5559HdXU1li5dissuuyzkuOOPPx49PT0Bph1q8de//hWjR4/GW2+9haeeegrDhg3DZZddhiVLlogK8bnnnosDBw7gnXfewauvvopZs2bh4Ycfxi9/+Uvxfm688UYYDAa89dZbeOSRR1BcXIwTTzwRN998MwCh3fLJJ5/EQw89hCeeeALd3d2oqanB5Zdfjuuvvz7kvNrb27Fq1SpceOGFER/HM888E8uWLcOrr76KOXPm4IEHHsDf/vY33HfffXC73ViwYAF++ctfBhSc559/PgoLC/H000/jtddeQ0FBAWbOnIl7771XfE4JgiAiwfE8hZEQBEEQ0Vm5ciVqa2sDFIKdO3fitNNOw6OPPooFCxak8eyIVMDzPE499VQce+yxWLp0abpPJ2M5dOgQvv/+eyxYsCDAgfQ3v/kNmpub8c4776Tx7AiCyBVIiSMIgiBi8vXXX+Nf//oXbrnlFowdOxbt7e147LHH0NDQgGOPPTbdp0ckkcHBQTz//PPYtGkTmpubcemll6b7lDIajUaD2267DQsWLMB5550HrVaLr776Cp988gnuvvvudJ8eQRA5AilxBEEQREzsdjseeughfPzxx+jo6EBZWRmOO+443HzzzWHt/oncwe124/jjj4fX68Xtt9+O008/Pd2nlPGsWbMGjzzyCLZt2wa3241x48bh8ssvx2mnnZbuUyMIIkegIo4gCIIgCIIgCCKLoIgBgiAIgiAIgiCILIKKOIIgCIIgCIIgiCyCijiCIAiCIAiCIIgsgtwp08jGjRvB87xqAbgEQRAEQRAEQWQnLpcLHMfhiCOOiHksKXFphOd5kK9MZsLzPJxOJz0/eQA91/kBPc/5Az3X+QE9z/lDPj3XSmoDUuLSCFPgZsyYkeYzIYKxWq3Ytm0bxo8fj4KCgnSfDpFE6LnOD+h5zh/ouc4P6HnOH/Lpud60aZPsY0mJIwiCIAiCIAiCyCKoiCMIgiAIgiAIgsgiqIgjCIIgCIIgCILIIqiIIwiCIAiCIAiCyCKoiCMIgiAIgiAIgsgiqIgjCIIgCIIgCILIIqiIIwiCIAiCIAiCyCKoiCMIgiAIgiAIgsgiqIgjCIIgCIIgCILIIqiIIwiCIAiCIAiCyCKoiCMIgiAIgiAIgsgiqIgjCIIgCIIgCILIIqiIIwiCIAiCIAiCyCKoiCMIgiAIgiAIgsgidOk+AYIgCIIgCEJdPF4eW/d0o2fAjooSE6Y2VEKr4dJ9WgRBqAQVcQRBEARBEDnE6qYWPLliE7r77eJtlaUmXH3WDMxrrE/jmREEoRbUTkkQBEEQBJEjrG5qwd0vrAso4ACgu9+Ou19Yh9VNLWk6M4Ig1ISKOIIgCIIgiBzA4+Xx5IpNUY956t3N8Hj5FJ0RQRDJgoo4giAIgiCIHGDrnu4QBS6Yrj4btu7pTtEZEQSRLKiIIwiCIAiCyAF6BqIXcEqPIwgic6EijiAIgiAIIgeoKDGpehxBEJkLFXEEQRAEQRA5wNSGSlSWRi/QqsrMmNpQmaIzIggiWVARRxAEQRAEkQNoNRyuPmtG1GOuOnM65cURRA5ARRxBEARBEESOMK+xHrcvmoWyImPA7VVlZty+aBblxBFEjkBh3wRBEARBEDnEvMZ6VJaacMvDXwEAfn/JkTjmsOGkwBFEDkFKHEEQBEEQRI7h9fr/PX5EGRVwBJFjkBJHABACQrfu6UbPgB0VJSZMbaikD3yCIAiCyFLcHm/YfxMEkRtQEUdgdVMLnlyxKSAgtLLUhKvPmkG98wRBEASRhbjc/sLN4+XTeCYEQSQDaqfMc1Y3teDuF9YFFHAA0N1vx90vrMPqppY0nRlBEARBEPFCShxB5DZUxOUxHi+PJ1dsinrMU+9uph08giAIgsgypEqc203XcYLINaiIy2O27ukOUeCC6eqzYeue7hSdEUEQBEEQauCSKnFeUuIIItegIi6P6RmIXsApPY4gCIIgiMzA7faI//ZQOyVB5BxkbJLHVJSYVD2OIAiCIIjMwOXxt1C6PdROSWQ25JKuHCri8pipDZWoLDVFbamsKjNjakNlCs+KIAiCIIhEcUvdKUmJIzIYckmPD2qnzGO0Gg5XnzUj6jFXnTmddkIIgiAIIssIMDYhJY7IUMglPX6oiMtz5jXW4/ZFs1BRYgy4varMjNsXzaIdEIIgCILIQihigMh05Lqke8klPSzUTklgXmM9jppai3Nv/ScA4PZFszBneh0pcARBEASRpQSGfVMRR2Qecl3St+3vJdUpDPSYEAAAg06DkkIDAKC+uogKOIIgCILIYgKVOFIyiMxDrvt5n8WR5DPJTqiII0RKi4Qirn+Q3iwEQRAEkc0EzsSREkdkHnLdz8uKjbEPykOoiCNESouENwkVcQRBEASR3dBMHJHpMJf0aFSVmTFldHmKzii7oCKOECktZEWcM81nQhAEQRBEIkgLNw+1UxIZiFyXdA2N+ISFijhChNopCYIgCCI3oHZKIhtgLunBhRq5pMeG3CkJEdZO2UdFHEEQBEFkNQFh32TRTmQw8xrrUWjSwWJ1YeSwYlx3biOmNlSSyV4MqIgjRFgRNzBE7ZQEQRAEkc24pDNxblLiiMzF4+UxZHMBAApMOswYX5XmM8oOqIgjRFg7JVm5qoPHy2Prnm70DNhRUWKiXSWCIAgiZVA7JZEtDNlcYGKxw+VJ78lkEVTEESJ+JY6KuERZ3dSCJ1dsCgixrCw14eqzZlB/N0EQBJF0AoxNqJ2SyGAsVn8HmMNJRZxcyNiEECn1hX33kTtlQqxuasHdL6wLKOAAoLvfjrtfWIfVTS1pOjOCIAgiXyAljsgWBiTrTlLi5ENFHCHClLghmyvgw5+Qj8fL48kVm6Ie89S7m2lXlCAIgkgqgTlxdM0hMhdpBxgVcfKhIo4QKS4wgI1sUUtlfGzd0x2iwAXT1WfD1j3dKTojgiAIIh+RbsZ6SIkjMhhqp4wPKuIIEY2GQ0khOVQmQs9A9AJO6XEEQRAEEQ+BShwVcUTmIl1zuj1e6laSCRVxRADkUJkYFSUmVY8jCIIgiHgIVOJoUUxkLsHCgZNaKmVBRRwRAJuL6yclLi6mNlSisjR6gVZVZsbUhsoUnRFBEASRjwQocV5S4ojMJbiIo5ZKeVARRwQgFnGDpMTFg1bD4eqzZkQ95qozp1NeHEEQBJFUpAHfbjcpcUTmElLEkRInCyriiABYzAAVcfEzr7Eety+aFaLIVZWZcfuiWZQTRxAEQSSdgIgBUuKIDEZqbAJQO6VcqIgjAigtZkoctVMmwrzGejzzh5NQUqgXb3v8tgVUwBEEQRApISDsm4xNiAyG2injg4o4IgBS4tRDq+HASzpY6DElCIIgUkVg2De1UxKZC7VTxgcVcUQANBOnLtLdpO4+ihUgCIIgko/XywfYtFPEAJGpeL08Bn3tlGW+bjAq4uRBRRwRALlTqofXy8Mp2Qnt6rel8WwIgiCIfCG4aKN2SiJTGbK7wPYbqnxeAtROKQ8q4ogAWE4cKXGJEzyY291PShxBEASRfIKLOGqnJDIV1kpZYNKh0Cz4CJASJw8q4ogAmBJntbvhctObKBHszuAijpQ4giAIIvlI5+EAwEPulESGYvEVcSWFBhj0WgDkTikXKuKIAApNejHDjBwqEyN4J4mUOIIgCCIVkBJHZAtMiSsuMMDoK+KonVIeVMQRAWg0nNhS2UctlQnhcLoDvu7qIyWOIAiCSD7BShwZmxCZysCQsNYsKTTAaPAVcaTEyYKKOCKEkkKhpXKAlLiECFXiqIgjCIIgkk9IOyUVcUSGMjDkAkDtlPFARRwRQplvLo6UuMRg7QBsZ6lnwA6vl1paCIIgiORC7ZREtsCUuOJCaqdUChVxRAglvnZK9sYi4oMpcbUVBeA44SLaT48pQRAEkWQoYoDIFgYkxibUTqkMKuKIEEQlzkIFRyKwnaQCk158TCnwmyAIgkg2rJ2SGZW5SIkjMhSLL+i7RGJsQu2U8qAijgjBr8TRTFwisJ0kk0GLyjIzAJqLIwiCIJIPU+JMRh0AUuKIzMWvxBmpnVIhVMQRIdBMnDpIZ+KqSk0AgC6KGSAIgiCSDFPiTL72NI+XB8+TGkdkHtROGT9UxBEhkDulOrAPIaNeh8pSUuIIgiCI1OAWizideJuHjLWIDIS1UxZL3CmpiJMHFXFECKTEqYNUiav0KXEU+E0QBEEkG5fYTqkVb6OsOCLT8Hp5WKRKHLVTKoKKOCKEUnKnVAW7L+zbaNCiyjcTR4HfBEEQRLIJp8RRzACRaQzZXWACcXEBtVMqhYo4IoRSnxJnc3jojZQA/nZKUuIIgiCI1MFUN7NR0k5JShyRYTAVzmzUQa/TUNi3QqiII0IoMOmg0wq2xP3UUhk3gcYm/pk4Gi4nCIIgkgkzNtHrNND4YgaonZLINKSmJgD87ZRUxMmCijgiBI7jRDWOirj4kSpxFT4lzu70YMjuTudpEQRBEDkOm4nTazXQ+Yo4D7VTEhlGSBFnoJk4JVARR4SltJAVceRQGS9SJc5k0KHIrAdADpUEQRBEcmEzcTqdBlqtsNQjJY7INFgRVxykxFE7pTyoiCPCwsxNSImLH6kSB0A0N+nuo7k4giAIInkwJU6n1UBHRRyRoURrp6TRk9hQEUeEpbSYlLhEkSpxACTmJqTEEQRBEMlDOhPHZtwpJ47INFhGXHA7Jc/7X8NEZKiII8Lib6ckJS5egpU4FvjdRQ6VBEEQRBIR2ym11E5JZC6iElcgFHHMnRKglko5UBFHhIW1U1Lgd/wwJY7l9FSREkcQBEGkAJYJF6DEkbEJkWGwPGKmxOm0Gmh9RjzkUBkbKuKIsDB3SrZLQihHVOJYOyWbiSMljiAIgkgiLrdw/REWxcJSz0VKHJFhWKwuAECJr/sLIIdKJVARR4SlzFfEkRIXP05ncDuloMR19ZESRxAEQSQPpsTpdBz0OmGpR2HfRKbBlLjiQr14m4Gy4mRDRRwRlhJfO+UAFXFxY3cKeXBsV0ka+E0QBEEQyYIpcXqtFlotC/umdkois/C7U0qUOCriZENFHBEWvxJH7ZTxwPN8qLGJr53SYnXRhxNBEASRNKRKnE5DShyReXi9vKSd0iDeTu2U8smIIm7t2rWYNGlS2P8WLFgAADh48CCuueYazJw5E8ceeywefPBBeDyBT/Arr7yCBQsWoLGxERdddBG2bt0a8P1U3UcuwN5QTpcHdoc7zWeTfbjcXrCIE/aBVGjSif8mNY4gCIJIFqISpyMljshMrHYXvL7Yi+ICfxFnoMBv2WREEXfEEUfg66+/Dvhv+fLl4DgOS5YsgcvlwuLFiwEAr776Kv785z/jH//4Bx555BHxPt555x3cc889uPHGG/H2229jxIgRuPzyy9HT0wMAKbuPXMFs1MHg66OnuTjlSJU29oHEcZzfoZICvwmCIIgkIbpTajkK+yYyEtZKaTbqxLlNgNoplZARRZzBYEB1dbX4X2FhIe6++26cffbZOPfcc/Hxxx+jpaUF99xzDyZOnIiFCxfipptuwgsvvACnU3gRPP7447jkkktwxhlnYPz48bjrrrtgNpvxxhtvAEDK7iNX4DgOJeRQGTesDUAnuYAC/qw4UuIIgiCIZCHmxOm04jXI46UijsgcBoKCvhnUTimfjCjignn88cdhs9lw6623AgDWr1+PadOmobS0VDxm7ty5GBwcxLZt29Dd3Y19+/bh6KOPFr+v0+lw1FFHYd26dSm7j1yjjLLi4iZ4Ho4hOlRSzABBEASRJFicgF6roXZKIiNhAkFxcBFH7ZSyybgirqenB88//zyuvfZalJWVAQDa2tpQW1sbcNywYcMAAK2trWhrawMA1NXVhRzDvpeK+8g1RCWOijjFsB0ktqPEqCojJY4gCIJILqISJ+kGIWMTIl48Xh6bdnXhi+8OYtOuLni8iW8IDAxGUOKonVI2unSfQDB///vfUVxcjF/84hfibXa7HSUlJQHHGY1CgeFwOGCzCQtig8EQcozD4UjZfcQDz/OwWq1x/WyyKTIJb6TOnsGMPcdkwV4P7P9K6bcMAQD0Ok3AY1dsFh7T9u6hvHtMM5VEn2siO6DnOX+g5xpw+CJuPB4XwAvFm9XmyKnrDj3PqWHtlnY8/68f0TPgX+dWlBjxq1MmYc60mrjvt7t/EABQaNQGvC61GqFAtAzZxdvz6bnmeR4cx8k6NuOKuBUrVuCss86CyWQSbzOZTCEzZ6xoKigoEI8Nd4zZbE7ZfcSDy+XK2FZMl90CANjb3IZt2/Kz/W/fvn1x/dzuNt/j5XUHPL/WAeED6FB7b8Y+7/lKvM81kV3Q85w/5PNzPeRb7LYcasbQoLAQbmltw7ZtQ+k8raSQz89zstnabMPrX3WH3N4z4MD9rzbhguMqMXWkOa773negHwDgtFsC1kODA8LtLa0d2LYtUCDJl+c6WFCKREYVcdu3b0dzczNOP/30gNtra2uxY8eOgNs6OjoAADU1NWILZEdHB8aNGxdwTE1NTcruIx70ej3Gjx8f188mmx1d+/DN9p3QGYsxZcqUdJ9OSrHZbNi3bx/GjBkjFvFKGEIHgC6UFBcEPHbGkgG8+mU3bC5N3j2mmUqizzWRHdDznD/Qcw1oP+oG4Ma4hrHY33sI2GdFZVU1pkwZm+5TUw16npOL18vj4fe/inrMyqZBnL3wCGg08pQjKV/+uBWABaNH1GDKlAbx9o3NO4EdgygpLceUKZMA5NdzvWvXLtnHZlQRt379elRWVmLy5MkBt8+aNQsrVqzA4OAgioqKAABr1qxBYWEhJk+eDIPBgLFjx2Lt2rWiMYnb7cb69etx0UUXpew+4oHjuLhVvGRTXS78jUMOT8aeY7Ixm83x/e0a4a1lNuoDfn54jT+2wWA0BThXEukl7ueayCroec4f8vm59o3EoajQDKNBDwDQaHU5+Xjk8/OcTDbt6gpooQxHd78De9tsmDG+SvH925zCi7SqrDDg+SsqFDrjPHzo+jgfnmu5rZRAhhmbbN26FZMmTQq5feHChaiursZvf/tbbN++HZ9++inuv/9+XHHFFaLkeMUVV+C5557DO++8g127dmHp0qWw2+0477zzUnofuUSpz52yn4xNFGOPYGxSWmSEVsOB54HeGB+OBEEQBBEPLBNOL4kYYGYnBCGHngF5YzRyjwsmljslGZvEJqOUuM7OTtGRUorRaMTTTz+Nv/zlL7jgggtQWlqKiy66CEuWLBGPueCCC2CxWPDggw+ir68P06dPx3PPPYeKioqU3kcuUepzp+wfpJw4pYjulEERAxoNh8pSEzp6begesKG6PLfbAgiCIIjU4wrjTklh34QSKkpMsQ9ScFwwA0PCRnawO6WBIgZkk1FF3FNPPRXxe6NHj8azzz4b9ecXL16MxYsXp/0+cgV/EedQ5JZDSHLigpQ4QAj87ui1obvPDoxO9ZkRBEEQuQ4r2HRaDXS+nDg1bOGJ/GFqQyUqS03ojpJrW1VmxtSGyrju3zLkAgCUFBoDbheVOAr7jklGtVMSmUWpb3fE5fbC5nCn+Wyyi0hKHOAP/KasOIIgCCIZMCVOr9NAS0ocEQdaDYerz5oR9ZirzpwObRymJl4vjwGrr52yQB/wPbb5Te2UsaEijoiIyagT30zUUqkMvxIXKnazwO+uKLtbBEEQBBEPHi8Pr09102k10PkW2R4PKXGEMuY11uOSn4Ua91WVmXH7olmY11gf1/1a7S7xNRop7JvaKWOTUe2UROZRWmRER48V/YMO1FUVpvt0sgYWtBpViesjJY4gCIJQF49EcSMljkiU4Dbci06ehAsWTopLgWMwFc5s1EGvC1wnUTulfEiJI6LCWirJoVIZsWbiAKA7TkcngiAIgoiEyx1YxJGxCZEITbu6Ar6uqShIqIADIjtTAtROqQQq4oioMJn7263t2LSriwajZRJtJq7KV8R1kRJHEARBqIy0WAswNqF2SkIhdocbP+7vAQA01JcCAGz2xD0SLL4iLriVEiB3SiVQOyURkdVNLdi8uxsA8Mna/fhk7X5Ulppw9Vkz4u6DzheiK3HM2MROrp8EQRCEqkjjBTiO87dTekmJI5SxdV8P3B4e1eVmjKkvwZ6WfthUaHMciFLEiUoctVPGhJQ4Iiyrm1pw9wvrQuTs7n477n5hHVY3taTpzLID9uFjClPElfiiG9weL9ZsbiV1kyAIglANabyA8H9ho9DtpmsNoYymnZ0AgMbxVSgwCrqPGm7lYhFXEKaIo7Bv2VARR4Tg8fJ4csWmqMc89e5mKj6iICpxQe2Uq5tacO3fPhW/vuv5dVh85ydUFBMEQRCqII0XAPzFHClxhFJ+8M3DHTahGiZfEWdXoYizWGO3U7o9fIBJDxEKFXFECFv3dEcNdwSEea6te7pTdEbZhzgTJ1HimLoZ/NiSukkQBEGoRbASx9opaUFMKGHQ6sSeg30ABCXOnAwlLko7JUBqXCyoiCNC6JHpmvj9zk588d1BMjwJg9/YRPjQI3WTIAiCSAWhSpyvnZKMTQgFbN7TDS8PDK8uQmWpGSajUFypWcSFc6c06PylCRVx0SFjEyKEihKTrONe/3SH+G8yPAnE4fLlxPl2lJSomzPGVyX9/AiCIIjcxG9s4lPiNKTEEcph0QKNE4Q1CZuJsyfZ2ITjOBj0WjhdHjhd9JqNBilxRAhTGypFB0W5UEtgIMHtlHLVTbnHEQRBEEQ4WDtlqBJHC2JCPszU5LDx1QAgzsTJUeI8Xh6bdnVF7NaKVsQB0sDvxFW/XIaUOCIErYbD1WfNwN0vrFP8s0+9uxlzptclHASZ7QQbm8hVN+UeRxAEQRDhEJW4YGMTaqckZNJrsWN/mwUAxO4guTNxq5ta8OSKTQHdR8HdWiwnrjiMOyUgbIBbrNROGQtS4oiwzGusx+2LZilW5MjwRNjtZBdLpsTJUTerysyY2lCZ9PMjCIIgcpfQiAFfOyW5UxIy2eRrpWyoLxXVMpMhdhEnx8CN53kMRHGnBACjXnjNUjtldEiJIyIyr7Eec6bXYeuebvQM2NHcbsFrkjm4SOR7S6BTsnPElDg56uZVZ07PewWTIAiCSIzgdkotGZsQCgmehwP8SlykiAG5Bm7Tx1XB62uvjFzECb8rnsBvj5cX160VJSZMbajM2bUVFXFEVLQaTpTSN+3qklXE5XtLIPvQ4Tj/RRTwq5vBbQbFBQbccP5hZApDEARBJEywsYm/nZJUDUIeTTt9Rdz40CIukhIn18Btw/Z23/1poddpwx7HupiYSZxc5LRy5hLUTknIhloC5SGdh+O4wN2feY31eOYPJ+Gu647BdN/jdOqxY3Pyw4UgCIJIPe4IYd/kTknEwuPl8eXGg2jtHgLHAVPGVIjfYxEDdqdHVNKkyO3Cau8eAgAUFxojHmPwtVM6FLRT5mMWLxVxhGxYS2A0qCUwfNC3FKZuzppaCwA41DGYsnMjCIIgchtXSNg3tVMSsVnd1ILFd36C/3t5AwCA54Eb7v2PWPwwJQ4Ibzgitwurs88GQHBNjZSNq7SdMl+zeKmIIxQRyfCkqsyM2xfNIkUJEiXOEL1beVRtMQCgud2S9HMiCIIg8gNS4gilyFGxhO4i4fZwLZVyurU4Dvhk7QEAQEvnEBbf+UlYhUxpO6WSLN5cgoo4QjGsJZBdIG65eCaevuOnVMD5sPtyTZipSSRG1ghF3MGOQbq4EgRBEKoQGvYtrLxdpMQRYZCrYnl5v0NlOHMTOd1afNBLMFKro0GhO2W+ZvFSEUfEhVbDocAkvJnH1JfmfQullFjtlIzqMjOMBi3cHi/aeqypODWCIAgixwkN+yYljoiMEhWLtVRaI5ibROrWirVEDG519Id9y2unzNcsXiriiLhR+ibLF4KDviOh0XAYOawIAHCgjVoqCYIgiMRhM3H6kJw4HnywFELkPUpULDMzN4mSFTevsR733zhf/PqK06ch1ihacKsjG0eRG/adr8Z7VMQRccPeZKx9kBCQq8QB/pZKmosjCIIg1IDNxOlEJc4vg+SasQOROEpUrFgxAwy2LjQbdbLvX1pM+tsp5RVx+Wq8R0UcETcmg99ulvAjV4kDqIgjCIIg1MUVEvbtX+pRVhwRjBIVyyQGfkdf91ntQhFXYJJfxEmPi6fTi7VyBgeI57LxHhVxRNywAVdHjDdzvqFEiRvlK+IOUBFHEARBqEBo2LdffaCYASIYJSqWqMTF6MAasrsAAAUmfVytjn53SmXry3mN9bj2nEbx62vOmpHTxntUxBFxYxSVOGqnlKJIifPFDBxst1CbC0EQBJEwwREDWo1/qRfN3MTj5bFpVxe++O4gNu3qomtSHjGvsR63XXZUyO3BKpbZIK+d0uor4gpNurhaHdn6SW47pRSp2lxXXZhzLZRSogdZEUQUqJ0yPEqUuJqKQuh1GjjdXnT2WlFbWZjs0yMIgiBymOCwb42Gg0bDwevlI7ZTrm5qwZMrNgW4FFaWmnD1WTNyVsUgAhk3ogyAoMzd+IsjRHVMWgT52yljFXGsnVIPwN/qGPwaqyoz46ozp4e8xhIxzpPGErDzyFWoiCPiJl65O9dRosRpNRxGDCvC3pYBHGi3UBFHEARBJIQ7qJ0SAHQaDk4vD0+YdkoW9BwMy/DK1XkiIhA2mz+yphgnHDUy7DFyjU387ZT+MmNeYz3mTK/D1j3d6Bmwo6LEFFIkMhJZX0rVu1wv4qidkogbE7lThkWJEgdIzE0oZoAgCIJIkOCcOMBvbhKsxMkNeqbWytyHFXFsVj8cJl/EQOx2SuH7hWZ9wO1aDYcZ46swf+YIzBhfFbHV0aCPv4hzuaVFnEvxz2cTVMQRccPaKSknLhCxiNPLE7rJ3IQgCIJQi2BjE+HfwmI5uIhTEvRM5DZsDcJm9cNRIFOJY0UcU+6Ukkg7pSOP2impiCPixp8TR0WcFKZMmpQqcVTEEQRBEAkSTomTBn5LURL0TOQ20nbKSIgzcTHWfaKxSZASJ5dE2ikDlDgHKXEEERYTuVOGRZyJi6OI43lqWSEIgiDixxUU9g1EbqeMJ8OLyD14npfVTil7Js4WOhOnBEMC7pTSws9GShxBhIfaKcPjb6eUV8TVVRVCp+Vgd3rQ2WdL5qkRBEEQOY6oxIVppww2NoknwysRKMYgM+nqs8Pm8ECr4VBXFdlgzSQ3YsD3/QJjnEpcIjNxedROSe6URNyI7ZQx3sz5hlIlTqfVoL66CAfaLGhut2BYeUEyT48gCILIYdxuoTAKUOJ8WXGuICWOZXiFc6dkBGd4xQvFGGQuTIWrry4KmKUMxuwzNokZMWBj7ZRxzsRJRAKlHUoOFxmbEERMKGIgPEqVOIDm4giCIAh1cHmEa5BUiWPzceHCvlmGV7AiFxz0nAgsxiDYRIXFGKxuakn4dxDxc0BGKyWgJGIgMCdOKdL1k9MdOaA+HAERAzkuMlARR8QNhX2HR6kSB0gcKilmgCAIgkgApsQFRgwwd8rwqsa8xno884eTwPkEt+pyE56+46eqFHAUY5D5yDE1AfzGJjZH9HWfLUxOnBIM0iJOoVDgcudPOyUVcUTcsN5oBxmbBEBKHEEQBJEumDtfYNh3ZCVOhOfBOteGbG5VWigBijHIBvxFXFHU45QqcYVxKnE6rUac41Tqu0DtlAQhAyMpcWHxK3Hyd6BGkUMlQRAEoQJMbVOixAGBbWtWuzvmQl0uFGOQ2fA878+Ik9lO6fZ4AxQvKR4vL7524m2nBOIP/CYljiBkQO2UoXi9vCj9K1Hi6qsLodFwGLK76UJGEASR4yTTpVFU4sLkxAVHDEgJblvr7lfHLZliDDKbXosDQzYXNBwwvDq6EmeSbE5H6sKSmp7E204J+NdQStspAyIGHG54c7hNl9wpibihdspQnJKQSSUzcXqdFnWVhTjUOYjmdgsqS83JOD2CIAgizSTbpdHlU9sC2inFsO/IRVywstIzYMeIYdGVGTmwGINoLZVqxhgQymj2zeLXVhYGzKKFQ6/TQKfVwO3xwupwo6jAEHLMkK+FUafVxLy/aBgDYqzkK3quoKLP7nQnpAhmMqTEEXHD3mBuDx91dy+fkPZuK/3wGlXrMzehuTiCIIicJBUujWJOnOJ2ymAlTp2uEBZjEA21YgwI5chtpWTEihlgLYzxxgswxHZKhd1eTlfgejSXWyqpiCPixiRRmijwW4A9DgadRvEFyW9uMqj6eREEQRDpJRUujR4vL7aPhVXiorZTBn5PrSIOENwvrzk7tJBTM8aAiA9masI2kmMRy9yEmYnEG/TNEAO/3QqLuKDjc9nchIo4Im50Wg00vkLFTi2VAOKLF2CQQyVBEETukgqXRmlXTIAS57tWB4d9S0nWTByjpFBovTPqhfMyGbR48vaFVMClmeYOZUocixmwR4gZYMpXQYJKXGA7pXyCX8e5nBVHRRwRNxzHiWocKXEC8cQLMJhD5Z5Dffj8u2bVh90JgiCI9JEKl0bpXFuAEieGfUe+pgTPxKmpxAHA7oP9AID5M0fCoNfC7vSgrXtI1d9BKEduRhyDKXGRiqMhm6B8xRsvwIi7ndL3Oi70markcjtlQmXynj17cPDgQQwODqK8vBz19fUYPXq0WudGZAEmgxZWuztlDpUeL4+te7rRM2BHRYkJUxsqM6qPPhElju2G2Rwe3PfKdwDiH3bP9MeJIAgi35DrvlhWZMSmXV1xfX67A4o4/8+wnDgl7pQ9Khdxuw72AQAmjirHoc5BbNnTjR/398guHgj16R90oH/QCY4DRgyL7kzJMPtM7SJ1YLHijhV78SK6Uypop+R5v0N4WbERQ3Z3TrdTKn6Eu7q68Nxzz+H9999HR0dHQKYVx3EYMWIEfv7zn+Oyyy5DVVWVqidLZB5CFpojJe2UyXb0UgO/EqfsrbW6qQX3vrwh5HY27K5kZiAbHieCIIh8Q45Lo0YD3P+PDegZcIi3Kfn8ZmqaTqsBx/mLOGZsEq27g/2sVsPB4+XRrWLcDc/z2H1IUOLGjyhFa5dQxG3f34uFs2nzP10wFW5YeUFAfEA0zCbWThmhiGNKnDnBmbg4Or3cHn9gfWmREYc6h3JaiZPdTunxePDwww/jxBNPxMqVK3H22Wdj+fLlWLFiBT755BO88cYbWLZsGRYuXIjPPvsMCxcuxAMPPACXK3crYCJ1WXGpcPRSA4dL+LBQosSpOeyeLY8TQRBEviHHpdHrRUABByj7/PY7UwYqd2JOXISAZsCveAwrLwAA9A7YVcvYauu2Ysjmgk6rwajaEkwaXQEA2L6vR5X7J+JDaSsl4F/3RTI2YREDiWTEARJjEwU5cVI1uazYCCC32yllF3HnnnsuduzYgb///e/46KOP8Nvf/hYLFizA5MmTMWrUKMyYMQMLFy7Erbfeivfffx9PP/00fvzxR5x//vnJPH8izRjj7FlWQiocvdQinpk4tYbds+lxIgiCyEfmNdbj9kWzUFka2FpZWWoSZ3giIefzmxVxOm3gNcgfMRDbnXJYhRkaTrim9A86Ih6vBNZKOaa+BHqdBpPHlAMQ7O3ZDBWReli8wCglRZzoThl+3WdjxiYJzsTFE/bNNiI4DigpNPrOJ3dfX7KLuNtuuw3Lly/H9OnTZR1/1FFH4fHHH8ett94a98kRmU8qAr9T4eilFvHMxKk17J5NjxNBEES+Mq+xHs/84STRPfKWi2fit7+ciaEYioGcz2/WEhmsxOnFsO9o7ZTC9ctk0IkqhlrmJrt9Rdz4EWUAgPJiE2oqCsDzwI8HelX5HYRy4lHiCmJEDDAlLtamRCziaadkGxF6ndZvbELulMDcuXPj+gVHH310XD9HZAfGFLRTpsLRSy3iUeLkDrvHOi6bHieCIIh8xuvlxYLryMk16LfIU7xifX6LSpwuWImTY2wifM+g16Ki1AxAvZiBXWIRVyreNmWM0FL5I7VUpg2lGXGAJGIgkrGJSkqcIYF2SqNeI87u5XI7paIy+bvvvsOIESMwbNgw8bbt27fjH//4Bzo6OjB+/HhceumlAd8nchuT6FKUvCJOrSInFcSjxMkZdq8qM2NqQ2XU+8mmx4kgCCKfYS2EHCcsdtX6/BaVOG3QTJzP3TJ6xIBw/dLrNKgsMWEXoIq5Cc/zYrzAOJ8SBwCTR5fj8+8OYvt+UuLSwaDVKc5fynWmBCRh3xGKI38Rl76ZOEGJ0/vOJ8/bKZ1OJ6655hpcfPHF+Pbbb8Xbv/jiC5x33nn46KOP0NXVhVdeeQWnnnoqNm/enLQTJjILk5HJ3cnb6WBFTjTkFDmpIB4lTs6w+1VnTo9pMZ1NjxNBEEQ+M2hzAhBa0zQaTrXPb7fb304mRZYS55YqccK5qBEz0N5jxaDP1GR0bYl4+ySmxO3vUc1AhZBPc/sgAOF1pUQ1Y5v3tgjrPr+xSerdKZmabNRrxSIyl5U4WUXcyy+/jG+++QZ33nknTjjhBPH2e+65Bw0NDfjss8/wxhtvYOXKlRgzZgz+9re/Je2EicwiFe2UahU5qYA9Dkpz4iINu1eVmWXHC2TT40QQBJHPiIHIBQYA6n1+u0RjkwjulDJy4gw6jXgtUmMmjqlwY+qKxTlAABhbVwKjQYshuxsHfTmpROpgpiYjFahwgH8mzh7B2MRqVynsWxeHEsfUZL0GZiMpcTh06BA++eQTzJs3D6NGjcLWrVuxbt06fPjhh9i9ezeOO+448bZdu3Zh/vz5aGpqwvr169HSQnbmuQ5TnJKdExepyDHqtYoy1JKNv51SeRsBG3afMLIMAHD28ePw9B0/VfS3sccp+EKvpBgkCIIgksugr4grkix02ec3MxVhKPn8lubESWFFXfR2SqbiaVBZot5MHJuHk7ZSAoI6yK531FKZWjxeHht/7AAg5L4pca1mHVg2R/jiSLV2SkMc7pRsI0KqxOWwsUnMR3jbtm04ePAg7HY73n77bfH2H3/8EVqtFj09PQG3t7e3w+Vy4a233sLChQtRX0+LxlzG706Z3Jw4QLjAzZlehyv/+gm6+oTdwdIiQ8wLm8fLY+uebvQM2FFRYsLUhsqkqVGsrVRJO6UUrYbD+JFl2NncB71OG9d5zppaC8D/gTx3ei1uWzSbFDiCIIgMYShCIPK8xnpMHl2BRf/9MQDgf66dhxnjqmR/fvtz4iK0U3plKHF6rV+JU2EmLlIRBwCTR1dg8+5ubN/Xg5PmUOh3Kljd1IInV2wSVdbVTa1YfOcnsgPlo0UM8DwvKl9paadkLcE6TV60U8Ys4hYuXIivv/4a33//Pf7yl7/AYDDA6XTiggsuwJFHHom777474PjbbrsNo0aNCrmdyE1McbzJEkGr4SC9BnX02tDdb0Olz0krmOAPK0DI45H7YaWUeIxNgqmtEIJW27qH4vr5Q52DkHbMcByX0gIulUUzQRBENsKKuKKC0IVucaFB/Pe44aWKPj/9SlxwO6UvJ84dWXHx27Or104pmJr0AQh0pmRMHi3kxW3fTw6VqWB1UwvufmFdyO0sUF6O4muOEjHgdHvh9qm9heYElbh42ikDlDjhvZXLOXGyHuHLLrsM77zzDn7+85/jsMMOw+bNm3Ho0CG88MIL4jFvvPEG3nnnHWzcuBFLly5N2gkTmYUxBe6UwbAPjiKzHoM2F7bs6cZPjhgRcpwaH1ZKicfYJJiaykIAwjB4POxr6Q/4OpWRAqkumgmCILIR1k4Zbm5Ir9PAaNDC4fRgyOZCcYEh5JhIRFTiNDKUOLf/+sUiBoZsLtidbrHrRikdvTZYrC7otBzG1JWEfH/SaMHcpLl9EINWJ4oU/K2EMjxeHk+u2BT1mKfe3Yw50+uibhyYo0QMMBWO4xD3a4YRXzslU+K04uye1eEGz/PguNzbTJZlbNLQ0ICXX34ZEyZMwNatW1FfX49HH30URx11lHjMv//9bxw4cAC33XYbLr300qSdMJFZmAypmYljeL28+LtmThaiLLaECT+V+2GlpA9cDmoqce3dcRZxrQMAgHG+Xc9UFXGsaA7euWVF8+ommpElCIIAoitxgLBJCQCDVmUqgqjEBYV963yGIp4oxibiTJxeCEpm17FEriGslXJUbUlIYQkAZcVG1Pk2Lin0O7ls3dMdU1mVEygvFnG+4kgKa100+1xXEyE+d0qmxPlz4ng+tUJDKpFdJs+YMQOPP/54xO8/9NBDMJvDt7QRuUuq2yntTjfYZ8ZRU2rw5cZDYYs4JR9WM8ZXqXZ+jjjdKaUwJa5v0AGbwy1+YMplr6+ImzlpGHYf7EfvgD3pu1Bq7fARBEHkA4MRZuIYhWY9uvvtYrEnF1GJ0wZeg8R2yijGJlJ3So7jUFliQkvXELr77aivUuZgyPC3UpZFPGbymHK0dg9h+75eHDm5Jq7fQ8RGbjEe6zi27vPywsa1VHFjr9dE5+GA+MK+WdahQa+FUa+FRsPB6xXm9JSupbIBWUocALz55ptRvx+ugON5Hq+//rrysyKyBn/Yd2qUONZKqdFwOHxiNQBgf5sFFqsz4Di1PqyUIipxCbRTFpn14i5sRxwtlftahCLuiEmCUun28BgYckb7kYRRa4ePIAgiH4jWTim9fVDhPI87ghLH2inlKHHM2p3NmicyF8fiBcLNwzEm+/LiaC4uuagVKC8t2oJjBmwqOVMC/nWUknZKh8ufdchxHApz3NxEdhG3cuVKnHPOOfj000/hckX/UHE6nXj33Xdx1llnYeXKlQmfJJG5pCInTgor4sxGHcqLTRheLahW2/YGfvir9WGlFDWUOACorYzP3KR/0CEWpuNHlKHENyCf7JbKdBXNBEEQ2UjMdsqCONspPdEjBuTkxOn1ws9WioHf8cUM8Dwf1ZmSMdk3F7dtbzc+39CMTbu6VB91IKBaoLxGw4lqXLC5yZBKGXGAfx3l9vBRX7dSRCXO1z5sNuV2VpzsUvmxxx7D22+/jT/96U9wOp2YP38+GhsbMWLECJjNZlgsFrS2tmLDhg1Yu3Yt9Ho9fv3rX+MXv/hFMs+fSDNiz7KCnZJEkBZxADCtoQqHOoewZU83Zk+rFY9jH1bRdhDlfFgpRQ0lDgBqKgqx62A/2hQqcfvbBBWurrIQZqMOFSUmDAw50TvgwNgk+oqkq2gmCILIRuS0UwJQ3k4pyXqT4g/7jtJOGaTEsc/reJW4zj4bBoac0GrCm5owWjoHAQgqyn1//w4AGWIlAxYoH87wjSEnUB4QYgbsTk9IF5Y/XkA9JQ7wG5bEwiFxpwT8weS5qsQpepTPOeccnHrqqXjzzTfxz3/+Ex9++CE8Hv/iXavVYubMmfj1r3+N8847DyYTLdhyHX9OXGreIMEhktMaKvDJ2v3YsjewTU/NDyslqK3EKXWoZK2UY+qFC2ZFiQn7WgfQM5B4YGs00lU0EwRBZCOiEhehiGMh4EMKFYTIYd++dsoo7pRMxQhW4uIt4tg83OjaEnFRHczqphb870vrQ25Ppot0PjOvsR7Dys3o6A1cE1SVmXHVmdNlP9Zmow59FkdIceRfoyWuxOl1GnCcYEzCnFNj4ZK0UwrnkduB34pLZaPRiIsvvhgXX3wxhoaG0NraCovFgvLyctTU1JC5SZ5hkrRTpsLCNViJmzpWKAp2NfeF2CBH2vlT+mElF57nEw77ZjBzE6XtlMyZkv3t4k5qktsY01U0EwRBZCOsTTKiEie2UyqbZ/ZHDAQWcVpZxib+oGTAPxMXTxu8x8tjdVMrAKC8xAiPlw/5/CdDrNTT0jmIjl4bOA5Y+qvZcDg9ceW5miP4IQypOBPHcRwMeiFqQ7ES53sN53pWXEKPcmFhIcaPH6/WuRBZCFOchJ0Sb8LFSyyCi7iaigJRAdpxoBeN46vFY//97QEAwJGTh4Hnge9+7MDCWSNxwwVHJOWC4PZ4wdr4jQnmo9SIgd/KlLi9vow4sYgTZxqSP4s2r7Eety+ahf97eX3AQiFZRTNBEEQ2wvO8qLBFVOLEdkplCoIYExBBiYs2WyR19gOkSpyyTo7gvNAN2zuw+M5PQtoj0+Uinc+s8kX9HD6hGnOn18V9P8y+P3gmzqriTBwgbIg7nB7ZDujOPGunlG1sQhDhMAa4FCX/TRJcxHEch2k+NW7LHr+5idvjxcp1QhF38tzRovsVx3FJ29GTfsiYVGynDM5hiYTH48WBNgsASTtlsREA0GtxJHQ+chFaNQrEr68/7zA8fcdPqYAjCILwYXO44fXt+EVS4sScOFt8SpwuWInzXfeiuVMytYOpeOIm4IBdPN9YKMkLJUOs1PP1D8Ljf8xhiV2TxS6skCJOPSUO8Bdjstsp2Vynnhmb5HY7JRVxREJoNZz4gZ+KrLhwHxBszkpqX79+Wzt6LQ6UFRkxa2otaiqEthClM2ZKYDK+VsOFzCMopbqsABpO2FXqk1mAtXQNCWqoQYvaCqEdM5VKHMMicVOrKjNTGwxBEIQEpq7ptFzE7pV4jU1cEdopWVEXj7GJ3Jgaue2RzHkyGYZYHi+PTbu68MV3B8nlMojWriHsOdQPjYZLSIUD/BvptqCIgSG7ejlxgH80xRGvsYnoTpmbRVzuJd8RKcdk0MLl9qYkKy5YiQOAab4ibvv+Hrg9Xui0Gnyydj8AYMGskdBpNajxFTUdvUks4lQyNQGEC3BlmRmdvTa0dVtRLuMiJs7D1ZZA4yucUjUTx/B4+YCd4z4L7aASBEFI8bdSGiLOkYtFnNrGJhGUOJ7nQ4xNdFoNyoqM6Bt0oLvfhjJfZ0cklLZHqm2IFdzGCZDLpRTWSjljXCVKi6I/l7HwF3FBSpzouqpOecHWU06XB3LOODjr0J8Tl5szcaTEEQnDWipTETMQrogbVVOMIrMedqcHew71o7vfhg3b2gEAP50zGgDEFr/OXlvSdubUihdgMDWtvUeeuYlYxNX7DV1Y8ddnkd8OkwiDViek3Z+pauMkCILIFphZSbSFbpHZ4DtWnYgB1hHhjnAdcHt48bObLYABfzeHnI1Ape2RzBArGnINsZS0ceYrrIg75rDhCd+XyRje2MQqrtHUVeKURwwEtVPmqBKXUBHX39+PlStX4h//+Ad6enqwZ88e2fM7RO5gSmHgt80eWsRpNBymjBVm3rbs6can6w7AywsK3fDqIgDChUin5eDx8oqHtOWiphIHSAK/ZbaAivECElfO8mJ/O4xFoctZPAS33MhtBSUIgsgXhmJkxEm/F287ZSQljhV5IT8nmTliC2BAWcxAPO2RzBArOITaZNDKjhfwKmzjzEfauoewq7kPGg44OsFWSkCixIVEDKisxIntlHIjBpg7JTM2obDvsDz22GN44oknYLfbwXEcGhsb8eCDD6K3txfPPvssSkoiBzsSuQUr4lIyE+cI3289vaES67a245tNLTjUKShXC2eNFL+v1XCoLitAa/cQOnqsAeYbaiEWcSopcX6HSrlKnOBMOba+VLxNr9OgtMiA/kEnegbsCbdQxIKKOIIgiOgM2vztlJFgxiZOtxdOlydizlowscK+PV4+bBwQWyRzXGABKMYMyCji4m2PnNdYjznT67B1Tzc27ujAGyt3QqvhMGtqbczfCQDb9vfmhculx8tj655u9AzYFccCsLiH6eOqYrbFyoGt+2zBEQM29XLigMB2SkR+u4g4I+XEkRLn5+WXX8ayZctw+eWX4/XXXxfVt0suuQTNzc146KGHVD1JIrMxRsgLSQbhlDgA4g7btn29YiHx8kfbA1oohvnMTZI1Fye2U6qkxLGsODlmLEM2lxjeOTooH4+pcalw+ApW+6idkiAIIhA5SpzZqAOrs5SocZFn4vyL/XCKlEt0ptQGFHhKYgYSaY/UajjMGF+Fi382BRUlRgzZ3fhue3vM3wnI3yzMZpfL1U0tWHznJ1j62Crc+8oGLH1sFRbf+YnsNtFVTYcAJO5KySiIMBNnEzfaVXanlNlO6Qya6yyIEIWQK8RVxL300ku4+uqrceONN2LatGni7fPnz8dvf/tbfPbZZ6qdIJH5+K1m0zMTt7qpBS/+a1vIscG98Ex9a1eYvSYXvxKnzoeX2E4p43zZPFx1uTkkdyiVDpWsgGaFbN9g9l40CYIgkoFfiYtcxGk0nKhmDCoo4iKHfWtCjpHCFr+GoJ+rVGiONa+xHr+/5MiQ26vKzLLaI7UaDscdPgIA8MXGQ7J+p1xlKVy7Zza4WSYy7+fx8vhy40HsONAHAJgjU92MhTgTJ1n3eby86FapZk4cIL+d0hnkTeB3p6R2SpGWlhbMnj077PcaGhrQ1dWV0EkR2YVRbKdM/k4HG5plu0ByLY3nTK9DDcteS5oSJ5ybakqcr52yu98Gl9sDvS7y/YqmJnWhbczsIpyKXUhWxI2sKcau5j70DpASRxAEIUWOEgcIRd6QzaVIiXNHnInjJMeEUeKC8rUY8WwCspZ+g16DX19wOCpLzIpa/+bPHI53v9yNtVvaYLW7YrbmTRldHlcbZza4WSpZ4wQ/vuH+vpsf/lKVv88URomzSQoltZS4gHZKGTiD2onNFPYdSl1dHTZu3Bj2e5s3b0ZdXeJDk0T2YEqHO6XvA0KJpXGNT4nr6EmOsYld5Zm4siIjjAYteF5w1YxGtCKuIg1F3OjaYgDCDrJLZkgnQRBEPiBHiQP8RZ4SJU5spwxxp/R/HS5mgC2SgzcL2UycEkMwNgIwvLoIx88ciRnjqxTlhY4fUYb6qkI4XR6s2dwW83hNHG2c2eJmqWSNIyXZf1+4iAFWKOl1mqibzkowKMiJ43k+jBLnD/vORePFuIq48847D48//jieeeYZ7Nu3DwBgtVrx8ccf44knnsDZZ5+t5jkSGY4xje6USiyNh/mULbmW/UpR252S4zjUVshrqdzb4jM1qSsN+V55Sos4QXmrryoSL5h9luS7YhIEQWQLSpQ46fFyiNROqdFwYn5o+HbK8Eocm4mzWF2yN2pbu4RrbK1vrlspHMfh+JmspfKgrJ9hLpdFBYGPabg2TqWh5OlEaWwDkJq/zxzGC4FlGqrVSglIIwZiv/akMRl6PcuJE87F6+VTYr6XauIq4q666iqcffbZuPfee3HaaacBAC677DLceOONOP7443HNNdeoepJEZmMS38zJfYPwPC/u+rDdFSWWxqw9savfHjHwNBHUzokDIIaUt0UpPL1eHvvDZMQx0qHElRYZxTkFmosjCILwMyiziEtIidOGLu90viLOE66dUmJsIqXIrBfn5HplXkPY9SreIg4A5vuKuO93dMo2LpnXWI/Tjm0Qv9brNHhq6cKQ1sF41a10EE9sQyr+PnMYwxCmxKnVSglIxnVkKHHSQs/o24wwGrRgAqw1B81N4nqkOY7Df//3f+OKK67AmjVr0NfXh+LiYsyaNQsTJ05U+xyJDMefE5fcN4jT7RV3jpgSp8TSmINwYXN7vOjqt4tFnVqorcQBfnOTaGYs7T1W2J0e6HUa1FeFXjQr02BsUlJoQFmxEd39dnKoJAiCkDAks51STSUO8JmbuL1we+Ubm3Ach8pSM1q7h9Ddb5dVmLV1Cdcrdv2Kh/rqIkwYWYadzX14/dMfMWl0hSxb/Q6Jm7PL7YXF6hQdmhnxqFvpIp7YhlT8fWLEgMTYhJmHqFnEMWVYKNCi607sNSyNyeA4DmaTMFtqtbtkF8XZQtxh3wcOHMD69etx4YUX4tprr8XcuXOxYsUKtLRkRh8xkTpSlRMnDZVk6p8SS2ONhsOwcqG/PxktlWpHDAAQzVgiKXEeL48vvmsGAFSXmQEu9OLGLmC9Fge8SW4PkRZx7PdSVhxBEISfZCpxYk5cOCXOZ24SLvDbFZSvJaVCQcwAoI4SBwCjfLPV//x6r2xb/eBInnARPfGoW+kintiGVPx9bCPd6fKInU1DdnUz4gC/27ecdkpnhJiMXM6Ki6uI+/7773HWWWfhmWeeEW8bGBjAe++9h7PPPhs7duxQ7QSJzIe1DyZbifPHC2jF3n7A3wvPFCdGuF54pr51yMheU4raYd8AUMvaKcMocSw35pWPfwQAtHQNhb3AlZcIbY0eLx8Sxq02AUqcL1i815L+3UyCIIhMQVTiCtRX4iIZmwCBgd/BiPlaYX5OjBmQ0c3B87x4vUpEiVvd1IKV65pDbo9lzNHWLRSQrMgId+1k6lY0wrlZpgu2xgl+bjgOuO2yo0LaRVPx90ljntgoDVPiYm1OKCGedkpj0FynmGlHRZzAfffdh5kzZ+Kdd94RbzviiCOwcuVKNDY24p577lHtBInMx5iimbhwGXGMeY31eOYPJ+Gu647BLRcfibuuOwZP3/HTkA83v7mJ+g6VyVTigncTlThP6bQasaBKZnuIx+MVFxslhQaxeCQljiAIQsDj8YrXslgGEIWJtFOGUeJYVlx0Y5NoSlzs60evxQGnywMN589mVYpcY47gzhKnyyOe44xxVQCA9u7QLpZEQsnTxdEz6sQi7qKTJ8Gg14Dngeowj3Eq/j69TiNuprMNfKs98hotXowB7ZTRieSwKmbFOXIvKy6uIm7Lli1YvHgxTKbASt9oNGLRokX44YcfVDk5IjswGVPTTsl2eczG8Bc+rYbDjPFVmD9zRERL45okOlSqHfYN+M93yObCoFVQueJxnmIFVTKLOItVeH44TthB9itxVMQRBEEA/pYzQL475aBNXgeFx+MF+9gPr8RFMzaJosQpiBlgzpRV5QVhzVXkINeYY9v+3oDb2GZngUmH8SPLAm4LhqlbJYWGgNvlhpKnmtauIVjtbuh1Gpy/YCJmTRFCu7/dEj6CYfKYirC3q/X3cRwXksGWFCVObKeUo8R5fT8TWMSZc7idMq7VpslkQnt7e9jv9fb2QqOJe9SOyELEnLhUtVMmMDQrtlPGyF2LB7XDvgHhsS0rNqLP4kBbtxXjCwyKnKdmjBd2IytKTNjbMpDUIo7FCxSZ9dBqNTQTRxAEEQQryMxGbcwiR6kS55IobGGVON/azBVNiQuT7yWaY8m4frAN0roEWinlXqf6LA5USOoFVrDVVhSKrZzR4nnmNdajvdeKZ9/bIvxcZQEev21hRilwjB8PCAXruOGl0Gk1mD2tBquaWrBuazsu+fmUkOO/2dQKAJg4sgy/Om0aegbssoxhlGA2aDFkc4lKHHudJsedUoYSx1qCI7RTUhHn47jjjsPDDz+MKVOmYNKkSeLtu3fvxrJly/CTn/xEtRMkMp9U5cSJ8QIJSPX+dsrsmIkDgNqKAvRZHGjvsWL8yLK4nKdSETMgnYcD4I8YoJk4giAIAJKMOBnmD/4iTt7iU2pYEl2JC2dsEn4BDPiLODntlK2iM2X8piZyDTfKio2A5JTYPFxNZYE4Tx6r64YphwDAgUtpAefx8ti6p1tWgbXDV8RNHF0OADhycg04DtjT0o+uPhuqyswBx7ORimMOGy5u5qqN2aQD+v1rM6u4RlNPiTPE0U4Z3BLM3kdMKcwl4pLMbrnlFnAch7PPPhsnnXQSLrzwQpx88sk4/fTTAQD/9V//FdfJrFixAqeccgpmzJiBU089FR9++KH4vYMHD+Kaa67BzJkzceyxx+LBBx+ExxP4pL7yyitYsGABGhsbcdFFF2Hr1q0B30/VfeQbphQVcWr0WzMlrrvfJg6Aq0UyZuIA/8WQXaDicZ6qULCTGi/+Ik4o3vxFHClxBEEQADBoZaYmhhhHKm+nZAobxyFsMcAKO3eYdspoShzrqujqs6FpZ2fUkGg1nCnlGnNM8RU04u/u9heQTInr6rOFnQFktHQOiv+2JbmbSAozJlv62CpZzps7D/QBACaOFP7m0iIjJo0S/r1ua2BLZZ/Fgc27uwAAxxyWvLZQMSPYFzNg9W02FJrVnInzhX3LWK/5X8OBpU1w22cuEVcRV11djX/+859YunQppk+fjoKCAkyePBm333473nnnHVRXVyu+z3fffRd33HEHLr74YnzwwQc47bTTcNNNN2Hjxo1wuVxYvHgxAODVV1/Fn//8Z/zjH//AI488Iv78O++8g3vuuQc33ngj3n77bYwYMQKXX345enp6ACBl95GPZFM7ZVmREQadMBDc1aduS6U9SUocKzzbfOphPM5TohKXxKy4YCWu3FfEDdndsnbRCIIgcp0hBXND0nZKno8dD+N2C8fotJoAi3WGztdOGU6J86sYgcvC1U0tuP3Rr4Wf8/K44/HVUYuNti5WxMXfTinXmEMTVKiyjc7aygKUFRth0Gvh5YHOKOMThzr9Spw9RWHQSozJAMDl9mD3oX4AwMRR/sJ19jTfXNzWwPGmbza3wssD40eWqZ6HK0UsjnyP25CYE6emO6VvfZmAEuc3NqEiTqSgoACXXHIJ7r//fjz77LN46KGHcOmll6KwUPnuC8/zeOihh3DZZZfh4osvxqhRo3Dddddh3rx5+Pbbb/Hxxx+jpaUF99xzDyZOnIiFCxfipptuwgsvvACnU1g4Pv7447jkkktwxhlnYPz48bjrrrtgNpvxxhtvAEDK7iMf8UcMpM+dUi4cx0laKtU1N0lG2DcgDfwWzler4XDJzyZH/ZlIuTGpbKcsNOvFmQ9S4wiCIJS1UzK1zsv7r3/RcPm6giLN2mlZTlzYiIFQd0qlxQbg32xMNCNOSXQQQzoTx3GcfwM0jEMlIBQG0s1cu9OT9CzVeIzJ9rYMwO3xorjAEFAcz5oqFHFNOzsDIp5W/yA8L8cm2ZyFrcVY8WsTc+KSEfbtjbmRwYxNgtVkf05c7rVTyn6kly9fjvPPPx81NTVYvnx51GM5jsP1118v+yT27t2LQ4cOie2YDJZD9+c//xnTpk1DaWmp+L25c+dicHAQ27Ztw4gRI7Bv3z4cffTR4vd1Oh2OOuoorFu3Dtdccw3Wr1+f9Ps47LDDZP/NuQQrWlxuLzxePmk95WrMxAGCsnWwY1D1mAGxnVJtJY61U0rm+Pa2DAAQLspSp7GqMjOuOnN6yAWOFXG9KSjiin0LD47jUFZsRFefDb0Wu1g8EwRB5Cv+dsrYRZxBp4FOq4Hb48WgzRVT4RCDvsPMwwH+4i5c2LeoYuj8WXJyio050+vEa77N4RY37BIt4gChkJszvQ6fb2jGg69uhF6nwZO3Lwz79wn5dIEqYE1FAZrbLQHXTilsHs5o0IqbsHanW1UlKZh4jMl2snm4UWUBCuvo2mJUl5vR2WtD084uzJ5Wi/5BB5p8rZTJdtgU2ymdgUqcnA0KuUjXU+4YOkEkNZmMTSAUcT/5yU+SVsQBgNVqxeLFi7F161aMGDEC1113HU488US0tbWhtrY24GeGDRsGAGhtbYVOJ/wZdXV1Icds374dAFJyH/EUcTzPw2pV32QjlfCSmcC+fouqGSFSBgaFDz6tJrHHrKJEKDIOdfSHvR+vl8f3O9qwa58VNq4Vh0+sDWnbCAdrJ+W9LlWf01Kz8Ls7eq0YHBxCV78dH6wW3jP/dfHh0Os06LM4UFZsxJTR5dBouJDfb9YLhV6PxYHBwSFZf49SevqF32ky+H9/aaEeXX02tHcNYGS1vFm+VGOz2QL+T+Qm9DznD5n8XPdZhM9Gow6yrhOFJh36h5zo7rXAl9oSEcugcH/aMNcAAOAgXAesNnvI9212YROO5z2wWq3YsrdHVrHx3bZDmDZWsLM/0GYBIMzyaXgXrFZ1lI/Zkyug03Jwub042NYjKmzS57l/0Am70yNE3BiFx7aq1Hetbw9/rd97sBsAMHJYIXYfGgDPA739g4A3xgOdAG1d/bKPG1cv/J1b9wpF2di6opC/44gJlfjk24NY3XQQ08eW4MvvDsLr5TGmrhilBeFfB2qh1wmvp36LDVarVVSZNXCr9nulrb8ujzfqe3rIJrxeNVzgGlHLCfcxaHVkxXqb5/mw7dDhkL3aZoUMAGzdulXVGIHBQWGw9NZbb8UNN9yAW265BR9//DGWLFmC5557Dna7HSUlJQE/YzQKbzKHwyE+qQaDIeQYh0PYFUrFfcSDy+XCtm3b4vrZTEEqcW/ash3FZnWVKEZ7pzCbONDXhW3b4m/P453ChWbXvjZs2xZ4kdnabMNHG/owYPUVpqt7UFKwDT87sgxTR5qD70rE4+XFYfH9e3eh06jeY+D18tBohGyftd9txsofBuDx8GioNcLo7gTcEGyW7cCPP4aP/mCtGV4vjw3fb0FREp6jtk5ht3CwvwvbtgnvJy0vLAy27dqPQnSr/jvVZN++fek+BSIF0POcP2Tic32wRfictA72ybr267TCAnTr9t2w9kYvLg52CddF3usOe982q6A8HTzUgm2mwGKip0/4uruzHdu2DWHLPnmL3S3b90JjF64725qFz/0SM1Rf11QW69De58LqDdsxeUTgtXjfvn1o9v3tJWYtdu78EYD/Wr9zfzu2bQtVYX7YJnS0FOjcMOg4OFw8tmz9EZUlyVPi+nvkdcP097Rh27Y+AMCWPZ0AAIO3P+RxrS4Q7u/bLa04dgKw8luh4Bs3jEv62nLIIrxmWto6sHWrQ2xXPNi8F5Zu9TbzNRrA6wVcbj7qe/qQr0NpaHAg4G/v7BAeo97+oaxZbwfXIpGI61E+44wzcPPNN+OEE06I58dD0OuFN8zixYtx9tlnAwCmTJmCrVu34rnnnoPJZAqZOWNFU0FBgRg6Hu4Ys1l4s6fiPuJBr9dj/Pjxcf1sJmEytMHu9GDUmAbUJqltzrB+IwAbxowajilThsd9P32ednz6fRMcvAFTpvjzVdZuacfrXzWFHD9g9eD1r7px04WNmDOtJux9Cq2ehwAAM6ZNCRmsTZRhZT1o67Fhwz5gk+/ietXZh6OhviT6D0ooLepE/6ATVbWjMFbBz8mF/3ItADsmjRuFKVMEhXr4j1uwo6UFBUWVmDKlQfXfqQY2mw379u3DmDFjxPc6kXvQ85w/ZPJz/cmmJgBDGD2yDlOmjI55fPmXFnQP9KOqpl78XI0Ev68XQCcKzMaAaxujdOMPQIsdw4bVYMqUkQHfM337HQA7Ro0cjilT6uE19eCt1T0xz2/a5LGY4lPidvfsB9CN0fUVYX9/Ikzc4kF7Xyt4fZl4LZE+z93OPgCdGF5TIv7uQXTg4+9+gN2jD3s+n2/fAmAAkxvq0Nx9EA6XA8NHjknK9ZExaRKPf677Cj0DkTeiK0uN+NlPDodGw2HI5kL3wEEAwAlHTw8JJx833oM3V30Oi82L3T0F2NMm3O+p86dheHVR0v4OANjcuhvYPoiColKMGz8JXl5YAx02fYqqHVkmQxusdjdcHj7qe/r7gzsBDGBYdSWmTPHHn2mL+oD/dMELreqvy2Swa9cu2cfG9Si3traq+sFYUyMsjCdOnBhw+/jx4/H5559j9uzZ2LFjR8D3Ojo6xJ9lLZAdHR0YN25cwDHsvmtra5N+H/HAcVzcBWAmYTLqhFYGjT5pf4/T57xVVlyY0O8YWVsGAOjqc4j34/HyeOHDHVF+Cnjxo534yZFjws78OTz+3bXSkiLZUrgcVje1oNv3gf/VD4KVsEGvwYDVq+hxqCwxo3/QCZsrOa+5QZ+9cHVFiXj/1eXCRWTQ7sn417nZbM74cyQSh57n/CETn2u7S7iOlZfIu46V+HooXR5NzON1OqGryaDXhT2WOf1x2tDvs9HqokLhMZs5xYzK0i1RWyqrysyYOWW4eE3sHhA2uUfUlKj+uDeMKMdXP7Sitdsect9msxm9g4ICNby6WPz+6HqhuOzstYU9n3afKjamvhwFpjb0WhxAEtcwjGvObsTdL6yL+P2rz2pEUZEwU7jjoLDGrK0sQG11WcixBQBG1ZZgZ3MfXv54p3j7X1/YiKvPmpHUubiSIqEOcHs48BpBjOE4oKKsWNU1kMmgFYu4aO9pr8+rsdBsDDimsozNO2b+OgSAoscurp7I008/Hc8//7xYwCTKtGnTUFhYiB9++CHg9h07dmDUqFGYNWsWtm7dKrZdAsCaNWtQWFiIyZMno7KyEmPHjsXatWvF77vdbqxfvx6zZs0CgJTcRz7Dhk8dSXSoZFJ9ojs8rJ++Z8AuDsIqGTYOh9SZUu0C7u4X1oVk2jld3ojuYJGoUBDYGg+iO2WRf6ewzLcA6Rskd0qCIIghBcYmAFDkM4kYkuGsx1r6wwV9A35jE0+YnDhXkLOfXJt/6aamWs6U4RhTJ6hj+9oGwn6fZcTVSNwb2bXeYnWJ81pSWrqEtVx9dSFMvnWFHBfQRGHOm8VBWYEcB/z+kiMDCq8fmanJyMBMPMbqphbsbO4LuT2ag6hamCWPGVufFRh1qq6BAL9jqssd3Z3S/xoOMjYx+Y1N5ER1ZBNxFXH79u3D119/jfnz5+Poo4/GggULAv5buHChovszmUy48sor8cgjj+D999/HgQMH8Nhjj2HVqlW4/PLLsXDhQlRXV+O3v/0ttm/fjk8//RT3338/rrjiCrFv9IorrsBzzz2Hd955B7t27cLSpUtht9tx3nnnAUDK7iNf8Qd+J+8DUHSnTNC+tqTQIJ5vp89eWK71fqTjkuFMGY8VcTSSGTPgcntF5ydpu0d5CQV+EwRBMAZt8nPipMeFK0KCcfns+/QRIgZEd8pwOXHsZyUL4Eg2/0a9NqzNvxoZcZEYVVsMADjUMRiyqQlIQsYr/AWk2ahDqW9TsT3IoXLQ5kL/oLDxWFdVGOK0mGzmNdbj0lOE1r4x9SUoLTKA5xESccBCvieMCi3i1F4jKMUUUMT51mcyX9dKYOuqcCH1UhwRcuJYsenx8rJCw7OJuFbDdXV1IXEAibJkyRKYzWY88MADaG9vx7hx47Bs2TLMmTMHAPD000/jL3/5Cy644AKUlpbioosuwpIlS8Sfv+CCC2CxWPDggw+ir68P06dPx3PPPYeKCkFONxqNKbmPfMX/AZg8JU6NnDjAnxV3oM2C9h4rhlcXiQVOLCIdl4yMuHisiKORzJgBi1W4GGq4QHthpsT1UhFHEAQhFmNFMhe7TLEblFHEsbDvSBEDLCcu3KJezNgKWgAzm/+te7qxYXs73vrPLpQWGUIKOI+XR0dv8pS46jIzCkw6WO1uHOocFJU5BlPiggvImooC9A860dY9hIbh/niolk5BhasoMaLApA/JPEsFFl/3yvjhZahtLMDLH23HR2v24/gjhXlFnudFJW5SmCJO7TWCUsySzXtrEuIFGP4Yq1g5ceGLOJNBB44DeF7o6FI7BiqdxLUavvvuu9U+DwDA5Zdfjssvvzzs90aPHo1nn3026s8vXrwYixcvjvj9VN1HPsLeZMlsp2RBkmoMzA4r9xdxADC1oRKVpaaY/f9TGyrDfi8ZSlyi6mAwFT5VLBlKnJgRV2gIiC8o9xWOpMQRBJHv8DyvXIkzKVDiYoR9R1PiXGGUOIZWw2HG+CqMG1GKdz7fhY5eGzp7bagu93sjdPfZ4Pbw0Gk5VJaqbybDcRxG15Zg274e7G8dCCjiXG4vuvuFrprgArK2ohA7DvSFKHGsiKv3mX+w7hybI3lrmGD6fWMGpUUGLJw9Cn//5Eds2dON5nYLRtYUo7PPhj6LAxoNh4YRpSE/r/YaQSlmk1+JG1JxfRaM2E4ZQ4lziYH1ga9hjYaD2ShsANjsbpQXq36KaUNRO6XT6cS//vUvPP300/j3v/8d4tRI5C/JVuLcHq8ogyfaTglAdNDs6PHn6ijt/5eSDCUuUXUw0nHdSSnihItRcI8/U+JsDnfK2lQIgiAyEYfLIxZQcpU4Ze2U8pS4sGHf7vBKnJQCkx4NI8oAAFv2dAV8r9UXtF1TURDxOpkorKVyf9BcXGefDTwPmI3aEPdGNiPHgsAZhzqFr5mDozmFM3EMtrlZVmxCZakZs6cKBnkfrdkHwN9KOaauJOwGsdprBKWwdZ/N4YFV4eaEEowyi7hI7ZRA7gZ+y14Nt7W14bLLLkNzc7M4GDhq1CgsW7YMkyZNivHTRK5jEpW45LxBpB+sqihxQUUcAEwdWwmNhgvpSa8qM+OqM6dHdXkSizgVlbhE1cFgmLFJMtopRVOToAtogUkHg04Dp9uLPosDtZXJCYInCILIdMQwZE7+dUxZO2V0JY7NyoVrp3SxBXCEApAxvaESu5r7sHlPt9j2B0iNRdRvpWQw9W1/qyXg9o5eQYWrqSgMMdWo8c3IRVTiqgKLuFRuNjLDrzLf3N7Jc8dgzeY2fLauGYtOmYodUVopAfXXCEoJMDZRybMgHHLbKUUlThe6DjOb9EC/HVaHOgH0mYJsJe7+++/HwMAA/va3v+GDDz7A8uXL4fV68ac//SmZ50dkCUaxNzo5ShxrpTToNNBGuEApgRVx0g/2T9buh9fLY+LIMtzyy8PE25fdfHxMm16HSzg/NYu4RNXBYMSZOItD9UFnS4QijuM4lBWTuQlBELmNx8tj064ufPHdQWza1RX2M3ZIolbIdfBT1k4ZS4mLZmzi9f1s9GvYdF9BsHl3oFMzU7rqkljEja71FXFBSlx7D2ulDDVUqRWVuKAiTuJMCSCl7pQMsYjzXSOPmDQMw8rNGLS5sLqpxe9MOaos7M+rvUZQinSOkClxBUmYiZPbTulX4kJf/6y4HLLlqRK3evVq3HLLLTjzzDMBAOPGjYPRaMTVV18Ni8WC4uIcajIlFGNMsjsl2+Uxq7TLw6yH232D2B6PFx+u3gsAOPXYBsyaWokiswaDNi8Odgxi8piKqPeXjHZKwO8O9uSKTQG7bXLUwWDKiozgOMH9amDQIc6rqYFfiTOGfK+82ISOXhuZmxAEkZOsbmoJ+YyuLDWF5HQNiqYm8t2sRSXOGnt8hRVnEWfifIv54IgBnucjzhMFM62hEhwHHOocRK/FjvJi4TrCirhkOFMyWDtle49VNNIA/EpcOEOVGsmGrdfLQ6PhwPN8SDul6LCdlpk44bqp1XA4ac5ovPzRdryxcidafYXmOF8LazjUXCMoRer6yArSwmQoccydMmbEAFOTQ9dhbDPElmNKnOxHu6+vD2PHjg24rbGxETzPo62tjYq4PIf1RifL2IQpcQVGdXZ52Ad7n8UBh8uDDdva0dVvR2mRAcceVg+3y4GaMj0GbQ7sax2IXcT5PjzY46AmUnewngE7KkpMmNpQqXh3TavVoKzIiF6LA90D9iQVcaGLE78SF77lw+Plw/5tkW4nCILIFFiWZzAsp0tqxe9X4uRfJ8SZOBk5cawQi5QTF0mJk9quR1LxGEUFBoyuLcG+1gFs2dONYw8bDkBaxCVPiSstMqK8WLiGNbdbMLJauIaJSlxFaAFZXWaGRsPB7fGi12JHZakZfRYHbA43NJy/6BRbA1PUTunxeMXrJrtGSv99oN3fMvqXp9dEDe5Wa42gFJNk05oVkMlR4oTXZEuPE1v29mDmFHPYvy2SwyrgFwDydibO7XZDrw98coqKhB0MMjghxJk4V5KKOJXiBRhFZsFS2OZwo6PHig9WCSrcSXNGw6DXwu0Casr02N0qFHGxSJYSx2DuYIlSXmJCr8Wh+lycvCIuVImLtIM9/4jh+GLjoZg72wRBEOlCbk7XnOl10Gq4uJQ4v4LggcfjjTpOwIqzSIWYjhmbBBVxLsl1W85IwPSGSqGI2y0t4pIXLyBldF0Jei2d2NfqL+JYtEG4eTytVoPqMjPae6xo67aistSMQ755uGEVBWL7qGjOlqJ2ygGrEzwvBHyX+AzBVje1YPkbP4QcG25DIBi11ghK0Go14sw7M0xTeyZudVMLPv22GQDw4yE7/vvZDags3RJ2LSBmHYZrp8xRY5PEh4sIAoBR/ABMchGn0gcEx3EY5rNHfu3fO9C0qwscgJ8f7Veba8qEi6esIi4JEQPJIFmB33KKuOB2SraDHTyU3d1vx9uf7w57+90vrMPqphY1T50gCCIulOR0AYEzcXKRuljGMjcRlbgYEQPB7ZRMidNoOFkz59PHCcXCZt/fNWh1iucWTg1TEzYXd8A3F8fzvKSdMvzvZre3+wLBW3yh5MzUBJAam6SmnZJtapYUGqDVatIe3B0vbE3W44t4UFOJY2uE4DnFSGsBZ5R1GDsvaxhFW848a6aiyopY7oAukbuYkj0T53vjqaXErW5qQavvg/yLjQcBCLs3O5t7xewbsYhr6QfP81Ff58lW4tSi0udQ2RNj4aEUFjEQrohjMxOsZx6Qt4MdCenONkEQRLpQmtMVTxGn1WpgNmphc3gwZHeJ81PhiKXEie2U3qB2SpnOlIypDcJ4wf62AVisTrT7VLiyYqNoEJIsxtQJoztsc9Xq8MLm8IDjhPzXcAgOlV2iWujPiPMrdyYjy4lLjVITPA+X7uDueDEZdOiHU9ykVWsmTqnKDUjNeSIbm1iDnl+586yZiqJH+/rrr4fBELpIu/baawNaLTmOw6effpr42RFZgynJYd/sg7VAhQtEpBkGp8srtiwcPr4MVSV6aDUchuxudPXZA4JNpXi8vFgQ9g7Y4fHyGVtgsIKqR2WTEVlKnGTBI+eCFYlMvJARBJF/KM3p8rdTKlMrCk162BweDFqjK3HumEpceGMTl0xnSkZ5sQkjhhXhYMcgtu7pFhfPyXSmZIwSlThhZqx3UFhzVJaYImbc+ZU4oYhj7ZTM1ARIfTulmBHnK+LSHdwdL2xj3Zc8ppoSp7So5Xk+hhLnm3mUtFMqmWfNVGSviM8+++xkngeR5STbnVKtdkq5uzvLfncMdFoO9VWFaO4YxL7W/rBFXPAuzqfrmrFxR2fG7uKUlQgXjJ0HerFpV5dqw8+siCsOq8T5ZuIkSlyiF6JMu5ARBJF/KM3pikeJAwQzka5+e8yYAVcUJQIAtBrhdlewsUkUa/ZITGuoxMGOQWze0y1u3tUk0ZmSMaqmGBwnXE/6B53oHXT7fnfkArLWlxXHzFeYM2V9dWg7ZaqUuL5Bn6mJr4hLd3B3vAR3R6k1E6e0qHV7eLGQ1IczNjGydkrh+Y1H6ctEZD/ad999dzLPg8hyxJm4JCtxibZTyt3d2ba/FxoAo2qKfEXcAGZNrQ04Ltt2cVY3teCVD7cDAHYf6sfSx1ap0jbgdHnE5z1cxEC4mbhEL0SZdiEjCCL/0Go4TBlTga9/iDynK83pEpW4AoVKnEyHypgRAzo2ExdkbBIlJDkS08dV4eM1+7F5Tzca6ksBpEaJMxl1qK0oRGv3EJo7BtE7JKwNokUb1Eiy4qSdM/VV/vNNddg3c2tm18d0B3fHS/CaTOkGRSSUFrXOAHOeKDlxvvdQtravBkPGJoQqJLudku2eJFrEyd3dYa0Oo2qFnbp9LYHmJtk2hMwKTktQ1pAaZiHsPjUaLmw/PGvhdDg9YjHOLljxkIkXMoIg8gOpCcJH3+wTPzuLgwqzihJTyEaeqMQpbDlj7Zex2ilFJU4bXjnwu1MGG5tEdvWLBAv93nOwD3tb+gEkNyNOCsuLO9A+KCpx0VwxWaRQz4AdLZ2DcHu80Gk1qJbM0LGZOLvTA28Krtv9PiVOmhGXzuDueGGPG0Mt3wI5awTpWoC9hjku/CZGcDtltravBkNFHKEKYk6cK7ntlIlK9XJ3d9ju2GhWxLUFFnFKXcnSSbILTuk8XDjzF7NRJ7bb9vp2H+VcsCKRiRcygiByn9VNLVh85ydY+tgq3PvKBjzy5g/w8sDk0eV46S8/x13XHSO2Ft70y5khHQ6sCFOqVohKXIx2SlGJi6CosXbKYCVOzNeSaWwCCAvo2soCeHlgZ3MfgOTHCzDG1Alzcc3tg+JMXDRXzJJCA8y+YmPjjg4AQF1VYcB1xGzwz3Y5kxSVJIWNF0gz4lhwd3DxUlVmzrjOHkZwNq5aSpzSopa9hvU6bdh1CNs4sfrCvrO1fTUYKuIIVfC7U2Z2O6Xc3Z0po8sBCP33AHCwYxAut/9vy6ZdnGQXnAODkU1NGOVhsuLmNdbjtGPHhhxbVWbGOcePy6oLGUEQuU2kSBQA2L6/F2s3t2LG+CpMHi04NzZ3WEKOG7Qnt53SPxMXS4kLbqf0KXEK2ikBYOrYioCvI7lDqo0YMyBTieM4zudQCWz8sRMAMLw68HiDXgu29k9F4LdYxAW5jc5rrMczfzgJd113DG65+Ejcdd0xePqOn2bsdU9qNmfQayO28sYDK2rLSwIfo3BrAb+pSfjfHxz2rVTpy1SoiCNUwSgp4nhe/VYEtdop5e7uaHy7OxUlRhSa9fB6eTS3D4rHZNMuTrILzmjOlAx2oQrOimMtJSfMHBFwwbr89Ol45g8n4eS5owEAh0+syugLGUEQuYuSbobRQRb4UpLdTilGDGgjKHEsYiC4nZIpcQraKVc3teDbLe0Bt93y8JcpyfFkj3FzxyAGrMLiPZapCmupbNrVBSAwIw4QxgHEzegk5d1KEd0pi0PnyFlw9/yZIzBjfFVGd55IIyXUDvoGhELusVsXiF/fesnhYdcCrIiLtBFREGRskq3tq8FQEUeoApPUvV4+ZJdPDWw+CVwN+1olLQscx4mtG/ta+8Xbs2kXJ9kFZ7SMOEa5776lSpzH48V3PwqtLaccMzbkgqXVcJg61vf48VzGf5gSBJGbKOlmGB1kgc/wenkx7zRuJU5u2HcEJU7Pwr69iSlxTJUMDh9XY8ZaDvXVRdBpOTicHvC8oL4EK1rBMKWOLfalzpQMMWYgyUocz/MhOXHZinRjXa2MuGAKjDpofSryqNrisGsBthERLl4A8BeYbo9XfL3Pa6zHNWeHFnLZ1PUT9yPudDrx5ptvYvXq1ejs7MRdd92Fb7/9FtOmTUNjY6Oa50hkAdKQa7vTo7gtIxZqtVMy5jXWY870Omzd042eATsqSkwR7fbH1pVgy55u7Gv1X5TZLk44d0pGpuziJNv1yq/ERb4Y+ZU4/zn8eKAXQzYXigv0mDCqPOzPsTbMHkv621IJgshPlHQzsE2//W0D4HlenM+xOtyiBXrcSlysIs4TPe9NG9HYRL4SlwnW7DqtBiOGFYtq57DygrBzUFKCTVeC2ykBn6pkcSQ9ZsBqd4sFd2lR5M3PbEBqbKJWRlwwHCeYpg0MuUQlLZhY5jxSxdBqd6O0SDhv9hodU1+C806YEHUtmInEpcT19PTg3HPPxV//+lfs378fTU1NsNvt+Pzzz3HppZdi48aNap8nkeHotBqx3z4ZrQhqF3GA/JaFMfU+Ja6lP+D2eY31uOjkySHHZ9ouTrLbBmS1U4aZiVu/TWjFOWLSsIi/m6mDvRkwW0gQRH6ipJuhvroIWg0Hq92Nzl6b+L1Bn4uvQaeJGEodCdnGJmLYd6SZuFjGJrHPK1NMvdi8OgCYjdqYxlzVZYE5r+HiEMxi4Hdy2ymZCmc2akOMQbKNgiS3UzJEY5IIc6H+rMNIpj6caG4jLQR/2Cm01x7TWJ8V7avBxFXE3XPPPRgaGsK//vUvvPPOO+IM1MMPP4wZM2bg4YcfVvUkiezAmMRWBLVm4uJhtNhOGTrjwIqLIycPy+gh5GS6XolB3wXKjE02bBdaKY+cXBP553yLJ4vVFWAsQxAEkSqUtM/rdRqMGCa06u2XuBoPxZkRB/iLuJhKnDt6ThxbnEY2Nom9JMwEU6/VTS1Yv90/j7ejuR+L7/wkYhvn6qYWLH/zh4Dbbg4zv8dUpWQbm7DZ8LKi9M/MJ0rgTFxylDjhvlnOWyQlLrbDKgv8ZgZBXi+Ppl2C0c1h46tVO9dUElcR95///Ac33ngjRo8eHSBhG41GXHHFFdiyZYtqJ0hkD2JWnMr2vF4vL7peJnOnJxJsxqHX4hB30ADhQshCXs/8ybiM38VhrlfHHCYUbMcdVq9KwRmPEtfdb8OeQ/3gOGDmpGERf664QC/uKgebohAEQaQCpd0M7Joh3fhjBVg8FuxFCiMGIhVjLOw7uJ3SEUPFkJJuUy82jxfcVhdpHo8d3xd0/Qh3PNsktkUoFNTCPw+X3a2UQGDEgNI2YSWweTurLUIRJ+M1HJwVt6elHxarC2ajFhNGlal4tqkjriLO4XCgrKws7Pe0Wi1crugfNERukqzAb6mylw4lzmzUia0X0ovyDzs7YbE6UVZkROP4qpSfVzxoNRzG+tpDTUadKgXngFVOxICvLdI32/adT4WbMLIsrDsXg+M4lBVTSyVBEOmFdTOYDIGLxHDdDKx7Q2puIipxZuULd6kSF839OZYSF6md0iW6U8Yu4tJp6qU081Tp8UxVSraxSbiMuGzFnKJ2SqbyRYrZkNMSHNyS2bRTUOGmj6tSNRohlcR11jNmzMDf//73sN/75z//ienTpyd0UkR2kqx2SjYPp9Vwsto9koE4Fycp4r7ceAgAcMxh9aJ1czbA2h5jtebIRakSx/O8rFZKRkVJ+HgCgiCIVDKvsV7csFtw1MiI7fOja0NjBoZUUOLcHm/UTpdYSpzYTukNNjbxqRgyrq/ptGZXOo+n9Hg2E5dsY5N+S244UwLBRVwSlThzjHZKUYmL0k7J1Dzf88vm4Q6bkJ2tlECcRdyNN96IVatW4cwzz8RDDz0EjuPw/vvv49prr8VHH32E66+/Xu3zJLIAZu2qduC3dB4ulgNVshDbY1qEi7LT5cGaza0AgOMOH56Wc4qXYt9OsMWnoCWKkpw4p9sLi9WFjTuEIu6oKbGLuHJS4giCyBA6fGYlxx4+PGL7PFPiDnYMioXVoKjEKV/omo06sF8TraWS/S5dpHZKlhPnDp6J8xV/MnPikjljHQ2l83hKj2czcWqvYYLpzSElTmrpPzDkiGkwEy/MQCWSOyWb65TTTsncQbfsFYr3bC7i4tI+jzrqKDz33HO477778PTTT4PneTz//POYOnUqnnjiCcydO1ft8ySyAH87ZXKUuHTMwzH8SpzgULlhezusdjeqSk2YMqYibecVD2ywPlZwrBzsTre4AxatiDMZdTAbtbA5PPhmUyusdjdKCg0YP6Is5u9g5iY9A6TEEQSRPnieR3uPFYA/PDocw8oLxM+7ls5BjKotSUiJ4zgOhWY9LFYXhmwuVJaawx4nFmMRw76FStDj5QPiD0QVQ0E0kJKYHrVQOo+n9HimKtmTrcSxIi7LlbjVTS144p0m8et/rd6HtVvacPVZM1Qv5P3GJuHXLQ4ZLcH+wG8XftzfA4fTg7Iio6icZyNxr4pnzZqFV199FXa7Hf39/SgqKkJhYahlK5E/+PvJ1d3FsqXRmZIxVjLj4PHyYivlcUeMgCZDjUwiwdop1VDimAqn02piPj9lxSbYHENYue4AAGDm5GGyHruK4tCMuXTh8fIpXbQQBJE5WKwucVNxWJQiTqPhMKqmBD8e6MX+NgtG1ZYkZGwCCLN0FqsrYhs8z/MSJS562DcgfJYx0yg5zn7hYDE9qUJp5qnS400paqdkJivZrMQxw5hgmGGM2oose99EMjZxyWgJFo1NHG5875uHaxxflbYOLzWIe1U8ODiIoaEh1NTUQKvV4qWXXkJLSwtOPvlkzJo1S81zJLIEFvitdsaK1SFctNJZxNVUFsJo0MLh9GDvoX58u1WwN/5JlrVSAn4lzqKCEidtpYz1QVhWZERr1xC27esBIG8eDvArcb1pVuJWN7XgyRWbAhYElaWmpOw6EgSRebT3DAEQIlOMMUxARtf5irjWARx3+HCJsUl8RZw4ExShiBPUNeHf+kgRA5Lb3R6v2F7JjE30CvPrUg2bxwtXPDCk83hKj09VO6XfnTI7i7h0BL7HihiQ47BqlrRT7jkkdFU1ZnErJRDnTNwPP/yAE044AS+//DIA4M4778Q999yD9957D4sWLcLKlStVPUkiO2C7WGpHDCQj6FspWg2Hkb7sn0fe/B5Olwe1lQUYN6I0becUL0yJc7o8CT9XcubhGGXFgcccLvPDk7W69KRRiWO7jsE7upFsrQmCyD3ktFIyWIsWy4pLVImLFfgtnXOLPBPnX1B7JDEDSoxN0o3SeTwlx6fK2ERU4rK0iEtH4LsYMRChnVJ0WI2mxPnaKbv6bNhxoBcAcPjE7C7i4loVP/jggxg3bhwuuOAC2Gw2vPvuu7jooovwxz/+EX/84x/x+OOPY8GCBWqfK5HhJG0mzs5m4pLnfBSL1U0taO4YBADsOijs4PQPOvHNptasU2EKTDpoNBy8Xh6DVieMEeYr5CC3iFvd1IKNP3YG3PbbBz6XpWKxlpN0GZukY9eRIIjMo72bFXGxR0eYucn+ViFmIFEljkUTRGqnlAZ4R1TiNIFKHMNvbJLZShyDzeN9t+0Qtmzfi2mTx2LmlOERP3/lzu+lImLA5faIalK2tlOmI/DdHzEQvxLH1LwfdnbC4+VRW1kga0Mmk4lbibvuuuswcuRIrFq1Cg6HA2eeeSYA4JRTTsHOnTtVPUkiOxDbKdV2p0yzEsdUmOD8O5vDnZUqDMdx4kIiUXOTgSFhR7E4ShHHHr/g14VcFYspcX0WB7xJcr6KRjp2HQmCyDxEJa5SjhInFHFtPUOwO9xJV+JYIabhEDHyRqPhxDlkaRHnNzbJfCWOodVwmDa2AjPGFGDa2IqYG2hsfm/+zBERXUXFsO8kKnF9Fqd4PvEW9OkmHYHvhabo7pRywr5ZThxbi2SzKyUjrnesRqOB0SjsIHz11VcoKSlBY2MjAGFWzmRS74kjsgd/xEBy3CnNaXCn9CoMC80WisW5uMTMTSxDwoIikhKnNGw1HGy30uPlVYtFUEI6dh0Jgsg8lLRTlhUbUVZkBM8DB9otGLIJn12JFnGRlDiXJ3rQN0PnK16k7ZQud+yg5HwgFe6U0nm4bDXUSEfguzQnLlzgvfgajhKTwYQGxoyG1JnyJIu4irjp06fjjTfewPfff4+PPvoIxx9/PDiOQ3d3N5566ikK+85TTIbkulMWpEGJ27a/NydVmCLRoTK6Eufx8ti0qwtffHcQm3Z1hRRbTImLVMSpoWLptBrx/tNRKKVj15EgiMyDGZvIbcEa5ZuLO9A2gEGfq1787ZTyZuIiBX0zmErn9oYqcXJz4nIVNhJiU9mcTUpfDsQLpCPwnbVTer18SFcUELudcnVTCx5+fWPAbc++vznrOqmCiWtV/Pvf/x5XXnklPvjgA1RUVOC6664DAJx22mnwer145plnVD1JIjvwz8TlTjslG0CORbapMMzcZDCKsiXHjTHWTJxaKlZFiQkDQ070WhwYK+se5eHx8tiytwdb9lnhNfVg5hRzyIVHqU01QRC5h9fLo71HCPqWW8SNqStB064u7GzuEwul+N0pZSpxMYo4Zm4iNUJxkhIHQKLEJXEmLhfiBQC/YUzwGqGqzIyrzpyuuleAUa+BhgO8vJAVZwpaD0ZTkyPFIfQMOJISh5BK4loVT5s2Df/+97+xe/duTJgwAQUFwgfan//8Z8ycORPV1dnfZ0ooR3SnVFuJS2M7pdwP2mxTYWLFDMjNgPEXceEfJ7VUrPJiI/a1qmtuElykvrW6B5WlW0LMVpTaVBMEkXv0Wuxwe7zQaDhUl8kzgxrlm4vbuleIVeG4+A26YilxbBEbq52SKXHSrgqWsZX3SpyknVIahq4m/nbK2I7OmU4qA985joPJoIHV4cVgmMB7vxIX+BrOdWOyuN+xRUVFOOyww8QCDgBOPvlkKuDyGKMxSTNxaQz7njK6POW936lAVOJsoUqckjm2WEqcWr3zLCtOLcVTaWQA23UMblWKZGtNEERu0eZzpqwuM0c0DglmTF1gzECBUScaiygllhLHjEpitVOyIi+8sUl+K3Gsm8jL+9VJtRHbKYuza+M3EnIMY9TC5CvQwm1kuCK8hnPdmCyuVfFll10W85gXX3wxnrsmshhTHO6UHi8fcxeHKXHpmInT5KgKU2yOrMQp+dCLVcSppWKV+xRRue2t0Yh3Z25eYz2G/WsrDnUKczG/ueBwnDhrVNY99wRBKEfpPBzgV+KYD0O8piaAX4mLWMTJVOJYO2VATpwrtilEPmA0+NcYdoc7ZqB7PPhn4rJfiUs1JoPw2g1XxPlfw4HPWa4bk8W1Kg7nDGO1WrF7924UFBTgpJNOSvjEiOyDfeDJzYmTM3MFSGbi0tBOCaS+9zsV+I1NQpU4uR9m3QM2WTlxajx+FSoqcUqK1Bnj/e5VPM8H/FxdVSEVcASRJ/gz4uQXcWajDjUVBaKrJct6iwe5EQMxjU18WXFshs7j8YqtldHs2fMBrYaD0aCFw+mBzeFGaRLMR3JlJi4dmAyRlThnhJbgXDcmi2tV/NJLL4W9vb+/H1dddRUaGhoSOikiO1HiTil35gqQzMSlKScOSG3vdypgEQPhjE3kfpgVmvRiS05JQfTFSaKPH2un7FVBiYt3Z27I5gp4bcdy9iQIIndoU5ARJ2VMXYlYxKmhxFntLni9fEhbpltuxICoxAnHuyRtg7EKwHzAbNDB4fSo7rLNkEYMEMqI1k7JWoKD1dNcNyZT9R1bWlqKq6++Gs8//7yad0tkCXLDvpVmh9nswhs2nUUckNre72QTLWJAzhxbZakJw6uLAAgBscH5K+FI5PFj7ZRqGJvEuzPX2WcL+DqasydBELmFPyOuUNHPjawpEv/t8XrjzhRlBSDP+7tTpMhV4ph7pdvXTukMKOLyW4kDAJNvtt8WIVQ6UUQljoo4xTAlbtAeTokL//pPRxxCKknKtkt3d3YOCBKJwZQ4p8sDb5QLlZJ2Np7n/TNxcbp6EaFEU+LkfOjVVRWKrZhGvRabd3cnNfC8QlTiEi/i4jVb6Qoq4kiJI4j8gRVxtQraKVc3teCjNfvFr7fu7cHiOz+JK5vKoNfCoIusRMhW4nztlH4lzuP7OS5rF7JqwjaLbUmIGfB6efT7RhConVI5Rj2biQt8bniej6jEAf6RjuDrfi4Yk8UlbaxbF9oG5/F40NbWhkcffRTTpk1L+MSI7MMkUWOcLk9IjgdDSTubw+UBqw3SrcTlEsUxwr7Zh97jbzcFtDCWFhkwMOjE5t3dWPrYKuE+bC4sfWxV2HlGtWDtlDaHMKuQyGshXrOV4CIunLMnQRC5h8vtRXe/sow4JSMDcik06+G0OMK787nl5cRpWU6c78LKDCFIhRMQx0LCqJ2JYrE6xQ3uSLE8RGQizcS5PbxoHqSPMNeZayMxjLhWQpdeemlIfgYzO6mrq8PSpUsTPzMi65AORdudkYs4Je1srKWB4wKLRCIxWDulzeGG2+MNu3s7r7EeFSUm/H7ZVyg263H7r2ZjakMl7v/7Bny58ZB48WcksjiJhdmog8mghd3pQe+AHebqotg/FIV5jfX4xU8n4rV/7wi4PZrZSnA7JSlxBJEfdPZZwfPCNU6OgpKsbKqiAj16LY6wG0hixEDMmThfO6Wv6GOGEPnuTMlIZuA3m4crMutp/jAOIs3EMRUOEELBI8FGOnKJuIq4cPEBHMehqKgIkyZNgkZDL858RCNxdhI+AP0XO2mUQFmREWXFxqh28aydrb1bsHU2GXRJCd7MV6QD9oNWV8SFCXOfrKkswIzxVfB4eWyJkaeSrODM8hITWruG0GtxoD7BIg4InUk494QGXHpK5N54psRVlZrQ1W8P6+xJELmInCiYXMbvTGmWdR2K1wE3FoWmyA6VbrlKnO9583h97ZSkxAUgzsQ51Dc28WfEkQoXD5EiBthGBMfFbifONeIq4mbPni3+22azYXBwEGVlZdDraWYp3zHqhSLOITE3CRclEOsyyNrZrOI8HLVSqolWw6HQrMeQzQWL1RnxotJrCQwmTdbiRA4VviJOrTyXQ52DAV8b9dqoC9OuPuH3jqkvRVe/nYxNiLxAbhRMLqPU1CRZ2VRi4HeYLgCX3LDvEGMTFpKcX4vfSCSznbLfIlwzyJkyPiIZm0hbgvNtsz/ud+369etxwQUX4Mgjj8RPfvITNDY24he/+AXWrFmj5vkRWYY/8Fv4AGRzAcELf2aBURRkuVxRYsq4eIFcxW9uErktsG9QeN6YO2Q6gzPLVHSoBIAWX2h3ebHQWtrZa4t2uKjEja0XAnwtQ9ROSeQ2kT6/Wet0PAYd2Yi/iJM3D5esbCqmxDXt6sKmXV0BZlKiO6XMdkrR2CRCSHK+kkxjk17f9ZSUuPiI1U4ZrZUyV4nrL/7uu+/wq1/9ChaLBUuWLMGf/vQnXHfddejr68OVV16JjRs3qn2eRJZglGTFyZkLMBq0+J9r54kfar++4PCA3V02E0dFnPqIMQNRDDr6BgLbP9IZnFmhYlYc4FfiGscLLpTBM29SeJ5HVz8r4koBRH/cshGPl8emXV344ruDIQtEIv9QGgWTyygt4uJ1wI3G6qYWfLu1DQDw+XcHsfSxVQFOl2I7ZYwijnUbMOVODEkmJQ6AZCM6Ce2U/YM+Z0pS4uKCKXHWECWOvYbzbyMirpXxgw8+iKOOOgrPPPMMtFr/g3bDDTdg8eLFWLZsGZ599lnVTpLIHtgHoMPpkdV6191vh5bjML2hEl//0IJ9rQM4akqN+H0rKXFJo9gcOWaA0RvUw5/O4EylamA0XG4POnqFhVnjuEp8sbEVHVGUuP5BJ1xuLzhOCO8FcisnjlrmiGDS2TqdabT3CKq93CIuXgfcSMhxupTdTikqcYE5caTECSTT2ETMiCMlLi6kM3E8z4utk6ydMly8QK4T19bLpk2bcNlllwUUcACg0WhwySWXoKmpSZWTI7IP1k/ucHoUtd6NG1EGANh9sC/gezaaiUsasWIGAP9Fp7xI2FVOZ3CmqMSpUMS1dg2B54UL9oSRgrLW2WePmG/IWinLi43iBdjm8IgtTNkMtcwR4Uhn63SmoVSJA9TLppKriDI1ImZOHHOnFNspSYmTwly1kxH2zdwpaSYuPlg7pdvDwyFxpBTV5Dxsp4xrZVxYWAi3O/wL3O12i3EDRP5hlMzE1VbKGwKvKDGhuFAoKPYc6g/4HrVTJo8i30xcNJfFPl+4dlmJ/6LDFifByk00e341KC9Wr53ykG8ebnh1ISpLTeA4Yaakb9ARthWUtVpWlZlRYNKD4wCeF7Li2HllI8myQieyn3S2TmcSNodbbIOTe01jqJFNJVcRZYVmrGKM5cSxNlhRicvDVrRwJHMmTlTiqIiLC4OOg0bDwevlMWRziaIB28DIRzU5rpXxzJkz8eSTT+K4446D2WwWb7darXjyySdx1FFHqXaCRHbhL+I8ilrvWGtaS9cQrHYXCnwD3FaHoBJREac+TImLZmzSG+Gik47gzHJfIdlrSXznv8U3D1dfXQSdVoOSAi36hzxo77aGXZR2SYo4rYZDoUmPQZsLg1ZXVhdx1DJHRCKdrdOZRIevOCoy6wOiWeSSaDaVXKWTjR7EihgIVuLEeaI8VDHCYRbdKSPPxMUbuSFGDFARFxccx6HQpIPF6sKQzYXKUqH+8G9E5N9rOK6V8c0334xzzjkHCxYswPHHH4/q6mp0dnbi888/h91ux1//+le1z5PIEqTulErmAkqLjGL+1t6WAUzzLQz87ZQUX6E2orFJBCXO4fLA6lNCy8MUNqkOzmTFVf+gM2JAuVyYqclwX95cWaGviOu1YsrYipDjpUUcIBTAg754hmyGWuaISGg1HC5YMBGPvR15PCJZrdOZRJsvq7SmUn4rpZrIVTp1vuchljslU+LEsG9X/i6AwyHmxEVQ4hKZH6acuMQpEIs4//OTz0pcXO/a0aNH47XXXsPs2bPxxRdf4JlnnsEXX3yB2bNn4/XXX8fkyZPVPk8iS5DOxAGCYjNjXOhObbi5gIbhZQCA3Yf6xNuonTJ5xIoYYK0fOq0GhRkwk1hcYBAXjNGC4uXQ0iUszFhoeHmR8PcxA4NgWBFX7SviimTEM2QD1DJHRIO9T4Jb9JTOdWUz8czDqYlcp8sis7ApF1OJ0/iMTXztlC53/i6Aw8Fm4sLlxCUyP2x3uMV1UWmRQcUzzi/YWmRI4lDp34jIv9dw3Cuz8ePH48EHH1TxVIhcwCRppwQEJW1ncx8A4OqzpqOk0Bix/WDciFJ8u7UNuw/65+LInTJ5FMdQ4tg8XHmJMSMCNDUaDmXFRnT329FrsYuqWDz4lThhxqWs0FfEdVvDHt8ZRokDos8TZgPUMkdEwmp34ZO1+wEAty+ahXc+341Nu7twyrwxuPrsxpxX4BhKg77VRm5HyxcbDwKQYWyiC2qnJHfKAMwRwr4TnR9mKpxBr6X1TAKwrqxBm7SIYxsR+acmy34ltbQocyirr8/9HToiFH9OnPAB+M2mFtidHtRVFeK0YxuiFgMNwwWXQKm5CYV9J49YalKkebh0Ul4iFBy9A/ErcUM2l6jk1VcVAbwLZYXCAobFDgTDMuKqgpS4aM6e2YDaVuhE7vDpugOwOdwYMawIR06uwebd3di0uws6nSavXg/pVuIAeWZSK9c1A5ARMeB77sSIAbYApnZKANJ2ysCZuETnh/3zcIaM2BTNVkQlTlLE5bOaLHtlfOKJJyp64W3bti2uEyKyGzEnzndhYBeWBUeNjPn6YUVcc7sFTpcHBr1WbKekiAH1ia3E+eIFMsi4Q42suJYuQYUrKzai0KyH1eqStFOGFnEeLy9evKuDlLhcyIpjC8T/fXEdghMWLv355LxomSMC8Xh5vP/VXgDAGcc1QKPhMKxceO13RslTzEUyoYgD/GZS325pxV3PC5su9/3mJ6jwtVoyZS1m2HdwxICb5cvl3wI4HGZJO6U0iyzR+WHKiFOHAnNoEedw5a+aLHtlfNdddwUswj0eD/7whz/ghhtuwPDhw5NyckT2IQ377uixYtPuLgDACUeOjPmz1WVmFBcYYLE6sb9tABNGlpMSl0SYmjRkd8Hj5UN213sz8KIjZsUlMBPnjxcoEm9jSlxnry3kseizCPlxQjun8PvlxDNkE4dPrBYLuBvOPwxrNrdh/bZ2bNrdjQsWpvfciNSzYVs7WruHUGjWi5/d1eVCEdMZQa3ORXieVxz0nUy0Gg5Hz6jHmLoS7GsdwJa93TjucGH95S/GYrlT+oxNgtwp87EVLRxsrt/j5eH2eMXiNtH5YcqIU4cCYxQlLg/VZNkr43POOSfga1bEnXDCCZg2bZrqJ0ZkJ2LEgMON/2xoBs8DjeOrMEzGBZDjOIwbXorvd3Ziz6F+TBhZ7p+JIyVOddggPM8L8y9MXWKIM3EZVMSJWXGJKHEsXqDKP+NSbNZCq+Xg8fDo7rdhWLn/9crm4SpKTGJxJyeeIZs40G4BIPyNJ88dg8MmVGPjjx34fkcntu7txtSxNBOXDzDr9Oc/2AoAOHnOKNHoodqnxHXkkRI3MOSEzWc1nwlFHKNxfBX2tQ5g064usYiTq8Sx77N2SlLiAmEb0QBgtbtRWiR8nej8MGXEqUOhyb/5zHCQOyVBqIN/Js6Dz9b7WilnxVbhGKylcrdvLo7cKZOHXqeB2df/H05RykwlLvF2yuB4AUAwTan2tSUFt1QGO1MCfmfPXFHi9rcKRdyo2mIAQqjxglmjAAB//3g7Nu3qwhffHcSmXV2iqx2RW6xuasHiOz/B0sdWodlX1P9nw0HRcY8pcQNDTnHmOddhnwUVJcaMWiA2+maumnZ1ircxNSJ22LevndLLjE1IiZOi1WrE59oumYtj88PRiDY/TPEC6sDaKaXGJq48jsnIv7+YSCpsF2v3wT60dA3BZNDi6BnyZ2rGjfCZm/gcKsWcOCPlxCWDoiiKUibOxLF2xkQiBqRB31JEpSFCESd1wxQz9mw5osS1DQAARteWiLedv2ACNBzww84uLH1sFe59ZQOWPrYKi+/8JKqVNpF9RLJO77U4ROv0IrNenE3Ol7m4dDtTRmLauCpoOKE1vNtnuuT2KWuxcuJYO6Xf2CR/F8CRYJubwQ6VbH44uFCLFbnh8fLY1yp8xlp94wtEfIQzNiEljiBUguV0MNvio2fUKVLRmBK3t3UAdqdbbBGhdsrkUGyObG6SiTuHohJniU+J43leMhMXuDBjxg3BSlxwvADgf9xywdgEAA60CcrLaJ8SBwguseHWGnIykYjsQa51usfLi2o0e0/kMh4vjx92CkqXQa/JqIV3kVmPhhFlAICmXcLcOVPiYuXEaX05cS7R2IQpePm3AI4Em4sLF/g9r7FeHBsBgJmTqvH0HT+NWMAxhXvz7m4AwAer9tFGWAKwdkqrPVzEQP69hqmII1RjdVML/velQKvyDds7FH1Y1VcVwWzUwunyYJcvXw4AzIb8e3OmgmhW+WwmLpOKuHJmbDLgAM8rX1T1WRywOdzgOKCuKrCIYwvUSO2UVWV+RTKTIgY8Xj7hdsf9TImrKxHvU+7CnshulFin54u5CVt4f7xGyMn7YWdXxi28G8cJLZWbWBHHlDiZxiYe0diEOfvRcpBhjhL4bXe4YbX7b7c7PRFbKBMJByfCUxA2YiB/X8Oy5Y0VK1YEfO31esFxHD7//HPs3Lkz5Pizzjor0XMjsgj2YRXMwJATd7+wLmqrgRSNhsOYulJs29eDLXuEnSuDXiv28RPqEskq3+5wiwP9mWVsIpyL2+OFxepCSaEhxk8EwubhhpUXhOw8DytXMhMn/N4hW3hnz1SxuqklJDuqstSEq8+aITsaYGDIKc4/jqwRlLhEM5GI7EGJdXqqzU2Y0UrPgB0VJSZMbahM+nst0rWMLbzlXsuSzYzxVXj78134wVfEud0yjU3EsG9mbEJKXDBsLIRdA6V0B71fWruGwt5HouHgRHj87ZT+Qjqf2yllF3G33XZb2NuXLVsWchvHcVTE5RFqf1iNGy4Ucaz9gDLikkckRYm1Uhp0mowyldHrtCgu0MNidaHXYo+jiAuNF2BUR2inDDcTx4xNAKGQU3oeaqDWYpPNww2rKBCf60QzkYjsQYl1+rAUKnFqbFAoJZsW3lPHVkCr4dDRY0V7j1V2xABrpxSVuDxWMSLBHFnDGfiwGcSyYiP6LA70+ro7gq+TtBGWHArMwrV30OYSc/xEJS4PNyJkr85WrlyZzPMgshi1P6yYucm2/T0AyJkymURS4kQ75BJTzJD2VFNeYhKKuAF7gBGHHPymJqFGBcN8RVpPvw0utxd6nQYut1dUqaRFnFarQYFJB6vdjUGrM+VFnJqLzf1h5uESzUQisgcl1umsaE+2EpcuNSybFt4FJj0mjCzD9v292LSrU0HEQGBOnN/ZL/8WwJGI1k7JXh+jaorh8fCwWJ1o6x7C2PrSgONoIyw5MCXO7fHC6fbCqNdKlLj824iQ/RcPHz5c0X9E/qD2h1XD8DIAQmA4QEVcMolkld/LMuIyMNOGtVT2DCh3qAwXL8AoLTLAoNPAy/vVt54BO3heWBiVFgY+FqJDZRrMTZQsNmPB5uFG1fiLOLawj0a0TCQie1BinS4qcUk0NknnPGa2LbwbJ1QDAH7Y1SVfidMGtlOyBXCsn8snorZT+j53K0tNYtZoS5iWStoISw4mgxZsX5LNxblYEZeHGxH0riUSRu0Pq5E1xQG7idROmTz8hUhQO2UGZsQxmLlJXxwOlS1d4eMFAKENnIXSt/cIF2WpqYkmSNEqTqO5iZqLTdGZss6vaiaaiURkF/Ma63HBwokhtwdbp7OW4+4+W9JMbdTcoFBKti28peYmSpU4jzfQnTIf54kiwdopbeGUON81obLULJpjhZuLo42w5MBxHAp9LZWsiPOb8+Tfa5iKOCJh1P6w0us0GF3nVwVIiUserBAJbqfMxKBvRoUvK06pEufx8uLFNpwSBwA1YhEnXKjDxQsw0hkzoNZik+f5sBlxgD8TKfi9HSsTichO2GfB9IZK3HLxkbjrumNCrNPLS0zQajh4vDx6k6RGpVMNy7aF9+SxFdBpNQFFb6yIAV2QEueficu/BXAkzIYoM3G+111VqSlqEUcbYckjpIhj5jzUTkkQyknGh9VYiSrgcHrIyjxJxFLiMinom+GPGVC2iOvstcLt4aHXacIWZYC0iAtW4kKPT2fMgFqLzV6LAxarCxoOGDEstLCd11iPZ/5wEg6bKOz4/2zu6KiZSET2whTZGeOrMH/mCMwYXxXyma3VcKgsYw6VyTE3Sacalm0Lb6Nei8ljygNuix0x4Dc24Xle0opGy0EGy6UNq8T5jE0qYihxgH8jLPjlQhthiVEoMTcB/DlxxjzciKB3LaEKau7ar25qwTeb28Svm3ZlXkZPriAam9jCz8RlohJX6jMR2dsyoCgXjc3D1VUVRlyEsSKuw6fEhYsXYEQyhUkFai0297cKKlxdVWHEnXithsPoGmFTpdCsz5gFLKEuB9qFIm6kZDYyHMN8LZWdSTI3Sbcaxq5lwWZFmbrwZi2VjG37eqJ+JrL3r9vjhcfLgx2qz8MFcCRY2Lc9xkycv4gbjHhfh02oFh/jG84/LKzCTSiDBX77lTh586C5SMJ9ahaLBR0dHRg5ciS0Wi20WvogyFfmNdZjzvS6hHJ9siWjJ1eQznUxu15AqsRlVhG3uqkFT7+3GQDQ3GHB0sdWybYdj2ZqwqipEC7KSpS4gTQUcYDwfps9tQbfbm0PuL2k0IDrzztMXryAb+E+KobLZ3FheMWWyA14nkczey3EKOKqk6zEsQ2KcNcBRrLVMPbeufuFdairLMSvLzg8JRl18RA8q/v/Hl8d9TNR2k7JFAyAlDgpZqOwjg1up/R4vGIHSFWZWXw9dPXb4XB5wipB+3wbZVVlZpw8d0wSzzp/ENsp7cK6hZS4OFi7di3OP/98zJ49G6effjp27tyJm2++GX/729/UPD8iy9BquKjtONFIpytZvsLaKb1ePqB1JBNn4liBPzAUWDSxAj+WUtviy4hjjmLhGFYRmBXX1R9lJk5U4tJX2AzZhefs3BPG47AJwo787Kk1sjc6mBIXK6qhOI1OnETy6Rmww2p3Q6PhwsZvSEmFQyVTwypKAj9/UqmGsd396nKz4mtZqljd1IKXP9oecnu0z0Q2M+fxeEVHSyA/VYxIMCUuuJ2yb9ABLy8UzqVFRpQUGkTL+7YILZWsiBtTpywOh4hMkWQmzu3hweexmhzXu/abb77B4sWLYTKZcMstt4D3PYKTJ0/Giy++iOeee07VkyTyg3S6kuUrRr1W3IGVqiws7DtTZuLUKPCVKHG9FgccLk+Mdsrw8QypwuPlsftgHwDghKNG4hcLJwEA1mxuC1icRYPNQY2qja6+lPiKuOACOlvweHls2duDTfus2LI3ertZPsJeB/VVhdDHsOmuTnI7JWNeYz3+fNXR4te1lQUpbUNz+FQYtqDPNOL9TBTbKb286Oqn12kyLg80nZgjhH2z9UlFsRFaDQeO48SWynAxA4B/o2xsPRVxaiE1NpGqyUYyNpHHgw8+iAULFuCll17CokWLxCLu2muvxZVXXok33nhD1ZMk8oNsy+jJFYLzzmwOt5jRlylKnBoFvj/oO3IRV1ygFy/ghzoG0T8oPCbh2ynTq8Qd7LDA7vTAZNBixLBiTG2oRFmxEYM2F37Y2Rnz53mex4F2psRFL+KKC9NbsCbC6qYWLL7zE/z3sxvw1uoe/PezG2jGNgi583AAUM2UuCS1U0qRvt6cLm9K1TC77zPQZMzM3f14PxPFdkq31x8vQCpcAOw5D86JY6YmlaX+60FdlXA9iWRuQkqc+hSY/MYmzJmS42LHa+Qicf3F27Ztw7nnngsAIbs3xxxzDA4dOpT4mRF5R7Zl9OQKwTEDzNTEaNBmTLxDIgW+x8tjw/Z2dPiUg7rKyO1iHMeJ5iZb9wqLH6NBK7ZvSEl3i+HOA30AgHEjyqDVcNBqOBzjUym+/iH2Z3Bnrw02hwc6LRe1sAXSa+KSCKwFN3ixK7cFN1+QOw8HSGfibOIGbrLot/hfbwNDjqT/Pil2R2YrcfF+JmrFnDjeH/Sdh21o0TBFiBjo6vOZmpT51yCiuUl3aBHn9fJiETeaijjVKDQLz4+gxDE1WZuXanJcRVxxcTE6O8Pv9La2tqK4OPaFgCCCSbcrWb4SHDOQiaYm8Rb4TIX581NrxNtueuiLqIt3VsRt8e1gV5Waw14c0hkxAAA7m3sBABNGlom3HXuYUMSt2dQas6Vyvy8fbnh1UcwdTGZsMjDkSulCOhFoxlY+rJ1SnhInFHE2h1ucyUwWrK0bEIw4rEn+fVJEJc6QmQVOvJ+J0vc6c18kJS4Qtnlpswe3U4ZR4iojO1R29Fphc7ih02qitvETymCbqla7W2ynzNfXcFx/9YIFC/DAAw9g0yb/BZLjOLS1teHxxx/H8ccfr9b5EXlEtmX05AqhSpzP1KQoc4q4eAr8eFWYYUFFXLh5OMCvTg3ZnPCmoRDY2dwHAJg40p8TNWVsJSpKjBiyu/H9jo6oP7/ft3CPZWoC+Gfi3B6vuLjNdGjGVh4BzpQx2moBQaVg9vvJbqnslxRx4b5OJkyFMWZoERfvpqe0iGPGHbHmIPONSEocC/quLAmjxIVpp2Qq3Kia4rxs9UsW0ogBsYjLUzU5rlfVzTffjMrKSlxwwQViwXbTTTfhZz/7GTiOw0033aTmORJ5hJp5c4Q8iiMpcRnUtqq0wE9EhWFKHCtmIwWDs91ALw9Yw4TCJhOX24u9LcICYcKoMvF2rYYT3yNf/xC9VfCAT4kbVRd74W40aMVFiCVLzE1oxlYevRYHBm1C4LtctSDZWXGMvpAiLnWvPYeoxGVmO2W8m546rf9rVsQZ8tAQIhos7Nvt4QM6GnokGXEM5nbc2WcTZwwZzNRkDJmaqIo07Ju1U+ZjvAAQZ05caWkp3njjDaxYsQJr1qxBX18fiouLcemll+Kcc86B2Rx+0UMQclAjb46QT7CxiRj0nUFKHOAv8J9csSlAYakqM+OqM6cHFPhKVJhx9QUBt7MiTnr/4TDotTAatHA4PRi0OsPOzSWLfa39cHu8KC4whJzvsYcNx/tf78Xaza1wuT0Rd9mZEjeqJvYCg+M4lBTq0TPgwIDVKaqVmQzN2Mqj2fc6qK2MHPgeTHV5AXYd7E9aVhwjRIkbSqUSl9ntlICyz0SGVuMv2Kx2YePOQEpcANLn3O50Q68TrpHMrbhSck0oKzbCbNTC5vCgrdsa0JK8l0xNkoI0J44Zm+jzdCMi7i0mg8GACy64ABdccIGa50MQAPx5c0Ty8bdTZu5MHIMV+Bu2teN/nl0LAHj4puPFmS2GEhUm3iIOAIrNejicHlisTtRGMUxRG9ZKOWFkWci83pQxFagoMaFnwI53vtiNmvKCkI0Qj5fHQV8L3WgZShwgKLY9A46sUeJYu1m0Yp5mbJU5UzJSFTPAlDcNJyjeqVTi/O2UmanEMZRuemo0nPh4iu2UeboAjoROq4Fep4HL7YXN4UZxgQE8z/vbKSVKHMdxqKsswp6WfrR2DwW8j/a1UBGXDMJFDORrO2Vcn07Lly+P+D2NRoOCggKMHj0axxxzDAwGQ8RjCYJIP8FKXF8GBn1L0Wo4zJ5Wi4oSI3oGHGjtHgop4hJRYViYMSPSTBwgPHZd/faUm5vsOBBqasLQaDg0DC9Fz4AdL/1rm3h7ZakJV581A/Ma69HePQSn2wuDXitm48WCPcbZEjPA2s3ufmFdxGNoxhaK5uEY1WXCeyTZShxrp6ytLERL11BKZ+JYO6U5QyMGpCjd9NRpNXD6ChSAlLhwmAw6uNxO0aV0yO6P3pEamwDCXNyelv6AuTi70y2anVARpy6s68Xl9mLIxtTk/NyIiKuIe++999DW1gan0wmdToeysjL09fXB7XaD4zjRvWz8+PF48cUXUVFRoepJEwShHqISZwtU4soyJOg7EiOGFaNnwIHmdgsmjioP+J4SFcZhD1QTCs16FJp0ovNez4ANHi8fdrGfLut9qRIXzOqmFqzf1h5yOzN0uX3RLDDxblRNkewiRpydzBIlDhBUihnjKrFpd6B5icmoxe8unEkztvArcXLiBRjiTFxfspU44bNoVG2xUMSltJ0ysyMGEkGr1QBur+j2qc/TBXA0zEYtLFZ/Wy1zpiwu0IfMX4UzN2lut8DLA6VFhozdEM1WTAadqCb3DAifCfmqxMX1zr3xxhthMBhw//33o6mpCV9//TU2bdqE5cuXo7y8HA8++CD++c9/guM43H///WqfM0EQKlJsDj8Tl4ntlFJGDBNMGA52hFo7J+J0urqpBXaXf0D9ode+jxgOnY6YAZvDLbZCTggqXuUYujy5YhPWbGkDIBRmci32mSPhQJoiFeLB7nRj18F+AMCvTpmIuZOE10yRWY+jZ9Sl89QyAp7//+3deXxTddY/8E+Spvu+U/adYlsoUtZBEJVnHkURcH6jDzhuIIoDiiKg8qCOIo4WURBQVESfwQEFxEFxwwWRClIWi7YsBQqF0n1fkjbJ/f2R3NumTds0TdLc5PN+vXxJk9v0295sJ+d8zxGkBje2lVM6LhNX36CXgoxepg6qlU4spxQHPbtqd8rOEJubiA2ZPLUpRFt8xTEDpr9RiTgjLqRlZYalIK5pKaUnzi9zJKVSIQ38Ft+veGo22aYgbt26dXjsscdw8803Q2naJKtQKHDjjTdi4cKFeOONNzBw4EA89NBD2L9/v10XTET2FdhkxIAgCC5fTikS33SK5WDNiZv+mw8sb6vTqTiWQK83D2xaG0sgBjbOzMSdu1wOg2Asj2xeDmpNQ5eSCg2+P5ILADh+pqjVALW5rh5ubosjfxSgTqtDdLg//mt0L9wwLAQ+3ioUl2ukbKYnq6iuR1VtAxQKoHu09XOsxJLj0kpti4589lwbYAw4xA6Azi2nFDNx7vfmUGXqNCvOQeOeuJb8xDEDYhBnysSFWxjrYDGIyxeDuBCHrtNTifviyqRMnGfeh236ra9evYrevXtbvK579+64cuUKACAmJgYVFRW2r46IHK7piIFajQ71ppbKrh7EtZWJE4nldABw/cgeeOnh8Xj3mZssBnAGG8YSiLX5zszEtVVKaUu7/Pbm5onkWE75/VFjsHr9iB5QKhVQeymQPNC4d8iawNXdiR+AxIYHdKhsMDjAWypfKi53zIgGMWALCfRBiKlTrnMbm7j2iIHO8DJVIHBPXOt8TXshpUychRlxIvFDhoKyWuj0xtdPNjVxLCmIEzNxHppNtimIGzBgAD755BOL1+3YsQN9+/YFAOTk5CA6Otqq2ywoKMDgwYNb/Ldr1y4AQFZWFmbPno3hw4dj8uTJ+PDDD82+32AwYO3atZgwYQKGDx+OuXPnIjc31+wYZ9wGkdyImbgGnQEFpcbyKD8flcu/eekRbczE5ZfUSC+cluSYWqjflNIbiQMiW90DlnWxrMPDobsiO9UYxIW1uK4z7fJbm5snCg4w3k8qZZKJq6jW4thp48DziSN6SJePvsb4mpR28qq0f9tT2VJKCRgrb8SGP45qblJuFsQZH2ddMWLALcspTXvg2J2ydeLrX520J8742mCpW3FYkC+81SoYDAIKy2ohCII0x5Mz4hwjkEEcABuDuAULFuC7777D9OnTsXHjRnz88cfYsGEDZsyYgX379mHhwoXIzMzEq6++iilTplh1m6dOnYKPjw8OHDiAn3/+Wfrv5ptvRllZGe677z706tULO3fuxCOPPILU1FTs3LlT+v4NGzbgo48+wgsvvIBt27bBYDBgzpw5qK837fNx0m0QyY2fj5cU2IifzLt6UxPAWE7o56OC3iCYlbE0VVPXgEJTYNrei6lYRtqeptmuQKmxiTMzca13phQbutiieYDanNwycQdOXIHBIGBAz1CzICV5UCTUXkpcLa5BjmmOk6dqHC9gfSmlyNEDv8VMXGigD0ICGjNxzgi8DQZBal3u6h9m2UKcFVen5Zy41ogDv8VySmlGnIXnV6VSgW4RxhLjq8U1KKvSoqq2HkpFxxoGkfValFN6aHMem37rSZMm4b333oO/vz/efPNNrFixAhs2bEBQUBA++OAD3HDDDcjPz8ctt9yCxx57zKrbPHPmDPr06YPo6GhERUVJ//n6+uLjjz+GWq3GP/7xD/Tv3x8zZ87Evffei02bNgEA6uvrsXnzZixcuBCTJk3CkCFDsGbNGuTn5+Obb74BAKfcBpEcKRQK6Q26FMS52KBvSxQKBbqbsnGXCy3vi7toyjREhvhKv2NrrC0fbZrtCpIamzgnsKmsqUd+iTEotRTEWdPQpS1tlWPKbcTAj0cvAzCWUjbl5+OFEYNN2biMq05flyvJLTCWIndkvIAoyrQvzlHNTRrLKb0RbMrE6fSNbfEdSduksZE77omTGptoxHJKz3wD3Jbme+JKK1pvbAKY74sTSynjogI9NkPkaAG+5l21PfXvbPMjd8yYMdi6dSuOHz+OAwcOICMjAx988AFGjhwJAJg8eTJWrFhh9Zy406dPo3///havS09Px6hRo+Dl1fiJ2JgxY5CTk4Pi4mKcOnUKNTU1GDt2rHR9cHAwhg4diiNHjjjtNojkSiypzDUFQ2HBrh/EAUBP07448c1oc2KmpU9c+5vL43uHtZvFaj4cWhoxUOecwCbbVErZLTJAygI2JzZ0sSUj11Y5ZtO9k67uSlE1Tl8qg1KpwITk7i2uH5dk7EyZdtKz98VJM+JiOl7y5egxA+Wm/W8hgT7w9faSgqlyJzQ3EccLKBTu+eZQamwilVO63+/YWVJ3SrGcsrL1TBwAdIs0vhYZM/zGXhDcD+c4YiZO5KkfRNhcJ6DVanH69GnU1xvLG3JycmAwGFBXV4f09HQsXry4Q7d35swZhIWFYdasWbhw4QJ69+6Nhx9+GNdddx3y8/MxaNAgs+PFvXZXr15Ffr6xXXa3bt1aHCNe54zbiIy0ftgmkSuRYyYOaNwX11omriOby5U2DId29oiBtkopmxqXFIfRCd2Qeb4EpZUahAb6YM22Y1bNzWuN2Imzpq4Ber1BeiPoSvQGAZnnS7DnwHkAwLCBkQizUBo8amgsvFQKXMqvQm5BVYf3hLmDimqtFBD16EBnSpE4ZsBRe+KallMCQHCgDzSltaisrkecg19qNeJ4AbUKSjccBq9uFsR56hvgtviZPjTQaHVo0OmlpjrtZeLyimukagXuh3OcAF/z8MUdP2yxhk1B3OHDh/Hoo4+22nkyICCgQ0GcTqfD+fPnMWDAACxbtgyBgYH44osv8OCDD+L999+HRqNpkdHz8TE+sWu1WtTVGT8hsXSMuEZn3IYtBEFAba3jZu2QbcT7g/h/d+fvY3wRzysy7i0L9FXJ4n4ZHWp8PF7Mr7S43nNXjEFPXIRPq79P03M9fEAoHr8zCVv2npaGiAJARIgP7vnvwRg+INTsdrwUxjd7VbX1qKmpcdg8IINBQNbFMhzMMHb+7RXjb9X56R/nj/5xxrK3e/57EF7bltHqsX/788AWg8+bUgqNzWOKSiuloM5VHP6joMV5O3upDD8cuYDR18SYnWc/Pz8k9AvHibMl2H/0ImZM6tdVy+4yZy8ZHxtRob4w6OtR28Ey2WA/43NGYWmtQ54rSitMTZa8FaitrUWQnxcKARSWVKJXdNtZ5s4+f5dXGjP7Pmp5PA92lEJh3FcoNm8RBL0sf09Hvk4rlcbnu+paLa4UlAMwDkVXoQG1tS1LesMDjUFEXlGVNDw9LtxXln9XV9T8XKubRy8yvQ9bIgiC1e8lbAri1qxZg7CwMLzwwgv4z3/+A6VSiRkzZuCnn37Cv//9b7zzzjsduj0vLy8cPnwYKpUKvr7GJ+eEhAScPXsW7733Hnx9faXmIiIxaPL395e+p76+Xvq3eIyfn/FTE2fchi0aGhqQlZVl0/eS4+Xk5HT1EpxCV2988hO7E9ZWlyAry3md4GylqTRmwC4XVCEzM9Psic8gCFImTldThKys8jZvSzzXwUrg7zdH4mKRFtV1BgT6KdE7ygdKZSmyskrNvkccx6DXC/jtZCZ8HNDlLTO3Dl8dLUdlbeM+nV0/nEN9TSmG9rT8qbAlwUrg/02IaHFbwf4q/PnaUARb+P2a81EroG0QcOLkKUSFqNs81pkyc+vw8YGWTVmq63R4bVsG/t+ECOlvJZ7nnmEGnADwzeEc6OrKmpxn98u8WJJ+1hiohPrDpteg8mrjG9nCslr8kZkJpZ0/wCgoNj52K0rzkZVVAaVgfO09fe4SAtB6A56mbH3+zi0yPvcpoHfL12dNsw9rigvzkZVluZpBDhzxOl1eYnx8FJWU4VjGaQBAoK8Cp06dsnh8dY3x8ZBf2hhI1FfnIyuLW23sSTzXFaXmzcxKiguQlWW5wZkcWbsVzaYg7vTp03jxxRdx0003oaqqCtu2bcPEiRMxceJENDQ0YOPGjR1u9hEQENDisoEDB+Lnn39GbGwsCgsLza4Tv46JiYFOp5Mu69Wrl9kxgwcPBgCn3IYt1Go1BgwYYNP3kuPU1dUhJycHffr0kYJ4d3Yk5zR+u3BJ+jp+QG/Ex1s3HqQrDdQZsPHLQtTrBMT26Ge2p6uwrA71uivwUikwflQCvFop/2vtXF9jxc8XBAHqXflo0BnQo1c/i+2nO+PwHwX4+EDL7Fmt1oCPD5Tg8TuTMPoa65974uOB6Tcas3rlVVqEBvkgvneY1YFLaGAJCsrqEN2tF4b0DrX65zqSwSBg7ecH2jzmu4xq/Hn8EFy6dFE6zwV1VwCUoaxaj51pxuA1PNgH9948uEN/U7k6dP4UgHIM6ReD+PhB7R7fnE5vgGJPPvQGoHuv/nYvwa7/vAgAkBDfH/27hyAu6w+czctDQHAE4uP7tvm9nX3+bvAuAVCEoAA/xMfH27J8lxb8ax1Q0PghXe9ePRAfH9uFK7KNI1+ni+uvAkfKofbxR3B4LIAixEYGtXp/MBgEeH1eAJ3e+EGon48Xxlyb4LDqDE/T/FxXoxA4VCZd37tnD8THd2vjFuQjOzvb6mNtCuIMBoMUtPTu3Rtnz56Vrvuv//ovLF26tEO3d/bsWfz1r3/Fxo0bMXr0aOny33//HQMGDEB8fDy2bdsGvV4PlcqYsj506BD69u2LiIgIBAUFITAwEIcPH5YCsMrKSmRmZmL27NkAgJSUFIffhi0UCoXNWTxyPD8/P484P2HB5r9jTGSwbH7vbhEBuFJUjeJKHXrENq45/7yxDLpXTDCCg9rf82PruQ7yV6O0Ugud4GXXv5neIOCDL8+0ecyHX53Fddf2aXX2XWtSrmn5oZk1ggN9UFBWhwa96zxvncwuNiuhtKSkQoucQg2UMJ7nE9nl2PhpZovjSiu1eG1bBp66J8XiQHh3kldszMb06x5u87kMD/ZFSYUG1RogLtp+9wdBEFBRY8yyx0SGwN/fHxEhxtuv1QpWr9fm52+F8bnD31ftMvdze/JuVosWGCDv1zlHvE6HBBlvr75BQFWdseIiKiygzZ8TE+6PK6YtCVGhfvD18+/wczO1TTzX4aHmr+lyvw831ZHA36ban169euH0aWN6uW/fvqirq8P588aN5DqdDjU1HUtp9u/fH/369cM//vEPpKen49y5c1i1ahVOnDiBhx9+GDNnzkR1dTWeeeYZZGdnY9euXdiyZQvmzZsHwJh2nD17NlJTU/Hdd9/h1KlTWLRoEWJjY6U5dc64DSK5at7p0FIzCFclNmW4XGjeobKxM6VjN5cHtjE/TW8QcDK7GPuPXcbJ7OI2h2k3l3m+pMPDxx3NFccMtDUWoSlxDqDBIGDT7pNtHtve4HM5E++T5y6XA7CtqYlIHPhty/27LbUaHXR64xvnEFOGz5kDv9150DcAac+WiHPiWvKThn3rpOfh1pqaAEBaRh4Km8xMvFRQhQde/AZpGZ7dAddRApt3p/TQgfU2ZeJuvfVWpKamQhAEzJ49GwkJCXjhhRdw991346233upweaBSqcRbb72F1atX47HHHkNlZSWGDh2K999/X+oG+e6772LlypWYPn06oqKisGTJEkyfPl26jYULF0Kn02H58uXQaDRISUnBe++9B7XaeKIjIiKcchtEciTOOxNZOzPNFfSMCcLhP/KlzpqijnSm7Ayp9X6zMQNpGXnYtPukWSAWEeKLB29PtCrLY21wYu1x9hBs+l0ra1xnzEBbYxGaCg3yATRA1sUyq4PjxAHu1XHY0n1y1QdHMG+6dffJ5rd1Ps+YsfrPgfP4z4HzHbp/t0XsTOnn4wUfU9e5YNPA78pqx3+AoDWNGHDHQd8AWmSH1B76Brgtvj6N3SlLKozBWWQr4wXSMvIsdjUuqdBg1QdHPCKz72zinDiRp34QYdMz1Jw5c1BWVobffvsNs2fPxrPPPou5c+di/vz5CAwMxMaNGzt8m5GRkVi1alWr1yclJWH79u2tXq9SqfDkk0/iySef7NLbIJKjppm4AF8vWbXrbT0T55xZPeIngk3HDNjjRd3a4MTa4+zBFTNxQ/tFICLEt93xCfG9w3D6dIGUkWuPM4NjZ2jtPlla2fE3mo5+01rebLwA0PjBkjMzceIbeXfTfH8wRwy05CfOidPq28zE6a3M7I9O6MbSSjtqMSdORu9Z7MmmR+6FCxewdOlSvPrqqwCAxMRE7Nu3Dx9//DF+/PFHpKSk2HWRRORYTTNxcsrCAZaDOE29DnnFxrJuR5dTSgO/TYGNtS/q7ZWeicFJW9qb7WZvjQO/XSeIU5nm+7Vl7rQEqXmLtfdvZwbHjmav+6S9b6s1YiZOLKEEGucUVlgZhHeGRuvmmTiVeTDhqW+A2yIO+9bUN2biLD0fu2LZuyfw8/FC061jnppNtum3/p//+R/s3r3b7LLAwEAkJSUhMND2+noi6hpNSxPUXipZ7QcSB36XVmpQU2fMhl3Kr4IgGD/Jd/T+vuYDv+31om5tcOLMT3eDTb9rpYX9f11pXFIcnronpcVen8hQvxZZofjeYS4XHDuaPd9oOuNNa7mpZDKkSSZO/HdFTT0EwbHPT1Imzk33xLXIxDGIa0HMxDXoDNL9PdzC84Yrlr17AqVSAf8m71t8PPQ+bFMQp1arERYWZu+1EFEXSMvIw1MbDkpf51ytlNWG7AA/NcKDjW/wrhQZs3FSUxMHl1ICLTNx1r5Ynzhb1G5DiHFJcVh2z8gWM7gsBSfO4IrllKJxSXGICTeWO90xeSBeeng83n3mphZ/I6ULBseOZs83ms540ypm4ppmTUNM970GnQF12pbDlu1JY9oT566NTZoHcc0//CDzLKzeIEChsJydd8Wyd0/RtKTSU+/DNtUKPProo3jllVdQVVWFIUOGWGzrGRfHTZxErs5dNmT3iA5CaaUWuQVVGNQrzGmdKYHGUlQxsLH2xfrjfY3jA9pqCNGnWwgMggClUoEFfxmGmPAADO0X0SVBRlAbnTi7msEgoLDUWPY0ZXRvdItsfYyCmLlr3uQjMtQPc6cldOl9Xm8QkHm+BKWVGoQH+9rlXNvzjaYz3rSKJZNNM3G+Pl7w8VZBW69HZU292afw9qaVMnEeUk7poU0h2qL2UsJLpZDmvoUG+licNWrtnlx3yuy7ikBfNcTJzZ6aibPpGeq5556DXq9vswFIVlaWzYsiIsdzpw3ZPaIDkZFdLO2Lc1ZnSqDJiAFTOaU1L+rNtRU0HztlfJlK6BeBG0f1ttOqbePKmbiyKg3qdQYoFUBUWPuDf8clxWF0Qjf856dsbN6TiagwP7zz9E1del/vbEfT1tjzjaYz3rSWW9gTBxizcYX1dSiv1iI2wrZZh9Zw+3JKZfNySs/MYrTH19sL1aYS/dZKsMWyd0sfhorcLbPvKswycQzirPfiiy/aex1E5GQd2dvi6q3We8YY98XlFlRBEASndaYEGjNxYjmlNS/qrbEUNB8/YwzikgdH22G1ndN0xIAgCB0aSupo+SW1AIDIMH+Ln5hbolIqMDI+Fpv3ZKKmrqHLAzhHZcXt+UbTGW9aK0x74pp2pwSMw+YLy+ocPmagsZzSMzJxambiLPL1aRrEtf7BkCtn9t1ZgF/j49PHQz+IsOkZinPRiOTPnTZkN+1QWVqpQVVtA5RKhRTcOVJQs0wcYHxRHzk0BumZBR26reZBc4POgJPZxQCAES4QxImZOJ3eAG29Xurg5goKSo3dSGPDW5b3tyXSNLC6VqNDrabBoWV6rXFGVlx8o7n24xNSAyDAtjearb1p9ffxwqN3Jnf6TWtjJs48iBP3xYl75hxFLKf0c9MRA+omH3IoFICXynU+jHElTc9/e82QxMy+vUuhqXViJs54H2YQ1yH19fXYsWMH0tLSUFRUhJdeegm//vorrrnmGiQlJdlzjUTkAO60IVvsUJlfUoPs3HIAQPeoQKd0XWve2AQABEFAbr5x+Pis/xqMbpGByC2owvYm++Ba0zRozsopgaZej9AgH6dkFdvj662S9olU1ta7VBAnZuI6Wmbn5+OFAD81auoaUFxeh16xzg/inJUVH5cUh4yzRfgiLQcp8TGYPmmAzW80m75p/fm3K9ibloPgAG+MTexm8/pEFRbmxAHmHSodSePuw76bvOFVe6lcKqPuSpqe/7YycSKVUuHyVSvuxN/XeH6USgV+P1fikUGzTaFraWkpZs6ciZUrV+LixYvIyMiARqPBjz/+iLvvvhvHjx+39zqJyM5ccQ6ZrSJCfOHnYxyNkHbyKgCgr5OCHnHEQL3OAG2D8RP8nKuVKCithbeXErdPHICJI3pg2MAoq26vadAs7odLHhQlzTnrSgqFwmWbm+SXmDJxER3LxAFAlCkbV9yBfYz25MyseK5p3+j4YXFIHBDZqTc94pvWe6deAx9vFfJLa3HmUlmn1qfXG6Q9ly0ycWIQ5+BMXJ3W+Dh23+6Ujeecg75b5+fTNIhz/Q8zPUlaRh6++zUXAKDXC3h640FZddW2F5seva+88gpqamqwd+9efPrpp9LMlrVr1yIxMRFr16616yKJyP5ccQ6ZrRQKBbqbsnGHfzcGcc7oTAkYX+jFv5GYjTv0ez4A4z42MVtlS9B8/HQRANcopRS5anMTKRMX3vGGF+J5KS6vs+uarOXMrPglU4a4V6z9So39fLww5hpjBu7HY5c7dVuVtfUQBGOJlHhfEzmvnFLMxLlnENc0E8emJq1rGsRFWpGJI+cQ9w/XNhs1Iu4f9qRAzqZH7w8//IBHH30UvXv3NkvD+/j44P7778cff/xhtwUSkeOIe1uaBxddNYesM3qa9sXVaIxP7M4qPzTLTpn2xR0yBZKjr4mVjuto0FxWpcH5PGODluGDXCiIkzJxDe0c6VzinrgYGzJx4r64ki4K4pyVFa+o1kr7zXpG23e/6MQR3QEAP5/Ig15vsPl2xKYmwQHeLT5AErtVOr6c0r1HDHg1K6cky5q2rS+uqGt1nic5j8HK/cOecq5seobSarUIDQ21eJ1KpUJDg2u9uBNR69xlQ3ZcVKDZ171inLeHLNBfjfJqLapq61FYVovzVyqgVACjmgRxQOsNIQDjgOqmQfOJM8YsXL/uIWZDj7tasCkbUulCmThNvQ6llcbgxJbW85FdXE6pUipw+8T+eO8/rX8Aao+suJiFiwn3t/t+xuTB0QgO8EZ5tRa/nS3GiCG2ffBgaUacKNh0WaWDM3FiEOcR5ZTMxFmUlpGHw5n50tevbzuO//syq9PjPqhzsi6WuU1XbXuw6dGbmJiIjz76yOJ1e/bsQUJCQqcWRUTOJe5tmTiiR6f3yXSFtIw8/Oenc2aXLV1/wGllFU2bmxw2lVLG942w+EZ0XFIc3ls+BS89PB6LZ12L64Yb3xD8fq5YKk0HgGOnjfvhXKmUEmjajdN1grjCUmMppb+vlzTyoSMiu7icUhAE/GLay9n8TbVSASy5e6Rd3jheyjfOT7RnKaXIS6XEn4YZ1/jjsVybb6e8laYmTS9zZCbOYBBQ3+DemTiVkpm4tojlemKXUpEnluu5mvIq6z7AkUNXbXuwKYh79NFHcfDgQUybNg1vvPEGFAoFPv/8czz00EP46quv8Mgjj9h7nUREFokvuE1b/APOfcEVm5tU1TZYLKVsrmnQ/MC0RKi9lDh1sQyZF0oBGN9InnDB/XBA41w8V2pskl/auB/Olk57Yue54oquCeJ+OHoZmRdK4eOtwoYnb8BLD4/HY3cmI8BXDYMAs+C+My4WGDNxvWMdk6WeNKInAGM5sdjhsaMqWhkvADRmgSuqtHb7mzQnNicC3HdPHBubtM7acR+eUq7naqytSpFDV217sOnRO3LkSLz//vvw8/PDu+++C0EQsGXLFhQVFeHtt9/GmDFj7L1OIqIWXOUFV8xOXS2uwe/nSwAAoxNaD+KaCg/2xeSRxje/O74/C8DY3bK8Wgs/HxWG9Al3wIpt54rllGJnSlv2wwFNyimdmInTGwSczC7G14cuYtOnxvvwnTcNRkyEPxIHROKGlF6Ydl0/AMBnP52zS9DiiKYmTQ3pE4bocH/UafXY+d1Z7D92GSezizv0+GucEefd4joxsKvXGaSSR3sTg0+FAk4ZUdIVzBubuOfvaKuOjPsg54vvHeY2XbXtweZagZSUFGzbtg0ajQYVFRUIDAxEQEDH9yIQEdnKWfO12iNm4n48dhkGg4DesUGIiwxs57sazbh+AL49fBHpWQX45nAOTpwxDvhO6BcJtYt9Uu6KIwYKbJwRJxLfFDhr4HdaRl6LfZFKpQIxzQaV//e4vvjk+7M4c6kcp3LKEN/X9oBeEITGcsoYxwRxCoUC/buHoLC0FtuazESMCPG1ei+R2NjEUjmlr7cK3l5K1OsMqKjWmnUPtBexhM5HrXKJsR6O4MUgrlXOHPdBHac0NQhb9cGRVo+RS1dte7Dp3cHtt9+OLVu2oLi4GL6+voiJiWEAR0RO5yovuAF+xjf9YiYnpY1SSkviIgMxqFcYAGDdx7/hwIkrAIDMC6Uut//CFUcMNA76ti0T5++rRoBpcGx7Hwp0llj+2/znGAwCXvm/dLPzHRrkg0kjegAwZuM6o7xKi6raBigVQA8HBXFpGXnS3r6mOlLa3FY5pUKhaGxu4qAPEeq07j3oGzAvp3S1D4m6mjPHfZBt3KmrdmfZ9CwVFxeH1atX49VXX8WYMWNw++2346abboKvL+/UROQ8rvCCm5aRh//sP2922beHL2Jgj1CrX0zSMvJw6mLLIck1mgas+uCIS70wueKIgXzTeAFbZsSJIkP9UJNfhaLyOvR0UJBjbfnv6IRu0ifJ067rj29/vYS0jDzsP34ZEGBTB1mpM2VEgFnrdHux5XezpLyNIA4AQgO9UVxeJx1nb1o370wJNCunZGMTM+K4j7Y+zPGkcj1X5S5dtTvLpo9gNmzYgLS0NDz//PMQBAHLli3DuHHjsHTpUqSlpTlswzERUVPOmq/VGjGrUqMxD2gqquutzjy4yr4+a7nanjhBEDqdiQOACCfMirNlv03vbsHo0y0YAoDUfx1F6tajeHrjQTzw4jcdytJeLDCWUvZ20H44e+0lqmijOyXg+DEDGjcf9A1wxEBbOjrPk7qO3Ltq24PNj96goCDccccd2Lx5M3766Sc88cQTyMvLw9y5czFp0iQ7LpGIyLKufMG1V/Alt430Yiaupq6hU0Od7aW8Sov6Bj0UCiAqzPYgLjLE8bPibCn/TcvIQ87VyhbHdLT7amNTE8d0prRXaXNFG41NACBE7FBZ7ZgPEdx90DfQfNg3g7jmWK5HcmGXZ6mSkhIUFxejsrISer0eISEh9rhZIqJ2tTZAOzLUD3OnJTjsBddeTVVcZV+ftQKbzGGrrmtotezNWcQsXGSoX6fekDqjQ2VHy3/tVaIINAniHFQqao/SZk29DnVaYxDV2v0qxMGz4tx90DfAxibWYLkeyYHNQVxubi4+//xz7N27F9nZ2YiMjMTUqVPxz3/+E0OGDLHnGomI2tQVL7j2Cr5cYV9fR3iplPD39UKtRoeq2vquD+LssB8OaDLw24Gz4jq638ZeHxSYdaZ0UDmlPfYSVZqya+J9zBIpiHPYnjj3b2zS9HmRmbjWieV6RK7KpmepmTNnIjMzE76+vrjpppuwbNkyjB07Fkql8clAEASbBq4SEdnK2S+49gq+5LiRPsjf2xjEuUBzE3vshwOcsydO1cH22Pb6oKC0UoMajQ5KpQI9oq0ffdERHf3dLCmX9sN5t/oeorGc0lF74kzllD7um6FiJo7IPdj0EUxoaChefvllpKWl4ZVXXsH48eOhVCpRWFiIN998E5MnT7b3OomIXIq9mqrIcSO9K40Z6Oygb1GUkwZ+j0uKwxgLg+At7bex1wcFF02llHGRAVA7sBthZ/cSSfvhglrP7jq+nNIDMnFNG5swE0ckWzY9S7333ntmXx84cADbtm3D/v37odPp0KNHD7ssjojIVdkj8yDqqn19tgo2NTdx1KyujigoNWXiOllOKQYeNU4Y+C2e47/cMBC9Y4NbLf+1V5a2samJY0opmxJLmz/94Sw+2JuF6DA/bHr6JqseB23NiBMFmxqeOKw7pVZsbOK+GSrzxibu+3sSuTubP2oqLS3Fjh078PHHH+PKlSsIDAzE9OnTMW3aNIwcOdKeayQickn2DL7ktJFemhXnQpm4zpZTigO/azQ6lFRoHBbEVdc14NzlcgDALeP7IsLUFdMSe31QIO2Hi3FMZ8rmVEoFJiT3wAd7s4ylnoIAoP37cblpT1xr4wWaXlfusO6Uxkyc5zQ2YSaOSK46HMQdOnQI27dvx759+6DX63HttdfiypUrWL9+PUaNGuWINRIRuSx7Bl9y2UgfFGAMcLo6iKtv0EvBc2xE5zJxgHFfXE1+FYodOPD7j3PFMAhA96iANgM4UWsfFPj6qLDozhFWfVBwqcB5mThRVKgfvNUq1DfoUVBai7io9vfiWZWJM5Xy1jfoodHq4Otj37JHrQeMGGhaTslMHJF8Wf0stWXLFmzfvh0XLlxA7969MX/+fEyfPh3+/v4YNWoUG5kQkceSS/BlL65STllYZiyl9PNRSW/uOyMyxA+X8qtQ4sAOlRnZxQCApAFRVn9P0w8Kfs3Mx+795xDgq8bYxG7tfq+xM6XzgzilUoEeUYE4n1eB3IIqq4K4po1NWuPn4wW1lxINOgMqaurtHsQ1zolz3+CGmTgi92D1o/fll1+Gt7c3PvzwQ3z99dd4+OGHERsby+CNiMjDuEpjE7EzZUx4gF1ei8RZcUXljpvJJwVxAzsW9IsfFMz+73j4+ahQUqHB2dzydr+vqLwOdVodvFQKxEU6pjNla3rEGH9ebmG1VcdXVLWfiVMoFA7tUNlYTum+mTizII6ZOCLZsjqIu+WWW3Dx4kXMmzcP8+fPx7fffgudTufItRERkQuS9sTZacSA3iDgZHYx9h+7jJPZxdAbBKu+r8BO++FE4qw4R2XiKqq1yLlq3J+W2N+2zK2PWoWR8cbulgd/y2v3eDELFxcV6PSZYGJJaq6pnLM9FaZ9bu3NHgw2Xe+ITLBYTunnxiMGmn7ecbmwyurHGxG5Fqs/alq9ejWqq6uxZ88e7Nq1CwsWLEBYWBhuvPFGKBQKZuSIiDyEPTNxaRl5LfZ7RYT44sHbE9vd75Uvdqa0w344oHFWnKPGDJw8Z8zC9ekW3Kkh6eOT4nDgxBUczMjDvVOHtvn6K5VSOmiPX1vEmXRXrMzENZZTtv23kZqbVDkuE+eue+LEx5vo/c8z8Z8D5616vBGRa+nQx3KBgYG466678Mknn2DPnj2YNm0avv/+ewiCgKeffhpvvPEGsrOzHbVWIiJyAfbaE5eWkYdVHxxp0UK/pEKDVR8cQVpG25kmqTNluJ0ycQ4O4jLOivvhOrd/8toh0fBWq1BQWovzVyraPPZSgakzZaxzOlM21TPalIkrrIIgtJ3tEQTBqsYmQJMxAzWOCOKMmTh37E7Z2ccbEbkWm2srBg4ciGXLlmH//v1Yt24d+vXrh3feeQe33norbrvtNnuukYiIXEjTTFx7b85bozcIZhkBS9757Pc2S72kPXF2ysSJ5ZTFbcxl64zGpiadC+J8fbxw7ZBoAMDBdt54X+yCpiaiuKgAKBVArUZnHDXQhpq6Bulch7TR2AQAQgJMA78dMGZAoxUzce4VxNnj8UZErqXTBfJeXl646aab8NZbb+HHH3/E448/zr1yRERuLMjfOGKgQWeQ9hB1VOb5kjaHWAPGjFjm+RKL1wmCgIJSO++JM2XiauoaUKe17+tYSUUdrhRVQ6kArrFxP1xT402lbwd/y7MYSOsNAn47W4ScPGOmrme0c5uaAMb29WKp6+WCtksqxVJKf18veKvbDqDEIK/CgZk4dyun7OzjjYhcj113OUdGRmLu3LnYu3evPW+WiIhciJ+PlzQHr6rWtuYm7WVm2juusqYedVo9FAogOsw+QZy/rxr+vsY37x0tqWyvOYuYhevXIxSBfp0fJJ4yNAZqLyXyimukbJsoLSMPD7z4DZa/lQad3riOFZt+6ZJyuR6mksrLhW03N7G2qUnTYxySiXPTcsrOPt6IyPW410dNRETkcAqFAkEB3iiv0qKqth5RYe0PrW4uPNi3U8eJ++Eign3bzdx0RESIH2o1xllx1g78tqY5y0lTEDfMTvME/X3VGDE4Gof/yEdaRh76dAuW1rLqgyMtjhf3PT11T4pTG1j0jAnEr5ntjxmwtqkJAIeNGDAYBNQ3uGcmrrOPNyJyPZzySEREHdY4ZsC2bMjQfhGICGn7DWNkqB+G9ouweJ2998NJP1PcF2flrDhrm0X8Zgri7DkUflyScdj3d0cuYf+xy/jtTJHL7XsSM3HtjRlobGrS/tB2KRNn5xED2obG0mB32xPX2ccbEbkeBnFERNRhwaZsSKWNYwZUSgUevD2xzWPmTkuQyjaby7fzfjiR1KHSillx1jSL2LT7JH5Iz0VhaS2UCmBI73C7rBMAYIrFCsvqkLr1KJa/neZy+556mgZ+t1VOqTcIOHOxzPhvvdBukCl1p7RzJk4cL6BQwK7ZXVfQ2ccbEbkeBnFERNRhYnOTzsyKG5cUh/8a07vF5V4qZZtlf3qDgKwLpQAAhelre+nImAFrmkWUVGjw2r+PAQAMAvDIq9/bZW9aWkYe1mw7btP3OnPfk5iJK63Uoqau5f5Jcf/ed+m5AIAjWQV44MVv2vwbid0pNfV6KfCyB7FJj49aBaUbBjPjkuLw1D0pLTJykaF+Ti+zJaLOc6+ibyIicorOllM2N3FEd8T3Ccem3Seh0xtaLf1qvv9s35FcHD9TZLdhxWIQ115wBtgWDNljb5o1GcC2OHPfU4CfGuHBPiit1OJyYRUGN8lE2rp/z8fbGGQZDAJ+/SMf44d1t0sGyV07UzY1LikOoxO6IfN8CUorNQgP9sXQfhHMwBHJEDNxRETUYZ0tpxRlXy4HAIxNiMMt4/vh+mt7AgB2/Zjd4lhnDCuODLE+E9eZYKgze9OsyQC2piv2PTXui2tsbmLr3LK0jDzMWfktDKbLX/3X0XYzd9YSZ8S5W2fK5lRKBRIHRGLiiB5IHBDJAI5IphjEERFRh9kjE9egM+Di1UoAQP8eIQCA6ZMGAAB+OXkVecWdf9PfURGhYmOT9oM4a5pFtKYze9M6Uw7ZFfuexC6fTffF2TK3zNFBvFia6W5NTYjIPTGIIyKiDgsyZeJsnRMHABfzK6HTCwj0UyMm3NigpHdsMEbGx0AQgE9/yJZmr31+4LxTmnZEmcopq+sapMxMa6xpFtEWW4MxWzKAXbnvSRw03jQT19G5Zc4I4j2hnJKI3AefqYiIqMPskYk7d7kCgDELp1A0ZodmXD8A6VkF+OrQRXx16GKHbrOzTTv8fdXw8/FCnVaH4oo6qRSwNcMGRkGpBAyGjv8sW8sxxQxgW0FtRIgvHrtrBCqqtF2+78nSwO+Ozi3rSOauf5xtHUvdddA3EbknZuKIiKjDAv2M3SkLympxMrvYpgzIuSvlAID+3UPNLq+ssb11vD2adkSaSipLrJgVd+xUIQwGoHtUAF56eDwWz7oWL84b59CZXNZkAB+8PRHDB0a5xL6nHqYxA/klNWjQGQOljs4t62jmzhZaqZySn28TketjEEdERB2SlpGHV/4vHQBQXqXF0xsP2tRc4pypqcmAHqHSZXqDgHd2/27TuuzVtENsblJkxb64w3/kAwDGJHSTmkUMGxTl8JlccmoXHx7sC39fLxgEIK/ION+vo3PLOpq5s4VUTunDTBwRuT5+3ERERFZrry380rtHIiTQp9325Tq9ARfyzJuaAJ3rvGivph2NYwbaDuJ0egPSTxUAAEZdE2t2nRhkNR2HIN723GkJdgmy5NIuXqFQoGd0EE5fKkNuYRV6dwsGYFx/XFSAFNiJLP2NrCkhFYN4rab94NsSDTNxRCQjfKYiIiKrWNNc4tV/paNpZWVEiK/FGW65BVVo0Bng7+uF2IgA6XJbyuHsGRgBQIQ4ZqCdYDLzQglq6hoQHOBtNv9M5IwgS2wX7+q6Rwfi9KUyXC5sbG6SW1CFvKIaKBTAsr+loEFnaPVvJGbuLH2AIOpsEK+VGpswE0dEro9BHBERWcWaLFnzrXGtDW4Wm5r06x4CZZM33taWw825LQGhQT4OCYzETFx7YwbEUsqUoTGt/ny5BFmOJo4ZyC1obG7y3ZFLAICR8TFWBeCOzm7WecicOCJyDwziiIjIKp1pGvHOZ79jdEI3KdixtB8OsL5sbuqEfg4rGwwP9gEA5FytxMnsYotBoiAIOPy7MYgb3ayUkloSxwxcNo0Z0BsE/HD0MgDgxpReVt+OmN38+lAONu7MQEigN9595ia73Be0HDFARDLCxiZERGSVzjSNaD7D7dwV03iB7iFmx3W04YW9pWXkYe32EwCMa26taculgioUlNZC7aXE8EHRDlmLO5EGfhdVw2AQcPx0IUorNQjy90bK0I4FwSqlAsMHRQEA6hv0drsvaFhOSUQywiCOiIisYk1b+LY0Hdx8Pk+cERfa4riu6rwoNm0przYfcSCWhDYN5H41lVIOGxgFPx9mbtoTE+4PL5US9Q16FJbVSqWUk67tAbVXx9+KiHMK67R6NOhsGNJngdjYxIeZOCKSAT5TERGRVaxpLtEWMZN3pbAK2no9fL1ViIsKtHisszsvWtO0pWlJqLgfrnlXSrJMpVIiLioAl/KrcCqnFIdMpag3jOxp0+35+6qhUACCAFTX1SMsqPPzAcVySj+OGCAiGWAmjoiIrNZalqy92KrpDDexlLJvXEibQZnYFMQZA6utadoiloSWVWpw5lIZAGDU0BiHrcnd9DAF7Jv3/AGd3oA+3YIsZmKtoVIqEOBrHDhfXdtgl/VxxAARyQmfqYiIqEMsZckqarT454fprX5P031s2WJTk56hTlitdaxt2nLibBH2H78MQTDOtxPHEVDb0jLycPxMEQCgrMpYrlpUVoe0jDyby2OD/L1RXdeAqtp6u6xR3BPH7pREJAcM4oiIqMMstc5X3qNo0f4dAO64YaDF8QLNm5p0JWubtny874z076tFNZ0KQjxFawPiazQ6i+MnrBXorwZK7JiJ04qZOAZxROT6GMQREZFdNM/QHf79Kg78loczF8ukYwwGAedN5ZTNxwt0JWtGGzRXq+1cEOIJOrrXsCPE5ib2zsSxnJKI5IB74oiIyG6a7mO779YEKJUKZGQXS4Hb1ZIa1Gl18Far0CPaclOTrmDNaIPWvPPZ79A3n3JOADq217CjAv2Ne+Kq7LYnjuWURCQfDOKIiMghosL88CdThuqzn84BALJzywEAfeOCoVK51ktQa01b2mNrEOIJrN1raMsgeTETV22HTJzBIKC+gZk4IpIPPlMREZHDTJvYHz+duIKfjl/G326Ob3XIt6toXhKaW1CF7U32wbXGliDEE1i719CWQfKNmbjOB3FaUwAHcE8cEcmDa30MSkREbmVQrzAM7RsOnV7A+5//gfSsAgBAvzjXDOIA85LQYQOjrPoeW4IQT2DNgPim4yc6ojET1/lySnG8gEIBeKsZxBGR62MQR0REDjWkTxgAYP+xK8gtqAIA/OurU0jLyOvKZVnFkUGIJ7Bmr2HT8RMdEWTPTJy4H06tgtKB8wiJiOyFQRwRETlMWkYedv1wrsXl5dVarPrgiMsHco4MQjxFa3sNI0P9OtXZM1DsTllnj0wc98MRkbzw2YqIiBzCke3lnUkMQprPwIsM9cPcaQkcL2AFSwPih/aL6NR5D/KzX2MTcUYcO1MSkVwwiCMiIofoSHv55oPDXY0jghBPY2lAfGfYc8SAuCeOTU2ISC4YxBERkUM4sr18V7B3EEKdIzY2qalrgN4gdCqgZjklEckN98QREZFDOLK9PJGYiQOMgVxncNA3EckNgzgiInIIdnYkR/JSKeHnY8ycdXZfnFYqp2QmjojkgUEcERE5BDs7kqPZa8yAVE7pw0wcEckDgzgiInIYR7WXJwKajBnoZHMTDTNxRCQzfLYiIiKHYmdHchQxE9f5ckqxsQkzcUQkDwziiIjI4djZkRzBXpm4Os6JIyKZYTklERERyZI4ZsB+mTh+tk1E8sAgjoiIiGRJamxipxEDLKckIrlgEEdERESyFOgnllN2tjulWE7JTBwRyQODOCIiIpKlxsYmncvEieWUfhwxQEQywSCOiIiIZKmxsYl9MnHcE0dEcsEgjoiIiGTJXiMGxD1x7E5JRHLBII6IiIhkKchuw77Z2ISI5IVBHBEREclSYJNMnMEg2Hw7Gi3LKYlIXhjEERERkSyJe+IMQuPAbluwnJKI5IZBHBEREcmSj1oFb7Ux8LK1uYnBIKC+gcO+iUheGMQRERGRbEnNTWwc+K01BXAA98QRkXwwiCMiIiLZEpub2NqhUhwvoFBAyuoREbk6lwviLly4gOTkZOzatUu6LCsrC7Nnz8bw4cMxefJkfPjhh2bfYzAYsHbtWkyYMAHDhw/H3LlzkZuba3aMM26DiIiInEtsbmJrh0px0LePWgWlUmG3dREROZJLBXENDQ1YvHgxamtrpcvKyspw3333oVevXti5cyceeeQRpKamYufOndIxGzZswEcffYQXXngB27Ztg8FgwJw5c1BfX+/U2yAiIiLn6nwmjvvhiEh+XOoZa926dQgMDDS77OOPP4ZarcY//vEPeHl5oX///rh48SI2bdqEmTNnor6+Hps3b8bixYsxadIkAMCaNWswYcIEfPPNN5g6dapTboOIiIicL9Cvc5k4sZySnSmJSE5cJhN35MgRbN++HS+//LLZ5enp6Rg1ahS8vBrjzTFjxiAnJwfFxcU4deoUampqMHbsWOn64OBgDB06FEeOHHHabRAREZHzNQ78tjETJ82IYxBHRPLhEkFcZWUllixZguXLl6Nbt25m1+Xn5yM2NtbssujoaADA1atXkZ+fDwAtvi86Olq6zhm3QURERM7XOPDb1kwcyymJSH5c4hnrueeeQ3JyMm699dYW12k0Gnh7e5td5uPjAwDQarWoq6sDAIvHVFRUOO02bCUIgtkeQHIN4n1C/D+5L55rz8Dz7L58TO9kyqvqUFtb2+FzXVllfA1Weyn4eiwjfEx7Dk8614IgQKGwrsFSlwdxu3fvRnp6Ovbs2WPxel9fX6m5iEgMmvz9/eHr6wsAqK+vl/4tHuPn5+e027BVQ0MDsrKybP5+cqycnJyuXgI5Cc+1Z+B5dj/lpcbAq7Ckwuz11NpznXOpGgBQr63l67EM8THtOTzlXDdPGrWmy4O4nTt3oqSkRGooInr22Wexd+9exMbGorCw0Ow68euYmBjodDrpsl69epkdM3jwYABwym3YSq1WY8CAATZ/PzlGXV0dcnJy0KdPHymQJ/fEc+0ZeJ7dl96nFPi5FAaFGvHx8R0+1+fLLgIoR1R4KOLj4x2/YLILPqY9hyed6+zsbKuP7fIgLjU1FRqNxuyyKVOmYOHChbjtttvw2WefYdu2bdDr9VCpjJuODx06hL59+yIiIgJBQUEIDAzE4cOHpQCssrISmZmZmD17NgAgJSXF4bdhK4VC0alMHjmWn58fz4+H4Ln2DDzP7icyzLgXrlajMzu31p5rg6k9QIC/D+8bMsTHtOfwhHNtbSkl4AKNTWJiYtC7d2+z/wAgIiICMTExmDlzJqqrq/HMM88gOzsbu3btwpYtWzBv3jwAxpTj7NmzkZqaiu+++w6nTp3CokWLEBsbiylTpgCAU26DiIiInK/psG9BEDr8/VqpsQm7UxKRfHR5Jq49ERERePfdd7Fy5UpMnz4dUVFRWLJkCaZPny4ds3DhQuh0OixfvhwajQYpKSl47733oFarnXobRERE5FziiIEGnQHaBn2Hv1/sTsk5cUQkJy4ZxJ0+fdrs66SkJGzfvr3V41UqFZ588kk8+eSTrR7jjNsgIiIi5/L1VsFLpYBOL6C6tgH+1vUEkDTOiXPJt0RERBZ1eTklERERka0UCgUCOzHwW8NySiKSIQZxREREJGtBnRj4rak3ZuJ8mIkjIhlhEEdERESyFuhneyZObGzi58NMHBHJB4M4IiIikrUgqZzS9kwc98QRkZwwiCMiIiJZC5TKKW3fE8fulEQkJwziiIiISNaC2NiEiDwMgzgiIiKSNamxSV3Hyym1LKckIhliEEdERESy1pkRA3VallMSkfwwiCMiIiJZs3XEQIPOgPoGYxB34UoF9AbB7msjInIE1g4QERGRrNmSiUvLyMOmT09KX7/0wRFEhPjiwdsTMS4pzu5rJCKyJ2biiIiISNbETJy1IwbSMvKw6oMjKKnUmF1eUqHBqg+OIC0jz+5rJCKyJwZxREREJGvisG9rRgzoDQI27T7Z5jHvfPY7SyuJyKUxiCMiIiJZEzNxmno9GnSGNo/NPF+CkgpNm8cUl9ch83yJ3dZHRGRvDOKIiIhI1vx91VAojP+uaWfMQGll2wFcR48jIuoKDOKIiIhI1pRKBQL9rJsVFx7sa9VtWnscEVFXYBBHREREsid2qGwviBvaLwIRIW0HaJGhfhjaL8JuayMisjcGcURERCR71s6KUykVePD2xDaPmTstASqlwm5rIyKyNwZxREREJHuNmThdu8eOS4rDU/ektAjUIkP98NQ9KZwTR0Quj8O+iYiISPaC/BrLKWP82j9+bGI3qL2U0Nfrcd/UoRjYMwxD+0UwA0dEssAgjoiIiGRPKqdsZ0+cqKK6Hpp6PRQKYOqf+sFbrXLk8oiI7IrllERERCR71jY2EeWX1AAAIkL8GMARkewwiCMiIiLZs7axiSiv2BjExUUGOGxNRESOwiCOiIiIZE/MxLU37Ft01RTEdWMQR0QyxCCOiIiIZK+je+LEcsrYCAZxRCQ/DOKIiIhI9oI6MGIAYCaOiOSNQRwRERHJXmAHM3HcE0dEcsYgjoiIiGRPzMTVanTQG4Q2j62ua0BVbT0AICbc3+FrIyKyNwZxREREJHuBfmrp35p6Q5vH5puycKFBPvD3Vbd5LBGRK2IQR0RERLKnUinh7+sFAKhrJ4iT9sOxqQkRyRSDOCIiInIL4piB9oK4vJJqAGxqQkTyxSCOiIiI3EKgnzETl5Vbhz8ulLa6Ny6/uBYAgzgiki+vrl4AERERUWelZeQht8CYYUvLqkZa1lFEhPyBB29PxLikOLNjr5awnJKI5I2ZOCIiIpK1tIw8rPrgCBp05mWUJRUarPrgCNIy8swuv1rMckoikjcGcURERCRbeoOATbtPtnnMO5/9LpVWarQ6lFZqATCIIyL5YhBHREREspV5vgQlFZo2jykur0Pm+RIAQH6pcT9coJ9ami1HRCQ3DOKIiIhItkor2w7gmh8nllLGMgtHRDLGII6IiIhkKzzYt0PHXTV1poxjUxMikjEGcURERCRbQ/tFICKk7UAuMtQPQ/tFAGjSmZKZOCKSMQZxREREJFsqpQIP3p7Y5jFzpyVApVQAaFJOyUwcEckYgzgiIiKStXFJcXjqnpQWGbnIUD88dU+K2Zy4qyUc9E1E8sdh30RERCR745LiMDqhG9JOXMQrW38DAKx6eLxZA5MGnR7FZaY9cQziiEjGmIkjIiIit6BSKnDtkGj0jDKODjhxtsjs+oLSWhgEwNdbhdAgn65YIhGRXTCIIyIiIrcyINZYVnnsdKHZ5fmmUsrYiAAoFAqnr4uIyF4YxBEREZFb6d/NGMT9drYIOr1BujzP1NSE++GISO4YxBEREZFbiQtXI8hfjVqNDqcvlkmXXy02jRdgZ0oikjkGcURERORWlEoFEvuHAwCONympzGdnSiJyEwziiIiIyO0MHxgJADjaJIi7ynJKInITDOKIiIjI7SQNiAAAnLtcjopqLfQGAQWlpkwcyymJSOYYxBEREZHbCQvyQZ9uwRAE4MSZIhSX10GnF+ClUiIi1K+rl0dE1CkM4oiIiMgtXTskGoBx1IBYShkb4Q+VkuMFiEjeGMQRERGRW0oe3BjEXSkydqaMZSklEbkBBnFERETklob2DYevtwrlVVocOnkVABDHpiZE5AYYxBEREZFbUnupkDjA2KXyxNkiAIAgCNAbhK5cFhFRpzGIIyIiIrcVGuhj9vWeny/ggRe/QVpGXhetiIio8xjEERERkVtKy8jDt79eanF5SYUGqz44wkCOiGSLQRwRERG5HYNBwKbdJ9s85p3PfmdpJRHJEoM4IiIicjtZF8tQUqFp85ji8jpkni9x0oqIiOyHQRwRERG5nfIqrVXHlVa2HegREbkiBnFERETkdkKDfNo/CEB4sK+DV0JEZH8M4oiIiMjtxPcOQ0RI2wFaZKgfhvaLcNKKiIjsh0EcERERuR2lUoEHb09s85i50xKgUiqctCIiIvthEEdERERuaVxSHJ66J6VFRi4y1A9P3ZOCcUlxXbQyIqLO8erqBRARERE5yrikOIxO6IbM8yUordQgPNgXQ/tFMANHRLLGII6IiIjcmkqpQOKAyK5eBhGR3bCckoiIiIiISEYYxBEREREREckIgzgiIiIiIiIZYRBHREREREQkIwziiIiIiIiIZIRBHBERERERkYwwiCMiIiIiIpIRBnFEREREREQywiCOiIiIiIhIRhjEERERERERyQiDOCIiIiIiIhlhEEdERERERCQjDOKIiIiIiIhkRCEIgtDVi/BUx44dgyAI8Pb27uqlUDOCIKChoQFqtRoKhaKrl0MOxHPtGXiePQfPtWfgefYcnnSu6+vroVAoMGLEiHaP9XLCeqgV7n5HlDOFQsHg2kPwXHsGnmfPwXPtGXiePYcnnWuFQmF1fMBMHBERERERkYxwTxwREREREZGMMIgjIiIiIiKSEQZxREREREREMsIgjoiIiIiISEYYxBEREREREckIgzgiIiIiIiIZYRBHREREREQkIwziiIiIiIiIZIRBHBERERERkYwwiCMiIiIiIpIRBnFEREREREQywiCOiIiIiIhIRhjEkUcrLy/HihUrcN1112HEiBG46667kJ6eLl3/yy+/YMaMGRg2bBj+/Oc/44svvujC1ZI9XLhwAcnJydi1a5d0WVZWFmbPno3hw4dj8uTJ+PDDD7twhdRZu3fvxs0334zExETccsst+PLLL6XrLl++jHnz5mHEiBH405/+hNdffx16vb4LV0u20ul0eOONN3D99dcjOTkZs2bNwokTJ6Tr+biWv7fffht333232WXtnVeDwYC1a9diwoQJGD58OObOnYvc3FxnLptsYOlcf//995g5cyaSk5MxefJk/POf/4RGo5Gu12q1eP755zF27FgkJyfjiSeeQGlpqbOX3mUYxJFHe/zxx3H8+HG89tpr2LlzJ+Lj4/HAAw/g/PnzOHfuHObNm4cJEyZg165d+Mtf/oIlS5bgl19+6eplk40aGhqwePFi1NbWSpeVlZXhvvvuQ69evbBz50488sgjSE1Nxc6dO7twpWSrzz77DM888wxmzZqFL774AlOnTpUe5w0NDXjggQcAANu2bcNzzz2Hf//731i/fn0Xr5pssXHjRnzyySd44YUXsHv3bvTt2xdz5sxBYWEhH9duYOvWrXj99dfNLrPmvG7YsAEfffQRXnjhBWzbtg0GgwFz5sxBfX29k38Dspalc52eno6///3vuOmmm/Dpp5/i2Wefxd69e/H8889Lxzz33HP4+eefsW7dOnzwwQc4f/48Fi5c6OTVdyGByEPl5OQIgwYNEtLT06XLDAaDcOONNwqvv/668L//+7/CHXfcYfY9jz/+uHD//fc7e6lkJ6tXrxb+9re/CYMGDRJ27twpCIIgvPXWW8Kf/vQnoaGhwey4KVOmdNUyyUYGg0G4/vrrhZdfftns8vvvv1946623hD179ggJCQlCeXm5dN22bduEESNGCFqt1tnLpU667bbbhFWrVklfV1VVCYMGDRK+/vprPq5lLD8/X5g3b54wfPhw4c9//rMwe/Zs6br2zqtWqxWSk5OFrVu3StdXVFQISUlJwp49e5z3S5BV2jrXTzzxhHDvvfeaHf/pp58K11xzjaDVaoX8/HxhyJAhwo8//ihdf/78eWHQoEHCsWPHnPY7dCVm4shjhYWFYdOmTUhMTJQuUygUUCgUqKysRHp6OsaOHWv2PWPGjMHRo0chCIKzl0uddOTIEWzfvh0vv/yy2eXp6ekYNWoUvLy8pMvGjBmDnJwcFBcXO3uZ1AkXLlzAlStXcOutt5pd/t5772HevHlIT0/HNddcg5CQEOm6MWPGoLq6GllZWc5eLnVSREQEfvjhB1y+fBl6vR7bt2+Ht7c3hgwZwse1jP3xxx9Qq9X4z3/+g2HDhpld1955PXXqFGpqasxeu4ODgzF06FAcOXLEab8DWaetc33//fdj6dKlZpcplUo0NDSguroaR48eBWA8/6K+ffsiJibGY841gzjyWMHBwZg4cSK8vb2ly77++mtcvHgREyZMQH5+PmJjY82+Jzo6GnV1dSgrK3P2cqkTKisrsWTJEixfvhzdunUzu6618wwAV69eddoaqfMuXLgAAKitrcUDDzyAsWPH4i9/+Qu+//57ADzX7uaZZ56BWq3GDTfcgMTERKxZswZr165Fr169eK5lbPLkyVi3bh169uzZ4rr2zmt+fj4AtHiej46Olq4j19HWuR46dCiGDBkifd3Q0IAtW7YgISEB4eHhKCgoQFhYGHx8fMy+z5PONYM4IpNjx47hqaeewpQpUzBp0iRoNBqzAA+A9DVr6+XlueeeQ3JycosMDQCL51l8UdBqtU5ZH9lHdXU1AGDp0qWYOnUqNm/ejPHjx2P+/Pn45ZdfeK7dTHZ2NoKCgrB+/Xps374dM2bMwOLFi5GVlcVz7abaO691dXUAYPEYnnf50ul0WLJkCc6ePYtnn30WAFBXV9fiPAOeda692j+EyP3t27cPixcvxogRI5CamgrA+ETQPFgTv/bz83P6Gsk2u3fvRnp6Ovbs2WPxel9f3xbnWXwB8Pf3d/j6yH7UajUA4IEHHsD06dMBAPHx8cjMzMT777/Pc+1Grl69iieeeAJbtmzByJEjAQCJiYnIzs7GunXreK7dVHvn1dfXF4DxtVr8t3gMX7flqbq6Go899hh+/fVXvPnmm0hKSgJg+b4AeNa5ZiaOPN6//vUvLFiwANdffz3eeust6VO9bt26obCw0OzYwsJC+Pv7IygoqCuWSjbYuXMnSkpKMGnSJCQnJyM5ORkA8Oyzz2LOnDmIjY21eJ4BICYmxunrJduJ52vQoEFmlw8YMACXL1/muXYjv/32GxoaGsz2NAPAsGHDcPHiRZ5rN9XeeRXLKC0dw/MuP4WFhdLokPfeew8TJ06UrouNjUV5eXmLQM6TzjWDOPJoYhviWbNm4bXXXjNLzY8cORK//vqr2fGHDh3CiBEjoFTyoSMXqamp2Lt3L3bv3i39BwALFy7EypUrkZKSgqNHj5rNCjt06BD69u2LiIiILlo12eKaa65BQEAAfvvtN7PLz5w5g169eiElJQWZmZlS2SVgPNcBAQFmey/I9Yn7ok6fPm12+ZkzZ9CnTx8+rt1Ue+d1yJAhCAwMxOHDh6XrKysrkZmZiZSUlK5YMtmooqIC99xzD0pLS7F169YW5+/aa6+FwWCQGpwAxn3RBQUFHnOu+U6UPNaFCxfw0ksv4aabbsK8efNQXFyMoqIiFBUVoaqqCnfffTcyMjKQmpqKc+fOYfPmzfjqq68wZ86crl46dUBMTAx69+5t9h9g7GwXExODmTNnorq6Gs888wyys7Oxa9cubNmyBfPmzevilVNH+fr6Ys6cOVi/fj0+//xzXLp0CRs3bsTBgwdx33334cYbb0RUVBQee+wxnDp1Cvv27cNrr72G+++/3+LeCnJdSUlJuPbaa7F06VIcOnQIOTk5eP311/HLL7/gwQcf5OPaTbV3Xr29vTF79mykpqbiu+++w6lTp7Bo0SLExsZiypQpXbx66ohVq1YhNzcXr776KsLDw6X3Z0VFRdDr9YiJicEtt9yC5cuX4/Dhw8jIyMDjjz+OUaNGYfjw4V29fKdQCOyVTh7qrbfewpo1ayxeN336dLz88sv46aef8OqrryInJwc9evTAggULcPPNNzt5pWRvgwcPxqpVqzBjxgwAQEZGBlauXInMzExERUXh/vvvx+zZs7t4lWSr999/H//6179QUFCA/v37Y8GCBbjxxhsBABcvXsTzzz+P9PR0hISE4I477sCCBQuYXZehiooKvP766/jxxx9RUVGBQYMGSW/iAD6u3cGyZctw5coV/N///Z90WXvnVa/X47XXXsOuXbug0WiQkpKCFStWoEePHl3xK5CVmp5rvV6P5OTkVhuUfPfdd+jRowdqa2vx0ksv4euvvwYAXHfddVi+fDnCwsKcufQuwyCOiIiIiIhIRvjRIxERERERkYwwiCMiIiIiIpIRBnFEREREREQywiCOiIiIiIhIRhjEERERERERyQiDOCIiIiIiIhlhEEdERERERCQjDOKIiMjpli1bhsmTJ7d6/eTJk7Fs2TInrsg+DAYDJk2ahMGDB+P333/vsnVs3rwZixcvxvnz55GUlIS77roLlsbCGgwG3HnnnRg9ejQKCgq6YKWNduzYgQcffLBL10BEJBcM4oiIiOzk4MGDKC4uRr9+/bBt27YuWcO5c+fw9ttv48knn0S/fv2wYMECHDt2DB999FGLY//1r3/h+PHjWLFiBWJiYrpgtY1mzpyJoqIi7Nixo0vXQUQkBwziiIiI7GTXrl1ITk7G9OnT8cUXX6C6utrpa3j11VcxdepUKSi7//77kZiYiNWrV+Pq1avScZcvX8aaNWtw880345ZbbnH6OptTKBSYN28eXnvtNWg0mq5eDhGRS2MQR0RELk+v12Pr1q249dZbkZSUhEmTJiE1NRVarVY65u6778bdd99t9n2HDx/G4MGDcfjwYQDG8sE1a9Zg8uTJSEhIwOTJk7F69Wo0NDRI36PVavHKK69g4sSJSEhIwK233oq9e/e2u8aKigrs27cP119/PaZOnYq6ujp89tlnLY6rrq7GihUrMHbsWCQnJ2PRokXYsmULBg8ebHbcvn37MGPGDCQmJmL8+PF48cUXUVtb2+Yazpw5gx9//BFTp06VLlOpVFi1ahXq6+vx3HPPSZc/++yzCAgIwLPPPitd9sknn+CWW25BQkICJk2ahHXr1kGv15v9jE8++QQzZszA8OHDkZSUhGnTpuHLL7+Urt+1axeGDh2KTz75BOPHj8eoUaOQnZ2NS5cu4aGHHsLo0aMxbNgw/PWvf8X+/fvNbvv666+HVqvFzp072/w9iYg8nVdXL4CIiDyXTqez6rgVK1bgs88+w9y5czFy5EhkZmZi/fr1yMrKwrvvvguFQmHV7bzzzjv497//jaVLl6Jnz5747bffsGbNGqjVaixcuBCCIOCRRx7BsWPHsHDhQvTv3x/ffvstFi1ahPr6etx+++2t3vaePXug1+tx6623IioqCmPGjMH27dsxa9Yss+Pmz5+PrKwsLFq0CHFxcfjoo4+wevXqFre1ePFi3HrrrXjsscdw5coVrFmzBtnZ2Xj//fdb/X337NmDqKgoDB8+3OzygQMH4u9//zvWrFmD77//HhqNBj///DM2bdqE0NBQAMDbb7+NNWvWYPbs2XjqqaeQlZWFdevW4erVq3jppZcAAFu3bsWLL76IBQsW4Nprr0VFRQXeeecdLF68GMnJyYiNjQVgDLo3b96MlStXoqysDH379sXUqVMRHR2NV155BV5eXvjwww/x8MMP48svv0Tv3r0BAD4+Prj++uuxZ8+eFn83IiJqxCCOiIi6xJUrV3DNNde0e1x2djZ27NiBJ554Qmp8MX78eERHR2PJkiX46aefMHHiRKt+5q+//oqEhATMnDkTADBq1Cj4+fkhKCgIAJCWloYDBw5IZYYAMGHCBNTV1SE1NRVTp06Fl5fll85du3bhuuuuQ1RUFABgxowZePLJJ3Hs2DGMGDECAPDLL7/g8OHDWLduHaZMmQIAuO666zB16lScO3cOACAIAlJTUzFhwgSkpqZKt9+nTx/ce++92L9/PyZNmmRxDYcOHUJiYqLFIG/OnDn45ptvsGrVKmg0Gvz1r3+V/m5VVVXYsGED/vrXv2L58uUAgD/96U8IDQ3F8uXLcd9992HgwIHIzc3FAw88gPnz50u32717d8yYMQNHjx41K8t86KGHpHUWFRXh/PnzmD9/vvQzk5KS8Oabb6K+vt5snYmJidi7dy+qq6sRGBho8fckIvJ0LKckIqIuERUVhR07dlj8TwyEAGPgBaDFvq1bbrkFKpVKKpW0xujRo3Hw4EH8z//8D959911kZ2dj9uzZmDZtGgBjkKVQKDBx4kTodDrpv8mTJ6OoqAhnz561eLunTp3CH3/8gSlTpqCyshKVlZUYM2YM/P39sX37dum4Q4cOQa1W48Ybb5QuUyqVUsAIAOfPn0d+fj4mT55stoaUlBQEBgbi4MGDrf5+ubm56NGjh8XrvLy8sGrVKly9ehXe3t5Yrg301QAABxpJREFUunSpdN3x48eh0Wha/Eyxg6j4M5ctW4bFixejsrISJ06cwGeffYatW7cCQItgLD4+Xvp3ZGQkBgwYgP/93//F0qVLsWfPHhgMBjz11FMYOHCg2fd1794der0e+fn5rf6eRESejpk4IiLqEt7e3khMTGz1OlFFRQUAmAV2gDEoCQsLQ1VVldU/c86cOQgICMDOnTuRmpqKV199FQMHDsTy5csxZswYlJeXQxAEKXPWXGFhoVlwIhI7Kj711FN46qmnzK778ssv8fTTTyMkJARlZWUIDQ2FUmn+GWpERIT07/LycgDA888/j+eff97iGlpTXV0NPz+/Vq8fPHgwoqOjkZKSgoCAgBY/s7UW/+LPvHTpElasWIFffvkFarUa/fr1w5AhQwCgxQgDf39/6d8KhQKbN2/Gxo0b8e2332L37t1SMPv8888jJCSkxfd15LwSEXkaBnFEROTSxDf4RUVF6N69u3R5Q0MDysrKEBYWJl3WvAlH80YgSqUSs2bNwqxZs1BSUoL9+/fjrbfewoIFC3Dw4EEEBQXB398fH374ocW1iHu3mqqvr8eePXswZcoUzJ492+y6y5cv4+mnn8ann36Ke++9FzExMSgrK4PBYDAL5EpKSqR/BwcHAwCWLFmCUaNGtfr3sCQ0NNSm4Ef8mampqejTp0+L6yMjI2EwGPDggw9CrVZjx44diI+Ph5eXF7Kzsy02cGkuJiYGzz33HJ599lmcOnUKX331Fd555x2EhYWZNVcRg/am55WIiMyxnJKIiFyaGMh88cUXZpd/8cUX0Ov1uPbaawEAgYGBLUrwjh49avb1nXfeiRdffBGAMfs1Y8YMzJo1C5WVlaiursaoUaNQW1sLQRCQmJgo/XfmzBmsX7/eYiOW77//HuXl5dLQ7Kb/zZw5E3369JFKKkeNGgWdTofvv/9e+n5BELBv3z7p6379+iEiIgKXL182W0NMTAxWr16NzMzMVv9W3bt3NxsjYK1hw4ZBrVajoKDA7Gd6eXnhtddew+XLl1FWVoYLFy7gjjvukK4DgJ9++gmAsfNna44fP45x48YhIyMDCoUC8fHxWLRoEQYNGoS8vDyzYwsKCqBSqbp8bh0RkStjJo6IiFzagAEDMH36dKxduxZ1dXVISUlBVlYW3nzzTYwePRoTJkwAYGxP//3332PVqlWYPHky0tPTsXv3brPbSklJwebNmxEZGYnk5GQUFBTg/fffx6hRoxAeHo6JEyciJSUF8+fPx/z589G/f39kZGRg7dq1mDBhAsLDw1usb+fOnYiIiMCYMWMsrv+2227D2rVrcfjwYYwePRrjx4/HM888g+LiYsTFxWHHjh04ffq01IxEpVJh0aJFWLFiBVQqFa6//npUVlZiw4YNKCgoaLMZzPjx4/HRRx9BEASrO3YCxqzXnDlz8MYbb6C6uhqjR49GQUEB3njjDSgUCgwZMgRBQUHo3r07tm7ditjYWAQHB+PAgQNS1rKurq7V2x86dCh8fX2xZMkSLFiwAJGRkUhLS0NWVhb+9re/mR179OhRjBw5ss2yUCIiT8cgjoiIXN7KlSvRu3dv7Ny5E++88w6io6Pxt7/9DfPnz5fKEmfOnIlLly7h008/xbZt25CSkoK1a9firrvukm7n0Ucfhbe3N3bu3In169cjKCgIkydPxhNPPAHAWG65adMmvPHGG3j77bdRUlKCmJgY3HfffXjkkUdarKugoAAHDx7EnXfeCZVKZXHt06ZNw7p167Bt2zaMHj0aa9aswcsvv4zVq1dDp9PhhhtuwF133WUWcP7lL39BQEAA3n33XWzfvh3+/v4YMWIEUlNT0bNnz1b/TlOmTMH69euRkZGBYcOGdehv/NhjjyEqKgofffQR3n33XYSEhGDs2LF4/PHHpe6dGzZswMqVK7Fs2TJ4e3tjwIAB2LhxI1566SWkp6e3mNMn8vHxwebNm7F69WqsXLkSlZWV6NOnD/7xj39gxowZ0nFarRaHDx/GY4891qG1ExF5GoXQfCcyEREROcSVK1dw4sQJ3HDDDfD19ZUuX7hwIXJzc/Hpp592+mc89NBDCAsLw6pVqzp9W862e/dupKamYt++fWZ/HyIiMsc9cURERE6iVCqxbNkyLFu2DD///DN++eUXvPLKK/jmm29alBXaatGiRfjmm29a7DVzdQaDAZs3b8bf//53BnBERO1gJo6IiMiJDh06hPXr1yMrKws6nQ79+/fHfffdh6lTp9rtZ2zatAmnTp3Ca6+9ZrfbdLRPPvkEX331Fd57772uXgoRkctjEEdERERERCQjLKckIiIiIiKSEQZxREREREREMsIgjoiIiIiISEYYxBEREREREckIgzgiIiIiIiIZYRBHREREREQkIwziiIiIiIiIZIRBHBERERERkYwwiCMiIiIiIpKR/w+kTKdFlOCOrQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA28AAAImCAYAAADE77LsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7wcZdn+r5ntZ0/v6aSdE9IgpBA6hAi+VAOIECItvEhTVEAQfVHen4JvBEFIAAUBBSkiBBFENCgoQoAECCXJSSDtJDm97znbZ35/zD6zs7uzuzO7s/3+fj58NHu2zNZ57ue67uvmRFEUQRAEQRAEQRAEQeQ1fK4PgCAIgiAIgiAIgkgOFW8EQRAEQRAEQRAFABVvBEEQBEEQBEEQBQAVbwRBEARBEARBEAUAFW8EQRAEQRAEQRAFABVvBEEQBEEQBEEQBQAVbwRBEARBEARBEAUAFW8EQRAEQRAEQRAFABVvBEEQBEEQBEEQBQAVbwRBEDnihhtuQGtrKx599NFcH0pW2b9/P1pbW/HCCy+o/v2FF15Aa2sr9u/fn+UjS51bbrkFra2tEf/NmTMHxx57LG666SZ0dHQkvY/W1lbcf//9GT3OZK99Otxyyy1YtmxZ3L8vW7YMt9xyi+GPm2kEQcCJJ56I1tZWfPrpp7k+HIIgShxzrg+AIAiiFBkZGcGGDRvQ0tKCZ599Fpdddhk4jsv1YRFp0NDQgLVr18r/DgQC2L17N+666y58+OGHePnll2G32+Pe/tlnn0Vzc3M2DpXQwX/+8x/09vZi2rRpeOaZZ/CTn/wk14dEEEQJQ8obQRBEDnj55ZcBAD/4wQ+wZ88ebNy4McdHRKSL1WrF4YcfLv+3aNEifPWrX8X3v/99tLe34/XXX094+8MPP5yKtzzkhRdewIIFC7BixQq88sorcLlcuT4kgiBKGCreCIIgcsDzzz+Po446CkuXLsWUKVPwzDPPyH+7/PLLcc4558Tc5pprrsFZZ50l/3vTpk1YtWoVDjvsMCxZsgQ333wz+vv75b+/8MILmD17Np577jkcc8wxWLJkCT7//HMEg0H8+te/xhlnnIH58+fj8MMPxwUXXBBTQL7xxhs455xzMH/+fJx66ql4+eWX8aUvfSnC2jc4OIjbbrsNRx99NObNm4fzzz8f77zzjpEvFQBgz549+Na3voVjjjkGhx9+OL7+9a9j8+bN8t/fffddtLa24t1334243de//nV8/etfl//96aef4pJLLsHChQuxYMECXHrppfjoo48ibpPsddXLvHnzAAAHDhwAINkLL7nkEvzoRz/CEUccgdNOOw3BYDDGNtnd3Y2bb74ZRx11FBYsWIBVq1bhww8/lP8uCAJ+/etf40tf+hLmzp2LU089FU888YSmY+rq6sI3vvENzJ8/HyeccALuu+8+BINBAMD//d//Yf78+RgZGYm4zQMPPICFCxfC7Xan/FooCQaD+P3vf48zzzwT8+fPx4knnoi77roLXq9Xvk70+wfEvteCIOCee+7BsmXLMHfuXCxbtgx33303/H6/fBuv14s1a9bghBNOwNy5c3HmmWfiL3/5S9JjHBoawoYNG3DSSSfhjDPOgNvtxp/+9KeY67lcLtx2223ye/Wd73wHjz/+OFpbWyOut2HDBpxzzjmYN28ejjnmGPzkJz/B2NiYrteNIIjShoo3giCILLNz50588skn+MpXvgIA+MpXvoLXX38dvb29AICzzjoLn332Gfbu3SvfZnh4GP/6179w9tlnAwDef/99XHrppbDb7bj33ntx66234r333sPFF18Mj8cj3y4YDOLRRx/FT3/6U3z/+9/H9OnTcdddd+GBBx7A1772NTzyyCP4f//v/2FwcBDXX3+9vDDfuHEjrrnmGowbNw73338/LrroIvzoRz+K6N3yer245JJL8Prrr+M73/kO1q5di+bmZlxxxRWaCjhBEBAIBGL+EwQh4nqff/45zjnnHOzfvx8//OEPcdddd4HjOFxyySV47733NL/uLpcLV1xxBWpqanD//ffjnnvugdvtxurVq+VCRevrqofdu3cDACZPnixftmnTJnR0dGDdunW44YYbYDKZIm4zOjqKCy+8EO+++y5uuukmrF27FjabDZdffjn27NkDAPjxj3+M++67D2eddRYeeughfPnLX8Ydd9yBdevWJT2m+++/H3V1dVi3bh3OPfdcPPTQQ/i///s/AMB5550Hr9eLv/71rxG3+dOf/oTTTjsNDocj4X2rvaeBQCDmerfddhvuvPNOLF++HA8++CAuuugiPPnkk7jmmmsgimLS58B4+OGH8fTTT+Paa6/Fo48+igsvvBC/+c1v8OCDDwIARFHEtddei2eeeQaXXXYZHnzwQbnAevHFFxPe95///GcEg0GceeaZGD9+PJYuXYpnn3025nrXXHMNXn31VXzzm9/EPffcg9HRUdx9990x93Xttddi2rRpWLduHa677jq89NJLup8vQRAljkgQBEFklTvvvFNcsmSJ6PV6RVEUxYMHD4qzZs0SH3zwQVEURXF0dFQ8/PDDxbVr18q3ee6558RZs2aJnZ2doiiK4te+9jXxjDPOEAOBgHydXbt2iYceeqj45JNPiqIois8//7zY0tIivvjiixGP/93vfld8/PHHIy577bXXxJaWFvHDDz8URVEUV65cKZ511lmiIAjydV5++WWxpaVFvO+++0RRFMVnn31WbGlpET/66CP5OoIgiBdddJF4zjnnxH3+7e3tYktLS9L/2tvbRVEUxeuvv1488sgjxZGREfk+/H6/eOqpp4rnnnuuKIqiuHHjRrGlpUXcuHFjxGOtWrVKXLVqlSiKovjhhx+KLS0t4ubNm+W/7927V1yzZo3Y0dGh+XVV4+abbxZPOukk0e/3y/8NDAyI//rXv8Rly5aJy5YtE91ut3zdlpYW+TEZytf2iSeeEFtbW8WtW7fKfx8bGxNPOeUU8Q9/+IO4a9cusbW1VfzVr34VcR/33HOPOG/ePLG/vz/ha3/llVdGXP7Tn/5UnDNnjjgwMCC/DhdddJH8982bN4stLS3iBx98kPA1SPae3nzzzaIoiuLOnTvFlpaWmON/8cUXxZaWFvGNN94QRTHy/WNEv9eXX365eNlll0Vc54knnpA/92+99ZbY0tIivvLKKxHXufHGG8VjjjlG9Pv9cZ/TihUrxG984xvyv//0pz/FfIbefvttsaWlRXzttdfky4LBoPhf//VfYktLiyiK0vfi+OOPF1evXh1x/+y2//znP+MeA0EQhBJS3giCILKI3+/HSy+9hOXLl8Pj8WB4eBhOpxMLFy7EH/7wBwiCgLKyMixfvjzC1vXKK6/gqKOOQlNTE9xuN7Zs2YITTjgBoijKysakSZMwffp0/Oc//4l4zEMPPTTi33fffTcuueQS9Pf3Y9OmTXj++efx0ksvAQB8Ph98Ph8+/PBDnHLKKREhKl/+8pdhNodzrt555x00NDRgzpw58jEEg0GcdNJJ+PTTTzE0NJTwtbjuuuvwxz/+Mea/6667LuJ67733Hk466SSUl5fLl5nNZpx++un49NNPMTo6qum1nzlzJmpra3HVVVfhtttuw9///nfU19fjpptuQnNzs+7XNZoDBw5gzpw58n9HHnkkrrjiClnhUoaVVFdXJ+xv27x5MyZOnBjx3jkcDrz22mv46le/io0bN0IURSxbtixC3Vq2bBm8Xm+EpVSN//qv/4r49ymnnAK/348tW7YAAM4991xs2rRJtnquX78eU6dOxYIFCxLeb0NDg+p7+sc//hENDQ3y9Zhievrpp0fc/vTTT4fJZIqxvybiyCOPxH/+8x+sXLkSjzzyCD7//HOsWrVKVqnfeecdcByHE044Iea16unpwc6dO1Xvd/v27fjss89wyimnYHh4GMPDw1i6dCnKysoi1LeNGzfCYrFg+fLl8mU8z+O0006T/71r1y50dnbGvF+LFy9GeXl50s8WQRAEg9ImCYIgssgbb7yBvr4+eUEbzb///W+ccMIJOPvss/HSSy9h+/btqK+vx7vvvos77rgDgGShFAQBDz/8MB5++OGY+7DZbBH/Lisri/j3J598gttvvx2ffPIJHA4HZsyYgfHjxwOQLGaDg4MIBoOoq6uLuJ3JZEJ1dbX878HBQfT09GDOnDmqz7WnpwdVVVVxX4sJEybI/WBKohfTQ0NDqK+vj7lefX09RFHUHCDhdDrx+9//Hg8++CBeffVVPPvss7Db7Tj77LPxwx/+UPfrGk1DQ4Ns1QOkAJPm5mbV18DpdCa8r8HBwZjXP/rvQGzxw+jq6kp6rEpqa2sBQC64TzvtNNxxxx3405/+hNWrV+PVV1/FlVdemfA+Aek5q72n7G8M9jjRx2E2m1FTUxPTb5eIK664Ak6nE88//zzuuusu/PznP8fMmTPxwx/+EEuXLsXg4CBEUcQRRxyhevvu7u6YDQ4A8vfz+9//Pr7//e9H/O3VV1/FrbfeiqqqKgwMDKC6uho8H7kfrnz/2Pt1++234/bbb1c9BoIgCC1Q8UYQBJFFnn/+eUyaNAk//elPIy4XRRHXXXcdnnnmGZxwwgk46qij0NDQgFdffRUNDQ2w2Ww45ZRTAEgLf47jcOmll6ou3hP1JLG+r9bWVrzyyiuYNm0aeJ7Hm2++iddeew2AtOi0WCxyDx5DEAR5EQoAFRUVOOSQQ3DXXXepPtbEiRM1vSbJqKqqijkWQCoOAaCmpkbuD4zulxsdHY0olKZNm4af//znCAaD+Pjjj/GnP/0JTz/9NCZPnowLLrgg5dcVSFy46KWiokJ1zt0HH3yAqqoqVFZWAgB++9vfqhaCrBiPR7Qqyl5fVnA4nU58+ctfxquvvoqWlhaMjY3JSpYRsIK2p6cHEyZMkC/3+/0YGBhATU2NfBkLUmFEB3zwPI+LLroIF110Efr6+vDmm2/ioYcewje/+U385z//QUVFBcrKyvC73/1O9VimTJkSc5nP58Of//xnnHLKKVi1alXE3/bv349bb70V69evx6WXXoqmpiYMDAxAEISIAq6vr0/+/+z9+t73voclS5bEfT0IgiCSQbZJgiCILNHT04N///vfOP3003HkkUdG/Ld06VJ8+ctfxptvvomuri6YTCaceeaZ+Oc//4m//vWvWL58uayglZeXY/bs2di1axfmzZsn/zdz5kzcf//9CS1nu3btwuDgIC6++GLMmDFDXmz+61//AiAVPyaTCUcccURMtP0//vGPiOCJJUuWoKOjA3V1dRHH8Z///AePPPJITAhHqixevBj//Oc/IxS2YDCIV155BfPmzYPVapUtlZ2dnfJ1hoaG8MUXX8j//utf/4qlS5eip6cHJpMJCxYswI9//GNUVlbi4MGDab2uRrNo0SK0t7dHqJBerxff/OY38cc//hGLFi0CAAwMDEQca39/P375y19GFNlqvPHGGxH/fuWVV+BwOHDYYYfJl5133nnYsWMHfvvb3+Loo49GU1OTYc+PFTCvvPJKzHEEg0EsXLgQgPRZV76nAGIsoRdccIE8e62urg7nnHMOLrroIgwPD8PlcmHJkiUYGxuDKIoRr9WOHTuwbt061TCVf/zjHxgcHMQFF1wQ810999xzccghh8jWySVLliAQCOAf//iHfHtRFLFhwwb539OmTUNdXR32798fcQxNTU24++67sXXr1lRfSoIgSgxS3giCILLEiy++iEAgENfq9pWvfAXPPfcc/vCHP+Cb3/wmzj77bDz66KPgeT7Gxvfd734XV155JW644QacddZZcqrkli1bcM0118Q9hqlTp6K8vBwPPfQQzGYzzGYzXnvtNdkixtImv/Wtb+HrX/86vvWtb+G8887DwYMH8ctf/hIA5D64c845B08++SQuu+wyXHXVVRg3bhzefvttPPzww1i1ahUsFkvarxkg9cb961//wsUXX4wrr7wSFosFTz75JNrb2/HII48AAFpbWzFu3DisW7cO5eXl4DgOv/rVryLUsiOOOAKCIODaa6/FlVdeCafTiVdffRUjIyOyqpnq62o055xzDp544glcffXV+Na3voWamhr87ne/g9/vx8qVKzFp0iScddZZ+J//+R8cOHAAc+fOxe7du3HPPfdg4sSJOOSQQxLe/9/+9jc0NTXh6KOPxltvvYVnn30W119/fURf4cKFCzF16lS89957uOeeewx9fjNmzMCKFStw3333we12Y/Hixdi2bRvWrl2LI488EscddxwA4KSTTsI//vEP3HnnnVi2bBk2bdoUkxC5ePFiPProo6ivr8eCBQvQ1dWFxx57DEuWLEFtbS1OOOEELF68GNdccw2uueYaTJ8+HR9//DHuu+8+HHfccbJlVMnzzz+Puro6LF26VPX4zzrrLNx333149913ceSRR+KYY47BD37wA/T29mL8+PH44x//iLa2Nvm7YjKZ8J3vfAe33XYbTCYTTjrpJAwPD+OBBx5AV1eXbD32+XzYunUrmpubaeYfQRDq5CwqhSAIosT48pe/LJ5++ulx/y4Igrhs2TLxuOOOk9MOzzjjDPGYY46JSD9kvP322+LKlSvF+fPniwsXLhQvvvhi8f3335f/ztImWWojY+PGjeI555wjzp8/XzzqqKPEyy+/XNy0aZO4YMEC8f/+7//k6/39738XzzjjDHHOnDniKaecIr7yyitiS0uL+Oijj8rX6e3tFb///e+LRx11lDh37lzx1FNPFR9++GExGAzGfZ4s8fD5559X/bvacW/dulW84oorxMMPP1xcsGCBeMkll0Q8V1EUxS1btohf+9rXxLlz54onnnii+Nhjj4n/8z//E5FWuGXLFvHyyy8XlyxZIs6bN08855xzxL/97W+6Xlc1WNqkFuJdV5k2KYqi2NnZKX73u98VFy1aJB5xxBHi5ZdfLm7btk3+u9/vF9euXSuefPLJ4pw5c8Tjjz9e/NGPfiQnRqrBXvs//OEP4iWXXCLOnTtXPOmkk8Tf/va3qte/8847xcWLF8vJqKk8L8ZJJ50kp02KoigGAgHxgQcekI//pJNOEn/xi1+IHo8n4jo///nPxaOPPlqcP3++uHr1ajn5kqVN+v1+8b777hOXL18uzp07VzzqqKPEH/zgBxGJm6Ojo+Idd9whHn/88eKcOXPEZcuWiXfffXfEYzE6OzvFQw89VLz99tvjPpf29naxtbVV/Pa3vy2KoigODg6Kt9xyi7ho0SLx8MMPF2+44Qbx9ttvFxcsWBBxu1deeUVcsWKFOHfuXHHJkiXiVVddJW7fvj3ifqM/BwRBEEo4UaThIgRBEEQkr7/+OpqbmyPCSHbu3IkzzjgDDzzwAE4++eQcHh2RDURRxOmnn45jjz0Wt956a64PJ285cOAAPvroI5x88skRiaLf+ta30N7ejvXr1+fw6AiCKDbINkkQBEHE8NZbb+Evf/kLbrzxRkydOhVdXV148MEHMW3aNBx77LG5Pjwig7hcLjz++OP45JNP0N7ejq9//eu5PqS8hud53HLLLTj55JNx3nnnwWQy4d///jf+9re/4c4778z14REEUWSQ8kYQBEHE4PF48Mtf/hKvvfYauru7UV1djeOOOw433HCDamw/UTwEAgGceOKJEAQB3//+93HmmWfm+pDyno0bN2LdunXYtm0bAoEApk+fjssuuwxnnHFGrg+NIIgig4o3giAIgiAIgiCIAoBGBRAEQRAEQRAEQRQAVLwRBEEQBEEQBEEUAFS8EQRBEARBEARBFABUvBEEQRAEQRAEQRQANCogh4iiCEGgvJh8g+c5el9KBHqvSwd6r0sDep9LB3qvS4NSep95ngPHcUmvR8VbDhEEEf39o7k+DEKB2cyjpsaJ4eExBAJCrg+HyCD0XpcO9F6XBvQ+lw70XpcGpfY+19Y6YTIlL97INkkQBEEQBEEQBFEAUPFGEARBEARBEARRAFDxRhAEQRAEQRAEUQBQ8UYQBEEQBEEQBFEAUPFGEARBEARBEARRAFDxRhAEQRAEQRAEUQBQ8UYQBEEQBEEQBFEAUPFGEARBEARBEARRAFDxRhAEQRAEQRAEUQBQ8UYQBEEQBEEQBFEAUPFGEARBEARBEARRAFDxRhAEQRAEQRAEUQBQ8UYQBEEQBEEQBFEAUPFGEARBEARBEARRAJhzfQAEQRAEQRCEMQiCiB3tgxgc9aLaaUPLpGrwPJfrwyIIwiCoeCMIgiAIgigCNrd146kNOzEw4pUvq6mwYeXymVjY2pjDIyMIwijINkkQBEEQBFHgbG7rxrr1n0YUbgAwMOLFuvWfYnNbd46OjCAII6HijSAIgiAIooARBBFPbdiZ8DpPb9gJQRCzdEQEQWQKKt4IgiAIgiAKmB3tgzGKWzT9I17saB/MzgERBJExqOetxKHGZoIgCIIobAZHExdueq9HEET+QsVbCUONzQRBEARR+FQ7bYZejyCI/IVskyUKNTYTBEEQRHHQMqkaNRWJC7PaCsldQxBEYUPFWwlCjc0EQRAEUTzwPIeVy2cmvM6Fy2dSWwRBFAFUvJUg1NhMEARBEMXFwtZGXLtibowCV1thw7Ur5lI7BEEUCdTzVoJQYzNBEARBFB8LWxuxYGYD7nxyM744OIy5U2vw7a8eToobQRQRpLyVINTYTBAEQRDFCc9zsFtNAIDyMisVbgRRZFDxVoJQYzNBEARBFC+BoNSzHgxS7zpBFBtUvJUg1NhMEARBEMVLQBCk/w0KOT4SgiCMhoq3EoUamwmCIAiiOAkEQsobpUYTRNFBgSUlDGtsfmD9J/hgZy+WzmnCFafPJsWNIAiCIAoYprxR8UYQxQcpbyUOz3OY2FgOAHBYzVS4EQRBEESBE+55I9skQRQbVLwRcNotAIBRjz/HR0IQBEEQRLoEAqS8EUSxQsUbgXJHqHhzU/FGEARBEIUO2SYJonih4o2A0yG1PrrcgRwfCUEQBEEQ6cJGBFDaJEEUH1S8EWSbJAiCIIgiwh8k5Y0gihUq3gg4HVS8EQRBEESxwIJKaEg3QRQfVLwRcNol26TbGySLBUEQBEEUMKIohtMmBTqnE0SxQcUbIdsmAWDMQ31vBEEQBFGoKK2SZJskiOKDijcCPM+hzCapb2SdJAiCIIjCRemgIdskQRQfVLwRAMKJk6OUOEkQBEEQBUsgSMobQRQzVLwRAMLWSRcpbwRBEARRsCiVN+pjJ4jig4o3AgAN6iYIgiCIYiDCNknKG0EUHVS8EQAU4wKoeCMIgiCIgkXZ50Y9bwRRfFDxRgAIjwtwUdokQRAEQRQsfoXyJogiRJEKOIIoJsy5PgAiP2A9b5Q2aQyCIGJH+yAGR72odtrQMqkaPM/l+rAIgiCIIidabQsKIswmOv8QRLFAxRsBgHrejGRzWzee2rATAyNe+bKaChtWLp+Jha2NOTwygiAIotiJDikJBkWYTTk6GIIgDIdskwQA5agAKt7SYXNbN9at/zSicAOAgREv1q3/FJvbunN0ZARBEEQpEF28BQRKnCTyF0EQsX3vADZu7cT2vQMQKGQnKaS8EQCUowKo5y1VBEHEUxt2JrzO0xt2YsHMBrJQEgRBEBkhEG2bpNASIk8hp1JqkPJGAKC0SSPY0T4Yo7hF0z/ixY72wewcEEEQBFFyxNgmSckg8hByKqUOFW8EgHDa5CgpbykzOJq4cNN7PYIgCILQS2zPG9kmifxCq1OJLJTqUPFGAAgHlri9AQTJH58S1U6bodcjCIIgCL3E2CZpAUzkGVqdSm37BrJ0RIUFFW8EAKDMHm5/JPUtNVomVaOmInFhVlshjQ0gCIIgiEwQG1hCxRuRX2h2Krl8GT6SwoSKNwIAYOJ5OGyUOJkOPM9h5fKZCa9z4fKZFFZCEARBZAyyTRL5jmanUrk1w0dSmFDxRshQ31v6LGxtxLUr5sqvJaO2woZrV8yl9CSCIAgio5Btksh3tDqVWifXZOmICgsq3ggZGtRtDAtbG3H+shnyv5fObsKaq4+mwo0gCILIOGpDugkinyCnUnpQ8UbIsHEBLire0ka588lxoB8ggiAIIivEjgog2ySRfzCnkt1qiricnErJoSHdhAzZJo3D7w/K/79/mEYDEARBENkhWmmjwBIiX1nY2ojP9vTjjQ8PAgDOOX4aTls6hTa8k0DKGyFDg7qNwxsI73Qmi8MlCIIgCKPwk22SKCBGRsNrzsYaBxVuGqDijZApt4eKNw8Vb+niDyiUtxEvRJFOngRBEETmiS7WyDZJ5DPKsQFehWuJiA8Vb4SMrLyRbTJtfP7wyTIQFDAyRgUxQRAEkXkosIQoJIYUs9yUayciPlS8ETKs540CS9LHF4j8Aeof8eToSAiCIIhSInZINy2IifxEFEUMjYaLN1LetEHFGyFDPW/G4Y/6AaLQEoIgCCIbxMx5I+WNyFPc3iD8is1uHxVvmqDijZCR57xRz1vaeKOUNwotIQiCILJBtNJGQ7qJfGVoNHJtRMqbNqh4I2TkUQFu6nlLF6a82ULzS/qHyTZJEARBZJ5AgIo3ojBQ9rsBgJd63jRBxRshw2yTY94ApVOlCet5a64pAyAlThIEQRBEpom1TdL5nMhPBqOVNx8pb1qg4o2QYcobAIxR4mRa+EKjAprrQsUbKW8EQRBEFoi2TUYXcwSRLwxHKW++ABVvWqDijZAx8TwcNsnmR+MC0sMfkv6bahwAqOeNIAiCyA7MNmk1S0s8ctIQ+cpgKGmSiQfU86YNKt6ICJx2Spw0AhZY0lwrKW8DI14INKibIAiCyDCBUI8b67mmnjciX2E9b42hjW4f2SY1QcUbEYGTEicNwR+S/huqHeA46eQ5POpLciuCIAiCSA/W42azhIo3sk0SeQpLm2yoloo3CizRBhVvRATlNKjbEHyhHyC71YTqchsAmvVGEARBZB5/IKS8WUh5I/KbGOWNet40QcUbEUF4UDf1vKUD+wGyWEyorWTFG4WWEARBEJmF9biFbZOkZhD5yVDIkdRYLbWYUM+bNqh4IyIg22T6iKIoB5bYzDxqK+wAKLSEIAiCyDyBKNskpU0S+UggKMguL6a80agAbVDxRkQQDiwh5S1VAkER7FRpMZtQUxFS3kZIeSMIgiAyCyvWyDZJ5DMsB8DEc6gNrZOo500bVLwREcg9b6S8pYzSs2218KitlJQ36nkjCIIgMg1T3uzMNklDuok8ZDDU71bptMoW30BQgECbDUmh4o2IINzzRsVbqrCwEp7jInaUSHkjCIIgMg1T3qykvBF5DEuarHJaZZUYoL43LVDxRkRAPW/pEw4r4cFxHClvBEEQRNaI7nmj4o3IR1jSZHW5DRYzDy50uY+Kt6RQ8UZEUE49b2nDwkqsZunrxdImh1w+Sv0iCIIgMopcvJFtkshjWNJkpdMKjuNkpZiUt+RQ8UZE4HRIPW+kvKWOL8CKN+mHqLLMChPPQRBFeaeJIAiCIIxGEESIIaHNZpGWeKS8EfnIkEtyI1WXWwGEP68+Ci1JChVvRAQsbXLME6Cm0RRhkr819EPE81x4UDeNCyAIgiAyhF+hstGoACKfYcpbVWh9RMqbdqh4IyJgypsIYMxL1slUiFbeANCgboIgCCLjKC2SNKSbyGdY2mSVM6S8Wal40woVb0QEJp6HwyZ9gShxMjX8isASBoWWEARBEJnGr1DZ5MASUt6IPGSYpU2GbJNsw5uKt+RQ8UbEwKyTNOstNXxRgSUA5HEBA2SbJAiCIDIEU97MJg4mnnreiPxEFMWwbdJJPW96oeKNiMFpp1lv6cBGBShtkzU0640gCILIMCxp0mTiYTJJ4etkmyTyjVFPQO7FrHJK6yMb9bxphoo3IgY5cZLGBaSErLyRbZIgCILIIsw2aTHxMPOh4o1sk0SewZImnXYzLCGXEvW8aSenxdu7776L1tZW1f9OPvlkAMD+/fvxjW98A0cccQSOPfZY3HvvvQgGI9/Y3//+9zj55JMxf/58rFy5Elu3bo34e7buo1god5BtMh3UlDc5sISUN4IgCCJDBGXljYMpVLwFyDZJ5BnRSZNAeM1EQ7qTk9PibcGCBXjrrbci/lu7di04jsM111wDv9+P1atXAwCeeeYZ/PjHP8bTTz+NdevWyfexfv16rFmzBtdffz1eeOEFTJw4EZdddhn6+/sBIGv3UUyQbTI9/KG0yYjAkgpJeRt2+WRbC0EQBEEYCbOimXkeJlOo543OOUQaCIKI7XsHsHFrJ7bvHTBkjNRQVNIkoLRN0uc1GeZcPrjVakVDQ4P877GxMdx5551YsWIFzj33XLz88ss4ePAg/vCHP6CqqgotLS3o6+vDmjVrcNVVV8FqteKhhx7CqlWrcNZZZwEA7rjjDixfvhzPPfccvvGNb+C1117Lyn0UE2SbTA+1wJKKMgvMJg6BoIhBlxf1VY5cHR5BEARRpLDNQbNZ2fNGyhuRGpvbuvHUhp0RYWs1FTasXD4TC1sbU77fsPIWXj9brSywhJS3ZORVz9tDDz0Et9uNm2++GQCwadMmzJkzB1VVVfJ1li5dCpfLhW3btqGvrw979uzBUUcdJf/dbDZj0aJFeP/997N2H8WGrLyRbTIl1GyTHMeFQ0uo740gCILIAAFF2qSZ0iaJNNjc1o116z+NSckeGPFi3fpPsbmtO+X7Hgz1vKkrb1S8JSOnypuS/v5+PP7447jhhhtQXV0NAOjs7ERzc3PE9RobpUq/o6MDZrN0+OPGjYu5zvbt27N2H4cddpj+JxzCbM6r+hkAUBn6Mo15A3l5fJmE2UzY/6aCP3TytNtMEa9fXaUdPYMeDI36Su51zUeMeK+JwoDe69KA3meAlWkWEw+rPKRbLLpzDr3XmUUQRDy9YWfC6zz9+k4sPrQJfKi3Ug8jY5I4UFtplz+bDpu0HvcHBPkyep/VyZvi7amnnkJFRQW+9rWvyZd5PB5UVlZGXM9mk9QLr9cLt9sNADG2RZvNBq/Xm7X7SBWe51BT40z59pmiuaECAODxB/Py+LJBZWXqtkaOk35kqiodEa9fc0M5tu8bhNsvlOzrmo+k814ThQW916VBKb/PNvswAMBuM6OmugyAtBAv1nNOKb/XmeSTz3vRn2Qubf+wFwcHPJg3o173/Y96pbac8Y0V8mezJtROIgAxn1d6nyPJm+LtxRdfxFe+8hXY7Xb5MrvdDp/PF3E9ViyVlZXJ11W7jsPhyNp9pIogiBgeHkv59plCDKVoDo14MTAwmuOjyS4mE4/KSgeGh90pN3m7xqTPStAfiHj9KkK7Svu7hkvudc1HjHivicKA3uvSgN5nYGhY2pCGKGLUJaUb+wNC0Z1z6L3OLO0dQ5qvN7FOf2HVOyh9Ti0c5M9mMGSXdI355MtK7X2urHRoUhnzonjbvn072tvbceaZZ0Zc3tzcjB07dkRc1t0teWybmppkq2N3dzemT58ecZ2mpqas3Uc6BAL592G0h3zHLrc/L48vGwSDQsrP3euTdpRMPBdxH9Whxty+IU/Jvq75SDrvNVFY0HtdGpTy++zzSQtgE8+BmdmCQvG+HqX8XmeSitDIKC3XS+X1Hwypek7F7c2hgB2PLxhzn/Q+R5IXJtJNmzahrq4Os2bNirh88eLF2Lp1K1wul3zZxo0b4XQ6MWvWLNTV1WHq1Kl499135b8HAgFs2rQJixcvztp9FBtsztuYJ2BIJGyp4QuwtElTxOU1oXEByawIBEEQBJEKfjmwhJfnvNGQbkIvLZOq5ZC1eNRW2NAyqVr3ffsDQYyFbJPVyrTJkHDANiCI+ORF8bZ161a0trbGXL58+XI0NDTg29/+NrZv344NGzbgF7/4BS6//HK5R+3yyy/HY489hvXr1+Pzzz/HrbfeCo/Hg/POOy+r91FMlNklQVYE5C8YoR25eLNEfr3YoO6BYRrUTRAEQRhPUFm8hexXIkAbsYQueJ7DyuUzE17nwuUzUworYTPezCYeZbawAZDSJrWTF7bJnp4eOWFSic1mwyOPPILbb78d559/PqqqqrBy5Upcc8018nXOP/98jIyM4N5778Xg4CDmzp2Lxx57DLW1tVm9j2LCbOJht5rg8QUx6vHLShyhDTajxBKlvNVWhgZ1j/nhDwiwFFn6F0EQBJFb2JBuk4mTlTdAsk7yvCnezQgihiNaGlDusMDljhwbVVthw4VpzHmTZ7w5reC48GeUFW8+skcmJS+Kt4cffjju36ZMmYJHH3004e1Xr16N1atX5/w+igmn3QKPLwiX24+mmlwfTWHhj6O8Oe1mWM08fAEBAyMeNNakHnZDEARBENGwOW8WhW1SulyEJS9WfESh0DPojijcqitsuPKM2WiZVJ2S4sYYdMUO6AbCayYv2SaTQlv/hCpOh/QrP+om26RemPIW3fPGcRxqQupb9NBLgiAIgkgXVryZTDxMJqXyRrZJQh9b9wwAABw2aS1j4oBZU2rSKtwAYHg0dkA3QLZJPVDxRqjCrJKjHn+SaxLRxOt5AyS7ASDNRyEIgiAII2G2SYuJB6+wpJVCzDphLFv3SsXbvGl1AKQUSCMIK2+RgSgssCQoiPImBKEOFW+EKk57qHhzU/GmF3+ctElAUbyNUGgJQRAEYSxh5Y0Dx3Fy/Dopb4QeBFHE9lDxdvhMaQi3UYoY63mrjqO8AYDPT8VbIqh4I1Rxysob2Sb1EAgK8klSLZCkOlS8bdszgO17BygBjCAIgjAMpryZQ0mTJl763wCdawgd7O92weX2w2Yx4dApUnhfIGiMIjbkkpxHlVE9b2YTJ6vFZJ1MDLWvEqo4Q+MColOGBEHEjvZBDI56Ue20pd24Wmz4FSlJtijb5Oa2bvzzgwMAJDvC1r0DqKmwYWUaqU0EQRAEwQgIkQOPw7PeSMkgtMP63VomVcvrQUDq6WcbA6kSVt4ibZMcx8Fq4eHxBeXsAEIdKt4IVdR63ja3deOpDTsjwjao+IiE9btxQMQP3Oa2bqxb/2nM9QdGvFi3/lNcu2IuvYYEQRBEWgQC4TlvAOTQErJNEnrYFrJMHjqlBmYTD7OJQyAowuMLosye3vgoeVRAeeycZJtFGlNFyltiyDZJqBLueZNsk6z4iE5JZMXH5rburB9jPhKe8cbL80sEQcRTG3YmvN3TG3aShZIgCIJIi1jbJFPe6PxCaCMQFLCjfRAAMPsQaVaUUUmQgihiWDHnLRp51hv1vCWEijdCFXlUgMdPxYcOwkmT4cbbHe2DSUcD9I945R9LgiAIgkiFYIxtkvW80WKY0Maug8Pw+oMod1gwsbEcAGC3SmuadBMnXW6/rAJXqhRvVhoXoAkq3ghVmPLmcvup+NCBUnljDI5qGwug9XoEQRAEoYY/yjYpp02S8kZohFkmZ02pkQNE5KIqzeJtODQmoNxhUe2dY1kBVLwlhoo3QpUym6S8Dbm82LqnX9NtqPhQjAlQKG/RTbnx0Ho9giAIglCDqRqs180UWiBTzxuhlW2hNd/sKTXyZbLylmZRxdaJav1uAClvWqHAEiKGzW3dePLvOwAAXr+Al9/Zq+l2VHwAvoD0g2NVKG8tk6pRU2FLqF7WVkjJnQRBEASRKmwD0RLd80a2SUIDXl8QXxwcBgAceki4eLMZpLwNudRnvEU/DqVNJoaUNyICFkzCvmBaoeJDgjXZKos3nuewcvnMhLe7cPlMGrlAEARBpAUbCUCBJUQq7Ng/iKAgoq7ShsZqh3y53SppPekqYixpsjLOZr/NypQ32mxIBBVvhIyWYJJ4UPEhIStvCtskACxsbcS1K+aipiLyB6u2wkZjAgiCIAhDCMTYJmlUAJEcQRCxfe8AXt+8HwAwa3KNnJgNhIuqdANLZOUtnm3STD1vWiDbJCGjJZgkmtoKGy6kOW8yTHlTBpYwFrY2YsHMBry7rRMP/3kbzDyHn111VNoDLwmCIAgCCM95C9smQ2mTNKSbiIPaDN+PPu/F5rZueW0Xtk0G0nqsIdbzRrbJtKBVIyGjNXDk0MnVAIC5h9RgzdVHU+GmQC2wRAnPc1hyaJM08FIQMeiikBeCIAjCGMLKW1TaJClvhArxZviOegIRM3yNCCwRBBEdvaPy/auNlwrbJvU/DlMPN27txPa9A0U9voqUN0JGa+DIhIZybNs3CLvNTFbJKNQCS6Ix8TyaaspwoHcUnX1jqK9yxL0uQRAEQWglEFSf80Y9b0Q0Wmf4LpjZkHZgSbS69+e39+CtTzqwMsq5ZU1ReVNTD2sqbDH3XyyQ8kbIsFTERNRW2OShjWwgNRFGLbBEjebaMgBAR99Yxo+JIAiCKA0C8QJLKG2SiELPDF+mvKVSvMVT9wZGvBHqHgDY5J437Z9XPfdfLFDxRshoTUVM50tc7MQLLImmuU4q3jr7qXgjCIIgjCEQUtjk4o1sk0QctLbKDI56w4ElOhUxreoeszhada4v9d5/sUDFGxGBllREuaE0QMVbNP4EgSVKxtUx5W0048dEEARBlAbBGNskjQog1NHaKlPttKVsm9Sj7gHQvb7Ue//FAvW8ETGwVMQd7YMYHPWi2inNcGP9bUxVojkcsWjpeQOA5lonAKCDlDeCIAjCIPwxtslQz1uRKQ9E+rBWmUTFD5vh++HOHgD6lTc96h6gSLXU+Dh6779YIOWNUIXnOcyaUoOls5sxa0pNRDBJuo2rxYwvSdokg/W8Dbl8cHvTi94lCIIgCCCssJmj0iZpVAARjdZWGZ7nwimQOtd9etQ9ALBaQj1vPm2fV733XyxQ8Uboxhb6cpFtMhatgSVldjOqQkMqqe+NIAiCSBdBFGWFLTykm5Q3Ij6sVcZpjzTiKVtlAMBukf6ut3jTGoTXMqkagP45b3rvv1ig4o3QjVWnrF1KaA0sAYBxtdT3RhAEQRhDUKGuWShtktDIwtZGnHD4eADAoVOq8b0LF8TM8E01sESPugconF0axQG9918sUPFG6Ca8MyJAEGk3T4nWwBIAaK4L9b3RuACCIAgiTQKKUBIKLCH00D3gBgAcNr0+plUGQMq2SUAqDmsrY9WxaHUP0K+8sftPFrRXbFBgCaEb5kkGAH9AkL9shDKwRLvy1knFG0EQBJEmyr42E40KIHTA2jeaQuuSaOwKx5UgiuA57UrWgR4X+oe94DngunPmweMPxgThMWRnl0+AqEMcYEF73//1O+gZ9GDquEr84OsLi05xY1DxRuhGaQn0+oNUvCkIB5YkV97G0aw3giAIwiCY8mbiOXlxLadNkvJGxEEQRXSFlDc2gzYaprwBkipmt2ovH97bJg3JnjetDofPbEh4XZapIIgiAkERFovmhwHPc/Ln3WTiirZwA8g2SaQAz3FyIIceabsUYK+HFuWN/Uh2DYxRPwJBEASRFkx5Y2obAJhDC9gAnWOIOPQPe+APCDDxHOqr7KrXsZp5sE+VHuukKIp4b7tUvC2Z3ZT0+kpxIJVQPH9oA93jLe61KRVvRErQrDd19ChvtZV2WM08AkERvUOeTB8aQRAEUcSw4s3Mh88/sm2SlDciDsz901jjkJWraDhOMS5Ax6Z9e7cLXf1jsJh5HD6jPun1zSZe7tNMpb+OzTn0+Ip7BBMVb0RKyOMCSHmLQE9gCc9xsr+c+t4IgiCIdGC2SbPi/BMe0k0brYQ6bP3RHKffjSEnTuooqt7d1gUAmD+tDg6bNqtlOonm/pBaV+zzc6l4I1LCmkIiUCmgJ7AECPe9UeIkQRAEkQ6y8qawTVJgCZGMrv5Qv1uS4s2us6gSRRHvh/rdFh+qPfExLA7o33CQbZO+oK7Ak0KDijciJWjWWyyCIMo7n1psk0D4x7Kzn2a9EQRBEKnDrJFK26SZRgUQSWDrD63Km1Y74+6OEfQOeWCzmHDY9OSWSflxUlxfspATQNqsYIVcMUJpk0RKKGe9ERLKHwqtylszKW8EQRAlhSCI2NE+iMFRb9zI9FRg/T4RtkkTs03mtnjL1HMm0ifZmAAGU9602ibfC1kmD5tRF5FWmYxUZr0BQCCqWPP4ghEBKMUEFW9ESjBliZS3MF5FMpJFo/I2rlYa1E3jAgiCIIqfzW3deGrDTgyMeOXLaipsWLl8ZtrDhINyYInCNsnSJoO522jN5HMm0sPnD6JvWHpf4o0JYFg1BpYIgojt7QP4zycdAIBFs/S9x6k6u/xRn3G3L4BKp1XXfRQKZJskUiJVWbuYYWElZhOveYAlsymMjPnhcvszdmwEQRBEbtnc1o116z+NKGIAYGDEi3XrP8Xmtu607l+e82ZSSZvMkfKW6edMpAeb7+a0m1HhSDxUTYvytrmtGzc9+DbuevojjHqk0JCn/75D1/tsS1EciHaCFfO4ACreiJRgtkCyTYYJh5Vo/1rZrCbUVtoAUOIkQRBEsSIIIp7asDPhdZ7esBNCGkUWU9csEXPe2JDu7J+rs/GcifRQWia5JJvOyUYFxC3UXT5dhbo1xbacGOWtiBMnqXgjUiKVeR/FDvuh0RpWwhhXy/reKLSEIAiiGNnRPhizqI2mf8SLHe2DKT9GeEi3clRA7pS3bDxnIj06+7SFlQCA3SJ1Wqkpb0YW6qmuL6MDSvSMNCg0qHgjUoLmvMXCfji0hpUwmuuo740gCKKYGRxNXMTovZ4azDZpMcfaJgM5KN6y8ZyJ9OjUOCYASJw2aWShztZQeou36MASdxEP6qbAEiIlUv1yFTMssERrWAmDZr0RBEEUN9VOm6HXU0NW3iICS5htMnHxlok0yGw8ZyI92KaxruLNH1sUGVmop5qpEKO8FbFtkoo3IiXINhkLCyzRrbwx26RByhtFMhMEQeQXLZOqUVNhS6hO1FZIv9epEh7SrWabjN8/lKk0yGw8ZyJ1RFHUVbwlCiwxslC3WVMb0u0LRB6Xu4htk1S8ESnBQjkosCRMKoElADAuZJvsGXAjEBQiTrx6oUhmgiCI/IPnOaxcPhPr1n8a9zoXLp+Z1kYbs00qzyHs/8dT3ljIRDQsDfLaFXNTPndk4zkTqTMy5ofbGwAHoLHGkfT6iWyTRhbqRilvFFhCEFHQqIBYWCGr1zZZXW6FzWqCIIroGXSn/PgUyUwQBJG/LGxtxLUr5sJpj903v+TU1rQ32MLKm8I2aYqvvGUjDZI95+j6rNJpTaswJNKHqW61lXZNw6ztCRxXrFBPhNZCPZxmToEl8aDijUgJtgNDgSVh/CHlzabTNslxXNg6mWLfG0UyEwRB5D8LWxux4oRpAIApzRWY1CA5Lw4YkDacyDapFliSrTTI1sk1YA9fWyHZ5s45fhoVbjlGtkwmGc7NsCWZ88YK9ejE7doKm65CPZHCl4joUQHF3PNGxRuREuHAErJNMrwpKm8A0FwrWRbe29aF7XsHdBdZFMlMEARRGHhDw4Mn1jvx1WUzAAD/2nIQw2O+tO5XzTYp97yp2CazlQa56+AwAKCpxiEv4Pd3u9K6TyJ99PS7AYmVN8bC1kbMnlIDADh2/jh878IFWHP10boKdVb8+QI657zFpE0Wr7hAPW9ESuRiVEC+B3H45Z43fcrb5rZubPm8DwDw3rZuvLetW3efGkUyEwRBFAZjIUWgzG7BnENqMaW5Ans7R7Bh036cc/y0lO9X3TYZ6nlT2RDMVhrkroNDAIBp4ysxuakcALCPirec09mnr3hjilgyO+JYaHNi7tRazAoVcnqgnrfkUPFGpIQ1yz1vhRDE4ZPnvGlX3oxqFqdIZoIgiMJg1MOKNzM4jsPpS6fggRc/xYZN7Zg+vhJuXyClDUqmrqkP6Y5VMbKVBrmrQ1Lepo2vwuSmCgBAe/cIRFEEx+XPBmypoVd5k4uqJMXbqMcPAHA6LCkdV6rrS1a8Oe1mjHoC1PNGENGwL3E2lLdCCeLQG1hiZJ8aOwkngiKZCYIgcs9YaHFbZpP2z49obUB1uRUeXxC//OPH+PVLW7Hm6Q9x04Nv6zq/sZ4fi1J5S2CbNDJkIh6iKGL3QVa8VWJcXRnMJg5ubxA9Q56U75dIj6AgyAFp2m2T0ufV6w9CFOOvS0bd0ue73J5a8aa1SIyGuZ8qyqwAAE8RD+mm4o1ICSvzPuv0JOulkII49AaWGNmnlo2TMEEQBJE+YduktBj+cEcPBl2x/W56NyiDKoElZoVtUm3BzUImHNbI85bekIl4dA24MeoJwGziMamxHGYTjwn1knWyvWskrfsmUqd30IOgIMJq5lFTqc2Rw4qqoCDK/ZVqMGVZLVVVz+Po7nkLff4ry6SisZhtk1S8ESlhY3PefIl3YNKlkII49AaWGN2ntrC1EeefND3mcqNOwgRBEET6uJlt0mY2dIOSJUpG2CYVKpxa3xsgnTtOXjhR/vfcabW6QybiwfrdpjSXy4Uk63vb20V9b7miI2SZbKwpA6/RusqGZwPxLY0+fzBsX0zRNskyFVK1TVY4JeWNAksIIgrmSRYhfWG0zAhJhUIK4tAbWJKJPrXaSnvEv2+84DDMmlxLihtBEESeoFTe9GxQJgt/CATi2yYBqXiLd3pSKik+v2DYOYMlTU4fXyVfJvW9dZDylkO6dI4JAAATz8Ni5uEPCPD4AihXKc6Y6sZznJxOqRe2ntQrDjClrjJkm/T6ghBEUXNxWkiQ8kakhE1RrOmVtvVQSEEcegNLMtGnxhqQGRPqy6lwIwiCyCPGQgtch81s6AYlS5uMDCwJ/3+1vjeGMqmvayC1eaNq7FL0uzEocTL36A0rYSTrR2P9biyMJxVsUeKAVmTlrSxcVOrtmysUqHgjUoLnOdkCkckvRyEFcbDwFq22yUz0qXVFFW/DY37NtyUIgiAyj1J5M3KDktkmI0cFKJW3+AthfzB8Hh9y+QwJe/D5g2gPFWjTxoWLt4kN5eAg9fSlO9uOSI3wmACHrtsxNc0Tx9KYbtIkECkO6LFOMuW5zGaWFedi7Xuj4o1IGXnWWyBzxVs6BY4giNi+dwAbt3amNPhaL2zXR2tgCRBuFo8uUFPtU+sacEf8m06MBEEQ+YM/EO4JKrNZDN2gZItXZWAJz3FgAkiikIloB0131LkkFfZ1uRAURFSWWVBXFbb0O2xmNNZIRUM79b3lhM4BVrw5dd2OzXrzxVPeQqpyeYphJUCUOODXr7xZLCY4Qkmuxdr3Rj1vRMpYLSaMegIZn/XGCpzf/rUNLndYSUo05y0Xc+F8AX2BJYyFrY1YMLMBf39/H5795xeoqbBhzdVH67Y7iqIo76ZVllkwPObHyCgVbwRBEPkCG2DMAbDbTOA5aYNSbd4nQ6sDIyDEFm/s3/6AkFh5Uyne2Ey2VAkP566KsdBNaqpA14Ab+7pHMGdqbVqPQ2hHEER8sqsPQ6F008ZqncqbJYny5k5feQMkcSAQFHStL8OjMnjYrSa43H54SHkjiEhSncWRCgtbG7HyS5EK3JVnzo5buOViLhyzTWoNLFHC8xwWhJ6Ly+1HKlZxl9uPMW8AHIDpE6TmcLJNEgRB5A9sxpvDZpaDFIxyYDBlTWmbBJSDupP3vLFjMqLvLTycuzLmb1NY3xspb1ljc1s3bnrwbfzyjx/Ll/3osfd0rYmY8ha35y3NMQEMawrrS7l1xczLyluxDuqm4o1ImVRncaSKL0o+39MZm1SVy7lwcmCJTuWNUVthA8dJJ9FUiq6ufsnmUltpQ10odXIki7bJbNtUCYIgCo3oGW+Mha2N+PnVR2PBzHoAwFFzmnTH9QdU5rwBiQd1M1jx1hTqgWLnk3T44kD84m1So6Tq7aPEyaxg1Ka2LZnyxnreUhzQHf04vlSUNzMv9+YVa88b2SaJlGFFSrbSfKJ3UFiKlRIjY5f1Et71SS0e12ziUV1uw8CIF71DblSFZpVohaVHNdWWyXNOhrNkm8yFTZUgCKLQGFPMeIuG5zlMbCjHhzt7YbeZdVvnw8pbVPGmGNQdD9a7PrGhHB19Y+hOU3kbGvWhb9gDDsDUcfGVt87+MXj9wYiQCsJYtG5qL5jZkPQzl1R5U6RNpoPs7NJTvAXCxVu45604i7eUlbehoSG8/vrrePrpp9Hf349du3ZldFgzkX+ElbdsFW/Sl5B5tNWKt1zOhQsHlqQuaNeHmrr7hjy6b8tsLk21ZagMReWOZME2mSubKkEQRKEhF29xFresV2jUrf+3OyiPCohnm0ze8zaxQQqwiA6/0gvrdxtf75QX0kqqym2odFohisD+HrJOZhI9m9rJsCcbFcBsk2n2vFlTGNTtV4xrklMxvWSblHnwwQdxwgkn4Nprr8X//u//oqOjA3feeSe++tWvYng4dkFNFCeyJ1lHGlA6MOVt1pRqcAD6hj0YilKWcjUXThRFRWBJ6juIdWkUb/LclpoyeUhlptMmc2lTJQiCKDTCtkn1xW25Qyp02CJYD8rABiWseEuUNhku3iRFbGjUl5bljG2uTlWxTDImN0qPRYmTmcXITW2bxlEB5QbZJvU4u9hn2EzKWyxPPvkk7r//flx22WX4wx/+IKttq1atQnt7O375y18afpBEfmLLkW2yutyG8fXS7iDb3WPkai6cMqlL65BuNZjy1puK8hbqUcimbdLIHT2CIIhihwWWqNkmgXCvUGrKm7QeM6mkTUp/T668VZZbUR5STdIZF6A2nDsalmZJfW+ZxchN7eRDupnyZoxtUk+mgmybNPFwWCmwJIInnngCV155Ja6//nrMmTNHvvyEE07At7/9bfzjH/8w9ACJ/CVXtkm71Szv5kVbJzMx+FoLyh8YS1rFm2QJ7RvWV7wJoij3KDTXOrJmm8ylTZUgCKLQiBdYwmB2M1cKxVs4sCTKNmlKnjbpUyx8WWhJ96D+4k0QRGzd04/P9w8CAA5JMG5gMkuc7CblLZMYualtT1IUGRVYkkrapLLnLWybJOUNAHDw4EEsWbJE9W/Tpk1Db29v2gdFFAbWFBpK04F5l+02k7ybp9b3trC1Eau+1BJzeaqDr7XAfjRMiuGSqcBSIvUqb4MjXvgCAkw8h7oqOypCtkmvP5hRZTRXNlWCIIhCxJ0gsAQIR6ynYpsMJLFNahkVYLWY0FRTBgDo6tcXWsKi6O965iP4Qyrg/S98ErfvmSlv+7tdZK3PIEZuasuBJcnSJg2Y85bocdSISJss8iHduleZ48aNw4cffqj6t08//RTjxo1L+6CIwsAqR7lmq+eNKW8mTAulV+3uGFb90Q+ELmP2D7uF1x27rAd5xluKYwIYysASPQFArN+todoBEy/tOjEFMJPjAnJlUyUIgihEmPLmiKO8sXOW2xtIGDASjSiKck9btG3SxDPbZKLiLZSWbOLRWBMaF6AjcTKV4KrGGgdsFhN8AUE+hxGZYWFrI67+ypyYy/VuaocDS2I3FwJBAe7QJrthc940Fm+iKCoCS0xwFPmoAN0rzfPOOw8PPfQQfvOb32DPnj0AgLGxMbz22mv41a9+hRUrVhh9jESeksrOSDowmd5uNWNCgxM2iwkeXxAdfaMx1/1oZw8A4EuLJkq39QsZPU7ZcpLimABGbaVUCHn9QV22GbZD2lwr7ZhyHCdbJzM5qDtXNlWCIIhCJNGoACDSTjmmQ31TqmrxbZPqxaCgKPwsFl5W3rT2vKUaXMVzHCY1smHd1PeWaarLpfWF3cLjv8+Yje9duED3pnaiwJIxRaFk1KgArXPelGE8NKRbhf/+7//GihUrcNddd+GMM84AAFx88cW4/vrrceKJJ+Ib3/iG4QdJ5CfWFIYopgP7EjqsJph4Hoc0S5aLaOvkqMePHe1SkMmRs5vkncxUEhy1IitvafS7AVLxV1UuWR71WCc75bASh3xZRZYSJxe2NuLaFXNRURZpk8ikTZUgCKIQSdbzZuLDC089G3gBRRhJtHXfnMQ2GVD2bCt63rSOC0gnuGpioxQ+tnFrF7bvHSD7ZAb5dFc/AGDe9HocNbcZs6bU6N5YTTTnjW02OGwmWe1NlWTz5KLxK7IXSqHnTXdpzHEc/vd//xeXX345Nm7ciMHBQVRUVGDx4sVoaYntMyKKF1vObJPSx3ba+Eq0tQ9iV8cwjjtsvHy9T3b1QRBFjK93orGmDHWVdrjcfvQOeTAxtMtnND5Fv0C61FfZMeTyoW/IozrcVA3ljDdGZShxciQLg7oXtjaC4zisfeETAMChh9TghvMPJ8WNIAhCQTLlDZAsZ25vQFffm1J5iFHe5FEB6udqZeCW1cKjsVo6jwyHxgWozWlTkmpw1ea2bry3TbJTfvxFHz7+og81FTasXD4zK5t+giBiR/sgBke9qHZK9v5iPmd9ulsq3uZOrU35PphtUk3RYgmp6YaVAOGNcK2OKWaZ5CB93u1FPiogJV1z37592LRpEy644AIAwBdffIHnn38eq1atwvjx45PcmigWUhmimA5h26T04xEvtGTL530AgMNn1AOQiqG9XSO6Exz1IPcLpKm8AVJoyRcHhnUpb8w2yewuAGQlLNPKG0Np8eGAoj4JEgRBpII8KiDBAtfpsKB3yKNrXAArzDhIdkQlJlPinje28OU5DiaeR5mdR0WZBSNjfnQPuDGlOX5iJJBacBXrkYuG9chl2rWxua0bT23YGaEYZrNwzDYutx97OqS10pw0irdEgSVGJU0CipEEOos3i5kHx3GKnjeyTQIAPvroI3zlK1/Bb37zG/my4eFhvPTSS1ixYgV27Nhh6AES+YteT3I6iKIoy+fh4q0KALC/xyX/LRAU8PEXkcVbnTw7LfWZNclg6mO6tklA/7iAQFBAz6B03Wal8hayTWZ6XABDafEZHs3OYxIEQRQKoiiGbZMJ1Cxm9WeLYS3IYwJCi1clydIm5c1HReCWnDipIbREb3BVqj1yRpFKuEqhs3VPP0QAExqcqA2lWqeCPUGEv1Ez3oBwkajV2aVMmgSg6HkrTuVN90rz7rvvxhFHHIH169fLly1YsACvv/465s+fjzVr1hh6gET+ks1RAV5/EOxnnNkmaypsqKmwQRSBPZ3SjtLO/UNwewOoKLPIylydIsExU7BZd0bYJvUeb++QB4IowmrhUR3qlwOy1/PGiCjesvSYBEEQhYI/IMj2xkSBDvK4ALeOwJLQ/UZbJgGF8ha3eIsdMRBOnEy+6ak3uCqdHrl0yXXhmCtYv1s6lklAUVQFhJjXyGWg8qZ3falU3oDwJn8gGE6hLCZ0F2+fffYZVq9eDbs9snK32Wy45JJLsGXLFsMOjshv9Mra6cAskxwXGccfbZ38aKc0Z3D+9Dr5RFGf4uw0PRirvOlTClnEcnNNWcSOa6UzNKg7Cz1vAOByhx9nZMxXdCc/giCIdGCqG8eFF5dqpDKomykPakERcmBJkp43a4TyFhrUrTHCnwVXOWyRz0stuCrVHjkjyGXhmCtEUcSnuyVH0typdWndl/JzG732C/e8GaC8sZ43jYElvpjiLXwMxai+6X6F7XY7urq6VP82MDAAPs2EGaJwyGZgibLfTVmgTBtfic1tPdh1cBiiKGLL51LxdviMBvk6spKVwZ43owNLAOl4RVGMscBEI/e7KSyTQNg2OZQlC6NLsUssitLCg4WmEARBlDrKsJJEv+tMudBjm2TKm1rfdXLbZKzyxs4nWhMnAamAa9s3iA2b92P+9Dp8eclk1RCQVHrkjCKXhWOuONAzikGXD1Yzj5ZJVWndl9nEg+c4CKIIjy8YEWbDAnbSHdANANYkw8Cj8UeNa+J5DjaLCV5/EG5fEBVliW5deOiutI477jjcd999aGtri7j8iy++wP3334/jjz/esIMj8ptsBpZEJ00y2LDuXR3DONg3hu5BN8wmHnOm1sjXYcXQyJhf8y6OXowMLGF+dLc3GDE3JR7s5BpdvFXIPW9ZUt6iHoeskwRBEGGSjQlghHve9KRNMuVNzTaZOG0y2nIGQDHrTd/wbKZqzZ1aGzeKXm+PnJHksnDMFSxlsmVyddqzaDmOixtaMpYPgSWKDQi7rXjHBehead54443gOA4rVqzAKaecggsuuACnnnoqzjzzTADA9773PcMPkshPlMqbKGbWIufxRoaVMA5prgQH6YTxTMjHPmtydUSRV2a3yLtDmVLfvAbaJm0WkzxgW0vfWzhp0hFxuTwqYMwPIcPvDwC4ohYaw1myaxIEQRQCYeUt8eI23POmP7BEVXnT2vOmWNiznrfhMT/cOha//SPSOStRKIbeHjkjyWXhmA6CIGL73gFs3Nqpex4es0zOS9MyybDHmcEmK29G2CZTLd4U1l+HtXgHdet+hRsaGvDnP/8ZL7zwAj744AMMDg6iqakJq1atwjnnnAOn05mJ4yTyEGvoh14QRQSCIizmzEXDR48JYHy6uw88zyEoiPhsj7S7tOvgMDa3dUd47Osq7djf40LvkAfj643/jPoNDCwBJKvn8Jg0m25yU+KYZrnnLUZ5kxYIgihizBOQd3MzhUvhdx/1BKh4IwiCUDDmZWMCEi+9Uul5Y0Eoaj1vyWyTPhXniMNmRmWZBcNjfnQNjOGQZm0zR/uGJeWtLkmiIeuRi47rB4CqcisOn1mv6fH0wgpHtTEFjEwVjqmSzlgDrz+IHe1DAIC509ILK2HY5FlvkUW93PNmhG1SIQ5oKVT9wdBnWKm8yeMCik95S6k8Lisrw6pVq7Bq1Sqjj4coIGzW8JfE6w8aYhmMh5ptMt6cmDFvIGZOTH2VVLxlSnmTe94Meg3qqhzY3TGSNGTF6wvKP+jRtkmziUeZzYwxr1RIZbJ4E0VR/uEeX+/Ezv1DVLwRBEEocGsY0A0A5Sn0vMmjAlTSJs28tjlv0eevxtoyDI8NoXvAral48wcE+Xe/pjK57XBhayMWzGyQB2U7rGY88vJWDLl8eOvjDpxw+ISk95EKrHB8+OWtET37tRU2XJhnc97SnYfXtm8QgaCAukpbzAZvqsSzTboMVd7Cn0Ut46j8/ljl2VHEg7o1vcJr167FV7/6VTQ1NWHt2rUJr8txHK699lpDDo7Ib0w8D7OJQyAoSl+uDBYH0cqb1rjfBTMbwPNcxscFsB8Xo5S3eo3Hy2bwlDssqsVZhdOKMW8g1PeWOVXc7Q3Ku7qseBuinjeCIAgZ1vPmSKq86R8VoJzzFo3c8ybE6XmLY7lsqnbg8/1DsjU/GQMhy6TFzKNC43qA5znMmhLuUT/rmKl4+vWd+NNbu3HUnGZd51RBEOVCsNppUw1LYSxsbcTf3tuHnQekpOqvnTQdX1o8Oa8UN73rnOjb7mgfxIZN7QCA2YfUJg0/04pdVt7ipE0aqLwB2qyTap9htl70FOGgbs3F2/HHH0/FGxGD1WxCIBjIeGhJdPGmJ+531pQa2cKRqUHdag3f6aD1eMNhJQ7Vv1eWWdDVL/UtZBI2JsBq4eVjH6FB3QRBEDJjGpU3tvgd8wYgCKKmgoLZJs1qgSXJ0iZVVAtAUt4A7YmT/SHLZG2FLeVC4cQFE/C399vRN+zB0xt2onVKddJCDEjNWtij2BxtrC3Lq8IN0L/OYai9Fh/s6MH86XWGqIpqypsgirJSbERgCc9xsJp5+AICPL4grEneGrU1WMkrb9u3b5f//9atW2kcACFjs5ow5g1kfFxAtG1Sb9xvfYbHBRg55w3QfrxdihlvarBxAZm2MLIxARUOixyUQmmTBEEQYVigQ9KeN8Xfx7za+pXDtskEPW/x0ibjKW/yoG5tyhs7XyUKK0mGxczj8Bl1eP2DA3hzy0G8ueUggMSFWCrWQp8/iEFX+ByVjdRsvaQy1iDeazHqiW0nSRW1wBKPNwiWi2aEbRKQ1DepeAvAakuswKpZf4tZedO90jzrrLPwz3/+MxPHQhQg7IuSbeVNb9xvXVVmB3X7MhBYAmiwTYaKt8Y4XvYKZ3bGBTDlzemwKObLUfFGEATBkEcFJFHeTDwvD7vWGlqSqHhjl8XreZNt/1Ex8uFxARqVt5DSU6uh3y0em9u68foHB2IuZ4XY5rbuiMu1WgujQy96BiOfU6bGCKWD3nVOqq+FXtSSINmYAIuZN2wdxPretLw34VEB4ccuZuVNd/HW0dEBh0PdokWUHuFxAZku3pjyJj2e3rhfpmQNuXzyl9xIDA8sCe1cjnoCCZOSOgfUkyYZbORA5m2T0v1HKG9UvBEEQci4PdrSJgHFoG7NxVvINqkSWJLUNhlHeWPjAkbG/LLlMxH9IeUtWdJkPFIpPtr2DWi2FirpGYzcGPVm2D2UCnrXOXpslulgU+l5M3JMAMMaJ9VSDTXbJClvCs4880w8/vjj6O7uTn5louixyt7nTNsmmfIm/TDonRNT7rDIQ8X7M2CdZMVrugMwGQ6bWbbKJFLfuvpDPW816hsq8qDuLNkmnQ4LKp3ScY+M+TI+/48gCKJQCCtvyW2QTp2Jk8FEtsnQZQGdPW8Om1keOfP65vak88XknrcUi7dUig+l9TER0RbE7mjlLQ9tk3rXOanYLFPBpmKbdHmMCyuRH8cS+zjxYMWbmXre1NmzZw82bdqEE044AdXV1Sgri9zx5zgOGzZsMOwAifzGFvqiZF55i53zFm9OjFrcL8dxqKu0o6NvDL3DnphY/XRhPxzKeNt0qau0w+WWZr1NbCyP+JsgiNjyRa+seDVUxQksyVL/GbNNljssqAo9ZiAowu0NoMyA5mWCIIhCZ0xjzxsAlOtMnPRnoOdtc1u37PxY/+/dABL3nvXLPW+p2SZTKT6qy62abhNtQewZyH/bJCCtc75+Sgue+NuOiMuddjMu/a9ZEe+DXptlqsiKlmLdJydNGni+t8ZJtVRDnvOmLN5oSHeYcePG4cwzz8zEsRAFCPtyeQMZLt5CJxB7VK9A9JyYRKlU9VUOdPSNZWRcgE/euTRGeQMkq+ferpGY0BK1JKkf/uZd1RNq9myT0vtT7rDAYjbBYTPB7Q1iaNRHxRtBEAQUypsW26TOQd3BNGyTPhXlLZUQkP7QqIDaitSUt1SKj9bJNaipsCVU7JTWQgZT3iqdVgyP+vJSeWOwc2hzrQMTGsqxua0HMyZUxbz+zGap97XQi5oilgnbZPhxtNsm1QNLSHnDnXfemYnjIAoUuectwzsbasobI3pOTDwyGVoSDiwxUHmrih0XoPeEmjXb5FhYeWOP6/a6MTzqw7i6zM2XIwiCKAREUdQ8KgDQb5tkM9xMqrZJbT1vLLAklfliY54A3KHeolSVt1SKD2YtVDsvMpTWQgYr3iY1OPHZqC9vlTcA2HVQmkU3+5BanHj4BGxu68Fnewbg8QXkVhIg9ddCL2qjAjKhvDEnkyblTa3nTbZN5u97myqaV5o+nw9/+ctf8Mgjj+Dvf/87fD4KIyAUylsObJN6CQ++Nn7Wm9GBJUBssZlKMzezTY55A3IaWSZgu8PlIaUvbNekWW8EQRC+gCAXT9qUN322yUBAum+Lqm2SpU3GsU36Iy1nqfSeMdXNaTdHFBR60NvjxVjY2ojVZxwac93aCpuqQigIInpZ8dZYASA/e94YuzqGAADTxldiQoMTjTUOBIICPtnVH3Pdha2NOHxGXczl8V6LVLCr2BHZxgT73BqBNYWeN+XnnyW2Jgp9K1Q0vcqdnZ24+OKL0d7eLgcQTJ48Gffffz9aW1szeoBEfiMrbxlIcFQSPectFVgCltG2SVEUDQ8sAZTFpnS8qQzsLLObwXMcBFHEyJg/aXJVqsjFW0h5q8rSfDmCIIhCgC1ueY6Tz5uJKNervAWZ8harqjArZdzAkqiet1R6z9INK2HE62Uvd1hwyZdb4xYf0bNOm2sd+MkVS1VVpv4RD4KCCBPPoblOul22izdBEDW1ewSCAvZ2ugAA08ZXgeM4LGxpwKvv7sPmtm4sntUYc/3PD0hK3TnHT0N9tV3TkHM9qNkmXQYO6I5+HC3Km09tSHcR97xpkgl+8YtfYHh4GD/72c/wyiuvYO3atRAEAT/60Y8MOYgXX3wRp512GubNm4fTTz8dr776qvy3/fv34xvf+AaOOOIIHHvssbj33nsRDEa+Eb///e9x8sknY/78+Vi5ciW2bt0a8fds3UcpYtUxhyMdDFXeDE6bDAqiPJzS6MASIKy8pXJC5TlOTgvLZCEVHhUgFW00LoAgCCKMst+N45IvouWeN822Sdbzlkh5i1O8RakWqfSeyWElBmwQLmxtxM+vPhrfu3ABZkysBAB8adHEhKpRZ2jmKdug7B/xAnFeZhZWUl/tUB04nWk2t3XjpgffxpqnP8SvX9qKNU9/iJsefDtmhh0A7O9xIRAU4LSb5VTpI1obAABbvuiDPypv4KOdUpBZVbkV/7V0MpbObsasKTWGFW5AksCSDKRNahoVoBK6o+x5K7bka00rzbfffhs33ngjzj77bEyfPh3Lly/Hj370I2zZsgUjIyNpHcCf/vQn/OAHP8BFF12EV155BWeccQa++93v4sMPP4Tf78fq1asBAM888wx+/OMf4+mnn8a6devk269fvx5r1qzB9ddfjxdeeAETJ07EZZddhv5+SU7O1n2UKmrDGo0mKAjyrko6xRuzIfaPeA21EPoUYxIyoby53H54fcGUk6TkvrcMJU6KoqgYFWAOPSYLSqHijSAIgg0x1tLvBqQw541FpasFlsg9b+rnPdn2H9p81DtfDFCElVSlp7wxWC/7vGn1AMLFWTw6+qS/Hza9DmYTD59fiNvfzvrdGqsdWVnDKGF969EumnhDyFm/29RxlXLRP3VcJWoqbPD6gti6ZyDi+v/6+CAA4Nh54+Si3WjUgkQyM+cthSHdijUY63kTkd+22FTQ9M4ODg5i6tSpEZfNnz8foiiis7Mz5QcXRRG//OUvcfHFF+Oiiy7C5MmTcfXVV+Poo4/Ge++9h9deew0HDx7EmjVr0NLSguXLl+O73/0ufvvb38o9dw899BBWrVqFs846CzNmzMAdd9wBh8OB5557DgCydh+lijULtknlFzcd22Sl0wqziYcoAoMq9kNBELFtTz/e/GA/tu3pTzjPRgkLK+E49RNnqpTZLfKckt5hT0onVADy3LVMFVJef1AuhmXbJClvBEEQMsw26dC4uNXd8yZoGBUQ55wWiFLeUuk96xsK2SYNtuaPD9kaWXEWj46+UQDAhIZy+TYHelyq11UWb3aV8I1MkUrfurJ4Y/AchyNmSurb5h098uX9wx58FuqDO3b+OMOOOxq112w0k3PeNLw3ARXbpNXMgw8VvO4iG9StqXgLBAKwWCLfkPJyae5UOsXL7t27ceDAgZjRA7/5zW/wjW98A5s2bcKcOXNQVVUl/23p0qVwuVzYtm0b+vr6sGfPHhx11FHy381mMxYtWoT3338fALJyH6WMLQu2SWaZNPFczBwaPfAch7pQClb0jhyzMdz55Ae46/ebceeTH8S1MUQTDisxabLD6EEZssLzHC48WX8zd6Xcf5aZ8BBmmTSbePnHNlvz5QiCIAqB8IBuncqb5p63RLZJNuctzqiA0AakRdGLx3rPojcM4wVfDISUt7o0e96iYWnFHf1jCa1vTJlrrivDhAbpNgd6RlWvy2yTDTWOrIWuAakFwbDibdr4yojrMevkRzt7ZUX1rY87IAKYNbkaTTXGzrJVwtImPb6g/J6E0yaNDyzRZJtUKd44jpNDS7TcRyFh3KucArt3S0Mfx8bGsHr1amzduhUTJ07E1VdfjWXLlqGzsxPNzc0Rt2lslH4wOjo6YDZLhz9u3LiY62zfvh0AsnIfhx12WArPXsJsYDphLnCETjD+oJCx58K8zHabOe3HqK92oGvAjQGXV76v97cnjt//5nnzY5qClbBdMquFN/w1aKh2oL3bhQGXD2YzH3dXq7bShotOaVU9zqrQENNRjz8j7xGL4a0os8gn/5rQCXxkNDOPaQQsUlstWpsoLui9Lg3y+X1mxUG5w6LpN7E6VDSNeQLgeS5pzxJbwFstppj7t4YW20FBVH1sVvjZbZG3PXJOMxYf2oTX3tuHpzfsRHW5Fb/45rHqISChwJKGGoehv/njG5ww8Ry8viCGx/xy+4PyvQ4EBXQPsPTIckxqqsA7n3XhYN+o6rH0hDZvm+vKUBY6p3r9mVvDMEY0WmBH3NJ5c9Ttl4vSmZOqI45v9tQalDsscLn9+OLgMGZNqcFbn3QAAE5cMCGjz4WtQ0RRsiRazLxsm6xy2gx7bJbK6vEFk36nw+vEyM+w3WrGqCeQ0TVqLki7eEtHaXC5JEn75ptvxnXXXYcbb7wRr732Gq655ho89thj8Hg8qKyM3G2w2aQfNK/XC7db+rJardaY63i90g9JNu4jVXieQ01NYc/Aqq2WdneCgpix59IdOik47ea0H2NCYwU+292PUW8QNTVOBAURT/19R8LbPL1hJ04+8hB59zKanhFJXbLb0j++mONtqsAHO3rg8gRQXV2Gl97eDAA487ipOGruePQPe1BbacfsaXVxj6+pXlLJPQEhI+/R7m5pd7Oq3Cbf/6TQYmB4zJf3n/HKSkeuD4HIEvRelwb5+D4LobVSdaVd029iReg5iAAsdqvsZogHF+pvqlK5/1qXVDSIovp5mqkW9bXlqn8//bjpeHrDTgy6fHA4bfLQaPm5CaIUEAJg2qRa1Bis+jTXOXGgx4VhbxAzoo6vstKB/d0jCAoi7FYTpk2uRf+oH8Dn6Ox3xzwfURTRE7JNzphSizJbqHjzBTN+rpo0rir5lULXq6lxYne35PxprivDlImxs2yPmjcOf39vH9746CA+PziC3iEPymwmLD9qqqZE01SpVNg67WU22G1m+TM0YVyVYdbJ2tDnyOsLJv1Os9aN6M9weZkFfcMemC2WvF+L6EFz8XbttdfGFDgAcNVVV0VYKjmOw4YNGzTdJ7vd6tWrsWLFCgDAoYceiq1bt+Kxxx6D3W6PsWWyYqmsrAx2u7QDo3Ydh0N6o7NxH6kiCCKGhxP7uPOdgE86KYy6/RgYULcopEt3r1TkW8182o9RYZd+0Nq7hjEwMIpte/qTjg7oHXTj3S37ceghtap/7+uXjsnMc4a/Bux493eN4M1N+9C2dwBWM48vLZyI6nIbJtZJn9HhofifI0uopusdGMvIe9TRLYUWOaym8P2HbDgeXxCdXcOyzSKfMJl4VFY6MDzsjjv/iCgO6L0uDfL5fe4LKUNmHpp/h+1WEzy+IA50DiFYm3it4QnZK72e2HPx6Kh0jvMHBNXHZqNu3GNeDAyoqxNsePYnO7pj+qoHXVIIGAeAE4KGn2eaax040OPCjj19mNooLcCV7/X2Xb2h65VhcHAM1aF+wfauEfT0jkRYSUfGfHL/oZ0HPG5pLRcICjHXNZrxNXbUVtjkQleN2kobxtfYMTAwio/bugAAhzRXqL6m9lDbysZPOwFI+RNBAXhz076EbiEjsFqkUJiu7hFZ0eI5Dl63Fz6PMe0S/pDV2OsLJP1Oe+N8htns3e4+FwYGMmclNYrKSocm54Cm4o0VVkbT1NQEAGhpaYm4fMaMGXjjjTewZMkS7NgRqYp0h3YimpqaZKtjd3c3pk+fHnEddt/Nzc0Zv490CGR4PlqmYWqP1x/M2HNhDds2qyntx6itkIr1ngE3AgFB89iAvmFP3MdmAyAtJt7w14AFf+w6OIy9nZL3/cQFE1But2h+LNY7MeTyZeQ9GnaFlFFH+JjMof5Ef+g1bqzOv51wRjAoFPz3kNAGvdelQT6+z6PukEPDov085rRb4PEFMeTyoj5JLxnrveY5lXVFSCgJqLwuoigqbsvFPbZJjeUYGPFi98FhTBsX6URiPWTVFTZANH5d01zLAkhGY+47GBRwMNTb1lxbhkBAQJXTCpvVBK8viAM9o5hQH1ZcOnqljc7qcit4joNZ4VgZc/tjVEWjuXD5TNU2DfnvJ8+EIIgQBBGf75eGc09trox53pvbuvHn/+yJub3XH8T9f/zYsIHc8bBbTPD5BanXLfQSltnNob5KY2L52Xvj8QUTfqdFUZSVPx6Rnz+2cTzq9ufdb0I6aCre7rzzzow8+Jw5c+B0OrFlyxYsWrRIvnzHjh2YPHkyFi9ejBdffBEul0sOSNm4cSOcTidmzZoFq9WKqVOn4t1335UDRwKBADZt2oSVK1cCQFbuo5TJRsyuEQO6GXVRs95Sjd9XwkYFWA22KWxu68bv/yZtGjCbB4CIE5EWKkJpk5kaFRA9oBuQFPjKMiv6hj0YGfXldfFGEASRaZjao6c4KHdIli8tiZNBeUi3SmCJKX7aZEARYmJJsOM/qbEcH3/Rh/bu2PFQzL1idNIkYxxLnOxVV/RYEiUbuM1xHCbWO/HFwWEc6HFFnDO7B6XrsnOS2cTDxHMICiK8fgFlxuatxMCCYB588VMo3w6bxYQrzjhULrhEUcSujlDSZFRYidbUygUzGwyd76bEZjUBY354/EH5s2dk0qT8GEg+ZFs5azc61K5YB3XntHvPbrfjiiuuwLp16/Dyyy9j3759ePDBB/Gf//wHl112GZYvX46GhgZ8+9vfxvbt27Fhwwb84he/wOWXXy5bOC+//HI89thjWL9+PT7//HPceuut8Hg8OO+88wAga/dRqrDiTTnrzGiMGNDNYOmN/cNeCIKYcvy+EjYkM50kzGjYLJjhsdgG58de3a4pBZMhp02O+TMyqFKteANoUDdBEARDOaRbK/K4AA2Jk/4AS5tUmfOWYFSAcshzonPY5KYKAEB7d2z8PrMB1hqcNMmQEyf74hRvodYFdj0AcRMnlUmTjGwmTgJSAcdmmB07TwrD4zhg3rQ6+Tq9Qx6MjPlh4jlMaSqPuH0qqZVGY7NIn02vLyiHlZQbmDQJKN6XJEmRfoWiFv0ZZutG5pAqFnKaNgkA11xzDRwOB+655x50dXVh+vTpuP/++3HkkUcCAB555BHcfvvtOP/881FVVYWVK1fimmuukW9//vnnY2RkBPfeey8GBwcxd+5cPPbYY6itlfqTbDZbVu6jVJHnvGVFeUu/eKsut8m7bIMuL2or7ViZzMagEr+vhFlOjGoQNnpXjRVv/oAAjy8oz44zinjFG7N8DtG4AIIgihhBELGjfRCDo15UO6XNvujfZll50/H7yyzvLg0phSxtUk09Y8OaAyo9Q2zhyyHxnNJJjVIBsb9nFEFBiBgA3R9ystRWZkZ5Y7bJ4TE/XG5/xLlGFEV0hpS3cYq+wAmhoK4DUWqdcsYbw241we0NZHTkkRJ/IAiPT3rdz182E9v2DqJv2IMPdvZg6WypmGMjAiY1lkcMngaAwVFtQXlar5cKdoUqJg+gN9hyajNrG0WlLN6iexbZesdNowKM57LLLsNll12m+rcpU6bg0UcfTXj71atXY/Xq1XH/nq37KEXYnLegICIQFDLS7BtW3tL/uPI8h5oKG3qHPOgdkpIaF7Y2YtGsBmza3hNx3YoyCy4+tTWpb5wVrkYpb3p21WZNiU2gisZmNcnNxSNjvgwWb5H3W1EWGg5OyhtBEEXK5rZuPLVhZ8Rvdk2FDSuXz4w4d6SmvIVmvWko3gIJbJOsKBNFQBBFeXAxEDkfK1F6eGO1AzaLCV5/EF39boxXWBHDxVtmlDeHzSwHpnT0jWLmxGr5byNjfox6AuAANCrUNKa87Y8a1J0PyttQ6JxoNnFw2s04Zl4zXvrPHrz1cUdM8RY93w0wpt0jXWzyoO6ArLw5HcauLVgQii8g4LPd/Zg5oUp1wzrRZ1guMktxSDdBxEPZ55Up9c1I2ySgGHwdOuH4/EFs3zsIAPjKcVMxbYL0Y3nmMYdoavgND+k25uuUiV01pXXSaMLFW6SFmNkmRzI0HJwgCCKXMHt79GYbmxGqtLenprwx22Ry1SA8pFvNNhk+N0UP6vYpFr6J4HkOE0NJj/ui+t76QuN8WCBYJhjP+t76IpOVD4aUtboqe8R6ZEKDpLz1DLgjirKw8hZW6ewWbb1VRjESOg9XlFnBcRyOmScF523bM4DeIen4dnfEL96MaPdIF7tsaQzKtl6ngcrb5rZu/O/j78v//r/ff4CbHnxbtWWEzXhTU52LVXmj4o1IC9bsC0hDLjOBkbZJAKgL7Q6yJuuNW7vgcvtRV2nH2cdNxYKW0AD2Pm1jHFjRalRgSSZ21SrKWCFlvAqWrOeNbJMEQRQbWu3tgiBCFMWUA0sAbT1vTHlTc7+YFAUds1cy/BqLNwCY1Bjqe+uKVLP6R6RzaV1V5pSeeH1v7N/KfjcAqCyzoNxhgai4js8fxKBLOh8pVTrmIMpk+4cSpryxc2RDtQOHTqmBCODtTzoRCArY2yUVyNPGx86G43kOK5fPTPgYydo90kUOE/GHe96cBvW8sU0R9l4x1DZFgMSfYVLeFPh8Pjz11FO47rrr8LWvfQ1ffPEFnn76aXz88cdGHx9RAGS6781I2yQQTpzsHfJAFEW89t4+AMDyRRNh4nlMbpZ2uuIlW0Wj5+SnhUzsqlUyC2MGCim5eCtT73kj2yRBEMWGHnu71x+EEAqLylTPW1h5U+t5UxZvkcqbX3aOJN98nBzqe1OGlgSCAoZDi+xMKm/j6lnxFrmpyv7NEikZHMdhYlRoCUttdtjMEYWG1Zpd2yQ7J1YpBq8fG1Lf3vqkA+3dLvgDAsps5ogiUwlLrYxeK9RW2DI+JgBQ2CZ9QdnWa0TapJ5NEYYvQWgcU948Raa86V4N9/f345JLLsGuXbswbdo0fP755/B4PHjjjTfws5/9DI8//jgWLFiQiWMl8hSrhYfbm7kfPqNtk8pxAZ/u7kdH3xjsVhOOmz8eQDhVK7rROR5Gjwpgu2rphKhEU+HMjG3S5w/Kz788akeZqX1UvBEEUWzosbePeaQFuInn5JRBLchpkxpGBcjKm8p5IaJ4C0YXb9p7tieFUg/3KYq3gREvREhFY0WZsYEVSlgYycFedeWtOap4A6TQku37BuXijVkmG6rtEb1R2bdNSudE5et1RGsDHH83oXfIg2f/8TmAkDooQp6jFs3C1kYsmNmQNCwnE9gVfYJMGY5eA6RCKj3/gYTKW8g2WerK25o1azA6Ooq//OUvWL9+vRw9ft9992HevHm47777DD9IIr/J9Kw3I+e8AeHdwfZuF9b/axcA4Lj54+VG8olN5eAg+dK1KFVs18eonjfA+F21ygzZJtmOsInn4LBFFq9yzxvZJgmCKDL02NtZWInDZk4YChINU9502SZVzkMcx8UdF6C15w0AJtZL58bhUR+GXNICW5k0qee56YUpb31DngiXDxu6rUyaZMihJb1SscnCSqLnjtqykJqtJNo2yY5hamj4OYv439M5ErfPi8HzHGZNqcHS2c2YNaUmK4UbEK28GRdYkkrPfyL3E1uXFFvPm+5X+p///CduvfVWTJkyBcFg+INus9lw+eWX45ZbbjH0AIn8h9ktMjXrTVbebOkrW5vbuvFkaPD18KhPVoWaa5WxwWY0VDvQPejGwZ5RVE5JPMvP6MAShpG7apmyTboUdonoEzezhIx6AhlLIiUIgsgFzN6eSCVg9vbPDwwB0Jc0CSh63pLYJgXFkOJ4v7NsRE70uAA9tn+b1YSm2jJ09o+hvduFqnIb+kNhJXUZSppkVJZZ4LSbMeoJoLN/DNMmVMHnD8pWyOieNwCYGAotiVHeoqyIWodBG4VsmywLry02t3Vj656BmOuyPq9sWCH1wApej0J5M2JUQCo9/wmLNxrSLeH1elFdXa36N5PJBL+fkuVKDZs1NIsjU8qb1xjbJGuCHVJRn574246I3S22Y3cwzlBQJUYHligxaletQlbBjP1+xgsrAaSFCtvtJeskQRDFhJ7QCHlMgM4xLayHaMwTkHvm1PArCjJTnHMEGyEQv+dN23KQzXtj1kmW2lybpE87XTiOU4SWSGrbwd5RiJBeVzXLJhtnMDDixZjHrzrjDci8eygaOW0ydF5Opc8r10Qob3LaZPrKWyo9/4nSJsOBJcWlvOku3ubNm4ennnpK9W9//vOfMXfu3LQPiigsMm05MMI2qffHcTxrdNbQ92Z0YEkmCI8KyIzypla88RwXnvWm8riCIGL73gFs3NqJ7XsH8urERBAEkYyFrY2YEuoDUxJtb3d79M94A8KLYRHhUQNqBBXFW7zzkGybjFbe2MJXQ2AJAExuigwt6Q8pj5ma8aZknDwuQDov7w+NLBhXV6Zq2Syzm+XB4Qd6R9EzKBWaubZNDkfZJvX0eeULrOdtzBOQ+8mMCCxJJUmTub7UPsP20IaJLyCoDqkvVHSvhq+//npceumlOPvss3HCCSeA4zi8/PLLuP/++/HWW2/hkUceycRxEnkMs01mOrDEkYbypvXHsW3fAI6uK8fEeukEdbAnt8qbUbAiKlM9b2rFGyAVjYMuX4zylmywrSCIOWnCJgiC0EogKKCzX1Jzjj9sHP61pQO1lTasueroiN+r8IBufYtbs4mHzWqS1Y14v7MBRQhJfOUtTs9b6Pyl1iunBhsXsC8UZa/secs0THk7GFLeDoQKSLWwEsaE+nL0D3vR3u1CbzLbZLaKt7FI22QmZrtmGvaaKc/hRo0KYD3/0WuE2gobLgytEZSENyDiK2+AtJYsd+TvJrsedL/SixYtwmOPPYa7774bjzzyCERRxOOPP47Zs2fjV7/6FZYuXZqJ4yTyGFk+z0DPmz8gyCebdGyTmn8cQ5HHE3Qob5nqeTMSOTzE7YcgiIYVQkmLN3lcQNiuyeyr0TBv/5eXTMK727rjFnYEQRD5wBcHhuD1B1FRZsFZx0zFv7Z0YGDEi6AggOfD56sx1hOk0zYJAOV2czgUokb9OuEZb1zc0BBznMAStvDVa5vs7B+Dzx+Ui7dM97wBasqbK3R5bL8bY0KDE5/s6sOnu/oRFESYeC5mpIFNMXA60wQFAa4o22QmZrtmGqa8sRl/DpspYhh8urCe/wde/AQf7OjFMXObcdlph6quXRK5n8wmHlYzD19AgMcbiLtWKTRSKpMXL16MZ555Bh6PB0NDQygvL4fTGf/LQxQ37Ec/E5YD5WwOWxrFm+Yfx3Lpx3RcvRMcpOJkeMwn2w7V0NszkAvYD5YoAi6PP+Hz0YPm4i2006jFvvrX99pjLsvXpm2CIEqXz0IBE7MPqUVNhU0O1DjYO4YpzRXy9UZTtE0CkhWtb9ibMHGSFW+mBKFQbGEdMyrAr8/2X11uRUWZBSNjfhzoHUVfKLCkJhvFW6iHrat/DEFBCNsmVZImGRNCt/lsTz8AoL7aEVMA2LI458015pfT/ytC50094Tf5gi3UxsJUX6cBYSXR8DyH8fXl+GBHL5xllribzsnGXditJql4K6LQkpRWmy6XC11dXbDb7aitrcWzzz6Ln/zkJ3j//feNPj6iAMhksy/7slnNfFq7OlqbYFsnS1ubNosJ9dXSySiZddJbALZJs4mXLQ1GWie1K2/SY2qxryYi35q2CYIoXbaGCoLZh9SA4zhZldrf44q4XqqBJYC2Qd3ygO4Ejgpmm4xJm0xgOVOD4zh5WPeO9kG4Q88t04ElAFBfaYfFzCMQFNE94JaVt0S2SZY4yTZZo/vdgOwGlrBZq+WKYiSVPq9cE72ZnsrGhBbYkG13gsCRZLkDrO+tmMYF6F4Nb9myBSeddBKefPJJAMBPfvITrFmzBi+99BIuueQSvP7664YfJJHfsC9xJkYFGDWgO5Ufxwmhvrdk1slCCCwBwn1v727tMiwgREvPGxAu3tL17Odb0zZBEKXJqMeP3R3DAIA5h9QCCBcK7d2RxVuqgSVAOAQi0biARDPeGLLyFidtUs/5i/W9bfm8F4BUlDpSKEz1wvMcmkMq29Y9A/D4gjDxHBpUCjLGuKjCzmLiYs59Ydtk5gMtosNKGEbPds009qjN6kwob4BiTpuW4i2O8uwowkHdur9t9957L6ZPn47zzz8fbrcbf/rTn7By5UrcdtttuO222/DQQw/h5JNPzsSxEnkKswtmRnkzbkC33ibY8fVOfPR5Lw4mKd7kId15rLxtbutG75DkTX/5nb14+Z29hvSRMe9+fOUtMm3SCM9+PjVtEwRRmmzfOwBRlIoDlrQ4MQPKW3mo4BtNkDYZVt4SFG9yYElkgRLu2dZ+/prUxJQ3aX5dNpImGePqytDe7cLm7dJon8YaR8IZop/s6gPPAaxe+2BnL2568O2Ic1/YNpl5ZUYu3lRaF4yc7ZppopU3I5Im1Qgrb/HXl8k2IFgB6Cki5U33L8mWLVtwzz33YNKkSdiwYQO8Xi/OPvtsAMBpp52Gl156yfCDJPKbTMbsGqW8MfT8ODKvfNLizZ/fPW/JAkLS2dWTlTeVGTtArG1Si7c/GfnUtE0QRGmi7HdjMOVtf5TVfixbypsp/iJfDiyJ7nlL0i+kBrNNstlz2UiaZLBwkm17ByL+rYbWc1/YNpkF5W1MXXljsNmu+U70mqw8l7bJJNZfe4JB3YWabK371eZ5Hjab9EX997//jcrKSsyfPx+A1Atnt2dvB4bID6xZ6HkzqngDtP84sgGfiWyTQSGchpmPypvW+XYLZjak9IOl1zbJ7KtqJ1Qt5FvTNkEQpcnW3VK/2xxF8TYhFHQ1POrD0KgPVaEF+piXpU3qVyfknjcNgSWJbZNx0iZTsE0215XBxHPyffEcZ2iKcSKYDZI99rh69X43Pec+5cDpTJNIeSskzCY+4jOQKeWtTEfPWzz12B7HeplsZFE+o1sqmDt3Lp577jl89NFH+Otf/4oTTzwRHMehr68PDz/8MA3pLkEyqryFvmz2LPjpo2muKwsnTsYJ+VD2+eVjz1smh38GguH0pnjFW1XUiAJAUj+/fmpLzHVrK2z48pJJCR8z35q2CYIoPXoG3egedMPEc2idXC1fbrOa5BliSuskU94cKSlvIdukO13bpPS3QJRtMpXi7aOdvZH//lyyIm5u69Z8H6kyPlppE6Hav63n3KdcwzA1MVOEe94KP7JeuameqZ63eIWXkqS2SWtsAchU2ejPCFNls/FZTgfdq82bbroJb7/9Ni644AKYTCZcffXVAIAzzjgDe/bswbe//W2jj5HIc2TlLZC/gSWpYLOY5EboeOqbP5DfxVsmh38y1Y3j4tuBysss4CCNKBhR2H78AekEOanBiSvPmo3vXbgAa64+Gucvm4lrV8yVRzYw8rVpmyCI0oPFzk8bXxkT1DEpZJ1kA6RFUUyz5y1km0ygvAU12CZNcWyTeueUskVvtIKXrUVv9Ln4lXf2qhaOes59LHxDRHh0QqZgaZOFrrwBkX1vRg3ojkZL2EjytEnW8ybdh1ZVNp+TrXWvNufMmYO///3vePbZZ7FhwwYccsghAIAf//jHePnll0l5K0FsltCctwxYDsKBJbmxJI5P0vfGjs/Ec9ixbzDvvuyZHP7Jijen3QI+zmBYE8/LdgrliIIPQifaYw8bj6WzmzFrSo2sqC1sbcRd1xwjv+eX/tcsrLn6aCrcCILIC9QskwwWWtIeUt48viCYmJOpnje/XLzFX9Kxv8W3TSY/x+Z60bu5rRu/eumzmMvVCkc95z6LJfy6ZXpcQLy0yULEpmgVKctY2qT0nfH6g3E/V3LfZtK0SWm9lklHUrZISSooLy/HYYcdhrKysNf41FNPRUNDg2EHRhQO2el5y75tEkhcvG1u68YdT34AQDohrnn6w6xZR7Sidb5dKn1ko0n63RjMOjkUatQeGvVh534ppWxhi/pvBs9z8jye6nIrWSUJgsgLBEGUwzJmT1Up3lhoSbd0zmALRhPPpRRqJRdvCdImmZqmTXmLtk0mXvgqyeWiV2/hqOfcx3McrJbMpWYrSRZYUkgoN9XLHZkNLAHip0UmVd6skcpbJh1J2UL3q33xxRcnvc7vfve7lA6GKExkv3iR2SaBcOJktFUjkwmORqIlICTVPrKRJGMCGJVOKw70jso7jh/u7IEIYOq4ioQR07WVduzrdqF/OH9/QAmCKB0EQcSbWw5g1BOA1cJjSigyX8nExtCGX98ogoIgF11OuxlcHIdCIsKjAvwQRFHV5cACS0wJCjB5SHc85c2SvHjL5aJXT+HInBx6zn12iwk+v5DR0BJRFDEyVhyBJUCk8papnjeLmYfFzMMfEDDmDagqfMnSJh1RQ7oz6UjKFrq3gURRjPlvdHQUH3/8MT7//HNMmzYtE8dJ5DHyjlVGbZO5V97EkPcl19YRvbD5dlVOY/vIWPqZluINCNtFPmjrAQAcEUd1Y9SE4qf7RzwpHZ+RCIKI7XsHsHFrp2EDzgmCKBw2t3XjpgffxhOv7QAghVXd8quNMU6LhmoHrBZpsdk94MZY6HfSkeLili1WRTF+aAMr3hKpZ8l63rQob7lc9KZSOOoZfJ1JBxFjzBuQw2WKI7AkvC7LVNokELYbe+L0vSVX3iJvn0lHUrbQvSJ+4oknVC8fGhrCf//3f1PxVoKElbfCGBWgh3GKxMmRMT8qnVbdO4D5wMLWRhw6pQbX3ftvAMB3vnoY5kytTcuOmGxAN6OiLDyoe8zjly1HyYrG2tCP60COlbdCjhMmCCJ99DgteI7DxIZy7Do4jPZul7ygTCWsBJAWpDaLCV5/EKNuv6rCwQoCU0LbJOt5U0+btGpQ3rTM6czUojfVwlHrbFfZWpfB4o1tYDpsJk09hvlONgJLAGnExpDLJytn0fg0Dulmt8+kIylbGBaPV1VVhSuvvBKPP/64UXdJFAhsxyoQFGNODOmS6+LNqpI4Wah+aYfNLO++jq93pv3DlGxAN6NKobxt+bwPQUHEhHonmmvV5/MwaiskS2V/GgO906XQ44QJgkiPVJwWymHd6QzoZrB+onh9bwENgSWssIsbWKJBeWOL3kRkatGbjlrCZrtGh2MpkTehM2ibLJYZbwzWw2niOew6OJwxR0qZI3HipF7lDQBaJ9dA7WNaKMnWhmeb9/X1GX2XRJ6j9D17fUYXb7m1TQKxoSWF6pfmOE5WyRLFTmsl2YBuRnhQtx+bd2izTAKQT9T9w7mxTRaaPZYgCONJJaRjYoN0ztjf7UprTABDHtQdJ3FSU/EWWqkGgvF63rRtkOqxIhpJpgvHbNgm5TEBRRBWsrmtG+9tkzYvMx3Yxobbx7MNJ9uAcMijAsK3f397NwRRGlf0vQsXRIwsyvfCDUjBNvn+++/HXBYMBtHZ2YkHHngAc+bMMeTAiMLBbOLAcZIn3xcIokz/xyouuVbeAGBCgxMffd4rK28tk6pR6bTGHdwN5K9f2umwYGjUF3cRoAfNxVvoRNU75EbfkFSILWxNXrzVhnreBka8EEUxpWb/dChEeyxBEMaSitNiUiNT3lw4pLkCQHrKW7JxAQENaZPhUQFxhnRrUN4YWq2IRsMKx2gbe22FDRemaWPPpm2y0JW3bAe2se9OPNukHFgSZwPCrpgVx9YSGz/rBAAcNXdcQZ6/df+afP3rX49ZRLEgh3HjxuHWW2815siIgoHjONgsJnh8QcN3reTizZa74i1aeRNEEXaLCcMJbpOvfulwcln82GmtaB0VwP7e0TcGAKirtMmLm0SwnV1fQEpsS/Y4RlOo9liCIIwjFafFhJBtsnfIg76QcyA95c0A26RKYEkgKEAIrd+09LwpYVbEbMMKxy8ODsEvcrBwIqaPr0r7fJtV22QBK29aHSkLZjYYtgZyJAksCWhU3gRRhC8gYCQ0rogDcOTsJkOOMdvo/jVRGwPAcRzKy8vR2toKnjfciUkUAKx48/mL0DZZJxVv+7pGsPGzTny6uw/dg25YzTwcNjOGFAqcETuAmYTt4BqhvI1oKN42t3Xjyb/tiLjM5Qnggx09SV8ji9mEijILRsb86B/2ZL14K1R7LEEQxpFKSEe5wyLfhs20zI7ypq/nza8Y76NHecs1PM/h0ENqUVPjxMDAqLx4TwdbNpS3IpjxlgtHCrMNq9kmg4Igf6bj9bzZLCZwAEQAHm8AG7d2AQBmTalJ2keZr+j+NVmyZIn8/91uN1wuF6qrq2GxFH7sKZE6mRhwKYpiXtgmO/slxc3jC+LXf94qX37C4RPwtWUzsm4dSYdkiwA9JFPe4lkrvL6gZmtFbYVdKt5GvJjcVJH2Meshl8lqBEHkB6km001sKMfAiBed/ZLjIB3ljf3GuuL0KgcEprxpSZuMU7ylMEC8mLBlo+dNtk0W7no5F44U2TapUrxp+QxzHAe7zQS3Nwi3L4h3QpbJpQWqugEpBpZs2rQJ559/PhYuXIjjjz8e8+fPx9e+9jVs3LjR6OMjCoRM/PD5/AJCjo6cFW+b27rxq5e2qv7t75va8eHOnqQpVvlEeZLGdyWJZpsph8+qFW9GhX3IfW85CC3JZbIaQRD5w8LWRnz91JaYyxOFdLBh3QxHOsqbPYnyFtAwpFu2TYYXu2zhazbxWe8pzjessm3SWPeQkmJQ3nLhSIkesq1E6wYEc2/taB9ER98YzCY+bx1SWtD9a/LBBx/g0ksvxaRJk3DNNdegvr4e3d3deOWVV3DFFVfgiSeewIIFCzJxrEQeI//wGVi8Mcskh8hEy2yRC293pnHKkdOJi7dks82UvRfsPpUYZa2QEydzNC6ANcj/9q9tEQVvvttjCYIwloYqaWRMbaUN5504PanTYlJDZF8vS8xLheQ9byHbmAbbpDJtks1mLXXVDVAGlqTfDx6PkdHCT5vMhSOFDapX63kLb0Bw4BNsQDhsZgyMePHPDw4AAA6fUZeWlTnX6D7ye++9F4sWLcJvfvMbmEzhBfV1112H1atX4/7778ejjz5q6EES+U8mlDdmmbRZTTnZFSzGtMGwbTL+CUpLktS4UB9gmc0s23GUGGWtqK0MzXozeFC3IIjYtqcf/t0DSRveF7Y2YsTtx+/+2gYAmDGhErdctLBgCnaCINKnI2R/PKS5EktnNye9/sTo4i2DPW8sQTLRkG6zypBueUA3FW+KNUzmlLehscJPm8zFgGtngrRJOWkyyWfYHmrt2ds1AgBYUsCWSSCF4u2TTz7B3XffHVG4AQDP81i1ahVuvvlmww6OKBzkpCYdP3yCICbsF8t1v1sxpg3Ktsk4yptWtfGKM2ZL9xfHu2+UtaK2go0LMM42mUxVVGNQcV0Tz1PhRhAlRmcoLbe5tkzT9ZvrysBzAHOGd/aNYdq4ypR+O9ji1RVHeVPaH+ORKLCElDdF8ZahtEmvPyjfdyErb0BmRzaoUZYgsMTvTz7qYnNbN/Z1uyIue/rvO8EBBeue0V28OZ1OBAJxpPtAQB4bQJQWegNLtCygc500WYxpg8l2cLWqjTv3DwKIH1ZilLXCaNtkqvNp+hQ9d0YMOCcIorBgwSPj6rQVb1s+75UcI6E10aN/2Yb1/96VcJMoHizsZHDEi+17B2I2OllBljiwJHZUABVvYVjaZKYCS0ZCYSVmE5/TADajyOasP4ccWKJim0yivMU957syM5MuW+j+xh5xxBH49a9/DbfbHXH52NgYfv3rX2PRokWGHRxROOjpeWNfpuiFPVtAb27rBgC4c6y8sQIkEYWWNliepHjTqiL2hWyM8Yo3o8I+mG2SDepOh3RCVJS2TSNm5BEEUViw4k2L8sbOccGo35Loc5wWNrd14xfPbQEgFRZrnv4QNz34dsR9aJvzppI2qdFyVgrYMpCYrYRZJquclqIJh2Gz/jId2FamIbDEbI5dJxoVnJaP6P7G3nDDDdi9ezdOPvlk3Hrrrbjnnntw6623Yvny5di9eze+853vZOI4iTzHZtbmF9fzZQorb7kp3ooxbVDZ+K5WDGlVEdkzTjR7jVkrogvgRAltMcdTLt3WHxDkuXKpoqeHMeZyhfI2RsUbQZQUbm9A/u1oTqK8GblgZEXgkMsXcXl0ERjQZZsMn6NZm4NVZeFbamTaNlkMA7pzBXMMJQosUevbTOecn+/o9qNNmTIFzz77LNauXYs333wTQ0NDqKqqwpIlS3DddddhxowZmThOIs+xWqUvTjLlTc+XKdzzlrtEoGx7uzMNK7aCgjRDzxE1e0ir3dFuM0XcXzzStVZYzDwqnVYMj/owMOxNq9E71R5GURQjbJtefxCBoJBwoUQQRPHQNSCpbpVlFjm2Px5GBV3pSTsO6LBNKtMm/UFKm2Rk3DY5Jm0+VhRwWEmuYOsUrz+IoCBEhKQlsv4WY24BI6VV8YwZM3DvvfcafChEIWPTaJvU82ViuyysUMgV2fR2ZxqrxQSLmYc/IMDl9scUb1qTpLZ80QcgefHG7jOdNM7aChuGR33oH/FgSnPqg7pT7WF0uf0Rs2QASbmsoh1UgigJOlhYSZ0zyTWNWzDqKQK12CbZ3yLSJv1km2RkWnkbIuUtZZRJrR5fEE57+PMqj7tQ+ewXY24BQ1PxdvDgQV13On78+JQOhihcrGZtu1Z6vkws3SuXyhsj3QIknyh3WDAw4sWox48GOGL+ztTGR17eqmqDLbOZ0dE7CkAqbARBzGghW1Nhw57OkbTHBaQaosIet8pphT8gYMwbwJjHT8UbQZQIepImjVow6ikCmZpmTvA7rBpYQj1vMpkYd6SE2SbpvKEfi9kEi4mHPyjA7Q1EqN+JlLdczKTLFppWxcuWLdPVYLlt27aUD4goTMKWg8Q9b3q+TB993gsgdz1vxYrTLg2rdCXoIVvY2oh3PuvEBzt6cczcZhwzbxze+awD//64E3c/+5Ecf/2399vx/vbulBLUtKIMLUmHVOfTsH632kobRsb8GPMGEs7JIwiiuOjQkTRp1IJRTxEoK28JijC1UQHhnjcq3tgaJiiIGbHFj4QCS8g2mRoOuxn+UV9M31uiDYhczKTLFpqKtzvuuCOieAsGg/jhD3+I6667DhMmTMjYwRGFA/vxT2ab5HkOXzluKh77y/a412FfplzPeStWmNUxUfEGhD3682fUY9aUGvSPePHvjzsR3WefLGY/XWor2biA9Ge9MVXx4T9vhU9hhUzUw8j63Wor7BAEoHfIQ+MCCKKE0KO8GbVg1FMEBiltMm2Y8gZI6pvRxVs4sCR5qwERi8NqwvAoMBY16y3ZuItiyy1gaCrezjnnnIh/s+LtpJNOwpw5czJyYERhocdywPoHTDwXcSKJ/jLles5bscIsB8nUI/lkU2aBIIh4/s0vEl6fNc8bvYslz3pL0zbJWNjaiD+/vQf7uqShnQ3Vdtx55VFxj7tPVt7sclQxJU4SpYAgiEXR65sOgijKgSVaZ7wZsWDUUwT6Q1ZIkybbpKLnTe4Xog1Ss4mX1yReXzBpMI1ehkOboVWkvKUE68/3RI0LCGiYVVhMuQUMWhUThsAsB74ktsnhUR/+8cF+AMA1K+aibd8g/vZ+Ow5prsAPL14U8WUi5S0zJBvUzRgeCzdYG5Wglgq1Fcw2mb7yBkjpkT2D4TmVQy5fePaBCkrb5IBLeg1cpLwRRc7mtu6Y4qOmwpZRi3Q+0j/kgT8gwGziUF8V2yMcDyMWjPGKwOj3IahBQVOzTcqqhYWUN0Baa4x6Ahnpe2OboRXU85YSrHiLHtTtk4u3xOvEYsotAFKY80YQajDbZLIfvVff3QufX8DUcZU4fEY9Fs2STj6DLm/MSY2Kt8zgdEg/gokKEH8gKP9IVjmtOY3cZbbJgREvhDQHdQOSHdTtDYKD9IPuCwgxc5SUMMWvrtIuz8kj5Y0oZth8segNm1SGTBc6rN+tqaZM9069EUOMF7Y24udXH42bLjxcLs6+de78iAKaBZaYEqVNhmyTAYXyJi98aewJACmNGTA+tCQQFOQ2BUqbTA1HnEHd/hL9DJfWsyUyRqIZKYIgYvveAfzzwwN4fZOkup197FRwHIcJ9VL08qDLF9ODRbbJzFCuQXljscZmEweHzZzTyN3qchs4SAsU1oeXDswCVVtpR1ONZIPqDl2mBuu1q6m0hS2npLwRRYqRQ6aLAT39bpmC5zkcOqVWHpXS0Tca8XdWkCVawCZS3qykvAFIPi6ArWU2bu3E9r0Dmr8DbG3DcUC5wXbMUsERGhnl1tnzVqzQqpgwBDYqIDqwRM16Y+I5+XoOmxn1VXb0Dnmwv9sVIWuT8pYZwgVIfPVoeDS8S8hxXE4jd80mHpXlVgy5fBgY8aQdtdzVL1kmm2rLYLeZ0dE3iq4BN1onx1oqgoKAwRGpkK2tCCtvxZQ2SX1NhJJcWqTzEaa8NWvsd8skExvK8fn+IezvCRdvgijKBZlJw5Bu5aiAQImqFvFItAmdjo1YtkyWWem3NUXi2SZZ6E6pJaZqKt5efPHFiH8LggCO4/DGG29g587YHbqvfOUrRhwbUUCEA0vClgxmvYkmKIh44MVwOuHEhnL0DnnQ3kPFWzbQkjYZDiuRCqVcR+7WVtgw5PKhf9iLQ5rTuy+mvDXXOuBwWIE2oHvArXrdIZcPgijCxHOoKrfKw0LHikR5o74mIppcWqTzkc6QypVL5Y3BnCoHelzyZcpijFkj1TCZYtMmZdukhc6xgPo6Boi/ltGatBx9PiX04wg5sDwxylsodIeKt1huueUW1cvvv//+mMs4jqPirQRhO1aBoCBbCbRYbxbMbMDExnJ89Hkv9ne7Iv4u2yZtJBAbiRbbpDKshJHLyN3aCjt2d4zI4SHp0DUQVt6cIZtnVxzbJOt3q6mwgee4sGrpLXzlLd0FCVGc5NIinY+EZ7w5c3wkwMQG6RiUypuyh81ijr95xgZ4BwVl2iQpb0rYRrEy0VCrjThR0nL4fEqWyVRx2BP3vCWacViMaFoVv/7665k+DqLAUUrWXn8QeztHNFtvJjWWA4g8IQmCKCdXkvJmLMz6l0h5GxqNLd6A3EXu1ihCS9Kluz/cw1IRSrKMp7yxfrfa0LiCsG2ysJU3IxYkRHGSS4t0vuH2BuQwo7xQ3hqkc2XfsAdubwAOmzmieDMlUt4UtklRFMFxnKxaUM+bBAssUaZmG2EjVrYhEKkR1zZJPW/xoUHcRDIsZh4cABFS35se682UJqkJ+0CvC4IogufCA7oBaTgjYRxMeRvzBOTXOxpm81DrL8tF5C4bF9CfZvEmimKE8lYViv7uHnDLCxol8oy3Kunxy+zh166Qob4mIh65tkjnE52hjZ4qZ9gynUvKHRZUl1sx6PLhQO8oZkyokpMmeY5L+J4w26QIqU/OxHGkvEVhV0mbNMJGTLbJ9GHrwLiBJSX2GS6tZ0tkDI7jwjG7AUGX9aaxxgGLmYfPL8jzt5htwcRzMJfYlzLTsDlvIuIXIfl2smHjAtK1TQ6N+uD1B8FxQGONA021ZeA46WTNnrMSZptkxSMbszDqCUA0YGxBrqC+JiIRC1sb8eUlk2Mur62wlZSdNh+SJqOZ2MCcKlKbAVPezAksk0DkAG/WJ+ejOW8RsJ435eaxETZitTYEQh/xhnSHE1NLa5OfvrGEYdhCJwCfLyhbbxLBrDcmnsf4UD8B63tThpVEqyFEephNvNyjGC/yfjiObTJXhAd1p1dMdIV20usq7TCbeFjMJtRVSvfdpWKdZMViXSWzTUqFbyAoyAufQoT6mohkMMtwfej70VBtx5qrjy6Zwg0AOvolK/+4PEiaZLDi7UC3dGxy8ZbAMglIY18YLLSkVFWLeFitoTWMQnnTs5aJR75thhYiydImS+0zXFrPlsgoygGXPM/h8Jn1Ca+vtN5MbJSKt3aV4o0wnvIkfW/5tlPITp7pDupWWiYZbFddLbREDiwJLWDtVpNsMy1k66QRCxKiePH5g9jyeR8A4IxjDgEgLZpKwSqpJB+Vtwmh0JIDvUx5k34PzQnGBACR/XDh4o31vNF5FgjbJpXKG7MRJyKZjTjfzqeFSLh4izzvsv7EUut5K61nS2QUmyU8623M48em7d0AwsMVGWrWm0lsNzEUWkIDujOLU06cTGKbzJOTTXWFFRwnLTpGVOyNWmHBJE01DvmyxtqyiL8piQ4s4ThO7n0p5EHdRixIiOLlk1198PqDqKu044iWBgDSRk/0HM9iJzzjLfdJk4ywbXIUoigqbJOJl3M8z4F9m4Oh25DyFolyDaOEJS2zfnGGVhtx+HxKaZOpIg/pjrZNBkuzeEtrZTwyMoLu7m5MmjQJJpMJJhPt3pQyVsWMlBff2o2RMT/G1ZXhR5cuxq6DwwnTCSeEEifbe0h5ywZy5L2K8hYICvIA73QHYhuFiedRXS4l4PWPeFFVnpqdj6lrTTXhnXRWyEUXbz5/ECNj0utTFwosAaTESZfbX9DKGxBekPz2r20xCuyEBmdJ2eOISN4PbbwtntUIp90Mq5mHLyBg0OVFY03+qFCZRBBEdPVLvwn5MKCbMa5O6tN1uf0YGvXJ/WvJbJOANMQ7EAwP9faVaFJfPBIN6V7Y2giX24/f/rVNvuzHly1BeVnigkwQRfk8QrbJ1GHKm88vICgIspIcKNE5byk923fffRdf/epXsWTJEpx55pnYuXMnbrjhBvzsZz8z+viIAkEQRASC0pfove1deH3TfgDAyuUtsFpMmDWlBktnN2PWlBrV3XymvPUMuOH1BRXKGxVvmUAe1K2iHrFdQhPP5UXCGoPZ/NIJLWGLsabasPLWFMc2yfrrbBYTyhSzBssSFL6FxsLWRpx+1BQAwNTmCnzjrNkw8ZIC/tnu/hwfHZELvArL5KJZjeA4LsK2XCr0DnsQCAowm3i57y8fsFpMcgF9oGdUVh5MSWyTQNg6GYhW3kps4RsPtcASJcNjkb/5zJmRiDFPQC6W88XJUog4FOdg5ftTqp9h3c/2nXfewerVq2G323HjjTfKiWuzZs3C7373Ozz22GOGHySR32xu68ZND76N9lAD9cbPuiACmDquEnOm1mq6j0qnFZVOK0QAB3pHFcpb/hQPxYQzwaBu5s+vKLOojhHIFcy6mOq4AFEU0T2YWHlTJkjKYwIqbRGhOcrEyWKAhbjMmVaLI2c3Y9kRkwAAf3zji7T6C4nC5JMvwpbJqeOkMS41aX73ChHW79ZU68g7+3B4WLdLtkBqsT6yvrigIEIQwgpcqS184xHPNskYdEV+/lk6djwEQcRHO3tD983n1fm00JACxqTPqVtx7i1V26TuZ3vvvffi5JNPxhNPPIFLLrlEXuxcddVVuOKKK/Dcc88ZfpBE/rK5rRvr1n+quiO7u2MYm9u6Nd+X8oREtsnMUs4KEJWet3xNxqphiZPDqS0gB10++PwCeI6LsEE21DjAQdrNG1HsrMpjAqJ23Z3yrLfCV94AoCO0SB1XK33/Tj96CuxWE/Z2jeC9bV3YvncAG7d2YvveAQgCFXPFzqa2sGWSbVrUGJT2Wkh09oWSJvMorIShHBfAAktMGoo35aBuvyIt12qm8ywQtk164hVvI9HFW3zljW1qP/qXbQCkdpKbHnxb15qIiESe9aZQ3uTAkhLr29T9bLdt24Zzzz0XAGIi3I855hgcOHDAmCMj8h5BEPHUhp0Jr/P0hp2aF3zyCanbRYElGYYVIGq2yaE8CythyLPeNFhV1GAKU321PWJ2oNVsku9b2fcWHVbCYFZSV46VN0EQDSmsOtgitV5apFaWWeUZX4/8eSvWPP0hfv2S9L+0+ChuvP4gPvpcUgoWzQr3PJaibbIzD8NKGBPqQ4mTPaPhwBIttsnQ715QEGXFAig91SIeTHnzxrFNsnMje/3jKW/xNrUHRrxYt/5T+g1NEXtU4mQpq8e6V8YVFRXo6elR/VtHRwcqKirSPiiiMNjRPpj0ZN4/4sWO9kHMmlKT9P6Uu4ns/9tttCOYCcoT2SbztniTdv9TtW6phZUwGmvK0DfsRdfAGGZMrJIeR57xln/K2+a2bjy1YWfE96+mwoaVy2fqChpxuf1yH4cyDr2hWrKSRteDbPFRSoOaS4lPvuiDzy9EWCaB3BRvgiBiR/tgwqCrTBJWpPNQeQsFfB3sHYUvFNhg1qG8BQRBtgaaeC7vbKG5gilvyWyTMydW4UDvqGrxpnVTe8HMBnrddRI9qLuUNyB0F28nn3wy7rnnHrS0tGD27NkAJAWus7MTDz30EE488USjj5HIUwZHtZ3ItV5vUmM4Arm+Slo8km0yM8jKm0rxJidj5VnxJi8gUwwsYTPeGhVjAhiNNQ5s2zsQMag7POMtUnlzhpS3XKVNsl3daFIprFhfT22lTVa5BUHEH9/8IuHtaPFRXLBC6a/v7QMALGptiHDW1MrFW+phQXowanMiFdhrsa97BID670Wuaax2wBJKAGVFpp7iLRgUS7ZXKBFyYIlK8SaIIoZc0sbmzInVeOOjg6rFm9Gb2kQYZpscCylvSutvqX2OdRdvN9xwA7Zs2YLzzz8f9fXSEObvfve76OzsxLhx4/Dd737X8IMk8pNqp7a4dq3XG18fjkDuDKkkZJvMDLLyliBtMt963sILSB8EQdRdODDbZJPKYoypcd2KxEmm8EX3vIVtk9lX3oze1e1Q6euhxUdpoVYovf1ZJ2ZMrJILpZrK7AWWGLk5kcpjR78W69Z/gou+1JJXSjPPcxhf58TerhHs7ZSKTN22yVCvkLXEFr2JCAeWCBBEMSJgxOX2yxa96RMqAQC9Q56Yc5HRm9pEGFl580rFNSveTDwXMYS+FND9bKuqqvDcc8/h9ttvx+LFi3H00UejtbUVN910E1544QXU1mpLFyQKn5ZJ1bIaEo/aCsnuogWL2SRbt/Z0SCckUt4yA0tMdKkEljBff77MeGNUl9vAc5y0A5rCoG55QLeKDaoxatabKIpy2mS0bbJctk1mX3nTU1hpQbaGKfp6aPFROsTrzRkZ80f05tSE5ioOu3xyj1UmMLqPWg/xXotBly8v+5RYwNceuXjTo7wJpLypYFOsN6KtkyyspKLMgvoqB0w8h6AgxnxejN7UJsKwzXw2qNvPLMMl+BlOSdawWq04//zzcf755xt9PEQBwfMcVi6fqbpLyrhw+UxdCsnEhnJ09I3JCwQq3jIDGxXg9gYiBl4C4VEB+Wab5HkOlU4LBl0+/Pvjg2iZWK25D0YQRXSHLC5qyhsr3rpC4wLc3oDctB69QcGUt1yMCjC6sJKVN8UQYlp8lAZ6VNwKp1VerA6P+mLUaKPIlepbiH1KE0J94cz6rkV5Y9cJCKJcnFgoaVLGaubBARAhpUPaFafAwZBlsrrcBp7nUF9lR9eAGz2D7oj0YrapnehzrGdTmwhTJgeWRCpvpZY0CaRQvK1duzbu33ieR1lZGaZMmYJjjjkGVmt+Lf4I41nY2ohrV8yNsZrUVthwYQr9CRMbnHh/e/jfZJvMDE7F8O1RTyDCIpmvgSWb27rlfrwX/70bgPY+mIFhL/wBASY+ckwAgwV0uL0BuNx++URd7rDIVhqGM4dDuo0urJjypkzUo8VHaaC3UKout6Fv2IP+EW/Girdcqb6FaBVmyhtD26iAkG2Set5U4TgOVqsJXl8Q3ijlbSgUVlJVLp0XG6odcvGm/ExkYlObkGABdixtspQ/w7pXxi+99BI6Ozvh8/lgNptRXV2NwcFBBAIBcBwnz32bMWMGfve735GNsgRY2NqIBTMbDEkGYylaDFLeMoOJ5+GwmeH2BjDq9svFW1AQ4MrDwJJ0+2BY0mR9tUPVG2+zmOSCpXvALe9m11bGFkFMtRzzBCCKYszIlExiZGHlDwTRMySpkeMVyhstPkoDvYVSTaVUvGUycTJXqm8hWoWZ8sbQoj7ItklBgD+091SKC99E2Cyh4i1qXABLmqwOWYjZhh/7DVXCNrUfe3V7hL0+1U1tQiLc8xYZWFKKfZu6n/H1118Pq9WKX/ziF/j444/x1ltv4ZNPPsHatWtRU1ODe++9F3/+85/BcRx+8YtfZOKYiTyE5znMmlKDpbObMWtKTcoLu0kNVLxlC6a+KQd1u8b8EAFwHFARKlJyjRF9MCxFUs0yyWhS9L3JYSUVsQoDs00KoigPk88WrLBKhNbCSrKISifE6EKdLT6iL6+tsNGYgCJBb6HE+t4yWbwZ3UetlUK0CleXWyMcFCZNgSWseAsrb6W48E2EzSK9HtHKW9g2GVbegPiDuhe2NuKo2U0AgHnTavG9CxdgzdVH029nGkQP6ZZtkyX4Gdb9jO+//358+9vfxmmnnQY+tIPNcRyWL1+Ob33rW/jlL3+JmTNn4qqrrsKbb75p+AETxU1dlV3+8QSkIaSZaE4nwomTynEBLAikwmHJG2XFiJCOcNJk/JlN4b63sbgz3gBpscN6R9TSOjMNK6yi3x+rmddVWDHL5Pi6MlX1cGFrI3582WL53zdecBgtPooIvYVSTRbGBRi5OaGHXBWN6cBxXIT6pi2wJGyb9IXSJksx7CERNotUECdX3qRzQ7xB3QBwoFfqKV5yaFNam9qEhCNqSLePijftdHR0YMqUKap/mzBhAg4cOAAAaGpqwtDQUHpHR5QcH+zoQSAYLtYeeukz3PTg23mX9FUMOFXGBeRjWIkRlqZw0mR85a1RHhfglos3Ndskx3GKQd25mfU2d2qdvKlx6uJJAKSEzNmHaLeps7CS5rr4BW1FmQVsuTGxoYIWH0WE3kKpNkuDutnmhHITjz1+plTfXBWN6TKhPvzdHXR5k250Kod0h5U3crcosVmTKW9Rtsk4xZsoimjvdgEIz7Al0sMeVbwFSjiwRPcznjFjBp577jnVv/3xj3/E1KlTAQB79uxBYyPt0BLaYX1NwagTEOtrogLOWNSUt3wMKzHC0sR63hIqb9XhxMl4A7oZuUycBID2HmlRUOW04vxlM9BU44A/KOKDHT2a7yOsvDnjXsfE8+G5djkIaDECQRCxbU8/3vxgP7bt6SclX0E8FVetUKoJqdDZmPW2sLURc6aGNyLOPuaQjKu+7LWIVuDy1Sq8ua0b724NnxM3ftaVdKOTOQaCQbGkLWeJsIcCqmICS0YjA0vqq6TzxciYXy4mlAyMeDHqCYDnuIhRLETqkG0yjO7Akm9+85u49tprsWLFCpxyyimoq6tDb28vNmzYgLa2Ntx3333YunUrfv7zn+Pcc8/NxDETRUghRjUXOnLPm1J5G82/sJJ0QzoEQZR3RxP2vNWGB3Uze4aabRLIbeIkAHkw75TmCnAch6PmNuPFf+/GO5914ph54zTdhxblDZCK/FFPoCCLN7Why1oTSkuFw2bUA6GgsQuXz8SkhnLVwClW1AxmoXgDImdQVobi2TMNC9+65aF30DvswfknTccpiyfn3Tkn1QCniCHdATYqoPQWvomwsuJNYZsURBFDIeWN9X6W2c0od1jgcvvRO+SJUdf2hzbYxtWV0WtsEDGBJXLaZOmpx7o/USeeeCJ+85vfoKysDGvXrsVtt92GBx54ABUVFfjtb3+Lk08+GZ2dnTj99NPx7W9/OwOHTBQjRg8fJpITVt7CiyRZeSvLn+ItXUtT37AHgaAIs4lLGHHOlLdRT0Ae0K0WWAKEC98xlR3XbLC3SyreJjdVAACOmtMMANi2Z0CTrU0QRXRqUN4AoLxM+pywMQ2FQryhy6TkR9I14IYgSgOKly+cGLc3RxlYIoiZVy9HQhbu6P+faXieA/MKz5yYWmpyJkknwCkibbKEVYtEsEHdSuXNNeaXHUHKjc1EfW/MMhmdoE2kTnTPWyl/hlMaorV06VIsXboUPp8PQ0NDqKurk8NLAGDZsmVYtmyZYQdJFD+FGNVc6KipRyywpCqPlDcgvXmCzDLZUO1IuBCzWU2oKrdiyOWDKEqJm9UV6q9DmT22XzCb7GPKW6h4a6h2YObEKuzcP4SNWzvxX0eq9yUz+oc98IXm3tVXJ57ZVeGQXoNcPddUICVfOwdCCsGEemfCsRdV5VZwkFSbkTF/xn8jlEpvtjcO2MLdlodpx+nMpJOLt6Aohz1Q2mQkdhXljYWVVJRZIoJhGqod2N0xolq87e+RnA3R8/iI1GHFmy8gIBAs7Q2IlIo3r9eLtrY2+Hw+iKKIPXv2QBAEuN1ubNq0CTfeeKPRx0kUOYUY1VzoqPa85WFgCYNZmu565kNs3zeIEw8fj1WntCZdfHf1M8tkYnsgADRVO2R7THW5TXUmHKA+ZiFb+AOCnGI2pTm8q3vUnGbs3D+Edz5NXryxfrem2rK4z5HhdEjPNZvqR7oU4tDlXHEgtMicUJ94kWk28agMbW4MjHgyWrwJohjxu5Rty65cvFnyr3hLZ6Mz0jZZugvfRFhVet6iw0oYiUJL9lNYieEoR0d5fEH4Stj6q7t4e/fdd3H99dfHTZJ0Op1UvBG6MXL4MKENtiiP7HnL3+INkCxN0ydUYfu+QXA8l7RwEwQR2/b2AwAsZg6CICa8TWNNGXbsl37b1JImGeFB3dlXow70uhAURDjt5oievMWHNuKpDTuwv2cU7d2uhIsGVryNS9LvBoSVt0LqeSMlXztsIyB66LMatRW2UPHmxSHNmTumUbcfSmdmNjcOBDEco5+PxVs6G51y2mRQUPS85d9zzCWsQPD4Y5W3+MVb5PgMf0CQf2MnavheEdowm3hYzDz8AQEebyC8AUFpk8m55557UFNTg/vuuw/Lly/HKaecgoceeggrV64Ex3F4+OGHM3GcRJFTqFHNhYw8KkAtbTKPet6iSRbRzNjc1o2bHnwbH+zoBQC8v70naRpbY024GLKY+LjJhLlMm4wOK2E47RYcNr0eAPDy23uwcWsntu8dUH0OLKxES/HGet4KqXgjJV874eItub2rOguDuoHYz5ori7ZJn2LRno/FWzoz6czKId0lvPBNBHvPfQrb5JArMmmS0VCl3vPW0TcKQZQ22JK9V4Q+mHVyTFm8WUrvM6z7Gbe1teG6667Dl770JZx00kno6OjACSecgP/5n//BeeedhwcffDATx0mUAIUW1VzolIf6tlyhAkQQRbm3JF+VN0B5wow/LDiVsIrNbd147b12+d/b9w3GLfbUkjqzxd4uyY7D+t2UsEHj72/vxq9f2oo1T3+o+hzCylvyBbtsry2gwJJCHLqcC3z+ILpDPaHJbJNAOMAn08VbdI/bSBY3Drwh1Y1Dfi4K09nojBjSTbZJVVKxTfYOeSJCfJTz3RL1kRL6YeMCPL5gOG2yBDcgdD9jQRDQ1NQEAJgyZQp27gw3hZ966qnYunWrcUdHlBwLWxvx86uPxvcuXIArz5qN7124IOPzfUoVprx5fUEEggJcbr98AqoIqS35CDth9g25VVPvUkljY8VetJIWr9iTw15yoLzt6worb0o2t3Xj1Xf3xVxf7TnoUt5UeiPzHZ7n8LVlMxJeh5R8qYgXRWkzQksPG5t7yOYgZgpmk2QF+MiY1F+fDdii3Woxgc/ThXeqG51qaZMUWBJJYttk5HekptIGE88hEBTkXmkgPCaALJPGoxzUXcp9m7p73iZPnoy2tjYsWrQIU6dOhdvtxq5duzBt2jQEAgGMjo5m4jiJEoLnuZIPEcgGZXYzOAAiJOsk290ud0QmauUb4ROmiMERb0z8v9awirZ9Azi6rjylZEJWvGW75y0oCPKurlJ50/McxrwBWdlori3O4g0A7Fbp9MZxiOif0pJQWiocVPS7aVEI5FlvrgwXb6HP2vi6MgyMeBEIivD4grJlKpOwlEFbHqpuSliA0472QQyOelHttKnO51NiUrNNluDCNxFqtsl4ypuJ51FXaUf3oBs9g275+0FjAjJHeFC3snjLP3tzptH9rT3zzDNx11134cknn0RtbS3mzp2L//f//h/+8Y9/YN26dZgxI/FuJ0EQ+QHPcXLvlsvtz/uwEoaJ5+UwEbW+N81hFaETctu+5LPRomcMluUobbKjbwz+gAC71YQGxcBxPemKbL5bbaVNLnASUajF28bPOgEAJy2YgJsuXCAvXL913nwq3ELs7w2NCdAYZ85mvfVnyTZZW2mHNVREZcs6qVTe8h220bl0dnPc+XxKlKMCSnnhmwibjsASQH3WGyVNZo7wrLdgSW9A6H7GV1xxBS644AJs2bIFAPCjH/0I27ZtwzXXXINdu3bhe9/7nuEHSRBEZmAL81FPQBFWkr+WSUa8lC9AR1hFyAIz6NKWZKcsCpnl1O0NZGVgMYOFlUxuLI+wdOlJVzzILJMaVDcgHFgy6gkgKAh6DjdnuL0BfLCjBwBw9NxxmDe9DofNaAAg9TISElrHBDCYbXJgxJNRGyOzTZaXWVDhsERclmlY8WbPwxlv6SL3vNGQ7rjY5J436fURRFE+N0bbJoHYAK2hUR+Gx/zgAIzX+L0itMOKN2XaZClaf3V7EHbv3o2bb75Z/ve8efOwYcMG2TpZXk47DQRRKDgdFmDAXVDKG8BOmAPoHYpV3rSOnWidLFlz1U7IaiiLQhZYIkIqFJiNMtPsDfW7TY7qd9OTrvjxF30AtIWVANJzle21nkBeJ5EyPtzZA19AQFONA1PHSa/VYTMb8EFbN7bu6ccpiyfl+AjzA93FW0h58PkFjGXwc8/CcSocVpSXWdE37M1aYI7Pl78z3tKFqc+BoCjPyCrFhW8iZNtkqIh3jfkRDPVHq50bo4s3pro11pYV5Wco1zhCbhHJNlm6c950P+OVK1fixRdfjLisvLwc8+fPp8KNIAqMcsW4gKGx/B8TwEg0LkBvGlvr5BrdyYRmEy/buUazaCfcx8YERCVN6klXPKgjrASQdutle22BJE6+81kXAGlwOevlOrxFUt7a9g0iECwMBTGTuL0B9A1LyrWWGW+AZCVkvxmZTJxkFsmKCOUtO589TwHZJvVipiHdSbEp0gyBsGWysky9FzzaBSInTWq0IhP6sNtCPW9eSpvUhcViQU0NhUkQRDHAFCSXpxCVt/jjAha2NuKqs+fEXK6WxpZq9Ha2EycFUcReFlYSpbzpeQ6dOsYEMAqp723I5cXWPdJg9qVzmuTLDxlXiYoyC7z+IHYdHM7V4eUNrIivclrl91cL2Zj1xiySFWVWOfk2W589ZpssRtUk3PNGtsl4KJU3URRlW32VSr8bANRH9bzJSZPU75YRypRpk/7S/Qzrtk1ef/31WLNmDUZGRjBr1iyUlcXu3o4fP96QgyMIIrOEB3UHMDya/zPeGPVxhqMqYf0GVguPS788C9Xl8dPYWPT2Uxt2RixKEyUTOu1mDIx4MZal4q1nwA2vLwiLmVdVzeI9ByWf7upDd+g1a1IEniSjvMyCrpC9Nt95d1s3RBGYPqESjTXh14nnOcw+pBbvbu3C1j39JT/jTbZM6lQIaitt2N/jynDxplDeQk6AbPW8Mdtkcfa8UdpkMljxFhREKdE4QVgJEN5IHBr1wesPhsNKaExARogYFRAs3c+w7uLtxz/+MYLBIG666aa419m2bZvm++vq6sLxxx8fc/mdd96Jc845B9u2bcNPf/pTfPrpp6itrcWll16Kiy++WL6eIAhYu3YtnnvuOYyMjGDx4sW47bbbMGlSuKchG/dBEIWIPKi7IHvewidMtV1ytjid3FiBpXOak96n3ujtMll5y05Bw/rdJjWWy8ED0ag9h4+/6MVf32vHAy9+GhGZ/5MnNmOlxsh85eck33knlDK5dHbsez5naqh42zuArxyX7SPLL+QxAfX6FpnMnts/rK56p4soivLnrMJhkVXBbNkmCyltUi/KUQE+Oeyh+J5nOtis4d9Wrz8Yd8Ybw2m3oMxmxpg3gK7+MVnRpqTJzBAxpLuEE1N1F28/+clPDD2A7du3w2azYcOGDRFzZioqKjAwMIDLLrsMy5Ytw+23346PPvoIt99+O5xOJ84991wAwAMPPICnnnoKP/vZz9Dc3Iyf//znuOL/t3fv8U3W5//4Xzn0fKDnFjmDUEBAChRhDgVEPvtN0AHu5xDcpqIoChNFxMlE3RCmRRTEAyowJ6cpB8dEUWTqREBaUVRooRzLoS09N22TNMn9/SO57yZtmibpncOdvp6Phw8huXP3DneS3leu631ds2Zh165dCA8P99s+iJRIyrzpG1Fj+2bbnWG9gRYTqUVUhBYNBhPKqvVOGy5c9LANOuDZjEGx5NRfZZPnWlnv1lzz51Bt60TZvDmgOLzb1VBfkdhx0l/ZD09ZLAJOFFXhTHENzhXXQq0Csge0fE7X9EoCAJy+WIMGg8kvc8OC1cUrnr8/gKbgzVeZN0Nj00VZIMom9SFcNqm1feljMlukdZ8dMWvhikathlajhslsgbHRLA3fbq1sErB+mXiupBY/ni6HySwgMlyD5E6RrW5P3uOQbiuPf3NNmTJF1gM4ceIEevbsibS0lr9o//GPfyAsLAzPPfcctFot+vTpg3PnzmHt2rWYNm0ajEYj1q1bhwULFmDs2LEAgJUrV2LMmDH49NNPMWnSJPzrX//y+T6IlComqqkRRdOogOAP3lQqFVITInG+RIcrVQ3OgzcPO+l5yt+DusXMW/P1bq5YLAL+9d9TLrdpPoDcmbgo62vC33Pt3JFXUNqiVFSjVuNkUVWLoDQ1IQppCVEorWpAwfkqDO2b4u/DDRoXyrx7f4gdJyt9NKhbzLCFaa1NgWKj/F02ab0gjAjhskm93QDqjnjh25aIMGvwpjc2Zd4SXXQlTk2IxLmSWhw5WQbAut7NnaH35LloBm8AvGhYAgBGoxGbNm3Cww8/jDvuuAOnTp3C5s2bcfToUY/3VVBQgD59+ji9Lzc3FyNHjoRW2xRjjho1CmfPnkVZWRny8/NRV1eH0aNHS/fHx8dj4MCBOHz4sN/2QaRUYknSleoGu3bIwT/nDXDdcRJoWjjubic9T/lzULcgCG5n3ux5MrzbFTHIr20IrsxbXkEp1uz4qcVzbDRbsGbHT8grKG3xmIE9rVlJsalJR6RraJQyCp7Oomqa9ebb4C0uOgwqlUrKvPl7SHdEWOhdEGpsXfkaDE2fWR3xwrctYuBuXzbZVuYNgNQIievdfEdci9pgNEulvx2x26THmbeKigr84Q9/kOa6FRYWQq/X44svvsDy5cuxYcMGZGVlub2/EydOIDExETNmzMCZM2fQo0cPPPjgg7jhhhtQXFyMfv36OWwvZuguX76M4mLr2obOnTu32Ea8zx/7SEnx/ttbLT84g4r4y03TQT4M4mPE9SvWX1DREVpE+WlmWXuJzSjKa/Qt3kcGo1nqRNkjI87p+6y951pcG9hgNDndv8UioOB8Jap0RiTEhiOze6LL7JYrZVUNqNOboFGr0L2V5+OMuxe8tQ2NLvcpXrjU6Z0/10CwWARs3nvS5TabPz+J7AHpDud6UJ9kfPH9JRw/Vxk0z8XfSiqtHUdTOkUizsMyafFCtbLW4JN/vwajNbCIjw6HVquWgkVdvevXKCDP57fRVk4YFakNudeHON5EDFBVKmugosQskS9/V0eGawEYYDJbpC85kjtFtvp6SE9ybCDV2u8c8lzz8yw2MGrQm6TS31B8r7bF4+DthRdeQF1dHXbv3o0uXbpg0KBBAIBVq1bh3nvvxapVq7B+/Xq39mUymXD69GlcffXVWLRoEWJjY/HRRx/h/vvvx/r166HX6xEe7viLJSLC+kFuMBjQ0GD9xt3ZNtXV1QDgl314S61WITGRs0CCUXy8+534lKxLs3FXifERinlN9uzSCQBQXdfY4phPnK8EYO0Q1qOr6zVs3p7rlCTrzzSahRY//5ujl7B2548or25q6pDcKRL3/2YwfjHEs268ZouAPYeLAFgHvyYnx0rlT23p1rmT29u5Ou8ZqdZsX4PRHDSvjx8Ly1DRVlaxxoBLlXoMvtr6BVt8fBRGX9sVa7b/iItldbCo1Uju1DHe6/Yqjlszkj2vcn3enYmwlTHW602Iio6Q1qDIxQzrEPnE+EgkJsZAE24rTzaYEBsX5VamqD2f37YCBCR1ig6a17pcEhKs1zsNhqZ1fUlJys4S+eJ3dbStIkUbHoYq23KCnl0TkZjg/Gf17JLg8Pf+vVJC7rUTaOJ5Fj8PGu1mdaamxEoNxDoKjz91//vf/+LPf/4zevToAbO5qW46IiIC99xzDxYtWuT+D9dqcejQIWg0GkRGWhd3Dho0CCdPnsQ777yDyMhIGI2OZTpisBQdHS09xmg0Sn8Wt4mKsp5of+zDWxaLgJqaeq8fT/LTaNSIj49CTU0DzB1gkK/Z6FjyFxsZhsrKugAdjWdibOUTF0trWxzz8VPWcuarUqJbfT7tPdcqi/UxVTV6h59xOL8Uqz9oWUJeXq3Hsn8cxtzbhyC7f9sdHsV9bdxTIAUpl8vqcM9zezDj/zLd2sdViZFIiotwGeQkxUfgqsRIl+ddZbENrK01BM3ro+hytdvb9UiLcTjXPTLicPZyLQ58fxHXD+nc9k5CzAlbyWh6guvz3prIcA30RjNOF1V4NC/QHcW2cueocA0qK+tgEQSoVSpYBAEXLlUhwcUwejk+v3W2Bj9mkzloXutyabA9NzFjodWoFfscffm7Osz25diZi5WwWASoAAgmk9N/q8P5pXj343yH2/7+7mHM/JV7n9HkWvPzbHJyrut0ehiCrKTfW/HxUW5lkz0O3gwGAxISEpzep9Fo0NjoWV16TEzLD/6+ffvi66+/RkZGBkpLHdcsiH9PT0+HyWSSbuvevbvDNpmZmQDgl320h8kU+gGCEpnNlg5xbsI0KunCCLCuM1HK8062XcSVVjWgsdHsUPpz3tbc46qUmDafj7fnWmxZrGtolB5vsQh4b0+By8dt3FOAa3snt1lCKa7naq6i1oDVHxx1q0skYB3O7Ww/0v039YXFIsBiEVrdJipcbGxjDJrXR5ybg6XjosKkizvxXA/okYizl2vx9dFLECC0ORYi1IizqDonR3t1PhPjInC5vB5llQ1IlTlzKXZHjYls+iyKjdKipr4RlbUGtwaKt+fzW2zmoVWrgua17ithWrXin6MvfleL2d3LZdYv1+OiwwCh5fVaa5/RlTrPPqOpbfbnOVyrlta7qVSAYBFgEpT9OvaUx0WigwcPxqZNm5zet2vXLqmM0h0nT57EsGHDcOjQIYfbf/rpJ1x99dXIzs5GXl6eQ4bv4MGD6NWrF5KTk9G/f3/ExsY6PL6mpgbHjh1DdnY2APhlH0RKpVKppGYUgDJmvImS4iOhAmBstKCm2Qyoi7ZOel19uHA82km3SbkahFgsAja1tZ5r70mXAZdIHN6d2CxjkRQX4fbFhTgqoE5vgtkSHL8k+3VLaPGcmkuKi3A6jFtc4P7z2Uqs/fcxvLD5CB5//RunDU5CjSAI0vvD0xlvImnWmw+altg3LBHF+nFQtyGERwU0L7dmsxLnxHMvrg11NqBbzs9o8ox9qXaYVq3INZvt5fE7909/+hP279+P2267Da+88gpUKhX+85//4IEHHsAnn3yChx56yO199enTB71798Zzzz2H3NxcnDp1CsuWLcP333+PBx98ENOmTYNOp8NTTz2FwsJCbN++HRs2bMDs2bMBWNepzZw5Ezk5Ofj888+Rn5+P+fPnIyMjAxMnTgQAv+yDSMnsv8lWUvAWZtfMoKxZx0lphpWPxgQAzue8VdW5dzHb1nZyBYGi4ZlpePHBX2Dh9Czcf+tALJyehRce/IXb3wqLzxXw31y7tqjVKtw5oa/LbaZP6Nsim5ZXUIp/7z/bYltx7l2oB3A1dUboGhqhUlkzb97w5aw3nS14i7UL3sQsqz9mvUnBWyiOCmhWjhXO4M0p8dyXVlh/rzjrNCn3ZzS5L8ruvdkRO00CXpRNjhgxAuvXr8eKFSvw9ttvQxAEbNiwAQMHDsSbb76JUaNGub0vtVqNN954AytWrMAjjzyCmpoaDBw4EOvXr5e6O7799ttYunQppkyZgtTUVCxcuNBh1ty8efNgMpmwePFi6PV6ZGdn45133kFYmPXDPjk52S/7IFKqmEhlBm8AkNopChU1BlypakAfWwMTXUMjqrxsg+4JccC53miGyWyBVqNGQozrTJCore3kCgLteTKAvDmNWo2YSC3q9Cbo6huDZhagmFX8554T0pB5wJpxmz6hb4vg1N1vy9uae6dUFouAAz9buygnxIRD6+WFjxS8+WDWmziOQpwtCNgPifdD8GYM3cyblpk3t4jnvszWcCrByYw3X3xGk3ui7DJv4SH4PnWHV22isrOzsWXLFuj1elRXVyM2Ntbp2jV3pKSkYNmyZa3eP2TIEGzdurXV+zUaDR5//HE8/vjjAd0HkVLZZ946BclFubtSE6JQUFTlMOvtkq0kLDk+0uFDXm7RdvuuN5gQHx0ulfK5+ka2tVI+e3IFgXKKjQqzBm9+mrflruGZaVCrVVi97Uckx0fg3lsGtrp+reB8pdvflnsb6Aar5sPMK3VGPP76N7jTSZDblsQ4a3Ovyhr/lE3G+bVs0jakOwQvCluWTYbec5SDOEtMXAvurGwyGD+jOwr73+sdNfPm8bP+zW9+gw0bNqCsrAyRkZFIT0/3OnAjosCLjmj6BV5Za1BUjX5qgvUiUpzpBtgP5/bt55JarUKU7d+u3lZK6G0pX3PtWc/lK7F+LF3zVJUtIOmWFof+PVqfpydmZNvcX4h9W97aMHNvS0V9WTbpNHiL8s+gbrOlqZtdRyibZObNuebZHGeZt2D8jO4oIu3LJjvoa9jjZ33VVVdhxYoVuPHGG3Hvvfdi165d0Ov1bT+QiIJOXkEp8k6USX9/77MTimrckGKbu1NW3ZR5u3jF1ozBx8Eb0FRyWmd3UTk8M63Vn52aEInBvZORf64SB48VI/9cpdNgWa4gUE7BHLyJjTOS4l1fTDm7CHO6XQh9W+6LxgoJtvLq0sr6Vl/D3jCZLWgwWL8IiYv2f9mkwdjUjCciLPQuCltk3jpo1qItzbOuzjJvwfgZ3VHYZ9462nBukcc1Ra+99hpqa2uxZ88e7N69G4sWLcKSJUtw880347bbbsPo0aM7ZOcXIqVptc2x7dt4JbQ5TrUFb/Zlk2Kzkq5edtLzRHSkFqh2bOJhaDSjpMLapWzWpAFQq1XQqNX4x8fHcaVKj0dWfy21IwesWQxnpWvDM9Mw+pp0HPi5xOH21tZz+VrTBXTwzdMpr7F+gZgcH+lyu8zuibKUtSqJJ40V3CkVzSsoxcbPTgCwDm1/YfORVl/DnhK/GFCpbO8tGzELp/Pxa09sVqJWqbxeDxjMNBrHa7PwEAxQ5RDZLOvqrGEJ0LTm1r4cGQjcZ3RHEdWs22RH5NWCkLi4ONx+++24/fbbUV5ejk8++QSffPIJ7rvvPqSkpODLL7+U+ziJSEah0rhBDN4qagwwmS3QqFVNbdD9mHlrPi7AZBaQHB+B0ddkSF9mnbpYjU8PFzkEboDrYFks85swvCt6d4kP6DwyMfNW1xAc3SbtVdgaCyS1EbyJ35a7nHsXYt+Wy9lYwddf+IiZtdioMKjtvgQWm5f4umzSKHWaDM3241p1s7LJEAxQ5dA8qHWVsR+emYasvqk4UVSFqjpDh5sZGQhRdks9OmrH1HY/6/LycpSVlaGmpgZmsxmdOnWS47iIyIdCpc1xfHQYwsPUEACUV+tRpTOiTm+CWqXyug26J5yNC/j5TAUA4JpeSdIFoMUi4HC+61LU5qVrBqMZJy9UAQDGD++KUQMzXK7n8rVYad1R8GXe3C2bBOSZe6ckcjVW8MdcKzGrG9escVKcv8ombcFbqHawa555CwvR59lekWFNeQ0V2u7CLHbyDfRndEcRFc6GJV5l3oqKivCf//wHu3fvRmFhIVJSUjBp0iT8/e9/R//+/eU+RiKSWai0OVapVEhNiMLFK3XW0knb78z0pCi/dFITB3XX2WXemoK3ZOk2b0rXCqQMXiTSE6PkPnSPiRfUOj+0a/eExSJI/7ZtlU2KxG/Ll2/MQ+HFGkwY3hW/uymwGTeLRfDJt/dydUCVu/zSGbFsMs6uAy7g+NoTBMFnWTF9CI8JALjmzV326x3josNCsoRWyZoP6e6IPA7epk2bhmPHjiEyMhI333wzFi1ahNGjR0NtS8f78oOViOQRSm2OUzvZgrdqvVT25Mvh3PbEzJvYbbKy1oCLZXVQARhgdwHrTbDsLIMXSGKJqE4fXMFbdZ0RZosAtUqFTm42JAGs35b3zIhH4cUaaLXqgAZuzdv4A62vhfSUXKWi/vjCx1mnSaAp62sRBNQbTA6zKeUkfn5EhmjwplKpoFappBb4XPPmXLjdmjdnzUoosOzLJjtq8Obxs05ISMDy5cvxzTff4IUXXsD1118PtVqN0tJSvPrqqxg/frwvjpOIZBRKbY5TpHEBDXadJn3frARoGtQtdps8dtYacPXsHOcwP8+bYPln274G9UqS5Vjbq6lpRHAFbxW2ZiWJceHQqD37lZbcKdJhH4Egdxt/Z8RS0eYBmielov74wkcsm4xtVjYZplVLTSR8+fqTyiZDcEyAyL50kpk35+yD94Q2fk+S/zmUTXbQ4M3jzNs777zj8Pf//e9/2LJlC7788kuYTCZ07dpVtoMjIt8IpcYN9h0nxYtwf2XeoputebPPltnztHStokaPS2V1UKmAAT2DY1h0sI4KEDtNJrpZMmlPLLMsrw5M8ObPxkFD+iRL69Fm3NwPXVJiPCrNlKv80pXaVsomAevrT280o7a+Eek++j5DDN5CtWwSsJZOiu/gMGbenLIPagVBgMUiKOJ3YUfh2G0ydN+rrnj1zq2oqMDatWsxYcIE3H///fj2228xZcoUvPfee9i7d6/cx0hEPhAqjRvE4K20ssGvnSYBx26TFkGQsmXX9HS8uvR0JpAYBPbuHO+zEjFPicFbvd4Es8XSxtb+U1Hj2Xo3e2LmrSxAmTd/Ng66VGYdXxEbFYbxw7p43FjBH3OtWiubtN5m6zjpw3EBhhBf8wY4rntj5q2lvIJSLN/0nfT3H09XKGr2aUfAId0eZt4OHjyIrVu3Yu/evTCbzRg+fDguXryINWvWYOTIkb46RiLykVBocywGbxdKdRAAaDVqpPmpwYd9t8miEh1q6xsREa5Bny4tu+62NhNIq1Fh9q3XOATLUhAYJCWTABATZX2uAqzPNz7a/fVlviRm3tzpNNmcGPBV64xoNFn8fiHgz8ZBRaW2+YepMV6voWztNQxYvw0f1Du5lUe6RyeVTToL3sRup74sm7R+KRHKwZt9841Q7arprVCYfdoRREew26RbwduGDRuwdetWnDlzBj169MCcOXMwZcoUREdHY+TIkUGxmJ6IvCO2OVaqFFv2RGxQflVytMdrn7wVY9dtUlzvNqB7YqvdyeyD5YtlOmz67CRMZkEKQAFrKZ2YeRvUq30Xw3LSqNWIidSiTm+Crr4xaII3sVQ2Kc7zzFtcdBjCtWoYTRZU1uqRluj78RL2/Nk46II4vD6tfetBm3/hExcVhg0f56O8xoB9eRfw/43q4fW+mzJvLV9bYimlTzNv0py30A1quObNuVCZfdoRsNukm2WTy5cvR3h4ON59913s2bMHDz74IDIyMhi0EVHARYRpEG/3TX1sdFi7Zk15Itqu2+RPtoBrYBtr1MRg+abh3TCiv/Vb3L15F6T7z5XUok5vQlSEBr2uivPRkXsnJgjXvbWnbFKlUkmDvf217s1iEZB/rhIHjxXDYhEcSoCckatxkBi8dZOhmY/9XKtreiXjN2N6AwB2HzyHBoP3Q9xdrXlrKpv0fcOSiBBeC+ZQNtlBL3ydCZXZpx2B/WDuylq9337fBxO33rm33HILzp07h9mzZ2POnDn47LPPYDJ5/wFNRCSXvIJShyHZx85W+m2Ngph5M5os0i91T0odbx7RDQBw8OcS1NgyCmIQOKBHkt8yiO6KC8LgrT1lkwCQbHtceY3vZxrmFZTi8de/wQubj2Dtv48hZ+v30myx1sjVOOhCqTyZN2dGX5OBzsnRqNObsOmzEzh4rBj55yo9uqiyCILUSdJp5i3a96+9jrHmrekzhcFbk1CZfRrq8gpK8eTag9Lf/3vkUodck+hW2eSKFSug0+mwa9cubN++HXPnzkViYiImTJgAlUrFDBwRBUSg1yhERmigUgGCAJgtApLjI5CR5H7pXZ8u8eiZEYezxbX48vtLmPyLnnYlk8Gz3k0UbB0njY1m6ViSvMi8AU1NS8p93LSktdeqSCxJbS6lU/vXb1bXGVFT3wgVgKt80IlVrVZhcO9kXC6vx/6firH/p2IAns2qq9ebpPljsa10mwT8lHnrKGWTDN4koTT7NFQF+vd9MHH7nRsbG4vp06fj/fffx65du3Dbbbdh3759EAQBf/7zn/HKK6+gsLDQl8dKRCRxd42CT0sqBCDC7gJoYM9Ej77MUqlUUvZtX14Rjpy8gpMXqgA4DvkOFsEWvFXYypwiwjRS8xhP+WNcgDuv1XCtGgt+NxT33zoQC6dn4bqB1ouQ7V+dbvfPF7NuaUnRPskq5RWU4tPDRS1u92RWnfiaiorQOA0qxGycrsEPa95COvPW9PkU3kHbrDsTSrNPQ1FQ/L4PIl597dK3b18sWrQIX375JVavXo3evXvjrbfewuTJk3HrrbfKfYxERC0Eeo2CWAKnb2xqm//diTKPyzeyB6QhOkKL6rpGrN72I2zJB7yw+UjQlYLEBtmgbvuSSW8rQKQ1bz7MvLnzWq3UGaFWqTBqYAb690jEb8b0hkatwo+ny5F/rlJaJ+dpOSLQ1Gmymw9GaMh1USU2IomLct4IR3zt+TTz1gHKJu2bKTHz1sQfozDIewXnK7km0Y53X1WKD9ZqcfPNN+Pmm29GWVkZduzYgR07dsh1bERErQrkGoXWyjfq9CaPyzd+KCxDvZMmD8FYCiKVrvkw++EJqdOklyWTQFO3Ul8Gb968VtMTozFmSGd88f0lvPSv72EyNwU/npQjAvJ1mnTGky9RXHW1FYMyZ2MCALtRAX5pWBK6wRsblrSutVEYSXERmO7B+43kV6Vz73dOR1mT2K7gzV5KSgruu+8+3HfffXLtkoioVYFaoyBnS2mltacWg7e6huBoWNXUadL7cyyWTVbU6GERBKh9sIbb29dqj4x4AJccAjfA88D+Qql8nSabk+tLFJ2LTpPW260ZOUOjGcZGs09mlHWINW8M3lwKhdmnoSgh1r3RNB1lTSLfuUSkSIFaoyBnuWagSz89FWu7gA6WzFu5DJm3hLgIqFSAySygps43z8ub16rFIuDf+8+4fIw75YgmswWXyusA+CbzJteXKFLZZCvzA6MiNFLg4as1lx1hSLfGfkg3gzen7Edh9O+RyMAtCGR2T+SaRDt85xKRIgVqjYKc5ZpKa08dF2Rr3iptwZs3M95EWo0aCbHiuADflE5681qVK7AvqaiHyWydJyd21pSTXF+itFU2qVKpfL7uzWC0ZpRDOnhj5o0UiGsSHfGdS0SKJa5RaH7xmBQX4bO1YnKWayqtPXWwDekWZ7MltRE8tEUaF+DDjpPDM9Nw36SBLW5v7bUqV2BfZFvv1iU1xicloXJdVDVl3pwHb0BTSaWvMr9i5i28wwzpDt0glUJPIH7fByvZ1rwREQWCv9coiJkGV1kRd8s35NyXP4gXz/V6E8wWS0CHiAuC0NSwpJ0ZpZT4SBSi2uez3mKirL9yO8WE4Y6b+rp8rcoV2F8otZZM+mK9m6i1Rg9x0WH4/f9lunVRVSuteWt9bYu1pLLOZ5k3o23NW2R46F4aid0mVQC0mo6RpaDQwTWJVqH7CUVEHYa4RsFfP+vOCX1dDlx2t3xDzn35gxh8CLB21oxvZX2SP9TpTTCarJmS9mbexDVzFdW+LU/NP1cFABjSJwWjBma43FauwN6XnSbt2V9Ubf78JIpKdbj1l73c/jZcDMhcZt58WLZrMltgtq0fjAjlzJstYAvTqr0er0EUSP78fR+sQvcTiojIR+Qs31BSKYhGrUZ0hDWAqwtw6aRY4hgfHdbu8q9kP4wLAIDj5yoBuDeAXa5yRCl482HmTSReVInPr7Siwe3H6mxlk62teQN8O6pCb5vxBsAnnSyDhVg2yfVuRMrFzBsRkRfkLN9QUilIbHQY6g0m1NY3onNy4I5DjhlvIrHhSZkP17zV6RtxvqQWANz+1ri1csSE2HDMuLlfm4F9nb5RGqfgj+BNlJEcDQAorqh3+zFS2aSLbK54ny/KJsWSSY1a5TDIOtSIpc5aBm9EisXgjYjIS3KWbyilFCQuKgyllQ0Bb1pSLkOnSZE4J67Ch5m3E+erIADISIqWulu6wz6w/+eeAlyuqMeEEd08mu+WHB+J6Ej//brvnCQGb3VubW+d3WYtgW1tzhvg27JJg7TeLXSzbkBT2STHBBApF9+9RETktmDpOFlhy0QltmNAt0gsm6w3mNBg8M0Ack9KJpsTA/sJI7oCAHLzS9163IUrtmYlPl7v1lyGLXgrq9Kj0WRuY+umTpNajcpl8CSVTdbLXzYpBm+hXDIJ2JdNhvbzJAplDN6IiMhtccESvMmYeYsM1yLGlpny1biA/PPW4K092dXhmWlQq1Q4W1yLksq2SxKLSsVmJTFe/0xvxMeEIypCAwFASWXb696ampWEu2yiIZVN+uC1Z7CteQvlGW8AoLH9+xobzcg/V9nmkHciCj4M3oiIyG2xMpauWSwC8s9V4uCxYo8vJOUsmwR827Skpt4oZcEyuyd4vZ/4mHAM6GkN/r493nb2zZ/NSuypVCop+1Zc3naQqZPGBLReMml/vy/WvImZt1AO3vIKSvHlD5cAWNd3vrD5CB5//RvkFbiXySWi4MA1b0RE5LZYmTJveQWlLRpxJMZF4M4Jfd1azyU24pCjbBKwBoHnS3Q+Cd4KzlcBALqmxrR7vMLIAWn4+UwFDh8vweRf9Gx1O4sgBCx4A4CMpBicuVzrVtOSWjc6TQJNa97qGhphsQiyNvQRB3RHhOiat7yCUqcjSSprDViz46eg62xLRK1j5o2IiNwmR/AmXkg2n2EmXki2lQkwmS2o0lkfK1vmzbYfX5RN5tvWu/Xv3v6GNMP6pUKjVuHClTpctAVnzlypaoCx0QKtRo30pKh2/1xPedJx0r5s0hVxvaV1zqC82bdQLpu0WARs2nvS5Tab955kCSWRQjB4IyIit8VGieuOvGsaIceFZJXOAEGwNl+Ij5FnULgvyyblWO8miokMw+De1hkNrkonxU6TXVJipPbw/tTUcVK+skmtpmnOoNylk01lk6F3WXSiqMrlsHfA2gDoRFGVfw6IiNol9D6liIjIZ6R27Q3edWWU40JSLJlMio+A2kWDC09ImTcPg7e21u1V1hpwubweKrRvvZu9kQOs5W3fHi+BILQMci0WAd+fLAMAxEVrA5JREde8XS6vd3qM9sSyybg2yibtt5G742Qor3mrqnP9fvN0OyIKLK55IyIit0mjAry8eJbjQlIa0B0nT8kkYJd586Bs0p11ewW2rFv39DjERLYdnLjj2qtTEKZVo6SyAV99fwkRERppsPuRk1ccjumnM5V4/PVv3F5LKJe0xCioADQYTKipb0QnFxlSMYsW68Z6wNjoMJT4YM6gVDYZgmveEmLcWxfq7nZEFFgM3oiIyG1iaVu93uRV0wg5LiTF7FiSTOvdgKbMW7XOCJPZulbMFXcbQDSVTCbIdqxREVp0T4vFqUs1+MeeAun2mEgt6vQtM6KBaEoRHqZBcqdIlFXrUVxe5zp4c7Ns0rqNrWzXZ2WToRe89euWgMS4CJcZ76Q4a/BPRMGPZZNEROS2mCjrd37eNo0QLyRdaetCUhzQndxJvkxBXHQYwrRqCHb7b4076/Y2fXYCx85W4IitfFHOC+O8glKculTT4nZngZs9fzelcLdpSVPDEpZN+oJarcKdE/q63Gb6hL6ydu8kIt9h8EZERG7TqJuaRnhTuibHhWRFtfxlkyqVSsrktVU66c66vUqdETlbvpcCk3/uKZBlnpY7gWNr/N2UIsPNpiU6aVSAe2WTgPyDusXgLTwEgzfAOuD9oSmDWnxxkhQXwTEBRArDskkiIvJIbHQY6g0m1NY3onOy548XLyRf3/kzLM2aWYzITG3zQrJcalgiX/AGACnxESipqJfW1LXGm8YOVTqjLKWL7gSOLo/Dj00pOts1LWmNsdEsZQyLK+rQOSnaZeAurhs8e7kG+ecq0a9bgiwZI3HNW2QIrnkTDc9MQ1bfVJwoqkJVnUFaJ8mMG5GyMHgjIiKPxEWFobSdTSMG9kySAre7/i8TtXUG7Pz6LI6eLkdlrcFlaWVlrTW4SpZpQLfI3aYl7WnssHnvSWT1TfX6grm9wZc/m1K0lXnLKyjFe5+dkP6+ZvtPLge15xWU4uOD5wAAhRdr8MLmIx4NdnfFGMJlk/bUapUsIyuIKHBYNklERB6JjrR+73f0VLnT9vjuOF9SC8Da7n9cVhdMvr4X+nSJh7HRgg+/PtPq4xoMJilTI3fmTdxfWRuZN3fW7bWmvaWL7Qm+/N2UIiM5BgBQVqWHyWxxuE9s+FKtc1y71tqgdnH75uv63B3s3hZ9iJdNElHoYPBGRERuyysoRcH5KgDAVz9cwgubj+Dx17/x+OL5bLE1eOuRHgfAuubs/x93tbTfr49edjo7TWwmEhWhRVSEvMUjYsfJtsom3Vm350p7smftCRz93ZQiITYcEeEaWAQBpZUN0u2eDmqXY7B7WwxGa3AZEc7LIiIKbvyUIiIit4jZD6PJMYviTfbjnC1465kRJ93Wt2sCenWOBwCs230ca/99zCE4tFgE/FBo7d4YEyn/8OkUD2a9Dc9Mw80junr1c9qTPXMncIyJdAxqA9WUQqVSOS2d9HRQu7vbizP1vCGWTUaGcTUJEQU3fkoREVGb3M1+uLueS8q8ZcRLt+UVlOLM5ZYt8MXg0H6OWVm1Xvbh01K3yRoDLIIAtcr18yizBXmjrknHkD7JiI8Kxzu7j/t8npbY8KX5gPCkuAhMn9A3qJpSdE6KxrniWofgzdNB7W5vr/N+fEBTt0l+p01EwY3BGxERtcmTbElbDREaDCaU2C7mxcybO8Fha+ud5MoqJcZFQKUCTGYLausbXQ6WbjCY8OPpCgDAr0Z2R3db+eedE/o6Hd4tkqt0sa3OgcHSlCJD6jhZJ93m6aB2t7ePbXvUQGvENW8RIdxtkohCA79iIiKiNnmaLXGlqFQHAdZgKd4WILWnBb5cw6e1GjUSYq2BQlulkz+eLofJbEFaYhS6pcVKt/tznpbYOXDUwAz075EYlC3fnQ3q9nRQu7vbZ3b3LmAVBAFGY8foNklEysfMGxERtcnTbIkrZ52sd2tPEw93M37uSIqPQGWtAQePFcPYaG615DA337q+b0RmGlTNyis5T6uJtObNbtabWq3C7Tf2wVv/Odbq4+wzlOI6P19lNBtNFoihP4M3Igp2DN6IiKhNYvZDjvVc54qt69rETpNA++ePyTF8Oq+gFEUlOgDA3twL2Jt7wekcMYPRjKOnywEA2f2dZ9I4T8sq3Ra81elNqK03Ii7ammltMFpLYNVqlUPWVFy31zxD2dY6v/ZkNMX1bgCDNyIKfgzeiIioTXJmP5qalTQFb+4Eh660N/gTO2k252xd3Y+ny2FstCClUyS6p8e2eAw1iQjTIDk+AuU1BhRX1CMuOhyCIOC/Ry4CAH47rg96pMW5laEUM5rPv5eH05dq8H8ju+G3Y69ud0bTYCuZDNOqO2R2lIiUhWveiIjILa2t5xJpNWrkn6t0Op9NpDeapBI6+7LJ9sxOa28HR0/niOXaRiKM6N+yZJJaampaYj3vJy9U4+KVOoSHqTFmcGeP1u2p1SqkJ1r3Fx8TLkuwJWbemHUjIiVg5o2IiNzmbD1XXkEpPv/uIlZtOwrBLl5zVnJ4vsTarCQhNhydYiNa7NtZaVxspBa6Zp0m7bW3g6MnnTR7XxWPH05ZSyZH+HlumlJlJMfg57OVUtOSL763Zt2uG5CO6Mgwj/cXE2W9dKlraP014QlDo21AN4M3IlIABm9EROSR5uu5qusM+Py7iw6BG+C85PBcidisJB7OtNbs48jJKz5Z7wR41knz5zMVMBjNSIqPQK/OcW0/iByaltTUG6VmL2Ozuni1v1hbwFenb5Tl+AwcE0BECsLgjYiIvGaxCPjXf0+53MZ+ePc5J+vdmnPW7MOXHRzdXS9XozMi74Q18BjeL5Ulk26yHxew/8fLMJkF9MyIQ6/OzgP4tkRH2jJvLrKxnjBIYwK4koSIgh+DNyIi8pqnw7vdCd5a46sOju40S1GpgC37CqW/HzxWgn7dEmSd2xaqOtsyb6WV9fjk4HkAwA1Dr/J6fzFRtsxbg8yZN5ZNEpEC8GsmIiLymiclhwajGZfK6wA4NisJNHeapTQvCa2tb8SaHT8hz9a8hFp36pJ1NIRFAGptAde/vz7j9b9djK/KJhm8EZECMHgjIiKveTK8u6hUB0EAOsWEIyG2fa395dZaJ822KiPtu1BSS3kFpXh9Z8sRDFU6o9fBr/wNS7jmjYiUg2WTRETkNU+Gd+/77gIA70om/aH5uroandGhVNIZ+5JQcuTuCAZxPaS7ZG9YYlvzFs7MGxEpADNvRETkNXdKDsVW/uJ6t2AqmWxOXFc3amAG4mPD3XqMu6WjHY0n6yE9Ia550xvNMJkt3h6eRMy8RTJ4IyIFYPBGRETt4mp49zU9E1uMCQjWzFtznpSEUkuerIf0RHREU9FQvaH9pZMsmyQiJWHZJBERtVvzksPa+kZs3nsS+eerUFJZj8TYCFwqsw5pbm3GW7DxpCSUWvJV8KtWqxAVoUWDwYS6hkbER7uXIW2NsZFlk0SkHMy8ERGRLOxLDm8e0Q1D+iTDbBGw86vT+ProZVgEAdGRWsRHhwX6UN3iSUkotSQGv654G/zGyDjrTW9kt0kiUg4Gb0RE5BNTxvQGABw6Xor3PjsBAKjXm7DwjQOKabHfWkloUlwEHpoyiHPeXPBl8CvnrDdjo3XdXCTLJolIAVg2SUREPlFW3eD09spaA9bs+EkxwU/zktCEGGu2iBm3tonB76a9Jx3KT5PiIjB9Ql+vz3+slHlrf/BmkMom+X02EQU/Bm9ERCQ7X7WJDxSxJJQ854vgN1oaFyBjwxKWTRKRAjB4IyIi2XnSJp5BUeiTO/iVs2zSwDVvRKQgrBEgIiLZ+apNPBEgb8MSjgogIiVh8EZERLLjjDTypRipbFK+NW/MvBGREjB4IyIi2fmyTTxRTJQt89bANW9E1LEweCMiItlxRhr5UqxMmTeLIEijAhi8EZESMHgjIiKf4Iw08pVomda8GW1ZN4Br3ohIGdhtkoiIfIYz0sgX5Oo2abBl3VQAwrX8PpuIgh+DNyIi8inOSCO52TcssQgC1CrvvgxoGtCtgcrLfRAR+RO/ZiIiIiJFEUcFCAKgN5jb2Lp1TTPeeDlERMrATysiIiJSlPAwjVTm2J6mJZzxRkRKw+CNiIiIFEda9yZH8MZOk0SkEAzeiIiISHHk6DhpNDJ4IyJlYfBGREREiiM1LWlHx0m9XcMSIiIlYPBGREREihMjQ+ZNLJuM5Jo3IlIIBm9ERESkOHLMemPZJBEpDYM3IiIiUpzYSPkalrBskoiUgsEbERERKU5MlK1sssH7skk9u00SkcIweCMiIiLFiZYh82Y0WgBwzhsRKQeDNyIiIlIcORuWRITxcoiIlIGfVkRERKQ4cgzpZtkkESlNUAVvZ86cQVZWFrZv3y7ddvz4ccycORNDhw7F+PHj8e677zo8xmKxYNWqVRgzZgyGDh2K++67D0VFRQ7b+GMfRERE5D+xMsx5MzJ4IyKFCZrgrbGxEQsWLEB9fb10W2VlJe6++250794d27Ztw0MPPYScnBxs27ZN2ua1117Dpk2b8Ne//hVbtmyBxWLBrFmzYDQa/boPIiIi8h9ZyibFUQFc80ZECqEN9AGIVq9ejdjYWIfb/vWvfyEsLAzPPfcctFot+vTpg3PnzmHt2rWYNm0ajEYj1q1bhwULFmDs2LEAgJUrV2LMmDH49NNPMWnSJL/sg4iIiPxLLJtsNFlgbDRDq/X8+2gDM29EpDBBkXk7fPgwtm7diuXLlzvcnpubi5EjR0KrbYoxR40ahbNnz6KsrAz5+fmoq6vD6NGjpfvj4+MxcOBAHD582G/7ICIiIv+KDNdArVIB8D77xuCNiJQm4MFbTU0NFi5ciMWLF6Nz584O9xUXFyMjI8PhtrS0NADA5cuXUVxcDAAtHpeWlibd5499EBERkX+pVCpES6WT3q17k4I3lk0SkUIEvGzymWeeQVZWFiZPntziPr1ej/DwcIfbIiIiAAAGgwENDQ0A4HSb6upqv+2jPbwp8yDf0WjUDv+n0MVz3XHwXIeu2Kgw6BoaoTeavTrPhkbrnLfoqDD+PlYQvqc7Bp5n5wIavO3cuRO5ubnYtWuX0/sjIyOlpiEiMViKjo5GZGQkAMBoNEp/FreJiory2z68pVarkJgY4/XjyXfi46MCfQjkJzzXHQfPdejpFBeB4op6QKORzq8n51nsNpmWEovERO9/n1Ng8D3dMfA8Owpo8LZt2zaUl5dLjUJES5Yswe7du5GRkYHS0lKH+8S/p6enw2QySbd1797dYZvMzEwA8Ms+vGWxCKipqW97Q/IbjUaN+Pgo1NQ0wGy2BPpwyId4rjsOnuvQFWkbrl1SVouamgSPzrPZYkGjybqdvt6ASgg+PVaSD9/THUNHO8/x8VFuZRkDGrzl5ORAr9c73DZx4kTMmzcPt956Kz788ENs2bIFZrMZGo21Hv3gwYPo1asXkpOTERcXh9jYWBw6dEgKvGpqanDs2DHMnDkTAJCdne3zfbSHyRT6L0YlMpstPDcdBM91x8FzHXqiI6yXMbV1jdLFnbvnud6uyYlWreJrQ4H4nu4YeJ4dBbSIND09HT169HD4DwCSk5ORnp6OadOmQafT4amnnkJhYSG2b9+ODRs2YPbs2QCs69RmzpyJnJwcfP7558jPz8f8+fORkZGBiRMnAoBf9kFERET+Fy0O6vaiYYnYrEStUkHLNTVEpBABb1jiSnJyMt5++20sXboUU6ZMQWpqKhYuXIgpU6ZI28ybNw8mkwmLFy+GXq9HdnY23nnnHYSFhfl1H0RERORf7RnUbZQ6Taqhso0cICIKdipBEFjkHSBmswUVFXWBPgyyo9WqkZgYg8rKOqboQxzPdcfBcx26Psstwua9J5HdPw1zbx/i0Xk+V1yLZzccRqfYcKx8+Jd+OFqSC9/THUNHO89JSTFurXljnQAREREpUqwMZZMc0E1ESsLgjYiIiBQpJspWNtngfdlkJIM3IlIQBm9ERESkSHI0LAkPZ/BGRMrB4I2IiIgUqT0NS/RGlk0SkfIweCMiIiJFiomyZt4aDCaYLZ41NDByzRsRKRCDNyIiIlIkMfMGOA7ddoeh0RrsMXgjIiVh8EZERESKpFGrERVhDb50De6ve7NYBFy8ogMA1BtMsFg4NYmIlIHBGxERESlWjNi0xM2Ok3kFpXj89W+w/6diAMAPhWV4/PVvkFdQ6rNjJCKSC4M3IiIiUqxoqWlJ25m3vIJSrNnxEyprDQ63V9YasGbHTwzgiCjoMXgjIiIixWrKvLkO3iwWAZv2nnS5zea9J1lCSURBjcEbERERKZbYcVLXRubtRFFVi4xbcxW1BpwoqpLr0IiIZMfgjYiIiBQrViybbGPNW1Wd68DN0+2IiAKBwRsREREplph5a6tsMiEmwq39ubsdEVEgMHgjIiIixRLXvLU1KqBftwQkxrkOzJLiItCvW4Jch0ZEJDsGb0RERKRYTd0mXZdNqtUq3Dmhr8ttpk/oC7VaJduxERHJjcEbERERKZbUbdKNUQHDM9Pw0JRBiLEFfKKkuAg8NGUQhmem+eQYiYjkom17EyIiIqLgFBslNixpO3gDrAHc5fI6bP/qDPp2jceUMX3Qr1sCM25EpAgM3oiIiEix3F3zZq+0Ug8AuKZXMvr3SPTJcRER+QLLJomIiEixmrpNmiAI7g3YLq6sBwCkJ0b77LiIiHyBwRsREREplrh+zSIIaDC4bloiKq2wBm8ZSQzeiEhZGLwRERGRYoWHaaDVWC9ndPVtl07W602osW2Xlhjl02MjIpIbgzciIiJStBhb05LaemOb25bYSiY7xYQjKoJL/4lIWRi8ERERkaLFik1L3Mi8lVSI692YdSMi5WHwRkRERIomrnurbXAn89YAAEjjejciUiAGb0RERKRoYsfJWncyb5VsVkJEysXgjYiIiBRNmvXmzpo3lk0SkYIxeCMiIiJFi7aVTba15k0QBJRUWMsm05l5IyIFYvBGREREitZUNuk681bb0Ih62yy4tARm3ohIeRi8ERERkaLFipm3BteZt1Jb1i05PgLhYRqfHxcRkdwYvBEREZGiuZt5K7atd0tLZMkkESkTgzciIiJStKhwa+atuLwex89WwGIRnG7HTpNEpHTaQB8AERERkbfyCkrxzz0FAICyqgYse+87JMZF4M4JfTE8M81hW3HGGztNEpFSMfNGREREipRXUIo1O35CTbMuk5W1BqzZ8RPyCkodbhfHBHBANxEpFYM3IiIiUhyLRcCmvSddbrN570mphFIQBJZNEpHiMXgjIiIixTlRVIXKWoPLbSpqDThRVAUAqNIZYWy0QK1SIaVTpB+OkIhIfgzeiIiISHGq6lwHbs23E0smUxIiodXw8oeIlImfXkRERKQ4CTERHm1XbCuZTOeYACJSMAZvREREpDj9uiUgMc51AJcUF4F+3RIANA3oTk9ip0kiUi4Gb0RERKQ4arUKd07o63Kb6RP6Qq1WAWia8cbMGxEpGYM3IiIiUqThmWl4aMqgFhm4MI0KD00Z5DDnrbiCnSaJSPk4pJuIiIgUa3hmGrL6puLUpWqUVOuxbtcxmC0CMrsnSttYLAKuVHFANxEpHzNvREREpGhqtQoDeiZhyti+6JYWC4sAHDlxRbq/vEYPk1mAVqNGUjzHBBCRcjF4IyIiopBx3cB0AMDh/FLpNnG9W1pilLQGjohIiRi8ERERUcjIHmBd53b8XCV0DY0AgJIKlkwSUWhg8EZEREQho3NyDLqlxcJsEfCdrXRSHNCdzmYlRKRwDN6IiIgopIzob82+5dpKJ0sqmXkjotDA4I2IiIhCSrYteDt21lo6WcIxAUQUIhi8ERERUUjJSIq2dZ0UcPh4Ccqq9QCANA7oJiKFY/BGREREIUfMvu3afxYWQUCYRo346LAAHxURUfsweCMiIqKQExWhBQBU1RkBAI1mCxa+cQB5BaWuHkZEFNQYvBEREVFIySsoxcbPTrS4vbLWgDU7fmIAR0SKxeCNiIiIQobFImDT3pMut9m89yQsFsFPR0REJB8Gb0RERBQyCs5XorLW4HKbiloDThRV+eeAiIhkxOCNiIiIQkaVzujednWuAzwiomDE4I2IiIhCRkJsuHvbxUT4+EiIiOTH4I2IiIhCRmb3RCTGuQ7MkuIi0K9bgn8OiIhIRgzeiIiIKGSo1SrcOaGvy22mT+gLtVrlpyMiIpIPgzciIiIKKcMz0/DQlEEtMnBJcRF4aMogDM9MC9CRERG1jzbQB0BEREQkt+GZacjqm4oTRVWoqjMgIcZaKsmMGxEpGYM3IiIiCklqtQr9eyQG+jCIiGTDskkiIiIiIiIFYPBGRERERESkAAzeiIiIiIiIFIDBGxERERERkQIweCMiIiIiIlIABm9EREREREQKwOCNiIiIiIhIARi8ERERERERKQCDNyIiIiIiIgVg8EZERERERKQADN6IiIiIiIgUgMEbERERERGRAjB4IyIiIiIiUgCVIAhCoA+ioxIEARYL//mDjUajhtlsCfRhkB/wXHccPNcdA89zx8Fz3TF0pPOsVqugUqna3I7BGxERERERkQKwbJKIiIiIiEgBGLwREREREREpAIM3IiIiIiIiBWDwRkREREREpAAM3oiIiIiIiBSAwRsREREREZECMHgjIiIiIiJSAAZvRERERERECsDgjYiIiIiISAEYvBERERERESkAgzciIiIiIiIFYPBGRERERESkAAzeiIiIiIiIFIDBG3VIVVVVePrpp3HDDTdg2LBhmD59OnJzc6X7Dxw4gKlTp+Laa6/Fr371K3z00UcBPFqSy5kzZ5CVlYXt27dLtx0/fhwzZ87E0KFDMX78eLz77rsBPEJqr507d+LXv/41Bg8ejFtuuQUff/yxdN+FCxcwe/ZsDBs2DL/85S/x8ssvw2w2B/BoyRsmkwmvvPIKxo0bh6ysLMyYMQPff/+9dD/f06HhzTffxF133eVwW1vn1mKxYNWqVRgzZgyGDh2K++67D0VFRf48bPKQs/O8b98+TJs2DVlZWRg/fjz+/ve/Q6/XS/cbDAY8++yzGD16NLKysvDYY4+hoqLC34ceMAzeqEN69NFHceTIEbz00kvYtm0bBgwYgHvvvRenT5/GqVOnMHv2bIwZMwbbt2/Hb3/7WyxcuBAHDhwI9GFTOzQ2NmLBggWor6+XbqusrMTdd9+N7t27Y9u2bXjooYeQk5ODbdu2BfBIyVsffvghnnrqKcyYMQMfffQRJk2aJL3XGxsbce+99wIAtmzZgmeeeQabN2/GmjVrAnzU5KnXX38d77//Pv76179i586d6NWrF2bNmoXS0lK+p0PExo0b8fLLLzvc5s65fe2117Bp0yb89a9/xZYtW2CxWDBr1iwYjUY/PwNyh7PznJubi4cffhg333wzduzYgSVLlmD37t149tlnpW2eeeYZfP3111i9ejX+8Y9/4PTp05g3b56fjz6ABKIO5uzZs0K/fv2E3Nxc6TaLxSJMmDBBePnll4W//OUvwu233+7wmEcffVS45557/H2oJKMVK1YIv//974V+/foJ27ZtEwRBEN544w3hl7/8pdDY2Oiw3cSJEwN1mOQli8UijBs3Tli+fLnD7ffcc4/wxhtvCLt27RIGDRokVFVVSfdt2bJFGDZsmGAwGPx9uNQOt956q7Bs2TLp77W1tUK/fv2EPXv28D2tcMXFxcLs2bOFoUOHCr/61a+EmTNnSve1dW4NBoOQlZUlbNy4Ubq/urpaGDJkiLBr1y7/PQlqk6vz/Nhjjwl//OMfHbbfsWOHcM011wgGg0EoLi4W+vfvL3zxxRfS/adPnxb69esnfPfdd357DoHEzBt1OImJiVi7di0GDx4s3aZSqaBSqVBTU4Pc3FyMHj3a4TGjRo1CXl4eBEHw9+GSDA4fPoytW7di+fLlDrfn5uZi5MiR0Gq10m2jRo3C2bNnUVZW5u/DpHY4c+YMLl68iMmTJzvc/s4772D27NnIzc3FNddcg06dOkn3jRo1CjqdDsePH/f34VI7JCcn47///S8uXLgAs9mMrVu3Ijw8HP379+d7WuF+/vlnhIWF4d///jeuvfZah/vaOrf5+fmoq6tz+P0dHx+PgQMH4vDhw357DtQ2V+f5nnvuwRNPPOFwm1qtRmNjI3Q6HfLy8gBYz72oV69eSE9P7zDnmcEbdTjx8fG48cYbER4eLt22Z88enDt3DmPGjEFxcTEyMjIcHpOWloaGhgZUVlb6+3CpnWpqarBw4UIsXrwYnTt3drivtXMNAJcvX/bbMVL7nTlzBgBQX1+Pe++9F6NHj8Zvf/tb7Nu3DwDPdSh56qmnEBYWhptuugmDBw/GypUrsWrVKnTv3p3nWeHGjx+P1atXo1u3bi3ua+vcFhcXA0CLz/m0tDTpPgoOrs7zwIED0b9/f+nvjY2N2LBhAwYNGoSkpCSUlJQgMTERERERDo/rSOeZwRt1eN999x2efPJJTJw4EWPHjoVer3cI7ABIf2fdvPI888wzyMrKapGRAeD0XIu/EAwGg1+Oj+Sh0+kAAE888QQmTZqEdevW4frrr8ecOXNw4MABnusQUlhYiLi4OKxZswZbt27F1KlTsWDBAhw/fpznOYS1dW4bGhoAwOk2PPfKZDKZsHDhQpw8eRJLliwBADQ0NLQ4x0DHOs/atjchCl179+7FggULMGzYMOTk5ACwfgA0D9LEv0dFRfn9GMl7O3fuRG5uLnbt2uX0/sjIyBbnWvzwj46O9vnxkXzCwsIAAPfeey+mTJkCABgwYACOHTuG9evX81yHiMuXL+Oxxx7Dhg0bMGLECADA4MGDUVhYiNWrV/M8h7C2zm1kZCQA6+9r8c/iNvzdrTw6nQ6PPPIIvv32W7z66qsYMmQIAOevA6BjnWdm3qjDeu+99zB37lyMGzcOb7zxhvQNXufOnVFaWuqwbWlpKaKjoxEXFxeIQyUvbdu2DeXl5Rg7diyysrKQlZUFAFiyZAlmzZqFjIwMp+caANLT0/1+vOQ98Xz169fP4farr74aFy5c4LkOET/88AMaGxsd1iwDwLXXXotz587xPIewts6tWC7pbBuee2UpLS2VRoC88847uPHGG6X7MjIyUFVV1SKA60jnmcEbdUhiK+EZM2bgpZdeckjBjxgxAt9++63D9gcPHsSwYcOgVvMtoyQ5OTnYvXs3du7cKf0HAPPmzcPSpUuRnZ2NvLw8h1lfBw8eRK9evZCcnBygoyZvXHPNNYiJicEPP/zgcPuJEyfQvXt3ZGdn49ixY1J5JWA91zExMQ7rKyi4iWueCgoKHG4/ceIEevbsyfd0CGvr3Pbv3x+xsbE4dOiQdH9NTQ2OHTuG7OzsQBwyeaG6uhp/+MMfUFFRgY0bN7Y4d8OHD4fFYpEalwDWNc8lJSUd5jzzSpQ6nDNnzuD555/HzTffjNmzZ6OsrAxXrlzBlStXUFtbi7vuugtHjx5FTk4OTp06hXXr1uGTTz7BrFmzAn3o5KH09HT06NHD4T/A2q0uPT0d06ZNg06nw1NPPYXCwkJs374dGzZswOzZswN85OSpyMhIzJo1C2vWrMF//vMfnD9/Hq+//jr279+Pu+++GxMmTEBqaioeeeQR5OfnY+/evXjppZdwzz33OF0/QcFpyJAhGD58OJ544gkcPHgQZ8+excsvv4wDBw7g/vvv53s6hLV1bsPDwzFz5kzk5OTg888/R35+PubPn4+MjAxMnDgxwEdP7lq2bBmKiorw4osvIikpSbo+u3LlCsxmM9LT03HLLbdg8eLFOHToEI4ePYpHH30UI0eOxNChQwN9+H6hEtj7nDqYN954AytXrnR635QpU7B8+XJ89dVXePHFF3H27Fl07doVc+fOxa9//Ws/Hyn5QmZmJpYtW4apU6cCAI4ePYqlS5fi2LFjSE1NxT333IOZM2cG+CjJW+vXr8d7772HkpIS9OnTB3PnzsWECRMAAOfOncOzzz6L3NxcdOrUCbfffjvmzp3LjLrCVFdX4+WXX8YXX3yB6upq9OvXT7p4A/ieDhWLFi3CxYsX8c9//lO6ra1zazab8dJLL2H79u3Q6/XIzs7G008/ja5duwbiKZAb7M+z2WxGVlZWq41HPv/8c3Tt2hX19fV4/vnnsWfPHgDADTfcgMWLFyMxMdGfhx4wDN6IiIiIiIgUgF83EhERERERKQCDNyIiIiIiIgVg8EZERERERKQADN6IiIiIiIgUgMEbERERERGRAjB4IyIiIiIiUgAGb0RERERERArA4I2IiPxq0aJFGD9+fKv3jx8/HosWLfLjEcnDYrFg7NixyMzMxE8//RSw41i3bh0WLFiA06dPY8iQIZg+fTqcjXS1WCz43e9+h+uuuw4lJSUBONImH3zwAe6///6AHgMRkRIweCMiIpLB/v37UVZWht69e2PLli0BOYZTp07hzTffxOOPP47evXtj7ty5+O6777Bp06YW27733ns4cuQInn76aaSnpwfgaJtMmzYNV65cwQcffBDQ4yAiCnYM3oiIiGSwfft2ZGVlYcqUKfjoo4+g0+n8fgwvvvgiJk2aJAVj99xzDwYPHowVK1bg8uXL0nYXLlzAypUr8etf/xq33HKL34+zOZVKhdmzZ+Oll16CXq8P9OEQEQUtBm9ERBTUzGYzNm7ciMmTJ2PIkCEYO3YscnJyYDAYpG3uuusu3HXXXQ6PO3ToEDIzM3Ho0CEA1jLBlStXYvz48Rg0aBDGjx+PFStWoLGxUXqMwWDACy+8gBtvvBGDBg3C5MmTsXv37jaPsbq6Gnv37sW4ceMwadIkNDQ04MMPP2yxnU6nw9NPP43Ro0cjKysL8+fPx4YNG5CZmemw3d69ezF16lQMHjwY119/Pf72t7+hvr7e5TGcOHECX3zxBSZNmiTdptFosGzZMhiNRjzzzDPS7UuWLEFMTAyWLFki3fb+++/jlltuwaBBgzB27FisXr0aZrPZ4We8//77mDp1KoYOHYohQ4bgtttuw8cffyzdv337dgwcOBDvv/8+rr/+eowcORKFhYU4f/48HnjgAVx33XW49tprcccdd+DLL7902Pe4ceNgMBiwbds2l8+TiKgj0wb6AIiIqGMymUxubff000/jww8/xH333YcRI0bg2LFjWLNmDY4fP463334bKpXKrf289dZb2Lx5M5544gl069YNP/zwA1auXImwsDDMmzcPgiDgoYcewnfffYd58+ahT58++OyzzzB//nwYjUb85je/aXXfu3btgtlsxuTJk5GamopRo0Zh69atmDFjhsN2c+bMwfHjxzF//nxcddVV2LRpE1asWNFiXwsWLMDkyZPxyCOP4OLFi1i5ciUKCwuxfv36Vp/vrl27kJqaiqFDhzrc3rdvXzz88MNYuXIl9u3bB71ej6+//hpr165FQkICAODNN9/EypUrMXPmTDz55JM4fvw4Vq9ejcuXL+P5558HAGzcuBF/+9vfMHfuXAwfPhzV1dV46623sGDBAmRlZSEjIwOANdhet24dli5disrKSvTq1QuTJk1CWloaXnjhBWi1Wrz77rt48MEH8fHHH6NHjx4AgIiICIwbNw67du1q8e9GRERWDN6IiMjvLl68iGuuuabN7QoLC/HBBx/gsccekxpaXH/99UhLS8PChQvx1Vdf4cYbb3TrZ3777bcYNGgQpk2bBgAYOXIkoqKiEBcXBwD45ptv8L///U8qJwSAMWPGoKGhATk5OZg0aRK0Wue/Nrdv344bbrgBqampAICpU6fi8ccfx3fffYdhw4YBAA4cOIBDhw5h9erVmDhxIgDghhtuwKRJk3Dq1CkAgCAIyMnJwZgxY5CTkyPtv2fPnvjjH/+IL7/8EmPHjnV6DAcPHsTgwYOdBnezZs3Cp59+imXLlkGv1+OOO+6Q/t1qa2vx2muv4Y477sDixYsBAL/85S+RkJCAxYsX4+6770bfvn1RVFSEe++9F3PmzJH226VLF0ydOhV5eXkO5ZcPPPCAdJxXrlzB6dOnMWfOHOlnDhkyBK+++iqMRqPDcQ4ePBi7d++GTqdDbGys0+dJRNSRsWySiIj8LjU1FR988IHT/8QACLAGXABarMu65ZZboNFopJJId1x33XXYv38/7rzzTrz99tsoLCzEzJkzcdtttwGwBlcqlQo33ngjTCaT9N/48eNx5coVnDx50ul+8/Pz8fPPP2PixImoqalBTU0NRo0ahejoaGzdulXa7uDBgwgLC8OECROk29RqtRQoAsDp06dRXFyM8ePHOxxDdnY2YmNjsX///lafX1FREbp27er0Pq1Wi2XLluHy5csIDw/HE088Id135MgR6PX6Fj9T7Agq/sxFixZhwYIFqKmpwffff48PP/wQGzduBIAWQdiAAQOkP6ekpODqq6/GX/7yFzzxxBPYtWsXLBYLnnzySfTt29fhcV26dIHZbEZxcXGrz5OIqCNj5o2IiPwuPDwcgwcPbvU+UXV1NQA4BHSANRhJTExEbW2t2z9z1qxZiImJwbZt25CTk4MXX3wRffv2xeLFizFq1ChUVVVBEAQpU9ZcaWmpQ1AiEjskPvnkk3jyyScd7vv444/x5z//GZ06dUJlZSUSEhKgVjt+b5qcnCz9uaqqCgDw7LPP4tlnn3V6DK3R6XSIiopq9f7MzEykpaUhOzsbMTExLX5ma636xZ95/vx5PP300zhw4ADCwsLQu3dv9O/fHwBajCKIjo6W/qxSqbBu3Tq8/vrr+Oyzz7Bz504piH322WfRqVOnFo/z5LwSEXUkDN6IiChoiRf2V65cQZcuXaTbGxsbUVlZicTEROm25s01mjf4UKvVmDFjBmbMmIHy8nJ8+eWXeOONNzB37lzs378fcXFxiI6Oxrvvvuv0WMS1WfaMRiN27dqFiRMnYubMmQ73XbhwAX/+85+xY8cO/PGPf0R6ejoqKythsVgcArjy8nLpz/Hx8QCAhQsXYuTIka3+eziTkJDgVdAj/sycnBz07Nmzxf0pKSmwWCy4//77ERYWhg8++AADBgyAVqtFYWGh08YszaWnp+OZZ57BkiVLkJ+fj08++QRvvfUWEhMTHZqmiMG6/XklIqImLJskIqKgJQYwH330kcPtH330EcxmM4YPHw4AiI2NbVFql5eX5/D33/3ud/jb3/4GwJrtmjp1KmbMmIGamhrodDqMHDkS9fX1EAQBgwcPlv47ceIE1qxZ47TByr59+1BVVSUNu7b/b9q0aejZs6dUOjly5EiYTCbs27dPerwgCNi7d6/09969eyM5ORkXLlxwOIb09HSsWLECx44da/XfqkuXLg7jANx17bXXIiwsDCUlJQ4/U6vV4qWXXsKFCxdQWVmJM2fO4Pbbb5fuA4CvvvoKgLWTZ2uOHDmCX/ziFzh69ChUKhUGDBiA+fPno1+/frh06ZLDtiUlJdBoNAGfO0dEFKyYeSMioqB19dVXY8qUKVi1ahUaGhqQnZ2N48eP49VXX8V1112HMWPGALC2md+3bx+WLVuG8ePHIzc3Fzt37nTYV3Z2NtatW4eUlBRkZWWhpKQE69evx8iRI5GUlIQbb7wR2dnZmDNnDubMmYM+ffrg6NGjWLVqFcaMGYOkpKQWx7dt2zYkJydj1KhRTo//1ltvxapVq3Do0CFcd911uP766/HUU0+hrKwMV111FT744AMUFBRITUY0Gg3mz5+Pp59+GhqNBuPGjUNNTQ1ee+01lJSUuGzycv3112PTpk0QBMHtDpyANcs1a9YsvPLKK9DpdLjuuutQUlKCV155BSqVCv3790dcXBy6dOmCjRs3IiMjA/Hx8fjf//4nZSkbGhpa3f/AgQMRGRmJhQsXYu7cuUhJScE333yD48eP4/e//73Dtnl5eRgxYoTL8k8ioo6MwRsREQW1pUuXokePHti2bRveeustpKWl4fe//z3mzJkjlR9OmzYN58+fx44dO7BlyxZkZ2dj1apVmD59urSfP/3pTwgPD8e2bduwZs0axMXFYfz48XjssccAWMsq165di1deeQVvvvkmysvLkZ6ejrvvvhsPPfRQi+MqKSnB/v378bvf/Q4ajcbpsd92221YvXo1tmzZguuuuw4rV67E8uXLsWLFCphMJtx0002YPn26Q6D529/+FjExMXj77bexdetWREdHY9iwYcjJyUG3bt1a/XeaOHEi1qxZg6NHj+Laa6/16N/4kUceQWpqKjZt2oS3334bnTp1wujRo/Hoo49K3Thfe+01LF26FIsWLUJ4eDiuvvpqvP7663j++eeRm5vbYs6eKCIiAuvWrcOKFSuwdOlS1NTUoGfPnnjuuecwdepUaTuDwYBDhw7hkUce8ejYiYg6EpXQfJUxERERye7ixYv4/vvvcdNNNyEyMlK6fd68eSgqKsKOHTva/TMeeOABJCYmYtmyZe3el7/t3LkTOTk52Lt3r8O/DxERNeGaNyIiIj9Qq9VYtGgRFi1ahK+//hoHDhzACy+8gE8//bRF+aC35s+fj08//bTFWrJgZ7FYsG7dOjz88MMM3IiIXGDmjYiIyE8OHjyINWvW4Pjx4zCZTOjTpw/uvvtuTJo0SbafsXbtWuTn5+Oll16SbZ++9v777+OTTz7BO++8E+hDISIKagzeiIiIiIiIFIBlk0RERERERArA4I2IiIiI33lFyAAAAE1JREFUiEgBGLwREREREREpAIM3IiIiIiIiBWDwRkREREREpAAM3oiIiIiIiBSAwRsREREREZECMHgjIiIiIiJSAAZvRERERERECvD/AMWwdF9DNRrcAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1583,12 +2351,12 @@ ], "source": [ "# Line plot for house age vs. average house price\n", - "average_price_by_age = housing_data_encoded.groupby('house_age')['price'].mean()\n", + "average_price_by_age = housing_data.groupby('house_age')['price'].mean()\n", "plt.figure(figsize=(10, 6))\n", "plt.plot(average_price_by_age.index, average_price_by_age.values, marker='o', linestyle='-')\n", "plt.xlabel('House Age (Years)')\n", - "plt.ylabel('Average House Price ($)')\n", - "plt.title('Average House Price by House Age')\n", + "plt.ylabel('Average House Price')\n", + "plt.title('Average House Price by House Age.')\n", "plt.grid(True)\n", "plt.show()\n" ] @@ -1597,76 +2365,117 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "##### Interpretation:\n" + "The scatter plot depicts the relationship between house age and prices; and reveals a lack of a clear linear trend. Instead, prices exhibit significant variation across different house ages. While the graph provides insights into how house prices fluctuate based on their age, no discernible pattern emerges. \n", + "In summary, the graph shows how house prices fluctuate based on their age, but no specific pattern emerges. This suggests that other factors beyond house age play a more influential role in determining house prices." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### c.) Multivariate Analysis" + "**#Prices of houses in relation to their respective Condition and Grade**" ] }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 537, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "price 1.000000\n", - "bedrooms 0.308787\n", - "bathrooms 0.525906\n", - "sqft_living 0.701917\n", - "sqft_lot 0.089876\n", - "floors 0.256804\n", - "sqft_above 0.605368\n", - "sqft_basement 0.321108\n", - "yr_built 0.053953\n", - "yr_renovated 0.117855\n", - "zipcode -0.053402\n", - "lat 0.306692\n", - "long 0.022036\n", - "sqft_living15 0.585241\n", - "sqft_lot15 0.082845\n", - "house_age -0.053953\n", - "renovation_age 0.082779\n", - "total_sqft 0.119913\n", - "Name: price, dtype: float64\n" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAJICAYAAAD8eA38AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfzUlEQVR4nO3deZyVdd0//tecGVBZFCRBw3KBxGQRVEByx/WWLLMy7zRX0rRcUlPM/Ta1FJLcd2wxb/2qt2XIz7K6tbyVtEUzJAXJWy0WQUAEBmbO+f3BzegIKuAMFzPzfD4e89BrOdd5f875cM5nXnNdn6uqUqlUAgAAAADAWlcqugAAAAAAgLZKQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACrAMqlUrRJQAAAAAFENACrdZf//rXfOtb38qee+6ZAQMGZJ999sn555+fV155Za3WMXz48IwaNaphuU+fPrnmmmuSJEuWLMlll12WBx98sGH7qFGjMnz48LVaY3P7yle+kj59+jT66devX/bcc89cfPHFmTdv3vs+/tVXX02fPn1y//33r6WKAQCaz9SpU3PJJZdk//33z/bbb58dd9wxhx12WH7605+mrq6uWZ+7pY01hw8fvsI4sn///tl3330zZsyY1NbWvu/jJ06cmD59+mTixIlrqWKA1VdTdAEAzeHOO+/MZZddlqFDh+aMM85I9+7d8/LLL+e2227LL3/5y/zwhz/MtttuW0htd999dzbddNMkycyZM/PDH/4wl19+ecP2k046KUceeWQhtTWn7bbbLhdeeGHD8tKlS/O3v/0t3//+9/P888/nrrvuSlVV1Uof271799x99935+Mc/vrbKBQBoFg899FDOOeec9OrVK8ccc0y22mqrLF68OI8++mguu+yy/O53v8v111//nuOitmiPPfbISSed1LBcW1ubiRMn5vrrr89rr72W73//++/52L59++buu+9O796910apAGtEQAu0On/84x9z6aWX5vDDD8+5557bsH7o0KHZZ599cvDBB+fb3/52YWdjDhw48H23t9YQslOnTiu0ffDgwXnrrbdy9dVX55lnnnnP16Z9+/Yf+LoBAKzrpk6dmnPOOSe77bZbxo4dm5qat38l32OPPTJ06NCccsopmTBhQg488MACK123bLzxxiuMBYcOHZrp06fn/vvvz6hRo9K9e/eVPnZlY1CAdY0pDoBW57bbbkvnzp1z+umnr7Bt4403zqhRo7L33ntn4cKFSZL6+vrceeedOeiggzJgwIDsueeeGT16dKPLpUaNGpWjjz469913X/bff//069cvn/3sZ/PYY481Ov7kyZNzzDHHZNCgQdlrr73y85//fIUalk9x8Oqrr2bvvfdOkpxzzjkNl5q9+7KzpqzvnW688cb069dvhekF7rjjjvTt2zezZ89OuVzOVVddleHDh6dfv34ZPnx4xowZk6VLl77ncVdXv379kiT//Oc/kyybDuHMM8/MKaeckoEDB+aYY45Z6RQHL730Ur7xjW9kyJAhGTx4cE444YRMnTq1YXttbW2uuOKK7LHHHunXr18OOuigPPTQQ01WNwDA6rr11ltTKpVy8cUXNwpnl9t///1z8MEHN1rXp0+fXHvttTnkkEMyYMCAXHvttUmSp556Kscdd1wGDx7cME675pprUi6XGx47b968nHPOOQ3jpSuvvLLR9uUeeeSRHHLIIenfv3922WWXfOc732kYK6/M+eefn1122SX19fWN1l966aUZOnRoli5dmsWLF+eiiy7K7rvvnn79+uWAAw7Ibbfdtjov1wfq169fKpVK/vWvfyVZNh3CZZddlqOOOioDBgzIueeeu9IpDv7yl7/k2GOPzQ477JCdd945p59+embMmNGwfe7cubngggvyqU99Kv3798+hhx6aJ554oklrB3gnZ9ACrUqlUsnvf//7DB8+PBtssMFK93n32QgXXHBBfvazn+WrX/1qdtppp0yaNCnXXXddnn/++dx6660Nl5c999xzmTlzZk455ZR06tQpP/jBD3LyySfnsccey0YbbZQZM2bkiCOOyJZbbpkrr7wyCxYsyOjRozN79uyV1tG9e/dce+21+cY3vpETTzwx++2330r3a6r63u2ggw7K2LFj88tf/jJf/OIXG9aPHz8+u+66a7p165abbropd911V84+++x87GMfyzPPPJOrrroq7dq1yymnnPLBb8gqmDZtWpLkYx/7WMO6CRMm5DOf+UxuuOGGlf4SMWPGjHzpS19Kjx49ctFFF6VDhw655pprctRRR+UXv/hFNtpoo3z961/Pn/70p5xyyinp1atXfvWrX+Wb3/xmlixZssIvPgAAa8Ovf/3r7LzzzunWrdt77vO9731vhXU33nhjzjjjjGy11Vbp2bNnJk+enKOPPjoHHHBArrrqqlQqlTz44IO59tprs/XWW2fEiBEpl8sZOXJkXnvttZx99tnp0qVLbr311vz1r39tdLbpgw8+mDPPPDMHHXRQTjvttLz22mu56qqrMmXKlIwbN26lUy189rOfzT333JOJEyfmU5/6VJKkXC5nwoQJGTFiRNq1a5dLLrkkv//973P22WfnIx/5SB577LFcccUV6dKlSz7/+c83wau58nHknXfemWOOOSZf/epX07FjxyxZsqTRYyZNmpQjjjgi22+/fa644orU19dnzJgxOe644/LAAw+kvr4+Rx11VF5//fV885vfTPfu3XPfffdl5MiRufXWWzNs2LAmqR3gndpEQHvTTTfl97//fX784x+v1uMeeOCB3HzzzXnllVfy8Y9/PN/4xjfyb//2b81UJdAU3njjjdTW1mbzzTdfpf2nTJmSe++9N2eccUaOP/74JMkuu+yS7t2756yzzspjjz2WPfbYI0ny5ptv5v7772+YgqBDhw454ogj8uSTT2b//ffPHXfckfr6+tx8883ZeOONkyRbbbVVDj300JU+d/v27fPJT34yybJpDbbbbrtmre/devbsmcGDB+cXv/hFQ0D7v//7v3n22Wdz1VVXJUn+8Ic/pF+/fg2D6CFDhmSDDTZI586dV+n1fadKpdLophfz5s3LH/7wh9xwww0ZNGhQw5m0SdKuXbtcfPHFad++fZJlNwl7pzvuuCNLlizJuHHjsskmmyRJtt122/z7v/97nnnmmdTU1OR3v/tdrrrqqoZAfrfddsuiRYsyevTofPrTn17pWSsAAM1l3rx5mTdvXrbccssVtr37xmBVVVWprq5uWN5pp51yzDHHNCw/8MAD+dSnPpUrr7wypdKyC2N32WWX/OY3v8nEiRMzYsSIPPbYY3n22Wdzyy23ZPfdd0+SDBs2rNGVWpVKJaNHj85uu+2W0aNHN6zfcsstc/TRR+fRRx/NnnvuuUK9O+64Y3r27Jlf/OIXDQHtxIkTM2vWrHz2s59Nsmwcucsuu2TEiBFJlk1J0KFDh/cNp9/Lu8eRs2fPzmOPPZb//M//zIEHHtgw9k6Sj370oznzzDMblt99c7Abb7wxXbp0ye2335711lsvybITJ84444y8+OKL+etf/5rJkyfnnnvuyfbbb58k2X333fOVr3wlo0ePzn333bfa9QN8kFY/xcGdd96ZsWPHrvbjfvazn+Xcc8/N4YcfnvHjx+fTn/50Tj/99Pz5z39u+iKBJrN8IPvuy63eyx/+8IckaRg4LjdixIhUV1c3GtBtvPHGjeaHXX6jr0WLFiVZNvftwIEDGw0Qt99++3z0ox9dg5Y0fX0r85nPfCZPPfVUZs2alWTZ2bOdOnVqGLgPHTo0jz/+eL785S/n1ltvzZQpU3LEEUc0DLxXx1NPPZW+ffs2/HzqU5/K6aefnn79+mXMmDGNzs7YeuutG8LZlVn+Wi8PZ5e397e//W322GOPPPHEE6mqqsoee+yRurq6hp/hw4dn1qxZefHFF1e7fgCAD2NlVwUlycsvv9xojNS3b9/su+++jfZZ/kf95Q4++ODccsstWbp0aSZPnpyHH344V199derr6xumonr66afTrl277Lbbbg2P69ChQ8Mf95NlU0ZNnz49w4cPbzRmGjx4cDp16pTHH398pTVXVVXlM5/5TB555JGGM1THjx+fLbfcsiHUHDp0aO6555589atfzU9+8pO88sor+frXv77SwPeDPPDAA41en9133z0XXXRR9t5770Y3oV3Za/Vuf/zjH7P77rs3hLNJMmjQoPzmN7/JJz/5yTzxxBPZZJNN0rdv34bXo76+PnvttVeee+65FaYHA2gKrfb0oRkzZuTCCy/MxIkTV/oXyvdTqVTygx/8IEceeWQOP/zwJMmJJ56Yp59+On/4wx8yaNCgZqgYaAobbbRROnbs2DCf6cosXLgwS5cuzUYbbdQwwHpn0JckNTU16dq1a958882Gde+eMmF5oLh8sD1v3ryVnrn77mOvjqasb2UOOOCAXHLJJZkwYUKOPPLIjB8/Pvvvv3/WX3/9JMnIkSPTsWPH3HfffRk9enSuvPLKfOITn8h5552XnXfeebXa0rdv31x88cUNta233nrZbLPN0qlTpxX27dix4/sea+7cue97lvTcuXNTqVSyww47rHT7zJkzP3DwDgDQlLp27ZoOHTrktddea7R+s802y7333tuwfN111+WFF15otE+HDh0aLS9evDiXXHJJfvazn6Wuri6bb755Bg0alJqamlQqlSTLxpFdunRZYYqCd44r586dmyS5+OKLG8Zp7zRz5sz3bM9nP/vZ3HDDDfnd736X3XbbLb/85S9z1FFHNWw/99xzs+mmm+bnP/95LrnkklxyySUZNGhQLrroomy77bbvedyV2WuvvfL1r389ybJx5AYbbJCePXs2jFnf6d2v1bvNnTv3fc/inTt3bmbNmpW+ffuudPusWbNWOn0YwIfRagPav/3tb2nXrl1+/vOf57rrrlvhS/C3v/1trrnmmkyZMiU9evTIiBEjctJJJ6V9+/aZNm1aXnvttRx00EGNHtPUE5oDzWPXXXfNxIkTU1tb2+gv48vdc889+d73vpd77723YXA1a9as9OzZs2GfpUuX5o033kjXrl1X+Xm7du2a119/fYX1ywe+a6Ip61uZzp07Z/jw4ZkwYUJ23nnnvPjiizn//PMbtpdKpRx++OE5/PDDM3v27Dz66KO58cYbc/LJJ+fxxx9/37Nc361jx47p37//h6r3nXXPmTNnhfVPPPFENt9883Tu3DkdOnTIj370o5U+fosttmiSOgAAVsfw4cPz29/+NgsWLGj4I3X79u0bjZG6dOnygce59NJL8/DDD2fs2LH51Kc+1RBKvnN+1K5du+aNN95IfX19o+kS3jk23XDDDZMkZ511VoYMGbLC87xfELnVVltlwIABmTBhQkqlUubPn5/PfOYzDdvbt2+fE088MSeeeGL++c9/5re//W2uv/76nHHGGRk/fvwHtvGdunTp0uzjyEcffTSf/OQn07lz52y55ZaNpnx4p1WdSg1gdbTaKQ6W38HynZOFL/fYY4/ltNNOy6GHHppf/OIXufDCCzNhwoR861vfSvL2ROMLFy7Mcccdl2HDhuWLX/xifvOb36zVNgBr5thjj83cuXNXOr3JrFmzcvvtt6d3797p27dvw0D03YPE8ePHp76+PjvuuOMqP+/OO++cP//5z43uADtlypS88sor7/mYdw6WV6Yp63svn/3sZ/OXv/wld911Vz760Y82Gpwfdthh+c53vpMk6datWw455JAcfvjhmT9/fhYsWPChn3tN7bTTTnnmmWcaDa5nz56dkSNH5tFHH82QIUOycOHCVCqV9O/fv+HnhRdeyHXXXbfCPG8AAGvD8ccfn7q6upx33nkr3LwqWXZm7PuNHZf74x//mKFDh2afffZpCGefe+65zJkzp+HqqWHDhqWuri6PPPJIw+OWLFnSaNqCrbfeOt26dcurr77aaMzUo0ePjBkzJpMmTXrfOj772c/md7/7XcaPH58ddtih4ffvxYsXZ//998/tt9+eZNm8sIcffnhGjBjxvle6rQ077bRTHn/88Uav/6RJk3L88cfnb3/7W4YMGZJ//etf6datW6PX5PHHH8+tt976geN3gDXRas+gfT833nhjDj300Bx22GFJlt2c5+KLL85RRx2VV199tSF0OPvss/ONb3wjZ555Zh5++OGcdNJJGTdunLs2wjpu4MCBOfXUUzN27NhMnTo1Bx98cLp27ZoXX3wxt912W2praxvC2969e+dzn/tcrr766ixatCiDBw/O888/n2uvvTZDhw5tNGfXBznqqKNy77335rjjjsvJJ5+c+vr6XHXVVWnXrt17Pmb5zbaeeOKJ9OrVq2HOruWasr73sttuu6VLly65++67M3LkyEaXwQ0ePDi33357PvKRj2TQoEGZMWNGxo0blyFDhjTMtTtlypQsWbJkpTc5ay5HH310HnjggYwcOTInnHBC2rVrlxtuuCGbbrppDjrooHTu3DmDBw/OSSedlJNOOim9evXKs88+m6uvvjq77bZbo3mCAQDWlj59+uTKK6/MOeeck0MOOSRf+MIX0qdPn9TV1eXPf/5z7r333rz++usZOXLk+x5n+Zmrd911V3r16pXJkyfnhhtuSFVVVcP9B4YNG5Zdd9015513XmbPnp2ePXvmRz/6UebMmdNwiX91dXW++c1v5oILLkh1dXX22muvzJ8/P9dff31mzJjxnpf5L3fggQfmu9/9bh566KFGc8Guv/766du3b6699tq0a9cuffr0ybRp0/Jf//VfjW5eO2nSpLRv3z69e/de05d0tZ100kn50pe+lBNOOCFHHnlkFi9enLFjx2bAgAHZZZddUldXl5/85Cc55phj8rWvfS2bbbZZ/ud//ie33HJLjjjiiPcd2wOsqTYZ0E6aNCnPPvtso3l+ls/TM3Xq1IYP3OOOOy6f+9znkiybaHzSpEkCWmghTjzxxGy33Xa58847c9lll2XevHnZbLPNsueeezYMtJa79NJLs8UWW+S+++7LLbfcku7du+fII4/MSSed1HBX3FXRtWvX3HXXXbn00kszatSodOzYMSNHjsxDDz30no/p1KlTjjnmmNx999159NFHV3ojhqaq773U1NRkxIgR+fGPf9zosrQkOfXUU9O+ffvcd999ue666xqmRDjjjDMa9rn44ovz2muvrdWrDDbbbLP89Kc/zZVXXplRo0alffv2GTp0aK666qqGS/Fuvvnm/OAHP8hNN92U2bNnp0ePHjnmmGMa5i8DACjC/vvvn379+uWuu+7Kvffem9deey2VSiUf+9jHcuCBB+awww77wPuojBo1KkuXLs3YsWOzZMmSbL755jnxxBMzZcqU/OY3v2mY1uDaa6/N6NGjc/XVV6e2tjYHHnhgDj300Pz6179uONYXv/jFdOzYMbfeemvuvvvudOjQITvssENGjx690itS32njjTfOrrvumscffzwHHHBAo23/8R//kbFjx+b222/PrFmz0q1bt3zhC1/Iqaee2rDPN77xjfTs2TM//vGPV/+FXEPbbbddfvzjH2fMmDE57bTT0qlTp+yxxx4588wz0759+7Rv3z533nlnxowZkyuvvDJvvvlmevbsmTPOOCPHHnvsWqsTaFuqKsuTyVZs1KhRee211xo+9AcMGJBjjz22IXx9p0022STPP/98vvzlL+fOO+/MTjvt1LDtiiuuyH//93+/b9gCAAAAALCqWu0ctO/nE5/4RKZNm5Ytttii4Wf69Om54oor8tZbb6Vv377p2LFjnnnmmUaPe+GFF/Lxj3+8oKoBAAAAgNamTU5x8NWvfjWnnXZarr322owYMSLTp0/Pueeem8033zybbLJJkmTkyJG57rrr0qNHjwwYMCDjx4/P448/njvuuKPY4gEAAACAVqNNBrQHHHBArrrqqtx000258cYb06VLlwwfPjxnnnlmwz4nnXRSNthgg1x11VWZMWNGevXqlWuuuSZDhw4tsHIAAAAAoDVpE3PQAgAAAACsi9rkHLQAAAAAAOsCAS0AAAAAQEEEtAAAAAAABSn8JmEzZszI7rvvvsL6yy+/PIcccshqH69SqaRcbtvT6pZKVW3+NWAZfYFEP+Bt+gKJflAqVaWqqqpJjlXUuLMtvYfa2nq1pfZqa+vUltqatK32amvrVERbV2fcWXhAO3ny5Ky33np55JFHGhXduXPnNTpeuVzJnDlvNVV5LU5NTSldu3bM/PkLU1dXLrocCqQvkOgHvE1fINEPkmTjjTumurppAtoixp1t6T3U1tarLbVXW1unttTWpG21V1tbp6LaujrjzsID2hdeeCFbbrllunfvXnQpAAAAAABrVeFz0P79739Pr169ii4DAAAAAGCtWyfOoO3atWsOP/zwTJs2LVtssUVOPPHElc5Lu6pqagrPnQtTXV1q9F/aLn2BRD/gbfoCiX7QHNb2uLMtvYfa2nq1pfZqa+vUltqatK32amvr1BLaWlWpVAqbDbiuri4DBw5M7969M2rUqHTq1Cnjx4/PuHHjMm7cuAwbNmy1j1mpVJrsxg8AAPBejDsBAGgKhQa0SfLWW2+luro666+/fsO6kSNHJkluvfXW1T5efX058+cvarL6Wprq6lI23HCDzJ+/KPX1rXuSZ96fvkCiH/A2fYFEP0iSDTfcoMnOnihi3NmW3kNtbb3aUnu1tXVqS21N2lZ7tbV1KqqtqzPuLHyKg44dO66w7hOf+ER+//vfr/ExW/vd51ZFfX3Z60ASfYFl9AOW0xdI9IOmVNTr2JbeQ21tvdpSe7W1dWpLbU3aVnu1tXVal9ta6OQLL774YnbYYYdMnDix0frnnnsuvXv3LqgqAAAAAIC1o9CAtlevXtl6663zH//xH3n66aczderUXH755fnLX/6SE088scjSAAAAAACaXaFTHJRKpdx4440ZM2ZMTjvttMyfPz/bbbddxo0bl2222abI0gAAAAAAml3hc9B+5CMfyeWXX150GQAAAAAAa12hUxwAAAAAALRlAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAABapXHjbsm+++6bceNuKbqU9ySgBQAAAABandra2kyYMD7lcjkTJoxPbW1t0SWtlIAWAAAAAGh16uqWplwuJ0nK5XLq6pYWXNHKCWgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCrFMB7bRp0zJo0KDcf//9RZcCAAAAANDs1pmAdunSpTnzzDOzcOHCoksBAAAAAFgr1pmA9pprrkmnTp2KLgMAAAAAYK1ZJwLap556KnfffXe++93vFl0KAAAAAMBaU3hAO3/+/Jx11lk577zzstlmmxVdDgAAAADAWlNTdAEXXXRRBg0alIMOOqjJjllTU3juXJjq6lKj/9J26Qsk+gFv0xdI9IPmsLbHnW3pPdTW1qsttVdbW6e21NakbbVXW1ufd4/VampK62RuWGhA+8ADD+Tpp5/Ogw8+2GTHLJWq0rVrxyY7Xku14YYbFF0C6wh9gUQ/4G36Aol+0FSKHHe2pfdQW1uvttRebW2d2lJbk7bVXm1tPdq1qzRa7tKlYzp1Wvdyw0ID2vvuuy+zZ8/Onnvu2Wj9hRdemIceeii33nrrah+zXK5k/vyFTVRhy1NdXcqGG26Q+fMXpb6+XHQ5FEhfINEPeJu+QKIfJMt+CWmqM0WKGHe2pfdQW1uvttRebW2d2lJbk7bVXm1tfd56661Gy3PnvpWlS6vWynOvzriz0IB29OjRWbx4caN1++23X0455ZR85jOfWePj1tW13o61qurry14HkugLLKMfsJy+QKIfNKWiXse29B5qa+vVltqrra1TW2pr0rbaq62tx7vbVle3bra30IC2R48eK13frVu399wGAAAAANBarHuz4gIAAAAAtBGFnkG7Mn//+9+LLgEAAAAAYK1wBi0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEFqii4AAAAAAGjbSqWqlEpVTXrMmprSCsvvXtcUyuVKyuXKGj9eQAsAAAAAFKZUqkrXrhukVKpu0uO2a9c4NO3SpWM6derYpM+RJOVyfd54Y9Eah7QCWgAAAACgMMvOnq3O7FcuzdLFLzfZcd9aWN9oecbUU7OgQxOHwOtvkW4fOzelUpWAFgAAAABouZYufjlLF7/YhMdL3nkLrqWLX8rSdfCOXOtgSQAAAAAAbYOAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKEjhAe3s2bPzrW99KzvvvHMGDRqU448/PlOnTi26LAAAAACAZld4QPv1r389L7/8cm6++ebce++9WX/99XP00Udn0aJFRZcGAAAAANCsCg1o582bl549e+Y73/lOBgwYkF69euWkk07KzJkz8+KLLxZZGgAAAABAs6sp8sk32mijjBkzpmF5zpw5ueOOO7Lpppumd+/eBVYGAAAAAND8Cg1o3+n888/PPffck/bt2+eGG25Ihw4dii4JAAAAAKBZrTMB7VFHHZUvfelLufPOO/P1r389P/3pT9O3b981OlZNTeFT6xamurrU6L+0XfoCiX7A2/QFEv2gOaztcWdbeg+1tfVqS+3V1tapLbU1aVvt1dbirCt1fBgfpg1VlUql0oS1fGjlcjmf/vSns/322+fyyy9f7cdXKpVUVVU1Q2UAAPA2404AgKY1/cXjs3Rx092X6q2Fyde//XZwet1l5XRs4ov2263/iWz6iZs/1DEKPYN2zpw5eeKJJ7L//vunpmZZKaVSKb17987MmTPX6JjlciXz5y9syjJblOrqUjbccIPMn78o9fXlosuhQPoCiX7A2/QFEv0gSTbccIMmO0OjiHFnW3oPtbX1akvt1dbWqS21NWlb7dXW4utpyd79Wq7OuLPQgPb111/P6aefnltvvTW77bZbkmTp0qWZNGlShg8fvsbHrasrvmMVrb6+7HUgib7AMvoBy+kLJPpBUyrqdWxL76G2tl5tqb3a2jq1pbYmbau92sqa+DCvZaETPGyzzTbZfffd853vfCdPPfVUXnjhhYwaNSrz58/P0UcfXWRpAAAAAADNrvAZeL///e9n2LBh+eY3v5kvfvGLmTt3bu6888589KMfLbo0AAAAAIBmVegUB0nSuXPnXHTRRbnooouKLgUAAAAAYK0q/AxaAAAAAIC2SkALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAABAq1NTk1RVVZIkpVIlNTUFF/QeBLQAAAAAQKuzXvtkn92WhbN777pseV20jubGAAAAAAAfzuGHVHL4IUVX8f6cQQsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQT5UQFsulzN58uQ89thjWbBgQebOndtEZQEAAAAAtH41a/rAn/3sZxkzZkxmzpyZUqmU//f//l+uueaatGvXLmPGjEn79u2bsk4AAAAAgFZnjc6gfeihh3L22Wdn5513zlVXXZVyuZwk2XffffPoo4/m+uuvb9IiAQAAAABaozU6g/bGG2/MYYcdlosuuij19fUN6z//+c9nzpw5ueeee3Laaac1VY0AAAAAAK3SGp1BO23atOy7774r3bb99ttnxowZH6ooAAAAAIC2YI0C2m7dumXq1Kkr3TZ16tR069btQxUFAAAAANAWrFFAe+CBB+bqq6/O//f//X9ZsmRJkqSqqirPPfdcrr/++hxwwAFNWiQAAAAAQGu0RnPQnnbaaXnhhRdy2mmnpVRalvF+5StfycKFC7PTTjvl1FNPbdIiAQAAAABaozUKaNu3b59bb701//M//5Mnnngic+fOTefOnTNkyJDsscceqaqqauo6AQAAAABanTUKaJNk/vz5qauryxlnnJEkefXVV/Poo49mwYIF6dy5c5MVCAAAAADQWq3RHLRTp07NiBEjctFFFzWse+WVV3L55Zfn85//fP75z382VX0AAAAAAK3WGgW0V155ZXr06JG77rqrYd2wYcPy6KOPpkuXLrniiiuarEAAAAAAgNZqjQLaP/3pTzn55JPTo0ePRuu7deuWr33ta3nyySebpDgAAAAAgNZsjQLaqqqqLFq0aKXb6urqsnTp0g9VFAAAAABAW7BGAe3gwYNz3XXXZc6cOY3Wz507NzfeeGOGDBnSJMUBAAAAALRmNWvyoDPOOCOHHnpo9t577wwcODAbb7xx3njjjfzlL39J+/btM2bMmKauEwAAAACg1VmjM2i32mqr/OIXv8hhhx2WhQsX5rnnnsv8+fNz6KGH5oEHHshWW23V1HUCAAAAALQ6a3QGbZL06NEjZ599dlPWAgAAAADQpqxyQPvAAw9kjz32SNeuXfPAAw984P4HH3zwhygLAAAAAKD1W+WAdtSoUbnnnnvStWvXjBo16n33raqqEtACAAAAAHyAVQ5of/3rX2eTTTZp+H8AAAAAAD6cVQ5oe/bs2fD/F1xwQUaOHJlhw4Y1S1EAAAAAAG1BaU0e9Kc//SlVVVVNXQsAAAAAQJuyRgHtbrvtlp///OdZunRpU9cDAAAAANBmrPIUB++03nrr5ec//3kmTJiQXr16pUOHDo22V1VV5Yc//GGTFAgAAAAA0FqtUUA7ffr0DBo0qGG5Uqk02v7uZQAAAAAAVrTaAe2zzz6bL3/5y/n4xz+evn37NkdNAAAAAEAzGTfulkyYMD7/9m8j8pWvHFd0OW3eKge08+fPzwknnJC//OUvDesGDRqUMWPGZLPNNmuO2gAAAACAJlRbW5sJE8anXC5nwoTxOfTQI7LeeusVXVabtso3CRs7dmwmTZqUk08+OTfddFPOPvvsvPTSS7nggguasz4AAAAAoInU1S1NuVxOkpTL5dTVLS24Ilb5DNrf/va3Of3003PUUUclSXbffff06NEjZ555ZhYuXLjCjcIAAAAAAHh/q3wG7axZs1aYc3bo0KGpr6/Pv/71ryYvDAAAAACgtVvlgLauri7t27dvtG6jjTZKsmzuCgAAAAAAVs8qB7Tvp1KpNMVhAAAAAADalCYJaKuqqpriMAAAAAAAbcoq3yQsSS666KJ06tSpYXn5mbPnn39+Onbs2LC+qqoqP/zhD5uoRAAAAACA1mmVA9rBgwcnWXE6g5WtN+UBAAAAAMAHW+WA9sc//nFz1gEAAAAA0OY0yRy0AAAAAACsPgEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBaoouAAAAAABorFSqSqlU1eTHrakprbD87nVNoVyupFyuNPlxWyMBLQAAAACsQ0qlqnTtukFKpeomP3a7do1D0y5dOqZTp45N/jzlcn3eeGORkHYVCGgBAAAAYB2y7OzZ6jw15ZK8uejlJj324oX1jZYf+9vJWb9D0wbBnTfYIoN7n59SqUpAuwoEtAAAAACwDnpz0cuZt/CFJj1m7aIkadewPH/R1NQ26TOwutwkDAAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAApSeEA7d+7cXHDBBdl9992zww475N///d/z9NNPF10WAAAAAECzKzygPf300/PnP/853//+93Pfffflk5/8ZI477ri89NJLRZcGAAAAANCsCg1oX3755Tz++OO56KKLstNOO2WrrbbK+eefn+7du+fBBx8ssjQAAAAAgGZXaEDbtWvX3Hzzzenfv3/DuqqqqlRVVWX+/PkFVgYAAAAA0PwKDWg33HDD7LHHHmnfvn3Duocffjgvv/xydttttwIrAwAAAABofjVFF/BOf/rTn3LOOedkv/32y5577rnGx6mpKXxq3cJUV5ca/Ze2S18g0Q94m75Aoh80h7U97mxL76G2tl5tqb3a2jq1pbYmbau961Jb14UamsKqtqM1tPfDtGGdCWgfeeSRnHnmmdlhhx0yevToNT5OqVSVrl07NmFlLdOGG25QdAmsI/QFEv2At+kLJPpBUyly3NmW3kNtbb3aUnu1tXVqS21N2lZ7W3tbS9VJVVUllUpVqkqVlKqb77la+2v5Th+mretEQPuTn/wkl156aQ444IB873vfazTlweoqlyuZP39hE1bXslRXl7Lhhhtk/vxFqa8vF10OBdIXSPQD3qYvkOgHybKBc1OdoVHEuLMtvYfa2nq1pfZqa+vUltqatK32rkttXV5Lc2jXPhkwrJxnnyxlwM7ltFvzGO4Drepr2ZztXVve3dbVGXcWHtD+9Kc/zSWXXJKvfOUrOffcc1NVVfWhj1lX17o/MFZFfX3Z60ASfYFl9AOW0xdI9IOmVNTr2JbeQ21tvdpSe7W1dWpLbU3aVnvbQlt3+3Q5u326+dvYFl7L5T5MWwsNaKdNm5bLLrss++67b0444YS8/vrrDdvWX3/9dO7cucDqAAAAAACaV6EB7cMPP5ylS5fmV7/6VX71q1812va5z30u3/3udwuqDAAAAACg+RUa0H7ta1/L1772tSJLAAAAAAAoTNPcIQEAAAAAgNUmoAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAaPPGjbsl++67b8aNu6XoUmhjBLQAAAAAtGm1tbWZMGF8yuVyJkwYn9ra2qJLog0R0AIAAADQptXVLU25XE6SlMvl1NUtLbgi2hIBLQAAAABAQQS0AAAAAAAFEdACAAAAABSkpugCAAAAAGBVlEpVKZWqmvy4NTWlFZbfva4plMuVlMuVJj8uLZuAFgAAAIB1XqlUlS5dN0h1qbrJj92uXePQtEuXjunUqWOTP099uT5z31gkpKURAS0AAAAA67xSqSrVpercP/nmzFr4zyY99pJFdY2Wxz3z3bTfoGljs006fDSHbHt8SqUqAS2NCGgBAAAAaDFmLfxnpi/43yY9Zt3icqPlmW+9mpp6t25i7dDTAAAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAGjTqqqTVC1f+L9lWEsEtAAAAAC0adXtSuk5pHNSlfQc0jnV7URmrD01RRcAAAAAAEXrdcDG6XXAxkWXQRvkzwEAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAArNS4cbdk3333zbhxtxRdCrRaAloAAAAAVlBbW5sJE8anXC5nwoTxqa2tLbokaJUEtAAAAACsoK5uacrlcpKkXC6nrm5pwRVB61RTdAEAAAAArLlSqSqlUlWTH7emprTC8rvXfVjlciXlcqVJjwktjYAWAAAAoIUqlarSpWuHVJea/iLpdu0aB6ddunRMp04dm/Q56svlzH1joZCWNk1ACwAAANBClUpVqS6V8oM/3pVX35zZpMeuW9x4SoPzf39jatZv12TH37xz95y647+nVKoS0NKmrVMB7U033ZTf//73+fGPf1x0KQAAAAAtxqtvzsy0ea816THLtXWNll+e/8+UatepKAlahXXmJmF33nlnxo4dW3QZAAAAACSpKpWS5VPbVv3fMtDkCv+zx4wZM3LhhRdm4sSJ2XLLLYsuBwAAAIAkVe1KWW/77ql9ZmbW2757qtoJaKE5FP4v629/+1vatWuXn//859l+++2LLgcAAACA/9Nh94+l68k7psPuHyu6FGi1Cj+Ddvjw4Rk+fHiTHrOmpvDcuTDV1aVG/6Xt0hdI9APepi+Q6AfNYW2PO9vSe6itrVdbaq+2tk7rWlvXlTo+jFVtQ2toa7Jq7WhLbV2d/dZlH6YNhQe0Ta1UqkrXrh2LLqNwG264QdElsI7QF0j0A96mL5DoB02lyHFnW3oPtbX1akvt1dbWqS21tbm1tdeyLbVXW1dNqwtoy+VK5s9fWHQZhamuLmXDDTfI/PmLUl9fLrocCqQvkOgHvE1fINEPkmUD56Y6Q6OIcWdbeg+1tfVqS+3V1tZpXWvr8npaslV9LVtDW5NVa29bamvSOtr77rauzriz1QW0SVJXV/wHZNHq68teB5LoCyyjH7CcvkCiHzSlol7HtvQeamvr1Zbaq62tU1tqa3Nra69lW2qvtq6alj/BAwAAAABACyWgBQAAAAAoiIAWAAAAAKAg69QctN/97neLLgEAAAAAYK1xBi0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAACraNy4W7Lvvvtm3Lhbii4FaCVqii4AAAAAoKmVSlUplaqa9Ji1tbWZMGF8yuVyJkwYny9/+cist956TfocSVIuV1IuV5r8uMC6SUALAAAAtCqlUlW6dO2Q6lLTXji8YEEl5XI5SVIul9OpU/t06tSxSZ8jSerL5cx9Y6GQFtoIAS0AAADQqpRKVakulXLer/9fpr0xq8mOW1lal1QlqSSpqsrxD96eqnZNG61s1XWTfGfvL6ZUqhLQQhshoAUAAABapWlvzMrfX/9Xkx5z/d6bpf2Uf2VJ703zwrymC3+BtktACwAAALCKFg/cKosHblV0GUAr0rSTsQAAAAAAsMoEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAbcS4cbdk3333zbhxtxRdCgAA8H8EtAAAbUBtbW0mTBifcrmcCRPGp7a2tuiSAACAJDVFFwAAsC4rlapSKlUVXcaHVltbn3K5nCT/99/61NS0/L/Vl8uVlMuVossAAIA1JqAFAHgPpVJVunbdIKVSddGlfGjt2jUOMbt06ZhOnToWVE3TKZfr88Ybi4S0AAC0WAJaAID3sOzs2erMfuXSLF38ctHlfChvLaxvtDxj6qlZ0KFlB8/t1t8i3T52bkqlKgEtAAAtloAWAOADLF38cpYufrHoMj6USl1SVVWVSqUqpVIllbqXsnRx0VUBAAAtf+IxAAA+0Hrtk312S0qlSvbeddkyAABQPGfQAgC0EYcfUsnhhxRdBQAA8E7OoAVoxcaNuyX77rtvxo27pehSAABoxYw7AdacM2gB3mXZTYGqii7jQ6utrc2ECeNTLpczYcL4fPnLR2a99dYruqwPrVyuuBkQAMAaaK5x7toadxoHAq2VgBbgHUqlqnTp0iHV1S3/AoMFCyopl8tJknK5nE6d2qdTp44FV/Xh1deXM3fuQoPz1TRu3C2ZMGF8/u3fRuQrXzmu6HIAgLWsOce5ixdXN1ru0qVD1l9//SZ/HuNAoLUS0AK8Q6lUlerqUr79wH156fXXiy7nQ6nU1SVVVUmlklRV5bif/DBVNS37Y3/rj3wklx38+ZRKVc0+MG8tZ1InzqYGAJp/nLte715Z9OKUrNe7V47+yQ+b/PhrcxwIsLa17N/UAZrJS6+/nsnT/1V0GR9ah56bZf3X/pnFPTfL31+fVXQ5LUapVJUuXTdIdan6g3duAVrt2dTl+sx9Y5Ff0gBgNTTbOLfnpst+kqQVjKMB1iYBLUArtvATvbLwE72KLqPFKZWqUl2qzg+f+1GmL5xRdDkfWv2S+qQqSSWpKlXl6r9cm+r2LTt83rRDjxzV70hn0QAAAC2egBYA3sP0hTPy6puvFl1Gk9h4p26Z8/TsdN1x4/yr9l9JbdEVAQAAkAhoAaBN2HTfzbLpvpsVXQYAAADv0vJvUw4AAAAA0EIJaAEAAAAACiKgbWXGjbsl++67b8aNu6XoUgAAAACADyCgbUVqa2szYcL4lMvlTJgwPrW17gADAAAAAOsyAW0rUle3NOVyOUlSLpdTV7e04IoAAAAAgPcjoAUAAAAAKIiAFgAAAJqBe4QAsCpqii4AAAAAilIqVaVUqmry4777HiFf/vKRWW+99Zr8ecrlSsrlSpMfF4C1R0ALAABAm1QqVaVLlw6prm76i0sXL65utNylS4esv/76Tf489fXlzJ27UEgL0IIJaAEAAGiTSqWqVFeXcsFP/iv/mPF6kx9/g4/3zlsvv5gNPt47x1/34yY//pY9PpL/OOJzKZWqBLQALZiAFlqpceNuyYQJ4/Nv/zYiX/nKcUWXAwAA66x/zHg9f39tetMfeKOPJgM+mgVJZjTH8QFoFdwkDFqhd893VVtbW3RJAAAAAKyEgBZaobq6pSmXy0mScrmcurqlBVcEAAAAwMqY4iDNd9fOta2mprTC8rvXtVTuTAoAAABAa9TmA9pSqSpdNtog1TXVH7zzOq5du8YBZpcuHdOpU8eCqmla9XX1mTtvUbOHtML6dZugHgAAAGhtBLSlqlTXVOeS467My39/pehyPpT61Cfrvb188gFnpzotP3jeos/Hcv5t32r2O5OWSlXp0qVDqqtbfpDZWsP6+vpy5s5dKKQFAAAAWo02H9Au9/LfX8mLz0wtuowPp7qSmh3fXnzpuWlJfcs/G3RtKZWqUl1dynevuT//+9rrRZfzodTXLWm0fMZFd6S6pn1B1TSNj/f8SEadfEizB/UAADSvceNuyYQJ4/Nv/zYiX/nKcUWXAwCFE9DCu/zva69nyrTpRZfxoVTKdY2WX3p5ZqpK/rkDALBqmmvqr9ra2kyYMD7lcjkTJozPl798ZNZbb70PfuBqMC0WAC2NxAYAAIAGzTn11+LFjadg69KlQ9Zff/0mfQ7TYgHQ0ghooTWqqnr/ZQAAeA/Lp/669Kb/ysv/bPqpvzpv2jvz/vliOm/aO6dc/uMmPfYWH/1Izj3hc6bFAqBFEdBCK1RVVZ2q9Xumsvi1VK3fM1VVLf9mcQAArdW6Oifry/98PS++3AxTf1V/NPnYR/NGkjea4/gA0MIIaKGVKnXqnXTqXXQZANDmNNfcnUkaLjlvjkvPE3N3FuHdc7IeeugRTT4nKwCwbhPQAgBAEymVqtJlow1SXdO8V69suOEGzXLc+rr6zJ23aJ0IadfFs0qbI3yvra1PuVxOkv/7b31qapo+gBe+A8C6S0DbmlSSSmXZdKOVyrJlAADWnlKpKtU11bnkuCvz8t9fKbqc1bJFn4/l/Nu+tU7M3bkunlXaXDfOateu8WvdpUvHdOrUsUmfI3HjLABYlwloW5NyVSozqpMe9cv+W3ZjKACAIrz891fy4jNTiy6jxaqrW9rorNK6uqXrREBbXV3KlaPvzSuvNt2Ns8rluncsVWXUt+9IqdS0v6Z9bPOP5FtnfmGdCN8BgBUJaFuZ8v+2S/63XdFlAADQBjTXfLvvvsS/pqa0zlz2/8qrr2fq1H81aR3VNR9Nfd0/U12zWaZNm9WkxwYA1n0CWgAAYLUtu+R/g1RXN/18u2vvsv/6zJ1b/Jy77dpvnXbtty60BgCgOAJaAABgtS275L86V5xzR155aXqTHru+vLTR8lnHXJXqUtNeJfaxrTfNWZcf7bJ/AKBwAloAAGCNvfLS9Eyd/GqTHrNSVZ90e3t52ov/TFWl6c/UBQBYFzT9RE4AAAAAAKwSAS0AALBuqVQly2cdqPzfMgBAKyWgBQAA1ilVKaV6cdekklQv7poqv7YAAK2YOWgBAIB1Ts1bm6bmrU2LLgMAoNn5UzQAAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEKD2jL5XKuvvrq7Lbbbhk4cGC++tWv5pVXXim6LAAAAACAZld4QHv99dfnpz/9aS655JL853/+Z8rlckaOHJklS5YUXRoAAAAAQLMqNKBdsmRJbr/99pxyyinZc889s+222+aqq67K9OnT88tf/rLI0gAAAAAAml2hAe3kyZPz1ltvZdiwYQ3rNtxww2y33XZ56qmnCqwMAAAAAKD5VVUqlUpRT/7LX/4yJ598cp555pmsv/76DetPPfXULF68ODfddNNqH7NSqaRcXvUmVVUlpVIpb8yam7qldav9fDS/mnY16bpJl5TL5TRnb13eF+bOeyt1dfXN90SskZqa6nTZqONa6wdz3norS+v1g3VNu+rqbNxx7fWDN5e8mfqyfrAuqi5Vp3P7zmutL9TXvZFKxThhXVNVVZPqmq6r1Q9KpapUVVU1yfOvbNzZkseWqzvmahg7zXkzdUtb3mdlTbvqdNl41T9HGto7d0Hq6srNX2ATqqkppUuXTqvd1jfmt7xxcU1NdbpuuOpjhYax35tvpa4Fjv1qqquzcedVa29LH+eu7jiwob2LFrS497amujobb7D6/2bn1S5IXQsbu9aUqrPReqvf1reWzE99pWW1NUmqq6rTsf2Gq/VvdvHSljkOraqqyfrtVn2c1pLH3e81Jl2dcWdNM9W2ShYtWpQkad++faP16623XubNm7dGx6yqqkp19eoPurtu0mWNno+1p1RaOyd8d9mo41p5HtbM2uoHG3fUD9Zla6sfdG7fea08D2tubfWF6pqua+V5WDNrqx+82/uNO1vy2HJ1X88uG7fsz8rVbm+XTs1USfNb3bZ23bDljodWt60bd265bU1Wr70tfZy72u/tBm3n3+xG67WdtnZsv2EzVbJ2rE5712/Xssehq/vetuRx94cZkxY6xcHys2bffUOw2trabLDBBkWUBAAAAACw1hQa0G622WZJkpkzZzZaP3PmzPTo0aOIkgAAAAAA1ppCA9ptt902nTp1ysSJExvWzZ8/P5MmTcrgwYMLrAwAAAAAoPkVOgdt+/btc8QRR2T06NHZeOON07Nnz1x55ZXZdNNNs99++xVZGgAAAABAsys0oE2SU045JXV1dTnvvPOyePHiDB48OLfddlvatWtXdGkAAAAAAM2qqlKpVIouAgAAAACgLSp0DloAAAAAgLZMQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABbQt200035Stf+cr77vPGG2/kjDPOyODBgzNkyJBcfPHFWbRo0VqqkOY0d+7cXHDBBdl9992zww475N///d/z9NNPv+f+r776ak444YTssMMO2XXXXTN27NjU19evxYppDrNnz863vvWt7Lzzzhk0aFCOP/74TJ069T3395nQ+k2bNi2DBg3K/fff/5776Aet14wZM9KnT58Vft6rP+gL67bWPtZrS2OZtvp93Ra+k9ra5+4DDzyQAw88MP3798+IESMyYcKE99y3trY2F198cYYNG5ZBgwbljDPOyJw5c9ZitWtm4sSJK31P+/Tpk7333nulj2mpbV2urq4uP/jBD7LXXntl0KBBOfzww/OXv/zlPfdvyf14wYIFufDCC7PrrrtmyJAhOfPMMzN79uz33L+lfvesbAzx/PPP54gjjsjAgQMzfPjw/OhHP/rA40yYMCEHHnhgBgwYkIMPPjhPPPFEc5X8obzXmOnll1/OwIED8+qrr37gMe68887svffeGTBgQL785S9n0qRJzVHqe6vQIv3kJz+pbLvttpUjjjjiffc74ogjKp///Ocrzz33XOV//ud/KnvttVflrLPOWktV0pyOOeaYyqc//enKU089VXnppZcqF198cWXAgAGVqVOnrrDvkiVLKvvtt1/l+OOPr/z973+v/OpXv6oMGTKk8oMf/KCAymlKX/rSlypf/OIXK88880xlypQplZNPPrmy6667VhYuXLjS/X0mtG5LliypHHLIIZVtttmmct99973nfvpB6/Xf//3flf79+1dmzJhRmTlzZsPPokWLVrq/vrDuagtjvbY0lmmL39dt5TupLX3uPvDAA5Xtttuu8pOf/KTy8ssvV66//vrKtttuW/nTn/600v1HjRpV2WeffSpPPfVU5ZlnnqkcfPDBlcMPP3wtV736amtrG72XM2fOrPzyl7+s9OnTp3Lvvfeu9DEtta3LXX311ZVddtml8rvf/a7yj3/8o3LuuedWdtxxx8qMGTNWun9L7sfHHntsZY899qj893//d+WFF16onHTSSZUDDzywUltbu8K+LfW7Z2VjiDlz5lSGDh1aOeeccypTpkyp3HvvvZX+/fu/Z5+uVCqVJ554otK3b9/KD3/4w8qUKVMq3/3udyv9+vWrTJkyZW00Y5W915hpypQpleHDh1e22WabyiuvvPK+x7j//vsrAwYMqPzsZz+rvPjii5VvfetblSFDhlRmz57dnKU3IqBtYaZPn1454YQTKgMHDqwccMAB7zto/9Of/lTZZpttGv3j+d3vflfp06dPZfr06WujXJrJP/7xj8o222xTefrppxvWlcvlyj777FMZO3bsCvs/+OCDlX79+lXmzp3bsO4///M/KzvssMNKv4hoGebOnVs5/fTTK3//+98b1j3//POVbbbZpvLMM8+ssL/PhNZvzJgxlSOPPPJ9fxnWD1q3m2++uXLQQQet0r76wrqprYz12tJYpq1+X7eV76S28rlbLpcre+21V+W73/1uo/XHHnts5cYbb1xh/+nTp1e23Xbbyn//9383rHvppZcq22yzzXsGuuuqt956q7LXXntVRo0atdLtraGtn/nMZyqXX355w/Kbb75Z2WabbSoPP/zwCvu25H48adKkyjbbbFN59NFHG9YtWLCgstNOO1Xuv//+FfZvad897zeGuPHGGyu77rprZenSpQ3rxowZU9lvv/3e83jHHnts5dRTT2207ktf+lLl/PPPb/La18QHtXfgwIGVz33uc6sU0O63336VK664omF56dKllT322GOln2/NxRQHLczf/va3tGvXLj//+c+z/fbbv+++Tz/9dDbZZJP06tWrYd2QIUNSVVWVP/7xj81dKs2oa9euufnmm9O/f/+GdVVVVamqqsr8+fNX2P/pp59O3759s9FGGzWs23nnnbNgwYI8//zza6Vmmt5GG22UMWPGZJtttkmSzJkzJ3fccUc23XTT9O7de4X9fSa0bk899VTuvvvufPe7333f/fSD1u3vf/97o/f2/egL66a2MtZrS2OZtvh93Za+k9rK5+60adPy2muv5aCDDmq0/rbbbssJJ5ywwv7L27Pzzjs3rNtqq63So0ePPPXUU81bbBO78cYbs2jRopx99tkr3d4a2tqtW7f89re/zauvvpr6+vrcfffdad++fbbddtsV9m3J/fgf//hHkmSnnXZqWNexY8dsscUW+cMf/rDC/i3tu+f9xhBPP/10hgwZkpqamoZ1O++8c/7xj3/k9ddfX+FY5XI5f/rTnzJs2LBG64cOHbrO9Ov3a+8jjzySyy+//D3/3b7T7Nmz849//KNRW2tqarLTTjut1bbWfPAurEuGDx+e4cOHr9K+M2bMyGabbdZoXfv27dOlS5f861//ao7yWEs23HDD7LHHHo3WPfzww3n55Zfz7W9/e4X9p0+fnk033bTRuu7duydJ/vWvf33gL4Cs+84///zcc889ad++fW644YZ06NBhhX18JrRe8+fPz1lnnZXzzjtvhff43fSD1u2FF15I165dc/jhh2fatGnZYostcuKJJ2b33XdfYV99Yd3UVsZ6bXUs0xa+r9vad1Jb+dydNm1akmThwoU57rjjMmnSpGy++eY58cQTV/qZNWPGjHTt2jXrrbdeo/Xdu3fP9OnT10rNTWH5H1TOOOOMdOnSZaX7tIa2nnvuuTn11FOz9957p7q6OqVSKddcc00+/vGPr7BvS+7H7/zeWB4w19fXZ/r06enWrdsK+7e07573G0NMnz694Q+Fy72zLR/5yEcabZs/f34WLly40vavK/36/dr7//7f/0uybE7pD7K8Pe/u1927d8/kyZM/ZJWrzhm0rdiiRYvSvn37Fdavt956qa2tLaAimsuf/vSnnHPOOdlvv/2y5557rrB98eLFK/SF5QMIfaF1OOqoo3Lffffl05/+dL7+9a/nb3/72wr7+ExovS666KIMGjRohbNaVkY/aL3q6ury0ksvZd68eTn55JNz8803Z+DAgTn++ONXekMHfaHla03vYVsZy7SF7+u29J3Ulj53FyxYkCQ5++yz8+lPfzq33357dtlll5x00kmtrq3v9NOf/jSdO3fOl770pffcpzW0dcqUKencuXOuu+663H333TnkkENy5plnrvQs0Zbc3v79+2frrbfOhRdemBkzZmTx4sUZM2ZM3njjjSxdunSF/VvLd0+y+m1ZvHhxkqz0MS2t7R9k+Q3uim6rM2hbsfXXXz9LlixZYX1tbe1K/1pPy/TII4/kzDPPzA477JDRo0evdJ+V9YXlHzT6Quuw/BLJSy+9NM8880x+8pOf5PLLL2+0j8+E1umBBx7I008/nQcffHCV9tcPWq+amppMnDgx1dXVWX/99ZMk/fr1y4svvpjbbrtthUvU9IWWr7W8h21pLNPav6/b2ndSW/rcbdeuXZLkuOOOy+c+97kkySc/+clMmjQp48aNW622brDBBs1fcBN54IEHcvDBBze8vyvT0tv6r3/9K2eccUbuuOOOhkv/+/fvnylTpuSaa67J9ddf32j/ltyP27dvn2uvvTZnnXVWdt9997Rr1y4HHXRQ9tprr5RKK56/2Fq+e5LVb8vy8HZlj2kJ/Xp1LP/3XXRbnUHbim266aaZOXNmo3VLlizJ3LlzG05lp2X7yU9+kpNPPjl77bVXbrzxxhUuq1luZX1h+XKPHj2avU6ax5w5czJ+/PjU1dU1rCuVSundu/cK73fiM6G1uu+++zJ79uzsueeeGTRoUAYNGpQkufDCCzNy5MgV9tcPWreOHTuu8EvkJz7xicyYMWOFffWFlq81vIdtYSzTlr6v2+J3Ulv53F3+7+zdl0j37t07r7766gr7b7rpppk7d+4KgcfMmTPX+X+zy02ePDmvvPLKB54N3tLb+swzz2Tp0qWN5gRPku233z4vv/zyCvu35H6cJL169cp9992XiRMn5sknn8zll1+e6dOnr3Q6h5b83fNuq9uWLl26pEOHDit9TEtr+wdZPrVB0W0V0LZigwcPzvTp0xt9qC6f+HrHHXcsqiyayE9/+tNccsklOfzww/P9739/pZeZLDd48OBMmjSp4dKkJHnyySfTsWPHlU78Tsvw+uuv5/TTT290WdnSpUszadKkld6swmdC6zR69Og89NBDeeCBBxp+kuSUU07JpZdeusL++kHr9eKLL2aHHXZYYa6t5557bqU3ItIXWr6W/h62lbFMW/q+bmvfSW3pc7dv377p2LFjnnnmmUbrX3jhhZUGWzvuuGPK5XKjm0ZNmzYtM2bMyODBg5u93qbw9NNPp1u3bh/4GdPS27p8jtG///3vjda/8MIL2XLLLVfYvyX34wULFuSII47I5MmT06VLl3Tq1CmvvvpqJk2alF122WWF/Vvyd8+7DR48OH/84x9TX1/fsO7JJ5/MVltttdL5d6uqqrLDDjuscPO0iRMnNrrJWmvQrVu3bLXVVo0+y+vq6vL000+v1X/DAtpWpL6+PrNmzWqYK2T77bfPDjvskG9+85t59tln8+STT+aCCy7IwQcf3Or+4tHWTJs2LZdddln23XffnHDCCXn99dcza9aszJo1K2+++WaWLFmSWbNmNfwVd5999skmm2yS0047LZMnT84jjzyS73//+zn22GPf95ch1m3bbLNNdt9993znO9/JU089lRdeeCGjRo3K/Pnzc/TRR/tMaCN69OiRLbbYotFPsmyg0aNHD/2gDenVq1e23nrr/Md//EeefvrpTJ06NZdffnn+8pe/5MQTT9QXWoHW9B62pbFMW/q+bmvfSW3pc3f99dfPyJEjc9111+UXv/hF/vd//zc33HBDHn/88RxzzDFJklmzZuWtt95KsqwvjBgxIuedd14mTpyYZ599NqeffnqGDBmSgQMHFtiSVTdp0qT06dNnpdtaU1sHDBiQHXfcMWeffXaefPLJ/OMf/8jYsWPzxBNP5Pjjj29V/bhTp06pVCq59NJL8+KLL+avf/1rTjzxxOy8884ZNmxYq/ruebfPf/7zWbBgQc4999xMmTIl999/f+64446ccMIJDfu8+eabmTNnTsPyMccck/Hjx2fcuHGZOnVqrrjiijz//PM56qijimhCk5o7d27mzp3bsHzsscdm3Lhx+a//+q9MmTIl3/72t7N48eJ84QtfWHtFVWixzj777MoRRxzRsPzKK69Uttlmm8p9993XsO7111+vnHzyyZWBAwdWhg4dWrnwwgsrixcvLqJcmtANN9xQ2WabbVb6c/bZZ1eefPLJyjbbbFN58sknGx7zj3/8o3LMMcdU+vfvX9l1110rY8eOrdTX1xfYCprC/PnzKxdeeGFll112qQwYMKBy7LHHVl544YVKpeIzoS175/uuH7Qts2bNqowaNaqyyy67VPr371/50pe+VHnqqacqlYq+0BK15rFeWxvLtOXv69b+ndTWPndvv/32yvDhwyt9+/atfOYzn6n86le/ati2zTbbVK6++uqG5bfeeqty7rnnVnbaaafKTjvtVDn99NMrc+bMKaLsNTJy5MjKaaedttJtra2tc+fOrVx00UWVPffcszJo0KDKl770pcrEiRMrlUrr68fTp0+vfP3rX6/suOOOlWHDhlUuvPDCyoIFCyqVSqVVffe8ewxRqVQqzzzzTOXQQw+t9OvXr7LXXntVfvzjH6/wmL322qvRuv/6r/+q7LvvvpX+/ftXPve5z1X+53/+p9lrXxMra2+l8vZ7+sorrzRaf8QRR6yw/6233lrZfffdKwMGDKh8+ctfrkyaNKlZa363qkqlUll7cTAAAAAAAMuZ4gAAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFoEGlUim6BAAAAGhTBLQAa8Ff//rXfOtb38qee+6ZAQMGZJ999sn555+fV155Za3VMHz48IwaNaphuU+fPrnmmmuSJEuWLMlll12WBx98sGH7qFGjMnz48LVWHwAAa9/UqVNzySWXZP/998/222+fHXfcMYcddlh++tOfpq6urtme11gT4G0CWoBmduedd+awww7L7Nmzc8YZZ+SWW27J8ccfnz/84Q/5whe+kMmTJxdS1913350vfvGLSZKZM2fmhz/8YaNB+EknnZRrr722kNoAAGh+Dz30UA455JD8+c9/zjHHHJObb7453//+97Pddtvlsssuy8knn+wKK4C1oKboAgBasz/+8Y+59NJLc/jhh+fcc89tWD906NDss88+Ofjgg/Ptb387999//1qvbeDAge+7/eMf//jaKQQAgLVu6tSpOeecc7Lbbrtl7Nixqal5Ox7YY489MnTo0JxyyimZMGFCDjzwwAIrBWj9nEEL0Ixuu+22dO7cOaeffvoK2zbeeOOMGjUqe++9dxYuXJj6+vrceeedOeiggzJgwIDsueeeGT16dGpraxseM2rUqBx99NG57777sv/++6dfv3757Gc/m8cee6zRsSdPnpxjjjkmgwYNyl577ZWf//znKzz/8ikOXn311ey9995JknPOOafhUrN3X3bWlPUBAFCsW2+9NaVSKRdffHGjcHa5/fffPwcffHDDcp8+fXLttdfmkEMOyYABAxqutHrqqady3HHHZfDgwenXr1+GDx+ea665JuVyueGx8+bNyznnnJMhQ4Zk8ODBufLKKxttX+6RRx7JIYcckv79+2eXXXbJd77znSxcuLDpGw+wjnEGLUAzqVQq+f3vf5/hw4dngw02WOk+7zwb4dxzz83PfvazfPWrX81OO+2USZMm5brrrsvzzz+fW2+9NVVVVUmS5557LjNnzswpp5ySTp065Qc/+EFOPvnkPPbYY9loo40yY8aMHHHEEdlyyy1z5ZVXZsGCBRk9enRmz5690hq6d++ea6+9Nt/4xjdy4oknZr/99lvpfhdccEGT1AcAQPF+/etfZ+edd063bt3ec5/vfe97jZZvvPHGnHHGGdlqq63Ss2fPTJ48OUcffXQOOOCAXHXVValUKnnwwQdz7bXXZuutt86IESNSLpczcuTIvPbaazn77LPTpUuX3HrrrfnrX/+a7t27Nxz7wQcfzJlnnpmDDjoop512Wl577bVcddVVmTJlSsaNG9cw1gRojQS0AM3kjTfeSG1tbTbffPMP3HfKlCm59957c8YZZ+T4449Pkuyyyy7p3r17zjrrrDz22GPZY489kiRvvvlm7r///oYpCDp06JAjjjgiTz75ZPbff//ccccdqa+vz80335yNN944SbLVVlvl0EMPXelzt2/fPp/85CeTLJvWYLvttmvW+gAAKNa8efMyb968bLnllitse/eNwaqqqlJdXZ0k2WmnnXLMMcc0bHvggQfyqU99KldeeWVKpWUX6O6yyy75zW9+k4kTJ2bEiBF57LHH8uyzz+aWW27J7rvvniQZNmxYoyu1KpVKRo8end122y2jR49uWL/lllvm6KOPzqOPPpo999yzqZoPsM4xxQFAM1k+kK2vr//Aff/whz8kSUaMGNFo/YgRI1JdXZ2JEyc2rNt4440bzQ+76aabJkkWLVqUZNm8twMHDmwIZ5Nk++23z0c/+tE1bEnT1gcAQLFWNr1Akrz88svp27dvo5999923YfvyP+ovd/DBB+eWW27J0qVLM3ny5Dz88MO5+uqrU19fn6VLlyZJnn766bRr1y677bZbw+M6dOjQ8Mf9JHnppZcyffr0DB8+PHV1dQ0/gwcPTqdOnfL44483ZfMB1jnOoAVoJhtttFE6duyYf/7zn++5z8KFC7N06dLMmzcvSbLJJps02l5TU5OuXbvmzTffbFj37ukSll/utXygPW/evJWetfvuY6+OpqwPAIBide3aNR06dMhrr73WaP1mm22We++9t2H5uuuuywsvvNCw3KFDh0b7L168OJdcckl+9rOfpa6uLptvvnkGDRqUmpqaVCqVJMvGkV26dFlhioJ3jivnzp2bJLn44otz8cUXr1DvzJkz16yhAC2EgBagGe26666ZOHFiamtrs956662w/Z577sn3vve9nHLKKUmSWbNmpWfPng3bly5dmjfeeCNdu3Zd5efs2rVrXn/99RXWLx/4ronlc8c2RX0AABRv+PDh+e1vf5sFCxakU6dOSZZNfdW/f/+Gfbp06fK+x7j00kvz8MMPZ+zYsfnUpz7VEOAOGzasYZ+uXbvmjTfeSH19fcMVZknjsemGG26YJDnrrLMyZMiQFZ7HfQyA1s4UBwDN6Nhjj83cuXMzduzYFbbNmjUrt99+e3r37t1w6dj48eMb7TN+/PjU19dnxx13XOXn3HnnnfPnP/85M2bMaFg3ZcqUvPLKK+/5mHcOlldm+UC5KeoDAKB4xx9/fOrq6nLeeedlyZIlK2xfvHjx+44fk2VTaw0dOjT77LNPQzj73HPPZc6cOQ1XTw0bNix1dXV55JFHGh63ZMmSRtMWbL311unWrVteffXV9O/fv+GnR48eGTNmTCZNmtQUTQZYZzmDFqAZDRw4MKeeemrGjh2bqVOn5uCDD07Xrl3z4osv5rbbbkttbW3Gjh2bXr165XOf+1yuvvrqLFq0KIMHD87zzz+fa6+9NkOHDm00Z9cHOeqoo3LvvffmuOOOy8knn5z6+vpcddVVadeu3Xs+pnPnzkmSJ554Ir169cr222/faHvv3r2brD4AAIrXp0+fXHnllTnnnHNyyCGH5Atf+EL69OmTurq6/PnPf869996b119/PSNHjnzPYwwYMCATJkzIXXfdlV69emXy5Mm54YYbUlVV1XD/gWHDhmXXXXfNeeedl9mzZ6dnz5750Y9+lDlz5qRbt25Jlp0s8M1vfjMXXHBBqqurs9dee2X+/Pm5/vrrM2PGjPTt23etvCYARRHQAjSzE088Mdttt13uvPPOXHbZZZk3b14222yz7Lnnnvna176WzTbbLMmyS8S22GKL3HfffbnlllvSvXv3HHnkkTnppJMa7oq7Krp27Zq77rorl156aUaNGpWOHTtm5MiReeihh97zMZ06dcoxxxyTu+++O48++uhKb8TQVPUBALBu2H///dOvX7/cdddduffee/Paa6+lUqnkYx/7WA488MAcdthh2XLLLd/z8aNGjcrSpUszduzYLFmyJJtvvnlOPPHETJkyJb/5zW8apjW49tprM3r06Fx99dWpra3NgQcemEMPPTS//vWvG471xS9+MR07dsytt96au+++Ox06dMgOO+yQ0aNH52Mf+9haeDUAilNVWT5zNwAAAAAAa5VTngAAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIL8/0F/ACmjK9pQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "# Calculate the correlation Matrix\n", - "# Drop categorical variables\n", - "numeric_data = housing_data_encoded.select_dtypes(include='number')\n", - "correlation = numeric_data.corr()['price'].drop(['id']) # Drop 'price' and 'id' columns from correlation calculation\n", - "print(correlation)\n" + "# Create subplots with a shared y-axis\n", + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(14, 6), sharey=True)\n", + "\n", + "# Bar plot for condition vs. price\n", + "sns.barplot(x='condition', y='price', data=housing_data, ax=axes[0], hue=\"condition\", palette='viridis', legend=False)\n", + "axes[0].set_title('Condition vs. Price')\n", + "axes[0].set_xlabel('Condition')\n", + "axes[0].set_ylabel('Price')\n", + "axes[0].grid(True)\n", + "\n", + "# Bar plot for grade vs. price\n", + "sns.barplot(x='grade', y='price', data=housing_data, ax=axes[1], hue=\"grade\", palette='viridis', legend=False)\n", + "axes[1].set_title('Grade vs. Price')\n", + "axes[1].set_xlabel('Grade')\n", + "axes[1].grid(True)\n", + "\n", + "# Adjust layout\n", + "plt.tight_layout()\n", + "\n", + "# Show plots\n", + "plt.show()\n" ] }, { - "cell_type": "code", - "execution_count": 72, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ "\n", - "# # Plot the correlation matrix as a heatmap\n", - "# plt.figure(figsize=(12, 8))\n", - "# sns.heatmap(correlation, annot=True, cmap='coolwarm', fmt=\".2f\", linewidths=0.5)\n", - "# plt.title('Correlation Matrix')\n", - "# plt.show()\n" + "The visualization presents comparisons between house prices and their condition and grade ratings. On the left, the condition of houses, rated from 1 to 5, shows relatively consistent prices across different condition levels, with no significant price increase observed for better conditions. Conversely, on the right, the grade of houses, ranging from 1 to 11, demonstrates a clear positive correlation with prices, indicating that higher-grade properties command higher prices." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### c.) Multivariate Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### **#Correlation matrix**" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 538, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjAAAAaiCAYAAACMybG2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QU1d/H8Xd6JyFACkloAUKTEiD0IlWK9CogoqKiYseOilixIyoWkC5dkS7SW+i9E0o6hE56Npvnj00Cm00ANSHL8/u8zvEcd3bu5N5h5s7d+d5ik5WVlYWIiIiIiIiIiIiIiIgVsS3uDIiIiIiIiIiIiIiIiOSlAIaIiIiIiIiIiIiIiFgdBTBERERERERERERERMTqKIAhIiIiIiIiIiIiIiJWRwEMERERERERERERERGxOgpgiIiIiIiIiIiIiIiI1VEAQ0RERERERERERERErI4CGCIiIiIiIiIiIiIiYnUUwBARERERKUZZWVnFnYUi8f+1XCIiIiIicvcogCEiIiIi94QDBw4watQoWrduTe3atWnXrh2jR48mKiqquLPGtm3bCAkJYdu2bXecJj09nY8++ojFixfnbnv99ddp06ZNUWTRwuuvv05ISAgtW7YsMNjw+eefExISwpAhQ/7RsU+cOMHAgQNvu9/ChQsJCQkhOjr6Hx1fRERERET+NyiAISIiIiJWb+bMmQwYMICLFy/y8ssv8/PPP/PEE0+wfft2+vTpw9GjR4s7i//Y+fPnmTp1KgaDIXfb008/zYQJE+5aHmxtbTl37hy7d+/O9/tly5b9q+OuWLGCPXv23Ha/1q1bM2fOHHx8fP7V3xERERERkf/f7Is7AyIiIiIit7Jr1y4+/PBDBg0axFtvvZW7vVGjRrRr144ePXrw5ptvsnDhwmLMZeEoV67cXf17/v7+ZGVlsXz5curXr2/23d69ezl37hxVq1Ytsr/v7e2Nt7d3kR1fRERERETubRqBISIiIiJWbdKkSXh4ePDSSy9ZfOft7c3rr79O27ZtSU5OBiAzM5OZM2fy4IMPUrt2bVq3bs3nn39OWlpabrrXX3+doUOH8u677xIaGkrnzp3JzMwkJCSECRMm0KtXL2rXrp07GiI2NpaXXnqJsLAw6tSpw9ChQzl8+PAt8/3333/z0EMPUa9ePWrVqsUDDzzAzJkzAYiOjqZt27YAvPHGG7nTRuWdQupOy/LII4+wYMECOnbsSK1atejevTsbNmy4o/P7wAMP8Ndff1lMI7Vs2TKaNm2Kl5eX2fbU1FS++OILOnToQK1atQgNDWXYsGEcOXIEgG+//Tb3vIWEhPDtt9/m/n/ec3vzFFJxcXHUr1/fbLqqtLQ0OnfuTJcuXczKLCIiIiIi/xs0AkNERERErFZWVhabNm2iTZs2uLi45LtP586dzT6/8847LFq0iOHDh9OgQQMOHz7Md999x5EjR/jll1+wsbEBYOfOnTg5OfHdd9+RnJyMnZ0dABMnTuTll1+mYsWKBAQEcOnSJQYMGICLiwujR4/GxcWFqVOnMmjQIObPn09wcLBFntatW8czzzzDww8/zMiRI0lNTWXWrFm8//771KpVi+rVqzNhwgSeffZZRowYQYcOHfIt252W5eDBg5w/f57nnnsOd3d3vvnmG0aOHMmGDRvw9PS85Tnu3LkzkydPZvfu3bmjMIxGIytWrOCll15iwYIFZvu/+uqr7Ny5k5deeoly5cpx9uxZvvnmG15++WWWLl1K3759iY+PZ/78+cyZMwc/P7/ctHnP7YEDB3K/8/f35/XXX+ftt99mwYIF9O7dmy+++ILIyEjmz5+Pk5PTLcshIiIiIiL//yiAISIiIiJW6/Lly6SlpREYGHhH+588eZL58+fz8ssv88QTTwDQrFkzfHx8ePXVV9mwYQOtWrUCwGAw8P7775u9YAdo0KABw4YNy/381VdfceXKFX777TcCAgIAaNmyJZ07d+abb75h/Pjx+eajZ8+eZlNe1atXj0aNGrFt2zbq1KlD9erVAdO0UTVq1PhPZbl+/ToLFy7MnYLK1dWVwYMHEx4eTseOHW95zu677z6CgoLMppHauXMnV65coV27dmYBjPT0dJKSknj77bdzA0dhYWEkJibyySefcOHCBfz8/HLPad26dW95bm8OYAD07duXv/76i3HjxuHl5cW0adMYNWoU1apVu2UZRERERETk/ydNISUiIiIiVitnVERmZuYd7b99+3YAunTpYra9S5cu2NnZsW3bttxtXl5eFsELIDewkGPr1q1Ur14dX19fDAYDBoMBW1tbWrZsyZYtW/LNx+OPP84nn3xCUlISBw8eZNmyZfz444+AKQhQ2GXx9vY2Wz8jp1wpKSl39Lc6d+5sNo3U0qVLad26Ne7u7mb7OTo6MmnSJDp37sy5c+cIDw9n9uzZrF279o7Klvfc5ueDDz7AaDTy7LPPEhYWxqOPPnpHZRARERERkf9/NAJDRERERKyWp6cnbm5uxMbGFrhPcnIyGRkZeHp6cvXqVQDKlCljto+9vT0lS5bk+vXrudvc3NzyPZ6rq6vZ5ytXrnD27Flq1qyZ7/75BQkuXbrEu+++y99//42NjQ3ly5enQYMGABZrTRTkn5Ql7/RaOVNLGY3GO/pbnTt35scff2T37t3UrVuXv/76i/feey/ffTdu3MhHH33EqVOncHNzo1q1arnn7HZly3tu8+Pr60uTJk1YuXIlrVu3zi2LiIiIiIj871EAQ0RERESsWvPmzdm2bRtpaWn5roMwd+5cPv30U+bPn5+73kNCQkLudE8AGRkZXL58mZIlS/7jv+/h4UFYWBivvvpqvt87OjpabHvllVc4deoUU6ZMoV69ejg6OpKSksLcuXPv+O8WRVkKUq1aNSpWrMiKFStITU0lLS2N1q1bW+wXGRnJM888Q7t27fjxxx8JCgrCxsaGmTNnsnHjxkLJy6ZNm1i5ciXVq1fn22+/pX379gQFBRXKsUVERERE5N6iKaRERERExKo9+uijXLlyha+//triu4SEBCZPnkzlypWpWbMmYWFhgGkKpJstXbqUzMzM3DUe/omwsDBOnz5NxYoVue+++3L/W7RoEfPnz8+d5upmu3btokOHDjRq1Cg3wLFhwwbgxqiI/NLl/buFXZZbyZlGatmyZbRv3z7fYNHBgwdJS0vjiSeeoFy5crmjI3KCFzkjMGxt/93PjOvXr/P222/TtGlTZsyYQYkSJXjzzTfveNSKiIiIiIj8/6IRGCIiIiJi1erWrcvzzz/P119/TUREBD169KBkyZKcOHGCSZMmkZaWlhvcqFy5Mj179mT8+PGkpKTQsGFDjhw5woQJE2jUqBEtWrT4x3//kUceYdGiRTzyyCM8+uijlCxZkmXLljF37lzeeOONfNPUrl2bxYsXU7NmTfz8/Ni9ezc//fQTNjY2uVNOeXh4AKY1NoKDg6lTp47ZMYqiLLfSuXNnvvvuOxYtWsT333+f7z41a9bE3t6ezz77jEcffZT09HQWLlzIunXrANN0XgAlSpQAYMmSJdSpU+eOR1B89NFHXL58mWnTpuHu7s7o0aN55plnmDFjBkOGDPnvhRQRERERkXuKAhgiIiIiYvVGjBhBjRo1mDlzJh999BFXr17F39+f1q1b89RTT+Hv75+774cffkj58uVZsGABP//8Mz4+Pjz88MM8/fTT/2pkgK+vL7Nnz+aLL77gvffeIy0tjQoVKvDhhx/Sp0+ffNN88sknjB07lrFjxwJQoUIFxowZw59//snOnTsBcHd3Z9iwYcyZM4f169ezefNmi+MUdllupXLlylStWpWEhASaNm2a7z7ly5fniy++YMKECYwYMQJPT0/q1q3L9OnTGTJkCDt37iQkJIQOHTqwaNEiXn/9dfr06VPgeho3W79+PQsXLmTUqFG5C5K3a9eODh068MUXX9CyZUvKly9fmEUWERERERErZ5Ol8dgiIiIiIiIiIiIiImJltAaGiIiIiIiIiIiIiIhYHQUwRERERERERERERETE6iiAISIiIiIiIiIiIiLyP+LHH39kyJAht9zn8uXLvPzyyzRs2JCwsDDGjBlDSkqK2T7Lly+nc+fO1K5dmx49erB169ZCz6sCGCIiIiIiIiIiIiIi/wNmzpzJ119/fdv9nnvuOc6ePcuUKVP45ptvWL9+Pe+9917u9+Hh4YwaNYoBAwbw+++/06RJE5544gkiIiIKNb9axFtERERERERERERE5P+xc+fO8e6777Jt2zb8/PwoXbo006dPz3ffPXv2MGDAAJYtW0ZwcDAAmzZt4vHHH2f9+vX4+vry2GOP4eHhYRYMGTBgAFWrVuX9998vtHxrBIaIiIiIiIiIiIiIyP9jhw4dwsHBgT///JM6dercct+dO3dSpkyZ3OAFQFhYGDY2NuzatQuj0cju3btp0qSJWbpGjRqxY8eOQs23faEeTURERERERERERERECl3btm1v+f3q1asL/K5Nmza0adPmjv7OuXPn8Pf3N9vm6OiIl5cXcXFxXLt2jeTkZPz8/Mz28fHxIT4+/o7+xp1SAENERERERERERERE7qqlDiHFnYV7T8vAu/JnUlJScHR0tNju5OREWloaqampABb75HxfmBTAEFUWeXTJOEbqqinFnQ2r4tz+ERK/e7W4s2FV3J8ZR/TIfsWdDasS+O1czh3ZVdzZsCq+1euTvHlBcWfDqrg2603yhrnFnQ2r4tqyH5EnjhR3NqxKuSrViR81uLizYTX8PpvBpQ+eLO5sWBXvt38k9a9fizsbVsW5wzCijx8s7mxYlcCqtUg4tK24s2FVytRsxOWPny7ubFiVkm98T/zRPcWdDaviV60eRyJiijsbVqV6cICukzz8qtXjwsGtxZ0Nq1G6VpPb7yRSCG41wqIwOTs7k56ebrE9LS0NV1dXnJycACz2SUtLw8XFpVDzojUwREREREREREREREQEAD8/P86fP2+2LT09nStXruDj44OXlxeurq4W+5w/fx5fX99CzYsCGCIiIiIiIiIiIiIiAkDDhg2Jj4/n7Nmzudu2b98OQP369bGxsSE0NDR3W45t27bRoEGDQs2LAhgiIiIiIiIiIiIiIv+jMjMzSUhIyF3bok6dOoSGhvLiiy+yf/9+wsPDeeedd+jRo0fuCIthw4axdOlSfv31VyIiIhg3bhxHjhxh6NChhZo3BTBERERERERERERERP5HxcXF0bx5c5YtWwaAjY0NEyZMIDAwkKFDh/LCCy/QsmVL3nvvvdw0zZs356OPPuK3336jZ8+ehIeHM3HiRIKDgws1b1rEW0RERERERERERETuKhsHm+LOwv+sTz75xOxzYGAgx44dM9tWqlQpxo8ff8vj9OjRgx49ehR29sxoBIaIiIiIiIiIiIiIiFgdBTBERERERERERERERMTqKIAhIiIiIiIiIiIiIiJWRwEMERERERERERERERGxOgpgiIiIiIiIiIiIiIiI1bEv7gyIiIiIiIiIiIiIyP8WW3ub4s6C3AM0AkNERERERERERERERKyOAhgiIiIiIiIiIiIiImJ1FMAQERERERERERERERGrowCGiIiIiIiIiIiIiIhYHQUwRERERERERERERETE6tgXdwZERERERERERERE5H+LjYP61svt6SoRERERERERERERERGrowCGiIiIiIiIiIiIiIhYHQUwRERERERERERERETE6iiAISIiIiIiIiIiIiIiVkcBDBERERERERERERERsTr2xZ0BEREREREREREREfnfYmtvU9xZkHuARmCIiIiIiIiIiIiIiIjVUQBDRERERERERERERESsjgIYIiIiIiIiIiIiIiJidRTAEBERERERERERERERq6MAhoiIiIiIiIiIiIiIWB374s6AiIiIiIiIiIiIiPxvsXGwKe4syD1AIzBERERERERERERERMTqKIAhIiIiIiIiIiIiIiJWRwEMERERERERERERERGxOgpgiIiIiIiIiIiIiIiI1VEAQ0RERERERERERERErI59cWfgf93ChQt54403OHbsWHFnpUg4B/jScu8SdvZ+hksbtt9y37L9u1D5jRG4Vgoi5UwMJz/7iZjpf5jt41m/FtU/fRXP+rUwXEsietpCjr8/gayMjCIsxX+35cgpJixeT0TcBbxLuDGgRX0ebhuGjY1NvvunZRj4cfkmlu04xOXEZKoG+PBU5xY0q1Epdx+jMYv5m/cwd+Nuoi9cwdvDjftrV2FE5xa4uzjdraL9a1vPnuf7rUeIuHSdUq5O9K1dkSH1ggs8J1FXEukxbbXF9mBvD+YObgOAMSuLGXsiWHjgDOcTUyhX0p2HQyvTuVpQkZalsDhVq41n1wHY+wdhvH6VxA0rSVyzON99XRu1wnvwMwUe69L070jevh4Ah6BKePUcgkO5YLJSk0natp5ry+ZCZmaRlKMwbd+zn19mzuV0ZDQlvTzp2bk9A7p3KfA6Afh7wxamzfud2HPn8fMpw6Be3ejUpqXZPstXr2f2oqXExJ2jlLcXndq0YnCf7tjb2RV1kf6zrQdPMGHhX5yKPY93CXf6t2nMkI7NCzwn6RkGpq/cxJItu4m/dBXfkp50alKHRzu3wsH+RjPgdNx5vp63gl1HT2NnZ0v9qhV5qX9nAn2871bR/rWth04y4fe/ORV3Hm8PN/rf34ghHZrd+pz8tZkl4Xuzz0kJOjWqw6OdWuBgb0/shct0eePLAv9et6b1GDOsV1EVp1Ds3L2HX6fP5GxkJCW9vOjWpTN9ena/5b2zZv0GZs2ZR1z8OXx9fBjQtxcd2rYpcP8ffp7EwkWLWbXkjyIoQeFzrFoLjwf6Ye8bQGbiVZK3/E3y+mW3TONUrS5u7Xvi4B+EMSmR1AM7SFw+l6yMNOxKlqbMm18XmDZ5xwauzf2pkEtReOwrVce1dQ/sypTFmHSNtJ3rSA1fdcs0DpVr4dKiK3Y+AWSlJJF+dDfJa/+AjHTLnR2d8HziHVI2LCF9/9aiKUQh23LkNBOWZLfXPNwY0DKUh9vcrr22mWU7b26vNadZdfP22vS125m/eS/nrlynfJmSPNKuMV0a1rxbxfpPdu7ey+TpszgTGUVJLy+6d3mAvj273aYu2ciMOfOJy34OD+jTk45t7zfbp/8jw7lw8ZJF2oUzfsXTs0Shl6Mwbd97gJ9mzud0VAzeXiXo+UA7BnbvdMtzkuP4qTMMf20Ms78bh79PGbPv1mzZzqzfl3I2Jg4PN1ca1K7JU0P64e3lWVRFKTT2Favj0qobdqX9TfXJrg2kbf+7wP1tS5bB86kxFtszE2K59ssH2Z9scApri1Noc2w9SmK8cpG03etJ27W+iEpRuHbs2cfPM+ZwJrcN24H+Pbrepg27melzfyf23DlTG7Z3dx5o08psn43hO5g2dyFRMbF4e3nR4f4WDOrdAweHe+PVTkpKCtMm/8TWLRtITUmhRq3aPPbE0wQElrtluiuXLzH55x/Ys2sHmZmZ1G8YxrDhT+PtXSp3n1UrlvLd+C8s0nbu2p0nnn6+0MtSGHSdWNq29yA/zVqQW8f2eqAtA7s9cId17Fkef/195kz4JN86duYfy2+qY2swYnDfe6KO/f/O1v72/7Yi1l97/T/XuXNnWrRoUdzZKBLOgX6ELZ2Eg9ftf4T49exA3Wmfc/rbaSSs3Ihf93bUnfwpxrR04uaaXi64VAyk0YpfuRy+l90DX8C9WjAhY1/EwduLg8+8W9TF+df2n45h5MR5dAytzjNdW7InIpqvFq3BYDTyWIcm+aZ5b9YyNhw4yXPdWlHex5s/tx1g5MS5/PLcIEIrm17G//p3ON8tWc/Qto1pFFKes+cv8d2SDZyMTWDiswPu6AFfXA7EXeKFxeF0qBLAiMbV2Bt3ifGbDpFpNDKsQdV80xxLuAbADz2b4mJ/4yWzs8ON/58YfpSpu07wVONq1PQtyaYz5xj9125sbWx4ICSwaAv1HzlWqELpJ18nefcWri6dg1Olanh2H4SNnS3XVy2y2D/10G7Of/GWxfaSA5/ExtmV1MO7AbAr5UOZZ0eTfuY4lyZ/hb1fAJ5dB2Dr6s6VOT8Xebn+i0PHTvD6h5/RplkTHnuoL/uPHGPi1N/IzDQyuHe3fNOs27KdsV99R5+uD9AotDYbt+3k4/ETcXSwp22LpgDMW7ycbydNp3XTMEYMfYgr164xedZ8Tp4+ywevv3g3i/iP7Y+I5LlvptEx7D6e7tmevSfO8PW8FRgyjTzapVW+acb9toSlW/Yw/ME21KwYwOEzMfz05xriLlzhvUd7AxB/6QrDPvqR8n5l+PjJ/qSmZ/DdwlU8/eVk5r7/PM6ODnezmP/I/ogonvt2Bh0b1uLpHm3Ze+IsXy/4C4PRyKOdWuabZtzsZSwN38vwrq2pWSH7nCxZR9zFK7z3SE9Ke3ow9fUnLNLNXbeNlTsO0qN5/aIu1n9y+OgxRr//Ia1aNOORwQ9x8PARfv51KpmZmQzo2zvfNBs3b+GTz7+iZ7euNAgNZUv4Nj77ajwO9g7c38qynbL/4CF+/3NJURel0DiUC6bksFdI3RfO9ZXzcaxQFY/OA7CxtSNpbf6BYqfq9fB65EVSdm0icdkc7H0DcO/UD1t3D67O+p7Ma1e4+K1l+8O1aXuc6zQmZfu6Ii7Vv2cXUBGP/s+SfngnKev+xL5cZVza9gJbW1K3rMw3jUOV2rj3HUH6gXCS1/6OXWl/XO/vgY2rB0l/TDLb18bZFfd+T2PnVfpuFKdQ7D8dw8gfs9trXVqy51Q0Xy1aiyHzVu215Ww4eJLnHsxur20/wMiJ8/hl5EO57bXvl23k17/DebpzC2qV92fjoQjenLYYWxsbOjWocTeL+I8dPnqct8Z+TOvmTXlk8EAOHj7CT1Omk5mZycC++QdxN2zeykdffEOvB7vQsH5dNodvZ9zXE3BwcKBNy+YAXL16jQsXL/HksIepVaO6WXp3d7ciL9d/cfDYSV796EvaNmvE4wN7s//ocX6YPodMYyZDej14y7SnzkYz6sMvycynA8nfm8J578vv6d7hfp4Y1IeLl6/yy28LeO7dT5j02RicHB2Lqkj/mV3ZCqa64cguUjYsxj4wGJc2PcDWlrTwv/JP42Nql1+f9TVZNwdAb+qU5tK2F85hbUnbvYH04/uw9SqNS8sHsfUsRcqahUVZpP/s0LETvP7BOO5v3oTHBvXjwOFjTJw6i8xMI4P6dM83zfot2/jgywn06foAYaFD2LhtBx9/8wMO9g60bWlqw+7Yu5/Rn3zJ/c2b8MTDAzkTGc1P03/jyrXrvPDEsLtZxH/ty3EfcPzoER5+9AlcXV2ZM2sab7/+Mt/+MBl3D49802RmZvL+O6+TnJzMU8++gMGQyfQpP/PeW6/y5bc/Yp/dIef0qZMEBAbx3EuvmaX3KmmdnXF0nVg6ePwkr378FW2bhjF8YE/2HznB99PnkpmZyZBeXW+Z9lRkNK989FWBdey7X02ke4fWPPFQby5ducrPvy1k5LufMvmz96y6jhUREwUwipmzszPOzs7FnY3CZWND4JAeVP/0NbjDd+ghY18ibv4KjrzyMQAXVm3CoaQnIe89nxvACB41HMP1JHb2epqsjAwSVmwgMyWVWt+M5uQnE0mNiiuqEv0n3y/dSLVAXz4aanrh2qxGMBmZRib9tYVBrRtYvBiMuXiFZTsO8UbfDvRvaXpJFla1AntPxTBn4y5CKwdhNGbx66pw+jSrx/PdWwPQuFpFPN1ceO3XRRyOjKdmef+7Ws5/YuK2o4SU8WRsR1P5mlbwxWA08uuOEwysG4yzvWUv+OMXruLr7kxYUBmL7wBSMgzM2hvBwLrBuUGQsKAyHD1/hdn7Tll9AKNE575kRJ/m8vQJAKQd2YeNnT0e7Xtyfd0ysx90AMbE66QnXjfb5t6qE/Z+gSR8+TbG7O882nXHmJbChZ/GmUZcHN5DVnoaXn0f4/pfC8m8fPHuFPBfmPzbfKpUrMDbLz4NQKPQOhgMmcyYv4i+XR/AycmyofnzjDm0btqIkY8NASCsXh2uXU/il1nzaNuiKZmZRqbO/Z0Gde7j/VdfyE1XtVJFHnn+NXbsPUDDuvfdlfL9GxP/WE21cv58MLwfAM3uq4oh08jkpet4qH1Ti/rkSmIyC9fv4Pk+HRma/TK/UY3KAIyfv5Ln+nTEu4Q7E/9YjbuLMxNfeRSX7PNatnRJXhg/ncNnogmtWvEulvKfmfjnGtM5eawPAM1qVcGQmcnkZRt4qG2T/M/Jxp0837sDQzuaXqY1qh4MwPiFq3iudwe8PdyoHWw+cuvw2RhW7jjIyJ7tqFel/F0o2b83beZvVK5UkddfNgXkGtYPxWAw8Nvc+fTs1hUnJ8tRepOnzaBl86aMGP5Ydpp6XE+8zpQZsywCGCkpKXz+9XhKl/Im4YL11iE3c+/Qm4zYM1ydPRGA9GP7wc4OtzbdSNq4AgyWIzk9ug0mdf/23FEU6RGHwdYW1+YdwMERMtLJiIwwS2MfUAHnOo25vmIuGWeOF33B/iXXlg+SGR9F0qJfAcg4dQhs7XBp1onU7WvyPR+u7fuSfmQ3SYunAmA4cwxsbHEOawP2DrlpHKrUxrVjf2wc76327ffLNpnaaw+bXkI3q1GJjMxMJq3aWnB7bech3ujbnv4tQwEIq1qevaeimbNxN6GVg0hJz2DG2h0Mat0gNwjSKKQCR6LimbV+p9UHMKbOmk3lShV542VTz+Ww+vUwZGYya95CenXrkm9dMmn6LFo1a8LTw00vyRqG1uP69USmzPgtN4Bx8vRpAJo3aURZf7+7VJrCMXnOQqpULM/o558CoHFobdPL1AWL6delY75tk4wMA/OXrWLS7AU4OuTfIWD6gsU0Ca3DqKduvFwsF+DPk6+PYcvOvdzfNKxoClQIXFp0JfNcFMk5dcOpw9jY2uHStCNpO9fmW5/Y+QZivHYZw9n860kbFzecGrQmbe8mklfOzt2edf0ybr2fIm3vZoyXzhVNgQrBr7PmZbdhnwWgUWhdDJkGZsz/gz4Pdsq/DTt9Nq2bNuLZx4cCEBZah+vXE5k0a27ui+nlq9fhW6YUb7/4LHZ2tjSsW5vLV64yd9FSnn10SO6LfGt19MghdmzbyugxH1O/YSMAatSqzZPDHmL50kX0HTA433SbN67jVMRJvp04maByFQCoFBzMcyMeY/PGdbS6vx0Ap09FULlKCCHVrLtuzaHrxNKk2X9QtWJ53nn+SQAa16uNITOTaQuX0K9Lh4Lr2OWr+GX27wXWsdMWLKFJaG1effKR3G3lyvrxxBtj2bJrH/c3aVgk5RGRwqM1MApRSEgIM2fOpF+/ftx33308+OCDrF59Y8qbb7/9lsGDB/Piiy8SGhrK2LFjWbhwISEhIbn7JCUlMXbsWJo3b069evUYPHgwBw8ezP1+9+7dDBo0iNq1a9O6dWvGjBlDYmLiXS3n7ZSoHUKt78YQPeMP9j7y6m33dykfgHtIReIXmU9bELdwJW5VKuBa2fSiqEz75pxfvt5suqj4BSuwsbOjTIfmhVuIQpKeYWDnyUja1Akx296+XghJqensiYi2SFOmhDuzRj1Cl7AbUwvY2tpgZ2tDWoapN0Fiahpdw2rSqYH59AMVfU1DaKMuXC7sohSadEMmu6Ivcn+weYClbeWyJGUY2Bub/8uwYwlXqVq64OGdjnZ2/Nq3BYPrBZttt7e1Jd1g/O8ZL0r29jhVrknKfvNp1pL3hmPr4opTpWq3PYSthycluvQnadNfpJ89mbvduXodUg/tMZsuKmVvODa2tjhXr1toRShs6RkZ7D14hBaNzRuTrZuGkZySwv4jltPuxZ1LICo2jpaNG1ikiYk7R1RsHJevXuXa9USaNqxntk+l8kF4lvBg6849hV+YQpKeYWDnsVPcH2p+37drUIuk1DT2njhjkSYpJZU+rcNoVde8h2sFf1MgMCbhMllZWazedYjuLernBi8AalYMZNVXb1h18CI9w8DO46e5v555+drVr2k6JyfPWqRJSkmjT6uGtMpTL984J5ZTmmRlZfHJzCVU8i/DoPZNC7EEhS89I4P9Bw7SrEljs+0tmzUlOSWFg4ePWKSJP3eO6JhYmjU2T9OiWVNi4+KIjok12/7T5KmULFmSDu3aFn4BioKdPY7B1Uk7uMtsc+r+Hdg6u+BYMcQiiX3Z8tiX9iV5s3nv4eRNK7nwycv5T5kElOj5CIbzMSRvWF54+S9sdvbYl69K+jHz+i79yC5snFywD6psmcQ3CDtvH9J2rjHbnrZjDVe/ezv3BaWNkwvufUdgiDzB9d/GF10ZCllue622+SjQ9nWrmdprpwpqrw01mwrK1F6zJc1gAMDR3o5pLw3h4TbmL5/t7e1y97FW6RkZ7DtwiOaNzfPesmkTklNSOHD4qEWa+HPnTXVJk0bmaZo1ISYunuhYU10SceoMri4u+Pv5Fl0BikB6RgZ7Dh6lZSPzUXj3N2lIckoq+4/k/zJ+6+59/Dr3d4b07saIIf0tvjcajTSoXZNuHVqbbS8fYGorx8SfL5wCFAU7e+zLVSH92D6zzenH9pjqk8Dg/JP5BmI4Z3lf5bD19sXG1o6MEwfMtmecPY6NrS0Owdb7gtrUhj1Mizz3TqumjbPbsJb3Tty580TFxlmmadY4+94xddRLT8/A2ckZO7sbr3FKeLiTYTCQnJJaBKUpXHt27cDZ2Zm6oTfa6p6eXtS8rw67dmwrON3unQQEBuUGLwCCylUgMKhcbrqsrCzOnD5FxWDLZ5g10nViKT0jgz2HjtIyLNRs+/1NGpCcksq+owXXsZPnLuLhXl0ZMaSfxfdGo5GGdWrSvX1rs+33RB0rIrkUwChkn3/+Od27d2fRokW0atWKZ599lt27d+d+v2PHDkqXLs2iRYsYMmSIRfoXXniBDRs28PHHH/PHH38QFBTEo48+ytWrVzl69CjDhg2jRYsW/Pnnn3z++eccOnSIRx99lKysrLtZzFtKiYxjXbX2HBn1CZnJt39AulczNWyT8rx8S44wvXhyr1oRW2cnXCsEknTitNk+6Rcuk3H1Ou5W+oIt+uIVMgyZlM8zh3y5MiUBOHPe8mW9o4M9Ncv74+HijNGYRfzla4ybv4roC1fo29z00rWEqzOv9+1AvWDzUQVr95se6sH++Y9SsAYx15LJMBop7+Vutj3I0zRlwNnL+QfkjidcJTnDwLC5G2jy3WI6/LKC8ZsPkZFpCk7Y2dpQpbQnpd2cycrK4mJyKr/uPM72qAT61K5QpGX6r+xL+WLj4EDGefNRRIaEeNP3vmVve4wSnftBVhZXl9zopYaDA/alfDCcN3/5aEy8jjElGXuf2x+3uMTGnyfDYCCorHnPzEB/08uOyDwvVAHORseY9ilrHhwLyO7dGRUTh7ubK3Z2dsSfv2C2z/XERBITk4g9Z70N2OiES6b6xK+U2fYgH9PnM/EXLNIElPHmzSHdc1/O51i3+zD2dnaU9ytN7IXLJKak4l+qJB9PX0SrkWNp9MQ7vDB+OucuXS26AhWC6AvZ58T3n5yTkrw56EEq+OU5J3uOmM6Jr+WUNyt3HODA6WhGDeiMna11N53i4uPJMBgICDC/v8tm3xdR2ffJzSKjTC+RAvOkCfA3pYmOuZFm1569/L1mLaNeGImtFU9VeDO7Uj7Y2DtgSDCvYzMvZtexZSxHLDqUNXWeyDJk4DXsZXw/mozPmIl4dBsMdvn3XHSu0xjH8pW5vmgGWFG7LC9br9LY2DuQedG8vjNeTgDArpTlS2U7P9OIpCyDAff+z1DytW/xevlLXNv3MzsfWRnpXJ34Hkl/TiEr2bo62NzKbdtr5ywDm44O9tQsl6e9tuBvs/aana0tVQN8KF3C3dQ2uZbEpL+2su3YGfo3D7U4pjWJiz9HhsFgWS9kP5dvrhdynM2pS8rmqX9ynsPRpmf3ydNn8PBwZ8zHn9Gt/xC69B3E2E+/4OIl6+2AAxB7ztQ2KZenbRKQ0zaJzX80ePXKFZk/8UuG9umGXT5rbdna2jJy2EO0CDMPjGzcbgq6ViwXUBjZLxI59YnxUt76xPQ5v/oEwN4nEBtHJzyGvILXqG/wHPkxLq27Q/YzNivFVH/Yepo/3+28yuT+XWuV24YNMH+25LRho27Rhs2bJiBPu7dn5w5Ex8Ux+/fFXE9M4tCxE8xfvJzG9etRwsP8t5U1io6KxNevrMV94O8fQExMVMHpIs9SNsByNL1/2QBiok3p4uNiSUlJ5uTxYzw9/GF6P9iep4c/zNrV+U9jVtx0nViKPZeQ7++/AL+c8sXnm6565Uos+OFzUx2bTzvd1taWkY8MpEWewMiG7ab3dBWDrLeOFZEbrHfs2D2qV69eDBo0CIBXXnmF7du3M2PGDEJDb1SWzz33HB7Z8zveHNw4deoUGzZsYNKkSTRvbhpR8N5771GiRAkuX77MpEmTaNasGU89ZRqyXKFCBb744gvatWvH9u3badTIvLdTccm4fJWMy3f+0sve0/QQNVwz/6FruJ5k+r6EOw6eHvnuk7OffQnrfBAnpqQB4O5sPtTRNXvIfVJq/j04c/y6aivjF5sWquvdtC6Nq1UocN/9Z2KYvCqcVrUqU6Ws9QYwEtNMvTTdHM2rH9fsz0nplj0SL6ekcT4plcysLJ5rVgN/D1e2RycwdedJziWm8mFH8x98K4/H8NZK04++5hV8rX4Rb1sXVwCyUlPMtmelmT7bOrveOr17CdzCWnF9zWKyUpJvbM9OZ8xz3JxtNs4u/ynfRSkp2VQON1fzPLq4mD4nJ1uWqaA0ri7O2d+n4OzkRJvmjfl92V9ULBdIy8YNuHz1GuN/mYadnR2pqWmFXpbCkpjdY8otz7SDrtn1S1LKneV9za5DLN6yh/5tGlPCzYXIc6aX/N/MW0GtSoF88uQALl1P5Nv5fzF83C/MGTPSbGSGNUlMNpX5P5+T3YdZvHUv/e9vRAk3y/ti2srN1K1cjgYh1hksv1lSUs59YF5vuObcOzfVEXnTuOZJc+N+S87eL4kvxk/g4UEDCQy4d37s2WbXdTl1ao6sNNM9lV9daOtuaneUHPoCKXu2kLxhGQ5BlXDv0Btb9xJcnfW9RRq31l1IP32M9FOWo1ysSU55s9ILOB9O+ZwPV1M7y73vU6Qf3EFq+Crsy1bApeWD2LjdtAaGMdOqp3UpyI32mvmUSK7ZdV/SbZ4Nv/4dflN7rQ6NQypY7LNi1xFen/onAC1qBlv9It436oW8z1TT56R/9Bw2f3ZHnDrNhYuX6NKxPb26dyUyKpopM+fw4huj+fGbz3Gx0ul1E5NM+c8pT46b2xn5KVPqn8+/HxN/ju+mzqZKxXI0Ca3zj9PfLTZOprJb1iemeya/qeRsXNywLVESbG1JWfsHxquXsK8QgnPj9tiUKEnyn1MwXjpPRtRJnFt0wXj9Mhlnj2HnVRrXToPIMmRg42A5fZm1yLkP8l4nLre6d3Kurdvcb6G1azGwZzd+mDKTH6bMBKBKpQqMfnlkIZag6CQnJ1m0NcB0blKSLdsnN6fLL4Dh4uKam+70KdMI9HPxcQx7fAT29vasXf0X33zxCRkZ6XR44NbrJ9xtuk4sJeY8QwqqY1MKqmNL/uO/FR1/nu+mzcmuY2v/4/QicvcpgFHI8gYR6tWrx+bNm3M/lypVKjd4kdfx46be83Xr1s3d5uTkxBtvvAHA4cOHOXv2LPXq1bNIGxERYTUBjH/K5ja9WbOMxtzeOAXvY509HY236YF5u4W2W95XhbrBgeyJiObH5ZtIzcjIXUvjZnsiohk5cR4BpTx5f3CX/5Tnona7yZzyOyUuDvZ816MJ5bzcKVvC1OitH1gaRztbvt96lMcbVqWi9437qqZvSX7u3YwTF67xQ/hRRv6xlZ96N7Pehc1vl6+sW581t6ZtwdaWxPXL8hz3Nj3FrbiH8G3vnXzqBONt6gFbW9N5fvmpx3Cwd2Dcdz/z6YSfcHJ0ZFDvbiSnpOJspS/q4b/XJwCrdx3kzR/nUrdKeV7o9wAAGQbT9GKlPN354plB2Gaf2yCfUgz9cCLLtu6ld2vrnHv79tfJHZyT3Yd48+f51K1cjhf6dLD4fu/JSI5ExvLlMw/963zeTbcbkWmbT72QdZs6xiY7zfc/T6JM6dL07mH5HLJq/6YuzB5VkHpwJ4nL5gCQHnEEbGzx6NyfxL8WknnhRk9Ah/JVcAisyOUpXxZatovKbeuK/K6H7PORcXRv7uK5hrPHwcYG1za9SNmw2KIH9r3kP7fXalWmbqUAU3ttxWZSMwy5a2nkqFXen8nPP8TxmAS+W7qBp3+Yy6TnHrLatsnt6oX8RmDdrj2eUye/NHIEdrZ2VKtqmuqlds0aVChXjudfe4tVa9bRrfMD/zLXRet29eudPHPuxNnoWF58fxx2trZ8MGpk7nPZKt2mfs3vnGVlpHP9t/EYL5/HeNU0uskQdQIyDbi06kbq5hUYL8aTtPBnXDs9hHtv01z4xpRkUtb+jkuLLuYLf1uZLOPt7p182rC3vd9Mab78YRLLVq/l4X49Ca1di/jzCUyZPZ9RYz7mq7Fv45zPujTFxWg0Wvz7G29xbm5VF96qbsm572rUqs1b737IfXXq4pwdqK9XvyFXr1zht+lTaN+xi1XVt7pOLN3uGVJYI3/PRsfy4tjPTXXsK89adx37P8LGwXruTbFeCmAUsrwLImVmZppViLdasPt2iykZjUYefPDB3BEYN/P2/uc9e6yF4appsWF7Dzez7TmjKgxXE3NHXuTdJ2e/nGNYG3eX7JEWaeaN7JyefB4ut2485IykqF+5HAajkR+WbmTkg63w976xFsSKXYd5Z8ZSyvt48/3T/fFyv3Vv/eLmnjPSIsN8pEXOyAt3R8uFt5zt7Whczsdie/MKfny/9SjHL1w1C2AEebkR5OVGaEBp3BzteXfVHvbEXiQ0wDqHmxuze0Tn9GLLkdNL1phPj+mbudRtROrRfbkLd+fISjWls82vd7Gzi9loDWvjnt07K+88rTm9N91dLcvk7pZ/mpzeSDk90l1dnHl95BM89/jDnEu4gG+Z0ri6OLNk1drcIdjWyCO791Fynp7AOaMM3F1vXZ/M+GsTX81ZToNqFfny2SE4ZS9y55rd47jZfVXNnle1g8vh7uLM0UjLIezWIqcOtTgn2Z/dXW7di3fGqi18NW8FDUIq8uUzD+Wek5v9vesQJVxdaF6raj5HsD4513neUUq5PaPdLJ8Rbm6mZ2tKnp5tyTelCd++g3UbNvHdV5+TlZVFZmZm7kvfzMxMbGxsrPYHYE5dmHdkQc5nY6plXZgzGiHtiPk6EWnH9uHRuT8OAeXNAhjOtcMwJieSdsR8HnhrlDPaL2/P6Nye1PmM2ss5H+kn95ttz4g4BG16Ye9XjvR7OIBxo72Wf13yj9tryzYxsmtLs/ZaUJmSBJUpSf3K5XB3duTtGUvZHRFF/crlCrMohSanLkmxeKbeqi7JeQ7nrX/Mn8M1q1muO1OrRjXc3FyJOG25dpG1yBlZUnDb5L+3wXcfPMJb48bj4uzE+PffyJ06xVrljGwrsD5Jy6fHtCEDwxnL+f0zTh7EpVU37HwCMF6MJyv5OkkLfiTZyQUbd0+MVy6A0YjrAwPJSk0q/MIUkoLug5zrxC2fkZ7ud5Am4eIlFv+1msF9evDYoBtrqVSvUpmhI19h2d9r6dXFeoJ/c2ZNY86saWbbmjZvydUrllPFJack4+pW8IwKrm5upOTzu8U0osPUhvHyKknDRk0s9qkf1oh9e3dx5fJlSlrROxNdJ5Zy27CpRVvHvvnZBFydnfh2zGsE+lm+YxAR62SdvzTvYQcOmC80tmfPHmrWvLMh4sHBwRbHMBgMtGnThhUrVlClShVOnjxJ+fLlc/8zGAx8/PHHxMXlP+fqvSDxuGldC9fg8mbb3bI/Jx6NIDMpmZToeIt9HMt441DCncSjEXcns/9QUOmS2NnaEJVg3lCLzP5cMc+87QCxl66ycMs+0vK84K8eaPoBk3D1xjRaU//exutTFlG7YgCTXxhEGU/rnErrZoGebtjZ2BB9xfyHR1T255sDETkirySy4MAZrqdlmG1Py+45XtLFicvJaSw5EsmlZPOXD9V8vABISLLeBcsMF86RlZmJfRnz+T5zPhviLeeZzmHrWRLHoEqk7Nlq8V1WehqGyxexL21+XFv3Eti6uJJxi8UTi1tZPx/sbG2JiTOf6zQ6+3P5QMvpa3Lmg82bJibunFmaLTt2c+DIMVxdnKlYLhBXF2cuX7lKwsVLVK1UobCLUmgCfbyxs7UlKs/aOTmfK/nn3wDPysri05mL+WL2MjqE3ceEFx/B7aaXcUE+3tjY2JCekWmRNtNoxCmfoKK1yD0neRbejjpv+lypgPWAsrKy+PS3pXwxdzkdGtZiwvNDcHPO/wXlxv3HuL9edRzsLectt0Zl/f2wtbUlNk+7IDZ7bvZygZZTMORMBxWTN03253JBgWzYvIX09HSGP/McD3TvzQPdezNz9lwAHujem8+/+bbQy1JYDBfPk5WZaTEXu31p0+fMc5ZBOkN2cMLGLs/1b2sKwmdlmD+PnKrXJfXgLjBa3kfWJvNyAlnGTOxKmtcZtt6mzzlrg9wsZ3SF5fkw3RfW3Bv6Ttxor10x257bXvMroL22NZ/2WpDpmZtwNZFL15NZvO0AF6+bt3mqZe9z/qr1rhOSU5dY1gum66NckGVdEpS9XkZsnudwTl1SPiiQxKQklq9azemzkWb7GI1GDBkGvDxLFFoZCltATtsk3nyatOj4nHbGf1tbbNXGrbz0/jh8Snnz48fv/Ofj3Q3G7PrEtqT58zbnszGf+sS2ZBkc6za3nK4uuxNBzvo5DtXrY1cmgKy0FNNxMg3Y+QZiY2tLZnzB6yUUt7J+vtltWPPrJOaWbdiy2fvkubZuSnMu4QJZWVnUqm7eoaJCuUA8PTw4HWld7fqOnbry+dc/mP0XEBDEufh4i5EYcbExBAYVHMwNCAwiLtby91BcbCyB5UzvBw4d3M+av1da7JOelo6trS3uBcyCUVx0nVgK8CuDna0t0XnLl73IdvlAyzXL/olVG8N5cezn+HiX5MePRt8TdayI3KAARiGbOnUqixcv5vTp03z66accO3aMoUOH3lHaihUr0qFDB8aMGUN4eDinT59m9OjRpKWlERYWxqOPPsrhw4cZM2YMERER7Nmzh5dffpkzZ85QoUKFoi1YEUqOiCT5VBT+vTqabffr2YHE46dJOWtqrFz4ezM+nVtje9PLNL9eHTEaDFxYG35X83ynnBzsCa1cjtV7j5kNof177zE8XJyoVcHyoRl36SpjZi1jzb5jZtu3Hj2Ng70dFXxNPUfmbdrDl3+soUO96vzwdP/c3tnWzsnejnoBpVgTEWd2TtZExOLuaE9NXy+LNBeSUvlo7T5WnTBvuP51IgY3R3uq+3iRmpnJu6v28Mch85574WdNDZ4qpaz3BzGGDNIijuBSx3waONc6jTEmJ5F+9mSBSR0rVAEg7dSxfL9PO7of51qhcNMIL5e6jcjKzCTt+MFCyHzRcHJ0pHbNamwI32F2nazfugN3V1eqVw22SBPo74e/bxnWbdlutn391u0EljV9B7Bo5Wq+z54PNse8xcuxtbWlaQPrXVTVycGB0KoVWL37kNk5Wb3rEO4uztSsaPkyCeDbBX8xe/VWBndozkdP9Mchz2g/V2cnQqtWYM3uQ6Tf9CJu2+GTpKSlE1qlQpGUpzA4OTgQWqU8q3cfzv+cVMh/nYZvf1/F7DXhDG7flI8e72txTnJcTUom8vxF6gRbZw/p/Dg6OlK7Vk02bQk3Oycbt2zFzc2VkKqWI0kCyvrj5+vLxs1bzLZv3LKVgLJl8fP15eGHBjDhq8/N/uvcsT0AE776nIcfGlC0BfsvDBmknz6K830NzDY73dcQY0oS6VGWnSAyTh3FmJaKcz3z3pzONUPJyjSQfvZE7jYbFzfsy/iTceZ40eS/sGUaMESewLGa+ZSkjtVCMaYmY4g5bZEkI/IEWempONZsaJ6mah2yMjMxxJwq0iwXNScHe0KDg1i9L097bV92e618Qe215azZZ/7vfqO9Voq0jAzenrGUP7but9gHoGpZ6+35aapLarBxyzazc7JhSzhubq5Uq1LFIk1AWX/8fX3YsNm8U8XGLeHZ9YwPjg4OfDvxF36bt9Bsny3bdpCWnk7d+2oVTYEKgZOjI3VqhLA+fKfZOVm3dSfurq7UqFLpXx976659fPDNj9QKqcL3H779r9bNKBaZBgyRJ3EMqWu22TGknqk+iT1jkcTW3RO3Tg/hUM28zeVYvT5ZqSlkxpuCWy7NOuHc1HxqR6ewNhhTk8mItN761tSGrc6G8O152rDbcHdzpXr21Gk3M7VhfVi/2fw37YYt27LbsD4E+vthZ2vL/sPmo1cio2O5ev06ZX2ta7SOd6nSVK4aYvZf3dAGpKQks2fXjtz9rl69wuGD+6kb2qDAY9UNbUB0VCRRkWdyt0VFniE66ix165nSHdy/l/Fffpq7qDeYAqNbNq+nWvWaOOQzyrY46TqxlFvHbttlXseG78Td1eU/1bFbdu1j7PifuC+kMj98+Na/WjdDRIqXppAqZAMGDGDKlCkcP36catWqMWnSJKpVq3bH6T/66CPGjRvH888/T3p6OnXq1GHSpEl4e3vj7e3NL7/8wjfffEPPnj1xdXWlSZMmvPbaazg6Wu+87XnZe7jhXqMyyRGRpF8w9Ww78eF31Jn0CRmXrnBu8Rp8u7WlbL/O7H7ohdx0EZ//Qtn+XWi45BdOf/0rblUrEDL2JaJ+mUtqlPWOQBnesSlPTviNUZP/oEfj2uw9Hc3U1eE83+1+XBwdSExJ41T8BQJLl8Tbw5V6lYJoHFKBT+atIjE1naDSXmw4eJI5G3YzoksLSri6cOFaIp8v+JuypTwZ0Ko+R6LMezflHMtaPdawKk//voXXlu+ke41y7Iu7xLRdJxnZrAYuDvYkpmVw+tJ1Aj3dKOnqRN2ypQgLKs3XGw+RZsikkrcHm86cY/beU7zUohYeTg54ODnQvUY5ftl+DHs7W6qV8WRPzEWm7DpB9xrlqGTNAQzg+soFlH5mNN6Pvkhy+FocK4bg3vZBrv45i6yMdGycXXDwC8RwId5sqiiHsuXIykgn80L+i6ZeX70I1/rNKD3iTRLXLMHexx/PBweStOVvMi9fzDeNtXi4b09eevcj3v3sGzq3bc3Bo8eZ/ccSnhwyAGcnJ5KSkzkTFUOAn29uj81H+vXi429/xNPDnWZh9dm0fSdrN4fz7is3Fq3r3aUjr4z5hG8nTadZWCi79h9ixoI/eajXg1Y9hRTA4w/ez1OfT+bVH36je/P67DsZydQVG3muT0dcnBxJTEnlVOx5Ast4413CnWORsUxZvoGaFQNp37AWB06Z91isVNYHdxdnRvbuyPBxPzPy6ykM6diCS9cS+Wb+Cu6rFESretWLqbR35vEurXnqqym8+uMcujcLZV9EJFP/2sxzvdrfdE4SCPTxxtvDjWORcUxZsYmaFQJoX78WB06Z90SrVLZM7tRTJ6LP5W67lzzUvy+vvf0uYz/5jAfat+XwkaPMW/gHjw0dgrOz6d45GxlFWX8/vDxNU9wMHtiPz7/+lhIeHjRpFMaW8O2s37iZt159BQA/X1/88vzo3bbd9AIipIrlj2xrk/T3Iko+8Tpeg0eSvGM9jhWq4taqC4nL50BGOjZOLtj7ljWN1ki6TlZ6Gol/LaDEg4MwpiSRdmAnDhWq4Na6K8mbVpKVdKMetvcPAsBwvuDRctYmZdMyPAa9gHuvJ0jbtxn7wGCcm7QnZc3vYMgAR2fsyvibelcnJ0JGGinrF+Pavi9ZqcmkH92DfWAlnJt2JHX76twe0/ey4R2b8uR3s29qr8UwdfU2nu/W+tbttfmrSExNI6h0STYcym6vdW5OCVdnSrg606NxbX5csdnUNgn0ZXdEFJNXhdOzSW2C/a1zasscg/v1YdToMbz/6Rc80K4Nh48eY+7CRTw+dPBNdUk0Zf19b9QlA/ry2TffZdclDdmybTvrNm3h7VdfAkyBkQF9ejJ11hy8vDxp1CCU02cimfbbXJo2aki9OvcVZ5Fva2jf7rzw3qeM/nwCXdq25ODRE/y2aBlPDe6X3TZJ4XRUDAF+PpS8w9EkaenpfPL9JFxcnBnauxuno8zrEp9S3viUtt6ARuqW5bgPfA63Ho+Ttn8L9oGVcGrcjpS1i27UJ6X9MF6+QFZKIoaoCDJOH8W1bS9sHBzIvBCHQ3AtnBq0JmX1gtxpp1J3rsX1gYE4J8RhiD6FY436ONUMI2nFb5BmvSOrAR7u15OX3vmQd8d9Ted2rTl09Dizf1/CEw8PLLANO7R/Lz4ZP5ESEyeZ2rDbctqwzwHg5VmCPt06Mfv3JQA0qFObcwkJTJm9AD+f0nTt0KbYynunat5Xh1q16/LVZx8x9NEn8ChRgtkzp+Lm5k6nzjfW14qKPENGRgaVgk2B0uYtWzN/zkzeH/06Q4YNB2D6rz9TvkIlmrdsDZhGfKxY+icfjnmLhwYPw8nZmeVLFxF55gwfjfv6bhf1jug6sfRInwd5fsxnjP7iO7q0acmBYyeYtWg5Iwb3vVHHRscQ4PsP69gffsXVxZmHez/I6eh86th7JWgs8j/MJut2q5HJHQsJCeHjjz+mV69exZ2Vf2Spg+U8tIXFu2UYTVZPZ2vbIVzasN1s277HXid62u+5+5Yb3p9KLz6Kc5A/yaeiiBj3EzEzF5kdr2Sz+lT/9FVK1KlO+oXLxMxcxPH3xpNlMB++/190yThG6qophXY8gNX7jvHD0o2cOX8JH08P+rcMZWhbU2/7HcfP8vj4Wbw/uAvdG9cGTHMuT1y2ib/3HSPhaiLlypRk8P1h9GpaB4Dft+7jvZnLCvx7Nx+rMDi3f4TE714ttOOBacTFj+HHOHs5ER93Z/rWrsiQUNNLsJ3RF3hy4WbebVePbjVMPZ8T0zL4afsx1kbEcSEplUBPNx6qG0zPWjemFcvINDJt9wmWHIki7loKvh4u9KpVniGhlQtt0a8c7s+MI3pkv0I9pnPthpTo3A8Hn7JkXr1E4saVJK4xNT6dKtegzPPvcWnGdyRvW5+bxqvfY7jUaUTcW08UeFzH4Gp4dh+MY2AFMhOvk7xjA9eWzi30qU4Cv53LuSO7CvWYG8J3MPm3+UTFxFG6VEl6durAgB6mher3HDjM86M/4I2RT9KpbavcNItWrmb2H0tIuHAJf18fBvfuRsf7W5gd9+8NW5g273fiziXg61Oang+0p3dX81FghcG3en2SNy8o1GOu2XWIiYtWcyY+AR+vEvRr05iHHzCVb+fRUwwf9wtjHu1Nt+b1+f73Vfy8eG2Bx/r51cdpUM3Um2nvybN8t/AvDp6KxtnRgdb1avBS/0545LPeyH/h2qw3yRvmFuox1+w+zMQ/13Dm3AXTObm/EQ93aAbAzmOnGf75ZMY80pNuzUL5ftFqfl6yrsBj/fzKozQIqQjAXzsO8NpPc1n4/nNULGA6qsLg2rIfkSeOFOoxN20JZ9qs34iOjqFUqVJ069KJvr16ALBv/wFeeXM0r7wwko7t2uamWbJ8JfMW/kHChQv4+/kyoG9v2re5v8C/MW3mb0z/bQ6rlvxRqHkHKFelOvGjBhfqMZ1qNcC9Qy/sy/iTefUyyVtWkbxhOQCOlarjPeItrs75kZSdG3PTuDRoiWurTtiX9iPz2mVSwteStG6J2cLfzrUb4TVkJAnjRpGZUDQdKvw+m8GlD54s1GM6hNTFpeWD2JXyxXj9Cmk715G67W8A7MtXpcSQl0n8cwrp+2/0pnes0xTnRu2w8/bBmHiVtN0bSd2yErD8OWHrWQqvkR9ZHKOweL/9I6l//Vqox1y97xg/LNuU3V5zp3+Lm9prJ87y+PjfeH9QZ/P22vLN/L33GAnXctprDenVpE7uMTMMmUxZvY0/tx0g7vI1/Lw86N2sLkPbNMK2kBZ9zuHcYRjRhTy6ctPWbUyZNZvo6FhKl/KmW5dO9OtpetG498BBXn7zXUY9/wwPtLvxUmzx8r+Y9/sizl+4iL+fLw/16Un7Nq1zvzcajSxZ8ReLlq4gNv4cJTzcadu6JUMH9sOpkBeXDaxai4RD2wr1mOvDdzJ5zu9EZrdNej3QjoHdOwGm+dWfe+dj3nx2OJ3btLBIu2zNRj6a8DPzJn6Bv4/pubLrwGGef/eTAv/esH49eGxA4f2+LFOzEZc/frrQjgfgULUOzi26muqG61dJ272etO2rAbAvVwWPQS+StGQa6Qeye447OuPSvDMOIXWxdffEeDmB1B1rSN9nPhLQqcH9ODVoha2bJ5mXzpG67W8yDu8s1LwDlHzje+KP7rn9jv/Ahq3b+fW3+UTFmO6dnp070L9HVwD2HDjEC2+P5fXnnqJT29a5af5c8Xd2G/Yi/r4+DOrTnY73t8z9Pisri/mLl/Pnir+JO3eeUt5eNKhbm+GDBxT69Gt+1epxJKLwA/OJ168z+efv2Ra+mSxjFtVq1OSxJ54mIPDGaNe3XnuR8+fi+XnKb7nbEhLOM+nHCezdswt7O3vqhjbg0Seextv7xhR/cbExTJ/yM4cOHiAlJZkqVUIYNPQxatQsnMBo9eAAXSd5+FWrx4WDhfuMX79tF5Nm/05kbDxlvEvSq1MbBna7UceOfPdT3nzmMbrkU8cuXbORj76bxPwfPjOrY597b1yBf+/Rft15rH/PQsl76VqW67DI7a2tUuf2O4mZ+09Y/7p7hU0BjEKkAMb/D0URwLjXFUUA415XFAGMe11RBDDudUURwLjXFUUA415XFAGMe11RBDDuZUURwLjXFUUA415XFAGMe11RBDDudUURwLjXFUUA415XVAGMe1lRBDDudUURwLiXKYDx76yvXre4s3DPaXVkb3Fn4a7TGhgiIiIiIiIiIiIiImJ1tAZGITp2LP9FdEVERERERERERERE5J/RCAwREREREREREREREbE6CmCIiIiIiIiIiIiIiIjVUQBDRERERERERERERESsjtbAEBEREREREREREZG7ysbOprizIPcAjcAQERERERERERERERGrowCGiIiIiIiIiIiIiIhYHQUwRERERERERERERETE6iiAISIiIiIiIiIiIiIiVkcBDBERERERERERERERsTr2xZ0BEREREREREREREfnfYmtnU9xZkHuARmCIiIiIiIiIiIiIiIjVUQBDRERERERERERERESsjgIYIiIiIiIiIiIiIiJidRTAEBERERERERERERERq6MAhoiIiIiIiIiIiIiIWB374s6AiIiIiIiIiIiIiPxvsbG1Ke4syD1AIzBERERERERERERERMTqKIAhIiIiIiIiIiIiIiJWRwEMERERERERERERERGxOgpgiIiIiIiIiIiIiIiI1VEAQ0RERERERERERERErI59cWdARERERERERERERP632Nipb73cnq4SERERERERERERERGxOgpgiIiIiIiIiIiIiIiI1VEAQ0RERERERERERERErI4CGCIiIiIiIiIiIiIiYnUUwBAREREREREREREREatjX9wZEBEREREREREREZH/LbZ2NsWdBbkHaASGiIiIiIiIiIiIiIhYHQUwRERERERERERERETE6iiAISIiIiIiIiIiIiIiVkcBDBERERERERERERERsToKYIiIiIiIiIiIiIiIiNWxL+4MiIiIiIiIiIiIiMj/Fhtbm+LOgtwDbLKysrKKOxMiIiIiIiIiIiIi8r9jW5NGxZ2Fe06jrduKOwt3nUZgCKmrphR3FqyKc/tHWOoQUtzZsCpdMo6R+N2rxZ0Nq+L+zDguf/x0cWfDqpR843siTxwp7mxYlXJVqnNt96rizoZVKRHanlMREcWdDatSKTiYMyePF3c2rEqFylVJXfJDcWfDajh3HUHSz28XdzasitvwD0hdPa24s2FVnNs+zJW964o7G1bFq25r1a95VKhcldQFXxV3NqyKc+8X1YbNo1yV6mw9cq24s2FVmlQvQcSpU8WdDasSXKkSMccPFHc2rEZA1fuKOwsi/29pDQwREREREREREREREbE6CmCIiIiIiIiIiIiIiIjVUQBDRERERERERERERESsjtbAEBEREREREREREZG7ytbOprizIPcAjcAQERERERERERERERGrowCGiIiIiIiIiIiIiIhYHQUwRERERERERERERETE6iiAISIiIiIiIiIiIiIiVkcBDBERERERERERERERsTr2xZ0BEREREREREREREfnfYmNnU9xZkHuARmCIiIiIiIiIiIiIiIjVUQBDRERERERERERERESsjgIYIiIiIiIiIiIiIiJidRTAEBERERERERERERERq6MAhoiIiIiIiIiIiIiIWB374s6AiIiIiIiIiIiIiPxvsbFV33q5PV0lIiIiIiIiIiIiIiJidRTAEBERERERERERERERq6MAhoiIiIiIiIiIiIiIWB0FMERERERERERERERExOoogCEiIiIiIiIiIiIiIlbHvrgzICIiIiIiIiIiIiL/W2xsbYo7C3IP0AgMERERERERERERERGxOgpgiIiIiIiIiIiIiIiI1VEAQ0RERERERERERERErI4CGCIiIiIiIiIiIiIiYnUUwBAREREREREREREREatjX9wZEBEREREREREREZH/LbZ2NsWdBbkHaASGiIiIiIiIiIiIiIhYHQUwRERERERERERERETE6iiAISIiIiIiIiIiIiIiVkcBDBERERERERERERERsToKYIiIiIiIiIiIiIiIiNWxL+4MiIiIiIiIiIiIiMj/Fhtbm+LOgtwDFMCQIrHlyCkmLF5PRNwFvEu4MaBFfR5uG4aNTf4VU1qGgR+Xb2LZjkNcTkymaoAPT3VuQbMalXL3MRqzmL95D3M37ib6whW8Pdy4v3YVRnRugbuL090q2n/iHOBLy71L2Nn7GS5t2H7Lfcv270LlN0bgWimIlDMxnPzsJ2Km/2G2j2f9WlT/9FU869fCcC2J6GkLOf7+BLIyMoqwFIVj69nzfL/1CBGXrlPK1Ym+tSsypF5wgddI1JVEekxbbbE92NuDuYPbAGDMymLGnggWHjjD+cQUypV05+HQynSuFlSkZSks9hWr49KqG3al/TEmXSNt1wbStv9d4P62Jcvg+dQYi+2ZCbFc++WD7E82OIW1xSm0ObYeJTFeuUja7vWk7VpfRKUoXDt37+HX6TM5GxlJSS8vunXpTJ+e3Qu8TgDWrN/ArDnziIs/h6+PDwP69qJD2zZm+6z8ezXzFy4iNj4enzKl6dalMz0e7HLL41qL8P1H+H7OYk5Fx1HKswR9OrRgcJe2d5T3Y6ejGDr6MxZ+9S5ly5Qy+27djn1M+n0FZ2PPUcqrBJ2bh/FIjw442Ft/U2HX7t1MnTqVyMhIvLy86Nq1K7179brlOVm3bh2/zZ5NfHw8vr6+9O3bl/bt2pntc/z4cX6ZNIkTJ07g6upK+3btGDRoEA4ODkVdpP9s1+7dTJk2nbPZ5+TBLl3o06vnLc/J2nXrmTVnDvHZ907/vn1o366t2T4bNm5i3oIFREXH4ObmRr26dXjskaGULFmyqIv0n205dpYJy7cQEX8Rbw9XBjStw8OtQ2/dNlm1jWW7j3I5MYWqZUvzVIfGNKtWAYAdJ6N4/IcFBf69ER0a81THxkVRlEKx9Uw83208yKmL1/B2daJfvcoMaVD1juoSg9HIsFlrcLa35+cBrc2++/PgGabvOEbUlUTKuLvwYM0KPNq4Gva21j/we8vhU0z4cx0RcQmm9mvLBjzcrtGtr5FlG1m24yCXrydTNdCXp7q0oFmN4Hz3P3f5Gr0/+ImvnuxLw6rli7IohSZ832Emzv6DU9GxeHuWoE/H1gzq2v4OnzmRDHvrY+Z/PZayPqXNvjsTE8+EmQvYdfg49ra21KtRleeH9CHAt0xRFaXQqH61tOVEFBP+2k7E+ct4u7swoHFNHm5e587qk0wjD//4Oy4O9kwa3t3su0PR5/ly+VYOxSTg7uRIt9AQRrRtgIO9XVEVpdCoDZu/1JRk5k77lp1b15CWmkJIjXoMfOxF/AMq3PExJnz6Gk7OLgx//j2z7VlZWaxYNIN1K3/n4oVzlC7jR7uu/WnXuV/hFqKQpaSkMHnyZLZs3kxKSgq1atXiiSefJDAw8JbpLl++zM8//cSuXbvIzMykYcOGDH/iCby9vXP3yczMZObMmfy9ahXXr1+ncuXKPPb441SrVq2oi/Wv7di9l8nTf+NMZBQlvbzo3qUj/Xp2u+U1vnr9JmbMmU/cufP4+ZRhYJ+edGzb2myfyKgYfpwynX0HDmFnZ0ftWjUY8dhQyvr5FnGJRKQwWP9bidsICQnh448/plevXvfEcf8X7D8dw8iJ8+gYWp1nurZkT0Q0Xy1ag8Fo5LEOTfJN896sZWw4cJLnurWivI83f247wMiJc/nluUGEVja9fP7173C+W7KeoW0b0yikPGfPX+K7JRs4GZvAxGcHWH2jzTnQj7Clk3DwKnHbff16dqDutM85/e00ElZuxK97O+pO/hRjWjpxc5cB4FIxkEYrfuVy+F52D3wB92rBhIx9EQdvLw4+825RF+c/ORB3iRcWh9OhSgAjGldjb9wlxm86RKbRyLAGVfNNcyzhGgA/9GyKy00/Wpwdbvz/xPCjTN11gqcaV6Omb0k2nTnH6L92Y2tjwwMht24AFje7shVw7zuC9CO7SNmwGPvAYFza9ABbW9LC/8o/jY+pTNdnfU1WRvqNL24KYLm07YVzWFvSdm8g/fg+bL1K49LyQWw9S5GyZmFRFuk/O3z0GKPf/5BWLZrxyOCHOHj4CD//OpXMzEwG9O2db5qNm7fwyedf0bNbVxqEhrIlfBuffTUeB3sH7m/VAoBlK1fx1bff0a93T+rXq8vR48eZ+MtkUlJTeKhf37tZxH/swInTvDhuIu2bhPJU367sOxbBt7MWkZlp5JHuHW6Z9mRULC+M+4HMTKPFd9v2H+HVr36hfeNQnh3QjYjoeL6f/SdXricyaph1/+g7cvQo7733Hi1btODhIUM4dOgQkydPxpiZSb9++ed906ZNjPvsM7p3706D+vXZsnUrX375JQ4ODrRu1QqAuLg43nzrLapXq8Ybb7xBVFQUU6dO5fr164wcOfJuFvEfO3L0KO+MGUurFs15ePBgDh0+zKRfp2DMzKR/Adf4xs2b+fTzL+jR7UHTOQkP5/Ovvs4+Jy0BWLd+Ax+P+4zOnR7gkYeHcOnyFaZNn8Grb77Fd998jaOj490s5j+y/2wcIyctomPdqjzzQBP2nI7lq6UbTW2Ttg3zTfPe3L/ZcPgUz3VuRvkyJflz52FGTlrELyP6EFopgOqBPkx/rr9FugnLt3Ao6hwPhIYUdbH+tf2xF3l+4SY6VAtiRPNa7I25wDfr95NpzGJYo9u/1Jiy7SiH4i9TP9D8ZfOsXSf4fO1e2lUN5IVWtbmcksYPmw9xPOEKn3dvWlTFKRT7T8cw8oc5dKxfg2cebMWeiCi++mO16RrpmH/e35uxlA0HTvBc99aU9y3Fn+H7Gfn9HH55YTChlcuZ7Rt/6RojJvzG9ZS0u1GcQnHg+Cle/nQC7Zo24Mn+3dh39CQTZi4kM9PI0B4P3DJtRGQML306Id9nzrkLlxj+zjjKl/Vl7HOPk5aWzsQ5i3juw2+Y+fk7OFtxXaL61dL+yHOMnLacjvcF80z7huw5E89XK8IxGLN4rFW926afvH4Ph6ITaFDR32x79KVrPDl5CbXL+fLZwPacOn+FCau2czUljdE9WhZVcQqF2rAFm/jl20QcP0i/h0fi4urGojm/8OnbI/jw2zm4ud/6d7LRaOS3yV+xc+samt3fxeL7OVPHs2rJbHoOfJJKVWqyf9dmZvz0GfZ29rTuaL3vdcZ9+ilHjx7l0ccew9XVlVkzZ/L6a6/xw8SJeHh45JsmMzOTd0aPJjk5mWdHjsRgMDDl11956623+Pbbb7HP7oD0808/sXLlSoYNG4avry+///47b735Jt9OmEDZsmXvZjHvyOGjx3lr7Ce0bt6UYYMHcODwUX6aMoPMTCMP9e2Zb5oNm8P56Itv6PVgZ8Lq12NT+HY+/XoCDg72tGnZHIDzCRd47rW3CAwoy9ujXiA1LY3JM2bz6jtjmfTtFzg53RsdYkX+l93zAQyxPt8v3Ui1QF8+GtoNgGY1gsnINDLpry0Mat0AZ0fznqsxF6+wbMch3ujbgf4t6wMQVrUCe0/FMGfjLkIrB2E0ZvHrqnD6NKvH891bA9C4WkU83Vx47ddFHI6Mp2Z580av1bCxIXBID6p/+hrcYYwlZOxLxM1fwZFXPgbgwqpNOJT0JOS953MDGMGjhmO4nsTOXk+TlZFBwooNZKakUuub0Zz8ZCKpUXFFVaL/bOK2o4SU8WRsR9O/d9MKvhiMRn7dcYKBdYNxzqdX1fELV/F1dyYsKP+eeSkZBmbtjWBg3eDcIEhYUBmOnr/C7H2nrD6A4dKiK5nnokhePBUAw6nD2Nja4dK0I2k714LBclSNnW8gxmuXMZw9nu8xbVzccGrQmrS9m0heOTt3e9b1y7j1foq0vZsxXjpXNAUqBNNm/kblShV5/eUXAWhYPxSDwcBvc+fTs1vXfBuak6fNoGXzpowY/lh2mnpcT7zOlBmzcn/8/TZ3Pi2aNWX4sKEAhNatQ3RMLIsWL7P6H38/zV9KSIVA3n/GlPemdWtgyMxkyqK/GNCpdb4vfTIMBuasWM+P85fi5JD/Y3/x+nD8SpXk/WeHYmdrS6Pa1bl09Rqzlq3lxSG9sbfino4zZswguFIlRo0aBUCDBg0wZGYye84cunfvnu91MmXqVFo0b86TTzwBQP369Um8fp3p06fnBjDmzZ+Pi4sL77zzDg4ODoQ1bIiTkxM//PAD/fv3x8fH5+4V8h+aPnMWwZUq8eorLwPQsEF9DIZMZs+dR4/u3Qo4J9Np0bwZTz0xHIAG9UO5fv06U2fMyH3BNnvuPMIaNOD5Z5/JTRcUEMDzL7/Ctu07aNG82V0o3b/z/YqtVAsow0cPmV66NqtWgYzMTCat3sGglvVwznNvxFy6yrLdR3mj5/30b1YHgLDKQew9HcuczfsIrRSAu7MTtfO0PdYdjGDbiSg+f7gLFcpYb6/piVsOUc2nJB90bgRAs4p+GDKNTN52hIGhVcw6B+R1/PwVJm87Smk3Z7PtmcYsft56mMblfRnX7UaHlWo+Jek39S/Cz5yjcQXr7eX4/ZINVAvy46NHTD3Am9XMbr+u3Myg+xsW0H49yBv9O9K/VQMgu/0aEc2cDbtyAxhGYxaLt+3ny4Wrybq7RfrPfp63mJCKQYx59lEAmtStZXrm/LGc/p3bFPjMmbt8LT/N+xPHAkar/Tx/Ce6uLkx4+0WcnUzHKOtTilc++54jEWepV71K0RXqP1L9aun71Tuo5l+aj/qZRpQ0q1qODKORSet2M6jpfRb1682OxV1g0vo9lPZwtfhu8vo9uDo58M3gB3Cwt6NFSHlcHOz5ePEmHm9dD3+v/F/sWgO1YfN38uh+9u7YyEujv6Z2fdM1XbVGPUY92Z3Vy+fTre+jBaaNOnOCGT9/xukTh3F0tDx/CediWfnnLIYMH0WbTn0AqFG7IZcunOPAnnCrDWAcOXKEbdu2Meb992nY0NSholbNmgwbNoylS5YwYODAfNNt3LiRiIgIJk6cSLnyphF9wZUqMWLECDZu2MD9bdqQkJDA0qVLeeqpp+jStSsAoaGhPD58OPPmzeP555+/O4X8B6bMmkPlShV48+XnAAirX4/MTAOz5i2kd7fO+d47v0yfRatmTXhm+DAAGobW5fr1RH6dMTs3gDH1t7m4ubry+dh3cXY2HcPf14e3P/iUYycjqF2zxl0qoYj8W9Y/llvuKekZBnaejKRNHfNeh+3rhZCUms6eiGiLNGVKuDNr1CN0CauZu83W1gY7WxvSMjIBSExNo2tYTTo1qGmWtqKvaQqUqAuXC7sohaZE7RBqfTeG6Bl/sPeRV2+7v0v5ANxDKhK/aJXZ9riFK3GrUgHXyqYGSpn2zTm/fL3ZdFHxC1ZgY2dHmQ7NC7cQhSjdkMmu6IvcH2z+0qdt5bIkZRjYG3sx33THEq5StbRngcd1tLPj174tGFzPfNoGe1tb0g2Wvf+sip099uWqkH5sn9nm9GN7sHFywT4w/6ko7HwDMZyzvKdy2Hr7YmNrR8aJA2bbM84ex8bWFodg622opWdksP/AQZo1MZ9+pWWzpiSnpHDw8BGLNPHnzhEdE0uzxuZpWjRrSmxcHNExsQB88N7bPPHoULN9HOztSU9Px5qlZ2Sw6/BJWjesY7a9TaN6JKWksu9oRL7pNu85xC8LlzOseweeHdgj333SMgw4Ozlid9MUL54ebmQYDCSlphZaGQpbekYG+/fvp2lT897RzZs3JyUlhUOHDlmkOXfuHDExMTTJJ01sbCwxMTEA7Nq1i7CGDc2mi2revDlGo5Fdu3cXQWkKh+mcHLC4d1o0z7l3DlukMd07MTRrYj5KskWzZsTGxhETE4vRaKRevbp0eqCj2T5BQabgcGyc9QbN0w0GdkbE0KZWZbPt7WtXISktnT2nYizSlCnhxqwXBtKl/o3RCKa2iS1phsx8/05qhoFP/lhHi+oVaV/Hel/Aphsy2RWVwP1VAsy2t6saSFK6gb0xFwpMm5FpZPTy7QwIrUz5kuYvDy8lp3I1NZ0WeZ7vlct44uXiyMZTVnyNZBjYeeJsPu3Xatnt1yiLNGVKuDPrtWF0CauVu83W1gY7O1vSMgy5247HnOOD35bTtdF9fJjduedekJ6Rwe7Dx2nV0LwHfZtG9UlOSWXf0ZP5ptuy5yC/LFjCIz068exDli8Ms7KyWLttNw+2bpobvACoHlyBpRPHWXXwQvWrpXRDJjtPxdKmZkWz7e1rVSIpLYM9ZwrOe4Yhk7fnrWVgk1pUyKeNv/VEFC1CyptNF9WuViWMWVlsOWF5T1oLtWELdmBPOE7OLtSqe6OcJTxLElIzlP27Nt8y7U9fv4vRaGT0uF/x8PS2+H73tnU4ODjSop15Pfv0qI8Z+fq4wilAEdi1axfOzs6EhobmbvP08uK+++5jx86dBabbvWsXgYGBucELgHLlyxMUFMSOHTsA2Lt3L5mZmWZtXgdHR8LCwtiZvY81Sc/IYN+BQzRv3Mhse8umTUhOSeHA4aMWaeLPnSc6JpbmTcLM0zRrTExcPNGxcWRlZbFhSzgPtG+TG7wACKlSmXlTf1bwQuQe8f8igHHq1CkGDBhArVq16NSpE8uXLzf7fu3atfTq1YvatWvTvn17vv76a7OHfHx8PCNGjKBevXq0bNmSxYsXm6X/9ttvGTx4MC+++CKhoaGMHTsWgD179vDwww9Tv359GjVqxBtvvMHlyzdepKempvL111/Ttm1b7rvvPrp3787KlStzv1+4cCHt27dn9uzZtG7dmjp16vDcc89x7tw5Xnnlldz8zJ8/PzfNmTNneOyxx6hfvz716tXjscce49ixY4V6Pv+L6ItXyDBkUt7HvFFRLrsX4pnzli+nHR3sqVneHw8XZ4zGLOIvX2Pc/FVEX7hC3+amH00lXJ15vW8H6gWb96Jfu9/U8zzY33rny02JjGNdtfYcGfUJmcm3fxHoXs30sjrpxBmz7ckRZ03fV62IrbMTrhUCSTpx2myf9AuXybh6Hfeq5j8irEnMtWQyjEbKe7mbbQ/ydAPg7OXEfNMdT7hKcoaBYXM30OS7xXT4ZQXjNx8iI3tqAjtbG6qU9qS0mzNZWVlcTE7l153H2R6VQJ/aFYq0TP+VrVdpbOwdMF46b7bdeNn02a5U/j1W7X0CsXF0wmPIK3iN+gbPkR/j0ro7ZL+EzkoxnUtbT/O1Duy8yuT+XWsVFx9PhsFAQID50OayZU0vxqKiLV84RkaZgjmBedIE+JvSRGe/mC4fFISfry9ZWVlcu36dZStXsWrNOh7s0qnQy1GYYs5fJMNgoJy/ec//oOz5ws/Gnc8vGTWCy7No/Bge7fkAdnb5P/b7dmhJVHwC05f8zfWkZA6cOM3s5etoVrcmnu5uhVuQQhQfF4fBYCAgwPxFbNk8/+Y3i4yMBCAwTxr/7GH00dHRpKWlcf78eYvjenl64urqSnR0wYHD4hYfl3Pv5D0nOeWzPCdRUaYXQQXebzHR2Nra8uTjj9E0zwuZLVvDAShf3ny6HGsSffEaGZmZlM8zIqJcaS8AziRYdoJwtLenZpAvHi5O2W2T64z7Yx3RF6/St8l9+f6dmRv2cP5qIq/2aFXoZShM0VeTyMg0Uq5knudw9uczl64XmPanrYcxZBp5qmlNi+/cnRywt7Uh7mqy2fZrqelcT80g5mr+z3drEH2hgParT3b79VxB7deyN9qvl64xbt5fRCdcpm+LGy+i/L09WTLmaUb1aW8xisOaxZy7kO8zJ9DP9MyJjM1/BGf14PL8MeEjhvXqnO8zJy7hIonJKfiVKcW4SbNo/+iLtBj8DK989j3nLlpvhyRQ/Zqf6EvXyMg0Ur6UeQCiXPbnMxeuFpj2xzW7MGQaebqd5TR+qRkGYq8kUj5PYMPb3QV3J0fOJBR83OKmNmzB4qJPU8Y3AFs781F+vv6BxMecvWXaJ154n7c+/oWgCvkHOSNPH8fXP4hjh/bw7kuDeax3Y14e3o11K617ytyoqCj8/Pywy3NO/MuWJeYW7c3IqCiLugigbNmyuddLVGQkLi4uZmti5Oxz8eJFUlJSCqEEhScu/hwZBgOBAeYdIQLK+gEQlR3Iu9nZnHunbN57JztNdAzx586TlJSMb5kyfPPDz3Qf+Agdew3k7Q8+IeFC/p0nRcT6/L+YQmrq1Km89dZbfPzxxyxatIgXX3yRoKAgatWqxYYNG3jhhRd44403aNq0KZGRkYwdO5bTp0/zzTffYDAYePzxx3F3d2fGjBmkp6czZozlorg7duzg4YcfZtGiRWRmZrJ//36GDBlC//79effdd0lISOD999/nscceY968edjZ2fHSSy9x+PBh3nvvPcqXL8+SJUt4/vnnmTBhAu2yFwqNjY1lxYoV/PTTT8TFxfH0008THh7OiBEjePrpp5k8eTLvvfcebdu2pWTJkrz00ktUq1aNBQsWYDAY+PTTT3n22WdZtWqVRZ6LQ2L2vL7uzuZDyl2zh/olpd66d8ivq7YyfrFpceHeTevSOHuhzPzsPxPD5FXhtKpVmSplrTeAkXH5KhmX77yRbe9peoFguGb+Q99wPcn0fQl3HDw98t0nZz/7Eu4W261FYpppxIibo3n145r9OSndYJHmckoa55NSyczK4rlmNfD3cGV7dAJTd57kXGIqH2ZPRZVj5fEY3lq5C4DmFXytfhFvGyfTNBxZ6eaNyKw00/1k4+hsmcbFDdsSJcHWlpS1f2C8egn7CiE4N26PTYmSJP85BeOl82REncS5RReM1y+TcfYYdl6lce00iCxDBjYO1jvXZ1KS6QWYm6v5lAKuLi4AJKckF5jGNU8al5w0yeZpjhw9xvOjXgegapXK9OlpvnCktUlMNl0fbi7m14OrS3b9mpJ/gNTH2+u2x25YsyoPP9iO8TP/YPzMPwAIqRDIByMf+df5vRuSkvP/N8/5nPff/JZpbrpOkpKS8t0HTNdTfse1FknJ+efd1TX/+wD++b2TIzYujp8nTSa4UiXCGjT4bxkvQompBbVNTJ9v2zZZu4Pxy7YA0LtxLRpXtXyZmGHIZNbGPXSsG5IbGLFWOc9hdyfzl+k3nsOWUxYCHIq7xPQdx/hlwP045jOtnIuDPe1Dgpiz9ySVSpegTZUALiWn8dmaPdjZ2pCSkf/IFWuQe424mD8X77j9+tcWxv+5DoDezerSuNqNjiSebi54urkUYm7vjhvPHPO8u2Y/g5IKePHl433rqdMuXzMFyL6btZAawRUY+/xwLl+7xve//cHT73/JjE/fxsXZOtsnql8tJWbfGxb1a3awLikt/3vnYPR5pm7ax+Th3fKtT3KP62Q5TZmrk0OBx7UGasMWLDk5ERdXy44xzi5upKQk3TJtUIXKt/z++tXLXLmUwI9fjaZH/+H4B1Zg28a/mPKDaUpma51CKjkp6V+1N5OTkgjIZw2Lm9MlJScXeGwwXVcuLtbzfLrtvXOLdr2ba95nVU6aFK5cM62l+fPUGVSrUpm3R73AlavX+GXaTF56811+Gv85Ls6Wv7fl7rGx/X/Rt16K2P+LAMZDDz3EgAEDAHjhhRcIDw9nypQpfP7550ycOJF+/frlfl+uXDnGjBnD0KFDiY6O5vTp05w4cYJVq1ZRrpzpB+nHH39Mjx49LP7Oc889l7uI0gsvvEBISAijR48GIDg4mC+//JLu3buzadMmAgMDWb16NRMnTqR169YAjBw5kqNHjzJx4sTcAIbBYGD06NEEBwdTtWpVqlWrhoODA8OGmebvGzZsGPPmzePMmTOULFmSyMhImjZtSkBAAA4ODnz00UecOnUKo9GIrRXc9MasW8/ue7uFtlveV4W6wYHsiYjmx+WbSM3IyF1L42Z7IqIZOXEeAaU8eX+w5QJe97LbVd5ZRmNuD/uC97HeWZZvN5lTfpeIi4M93/VoQjkvd8qWMDVo6geWxtHOlu+3HuXxhlWp6H1jKouaviX5uXczTly4xg/hRxn5x1Z+6t3Mehd6t7nNv2c+91VWRjrXfxuP8fJ5jFcvAWCIOgGZBlxadSN18wqMF+NJWvgzrp0ewr33kwAYU5JJWfs7Li26mC/8bWXyK/PNbPM5Z1lZt766bPKk8fHx4fOPPyD+3DmmTJ/FC6Ne5/uvvzQbWmxN/mv9eiufTJrNn+vCebTnA4TVqkpswiV+nr+M5z75ju/fes5smg9rkmW89b+5bT7n5HZpbGxt7+D6s9K6BNN8+7eSX96Nt7l38rvfIqOieHP0O9jZ2fH2m69bRRukILc7J7dtm9SoRN0KZdlzOpYfV20jNcOQu5ZGjlX7T3DhejKP3F+/gKNYj39zfacZMnln+XYeql+FWv6WU3fkeKt9fRztbBm7cifvr9yJs70dj4RVIzndkO/6VtbiP18jtatQNziIPRFR/Lhso+kaeeTeeKFYkNtdJ3mfqXcqI3sKNm/PEnz68lO5dUegrw+Pj/6UFZu20bOddS7QrPrV0r9pm6RlGBg9by2Dmt7HfUH5jzIuyjZPUVMb1sRoNFqU61a/Uf9tnZLDYMjg+rUrPPvapzRo0gYwrYFx8UI8f8z5xSoCGKZzkmWxrSC3us5vdY/k1EW3bfNa2X10u/oyv2vkdu89bGxtMGRP61jSy5Mxb47KrVMD/P14dtSbrF63ka4PtP+XuRaRu+X/RQCjfn3zH4t16tQhPNw05Pbw4cPs37/fbBqmnIdGREQEJ0+exNPTMzd4AVC9enWc80RgS5UqlRu8ADh+/DjNmpkvplatWjU8PDw4duxYbu/NvHlr2LAhX375pdm2m/+2q6sr/v43hszlLFKUM+XViy++yEcffcSsWbMICwujRYsWdO3a1Woatjk91/L2iknK7tnm4XLrRlXOSIr6lcthMBr5YelGRj7YCn/vG8OHV+w6zDszllLex5vvn+6Pl7tlr4J7meGqqWeavYd575ScURWGq4m5Iy/y7pOzX84xrJF7Tg/PDPORFjkjL9zzmV7B2d6OxuUsF8xtXsGP77ce5fiFq2YBjCAvN4K83AgNKI2boz3vrtrDntiLhAZY55RJWWmmXox5R1rkjsxIy6eXoyEDwxnLeUAzTh7EpVU37HwCMF6MJyv5OkkLfiTZyQUbd0+MVy6A0YjrAwPJSr11T6fi5Jbbg9687Lm9bNws73s3N9P9kHc4dHIBaUqX8qZ0KW/q3FcLfz8/Xn79LTZu3kL7tvcXTiEKmXtOT6Ls+jRHzsgLd9d/14Pq/KUr/L5mC8O6d2BEP9MCf/WBmsHl6T/qQ/5ct5V+Ha1zSpycf/PkAv7NXd0s68jbpXFzdc3trZbf0Prk5OR8j2stcq7zvHlPutU5cf1n986+/Qd4/8OPcHFx5tOPP8ydsstaFdg2yf7s4XLrAF0Vf9Ozo35woKltsjKckZ2a4l+yRO4+q/afINivFCFWPCI0R87Ii7wjHpPSDGbf3+z7TQfJAoY3roEh+4VIVvaS1AajETsbG2xsbHB1tOfdBxoyqk094q4l4V/CDVdHe/44cIogL+sdHZp7jeStX++4/Wpqo9Svkt1+XbKBkd1am7Vf7zU5z5TkPOsg/ddnjmv2C9YmdWua/X65r2ol3F1dOH7Getc2UP1qKWfkRVKa+cit3Po1nw4QE1btwJiVxRNt6mPIngo2512sIdOIna1N7siL/EZaJKWlW4z4sCZqw5osmvMLi+b8bLatQdO2XMvueHWzlOQkXF3/2zPC2cUNGxub3MXBc9xXrwkH94Rz9cpFPL1KFZD67pg1axazZs4029a8eXOuXLlisW9KcnLudZEfN1fX27ZT3dzcCtwn53trklNf5m2j3/recS0gTfYoQlfX3FFyYfXrmT13alSripubKydOmU/LLSLW6f9FACPvy/vMzEwcHU2NGqPRyOOPP07Pnj0t0pUpU4aIiIh8o9729uanJm9Ao6CeFVlZWWYLfub3fd5j593/VsGIQYMG8cADD7B+/Xq2bt3K+PHj+eGHH/jjjz8oXbr4X84GlS6Jna0NUXnmk47M/pyz6PbNYi9dJfzoGbo0rImTw41zUz3Q1CMn4Wpi7g/AqX9v46tFa2hQpTxfDe+Fh8v/v6F+icdND1DX4PJc23tjkTe3YNMCXYlHI8hMSiYlOh7X4PJmaR3LeONQwp3EAhbztQaBnm7Y2dgQfcX85XlU9uebAxE5Iq8ksiPqAh2qBuBx04uVnIVUS7o4cTk5jc1nz9G0vC/erjdeNFTz8QIgIcl6FyI2Xk4gy5iJbUnzF185n40X4y3S2JYsg335EDKO7DIPcGTXJ1nJpiCXQ/X6GC/Ek5kQk7ufnV85bGxtyYy33pcEZf39sLW1tVi4MjbW9LlcYKBFmpw1DWLi4qgcXOlGmuxjlAsKJCUlha3bthNStSoBZW+8FKiSvf/FS5Y/qqxFoG9p7GxtiY5PMNue87liQP69GG8n/sIlsrKyqB1SyWx7pUB/PN3dOBVtvYuH+vv7Y2trS1ys+Zy4sdmfywVZTh8XmH3txMXGUjk42DJNuXK4uLhQqlSp3G05rly5QkpKSr7HtRZls89JgfdOvuckIHcfs3OSfYygm9KsXbeez7/6mqDAQD4Y8x6lSxfvy4A7EVTK09Q2uXDFbHtk9ueKPpYjCmIvXSP8RCRdQqvlaZuYXlQnXEvKDWBkZGay5dhZht1vvdO83CzQyx07Gxui8qw5FXXF9Dm/5/Dfx6OJu5ZMs/G/W3wX9uUC3nugId1qVWBDRCwlnB2pG1Ca4Oy56y8lpXLuegrVfG89tVBxCipTUPvV9Eyo6GfZxo69eJXwo6fpElbL/BoJMs27fXP79V4U4FsGO1tbouLN11eKzv5cIcDvXx030K8MNjY2ZGRYThmamWnEyYrXCVH9ainIu4Tp3rloPl1uZPbnitnt8Jv9fTCC2CuJNHlvksV39Uf/xPu9W9O9fjV8SrgRdfGa2fcXE1NISsugUhnL41oLtWFNWnfsSd2Gzc227d62noN7wi1mjzgfF4V/YIX/9Pd8/YPIysoi05ABjjd+C2Zmmn4vOjreOhB9N3Tq1ImwMPPFprdu3cquXbsszklsbKxZ/ZBXYGAgERGWv/ljY2MJCQkBICAwkOTkZK5euYKnl1fuPnGxsfj4+OR2lrUWAf6+2NraEhNn/ts353P5IMs1P4Ky142JiYvPvRcAYnPTBOJZwuM2zx3rDYiKyA3W0W3/Pzp06JDZ5927d1OlimlxpypVqnD69GnKly+f+198fDzjxo0jKSmJ6tWrc/36dU6cOJGb/syZMyQm3nqhwZCQEHbt2mW27ejRoyQmJhIcHJz70Mi7z86dO6lc+dbzNxbk4sWLvP/++2RkZNCrVy8+++wz/vzzTxISEti+ffu/OmZhc3KwJ7RyOVbvPWYW5Pl77zE8XJyoVcFynsa4S1cZM2sZa/aZL0a+9ehpHOztqOBrerEwb9MevvxjDR3qVeeHp/v/vwxeACRHRJJ8Kgr/Xh3Ntvv17EDi8dOknDUtynXh7834dG6N7U0/9Px6dcRoMHBhbfhdzfM/4WRvR72AUqyJiDO7RtZExOLuaE9NXy+LNBeSUvlo7T5WnTBf9O6vEzG4OdpT3ceL1MxM3l21hz8OmS8AF37W9EO7SqkSWK1MA4bIkziG1DXb7BhSD2NqMobYMxZJbN09cev0EA7VQs3TVK9PVmoKmfGmhYpdmnXCuWkHs32cwtpgTE0mI/J4oRajMDk6OlK7Vk02bQk3u042btmKm5srIVWrWqQJKOuPn68vGzdvMdu+cctWAsqWxc/XFzs7O7789jvmLTR/Cbdzz14AKlYwDwpaEydHB+pVq8zaHXvN753te3F3daFmcIV/ddwgP9NLqr15Ap9nYs9xNTGJAJ/iD44XxNHRkftq1WLzli1m52TT5s24ublRNZ/rpGzZsvj5+bFp0yaz7Zs3byagbFl8fU2BoNDQULZv3056xo1epZs2b8bW1pY6deoUUYn+u4LPyRbc3NwIqWq5+GXO/bFx82az7Zs2b8n9DmD7jp2M++JLalSvxheffXpPvFyD7LZJpQBWHzhp3jbZfwIPZ0dqlbN8ERt3+Rpj5v7NmgMnzbZvPRaJg50dFW5aEPxk3EVS0w3Uy6eNY42c7O2oF1iaNSeizc7H6uPRuDs5UDOfKaK+7tmcGYPbmv1XzdeLar5ezBjclpbBppdp8/ed4qt1+8zSztx9AjtbG1oEW29P8gLbr3tu036duZQ1e/O0X4+cMmu/3qucHB2oW70K67bvMTsna7ftNj1zKle8ReqCuTo7U696FdZu32NWv+44cISUtDTqVst/gV5roPrVkpODPaEV/Fl96LT5vXPotKl+DbQcQT3+4U7MerqX2X/Vy5ametnSzHq6F62qVwCgSZVANhw7S7rhxvo5qw+ews7WhrBgyxeZ1kJtWJOS3mWoWLmG2X+16jYiNSWJg3u25u537epljh3eQ626jW9xtNvLGXmxbeNfZtv3bt9AUIUquPzHER6FoVSpUlStWtXsv9DQUFJSUszeG129coWDBw8SGhpa4LFCQ0OJiooi8uyN376RZ88SFRVFvex09erVAzBr82akp7N9+/ZbHru4mO6dGmzasi3PvROOm5sr1arkV8f64+/rw4bN5u8/NmwJJ7CsP36+Pri4uFC7ZnU2btlm9tzZvW8/qamp3FezetEVSkQKzf+LERhTpkyhXLly1KlTh9mzZ3P8+HG++OILAIYPH84LL7zAhAkT6NKlC/Hx8bz11lsEBgZSpkwZSpUqRZ06dXj11Vd59913sbOzY+zYsbedkmnYsGE89NBDjB07loceeogLFy4wduxYatSoQZMmTXBwcOD+++9nzJgx2NjYUL58eZYuXcrq1av5+uuv/1U5PT09WbduHZGRkbz88su4u7uzcOFCHBwcqFWr1r86ZlEY3rEpT074jVGT/6BH49rsPR3N1NXhPN/tflwcHUhMSeNU/AUCS5fE28OVepWCaBxSgU/mrSIxNZ2g0l5sOHiSORt2M6JLC0q4unDhWiKfL/ibsqU8GdCqPkeizKPyOce6F9l7uOFeozLJEZGkXzD1/Dvx4XfUmfQJGZeucG7xGny7taVsv87sfuiF3HQRn/9C2f5daLjkF05//StuVSsQMvYlon6ZS2qU9faYBnisYVWe/n0Lry3fSfca5dgXd4lpu04yslkNXBzsSUzL4PSl6wR6ulHS1Ym6ZUsRFlSarzceIs2QSSVvDzadOcfsvad4qUUtPJwc8HByoHuNcvyy/Rj2drZUK+PJnpiLTNl1gu41ylHJmgMYQOqW5bgPfA63Ho+Ttn8L9oGVcGrcjpS1i8CQAY7O2JX2w3j5AlkpiRiiIsg4fRTXtr2wcXAg80IcDsG1cGrQmpTVC3JHW6TuXIvrAwNxTojDEH0Kxxr1caoZRtKK3yDNekelADzUvy+vvf0uYz/5jAfat+XwkaPMW/gHjw0dgrOzE0nJyZyNjKKsvx9enqZeroMH9uPzr7+lhIcHTRqFsSV8O+s3buatV18BTA3jAX16M23WbLw8PalT+z5OnT7D9N9mE1q3DmENrHv++kd7duSZjybwxjeTebB1Y/YfP830Jat5dkA3nJ0cSUxO4XRMPIG+pSlZwrIXdX5KlvBgQKfWTF/yNwCN7qtG3IVL/LJgOf6lvenRpmlRFuk/GzBgAG++9RYfffwxHdq358iRIyxYsIBhjzyCs7MzScnJREZG4u/vn3udPDRwIF9+9RUeJUrQuFEjtoaHs2HjRl5/7bXc4/bt04f169fzzujR9OzZk5iYGKZMnUqnTp3w8bF8IWNNHhrQj9ffGs2HH39Kxw7tOHzkKPMXLuTRR4YWeE4GDRzAF19/QwkPD9M52baNDRs38cZrrwKmqSy/Gv8tri4uDOjfj8jISLO/Wbp0acpYwUjQggxv14gnf1zAqGnL6BFWg71n4pi6bhfPd25uapukpnHq3CUCS3ni7e5KvYoBNK5Sjk9+X0diWjpBpbzYcPgUczbvY0THxpRwvdGJ4kTcBQAq+d0bLxwBHm9SgxFz1/Pa4nC616rAvtiLTNtxjJEt78t9Dp+6eI0gL3dKujpRpYzlSAK37BF/NfxuvKgfGFqZZ+Zv5PO1e2kVXJbtkef5ddtRHgkLseoppACGd2rOk+NnMuqXhfRoWoe9p6KZ+vdWnu/eJk/71QtvDzfqBQfRuFpFPpm7ksTUNILKlGTDgRPMWb+LEV1bUuJfTrFkTR7t1ZlnP/iaN7/6iQfvb8b+4xHMWLyKZwb2vPHMiY4j0K/MHT9zAJ4e2IMRY77kxU++ZVDXDly6eo0JsxZSs3JFWjSw3gAxqH7Nz/D76/Pk5MWM+m0VPepXY29kPFM37uX5jo2y69d0Tp2/TKB3CbzdXaiST13plj3CuuZNAY9hLeqyYt9Jnp6ylCHN63D2whW+/Ws7vRtWx9/rzq+34qA2bP5CaoZSrVZ9fvzqHfoNHYm7hyd/zP4ZVzcP2nTqnbtfTNQpDBkZlK8UcsfHrn5ffeo2bMGsyV+RlpZKQLlgNq9dyomj+3jujc+LojiF4r777qN27dp8Nm4cjz72GCU8PJg5cyZubm507nJjrc/Is2fJyMggOLszbMuWLZkzZw6j33knd/3UX3/9lQoVKtCypWkdIV9fX9q1a8dPP/1EWno6AQEB/P777yQmJtKnb9+7X9g7MLhfb0aNfp8xn35Bp3ZtOHT0GHMW/snwoYNuuneiKevvm3vvDBnQl3HffEcJDw+aNmrA5m07WLdpC6NffTH3uI8PHcRLb7zLG+99SL+e3bh85So/T51B9ZAqNA27N0bQivyvs8m63SpTVi4kJIRXXnmF5cuXc/z4cSpXrsyrr75K06Y3XrgsX76cH3/8kZMnT+Ll5UWbNm145ZVXKFHC9ELz8uXLfPDBB6xduxZnZ2eefPJJfvrpJ15++WV69erFt99+y++//86aNWvM/vbWrVv5+uuvOXz4MO7u7rRr146XX34Zr+zhecnJyXz55ZcsX76ca9euUbVqVZ566inatzctELRw4ULeeOMNjh270XNryJAhBAQE8MknnwAQHR1N27ZtmTZtGo0aNSIiIoJPP/2Uffv2kZKSQvXq1Xn++efNyvtPpa6a8q/TFmT1vmP8sHQjZ85fwsfTg/4tQxnathEAO46f5fHxs3h/cBe6N64NmOYYnrhsE3/vO0bC1UTKlSnJ4PvD6NXU9CPm9637eG/msgL/3s3H+q+c2z/CUoc7byz9E94tw2iyejpb2w7h0obtZtv2PfY60dNu9KgpN7w/lV58FOcgf5JPRREx7idiZi4yO17JZvWp/umrlKhTnfQLl4mZuYjj740ny2A5PPK/6JJxjMTvXi3UY66JiOXH8GOcvZyIj7szfWtXZEioqUG2M/oCTy7czLvt6tGthmmNmMS0DH7afoy1EXFcSEol0NONh+oG07PWjd5GGZlGpu0+wZIjUcRdS8HXw4VetcozJLRyoS+66/7MOC5//HShHtOhah2cW3TFztsH4/WrpO1eT9r21QDYl6uCx6AXSVoyjfQD2T1MHJ1xad4Zh5C62Lp7YrycQOqONaTvM++95dTgfpwatMLWzZPMS+dI3fY3GYd3FmreAUq+8T2RJ47cfsd/YNOWcKbN+o3o6BhKlSpFty6d6NurB2CaJ/qVN0fzygsj6diubW6aJctXMm/hHyRcuIC/ny8D+vamfZsbcwJnZWWxZPlK/lyyjNj4eDw9S9CmVUsefmhA7vSDhaVclepc272qUI+5dsc+fpq3lLNx5ynj7Unf9i0Z3NVU/l2Hj/PU2PG889RgHmxl2ZNt8fpw3p84g0Xjx1C2zI0XCFlZWfy2fB0LV28i9vxFSnuVoFHtajzd/8F/9FLqTpQIbc+pfIa8/xebt2xhxowZREdHU7p0abp27UrvXqbFGvfv389rr7/OSy++mPv8BVi2bBkLFi4kISEBPz8/+vfrR9u2bc2Oe/DgQX6ZNIlTp05RokQJ2rZpw5AhQyymgvyvKgUHc+Zk4Y6I2rxlK9NnziI6OppSpUrxYNcu9Ollmk5z3/4DvPrGm7z8wvN0aN8uN83S5cuZv/B3EhIu4O/nR/9+fWjXxrQQ5t59+3jtzbcL/HuDHxrIkEEPFVr+K1SuSuqSHwrteACrD5zkh5XhnDl/GR9PN/o3q8PQ1qYXPjtORvH4Dwt4v397uofVBCApNZ2Jf4Xz94GTJFxNolwZLwa3rEevRuadRn5ds5Ovl25i+yfPmk0lVJicu44g6eeCz/+/seZEDBM3H+Ls5ev4uLvQr24wQxqa2j87I8/zxNz1uVND5Wf47HUA/Dygtdn2FUci+SX8CLFXk/Ar4Uq/usEMCC38XvVuwz8gdfW0Qj3m6r1H+WHJRs6cv2hqv7aqz9B2prp0x/GzPP71DN4f0pXuTUzt06TUNCYu3cjfe49mt1+9GdwmjF7N6uZ7/Jxj/PLCYBpWLfze0s5tH+bK3nWFesx12/fw87zFnI09RxlvL/p0aM2gB0116f+xd9fRUVx/G8CftbiHeAIJIQKE4MHd3d0ptLi0xaoU2lLsR4sV9+LF3Z3gLsECcQ9xWXv/2CSw7Ia0kJDJ2+dzTs/p3p073JnMzr0z3ys3HgRh1Iz/4fuRg9C+se6zyIEzlzDzz/XYvegXOL8zmu9u0HP8uXUPHjwLhpGhARrVqIJxA7rDXM8c5x/Dqkpj3l/f4V7OG5l/Lyi0/QHAyQfB+PPkNbyMfQ17C1P0qu2HQQ00v5NrL8IxbNX+vKmh9PlspeYZZ/XwTlrpN4Mj8b8jlxEUGQ8rEyO0r+qNUc1rQCaRFGr5jbpNZBv2HaW9yuPyo+SCN/yX0lKTsWXNAty8chZqtQpevpXR57OJcHJxz9tm1rdfIC4mEvNX7tO7j6+Gd4SvXzUMHz9dKz07Owt7t63E5TOHkZz8Gi5uHujYcxiq125cKGWvU94Cz1+8KJR9vS0lJQUrV65E4OXLUKlUqFChAj7/4ou8aU8BYMrkyYiOjsa69evz0mJjY7F82TLcunULEokE1apVw+dffAEbmzcdC+TZ2Vi7di3OnDmDjIwMlPPywmeffQZfX/2/xX/Ls2xZhD+5Vyj7ynX+8hWs37wNoWERKGVrg07tWqNnl44AgNv37uPLb6Zj8vjRaN38zW9j/+Fj2L57H2Li4uHs6IA+3bugZVPtNfzuP3qMNRu34FHQUxgaGqJ+7QCMGDoQZmaFtxaIi3elQtvXf8m99sJZv6ekqHTgdHEX4ZMr8QEM+nhFEcAoyYoygFFSFUUAo6QrigBGSVcUAYySrigCGCVdUQQwSrqiCGCUdEURwCjJiiKAUdIVRQCjpCuKAEZJVxQBjJKuKAIYJV1RBDBKuqIKYJRkRRXAKMmKIoBRkjGA8WEYwPj3/osBjP8Xa2AQEREREREREREREdH/LwxgEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCY60uAtARERERERERERERP8tYomouItAJQBHYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgSIu7AERERERERERERET03yISi4q7CFQCcAQGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCY60uAtARERERERERERERP8tIjH71lPBeJUQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4EiLuwBERERERERERERE9N8iEouKuwhUAnAEBhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQmOtLgLQERERERERERERET/LSKxqLiLQCUAR2AQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4EiLuwBERERERERERERE9N8iEouKuwhUAnAEBhERERERERERERERCQ4DGEREREREREREREREJDgitVqtLu5CEBEREREREREREdF/x5M+rYu7CCWO95YjxV2ET45rYBBSl0wu7iIIitnoOTwn7zAbPQcHZT7FXQxBaScPwovB7Yu7GIJSdt0BRD+6UdzFEBSH8tWRtvzb4i6GoJh+8Qsigu4WdzEExdnHH9eDEou7GIJSw8caUZP6F3cxBMNx7iZETOxT3MUQFOcFW5BxZktxF0NQjBv3QeqyacVdDEExGzELYU/uF3cxBMXV2w9J88YXdzEExfLrP9iGfYdD+eqYt0tV3MUQlK+7ihH8/FlxF0NQPDzLIe7+5eIuhmCU8qtT3EUg+n+LU0gREREREREREREREZHgcAQGEREREREREREREX1SIjH71lPBeJUQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4EiLuwBERERERERERERE9N8iloiKuwhUAnAEBhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQmOtLgLQERERERERERERET/LSKxqLiLQCUAAxhERERERERERERERP+PqVQqLF68GDt27EBKSgpq1qyJH374AW5ubjrbLlq0CIsXL9a7n65du2LWrFkAgCFDhuDSpUta3wcEBGDjxo2FVm4GMIiIiIiIiIiIiIiI/h9bunQpNm/ejN9++w2Ojo6YO3cuhg0bhv3798PAwEBr26FDh6J3795aaWvXrsWWLVswePDgvLSgoCBMnz4dzZs3z0uTyWSFWm4GMIiIiIiIiIiIiIiI/p/Kzs7GmjVr8PXXX6Nx48YAgAULFqBBgwY4duwY2rdvr7W9qakpTE1N8z4/fPgQGzZswMyZM+Hj4wMAiI+PR3x8PCpXrgw7O7siKzsX8SYiIiIiIiIiIiIi+n/q8ePHSEtLQ506dfLSLCwsUKFCBVy7dq3A/DNmzECNGjXQpUuXvLSgoCCIRCJ4eHgUSZlzcQQGEREREREREREREZHANWvW7L3fnzx5Um96VFQUAMDJyUkr3d7ePu+7/Jw+fRq3bt3Cnj17tNKfPHkCc3NzzJgxAxcvXoSJiQlat26NUaNG6UxJ9TEYwCAiIiIiIiIiIiKiT0ok5uRAn0pGRgYA6AQWDA0NkZSU9N68a9euRZMmTVC+fHmt9CdPniArKwv+/v4YMmQIHj16hDlz5iAiIgJz5swptLIzgEFEREREREREREREJHD5jbAoiJGREQDNWhi5/w8AWVlZMDY2zjdfREQErly5ghUrVuh8N2PGDEyZMgWWlpYAAG9vb8hkMkycOBGTJ09GqVKlPqis72KYi4iIiIiIiIiIiIjo/6ncqaNiYmK00mNiYuDg4JBvvhMnTsDGxgb16tXT+U4qleYFL3J5eXkBQIHTUv0bDGAQEREREREREREREf0/5evrCzMzM1y5ciUvLTk5GQ8fPkTNmjXzzXf9+nUEBARAKtWdyGnAgAGYNm2aVtq9e/cgk8ng7u5eaGXnFFJERERERERERERERP9PGRgYoH///pg3bx5sbGzg4uKCuXPnwtHRES1btoRSqURCQgLMzc21pph6+PAhunXrpnefrVq1wq+//gp/f3/Ur18f9+7dw5w5c/DZZ5/BzMys0MrOAAYRERERERERERER0f9j48aNg0KhwHfffYfMzEzUrFkTq1evhkwmQ1hYGJo1a4ZZs2aha9eueXliY2NhZWWld3/9+/eHSCTCxo0b8euvv8LOzg6DBw/G559/XqjlZgCDiIiIiIiIiIiIiD4pkVhU3EX4T5FIJJg0aRImTZqk852rqyuCgoJ00u/cufPeffbr1w/9+vUrtDLqwzUwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHCkxV0AIiIiIiIiIiIiIvpvEYlFxV0EKgE4AoOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhKcEjeFlI+PD2bNmoWuXbt+8D4iIiJw69YttGvXDgDQtGlTdOnSBWPHji2sYv7nXX4Vg6WXH+F5QgpsTQzRw98DA6p6QiTSPzQs9HUqOm84qZPuaWOO7f2bAgBUajU23XqOXfdeIiY1A6WtzTCwWjm09XUr0mMpDDwf+TNycUDD2wdwvdtoJJy7+t5tnXu1Q7lpI2FS1g0ZL8PxbO4KhG/co7WNZXU/lJ89GZbV/aBITkPYhl14MmMx1HJ5ER5F4TCuWBXW3QbAwKU0lMmvkXzyIJKO7Na7rVn9ZrAfNjHffcWs/B9SL54CAMicXGHTcwiMfStBrVQiM+g+4reugiI2ukiOozBdvXUXq/7ajuCQMFhbWaJL2xbo3aldvr8dADhx7hI27NiNiOgYONrboV/XjmjTtKHWNodPnsXWvQcRHhkNWxsrtGnaCP27d4JUIinqQ/pol19GYcnFB3gRnwwbE0P0rOKJAdW98z0nIYmp6Lz2iE66p60Fdgxq+cH7FZJrt+5g9cYteBkSCmsrS3Ru1xo9O3d4b9lPnr2Ajdv/RmR0NBzt7dGnW2e0btZYa5uQsHAsX7cRt+89hEQiRmW/Chg5dBCcHR2K+IgKR2ZGOrasX4Jrl04jMzMDvhWroP9nE+DsWuYf7+P336bByMgYIyb8oJUeHxeDLWsX4f6da5DLs+FXuSb6DB4NR+fShX0YhcbA2w/mrXtC6uACZWoS0i+dQPrZQ+/NY+hbBaYtukDm5AZVWioy711D6uHtUMuzILEuBbtvfs83b/q1c0jevqKQj6LwGPpUgnnbXpA6ukKVkoS0C8eQdubg+/NUqArzll0hcyoNVXoKMu5eRcrBbVBnZ+VtY1yzIcyatIe0lAOUyYlIv3oOqSf2ACpVER/Rx7v08BkW7zmFFxExsLEwQ6/GNTGwRd187yXZcgU2HL+EA4F3EJWYDAdrC7QNqIShretDJn3zmHXq9iOsPHgOL6PjUMrCDO1qVcZnbbS3EarLr6Kx9OIDPI/PacNWLosB1b3e34Zde0wn3dPWAtsHNtdJj05JR8+NJzG/Q23UcLMr9PIXhes3b2PNxs05dY4VOrVrjR5dOr63zjl19jw2bduJyJy2Se/uXdCqWROtbXoNHo64+ASdvLs2rYWlpUWhH0dhkpbxgWGD9pDYOkKdnoKsW+eRff10vtuLrUrBfNj3OunKuEikrvsNErdyMOuV/7N55sXDyLqs27YRErZh9ZNnpeHqkfkIvn8c8ux0OLlXR+3202Bl5/HefKe3Tcaz2/t10pv1/R1lK7XSSQ88OBtx4Q/Q/vMNhVb2onDj5k2sW78BISEhsLKyQof27dCta9f3Xienz5zBlq3bEBUVBQcHe/Ts0QMtmuveXwEgPT0dI0ePQb++fdCyRYuiOoxCdeX2fazY/DeCQ8NhY2WBrq2boU/H1v/omeTJi1cYNnUGti3+DU722nXKqUtX8deew3gVHglzUxPU8K+Akf17wMbKsqgOhYgKkfBbzUVgypQpcHFxyQtgUOG6F5mACfsD0dLLBSNr++J2ZAIWXngApUqFITW89eYJik0GAPzZpS6MpW8aX0ayN/+/LPAx1t94ihG1fVHRwRoXXkbj+2M3IRaJ0NrHtWgP6iPwfOTPyNURAQdXQ2ZV8EOZY5eWqLJhHoIXbUDs0fNw7NQcVdbMhiorG5HbNS+gjD1cUevIWiQG3sbNPhNg5usJn5kTIbOxwv3RPxb14XwUQ08fOE78AalXzyNx9yYYeVWATc8hgESCpIM7dbZPv3MN4TO/0km3GzIOYmNjpN+9DgCQ2JSC87dzII8MR/SyORAbGMK66wA4fT0TYd+NgVqeXeTH9qEeBD3F1F/momm9Ovisbw/cfRSEZeu3QKlUoX+3jnrznLl0FTMXLEH39q1Rq5o/zl+5jlkLl8FAJkWzBnUBADv2H8ai1RvRuG4ARg7qi9fJyVizeSeeBb/Cz1PzDwoJwd2IeIzfcxEtfdwwsm5F3I6Iwx/n7kGpUmNIgK/ePE9iXwMAlnVvCKN87icfsl+hePj4Cb6ZOQtN6tfF0H69cO/RYyxftwlKpRJ9u3fRm+fspUD88r+F6NahLWpWq4KLgVcx+48lMJDJ0LRhPQBATGwcxk75Dm4uzvju6/HIysrGmr+2YNIPM7Fm0XwYGhp+ysP8IEvm/4BnQQ/Qe/BomBibYtfW1fjlu9GYs3gzTM3ef99VqVT4a/UfuHbpNBo0bav1XWZmBmZ9PxYiETBk5GTIZDLs3rYWM6eNxOzFm2FmLrwHQVlpT1gP+RqZdwKRcnQnDNy9Yd62N0RiCdJO674QAQDD8lVhNXgiMm5cQOqhbZA6uMCsTU+IzcyRtHkplMmvEb9It24xqdsCRpVrI+PqmSI+qg8nK1MONsMmI+P2ZaQc3gEDDx9YdOgLkUSC1JP79OYxrFgNNkO/Qsa1c0g+sBVSRxdYtOsFsakFXm9aDAAwbdgall0GIeN2IJL3/QWxmQXM2/SAzLk0Etf9/gmP8N+7+yIU4xZvRqsafhjdsQluPQvB77uOQ6lSYWjrBnrzzNl+GAcC7+Lzdg1RsYwLHr6KwPIDZxCZkITpAzsBAC4/fI6vlm1Dqxp+GNelOZ5HxGDRnpN4nZqOqX3a6t2vUNyLTMCEPZfQ0tsVI+tWwO3weCw8fz+nbvDRmycoJgkA8Ge3+jCWvXnUfLv+yRWVko4xuy4iNUv4nUxyPXz8BN/OnIXG9eticP8+uP/wEVas2wilUok+PfR3sDt38TJ+nf8HunZoh5rVNXXOnN8XQyaToWnD+gCApKRkxMUn4IshA+FXobxWfjMz0yI/ro8hcSoDk66fQ/74FrIuHITEpSyMGnWESCxB1tUTevOI7V0AAKnbFgOKN23R3A5HyuhQpP71P518RvXbQeJYGvLHN4rgSAoP27D5O7VtEmJC7qBWm68hMzTFzZNLcXDlIHSfuB+Gxvm3H+IjH8GzcjtUrNtfK92ylLvOtnfPr8W9C+vg5FGzsItfqB49fowfp/+Ehg0aYNCA/rj/4CFWr1kLpVKJXj176s1z4cJFzJk7D507dUT16tVx+XIg5v9vAWQyGRo3aqS1bUpKCn6aMRPR0cLvtJbr/pNnmDxrAZrVDcDwPl1w99FTLN24HUqlEgO6tn9v3hchYfj61wVQKpU63524EIgfFyxDp5aN8Xnfbkh4nYSVW3Zh7I+zsWbudBgaGBTVIRFRIflPBjCoaC278hg+dpaY2ao6AKCuuwMUKhXWXnuKPlU89T7APIlLgoOZEQLy6XmVIVdg8+3n6FPFM++lf4CbHR7HvMbWOy8E/cKe50MPkQiuAzqj/OwpwD/s3O0z80tE7jyCR1/PAgDEHb8AmbUlfKaPzwtgeE4aDkVKGq53HQW1XI7YI+egzMiE3x/f49lvy5AZGllUR/TRrDv3Q9arF4hdoXlYy7h3EyKJFNbteyL52D6dQIMqJRlZKclaaRbNO0Dm7IqInydBlfOddee+UKWnI3Lud3k9ZOWx0XAc/z0MPbyQ+eTBJzi6D7Nmy054ebjju4mjAAC1qlWGQqHEpp170aN9axga6jY0V27ahsZ1a2HsZwMAAAFVKyM5JQ2rNu9AswZ1oVSqsH77btSoXAkzJk/Iy+dd1gODx0/Btdv3ULNKpU9yfB9i2eWH8LW3ws9tAgAA9TwcoVCqsObqY/Sp6qUVlMgVFPsaDmbGCChtX6j7FYq1W7ajXFkPfPPlOABAQPWqUCiU+GvHbnTr0FZvoGH1xs1oVK82Rg8brMlTrQqSU1Ox5q+teQGMdVu2w9TEBPNm/gCjnH04Odjj219mI+jZC/hXLK+zXyF5+vgebl69gEk//g9VqmtefPhUrIIJw7vi+KG/0bnnkHzzhgQ/xfoV/8OLpw9hYKB7/q5ePIXI8FeYvXgzXEuXBQC4lfHEhOFdceXiKTRrrT9wVJzMWnaDPOIlkrYuAwBkB90FJBKYNu2ItPNHAIXuC1Tzjv2Refdq3iiK7OcPAbEYJvVbAjIDQJ4NechzrTxSF3cYVa6NlCPbIX/5pOgP7AOZt+4OefhLvP5rKQAg6/EdQCKBWfNOSD13GNAzatGy0wBk3rmC11uXAwCynz2ASCyGaYPWEMkMoFbIYd6yKzKD7iJx/R95+eRhwbCfMhfp3pWQ9eTepznAD/Dn/jPwdXPCL0M1L6Hr+XlBoVRh9eHz6Nu0NowMZFrbv05Nx9/nb2B8lxYY3Epz36hVXvN7+GP3CYzr0hw25qbYe+kWHG0s8cvQrpCIxahTwRMJKWnYeOIyvurZCjIB95pedvkhfOytMLON5iVgXXdHKFRqrL0WhD7Vyulvw/6DOkelVuPAwxD8fk6410N+1m/einJlPTDtq/EAcuocpRKbd+xC147t3lPn1MGo4Zr7bs1qVZGSkop1m7bkBTCeBQcDAOrXqQVnJ8dPdDSFw7BuGyhjwpBxeBMAQPHyMUQSCQxrtUDWzbN6768SOxeokhOhDH2qf6fZWVBGvtJKknr6QVrGB2n71kCVGFvox1GY2IbVL/rVLYQ8Oo3Wg5fDzUczssTRvQa2zm2Bh4FbULXJCL35FPIsvI59Cb96g+BQukq++09OCMOVQ7Px6tFpGBiZF8UhFKqNm/6CZ9mymDzpawBAjRo1oFQqsG3bdnTu1Env/WTt+vVoUL8+vvj8c02e6tWRkpKCDRs3aQUwLgcG4s9ly5GRkfFpDqaQrN66B94eZfDD+C8AALWr+kOhVGLDrgPo2a6l3t+OXK7AzsPHsWrrbhjIZDrfA8CGvw+gTjV/TP5icF5aaWdHfD5tJi7duIMmdYQd7CKiEroGxosXL9C7d2/4+fmhTZs2OHz4cN53KpUKy5cvR6tWreDn54dq1aph2LBhCAkJAQAMGDAAV69exe7du9G0adO8fLGxsRgzZgyqVKmCWrVqYdasWXmR2127dqFFixb4+eefUb16dYwapWmIPH/+HCNGjECtWrVQvXp1jBs3DuHh4Xn7VCqVWLduHVq1aoVKlSqhVatW2LJlS973V65cQYUKFXD8+HG0atUK/v7+GDhwICIjI/Hzzz+jRo0aqFOnDv7888+8PPHx8Rg3bhxq1aoFf39/9O7dG1evvn/anU8pW6HEjbB4NPF00kpvVs4ZaXIFbkfE680XFJsE71L597gwkEiwtkcD9K/qqZUuFYuRrRDulAQ8H/pZ+PvAb8lPCNu0B7cHTy5we+MyLjDz8UDU3uNa6ZG7jsLUyx0m5TTTodi1qI+Yw2e1pouK+vsIRBIJ7FrWL9yDKExSKYx9KyHt5mWt5LTrFyE2NoGRd4UCdyGxsIJNtwFIPnUYWS/evDQzrVEXKeePa03vkf3yGUImDhJ08CJbLsft+4/QoLZ2Y7Jx3QCkZ2Tg7qMgnTyR0bEIjYhEw9o1dPKER0YjNCISiUlJSE5JRd2aVbW2KVvGDZYW5rh8/VbhH0wh0dxPYtGknItWenNvV6RlK3A7Ik5vvqCY1/C2tyr0/QpBtlyOO/ceoEHtAK30RvVqIz0jA/cePtbJExUdg9DwSDSoXUs7T906CI+MQlhEJNRqNc5dvoI2zZvmBS8AwMfLEzvXrRB88AIA7t4MhKGRMfyrvDlOC0trlPeritvXL70375+/z4BKpcRPc1fBwspa5/satRvhx9kr8oIXACCVah4Y5dkCHNUlkcLAszyy7mv32M28ew1iI2MYeOj2JJc6l4G0lAPSL2pPhZN+4SjifvsKyGf0mkWXwVDEhCP93GG93wuCRArDchWQee+aVnLmnSsQG5nA0EN31JXUxR1SO0eknT+qlZ527ghifpkAtTwbYnMriE3NkfXgptY2iqgwKFOTYVhB+74rJNlyBa4/eYmmVbWPvXn1CkjLzMatZyE6edIys9C9YQ00rqx9/bg7lgIAhMcl5u3b2MAAEvGbxy5LU2PIFUqkZ2ZBqDR1QxyaeDprpTfzctbUDeH51DmxSfC2e/8orKexSZh18hbaVyiNGa1rvHdbIcmtc+q/U+c0rFvnvXVOWHgE6tXRrnMa1sutcyIAAM9fvISJsTGcSsgUhXkkEkjdvKB4qh2Mkj+5A5GhEaQuZfVns3eFMjZc73d6SWUwbtYN8ucPoHhy52NKXOTYhs1f2NOLkBqYwMWrXl6asZkNnDxqIDToXL75EqOfQq1SwNb5/e2vwIO/ISnuFdoNWwtbJ2GPIM6Wy3Hv7l3UrVtHK71+/fpIz8jAgwcPdfJERUcjPDxcT556iIiIyHsXlZqaipk//wL/SpXwy8yZRXcQhSxbLsetB4/RMKCaVnqTOjWQnpGJO4/1dwy5fPMO1mzfi4Fd22PkAN2RKyqVCjUrV0SnFo210su4aN7RhEfFFM4B0AcTicX871/+919UIo96/fr16Ny5M/bv349WrVph4sSJuH//PgBgw4YNWL16NaZOnYqjR49iyZIlePnyJX777TcAwKJFi1C1alW0adMGO3e+mZZl586dqFmzJvbv349JkyZh3bp12L37zdzzISEhiImJwZ49ezBx4kSEh4ejV69eMDAwwPr167FmzRrExsaif//+SE1NBQD89ttvWLp0KcaMGYP9+/ejX79++OWXX7Bu3bq8/SqVSvz555+YN28e1q9fj8ePH6NTp06QyWTYsWMHevfujd9//x1BQZqGzvTp05GVlYVNmzZh//798PDwwKhRo5Cenl7Up/0fCU9Oh1ylQhkrM610N0vN0OdXial68z2JTUK6XIEh28+hzpL9aLnqCBZefAC5UvMyXiIWwauUJUqZGkGtViM+PRNrrz/B1dBYdPd3L9Jj+hg8H/plhETijG8LPJr0G5TpmQVub+arCdSkPX2plZ7+XNMzy8zbA2IjQ5i4uyLtabDWNtlxiZAnpcDM+/3zqhYnmZ0jRDIZ5FHaD3LyaM1Drcyx4BE11l36Qa1WIXHXxrw0aSkHSEzMoIiPge2AESizeAvcV+6Cw7jvILG2LdyDKGQRUTGQKxRwc9buhejqpHmwDwmP0MnzKkxz/lydtQOGLjk9GUPDI2FmagKJRIKoGO0XLympqUhNTUNEtHAbsGFJaZArVShtrd2jzC3n/vIyIUVvviexSUjPlmPwllOo/ccutFi2HwvP38u7n3zofoUgMioacoUCrs7aL9je/M3fc5245HedRCAqOgZpaelwsC+F35etQse+g9GyW198+/NsxMbpDzwLTXjYS9g7OEP8Tu9uBydXRIbrvox928iJP+LH2StQ2sNL7/cmpmbwLu8PAFDI5QgJfoplv8+AuYUVatVvVjgHUIgktvYQSWVQxGqPwlPGRwEApHZOOnlkzprAuFohh9WQr+Dw6xrY/7QM5h37AxL9A5iNKteGQZlySNm7CVCrC/koCo8093zEaJ8PRZxmigmJvZ7z4fLmfNgMmwSn2evh+PNKWHQemHc+1BlpUCsVkFhrjx4VGZtCbGwKqW3+PfKLW1hcIuQKJcrYa9eNpe1sAACvonVf1ruUssa3fdvnBSxynb79GFKJOG9fvRoHICQmHuuPXURyegbuvgjFXycDUd/PC5amJkV0RB8vPKduKGP9Ths2p27Ivw37WtOG3XoGdRbuQcvlB7Hw/P28OgcAHC1MsGdIS3zZyF/vKA6hyqtzXN6pc3LaKmHhui/kX4WGAYBOPZU7yiI0TFNPPQt+CXNzM/w0ay469hqAdj36Yebs+YhPSCz04yhMYstSEEmlUCZqt5+UOSMkxDb6f/cSexeIDAxh2mcCLCbMg/nImTBs0AHI56WMYbVGEJlZIvP0rsI9gCLANmz+Xsc8h4WNK8Ri7d+9hW0ZvI4NzieXZvooAAi6tgObfm2A1d/5Y9/y/ogJ0Q5m1WgxDt3G7xX81FEAEBUZCblCARcX7Q5Ezk6aayAsPEwnT2hIKADo5sm5v4TlXEeGhoZYvuxPfP3Vl7AQ+Po5b4uIjtX723FxzP3tROnNV75cWfz95zwM6t5Rq7NALrFYjLGD+6DBO4GRc1c1HS483Fx08hCR8JTIKaT69u2L3r17AwAmTJiAwMBArFu3DvPmzUPp0qUxe/ZsNGmiWRTNxcUFrVu3xpEjmkW+rKysIJPJYGRkBBsbm7x9tmzZEoMGDQIAuLm5YcOGDbh//z66d++et82oUaPg5qZZIHnu3LkwMTHBvHnzYJAzX97ChQvRrFkz7N27F506dcKWLVswdepUdOjQAQDg7u6OsLAwrFixIu/fAoDx48ejUiXNcM/atWvjzp07mDx5MkQiEb744gssXboUT58+hY+PD0JCQuDt7Q03NzcYGRnh22+/RYcOHSARyPDz3DlsTQ20Ly2TnM9p2QqdPIkZWYhJy4RSrca4ehXgZG6Cq2GxWH/9GaJTM/FLztRLuY4+Cce3RzW9KOu7Owh60WqeD/3kiUmQJyb94+2llpqHZUWy9sOyIiVN872FGWSW5nq3yd1OamGmky4UYhNNQEudoR2IVGVqhvyKjY3fn9/cEmb1miLpyG6o0tPy0iU589Db9BiMrOAniPlzDiQWlrDpPgjOU2Yh7IexWiMzhCQtJyhraqJ97MY55yI9XXc4dH55TIyNcr7PgJGhIZrWr43dh47Bo7QrGtaugcSkZCxctQESiQSZAu4Nm3s/Mcv3fqI7RUNiRhZiUjOgVKkwvqG/5n4SEoN114MQnZKOX9rW+qD9CkVaWn5/c83nNH3XSW4e4/yuk3S8TtZMwbZi/V/w9SqH7ydNxOvXSVi5cTMmfjsdK/+YC2Mjo8I9mEKWkZYGYxPdedONjE2QkZGmJ8cbpd3L/eN/Z97PX+PerSsQicUYPvYbWNuUKjjTJyY20vyt1Vna14M6SxNAFxnp3mPFZpo6xXrQBGTcuoT0c4cgcysLs5bdIDazQNLmpTp5TBu3Q3ZwELJfPCrsQyhUImPNS3OVzvnIqXP0nA9JzpopNkO+RPrNi0g9cxAGpT1h3qo7xGaaNTDU8mxk3AqEaYOWkEeFIfPeNYjNLGDZZRCgUkKkZzoyoUjN0FwLpsbaZTQxMsj5/p/VDaduPcL+wNvo3TgAFqaa8xjg64HBLethwd/HseBvzUhSXzdHzBrWrbCKXyRSc9qopu9MnVVwnZMJpUqNcQ384GRhgqshsVh//QmiUzPwS85UVJZGBrA0KnnzjefWHyb/ps7Jt22i3Z55/iIYcfEJaNeqBbp2ao+Q0DCs+2sbJk77Hsv/mCfYOkdkqClX7v00T077UmSgW26RsSnE5laAWIzMs/ugSk6AtIw3DGs2h9jcChmHNmpnEEtgUK0h5I9vQfVauKNCc7ENm7/szFTIDHWfyWSGJpBn5d82iY/QjG6SZ2egae/5yEp/jdtnVuLAqsHoNHIrbJ00I+FsHPWvLylEuX9zExPtQHbuZ30dVNNynvNM382Td21p8shkMri5CnxKaT1S0wtoo+czHZadre5o4YKERcVgyYZt8PIojTrV/P91fiL69EpkAKN6de0XuJUrV0ZgYCAAoGnTprhz5w7++OMPBAcHIzg4GM+ePYODw/uH47q7u2t9trS0RFZWVr7bPHnyBH5+fnnBCwCws7ODh4cHnjx5ghcvXkAul+uUNSAgAOvXr0d8/JsenGXKlMn7fxMTE7i6ukIk0iwMYJTTWM3OmZJhzJgxmDRpEo4ePYrq1aujfv36aN++vWAWEy1o8iKRnvUOjGVSLOlcB6WtzOBsoamMq7uWgoFEjKWXH2NYTW942LzpGVzRwRoru9XD07hk/Bn4GGP3XMaKbvXyzpmQ8HwUjoKGyKlVqnx7bL3ZRri9YfVeCG9RF9CT16JRS4jEYiQdf2fhVanmFq9Mfo3oRb/m9QiWx0TC5fv5MKvTGClnj767O0FQFXDM+q4JVQF/Y7FYc56/GvEZZFIZ5ixZidmLV8DQwAD9unVEekYmjPTMqyoUahRwfHquI2OpFEu7NdDcT3JGflV3s4NMKsbSiw/wWa3yH7RfoSjoOsn9m2vnef+dWSwSQ6HQvLiztrTEjGlfQ5xzvbk4OWL05G9x4sx5dGjd4gNLXfhUKhXU7xzX+45TLCq8Abhdeg1B+679cenMUaz442eolSo0bql/gdJiU9Dx6ruOckYVZN6/jtRD2wAA2c8fASIxzNv2QuqxXVDGvekJKCvjBZmrBxLX6S46KzgF/abfcz4y7l1DygHNdKjZzx4CIhEs2vdBytGdUMZGIWnHKs2olV7DIerzBVTZWUg9uQ9iIyOo5cJ9ufYh95J3nbz5ENNW/42qnqUxodub+8Mvmw9gz8VbGN62IQJ8PRAR/xrLDpzB6D82YfmXA2Es0IVDC6yH9SxiZiyTYknXetp1jqudpg176SGGBfjAw7bk9AZ+17v32Xfpqy8Lan+Kcq6tL8eOhEQsga+3JoDsX7EC3EuXxvgp3+L4qTPo2Lb1B5a6iH3A/UQtz0bajqVQJsZCnZwAAFCGPQcUChg1aI+swGNQJbxZdFjmXQViM0tkXTtZqEUvKmzDaqj1tE3e9xt637Nrxbr9Ubp8E7h5v5kS2NmzNrbPb43bp5ehWd8FH1/gT0ytev/9RN/5+Kf3k5KqoOMrrGeSV2ERmDhzHiRiMX7+ekxeO5+IhK1EBjDevcEolcq8QMKKFSuwZMkSdOnSBXXq1MHgwYNx8uRJHDx48L371DeC4d2XhkZv9XzJ74WiSqWCTCZ77/cAIJW+OfVv/z+ge3xva9GiBc6fP4/z58/j0qVLWLt2LRYvXozt27fDy0v/VA+fUm4P3jS59siC3JEGZga6iyoZSSWorWehv/rujlh6+TGexCVpvbB3szKFm5UpqrmUgqmBFD8ev4VbEfGo5iK8Xp88H4VDkaSZwkZqrt2bOHdUhSIpNW/kxbvb5G6Xuw8hUuX0NhEZafemEef2kk1/f29p0xr1kH7/Vt7C3bnUOSM40u/e0HqAzHoeBGV6KgzLeEKoZ8Ust/dRhnaPvtxea2Ymuj2EzUz158ntEZnbW8nE2AhTx36OccMGIjo2Dg52pWBibIQDx0/DxUm4c0/n3i/eHbmVlpVzPzHUcz+RSVC7jO4xNfBwwtKLD/A0NgnlSln86/0KhWne31y7R9abnoy607OY5nNt5fbqMjU1yeslGVC9qladXMHXG6amJnj2Iv9pDorD7q2rsWvraq20gLpNkfw6QWfbjHT9IzM+lE+FKgAAv8o1ERsTiT071gkugKHOzLnHGmrfN3I/qzJ1eznm9ibOeqQ9p3hW0B2Yt+0FmUsZrQCGkX8AVOmpyHok7LnZgTd1g9hQu2d07kgUVYa+86HJk/VQe32LzEd3YNG+D2Qu7lDGRkGdnYWkbSuQvHs9JDZ2UCbEQp2dBZPaTfKmqBIis5zenemZ2mubpOX0aM79Pj8bT1zGgp3HUMPbHQtG9YZhziKi0YnJ+Pv8DXzWugFGd3qz9p6fuwu6/bQUey/eQu8mtfLbbbHKq3PeWdA9rw2rr86R6q9z6ns4Yumlh5o2bAkOYOTWHxk67YycOkfPlGD511PabZOKvrpr8fhV8IWpqQmeB7/S+U4o8kayvTPS4s3IDD09phVyKF7prgMhf/EQRg3aQ2Ln/E4AozKUcZFQxepOvSREbMNq3Dy1FDdPLtFK8/BrhYxU3ak45Zlp711028rOA1Z22tMBGxpbwKFMNcRH6V5LJYGJqaYt9u4i2+l59xPdtppJge3ewmvfFYe8Nnpmfr+dj5928eb9R/hm7mKYGBli0U9T4Ooo3OktiUhbiQxgPHjwAM2bN8/7fPPmTfj6ahZpWrZsGUaPHo3PP/887/vVq1cX2IP53/Lx8cG+ffuQnZ2dFzyJi4vDq1ev0LdvX3h6ekImk+HGjRsoX/7NYlPXr1+HnZ0dLC3fv7idPtnZ2Zg/fz46deqEtm3bom3btsjMzES9evVw5swZQQQwXC1NIRGJEPZa+4VraM7nt1+85wp5nYproXFo6e0C87cehrIUmkXUrY0NkZiehYuvolG3jANsTN6MNvHNWZg2Nq3gdRSKA89H4Uh9onlZaOJZBsm330zNYeqpGb2U+vg5lGnpyAiLgolnGa28BnY2kFmYIfXx809X4H9JERsJtVIJmYP2vLcye818pvJI3TlQc0msbGHoXg5JK3R7/cpjIqFWqSCS6b5kEIklUAlxsd0czo72kIjFCI/Unus0LOdzGVfduUrdchdii4yCd1n3vPTwyGitPJeu3YS5mSkqlfeBR2nN8OrE10mIjU/Qyic0rlZmkIhECH2tPU1a7me995PEFFwNjUUrb1eYvzVdR2bO/cTKxOCD9isULo4OEOu5TnI/l3HTHT5fOmfu8vDIKHh5eujmcXWBpYU5RCIR5HLdKVKUSiUMBNbLsWmrzqhas75W2vUrZ3H3ViBUKpVWECY6Mgwubu4f9e89f/oQsdERqF2/uVa6u6cPnj6+l0+u4qOIj4FaqYTEVvvljrSU5rMyWvelmCInOCGSvHP/FOes9/DOtWFYvgoy798AVMrCKnaRUcRFa85HKe05pqU5nxXRuvP4K2JzfmNS7fMhyukAlHs+DCtUhTojDdnBT6CI0tRdYjMLSCxtIA8TVuDvbW521pCIRQiJ0Q765X72cNTfKUStVmPOtsPYcvoqWtf0w8zBnSF7q2NSVEIS1GqgSrnSWvk8ne1hZWqM5xGxhXwkhcfVKr827PvqnFRcC41By3fqnLfbsCWZs5NjTp2jvX5MRE79UVpPneOWU+dEREbBy7PsW3k0+yjj5orUtDScvxQIX28veJR5c62oVCoo5ApYCXgOe9XrOKhVSoittX8jYivNZ2WCbuBSbGUHaWkvZAfdAt4KcIhy7i+qt6c5FIsh9fBF1tWSMfoCYBs2l29AT5T2bayV9vLhCYQ9vaB5PnmrbZIc/wpWdvoXfAeA53cPwdDIEq7e9bTSFfJMGJna5JNL2JydnCAWixER8c79JELTJsmduvxtudNCRUREoJynZ156ZM4+3EoLfyrp93FxtINELEZYpPZ9Iyxnke0yrrprdP0bx88H4ufFK1HG2Qnzv/vqg6aeIqLiUyLHSuUusP3ixQv8+uuvePLkCYYPHw4AcHJywsWLF/Hs2TO8ePECCxYswLFjx/KmYAI00ezw8HBERelfBOif6NOnD9LS0jBp0iQ8fvwYd+/exfjx42FtbY127drBzMwMvXr1wsKFC3HgwAG8evUKf/31FzZv3oyhQ4d+0PQ+BgYGuHfvHr7//nvcvn0bYWFh2LVrF9LT01G1atUPPpbCZCiVoKqLLU49j9QKGp16HgEzAykqOljp5IlLy8Svp+/g+FPtB+ZjT8NhaiBFeXsrZCqV+PH4Lex5oN0DKfCVpjLzEmhvLp6PwpH+PATpL0Lh1LWVVrpjl5ZIfRKMjFeacxV34iLs2zaG+K2RLY5dW0GlUCDudOAnLfO/oZbLkRl0H6bV62qlm9aoC2V6KrJePMk3r6GnZq7XzKcPdfeblYnMJw9gWr1O3nRSAGBUvjLERsbIfPKgkI6g8BkaGMC/oi/OBV7T+u2cvXwNZiYmKO/tqZPH1ckRTg52OHPpqlb62ctX4eqs+Q4A9h49iaXr/tLaZsf+wxCLxahbQ3txNyExlEpQ1bUUTj0L1zonJ5+GwcxQhoqOug9wsWmZ+PXETRx/oh0EOxYUCjMDKSrYW3/QfoXCwMAAlSuWx/nLV7TKfu7SFZiamuRNxfE2F2cnODnY4+yly1rp5y4FwtXZCY4O9jA2NoZ/zn6z33pRfePOPWRmZsG/Qvl3d1usrG3tUNarvNZ/larUQmZGOu7eenPvS05KxOMHt1Gpysf1+L5z4zKWzv8R8bFvHjBVSiUe3r0Ot3+xfsYno5AjO/gxjCrV0Eo2rFQTqow0ZIfqBrjlLx5DlZUJo6p1tNKNKlaDWqlA9quneWkiY1NI7Zwgf5n/vVpQFHJkv3gMY3/tRU6N/AOgykiDPET3fGQ/fwRVViaMq2rXU0Z+1aFWKvKO3bRuc1h07Ke1jWnDNoBahcwH2qM3hMRQJkM1rzI4deuR9n3w5iOYGRvCz0P/Ap+L9pzEltNXMaB5Hcz6rJtW8AIA3OxtIBGLcPOpdnvtZVQcXqdlwKWUcF+evKkbIrTbsE8jcuoG3bLHpWXi15O3dduwT8Ly2rAlmYGBAfz9KuD8pXfrnEBNnaOnM1lunXPuonadc/5SIFxy6hwDmQyLlq3Clh3aC1RfunINWdnZqFLJr2gOqDAoFVCGPYfMS3sOeZl3Zagz06GM1B09IjKzgHHLXpB5V9HO41sV6qwMKKND89LEpZwhkhlCES7cAOi72IbVMLWwh52rn9Z/rl71IM9KQ9jTC3nbZaQmIPLlDbh41ct3X4+ubMeFPdOhVLx5p5OWFI3oV7fgXDagSI+jqBgYGKCSnx8uXrqkdZ1cuHgRpqam8PHWXc/D2dkZjo4OuHDholb6hYsX4eLsDMcCpk0XOkMDA1Su4IOzV25onZMzgddhZmKMCl75B7kKcunGHcxcuAKVfMrhz1++ZfBCYERiEf/7l//9F5XIERijRo3Cxo0b8f3336NcuXJYsWIFPDw0vSjnzJmDGTNmoFu3bjA1NUXlypXx008/Yfr06YiIiICzszN69+6NKVOmoGPHjrh8+XIB/5p+rq6u2LRpE+bOnYtevXrBwMAA9erVw9y5c2FhoXl5PG3aNFhbW2PevHmIi4uDu7s7fvjhB/Ts2fODj33BggWYNWsWRo4ciZSUFJQtWxbz5s1DjRo1Cs78iXxW0xujdl/ClMPX0alCadyJTMCGG88wtl4FGMukSM2SIzghBa6WprA2MUQVZ1sEuJXC7+cfIEuhRFkbc1x4GY2tt1/gywZ+MDeUwdxQhk4VSmPV1SBIJWL42lniVng81t14ik4VSqOsgF/Y83z8e1JzU5hVKIf05yHIjksEADz9ZQkqr/4N8oTXiN5/Cg4dm8G5Z1vc7DshL9/zeavg3Ksdah5YheDf18LU2x0+M79E6KrtyAyNzOdfE4bE/dvgNOln2I+eipRzx2HkVR6WbboiYcd6qLOzIDIyhoFLachjIrWmijJwdYdKnv2md+w7Enash/PUWXD68ie8PrwLEksr2PQYjMznj5F+68qnOrwPMrBHF3z546/4ce4faNusMe4/foKtew7giwG9YWRoiLT0dLwMDYeLo0Ne78TBPbti1qLlsDQ3Q72A6rhw9TpOXwzEj1+Pzdtvt3at8PVPv2HR6o2oF1ANN+4+wKa/96Fv1w6CG37/rmG1ymPkznOYciAQnfzccSciHhuuP8HYBpXy7icv4pPhZmUGaxNDVHUphYDS9lhw7q7mfmJrgfPBkdh66xm+bFw5r4dsQfsVsv49u+HrH2bip9n/Q5sWTfHgURC27d6H4QP75V0nr0LC4OzkAKuc0Y8De3fH7D+WwsJ8JeoF1MDFK9dw5sJlfD9pQt5+hw/si4nfTMfUn35Fry4dkfj6NVas+wvlvb1QN0A4dW5+yvtVRflK1bB0/nT0GTwaZuaW2LVlFUxMzdC8bde87cJCgqGQZ8PdU3f6kvw0a9UZJ4/sxryZX6Fr788gkclw4tDfCH31HFN+WlgUh/PR0k7shfXnU2HVfyzSr52Fgbs3TBu1Q+rhbYA8GyJDY0gdnDWjNdJSoM7OQuqxv2HRoR9UGWnIuncdMncvmDZuj/QLR6FOezMBn9RJ0+NREaM7ckGoUo7thu3Ib2A9aDzSr5yBgYc3zJq0R8rBrVDnng9HFyjjoqHKOR8ph3fAsvMAqDPSkHH3KgzcvWHWtCPSzh2BKud8pJ0/AtsR38Ci8wBk3r8BQy8/mLfojJSTe6GMjynmo36/4W0b4ovfN2DSih3oXK8q7jwPxfrjFzGuS3MYGxggNSMTLyJj4WpnAxtzUzwOjcTaoxdQ0d0ZLapXwL1g7UBxWSc72Jibol+z2thw7BIAoE4FT0TEv8byA2fhZGuJrg2E9cLxXZ8F+GDU3xcw5eBVdKpYBncic+qG+n7627Autghws8Pv5+7ltGEtcCE4CltvPceXjfy1RmWUVP17dsek73/CjNnz0bp5Uzx8HITtu/Zi2KD+MDLSX+f0790Dc/9YAgtzc9SpVROXrlzFmQuX8N3kLwFoXmT27t4F6zdvg5WVJWrVqIbglyHYsGU76taqiaqVKxXnIRco8/IxmPYcBZMOg5F9/wokzh4wqNkUmef2Awo5YGAIia2jZrRGRhqUYS+geBUE48adIZLKoIyPgqxsRRhUa4jM03u0RmVI7DQ9rlXxH97xsDiwDaufk0dNOJUNwOltkxHQ5isYmljh5oklMDQyR4XavfO2S4x+BqUyG6WcKwAAqjUdiUOrh+LYxjHwqzsAWRlJuHlyCYxMLOHfYEhxHc5H69O7N6Z9+y1+mTULrVq0xMNHj7Dz710YOngwjIyMkJaejpCQEDg5OeXdT/r26YP/LfgdFhbmqF2rFi4HXsG58+cxbcqUYj6awjG4eweM/2kuvp+/BO2aNsS9oKfYvPcwRvbvkfPbyUBwWDhcHOxh/Q9Hp2VlZ+O3P9fCxNgIA7t1QHCYdnvN3tYG9rbC7bBFRBoidWHPrUQlTuqSyYW+z1PPI7A8MAivElNhb2aEHv4eGFBN0yvzelgcvth1ET82r4qOFTTDpFOz5FhxNQinn0ciLi0Trpam6FvFE1383kwHJFeqsOHmUxx4FIrI5Aw4mBujq18ZDKhWrlAXmTUbPafQz0lJPh+A5pwclP3zl1v/hk3DANQ5uRGXmw1AwrmrWml3PpuKsA2787YtPbwXyk4cCiM3J6S/CMXzOSsQ/tderf1Z16uO8rMnw6JyeWTHJSL8r714Mn0h1Art+f0/Vjt5EF4Mbl+o+zSpVgfWXfrCwNEVisR4JJ86iKQjmuM38q0E56mzELNqAVIvvBlGbztgJExr1EXI+AH57tewnC9sug2EYVlvqLOzkHYzEAnb1hS4tsa/VXbdAUQ/ulGo+zwXeA1rtuxEaHgkStlao0ublujduR0A4Na9hxj//c+YNvYLtGnWKC/P3qMnsXXPAcTGJcDJwR79u3VEqyYNtPZ74twlbNixG5HRsXCwL4UurVugW3vtET6FwaF8daQt/7ZQ93nqaTiWXX6IV4kpsDczRs/KnhhQQ9NL63poDD7fcQ7TW9VAx4ruAHLuJ4EPceppuOZ+YmWGftW80KWSxz/eb2Ey/eIXRATdLdR9nr98Bes2b0doeARK2dqgc9vW6NmlAwDg9r0HmPjtdEwZPwqtmzXJy7PvyHFs370PMXHxcHa0R9/uXdCySSOt/d5/FITVm7bgUdBTGBoaon7tmhg5ZCDMzAp3jmFnH39cD0os1H0CQFpqMjat/gPXA89BrVbBu7w/+n82Ac6ub+qSn78ZidiYSPyxao/efYwf1hnl/aphxIQftNJjosKxZd0SPH5wC5kZ6fD0qYge/T7PWxPjY9XwsUbUpP6Fsq9chn41YNayK6R2TlAmJSL90nGknzsMADAoWx42I79F0rblyLh+Pi+PcY2GMGnUBtJSjlAmJyIj8DTSzhzQWlfIyL8WrAaMReycSVDGFk2w3HHuJkRM7FOo+zSqVAPmrXtAau8EZVIC0i4cR9oZzZpxBp7lUWrMD0jc/Ccyrp3Ly2Mc0AhmjdtBaueoOYeXTyH11D6t82FctS7MWnbRrIGRGIf0i8eRdv5ooZYdAJwXbEHGmS2Fus9Ttx7hz/2n8TI6HvZW5ujVOAADW2hGnVwLCsbw/63HT4M6oVPdqli67xRWHDyX775WfjkINX08oFar8dfJQOw8dx3h8a9RytIMdcp7YkznZrDRs27XxzBu3Aepy6YV6j5PPQvH8suPNG1YUyP0qOKJAdU1Iw2uh8bii53n8WPL6uhYMWdazyw5VgQ+wulnEW/asNXK6dQ5uXL3sbx7A9RwsyvUsgOA2YhZCHtyv1D3eeHyFazbvBVhYZo6p2O7NujZRbP2z+179/HVNz9i0vjRaN38zbon+w8fw47dexETFw8nRwf07d4FLZo2zvtepVLhwJFj2HvwCCKiomFhboZmjRtiUJ+eMDQs3Km3XL39kDRvfKHuU1rOH0b12kBsbQ916mtk3b6A7OunAQASt3Iw6zUW6Yf/gvxBzggDA0MY1W0DmZc/RKYWUL2OQ9aNM5Df0x4xbVCzKYwbdULSgq8AZeG25d9m+fUfbMO+w6F8dczb9f6Fpj9EVkYSAg/OxssHJ6FWq+BYpipqt5+mtcbFgRUDkZIYjj5T3jzzhD+7jBsnlyAhMggikRhu3vUR0OYrmFk56/13DqwYCABo//mGQiv7113FCH7+rND2BwAXL13Cxk1/ITwsDLalbNGhfXt066rpaHLn7l1MmToNX06cgJYtWuTlOXjoMP7etQuxsbFwcnREz5490bxZU737j4qOxuAhQ3X2UVg8PMsh7v6HdQrOz9krN7B6626ERETBzsYaXds0RZ+ObQBo1rAY++NsfDP6M7Rr2kAn78FT5/HrktXY+edcONlr6pQb9x5i3PQ5+f57Q3t2wme9uhRK2Uv51Sl4I9IROqpbcRehxHFb+ndxF+GTYwCDiiSAUZIVRQCjpCvKAEZJVRQBjJKuKAIYJV1RBDBKuqIIYJR0RRXAKMmKIoBRkhVFAKOkK4oARklXFAGMkq4oAhglXVEEMEq6oghglHRFFcAoyYoigFHSFUUAoyRjAOPDMIDx7/0XAxglcg0MIiIiIiIiIiIiIiL6/40BDCIiIiIiIiIiIiIiEhxhr8xJRERERERERERERP/viMTsW08F41VCRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgiMt7gIQERERERERERER0X+MSFTcJaASgCMwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHCkxV0AIiIiIiIiIiIiIvpvEYlFxV0EKgE4AoOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgER1rcBSAiIiIiIiIiIiKi/xaRmH3rqWC8SoiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwpMVdACIiIiIiIiIiIiL6bxGJRcVdBCoBOAKDiIiIiIiIiIiIiIgEhwEMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBEda3AUgIiIiIiIiIiIiov8WkZh966lgvEqIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgER6RWq9XFXQgiIiIiIiIiIiIi+u+ImtS/uItQ4jjO3VTcRfjkuIg3IWxsz+IugqC4LtqOxFmjirsYgmI9bSleDG5f3MUQlLLrDuCgzKe4iyEo7eRBSLp5oriLISiW1Zoj8+Cy4i6GoBi1G4HYh1eLuxiCYlchAA+fRRR3MQSlQjlnPB/YrriLIRieGw7iWv3axV0MQal5IRCZW2YXdzEExajPFGQeX1fcxRAUoxaDEfbkfnEXQ1Bcvf3Yrn9H2XUHkHzzeHEXQ1AsqrXArquq4i6GoHQNEOPVs6DiLoaglCnng5SrB4u7GIJhHsC2K1FRYQCDiIiIiIiIiIiIiD4pkVhU3EWgEoBrYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgSIu7AERERERERERERET03yISi4q7CFQCcAQGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCY60uAtARERERERERERERP8xYvatp4LxKiEiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBkRZ3AYiIiIiIiIiIiIjov0UkEhV3EagE4AgMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhxpcReAiIiIiIiIiIiIiP5bRGL2raeC8SohIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgEhwEMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwZEWdwGIiIiIiIiIiIiI6L9FJBYVdxGoBOAIDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsHhGhhU6Ax9/WHZvjekTm5QpSQh9dxRpJ7ar3dbk1qNYNN/dL77Sti4BOlXzwIAZG5lYdVlAGSlPaHOTEfalbNIPrQdUCqL5DgKk9SjPIwbdYSklBNUacnIunEOWVdP5Lu92NoOliN+0klXxkYgedXPOZ9EMAxoBsNq9SE2t4bqdTyybp5F1o2zRXQUhcu4YlVYdxsAA5fSUCa/RvLJg0g6slvvtmb1m8F+2MR89xWz8n9IvXgKACBzcoVNzyEw9q0EtVKJzKD7iN+6CorY6CI5jqJg5OKAhrcP4Hq30Ug4d/W92zr3aody00bCpKwbMl6G49ncFQjfuEdrG8vqfig/ezIsq/tBkZyGsA278GTGYqjl8iI8isIRePcR/ty2Dy/CImFjaYEeLRuiX7tmEIkKniczKDgUg7+fg78XTIeznS0AICI2Hp3H/ZBvnvaNauOHEQMKrfxF4VLQKyw+dBHPo+JhY26C3vUqY2Dj6vmekyy5AsuPBeLQzcdITM2At7MdRrSqjXq+7lrb1J22BAqVSiuvsYEMgb+NKcrDKRRXb9/Dir92IDgkHDZWFujSpjn6dGr7j66TJy9eYvjk6di6dC6c7O3+9fdClpGRgQ1rlyPw4jlkZmaggl9lDB0+Ci6upd+b73ViAtauWoqbN65BpVSiWo1aGDJ8FGxsbPO2UavV2LtrO44d2Y+42BjY2TuiXccuaNu+S1Ef1gcz9qsKm+4D8+qdpBMHkXR4l95tzes3h/3n76l3VvwPKRdOAtDUO7a9hsK4vKbeyXh8D/FbVkMRG1Ukx1FYLGoGwPXzETDyKAtFQgJidu9E1JbN+WeQSODYpy/s2nWErFQpZIWFInLjBiSc0m7PWDVoCOfBQ2HkVhryhHjEHz2CyI3roVYoiviIPt6lZ+FYfOoGnsckwsbMGL1rlsfAun7/6F6iUKowcPUBGMukWD2krdZ3e289xfpL9xCWmAJHS1P0qlkefWtV+Ef7LW6XHr3A4v1n8TwyDjYWpujdoDoGNgt4f51z+AIOXXuAxNR0eLvYY0TbBqhXoWzeNiqVGjsv3sL28zcRFvcaNuamaOLvhZFtG8DM2PBTHdoHu37zNtZs3IyXIaGwtrJCp3at0aNLx/f+PU+dPY9N23YiMjoGjvZ26N29C1o1a6K1Ta/BwxEXn6CTd9emtbC0tCj04yhMbNfrCrz7CEu37ceLsEjYWlqge8sG6P8v2rCDvp+LXQt+zGvD5jpz7Q5W7z6CVxHRsLWyQNv6ARjcuSVk0pLxaicrMw1Hts7H/evHkZ2ZDnef6mjffxrsnDzem+/V01s4un0Bwl8+gKGhCfwCWqNVjwkwNDbN2yYu+hWObf8dL5/cQHZWBhzdvNG86xiUq1inqA/rg12/eQvrNmzEq5AQWFlZoWO7dujetfN7r5PTZ85i87btiIyKhoO9PXr16IaWzZtpbXPs+Ens2L0bkZFRsLezQ4f2bdG5Q/sSUe8E3gvC0h2H8Dw8CrYW5ujRvB76t22cb9mz5QpsOnwGBy9cR3T8a9jbWKJN3WoY3KGZ1u/ixJXb2HDwNF5GxsDcxBgBFb0wpld72Fqaf6pDI6KPUDJquSL0+vVrTJgwATdu3ICPjw927NiBPXv2oGHDhrC1tS14BwCaNm2KLl26YOzYsdi1axemTZuGoKCgAvP9m21LCgN3L5T6YirSb15C0sFtMCzrC8tO/SCSiJFyfK/O9pkPbiJm/rc66dZ9voDIyASZD28CACS29rAb8z2yXz5BwpoFkDq6wLJ9b4hNzPB628oiP66PIXF2h1mPkch+dAMZ5/ZD6uoJ46adAbEYWYHH9OexdwUApGz+HWp59psv3nrhbNysK4wCmiHr5jlkP7kDsVUpGDfsALGlLTJO6X8hIxSGnj5wnPgDUq+eR+LuTTDyqgCbnkMAiQRJB3fqbJ9+5xrCZ36lk243ZBzExsZIv3sdACCxKQXnb+dAHhmO6GVzIDYwhHXXAXD6eibCvhujfS4FysjVEQEHV0NmVfCDqmOXlqiyYR6CF21A7NHzcOzUHFXWzIYqKxuR2w8BAIw9XFHryFokBt7GzT4TYObrCZ+ZEyGzscL90T8W9eF8lHtPg/HlnD/Rok41jOjRHreDXmDR5j1QKlUY1Knle/M+D43AxDl/QqnUfiFfysoCq2d8rbP9zmNncfzyTXRsLNwHHAC4+zISY1ftQasq3hjdui5uBYdjwYHzUKhU+KxZgN4807cdx7mHLzCuXX2UsbPCvmsPMXbVHqwa1R3VymruNc+i4qBQqfBrv9Zws7XKyysuAQuq3Q96hsm/zEezerUxrE933H0UhD83bINSqcKAbh3em/fFq1BM+nk+lPkEwgv6XugWzPkZQUEPMWjIFzA2McH2Levx/bQvsXDpWpiZ639YUyqVmPnjVKSnp2HE6IlQKhXYuG4lfvpuEuYvXAFpzoPg+jXLcXDf3+jdbwi8fHxx89oVrPxzIaQSKVq2ef95Lw6Gnj5w+vJHpF45j4S/N8HYuwJsew2BSCLB6wM7dLZPu3MVYT99qZNu/9k4iIxNkHbnGgBNvePy/VxNvbN0DkQGhrDpPgDOk2ci9JvRgq13TCtWhNec+Ug4eQJhq1bA3L8yXEeOASQSRG3aqDePy9BhcOo/EBHr1iDl7h1YN2wEzxk/Q61UIvHsaQCARY0AlPvlNyScOoGwP5fC2MMDriNGQmpphZDf53/KQ/zX7obGYOzm42jl54HRTarhVkg0Fhy/prm/NqhcYP41F+7iQUQcapRx1ErfdSMIP+2/iMH1KqGupwvuhcVi/tGryMhWYFjDgvdbnO4Gh2Pssh1oVa08RrdviFvPw7Bg7ynNOWmpv76cvvkQzt17hnEdG6GMvQ32XbmHscu2Y9W4fqhWzg0AsPZEIJYcOItBzWqjlk8ZvIpJwJID5/AsIhbLxvQW9Au2h4+f4NuZs9C4fl0M7t8H9x8+wop1G6FUKtGnR1e9ec5dvIxf5/+Brh3aoWb1KrgYeBVzfl8MmUyGpg3rAwCSkpIRF5+AL4YMhF+F8lr5zcxM9e1WMNiu13XvaTAmzlmW14a9E/QcizbvhVKpwuAC2rDPQiMwQU8bFgCu3H2EyQtWoUXtahjTuyOeh0Vh6dZ9eJ2SiklDehbV4RSqbUsnIeTZHbTp/TUMjU1xcvdSrPx1ECb+th/GppZ680SGBGH1b0PhWaE2+o1biJTEGBzZ/j/ERQVj6ORVAIC0lESs/GUgTMys0L7/NBgam+Ha6R1YM3sYhk1bi7Ll9beTi9Ojx4/xw08z0ahBfQzq3w/3Hz7CqrXroFQq0btnd715zl+8hN/m/Q+dO3ZAzerVcCkwEPMW/AGZTIYmjRoCAA4fPYYFCxejZ7euqF6tKh4HBWH5ytXIzMhAn17Cvk7uPXuJCfNXoUXtKhjRvTVuBwVj4bYDUKpUGNyhmd488zbtxqELNzCscwtUKOuGh8GhWLn7GCLjEvHD8N4AgKOXb+HbpRvRtWkdjOrRFnFJyVi28whGzlqKjTO+hKGB7FMeJhF9gP98AGPfvn24fv06Nm/eDAcHB1y7dg1Tp07FyZMnP2h/bdu2RYMGDQp925LCom0PyMOCkbhxMQAg69EdiCRSmLfogpQzh7RewAOAKjUF2akpWmlmjdpA6uiK2P99B1XOd+bNO0GVlYG4FXM0Iy4e3oI6OwtWPT5DyrFdUCbGf5oD/ADGDdpDGR2K9P3rAQCKFw8hEktgXLcVsq6fBhS6veAlDq5QJSdC8eqJ3n2KjE1hWKMxsm5fQPrRrXnp6pREmHYbgazbF6FKEG7PJOvO/ZD16gViV/wPAJBx7yZEEims2/dE8rF9Og8kqpRkZKUka6VZNO8AmbMrIn6eBFXOd9ad+0KVno7Iud9BnZ0FAJDHRsNx/Pcw9PBC5pMHn+DoPpBIBNcBnVF+9hTgHz63+8z8EpE7j+DR17MAAHHHL0BmbQmf6ePzAhiek4ZDkZKG611HQS2XI/bIOSgzMuH3x/d49tsyZIZGFtURfbQVOw/Cx90VP40eDACoU6UiFEol1u09il5tGsPIwEAnj1yhwPYjZ7B850EYyHQbogYyGSp5affwevQiBMcv38So3h1RxbdckRxLYVl69DJ8Xezxa782AIB65d0hV6qw+sQ19GtQDUYG2tV6eEISDt18jGldm6BXPc2LsoBypXE7OALbLt7NC2AEhcdCKhajRWUvGJSQHny51mzdBS+PMvh+wggAQO1q/lAoldj49z70bN8KhoZ6rhO5AjsPHcPqLX/DQPbvvy8JHj96gGtXL+G7n35D9Rq1AAAV/PwxYmgfHD64Fz1699eb79L5M3jx/CkW/rkWbqXdAQAeZcth/KihuHj+NBo1aYGY6Cjs37MDw0eMQ+t2nQAA/pWrIS4uBrduXhNkAMOmq6beiVmueYmece8GIJHCukNPJB3d+4/qHcsWHSBzdkP4jDf1jk2XflClpyNi9rd59Y4iLgqOE34QdL3jMnQ40p8+QfDPmtGeyVcCIZJK4TxgMKK3b887lreVatce8cePIWLtagBAyo3rMPXxhX237nkBjFLt2iE7OhovZkwHVCokX78KmY0NHHr1Qeii36EWcDBw6Zlb8HWywa9dGwEA6nm5Qq5SYfX5u+hXuyKMZPnfG4Oi4rH6/B2UMjPW+W7V+TtoUcEdE1vUBADUKuuMV/FJ2HL1oeADGEsPnoevqwN+HdQRAFCvgqemzjl2Cf0a14DROy98wuNf49C1B5jWoyV6NawOAAjwdsftF+HYdv4GqpVzg0qlxtrjgeheryrGd2oMAKjt6wFLU2NMWbsXD0OiULGM0yc9zn9j/eatKFfWA9O+Gg8ACKheFQqlEpt37ELXju1gaKg7gmT1xs1oVK8ORg0fAgCoWa0qUlJSsW7TlrwAxrPgYABA/Tq14OzkqLMPIWO7XlduG3bG6EEAgLpVKuS0YY+h93vasNuOnMXynQdhmM/9Zv/ZQDjaWmPGmEGQiMWo5V8eCUnJ2HzoNCYO6AapVFKkx/WxXj29hUe3TmPw18vhU1nzst3dpwbmftkCgSe2oEmnEXrzXTyyHsamlug3/g9IpW/O3c6V3yA2Mhh2Th64eWEv0pITMWr6dljaOAAAvPzqYuE3nXHu0BpBBjA2/LUFnmXLYsrXmg4TNWtUh1KhwNbtO9ClUwe995O16zeiYf16GPn5MABAjerVkJKSivWb/soLYGzZtgMN6tXFsKGDAQBVq1RGWHgE9u4/KPgAxvJdR+FTxgUzR/QDANT1Lw+FUom1+06gd6sGOr+d1ylp2H06EGN7tcPAdk0BAAEVvQEAi7cdxNhe7WFtYYa1+0+gXuXy+GZIj7y87o72GPzTHzh/+yGaBwi7Pv5/T8zVDahg//mrJDk5GXZ2dvD394eDgwPUavVH7c/IyAh2dv9siol/s22JIJXCsFxFZNzVnvIm/XYgxMYmMCzrW+AuxOaWsGjXC2kXjiH71bO8dKPylZH54JbWdFEZtwMhEothVL5KoR1CoZNIIS3theygO1rJ2UG3IDI0htTVU382B1coosPy3a3YxgEisQTyp/e00uWvnkAkFkPmWeHjy15UpFIY+1ZC2s3LWslp1y9CbGwCI++Cyy6xsIJNtwFIPnUYWS/eBHlMa9RFyvnjWi9esl8+Q8jEQYJ+yAEAC38f+C35CWGb9uD24MkFbm9cxgVmPh6I2ntcKz1y11GYernDpFwZAIBdi/qIOXxWa7qoqL+PQCSRwK5l/cI9iEKULZfj5sOnaFyzilZ6s1pVkZaRiTuPn+vNd/HWA6zadRiDO7XCmD6dCvx31Go15q7dBg9XR/Rp27Qwil5kshUKXH8WhqaVtO8bLSp7IS0rG7eCw3Xy2FmYYvPEPmhX/U1vTrFYBIlEjCz5m+lcHofHwt3eusQFL7Llcty6/wgNa9XQSm9SJwDpGZm4+0j/CMfLN29j7bbdGNCtI0YO7PWvvy8Jbt+8BiMjI1Sp+ubcWFpaoaJfZdy8Hphvvls3r8HF1S0veAEAbqXd4epWGjevXwEABF46D5nMAM1attHK+/XUHzHl2xmFeyCFQSqFsa8/0m68U+9cu/Dv6p3uA5F88hCyXry5rkxr1EXyuWNa9U5W8DO8Gj9QsPWOSCaDedVqSDx3Ris98fQpSExNYe6v/yFebGAAZXqaVpoiKQlSC8u3tjGEKjMDeGs6OkVyEsQGBhCbCLcXebZCiesvI9HUt4xWeosK7kjLluNWSP6dQuQKJb7bfQ59alWAu61u7+HF/VrmBS9yySRiZCmEG8wBNFNyXH8WgqaVfbTSW1T1QVpmNm49122n2lmYYfOkwWgXUDEvTSwWQSIWIUuuOd7UzCy0D6iINjUqauX1cNCMfA+NSyzsQyk02XI57tx7gPq1tV+ENqxbB+kZGbj38LFOnqjoGISFR6BenVraeerVQXhkFMIiIgAAz1+8hImxMZwcHYruAIoC2/U6suVy3Hj4DI1rat9Lm/7DNuyQTi0xpk9nvdtkyRUwMjSA5K2XfZbmppArFEjLzCy0YygqT+9dhIGhCbwq1ctLM7OwgYdvDQTdOZdvvhbdx2Pw18u1ghcSqSaAqsi5PixtHFC/zaC84AUAiMUS2DqWQUJMaGEfykfLlstx9+491KtTWyu9Qf16SM/IwP2HD3XyREVHIyw8HHXfzVOvLiIiIhEerrmf/Dz9Bwz/bIjWNlKpFNnZwh21BGjqnRuPnqFJjUpa6c0CKiMtMwu3g4J18qRlZKJb0zpoWM1PK93dSXMdhMfEQ6VSoZafN7o00R456O5sDwAIi4krzMMgoiLy/yKAcfbsWXTt2hWVK1dGnTp1MHXqVCQlJQEArl+/jp49e8Lf3x8dO3bEoUOH4OPjg7CwMEydOhWLFi1CREQEfHx8sGvXLgwcOBAA0KxZM+za9e+n4dm1axd8fDQN/alTp6JHjx5a34eHh8PX1xeXLl3S2hYAfHx8sHPnTgwePBj+/v6oX78+Fi9erJV///79aNOmDSpVqoQePXpgw4YNWvsoTlJbB4hkMshjtHt0584BLXVwLnAfFm17Amo1kg68GVUAmQxSW3soYiK0tlWlpkCVkQ6pfcH7LS5iq1IQSWVQJcRopasSNZ8ltvofUqT2rhAZGMJ8wNewmvQHLMfOgnHjTnmRaXVGqmb/ltrTnEms7PL+XaGS2TlqrpMo7Zet8mjN31fm6FrgPqy79INarULirjfTXEhLOUBiYgZFfAxsB4xAmcVb4L5yFxzGfQeJ9T+bDq44ZYRE4oxvCzya9BuU6QU/gJj5al5ipz19qZWe/vyV5ntvD4iNDGHi7oq0p9qNvey4RMiTUmDm/f65ZotTeEw85AoFSjvZa6W7Omiu8VeR+l8mVfAsgz0LZ2Bol9aQSgqu4o5fvoH7z17iy4HdtR4GhSgsPglypRJl7Ky10kuXsgIAvIzRfeljIJWiopsjzI0NoVKpEZWYgjm7zyAsLgk96vrnbRcUEQuJRIwvlv2NWlMXocG3SzFj+wmkZQr7QSciKkZznThr91Z1yXloCYnQvwZB+XJlsXP5Agzq0QkSPddJQd+XBGGhr+Dg6AyJRLs3pqOzC8LD83+QDwt9BWdnN510RycXhIdp8gUHP4OTswse3L+Lr8Z9ju4dm+PzIb1x7LD+9a6Km8zeKZ96R9NekTn9g3qnaz+oVSok/P1OvWNqBkVcDEoNHAn3pVvhsWo3HCd8L+h6x9DZBWIDA2SFaF8HmeGaF9JGpfWvkRK9fRtKtW4Di1q1ITYxgU2LVrCsVRvxRw+/2WbXThi6usGxT19IzMxgWrEiHHr0xutLF6F8p8e1kIQlpkCuVKHMOwGI0jaa6RxfxiXlm3f52dtQKNUY1aSa3u/L2lnBxdocarUaSelZ2HUjCPvvPEevmgV37ClOYfGvIVcoUcbeRiu9dE4d9DJGd/SzgUyKimWcYG5slFPnJGPOzuMIi3uNHvWrAgAsTIwwtUdLVPXU/t2dvqt5ce3pJNzOXZFR0ZArFHB10X72cMmpg8LCdTsSvArV/K5cnbXz5I6yCA3TtH+fBb+EubkZfpo1Fx17DUC7Hv0wc/Z8xCcIN6ADsF2vT35tWLe8NmyMvmyo4FkGexf+hKFdWufb9ujRsiFCo2Kx8cAJpKSl497TYGw9fAb1qlSEpcCnGgOAmIjnsLF3hVis3TaxdSiD2Ejdl9O5LG0c4FRa884jOzMdz+5fwtEdC1DGuxqcymjupf612qB1L+2pyTLSkhD8+DocXIQ3wjoqMkrv/cTZSTMCLSxM934Skns/cXHRzuOsyROacw8qXdoNjjmdc5NTUnD46DGcOHUaHdppr88kNJrfjhKlHbXrATcHzbuNV1G6vx0Xe1tMHdwd7u/83s7euAepRILSTnYQi8WY2LcTGlfXDnKcuXEfAODpUrJGvRH9V5WsrpZ6JCQkYMyYMZg6dSoaN26MqKgoTJ48GXPmzMHnn3+OoUOHomPHjpg1axYePXqEmTNn5uX99ttvYW1tjUOHDmHnzp0wMjKCmZkZxo4dix07dsDb2/ujyta1a1cMGDAAISEhKJ3zMLh//344Ojqidu3a2LNnj06e2bNn47vvvsPMmTNx8OBBLFiwALVq1ULNmjVx+vRpTJkyBV999RWaNm2KwMBAzJo166PKWJjExiYAAHVmhla6OkvzWWxk8v78ZhYwDWiElFP7oc5If5Oek0/1zn5z00RGusP1hUJkaAQAUGe/e040PUVEBka6eYxNIbawBsRiZJzeA1VSAqTuPjCq3QIiC2uk71sHVUIM5KHPYNSgHVQpiZC/CoLEqhRM2vSDWiGHSCbcBRBze2C+/TcG3vx9xcbv/3uKzS1hVq8pko7shuqtnqASc81LB5seg5EV/AQxf86BxMISNt0HwXnKLIT9MFbvlBhCIU9Mgjwx/xck75JamgEAFMmpWumKFM05kVqYQZazINm72+RuJ7Uw+9DiFrnUdM31YGqs/RsxyVncMy1Df5DH3sbqX/07mw6cQGWfsqhe4ePu959CaoYmmGBmpD102iRniqS0rPcHG9aeuoaFhy4CALrV9kNtb029pFar8TQiDmqo0bWWHz5vUQv3Q6Ox/GggXkTHY83onoJdCyP3OjEx0b5vmORcN2npuvUGANjZ2uhN/6fflwTpaWkwNtGtd42NTZCRnq4nR06+9DQ4Oeu+cDI2NkF6Tr7kpCQkxMdhwdxf0LvvILi4lcaFs6fw52LN9CFCm0Iqt32i0ql30rW+z4/E3BLm9Zsh6fA79U7OyAPbXkOQ9eIJopfOhsTCCrY9BsF52iyEfSfMekeS85Lr3dEUypy/r8RU/0uwqG1bYepXCT7zf89Liz2wD1Fb/sr7nHLjOqI2b4Lb6HFwGz0OAJAWFIQXP/1QmIdQ6FJzgrVmhtpTIpnkTJGUlqU73ScA3A+PxfpL97FmSFsYFDB1y92wWAxcfQAAUNG5FAbWqfTe7Ytbaobm2tWtc3Lq4QIC3GuPX8bC/WcBAN3qVkFtX/d8t737MhxrjgeikV85eDkLN4CRlqb5jejWOZrP+uqctJzflWk+edJz8jx/EYy4+AS0a9UCXTu1R0hoGNb9tQ0Tp32P5X/Mg7GR7jODELBdr6so27A1K3pjYIfmWPjXHiz8aw8AwMfdFT+PHfzB5f2UMtNTYWis+/xhaGSCrIw0PTm0qdVqzBxVFwp5FkzMrNBxgO5amrlUKhV2rf4BWRmpaNjus48qd1FIy7neTd5pq+XeX9L1tNXS0tK0tsllbKw/z6PHQZjwtWZkv7dXOXTr2vnjC16EUjPy+e0Y5f52/tlv/vT1uzhw4Tp6Nq8HC1P9bbyw6Dj8vmUfvMu4oF7l8nq3ISJhKfEBjOjoaGRnZ8PZ2RkuLi5wcXHBsmXLoFQqsW3bNpQqVQrTp0+HVCqFp6cnoqOjMWfOHACAubk5TExMIJFI8qZysrTMaSzZ2MDoIxuKNWvWhJubG/bt24cxY8YA0AQwOnXqBHE+PX07d+6MTp00056MGDECq1evxs2bN1GzZk2sXr0arVu3xmefaSpgDw8PvHz5EuvWrfuochaaghbcU+suRPY207rNALEYqWcPvbPfAnq/fuS0X0WqgLLrm7JMLc9GypaFUCXGQJWUAABQhD4FlAoYN+qIzItHoIqPQtqulTBp0xdm3b4AoHkxk3F6N4wbtBP0onYFXScFTeNm0aglRGIxko7v0/4iZ+obZfJrRC/6Ne+6kMdEwuX7+TCr0xgpZ49+eLkFRlTAaAG1SlXgXJJqlXB/OwVdB+KC7gv/wN0nL/A4OBRzv/r8o/f1KagKOCcF3YIbViyLKh7OuBUcgeXHApEpV+DXfm2gVgN/fNYR1mbGKOeo6eFU3dMVpcxN8M1fR3Ap6CXqlxfmaB11AfWKkBeCLUwqlUrnN/O+6+V950X1nvtCbiBLIZcjOTkJk7/5CXXqaeZb9q9cDXGxMdi2ZYPgAhgf244wb9wKIrEYr4/t1d7tW/VO1MJf3tQ70RFw/fF/MKvbBClnjnx4uYuIqMC2ie7vSiSTofzSZZDZlsLLub8h89UrmPlVgtOgIVBlZCDkjwUAgDJfT0apdh0QsW4Nkm9ch4GjE1yGDoP3/N8RNH4MVFnCfOH4IffXLLkC3+8+j361K6CSa8Ev3Z0szbB6cBuEJ6Zi8akbGLj6ALZ+0QnGBsJ8HCv4nLz//tqwkheqeLri1vMwLD98AZlyed5aGm+79TwMY5ftgIutJWb0b/dRZS5qBdU5Yj3npKC2lijnvvrl2JGQiCXw9db0FPevWAHupUtj/JRvcfzUGXRs2/oDS13E2K7X8bG/nff5bfVW7DsTiKFdWiPAzxsRsQlYufMQxv22BEu/HQcjPet+FRdN20T7N/O+35DoH3SWUSkVGDhxCRTybJzZvwLLfxmAEd/9lTcKI5dSIceOFd/g/rVj6DjwO7h5+uezx+LzvvYWoL+uLuj39O615WBvh3m//YqoqGis27gJE76ejKV//A4jI2F2dizonOi7x77r1LW7+O7PTaji7YFxvfW3R19GRGP0nOWQiMWYM3ZQvu/miEhYhNli/hfKly+P9u3bY8SIEbCzs0O9evXQuHFjtGjRAs+ePUOFChUgfWtO74CAT7d4k0gkQufOnbF//36MGTMGDx8+xLNnz7B06dJ883h6as9tbm5uDnnO3PUPHjxAy5Yttb6vWbOmYAIYuT0bc0cd5ModIfFuz8d3GVephczHd/IW7s6lzu0hqWekhdjIWKfHj5Dkjj55d6RF3siMLD29gxVyKF7qzqErf3Yfxo06QmLvAlV8FNTpKUj7eznSDY0hMrOE6nUcoFLBpHUfqDML7sFSXFQ5PUNE74zIyeshm/7+spvWqIf0+7fyFvjLlTvyJ/3uDa2XUVnPg6BMT4VhGU9oX1klmyJJczRSc+2esrmjKhRJqXkjL97dJne73H0IUW7Pm3fn883ttWZq8vE9EU9euQULUxPUq+JX8MYCYGacM9IiU7sncG4vWPMCHka8nN4EJxRKFf48ehlj29aDk7UFapbTnTKoQQVN0CIoIlawAQzTnF5r6e/0Zszt0WpmKtwReoVp+5YN2LZ5vVZanXqNkPQ6QWfbjPQ0mJjmP/rK1NQUGXrq1Yz0dJjk9LQ1NjGBSCRC9ZraczBXrR6AWzev4XViAqyshTOKRZXTq/PddsQ/rXfMauqvd1Q5PQXT71zXrXfSUmFYpqwg6x1FWs40lO/0+pTk/H2Vqbrnw7pxE5h4eSNowlgkX78GAEi5fQuKtDS4fzUJsfv2QpGSAruOnRG5cT3CV63Iy5v26AEqbdqKUu06IGbXzqI6rI+SO8ogLfud+2vOyAtzI92XgotP3YRKrcbnjapAodS8lMu9ChRKFSRikdbLJHsLE9hbmKCGO+BqbY6h6w7hxMNgdKjiVfgHVAjMcnuLvzO6Ly1TE4QyNy6gzskZSVG9XGkoVCr8efA8xnZoBCebN9N0HbnxED9sOogy9jZYOqoXrMzePxqquOXWORnv1Dl5oyz09PTNTUvPyHgnT4bWPiv66k4J7FfBF6amJnge/OojS1502K7XZZbbGz5TO2Cb24Y1M/mwtklMwmvsPnUJQzq1xMie7QEA1QFU9CyDXpN+wb4zl9GzVaMPL3ghO7VnKU7uXqKV5lezFVKTdKefy8xIg5GxeYH7lEhleetnePjWwOyJzXHx2EZ0H/5L3jYZacnY9Mc4BD++hg4Dv0OdFv0+8kiKhmnOaEfde8N77id59yDtPLntXtN3RlDa2trC1tYW/pX84OjkgK+nfIPzFy+iRTNhrvuX+9tIz+f5z8z4/c9/fx0+iz+27EP18uUwb8IQGBrIdLa5/ugZJv+xFsZGhlj+zSi4Ogh36m0i0lbiAxgAMH/+fIwePRrnzp3DpUuXMGnSJFSvXh2GhoZQqbSj/AYGn7ZXQpcuXbB48WLcu3cPhw4dQrVq1VCmTJl8t9dXvtxIu1Qq1TkeIVHERUOtVEJqpz2HYO5nRZTuPI65xJbWMHAri4Qzi3W+U2dnQZEYD2kp7f2KzSwgNjaB/D2LXRc3VWIs1ColxNbaPfNyP6vidednF1vbQVrGB/JHN7QDHDJNBaxO17x4kJWvDlVcFJSx4XnbSRxLQyQWQxklvIXKciliI6FWKiFzcNJKl+WsZSKPzP/vKbGyhaF7OSSt+J/Od/KYSKhVKohkug0VkVgClcAXLfu3Up9o5ok18SyD5NuP8tJNPTX3l9THz6FMS0dGWBRMPLXvOQZ2NpBZmCE1n0UEhcDVwQ4SsRhhUbFa6bmfPQphrtILN++jUQ1/SAuY9kMo3GytIBGLEBr3Wis9JOezh4PuC+OIhGQEPglBu+q+MJS9qfLLu2rmiY1NSoNELMb5h8Go61sGTtYWedvkLvJtnc/QayFwcbSHRCxG+DtrooTlfC7j6qIv2/87LVu3R40A7YUJr1y+gNs3r0GlUmn1LIuMjICrm/41DgDA2cUNwS+e6qRHRobDy1vTw9HJ2QVqtRoKhVyr3aJQaq4ZA0Nh9exTxORT7+SszZUdkX+dKbHW1Duvl8/X+e699Y5EItjRkFnh4VArFDBy0Z4qzMhV8znz1UudPIYOmntuyt27Wumpt28BAIw9yiIrOgoisRip97S3yXz5EvLXr2HsUbawDqHQuVmbQyISITRB+5VoSILmpapHzlpDbzvx8CUiklJR59eNOt9Vn7kOMzo1QIsK7jgTFAI/FzuUtn1zfy3vpJnDPyZFuJ1w3EpZa+qcWO01GEJyPucuuv22iIQkBD5+iXY1K75T52jWJYpNSs0LYKw/cQUL9p5CDa8yWDC8K8wLeDElBM5OjhCLxQiP1F7vLyJS054v7aY7/Z5bzvz2EZFR8PIs+1YezT7KuLkiNS0N5y8FwtfbCx5l3tyfVSoVFHIFrCwtIFRs1+tydShVQBv2wxZqj4pLgFqthr+P9r20rKsTLM1M8SIsMp+cxSOgSU/4Vmmslfbwxgk8vXdBp20SH/0Kds751xGPbp6GkYkZPHxr5qUZmZjD1sENyYlv1kVISojC6tmfITE2DH1Gz0elWgIduYQ395OId+8nEZrPpd10Oxe55rRrIyIiUe6tjq+5+yjt5oqMjAxcvnIVPt5ecHlr7R2vnO3j43U7twiFq70tJGIxQqO1F9XO/eyez29HrVZj3sbd2Hb8AlrVqYrpn/eBTKr7qvPI5ZuYvnwL3J3tsfDr4f966mEqOv9kBBZRiR8rdefOHfz6668oW7YsBg8ejBUrVuDXX39FYGAgnJyccP/+fWS/1cC5f//+e/dX2NNNuLi4oFatWjh69CgOHz6Mrl27fvC+fH19cefOHa20W7dufWwRC49Cjqznj2BcuZZWsknl2lClpyH71bN8sxq4a3qfZb0I0vt91uO7MPKrljecGNCM2FArlch68v6/abFSKqAIeQYDnypayQY+VaHKTIci4qVOFrGZJUzb9IXMV3sxSIPy1aHOzIAyKgQAYFyvDYzqao/IMQxoClVmOuQhTwr1MAqTWi5HZtB9mFavq5VuWqMulOmpyHqRf9kNPTXrFGQ+fai736xMZD55ANPqdbSuE6PylSE2MkbmkweFdATCkP48BOkvQuHUtZVWumOXlkh9EoyMV5qAYdyJi7Bv2xjit3qgOHZtBZVCgbjTgZ+0zP+GoYEMVXzL4fS1O1rDpU9dvQ0zE2NU9HT/qP0npaYhNCoG/j6eBW8sEIYyKaqVdcXJe8+0zsmJu09hbmQIv9K6QZ3IxGT8tP04Tt3Tvv9eDnoFmUQCd3trKFUqzNhxAjsv39Pa5uitJ5CIRahWVrhBAEMDA1Su4IOzgde1zsmZwGswMzFBBS/hvjAtTDa2pVDOy0frvyrVaiAjIx23bl7L2y4p6TUe3r+DKlVr5LuvKtVqICw0BKEhL/PSQkNeIiz0FapU0+SrXkMz8uLC2VNaea9duQR3j7J5IzWEIq/eqfFuvVMPyrT31ztGnppe0fnWO7n7fbt9UiGn3gkSZr2jzs5Gyp3bsG7UWCvdunETKFJSkPZQt9wZIZoe4OaVK2ulm/lrpuXIighHVngY1AoFzPy1tzFyKw2ZlRWyIvLvyFLcDGVSVCvjiJOPXmrfXx+9hLmhAfxcdKeIWti3OTYP76j1X3knW5R3ssXm4R3RyMcNErEIP+27gHWXtO+vl55rzoW3nsCzUBjKpKhWrjRO3g7SPie3g2BubAg/d2edPJEJSfhp8yGcuqPdnr/8OBgyqQTuOce748It/G/PKbSsWh5/jupVIoIXgKajmb9fBZy/dEXrnJy7FAhTUxP4eumOpnFxdoKTgz3OXbyslX7+UiBcnJ3g6GAPA5kMi5atwpYdu7S2uXTlGrKys1GlknBHirJdr8vQQIaqvuVw+trtQm3DujlqOvfcfqcD0suIaCSlpsHFXlg9yS2s7eFa1k/rP69K9ZCVmYan9y7kbZeanICXQTfyRlboc+HIeuxZ9xNUKmVeWlJCFGLCn8PJLec6ykjFqllDkJwYg6FTVgs6eAFo7ieV/Cri4qXLWtfJhYuXYGpqCh8967G6ODvD0cEB5y9e0kq/cPFS3ncSiQQLFi7Cjr93a21z46bmvVFZD/fCP5hCYmggQ1Wfsjh9/Z72b+faXZiZGMGvrP4OOEu2H8S24xfQr00j/Dyyv97gxYXbD/Hjss3w93LHqu/HMnhBVAKV+BEYZmZm2Lx5M2QyGXr27ImsrCwcOnQI7u7uGDVqFI4cOYJp06Zh5MiRCA8Px4IFC967v9xFlB4/fgxra2udYXgfokuXLpgxYwZUKhXatGnzwfsZPnw4vvjiC/j7+6NJkya4ceMGNm3a9NHlK0wpR/9GqdHfw2boRKQHnoaBhw/MmnVA0r7NUMuzITIyhszRFYq4KK2pomTOpaGWZ0MZF61/vyf3wqR6PZQa+Q1STx2A1N4Jlh36IO3SCSgTdYehCknmpcMw6zMOpp2HIevuJUhdy8KwdnNknN4LKOSAgREkpRyhSoyDOiMVitDnkAc/hkmzrhDJZFDGRULm6QfDGo2RcfLvvNEWmddPw6R1HxjFRkIR9gIGFarDsGIA0o5sAbL0Lw4nFIn7t8Fp0s+wHz0VKeeOw8irPCzbdEXCjvVQZ2dBZGQMA5fSkMdEag0pN3B1h0qeDUWs7sgVAEjYsR7OU2fB6cuf8PrwLkgsrWDTYzAynz9G+q0rn+rwioTU3BRmFcoh/XkIsuM0vR+f/rIElVf/BnnCa0TvPwWHjs3g3LMtbvadkJfv+bxVcO7VDjUPrELw72th6u0On5lfInTVdmSGCqun1ruGdmmNMb8uwrQ/VqNj4zq4++QFNh04gdG9O8HI0ACp6RkIDo+Cq0MpWFsUPOz8bc9DIgAUzkiOT2l4iwB8sexvTNpwEJ0DKuL2y0isP3Md49vVh7GBDKmZWXgRlQDXUpawMTNBVQ8X1PYujd92n0ZqZjbcSlni3INgbLt4ByNb14GFiREsTIzQKaAi1p2+DkOZFJXLOOFWcDhWnbiG3vWqwN3eurgP+70G9eiECdNn4/u5i9CuWSPcD3qKLXsOYcSAnjAyNERaegaCQ8Ph4mgPawH3Yi1sFf0qw69SFfw+9xcMHPoFzM0tsG3zOpiamqF1205524WGvIRcLkdZT82Lt/oNm+Dv7X9h5g9TMWDwcADAxnUrUca9LOo1aAIA8POvgpoBdbFm5VJkZmaitLsHzpw8hscP72Pa9z9/+oP9BxL3boXTlF/gMGYaUs4dg6FXeVi17YqE7esKqHfKQJWdDUWM/nonfsd6uEz7DU5f/YSkw7sgsbCGTa/ByHz2GGk3hVvvRKxfC5/fF8Fz5i+IO3gAZn6V4NinH8KWLYUqKwtiExMYe3ggKzwcitev8frCeaQ+uI+yP0xH+OpVyHz1EqYVK8J54BAknj+HtMeakYDRO7bBsW9/AEDytauaNTCGfIasyEjE7t/7viIVu+ENK+OLDUcwacdpdK7qhduhMVh/8R7GN68BYwMpUjOz8SL2NVxtzGFjagwvPcEH05zOAhVd3rxIHNqgMv48fRM2pkao6e6EJ9EJWH7mNmqXdUZ9L90e+0IyvFVdfLF4Cyat2YPOtf1xOzgM608GYnzHJpo6JyMLL6Li4FrKGjbmJqha1g21fdzx247jOXWOFc7df4Zt525iZLsGsDAxRlxyKub9fQLOtpbo3ag6HoVq/7Zy9yVU/Xt2x6Tvf8KM2fPRunlTPHwchO279mLYoP4wMjJEWno6XoWEwdnJAVY5ayv2790Dc/9YAgtzc9SpVROXrlzFmQuX8N3kLwFoXmT27t4F6zdvg5WVJWrVqIbglyHYsGU76taqiaqVhb3gO9v1uoZ2aYXRvy7GtD/WoEPj2rj7JBgbD5zEmN4dP7gNa21hjt5tGmPjgRMAgFqVfBEZl4BVfx+GUykbdG5at4A9FD8P35ooWz4A2/6cjDa9v4KJmRVO7FoCIxNz1G7WO2+76PBnUMqz4exeAQDQtPNIrJn9GbYs/hI1m/REWnICTu/9E8amFqjfdggA4MTfixAX9RLNuoyBRCJFyLPbefuTSg3y9iUkfXv3xNRvf8DPs2ajVcsWePjoEXbs2o3PBg/Mu5+EhITAycnpzf2kT2/M+/0PmJubo06tAFy+cgVnz1/AN1MmAdDcT3r16I6Nf22BlZUlKvtXwosXL7Fpy1ZUrVIZNWtUL85DLtBnnVpg1OxlmLpoAzo2CsDdpy+x8dAZjOnZTvPbycjU/HbsS8HawgxBr8Kx/uBpVCjrhuYBlXH/ufaUex4ujpBJJPh59XaYGBliaMfmCA7XvufY21jBgQENIsEr8QEMT09PLFq0CIsXL8bmzZshFotRu3ZtrFy5Eg4ODli/fj1++eUXdOnSBa6urujRo8d716Dw9vZGo0aNMGHCBHz55ZcYOnToR5exVatWmDFjBpo3bw4zs/znnS5Iw4YNMWPGDCxfvhzz58+Hn58f+vTpI6ggRtaTB4hfPR8WbXvCdtgkKJMSkLR3E1JPHQAAGLh6wG78dCRsWoL0K2fz8knMLd+7RoYiOgKxS3+GZaf+sP3sSyhTU5By+iCSD24v8mP6WIpXT5C2ayWMGrSHWbcvoEpJQsap3ci6ehIAIHV0g3m/iUg7sAHZ9wIBqJG6awWM67eFYc2mEJtZQpUYi/TDm5F9501vi+zbFyGSGsCwRiMY1WkFZUI0Uveugfzh9WI60n8u89FdRC+eBesufeE47jsoEuORsH0tko5oeooYupeD89RZiFm1AKkXTublk1hYvXcu3aznjxExexpsug2Ew5hpUGdnIe1mIBK2rSlwEXmhs6haEXVObsSdz6YibIPmPIVt+Vwz7wABAABJREFU2A2xoQHKThwK18HdkP4iFLcHT0bkjsN5+dKCXuBKm6EoP3syqm1biOy4RAT/sQ5Ppi8srkP5x2r6+eC3icOwcsdBTJq/AnY2lhjXtzP6tW8OAAh6GYqRM//ADyP6o32jOgXsTVt8kuYB2kLA0yPpU8urNOYP6oA/j17GhDX7YW9piokdGmJQY83DyKOwGAxbuhMzerdEp4CKEItF+N/gDlh2LBBrTl1DbFIaSttZ4fsezdG19psend91bwpXW0scuP4IK49fgYOlGUa1roPBTfLvqS8U1f0r4ufJ47Bm6y5889vvKGVrjVGDeqNPp7YAgKAXLzHu+1/xzdjhaNu0YTGX9tOa8u0MrF21FOtXL4NarYZvBT98PfVHmJm/eVmyfOnviImOwoq1WwEAMpkBpv88D6uWL8bSxfMhlUhRpVoNDBk+GhLJm+nWvp72I7ZtXo99e3YgOek13Eq7Y8q3M1CzljBfoGQ8uovoRb/Cuks/OI7/HorEeMRvXaNV77h88xtiVixAyoUTefkkltbvr3eePUb4rGmw7T4QDmO/0dQ7NwIRv3W1oOudlJs38Oy7aXAZOhzlfp2N7LhYhC5djOitmwEApj6+8F20FC9+mYn4wwcBlQpBE8fB9fORcB48BFJzC2RFRCBiw1pEb92St9/QJYuQHRMDu85d4Ni7L+Tx8Ui6dgXhK5ZBmZpaXIf7j9Qq64z5vZriz9O3MGHrSdibm2Biy5oYVFfz8vhRZDyGrT+MGZ0aoFPVf75uxecNK8PaxAhbrz7Ehkv3YW1ihO41fDCycdVCH/ld2Gr5uGP+sK748+B5TFj5N+wtzTGxc1MMaqYZbf0oNArDFm7GjP7t0Km2v6bOGd4Vyw5dwJrjlxGblIrSdtb4vk8bdK2rGZlz/sFzZMoViIhPwpAFus8wufsSqqqVK2H6tElYt3krfvxlNkrZ2uDzIQPRs4tmgfKnz1/gq29+xKTxo9G6uWae+dbNm0IuV2DH7r04fOIUnBwdMHXiWDRp8KbHef9e3WFlaYG9B49g/+FjsDA3Q/s2LTGoT89iOc5/g+16XTX9fDB74jCs2HEQk+avzGvD9m/fDICmDTti5kL8MKI/OjSqXcDe3hjfrwvsbayx6+QF/HXwFEpZWaCWvy9G9eoA8xLSpu0/fiEO/jUbh7bMg1qtQhmvqug7dgGMTd+sj7N33QwkxoVjygLN9eJZoRaGTlmNE38vwuaF4yGWSOHtXx+te30Fc0tNwPj+9eMAgJO7F+Pkbu1pqa1KOeftS0iqVq6M77+Zio1/bcZPM3+Bra0thg8djO5duwAAnj17jknTvsXXE8ajZQvNtdOyRTNkK+TYuWs3jh4/ASdHR0z+aiIaN2yQt99+vXvBytISew8cxM5de2BpaYH2bVpjQL8+gq93alb0wpxxg7B811F8/fsa2FtbYnzvDujftjEA4PHLMIz4dSl+HN4bHRoG4PT1u1Cr1Xj4IhRDftJ9vl32zSioVWrEvdY8+42Zs1xnm+FdWuKLrsIesUNEgEj99tis/4ArV65g4MCBOHnyJFxdhd3r6V1Xr15FqVKlULbsmykxli1bhp07d+LEiRPvyfl+YWOF3zD+lFwXbUfirFHFXQxBsZ62FC8Gty/uYghK2XUHcFCmu+Dif1k7eRCSbn74vej/I8tqzZF5cFlxF0NQjNqNQOzDq8VdDEGxqxCAh88iirsYglKhnDOeD2xX3MUQDM8NB3Gt/j9/yfVfUPNCIDK3zC7uYgiKUZ8pyDy+rriLIShGLQYjTMjTzRYDV28/tuvfUXbdASTfPF7cxRAUi2otsOuqsANFn1rXADFePdM/5fV/VZlyPki5erC4iyEY5gFsu36IhJ+/KO4ilDg23+kG4/6/K/FrYPyXXLhwAZ999hkCAwMRERGBkydPYv369ejUqVPBmYmIiIiIiIiIiIiISpASP4VUUZoxYwZ279793m2WLFmCunU/zXQJY8aMQXp6OiZPnoyEhAQ4OTlh8ODBGDZs2Cf594mIiIiIiIiIiIgKg0jEvvVUsP9cAKNWrVoICvpnw/7GjBmDQYMGvXcbe3v7wijWP2JgYIDvvvsO33333Sf7N4mIiIiIiIiIiIiIisN/LoDxb9jY2MDGxqa4i0FERERERERERERE9J/DcTpERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwzUwiIiIiIiIiIiIiOjTEouKuwRUAnAEBhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQmOtLgLQERERERERERERET/LSIx+9ZTwXiVEBERERERERERERH9H3v3HRbF0ccB/EuvAqJ0sIACKjZQLGCJvffeSzRGYzTFHo0lxq6x94pixxJ7RaWpgF0QxUJHVECqwB3vHwfIcQdYDlnefD/Pw/PI3s4yc87OzO5vdpYEhwEMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBEe1tDNARERERERERERERP8tSspKpZ0FKgP4BAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJjmppZ4CIiIiIiIiIiIiI/mOUOLeeisdaQkREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERIKjWtoZICIiIiIiIiIiIqL/FiVlpdLOApUBfAKDiIiIiIiIiIiIiIgEhwEMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBEcpOzs7u7QzQURERERERERERET/He//+bW0s1Dm6E1eWdpZ+OZUSzsDVPpigwJKOwuCYlLDCWFPg0o7G4JSqXoN1pMCTGo4ITHwUmlnQ1D0HdvgtJpdaWdDUDpnPkHo8+elnQ1BsbG2xstnIaWdDUGpUs0Wz0JflHY2BKWaTVXEPbpZ2tkQDKNajfA+8GJpZ0NQ9Bzb4kXos9LOhqBUtamGiJCHpZ0NQbG0dcDz0NDSzoagWNvY4N39G6WdDUExrNMMYeN6lXY2BKXSJg8EhUaWdjYEpYaNBfudAqraVOP1Xz6dM5+UdhaI/m9xCSkiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgEhy/xJiIiIiIiIiIiIqJvSklJqbSzQGUAn8AgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgEhwEMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwVEt7QwQERERERERERER0X+MMufWU/FYS4iIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwVEs7A0RERERERERERET036KkrFTaWaAygE9gEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERIKjWtoZICIiIiIiIiIiIqL/GCXOrafisZYQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4KiWdgaIiIiIiIiIiIiI6D9GWam0c0BlAJ/AICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHD4Em8FSUhIwOTJkxEQEAA7OzscPnwYx48fR/PmzVGhQoVPOkarVq3Qs2dPTJw48ZP2j4+Px6VLl9C3b9+vybrC3bpzH9v2HcKLsAiUN9BHz05tMaB7ZygpFf5inkvXfbDn8DFExb6GqbERBvfqho6tmkvtc/byNRw4cRqR0bGoYGiAjq1aYEif7lBVUSnpIn01/8A72Om2D6/CwlDewADdOndCn57di/xOrly7DveDhxEdEwsTY2MM6NsL7Vq3ktrn/KXLOOJxAlExMTA2qohunTuhR9eiv2uhYD2R5Xc/CBsPnsTziGgY6uuhb7vmGNy59Sf9fz55EY4Rs5fi6Kq5MDeStDlRcW/R4+c5habp0qIx5owbqrD8lyRNCxM0v3sK/r0n4N31W0Xua96/M6rN+BHa1lZIexmJZ8u2INLtuNQ++k4OqLFkKvSdHJD1PgURezwQMn8dsjMzS7AUipOWloYdO3bAx9sbaWlpcHBwwNgffoClpWWR6eLj47F1yxYEBARAJBKhYcOGGDN2LAwNDeXuf/LECXh4eGDX7t0lUQyFCQgMxK49bngVFgYDAwN07dwZfXr1LPLcuep5De4HDyImp43t37cP2rZpLbXP9RteOHz0KMIjIqGjo4P69epi9IjhKF++fEkXSSHS0tKwc8d2ePt4Iz0tDQ4OtTFm7FhYWloVmS4+Ph7btm5BQIA/RCIRGjRsiDFjxsLQUP545uTJEzjmcRQ7d+0piWIozK27D7Bl3xG8CI+EoYEeenZog4HdO35SGxvy/CXGTJuHA+uXwszY6LM/FyK/+0HYcPBfPI+IRgV9PfRp1wxDPqPPGT57GTxW/ZnX5+TyvH0P24+dw6uoWFQw0EMnV2eM6NEOaqrCv+wICAzErt17EJbblnTpjN69ehXTlnhi/4GDiImJgYmJMfr17Yu2bdpI7XP9xg0cPnIUEREROW1JPYwaOaJMtCX+gXexw80dL8PCUd7AAN07d0Dfnt2KGcPewN6DRxCdM14b0Kcn2rf+Tmqf/iPG4M3bdzJpPfbuhL6+nsLLoUgBgYHYvXt3Xj3p0qVLsfXE09MT+w8cyKknJugrp56EhIRg2/btePr0KbS1tdG2TRsMHjwYampqJV2kr3bz3iNs3n8Mz8OjYKivh94dvsOgru0+sT0Jw+gZC3F4zUKYGVcsdL9/dh3AwdOX4Ht4myKzXmI0a9SFfvfBUDO3gvh9ApKunUPSxRNy99Vp8h0qDC/8HsDbXWuQ4ucJANBybAK9dj2hZmoBcWoK0oPvI+GYG8RJiSVRDIVLS0vDnh1b4OtzHelpaajpUAejx46HhWWlItMlxL/Djq0bcSfgNkQiEZwaOmPkmPFSY5OL505j/ZoVMmk7demOseMnKbwsilBS/U6u1NRU/DjhJwweNBDt2rYtqWKUCF7/EVF+wr+SKCNOnjwJf39/uLu7w8TEBLdv38b06dNx+fLlEvubS5cuRUREhKACGI+ePMX0hcvQyqUJRg/qi/tBT7Bp936IRGIM6d1NbhpPn1tYsGo9+nTpgEaOdXDjpj8WrdkEdTVVtG7WFABw+N+zWLvdDS2bOuPH4YOQ8P49drgfwbMXr/DX9F++ZRE/2+PgJ5g9fyFaNHPBiCGD8PBxELbu3A2RSIQBfXvLTXPD2weLl69Cz25d0MDRET5+N7Fs1RqoqarhuxbNAABnzl/EqrXr0a93TzjVr4fgkBBs2rYDaelpGNRPOHVCHtYTWQ+evsCvSzeibRNHjOvbBXefPMda9+MQicQY3r1dkWlDw6Pwy9KNEInEUtsrGuhh+/zfZfY/cuEaLvoGolvLJgotQ0nRtDSF8+ntUDMo/oaGac92qLdnOV6s3YO48zdg2r0N6u1YAvGHDEQfOgMA0KpqiUbndiLe7y4CB06Grr0N7Bb8AjVDAzyc8GdJF0chli5ZguDgYIwaPRra2tpw37cP06dNw8ZNm1CuXDm5aUQiEebMno3U1FT8NHEisrKysGvnTsyaNQtr166FaoGbi9c8PbF169ZPDsKXlqDgYMyZtwAtmrli2JAhePT4Mbbv3AWxSIT+hbSFN7y9sWT5CvTo1hUNnJzg4+eH5av+gZqaGlq2kARFPa9dx6Kly9CpYweMGDYU7+ITsMdtL6bOnIX1q/+Burr6tyzmF1m6dDGeBAdj5ChJPdnvvg8zpk/Dho2bi6wnf875A6mpqZjw00SIskTYtWsH/pg1C2vWrpOtJ9c8sW3rFsHXk4dPnmHq3yvR2qURvh/YG/eDQ7DR7SBEYhGG9upaZNrnryIwZeFKiESiL/pciB48fYFflm7K63PuPQnFWvcTEInEGFFMn/MsPAqT5fQ5AHDzfhCmrtqGto0d8dOAbgiNiMGGAyeRkJSMKSP7lVRxFCIoOBh/zp2H5s2aYfjQIXj46DG279gJkUiE/v3k593LyxtLly1Hj+7d4OTkBF9fP6xYuSqnLWkBAPC8dg2LlyxFp44dMWL4MMTHx2PPHjdMmzET69asFnRb8jg4BLMWLEJL16YYMWQgHj4OwpZdbhCJRBjYt5fcNNe9ffH3itXo1bUzGjrVg7ffLSz9Zx3U1NTQqrkrACAx8T3evH2HH0YOg0PNGlLpdXV1SrxcXyMoOBhz585F82bNMGzoUDx69Ag7duyAWCRCv0LriReWLluG7t27S/ocX1+sXLlSqp5ER0dj5qxZqGFvjxkzZiA8PBy7d+9GUlLSJ09uKy0PQ0Lx+6I1aNO0Icb074H7wU+xfu8RiEQiDOvZqci0oWGR+H3R6mLbzzuPQ3DoTMldVyuaelVbGE2YiVR/bySe3A+NavYw6DkUSsrKeH/+mMz+aQ8CELNkusx2wyHjoaylhbSHgQAA7QYuqPj9b0i6fh6JJ/ZBRa889LsNhPEv8xDz9xQgS/g3Ylcu/QshwUEYNmostLW1cdB9D/6Y/hvWbtwB3SLGJvPnTEdqairG/TQZWVkiuO3airmzpmLl2s15Y5MXz5/BwtIKP/86TSq9QXn5E3VKW0n1O7mSkpIwb/4CxMbGfoviKBSv//5blJS4OBAVjwEMBXn//j2MjIxQp04dAMDLly9L/G9mZ2eX+N/4XDv2H0H1qlXwxy/jAQCNHOsiK0uEvUdOoG+XDtDQkL1I27r3IFo2bYSJoyUzwZ3r18X7pBRscz+M1s2aQiQSY/ehY2hQtzbmT52cl87WuipGTJqG23cfoGG92t+kfF9iz779qGZdFdN/k9xAb+jkiKysLOw/dAQ9u3WBhoaGTJode/aiuWtT/DhmdE6a+khKTsKuve55AYz9h46gmUtTjBk5HADgWK8uIiKjcOLfM4IPYLCeyNpy5DTsqlhi3oQRAIAm9WohSyTCrhPn0b9jS2jKucGRmZWFQ+c8sfnIaajLmZ2nrqaG2tWrSm0Leh6Gi76BGD+gG+rZVyuRsiiMkhIsh/ZAjSXTgE98qMhuwa+IPnIOQb8vAgC8uegFtfL6sJs7KW8AazNlDLKSUuDfazyyMzMRd+46RGnpcFg9G88Wb0J6eHRJlUghgoKCcPPmTcybPx8NGzYEADjUqoWRI0fi9KlTGDBwoNx0N27cQGhoKDZt2oRKlSsDAGysrfHjjz/ixvXr+K6V5AmvhIQEuO3Zg7NnzxZ6k1tI3Pa5w8baGlN//w0A0LCBE7KyRDhw6DB6dO8mt43dtdsNzVxdMG7sGABAAydHJCUlYffevXkBjAOHDsO5QQNM+mlCXjorCwtM+u133Lx1G81cXb5B6b5cUNBj3Lp5E/PmLUCD3Hri4IBRI0fg9OlTGDCgsHpyHaGhodi4aTMqVZLUE2sba4z/cRxu3LiO777LV0/cduNcGaknOw56oHrVypg9aRwAoLFjHckNkKP/ol/n9nL7nczMLBw5cxHbDxyV28YW97mQ5fY58ydIxhBN69XM6XMuYEARfc7Bc9ew+chpaKjJv4T495ofTCuUx/yfhkNFWRmN6tTAu8T3cD9zFb8M7Q1VVeE+Dem2d5+kLZkiCfw3aNAAIlEWDh48hB7du8ttS3bu3o1mrq74YexYSRonJyQlJWGP2968G0kHDh5Cw4YN8PPEn/LSWVpYYPKvv+HmrVto5ur6DUr3ZXa7H0A166qY8Ztk5rKzU31kiURwP+yBXt06y/1Otru5o4VLE4wfMxIA0NCxPpKSkrFr7/68AMazFy8AAK5NGsHczPQblUYx9u7dCxtra0yZMgWApJ5kiUQ4cPAguhdST3YVqCdOTk5ITkqCm5tbXj05fOQItLS0MGfOHKipqcG5YUNoaGhg48aN6N+/P4yNjb9dIT/TtkMnYVu1Ev78+XsAQJP6DsgSibD72Bn069QGmoW0r4fPXcbWgyeKbT9T09KxcMNOGBka4PXb+BIpg6Lpd+mPjPAXeLtrDQAg/fEdKKmoQq9DbyRdOY3szAyp/cXJ75GR/F5qm+53naBmZoHYpTMhzvlMr0NvpD0IQLz75rz9MmMjYTp9CbTqNEBaoG8Jl+zrBAc9wu2bvpg9bxGcGjYCANR0qIMfRg7C2dMn0HfAELnpvG944nnoM6zdtANWlaoAAKxtbPDzj6PhfcMTLb6TPH3w4nkoqlW3g519zW9Qmq9XUv0OAPj6+WHjps1IS0v7NoVRFF7/EZU4sViMdevW4fDhw0hKSkLDhg0xZ84cWFnJf0r/5MmTeeOe/C5fvpy3AsTZs2exdu1aREREwNraGtOmTUOTJoqdMMswVz7Xrl1Dr169ULduXTRp0gTTp09HYqLkUUx/f3/069cPderUQbdu3XDmzBnY2dkhIiIC06dPx9q1axEVFQU7Ozt4eHhg2LBhAIDWrVvDw8Pji/Jz584dDBs2DE5OTmjUqBFmzJiB+HjJoG369Ok4duwYbt26BTs7O8V8AV8pIzMTdx8GoVnjhlLbWzZ1RmpaGu4HPZFJEx0bh/CoaDRv3EAmTWR0LMKjohGfmIj3Sclo2rC+1D7Wla2gr1cOvv53FF8YBcnIzMT9Bw/h0qSx1PbmLk2RmpaGh4+DZNLExMYiIjIKLo2l0zRzaYqo6GhEREYBAP6a+wfGjhoutY+aqioyMqQHxELDeiIrIzMTgY+fomXDelLbWzeqj5S0dNwLDpWbzvvOI2zzOIsR3dvjp4Hdi/072dnZWLbzIKpammJgp1bF7l/a9OrYwWH9PETsPY67I6YWu79WZQvo2lVFzImLUtujPc5Dp3oVaFeT3Iw1auuK12evST0uHHP0HJRUVGDUTrg3knIFBARAU1MTjo6Oedv0DQxQu3Zt3Pb3LzRdYEAALC0t84IXAFCpcmVYWVnh9u3bedsOHjiAgIAAzPrjDzRq1KhkCqEgGZmZuH//gUwb28w1t419LJNG0sZGwqXAgKqZiwuioqIRGRkFsViM+vXroWOH9lL7WFlJBmhR0cK/yAnMqSf189cTfQM41K4N/3z/3zLpAnPqSaV89aSSpJ7kT3fo4AEEBgRg5qw/4FwG6smdh8Fo3shJavt3TRoiNS0d94NC5KbzDbyHnYeOYWjvbvhxaP/P/lyoMjIzEfD4GVo2rCu1vdUn9jkju7fDTwN7yN3nQ2YWNDXUoaL88RJDv5wOMrOykJKerrAyKFpGZiYe3L+Ppk2l2wVXV1ekpqXh0SP5bUlkZKScNC6IiopCZGQkxGIxHOvXR6cOHaT2yb1AjBZwW5KRmYl7Dx7BtbGz1PbmTZsgNS0NDx4Hy6SJiX0tGcM2kW4Tmrs0QWR0DCKiJGPY0Ocvoa2lBTNTk5IrQAmQ9Dn30bRpU6ntrq6uSEtLw6NHj2TSxObUkyZy0uTWE0DStzs3bCi1XJSrqyvEYjECAgNLoDSKkZGZicBHT9DCWXr8/V1jJ0n7GvxUbjqfOw+w/fC/GN6zEyYMkf9Eeq51bodhaKCHzi2FPXEgj6oqNG0dkHb3ptTm1EBfKGtpQ6NajUISfqRcTh8G3QYh+fp5ZLzM+Q6VlJAedB/JXhek9s2MkdQh1YrCDwbeCbgNTU1N1HP8eE2nr2+AWrXrIuD2zcLTBfrDwtIqL3gBAFaVqsDSqlJeuuzsbLx88RxVbQQ+QStHSfU7AJCcnIwFfy1Endq1sXDBgpIrRAng9R9RyduwYQPc3d2xYMECHDhwAGKxGN9//32h9xKfPHkCZ2dneHl5Sf2YmZkBAPz8/DBlyhQMGDAAx44dQ5MmTTB27FiEhsq/pvhSDGDkePfuHX766Sf07t0bZ86cwbp163D79m0sXboUr169wqhRo2Bra4tjx45h7NixWJCvI5g1axZGjRoFU1NTeHl5oW3btli7di0A4PDhw+jUqehHZ+W5f/8+hg4diurVq+PQoUNYvXo17t27h9GjR0MkEmHWrFno2LEj6tevDy8vL4V9D18jKuY1MrOyYGUuPXiyNJNcnITl3HjP71WEpJO1NDeT2m6RMxsrPDIaujraUFFRQczrN1L7JCUnIzk5BVGxrxVWBkWLjolBZlYWLCzMpbab55Q3PKf8+YWFRwAALAukschpHCJyBiaVraxgamKC7OxsvE9KwpnzF3Hxiie6du6o8HIoEuuJrMjXb5GZlYVKZtKz6yxNJOuov4qW/9hvTZvKOL5mPkb17ABVleKb84u+AXj47CV+HdZH6uaSUKWFRcPTvi2CpiyGKLX4G1+69jYAgJSnL6W2p4a+knxuWxXKmhrQrmKJlKcvpPbJeBOPzMQk6NpKP7EiROHh4TA1NYVKgfe6mJmbIzIiotB0YeHhsLCwkNlubm6e164AQKfOnbFt+3a4uAj/RkFMdG4bK10uczNJ+xkhp40NDw8HgMLb5cgIKCsr44fvR6NpgcCIj68fAKBy5aLXaRaCwuqJuZk5IiMLryfhYeEwl1NPzMzNEZGvfnXs1Blbt+2Ai4vwL/qiYiX9TqUC/Y5Fbr8TJf8mco1qVXFk00oM79NN5nv8lM+FqrA+xyqvz5HfX9a0qYwTa+ZhVM8OUCmkz+nbrjnCY+LgduoSklJS8eDpCxw46wmXerWgL+ClgWKiowtpS3LHXrLnTHhYbltSII35x/ZHWVkZY8d8LzMDzcdXMku6cr5AodBEx8QiMytLdjyacx7l7zdyvcodw5oXaF9zx2sRkjHesxcvUa6cLuYtWoZu/Yeic9/BWLBkBd6+E/bs+pjoaGQVWU/kjOvDwgBInrrJzyyvnkTgw4cPeP36tcxxDfT1oa2tLdX2Ck1UbFxO+yodjLI0lbQvr6Lkj2Fr2FSBx/rFGNG7C1SUC28/b917hLPXffHH+JFQVhb+O/4AQLWiCZTU1JAZK31Nkxkn6WtUTczlJZOi33UAkJ2NhBPuHzdmZyPh6C6k3ZOehKBdTxJkzIwO+8qcl7yI8DCYmJrLjmHNLBAZGV54urBXMLeQfc+bmbkFIiMk6WKio5CWlopnIU8wfsww9O7aFuPHDMPVyxdk0glBSfU7AKChoYHNmzbi999+hZ7A3ylUEK//iEpWRkYGduzYgZ9//hktW7aEvb09Vq1ahZiYGFy4IL+9DAkJgZ2dHYyMjKR+ctvyrVu3ok2bNhg2bBhsbGwwbdo01KpVC7sV/B5NLiGVIzY2FhkZGTA3N4eFhQUsLCywadMmiEQiHDx4EBUrVsTcuXOhqqoKGxsbxMbGYunSpQCAcuXKQVtbcvPUyEhy8aevrw8AMDQ0hKam5mfnZ8eOHbCzs8Ps2bMBADY2Nli5ciW6d+8OLy8vtGjRApqamlBTU8v7m6UtJTUVAKCjrSW1XUtL8ntqquzji4Wl0dbSzPk8DZoaGmjl2hjHzlxA1UqWaN64AeIT32PNtj1QUVFBevoHhZdFUVJScsunLbVdO/c7SUstNI12gTQfv0fpNEHBTzBpimTNVNvq1dCnZ/Ez8UsT64ms5Jwy62hJtxXaWpLHhlPS5A/ejA0NPuvv7D11CXXtrOFU0/bzM1kKMuMTkRn/6S8kVNXXBQBkvU+W2p6VlCL5XE8Xavrl5O6Tu5+qnu6XZvebSU1JkWkfAMk5VLB9KJjOwlz2orlgusIeHRWilFTJ/23B70NbW357CXx+G5srKjoaW7fvgI21NZwbNJC7j5CkpH5hPUlNgbnF/1c9SU6RtLG5fW+u/H2IPEYVil4zu7jPhaok+5yGtWwxrGsbrNl3HGv2HQcA2FWxxF8TR3xxfr+F3HGGbFsi+V1uW5LT/hQ6xiuiLdm2bTtsrK3RsKFw25KPbWXB80byu7zzpvDxmvQYL/T5C7x5+w6d27dFr+5dEBYegV37DuKXGbOxefVyaH3BtdO38GX1pJA0+epJSor8vgwovs0ubbntSaHtayHL1xhXKP4F9skpqfh7426M6d9dJgAtZMpakmCtOF267Nk5vytryv4/S6Uvpw+dxi2RdOkksuVcK+anWtEEBr2HIyPsOdIfCvdJnVypRYxN0oodm8gGMLS0tPPSvXj+DAAQGxONkd//CFVVVVy9fAGrVyxGZmYG2nXooqBSKEZJ9jtqamqwspT9vsoCXv8Rlazg4GCkpKRITa7R09NDzZo1cfv2bXTpIttWPnnyBK1ayV/BQywWIzAwENOnS7/HqVGjRoUGRL4UAxg5atSogS5dumDcuHEwMjKCi4sLWrZsibZt2+LZs2eoWbOm1IsrnZ2dizja1wsJCZGZ/Wpvb49y5crhyZMnaFHgBU1CIC7mnRxKcmZ8i8VFp8mdafPbuNFQU1XD0vVbsWTdFmioq2Nw725ITUuXu66qUBT3nhJlOS8rys6WfSlmfgVfcGRsbIzli/5CTGwsdrm5Y/KU6djwz0poasqumSkErCeyvqSefK77Ic8R/CIcy34b+9XHEip5dSe/bLEYKHYfYb1bSCwWy9QPsbjwNkJJqfDZiUWde8pFpBOyYtsGOeUSF9PGyjvfwsLDMXP2HKioqOCPmdOhLLAnmOTVk6LqcpH1pIh0ZWX2a0HFtbFKZbRcX6rYfvgr2oPF2w/gpKcfRvXsAGcHW0TFvcPWI2fw8+L12DDrZ8H2xdlFtKuA/O+kuP5CXr0KDw/HzD9mQ1lFBbNmzRRcW5JfceNRee3rp34nv078ESrKKrC3lSz1UqdWTVSpVAmTps3CxSue6NapQ1GHKTXF1RP530kxdUtZ+RPGgcJto4prT74m7//sOgDjiuUxoHPbLz5GqSiuzMWcW7oubaCkrIykK6eL3E/VxALGk+YAYjHebFkGCOz9mIocwxY5pslpV2o61MGsPxeidt160NSU3NCv79QQiQkJ2O+2C23bd/6q/k3RvlW/8//u//H6j+hTtG7dusjPL1++LHd7TEwMAOQt/5TL2Ng477P8EhMTERsbC39/f7i7uyM+Ph516tTBlClTULVqVbx//x6pqakwNTX9pON9DQYw8lmxYgUmTJiA69evw8fHB1OmTIGTkxM0NDRkOlt1OS83VKTCBrLZ2dlSa6MKiW7ubIECM/dyZ1vpFpiNBQC6OvLT5M7qyp1doK2liekTx+Ln74chNu4NTIwqQltLE6cuXs1bAkKIdPJmUEjPwMmboaYjOwNFR0cya6fgC7dSC0lTsYIhKlYwRN3aDjAzNcVv02fhhrcP2rb+TjGFUDDWE1m5s2ALrg+eOwtWR/vrZyJevnkHejracKnn8NXHEqqsxCQAgGo56WVKcmfVZCUm5828KbhP7n65xxAKd3d3uO/bJ7XN1dUVCQkJMvumpabmtR/y6Ghry32RX2pqKrSLSCdkue1hwXLlzWqTUy4d7c9rY+/df4D5C/+GlpYmlixamPdov5Dsd98Hd3fpeuLi6oqEBNnlWFLTiqknOkXUE+0yWk9yn8gptN8pejbs/xvd3JmaBZ5MzO1z5PXDn+L1uwQcu+KDkd3b4cd+ktlbTgBq2VRG/ykLcdLTF/3aC28CDvCxrSi8XZCt+9p5Y5NCxngFzpd79+9jwV8LoaWlhaWLFwmyLckvd2yVJjP2KmoMW9h3Ij1eq2Uv+/4+h5r20NHRRuiLV1+Z85KTWw8Kli+1qD6nmDQ62tp5M67LYh+tW0j7mlLEuP5TeAXcw0Xv29i55A+Is7MhFonyAuxZIhGUlZQEGwDMfWpCWVO67LlPXoiLeapC27EJ0h/fy3txtzwatrVQ8YepyP6QjtiVc5D1Rv5SXaXpoPseHHTfI7WtqWtzJBYyNtHWKXwWvLaODtLkfG+SJzok54eBQXk0bCT7wlgn50a4dzcACfHxKG8onCcnv0W/81/w/3j995/0Hwy+lZbcNqfgPW0NDY28d0Dn9/Sp5D1M2dnZWLRoEdLT07Fx40YMGjQI//77L7Kysgo93ocPil0FhQGMHPfu3cPp06cxc+ZMWFtbY8SIEXlvWh8wYACuXr2KjIyMvP+Uhw8fFnm8r43u29nZISAgQGpbcHAwkpOTYWNjo5C/oWjmpsZQUVZGZLR0lC0i5/fKlrJraltZSC7eIqNjYGtdJW97ZM6a/7lpfG4HopyuDmrXsEPVSpLHIeMTEhH39p1UOqExNzOFsrKyzAtfo3LW264k59HO3DVyI6OjUc3G+mOanGNUsrJEWloafG/egp2tLSzyvReies7+b9+9U2xBFIj1RJaliRFUlJURERMntT3396oWX//YvFfgQ7RoUAeqqmVnnfbPlRwiWddU26Yy3t8NytuuYyNZYzw5OBSilFSkRcRA20Z63XF1I0Oo6ekiuZCX15aWjh07yjzx5+vri4CAAIjFYqmL96ioqCKX9bG0tJT7Iq2oqCjY2cneTCoLzM3Mim5j5XwfljntRVRUNKrl9KfAxzY2/3d41fMalq/6B1aWlvhr3lxUrFhB4WVQhA4dO8HZWfqlub6+PggMCJSpJ9FR0UXWEwtLSzyXU0+io6Jha1c2lp8ryCK334mRvsETEZPbhxS/Hvn/E0uTisX0OV8W8I958w7Z2dmoY2cttd3a0gz6ujp4HiHcF1bntSVRBdsSyRr28s6Z3OU5oqKipNqS6JxjWFXK35Z4YsXKVbC0tMRf8+ehYsWKCi+DouWOYSMLtq8547VKVrJjWKuc5eeiomPyxqSS3yXHqGxlieSUFNzw8YO9bXVUzfc+IbFYjKzMLBgIeL12s5x6Eh0l/W6D3Hoiv8+RfE/RBepJXppKlaClpYUKFSrkbcuVkJCAtLQ0uccVCgsT45z2RPrdObm/V7H8skDdVd8AZGRmYvCvf8p81mzAD+jUoilm/zTqi45d0jLjYpAtEkHVSHr8rmos+T0zpvB3mqgYGEK9kjXeXj5V6D7aDVxRYcREZMZEIm7dXxAlCPO6r33HLmjoLB1QuOnrhTsB/nLGJpGwtCr8/WIWllZ4Hir7QvjoqChUt7MHADx6eB+xMdFo1aa91D4ZHzKgrKwM3XLlvqY4ClfS/c5/xf/j9R/RpyjsCYvi5L7iICMjQ+p1Bx8+fMhbUjm/Bg0awNfXF+XLl8+7B71u3Tq0bNkSHh4e6Nu3b97x8ivseF9DmNMWSoGuri7c3d2xbNkyvHr1CiEhIThz5gyqVKmC8ePH48OHD5gxYwaePXuGa9euYdWqVUUeL3cmTe76Yp9r5MiRePLkCRYsWIDQ0FDcvHkTv//+O2rWrJm3Vpm2tjZev36d90LS0qahro46texx3e+21BMk13xvQ1dbGzVsbWTSWJqZwszECJ4+t6S2X/O9BUtzyWcAcOL8ZWzYJT279PC/Z6GsrIymDRxLoDSKoa6ujjoOteDl4yf1ndzw8YWOjjbsbGVvBlmYm8HUxAQ3vH2ktt/w8YWFuTlMTUygoqKClWvX47DHMal9/O/cBQBUrSLcl0KynsjSUFdDPftquHr7ntR3cuXWXehqa6GWTZWvOn5icgrCY16jjp3sd/v/JDU0DKnPw2HWS/rCxbRnOySHvEDaK8mL7d5c8oZxp5ZQVv/4NJtpr/YQZ2XhzVW/b5rn4lSoUAG2trZSP46OjkhLS5MKcicmJODhw4dwdCy8njs6OiI8PBxhrz7Obg179Qrh4eGoX0Q6IVNXV0dtBwd4+/hInTte3j7Q0dGBnW11mTS57egNb2+p7V7ePnmfAcCt2/5YumIlatawx4plSwQbvAAk9aS6ra3Uj6OjE9LSUhGYv54kJuDhwweo7+hU6LEcHZ0k9SQsXz0Je4Xw8DA41i88nZBpqKujbk07XPPzl6onnr7+0NXWRs3q1kWk/v+joa6G+vbVcPX2XYX2OVamkmD83QI3Al5GxSIxOQUWxsK9aV94W+Kd05bIjtfMzc1hamoCL6+CbYl3gbbkNpYtX4EaNWpgxfJlZSJ4AeSOYWvihs9Nqe/kuo8fdHS0YV9dXvtqBjMTY1z39pXafsPHL2d8awx1NTWs3bQN+w97SO3jc/M2PmRkoF5t4T4pWlw9sS20npjCy8tLart3Tj0xyaknjo6OuHXrFjIyM6WOq6ysjLp165ZQib6ehroa6tWwxbWbgdLt681A6GproWa1L3s57vf9umHH4j+kfrq3bg4A2LH4D3zfr5tC8l8isjLx4eljaNdvLLVZu34TiFNTkPFC9kZ8LvUqkvPqQ2iQ3M81HRxRYeQkfHj+BLHLZwk2eAEAhhUqopqtndRPPccGSEtLxZ2Ajy8iT0xMwOOH91HPsfB3AtVzbICI8DCEh73M2xYe9hIR4a9Qr74k3cP7d7Fm5ZK8l3oDksCoj/c12NeoJbhVLEqy3/kv+X+8/iMqSblLR71+LT3x4PXr13ljkoIMDQ2lJtBraWnB0tISsbGxMDAwyLs3/anH+1IMYOSwsbHB2rVr4efnhx49emDgwIFQUVHB1q1bYWJigt27d+P169fo2bMnFi9enBdlKoytrS1atGiByZMn4+DBg5+dn7p162Lbtm14+PAhevTogcmTJ6N+/frYuXNnXufbo0cPpKWloUuXLoiNFcZjo8P69sTjkFD8uWw1/ALuYtu+Qzhw/BSG9OkOTQ0NpKSm4tGTp0hI/PhI7Ih+vXDV2w8rN+3AzcB7WLFpO656+2H0oI/fce/O7fHoyTOs3e6GwAePsHXfIew9ehL9u3cS9NJAADCof18Eh4RgweJluOUfgF1u+3DY4zgG9u0DTU3Jd/I4+AkS8j2uNWRgP1y74Y01GzbhdkAgVq/fhGs3vDFiyCAAkgHPgD69ceb8Rexy24c79+7j6PGTWLF6LRzr1YVzA2HfZGI9kTWqZwc8evYSM1Zvh8/dR9h06F/sPXUJI7q3h6aGOpJT0/Dg6QvEv//8R1xDwyQzeRTxJIeQqJbTgUGjulCv+PFFkE8Xrod5v05wWPsnjNo1g8O6uTDv1wkhc1fn7RO6fBs0jCug4altMO7UElUnj0DN5TMQvu0Q0sOFO0M4V+3atVGnTh0sW7oU586dg4+3N2bOnAkdHR106tw5b7+wV68Q+uxZ3u/NmzeHhYUFZs+ZA09PT3h6emL2nDmoUqUKmjdvXhpFUYhBA/oh+EkIFi5agtv+/tjtthdHPDwwoF9faGpqIiU1FUHBwVJt7OCBA3D9hhfWrt+A2/4BWLN+A67f8MKwoUMASGaQrFqzFtpaWhjQvx/CwsIQFByc9xP35k1pFfeTOdSujdp16mDZsiU4f+4sfHy8MWvmDOjo6KJTp3z1JOwVQkNl68mc2bPh6XkVnp5XMWf2bFSpUgXNynA9Gd63Ox4/fY7Zy9fBN/Aetrofwf4TZzC0d9ecficND588Q3xi4Ut2/D8Z1bM9Hj57hRmrd8D77iNsPHQKbqcuY2T3dl/c55TXK4cBHVvC7dQlrD9wEv6PQvDvNT9MWrwBZhUN0aNV0xIs0dcbOGAAnjx5goWLFuH2bX/s3uOGI0c9MKBfv0LbkkEDB+L6jRtYt349/P39sXbdely/cQPDhg4FIGlL/lm9BtraWhjYv3+Za0uG9OuD4JCnmL9kBW76B2Ln3v045HECg/r2zjeGDZEeww7oC08vH6zesAW3Au7gnw2b4enlg5FDBgLIHcP2xOVrN7Bh204E3L2HI8f/xdJ/1qFpo4aoX7d2aRX3kwzIqSd/L1qE27dvY8+ePTh69Cj6f1Y9WYfrN25gaE49AYC+ffogITERc2bPxs2bN+Hh4YEtW7agY8eOMDY2Lo2ifrIRvTvj0bMXmLVyE3zvPMDmA8ex7+R5DO/V6WP7GhKK+M9YpsXMuCJq2FSR+qloqA8AqGFTBWYCDogCQOLZw1CvUh0Vx/wOzVr1od91IMq17Y7Ec0eRnZkBJU0tqFe1hbKu9BNHahaVkZ2ZIX9JKFU1GA4Zj+z0NLw/exRqZlZQr2qb96NiINyJFrlq1a4Lhzr1sGrZ37h47jT8fG7gz5m/Q0dHFx07fQxKhYe9lHriwrV5S5hbWGL+7Om47nkZ1z0vY/7s6ahcxRquzVsCkDzxUb68IRbOmwWva1dx+6Yv/po7E2EvX2LE6HHfuqifpCT6nf93/9XrPyJFsbe3h66uLm7evJm37f3793j8+DEaNmwos//BgwfRqFGjvOXtACA5ORkvX75EtWrVoKSklDcJI7+bN2+iQYPCA9NfQim7uLeGkVw3b97EsGHDcPny5bxHg8uq2KCA4nf6DNf9bmPH/iMIj4xGxQrl0bNjOwzoIblZcufBY0ya/RdmTPwBHVt/XAf5xPnLOHD8FOLevIOZiTGG9O6G9t81kzrupes+2HP4GKJj42BiXBE9O7RF7y7SkXZFMKnhhLCn8me9fCkvHz/scd+PiIhIVKhQAd06d0TfXj0ASNZX/33mbPw+eSLat/n4Ip5TZ8/jsMdxxL15AzNTEwzo2xttW318r0V2djZOnT2Pk6fOIComBvr6emjVojmGDRqg8He0VKpeg/WkAJMaTkgMvKTQY169fRdbD5/Gq+jXMDLUR9+2zTG4SxsAQMDjEPy4YDXmjBuCLi1k13c9dc0X8zftxfE182FuJH0Bc9E3ALPW7MCh5bNRpQSDGPqObXBarWSWIjJs7owml93g23oo3l2/JbXt3ujpiNjz8WmkSmP6w/qXUdC0MkPq83CELt2CyH0npI5X3sUJNZZMhV7dGsh4E4/IfScQMncNsnPWcFSUzplPEPr8uUKPCQBJSUnYunUr/Hx9IRaLUbNmTYz94Qep/mja1KmIjY3Frt2787bFxcVh86ZNuHPnDlRUVODo6IixP/wAw0LWBF65YgXu378vdYyvZWNtjZfPQhR2PADw9vGF2z53REREoEKFCujapTP69OoJQNLGTp0xE79NnoR2bdvkpTl99iyOeBxDXNwbmJmaon+/PmjTqhUA4O69e5g2849C/96QQQMxdPAgheW/SjVbPAt9obDj5UpKSsK2rVvg6+eLbLEYNWvWwpixY2Fp+XGJgenTpiA2NhY7d31cpzouLg6bN2/E3bx64oQxY8fC0FD+zZGVK5fjwf37Usf4WtVsqiLu0c3id/wM1/z8sePgMYTl9Du9OrTBwO4dAQCBD4Pw85xFmPnTGHRq1Uwm7ZkrN/D3uq04vGkFzIyNPvvzr2VUqxHeB15U6DGv3r6HLQX6nCFdJOOQgMchGLdgDeaMG4KuLRrLpP33mh/mb9qLE2vmSfU52dnZ2H/WEx6XvRD1+i0qGuihUR17jO/fFeX1FLt8h55jW7zIF3xTBG8fH7jt3YfIiAhUqFgBXbt0Qe9evQBI3mExbfoM/PrLZLRr+/GlwqfPnMVRDw/ExcXBzNQU/fr1Q5vWOW3J3XuYPnNmoX9v8KBBGDpksMLyX9WmGiJCil7m9nN5+d7ELvcDiIiIQsUKhujWuSP69ZTcaLz74CF+m/knpkyagA5tWuWl+ffsBRw+dgKv37yFmakJBvXpibatWuZ9LhaLcercBZw4fQ5RMbHQK6eL1i2bY/jAftDQ0FBo/i1tHeQui/c1vH18sHfvXkRERKBixYrokq+e3L9/H9OmT8evv/yCtvnqyZkzZ/LqiampKfr36yfzAs6HDx9i2/bteP78OfT09NC6VSsMHToUqqqKXfXZ2sYG7+7fUOgxPW8GYtuhEwiLioWRoQF6d/gOg7pKxt+Bj4IxYe5y/DF+JDp/5yKT9vRVb/y1YSc81i8uMjCx7dAJbD/8L3wPb1No3gHAsE4zhI3rpdBjatVrBP0u/aFmYgFRwlskXTuHpEsnAUjeYWHy6wK83b0WKb5X89KUHzgW2vUaIXLaaJnjadg5wOSX+YX+vcRTB5F46vMnTham0iYPBIVGKux4uZKTkrBj6wbc9PNGtjgb9jVrYfTY8bCw/LiE1Kxpv+B1bAy27tqfty0u7jW2b16Hu3cCoKqiinqODTBq7HipsUl0VCTcdm3Fo4cPkJaWiurV7TB4+GjUrKWYwGgNGwvB9zsFxcTGYsTIUTLHUJSqNtV4/ZdP58wnCjvWf0nK1sKvu0g+nTF/fXHaVatW4cCBA/j7779hYWGBZcuWISIiAqdOnYKysjLevXuHcuXKQVNTE9HR0ejWrRsaNWqESZMmIT09HStXrszbX0NDA15eXhg7diymTJmC5s2b4+jRo9i3bx88PDzyXoGgCAxgfCEGMP5/lUQAo6wriQBGWVcSAYyyriQDGGVVSQUwyrKSCGCUdSUVwCjLSiKAUZaVRACjrCuJAEZZVxIBjLKuJAIYZV1JBDDKupIIYJR1JRXAKMtKIoBR1pVkAKMsYgDjyzCA8fm+JoAhEomwcuVKeHh4ID09HQ0bNsScOXNgaWmJiIgItG7dGosWLUKvnGDqo0ePsCJnYmN2djZcXFwwY8aMvOWoAOD48ePYsGEDYmJiUK1aNUyZMiXv9QeKwpd4fwPz58/HsWPHitxn/fr1aNpU2I/WExERERERERERESmCkjLfbvAtqaioYMqUKZgyZYrMZ5aWlnjyRDoQV6tWLezYsaPIY/bo0QM9evRQZDZlMIDxhRo1aiTzn1qYn376CcOHDy9yH6GvbUpERERERERERERE9C0xgPENGBoaFrq+OBERERERERERERERyeJzOkREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERILDd2AQERERERERERER0belpFTaOaAygE9gEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeColnYGiIiIiIiIiIiIiOg/Rplz66l4rCVERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOKqlnQEiIiIiIiIiIiIi+o9RUirtHFAZwCcwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHBUSzsDRERERERERERERPTfoqTMufVUPNYSIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhzV0s4AEREREREREREREf3HKHFuPRWPtYSIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgERyk7Ozu7tDNBRERERERERERERP8dae6LSjsLZY7WoBmlnYVvTrW0M0ClL9X7aGlnQVC0XXrjfeDF0s6GoOg5tkXK5lmlnQ1B0flhIdJPbyrtbAiKZudxCH3+vLSzISg21tY4rWZX2tkQlM6ZT/DyWUhpZ0NQqlSzxdk7maWdDUHpWF8NaW5/lXY2BENr6B9IXj+1tLMhKLoTluLCvYzSzoagtKurjtTtc0o7G4KiPXo+noeGlnY2BMXaxgap1w6UdjYERbvFADwLfVHa2RCUajZV8c9JznXNb3I3JV7rFGBjbY0Xoc9KOxuCUdWmWmlngej/FpeQIiIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHD4Em8iIiIiIiIiIiIi+qaUlDi3norHWkJERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCo1raGSAiIiIiIiIiIiKi/xhlpdLOAZUBfAKDiIiIiIiIiIiIiIgEhwEMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBEe1tDNARERERERERERERP8xSpxbT8VjLSEiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBUS3tDBARERERERERERHRf4ySUmnngMoAPoFBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgqNa2hkgIiIiIiIiIiIiov8YZc6tp+KxlhARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgqJZ2Buj/j+/Dp1jncQHPo17DUE8X/Vs1xtD2rlBSUpK7f0ZmFtzOe+GUTyBi3iXCpLw+Ojapi1GdWkBN9WMVfRH9Gv8cPoeA4BdQUVGGk21V/Nq/EyyNDb9V0b6Y3/0gbDj4L55HRKOCvh76tGuGIZ1bF/qd5PfkRTiGz14Gj1V/wtyogtRnnrfvYfuxc3gVFYsKBnro5OqMET3aSX1vQuX7MgbrvR/h+dv3MNTWQL96NhjqZFvodxIWn4weO8/JbLepoIfDw9t98XGFxOfJK6w7443QmLcwLKeNAS51MaylU6F5/5CZhc0X/HAmMBjxyWmwNTfCuPaN4WJfRWqfpjPWI0sslkqrpa4Gv8U/lWRxFCYtLQ07duyAj7c30tLS4ODggLE//ABLS8si08XHx2Prli0ICAiASCRCw4YNMWbsWBgaym8zTp44AQ8PD+zavbskiqFwmhYmaH73FPx7T8C767eK3Ne8f2dUm/EjtK2tkPYyEs+WbUGk23GpffSdHFBjyVToOzkg630KIvZ4IGT+OmRnZpZgKRQjIDAQu/a44VVYGAwMDNC1c2f06dWzyPP+quc1uB88iJiYWJgYG6N/3z5o26a11D7Xb3jh8NGjCI+IhI6ODurXq4vRI4ajfPnyJV0khfiQnop/3Vfi3s2L+JCeCpsaDdBj2FSYmFctMl34i8c4c3AtwkIfIjtbDKuqNdFl0C+wqlozb5/s7GxcPbULPpcPI+FtDMpXNEfzDoPRrP3Aki7WF/MJjcI6z7t4HpcAQx1N9G9gh2GNa35S/5AlFmP4rnPQVFXF9mHtpD578SYR/1wOhP+rWKgoK8Gpsgl+a+MEy/LlSqooCuP76jU2+AYh9F0SKmhroG+dqhha36bQ7yQ8IRk99lyW2W5jWA6HhrQCAIizs+Hx8CUO33+JyPcpMNTSQAtrU/zQyB66GmolWh5F+JCeihN7V+LuzUv4kJ6KajWd0Gv4J5w3zx/j1MG1CHv2COJsMSpZ10S3QZNhZf3xvPG5fBT7N8+VSdus/QD0Gz1L0UVRCN8XMVh34z6ev3kvOW/qV8PQhnaffN6M2HsZmmoq2DawldRnJx+8wJ7bwQiPT4aRrha6OlTF6CY1oKos/Pl1AYGB2L17N8Jy+pwuXbqgd69eRX4nnp6e2H/gAGJiYmBiYoK+ffuibZs2UvuEhIRg2/btePr0KbS1tdG2TRsMHjwYamrCP298Hz3DuuOX8TwqDoZ6Ouj/nTOGtm1a9PXfRR+c8r2HmPhEmJTXQ8dGdTCqg6vUdczVO0HYevoaXsa+RUU9XXRuXAejOjYrE9c6gGQMu3PHdnj7eCM9LQ0ODrUxZuxYWFpaFZkuPj4e27ZuQUCAP0QiERo0bIgxY8bC0LCC3P1PnjyBYx5HsXPXnpIohkJlfkiB7+kVeP7gAjIzUmFu3QBNu05HeWPrTz7Gi4eXcW73BHQbtxsWNo3yticnxsL31FKEP/GCWJwF08r14NxhMoytapdEURSmJK91RCIR9u3bh0sXLyIpKQnVqlXD6O+/h729fUkX64sFBAZi1+49eW1s1y6di21jr3p6Yv+BgzltrDH6yWljc6WmpuLHCT9h8KCBaNe2bUkVgz6HkvD7fip9ZaPnF6gHDx5g6tSpCA8Ph62tLWxtbbF48eLSzlapuh8ahp9X70F759oY37Mt7j59iX8On0OWSIxRnVvITbN0/ymc9rmDMV1boVZVCzx+GYktJ68g+k0C5o7qDQCIeZeAkX9vRmVTIyz6oT/SMzKx3uMixq/cgUPzJ0FTXbgD+wdPX+CXpZvQtokjxvXtgntPQrHW/QREIjFGdG9XZNpn4VGYvHQjRCKxzGc37wdh6qptaNvYET8N6IbQiBhsOHASCUnJmDKyX0kVRyHuR73FpOPeaGdnhR+b1sLdqDdYff0BROJsjHSWP5gKiUsAAGzq0xyaqip52zXVPv77S44rFPdfRmPituNoX88WEzo0xZ0XkVh16gayxGKMbu0sN83cgxdx/fFz/NzZFZWNDHDy9mNM3HYc28b3gaO1ZMD7LOYNssRi/D24A6wqGOSlVVYWfkAn19IlSxAcHIxRo0dDW1sb7vv2Yfq0adi4aRPKlZN/g1AkEmHO7NlITU3FTxMnIisrC7t27sSsWbOwdu1aqBa48L3m6YmtW7eiQgX5F4ZCo2lpCufT26FmoFfsvqY926HenuV4sXYP4s7fgGn3Nqi3YwnEHzIQfegMAECrqiUanduJeL+7CBw4Gbr2NrBb8AvUDA3wcMKfJV2crxIUHIw58xagRTNXDBsyBI8eP8b2nbsgFonQv19fuWlueHtjyfIV6NGtKxo4OcHHzw/LV/0DNTU1tGzRHADgee06Fi1dhk4dO2DEsKF4F5+APW57MXXmLKxf/Q/U1dW/ZTG/yJ61U/Hq6X10HfQrNLV1cP7IRqxfMArTlx2Htq6+3DRxMWFYN28ELKvWxMAf5gNKSrh6ahfW/DkMvy8+nHcT9+S+Fbh+di869vsJlWxqI+jOdRzduRAqKqpo2kb+916a7kfE4eeDV9G+ZmVMaFkXd8Je45/LgRCJszHKxaHY9Du9H+JR1Fs4VTKR2h6TmIIRu8+hcgV9LOrpivRMEdZ73sWP7pdxeGwXaKoJd6j9IPodJv/rh3bVLfBjY3vcjX6HNV6PIBKLMbKBrdw0T+LeAwA29mwKrUL64t0BT7HRNxhDHavB2aoiXiWkYJNfEELfJmF9jyaCn1Cwa/U0vHx6H92H/AJNLV2cPbIRa+aNxqwVx4o8b1bPHQkr65oY9OM8AEq48u8urJozHNOWHso7byJeBsPYvAqGjP9LKr2eQcWSLtYXuR/1Bj8fvYH29lYY71obdyPf4B/Pe8gSZ2NU4xrFpt/pF4RHMe/gZGUktd3dPwTLrtxBGztLTG5ZD/Gp6djo9RAhcQlY0cOlpIqjEEHBwZg7dy6aN2uGYUOH4tGjR9ixYwfEIhH69ZM//vby8sLSZcvQvXt3SZ/j64uVK1fm9DmS66Po6GjMnDULNeztMWPGDISHh2P37t1ISkrCxIkTv2URP9v95+H4eZ072jeohfHdW+HuszD8c/Si5PqvYzO5aZYePIvTfvcwpnML1KpigcevIrHl32uIfpuAucN7AAD8Hofit00H0a5BLfzcqy1Co15j7bFLiE9OxfSBnb9hCb/c0qWL8SQ4GCNHScaw+933Ycb0adiwcXORY9g/5/yB1NRUTPhpIkRZIuzatQN/zJqFNWvXyY5hr3li29YtZWYMe9H9d8S+uocmnX+HuqYu/C+ux8nNwzHgt1PQ0JbfxuaXnhKPa0dlx6Yf0pJwfP0gZGakwbnDJOhXrIznDy7gxMah6DZuD0wq1SmJ4ihESV7rbN2yBefPn8fIkSNhYmKCY8eOYdbMmVi7bh3Mzc2/ZTE/SVBwMP6cOw/NmzXD8KFD8PDRY2zfsRMikQj9C21jvbF02XL06N4NTk5O8PX1w4qVq6Ta2FxJSUmYN38BYmNjv0VxiEiBhHtVVQZs3rwZampqOHPmDCZMmFDa2RGETccvw76SGf4aI+lcXGrbIkskxo7TnhjUtqlMoCEhORUe125jUp/2GN5RctOoUc1qAIA1R87j5z7tYaini03HL0NXSxObfh8FLQ3JTSPziuUxeY0bHr+MgKNt0bPiStOWI6dhV8US8ycMBwA0rVcTWSIRdp24gAEdW0JTzk2wzKwsHDx3DZuPnIZGITc//r3mB9MK5TH/p+FQUVZGozo18C7xPdzPXMUvQ3tDNd+NBaHZ5PsY9sYG+Kuj5Ma8S1VTST25FYyB9atL3QjJ9SQuASa6WnCuZKzQ4wrFhvO+sLcwxt+DOwIAXGpUQaZIjO2XbmNwM0doqkvXg8h3iTgTGIwZvb5Df5e6AADnapVw90UUDnrfzwtgPImMg6qyMtrWrQ71MjJbLb+goCDcvHkT8+bPR8OGDQEADrVqYeTIkTh96hQGDJQ/2/vGjRsIDQ3Fpk2bUKlyZQCAjbU1fvzxR9y4fh3ftZLMBE1ISIDbnj04e/ZsoRcIgqKkBMuhPVBjyTTgE+8B2i34FdFHziHo90UAgDcXvaBWXh92cyflBTBspoxBVlIK/HuNR3ZmJuLOXYcoLR0Oq2fj2eJNSA+PLqkSfTW3fe6wsbbG1N9/AwA0bOCErCwRDhw6jB7du0FDQ0Mmza7dbmjm6oJxY8cAABo4OSIpKQm79+7NC2AcOHQYzg0aYNJPH/t3KwsLTPrtd9y8dRvNXIV9k+1FyF08CvDE2GkbUbO+5AaSjb0T5k9sD6+LB9Cu5w9y010/txdqGpoYO20DNDS1AQDVazlj/sT2uHHOHX1GzcLb15HwPL0HvUfOhGu7AQAAW4dGiH8bg+D73oIMYGy8fg/2puWxsIcrAMDFxgJZ4mxs936IQc72RQYansS+w3bvh6ioqyXz2abr96CroY7Ng9tAK+cYFga6mHzoKh5Hv4VjgYCHkGy6GQw7I30saO8EAGhaxQRZYjF23n6KgfVspCYL5Ap5kwgTXU04F7ghnUucnY3dAc/Qy6EyJrpInjxoVAkw0FTHjHP+CHqdgJomwn2C6UXIXTwM8MS4GRtQK/e8qeGIuRM64MaFg2jfa6zcdNfO7IO6hibGTV+fd97YOjhj7oQOuHbWPe/pisiXT1DZxgFVbet+mwJ9pU1ej2BvYoC/ujQGALhYm0nGVX6PMcipetHnzet47PALQkUdTantIrEYW3weoXEVEyzr/rEdrWFSHn13noffyxg0rmJaMgVSgL1798LG2hpTpkwBADRo0ABZIhEOHDyI7t27F9Ln7EYzV1f8MFZSf5ycnJCclAQ3N7e8m2uHjxyBlpYW5syZAzU1NTg3bAgNDQ1s3LgR/fv3h7Fx4ePf0rbp5FXYW5nir9GSiWcuDtWRJRJhx9kbGNS6sfzrvxsBmNSrDYa3l7TJjWpIZt+v8biEn3u1hWE5HZzwuQNTQ30sHN0bKsrKaFzTBm/fJ2PvJV/81rcD1AR8rQMAQUGPcevmTcybtwANcsewDg4YNXIETp8+hQEDChvDXkdoaCg2btqMSpUkY1hrG2uM/3Ecbty4ju++yzeGdduNc2VlDAsg5uUdvHp8FZ1Gb0Fle8l4y6xqA+xd1AYPfffDqfW4Yo9x/dh8KKvItj3Bt48iKT4SPca7w6yqIwDAytYF6Snx8Dm5CD1/2q/YwihISV7rxMXF4fTp0xg3bhw6d+kCAHB0dMT3Y8bg8OHDmDRp0rcp5Gdw27tPMq6f8jsASRsrEmXh4MFD6FFIG7uzQBvbwMkJSUlJ2OO2VyqA4evnh42bNiMtLe3bFIaIFIrP6XyFxMRE1KhRA5UqVYKBgUFpZ6fUZWRmwf/Jc3znWEtqe5sGDkhJ/4C7T1/KpElJS0efls5oUU96FlcVM8mFcWRcPLKzs3E54BG6N3PKC14AQK2qlri4aoaggxcZmZkIePwMLRtKX6i2alQfKWnpuBccKjed951H2OZxFiO7t8NPA3vI3edDZhY0NdShku9Re/1yOsjMykJKerrCyqBoGVkiBETE4btqFlLb29haIiUjC3ej3shN9+R1AmyNDRR+XCHIyMqC/7MItKptI7W9bd3qSPmQgTsvImXSGOnpwP2Xgejs9PHcUVZWgoqKMj5kZuVtC46MQxXj8mUyeAEAAQEB0NTUhKOjY942fQMD1K5dG7f9/QtNFxgQAEtLy7wBPQBUqlwZVlZWuH37dt62gwcOICAgALP++AONGjWSdyhB0atjB4f18xCx9zjujpha7P5alS2ga1cVMScuSm2P9jgPnepVoF1N8v0YtXXF67PXpJaLijl6DkoqKjBq56rYQihQRmYm7t9/AJcmjaW2N3NtitS0NDx8/FgmTUxsLCIiI+HSpIl0GhcXREVFIzIyCmKxGPXr10PHDu2l9rGykgQGo6KFG9DJFXzPG+oaWrCv2zRvm66eIarVbICgOzcKTWdibo1WXUbk3YQFAA1NbRhUMMGb2HAAwIPbl6GmroHG3/WSSjti8gqM+vUfxRZEATKyRPB/FYtWdpWktrepUQkpGZm4E/660LSZIhFmn/DBQGd7VDaUfuIpOzsbl4LD0KOuTV7wAgBqmVfAxcl9BB28kPSZb/GdjZnU9tbVzJGSmYW7UW/lpnsSlwjbioXPkE3JyEIne0t0sJNe9qJKeV0AQERi6lfmvGQF3fWBuoYWauQ7b8rlnDePijpvLK3RqmvR5012djaiwkJgUUXYT4TmysgSwT/8Nb6rLv1/2cYuZ1wVWfi4KlMkwuzTNzHAqToqG0rfWH2b8gGJ6RloZiM987eakQEMtDRwIzRKcYVQMEmfcx9NmzaV2u7q6oq0tDQ8evRIJk1sbCwiIyPRRE6aqKgoREZKxngBAQFwbthQarkoV1dXiMViBAQGlkBpFCMjMwv+IS/xXX3pa7k2TrUk13/PwmTSpKR/QJ/mDdCirvS5UMX04/Vf7rG11NWkrnUMdLWRmSVC6ocPii6KwgXmjGHr5x/D6hvAoXZt+Ocbi8qkC8wZw1bKN4atJBnD5k936OABBAYEYOasP+BcBsawABAe4gVVdW1Y2X4MXmrpGsLcuiHCgq4Vm/7Z3TOICPFBk86/y3wW/zoUGlr6ecGLXBY2jRDz6g4+pCZ+fQFKQEle69y9excikUiq/VFTV4ezs3ORdbC0ZGRm4sH9+2jaVHqM7urqitS0NDx6JH9cHxkZKSeNi1Qbm5ycjAV/LUSd2rWxcMGCkisEEZUYBjC+UKtWrXDr1i0cP34cdnZ2eQ1jrtDQUIwbNw6NGjWCk5MTfv75Z6l9RCIRdu3ahfbt26N27dpo37499u//OCvg5s2bqFmzJrZs2YJGjRqhV69eEIvFOH78ODp37ozatWujWbNmWLhwITIyMr5ZuYsSEfcOmVkiVDaVfnzVyljy+8sY2QsdCyNDzBzaPS9gkcsz8DFUVVRQ2bQiot7EIzktHWYVymOR2wm0mLgAjcbOweQ1boh9J8yBSK7I12+RmZWFSmbSs6asTCTlfRUt/6ZJTZvKOLFmHkb17AAVFfmnad92zREeEwe3U5eQlJKKB09f4MBZT7jUqwV9XR3FFkSBIhJTkCkSo1KBtcGtDCQ3N16+S5KbLiQuEakZmRix/woar/ZA203/Ys2NB8jMWV7rS48rBBFvE5EpEqGykfSs1EoVDQAAL1/Hy6RRV1VFLStTlNPSgFicjZj4JCw95omIN4no2/TjI9JPouKgoqKMHzYdRaPpa9Fs1gbMP3QJKenCaDeKEx4eDlNTU6ioSM+yMzM3R2RERKHpwsLDYWFhIbPd3NwcEfna4k6dO2Pb9u1wcRH2bPpcaWHR8LRvi6ApiyFKLT5QqWsvCYqlFAggp4a+knxuWxXKmhrQrmKJlKcvpPbJeBOPzMQk6Ao4SBwTHYPMrCyZ/2tzM8mNsYgI2eBfeLjkZqKFhfTNM3NzyY3c8MgIKCsr44fvR6NpgcCIj68fAKByZekb4UIUG/kcFUwsoawsfe5UNKmE19EvC03n2m4AWnUdJbUtLiYM0eHPYGYpqU+Rr4JR0bQSQoP8sXx6X/w6uB7m/dQOPpcOK7wcihCRkIxMkRiVK0gHIHL7i1dv3xeadvP1+8gSi/Fjc9kZ81EJyUj+kAkzfV38ffYmmi8/COdF+zD50FXEvk9RbCEULPJ9KjLFYlTO6SNzWelLxg+v4pPlpguJS0RqZhZGHrqOJuv/Rbtt57DG+1FeX1xOQw1TW9RBPfMC7+x6Lgn6WVcQ9izhmMjnqCjnvDEyrYTXUS8LTdesXX+06TZSaltcTBiiwp/BzFLyZPGb2HCkp6UgLPQhFkzqikkD62PBpK64ee2kwsuhCLnjqoIBCKuc86aocdUWn8fIEmfjRznLs5XTVIOqshKiE6XPkffpGUhKz0BEgnDPnZjoaGTJ7XMk/UdEpGyfExYmuYFvWSCNmXluPxWBDx8+4PXr1zLHNdDXh7a2NiKKGO+Utog38ZLrP5MC139GkjX45V7/VSyPmYO7oIqp9NJpnneDJNd/Ocfq19IZYa/fYc8FbySlpuH+83Dsu+QHV4fq0NfRljmu0BQ2hjU3M0dkZOH/p+Fh4TCXM4Y1MzeXqgsdO3XG1m074OIi3IkmBcW/fg49Q9k2Vr9iJSTEvSgklURq0hvcODYfLt1nQltP9ilATZ3yyPyQIhOoSHwrOQffvxPmeVSS1zrhYWHQ0tKSef+fubk53r59K7gnEWKiowsZ1+e2sbLfR3hY7ri+QBpz6WsBDQ0NbN60Eb//9iv09ItfgpeIhKdsTskVgCNHjmD8+PEwNTXFrFmzpB6/i4yMRP/+/dG0aVPs3r0bHz58wOLFizFkyBD8+++/0NXVxeLFi3HixAnMnj0btWvXxvXr17Fw4UJ8+PABI0aMACAJcly7dg0HDx5EWloaQkJC8Mcff2D58uWoU6cOQkND8dtvv6F8+fIYP358KX0THyWnSW6m6WhKPyqurSl5aiIl7dNmylwJeIR/fe6gf6vG0NPRQlisZOC7+vA5OFhbYvEPA/AuKRlrj1zAmKXbcHDeRKknM4QkOVUyKNDRKvCdaEkefUxJk38D0tjQoNhjN6xli2Fd22DNvuNYs+84AMCuiiX+mjjii/P7LSR/kMzw1i2wJJJ2zu8pGbIvDI5P+4DXyWkQicWY1LwOzMpp41bYa+zyf4LYpFQs7NToi44rFMlpkmCCrqZ0PdbOqdcpH4oONuy8chtrzngDAHo3dkBjW8nN1ezsbDyNeoNsZKNXIweMbdsID8Njsfm8H57HvsWOCf0E/y6M1JQUaGvLXqRqaWkhNbXwmbypKSmwkLOua8F0VlZFv0RRaDLjE5EZ/+mBW1V9yc3JrPfSNyOzkiQ3iFT1dKGmX07uPrn7qerpymwXipRUSTkK1hFtbclSP/LqSEpKqtw0WlqFpwEkT11s3b4DNtbWcG7Q4Osy/g2kpyVDU0v2/05DSwfpqfJvTsuTkZEO9w0zoaamjmYdBgMAkt/HI/Hda7itm44OfcbD2Lwq7vicxaFt8wBAcEtIJecEbHUKLGOinfNC6dz+o6CHUW+wx+8xtg9rD3U5S5W8S5WMa1ZfCUQt8wpY3LMZ4lPTsebKHXzvdhGHxnSGlkDf0ZVbZp1C+8wsmTTxaR/wOiUdouxs/OxSU9IXR8Rht/8zxCanY2HOUlQFPYh5h13+T9G8qimqVRD2TYP0VPnnjaaW9mefN27rZ0FNTR0tOg4CIHn/BQC8fR2JnsN+h4qKKm5dP4m962chKzMDLm36KKYQCpL8Ife8KaSOFHLePIp+iz23grF9UCu5542Wmira2VfCwTvPYFNRH61sLfEuJR3LrtyBirIS0jNl655QpKTK7z9yf5fb5xSWJl+fk5Iivy8Dih/vlLaP13/Sy7rkXf+lf+L1350g/Ot7D/2/c4aejuS7cbavihHtXbDqyAWsOnIBAGBvZYa/vxfWuVKYlNQvHMOmpsDc4v9vDAsAGWlJUNeUbWPVNHSQ8aHo4OW1I3NgUrke7Jy6IzL0psznto7dcO/aTpx3mwTX7rOgo2+CV0HXEOx/DACQmSGsm/W5SvJaJyU1tdBjA5L2J/ffQvBlbayk3ugU0cYCgJqaGqyKeSk6EQkbAxhfyNDQEGpqatDU1ISRkZFUxNzd3R3a2tpYvnx53ks+16xZg9atW+PEiRPo3r079u/fj+nTp6Nr164AgCpVqiAiIgJbtmzB8OHD8441atQoVKlSBQBw6dIlKCkpwcLCAubm5jA3N8f27duhqyuMm0vi7OwiP/+UlzZeDniImZsPoV71ypjcrwMAIDNLBACooK+LFRMGQznnMWIr4woYvnATzvjeRe+W8l9yXNoU8Z0UZvH2Azjp6YdRPTvA2cEWUXHvsPXIGfy8eD02zPoZmgIN6mSj6O9EWc53oqWqig29m6GSgS7Mc2aHOlkZQU1VGRu8H2F0oxpfdFyhKL6eFJ2+eS1r1KtqjjsvorD5gh/SM7Pw9+COyM4GVo/uhvK6WqiWM8vNycYSFctpY+a+c/B58hKuNYQzu14sFiO7wHchFsu+wD5XUedPUd+pkOuCoikpF/2gZbZYDBS7T9H1szSJi8mbvP9rcXbhdUqSRvb7CAsPx8zZc6CiooI/Zk7P64eEQnLuSJcru6hz5xPzn56Wgu3Lf8ar0IcY+ctKGBpJLpRFWZlISYrHyF9Xoa5zWwC578CIxvmjGwUXwCiujZVXTz5kiTDnpA8GN6qB2hbyX7CclfPUgaGOJlb2bZl3HKvy5TBs1zmcfvgCfRzlvwy7tBV9Fsjvd7TUVLG+RxNJX6wnuVHgZFkR6irK2OAbjO8b2qJqgdn6d6PeYvK/N2Gup40/29RXUO4VQ+55U0T78DnnzdZlk/Dq2UOM/nVF3nlTrYYTfpi2DtVrNcxbaqpGPRckJb7DmUPr0bR1b0G94Ly4pl9eXj9kiTD7zC0MamALB7PCXyg8q50T1FSUMf/cbcw7dxuaqioY0agGUjIyBf3i+6LaVUB+W1JcGiVlZZmxz6ccVygUcv0X+Bgztx1FvWqVMLl327ztC/edwgnvO/i+c3M0srdG1NsEbPrXExPWuGHzL8MFNYFN3hi2qPFTkWPYItIJfeJRftmf28YW8Z0E+x9D9IsA9P/930L3MTSphk4jN+La0Tk4uEJyj8XIshac202E14mFUFPXLDTtt/Ktr3WKbX8E1rZ8SX6Lu05RKkPnzH8a/5/oEwh3hFiGhYSEwMHBIS94AQBGRkaoWrUqQkJC8Pz5c2RmZsLJSXqmmrOzM3bv3o23bz+uO5wbvACAZs2aoX79+ujTpw8sLS3h4uKC1q1bw8FB9vHs0lAu5ymD1AIzbXKfvNDVln3hUn57L3hh1cGzaGBfFSt/GgqNnDVgtXNm9LjUtpW6aVTHphJ0tTQRHCbctXJ1cyP/Mt+JZLaSrvaXzXh4/S4Bx674YGT3dvixn+SFXE4AatlURv8pC3HS0xf92rco+iClRDdnNmrB2Z0pHyS/62rIzlbVVFNB48qya4k3q2qGDd6P8DQuEdUq6n32cYVCVyt3lpr0bMbcZZ7KaRZ97lQ3+xicyBKJsfG8LyZ2coFZeT00rCY7O6tZTUnQ4klUnKACGO7u7nDft09qm6urKxISEmT2TUtNhY5O4Uul6Whry30sOjU1FdpFpPt/k5UoWeJDtZx0mXOfqshKTM578qLgPrn75R5DiHRylpAo+H+dN4NLzv+1jraO3DS5M7R0CixLce/+A8xf+De0tDSxZNHCvMfYheT80Y04f3Sj1La6jdohKVH2PQbpacnQ1C5+4kP8m2hsXToBr6NfYvikZajdoFXeZxpa2lBSUkLNes2l0tjXdUXwPW8kJbxBOQP5N/1LQ+7TbakFnsTLnUGuqynbP6z3vAtxdjbGutZGVt4FteQiOUsshoqSErQ1JMNoFxsLqRuMdSyNoKuhhicxssv/CUXu04opBWa75/ahunKeHNFUVUHjSrIvEnatYooNvsEIeZMoFcC4EBKJuRcDUam8LtZ2bwIDLeHcbASAc0c24ewR6fOmXuO2eC/vvElNgdYnnTcx2LRkAl5HvcTIyctQp+HH86acfgU4OMmOzWo5NseTB35ISnwLPQGdN+Vyxk2pMuOqnPNGzrhq/Y0HyM7OxtgmtfLOm9x7bLnnjZKSErTV1TC3ozOmtq6P6PepMNPThra6Go7ffw4rA+EuM5Y77kgtpP+Q2+cUk0ZHWztvdnFZHLfkXf8VeFo498kLXa1irv8u+mDVkQtoYFcFK8cPzLv+ex3/Hh43AjC6YzNM6N46b/9aVSzQZ+56nPC+gwGthPPeh/3u++DuLj2GdXF1RUKCbD+QmlbMGFaniDGstnDrQkH+l9bD/+J6qW3WddojLVm2jc1MT4a6pvxzPzkhBt4n/kbTrtOhpWMIsSgr70Z3tlgMsViUtySVlZ0rBs+4jKR4ybJBeoaWCLp1FACgoW2gqKJ9sW99raOjo1PoPrmfC0luvgsfo8vmVztn3F6wjU3Ja2OFVUYi+nIMYJSAwmbRiMViqKmpFfk5AKjme9muhoaG1L/37NmDx48fw8vLC15eXhg3bhx69OiBRYsWKbAEX8bS2BAqysoIfy09KMn93dpM9qIXkHxfS91P4cBlX3RoVAfzR/eBWr7vwMrYEEpKSsjIFMmkFYnF0BDo8gwAYGlSESrKyoiIiZPanvt7VYsve8FnzJt3yM7ORh07a6nt1pZm0NfVwfMI4b5g1tJAFypKSghPkF6KIff3grM3ASAsPgm3wuPQ3tYS5fIts5Se83SOgbb6Fx1XKKwqGEBFWQnhbxKktofl/F7VxFAmTdS79/ALCUNnJ3to5JutWMNScp7FJaZARVkZNx6/QFP7yjAr/3HZjtyXfJcX2PrBHTt2hLOz9NNUvr6+CAgIgFgslgpgRkVFFfnovKWlJUJDQ2W2R0VFwc7OTnGZFrjkEMl6wto2lfH+blDedh0byQv/koNDIUpJRVpEDLRtKkulVTcyhJqeLpKDZb9HoTA3M4OysrLMS7WjoiS/V5JTRywtLfL2qWZj8zFNzjHy16urntewfNU/sLK0xF/z5qJixcJnFJempq37opaj9I3RB/5XEHzfW+bceRMTDhNz64KHkBIVFoJNi35AZsYH/DhzC2xqSC+ZZWRaGdnZ2RBlZUJN/eM4RSyS3NgUwizH/KzKl4OKkhLC4qWDcWE5a/hXrSD7UuqLQa8QnZiCJksPyHzW4O99mNe1KdrWqAQlSF5YXJBInA0NNdnlc4TCUl8HKkpKMu8bCM/5XW5fnJCM2+Fv0M7WIu/mNiCZdQ8A5fPdqNwT+AxrvB7BybIilnd2ltpfKFza9JEJKNy/fRnB93xkzpu42DCYWBR/3qxfOA6ZGemYMGszqtWUPm+eBQXgbWwEGrXsLrU9M+MDlJVVoK1b+MvRS0PeuCpe/rjKWs5yYJeehCP6fSqa/nNU5rOGyw9jXkdndKtdFdefRUFPUw31LI1gk/NS+Hcp6YhNSkUNk/IyaYXCLKfPiY6SnjwVlfO7/D5HsmRJdFSUdJ+Tm6ZSJWhpaaFChQp523IlJCQgLS1N7nGFwtKofCHXf+8AANYF3nOYKzs7G0sPnsWBKzfRwbk25o/oIXX9F/0uEdnZ2ahrI/3OKRtzYxjoaCO0kPcIlpYOHTvB2Vk6oOLr64PAgECZ9iQ6KrrIMayFpSWeyxnDRkdFw9ZOmE/1yVOzUT9UrtFSatuLR5cR/sQL2WKx1FNtiW/DUN5Yfhsb8dQHGelJ8Dw8C56HZ0l99u+WkShX3hxDZl5BUnwUIp76wNaxG/QMPy4V9CbyETS09VGuvOz7Ir61b32tY2FpidTUVCQmJEDfwCBvn+ioKBgbG0vdaxKCvHF9VMFxvaRtlPd95C4LFVWgjY3OOYZVJeG2n0T0eYS1BsL/CTs7Ozx48EDq5dpv3rzBq1evYGNjAxsbG6ipqSEgIEAqnb+/P4yMjKCvL/8C5tq1a1i3bh1q1qyJsWPHYs+ePfj5559x5syZEi3Pp9JQU4OjbRVcDnwkFaS5HPAIulqaqFVV/pqDa49ewIHLvhjSzhV/j+0vNXgFJE9gONpWwZXAR8jIN1Pw5uNnSPuQAcfqVUqkPIqgoa6G+vbVcPX2Xanv5Mqtu9DV1kItmypfdFwrUyOoKCvjboEbiy+jYpGYnAILY+HM4CtIQ1UF9S0r4sqzSOl68jQCuhpqqGUqe7M+LiUdf18KxMUQ6Rd3XXgSDl11VdQ0Lv9FxxUKDTVVOFpb4vKDZ1J5v3T/KcppasChkqlMmuj495h36CKuPHgmtd33ySuoqaiginF5iMRizD98CUd8H0jtc/5OCFSUleBoXfoD+fwqVKgAW1tbqR9HR0ekpaVJtZeJCQl4+PAhHB0dCz2Wo6MjwsPDEfbqVd62sFevEB4ejvpFpPt/kxoahtTn4TDr1V5qu2nPdkgOeYG0V5IZam8uecO4U0so5wsIm/ZqD3FWFt5c9fumef4c6urqqO3gAG8fH6lzx8vbBzo6OrCzrS6TxsLcHKYmJrjh7S213cvbJ+8zALh12x9LV6xEzRr2WLFsiWCDFwCgb2iMSjYOUj/2dZriQ1oKgu99LGfy+3cIDfKHfZ2mhR4r/k00Niz8HkpQwqR5bjLBCwCoUa8ZACDQ56zU9of+njCvZPtJT3h8SxqqKnCsZIwrwWHS/UNwGHQ11OAgZ4moNf2/w75RnaR+apgaooapIfaN6oQW1S2hra4Gx0omuBwchoysj0GMmy+ikZaZBUcr+RM3hEBDVQX1LSrgSmi09PgkNAq66qqoZWIgk+ZNSjr+vnoPF59Kv6j4wtNI6KirooaxJM3RBy+x2usR2la3wLruTQQZvAByz5taUj/2dZoiPS0FQfnOm6T37/DscUAx500M1i0YAyUo4ZcFbjLBCwB4+ugW9m74Q+pl4GKxGHf9LqCqXV2oqgrre9JQVYGjlREuP42QPm+e5IyrzGTHVat7N8PeoW2lfmqYlEcNk/LYO7QtmleTLKd15O4zrPS8J5V2X4BkbNLMRnZNd6EovM/xho6ODmxtZW8um5ubw9TUFF5eXlLbvb29YWFuDpOcPsfR0RG3bt1CRubHJ8W8vL2hrKyMunXrllCJvp6Gmhocq1fG5TtB0vUk8LHk+q+K/LHm2mOXcODKTQxp2wR/j+4tc/1nlTMx7s6zV1LbX8a8QUJKKiwrCivQVaFCBVS3tZX6cXR0QlpaKgLzj2ETE/Dw4QPUd5T/ziAAcHR0koxhw/KNYcNeITw8DI71C08nNDr6JjC2qi31Y2XrgswPKQgL+Xg+pCW/Q9Rzf1jausg9TpWa36H3z4elfpr3mgsAaN5rLjqO3JhznLfwPPyH1PsxUt/H4end06hSs5Uglkv61tc69etLlm7M3/5kZmTg1q1bRR67tBTXxtoV2saawMur4LjeW2pcT0RlH5/AKAEDBw7E/v37MWXKFPz444/IyMjAkiVLUL58eXTu3Bm6urro378/1qxZAwMDA9SuXRteXl5wd3fHr7/+WmjnqqamhvXr10NXVxetW7dGYmIiPD098zomIfi+63cYt3wHpm7cj+6uTrj3LAy7z93Az33aQ0tDHclp6Xge9RqWRoYw1NPFk7Ao7Dp7HbWqWqJtQwc8eB4udTxrc2PoamliYu/2GLN0Kyb+swtD2zfDu/fJWH3kHGpbW6FF/RqlVNpPM6pne0z4ex1mrN6Bri0b437IC7iduoyfBnSDpoY6klPT8CIyBpYmFVFe79OeEiivVw4DOraE26lLAIBGte0R/eYdth09C7OKhujRqvCLbCH4vlEN/HjkOqad8kN3hyq4F/UWe/xDMLFZbWipqSL5Qyaev30PKwNdlNfWQH2LinCuZIxV1+/jQ5YI1hX0cONFNA7ceYZfW9bNeyqjuOMK2Zi2zvhh01FM2XMaPZxr4e7LaOz29Mekzq7QUldDcvoHPI95B8uK+jDU1Ub9qhZobFsJi49dRXJ6Bqwq6uP6oxc46H0PP3ZoAj1tTehpa6K7cy3suuoPDTVV1K1shjsvIrHt0m0McKmHKsbCuviTp3bt2qhTpw6WLV2KUaNHQ69cOezbtw86Ojro1Llz3n5hr14hMzMTNtWqAQCaN2+OgwcPYvacORg5ciQAYOfOnahSpQqaN28u92/9P1AtpwPdmtWQGhqGjDeSZQueLlyPutsXI/NdAmL/vQKTbq1h3q8TAgdNzksXunwbzPt3RsNT2/Din53Qsa0CuwW/InzbIaSHC/eJLgAYNKAfps+ajYWLlqB9uzZ4HBSMIx4eGDViODQ1NZGSmoqwsDCYmZnBIGeCwOCBA7Din9XQK1cOjRs1gu/Nm7h+wwszpk0FAGRkZGDVmrXQ1tLCgP79EBYWJvU3K1asCKOKwg0UA4BNjQaoVrMh9q6bhq6Df4WOrgHOHdkALR09uLTtn7dfTEQosjIzYFlV0pd67F6E5MR36Pv9HKSnJePl0483GTW1dGFqaYPqtZxRy6kljrstRcaHNJhZVcPt6yfxIuQORv++9puX9VOMca2NH/ZdwhSP6+hRtxruRcRht+8j/NzKMaffycDzuERYli8HQx1NVJfTPmrnBPhqmX8MZv3cqj6+d7uAnw5cwbDGNfE2JR2rrwSitkVFtLAV9ssiRze0xfhjPph21h/da1bCveh32BPwDBNdaub1xS/eJcFSXwfltTVQz7wCnK0q4p8bjyR9sWE5eL2MxYG7z/FrMweU01DDm5R0rLjxEOZ62uhXtyqCXydI/c3cYwlVtZoNUL1WQ+xZMx3dh/wKnXIGOHN4A7R1yqFZu355+0XnnDdWOefNkZ2LkJT4Dv3HzEZ6ajJehOQ7b7R1YWZpA5c2feF14RA2L5mITv0nQENDCzcuHEB0+DNMmrfrWxf1k3zfpCbGHfTE1JM+6F7bGvci32D3rWD83KJOvvFaIiwNdGGorYnqRgYyx8h96Xf+gMdAJ1uMP3wNyy/fQYtq5rgV9ho7/IIwopE9rMoLKwBa0IABAzBz1iz8vWgR2rVti6CgIBw9ehQjR4wotM8ZNHAgVq5ahXJ6epI+x88P12/cwPRp0/KO27dPH1y7dg1zZs9Gz549ERkZiV27d6Njx44wNhZuMBQAvu/cHONW7cHUzYfQ3cUR956HYfcFH/zcs83H67/oOMn1XzkdPAmPxq7z3qhVxQJtnWrhwQvpCUrWZkYwLKeDQa0bY895yU3JxjVsEP0uAZv/9YRZBQP0aib8G/kOtWujdp06WLZsCUaNGo1yenpw37cXOjq66NQp3xg2LGcMa/NxDHvo4AHMmT0bI3LGsLtyxrDNyvgY1ty6IcxtnHHZfQoad/4dmtoG8L+4Dhpa5eDQZGDefu9in0GUlQEji5rQ1CkPTR3pPjkzQ7I8kIFxVVQwkzxtYGTpANMqjrjuMQ9NOk+BsrIqbp77B8rKqmjYbuK3K+RnKslrHRMTE7Rp0wZbtmzBh4wMWFhY4NixY0hOTkafvsJ6X1mugQMGYMasWVi4aBHat22Hx0FBOHLUA6OKbWP/gZ5ezrje7yau37iBGfnaWCIq+5Syi3trGBVq6NChsLCwwOLFi6X+DQCPHz/GsmXLEBgYCHV1dbi4uGDq1KkwN5fMKsrKysKmTZtw5MgRvHnzBlWqVMGwYcPQr5/k4ujmzZsYNmwYLl++nPfoMQB4eHhgx44dCA8Ph6amJlq0aIHp06fD0PDLZ5eness+5v01rgQ8wqYTl/EyJg7GBnro16oxhnWQzNb0D36OMUu3Yd6o3ujm6oQNxy5i679XCz3W1qnfo4G95HHSu89eYb3HBTx8HgFNdTW0rF8Tv/bviHJf+B6Jwmi79Mb7wIsKPebV2/ew5fBpvIp+DSNDffRt2xxDukjWcw14HIJxC9Zgzrgh6NqisUzaf6/5Yf6mvTixZh7MjT7eNMnOzsb+s57wuOyFqNdvUdFAD43q2GN8/66fHAj5VHqObZGyeVbxO36GK08jscn3MV7FJ8FYVwv96tpgaAPJrAr/8NcYe/g65rZvgG61qgAAkj9kYovfY1x5Gok3KemwNNDFYMfq6Fm76icfV5F0fliI9NObFHrMy/efYeN5X7x8HQ9jfR30d62H4S0lF2i3n4Xj+w1HMH9AO3R3rgVA8o6MTRf8cOn+U8QlpqCSkQGGNHdEr8Yf34uTkZWFXVcDcMo/CNHx72Gir4tejWtjxHcNFP4iQM3O4xD6/LlCjwkASUlJ2Lp1K/x8fSEWiyVPof3wg1TbOG3qVMTGxmLX7t152+Li4rB50ybcuXMHKioqcHR0xNgffii0vVy5YgXu378vdYyvZWNtjdNqJbNklWFzZzS57Abf1kPx7votqW33Rk9HxJ5jeftWGtMf1r+MgqaVGVKfhyN06RZE7jshdbzyLk6osWQq9OrWQMabeETuO4GQuWuQnSW9/vnX6pz5BC+fhSj0mN4+vnDb546IiAhUqFABXbt0Rp9ePQFI3mExdcZM/DZ5Etq1bZOX5vTZszjicQxxcW9gZmqK/v36oE0ryXr1d+/dw7SZfxT694YMGoihgwcpLP9Vqtni7J3M4nf8TKnJiTjutgwP/K8gWyxGVbv66DFsKkzMP7aba+eNwLu4KPy57gKysjIxdXhDiEXy/89tajTAxD93AZAse3Pu6AYE3DiF5KR4mFrYoF3vcajTsLXctJ+rY301pLn9pZBj5boSHIaN1+/h5dv3MC6njf4N7DCscU0AwO2XMRiz9yLmdW2K7nVt5KYfvecCAGD7sHZS2++Gv8Y6z7t4GPkGmmqq+M7OCr+0cYKepuLe+aA19A8kr5+qsOPluhIahc1+T/AqPhnGuproW6cqhjpKbo74R7zBDx7e+LNNfXSrKVnGJflDJrbceoKrodGSvlhfB4Pq2aCng2QJuhOPXmH+5buF/r38x/pauhOW4sK9jOJ3/EypyYnw2LMM929fQbY4G9b29dBruPR5s3ruSLyLi8K89eeRlZWJ34Y6F3reVKvZAJPm7gQAxMWE4aT7PwgNCkB6Wioq29RCl4E/w8ZeMTNh29VVR+r2OQo5Vq4rIRHY5P0QL9/ljKvqV8MwZ3sAgH/Ya4w5cDVvaSh5vt9/BQCwbWArqe1nH7/CNt/HiEpMgZmeNvrWr4aBToofr2mPni93OZ6v4e3jg7179yIiIgIVK1ZEly5d0LtXLwDA/fv3MW36dPz6yy9o2/bjC6nPnDmDox4eiIuLg6mpKfr364fWraXby4cPH2Lb9u14/vw59PT00LpVKwwdOlRqeWFFsLaxQeo12eXxvsaVO0HYdPIqXsa+kVz/tWyIYe0kM+r9n7zAmBW7MG9ED3RrWh8bTlzB1tPXCj3W1t9GoIFdVWRnZ8P9sh+OXPNH5Nt4VNQvhyY1bTChR2sYynlv19fQbjEAz0JfKPSYgGQMu23rFvj6+SJbLEbNmrUwZuxYWFp+XNZm+rQpiI2Nxc5de/K2xcXFYfPmjbibN4Z1wpixY2FoKP9p0JUrl+PB/ftSx/ha1Wyq4p+Tir9V9CE1Ed7/LsaLR5eBbDFMqziiadfpUktIndg4FEnxkRgy84rcY0SG3sTJTcPRbdxuWNh8XLorNekNvE8uQkSIN7KRDQubRmjU8RcYGCnmnX+TuymVuWudzIwM7Ny5E56enkhLS0O16tUxevRo2NvbKyTvNtbWeBH6rPgdP4O3jw/c9u5DZEQEKlSsgK752th79+9j2vQZ+PWXyWiXr409feZsXhtrZmqKfv36oU3rVnKPHxMbixEjR8kcQxGq5gQi6fOkH19T2lkoczR7/FzaWfjmGMAghQcwyrqSCGCUdSURwCjrSiKAUdaVVACjLCvJAEZZVRIBjLKupAIYZVlJBDDKspIKYJRlJRXAKMtKIoBR1pVEAKOsK4kARllXUgGMsqykAhhlWUkFMMqykghglGUMYHyZ9BPrSjsLZY5m959KOwvfHN+BQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERIKjWtoZICIiIiIiIiIiIqL/GCWl0s4BlQF8AoOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgER7W0M0BERERERERERERE/zHKnFtPxWMtISIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFRLe0MEBEREREREREREdF/jJJSaeeAygA+gUFERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCo1raGSAiIiIiIiIiIiKi/xglzq2n4rGWEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeColnYGiIiIiIiIiIiIiOg/Rplz66l4rCVERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOKqlnQEiIiIiIiIiIiIi+o9RUirtHFAZwCcwiIiIiIiIiIiIiIhIcJSys7OzSzsTRERERERERERERPTfkX5+e2lnoczRbD+6tLPwzXEJKULq9UOlnQVB0W7eD89DQ0s7G4JibWODqCf3SzsbgmJuVwdxj2+VdjYExaimM14+CyntbAhKlWq2/E4KqFLNFqfV7Eo7G4LSOfMJ60kBVarZIib4TmlnQzBM7esjOvhuaWdDUMzs67GOFGBqXx8hoWGlnQ1BsbWpxDFsAeZ2dXjuFGBqXx+vnj0p7WwISuVqdvxOCqhczY7nTgE8d6RVrsZrHKKSwiWkiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiweESUkRERERERERERET0bSlxbj0Vj7WEiIiIiIiIiIiIiIgEhwEMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBEe1tDNARERERERERERERP8xSkqlnQMqA/gEBhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQmOamlngIiIiIiIiIiIiIj+Y5Q5t56Kx1pCRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgqNa2hkgIiIiIiIiIiIiov+WbCWl0s4ClQF8AoOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgER7W0M0BERERERERERERE/zFKnFtPxWMtISIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFRLe0MEBEREREREREREdF/jBLn1lPxWEuIiIiIiIiIiIiIiEhw+ARGPtnZ2Th+/DiaN2+OChUqfPFxEhISMHnyZAQEBMDOzg5HjhxRYC6lXb16FVZWVqhWrVqJ/Y3P5fvoGdYdu4Tn0a9hWE4H/b9rhKHtXKCkpCR3/4zMLLhd8MYpv7uIeZcIk/J66NioLkZ1bAY1VVVEvYlH5xkrC/173ZrWx7yRvUqqOAoREBiI3bt3IywsDAYGBujSpQt69+pV6HcCAJ6enth/4ABiYmJgYmKCvn37om2bNlL7hISEYNv27Xj69Cm0tbXRtk0bDB48GGpqaiVdpK92+849bHfbj5dh4ShvoI8enTugX4+uRX4nl695we3QUUTHxsLU2BgDe/dAh9YtpfYJi4jE5l1uuPvgMVRUlFHXoSZ+HDUc5qYmJVwixbh19wG27DuMF2GRMDTQQ8+ObTCwe6civ5dcIc9fYszUuTiwYRnMjI0++3MhCggMxK49bniVc+507dwZfXr1LPL7uOp5De4HDyImJhYmxsbo37cP2rZpLbXP9RteOHz0KMIjIqGjo4P69epi9IjhKF++fEkX6avxOymcpoUJmt89Bf/eE/Du+q0i9zXv3xnVZvwIbWsrpL2MxLNlWxDpdlxqH30nB9RYMhX6Tg7Iep+CiD0eCJm/DtmZmSVYCsVgPZF1+849bN17EC/DIlDeQB89O7VD/x5divxOLl33htuhY4iKjYWpsREG9+6ODq1aSO1zw+829hzyQHhkFAwNDNDuu2YY3LsH1NSEPcy+fecetu09kPd99OjUvtjv4/J1b7gd8sj7Pgb17pH3fUTHvsbAsRMLTduhVQtMnzRe4eVQJNYR+dLS0rBrx1b4+HghPS0NtRxq4/uxP8LS0qrIdPHx8di+dRMCA25DJBKhQUNnjB4zDoaGH6+z4t+9w163XbgTGICkpPewsLRC79790KxFyxIu1ZdT9Bg2JvY1Bo6ZUGjaDq1bYtqkwj8XgpI6d85e9sTB46cQGR2LCobl0aFVCwzp2wOqKiolXaSv5h94R6of7ta5M/r06vEJ/fAhROf1w73RrkA/fOHiZRw+dgzR0TEwNjJC1y6d0KNr0d+1UJTUd3L9hhcOHfXIG5s41quL0SOGcWxSRvsdnjtEJI/wW69v6Pbt25g+fTouX778Vcc5efIk/P394e7uDhOTkrtpGhkZiXHjxmHPnj2CCWDcDw3Hz2v3on1DB4zv0Rp3n77CP0cvIEssxqiOzeWmWXrgDE773cWYLi1Rq4oFHr+MxJZTnoh+m4C5I3qion457J4+VibdIc+bOH/7IXq4OpV0sb5KUHAw5s6di+bNmmHY0KF49OgRduzYAbFIhH79+slN4+XlhaXLlqF79+5o4OQEH19frFy5EmpqamjZIudGQXQ0Zs6ahRr29pgxYwbCw8Oxe/duJCUlYeLEwm8gCMHj4BDMXLAI37k2xajB/fEgKBibd+2FSCTCoD495aa55uOHhSvXoHfXTmjoWA/efrewZPV6qKupoVVzFwDA67g3mDjtD1hZmOOP3yfhw4cM7Ni3H1PmLMCOtSugoaHxLYv52R4+eYapC1egtUtjfD+wD+4HPcHGPQchEokxtHfXItM+fxWOKX+tgEgk+qLPhSgoOBhz5i1Ai2auGDZkCB49foztO3dBLBKhf7++ctPc8PbGkuUr0KNbV8m54+eH5av+yTl3JG2Q57XrWLR0GTp17IARw4biXXwC9rjtxdSZs7B+9T9QV1f/lsX8LPxOCqdpaQrn09uhZqBX7L6mPduh3p7leLF2D+LO34Bp9zaot2MJxB8yEH3oDABAq6olGp3biXi/uwgcOBm69jawW/AL1AwN8HDCnyVdnK/CeiLr0ZOnmP7XUnzn2gSjB/fDg8dPsGm3O0QiMQb36S43zTWfm/hr5Tr06dIBzo5DcePmbSxavRFqqmpo3bwpAOD23fuYvXglvnNtgrHDBuJlWAS2uO1HwvskTB478lsW8bM8ehKCGX8t+dgPPw7G5t37IBKJMLhPD7lpJN/HWvTu0hHOjnXhddMfi1dvgJqqKlo3d0EFw/JYv3SBTLrjZy7gqpcPOrVtVcKl+jqsI4VbvvRvPAkOxohR30NbWxv73fdi1vTfsX7jNuiWKyc3jUgkwtw5M5GWmorxP01CVpYIu3dtw5xZ0/HP2o1QVVVFZmYG/pwzAynJKRg8dDgMDSvA2/sGli5ZiMysTLRq3fYbl7R4JTGGNTQsj/VLF8qkO37m3H/63Dny7xms3bYHLZo2wrgRg5GQmISd+w8h9OUrLJj+67cs4mfL3w8PHzIYDx8HYdvOXRCJRBjQr4/cNDe8fbB4+Ur06NYVDZ0cc/rh1VBTU8N3Of3w2fMXsGrNOvTr3QtOjvUR/OQJNm/djvS0NAzsL/+6UihK6ju5eu06Fi1djs45Y5P4+HjsdtuHqTP/wPrVqzg2KWP9Ds8dIioMAxj5ZGdnK+Q479+/h5GREerUqaOQ4xVGUflVpE0nr8C+khn+Gi3pXFwcqiNLJMKOM9cxqHUTaKpLPxmQkJwKjxv+mNS7HYa3dwUANKphAwBY43ERP/duB8NyOqhjIz3D6/GrSJy//RATe7ZB/eqVv0HJvtzevXthY22NKVOmAAAaNGiALJEIBw4eRPfu3eXeVN+1ezeaubrih7GSwI2TkxOSk5Lg5uaWF8A4fOQItLS0MGfOHKipqcG5YUNoaGhg48aN6N+/P4yNjb9dIT/Tzv2HUM26Kmb++jMAwNmpPrKyRNh3+Bh6d+0k9zvZ7uaOFi6NMeH7EZI0jvXwPjkZO/YdyAtg7Np/CDra2li+YA40c45hZmKMWQuX4Mmz56hTq8a3KeAX2nHAA9WrVsbsyeMAAI0d6yBLJILb0ZPo16U9NDRkB+CZmVk4cuYCtu8/CnW1z/9cyNz2ucPG2hpTf/8NANCwgROyskQ4cOgwenTvVsi544Zmri4YN3YMAKCBkyOSkpKwe+/evJuwBw4dhnODBpj008fZjFYWFpj02++4ees2mrm6fIPSfRl+J3IoKcFyaA/UWDIN+MQJVHYLfkX0kXMI+n0RAODNRS+oldeH3dxJeQEMmyljkJWUAv9e4//H3n2GRXE0cAD/0zsoqHREkSoqoNh771FjNxp7YhKNxm4sMabYSzRq7L1HY4vGXiiiggULqKj0piJSjnLcvR8ODpc7QOMhx5v/73n4wO7OMjPs7szuNEhzc5F8+gryRFnwXDUHTxauR1Z0fFml6IPxOlG0dc9BONdwxOxJ3wAAGvl4QZwnxq5Df6Fvjy5Kn68bd+5D66aN8M3ozwEADX3qIS0tHZv3HJB/JDh1/hIsq1pg9qRvoKWlCV+vukh5nYoDR0/im5FDoa2tnlXtbXsOwrlGDXz/Vn7k5eVh96G/0LdHV6X5sWnnXrRu2vit/PBCWlo6tuw5gHYtm0FXRwe1XV0EYcKfPMVFvwCM/mwQ6nq4lX3CPgCvEeXCHj7A9aBrmDf/ZzTwbQgAshEYI4bi5MljGDBwiNJwflcv42nEE/y+fhMcHGR19ZpOTvhm3Bj4Xb2M1m3a4cb1IDx7+hTLVq6Bi4srAMDbpz6Sk5Lw56EDatmAURZ1WF0dHXi4Fb13ImT3ztDBqOOh3vXXsrh38vIk2L7/MBp41cGP0yfJw7k41cCICVNx4/Zd+HqV7bv2h9ixey+catbE9CmyhhbfBvWRJxZj34GD6P1JD6XXydbtO9GyeTOMGzsaQEE5nI7tu3bLP8Lu3X8QLZo1xeiRwwEA3l71EBMbh6PHT6r9R9iyypPCuknhCD87W1t8O3kqrl2/gZasm1Socof3DhEVp8KvgdGnTx/89NNP8t/PnTsHV1dXnD59Wr5t4cKFGD58OB49eoQvvvgCvr6+8PT0RLt27bBlyxYAQFBQEIYNGwYAaNeuHQ4fPgwACAkJwZAhQ1C3bl20bt0a8+fPR3p6uvzcbdu2xaJFi9C1a1c0atQIQ4cOxerVqxEXFwdXV1ccPnwYq1evxmeffYZJkybBx8cHCxbIeqfdunULw4YNQ/369dGoUSPMnDkTKSkpgnNv3rwZ48ePh7e3Nxo1aoSffvoJYrEYMTExaNdONiRu2LBhWL16dRnl8LvLyRXj5qNnaOMtrGS3r18bGVnZuP0kUiFMhigbfVv5olU9V8F2R2vZ9Daxya8UwkilUizcfQI1ratiSIemKkyB6uXk5uLu3bto2lQYz+bNm0MkEuH+/fsKYRITExEbG4smSsLExcUhNjYWABAcHIyGvr6C6aKaN28OiUSC4JCQMkiNauTk5uJO6H20aNxQsL1Vs8bIFIkQ+iBMIUxCYhKiY+PRonEjYZimTRAbn4CYuHhIpVJcCQxCl/Zt5Y0XAODq7IRD2zaofeNFTm4ubt17iJaNGgi2t2nSEJmiLNx9GK40XGDIbWzdfwRDP+2JccMGvPd+dSW7d0LRrEljwfYWzZsiUyTCvQcPFMIkJCYiJjYWzZo0EYZp1gxxcfGIjY2DRCKBt7cXunTuJDjG3t4OABAXr74fpZknypnWdYXn7/MRs+sv3B4+rdTjDarbwti1BhKOnhVsjz/8D4ycHWFYS/ahrWqH5kg6dVkwXVTCn6ehoaWFqh2bqzYRKsTrRFFObi5u33ugWO40lZU7dx8qljvxiUmIjotXWlYVlDsAkJOTC309fWhpFVapTU2MkSsWI1OUVQap+XAF+dG8sa9ge6umjWTlcAn5oRCmWSNBfrxNKpVi5R+bUd3eDv16dlNtIlSM10jxQoJvQl9fH94+hSOezcwqwbNOXQTfKH6qvpCQm7C1s5c3XgCAg0N12Nk74GZ+OENDI3Tu0g3OzsKP93b29kiIj1NxSj5cWdVhi5JKpVi1Xnbv9P2P3jspr1/jTVo6mjTwERxTs7o9zExNcO3mLdUnRkWKL4eblVoONy0apllTeTkMAD/9MBdjRgl70GtrayMnJ0fFqVCtssoTiUQCH28vdO3cUXCMQ37dJD4+QcUpUR2WO4p47xBRSSp8A0abNm3g7+8v/z0gIAAaGhoICgqSb7t06RLatGmDkSNHolKlSti3bx9OnDiBzp07Y9GiRXj48CG8vb3ljQAHDx5E165dERYWhhEjRqBFixY4duwYli5divv372PkyJGC0Q+7du3C7NmzsWnTJqxduxYjR46ElZUV/Pz80LVrVwCy6amqVKmCo0ePYujQobh79y6GDh0KZ2dnHDhwAKtWrcKdO3cwatQowRQvq1atgq+vL44dO4Zp06Zh165dOHHiBKytrXHw4EEAwOrVqzFy5Mgyzed3EfPiFXLFeahuKVw/xL6a7PfnCS8UwthWrYxZQ3rA0Uo4H/+lWw+hraWF6pZVFML8cyMUoc9iMHVgV2hpqvclnBAfD7FYDFtbW8F2G2trAEBMfmPE26KiogDIeo68zdrGRhYmJgbZ2dlISkpSOG8lMzMYGhoiJiZGZWlQtfiEROSKxbDLT08BW2srAEB0rOILa2SMLJ/sbK2LDZOQmISMjExYVquCles3oefg4ej46WB8/9MiJL94WRZJUam4hCTkisVwsLESbLe1lk1DFxWnvALuXqsmDv2xAp/3+0RQSX3X/eoqIT4BuUrvnYL7QPHeiY6OBgDY2gqvLRsb2XUTHRsDTU1NfDF6lEIlNyDwGgCgenUH1SSgDDBPlBNFxeOSWwc8nLoQeZmlv5QZu8lG+WU8fi7Ynhkha2Q3dqkBTX09GDraIePxM8ExOS9SkJuaBmOXGqqJfBngdaKo4PlqX6QMsct/vpZU7hQNI38m54fp3bUjYuLjse/IcaSlZ+B++GMcOn4Kjet7w9TEWOVpUYWCclgxbbLyJ0pJfkQVmx/Fh7lwNQAPHz3BN6M+V/vyh9dI8aKjo2BlZQ2tImsOWFvbICa2+PpmTFS0wnMIAGxsbBAbI3vmeHn74OvxEwXzj4vFYty8HiRo+FAXZVWHLeri1QA8fPQY34weoZDv6qas7h1jYyNoaWkhMVn4/piWno709AzEJSSpLA2qVlAO2xUtUwve/5SUw1HRsnup6PtfYTksC+PgYA8rS0tIpVK8SUvDqX/O4NyFi+jRravK06FKZZUnxdVN/Fk3qZDlDu+d/y6phgZ/3vPnv0h9x469o7Zt22LNmjWIj4+HtbU1/P390a5dO3kDRlRUFJ49e4b27dsjOzsbQ4YMgZGREQBgwoQJ2LRpE8LDw+Hu7g4zMzMAgLm5OfT19bF582Y0a9YMX34pm87F0dERy5YtQ/v27XH9+nU0aiTrSdOqVStBD3tDQ0NoaWmhalXhR/kJEybAJH+e2IkTJ8LV1RVz5swBADg5OWH58uX45JNP4Ofnh1b50wQ1b95cPjLE3t4eO3fuREhICHr16gVzc3MAgJmZmTxN5Sk9MxsAYKSvL9huqC8b+pghyn6n81wIeYDjgbcxoE0jmBoZKOzf8Y8/vGo5oIGr+n5AKpCRmQlAdk28reD3zPz97xTGwEAeJiMjQ+kxAGBgYKD0vOoiI0MWNyND4f+2IH0ZmaLiwxgUDaOfHyYTr9+8AQBs2L4bbs61MGfqJLx+nYqNO/dg0vc/YOOqJTAocm2qk/T8dBsq5EtBGhXzBQCqWpiXeN7S9qurjEzl13hB/ii9dzKU3zsGBsWHAWQ9xzdu3gKnmjXRsEEDpceoA+aJcrkpqchNSX3n47XNZC9u4jfpgu3iNFn+apsaQ8fMROkxBcdpm6rvyx+vE0XycrVIGWJQYrlT3DNZGManricG9e6Jddt2Y9223QAA55qOmDNZfdeiSi8lPzKV5Ed6qdeIYpj9fx2Hp7srvOvU/vBIlzFeI8XLzMyAgdL6piFEJdQ3MzIzYKOkAcPAwLDEeurWLRsRFxeLmd/P/XcRLkNlVYctat+Ro/B0d4XXf/je0dfTQ9vmTXDk5D9wdLBDy8a+SHn9Bqs3bYeWlhaystW3F/m/K4czBMcUKK4cfhgWjolTZKNOXZxr4dM+vT484mXoY+RJAVndZCucatZAwwbqu1Ymyx1FvHeIqCTq3R3qHdSuXRuWlpbw9/dHXFwcYmJi8MUXXyAiIgLJycm4dOkS3N3dYWtri8GDB+PEiROYN28eRowYgdatWwMAJBKJ0nM/ePAAV65cgbe3t/ynZ8+eAICIiAj5cdWrl95DyMLCQt54AQCPHj2Cj49wSKybmxtMTEwQHl44VYyTk5PgGBMTE+S+NZ2FOpGUsiaHhmbprYTnQ+5j5saD8KrlgIl9Oyrsv/0kCg+j4jCsk/pO3/E2aTHXVgFNJS2npYXR0NQsdf0TZedVF6VdJ5pKrhOJtLR81IRYLAYAVDYzw48zp8DXux46tGmJH6Z9h9j4BJy7dPXfR/ojkJaSRg01/p+WBYnk/a/xd7lOioqKjsa0mbOgpaWF2bNmQFONR3UxT1RDo5T0SCUSoNRj1G8NqgK8ThSVXhYrxv1d82T5us3Ye+QYhvXvjZU/zcGMCV8iLT0dU+f/iqzsd+u48bGVdv0qK29Kq3cUDXPvYTgeRTzDwN493j+C5YDXiIxEIkFeXp7gp7j3JKDkuklJearsOSyVSrF180Yc++sw+nzaH02btXi/yH8EZVWHfdu9h+F4HPEMA3orX8BX3ZTlvfPduNHo0Lo5lqzZgO5DRmP0pBmo7eYCF6caSufBVxellcMaSvLkfZ+xltWqYunCXzBl4rd49SoFE6dMQ1aWej1P3vYx8gSQ9cafOvN7aGlpYQ7rJhWi3Hkb7x0iKkmFH4EBCKeRqlOnDurWrQtLS0sEBQXh8uXLaNeuHZKTkzFgwACYm5ujbdu2aN68OerUqSMf6aCMRCJBjx495CMw3lYw+gEA9N+hV3fRY4p70EqlUsGaBrq6igs3qePi3QBgYiCrSGYWKQAy8n83Nig5n3adDcCKg6fRwLUGln89GHpv5UOBc8H3YWpogOaeLkrOoH4KRsZkioQ9KAp6AhgqGTlTWhgjQ0N5rwSRSLFnRmZmptLzqgsjo/zRJ0XinvFW+hTCFIxYKTJnZ0b+OYyMDOW9LBrW9xZUVj3cXGBkZIgnT4VTwaib4tJY0KvVWMlopP9nBddJ0Ws8o6R7x9BIaRj5vWMkvLbu3A3Fjz//AgMDfSz69Wf58GR1xTxRDXFqGgBA20SYXwWjKsSp6fKRF0WPKTiu4BzqiNeJouLKnYLnq5GS56vxO4RJfvkKx8+cx2d9e2HUkMI1htyda+Hz8VPw97mL6NOts+oSoiKF10hx5Y2ScriY66rgGika5nJAEEyMjdC4vrdqIl3GeI3I7NuzC3v37BRsa9a8BV6/fq1wbKYos8QR4IZGRhCJFHvLZmZmyJ85BXJzc7By+RJcuXwJfT7tjxGjxvy7BJSxsqrDvu1yQKDs3mnw3753ANkolenjv8T40cORmJwMy6pVYWigj5NnL8in4FJHxb3LZRRTpgKF14niM7YgT4T3jIWFBSwsLFC3jiesrC0xZfosXPX3R4d2bVWTCBX7GHkiq5v8Cn0DfSxm3aTClDtv471DRCVR3ybp99C2bVsEBgYiMDAQTfIXoGzSpAkuXLiAoKAgtGvXDidOnMDr16+xd+9efPXVV+jQoQNSU2VTThQ0CBRtnXV2dsaTJ09QvXp1+Y9YLMavv/6K+A9crNLV1RXBwcGCbWFhYUhPT1cYdVEcdeuRbVfNHFqamogusvB2dJLs95rWVZUFg1QqxaK9J7HswCl09PXEmm+Hwkhfea+aq3fD0cbbHTra6j0fbAFra2toamoiPk44h2Vc/u8O9vYKYezs8hcdKy6MgwMMDAxgYWEh31bg9evXEIlESs+rLmytLKGpqYnYIouqFfxePX/Rtbc55M+DWWwYO1vYWllCQ0ND6QilvLw86OopNgaqE1uratDS1ERsfKJge0z+79XtFKdh+H9mk3/vFF0YOC5/cTrl946t4Bh5mPxz2L8V5uKly5g1Zy6qVqmClUuXqvU9U4B5ohrpj2SNmYZOwtGTRvm/p4dFIC8jE6KYBIVjdKuaQ8fUGOlhEVBXvE4U2VhZKn2+vl2GFGUvL3eKPpMLwyQmv4BUKoWnu7BThaODHcxMTPAsSj3Xo7IppRx2KDE/ioZJVBom8GYImjfyhbZ2xegrxWtEplOXrli+co3gx9bWHokJCQojMeLjYmFnX/z88nZ29gr1VFm4ONg5FD43MjIy8P3MafC7egVjxo5T28YLoOzqsG+7diMEzRo1/M/fOwAQcCMYoQ/DYWigjxoO9jA00EfK61Qkv3wFFydHVSdFZWysrVReDjvY20EkEuHCpcuILXJfOed/O3j5UvgOrk7KKk8KXLx0GTPnzEOVKhZYtXSJYJ+6YrmjiPcOEZXk/6IBo0mTJsjOzsaZM2cEDRinTp1C1apV4eHhASsrK4hEIpw+fRpxcXHw8/PDd999BwDIyckBUDjXXlhYGDIyMjBy5Eg8ePAA8+fPR0REBG7duoXJkyfj+fPncHR0/KA4jxgxAuHh4ViwYAEiIiIQFBSEKVOmwMPDQ56G0hTE99GjR0hLK//eoHo6OvBxro7zIQ8Eo0TOB9+HsYE+ajsq/wC7+shZ7LtwDZ91aIpfRveDTjEV9tSMTEQlvUQ9J/VdjKsoXV1d1PH0hH9AgCBP/Pz9YWRkBBcXxZEkNjY28kXg3+bv7w9bGxtYWsoW6fLx8cH169eR89YHez9/f2hqaqJevXpllKIPp6uri3q13XE1MEiQJ1cCgmBkZAg3l1oKYWxtrGFtWQ2XAwIF268EXIOdjTWsLKvBwMAAdfPP+3aeBN8JRVZWNup6uJddolRAT1cX9TxccfnaTUG+XLp2A8aGhvBwrlmOsfv4ir93AmBkZARXF2eFMLY2NrCytMTV/BF5b4cp2AcA12/cxOJly+Hh7oZlSxahShWLsk2MijBPVCMzIgqZT6Nh3aeTYLtV745If/QMokjZYn8vzvmjWtfW0NQtHA1o1acTJGIxXly89lHj/D54nSjS09VF3druuHLtuiBPLgcGwdjIEO5Kyh07aytZueMv/F9fCQiCnY1sn521FbQ0NXH3QZjgmKiYOKSmpcEmP9/UjV5+OVw0P64EysrhkvMjSLBdlh+yMrrAm7R0xMTFw9PdtewSoWK8RmQsLKrA2cVV8OPtUx8iUSZCgm/Kj0tNfY3790Lh7VP8/PLePvUREx2FqKhI+baoqEhER0fB21u2Zk5eXh4W/DAHjx+FY9qM79GzV5+yS5wKlFUdtsCbtDTeO/n3DgAcO30Oa7fuEhxz8Pjf0NTURJMGwqmY1YmsHK4N/4DAYsphxfe/wnI4QLD97XJYS0sLK35bjYN/HhEcExxyCwBQs4aj6hOjImWVJ4CsbrJo2Qp4uLthOesmFa7ceRvvHSIqScXo2lEKXV1dNG3aFH5+fvDy8gIga8CQSCRo21Y2FKxz5864f/8+Fi5ciPT0dNja2qJfv344f/48QkNDMWjQILi4uKBVq1aYOHEivvvuO4wcORKbNm3CqlWr0Lt3bxgaGqJJkyaYPn260qmd3ke9evWwadMmrFy5Er169YKxsTHat2+PyZMnC6aQKknlypXx6aefYvHixYiMjMTs2bM/KE6qMLpba3y5Yhum/bEfnzTzwZ2IKGw/448JfTrAQE8X6aIsPI1Lhl01c5ibGCE8Kh7bTvuhtqMtOtT3ROhTYY+AmjZV5VNPPY5JlG+rSAYOHIhZ33+PX379FR07dMDDhw/x559/YsTw4dDX10dGZiaioqJgbW2NSvkLyQ8eNAjLV6yAiakpGjdqhMBr13Dl6lXMmD5dft5+ffvi8uXLmDtnDnr37o3Y2Fhs274dXbp0QbVq1YqLjlr4rP+nmDJ3AeYvWo4uHdri/sNw7D9yDGOGDYG+nh4yMjMRGRUDG2tLeZ4MG9gXi1athanJRjRr2AD+QTdwyS8Qc6ZOlJ93zLDBmDTrB8yY/wsG9O6JlNevsWHbbri7OKNpQ/VdYLbA5/0+wcQfFmHOktXo1q4V7oU/xt6//saXQ/vn54sIz6JjYWtVDZXNTMs7umVu8MD+mPH9HPz86yJ06tgeDx6G4dDhwxg5/PNi750hgwZi2cpVMDUxkd07QUG4ctUPM6fLFmvLycnBit9Ww9DAAAMH9EdUVJTgb1apUgVVq1T56Gl9V8yT96dtYgRjj1rIjIhCzosUAMDjn39Hvc0LkfvqNRKPX4Blz3aw6d8VIYMnysNFLN0EmwHd4HtiE56t3AojF0e4LvgO0ZsOICv6w0ZhljVeJ4qG9e+N7+b+jHmLV6Jr+9a4H/YI+46cwNhhg+TlzvPoWNhaWaJS/vP18wF9sPC39TBdvxnNGtaHX9BNXPS/hnlTJgAAKpmZom/PLth35AQAoEG9ukhMTsa2fX/CqloVdO+ovtMRDO3fB5Pn/oQfFq9A1/ZtcC/sEfYdOV4kP2Jga2Ulz49hAz7Fot/WwXS9MZo2bAD/oJu46B+IuVO+FZz7aaTs2nCsAD1g38ZrRDnPOnVRp249LFuyEMNHjoapqSn27N4JIyNjdO1auMZJVFQkcnNz4eQk++jWomUrHNi/Fz/MmYXPR4wCAGzfuhmOjjXQoqVsCt+Tx4/i/v1QdO7SDRZVqiAs7IHgb7u5eXykVL67sqrDAm/dOw68dwDg0+6dMeWHX7Fm03Y0bdgAIXfvYfehoxjcp6daTyEFFJTDc/HTr4vQqWMHPHj4EAcPH8Go4cOgr6+ntBz+bNBALF25CiYmJmjSqCECg4Jw+aofZk2fCkD2zWNAv77YuXsvKlUyQ726dfD06XPs2rsP3l714KvGC1YDZZMnOTk5WP7bGhgaGGDQgH6sm6Dilzu8d/6jlKxvQlSUhlRdF1SgjybzygGVnu9CyAOsP3YBzxNfoFolU/Rv0wjDOjYDANwMf4YxS7dg/vDe6NnMB2uPnsfGE5eKPdfGKSPRwLUGAODMjVBM33AAh3+cgBrFTEelCoYt++NphGqnB/EPCMCuXbsQExODKlWqoHv37vi0j6yX2d27dzF9xgx8N2kSOnToIA/z999/48/Dh5GcnAwrKysM6N8f7dq1E5z33r172LR5M54+fQpTU1O0a9sWQ4cOVfmw85pOTogLv6vSc14NDMK2PQcQHRuHKhbm6NW1M/rnL/Z5O/Q+Jn3/A6Z/+xU6t2sjD3Ps9FkcOHIMSS9ewsaqGgb37Y2ObYTr2Nx7GI7Nu/biYfhj6OnpoXljX4wbMQzGxqpdF8TGtS6SH1xX6TkB4PK1m9iy7zCiYuNRxaIy+nRpj0GfdAUAhNx7iAlzfsGs8WPQtW1LhbB/X7iCX1ZvxME/lsO6muI9Utr+D1XVoyGeP3mk0nP6BwRi5+49iImJgYWFBXp074a+fXoDkM11O23mLEye+C06dmgvD3Py1CkcOnwEyckvYG1lhQH9+6J9fmP27Tt3MH1W8Y29nw0ehKFDBqss/o61XJgnRTjWcsFJnbLpXWresiGanN+JwHZD8erKdcG2O6NmIGZHYc8rhzEDUHPSSOjbWyPzaTQiFm9A7O6jgvNVblYf7oumwbSeO3JepCB291E8+uE3SMVilca7W244r5MiHGu5ICHslsrOBwBXAq9j695D8nKnd9eOGNCrOwDgVuh9TJy9ADMmfIku7VrLwxw7fQ77/jqB5BcvYW1ZDUP6foJObQqfv1KpFIeOn8Kx0+cQn5gEC/NKaOBVF2M+Gyj/2KAKVm7eiA+7rbLzAcDVwOvYuvfgW+VwRwzoJSuHb4Xex6TZP2L6hHFF8uMs9v91QlYOW1bDkL690LGNsDy66BeI+UtWYvvvy8t0+kNrNy9eI0VYuXnjUURU6Qe+p/S0NGzauB7XrgVAKpHA3aM2Ro8dBzu7wuk8Zk6fjKTERGzeVthjPjk5CRv/WIvbt0KgpaUNb5/6GD32S5iby3pIz5j6He7fDy327x7/++wHx93FyaHC1GEv+gXgx8UrsH3tSqVTuamKjWvdCnHvAMC5K/7YeeAI4hOTYFmtCnp16YhPu6t+/n4rN29EPglX6Tn95OVwLCwsLNCze1dBOTx15veYMvFbdOxQ+H534tRpQTk8sH9ftG9beB1JpVKcPHUaR0+cRHx8AszMTNG2VSsMHTLogztYFlW9lqva58mtO3cwfdacYv/eZ4MHYpgK6ybVa7lWiHvnY5c76n6dAB/v3qleq+KMoFMnqv4m+V9g2LJ/eUfho2MDBvFhUURZNGBUdGXRgFHRlVUDRkVWFg0YFV1ZNGBUdGXZgFFRlUUDRkVXFg0YFVlZNGBUdGXRgFHRlVUDRkVWFg0YFV1ZNGBUdGXxEbaiK4sGjIquLBowKjreO0JswPh3+E3y/f0XGzA4ToeIiIiIiIiIiIiIiNQOGzCIiIiIiIiIiIiIiEjtsAGDiIiIiIiIiIiIiIjUjmpX+iUiIiIiIiIiIiIiKo2GRnnHgCoAjsAgIiIiIiIiIiIiIiK1wwYMIiIiIiIiIiIiIiJSO2zAICIiIiIiIiIiIiIitcMGDCIiIiIiIiIiIiIiUjtswCAiIiIiIiIiIiIiIrWjXd4RICIiIiIiIiIiIqL/GE32rafS8SohIiIiIiIiIiIiIvo/JpFI8Ntvv6FFixbw8vLCmDFjEB0dXezxjx8/xtixY9GoUSM0adIEEyZMQFxcnHx/Xl4e6tatC1dXV8HP6tWrVRpvNmAQEREREREREREREf0fW7t2Lfbs2YMFCxZg3759kEgkGD16NHJychSOTUlJwYgRI6Cvr4+dO3di48aNePXqFUaPHo3s7GwAwPPnz5GdnY2jR4/Cz89P/jNy5EiVxpsNGERERERERERERERE/6dycnKwZcsWTJgwAa1bt4abmxtWrFiBhIQEnDlzRuH4c+fOITMzE4sXL4aLiws8PT2xZMkSREREICQkBAAQHh4OY2NjuLm5oWrVqvIfIyMjlcadDRhERERERERERERERP+nwsLCkJGRgSZNmsi3mZqawsPDAzdu3FA4vkmTJli7di309fXl2zTz1yx58+YNAFkDhpOTUxnHnIt4ExERERERERERERGpvXbt2pW4//z580q3JyQkAACsra0F26tVqybf9zY7OzvY2dkJtm3YsAH6+vrw9fUFADx69AhisRijRo1CWFgYLC0t8fnnn+OTTz555/S8CzZgEBEREREREREREdFHJdXQKO8o/GeIRCIAgK6urmC7np4eUlNTSw2/c+dO7Nq1C7Nnz4a5uTkA2SLfEokEEyZMgJWVFS5fvoyZM2ciNzcXffv2VVnc2YBBRERERERERERERKTmihthUZqCqaBycnIE00JlZ2fDwMCg2HBSqRSrVq3CunXrMG7cOAwdOlS+78SJE8jLy5OveeHm5oa4uDhs3rxZpQ0YXAODiIiIiIiIiIiIiOj/VMHUUUlJSYLtSUlJsLS0VBomNzcXU6dOxfr16zFz5kxMnDhRsF9fX19hwW4XFxelU1J9CDZgEBERERERERERERH9n3Jzc4OxsTGCgoLk2968eYMHDx7I17Qoatq0aTh9+jSWLVuG4cOHC/a9efMGDRs2xOHDhwXbQ0ND4ezsrNK4cwopIiIiIiIiIiIiIqL/U7q6uvjss8+wdOlSmJubw9bWFkuWLIGVlRU6duyIvLw8vHr1CiYmJtDX18fhw4fx999/Y9q0aWjYsCGSk5Pl5zIxMYGpqSkaN26MFStWwMLCAtWrV8eZM2dw7Ngx/PHHHyqNOxswiIiIiIiIiIiIiIj+j02YMAFisRizZ89GVlYWfH19sXnzZujo6CAmJgbt2rXDr7/+ij59+uDEiRMAgMWLF2Px4sWC8xQc88svv2D16tWYN28eXr58CScnJ/z2229o0aKFSuPNBgwiIiIiIiIiIiIi+rg0uLrBx6SlpYWpU6di6tSpCvvs7OwQHh4u/33Lli2lns/Y2BgzZ87EzJkzVRrPoniVEBERERERERERERGR2mEDBhERERERERERERERqR02YBARERERERERERERkdphAwYREREREREREREREakdNmAQEREREREREREREZHa0S7vCBARERERERERERHRf4tUg33rqXS8SoiIiIiIiIiIiIiISO2wAYOIiIiIiIiIiIiIiNQOGzCIiIiIiIiIiIiIiEjtsAGDiIiIiIiIiIiIiIjUDhswiIiIiIiIiIiIiIhI7WiXdwSIiIiIiIiIiIiI6D9GQ6O8Y0AVAEdgEBERERERERERERGR2mEDBhERERERERERERERqR0NqVQqLe9IEBEREREREREREdF/R3rQ8fKOQoVj3KhHeUfho+MaGISoxw/LOwpqxcHZHc+fPCrvaKgVx1ouuBmeUt7RUCsNXCvjwZO48o6GWvGoZYMnEc/KOxpqpZZTDZy6lVve0VArXbx1+IwtwrGWC07quJZ3NNRKt9xwXAtLLe9oqI3GbmYIfPimvKOhVpq4m+L1rQvlHQ21Usm7Lfb4sW/a2wY312B9rQiPWja4+zipvKOhVuo6V0PE06flHQ214lSzJrJOrCvvaKgV/e7j8DgisryjoVacnarz/e8ttZxqlHcUiP5vcQopIiIiIiIiIiIiIiJSOxyBQUREREREREREREQflVSDfeupdLxKiIiIiIiIiIiIiIhI7bABg4iIiIiIiIiIiIiI1A4bMIiIiIiIiIiIiIiISO2wAYOIiIiIiIiIiIiIiNQOGzCIiIiIiIiIiIiIiEjtaJd3BIiIiIiIiIiIiIjoP0ZDo7xjQBUAR2AQEREREREREREREZHaYQMGERERERERERERERGpHTZgEBERERERERERERGR2mEDBhERERERERERERERqR02YBARERERERERERERkdrRLu8IEBEREREREREREdF/jAb71lPpeJUQEREREREREREREZHaYQMGERERERERERERERGpHTZgEBERERERERERERGR2mEDBhERERERERERERERqR02YBARERERERERERERkdrRLu8IEBEREREREREREdF/i1RDo7yjQBUAR2AQEREREREREREREZHaYQMGERERERERERERERGpHTZgEBERERERERERERGR2mEDBhERERERERERERERqR02YBARERERERERERERkdrRLu8IEBEREREREREREdF/jAb71lPpeJUQEREREREREREREZHaYQMGERERERERERERERGpHTZgEBERERERERERERGR2mEDBhERERERERERERERqR02YBARERERERERERERkdrRLu8IEBEREREREREREdF/ixQa5R0FqgA4AoOIiIiIiIiIiIiIiNQOGzCIiIiIiIiIiIiIiEjtcAopUrmbIbewdeduREZFoXKlSujZrSv69v4EGhrFDwu7cPkK9uw/iPiERFhWq4aB/fqgY7u2xR6/buNmHD56HGdP/FUGKVC94JAQbNuxE5FRUahUqRJ6dOuGvn16l5gnFy9dxp79+5GQnycD+vVFh/btBMdcueqHg3/+ieiYWBgZGcHbqx5GDf8clStXLuskqUSWKBN7t/+OGwEXkZUlglttL3w2aiJs7Kq/8zlWLpwJfX0DfDlxrmD7yxdJ2Lt1Ne7duYHc3Bx41vPFoOFfw8rGQdXJUCmRSIQdW//ANf8ryMoSwcOzHkaO+Qq2diXH+3XKK2zdtBYhwTcgycuDT4NGGDHmK5ibW8iPkUqlOHr4AM6cPo4XyUmoWs0K3Xr2Rtfuvcs6WR9EJBJh65bN8A/wR5ZIBE/POhgzdizs7OxLDJeSkoJNGzcgOPgm8vLy0MDXF2PGjBXkyduOHTuKI4f/xNZtO8oiGSqVnZWJ43uW407QWWRnZcLJvQF6DZsGS5saJYaLfvYAf+9fjaiIe5BKJbCv4YHugyfBvoaH/BipVIqLJ7Yh4PxBvH6ZgMpVbNCy8xC06DSorJP1r/EZWzx9W0u0vH0CNz/9Gq+uXC/xWJsB3VBr5jgY1rSH6HksnizZgNidfwmOMavvCfdF02BW3xPiNxmI2XEYj35cA2lubhmmQnWyRJk4sH0NbgZeQFaWCK61vTF45CRYv0e5s3rhDOgbGGDMt/ME2y+d+Qtbf/9F4fh2Xfth2BdTPzjuZSFLlIkDO1bjZuAFZGeJ4OrhjUGjJsHa1vGdz7Fm0XTo6RtgzLc/CLZLpVKcProLl/45gpcvElGlqhXadx+A9l37qzYRKnTtzgOs338MT2PiYG5mir4dW2FI9/YlPksKhD+LxojZC3FoxY+wqSYrZ+KSXqL3hNnFhunWqgnmjhumsviXlZysDJw9tAwPg88gJzsT1V0aoNPAGahiVbPEcNFPbuH84eWIf34fuvpG8GjQCW17T4SegbH8GHFuDi4fW4O7144jM+0VLCwd0aL7l6jt26Wsk/VBWF9TJBJlYve29bjmf1mWJ7Xr4fMx498pT7ZvWoPbIUHIy8uDT4PG+Hz0N6hsXkV+zMsXydi5dS1uBwdBkpcHF7faGDRsLJyc3co6WR9EJBJhy5YtCPD3h0gkgqenJ8Z+8QXs7OxKDJeSkoKNGzYgODgYeXl58PX1xZixY2Fubi4/Ji8vD7t378a5s2eRlpaGWrVqYdTo0XBzU988CQiPxJpTAYhIeAlzE0MMbFoPw1r7FPuMzc4V44+zQfg7JAwp6SK42FTBlx0bo5mbo+C4u5HxWHXSH/eiE2Coq4tmbtUxqXsLWJgYfoRUfTiRSIRtWzbBP8APWSIRanvWwZixX77ju856hMjfdRpi9JgvBM+TlFevsHPndtwKCUZa2hvY2tnh00/7o2Wr1mWcqg/D9z8iKoojMFTs8OHDcHV1lf/etm1brF69GoCsMnrkyBG8fPlS6bH/Dx6EhWPOjz/D3s4W82bNQNvWrbBx63bsP3S42DBX/QOwcOkK1Pf2wg/fz0S9Op5YsuI3XLx8Venxd+/dx5FjJ8oqCSr3MCwMc+cvgL2dHebMmoW2rVtj89ZtOHDwULFhrvr7Y9HSZajv7Y15s79H3bp1sHTFSly6fEV+zKXLV/DzwkWoVasW5syageHDhuLOnbuYNut75OTkfIykfbDfl83Fdf8LGPD5Vxg3cS5SXibj59lfIyP9TalhJRIJdm5cgRsBFxX2ZWWJ8Ouc8Yh89ggjxk3D15Pn49XLZCyYOQ7paallkRSVWbH4JwT4XcbQ4WMx4buZePUyGXNmfof0tLRiw+Tl5WHBvBl4FP4QX349CV98PRFhD+9h/uypEIvF8uO2b/kDu3dsQrsOXTF7/kL4NmyCjet+w5lTxz9G0v61xYsXws/vKoYPH4HvJk/By5cvMHPGdKSVkifz5s5GeHgYvv5mPL7+ejwePniA2d9/L8iTApcvX8KmjRvKMhkqtWP1NNy+dgbdB03CkK9/QeqrRPy+YCQy04u/vpMTorBm/nDkZIsw6IsfMXjczxCLc/HbvGFIjHsmP+7Y7mU4uW8VGrfpg7HT18HTpxX+3PozAs4d/BhJe298xhZP384KDf/eAp1KpqUea9W7I7x2LEXyOX/c/PRrvLxyHV5bFsG6f1f5MQY17NDo9FbkibIRMmginq7YghoTR6D2yuI/0Kqbdcvm4HrAefQb9g3GTvwBKS+TsHD2uHcud3ZvWo6bgReU7o969hjWttUxZ/FmwU+XXkNUnQyVWb98Nm4EnEe/od9gzLc/IOVVMha9V34sKzY/9m//DYd2rUWL9j3x3ZyV8PJtgV0bluDSP8XXCctT6OOnmLx4LarbWGLRd1+gc3NfrNlzBDuOnSk1bER0LL5b/Dvy8iSC7VUqm2LTgqkKP52bN4S2lhZ6tmlaVslRqT83TMGDm6fR/tPv0HvUQqSlJGL74s8hyii+zEmMDseOZSOgp2+E/l/9hnZ9JuH+jdM4uO5bwXFHNk7FjYt70LzrWAyasA5WDm449Md3eBKq/D1AXbC+pmjVkh8R6HcRQ4Z/gfHffY9XL5Mxf9YEpKeXlCdi/PLDFDx+9ABjv56CMV9NRtjDUCyYM1meJxkZ6Zgz/WuE3r6JQUPHYPKsn1DN0gZzZ3yDx+EPPlby/pXFixbB7+pVDB8xApOnTMHLly8xY3rpddi5c+YgPDwc34wfj6+/+QYPHjzA90XqsBs3bMCRw4fRt29fzJgxA1paWvh+1izExcV9jKS9t7uR8Ri/+Sgcq1XG8uHd0c3HDStOXsWWCzeLDfPDgXPY738HI9o0wKqRPWFfpRLGbz6KkKex8mMeRCdi9NpDMNTTwYrhPTCxWzMEhkdi0lb1vl/etmTxr/Dzu4Lhw0fhu8nT8PLlS8yaMbXU58kPc7/Ho/BwfP3Nt/jq6wl4+OA+5nw/U36d5ObmYO7cWbh9KwSfDR2G72fPg7OzCxYv+gUXzp/7WMn7V/j+R0RFcQRGGTt06BD09PQAADdu3MCMGTNw/vx5AEDXrl3RokWL8oyeyu3YvRe1atbAjMmTAAC+9X0gFoux98Ah9O7ZXZ4Xb9uyYxdaNm+KcWNG5YfxRlp6Grbt2oM2rYT5IxKJsHTlb6hiYY7kFy/LPkEqsHP3HjjVrIlpUyYDAHwb1IdYnId9Bw6i1yc9lebJtu070aJ5M3w5dgwAoEF9H6SlpWH7rl1o3aolAGDfgYNo2KABvv3ma3k4e1tbfDt5CoKu30CL5s0+Qur+vcdhoQi57oep85bDq77sBd61thcmjumDs3//iV79RxQbNurZY2zfsBxPHz+Arq5i/l33v4D42EgsWrMHdg6y3oH21Z0wcUwfBPlfQLvO6tmDLezhfdy4HoDZ8xeifoNGAAAPz7r4cuQgnDp5FP0GfqY0XMDVS3ga8Ri/rdsKewdHAECNmrXw7Vcj4X/1Ilq16YCkxAQc/+sgxnw5AZ27fQIAqFvPBy9eJOFWyA107NLjYyTxvT18+ADXg4Iwf/4CNPD1BQB4enpi5IjhOHnyBAYOVD4q4OrVK4iIiMC69X/AwUHWs7qmU018Ne5LXL16BW3ayEZ4vX79Gjt3bsfpU6dgYmLycRL1gZ49uo37wZcwdvo6eHjLnpFObvXx4/hO8Du7Dx17f6E03JXTu6Cjp4+x09dCT1/WI825dkP8OL4Trp7eg74jv8fLpFhcOrkDn46YheYdBwIAXDwbIeVlAsLu+qNp+34fJ5Hvgc9YJTQ0YDe0F9wXTce7ronnuuA7xB86jYdTfgUAvDjrB53KZnD94VvEH/gbAOA0dQzEaRm42ecrSHNzkXz6CvJEWfBcNQdPFq5HVnR8WaVIJZ6E3cXtG1fx3dyVqJdf7rh4eGHK2F44//ch9Ow/stiwUc8fY9eGpXhWTLkDAFHPHqGGswdqudYpk/irmjw/5qxE3fqy69nFwxtTv/gE508dQs9+xedH9PPH2LVxSbH5kZwYh3+O7cHQMVPRtktfAIBHXV+8epGI0FvX0LpTn7JJ1AfYePAEXB3tMf8bWf2jiVdtiMUSbPvrNAZ0aQN9XV2FMLliMQ6cvoQNB49DV0dHYb+ujg7qOAtHKTx8GolzgcEYN/ATeLnVKpvEqFD0k1t4dOciBk/cAOc6suejg0sDrJreHjcu7kXL7l8qDXft7DYYGJmh/1e/QUu7MO+Obp2FFwlPUcWqJiIf3cSD4H8E567h3gSvkqLwOPQKatVRz/ck1tcUhT+8h+Dr/pj1wxJ4N2gMAHCrXRdfjxqAf04ewacDlI80CvS7hGcRj7F87Q7YO8hGkTrWrIXJX3+OwKsX0KJNR1w8exLJifFYsPh3uHnUBQDU8/bFmzevsX3Tavy0ZN3HSeR7evjwIYKCgjD/xx/hW1CHrV0bI0aMwMkTJzBwUHF12KuIiIjA+vXr4VBdVod1qlkT48aNw9UrV9CmbVskJyfj5MmT+PLLL9Gte3cAgI+PD0aPGYODBw/i22+/VXru8rT2dCDcbKvil8GdAQDN3ByRm5eHzedvYEhLb+jrCD9Nxb5Kxd8hYZjZuw0GNKsHAGhYyx63n8Vhv/8d+NS0BQCsOOEHN9tqWDWiJzQ1ZZUeI309LP7rEmJepsLOwuwjpvL9yd51ruGH+T+hgW9DAEBtT0+MGjEMJ08ex4CBg5WG87t6BRERT7B2/ca33nWc8PW4sbh69TLatGmHG9ev49nTp1i+cjVcXGQdZ7196iM5KQmHDu1H23btP04i3xPf/4hIGY7AKGPm5uYwMjICIBuB8TZ9fX1UrVq1PKJVJnJyc3E39B6aNWks2N6yWVNkikS49+ChQpiExETExMahWWNhmBbNmiIuPh4xscIeJBu2bEflypXRscg0H+oqJzcXd++GKuRJi+YFeaLYa0iWJ7Fo1qSJMEyzZoiLi0dsbBwkEgm8vb3QpXMnwTH29rLhyHHx6v0RCQDuhlyDnr4B6no1km8zNasMd09v3L4ZUGLYdSt/hESSh/lLNsG0kuJULg0at8K8RRvkjRcAoK0t+7CQq8Y9p2+H3IC+vj68vBvIt5mZVUJtz3oIuXmt2HC3Qm7A1s5e/jIMAPYOjrCzd0DIzSAAwLWAq9DR0UW7jsIpGabMmIfp3/+o2oSoUEhwMPT19eHt4yPfZmZWCZ516uDmjRvFhwsJhp2dnbzyCgAODtVhb28vCHdg/z6EBAdj1vez0bBRI2WnUjthd/yhq2cAt3qFPXeNTc1Ry6MBHt4qvseqpU1NtO0+XN54AQB6+oaoZGGJF4nRAIDQG+eho6uHxm2EHxeHT1yGkd+tVG1CVIDPWOVM67rC8/f5iNn1F24Pn1bq8QbVbWHsWgMJR88Ktscf/gdGzo4wrCW7j6p2aI6kU5cF00Ul/HkaGlpaqNqxuWoTUQZCb8nKnTpFyh232j64E1xyubNx5Q+QSCSYs2QLTCuZK+yXSqWIfv4EDjVcVB7vslKQH55ehfePqVlluNb2wd1g/xLDblg5T5Yfi7fCxEwxP0KCLkFHRxct2vcUbP9q6q8YP2OxahKgQjm5uQh58BitGnoJtrdt7I1MURbuhEUoDRdw6x42/XkSw3t1xjeDe5X6d6RSKZZs2YcadtYY1K1i1GUj7vtBR88QTrULG22NTMzh6OKLJ6GXiw3XpvdEDPl2g6DxQiu/LibOldXFHtz8B5WrOcgbLwBAQ0MDI2fuRZfB36s6KSrD+pqiOyHXZfV6b1/5NjOzyvDwrIdbNwOLDXc7JAg2dg7yxgsAsHeoAVv76vK8jImOhJGxibzxooBnXR+EP7xX4giP8hScX4f1ebsOW6kS6tSpgxs3ix91EBKcX4et/lYdtrqsDnsjvw57+/Zt5OXloUnTwrqgjq4uGjZsWGL9uLzkiMW4GRGLtp7CRtsOdZ2RkZ2DW2+NqChQ1dQIeyYOQrf6hVNiaWpqQEtTE9niPADA6wwRbkbEoH+zuvLGCwBoX7cWzswdrfaNFwAQEnwz/12nvnyb7F2nLm7eKH7qz5CQm8W86zjIwxkaGqJzl25wdhbWTezs7ZGgxnVZvv/990g1NPnznj//Rf/3IzAyMjKwfPly/PPPP8jIyEDt2rUxY8YMeHp64tatW1ixYgXu378PbW1ttG3bFtOmTZPPbd22bVsMGTIEt2/fhp+fH3R1ddGjRw/MmDED2tqyrDt79ix+++03PH/+HHXq1EHTpsKh4G3btkXv3r3RsGFDDBsm63nSrl07/PqrrIfjzJkzER4eDkDWErxq1SpcuHABKSkp8PDwwKRJk9Ao/6G6evVqBAcHo2nTpti1axdSUlJQr149zJ8/H05OTh8lP0sSn5CAXLEYtrY2gu02NtYAgOiYWNT39hLsi4qOAQDYFQljay0LExMbK98XfOs2zl24iHW/LceFS1dQESTEF+SJrWC7jbUsTTExsajv7S3YFx0t+5BYbD7GxsDW1gZfjB6l8PcCAmUV/erV1XudBwCIjXmOapY20NTSEmy3tLaD/6V/Sgw7btI8ODgW32vR0MgYLu6ylxxxbi7iYp5j95bfYGJaCY2aq+8Hg5joSFha2UCrSJ5Y2djiyqXih/nGREfCxkZxPlAra1vExsiup2fPnsDaxhb3793Fzq0bEPn8KcwtqqBv/yFq25sPkN0PVlZWCnliY22DS5cUpw+Th4uKhk2R+w4ArG1sEBMTI/+9S9duGDlqNLS1tREUVPxHB3WSGPsUFpZ20NQU5kkVSwcE+58sNlzBiIq3JSdEIT76CVxqy8qZ2MgwVLFyQMTDmzi+ZwXioh/DrHI1dOg1Ri1HX/AZq5woKh6X3DogKzYR5i0blnq8sZusDpHx+Llge2ZEpGy/Sw1kxSTA0NEOGY+fCY7JeZGC3NQ0GLuUvP6KOoiLfo6qlrYK5U41azsEXj5dYtixE+fDvoRyJykhBlmiDDx7/ADTx/VFcmIsqlraoke/EWjetptK4q9q8THPlOaH5Tvlx48l5kfUs0ewtLZH+P1bOLhjNWIin6CSeTX06DtcLUdfxCa9QK5YDAfraoLtdpayjkZRcYloVNddIZy7kyP+Wv0TzIyNcOJS8R9pC5wNvIn7T55j7ZxJ0NKsGC+fL+KfonJVxTKncjUHhAYVP0WLaWVLmFa2BADkZGciJuI2zh9eAftaPrCyl32QTIx+iGo2zgi9dhxXTqzDy8RIWFhWR7s+38HNRz17BgOsrykTExMJSytrxTyxtoPf5bPFhAJioyNhrTRP7BAXGwUAMDU1Q5YoE+npaTA2LuwtnRAv++idlBAH41rqNy1zcXVYaxsbXLpYfB02KjpaoV4DADY2NoiJlaU5OioKBgYGgjUxCo55+fIlRCIRDAwMVJAK1Yh5+Qa5eXmoXlXY8cyhSiUAwPPkFDRxFa5Fpautjdr2smeIRCJFUmo6dlwORszLVMzo3RoA8Cj+BSRSKSobGWDmrlO49OAppFKgXZ1amN67FUwN9Ms6aR8sJjoaVkruHWtrG1y+pHyKRkB2DdjYKq6lYm1jg9j8dx0vbx94efsI9ovFYty4fl3wkV/d8P2PiJSpGDXnDzBx4kRcuXIFv/76K/766y/Y29tj5MiRuHPnDoYOHQpnZ2ccOHAAq1atwp07dzBq1Cjk5eXJw69atQq+vr44duwYpk2bhl27duHECdn6CyEhIRg/fjw6deqEY8eOoXfv3tiwQfkcet7e3vK1MA4ePIiuXbsK9ufl5WHkyJG4efMmlixZgsOHD8PFxQWjRo3C3bt35cfdvHkTwcHB2LBhA/bs2YOXL19i/vz5qs62fyUjIxMAYGQoXCzLML/ylCnKLDaMYZEwBRWuzMzM/OMysOy3NRg2ZBDslBRK6iojMwOAYvoMDYXpE4R5xzwpKi4+Hhs3b4FTzZpo2KCB0mPUiSgjAwaGRgrb9Q0MIRJllBi2pMaLopb+NAUzvx2K+6HBGDRCuCCgusnMyIBBkf87ABgYGEJUzP8dADIziw9XcL28SU3Fq5cvsGLJz2jfsSvmLlgML+8GWLdmuVrPqZyRmaFwLwCy+6G4ewGQ5cm7hLO3t5c3SFcUWaJ06L+1AGoBPQMjZGWmv/N5cnKysGftLFkv6c6yOfrT36Qg9VUSdq6ZgcZtP8WXM/+AW92mOLBpvlqugcFnrHK5KanIik185+O1zWTXk/iN8PoRp8nyV9vUGDpmJkqPKThO21TxmlQ3osz0f13ulPSxHgCinj4CIJs6adDIbzFp9nLUqOWOjavm49KZv/51nMtSZrH5YfTB+ZGWmoLXr5Lxx4o5aNn+E0yetxqeXo2wbd2varkGRnqmCABgVORjl2H+7xkikdJw1cwrwcxYMQ+Ls+v4WdR1dUL92hVnpE6WKA16+krKHH0jZJdynQD5o06+bYKdy0YiJzsTXQYXrpmTkZaC2Gd3ce7QMjTvOhZDJm5AFaua2L92vFqvgcH6mqLMDOXPEwNDQ2RmFn+dlFRfE+WHa9GmIzQ0NLHsl9mIjnyGjPQ0XL14BpfOyaY3zM7KUlEqVCsz41/WYd8hXEZmZrHHAMXXZcpLelY2AMBYXzgVn6Ge7PeMrJJHyG+9eAOdftqM3Vdvo3ej2mjsIutIkpIuezbP238WejraWDm8B77r0QKXHzzF+E3HFGbAUEfFvesYquhdp6itWzYiLi4W/Qcon4ZJHfD9j4iU+b++a58+fYorV65g8+bNaN5cNrXBDz/8AFNTU2zatAmurq6YM2cOAMDJyQnLly/HJ598Aj8/P7Rq1QoA0Lx5c/nICXt7e+zcuRMhISHo1asXdu3aBR8fH3zzzTcAgBo1auDRo0fYsWOHQlx0dXVhZiYbwmhubg59feELkp+fH+7fv4/jx4/DxUX2UjN//nyEhoZi8+bNWLVqFQBZi/nixYvl5xo4cCCWLFmi0nz7t0qrIGgqGeYklUqUHFlIIz/M2o2bUbVKFXzaq2eJx6sbiaS0PFGcnFxSSp4oy8eo6GjMmjMXWlpamD1rBjTVrFefRCJR+F+XlE5lafy3eg8Yge59PkPApX+wYdVPkOZJ0Lpj+V9HsjwRXh+SEu4hDSXXSuG5ig9XMJxanJuLN29SMW3WfDRpJpuqoW49H7xITsL+vTvUolefsjyRlpC2D82TikDZvSOVFH/vaLzjvZ8lysDmpRMQGXEPIyYth3lV2WiEPHEuMtJSMOK7FajXsAOAgjUw4vHPn+vUbhQGn7GqUdp1I5VIgFKPUa+PBMrLnRKeCx9Y7rjW9sak2cvgXqcB9PRlH5Dq+DTBm9QUHN7zB1p1+KTEZ1ZZU/4sKen5+mH5IRbnIu3Na3wzfREaNJHNOe1R1xcvXyTgr/2b1G4URmnX77s+W0tyNzwC4c+isXiK8jUj1IH0fcucd7imJXliDBy/FuLcbPj9vQHbFn2GETP3wMreDXl5uUhPTcbYuX/CunptAEAN98ZYP68XLh//XS3WwGB9TZHS58m/fL6+S53G3qEGZsxdiD/WLMF3X8vey2vWcsWAz0Zhyx+roKtf/r3slV4n//LeKbmskoUrKd9KO395KK2+Vlp8W3rUhJejDW49i8MfZ4OQlSvGL4M7Ize/46mHnSV+GCCrtzZycYCJgR5m7DqFwEdRaOqqPiMNlL/r/Mvr5D3fdaRSKbZu2YSjfx1Bn0/7oWkz9Zj6k+9/RPSu/q8bMB49kvWG8/Lykm/T09PDzJkz0bVrVzRrJlyA083NDSYmJggPD5c3YBSdmsnExAS5+XM/P3r0SOEc3t7eShsw3iWuJiYm8sYLQPZwbtCgAfz8/OTbqlSpIm+8KBqf8lYw8iIzU9hLLSO/tdvISLE1vGB9EFGRnm2Zb4W5dv0GLl3xw+8rlkIqlSIvL09escvLy4OGhobafkwqSHPR9BXkiaGRYk8lI8PS8+Rtd+6G4seff4GBgT4W/fozbPKn31InR/ZtxuF9mwXbGjZtizevXykcK8pUPjLj33L18AIAeNbzRXJSPP46uE0tGjAO7N2B/Xu2C7Y1adYKqcXkiaFR8b2bjYyMIFIywkmUmQnD/Lw0MDSEhoYG6vsK1wrwrt8Qt0Ju4HXKK1SqrDiP+ce0d89u7NmzW7CtWfPmeP06ReHYTFGm/PmhjJGRocI9BMjuI0MVXl9l7Z8/1+GfP4WLU9Zr1BFpqS8Vjs0SpUPfsPRe8Ckv4rFx8ddIin+Oz79dgjoN2sr36RnIrhMPr5aCMG71miPsjj/SXr+ASSX1GcXEZ6xqiFNl84drmwjzq2BUhTg1XT7yougxBccVnENdHN2/CX/t2yTY5tu0Ld68VnLvZGbA4B3unZKYVjKHl6/ix9Z6DZrh/p3rSH39EpUql9+9c3T/Jhzdv1GwrUHTdniTWkyZ84H5oW9gBA0NDfni4AXqeDfBvVvXkPr6JcwqWXzQ31Al44JRW6JswfYMkaxnt7EKpiG5EHQLpkaGaObl+cHnKiuXj/+Oy8d+F2zzqN8JGW8U75vsrHToG5a++KmWto58/YzqLr5YNb0dgs7uwCcjf4GenhGMzarKGy8AQFNTCzU9miD48v4PTI1qsL6m6NDebTi4d6tgW+NmrZGaUlyeFF/vMjQyfqf6Wj2fhvh98wEkJcrm7be0ssGFM7JpM9+eVqq87NmzB3t2C+uwzZs3x+vXrxWOFWWWUoc1LKEOmx9Odi0pP6ZgvzoxNtADAGRkC0daFPxuYqCrEOZtztay8rO+kx3EEgnW/XMN47s0hVH+CI6WHsJpLJu5yRotwmKT1KoBY++eXdi7Z5dgW7PmLZCi5Dop/V2n+Gug6LtObm4OVixfiiuXL6HPp/0wctSYf5eAMsD3PyJ6V//XDRglDQsrrpeIVCqFjo6O/HddXcXCtCCshoaGQs+Kt8O+j5Li83Y6lMVHXdhYW0FTU1NhcdO4ONnvDnaKczQWTAcVGx+PWk6FCy4XnMPB3g479uxDTk4Oxnw9QSF8508+RYd2bTBt0rcqS4cq2Vhbl5wn9opzvtrZ2cqPqfVWA1rBOezfCnPx0mUsXbES9nZ2+Gn+D6hSRX0+Brytbade8PYV9vK4GXQZd29dg0QiETRAJcbHwNbe8YP+XsTjB0hOjEPj5sL5kx2dXPE4LPSDzq0qHTt3R4OGwkWEgwL9cDvkhkKexMfHwc6++Dn3bWzt8ezpY4Xt8fGxcHaRzTNtbWMLqVQKsThX8BwR54kBALp6eh+UHlXo3KUrGjYULqQWGBiAkOAQxTyJixfcC0XZ2tnhaYTioqvxcfFwca04U3c0bdcPtX1aCbaF3ryAsLv+CnnyIiEaljY1i55CIC7qEdb/+gVyc7IxbtYGOLkLp0KqalVd1lAszoWObuE1IcmTNZTr6JZ/L8e38RmrGumPZOtaGDpVx5vbD+XbjZxkL/3pYRHIy8iEKCYBhk5F5qiuag4dU2OkF7PIcXlp3bE3vBoIy53goMsIvRWkWO4kxMDmA8ud8Pu3kJwYi+Ztuwu25+RkQ1NTC8bG5buQaOtOveFVpBwOCbqMe0rK4aT4aFjbOX7Q37O0tpc/S/DWs6RgmlZd3fIvc95ma1kVWpqaiE5MEmyPSUgGADjafnjDpV9IKFr61oO2tlbpB5eT+i37w6Vea8G2sJDzeHLfD1KJRDAS5VVSFKpYF1/mhN++AH0DE1R3LVzUWd/QBJWr2iMtVZbP5pbVkZoSD6lUKuhVm5cnhraOepQ3rK8pat+5J+o3FK77eP3aVdwJua6QJwlxsbC1K/4DcnF5khAfg1ousnVnkpMScff2DbRs0wmWVoXrVz2NeARjE1NUsyz/jgVdunRBw4bCNacCAwMRHByskCdxcXEl1mHt7OwQoaQOGxcXB1dX2VoftnZ2yMzMROrr1zCrVEl+THxcHKpVqwY9NbhO3mZvYQYtTQ1Ev3gt2B6V/3uNaoqNcnGv3uDa4yh083GDnk7h9xB3O9laRclvMuRraOSI8wRhxXmybzRvh1MHnbt0Q8OGwsbJa4H+CCnmOinpeVL8u04cXFwL14TJyMjA/HmzERb2EGPGjsMnvXqrICWqw/c/InpX6tltXUUKRk+EhhZ+sBSLxWjbti2eP3+O4OBgwfFhYWFIT09/5wWx3dzccOvWLcG2e/fuFXt8ScPdXF1dkZaWJh81AsgaL4KDg1Gr1rvP91+edHV1UdezNvwCrgkaZK4GBMLIyBCuLoqFhq2NNawsLXHVP0Cw/WpAIGxtbGBlaYlhgwdizYqlgp+unWRDRNesWIphgxUXplUXurq6qOPpCf+AAEGe+PkHwMjICK4uzgphCtJ91d9fsN3PP0C+DwCu37iJxcuWw8PdDcuWLFLrD2uVLaqiprO74KeOVyNkiTJx91bhwllvUlMQdv826ng1KuFspbsTHIi1y+bhZXLhHPCSvDw8uHuz1Hm7PxZziyqo5ewq+PHyaQCRKBO3Qm7Ij0tNfY0H9+7Ay7v4Ofe9fBogJjoK0VHP5duio54jJjoSXj6ycPUbyCrLfpeFi8HdCAqAY42aatErxcLCAs4uLoIfH5/6EIkyEfLW8zo19TXu3QuFt0/9Ys/l41Mf0dHRiIqKlG+LiopEdHQUfLyLD6duzMyrwcHJU/DjVrcpskUZCLtT+IxIf/MKEQ9vwq1u02LPlfIiHmt/Hg0NaODb+TsVGi8AwN1L1oM8JOCUYPu9m5dg4+DyTiM8PiY+Y1UjMyIKmU+jYd2nk2C7Ve+OSH/0DKJI2aKhL875o1rX1tDULeysYdWnEyRiMV5cVK9FECtbVEUNZw/Bj6d3I2SJMhBapNwJv38Lnh9Y7jwMDcbGVT8iIbbwmSORSHAj4AJqudWB9r/s4KIqlc2rokYtD8GPp5csP+7dKlx8+k1qCsIf3IKnV+MSzla6gpEXQVfPCLbfvn4F9o7OHzziRdX0dHXg5V4Ll67fFjxLLgbdgrGhAWrXcvyg86emZyA6IQn1XN7tHaO8mFS2hI1jHcGPU+1myMnKwJP7hSPCM9JeIfLRTfnICmWund2Ok7vmQyIp/LD45lUCkuMjYGkn+7jmXKclROmv8fR+4fM4T5yDiHtXUd1FPcpq1tcUmVtUgZOzm+CnnrcvRKJM3Am5Lj8uNTUFD+7fQT0f32LPVc+7IWKjIxEd9Uy+LTrqGWKjI1HPW9Yg8CY1Bet/W4T7d0Pkx6SkvIT/lXNo0KiZWkyXZGFhARcXF8GPj48PRCKR4JtD6uvXuHfvHnx8fIo9l4+Pj6wOG/lWHTYyEtHR0fDOD+ft7Q0AgpkacnNycP369RLPXV70dLThU9MW50OfCJ6x5+4+hom+LjwdrBTCxKe8wfwD53Ah9Ilge2B4FHS0tOBYtTJqWprDxtwU/9wOF5z30v2nAACfGuq1dqaydx1v+bvOTflxqamvcf9eKHxKeNfx9qmP6Ogope863vnvOnl5efjxhzl49Cgc02bMUrvGC4Dvf5RPQ5M/7/vzH6ReTdIqVqNGDXTs2BHz58/HDz/8AEtLS2zYsAHZ2dnYt28fBg8ejAULFmDw4MF48eIFFixYAA8PDzRp0qT0kwMYOXIk+vXrh0WLFqF///4IDQ3Frl27ij2+YEGhsLAwVK5cWbCvefPmcHd3x+TJkzFnzhxYWFhg165dePToEebNm/fvM+EjGzygH6bPnocFC5egc4d2ePAwDAcP/4VRnw+Fvr4eMjIzERkVDRtrK1TKnwrrs0H9sXTlapiamKBJo4YIuHYdl6/64/tpUwAAVpaW8g9KBYKuy14YXJ3V42N0SQYP7I8Z38/Bz78uQqeO7fHgYRgOHT6MkcM/h76+PjIyMxEVFQVra2t5ngwZNBDLVq6CqYkJGjdqhMCgIFy56oeZ06cBAHJycrDit9UwNDDAwAH9ERUVJfibVapUQdUq6jPNizLunt5wr+ODtct+wKDhX8PYxAyH926CoZEx2nctnBs7JuoZxLk5cHRyLeFsQu069cL500ewdMFk9Bk4Clo6Ojj395+IjozA9Pm/lUVyVKK2Zz141vHCyiU/Y9jIL2BiYor9e7bByMgYnbt+Ij8uOuo5cnNzUdNJ9nG2ecs2+PPAbiyYOwNDh8uGBO/cthHVHWuiWYs2AADPul7wbdgUWzauRVZWFhwca+DS+TMIe3APM+f89PET+44869RBnbp1sWTJIowcOQompqbYs3sXjIyM0bVrN/lxUVGRyM3NhZOT7JnQsmVLHNi/D3PnzMHwESMAANu2boWjoyNatGyp9G9VFE7uDVDLwxe71kxHjyHfwci4Ek4fWgsDI1M06zBAflxCTATEuTmwqyHrwXh4+69IT32FfqPnIkuUjueP78iP1TcwhpWdE5xrN0Tt+q3x187FyMkWwdq+Fm5cOYZnj25h1JTVHz2t74LP2PenbWIEY49ayIyIQs4L2RD9xz//jnqbFyL31WskHr8Ay57tYNO/K0IGT5SHi1i6CTYDusH3xCY8W7kVRi6OcF3wHaI3HUBWdHwxf019uNX2gZtnffyxfC76f/4NjE3M8Ne+jTA0MkHbLp/Kj4uNegqxOBfVa757udOmc29cOP0nVvw0GX0GfwE9fX2cP/UnYiMjMOuXP8oiOR/MtSA/VsxF/8/HF58f0U8hzn2//HCvUx9evi2wZ8sKZGdnwdbBCf4XT+Jx2B1MmLm0LJLzwUb27oJvfv4Ns1ZuQo/WTXD30VPsOnEWXw/qBX09XaRnivAsNh52llVR2fT9pqyJiJI1AtawK/+e4u+ruqsvHF0b4vCGqejQbwoMjCvh8tE10Dc0QYPWhYvAJsc9gTg3B9bVPQAALXuMw85lo3Bo/STUb9kfGekpuHJ8LQwMTdGko6xcrtO4B65f2IXDG6ei3affwbSyFYLO7cCblAT0G7eyPJL7TlhfU+Th6YXadbyxaumPGDpiHIxNzHBwzxYYGRmjY9fCj6bRUc8gzs1FDSdZx7amLdvi8MGd+GXeVAwZLlsfZve29XBwrImm+XlSs5YrXD3qYOPaZRg68itoaWlh746N0NLSQv/Boz5+Yt9RnTp1ULduXSxZvBgjR42CqYkJdu/eDSMjI3Tt9lYdNjK/DlursA67f/9+zJk7FyPy67Bb8+uwLfPrsJaWlmjfvr3s20ZODmxtbXHkyBGkp6ejbz/1Wq+swJj2jfDFH39i6o6/0auhB24/j8f2S8H4tmtzGOjqID0rG08TX8HOwgzmxobwrmGLxs4OWHjkEtKzc2BvUQlXHjzFfv87GNepMUwNZaO0vuveAlN3nsS0nX/j08Z1EJH4EmtOBaB93Vry0RrqzLNOXdSpWw9LlyzCiJGjYWJq8ta7TuGoTsV3nVY4uH8v5s35HsNHyO6DbVs3w9GxBlq0lI3ePnH8GO7fv4fOXbqhSpWqCAt7KPjbbm7uHymV74fvf0SkjIa0tJWXK7i0tDQsXrwYZ86cQU5ODurVq4cZM2bAzc0NgYGBWLlyJR48eABjY2O0b98ekydPRqX8YZht27ZF7969MX78ePn5hg4dCltbWyxcuBCAbGjokiVL8PjxYzg7O6NLly5YunQpwsPDFc6Rk5ODb775BgEBAfjuu+9QqVIlzJw5U37sq1evsGjRIly8eBE5OTnw9PTEt99+C19fWa+V1atX48iRI7hwobBHzuHDhwXn+DeiHj8s/aD34BdwDTv27EVMTCwsLCzQs1sX9OvTC4BsLvEps+ZgysTx6NS+nTzMiVP/4ODhv5D84gWsrSwxsN+n6NC2TbF/Y8fuvdi5dz/OnvhLpXEHAAdndzx/8qj0A9+Df0Agdu7eg5iYGFhYWKBH927o20dWmb9zNxTTZs7C5InfomOHwimPTp46hUOHjyA5+QWsrawwoH9ftG8rm6v+9p07mD5rdrF/77PBgzB0yGCVxd+xlgtuhivOQ/mhMtLfYNfmVbh57QqkUglc3Ovis1ETYfPWUPOfZo1DclI8Vm36S+k5vh3dC+6ePvhy4lzB9qSEWOzd9jvC7t9CligTTq610W/IWPmaGB+qgWtlPHgSp5JzvS09LQ1bN61FUKAfpFIp3Dw8MXLMV7C1KxxCPHvGRCQlJmDD1n3ybS+Sk7DpjzW4c/smtLW04eXTACPGfA1z88Je4zk5Odi/ZzsuXzyLN6mvYe/giP6DhqFRE9Us4uZRywZPIp6VfuB7SktLw6aNGxB4LRBSiQQeHrUxZuxY2NkVDiGeMX0qEhMTsXVb4RpEycnJ+OOPdbh96xa0tLTg41MfY8aOFeTJ25YvX4rQu3cF5/hQtZxq4NQt1a9TlJmeir92LkHozQuQSiSo4eqNXsOmwdKmcA7g1fOH41VyHOatOQOxOBfTPveFJH8KiqKc3Btg/LxtAIDcnGyc/nMtgq+eQHpaCqxsndDx0y9R17ed0rDvq4u3Dp+xRTjWcsFJnXf/OPw+zFs2RJPzOxHYbiheXbku2HZn1AzE7DgiP9ZhzADUnDQS+vbWyHwajYjFGxC7+6jgfJWb1Yf7omkwreeOnBcpiN19FI9++A1SsfJr69/qlhuOa2GpKj0nICt39mxeiZCgy5BKJXB2r4fBIyfB+q1y59fvv8SLpHgs23hU6Tkmj/kEbp4+GPOtsINJYnw0Du74HeH3byNLlIEazh7o+9k4uKig3GnsZobAh28++DxFZaS/wd4tKwrzw60eBo2aBGtbR/kxv37/RX5+HFN6jsljeubnxw+C7Tk52Ti6fyMCL53CmzevYWtfAz37j0b9xq1VEvcm7qZ4fetC6Qe+h0vXb2PjoROIjEtEVXMz9O3YGkO6y54bwfcf4asFKzDny2Ho3lqxs9OJS4FYsH4Hjvz2E2yqCcuZc4HB+H7VJuxfNg+Otoo9jVWlkndb7PFT/audKCMVZ/YvRNit85BKJbCv5YNOA2egilXhFFLbFg/F6xexmLi48H/yLOwaLv21GgnRYdDU1EatOs3Rvu8UmJlbC859/vAKhIWcRXZWBqwdPNDu0+9Q3aX4kQzvY3BzDdbXivCoZYO7j5NKP/A9paenYfum1bgReBUSqRRu7nXw+ZjxgjyZN2M8kpMSsHbLQfm2F8mJ2LrhN9y9fQNaWtqo5+2L4WPGo7J5YUeB1ymvsG3Taty9dQNSqRS163hj8OdjYWNb/BQ776OuczVEPH2qknO9LS0tDRs3bsS1wEBIJBJ4eHhg7BdfwO6tqZWnT5uGxMREbNteuNZKcnIy/li/HrfkdVgfjP3iC5ibF061lJuTg61bt+LSpUsQiUSo5eyMUaNGwc3NTSVxd6pZE1kn1pV+4Hs4H/oE6/65hudJKahmZoQBzerh89aynvE3nkRj9Lo/8eOADvikoWxdnIysHKw/cw3nQp8gOTUDDlUr4bOW3ujTSLiW0OUHT/HHmSA8jn8BM0N9dPVxwzddmkC3hCnF/w397uPwOCKy9APfU3paGjZt/AOB1wIglUjg7lEbY8Z+WeRdZwqSEhOxZdtO+bbk5CRs+GMdbt8KgZaWNrx9fDBm7Jfy58n0qd/h/v3iZwg58feZYve9K2en6nz/e0stpxqlH0QKXt++VN5RqHAqebUu7yh8dP/3DRhUOlU3YFR0ZdGAUdGVVQNGRVZWDRgVWVk1YFRkZdWAUZGVRQNGRVeWDRgVVVk1YFRUZdWAUZGVRQNGRVdWDRgVWVk1YFRkZdWAUZGVVQNGRVYWDRgVXVk1YFRkZdWAUVGxAePfYQPG+/svNmD8NyfOIiIiIiIiIiIiIiIitcYGDCIiIiIiIiIiIiIiUjv/14t4ExEREREREREREZH6kWpolHcUqALgCAwiIiIiIiIiIiIiIlI7bMAgIiIiIiIiIiIiIiK1wwYMIiIiIiIiIiIiIiJSO2zAICIiIiIiIiIiIiIitcMGDCIiIiIiIiIiIiIiUjva5R0BIiIiIiIiIiIiIvpvkWqwbz2VjlcJERERERERERERERGpHTZgEBERERERERERERGR2mEDBhERERERERERERERqR02YBARERERERERERERkdphAwYREREREREREREREakd7fKOABERERERERERERH9x2holHcMqALgCAwiIiIiIiIiIiIiIlI7bMAgIiIiIiIiIiIiIiK1wwYMIiIiIiIiIiIiIiJSO2zAICIiIiIiIiIiIiIitcMGDCIiIiIiIiIiIiIiUjva5R0BIiIiIiIiIiIiIvpvkWqwbz2VjlcJERERERERERERERGpHTZgEBERERERERERERGR2mEDBhERERERERERERERqR02YBARERERERERERERkdphAwYREREREREREREREakd7fKOABERERERERERERH9t0ihUd5RoAqAIzCIiIiIiIiIiIiIiEjtsAGDiIiIiIiIiIiIiIjUDhswiIiIiIiIiIiIiIhI7bABg4iIiIiIiIiIiIiI1A4bMIiIiIiIiIiIiIiISO1ol3cEiIiIiIiIiIiIiOi/RarBvvVUOl4lRERERERERERERESkdtiAQUREREREREREREREaocNGEREREREREREREREpHbYgEFERERERERERERERGpHQyqVSss7EkRERERERERERET035F8P6i8o1DhVK3dqLyj8NFpl3cEqPwlTP2svKOgVqyW7ELWiXXlHQ21ot99HK+TIqyW7ELEsG7lHQ214rTjJCsfRVSt3QiinT+VdzTUisHQ2UgIu1Xe0VArVm7euBaWWt7RUCuN3cxwUse1vKOhNrrlhuPp8O7lHQ21UnPbCby+daG8o6FWKnm3hWjXL+UdDbVi8NksPH/yqLyjoVYca7kg+qtPyzsaasV+7Z94cS+wvKOhVqp4NsG60+UdC/UyrjPwJOJZeUdDrdRyqoFXd6+WdzTUhnndFuUdhYpJQ6O8Y0AVAKeQIiIiIiIiIiIiIiIitcMGDCIiIiIiIiIiIiIiUjtswCAiIiIiIiIiIiIiIrXDBgwiIiIiIiIiIiIiIlI7bMAgIiIiIiIiIiIiIiK1o13eESAiIiIiIiIiIiKi/xYp+9bTO+BVQkREREREREREREREaocNGEREREREREREREREpHbYgEFERERERERERERERGqHDRhERERERERERERERKR22IBBRERERERERERERERqR7u8I0BERERERERERERE/y1SDY3yjgJVAByBQUREREREREREREREaocNGEREREREREREREREpHbYgEFERERERERERERERGqHDRhERERERERERERERKR22IBBRERERERERERERERqR7u8I0BERERERERERERE/y1SDfatp9LxKiEiIiIiIiIiIiIiIrXDBgwiIiIiIiIiIiIiIlI7bMAgIiIiIiIiIiIiIiK1wwYMIiIiIiIiIiIiIiJSO2zAICIiIiIiIiIiIiIitaNd3hEgIiIiIiIiIiIiov8WKTTKOwpUAXAEBhERERERERERERERqR02YBARERERERERERERkdphAwYREREREREREREREakdNmAQEREREREREREREZHaYQMGERERERERERERERGpHe3yjgARERERERERERER/bdINdi3nkrHq4SIiIiIiIiIiIiIiNQOGzCIiIiIiIiIiIiIiEjtsAGDiIiIiIiIiIiIiIjUDhswiIiIiIiIiIiIiIhI7XARb1I5XRdPmHTuD21LW+SlpyIz4BwyL/9dYhg9Ny8YdegNHWt7SDLSkRV6A+mnDkCamw2tylVQddbKYsNm3riCNwc2qDgVqhUQHok1pwIQkfAS5iaGGNi0Hoa19oGGhobS47NzxfjjbBD+DglDSroILjZV8GXHxmjm5ggAuPEkGqPX/Vns3xvXsTG+7NS4LJKiMrxOFBl4esO87zDo2jog781rpJ47idRTh5Uea9K8PaqNnVTsuZI2LEea33kAgI61HSwGjISBex1I8/IgCgvFy72bIU5OKJN0qNr126HYsPsQnkXHwrySKXp3bo9Bn3Qp9v5526OnzzFm+nzs+30xrKtVfe/96iggIg5rLt3G0+TXMDfSx4AGrhjW2OOd8kMskeDzbaehr62NzcM6CvY9e5GKledDcDMyEVqaGqhf3RKT29eHXWWTskqKyty4dQcbd+3H86gYVK5kht5dO2JAr+4l5sm5K/7YeeAI4hITYVWtKoZ8+gk6t20lOObqtRvYceAwomPjYF6pEjq2aYEhn/aCjk7FqD5liTJxYPsa3Ay8gKwsEVxre2PwyEmwtqv+zudYvXAG9A0MMObbeYLtl878ha2//6JwfLuu/TDsi6kfHPeypG9riZa3T+Dmp1/j1ZXrJR5rM6Abas0cB8Oa9hA9j8WTJRsQu/MvwTFm9T3hvmgazOp7QvwmAzE7DuPRj2sgzc0tw1R8OIPa3qj86VB5mfPm/Emknj6i9Fjj5u1QbXQJZc7G5Uj3vwBAVuaY9x8BAzdZmZMVfg8v922CODmxTNKhStfuPMD6/cfwNCYO5mam6NuxFYZ0b/9Oz9fwZ9EYMXshDq34ETbVLAAAcUkv0XvC7GLDdGvVBHPHDVNZ/MtCQEQs1ly8JStzjA3yy5za717mbP0b+jra2Dyss2Bfx5UHkZSWqRDm4uQBqGyor7L4l4XgkBBs27ETkVFRqFSpEnp064a+fXqXmCcXL13Gnv37kZCQCMtq1TCgX190aN9OcMyVq344+OefiI6JhZGREby96mHU8M9RuXLlsk7SB9Nzr4dKPQdD29oekjevkX7lNNLOHVN6rGHjNrAY9k2x53q5fTUygy4Jtmno6cPq++VI/fsgMq9dVGXUy0zQ7XvYsOdPef21T+d2GNSz8zvWXyMxesaP2L9moUL99ELAdez+6xQiY+NhYmSIBnU9MO6zfjCvZFZWSVGpnOwM+B1biid3ziA3OxO2Tg3QsvdMmFvWfOdzRISew/FNX+PTb3bA3rmRfPu9wIM4t0/xmVuvxRC06TtXJfEvCyKRCFu3bIZ/gD+yRCJ4etbBmLFjYWdnX2K4lJQUbNq4AcHBN5GXl4cGvr4YM2YszM0tlB5/7NhRHDn8J7Zu21EWyVCZoDv38cfeI3gaLSuLP+3cBoN7dHzHsjgKo2b+jIO//QzralUE+3p+MRXJr1IUwpzavAKVTNX/fYfov65ivIH/h7Vt2xa9e/fG+PHjyzsq70THwQmVR0xB1p1rSPvnEHQdXWDSdSA0NLWQcfG40jB67t6oNHwSRMF+SP97P7QtbWHcpT80jU2Qumct8t68xsvV8xTCGTbtAP16jSG6fqmMU/Vh7kbGY/zmo+jk5YKvOzfBrWdxWHHyKsQSCUa181Ua5ocD53DlwVNM6NoM1atWxrGbDzB+81FsGtcXPjVt4W5XDTsnDFAIt+ZUAO5HJ6Kzj2tZJ+uD8DpRpOfkCuvv5iE96Cpe/bkLBi4esBgwAhpaWnh94qDC8Rl3riNm/ncK26uNmgANA0Nk3LkBANAyrwLbOUuQGx+LxLWLoaGrB/O+Q2EzbQGiZ30NaW5OmaftQ9wLf4JpvyxHu2aNMHrQp7gb9gjrdu5HniQPQ/v0KDHs08gYTP15OfLy8v7VfnV0NyYZE/ZfRCeP6vi6dT3cikrCyvMhyJNIMbKZZ6nht/rfw/24l6jvYCnYnpCageHbT6O6hRl+7d0cWbl5+P3SbYzbcx4Hx3aHvhp/sL8f/hgzflqMNs2bYNSQ/gh9EI712/cgL0+CIX0/URrmckAQflq+Bn27d0ZDn6G4GnQDv65aBx1tHbRr2RQAcOP2XcxZuBxtmjfB2GGD8DwqBht27sXrN2mYOHbEx0ziv7Zu2RxEPLqHAZ+Ph4GhEf7atxELZ4/DL2v2wcjYtMSwEokEe7esxM3AC2jetpvC/qhnj2FtWx2jvxV+EDCrpPylWV3o21mh4cnN0KlUcvoBwKp3R3jtWIpnq3cg+Z+rsPqkPby2LIIkOwfxB2QN7gY17NDo9FakXLuNkEETYezmBNcFk6BjXgn3vlYsk9SFnpMrrCbNRfr1q0g5sgv6zh4w7z8C0NJC6slDCsdn3rmB2AWTFbZXHTEBmgYGyLx7E4CszLH5frGszFm/GJq6eqjcZyispyxAzOxv1LrMCX38FJMXr0X7JvXxRf8euBP+BGv2HEGeRILPP+lUYtiI6Fh8t/h35OVJBNurVDbFpgWKDXqH/rmMc4HB6NmmqUrToGp3Y5IxYd8FdKrtiK9be+NWdCJWngvOL3PqlBp+q3+orMypLixzUjKzkJSWiUnt68PbXrjPRF9XpWlQtYdhYZg7fwFatWiOYZ99hvsPHmDz1m2Q5OVhQP9+SsNc9ffHoqXL0KtnDzSoXx8B165h6YqV0NHRQetWLQEAly5fwa+Ll6Brl84YPmwoXqW8xo6duzBt1vf4fdVK6Oqqb77oOjqj6riZyAwOQOrxvdB1codZr6GAphbSzig2imbdC0bi4hkK280/+woa+gbIuh8i2K5hYIQqX86AdhVLhTDq6t6jJ5j26wq0a9oQYwb1xt2Hj7F25wHk5eVhaJ/uJYZ9GhWDKb+sUFo/Ped3DfNWrMcnHVtj7OBP8ep1KjbuPYzx8xZhy5IfoKfG10mB0zsmI/75HTTvORV6+sa4dnoN/lwzDENnnoS+YemNMKKMFJzfr7x8TY59iMrVaqDjkIWC7YYmVZQery4WL16I8LAwjBg5CoaGhti7ZzdmzpiOtev+gImJ8g/reXl5mDd3NjIzM/H1N+ORJ87Dtm1bMPv77/Hb6jXQ1hbW3S9fvoRNGzfAwkK962n3HkVgyq+/oX1TX4wZ0At3wx7j912HkJeXh2G9u5YYNiIqFlN+XaX03nn9Jg3Jr1LwzdB+qOdWS7DP2MhQpWmg9yd9h8YpIvX9IkEVknHHT5Eb9xyp+9YDAHLC7wJaWjBq2xMZV08DYsXeiCY9P0PW3evy3vE5EQ8ATU0YNu8I6OgCuTnIjYoQhNG2dYR+vcZIO30Auc8flX3CPsDa04Fws62KXwbLep41c3NEbl4eNp+/gSEtvRU+DMa+SsXfIWGY2bsNBjSrBwBoWMset5/FYb//HfjUtIWxvh7qVrcWhLt0LwJBj6OxdFg3OFZV755avE4UmfcZguzIp0j6YxkAQBQaDGhpo3KP/kj956jCRx9J2htkp70RbDPr0AM6NvaI/XEqJPn7zHsPgSQzE3GLvoc0JxsAIH6RAKuJc6FXwxlZj+5/hNT9e1v2H4ZzjeqY8+2XAIDGPnUhFudh55/H0b9bJ+jpKb6o5eaKcejvs9i870/o6ui89351tu7KHbhZVcbPvZoDAJo52UIskWKz/z0MbuhWYkNDeOIrbPa/hyrGBgr71l+5A2M9XfwxpD0M8s9hW8kYEw9cxIP4l/BxUN+PBlv3HIRzDUfMniTrzdnIxwviPDF2HfoLfXt0UXqNbNy5D62bNsI3oz8HADT0qYe0tHRs3nNA3oBx6vwlWFa1wOxJ30BLSxO+XnWR8joVB46exDcjhyq8GKqbJ2F3cfvGVXw3dyXq1ZelycXDC1PG9sL5vw+hZ/+RxYaNev4YuzYsxbPHD6Crq6f8mGePUMPZA7VcS/+IqRY0NGA3tBfcF00H3vEdyXXBd4g/dBoPp/wKAHhx1g86lc3g+sO38gYMp6ljIE7LwM0+X0Gam4vk01eQJ8qC56o5eLJwPbKi48sqRR+kci9ZmZO8YTkAQBQaAg0tbVTu3h9vzhx7pzLHtH0P6NjYIe6nwjKncq/BkGRmIn7JbHmZk5ucCKtv56h9mbPx4Am4Otpj/jeyBsomXrUhFkuw7a/TGNClDfSVfBjMFYtx4PQlbDh4XGl5oqujgzrOwl7FD59G4lxgMMYN/AReRT6iqJt1l2/DzcocP/dqAQBoVssW4jwpNvuFYnBD95LLnIRX2OwXqrTMCU94BQBo6+oAe/PSGxPVyc7de+BUsyamTZE16Pk2qA+xOA/7DhxEr096Qk9P8Zm5bftOtGjeDF+OHQMAaFDfB2lpadi+a5e8AWPfgYNo2KABvv3ma3k4e1tbfDt5CoKu30CL5s0+Qur+HdPuA5ET/Qyvtv8GAMh6cBsaWlow7dQH6RdPKj5P0t8gJ134PDFu3RXaVrZIWvo9JG/t06/TAJX7j4KGnuJ1pM427/sLLjWqY+63XwAAGnvXhTgvDzsOn0D/bh2Lr7+eOotN+44UWz/d8ecJNPGpi2lfDJdvc7CxwtiZCxAQfAdtmijvHKcu4p7dwtN7F/HJFxtQw0M26tXGqQG2zm+Hu3570LDjuFLPceHgfGhqKX/2JMc8hKVDHVg7eqky2mXq4cMHuB4UhPnzF6CBr+z/5+npiZEjhuPkyRMYOHCQ0nBXr15BREQE1q3/Aw4OspG1NZ1q4qtxX+Lq1Sto06YtAOD169fYuXM7Tp86VWxjiDrZdOAYXGo4YN6E0QCAJt6eEOflYfuRv9G/a3voF3PvHDx9Hhv3Hy323nn0PBoA0KqhN+ysqpVdAoiozHANDFIdLW3oOrkj+16wYHPW3RvQ1DeAbg3FUQHaNtWhXcUSmf5nBNsz/f7Bi4WTgWJ66pn2Hg5xUiwyr5xSXfzLQI5YjJsRsWjrKXxB7VDXGRnZObj1NFYhTFVTI+yZOAjd6rvJt2lqakBLUxPZYuU9xbNyxVj41yW0cK+BDvWcVZsIVeN1okhbGwZudZERHCjYnHHDD5oGhtB38Sj1FFqmlWDedxjenP8b2U/D5duNGjTFmytn5B+SACD72RNEfjtMrT8kAUBObi5u3QtDy0b1BdvbNPFFpigLdx8qb5QKDLmDrQeOYOinPTFuqOJIpdL2q6sccR5uRiairauDYHt7dwdk5OTiVnRSsWFz8/Iw52gABjV0Q/UiH4ukUinOhUWhVz0neeMFANS2scDZiX3VuvEiJzcXt+89QIvGDQXbWzVtjEyRCHcfhimEiU9MQnRcvGKYZo0RG5+AmDjZB+ecnFzo6+lDS6uwqmRqYoxcsRiZoqwySI1qhd66Bj19A9TxKpxawdSsMtxq++BOcECJYTeu/AESiQRzlmyBaSVzhf1SqRTRz5/AoYaLyuNdVkzrusLz9/mI2fUXbg+fVurxBtVtYexaAwlHzwq2xx/+B0bOjjCsJftYULVDcySduiyYLirhz9PQ0NJC1Y7NVZsIVdHWhoFbHWSEFClzbvq/X5nz6VC8uXAK2U8Ln8VGDZoi7epZQZmT8/wJoiZ9rtZlTk5uLkIePEarhl6C7W0beyNTlIU7YRFKwwXcuodNf57E8F6d8c3gXqX+HalUiiVb9qGGnTUGdWtX6vHlSVbmJKCtW5Eyx6P6O5Y5fhjU0B3VLRQbKMITX8FIV6dCTFH4tpzcXNy9G4pmTYTTtLZo3hSZIhHuPXigECYhMRExsbFo1qSJMEyzZoiLi0dsbBwkEgm8vb3QpbNwpI+9vR0AIC5ePRtCAQDa2tB3rg3RHeF0fKJbgdA0MISuk1sxAQtpmpjBrMcgpF85g5znj+XbNQwMUeWLach+fB/JaxaoPOplJSc3F7fuh6FlQx/B9jZNGuQ/T4qvv245cBTD+nTHuKH9FfZLJBL41quNTzq0Fmyvbivr1BabUPw9qS4iw/ygo2uI6m6F5aOhsTlsa/ni2YPLpYYPD/kbUeEBaN5TcWSbVCrFi7hwVLV1V2mcy1pIcDD09fXh7VN4vZiZVYJnnTq4eeNG8eFCgmFnZydvvAAAB4fqsLe3F4Q7sH8fQoKDMev72WjYqJGyU6mNnNxchNwPR6uG3oLtbRrXl737hT1WGi7gVig2HzyOz3t3xdeffar0mMfPo2FooA9by4oxZTARKVLv7oNq7NWrV1iwYAGuXr0KLS0t9OvXD3fv3oVvfqt5UFAQqlatisuXL6N3796YM2cODh48iB07diAyMhKamprw8PDAzJkzUaeOrPdiWloafvrpJ5w/fx7a2tr44osvFP5uSEgIli1bhtDQUJibm6NNmzaYPHkyjI2NP2r6ldGyqAYNbR2Ik4WV7LyXsnn2tataI+fxPcE+HRtZgSsV56LSiMnQc64NaW4ORMF+SDu5D8gTK/wd/XqNoVu9Fl6t+xmQSssoNaoR8/INcvPyUL3IiAiHKpUAAM+TU9DEVTgXua62NmrnD6eXSKRISk3HjsvBiHmZihm9Wyv9O7uv3EJSajo2fKm8wFYnvE4U6VSzhoaODnIThA1auYmyPNKxtoPo/u0Sz1G5zxBIJRK8+nOnfJt2FUtoGRlD/CIJVYaNg3HjVtDQ1YPoXgiSt69FXspLladFleISk5ArFsPBxkqw3dZadn9ExcXD10tx2iT3WjVwaP1ymJoY4+8LV997v7qKeZ2O3DyJwscgh/wPQJEv36BJTRulYf+4chdiiQTjWtbDuD3nBfviXqcjPTsX1mbG+OVUEE7ff46sXDGaOtlgZueGsDQ1KpsEqUBcguwasbcVjkizy79GomPj4OtVV7AvMkZ2nxUNI7+uYuNgZ2ON3l07YtqPC7HvyHF069AWUbFxOHT8FBrX94apSfmXuaWJi36Oqpa20NTSEmyvZm2HwMunSww7duJ82DsW3zM8KSEGWaIMPHv8ANPH9UVyYiyqWtqiR78RSqebUgeiqHhccuuArNhEmLdsWOrxxm5OAICMx88F2zMjImX7XWogKyYBho52yHj8THBMzosU5Kamwdilhmoir2I6Va2KKXPiZPut3qHM6T0EUqkEKYeLlDmGxhC/TILF0C9h3KgVNPT0IAoNwYud69S6zIlNeiErb6yFvTLt8j90RMUlolFdxY9i7k6O+Gv1TzAzNsKJS4EK+4s6G3gT9588x9o5k6Clqd79yGJS0mRljnlxZU5qCWXOHVmZ08oL4/acVdgfnpACUwNdTDl0CUHP4pEnkaKFsx2mdvRFVRP1ncojIT4BuWIxbG1tBdttrGX5EBMTi/rewg9v0dGyXr+2tsK8srGRlUHRsTGwtbXBF6NHKfy9gMBrAIDq1R0U9qkL7SqW0NDRgTgpTrA9N0lWr9extEV22N0Sz2HWfQAglSL1+B7BdmlODhJ+nAhxUhy0zCvOR8e4xGRZ3aRo/dWqoJ6RgIb1lNVfa+LPdUthaojmJQAAAQAASURBVGKMk0rqp5qamhg/XLE3/pXrsim3atjbKuxTN68SI2BmYQdNTWHdpFIVB4QFK59GuEDGmxe4eGg+WveZBSNTxesh9UUUcrIzkBgViu0/d0LqixiYVbGDb4dx8GjYS5XJUKno6GhYWVlBq0h9zcbaBpcuFb/eS3RUNGxsFf/n1jY2iImJkf/epWs3jBw1Gtra2ggKuqa6iJeBgnvHwUbYeapgxERkXCIa1qutEM7dyRGHf18IMxNjnLzor/Tcj59HwdTYCLOWrcONuw8hkUjQ1KcOJo4YiCqVK6k8LUSkeupdc1ZTEokEX3zxBSIjI7Fp0yZs2bIFt2/fxvXrhT1Pbty4gSpVquDo0aMYOnQozp49ix9//BGjR4/GqVOnsG3bNmRnZ2P27MJFpiZOnIi7d+9i/fr12Lp1Ky5duoTY2MKXy7CwMIwYMQItWrTAsWPHsHTpUty/fx8jR46EVA0+0Grqy4b2SrNFgu3SbFlPVQ19xaG/msayl6DKn0+EODEGKZuXIOPicRg2bguzAWOV/h2j1t2Q8ywcOU8fqjL6ZSI9S9YD0bjIfL6G+UMfM7JKngt668Ub6PTTZuy+ehu9G9VGYxfFF5hccR72XL2FTl6u8oYRdcbrRJGmgexlXSISLmYpycoU7C+OlokZTJq3w5tzJyDJzCjcbiqbR9ZiwAhoV7ZA4tpFSN7yG/SqO8Fm5q/QKGZqGHWRniG7RgwNhNeEoYFscc+MTJFCGACoamFe4gfm0varq/T854WRrnBotKGe7Pf0bOULBt+Le4Ed1x5gfo+m0NXWUtj/KlP2nFp1IQRJaZlY2LsF5nVvgofxrzB651mIctR3IeKMTNk9UvQaMcj/Xdk1klFwXRkWva6EYXzqemJQ755Yt203ug8Zha+mzUElM1PMmVwx1qQSZabDwFCx8UnfwBAiUYaSEIVKarwAgKj8HvfJiXEYNPJbTJq9HDVquWPjqvm4dOavfx3nspSbkoqs2HdfRFrbTPaMEL9JF2wXp8nyTtvUGDpmJkqPKThO21Q9nzOa+deFVKHMkV37mgYlT9WiaWIG42ZtFcscE1mZY95vOLQrWyBp3WK8KChzpqt3mZOef98bGQgXj5aXNyLl5U0180owM373Rt5dx8+irqsT6tdW/9FLBWWKkd6/KHMC72N+z2ZKyxxANgIjOS0T7tYW+G1gO0zu6IvgyASM2vGPmpc5suvd0FBYLysoTzIzFRclz8jIVBqmoJxSFgaQjbrYuHkLnGrWRMMGDT4s4mVIU7+gDlu0Xi/7XVm9XhDe2BSGjVoj7fIphWcS8sQKDSMVQXr+/9SouPprMc+TqhaV37t+GpOQhN937IdzDQc08albeoByliNKg66+Yhp19Y2Qk1Vy3eT8/jmwdvSGu28vpfuTY2XvfKmvYtDikxnoOXY9qtl74szu6QgNOPDBcS8rGZkZCs8HQPaMKO75AACZ7xjO3t5e7ac9LVBQFhf77ldcWWxRGWal3DuPn0cj+dVruNasjqUzx2PC5/1x68EjfDVvCURZ2SWGJSL1UDGeZGrm+vXruHv3Lk6dOoWaNWXz2q5cuRJt27YVHDdhwgT5PIPJycn4+eef0bNnTwCAra0t+vbtix9//BEA8PTpU/j5+WHbtm1okF9JXbZsGdq0aSM/3+bNm9GsWTN8+aVsLnhHR0csW7YM7du3x/Xr19GovIcEapTSHqaskSV//sqsezeR/vd+AEBOxENAQxMmXQcg/cxh5L1IkB+uU90ZOnY1kLJtucqiXZYkkpIbljRKWayopUdNeDna4NazOPxxNghZuWL5WhoFzt59jBdpmRjepn4xZ1EzvE4U/Zs8eYtJ607Q0NTE6zNHhafNr6zmvXmNhN8KR6LkJsbBbt5yGDdtg7RLJffELk+lNcxqaP63FvuSlJIfmkqeJ9niPMw9FoAhjdxRx1b5Aobi/EVnzY30sbxfa/l57CubYNi20zh57xn6+qjnxzapRFLifk0l95ZE+m5hlq/bjL/PX8Sw/r3hU9cTCUnJ2LbvEKbO/xUrFsyGvpJ5zsuLRCKBtEi6SrpelOXL+3Ct7Y1Js5fBvU4D6OV/nKrj0wRvUlNweM8faNXhk1LLN3WnUUrveKlEApR6TPl3LlGqlP9Nac9e01YdoaGpidSzx4Q73ipzElf/UljmJMXDds4yGDdpjbTL//z7eJeh0v5XpV0P7+JueATCn0Vj8ZQvP/hcH8O/LnOO+mFIIw/UsS2+x/zc7k2gpakJTxtZueTjYAmnqpUwYtspHL8bgf4NSp92qDyUVq9XlifvWua8LSo6GrPmzIWWlhZmz5oBTXUerVNa3Eq5joyatYeGpibSL55UYaTKV2nPE2XXyb8RGROHSQuWQktTEz9N+UbtrhOpkrpJSeVLSfWGB9ePIPZpMIbNOFHsMbZOvug5Zj3snRtBR0/2Yd/RvQVEaa8QeOo3eDbpV+51E1l9TZgHJV0vJcW3pOeRZgV9R/o35c67mvHF59DS0oRHLdnoWC93F9Swt8GXcxbh1OUA9OnUppQzEFF5YwPGv/DgwQOYmZnJGy8AoEqVKqhRo3CqAAsLC8EiSb6+voiIiMDvv/+Op0+fIjIyEuHh4ZDkf3x59EjWm7FgOqmCc9rb2wv+bmRkJLyLDE0GgIiIiHJvwJDm9xYvushawe8FvckFYfJ73Wc/vCXYnh1+ByZdB0DHtrrgw7R+3YaQZKYj++Edlca9rBgbyD5wZWQLR1oU/G5ioLgI1ducrWUvdvWd7CCWSLDun2sY36UprCsXDuc/e/cxnKws4GpTMYZW8zpRJMnvDa1ZpJeafGRGZsk9kox9myHz3i35IqqF55X1Usm8c1PwApkdEY68jHToVa+JtA+OfdkxKujRWGS9gcz83jnGSnod/T8rGMmVWaR3akZ+L1hjfcVF636/dBsSqRRjm9eBWP6xX3YtiCUSaGlowFBPVhVo5mQreDGoa1cVxno6CE9IUXVSVMbISHYNZBbpkVVwjRgZKfb8NH6HMMkvX+H4mfP4rG8vjBpSuE6Ku3MtfD5+Cv4+dxF9ugkbk8vT0f2b8Ne+TYJtvk3b4s1rxSl7sjIzYGD4YSMDTCuZw8u3hcL2eg2a4f6d60h9/RKVKitvMKsoxKmyp6O2ibB3fcGoCnFqunzkRdFjCo4rOIe6keT3zNTQFz5D37XMMWqgvMyR5o/gyLwbrFjmZKZDr7qT2pY5xvLyRtgLMyO//DEuMjLj37gQdAumRoZopmTqQ3VknD/SotgyR09JmXMxRFbmtKhbWObkXwoFZY6Ghgbq2SkuoOptXw3Gejp4lKj+ZY6oSPkhHw1opPgsMMof8VQ0TEEP6YJzFrhzNxQ//vwLDAz0sejXn2FjLZzuUN0UjB7W1BfeI4UjM4rvQQ4Aht5NkPXwjmDh7orOKL9+mplVdvXXkHsPMWvJGhjq62H1/OlquSjxtX9+R9DpNYJtzl6dkJn2QuHYnKwM6OkrXxMn7XUCLh3+Ga16zYCBsTkkeWJ5BxapRAKJJA+amlowNLFATU/Fj9COtVsh6lEAMtNeKJ166mPau2c39uzZLdjWrHlzvH6t+NzLFGXCSMkzpYCRkaHCcwWQPVsMlYzArQiMi3n3y5DfOyWP6CpJHVcnhW313JxhbGiAx5ExSkLQxyRFxWx0o4+LDRj/gpaWlrzhoTj6RSpxx48fx4wZM9CjRw/4+Phg4MCBePTokXwERkHretHzvj3cTyKRoEePHvIRGG8zN1dcZPNjE79MgjQvD1oWwjkLtavIfs9LVBwCLM7/6KyhVeQlSFOW7rcXxQQAPXcvZN0LBiTKF7NWN/YWZtDS1ED0i9eC7VH5v9eopvh/i3v1BtceR6Gbjxv03lpQ1z3/ZS/5TYa8ASM3Lw8B4ZEY0UZ9h5YXxetEkTgpHtK8POhYCl9SdSxl8yXnxEUXG1arsgX0HGvh9R/LFPblJsVDKpFAQ0fxI4OGlhakxSx+ri5srapBS1MTsQnCaV9i8n+vbqd87u3/V/aVTaCloYGoFOEnwKhXst9rWJgphDn7MBLxqRlosnifwr4Gv+zG/B5N0cHdARqQPU+KypNIoaejfAoQdWBjZSm7RuKF10hsvOyZUd1OcW5g+/x5yGPjE+FSs7DjQcxbYRKTX0AqlcLTXTjyxNHBDmYmJngWpV4vOq079oZXA+GC0cFBlxF6KwgSiUTQKzMxIQY29o4f9PfC799CcmIsmrftLtiek5MNTU0tGBsrXosVTfoj2boWhk7V8eZ24VSERk6yNZnSwyKQl5EJUUwCDJ2KrGVV1Rw6psZIL2bh5/ImTi6mzKkmuzdy44u/vrUqycqc1A2KIxxLLHM0tSDJUd8yx9ayKrQ0NRGdKFwENyYhGQDgaPvhH5H9QkLR0rcetIuZVknd2JubysqcV0XLHNmH5hpKpi2VlzmL9ijsa/DzTszv2QxtXR1wPiwSnjZVUKta4RpxEqkU4jwJKht+eGNRWbGxtoampqbCotpxcbLfHd7qeFbALr8ciouLRy2nwg9oBed4u7PaxUuXsXTFStjb2eGn+T+gShULladB1cTJCZDm5UG7qvAe0a4qW/9BnFDC88TMHLoONfFye/G96isiWyvZ8yQmvmj9VfZ8qW73Yc+Ts1ev4ac1G1HdxhrLZk9GVYvKpQcqB3Wa9kfN2q0F2yJCzyHyoZ+srHirbvI6ORKVrRQ/MANAVHgAckRpOLv3e5zd+71g3+G1w2FibotR8y4gNuImUl9Gw6Nhb8Ex4txsaGhqQd+w/Osmnbt0RcOGwk6ngYEBCAkOUaivxcfFC54PRdna2eFphGI9Iz4uHi6u6jlyujS2lrJ3v5iEomWx7HfHf3nvpGdk4mJQCDxq1YCTQ+G7gUQiQa44D5VMlTeeEZF6Ua9xhhWEm5sb0tLSEPFWgZGSkoLIyMhiw2zYsAF9+/bFwoULMWTIEPj6+soXdZNKpXB3ly0MGBISIg/z5s0bREVFyX93dnbGkydPUL16dfmPWCzGr7/+ivgiFelyIc5FzrMw6NcRfkzXq+MLiSgDOdGKBWzu0zBIsrOg791EsF2/tg+keWLkRD6Wb9MwMIJ2VWvkPn9UNvEvA3o62vCpaYvzoU8Ew0XP3X0ME31deDpYKYSJT3mD+QfO4ULoE8H2wPAo6GhpwfGtBcGfxL9EVo4Y3o4V6EMurxMF0txcZIXfg1GDpoLtRg2aIS8jHdlPi0+LvpMrACDr8QPF82ZnFZ73rcZQA4960NQ3QFb4fRWloGzo6eqinocrLl+7Kbh/LgXehLGhITyca5YQ+v+PnrYWfByq4UJYlCA/zodFwVhPB55Kpoj6bUAb7B7ZVfDjbmUOdytz7B7ZFa2c7WCoqwMfB0ucD4tCjriwESPoWTxEuWL42Ktfr74Cerq6qFvbHVeuXRfkyeXAIBgbGcLdRXEtBztrK1hbVsNlf+FChlcCgmBnI9tnZ20FLU1N3H0QJjgmKiYOqWlpsLEUNsCWt8oWVVHD2UPw4+ndCFmiDITeKkznm9QUhN+/BU+vDxux+TA0GBtX/YiE2MJ6j0QiwY2AC6jlVgfaSj5gVzSZEVHIfBoN6z6dBNutendE+qNnEEXK1ih7cc4f1bq2huZba9NY9ekEiViMFxfVc7FMeZlTv2iZ0xR5mSWXOXpOso8ixZY5j+7DqH4TQZmj755f5jxS3zJHT1cHXu61cOn6bcGz5GLQLRgbGqB2LccPOn9qegaiE5JQz0X5Bzp1pKetBZ/qloplzsOSypx22D2qm+BHXuaM6oZWznbQ1dbCwlNB2OwfKgh7KTwaWeI8+Doq1o3Vha6uLup4esI/IECQJ37+ATAyMoKri7NCGFsbG1hZWuKqv3BhWT//APk+ALh+4yYWL1sOD3c3LFuyqEI0XgAAxLnIfvIABkXKFQPvxpBkZiDn+eNiAgK6Nf7H3n1HR1H9fRx/p/eQhJKEJLTQe++9Se8dREBAFEHQH4piQ0QFVKSoKEWadEE6FnqX3ntLDx1Cetnnj00CyyaAGsjy+Hmdwzlkdu7k3snsnTvzvcV4vuIvnM50n+dRevt17wHT9uue/bg6O/2r9uuuA0cYM/lHyhQrzPdjR1ls8ALANYc33vnKmPzLV6w2CfHRXD59f5HymHs3Cb2wn/zFamV4nEKlG9D9rWUm/xp2GQ1Awy6jaTvgewCCz+3h959HcuvqpfS0hpQUzh/+jbwFK2Bj++iZD56FnDlzUqRoUZN/FStWIjY2hoMHDqTvd+fObY4fP0aFiplPEV2xYiWCg4MJCrrfFgsKukJwcBAVKzwnU0s/xHgvLsrWvQdNvzt7Dxq/O4ULPiJ15uzs7Phq5gLmrlhnsn37/iPEJyRQqVSxf5VvEXk2NALjH6hWrRrlypXj7bff5oMPPsDR0ZEJEyYQGxuLlZVVhnM7+vr6cvDgQU6cOIGbmxubNm1i/vz5ACQkJJAvXz6aNWvGJ598gr29Pbly5eLrr78m4YHeav369aNnz56MHj2aXr16cffuXUaPHk1cXBwFChR4VsV/pOg/V+I5cCQevYYQs28r9gWK4lKvJffWL4bEBKwcnLD1zmvshR8dhSEhnnu//4J7656kxEYTf2w/dgWK4FK/FTE7fsMQfb/Xl62vsQdC0tXQzH69RRrQuBqv/PALI+auo13Vkhy+HM6cLQd4o0VtnOztuBcXz8XIm/jnzIGXqzMVCvpRvUg+vlixhXvxCQTk9GDbyYss3nmEV1+ojvsDPdPOhRuH4BbyeU4eclLpOjF3a+UifN8Zi/fr7xK17XccipTAo0UHbi6ZjSEhHitHJ+z98pF4Ndxk2g57//ykJCSQdDUiw+PeWDoHv3e/wPet0dxZvxwbd0+8uvYh7vxpog/ufVbF+8de6tyWYR+P44Mvp9KyUV2Onz7HwpXrGNSrC44ODkTHxHIpOBQ/nzx45nB//AGfcwNql+GVn/9kxPJttCtXmCMh15iz+wRDG1bEyc6We/EJXLx2B39PN7xcHCmSx/zB1jn1RWupvPfrjaENK9B/3u+8vmgTvauX5EZ0HJM2HaSMXy7qFfV/ZuX7J3p3ac+bH47lo/Hf0KJxfU6cPsuiFWsY2Lt76jUSw+XgUPx8vPFIvUZe6tqBLyZPw33aTGpVrcSOvfvZvHMPH/1vKAAeOdzp1KY5i1YYe4VWLleWyGvXmL3oF3zy5KJV04aZ5sdSFC9VkeKlK/HD1x/S5aXXcXXLwa+LpuPs4kbD5h3T9wsNukhSUiL5Cz35w1uDZu3ZtOEXJn76Fh16vIKDoyMb1/9C6JULvPfZD0+jOE+drZsLriULE3MhiITrxqkczo39lnIzvyDx5m0iV2/Cu00j8nZpwcEew9LTXfhyBnm7tqTKmhlc+uYnXIoWoNiYNwmesYS4YAvoXJKJW6sX4zviU/IMHknUtj9wLFKCHM07cHPpnMfccwqQkphA0rWM7zk3l84h78jP8X1zNLfXL8cmhwdenfsQd+E0MYcs+57Tr31zXh87mfe+mUHr+jU4evYi89f8weDu7XB0sOdeTCyXQsPx986N59/srXkhyNgmKfgve14/awNql+WV+b8z4pettCtfmCPB15iz+zhDG1XK+J7jncE9xyHtnnM/4NG3Vhm+33qYnC5O1C7sx7mrt/hh2xHqFw2gakHLPkc9unVh5KgPGPv5OF5o2piTp06zbPly+vV5CUdHR6JjYggKCsLX1xePHMYe3z27d+Orbybh7uZG9WrV2L13L9u27+Ddd94GjM+CEydPwdnJiW5du5h0YAPjtMK5c1nutHx31y8j99CPyNn/LaJ3bcK+UDHcGrflzsr5GBITsHJ0ws7Hn6TrkSZTRdnlzYchMYHk65GPOPrzqU+n1rwxegIffPUtLRvW5diZcyxYuZ5Xe3W+334NCcXP+8nbr/EJCXzx/U84OznSu2NrLoWYPuvkyelFnpzZPyvDo/gXroJ/4apsmDeCOm1G4OjswZ4NU3BwcqNs7e7p+92IOE9yUgJ5/Evi5OKJk4tp3ZIQb5yazDNPQXLlNbZfytTsxtGdi1g1fRDVm7+Bnb0TR3cs4Eb4WToNNZ22yZKULlOGMmXLMmHCOPr1exk3d3cW/DwfFxdXWrRomb5fUNAVEhMTCQw0ds6pW7cuSxYv4sMPPqBP374AzP7pJwoUKECdunWzpSxZoU/Hlgwd8zWjvp5G64a1OXrmAj+v+o3XenZ44LsTlvrdebJ7sYO9HS+2a86MJSvxyuFOjYpluBAUwswlq6lbpTyVy5R4yqUSkaygAMY/NGXKFD755BP69OmDg4MDPXr04OLFi9jZ2ZkEHdJ88MEHfPjhh/Tq1Qt7e3uKFy/O+PHjGT58OMeOHaNy5cqMGzeOcePGMXz4cFJSUujatSs3b95MP0b58uWZMWMGkyZNon379jg7O1OjRg3eeecd7O2zv0cBQMKFk9yeNxnXph3w7DOc5Du3iFq7kJht6wGw8yuA16ujuLP4B2L3G3texGxbjyEmGud6zXGuWp/ku7e49/svRG8xHU5skzolxePmZrY01YoE8NVLrfj+tz0M+2kNeXK4MLxVHV6qb+wZcSrkKv2//4VPujahbdVSWFtb8XWfVkz7fQ+zNu3n2p1o8uX24IPOjehQzXTe5BtRxsabu5PlLCb7JHSdmIs9dZTIKZ/h2b4nPm98QNKtG9xYNIs7G1YA4FCgMH7vfcHVHycStePP9HQ2OTwfWdb486cJ/fxdcnbqjfeQ9zAkxBN9YA83Fs2ExywsaQkqlSnJpyOGMGvxCt77YhK5cnryWu9udG/bHIAzFy8z9MPPee/1AbRoaD4n//83VQv68lWneny/7QjDl24hj5szwxtXonf1kgCcCr/JgPl/MLp1TdqWe/KevuX8czO9VxOmbjnM/5ZtxdHOlgbFAhjeuBI2FrYo5MMqli3NJ+8M56eFy3j/s6/IldOLV/v0pGs74/RGZy9cYtj7Yxg5dBDNG9UHoHmj+iQmJrHo1zWs/3MLvt55eG/YazSsc79H+qt9epE7Z05WbfiTJb+uJaeXB5XLl2VAr264uT4fcwsPfXccC2Z+w+LZUzAYUihSohyDR3yOi+v9lyVzfxjP9avhfDV95RMfN4dHTkZ9/iNL537L/OlfERcbTcEiJXlnzLcEFns+5vd/mHuFUtTYOI8jL48kZK6x3g2ZuwJrB3sKDe+Hf5+OxFwM5nCftwlfuj49XfSZi+xt3o8S496m4uLJJFy/xaVJszn78eTsKsoTiTt1lMipn+PZvgc+Q98n6dYNbi75yeSek3fk51ydMZF7Ozamp7Nx93j0PefCacLGvYtXx954v/6u8Z5zcA83F8+y+HtO5dLF+WL4QKYvW8PbX/1Abq8cDOnZgZ6tGgNw5lIwr42ZyAeDetOqfo3HHM3UzdT1UNxc/v3c989S1YK+fNW5Pt9vPcLwJZtT7zmV6V2jFJB6z5n3G6Pb1KJtOfMRb5kZUKcsns4OLN5/hqUHzpDDyYFOFYsxqF65p1WULFO+XDk+eO9d5v28gNFjxpIzZ0769+tLpw7GaWvOn7/A2+++x1vD3qBpE+O107RJYxKTElm2fAW//fEnvj4+jHhrOPXrGtstJ0+dSn/me+/9D81+Z68e3XmxZ49nVMK/L/7scW5Mn4B7q27keuUdku/c5M6KuURtXA2AfUAh8gz/hBtzpxKzZ3N6usfVJ8+zSmVKMnbE68xctIJ3x00mt5cng3t3oXub++3XIR+N473BL9PyCduvx8+c58at2wAM/+RLs8/7dWnLy13bm223NK1ensq2FV+wfeV4DIYU8hasSIs+35hM8bRp6Wju3gzl5Y82PfFxXdxz0WXoz+xc8xVbf/mUhPhovPOVocPg2fgWsOy6ZdSoD5gx/UdmzpqJISWFkiVLMfLd90zWVP3u26lERkby0+y5ANjZ2fPp2M/54YfvmTplMjY2NlSsWIkBAwdiY/N8TFWYkcplSvDZW68yY8lK3hn/Lbm9PHj9xU70aG0cEXvm0hUGf/wl77/Wl5YNMh61k5G+HVvi6e7KL79tZvnvW8jh5kr7pvV4uXObp1UUEcliVoaMhgvII928eZMjR45Qu3Zt7FKnSUhISKBatWp89NFHtGvXLnsz+DdFjOiV3VmwKD4T5hO35vvszoZFcWz1qq6Th/hMmM+F3i0fv+N/SODctVw7Ydk9bJ+13KWqETvv0+zOhkVxevF9Ik4fyu5sWBSf4hXYc/pOdmfDolQvnoO1dhrSn6Zl4hku9mn1+B3/QwrNXsPtQ0/+cuu/wKNCQ2Lnf5bd2bAoTr3e4/L552da0WehQOGiBL/W8fE7/ocEfPcL14/vzu5sWJRcpWvw/YbszoVlebUZnL9w6fE7/ocUDizIzaPbH7/jf4RX2f//HeqehpCzx7M7C88d/6LPZ6exf0MjMP4BW1tbhg8fTrdu3ejevTuJiYnMnDkTe3t76j7Hw/VEREREREREREREngWDlWWP+BfLoKvkH3B3d2fatGkcPnyYdu3a0bVrV65fv87cuXPx8rLseSdFRERERERERERERJ4HGoHxD1WvXp1FixZldzZERERERERERERERP5f0ggMERERERERERERERGxOApgiIiIiIiIiIiIiIiIxVEAQ0RERERERERERERELI7WwBARERERERERERGRZ8qAVXZnQZ4DGoEhIiIiIiIiIiIiIiIWRwEMERERERERERERERGxOApgiIiIiIiIiIiIiIiIxVEAQ0RERERERERERERELI4CGCIiIiIiIiIiIiIiYnFsszsDIiIiIiIiIiIiIvLfYrBS33p5PF0lIiIiIiIiIiIiIiJicRTAEBERERERERERERERi6MAhoiIiIiIiIiIiIiIWBwFMERERERERERERERExOIogCEiIiIiIiIiIiIiIhZHAQwREREREREREREREbE4ttmdARERERERERERERH5bzFgld1ZkOeARmCIiIiIiIiIiIiIiIjFUQBDREREREREREREREQsjgIYIiIiIiIiIiIiIiJicRTAEBERERERERERERERi6MAhoiIiIiIiIiIiIiIWBzb7M6AiIiIiIiIiIiIiPy3GKzUt14eT1eJiIiIiIiIiIiIiIhYHAUwRERERERERERERETE4iiAISIiIiIiIiIiIiIiFkcBDBERERERERERERERsTgKYIiIiIiIiIiIiIiIiMWxze4MiIiIiIiIiIiIiMh/iwGr7M6CPAc0AkNERERERERERERE5P+xlJQUJk+eTJ06dShfvjwDBgwgODg40/1v3brFW2+9RZUqVahatSqjR48mNjbWZJ/169fTokULypYtS7t27di9e3eW51sBDBERERERERERERGR/8e+++47FixYwJgxY1i0aBEpKSn079+fhISEDPcfOnQoV65cYfbs2UyaNImtW7fy8ccfp3++Z88eRowYQbdu3VixYgU1atRg4MCBXLhwIUvzrQCGiIiIiIiIiIiIiMj/UwkJCcyaNYuhQ4dSv359ihcvzsSJE4mIiOD333832//QoUP89ddfjBs3jlKlSlGjRg0++eQTVq5cSWRkJADTp0+ncePG9O7dm8DAQN555x1KlSrFnDlzsjTvCmCIiIiIiIiIiIiIiPw/dfr0aaKjo6lRo0b6Nnd3d0qWLMm+ffvM9t+/fz+5c+cmMDAwfVvVqlWxsrLiwIEDpKSkcPDgQZPjAVSrVi3D4/0bWsRbRERERERERERERMTCNWrU6JGfb9y4McPtERERAPj6+ppsz5MnT/pnD4qMjDTb197eHg8PD8LDw7l79y4xMTH4+Pg80fH+DQUwBJ8J87M7CxbHsdWr2Z0Fi6PrxFzg3LXZnQWLk7tUtezOgsVxevH97M6CxfEpXiG7s2BxqhfPkd1ZsDgtE89kdxYsSqHZa7I7CxbHo0LD7M6CxXHq9V52Z8HiFChcNLuzYHECvvslu7NgcXKVrvH4nf5jXm2W3TmwPIUDC2Z3FiyOV9k62Z0Fec4ZrKyyOwv/GWmLb9vb25tsd3Bw4M6dOxnu//C+afvHx8cTFxeX6fHi4+OzKtuAAhgC3Pz0lezOgkXxev8HoqfrheODXAZ8Stjw7tmdDYuSd+JC9tWunt3ZsChVduzh7sE/sjsbFsW9YhPufft2dmfDorgOHk/46cPZnQ2L4lu8PLtP3c3ubFiUGiXcudinVXZnw2IUmr2GtXbFsjsbFqVl4hlOXQjN7mxYlBKBfsQtHp/d2bAojl3f5vL5s9mdDYtSoHBRrgxsl93ZsCj5f/yVqP0bsjsbFsWtcjOm/5ndubAsAxrDpQvnszsbFqVgYGHu7V2d3dmwGK7VWmd3FuQ/IrMRFo/j6OgIGNfCSPs/QHx8PE5OThnun9Hi3vHx8Tg7O+Pg4JB+vIc/z+h4/4bWwBARERERERERERER+X8qbTqoq1evmmy/evUq3t7eZvv7+PiY7ZuQkMDt27fJkycPHh4eODs7P/Hx/g0FMERERERERERERERE/p8qXrw4rq6u7N27N33b3bt3OXnyJFWqVDHbv0qVKkRERHDlypX0bX/99RcAlSpVwsrKiooVK6ZvS7N3714qV66cpXnXFFIiIiIiIiIiIiIiIv9P2dvb06tXL7788ku8vLzw8/NjwoQJ+Pj40LRpU5KTk7l58yZubm44OjpSrlw5KlasyPDhw/n444+JiYnhww8/pF27dukjLPr27cvAgQMpWbIkdevW5ZdffuHUqVOMHTs2S/OuERgiIiIiIiIiIiIiIv+PDR06lE6dOvH+++/TvXt3bGxsmDlzJnZ2doSHh1O7dm3WrVsHgJWVFVOnTsXf35+XXnqJYcOGUbduXT7++OP049WuXZvPPvuMhQsX0r59e/bs2cO0adMIDAzM0nxrBIaIiIiIiIiIiIiIPFMGg1V2Z+E/xcbGhhEjRjBixAizz/z9/Tlz5ozJtpw5czJ58uRHHrNdu3a0a9cuK7NpRiMwRERERERERERERETE4iiAISIiIiIiIiIiIiIiFkcBDBERERERERERERERsTgKYIiIiIiIiIiIiIiIiMVRAENERERERERERERERCyObXZnQERERERERERERET+WwzqWy9PQFeJiIiIiIiIiIiIiIhYHAUwRERERERERERERETE4iiAISIiIiIiIiIiIiIiFkcBDBERERERERERERERsTgKYIiIiIiIiIiIiIiIiMWxze4MiIiIiIiIiIiIiMh/iwGr7M6CPAc0AkNERERERERERERERCyOAhgiIiIiIiIiIiIiImJxFMAQERERERERERERERGLowCGiIiIiIiIiIiIiIhYHAUwRERERERERERERETE4thmdwZERERERERERERE5L/FgFV2Z0GeAxqBISIiIiIiIiIiIiIiFkcBDBERERERERERERERsTgKYIiIiIiIiIiIiIiIiMVRAENERERERERERERERCyOAhgiIiIiIiIiIiIiImJxbLM7AyIiIiIiIiIiIiLy32LAKruzIM8BjcAQERERERERERERERGLowCGiIiIiIiIiIiIiIhYHAUwRERERERERERERETE4iiAISIiIiIiIiIiIiIiFkcBDBERERERERERERERsTi22Z2BZ+H27dsMGzaMAwcOUKxYMZYuXcqvv/5K3bp1yZkzZ5b8juXLl/Puu+9y5syZLDne88y2UAmc67fDJndeUqLvEr9/C3F7/nhkGrvCpXGq0wqbPH4YYqNJOH2QmM2/QmKC+c72DuQY+CGx29aQcHT30ylEFtt9OYJvtx/n4o27eDk70KVCYV6sXBQrK6vHpk1KSaHvgk042toyvVt9k89WHb/MvH1nCL59j9yuTrQuVYB+1Ytja235sUmHYmVwa9EVWx9/UqLuEL3jd6K3rH10mpIVcGvaATvffKTERBF79C+i1i7GkBCfvo9Tlbq4NmiFbS5vku/eIuavbdz781dISXnKJfr33KtUxX/gIBwLFiLp5k2urlhGxMIFmSewscGnew9yt2yDXa5cxIcEEz5vLjc3/Wmym0eduuTt0w/HgHwk3rzBjd82ED5vDoakpKdcon9vz9FTfLd4NRdDwsmZw51OTevQq2WjJ/runLkUzEsfTGD5xI/Im9u0rt+y7wgzV2zgSlgkOT3caVG7Kn3aNcXO1vJvi7uvXOW73ae4cDOKnM4OdC5bkBcrBGZ6ToJv36Pd3I1m2wO93FjSqyEAKQYDy49fZunRy4TejcbLyYF6hXx4pVpxXB3snmp5ssK+Q0eYMX8Rl4NC8PTIQbsWL9C1XatHXicbt+1k3pLlhEVG4pMnNz06tqNZw3oAhEdepfvAIZmmbdawHiPfeC3Ly5HV4mJjWDJ3Cvt3byI+LpZiJSvQ/eXh+PoVeOJjTB33Dg6OTgx442OT7QaDgQ0r57PltxXcuB5Jrtw+NG7VlcYtumRtIbKQU6kKeHZ8EXu/fCTfvc3djWu5s2FFhvu61m5Env7DMz3W1elfc2/nJgDsfP3x6tIXp+JlMCQnE3fmODcWzSDpWuRTKcfT4OjnTd3Da9jfcTA3t/31yH3zdm1J4XdfxblQALGXQzk/4UdC5/1qsk+OSqUpMe5tclQqTdLdaELmLufsJ1MxJCY+xVJkjdjYWObO+pHdu7YRFxtLydJleXnga/j553tkutu3bjJr+vccOrCP5ORkKlWpSt8Br+Hldf/+88eGtXw7+SuztC1atWXga29keVmywq7zIUz98wAXrt3Cy8WJblVL0rtW6Sdrwyan0HvGapzsbJnZr6XJZysPnWXOzmOE3IzCJ4crXauVoEe1kk903Ox24OBBZs+dx5WgIDw8PGjdsiWdOrR/ZN43b9nKgsWLiYiIxDtPHrp27kSTxo1M9tm2fQdLf/mF4JBQXFxcqFC+HC/3eQlPT8+nXaR/zbFkeTza9cQubz5S7t4mavM67v6xMsN9XWo0JFffoZke6/pPk4jevTl9X/embbHN7UPyzetEbVlH1KZHPy9Yij1HT/Pd0jVcCIkgZw43OjepQ68WDTK9ThISk5i/bhNrt+8j8uZt8nh50LxmJfq0aWzSPj15MYhvFqzk1MUgXJwcaV23KgM7Nn8u2rAACXHRbFv5JWcP/U5ifAz+hSvToNO7eHkXeuJjnD/yJ7/+OJgub8wlX9Fq6dujbkWwdcV4rpzZRXJSAvmK1aBeuxF45inwFEqSNQ4cPMjsOXMJSqtPWrWkY4cOj6lPtrBw0WIiIiLw9s5Dl86dadK4cYb7xsTE8Org1+nZoztNmzR5WsXIUruPneG7Zeu5EBpJTndXOjeuxYvN6z36u7N+K2t27ifyxm28vTxoVrMCfVs1NPle/PHXEeau3czl8Gu4OTtStVQRhnRpSc4cbs+qaJIJA5Z/75fs93zc5f6lVatWsX//fhYsWIC3tzf79u1j5MiRbNxo/kJH/h0bv4K4dX2dhJP7id2yCtt8hXFq1AGsrYnb9VuGaeyKlMW186skHNtDzOYV2OTyxblBO6yc3Yj+dabJvlaOzrh2eQ0bj1zPojhZ4mjYDd5YvoOmxQN4tXZpDodeZ9LWoySnGOhbrfhj08/ee5oTEbeo5J/bZPuCA+f4cvNhGhf1Z1i9styKjef7nSc4e+02X7at+bSKkyXs8hfGq//bxB7eTdT6pdgXLIZ76x5Y2dhwb+OqDNM4lKqIV7+3iN23jbtrFmHr44d7y65Yu7hze/5UAFzqNiNH+5eIPbyHu6t+xtrVHbfmnbHLm49bs795hiX8+1xKlaLI+K+4ufFPQmb8iFvZcvi/+jrY2BAxf16Gafz69ce3V2/CZs8i6ugRPOvWI/CTTzEkJ3Nrq/HBz71yVQqP/YKbm/4k5PvvcCpYEP9Br2Kbw4Ogb8xfoliSY+cuMXz8NJrUqMigzq04cuYCUxasJDk5hT5tmz4y7fngMIaN/57kZPPA1d6jp3h74gyaVK/I693acCEkgu8WreJ21D1G9LXcl68Ax8JvMmz1HpoW8ePV6sU5HH6TyTtOkJySQt/KRTNMc+baXQC+b18TJ1ub9O2Odvf/P+fAOb7ffZoXKxamakAurtyOZtqeU1y4EcW37WpY9AulE2fO8u6n42hQuyb9enbl2MnT/DDnZ5KTk+nZqV2Gabbu2sunX0+hY6vmVK1Yjh179/PFpO+ws7WlUd1a5PTy5NvxY8zS/brudzbv2EWLJg2fcqmyxrSv3+fC2eN06T0EJ2cXVi6ewbj3X2XslMW4uLo/Mm1KSgoLZ01k/+5N1GrQ0uzzxXMm88eaRbTv/gqFipTi6IGdzP9xArY2ttR/ocPTKtI/5hBYDJ/hH3Lvr+3cWjEfxyIl8erSF2xsuLN2mdn+MUf2ETrmLbPtufsOxdrJiZij+wGw8cpF3lHjSQwPJXLaeKztHfDs8CK+/xtDyPuvY8ioI4aFcfT3oeramdh5PPqaAPBp35Tyc7/k0pS5XPttOz5tG1N+1jhS4hMIX7IOAKeC/lTb8BO39hzmYPdhuBYPpNiY4dh5eXB88EdPuzj/2tfjP+Xs6VP07jcQZ2dnFi+Yy/sj32LK97Nwdcv4JUdycjKffDiSmJgYBr0+jKSkZObNns7Ho97m6yk/YJv6AuXSxfP4+Qcw9M13TNJ7eHo99XL9E0eDrzLk5z94oXRBBjeqxKErEUz84y+SUlJ4uW65x6aftf0IJ0KvU7mAj8n25QfOMHrlDvrULkPNQH+OhVzlqw17iY1PpH+98k+pNFnj1OnTfDh6DPXq1KZ3r16cOHmSmT/NJiU5ma5dOmeYZvvOnYz78ivatWlN5UqV2LVnD19O/AY7Ozvq16sLwJat2/h8/ARaNG9Gn94vcvPWbebOm8/b743i20nfYG9v/yyL+bfYFyxKntdHEb1/J7dXLsCxcAk8Or4ENjbc3bDcbP/YY/sJ//xts+05ew/G2smZ2GMHAHCt3ZicvV/nzoblxJ08jH3Bonh27oeVgxN315vX25bk2LnLDPvyR5pUr8CgTi05fOYikxeuIjk5mT5tMn6J/OXcX1i3cz/92zWlZKF8nLwUzPTlGwi/fpMPB/YAIOTqdV77/DvKFi7A50P7cDk0ku+WruXOvRjee7nrsyziP7Z29luEXTpCvXYjsHdyZfe6qSye1Ju+76/F0TnHY9PH3rvF7wvN7yUJ8TEsndIHsKJx14+xtbNn9/rvWDSxF33eX4OTi0eWl+XfOnX6NB99PJq6derw0ou9OH7iJDNn/URycjJdu2T8TLJjx07GT/iSdm3bUKlSJXbv3sNXX09MrU/qmewbFRXF6E/GEBn5/HSoOHb+CsO+nkXTauV4tWMzDp+9xOTFa0lOTqFv64zb31/O/5W1Ow/Qv20TShUK4OSlYH789Q8irt/mw/7G8/jbnkO8993PdGxQndc6NefGnSi+/2UDg76YxvzRw3Cwt/wOWyL/df+JAMbdu3fJnTs3ZcuWBeDy5cvZm6H/x5zrtiY5IpjolT8BkHjxBFjb4FSrOXF/bYIk8553zk06k3DqINGr5wCQdPkMWFnjWLUh2Nqlp7ErUhbnF7piZe/47AqUBabtOkHxPJ582sLYO6RWQR+SklOYtfcU3SsWMXmJ+LCzV28za+9pcrmYljk5xcD03Sepnt+b8W1qpG8vnseTLnN+Z8/lSKoX8H46BcoCbs06kRh6mds/fwdA/OkjYGODa+O23Nu2HjLooZmj7YvEHdnL7UU/AJBw/gRW1ta41GmGlZ09hqRE3Jp2IO7MUW7NmZSeLjHkEnnemUBM0TLEnz32bAr4D/j1G0DMubNc+nQ0AHf37sHK1pa8L/YhcskSk1EmaXK1bMWNP34n7CdjoC/qwH5cihUnT8dO6QGMXC1bkhAZycVPPoaUFO7u/ws7Ly+8u3YneMo3GJKTn1UR/7Yfl62lWAF/Phn8EgA1y5ckKTmZ2St/p1vz+jhm8DCfmJTE4g1b+WHZWhzsMr7Frd66B5+cnnzy+kvYWFtTrWwJbt65y4J1mxn+YkdsbTP/Tma3aXtPUyx3Dsa8UAmAmgW8SUpJ4ad95+hePhDHDPJ+9vodvF0dqRqQ2+wzMI6+mHPgPB1K52dIrZIAVMsHHo72vLthP6eu3qakt+X2/py9YClFChZk1PDXAahWsTzJycn8vOxXOrVugYOD+XUyY95C6teszuv9jddW1YrliYq6x6wFS2hUtxb2dnaUKmYaEDpz/iKbd+yif6/ulC35+OBzdjt/+iiH923nzQ++oWylWgAULVmBEa+0ZeP6ZbTp3C/TtMGXzzF/+gQunTuJvb2D2efXIsP4bdUCXhwwgobNOwFQsmwVbl6P5NihPRYZwPBs15P4Kxe59uPXAMQeO4iVjS2erbpw9/dVZoGGlKi7xEfdNdnm3rg1dnn9Cft0BCmpn3m260FKTAzhE95Pr6cTr0Xi88YHOBQsQtzZE8+gdP+QlRX+L7ajxLh3eNKOb8XGvEn4sg2c+t/nAFz/Ywd2njko9vEb6QGMwBEDSIqKZn+H1zAkJnJtwzaSY+MoPekDzn8xjbjg8KdVon/t9KkT7Nu7mw9Gf06lKsZ2W8nSZXmlbw/Wr11J5269Mky3c/sWLl44z5RpswjIVwCAQoGBDH31ZXZu30K9BsaesZcuXqBwkWIUK17yGZTm3/tu00GK++Tks471AahVxJ/ElBRmbj9CzxqlcMzkPgtwJuIGM7cfIZerk9lnM7YdoUmpAgxvWhWAaoF5uXLjLgv3nrT4AMa8nxcQWKgQb//PGOCsUrkSSUnJLFqylHZt2+DgYF5nzp4zjzq1azFo4AAAKleqSFRUFHPmz08PYCxaspSqlSvzxuuD09MF+Pnxxlv/Y+9f+6hTu9YzKN0/49GmOwnBl7gx6xsA4k4cAhtbcjTvRNTGNeb16727JNwzrV/dGrbEztefiHEjSUn9zL15J6IP7OT28rnG454+ip13XtwatrD4AMYPv6ynWAF/xrz2IgA1y5UgKTmZn1b+Qbdm9czasLejolmxeTdDurWmdyvjyJyqpYsBMHXRaoZ0a4OnuytzVm/ExdGBr97qj52tLbXLl8LRwZ7xs5fRr20TfHJZZjA0TdjFQ1w4tpkOr/1IoVLGl+3+gZWZ/mEjDm9bQPVmrz72GH8uHo2NjXndc/bQb9yMvESfUWvIlbcIALnyFmX6h404e3AD5ep0y9rCZIF583821icj/gdA5cqVSU5OYvHiJbRr2zbD+uSnOXOoU7s2rwwcaExTqRJRUVHMnTffJICxe88evp/2A7Gxsc+mMFlk2vLfKJY/L2MGGYN2NcsWN353Vm+k+wt1cHwo0HA7KprlW/YytEsLerdsAEDVUsa//5Ql6xjSpQWe7q7MWr2JWuWK817fTulp8/vmps/oKWw/fJLGVR8flBeR7GX588yk2rp1Kx06dKBcuXLUqFGDkSNHcufOHQD2799Ply5dKFu2LG3atGHdunUUK1aMkJAQRo4cyZQpUwgLC6NYsWIsX76c3r17A9CoUSOWLzfvFZKRsLAwhg8fTo0aNShVqhR169ZlwoQJpDw0Lc2SJUuoU6cO5cqVY9CgQYSGhqZ/FhcXxzfffEOjRo0oU6YMbdu25bffjKMSoqOjqVChAgsWmE4XM3XqVOrXr09KSgoGg4Hp06fTqFEjypUrR9u2bVm1KuPe6tnCxhbb/EVJOHPIZHPCqQNYOThhG1DYPIl3ADZeeYjfv8lke/y+Tdz59v304IWVgxOunV8lKegcUQsnP70yZLGEpGQOBF+jQRE/k+2Ni/oTnZDE4dDrmaZNTE7hg/V/0a1iYfJ7mvb4uxkTx524BOoE+ppsL5w7Bx5O9my/aLkvB7CxxaFwSeKO7TPZHHdkL9aOzjgUNH8xaOtXANvcPkRvNx3FE71tA1fHDsOQmIC1mwfWLm7Enzhosk9SRAjJ9+7iULJC1pcli1jZ2eFWoSK3tm0x2X5r8yZsXFxwK5txg8ra3p7kmGiTbUl37mDrnuOBfRxIiYs1mUIr6e4drO3tsXZ2ybpCZLGExEQOnDxP/SqmZW9YrQLRsXEcOX0hw3Q7D51gxvL19G3blNe7t8twn/jEJBwd7LF5YKq1HG4uJCYlER0Xl2VlyGoJSckcCLlBg4e+940K5yU6MYnDYTcyTHfm2h2K5sq8R1t0QhItivvTrJi/yfYCnq4AhNyJ+Zc5f3oSEhM5fPwktatXMdler2Y1YmJjOXbqtFma8MirBIeFm6epVY3Q8AhCwszrT4PBwDc/zCR/gD+d25iPRrBExw7twcHRidLlq6dvc8/hSbFSFTl6YOcj0/74zUekpKTwwfifcMth/jLk4N4t2NnZU6dxG5Ptr434nCEjx2dNAbKSrS1OxcsQfdB02sno/TuxdnLGsejjXybbuHvg1fFF7m5aT/zFs+nbXSrXJGr7HyZB5oTL5wka/pJlBy8A97LFKP3taELm/8rhPua9oR/mlN8P12IFiVhpOi1o+PLfcClSAOfC+QHI3aQ2V9dvNZkuKuKXDVjZ2JC7ae2sLUQWO3RgH46OjpSvWDl9W44cHpQqU44D+/Zmnu7gfvz8A9KDFwAB+QrgH5AvPZ3BYODypYsUDDRvD1uihKRk9l8Op2GJ/Cbbm5QqSHR8IoeuZN6jNzEpmfd/2Ub3aqUokMH9Z2qvpunBizR2NtbEJ1lupwow3nOOHj1GrRrVTbbXqV2TmNhYjp88aZYmIjKSkNBQatWoYZqmVi3CwsIJDQ0jJSWFChXK07zZCyb7BAQY78th4Rbcrre1xbFoaWIO7THZHHNgF9ZOzjgULvHYQ1i75cCjbU+itm4g4dK59O1Xp3zKrWVzTPY1JCVhZWu5o1HAOJ3NgVPnaFC5jMn2RlXLER0Xz+EzF83SRMfG0bFRTepWLG2yvYCvsUNa6FXjM+Oeo6epVb6kybQ4jaqWJ8VgYPdR8zaPpbl0agd29s4UKHH/XuDs5oV/kSpcPLH1selPH1jHldO7qNt+hNlnRco1pvtbC9ODFwA2NsaX3UlJ5h3BsltCYiLHjh6lZk3TuqF27drExMZy4kTG9UloaGgGaWoRFhaW/u7p3r17jPl0LGXLlGHsGPMRxZYqITGJA6cv0KDSQ9+dKmWN352zl8zSRMfF0bFBdepWLGWyvYBvHgBCrt0gJSWFaqWK0KF+9Yz3uZrxM5SIWJbnIoBx8+ZNXn/9dTp27Mi6deuYOnUq+/btY/z48Vy5coV+/fpRtGhRVqxYwcCBAxnzQCU9atQo+vXrh4+PDzt27KBJkyZMmTIFgKVLl9KiRYsnysOrr75KVFQUP/30Exs2bKBfv37MmDGDTZtMX7zPmzePSZMm8fPPP3Pr1i0GDx6MwWAA4M033+TXX3/lgw8+YNWqVTRu3Jg33niDP//8ExcXF5o1a8aaNWtMjrd69Wratm2LtbU1EydOZOHChXzwwQesXr2a3r178/HHH/Pzzz//m9ObZaw9cmFla0fyjasm21NuXQPAJqf5iAAbnwDA2Bh17ToYz3em4PHW1zg36QIP9KwwJCZwZ9rHRK+ajSHm3lMsRdYKuRNNYnIK+VJfBKYJSP358s2oTNP+uPskSckpDKpZyuwzVwc7bK2tCH/oxeLduASi4hIJvWO558g2Zx6sbO1Iumr6MJZ03fggbJPH1yyNnZ/x4dmQlIhX/xH4jpuDz6fTcW/XO/06McRGY0hOwsbTtJe5lZML1k4u2ObM8zSKkyUc8vphbW9PfFCwyfa40BAAHPNlPO925JLF5GrWHPdq1bF2dsaryQvkqFadG7+tv7/P8mU4+Afg070HNq6uuJQqhXfnbtzetZPkh3oXW5LQqzdITEoin6/p3y3A2/j3vRJ+NaNklAzMz8rJo+nXvhk2Nhnf4jo3rUtwxDXmrfmTqOgYjp27xKL1W6hVvhQ5XC03qBN6N4bElBTyezxUn+Qw5vnKrYy/92ev3SEmMYm+S7ZR49vVNJ2xgck7T5CYOr2Wm4Mdb9crS/m8D60TkhoILZTTcueFDY+IJDEpiQA/03rDz9c4XUlQaJhZmqAQ48Pd30mzafsuTp09z+svv5TpdWVpwkMukdvbD2sb01E53r7+RIReeWTagcM+YdTnMwgoUCTDz4MuncXbN4AzJw7x0Zu9eLljdd4a0IYtvz1Zp5BnzS63D1Z2diRGhJpsT4w0/q3tfPwzSmbCs31PDIYUbi2/P6WfbS5vbJxdSbpxlZwvDiL/1IUUmL4c76HvY+OZNWusPU2xQeFsKd6EUyO+IDnm8cFb1+KBAESfu2yyPeaC8XpyLVoQa0cHnAv4E33O9CVDwvVbJN6JwrVowazJ/FMSEhyEt09ebB763vj6+hEaGpxJKggJukJeP/PryDevH6EhxnQR4WHExsZw/uwZXhvQm46tm/DagN5s3vh71hYii4TciiIxOYX8DwUg8nkZpxq7fONOpml/2HKIpJQUXmtYMcPPC+X2wM/TDYPBwJ2YeJYfOMPqI+fpWvXxL7uzU0R4BIlJSfj5mXZMyuubF4CQkFCzNMHBxr+/n19e0zR5jfeg4NAQrK2teaX/y9R8KDCya7cxKJA//6PXX8lOtrlS69dI03tn0jVjG8LOxy+jZCY82nQHg4Hbv5p25EuKCEl/rrR2dsW1dmNca9Tn3tb1GR3GYoRevU5iUrJ5G9Yn8zasX56cjOzbhQJ5TZ+Xtx44iq2NDfl88xCXkED49Ztmx/V0d8XFyTHTtrEluRlxgRy5/LG2Nq1jPXPn41ak+cvpB0Xfvc7GxaNp0Ok9XNzNRxU7OLnhV8hY5yQnJXAt9DTr543EydWTYhWbZ10hskhEeHgm9YmxbghJfQ58UHBQWn3yUJq8pnWQg4MDP0z7nv+99SbuOR4/PaSlMD7/JZPfx/TvG+BtnD48w+9O7py826djejAizZaDx7G1sSG/T26sra15s0cb6lcyDRBuOXAcgEJ+ptMciohlei6mkIqMjCQhIYG8efPi5+eHn58f06ZNIzk5mcWLF5MrVy4+/vhjbG1tCQwMJDIykvHjjT0A3dzccHZ2xsbGhty5jRVhjhzGhriXlxeOjo+fjiguLo62bdvSvHlzfFNvKH369GH69OmcOXOGxg8smDRhwgSKFzf2IB83bhwvvPACu3fvxtvbm40bNzJt2jTq168PwJAhQzh9+jTTpk2jcePGtG/fnt69exMaGoqfnx9Hjx7l8uXLdOjQgZiYGGbPns3XX3+dnj5fvnyEhoYyc+ZMevbsmSXn+t+wcjQOETckmA5TNMQbH4qtHMyHkFs7G1/EuXYeRMLxfcTt+QPbvAVwqtsaK5cH1sBISSbl5vMzd2Oae/HG3ocPL4LrbG/86kUnZLyY5Ynwm8zbd4YZ3Rpgn8GUME52tjQpFsDiw+cplMudhkX8uBkTz4RNh7CxtiI20XJ7sFk5OQOQEv/wdWL82drR/DqxSZ2r3avvm8Qc3Mm9LWuxzxeI2wudsHY1roFhSEwg9tAeXOo0JTEihLhj+7B2dSdH+5cgJRmrDKZBsRQ2qS/NHx5NkRxjDFDZuGT8Uj1i8SJcSpeh2FffpG+7tmYVEQvvBzWjDuwnYsF8AgYPJWCwccHE6DNnuDj6w6wsQpa7F2O8HlycTOtoZyfj3zE6NuOXbXm8PB577CqlitK7dWMm//wrk3/+FYBiBfz5dEiff5zfZyGtPnGxN711369PzBdlvxUbz9XoOJINBobWKomvmzN/hVxjzv7zRN6LY2zqVFQPOxZxk9n7z1G3oA+Fc1rug8+91O+Is5NpveGU+nNMjPmw+XvRqWmcnZ84zeJfV1O6RDEqlDEPKFuqmJh7OGUwysrRyYXY2OgMUtwXUODRPcSj7tzi9s1r/DDxA9p1HYCvfwH2bv+d2d8bpxWytCmk0kabGWJNg/4pcan3HSfz+45JerccuNZqyJ0NK0h5oJ62cUttT3buQ/yls1z9fjw27jnw6vQSed/5nJAPh2Q4/Z+lSLx1h8Rbmb+EfphtDmObLemuabA0Kcp4TmzdXbFLXQjz4X3S9rN1dzXbbkliYqLN6gYw1g+xMZmPRouJic4wgOHk5Jye7tLF8wBERoTTt/+r2Nrasnnj70z66gsSExNo2qxVFpUia9yLM077Y96GNf4cHZfx+i7HQ68xZ9dxZvVrmWEb9kFHg6/Se4ax81apvLnoXbPMI/fPbtGp3/+HrxFn57T7h/k1Ev3Ye07G11VYeDjTZ84isFAhqlaunOE+lsA6tV1viMu4frVyNP8+maR3y4FLjQZE/bESQyb3JvtCxfAdOQ6A+MvnuPt7xouDW4p7qQFhszas46PbsA/bvO8Ia7bvo0uTOri7OHP9trHjkauT+fsLF0eHJz5udoqPjcLB0fw+YO/oQnzco9smvy/4AN+CFShVrR1BZzMfEQewYtqrXD61Aysra17oORbXHJbXkS06JuO6Ie3nDOuT1DrI5eE0D9UndnZ2BPg/vnOGpbkXm/bdMX1uv//debI21ab9x1iz4wBdGtfC3SXjOig48jrfLFpDsXx5qV3O8qeGFZHnJIBRokQJWrVqxaBBg8idOze1atWifv36NGnShPPnz1OyZMn0xfEAqlat+oij/X2Ojo706tWLDRs2cPToUa5cucKZM2e4fv26yRRSLi4u6cELgAIFCpAjRw7Onj3L7du3AahUyfRlUZUqVfj666/T/+/v78+aNWt45ZVXWLVqFRUrViR//vwcPXqU+Ph43nrrLawfmPYkKSmJhIQE4uLinigY8zQ9dpFXg/liumm95xNPHyZ2k7HnZtKVs2BlhXPDDsRuW03KTcvvTZKZtNE3mbHO4JzFJyXz4fq/6FGpCKV9M5/HdFSTStjbWDPmt/188tt+HG1t6FO1ODEJSRnOg28xHnudZHDOUq+T2GP7iFqzEICE8yfBygr3Vt2J+m0ZydciuLN0BoakRDy6DsCq+yukJMRzb+MqrB0dMSRa7kskK6tH9+g2ZPDdsbKzo8R307DLmYvLE74g7soVXEuXwfelvqTExhI0aSIA+f/3NrlatiZs9izuHtiPvY8vfv36U/SrbzjzxuukxFvmeUl5zHfn3ywq/cXMRazasod+7ZtRtXRRwq7dZPqydQz94lu+GzUUxwzWTLAEGdSgJjI6JU52tnzbrgb5PFzJ625swFfyz4W9jTXf7T5N/ypFKehlOsLicNgNhq3eS153Zz5qbLlTrwEYUv7+dfK4evnhNMdPneHshUt8+t7//n4GnxHjNJOmV8ijzs3j6pzHSUpKJOrubV5/ZxyVaxgXVCxZtgo3rkfw6+IZFhfAeNx953HXhHu9plhZW3Pnj4em7UxteybfvU3klM/S71+JV8Px++ArXGvUJ2rrbw8f7rllZf2Ye1VKCjx2n0ef62cpbXrWh7dl5lH3nUd+36yN6UqWLsuoj8ZSplx5HFM7a1SoVIU7t2+zcN5smrzQ8l/d27LaP7kPxycm8cHybfSsXooy/hmvu/QgXw9XZvZtQejtKKZuPEDvGatZNKgdTvaW+Yia8pjrN6N2fUpGzz8macy/M0HBwbz3wYfY2Njw/nsjTZ79LM0/ev57gGvtJlhZW3N345pM90m+cZWIL0dhm9Mbj3Y98Bn5BeGfvokhIeMgWnZ73Hcno+vkYZv2HeH9b+dSvmghhnY3Ttf4d9sv2c2QUdvkEWV4VP6P71lB6IUD9Hk/8+vkQdWbvUqVxv05tW8VG+a/i8GQTJmanZ8s48+I4RH3G8ikDfu4dq+1ZV0Df1dWPP9t2neMUdN+pnzRArzRNeNpXy+FXWXw+B+xsbZm3JDeFl3H/lcYDM/3tSvPhmW2DjPw1VdfMXjwYLZt28auXbsYMWIElSpVwsHBwexhwz6DhV3/jZiYGHr16kVcXBzNmjWjffv2lC1b1mzUw8PDzcH4IPSo/BgMhvTgi5WVFe3atWP16tX079+f9evXM2zYsPT9AL755hsKFSpkdpysLvM/YUjrafPQIttWDo4mn5ukSR2dkXD+qMn2xAsnoGEHbH3ykfAcBzDSeq093DM6Oj7J5PMHfbfjOAZgQPWSJKVe2waMf/+klBRsrKywsrLC2d6Wj5pVYUTDCoTfjcbX3QVne1t+PXaRAA/L7eGYdh1YOzx0naQ+zKfEmvc2SRudEX/SdH2LuFNHcG/VHTu/AiRfi8CQEM+dxT9yd8UcbLxyk3zzGoaEeJyrN0ifosoSJUUbe6paP9Sbxia113DyPfMeSZ71G+BcpChnhg3h7n7jeiJRhw+RFB1NgbdGcG3VSpKiosjdph3h8+YQOuPH9LTRp05QZv4icrVszdXllrkIomtaT6I40wBLWu8yV+dH95jOzNWbt1mxaRd92zbl1S7G3q6VgFKB+ek6Yiyrtuymywv1Hn2QbOKaNtIi8aH6JLV+cbU3r08cbW2ons+811ntAj58t/s0Z6/fMQlg/H42lI//OEg+T1emtK2Bh1P231sexSW1V1XsQ70O00ZRuGbQ6+p+mtiH0sRkmGbrrr24ubpQvZLlBnNWLp7BysXTTbZVrtmIu3dumu0bGxONs/O/u0c4OrlgZWWVvjh4mjIVanD80B7u3L5BDg/LmUIpJfVv+3BP4LSewykxj+716VK5FjHHD6Uv3J0m7X4Wc/SASfA9/sIZkmPu4ZA/kMwninz+JN0xlsbWzXRkT9qoiqQ799JHXjy8T9p+acewBIsXzGXxgrkm22rWrsud27fM9o2JjcHZJfPvjbOLC7EZtF+MIzqM58LDw5Mq1WqY7VOpajWOHD7A7Vu38PSynAV4XR2N9X90vOlo4bSf3RzN7w9TNx4gxWBgYP3yJKVOU5j21UhKTsHG2srkBVQedxfyuLtQGV/8Pd3oN2sdf568ROvyGU9fl90yu3+k96TOYMSsS+rfP7N7jstD95wjR4/xydjPcHJyZNznY9Onk7FUae32h0faW6fWtxm16x/kXKkGsScPpy/cnZHkO7dIvnOLeE6QdD0CnxGf4VyxJtF7tvy7zD8lrs7GZ5yYh9omT9qG/Xn9Zib9vJJKJQvz5fD+OKS279JGdGS0Xlt0bNw/bhs/LbvWf8vudVNNthWt8AIxUeZrQMbHRuPglPGUpVG3Iti8bCz1O4zE2dWLlOSk9Jf/hpQUUlKSzaak8i9sHLWUv3gN7twMZc+GaRYXwEirLzKvG8zrE+fU+iImkzrIxYLXN3wSrunX+MPPf8af075bmfl5wza+WbiaSiUC+eqNPunfnQftP3WeEZPn4OTgwA/vvpo+PZWIWL7nIoBx5MgR1q5dy3vvvUehQoXo06cPq1atYsSIEXTr1o3NmzeTkJCQ/hL/+PHjjzze3+2dsGPHDk6cOMHOnTvJlctYwd2+fZsbN26Y9CK4e/cuQUFB5Eudr/7MmTNERUVRtGhRPD09AThw4AANGjRIT7N//34KF74/VUP79u2ZOnUqixYtIjo6mubNjfM1FipUCFtbW8LCwkzSz507l/Pnz/PJJ5/8rTI9Dcm3rmFIScbGMw8PPupYexlfniXfiDBLkza6wsrmoZtLaiPEkGiZPWuelL+HKzZWVgQ/NDd98G3jzw/3fAb482wI4XdjqDV5hdlnVb/+hY+bVaFN6QJsuxCGu6M95f1yEZg6P/HN6Dgio2Ip7u35FEqTNZKuR2JITsYml+lck7apPydFms8fnHQt9dqxNb1OrGzSrhPjFedQsgKG2GgSLp0lKcI4b6i1qzs2ObxIDHn0vKrZKT40FENSEo4PTT/hmDr0N+7KZbM0Dt7G8xV11DT4d+/wIQCcChYiPjICK2tr7h0z3Sfu8mUSb9/GqaB5MNRS+HvnwsbampCIaybb034u6Ge+ps6TiLh+E4PBQNlipmUv5O9LDlcXLoZY7kKZ/jlcsLGyIuS26cvW4NSfM6pPgm7fY1/wdZoW9cPtgYBp2kKpng8M0Z578DyTd5ygkn8uvmxZ1WR/S5XXxxtra2tCw03vL2k/5/M3n3s7IHUe8tDwCIoUKvhAmsgM0+zef5Da1aqYjPS0NPVfaE/5KqaLIx/cu5Xjh/aQkpJi0rPsangwvv4F/tXv8/YNwGAwkJyUCA9Mz5ecbLyu7C1syr6ka+EYkpOx8zZ9EWiXx3gtJIabzzOdxsYjJw4FCnPnx6/NPku8Go4hJQUrO/PvipW1DSkW2jv4n7qXunimc2B+7h4+lb7dJdC4TtW90xdIjo4hNiQC50DThZ/tc3th5+7KvdMXnl2GH+OF5q2oUtU0oLB39w4OHdhv9r0JDwvFPyDzdQj8/AO4eOGc2fbwsDCKFDOOzj5x/CiREeE0bGy6UHNCfALW1ta4ulnWekMBnm7YWFsRfNP0xXJQ6s8Fc3uYpfnz5GXCbt+jxqdzzT6rNPonPmlfhyYlC7LlTBCl/XKT74EpCkv4Gp+xrt599Avv7JTX1xdra2uzRbXDwow/5wsIMEvjn3pPCQsLp3Bg4P00qccIeCDN5i1b+XLiNwT4+/Pp6I/JlctyAsGZSbwWYaxf8/jy4CtV29Q17R5dv3rhkC+Q63+uNvvMysERp3JVjW36a/fv8QlBF9PTWir/PMY2bHCk6Yv6tJ8fXucijcFg4Mu5y1n8+zZeqFGRjwf1NFms29nRgTyeOQiJMD3uzTtRRMfFUzCT42aXcrW6EFi6vsm280f/5PKpHcZ75wN17O1rV/DyCSQjV07vIj42it9+HsVvP48y+WzplD64e/kxcMwmwq8c5c71EIpXMl3j1DugFGEXD2VNobJQen0S9nB9YlxPJiCD+iRtWqiwsDCT+iQ89RgB+czTPE/88+Q0Pv9l8t0pmDfjqcAMBgMT5q9k8R87eKF6BUYP7Gry3UmzYfchPvpxEQXy5mHKW/3J45Ujg6OJiKV6LsZKubq6smDBAiZMmMCVK1c4e/Ys69ato0CBArz22mvEx8fz7rvvcv78ebZu3crEiRMfeby0eQVPnz5NdPSje90B+PgYXxSuWrWK0NBQ9u/fz2uvvUZiYiIJDzycWltbM2zYMA4fPszhw4d5++23qVq1KpUrVyYwMJAGDRowevRotmzZwqVLl5g6dSobN26kX79+6cfw8/OjWrVqfPXVVzRu3BhXV2NvLzc3N7p168akSZNYuXIlwcHBLFu2jAkTJpAnj4XM6ZicRFLQOeyLm/ZStS9ekZS4GJJCzV8gJwadw5AQh32pKqZpipbDkJxMUujFp5rlp83B1oYK/rnYdC7EJNi18WwIrg52lMpgiqhv2tdmfq9GJv+Ke3tQ3NuD+b0aUTfQ+ECw7MhFJm45YpL254PnsLG2ok6gBffWSkok4eJpnMqa/s0dy1YlJTaaxCDzlxsJF06REh+HU4WapmlKV8KQnETi5bMAuNRsjHsb05FRLnWbgyGFuBOmozcsiSEhgagjh/GsV99ku2f9BiRFRRF98oRZmtgg46KpbuXKmWx3LVsWgPiwUOJDQzAkJeFa1nQfx4B82Hl4EB9mHiyyFA72dlQoXpjN+w6bfHc2/XUYV2cnSgUW+EfHDfDJjY21NYcfeol2OSySO/ei8ctjub1wHGxtqOCXk00Xwk3PyYUwXO1tKeXtYZbmenQcn20+wh/nTP/Wv58LxcXelhJ5jGl+OXaZSTtO0KSIH1Pb1ngughcADvb2lCtVgm17/jI5J9t278XFxZkSRc3XcvD39cHXOw9bd5rOn7xt11788/ri633/nno36h4hYeGULlHs6RUiC3h65aZg4ZIm/0qXr0ZcbDTHD+1O3+/unVucOXmI0uWrP+Joj5c28mLvdtPFhw//tY2AAkVw+pcjPLKaITGRuDPHcalkeg9xqVyT5Jh7xF88m2lah8CiAMSdO2l+3Pg44s6ewKVSjfTppAAcS5TD2tGJuLPmdffzLOZCEDEXg/HtYPoC3qd9U+6dvUTsFWM9c/3PneRpUR/rB3o++nR4gZSkJK5v3vNM8/woXjlzUbhoMZN/5StWJjY2hkMH9qXvd+fObU4eP0r5ipmvQ1C+YmVCgoMIDrqcvi046DIhwVcoX8GY7vjRw0z+elz6ot5gHKm9a+dWipcohV0GgbDs5GBnS8X8Pmw8edmkfv3z5CXcHO0p7Wc+RdTknk1Y8Eobk38lfHNSwjcnC15pQ71i+bCxtmL0yu3M3mnauWLXBeP1U9THcl9M29vbU6Z0aXbu2mVyTnbs3IWLiwvFipqPHPHLmxcfb2+279xpsn3Hzl3pnwH8tW8/47/6mpIlivPVhHHPRfACgKRE4s+dwLmC6X3FuWINUmKiSbicef1qX9BYv8ZfOG32mSE5mZy9B+P+QnuT7Y4lywOQEHLlX2b86TG2YQPZvO/oQ23YI7g6O1H6oQBvmm8Xr2Hx79vo2bw+nw7uneEL2Gpli7P90AkSHhiNu2nfEWysralSyrJGLrl6eOOTv4zJv/zFa5MQF82lU9vT94uJuknI+f0UKF4rw+MElmlAr7eXmfxr0m00AE26jab9oO8BuHRiG+tmj+DurfsBgZSUZILO7iG3n+W14zKvT3am1idFzdLkzZsXHx9vdux4uD7ZaVKfPK8c7O2oUKwgm/YfN/3u7D+Kq7MjpQpl3JFg6tL1LP5jBz2b1WXsqz0y/O7sOHKKD39YSLki+Zn5/mAFL0SeQ5bbnfABgYGBTJkyhalTp7JgwQKsra2pXr0606dPx9vbmzlz5jB27Fjat2+Pv78/nTt35rvvvsv0eEWLFqVevXoMGzaMN9980ySAkJGyZcvy7rvvMnv2bL755hu8vb1p0aIFvr6+HDt2LH0/Ly8v2rZty2uvvUZsbCwNGjTg/fffT//866+/5uuvv2bUqFHcvXuXokWLMmXKFJo0aWLy+zp06MCePXvo0MF0Dul3330XT09PJk2axNWrV/H19WXo0KH079//75zOpyp2xzrceg7DtcNA4o/sxNY/EMcaTYjdtAKSEsHeEZvcvqTcuoYh5h4kxhO7dTXOTTpjiIsh4fQhbP0L4VjzBeL+2mjc5znXv0ZJXl2ylXdW76Ft6QIcCbvB3H1nGFK3DE52ttyLT+TijbsEeLji6exAkdzmN1OX1Ifakg881HWvWJjBy7bz5ebD1AvMy19BV/lp72n6VC1m0VNIAUT9voKcr76H50tvELN3C/YFi+LaoBVRaxdhSEzAysEJWx8/kq9HkhIdhSEhnqj1S8nR7kUMsdHEHv0L+wJFcW3YhuhtG0iJNk5JEb19AzkHvYd7uxeJO34AhyKlcWvSjqiNK0m+YdlTkYXN+Yli30whcMxYrq9dg2vpMvh070nItO9IiY/H2tkZp4IFiQ8NJen2bW7v2M69E8cp9OHHhM6cQdyVy7iUKkXe3n25tX0b0aeNvWMjly7Gp0cvAO7u+8u4Bkbfl4kPD+faasteBLFf+xcY/NlU3p00i9b1q3P07CXmrdnI693a4Ohgz72YWC6FRuDvnQtP9yfruerp7ka35vWZt+ZPAKqVKU749ZvM+GU9vrm8aNew5mOOkL1erlKU11bs4p31+2lbMh9Hwm8y98B5htQqmV6fXLoZhX8OFzydHSifNydVA3LxzfYTxCclU8jLjR2XI1l0+CJv1imNm4Md16Pj+Gr7cfK6O9OlXEFOX71t8jvTjmWpXuzSgbc+/JSPx0+kReMGHD99lkUrVjOwd3ccHRyIjonhcnAIfj4+eOQw9vbt3bUj4yZ/j/s0V2pWrczOvfvZvHM3H/7vDZNjX7wSBECBgOdvIcRipSpSvHQlfpj4IV1eGoKrWw5+XTQdZxc3GjbvmL5faPBFkhITyV/oyR/uS5SpRPkqdVgwayLx8XH45Qtk5+a1nDt9hKHvfvk0ivOv3Vq9GN8Rn5Jn8Eiitv2BY5ES5GjegZtL52BIiMfK0Ql7v3wkXg03mSrK3r8AKYkJJj2AH3Rz6Rzyjvwc3zdHc3v9cmxyeODVuQ9xF04Tc+jRi4xaOls3F1xLFibmQhAJ143TKp0b+y3lZn5B4s3bRK7ehHebRuTt0oKDPYalp7vw5Qzydm1JlTUzuPTNT7gULUCxMW8SPGMJccGWO8oNoFSZcpQuW56JEz7jpX4DcXN3Z9HPc3BxcaV5izbp+wUHXSYxMZFCgcYXhrXr1mfZ4p/55IORvNh3AADzfppO/gKFqF23PmAc8bFh7SrGjh5Fj159cXB0ZP3alQRdvsxn47951kV9IgPqleeVOesZsWQT7SoU5XDwVebsPMYbjavgZG/LvbgELl67jb+XG14uThTxNg8+uKQGxEs9EPDoV6cc328+iJeLE1UK+nI24iY/bDlE9UJ5qV3EsuvbHt26MHLUB4z9fBwvNG3MyVOnWbZ8Of36vISjoyPRMTEEBQXh6+uLRw5jm75n92589c0k3N3cqF6tGrv37mXb9h28+87bACQkJDBx8hScnZzo1rULQUFBJr8zV65c5M5luR0s7qxdSp7ho8n1ygju7dyIQ6HiuDdtx+0V8zAkJGDl6ISdbwBJ1yJMpoqy98uPIbP6NSmRu+t/IUfrbiTfvUP8mWPYBRTAo1U3Yk8eJu74gWdYwr/v5XZNee3z7xg5eTZt6lXj6LlLzFu7ide7tk5tw8Y90IZ15czlEOas2UjJQvloXK0Cx8+bBmgK+vng6uzIS60a8fuugwwdP42ezetzJeIa3y1ZQ/uGNfDJZbnBvzQBRaoQUKQq62aPoG67ETi5eLBr3RQcnN0oX7d7+n7Xw8+TnJSAd0BJnFw9cXI1nV0gId44UsvTu2B6cKJc7W4c2bGIFd+/Qo0Wr2NjY8fhbQu4HnqWTkNmPrtC/g3du3Xj3VGjGPv557zQpCknT51i2S/L6denT6b1SY/u3fl64je4u6fWJ3v2sm37dt59551sLk3WeLltY14b9yPvTJ1H27pVOHLuCnPXbWVIlxY4OdhzLzaOS6GR+OfJafzuXAllztrNlCoUQJOq5Th+wbT+LOjnjZ2NDWNmLsXZ0YF+bRpzKdR0auk8Xjnw9vJ4hqUUkX/CyvC41aCeQ3v37qV3795s3LgRf3/LbgRbgpufvpKlx7MrVh6nuq2xyelNStRt4vdvIW6v8WWhbf6iuL/4FvdWzSbh6P1eofblauJYrTE2XnlIuXeH+IPbidv1G2B+eVrnyInHkM/MjpFVvN7/gejp7z9+x79h07lQpu08wZVbUeRxdaJL+UBerGJsbO0PusrAJVvTp4bKyIBFWwCY3q2+yfYNp4KYsecUYXei8XF3pkv5QLpVzPreNy4DPiVsePfH7/g3OJapjFuzztjm8SX5zk2id/xB9Ja1ANgHliDX6x9ya8H3xO7blp7GqWo9XOu3xDa3D8l3bhGzexP3Nq0ymXvcqUJNXJu2N66Bces6MTv/IHp71i+imnfiQvbV/ne9mB/mUbcefv0G4JgvHwnXr3F1+S9ELloAgFuFihSf8h0Xx47hxnrjebJ2dsZ/4Kt41q+PrZs78WFhXP9tHZGLFmJIut8zy7tzV3K3a4+Db14Sb9zgzr69hP44jaTbt7M0/1V27OHuwT+y9Jib9x3hx6VruRJ+ldxeOejcpC69WjUC4MDJswwaM5kPB/WidT3zv8XqrXv4ZNp8Vk4eTd7c93syGgwGFq7fwvKNOwi7eoNcHu5UK1uc17q2fuJAyJNyr9iEe9++naXH3HQhjB/2nOHKrXvkcXWkc9mCvFjRONJgf8h1Xlm+k48aV6BNSWMvpXvxifz41xk2XwjnenQc/jlc6FE+kPaljT0AV564wicbD2f6+x48VlZwHTye8NOZ/75/Yvvuv/hp4VKCQ8PIldOLdi2a0rVdawAOHTvB8Pc/4Z2hr9K8Uf30NKs2/MHiX9dw9foN8nrnoWendjRtUNfkuJt37Gb0hG+Y8+3X5M9gOqqs4lu8PLtPZT7/9z8Vfe8uC2dN5ODerRgMKRQpXo7uLw/H169A+j6fj3qF61fD+Wr6qgyP8daANhQvXZEBb3xssj0hIZ6Vi6eze8t67t69jV9AQdp06U+l6vWzJO81SrhzsU+rLDlWGueKNfBs3wN7H3+Sbt3g7qa13NlgnK7RsXgZ8o78nKszJnJvx8b0NDlffBWXyjUJeuPFTI/rULg4Xh1741CoKIaEeKIP7uHm4lmPXVvj7yg0ew1r7Z5eD1KvulWpsXEeuxu9yM1tf5lsO/LySELm3p/WMt+ArhQa3g/HAF9iLgZzYfyPhP5sGhD3rFWJEuPexr1cCRKu3yL055Wc/Xiyyb3p32qZeIZTF7J+JOG9qChmTf+OvXt2YkgxULxkKV4e+Bp+/vfrwVHvDOdqZATTZy9M33bt2lVm/jCVw4cOYGtjS/mKlek38DW8vO7ff8LDQpk3ezonjh8jNjaGIkWK0fOllylZqkyW5L1EoB9xi8dnybHSbDx5me83H+Ty9TvkcXeha9USvFTLmN99l8Lp/9M6Pmlfh7YVzHsLA7w8y9hmmdnv/mKqBoOBpftPs2jvSUJuRuHp4kjzMoG82qACDnZZ27/OsevbXD6f+SiAf2Lnrt3M+3kBISEh5MyZk9atWtKpg3GkwJGjx3j73fd4a9gbNG3SOD3N2vXrWbZ8BdeuXcfXx4euXTrRuGFDAA4fOcI772X+7NGrR3de7Nkjy/JfoHBRrgxsl2XHA3AqXw2PNt2x8/Yj6fYNorasJ+oPY73gULQ0Pv/7lOs/TSZ696b0NF49XsG5QnVCRvTN9LiudV/ArUELbHP7kHLvLtF7t3F79SJjx7gslP/HX4navyFLj7l53xF++GU9V8KvksfTg85NatOrpfFvvv/kOQaNncpHA3vQul41pi1bx4wVmT+vTBv1OpVLGp/xDp2+wKQFKzkbFIqHqwstaldhUKcW2Nqar8f5b7hVbsb0P7P0kADExdxh8y9fcP7InxgMKfgVqkiDTu/i5X1/etdF37zI3RuhDByzKcNjBJ3dy5JJvenyxlzyFa2Wvv329WC2/TqB4HP7SIyPwbdAWWq1eiN9TYx/a0BjuHThfJYcK83OXbuYN/9nQkNCyJkrJ61btaJjakfWI0eP8s7Id3lz+DCaPtDpde269fyyfDnXrl3D18eHLl260LhRwwyPHxEZSZ++/cyOkVUKBhbm3l7zaeD+jU37j/HDit9Tvzs56Ny4Ji82rw8Y17B45fNpfDSgK23qVOH7XzYwY2XmF+oP7w4ixWDg1S9+yHSfge2a8MpDo0v/KddqrbPkOP81J8+HZXcWnjslC+fN7iw8cwpgSJYHMJ53TyOA8bx7GgGM593TCGA8755GAON59zQCGM+7pxHAeN49rQDG8+xpBDCeZ087gPE8eloBjOfZ0whgPO+eRgDjefc0AhjPu6cRwHjePa0AxvPsaQQwnndPI4DxPFMA4585cd6yR+haolKFLXja+KfkuZhC6mn65JNPWLHCfLHkB3377bfUrGnZ04qIiIiIiIiIiIiIiPx/8v8ygFGtWjXOnDnzRPu+/vrrvPTSS4/cx2IWyRYRERERERERERER+Y/4fxnA+Du8vLzw8rL8Ba9ERERERERERERERP5LrLM7AyIiIiIiIiIiIiIiIg9TAENERERERERERERERCzOf34KKRERERERERERERF5tgxYZXcW5DmgERgiIiIiIiIiIiIiImJxFMAQERERERERERERERGLowCGiIiIiIiIiIiIiIhYHAUwRERERERERERERETE4iiAISIiIiIiIiIiIiIiFsc2uzMgIiIiIiIiIiIiIv8tBqyyOwvyHNAIDBERERERERERERERsTgKYIiIiIiIiIiIiIiIiMVRAENERERERERERERERCyOAhgiIiIiIiIiIiIiImJxFMAQERERERERERERERGLY5vdGRARERERERERERGR/xaDwSq7syDPAY3AEBERERERERERERERi6MAhoiIiIiIiIiIiIiIWBwFMERERERERERERERExOIogCEiIiIiIiIiIiIiIhZHAQwREREREREREREREbE4ttmdARERERERERERERH5b0nBKruzIM8BjcAQERERERERERERERGLowCGiIiIiIiIiIiIiIhYHAUwRERERERERERERETE4iiAISIiIiIiIiIiIiIiFkcBDBERERERERERERERsTi22Z0BEREREREREREREflvMWCV3VmQ54BGYIiIiIiIiIiIiIiIiMVRAENERERERERERERERCyOAhgiIiIiIiIiIiIiImJxFMAQERERERERERERERGLowCGiIiIiIiIiIiIiIhYHNvszoCIiIiIiIiIiIiI/LcYDFbZnQV5DlgZDAZDdmdCRERERERERERERP47Dp69kd1ZeO5ULJozu7PwzGkEhhD3+0/ZnQWL4ti0L3Eb52Z3NiyKY6PexG5ZmN3ZsChO9bsTt3BcdmfDojh2f4dLF85ndzYsSsHAwvx+JCG7s2FRmpazJ+L0oezOhkXxKV6B24c2ZXc2LIpHhYY6Jw/wqNCQUxdCszsbFqVEoB9r7YpldzYsSsvEM+w7czu7s2FRqhTzIOzM0ezOhkXJW6wsUfs3ZHc2LIpb5WZcPn82u7NhUQoULsrNYzuyOxsWxatMbYLOncrubFiUfEVK6Jw8IF+REtmdBZH/t7QGhoiIiIiIiIiIiIiIWBwFMERERERERERERERExOIogCEiIiIiIiIiIiIiIhZHa2CIiIiIiIiIiIiIyDNlwCq7syDPAY3AEBERERERERERERERi6MAhoiIiIiIiIiIiIiIWBwFMERERERERERERERExOIogCEiIiIiIiIiIiIiIhZHAQwREREREREREREREbE4ttmdARERERERERERERH5bzEYrLI7C/Ic0AgMERERERERERERERGxOApgiIiIiIiIiIiIiIiIxVEAQ0RERERERERERERELI4CGCIiIiIiIiIiIiIiYnEUwBAREREREREREREREYtjm90ZEBEREREREREREZH/FgNW2Z0FeQ5oBIaIiIiIiIiIiIiIiFgcBTBERERERERERERERMTiKIAhIiIiIiIiIiIiIiIWRwEMERERERERERERERGxOApgiIiIiIiIiIiIiIiIxbHN7gyIiIiIiIiIiIiIyH+LwWCV3VmQ54BGYIiIiIiIiIiIiIiIiMVRAENERERERERERERERCyOAhgiIiIiIiIiIiIiImJxFMAQERERERERERERERGLowCGiIiIiIiIiIiIiIhYHNvszoCIiIiIiIiIiIiI/LekZHcG5LmgERgiIiIiIiIiIiIiImJxFMAQERERERERERERERGLowCGiIiIiIiIiIiIiIhYHAUwRERERERERERERETE4iiAISIiIiIiIiIiIiIiFsc2uzMgIiIiIiIiIiIiIv8tBoNVdmdBngMKYMhTsevUJaau2cqF8Ot4ubnQrW5FejesipVVxhVTfGISP6zfybr9J7h1L4aifnkY1KI2tUoUSt8nJcXAvM1/sWznYSJvR5E/tyd9GlenZZVSz6pY/9iukxeZumoLF8Kv4eXuQre6lenduNqjz8e67azbd5xbUTEU9fdmUMs61CoZmOH+kbfu0vHTH5n4SmeqFM3/NIuSZXadPM/UXzdxMewqXu6udK1fhd5NamZ6ThISk5j7xy7W7DlCxK27eHu606JqGfo1q42d7f2qbNPhU0xfu43LkdfJ5e5Ky2rleLm56T6Watf5UKZuOsCFq7fwcnWiW5US9K5ZOtNz8qCk5BR6z1yDk50tM/u2MPls5aFzzNl1jJBbUfjkcKFrlRL0qFbyiY6b3Q4cPMjsOXMJCgrCw8OD1q1a0rFDh0fmffOWLSxctJiIiAi8vfPQpXNnmjRubLLPtu3bWbrsF0JCQnBxcaFC+fL069sHT0/Pp12kLBEfF8PK+V9zeO+fxMfFULhkJTq89DbeeQs+Ml3wxZOsWTyFoPMnSDGkkK9QSdr0GEZAoZLp++za+AsLf/jYLG2dF7rR5eVRWV2ULLHv0BGmz1/M5aAQPD1y0L5FU7q2a/XI6+TPbTuZt2QFYZGR+OTJTc+ObWnWsJ7JPtv37GPukuUEh4bh5eFB0wZ16NmxHXZ2ll+f7DlykmmLV3ExJAyvHO50alqPnq0aP9H3/sylYPq+/wXLJn5C3jw5AQi7eoP2Q9/PNE3LejX48NXeWZb/p0HnJGOxsbHMnfUju3dtIy42lpKly/LywNfw88/3yHS3b91k1vTvOXRgH8nJyVSqUpW+A17Dyytn+j5/bFjLt5O/MkvbolVbBr72RpaXJas4+nlT9/Aa9ncczM1tfz1y37xdW1L43VdxLhRA7OVQzk/4kdB5v5rsk6NSaUqMe5sclUqTdDeakLnLOfvJVAyJiU+xFFknLjaGRXOmsm/XZuLiYileqjw9Xx5OXv8nb3NO+mIkjo7OvDLsQ5PtN65HsvCnKZw4so/ExARKlatC9z6v45P30ddfdtp36Agz5y3kclAwnh45aNeyGV3atX5kXbJx6w7mLfmF8MhIfPLkoXvHdjRrVB+AiMirdB8wONO0zRrV5503Mv/cEuw5eprvlq7hQkgEOXO40blJHXq1aPDIdv38dZtYu30fkTdvk8fLg+Y1K9GnTWOTNvvJi0F8s2Alpy4G4eLkSOu6VRnYsflz0a4/cPAgs+fO40paG7ZlSzp1aP+YNuxWFixeTEREJN558tC1cyeaNG5kss+27TtY+ssvBIeEprZhy/Fyn5eeizbs3sPH+WHhCi4Gh+Hl4U7HFxrQo80LT3YfvniFl98dy9Ipn+GbJ5fJZ2s372DBqt8IibyGTy4vOr7QkM4tGj0Xzzr7Dx7ip3k/cyUoCE8PD9q0bEGn9m0fmfdNW7exYPFSwlOvk26dO9C0UcNM9/9++kyWr1zNH2t+fQolyHpP65z89udGli1fSVhEBHly56JNyxa0a93yubhORMQCAhi3b99m2LBhHDhwgGLFirF06VJ+/fVX6tatS86cOR9/AKBhw4a0b9+eIUOGPOXcWp6wsDAOHTpEy5Ytszsr6Y5eCmXID0t5oWIJBresy6GLIUxcuZmk5BReblojwzQfL1jPtuPnGdq6HvnzeLHqr2MMmbaUGUN6ULFwAADfrdvOT3/u4bUWdSid35ftJy7w3tzVWFtZ0bxyyQyPawmOXgplyPeLeaFSSQa3rsehC8FM/HUjSSkpvPxCzQzTfDx/LduOnWNo2/rk987Jqj1HGfLdYmYM60XFwqYPdBE37/Lq1IVExcY/i+JkiaMXgxk6dQEvVC7N4DYNOHQ+iG+W/0FySgr9mtXJMM34JetZs+coA1vWpVR+P05eCeOHNVsIv3mHj3u3BWD3yQu8NW0xL1QuzdD2jbkQdpUpv27k9r0YRnZvkeFxLcXR4KsMWfAHL5QuyOAGFTkUFMnEP/YZr5M65R6bftaOo5wIu07l/D4m25cfOMPo1TvpU6sMNQP9OBZyja9++4vYhCT61338cbPTqdOn+ejj0dStU4eXXuzF8RMnmTnrJ5KTk+napUuGaXbs2Mn4CV/Srm0bKlWqxO7de/jq64nY2dlRv57x5fSWrVv5Ytx4WjRvTp+XenPr1i3mzp3HO+++x9TJk7C3t3+WxfxHZk96h8vnjtK213AcnVxZv+x7Jo9+mVFfrcDZNUeGaa5FBDHp474EFCpJj1dHA1ZsWj2biR++xDvjl6QHP0IunyZP3gL0eu1Tk/TuHrkyOGr2O3HmHCM/HU+D2jV4uWcXjp08w7Q5C0hOTqFnp7YZptm6ay+ffj2VTq2aUbXii2zfu4/PJ32Pna0djeoa6+V9h4/ywRdf06B2DQb27s7loBB+nLeQ23ejGDaw77Ms4t927NxF3hr/HY1rVOKVLq05cuY8UxesIDklhZfavvDItBeCQ3lz/LckJ6eYbM/l6c6MMSPM9l/221b+3H2ANg0yvp9ZCp2TzH09/lPOnj5F734DcXZ2ZvGCubw/8i2mfD8LVze3DNMkJyfzyYcjiYmJYdDrw0hKSmbe7Ol8POptvp7yA7apLxcvXTyPn38AQ998xyS9h6fXUy/XP+Xo70PVtTOx83B/7L4+7ZtSfu6XXJoyl2u/bcenbWPKzxpHSnwC4UvWAeBU0J9qG37i1p7DHOw+DNfigRQbMxw7Lw+OD/7oaRcnS3z71YdcOHOcbn1ex8nJhRWLZvDZ+68xbupCXFwffZ5SUlL4eeY37Nu1mToNTZ9X4uJi+eKDIVhZWdH31bextbPn18WzGPPuIMZNXYirW8b3s+x08vRZ3hvzOQ1q16Rfz64cO3WaH2bPJzk5mR6d2meYZuuuPYz9ejIdW7egSsXy7NzzF+MmfYu9nR0N69bCy8uTb8ePNUv367oNbN6xixZNMn8xaQmOnbvMsC9/pEn1Cgzq1JLDZy4yeeEqkpOT6dOmSYZpvpz7C+t27qd/u6aULJSPk5eCmb58A+HXb/LhwB4AhFy9zmuff0fZwgX4fGgfLodG8t3Stdy5F8N7L3d9lkX8206dPs2Ho8dQr05tevfqxYmTJ5n502xSkpPp2qVzhmm279zJuC+/ol2b1lSuVIlde/bw5cRvUtuwdQHYsnUbn4+fQIvmzejT+0Vu3rrN3Hnzefu9UXw76RuLbsMeP3uB/30xmcY1qzCgWzuOnj7Ht/OXkZySQu/2j35OuxAUwv8+n0RycrLZZ6v+3Mbn0+bQq20zqpYrxYlzl5g8ZzExcfH06Wg570gycvL0GT74ZCz16tSiT68eHD95iuk/zSE5OZlunTtmmGb7zl188eVE2rdpReWKFdm1Zy8TJk7GztaOBvXMn6OPHj/BilVrnnZRsszTOifrfvuDiVO+pUvH9lSqUJ7TZ88ybcYsYuNi6ZHJd1JELEu2BzBWrVrF/v37WbBgAd7e3uzbt4+RI0eycePG7M7ac+Gdd97Bz8/PogIY363bQXF/bz7r3RqAWiULkZiczMw/dtOzfmUc7e1M9g+9cZt1+0/wbucmdK1bEYCqRfNz+GIIi7cfpGLhAGITEpm/eR8961dOD4JUK1aAU8ERLNi636IDGN+t2UbxAB8+62N8kVarVCCJySnM/G0nPRtUyfh87DvOu11foGu9ygBULVqAwxdCWLztQHoAIyXFwOq9R/l6+UYMz7ZI/9r3q7dQPMCXsf06AFCrdBGSklOYuX47PRpWNzsnt+/F8Mv2A7zRvgl9XqgFQLXU0TmTVvzJ0PaN8XJzYeWuQ/h45WBsvw7YWFtTo2QgN6Oimffnbt7q8gJ2NjbPtJx/x3dbDlHc14vPOhhfstcq4k9iSgoztx+lZ/VSOD6ix/eZiBvM3H6EXK5OZp/N2H6EJiULMLxJFQCqFcrLlRt3WPjXSYsPYMyb/zOBhQrx9oj/AVC5cmWSk5NYvHgJ7dq2xcHBwSzNT3PmUKd2bV4ZONCYplIloqKimDtvfnoAY9HiJVSpUpmhQ15PT+fv58ewN99i719/Uad27WdQun/u0tnDHD+whUHvfkepCsZGeWCJinw8uBnbf1/MCx0GZphu67qfsXdwZNDIb3FwdAagaOmqfDy4GVvXL0gfXRF6+Qz5A0tTsKhlXx9pflqwlCIFC/D+cOPfs1rF8iQlJzF/2a90at0cBwfzh/np8xZRv2Y1Xu//EgBVK5YjKuoeMxcsSQ9grN+4Be/cOXl/+OvY2FhTpXxZbt2+w5KVa3m934vpL2gt0fSlayhWIIDRrxsDLTXKlyIpKYXZv26ga/MGOGbwgiMxKYklG7bw49LV2NvZmX1ub2dHmSKFTLaduniFP3cf4NVubSlfvPDTKUwW0TnJ2OlTJ9i3dzcfjP6cSlWqAVCydFle6duD9WtX0rlbrwzT7dy+hYsXzjNl2iwC8hUAoFBgIENffZmd27dQr4Fx1NulixcoXKQYxYpbbjstnZUV/i+2o8S4d+AJO2MWG/Mm4cs2cOp/nwNw/Y8d2HnmoNjHb6QHMAJHDCApKpr9HV7DkJjItQ3bSI6No/SkDzj/xTTigsOfVomyxLnTxzj013ZGfDSRcpWM9WOxUuUZPqA9f677hbZdMg/oBl06x9wfv+LiuZPY25vfs//auYnw0Ct8MXUh/vmM36WA/IEMH9CevTs30qhZh6dTqH/hp4VLKFyoIO+9ORSAqpUqkJSUzM9LV9CxdYsM2yYz5y2gXq3qDO7fx5imYnnu3rvHrJ8X0bBuLezt7ChZvKhJmjPnL7B5xy76v9iDMiVLPPVy/Rs//LKeYgX8GfPaiwDULFeCpORkflr5B92a1TOrX29HRbNi826GdGtN71bG0QVVSxcDYOqi1Qzp1gZPd1fmrN6Ii6MDX73VHztbW2qXL4Wjgz3jZy+jX9sm+OSy3EDovJ8XGNuw/3sLgCqVK5GUlMyiJUtp17ZNhtfJ7DnzqFO7FoMGDgCgcqWKREVFMWf+/PQAxqIlS6lauTJvvH5/RE6Anx9vvPU/9v61jzq1az2D0v0zMxavpGiBfHw01Fi+GhXKkJSUzJzla+nSojGOGbTXEhOTWLp+I9MX/5rhfRhgzvK1NKheicEvGl9CVylbkuDwCJat32jxAYy5Py+kcKGCjHxrOABVKlUkKSmJhUuW0b5Nqwyvk1lz51O3dk1eHfByapoKRN2LYvb8BWYBjNjYWL78ZjK5cnpx7fqNp1+gLPC0zsnCJcuoU6smA/oa2/4Vy5cjJDSMlavXKYAh8pzI9kW87969S+7cuSlbtize3t4YDM/bq1h5UEJiEvvPB9GwrGkjvEn54kTHJXDoYohZmtzuriwY8ZLJVFDW1lbYWFsTn5QEgL2tDXPffJHeDauapLW1tUnfxxIlJCax/9wVGpYrZrK9SYXU83Eh2CxNbndXFrzTl5ZVS6dvs7a2wsbGmvjE+2U9GxrJpwvX06paGca+1ObpFSKLJSQmsf/sZRpWKG6yvXGlksZzcj7ILE10XDyd6lam/kPnsYCPsUd46PVb6cd2srfHxvp+1ZbDxYnEpGRi4ix3hEpCUjL7L4fTsLjpVAxNShYgOiGRQ0GRmaZNTErm/RXb6F6tJAVymvdUnNqzaXrwIo2djTXxSeY9mCxJQmIix44epWZN01FbtWvXJiY2lhMnTpqliYiMJDQ0NIM0tQgLCyM0NJSUlBQqVqhAi2bNTPYJCDCO9AoPt+wXSQCnDu/C3sGJEuXu9+52c/eicMnKnDi0PdN03v6FaNi6T3rwAsDB0RmPnN5cjzTWRQaDgbCgs/gVKJ7ZYSxKQmIih4+fpE5103tDvZrViYmN5eip02ZpwiOvEhwWbp6mVnVCwyMICTNeAwkJiTg6OGJjc78+cXdzJTEpiZjYuKdQmqyRkJjIwZPnqFe1vMn2htUrEBMbx5HTFzJMt+vQcWb8spY+7Zrxeo92j/09BoOBCbMWUdDfl+4tGz12/+ykc5K5Qwf24ejoSPmKldO35cjhQaky5Tiwb2/m6Q7ux88/ID14ARCQrwD+AfnS0xkMBi5fukjBQMsP5AC4ly1G6W9HEzL/Vw73efux+zvl98O1WEEiVv5hsj18+W+4FCmAc2HjPT13k9pcXb/VZLqoiF82YGVjQ+6mlh0wBzh6cA8Ojk6UKV8tfZt7Dk+Kl67A4f27Hpl22jejSUlJ5uMJM3H3MH/ZXLl6PT4cNz09eAFga2t8SZmYkJBFJcg6CYmJHDl2IsP7R0xsLMdOmt9zIiKvEhwaTp3q1UzT1Kxhcs95kMFgYNK0meQP8KdTG8t+AZuQmMSBU+doULmMyfZGVcsRHRfP4TMXzdJEx8bRsVFN6lYsbbK9gK83AKFXrwPGaalqlS9pMl1Uo6rlSTEY2H3U/FxbioTERI4ePUatGtVNttepXZOY2FiOn8y4DRsSGkqtGqZt2Dq1ahEWFk5oaBgpKSlUqFCe5s1MRw0GBPgDEGbBbdiExEQOnjhDvWoVTbY3qFGZmNg4jp4+l2G6XYeOMnPpKl7q0JLBvTpluM9X773BkN6mI7PtbG1JsPAp+hISEzl67LjZdVK3Vtp1csosjfE6CaNW9YeurVo1CQsPJyQ0zGT7j7Pm4OnpSdPGz0eb5Gmek08/fp+B/V4y2cfO1pYEC7zXiEjGsiSAsXXrVjp06EC5cuWoUaMGI0eO5M6dOwDs37+fLl26ULZsWdq0acO6desoVqwYISEhjBw5kilTphAWFkaxYsVYvnw5vXsb5wpu1KgRy5cvf+I8XLt2jf79+1OmTBkaNmzIzz//bPL50qVLad26NWXLlqV8+fL06NGDY8eOpX9+9OhRevToQYUKFahSpQpDhgwhLOz+DSAyMpLhw4dTuXJlqlWrxqBBg7h8+XL65yNHjuTtt9/m008/pXLlylStWpXJkydz4cIFevToQdmyZWndujVHjhxJTxMVFcUHH3xA9erVqVSpEr179zbJ05QpU+jTpw8//vgjdevWpUyZMvTq1YsLF4wP2i+++CJ//fUXK1asoGFDyxhaHHLjNolJyeTPY/qQki+3cU7Oy5E3zdLY29lSKp8vbk6OpKQYiLh1l/G//EnI9dt0rl0BABtra4r65SGXuysGg4Ebd6OZ+ftu9p65TNfaFc2OaSlCrmdyPvKknQ/znhD2draUyp/3/vm4eZfxS38n5NotOte5X1ZfrxysGf0aIzo1MRuxYMlCrt9KPSemU8Tly208R1cir5ul8cvlyagerdIDFmk2Hz6NrY11+rG61q9K0NUbzPl9J3djYjl6MZifN+6hduki5HBxNjuupQi5FUVicgr5HwpA5PMyTstw+fqdTNP+sPUwSckGXmuQ8fegUG4P/DzdMBgM3ImJZ/mBM6w+coGuVSz7BXVEeDiJSUn4+fmZbM/r6wtASKh5MDQ4yPgS3ixN3rzGNCGhWFtbM3BAf2o89IC4a/duAPLns/w1ZCJCL5LL2x9ra9MRRbl98nE17HKm6eo07UrjNqY9Za9FBBEWfB5ff+MLxuuRwcTFRhN04Thj3mjNG90rMOaN1uzduirLy5EVwiKukpiURICfr8l2/9SXIMEPPcgBXAkJBTBL45eaJig1TfsWTQkJD2fRitVE3YvmxJlzLFu9nuqVKuDu5prlZckqoVevk5iURD7fPCbb/b1zAxAUlnFAtERgAX6d8il92zfHxvrxo9X+2L2fE+cvM7x3Z5OgsSXSOclcSHAQ3j55sXlohKKvrx+hoeadLNLTBV0hr5+/2XbfvH6EhhjTRYSHERsbw/mzZ3htQG86tm7CawN6s3nj71lbiCwSGxTOluJNODXiC5JjHh+kdC1uXJcs+txlk+0xF64YPy9aEGtHB5wL+BN97pLJPgnXb5F4JwrXoo9et8gShIVcJo+3H9YPXSPevv6Eh155ZNpXh3/Mh+Omk69gkQw/d3ZxpWiJsgAkJSYSdOkcP3zzCW7uHlSr3TjDNNkpPCKSxKQk/FPbFWn8fI3Tdz7qnuNvds/JPM3m7bs4dfYcr/fva/bdtDTG+jXZrH4N8DHWr1fCr5ql8cuTk5F9u1Agr7fJ9q0HjmJrY0M+3zzEJSQQfv2m2XE93V1xcXLM8LiWIiI8IpM27P326MOCg9PasKbXVt68xusmODQEa2trXun/MjUferm7a/ceAPLnt9x1Y8Iir6Xeh03/5v4+xr/vlbCIDNOVCCzI8u/G0adjK5MOJQ8q4J8X3zy5jM86UfdY9ec21m/dRYcXGmRtIbJYeETadZLJ3zyD6yQo2Pj84+/3cB2U9nx0P82BQ4f5c9NmRgwbgvVzssbD0zwn+QMC8EntMH03Kop1v/3BH5u20Lpl8ywvh4g8Hf96/oObN2/y+uuvM3LkSOrXr09ERARvv/0248ePZ+DAgfTr1482bdrw+eefc+rUKcaMGZOedtSoUXh6erJu3TqWLVuGo6Mjrq6uDBkyhKVLl1K0aNFH/GZTS5YsYdiwYYwaNYodO3YwduxY8uTJQ5MmTfjjjz/45JNP0oML165dY8yYMbz//vusXLmS5ORkXnnlFbp06cK4ceO4e/cuH374Ie+99x6zZ88mJiaGF198kVKlSjF//nysra356aef6NKlC6tXr8bb23gjXrduHT179mT58uWsWbOGSZMmsXr1akaOHIm/vz+jRo1i9OjRLF++HIPBwIABA3B0dOSHH37A1dWVlStX0r17d5YsWULJksah9vv378fBwYEff/yRxMRE3n77bUaPHs3cuXOZMmUKgwYNwsfHhw8//PBRp+eZuZe6DoOro+nQPufUIaHRj+kF/9Ofe5i8eisAHWuWo3qxAmb7bDhwipFzjC/T6pQKtOhFvO+lltfV6eHzYfw5Ou7REf+fft/F5FVbAOhYqzzVi99/0M3h4kQOF/MpgyzdvdSeyy4PnxNH+9TPn2ykxKZDp1i95zDd6lfFPfU8VC1ekD5NazHxlz+Y+IuxR2TxAB8+75/xfJmW4l7qdeDqYBqIck4NTEXHZ9yD6HjoNebsOs6svi2wt330A+7RkGv0nmmc/7RU3lz0rlHmkftnt+iYGACcnU0DT2k/x6R+bpomGgCXh9M4OWWaBow91mbMmElgoUJUqVI5w30sSVzMPRydzF+gOzo5Exdz74mPk5AQx7xvR2FnZ0+95qnzTV829mi8cTWU9r3/h42NLX9tW8X8b0eRlJhArcYZ937LLunXiZNpXeiU+nN0TKx5mmjjNmdn0zTOD6WpWLY03du34fvZP/P9bGOniCKFCvDBW5a93ta91Py7ODmabHdO/Tk61vycAOTx8vhbv2f+6j8oWyyQSqWevK2WXXROMhcTE21Wz4LxOxSbSZ2Zli6jAIaTk3N6uksXzwMQGRFO3/6vYmtry+aNvzPpqy9ITEygabNWWVSKrJF46w6JtzLvMPAw2xzGejjprmm9mxRlvBfZurtil8Mtw33S9rN1t9xgaJqY6Hs4ZXiNuBAbG/3ItAEFnnz0zVefvsWxQ3uxsrZmwJBReHpZ3rpL0dHGa9vlMfePDNM4PZwmtf7J4Hu2aMVKSpcoRvkylvuMk+ZeTFq7/qH6NfVZMPoJRyxu3neENdv30aVJHdxdnLl++y4Arg8dF8DF0eGJj5sd0tqj5m3YzNujadfJw2mcnqANO33mLAILFaJqZcttw6bdh83bXmnfg4z/nnlyPvnC5MfPXmDgKON0fiUCC9C9ddN/ktVn5n59kslzS+w/v06io6P5avJUevfsjv9DgTRL9jTPSZpTp8/wxoiRABQtUphO7TNeL0+eLcOTzt0p/2n/OoARGRlJQkICefPmxc/PDz8/P6ZNm0ZycjKLFy8mV65cfPzxx9ja2hIYGEhkZCTjx48HwM3NDWdnZ2xsbMid29hLI0cOYw9kLy8vHB3NGyyZady4MYMGDQKgYMGCHD58mFmzZtGkSRM8PDwYO3YsbdoYp9nx8/OjU6dOfPLJJwDcu3ePW7dukSdPHvz8/AgICOCbb77hxg1j7/i1a9dy9+5dJkyYkD7n9dixY9m7dy9LlixJXzzcw8ODd955B2tra/r06cOkSZNo0aIFjRoZh+x16NCBzz77DIA9e/Zw+PBh9uzZg4eHBwBvvvkmBw8eZO7cuXzxxRcAJCUlMX78+PTz0q1bNyZMmJD+++zs7HB0dMTLyzLmAE15zBRgVo+J/tctXZjyhfw4dCGEHzbsJC4xKX0tjTSl8/sy640enA29xrdrt/Ha90uYObTHY4+dHVJS/uX5KFuE8oEBHLoQzA/rthvPR5/n+yb7uGvE2vrxf8eNB0/y7sxfqBCYj2Ed7y8OOHbBGn7deYgBLepStXhBwm7cZtqaLQyeNJ8f3uyNk4UubPf47435tvjEJD5YsZ2e1UtSxj/3Y3+Hbw5XZvZpTuite0zddIDeM9ew6JW2ONlb5jz+hpSUR36e0XfH8LjvWwbXVnBwMO+9/wHWNjaMGvUe1hbWazolJQWDwfRcPPzzg6yeMP9xsdFMn/AGV84f5+U3v8Irt7HXUuESlXjlnakUKVUlfaqpEuVrEXXnJuuWfEvNRh0tqq593HVibWV+PlIecf4eTPP19zNZt3Ezvbu0p2LZ0kRcvcbsRcsYMfpzJo55H8cM5uC1BI//Hvz7a/zomQucuRTM+P8N+tfHehZ0ToyM9YnBbFtmHvVdf9Q5TatrS5Yuy6iPxlKmXHkcHY0vEipUqsKd27dZOG82TV5oaVH1yd/1uOvGkJICj93HsqbO/bv3nIzq2H+qXdd+tOzwIru2bODHSWNISU6hflPLmiL1n7Rhn/Sek+b4qTOcu3CJMe89fhozS/DYc/IE3/FN+47w/rdzKV+0EEO7G//mj5tW2pLrjsc9/2V0Tv7udQIQFBzMex98iI2NDe+/N9Li2rAPeuw5eYLnv8fxyZ2Tb0e/TfjVa/yw8FcGjvqcORM+tNz22mO/O+Z/z0fVxwBWqWm+mz6T3Lly0bGdZdWhj/M0z0maPHny8OXnnxIRGcnseQsYNmIk333zNY6OlnmdiMh9//rNVYkSJWjVqhWDBg0id+7c1KpVi/r169OkSRPOnz9PyZIlTRa6rFq16iOO9s9VqlTJ5Ody5cqxdauxJ3+VKlW4cOEC3377LRcvXuTKlSucOXMm/aEtR44c9O/fnzFjxjB58mSqV69OvXr1aN7cOJzs5MmT3LlzhypVTOeRj4+PT5/OCcDf3z+94ZAWAU6bVx3A0dGRxNS5GE+cOIHBYKBBA9OhjQkJCcTH3++BnitXrvTgBRiDPokWPJ9j2kiD6HjTXvRpIy/cnB59YyiS1/gitlLhfCSlpPD9uh0MaVUXX6/75yAgtycBuT2pVDgfro72vD9/LQcvBFOpsOUNm00/H3H/9HwYh9VWKpJ6PtZsY0ib+ibn43mT1pMq5qHRJ9Hpo1UeHbic9+duJi77ncpFCzDxtW44pC7oFnnrLr9sP8DLzeowuO39KdVKF/Cj4+jvWLnzEN0aVMvssNnKNXX0SXSC6Xc7beSFm6N54GXqpoOkGAwMrFeepGRjXZbW5EtKTsHG2srk4S6PuzN53J2pXAD8Pd3oN3sdf568ROvyGU/rkN2cXVwA4+JzD0rrReOS+rlpmtTRGQ+lSevd6OJsmubI0aOM+XQsTk5OjP/i8/TpqSzJhmXTWL/se5Nt5as34e4d8+nn4mKicXJ+fG/eW9cjmDZuMFfDLtN32ATKVrn/fXHLkZPSleqZpSlVsS5nju0h6s4N3D0sp1esSyZ/85i0HvcZjFJzfYI0127cZPXvG+nVqR0v9+yavk+JIoV5acj/WPfnZjq0NF1HxVK4pvXwfGg0W1pv1cfVsU9i095DuLs4U6t86cfvbAF0TowWL5jL4gVzTbbVrF2XO7dvme0bExuDs0vm9YmziwuxGfSENI7oMNa1Hh6eVKlWw2yfSlWrceTwAW7fuoWnhXTA+SeS7kQBYOtmem9JG1WRdOde+siLh/dJ2y/tGJZixaKZrFg0w2Rb1ZoNuXvbfArY2JhonJzNy/VPFStZHoDS5apw/Wo4K5f+ZHEBjMzuOffbGeYjVdK2Pbx2UtrIL5eHpjjdums3bq4uVK9cIWsy/ZS5Oqe2683Kl1q/Opvfhx/08/rNTPp5JZVKFubL4f1xSB19nDaiIzrOvGd+dGzcY4+bndL+pg+3YdNHjWbQhk1ro2be7jW9To4cPcYnYz/DycmRcZ+Ptcg27INcXdLuww9dJ6ltr6z4e+b28iS3lyeUKkZe79y89uF4Nu0+QIv6NR+fOBuk1w0xmdQnGUx/7PLY5yNn9vy1jy3bdvDtxC8xGAwkJyenBxqTk5OxsrKy2GDX0zonD8qV04tcOb0oV6Y0vj4+vDVyFNt37qJJI8ueckxEsiCAAfDVV18xePBgtm3bxq5duxgxYgSVKlXCwcHBrGeX/VPqAf1wJZySkpL+u9KmcWrdujUVK1akW7dunD17Nn0EBsD//vc/evTowdatW9m9ezdjxoxhxowZ/Prrr6SkpFCwYEG+/970JRKYDlWzszNfhyCzm0NKSgqurq4ZrvPx4Dl6WufraQnI5YmNtRXB126bbA+6Znw4LuiT0yxN2M077DlzmZaVS+Fgd/+SLBFgnBv22p17ONjZsfPkBWqWLETOBx4Ci6fuc/XOk0+b8iwF5E47H6YvB4KuGR8EC/qYvwgMu3GHPacv0bJq6UzPx/McwEg7J0FXTR+G037O6JyAsUfG+MXrWbj5L5pVKc2YPu1MFvWLuHkHgwHKPxTICsybBw8XJy6EXcvikmSdAE83bKysCL5p+iIj6KZx+HzBXB5maf48eZmwO/eo8dk8s88qjZnNJ23r0KRkAbacCaK0X27y5XRP/7yEr/F7eDUq8+lBslteX1+sra0Je2hxy7S1iR4MDqcJ8PdP36dwYGD69vDUYwTku59m85YtfPX1RPz9/fn0k9HkymU5L+UfVKtxJ7OAwtF9Gzl9ZBcpKSkm95hrkUF4+xV6+BAmwoLO8u3YQSQmxDF41A8ULmk63cD5Uwe4ERlCtfqmI70SE+KxtrbB2dWy6p68Pt7YWFsTGm66hkFouHEu5fz+5sPmA1LnyA0Nj6RoofvT8oU8kCby2nUMBgOlS5hOBVQgnz853Ny4FGS+Boul8PPOjY21NcGRpvODh0QY68ACfv/+JceOg8eoW6Ucto+Zus5S6JwYvdC8FVWqmgYU9u7ewaED+83qk/CwUPwDMu8Y4ucfwMUL5ouuhoeFUaSYcY2lE8ePEhkRTsPGpgvOJsQnYG1tjaub278pTra7d9a4roVzYH7uHr6/sKhLoHEtpXunL5AcHUNsSATO/8fefYdFcfRxAP/Se1XpTVC6SLP33nvvPVFjLEmM3Vhi7DVqrLH33k2MFaTYABUFFFE6iCjS671/HJwed2ADOV6/n+fheWRvZ5gdb3Zn97czYyO+vpJyNX0oaWsirYQF5CtKy3bd4VZHfGHxu/7XcT/AT+I7khAXBRPzL1vDI/zJI7xMiEX9YutdWNnY4UnIgxJSVRxTI0PIy8uLrjFFRNccc8lp1SxE15x41LSpLpmm2HXK7/Y9NKpXV+wFQFlmZlC18PwqvoZd0e/F17koIhAIsGL3cRz69wbaNXDHvLGDxPr16qoqMNDTQXS8eL7JKalIz8pG9RLylQWiPmxc8T6s8HcLKX1Ys8LvQWxsnFgftiiP9/u9V69dx4rVa2BuZobf589D1aqS99eyxtTQAAry8oiOL34dFv7+udfhjMwseN0JhGON6jB/b30Nu+rCc27S6zefV+CvwMTYqPTviZnk+aRoOqiYuDjUsHnX5y/Kw8LcDLv3H0ROTg7G/DBRIn37br3QplUL/DplUpkdR1kqrzrJzMyEr/8t2NnawtTk3XetZuH+r5Ilg/REJHu+OPQaFBSEP/74A9bW1qIFp//44w/4+fnB2NgYDx8+RE7OuzetHz58WGp+nzscNDg4WOz3u3fvomZN4ZvFW7ZsQe/evbFkyRIMGjQIderUES2UJRAI8OzZM/z222+oUqUKBgwYgHXr1mHbtm0IDw9HSEgIbG1tERsbCy0tLVhaWsLS0hImJiZYuXIlbt++/VnltbW1RVpaGnJzc0V5WlpaYuvWrbh8+fJn5SkLVJQU4W5jjstBoWJDAP8LCoWWmgqcLU0k0sQlp2D+/gu4EhQmtt03JAJKigqwMqyC7NxczN57Did970vsAwC2JuILvMkKFSVFuNewwOXAYvURUFgfViXUx75zuBIYKrbd9/GzwvqovG8rAoCKkhLca1riSsBjsTq5fO8xNNVU4Fxd+jydf568jANXb2FI6wZYPKqX2E0OAJgb6ENBXg73nogvKPk8Pglv0jNhWvXj51D92lSUFOFuaYTLj5+Lf08eP4eWijKcTSWniFo3sDX2j+kq9uNgXAUOxlWwf0xXNLMzh4K8HOaf9sZOH/GHAD7hwsXMbGX4u6SsrIxazs646eMjVifeN29CQ0MDdlLWSDIxMYGRkSG8vW+Kbfe+eROmJiYwKlyv6Nbt21i+YiUcHBywcsVymQ1eAICOvgEsbJzEfuxdGiIrMx2Pg94dZ+rbZDx9dBf2LiW/ZfY6KR7rF46BHOQwZeEeieAFADwJvoW9G2eLLQZeUFCAQL9/Ud2uNhQVJQP1FUlFWRkuTg644XdL7Hty3dcfmhrqcLCVnH/dzNgIxoYGuH7TT2z7DR9/mJkIPzMzNoKCvDzuPwoR2ycyOhYpqakwMZTdBycqykpwdaiBa7cCxerkqn8ANNXV4FTD6ovyT0lLR1R8Imrb2nx4ZxnBOhHSr1IVNWztxH5c3T2RmZmBgLvv+rMpKW/w6OF9uLqXPJ+6q7snoqMiERX5XLQtKvI5oqNewNVNmO7h/UCsW7VUtKg3IDyf+Ny8DnsHJ6kv/lQmGeGRyHgWBeOe4gEaox5tkRYWgcwXwmtt0n83YdCxOeSV3x2vUc92KMjLQ9JV8fNQRdOrUg3WNR3Efmq51kNWZgYeBLwr69uU1wgJDkQt1y8b2Xr/rg/+WjkXr16+C0IX5Ocj+P7dT1o/42tRVlZGbScHePn6i51Lbvj4Q0NDHfZSrjmmJsbCa46Pr9j2Gz5+MDMxhpHhu3uYt6mpiI6Ng7ODXfkdRBlTUVaCm70Nrt6+L1YnV24FQVNdDc7FgndFNhw6i0P/3sCgDs3x+w9DJfr1AFDPxR5eAcHIyc17l+/tICjIy6OOk2yOIAZK68P6FPZhJcte1E/1ulm8D+tTrA97B8tWroKjgz1WLl9aKYIXQOF12NEW1/3vitXJNb+70FRXg2PNzwuGKigoYPFfu7Dv9D9i228FCZ8N1bCUfOAtK5SVleHi7ARvHz+xOvHy8YWGhrrUex1TE+PC74mP2HYvH1/R92TowP5Yv3qF2E/HdsIpl9evXoGhA/uX74F9gfKqEwUFBaz6cwOOHD8hts+dgEAAQHUr6ecpIpItX/xqh6amJvbv3w8lJSX07dsX2dnZOH/+PKysrDB+/HhcvHgRM2bMwLhx4xATE4PVq1eXml/RiIaQkBDo6elJnSZEmnPnzsHe3h7NmzfHf//9h0uXLmHXrl0AAGNjY9y7dw/BwcHQ0tLClStXsHfvXgDCKZv09PRw7tw5ZGVl4bvvvoO8vDxOnDgBHR0dWFtbo3r16tiyZQsmTpyIqVOnQlNTExs3bsSNGzcwadLnRa+bNGkCBwcHTJkyBbNmzYKxsTH279+P48ePY/v27R+dj4aGBmJiYhAfHw8jI6PPKktZG9OuIb7fcBBT/z6J7vVdEBgRg12X/TGpa3OoKSshLTMbz+KTYFZVD/pa6nCzNkd9OyssOXoJaVnZMK+qhxvBT3Hoxj2M69gY2uqq0FZXRff6Lth88SYUFeRhb2aIe+FR+PuSH3o0cIGNsew+gBzToTG+X7cPU7cdR/eGtRH4LBq7/vPFpG4ti9WHLvS1NOBmY4769tWx5PA/wvqopocbD57g0PW7GNe5KbRleMj0xxrTsSm+X7MbU7ccQfdGbggKj8KuSzcxsUdrqCkrIy0zC8/iXsKsmj70tTQQEhWHHf94w8nKBG08HPEgQvztZ2vjatDX0sCgVvWx+19h56WBow1iX73B5rPXYVxFBz2buFfEoX60MU1r4/vdFzH1yFV0d6uJwKhE7Lr5AJNae0JNWRFpWTl49vINzPS1oK+hhppSgg8ahQ9HnEzftYeRTWrjr6v3oK+hijpWxghLSMbma4Gob22CxjVlt1MPAAP698eMWbOwaPFitGvTFo8eP8bRY8cxcvhwqKqqIj0jA5GRkTA2NoZu4VR7AwcMwKrVa6CtrYX69erB188fN7y8MGPaNADCc/6ateugrq6GAf36ITIyUuxvVq1aFdVkOKABADUcPVHTqQ52r5uOboN/goaWLs4f2Qh1DS00adtXtF9cdDjycnNgXt0BAHB0x2KkpiSj35g5yMpIQ0RYkGhfVXVNGJvZoFHrPvD+9zA2L/0RHfv9ABUVNXj9exBxUU8xaf7Or32oH2Vo3x74ae4i/LZsDTq2bo7gkDAcPHEW3w0dAFUVFaRnZOB5VAxMjQyhqyMciTSsX08sWbcJ2pu2o1FdD3j738HVm3747Rfh22q6Otro3bUDDp4QLnzvWdsFCS9fYufBYzAyqIrObVuWWB5ZMLJHB0xYtA4z12xDl+YNcD/sGfaevYQfBnSHqooy0jIyERETBzPDatDT/rS34MMjhQ9lq5vJ9nQVxbFOpHOqVRvOLq5YvfwPDBv5HbS0tXFw3y5oaGiiQ8d30/dERT5Hbm4urG2ED94aN22Oo4f2YcGc6RgyYgwAYM+OrbC0skbjps0BCEd8XDx3Govmz8LAwSOgoqqKC+dOIfL5c/yxbM3XPtQvpqilAU3HGsgIj0ROknBk7ZNFG1B7+xLkJr9BwpkrMOzaCiZ9O+LewMmidOErtsGkXyfUObsNEWt2QMPWCnYLf0LUtsPIioor4a/JDntnNzjUcsfGlb+h//AJ0NTSwYkDW6GuoYnWHXuK9ouJfIbc3FxY2Xz8w/eW7Xrg8sUTWLnwJ/ToPxqKSkr47/xRRL94imnz15XH4XyxwX174Ze5CzF/6Sp0aNMSwY9DcejEaYwZOkh0zXkRGQ0TY0NR32Ro/95YunYjtLW2olFdT9z0v41r3r6YM3WyWN7PXgj7JFYWst0/K25U97YYv3gjpq/bia7N6uH+kwjsOXcFE/p1KTy/ZiEiJh5mhlWhp62J0OfR2HX2MhytLdC6nhsePhV/+ai6qRE01VUxrHMr/OtzDxOXbcKgDs3xIv4lNh4+ix4tG8Coquy+hAMAA/v3xfRZc7Bo8VK0a9sajx6H4Ojx4xg5fFiJfdhBA/pj5Zq10NYq7MP6++OGlzdmTBOuh5KTk4PV6/6Eupoa+vfrW+n6sMN7dcbEBSsxa+Vf6NKyCe6HPsW+0/9g/KBehW0nExHRsTA1NICezsddh1WUlTC0R0dsO3wKetpa8HC2x5PnUfj7yGnUcXFEA7da5XxUX2Zgvz6YNvs3LFyyHO3btMKjxyE4cvwkRg0bAlXVovNJFEyMjUTfk8ED+mLFmj+hraWFBvXqwsfvFq573cSsX38BABgZGooCXkX8bwlfUrCrKXuB4eLKo06UlZXRv3cv7N5/ELo6OqjtUgvPIp5jz4GDcHetjbqeHqUViYhkhJzgQyvlfISrV69i/fr1ePbsGeTl5VG/fn1MmzYNFhYWCAkJwaJFixAYGAgzMzO0b98eGzduxOXLl2FmZoY///wTJ06cwJUrVwAIL8wTJkyAj48PfvrpJ4wcOfKDf79ly5bo3LkzAgICEBAQAFNTU0ycOBGdOnUCIFykde7cuQgMDISysjLs7e3Rr18/TJkyBfv27YOnpycCAgKwcuVKPH78GPn5+XB1dcXUqVPh5OQkymPZsmXw9fVFfn4+nJyc8NNPP8HdXfhQdPr06YiJicGePe+mc7Gzs8PixYvRs6ewc3/8+HHMmDEDoaHCN+uTk5OxfPlyXL16FZmZmbCxscGECRPQsqXwwUjxupGWx7Vr1zBt2jQIBAL4+vpCQeHTpy7I+nfHJ6f5kMtBofjrvDeeJybDQEcT/Zq4Y1gr4Vtat5+8wOh1B7BgUEd0q+8CQLj+waYLN/FfYChevk2DRTU9DG5RBz0b1BblmZuXj52X/XHa/wHiXr+Fka4WejVyxbCW9cpk4a8iqm1HIOvy7g/v+AkuB4bgr7NeeJ74CgY6WujXzAPDWtcHANwOe4HRa/ZiwZDO6FZ4vOlZ2dh0zgv/BYbgZUoaLKrpY3DLuujZyFVq/kV5bJs8GHVsy/4NAtVWQ5F57UCZ5nkl4DH+OnMVzxNewUBXC/2a18XQNsK3x2+HRmDMql2YP6wbujV0w8bTV7Dl3I0S89r60zDUsasOgUCAfZf9cPTGHcS8eoOqOppo4GCDCd1bQV/K/NNfQq35AGQdWFqmeV5+/Bx/XQ3A81cpMNBSR7+6DhjWUNjxvh0Rh9G7LmBBtybo5ib9rbNRO84DALaP6CjaJhAIcOROKA7eeoTo16nQU1dFh1rWGNfcTWyKsrKgOmAaIsKflmmeN318sGfvPsRER6NK1Sro0rkzehWeU4Pu38e06TPw05TJaNvm3WLu585fwLHjx/Hy5UsYGxmhb9++aN1KeF4NDAzC9JkzS/x7gwYOxJDBg8qs/NVtauDfoJwP7/iJMtJScHz3cty/fQWCAgGs7V3Rc9ivMDR59wbb2nkjkPwyFvM3/IO8vFz8PKQuCvLzpOZXw9ETk+YJrwUv4yNxev8ahD++i6zMDFjaOKHzgImwsS+bIGDb2sqIDwkok7yK3PC9hR0HjiIqJhZVq+ijR8e26Ne9MwAg4EEwJs9eiOkTx6JDq+aiNKcv/oeDJ8/iZdIrGBsaYFDvbmjXoqnoc4FAgKNnLuD0xf8Ql5CIKvq68HR1wZjB/UWBkLJiZO+GNwFXPrzjJ7h2KxBbj57Fi9gEVNPXQe+2zTGos3CalrvBYRi/cDXmjB2Kzs0l1yg4e80XCzftxol1v8PEQPztzv9872LW2m04tPI3WJmW34sTum4tWSfv0XVriceFo+fKWlpqKv7euhH+fjchKBDA3tEJo74bD1Ozd1NIzZo2BYkJ8di6811f4OXLRGzfvB6BAXehqKAIV3dPjPxuPPT139VPXGwM9uzciuCHD5CZmYGaNe0waNgoODp9+UMlBxtTnFMqnzfV9ZvWRYPLe+DbagiSb9wS2xY0ajqid797i9NiTD9YTxkJVXNjZDyLQviyLYjZd0osP71GHnBY+iu0azsgJ+k1YvadQti8dRDkST8nf65OuaG4HfqmTPMEgPS0t9i7fQ3u+t2AQFAAWwcXDBo1BSZm7/qcv88ch6TEOKzZdlJqHpNHd4eDszu+nzxXbHtifAwO7lyPkOAAZGVmwMbOCb0HfS9aE+NL1bHTRWzo/Q/v+Am8fP2xc/9h0TWne8f26NujCwAg8EEwpsyah2mTxqP9e3Oqn754CYdPnEZi0iuYGBlgYO8eaNtCfIrIq94+WLBsNXZtXAMLKVMglhUTOxek3rlYpnlevR2Ezccu4EVcIgz0dNGnTWMM7iTse9159ARjF63Hb98NRJdm9bDp6HlsO/FPiXltmjUBno7Cvm5ASDjW7j+FsMgY6GpqoGPjOhjbu2OZT9en5dkez5+GfXjHT3DTxxd79u1HdHQ0qlSpgi6dO6F3zx4AhGtY/DpjJn6ePAlt27ybQu3chQs4evwEXr5MgrGREfr17Y3Whc8GAoOCMG3m7BL/3uCBAzBk0MAyK79VDVskP/Aus/wA4Jr/PWw7dAqRsfGopq+LXu1bYmBX4Si2ew9D8MO85Zj9wwh0atFYIu25q974fcMOHN+4FMYG7wI1AoEAJ/69jmMXLyM64SX0tLXQtnE9jOrbTbSmSlnRr9UYkU8ef3jHT+Dt44fd+w8gOjoGVapUQddOHdCnZ3cAwu/JLzPn4JfJP6Jd61aiNGcv/IMjx0/iZVISjI0M0b9PL7RpWfIaDrv3HcCeA4dw6ezJMi07AFjUdKgUdSIQCHD2wj84ffY8YuPjoaOjjZbNmmLowP5lOm27RU2HMsvrW3LzkWxOCS/LGjl+eO3L/zdlEsD4FP7+/hg6dKgogEEVrzwCGJVZeQQwKrvyCGBUduURwKjsyiOAUdmVVwCjMiuPAEZlVx4BjMquPAIYlVl5BjAqq/IMYFRW5RXAqMzKI4BR2ZVHAKOyK48ARmVXHgGMyq48AhiVXXkEMCozBjA+DwMYn+5bDGB88RoYREREREREREREREREZa1s5w8pYwsWLMCJEydK3WfDhg1o2LDkRUuJiIiIiIiIiIiIiKjy+eoBjHr16onWb/iQCRMmYNiwYaXuY2BgUBbFIiIiIiIiIiIiIiIiGSLTIzD09fWhr69f0cUgIiIiIiIiIiIiIqKvTKYDGERERERERERERET0/0cAuYouAlUCXMSbiIiIiIiIiIiIiIhkDgMYREREREREREREREQkcxjAICIiIiIiIiIiIiIimcMABhERERERERERERERyRwGMIiIiIiIiIiIiIiISOYoVnQBiIiIiIiIiIiIiOjbUiCo6BJQZcARGEREREREREREREREJHMYwCAiIiIiIiIiIiIiIpnDAAYREREREREREREREckcBjCIiIiIiIiIiIiIiEjmMIBBREREREREREREREQyR7GiC0BERERERERERERE3xYB5Cq6CFQJcAQGERERERERERERERHJHAYwiIiIiIiIiIiIiIhI5jCAQUREREREREREREREMocBDCIiIiIiIiIiIiIikjkMYBARERERERERERERkcxRrOgCEBEREREREREREdG3RSCQq+giUCXAERhERERERERERERERCRzGMAgIiIiIiIiIiIiIiKZwwAGERERERERERERERHJHAYwiIiIiIiIiIiIiIhI5jCAQUREREREREREREREMkexogtARERERERERERERN8WgaCiS0CVAUdgEBERERERERERERGRzGEAg4iIiIiIiIiIiIiIZA4DGEREREREREREREREJHMYwCAiIiIiIiIiIiIiIpnDAAYREREREREREREREckcxYouABERERERERERERF9WwogV9FFoEqAIzCIiIiIiIiIiIiIiEjmMIBBREREREREREREREQyR04gEAgquhBERERERERERERE9O24/CCrootQ6bSqpVrRRfjquAYGITrsYUUXQaaY2TrjTeC1ii6GTNF1bY60TTMquhgyRXPsYmRd2lnRxZApqm2G83xSjJmtMzK2z63oYsgU9VELEBYeWdHFkCm2NhbY7833Sd43sLEcMvf+UdHFkBlqg2ci69Cyii6GTFHt9ytuh76p6GLIlDp2ujinZFfRxZApnXJDcT04o6KLIVOaOakj698dFV0MmaLadgTiQgIruhgyxdjeFY27XK/oYsgU7zPNcCM4vaKLIVOaOmkgNvR+RRdDZpjYuVR0EYj+b3EKKSIiIiIiIiIiIiIikjkcgUFEREREREREREREX5VAIFfRRaBKgCMwiIiIiIiIiIiIiIhI5jCAQUREREREREREREREMocBDCIiIiIiIiIiIiIikjkMYBARERERERERERERkcxhAIOIiIiIiIiIiIiIiGSOYkUXgIiIiIiIiIiIiIi+LQJBRZeAKgOOwCAiIiIiIiIiIiIiIpnDAAYREREREREREREREckcBjCIiIiIiIiIiIiIiEjmMIBBREREREREREREREQyhwEMIiIiIiIiIiIiIiKSOYoVXQAiIiIiIiIiIiIi+rYIIFfRRaBKgCMwiIiIiIiIiIiIiIi+YdnZ2Zg/fz4aNGgANzc3/Pzzz0hOTi41zb179zBkyBB4eHigSZMmmDVrFt68eSP6PCEhAXZ2dhI/x48f/+hyMYBBRERERERERERERPQNmzdvHry9vfHnn39i165dePbsGSZOnFji/hERERg1ahTs7Oxw+PBhrF69Gvfv38ekSZNE+4SEhEBFRQVeXl7w9vYW/XTs2PGjy8UppIiIiIiIiIiIiIiIvlEJCQk4efIkNm3aBE9PTwDAqlWr0L59ewQEBMDNzU0izcmTJ2FgYIBZs2ZBTk44Hdhvv/2GQYMGISoqCubm5ggLC4OVlRUMDAw+u2wcgUFERERERERERERE9I26e/cuAKB+/fqibdWrV4ehoSFu374tNU3Xrl2xdOlSUfACgOjfKSkpAIDQ0FDY2Nh8Udk4AoOIiIiIiIiIiIiISMa1atWq1M8vX778WfkmJCRAT08PKioqYtsNDAwQHx8vNY20wMTWrVtRrVo12NnZAQDCwsKgp6eHQYMGISIiApaWlhg3bhyaNm360WVjAIOIiIiIiIiIiIiIvqoCQUWX4NsRHR1davBj0qRJUFZWltiuoqKC7Ozsj/obS5cuxbVr17B+/XooKSkhLy8Pz549Q40aNTB9+nRoamri3Llz+O6777Bjxw40aNDgo/JlAIOIiIiIiIiIiIiISMZ97ggLQ0NDnD9/vsTPr1+/jpycHInt2dnZUFNTKzXv3NxczJ07FydPnsTChQvRunVrAICioiL8/f2hoKAAVVVVAICzszOePHmC7du3M4BBRERERERERERERPStU1JSKnUtitDQULx58wY5OTliIzESExNhaGhYYrq0tDRMmDABd+7cwapVq9ChQwexzzU0NCTS1KxZE97e3h9ddi7iTURERERERERERET0jfLw8EBBQYFoMW8AiIiIQEJCAurUqSM1TU5ODr7//nvcv38f27dvlwhePHnyBO7u7vD39xfb/vDhQ9SoUeOjy8YABhERERERERERERHRN8rQ0BCdOnXC7Nmz4e/vj/v37+Onn35C3bp14erqCkAYsHj58qVoqqnNmzfj7t27WLhwIaytrfHy5UvRT05ODmxsbGBtbY0FCxbgzp07CA8Px+LFixEYGIhx48Z9dNk4hRQRERERERERERER0Tds4cKF+OOPPzBhwgQAQNOmTTF79mzR5wEBARg6dCh2796NevXq4ezZsxAIBPjpp58k8iraZ9OmTVi5ciUmT56Mt2/fwtHRETt27ICtre1Hl4sBDCIiIiIiIiIiIiL6qgQCuYouAr1HXV0dv//+O37//Xepn9erVw+hoaGi3//5558P5lm1alUsXrz4i8rFKaSIiIiIiIiIiIiIiEjmMIBBREREREREREREREQyhwEMIiIiIiIiIiIiIiKSOQxgEBERERERERERERGRzGEAg4iIiIiIiIiIiIiIZI5iRReAiIiIiIiIiIiIiL4tAkFFl4AqA47AICIiIiIiIiIiIiIimcMABhERERERERERERERyRxOIVWOhgwZAlNTUyxZsqRM8jh+/DhmzJiB0NBQAMDr16/x33//oU+fPmVV5DJz514g/t6zH88jo6Cnq4tundqjT4+ukJOTKzHNlete2HvoKOISEmFkUA39e/dAu1YtxPbpN3wMkl4lS6Q9vncHdHS0y/w4yopf0CNsOngSz6Jjoa+jjd7tmmNQ5zal1keR0IhIjJi1GEfXLISJQVWxz57HxGP9vmO4+ygMivLycHO0xaQhvWFqWK28DqXM+L5IwMabwQh/lYoq6iroU9saQzxqllgnUW/S0H3HvxLbbapo4/DQ1hLbE1Iz0HfPZazsUh+e5rJfHwDg8/gZ1p+5jvC4JOhra6B/Ew8MbVW3xDrJzs3D5gveOH87GK/TMmBraoCxHZugkaO1aJ+CAgGO3gzAYa97iE56A30tDbRwqYlxHZtAU03lax3aZ+O5RJJvRDzWe93Hs6S30NdQRT+3GhhSx+6jzid5BQUYvvcyVJUUsG1AS7HPTj+IwO7bIYh6nYZqmmro4lwdoxo4QFG+crzrkJmZiZ1/b4WPjzeyMjPh5FwLo78bBzMz81LTvX79Gtu3bsK9u7eRn58Pzzp1MWrMWOjrV3m3T3Iy9u7ZiYB7d5Ga+hamZubo1asvmjRrXs5H9WVystJx6ehKPL77L3KyM2Bp64l2/aejqpF1qemingbg8vFViHseDGVVDTh6tkPLHpOhoqYp2icvNwfXT6/Hfb8zyEhNRhVDKzTpPBZOdTqU92F9Np/wGKy/GoBnL99AX1MN/TztMLS+00e3nWE7zkNVSRHbh7YX+6ztmiNITM2QSHP1537QU1cts/KXB5+n0Vj/312Ev3wNfQ019K/riKGNnD+uTvILMHTbGagpKWL7yE5in50KCMOumw8QnZwKIx1N9KvngIH1HD8q34qWlZmBg7vW47bPVWRlZcLeyRWDRk2BiZnlR+exdsl0qKqq4/vJc8W2v0pKwIEdfyI46DZyc3PgVLsOBgyfACMTi7I+jDKnamqIpoFncafXD0i+cavUfU36dUKNGeOgbm2OzOcxeLp8C2L2nBTbR8fDGQ5Lf4WOhzPy3qYjevdxhC1YD0FubjkeRdnJyszA8T1rcc/vMrKzMlDT0R19R/wCI1OrUtO9CH+MUwc24PnTYAgKBLCwcUDPwRNhaeMg2ic/Pw9nD22Gz9UzSEtNgaWNA3oPmwJr21rlfFSfz+dxBNafLezDammgf1N3DG35oT7sTZy/834ftjEaOYj3YfdcvYWjNwOR8CYVltX0MLx1fXSq4/S1DuuL3A4Iwra9B/E8Mhp6ujro3rEd+nXvXOp58PKNm9hz+DhiExJgZFANA3t1R/uWzQAAcQmJGPDdjyWmbd+yGaZPGl/mx1GeJoy0hl0NLfw4M+iD++rpKuHHUTao564PBQU5+N1Jxp/bw/HqdY5oHwV5YMQAK3RoZQgdbSWEPk3Dhr/D8SgstTwP44tlZWbg2J61uOd3RXQ+6Tfi5w+eT97317KpUFFTx8gf54ttf/0qEUd3r8HDAB8U5OfD2q4WegycAKsajmV8FGXndkAQtu85UHj/p4Pundqjb/cupbed697Yc/gY4hISYGRggAG9uqN9q+YAgPiERAwY80OJadu3ao5pk0r+nIhkAwMYMu7PP/+EgoKC1M+WLVuG6OhomQtgPAoJw6yFi9G8cUMMHzwADx89xpade5Cfn48BfXpKTXPjpi/+WLkWPbt0Qh0PV9z0u4Vla9ZDSUkJLZs2BgCkpLxF0qtkfD9iKJwdHcTSa2pqlPtxfa4HYc/w89L1aN3QE9/364qgkKdYv+848vMLMKx7+1LThkfG4Kel65GfXyDxWUJSMsbMXQZLE0MsnDga2dk52HToFCYuWot9K+ZCVVm5vA7piz2IS8bkkz5oa2uGcQ0dERjzCuu8HiK/QIARde2kpglNTAEA/NWrMdSU3p26VBUl20d8agYmHL+JtOzKcRMMAPcjYvDjpiNo5+6AHzo3RUB4NFafuoK8ggKMattAapp5+8/jxoOnmNi1GSwN9HHa/wF+3HQY2yYOgnsN4UPbHf/5YcPZ6xjWqj7q2VniRWIyNpy9gaexL7FpQn+ZfpjEc4mk+7FJmHjMC+3szTG+cS0ExiRhzbUg5BUIMLK+wwfT7/B7jOD4ZHgUC+rtvxOG5VcC0NrODJObu+J1Rhb+8n6IsJdvsLJ7o/I6nDK1YtkfCA0JwfCRo6Guro4D+/di1vRfsOGvbdDU0pKaJj8/H/PmzkRmRgbGT5iEvLx87Nq5DXNnTceaP/+CoqIicnNz8NvcGUhPS8egIcOgr18FN296YdnSRcjNy0XLVm2+8pF+vGNbfkH0syC06f0LVNQ0cf30BuxaNgzjF56FmoaO1DQJUaHYvXIErB3qo+/4dUh9k4j/jq3Cq/gIDP5pu2i/E1unIvzRTbTq9TOqGFrivu8pHN38E1RUNVGjVpOvdYgf7X70S0w8eAXtnKzwQ3M3BEQlYM1/d5FfIMDIRh9+KLjj5gMEx76Ch6Wh2PbXGVlITM3AlNYecDMX/0xLVXavwwBwPyoRP+67hHbO1fFDKw8EvIjH6ku3hNedprU/mP5vryAExyTB08pIbPvxu6GYf8obwxvXQkMbMzyITsTKi/7IzM7F6Gau5XQ0ZWfDyrkID32I/sMnQE1NAycObsMfs8dj6foD0NAsPcBdUFCAfdvX4LbPVTRpKR7UycrKxJI5P0JOTg4jxv0KRSVlnDz0NxbOGIul6w9AU0t6m5QFqmZGqHtuO5R0PxzgN+rRFq67VyDiz914+Y8XjLq1huvfS1GQnYO4w+cBAGrVzVDv4g689gvEvQGToWlvA7uFU6Ckr4uHP/xW3odTJratnoGIsAfoNXQyVNU1cPbQZqycOwbz1h4r8XuSGBeJFXNGw9LGAUPH/wY5OTn8e2o3ls0aiTkrD4geVh7ZsRLel0+i5+CJqGJggktn9mL1vLGYs/IADIxlL9h1PyIGP24u7MN2aoqAZ9FYfeoq8vJL68NewI2HTzGxS2Ef9tYD/LjpCLb9OFDUh9143gs7/vPD+I5N4GxpDK/gcMzcfQbycnLo4Cm7D18BIDg0DDN+X4oWjRti5KB+ePAoBJt37UN+fj4G9e4uNc11H3/8vupP9OrcAXXda8Pb/w6WrN0IJUVFtGraCFX09bBh2UKJdCfP/4ur3j7o2KallFxlV//uZujfwxwBD958cF8FeWDFvFrQUFPEio1hUFSUx9hh1bFqQS2MnHwP+fnCCfQnjLZB5zbG2LTrGeITstGvuxnWLHTBiMl3EROXVc5H9Pm2rZ6JZ2EP0GvoJKipa+DMoS1YMfc7zF979KOuO4d3rMQ9v8to0KKL2GcZ6alYOmskcrIy0X3AeBgaW+Cu32Usnz0avyzcguo1ncvzsD7Lo5AwzFy4+F3beRyCzTv3Ij8/HwN795Ca5rqPHxatWodeXTqijrvw/m/p2g1QVlJCy6aNoK+vhw3LFkmkO3n+YqVsO0TfKgYwZJyurm6JnwlkdKWbXfsPooZ1dcz4eRIAoK6HG/Ly87H/yHH07NoJKiqSb31v37MfzRo1wPgxIwAAddzdkJqahp17D4geOj6NiAAANG5QDybGRhJ5yKqtR87Arro55k8YCQBo4OqMvPx87Dx5Af06tpQaaMjNy8PhC1ex5chpKCspSc/36Floqqth/ewpUFUR5mFiUAW/LN+Ix+Ev4OZQs/wO6gtt8n0EOwNdLOxQBwDQ0MoIeQUC7LgdigHuNaQGJcJevoGhphrqWhiUmG+BQICzjyKx5saDcit7edl4zgv2Zob4Y1hXAEAjRxvk5hdg+78+GNTcE6rK4t+DmFdvcP52MGb0aYt+TT0AAHVtrRD4LAaHvO7CvYY5CgoE2HHJD70buWFSt+YAgPr21aGjoYZpO07hUWQ8nCyNv+pxfgqeSyRt8g6GvaEufu9cHwDQyNoYefkF+NvvEQZ61ISqUsmX9dDE1/jb7zGqaoi/EZ5fUIAtPsGob2WI5d3eBSscDPXQZ8c/8Hsej/pWsl1PIY8f4Za/H36bvwiedeoCgHAExoghOHfuNPr1HyQ1nbfXdTwLf4oNm7bBwkL4drW1jQ0mjBsDb6/raN6iFW7f8kfEs2dYuWY9bG2FAVY3dw+8TEzEsaOHZTaAEfU0AGFBVzFw8hbUrNUUAGBh64m101rj9tUDaNp5rNR0fpd2Qk1DB33Hr4OC4rvr06kdM5EU/wxVjazxIuwOHt39Ryzv6g4NkJwYiScPbshkAOOv64GwN9LHou7CsjWqYYq8fAG2ez/AwLoOpbed+GRs936AqppqUj8DgJZ2FjDXl+3RW8VtvHIP9kZV8Eev5gCARjXNkFtQgO1eQRjUwOkDdfIK272CpNbJthtBaONkhSlthW2xno0JXrx6iwP+j2Q+gPEk5AECbnlh6m+rUdujIQDAzskVU8b0wH/nj6Fb3xElpo2MeILdW1bi2ZNHUFaWvD7dunkFcTEvsGT9AZhZCN8yN7e0wZQxPeB/8zJatZcemK9QcnIwG9IdDkunAR/5voPdwp8Qd/QiHv+yGACQdMkbSno6sJs3SRTAsJk6Bnmp6bjTczwEubl4efEG8jOz4Lx2Dp4u2YSsqLjyOqIyER4ahPt3buDH2X+ilruwb1HTwQ0zx3XGtYuH0an3aKnprpw7AGUVVfw460+oqArbjn2tupgxtiOunD+IgWOmIzkpHtf+OYr+o6aiefu+AABH1waY80M3XDyxE0PHz5Wad0XaeN5b2IcdKnx42sjRGrn5+dh+ybfkPuydYMzo0wb9mroDAOraWiLwWTQOed2Dew1zZObkYu/V2xjU3FMUBKlnZ4XHUfHYf/2OzAcwdu4/gprVq2PWlAkAgHrursjPz8e+oyfRu0tHqKhI3v9t23MAzRvWx4TRwwAAdd1dkZqahr/3H0arpo2grKQEJztbsTShT5/hqrcPRg8eABdH+/I/sDJgbKiKCSOt0aheVaSm5X1UmhaNq8HORguDx9/G8yjhiMcnz9Kwe70nWjauhkvXE2FQVQU9OphgzZanOHlBeA65FZCMA5vrYlAvCyxbH1Zux/QlwkODEHTnBibO/hO13IX98JoO7pjxgfMJAEQ/D8OBbcvw/OkjKCtLjvi8eeUUXiXGYtqiv1HDwRUA4OhaH2lv3+DQ3ysxffGOcjmmL7HjwGHUsK6OmT9NBFB4/5eXj31HTqBXl46l3P/Vxw+jhwvTuLvibVoa/t53EC0L246jffG2Ey5sO0MGopbjh18CI6KKVznmhfgK/vjjD7RuLT4NTWpqKlxcXLBv3z60adMGv//+Ozw8PDB+/McPzUxPT8fPP/+M2rVro3Hjxli3bh0KCoRv0/v7+8POzg7R0dGi/YtvGzJkCKZPny6R7/Tp03HixAncunULdnbS31ivCDm5uQh6EIzG9euKbW/asAEyMjPx4FGIRJr4hEREx8SiUYN64mkaNUBMXDyiY2MBAOHPnkNdTQ3GRoYSeciqnNxc3HsUhmZ13MS2t6zngYzMLASFPJWazifgIbYdO4vh3TtgwkDJG1qBQICr/vfQpXlDUfACABxsrHBu0zKZDl7k5OXjbnQSWtiYiG1vVdME6Tl5CIxJkpou9GUKbKuV/nbik5cpWHw5AJ0dLbCgvWeZlbm85eTm4c7TSLSsLd6W27jZIT0rBwHh0RJpqmlrYv/U4ehU990wenl5OSjIyyE7Nx8AkJaVjc51ndDBU3yofXVD4dQ4UUmvy/pQygzPJZJy8vJxJyoRLWqaiW1vbWdWatsBgNz8fMw554/+HjVhqS8+GuFVejZSsnLQpFibrFFNF7pqKvAKjy27gygn9+7egaqqKtzcPUTbdHR04VzLBXdvlzzVyb17d2BqZi4KXgCAhYUlzMwtcKcwnbq6Btp36ISaNcVvfMzMzREfJ7t1Ex7sDSUVddg4vQtKaWjpw8q2Dp4+uF5iuhY9JmPQpC1iwQsFReHDp7xc4TQNj+78Az0DC1HwAgDk5OQwcsYBdBg4q6wP5Yvl5OXjzot4tLQXf3O5taMl0nNyERCVWGLa3Px8zDnljQF1HWBZRTJAEZqQDA1lJZjpSR/lI6ty8vJx53kcWjqIT4vUxqk60rNzEfAiocS0uXn5mH3sBgbUc4JVVcnr8vrBbUXBiyJKCvLIzssvm8KXo/v3/KCiqoZaru+uI9o6erB3dkPgHZ9S025aMx8FBfmYt3w7tHX1JT73rN8Mc5duFQUvAECxsG3l5uRI7C8LtF3s4LxhPqL3nkTg8F8/uL+apSk07aoj/tQlse1xx/+BRk0rqNcQft+qtWmMxAvXxaaLij92EXIKCqjWtnHZHkQ5CA7whYqqGpxqvxtdoKWjj5qOHnh417vEdEZm1dG221BR8AIAVFTVoFfFEC/jowAAIfdvoSA/D2713r0RrKSkDBfPpnh4r+S8K4qoD+sifo1s42ov7MM+K6kPO0xsKihhH1Ye2XnCB9rKigrY/dMQDG0pfi5RVFQQ7SOrcnJzEfjwERrXryO2vVnDesI+7GPJPmxcQiKiYuMk0zSqV9iHlQzqCQQCrNm8HZbmZujTtZPE57Lqx9E2MDNRw6RZQXgakfZRaeq66+NFdIYoeAEAz6My8CI6Aw08hedbj9q6UFSUxw3fd/3h3DwBfG6/Eu0ji96dT+qLtmnp6MHW0QMP7t4sNe32dXNRUFCAGUt2QktHT+LzuOgIqGtqi4IXRexreSI8NAjpaW/L5BjKStH9X5Ni93/NGtUv9f4vKiYOTeqL3/81a9ig1LazdpOw7fSuRG3n/1kB5PjziT/fIgYwCvXs2RNRUVG4c+eOaNv58+ehra0NZWVlREZGIjExESdPnsSUKVM+Ot9///0Xenp6OH78OH799Vfs2LEDu3fv/uLyzpo1Cx06dICbmxu8vWWnMxsXn4DcvDyYmYo/CDM1Eb69Gx0TI5HmRZSwY2tmIp6m6M3oqGjhA6KnEc+hpaWJ+YuXo2u/IejUZxAWLl2JV8my+xA2JiEJuXl5sDAWHzVgZiScviUyVvoDAgcbS5xc/wdG9OwIBQXJZhr38hXSMjJhVK0Klm3fjzYjp6DJ4B/wy/KNSHglu/UBADEp6cjNL4ClnqbYdnNd4e8vXkvvyIa9fIOM3DyMOHgNDdadRNvN57DO6yFy35tey0hbHSdHtMVPzVykjuKQVdGv3iA3Lx+WBuKda4tqwo7o88RXEmmUlRThZGkMLTVVFBQIEP/6LZYdvYTopDfo01gYMNNWV8X0Pm3hZiP+wPvqfeEbSDbGsrs2CM8lkqKL2k6xAIR54YPT58klz++7xecR8goEGNdIcqi4lqoSFOXlEJeSLrb9bVYOUrNyEP0mXSKNrImKioSRkbHElIvGxiaIjpF8eFIkOjIKpqamEttNTEwQEy18mOTq5o4ffpwsNt1aXl4e7tzyFwt8yJqkuGfQq2YGeXnxOtEzsEBSfESJ6bT1DGFoLgym5mRn4NkjH1w+vhrmNdxhZC58uzMh6jEMTGrigd8ZbJjdEQvGOGHD7I4Iufdf+R3QF4h+nVrYdsQDEBaFbefFq5QS026+EYS8ggKMK2HkQGj8a2irKeOXo9fQeNl+NFiyD78eu46XUtbEkCWiOikWgLAorKPnpdXJtQDkFRRgfEt3qZ9bV9OFqZ4WBAIBUjKycfxuKM4EPUW/urL/hmNs9HMYGJpCvti5xNDYDHExL0pNO27KPMxduhUW1aW/RKKuoQlbBxcAQF5uLiIjnmDzmgXQ0tZFvcaSa3nJgszIOFyzb4PHU5cgP+PD069o2tsAANKfPBfbnhEurDtN2+qQV1WBupUZ0p+In4dykl4jNyUVmrbVy6bw5Sg+OgJVDc0kvicGxuaIjy35e9K8fV+06z5MbFtiXCRiIsNhYi6su7joCKiqaUBHT3zdu2rG5niT/BJZmbJ1bvlgHzZBcr0xZSVFOFkU68Me+0+sD6sgLw9bUwNU1daEQCDAq7fp2P6vL/xDn6NfY+nnHllR1Ic1NxUf5Wxa2B+NjJF8+SEyWtiv/ZQ0V7x88DjsKSaMGib1flFWbd0TgWE/3kVQcMnXmeKszNQRFSP53Y+OzYSFqbpon/SMPCS/EZ9CODouE9WqqEBNVTbrKC46AlWlXHcMjM2RUMr5BABGTVqIaX/8DTMrW6mfa2rpIjszQyJQkRgv7BsnJUjeT1Uk0f1fsXu5onYQJaUdvChsO2YltB1paa56+eBx2BNMGD2ixOnaiUj2cAqpQvb29nBycsLp06fh6Sl8c/vEiRPo2rWr6KQ2fvx4mJuXvhhocY6Ojpg9ezYAwMbGBuHh4fj7778xfPjwLyqvlpYWVFVVoaSkhGrVZOchZHq6sGOhri4+pYC6mvD39IxMyTQZwjQaJaTJKEwT/iwCSa+S0aldG/Ts1hmRUdHYue8QpsyYg81rV0BNVfYWykwrLLuGWvFjE5Y1PVOyPgDAQF/yDYr3vX4rfFC5Yf9xONpYYeGkMXj99i02HjiJ8QtWYe/S2VBTlc0FmtNyhG9NaRQbTq6uLDwdpedIrlvxOjMbiWlZyC8QYGITZxhrq+NW5EvsuhOGhLRMLCqcikpHVRk6Mj7nuDRpmdkAAM1iZVcvHCKbnlX6m5k7Lvli3RnhG9W9Grqivr1Vifvefx6Dvy/5oZlzDdQ0kZ1zR3E8l0hKyxZ+DzSUxS/dorZTwpovwXGvsPtWCLYPbAllKYE9NSVFtLW3wKGAp7CpqoOWtmZITs/C8isBUJCXQ1aubL/pCAAZGelQU1eX2K6mpo7MjJIf9qRnpMNESgBDTU0dGaWk2/H3VsTGxmDGLNmbyqNIVmYqVFQ1JbarqGogO/PDQSmBQIDlkxogLzcbapq66DBwtuiz9NTXeJXwAnEvgtGy52Ro6lTDnasHcGjjjxg0aYvMTSFVtB6Shkqx607h7yWtl/QwNgm7fYOxfVh7qW0HEI7AeJmaAQd3Wwyq54hnSSn461oARu3+B4fGdIaasvRpICtaWuF1RbN4nRSWt6TrzsOYl9jl8xB/j+xUYp0UuR+ViKHbzgIAnEyqYmhD2V2AuEhGeloJ5xINZH6g3Zhb1fjov7Py95/xIMAfcvLyGPPjLOjpV/1wogqQ+zoFua8//iGjoo7wnJP3VvxllLxUYd0pamtCSUdL6j5F+ylqS563ZE1mRhpU1STXzFJV00BW5se9UQ4AOdlZ2LFuLpSUlNGyY//CvFOl560q/F5mZaZBVU3yO1pR3vVhxe871AtHiKdnZZeafsd/fu/1YWujvp2VxD4X7z7G9F2nAQBNnGxkfhHvtML+g3qx+z+1Yv1RsTSifq/6R6c5dPIMnB3s4FZLtuujuIjITw/CaWgoIipWsg4yMvOhoa4g2ic9Q3KkX0amcJu6uiIyP3BPVREyM9Kgpialv6amjswPnE/MLEufdaF+s064dHovNi2fiv6jfoVeFQPcv+MFnyvC9pSdLf1ZREUpuv8r6V5O6v1fUZqSnrdI6c8fPHEKzg52cK1kbYfoW8cAxnt69eqFNWvWYPbs2YiLi0NAQAAWLVqEoKAgAICVldUn5+nh4SH2u4uLCzZt2oS3b2VruF5ZEQgkF5t+n7yUBYMFBaWv5SEnL0zz04/joCCvAHtb4Q2ii5MjrCwsMGnaLFy6cg1dO5a+IHZF+NA6JXJyn/cmSG7hNAz6OtpY+vNYyMsL8zEzNMDoOUtx0dsfPVo3LS2LClPwoTqRMhxOTUkRG3o2goWuJkx0hDd1HmbVoKwgj40+jzC6rh2qS5nao7L4YJ18YKHtprVqwtXGDAHh0dh8wRtZubmitTTeFxAejR83HYFpFR0sGCzbw2V5LpH0gcOT+j3JzsvHnPO3MNDTFs7GVUpMO6utB5QU5LHg4m3Mv3gbqooKGF7PAek5uaXOg18RCgoKJM6tRVMzSlNa+xGUlk5e8vwsEAiw8+9tOH3yOHr26ouGjWTjQb2goECizZR6bB84pwBAQX4e+v+4EXm52fA+vwU7lw7GiBn7YWRuj/z8XKSlvMR3c4/B2FJ481fdoT42/dYd189skLkAxofOsdLOJ9l5+Zh7yhuD6jmilmnJwd65nRtAQV4ezibCB9DuFoawqaaLETsv4Mz9cPT1lM05yT/nupOdm4c5x29gUH0n1DL7cADcWFcT20d0RMybVKy/fBdDt53BwbHdoaYsG+eUAmntppRrj/xn9tmk6d5vJDr1HAKfaxexZe1CFOQXoHlbyet2ZSPtvPk+QUEB8MF9ZGuNP2nfk4JSvicf27fPykzHxiU/IeJpMMZOXYYqBsI3jsvr3qG8fHEf1rkGXK1NhX3YizeRlZsnWkujiLOlMf6eNBBhMS+x4dwNjP/rMLZPHPhR17KK8MH+qLQ+7CfW48PHoQgLj8DvM3/59AJ+JXJygHyxQ80vvXtfouL5vK+oukvbB5CNc4v0607J5frS9m5ibo0JM9dgz1+/Y97kPgAASxsHdO0/Dge3L4OKimy9tPXB/pqU/+TSzseA5LX74eNQPAmPwMKZH54WkYhki2zcQciILl26YOnSpbh69SrCwsLg4uICGxsbUQBD9TPeypUv1kkvKCiAnJwclEpYmDk/X/bnBy6NRuFbI5mZ4sPMRW9Ga0i+MVS0LaPYaISiCHtRnk72kmt9ODvaQ0NDHeERpQ+vrCiahW8PZGQVq4/C+tFUl1z88mOoF77l1MDVSew7VsvWGprqagh7HvVZ+X4NmkVvd+aKv/GaXjgyo/jboACgqqiA+paS6xU0rm6EjT6PEJaUUqkDGJpqhSMtssXfCip6a01LrfTRNEUjKTxqWCCvoAB/nfPCj12awVj/3dQgF+8+wty952BpoI+N4/tBV1N23t6ThucSSVqFbSMjR3xERNHIC2ltZ4PXAwgEAnzXwAl5hQ+0i+4N8goKoCAnBzk5OagrK2Feh7r4tZUb4t5mwFhbHerKSjh5/xnMdWVrbv+D+/fiwP49YtsaNW6CN2/eSOybkZkBDQ3JN1mLqGtoIFPKdBwZGenQUBdPl5ubgzWrluPG9Wvo2asvRowa83kHUA6un9mA66c3iG1z9GiH9LeS089lZ6VBVf3D/6cKikqi9TMsbetg7bRW8L+0G91G/gEVFQ1o6lQTBS8AQF5eAdaODXD3+qEvPJqypylqO8WuO6W1nav3UCAQ4LsmLqK2Ayltp7aZgURaN3MDaKooISxBdqelKxrxV3zkVtHvWlJGM66/fFdYJ81dkZdf7HySXwAFeTmxh2wG2how0NaAJ4xhpqeFkX+fx3+PItDFVTbW6TpxcDtOHNwmtq1uw5Z4+0ZyypvMjHSoqZd8LvlUdo6uAADn2nWQlBiHU0d2/F8EMPJShCOEFbXE66poVEVeSppo5EXxfYr2K8pDVpw9vAVnD28W2+beoDVS30ieX7My0qCm/uERJMlJ8Vi/aCLiY1/gu5+XwLVuC9FnauqayMqSvC5lFY4A+pj8v6Z3fVjxkRaf3Yc9740fOzcV68OaV9ODeTU9eNSwgKaqMmbvPYd74VHwqGFRUrYVqqg/WrwPWzSKQrOUPmxmsT5s0WjQ4mmu+/hDS1MD9T3E11mUJSP6W2LkQCuxbY27lLwGV2nSMvKgriY56k9DXQHp6XmF++RL30dNUfR5RTt7eAvOHN4its2jQWu8lXo+SS+T9u7k2gCLN51FUqJwKqVqhqbwvnwSAKCuWfr6kl9byfdyRSMzpLQd9aI0xZ+3ZIrlWeS6j6+w7XjKbtshIukYwHiPtrY22rRpg0uXLiEkJASDBg364jyDg4PFfr979y7MzMygpqYmCmKkpb0bGvj8+fOPzlsW3zoxMTaCvLw8YuLEF0uKjYsHAFiYm0mkMS+c4z42Lh41bazfSyPMw9LcDGnp6fDy8YO9bU1Ut3zXWS0oKEBebh50dWTz4bWpYTUoyMsjKl58gdDowt+tTI0+K18zo2qQk5NDrpSpXfLzC6Aio1NWAICZrgYU5OQk5tWPeiNsB9X1JR+sRb5Ow+2oRLS1NRN7qFK0IKjeB26OZJ15VT0oyMsh6qX4w67Iwt+LFt1+X2xyCvxCnqNTHSeovPeGvIOZMNDzMiVNdPO36z9/rD51BZ41LbF6TE9oqcnW2zbS8FwiyUxXEwpycogqtk5MUduxlhLE+y80CnFvM9BwzTGJz+qsOIL5Heqia63quPE0FtqqSnA1qwabwjnxk9OzkJCaAQfD0qe0+9radeiIOnXFF+rz8/XBvbt3UVBQIBbUjYuNgZl5yQ84zMzMER7+VGJ7XGwsatq9C3Slp6dj/m+zEBryGGO+G4eu3XuWwZGUHY+mfWFbu7nYtpB7l/E02BuCggKxt6KTEyNR1dgaJQkNvAJVNS1Y2r1bSFRVXQt61cyRmiK8dukbWiLldRwEAoFYXyQ/Pw+KSrJ3fjHX14aCnBwii60TE5ksHA1bvaquRJpLj18gLiUdDZbul/jMc9EezO/aCC3tLHA55AWcTaqihsG7dlIgECAvvwB66rJXF0XM9bSE151k8RHBojqppiuR5r9HzxH7Jg0Nfpdcy81j/g4s6NEEbRyr41poJJxNq8HivXOSg7FwhEriW9mZv79lu+5wqyO+YPRd/+u4H+AncS5JiIuCifmXrc0Q/uQRXibEon6x9S6sbOzwJOTBF+UtK9LChOtaqNtY4m3gY9F2DRvhekFpIeHIT89AZnQ81G3E1xBSrqYPJW1NpIWEf70Cf4SmbXvCxVN8VFngrWt4FOgr8T1JjI+CsVnp35PoF0+wdsF45OZkY/LcjbB1Eh+tb2hiiayMNKSmJENL5926EolxUahSzRjKMvbG9Ls+7Bux7aI+rFEJfdjQ5+jkWawPay68L3qZkgYVJSXcfBSOho7WqPJesMu+cJ/ElI+fqutrMzEyLOzDxottL/rdwkxy6sqiPmxMXDxqWld/L02C1DS+d+6hcb06UFSU3cc5p/6Jw83bkg/mP0dkdCZsbSQf5psaq+HxE+G1PTImA5oaitDVVsKbt++C82YmqohLyEJOzmcO/yhDTdv2goun+CwJAbeuIvgzzycf8uplHB4F+aNBs06oZvjuOxT5LAQamjqoamBSSuqvz/QDbcdSyv2fxfttx6a6ZJpibcfv9j00qldXptsOEUknW2NQZUCvXr1w6dIlREZGolOnL59i5d69e1i+fDnCw8Nx5MgR7N+/H+PHjwcA2NraQl1dHVu2bEFkZCS8vLywY8eOj85bXV0diYmJiIqSnbftlZWV4eLsCC8ff7HhkDd8/KChoQ77mpJv3ZmaGMPY0AA3bvqKbffy8YOpiTGMDA2grKSEPzdtw4Ejx8X28fG/jeycHLjWklyYVhaoKCvB1aEmrt0KEKuPq/73oKmuBqcan9cpUVdVhZtDTVy9FYCc90Yy3H7wGJnZ2XC1l423G6VRUVSAm1lVXHkaK1YnV57EQlNFCU5Gkg9Lk9Kz8MflQFx6Ir7Q2L9h0dBQVoSDgW55F7tcqSgpwr2GBS4HhorVyX+BodBSU4GzlWTnMi45BfP3n8eVoFCx7b4hEVBSVICVofCm94h3AFadvIK2bg74a3y/ShG8AHgukUZFUQHu5tVw+Um0WJ1cDo0Wth1jfYk0a3s1wd4hbcR+HAz14GCoh71D2qBpDeF362jgU6y6FiSWdt/dMCjIy6GJjWzd3FSpUhU1be3EftzcPZCZmYF7d++I9ktJeYPghw/g5u5RYl5u7h6IjopEZOS7kTeRkS8QFRUJNzfhelj5+flYOG8OnoSF4tfps2QueAEAWnqGMLGqJfZj49QIOVnpeBrsLdovPTUZL8LuiEZWSON3aRfO7Z2PgoJ3byq+TY7Hy7hwGJoJgzo1azVFZtobPAu+KdonPy8H4Q+9YGlbcn1XFBVFBbhbGuJKSKR423kcCU0VJTibSq4/sK5fK+wb1Unsx8FIHw5G+tg3qhOa1TSDsqICllzwx/ab4g+fr4VGISsvH3WsPu8lha9BRUkR7pZGuPzoufh151EEtFSV4Sxl2qx1g9pg//ddxX4cjKvAwbgK9n/fFc3sLKAgL4f5p7yw8+Z9sbQ+4cLrt62R5HmqouhVqQbrmg5iP7Vc6yErMwMPAvxE+71NeY2Q4EDUcq1XSm4fdv+uD/5aORevXiaIthXk5yP4/t1PWj9DlmWERyLjWRSMe7YT227Uoy3SwiKQ+UL4PUj67yYMOjaH/Hsv3Bj1bIeCvDwkXfWDLNHVN4BVDSexH8fa9ZGVmY7gQB/RfqkpyXjy6B4cazcoMa/kpHisnjcWcnJy+PWPHRLBCwBwrF0fAHDX9z/RttzcHNy/6wVH15LzrigqSopwtzHH5aBifdigwj6sZUl92Au4EhQmtv1dH7YKsnNzMXvvOZz0vS+xDwDYmkiOfpMVKsrKqO3kgBt+t8T7sL7+0NBQh4OtZHs3MzaCsaEBrt/0F9t+w8cfZoX92yJvU9MQHRsHZwfJEcWy5FVyDkKfpon9fK7bAa9haaYOK/N3b9NbmaujuoUGbge8Fu0DAM0bvbumKynKoWGdKrgdIDmyriLo6leDVQ1HsR8n0fnk3f1LasrrwvNJ/S/6e6kpr7F74wKEPLwt2pbyOgm3vP5B7TpNZe6FWOXCtuPlW/z+T9h27KW0naL7v+s+4vd/N3z8YFZ4/1fkbWpqpWg73yKBgD+f+vMtYtixmAYNGkBPTw/u7u7Q1v7yN3H79OmD58+fo0ePHtDX18fPP/+Mnj2FDz80NTWxfPlyrFixAh07doS9vT2mTZuGH3744aPy7t69Oy5duoTOnTvj33//haGh5BQ7FWFw396YOmc+FixdifatW+JRSCgOHz+F0cMGQ1VVBekZGXgRGQ0TY0Po6gjf9B3cvw+Wr90AbS0tNKhXBz7+t3DN2wezf/0JgPBi1r93D+zafwi6ujqo5+mOiOeR2H3gMBrWqwO32rK7MOTInh0x4fc1mLl6C7q0aIT7YeHYe+YSfhjQA6oqykjLyEREdBzMjKpBT/vjp2oZP6A7xs1fhSlL/sSgzm2RnPIW6/cfh1ON6mjiWbscj+jLjaprh/HHvDHt3C10c7JEUNwr7L4Thh8bO0NNSRFp2bmISE6FmY4G9NRV4GpaBXXNq2HNjQfIzsuHtb42vCPicTAgHD81c5E61UVlM6ZdQ3y//gCm/n0S3eu7IDAiGrsu+2FS1xZQU1ZCWmY2nsUnwayqHvS11OFmbY76dlZYcuQS0rJyYF5VFzcePsWhG/cwrlMTaKurIeltGlYc+w8mVXTQv5kHHkeJv81SlJes4rlE0ugGjhh76Bp+Pe2DbrWsERSThF23QjCxmYuo7Tx7lQIzXU3oq6uippS3qIsW/X4/4DHAwxbjj1zHissBaFbDBLciE/G332MMr2cPcz3Zmq5CGudaLqjlUhsrly/B8JGjoa2tjf379kBDQxMdO76bSzsy8gVyc3NhYyO8AWrStBkOHzqAeXNmYtiIUQCAXTu2w8qqOpo0bQYAOHfmFIKDH6B9h06oUrUqQkIeif1te3vHr3SUn8bSrg6s7Ori+JapaNPnF6hp6uL6qfVQVdeCZ/MBov1exj5FXm4OjC2Fx9G0yzjsWTkKRzdNgUfTvkhPe40bZzZCTV0bDdqOAADUqt8Ft67sxfGtU9Gq10/Q1jOC/3+78fZ1PPqMW1MRh/tBYxq74Pu9/2Lqsevo7loDQVEvscv3ISa28ihsOzl49jIFZnpa0NdQRU0pI4+KFv12Mnn3cGREo1r463ogqmiooXENUzxJfI3NN4LQ3NYcdasbf7Xj+xxjmrni+10XMPXwFXR3s0VgVCJ23XyASa3rQE1ZEWlZOXj28g3M9LWgr6GGmoaSwYeihdGd3gt4jGxSG39dvQd9DTXUqW6MsPhkbL4WgPrWJmhcU/LtSVli7+wGh1ru2LjyN/QfPgGaWjo4cWAr1DU00brju+BlTOQz5Obmwsrm4x+CtGzXA5cvnsDKhT+hR//RUFRSwn/njyL6xVNMm7+uPA6n3ClqaUDTsQYywiORkyR8ePhk0QbU3r4EuclvkHDmCgy7toJJ3464N3CyKF34im0w6dcJdc5uQ8SaHdCwtYLdwp8Qte0wsqLiSvhrssPWyQO2zp7YvmYWeg2ZBE0tXZw5tAlq6lpo1r6PaL/YqHDk5ebCwlq4Fs7BbcuQmpKMQd/PQlZGOp6Fvns4r6quARNzG1QxMEGDFl1weMdK5OZkw9DEEpdO70VmeiradR/21Y/1Y4xp1xDfbzj4Xh82Brsu+2NS1+al92GPXkJaVjbMq+rhRnBhH7ZjY2irq0JbXRXd67tg88WbUFSQh72ZIe6FR+HvS37o0cAFNsayufB9kSF9e+Lnub9j3rLV6Ni6BR6GhOHgiTP4bugAqKoI+7DPo6JhamQkGv07tF8vLF33F7Q3aaJhXU/c9L+Dqzd9MfeXSWJ5P3sRCQCwkvI2+v8LK3N1KCnJ48kzYdDjslcihvS1wIp5tbBp1zMAwNhh1ngakYYrXsLRoQkvs3H+cjx+HF0DKsoKiIrNQL9uZtDUUMS+47Lzwmdxtk4esHP2xLY1s9B7yCRoaOngzKHNUFPXQnOx88kz5OXmiM4nH8PSxgE17F2xb8ti9B46GQoKCjixbwPkFRTQtf/Y8jicLza4by/8Mnch5i9dhQ5tWiL4cSgOnTiNMUMHidpO8fu/of17Y+najdDW2opGdT1x0/82rnn7Ys7UyWJ5i9qOxf9v2yH6fyYn+NCKUd+Y9PR0NG7cGBs2bEDDhg0rujhfRXTYwzLP09vXHzv3H0R0dCyqVtFH104d0LeHcG7fwAcP8fPM3zB10g9o37qlKM2ZC//iyIlTSEx6BWMjQwzs3QNtWjYXfV5QUICzF//FqXMXERufAG0tTbRq3hTDBvSFikrZTSFkZuuMN4HXyiw/ALh2KwBbj5zBi9gEVNPXRe+2zTGoSxsAwN3gUIxfsApzxg1D5+aS37mz13yw8K9dOPHnIpgYiHfW74eG46+DJxH8NAKqKspo5umKiUN6Q0vK3KpfQte1OdI2zSjTPK88jcFm38d48ToNBhqq6ONqgyEewrfq70S9xPdHvfBbWw90dSqcdiA7F1v8HuPq01gkpWfBTEcDA91roEct6aNYivLY3LsJPM0/vNjop9IcuxhZl3aWaZ6Xg0Lx1zkvPE9MhoGOFvo1dcewVsI3Pm+HvcDodfuxYHAndKvvAkA4v/Cm8974LygUL1PSYFFND4Nb1EXPhsIA1gnfIMzbd77Ev/d+XmVBtc3wMj+fVOZzCSA8n2Rsn1umeV4Ji8ammw/xPDkVBppq6OtWA0PrCm9m7kQmYszBq6KpoaQZfeAKAGDbgJZi2y88eoFtvo8Qm5IOY2119HGrgQEetmVadgBQH7UAYeGRZZ5vWmoqtm3dBD8/HwgKCuDg6ITR342DmZm5aJ8Z035GYkICtu/cK9r28mUitm7eiMCAe1BQUISbuwdGfzcW+vrCaS+mT/0JwcElT+9y5vylLy67rY0F9nuXfXcsMz0F/x5agpCAyxAICmBewx3t+k9HVaN3U0jtXDYEb5JiMHnZFdG2iBA/XDv5J+KjQiAvr4gatRqjde9foKNvLJb35eOrEXLvErKz0mFs4YhWvX6Cpa1nmZR9YGM5ZO79o0zyKnIl5AX+uh6E569SYKCljn6e9hjaQLiOx+3n8Riz5x/M79oI3WpLfxt+1O6LAIDtQ9uLthUIBDh6NxSH7oQi+nUqdNRU0NHZGmOb1YaqUtm9J6Q2eCayDi0rs/yKXH70HH9dvYfnSSkw0NZAv7oOGNZIGMi9HRGH0TvOY0GPJujmJv1cMOrvcwCA7SPfjVoWCAQ4cicEB/0fITo5FXoaquhQywbjWriJTRfzpVT7/YrboW/KLL8i6WlvsXf7Gtz1uwGBoAC2Di4YNGoKTMzeTXn0+8xxSEqMw5ptJ6XmMXl0dzg4u+P7yeLn/8T4GBzcuR4hwQHIysyAjZ0Teg/6XrQmxpeqY6eLc0rl82apftO6aHB5D3xbDUHyjVti24JGTUf07hOifS3G9IP1lJFQNTdGxrMohC/bgph9p8Ty02vkAYelv0K7tgNykl4jZt8phM1bB0Ge5PSoX6JTbiiuB5f91GXpaW9xZMdKBN66igKBADXsa6PviF9gZGol2mfFnNF4lRiLxZvPIy83FxMGNkRBvvTjs3XywC8LhWuy5Obm4PiedbjldQHZWRmwtHFAr6FTYG1bNi9ZNHNSR9a/Hz/q/2NcDgrFX+e9C/uwmujX5L0+7JMXGL3uABYM6ijeh71wE/8FhuLl26I+bB30bPDuJazcvHzsvOyP0/4PEPf6LYx0tdCrkSuGtawndTHfL6HadgTiQgLLNE8v31vYceAIomKEfdjuHduiX3fhSxUBD4IxZfYCTJs4Dh1aNRelOX3xEg6dPIvEpFcwMTTAoN7d0baF+JRDV719MX/5GuzasEpiepyyZGzv+tlrVnysP/8Q/n//ODNIYruRgSr6jH43IsWgqgomjbFBHVc95OULcCvgNf7cFo5Xr9+tIaikKIexw63RpqkB1NQUEPo0FRt3PMOjsLJZW8f7TDPcCE7/8I6fKD3tLQ7vWInAW9cgEAhgY18b/Ub8LHY+WT5nDF4lxmLJ5nNS85j+fSfYOnti5I/zxba/ffMKh3asxKNAPwgEAtg5e6LH4AkwMrGUms+nauqkgdjQ+x/e8RN4+fpj5/7D77Wd9ujbQ9h2Ah8EY8qseZg2aTzat3q3ftDpi5dw+MRpYdsxMsDA3j3QtkUzsXyvevtgwbLV2LVxjdSp3MqCiV3Z3Vt/S87cLdtr/7egi8e3Nx6BAYxCKSkp8PPzw4ULF/D06VOcOXNG5obUlZfyCGBUZuURwKjsyiOAUdmVRwCjsiuPAEZlVx4BjMquvAIYlVl5BTAqs/IIYFRm5RXAqMzKK4BRmZVnAKOyKq8ARmVWHgGMyq48AhiV3dcIYFQ25RXAqMzKI4BRmTGA8XkYwPh032IA49s74hLk5+dj1qxZ0NfXx5o1a0oNXmzduhUbN24sNb+ZM2eiT58+pe5DRERERERERERERETSMYBRSF9fH3fu3PnwjgD69u2Ltm3blrpPlSpVyqJYRERERERERERERETfJAYwPoOOjg50ChcMIiIiIiIiIiIiIqJPIxB8G9P305eRr+gCEBERERERERERERERFccABhERERERERERERERyRwGMIiIiIiIiIiIiIiISOYwgEFERERERERERERERDKHAQwiIiIiIiIiIiIiIpI5ihVdACIiIiIiIiIiIiL6thQIKroEVBlwBAYREREREREREREREckcBjCIiIiIiIiIiIiIiEjmMIBBREREREREREREREQyhwEMIiIiIiIiIiIiIiKSOQxgEBERERERERERERGRzFGs6AIQERERERERERER0bdFIKjoElBlwBEYREREREREREREREQkcxjAICIiIiIiIiIiIiIimcMABhERERERERERERERyRwGMIiIiIiIiIiIiIiISOYwgEFERERERERERERERDJHsaILQERERERERERERETfFgHkKroIVAlwBAYREREREREREREREckcBjCIiIiIiIiIiIiIiEjmMIBBREREREREREREREQyhwEMIiIiIiIiIiIiIiKSOQxgEBERERERERERERGRzFGs6AIQERERERERERER0belQFDRJaDKgCMwiIiIiIiIiIiIiIhI5jCAQUREREREREREREREMocBDCIiIiIiIiIiIiIikjkMYBARERERERERERERkcxhAIOIiIiIiIiIiIiIiGSOYkUXgIiIiIiIiIiIiIi+LQJBRZeAKgOOwCAiIiIiIiIiIiIiIpnDAAYREREREREREREREckcBjCIiIiIiIiIiIiIiEjmyAkEnG2MiIiIiIiIiIiIiL6eI34FFV2ESqdP/W9vPAIX8Sa8DPav6CLIlGpO9fD8aVhFF0OmWNWwRXTYw4ouhkwxs3VmnRRjZuuMZ+HhFV0MmWJtY8M6KcbaxgaxofcruhgyxcTOBY+exlZ0MWSKYw0TXovfY1XDlvVRjFUNW55LijGxc8H14IyKLoZMaeakjnNKdhVdDJnSKTeUfZNi2F+TZG1jg9Q7Fyu6GDJFy7M97jRrUNHFkCme133Zdt5jbWNT0UUg+r/FAAYRERERERERERERfVWcF4g+xrc35oSIiIiIiIiIiIiIiGQeAxhERERERERERERERCRzGMAgIiIiIiIiIiIiIiKZwwAGERERERERERERERHJHAYwiIiIiIiIiIiIiIhI5ihWdAGIiIiIiIiIiIiI6NtSIJCr6CJQJcARGEREREREREREREREJHMYwCAiIiIiIiIiIiIiIpnDAAYREREREREREREREckcBjCIiIiIiIiIiIiIiEjmMIBBREREREREREREREQyR7GiC0BERERERERERERE3xaBoKJLQJUBR2AQEREREREREREREZHMYQCDiIiIiIiIiIiIiIhkDgMYREREREREREREREQkcxjAICIiIiIiIiIiIiIimcMABhERERERERERERERyRzFii4AEREREREREREREX1bBIKKLgFVBhyBQUREREREREREREREMocBDCIiIiIiIiIiIiIikjkMYBARERERERERERERkcxhAIOIiIiIiIiIiIiIiGQOAxhERERERERERERERCRzFCu6AERERERERERERET0bSkQVHQJqDLgCAwiIiIiIiIiIiIiIpI5DGAQEREREREREREREZHMYQCDiIiIiIiIiIiIiIhkDgMYREREREREREREREQkcxjAICIiIiIiIiIiIiIimaNY0QUgIiIiIiIiIiIiom+LQCBX0UWgSoAjMIiIiIiIiIiIiIiISOYwgEFERERERERERERERDKHAQwiIiIiIiIiIiIiIpI5XAODytytwAfYsu8oIqJioK+rjR7tW2NAtw6Qk/vwvHZhz55jzLT5OLhhGYwNqol9dsXnFvafOIcXMXHQ0lCHp4sTxg7pC31dnfI6lDJz99497Ny9By8iI6Grq4sunTqhd88epdbJ1WvXsf/QIcTHJ8DQwAD9+vRGm9atxPa54eWNI8eOISo6BhoaGnBzrY1Rw4dBT0+vvA/pi925F4i/9+zH88go6Onqolun9ujTo2updXLluhf2HjqKuIREGBlUQ//ePdCuVQuxffoNH4OkV8kSaY/v3QEdHe0yP46yxDqRdPfePezatQuRhW2nc+fO6NWzZ6l1cu3aNRw4eBDx8fEwNDREnz590KZ1a7F9wsLCsG37djx58gTq6upo07o1Bg0aBCUlpfI+pC/GOpF0OyAI2/ccKGw7OujeqT36du9Sap1cvu6NPYePIS4hAUYGBhjQqzvat2oOAIhPSMSAMT+UmLZ9q+aYNqnkz2VFZmYmdu/YDL+bN5CVlQlH59oYOWY8TM0sSk335nUydmzbiHt3b6MgPx/unvUwYsx46OtXEe0jEAhw6vhh/HvxDJJeJqKagRE6de2Bjp17lPdhfTZei8WxPiTxXCJdVmYGju9Zi3t+l5GdlYGaju7oO+IXGJlalZruRfhjnDqwAc+fBkNQIICFjQN6Dp4ISxsH0T75+Xk4e2gzfK6eQVpqCixtHNB72BRY29Yq56P6cqqmhmgaeBZ3ev2A5Bu3St3XpF8n1JgxDurW5sh8HoOny7cgZs9JsX10PJzhsPRX6Hg4I+9tOqJ3H0fYgvUQ5OaW41GUDfZNJLFOJPndD8HGI2cRHh2PKjpa6NOmCQZ3bFFineTk5mHv+Ss453UbCclvYKCviw4NPTC8a2soKb57lPXoWSTW7D+Fx88ioaGmii5N6+K7Xh3E9pFV2p51YTrme6haWSPvdTISTxxDwqH9JSdQUIBRv4Go2qkLlKpURXZ0FOL27cbrq5cBAMpGRnA5dKLE5EkXzuL5kkVlfRhlqrzaTpGMjAyM/+EHDBo4EG3atCmvwyCiMib7Z/T/U7GxsQgICECnTp0+O4/jx49jxowZCA0NLcOSfZmHoU/x6x+r0KpRPYwe0Av3Q8Lw155DyC/Ix5CeXUpN++xFNKYuWoX8/HyJz/7z9sO8VRvRrW0LfDeoN169TsG2A8cw8bcl2L58PlSUlcvrkL7Y45AQzJ2/EM2aNMbQwYMR/OgRtu/YiYL8fPTr20dqGq+bN7F0xUp079oFnh4e8PHzw4rVa6CkpITmzZoCAK5dv4HFy5ajY4f2GD50CJJfv8HuPXvx68xZ2LB2DZRluE4ehYRh1sLFaN64IYYPHoCHjx5jy849yM/Px4A+PaWmuXHTF3+sXIueXTqhjocrbvrdwrI166GkpISWTRsDAFJS3iLpVTK+HzEUzo4OYuk1NTXK/bi+BOtE0uOQEMybNw9NmzTB0CFDEBwcjL///hsF+fno27ev1DTe3t5Ytnw5unXrJmw7vr5YtWpVYdtpBgCIi4vDzFmz4GBvjxkzZiAqKgq7du1Camoqfvzxx695iJ+MdSLpUUgYZi5cjBaNG2LkoH548DgEm3fuRX5+Pgb2lv4w/bqPHxatWodeXTqijruw7SxduwHKSkpo2bQR9PX1sGGZ5M3dyfMXcdXbBx3btCzvwyoTq5f9jtDQRxg24nuoqavj8IFdmDPjJ6zbuAOaWlpS0+Tn52Phb9ORkZGOsT9MQX5+Hvbs3Ir5s6di5botUCx8GLDr7804d/oY+g8agZp29rh32x9b/1oHRQVFtO1Q+vW+IvBaLI71IYnnkpJtWz0DEWEP0GvoZKiqa+Dsoc1YOXcM5q09Bg1N6S9CJMZFYsWc0bC0ccDQ8b9BTk4O/57ajWWzRmLOygOi4MeRHSvhffkkeg6eiCoGJrh0Zi9WzxuLOSsPwMC49GBrRVI1M0Ldc9uhpPvhF0GMerSF6+4ViPhzN17+4wWjbq3h+vdSFGTnIO7weQCAWnUz1Lu4A6/9AnFvwGRo2tvAbuEUKOnr4uEPv5X34XwR9k0ksU4kPXjyHJNXbEGb+m4Y27sTAkOfYd2B08jPz8fwrtIfIq/YfQznb97B6O5t4WhtgUcRUdh6/CLikpIx97uBAIDoxCSMX7wRLjWssHjicDyPScDGI+eQkpaBmaP6fc1D/GQajk6osWQFXl/9DzHbt0KzlgvMxv4AOQUFxO/fIzWNyfBRMB40FLG7/kbag/vQa9IMNvN+x9P8fLy5cQ25r17h8bjREukMevSCXovWSDp3prwP64uUV9spkpqaigULFiAhIeFrHA4RlSEGMCrItGnTYGpq+kUBDFn096HjqFndEnMmjQUA1Hd3QV5ePvYcO4O+ndpBRUXyxjU3Nw9Hz1/C9oPHoFzCmyN7jp1BA/famDp2hGibhakxvp8+Hz53AtGiYd3yOaAysGfffthYW+PXX34GANTx9EBeXj4OHj6C7t26QkVFRSLNzl170KRxI4z9bgwAwNPDHampqdi1d6/oIcHBw0dQ19MTkya8e3PP3NQUk37+Bf63bqNJ40Zf4eg+z679B1HDujpm/DwJAFDXww15+fnYf+Q4enbtJLVOtu/Zj2aNGmD8GOF3oI67G1JT07Bz7wHRw/qnEREAgMYN6sHE2OgrHU3ZYJ1I2rt3L2ysrTF16lQAgKenJ/Ly83Hw0CF069athLazC00aN8b3330HAPDw8EBaair27Nkj6sAeOXoUampqmDt3LpSUlFC3Th2oqKjgr7/+Qr9+/WBgYPD1DvITsU4k7ThwGDWsq2PmTxMBFLadvHzsO3ICvbp0LKXt1McPo4cL07i74m1aGv7edxAtmzaCspISHO1txdKEPg3HVW8fjB4yELWKBQNlUcjjYNy+5YPZ85fAw7MeAMDR2QVjRw7AhXOn0Kf/YKnpfLyu4Vn4E6z7awfMLawAANWta2DS+JG46XUVzVq0QWJCPM6cPIIxYyeifaduAACX2u5ISkpEwL3bMhnA4LVYHOtDEs8l0oWHBuH+nRv4cfafqOUu7FvUdHDDzHGdce3iYXTqLfmgDACunDsAZRVV/DjrT6ioqgEA7GvVxYyxHXHl/EEMHDMdyUnxuPbPUfQfNRXN2wsfTDm6NsCcH7rh4omdGDp+7tc5yE8hJwezId3hsHQa8OHB5QAAu4U/Ie7oRTz+ZTEAIOmSN5T0dGA3b5IogGEzdQzyUtNxp+d4CHJz8fLiDeRnZsF57Rw8XbIJWVFx5XVEX4x9E0msE0mbj12AnZUZFo4fAgBoWNsBefn52HHqEvq3bwbVYgHuN6npOHHVFz/274KhnYUj/eo62wEA1h88gx/7d4WetiZ2nbkMDVUVrPx5NJQUFdHY1QmqKspYtvMoRnZrA6Oq+l/3QD+ByYjRyHgShohFCwAAb2/5QU5REcaDhyHh6GEIcrIl0lTt2BnJl/9F3K6/AQCp9+5A3c4OBj17482NaxDk5iL9UbBYGnVbO+i1aI2YrZuQ9uB++R/YFyivtgMAfn5++GvTJmRmZn6dg6GPJhBUdAmoMuAaGFRmcnJzEfAwBE3reYhtb9GgDjIys3D/cZjUdL73grDj8AkM6dUV44ZIviVRUFAATxcndG3bXGy7pakxACAmPrFsDqAc5OTm4v79B2jUoL7Y9iaNGyIjMxMPHz2SSBOfkIDomBg0atBAPE2jRoiNjUNMTCwKCgrg5uaKDu3bie1jbm4GAIiNk92bnJzcXAQ9CEbj+uJBp6YNGyAjMxMPHoVIpIlPSER0TCwaNagnnqZRA8TExSM6NhYAEP7sOdTV1GBsZFh+B1AOWCeShG3nPho2bCi2vXHjxsjMzERwcLBEmoSEBMTExKCBlDSxsbGIiYkBANy9exd169QRG2rfuHFjFBQU4O69e+VwNGWDdSKpqO00KdZ2mjWqX2rbiYqJQ5P64m2nWcOitiN5/hQIBFi7aTsszc3Qu2vlePEg8N5tqKqqwtXNU7RNR0cXTs61ce+OX4npAu7dhqmZuSh4AQDmFlYwM7fAvTv+AAA/Hy8oKSmjVdsOYml/mf4bps1aULYHUgZ4LRbH+pDEc0nJggN8oaKqBqfa7/7vtXT0UdPRAw/vepeYzsisOtp2GyoKXgCAiqoa9KoY4mV8FAAg5P4tFOTnwa3eu5EoSkrKcPFsiof3Ss67Imm72MF5w3xE7z2JwOG/fnB/NUtTaNpVR/ypS2Lb447/A42aVlCvYQkAqNamMRIvXBebLir+2EXIKSigWtvGZXsQZYh9E0msE0k5uXm4+/gJWniKTw3Xqm5tpGdlIzD0mUSa9Mws9GrVEE3dncW2WxkL72liEpMACKelauTqKDZdVKu6rigQCOB7X/LcLSvklJSg5eqON17Xxba/vn4VChoa0HJxkZpOXlkF+ekZYtvyUt5CUbvkabUtJv+CrOcRSDhy8MsLXo7Ks+2kpaVh4e+/o1atWvh94cLyOwgiKjdfLYDxxx9/oHWxOehSU1Ph4uKCffv2oU2bNvj999/h4eGB8ePHf1SeQ4YMwZw5c9CnTx94enri9OnTAIBjx46hQ4cOcHFxQYcOHbBr1y4UFBQAAKKjo2FnZ4d//vkHffr0gbOzM1q2bIlDhw6J5X3y5El07doVLi4uaNmyJTZu3Cia2mjIkCGYPHmy2P63b9+GnZ0dXrx4gYKCAmzevBnt2rWDs7Mz3N3dMXr0aERGRorS37p1CydOnEDLlsIOe05ODpYvX44mTZrAzc0Nffv2hbe3eMf90qVL6NKlC2rVqoWBAwcitvABpayITUhEbl4eLEzE3/I2LexkREq5kQMAhxrVcXTTKgzr3RUKCgoSn8vLy+PHEQPRpK54YMTr1l0AQHUL07IofrmIj4tHbl4eTE3Fy2hibAIAiI6OkUgTFSW8qTM1NRFPYyIM2ETFRENeXh7fjx6FhsUePvj4Ch9KWVrK7pD7uPgE5OblwazY8ZkWfm+iYyTr5EVUNADAzKRYnRSOKIiKFraFpxHPoaWlifmLl6NrvyHo1GcQFi5diVfJr8v8OMoS60RSfFwc8qS2HWE7kFYnRedYs2JpjE2K2ls0srOzkZiYKJGvro4O1NXVER0dXWbHUNZYJ5JEbadYOzAtagcxktfJF4XnXbPCIPjHpLnq5YPHYU8wYfQIqdcpWRQd9QKGRiYS5TUyMUVMTFSp6UxMzCW2GxmbIiZamC4i4imMTUwR/PA+fp74HXp3bY3vRvTHvxdkc1oCXovFsT4k8VxSsvjoCFQ1NIN8sfIaGJsjPvZFiemat++Ldt2HiW1LjItETGQ4TMxtAABx0RFQVdOAjl5Vsf2qGZvjTfJLZGWKP6STBZmRcbhm3waPpy5BfkbWB/fXtBcea/qT52LbM8KFdadpWx3yqipQtzJD+pMIsX1ykl4jNyUVmrbVy6bw5YB9E0msE0kxiUnIzcuHhbH4CBFzI+Galy/iJF9INDWogukj+sLKRPwlrOt370NRQQEWxgbIyslBXFKyRL562prQUFOVmq+sUDExgbyyMrKiIsW2Zxf+P6qYW0pNl3D0EKq0aw/tuvUhr64O/dZtoVO3Hl79e1Hq/notW0PTyRlR69cAhc/EZFV5tR0AUFFRweZNm/DLzz9DR0f211AlIklfLYDRs2dPREVF4c6dO6Jt58+fh7a2NpSVlREZGYnExEScPHkSU6ZM+eh8jxw5gqFDh2L//v1o0qQJDh06hGXLlmHChAk4d+7A4HXIAAEAAElEQVQcJk+ejK1bt2LFihVi6RYvXoyxY8fiwoULaN68OebNmye6Odu5cyfmzJmDfv364fTp05g0aRK2b9+OJUuWiI7l6tWrSEtLE+V3+vRpuLu7w9LSErt378b27dsxffp0/PPPP9iwYQOeP38uSv/nn3/Czc0NHTp0wNGjRwEAM2bMwM2bN7FixQqcOHECHTp0wNixY3Ht2jUAwL179/Djjz+iXbt2OH36NHr06IEtW7Z8+n9EOUpLFw7FU1dTE9uurqYKAEjPkD5Ur1oVfWhraX7S34qJT8CGXQdRs7oFGrjX/ozSfh3pGekAAHV1dbHt6urCOsrIkLwxSy98o6J4GjW1ktMAwjcbt27/GzbW1qjr6Sl1H1nw7viKf0+Ev0v7nqQXHrNGCWkyCtOEP4tA0qtk1Kxhg9/nzsC4UcMQ9PARpsyYg8ysD99kVhTWiaSi45NsO8LfpbadktK813bS06W3SUDYxkpqX7KAdSKpqO2U1A6ktp2iNCVeqySP9+CJU3B2sINrLacvL/RXkpGeDjWp/6fqyCzl/zQjo+R0Rd+FtykpSH6VhNXLF6F1246Yu3AZXN088df6VTIZxOC1WBzrQxLPJSXLzEiDqprkmlmqahrIykyTkkK6nOws7Fg3F0pKymjZsX9h3qnS81YVfs8+Jf+vJfd1CrJiPn7udEUd4T1O3lvxY8lLFbZDRW1NKOloSd2naD9F7U+7T/qa2DeRxDqRlFYY7NMoPD8WUVcVTgeUnvlx9yRXbwfhrNdt9GrVCNoa6qJ8NYvlCwAaqiofnW9FUNAQtuv8Yv9v+YWBWwUN6WsVJhw+iLQH92G7fDXcL1yG9Zz5SPrnAhIO7pO6v1H/QUi9H4TUwIAyLH35KK+2AwBKSkowMzMr2wIT0Vf11dbAsLe3h5OTE06fPg3PwhuYEydOoGvXd2/djx8/Hubmkm/9lcbBwQFduryba3njxo0YN26caG0Jc3NzpKWlYf78+Zg0aZJov+HDh6NVK+FcilOmTMG+ffsQFBQEMzMzbN26FYMHD8agQYMAAFZWVnjz5g2WL1+OiRMnol27dliwYAH+++8/dO/eHTk5Ofjnn39E8/RZWFhg6dKlaNGiBQDA1NQU7du3x8WLwqi4rq4ulJSUoKqqCn19fbx48QJnz57FyZMn4eAgnAt3xIgRCAkJwfbt29G8eXPs3bsX7u7umDBhAgCgevXqCAsLw+7duz+pvsqT4AMT18nJf+REsR/wIjoWUxYsg4K8PH6f+iPk5WV3JrSCgtLrRF5Osk4KBKW/GSEvJ3m8kVFRmDlnLhQUFDB75nSZrhPBB49Psk4EH6jHou/WTz+Og4K8AuxtawAAXJwcYWVhgUnTZuHSlWvo2rH9Z5a6fLFOJAk+8IaQ9DopPY2cvPwHz1PS8pUVrBNJBR8qu5TrzqeeYx8+DsWT8AgsnPnhqUIqSkFBgcT/Y2l1I1fK/2lp162i+szLzcXbtyn4deZ8NGgkXPvApbY7kl4m4tCB3TK3BgavxeJYH5J4LhESnkvEj6u045ST8v8uTVZmOjYu+QkRT4MxduoyVDEQvhn7wXuHj8xflsl94HsvKCgAPriP7E4Ozr6JJNaJpA+eYz+i7FduB2H2ht1wtbXGxAFdAXzMOUR26wQfOr9J+U7IKSnB/s+/oFSlKp6vWIqsyBfQdK4F4yHDUZCZgag/14jtr+FUCxp29ngqw9ed95VX2yGi/w9fdRHvXr16Yc2aNZg9ezbi4uIQEBCARYsWISgoCIAwUPCpLC3fDa1LTk5GfHw8Vq1ahbVr14q2FxQUIDs7G9HR0aJFf2xsbESfa2kJ33rJzc1FcnIykpKS4OEhPl1R3bp1kZubi2fPnqF27dpo3749zpw5g+7du+P69evIyclBhw7CuaBbtmyJoKAgrF27FhEREYiIiMDTp09haCh9DvpHhXMNDxw4UGx7bm4utLW1AQBhYWFo1Eh84UM3NzeZCmAUvbWWUexNh6I3wTWlvC3yqe49fIxZy9ZBTVUF6xbMgKmMz+uvoSE85uILRYneFJDyZoWGuobUNEVvDxTlWSTo/gMsWPQH1NRUsXTxItEQS1mloV5UJ+Lfk/QSju/9bRkS9ZgplqeTvZ1EWmdHe2hoqCM8ouRpDioa60SSRmHbKH58GaW1nQ+k0VBXF72dI23xtoyMDKn5ygrWiaSS28G745NIU/QWV/H2VphH8fZ23ccXWpoaqO/pVjaFLgeHD+zGof27xLY1aNQMKW+SJfbNzEiHukbJb/NqaGggU8q0LZkZGVAvvD6pqatDTk4OHnXEpwpy86iLgHu38eZ1MnT1ZGfRTF6LxbE+JPFcInT28BacPbxZbJt7g9ZIffNKYt+sjDSoqX94ZEByUjzWL5qI+NgX+O7nJXCt20L0mZq6JrKyJM83WZnpos8ru7yUVACAopZ4uyoaVZGXkiYaeVF8n6L9ivKQReybSGKdSNJUF46QkDxfFo6gKDb6rbh9F65i7b5T8HCsgRVTRkNFWbgGSNGIjnQpo8rTM7M+mG9Fyk8XtnuFYtcXhcLrbdHn79Nr1gLqNW0R+tNEpN69DQBICwpAfnoaLKdMxcuzp5EV8W49Eb3mLZD39i1S/HzK6zDKVHm1HSL6//BVAxhdunTB0qVLcfXqVYSFhcHFxQU2NjaiAIaqquTQvw95P03ROhczZsyQWPgHAIyNjZGYKJwHUVlZWeJzgUBQYhS/KG/FwsWhevbsiWHDhiEpKQlnzpxB69atoakp7Ihu2bIFGzZsQI8ePdCgQQMMHz4cly9fxrlz56TmXfQ39+3bJzoBFyl6W01OTk5UhiLvL94lC0yNDKAgL4+YePFh1dGFv1uamUhL9tEuefli0Z9bYGlqghWzf0a1KrLzcKQkJsbGkJeXl1i4MrZwPRALKSOOzMxMRfvUeC/QVpTH+6OUrl67jhWr18DczAy/z5+HqlWrlPkxlDUTYyPIy8sjpnidxMUDACzMJYd2mhfOuR0bF4+aNtbvpRHmYWluhrT0dHj5+MHetiaqvzfPdkFBAfJy86Cro13mx1JWWCeSjAvbTlyxtX6K1v6R3naE9RQXGyvedorSWFhATU0NVapUkVhD6M2bN8jMzJSar6xgnUgyNTIsbDvxYtuLfreU0nYsCttOTFw8atpUl0xjJj6Hrt/te2hUr67o+i+L2rbvDM+64osr+/t6I/DebRQUFIi9+R4XFwsz85LXIjAxNUfEsycS2+PiYlDT1h4AYGxiCoFAgLy8XLH+VF5+HgBAufBlEVnBa7E41ocknkuEmrbtCRfPJmLbAm9dw6NAX4lzSWJ8FIzNSl+bIfrFE6xdMB65OdmYPHcjbJ3EXxAzNLFEVkYaUlOSoaXzrl+fGBeFKtWMoazy6feGsiYtTLiuhbqNJd4GPhZt17ARvoSXFhKO/PQMZEbHQ91GfM575Wr6UNLWRFpI+Ncr8Cdi30QS60SSmUFVKMjLIyohSWx70e/F17koIhAIsGL3cRz69wbaNXDHvLGDxBbrVldVgYGeDqLjxfNNTklFelY2qpeQryzIjo2BIC8PKqbi1xfVwt+zXjyXSKNsKFxjKe3BfbHtqUGBAAA1q+piAQzdBo3wxvsGBIVrucq68mo7JPtkeKAhyZCvOp5KW1sbbdq0waVLl/DPP/+gZ8+eZZp/lSpVoK+vj6ioKFhaWop+goODsWbNmo/Ko2rVqqhatSru3r0rtv3OnTtQUlISnQA9PT1hamqKU6dO4dq1a2LHsmnTJvzwww+YN28e+vXrB1dXVzx//rzE4EjNmjUBAC9fvhQr9/Hjx3H8+HEAwim4AgLE5y18+PDhRx3T16KirIzajna47ndH7Fiv+d6Bpro6HGtal5K6dL53g/D72s1wtquJjYtmV4rgBSAMlNVydsZNHx+xOvG+6QMNDQ3Y2daUSGNqYgIjQ0N43bwptt37po/oMwC4dfsOlq1cBUcHe6xcvrRSPCAAhHXi4uwILx9/sTq54eMHDQ112NeUVifGMDY0wI2bvmLbvXz8YGpiDCNDAygrKeHPTdtw4MhxsX18/G8jOycHrrWcy+eAygDrRFLJbecmNDQ0YGtrK5HGxMQERkZG8Pb2Ftt+8+ZNmJqYiEbBubu749atW8jJzRXLV15eHrVry+6aOqwTScrKyqjt5AAv3+Jtx1/YdgqnTntfUdu57iPedm74+MGssO0UeZuaiujYODg7SI5kkiX6VaqiRk07sR9Xd09kZmYg4N5t0X4pKW/w6GEQXN1KXovA1d0T0VGRiIp8LtoWFfkc0VEv4OouTOfhKRx54X39ilja2/4+sKpuLRqpISt4LRbH+pDEc4mQrr4BrGo4if041q6PrMx0BAe+e4M3NSUZTx7dg2PtBiXmlZwUj9XzxkJOTg6//rFDIngBAI61heeSu77/ibbl5ubg/l0vOLqWnHdlkhEeiYxnUTDu2U5su1GPtkgLi0DmC+GitEn/3YRBx+aQV373gppRz3YoyMtD0lW/r1rmT8G+iSTWiSQVZSW42dvg6u37YnVy5VYQNNXV4FwseFdkw6GzOPTvDQzq0By//zBULHhRpJ6LPbwCgpGTm/cu39tBUJCXRx0nyeuZrBDk5CD1fiD0mjYT267brDnyUlOR/viRRJqsSOHoeS0X8f9rTWcXAEB23LsH/wpa2lA1t5AIdsiy8mw7RFT5ffVXgHr16oVx48ZBIBCI1qkoK3JychgzZgxWr14NExMTNG3aFKGhoZg3bx5atWolddSFNKNGjcLq1athbm6ORo0a4f79+1i/fj369esnmm5KTk4O3bt3x4YNG6Cvr4/69d9No2BsbIybN2+iZcuWkJeXx6lTp/Dvv/+iatWqon00NDQQExOD+Ph41KxZEy1atMBvv/2GuXPnombNmrh48SI2b96MxYsXAwBGjhyJPn36YOnSpejbty8ePHiAvXv3lmHtlY1hfbph8rylmLNiPTq1aoqHIU9w4NR5jB3cF6oqKkjPyEREVAxMjQyg95Fvf2fn5GDJxu1QU1PFsF5dEREVI/a5QRV9GFSV3YDGwP59MX3WHCxavBTt2rbGo8chOHr8OEYOHwZVVVWkZ2QgMjISxsbG0NXRAQAMGtAfK9eshbaWFurXqwdff3/c8PLGjGnC+StzcnKwet2fUFdTQ/9+fREZGSn2N6tWrYpq733fZM3gvr0xdc58LFi6Eu1bt8SjkFAcPn4Ko4cNhqqqCtIzMvAiMhomxoaiOhncvw+Wr90AbS0tNKhXBz7+t3DN2wezf/0JgLDD0793D+zafwi6ujqo5+mOiOeR2H3gMBrWqwO32rUq8pA/iHUiqX///pg5axb+WLwYbdu0wePHj3Hs2DGMGD68xLYzcMAArFq9Glra2sK24+eHG15emD5tmijfPr174/r165g7Zw569OiBmJgY7Ny1Cx06dICBgUFJxZEJrBNJg/v2wi9zF2L+0lXo0KYlgh+H4tCJ0xgzdFDhdUey7Qzt3xtL126EttZWNKrriZv+t3HN2xdzpk4Wy/vZC+G51cqi8i365+RcG861XLFm+SIMHfk9tLS0cWj/TmhoaKJ9x26i/aIinyM3NxfWNsKb/MZNW+DY4X1YOHc6hgwfAwDYs3MrLK2s0aiJcOoXZxdX1KnbEH9v3YisrCxYWFXHtcv/IuTRQ8yY8/vXP9iPwGuxONaHJJ5LpLN18oCtsye2r5mFXkMmQVNLF2cObYKauhaate8j2i82Khx5ubmwsBaO1Dq4bRlSU5Ix6PtZyMpIx7PQdw/RVNU1YGJugyoGJmjQogsO71iJ3JxsGJpY4tLpvchMT0W77sO++rGWBUUtDWg61kBGeCRykl4DAJ4s2oDa25cgN/kNEs5cgWHXVjDp2xH3Bk4WpQtfsQ0m/TqhztltiFizAxq2VrBb+BOith1GVlRcCX9NNrBvIol1ImlU97YYv3gjpq/bia7N6uH+kwjsOXcFE/p1gaqKMtIyshAREw8zw6rQ09ZE6PNo7Dp7GY7WFmhdzw0Pn4pPfVvd1Aia6qoY1rkV/vW5h4nLNmFQh+Z4Ef8SGw+fRY+WDWAkw88IACBu907YrloH6/mLkHT+DDSdXGDUfxBitmxEQXY25NXVoWZVHdkxMchLeYM3N72QFvwQ1Wf/htgd25AV+QIaDk4wHjIcr71vICPk3SgvNWvhaITMFxEVdXifpbzaDhFVfnKCD618VMYEAgFatGgBd3d3rFq1CgBw/PhxzJgxA6GhoZ+U15AhQ2BqaoolS5aIbd+3bx/27NmD6OhoVK1aFZ07d8bEiROhrKyM6OhotGrVCrt370a9evVEaezs7LB48WLRSIq9e/diz549iImJgZGREfr27YtRo0aJFhwHhMPSWrVqhe+++w5TpkwRbQ8ODsaCBQsQEhICDQ0N1K5dG82aNcO8efNw5coVmJiY4Nq1a5g2bRoEAgF8fX2FN32rV+P8+fNISUmBhYUFRo4ciV69eony9fX1xfLly/HkyRPUrFkTHTp0wIoVKz653op7Gez/RemLu+53B38fOoHImDhUraKHnu1bY0A34fog9x4+xsS5izFzwhh0bNlEIu35K174Y/1WHNm0EsYG1QAAdx88wqTflkjsW2RE3+4Y1b/sRvNUc6qH50/Dyiw/ALjp44s9+/YjOjoaVapUQZfOndC7Zw8Awnmif50xEz9PnoS2bVqL0py7cAFHj5/Ay5dJMDYyQr++vdG6ZUsAQGBQEKbNnF3i3xs8cACGDBpY4uefyqqGLaLDynbEj7evP3buP4jo6FhUraKPrp06oG8P4YJsgQ8e4ueZv2HqpB/QvnVLUZozF/7FkROnkJj0CsZGhhjYuwfatGwu+rygoABnL/6LU+cuIjY+AdpammjVvCmGDegrWv+mrJjZOrNOijGzdcaz8LKd5uCmjw/27t0rdj7vVXievn//PqZNn46fpkxBmzZtRGnOnz+PY8eP4+XLlzAyMkK/vn3RqlUrsXwfPnyIbdu349mzZ9DW1karli0xZMiQMp/aw9rGhnVSjLWNDWJDy/ZtMC9ff+zcfxhRMcK2071je/TtIVxIOvBBMKbMmodpk8ajfat3c6+fvngJh0+cRmLSK5gYGWBg7x5o20L8Lbir3j5YsGw1dm1cA4ti08GUJRM7Fzx6GvvhHT9RWmoqdmzbCH9fbwgEAtg7OmPkmPEwNXs3nH729MlITIjHlh0HRduSXiZi2+b1CAq8A0UFRbi6e2LEmB+gr//ubfqcnBwc2r8L169ewtuUNzC3sELfAUNRr0HjMim7Yw0TXovfY1XDlvVRjFUNW55LijGxc8H1YMk1Jb5UetpbHNmxEoG3rqJAIEAN+9roO+IXGJlaifZZMWc0XiXGYvHm88jLzcWEgQ1RkJ8nNT9bJw/8snAbAOGIi+N71uGW1wVkZ2XA0sYBvYZOgbVt2bxk0cxJHeeUymfki37TumhweQ98Ww1B8o1bYtuCRk1H9O4Ton0txvSD9ZSRUDU3RsazKIQv24KYfafE8tNr5AGHpb9Cu7YDcpJeI2bfKYTNWwdBnvR6/FydckPZNymG/TVJ1jY2SL1zsUzzvHo7CJuPXcCLuEQY6OmiT5vGGNxJeA258+gJxi5aj9++G4guzeph09Hz2HbinxLz2jRrAjwdhS9fBISEY+3+UwiLjIGupgY6Nq6Dsb07QlFRocT0n0PLsz3uNCvb0WG6TZrBZMRoqJpbIDfpJRJPHEPC4QPCv+fqBru1GxGxeCFeXTwPAJBXV4fpmLHQa9ocilrayI6Lxat/LiDh8AGxc4Vei1awmfc7Hg7pLxq5UR48r/tWmrZTJCEhAcNHjJDIoyxYvzeNFX28ndcqugSVz/DmFV2Cr++rBzDS09PRuHFjbNiwQeo6FfT1lXUAo7IrjwBGZVceAYzKrjwCGJVdeQQwKrvyuCGu7MojgFHZlVcAozIrjwBGZVYeAYzKrjwCGJVdeQUwKrPyDGBUVuURwKjs2F+TVB4BjMquPAIYlV15BDAqMwYwPg8DGJ/uWwxgfLUppFJSUuDn54cLFy7A1NQUDRrwxE9ERERERERERERERNJ9tQBGfn4+Zs2aBX19faxZswZycnIl7rt161Zs3Lix1PxmzpyJPn36lLoPEREREREREREREcmerzsvEFVWXy2Aoa+vjzt37nzUvn379kXbtm1L3adKlSqlfk5ERERERERERERERJXXVwtgfAodHR3o6OhUdDGIiIiIiIiIiIiIiKiCyFd0AYiIiIiIiIiIiIiIiIpjAIOIiIiIiIiIiIiIiGQOAxhERERERERERERERCRzZHINDCIiIiIiIiIiIiL6/yUQVHQJqDLgCAwiIiIiIiIiIiIiIpI5DGAQEREREREREREREZHMYQCDiIiIiIiIiP7H3l3GRZX9YQB/GLq7ERFUDCzE7sDu7tY1Vzes1S11ddfd1V117Q7s7rULVMQuDFQ6VEBgiKn/iwF0mAEMcC7/fb6fDy+4c8/l3Mu55565vxNEREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDh62s4AEREREREREREREf23yBXazgGVBByBQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERIKjp+0MEBEREREREREREdF/i0Kh7RxQScARGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4etrOABERERERERERERH9t8jl2s4BlQQcgUFERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCo6ftDBARERERERERERHRf4tCoe0cUEnAERhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkODoKBdd7JyIiIiIiIiIiIqLPZ9kxbeeg5BnTRts5+Pz0tJ0B0r7EeWO1nQVBsZ6+FBm7F2o7G4Ji1P0rJP8xUdvZEBTLb/9G2JAO2s6GoHiuP4TXty9oOxuCYlO1EcTntmk7G4Ji0qQPYh/e0HY2BMWpQg3cfhyv7WwIStVyDogY213b2RCMUkt348WoLtrOhqCUXrkPKdf4jfdd5n5tkPHvOm1nQ1CMWg1F2NOn2s6GoHh6eeGwvre2syEo7SWheHP9hLazISgWvv7YdUWu7WwISo86IjwNC9N2NgTFy9MTyddPajsbgmHp21LbWSD6v8UppIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcLuJNRERERERERERERJ+VXKHtHFBJwBEYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDh62s4AEREREREREREREf23KBQKbWehBNLRdgY+O47AICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsHR03YGiIiIiIiIiIiIiOi/RaHQdg6oJOAIDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhw9LSdASIiIiIiIiIiIiL6b5HLtZ0DKgk4AoOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgER0/bGSAiIiIiIiIiIiKi/xaFQts5oJKAIzCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgEhwEMIiIiIiIiIiIiIiISnBK9iHdSUhImTZqEkJAQeHt7Y+fOndi3bx8aN24MW1vb9zpG8+bN0bVrV0yYMAF79uzB9OnTERoaWmi6D9n3Y6xYsQIXL17Epk2bVLbPnDkTO3fuVNnm6uqK06dPF0s+PoZemYowbtIJunbOkKe9QWbIeWRePZnv/iJre1iO/lltuywhGm9Wz8n+TQeGtVvA0LchRObWkCe9Qub1c8gMOVdMZ1G0Ah9HYMm/V/E0PhE2ZsboU7cyBjWsBh0dnULTSmVyDFqxF8b6elgzsrPKZ/ci47HgaBDuRSXAzNAAnXy9MaaFH/T1dIvrVIqMXmlvGDbqAF1bJyjEKci8cQFZ187ku7/Iyg7mI75X2y57GYPU9b9Ct1RZmPWekG/6jEtHkRl0rEjyXlyMK9eAdfeBMHB1h+xNEt6cOozkY3s17mvWsAUcRnyV77HiVy1A6iVlvaDv7AabXkNhXKEKFDIZMkLv4tW21ZAmxBXLeRSlK7fuYcXWvQiLiIaNpQW6t2mGfh1bvde9E/osHMOn/4Kdi36Bs4Ndvvv9tX4bth8+iaCdq4sy68Um6N4TLNl3CmHRCbCxMEXvZrUx0L9+vtckSyLFphOBOBR0C7GJyXC0tkDbOlUxrE1D6Ou9bQacufEAqw6fw/O4V7CzMEP7ulUxrG0jlX2EKvjGLazavB3PwyNhbWWJru1aoXeXDgWWk5PnL2HTjr2IjouDk4M9+nfvjDbNm6jsc/TUWWzfdwhRMXGwtbFGm+ZNMKBnF+jpCr+OBYD0dDG2rF+Oy5fOISMjHZUqV8PgkRPg6uZeYLqkxNfYsHoJbl6/AplMBl+/uhg8Yjysbd7eR69eJmDTuqW4GXIFcpkM5StURt9Bo+BVrkJxn9ZHM6xYDVad+kHPuRTkb5KQev4YUk4e0LivSd1msB00Pt9jvdqwGOIrZ1W26RgawWnGAiQf2Qnx5fyfZ0JiVKk6rLr0h76LO+RvkpBy5gjenNivcV/Tes1hN/TLfI/1ct3fSAs6k7uvRavO0LN3guz1S6ScPYKU04eL5RyK0uXbD7F05yE8jYyFraU5evo3woB2zQqsXzcfOY3DF4IR9zoJDjZWaFu/JoZ0aqlSd94PC8dfAfvxICwcpsZG6Ni4NkZ1b1si6tfAB8+w5NA5PI15CRtzU/Rp7ItBzWvne00yJVKsOHoJR67dQ2KqGOVdHTC6XUM0qOiZu49crsCmM1ex69JNxCWloLS9NYa0rIv2tSp/rtP6JCHXr2PDhg0IDw+HlZUVOnTogO7duhX4zDl79iy2btuG2NhYODo6omfPnvBv2VJln0ePHmH1mjV4/PgxTExM4N+yJfr37w99ff3iPqUiY+TqiMY3D+Fa93F4ff5qgfu69G6PstPHwMSzFNKfR+HJ7ysRtWmfyj6WNX1Q8bcpsKzpA+mbNERu3INHs5ZAIZEU41kUjcu3H2Dp9oMIi4yBraUFerRqhAHtW7xnGzYCg7//HXsW/ggXe9X3GmeDb2HN3mN4ER0HWysLtGtYG0O6tCoR9QkAZGak4fj2P3Hv2glkZYjh4V0T7fpPh71zmQLThT++gX93LkTU83swMDRBldpt4N9jEgyNTXP3iY96gmPb/sCLxzego6ODCtWbonXvb2BuZV/cp/VJ0tPTsXbtWgReuoT09HT4+Phg1BdfwM3NrcB0iYmJWLVyJUJCQiCTyVCrVi2MHDUKNjY2ufvIZDJs2bIFJ0+cQEpKCsqWLYvhI0agQgXhttcu336AZdsPICwyBjaWFujZqjH6f8C9M+T7+di98CeN987avUdz7522DWtjSJfWJebeIfqvK9F36oEDB3Dt2jUEBATA0dERwcHBmDZtGk6dOvVRx2vXrh0aNWpU5Pt+qC1btuCvv/6Cn5+f2mehoaEYPXo0BgwYkLtNV0AvUnRdPGDWcwyyHoQg/fxB6Ll5wbh5F0AkQublfzWncVA+mFMC/oJCkvX2g3capsYtusGodgtkXj+PrEe3ILKyg3HjjhBZ2iL99J7iPKVPdjs8DhM2HkXrKl4Y518LN57HYuGxy5DKFRjepEah6deeu4F7kQnwK+Ossj3y9Rt8sfYQqro74ve+/giLT8KSE1eRnJ6J77s0Lq7TKRK6zqVh0m0UJA9vIPPiYei6esKoSSfoiHTzDXaJHFwBAKnblwDSt+Uk5wuMLC4CqVsWqKUzatgeuk7ukDwMKYYzKTqGXt5w+uoHpF69gMS9m2FUrhJseg0FdHWRfHiX2v7iW8GImv2N2nb7oV9CZGwM8e1rAABdGzu4zJgPSUwU4pbPh8jAENbdBsL529mInDle9Z4TmLuPnuLbeYvQsn4tjOzdBbcfPsY/m3dBJpNhUNd2BaZ9Gh6Fb+f9DZlMVuB+N+4/wo4jH/fM0IbbYRH4ckkAWvtVxtjOzXHzSTj+2n0CUpkcw9pqfibN334Uhy/fwsj2TVDZwxX3X0Rh5cFziHmVhJ8GdwEAXL7/FN8s345WfpXxZTd/PI2Ox+K9J5GYKsa0vu0/4xl+uHuhjzFtznw0a1gPw/v3wp37oVi+IQAymRz9e3TWmOZc4BXMWbAEPTq0QW3fgbhwJRjz/l4GfT19tGhcHwCw6+ARLF69EU3q18HoIf2RlJyCdVt34OnzF5g97evPeYof7e/fZ+Fx6D0MGDoGJiam2BmwDj9/9yUWLN0EMzNzjWlkMinm/vQtxGIxRo37FlKpFFs2LMfs77/B/L/XQE9PD2lpqfh+6jhkZqSj78CRcHJxw5VL5/DDtPH4ae4ilPOu9JnPtHAGHuVgP2Y6xCGBSD64FQZeFWHZZSAg0kXKv+qB4oy7IYibP01tu82AsdAxMkbGvesq23WMTWE3ehr07ByL7RyKmkGZ8nAYPwNp1y4haX8AjMpWhFX3wYCuLt4cU29bpd+5hph5U9S22w4aB5GxCdLvKJ+zZg1bwnbQeCQf24OM+zdhUKY8rHsOg46hMd4cVX+eCcWdx88x6Y+V8K9bA6N7tMfN0DAs2noAMpkMQzr5a0zzx8bdOHLpGkZ0aYVKnu64/ywCq/YcQ8zL1/hhVD8AQGT8S4ydtxRVy3pg3pdD8DwqDkt3HkZyqhjfDe/9OU/xg91+FoUJK3aitW9FjGvfGDfCIrFw/xlIZXIMb1VPY5qfAo7i/N0n+LJjE5R2sMGBq3cwYflOrJ7QD75lSwEAlh65gHUnL2Nsu0bwKe2MC/ee4ruNByHS0UFbP+HVH+968PAhfvrpJzRu1AiDBg7EvXv3sHbtWshlMvTq1UtjmosXL2L+77+jc+fO8KtZE4FBQViwYAH09fXRtIkycB4TE4PvZsxAxQoVMH36dERERGDDhg1ISUnBhAn5d9AREiM3J9Q+vAb6VhaF7uvUtRWqb/wDzxZvRMLxC3Dq3BLV1/4GeWYWYnYcAQAYl3FDnWPrkHj5Jq73nQSzCl7wnv0V9G2scHfcj8V9Op/kzuNn+Gr+cvjX88Xonh1wK/QpFgfsh0wmx5DOrQpM+yQiGpPmL4NMJlf77MrtB5iycDX86/pifJ9OeBoZi6XbDiApJRWTh2ouf0KzY9lkRDy5hTZ9voWhkSlO71uKNfMGY+K8gzA2tdSYJjY8FGt/GwbPSnXRb8IipCTF4/iOBUiIeYahU5QdkN4kxmP1vCGwdSiFnqN/gyQrAyd2LsTa34Zh/Ow90NUTbiBw/m+/4eHDhxg2fDhMTEwQsGULpk2dimXLl8PcPL/2mgw/fP89xGIxxk+YAKlUivXr1mHGjBlYvHgx9LJfyq9auRLHjx/H0KFD4ejoiL1792LGd99h8ZIlcHFx+Zyn+V7uPH6Gr+cvy713boaGYXHAPshkcgwu5N55GhGNrwq4d6YuXAX/ur4Y16czwiJjsu+dtBJz7/w/kyu0nQMqCUp0AOPNmzewt7dH1apVAQDPnz//pOMZGRnByMioyPd9X3Fxcfjxxx9x5coVeHh4qH2uUCjw5MkTjBo1Cvb2wuxFYNyoA2RxERAf3AAAkIbdh45IF8b1WyPz2hlAqt5bRtfRDfI3iZC+eKTxmDrGpjD0a4rMmxchPr4td7siJRGm3Ucj8+YlyF8Ltyf50lPBqOBsh7m9WgAAGpR3h0Qux5qz19G/fhUY6ed/G4bGvMSaczdgZ26i9tnaczdgYqiPvwe0gb6eLhp5l4axvh7mHbyIEU1rwNlKc2NHCAzrt4UsPhLpRzcDAKTPH0JHVxeGdfyRef2c5nJi7wr5m0TIIh5rPmhWJmQxL1Q26Xn5QK+0N9IOrIU8MaHIz6MoWXfpj8wXYUhYqQzCpN+5Dh1dPVh36IU3/x5QCzTIU94gM+WNyjaLlh2h7+KG6DmTIc/+zLpLP8jFYsT8PhOKrEwAgCQhDk4Tv4dhmXLIeHTvM5zdx1m94wDKl3HHj1+OAADUq+EDqUyGDXuPoFe7ljAyNFBLI5FIsfPYKazavh8GhfRYFKdn4Jel62BvY4X4V4nFcg5FbfmBM6hQyglzhncHADTwKQepTIa1Ry+gX4u6MDJQPeekVDH2XAjBxG4tMbh1QwBAnexesIv2nMSX3fxhY26K/YE34GRjiV+Gd4euSIS6lbzw6k0qNp8Mwjc92wh6VNe6gJ0oV8YDM79S9pav41sdUpkUm3ftQ4+ObWGooZys2rQNTevXwfgRgwEAtX2rISUlFWsCdqBF4/qQyeTYsH0P/KpXwaypb0c6lfcqg6FfTkbwzduoVb3q5znBjxT64C5Crl7Cdz/9jhp+dQEAFSpXxbjhvXH88F507z1IY7qgi2fx7OljLFi6EaXclb0hPTzL4ptxgxF04TQaNWuFMycOIyEuBrPn/4MKlZTXoVqNWnjzJgkbVi/GnN+XfZ6T/AAWHfogK+IZXm9YBADIuH8TOrq6sGjdDalnDqvXsalvkJWqWseaNW0HPSdXxP8xA/J3PjOq4gfrXsOhY2hc/CdShKw69UVWxDO8WvsXACDj3g1AVw+WbXsg5dSh97om5s3bQ9/ZDbG/Tcu9JhZteyAt5BKS9mxUHvfhbeg7usC8eTtBBzBW7D4Kbw83zB47EABQv1pFSGUyrNt/An3aNIGRgWpdkpSShr1ngjChT0cM6qBs49X28QYALNl2EBP6dIK1hRk2HDwFUyND/PnNCOjr6aFh9cowMjTA/PW7MKyzP5zsbCBUS49cRAU3R8wd1BEA0KCSJyQyGdacCEL/pn5qz5yoV0k4cu0epvf0R+/GvgCA2uVL42ZYJLZfuA7fsqWQniXB5jPB6N/ULzcIUsfbAw8iYhFw7prgAxibN2+Gl6cnJk+eDADw8/ODVCbDtu3b0blzZxgaGqqlWb9hAxo1bIgvRo0CANSsWROpKSnYtGlTbgBj565dMDY2xg8//AB9fX3UrlULhoaGWLZsGXr37g0HB4fPd5IfSkcHbgO7oOJvU4HCO0gDALxnf42YXcfw4Nt5AICXJy5C39oS3j9NzA1geE0eCWlKGq51GwuFRIKEY+chS8+Az9/f48mvy5EREVNcZ/TJVu46DG8PN8wap2xn1K9eCVKZDOv3/4s+bZuq1ScAIJFKsf3YOazYdRiG+Xw/PHjuMpxsrTFr/GDoikSoU7UiXie/QcCRM/hqYHfoCbi9BihHUTy8cQaDvlkB72rKDnce3n744xt/XD61Fc06jdaY7tLxDTA2tUS/L/+Gnt7ba7d71XdIiHkGe+cyCD67E5npKRj41VKYmFsDAEzNbbBm3mCE3b+CclUbFv8JfoQHDx7gypUr+HnWLNSqVQsA4FO5MoYOHYrDhw6hT9++GtNduHABT58+xfLly+FeujQAwMvTE2PGjMGF8+fRrHlzJCQk4PDhwxg9ejTad+gAAPD19cWIkSOxc+dOTJw48fOc5AfIuXd+HjcEAFCveuXse+c4ehdw7+w4dhYrdh3O9/tfzr3z8/gh79w7KQg4crpE3DtEn1NmZiZ+/fVXHDt2DBkZGWjevDlmzJihMrorr2XLluGvv/5S2/7urEVbtmzB2rVrkZCQAB8fH8ycOROVKr1/u0/ra2CcO3cO3bp1Q7Vq1VCvXj1MmzYNycnJAIBr166hV69eqFq1Kjp16oQjR47A29sbkZGRmDZtGhYvXozo6Gh4e3tjz549GDRI+WW8RYsW2LPnw3vl79mzB97eyi8e06ZNQ8+ePVU+j4qKQoUKFRAYGKiyLwB4e3tj165dGDJkCKpWrYqGDRtiyZIlKukPHjyItm3bokqVKujZsyc2btyocox79+5BX18fBw4cQLVq1dTyFx4eDrFYDE9PT7XPBEFXD3ru5ZAVektlc1boDegYGkPPzUtzMkc3SOMi8z2syMYROiJdSB7fUdkuefEIOiIR9L2E+0UnSyrDtbBoNK+sOiTW38cTaZkS3Hief8NbIpVh5s4z6FvPBx526r1Rgh5HoJF3aZUXiy19PCFXKBD4OKLoTqKo6epCr1Q5SPP+Px/dgo6hEfRcNZdvXQc3yBKi3v/v6OnDuEV3SJ7eg/TRrcL31yY9PRhXqIK060Eqm9OuXYLI2ARG5Qsv47oWVrDpPhBvTh9FZtjbYKCpX32kXDiRG7wAgKznTxD+1WBBBy+yJBJcvxeKJrVVRyk1q1sT4vQM3H6oOZAVeOMO1uw8iMFd22HcgO4F/o0lm3bCxsoC7Zs2KLJ8F6csiRTXHj1HsxoVVba3rFkZaRmZuPkkXC1NWkYmejT2Q5NqqsPEPZyUQfCohMTcYxsb6ENX9LZZYGVmAolUBnFmJoQqSyLBzbv30ahubZXtTerXhTg9HbcfPFRLExMXj4joGPU0DeoiKiYWkdExSExKwpuUVNTz81XZx7N0KVhamOPytRtFfzJF7Nb1qzA0MkbVGrVyt1laWqOSTzXcuBaUb7qb16/Axc09N3gBAKXcy8C1VGlcv3YZABAZ8QKmZua5wYscPlV9EfrgLlJTU4r4bD6Rnh6MylVG+i3V6UzSbwRBZGwCA6/Cp1EQmVvCsmNfpJ7/F1nP39Y/OsYmsPtiCjIf30PCktlFnvVio6cHo/I+EN+4rLJZHBIIkbEJDMtWzCfhWyJzS1h17o+Uc8eQ9eztNYlfPAeJuzao7KuQSqGjp/7SQSiyJFKEPHiMZn5VVLa3qF1NWb+GhqmlSUvPQPcW9dHY10dlu4ezchROVPxLAMppqRpUr6QyRUWL2tUhVygQdFu9jhKKLIkU156Eo3nV8irb/atXQFpGFm6Eqbfd7S3MEDB5sMpUUCKRDnRFImRKpQAAAz1dbPx6IAY1V62D9fR0c/cRqiyJBLdv30b9+vVVtjds2BDp6em4d0+9XRUXF4eoqCjU05AmOjoaUVHKtm1ISAhq16qlMl1Uw4YNIZfLEXJddcSX0FhU9YbPPz8jcvM+3ByiPkorL+PSrjDzLoPY/SdUtsfsOQ7Tch4wKat8GWvv3xDxR8+pTBcVu/sYdHR1Yd9KmC+jAWU5Cbn/BE1rqX6fb16nBtLSM3Dr4VON6S7duIfVe45iaOdWGN+3i8Z9MiVSGBkaqLTXLM1NIZFKkZaRUWTnUFwe37kEA0MTlKvytu1tamEDjwp+eHTrfL7pWnafiMHfrFAJXujqKu8VqUTZTq3boi9GztiSG7wAkDvqQiIRbls2JCQERkZG8PV92+a0tLJClSpVEHztWr7proeEwM3NLTd4AQDupUujVKlSCA4OBgDcvHkTMplMpf7RNzBA7dq1cS17HyHJkkhw/f5jNK1VXWV7i/e8d4Z0bo3xfTWPvs6SSEr0vUP0Of3000+4ePEiFi9ejA0bNiAsLAxffpn/NLKAMlDRuXNnXLx4UeUnx969ezF//nxMnDgRe/bsgZubG4YOHYrXr1+/d760GsB4/fo1xo8fj+7du+PIkSNYsmQJgoODMX/+fLx48QLDhg1D+fLlsXfvXowaNQqzZ7/9YjhjxgwMGzYMTk5OuHjxIvz9/bF48WIAwM6dO9GuXcHTixSmW7duuH37NsLD374QOnjwIJycnFC3bl2NaX777Td07doVhw8fxoABA7B48eLch8eZM2cwdepU9OjRAwcOHEC3bt3wxx9/qKRv3rw5Fi9ejFKlSmk8/qNHypeSmzZtQvPmzdGyZUvMmjULKSnCeFEgsrKDjp4+5K/jVbbLE5W/69pqnlZBz8ENOgaGMB/4Lawm/w3LCfNg3LQzkP1wUaSnKo9vqTqHoW72XJYiq/zntte2yNdvIJHJUdpWNQDhnv3785fJ+aZdcToEUpkcY1vWUvssQyJFdFIqSucJbNiYGcPM0ADPE/I/rraJLO2go6cHWaJqOZFlj5AQ2WjuYabr4AodA0OY9p0Ei0l/wHzMbBg26phbTvIy9G0CHTNLZJwR9hRjAKBv7wQdfX1IYlUDNJK4aOXnTgXPfwoA1l37Q6GQI3HP23Vz9OwcoWtiBumreNgOHI3SS7bCY9UeOH45E7rW77dOkLZExyVAIpXC3UW13nBzUpaPF9GaR11V9PLAnn9+xZDuHaAryr8nzdVb93D0fBBmjh0Kkeg9uwtqWeTLREikMpR2VP3flbJX9oR4HvtSLY2rnTW+698BHk6q9eTZmw+gp6ube6xeTWsjPP41Nv57CSnidNwOi8CWk5fR0KccLE3VR4AJRXRsPCRSKUq5qk6x55b9AjEiKlotzYtI5X2WN41rdprwqGiYmZlCV1cXcQmq1zQlNRWpqWmIjlWtv4QoMvIFHJ2c1aaZdHJ2Q3RU/kHuqIgXcHZRb4co0ynbRBYWlshIF6sFKmJjlNc2Plb9umuTnp0jdPT1IY1XzZckPhYAoO/oWugxLDv0BhQKJB8MUNmuyMpC7KxJeL1xicqoDKHTs8t+7sSpXhNpgrJjhb5T4dfEqlNfQKFA0j7VayKNjYTslfIeEZmYwaxhS5jVa4rUc0eLKPdFLyr+JSRSGdydVdsgpbKDvS9i1O95VwdbTBvaCx55nlPnQm5DT1cX7s4OyMjKQszL12rHtbYwg6mxkcbjCkXkqyTlM8dBtbedu73y5eDzOPUvnAb6eqjs7gxzYyPI5QrEJr7B/N0nEfkyCT0bKjsk6IpEKO/qADsLMygUCrx6k4Y1/wbhSuhz9G7oq3ZMIYmNiYFUKoWrq+r94eKsfJ5ERql3tMn5LumWJ41z9tQtkZGRyMzMRHx8vNpxrSwtYWJigsjI/Dt6CUF6eAzOVvDHg8m/QiYu/EWgWQVlp7a0x89VtoufKkdSm5UvA5GRIUw83JD2+JnKPlkvEyFJToFZ+YLXS9CmqPhXyjZs3vrEMf/6BAAqeZXG/kU/Y1jXNtDV1fz9pmerxoiITcCmQyeRkibGncfPsO3oWTSoXhmWZqYa0whJQvRTWDu4QZSnjW7rWBovY57lkwqwtHGEk7uy42dWphhP7gbi310LUbqcL5zdlZ0QTC1s4OapDChLsjIR/uQmDm6YDRsHd5WAidBERETAyclJrb3m7OKCqALu/fCICLU6AwBcXFxy66KI8HAYGxur9Zp2cXHBq1evkJ6eXgRnUHTyu3fccu8dzd//KnmVxr5FszCsaxvo5XPv9Mi+dzar3DtnSsy9Q/S5xMXFYd++fZg5cyb8/PxQtWpVLFiwAMHBwbhxI/9OfI8ePUKlSpVgb2+v8pNj+fLlGDBgADp16oSyZcti7ty5MDY2VlvjuSBanUIqLi4OWVlZcHFxgaurK1xdXbF8+XLIZDJs374ddnZ2+Omnn6CnpwcvLy/ExcVh/vz5AABzc3OYmJhAV1c396JYWipf5trY2Hzy9E61atVCqVKlcODAAYwfr5yW4uDBg+jcuTNE+bww7dKlCzp3VkZ8R48ejTVr1uD69euoVasW1qxZgzZt2mD48OEAgDJlyuD58+dYv379e+fp0aNHEIlEcHBwwPLlyxEeHo758+fj8ePH2LBhQ775+lx0DJXXXJGl+iBUZPfe1TFQ/5/oGJtCZGENiERIP7MP8uTX0PPwhlFdf+hYWEN8YD3kr+MhiXgCo0btIU9JhORFKHSt7GDStj8UUgl09NWHagtFaoZy+gUzI9VehybZQ+7TMjWvP3A3Mh4bLt7C2pGdYKBhOGPucTVMjWJiqJ/vcYUgt5xk5vmCk1VIOTG3AkQiZJw7APmb19ArXR6GtVpCZG6F9COqi91DpAsD38aQPLwBeZL6S12hEZkoG02KdLHKdnmG8l4SGRc8LYnI3BJmDZoj+dheyMVpudt1zbPrxJ5DkPnsEeKXzYeuhSVsegyGy9R5iPxhgsrIDCFJFSvP3STPuZsYK8tHWj4Nbgdba43bVY6dJsbcZRswsndnuLs4fWJOP5/UdOU9Y2qkWueZZNcvaRnv9788feMBDgbdQu9mtWFhqry+tSuUwZDWDbBw179YuEu5XlGFUs6YO6JHUWW/WKSJlfdM3nJinP17mli9nKSlZZctk7xl620aI0NDNG9YD3sPH4eHuxsa162FxKQ3WLx6A3R1dZGRt/4SIHFaKoxN1L+QGZuYQPxOPaGWTpwGZxf1oKmxsTHSs9M1atYKB/dux59zZ2LYF5NgY2uH68FBOHtSOe1HpsB6somMlEE4eXre9onydx2jQupYMwuY1GmKlFMH1eppyKRqgZGSQGSsvCaKDM3PHR2jggOXInNLmNZrhpQT+6FI11yeDDy94TztNwBA5vPHePOv5sXBhSA1+6WrqbFqG8Qku75NS3+/Mn0m+BYOXQhGL/9GsDA1wcskZVDLzFi9bWNqZPjex9WG1HTlM8Us7zPH8P2eOetOXsaig+cAAN3rV0Ndbw+1fY6FPMC0DQcAAI0qewl+Ee/cZ46J6v2R87tYLH7/NNnPHLFYjLS0NI37AMq6V9NxhUSSmAxJ4vt3ntKzNAMASN+kqmyXpiivg56FGfQtzTXuk7OfnoXZx2a32OW0YdXqE+OC6xMHG6tCj12rcnkM6tgSi7bsw6It+wAA3h5umDNhyEfn93PKSE+FkZH6/87QyASZ+TxL3qVQKPDL2PqQSjJhYmaFDgNnaNxvycwueBn7HPoGRuj/5WLoa/h+KRTitLSPuvfFaWlw1bCGxbvp0sTifI8NKOsf40K+Z35OxXvveGNgR38s2rIXi7Yo1z7z9iiF2ROGfkKOif7/hIQo17R7t+N+mTJlctedrlFDfR3frKwsPH/+PN/Zgl69eoXnz5+jXr2366fp6enBz88PwcHB+OKLL94rb1oNYFSsWBEdOnTA6NGjYW9vjwYNGqBp06bw9/fHkydPUKlSpdzFhwCgdu3aBRytaOno6KBLly44ePAgxo8fj/v37+PJkydYunRpvmm8vFSnSDI3N4cke8jrvXv30KqV6qJDtWrV+qAAxpgxY9CvXz9YWytf0JUvXx729vbo1asX7ty5o3Haqc9Kp+AAikKhvjKPQpKFlK2LIE+MhzxZ2ZNLGvEYkElh3KQTMi4dg/xVLNL2rIJJ234w664s2PJ0MdLP7IVxo/aCXoRYruGc36Wjo97zO1Mixfc7z6B//SqoUkrzqJWPOa5gFJa3fMpJ2s6lkCUmQPFGWU5kkU8BqRRGjTog8/K/Kuug6JevDpGZJTKDS8jizIVcE033zrssmrSCjkiE5BMHVD/Irj9lb5IQt3hu7rWVxMfA9fs/YVavKVLOHf/4fBejwsq46BPK+F/rt8HBzhp92mtelFWoiuK+P3X9Pr5bvRvVy7pjUve35//LlkPYf+kGRrRvjDoVPBH9KgnLD57FuEWbsOKrwTDWECwVAoVcfZG+d4k0PJfkivdL8/WYEdDX18PvS1Zi/uIVMDQwQL/unSFOT9c4x7k2yeVyKPKcV0H1hqbrkpuugGuqk91RopR7GUz74VesWPI7vh6nnL7Ts6w3eg8YjrUr/oZBEa8R9skK6+BRyL1l2qAldEQipJ45XISZ0q5C64tC7hOzhv7QEYnw5tShfPeRvYpH7B8zoGfrCKsu/eA07VfEzPkaiizhtduK4plzOvgWZv6zEdXLe+LLvp0AFP78FnJ77VOfOY19yqK6pytuPI3EimOXkCGR5q6lkcOntDPWTuyHR1EJ+OfweYxdtgNrvuwn2OtS+DNHPd+FpdERiQotJ5/S5hEinULqZIVcXmi9rRDwiq/F+T3t1zXbcODsZQzr2ga1fcojOuE1Vu06gi9//QdLZ3ypcX04bdHcNimojVH4dZHLpBj41T+QSLJw/uBKrJo7EKNmbskdhZGj46DvoVAoEHRiMzYuHINBXy0TxBoYymuiUNuWn4LKSkHlLKfOKLT+EVjdUnhd+PEddn9dsw0HzwZhWNc2qOXjjZiEV4K9d4jeR4sWLQr8/NSpj3sXFhcXB2tra7Xvuw4ODoiNjdWY5smTJ5DJZDh+/Dh++eUXZGZmolatWpg8ebJKOmdn1RkQHBwc8PDh+0+nqvVFvP/880+MGzcO58+fR2BgICZPnoyaNWvC0NBQrTI30LBgT3Hq2rUrlixZgjt37uDIkSPw9fVF6XfmGMxLU/5yKmE9Pb0CH07vQyQS5QYvcpQrVw4AEBsbq/UARm5Pxjw9HN72uNfQY1oqgfS5eoGVPLkL4yadoOvgCvmrWCjEKUjbvQJiQ2PomFkqe9XL5TBp0xeKjMJ7a2hLzsiLtEzVRalzRkiYa3hQLjkRDLlCgVHNa0IqU5aZnGe5VCaHrkgnd+SFppEWaZlZaiM+hCRn5MUHl5MXoWqbJWH3YdSoA3TtXfIEMKpB9jIG8oSS0StWnt1LJm+P15wesvICeksDgKlfA4jv3shduDuHIrsnrfh2iMoLusynoZCJU2FY2gvCmIBOnVl273hxnp42OT3qzUw+rrfQxZBbOHEpGOt+mwm5QgG5TAZ59pdgqUwGkY6O1kez5cc8uzeSOM99n9ML1sy44Jfqm08EYuGuf+Hn7YEFY/vCMHue7fjEN9hzIQTD2zbCuM5vG0KVPVzR46d/sP/SDfRpXqcoT6XImGZPbyXO07NenNODy1S9nJi9ZxoTYyNMnTAaE0YMQVxCAhzt7WFibITDJ07D1VlYI3d2bV2PnVvXqWyr26ApkhPVp3hJF6fBxDT/ofImpmYapxQQi8UweWdERzXf2vhnzQ7ExymnHHJ0csHpf5Uv+M3MzD/qPIqLPHvUhChPYOXtyIyCezeb1KiHjAe3StQUUYXJOee8C4+/9zWpWQ/p928WeE1kyYmQJSciE/cgfRkLp8lzYeJbH2mXz35a5ouBmUl2/Zr3mZP9e2HPnC1Hz+DvLftRs1JZ/PHVCBhmj7TN6UWqaX7ttPSMj36WfQ45z5S0POsg5TxzzAt55pRzUY6Qr1nWHVK5HMuOXMSEDo3hbPN2+tNS9tYoZW+NmmXdYWZkgJmbD+P60wjULOtelKdSZEyz607150f2KAsNdWthaUxNTHJ7SOdb9xZQZ5dE0mRl61PPXPW8ckZVSJNTc0de5N0nZ7+cYwiRWU7v9jyjlN63PslP/Osk7D0diKGdW2FML+WCzDUBVPYqjd6Tf8GBs0Ho1brJx2e8iJ3ZtxSn9/2jss2nVmukJr9S2zczPQ2GxoW3HXT19FHWRzkdVBlvP/z+dUsEHt+E7iN/UdmvrI9yzQfPSnWwaHpHnD+8WhABjICAAARs2aKyrWHDhkhKSlLbN10szq0/NDE1MSm0zjA1Nc13n5zPhSS/Z2bOvWNq8nEdZOJfJ2Hf6UsY0rk1Rvd6G0iv5OWBPpPn4MDZQPRq3fTjMk1FopDYFRWhyMjIAoMfEydO1Phu29DQEJn5rI2Zs9yBsbEx/v77b7x69QoLFizAoEGDsG/fvtx6KO9xCzqmJloNYNy6dQuHDx/Gd999B09PTwwZMgQHDhzA5MmT0adPH5w5cwZZWVm5J3n37t0Cj1fUEWRXV1fUqVMHx48fx9GjRzFu3LiPPlaFChVw65bqQsIFzR+myZQpUxAfH68yauPOHeVCyGXLlv3ovBUVeWICFHIZRNb2Kttzfpe/Uo/WiaztoVfaG5IHIaovrrNfrCnEysarfsWakL+MhSwhKnc/XSd36IhEkMUKd8HqUjYW0BXpIOKV6rDq8OzfyzhYqaU5efcpopNSUe+nNWqf1fx+JWZ1b4rONSvAwcIUEa9UXxy8Sk1HWqYEnvbqxxUKedLL7HKiOid/zlomsncCEW8/s89eIP4G8E450clemE3+7pBjkQh6ZSog82oJGX0B5ZzjCpkM+o6qEWl9B+WwYElM/vOf6lrZwtCjLJJXLlD7TBIfA4VcDp13FoTMoSPShVyAvWBzuDo6QFckQmSetQZyfvdwc9aUrFBngkKQJZGg/9c/qn3WqM8XaNekPr4fP+yjjl3c3OytoSsSISJe9YtfRLzyJbWns72mZFAoFJi//Si2nb6CNrWrYNaQLiqLyca8ToZCoUA1L9UXRl4uDrAyNcFTAc/R7uLkCF2RCFF55sSNilE+b0q7qc8NXMrVJXufOJT3fDuHdmSeNIHBITA3M0OVit4o465cEyIxKRkJr16jvJdHkZ/Lp2jZphNq1lZdIPbq5Qu4df0q5HK5SlAuNjoKrm75d8ZwcS2FZ2GP1bbHxkSibHnlws4J8XG4fTMYjZu1hqPT2+kLwp4+gpm5BRwcP+7+LC7ShFgoZDLo2avmS89eGYiSxhZQx1rawMDdE6825D/SoCSSZF8TfQdnvPtqQ89BeY0Kfu7YwNDdCy9PHlT7TMfQCMbVaiPr2SNIE962+7LCw3LTCpGbg52yfo1TnXYy5/e861zkUCgU+GPjHmz/9zxa1/PFT6P7q9SvJkaGcLC2RGSeNYpeJ6cgLSMTZfI5rhCUsrNWtmETklS2hyckAgDKOKmvpRX9OhmXQ5+jvV9lGOq/vQ4VSynvtYTkVBjq6+PS/aeoX8kTtu+8nK6QvU98svqUQULh7OwMkUiEmGjVDjLR2b+7a1jH0M1NOSVfTHQ0yr4zWj83jbs7jI2NYWtrm7stR1JSEtLT0zUetyRLfaRc68DEqzTe3HyQu93US/lsSn34FLI0MdIjY2Hipfq8MrC3gb6FGVLzWcxXCNwc7bLbsAkq23N+L+P6cfd97MvXUCgUqOqtOkWHp5szLM1MERYZ83EZLia1mvWCd/WmKtseXD+Jx3cuqrVNXsW9gIOL5qlHAODBjTMwMjZDmQpv14Y0MjGHjUMppCQp26lh969AIsmAd7W3QRxdXT04liqPuEj1do02tG3bVm1WkaCgIISEhKhdk+jo6HzXRgWUdcvTp+r3QXR0NLy9leuFuLq5QSwWIzkpCZZWVrn7xERHw8HBQXAjit0c7Qu5dz6uA1HOvVOthNw7RO/jY0dYODo64siRI/l+fu7cOWRpeE+UmZmZ75RzXbp0QePGjVXW2ylXrhwaN26M06dPw91d+Z4h73ELOqYmWu1mamZmhoCAAPz+++948eIFHj16hCNHjsDDwwNjx45FZmYmpk+fjidPnuDcuXNYuHBhgcfL6b3y8OHD3LlEP1XXrl0REBCApKQktG3b9qOPM3LkSBw7dgzr1q3D8+fPsXv3bmzevPmDjtG6dWsEBQVhyZIlCA8Px7lz5/Ddd9+hQ4cOatNXaYVMCmn4Exh4V1fZbOBdA/IMMaTRz9WSiMwsYdq2H/QrqC7aZ1CxJhQZ6ZDFKhe+M27QFkb1VafgMqzdHPIMMSThj4r0NIqSob4efD2ccereM5UhkSfvPYO5kQF83NQXrF40qC0CxnZT+anoYoeKLnYIGNsNTSp6AADqlXPD+dAXyJLKctOeuhsGXZEOansVvvim1sikkEU+hX65qiqb9ctXgyJDDFnMC7UkOmYWMG7VG/rlq6umqVADisx0yOLeBrFEdi7Q0TeENCr/heCERiGRICP0Lkxrqr6ANPWrD5k4FZlh+ZdxQ6/yAICMx/fVj5uZgYxH92Bas17udFIAYFSxGkRGxsh4dK+IzqDoGRroo3rF8jh35brKvXP2ynWYmRijUtmPW7xxRK9OWPvrTJWfzi0aAwDW/joTI3p1KpL8FwdDfX34liuNUzceqFyTU9fvw8zYCJU9NN/3i/eexLbTVzDAvx7mDu+u8nINAEo52EBXJMKNJ6r33vPYl0hKE8PNrvB1RbTF0MAAVStXxPnLV1WuybmgKzAzNUHF8urBfTdnJzg7OuDcpcsq288HXoGbi/IzADhw7CSWrlN9Tu88eAQikQj1/IS10KyNrR28ylVQ+alWoxbS08W4df1q7n7JyYm4f+8WqvnWyvdY1WrURlTEC0SEv61DI8KfISriBarVUH7pfpOciOWLfsO929dz90lMfIVL50/Cr04DwU1JAKkEmU/uw7i66kgi4xp1IRenIet5/i82DMooR7pmPn3/4c0lglSCzMf3YFKjrspmE9962dck/+eOQRnlc0fTNVHIZLAdNA4WrbuqbDeqVB0AkBWp/owXAkMDfdSo4IUzwbdV6pLTV2/BzMQYPl6ag37/bD+E7f+eR/+2TTFn3CC1+hUA6lStgAs37iFLIn173OBb0BWJUKtyuaI/mSJiqK8HX69SOHUrVLUNeysU5saG8CmtPvd6zOtk/BxwFKdvqZafoIfPoK+nCw9HW2RKJJi5+TD2Bd1W2wcAyruot42FwsDAAFV8fHApMFDlmly8dAmmpqYoX768WhoXFxc4OTnh4sWLKtsvXboEVxcXODoqX2b7+vri6tWryJK8HbV98dIliEQirY+yL2rip+EQh0XAuVtrle1OXVsh9dEzpL9QLkD88uQlOLRrCpHB2444Tt1aQy6V4uUZ1We4kCjrk7I4E3wzT31yE2Ymxqj8kZ0gSjkpX+7ezBO8eR4dh+TUNLg62OWTUjssrB3g5umj8lPWpwEyM9Lw+M7b+yHtzWs8Dw3JHVmhSeCxDTiw4WfI5W+/9ya/jkVC9FM4lVLedzcuHcCuFdNU1tLITE9D+JObcCrlXQxn+OFsbW1Rvnx5lR9fX1+kp6fnzjsPAMlJSbh79y58ffNvb/r6+iIiIgLhL94+V8NfvEBERARqZKfLmav+3fpHkpWFq1evFnhsbTE00Ef1CmVxJvhWMd07T1S2vxDovUNUnPT19eHl5ZXvj5OTE5KSktSCDfHx8bltFk3eDV4AyumhrKysEBsbmzt1VHy8asfIwo6Zl1ZHYHh5eWHx4sVYsmQJAgICIBKJULduXaxatQqOjo7YsGEDfvnlF3Tt2hVubm7o2bNngWtQlC9fHk2aNMGkSZPw9ddfY9iwT+9F27p1a8yaNQstW7aEmdnHLxbWuHFjzJo1CytWrMCff/4JHx8f9O3b94OCGC1atMBff/2FlStXYtWqVTA3N0fHjh0xadKkj85XUcsIPAqzvl/CtMsIZN4OhJ6bJwzrtkT6mf2AVAIYGEHXzgnyxJdQpKdCGvEUkmcPYdKiG3T09SF7GQN9Lx8Y+jVF+qnduaMtMq6dgUmbvjBKiIE0MgwGlWrCsHJtpB3bCgh8MdWRzWrii7UHMXnrCXSpWQE3w2Ox4cJNTGxdB8YG+kjNyEJYfCLcbCxgY2aMchp6tJkaKhvuld8JeAxtVB3Hbj3B2PWHMbBhNbx4mYTF/15F91oV4WwlrOk78soI+hemvcbCpOMQZN29Al2XMjCo1RwZ5w9mlxND6No6KUdrpKdBFhkG6YtQGDftAh09fchexULfszIMfBsj48w+lVEZutk9bDWN+BGyxIPb4Tx5DhzGTUPK+RMwKlcRlm274fXODVBkZULHyBgGru6QxMeoTBVl4OYBuSRLpafru17v3ACXafPg/PXPSDq6B7qWVrDpOQQZTx9CfOPK5zq9jzKke3t8OXsBZixYjo7NG+J26FNsOXAcY/t3g5GhIdLE6XgWGQ1XRwdYW75fmXd2sINznkbqpRDl6LiKAutVr8mI9o0xeuFGTFmxA50b+OJWWDg2/BuIL7u2hLGhAVLTMxAWkwA3exvYmJsiNCIG649fQmUPV/jXrIw7z1R7VXs628PG3BT9WtTFxuOXAAB1K3oh5nUSVhw8C2dbK3RrVFMLZ/r+BvXqiq9/+AU/zv8L7Vo2xb2Hj7Bt7yGMGtQ3u5yI8TwiCq5OjrCytAAADO7dDb8uWg6L5WvQoHZNXLxyDWcuXcaP336Ze9zuHdrg25/mYcnqDahf2w/Xb9/Fll370a9bJ8FNIaVJJZ/qqFylBv7+YxYGDh0DM3NL7AxYC1NTM7Rq9/blckT4M0glEpTJDobWb9wce3ZuwtwfJ6P/kNEAgC3rl8PdwxP1GzUDoFzvwrtSFaxa+icGDhsLXV1dbN24Crq6uujVb/jnP9n38OboLth/+SNsR3yDtMDTMPD0hnnLzkjevxkKSRZ0jIyh7+QG6cs4lWmR9F3coZBkQfZSfXRgSZd8eCccvvoZdl9MRuqlUzD0rACLVl2QtHcTFFnZ18S5FKQJsSrXxMC1NBT5PXekErw5uhuWHftA9iYZmaF3oF/KA1Yd+iD9/k1k3A1RTyMQw7u0wth5SzFt0Xp0alIHtx8/w6bDpzG+d0cYGRogVZyBZ1GxcHO0g7WFGUKfR2LDoVOo5OmOlnVq4G6eIHAZVyeYmRhhcIcW+DfwOr6cvxz92zbFi9gELN1xCF2b14OTnTBHpOQY2bo+vvhnGyav3Ycudavi5rMobDh1BRM7NVW2YdMzERb7Em521rAxN0ENz1Ko6+2BX3edQGpGJkrZWeP8vSfYfv46xrRrCAsTI1iYGKFL3apYcewS9HRFqODmiOtPI7D2xGV0rVcVXs7CfpHUp08ffDdjBubOm4dW/v548OABdu/ejaFDhsDIyAhpYjHCw8Ph7OwMK0vldFn9+vbFgoULYW5hgbp16iDo8mWcv3AB06ZOzT1uzx49cO7cOfzw/ffo2rUroqKisH7DBrRt2xYODsIN6rwPPXNTmFUqC/HTcGS9VI7gefzLP6i25ldIXich7uBpOHZqAZde7XC936TcdE//WA2X3u1R69BqPPtrHUzLe8B79teIWL0DGRHC7jE9rGtrjJu7BNP/XouOTevi9qNn2HToFMb36ZRdn6S/U5+8XxvW2sIcfdo2xaZDJwEAdapUQMzL11i9+yic7WzQpXn9Qo6gfWUq1EKZirWxc/kUtO79DUzMrHB67z8wMjFHnRZ9cveLj3oCqSQLLh6VAADNOo/BuvnDse2fr1GraS+kpbzGmf3LYGRqgYZtlYswN2o3DHevHsOmhWPQsN0wyCRZOH94DbLS09Ci68fPpFHcqlSpgqpVq+L3+fMxbPhwWJibY8uWLTA1NUW79u1z9wt/8QISiQRe2TNvNG7cGNu3b8f3P/yAoUOV12DdunXw8PBA48bKzlmOjo5o2bIlVq5cicysLLi6umLv3r1ITU1Fj549P//JvodhXdtg/NzFmP73GnRqWg+3H4Vh86GTGNen8yfeO81y753aVSoi9uUrrMq9d/IPnhH919SsWRNyuRwhISG5i24/e/YMcXFxqFVLcye4hQsX4tixYzh27FhuR7bIyEgkJiaibNmysLW1RZkyZXDlypXcY0qlUly7dg39+vV777zpKApbKUdArly5gkGDBuHUqVO5w3FLiqtXr8LOzk5lVfbly5dj165dOHnypBZzBiTOG1ukx9MvX025LoGNA+Qpyci8fi53Oh8993Iw7/8V0g5tRNad7J4zBkYwbtgO+t7KhZfliQnICD6NrFuBKsc19GsGQ78mEJlaQvY6DhlXTkJy/1qR5h0ArKcvRcbugkf7fKhT955h2algPE9IgoOFKXrX9cHgRsreVMFhURix+mDu1FCaDF+1HwCwZmRnle3Xn8VgwbEghMa8gpWJETrUKI+xLf2gr6tbpPk36v4Vkv+YWKTH1CtbFUYN2kJk7QBFahIyb15E1rUzAADdUmVh1nsCxEe3QHIvu/ewgSGM6reFfrmq0DG1gDzpJTJDzkJyR7UHlkGt5jBu0hnJC78BZNK8f7bIWH77N8KGdCjSY5r41oN1134wcHKDNPEV3pw+jORjewEARhWqwGXaPMSvXojUi2+HC9oOHANTv/oInzgw3+Malq0Am+6DYOhZHoqsTKRdv4zX29cWurbGh/Jcfwivb18o0mOevXIdq3fsR3h0HOxtrNC9TTP066jssXf93kOM++kPzBw7FO2bqTc8D5+5hDlL12HPP7+qBS3etXrHfqzZeRBBO1cXad4BwKZqI4jPbSvSY56+8QDLD5zB87iXcLCyQK+mtTColfL8r4U+w8g/1+PnIV3QqX4NLN1/GqsOn8v3WKu+GQI/7zJQKBQIOHUZu85dQ9SrRNhZmqNeJS+M69ICNhrmn/4UJk36IPbhh02hWJjzQVexbusuRERFw87WBl3btULvLsr788ade5g0czamfTkabVs0zU1z4NhJbNt3CAkvX8HZ0QH9e3RG62aNVY578vwlbNqxFzFx8XB0sEOXtq3QvUObIs07ADhVqIHbj4t+qq7U1BRsWL0YwUEXIFcoUKFiFQweOQGubm+nC/tx2gQkxMdi6dqdudteJsRh3cpFuH0zGLq6eqhWoxaGjJwAa5u391FS4musX70Yt28EQ6FQoHKVGug3eBRcXItm7vqq5RwQMbZ7kRwrh3G12rDo0Af6Di6QJb9G6rmjSDmlnAbJsFxlOHw1C682LoH48pncNNZ9RsK4Wh1ETx9R6PF1bezhMme52jGKQqmlu/FiVJciPSYAGFevA6tOfaHv6App0iuknD2KlBPKNodheR84fTsHL9ctQlrQ6dw0Nv2+gEmNuoicPDTf45o1bg3zZu2gZ+8EeeobpF05j6SD25SdFIpI6ZX7kHLtWJEdDwDOBN/Cit1H8SImHg7WVujp3xAD2jcHAFy7/xijf1mCH0f1Q8cmdbB81xGs3ns832MtnzEefpWUIyxuPHyKvwP241F4FKzMTNGuYS2M7tEOenpF214z92uDjH/XFb7jBzh1KxTLjlzE8/jXcLA0Q+9GvhjcQjmaKfjxC4xYtBWz+rdD57rKkbVpGZlYfvQSTt4MRcKbVLjbW2NAs1roVu/tKAKJVIb1p67gwJU7iEl8Aycrc3RvUB2Dm9eB6D0W8v0QRq2GIkzDNCuf4lJgIDZv3ozIyEjY2dmhQ4cO6N6tGwDg9u3bmDptGr7+6iv4+/vnpjly5Ah279mDhIQEODk5oXevXmpzUN+9exer16xBWFgYLCws0KJ5cwwcOBB6Gkb2fApPLy8c1i+eHuk2jWuj3qlNCGoxEK/PX1XZdmv4NERu3Ju7r/vI3vD8ahiMSjlDHBaBp/NXImrLfpXjWTeoiYq/TYFFtYrIepmIqC378einRVBIi7aN314SijfXTxTpMc8E38LKnYfxIiYe9jaW6OnfGAM6KP/nIfcfYfTsRfhh9AB0bFJXLe3Bc5cxa/lm7F/0M1zs33ZuUygU2Hr0LPacuojo+Fews7JAnaoVMLZ3x/d+mfu+LHz9sevKp63hqUl6WjKOBPyG+yGnoFDIUbpcDbTrPx32zm9HV6+eOwiJL6MwecHb7zxh96/g5J7FiA1/CJGuHspVaYjWvb+Ble3b6SGjn9/HvzsXIjLsDuQyKTwq1ELrXl/B0U19dNTH6FFHhKdhYUVyrHelpKRg1apVuBwUBLlcjkqVKmHUF1+ovPOaOmUK4uLisH7DhtxtCQkJWLF8OW7cuAFdXV34+vpi1BdfqPSElmRlYd26dTh79izS09NRtlw5DB8+HBUqaH7v8KG8PD2RfL1o32edCb6JVXnunf4dWgJQ3jtjZv+NH0YPQIcm9dTSHjoXhFnLN2Pfollq9862o2fy3DsVMaaI7x1L35ZFdqz/kj/3lZjX0oLxTZfiG/H+zTff4ObNm5g7dy6MjY3x448/wszMDJs2bQKgnAoqOTkZlpaWMDAwwN27d9GnTx90794dQ4YMwcuXLzF37lwYGRkhICAAOjo62LFjB3755Rf89NNPqFKlClauXInz58/jyJEjaqM38sMAxmeyYMECHDx4EPPmzYO7uzsePHiAmTNnol+/fpgwYYJW81bUAYySrjgCGCVdcQQwSrriCGCUdMURwCjpiiOAUdIVRwCjpCuuAEZJVhwBjJKsuAIYJVlxBDBKuuIIYJR0xRHAKOmKM4BRUhVHAKOkK64ARklWXAGMkqw4AhglGQMYH4cBjA9XnAEMsViMuXPn4vhxZUedxo0bY+bMmbC2Vk4tnfNufuPGjahTR9mpJSgoCH///TdCQ0NhYGCAFi1aYOrUqbDMHo0KAGvWrMHGjRuRlJQEHx8fzJw5ExUrVnzvfGl1CqniNGvWLOzdu7fAff755x/Ur/95hlqOHz8eYrEYU6ZMwevXr+Hs7IwhQ4ZgxIjCe/QRERERERERERER/T9RyBnA+HDFF8AwMTHBnDlzMGfOHI2f16lTB6GhoSrb6tWrlzs9VH6GDx+O4cM/frrhEhXA0HSR8jN+/HgMHjy4wH0+53yiBgYGmDlzJmbOnPnZ/iYRERERERERERERUUlVogIYH8LGxua959EiIiIiIiIiIiIiIiJhEWk7A0RERERERERERERERHkxgEFERERERERERERERILDAAYREREREREREREREQnO/+0aGEREREREREREREQkTHKFtnNAJQFHYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHg6Gk7A0RERERERERERET036JQaDsHVBJwBAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJjp62M0BERERERERERERE/y1yuULbWaASgCMwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHD0tJ0BIiIiIiIiIiIiIvpvUSi0nQMqCTgCg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiARHT9sZICIiIiIiIiIiIqL/FoVC2zmgkoAjMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwdBQKrvdORERERERERERERJ/P7K1SbWehxPm+r562s/DZ/ffOmNTEPryh7SwIilOFGgh//EDb2RAU93IVEfcgRNvZEBTHijXx5voJbWdDUCx8/RE+upu2syEo7sv34MnTZ9rOhqCU9SqDF09CtZ0NQSld1htPw8K0nQ1B8fL0xMu7QdrOhmDY+dRDyrVj2s6GoJj7tcHzJ4+0nQ1B8ShbHjEPb2o7G4LiXKE6wp4+1XY2BMXTy4tt2DwsfP1xWN9b29kQlPaSUNx9EqvtbAiKT1kn1id5eHp58fvfO9yX79F2Foj+b3EKKSIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHi3gTERERERERERER0WelkGs7B1QScAQGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCY6etjNARERERERERERERP8tCoVC21mgEoAjMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhw9LSdASIiIiIiIiIiIiL6b5HLtZ0DKgk4AoOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgER0/bGSAiIiIiIiIiIiKi/xaFQqHtLFAJwBEYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDh62s4AEREREREREREREf23yBXazgGVBByBQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERIKjp+0M0P+f4Bu3sGrzdjwPj4S1lSW6tmuF3l06QEdHJ980J89fwqYdexEdFwcnB3v0794ZbZo3UdnnwuVgbNyxBxFR0bCxskKrZo3Qv3sX6OsLvxhfu34D6zZtwYvwcFhbWaFT+3bo0bVzgdfk9LnzCNi+EzGxcXB0cECfnt3QqkVzlX2OnzyFXXv2Izo2Fg72dujUvh26dGxf4HGF4uqN21i9ZQee5ZYTf/TpXHDeT54PxMadexEdF68sJ906oW3zxir7HD11Dtv2H0ZUTBxsbazQtnkTDOjRGXq6usV9Sp/s8u0HWLr9IMIiY2BraYEerRphQPsW7/X/DH0WgcHf/449C3+Ei72tymdng29hzd5jeBEdB1srC7RrWBtDurSCvp7w7x2jitVg2bk/9F1KQf4mCSnnjiHlxH6N+5rWawbbwRPyPdar9YuQdvksAMDYtx4sWnWFvpMr5OI0ZDy8jaS9myBPSS6O0yhy6enpWLd2DS4FXkJGejp8fKpg5KhRcHMrVWC6xMRErF61EiEh1yCTyeBXqxZGjhwFGxtbjfsfOLAfe/fsxrr1G4vjNIrMtes3sH7jJrwID4eVlRU6tW+PHt26FHjvnDl7DgHbd+TWsb17dkerli1U9vn3xCns3LsXMTGxcLC3R8cO7dClY8HPMyFJT0/H2rVrEXjpEtLT0+Hj44NRX3wBNze3AtMlJiZi1cqVCAkJgUwmQ61atTBy1CjY2Njk7iOTybBlyxacPHECKSkpKFu2LIaPGIEKFSoU92l9tCs372JlwG48i4iCjZUFurVpgb6d2rzX//NR2AuMmDYL25f8CmcHe5XPTgdexZZ9R/EiKgbmpibwq1oJYwb0hI2VZXGdSpG4fPshlu48hKeRsbC1NEdP/0YY0K5ZvtcjSyLF5iOncfhCMOJeJ8HBxgpt69fEkE4tVZ4n98PC8VfAfjwIC4epsRE6Nq6NUd3blohnTsj16yp1Scf27dGjW9f3qEu2Iza3LukB/zx1yfkLF7Fz925EREbB1NQUNapXw/Ahg2FtbV3cp/TJgm/cwurN23Lb9V3atS60XX/q/CVs2rEnt13fr3uX3HZ9TFw8+o7K/1ndpnkTTJs4tsjPoyiFXL+ODRs2IDy7nHTo0AHdu3Ur8JqcPXsWW7dtQ2xsLBwdHdGzZ0/4t2ypss+jR4+wes0aPH78GCYmJvBv2RL9+/eHvr5+cZ/SJ2MbNn9Gro5ofPMQrnUfh9fnrxa4r0vv9ig7fQxMPEsh/XkUnvy+ElGb9qnsY1nTBxV/mwLLmj6QvklD5MY9eDRrCRQSSTGeRdFJTxdj87oVuHzpPDIy0lHRpyqGjhwPVzf3AtMlJb7G+tX/4EbIVchlMtTwq4OhI8fDOrsNu3jBPJw9dSzf9MvWbYeDg1ORnktRKK76JIdYLMbYcePQv18/+Pv7F9dpFCl+//vvUcgV2s4ClQAl58lfjJKSkjBp0iSEhITA29sbO3fuxL59+9C4cWPY2mp+qZNX8+bN0bVrV0yYkH/l+a7ExEScPHkSPXv2VPssJCQEAwYMwIMHD1S2HzhwAJMnT1bb/9SpU4W+jPhc7oU+xrQ589GsYT0M798Ld+6HYvmGAMhkcvTv0VljmnOBVzBnwRL06NAGtX0H4sKVYMz7exn09fTRonF9AEDwzdv4/tcFaNawHkYN6ovn4ZFYuWkrkt6kYNKooZ/zFD/Y/Yeh+H7WL2jSqAGGDOiHu/cfYNW6DZDJZOjTs7vGNBcuBeLXPxaia6cO8PP1ReDlK/h94SLo6+mjWZNGAIAjx09g4eJ/0Kt7V9SsUR0PHz3C8tVrkZ6Rjn691MuVkNwLfYxpv/yO5g3qYXi/nrj9IBTLN2yFTCbHgO6dNKY5G3gVsxf+gx4d2qCOb1VcuHIN8xYth4G+Hlo0UpaTnQePYvGaTWhavzbGDO6HpDdvsDZgF548e4E50776nKf4we48foav5i+Hfz1fjO7ZAbdCn2JxwH7IZHIM6dyqwLRPIqIxaf4yyGRytc+u3H6AKQtXw7+uL8b36YSnkbFYuu0AklJSMXlor+I6nSJhUKY87Md9B/G1S0g+sBWGZSvAqutA6IhEeHN8r9r+6XdCEPvbNLXtNgPGQmRsjPS71wEAJn4NYDfiG6ScP47k/Vuga2ENy0594fDVz4idOxmQCv8L4Pz5vyL04UMMHTYcJiYm2BqwBdOnTcXSZStgbm6uMY1MJsOPP8yEWCzGuPETIJPKsH79WsycMQOLFi+BXp6XAefOncXqVSvf+zmoLQ8ePsQPP89Gk0YNMXhAf9y9/wCr161X1rG9emhMo6xjF6BLp46oVdMXgZcv44+Ff0NfXx/NmiiDokeP/4uFi5agV/duqOlbAw9DQ7Fi1RpkpKejb29h3zs55v/2Gx4+fIhhw5XlJGDLFkybOhXLli8vsJz88P33EIvFGD9hAqRSKdavW4cZM2Zg8eLFueVk1cqVOH78OIYOHQpHR0fs3bsXM777DouXLIGLi8vnPM33cvfRE0yZtxAt6tfGyL5dcfvBYyzdtAMymQwDu3UoMG1YeCS+nbsQMplM7bOTFy/jx4XL0blVU4zq1x2vk5KxauseTPjxN6z9/ScYGhgU1yl9kjuPn2PSHyvhX7cGRvdoj5uhYVi09QBkMhmGdNL8guOPjbtx5NI1jOjSCpU83XH/WQRW7TmGmJev8cOofgCAyPiXGDtvKaqW9cC8L4fgeVQclu48jORUMb4b3vtznuIHe7cuGTRgAO7dv48169ZDLpOhdz7tqguXLuG3P/5El04d4VezZnZd8hf09fXRNLsuOXvuPObN/x3t2rbBkEED8ToxCRs3bcaU72bgn7//goFAywgA3At9hOlzfkOzhvUxrH9v3Ln/ECs2bIFMJkP/Hl00plG26xeje4e2qO1bDRevXMOvfy+Fvp4eWjRuAFsba/wzf7Zaun1H/sWZi4Fo599cw1GF48HDh/jpp5/QuFEjDBo4EPfu3cPatWshl8nQq5fmZ8PFixcx//ff0blzZ2U5CQrCggULsstJdmAnJgbfzZiBihUqYPr06YiIiMCGDRuQkpLy3t8vtYVt2PwZuTmh9uE10LeyKHRfp66tUH3jH3i2eCMSjl+AU+eWqL72N8gzsxCz4wgAwLiMG+ocW4fEyzdxve8kmFXwgvfsr6BvY4W7434s7tMpEn/Nn41HofcxcOhomJiYYsfW9fhx+iT8tXQDzPJtm0gx58cpSBeL8cW4ryGTSbF5/UrMmvkNfl+0Gnp6eujZdxBat1P9HpmSkoI/5/2IylWqw97e8XOc3gcprvokR0pKCmbNmoW4uLjPcTpFgt//iCg/DGBAGRi4du0aAgIC4OjoiODgYEybNg2nTp0qtr85f/58REZGqgUwQkJCMHbsWMjl6o240NBQ1K5dGwsWLFDZ/m6PSG1bF7AT5cp4YOZX4wEAdXyrQyqTYvOufejRsS0MDdW/pK3atA1N69fB+BGDAQC1fashJSUVawJ25AYwjp46C0d7W8z8ajx0dUWoVb0qEpOSsWP/YYwfNlDtxZuQbNyyFWU9y2DaN8oX6LVq+kIqlWLrjl3o2qkDDA0N1dKs3bgZjRvWx5iRw7PT1EBKagrWbw7IDWBs3bELjRrUx8ihyuvmW70aIqOisf/gEcEHMNZu3ZVdTpQ97Or4VoNUKsPmXfvRs0MbzeVk83Y0rV8HE4YPBADUrlENb1LSsDpgJ1o0qg+ZTI4NO/bCr1oVzJoyKTddec8yGDJxKoJv3kGt6lU+y/l9jJW7DsPbww2zxin/n/WrV4JUJsP6/f+iT9umMNLwgkMilWL7sXNYseswDPMZiXTw3GU42Vpj1vjB0BWJUKdqRbxOfoOAI2fw1cDu0NMT7sgUyw69kRXxDK/WLwIAZNy/AR1dPVi06Y6U04ehkGSp7C9PfYOs1Dcq28yatYO+syvi5n8HefZnFm26I/1OCBIDVuTuJ4mLgtO032Bc1Q/p14OK+cw+zYMH93H1yhX8/PNs+NWqBQDw8fHBsKFDcPjwIfTp01djugsXzuPp06dYtnwF3N1LAwA8vTwxdsxoXLhwHs2aKV8aJSUlYdOmDTh29Gi+L7mFZOOWrfDy9MTUb78GANTyqwmZVIptO3aia+eOGuvYdRs2oXHDBhgzagQAwK+mL1JSUrFh85bcAMbW7TvRqEF9jBg2BABQI7eOPVwiAhgPHjzAlStX8POsWaiVU04qV8bQoUNx+NAh9OmbXzm5gKdPn2L58uVwL60sJ16enhgzZgwunD+PZs2bIyEhAYcPH8bo0aPRvoPy5b+vry9GjByJnTt3YuLEiZ/nJD/Amm37UL5Mafww8QsAQN0aVSGVybBxzyH0at9K43NHIpFi19ETWL1tLwzy6QG9cfch1POtiilfDMnd5u7ihFHTZyMw5Baa1atVLOfzqVbsPgpvDzfMHqt8ptavVhFSmQzr9p9AnzZN1J45SSlp2HsmCBP6dMSgDsrRBbV9vAEAS7YdxIQ+nWBtYYYNB0/B1MgQf34zAvp6emhYvTKMDA0wf/0uDOvsDyc74bRZ89q0JQBenp6Y8u03AJR1iVQqw7YdO9GlcyeNdcn6DZvQqGEDjB41EkBOXZKCDZs35wYwtu3Yidp+fpg4flxuulKurpj4zbe4cjUYjRo2+Axn93HWB+xEuTJlMOOddr1MJsOWXfvQo2M7jffN6k1b0bR+3Xfa9dWRkpKKtQE70KJxAxjo66Oyd3mVNKFPwnDmYiBGDOiLqpWEO4oLADZv3gwvT8/cTmV+fn6QymTYtn07OnfunE852YBGDRvii1GjAAA1a9ZEakoKNm3alPvCceeuXTA2NsYPP/wAfX191K5VC4aGhli2bBl69+4NBweHz3eSH4htWA10dOA2sAsq/jYVeM9Bm96zv0bMrmN48O08AMDLExehb20J758m5gYwvCaPhDQlDde6jYVCIkHCsfOQpWfA5+/v8eTX5ciIiCmuMyoSoQ/u4trVQMz4+Tf4+tUFAFT0qYqxw/rg2OF96NFnoMZ0gRfO4tnTx/hr2QaUcvcAAHh4lsNXY4cg8MIZNG7mDydnVzg5u6qkm//L9zAzN8ekyTMFOXq2uOoTALh8+TKWLV+O9PT0z3MyRYTf/4goP1wDA8CbN29gb2+PqlWrwtHREQpF8Q9fyvs3pFIp5s2bh8GDB8PV1VVjmkePHsHb2xv29vYqP7oCmRonSyLBzbv30ahubZXtTerXhTg9HbcfPFRLExMXj4joGPU0DeoiKiYWkdHKRlhWlgRGhkbQ1X1bZC3MzSCRSiFOzyiGsykaWRIJbt+5iwb16qpsb9ygPsTp6bh7/4Famti4OERGRaNBXdU0jRrUR3RMDCKjogEAc36aiVHDBqvso6+nh6ws1Ye60CjLyQM0qqv6Uqdp/drZ5SRULU1MXAIiomPQuK6fWpqomDhERMcgMTkZb1JSUb9WDZV9PEuXgqWFOYKu3Sj6kykiWRIJQu4/QdNa1VS2N69TA2npGbj18KnGdJdu3MPqPUcxtHMrjO/bReM+mRIpjAwNoCt6e+9YmptCIpUiLUO49w709GBU3gfpN6+obBZfD4LI2ASGZSsWegiRuSWsOvVD6vnjyHr+WLlRRwcZD24j9eK/KvtKYqOUf9ZOeEPL87oeEgIjIyPU8PXN3WZpaQWfKlVwLTg4/3TXQ+Dm5pYbvAAAd/fSKFWqlEq6Hdu34XpICL6bMRO169QpnpMoIlkSCW7fvqNWxzZq2CC7jr2vlkZZx0ahft40DeojOjoGUbl17A8YOVx1hJ9eCahjc4RklxPfd8uJlRWqVKmC4GvX8k13PSS7nJR+p5yUVpaT4OxycvPmTchkMtSrXz93H30DA9SuXbvAMqgtWRIJbtx7iMa1fVW2N6vnB3F6Bm49fKQxXdD1W1i7Yz8GdeuAMQPVg1ZyuRy1qlVGZ/+mKttLuzoDAKJi44vmBIpYlkSKkAeP0cxPNajfonY1pGVk4mZomFqatPQMdG9RH419fVS2ezgre7RGxb8EoJyWqkH1SirTu7SoXR1yhQJBt9XbgUKRf11Sv9C6pEG9eqppGjTIrUvkcjlq1KiOtm1aq+xTqpRy5HR0jHBfNua06xvmaa81qV8H4vR03CmgXa+WpkEdlXb9uxQKBf5asQalS7mhZ6f2RXsSRUxZTm6j/jt1HwA0bNgQ6enpuHfvnlqauLg4REVFqdSXOWmio6MRFaVsf4SEhKB2rVoq00U1bNgQcrkcIdevF8PZFA22YTWzqOoNn39+RuTmfbg5ZEqh+xuXdoWZdxnE7j+hsj1mz3GYlvOASVnlM9nevyHij55TmS4qdvcx6Ojqwr5Vw6I9iWJw83owjIyMUa3G2zrC0tIKlXyq4fq1ywWmc3Fzzw1eAEApdw+4liqdb7qQ4Mu4EngeQ0eOh6mZ8DrkFGd9kpqaitlz5qBKlSqYM1t9xJtg8fsfERXg/yaAce7cOXTr1g3VqlVDvXr1MG3aNCQnK+eyu3btGnr16oWqVauiU6dOOHLkCLy9vREZGYlp06Zh8eLFiI6Ohre3N/bs2YNBgwYBAFq0aIE9e/Z8VH5u3LiBQYMGoWbNmqhTpw6mT5+OxMREAMC0adOwd+9eXL16Fd7eyt5rYrEYwcHBWL16NQYMGKDxmKGhofDy8vqo/HwO0bHxkEilKJX9xT2HW/aX24jsl0LvehGpfGjkTeOanSY8O03Xdq0QGRODbXsPIiU1DfdCH2PXwaOoW7MGLMzNivxcikpMbCwkUilcXVWn03BxUZ5vRPb5vys8IhIA4JYnjauzMk1kdsOkdKlScMoOuL1JScGR4ydw4vRZdGzftsjPoyjllhMX1YaCW57/+btyyombS95yojxGRFQMzExNoKuri9jslyg5UlJTkZqahug4Yb5IAoCo+FeQSKVwd1btXVfKUTnP+osYzXmv5FUa+xf9jGFd26gE997Vs1VjRMQmYNOhk0hJE+PO42fYdvQsGlSvDEsz06I9kSKkZ+cIHX19SOJUy4MkQfnyQ8+x8ClqLDv2ARQKJO0PeLtRoUDS7vVIv6X6ktWkujKIKokJ/8ScF7+IiAg4OTmpBa9dnF0QFRWZf7rwCLhoCJA7u7ggMvJturbt2mPV6rVo0ED4X4RjY5R1bN760iWnviywjlW9Frn1cnYd6+6uWscePf4vTp4+g47t2xX5eRSH/MqJs4sLoiLzLyfhEREaO1K4uLjkPn8iwsNhbGysNgLUxcUFr169Elxvv+i4BI3PHVennOdOrMZ0Fct6YveyPzC4RyeVF2g5RCIRJgzpi0Z5AiPnrypfNpYppblDirZFxb+ERCpTf+Y45f/McXWwxbShveDhojoFx7mQ29DT1YW7swMysrIQ8/K12nGtLcxgamyU77NMCHLqkrxl38VZWbdoqksiIiIAIP82XlQkRCIRvhgxXC1gGhikfOFWunTBc75rU0xsnMZ2fU7bS1N7LTzfdn3+aU5fCMSDR08wfvjgfNsyQhEbEwOpxnKi2kZ/V3i4sl2R95nj7JJTtiKRmZmJ+Ph4teNaWVrCxMRE5RktNGzDapYeHoOzFfzxYPKvkIkLD7aYVVB+x097/Fxlu/jpC+Xn5ctAZGQIEw83pD1+prJP1stESJJTYFa+TNFkvhhFRryAg5OzWtvEycUV0VER+aaLingBFxf1KbOdnV0RHameTqFQYOOapahcpTrqNWz6yfkuDsVVnwCAoaEhVixfjm+/+QaWlsJej+td/P5HRAUR7rw7H+D169cYP348pk2bhqZNmyI2NhZTpkzB/PnzMWrUKAwbNgydOnXCvHnz8ODBA8x+Jwo9Y8YMWFtb48iRI9i1axeMjIxgZmaGCRMmYOfOnShfvnwBf1mz27dvY+DAgejduzd+/PFHJCQkYNasWRg+fDh27tyJGTNmICMjA7GxsVi8eDEAwMLCIjdYoilokpycjLi4uNyprhITE1G1alVMnjwZZcoIo7GSJhYDAEyMjVW2G2f/niZWf6GRlqbcZmKimsYkTxrfqj7o27UTlq3fgmXrtwAAynl64PtvhD0nbFqa8pqYmpiobM85P3G6ON80JnnS5FxHsVg1zYOHoZg4WTnvY/lyZdGjq+a1RoQip5yYmmguJ2JN5SSfNCbGRtmfp8PI0BDNG9bF3iP/ooy7GxrX9UNi8hssWr0Rurq6yMjILPJzKSqp2edsmn0+OUyMlcOG0/IZZeRgY1XosWtVLo9BHVti0ZZ9WLRlHwDA28MNcyYM+ej8fg4iY+UXU3mGanlQZP8uMjJRS6OS3twSpnWbIuXkASg03Gfv0rNzhFX3wcgKD0PGXeH2csyRJk5Tqx8A5T2Ut354l1icBhdX9YZ/3nSlShW8ELiQpInTAKjXlznPFE3XIy0tTWWfHAXVsZO+VfaeLF+uLLp36/LpGf8MxGkfWU7S0uCqYQ2Ld9OlicX5HhtQXkPjPG0BbUrNeYYY5/MMySfgYm/74QssR8bG45+N21GujDvq+Vb94PSfQ2r2yzS1Z45Rwc+cvM4E38KhC8Ho5d8IFqYmeJmknKbBLM9xAcDUyPC9j6sNH1eXfFh7LUd0TAxWrVkLL09P1Pbz07iPEKQW0q7X1F5LLfSaqKfZvu8gfCp6o0aVyp+e6WKW+11HrZwof9dYTvJL8045eftc+vA6W9vYhtVMkpgMSeL7LwysZ6nskCd9k6qyXZqiLBt6FmbQtzTXuE/OfnoWwu3Ul0PZNlEPPhkbmyA9ux7WJE2cBmcNAQxjYxOINaS7diUQkREvMOyLLz8tw8WouOoTANDX1xfMGqkfgt//iKggwu7m8p7i4uKQlZUFFxcXuLq6ombNmli+fDkGDhyI7du3w87ODj/99BO8vLzQoUMHjBgxIjetubk5TEyUPbft7e1hbm6eG6W2sbGBkZH6l7DCrF27Ft7e3vj+++/h5eWFunXrYsGCBbh37x4uXrwIc3NzGBkZQV9fH/b29u91zMePlcPfFAoF5s2bh7/++guZmZno168fXr58WUjqz0OhYd2Od4l01IubXPF+aRYsW4Otew9gUK+u+GvO95j25WikpKZi8s/zkJEp3BfThU1HpumaKAq5Jjp50jg4OOCPeXPw7aQJeP06EZMmTxP0y3p5IddER0MvV7m8kOsoUs5p+s3o4fBv0hDz/1mF9gNGYfhX38GnQnmU9yoDIw3zNAtFodfkE+Zs/XXNNmw8eBLDurbB8u+/xA+jB+BNqhhf/voPMjIFPBVOYedcyH1i1qAldEQipJw+XOB+eo6ucPh6FiCX4+XK34HPMIXgh5DL5ZDJZCo/igLuh4LKSkH3Uc49VNIUVjfkrS+BwuvlvNfQ0cEef/w6F99OmqisY7+dIrg6VlM50bSWVo4Cy0kB10eUna6w573Q5pku6J4B3p7Xp3oRGY0vf/wVuiIR5nw7HiINzzMhKOyZ8z7X43TwLcz4ZyOql/fEl32Vi6Z+6L0lJIW2MzTk/X3bsO8Kj4jAlOnfQVdXFzO/mybYMgIUft9o+n9+aBm4+yAUj54+Q5+uHT88g1pQ+HcdDdeksPpSJHqP7wsCvnfYhi0Smr7/vEshlwOF7iPENqxU5aeg77ma2mw5CrqPNF27o4f2oIxnWVSrIdwgcXHVJyUav//9ZykU/PnQn/+i/4sRGBUrVkSHDh0wevRo2Nvbo0GDBmjatCn8/f3x5MkTVKpUSWWR59q1axdwtE/36NEjNGiguiBfhQoVYG5ujtDQUDR5Z3Gl9+Xn54egoCBYW1vnNgSXLFmCpk2bYs+ePRiVvYiTNpmaZvcWyNOTMae3lampem9Ms/dIk/DqNQ7+ewoDenTB8P69c/epWK4sBk/4FkdOnkG39m2K7kSKkGluDwrV88sdUWCq3ovA1FTZ8yDvFBzifNLY2drAztYG1ar4wNnJCd9Mm4ELlwLh36JZ0ZxEETPLuSZ5emTlXCMzk4LKiWqanBE6OdfZxNgI0yaMwpcjBiEu4SUc7e1gYmyEQyfO5E5LJkRmOb1m8rwUzem1pumavI/410nYezoQQzu3wpheyoV2awKo7FUavSf/ggNng9Cr9YfXR59DTq8ZkZHquef0vJEX0qvGxLceMu7fyl24TRPD8pVh98UUKDIzELfgB0hfxn1irove1oAtCAjYorKtQcOGSEpKVNtXnC7OrT80MTU10Ti1j1gs1tgbriTIOd+8z5AC69js+kK9js157qheC1tbW9ja2qJqFR84OTvi26nf4cKlS/Bv0bxoTqIIBAQEIGCLajlp2LAhkpKS1PZNFxdSTkwKKCfZ6UxNTfPdJ+dzIcl9Fmfk99wpuEff+7h+9wG++30JTIwMsfjnqXBzEu6Cu2Ymys45as/U93zmbDl6Bn9v2Y+alcrij69GwNBAOWd/Tg9sTXPTp6VnfPSz7HPIqSvyluvc3q4ayrSpyYe1127dvoNZv8yFsbERfpv3S+40IUL19prkc99obMPmV7+KNaY5F3gF5mamqFtTdf0yocrvmSMuqJwUksbUxCS3N3Vhda8QsQ1bNKTJKQAAPXPV/3XOqAppcmruyIu8++Tsl3MModi5dQN2BKxX2VavQRONbdh0cVqB5dzE1BTpGtr+YnFabl2cIyXlDe7evoH+g7X/fqQgxVWflGT8/kdEBfm/CGAAwJ9//olx48bh/PnzCAwMxOTJk1GzZk0YGhqq9UI0MCjentj59aJRKBQqC7N9qLxzTRsbG8PNzQ1xccKodF2cHKErEiEqRjU/UTHKuaVLu6nPBV0qezqTqJg4lPd8OxVW5Dtp4hJeQqFQwKei6nReHu5usDQ3x7Nw4c4L6+LsBJFIpLZIY3T2IobuGoZ25sxpGRUTg7Jenm/TZB/DvZQb0tPTEXTlKrzLl4frO+tClMve/9Xr10V7IkXIxckhu5yozjkeWWA5yV4QNSYW5T09crfnlLWcNIHB12FuZooqFb1Rxl15bROTkpHw6rVKOqFxc7SDrkiEyNgEle05v5dx/bjgS+zL11AoFKjq7amy3dPNGZZmpgiLFO7ioZKEWChkMujZq85Zr+eg/F0Sm/99r2tlAwN3T7w6dSjffUz8GsJ2yARIYqOQsGQOZEnCvGfatG2H2rVVF9IOCgrE9ZDrkMvlKr13Y6JjCpz+ydXNDWFP1RfTjImOQXnvD58uUQgKrWM1XA+37PoiOjoGZd9ZV0pzHVtOZTqlctn7v3olrPLStm1btc4ZQUFBCAkJUSsn0dHRBZYTNzc3PNVQTnLWCgOUZUksFiM5KQmWVla5+8RER8PBwQGGhoafeEZFy9XJXlnH5mmfRGYvsl3a7dNeJJ+4cBlzlqxCaRdn/Dnzm4+aeupzcnNQPnMi4lRH8Ob8nnedixwKhQJ/bNyD7f+eR+t6vvhpdH+VxbpNjAzhYG2JyFjV475OTkFaRibK5HNcIXBxdi7yuuTd++zM2XP4Y+FfKOXmhjk//wQ7O9siP4ei5uLkCJGG9lrO7+4FtutjUe6ddn1Oey1vmqBr19GwTi2VjmZC5pxdTmKiVednj87+XXM5UbZHY6KjVctJThp3dxgbG8PW1jZ3W46kpCSkp6drPK5QsA1bNFIfKde1MPEqjTc3H+RuN/VSLt6d+vApZGlipEfGwiR7Ww4DexvoW5ghNZ8F07XFv01H1KxdT2Xb1aCLuHk9WL0NGxMFt1Kl8x4il6urO8LCHqttj42JQtnyqgs73wy5AplMhnqNmn7aCRSz4qpPSjJ+/yOigpTwMWZKt27dwty5c+Hp6YkhQ4Zg5cqVmDt3Li5fvgxnZ2fcvXsXWVlvh5nevXu3wON96hB3b29vhISEqGx7+PAhUlNTcxfh/tC/sX37dtSpU0dlLsTU1FQ8f/4cZcuW/aT8FhVDAwNUrVwR5y9fVQninAu6AjNTE1Qsr55PN2cnODs64NylyyrbzwdegZuL8jM3ZyfoikS4ff+hyj7hkdFITkmBi6NwvxAbGBigqk9lXAy8rHJNLgQGwdTUBN4a1lhxdXGGk6MjLlwKVNl+ITAIri4ucHJ0hK6uLhYs/gc79+xV2efajZsAgDIe+TcAtU1ZTirg/OXgPOUkGGYmJqhYXn2hemU5scfZwKsq288FXc0uJ8qp2PYfP4Wl61V7Ie88eBQikQj1/VQXWRUSQwN91KhQFmeCb6pck9NXb8LMxBiVvTw+6rilsl/a3czzheZ5dBySU9Pg6mD3KdkuXlIJMh/fh0kN1YVPTWrUg1ychqxn6l9ichh4lAMAZD59oPFzIx9f2A6diMywUMT9MUPQjVdbW1uUK19e5cfXtybS08W4/s5zJjk5CXfv3kEN35r5HsvXtyYiIiIQHv4id1t4+AtERITDt0b+6YTMwMAAVXwq41JgkMq9c/FSIExNTfOpY1001rEXLwWq1LELFy3Gzt2qdWzI9RsAAM8yHkV/Mp/A1tYW5cuXV/nx9fVFenq6SnskOSkJd+/eha9v/vWhr6+vspy8eKecvHiBiIgI1MhOV6OGsrf0xYsXc/eRZGXh6tWrBR5bWwwNDFCtkjfOXQlRKSdnL1+DmYkxKpXzLCB1wQJDbmH2opWo4l0Wy36ZIfjgBZDzzPHCmeDbeZ45t2BmYgwfL81tiH+2H8L2f8+jf9ummDNukErwIkedqhVw4cY9ZEmkb48bfAu6IhFqVS5X9CdTRJR1iQ8uBQbmU5eo5/1tXXJJZfu7dQkAXA2+hvl/LkClihXw5++/lYjgBZB932ho158PugLTQtv1V1S2K9v1znB2fDsy6U1KKiKjY+BT0bv4TqKI5V9OLsHU1FTj2okuLi5wcnJSqS8B4NKlS3B1cYFjdjnx9fXF1atXkSWRqBxXJBKhWrVqxXRGn45t2KIhfhoOcVgEnLu1Vtnu1LUVUh89Q/oL5YLOL09egkO7phAZvO0U6dStNeRSKV6eUf0+rW02tnYoW66Cyk8131pITxfj5vW33+mSk5Pw4O7tAqd7qubrh6iIF4gIf567LSL8OSIjXqC6r2q6Rw/vw9bOHg4OThCy4qxPSix+/yOiApSM7i6FMDMzQ0BAAPT19dGrVy9kZmbiyJEj8PDwwNixY3Hs2DFMnz4dY8aMQVRUFBYuXFjg8XKG8T58+BDW1tYfPBXC0KFD0a9fP8yePTt3jYrZs2ejUqVKqFevXu7fiI+PR0RExHstmNq4cWP88ccfmDJlCiZOnIiMjAwsWLAANjY26Nat2wflrzgN6tUVX//wC36c/xfatWyKew8fYdveQxg1qC+MDA2RJhbjeUQUXJ0cYWVpAQAY3Lsbfl20HBbL16BB7Zq4eOUazly6jB+/VS66ZWVpgR6d2mLbXmU03a9aVcQlJGD9tt1wcrBDh1bCmcZDk369e2LqzB8x+9ff0ca/Be4/eIide/Zh+OCBMDJSXpMX4RFwcXaCVfb6KwP69sIffy2Ghbk56tWpjcDLV3HuwiXMmPItAGWDp0+P7tgYsA1WlpaoVrUKwp49x6at2+BbvRpq+wn7ZeSgnl3x9Y9z8ePvf6Ndi6a4+/ARtu07hC8G9sm3nAzp1Q3zFq+ApbmZspxczSknbxdy796+Nb79+VcsXrMJDWr7IuT2PWzefQD9unUU9BRSADCsa2uMm7sE0/9ei45N6+L2o2fYdOgUxvfpBCNDA6SK0/EsKhZujnawtjB/r2NaW5ijT9um2HToJACgTpUKiHn5Gqt3H4WznQ26NK9fnKf0yZKP7oTDxJ9gN/JbpAaegqFnBZj7d0bSvs1QSLKgY2QMfedSkCbEqgwV1nctDYUkS/OQYD192AwYC0VGOt4c3Q19Z9X6V5b4CrKkV8V9ap/Ep0oVVKlaFb///huGDRsOcwsLBGzZDFNTM7Rr1z53v/DwF5BIJPDyUr5katy4MXZs34Yfvv8eQ4YOBQCsX7cOHh4eaNS4sVbOpSj069ML02b8gDnzfkPrVv64/+ABdu7Zi+FDBuXWseHh4XB2dn6nju2DP/76G+bZdWzQlSs4d+Eivps6GYCyju3dswc2bdkKK6vsOjbsOTZv3YYa1auhlsDrWACoUqUKqlatit/nz8ew4cNhYW6OLVu2wNTUFO3av1NOXmSXk7Jvy8n27dvx/Q8/YGh2OVmXXU4aZ5cTR0dHtGzZEitXrkRmVhZcXV2xd+9epKamokfPnp//ZN/DkB4dMfHn3/H9n/+gffPGuBP6GAH7j2LMgJ7Zz510PIuMgqujA6yznzuFyczKwq/L1sHE2AiDunfEs8golc8dbG3gYGuTT2rtGt6lFcbOW4ppi9ajU5M6uP34GTYdPo3xvTtmP3My3nnmmCH0eSQ2HDqFSp7uaFmnBu4+eaFyvDKuTjAzMcLgDi3wb+B1fDl/Ofq3bYoXsQlYuuMQujavByc7YV6LHMq65Hv8Mu83tG7VEvcfPMSuPXswbMhgGBkZaaxL+vftgz//+hsW5uaoW6cOgq5cwfkLFzF96hQAQFZWFhYuWgwTY2P06d0L4eHhKn/Tzs4O9nbCfRE7sFc3fPPDHPw0fyHatWymbK/tPZinXR8JVyen3PbaoN7d8duiZbBYbob6tf1w6co1nLkUhB++nahy7LAXymvhUapkLTTbp08ffDdjBubOm4dW/v548OABdu/ejaFDhuRbTvr17YsFCxfC3MJCWU4uX8b5CxcwberU3OP27NED586dww/ff4+uXbsiKioK6zdsQNu2beHgINwp6QC2YT+GnrkpzCqVhfhpOLJeKqdUevzLP6i25ldIXich7uBpOHZqAZde7XC936TcdE//WA2X3u1R69BqPPtrHUzLe8B79teIWL0DGRHCH5VS2acaKlepjr9/n4OBw0bD3NwC2wPWw8TUDK3bdcndLyL8OSSSLHh6KV/iN2jcHLt3bMGcH6ZgwBDl1FCb16+Eu4cn6jdSnTb5xfMwuLl7fK5T+iTFVZ+UZPz+R0T50VEUtmpYCXHmzBksWbIEYWFhEIlEqFu3LqZOnQp3d3c8fPgQv/zyC27evAk3Nze0adMGS5cuxalTp+Dm5obFixdj7969OH36NADll43x48cjMDAQX3/9NYYNG1bo32/evDm6du2KCROUL1ODgoLw119/4f79+zAzM0PLli3xzTffwCp7qoU7d+5g3LhxSE5Oxr///qsSLd+zZw+mT5+O0NBQlb9x7949/Pnnn7h9W9ljrkGDBpg+fTqcP3EO3diHNz4pfV7ng65i3dZdiIiKhp2tDbq2a4XeXZRzl964cw+TZs7GtC9Ho22LprlpDhw7iW37DiHh5Ss4Ozqgf4/OaN3s7Qs1hUKBXQeP4sCxk4iJi4etjRX8qlfFyAF9cr8wFRWnCjUQ/lhz5P5jXQy8jI0BWxEZGQVbW1t0at8WPbt1AaCcE/nb777Ht5MmoHXLFrlpDh09jp179iHh5Us4OzmiT8/u8G/+toGmUChw6OhxHDh0BNGxsbC0tEDzJo0xqF+fIp8mzb1cRcQ9CCl8xw9w/nIw1m7dhYioGNjZWqNr21bo00X5Uu3GnfuY+P0cTJ/wBdq2eDu/7f7jp7LLyWs4OzpgQPdOaN2skcpxT54PxMadexETlwBHBzt0beOP7h1UezMVBceKNfHm+okiPeaZ4FtYufMwXsTEw97GEj39G2NAB2WZCLn/CKNnL8IPowegY5O6amkPnruMWcs3Y/+in+Fi/7Z3p0KhwNajZ7Hn1EVEx7+CnZUF6lStgLG9O773l8j3ZeHrj/DRRRtQNa5eB5YdekPf0RWypFdIOXcMKScPAFDOYer49Wy82rAYaUFnctNY9x0Fk+p1EDV1uNrxDL194PjVrHz/XvKh7Ug+tL3I8u++fA+ePH1WZMfLkZKSgtWrViLochAUcjkqVaqMkaNGwc3tbYN82tTJiIuLw7r1G3O3JSQkYMWKZbh54wZ0dXXh61sTI0eNgo2N5h7BCxb8gTu3b6sc41OV9SqDF09CC9/xA1wMDMKmLQFv69gO7dCjW1cAyjp28vQZ+HbSRLTyf7eOPYZde/YiIeElnJ2c0KdXD7TMU8cePnoM+w8dRkxMTh3bBAP79y3yOrZ0WW88DQsr0mMCynKyatUqXA4KglwuR6VKlTDqiy9ypyAAgKlTpiAuLg7rN2zI3ZaQkIAVy5fjRm458cWoL75QmcpSkpWFdevW4ezZs0hPT0fZcuUwfPhwVKhQoUjy7uXpiZd3g4rkWDnOXQnBmm17ER4dC3sba3Rr2xx9O7UFoFzDYsKPv+G7ccPRvnkjtbSHT1/A3H/WYNey3+HsoBz1F3LnPr78aX6+f29Yr84Y3rtrkeTdzqceUq4dK5Jj5TgTfAsrdh/Fi5h4OFhboad/Qwxor+wUcu3+Y4z+ZQl+HNUPHZvUwfJdR7B67/F8j7V8xnj4VVL2frzx8Cn+DtiPR+FRsDIzRbuGtTC6Rzvo6ekWaf7N/drg+ZNHRXrMS7l1SSRsbW3RsUN7lbpkyvTv8M2kiWjl3zI3zeGjR1Xqkt69eqBlc+V1vHnrFqZ+NzPfvzegX18M7N+vyPLvUbY8Yh7eLLLjAcCFoKtYt3Vnbru+S7tW6N1Fuej2jTv38NXMWZj65Zg87foT2L7vEOJfvoKLowP69+iCVs1UA+VnLgbh59//woZ/FmicPrSoOFeornH6xE9xKTAQmzdvRmRkJOzs7NChQwd0z+5Qdvv2bUydNg1ff/UV/P39c9McOXIEu/fsQUJCApycnNC7Vy+0aNFC5bh3797F6jVrEBYWBgsLC7Ro3hwDBw4s8im2PL282IbNw8LXH4f1i2c0kE3j2qh3ahOCWgzE6/NXVbbdGj4NkRvfjvZ0H9kbnl8Ng1EpZ4jDIvB0/kpEbdmvcjzrBjVR8bcpsKhWEVkvExG1ZT8e/bQICqkURam9JBR3n8QWvuMHSk1JwfrVS3A16CIUCgW8K/lg6MjxcHV7O/3RD9MmIj4uFsvXvW2Tv0yIx9oVi3Dr5jXo6eqhmm8tDB05HtZ52rATRw9C6TJe+Hrqj0Wed5+yTiWmPskRFxeHIUOHqh2jqHh6efH73zvcl+8pkuP813y3JrPwnUjF3OHCmrL3c/i/CWB8iCtXrmDQoEG5AYz/uqIOYJR0xRHAKOmKI4BR0hVHAKOkK44ARklXXAGMkqw4AhglXXEFMEqy4ghglGTFEcAo6YojgFHSFUcAo6QrjgBGSVccAYySrjgDGCVVcQUwSrLiCGCUdMURwCjJGMD4ONNWZWg7CyXOryONtJ2Fz+7/Yg0MIiIiIiIiIiIiIiL6//J/sQZGcZo1axb27t1b4D7//PMP6tcv2fNwEhEREREREREREREJyX8ygFGnTh219SXyM378eAwePLjAfYS+sBoRERERERERERERUUnznwxgfAgbGxuVRSuJiIiIiIiIiIiIiKj4cQ0MIiIiIiIiIiIiIiISHI7AICIiIiIiIiIiIqLPSqFQaDsLVAJwBAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJjp62M0BERERERERERERE/y0KubZzQCUBR2AQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4OhpOwNERERERERERERE9N8iVyi0nQUqATgCg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiARHT9sZICIiIiIiIiIiIqL/FoVCoe0sUAnAERhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOHrazgARERERERERERER/bfI5QptZ4FKAI7AICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsHR03YGiIiIiIiIiIiIiOi/RaHQdg6oJOAIDCIiIiIiIiIiIiIiEhwdhYKxLiIiIiIiIiIiIiL6fCYtTtV2FkqcvyaYaTsLnx2nkCI8eBql7SwISkUvVwQ9eKPtbAhKvYoW+GOPXNvZEJRvu4mw5yqvybu61RaxPsmjopcr/jrAfgLvmtRJBy+ehGo7G4JSuqw3Mg4t03Y2BMWowxgsO6btXAjHmDbAqpPazoWwjGwJvL5zUdvZEBSbKg3RsOM5bWdDUC4ebIKUa6xM3mXu1wa7rrAN+64edUS4+yRW29kQFJ+yTjis763tbAhKe0ko3oQc13Y2BMWiZmvcexKj7WwIRuWyztrOAtH/LU4hRUREREREREREREREgsMABhERERERERERERERCQ6nkCIiIiIiIiIiIiKiz0oh55TLVDiOwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLB0dN2BoiIiIiIiIiIiIjov0WuUGg7C1QCcAQGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCY6etjNARERERERERERERP8tCrlC21mgEoAjMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhw9LSdASIiIiIiIiIiIiL6b1HIFdrOApUAHIFBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQURERET0P/buOiyqrI8D+Fe6QZQOKcUAlbS7u3t17c5V1651XXPttbuxu1tRDMAGFEQaxACJoYZ5/xgYHWcAV0GGd7+f5+HZ5c45l3OO95575v7uOZeIiIiIiIgUjkpxF4CIiIiIiIiIiIiI/luyRcVdAioJOAODiIiIiIiIiIiIiIgUDgMYRERERERERERERESkcBjAICIiIiIiIiIiIiIihcMABhERERERERERERERKRwGMIiIiIiIiIiIiIiISOGoFHcBiIiIiIiIiIiIiOi/RZQtKu4iUAnAGRhERERERERERERERKRwOAODioxAIMCubZtw985NpAkEqOxUFYOGjoSFpXW++RI+fsC2zevh7/sAQqEQbh6eGDBkJAwNy0jSXDp/Bv+s/lsmb+u2HTB05LhCr0thSBOk4uCuNXh49yrS0wRwrOyCXoMmwMzC5pv3sXbxFKhraGLIuLlS20UiEc6f2IPrF47h/bs4lDUyRdO2PdC0dffCrUQhy0xPwf3zfyP02SVkZqTCzMYNNdtOg4GRbb75rnn9juBHp2S2N+m9EnbOLWS2+5xZjHdRz9F26K5CK3tRSU9LwfkDf+PZw0vISEuFjaMb2v4yDUZm+bdJ2Ct/XDi4AlFvnkNdXQtOni3Rott4qGtqS9K8iwvDxYMr8ealLzLSBTC1qoCmnUfDoUqtoq7WD2FfIiszPQV3z/yN108vIjMjFeZ27qjdbipKG9t98z5Cn13B+Z2j0H74TljY15BsT06Mw93TSxARdBvZ2VkwLVcdni3Hw9jKuSiqUige+vljx67dCAsPh4GBAdq3aYOunTuiVKlSeea5dv0G9nkdRExsHEyMjdGjWxc0b9pEKs3NW7dx8MhRRERGQVtbG67Vq2FQ/34oXbp0UVfph90JCsPac3cQEvsehrpa6Fm7Gvo1dM2zTdIzs7Dx0j2c9QvEx2QBKpiXxfDmNVGnoo1UuidhMVh1xhvPImKhpaaGOhXLYULbeiijq/UTavXjMtJTcPvkMgQ/vojM9FRY2LujfqdpMDT59nMn5OllnNoyCl1G74JV+c/nzrO7h3D5wEyZ9NXq9UGjrrMLpfxFISMtBTdPLMNLf3GbWDq4o1HXf9cmwY8v4/imUeg+bhesK3xuk6SPsbhxbAnCgu5AmJUBa8daaNBxMkob2xRBTX7cvUfPsHH/MbyOiIahgR66tGiE3u1b5NuX5Ap6HYZB0xbg0Jq/YGZcVuqzM9duY9/JC4iMi4dpWUN0adEY3Vo3+ab9KprRA+3g6KCLMdMfF5i2tIEqxgyyRw1XQygrl4LPww9YszUE7z9mSNIoKwEDetmgVRMT6OupIig4Gf9sC8GLl0lFWY0f4vMkEOsOnUZIZCzK6OuiW7N6+KV1ozz/PTMys7Dn7FWcufUAcR8SYGxogFa13dC/fVOoqnz+Ov7idThW7juBgNfh0NbUQLv6nhjapZVUGkWWnpaCC15/4/kXY9jWfQoew4a/8sfFQ+IxrJq6Fpw9W6JZV+kx7NuoYJw/sAxhr/xRqlQpVKzeEC16TISugVFRV+uHCASp2LN9I3y8byItTYBKTlUxYMjobxrD7tjyD/x97yNbKISLew0MGDIapXPGsGuWL8T1K+fzzL9+uxeMjU0LtS6FScPCBPUfncbDLqPw4eb9fNOa92gDh2kjoGVnBcGbKAQv3YSo3cel0ui7OaHS4t+h7+aErE8piNx1FC//WAtRZmYR1qJw+DwJwLqDZ/A6MgZl9HXRtVk9/NKm8bddd95E4NdZf+Po8lkwNyoj9dmpG/ew58xVRMbFo6yBPto28MSADs2hoqxcVFUpVAJBKnZv3wQf7xtISxOgslM1DBgy6pvOne1b1knOHVf3Gug/ZJTk+9+a5Qtx7cqFPPNv2H5Aoc8dov+yEjEacnR0xMKFC9G5c+fiLgr9C8uX/ImXgQHoN3AotLS04LVvF2ZOnYg167dBR1dXbh6hUIg/Zk9Famoqho8ej6wsIXbv2Iy5M37H8jUboZIzgA99HQwLSyuM/W2KVH6D0oZFXq/vtWH5TIS8fIbu/cZAU0sbJ7y2YPHMEViwxgvaOnr55s3Ozsb+bSvw8O5V1GnURuZzr52rcen0AXTqNQx25avgia839mxaChVlFTRsobjnzVWvyXgb/hg1Wk2Cqro2/K6sw5nNv6LrhFNQ19TPM9/7mADYV2uDKrV/kdquX9ZGJu2TW9vx9PYOmNl6FHbxi4TXuskID36MVj0nQV1TG1eOrcPmv37FhEWnoKktv01iwoOwddFA2FeuiT5jVyPp41ucP7gc72JDMfD3LQCAlKSP2LygH7R0DND2l2lQ19TBg2uHsG3xYAyeth12lTx/ZjX/FfYlsi7tm4S4sMeo1WYS1DR08PDSPzi58Vf0nHga6lp5nzu50lI+4saROTLb0wVJOP5Pb2RmCODZchz0y5bD66cXcWJ9X7Qfvgsm1lWLojo/JCAwELPnzUeDenXx6y998OxFALZs3wGhUIie3bvKzXPL+w4WLVuOju3bwcPNFXd8fLBsxSqoqqqiUYP6AIBrN25i4ZJlaNOqJfr364uPHz9i5+69+H36TPyzagXU1NR+ZjX/lSdhMRiz9QRaVK+AUS1rwT80GivO3EJWdjYGNZHfF849eBk3X7zG2NZ1UM6oNE4+fIExW09gy4iucLWzAAC8iIjD4HWHUaOCNVb0b4f4xGSsPuuN8PgE7Brb42dW8bud3zURMW8eo277yVDX0IHP+bU4srYf+k47A41vOHcEKR9xxUv23AGA+KgAlDa2RfM+i6S2a+mWlZteUZzZMRHRoY/RoONkqGnq4O7ZtfBa1Q8DZn5jmyR/xMX9sm2SkZ6KQ2v6AyiFpj3mQkVVDXfPrcOBFb+g/8zT0NQ2KPS6/IhnL0MwadFqNK3tgSE9O+JJ4Cv8s+cwhNnZ6Nepdb55Q8IjMWnhKgiFQpnPTl6+iYUbduKXDi3hWa0Knr8KxeqdXkhNS0f/LrJjOkXWs6Mlenaygv/ThALTKisBy+Y6Q1tTBcvWvYSKihKG/2qL5X84Y+B4PwiF4uUiRg+2R9tmZtiw8zVi49LRo6MlVs6vigHjfREVk1bENfr3nr56g/HLNqFZTRcM79oGj4JeY/X+kxAKhejfvpncPMt2HcFZ74cY3LE5KttZ40VoBDYfPY+Ydx8we2hvAEDk23cYuXAdqjrYYOHY/ngTFYd1h84gMTkV0weVjP714PrJiAh+jJY9J0FdQxtXj6/D1oW/YtzCvMewseFB2LZ4IOwq10TvMauRlPAWFw4uR3xMKAbkjGE/fXyLLQv7o4yxFboNX4zMjDRcOrQC2xYPxOj5R6Gsovozq/mvrFwyHy+DXqDvgOHQ0tLGwf07MGfaeKxctzOfMWwW/pzzOwSpqRg26jcIhVnYs2MT/pg5EUtXb4GKigq69eqHFq3bS+VLSkrC3wvnoIpzdRgZmfyM6n0XDUtTeJ7ZClWD/L//AoBpp+aovmsZQtfsQvyFWzDt0BTVty1GdnoGYg6eBQBo2lqixvnt+OjzCH69xkOnoj0c50+AqqEBno2Sf71WFE9fhWLC0k1oVssFw7u1xuOg11iz/ySE2dl59ie5giOiMX7JRgiF2TKf7T93Hct3H0UTz+oY27sDEj4lY+Phs3gVFo0lEwYVVXUK1Yolf+Jl0Av0GzAMWlra8Nq/E7OnTcCqdTvyPXfmz5kCQWoKho/6DVmSc2cSlq3eLDl3mn917iQnJWHZwrkKf+4Q/deViAAGlTyBAc/x4N5dzJq3EG4e4ifxKjtVxbABvXHuzAl06/mL3Hzet67jdUgw1mzYBitrGwCAnb09xo4YBO9b19GgUVMAQOjrEDiUd4Rjxco/oTY/LjjwCR49uIXfZq1EVbc6AIAKlV0weVgHXDl3GO27Dcwzb8SbV9izeSlCX72Ampq6zOfxcdG4cHIf+g6ZjMatxDfrKlf1wId3cXjq76OwAYy4MH+EB1xDy/4bYeUovmFoauOOA0ub4YXPfrg0Gi43X1ZmOhLi38Cpzq8wsa6e5/4/fYjEvbOLERZwDWoa8gc5iibslT8C/K+h/6SNcKwmbhMbR3cs/a0ZfC7vR6MO8tvE+/xOaGrro8+4VVBR+XxT9fDm6YiPCYWRmS38bp9AyqePGDn3IPQNxQOz8k61sXp6R9w8u01hAxjsS2TFvvFH2ItraD1oE8pVFB8nZrbu2LOwKZ7d3Q+3JvKPky/dPPYHlJRlhwCBD44g6WMUOo7cBzNbVwCAVYU6SEv5iDsnF6LT6P2FW5lCsGvvftjb2WHKpN8AAB7ubhBmZeHAwUPo1KEd1NVl+83tO3ejft06GDF0MADA3c0VSUnJ2LlnrySAceDgIXi6u2Pc6JGSfJYWFhg3cTJ87j9A/bp1fkLtvs+683dR0cIIf/VuCQCoU9EGmUIhtl55gD71XaChKv1vH/UhEWf9AjGtUyP0qFMNAODpYIVHodHw8n4sCWCsOH0bFS2MsWpAeygpiZ8M1NZQx5Lj1xH5PhGWZQq+2V2cokP98frZNXQYtgm2lRsAAMzt3bF9XhM8ub0Pns1HFLiPq4fmyT13ACA+MgAm1s4ws6lemMUuUtGv/RHy9Bo6j9wEuyriNrG0d8fm2U3w6OY+1GxZcJtc9poHZTlt8tL/Aj7EhaL/jNMoa14eAFDWvAI2z26Cl37nUa1ez8KtzA/a4nUCFWysMWfsEABALRdnZGUJsfPoGXRv3RQa6rJBy8zMLBw6dwWbvY5DTVX+TdSdR8+gUU03jOrbDQDgUbUyImJicfjclRITwDAz0cDogXaoU6MskpKzvilPo7pGcLTXxS8jH+BNRCoA4NXrZOxa647GdY1w6cZbGJdVR6dW5li5KRjHz8UAAO77f8D+jZ7o08UaS9a+LLI6fa+NR87B0cYS80f2BQDUrlYJWUIhtp+4hJ4tG0Djq+B2QlIKjl27izE926FfW/EsP08nRwDA2gOnMKZne5TW08HOU1egraGOvycOhqqKCupWrwINdTUs2XEYAzs0g2lZxX6wIvyVPwL9r6HfROkx7LKJzeBzZT8atc9jDHtBPIbtPVZ6DHvkizHsg+uHkC5IQt8J66ClK54Bqa1riK0Lf8XrF/dQvmrdoq/gdwgKeIaH9+9gxrzFcHWvCQCo5FQVIwf2xPkzx9G1Z1+5+e7cuo7QkFdYuX6nZAxrY1ceE0b2x51b11C/UTOYmlnA1MxCKt+SBbOgo6uL8ZNnKubsrlKlYNm3IyotngJ8Y/Ec5/+GmMPnETBpIQDg3aXbUC2tD8e54yQBDPvJQ5CVlIKHnUdClJmJ+PM3IRSkwWnVLAQv2oC0iJiiqtEP23RY3J/8MbIfAKB2tcrIEgqx48RFuf0JAGRmZcHrwk1sPHwW6qqy115hdja2HjuPGs6OWDT+8z0GR1tL9JqyCPeeBqKGc8Wiq1QhCAp4jof372DmvMVwdRd//6vkVBUjCjx3biA05BVWrd8hOXds7RwwfuQAeN+6hgZ5njuzoaOriwmTZyjmuUNEAPgODCoi/r4PoKGhgequ7pJt+voGqOJcDb4P7uWdz+8hLCytJBccALCytoGllbUkn0gkwpvQ17C1dyiy8he2p/4+UNfQhFP1mpJtevql4VjFFU98vfPNu2nlHGRnZ2PWku3Q1Zf98uJ37zpUVdVQr6n0kwQjJy/EmKlLCqcCRSDylTdU1LRgUf7zTUBNHUOY2bojIuhmnvk+xr2CKDsLZcwr5bt/nzOLkPguDG0Gb0cZM8UepOV69dQbaupaKO/8uU109AxhW9EdQY/zbpNmXceh/6SNUl/8cp9Gy8pIBwDoG5qgbqtfJcELAFBSUkYZ03L48DaisKtSaNiXyIp4eRsqalqwqiB97pjbeSA84EaB+YMfnUXkyzuo1WaSzGcf34ZAXVNfErzIZWFfA7Fh/khPTfzxChSijMxMPHnyFHVq1ZTaXq9uHaQKBHj24oVMnti4OERGRaH213nq1EZ0dAyioqKRnZ0NV5fqaN2yuVQaaytLAEBMTGwh16TwZGRl4WFIFBo7SR/XzaqWR0p6BvxfR8nkMdLTxr7xvdDG7XNfqaRUCspKSkjPEj9RnpAiwMOQSHSvU1USvACAplUdcHH2YIUPXgBAWOBtqKppoVzFzze7tHQMYeHggdAXBZ87QX5nER50B3XbT5b5TCQS4V10EIws8r82KZrQAHGb2FT6ok10DWFZ3gOvnxfcJoG+ZxEWeAf1O8m2SflqTdFr4n5J8AIAlJVzrk1Z6YVQ+sKTkZkJv+dBaFBDuu9rVMsdqYI0PAl8JTffHf8n2HroJH7t3AajfpE/4+vv6eMwpp/0kp6qKirIKAFLm+QaM9geluaaGDfjMYJDk78pj6erIcIiUyXBCwB4E5GKsMhU1HIXj2fdqhlARUUJN+++k6TJzBLhzoP3kjSKJCMzC74Br9DIXXpJxSae1ZCSlo5HQa9l8qQI0tClSW3Ud3WS2m5jJh6PRb0V193nSSDqVK8stVxUE8/qyBaJcPdJYGFXpdDJG8Nq6xnCpqI7XuYzhm3aZRx+nfjVGDa3n8gU9xM1m/TCkBl7JcEL4PM4NzNTsfqSLz3yewANDU1Uc/k881Ff3wCVnarB76FPvvnMLa1lxrAWVuXyzOf7wAf37tzEgCGjoa2jmA9u6VV1hNM/8xC55zge9f+9wPSa5Syg42iL2BOXpLbHHL0A7fI20HIoBwAwalYXb8/dkFouKvbIeZRSVoZRc8UMbgHi645vwCs09JCe3dzYszpSBOl4LKc/AQBv/xfYcvQcBnRohtG92st8/iExCYnJqajrIt3nOFiZw0BXG7f9nxdeJYqIv999aGhooJqL9Pe/yk7V4fsw7+9/j/zu5/H9rxz88sjn+8AHPnduYsCQUQp77hCRWIkJYISGhqJ///5wdnZGvXr1sHHjRqnPr1+/ju7du8PFxQV169bFwoULkZb2edqxo6Mjjh49KpXny20CgQAzZsxAnTp14OzsjI4dO+LixYuStCKRCJs3b0aTJk1QrVo1dOjQASdPnvxXdUhMTMTMmTNRr149VKlSBbVq1cLMmTMhEAgkaZ49e4Y+ffqgWrVqaNKkCU6ePInKlSvj3r3PN9x+tBw/Q2REOExMzaH81RqLZmYWiIrK+2ZpZHgYzC0sZbabmVsgKlKcLzYmGgJBKoJfBmHkkH7o0q4ZRg7ph2tXLsrkUxQxkaEwMrGA0lftYWJmidiosHzzDh3/B2Ys3AIrm/JyPw8PfQkTMysEPffHnN9+waAuNTFxSHtcv3BUbnpFkfA2BHqGllBSkm4TvTLlkBAfmme+9zEBAICgB4ew56962DqzKk5u/AVvw6XXYnZvNhZdxp0oMUtHAcDb6BAYGsu2SRmTcoiPybtN9A1NYGYtfpovIy0Vwc/u4MKhFShXwRVm5cQ3JKvWaIWWPSZK5ROkJCI08CFMLBT3Bj77Elkf376We+7ol7XO99wBgNSkd7h17A/U6TAdWnqy60ZraJdGZnqKTKAi8X04APHMJkUSGxOLzKwsWFqYS203NzMDAERGyt6sD48Q18HSQvrpK3NzcZ6IqCgoKSlh2OBBMkEO77viGwflyuW//m5xinz/CZlCIcoZSb+nw7qsAQDgTfxHmTxqKiqoYmUCXU11ZGeLEPsxSTKrolst8Y26lzHvkC0SobS2JqbtOYda0/9BzWn/YMa+C/gkULxlXuT5EBcC/TKy545BWWt8fJv/uZPy6R2uHZ6Hhp2nQ1vOuZP4LhwZ6SmIC3+KnQtaYPWEKti5oAVe3D9emFUodB9iQ6BfVrZNShtZ42NcwW1yxWseGnWV3ybqmrqwsBMHBIRZGYiPCsS53VOhqVMajq6tCq8ShSA6Lh6ZWVmwNpNeOsLS1BgAEBYtP2hZyd4WR9ctRv8ubaGsLP9rlY2lOcyMy0IkEiExKRknL9/EuRt30LlFo8KtRBHavDsUv47xxePn3x7EtrHUQkRUqsz2yGgBrC20JGlSUrPwIUE6mBMZI4BRGXVoaijWV9Wot++QmSWEtZmx1HYrU/HxHxbzViaPhXEZTB3QHTbm0sfWDd8nUFFWhrWZMdIyMhDz7oPMfkvr6UBbU0PufhVNfHQISucxhn1XwBjWNHcMmy4ew148vALlyrvCzFo8htXWM4SlnfhmbGZGOsKDH+HUzvkwNLaWCpgomsiIMBibmsmMYU3NLRCdzxg2KiIM5uZyxrBmFoiOlM0nEomwa+s6VHGujlp1G/5wuYuKIDwG1ys2Q8DkRRCmFjxu0KloDwBIefVGantqiPi7s04FWyhpqEPLxhIpr6SPsYx3H5GZmASdCvm/f6U4Rb19L+5PTL/qT0xy+pNo+ed9ZXtrnFg1FwM7toCykuz7LHS1NKGsrISYdx+ktn9KTkVSigBRb98XUg2KTp7f/8wtEB0Vnm8+M3Mrme2mZhaIjpTNJxKJsHPrelRxrobaCnzu/BeIRCL+/Muf/6ISs4TUnj17MGfOHMyfPx+nTp3C8uXLUbVqVdSqVQuXLl3C2LFjMWbMGCxevBivX7/G3LlzERERgXXr1n3T/letWoWgoCBs2rQJenp6OHToECZMmIALFy7A0tISK1aswOnTpzF79mzY2dnhwYMHmDt3LpKSktCnT59v+htTp05FXFwc1q5dizJlysDPzw/Tp0+Hg4MD+vfvj7i4OPz6669o0qQJ5s2bh6ioKMydO1dqPd3CKMfPkJqaAi0t2Rd6ampqQpAq+2Xmy3zybjpqampJ8oW+DgYAxMXGYMDgEVBRUcG1Kxex6u9FyMzMQPOWbQupFoUnNTUZmlraMts1NLUhEKTkm9fKJv+by0mJH5HwIR4bV8xCxx5DYGZpg3u3LmLHevFUW0VdQiojLRmq6joy21XVtZCZnnebvI8WP4WWmSFA455/Iz01AY+ub8bpLf3RYcQBlDETfwkyNK1QNAUvQmmpyVDXlG0TdQ0tpBdwnADiC//8kbWRlZkOLR0DtO87I8+02dnZOLp1NtIFyajfRnHXQmVfIitDkAQ1DXnnjjYy8jl3AODG4dkwKVcdjm4dEBUi+yRSBdf2eHxjOy7sHoe6HWZAW98EYQE3EPjwGADxeadIUlLF9f36GNHS0gQApMo5RlJSUqTS5NLUzDsPAETHxGDz1u2wt7OFp7vbjxW8CCWniZ9G1dGQXnZAK2f5m5S0DJk8X9p+7QFWn70DAOhS0wk1K4iDNR+Txf/2c7wuoW5FG6zs3w5h7xKw+qw3It8nYsfobgo/7T6vc0dNQxsZafmfO1e8ZsHMxgWVPDoi4pXsuRMfJQ6uJ36IRL0OU6GkrIKAB8dxce8UCLMy4Fy7u0weRZAuSIJ6Hm2SXkCbXNw3C2a2LqhSoyPCX+b9RCQAHNswAm8CbqNUKSW06LMAOvrG+ab/2ZJTxcf31/2ClqYGACAlj5ttxmVKy90uz7OXIRg6Qzw2q2Rvg17tmheQQ3GEhud9vc2LtrYKIqJlrxmpAiG0tZQlaVJSZd8bkioQb9PSUoGggD7rZ0rOOQ60c46LXFoa4qUKU74xmHvtwWOcvvUA3ZvVg562Ft4lfAIA6Hy1X0C8TN+37rc4pQmSoSGnL/k3Y9gFX4xh2+Yxhl07syPexb6BqpoG+oxdA1U12TZTFKkpKdCS8/1PPBbNu01SUlNgJieAoamphVQ5+R7eu4PIiDAMHDb2xwpcxDI/JiLz47cHQVX0xcdT1ifpWV9ZSeI2UNHTgaq+rtw0uelU9GSPSUWRe92R6U808+9PjA0N8t2vhroamtV0xaGLN2FvaYqG7tXw4VMS/t51BMrKShCkK06fmpfUlGRoftf3v2SYmVvIbNfU1JQ7vn+Qc+4MGjbmxwpMRD9FiQlg9O7dGx07dgQAjBw5Etu2bcOzZ89Qq1YtbNq0Cc2aNcPIkeJ1qm1tbSESiTBq1CgEBwfDwaHgp4vDw8Ohra0NKysr6OnpYdy4cfDw8IC+vj5SU1OxY8cOLF++HA0bNgQAWFtbIyoqClu3bv3mwEGdOnXg4eEBR0fxDVZLS0vs2bMHL1+K13f18vKCrq4uFixYAFVVVTg4OGDmzJmSehVWOQpbdna2TAQwO1v2ZVK58rvBIcrOO5JYKmfJispOVTFjzgI4V6sODQ3xF00XNw8kJiRg/+4daNaiTbHeRBG3h3T9861XqR97uiwrKxNJnxIwespiuNdqDED8Doz372Jx3GuLQgQwRPLaRPR9x0iV2r/AulIjWFX4PCXY3L4mDv7dEo+ubUCT3it+vMA/gdzjJL82USr4mM4WZqHfhH+QlZmB66c2YeOCvhg+c69kFkYuYVYmDm2ajmcPLqJ9v5mwsleMFzOzL5FVmOdO4MNjiAn1RY9Jp/JMY2jigNYD1uPGkdnw+rsdAMDIsgo8m4/B7RMLFO5GQXY+/86A/P61oCdW5LVheEQkps2aDWVlZcyaPhVKSor1VPCXCm6T/I/p+pXtUN3GHP6h0dh46R7SMrPwV++WyMx5mKKypQnm9hC/WLJGBWvoaqpj6p5zuPsyHLUdyxVOJQqB/HMnv2tx3u3y4v4xRL32Rb+pp/NMY2HvgfZDNsCqfA2oquc8XV6pHgRJH3D33Go41Sr+AE9htskzn2OICvFF/5l5t8mXarYcAY+mgxHw4CTO75kGkUgI59rdvq3gP0FB543SN1yDC2JqVAb/zPsdMW/jsXH/cQydsRA7l86Ghpz39BSXUqWAr6sq5/2w3yS/Jstt7oKaNb9reXHILuD6ofQN5/jVB48x859dqF7BDmNzln/5nutScSqqMWzfCf8gMzMDN09twua/+mLozL2SWRi52vWbBZFIhLuX9mDXihHoN2G9QrwD41+3ST7f/0T5jX3ljD/OnT4KWzsHqeV2/h/Iq+uXRNnZQIFpFKsP+VJB/cm3nDd5mTaoB9RUVfDn5gOYv2k/1NVU8Wv7pkhNS4eGmmK99F7+ufN9Y5P8ruXyruPnTh/7vzx3iP5flZgAho2NjdTvenp6SE8XP2X48uVLtGkj/RI8T09PyWffEsAYMmQIhg8fjlq1aqFq1aqoU6cO2rVrB11dXTx58gTp6emYOHGi1E2LrKwsZGRkIC0tDRoaBd/U6d27N65evYpjx47hzZs3CA4ORmRkJOzs7AAAL168gJOTE1S/eAmgh8fn5W+Cg4MLpRyFzWvfLnjt2yW1rXbd+khMkF2mIlWQCi3tvJ+E0NLWhkAgGx0XP4UtfoLFwKA0PGrUkknj5lkDjx/5IuHjR5Q2LL51c094bcEJr81S29xrN8GnxA8yaQWpKdDS+rEnQzQ0tVGqVCnJy8FzObvUwjN/HyQmvIe+QZkf+hs/yu/qOvhd+Udqm61TCwiSZaewZqal5PvSbQMjWxgYSU8HVtfUg0k5V7yPDSqcAv8EV4+vw5Vj0m3i5NECyYmybZImSIGGZsFrciqrqEqm0ttWdMfiCU3hfXE3ug5ZIEkjSPmEPavGIjTwAdr1m4lazRRn5hb7ElkPL/+Dh5ekjxO7qnmdO8l5njvJCbHwPvEXarebCk1tQ2QLsyRfkEXZ2cjOFkqWfbByrIs+064g6aN4+SU9Q0sE3D8CAFDXMiisqhUKbW3xv2WqQPop35Scp6y0tWWf3tLOeaJL8FWe1Nwn4bSln5Z8/OQp/liwEBqaGliycIFkeSpFpZP75N5XT9jl/q6rKftCyC+VNysLAHCzt0RWdjbWX/DBmFa1oZ0zg6N+Zen+t05FcdAiMOqtQgUwfC78g3vn10ptK1+9BVKT3smkzUhLgXoe505SQiyuH12ABh2nQlMn73NHS7cM7JxklwSyqdIA4S/vIDXpndxlln6mO+f+wd2z0m1SwUV+m6QLUqCex3Un6WMsrh1egIadp0Irnzb5kqWD+OZAuYq1kPghCj7nNyhUAENHO2cG1ldPvKbk9As6X83M+B5GhqVhZFgaqOIIcxMjjJy9BFfv+qJ1w9o/vO/CMqBnOQzsbSO1rW67gt+FIk9yaha0NGWXN9HWUkZKSlZOGqH8NJoqks8ViY6W+HuWzHGS83tBx8nec9ewau8JuFV2wLIJg6GecyMx9wnslDTZJ65TBGmFcvwVpmvH1+Hq8W8bw+bXl3xJWUUVDk45Y1hHdyz9rSnuXNiNLl+MYQHAwUl8vthVroHV09rh5pktChHAOLR/Jw7u2yG1rVadBkiQM4YVpKZAS1t2Zkau/Maw2l/N6EhK+oRnT/zR59eh31dwBZaVmAQAUNGVrnPurIqsxGTJzIuv0+Smy92HIso9r1PT8uhP5MzI+lZaGuqYNbQ3Jvbrgph3H2BW1hBaGuo4cc1HskSVoji4fycO7tsptS2vcyc19Vu+/8mZ+ZeaKnPP5fO5M+Q7S05EP1uJCWB8vf4d8DkyKy9Cm/vUroqK/CpmZWVJ/e7i4oIbN27A29sbd+/exfHjx7F+/Xps2bJFsjTFypUrJcGGL6mp5X8zILc8w4YNw6tXr9C2bVu0bt0aVapUwaxZs6TqmN/Txrn1/JFyFIUWrdrCw1P6JuC9u7fh7/sQ2dnZUsGWmOgoWFrlvXa4haUVXofIvigxJjoa5R3FT+A8f/YEcbExaNy0hVSajPQMKCkpQUe3eF++1LBFJ1T3kB5I+927gWf+PjLt8TYmAmaWNj/090zMrCASiSDMygTUPj/Fl7v0mJpa8T/ZV9GzO6wrNpTa9ubFZUS+ug1RdrbUEzaf3ofBwEj2+M4V8uQs1DX0YVlBOmCTlZkGDW3Fe+FjXjwbdUfF6g2ltr3wvYxXT2/LHCfv48JgZJ53mwT4XYOGlg5sK34OeGpo6aKMiRU+ffy8fmrih1hsXTwIH+Mj0WvU33Cu0bLwKlQI2JfIqlyjO8pVaii1LfT5FUQEyZ47ie/DUdpY/nES+eoOMtKScP3QDFw/JL0sw6lNA6Bb2hy/TL+KpI/RiHx1BxVc20PP8PPyBe+inkNdSx+6pWWnZRcnczNTKCkpITomRmp7dLT4d2sr2XVwLS0tJGkc7O0/54nJzfO53teu38DSFatgZWmBBfPmomzZ4g0GfwurMvpQViqFiHcJUtvDc363NZbtJ6M/fILPq3C0ca0IddXP46ZKluJlfuI/pUjeoZGRJX1DMSvn8ewv8ykC59rdYVelodS2kKeXERYge+4kxIehtKk95AkPuoMMQRIu7Z+BS/ulz52j6/pD19ACg+ZcRVTIQyS+j0Blz05SabIy01FKSRkaWsX/kvNqdbrD3qmh1LbgJ5fxJo82McyjTcIC7yBdkIQLe2fgwl7pNjm0pj/0DC0wdP5VxIQ9QeK7SFR0ay2VxsSqCqJf+xdOpQqJhYkxlJWUEBkrveZ47u82Ft8XuEwVpOHWw0eo7GALqy/er+FoKw72vfuY8H0FLiInLsTA+0HhrI8eHilABXvZG00WZpoIeCW+qRgelQodbRUY6Kki4dPn92BYmmsgJi4NGRnfOf2jiFgal4WykhIi4qSDfrm/f/2ei1wikQjLdh2F18WbaFHLFXOH95F6WbeWhjqMS+sjMlZ6vx8Sk5CSlg7bPPZbXDwadYfjV2PYAL+8x7DG+Y1h/a9BQ1N2DGtobIWkBPH59/rFPWRmpsGxWgNJGmVlFZhYVUBcpOxYrzg0a9kObl+NYe/fvY1Hfg9kx7AxUbC0yjvgb2FhjdevZesVGxMFhwqVpLY98r0HoVCIWvUa/lgFFFDyS/F7LbTsy+HTowDJdm17cdslB4ZAmJIKQWQstOyl21PNyBCqejpIDgz5eQX+l3L7k6/P+9zfbS1Mv3vft/yeQU9bC9Uc7WBvKb5+fUhMwtsPCXC0kV2erDg1b9kO7t947sTGFPD9z8JKskTwl2JjolC+gvRsLn/f+xAKhaj9f3juEP2/Utw1EP4FR0dH+Pn5SW17+PAhAMA+5+aEqqoqkpM/r40YFib94uTVq1fD19cXTZo0wcyZM3HhwgVYWVnhwoULsLOzg4qKCqKjo1GuXDnJz40bN7B169ZvWkoiICAAN2/exKpVqzBp0iS0b98e1tbWCA8PlwQmKlasiBcvXiAz8/MA3t//8xe8wihHUTAsUxYOFRylfqq7ukMgSIW/7wNJusTEBLx49gTVXfOeolfd1R2REeGICH8j2RYR/gaREWGonjO179mTR1i9fLHkRbyAOEB0x/sGKlaqIjWDpTiUNjSCrUNlqR+n6jWQJkjBM/+7knSfEj8i6IU/nKrXzGdvBcudeXHvlvSLhx/dvwkrm/LQ/MEZHoVBW88YRpZOUj+W5esgMz0Fka9uS9IJkj8g5o0vLMrn/UK+gHsHcfv4XAizPj9dnJIYh7gwf5jbeRZpPQqTXmljWNo5Sf2Ud66D9LQUvHr6uU2SP33AmyDffF9SePv8ThzfMQ/Z2Z9vLCZ+iMXbqBCYWYnfBZImSMaWhQPw6eNbDJyyVeGCFwD7Enm09U1gbOUs9WNVQXzuhL+UPneiXz+UCezlsqncCF3GHpL6qd95LgCgfue5aDVgfc5+3uP6oZlS78dI/RSPV4/OwKZyY4VbxkJNTQ3OTlXgfeeu1MMMt73vQFtbG44VZN+FY2FuDlMTE9zyviO1/bb3HclnAHD/wUMs/nsFKleqiOVLF5eI4AUgDiS42lngytNgqTa5/OQVdDXU4GQt+4U45uMnzDt4GVefSn/puxsUDlVlZdgYlYadiSHMDfVw4VGQ1H6vP38NAHC1Vazglo6+CUysnaV+rB3rIiM9BW8Cb0nSpSZ/QFTIQ5RzlH/u2Dk1Qq+Jh6V+GnefBwBo3H0eOgwRnzsRr3xwce9UqZeBi7KzEfzoAsxtXaCsUjwPmXxJx8AEpuWcpX7KVayLjLQUhAZ80SZJHxAZ/BA2FeW3ib1zI/zy+2Gpn2Y9xW3SrOc8dBoubpPQ5zdxdsdkfPr4OcCYnS1E+EsfGFk4FmFN/z11NVVUr1wBN+75Sh/fPr7Q0dJE5fLf9yJYZWVlLFy/E3tPXpDafv/xcwCAQznFupH0/kMGgoKTpX6+1wP/jyhnqQUbq88z4WystGBrrY0H/h8laQCgYZ2ykjSqKqVQ26MMHvjLzlwubupqqnCpaI9rD55IHSdX7z+GjpYmnOzl35T+x+s0vC7eRJ9WDfHnqH5SwYtcNapWxC3/58jI/PyQ3dUHj6GspASPKuULvzI/QN4Y1sFJdgybkjOGzZ1ZIc+d8ztxcqfsGDY+OgSmOWNYf++TOLxxqtS7NNIFKQgPfgRTK8XoSwzLlIVD+YpSP9VcPSAQpOKR331JusTEBAQ8e5LvkjXVXN0RFREmfwz71dj3ZeALlClrBGPj77/ZrahSQ8KR+joCZp2lHzQy7dQcyS9DIQgTzxR+d9kbxq0bQumLpZFMO7dAdlYW3l3z+all/jc+9yePpfuTB4+go6WJKnn0J9/i6BVvrNp7XGrb/nPXoaRUCvVcq3z3fotC/ufO19//HqOai0ee+6rm6oHIPM6daq7S+f6fzx2i/1eK9bjcdxo8eDDGjRuHdevWoVWrVnjz5g3mz5+PRo0aSQIY1atXx6FDh+Dh4QGRSISFCxdKzViIiIjAyZMnMX/+fFhbW+Px48eIjo6Gi4sLdHV10bNnT6xatQo6OjpwdXXFvXv3sHTpUgwbNuybyli2bFmoqKjg3LlzMDQ0REJCAjZs2ID4+HhkZIhvxPbu3Rvbt2/HrFmzMGTIEMTFxWH+/PkAxGv9FUY5fpYqztXgVLU6Viz9C78OHApdPT0c2LsT2to6aNW6vSRdRPgbZGZmws5ePDCvW78hDnvtxR+zpqLvAPF0vt3bN6OcjR3q1m8IQPyU9vkzJ7Fg3gz0/mUA1DU0cO7MCYS/eYO/lqz82VX9Jo5VXFHRyQ0bV8xG91/HQEdXH8cPbIaWti4at+oiSRcV8RpZmZkoZ/ftg/FKzm6o7lEP+7atQHp6Giys7eF97QxeBT7G2GnLiqI6hcLM1gNmdp645vU7PFtNhLqWAfwu/wN1DV1UrtlTku5jXDCEwgyUNa8MAHBtPAJntw7Exd2j4VS7L9IFifC78g80tPRRtd6A4qpOobCt6AG7Sp7wWv87WvWcCC0dA1w++g80tHRRs8nnNomLCoYwMwPmNuI2adxxBLYtHoT9a3+DR6PuSPn0AddOrIemth7qtha3yeUja/Au9g2adBoNZWUVhAc/kuxPRUVNsi9Fw75ElrmdB8ztPXFl32TUbDMJGloGeHhpLdQ1deFUq5ck3Ye4YAizMmBkURka2qWhoS39stnMDPHyBAbGtihjJu5zjCydYGrjiptH56FWm8lQUlLBvfMroaSkAo/mivmCu949u2PqjNn4c+FitGjeDC8CAnDo6DEM6t8PGhrqSElNRXh4OMzMzGCgL34K/pdePbFs5Sro6uqiVg1P3L13Dzdu3cb0KZMBABkZGVi+ei20NDXRq0c3hIeHS/3NsmXLwqhsWZmyKIohTWtg2MYjmLzrLDp6VsajNzHYed0X41rXhaaaKpLT0vE67gMsy+jDUEcLLrYWqFneGouOXUdyegasyhjg5ovX8PJ+jBEtakIvZ9mU39rWw+TdZ/D77rPoUtMZIXHvsfbcHTSt6iCZraHILB08YOngifO7J6Ne+8nQ0DKAz/k1UNfURdW6n8+d97Hic8fYsjI0tUtD86tzJyNdfO6UNrZFWXPxueNcuyeeeB/Ayc3DUbPVOKiqaeLJ7X14H/MSXcfu/XmV/JesynvAqrwnzu6YjPodJ0NT2wB3zq6BupYuqtf/3CbvYsRtYmJVGZo6paGpk0ebmNhKghPV6vbE49sHcGz9MNRqPRrKyqp4dHMf3kW9RNcxW39eJb9R/y5tMfaPvzHj7/Vo17gengQFY+/JCxjZpws01NWRkipAaGQ0LEyMUVr/22boqaupol+n1thy8ARK6+nCzakiXr2JwLZDJ+FRtTJquTgXca1+HhsrLaiqKuHVa3HQ48qtt+jb3RrL5jpjw05xoHP4r3YIDk3G1VviJ+vj4tNx9kosxgx2gLqaMiKiU9GjgyV0tFWw92hEnn+rOA3q2BwjF67D1NU70L5BDTx5FYrdZ65idI920FBXQ3JqGkKjYmFpUhal9XQQ9CYSO09fQWU7azSt4YJnwdIP0dlamEJHSwO/tm2Ci3f8MHbJBvRp1RBhsfFYd/A0OjWuBdOyij/D2LaiB2wreeLQht/Rood4DHv1mHgMW+OLMezbqGBkfTGGbdRhBLYvGYQD//wGj4bdkZIkHsNqaOuhbivxGLZe64F4dv88dq8YgbqtB0KYmYGbZ7YiQ5CCJp1GFUt9v0UVp2qo4lwdq5b+ib4Dh0NXVw9e+3ZAS1sHLVp3lKQTj2EzYGcvDtjUqd8YRw7uxZ+zf8cv/cVLQ+3ZsQnWNnaoXU96qcKwN69haW3zs6pUpFR0taFT2QGpIeHIeCcObr5a8A+qbV2EzA8JiDt1FSbtm8C8e2v49R4vyReybAvMe7SBx+ktCF25HdoVbOA4/zdEbDmItIiYPP6aYhjYqQVG/fUPpq3ajnYNa+LJy1DsPn0Vo3vm9ieCL/qTb58Z3qNFfYxZtB7Ldx9FfVcnPHj+EjtOXkK/dk1hqWBLSMlTxakanJyrY+XSP9F34DDo6upLzp2WrTtI0sl+/2uEowf3YP7sKeibc+7s3rEJ5WzsUOermRbhb17D6v/k3Pl/UNC7yIgAoJSooLeGKQBHR0csXLgQnTt/fhlx48aN0alTJ4wZI76hcvbsWaxfvx6hoaEwNDRE27ZtMXbsWMk7IYKDgzF37lw8fvwYxsbGGDduHNasWYMRI0agc+fOSE5OxuLFi3Ht2jUkJCTAwsICffr0Qb9+/QCIl5zasGEDjh49irdv38LMzAzdu3fH4MGDv/mJ1FOnTmHNmjWIiYmBkZERGjZsCFVVVVy9ehWXLl0CAPj5+eGvv/5CYGAgTE1N0atXLyxZsgQHDhyAi4tLoZTjawEhUd+VryDJSUnYtnkd7vl4Q5QtQsXKVTBo6EhYWH6e9jdjygS8jYvF5h37Jdvi499i68a1eOTvCxVlFVR3dcfAoSNhaPj56deY6Cjs3rEZz589hUCQivLlHdHn10GoXOXHvwhWsrfA3YBPP7yfr6Ukf8L+bSvgd+8GRKJslK9YDb0GTYCZhY0kzcIZw/DubQz+3nxS7j4mDmmPik6uGDJurtT2jIx0nPDajLvXz+HTpwRYWNmifffBcKvZsFDKXquSHpYdLfxp/OmCRPicWYw3z69AJMqGaTkX1Gw7TeodF6c39UPSxyj0mnJFsi0q+C58r/yDDzFBKFVKCVYV6sKz1UToGJjL/TunN4nP47ZDd8n9/HtM6qyEo/cLv00EKYk4s3cxnvuK26RceRe0/WUajMw+t8mmBf3w8V0Upqz43CYhL+7h8pE1iAkPhJKyCipUrYuWPSbCoIx42vCi8Y2R+F7+IN6grLnUvr5XZ0+lIulPSmpfAoj7k5UnC/8ym56aCO9TixD6/AogyoapjStqt5sqtYTUifV9kfQxCr9Mvyp3H1Eh93Byw69oP3wnLOxrSLanJr2D98mFiHzpDRFEsLCvgRqtJsi8e+Z7jW9fCmHBhfu+mtt37mL33n2IjIxCmTJl0L5ta3TtLF7K5/GTp5g8bQYmjR+H5s2aSPKcPnceh48eQ3z8O5iZmqJn965o2lh8Y8D/8WNMmT5L7t8CgF9690S/Pr0LrfzlHByRdnp9oe0PAK48Dcb6Cz548/YjjPW10aNONfza0A0A8CA4AoPXH8EfPZqhg6f4SbyUtAxsuOiDy0+DEZ+YAmsjA/xS3wWdazhJ7ffGi9fYePEeXsW8g76WBlq7VsToVrWglseSnd9Lo+0IrD9fqLsEAKSlJuLmsUUIeXoZIlE2zG1dUb/TNBiafD53Dq3pi08fojBojvxzJ+LVPRxZ2w9dRu+CVfnP505CfBi8T/+NqOCHyEhPgYm1M2q3GQ8L+x9/OeSIlsDmyz+8G7nSUhNx7cgiBD8Wt4mFnSsadZVukwMr++LT+ygMnS+/TcJf3sPBVf3QfdwuWFf4ok3eReDm8aWIePUAmempMLOpijptx0neifEjhjQFPnzxtHdhuH7PD1u8TiA8OhZGhgbo0rIxercXP/3r9ywQo+YuxcxRA9Cmkeya+2eu3caf/2zH0XWLYWb8OcApEolw7OINHDl/BZFx8Sitp4vmdWtgUPcOkncgFBZD57rf/c6Kb7Xmr2oAgDHTH8tsNzXWQLfBn2fwGZdVx7gh9vCoXhpZQhHu+3/Emi0heP/x8yxaVZVSGN7fDs3qG0NTUxlBwUlYt/01XrwsnLXrb59qgKSHhduZXHvwGBuPnENYzFsYlzZAt2Z18UubxgCAhy9eYfiCtZgztDfaNaiBDYfPYsuxC3nua8OM0XCvLL755h8YglX7TuBleBQMdLTRuq4HhndtDRUV2aWUf4Sue0scvlc0Y9iz+xbjxRdj2NZ9pMewW/4Sj2EnL/887nz94h4uH12D2JwxbHnnumjxxRgWAKLfvMDFQysQ+fopsoVZsKnogRbdJ8DEUnam5ffoWkMJz4JjC2VfX0pOSsKOLWtx/+5tiEQiOFZ2woAho6XGsLOnjsPbuFhs2O4l2fYu/i22bVyNx48eQkVZBdVcPTBgyGiUNpSeDTpueD+Us7XHb1PmFHrZnRxMcUa1aGa4GNb3RK0ru3G3SV98uHlfatvjQVMRueuYJK31kB6wmzAQGlZmSH0dgZAlmxC194TU/krXcUOlxb9Dr1olZLz7iKi9J/By7mqIvlo2/Ee1yQzCJ9+8z+fvce3BY2w6fA5hMXEwKm2Abs3rSfoT3xevMPzPNZg9rA/aNaghk/fUjXv4Y+NenFg1B+ZG0sfGhTu+2HrsAqLj38OsrCG6NquLHi0ayOzjR+m5tcDz4MIPFCUnJWH7ln8k507Fyk4YMGSU1LkzK+fc2fjVubN145ovzh13DBgyWur7HwCMHf4rytnaYWIhnztVHBT7XXmKashfhbN85X/J5uklY3WAwlQiAhj/FcHBwUhMTISbm5tkm5+fH3r16oXr16/DrIheHFpUAYySqqgCGCVZUQUwSrKiCmCUZEUVwCjJiiqAUZIVRQCjpCuKAEZJV1QBjJKqKAMYJVVRBDBKup8RwChpiiKAUdIVVQCjJCuqAEZJVpQBjJKqKAIYJV1RBTBKKgYwvg8DGP/efzGA8X/xDoz/F7GxsejXrx+OHz+OqKgo+Pv7Y+HChfD09Cyy4AURERERERERERERkSL6v3gHRnHbvHkz1q1bl2+a6dOno1u3bvmmqVu3LmbMmIGNGzdi1qxZ0NXVRePGjTFp0qTCLC4RERERERERERERkcJjAKMQdO/eHc2bN883TZky3za9p3fv3ujdu/DW1SYiIiIiIiIiIiIiKokYwCgE+vr60NfXL+5iEBEREREREREREZUIfDUzfQu+A4OIiIiIiIiIiIiIiBQOAxhERERERERERERERKRwGMAgIiIiIiIiIiIiIiKFwwAGEREREREREREREREpHAYwiIiIiIiIiIiIiIhI4agUdwGIiIiIiIiIiIiI6L9FlC0q7iJQCcAABhERERERERERERHRf1h6ejoWLVqE8+fPIy0tDY0bN8aMGTNgaGgoN/3UqVNx7NgxuZ+NGTMGo0ePBgA0b94cYWFhUp936tQJixYt+qZyMYBBRERERERERERERPQfNnfuXDx8+BBr1qyBmpoa5syZg7Fjx2LPnj1y08+YMQMTJ06U2rZw4ULcv38f3bp1AwCkpqYiIiICGzduRJUqVSTpNDQ0vrlcDGAQEREREREREREREf1HxcXF4fjx49iwYQPc3d0BAMuXL0fLli3h7+8PFxcXmTy6urrQ1dWV/H716lWcPXsWO3fuhImJCQAgODgY2dnZcHFxgb6+/neVjS/xJiIiIiIiIiIiIiL6j/L19QUA1KxZU7LN1tYWJiYmePDgQYH509PTsWDBAnTp0gU1atSQbA8KCkLZsmW/O3gBcAYGEREREREREREREZHCa9KkSb6fX7ly5bv2GxcXh9KlS0NdXV1qu7GxMWJjYwvMf+jQIbx79w7jx4+X2h4UFAQtLS2MHTsWfn5+KF26NLp06YJ+/fpBSenb5lYwgEFEREREREREREREP5UoW1TcRfjPiIyMzDf4MW7cOKipqclsV1dXR3p6er77zs7Oxs6dO9GtWzcYGRlJffbq1St8+vQJLVq0wKhRo+Dr64ulS5ciMTER48aN+6ayM4BBRERERERERERERKTgvneGhYmJCc6ePZvn5zdu3EBGRobM9vT0dGhqaua7bz8/P4SHh6NXr14yn23evBnp6emSd2U4OjoiOTkZ69evx5gxY75pFgYDGERERERERERERERE/6dUVVVhb2+f5+dBQUFISEhARkaG1EyMt2/fSl7InZdLly6hcuXKcvevpqYmM7OjQoUKSE1NRWJiIkqXLl1g2fkSbyIiIiIiIiIiIiKi/yg3NzdkZ2dLXuYNAKGhoYiLi4OHh0e+eR88eIBatWrJbBeJRGjatCnWrl0rtf3p06cwMjL6puAFwAAGEREREREREREREdF/lomJCdq0aYOZM2fi3r17ePLkCX777Td4enqievXqAICMjAzEx8dLLTUlFArx8uVLVKxYUWafpUqVQrNmzbB161acPXsW4eHh8PLywpYtWzB27NhvLhuXkCIiIiIiIiIiIiIi+g+bP38+/vrrL4wePRoAUL9+fcycOVPyub+/P/r164ddu3ahRo0aAICEhARkZmbCwMBA7j4nTpwIHR0dLF++HLGxsbC0tMSMGTPQvXv3by4XAxhERERERERERERE9FNli0TFXQT6gpaWFv7880/8+eefcj+vUaMGgoKCpLaVKVNGZtuXVFRUMGrUKIwaNeq7y8UlpIiIiIiIiIiIiIiISOEwgEFERERERERERERERAqHAQwiIiIiIiIiIiIiIlI4DGAQEREREREREREREZHCYQCDiIiIiIiIiIiIiIgUjkpxF4CIiIiIiIiIiIiI/ltE2aLiLgKVAJyBQURERERERERERERECocBDCIiIiIiIiIiIiIiUjgMYBARERERERERERERkcJhAIOIiIiIiIiIiIiIiBQOAxhERERERERERERERKRwVIq7AERERERERERERET03yISiYq7CFQCcAYGEREREREREREREREpHAYwiIiIiIiIiIiIiIhI4ZQSca4OEREREREREREREf1E/WbFFHcRSpxd882Kuwg/Hd+BQYgN9C/uIigU04ouCHn9uriLoVDs7ewQGhJc3MVQKLb2DggLDiruYiiUcg6OPE6+YmvvwP7kK/Z2drzufMW0ogtehYQVdzEUSnn7cggOCS3uYigMB3tb9q9fsbV3QPirgOIuhkKxLl8JN5+nFHcxFEr9Ktp42KBWcRdDobjfuMuxyVfs7ezwOiSkuIuhUOzs7fHJ90JxF0Oh6Lm1wBlVx+IuhkJpkxnE8ckXbO0dirsIRP+3uIQUEREREREREREREREpHM7AICIiIiIiIiIiIqKfKjubbzaggnEGBhERERERERERERERKRwGMIiIiIiIiIiIiIiISOEwgEFERERERERERERERAqHAQwiIiIiIiIiIiIiIlI4DGAQEREREREREREREZHCUSnuAhARERERERERERHRf4soW1TcRaASgDMwiIiIiIiIiIiIiIhI4TCAQURERERERERERERECocBDCIiIiIiIiIiIiIiUjgMYBARERERERERERERkcJhAIOIiIiIiIiIiIiIiBSOSnEXgIiIiIiIiIiIiIj+W0QiUXEXgUoAzsAgIiIiIiIiIiIiIiKFwwAGEREREREREREREREpHAYwiIiIiIiIiIiIiIhI4TCAQURERERERERERERECocBDCIiIiIiIiIiIiIiUjgqxV0AIiIiIiIiIiIiIvpvEWVnF3cRqATgDAwiIiIiIiIiIiIiIlI4DGAQEREREREREREREZHCYQCDiIiIiIiIiIiIiIgUDgMYRERERERERERERESkcBjAICIiIiIiIiIiIiIihaNS3AUgIiIiIiIiIiIiov+W7GxRcReBSgDOwCAiIiIiIiIiIiIiIoXDAAYRERERERERERERESkcBjCIiIiIiIiIiIiIiEjhMIBBREREREREREREREQKhwEMIiIiIiIiIiIiIiJSOCrFXQAiIiIiIiIiIiIi+m8RiUTFXQQqATgDg4iIiIiIiIiIiIiIFA4DGEREREREREREREREpHAYwCAiIiIiIiIiIiIiIoXzn3kHhq+vL0QiEdzd3REZGYkmTZpg165dqFGjRnEX7f/OA//H2LzHC2/CI1HaQB+dWjdHj45tUapUqTzzXL7pjd0HjyE6Lg6mxkbo06UDWjZuIJXmls8D7Dp4FBFR0TA0MEDzRvXQp0tHqKqWjMNYIBBg27ZtuOPtDYFAACcnJwwdNgyWlpb55vv48SM2b9oEX19fCIVCeHh4YMjQoTA0NJSkEQqF2Lt3Ly5fuoSkpCQ4ODhg0ODBqFixYlFX67v5+vlhx85dCA8Ph4GBAdq1bYMunTvne5xcu34d+w94ITY2FiYmxujerRuaNW0qN21qaipGjBqNPr17oXmzZkVVjUL10M8fO3btRlhOm7Rv0wZdO3csoE1uYJ/XQcTExsHE2Bg9unVB86ZNpNJcvHQFh44dQ0xMLIyNjNCubWt0bJf/OakoeJzIx/5EGq878gkEAuzYtgXed24jTSBAFSdnDBk6HJaWVvnm+/jxI7Zs3gA/34cQCoVw9/DE4CHDYGhY5nOaDx+we/dO+Pv5IinpEywsLdGlS3fUb9CwiGv1YwQCAbZv2wrvO95IEwjg5OSMIUOHfmObbIKvpE08MGTIUKk2+dLJkydw7OgRbN+xqyiqUSjYv8p66OeP7bv3Iiw8HKUNDNC+TWt07dQh3za5euMm9nkdklyHe3brjOZNGueZfv3mrTh64hQunT5eBDUoGmmCVBzZvQp+PleRnpaK8pVd0WPARJha2HzzPtYvmQx1TS0MHDNPavvH929xeNdKPPO/g2yhEHaOzujUezRsHCoXci0Kj567JyyGDIOGjR2yPn7A22NHEOe1L+8Mysow7dEbZdu0g2qZskiPjEDM3l34eO0KAEDN1BRVvY7lmf3dudN4s2hBYVej0HFsIs3Xzw87d+6U9LFt27YtsI+9fv069h84kNPHmqBbAX3syFGj0Kd3bzQrIX2sz5MArDt4Bq8jY1BGXxddm9XDL20af9N3kqA3Efh11t84unwWzI2kr72nbtzDnjNXERkXj7IG+mjbwBMDOjSHirJyUVWl0GlYmKD+o9N42GUUPty8n29a8x5t4DBtBLTsrCB4E4XgpZsQtfu4VBp9NydUWvw79N2ckPUpBZG7juLlH2shyswswloUDo5PiEie/8wMjN69eyM8PBwAYGZmhtu3b8PFxaWYS/X/53nQK0z9cwmsLc0xf9pvaNagLjbs3Id9R07mmefGnXv4c/laeFR3xoJpk1DdqTIWrlqPKzfvSNI8ePQEsxYth6W5GeZPm4hObVpg75ET+Gf77p9RrUKxZPFi3L51C/0HDMDESZPw/v17TJ0yBUlJSXnmEQqFmD1rFoKCgjB6zBiMGj0aL168wIwZM5CVlSVJt3nTJhw7ehRdu3bF1KlToaysjBnTpyM6OvpnVO1fCwgMxJy582BlaYlZM6ajUcOG2LptOw4eOpRnntu3vbFk6TK4ubpg9qyZqOpcFX8vX4HrN27IpE1KSsLsOXMRFxdXlNUoVAGBgZg9bz6sLC0xe/o0NG7YEFu274DXoSN55rnlfQeLli2Hq4sL5s6cjmpVnbBsxSpcu3FTkubchYtYtnIVari7Y/6cWWjWpBE2bt6KAwfzbmtFweMkb+xPPuN1J29LlyzE7ds30b//IPw28Xe8f/8e06dORnIBx8nc2TPwMigIo0aPw8hRYxHw4jlmzZgmOU4yMzMwe/Z0PPL3wy99+2HGzDkoX74Cliz+C1evXP5Z1fsuS5Yswu3bt9C//wD8NnES3r9/h2lTCz535syeiaCgQIwaPQajRo1BwIsXmPnVuZPrxo3r2LJ5U1FW44exf5X1IjAIs/5YACtLC8yZPhWNGzbA5u074XX4aJ55xNfhFXBzqY65M6ahmrMTlq5YjWs3bslN/+TZcxw7ebqoqlBktqyYDt87l9H5lzEYOPYPJLx/i2WzhyIl+VOBebOzs3Fg61L4+VyR+Sw1JQmLZwxEwON76NhrJEZMXoqyxhZYOnMwQl89K4qq/DDtylXgsGgZ0sLDEDJrGt5fugDL4aNg2rtvnnnM+w+CxeBheH/xPIKn/47kp09gP/dPGNRvCADIfP8eASMGy/y8v3gO2ZmZeHfm1E+q3Y/h2OSzgMBAzJ07F1aWlpg5YwYaNWyIbdu24VC+fextLFm6FK6urpg9axacnZ2xfPnyPPvYOXPmlKg+9umrUExYugk25sZYMmEQWtZxx5r9J7HzVMHjhuCIaIxfshFCYbbMZ/vPXccfG/fC1twESyYMxtAurXDq+j1MX72jCGpRNDQsTeF5dhtUDfQKTGvaqTmq71qG+MveeNhlFN7fvI/q2xbDrHtrSRpNW0vUOL8dQkE6/HqNx+sV22A7fgCqrJxZlNUoFByfEFFeSsYjhIVMWVkZRkZGxV2M/0vb9x1CeVsbzJwwGgBQw7U6soRZ2HP4OLq2awV1dTWZPJt3H0DD2jUwevCvAABP12pISkrG1n0H0aR+bQDAuSvXYWJUBjMnjIayshI8qlfFx4REHDxxBqMH9oWKimIfygEBAbh37x7m/fEHPDw8AABOVapgwIABOHP6NHr26iU3361btxASEoINGzbAulw5AIC9nR1GjBiBWzdvolHjxoiPj8eZM2cwfPhwtGnbFgDg6uqKwUOG4NChQxg3btzPqeS/sHvPXtjb2eH3yZMAAO7u7hAKs+DldRAdO3SAurq6TJ7tO3eiXt26GDZ0qDiPmxuSkpKwa/ceNGzw+anpuz4+WL9hIwQCwc+pTCHZtXc/7O3sMGXSbwAAD3c3CLOycODgIXTq0C6PNtmN+nXrYMTQwQAAdzdXJCUlY+eevWjUoD4AYL/XIdSrUxuDB/YHALhUr4bIqGicOHUGvXp0/zmV+048TuRjfyKN1x35AgJe4P49H8yd9yfcPTwBAFWcnDBoQD+cOXMKPXr2lpvv9q2bCAkJxroNm2FtLT5O7OztMWrEUNy6dQONGjXBg/v3Efr6NZavXIMKFRwBAC6uboh/+xaHD3uhcRP5T7wVN3Gb3MO8efPhnnvuODlh4ID+OHPmNHr2zOvcuYmQkBCs37Dxizaxw8gRw3Hr1k00aiR+2j4hIQG7d+/E+XPnoKur+3Mq9Z3Yv8ratXc/HOxsMXXiBACAh5srsrKysP/gYXRq31Zum2zbtQf169bGiCGDcvK4ICk5CTv27EOjBvWk0goEAixbuRplyxgi/t37oq9QIQkJeozHD29i7Mw1cHatAwAoX8kV00a0xfXzB9Gm6+A880a+eYn9W5bgTfALqKlpyHzuffUE3r+NxpQF2+BQqToAoHL1mkj+lACvbX9j6sLtRVKnH2E+YDBSX71E6II/AACf7vuglIoKzH75FXGHD0KUkS6Tp2zrtvhw5SJidm4DACT5PYSWoyOMO3dFws3rEGVmIuXFc6k8WhUcUbpRU0Rt3oDkp0+KvmI/iGMTaXv27IG9nR0mT54MQNzHZgmFOODlhQ559LE7vupj3dzckJyUhN27d0v1sT4+Pli/YUOJ62M3HT4HRxtL/DGyHwCgdrXKyBIKsePERfRs2QAaarLjtcysLHhduImNh89CXc7sV2F2NrYeO48azo5YNH6gZLujrSV6TVmEe08DUcNZcWfpoFQpWPbtiEqLpwDfODHecf5viDl8HgGTFgIA3l26DdXS+nCcOw4xB88CAOwnD0FWUgoedh4JUWYm4s/fhFCQBqdVsxC8aAPSImKKqkY/jOOT/yZRtqi4i0AlwL+ageHo6IjVq1ejUaNGqFu3Lt68eYOMjAwsXboU9erVg4uLC7p3747bt29L8hw9ehTNmjWT/NfJyQmdO3eGr6+vJE1aWhpWrlyJJk2awNnZGR06dMCFCxcAACkpKXBxccG+fdLTcteuXYuGDRsiOzsbiYmJmDlzJurVq4cqVaqgVq1amDlzpqRjcnQUf7meNm0apk6disjISDg6OuLevXsAxE9+7NixAy1atICzszNatGiB/fv3S/7WvXv3ULlyZdy4cQNt27aFk5MTWrZsicuX/91ThpcvX0a3bt1QvXp1ODs7o3Pnzrh16/MTWkKhECtWrEDdunVRvXp1jB07FgsWLEDfvp+f6AkJCcGQIUPg4uKCunXrYuLEiYiPj/9X5SgqGZmZePTsBerV9JTa3qB2TaQKBHgSECiTJybuLSKiY2Tz1KmJqJhYREaLL64ZGZnQUNeAsvLnQ1ZPVweZWVlIFaQVQW0Kl6+vLzQ0NODq6irZpm9gAGdnZzx4+DDPfH6+vrC0tJQM6AHAulw5WFlZ4cGDBwCAR48eQSgUolbt2pI0qmpq8PT0xMOcNIokIzMTT588Qe3ataS2161bF6kCAZ4/fyGTJzYuDlFRUXLy1EF0dDSioqIAAMnJyZj/5wJUdXbGgvnzi64ShSwjMxNPnjxFnVo1pbbXq1sHqQIBnr2Q3yaRUVGo/XWeOrURHR2DqCjxE2l/zp2NIYMGSKVRUVFBRkZGIdeicPE4yRv7k8943cmbn+9DaGhowMXVTbJNX98ATs5V8fBB3ksT+Pk9FB8n1l8cJ9blYGVlLcmnpaWFlq3aoHz5ClJ5La2sEBujuF+K/XLOHZcvzx19Azg5O+d7fPv5+ebRJlZS+Q56HYCfry+mz5gJTwVeopT9q6yMzEw8efpM5jpcv07tnOtwgEwe8XU4GnVqyrkOx8QgMkr6yfBN23aidOnSMss8Krrn/nehrqGJKtU+11NXvzQqVHbDU1/vfPNuXT0b2dnZmLZoB3T1S8t8HhMZCi0dPUnwIldFZ3eEBD3+phkeP1MpVVXoVndFwi3pp3o/3rgGZW1t6FatKjefkpo6hCmpUtuyEj9BRU8/z79lPX4S0t6EIu7QgR8v+E/Ascln4nH9E9T+oryAuI8VCAR4/vy5TJ64nD62lpw8sn3sn3B2dsafJayP9Q14hYYe0udIY8/qSBGk43HQa7n5vP1fYMvRcxjQoRlG92ov8/mHxCQkJqeirouT1HYHK3MY6Grjtr9sWysSvaqOcPpnHiL3HMej/r8XmF6znAV0HG0Re+KS1PaYoxegXd4GWg7i88ioWV28PXdDarmo2CPnUUpZGUbN6xZuJQoRxydElJ9/vYTUvn37sHr1aqxduxY2NjaYNm0avL29sWzZMhw7dgytWrXC8OHDcf36dUmemJgYHDhwAEuXLsWxY8egqamJqVOnQiQSR9l+++03HD9+HLNmzcLJkyfRtGlTjBs3DpcvX4a2tjZatmyJ06elp1ufOnUKHTp0gJKSEqZOnYoXL15g7dq1uHDhAqZNm4bjx4/Dy8sLACQBlenTp2PGjBkydVq0aBHWrVuH0aNH49SpU+jTpw8WLFiAHTt2SNIIhUIsXboUM2bMwOnTp1GhQgVMmTIFKSkp39Ruz549w5gxY9CmTRucOnUKBw8ehKGhIX7//XfJjcRly5bBy8sLc+bMwZEjR2BkZITduz8vVREXF4fevXujXLlyOHz4MDZs2IDk5GT06NEDqampef3pnyY69i0ys7JgZWEmtd3SzAQAEBElO8U3LFJ8Qfk6j0VOnvCcPJ1aN0dkTAwOHDuFpOQUPA96hcOnzqGmmwv0dHUKvS6FLSIiAqamplD+ah1OM3NzREVG5pkvPCICFhYWMtvNzc0RmXMxjggPh6amptQ6sblp3r9/r3BPGMTGxCAzK0umXuZm4mMgMkq2PSLCIwBANo+5uThPznGkrq6OjRvWY9LE36CnX/AUXEURGxOLzKwsWFqYS22XtElO/b4UHiFuJ0uZNhHnicg5PqytrWBqYgKRSIRPSUk4d+EiLl+9hnZtWkOR8TjJG/uTz3jdyVtkRARMTc1kjxMzc0TJOX9yRYSHw9xCdr3yL4+v6i6uGD1mnNRaxFlZWXhw/77UTX5Fk9e5Y15gm0TAXM65Y2ZujsgvzrlWrdtg85ZtqFNHcW8OAOxf5YmJjc1pk6+uw7nX1Hyvw9J5LCTt+DmPr/8jXL56DZPHj4FSCXj/1JdiIkNR1sQCSl+dN8ZmVoiLDss376Bx8zHlr22wtKkg93MdXQOkC1JlAhVvY8Vt+y5Ott2Lk7q5OZTU1JAWES61PT2nH1C3kt//xR32QpkWLaHnWRNKWlowbNoc+p418P7iebnpSzduCp0qTohYuxLIll0yRxFxbPJZbEwMsvLtY+X0JzlLXX89rjeT9LE5x5i6OjZu2IBJEydCXz/vAJiiiXr7HplZQlibGktttzIRr4oRFv1Wbr7K9tY4sWouBnZsAWUl2fdZ6GppQllZCTHvPkht/5SciqQUAaLeKvZsN0F4DK5XbIaAyYsgTC344RidivYAgJRXb6S2p4aI+2KdCrZQ0lCHlo0lUl6FSqXJePcRmYlJ0KlgWziFLwIcnxBRfv71+gcdOnSAs7MzACAsLAynT5/G8ePHUalSJQDAgAEDEBgYiK1bt6Jhw4YAgMzMTMybN08qzahRoxAfH4+kpCRcuXIFGzZskKQfM2YMAgMDsWHDBjRt2hSdOnVCv379EBUVBQsLCzx58gRv3rxB586dAQB16tSBh4eHZKaFpaUl9uzZg5cvXwKAZLkoXV1d6OrqIjExUVKf5ORk7N+/H1OnTkW7du0AADY2NoiMjMSmTZvw66+/StKOHz8etWqJI7sjR47EhQsX8PLly296l4aysjJmzZqF3r0/L9nQr18/DBkyBO/fv4eBgQH27duHadOmSV7CNXPmTPj7+0vS79+/H6amppg58/PahStXrkTNmjVx/vx5SXsUl5ScIIqWpqbUds2c31NSZQeXKSnibVpa0nm0vsrjWtUJvTq1x/ode7F+x14AQHk7G8yaOKYQa1B0UlNSoKWlJbNdU1Mz3+BTakoKLMzNZbZ/mS8lNTXPfQPil1RpfvVvUpwkx8lXZc79XV57pKSKA4XaX+f5oo4AoKqqCqsCXhSoiHLrJ9sm0vWTypOSIpUml6am/DwBgUEYP0n8ZE+F8g7o0rnjjxe8CPE4yRv7k8943clbSqr840SroOMkNUXuzfqCjq/t2zYjOjoK02fM/r4C/wR5tUmB505qCswt8j93AMDKKv8XgSsK9q+yUnKejs+zfgJ512H57fj1dTglJQV/r16Lfn16ydycLAkEqcnQ1JQN2qprakEgSM43r2W58vl+XrNBG1w6uQcblk5Gz0G/o3QZYzx5eAt3rorfYZSerlg3ppW1xe0g/OocEeYcH8ra2nLzxR08AJ0qTqiwdIVkW/yZU4g7sFduetOefZD05DGSHvnL/VwRcWzy2ff1sXnkkdPHFvRSdEWUnDO20taUXkpOS1O8HFBKHjNbjQ0N8t2vhroamtV0xaGLN2FvaYqG7tXw4VMS/t51BMrKShCkK/aM88yPicj8mFhwwhwq+uI+KOuTdN+blSS+Rqvo6UBVX1dumtx0KnqK+xAOxydElJ9/HcAo98X0zhc5y5p8eVMeEAcs9PSko5r29vaS/89dFzgzMxNBQUEAxGs8fsnDwwPLly+X/L+lpSVOnz6NYcOG4eTJk3B1dZWUpXfv3rh69SqOHTuGN2/eIDg4GJGRkbCzsyuwPq9fv0ZmZqbM3/f09MTOnTvx/v3nqP2X+9PR0ZHU4VtUqlQJ+vr62LRpE16/fo2wsDAEBoqXthAKhQgJCUFaWhqqV68uyVOqVCm4ublJ0r148QKvXr2SCZikp6cjJCTkm8pRlEQFPCGkVEp2wk+26NvyLF+/FWevXEO/7p3gWtUJsW/jsePAYUyetxAr5s+Ehpy1EItLdna2ZHbRl9vyUiqfJ/GyRXmvBZj7BF9B7Z7f/ovD95S3oDURSykpVh3/reyC6ifn3Pn6GJPNI90mJsZGWLboL8TGxmHH7j0YP+l3rFu1EhoainPufInHiRj7k/zxuiMm7zjJr23yPU7yOY+U5JxDIpEI27dtwYnjx9C5SzfUVpDZB/LbJO+6FWabKDr2r7IKuqbK60tEBfQludfudZu3wqhsWXTpKLv8iaIRnzfS9cqvbeSNT/4Ncys7jJ6+ErvX/4m547sBAMrZV0L7niNwYOsSqKvLvjejWBVUXznnVilVVVRcsx6qZcrizbLFSAsPg46TM8z69ke2IBURa1ZKpdeu4gxtx4oInl7wcjLFhWOT/BU8NpHXxxZQR6UfO9eKW37/zsCPXUOmDeoBNVUV/Ln5AOZv2g91NVX82r4pUtPSoaGm+t37VUQFHQei7GygwDSK+64Bjk+IKD//OoChofF5IJk7cNm7dy+0v3riROmrjlNNzkuZ8hsQi0QiyQsyS5UqhY4dO+LUqVMYPHgwzp07h/HjxwMQD5aGDRuGV69eoW3btmjdujWqVKmCWbNmfVN98ipD7iDsy5d0/ts6fOn+/fsYNGgQGjZsCDc3N7Rr1w4CgQCjRo2S+jv57S87Oxs1a9bEnDlzZD5ThJdFamvnRMa/msabmvvEhbbskzE635An/v0HnLp4Bb907YhBfXpI0lQq74Bfx0zC2cvX0LlNy8KryA/at28f9u2VfqKqbt26SEhIkEkrSE2VOXe+pK2lJXdadGpqKrRy8mlra+eZJvdzRZJb7q/LnF95tfI4TnKf0tDWUqw6/lu5dc6zftqyT53lPmUi24655450m5QpUwZlypRBVWcnmJqZYNKU6bjl7Y1mTRoXTiUKGY8TMfYn+eN1R2z/vj3Yv2+P1LY6devho5zjJFVQwHGSzzGg9dU5lJmZgRXLl+Hmjevo3KUbBg4a8n0VKAL79+3Fvn3S506dunWRkPBRJm3BbZLPuVMC+xX2r7K0JU93/ovrcIHtqAWf+w9w/eZt/LNiGUQiEYRCoeRGnlAoRKlSpWS+MxWn0wc34dTBTVLb3Go1xacE2WVY0lJToKn140/yVqleCws3nMa7t+Ll+4xMLHD7ynEAgJaOYi2RI0wRP9Gs/NWTvso5x3/u518q3aARtMpXQNBvY5HkK35fQ/JjfwhTklFuwmTEnz6JtNDP6/+XbtgIWZ8+IdHnTlFV44dxbJK/vMb1ueXVklPegvJ8/XR5SaOTO6s8TXqmRe7MCx3N7w9WammoY9bQ3pjYrwti3n2AWVlDaGmo48Q1H8kSVf8vshKTAAAqutLHUO6siqzEZMnMi6/T5KbL3Yci4viEiPLzrwMYXypfXjwtOD4+HpUrV5ZsX7FiBZSUlDBu3LgC95G77JOvry8aNWok2f7w4UM4ODhIfu/UqRPWrl2LAwcOICUlBa1atQIABAQE4ObNmzh48CCqVasGQDwrIjw8/Jum8tvb20NVVRW+vr6SJa5y/76RkVGhrS25bds21KhRA2vWrJFsy32/hUgkQrly5aChoYFHjx5JlePx48dQz3nKs3z58jh79izMzMwkwZSEhARMmTIFAwYMQM2vXiL4s5mbmkBZSQlRMXFS26NiYgEA5Sxlp81b5SzJEBUThwp2n9djjPwiT1z8O4hEIjhVkl4/18baEvq6uggNz3td1eLQqlUreHpKvxz27t278PX1RXZ2ttQX1ejo6HyPU0tLS7mza6KjoyXnjoWlJVJTU5GYkAB9AwNJmpjoaBgbG0uOH0VhbmYGJSUlREdLv+g1Olr8xVVee+RO94yOjobDF7O5YnL2YWVdMpbtyIu5mam4TWK+bhPx79Zy2sQy53yKjo6RapPcfVhbWUIgEODuvftwrFBeanp++Zz0799LrxerSHiciLE/yR+vO2ItW7WBp6f0GMDnrjf88jhOLK2s89yXhaUlXss5TmKio1Eh5zgBxMvizJszE4GBARgydAQ6dOxUCDUpPC1btYanp/SLtO/evQM/Xz+ZNomJjsn33Mm7TWJQwVH+2v6KjP2rrAKvw3KWnchdDioqJgYO9p9naX95Hd617wAyMjIwZNRYmfwtO3RBsyaN8PuEgr8v/Sz1m3dBVff6Utv871/D80d3Zc6bt7ERMLP8sbXU38fH4MXje6jVoA2MTD731+GvA6Gto4+yxrJLCxWn9OgoiLKyoP7Ve4I0cn5PC3sjk0fNxBQAkPz0idT2pMePAACaNrZSAQyDWnWQcPsmREJhIZa8cHFskj+znD42Jlr6PVy5faz8cb34GIr5qo+V5LHO+7pdElgal4WykhIiY99Jbc/93dbC9Lv3fcvvGfS0tVDN0Q72luJ3JXxITMLbDwlwtPn/WjIo+aX4vRZa9uXw6VGAZLu2vXhlkuTAEAhTUiGIjIWWvfQ7edSMDKGqp4PkwOJfuSMvHJ/8dynyzCBSHD/0yE/58uXRqFEjzJkzB1evXkVERAQ2b96MjRs3fvNF1t7eHo0aNcK8efNw/fp1hIaGYu3atbhy5QoGDhwoSWdhYYEaNWrg77//RtOmTSVLOJUtWxYqKio4d+4cIiIi8PTpU4wfPx7x8fGSl2MD4nXzQkJC8PGj9JN3Ojo66NGjB1avXo3Tp08jLCwMe/fuxb59+zBw4MBCm5JqZmaGoKAgPHz4EJGRkThy5AhWrVoFAMjIyICmpib69u2L1atX4/LlywgNDcXixYvx+PFjyT569+6NpKQkTJo0CYGBgQgMDMSECRPw9OlTVKhQ/F+g1dXUULVKJdz0uS81k+TG3XvQ0dZCpQoOMnkszUxhZmKMG94+Uttv3rkHS3PxZ5ZmplBWUsKTF4FSacIjo5GYlARzE5OiqdB3KlOmDCpUqCD14+rqCoFAAF9fX0m6xIQEPHv2DK6urnnuy9XVFREREQgP+/ySxPCwMERERMAlJ1/ukmK5L6sHgMyMDNy/fz/f7W1/mAAAq2lJREFUfRcXNTU1ODs5wfvOHanj5La3N7S1teEo51g2NzeHqakJbt/2ltp+29sbFubmMFWwY+DfErdJFXjfuftVm9zJs01y633LW/oJvdvedySfKSsrY8XqNTh05JhUGl8/8ZrKdrY2hV+ZQsLjRIz9Sf543RErU6YMyleoIPXj4uoGgSAVfr4PJekSExPw/NlTuLq65bkvF1c3RESEIzz8i+MkPAwREeFwcRHnEwqF+GPuLLx8GYTfp05XuOAFIL9NXCVt8sW5k5iAZ8+ewiWfNnF1dROfO3LaxNUl73yKiv2rLDU1NVR1qoLbd3yk2uTWnbvQ1tbK4zpsJvc6fOvOXUmb9OvdE2tXLJP6ad1C/K67tSuWoV/vnkVbsX/JwNAINg6VpX6qVKuJNEEKnj+6K0mXlPgRr174oXK1H3t4KinxI3at+wOBzx5ItiV+fIf7ty6gmkd9xVsaKCMDSU8eoXT9BlLbDRo0RFZSElICXsjkScvpN3SrVpParuNUFQCQHvP5Jreyrh40rKxlgh2KhmOT/BXUx8r73i7uY02l6ggA3jl9rEkJ72PV1VThUtEe1x48lmqTqw8eQUdLE1W+utn+bxy94o1Ve49Lbdt/7jqUlEqhnmuV796vIkoNCUfq6wiYdW4htd20U3MkvwyFIEz8wup3l71h3LohlL5YQsu0cwtkZ2Xh3TXp8a8i4fiEiPLzQzMwAPFsixUrVmD27NlITEyEtbU1FixYgE6dvv3L7PLly7F8+XLMmDEDnz59QoUKFbBmzRrJy6xzde7cGT4+PlIvqzYxMcGiRYuwZs0a7N27F0ZGRmjYsCH69++Pq1evStINHDgQW7ZsQUhIiNRLsAFg2rRpKF26NJYtW4Z3797BxsYGs2fPRvfu3b+zVWSNHTsW7969w/DhwwEADg4O+OuvvzB58mQ8ffoU9vb2GDduHDIzMzFz5kwIBAI0atQITZo0QXp6OgBxxHnPnj34+++/0atXLygrK8PV1RW7du2CoaFhoZX1R/Tr3gm/zV6AOUtWonXThnge+BIHjp3G0H69oKGujpTUVLyJiIKFqQkM9MXvSfm1R2csWr0Behu2oo6nG27fe4hr3j6YM0n8tJqBvh66tm+FA8dOAwDcq1VFXHw8dhw4AlPjsmjbXDGXwPmSs7MzqlatiqVLlmDgoEHQ09WVLL3Wuk0bSbrwsDBkZmbCPmf2Uf369eHl5YVZs2djwIABAIDt27fDxsYG9euLn5AzMTFB06ZNsWnTJqRnZMDCwgLHjh1DcnIyunbr9vMr+w169eyJaTNmYMHChWjRrDleBATg8JGjGNi/PzQ0NJCSmorw8HCYmZnBIGcWVO9evbB8xUro6emiZo0auOtzDzdv3cK0KVOKuTaFo3fP7pg6Yzb+XLgYLZo3w4uAABw6egyD+veDhoa63Db5pVdPLFu5Crq6uqhVwxN3793DjVu3MX3KZADiQWCPbl2xe+9+GBjoo1pVZ7x+/QZ79h+AS/Vq8HBX7BtvPE7kY38ijdcd+Zycq8K5ajUsW7oYAwYOhq6eLvbt3QNtbR20bt1Wki48POc4sc89ThrgkNd+zJk1A/0HDAIA7Ni+FTY2tqiXc9Pu9KmTeP78GVq2aoOyZY0QGBgg9bcrVqwEReTk7AznqlWxdOliDBw4CLp6el+0yRfnjkyb1MdBrwOYPWsW+uecOztyzp169evL/VuKjv2rrN49umHKzDmYv2gpWjZrghcBgTh09DgG/dpXch0OC4+AuZnpF9fh7li2cg30cq7Dd3zu48Ytb8z4fRIAwNTERObmyb374pv1juVlA6yKqEIVNzg6uWPLyhno2ncctHX1ccprIzS1dNGw5efrQnTEa2RlZsDaruI377ucfSU4VKyOvZsWomu/8VBWVsaxvf9ASVkZ7XsOL4rq/LCYXTtQYflq2M1bgHdnT0GnSlWY9uyDqE3rkJ2eDiUtLWja2CI9KgpZiQlI8L6F5OfPYDtzDqK3b0FaeBi0K1WBWd/++Hj7JlK/6D817cRPDwvCQouret+NYxNpPXv2xPQZM/DXwoVo3qwZAgICcOTIEQwosI9dAV09vZw+1gc3b93C1P+TPnZgpxYY9dc/mLZqO9o1rIknL0Ox+/RVjO7ZDhrqakhOFSA0KhaWJmVRWu/bl8fu0aI+xixaj+W7j6K+qxMePH+JHScvoV+7prAs4UtIqehqQ6eyA1JDwpHxTvwg7qsF/6Da1kXI/JCAuFNXYdK+Ccy7t4Zf7/GSfCHLtsC8Rxt4nN6C0JXboV3BBo7zf0PEloNIi4jJ468pBo5PiCgvpUTf+hIHKnKXLl2Cm5ubVDBi4MCBMDU1xV9//VVkfzc20L9Q93fz7n1s338YEVHRKFvGEJ1aN0ePjuKbJf5Pn2P8zPmYOnY4WjVpKMlz8vxlHDh+GvHv3sPMxBh9unZAi0afbwqIRCIcPnUOJ89fRkzcW5QxNIB79aoY8ktPyQ2pwmJa0QUhr18XnPBfSkpKwubNm+FzVzwNv3Llyhg6bJhkyjAATPn9d8TFxWHHzp2SbfHx8di4YQP8/f0lQauhw4ZJHSeZGRnYvn07rl+/DoFAAIfy5TFo0CBUrPjtXyLzY29nh9CQ4ELZVy7vO3ewe89eREVGokzZMmjXti265AQnHz95gilTp+G3CePR/ItA5pmz53Dk6FHEx8fDzNQU3bt3R9M83uEQGxeH/gMGyuyjsNjaOyAsOKhQ93n7zl3s3rsPkZFRKFOmDNq3bY2uncXB4MdPnmLytBmYNH4cmjdrIslz+tx5HD56DPHx72Bmaoqe3buiaePPy/GJRCKcOXceJ06fQUxMLPT19dC4QQP07dNL7nt9fkQ5B0ceJ1+xtXdgf/IVezs7Xne+YlrRBa9CwgpO+C8lJyVhy+aNuOtzB6LsbFSqXAVDhg6HpeXn6fRTp0zC27g4bNuxW7ItPv4tNm1cj0f+flBWVoGLqyuGDB0OQ8MyAIApk3/D8+fP8vy7p89e/OGyl7cvh+CQwr+Jl5SUhC2bN+Guz12IsrNRuXIVDBk69Ks2mYy4uDhs37FLsi0+Ph4bN67HI8m544YhQ4dK2uRry5cvw9MnT6T28SMc7G3Zv37F1t4B4a8CCk74L9y+44Nd+/Z/vg63aYVunTsCEF+HJ02fhUnjx6BF0y+vwxdw6OhxxL97BzNTE/Ts1gXNvrgOf23X3v3Yvd8Ll04fL9SyA4B1+Uq4+Tyl0PebkvwJB7f/jUf3r0MkEsG+YjX0GDARphY2kjRLZw3B+7fRWLTxjNx9TB3WBhWc3DFwzDyp7Z8S3sNr+9948Ug8+8XRyR2dfhkNU/PvfyL7S/WraONhg1qFsq9cBvUawHzAYGhYWSPzXTzeHjuCuIP7AQC61V3guGodQhfOx/vzZwEASlpasBgyHKXrN4SKrh7SY6Lx/sI5xB3cD1FWlmS/pRs1gf3cP/Gsb0/JzI2i4H7jLscmX7G3s5O7VOCP8L5zB3v27EFkZCTKli2Ltl/0sU+ePMGUqVPx24QJUg9tnj17VtLHmpqaokf37mjSpInc/cfFxaH/gAEy+ygsdvb2+OR7oVD3ee3BY2w6fA5hMXEwKm2Abs3r4Zc24muI74tXGP7nGswe1gftGtSQyXvqxj38sXEvTqyaA3Mj6WvvhTu+2HrsAqLj38OsrCG6NquLHi0ayOzjR+m5tcAZVceCE34Hw/qeqHVlN+426YsPN+9LbXs8aCoid32eUW89pAfsJgyEhpUZUl9HIGTJJkTtPSG1v9J13FBp8e/Qq1YJGe8+ImrvCbycu1qqzykMbTKDOD75gq19yXg4QdF0HVf416T/d4dX2RWc6P8MAxgKpGfPntDU1MTvv/8OHR0dXLlyBUuWLMG2bduK9P0WhX0jqaQrqgBGSVYUAYySrigCGCVdUQQwSrqiCmCUZEURwCjpiiqAUZIVVQCjpCqKAEZJVxQBjJKuqAIYJVlRBDBKuqIKYJRkRRHAKOmKIoBR0hVlAKOkKooARknGAMb3YQDj3/svBjB+eAkpAtzd3SHM50VrZcqUweXLlwvcz7Jly7Bo0SL0798faWlpcHBwwKpVq4r95dxERERERERERERERD8bAxiF4OjRo8hvIouysvI37cfS0hJr164trGIRERERERERERERKaRsUXZxF4FKAAYwCoG1tXVxF4GIiIiIiIiIiIiI6P+KUnEXgIiIiIiIiIiIiIiI6GsMYBARERERERERERERkcJhAIOIiIiIiIiIiIiIiBQOAxhERERERERERERERKRw+BJvIiIiIiIiIiIiIvqpRNmi4i4ClQCcgUFERERERERERERERAqHAQwiIiIiIiIiIiIiIlI4DGAQEREREREREREREZHCYQCDiIiIiIiIiIiIiIgUDgMYRERERERERERERESkcFSKuwBERERERERERERE9N8iyhYVdxGoBOAMDCIiIiIiIiIiIiIiUjgMYBARERERERERERERkcJhAIOIiIiIiIiIiIiIiBQOAxhERERERERERERERKRwGMAgIiIiIiIiIiIiIiKFo1LcBSAiIiIiIiIiIiKi/xaRSFTcRaASgDMwiIiIiIiIiIiIiIhI4TCAQURERERERERERERECocBDCIiIiIiIiIiIiIiUjgMYBARERERERERERERkcJhAIOIiIiIiIiIiIiIiBSOSnEXgIiIiIiIiIiIiIj+W7Kzs4u7CFQCcAYGEREREREREREREREpHAYwiIiIiIiIiIiIiIhI4TCAQURERERERERERERECocBDCIiIiIiIiIiIiIiUjgMYBARERERERERERERkcJRKe4CEBEREREREREREdF/iyhbVNxFoBKAMzCIiIiIiIiIiIiIiEjhMIBBREREREREREREREQKhwEMIiIiIiIiIiIiIiJSOAxgEBERERERERERERGRwiklEon4thQiIiIiIiIiIiIi+mnaDnlR3EUocU5vrlzcRfjpVIq7AFT83j27W9xFUChlnWoh6uXT4i6GQrGo4Mzj5CtlnWoh6f6Z4i6GQtH1bIMzqo7FXQyF0iYzCKEhwcVdDIVia++AsOCg4i6GQinn4IjgkNDiLoZCcbC3xYcnt4q7GArDsGo9JN87VdzFUCg6Ndoh/FVAcRdDoViXr4TooCfFXQyFYu5YFa9DQoq7GArFzt4eiX6Xi7sYCkXftSnCh3cu7mIoFOsNR/E8OKa4i6FQqjiYcVz/FVt7B37/+0KbTH7H+R4iUXZxF4FKAC4hRURERERERERERERECocBDCIiIiIiIiIiIiIiUjgMYBARERERERERERERkcJhAIOIiIiIiIiIiIiIiBQOAxhERERERERERERERKRwVIq7AERERERERERERET03yLKFhV3EagE4AwMIiIiIiIiIiIiIiJSOAxgEBERERERERERERGRwmEAg4iIiIiIiIiIiIiIFA4DGEREREREREREREREpHAYwCAiIiIiIiIiIiIiIoWjUtwFICIiIiIiIiIiIqL/FlG2qLiLQCUAZ2AQEREREREREREREZHCYQCDiIiIiIiIiIiIiIgUDgMYRERERERERERERESkcBjAICIiIiIiIiIiIiIihcMABhERERERERERERERKRyV4i4AEREREREREREREf23ZIuyi7sIVAJwBgYRERERERERERERESkcBjCIiIiIiIiIiIiIiEjhMIBBREREREREREREREQKhwEMIiIiIiIiIiIiIiJSOAxgEBERERERERERERGRwlEp7gIQERERERERERER0X+LKFtU3EWgEoAzMIiIiIiIiIiIiIiISOEwgEFERERERERERERERAqHAQwiIiIiIiIiIiIiIlI4DGAQEREREREREREREZHCYQCDiIiIiIiIiIiIiIgUjkpxF4CIiIiIiIiIiIiI/ltE2dnFXQQqATgDg4iIiIiIiIiIiIiIFA4DGEREREREREREREREpHAYwCAiIiIiIiIiIiIiIoXDAAYRERERERERERERESkcvsSbCt29R8+wad8RhEZEwdBAD51bNkGv9i1RqlSpAvO+fB2GwVP/gNfaRTAzNpL67Oqd+9h7/BzComKgq60F96qVMeKXbjA00C+qqhSaB36PsG33frwJj0BpAwN0aNMC3Tu1z7dNrty4jT1ehxET9xamxkbo1bUTWjRpKJUmPCIKG3fsxuOnz6GsrIyqTpUxYtCvMDc1KeIa/TgeJ7J8ngZh3aGzCImKRRk9XXRrWge/tG6YZ5tkZGZhz7nrOHP7IeLeJ8DYUB+taruif7smUFX53L1fvvcIu85cw5uYt9DV0oRnlfIY3aMtyujr/qyq/TANCxPUf3QaD7uMwoeb9/NNa96jDRymjYCWnRUEb6IQvHQTonYfl0qj7+aESot/h76bE7I+pSBy11G8/GMtRJmZRViLwuHr54cdO3chPDwcBgYGaNe2Dbp07pzvuXPt+nXsP+CF2NhYmJgYo3u3bmjWtKnctKmpqRgxajT69O6F5s2aFVU1CtVDP3/s2LUbYTlt0r5NG3Tt3LGANrmBfV4HERMbBxNjY/To1gXNmzaRSnPx0hUcOnYMMTGxMDYyQru2rdGxXdtv6qcUgUAgwPZtW+F9xxtpAgGcnJwxZOhQWFpa5Zvv48eP2LJ5E3x9H0IoFMLdwwNDhgyFoWEZuelPnjyBY0ePYPuOXUVRjUJz7/FzbNx/DK8jomGor4cuLRuhd7vm3/TvGRQajkHTFuDQ6gUwMy4r9Vn7YZMR/+GjTJ5zW1fAQE9x+9m7T4Ow7vA5hETFoYyeDro1rYO+rRoUcM25gdPe4muOiaEBWtZ2wYC2jaWuOZfuP8655sRDV0sDnlXKY0z3NiXimvPQzx/bd+9FWHg4ShsYoH2b1ujaqUO+x8jVGzexz+uQpC/p2a0zmjdpLJXmwuUrOHz0BKJjY2FsVBbt27RGx3ZtSkRf8sD/MbZKxrD66NimJbp3bFfgGHb3wSOIiYuDqbExenXpiJY5Y9jYuLfoNWRUnnlbNmmIKePy/lwR+Pr5YefOnZLrcNu2bQu8Dl+/fh37DxzIuQ6boFsB1+GRo0ahT+/eaFZCrsM+TwKw3uskXkfGwFBfD92a10efNk2+sX+NQP9ZS3BkxVyYG0lfZ64/eIxtx84hLDoOZQz00KquJ/p3bCHV5ygqjUrVoN+hD1TNrZD9KQFJN84j6dIJuWm1azVCmV/H5Lmv9ztWI8XnOgBA07UW9Jp3gqqpBbJTU5AW+AQJx3YjOymxKKpR6ASCVOzevgk+3jeQliZAZadqGDBkFCwsrfPNl/DxA7ZvWQd/3/vIFgrh6l4D/YeMkoxN1ixfiGtXLuSZf8P2AzA2Ni3UuhQGjuvzxu9/RPQlxb/y/4Do6Gj4+/ujTZs235T+2rVrsLKygoODwzel79u3LywsLLBo0aIfKea/Mm/ePBw/fhxKSkq4cOECwsLCIBKJ4O7u/tPKkJ9nL4Px+8IVaFLbE0N6dcKTgFdYt/sghEIh+nZum2/e1+GRmPTXCgiFQpnPLt/2wZwVG9CheUMM7d0FHxISsXn/UYyZsxjbls6FuppaUVXph70IfIkZ8xehYd3aGPBLTzx9EYhNO/ZAKMxG726d5Oa56e2Dv/5ehc7tWsPTzQW3fe5j8cq1UFVVQeP6dQEAb+PfYeyUGbC0MMfMyeORlp6ObXsO4PfZ87F1zd9QV1f/mdX8V3icyHoa/Abj/96CZjWrY3jXlngUFIrVXqchzM5G/3ZN5OZZtucYzt72xeCOzVDZzgovQiOw+dhFxLz7iNlDegIALtz1x4x1u9G5cS2M7NYa7xI/YcPh8xixcB12//Eb1NVUf2Y1v4uGpSk8z2yFqoFegWlNOzVH9V3LELpmF+Iv3IJph6aovm0xstMzEHPwLABA09YSNc5vx0efR/DrNR46Fe3hOH8CVA0N8GzUnKKuzg8JCAzEnLnzUL9ePfza9xc8e/4CW7dth1AoRI/u3eXmuX3bG0uWLkPHDu3h5uaGu3d98PfyFVBVVUXDBg2k0iYlJWHeH/MRFxf3M6pTKAICAzF73nw0qFcXv/7SB89eBGDL9h0QCoXo2b2r3Dy3vO9g0bLl6Ni+HTzcXHHHxwfLVqyCqqoqGjWoDwA4d+EiVqxei+5dOsPN1QWBQUHYuHkr0gQC9Oohv60VzZIlixAUGIgBAwdBS0sL+/ftxbSpU7Bu/Ubo6sq/mSwUCjFn9kykpqZi1OgxEGYJsWPHNsycMQOr16yFylc3jW7cuI4tmzehTBn5wQ1F8exlCCYtXI2mtT0wpEdHPAl8hX/2HIZQKES/Tq3zzRsSHoVJC1fJve4kfEpC/IePGN23G6pVlB4/6mhrFWodCtPT4DCMX74NzWtUw4guLfHoZShWe52BUJiNAe0ay82zbM9xnPH2xeAOzVAl55qz6fglxL5LwOzB4nPigo8/pq/biy6NamJk11Z4n5iE9UfOY/iiDdgzb7xCX3NeBAZh1h8L0KBeHfT/pTeevQjA5u07xX1Jty5y84j7khXo1L4t3F1dccfnHpauWA1VFVU0alAPAHD2wiWsWPMPunfpBDeX6gh8+RIbtmyDIE2A3t27/cwq/msvAl9i+vyFaFS3Ngb26YGnAYHYuGMPhEIheneVP4a9cccHC5avRpd2reHhWh3ePvexeNU/UFNVReP6dWBoWBr/LFkgk+/42fO4dvsOWjeTf/wpioDAQMydOxf169VDv7598fz5c2zbtg3ZQiG653kdvo0lS5eiQ4cOcHdzw527d7F8+fI8r8N//PFHiboOP30Vit+WrEezWq4Y3q0tHgW9xpp9xyEUZuPXDs3zzRsSEY0JS9ZDKMyW+ezekwBMWbEZzWq6YlTPDngdGYN1B04iISkFkwco9nVYzbYCjEZNR+pDbySe3A91h4ow6NQXpZSU8OnCMZn0gqe+iF08VWa74S8joaSpCcEzPwCAlnsdlB08EUk3LyDxxF4o65WGfvteMJ4wD7F/TQayFP9G7Iolf+Jl0Av0GzAMWlra8Nq/E7OnTcCqdTugk+fYJAvz50yBIDUFw0f9hixhFvbs2IQ/Zk7CstWboaKigm69+qF56/ZS+ZKTkrBs4VxUca4OIyPFe8CP4/q88fvff4soW1TcRaAS4P86gDFlyhRYWFh8UwAjKioKw4cPx65du745gPGzBQYGYt++fZg3bx7q1q2LsmXLok6dOli4cKHCBDC2HjiOCrblMHvcMABATZeqyBIKsevoaXRv0xzq6rI3kDMzs3D43CVsOXAMaqryv9juOnIatVyr4vdh/SXbrM1NMXTafNzxfYxGtTyKpD6FYcc+LzjY2WD6xLEAAE83FwiFWdh36Ci6tG8tN9CwZfc+NKhTC6OGDAAAeLhWR1JSMrbvOSAJYOzcfxDaWlpYNn8ONDTE+zAzMcbMPxcjKDgEVatU/kk1/Pd4nMjaePQCHMtZYP7wPgCA2lUrIUsoxPaTl9GzRT1ofBV8SUhKwbFrPhjTow36tRF/2fesUgEAsNbrDMb0aIvSejrYfuoy6lSrhOkDPt8ksTE1Rv95q3Dr0Qs09az2k2r4HUqVgmXfjqi0eArwjQ+pOs7/DTGHzyNg0kIAwLtLt6FaWh+Oc8dJBrD2k4cgKykFDzuPhCgzE/Hnb0IoSIPTqlkIXrQBaRExRVWjH7Z7z17Y29nh98mTAADu7u4QCrPg5XUQHTt0kNufbN+5E/Xq1sWwoUPFedzckJSUhF2790h90bnr44P1GzZCIBD8nMoUkl1798Pezg5TJv0GAPBwd4MwKwsHDh5Cpw7t8miT3ahftw5GDB0MAHB3c0VSUjJ27tkrCWDs9zqEenVqY/DA/gAAl+rVEBkVjROnzpSIAEZAwAvcv3cP8+bNh7uHuO9zcnLCwAH9cebMafTs2Utuvlu3biIkJATrN2yEtXU5AICdvR1GjhiOW7duolEjcX+TkJCA3bt34vy5c3kGQxTJloMnUcHWGnPGiv/Na7k4IUsoxM5jZ9G9dVNo5HHdOXT+CjZ7ncjzuvPyTQQAoIGnCyxNjYuuAoVsw9ELcCxnjvnDewMAaletKL7mnLqCXi3qQeOrQENCUgqOXr+Hsd1bo1+bRgAAzyrlAQBrDp7FmO6tUVpPB9tOXUWdahUxfcDn4GE5MyP0n7dG4a85u/buh4OdLaZOnAAA8HBzRVZWFvYfPIxO7dvK7Uu27dqD+nVrY8SQQTl5XJCUnIQde/ZJAhj7Dx5GvTq1MWTArwAAV0lfclbhAxjb9x+Eg50tpv/2eQyblSXE3kPH0KWd/DHs1t370KBOTYwa3F+cx7U6PiUnY9veA2hcvw7UVFVRuWIFqTxBwSG4dvsOBvftDefKlYq8Xj9iz549sLezw+TJkwGIr8NZQiEOeHmhQx7X4R1fXYfd3NyQnJSE3bt3S12HfXx8sH7DhhJ3Hd50+AwcbSwxb1R/AECt6lWQJRRix4kL6NGqocwYFgAys7Jw8Px1bDx8Js/+9dQNH5iWKY15o/tDWUkJNapWwofEJOw7exUT+naBiopyUVbrh+i37YGMiFC837EaAJD2wh+llFWg17ILkq6egSgzQyp9dvInZCR/ktqm06g1VM0sELdkOrJzPtNr2QWCp774uG+jJF1mXBRMpy6GZlV3CPzuFnHNfkxQwHM8vH8HM+cthqt7DQBAJaeqGDGwJ86fOY6uPfvKzXfn1g2EhrzCqvU7YGVtAwCwtXPA+JED4H3rGho0agZTMwuYmllI5VuyYDZ0dHUxYfIMhZzxxnG9HPz+R0R54DswcohEih/x+/RJPHCpU6cOLC0ti7k0sjIyM+H/PBD1PV2ltjeq5Y5UQRoeB76Um++u32NsO3gC/Tq3xYi+sjeFsrOz4VGtCjo0ayi1vZyFGQAgKvZt4VSgCGRkZuLx0+eoW7OG1Pb6tWshVSDA0xeBMnli494iMioadWt5SuepUxNRMbGIjI6BSCTCzTs+aNmssSR4AQCO5R1waOdmhQ5e8DiRlZGZBd+AYDRyd5ba3sSzGlLS0vEo6H/s3XlcjdkfB/DPbZNCVGijFC2iFFJ2yr7HZE9k3zODEsaSomgiDQnZEjFEGMbakC1lVColSxtZGksLpfv8/kh3XLcw8+Oeq+f7fr3m9eLc5+Zzn7k92znne+5LvKew+A2GdrdDZ+sWYu0G2uWji3KePIdQKES7FsYY0s1OfBud8ods2U+efc2P8dXVsTBBi6DlyN4Tib9cFnx2+5r6uqhl0gSPj5wWa3906BRUmxlApWn5w9j6PTriye/RYtOFH/92EgJ5edTv2fHrfoivqKS0FIkJCWjfXvz/Z8eOHVFUXIzbt5Ml3vM4Lw85OTmVvKcDcnNzkZOTAwAoKCjASq9VsGjZEqtWrvx2H+IrKyktRUJCIjrY2Yq1d+rYAUXFxUhKrnyfZOfkoP3H7+nQHrm5j5CTkwsA8Fq2FJNcx4tto6CggJIS8YcOsio+Lg7Kysqwsv7nWKumVhctWrbEjdjYqt8XHwc9PT1R5wUANG6sj0aNGom9L2L/PsTHxWGR52LYtGtX2Y+SGSWlpYi/fQddbKzE2rvZtkZR8RskpKZX+r7LNxOx7UAUxg3pixljKh+Bn/4gCyo1laHbsH6lr8uiktJ3iEvNQLfWH51z2lqUn3PSKjnnvHmDod1s0dnaXKzdQPv9+eTp+3OOeTM4drWtfJsnz7/mx/iqSkpLkZCYJHEs6dyh/ftjSYrEe8qPJbnoYFvJseTRI2SLjiWLMXnCOLFtFL+DY0nFNWwnW/Hr0S4dbD95DZuV8widPrru7dLeTnQN+zGO47B+8zboN9LDsIFfNmuelfJzTgLat28v1t6xY0cUFxfj9u3bEu/Je38etqvkPZLnYS+0bNkSXt/ZeTg+OR1d27YSa7dvZ4XC4je4lZpR6ftibt7G1kO/w2VQL8wcOajKn61cQwnycv88slCrrYrSd+9Q+ObNV/sMX52CApSNW6D4r2tizUXxVyBXUwU1mn6+k06uthrqDhyFgj9PoeTB+3OUQIA3KQkouPSH2Lalj8u/Qwqaslce6WM3469DWVkZllb/DL5UU6uL5i1aIe7GtSrf91f8dejqNRJ1XgBAo8YG0Gukj/gq3hcXexVXL/+J8ZNmQLWW7A20oOv6ytH9HyGkKtW2A2Ps2LG4fv06Dh8+jO7du+PNmzcICAiAvb09WrZsiUGDBuHUqfIaidnZ2bC3Ly/R4uzsjMDAQADAmTNn8MMPP6BVq1Zo2bIlHB0dcfHixf+c6cGDB3B1dUXr1q1hZWUFV1dX3LlzR/R6Xl4eZsyYASsrK3Tp0gUHDhxA9+7dcejQIRw6dAhjx5aPSHBwcIC7uztMTEwAAB4eHnB3l5xyKm25eU9R+u4dGumIXzzpvl+PITPncaXvM2tqiN82rcW4YQPFLlAryMnJYZbLSHT66IH3n9fLp9I2aaQr8R5Z8ehxHkrfvYPe+4foFXTf76Os9ze3H3qYlQ0A0NPREX+P9vv3ZOfgcd4TFBYWoWH9+li/KQSDRrqgl+NILPZajafPZPcBAUDfk8rkPHmO0ndlaKwl/gCsUcPyOusPK+l80W2gAXeXYaIHQxWi4xKhIC+Pxtr1IScnB7dRg9C1tXgnx4W4JACAka5s3+gUZz7CBdMeSJm/GmVFn79RrWVqBAAoTH8g1l6U8bD8deMmkFOuARUDPRSmiz+gK3n2N0pfvkYt4yZfJ/w38PjRI5S+ewddXfHvso52+fElOydb4j1ZmeWjwyXe8/74kp1dfqNTo0YNBG/ehJ9+nIc6ap+fqi0rHj96/P4YK368FO2T95/vQ5kVx1iJfVL+nqz3N3+NGzeCVsOG4DgOr16/xu+n/sCZc+cxoN+nyw3JiqysLGhpaUFeXnyEqo62DnIq+a6I3peZBR1dyeOlto4OsrP/eV+fvv0QsnU7OnSQ/Zu+ivNOYx3x8hEVMyYe5lZeWsHMyACHglbDZWh/yMtVPtI3/UEm6tRSxaJ1m+DgPAvdx8zAYv/NePb3i6/6Gb6minOOflXnnEeVnHPqa8DDZajEOedCfBIU5OWhr1V+zpk3amCV5xxDGT7nPHr8+P3x9aNjScVx4ZPHko+v1yqOyeXv0W8kfiw5ceo0Tp+7gAH9+nz1z/E1ia5hq7oerewa9v1+krju/cR7zl+8jJS0dMycOF7ieCVrHj96hHefPA9X8j3JzAQgec7RFp2Hy79H5efhzfjpxx+hpib767ZVKD+evEPjj44Neu87dR8+qvz42txIH5EbVmDCkN5QkK/8kcSwnp2R9fgp9hw7g9eFRUhMv499v59Hh1bmUKul+nU/yFekoNkQAkVFlOaJf99Ln5Z34Ck01KnsbWLUBowAOA4vjuz9p5Hj8OK3HSi+JT4IQaVVeSdj6aPM/zP5t5edlYmGWjoSv+vaOrrIzak6f3ZWJrR1JNfv0tLWRW625Ps4jsPObZtg3tIS7Tt2/b9zfwt0XV85uv8jhFSl2nZgBAYGwsrKCn369MHBgwcxb948REZGYsmSJTh69CgcHBwwZ84cnDlzBtra2jhw4IDofRMmTEBSUhJmzZqFfv36ISoqChEREVBXV8eCBQv+84ipefPmoWHDhvjtt99w4MAByMnJYebMmQCA0tJSTJgwAc+ePcPu3buxbt067NixA0+elN9E9u3bV9SxcuDAAXh6euLSpUsAgEWLFsHT0/P/3WX/t4KiIgCAas2aYu0qNZUBAIVVTF+sr1EPdWrX+lf/VvbjJwjatR/NmjSGnbXFf0grHYWF7/eJingdbJX3+6jo/T4Te0/FflT5eD9WvKcYL97PxgnZuQfPnudj8fy5+GnWNKRn3Me8RT+jWIZHJdH3RFLB+8+s+n4fVFB5P7umsPjtF/2c8zcScOzSDQztboc6VdRez857hoDwozDW10UHS9ku01D690u8yfnymq0KauXfj3evCsTa370uLH+9Ti0ovl9E9uNtKrZTqPPvvmPSVHFsUPn4ePL+75UfT8o/++eOQYqKimgkgzP7Pqfi80nuk08cYwsLxbapULOK43JK6h0MGzEav2zYiCYG+hjqOPirZP/WCosKJfYLUP45K9svFYq+8H2NGjWSWA9DVhUUlR9jVf7leaeBRj2ofea8k/4gC0/zX8DEUB9rPWZh9jgn3ExOw/Sf/VD85suO3dJWUFx+jaBaU7w0xb8955y7kYhjl+I+ec7JynuGgH3HYNJYBx0tTf+P1N/WZ6/Xiis7llR+TP7UsWToyLH4JTAITQz0MWxI5aPOZcU/+6Ty69HCIsnfG9F7qvpdq+TYs+/wEbQwM0GrluYSr8ma/3YeruI9lZyHZXGG/edUHF8lrmFrVhxPKr8naaBe97OdEG3NTTB2QA9sCDsM+4nz4bp0LerVqY2Vs8Z/8n2sydUs/1zCN+K/I9z7v8spf3p9JLnaalC17YrXF06Aq+TY8yEFzYaoO3QcSjLv4c37dTJkWVFhAWpWcY1R/Mlrk4J/dU0Te+0ysrMeYtjwyktSyQK6rq8c3f8RQqryfdx5/gd169aFoqIilJWV8ffff+Ps2bPYvHkzunbtCgCYNWsWUlNTsXnzZjg4OEBdXR0AoKamBlVVVcjLy2PJkiUYNWqU6Gc6Oztj0qRJeP78ObS1tSv7Zz8pMzMT7du3h66uLhQVFeHt7Y179+5BKBTi8uXLuHv3Lk6dOgUDAwMAwOrVqzFsWHkNYWVlZdFoHHV1ddSuXVtUc/rDP7P0uYV35L5S3cmH2blwW7kW8nJy8PppJuQqGY0vK4Sc5IJ0HxIIJLN/bj8K5AR4V/oOAFCvrhqWL5ov2ge62lqYOX8Rzl64iP69e/zH1N8WfU8kCb/CPjkXm4DFm/aglXETzB4xoNJtHuTmYYZvMOTl5OA7a5xM75P/QvCZz8MJhcBnt5HdcoKc8HPHE8nvyZccT75nn/vdqfQY+5mSkR/vx4YN6mPtam88fpyHHbv3YO5PC/Dr+gCx8n2sCYVCic/1qf/3n6oD/al9Kvedfl+En/l//v+cd9ynjIO8vByaNy0fvdfKzBhNGulg6pI1+D36Mhx7dfvPP/tb+dz++JI64ediE+G5OQytjA0wZ3jlZX/u5z7BDN8tkJeTw5pZzjJ9zvnccUGu0mPJv7vGa9CgAdb6eOFxXh527N6LufPd8WuAv0wdSz702d+bSo4Hn7vu/Xg/JqXcQXrGfaxc9PkyIbLgc+fhyo4lnz13y/DvxZf4L787X2r1tn2IunAFE4b0RtsWJnj09DlCDp7A7NVB+NVzdqVrF8mEzx1DP/N7UquDAwRycnh97vgnt1NoqIsGc5YCQiGebfEDZKwkdvm1ifhn/dT35Wtem/x+7DCaGDYVK1Ula+i6/uuo7vd/hJB/VNsOjA9VlGlq3bq1WHvbtm3h7+9f6XvMzMygpqaGLVu24N69e3j48CFSU8trvZaVlf2nHG5ubvD29sbevXthY2ODTp06oX///pCTk0N6ejrU1NREnRcA0LJly0pHGsiqipEARR+N/i96PzKn1lf4LPFJKVjktxEqyjUQuHyhzC+YqapSPgKn6KPRnaJZFpWMWKxok3zP+xFOKiqikcM2ra3EHgg0NzWGqqoK0u9J1q+WFfQ9kVSrYrT4R/ukYtRarY9GtX0s7PdorA8/itZmTbF27njUUJJcDPFGyl0sWB+Kmso1ELxoOvTelwqpTt69fA0AUKgtPqKvYlTNu5cFopE3H29TsV3Fz5BFKqrlmT9ejK9IdDyR/EwqVR5PKkbWym4Jhi9R8Zn/1TH2/TFGcj8Wi/3MChoaGtDQ0IBFyxbQ0m6InxYuwsWYGPSw7/51PsRXEL43DHv3hom1dejYES9e/C2xbVFxUaXflQqqqiqVLvhYVFQEle/0+yI6xn40ErhQdN6pKfGeL9XSxEiizdK0GWqp1ET6w6pLdbFUcU4p/GiGSMXMi1oqnznnnPwTAeFRaG1mhHVzXKo858zfsBM1a9RAsMc0UXkqWSW6Nin6N9drnzsmi79HU0MdmhrqsGzZAtpaWvjR3RMXYy6jh73sdXIBn7oerXy2yodtEr9rFTNNP9on0ZevoHYtVdi2EV+fRlZVdc6p+H+uUsmx9XPvqWw/fk9URceTyq9hVT9zPKnKk/wXiDwXA5dBvTDV6Z+BOc2NDDBivheOXrgMp15d/1vob6xi1oScsvi5pWLmhfAzsypUrO3wJvmWaOHuytQwNofmlAXg3r5Bnv9SvHv25SPWpSUifCci9u4Ua7Pr0KXya5OiIqioVj0KXkVV9RPXJuLve/36FZISbmL0uEn/Mbl00HX911Hd7//44nODQggBeNKBURWO46osf3D9+nW4urqia9euaN26NQYMGIDi4mLMmDHjP/97o0ePRu/evREdHY0rV65gw4YN2LRpEyIjIwGUj1L4mJKSjI4sqYSuVn3Iy8kh+6Nap9nv6/fr6/37WSsfOn3xKrw2hkBfRxvrFv+I+hr1/q+fJw262g0hJyeHnEfi6zpU/F2/knUZGr2vpZzz6DGaGRmK2nNF79GDWp3aEAgEKH0/E+NDZWVC1JDh7w19TyTpNdCAvJwcsvLEF9Wu+LuBbsPK3gaO47B292HsP30JveyssGzySChWckw7eSUey4LDYaDTABt+moQG6nW/+meQBQXvF55VMdLHq7/+WXBV1ah88baC1AyUFRahOPsxVIz0xd6rVF8dinVqoaCKxSZlgY62NuTk5JD70SKoubnlNZYbNZKsDVwxfTw3NxdNjf550Pro/c9o1FjyPd8THW2t8n3y6ON9Uv73xpXsEz09XdE2H+6Tip/RuJEeiouLceXadZgYN4PuB/Xfm73f/vnz/K/7Qf5Pvfv0hY2N+KK5V65cRnxcPIRCoVhH96PcR5V+Vyro6unhXobk78Gj3EcwNjH+eqGlSLdhg/LzzkfrCVX83eA/nncKCotw/lo8mjdtAqPG/5zPhUIhSt+VoW4d9rNjK1Nxzsmu4pzTRKfyTn+O4+C350j5OcfWCssnD6/inHMTP2/ZBwOdBgj8cSIaqMt+Pf/PHksqKcVRsaZBzqNHaCp2vVbZscQYujr/fM8qru+e58vWseRDulqfu4aV3CeNxa5hm0i+R0/8uvdqbDw6tLP5bsrRab8/Dz/KFV/boOI8XPk5p3w/PfroPCx6T+PG3yquVOg1fH9d//ipWHvF35v8x7VvHj/LB8dxsDQxFGs31NOGWi1V3MuWXBBeVpQ+fQyurAwK9cU/u0KD8r+XPq66c1u+rjqUGhvi+dljVW6j0qYjNFxmofRxDp5u9ELZC9k8jvTsPQBtbMQXm75+5RL+io+VuDZ5/CgHeo2q/l3Q1W2E+/fuSrQ/fpSDZsbi5Qlvxl1HWVkZ2nfq+v99gG+Mruu/jup+/0cI+cf3PWf1C1Usdh0XFyfWfuPGDTRt2hSA5BS97du3o127dggMDISLiws6dOiAR+9vSD43VbYyz58/x4oVK1BaWgpHR0f4+fnh6NGjePr0Ka5fvw5zc3O8fv0a6enpovdkZWXhxYsX//rfYqWGkhIsm5sg+lqc2D66cPUGaqnURPNmhp9496ddjruFlRu2oKVJU2xa5fldPJQGyjugLFo0x6XL18T2ycXLV6GqqgLTZs0k3qOrow3thg3wZ8xVsfY/L1+Fno42tBo2QM2aNWFhboaLl6+hpLRUtE38rQS8efMGLc1ld20D+p5IqqGkCCsTQ5y/kSi2T87FJqCWijJaGFZ+QR8UcRz7T1/C6D5d4DVtTKUPki79lYyfN++FRTMDbF0yq9p2XgBAUUYmiu5lQduxl1i71pCeKEi7j+KH5QvbPTsTgwZ9u0Lug1HDWo69IHz3Ds/Oi//eyRIlJSW0bNECMZcvi31PLsXEQFVVFSbGkg+XdXR0oKXVEJcuxYi1X4qJga6ODrQaVt459r0o3yfmiLl85aN9crnKfVLxuS/GXBZrvxRzWfSavLw8ftkQiAO/HRbbJi7+JgDAsInB1/8w/wcNDQ00MzYW+8/aujWKi4sQ/8G1z8uXL5CUlAgr69ZV/ixr69bIyspCZuZDUVtm5kNkZWXC2qrq98myGkqKaGVmjOhr8eLnnWvx5eedpv9t8UZFRUWs27YXuw6fEGu/eOMW3paUoLW5yf+V+1spP+c0wbkbSeLnnBvl5xzzKs45Gw/8Xn7O6d0Zq6aNqvyccysFS4PDYdlMH9sWz/guOi+Aius1c1y6fPWj67UrUFVVqeJYol3pseTi5StixxL/wCAcOCR+LLlx8y8AQBMD8YcpskRJSQmW5ma4eEX8GvbPy9fKr2GNm0q8p+IaNvryFbH2D69hK7x6/RrZuY/Qwkw2f08q87nzsHGV52Et0dqFFWLen4cbfufn4RpKimhl2hTnY2+JH0+u/4VaKjVhbmTwn35uo/cDnv5KFX9o/TA3Dy8LCqHbQIZndb0rxdv0ZKhY2Yo1q1jZQVhUiJL76VW8EVAyKL83fJuRUunryi2soTF+Dt7eu4O8tZ4y23kBAOoammjazFTsP0vrtiguLsJf8f8sRP7y5QskJ92CpVXbKn+WpXVbZGc9RFbmA1FbVuYDZGc9hKW1+PvSUpOhoVkfDRr8t84zaaHr+q+jut//EUL+8X0Md/mPVFVVkZOTA1VVVXTr1g3Lly+HQCCAvr4+jh8/jrNnzyIgIADAP4slpaWloXnz5tDW1saZM2dw48YNaGlp4dq1a1i/fj0A/KdFvNXU1HDhwgVkZmbixx9/RK1atXDo0CEoKiqiRYsWaNSoEaysrDB//nz8/PPPUFJSwsqVKz/7c1VUVJCRkYG///4b9eqxf1jrMmwA5iz3w5J1QejXvTMS76Rj75HfMW3MD1CuUQOFRcW4n50D3YYNUE+tzhf9zLclJVi9KRQqNZXhPHQA7mfniL3eQEMdDTTUv8XH+SrGOA3F/CUrsHzNOvRx6I7bqXew/9BRTBo3GsrKNVBYVISHmdnQ0W6Iuu/XORk74gf4rg9Cndq10b5dG8Rci8WFS5exZIGb6OdOHDca8zx+hseyVXAaMhB/v3iJkJ17YGbSDO1tZLfeJ0Dfk8q4DuqB6Ws2wz1wFwZ2sUFC+gPsPnEBM536QbmGEgqK3+B+zmPoNdBEvTq1cOdhDnYeP4/mho3gYGOJpIyHYj+via4WFOXl4bUtAirKNTBhoAPu54iPomygXhcNv+MODYXaqqjVvCmKMjJR8qx8Onr6qiBYbluN0vwXyIs6h4YD7aHj1Bfxo+aK3pexdit0hvdD22NbcT8gFKrGBjBZOQ9ZWyPwJkt2R/QBwMgRI+Dh6YlVPj7o1aMnklNScPC3Q5jg4gJlZWUUFhUhMzMT2traouPJqJEj4f9LAOrUqQ3bdu1w5eo1/HnxIjwWLmT8ab6OUSOc4O65FF4+a9CrZw8kp6TgwKHDcHVxFh1jP94nY0aOwNqA9ahduzbs2tngyrVriL54CYsWzgdQflM5/Idh2B0Wjrp11WBp0RL37j3AnvB9sGplibZtZP9BfouWLdHSwgJ+fmswYYIratepg71he6CqWgt9+/6zZkFm5kOUlpbCyKj8YWTnzp0RsX8fli5ZApfx5Qul7ggNhYGBATp17szks3wNLkP7YfZKf3j6b8aA7h2RcCcDYUdPYfpoxw/OO7nvzztfNnOihpIixg7ug60RR6CuVgd21i2RkZmNbRFR6Ny2Fdq0lN3BBK6DHDB9zRYs3Lgbgzq3xa30h9h1IhqznPqipuickwe9Bhpi5xxzw0boYWOJpIxMsZ/XRLchFOXlsXLbgQ/OOeIzLRuoq8n0OWfU8B+wcPHPWLnaD7172CM5JRUHDkXCddzYD67XsqCjrfXBscQJawMCUef9seTy1euIvhgDzwU/ASg/lowYNhS79u5DXbX3x5L7D7A7fB+sW1nCRsaPJWOchuKnpSuxfI0/+vTojtspd7D/8FFMch79/vdG8hrWecQwrFn/K+rUDkEHm4pr2CtYMn+u2M++97D8O2TQ+PtaaHbEiBFY5OkJbx8f9OzRAykpKfjtt98w/rPn4V9Qu06d9+fhq/jz4kW4V5Pz8IQhvTHTOxAe67dhYFc7JKTdw55jZzBjxKDya9ii4vJr2IaaqPeFM9Pq1amNEX26YfexMwAAm5ZmePzsOUJ++x3amuoY3L3Dt/xI/7eXvx9AgznLoDnpJxRcPosahqao3WMQXkTuAVdaAoFyTShqN8K7p4/FSkUp6uqDKy2pvCSUgiLUx0wH96YYr37/DYra4qPty/5+jrIXz7/1R/u/mLewRIuWrRDg54WxE6agdm017N+7AyqqtdC77yDRdlmZD1BaWgpDo/IOnY6du+FQxB6sXLoQY10mAwB279gCfQNDdPhopkXmg3to1NhAWh/p/0LX9f8eH+//CCHlqnUHxogRI7Bw4UIMHDgQFy5cgL+/Pzw9PfHq1SsYGxsjMDAQPXqUL3Rcr149DB06FL6+vnj48CFmz56NZ8+eYerUqQCApk2bwtvbG/Pnz0diYiKMjCRrHn+KgoICQkJCsGbNGri4uKC4uBhmZmbYsmWLaOrw5s2bsWrVKkyYMAE1a9bE5MmTcfPmzU/+3AkTJmDr1q3IyMjA5s2b/8Ne+rpat2yOVfNnYtu+w/BYswH11ethhrMTRg7sAwC4c+8BZv28BotmuKJf905f9DOT7tzF879fAADcVqyVeH2C0yC4Dh/y1T7D12Zt2RLLPH7Czr37sXSVLzQ11DFl/Fg4DRkIAEjPuId5i5ZhwZwZ6O1QXge5t0M3lJaWIuLwUfx+5hx0tBrC3W0WunX652Ld3NQE67yXYfvucCzzWYsaNWqgo60Npk5whry8PJPP+qXoeyKprXkz+M4eh+BDp/BTwHY0qKeGOSMGYEzfrgCA1AfZmOr9K36eNAIDOtvg/I0EcByH5HtZGL98g8TP27xoOjghh2cvym+KZvoGS2wzaUhPTHHs/U0/17dUx8ocdmd345arO7J3lY9uzd51GHI1lGDoNgF6LkNRdC8Lf7kswKMDv4veV3jnHq71mQCzNQtgvX8DSp79jfvrdyBtmeR+lDWtWlliseci7N4ThhUrV0JDUwMTXSdgqKMjAODu3btY6O6BeW5z0fP9+a1njx4oLX2H3w4dwqk/TkNbSws//fgjunT5fh9Gf8jK0hJLFrljd9heLF+5ChoaGpg0wQXDHMt/3+/ezcB8D0/8NHcOevawBwD07GGPknelOHjoME6dPgNtLS0s+NENXTv/c7wZPWI46qqp4cix4zh4KBJqanXQv09vjB098osWOZYFnp5LsDVkC7Zt3wZOKETz5uZw91iE2rX/eYD0a9BG5OXlIXTHLgCAoqISvFb5IDh4EzYGboC8vDysrVtj0uTJMn9u+ZQ2Lc3g/eM0bI04goW+QaivXhczxw7DqAHlI/bu3H+IGcvWYvH08ejX7csfjI0f2g/16tTCb6fO49AfF6BWuxaG9OwC1x8GfquP8lXYNG8G31nOCD78B35cv+P9OacfxvbpCqD8nDPFZzN+njQcAzu1xbn3MwRv38uCy4pAiZ8X7DEVQu6fc84M3y0S20we3ANTPhohKUusLC2w1GMhdu0NxzIvn/Jjyfhx+MFxMIDyY8lPi5bgp7mz0Muh/FjSy8EepaXvcOBQJE6ePgttrYZYMG8OunbuKPq5o0c4QU1NDUePncCBw0dExxLnUSNk/lhibdkSy91/xI69EVjy/hp2qstYOA0pX5MgPeM+3DyXYeGc6ej9fi2P3vbdUFL67v017HnoaDWAh9tMdO8k/nv194uXAIDataquey+LWrVqBU9PT+zZswcrVq6EpqYmXF1dRefhjLt3sdDdHfPc3ET3mT169EBpaSl+O3QIf/zxB7RE5+EuLD/KV9O2hQlWu01EyIHjmL9uC+qrq2H2qMEY3d8BAHDnQRamrVyPpVPHoH8Xu8/8tH/MHj0EDdTr4tDZSwg7fg6adeugnYUZpg0fgNqVrEsjS97eScKzLX5Q6z8c9ae6o+zFc7w4tAuvzxwFACg1NkTDeSvxfGcgCq+cF71Pvk5dCIsKK/2ZNYxMoFC3fDBWgzk/S7z+8th+vDy2/xt8mq9rgedKhG4Nwq5tm8FxHEybt8BP7j+j1gfXJlt+/QVP8h4jOLT88ygqKuFnr3XYFhyITRvXQkFeAZbWbTB+0kzIy4s/0nrx4m/oN/nvM/qlia7r/z0+3v8RQsoJuP9SD4lIjYmJCXx8fOD4/iT2LTxLuvL5jXhEs4UdctISWceQKbrGLel78hHNFnZ4ff046xgypbZNPxxX/H5KQUhDv9I7uJ8hWbOXz5oYNcXDu3dYx5Ap+k1NcDfjPusYMqWpURPkJ1xkHUNmqFt0QsG1KNYxZEqtdgOQmV55mRW+atzMDLl3EljHkCk6JhaVruvDZ4ZGRngZf4Z1DJmiZu2AzKnf7n77e9R48yHcvksj0z9k3lSbrus/0sSoKd3/faBfKd3j/Bf2I66zjvDdObvPhnUEqavWMzAIIYQQQgghhBBCCCGEyB6hkMbVk8+jDoyvICQkBL/++usnt1m0aBF++OEHKSUihBBCCCGEEEIIIYQQQr5v1IHxFTg5OaFnz56f3EZDQ+M//ew7d2gKGiGEEEIIIYQQQgghhBD+oQ6Mr0BNTQ1qamqsYxBCCCGEEEIIIYQQQggh1YYc6wCEEEIIIYQQQgghhBBCCCEfow4MQgghhBBCCCGEEEIIIYTIHCohRQghhBBCCCGEEEIIIUSqOKGQdQTyHaAZGIQQQgghhBBCCCGEEEIIkTnUgUEIIYQQQgghhBBCCCGEEJlDHRiEEEIIIYQQQgghhBBCCJE51IFBCCGEEEIIIYQQQgghhBCZQx0YhBBCCCGEEEIIIYQQQgiROQqsAxBCCCGEEEIIIYQQQgjhF07IsY5AvgM0A4MQQgghhBBCCCGEEEIIITKHOjAIIYQQQgghhBBCCCGEECJzqAODEEIIIYQQQgghhBBCCCEyhzowCCGEEEIIIYQQQgghhBAic6gDgxBCCCGEEEIIIYQQQgghMoc6MAghhBBCCCGEEEIIIYQQInMUWAcghBBCCCGEEEIIIYQQwi8cJ2QdgXwHaAYGIYQQQgghhBBCCCGEEEJkDnVgEEIIIYQQQgghhBBCCCFE5lAHBiGEEEIIIYQQQgghhBBCZA51YBBCCCGEEEIIIYQQQgghROZQBwYhhBBCCCGEEEIIIYQQQmSOAusAhBBCCCGEEEIIIYQQQviFE3KsI5DvAM3AIIQQQgghhBBCCCGEEEKIzKEODEIIIYQQQgghhBBCCCGEyBzqwCCEEEIIIYQQQgghhBBCiMyhDgxCCCGEEEIIIYQQQgghhMgc6sAghBBCCCGEEEIIIYQQQojMUWAdgBBCCCGEEEIIIYQQQgi/cEIh6wjkO0AzMAghhBBCCCGEEEIIIYQQAgBYunQp3N3dP7tddnY2pkyZAmtra3Ts2BEBAQEoKysT2yYsLAz29vawsLDAqFGjkJyc/K+yUAcGIYQQQgghhBBCCCGEEMJzQqEQ/v7+2L9//2e3LS0thaurKwBg3759WLZsGcLDwxEUFCTa5vDhw/D19cWcOXNw6NAh6OnpYfz48cjPz//iTNSBQQghhBBCCCGEEEIIIYTwWEZGBkaNGoUDBw5AR0fns9ufOnUKubm58PX1hbGxMRwcHDBv3jzs3LkTJSUlAIDNmzdjzJgxGDhwIJo2bQpvb2/UrFkTBw4c+OJc1IFBCCGEEEIIIYQQQgghhPDY1atXYWRkhGPHjkFPT++z29+4cQPm5uZQU1MTtdna2qKgoAApKSl4/vw5Hjx4ADs7O9HrCgoKaNOmDWJjY784Fy3iTQghhBBCCCGEEEIIIYTIOHt7+0++fvbs2f/8s0ePHv2vtn/8+DG0tLTE2ho0aAAAePToERQUyrsetLW1JbZJTU394n+HOjAINFvYfX4jntE1bsk6gsyh74mk2jb9WEeQOf1K77COIHOaGDVlHUHm6Dc1YR1B5jQ1asI6gsxRt+jEOoJMqdVuAOsIMqdxMzPWEWSOjokF6wgyx9DIiHUEmaNm7cA6gsxpvPkQ6wgyx7yp9uc34hm6rpdE93/k/3UpqgvrCN+dz/RfVCk7O/uTnR9XrlyBurr6v/qZb968QZ06dcTaatSoAQB4+/YtiouLAQBKSkoS27x9+/aL/x3qwCCEEEIIIYQQQgghhBBCZNx/nWHRsGFDnDhxosrXPywD9aWUlZVFa11UqOiYUFFRgbKyMgBUuk3NmjW/+N+hDgxCCCGEEEIIIYQQQgghpJpSVFSE0VeemaqlpYW0tDSxtidPngAo7zCpKB315MkTsX/7yZMnaNiw4Rf/O7SINyGEEEIIIYQQQgghhBBCvljbtm2RnJyMgoICUdvVq1ehqqoKU1NTaGhooEmTJrh27Zro9Xfv3uHGjRto27btF/871IFBCCGEEEIIIYQQQgghhJAqlZSU4OnTp6KSUA4ODqhfvz7mzp2L1NRUnDlzBv7+/pgwYYJo3YsJEyYgNDQUhw8fxt27d7Fo0SK8efMGw4YN++J/lzowCCGEEEIIIYQQQgghhBBSpZs3b6Jjx464efMmgPLFuLdu3QqhUAgnJycsX74co0aNwvTp00XvcXJywuzZsxEQEIChQ4ciJycHoaGh/2rBcAHHcdxX/zSEEEIIIYQQQgghhBBCCCH/B5qBQQghhBBCCCGEEEIIIYQQmUMdGIQQQgghhBBCCCGEEEIIkTnUgUEIIYQQQgghhBBCCCGEEJlDHRiEEEIIIYQQQgghhBBCCJE51IFBCCGEEEIIIYQQQgghhBCZQx0YhBBCCCGEEEIIIYQQQgiROdSBQQghhBBCCCGEEEIIIYQQmUMdGIQQQgghhBBCCCGEEEIIkTnUgUEIIaTaevr0KesIRAZs3LgRxcXFEu0FBQVYtWoVg0SEfH9KSkpYR5B5HMexjiBz6DxMCPmv6LxDKuPh4YGCggKJ9hcvXmD69OkMEhFCpEGBdQBCYmNjkZGRgf79++Px48cwMDCAggJ9NQEgPz8f169fh7m5ORo1asQ6DjNv3ryBnJwclJSUkJGRgQsXLsDKygrW1tasoxEZYGZmhpiYGKirq4u1Z2dnY8CAAbh58yajZGyUlJRg+/bt6NOnD/T19eHp6YkTJ07A2toaa9euRb169VhHlIqMjAzk5+cDAIKCgmBqago1NTWxbdLS0hAREQFPT08WEYkMo2uTf4SHhyMkJASPHz/GqVOnsHXrVjRs2JC3Dwns7e3x22+/oW7dumLteXl5GDhwIK5du8YmGEN0Hib/VkJCAvLy8tC0aVM0adKEdRypys3Nhba2NgQCgagtPz8fhw4dwuPHj2FsbIzBgwdDSUmJYUq26Lwj6c2bNzh58iQyMjLg6uqKtLQ0NGvWjDfX9XFxccjKygIAREZGwtzcHLVq1RLbJiMjA1euXGERjxAiBfy8EyMyoaCgABMnTsRff/0FgUCADh06YO3atcjKysL27dvRsGFD1hGlLi0tDbNmzYKXlxdMTEwwcOBAPHv2DEpKStiyZQtsbW1ZR5S62NhYzJgxA+vXr4eRkRF++OEHyMnJobi4GGvXrkWfPn1YR5QqU1NTsRueDykqKkJLSwuDBg3C9OnTq9yuOjh48CCOHj0KoHzE64wZM6CoqCi2zZMnT1CnTh0W8Zhau3Ytjhw5gk6dOuHPP//E4cOHMXv2bFy4cAG+vr7w8fFhHVEqsrKyMHXqVNHvwcyZMyvdbujQodKMJVPu3buHFStWID4+HqWlpRKvp6SkMEjFFl2biIuKisK6deswbtw4bN26FQBgZGSEtWvXQllZGRMmTGCcUDpOnDiBixcvAgBycnKwYsUK1KhRQ2ybnJycan3e/RidhyV96hrtY3w5vtrb2+PgwYOih6wFBQWYPn06rl+/DgAQCAQYMGAAvLy8ePPA3t7eHpcuXYKGhgYA4MGDBxg1ahSEQiH09PQQGRmJbdu2YdeuXbw75wB03qnMs2fPMHz4cDx//hwlJSVwcnLC9u3bkZSUhJ07d8LIyIh1xG9OIBDA3d1d9GcvLy+JbVRUVODq6irtaIQQKaEODMKMv78/AOD06dMYOHAgAGD+/Pn46aef4Ovri3Xr1rGMx8SaNWugr68PQ0NDHDt2DO/evUN0dDT27duHgIAA7Nu3j3VEqfP394e9vT1atmyJiIgI1KpVC6dPn8Zvv/2G4OBg3nVgLFq0COvWrcPIkSPRpk0bAMDNmzcRFhaGkSNHQk1NDbt27YKSkhImTZrEOO234+DggLi4ONHftbS0oKysLLZNxQg2vjl58iT8/f1hbm6On3/+GTY2Npg6dSo6duxYrb8TH+vatSvOnTsHoVAIBwcHHDhwQGx0sEAggIqKisQoaj75+eef8fz5c/z000+oXbs26zgyga5NxG3fvh2enp4YMmQItm/fDgBwdnaGiooKQkJCePMgycrKCvv27ROViMrNzRV7WF9xPFmzZg2riFJH52FJ3t7eog6MnJwchISEYPjw4bCysoKioiISExMRFhaGadOmMU4qPTk5ORAKhaK///LLL8jLy0NERASaNWuGhIQEeHp6Yv369Zg/fz7DpNLzcak5Pz8/NG/eHBs3boSysjIKCgowa9YsrF69Gr/88gujlOzQeUfS6tWr0axZMxw7dgzt27cHUP7cYO7cufDz88PmzZsZJ/z2DAwMkJqaCqC8szgmJkbUCUgI4QmOEEa6du3KxcXFcRzHca1ateIyMzM5juO4+Ph4zs7OjmU0ZqysrLi7d+9yHMdxU6dO5RYsWMBxHMdlZmZylpaWDJOxY2FhIfpujB8/nluyZAnHcRyXnZ3NtWzZkmU0JpycnLh9+/ZJtB88eJAbMWIEx3Ecd+bMGa5nz57SjsaMu7s79/r1a9YxZEbLli25R48ecRzHcfb29tyWLVs4juO4rKwsrlWrViyjMZOdnc0JhULWMWROy5YtuaSkJNYxZApdm4iztLQU7YMP90dmZiYvz8Ecx3FjxozhXrx4wTqGTKHzsKTRo0dzBw4ckGg/cuQI5+joyCARGyYmJtyzZ89Ef3dwcODOnj0rts2FCxe4Tp06STsaMx/vk44dO3I3btwQ2yYhIYFr06aNtKPJBDrvSOrQoQN3+/ZtjuPE90lKSgrXtm1bltGkpk2bNlxubi7HcXTOIYSvaAYGYSY/Px/169eXaK9Tpw6KiooYJGKvYp2Hd+/e4fr161iyZAkAoLCwUGJUG1/UrFkTJSUlePv2LeLi4vDDDz8AKJ9Ky8cRwykpKZWWEmvTpg2WL18OAGjevDkePXok7WjM+Pj4gOM4/Pnnn0hLS4OCggKaNWsGW1tbyMvLs44ndY0bN0ZiYiKeP3+O7OxsdOrUCQBw5swZ6OnpMU7Hhra2No4ePSoqlcR9NPqRL2W1PlavXj2Jki98R9cm4jQ1NXH//n2Jdbhu3ryJBg0aMErF1u7du1lHkDl8PYZ+SkJCAlatWiXRbmFhgbt37zJIxMbHJbWEQiEaN24s1mZoaIjXr19LMxZTAoFAbL/UrVsXNWvWFNumZs2avCpJ9yE670gqLCyEiopKpa+9e/dOymnYKCsrw6VLl9C+fXtERkZizJgxVa7/oaOjI+V0hBBpoA4MwkzLli3x+++/Y/LkyWLtYWFhaN68OaNUbLVq1QrBwcFQV1fH27dv0blzZ+Tl5cHf3x+tWrViHY+Jdu3awc/PD2pqapCTk0OnTp2QkpICLy8vtGvXjnU8qdPT08P58+fh4uIi1n7+/HloaWkBADIzMyUW0qzOXrx4AVdXV9y+fRu1a9cGx3EoKCiAubk5QkNDeVV/GwAmTpyIefPmQU5ODra2tjA1NUVQUBCCgoLg7e3NOh4T3t7eCAsLg6mpqcSCf3w2ZswY+Pv7Y+3atbRf3qNrE3HDhw/HihUr4OHhAaB83ZRLly4hICAA48aNY5yODVo7phyt9/Bp+vr6OH78uMSiw/v370fTpk0ZpZI+juOwZ88emJubw8jICJ07d8bZs2fF9sHRo0d5tZA3x3Fwc3ODiYkJjIyMYGJigu3bt2Pt2rUAyhdr3rBhA1q2bMk4KRt03pHUtm1bhIeHi/YJAJSWlmLTpk2wtrZmmEx6Bg0ahCVLlojOO8OGDZPYhuM4CAQCXp5zCOEDAffxMERCpCQ+Ph4TJkxAx44dER0djQEDBiAjIwO3b9/Gtm3bePlw+uHDh3Bzc0NWVhbc3NwwatQorFy5EhcuXEBISAgMDQ1ZR5S6/Px8/Pzzz8jKysLMmTPh4OCA1atXIzExEQEBAZWOlK3OoqKi4O7ujt69e8PKygpCoRC3bt3CyZMnsWLFClhbW8PV1RUODg5YtGgR67hS4eHhgYSEBKxbtw6mpqYAgNTUVMyfPx/W1taimSl8cufOHWRlZaFz585QUlLCn3/+CUVFRdjZ2bGOxkS7du3g7u6OIUOGsI4iU8aPH48bN26grKwMGhoaEguonj17llEydujaRJK/vz927tyJt2/fAgAUFBQwYsQILFq0CHJycozTSd/YsWPx/PlzjBgxotKZoHw5zhw6dOiLOzD4sk8+dPr0acyePRutW7dGy5YtIRQKcfPmTaSkpCAkJKTS2bTV0eLFi5GWlob09HS8efMGHMdBXl4ely9fhpqaGsaPH4+rV68iICAAvXr1Yh1XKqKionDnzh2kpaXhzp07yMvLg0AgwJUrV1C3bl3ReWbHjh0wMzNjnJYNOu+Iy8jIwOjRo6GtrY309HS0a9cO9+7dw+vXr7Fnzx7R/U91d+fOHbx8+RLOzs4IDAyEmppapdvZ2NhIORkhRBqoA4MwlZqaiu3btyM5ORlCoRDNmjXDhAkTYGlpyTqazMjPz4eamhovS+FUpaSkROJBG5+cP38e27dvx+3bt6GgoAATExNMnjwZnTp1QmxsLC5duoSZM2fypjSMra0tNmzYIHGxeu3aNcybNw8xMTGMkrExbNgweHl58eZm5ktYWVkhKiqKtyW0qrJx48ZPvj5z5kwpJZEtdG0iqbi4GHfv3gXHcTA0NOT1jB0LCwuEh4fD3NycdRQi4+Lj47Fnzx6kp6cDAMzMzDBhwgTenp8zMzORlpaGtLQ00cyUhQsXolevXujevTvjdOy8evUKaWlpaNOmDQAgIiICnTt3Fs2s5is674jLy8tDeHg4UlJSRNcmo0aN4uW17eHDh9GvXz9ePw8ghI+oA4Mw9fr1a/z999+iWqh//PEHbGxsULduXbbBGHr58iUePHiAkpISidfatm3LIBF76enpSE9Pr3SfDB48WPqBiExp06YNIiIiJGYoZWRkwNHREbdu3WKUjI127drhwIEDEjWm+Wz27Nlo164dRo8ezToKId+V7t27Y/DgwRgyZIhEPXK+6tKlC0JCQmBsbMw6ClMeHh7w9PRErVq1xMqafEwgEPC2fCEh5N+LjY2ttF0gEEBRURFaWlpo2LChlFMRWRIZGfnF29KzAkKqD1oDgzBz+/ZtTJgwAY6Ojli4cCEAYPXq1SgpKcH27dt5eWP422+/Yfny5ZU+qOdrPcfNmzcjICCg0tcEAgEvL0pu3LhR5WLEfBwxbW5ujvDwcHh6eoq1h4eH83Lq/cSJE+Hp6QlXV1c0btwYysrKYq/zcWG7Vq1awc/PD1euXIGRkZHE7CQ+/t5USEpKwrZt25CWlgYFBQU0bdoU48aNg4WFBetoUvO5mSgf4tt3xdHREceOHRPV2XZ0dETv3r2hqqrKOhoztHZMuezsbAiFQtGfiaTo6Ghs27YN9+7dw/79+3Ho0CE0btwYgwYNYh2NEJnl4uIiOrZU3Od8XK7OxsYGgYGBvFnnbuzYsZWW7PuwU2fQoEG8Gey4YcMGPHv2DCUlJVBRUYGioiJevnwJgUAgdm/M12cFhFRXNAODMDN27Fjo6elh+fLloul/7969w5IlS5CXl4ft27czTih9Xbp0QefOneHi4iLx0BEAdHV1GaRiq3379hgxYgSmTJmCGjVqsI7DXFBQkOiC/eMHJwKBgJc162/evAlnZ2eYmpqKFrKLi4tDamoqtm7dyps60xXMzc1RVlYGQPyGj88L232qNAVff28A4Pr165gwYQKMjY3Rpk0bCIVCxMfHIy0tDTt37kTr1q1ZR5SKj78fjx49gqKiIho1agQFBQVkZmaitLQULVq0wL59+xilZCshIQFHjx7FyZMnUVhYiJ49e2LIkCG8O74CtHYM+TIxMTGYOnUq+vXrhxMnTuD48eM4ePAgQkJC4O3tTQ/VCKlCVFQUfvnlFyxevFj0QD4+Ph5eXl4YNWoULC0tsXr1apiammLFihWM00qHt7c3du/eDTMzM1GpsVu3buHWrVtwcHBAcXExrl27hvXr18Pe3p5x2m/v4MGD2LFjB1avXo0WLVoAALKysrBgwQL06dMHzs7OjBMSQr4F6sAgzFhZWeHo0aMSJQnu37+PYcOGIS4ujlEydqysrHD48GEYGBiwjiIz2rZti4MHD0JfX591FJnQsWNHjB07FlOmTGEdRaYkJCRg+/btSE9PB8dxMDExwfjx43k1irzC9evXP/k6LWxHKowcORLGxsYSC90vX74cd+/exe7duxklY2fHjh24cOEC1q1bBw0NDQDl9ckXLFgAY2NjzJs3j3FCtoRCIcLDw+Hv74+ioiJedojS2jGScnNzP/k6H2f+jRgxAr1794aLi4vYPU9ISAiOHj2KqKgo1hGloqqR45XZtWvXN04jG5o3by4xg7oqfDzG9ujRA0uXLkWnTp3E2i9fvoxly5bhjz/+wM2bNzFr1ixcunSJUUrpmj17Nho0aIDFixeLta9ZswZ5eXnw9/fHjh07cPz4cRw4cIBRSunp1q0b1q1bJxq4VuH27duYMmUKb74XhPANlZAizKiqqiIrK0uiA+PJkye8XZDJwcEB0dHR1IHxgUGDBiEiIgLz589nHUUmvH79Gv3792cdQ+ZYWFhUWWqMbz7soMjPz4eCggJvpth/CsdxuHjxoqhUUrNmzWBrawt5eXnW0ZhJTk6Gl5eXRPuYMWMwbNgwBonY27JlC7Zv3y7qvACAOnXqYN68eRg7dixvOzAePXqEqKgoREVFISMjAzY2NnB0dGQdiwk+dlB8Tvfu3T/5kJqPD2Hv3LkDX19fifbevXv/q7J137uOHTti/fr1aNKkCS8HlVRm9+7dmD59OvT09DBmzBjWcWTO06dPK+30bNiwIR4/fiz68+vXr6UdjZmLFy/i0KFDEu3Dhw/HkCFDAAD29vZYv369tKMx8fLlS9SsWVOivbS0FEVFRQwSEUKkgTowCDO9evXC8uXLsWzZMtEFbWJiIlasWIEePXowTsfG/PnzMWDAAJw6dQqNGzeWuBn08fFhlIydiRMnYtCgQThx4gT09PQk9glfRmtVsLa2xs2bN3lZTuxDVLP+03bt2oUtW7bg+fPnAABNTU24urrCxcWFbTBGXrx4AVdXV9y+fRu1a9cGx3EoKCiAubk5QkNDedvBU69ePfz9998S7fn5+bwdSFDVze/z58+/eBRxdbJv3z4cO3YM8fHx0NXVFS3ozccR9R9KTU3Fzp07cf/+faxfvx5nzpxBs2bNeDvD7eNrsbKyMty/fx87duyAu7s7o1Rs1a5dG0+ePEHjxo3F2u/evQs1NTVGqaRvypQpqFWrFtatW4fg4GDo6emxjsRc69at8euvv2LcuHHQ09PjzboFX6pFixbYunUrvLy8RINMysrKsHXrVpiamgIon23Mp+9SrVq1cO/ePTRp0kSs/e7du6IH+YWFhZWWoK6O7OzssHz5cvj5+YkGw2ZkZPD6ORIhfEAdGISZH3/8EZmZmRg/frzYQ4EePXpgwYIFDJOx4+XlhcLCQpSUlCAnJ4d1HJlQceNrYWEBFRUVxmnY69+/P1auXImkpCQYGhpKPGTkS03lykYhVUYgEPCuA2Pfvn3w8/PDqFGj0LZtW3Ach9jYWPj7+6NWrVq8HFm/Zs0avHnzBpGRkaKb39TUVMyfPx/r1q2TKKHEF926dcPKlSvh7+8PIyMjAOU3w15eXp9cN6Q66969O5YsWYKlS5eiRYsW4DgOcXFxWLlyJfr168c6ntStWbMGvXv3xpw5c+gh23tJSUkYOXIkWrVqhaSkJJSUlCAlJQU+Pj4ICgpCly5dWEeUuso6buzs7NCoUSMEBgby8ngyYMAAeHt7w9vbGwKBAIWFhfjzzz+xcuVK9O3bl3U8qRo9ejQuXrwIX19fbNiwgXUcmdC6dWuMHj0aa9aswcGDB1nHkSnu7u5wcXHBtWvX0KJFCwiFQiQnJ+PVq1fYunUr4uPjsXjxYolyStWZo6MjlixZgvz8fFhaWkIoFOLWrVvYsGEDBg0ahL///hu+vr68OU8vXboUEyZMQM+ePVGnTh1wHIfXr1/D0tISnp6erOMRQr4RWgODMHfv3j2kpaVBUVERRkZGvC6f1KpVKwQGBkrU/OQzS0tL7Nq1C5aWlqyjyISKh6+V4esCzV/qypUrsLa2rvaLwffu3RtjxoyRKEsQFhaGffv28abu9odsbW2xYcMGiYds165dw7x58xATE8MoGVsvX77E+PHjkZKSgtq1awMoL1NnamqK7du3o169eowTSl9BQQHmzJmDmJgY0eAKjuPQu3dv+Pr68m5mSlFREQ0e+IiLiwssLS3h5uYmtraBj48P4uLi6GHkB7KystCvXz8kJCSwjiJ1paWlcHd3x/HjxwGUX6NxHIeuXbsiICCANyOlKzx58gS3b99Gt27dWEeRGWVlZSgqKhKdf8k/njx5gn379iE5ORkKCgowNTXFqFGjoK6ujoyMDDx+/BgdOnRgHVNqhEIh/Pz8EB4ejrdv34LjOCgrK2Ps2LGYM2cOLly4gK1bt8Lf3583MyTfvXuHmJgY3L17F0D52jJ2dnaMUxFCviXqwCBEhnTr1g1bt24VjYQl5Q9j/f390bx5c9ZRyHfO2toaR44ckVh3p7qxsLDAsWPHJMpWZGZmon///rx8kNSmTRtERETA0NBQrD0jIwOOjo64desWo2TsCYVCXLx4Eenp6eA4DiYmJujYsSPk5ORYR2OqYnCFnJwczMzMqv1x41POnj2L4OBg0foxTZs2haurK2/LNLRp0wYHDhxAkyZNxDowMjMzMWjQINy8eZN1RKmrbBHvgoICBAcHIyUlBSdOnGCQSjY8fPgQKSkpEAqFMDY2RtOmTcFxHC9L0pF/5+nTp6hfvz7rGESGvHnzBhkZGZCXl4eBgQHvOkKrkp+fj+vXr6NFixa8Ki1GCN9QCSkiVWZmZrh06RI0NDRgampKC/59ZOrUqVi1ahWWLFmCxo0b83px2Qo//fQTli5dirlz56Jx48ZQUBA/bPFllAn5//Glv15HRwdJSUkSHRiJiYnQ1NRklIotc3NzhIeHS0wrDw8Ph5mZGaNUskFOTg5dunThZdmbTzE0NBTr8CopKUFiYiJat27NMJX0/fHHH5gzZw7s7e3Rr18/UUm6OXPmIDAwEPb29qwjSp2ioiIKCgok2h89elTpoqJ8UNki3hzHQUVFBX5+foxSsWVvb4/ffvsN+vr60NfXF7Xn5eVh4MCBuHbtGsN0RFaYmZkhJiYG6urqYu3Z2dkYMGAALztE3759i/379yMtLQ1lZWWi9pKSEiQlJeHUqVMM07Hz7t07vHz5UjQ79vnz56Jrk4EDBzJOJ11paWmYNWsWvLy8YGJigkGDBuHp06dQUlLCli1bYGtryzoiIeQboA4MIlXe3t6iabJ8XJD6c7Zt24bc3Nwqa+PysVNnzpw5KCsrw8SJE8VujitGr/Fhn1DHH/k3RowYgeXLl+PFixewtrYGAMTFxWHDhg1wdnZmnI6NuXPnwtnZGX/99ZfYPklNTcXWrVsZp5MuOp58WlJSEpYsWYK0tDQIhUKJ1/m2T3799VfMmDFDbC0hFxcXbNy4EZs3b+ZlB4aDgwMCAgLwyy+/iNoyMjKwatUqdO3alV0whj5exBso7+gxNjaGqqoqg0RsnDhxAhcvXgQA5OTkYMWKFRJlK3Nycng7++JT5xxFRUVoaWlh0KBBmD59erXeRwcPHsTRo0cBlN/PzJgxA4qKimLbPHnyBHXq1GERjzkvLy9ERkaiefPmSExMhJWVFR4+fIjnz5/DxcWFdTwmLl26hIULFyI/P1/iNWVlZd51YKxZswb6+vowNDTEsWPHUFpaiujoaOzbtw8BAQHYt28f64iEkG+AOjCIVA0ZMkT059u3b8PZ2VlilDCfTZs2jXUEmRMaGso6AnPU8Uf+DWdnZ+Tk5MDb2xtlZWXgOA4KCgoYMWIEb48xVlZWCAsLQ2hoKC5duiQqlbR06VJYWFiwjidVdDz5NB8fH8jLy2Px4sXw8fGBu7s7MjMzERYWBl9fX9bxpO7evXsYMGCARHv//v0REhLCIBF7CxcuxMSJE2FrawuhUAhHR0cUFBTA1NQUCxYsYB2PiQ/XFyooKICiomK1X2+qMlZWVti3b59oxmdubq7Yg2mBQAAVFRWsWbOGVUSmFi1ahHXr1mHkyJFo06YNAODmzZsICwvDyJEjoaamhl27dkFJSQmTJk1inPbbcXBwQFxcnOjvWlpaEqWAjI2NMXjwYCknkw1nz56Fj48P+vfvjx49emDlypVo1KgR3NzcUFpayjoeExXllCvWvFi7di1yc3OxYcMGXl7L3bx5EwcOHICGhgYuXryILl26oGHDhnB0dKRnB4RUY9SBQZg5fPgwb0dRVOXDDh5S7sOb4vz8fCgoKPBuRNKH3wstLS1aoIx8kpycHDw9PTFnzhzcu3cPQHk5nFq1ajFOxo6XlxecnZ3FRkzz1YfHE4FAgL59+0osTF1UVISIiAhpR5MJycnJ2LlzJywsLHDo0CEYGxtj1KhR0NLSQkREBPr06cM6olQ1aNAADx8+FCuBA5TX9efrwrO1atXCvn37cOXKFSQnJ4vWNujUqROv147ZuXMnQkNDkZeXB4FAAD09PUyfPp1XD2G1tbVFs1HGjh2LjRs3Qk1NjXEq2XH8+HEsWrQIw4cPF7U5ODjA0NAQBw8eRHh4OJo1awZfX99q3YFRt25dsYfOnp6evL5G+9irV69Es2WbNm2K5ORkGBoaYsqUKZg7dy4WL17MOKH03b17F97e3jA1NYWZmRlUVFQwduxYqKioYNu2bXBwcGAdUark5OSgpKSEd+/e4fr161iyZAkAoLCwkNYFIaQaow4MwkyXLl2wZ88ezJw5ky7aPkCLZUratWsXtmzZgufPnwMANDU14erqyssOsAkTJkBbWxuDBw/GkCFDeL2wLKlaYWEhoqKiRMeRZs2aoW/fvrw91lKH+T/y8/Px5s0bAICHhweaNWsmqqdcISUlBf7+/rzcZ0KhULRoqr6+PtLS0tCmTRvY29sjODiYcTrp69+/P5YtW4aff/5ZtP5HXFwcli9fXmW5S76ws7OjAQXvBQYGYvv27XB2doalpSWEQiFu3LiBZcuWoaCgAGPGjGEdUep2795d5WuPHz+GlpaWFNPIhpSUlEpr07dp0wbLly8HADRv3hyPHj2SdjRmfHx8wHEc/vzzT7FrNltbW96uhaiuro7nz59DR0cHBgYGSEtLAwDUq1cPz549Y5yODXl5edGggYprEzs7O9ja2vJyRlerVq0QHBwMdXV1vH37Fp07d0ZeXh78/f3RqlUr1vEIId8IdWAQZp4+fYoTJ05g586d0NDQkJhqfvbsWUbJ2KHFMiXt27cPfn5+GDVqFNq2bSvaJ/7+/qhVqxaGDRvGOqJUnTlzBlFRUTh27Bg2bdoEa2trDBkyBH369OFVnWlStdzcXIwZMwbPnz9HkyZNIBQKERERgc2bN2Pv3r28fGhCHeb/+PPPP+Hu7g6BQACO4yo9hnIcx9tFvfX19REXF4f+/fvD0NAQiYmJAIDXr1+jpKSEcTrpmzZtGtLS0jBlyhRRTXqO49C1a1fMmzePcTo2EhISsHz5cqSnp1dazoRv66QAQEREBFauXIn+/fuL2hwcHGBkZIRNmzbxsgMjKysLa9asEVuImOM4lJSUID8/H8nJyYwTSp+enh7Onz8v0Tl+/vx50bVJZmamxILW1dmLFy/g6uqK27dvo3bt2uA4DgUFBTA3N0doaCjvZp0DQOfOnbF8+XL4+PigdevW8Pb2Ro8ePXDixAleXsMCQLNmzXDu3DmMHTsWhoaGiIuLw7hx4/D48WPW0ZhYsmQJ3NzckJWVhUWLFkFdXR0rV65ERkYGb8tbEsIHAq6iSCchUrZx48ZPvv7hgpF8MXjwYDg4OEh89o0bNyI6OhoHDhxglIyd3r17Y8yYMRI3v2FhYdi3bx+ioqIYJWMvOTkZUVFROHnyJF68eIGePXvychTOl7KyssLRo0er/ayV2bNn49mzZ9iwYQM0NTUBAM+ePcPcuXPRsGFDrFu3jnFC6Rs7dixiY2MhEAiowxxAbGwshEIhxo0bh8DAQLESJxU12o2NjSUWFeWDAwcOwMvLC6tWrYKZmRkGDRqEH374AfHx8dDU1MS2bdtYR2QiIyMDaWlpovVjjIyMWEdiZuDAgahRowYcHR0rLVXBx3KgrVq1wuHDh9GkSROx9nv37mHIkCG4desWo2TsTJo0CQ8ePEDv3r0RGhqKCRMm4P79+zh9+jRWrFgBJycn1hGlLioqCu7u7ujduzesrKwgFApx69YtnDx5EitWrIC1tTVcXV3h4OCARYsWsY4rFR4eHkhISMC6detgamoKAEhNTcX8+fNhbW0tmpnCJ69evYK7uzs6dOiAUaNGYfLkybh48SIUFBSwZs0a9OvXj3VEqTtz5gxmz56NpUuXokuXLujVqxdsbW1x584dWFpaYsOGDawjMpefnw81NTWxmUu//fYbevfuTYP8CKkmqAODEBliYWGBqKgoiVrTDx48wKBBg3h5A2hhYYFjx45JLPaemZmJ/v37IyEhgVEy2XD79m2cPHkSe/fuhUAgwI0bN1hHkrrIyMhP1vGvGOm3cuVKzJw5U6JcTnXTpk0bbN++XWJx6oSEBEyaNAnXrl1jlIwd6jCv3PXr12FtbQ0FBZqQ+6EzZ86gbt26aNOmDaKiohASEgJtbW0sWbIEenp6rOMxceXKFaSnp0NJSQnGxsai+uR8ZGlpiYMHD6JZs2aso8iMH3/8ERoaGhIPndetW4cHDx4gMDCQUTJ2WrdujV9//RXt2rXD4MGDsWLFClhYWOCXX37B3bt3ERQUxDoiE+fPn8f27dtx+/ZtKCgowMTEBJMnT0anTp0QGxuLS5cuYebMmbzpQLe1tcWGDRvE1vwDgGvXrmHevHmIiYlhlEx2cByHlJQUaGpqokGDBqJ2vj2cvn37NuTl5WFqaorr168jNDQU2tramD17NurWrcs6nkyytrbGkSNHqv3gNUL4gu5YCVN//fUXdu/ejbS0NMjLy8Pc3BwuLi68vSmkxTIl6ejoICkpSaIDIzExUTS6nG+ysrIQFRWFqKgoPHz4EO3atcPSpUvRq1cv1tGk5kvq+CcnJ4vV8a9Y4K26k5eXR82aNSXaa9SowasSOE5OTggKCkL9+vWhp6dXaScXH23cuBGurq6oWbMmrl+/juvXr1e5LR87dioWfK845wwYMAADBgxgnIqd3NxczJw5E8nJyVBTU4NQKMTr169ha2uLgIAAXj40adGiBXJycnh7rVrBw8ND9OfS0lLs3r0bN27cQOvWrSEvL4/bt28jPj4eP/zwA8OU7JSUlIiOI02aNMGdO3dgYWGBwYMHY+zYsYzTsdOtWzd069at0tfatm2Ltm3bSjkRW+/evav0fkZTUxMFBQUMEskegUCA5s2bS7SvWrUKNjY2vOnAMDc3F/3ZxsZGotMLAHr27IkdO3ZAR0dHmtFkFo3VJqR6oQ4Mwsy5c+cwc+ZMtGzZEh06dEBZWRlu3rwJR0dHhIaGok2bNqwjSh0tlilpxIgRWL58OV68eCEa8RkXF4cNGzbA2dmZcTrpc3JyQmJiIvT09EQLefPxIpXq+FfN2toav/76K3x9fUUjGEtLS7F582ZejZpOTU3FkydPUL9+fXh4eKBz5868qqtdlUOHDmH06NGoWbMmDh06VOV2AoGAlx0YtOC7uBUrVkBJSQmnTp0SDa64c+cOFi5cCC8vL6xdu5ZxQulbsWIFpk+fjlu3bqFRo0aQk5MTe33w4MFsgklZdna22N8rrttTU1NFbdbW1rh3755Uc8kKXV1dpKWlQVtbG02aNBGtjSIUClFYWMg4HTs3btxAfHw8SktLJR4u8vGcY25ujvDwcHh6eoq1h4eHw8zMjFGq7wM9nJb09OlT0Zo7hBBS3VAJKcLMgAED0LVrV/z4449i7WvWrEF8fDz279/PKBk7b9++hZubG86dOyexWGZAQECltZarO6FQCB8fH4SHh6OsrAwcx0FBQQEjRozAokWLJB4cVHceHh5wdHTk3Qi1ylAd/8plZGRgxIgRUFVVRYsWLQCUz1gqLCzEnj17RDWWqzsXFxfRugW5ubnQ1tau8njBtzUwSNXmzZuHBg0a0ILv77Vq1Qp79+6VGP36119/YcKECYiPj2eUjJ3AwMAqy/8IBAJeLuL9pfhU8iU4OBjbt2+Hr68v6tWrB2dnZ8ycORMxMTEoLi7Gvn37WEeUuqCgIAQGBqJOnToSx1eBQMDLc/HNmzfh7OwMU1NTsYFaqamp2Lp1K2xtbRknlF18Wdvu36B9Io72ByHVC83AIMw8fPgQQ4cOlWgfPnw49u7dyyARezVq1MCvv/5Ki2V+QE5ODp6enpgzZ45oFJ+hoSFvHyz5+PiwjiATPiwP5OPjAzs7O95+Jz5mZGSEyMhI7N27F+np6eA4DgMGDMDIkSOhq6vLOp7UrF+/HkePHsXLly+xceNG3jw0I/+fp0+f4sSJE9i5cyct+A6gTp06KC0tlWgXCASVlqrjgz179mDu3LkYN24cb/fBf8Wnki+TJ09GjRo1wHEcLCwsMH36dGzatAna2trw8/NjHY+J8PBwuLm5YcqUKayjyAwrKyuEhYVh+/btuHTpkujeb+nSpRJrmRFCCCF8Rh0YhBkzMzNcuXIFBgYGYu1JSUm8rivMcRxycnKQk5MDBQUFqKmpwcDAAPLy8qyjMVNYWIioqCikpaVBQUEBzZo1Q9++fXnzwNrMzAyXLl2ChoYGTE1NRbNzKsOXkZ8flgdatGgRL0tFfYquri7mz5/POgZTampqojrj169fx4wZM3hzzPiUzx1DPsSX48mH2rVrh3bt2rGOITNmzZqFpUuXYu3ataJrs6ysLKxcuRJTp05lnI4NoVCIfv36UefFf8Cnif/Z2dli5egmT56MyZMnswskA16/fo3+/fuzjiFzLCwsEBAQwDoGIYQQItOoA4MwM3DgQKxduxb37t1Du3btoKCggMTEROzcuRMjRoxAZGSkaFu+1BN+8eIFXF1dcfv2bdSuXRscx6GgoADm5uYIDQ1FnTp1WEeUutzcXIwZMwbPnz9HkyZNIBQKERERgc2bN2Pv3r3Q0tJiHfGb8/b2Fi3i7u3t/cUPH6sza2trjBw5EpqamuA4DkOHDuV1eaAPF1P9HD7O4klPT8fDhw/FFkDkqw+PITk5OQgJCcHw4cNhZWUFRUVFJCYmIiwsDNOmTWOcVLYIBAIoKiri6NGj6Ny5c7VevPrjTi6O4zBw4ECoqqpCXl4er169gkAgwOPHj3m5GPGgQYOwd+9eLFy4kHUUIsN69OiB1q1bw9HRkWYAvmdtbY2bN2/yajZoZTZu3PjF2/JxXRBCCCGkMtSBQZhZuXIlAGD37t3YvXu32Gtbt24V/VkgEPCmA2PNmjV48+YNIiMjRXXqU1NTMX/+fKxbtw7Lly9nnFD6Vq9eDS0tLUREREBTUxMA8OzZM8ydOxd+fn5Yt24d44Tf3pAhQ0R/dnR0ZJhEdlB5IHFpaWkoKSlB3bp1kZubCy0tLd6tD/Mp6urqeP36NesYMuHDY8iYMWOwZMkSDBs2TNTm4OAAIyMj7Ny5E66uriwiMhUbG4vY2FgoKiqiSZMmAMpLXr558wba2tp48eIFatSogV27dlXb2aLUUf5pr1+/xvHjx3Hs2DE0atQICgrit1O7du1ilIzIkt27d+Po0aPw9fWFl5cXevTogSFDhsDOzo51NGb69++PlStXIikpCYaGhlBSUhJ7nS/3e4cOHfqi7QQCAXVgEEIIIe/RIt6EyBBbW1ts2LABNjY2Yu3Xrl3DvHnzEBMTwygZO23atMH27dsl6sAmJCRg0qRJuHbtGqNk0vOlI7UEAgFmzJjxjdPIHg8PD3h6evK6PFDLli1x4sQJNGrUCKampoiJiYGGhgbrWDJjzZo12Lt3L7p06QJ9fX2JdQ34+oDAwsICUVFR0NfXF2t/8OABBg0ahFu3bjFKxs66devw119/ISAgQPQ79Pfff+Onn35Cq1atMHXqVCxduhT5+fkIDg5mnJaw8LkZb3yc5fal+LigamlpKS5cuICoqChER0dDQ0MDgwcPxuzZs1lHk7qKwVmVEQgEvCxb+KWuXLkCa2triesXPuPj8eRzrK2tceTIEdon723duhXDhw8XVTIghHzfaAYGITLk3bt3olkGH9LU1ERBQQGDROzJy8tXWme6Ro0aKCkpYZBI+v7NSC0+dmDMmjULr169wqtXrz67rY6OjhQSSZ+enh5mzZoFMzMzAOULpVZ2kysQCODt7S3teMydOnUKGhoaSEpKQlJSkthrfB7hqK+vj+PHj2P69Oli7fv370fTpk0ZpWLr4MGD2L59u1gHYL169TB//nyMHz8es2bNgqurK0aOHMkwpXSdPXsWaWlpKCsrE7WVlJQgMTERoaGhDJOxQR0U5N9QVFQUlZOKjIxEUFAQgoODedmBkZqayjrCd2vGjBm8fDBdUlIiMVOnwowZM6p1Ocf/ojqvmflfyuVOnDjxW8UhhDBAHRiEyBBzc3OEh4fD09NTrD08PFz0YJJvrK2t8euvv8LX1xeKiooAykezbd68GdbW1ozTSce5c+f+9Xv4NFKre/funy13wnFctR7d5+fnh+DgYOTk5EAgECA3N1f0+0L+2+8QH8yePRuzZ8/G5cuX0bJlSwiFQty8eRMpKSkICQlhHY+Jd+/eobS0VKL97du3ePPmDQBASUkJQqFQ2tGYWLt2LbZu3QpNTU08f/4cDRs2xLNnz1BWVoZ+/fqxjsfMkydPEBERgfv372PRokWIjY2FsbExDA0NWUcjMqSoqAinT59GVFQUrl69Cl1dXbi6uoqVBiXkS/CtaEZ4eDhCQkLw+PFjnDp1Clu3bkXDhg3FBlzw7eF0cXEx0tLSUFpaKvF9aNu2LYDyMpjVVXZ2NusIhBDGqAODEBkyd+5cODs746+//hI9nI+Li0NqaqrYuiB88tNPP2HEiBHo0aMHWrRoAQBITExEYWEh9uzZwzid7OLTSC1/f394eXlh4sSJsLGxgZKSEhITExEQEAAnJye0a9eOdcRvrkWLFggMDARQ3qGzadMm1KtXj3Eq2RMbG4uMjAz0798fjx8/hoGBgUT9ej7p0aMHwsLCsGfPHly6dAkAYGZmhhUrVnyy1Ed11rFjRyxfvhz+/v6i0lr379+Hl5cXOnbsiLKyMoSHh8PExIRxUumIiorCokWL4OzsjC5dumDv3r1QUVHBjBkzeHF+qczDhw/h5OSEWrVqIS8vD3PnzsWJEyfg4eGBHTt2wNLSknVEIgPc3Nxw4cIFCAQC9O7dGzt27ECbNm1Yx5I6MzMzXLp0CRoaGjA1Nf3kgJPqOsiE/DtRUVFYt24dxo0bJ7r/NTIywtq1a6GsrIwJEyYwTih9Z8+ehbu7OwoKCiQ6L6rzAK0PfbxmKiGEf2gNDEJkTEJCAkJDQ5GWlgaO42BiYoLx48dLrAHBJ7m5uQgLC0N6erpon4wcORK6urqso8ksPtWFHTx4MCZPnoy+ffuKtUdHR8PX1xfHjx9nlIzIioKCAri6uuLWrVsQCAT4448/sGrVKmRmZiI0NBQNGzZkHZHIiPz8fEyZMgVJSUmoU6cOOI7D69evYWlpicDAQNy+fRtubm4IDg6WWK+qOmrRogVOnjwJPT09TJ48GY6Ojujduzdu3LgBT09PnDp1inVEqZs2bRrU1dXh5eUFa2trHD16FNra2li4cCGePHnCy4csM2fOhJubG4yMjD65HZ/qkY8dOxZDhw5Fr169Ki2FyheHDx9Gv379oKSkhMOHD39yW5qZUjU+XdcPGTIEzs7OGDJkiNjnPnjwIEJCQnh53unTpw+aNWuG6dOnV3r85OM98bt37/D8+XNReUuO40TlLQcOHMg4HSHkW+DvsENCZJCXlxecnZ3xyy+/sI4iMypuiufPn886CpFR9+/fr7TEmp6eHk03JgDKZ+kIBAKcPn1adFMzf/58/PTTT/D19cW6desYJ2RDKBQiKioK8fHxlZYk4GOtf3V1dURERODatWtISUmBvLw8TE1NRZ0VlpaW+PPPP3nxABYA6tSpg6KiIgBA48aNcffuXQDl6wnl5eWxjMZMfHw8wsLCxEaSKygoYPr06XBycmKYjJ2rV69+UclKPpV8qejIKigoQEJCAhQVFdGoUSPUqlWLcTLp+rBTQktLC3Z2dgzTkO/B/fv3K52t1K5dO6xYsYJBIvays7MRHByMxo0bs44iEy5duoSFCxciPz9f4jVlZWXqwCCkmpJjHYAQ8o/Dhw9DTo5+LT/0pTfFhL9MTU0RGhoqVpP+3bt32Lx5M5XyIACA8+fPY8GCBWIjF42MjLB06VJcuXKFYTK2vL294e7ujoSEBGRlZSE7O1vsP74SCASwtbXF+PHj4ezsLDbTol69erzpvADKHxitXbsWeXl5sLS0xMmTJ5Gfn49Tp05BXV2ddTwmhEJhpWugFBYWVusFVD9lyJAhWLt2LdLT01FSUsI6jkzgOA4+Pj6ws7PD8OHDMWTIELRv3x6rVq3i3XoGFSZMmIDu3btjw4YNyMrKYh2HyChNTU3cv39fov3mzZto0KABg0TsGRgY4PHjx6xjyAx/f380b94cwcHBUFZWxsaNG7Fo0SLUqlULfn5+rOMRQr4RmoFBiAzp0qUL9uzZg5kzZ/JuhFZVKm6KZ8yYAX19fSgpKbGORGTM/Pnz4erqipiYGJibm0MoFCIpKQnFxcW8LOVBJOXn56N+/foS7R+OLuejqKgoeHt7U9kOUqUFCxZg2rRp+P333zFq1CiEhoaiQ4cOAAB3d3fG6djo2LEjgoODxR6SvHjxAn5+frC1tWWYjJ3o6GhkZmZWWdqFD/XZP7Z582b89ttvmD9/PmxsbCAUChEbG4ugoCA0bNiQV7NRKpw5cwZRUVE4duwYNm3aBGtrawwZMgR9+vSBqqoq63hERgwfPhwrVqyAh4cHAODevXu4dOkSAgICMG7cOMbp2Pjpp5+wcuVKuLm5wdDQUOJ+WEdHh1EyNu7evQtvb2+YmprCzMwMKioqGDt2LFRUVLBt2zY4ODiwjkgI+QZoDQxCZMjYsWMRGxsLgUAADQ0NiZkHZ8+eZZSMnZ49eyIzM7PKRf/4eFP8JfhUKxcAMjMzsX//frHyJtOmTePtSC0ibsyYMejcuTMmT54s9ruxYsUKpKamYu/evawjMmFlZYWoqCjo6emxjkJk3Nu3b1GjRg0UFxfj0qVLaNiwodjaXFeuXIG1tTUvZkzm5eXB2dkZr1+/xosXL2BoaIicnBzUrVsXe/bs4WUt8rCwMCgrK1c5i5iPnaTdu3eHm5sbBgwYINYeFRWFwMBA/PHHH4ySyYbk5GRERUXh5MmTePHiBXr27Ik1a9awjiWz+HZd7+/vj507d+Lt27cAysv0jRgxAosWLeJltQJzc3PRWg8f3hNzHMebRbw/ZGVlhWPHjkFXVxceHh4wNTXFuHHjkJOTgyFDhuD69eusIxJCvgGagUGIDGnXrh3atWvHOoZMmTZtGusIRMa9evUKISEhGDNmDJo2bQpXV1eEh4fj6tWr2LJlC29u9kjV5s2bhwkTJiAhIQHv3r3Dpk2bkJGRgdu3b2Pbtm2s4zHTqVMnREdHY/To0ayjEBlX0TFRs2ZN9OjRQ+L1GTNm4MiRI7w43jZs2BCRkZE4duwYUlJSIBQKMXLkSAwaNIi3s2d9fX2hpqaGgQMHwtHREYaGhqwjMff8+fNKy1haWlri0aNHDBLJlubNm4PjOCgoKGDv3r28HKQFAJGRkejbt6/EiPqioiJERETAxcUFAODo6Mir48u8efMwbdo03L17FxzHwdDQkFef/2OhoaGsI8iUZs2a4dy5cxg7diwMDQ0RFxeHcePGUZktQqo5moFBCCHVEJ9Ganl4eODGjRvYvHkz0tPTsWDBAqxatQonTpyAgoICAgMDWUckMiA1NRXbt29HcnIyhEIhmjVrhgkTJvB6nZTt27djw4YN6NixI4yMjKCoqCj2+syZMxklI98bPp1zPlZaWorU1FQYGhrytgxOQUEBjh8/jsjISPz111+wsLCAo6Mj+vXrx9uHjoMGDcLIkSMxYsQIsfbw8HDs3LkTJ0+eZJSMraysLERFRSEqKgoPHz5Eu3btMHjwYPTq1QvKysqs40lFfn4+3rx5AwCwt7fHwYMHUa9ePbFtkpOTMW/ePCQkJLCIyFxubi7q1KmDWrVq4erVq/jjjz9gbW2N/v37s47GXH5+PhQUFFCnTh3WUZg5c+YMZs+ejaVLl6JLly7o1asXbG1tcefOHVhaWmLDhg2sIxJCvgHqwCCEscjIyC/edvDgwd8sh6ziOA6HDx9GUlIS3rx5I7bwoUAggLe3N8N00velI7VWrlyJmTNnStwQVUft27dHUFAQrKys4O7ujhcvXmDz5s1IS0vD6NGjERsbyzoiYexLf2/4pnv37lW+JhAIeDsilvx7fOrAePToETw9PTF37lwYGxtj2LBhyMjIQJ06dbBjxw6YmZmxjsjUw4cPERUVhVOnTiErKwsODg4YNmwY79YHiYyMxNKlSzF27FhYW1sDAOLi4hAWFoYFCxbwcuabk5MTEhMToaenh8GDB2PIkCG8q90PlH833N3dIRAIRCWAPsZxHLp06YLg4GAGCdk6ffo03NzcEBwcjEaNGqFv375o1KgRHj16hPnz5/PydwcAdu3ahS1btuD58+cAyhc7d3V15e017O3btyEvLw9TU1Ncv34doaGh0NbWxpw5c6CmpsY6HiHkG6ASUoQw9vEimBUXs8rKylBQUEBBQQHk5eVRr149XnZgrFmzBjt27ICJiQlvR5p8OFLLw8MDzZo1q3Sklr+/v+gidsmSJdKOyUxRURG0tbUBADExMZg0aRIAQFlZWVQvlvDPf/m94Ztz586xjkDId8fHxwevX7+Guro6fv/9d+Tk5CAsLAyHDh2Cn58ftm/fzjoiUzo6OjAxMcHDhw+RlZWFuLg4nDt3Drq6uvDz84OpqSnriFIxePBgvHjxAlu3bhWVKtTU1MTcuXN5+wDWyMgI8+fPR9u2bVlHYWrw4MHQ1dWFUCjEuHHjsGHDBrEHrgKBACoqKjA2NmaYkp1ff/0Vrq6usLOzw6ZNm6Cjo4Pjx4/j5MmTCAwM5OXvz759++Dn54dRo0ahbdu24DgOsbGx8Pf3R61atTBs2DDWEaVq48aNcHV1Rc2aNQEANjY2sLGxQUFBAdavXw9PT0/GCQkh3wJ1YBDCWGpqqujPx44dw7Zt2+Dj4yO6wXvw4AEWLlzI2ymzkZGR8Pb2hqOjI+sozPz5559iI7Uqu0itGKnFR0ZGRrhw4QK0tbXx9OlTdO7cGQAQEREBIyMjxukIK/R782U4jsPFixeRlpYGBQUFNGvWDLa2tpCXl2cdjRCZdPXqVezcuRN6enpYu3YtOnfuDGtra9SrV4/X1yrx8fE4cuQITp48ibdv38LBwQGbNm2CnZ0dCgsLRbNW+FQ6ycXFBS4uLsjPzwfHcdDQ0GAdiSkfHx/WEWSCk5MTgoKCUL9+ffj4+MDOzo63pdYqk5GRgY0bN0JOTg4xMTHo0qUL5OTk0KpVK+Tk5LCOx8SOHTuwcOFCjBkzRtTWo0cP6OvrY+fOnbzowMjIyEB+fj4AICgoCKamphIzLdLS0hAREUEdGIRUU9SBQYgMWbt2LdavXy82Os3AwACLFy/GtGnTMHbsWIbp2Hj79i3vFzankVqfNnv2bMyaNQulpaXo378/DAwM4OPjg7CwMAQFBbGORxih35vPe/HiBVxdXXH79m3Url0bHMehoKAA5ubmCA0N5e2sN0I+pbS0FGpqauA4DleuXMG8efMAAEKhEAoK/Ly16tGjB7Kzs9G8eXPMmTMHAwYMQO3atUWvq6qqok+fPoiJiWGYUvpycnJw69YtlJSUSLzGl1nVZmZmuHTpEjQ0NGBqalppuaQKKSkpUkzGTmpqKp48eYL69etj0aJFvB9I8bE6derg9evXeP36NRISEkQzqzMzM1G3bl224RjJzc0VDdD6UKdOnbBmzRoGiaQvKysLU6dOFR1DqlqnbejQodKMRQiRIn5eZRMio169eoUaNWpItAuFQlEpFL7p2LEjzp8/LzbihG9opNandenSBdHR0cjLyxN1/vXr1w9OTk40A4PnKspU7Nq1C9bW1rx9uFiVNWvW4M2bN4iMjBT97qSmpmL+/PlYt24dli9fzjghIbKnefPmOHjwIOrXr49Xr16hS5cuKCkpQUhICG/KI32se/fucHR0hImJSZXb2NnZ4dSpU1JMxVZERASWL19eaSlLgUDAmw4Mb29vUWeWt7f3Jzsw+MLa2hojR46EpqYmOI7D0KFDIScnV+m2fFyLqkuXLli6dClUVVVRu3ZtdOjQAZcvX8ayZcvQtWtX1vGY0NHRQVJSEho3bizWnpiYCE1NTUappKtr1644d+4chEIhHBwccODAAairq4terxiYxNdOLkL4gBbxJkSGTJs2DS9fvoSvry/09PQAlE+XnD9/PgwNDbF27VrGCaVj48aNoj8/efIEhw4dQq9evaCvry9xgV/V6IvqxMLCAuHh4TA3N4eZmRliYmLELtgIIZ+XmpqKtLQ0CIVCAOWlk0pKSpCYmAgvLy/G6diwtbXFhg0bYGNjI9Z+7do1zJs3j3ejpcl/x6dFvBMSEjB16lT8/fffmDRpEubNm4dly5bh+PHj2Lp1KywtLVlHJDKge/fu6NatG9zc3GjQCRHz8uVLHD16FC9fvsTGjRsxfvx4qKqqVrotH+5zPvbmzRsEBAQgKysLkyZNQqtWrRAYGIisrCz8/PPPVe6r6mzHjh3YtGkT5syZA2trawBAXFwcNmzYAGdnZ8yYMYNxQunKycmBjo4OdYgSwjPUgUGIDMnLy4OrqysyMjJQp04dcByH169fw8LCAlu2bJGo81hdde/e/Yu2EwgEvBiZ5OLigvj4eGhqaiI3Nxfa2to0UouQfyE0NFQ0xb5iTYyKP7dp0wa7d+9mGY+ZNm3aICIiAoaGhmLtGRkZcHR0xK1btxglI7IiMjISffv2hZKSklh7UVERIiIi4OLiAgBYuXIlZs6ciXr16jFIKX1CoRAFBQWiMmv3799HvXr1aOQnEWnZsiV+//130YAkvvpwUNKnCAQC3j2EBQAPDw94enpSJxf5JKFQCB8fH4SHh6OsrAwcx0FBQQEjRozAokWLqrwvrM7Onj2L4OBg0RpuTZs2haurK3r06ME6GiHkG6EODEJkTFlZGS5fvoz09HQIBAKYmprC1taWRhhUQigU8uKCjUZqEfL/cXBwQJ8+fTBz5kx069YNhw8fxosXL/Djjz9i2LBhooewfDNu3DgYGxtLLHbo5eWFpKQk7Nu3j1EywlJ+fr6obKW9vT0OHjwo0TGRnJyMefPmISEhgUVEmVQxo6t169asoxAZ4OTkhOnTp/O25E0FGpT0abm5uV+8rY6OzjdMIjsiIyM/+Tpfyq9VpqCgAPfu3QMAGBoa8rbj648//sCcOXNgb2+Ptm3bguM4xMbG4vz58wgMDIS9vT3riISQb4A6MAiRQbm5ucjIyEDbtm1RWFgIDQ0N1pGYsbe3x2+//SYxqjEvLw8DBw7EtWvX2ARjhEZqEfLvtWjRAidOnEDjxo0xYcIEjBo1Cg4ODrh06RJWr16NY8eOsY7IxM2bN+Hs7AxTU1OxkgSpqanYunUrbG1tGSckLERGRsLd3V00W6myARQcx6FLly4IDg5mkJCtpKQkLFmyRKwk3Yf4shAx+bQ//vgDq1evxvjx42FoaCgxi6lijSYi6cqVK7C2tq50XcDq5nMLmwMQHYf5cmypai2hGjVqQEtLizdr6cTGxsLKygoKCgqIjY395LZ8O54MHjwYDg4OEgP3Nm7ciOjoaBw4cIBRMkLIt0QdGITIkJKSEixcuBC///475OTkcOrUKaxZswaFhYUIDAzkzUPrEydO4OLFiwCAw4cPo2/fvhI3MTk5OUhLS8PVq1dZRGSGRmoR8u/Z2Nhg//79aNKkCZYtWwYtLS1MnToVjx49Qt++fXHz5k3WEZlJSEjA1q1bkZGRAY7j8PDhQ4SHh8PCwoJ1NMJQbGwshEIhxo0bh8DAQLESlhULZRobG0NRUZFhSjZGjx6Nt2/fYujQofDx8YG7uzsyMzMRFhYGX19f9OnTh3VEIgM+taA7nx5G/xfW1tY4cuQIL9bUOXHiBLy8vDBx4kTY2NhASUkJiYmJCAgIgJOTE9q1ayfa9uP1qviirKwMDx48wLJlyzB8+HD079+fdSSpMDU1RUxMDDQ0NEQdXZU9uuPj8cTCwgJRUVHQ19cXa3/w4AEGDRpEJVAJqaYUWAcghPxj06ZNSE1Nxc6dOzF16lQAwNixY+Hh4YG1a9di2bJlbANKiZWVFfbt2ye6SMvNzRV7SFLx8KSipj2fdO/enUZqEfIvWVlZYcuWLVi6dCmaN2+OgwcPYvLkyYiLi+PlYpAVbt++jUmTJsHR0REbNmwAUH6MmT59OkJDQ9GsWTPGCQkLTk5OCAoKQv369eHj4wM7OzveDKD4EsnJydi5cycsLCxw6NAhGBsbY9SoUdDS0kJERAR1YBAAtCbZ/4NP4yu3bNmCxYsXo2/fvqI2Y2NjaGpqwtfXF7NmzWKYTjbIy8vDyMgIHh4emDNnDm86MM6ePSsq30jHE3ENGjTAw4cPJTowHj58iNq1azNKRQj51qgDgxAZcvz4cSxbtkxstE27du2watUqLFiwgDcdGNra2ti1axeA8g6cjRs38mYB88/x9/f/4pFahJByP/30E8aPH4+wsDCMHDkSmzdvho2NDYqLi+Hq6so6HjOrV69G9+7d4ebmJmo7ffo0Fi9eDB8fH2zfvp1hOsJKamoqnjx5gvr162PRokXo0qUL60gyRSgUon79+gAAfX19pKWloU2bNrC3t+dlSS1SOV1dXQDls6uzs7PRuHFjcBzHy1lLpGr379+HmZmZRLuenh6ys7MZJJJdcnJyePLkCesYUlNxDAHKSyNVVkL4xYsXWLRoEX799Vdpx2Oqf//+WLZsGX7++WfRulNxcXFYvnw5DSIgpBqjDgxCZEheXh4aN24s0a6trY2XL18ySMTe7t27q3zt8ePH0NLSkmIa9mikFiH/no+PD6ZMmQIHBweoqqoiIiICx44dg5aWFnr37s06HjNJSUnw9vYWq80uLy+PyZMnY9iwYQyTEZasra0xcuRIaGpqguM4DB06FHJycpVuy8dRofr6+oiLi0P//v1haGiIxMREAMDr169RUlLCOB2RFRzHYd26ddi9ezdKS0tx6tQp/PLLL6hZsyaWLVtGHRkEQHmZoNDQUCxbtkx0nH337h02b94MS0tLxunYqGwR74KCAkRERPCqvGVcXByysrIAlO8Tc3NziQ6MjIwMXLlyhUU8pqZNm4a0tDRMmTJFVJmA4zh07doVP/74I+N0hJBvhTowCJEhRkZGuHLlCn744Qex9uPHj6Np06aMUrGVlZWFNWvWIC0tDWVlZQDKL1BKSkqQn5+P5ORkxgmli0ZqEfLvGRsbY+/evfD29oaZmRm6d+8OBweHT9Yo5wNVVVVkZWVJ1Bl/8uSJxIKzhD/Wr1+Po0eP4uXLl9i4cSN69+7N61JrHxs7diw8PT0BAL169cKgQYOgrKyM+Ph4tGrVim04IjN2796NI0eO4Oeff8aKFSsAAA4ODli+fDk0NTXFZr4R/po/fz5cXV0RExMDc3NzCIVCJCUlobi4+JODuKozd3d3iTYFBQVYWVnxphoBUF4yuWJfCAQCeHl5SWyjoqLCy5nEffv2xcGDB5Gfn4+0tDRwHAcTExPUqlULXbp0wbVr11hHJIR8A7SINyEy5Pz583Bzc8Pw4cMRHh6OiRMn4v79+6JRW7169WIdUeomTZqEBw8eoHfv3ggNDcWECRNw//59nD59GitWrICTkxPriFI1fPhwmJiYSIzU8vDwQF5enqj0FiFEUmZmJi5cuIDo6GjExsZCU1MT9vb2ooeRfLNy5UpcunQJy5YtE41qTExMxIoVK9CmTRvRQzfCXx4eHpWWreC7M2fOoG7dumjTpg2ioqIQEhICbW1tLFmyBHp6eqzjERnQr18/zJ07Fz169ICVlRWOHj2KRo0a4fTp0/Dx8cG5c+dYR5RZH+4vPsjMzMT+/ftx9+5dAICOjg6mTZuGBg0aME5GZIWpqSkuXboETU1N1lGYOXHiBC5evAgAOHz4MPr27YsaNWqIbZOTk4O0tDRcvXqVRURCyDdGHRiEyJg///wTwcHBSE5OhlAoRLNmzTBp0iRedl4AQOvWrfHrr7+iXbt2GDx4MFasWAELCwv88ssvuHv3LoKCglhHlKobN27A1dUVmpqalY7UMjY2Zh2REJn2/PlzXL16FefOncPvv/8OjuN4u+B9UVER5syZg4sXL4qm4ANAjx494O3tTQ+tCXJzc794Wx0dnW+YhJDvi6WlJY4fPw49PT2xB/JZWVno27evqPQYkcSnDoxXr17Bz88PY8aMQdOmTeHq6oqrV6+iSZMm2LJlCy/2QVUyMjKQlpYGRUVFGBkZoUmTJqwjEYYePXqEhQsXguM4xMbGolWrVmKl+AQCAVRUVDBy5Ehau4uQaopKSBEiYzp37ozOnTuzjiEzSkpKROuCNGnSBHfu3IGFhQUGDx6MsWPHMk4nfRWjPT8cqdWtWzcaqUXIJ/zxxx+4du0arl27hoyMDDRo0AB2dnbw9vZG+/btWcdjRkVFBSEhIbh//z7S0tKgoKAAIyMjGBgYsI5GZET37t3FOrcqw3EcBAIBrzoCz5w5g9DQUKSnp0NJSQnGxsaYPn062rRpwzoakRG6urpITEyUmJHz559/8vqhNBHn4+ODGzduwMXFBadPn0Z8fDz8/Pxw4sQJ+Pr6IjAwkHVEqXv79i1+/PFHnDlzRtQmEAjQrVs3BAQE8LLE5du3b7F//36xkspA+X1yUlISTp06xTCddGhra4sqDYwdOxZBQUGoU6cO41SEEGmiDgxCZExycjJ27NghdlM8adKkShf35gNdXV2kpaVBW1sbTZo0ET0gEQqFKCwsZJxO+l69eoWQkBCxkVrh4eG4evUq70dqEVKV2bNnQ05ODvb29li9ejVatGjBOpJMadKkCY1sJJXy9/eHl5cXJk6cCBsbGygpKSExMREBAQFwcnJCu3btWEeUurCwMHh7e6NPnz7o3bs3ysrKEBcXB2dnZ6xbtw59+vRhHZHIAFdXVyxfvhxPnz4Fx3G4cuUK9u/fj927d1da458PIiMj0bdvX4kH0EVFRYiIiICLiwsAwNHRkTczAKOjoxEUFAQjIyOEhISgffv2GDBgAExMTDB69GjW8Zj45ZdfkJCQgKCgINjY2EAoFCI2NhZeXl4IDAzk5SLNXl5eiIyMRPPmzZGYmAgrKys8fPgQz58/F/3e8Alf14chhO+ohBQhMuTkyZNwc3NDq1atYGlpibKyMsTHxyM9PR1btmyBra0t64hSFxwcjO3bt8PX1xf16tWDs7MzZs6ciZiYGBQXF2Pfvn2sI0qVh4cHbty4gc2bNyM9PR0LFizAqlWrcOLECSgoKPBypBYhn3PmzBlcuXIFMTExyM7OhoWFBezs7GBnZ4dWrVpBQYHGcxBSmcGDB2Py5Mno27evWHt0dDR8fX1x/PhxRsnYsbe3x/jx4zFmzBix9i1btuDw4cP4/fffGSUjsmb//v3YtGkTHj9+DABQV1fHpEmTMH78eMbJpCc/Px9v3rwBUP67c/DgQdSrV09sm+TkZMybNw8JCQksIjLVqlUrnDx5ElpaWujUqRMmTZoEZ2dnZGZmYvDgwYiPj2cdUeo6duyIlStXolu3bmLt58+fx/Lly3HhwgU2wRhq3749Fi1ahP79+6NHjx4IDg5Go0aN4ObmBi0tLSxevJh1REII+ebojp0QGbJhwwZMnToVc+bMEWv39vaGr68vDh06xCgZO5MnT0aNGjXAcRwsLCwwffp0bNq0Cdra2vDz82MdT+popBYh/56DgwMcHBwAlNfQvXz5Mq5cuYKtW7dCTk4ON2/eZJyQENl0//59mJmZSbTr6ekhOzubQSL2nj59ik6dOkm09+jRAxs3bmSQiMiiY8eOoXfv3hg+fDjy8/PBcRw0NDRYx5K6P//8E+7u7hAIBOA4DsOGDZPYhuM43tasNzIywoULF6CtrY2nT5+KyghHRETAyMiIcTo2CgsLYWhoKNHepEkT5OfnM0jE3qtXr2BtbQ0AaNq0KZKTk2FoaIgpU6Zg7ty51IFBCOEF6sAgRIZkZWVh8ODBEu0jR47k3UyDCgKBQGxq7OTJkzF58mR2gRgrKiqCtrY2ACAmJgaTJk0CACgrK4vVRCWESMrLy8OVK1dw+fJlXL58GXJycujQoQPrWITILFNTU4SGhmLZsmWQk5MDALx79w6bN2+GpaUl43RstGvXDqdOnZK4Frlw4QKsrKwYpSKyZsWKFdi7dy/U1NSgrq7OOg4zgwcPhq6uLoRCIcaNG4cNGzZATU1N9HrFwrvGxsYMU7Ize/ZszJo1C6Wlpejfvz8MDAzg4+ODsLAwBAUFsY7HhLGxMU6ePIkpU6aItf/++++8LXeprq6O58+fQ0dHBwYGBkhLSwMA1KtXD8+ePWOcjhBCpIM6MAiRIebm5rh+/Tr09fXF2m/duoWmTZsySsUerQvyDxqpRci/t2rVKly+fBn37t1DgwYN0K1bN6xevRp2dna8XAySkC81f/58uLq6IiYmBubm5hAKhUhKSkJxcTGvalB/OLNCW1sbAQEBSEpKgrW1NeTl5XH79m0cO3YMrq6uDFMSWVLxkJHP1+8A4OTkhKCgINSvXx8+Pj6ws7PjzfoWX6JLly6Ijo5GXl4eTE1NAQD9+vWDk5MTb6/rp02bhunTpyMlJUU06yAuLg6nT5/GunXrGKdjo3Pnzli+fDl8fHzQunVreHt7o0ePHjhx4gS0tLRYxyOEEKmgNTAIYSwyMlL054yMDOzatQujRo1C69atIScnh9u3byM0NBQzZszg5Y0xrQsiLjo6WjRSq1+/fli7dq3YSC2+TsEn5FMcHR3RvXt3dO/eHc2bN2cdh5DvSmZmJvbv34+7d+8CAHR0dDBt2jQ0aNCAcTLp6d69+xdtJxAIcPbs2W+chnwPli5dioMHD8LU1BQGBgaoUaOG2Os+Pj6MkkmXhYUFwsPDYW5uDjMzM8TExPB6Rgr5MqdPn0ZISAjS0tLAcRxMTEwwceJE9OzZk3U0Jl69egV3d3d06NABo0aNwuTJk3Hx4kUoKChgzZo16NevH+uIhBDyzVEHBiGMVYy2+RyBQICUlJRvnEb29O3bF7169ap0XZAbN27wcl2Qv//+W2ykVkJCAlRVVXk7UosQQsi38erVK/j5+WHMmDFo2rQpXF1dcfXqVTRp0gRbtmxBo0aNWEeUWVeuXIG1tbXEg2vCD2PHjv3k63yZweTi4oL4+HhoamoiNzcX2traonJ0H6POP0K+DMdxSElJgaamJq8GExBC+I06MAghMq1ly5Y4duyYRFmt+/fvY9CgQUhISGCUjBBCCKnePDw8cOPGDWzevBnp6elYsGABVq1ahRMnTkBBQQGBgYGsI8osa2trHDlyhDp5yCf99ttv6N27N1RVVVlH+SZevnyJo0eP4uXLl9i4cSPGjx9f5WedOXOmlNMRWXXt2jUkJSXhzZs3+PhxFR+/J927d8fgwYMxZMgQOqcQQniL1sAghMg0WheEEEIIYSM6OhpBQUEwMjJCSEgI2rdvjwEDBsDExASjR49mHU+m0Rgx8iVWrVoFGxubatuBoaamJpqNkpOTgxkzZtAaGOSTtmzZAn9/f9SuXRu1a9cWe00gEPCyA8PR0RHHjh3Dpk2bYG1tDUdHx2rd8UkIIZWhDgxCiMz5cF2Qtm3bwsvLC/fu3at0XRBCCCGEfBtFRUXQ1tYGAMTExGDSpEkAAGVlZZSVlbGMRki1wKeOrlmzZuHVq1d49erVZ7fV0dGRQiIii/bs2YM5c+Zg2rRprKPIjJkzZ2LmzJlISEjA0aNH8csvv8DLyws9e/bEkCFDeLcmJCGEn6iEFCFE5tC6IIQQQgh7Q4cOxQ8//ABtbW1MmTIFJ0+ehIGBAdauXYtr167hwIEDrCPKLCsrKxw9epTKfZBP4tP3xNTUFAKB4JPbcBxH1/c8Z2FhgRMnTkBPT491FJklFAoRHh4Of39/FBUV0e8LIYQXaAYGIUTmpKamso5ACCGE8N7s2bMxa9YslJaWon///jAwMICPjw/CwsIQFBTEOh4h5Dvi7+8PLy8vTJw4ETY2NlBSUkJiYiICAgLg5OSEdu3asY5IZEDr1q1x8+ZN6sCoxKNHjxAVFYWoqChkZGTAxsYGjo6OrGMRQohUUAcGIYQQQgghREKXLl0QHR2NvLw80ezIfv36wcnJCUZGRozTEUK+J1u2bMHixYvRt29fUZuxsTE0NTXh6+uLWbNmMUxHWPqwfHDLli2xbNkypKenQ19fH/Ly8mLbDh48WLrhZMC+fftw7NgxxMfHQ1dXV7SgN5VaI4TwCXVgEEIIIYQQQipVr1491KtXT/R3CwsLhmkIId+r+/fvw8zMTKJdT08P2dnZDBIRWeHu7i7RtmXLFok2gUDAyw6MNWvWoHfv3pgzZw7atm3LOg4hhDBBHRiEEEIIIYQQQgj5ZkxNTREaGoply5ZBTk4OAPDu3Tts3rwZlpaWjNMRlqh88KfFxMRARUWFdQxCCGGKOjAIIYQQQggh5AtERkaib9++UFJSEmsvKipCREQEXFxcAACOjo6oVasWg4SEyKb58+fD1dUVMTExMDc3h1AoRFJSEoqLi7F7927W8QiRWSoqKjh79iyCg4ORlpYGBQUFNG3aFK6urujRowfreIQQIhUCjuM41iEIIYQQQgghRBbl5+fjzZs3AAB7e3scPHhQrKwWACQnJ2PevHlISEhgEZHImJkzZ8LNze2za8Vs3boVw4cPR+3ataWUjK3MzEzs378fd+/eBQDo6Ohg2rRpaNCgAeNkhMiuP/74A3PmzIG9vT3atm0LjuMQGxuL8+fPIzAwEPb29qwjEkLIN0cdGIQQQgghhBBShcjISLi7u0MgEIDjOAgEAoltOI5Dly5dEBwczCAhkTVt2rRBZGQk9PT0WEeRGa9evYKfnx/GjBkjGj1+9epVNGnSBFu2bEGjRo1YRyREJg0ePBgODg6YOXOmWPvGjRsRHR2NAwcOMEpGCCHSQx0YhBBCCCGEEPIJsbGxEAqFGDduHAIDA6GmpiZ6TSAQQEVFBcbGxlBUVGSYksiKVatW4enTp5gxYwb09fUlSo7xkYeHB27cuIHNmzcjPT0dCxYswKpVq3DixAkoKCggMDCQdURCZJKFhQWioqKgr68v1v7gwQMMGjQIt27dYpSMEEKkh9bAIIQQQgghhJAqODk5ISgoCPXr14ePjw/s7OxofQvySdHR0cjMzMSpU6cqfT0lJUXKidiLjo5GUFAQjIyMEBISgvbt22PAgAEwMTHB6NGjWccjRGY1aNAADx8+lOjAePjwIW/KzxFCCHVgEEIIIYQQQkgVUlNT8eTJE9SvXx+LFi1Cly5dWEciMm7cuHFQVlaGnJwc6ygyo6ioCNra2gCAmJgYTJo0CQCgrKyMsrIyltEIkWn9+/fHsmXL8PPPP6N169YAgLi4OCxfvhx9+/ZlnI4QQqSDOjAIIYQQQgghpArW1tYYOXIkNDU1wXEchg4dWuWD6bNnz0o5HZFFvr6+UFNTw8CBA+Ho6AhDQ0PWkZgzMjLChQsXoK2tjadPn6Jz584AgIiIiM8udk4In02bNg1paWmYMmWKaA0mjuPQtWtXzJs3j3E6QgiRDloDgxBCCCGEEEKq8PLlSxw9ehQvX77Exo0bMX78eKiqqla67ceLrBJ+KigowPHjxxEZGYm//voLFhYWcHR0RL9+/Xhbfiw6OhqzZs1CaWkp+vXrh7Vr18LHxwdhYWEICgqimU2EfEZGRgbS0tLAcRxMTEyo448QwivUgUEIIYQQQgghX8DDwwOenp68fQhN/r2HDx8iKioKp06dQlZWFhwcHDBs2DDY2tqyjiZ1f//9N/Ly8mBqagoASEhIgKqqKj2IJeQLPHv2DKWlpfj4EZ6Ojg6jRIQQIj3UgUEIIYQQQgghXyA3N/eLt6WHSgQASktLceHCBfzxxx84ffo06tWrh5cvX0JXVxd+fn6ih/mEEFKZ+Ph4eHh4IDMzU6yd4zgIBAKkpKQwSkYIIdJDHRiEEEIIIYQQ8gVMTU1FNcirQg+VCFD+0PHIkSM4efIk3r59CwcHBwwdOhR2dnYoLCyEp6cnUlNTcfLkSdZRCSEyzNHRESoqKhg/fjxq164t8bqNjQ2DVIQQIl20iDchhBBCCCGEfAF/f394eXlh4sSJsLGxgZKSEhITExEQEAAnJye0a9eOdUQiA3r06IHs7Gw0b94cc+bMwYABA8QePKqqqqJPnz6IiYlhmJIQ8j1IT09HZGQklVojhPAadWAQQgghhBBCyBfYsmULFi9ejL59+4rajI2NoampCV9fX8yaNYthOiIrunfvDkdHR5iYmFS5jZ2dHU6dOiXFVISQ75G2tjYKCwtZxyCEEKbkWAcghBBCCCGEkO/B/fv3YWZmJtGup6eH7OxsBomILPLw8Phk5wUA1KlTB+rq6lJKRAj5Xk2bNg3e3t64c+cOSktLWcchhBAmaA0MQgghhBBCCPkCw4cPh4mJCZYtWwY5ufKxYO/evYOHhwfy8vKwa9cuxgkJIYRUJz179kRubi7KysoqfZ3WWyKE8AF1YBBCCCGEEELIF7hx4wZcXV2hqakJc3NzCIVCJCUlobi4GLt374axsTHriIQQQqqRw4cPf/L1IUOGSCkJIYSwQx0YhBBCCCGEEPKFMjMzsX//fty9excAoKOjg2nTpqFBgwaMkxFCCCGEEFL90BoYhBBCCCGEEPIFXr16hZCQEAwcOBC//vor3r59i/DwcIwbNw5ZWVms4xFCCKmGoqOj4ezsjI4dOyInJweBgYE4cuQI61iEECI11IFBCCGEEEIIIV/Ax8cHV69ehYKCAk6fPo34+Hj4+fnBwMAAvr6+rOMRQgipZmJiYjBz5kzo6Ojg1atXEAqForWXIiMjWccjhBCpoA4MQgghhBBCCPkC0dHR8PX1hZGRES5cuID27dtjwIABcHNzw9WrV1nHI4QQUs0EBgbixx9/xOrVqyEvLw8AcHNzg5ubG7Zt28Y4HSGESAd1YBBCCCGEEELIFygqKoK2tjaA8lGx7du3BwAoKyujrKyMZTRCCCHV0J07d9C9e3eJ9t69eyMzM5NBIkIIkT4F1gEIIYQQQggh5HtQMfNCW1sbT58+RefOnQEAERERMDIyYpyOEEJIdVO7dm08efIEjRs3Fmu/e/cu1NTUGKUihBDpog4MQgghhBBCCPkCs2fPxqxZs1BaWor+/fvDwMAAPj4+CAsLQ1BQEOt4hBBCqpkBAwbA29v7f+3dIa4iQQBF0deTTyBhD2AIQbEDEjQG2AOLwJPgESyFDbAEBPh2KBSKhP76i3EzdE3mHFvmqTI33ZX9fp+qqvJ8PnM+n7Pb7bJYLNqeB/ARVdM0TdsjAAAA/gWPxyP3+z2TySRJcrlc0u/3fYEBwB/3er2y3W5zOp2SJFVVpWmazOfzHA6HdLvdlhcC/H0CBgAAAAAUpq7rDAaD1HWd6/Wa9/ud8Xic0WjU9jSAjxEwAAAAAKAws9ksx+Mx0+m07SkArfnV9gAAAAAA4KdOp5OvL8/XAv83tyAAAAAAFGa9Xmez2WS5XGY4HKbX6/04X61W7QwD+CC/kAIAAACAwkwmk9+eVVWV2+32wTUA7RAwAAAAAACA4ngDAwAAAAAAKI6AAQAAAAAAFEfAAAAAAAAAiiNgAAAAAAAAxREwAAAAAACA4ggYAAAAAABAcQQMAAAAAACgON91T706jE5gWAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Exclude the 'id', date and 'price_range' column from the correlation matrix\n", + "correlation_matrix = housing_data.drop(columns=['id', 'price_range', 'date']).corr()\n", + "\n", + "# Set up the matplotlib figure\n", + "plt.figure(figsize=(20, 20))\n", + "\n", + "# Create a heatmap using seaborn\n", + "sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5)\n", + "\n", + "# Add a title\n", + "plt.title('Correlation Matrix')\n", + "\n", + "# Show the plot\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "housing_data_encoded['v']" + "Price has a moderate positive correlation with sqft living (0.70), grade (0.67), sqft above (0.61). This means that as the values of these features increase, the price of the house also tends to increase." ] } ], From 9ecfc7070db07c631f7d799324bc3d30e52a79b1 Mon Sep 17 00:00:00 2001 From: Winfred kinya Date: Tue, 30 Apr 2024 07:16:47 +0300 Subject: [PATCH 10/27] EDA Finish up --- .vscode/settings.json | 3 +++ student.ipynb | 2 +- 2 files changed, 4 insertions(+), 1 deletion(-) create mode 100644 .vscode/settings.json diff --git a/.vscode/settings.json b/.vscode/settings.json new file mode 100644 index 00000000..642ff51b --- /dev/null +++ b/.vscode/settings.json @@ -0,0 +1,3 @@ +{ + "python.REPL.enableREPLSmartSend": false +} \ No newline at end of file diff --git a/student.ipynb b/student.ipynb index d9a7fa37..0b1d7cba 100644 --- a/student.ipynb +++ b/student.ipynb @@ -791,7 +791,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.5" + "version": "3.11.5" } }, "nbformat": 4, From 789795ca553a821a8fd3d808f593a7dfdccbab7b Mon Sep 17 00:00:00 2001 From: Paul Muniu Date: Tue, 30 Apr 2024 10:57:16 +0300 Subject: [PATCH 11/27] Statistical analysis done --- student.ipynb | 1954 ++++++++++++++++++++++++++++++++++++++----------- 1 file changed, 1532 insertions(+), 422 deletions(-) diff --git a/student.ipynb b/student.ipynb index 3b8c5a8b..29134053 100644 --- a/student.ipynb +++ b/student.ipynb @@ -219,7 +219,7 @@ }, { "cell_type": "code", - "execution_count": 509, + "execution_count": 209, "metadata": {}, "outputs": [], "source": [ @@ -258,7 +258,7 @@ }, { "cell_type": "code", - "execution_count": 510, + "execution_count": 210, "metadata": {}, "outputs": [ { @@ -497,7 +497,7 @@ "[5 rows x 21 columns]" ] }, - "execution_count": 510, + "execution_count": 210, "metadata": {}, "output_type": "execute_result" } @@ -521,7 +521,7 @@ }, { "cell_type": "code", - "execution_count": 511, + "execution_count": 211, "metadata": {}, "outputs": [ { @@ -684,7 +684,7 @@ "20 * `sqft_lot15` The square footage of the land lots of the nea..." ] }, - "execution_count": 511, + "execution_count": 211, "metadata": {}, "output_type": "execute_result" } @@ -715,7 +715,7 @@ }, { "cell_type": "code", - "execution_count": 512, + "execution_count": 212, "metadata": {}, "outputs": [ { @@ -746,7 +746,7 @@ }, { "cell_type": "code", - "execution_count": 513, + "execution_count": 213, "metadata": {}, "outputs": [ { @@ -805,7 +805,7 @@ }, { "cell_type": "code", - "execution_count": 514, + "execution_count": 214, "metadata": {}, "outputs": [ { @@ -850,133 +850,133 @@ " \n", " \n", " \n", - " 943\n", - " 8712100575\n", - " 8/28/2014\n", - " 915000.0\n", - " 5\n", - " 2.50\n", - " 2750\n", - " 5589\n", - " 1.5\n", + " 16132\n", + " 3298400470\n", + " 2/4/2015\n", + " 437400.0\n", + " 3\n", + " 1.75\n", + " 2150\n", + " 8925\n", + " 1.0\n", " NO\n", - " Very Good\n", - " 9 Better\n", - " 1840\n", - " 910.0\n", - " 1910\n", + " Good\n", + " 7 Average\n", + " 2150\n", " 0.0\n", - " 1460\n", - " 4250\n", + " 1960\n", + " 0.0\n", + " 1100\n", + " 7875\n", " \n", " \n", - " 1346\n", - " 217500135\n", - " 4/21/2015\n", - " 450000.0\n", - " 4\n", - " 2.25\n", - " 2040\n", - " 9565\n", + " 14888\n", + " 1842300050\n", + " 7/2/2014\n", + " 600000.0\n", + " 5\n", + " 2.00\n", + " 2190\n", + " 9072\n", " 1.0\n", - " NO\n", - " Average\n", - " 8 Good\n", - " 1400\n", - " 640.0\n", - " 1959\n", + " NaN\n", + " Very Good\n", + " 7 Average\n", + " 1110\n", + " ?\n", + " 1965\n", " 0.0\n", - " 1890\n", - " 8580\n", + " 1660\n", + " 8327\n", " \n", " \n", - " 21296\n", - " 7708200670\n", - " 7/23/2014\n", - " 490000.0\n", - " 4\n", - " 2.50\n", - " 2510\n", - " 4349\n", - " 2.0\n", - " NaN\n", - " Average\n", - " 8 Good\n", - " 2510\n", + " 4485\n", + " 2397101270\n", + " 1/26/2015\n", + " 716000.0\n", + " 3\n", + " 2.00\n", + " 1420\n", + " 3600\n", + " 1.5\n", + " NO\n", + " Good\n", + " 7 Average\n", + " 1420\n", " 0.0\n", - " 2010\n", + " 1904\n", " 0.0\n", - " 2510\n", - " 4314\n", + " 1250\n", + " 3600\n", " \n", " \n", - " 5896\n", - " 3303980500\n", - " 9/5/2014\n", - " 1030000.0\n", - " 4\n", - " 3.25\n", - " 3780\n", - " 11200\n", - " 2.0\n", + " 9132\n", + " 1523059100\n", + " 9/2/2014\n", + " 320000.0\n", + " 5\n", + " 1.00\n", + " 1740\n", + " 27350\n", + " 1.0\n", " NO\n", - " Average\n", - " 11 Excellent\n", - " 3780\n", + " Good\n", + " 5 Fair\n", + " 1740\n", " 0.0\n", - " 2002\n", + " 1958\n", " 0.0\n", - " 3720\n", - " 11813\n", + " 2760\n", + " 10749\n", " \n", " \n", - " 5809\n", - " 1922069071\n", - " 4/24/2015\n", - " 411000.0\n", - " 4\n", + " 16234\n", + " 7922900460\n", + " 12/5/2014\n", + " 660000.0\n", + " 3\n", " 1.75\n", - " 2250\n", - " 292288\n", - " 1.0\n", + " 2030\n", + " 9032\n", + " 2.0\n", " NO\n", " Good\n", " 7 Average\n", - " 2250\n", - " 0.0\n", + " 2030\n", + " ?\n", " 1963\n", " 0.0\n", - " 1550\n", - " 23798\n", + " 2350\n", + " 8937\n", " \n", " \n", "\n", "" ], "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "943 8712100575 8/28/2014 915000.0 5 2.50 2750 \n", - "1346 217500135 4/21/2015 450000.0 4 2.25 2040 \n", - "21296 7708200670 7/23/2014 490000.0 4 2.50 2510 \n", - "5896 3303980500 9/5/2014 1030000.0 4 3.25 3780 \n", - "5809 1922069071 4/24/2015 411000.0 4 1.75 2250 \n", + " id date price bedrooms bathrooms sqft_living \\\n", + "16132 3298400470 2/4/2015 437400.0 3 1.75 2150 \n", + "14888 1842300050 7/2/2014 600000.0 5 2.00 2190 \n", + "4485 2397101270 1/26/2015 716000.0 3 2.00 1420 \n", + "9132 1523059100 9/2/2014 320000.0 5 1.00 1740 \n", + "16234 7922900460 12/5/2014 660000.0 3 1.75 2030 \n", "\n", - " sqft_lot floors waterfront condition grade sqft_above \\\n", - "943 5589 1.5 NO Very Good 9 Better 1840 \n", - "1346 9565 1.0 NO Average 8 Good 1400 \n", - "21296 4349 2.0 NaN Average 8 Good 2510 \n", - "5896 11200 2.0 NO Average 11 Excellent 3780 \n", - "5809 292288 1.0 NO Good 7 Average 2250 \n", + " sqft_lot floors waterfront condition grade sqft_above \\\n", + "16132 8925 1.0 NO Good 7 Average 2150 \n", + "14888 9072 1.0 NaN Very Good 7 Average 1110 \n", + "4485 3600 1.5 NO Good 7 Average 1420 \n", + "9132 27350 1.0 NO Good 5 Fair 1740 \n", + "16234 9032 2.0 NO Good 7 Average 2030 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", - "943 910.0 1910 0.0 1460 4250 \n", - "1346 640.0 1959 0.0 1890 8580 \n", - "21296 0.0 2010 0.0 2510 4314 \n", - "5896 0.0 2002 0.0 3720 11813 \n", - "5809 0.0 1963 0.0 1550 23798 " + "16132 0.0 1960 0.0 1100 7875 \n", + "14888 ? 1965 0.0 1660 8327 \n", + "4485 0.0 1904 0.0 1250 3600 \n", + "9132 0.0 1958 0.0 2760 10749 \n", + "16234 ? 1963 0.0 2350 8937 " ] }, - "execution_count": 514, + "execution_count": 214, "metadata": {}, "output_type": "execute_result" } @@ -997,7 +997,7 @@ }, { "cell_type": "code", - "execution_count": 515, + "execution_count": 215, "metadata": {}, "outputs": [ { @@ -1026,7 +1026,7 @@ }, { "cell_type": "code", - "execution_count": 516, + "execution_count": 216, "metadata": {}, "outputs": [], "source": [ @@ -1050,7 +1050,7 @@ }, { "cell_type": "code", - "execution_count": 517, + "execution_count": 217, "metadata": {}, "outputs": [ { @@ -1093,7 +1093,7 @@ }, { "cell_type": "code", - "execution_count": 518, + "execution_count": 218, "metadata": {}, "outputs": [], "source": [ @@ -1115,7 +1115,7 @@ }, { "cell_type": "code", - "execution_count": 519, + "execution_count": 219, "metadata": {}, "outputs": [], "source": [ @@ -1128,7 +1128,7 @@ }, { "cell_type": "code", - "execution_count": 520, + "execution_count": 220, "metadata": {}, "outputs": [], "source": [ @@ -1138,7 +1138,7 @@ }, { "cell_type": "code", - "execution_count": 521, + "execution_count": 221, "metadata": {}, "outputs": [ { @@ -1158,7 +1158,7 @@ }, { "cell_type": "code", - "execution_count": 522, + "execution_count": 222, "metadata": {}, "outputs": [ { @@ -1177,7 +1177,7 @@ }, { "cell_type": "code", - "execution_count": 523, + "execution_count": 223, "metadata": {}, "outputs": [], "source": [ @@ -1188,7 +1188,7 @@ }, { "cell_type": "code", - "execution_count": 524, + "execution_count": 224, "metadata": {}, "outputs": [ { @@ -1263,104 +1263,104 @@ " \n", " \n", " \n", - " 14733\n", - " 2525059077\n", - " 2014-05-20\n", - " 765000.0\n", - " 4\n", - " 2.25\n", - " 2560\n", - " 12100\n", + " 9602\n", + " 2917200085\n", + " 2015-04-08\n", + " 350000.0\n", + " 2\n", + " 1.0\n", + " 1160\n", + " 5395\n", " 1.0\n", " 0\n", - " 4.0\n", - " 6.0\n", - " 1760\n", - " 800.0\n", - " 1976\n", + " 3.0\n", + " 5.0\n", + " 860\n", + " 300.0\n", + " 1940\n", " 0.0\n", - " 2240\n", - " 12100\n", + " 1664\n", + " 5363\n", " \n", " \n", - " 5536\n", - " 2248000080\n", - " 2014-05-21\n", - " 385500.0\n", - " 3\n", - " 2.00\n", - " 1540\n", - " 7947\n", + " 11877\n", + " 2025049114\n", + " 2014-05-29\n", + " 402000.0\n", + " 2\n", " 1.0\n", + " 710\n", + " 1173\n", + " 2.0\n", " 0\n", - " 3.0\n", + " 4.0\n", " 5.0\n", - " 1120\n", - " 420.0\n", - " 1961\n", + " 710\n", " 0.0\n", - " 1910\n", - " 7950\n", + " 1943\n", + " 0.0\n", + " 1370\n", + " 1173\n", " \n", " \n", - " 10495\n", - " 9290850060\n", - " 2014-10-22\n", - " 910000.0\n", - " 4\n", - " 2.50\n", - " 3170\n", - " 32430\n", - " 2.5\n", + " 14592\n", + " 968000120\n", + " 2014-11-12\n", + " 395000.0\n", + " 3\n", + " 2.0\n", + " 1470\n", + " 10125\n", + " 1.0\n", " 0\n", - " 3.0\n", - " 8.0\n", - " 3170\n", + " 4.0\n", + " 5.0\n", + " 1470\n", " 0.0\n", - " 1989\n", + " 1962\n", " 0.0\n", - " 3360\n", - " 35610\n", + " 1440\n", + " 10125\n", " \n", " \n", - " 15676\n", - " 5422560660\n", - " 2014-10-30\n", - " 407000.0\n", - " 2\n", - " 2.50\n", - " 1700\n", - " 6635\n", + " 1990\n", + " 8562890370\n", + " 2015-04-14\n", + " 399950.0\n", + " 4\n", + " 2.5\n", + " 3110\n", + " 5868\n", " 2.0\n", " 0\n", - " 4.0\n", + " 3.0\n", " 6.0\n", - " 1700\n", + " 3110\n", " 0.0\n", - " 1976\n", + " 2001\n", " 0.0\n", - " 1700\n", - " 6635\n", + " 2950\n", + " 5924\n", " \n", " \n", - " 14699\n", - " 714000210\n", - " 2014-09-03\n", - " 998000.0\n", - " 4\n", - " 2.50\n", - " 3030\n", - " 6820\n", - " 2.0\n", + " 17687\n", + " 3575302562\n", + " 2014-11-13\n", + " 356000.0\n", + " 3\n", + " 1.5\n", + " 1140\n", + " 7500\n", + " 1.0\n", " 0\n", " 3.0\n", - " 7.0\n", - " 2530\n", - " 500.0\n", - " 1947\n", - " 2000.0\n", - " 2070\n", - " 6820\n", + " 5.0\n", + " 1140\n", + " 0.0\n", + " 1976\n", + " 0.0\n", + " 1380\n", + " 7500\n", " \n", " \n", "\n", @@ -1368,28 +1368,28 @@ ], "text/plain": [ " id date price bedrooms bathrooms sqft_living \\\n", - "14733 2525059077 2014-05-20 765000.0 4 2.25 2560 \n", - "5536 2248000080 2014-05-21 385500.0 3 2.00 1540 \n", - "10495 9290850060 2014-10-22 910000.0 4 2.50 3170 \n", - "15676 5422560660 2014-10-30 407000.0 2 2.50 1700 \n", - "14699 714000210 2014-09-03 998000.0 4 2.50 3030 \n", + "9602 2917200085 2015-04-08 350000.0 2 1.0 1160 \n", + "11877 2025049114 2014-05-29 402000.0 2 1.0 710 \n", + "14592 968000120 2014-11-12 395000.0 3 2.0 1470 \n", + "1990 8562890370 2015-04-14 399950.0 4 2.5 3110 \n", + "17687 3575302562 2014-11-13 356000.0 3 1.5 1140 \n", "\n", " sqft_lot floors waterfront condition grade sqft_above \\\n", - "14733 12100 1.0 0 4.0 6.0 1760 \n", - "5536 7947 1.0 0 3.0 5.0 1120 \n", - "10495 32430 2.5 0 3.0 8.0 3170 \n", - "15676 6635 2.0 0 4.0 6.0 1700 \n", - "14699 6820 2.0 0 3.0 7.0 2530 \n", + "9602 5395 1.0 0 3.0 5.0 860 \n", + "11877 1173 2.0 0 4.0 5.0 710 \n", + "14592 10125 1.0 0 4.0 5.0 1470 \n", + "1990 5868 2.0 0 3.0 6.0 3110 \n", + "17687 7500 1.0 0 3.0 5.0 1140 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", - "14733 800.0 1976 0.0 2240 12100 \n", - "5536 420.0 1961 0.0 1910 7950 \n", - "10495 0.0 1989 0.0 3360 35610 \n", - "15676 0.0 1976 0.0 1700 6635 \n", - "14699 500.0 1947 2000.0 2070 6820 " + "9602 300.0 1940 0.0 1664 5363 \n", + "11877 0.0 1943 0.0 1370 1173 \n", + "14592 0.0 1962 0.0 1440 10125 \n", + "1990 0.0 2001 0.0 2950 5924 \n", + "17687 0.0 1976 0.0 1380 7500 " ] }, - "execution_count": 524, + "execution_count": 224, "metadata": {}, "output_type": "execute_result" } @@ -1420,7 +1420,7 @@ }, { "cell_type": "code", - "execution_count": 525, + "execution_count": 225, "metadata": {}, "outputs": [ { @@ -1493,7 +1493,7 @@ "4 37 0.0 11440.0" ] }, - "execution_count": 525, + "execution_count": 225, "metadata": {}, "output_type": "execute_result" } @@ -1538,7 +1538,7 @@ }, { "cell_type": "code", - "execution_count": 526, + "execution_count": 226, "metadata": {}, "outputs": [ { @@ -1586,119 +1586,119 @@ " \n", " \n", " \n", - " 19131\n", - " 6713700155\n", - " 2014-08-18\n", - " 352500.0\n", + " 3529\n", + " 2221000100\n", + " 2014-05-07\n", + " 310000.0\n", " 3\n", - " 1.00\n", - " 1470\n", - " 8400\n", + " 1.75\n", + " 1840\n", + " 10723\n", " 1.0\n", " 0\n", " 4.0\n", " 5.0\n", - " 1470\n", + " 1220\n", + " 620.0\n", + " 1974\n", " 0.0\n", - " 1953\n", - " 0.0\n", - " 1470\n", - " 8400\n", - " 71\n", + " 1590\n", + " 9820\n", + " 50\n", " 0.0\n", - " 11340.0\n", + " 14403.0\n", " \n", " \n", - " 5032\n", - " 2558660190\n", - " 2014-10-30\n", - " 459000.0\n", - " 3\n", - " 1.75\n", - " 1730\n", - " 7807\n", - " 1.0\n", + " 20241\n", + " 8924100372\n", + " 2015-04-23\n", + " 1300000.0\n", + " 4\n", + " 3.50\n", + " 3590\n", + " 5334\n", + " 2.0\n", " 0\n", " 3.0\n", - " 5.0\n", - " 1260\n", - " 470.0\n", - " 1976\n", + " 7.0\n", + " 3140\n", + " 450.0\n", + " 2006\n", " 0.0\n", - " 1800\n", - " 7650\n", - " 48\n", + " 2100\n", + " 6250\n", + " 18\n", " 0.0\n", - " 11267.0\n", + " 12514.0\n", " \n", " \n", - " 7573\n", - " 7922720040\n", - " 2015-03-17\n", - " 680000.0\n", - " 4\n", + " 19223\n", + " 3832080610\n", + " 2015-04-06\n", + " 270000.0\n", + " 3\n", " 2.50\n", - " 2880\n", - " 9202\n", - " 1.0\n", + " 1780\n", + " 5015\n", + " 2.0\n", " 0\n", " 3.0\n", - " 6.0\n", + " 5.0\n", " 1780\n", - " 1100.0\n", - " 1977\n", " 0.0\n", - " 2500\n", - " 10265\n", - " 47\n", + " 2010\n", + " 0.0\n", + " 2010\n", + " 5250\n", + " 14\n", " 0.0\n", - " 14962.0\n", + " 8575.0\n", " \n", " \n", - " 12237\n", - " 7560000070\n", - " 2014-06-10\n", - " 710000.0\n", - " 3\n", - " 3.50\n", - " 2440\n", - " 3427\n", - " 2.0\n", + " 18603\n", + " 9297300750\n", + " 2014-11-05\n", + " 355000.0\n", + " 2\n", + " 1.75\n", + " 1760\n", + " 4600\n", + " 1.0\n", " 0\n", - " 3.0\n", + " 4.0\n", " 5.0\n", - " 1990\n", - " 450.0\n", - " 2000\n", + " 850\n", + " 910.0\n", + " 1926\n", " 0.0\n", - " 2440\n", - " 2601\n", - " 24\n", + " 1150\n", + " 4800\n", + " 98\n", " 0.0\n", - " 8307.0\n", + " 8120.0\n", " \n", " \n", - " 6502\n", - " 4217402115\n", - " 2015-04-21\n", - " 3650000.0\n", - " 6\n", - " 4.75\n", - " 5480\n", - " 19401\n", + " 4980\n", + " 9547201155\n", + " 2014-10-16\n", + " 567500.0\n", + " 3\n", + " 1.00\n", + " 1440\n", + " 3060\n", " 1.5\n", - " 1\n", + " 0\n", + " 4.0\n", " 5.0\n", - " 9.0\n", - " 3910\n", - " 1570.0\n", - " 1936\n", + " 1440\n", " 0.0\n", - " 3510\n", - " 15810\n", - " 88\n", + " 1910\n", + " 0.0\n", + " 1440\n", + " 3570\n", + " 114\n", " 0.0\n", - " 30361.0\n", + " 5940.0\n", " \n", " \n", "\n", @@ -1706,35 +1706,35 @@ ], "text/plain": [ " id date price bedrooms bathrooms sqft_living \\\n", - "19131 6713700155 2014-08-18 352500.0 3 1.00 1470 \n", - "5032 2558660190 2014-10-30 459000.0 3 1.75 1730 \n", - "7573 7922720040 2015-03-17 680000.0 4 2.50 2880 \n", - "12237 7560000070 2014-06-10 710000.0 3 3.50 2440 \n", - "6502 4217402115 2015-04-21 3650000.0 6 4.75 5480 \n", + "3529 2221000100 2014-05-07 310000.0 3 1.75 1840 \n", + "20241 8924100372 2015-04-23 1300000.0 4 3.50 3590 \n", + "19223 3832080610 2015-04-06 270000.0 3 2.50 1780 \n", + "18603 9297300750 2014-11-05 355000.0 2 1.75 1760 \n", + "4980 9547201155 2014-10-16 567500.0 3 1.00 1440 \n", "\n", " sqft_lot floors waterfront condition grade sqft_above \\\n", - "19131 8400 1.0 0 4.0 5.0 1470 \n", - "5032 7807 1.0 0 3.0 5.0 1260 \n", - "7573 9202 1.0 0 3.0 6.0 1780 \n", - "12237 3427 2.0 0 3.0 5.0 1990 \n", - "6502 19401 1.5 1 5.0 9.0 3910 \n", + "3529 10723 1.0 0 4.0 5.0 1220 \n", + "20241 5334 2.0 0 3.0 7.0 3140 \n", + "19223 5015 2.0 0 3.0 5.0 1780 \n", + "18603 4600 1.0 0 4.0 5.0 850 \n", + "4980 3060 1.5 0 4.0 5.0 1440 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", - "19131 0.0 1953 0.0 1470 8400 \n", - "5032 470.0 1976 0.0 1800 7650 \n", - "7573 1100.0 1977 0.0 2500 10265 \n", - "12237 450.0 2000 0.0 2440 2601 \n", - "6502 1570.0 1936 0.0 3510 15810 \n", + "3529 620.0 1974 0.0 1590 9820 \n", + "20241 450.0 2006 0.0 2100 6250 \n", + "19223 0.0 2010 0.0 2010 5250 \n", + "18603 910.0 1926 0.0 1150 4800 \n", + "4980 0.0 1910 0.0 1440 3570 \n", "\n", " house_age renovation_age total_sqft \n", - "19131 71 0.0 11340.0 \n", - "5032 48 0.0 11267.0 \n", - "7573 47 0.0 14962.0 \n", - "12237 24 0.0 8307.0 \n", - "6502 88 0.0 30361.0 " + "3529 50 0.0 14403.0 \n", + "20241 18 0.0 12514.0 \n", + "19223 14 0.0 8575.0 \n", + "18603 98 0.0 8120.0 \n", + "4980 114 0.0 5940.0 " ] }, - "execution_count": 526, + "execution_count": 226, "metadata": {}, "output_type": "execute_result" } @@ -1745,7 +1745,7 @@ }, { "cell_type": "code", - "execution_count": 527, + "execution_count": 227, "metadata": {}, "outputs": [ { @@ -1816,12 +1816,12 @@ }, { "cell_type": "code", - "execution_count": 528, + "execution_count": 228, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9cAAAJOCAYAAAC9afQWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACaB0lEQVR4nOzdd3RT9f/H8VeSpgvKXgoCClj2kimIUMUBijJEFFCQjYrI9ivgQESQKUtliKhQQJDhREVAkS0oCoIgKCB7l660ye+P/hIIXWmS9nY8H+f00N7cm7zvvaU3r3zGNTkcDocAAAAAAIDXzEYXAAAAAABATke4BgAAAADAR4RrAAAAAAB8RLgGAAAAAMBHhGsAAAAAAHxEuAYAAAAAwEeEawAAAAAAfES4BgAAAADAR4RrAMgEDofD6BIyJKfVCwAAkN0QrgHkKlu3blV4eHiyr6pVq6pOnTp64IEHNHLkSP3xxx8pbj99+nSFh4drypQpXtfw008/6ZlnnsnQNiNGjFB4eLiWLVuW5jJ/u3z5st544w2tXLky3Xqyi//9738KDw9X9erVde7cOUNr8cfvi6eOHTum8PBwNWvWLNNfyxPHjx9X3759Va9ePdWqVUtPPPFEmutHREQoPDxcW7duTXM95zEdMWKEP8vNtpz7m9JX9erV1bRpU/Xp00fffvtthp53xYoVCg8P15AhQzKpcgDAjQKMLgAAMkNoaKjuuece188Oh0NXr17VwYMHtWzZMq1YsUKDBw9Wjx49/Pq6//33n3r06KGSJUv69Xkzy7hx47RixQq98cYbRpfikejoaH311VcKCgpSXFycli9frt69extdVp40bNgw7dixQ6VLl1aNGjV06623Gl1SjnbLLbeodu3abstsNptOnjyp9evXa/369erVqxdhGQCyMcI1gFypcOHCmjhxYoqPrVmzRqNHj9aECRNUvHhxtWnTxvVY586d1apVKxUuXNir17Xb7V5tN2jQIPXq1UslSpTwantvpdYd3Kh60vPVV18pOjpaPXv21IIFC7RkyRL16tVLJpPJ6NIyXcmSJfXll1/KarUaXYok6ddff5UkLVy4UGXKlDG4mpyvXr16euutt1J8bOPGjerbt6/mzp2rBx98UNWqVUv3+Vq2bKlatWopLCzM36UCAFJBt3AAec7DDz+s1157TZL09ttvKzY21vVYkSJFVKFCBRUpUiRLaypRooQqVKiQbd4IZ7d6nFasWCFJat26tRo3bqxjx47pxx9/NLiqrGG1WlWhQgWVLVvW6FIkJbWqSlKpUqUMriT3a9asmSIiIuRwODzuHh4WFqYKFSpkuw/IACA3I1wDyJPatGmj6tWr6/Tp0/ruu+9cy1MbQ7thwwb16NFDd911l6pXr67mzZtr+PDhOnTokNu2zq7op06dUnh4uCIiIiRdGy/bv39/ffXVV2rRooVq1Kihhx9+WFeuXEl3jPPixYvVqlUr1ahRQxEREXr77bd1+fJlt3XSG2PpHMeZkJDg+vmzzz6TJI0cOVLh4eGu8JpaPYmJifrkk0/Uvn171a5dW7Vr11b79u318ccfu57XyTn+fezYsfr77781YMAANWzYUDVr1lS7du20fPnyFOtMzT///KMdO3aoXLlyqlq1qqvHweLFi1Nc//pjfvr0ab300ktq2rSpatSoodatW2v+/PlKTExMtt3hw4c1evRo3X///apdu7Zq1qype++9V6+99ppOnTqVZo3ffPONwsPD1alTpxQfP3XqlKpUqaJ7773X1Wvg0KFDGjx4sFq2bKnq1aurUaNG6t27tzZs2JDi/tw45vrUqVMaPXq0HnzwQdWsWVMNGjTQU089pdWrV6dZ640uXLigt99+W/fff7+qV6+uBg0aqEePHsnq6Nq1q8LDw10/V6tWTeHh4Tp27FiGXs8bBw8e1LBhw1z/D5s2baqhQ4fq4MGDydZ1jvH+559/kj2W2v/z3bt369lnn1VERITr+QcMGKDdu3enWM+RI0c0YsQINWvWTNWrV1ezZs308ssv6/jx437Z3+s5P1Q5f/68a1lERITq1aunAwcOqF27dqpevbpatGihHTt2pPn3YOvWrerfv7+aNm2qOnXq6OGHH9bs2bMVHR3t0z7GxcVp5syZatu2rerWras6deqobdu2evfddxUTE+PHowEA2RPhGkCe5Qy+mzdvTnO9lStXqk+fPtq6dasqVKigiIgIhYSEaOXKlerQoYMOHDggKSms3nvvvZKkkJAQPfzww66fnfbv368hQ4aoePHiatSokYoVK5Zu6/D8+fP16quvKjg4WC1atFB8fLzmzp2rTp066eLFi17ufVIL/i233CJJql27th5++OE0W0Xj4uL0zDPP6PXXX9fhw4fVsGFDNWrUSH///bfGjBmjXr16KT4+Ptl2Bw8e1GOPPaYdO3aoTp06qlq1qv744w/973//0/z58z2u1xnGH3nkEUlJ3V7z58+vDRs26OTJk6lud+bMGXXo0EHfffedqlSpojp16ujvv//W+PHj9eabb7qtu2PHDrVt21ZLlixRvnz51KxZM9WpU0dnz57VokWL1KlTJ0VFRaX6WhERESpSpIh27dqVYqhbtWqV7Ha72rZtK5PJpEOHDumxxx7T559/roIFCyoiIkLly5fXhg0b1Lt373Q/gDh37pw6dOigJUuWKCAgQM2bN1eVKlW0Y8cODR06VNOnT09ze6ejR4/q0Ucf1dy5cxUTE+MKpps3b1bv3r01depU17p33nmnHn74YdfPDz30kB5++GGFhoZ69FreWrdundq1a6dVq1apcOHCuueee1SkSBGtXr1a7du31w8//ODT82/ZskVdunTRunXrdNNNNykiIkLFixfXN998o86dO2vTpk1u62/evFlt27bVZ5995jp3BQsW1Keffqp27drp999/96meG/3111+SpJtuusltuc1mU+/evXX58mXdfffdMplMqly5cqrPM3fuXD399NP64YcfVK5cOTVp0kQXLlzQ1KlT1bNnT7f/wxnZR4fDoX79+umdd97RuXPn1LBhQzVs2FBHjx7VlClT1Lt3b+5KACDXY8w1gDzrtttuk5TUUpmWGTNmyGKxaOXKlapYsaKkpDeSb775phYuXKj58+frrbfe0n333aeqVavqu+++U4ECBVIc833s2DF17txZo0ePluTZGO2///5bo0ePVufOnSVJMTExGjBggDZu3KjJkyfr9ddfz9B+O02cOFEjRozQ0aNH1aFDBz322GNprj9lyhRt2bJFtWrV0rvvvuvqOn/u3Dn16dNHP//8syZPnpxslueff/5ZrVq10tixY10B7KOPPtIbb7yhuXPnqnv37umOmU5MTNTKlStlNpvVrl07SUkfYLRu3VpLlizR0qVLNWDAgBS3/e2339SgQQNNmzbNVfO6devUr18/RUZG6oUXXlCBAgUkSa+99ppiYmI0depUPfjgg67nOHPmjB5//HEdP35c69atcxunfz2r1ao2bdpowYIFWrlypV544QW3x5370LZtW0nSvHnzdPXqVb3++ut6/PHHXet9++23eu655zRz5ky1b98+1eMSGRmp06dPq0+fPho0aJDbPj/55JOaO3euevXqpeDg4FSfw+Fw6IUXXtDJkyf1+OOPa9SoUa5x3b/99pt69eql2bNnq2bNmoqIiFC/fv0kJc1dIEnjx49XQIDnbyfefffdNGeh379/f7JlZ86c0eDBgxUfH6+33nrLdfwk6dNPP9XIkSM1ePBgffXVV15PJjh79mzZbDbNmzdPTZs2dS1fsGCBxo0bp3fffVdNmjSRlNTKP3DgQMXFxSX7XVmyZIlGjx6tgQMH6ssvv1RgYKBX9Vxv5cqV2rhxoywWi9trSVJsbKyKFCmiyMhIBQYGym63y2xOue1kz549mjRpkvLly6f3339fd9xxh6Skvym9e/fWtm3b9Mknn6h79+4Z3sedO3dq06ZNatCggebPn+/6HTp//rw6duyobdu2adu2bWrYsKHPxwMAsivCNYA8q2DBgpKS3iin5cyZMwoICHAbu2gymdS3b1+VK1fOrYusJ7p06eL6PrU3wddr0KCBK1hLSaFy3Lhxat68uVatWqURI0ZkeqthXFycFi9eLLPZrEmTJrmNSS9atKimTJmi+++/X4sWLdLzzz+vfPnyuR4PCAjQK6+84lbj448/rgkTJujcuXM6d+6cihUrlubr//TTTzp16pSaNGni1nLnbLVdtmyZ+vfvn2rIe/nll91qjoiIUJkyZXTs2DEdPnxYtWrV0tWrV1W9enXVqFEjWYApXry47r33Xn344Yfpdn/u0KGDFixYoNWrV2vAgAGuDw5+++03HTp0SHfeeaduvvlmSUm/W5JcPzu1bNlSo0ePVrFixdIMS6ltX7NmTb3xxhuyWq3pfoCzY8cO/fHHHypXrpxGjx7tdgxr1qypESNGaMSIEZo7d66rt4cvfv755wxvs2TJEkVHR6tdu3ZuwVpKOt47d+7UihUrtHjxYg0cONCrulI7lk8++aQkuc2GvmzZMl28eFFdu3ZN9rvy+OOP64cfftAPP/ygb7/9Vq1bt/bo9Xfs2JGsC3dMTIz++usv/fPPPzKZTBo2bJjKly+fbNuOHTu6Qnxaf1OWLFkiu92uvn37uoK1lPQ3ZcSIERo4cKDrOGR0H0+fPi0p6f/K9ZPuFSlSRGPGjNGJEydcPWUAILeiWziAPMs5IVN6rab16tVTbGys2rVrpxkzZui3336T3W5X0aJF1aVLF9WvX9/j1wwODs7wLYuu74LrVKxYMdWoUUOxsbGuWZsz0549exQbG6uqVaum+Ab5lltuUY0aNRQXF6fffvvN7bFy5cqpUKFCbssCAwNdM7J7MhbT2T36xlbcmjVr6vbbb9fp06e1bt26FLcNCQlJ8QMQ54clznGm+fLl07hx45J1FT916pTWr1+vP//8U5JS7Pp+vUqVKqlmzZo6duyYduzY4VruvJe4s+Vdkut3Z+DAgXrjjTe0ceNG1wR7nTt31v33359mWHJuP3bsWP3vf//Tt99+6+q2/uijj6p169bpfvCybds2SdI999yT4ocTDzzwgCwWi3799dd0990TCxcu1P79+1P9eu6555Jts337dknS/fffn+JztmrVym1fvFGvXj1JSWPKJ06cqG3btslmsykwMFDdunXT3Xff7VrXea/u1Fph77rrLrf1PHH06FGtWbPG7WvTpk2y2+166KGHtHDhQnXr1i3FbdPqBn495/FJ6UOSatWq6dtvv9WwYcPcavd0H+vUqSOr1aovvvhCvXv31rJly1zDNRo3bqx27dol++ACAHIbWq4B5FnO8crOFuzUjB07Vv3799cff/yh6dOna/r06SpUqJCaNWum9u3bq1GjRh6/ZlhYWIZvG1W6dOkUlztbcNObZMsfnK1SqdUiSWXKlNHu3btd6zo5u1zfyBnk0mtZvXDhgis4L1y4UJGRkW6PO89jZGSk7rvvvmTbp3bMna9/4zjQX375RUuXLtUff/yhf//91xV2nc/hybjRDh066LffftPKlStVv359xcfH64svvlBYWJhatmzpWq979+46cOCA1qxZo48++kgfffSRAgMD1bBhQ9dYZovFkurrtG7dWr///rsWLFig5cuXa/ny5QoICFCdOnX04IMPqn379ml2CZeundvUbqcVEhKiIkWK6MyZMzp//rwhs4On9/vnrN3Z6uqNoUOH6tixY9q0aZPmzJmjOXPmKDQ0VE2bNtUjjzziNn/CiRMnJCnFDwKul9ZcADdq27ZtqrfiSk96f8OcUmudT0lG9/Gmm27ShAkTNGrUKG3YsME1EV6lSpXUsmVLderUyesu+wCQUxCuAeRZzpbI9Lp1lypVSsuXL9f27du1bt06/fzzzzpw4IBWr16t1atX65lnntHw4cM9ek1PuoHfKCgoKM3HPbnvcUqzYmeEJ4HS+Ro3jjH19R7Uq1evdvUySG3WZimpu/G///6bbFK2jLz+a6+9pkWLFslsNqty5cp68MEHVaFCBdWqVUubNm3Su+++69HztG7dWuPGjdPXX3+tV155RRs3btTFixf1+OOPu4Vdq9WqiRMnql+/flq7dq1+/vln7dq1Sz/++KN+/PFHLVmyRB9++GGa43aHDx+uLl266Ntvv9WPP/6oX375Rdu3b9f27dv10UcfafHixWnet92Tc+v8AMQf44e9kV6NGa0vpf8PYWFhmj9/vvbs2aPvvvtOmzdv1u+//661a9dq7dq1uv/++/XOO++4bd+iRQvlz58/1ddxztGQ2Tz9u3LjjP5p8WYfW7Vqpbvuukvff/+9Nm7cqK1bt+qvv/7SX3/9pQULFuiDDz5Q7dq1Pa4BAHIawjWAPGv9+vWSkmY/To/JZFKDBg3UoEEDSUmTeC1fvlxTpkzRBx98oK5du2Zal8cbW4KdnLfCcbZgO99gp9QSfONtuzLK2YU6rVsMHT16VJLSHT+dUc7bg82dO9fVFfVGffr00fr16xUZGenq1ppR27Zt06JFi3TTTTdp7ty5yYLR2rVrPX6u/Pnz6/7779fKlSv1888/6+uvv5aUvFu7U4UKFdSvXz/169dPMTExWr9+vV577TX98ssv+uqrr1wzpKemdOnS6tatm7p16yabzabNmzdrzJgxOnz4sBYvXqz+/funuq3z3KY2ljwqKkrnz5+XxWJJ1r0/q5QoUUKHDx/W8ePHValSpWSPO3/3ihYt6lrm/FAlpSB95cqVVF+rRo0aqlGjhl588UVduXJFX331lcaOHatvvvlGO3bsUL169VSiRAkdOXJETz31lEd/P7KL4sWL6/jx4zp58mSKw1MiIyNVokQJRUREeL2PYWFhevTRR/Xoo49Kkv744w9NnjxZP/30k6ZOnaoFCxb4aW8AIPthzDWAPOnLL7/U33//rVKlSql58+aprnfw4EE9/PDD6tmzp9vyokWLqnfv3goPD5fD4XB1zfa1lTYlP/74Y7Jl//33n/bs2aN8+fKpWrVqkuQaW3vu3Llk66c2LtvTeqtXr66QkBDt3bvXFWSu9++//2rv3r0KDQ1VjRo1PHpOT/zxxx/6888/VbRo0TTf4DvfyK9YscLrccHOVvH77rsvWbBOTEzUli1bJHnW0isldQ2XpK+++kobNmxwtYBf/5xdu3ZV06ZNXV3PpaRu2A8++KBrRvK0uhYPHDhQDRs2dPvQw2q1qlmzZq6J89Lrmuwct/3999+n2LL5zTffyOFwqF69el71vPAHZ43ffPNNio9/9dVXkuT68Eu69v/h+vtCO93YA+LChQtq165dsvkNwsLC1LFjR9fs4c5j6aznxnuAO02YMEGPPvqoli5dmuZ+ZbW6detKSrnuQ4cO6ZVXXtG0adMkZXwf582bpxYtWrjmFnCqVq2ahg4dKulaV3MAyK0I1wDynG+++UajRo2SJI0cOTLNrqTly5fX6dOn9dNPP7laH51+//13HTp0SKGhoa4w5uzCHR0d7dFttjyxcuVKffvtt66fo6KiNGzYMCUmJqpz586u13ROauSc/dnp5MmTevvtt1N8bue+p9WSJyUFvo4dO8put2vw4MFugeX8+fMaNGiQ7Ha7R2N8M8I5kdmDDz6Y5tjje+65RwULFtSFCxeSnSdPObtOb9682W2StZiYGI0aNcp1n+G4uDiPnq9+/foqV66cVq9ercuXL7tNZCZJFotFYWFhOnPmjCZPnuzWwnrx4kVt3LhRUtKkbakpXry4Ll68qAkTJrh9qBAbG+v6nUnvw44GDRqoatWq+ueffzRmzBhXF3wp6Xd8woQJktxnuc9qHTt2VGhoqD777DN99tlnbo8tX75cq1atUmhoqNtM4s7/DwsXLnT7QGTBggXJ7kFduHBhJSYm6sCBA8laVo8dO6ZffvlFZrNZ1atXl5Q0W3ZoaKg+/vhjffHFF27rr1u3TgsXLtSff/7p1w+a/KFz584ymUyaNWuW9u7d61ruvB2cJNeHOhndx3Llyum///7T7Nmz3ca+OxwOrV69WpL773JMTIwOHTqkQ4cOZc7OAoAB6BYOIFe6cOGC221t7Ha7rly5ov379+vUqVOyWCwaNWqU2+RSKQkICNCYMWM0YMAAvfDCC6pWrZrKlCmjCxcuaOfOnUpMTNT//vc/hYWFSUq67UyBAgV0+fJlderUSWXLlk3xftcZUatWLT333HOqU6eOihcvru3bt+vChQtq0KCBnn/+edd6ZcuW1X333ae1a9fq8ccfV+PGjSUlzeZbsWJF3X777Tpw4IDbcztv6zNr1izt2rUr2cRN1xs0aJD27t2r7du3695773W1Em7btk1Xr15Vw4YNk91KyBfx8fH6/PPPJSnd2xkFBgbqwQcfVGRkpCIjI1O9D3VaHnzwQc2YMUMHDhzQvffeq9q1ays+Pl67du3SlStXVKlSJf311186e/asx8/Zvn17TZ48WRaLJcWu3SNGjNDOnTv14Ycf6rvvvlOVKlUUHx+vX375RVFRUWrVqpXrPKakf//++uGHH/T1119r586drvD322+/6dy5c6pXr166XcpNJpMmT56sp59+WpGRkVq/fr1q1aqlixcvaseOHUpMTFSvXr1SnCwuq5QsWVLjx4/XoEGDNGLECC1YsEC33nqrDh8+rD///FMhISGaMGGC24RnTz31lL7++mt98803euCBBxQeHq6//vpLhw8f1iOPPKJVq1a5vcZrr72mrl27aty4cVq6dKkqVKigqKgo7dy5U3FxcerVq5fr/8v19QwaNEgzZ87UbbfdphMnTriC+//+9z9VqVIly46RJ+rUqaMXXnhBU6dO1WOPPaZ69eopX7582r17t86dO6cmTZqoe/fukjK+j/fcc49atmypb7/9Vi1btlTdunWVL18+HThwQEeOHFGxYsXc7vv+22+/6amnnpKU8r3NASAnIlwDyJWio6O1Zs0a188mk0khISEqU6aM7r33XnXu3FkVKlTw6Lnuu+8+zZs3TwsWLNCePXu0f/9+FShQQM2aNdPTTz/tFn7MZrMmTpyo8ePHu7pQX7p0yad9GTx4sHbv3q3IyEj9/vvvrvG1zzzzTLJW94kTJ+r999/XmjVrtHnzZhUrVkydO3fWc88953rTfL0nnnhCf/75p2sCogoVKqQaroODgzV//nwtWrRIq1ev1pYtW2SxWFSpUiW1a9dOjz32mF+7DX/33Xe6dOmSSpcu7erOmpa2bdsqMjJSO3fu1F9//aWQkJAMvV7+/Pm1dOlSTZs2TVu2bNGGDRuUL18+Va1aVZ06dVKjRo1055136qeffpLNZvNoIjnnvYSbNWum4sWLJ3u8bNmyioyM1LvvvqutW7dq/fr1Cg4Odh1TZ9fy1BQuXFiLFi3S7Nmz9eOPP+qnn36S1WpV+fLl9cwzz+ipp57yaJKvW2+9VZ999pnmzJmj77//XuvWrVOBAgV011136amnnlKTJk3SfY7Mdt999+nTTz/VnDlztHXrVh06dEjFixdXhw4d9MwzzyT7/1yjRg19/PHHmj59unbt2qXTp0+revXqGj16tGw2W7JwXbt2bS1atEhz5szRL7/8onXr1ilfvnyqW7euOnXqpAceeCBZPcuXL9fcuXO1ZcsWrV+/XkWLFlWLFi3UvXv3VG9hZbR+/fqpatWq+vDDD7Vnzx7FxMSoTJky6tKli3r27On2fzgj++j8kGbBggX68ssv9csvvygxMVGlSpVS165d1adPnxT/DwBAbmJyeDp4DAAAZMgbb7yhjz76SLNnz07x3sIAACD3YMw1AAB+5JycbNu2bfr00091yy23pDlpHgAAyB3oFg4AgB+9/PLL+u6771whe8iQIYbNsg0AALIOV3sAAPzIOXtyqVKlNHr06GRjdQEAQO7EmGsAAAAAAHxEyzUAAAAAAD4iXAMAAAAA4CPCNQAAAAAAPiJcAwAAAADgI8I1AAAAAAA+IlwDAAAAAOAjwjUAAAAAAD4iXAMAAAAA4CPCNQAAAAAAPiJcAwAAAADgI8I1AAAAAAA+IlwDAAAAAOAjwjUAAAAAAD4iXAMAAAAA4CPCNQAAAAAAPiJcAwAAAADgI8I1AAAAAAA+IlwDAAAAAOAjwjUAAAAAAD4iXAMAAAAA4CPCNQAAAAAAPiJcAwAAAADgI8I14CWHw2F0CQAAwM9ywvU9J9QI5EWEa+RKI0aMUERERKqPR0REaMSIEan+nJ7vv/9ew4cP96nG3GD//v169NFHVb16dbVq1SrFdaZPn67w8PBUn6Nr167q2rVrZpWYKcLDw5N91axZU61bt9acOXNkt9vT3H7FihUKDw/XsWPHsqhiADBO165d3f5eVq5cWXXq1FG7du20cOFCJSQkGFLXsWPHFB4erhUrVkiSLl++rGHDhmnHjh0+Pe+IESOSXSOqVaumpk2baujQoTpx4oRrXW+ugTt37lTv3r19qtHpiy++UIsWLVS9enWNHj06xXXSqzE8PFzTp0/3Sz1ZYevWrcnOT+XKlVW3bl116tRJ69atS/c50nufibwrwOgCgOxgxowZyp8/v8frL1iwIPOKyUFmzpyp//77TzNnzlSRIkWMLidLdejQQY899pjr55iYGK1du1YTJ07U5cuXNXjw4FS3bd68uZYsWaISJUpkRakAYLiqVavqlVdekSQlJibq0qVL2rhxo8aNG6cdO3Zo6tSpMpuzts2nRIkSWrJkicqWLStJ2rdvn1atWqX27dv7/NzFixfXjBkzXD8nJCTo8OHDmjhxonbt2qXPP/9cwcHBXj33smXLdOjQIZ9rlKTXX39d5cuX11tvvaWSJUv65TlzitGjR6tatWqSknoCXLp0SfPnz1f//v313nvv6e6770512/79++upp57KqlKRgxCuASVd9JFxFy5c0O23357mBSi3KlWqlGrXru22rHHjxvr777/1ySefaMCAAbJarSluW6RIkTz3YQSAvC1//vzJ/mZGRETotttu09ixY/X555+rTZs2WVpTYGBgspoy87nr1asnq9Wq4cOH6/vvv1fr1q0z5bUz4uLFi2rSpIkaNmxodClZrmLFiimeo+bNm2vhwoVpvrdxfiAD3Ihu4YCSdwt3XuRr1qypRo0aaciQITp16pSkpO5R27Zt07Zt2xQeHq6tW7dKkk6fPq2XXnpJd999t2rWrKkOHTro+++/d3udqKgojR49Wo0bN1adOnX04osvasGCBW7dprt27aohQ4ZowIABql27trp37y4pqfvasGHD1LRpU1WrVk2NGzfWsGHDdOHCBbf9mDFjht588001bNhQderU0eDBg3X16lW9//77atasme644w49//zzbtulJL39CQ8P17Zt27R9+3a3bnX+8OWXX6pdu3aqU6eOmjRpotGjR+vSpUuux1PqjnVj9z5J+vDDD/XAAw+oRo0auuuuu/Tqq68qKirK9bjdbtf777+vli1bqnr16rr//vv10Ucf+VR79erVdfXqVVe94eHhmjFjhtq1a6eaNWtqxowZKXYL37Bhgzp16qTatWuradOmGj16tC5fvux6/L///tOgQYPUoEED1apVS08//bT27t3r9tpp/d4CQHbUpUsXlSxZUpGRkW7Lly1bptatW6t69epq3ry5pk+frsTERNfjI0aMULdu3bR8+XLdf//9ql69uh555BFt3LjRtY7dbteUKVMUERGh6tWrKyIiQpMmTZLNZpPkft3YunWrqyXyqaeeUteuXfXJJ58oPDxchw8fdqtt1apVqlKlilv3bk/VqFFDknT8+PEUH4+Li9PMmTNd16777rtP77//vmu40YgRI/TZZ5/p+PHj6V579+zZox49eqhhw4aqW7eu+vbtq7/++kvSta7RUlIvNH8OVUpvH6SUh+PdeG2MjY3Vq6++qmbNmql69ep64IEHNG/ePLdtLl68qNGjR+vOO+9UjRo11LFjR23evNnr2vPnz69bb71V//33n6RrxykyMlItWrRQ3bp1tWnTpmTvQxwOhxYsWKAHH3xQNWvWVMuWLTVv3jy3sfE7duxQly5dVKtWLTVo0EDDhw/X+fPnXY+n9/uKnIGWa+Rq3ozj2rlzp4YNG6b+/furfv36OnnypN5++20NHjxYH3/8sV555RUNHTpUkvTKK6+oYsWKOnv2rDp06KCgoCC9+OKLKly4sFasWKFnn31WEyZMcH0a379/f+3bt08vvviibr75Zi1atEiTJk1KVsNXX32lNm3aaPbs2bLb7YqJidFTTz2lwoUL65VXXlFYWJh27dqlGTNmKDg4WK+//rpr2/nz56tJkyaaMmWKfv/9d02aNEl//PGHSpQooTFjxujYsWMaO3asihUr5uqidyNP9mfJkiV67bXXXMchvU9xUzsXDodDJpPJ9fOsWbP0zjvv6Mknn9SLL76oo0ePatq0adq9e7eWLl3qcTe6zz//XG+//baGDx+u8PBw/f333xo/frxiYmI0fvx4SdKrr76qFStWqE+fPqpTp462b9+uN998U5cvX9azzz7r0evc6PDhw8qXL5+KFi3qWvbuu+9q8ODBuvXWW1W6dGnt2bPHbZsffvhB/fr10z333KOpU6fq4sWLmjBhgo4fP6558+bp/Pnz6tSpk0JCQjRq1CiFhIToww8/VOfOnfXpp5+qQoUK6f7eAkB2ZDab1bhxY33xxRdKSEhQQECA3nvvPU2ZMkVdunTRSy+9pH379mn69Ok6ceKE3nzzTde2v//+u06fPq0BAwYof/78mjZtmp5//nlt3LhRBQsW1Jw5c7R48WINHz5ct9xyi3799VdNmTJFVqtVAwYMcKujWrVqGj16tF5//XWNHj1aDRs2VIkSJTR+/HitWrVKAwcOdK27cuVKNW7cWDfddFOG99cZ1FO6ZjocDvXt21e7d+/Wc889p8qVK2vr1q2aOnWqjh49qjFjxqh///46f/689u7dqxkzZqR67d2yZYt69uyphg0b6s0331RcXJzee+89derUSUuXLlW1atW0ZMkSPf74465hTmkNVXI4HB69p/JkHzz15ptv6qefftLw4cNVrFgxbdy4URMmTFChQoXUvn17xcXF6emnn9bZs2f14osvqkSJElq+fLl69uypuXPnqnHjxh6/llN8fLyOHTummjVrui2fMWOGRo4cqdjYWNWpU0dr1qxxe3zChAn68MMP1b17dzVp0kR79uzRxIkTlZCQoD59+mj79u3q3r27GjVqpKlTp+rSpUuaNm2annrqKX366acKDg7O0O8rsi/CNXKt48ePu8bSZMTOnTsVHBys3r17KzAwUJJUqFAh7dmzRw6HQxUrVnSNz3Z2J5o9e7bOnz+vb775RqVLl5Yk3X333erWrZsmTJighx56SFu3btXWrVs1ffp03XfffZKkZs2a6aGHHko2dspqteq1115zvf6+fftUqlQpjR8/XrfccoskqVGjRvr111+1bds2t23z58+vKVOmKCAgQHfeeac+++wznTp1SsuWLVNYWJgk6ccff9Qvv/yS6jH44IMP0t2f2rVrJzsOaUnrXDRo0ECSdOnSJc2ePVsdO3Z0m1jl9ttvV+fOnbV8+XJ17tw53deSpG3btqlMmTLq3LmzzGazGjRooNDQUFeL8uHDh7V06VINGjTINTFM06ZNZTKZ9N577+nJJ59U4cKFU31+u93ueqPhcDh09uxZrVmzRuvWrVPPnj3dPjCoV6+eqweCpGThevr06apSpYpmzJjh2i4wMFDTpk3T2bNn9dFHH+nixYtavHix63w0a9ZMrVq10rRp0/TOO++k+3t7fT0AkJ0UK1ZMNptNFy9eVFBQkGbNmqXHH39cI0eOlJT0t7lQoUIaOXKkunfvrkqVKkmSrly5ohUrVrgCZmhoqLp06aItW7bo/vvv17Zt21S9enXXGOoGDRooJCTEdS28Xv78+VWxYkVJSd2Fnd+3bNlSq1ev1gsvvCCTyaSTJ09qy5Ytevvtt9Pdr+vDaFRUlPbs2aNx48apTJkyat68ebL1N27cqJ9//lmTJ092dRlv0qSJgoODXUGsUqVKKlKkSLpd2idNmqRy5crp/fffl8VicR3Hli1b6p133tG0adNc26c0zOlG27dv9+g9laf74Ilt27apSZMmrudp2LChQkNDXR9er1q1Sn/++aeWLl2qWrVqSUq6Nnbt2lUTJ07U8uXL03z+66/jCQkJOn78uGbNmqXz588ne6/x5JNP6oEHHkjxeS5fvqyFCxeqS5cursaXO++8U2fOnNH27dvVp08fTZo0Sbfeeqvee+891/moVauWWrdu7Xpvk5HfV2RfhGvkWsWLF9fs2bNTfKxfv36pble/fn1NmTJFDz30kO6//37dfffdatq0aZpjb7Zt26Y6deq4go9TmzZt9NJLL+nvv//Wli1bZLVade+997oeN5vNatWqVbJZNm+77TZXQJKkKlWqaNGiRbLb7Tpy5Ij++ecfHTx4UH///XeyT5Jr1qypgIBr/7WLFSum0NBQtz/OhQoV0oEDB3zaH+cbD099+umnKS6/vvV89+7dio+P10MPPeS2Tr169VS6dGlt27bN43DdqFEjLVmyRO3atdO9996ru+++Ww8//LArZG7ZskUOh0MRERFuxzAiIkKzZ8/Wzp073c7VjWbNmqVZs2a5LQsODtbjjz+u559/3m15lSpVUn2e2NhY7d27V88//7xbAG7VqpVrBvbNmzerSpUqKlmypKtWs9msZs2aafXq1ZK8+70FgOzA2XXWZDJp165dio2NTfFvsyRt2rTJFc6KFCni1nJbqlQpSUkTTEpJYWzSpEl68sknFRERoebNm6tLly4Zqq1Dhw76/PPPtWPHDtWvX18rV65Uvnz51LJlyzS3S+0D/lq1aun1119PsRfWtm3bFBAQkCzEtWnTRtOmTdO2bds8CqbR0dHas2ePnnvuOVeQk6QCBQqoRYsW2rBhQ7rPcaNq1aq5eqvdqEOHDn7fBynp/EVGRurkyZO6++67dffdd7v1Ktu8ebOKFy+uatWquf2utGjRQhMmTNClS5dUsGDBVJ+/W7duyZYVLVpUI0eOVLNmzdyWp3Ud3717txISElwNJ07OD4diYmL066+/qkePHm49AG655RZVqFBBmzZtUufOnf3y+wrjEa6RawUGBrrGNqX0WGrq1Kmj999/XwsWLNAHH3yg999/X8WKFVPfvn1TvRXFpUuXXC3K1ytWrJikpE81L1y4oEKFCiWbDfX67sNO+fLlS7bsgw8+0LvvvquLFy+qWLFiql69ukJCQnTlyhW39VKa9Tw0NDTV/fV2fzIqtXNx/b46W5Wdr3Pja9+4r2lp1aqV7Ha7Fi1apFmzZmn69OkqXbq0hgwZolatWunixYuSlOqEMumNVe7YsaM6duwoKekNYb58+VSmTJkUJzFL6/hfunRJDocjxd8Dp4sXL+qff/5JtdUgJibGq99bAMgOTp06peDgYBUqVMj1tzm1W02dPn3a9X1ISIjbY84PKJ1je3v27Kl8+fJp+fLlmjhxot5++21VqlRJI0eOVKNGjTyqrVGjRipTpoxWrlzpCtetWrVSUFBQmtvd+AF/YGCgSpUqlWbYu3TpkgoXLuwWiJ3PJcnja+CVK1fkcDj8ci11ypcvX6rX8ev5ax8k6eWXX1apUqW0evVqjRkzRmPGjFGdOnX06quvqnLlyrp48aLOnDmT6rXxzJkzaR7v1157zbWtxWJRwYIFdfPNN6fY0yut67jzdza1iUovX74su92uOXPmaM6cOcked/4u+eP3FcYjXAMpuOuuu3TXXXcpJiZGW7Zs0cKFC/XGG2+oVq1aycbhSFLBggV15syZZMudywoXLqySJUvqwoULstvtbgH73Llz6dazZs0avfXWWxo6dKjatWvn+gP+wgsvJOti7A+e7E9mcF4Ez549q9tuuy3ZazsDv8lkcpvYRkr6pP5GDz30kB566CFduXJFP/30k+bMmaOhQ4fqjjvuUIECBSQlTXqW0ocZN998c5q1lihRwqM3GunJnz+/TCaT26QmUtKEMFu2bFGtWrUUFhamBg0aaNiwYSk+h/PDooz+3gKA0RISErR161bVrVtXFovF9bd54sSJKl++fLL1UwqMqTGbzercubM6d+6sc+fOacOGDXr33Xf1/PPPa9OmTR49h8lkUtu2bfXRRx/piSee0OHDh13zdqQlrQ/4U1OwYEFduHBBiYmJbuHU+YGCp9fesLAwmUwmnT17NtljZ86cUaFChTJUV0ZkZB/Su44HBgaqX79+6tevn/777z/98MMPmjVrlgYPHqwvvvhCYWFhKl++vCZOnJhiLWXKlEmz1ltvvdUv13Hn7+z58+fd3rv8999/+vfff1W9enWZTCZ169YtxQ/0nR8Spff7mlbDELIPZgsHbjB+/Hi1b99eDodDISEhatGihYYPHy5Jrtkjb2x9rl+/vnbt2pVs9s/Vq1erePHiKleunBo0aKCEhAStW7fO9bjD4dB3332Xbk07d+5UgQIF1LNnT1ewvnr1qnbu3Ok2+6a/eLI/maFWrVoKDAzU559/7rZ8x44d+u+//1S3bl1JSZ+gX7hwQXFxca51du7c6bbNwIEDXd3HwsLC9OCDD6p///5KSEjQ6dOnVa9ePUlJtxOrUaOG6+v8+fOaNm2a65PozJYvXz5VqVJFP/zwg9vyjRs3qnfv3jp9+rQaNGigw4cPu94IOL9WrVqlTz/9VBaLxaPfWwDIbpYsWaIzZ87oiSeekJR0HbBarTp16pTb37uAgABNnjw5QzNad+rUSW+88YakpF5i7dq1U+fOnXX58mW3O0c43dja6tSuXTtdvnxZ48ePV4UKFVzje/3N+T7h66+/dlvuHP5zxx13SEr+HuRGoaGhql69ur766iu3AHvlyhWtX7/e9TyZwdN9yJ8/v06ePOm2zvXX8djYWN1///2aP3++pKQPvDt37qzWrVu7rmkNGjTQiRMnVLRoUbfflU2bNmnu3Lmpnk9/q1mzpqxWa7Lr+Pz58zVo0CCFhoaqatWq+vvvv93qrFSpkqZPn+6660xGf1+RPdFyDdygUaNG+uCDDzRixAi1adNGNptNc+fOVaFChVzdcgoUKKBdu3Zp8+bNqlq1qrp3767Vq1erW7dueu6551SoUCGtXLlSW7Zs0Ztvvimz2az69eurSZMmevnll3X27FndfPPN+vTTT7V///50J5uqWbOmFi9erLfeekstWrTQ6dOnNW/ePJ09ezbNLk/e8mR/MkOhQoXUu3dvzZw5U1arVS1atNCxY8c0bdo0VaxYUW3btpWUNJ7qo48+0ssvv6wOHTrowIED+uCDD9wupI0aNdIrr7yi8ePHq1mzZrp8+bJmzJih8uXLq3LlyrJarWrTpo1GjRql48ePq3r16jp8+LCmTJmiMmXKpNhiklkGDBigfv36adCgQXr00Ud19uxZTZ48Wffee69uv/12devWTatWrVK3bt30zDPPqHDhwvryyy+1dOlSvfTSS679Te/3FgCMEhUVpd27d0tK6rZ94cIF/fTTT1qyZInatGnjGq9auHBh9ezZU9OmTVNUVJQaNmyoU6dOadq0aTKZTKpcubLHr1m/fn3Nnz9fxYoVU506dXTq1Cl98MEHatCggYoUKZKspdQ5N8n69etVsGBB12vdfPPNuvPOO/XTTz9pyJAhfjgaKWvWrJkaNmyokSNH6tSpU6pcubK2bdumOXPmqG3btq65TgoUKKCzZ89qw4YNqlKlSoqzfA8ePFg9evRQ79699eSTT8pms+n9999XfHy813fD8Oc+tGjRQu+9957ee+891apVS+vWrdOWLVtczxMcHKxq1appxowZslqtrluiffbZZ7r//vslJX3o8fHHH6t79+7q27evbrrpJv3888+aM2eOunTpkuIwrcxQpEgRPfXUU1qwYIECAwPVoEED/frrr1q8eLGGDRsms9nsmjx18ODBatOmjRITEzV//nz9+uuv6t+/v6T0f1+RMxCugRvcfffdmjhxoubPn6/nnntOJpNJd9xxhxYuXOjqStW5c2f9/vvv6tWrl8aNG6eHH35Yixcv1qRJk/TGG2/IZrOpcuXKmjVrlu655x7Xc0+ZMkVvvfWWJk2apISEBN1zzz164okntHLlyjRratu2rY4dO6bly5dr0aJFKlmypO6++249+eSTGjVqlA4dOqQKFSr47RgUL17co/3JDM8//7yKFSumjz/+WEuWLFGhQoX0wAMPaODAga4xT02aNNHw4cP10Ucf6ZtvvnFdgDt16uR6nk6dOslmsykyMlKLFi1ScHCwGjdurKFDh7ouuOPGjdN7773nmjClaNGiatWqlQYOHJhln3hLSW8y3n33Xc2YMUPPPvusihQpoocfftg1MZrzHrCTJk3Sq6++qri4OJUvX15jx451TSTjye8tABhl7969evzxxyVdm6fi9ttv16uvvqrHHnvMbd2BAweqePHiWrRokebOnauCBQuqcePGGjRoUIZmTn7hhRcUGBio5cuXa+bMmQoLC1NERIQGDx6c4vqVKlXSQw89pE8++UQ//vijWy+q5s2ba/PmzXrkkUe82HvPOO9W8c4772jBggU6f/68ypQpo0GDBrndcaJdu3basGGDnn32WQ0YMCDF8emNGzfWBx98oHfeeUeDBg1SYGCg6tWrp/Hjx3s8oVhm7kOfPn10/vx5zZs3TzabTc2bN9fYsWPdJpx9/fXXNXXqVM2fP19nzpxR0aJF1aFDB73wwguSklroP/nkE02aNElvv/22rly5otKlS2vw4MF65plnMm0fUzJ06FAVLVpUkZGRmjt3rsqUKaNRo0a53pc0bdpU8+bN04wZMzRgwABZrVZVq1ZNH3zwgWum9oz+viJ7Mjmuv7s5gExz/Phx7d69W/fcc4/bLKEDBgzQ0aNH9dlnnxlYHQAASE3Pnj0VFBSkmTNnGl0KgGyMlmsgi5jNZo0YMUL33HOPOnToIIvFoh9//FFr167VuHHjjC4PAADcYObMmTp8+LB++uknLVq0yOhyAGRztFwDWWjLli2aOXOm9u3bp4SEBFWoUEHdu3dPdl9nAABgvPbt2+vff/9Vv379sryrMYCch3ANAAAAAICPuBUXAAAAAAA+IlwDAAAAAOAjwjUAAAAAAD4iXAMAAAAA4CNuxeWFXbt2yeFwyGq1Gl0KACAHs9lsMplMqlOnjtGl5DpcqwEA/pCRazUt115wOBzyZpJ1h8Oh+Ph4r7aFf3AOjMXxNx7nwFg3Hn9vrydIH9fqnItzYCyOv/E4B8by5VpNy7UXnJ+C16hRI0PbRUdHa9++fapYsaJCQ0MzozSkg3NgLI6/8TgHxrrx+O/Zs8foknItrtU5F+fAWBx/43EOjOXLtZqWawAAAAAAfES4BgAAAADAR4RrAAAAAAB8RLgGAAAAAMBHhGsAAAAAAHxEuAYAAAAAwEeEawAAAAAAfES4BgAAAADAR4RrAAAAAAB8RLgGAAAAAMBHhGsAAAAAAHxEuAYAAAAAwEeEawAAAAAAfES4BgAAAADAR4RrAAAAAAB8RLgGAAAAAMBHhGsAAAAAAHxEuAYAAAAAwEeEawAAAAAAfES4zmE6DFurDsPWGl0GAABIQ+SeSKNLAABksQCjC0DGRMcmGF0CAABIh81uM7oEAEAWo+UaAAAAAAAfEa4BAAAAAPAR4RoAAAAAAB8RrgEAAAAA8BHhGgAAAAAAHxGuAQAAAADwEeEaAAAAAAAfEa4BAAAAAPAR4RoAAAAAAB8RrgEAAAAA8BHhGgAAAAAAHxGuAQAAAADwEeEaAAAAAAAfEa4BAAAAAPAR4RoAAAAAAB9lq3D93nvvqWvXrm7L9u3bpy5duqh27dqKiIjQwoUL3R632+165513dNddd6l27drq1auXjh49mqHnAAAAnuFaDQBAyrJNuP7kk080depUt2UXLlxQ9+7dVbZsWS1fvlzPPvusJk6cqOXLl7vWmTVrlhYtWqQxY8YoMjJSdrtdPXv2VHx8vMfPAQAA0se1GgCA1Bkerk+dOqW+fftq4sSJKl++vNtjS5culdVq1euvv64KFSqoffv26tatm95//31JUnx8vObPn68BAwaoefPmqly5sqZMmaKTJ09q7dq1Hj1HTtB11DqjSwAA5GFcq9MXuSfS6BIAAAYzPFz/8ccfslqtWr16tWrVquX22I4dO9SgQQMFBAS4ljVq1EhHjhzR2bNn9eeff+rq1atq3Lix6/ECBQqoatWq2r59u0fPkRPExCUYXQIAIA/jWp0+m91mdAkAAIMFpL9K5oqIiFBERESKj508eVK3336727ISJUpIkk6cOKGTJ09Kkm666aZk6zgfS+85ihUr5lXdDodD0dHRGdomJibG7V9PBVrN6jzyO835352y2x2SlOHXRhJvzwH8g+NvPM6BsW48/g6HQyaTyciSPMK12gOJ0se7Pla78HaSpARbAtdqL/F3ylgcf+NxDozly7Xa8HCdltjYWAUGBrotCwoKkiTFxcW5djildS5duuTRc3jLZrNp3759Xm175MgRj9c1m82KiY5RbHyi/vrrL0VHX5Uk7d+/X3a73bWO83t4JiPnAP7H8Tce58BY1x//G69ROQ3X6qTr8IULF2Sz27Rf+yVJ58+f51rtI/5OGYvjbzzOgbG8uVZn63AdHBzsmuzEyXmRDQ0NVXBwsKSk8VzO753rhISEePQc3rJarapYsWKGtomJidGRI0dUvnx5V32eCAk9J5MlUZUqVVJo6DFJUnh4uOvxXm/+rDn/uzNDteRV3p4D+AfH33icA2PdePwPHjxodEk+41qd5Pc/f1eCPcF1fd6duNvtWr1i/wq1q9IuQ7XkVfydMhbH33icA2P5cq3O1uG6VKlSOn36tNsy588lS5ZUQkKCa1nZsmXd1nFe0NJ7Dm+ZTCavL/ghISEZ2tZsNslsTno9szmpS8L128fF231685EXZfQcwL84/sbjHBjLefxzQpfw9HCtThJgDZDs167PAdYAt+0dZgf/5zKIv1PG4vgbj3NgLG+u1YZPaJaW+vXra+fOnUpMTHQt27Jli2699VYVLVpUlStXVv78+bV161bX45cvX9bevXtVv359j54DAAB4j2s1AABJsnW4bt++vaKiovTyyy/r4MGDWrFihRYsWKA+ffpISur73qVLF02cOFHff/+9/vzzT7344osqVaqU7rvvPo+eAwAAeI9rNQAASbJ1t/CiRYtq7ty5Gjt2rNq2bavixYtr2LBhatu2rWudAQMGKCEhQSNHjlRsbKzq16+vefPmyWq1evwcAADAO1yrAQBIkq3C9VtvvZVsWc2aNbVkyZJUt7FYLBo6dKiGDh2a6jrpPQcAAPAM12oAAFKWrbuFAwAAAACQExCuAQAAAADwEeEaAAAAAAAfEa4BAAAAAPAR4RoAAAAAAB9lq9nCkbrgIIt6jdlgdBkAACAVAeYAffTrRwow8/YKAPIi/vrnIDHxCUaXAAAA0mBLtMnhcMhkMhldCgAgi9EtHAAAAAAAHxGuAQAAAADwEeEaAADAj777+zt9uvdTxSfGG10KACALEa5zoJAgi7qOWmd0GQAA4AaX4y5r79m9On7luKZvmW50OQCALES4zqFi4pjcDACA7OafS/+4vj919ZSBlQAAshrhGgAAwE+OXDzi+v5czDnjCgEAZDnCNQAAgB/EJ8br+JXjrp/PRROuASAvIVwDAAD4wZGLR2R32GUxWSRJZ2POyuFwGFwVACCrEK4BAAD84O8Lf0uSqhavKpNMik2IpWs4AOQhhGsAAAA/OH31tCSpXMFyKhRcSJJ06PwhAysCAGQlwjUAAIAf2BJtkqTggGAVCy0mSTp0gXANAHkF4RoAAMAP4u3xkqRAS6CKhhaVRMs1AOQlhGsAAAA/iE+4Fq6LhxaXJB08f9DIkgAAWYhwDQAA4CO7w64ER4IkyWq2ulqu/77wNzOGA0AeEWB0AQAAADldfGK86/tAS6BCzCGSpJiEGF21XTWqLABAFqLlGgAAwEfOcG02mWUxW2S1WBVoCZQknY0+a2RpAIAsQrgGAADwkTNcOwO1JIVaQyVJ56K51zUA5AWEawAAAB85w7XVbHUty2fNJ0k6F0O4BoC8gHANAADgI1e4tlwL186W6/Mx5w2pCQCQtQjXAAAAPrIl2iRJgeZr3cJdLdd0CweAPIFwDQAA4KOUWq5DrEkzhjOhGQDkDYRrAAAAH6U0oRljrgEgbyFcAwAA+CjennxCs9BAxlwDQF5CuAYAAPBRSt3CGXMNAHkL4RoAAMBHad3n+nzMeTkcDkPqAgBkHcI1AACAj5yzhV/fLTwkIGlCs0RHomISYgypCwCQdQjXOVyvMRuMLgEAgDwvpZZri9miQsGFJEnRtmgjygIAZCHCdQ4XE59gdAkAAOR5cYlxktzHXEtS0ZCikgjXAJAXEK4BAAB85OwWHmgOdFteNJRwDQB5BeEaAADARynNFi5da7m+arua5TUBALIW4RoAAMBHqYZrWq4BIM8gXAMAAPjINaHZjd3CnWOu4wnXAJDbEa5zqOAgCzOFAwCQDTgcjhRbrgPMATp0/pAkuoUDQF5AuM7BmCkcAADjxSXGySGHJPdbcUlSUECQJLqFA0BeQLgGAADwwfXB2Wp2H3MdEhAiSYpLiMvSmgAAWY9wDQAA4ANnuLaarTKZTG6PBQcES5JiE2OzvC4AQNYiXAMAAPjganzSeOobu4RL17qFJ9gTXPfCBgDkToRrAAAAHzhbrlMM15Yg1/eX4y5nWU0AgKxHuM7mmBEcAIDsbe3BtZKS3+NakkwmkytgX4m/kqV1AQCyFuE6m2NGcAAAsrfohNRbrqVr466vxBGuASA3I1wDAAD4wHmP69TCtXPcNd3CASB3I1wDAAD4wDlRWaA5lZZry/+3XNMtHAByNcI1AACAD1wt1wG0XANAXka4BgAA8EFcYpyk1FuuneGaMdcAkLsRrgEAAHzg6hae2oRmdAsHgDyBcA0AAOADmz0pXKd0Ky7p2mzhdAsHgNyNcA0AAOCDRHuiJMlitqT4ON3CASBvIFwDAAD4IMGRIEmymNIO17RcA0DuRrgGAADwgd1ul5R6yzVjrgEgbyBcAwAA+CDR8f/dwlNpuXaOuaZbOADkboRrAAAAH6QXrukWDgB5A+EaAADAB+lNaOZsub5qu+paFwCQ+xCuAQAAfOAK16m1XFuCXN8z7hoAci/CNQAAgA9c3cJTabm2mC2ympPugR0VH5VldQEAshbhGgAAwAfpjbmWGHcNAHkB4RoAAMAH6Y25lq51DSdcA0DuRbgGAADwQUZarrkdFwDkXoRrAAAAH3jSch1sSZoxnJZrAMi9CNcAAAA+yFDLNbOFA0CuRbgGAADwksPhkN1hl5TOmGu6hQNArke4BgAA8JLNbnN9n2bLNROaAUCuR7gGAADwUnxivOt7syn1t1XBAUljrukWDgC5F+EaAADASwn2BNf3ntyKKyo+KtNrAgAYg3ANAADgJWfLtUmmNFuuAy2BkhhzDQC5WY4I1wkJCZo2bZpatGihOnXqqHPnztq9e7fr8X379qlLly6qXbu2IiIitHDhQrft7Xa73nnnHd11112qXbu2evXqpaNHj2bxXgAAkHvl1Wu1LTFpzHVardbStQnNaLkGgNwrR4Tr2bNna9myZRozZoxWrlypW2+9VT179tTp06d14cIFde/eXWXLltXy5cv17LPPauLEiVq+fLlr+1mzZmnRokUaM2aMIiMjZbfb1bNnT8XHx6fxqgAAwFN59VrtnNAsrcnMJLqFA0BekCPC9XfffaeHHnpITZs2Vbly5TRixAhduXJFu3fv1tKlS2W1WvX666+rQoUKat++vbp166b3339fkhQfH6/58+drwIABat68uSpXrqwpU6bo5MmTWrt2rcF7BgBA7pBXr9Wetlw7u4UTrgEg98oR4bpo0aL64YcfdOzYMSUmJmrJkiUKDAxU5cqVtWPHDjVo0EABAQGu9Rs1aqQjR47o7Nmz+vPPP3X16lU1btzY9XiBAgVUtWpVbd++3YjdAQAg18mr12rnmOt0W67/v1t4XGKcK5ADAHKXgPRXMd7LL7+sF154Qffcc48sFovMZrOmT5+usmXL6uTJk7r99tvd1i9RooQk6cSJEzp58qQk6aabbkq2jvMxbzgcDkVHR2dom5iYGLd/PWG3O5L97Py6fllGa8mrvDkH8B+Ov/E4B8a68fg7HA6ZTCYjS/KbvHqtjopOaok2m8xKsCXIZrNJZslkdz+vZvu19owzl86oUHChDNWVl/B3ylgcf+NxDozly7U6R4TrgwcPKiwsTDNnzlTJkiW1bNkyDRkyRB9//LFiY2MVGBjotn5Q0P9/OhwX5zooKa1z6dIlr2uy2Wzat2+fV9seOXLEo/XMZrNiomPcTmZMTIwcdotMjmv7ExOXoP3798tut3tVT17k6TlA5uD4G49zYKzrj/+N16ecKq9eqw9FHZIkmRwmXbh4QVfjrspqtirQ6r4vtkSbgsxBirPH6dd9v6pEcAmv6spL+DtlLI6/8TgHxvLmWp3tw/WJEyc0ePBgLViwQPXq1ZMk1ahRQwcPHtT06dMVHBycbLKTuLg4SVJoaKiCg4MlJY3ncn7vXCckJMTruqxWqypWrJihbWJiYnTkyBGVL1/e49cOCT3n/nO8SSFBFgUHX3fqzIkKDw/PUC15lTfnAP7D8Tce58BYNx7/gwcPGl2SX+Tla/Wl45ek/ZI1wKrChQoryBYkq9kqq8Xqtl6CPUEFThXQmegzKlm2pCoXrZyhuvIS/k4Zi+NvPM6BsXy5Vmf7cP3rr7/KZrOpRo0abstr1aqljRs36uabb9bp06fdHnP+XLJkSSUkJLiWlS1b1m0dXwKpyWRSaGioV9uGhIR4vK3ZbEr2s/Pr+mXe1pJXZeQcwP84/sbjHBjLefxzS5fwvHytNluTunsHmAMUYA2QVdak7y03vMWyS2FBYToTfUYJ5gT+/3mAv1PG4vgbj3NgLG+u1dl+QrNSpUpJkvbv3++2/MCBAypfvrzq16+vnTt3KjEx0fXYli1bdOutt6po0aKqXLmy8ufPr61bt7oev3z5svbu3av69etnzU4AAJCL5eVrtWu28HQmNJOk/IH5JTFjOADkVtk+XNesWVN33HGHhg8fri1btujIkSOaOnWqNm/erN69e6t9+/aKiorSyy+/rIMHD2rFihVasGCB+vTpIympf3yXLl00ceJEff/99/rzzz/14osvqlSpUrrvvvsM3jsAAHK+vHytdt3nOp1bcUnXwvWVuCuZWhMAwBjZvlu42WzW7NmzNXXqVL300ku6dOmSbr/9di1YsEC1atWSJM2dO1djx45V27ZtVbx4cQ0bNkxt27Z1PceAAQOUkJCgkSNHKjY2VvXr19e8efNktVpTe1kAAOChvHyt9vRWXBIt1wCQ22X7cC1JBQsW1CuvvKJXXnklxcdr1qypJUuWpLq9xWLR0KFDNXTo0MwqEQCAPC2vXqsT7EnjxT1puQ4LDJNEuAaA3CrbdwsHAADIrmi5BgA4Ea4BAAC85JrQLANjrgnXAJA7Ea4BAAC85JrQzIOW67AguoUDQG5GuAYAAPCSs1u42Zz+WypargEgdyNcAwAAeMmb+1xfiedWXACQGxGuAQAAvOTNfa5puQaA3IlwDQAA4CVvWq4J1wCQOxGuAQAAvOS6FVcGW64dDkem1gUAyHqEawAAAC8l2BMkZazlOsGeoLjEuEytCwCQ9QjXAAAAXnK1XHsQrkOtoTKbkt560TUcAHIfwjUAAICXMtIt3GwyK581nyTCNQDkRoRrAAAAL7m6hXsQrqXrbscVx+24ACC3IVxnY73GbDC6BAAAkIbjl49L8qxbuCSFBYVJouUaAHIjwnU2FhOfYHQJAAAgDQkOzyc0k7gdFwDkZoRrAAAALyXaEyV53i2cMdcAkHsRrgEAALyU6Pj/cJ3Blusr8Yy5BoDchnANAADgpYy2XDPmGgByL8I1AACAl7xtuSZcA0DuQ7gGAADwkrPl2mz27C0Vt+ICgNyLcA0AAOAlZ8t1gCnAo/XDAukWDgC5FeEaAADAS66Wa1PGWq6v2q5mWk0AAGMQrgEAALzkGnPt4YRmjLkGgNyLcA0AAOAFh8Mhu8MuSQowe9gt/P9nC2fMNQDkPoTrXKTrqHVGlwAAQJ5hs9tc33vaLXzDkQ2SaLkGgNyIcJ2LxMQlGF0CAAB5hi3xWrj29FZczvWu2q66Wr0BALkD4RoAAMAL17dcezrmOiggSJJkd9gVbYvOlLoAAMYgXAMAAHjB2XJtksnjbuEWk8U1Ppuu4QCQuxCuAQAAvBCfGC/J81ZrSTKZTMwYDgC5FOEaAADAC85u4Z6Ot3YiXANA7kS4BgAA8IKzW3hGWq4lKSww6XZchGsAyF0I1wAAAF5wdQun5RoAIMI1AACAV+gWDgC4HuE6FwkOsqjrqHVGlwEAQJ7gTbfwAHOATl09JUm6EnclU+oCABiDcJ3LxMQluL4naAMAkHlcLdcZHHMdYLp2K67IPZF+rwsAYAzCdS4QHGRRrzEbki2/PmgDAAD/ysiY6wBzgD7941NJUqAlUFJSuHYGdABAzke4ziVi4gnSAABkpQR70rXX0zHXziAdFBAkiTHXAJDbEK4BAAC84Gy5Npsz9nbK2XJ9JZ4x1wCQmxCuAQAAvOAM184x1J66vls4ACD3IFwDAAB4wdktPKMt10EWuoUDQG6UsY9ake0FB1nUYdhaBQdlbOZSAACQMRmZ0Ox6zpbrM1fP+L0mAIBxCNe5UHRsghwOh0wmk9GlAACQa3lzn2vpWst1bEKs32sCABiHbuEAAABecN3n2suWa5vdJrvD7ve6AADGIFwDAAB4wTXm2uTdbOHSta7lAICcj3ANAADghYze59rJYrYowJw0Mi8uIc7vdQEAjEG4BgAA8IK3LdfStdZrWq4BIPcgXAMAAHjB21txSdcmNYtLpOUaAHILwjUAAIAX/NFyTbdwAMg9CNcAAABe8HbMtXSt5Zpu4QCQexCuAQAAvOBLy3VQAN3CASC3IVwDAAB4wZaYdJ9rn7qFE64BINcgXAMAAHjBp5ZrZ7fwBLqFA0BuQbgGAADwgk9jrukWDgC5DuEaAADAC36ZLZxwDQC5BuEaAADAC66Wa7MPs4XTLRwAcg3CNQAAgBdouQYAXI9wDQAA4AVuxQUAuB7hGgAAwAv+mC08LoFwDQC5BeEaAADACz7NFu4cc53ImGsAyC0I1wAAAF7wx5jrREcirdcAkEt4Fa4///xzxcfzSSsAAMi7/BGuJSkqPspvNQEAjONVuB42bJiaNGmiV199Vb/99pu/awIAAMj2XOHanPG3UyaTydU1/Er8Fb/WBQAwhlfhet26dXrmmWe0ZcsWPf7442rVqpXmzZunM2fO+Ls+AACAbMmXMdfStRnDabkGgNzBq3BdqlQp9evXT19//bU++eQT1atXT3PmzFGLFi3Ut29frV27VgkJCf6uFQAAINvwpVu4dG1SM8I1AOQOAb4+Qd26dVW3bl099thjmjBhgtavX6/169erWLFievrpp/XMM8/IYvHuE10AAIDsytdw7Rx3TbgGgNzBp3B9/PhxrVq1SqtWrdK///6rsmXLatCgQWrevLnWr1+vmTNn6uDBgxo/fry/6gUAAMgWfG65pls4AOQqXoXrZcuWadWqVfrll18UFBSkBx54QGPHjlW9evVc69x+++26cOGCIiMjCdcAACDX8XnMtXNCszgmNAOA3MCrcD1q1CjVqlVLr776qlq1aqX8+fOnuF54eLgef/xxnwoEAADIjmi5BgBcz6tw/fnnn6tixYpKTEx0jaeOjY2VzWZTWFiYa71HH33UL0UCAABkJw6HQ4mOREm+T2jGrbgAIHfw6mpQvnx5vfLKK+rYsaNr2S+//KLGjRtr/PjxstvtfisQAAAgu3G2Wku0XAMAknh1NXjnnXe0evVqPfTQQ65lVatW1ZAhQ7R06VLNnTvXbwUCAABkN9eHa4uZMdcAAC/D9Zo1azR8+HB1797dtaxQoULq1q2bXnzxRX366ad+K9Bp5cqVatWqlWrUqKHWrVvrq6++cj127Ngx9enTR3Xr1lXTpk01depUJSYmum3/ySef6J577lHNmjX15JNPau/evX6vEQCA7OLUqVNZ/pp56Vrtz5brq7arfqkJAGAsr64GFy5c0C233JLiY7fddptOnjzpU1E3WrVqlV5++WV17txZX3zxhR566CENGjRIu3btks1mU48ePSRJkZGRevXVV7V48WLNnDnTtf1nn32mCRMm6IUXXtCKFStUpkwZde/eXefPn/drnQAAZBctWrRQz5499eWXXyo+Pj7TXy+vXavdWq6ZLRwAIC/D9W233aZvvvkmxcfWrVuncuXK+VTU9RwOh6ZNm6annnpKnTt3VtmyZdWvXz/deeed2rZtm7755hv9999/mjBhgm6//Xbde++9GjRokD788EPXm4l3331XXbp0UZs2bVSxYkW9+eabCgkJ0bJly/xWJwAA2cm4ceNkt9s1ZMgQNW3aVK+99pr27NmTKa+VF6/VznBtkkkmk8mr53CGa8ZcA0Du4NVs4U899ZRGjBihixcv6t5771XRokV1/vx5/fDDD/rqq680btw4vxV4+PBhHT9+XA8//LDb8nnz5kmSXn31VVWrVk0FCxZ0PdaoUSNFRUVp3759KlOmjI4cOaLGjRu7Hg8ICFC9evW0fft29enTx2+1AgCQXTzyyCN65JFHdOrUKX322WdatWqVFi9erIoVK6pdu3Zq06aNihUr5pfXyovXal9vwyVd6xbObOEAkDt4Fa4fffRRXb16VbNmzdLatWtdywsXLqxRo0b59RZchw8fliRFR0erR48e2rt3r8qUKaN+/fopIiJCJ0+eVKlSpdy2KVGihCTpxIkTCghI2sWbbrop2Tp//vmn3+oEACA7KlmypPr27au+ffvqjz/+0FtvvaW3335bkydPdnUdr1Wrlk+vkRev1X4J1//fcn01/qrsDrtPzwUAMJ5X4VqSOnfurCeffFKHDx/WxYsXVaBAAd12220ym/17YYiKSuoqNXz4cD333HMaMmSIvvnmG/Xv318ffPCBYmNjVaBAAbdtgoKSLlZxcXGKiYmRJAUGBiZbJy4uzuu6HA6HoqOjM7SNsxbnv+mx2x0pLnN+pbWd3e5QSLBFnUd+pzn/uzNDdeZmGT0H8C+Ov/E4B8a68fg7HA6vuxRnxI4dO7Rq1Sp9++23unz5spo0aaLmzZtr/fr1euKJJzRs2DB169bN6+fPi9fqK9FJrc1mk1kJtmvjr202m2SWTPbUz6tzHedYbYccOnfpnPIF5stQrbkVf6eMxfE3HufAWL5cq70O15JkMpl02223+fIU6bJarZKkHj16qG3btpKkKlWqaO/evfrggw8UHBycbKIW54U4NDRUwcHBkpTiOiEhIV7XZbPZtG/fPq+2PXLkSLrrmM1mxUTHJDuRMTExctgtMjkCU9nSfZ2YuATt37+fe4/fwJNzgMzD8Tce58BY1x//GwOlv/zzzz9atWqVVq9erePHj6t06dLq2rWr2rVr52oh7tKli4YMGaLZs2f7FK7z4rX6WPQxSUljri9cvOBafjXuqqxmqwKtqZ/X69cxyyy77Pr1z19V2FrYq1pzK/5OGYvjbzzOgbG8uVZ7Fa7Pnz+vsWPHav369UlBzuHeimoymfx2+4ySJUtKkm6//Xa35RUrVtT69evVoEEDHThwwO2x06dPu7Z1voE4ffq0KlSo4LaO87m9YbVaVbFixQxtExMToyNHjqh8+fIevVkICT2XfFm8SSFBFgUHp37q3NYxJyo8PDxDdeZmGT0H8C+Ov/E4B8a68fgfPHgw017r/vvvV1BQkO69916NGTPGbTzz9W677Taf38DlxWu1+ZxZ2icFmANUuNC1UBxkC5LVbJXVYk112+vXCQoIUkxCjEreUlIVCldIdZu8hL9TxuL4G49zYCxfrtVehevXX39dP/zwg1q3bq1SpUr5vSv49apVq6Z8+fLp119/Vb169VzLDxw4oLJly6p+/fpauXKloqKilD9/fknSli1blC9fPlWuXFmBgYG69dZbtXXrVtcbi4SEBO3YsUNPPvmk13WZTCaFhoZ6tW1ISIhH25rNybsfmM0m11da213/5W2duZmn5wCZg+NvPM6BsZzHPzO7hI8aNUpt2rRRWFhYmuv1799f/fv39+m18uK1OuBK0lsos9msAOu1t1NWWRVgDlCAJfW3WNevExwQrJiEGCWYE/g/eQP+ThmL4288zoGxvLlWexWuN27cqP/97396/PHHvdk8Q4KDg9WzZ0/NnDlTJUuWVM2aNfXFF19o06ZNWrBggWrXrq2pU6dq4MCBGjJkiI4dO6bJkyfrmWeecTXfP/PMMxo7dqzKlSunGjVq6P3331dsbKw6dOiQ6fUDAGCEb775Ro0aNUoxXP/5558aOnSo1qxZ45fXyovXaueEZt7e49qJ23EBQO7hVbi2Wq265ZZb/F1Lqvr376+QkBBNmTJFp06dUoUKFTR9+nQ1bNhQkjR37ly99tpr6tixowoWLKgnn3zS7VP4jh076sqVK5o6daouXryo6tWr64MPPlCRIkWybB8AAMhsO3bscA3V2rZtm7Zv367z588nW++HH37Q0aNH/fraee1a7Y/ZwiUpMCDpwwVuxwUAOZ9X4bply5b6/PPPdeedWTcLdffu3dW9e/cUHytXrpzmz5+f5vY9evRQjx49MqM0AACyhWXLlmnVqlUymUwymUx67bXXkq3jDN8PPfSQ318/L12r/RWugy1Jk7nRcg0AOZ9X4bpq1aqaOnWqjh49qlq1arlm+XQymUx69tln/VIgAADwzMiRI9W+fXs5HA49/fTTGj16dLIJvcxmswoUKKBKlSoZVGXuYLPbJPmx5TqOlmsAyOm8ntBMkrZv367t27cne5xwDQBA1gsLC1ODBg0kSQsXLnRNNAb/81fLNWOuASD38Cpc//nnn/6uAwAA+GjlypW6++67VbhwYf3333/677//0lz/0UcfzZrCciG/TWgWQLgGgNzCq3B9vStXruj06dO65ZZbZLFYZLH4dpEBAADeGTFihJYuXarChQtrxIgRaa5rMpkI1z5wtVz7eDtSWq4BIPfwOlxv3bpVEydO1O+//y6TyaRly5Zpzpw5KlWqVLoXdAAA4H/ff/+9ihcv7voemYeWawDAjbz6uHXz5s3q0aOHgoODNWTIENfMo5UrV9bChQv1wQcf+LVIAACQvtKlS7vuG126dOlkXyVLllS+fPlcP8N7/h5zza24ACDn8+qKMHXqVN1zzz366KOP9PTTT7vCdd++fdWzZ08tW7bMr0UCAICMSUhI0IwZM7RmzRpJST3OmjRposaNG+vpp5/WpUuXDK4wZ2NCMwDAjby6Iuzbt0/t27eXlDRm63pNmjTR8ePHfa8MAAB47Z133tHs2bN1+fJlSdIbb7yhQoUK6aWXXtK///6rSZMmGVxhzua3cP3/3cK5FRcA5HxeXRHCwsJ05syZFB87ceKEwsLCfCoKAAD45osvvtCgQYPUuXNnHTp0SH/99Zf69eunp556Si+++KLWrVtndIk5mt/GXNNyDQC5hlfh+p577tGUKVO0Z88e1zKTyaSTJ0/q3XffVfPmzf1VHwAA8MLp06dVq1YtSdL69etlNpvVrFkzSVKpUqV05Qotpb7wd8t1XGKcbIk2n+sCABjHqyvC4MGDVbRoUXXs2NEVpAcNGqQHHnhAJpNJgwYN8meNAAAgg0qUKKFjx45JktatW6cqVaqoSJEikqRdu3apVKlSRpaX4/nrVlyBlkDX97ReA0DO5tWtuAoWLKhly5Zp5cqV2rJliy5evKiwsDB17dpV7dq1U0hIiL/rzHN6jdlgdAkAgBzsoYce0rhx47RmzRrt3LlTo0ePliSNHTtWixcvVt++fQ2uMGfzV8u12WRWoDlQ8fZ4XYm/osIhhf1RHgDAAF7f5zowMFAdO3ZUx44d/VkP/l9MfILRJQAAcrCBAwcqNDRU27dv1+DBg/Xkk09Kkvbs2aNnnnlG/fr1M7jCnM1fY64lKTAgUPHx8bRcA0AO51W4XrlyZbrrPProo948NQAA8AOTyaQ+ffqoT58+bssjIyMNqih38VfLtZQ0qVmUopgxHAByOK/C9YgRI1JcbjKZZLFYZLFYCNcAABjsypUr2rJli6Kjo+VwOJI9zrXae/4M185x17RcA0DO5lW4/v7775Mti46O1o4dOzRnzhzNnDnT58IAAID3fvzxRw0YMEAxMTEpPm4ymQjXPvBry3UAt+MCgNzAq3BdunTpFJdXqlRJNptNY8aM0aJFi3wqDAAAeG/SpEm67bbb9NJLL6lkyZI+z2oNd87bZvljzLXzXtdX4ukWDgA5mdcTmqUmPDxckyZN8vfTAgCADDh06JBmzZqlevXqGV1KruTvMdeSdDX+qs/PBQAwjl8/xo6Pj9enn36qokWL+vNpAQBABt18882KiqKbcWbx132upaTZwiVargEgp/Oq5ToiIkImk8ltmd1u14ULFxQXF6fhw4f7pTgAAOCdPn36aObMmapRo4bKlCljdDm5jj9vxeVsuWbMNQDkbF6F6wYNGiQL15KUP39+tWjRQnfeeafPhQEAAO+tWbNGp06dUsuWLVWkSBEFBwe7PW4ymfTdd98ZVF3OlxndwrkVFwDkbF6F67feesvfdQAAAD8qVaqUSpUqZXQZuVaiI1ESs4UDAK7xKlz/999/GVr/5ptv9uZlAACAl8aNG2d0CbmaP7uFO+9zzZhrAMjZ/DbmOi379u3z5mUAAICPDh06pE2bNun06dPq2rWrjh49qsqVKyt//vxGl5ajMVs4AOBGXoXrqVOn6pVXXlG1atXUpk0blSxZUhcuXNC6dev01VdfqV+/fqneCxsAAGQ+u92u0aNHa/ny5XI4HDKZTHrwwQc1a9Ys/fvvv/r444/pNu4Dv4brAO5zDQC5gVfhetWqVWrRokWysdetWrVS0aJF9csvv+i5557zS4EAACDjZs2apTVr1uiNN95Q8+bN1aRJE0nS0KFD9eyzz2rKlCkaP368wVXmXH69Fdf/dwu/Gn/V9UEIACDn8eqKsHnzZj300EMpPtasWTPt3LnTp6IAAIBvli9frgEDBqh9+/YqVKiQa3mVKlU0YMAAbdq0ybjicoHMuBVXoiNRMQkxPj8fAMAYXoXrwoUL69dff03xsc2bN6tkyZI+FQUAAHxz9uxZValSJcXHSpYsqcuXL2dxRbmLP7uFB5gDXCGd23EBQM7lVbfwDh06aPbs2YqJiVFERISKFCmis2fP6uuvv9bixYs1atQof9cJAAAyoFy5ctqwYYPuvPPOZI9t27ZN5cqVM6Cq3MOf4dpkMiksKEwXYy8qKj5KJUUjBQDkRF6F6/79++vKlStasGCB5s2bJ0lyOBwKCQnRiy++qE6dOvm1SAAAkDFPP/20Ro8eLZvNphYtWshkMumff/7R1q1bNX/+fI0YMcLoEnM0f4ZrScofmF8XYy8yqRkA5GBehWuTyaQRI0aof//+2r17ty5duqTChQurdu3a3NoDAIBs4LHHHtP58+c1e/ZsLVq0SJI0aNAgWa1W9ezZU0888YTBFeZs/hxzLUlhgWGSpKj4KL88HwAg63kVrp3y58+vEiVKSJJq166thIQEvxQFAAB816tXLz388MPatm2bAgICFBYWplq1arlNcAbvZEbLtUS4BoCczOtwvWrVKk2aNElnzpyRyWTSsmXLNH36dFmtVk2aNEmBgYH+rBMAAHjo888/V2RkpH799VfXB9/BwcGqW7eunnjiCd17770GV5jz2RJtkgjXAIBrvLoifPnllxo+fLgaNWqkyZMny263S5JatmypDRs2aNasWX4tEgAApC8xMVEDBw7UkCFDdPToUbVu3Vo9evTQM888o4iICB04cEDPP/884639ILNarpktHAByLq9art9991116tRJr776qhITE13L27dvr/Pnz2vp0qUaOHCgv2oEAAAeWLRokdauXauXX35ZXbp0kclkcns8MTFRkZGRevPNN1WvXj116NDBoEpzPteYa7N/xlzTcg0AOZ9XH7cePnxYLVu2TPGxWrVq6dSpUz4VBQAAMm7lypXq1KmTunbtmixYS5LFYlHnzp3VsWNHffbZZwZUmHv4u+U6LChpQjNmCweAnMurK0LRokV16NChFB87dOiQihYt6lNRAAAg4w4fPqxmzZqlu95dd92lAwcOZEFFuVOiPVEOOSQx5hoAcI1XV4RWrVrpnXfe0ddff634+HhJSbfn+v333zVr1iw98MADfi0SAACkLyYmRgULFkx3vcKFC+vq1atZUFHu5Gy1lrgVFwDgGq/GXA8cOFAHDhzQwIEDZTYn5fOuXbsqOjpa9erV0wsvvODXIgEAQPocDocslvTDntlslsPhyIKKcqfrwzUt1wAAJ6/CdWBgoObOnatNmzZpy5YtunjxosLCwtSgQQPdfffdKY7zAgAAyA0yI1w7x1wTrgEg5/IqXPfo0UM9e/ZUkyZN1KRJE3/XBD8KDrKo15gNio1P1EdjIowuBwCQyV599VXlz58/zXWioghwvvB3uA4wB2jL0S2SuBUXAORkXl0RfvnlF1qnc5CY+AQ55FDXUeuMLgUAkInq16+vfPnyyeFwpPmVL18+1atXz+hyc6zrZwr31/sh5y29LsZe9MvzAQCynlct13fddZdWr16tO+64Q1ar1d81IZPExCWkvxIAIMf66KOPjC4hT/D3bbgkKcgSJEmy2W1KsCcowOzVWzQAgIG8+ssdFBSk1atX66uvvlKFChUUGhrq9rjJZNKHH37olwIBAACyk8wI14GWQNf3UfFRKhRcyG/PDQDIGl6F65MnT6pOnTqun2+ccZQZSAEAQG6VGeHaYrbIarbKZrcRrgEgh/I4XK9du1aNGjVSgQIF6HYGAADyLGe49tc9rp2CLEGucA0AyHk8/sj1hRde0JEjR9yWzZkzR+fOnfN3TQAAANlWZrRcS1JQQNK4a2YMB4CcyeOrwo1dvRMTEzV58mSdPHnS70UBAABkV5kVrp3jrmm5BoCcyaerAmOrAQBAXpNZ4To4IFgS4RoAcir/XhUAAAByOZvdJsn/Y66dLddX4ukWDgA5EeEaAAAgA1wt12ZargEA1/h8VTCZTP6oAwAAIEfIrNnCXS3XTGgGADlShu5z/eyzzyowMNBtWd++fWW1Wt2WmUwmfffdd75XBwAAkM1k9mzhtFwDQM7kcbhu27ZtZtYBAACQI2RauLYQrgEgJ/M4XI8bNy4z6wAAAMgRMqtbOOEaAHI2JjQDAADIgMya0MzZLZzZwgEgZyJcAwAAZAAt1wCAlBCuAQAAMsCWmHSf68ya0IzZwgEgZyJcAwAAZIDNnhSu/d1yHRIQIimpW3iiPdGvzw0AyHyEawAAgAzIrNnCgwOCJUl2h51x1wCQAxGuAQAAMsDZLdxi9m/LtcVscY27vhh70a/PDQDIfIRrAACADMislmvpWus14RoAch7CNQAAQAZkZrgOsSaNuyZcA0DOQ7gGAADIANetuPzcLVy6NqkZ4RoAch7CNQAAQAY4ZwunWzgA4HqEawAAgAxwtVz7+VZc0rVu4ZdiL/n9uQEAmYtwDQAAkAHO2cIzZcw13cIBIMciXAMAAGRAZo65pls4AORchGsAAIAMyMwx17RcA0DORbgGAADIgKwYc024BoCch3ANAACQAZkarmm5BoAcK0eF68OHD6tOnTpasWKFa9m+ffvUpUsX1a5dWxEREVq4cKHbNna7Xe+8847uuusu1a5dW7169dLRo0ezunQAAPKEvHCtzswJzZxjrq/EX3GFeABAzpBjwrXNZtOQIUMUHR3tWnbhwgV1795dZcuW1fLly/Xss89q4sSJWr58uWudWbNmadGiRRozZowiIyNlt9vVs2dPxcfHG7EbAADkWnnlWp2ZE5oFBQS5Qju34wKAnCXHhOvp06crf/78bsuWLl0qq9Wq119/XRUqVFD79u3VrVs3vf/++5Kk+Ph4zZ8/XwMGDFDz5s1VuXJlTZkyRSdPntTatWuN2A0AAHKtvHKtzswJzcwmswoEFZBE13AAyGlyRLjevn27lixZorfeestt+Y4dO9SgQQMFBAS4ljVq1EhHjhzR2bNn9eeff+rq1atq3Lix6/ECBQqoatWq2r59e5bVDwBAbpeXrtWZOeZakgoFF5JEuAaAnCbbh+vLly9r2LBhGjlypG666Sa3x06ePKlSpUq5LStRooQk6cSJEzp58qQkJduuRIkSrscAAIBv8tq1OjPHXEuEawDIqQLSX8VYr776qurUqaOHH3442WOxsbEKDAx0WxYUFCRJiouLU0xMjCSluM6lS76NY3I4HG5jyjzhrMf5b1rsdkeqy51faW2b0jp2e8Zrzm0ycg7gfxx/43EOjHXj8Xc4HDKZTEaW5Bd57VrtDNeySwk290nHbDabZJZM9tTPa1rrJNgTFGYNkySdvnw6T163+TtlLI6/8TgHxvLlWp2tw/XKlSu1Y8cOrVmzJsXHg4ODk012EhcXJ0kKDQ1VcHDSjJvx8fGu753rhISE+FSbzWbTvn37vNr2yJEjaT5uNpsVEx2T4kmMiYmRw26RyRGYwpZprxMTl6D9+/fLbrd7VXdukt45QObi+BuPc2Cs64//jaEyp8mL1+ro2KTAezXqqi4kXnB77GrcVVnNVgVaUz+vaa1jS7RJ//9++uCxg9qX6F39uQF/p4zF8Tce58BY3lyrs3W4Xr58uc6dO6fmzZu7LX/llVf05ZdfqlSpUjp9+rTbY86fS5YsqYSEBNeysmXLuq0THh7uU21Wq1UVK1bM0DYxMTE6cuSIypcvn+4bhpDQcykvjzcpJMii4ODUT12q65gTfd7vnC4j5wD+x/E3HufAWDce/4MHDxpdks/y4rXatM8kxUsFCxRU4XyF3R4LsgXJarbKarGm+hpprZNgT5A51CydlQILBKpKlSoZqj834O+UsTj+xuMcGMuXa3W2DtcTJ05UbGys27L77rtPAwYMUJs2bbRq1SpFRkYqMTFRFkvSpCJbtmzRrbfeqqJFiyosLEz58+fX1q1bXRfsy5cva+/everSpYtPtZlMJoWGhnq1bUhISLrbms0pdz0wm02ur7S2TWkds9n7mnMbT84BMg/H33icA2M5j39u6BKeF6/ViY5ESVKgNVABVve3UlZZFWAOUIAl9bdYaa5jl4oHFpckRSVE5en/p/ydMhbH33icA2N5c63O1uG6ZMmSKS4vWrSoSpYsqfbt22vu3Ll6+eWX1bNnT/32229asGCBXnvtNUlJzfddunTRxIkTVaRIEZUuXVpvv/22SpUqpfvuuy8rdwUAgFwpL16rnbOFm82ZO6HZpTjucw0AOUm2DtfpKVq0qObOnauxY8eqbdu2Kl68uIYNG6a2bdu61hkwYIASEhI0cuRIxcbGqn79+po3b56s1tS7awEAAP/Ijddq54RmmX0rrnPRKQ8RAwBkTzkuXO/fv9/t55o1a2rJkiWprm+xWDR06FANHTo0s0sDAADK/ddqV8t1Jt2Kq1hoMUnSuRjCNQDkJNn+PtcAAADZhcPhkM2euS3XznB9IeaCEu2JmfIaAAD/I1znQV1HrTO6BAAAciTnZGZS5rVcO7uFJzoSdTH2Yqa8BgDA/wjXeVBMXILRJQAAkCM5u4RLksWcOS3XAeYAhQQk3X6HruEAkHMQrgEAADzknMxMyryWa0kKtSbdfuds9NlMew0AgH8RrgEAADzk1nKdSWOupWvhmhnDASDnIFwDAAB46PrJzEwmU6a9Tj5rPkm0XANATkK4BgAA8JCz5TrAnLl3Mw2xMuYaAHIawjUAAICHnGOurRZrpr4O3cIBIOchXAMAAHgoq1qu6RYOADkP4ToPCQ6yqNeYDUaXAQBAjuUcc201Z07LdYA5QJ/+8em1lmu6hQNAjkG4zmNi4rnHNQAA3sqKlmub3catuAAgByJc50HBQRZ1GLZWHYatNboUAAByFGe4zqox19G2aEXbojP1tQAA/kG4zqOiYxMUHUsrNgAAGeGc0Cyzx1xbzVbXazCpGQDkDIRrAAAAD2XVhGYmk8k1qRnjrgEgZyBcAwAAeMg5oVlmh2tJjLsGgByGcA0AAOAh15jrTJot/HqEawDIWQjXAAAAHsqqMdfStXtdM+YaAHIGwjUAAICHsmq2cEnKF5gUrmm5BoCcgXANAADgIeeY66zoFu5suT599XSmvxYAwHeEawAAAA9l1WzhkpQ/ML8k6Uz0mUx/LQCA7wjXAAAAHjIiXJ+KOpXprwUA8B3hGgAAwENGhOurtqu6Gn81018PAOAbwjUAAICHnLOFZ8WEZoGWQAWaAyXRNRwAcgLCdR4WEmRR11HrjC4DAIAcIytbriUpf1BS6zWTmgFA9ke4zuNi4hKMLgEAgBwjK2cLl651DSdcA0D2R7gGAADwkLNbeFa1XIcFhkkiXANATkC4BgAA8JCzW3hWjLmWrrsd11XGXANAdke4BgAA8JArXGdRt3Bny/Wpq9yOCwCyO8I1AACAh5zh2mK2ZMnr0XINADkH4RoAAMBDTGgGAEgN4RoAAMBDWX0rrrCgpG7h52POuyZTAwBkT4RrAAAADzkDblZNaBYSECKzySyHHDobfTZLXhMA4B3CNQAAgIeyuuXaZDLRNRwAcgjCNSRJXUetM7oEAACyvawecy1J+az5JEmf7fssy14TAJBxhGtIkmLiEowuAQCAbC+rW66la7fjuhR3KcteEwCQcYRrAAAAD7nuc51FY64lKV9gUst1VHxUlr0mACDjCNcAAAAeMqLl2jnm+mr81Sx7TQBAxhGuAQAAPOScLdyIcH0l/kqWvSYAIOMI13lccJBFvcZsMLoMAAByBCMmNCsYXFCSdNVGyzUAZGeEaygmnsnMAADwhJETmkXFR8nusGfZ6wIAMoZwnQ3RkgwAQPbk7Bb+0z8/ZdlrOm/FZXfYdTH2Ypa9LgAgYwjX2RAtyQAAZE/Olmu7sq4F2WK2KNQaKkk6ffV0lr0uACBjCNcAAAAecoZri8mSpa/r7BpOuAaA7ItwDQAA4CFnuDabsvYtlHPGcMI1AGRfhGsAAAAPOWcLt5iztuWacA0A2R/hGgAAwENGtVzTLRwAsj/CNQAAgIecs4Vn9ZhrWq4BIPsjXAMAAHgg0Z4ohxySDBhzHUS4BoDsjnANAADgAed4a8m4Mddnrp7J0tcFAHiOcA0AAOAB53hrybgx11dtVxUVH5Wlrw0A8AzhGgAAwAPXh+usHnMdaAlUoCVQEq3XAJBdEa4BAAA8cP1kZiaTKctf39k1/NTVU1n+2gCA9BGuAQAAPOBsuQ4wBxjy+swYDgDZG+EaAADAA84JzYwK185x16eiaLkGgOyIcA0AAOCB7NJyTbdwAMieCNcAAAAeiE+MlyRZLVZDXp9u4QCQvRGuAQAAPOAM10GWIENe39kt/GTUSUNeHwCQNsI1AACAB1zhOsCgcB3EmGsAyM4I1wAAAB6ITYiVZFzLtbNb+FXbVUXFRxlSAwAgdYRrAAAADzhbrgMtgYa8fqAl0NU1nHHXAJD9EK4BAAA8YHS3cEkqka+EJLqGA0B2RLgGAADwQFxCnCTjuoVLUsn8JSVxOy4AyI4I10im66h1RpcAAEC2E5eYFK6N6hYuSSXzJYXr7//+3rAaAAApI1wjmZi4BKNLAAAg2zF6zLV0reX6Utwlw2oAAKSMcA0AAOABV7dwA8dcl8pfSpIUFcds4QCQ3RCuAQAAPOCa0MzAMdfOCc2uxF8xrAYAQMoI1wAAAB7ITmOuo+Kj5HA4DKsDAJAc4Rpueo3ZYHQJAABkS9mhW7hzzLXNblNUPF3DASA7IVzDTUw8k5kBAJCS7DChWXBAsIIDgiVJJ6NOGlYHACA5wjUAAIAHnN3CjRxzLUkFgwpKkk5EnTC0DgCAO8I1AACAB7JDt3BJKhBUQJL035X/DK0DAOAuR4TrixcvavTo0WrWrJnq1q2rJ554Qjt27HA9vnnzZrVr1061atXSAw88oC+++MJt+7i4OL322mtq3Lix6tSpo8GDB+v8+fNZvRsAAORaeeFanR26hUvXwjXdwgEge8kR4XrQoEHatWuXJk+erOXLl6tKlSrq0aOH/v77bx06dEh9+vTRXXfdpRUrVuixxx7TsGHDtHnzZtf2r776qn766SdNnz5dH374of7++28NGDDAwD1KHROKAQByorxwrXaG690ndhtaBy3XAJA9BRhdQHr++ecfbdq0SYsWLdIdd9whSRo1apR+/PFHrVmzRufOnVN4eLhefPFFSVKFChW0d+9ezZ07V40bN9apU6e0cuVKvfvuu6pXr54kafLkyXrggQe0a9cu1alTx7B9SwkTigEAcpq8cq12jrmWydg6aLkGgOwp27dcFy5cWO+//75q1KjhWmYymWQymXT58mXt2LFDjRs3dtumUaNG2rlzpxwOh3bu3Ola5nTrrbeqZMmS2r59e9bsBAAAuVheuVY7x1wHmIxtm3BOaEbLNQBkL9m+5bpAgQK6++673ZZ98803+ueff/S///1Pn332mUqVKuX2eIkSJRQTE6MLFy7o1KlTKly4sIKCgpKtc/Kk95/4OhwORUdHZ2ibmJgYt39TYrc70nwOu93h+vLnOnZ70v44l2V033IKT84BMg/H33icA2PdePwdDodMJoObQf0gr1yrYxNiJUkmu0kJtpR7mtlsNsmctE5qvF0nwZ6g6OhohZpDJUkXYy/q3OVzCgkISX/HchD+ThmL4288zoGxfLlWZ/twfaNffvlFL730ku677z41b95csbGxCgx0n1jE+XN8fLxiYmKSPS5JQUFBiouL87oOm82mffv2ebXtkSNHUlxuNpsVEx2T5smLiYmRw26RyZH6ZCrerBMTl6C//vpLMdExio1P1P79+2W32z3boRwotXOArMHxNx7nwFjXH/+UrlE5XW69VkfFREmSoq9G64L9QorbXY27KqvZqkBr6ufV23VsiTb99ddfir4SLavZKpvdpp9/+1k3h9zs4V7lLPydMhbH33icA2N5c63OUeH6u+++05AhQ1S3bl1NnDhRUtKFNz4+3m09588hISEKDg5O9riUNCtpSIj3n/RarVZVrFgxQ9vExMToyJEjKl++fKqvHRJ6Ls3nCIk3KSTIouDg1E+dV+uYE1WpUiWFhJ6RyZKo8PDw9HcoB/LkHCDzcPyNxzkw1o3H/+DBg0aX5He5+Vrt+COpt1fhgoVVOLRwitsH2YJkNVtltVhTfQ1v10mwJ6hSpUr6LfE3FfivgM7FnFNoyVBVKV0lI7uY7fF3ylgcf+NxDozly7U6x4Trjz/+WGPHjtUDDzyg8ePHuz49uOmmm3T69Gm3dU+fPq3Q0FCFhYWpVKlSunjxouLj490+cTh9+rRKlizpdT0mk0mhoaFebRsSEpLqtmZz2l0OzGaT68uf64SGBOiFSdtdy7zdt5wirXOAzMfxNx7nwFjO458buoRfL7dfq212myQpKDBIAdaU30JZZVWAOUABltTfYnm7ToAC9OXhLxVgDVDB4II6F3NO5+PP59r/y/ydMhbH33icA2N5c63O9hOaSdKiRYs0ZswYde7cWZMnT3a78NarV0/btm1zW3/Lli2qW7euzGaz7rjjDtntdtdkKZJ0+PBhnTp1SvXr18+yfcgJmKkcAOCtvHCtdt6KK8BsXNuEM+A7Zww/EXXCsFoAAO6yfbg+fPiw3nzzTbVs2VJ9+vTR2bNndebMGZ05c0ZXrlxR165d9dtvv2nixIk6dOiQ5s+fr6+//lo9e/aUJJUsWVKtW7fWyJEjtXXrVv32228aNGiQGjRooNq1axu7cwAA5AJ54VrtcDhct+IyMlw7hQWGSZJOXCFcA0B2YfzVIR3ffPONbDabvv32W3377bduj7Vt21ZvvfWWZs2apbffflsffvihypQpo7ffftvtlh9jxozRm2++qeeee06S1KxZM40cOTJL9wMAgNwqL1yrna3WkmQxWQysJImz5ZrbcQFA9pHtw3Xfvn3Vt2/fNNdp1qyZmjVrlurjoaGheuONN/TGG2/4uzwAAPK8vHCtvj5cZ4eWa2e4Phnl/a3KAAD+le27hQMAABjN2SXcbDLLbDL+7ZMzXJ+LOacYG/fCBYDswPirAwAAQDYXl5AUrgMtgdlilvfggGBXwD5+5bjB1QAAJMI1AABAupzdwoMsQQZXck2ZAmUkSf9e+tfgSgAAEuEaAAAgXc5u4YGWwHTWzDplC5aVJB29dNTgSgAAEuEaAAAgXc5u4UEB2afl+pYCt0iSjl0+ZnAlAACJcI00dBi2Vh2GrTW6DAAADOfsFp6dWq6d3cJ3/LfD4EoAAFIOuBUXjBMdm2B0CQAAZAvObuHZacz1LQWTWq4vxF4wuBIAgETLNQAAQLqyc7fwqPgoxSbEGlwNAIBwDQAAkI7s2C28UHAh5bPmkyT9d+U/g6sBABCuAQAA0pEdu4WbTCZX13BmDAcA4xGuAQAA0pEdW66la13Dj14mXAOA0QjXAAAA6ciOY66lazOG03INAMYjXAMAAKQjO3YLl67NGE7LNQAYj3CNNIUEWdR11DqjywAAwFDZvVv4vjP7DK4EAEC4Rrpi4rjfNQAgb8uu4bp8ofKSpCvxV7gdFwAYLMDoApD9BAdZ1GvMBqPLAAAg23COuQ4OCDa4kiQB5gB99OtHCjAHKDggWLEJsTpy8YgqF6tsdGkAkGfRco0UxcTTWg0AgJNzzHV2arm2JdpkS7SpSEgRSdKRi0eMLQgA8jjCNQAAQDqya7dwSSoaUlSS9M/FfwyuBADyNsI1AABAOrLrrbgkuVquD188bHAlAJC3Ea4BAADSkV1vxSWJbuEAkE0QrgEAANKRnbuFO8P1v5f+VaI90eBqACDvIlwDAACkwxmus2O38AJBBWQxWRSfGK8TUSeMLgcA8izCNQAAQDqc95DOjt3CzSazCocUlkTXcAAwEuEaAAAgHdm5W7gkFQ5OCteHLzCpGQAYhXANAACQjuzcLVxixnAAyA4I1wAAAOlw3ooru7ZcM2M4ABiPcI0M6TpqndElAACQ5bLzrbgkqWhIUUnSofOHtPi3xQZXAwB5E+Ea6QoOsrhCdUxcgsHVAACQ9bJ7t/BiocVkNpl11XZV52PPG10OAORJhGt4hFANAMirHA5Htp/QzGK2uCY1OxdzzuBqACBvIlzDI8FBFvUas8HoMgAAyHLO23BJUnBAsIGVpK1YaDFJ0rlowjUAGIFwDY/FxNN6DQDIe6LioyRJFpNFIQEhBleTOle4puUaAAxBuAYAAEjDlfgrkqT8gfllMpkMriZ1tFwDgLEI1wAAAGm4EpcUrsOCwgyuJG3OcH0+5rwS7YkGVwMAeQ/hGgAAIA3OluuwwOwdrgsGFVSAOUCJjkQdu3zM6HIAIM8hXAMAAKTBOeY6u7dcm0yma/e7vnDI4GoAIO8hXAMAAKTB2S08f2B+gytJn7Nr+MHzBw2uBADyHsI1AABAGnJKt3BJKpGvhCRp35l9BlcCAHkP4RoAACANOWVCM0kqlb+UJGnvmb1yOBwGVwMAeQvhGgAAIA3OMdc5oVt48dDiMpvMOhdzTqeunjK6HADIUwjXAAAAachJ3cKtFqtrUrM/Tv9hcDUAkLcQrgEAANKQk7qFS1LJ/CUlSX+cIVwDQFYiXAMAAKQhJ7VcS1KpfEnjrmm5BoCsRbgGAABIQ065z7WTs+V639l9SrQnGlwNAOQdhGsAAIA05KT7XEtSkZAiCgkIUbQtWkcuHjG6HADIMwKMLgBJOgxbq+Agi9FlAACA6zgcDle38LUH12p7yHaDK0qf2WRWleJV9MuJX7T75G5VKFLB6JIAIE+g5TqbiI5NUExsgtFlAACA68QlxinBnnR9NpvMsiXaDK7IMw1LN5Qkbfxno8GVAEDeQbiGV7qOWufT4wAA5ATOLuFmk1lWs9XgajwXcWuEJGnb8W2uMeM3itwTmZUlAUCuR7iGV2LikreyXx+oU3ocAICc5vqZwk0mk8HVeO7WwreqcHBh2ew2bfp3k2v59YHaZs8ZrfAAkFMQruGV4CBLstZpAjUAILfJaZOZXa9S0UqSpAW7F7iWEagBIPMQruE1wjQAILdztVznkNtwXa9SkaRwfeTiEcUlxBlcDQDkfoRrAACAVLjucR2Y88J1yXwllT8wv2x2m7746wujywGAXI9wDa8FB1nUYdhadRi21uhSAADIFDm5W7jJZFKtkrUkSdO2TFNsQqzBFQFA7ka4hk+iYxMUzS3EAAC5VE7uFi5J1YtXV4HAArpqu6pFexYZXQ4A5GqEawAAgFQ4W65zYrdwSbKYLWpUppGkpInNjl0+ZnBFAJB7BRhdAAAAQHblGnOdQ1uuJSm8aLj2nt2rY5eP6bM/P1Op/KXUrFwzORwOo0sDgFyFcA0AAJAKZ7fw/IH5FR0fbXA13jGZTHok/BHtP7df3/39nWZun6mZ22cqJCBE+87uU+eanVW9RHWjywSAHI9wDQAAkIrru4Xn1HAtSQHmAL15z5tKsCcoxhaj3Sd3KyYhRt/+/a3WHV6nbrW7qdcdvRRg5q0hAHiLv6DZQK8xG4wuIdP0GrNBF67EKTjIIpNM+mhMhOuxrqPWuf0MAEB242y5/u3UbyqZr6TB1fjGbDKrVsla6lqrq+IT4zX558m6HH9Zaw+t1bxd87Txn41qXam1utTq4tomck+kOtXoZGDVAJBzMKFZNhATn3tn246JT5pNPCY2QTFx7vt5488AAGQ3zjHXua1FN9ASqNIFSuvNe95Uy9taymKy6K/zf2nl/pWKS4hzrWez2wysEgByFsI1MiQ4yOJRS7un6wEAkJ3dV+E+1SxZM0e1WgeYA/TpH596vF6lIpX08O0PK8AcoCMXj2jw2sHcExsAvEC4RoZ52tKem1vkAQB5Q996fTX/kfmyWqxGl5IhnrY4O9crW7Cs2lVuJ6vZqi3HtujFr19UjC0mM0sEgFyHcA2/y2iLdddR6zKpEgAAkJKUWrZvKXiLHqn8iEKtodr+33a98PULik+Ml5Q09hoAkDbCNfwuoy3WjL0GACBrpdayXTqstGa2mql81nz65cQvWvnnSl2MvcjYawDwQO6anQPZGuOwAQDI3gLMAdp/dr86VOmgJXuX6ETUCfVY1UMtyrcwujQAyPZouTZYbgqbnoTnmPgE11dqbuwmTrdxAICRPJkcLKfwZLIzm92mYvmK6fFqjyt/YH79c+kfRf4RqS3HtrjWubGbON3GAYBwbbjcNumXP/bn+m7ivcZsSLHbOIEbAJBVcluXaE/3p1hoUsCuUqyKYhNi9fyXz2vK5im6HHfZ7Tk+/ePTFJ+TwA0gr6FbOHwWkondva8P6x2GrZUkfTrhPsZpAwCQAZ7enutG+QPza26bueq9prf+OPOHPtnzidYcWKNbCtyiYqHFdFPYTToTfUZBliBJ0ke/fiRJ6lqra677UAIA0kO4hl9kRQt8dCyBGgAAb3kbdoMCgnTvbfeq1x299M7Wd/T3hb/1x5k/NOqHUW7rLfljiQoHF9bNYTfrrnJ3yeFw+KNsAMgxCNfIVrxtAe86ap0+GhPh52oAAIBT07JN1bhMY036eZL+Ov+X7A67zsWc08mok0qwJ+hczDmdizmngxcOauO/G1U0pKhCrCF6sNKDyh+YX5F7ItWpRiejdwMAMg3hGtmKty3gqXUTJ3QDAOA/FrNFtxS8RTeF3aSutbpKkhbv+b/27j4oqvve4/j7wO6yCqjRKBAfUxNFERUrWqJUkk6cRqEz9jZpMmhaCxlHUm2akpgMJmidaZPKhCgi0Y7KJK0Pk+glaS1qvNqk43V8SCxeRYMa4qiNEjBC5Bn33D8sW56VLOxB9/OaYZTf+Z3DdxfYD989T1uoqq8iKiyKP37yRy59c4nSqlLKqst4/cDrZB3OYtaDs9yHjrekpltE7hZqrqXHamsvdsvzu2/VPLdsup/53f+S+l8Duq5IERERH9Z4HrfD38GksElE3xdNjF8MfoYfxy4f43z5eb649gXvFd6cV3ClgFEDRjGw90BsfjZ62Xtx8quTfHHtC4b3HY5hGOz4bAcRfhFWPiwRkW/FZ5prl8vFmjVrePfdd/nmm2+Ijo7m1VdfZejQoVaXJi003tKrvb3Y1XUN/5lzm3usGz+vrrnRLTWLiIjnlNV3jsYLpLV3Hre/nz+T75vM9wZ/jzNXz1BeW86+4n2cKDnBiZITrebnn82nT0Afnhz3JDfqb0DbO7lFRHo0n7kV19q1a9m8eTMrVqxg69atuFwukpOTqaurs7o0n9XYIDsD/PnJi3uY+8r/uJfdzuHhHc0xMZvt4b6dq4u3d3uv9sZ/8uIe9xXMRUTEc8rqnqexibb52Xin4B22/N8W97LbuUBag9nA0L5Def3R1/lF1C9YFreMpKgk5oTPIWJgBKMHjCYsKAy7n52K2grWf7Ked068Q97FPMpry1ttr/H2XrUNtZwuPU3+mXx2n93N7z/+PRfKL3DD1fxN9HcK3nFfwVxEpLv5xJ7ruro6Nm7cSGpqKnFxcQBkZmYSGxvLnj17iI+Pt7ZAH9bYIFfVNGCaJr2crX8knR3c6qtpg95yb3XTPdy3VUttx7f9arn9tq5ernO8RUS+HWV1z9XYRNffqMc0Tez+9lZzOrrVV+Oyfs5+XK+9zsLohQDNGnXTNCksLeRM2RnOfX2OnV/uZN9/7yN2eCxTBk/BaXNSWlXKrrO7yPssj+Kvi7lhNm+kt5/ejr/hz8j+IwkLCsNpc3L+2nlsfjZKq0px+DsIsAVw6qtTTBk8hUBHIEP6DGFEvxH0c/bromdLRHyZTzTXp0+fprKykpiYGPdYnz59GDt2LEeOHFFg3wE62kvduKy9vdOdbbLhZuPc8vzujvZ+uw87b6cRb2/+rTTOa9rs3866avJF5E6jrL7zdbQn292gtzPHMAwiBkYwYdAEjl8+zonLJ7hQdYE95/aw51zbR4kF+Adwb+978Tf8qayv5HrddWpv1FJUVkRRWVGzuSe+an4o+kfnm/9N0M/Zj/uC7+Me5z04bU4Mw+BC+QVG9BtBX2df7u19LwN7DyQ4IJjahlquVl/lQsUFLpRf4NRXp8CA6vpqbH42BgUOoqahhhH9RhDkCGr1EWALwOZn4/DFw0wbNg1/P3/8DX/8/fzxM/yw+dmw+dlw2pxtftj8mv/53uBq4Hrdda7XXaeyrhKX6cLub8fh78Dh78Dud/P/dn87dj87hmFgYGAYRrvfLxH5dgzTB25CuGfPHhYtWkRBQQFOp9M9/qtf/YqamhrWrVvXqe19+umnN9+5tbd+57YjpmnS0NCAzWZzv6CVltcC4HKZGAa3fKG7nXm+PMc0zY6Xu0z6Bfljs9n4uuLmYYYmMKBvAF9dq2FgPydXy2tpaPG1/AAXzc+jaJzjbxjuZTdMk4H9nJSW17o/NwwDvyZfB3AvbzrW0tXyWvf2Sr6uAWDQPU53nY1z2tpG0zmNysprW81ra6w97X2tzmyrrd+BrtaZx+SLvPE9kPa1fP7r6+sxDINJkyZZXZrlenJWV9VXAeAyXe7GpD1365yu3JaJ2fFy08RhOHAZLirrK7lh3sDExO5nxzRNett702A2gEmrr3XDvIHLdGGaJiam+18DAxPTvX1/P3/qXfW4TBcu09Xh4+5p/t0ag4H78XXFNjs9t4NVbvdnqeXcltvuTF0dafc5amO4rbmNz3dX1XM7bvU3rdfq6IKfryYb87pARyCB9sBOreNJVvvEnuvq6moAHA5Hs/GAgADKy1ufz3Mr7heDTv7AG4bRqoaWDZB4z4AWz/2ge3q1Of5t3Or7ejvf96Z1hPTv5f5/Y50t5zTVdE6je9uY29bY7dTTltvZVlu/A12tM4/JF3njeyDta/n8G4b2HjXqyVkd6OjcH2bSdZx2vaaLiHd5ktU+0Vw3vgNeV1fX7N3w2tpaevVq3YTcSlRUVJfVJiIiIspqERG58/nE1cLDwsIAKCkpaTZeUlJCSEiIFSWJiIhIE8pqERG50/lEcx0eHk5QUBCHDh1yj1VUVFBYWEh0dLSFlYmIiAgoq0VE5M7nE4eFOxwO5s6dS0ZGBv3792fw4MGsXLmS0NBQZs6caXV5IiIiPk9ZLSIidzqfaK4BFi9eTENDA0uXLqWmpobo6Gg2bNjQ6auIioiISPdQVouIyJ3MJ27FJSIiIiIiItKdfOKcaxEREREREZHupOZaRERERERExENqrkVEREREREQ8pOZaRERERERExENqrkVEREREREQ8pOZaRERERERExENqrr3E5XKxevVqYmNjmThxIs888wwXLlywuiyfce3aNV599VW+//3vM2nSJJ566imOHj1qdVk+qbi4mKioKHbs2GF1KT4nLy+PWbNmERkZyezZs8nPz7e6JJ/S0NDAqlWrePjhh4mKiiIxMZF//vOfVpclTSirraWs7jmU1dZRVlvL06xWc+0la9euZfPmzaxYsYKtW7ficrlITk6mrq7O6tJ8wvPPP8+xY8d444032L59O2PGjCEpKYnPP//c6tJ8Sn19PampqVRVVVldis95//33SUtLIzExkZ07dxIfH+/+vRDvyMnJ4d1332XFihXk5eVx//33k5ycTElJidWlyb8pq62lrO4ZlNXWUVZbz9OsVnPtBXV1dWzcuJHFixcTFxdHeHg4mZmZXL58mT179lhd3l3v/PnzHDhwgGXLljF58mTuv/9+XnnlFQYNGsRf/vIXq8vzKVlZWQQFBVldhs8xTZNVq1bx9NNPk5iYyLBhw1i4cCEPPfQQhw8ftro8n7F3717i4+OZPn06w4cP56WXXuKbb77R3useQlltLWV1z6GstoayumfwNKvVXHvB6dOnqaysJCYmxj3Wp08fxo4dy5EjRyyszDfcc889rF+/nsjISPeYYRgYhkFFRYWFlfmWI0eOsG3bNl577TWrS/E5xcXFXLp0iYSEhGbjGzZsYMGCBRZV5XsGDBjA/v37uXjxIjdu3GDbtm04HA7Cw8OtLk1QVltNWd0zKKuto6zuGTzNajXXXnD58mUAwsLCmo0PGjTIvUy6T58+fZgxYwYOh8M9tnv3bs6fP09sbKyFlfmOiooKXnzxRZYuXdrq90C6X3FxMQBVVVUkJSURExPD448/zr59+yyuzLekpaVht9v5wQ9+QGRkJJmZmaxevZphw4ZZXZqgrLaastp6ymprKat7Bk+zWs21F1RXVwM0CwyAgIAAamtrrSjJp3366ae8/PLLzJw5k7i4OKvL8QnLli0jKiqq1bux4h3Xr18HYMmSJcTHx7Nx40amTZtGSkoKBw8etLg633H27FmCg4PJzs5m27Zt/PjHPyY1NZVTp05ZXZqgrO5plNXep6y2lrK6Z/A0q23dXJ8ATqcTuHk+V+P/AWpra+nVq5dVZfmkvXv3kpqayqRJk8jIyLC6HJ+Ql5fH0aNHdc6chex2OwBJSUnMmTMHgDFjxlBYWMimTZuaHQYr3ePLL7/kN7/5Dbm5uUyePBmAyMhIzp49S1ZWFmvXrrW4QlFW9xzKau9TVltPWW29rshq7bn2gsZDa1peZa6kpISQkBArSvJJf/rTn1i0aBEPP/wwb731FgEBAVaX5BO2b99OWVkZcXFxREVFERUVBUB6ejrJyckWV+cbGl9nRo0a1Wz8gQce4OLFi1aU5HMKCgqor69vdj4pwIQJEzh//rxFVUlTyuqeQVltDWW19ZTV1uuKrNaeay8IDw8nKCiIQ4cOuY/Xr6iooLCwkLlz51pcnW9ovLXKvHnzSEtLwzAMq0vyGRkZGdTU1DQbmzlzJosXL+ZHP/qRRVX5loiICAIDAykoKHC/EwtQVFSk8329JDQ0FIDPPvuM8ePHu8eLiooYMWKERVVJU8pq6ymrraOstp6y2npdkdVqrr3A4XAwd+5cMjIy6N+/P4MHD2blypWEhoYyc+ZMq8u76xUXF/O73/2ORx99lAULFlBaWupe5nQ6CQ4OtrC6u197e3wGDBigvUFe4nQ6SU5OJjs7m5CQEMaPH8/OnTs5cOAAubm5VpfnE8aPH893v/tdlixZQnp6OqGhoeTl5XHw4EG2bNlidXmCstpqymprKautp6y2XldktZprL1m8eDENDQ0sXbqUmpoaoqOj2bBhg/v8Cuk+u3fvpr6+ng8//JAPP/yw2bI5c+bodhPiE1JSUujVqxeZmZlcuXKFkSNHkpWVxdSpU60uzSf4+fmRk5PDm2++ycsvv0x5eTmjRo0iNzeXCRMmWF2e/Juy2jrKahFltdW6IqsN0zTNbq5TRERERERE5K6mC5qJiIiIiIiIeEjNtYiIiIiIiIiH1FyLiIiIiIiIeEjNtYiIiIiIiIiH1FyLiIiIiIiIeEjNtYiIiIiIiIiH1FyLiIiIiIiIeEjNtYiIyG1at24d8+bN6/R6eXl5zJo1i8jISGbPnk1+fn43VCciIiJWZrWaaxFpZd68eYwePbrZx7hx44iLi2P58uWUl5e3u+7FixcZPXo0O3bs8GLFIt3vz3/+M2+++Wan13v//fdJS0sjMTGRnTt3Eh8fz/PPP8+xY8e6vkgR8RnKapHWrM5qW6e/soj4hLFjx5Kenu7+vL6+npMnT/LGG29w6tQptmzZgmEYrdYbNGgQ27ZtY9iwYd4sV6TbXLlyhfT0dA4dOsSIESM6ta5pmqxatYqnn36axMREABYuXMjRo0c5fPgwUVFR3VCxiPgKZbXITT0lq9Vci0ibgoKCmDhxYrOx6OhoKisrWb16NQUFBa2WAzgcjjbHRe5UJ0+exG6388EHH5Cdnc2lS5eaLd+/fz9ZWVmcPXuWkJAQZs+eTUpKCg6Hg+LiYi5dukRCQkKzdTZs2ODNhyAidylltchNPSWrdVi4iHTKuHHjAPjXv/7FvHnzSE1NZfHixUycOJH58+e3eajZ559/zi9/+UumTJlCdHQ0CxYs4Ny5c+7ltbW1/OEPf2DGjBmMGzeOhIQE/va3v3n9sYm05ZFHHiErK4uhQ4e2Wvbxxx/z3HPP8cQTT/DXv/6V9PR08vPzeeGFFwAoLi4GoKqqiqSkJGJiYnj88cfZt2+fVx+DiPgWZbX4mp6S1WquRaRTGl+AGl+88vPzCQwMJCcnh+Tk5Fbzr1y5wk9/+lO++OILli1bxsqVKyktLeVnP/sZ165dwzRNnn32WbZu3cr8+fPJyckhKiqKX//61+Tl5XnzoYl02ltvvcUTTzzBk08+ybBhw5g+fTrLly9n165dXLx4kevXrwOwZMkS4uPj2bhxI9OmTSMlJYWDBw9aXL2I3K2U1SL/4c2s1mHhItIm0zRpaGhwf15eXs7hw4fdgdr4rrjdbmf58uU4HA7g5kVSmsrNzaWuro5NmzYxcOBAAMLDw3nqqacoKCjAZrPxj3/8g8zMTGbNmgVAbGws1dXVZGRkEB8fj82mlyrpmQoLCzl+/Djvvfeee8w0TQDOnTuH3W4HICkpiTlz5gAwZswYCgsL2bRpEzExMd4vWkTuGspqkVvzZlbrt0BE2nTkyBEiIiKajfn5+fHQQw/x29/+1n2BlO985zvusG7LJ598wsSJE91hDRAaGsr+/fsByMjIwDAMZsyY0ewPhEceeYQPPviAM2fOMGbMmK58aCJdxuVykZyc7A7jpgYOHMipU6cAGDVqVLNlDzzwAH//+9+9UaKI3MWU1SK35s2sVnMtIm2KiIhg+fLlABiGQUBAAGFhYQQFBTWbFxgY2OF2rl27xpAhQzpcbpomkyZNanN5SUmJAlt6rAcffJDi4mKGDx/uHjt06BBvv/02y5YtIyIigsDAQAoKCpg8ebJ7TlFRka7SKyIeU1aL3Jo3s1rNtYi0KTAwkMjISI+3ExwczNWrV1uNHzx4kCFDhhAcHEzv3r15++2321y/6QuhSE/zzDPP8Nxzz7FmzRpmz57N5cuXSUtLY8iQIe49QMnJyWRnZxMSEsL48ePZuXMnBw4cIDc319riReSOp6wWuTVvZrUuaCYi3Wry5MkUFBQ0C+2ysjKSk5P56KOPmDJlClVVVZimSWRkpPujqKiI7OzsZoefifQ0P/zhD8nMzGTv3r0kJCTwwgsvMH36dNasWeOek5KSwqJFi9znKu7atYusrCymTp1qYeUiIv+hrJa7mTezWnuuRaRb/fznPycvL4/k5GQWLFiA3W4nJyeH0NBQEhISCA4OJjo6mpSUFFJSUhg5ciTHjx9n9erVxMbG0r9/f6sfgojba6+91mrsscce47HHHutwvfnz5zN//vzuKktExCPKarmbWJnVaq5FpFuFhYWxefNmVq5cyUsvvYTD4WDq1KlkZmbSt29fANavX8+qVatYt24dZWVlhISEMH/+fJ599lmLqxcREbn7KatFuoZhNl6HXERERERERES+FZ1zLSIiIiIiIuIhNdciIiIiIiIiHlJzLSIiIiIiIuIhNdciIiIiIiIiHlJzLSIiIiIiIuIhNdciIiIiIiIiHlJzLSIiIiIiIuIhNdciIiIiIiIiHlJzLSIiIiIiIuIhNdciIiIiIiIiHlJzLSIiIiIiIuIhNdciIiIiIiIiHvp/3UtWFWxKv2IAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJQCAYAAACTlwc0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACdHElEQVR4nOzde5zMZf/H8ffM7PngfCh0q1TEspQcct5UjpWlUtJNhUjyo8TtUJHknByTJCTKKR1Epcg5hEUHoXJmsQ57nN2Z3x/bjB17mh07O7Ozr+fjsY/a+c535nPtjr3mPdfha7BarVYBAAAAAIB8Z/R0AQAAAAAA+CpCNwAAAAAAbkLoBgAAAADATQjdAAAAAAC4CaEbAAAAAAA3IXQDAAAAAOAmhG4AAAAAANyE0A0AAAAAgJsQugHAzaxWq6dLyJPCVi8AAIA3I3QD8Fnbtm1T1apVM31Vr15dderUUatWrTRs2DDt378/y/OnTp2qqlWravLkyS7XsHHjRj3zzDN5Omfw4MGqWrWqPvvssxxvy2+XLl3Sm2++qZUrV+Zaj7f43//+p6pVqyoiIkLnzp3zaC358Xpx1rFjx1S1alU1bdrU7c/ljOPHj+v5559X3bp1FRkZqSeeeCLH+0dFRalq1aratm1bjvez/UwHDx6cn+V6LVt7s/qKiIhQ48aN1atXL3377bd5etzly5eratWqevnll91UOQAgJ36eLgAA3C0kJET33Xef/Xur1ar4+Hj9+eef+uyzz7R8+XINHDhQzz77bL4+74kTJ/Tss8+qfPny+fq47jJmzBgtX75cb775pqdLcUpCQoJWr16twMBAJScna9myZerZs6enyyqSBg0apB07dqhixYqqWbOmbrnlFk+XVKjddNNNql27tsNtZrNZp06d0o8//qgff/xRPXr0IEQDQCFB6Abg80qWLKkJEyZkeeyLL77QiBEjNG7cOJUtW1YPPfSQ/ViXLl3Upk0blSxZ0qXntVgsLp03YMAA9ejRQ+XKlXPpfFdlN63cU/XkZvXq1UpISNBzzz2nefPmacmSJerRo4cMBoOnS3O78uXL6+uvv5a/v7+nS5Ek7dmzR5I0f/58VapUycPVFH5169bV22+/neWxDRs26Pnnn9ecOXPUunVr1ahRI9fHu//++xUZGanw8PD8LhUA4ASmlwMo0tq3b6833nhDkjR+/HglJSXZj5UqVUpVqlRRqVKlCrSmcuXKqUqVKl7zBtnb6rFZvny5JKlt27Zq2LChjh07pp9++snDVRUMf39/ValSRf/5z388XYqk9FFYSbrhhhs8XInva9q0qaKiomS1Wp2eZh4eHq4qVap43QdnAFBUELoBFHkPPfSQIiIidObMGX333Xf227Nbo7t+/Xo9++yzatKkiSIiItS8eXO9+uqrOnTokMO5tintp0+fVtWqVRUVFSXp6nrcPn36aPXq1WrRooVq1qyp9u3b6/Lly7muof7kk0/Upk0b1axZU1FRURo/frwuXbrkcJ/c1nDa1ommpqbav1+xYoUkadiwYapatao91GZXT1pamj7++GN17NhRtWvXVu3atdWxY0ctXLjQ/rg2tvX1o0eP1uHDh9WvXz/Vr19ftWrVUnR0tJYtW5Zlndn5+++/tWPHDlWuXFnVq1e3z1D45JNPsrx/xp/5mTNnNGTIEDVu3Fg1a9ZU27ZtNXfuXKWlpWU678iRIxoxYoQefPBB1a5dW7Vq1VLLli31xhtv6PTp0znWuGbNGlWtWlWdO3fO8vjp06d15513qmXLlvZZBocOHdLAgQN1//33KyIiQg0aNFDPnj21fv36LNtz7Zru06dPa8SIEWrdurVq1aqlevXq6emnn9aqVatyrPVaFy5c0Pjx4/Xggw8qIiJC9erV07PPPpupjq5du6pq1ar272vUqKGqVavq2LFjeXo+V/z5558aNGiQ/d9h48aN9corr+jPP//MdF/bGvK///4707Hs/p3v3r1bL7zwgqKiouyP369fP+3evTvLev766y8NHjxYTZs2VUREhJo2baqhQ4fq+PHj+dLejGwftpw/f95+W1RUlOrWras//vhD0dHRioiIUIsWLbRjx44c/x5s27ZNffr0UePGjVWnTh21b99eM2fOVEJCwnW1MTk5WdOnT1eHDh101113qU6dOurQoYNmzZqlxMTEfPxpAID3I3QDgGQPxFu2bMnxfitXrlSvXr20bds2ValSRVFRUQoODtbKlSvVqVMn/fHHH5LSQ2zLli0lScHBwWrfvr39e5vff/9dL7/8ssqWLasGDRqoTJkyuY4mz507V6+//rqCgoLUokULpaSkaM6cOercubPi4uJcbH36iP9NN90kSapdu7bat2+f4yhqcnKynnnmGY0cOVJHjhxR/fr11aBBAx0+fFijRo1Sjx49lJKSkum8P//8U48++qh27NihOnXqqHr16tq/f7/+97//ae7cuU7XawvpDz/8sKT06bNhYWFav369Tp06le15Z8+eVadOnfTdd9/pzjvvVJ06dXT48GGNHTtWb731lsN9d+zYoQ4dOmjJkiUKDQ1V06ZNVadOHcXGxmrRokXq3Lmzrly5ku1zRUVFqVSpUvrll1+yDHuff/65LBaLOnToIIPBoEOHDunRRx/Vl19+qeLFiysqKko333yz1q9fr549e+b6wcS5c+fUqVMnLVmyRH5+fmrevLnuvPNO7dixQ6+88oqmTp2a4/k2R48e1SOPPKI5c+YoMTHRHli3bNminj176p133rHf995771X79u3t37dr107t27dXSEiIU8/lqnXr1ik6Olqff/65SpYsqfvuu0+lSpXSqlWr1LFjR/3www/X9fhbt27VU089pXXr1unGG29UVFSUypYtqzVr1qhLly7atGmTw/23bNmiDh06aMWKFfbfXfHixbV06VJFR0dr375911XPtQ4ePChJuvHGGx1uN5vN6tmzpy5duqRmzZrJYDCoWrVq2T7OnDlz9N///lc//PCDKleurEaNGunChQt655139Nxzzzn8G85LG61Wq3r37q13331X586dU/369VW/fn0dPXpUkydPVs+ePblKAoAihTXdACDp1ltvlZQ+spmTadOmyWQyaeXKlbrtttskpb/BfOuttzR//nzNnTtXb7/9th544AFVr15d3333nYoVK5blmvJjx46pS5cuGjFihCTn1oAfPnxYI0aMUJcuXSRJiYmJ6tevnzZs2KBJkyZp5MiReWq3zYQJEzR48GAdPXpUnTp10qOPPprj/SdPnqytW7cqMjJSs2bNsk/BP3funHr16qXNmzdr0qRJmXad3rx5s9q0aaPRo0fbg9mCBQv05ptvas6cOerevXuua7LT0tK0cuVKGY1GRUdHS0r/YKNt27ZasmSJPv30U/Xr1y/Lc/fu3at69eppypQp9prXrVun3r17a/HixXrppZdUrFgxSdIbb7yhxMREvfPOO2rdurX9Mc6ePavHH39cx48f17p16xz2AcjI399fDz30kObNm6eVK1fqpZdecjhua0OHDh0kSR988IHi4+M1cuRIPf744/b7ffvtt+rbt6+mT5+ujh07ZvtzWbx4sc6cOaNevXppwIABDm1+8sknNWfOHPXo0UNBQUHZPobVatVLL72kU6dO6fHHH9fw4cPt68b37t2rHj16aObMmapVq5aioqLUu3dvSel7I0jS2LFj5efn/FuLWbNm5bgr/u+//57ptrNnz2rgwIFKSUnR22+/bf/5SdLSpUs1bNgwDRw4UKtXr3Z5E8OZM2fKbDbrgw8+UOPGje23z5s3T2PGjNGsWbPUqFEjSemzAvr376/k5ORMr5UlS5ZoxIgR6t+/v77++msFBAS4VE9GK1eu1IYNG2QymRyeS5KSkpJUqlQpLV68WAEBAbJYLDIasx5fiYmJ0cSJExUaGqrZs2fr7rvvlpT+N6Vnz57avn27Pv74Y3Xv3j3Pbdy5c6c2bdqkevXqae7cufbX0Pnz5/XYY49p+/bt2r59u+rXr3/dPw8AKAwI3QAgqXjx4pLS30Dn5OzZs/Lz83NYG2kwGPT888+rcuXKDlNtnfHUU0/Z/z+7N8cZ1atXzx64pfSwOWbMGDVv3lyff/65Bg8e7PZRxuTkZH3yyScyGo2aOHGiw5r30qVLa/LkyXrwwQe1aNEivfjiiwoNDbUf9/Pz02uvveZQ4+OPP65x48bp3LlzOnfunMqUKZPj82/cuFGnT59Wo0aNHEb6bKO8n332mfr06ZNt+Bs6dKhDzVFRUapUqZKOHTumI0eOKDIyUvHx8YqIiFDNmjUzBZuyZcuqZcuW+uijj3KdRt2pUyfNmzdPq1atUr9+/ewfKOzdu1eHDh3SvffeqwoVKkhKf21Jsn9vc//992vEiBEqU6ZMjiEqu/Nr1aqlN998U/7+/rl+sLNjxw7t379flStX1ogRIxx+hrVq1dLgwYM1ePBgzZkzxz475Hps3rw5z+csWbJECQkJio6OdgjcUvrPe+fOnVq+fLk++eQT9e/f36W6svtZPvnkk5LksDv7Z599pri4OHXt2jXTa+Xxxx/XDz/8oB9++EHffvut2rZt69Tz79ixI9NU8MTERB08eFB///23DAaDBg0apJtvvjnTuY899pg93Of0N2XJkiWyWCx6/vnn7YFbSv+bMnjwYPXv39/+c8hrG8+cOSMp/d9Kxs3+SpUqpVGjRunkyZP2mTUAUBQwvRwAdHUjqNxGWevWraukpCRFR0dr2rRp2rt3rywWi0qXLq2nnnpK99xzj9PPGRQUlOdLK2WcymtTpkwZ1axZU0lJSfZdpN0pJiZGSUlJql69epZvnG+66SbVrFlTycnJ2rt3r8OxypUrq0SJEg63BQQE2HeId2atp22a9bWjvrVq1dIdd9yhM2fOaN26dVmeGxwcnOUHI7YPUWzrWENDQzVmzJhMU85Pnz6tH3/8Ub/99pskZTmFPqPbb79dtWrV0rFjx7Rjxw777bZrodtG6iXZXzv9+/fXm2++qQ0bNtg39uvSpYsefPDBHEOU7fzRo0frf//7n7799lv79PdHHnlEbdu2zfUDme3bt0uS7rvvviw/tGjVqpVMJpP27NmTa9udMX/+fP3+++/ZfvXt2zfTOT///LMk6cEHH8zyMdu0aePQFlfUrVtXUvqa9QkTJmj79u0ym80KCAhQt27d1KxZM/t9bdcaz27UtkmTJg73c8bRo0f1xRdfOHxt2rRJFotF7dq10/z589WtW7csz81pOnlGtp9PVh+e1KhRQ99++60GDRrkULuzbaxTp478/f311VdfqWfPnvrss8/syz4aNmyo6OjoTB9oAIAvY6QbACT7emjbiHd2Ro8erT59+mj//v2aOnWqpk6dqhIlSqhp06bq2LGjGjRo4PRzhoeH5/nyVhUrVszydtuIb26be+UH2yhWdrVIUqVKlbR79277fW1sU7evZQt4uY3EXrhwwR6o58+fr8WLFzsct/0eFy9erAceeCDT+dn9zG3Pf+060127dunTTz/V/v379c8//9hDsO0xnFmX2qlTJ+3du1crV67UPffco5SUFH311VcKDw/X/fffb79f9+7d9ccff+iLL77QggULtGDBAgUEBKh+/fr2tdImkynb52nbtq327dunefPmadmyZVq2bJn8/PxUp04dtW7dWh07dsxxarl09Xeb3WW/goODVapUKZ09e1bnz5/3yG7lub3+bLXbRmld8corr+jYsWPatGmT3n//fb3//vsKCQlR48aN9fDDDzvsz3Dy5ElJyvIDgoxy2mvgWh06dMj2kmG5ye1vmE12o/lZyWsbb7zxRo0bN07Dhw/X+vXr7Rvw3X777br//vvVuXNnl6f+A0BhROgGAMk+cpnb9PAbbrhBy5Yt088//6x169Zp8+bN+uOPP7Rq1SqtWrVKzzzzjF599VWnntOZ6eTXCgwMzPG4M9dtzmqX7rxwJmjanuPaNazXew3tVatW2WclZLeLtJQ+bfmff/7JtBlcXp7/jTfe0KJFi2Q0GlWtWjW1bt1aVapUUWRkpDZt2qRZs2Y59Tht27bVmDFj9M033+i1117Thg0bFBcXp8cff9whBPv7+2vChAnq3bu31q5dq82bN+uXX37RTz/9pJ9++klLlizRRx99lOO64FdffVVPPfWUvv32W/3000/atWuXfv75Z/38889asGCBPvnkkxyvO+/M79b2wUh+rE92RW415rW+rP49hIeHa+7cuYqJidF3332nLVu2aN++fVq7dq3Wrl2rBx98UO+++67D+S1atFBYWFi2z2PbA8LdnP27cu0VBnLiShvbtGmjJk2a6Pvvv9eGDRu0bds2HTx4UAcPHtS8efP04Ycfqnbt2k7XAACFGaEbACT9+OOPktJ3Y86NwWBQvXr1VK9ePUnpm4ctW7ZMkydP1ocffqiuXbu6berktSPHNrZL9thGvG1vvLMaOb728mJ5ZZuKndOlkI4ePSpJua7PzivbZczmzJljn9J6rV69eunHH3/U4sWL7dNj82r79u1atGiRbrzxRs2ZMydTYFq7dq3TjxUWFqYHH3xQK1eu1ObNm/XNN99Iyjw93qZKlSrq3bu3evfurcTERP3444964403tGvXLq1evdq+Y3t2KlasqG7duqlbt24ym83asmWLRo0apSNHjuiTTz5Rnz59sj3X9rvNbq36lStXdP78eZlMpkzLBApKuXLldOTIER0/fly33357puO2117p0qXtt9k+bMkqYF++fDnb56pZs6Zq1qyp//u//9Ply5e1evVqjR49WmvWrNGOHTtUt25dlStXTn/99Zeefvppp/5+eIuyZcvq+PHjOnXqVJbLXBYvXqxy5copKirK5TaGh4frkUce0SOPPCJJ2r9/vyZNmqSNGzfqnXfe0bx58/KpNQDg3VjTDaDI+/rrr3X48GHdcMMNat68ebb3+/PPP9W+fXs999xzDreXLl1aPXv2VNWqVWW1Wu1TvK93VDcrP/30U6bbTpw4oZiYGIWGhqpGjRqSZF+7e+7cuUz3z27dt7P1RkREKDg4WAcOHLAHnIz++ecfHThwQCEhIapZs6ZTj+mM/fv367ffflPp0qVzfONve4O/fPlyl9cd20bRH3jggUyBOy0tTVu3bpXk3MiwlD7FXJJWr16t9evX20fMMz5m165d1bhxY/sUdil9Onfr1q3tO6TnNEW5f//+ql+/vsOHIf7+/mratKl9w77cpjjb1oV///33WY6ErlmzRlarVXXr1nVppkZ+sNW4Zs2aLI+vXr1akuwfiklX/z1kvK61zbUzJi5cuKDo6OhM+yeEh4frscces+9mbvtZ2uq59hrmNuPGjdMjjzyiTz/9NMd2FbS77rpLUtZ1Hzp0SK+99pqmTJkiKe9t/OCDD9SiRQv73gU2NWrU0CuvvCLp6pR1ACgKCN0AirQ1a9Zo+PDhkqRhw4blOCX15ptv1pkzZ7Rx40b7aKXNvn37dOjQIYWEhNhDmm0qeEJCglOXA3PGypUr9e2339q/v3LligYNGqS0tDR16dLF/py2zZRsu1HbnDp1SuPHj8/ysW1tz2nkT0oPgo899pgsFosGDhzoEGTOnz+vAQMGyGKxOLWGOC9sG6i1bt06x7XN9913n4oXL64LFy5k+j05yzYFe8uWLQ6buyUmJmr48OH26yQnJyc79Xj33HOPKleurFWrVunSpUsOG6hJkslkUnh4uM6ePatJkyY5jMjGxcVpw4YNktI3i8tO2bJlFRcXp3Hjxjl82JCUlGR/zeT2IUi9evVUvXp1/f333xo1apR9Kr+U/hofN26cJMdd9wvaY489ppCQEK1YsUIrVqxwOLZs2TJ9/vnnCgkJcdjZ3PbvYf78+Q4flMybNy/TNbRLliyptLQ0/fHHH5lGYo8dO6Zdu3bJaDQqIiJCUvru3SEhIVq4cKG++uorh/uvW7dO8+fP12+//ZavH0Dlhy5dushgMGjGjBk6cOCA/XbbZesk2T/syWsbK1eurBMnTmjmzJkOa+utVqtWrVolyfG1nJiYqEOHDunQoUPuaSwAeBjTywH4vAsXLjhcfsdisejy5cv6/fffdfr0aZlMJg0fPtxhU6us+Pn5adSoUerXr59eeukl1ahRQ5UqVdKFCxe0c+dOpaWl6X//+5/Cw8MlpV8ep1ixYrp06ZI6d+6s//znP1lerzsvIiMj1bdvX9WpU0dly5bVzz//rAsXLqhevXp68cUX7ff7z3/+owceeEBr167V448/roYNG0pK3134tttu0x133KE//vjD4bFtlx+aMWOGfvnll0wbRmU0YMAAHThwQD///LNatmxpH1Xcvn274uPjVb9+/UyXPLoeKSkp+vLLLyUp18suBQQEqHXr1lq8eLEWL16c7XW0c9K6dWtNmzZNf/zxh1q2bKnatWsrJSVFv/zyiy5fvqzbb79dBw8eVGxsrNOP2bFjR02aNEkmkynLKeKDBw/Wzp079dFHH+m7777TnXfeqZSUFO3atUtXrlxRmzZt7L/HrPTp00c//PCDvvnmG+3cudMeCvfu3atz586pbt26uU5NNxgMmjRpkv773/9q8eLF+vHHHxUZGam4uDjt2LFDaWlp6tGjR5ab1BWU8uXLa+zYsRowYIAGDx6sefPm6ZZbbtGRI0f022+/KTg4WOPGjXPYaO3pp5/WN998ozVr1qhVq1aqWrWqDh48qCNHjujhhx/W559/7vAcb7zxhrp27aoxY8bo008/VZUqVXTlyhXt3LlTycnJ6tGjh/3fS8Z6BgwYoOnTp+vWW2/VyZMn7YH+f//7n+68884C+xk5o06dOnrppZf0zjvv6NFHH1XdunUVGhqq3bt369y5c2rUqJG6d+8uKe9tvO+++3T//ffr22+/1f3336+77rpLoaGh+uOPP/TXX3+pTJkyDtet37t3r55++mlJWV+bHQAKO0I3AJ+XkJCgL774wv69wWBQcHCwKlWqpJYtW6pLly6qUqWKU4/1wAMP6IMPPtC8efMUExOj33//XcWKFVPTpk313//+1yEUGY1GTZgwQWPHjrVPxb548eJ1tWXgwIHavXu3Fi9erH379tnX7z7zzDOZRuknTJig2bNn64svvtCWLVtUpkwZdenSRX379rW/mc7oiSee0G+//Wbf+KhKlSrZhu6goCDNnTtXixYt0qpVq7R161aZTCbdfvvtio6O1qOPPpqv04+/++47Xbx4URUrVrRPi81Jhw4dtHjxYu3cuVMHDx5UcHBwnp4vLCxMn376qaZMmaKtW7dq/fr1Cg0NVfXq1dW5c2c1aNBA9957rzZu3Ciz2ezUBna2ayE3bdpUZcuWzXT8P//5jxYvXqxZs2Zp27Zt+vHHHxUUFGT/mdqmqGenZMmSWrRokWbOnKmffvpJGzdulL+/v26++WY988wzevrpp53aXOyWW27RihUr9P777+v777/XunXrVKxYMTVp0kRPP/20GjVqlOtjuNsDDzygpUuX6v3339e2bdt06NAhlS1bVp06ddIzzzyT6d9zzZo1tXDhQk2dOlW//PKLzpw5o4iICI0YMUJmszlT6K5du7YWLVqk999/X7t27dK6desUGhqqu+66S507d1arVq0y1bNs2TLNmTNHW7du1Y8//qjSpUurRYsW6t69e7aX2vK03r17q3r16vroo48UExOjxMREVapUSU899ZSee+45h3/DeWmj7cObefPm6euvv9auXbuUlpamG264QV27dlWvXr2y/DcAAL7KYHV2QRoAAHDZm2++qQULFmjmzJlZXhsZAAD4JtZ0AwDgJrZN0bZv366lS5fqpptuynGzPgAA4HuYXg4AgJsMHTpU3333nT18v/zyyx7b9RsAAHgGPT8AAG5i2835hhtu0IgRIzKtBQYAAL6PNd0AAAAAALgJI90AAAAAALgJoRsAAAAAADchdAMAAAAA4CaEbgAAAAAA3ITQDQAAAACAmxC6AQAAAABwE0I3AAAAAABuQugGAAAAAMBNCN0AAAAAALgJoRsAAAAAADchdAMAAAAA4CaEbgAAAAAA3ITQDQAAAACAmxC6AQAAAABwE0I3AAAAAABuQugGAAAAAMBNCN2AC6xWq6dLAAAAblAY+vjCUCOAqwjd8DmDBw9WVFRUtsejoqI0ePDgbL/Pzffff69XX331umr0Bb///rseeeQRRUREqE2bNlneZ+rUqapatWq2j9G1a1d17drVXSW6RdWqVTN91apVS23bttX7778vi8WS4/nLly9X1apVdezYsQKqGAA8q2vXrg5/M6tVq6Y6deooOjpa8+fPV2pqqkfqOnbsmKpWrarly5dLki5duqRBgwZpx44d1/W4gwcPztRP1KhRQ40bN9Yrr7yikydP2u/rSj+4c+dO9ezZ87pqtPnqq6/UokULRUREaMSIEVneJ7caq1atqqlTp+ZLPQVh27ZtmX4/1apV01133aXOnTtr3bp1uT5Gbu81gWv5eboAwNOmTZumsLAwp+8/b9489xVTiEyfPl0nTpzQ9OnTVapUKU+XU6A6deqkRx991P59YmKi1q5dqwkTJujSpUsaOHBgtuc2b95cS5YsUbly5QqiVADwCtWrV9drr70mSUpLS9PFixe1YcMGjRkzRjt27NA777wjo7Fgx4LKlSunJUuW6D//+Y8k6ddff9Xnn3+ujh07Xvdjly1bVtOmTbN/n5qaqiNHjmjChAn65Zdf9OWXXyooKMilx/7ss8906NCh665RkkaOHKmbb75Zb7/9tsqXL58vj1lYjBgxQjVq1JCUPnPg4sWLmjt3rvr06aP33ntPzZo1y/bcPn366Omnny6oUuEDCN0o8qpXr+7pEgqlCxcu6I477sixU/JVN9xwg2rXru1wW8OGDXX48GF9/PHH6tevn/z9/bM8t1SpUkXuQwoACAsLy/R3MyoqSrfeeqtGjx6tL7/8Ug899FCB1hQQEJCpJnc+dt26deXv769XX31V33//vdq2beuW586LuLg4NWrUSPXr1/d0KQXutttuy/J31Lx5c82fPz/H9ze2D2oAZzG9HEXetdPLbR1/rVq11KBBA7388ss6ffq0pPQpVtu3b9f27dtVtWpVbdu2TZJ05swZDRkyRM2aNVOtWrXUqVMnff/99w7Pc+XKFY0YMUINGzZUnTp19H//93+aN2+ew/Trrl276uWXX1a/fv1Uu3Ztde/eXVL6FLhBgwapcePGqlGjhho2bKhBgwbpwoULDu2YNm2a3nrrLdWvX1916tTRwIEDFR8fr9mzZ6tp06a6++679eKLLzqcl5Xc2lO1alVt375dP//8s8PUvPzw9ddfKzo6WnXq1FGjRo00YsQIXbx40X48qyld104RlKSPPvpIrVq1Us2aNdWkSRO9/vrrunLliv24xWLR7Nmzdf/99ysiIkIPPvigFixYcF21R0REKD4+3l5v1apVNW3aNEVHR6tWrVqaNm1altPL169fr86dO6t27dpq3LixRowYoUuXLtmPnzhxQgMGDFC9evUUGRmp//73vzpw4IDDc+f0ugUAb/XUU0+pfPnyWrx4scPtn332mdq2bauIiAg1b95cU6dOVVpamv344MGD1a1bNy1btkwPPvigIiIi9PDDD2vDhg32+1gsFk2ePFlRUVGKiIhQVFSUJk6cKLPZLMmx79i2bZt95PLpp59W165d9fHHH6tq1ao6cuSIQ22ff/657rzzTodp4s6qWbOmJOn48eNZHk9OTtb06dPt/dcDDzyg2bNn25cuDR48WCtWrNDx48dz7X9jYmL07LPPqn79+rrrrrv0/PPP6+DBg5KuTrGW0meu5eeyp9zaIGW9tO/a/jEpKUmvv/66mjZtqoiICLVq1UoffPCBwzlxcXEaMWKE7r33XtWsWVOPPfaYtmzZ4nLtYWFhuuWWW3TixAlJV39OixcvVosWLXTXXXdp06ZNmd6LWK1WzZs3T61bt1atWrV0//3364MPPnBYe79jxw499dRTioyMVL169fTqq6/q/Pnz9uO5vV5RuDHSDZ/lyhqxnTt3atCgQerTp4/uuecenTp1SuPHj9fAgQO1cOFCvfbaa3rllVckSa+99ppuu+02xcbGqlOnTgoMDNT//d//qWTJklq+fLleeOEFjRs3zv7JfZ8+ffTrr7/q//7v/1ShQgUtWrRIEydOzFTD6tWr9dBDD2nmzJmyWCxKTEzU008/rZIlS+q1115TeHi4fvnlF02bNk1BQUEaOXKk/dy5c+eqUaNGmjx5svbt26eJEydq//79KleunEaNGqVjx45p9OjRKlOmjH2a37Wcac+SJUv0xhtv2H8OuX3im93vwmq1ymAw2L+fMWOG3n33XT355JP6v//7Px09elRTpkzR7t279emnnzo9Fe/LL7/U+PHj9eqrr6pq1ao6fPiwxo4dq8TERI0dO1aS9Prrr2v58uXq1auX6tSpo59//llvvfWWLl26pBdeeMGp57nWkSNHFBoaqtKlS9tvmzVrlgYOHKhbbrlFFStWVExMjMM5P/zwg3r37q377rtP77zzjuLi4jRu3DgdP35cH3zwgc6fP6/OnTsrODhYw4cPV3BwsD766CN16dJFS5cuVZUqVXJ93QKAtzIajWrYsKG++uorpaamys/PT++9954mT56sp556SkOGDNGvv/6qqVOn6uTJk3rrrbfs5+7bt09nzpxRv379FBYWpilTpujFF1/Uhg0bVLx4cb3//vv65JNP9Oqrr+qmm27Snj17NHnyZPn7+6tfv34OddSoUUMjRozQyJEjNWLECNWvX1/lypXT2LFj9fnnn6t///72+65cuVINGzbUjTfemOf22gJ8Vv2m1WrV888/r927d6tv376qVq2atm3bpnfeeUdHjx7VqFGj1KdPH50/f14HDhzQtGnTsu1/t27dqueee07169fXW2+9peTkZL333nvq3LmzPv30U9WoUUNLlizR448/bl8yldOyJ6vV6tT7Kmfa4Ky33npLGzdu1KuvvqoyZcpow4YNGjdunEqUKKGOHTsqOTlZ//3vfxUbG6v/+7//U7ly5bRs2TI999xzmjNnjho2bOj0c9mkpKTo2LFjqlWrlsPt06ZN07Bhw5SUlKQ6deroiy++cDg+btw4ffTRR+revbsaNWqkmJgYTZgwQampqerVq5d+/vlnde/eXQ0aNNA777yjixcvasqUKXr66ae1dOlSBQUF5en1isKH0A2fdPz4cfs6nbzYuXOngoKC1LNnTwUEBEiSSpQooZiYGFmtVt1222329d+2KUkzZ87U+fPntWbNGlWsWFGS1KxZM3Xr1k3jxo1Tu3bttG3bNm3btk1Tp07VAw88IElq2rSp2rVrl2ldlr+/v9544w378//666+64YYbNHbsWN10002SpAYNGmjPnj3avn27w7lhYWGaPHmy/Pz8dO+992rFihU6ffq0PvvsM4WHh0uSfvrpJ+3atSvbn8GHH36Ya3tq166d6eeQk5x+F/Xq1ZMkXbx4UTNnztRjjz3msJnLHXfcoS5dumjZsmXq0qVLrs8lSdu3b1elSpXUpUsXGY1G1atXTyEhIfYR6CNHjujTTz/VgAED7JvRNG7cWAaDQe+9956efPJJlSxZMtvHt1gs9jcfVqtVsbGx+uKLL7Ru3To999xzDh8k1K1b1z5jQVKm0D116lTdeeedmjZtmv28gIAATZkyRbGxsVqwYIHi4uL0ySef2H8fTZs2VZs2bTRlyhS9++67ub5uM9YDAN6mTJkyMpvNiouLU2BgoGbMmKHHH39cw4YNk5T+97lEiRIaNmyYunfvrttvv12SdPnyZS1fvtwePENCQvTUU09p69atevDBB7V9+3ZFRETY12jXq1dPwcHB9v4wo7CwMN12222S0qcd2/7//vvv16pVq/TSSy/JYDDo1KlT2rp1q8aPH59ruzKG1CtXrigmJkZjxoxRpUqV1Lx580z337BhgzZv3qxJkybZp543atRIQUFB9oB2++23q1SpUrlOjZ84caIqV66s2bNny2Qy2X+O999/v959911NmTLFfn5WS6au9fPPPzv1vsrZNjhj+/btatSokf1x6tevr5CQEPsH259//rl+++03ffrpp4qMjJSU3j927dpVEyZM0LJly3J8/Ix9eWpqqo4fP64ZM2bo/Pnzmd5vPPnkk2rVqlWWj3Pp0iXNnz9fTz31lH1g5t5779XZs2f1888/q1evXpo4caJuueUWvffee/bfR2RkpNq2bWt/f5OX1ysKH0I3fFLZsmU1c+bMLI/17t072/PuueceTZ48We3atdODDz6oZs2aqXHjxjmu69m+fbvq1KljD0Q2Dz30kIYMGaLDhw9r69at8vf3V8uWLe3HjUaj2rRpk2nHz1tvvdUenCTpzjvv1KJFi2SxWPTXX3/p77//1p9//qnDhw9n+tS5Vq1a8vO7+s+6TJkyCgkJcfiDXaJECf3xxx/X1R7bmxFnLV26NMvbM4627969WykpKWrXrp3DferWrauKFStq+/btTofuBg0aaMmSJYqOjlbLli3VrFkztW/f3h4+t27dKqvVqqioKIefYVRUlGbOnKmdO3c6/K6uNWPGDM2YMcPhtqCgID3++ON68cUXHW6/8847s32cpKQkHThwQC+++KJDMG7Tpo19R/gtW7bozjvvVPny5e21Go1GNW3aVKtWrZLk2usWALyFbQquwWDQL7/8oqSkpCz/PkvSpk2b7KGtVKlSDiO9N9xwg6T0zS2l9JA2ceJEPfnkk4qKilLz5s311FNP5am2Tp066csvv9SOHTt0zz33aOXKlQoNDdX999+f43nZffgfGRmpkSNHZjlza/v27fLz88sU7h566CFNmTJF27dvdyqwJiQkKCYmRn379rUHPEkqVqyYWrRoofXr1+f6GNeqUaOGfYbbtTp16pTvbZDSf3+LFy/WqVOn1KxZMzVr1sxhJtqWLVtUtmxZ1ahRw+G10qJFC40bN04XL15U8eLFs338bt26ZbqtdOnSGjZsmJo2bepwe059+e7du5WammofVLGxfWiUmJioPXv26Nlnn3WYMXDTTTepSpUq2rRpk7p06ZIvr1d4L0I3fFJAQIB93VRWx7JTp04dzZ49W/PmzdOHH36o2bNnq0yZMnr++eezvVzGxYsX7SPQGZUpU0ZS+iegFy5cUIkSJTLtzJpxGrJNaGhopts+/PBDzZo1S3FxcSpTpowiIiIUHBysy5cvO9wvq13YQ0JCsm2vq+3Jq+x+FxnbahuFtj3Ptc99bVtz0qZNG1ksFi1atEgzZszQ1KlTVbFiRb388stq06aN4uLiJCnbTWxyWwv92GOP6bHHHpOU/iYxNDRUlSpVynLztJx+/hcvXpTVas3ydWATFxenv//+O9sRhsTERJdetwDgLU6fPq2goCCVKFHC/vc5u0tinTlzxv7/wcHBDsdsH17a1g4/99xzCg0N1bJlyzRhwgSNHz9et99+u4YNG6YGDRo4VVuDBg1UqVIlrVy50h6627Rpo8DAwBzPu/bD/4CAAN1www05hsCLFy+qZMmSDkHZ9liSnO4HL1++LKvVmi/9qU1oaGi2fXlG+dUGSRo6dKhuuOEGrVq1SqNGjdKoUaNUp04dvf7666pWrZri4uJ09uzZbPvHs2fP5vjzfuONN+znmkwmFS9eXBUqVMhydlhOfbntNZvdJqmXLl2SxWLR+++/r/fffz/TcdtrKT9er/BehG7gGk2aNFGTJk2UmJiorVu3av78+XrzzTcVGRmZaY2PJBUvXlxnz57NdLvttpIlS6p8+fK6cOGCLBaLQ/A+d+5crvV88cUXevvtt/XKK68oOjra/kf9pZdeyjRVOT840x53sHWMsbGxuvXWWzM9t+2DAIPB4LCZjpT+qf612rVrp3bt2uny5cvauHGj3n//fb3yyiu6++67VaxYMUnpm61l9SFHhQoVcqy1XLlyTr35yE1YWJgMBoPDRipS+iY0W7duVWRkpMLDw1WvXj0NGjQoy8ewfYiU19ctAHiD1NRUbdu2TXfddZdMJpP97/OECRN08803Z7p/VkEyO0ajUV26dFGXLl107tw5rV+/XrNmzdKLL76oTZs2OfUYBoNBHTp00IIFC/TEE0/oyJEj9r1BcpLTh//ZKV68uC5cuKC0tDSH0Gr7oMHZ/jc8PFwGg0GxsbGZjp09e1YlSpTIU115kZc25NaXBwQEqHfv3urdu7dOnDihH374QTNmzNDAgQP11VdfKTw8XDfffLMmTJiQZS2VKlXKsdZbbrklX/py22v2/PnzDu9fTpw4oX/++UcREREyGAzq1q1blh/22z48yu31mtOgEbwfu5cDGYwdO1YdO3aU1WpVcHCwWrRooVdffVWS7DtZXjtafc899+iXX37JtBPpqlWrVLZsWVWuXFn16tVTamqq1q1bZz9utVr13Xff5VrTzp07VaxYMT333HP2wB0fH6+dO3c67ASaX5xpjztERkYqICBAX375pcPtO3bs0IkTJ3TXXXdJSv+0/cKFC0pOTrbfZ+fOnQ7n9O/f3z4FLTw8XK1bt1afPn2UmpqqM2fOqG7dupLSL3tWs2ZN+9f58+c1ZcoU+6fW7hYaGqo777xTP/zwg8PtGzZsUM+ePXXmzBnVq1dPR44csb85sH19/vnnWrp0qUwmk1OvWwDwRkuWLNHZs2f1xBNPSErvC/z9/XX69GmHv3l+fn6aNGlSnnbY7ty5s958801J6TPLoqOj1aVLF126dMnhahY2147O2kRHR+vSpUsaO3asqlSpYl8/nN9s7xW++eYbh9ttS4nuvvtuSZnfh1wrJCREERERWr16tUOwvXz5sn788Uf747iDs20ICwvTqVOnHO6TsS9PSkrSgw8+qLlz50pK/zC8S5cuatu2rb1fq1evnk6ePKnSpUs7vFY2bdqkOXPmZPv7zG+1atWSv79/pr587ty5GjBggEJCQlS9enUdPnzYoc7bb79dU6dOtV8JJ6+vVxQujHQDGTRo0EAffvihBg8erIceekhms1lz5sxRiRIl7FN7ihUrpl9++UVbtmxR9erV1b17d61atUrdunVT3759VaJECa1cuVJbt27VW2+9JaPRqHvuuUeNGjXS0KFDFRsbqwoVKmjp0qX6/fffc93kqlatWvrkk0/09ttvq0WLFjpz5ow++OADxcbG5jhtylXOtMcdSpQooZ49e2r69Ony9/dXixYtdOzYMU2ZMkW33XabOnToICl9rdaCBQs0dOhQderUSX/88Yc+/PBDh861QYMGeu211zR27Fg1bdpUly5d0rRp03TzzTerWrVq8vf310MPPaThw4fr+PHjioiI0JEjRzR58mRVqlQpy9EVd+nXr5969+6tAQMG6JFHHlFsbKwmTZqkli1b6o477lC3bt30+eefq1u3bnrmmWdUsmRJff311/r00081ZMgQe3tze90CgCdduXJFu3fvlpQ+/fvChQvauHGjlixZooceesi+HrZkyZJ67rnnNGXKFF25ckX169fX6dOnNWXKFBkMBlWrVs3p57znnns0d+5clSlTRnXq1NHp06f14Ycfql69eipVqlSmkVXb/ic//vijihcvbn+uChUq6N5779XGjRv18ssv58NPI2tNmzZV/fr1NWzYMJ0+fVrVqlXT9u3b9f7776tDhw72/VSKFSum2NhYrV+/XnfeeWeWu44PHDhQzz77rHr27Kknn3xSZrNZs2fPVkpKistX6MjPNrRo0ULvvfee3nvvPUVGRmrdunXaunWr/XGCgoJUo0YNTZs2Tf7+/vZLt61YsUIPPvigpPQPQxYuXKju3bvr+eef14033qjNmzfr/fff11NPPZXlki93KFWqlJ5++mnNmzdPAQEBqlevnvbs2aNPPvlEgwYNktFotG/cOnDgQD300ENKS0vT3LlztWfPHvXp00dS7q9XFG6EbiCDZs2aacKECZo7d6769u0rg8Ggu+++W/Pnz7dPx+rSpYv27dunHj16aMyYMWrfvr0++eQTTZw4UW+++abMZrOqVaumGTNm6L777rM/9uTJk/X2229r4sSJSk1N1X333acnnnhCK1euzLGmDh066NixY1q2bJkWLVqk8uXLq1mzZnryySc1fPhwHTp0SFWqVMm3n0HZsmWdao87vPjiiypTpowWLlyoJUuWqESJEmrVqpX69+9vX0/VqFEjvfrqq1qwYIHWrFlj75Q7d+5sf5zOnTvLbDZr8eLFWrRokYKCgtSwYUO98sor9k54zJgxeu+99+ybtJQuXVpt2rRR//79C+zTcSn9jcesWbM0bdo0vfDCCypVqpTat29v35DNdv3aiRMn6vXXX1dycrJuvvlmjR492r55jTOvWwDwpAMHDujxxx+XdHUvjDvuuEOvv/66Hn30UYf79u/fX2XLltWiRYs0Z84cFS9eXA0bNtSAAQPytJPzSy+9pICAAC1btkzTp09XeHi4oqKiNHDgwCzvf/vtt6tdu3b6+OOP9dNPPznMvGrevLm2bNmihx9+2IXWO8d2BY13331X8+bN0/nz51WpUiUNGDDA4SoY0dHRWr9+vV544QX169cvy/XvDRs21Icffqh3331XAwYMUEBAgOrWrauxY8c6vZGZO9vQq1cvnT9/Xh988IHMZrOaN2+u0aNHO2x2O3LkSL3zzjuaO3euzp49q9KlS6tTp0566aWXJKWP6H/88ceaOHGixo8fr8uXL6tixYoaOHCgnnnmGbe1MSuvvPKKSpcurcWLF2vOnDmqVKmShg8fbn9v0rhxY33wwQeaNm2a+vXrJ39/f9WoUUMffvihfef4vL5eUbgYrBmv2g7ALY4fP67du3frvvvuc9ixtF+/fjp69KhWrFjhweoAAEBOnnvuOQUGBmr69OmeLgVAIcRIN1AAjEajBg8erPvuu0+dOnWSyWTSTz/9pLVr12rMmDGeLg8AAGRh+vTpOnLkiDZu3KhFixZ5uhwAhRQj3UAB2bp1q6ZPn65ff/1VqampqlKlirp3757putQAAMA7dOzYUf/884969+5d4FOWAfgOQjcAAAAAAG7CJcMAAAAAAHATQjcAAAAAAG5C6AYAAAAAwE3YvTwLFotFqampMhqNMhgMni4HAFCEWK1WWSwW+fn5yWjks/Hc0GcDADzF2T6b0J2F1NRUxcTEeLoMAEARVrNmTQUEBHi6DK9Hnw0A8LTc+mxCdxZsn1LUrFlTJpMpT+empaUpJibGpXO9Ce3wHr7QBol2eBtfaIcvtEHK3A7b94xyO4c+2zfa4QttkGiHN/GFNki0w9u42mcTurNgm55mMplcflFcz7nehHZ4D19og0Q7vI0vtMMX2iBlbgdTpZ1Dn32VL7TDF9og0Q5v4gttkGiHt8lrn83H6AAAAAAAuAmhGwAAAAAANyF0AwAAAADgJoRuAAAAAADchNANAAAAAICbELoBAAAAAHATQjcAAAAAAG5C6AYAAAAAwE0I3QAAAAAAuAmhGwAAAAAANyF0AwAAAADgJoRuAAAAAADchNANAAAAAICbELoBAAAAAHATQjcAAAAAAG5C6AYAAAAAwE0I3QAAAAAAuAmhGwAAAAAANyF0AwAAAADgJoRuL9V1+DpPlwAAAHKxYM8CLdizwNNlAAC8mJ+nC0DWEpNTPV0CAADIhTnN7OkSAABejpFuAAAAAADchNANAAAAAICbELoBAAAAAHATQjcAAAAAAG5C6AYAAAAAwE0I3QAAAAAAuAmhGwAAAAAANyF0AwAAAADgJoRuAAAAAADchNANAAAAAICbELoBAAAAAHATQjcAAAAAAG5C6AYAAAAAwE0I3QAAAAAAuAmhGwAAAAAANyF0AwAAAADgJl4RulNSUtSuXTtt27bNftvRo0fVrVs31a5dW23atNHGjRsdztm8ebPatWunyMhIPf300zp69KjD8Xnz5qlJkyaqU6eO/ve//ykxMbFA2gIAgC+jzwYAIG88HrqTk5M1YMAAHTx40H6b1WrVCy+8oDJlymjZsmV6+OGH1bdvX504cUKSdOLECb3wwguKjo7W0qVLVapUKfXp00dWq1WStGbNGk2bNk0jR47URx99pD179mj8+PEeaZ+zOg1aq06D1nq6DAAAskWfnW5xzGJPlwAAKEQ8Grr//PNPPfbYY/rnn38cbt+6dauOHj2qkSNHqkqVKurVq5dq166tZcuWSZI+++wzRURE6JlnntHtt9+uMWPG6Pjx49q+fbskaf78+frvf/+rFi1aqFatWnrjjTe0bNkyr/7kPCEpVQlJqZ4uAwCALNFnX2W2mD1dAgCgEPFo6N6+fbvq16+vJUuWONy+Z88eVa9eXSEhIfbb7r77bu3evdt+vG7duvZjwcHBqlGjhnbv3q20tDTFxMQ4HK9du7bMZrN+++039zboOgUHmtR1+DpPlwEAQCb02Vf5Gf0Y7QYAOM3Pk0/+5JNPZnn72bNnVa5cOYfbSpcurVOnTuV6/NKlS0pOTnY47ufnpxIlStjPd1ZaWlqe7p/xnLyea7WmfyUkpSotLU1Wq2vPn19cbYe38YV2+EIbJNrhbXyhHb7QBilzO7y1PfTZV1mtVpkt5n/7a6vLz59fvP214wxfaINEO7yJL7RBoh3extU+26OhOzuJiYkKCAhwuC0gIEApKSm5Hk9KSrJ/n935zoqJiclr6S6dazQaFR9/RZY0PxkNRu3bt0/x8fHau3evLBaL/T6jFhzT8K6V7LcVhOv5GXgTX2iHL7RBoh3exhfa4QttkApvO4pinx17PlZmi1n79u3T6dOnJcneZxuNRm28sFGNSzYu0P5aKryvoYx8oQ0S7fAmvtAGiXZ4m7y2wytDd2BgoOLi4hxuS0lJUVBQkP34tZ1xSkqKihUrpsDAQPv31x4PDg7OUx01a9aUyWTK0zm2qXJ5PTc09KSCA00yGAyKiIhQaOhp1apVy+E+BtPZTLe5i6vt8Da+0A5faINEO7yNL7TDF9ogZW6H7fvCoij22b/u/1WpllRFRERoR+oOSXLon2NiYlSrZsH015Jv/FvwhTZItMOb+EIbJNrhbVzts70ydJcvX15//vmnw22xsbH26Wfly5dXbGxspuN33nmnSpQoocDAQMXGxqpKlSqSpNTUVMXFxals2bJ5qsNkMrn8osjruQbD1S+TyWT/77X3KegX6fX8DLyJL7TDF9og0Q5v4wvt8IU2SIW3HUWzzzbIYDD8218b7I+R8bgnfpeF9TWUkS+0QaId3sQX2iDRDm+T13Z4/JJhWYmMjNT+/fvt084kaefOnYqMjLQf37lzp/1YYmKiDhw4oMjISBmNRtWsWdPh+O7du+Xn56dq1aoVXCMAACgC6LMBAMiZV4buevXq6cYbb9SQIUN08OBBzZ49W3v37lWnTp0kSR07dtSuXbs0e/ZsHTx4UEOGDFGlSpVUv359SembvXzwwQf67rvvtHfvXr3++ut67LHH8jxVDQAA5Iw+GwCAnHll6DaZTJoxY4bOnj2r6OhorVq1StOnT1eFChUkSZUqVdLUqVO1bNkyderUSXFxcZo+fbp9ilfbtm3Vq1cvjRgxQs8884xq1aqlV155xZNNAgDAJ9FnAwCQM69Z0/377787fF+5cmUtXLgw2/s3a9ZMzZo1y/Z4z5491bNnz3yrDwAApKPPBgDAeV450g0AAAAAgC8gdAMAAAAA4CaEbgAAAAAA3ITQDQAAAACAmxC6AQAAAABwE0K3lwkKNKnHqPWeLgMAAOTAz+inpfuXeroMAEAhQOj2QokpqZ4uAQAA5MJsMXu6BABAIUDoBgAAAADATfw8XQAAAEBhZU4zyyqrp8sAAHgxRroBAABcYLFatPTXpfpk3ydKNCd6uhwAgJcidHupoECTug5f5+kyAABANk5cPqELSRcUb47XzJ9nerocAICXInR7scRkNlQDAMBbHb5w2P7/p+NPe7ASAIA3I3QDAAC44NCFQ/b/P5dwzoOVAAC8GaEbAAAgj+KS4nQ+8bz9+9jEWA9WAwDwZoRuAACAPLKNcgf7BUtipBsAkD1CNwAAQB7Z1nPXLFdTkpSYmugw8g0AgA2hGwAAII9iE9Knk1cuUVnFA4tLkg6dP5TTKQCAIorQDQAAkEcpqSmSpEBToEqHlJYk/Xn+T0+WBADwUoRuAACAPLBYLUq1pl/WM8AUoNLB6aE7427mAADYELoBAADyICUtxf7//kb/q6Gb6eUAgCwQugEAAPLAFrpNBpNMRpPDSLfVavVkaQAAL0ToBgAAyANb6PY3+UuSigelb6SWYE7QlZQrHqsLAOCdCN0AAAB5YAvdAaYASZKf0c/+/+cSuV43AMARoRsAACAPbKE70BRovy3EP0TS1UuJAQBgQ+gGAADIg2unl0tSqH+oJOl84nmP1AQA8F6EbgAAgDy4dnq5dHWk+1wC08sBAI4I3QAAAHmQVei2jXSzphsAcC1CNwAAQB6Y08ySpADj1dAd7B8siZFuAEBmhG4AAIA8YKQbAJAXhG4AAIA8yHJNdwBrugEAWSN0AwAA5EGKJfvdyxnpBgBci9ANAACQBzntXn4h8YKsVqtH6gIAeCdCNwAAQB5kFbqD/YJlkEFp1jQlpiZ6qjQAgBfy83QByF2nQWsVFGjydBkAAEAZdi/PELpNRpOKBxVXXFKcEswJnioNAOCFGOkuBBKSUpWYlOrpMgAAgKTktGRJjqFbkkoHl5YkxZvjC7wmAID3InQDAADkQVbTyyWpdEh66E5IYaQbAHAVoRsAACAPsppeLl0d6U5IJXQDAK4idAMAADjJarVmO9JdJqSMJEa6AQCOCN0AAABOSk5LllXplwTLbno5a7oBABkRugEAAJwUn3I1UPsb/R2O2aeXs3s5ACADQrcXCwo0qceo9Z4uAwAA/MsWqP2N/jIYDPbb/Yx+2n9mv8N9AACQCN1eLzGFS4UBAOAtbFPHr51anvE2QjcAICNCNwAAgJNsgTqr0B3kFyTp33XfVmuB1gUA8F6EbgAAACc5E7otVouSUpMKtC4AgPcidAMAADjJtpFaVqHbz+gnoyH9rdWl5EsFWhcAwHsRugEAAJyU05pug8GgQFOgJOlyyuUCrQsA4L0I3V6AHcoBACgcthzdIinr0C1dnWLOSDcAwIbQ7QXYoRwAgMLBtlab0A0AcBahGwAAwEkpaSmSJH+Tf5bHA/3Sp5dfSblSYDUBALwboRsAAMBJttCd7Ui3iZFuAIAjQjcAAICTcgvdtpHuy8lspAYASEfoBgAAcJI5zSxJCjCyphsA4BxCNwAAgJOcHekmdAMAbAjdAAAATkqx5LyRmm1NNxupAQBsCN0AAABOSrOkSZL8jH5ZHmekGwBwLUI3AACAk9Ks6aHbaMj6LZRtTfflFDZSAwCkI3QDAAA4iZFuAEBeEboBAACcZBvpNhlMWR63renmkmEAABtCNwAAgJMsFoskyWjMeXp5clqyklOTC6wuAID3InQDAAA4KdWaKknyM2Q9vTzjpcRY1w0AkAjdAAAATrNY/x3pzmYjNYPBoEBT+rpuppgDACRCNwAAgFMsVos9dJuMWa/plq5OMWczNQCAROgGAABwijnNbP//7DZSk67uYM70cgCAROgGAABwitmSIXTnMNLN9HIAQEaEbgAAACekpKXY/9+ZkW6mlwMAJEI3AACAU2zTy40GowwGQ7b3s1+rm+nlAAARugEAAJxim16e0yi3xEg3AMARoRsAAMAJtpHunNZzSxk2UmNNNwBAhG4AAACn2NZ05zrSbWL3cgDAVYRuAAAAJ9inl+cy0s11ugEAGRG6AQAAnGCfXu7sSDfTywEAInQDAAA4xenp5f+u6b6ScsXtNQEAvB+hGwAAwAnOTi+3jXQTugEAkpeH7pMnT6pXr1666667FBUVpXnz5tmPHThwQI8++qgiIyPVsWNH7du3z+HcL7/8Ui1btlRkZKReeOEFnT9/voCrBwCgaCgq/bWzu5cHmAIkSfHmeFmsFrfXBQDwbl4duvv376+QkBAtX75c//vf//TOO+/o22+/VUJCgnr27Km6detq+fLlqlOnjnr16qWEhARJ0t69ezV06FD17dtXS5Ys0aVLlzRkyBAPtwYAAN9UVPrrvF6n22K1KMGc4Pa6AADezWtD98WLF7V792717t1bN998s1q2bKkmTZpoy5Yt+vrrrxUYGKhBgwapSpUqGjp0qEJDQ/XNN99IkhYuXKjWrVvrkUceUbVq1TRu3DitX79eR48e9XCrAADwLUWpv3Z2TbfJYJKf0U8SU8wBAF4cuoOCghQcHKzly5fLbDbr8OHD2rVrl+68807t2bNHd999twwGgyTJYDDorrvu0u7duyVJe/bsUd26de2PdeONN6pChQras2ePJ5oCAIDPKkr9daolVZJkNOb89slgMCg8IFwSoRsAIPl5uoDsBAYGasSIERo1apTmz5+vtLQ0RUdH69FHH9X333+v2267zeH+pUuX1sGDByVJZ86cUbly5TIdP3XqVJ5qSEtLy3PdtnPycq7V6viV3XFXa3KFK+3wRr7QDl9og0Q7vI0vtMMX2iBlbkdha4839NdSwfTZSeYkSekj2dZ/O2ar1SpZZf/edltoQKguJF3QxcSLbv+dFtbXTka+0AaJdngTX2iDRDu8jat9tteGbkk6dOiQWrRooe7du+vgwYMaNWqUGjZsqMTERAUEBDjcNyAgQCkp6dO+kpKScjzurJiYGJdrd/Zco9GohPgEJSQkyZJmkiwBme6TkJAoS5pJRoNRe/fulcVScJuyXM/PwJv4Qjt8oQ0S7fA2vtAOX2iDVLjb4en+WiqYPvufM/9IklJTUhUbGytJik+Ol7/RXwH+V9thTjPLlJo+BT3m9xgp758huKQwv4ZsfKENEu3wJr7QBol2eJu8tsNrQ/eWLVu0dOlSrV+/XkFBQapZs6ZOnz6tmTNn6qabbsrUIaekpCgoKEhS+qfuWR0PDg7OUw01a9aUyZTzuq1rpaWlKSYmJk/nhoSeV1KqScGBJgUHZf6VhJiNCg40yWAwqFatWnmqx1WutMMb+UI7fKENEu3wNr7QDl9og5S5HbbvCwtv6K+lgumz9+zZIx2VQoJDVKZMGUlSqDlU/kZ/+Zmu9t+pllSVSy6nvxP+VrlK5VS7Su081ZVXvvBvwRfaINEOb+ILbZBoh7dxtc/22tC9b98+Va5c2d4xS1L16tU1a9Ys1a1b1/4Js01sbKx9ilr58uWzPF62bNk81WAymVx+UeTlXIPB8Sun4wX9Ir2en4E38YV2+EIbJNrhbXyhHb7QBqnwtsMb+mupYPrsVGv6mm4/o5/DOnUZZP/edltYQJik9MuGFdTvtbC+hjLyhTZItMOb+EIbJNrhbfLaDq/dSK1cuXL6+++/HT4BP3z4sCpVqqTIyEj98ssvDuupdu3apcjISElSZGSkdu7caT/v5MmTOnnypP04AADIH0Wpv7Zdp9toyP3tky10s5EaAMBrQ3dUVJT8/f01bNgwHTlyROvWrdOsWbPUtWtXtWrVSpcuXdLo0aP1559/avTo0UpMTFTr1q0lSU888YQ+//xzffbZZ/rtt980aNAgNW/eXDfddJOHWwUAgG8pSv21/TrdxtxHN8ID2b0cAJDOa0N3eHi45s2bp7Nnz6pTp04aM2aMevfurccff1xhYWF67733tHPnTkVHR2vPnj2aPXu2QkJCJEl16tTRyJEjNX36dD3xxBMqXry4xowZ4+EWAQDge4pSf20b6c7tOt3S1ZHuyymX3VoTAMD7ee2abkm67bbb9OGHH2Z5rFatWlqxYkW250ZHRys6OtpdpQEAgH8Vlf46JS19Cr0zI91MLwcA2HjtSDcAAIA3SbWkb6TmzEh3eADTywEA6QjdAAAATmCkGwDgCkI3AACAE+wbqeVhTTehGwBA6AYAAHBCXjZSY/dyAIANoRsAAMAJrkwvv5zM7uUAUNQRugEAAJzgyvTyxNRE+wZsAICiidANAADgBPv08jyMdEtSfEq822oCAHg/QjcAAIAT8jLS7Wf0U5BfkCTpcgpTzAGgKCN0AwAAOCEva7oldjAHAKQjdAMAADjBtjbbaHDu7VN4ADuYAwAI3QAAAE6xjXT7Gf2cuj8j3QAAidANAADglLxcp1sidAMA0hG6PazHqPWeLgEAADgh3py+C7nR6NzbJ0I3AEAidHtcYgrX7gQAoDCwren2M+RtevnlZHYvB4CijNANAADgBIvVIsn5jdQY6QYASIRuAACAXFmsFnvodvaSYeGB7F4OACB0AwAA5Mq2iZrERmoAgLwhdAMAAOTCbMkQup0c6bav6U5hTTcAFGWEbgAAgFww0g0AcBWhGwAAIBcpaSmS0jdRMxgMTp0THsCabgAAoRsAACBXtunlzo5yS4x0AwDSEboBAAByYZte7ux6bonQDQBIR+gGAADIhW16eV5Gum2XDEtJS1FyarJb6gIAeD9CNwAAQC7s08vzMNId4h8ig9LXfzPaDQBFF6G7EOo6fJ2nSwAAoEixTy/Pw0j3x3s/lr/JXxKhGwCKMkJ3IZSYnOrpEgAAKFJc2UjNnGZWgClAEqEbAIoyQjcAAEAu7Gu68zC9XJI9dF9OuZzvNQEACgdCNwAAQC5SLemzzPIaugNNgZIY6QaAoozQDQAAkAtXdi+XxPRyAAChGwAAIDeEbgCAqwjdAAAAubBNLzca8/bWienlAABCNwAAQC5sI91+Br88ncdINwCA0A0AAJAL23W6XR3pvpzM7uUAUFQRuguhoECTug5f5+kyAAAoMly5TrckBfkHSWKkGwCKMkJ3IZWYnL62rNOgteo0aK2HqwEAwLfZRrqv55Jhi2MW53tdAADvl7eFSfCooECTeoxa73BbQlKqh6oBAKDoyMvu5X5GPy3dv1TS1TXdl1Mu20fLAQBFCyPdhUxiCiEbAICCZtu93NmRblvAto10x6fEu6cwAIDXI3QDAADkwtXrdAf6cckwACjqCN0AAAC5sIfuPK7pznjJMKvVmu91AQC8H6EbAAAgF/bp5Xkd6f53enmaNY013QBQRBG6C6msNlUDAADu4epIt5/RT0aD0eExAABFC6G7EGNTNQAACoar1+k2GAz2KebJqcn5XhcAwPsRugEAAHJhu063bdQ6L2xTzJPTCN0AUBQRugEAAHKR10uGZWTbwZzp5QBQNBG6AQAAcmEL3Yx0AwDyitANAACQC1d3L5cyhG7WdANAkUToBgAAyIVtIzWXRrqZXg4ARRqhGwAAIBdMLwcAuIrQDQAAkIvrmV4e4MclwwCgKCN0AwAA5OJ6RrqDTEGSmF4OAEUVoRsAACAX9tBtzPtbJ/tIN9PLAaBIInQDAADk4nqml9tGupleDgBFE6EbAAAgF9czvdw20s30cgAomgjdAAAAuWD3cgCAqwjdAAAAuciP0J2Sykg3ABRFhG4AAIBcXM+a7kC/f0O3JUVplrR8rQsA4P0I3QAAALnIj5FuSYo3x+dbTQCAwoHQDQAAkAOr1XpdodtkNMnP6CdJupx8OV9rAwB4P0I3AABADtKsV6eEuxK6pauj3VdSruRLTQCAwoPQDQAAkAPbKLeUPmrtCtu67sspjHQDQFFD6AYAAMhBxtDNSDcAIK8I3QAAADkgdAMArgehGwAAIAe20G2QwfXQ7UfoBoCiitANAACQg+vZudzGNtLN7uUAUPQQugEAAHKQL6GbkW4AKLII3QAAADmwhW6TwbWdy6UMI93sXg4ARQ6hGwAAIAf2kW6j62+bAvwCJDHSDQBFEaEbAAAgB/kxvTzIFCSJ0A0ARRGhGwAAIAf5EboZ6QaAosul3mPr1q2yWq35XQsAAIDXyc813YRuACh6/Fw56aWXXpK/v79atWqldu3aqXbt2vlcFgAAgHfgkmEAgOvhUujetGmTNm3apG+++UY9e/ZUWFiYWrdurbZt26p69er5XSMAAIDH5Pclw6xWqwwGQ77UBgDwfi6Fbj8/PzVr1kzNmjVTamqqNm/erHXr1unJJ59U+fLl1b59e0VHR6tChQr5XS8AAECBys+RbrPFrOS0ZAX5BeVLbQAA73ddG6mlpKRo/fr1+uqrr7R69WqVLFlSUVFR+uuvv9S2bVstXLgwv+oEAADwiHzZSM0UIIPSR7dZ1w0ARYtLvcd3332nl19+Wffee6+GDRum4OBgTZ8+XT/88INeffVVTZgwQS+//LImT558XcWlpKTojTfe0D333KN7771XkyZNsm/gduDAAT366KOKjIxUx44dtW/fPodzv/zyS7Vs2VKRkZF64YUXdP78+euqBQAAZM3X+2tzmlnS9W2kZjAYFGBiB3MAKIpcCt2vvvqqTCaTJk2apI0bN+r1119X3bp1He4TERGh7t27X1dxb775pjZv3qwPPvhAEydO1KeffqolS5YoISFBPXv2VN26dbV8+XLVqVNHvXr1UkJCgiRp7969Gjp0qPr27aslS5bo0qVLGjJkyHXVAgAAsubr/bV9pNt4fVdazbiuGwBQdLi0pnvz5s26cuWKLl26JJMp/VPfr7/+Wvfcc4/Kli0rSYqMjFRkZKTLhcXFxWnZsmX68MMPVatWLUnSM888oz179sjPz0+BgYEaNGiQDAaDhg4dqg0bNuibb75RdHS0Fi5cqNatW+uRRx6RJI0bN04tWrTQ0aNHddNNN7lcEwAAcFQU+uv8uGSYJPtINzuYA0DR4lLo3rVrl1544QV169ZN/fr1kyTNnz9fr732mmbNmqW77777ugvbuXOnwsLCVK9ePfttPXv2lCQNHz5cd999t33nT4PBoLvuuku7d+9WdHS09uzZox49etjPu/HGG1WhQgXt2bMnT514Wlpanuu2nePsubbLnVutV7+yuk9Ox4IDTXpq2Dp99EazPNebnby2w1v5Qjt8oQ0S7fA2vtAOX2iDlLkdha093tBfS+7ts1NSUySlr+m2XtMZW61WyapMt2d1LMiUvnnapaRL+fp7LqyvnYx8oQ0S7fAmvtAGiXZ4G1f7bJdC99ixY/X888/bO1VJWrx4sd577z299dZbWrZsmSsP6+Do0aOqWLGiVq5cqVmzZslsNis6Olq9e/fW2bNnddtttzncv3Tp0jp48KAk6cyZMypXrlym46dOncpTDTExMS7X78y5RqNRCfEJMhgMSkhIlCXNJFkCMt3PmWOJiUbt3btXFovF5Zqzcj0/A2/iC+3whTZItMPb+EI7fKENkvva4e5RY2/oryX39tl/nflLkmROMSs2NtbhWHxyvPyN/grwz9xHZzr2bxf92+HfVOZSGZfrzY4v/FvwhTZItMOb+EIbJNrhbfLaDpdC919//aVWrVplur1169aaMWOGKw+ZSUJCgv7++28tXrxYY8aM0dmzZzVixAgFBwcrMTFRAQGOnVtAQIBSUtI/iU5KSsrxuLNq1qxpnz7vrLS0NMXExDh9bkho+oYxIWajggNNCg7K/Ctx5pjBYLBP68sPeW2Ht/KFdvhCGyTa4W18oR2+0AYpczts3+eXVq1aqXr16mrbtq1at26t8uXL59tjS97RX0vu7bN/2/ebdFQKDgpWmTKOYTnUHCp/o7/8TJn76GuPhceFS/FS8XLFVbtW7TzVmh/t8Ga+0AaJdngTX2iDRDu8jat9tkuh+9Zbb9Xq1avVq1cvh9vXrVun//znP648ZObC/Px05coVTZw4URUrVpQknThxQp988okqV66cqUNOSUlRUFD6tK3AwMAsjwcHB+epBpPJ5PKLwtlz/51xJ4Ph6ldW93HmmDtewNfzM/AmvtAOX2iDRDu8jS+0wxfaILmvHT/99JPWrFmj1atXa8KECapdu7batGmjVq1aqVSpUtf9+N7QX0vu7bMt/w5Rmwwm+1R5G4PBIBmU6fasjtmuzR1vjqfPzoYvtEGiHd7EF9og0Q5vk9d2uBS6+/fvrz59+mjTpk2qUaOGJOn333/Xjh07NHXqVFceMpOyZcsqMDDQ3oFL0i233KKTJ0+qXr16maZ3xcbG2qeolS9fPsvjtk3eAAAoKkqVKqUnnnhCTzzxhM6dO6e1a9dq/fr1mjBhgurUqaN27dqpVatWLgVdqWj01/lxnW5JCjSxezkAFEUu9R5NmzbVihUrVL16dR0+fFj//POPqlWrpq+++krNmuXPZl6RkZFKTk7WkSNH7LcdPnxYFStWVGRkpH755Rf7xiRWq1W7du2y75YeGRmpnTt32s87efKkTp48eV27qQMAUNidPXtWZ8+e1alTp2SxWBQaGqpPP/1UzZs319q1a116zKLQX3PJMADA9XBppFuSbr/9dg0ePDg/a3Fw6623qnnz5hoyZIhef/11nT17VrNnz1bv3r3VqlUrTZw4UaNHj1bnzp21ePFiJSYmqnXr1pKkJ554Ql27dlXt2rVVs2ZNjR49Ws2bN/eqy48AAFAQfv31V33zzTf65ptvdPz4cd17773q3r27WrZsqdDQUEnSjBkzNHz4cD3wwAN5fvyi0F/n10i37ZJhhG4AKFpcCt2XLl3S3LlzFRMTo9TU1EyXyZg/f36+FDdhwgSNGjVKTzzxhIKDg9WlSxd17dpVBoNB7733nl577TV9+umnqlq1qmbPnq2QkBBJUp06dTRy5Ei9++67unjxoho1aqRRo0blS00AABQm0dHRqlu3rrp166ZWrVqpZMmSme5z99136+jRoy4/h6/31/l1nW7bmm5CNwAULS6F7kGDBikmJkbt27dXWFhYftdkFx4ernHjxmV5rFatWlqxYkW250ZHRys6OtpdpQEAUCi8/fbbatOmjfz9/R1uT0lJ0YYNG9SyZUvVr19f9evXd/k5fL2/zu+R7sspl6+7JgBA4eFS6N68ebMWLlyYr5eoAgAA+W/w4MFq0qRJpp3KDx48qAEDBmjv3r0eqqzwyK/QzUg3ABRNLoXu8uXLX/dmIgAAwD0WLVqkkSNHymAwyGq1qlGjRlne79577y3gygons8UsKR9HupMZ6QaAosTl6eWvv/66+vXrp8qVK2easlahQoV8KQ4AAOTdk08+qdtvv10Wi0X//e9/9e6776p48eL24waDQcHBwbrjjjs8WGXhkd9ruhPMCbJYLdcd4gEAhYNLofvFF1+UJPXs2VNSeuctpV8KxGAw6Ndff82n8gAAgCvuueceSdL333+vChUq2Ptq5F1+r+m2yqr4lHiFB4Zfd20AAO/nUuj+/vvv87sOAACQT4YMGaKhQ4cqLCxM06ZNy/G+Y8aMKaCqCi/7SLfx+ka6/Yx+MhlMSrOm6UrKFUI3ABQRLn1kW7FiRVWsWFEJCQk6cOCASpYsKYvFogoVKqhixYr5XSMAAIDH5NdItyQF+gVKYgdzAChKXBrpvnjxol566SVt375dkrRmzRqNHj1aR48e1ezZswneAAB4UMbRa0ayr1++hm5ToBLMCexgDgBFiEu9x5tvvqng4GBt3bpVgYHpn9i+9dZbuuGGG/Tmm2/ma4EAAMB18fHxmjBhgg4fPiyLxaJBgwapdu3aevLJJ3X8+HFPl1co5GfoZgdzACh6XOo9fvrpJw0YMEDFihWz31aqVCkNGTJEP//8c74VBwAArs/rr7+u9evXy2Aw6IsvvtDatWv11ltvqUyZMnrjjTc8XV6hkF+7l0vpI90S1+oGgKLEpenlkpScnJzptvPnz8vPz+WHLHJ6jFrv6RIAAD5u/fr1mj9/vm655RaNHz9eLVq0UJs2bVS9enV16NDB0+UVCqzpBgBcD5d6j3bt2mn06NE6ePCgDAaDEhIStHXrVg0fPlxt2rTJ7xp9VmJKqqdLAAD4OKvVKn9/fyUlJWnLli1q1qyZpPT9WUJCQjxcXeHgjunljHQDQNHh0rD0oEGDNGnSJEVHR8tsNuvhhx+WyWTSo48+qkGDBuV3jQAAwEUNGjTQ8OHDFRISIqPRqJYtW2rLli0aNWqUoqKiPF1eoWAP3cb8G+mOT4m/7scCABQOLoXugIAADR48WP3799fRo0eVlpamm266SaGhofldHwAAuA5vvfWWpkyZohMnTmj69OkKCwvT77//rmbNmumll17ydHmFgjvWdDO9HACKDpdCd1abpR04cMD+//fcc4/rFQEAgHwTHh6uYcOGOdzWrVs3zxRTSOX3JcMkppcDQFHiUuju2rVrlrcHBASobNmy+v7776+rKAAAkD/MZrNWrlypmJgYpaamymq1OhznOt6545JhAIDr4VLo/u233xy+T0tL0z///KNRo0apffv2+VIYAAC4fkOHDtXatWvVpEkThYWFebqcQskdu5cz0g0ARUe+XN/LZDLplltu0eDBg9WzZ08uQQIAgJf49ttvNX36dDVq1MjTpRRarOkGAFyP6//INoNz587p0qVL+fmQAADgOoSHh6t8+fKeLqNQy9fp5X7p08vZvRwAig6XRrqHDBmS6bb4+Hht3rxZrVq1uu6iAABA/ujdu7dGjx6tYcOGqXLlyvLzy5dJbkVKvl4yjJFuAChy8q3nLVGihF599VU9/PDD+fWQAADgOr3//vs6c+aM2rVrl+XxX3/9tYArKnzcMb08JS1FyanJ9jXeAADf5VLoZqdTAAAKh7ffftvTJRR6+b17uUEGWWXVlZQrhG4AKAJcCt3Tpk1z+r59+/Z15SkAAEA+qFevniTpypUr+ueff3TbbbcpJSWFnczzID9Dt8FgUIh/iOLN8bqSckWlQ0pf92MCALybS6H777//1jfffKMSJUooIiJCAQEB+u233/TPP/+odu3a9vViBoMhX4sFAAB5k5KSopEjR2r58uWSpDVr1mjs2LFKTEzUpEmTVLx4cQ9X6N0sVossVouk/AndkhQeGK54czzrugGgiHApdAcEBKh9+/Z644035O/vb7997Nixunjxot566618KxAAALhu3Lhx+vPPP7VixQp17txZkvTiiy9qyJAhevPNNzV+/HgPV+jdbKPcUv6s6ZaksID0WQZcqxsAigaXPrL9+uuv9dxzzzkEbkl67LHH9PXXX+dLYQAA4PqtXbtWQ4cOVdWqVe23Va1aVaNGjdKGDRs8WFnhkDF059tId0C4JEI3ABQVLvUe5cuX108//ZTp9jVr1uimm2667qIAAED+iI+PV3BwcKbbLRaL0tLSPFBR4eKO0M1INwAULS5NLx84cKD69++vH3/8UdWqVZMkxcTE6MCBA5o1a1a+FggAAFwXFRWlSZMmady4cfbbjh49qjfffFPNmjXzYGWFA6EbAHC9XOo97r//fi1fvlx33HGHDh06pOPHj6tevXpas2aNfZdUAADgeSNGjJCfn5/q16+vxMREdezYUffff7+KFSum4cOHe7o8r5dx5/L82iDWFrovJ7ORGgAUBS6NdEvp68GGDBmiixcvKiwsTEZj/nVGAAAgf8TFxalDhw6qUaOGqlatqr///ltNmjTRrbfe6unSCoX8vFyYTXgga7oBoChxKXRbrVbNmjVL8+bN0+XLl7VmzRpNmTJFISEhGjZsmAICAvK7TgAAkAdbtmzRmDFjdPDgQVmtVvvtBoNBX3zxhQYPHqy6det6sMLCwZxmlpS/ods+0s0lwwCgSHCpB5k+fbpWrVqlt99+2x6wO3TooE2bNjmsGQMAAAVv48aNeu6551StWjUtWLBAW7du1f79+7Vt2zbNmzdPt956q7p3765ffvnF06V6PbeMdLN7OQAUKS71ICtWrNDIkSPVokUL+5TyRo0aaezYsVq9enW+FggAAPJm+vTp6tatm8aNG6e6deuqRIkSMplMKl68uOrXr69x48apc+fOmjlzpqdL9Xq20J1f1+iW2EgNAIoal0L3uXPnVK5cuUy3FytWTAkJCdddFAAAcN1vv/2mDh065HifRx99VAcOHCigigov1nQDAK6XSz1IgwYN9MEHHzjcduXKFU2aNEn169fPl8IAAIBrkpKSVLx48RzvU7JkSZ0/f76AKiq83DnSze7lAFA0uBS6X3/9dR04cECNGjVScnKy+vTpo2bNmun48eMaNmxYftcIAADywGq1ymjMuYs3GAwOG6wha/aR7lx+nnnB9HIAKFpc2r28WLFiWrp0qbZs2aLDhw8rNTVVt9xyixo3bpyvnRIAAHDN6tWrFRYWlu3xy5cZZXWGO6aXZwzdFqslXx8bAOB9XArd7dq107Rp09SwYUM1bNgwv2sCAADXoUKFCpo7d26u97vxxhsLoJrCzZ2h2yqrEswJ9u8BAL7JpdBtNBplNpvzuxYAAJAP1q1b5+kSfIY71nQHmgLlb/SX2WLWlZQrhG4A8HEuhe7mzZure/fuatGihSpWrGi/VrdN375986U4AAAAT3LHSLfBYFBYQJguJF1gXTcAFAEuhe7ff/9dNWrU0JkzZ3TmzBmHY7brdqNgBQWa1GPUeiWlpGnBqChPlwMAgE/I79DtZ/TT0v1LZVX6JnbsYA4Avs/p0N2lSxfNnDlTxYoV04IFCySlX5IkKCjIbcUhbxJTUpWUnObpMgAA8BnuGOk2W8zyN/pLYgdzACgKnO5Bdu7cmWkd97333qujR4/me1FwXVCgSV2Hs5YPAID84I413VL6um5J+vbQt/n6uAAA73NdH9tyfU/vlJic6ukSAADwCe4Y6ZakAL/0/XASzAn5+rgAAO/DhSEBAACyYbakz/IzGvP3LZNtpDs5LTlfHxcA4H0I3QAAANlw20i3KX2kOyUtJV8fFwDgffK0e/nq1asVFnb1WpIWi0XffvutSpUq5XC/Rx55JF+KAwAA8CR3r+lmpBsAfJ/TobtChQqaO3euw22lS5fWwoULHW4zGAyEbgAA4BPcPdKdnEroBgBf53ToXreOHbEBAEDRkmZJvxQn08sBAK5iTTcAAEA23D69nJFuAPB5hG4AAIBsuH16OWu6AcDnEboBAACyYQ/d+X3JMD82UgOAooLQDQAAkA0uGQYAuF6EbgAAgGy4a023LXSnWlJlTjPn62MDALwLoRsAACAb7h7plqQrKVfy9bEBAN6F0A0AAJANsyV9FDq/R7qNBqP8jf6SpMspl/P1sQEA3oXQDQAAkA13baQmXd1MjZFuAPBthG4AAIBs2NZb5/dIt3T1Wt2EbgDwbYRuAACAbNiml+f3mm7paui+lHwp3x8bAOA9CN0AAADZcNfu5ZIU5BckSbqYdDHfHxsA4D0I3QAAANlw55ruIP/00B2XFJfvjw0A8B6EbgAAgGy4c6Q72C9YEqEbAHwdoRsAACAbto3U3LGmm9ANAEUDoRsAACAbBbKmO5k13QDgywjdAAAA2XDn7uWMdANA0UDoBgAAyIZ9pNvohpFuNlIDgCKB0A0AAJAN1nQDAK4XoRsAACAbBbF7eYI5Qcmpyfn++AAA70DoBgAAyIb9Ot1uGOkOMAXIIIMkNlMDAF9G6AYAAMiGbSM1d6zpNhgMCvZnijkA+DpCNwAAQDbcOdItsa4bAIoCQjcAAEA2bBupuWNNt0ToBoCigNANAACQhTRLmqyySnLfSDeXDQMA30foBgAAyIJtPbfknjXdEiPdAFAUFJrQ3bNnTw0ePNj+/YEDB/Too48qMjJSHTt21L59+xzu/+WXX6ply5aKjIzUCy+8oPPnzxd0yQAAFDm+1F/b1nNLrOkGALiuUITur776SuvXr7d/n5CQoJ49e6pu3bpavny56tSpo169eikhIUGStHfvXg0dOlR9+/bVkiVLdOnSJQ0ZMsRT5QMAUCT4Wn+dMXS7a023bXr5hcQLbnl8AIDneX3ojouL07hx41SzZk37bV9//bUCAwM1aNAgValSRUOHDlVoaKi++eYbSdLChQvVunVrPfLII6pWrZrGjRun9evX6+jRo55qBgAAPs0X++uMm6gZDAa3PIdtpJvrdAOA7/LzdAG5GTt2rB5++GGdOXPGftuePXt099132ztAg8Ggu+66S7t371Z0dLT27NmjHj162O9/4403qkKFCtqzZ49uuukmp587LS0tz/XaznHmXKvV8f9tX1ndLy/HrFbXas8oL+3wZr7QDl9og0Q7vI0vtMMX2iBlbkdhbY8n+2vJPX12sjlZkuRn9JM1q05YSr/dqiyPO3MsyHR1pNvV331hf+1IvtEGiXZ4E19og0Q7vI2rfbZXh+4tW7Zox44d+uKLL/T666/bbz979qxuu+02h/uWLl1aBw8elCSdOXNG5cqVy3T81KlTeXr+mJgY1wp34lyj0aiE+AT7G5GEhERZ0kySJSDTffN6LDE5VXv37pXFYnG5fpvr+Rl4E19ohy+0QaId3sYX2uELbZAKdzs83V9L7umzTyedliQZZVTs2Vgpi8Hu+OR4+Rv9FeCfuY925liSOUmSdPbyWe3evdvlNkiF+zVk4wttkGiHN/GFNki0w9vktR1eG7qTk5P12muvacSIEQoKCnI4lpiYqIAAxw4sICBAKSkpkqSkpKQcjzurZs2aMpnytoYrLS1NMTExTp0bEnp1s5gQs1HBgSYFB2X+leT1mMGUplq1auWp7mvlpR3ezBfa4QttkGiHt/GFdvhCG6TM7bB9X1h4Q38tuafPPnzhsLRfCvALUJmyZbJ8jFBzqPyN/vIzZe6jnTkWlBIknZASLAmKjIx0aRq7L/xb8IU2SLTDm/hCGyTa4W1c7bO9NnRPmzZNERERatKkSaZjgYGBmTrklJQUe2ef3fHg4OA81WAymVx+UThzbsZ+1WC4+pXV/fJyzGBQvr2Yr+dn4E18oR2+0AaJdngbX2iHL7RBKrzt8Ib+WnJPn21R+owxf5N/tmHYYDBIBmV53JljIf4hkqSUtBSlWFMU4hfiUhtyakdh4gttkGiHN/GFNki0w9vktR1eG7q/+uorxcbGqk6dOpJk75TXrFmjdu3aKTY21uH+sbGx9ilq5cuXz/J42bJlC6ByAACKDl/ur227l/sb/d32HH5GPwWaApWclqy4pDh7CAcA+A6v3b18wYIF+uKLL7Ry5UqtXLlSUVFRioqK0sqVKxUZGalffvnFvjGJ1WrVrl27FBkZKUmKjIzUzp077Y918uRJnTx50n4cAADkD1/ur82W9N3L/YzuG6MwGAwqEVRCEpcNAwBf5bUj3RUrVnT4PjQ0VJJUuXJllS5dWhMnTtTo0aPVuXNnLV68WImJiWrdurUk6YknnlDXrl1Vu3Zt1axZU6NHj1bz5s3zvBMqAADImS/31/aRbpP7RrolqWRwSZ2OP60LSYRuAPBFXjvSnZOwsDC999572rlzp/2SI7Nnz1ZISPqUrDp16mjkyJGaPn26nnjiCRUvXlxjxozxcNUAABQthb2/toVud450S1KZkPRN2mITYnO5JwCgMPLake5rvf322w7f16pVSytWrMj2/tHR0YqOjnZ3WV6t06C1kqSl4x7wcCUAgKLCl/prc5r7p5dLUung0pII3QDgqwpN6EbeJSSleroEAAAKrYIe6T6XcM6tzwMA8IxCOb0cAADA3Wwbqblz93JJKh3CSDcA+DJCNwAAQBYKfKQ7kZFuAPBFhG4AAIAs2NZ0u3v3ctuabqaXA4BvInQDAABkwX7JsAKcXm67pjkAwHcQugEAALJgW9NdUNPLk9OSFW+Od+tzAQAKHqEbAAAgCwW1pjvIL0gBpgBJbKYGAL6I0A0AAJCFggrdkhTqHyqJ0A0AvojQ7YOCAk3qMWq9p8sAAKBQs6/pduNGan5GPy3dv1Qh/iGS2EwNAHwRodtHJaakeroEAAAKNdvu5e4e6TZbzAoNSB/p5rJhAOB7CN0+LjjQpK7D13m6DAAACh3bRmru3r1cksICwiQxvRwAfBGhuwhITGbUGwCAvPLEmm6mlwOA7yF0AwAAZME2vdyda7ptbNPLGekGAN9D6AYAAMiCR0a6WdMNAD6H0A0AAJAFLhkGAMgPhG4AAIAs2C8ZVgAbqdmml8clxdmfFwDgGwjdAAAAWbDtXl4QI93BfsEyGtLflrGZGgD4FkI3AABAFuwj3QWwkZrBYFCIf4gk6WzCWbc/HwCg4BC6AQAAsmDbvbwgRrolKTwgXJJ0Jv5MgTwfAKBgELoBAACyYJteXhBruqWr67oJ3QDgWwjdAAAAWSjI3cslKSwgTBKhGwB8DaEbAAAgCwW5plu6GrrPxrOmGwB8CaG7CAgKNKnr8HWeLgMAgEKloEe6iwcWlySdjj9dIM8HACgYhO4iIjGZa34CAJAXBb2RGiPdAOCbCN0AAABZsE8vL6CN1DLuXm61WgvkOQEA7kfoBgAAyIJt9/KCGum27V6enJasS8mXCuQ5AQDuR+gGAADIQkFvpOZn9FOwX7AkdjAHAF9C6AYAAMhCQa/plq6u62YzNQDwHYRuAACALBT0mm6JzdQAwBcRugEAALJQ0JcMk66u62Z6OQD4DkI3AABAFmwbqRXUmm7JcQdzAIBvIHQDAABkgZFuAEB+IHQDAABcI82SJovVIskzG6kRugHAdxC6i5iuw9d5ugQAALyebZRbKuCN1PzTQ/exS8e0YM+CAnteAID7ELqLmMTk1NzvBABAEWdbzy15ZqQ7OS1ZCSkJBfa8AAD3IXQDAABcI+NId0GG7kC/QIX4h0iS4s3xBfa8AAD3IXQDAABcwxa6jQajTEZTgT53udBykqT4FEI3APgCQjcAAMA1zGn/Xi6sANdz29hC9xXzlQJ/bgBA/iN0FxFBgSb1GLXe02UAAFAoeOJyYbbnSzCnr+VmpBsAfAOhuwhJTGETNQAAnGHbSK2gQ7ckhfqnX6v7Sgoj3QDgCwjdHsKoMwAA3ss20m22mPVJzCcF+ty2HczZSA0AfAOh20MYdQYAwHvZ1nQbDUb7/xcUW+hmpBsAfAOhGwAA4Bq2kW6ToWB3Lpek8IBwSYx0A4CvIHQDAABcw7am22go+LdKtpHuBHOCw/XCAQCFE6EbAADgGhmv013QQvxD7M8bmxBb4M8PAMhfhG4AAIBreDJ0GwwG+w7mZ+LPFPjzAwDyF6EbAADgGrbN0zyxpluSQgMI3QDgKwjdAAAA1/DkSLckRroBwIcQugEAAK5h30jN6Jm3SrbN1M7Gn/XI8wMA8g+hGwAA4BreMtJ9Ov60R54fAJB/CN0AAADX8PSabka6AcB3ELoBAACu4S0j3azpBoDCj9ANAABwDfuabg+FbttI95n4M7JYLR6pAQCQPwjdAAAA17CNdHtqenmIf4ik9PB/IfGCR2oAAOQPQjcAAMA1PD293GQ02YM3m6kBQOFG6AYAALiGbSM1T4VuyXGKOQCg8CJ0AwAAXCMlLUWS5Gf081gNttB96sopj9UAALh+hG4AAIBrJKclS0qf5u0pYf7pofv0FaaXA0BhRugGAAC4hm2k21MbqUlXR7pZ0w0AhRuhGwAA4BrJqekj3d4wvZyRbgAo3AjdAAAA17BNL/eG0M1GagBQuBG6AQAArmGfXu7JNd0ZQneaJc1jdQAArg+hGwAA4Br23csNnhvpDvEPkclgUpo1TecTz3usDgDA9SF0F2GdBq1Vp0FrPV0GAABeJyk1SZJnR7qNBqPKhJSRJC3cs9BjdQAArg+huwhLSEpVQlKqp8sAAMDreMP0ckkqH1ZeknQh6YJH6wAAuI7QDQAAcA1vmF4uSeVD00P3lZQrHq0DAOA6QjcAAMA1bJcM85aR7ssplz1aBwDAdYTuIqrHqPWeLgEAAK/lDZcMkxjpBgBfQOguohJTWMsNAEB27Gu6DYx0AwCuD6EbAADgGrbp5Z4e6b4h7AZJ0uVkQjcAFFaEbgAAgAysVqt9ermn13TfGHajJCneHG8ffQcAFC6EbgAAgAzMFrP9/z09vbxEUAn7aPvpK6c9WgsAwDWEbgAAgAwyjih7enq5wWBQ8cDikqQTl094tBYAgGu8OnSfPn1a/fr1U7169dSkSRONGTNGycnp072OHj2qbt26qXbt2mrTpo02btzocO7mzZvVrl07RUZG6umnn9bRo0c90YQssXM4AMCX+Fp/nZSaZP9/o8Hzb5WKBRaTJJ28ctLDlQAAXOH5niQbVqtV/fr1U2Jioj7++GNNnjxZP/zwg9555x1ZrVa98MILKlOmjJYtW6aHH35Yffv21YkT6Z8AnzhxQi+88IKio6O1dOlSlSpVSn369JHVavVwq9KxczgAwFf4Yn9tG+n2M/rJYDB4tBYpQ+i+TOgGgMLIs3OmcnD48GHt3r1bmzZtUpkyZSRJ/fr109ixY9W0aVMdPXpUixcvVkhIiKpUqaItW7Zo2bJlevHFF/XZZ58pIiJCzzzzjCRpzJgxatSokbZv36769et7slkAAPgUX+yv7aHb4B1vk2yhm+nlAFA4eUdvkoWyZctqzpw59g7c5sqVK9qzZ4+qV6+ukJAQ++133323du/eLUnas2eP6tataz8WHBysGjVqaPfu3XnqxNPS0vJct+2cnM7N6gN8q/XqlzuPWa3ptWW8PatanWlHYeAL7fCFNki0w9v4Qjt8oQ1S5nYUtvZ4Q38t5W+fnZCcICl953Kr1SpZle3oe07HXT1mP/5vbcUCro50+2qf7QttkGiHN/GFNki0w9u42md7beguVqyYmjRpYv/eYrFo4cKFatCggc6ePaty5co53L906dI6deqUJOV63FkxMTEuVp/9uUajUQnxCZmmqyUkJMqSZpIsAZnOyc9jicmp2rdvnxLiE5SQkCSr1aq9e/fKYrHkqR2FjS+0wxfaINEOb+ML7fCFNkiFtx3e0F9L+dtnH7pySJJksBp05swZ+Rv9FeCfuZ+VpPjk+GyPu3rMdtxqtWrfvn2yJKb30f9c+Mf+gYUz7SiMfKENEu3wJr7QBol2eJu8tsNrQ/e1xo8frwMHDmjp0qWaN2+eAgIcO6mAgAClpKRPB0tMTMzxuLNq1qwpkylvlwpJS0tTTExMjueGhJ7PfJvZqOBAk4KDMv9K8vOYwZSmiIgIhYTGKik1vb5atWq51I7CwBfa4QttkGiHt/GFdvhCG6TM7bB9X1h5or+W8rfPTj2RKv0uBfoHqly5cvI3+svPlPVbplBzaLbHXT1mOy5JERER2m7eLh2X4sxxiqgVkWlHdV/4t+ALbZBohzfxhTZItMPbuNpnF4rQPX78eH300UeaPHmy7rjjDgUGBiouLs7hPikpKQoKCpIkBQYGZuqwU1JSVKxYsTw9r8lkcvlFkdO5We3JYjBc/XLnseAgk55/a6PD7Tm18Xp+Bt7EF9rhC22QaIe38YV2+EIbJN9oh6f6ayl/++xUa/qGp/aN1AzKdkO1nI67esx23M/opxW/rVBoQKhMBpPSrGmKTYxVxWIVnWpHYeQLbZBohzfxhTZItMPb5LUdXrt7uc2oUaP04Ycfavz48XrwwQclSeXLl1dsbKzD/WJjY+1T1LI7XrZs2YIp2suxezoAIL/5Un+dnJZ+uTOT0fNvDM0WswwGA5cNA4BCzKtD97Rp07R48WJNmjRJbdu2td8eGRmp/fv3Kynp6nU0d+7cqcjISPvxnTt32o8lJibqwIED9uMAACD/+Fp/nfGSYd6CHcwBoPDy2tB96NAhzZgxQz169NDdd9+ts2fP2r/q1aunG2+8UUOGDNHBgwc1e/Zs7d27V506dZIkdezYUbt27dLs2bN18OBBDRkyRJUqVeJyYQAA5DNf7K+TU9NHur3lkmGSFB4YLolrdQNAYeS1ofv7779XWlqaZs6cqcaNGzt8mUwmzZgxQ2fPnlV0dLRWrVql6dOnq0KFCpKkSpUqaerUqVq2bJk6deqkuLg4TZ8+Pdt1UwAAwDW+2F/bppd71Uh3ANPLAaCw8p7e5Bo9e/ZUz549sz1euXJlLVy4MNvjzZo1U7NmzdxRGgAA+Jcv9te26eXesKbbhunlAFB4ee1INwAAgCfYp5d70Uh38aDikqRjl455uBIAQF4RugEAADLwxunlJYJKSJLOxJ9RUmpSzncGAHgVQjcAAEAG3ji9PMgvyD7FnNFuAChcCN0AAAAZeOPu5ZJUqVglSYRuAChsCN2QJHUdvs7TJQAA4BW88TrdknRTsZskSf9c/MfDlQAA8oLQDUlSYnKqp0sAAMAreOOabkn6T/H/SJKOXjzq4UoAAHlB6AYAAMjANr3cm9Z0S0wvB4DCitANAACQgddOLy+ePr386CVGugGgMCF0AwAAZOCt08tta7pPXzltH40HAHg/QjcAAEAG3njJMCn9Wt0BpgBZZdXxy8c9XQ4AwEmEbgAAgAy89ZJhBoNBJYJKSGIzNQAoTAjdAAAAGXjr9HJJKhFYQhLrugGgMCF0AwAAZOCtG6lJUvGg4pIY6QaAwoTQDUlSUKBJXYev83QZAAB4nLdeMkySSgeXliRtO77Nw5UAAJxF6C7iggNN6jFqvSQpMTnVw9UAAOB53jjS7Wf009L9S1UquJQk6XzieQ9XBABwFqEbSkwhbAMAYOOta7rNFrM9dCeYE3Ql5YqHKwIAOIPQDQAA8C+r1eqVI902gX6BCvEPkST9FfeXZ4sBADiF0A0AAPAvW+CWJJPB+9Z0S1LJoJKSCN0AUFgQugEAAP5lm1oueedIt0ToBoDChtANAADwL9tIt9FglNHgnW+TSganh+4jF454uBIAgDO8szcBAADwANvlwgJMATIYDB6uJmslgkpIYqQbAAoLQjcAAMC/bNPLA02BHq4ke7bp5ccuHZM5zezhagAAuSF0AwAA/Ms2vTzQz3tDd6h/qPyN/kqzpunYpWOeLgcAkAtCNwAAwL8yTi/3VgaDwT7afSSOdd0A4O0I3QAAAP+yjXR7c+iWpBLBJSSxmRoAFAaEbmTLaOTlAQAoWmxruoP8gjxcSc5KBZWSxEg3ABQGpCpk6bHB32vI+395ugwAAApUYZheLkmlgtND96Hzh/Tp/k/5oBwAvBh/oWEXFGhS1+HrJEkJSalKSGJHVABA0VJYppeXDS0rKf2yYbbReQCAdyJ0w0FicqqnSwAAwGMKwyXDJKlYQDH5G/1ltpgVlxTn6XIAADkgdMNBUKBJPUat93QZAAB4RFJqkiTvvmSYlL6DeemQ0pKkc4nnPFwNACAnhG5kkpjCaDcAoGi6knJFkhQeEO7hSnJXJriMJOlcAqEbALwZoRsAAOBfl5MvS5LCAsI8XEnuyoT8G7oZ6QYAr0boBgAA+NfllPTQHR7o/SPdtunl5xPPe7gSAEBOCN0AAAD/so10F4rp5f+OdMclxcls4YojAOCtCN0AAAD/sq/pLgQj3aH+oQryC5JVVp1MOunpcgAA2SB0AwAA/Ms+vbwQjHQbDAb7ZmrHE457uBoAQHYI3QAAAP+yTy8vBCPdklQmND10H0046uFKAADZIXQDAAD8qzBdMkySbgi7QZJ0JP6IhysBAGSH0A0AACDJarUWqt3Lpauh+5+Ef5RqSfVwNQCArBC6AQAAJCWYE2SxWiQVjut0S1KpoFIKMAUoxZKiwxcOe7ocAEAWCN0AAAC6uomav9FfgaZAD1fjHIPBoPKh5SVJ+8/u93A1AICsELoBAADkeLkwg8Hg4WqcZwvdB84e8HAlAICsELoBAAB0defywjK13KZ8GKEbALwZoRsAAECF6xrdGd0Qmr6Z2uG4w0owJ3i4GgDAtQjdBazHqPWeLgEAAGQh4zW6l+5f6uFqnBcaEKqS/iVlsVr069lfPV0OAOAahO4ClpjC5TwAAPBGGUe6zRazh6vJm1vDbpUkbT++3cOVAACuRehGrroOX+fpEgAAcDvbRmqFbU23JN1V6i5J0g9//eDhSgAA1yJ0I1eJyY6j850GrVWnQWvt3xPKAQC+IOP08sKmVolaMhqMOnzhsP6K+8t+++KYxfb/X7BngRbsWeCB6gCgaCN0I88SklKVkHQ1iF8bygEAKIwK60ZqkhTiF6JK4ZUkST/+9aP99ozT5M1pZpnTCte0eQDwBYRu5Coo0MRoNgDA5xXmkW5JuqP0HZKkz/Z/5uFKAAAZEbrhFEazAQC+rjCv6ZakKiWrSJJOx5/WqSunPFwNAMCG0A0AAKDCPb1cSr90WIXwCpKkj3Z/5OFqAAA2hG44hSnmAABfV9inl0vSPRXukSQt+3WZ/rn4j4erAQBIhG7kAVPMAQC+zDa9vLCOdEtSxfCKurn4zbJYLZq+fbqnywEAiNANAAAgq9V6dXp5IR7plqR7b7pXkvT9ke+17dg2Wa1WD1cEAEUboRsAABR5CeYEWawWSYV3IzWbMiFlVL9ifUnS1uNb9fLal/XNn98owZzg4coAoGjy83QBAAAAnmYb5fY3+ivQFOjhaq5fg0oN1OKWFhq7cazW/71e6/9eL0kqGVRSRqNRT9V6Sn5G3gYCQEHgry0AACjy7Ou5A8NlMBg8XE3+6FS9k45cOCKT0aQdJ3boj3N/6ELSBU3bPk0/HPlBI1uMVOUSlT1dJgD4PEJ3Aek0aK2CAk2eLsOteoxK/xT9wuVkSdLScQ/Yj3Udvk4LRkV5pC4AAHJj27k8LCBMS/cv9XA1+eeGsBvUNbKrJGnG9hk6fOGwdp7cqf1n9+up5U/p0eqPql+Dfg7nLI5ZrM41O3uiXADwSazpLiAJSalKTPLt3b8TU1KVmJKqhKT0L4dj7HwOAPBi8eZ4Sek7l5stZg9Xk3dGY+5v6YL8glS9bHUt7rRYN4TeoMTURC3Zv0S/nv3V4X6Fsf0A4M0I3chWcJCfeo3emOv9ggJN9lFuAAAKo+plqyuyfKQ63NnB06XkmZ/RT5subHL6vj/9/ZM6Ve+kG8NuVHJasnp/1Vv7zuxzc5UAUHQRupGjxBTnRqidvR8AAN6oVHApffDwB3qk2iOeLsUlKakpTt/XbDEr0C9Qnap3UoXwCrqSckUvfPWCdp/a7b4CAaAII3TjuuR1hLvToLXqNGitm6oBAABZyWqdeoApQI9UfUR1K9RVvDleL379onae2Gk/vjhmcUGWCAA+i9CN65LXEe6s1nsDAAD3ym6dtr/JX++0ekf1K9ZXYmqi+q3up7/i/srxHABA3hC6AQAAirAgvyBNenCSGt3USMlpyVr1+yp9/tvnni4LAHwGobsA+OImY8G5bJ5mO277yk7X4eucug0AgILgS5cLk9I3TsupTbbjX/z+hercUEfVy1SXVVaN2jBKG/7eoFRL+uy0BXsWaMGeBQ7nMv0cAJxD6C4AvrrJWG7tsl1CLKf7ZXUpMS4vBgDwFF+cUp1bm8wWs8wWsyxWi+675T7Vq1BPkvTLqV/0/JfP6/CFwzKnmWVOM2c6DwCQO0I3nObuS4N1GrRWTw3/3v69bcSbkW8AAPImtxHu7BgMBjW8qaHG3T9OAcYA7T61W52Xdtb3R77X4QuHFZsQq5S0FIfHzjgKzug3AGTm5+kCULi4c9Q+ISlVVqtVBoMh/bn+HfFm5BsAgLy7npHoqFui9ETNJ/T3xb/1418/6vdzv+v3c7/rm0PfSJICTYEKDwzXwfMHlWhOVIXwCrJarYx+A0AWGOmGx1zPqDmj3wAAuFeJoBKa8MAEPVXzKUWUjVCJwBIyKP2D8eS0ZMUmxOrrg1/rh79+0McxH6v9J+31098/6dilY/bHYOQbABjphgddz6h5dqPfXYev04JRUS4/LgAAcFQ+rLyaVm4qSepWp5viU+L10e6PdD7xvMqEltHXB7/WmfgzOnXllE5dOaUOizuo+c3N9exdz2Y78r04ZrE61+xckM0AAI8hdMMrZDXqfe0a8k6D1kqSlo57INvHYSo6AADuYzQYtebPNSodUlrFg4qra2RXBZmCZLVadTr+tHb+f3v3HhVlgfcB/Dv3GRnlJpqgB3AtYllgURM17UWkjVpRa9/NIm+beTnq4XgrlMpo2aIgjXWtWHUpTTIPu8TG6WyaRw+vegyDFY03IW6yEBxCA5HbDHN5/+CdieEmjAzPzPD9nDOHea7ze2YYvvzmuUx9IapvV+PcjXM4d+McJrlMgt6ox/0e9+M+9X2QS+RQSBXo1HX2XbeYB2ASkXNi0012YaC93j3Ht3cOf+/2mtfysPN37vdeIBEREQHo/1xxmUQGf3d/THOdhvnT5mPvub0o/6kcP7b9iIOXD/a7nqzvshA+NRyR/pGY6z0XF5ouIAQhti6fiGjUOe1HihqNBgkJCZg9ezYWLFiAjIwMoUsa03rute75Hd9DuSL63eYxwjjglc8H2/M90Hnhg50vznPJiYhGHjPbvpiufN77CuhDuSK6VCzFlforiJ4RjX+t/BcW+S3CIr9FmOExA64KV8glcvN54Q1tDfi89HNs+3IbVuWsQsXtChiMhn7X29+54f19d/hQphERjTan3dOdkpKC4uJiHD16FHV1dYiPj4e3tzeio6OFLm3M6rnXeqD7QP9Ndn/z9NzDbbryuUopxfqkvCEdZt57HtP6TOP724Pe33pH4zxyHnJHRM6MmW1/THuze+/V7jk8UBNumsdD5YGZU2ZCZ9AhZHIIVoWuwolvT8BoNKJT14lbHbfwXeN3KLlZgrKfylCGMjyX/RyeDX4WEX4RcFe5w2g04mb7TXz/0/f48MqH+P7W9yioK0CrthUikQhKqRIFdQXQ6DR4/P7HcZ/6PiikCtS11EEiluCHlh+gkCogl8jxecnneC7kOfO3pNgKM5uIenPKpru9vR1ZWVk4fPgwgoKCEBQUhLKyMmRmZjLAHcRAh5v33Es+UGPdodVZ9Z3iRhgtlhnq+eGjcR550se1yErlIXdE5HyY2Y5toAul9WzIu/SW84hEIqhkKkyVTYWnyhPzps5D8Y/F+KbuG1Q2V+KN828g+UIyXGQuMBgNaOtqG/DxtXotLtZcBAAU1Bf0mf7p/1ruIU/LT4NCooD3eG/4ufnBz80P01ynwUPlAbVcDYlIYm7KlVIlJo6bCFeFq0WjrtFpUNtSi5qWGvzQ8gM6dB0wGA0YJxsHF6kLLtRcwO88f4cJygkYLx8PtVwNtVwNhVQxhGeUiJyRUzbdJSUl0Ol0CAsLM4+bNWsW0tPTYTAY+AmkgzM15HdrrE3zmV7vwfZImxv5Hg27UiHBf790GkqFBCq55Vulv3WZ1tGp1ff7OKZl7lZH0x0NgO4Lxq169Sw+SvyvPuezr0/K6/M4A11orr/HE+oq73zvEVFvzGznNZS94kB3czt36lxMEU/BlMlTkPVdFhraGnBHewdA98Xb3JRumOMzB51dnfAc5wl3pTvatG3Q6DVo07bhx/Yf0dTRhLauNugMOmj1WuiNeoggQqeuE0YYzY+n0WtQ1VyFquaqIW2HTCyD5zhPSMVSdHR14KeOnyzW15+8L/v+fyITy6CSqSAWidGl74KL3AUSkQQSsQRikRhSsRQtmhZ4qjyhkCqglCpxq/0WZnjMgFKq7HMzwog2bRvautrQqm013zc9llwih0zy/z/FMvN9EUQQi8QQiUQQQQSR6P+He9w3GoxoaGjA1atXIRaLIRZ130yvR3/L9V5v7/t6ox56gx46g858MxgNkIgl5vqk4u7/t3qu0/SBh+m0hN7DPcf1ZDAYcKPpBm5V3TJPN8IIo9Fovm/Sc9xg03vq/Zi96+u5Hb2H+9uunno+ds/t6Pn3sL+aev9eDmWe/thi3QaDAf+59R/Ufl/b5+96f8v1Xv9Q6h7qcjKxDI/4PgJXpeuQ1jkSnLLpbmxshLu7O+RyuXncxIkTodFo0NzcDA8Pj0GXN71YWq0WEolkWI+t1+v7LDteJYVeZ4BSIYZS3v9TPth0W0y7+7J6GPRyTBgnAXr9MRBiWwabPtjzO14lwVuf1MLNtQlqlQTb9100T/NyU+D5xLNQyCWQSrrX0996ZRJAKvl5me37LkKtkpiXNY0zzdNzmlLx8zpNjy+TdP9+AMC2/V8jbcdc80+pBJBJup9vrVYLtUqCXWmX4D5ebvE7JZV0r2/zW/+DtB1zEf+XbyyWM+ke3z1u05sXAADpCQssauiPqZ74v3yD23c0UMglEIlFFrWa9Fxv72k96fV6HPisAe8/ePf31WDrGYnlrF0/0L0dIpHI4vXo+RwM9bGHU8O91DuQ/rbD3vV+Hnpvgy2eJ2trG47euWEa7u8fGmdkb5ktg8xyHpEeUpEU0gH+ZRpsurXThrusAQYopUpIIYVcJB+Vx7RmvTAM/PyKIe6+IrrMFX8I+QO0ei1aNC0Qi8XwUHb/DsgkMou95mqpGlKx1Nyo9dSp64RULIVKpkKXvgtikRiduk6IIEJTZxPuaO+gRdOCpo4mtGha0KHv6G7OezRcXfou81XWm9ubzetWiBVwkbtALVNjvHw8AjwDUN1SDa1OC61eizZNG9RKNdq72tHU2QSt/ue81Xb9fL+lo6Xf56u1s9Vi+IfbP/Q736ioF+6hR8wNoQsYITeELmCE/EfoArpd//E6toVvG/Zy1ma2yOiEqZ6Tk4M///nPOHfunHlcTU0NoqKikJeXh/vuu2/Q5bVaLb799ltbl0lERDSg4OBgi0bUWTGziYjI0d0ts51yT7dCoeizF880rFQq77q8VCpFcHAwxGKxzS+2QURE1JPRaITBYIBU6pQR3Qczm4iIHNVQM9spE33y5MloamqCTqczPwGNjY1QKpWYMGHCXZcXi8VjYu8CERGR0JjZRETk7Jzy6iSBgYGQSqUoKioyjyssLDR/Ek5ERET2gZlNRETOzinTTKVSYfny5UhMTMS1a9dw5swZZGRkYPXq1UKXRkRERD0ws4mIyNk55YXUAKCjowOJiYk4ffo01Go11q1bh7Vr1wpdFhEREfXCzCYiImfmtE03ERERERERkdCc8vByIiIiIiIiInvAppuIiIiIiIjIRth0ExEREREREdkIm+4RpNFokJCQgNmzZ2PBggXIyMgQuqR7otVqsWTJEuTn5wtdyrA1NDQgLi4Oc+bMwcKFC5GcnAyNRiN0WcNWXV2NdevWISwsDBEREThy5IjQJd2zDRs2YPfu3UKXYZWvvvoKAQEBFre4uDihyxoWrVaL119/HQ899BDmz5+P/fv3w9Eu7ZGdnd3ndQgICMCDDz4odGnDVl9fj40bN2LmzJmIjIzERx99JHRJY4YzZbYj5zXAzLZXzGvhMbPtx73mtdQ2ZY1NKSkpKC4uxtGjR1FXV4f4+Hh4e3sjOjpa6NKGTaPRYOfOnSgrKxO6lGEzGo2Ii4vDhAkTkJmZidu3byMhIQFisRjx8fFClzdkBoMBGzZsQHBwMD777DNUV1djx44dmDx5MmJiYoQuzypffPEF8vLy8OSTTwpdilXKy8uxaNEiJCUlmccpFAoBKxq+P/3pT8jPz8ff/vY3tLW1Yfv27fD29sYzzzwjdGlD9sQTT2DhwoXmYZ1OhzVr1iAiIkK4oqy0bds2eHt7Izs7G+Xl5di1axd8fHzw6KOPCl2a03OWzHbkvAaY2faKeW0fmNn2417zmk33CGlvb0dWVhYOHz6MoKAgBAUFoaysDJmZmQ4X4OXl5di5c6fDfZJmUllZiaKiIly8eBETJ04EAMTFxeHtt992qAC/efMmAgMDkZiYCLVaDT8/P8ybNw+FhYUOGeDNzc1ISUlBcHCw0KVYraKiAg888AC8vLyELsUqzc3N+Mc//oEPP/wQISEhAIDnn38eV69edagAVyqVUCqV5uG//vWvMBqN2LVrl4BVDd/t27dRVFSEpKQk+Pn5wc/PDwsXLsSlS5fYdNuYs2S2o+c1wMy2R8xr+8DMth8jkdc8vHyElJSUQKfTISwszDxu1qxZuHr1KgwGg4CVDd/ly5cRHh6OkydPCl2KVby8vHDkyBFzeJu0trYKVJF1Jk2ahLS0NKjVahiNRhQWFuKbb77BnDlzhC7NKm+//TaWLVuGGTNmCF2K1SoqKuDn5yd0GVYrLCyEWq22+B3asGEDkpOTBazq3jQ3N+Pw4cPYuXMn5HK50OUMi1KphEqlQnZ2Nrq6ulBZWYl///vfCAwMFLo0p+csme3oeQ0ws+0R89o+MLPtx0jkNZvuEdLY2Ah3d3eLX6CJEydCo9GgublZuMKsEBsbi4SEBKhUKqFLscqECRMsDmMxGAw4fvw45s6dK2BV9yYyMhKxsbEICwvDY489JnQ5w3bp0iUUFBRg8+bNQpdiNaPRiKqqKly4cAGPPfYYoqKi8M4770Cr1Qpd2pDV1NTAx8cHOTk5iI6OxuLFi/Hee+85VJPR24kTJzBp0iSH2jtpolAosHfvXpw8eRKhoaF4/PHH8cgjj+D3v/+90KU5PWfJbEfPa4CZbW+Y1/aDmW0/RiKv2XSPkI6Ojj6f2JiGHe1N7mxSU1Px3XffYfv27UKXYrUDBw4gPT0d169fd7hPODUaDV577TXs3bvX4vAiR1NXV2d+n6elpSE+Ph65ublISUkRurQha29vR3V1NT799FMkJycjPj4eH3/8scNevMtoNCIrKwsrV64UuhSrVVRUYNGiRTh58iSSk5Px5Zdf4vPPPxe6LKfHzLZfzGzhMK/tCzPbvtxrXvOc7hGiUCj6BLVp2JH/cDm61NRUHD16FO+++y4eeOABocuxmum8Ko1Gg127duGll15ymMNyDh48iF/96lcWezIckY+PD/Lz8+Hq6gqRSITAwEAYDAa8+OKL2LNnDyQSidAl3pVUKkVrayv27dsHHx8fAN3/nJw4cQLPP/+8wNUN37fffouGhgb89re/FboUq1y6dAl///vfkZeXB6VSieDgYDQ0NOCDDz7A0qVLhS7PqTGz7RMzW1jMa/vCzLYfI5HXbLpHyOTJk9HU1ASdTgeptPtpbWxshFKpxIQJEwSubmxKSkrCiRMnkJqa6nCHdwHdF2UpKipCVFSUedyMGTPQ1dWF1tZWeHh4CFjd0H3xxRe4efOm+dxJ0z+2p06dwpUrV4Qsbdjc3Nwshn/xi19Ao9Hg9u3bDvF6eHl5QaFQmMMbAPz9/VFfXy9gVdY7f/48Zs+eDVdXV6FLsUpxcTF8fX0tmrxf/vKXSE9PF7CqsYGZbX+Y2cJjXtsXZrb9GIm85uHlIyQwMBBSqRRFRUXmcYWFhQgODoZYzKd5tB08eBCffvop9u/f75CfqAFAbW0ttm7dioaGBvO44uJieHh4OExgAMDHH3+M3Nxc5OTkICcnB5GRkYiMjEROTo7QpQ3L+fPnER4ejo6ODvO469evw83NzWFej9DQUGg0GlRVVZnHVVZWWgS6I7l27RpmzpwpdBlWmzRpEqqrqy32uFZWVmLq1KkCVjU2MLPtCzPbPjCv7Qsz236MRF4zWUaISqXC8uXLkZiYiGvXruHMmTPIyMjA6tWrhS5tzKmoqMD777+P9evXY9asWWhsbDTfHElwcDCCgoKQkJCA8vJy5OXlITU1FZs2bRK6tGHx8fGBr6+v+ebi4gIXFxf4+voKXdqwhIWFQaFQ4JVXXkFlZSXy8vKQkpKCF154QejShmz69OmIiIjAnj17UFJSgvPnz+PQoUN49tlnhS7NKmVlZQ59dd3IyEjIZDK88sorqKqqwtmzZ5Geno5Vq1YJXZrTY2bbD2a2/WBe2xdmtv0YibwWGR35yx3tTEdHBxITE3H69Gmo1WqsW7cOa9euFbqsexIQEIBjx44hPDxc6FKG7NChQ9i3b1+/00pLS0e5mnvT0NCApKQkXLp0CSqVCitXrsTGjRshEomELs1qu3fvBgC89dZbAlcyfGVlZXjzzTdRVFQEFxcXPPPMM9iyZYtDvR537txBUlISvvrqK6hUKsTGxjrcNpiEhITgvffec+jzD8vLy/HGG2/g2rVr8PDwwHPPPYc1a9Y45OvhaJwtsx0xrwFmtj1jXguPmW0/7jWv2XQTERERERER2QgPLyciIiIiIiKyETbdRERERERERDbCppuIiIiIiIjIRth0ExEREREREdkIm24iIiIiIiIiG2HTTURERERERGQjbLqJiIiIiIiIbIRNNxER0QjQarVYsmQJ8vPzh7zM5cuXsWzZMoSGhuLpp59GSUmJDSskIiIiIfKaTTcRDSgyMhIBAQHmW1BQEKKjo/HRRx/1O39tbS0CAgJQW1s7uoUSCUyj0WDHjh0oKysb8jI1NTVYv349Hn30Ufzzn/9EQEAANm/eDK1Wa8NKicgZMa+JhkaovJZaUywRjR0JCQl44oknAAA6nQ5ff/01Xn75Zbi5uWH58uUW806ZMgUXLlyAh4eHAJUSCaO8vBw7d+6E0Wgc1nLHjx9HSEgItm7dCqD7vRYTE4PKyko8+OCDtiiViJwY85pocELmNfd0E9Ggxo8fDy8vL3h5eWHKlCl48sknMW/ePJw+fbrPvBKJBF5eXpBIJAJUSiSMy5cvIzw8HCdPnuwzraCgAE899RRCQkIQExODU6dOWSz3m9/8xjysUqlw5swZNtxEZBXmNdHghMxrNt1ENGxSqRQymQyrVq1CUlISFi9ejIiICJSWllocrnbr1i1s27YNM2fOxMMPP4z9+/ebP12sr6/Hpk2bEBoaisjISBw8eBB6vV7IzSKySmxsLBISEqBSqSzGNzY2YuPGjXjqqaeQm5uLF154Abt370ZBQQGA7sPVlEol4uLiMH/+fKxevRrl5eVCbAIROSnmNdHPhMxrNt1ENGRdXV04ffo0Ll68iMWLFwMAsrOzkZqaioMHD8LFxcVi/i1btqCxsRHHjx9HWloasrOzkZmZCaPRiK1bt8LT0xOfffYZkpOTkZubi/T0dCE2i8gmMjMzMX/+fKxcuRK+vr5YtmwZVqxYgaNHjwIA2tvb8c477+Chhx7C4cOHMWXKFKxduxZtbW0CV05Ejo55TTR0o5HXPKebiAb12muvISkpCQDQ2dkJpVKJNWvWYOnSpcjKykJERARmzpwJABYXZCkpKcGVK1dw5swZTJs2DQCQmJiI9vZ2fP3116irq0NWVhbEYjGmT5+O+Ph47NmzB1u2bBn9jSSygcrKSpw7dw5hYWHmcV1dXfD39wfQfXhnZGQkVq1aBQBISkpCREQEzp49i5iYGEFqJiLHxbwmss5o5DWbbiIaVFxcnPk8FoVC0eccMB8fn36Xq6qqgpubmznAASAqKgpA9wUpmpubMWvWLPM0g8GAzs5ONDU1wd3d3RabQjSqdDodYmJisGnTJovxUml39Hp5eZkDHQDkcjl8fHxQX18/qnUSkXNgXhNZZzTymk03EQ3K09MTvr6+A05XKBT9jpfJZAMuo9PpMH36dLz//vt9po0fP374RRLZIX9/f1y5csXi/ZORkQGtVotNmzbh17/+NUpLS83TtFotampqMHXqVCHKJSIHx7wmss5o5DXP6SYim/D19UVzc7PFp4DHjh3D5s2b4e/vj7q6Onh4eMDX1xe+vr6ora3FgQMHIBKJBKyaaOTExsaiuLgY7777Lm7cuIHc3Fzs378f3t7eAIA1a9bg1KlT+OSTT3Djxg388Y9/hEKhQEREhLCFE9GYwrymsW408ppNNxHZxP3334+5c+fi5ZdfRmlpKfLz83Ho0CE8/PDDWLBgAXx8fPDiiy+itLQUBQUFePXVV6FSqfj1JeQ0fHx8kJ6ejvPnz2PJkiVIS0vD7t27sXTpUgBAaGgo0tLScOzYMcTExKCiogJHjhzBuHHjBK6ciMYS5jWNdaOR1zy8nIhsJjU1Fa+//jpWrFgBtVqNFStWIDY2FiKRCB988AGSkpLw9NNPY9y4cYiOjkZ8fLzQJRPdk56HnwHA/PnzkZ2dPeD8UVFR5nMniYiEwrymsWa081pkNH0JHxERERERERGNKB5eTkRERERERGQjbLqJiIiIiIiIbIRNNxEREREREZGNsOkmIiIiIiIishE23UREREREREQ2wqabiIiIiIiIyEbYdBMRERERERHZCJtuIiIiIiIiIhth001ERERERERkI2y6iYiIiIiIiGyETTcRERERERGRjfwf8KWkIKhg8MAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1876,12 +1876,12 @@ }, { "cell_type": "code", - "execution_count": 529, + "execution_count": 229, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABvgAAAJOCAYAAAByaAAJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACDqElEQVR4nOzdd5gV1eE/4A+9KYIoaqwRXbAAggJWFDX2ronG3mIvEWtssVfU2I2xxV4CtqgxX3uMBbF37F0sNOnt/v7gtzcsLH1ld+R9n8dH7szcc889MztzZj53ztQrlUqlAAAAAAAAAIVQv7YrAAAAAAAAAMw6AR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAOqsUqlU21WYLUWrL9Ql/n4AAABmnYAPAIBpvPjii2nfvv00/6288srp0qVLNttss5x88sl5++23q33/5Zdfnvbt2+eSSy6Z4zo8++yz2XfffWfrPSeccELat2+fe+65Z4bTatrw4cNz1lln5b777ptpfYpm6NChOfbYY9OjR4907NgxG2+8cSZMmDDd5TfccMNqt51OnTplgw02yNFHH5233nrrZ6/3Mccck/bt26dfv34/+2f90nz55ZfVrsP27duna9eu2WyzzXLWWWfl+++/r5HP++STT7L//vvn888/rzK9clv67LPPauRzqBuee+65tG/fPnvssccsLV+5H52V/7788sskNXMMAgCAuq5hbVcAAIC6q3nz5tloo43Kr0ulUkaOHJkPP/ww99xzT/r165ejjz46++23X41+7tdff5399tsviy22WI2W+3M599xz069fv5x11lm1XZUad8455+SBBx5ImzZt0qtXr7Rq1SoNG878NGLttddOmzZtyq/Hjh2bL7/8Mv/85z/zyCOP5LLLLsvGG2/8c1adGrD11luX/1359z9w4MDccssteeihh3L33Xdn6aWXnqvP2H///cvBDExPRUVF2rdvP8NlmjdvPo9qAwAAtU/ABwDAdLVu3Tp9+vSpdt6DDz6YU089NRdccEEWXXTRbLPNNuV5u+22W7bYYou0bt16jj530qRJc/S+3r175w9/+EPatm07R++fU9MbWrC26lOTXn/99STJJZdckh49eszy+w466KBql3/00UdzxBFH5KSTTsq6666bpk2b1lhdqXnV/f1PmjQp5557bm6++eaceeaZufbaa+fqMwzNyazYZJNNcvjhh9d2NQAAoM4wRCcAAHNk6623zumnn54kufDCCzNmzJjyvIUXXjjt2rXLwgsvPE/r1LZt27Rr1y4LLrjgPP3c6alr9ZkT48ePT5IsvvjiNVLepptums6dO2fo0KEZMGBAjZTJvFW/fv0ceeSRadiwYZ555pmMHTu2tqsEAAAw3xHwAQAwx7bZZpusuuqq+e677/LYY4+Vp0/v+UdPP/109ttvv6y33npZddVVs8EGG+T444/PRx99VOW9lcOCDho0KO3bt8+GG26Y5H/PBjvkkEPyyCOPpFevXunYsWO23nrr/PTTTzN95t0dd9yRLbbYIh07dsyGG26YCy+8MMOHD6+yTL9+/dK+ffscc8wx1ZZR+aynyufQtW/fPvfee2+S5OSTT67y3Lfp1WfixIm57bbbsuOOO2a11VbLaqutlh133DG33nrrNM+3q3we4tlnn52PP/44RxxxRHr06JFOnTplhx12SN++faut5/SMGTMmV199dbbeeut06tQpXbt2za677poHHnigynKVdf/qq6+STL57pn379nnxxRdn6/OqUxkWjhw5cpp5n376aU444YT07Nkzq666anr27JmTTjqpXI/qlj/22GOz7rrrZrXVVsvuu+8+3eCwcrt8+OGHc8opp6RLly7p1q1bzj///PIy33zzTU477bRsuOGGWXXVVbPmmmvm0EMPzWuvvVZtmXOyLs8///x8+OGHOfTQQ9O9e/d07do1e+21V958880kyYABA7LHHnukS5cu6dmzZ0444YQMHjy4SlmTJk3KLbfckt/97nfp3r17OnfunC233DJ9+vTJkCFDqm/4GrTAAgtkgQUWSKlUyqhRo6rMGzZsWC6//PLssMMOWX311bPqqqtm3XXXzRFHHJE33nhjmvaYehuberjOsWPH5oorrshvfvOb8n7jrLPOyogRI6osZ/3OugkTJuSee+7JXnvtlR49emSVVVZJ9+7ds8cee+Shhx6aZvkNN9wwa6yxRsaNG5fLL788m2yySVZdddWsv/76Oeuss6qt07hx43Lttddmiy22SOfOnbPxxhvn2muvzcSJE+e6/nOj8jjUvXv3dOzYMZtuumkuvPDCDB06tNrlZ2ebqdxv9u/fP4cffng6deqUNddcMzfddFOSyce0U089NZtvvnk6deqU7t27Z88995xm/wsAALPCEJ0AAMyVDTfcMG+99Vaef/75bLXVVtNd7r777ssJJ5yQhg0bZo011kjLli3zwQcf5L777su///3v3HXXXeVnLG288cZ57LHH0qxZs2y88cbT3An4/vvv5+mnn84qq6ySFVZYIRMmTJjpXXI33HBDPv7446yyyirp1atXXnnllVx33XV58sknc/vtt6dVq1Zz9P233nrrvPbaa/niiy+y2mqrZemll84yyywz3eXHjh2bAw44IC+88EJatGiRHj16pF69ennxxRdz5pln5vHHH89f//rXNG7cuMr7Pvzww/z2t79NkyZN0qVLlwwdOjSvvvpqTjzxxAwbNiz77rvvTOs6ZMiQ7Lnnnhk4cGBatWqV9dZbL2PGjEn//v3z8ssv57///W/OO++81KtXL126dMmECRPy+OOPZ9SoUdloo43SvHnzLLLIInPUTpUmTZqUd999Nw0aNEinTp2qzHv++edzyCGHZNSoUamoqMhqq62WTz75JP/4xz/y2GOP5frrr8+qq65aXv6tt97Kvvvum2HDhqV9+/bp2rVr3nrrrey9995Zcsklp1uHSy+9NN98803WWWedfP3112nXrl2S5I033sh+++2X4cOHZ9lll82GG26YQYMG5bHHHssTTzyR0047LTvvvHO5nDldl2+//XbuvPPOLLTQQunevXs++OCDvPDCC9lzzz1z4okn5s9//nPatWuXddZZJy+99FLuvffeDBw4MH379k29evWSJKecckr+8Y9/pFWrVunSpUsaNGiQ119/PX/729/y+OOP57777kuTJk3mal3NyJdffplhw4ZlueWWqzIU748//phddtkln3/+eZZaaqmsueaaGT9+fN5+++08+uijeeKJJ3LHHXekY8eOWWSRRbL11ltPs41N/Ry1I488Mp999lm6deuWX//613nppZdyyy235I033sgdd9yRBg0aVFne+p2xUqmUww8/PE888UQWWmihdO7cOU2aNMmHH36Y/v37p3///vnxxx+z5557VnnfpEmTcuCBB6Z///7p0qVL2rVrlxdeeCG33HJLXn755dxzzz3l53OOHz8+f/jDH/LCCy+kVatW6dmzZwYPHpyLL764vD5qwyWXXJJrrrkmDRo0yOqrr57WrVvntddey3XXXZdHHnkkf//736s8U3J2t5lKp5xySgYPHpz11lsvH374Ydq3b58ff/wxO+20U7777rtUVFRkgw02yLBhw/LSSy/lxRdfzGeffWYIUgAAZk8JAACm8sILL5QqKipKvXr1mumyDz/8cKmioqL0+9//vjztsssuK1VUVJQuvvji8rSNNtqotPLKK5c++OCD8rRJkyaVzjrrrFJFRUXp+OOPL0//4osvShUVFaX11luvymdVTq+oqCidfvrp5ekTJ04slUql0vHHH1+qqKgo3X333eV5ldMqKipKt956a3n6qFGjSvvvv3+poqKidMopp5Sn9+3bt1RRUVE6+uijq/2+lWWNHz9+ms+Y8nOnN/3cc88tVVRUlH7729+Wfvzxx/L0H374obTjjjuWKioqSueee255euW6qKioKP3xj38sjRw5sjzv5ptvLlVUVJTWWmut0qRJk6qt75QOO+ywUkVFRemggw4qjRgxojz9008/LW200UalioqK0s0331zlPb169SpVVFSUPv3005mWP+XyL7zwQpXpY8aMKQ0cOLD0xz/+cZrvWCqVSoMHDy517969tNJKK5UefvjhKvPuvPPOUkVFRWmjjTYqjR07tlQqTV7n22yzTamioqL017/+tbzsuHHjSieccEK5zfr27VueV7ldtm/fvvT666+Xp0+cOLE0ZsyY0nrrrVeqqKgoXXnllVXa86mnnip17NixtPLKK5fefvvt8vS5WZdHHXVUady4caVSqVQaO3ZsefnKz6/03XffldZYY41SRUVF6Y033iiVSqXSV199VaqoqChtsskmpZ9++qm87OjRo0u/+93vpvnes2vKv7MpTZo0qTRixIhS//79S9ttt12pffv2pccee6zKMmeeeWapoqKidMYZZ1RpwzFjxpQOPvjgUkVFRemkk06q8p7pbWOV09daa63Su+++W57+6aefljp37lyqqKgovfjii+Xp1u+sefTRR0sVFRWlnXbaqcp+oFQqlf7617+WKioqSr/5zW+qTK9cF+uss07pvffeK0//8ssvS927dy9VVFSUnnzyyfL066+/vtx2w4YNK09/6qmnSqusskqpoqKitPvuu89SfSv3o5dddtksf8fqjkGPP/54qaKiorTmmmuW3nzzzfL0sWPHlk466aRSRUVFafvtty9vG3OyzVTWdbXVVit9/vnnpVJp8t/NpEmTSldccUWpoqKidNFFF1Wp6+uvv15aZZVVSp06dSqNHj16lr8jAAAYohMAgLmy0EILJclMh437/vvv07Bhw7Rt27Y8rV69ejnooINyyimnZMcdd5ytz919993L/65ff+bd2u7du2e33XYrv27WrFnOPffcNGrUKPfff/80wwz+HMaOHZs77rgj9evXz0UXXVTlzsQ2bdrkkksuSYMGDXL77bdPM3xlw4YN8+c//7nK3U0777xzGjdunB9//DE//vjjDD/7q6++yr///e8suOCCufDCC9OiRYvyvGWXXTbnnHNOkuS6666ria+aPffcszycafv27dOpU6dstdVWefjhh7PVVlvluOOOq7L8Pffck6FDh2bXXXfN5ptvXmXezjvvnF69euWLL77I//3f/yVJXnnllbz33ntZeeWVc8ABB5SXbdSoUU477bS0adNmunXr3LlzlbsH69evn0ceeSSDBg1K9+7dc8ghh5TvpEqS9ddfPwcccEAmTJiQG2+8Mcncrct69erl5JNPTqNGjZIkjRs3zqabbpokWWKJJXLggQeWl1100UXTpUuXJMnnn3+eJPnhhx+SJK1bt84CCyxQXrZp06Y5+eSTc9ZZZ6Vz587T/f6zY8p12KFDh3Tt2jW777573nnnnfz5z38uD6dbaaGFFsp6662XI444okobNmnSJDvssEOSTDME58wccMAB6dChQ/n1sssuW/7c999/f5rlrd8ZGz9+fDbccMMcc8wxVfYDSfL73/8+yfTX0QEHHJD27duXXy+55JLlIZQHDhxYnn7nnXcmSc4444y0bNmyPH399dfPLrvsMkf1vuKKK6psj1P+t8Yaa8z0/ZXDZB533HFV7gRu3LhxTjvttCy33HJ5++2388ILLyTJbG8zU+rVq1f5TsB69eqlXr16+f7775Mkv/rVr6os26lTp5x11lk555xzMmnSpNlrFAAA5muG6AQAYK6MHz8+Sapc/KzOGmuskWeffTY77LBDtttuu/Iz1tq0aVMlrJsVTZs2za9//evZes/WW289zbRFFlkkHTt2zCuvvJLXX389a6211myVObvefPPNjBkzJquuumqVYeAqLb300unYsWNee+21vPHGG1Xqs+yyy04zjGjjxo3TunXrDBo0KKNHj57hZ7/00ktJkrXXXrtKaFCpe/fuWXTRRfPtt9/m888/n+Ewo7Ni7bXXrhKyjRs3Lj/88EPefvvt/POf/8yoUaNy8cUXp1mzZklSfrZfjx49qi1vvfXWy5NPPpkXX3wxW265Zfn79OzZc5plmzRpknXXXTf3339/tWVNGVBU6t+/f5Jks802q/Y9W2yxRS6//PLycnOzLpdZZplphp2tfL3iiitOM+Rk5fCzY8eOLS/TqlWrvPrqq/n973+fLbbYIuutt16WW265dOzYMR07dqz2O8yJqf9uRo8ena+++irvv/9+zjrrrPz444857LDDyvOrG2Jw2LBhGThwYJ599tkkk7eF2dG1a9dppi2xxBJJMs0zNBPrd2a23HLLbLnlllWmjRkzJh9//HFeffXVJJOfPThx4sRp6rraaqtNU17ljzYq90GDBg3KZ599lrZt21YJZitttNFGueWWW2a73pVDOFdn6mFdpzZhwoS88sorqV+/fn7zm99MM79hw4bZZJNNcu211+bFF1/MWmutNdvbzJSq+97dunXLHXfckbPPPjtvvPFGevXqlbXWWisLLLBAtttuuxnWHwAAqiPgAwBgrgwdOjTJ/+7km56zzz47hxxySN5+++1cfvnlufzyy8vPZtpxxx2z5pprzvJnLrjggjMNFKc2vWeyVQYFgwYNmq3y5sR33303w7okyVJLLZXXXnutvGylKe+CmVLlM69mdufHrH72999/n++++26uA76DDjqo2rDuxx9/zKGHHponnngi559/fk477bQkyTfffJMkVcKi6nz77bdJ/vd9prwjdEpLLbXUdMuo7nmLM2ufyvIq766am3VZ3d9K5fY8o3mVmjVrlksvvTTHHHNMXnnllbzyyitJJodOG220UXbZZZfZDsCnp0+fPtVOf/vtt7P//vvn8ssvz/LLL58tttiiPO+LL77I7bffnpdffjmffvpphg0bVuV7lEql2apDdc/XrAyeqtvurd+ZGzFiRO6666785z//yUcffZTvv/8+pVKpSl2qW0/V7Yem3gdV7ksXW2yxaj97Rn+bM7LJJpvM8TPqhg4dmvHjx09zV2R19aq80252t5kpVbeet9xyy7z11lu56aab0rdv3/Tt2zcNGzZMly5dsvnmm2fHHXdM06ZNZ//LAQAw3xLwAQAwV957770k1d81M6XFF188ffv2zUsvvZQnnngizz33XAYOHJgHHnggDzzwQPbdd98cf/zxs/SZszIk59SaNGkyw/mVw+nNyMSJE2f7c6c0K8FG5Wc0bty4yvTZDTTnxPQ+uya1adMmJ598cnbcccf069cvp556aurXr1/+7F69ek33AnySrLDCCklm3h5T33k0pereO7N1UxleVG4nc7MuKwORubHmmmvmsccey1NPPZWnn346L7zwQr744ovcdNNNue2223LJJZdUe6dSTVlllVXyhz/8Ieeff37+8Y9/lAO+f/7znzn++OMzYcKELL300llrrbWy/PLLZ9VVV02pVMqhhx462581u3/v1u+MffDBB9lrr73y448/pnXr1uXhc9u3b58ePXpkgw02mO57Z2U/NLNlaqJ9ZtecrM/Z3WamNL1t9vjjj8/uu++e//u//8t//vOfvPLKK3nppZfy0ksv5ZZbbskdd9yR1q1bz7SuAACQCPgAAJhLTz31VJLJQzLOTL169dK9e/d07949yeS7ufr27ZtLLrkkN954Y/bYY49pnk9UU6a+y6bSV199leR/d/JVXpit7s6g6oYDnB2Vd5tVfmZ1vvjiiySThw+tSbPy2ZXP3arpz57aiiuumGTykISDBw/OIosskrZt2+bTTz/NnnvuOUvbUuXdQV9//XW186e3vqdnZu1TuV4qhx2tzXVZqWnTptlss83KQwh+9NFHueaaa/LAAw/kggsu+FkDvuR/YWvl3ZcjR47MqaeemlKplCuvvDIbb7xxleUrn59YG6zf/znjjDPy448/Zv/990/v3r2rhOGVd1vOjZr+26wJrVq1SqNGjTJs2LCMGDGi2h8RzO42MPXys2rJJZfM3nvvnb333jvjx4/P888/nzPPPDOffPJJ7rjjjhxyyCGzVR4AAPOv2f/pMwAA/H8PP/xwPv744yy++OIzvOvjww8/zNZbb53999+/yvQ2bdrkgAMOSPv27VMqlcpDu/0cd6v95z//mWba119/nTfffDMtWrTIKquskuR/z3L68ccfp1n+9ddfr7bsWa3vqquummbNmuWdd94pXxye0ueff5533nknzZs3r9HnqCXJ6quvnnr16uW///1vRowYMc38F154IYMHD85SSy31s4WslT799NMkkwOMyuEUu3XrliR5+umnq33PBRdckO222y533313kpSfefb4449Pc2flxIkTy897m1WVn/+vf/2r2vmPPPJIkpTD6dpclw888EB+85vf5KqrrqoyvV27djn11FOT/C90+zl99tlnSf4Xjn/wwQcZOXJkKioqpgn3kpTXyewO0VkTrN//ee2115JMHkZ36jtd//vf/5b/PbNhf6enbdu2WWGFFfLjjz/m5ZdfnmZ+5Y9C5qVGjRqlS5cumTRpUrVB84QJE/LYY48l+d9zQGd3m5mZP/7xj+nRo0eVwLBRo0bp2bNn+Tm0lUMQAwDArBDwAQAwRx599NGccsopSZKTTz55hsM6Lrfccvnuu+/y7LPPTnOx9K233spHH32U5s2bl+8IqhxOc9SoUXN8kXlq9913X5ULuyNGjMhxxx2XiRMnZrfddit/ZocOHZIkAwYMyNtvv11e/ttvv82FF15YbdmV3/2nn36aYR2aNWuW3/3ud5k0aVKOPvroDB48uDxv8ODB6d27dyZNmvSzPIup8vldI0aMyLHHHpuRI0eW533xxRc5+eSTk6R8ofnnMmLEiJx99tlJki222KI8XN/OO++c5s2b59Zbb81DDz1U5T1PPPFEbr755rz33nvlMKVTp05ZffXV88knn+SCCy4obyeTJk3K+eefX74bcVZtvvnmadu2bfr375+rr766Sgj1zDPP5LrrrkuDBg3y+9//PkntrssVV1wxn3/+eW6++eZ8/PHHVeY98MADSSa3T6Xx48fno48+ykcffZTx48fXSB0+/vjjXHvttUmSrbfeOkmy8MILJ0k++eSTKvUqlUq54447yuHs2LFjq5RV+bc3s7+fuWH9/k/lenr88cerTH/ppZdy5plnll+PGzdujr/D3nvvnSQ55ZRTqjzfdMCAAbnxxhvnuNy5sddeeyWZ/GOBKfft48ePz+mnn57PP/88HTp0yOqrr55k9reZmVl00UUzdOjQXHDBBVXadsyYMeVj05Rh8eDBg/PRRx9N905IAAAwRCcAANM1ZMiQHHPMMeXXkyZNyk8//ZT3338/gwYNSoMGDXLKKafMdKi4hg0b5swzz8wRRxyRI488MqusskqWWmqpDBkyJC+//HImTpyYE088MQsuuGCSyRegW7ZsmeHDh2eXXXbJMssskz59+szVd+ncuXMOO+ywdOnSJYsuumheeumlDBkyJN27d8/hhx9eXm6ZZZbJJptskn//+9/Zeeedy3eKvfjii1lhhRVSUVGRgQMHVil7ueWWS5JcddVVefXVV7PttttWewdTkvTu3TvvvPNOXnrppWy88cbluz/69++fkSNHpkePHlXavCadccYZ+fTTT/PEE09ko402yhprrJHRo0enf//+GTduXLbaaqvyRfC5dc011+See+4pvy6VShk+fHheeeWVjBgxIsstt1yV77nYYovl/PPPT+/evdO7d+9ceeWVWX755fPNN9/krbfeSpKceOKJWWmllcrvOffcc7PnnnvmpptuylNPPZUOHTrkvffey2effZbOnTtP947L6jRr1iyXXnppDjjggPzlL3/Jfffdlw4dOmTQoEF59dVX06BBg5x00klVgpXaWpcrrbRS9txzz9x8883Zeuut07Vr17Ru3TqfffZZ3nvvvTRv3jx/+tOfyssPGjSo/Iy8xx9/PEsttdQsf9bU9Z80aVK+++67vPrqq5kwYUI23njjbLfddkkm/+1suOGGeeKJJ7Lddtule/fuadKkSd555518/fXXWWGFFfLhhx/mhx9+qFLmsssum48//ri8bzj22GOz9NJLz2HrVM/6/Z999tkn5557bo4//vjcddddWXTRRfP555/n3XffTatWrbLooovm+++/z/fffz/D52HOyE477ZQXXngh//znP7PZZptlrbXWyqhRo9K/f/906tQpr7766hyVOzc23njj7Lvvvrnhhhvy29/+Nquvvnpat26d119/Pd9++22WXHLJXHLJJeVhmudkm5mRQw45JE8++WT+9a9/5eWXX86qq66aJHnjjTfy448/Zo011si2225bXv62227LFVdcke7du+eWW26p+QYBAKDwBHwAAEzXqFGj8uCDD5Zf16tXL82aNctSSy2VjTfeOLvttlvatWs3S2Vtsskmuf7663PTTTflzTffzPvvv5+WLVumZ8+e2WuvvcpBWjL5OXh9+vTJ+eefXx4ib26fDXX00Ufntddey5133pm33nqr/Bykfffdd5q7D/v06ZNrr702Dz74YJ5//vksssgi2W233XLYYYdln332mabs3//+93nvvffy+OOP55lnnkm7du2mG/A1bdo0N9xwQ26//fY88MADeeGFF9KgQYOsuOKK2WGHHfLb3/62fIG5prVp0yZ33XVXbrrppjzyyCN55pln0qxZs3Tp0iW77LJLOSSoCc8991yV1w0aNMiCCy6YFVdcMRtuuGF23XXXacKDTTbZJH379s11112XF154IU899VTatGmTXr16ZZ999ikPnVdp2WWXzT333JOrrroqTz75ZJ588smssMIKueqqq/L222/PVsCXJF27ds29996ba6+9Nv/5z3/y+OOPp3Xr1tliiy2yzz77THMhvzbX5Z/+9Kcsv/zyuffee/PWW29l/PjxWWSRRbLjjjvmoIMOyjLLLFMjnzPl338yeUjBVq1aZe21185WW22VrbfeusoQtZdcckmuv/76PPTQQ+nfv38aNGiQ5ZZbLr///e+z1157ZaeddsrAgQPz1ltvlQOOE088MSNHjswbb7yR5557Lh9//HGNB3yJ9Vtp7733ziKLLJKbbrqpvC5+9atfZY899sgf/vCH/O1vf8stt9ySJ598Mr/+9a/n6DPq1auXPn36pFu3brnzzjvz3//+NwsttFD23Xff7LDDDtl8883nuP5z4/jjj88aa6yRW2+9NW+99VbGjh2bpZZaKgcffHD22WefLLTQQlWWn91tZkZat26d22+/PVdffXX+85//5Nlnn02jRo2y3HLLZd99982ee+45wzvhAQBgavVKtfEABAAAAOaZIUOGZM0118zzzz9fHqKRXw7rFwAA5j+ewQcAAPAL98wzz2SJJZZI69ata7sq/AysXwAAmP8I+AAAAH7Bhg0blgsuuCCnnHJKleE0+WWwfgEAYP5kiE4AAIBfuJEjR6ZFixa1XQ1+JtYvAADMfwR8AAAAAAAAUCCG6AQAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAACgjimVSrVdBQAAAOowAR9QxR577JH27dtX+W+NNdbInnvumf79+9fIZ7Rv3z6XX355jZQFAFDbarL/9O233+aAAw7IV199VZ624YYb5oQTTqjpagMA/CKccMIJ0/TFpvzvX//6l/4U8IvUsLYrANQ9K6+8cv785z8nSSZOnJghQ4bkjjvuyH777Zd+/fplxRVXrOUaAgDULTXVf3ruuefy9NNP/5xVBQD4xVl00UVzxRVXVDtvueWWm7eVAZhHBHzANBZYYIGsttpqVaatvfbaWWuttdKvX78cf/zxtVMxAIA6Sv8JAKD2NG7ceJq+GMAvnSE6gVnSrFmzNGnSJPXq1StPe+yxx7LDDjukY8eOWWeddXLWWWdl1KhRVd7Xv3//7LzzzuncuXM23XTTPPfcc1Xmf/nll2nfvn1uvPHGbLbZZuncuXP69u2bJHnzzTez3377pUePHunatWsOOuigfPDBB1Xe/9133+VPf/pT1l9//XTq1Ck77bRTHn/88SrLtG/fPnfccUdOOOGErL766unevXvOOuusjBkzJueff37WXHPN9OjRIyeddFLGjh1bft9///vf/O53v0uXLl3SrVu3HHzwwfnoo49qpD0BgF++qftPEydOzLXXXputttoqnTp1ymqrrZZddtklL7zwQpKkX79++dOf/pQk2WijjaoMIzV+/PhccMEFWWeddbLaaqtl3333zWeffVaef8IJJ2SvvfbKn//853Tt2jVbbLFFJk6cmLFjx+bKK6/MZpttlo4dO2aTTTbJtddem0mTJlWp68MPP5wddtghXbp0yTrrrJNTTz01w4YNK8+//PLLs9lmm+X//u//stVWW6Vjx47Zdttt8+qrr+a1117Lb3/723Tq1ClbbbVVnn/++fL7xowZk9NOOy09e/bMqquums022yzXX399zTc2AMBs+Omnn3Luuedm4403TseOHbPVVlvlH//4R5VlJk6cmNtuuy1bb711OnXqlA022CB9+vSpcu1oen0w15SAecEdfMA0SqVSJkyYUP730KFD8/e//z3jxo3LjjvumCR58MEHc8wxx2TrrbfOH//4x3z11Ve55JJL8uGHH+bGG29MvXr18vbbb2fffffNmmuumcsuuyxffvllevfuXe1nXn755TnppJOywAILpHPnznnhhRey//77p0ePHjnnnHMyduzY/PWvf80uu+ySu+++O+3atcsPP/yQnXbaKU2aNMlRRx2V1q1bp1+/fjn00ENzwQUXZJtttimXf+GFF2arrbbKFVdckSeffDJ///vf8+yzz6ZDhw7p06dPXnvttVx++eX59a9/nf333z9ffPFFDjnkkOy4447p3bt3hg8fnosvvjgHHHBA/u///i/16/t9BADwP7PSf+rTp0/uuOOOHH300Wnfvn0GDRqUK6+8MkceeWSeeuqpbLDBBjn44INz9dVX54orrkj79u3L5T/88MNZd911c9555+WHH37Iueeem6OOOir9+vUrLzNgwIA0adIkV155ZUaNGpX69evnoIMOymuvvZbDDjssHTp0yIsvvpi//OUv+eKLL3LmmWcmSa666qpcdtll2XXXXXPUUUfliy++yKWXXprXXnstd999d5o2bZpk8vMBzzvvvBx11FFp3rx5zjzzzBxxxBFp1KhRDjrooCyxxBLl+U899VSaNm2ac845J88++2yOP/74LLLIInnmmWdywQUXpFWrVuV2AQCoCZV9sSk1aNCgyo/Vk8k/QNp1113z448/5ogjjsiSSy6Zxx57LCeddFJ++OGHHHTQQUmSU089Nffff3/+8Ic/ZI011sg777yTK6+8Mu+++26uu+66crlT98G+/vpr15SAeULAB0zjpZdeyiqrrDLN9N69e6ddu3YplUrp06dP1ltvvfTp06c8f7nllsvee++dp59+OhtssEH++te/pk2bNrn66qvTqFGjJEnr1q1z1FFHTVP25ptvXuUiz+GHH55ll1021157bRo0aJAkWXfddfOb3/wml112WS699NLceOONGTx4cB599NEsueSSSZL1118/e++9dy644IJstdVW5U7TCiuskDPOOCNJ0r1799xzzz0ZP358+vTpk4YNG2bdddfNo48+mldeeSVJ8sYbb2TMmDE58MADs9hiiyVJFl988Tz++OMZNWpUFlhggbluZwDgl2Nm/adk8sgDRx11VPbYY4/y/CZNmuTwww/P+++/n9VWWy3LLLNMkmSllVbKUkstVV5uscUWy1VXXVXuU3322We5+uqrM2LEiHK/ZMKECTnjjDOy+OKLJ0mefvrpPPfcc7n44ouz5ZZbJknWWWedNG3aNJdeemn23HPPtG3bNldffXV+97vf5dRTTy1/XkVFRXbbbbf07ds3u+22W5Jk9OjR+fOf/5yePXsmST788MNcdNFFOfvss7PTTjslSUaNGpUjjjgin3zySVZaaaX0798/66yzTvnze/TokebNm6dNmzZz2+QAAGVfffVVtX2xo48+OgcccECVaf369cvAgQNz5513pkuXLkmS9dZbLxMmTMhVV12VXXbZJT/88EP+8Y9/VHn/Ouusk7Zt2+a4447LM888k/XXXz/JtH2whx56yDUlYJ4Q8AHTWGWVVXL66acnmfwL9OHDh+eZZ57JJZdcklGjRmWbbbbJt99+mwMPPLDKr6O6deuWBRZYIP/973+zwQYb5OWXX06vXr3KF6KSZJNNNikHdlNaaaWVyv8eNWpU3nzzzRx22GFVlm3ZsmV69eqVp59+Osnk4T+7dOlSDvcqbbPNNvnTn/6Ujz/+OCussEKSlDtsyeRfb7Vu3TqrrLJKGjb8326wVatW+emnn5IknTt3TpMmTbLTTjtls802S8+ePdOjR4906tRp9hsUAPjFm1n/6aijjspFF12UJBk8eHA+/vjjfPbZZ3nyySeTJOPGjZth+Z06darSp6oM/4YPH16+SNSqVavyhaVkcl+pYcOG2WyzzaqUtc022+TSSy9N//79s9RSS2XcuHHZaqutqiyzxhprZMkll0z//v3LAV+SdO3atfzvRRZZJMnkflOlVq1aleuVTA707rzzznz77bdZf/31s/766+fQQw+d4XcFAJhdiy66aK6++upppk/ZN6rUv3//LLnkklWuFSWT+0j/+Mc/8vrrr+err75KkvKPlCptueWW+dOf/pQXX3yxHPBN3QdzTQmYVwR8wDRatGiRjh07Vpm27rrrZtSoUbnuuuuyzjrrJElOP/308oWsKX333XdJkmHDhqV169ZV5jVs2HCaaUnSvHnz8r9/+umnlEql8kWjKS2yyCLlEG7YsGFZeumlq10m+d+FpSTV/jpqys+c2lJLLZVbb7011157bf7xj3/k5ptvTsuWLbPrrrvmj3/84zTDOwAA87eZ9Z/23HPPfP311zn99NPz5ptvplmzZllhhRXyq1/9KsnkUHBGpu63VI5SMOWz9Fq0aFFlmcq+2NQ/rlp00UWTTO5zVT5nb2b9rkrV9amaNWs23XqfdNJJWXzxxfPAAw/kzDPPzJlnnpkuXbrktNNOS4cOHab7PgCA2dG4ceNp+mLTM2zYsHJ/aEpTXk+q7CNNvVzlda0p+0hT98FcUwLmFQEfMMtWXXXV3HPPPeXXxx13XLp37z7NcgsttFCSyb9g+uGHH6rMK5VK5U7S9Cy44IKpV6/eNO9Nku+//778y/CFFloo33//fbXLJKk2SJwdnTp1yhVXXJFx48bl5Zdfzl133ZVrrrkmHTp0yOabbz5XZQMA84fK/tNHH32Uww8/PO3bt89DDz2U5ZdfPvXr18/TTz+dRx999Gf57IUWWihDhgzJxIkTq4R8lT/Gat26dbnf9sMPP2T55Zev8v7vv/++2h9TzY7GjRvn4IMPzsEHH5yvv/46Tz75ZK666qocffTReeihh+aqbACAObHQQgvls88+m2b6lNeTKgO877//vsrIUePHj8+QIUNmes3JNSVgXvBET2CWvfHGG2nQoEGWX375tGnTJl9++WU6duxY/m+xxRbLRRddlHfeeSdJstZaa+WZZ57J6NGjy2X85z//yfjx42f4Oc2bN8+qq66aRx55JBMnTixP/+mnn/LUU09l9dVXTzJ5SNBXX321PGxCpQceeCCLLrpoll122Tn+rjfddFN69eqVcePGpXHjxllrrbVy5plnJkm+/vrrOS4XAJi/VPafmjRpkqFDh2bPPffMCiusUL4D75lnnknyvzvxKqfXhO7du2fChAn517/+VWX6Aw88kCRZffXV07lz5zRu3Dj//Oc/qywzYMCAfP3111WG5JxdY8aMyaabbpobbrghSfKrX/0qu+22W7bcckv9KQCg1nTr1i1fffVVXn311SrTH3jggTRq1CidOnUq/6B96h8kPfTQQ5k4cWL52lR1XFMC5hV38AHTGDFiRF577bXy63HjxuWJJ55I3759s/POO2eRRRbJUUcdlVNPPTUNGjRIr169Mnz48Fx11VUZNGhQ+aHGhx56aB577LHst99+2X///TN48OD85S9/qfL8mOk5+uijs99+++WAAw7IrrvumvHjx+faa6/NuHHjys9t2WefffLAAw9k7733zmGHHZZWrVrlvvvuywsvvJBzzjlnri6QrbnmmunTp08OPfTQ7L777mnQoEHuvPPONG7cOL169ZrjcgGAX6aZ9Z+WX375LLDAArnmmmvSsGHDNGzYMI8++mj+8Y9/JEn5B1EtW7ZMkvzf//1fevbsmXbt2s1xnSqf93LyySdn0KBB6dChQ/r375+//e1v2X777cvPKj7ggANy5ZVXplGjRunVq1e+/PLLXHrppVlhhRWy/fbbz/HnN23aNKusskquuOKKNGrUKO3bt88nn3ySe++9N5tuuukclwsAMDd22GGH3H777Tn00ENzxBFHZKmllir32w477LC0bNkyLVu2zPbbb5/LLrsso0ePTrdu3fLuu+/miiuuSI8ePbLeeutNt3zXlIB5RcAHTOOdd97JzjvvXH7dpEmTLLPMMjnqqKOy3377JUl++9vfpkWLFrnuuuty1113pXnz5unatWv69OlTHsppueWWy6233przzjsvRx11VNq0aZPjjz8+55133kzrsNZaa+XGG2/MZZddlt69e6dx48ZZY401cv7552fFFVdMMnkc9DvuuCMXXXRRzjrrrIwfPz4dOnTIVVddlY022miu2qBDhw655pprcuWVV6Z3796ZOHFiVl111dxwww3TDF8FADCz/lOjRo1y1VVX5YILLsiRRx6ZFi1aZKWVVsqtt96aP/zhDxkwYEA23HDD9OjRI2uvvXYuuuiiPP/887n22mvnuE716tXLX//611x22WW56aabMnjw4Cy11FLp3bt39tlnn/Jyhx9+eBZZZJHceuutueuuu9KqVatsttlm+eMf/zjDZxbPijPOOCN/+ctfcsMNN+T7779PmzZtstNOO+XII4+cq3IBAOZUs2bNcsstt+Siiy7KpZdemhEjRmT55ZfP2WefnZ122qm83Nlnn51ll102ffv2zd/+9re0bds2e+65Zw455JAZ/qjcNSVgXqlXmtnT3AEAAAAAAIA6wzP4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAF0nBWFnr11VdTKpXSqFGjn7s+AAB1wvjx41OvXr106dJlrsrRjwIA5jf6UQAAc2Z2+lGzdAdfqVRKqVSapeXGjRs3S8syfdpx7mnDmqEda4Z2rBnasWZox1k3q/2feVVOkdjOqqddqqddqqddpqVNqqddqqddqjev2qVo/SjbS91nHdV91lHdZv3UfdZR3VcX+1GzdAdf5S+lOnbsOMPlRo0alXfffTcrrLBCmjdvPksVYFrace5pw5qhHWuGdqwZ2rFmaMdZ9+abb9ZIObPaj/olsZ1VT7tUT7tUT7tMS5tUT7tUT7tUb161S9H6UbaXus86qvuso7rN+qn7rKO6ry72ozyDDwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACaVjbFaiLvvvuuwwfPnyO39+yZcu0bdu2BmsEAEBtmtv+YZKMGTMmX3/9dZo0aZKmTZvWUM3mnD4rAPzP0KFD8/HHH9eJYzTTqmv9KKY1ZsyYDB06tLarATBfEfBNZeDAgTn22GMzadKkOS6jUePGuebqq10wAQD4Bfjuu+9y0MEHZ/y4cbVdlRqlzwoAk/3www+54oorM2HC+NquChRaw4aNsuKKK2aZZZap7aoAzBcEfFP56quvMmnSpDRepGMaLrDEbL9/0rjhGfP1Cxk+fLiLJQAAvwDDhw/P+HHj0vRXa6Z+45a1WpdJY4dnzDcvpOkSa6Z+kzmviz4rAPzP8OHDM2HC+DpxrKd6NdUH4uczZf8SgHlDwDcd9Ru1SINmC9d2NQAAqCPqN25ZZ/qH9ZvUnboAwC9FXTrWUz19IAD4n/q1XQEAAAAAAABg1gn4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAL5RQZ8w4YNq+0qzLWRI0fWdhUAgPnUL6EvBXPK9g8AAEB16lpu84sL+L799tvsueee+fbbb2u7KnNs0KBB6dOnTwYNGlTbVQEA5jO/hL4UzCnbP8D8afDgwUmSSeNH1XJNAIC6qi7mNr+4gG/EiBGZNGlSRowYUdtVmWMjR45MqVSqc2kwAPDL90voS8Gcsv0DzJ9Gjx49+R+TJtRuRQCAOqsu5ja/uIAPAAAAAAAAfskEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABRIw9quQKWtt956mmkPPvhgLdSk2Oa2HR966KFcc8015dcHHXRQttxyy9mqwxdffJHDDjsskyZNSv369XPFFVdk6aWXnuX3Dxs2LCeeeGKGDBmS1q1b55xzzslCCy00y+8fPXp0rr/++nz00Udp165d9t9//zRr1my2vsPEiRPzzjvvZPDgwVl44YWz8sorp0GDBrNVBgA1z/65eqNHj85NN92Ur7/+Or/61a+y9957z/axD5h7NXVOUxPlnHbaaXn55ZfLr1dfffWcdtpps1XGkUcemY8//rj8evnll8+ll146W2UkyauvvppTTz21/PqMM85Ily5dZquMd999N8cdd1z59QUXXJCVVlpptusyt+cqSfL999/n8MMPz5gxY9K0adNcfvnlWXTRRWe7LiNHjswll1ySb7/9NosvvniOOuqotGjRYrbKGDZsWE444YT8+OOPadOmTc4777zZOneqNG7cuDzyyCP55ptvssQSS2TzzTdP48aN53kZNVlOXVETfZea6v+MGzcuDz30UN577718/PHH2XbbbQvdtgAA87s6EfBVdwJbOV3IN+vmth2re/8111yTa665ZpbXw9RlTJo0KYccckiSWbsosccee2To0KHl1z/99FN23333tGrVKrfccstM33/WWWflxRdfLL/+6KOP8u9//zs9evTIySefPEvf4bnnnsv111+f7777rjytbdu22W+//bL22mvPUhkA1Dz75+pNfex77bXX8vDDD8/WsQ+YezV1TlMT5VRXxssvvzzXZXz88cc18n0qw765qUtl2Dc3dZndc5Uk2X777TNhwoTy65EjR2bfffdNw4YNc++9985yXXr37p0PPvig/Pqzzz7LLrvskhVXXDEXX3zxLJUx9bnTl19+OVvnTpVuvPHG3HfffZk0aVJ52g033JDtttsu++yzzzwroybLqStqou9SU/2fqdu2f//+ufXWWwvbtgAA1IEhOqd3Ajur85lsbttx6vlt27adrfdPvUyjRo2y2267pVGjRrNcxpQnqO3bt89ZZ52V9u3bJ0mGDh2aPfbYY4bvr7zA2bBhw2y77bY5/PDDs+2226Zhw4Z58cUXc9ZZZ830Ozz33HM577zzstxyy+XCCy/M3XffnQsvvDDLLbdczjvvvDz33HMzLQOAmmf/XL0pj3077bRTrr322uy0006zdewD5l5NndPURDl1pYzqlltjjTXmui4dO3ac67rMyblKUjXca926dY466qi0bt06STJhwoRsv/32s1SXynCvXr166dWrVy677LL06tUr9erVywcffJDevXvPtIwpz51WWGGF7LHHHllhhRWSzNq5U6Ubb7wx/fr1S8uWLXPYYYfl5ptvzmGHHZaWLVumX79+ufHGG+dJGTVZTl1RE32Xmur/TNm2BxxwQI4++ugccMABhW1bAAAmq9WAb+qTqAcffLD834yWo6q5bceHHnqo/O9jjz02Dz74YK6//vo8+OCDOfbYY6tdbmpffPFF+d9//etf069fv+yyyy7p169f/vrXv1a73JSGDRtWPkG944470qdPn3Tu3Dl9+vTJHXfckWTyieqwYcOqff/o0aPLFzjvuuuu7LrrrmnTpk123XXX3HXXXeULnaNHj57ud5g4cWKuv/76dOvWLSeddFI6dOiQZs2apUOHDjnppJPSrVu33HDDDZk4ceJ0ywCg5tk/V2/qY99ee+2VJZZYInvttdcsH/uAuTdlH7tevXpV+uL16tWrdrmZlbPwwgvnrrvuymmnnZa77rorCy+88CyVM+UQnFtssUWVumyxxRbVLje1I488svzvtdZaq0oZa621VrXLVefVV18t//vss8/Ogw8+mD//+c958MEHc/bZZ1e73NTefffd8r8vuuii3HXXXdlxxx1z11135aKLLqp2uerM7blKMnlYzspw7+9//3tuvvnmbLjhhrn55pvz97//PcnkkO/777+fYV1GjhxZDvfuvvvu9O7dO7/+9a/Tu3fv3H333eWQb+TIkdMtY+pzp7PPPjvt2rXL2WefPUvnTpXGjRuX++67L61atcqNN96YTTfdNK1bt86mm26aG2+8Ma1atcr999+fcePG/axl1GQ5dUVN9F1qqv8zddtutNFGWXDBBbPRRhsVsm0BAPifOjFEZzLtkCgPPvjgXAV7Mzo5m5FBgwbN8WfWxOcnyVdffTXH752TdpzymXs9e/asMq9nz5658MILy8tN73l8hx12WJLJv4b91a9+VWXer371qzRq1Cjjx4/PYYcdlvvvv3+a95944olJJt+5t8ACC1SZt8ACC6SioiIDBw7MiSeemCuvvHKa9990001Jku222y6NGzeuMmxO48aNs+2226Zv37656aabcvDBB1f7Hd5555189913OfbYY1O/ftXsu379+vntb3+bY489Nu+88840vxwG4Odj/1y9qY99U5rVY9+MzE1fZsyYMfn666/TpEmTNG3adI7LqSvmpi3qurrw3erS9jK37fHAAw9M83pOzmn+/ve/Z9SoUVVez0o5Uz5zb+q/+4MPPjgPP/zwNMtNbcpn7lX20ad8XVmPKZerzpTP3OvUqVOVeVO+PvXUU6c7POaUz9yrqKio0iYVFRVVlpvREJtze66SJIcffniSyXfuTRm4JpMD2datW2fIkCE5/PDDc+edd063LpdcckmSZIMNNphme2/atGnWX3/9PPXUU7nkkkumO8zy1OdOU7bLrJw7VXrkkUcyadKk7L777mnYsOqlgYYNG2a33XbLlVdemUceeSTbbrvtz1ZGTZZTV9RE36Wm+j9Tt+2UQV4R2xao+7766qta79MxrbrU56Z61lHdNze5zc+lzgR8NW1Wn1vwS/38OTH1sJyVFl544QwePHiG760cx/93v/tdtfO333773H333VWepTClIUOGJMl0h5LZddddc9ppp5WXm9rXX3+dJNlkk02qnb/xxhunb9++5eWqU/kdl1122WrnL7PMMlWWA2DesH+uXk0c+2akiH0ZZp/1zM9t6mE5K3Xu3Dmvv/76LJXRq1evaqevu+66efbZZ2f6/rk9V0kmX3BJkr333rva+bvttluuuOKK8nLT8+2335Y/szrbbrttnnrqqfJy1Znbc6dK33zzTZKke/fu1c7v1q1bleV+rjJqspy6oib6LjXV//mltS1Q911xxRW1XQWA+cYvNuDr3bt3ll566dl+34ABA3LbbbfV2ucnyUcffVQrB8MpH9o9pVm5YFq/fv1MmjQpd999d3bZZZdp5lc+cH7qXx5Wat26dX766afccsst6dy58zTzb7/99vJy1fnVr36V1157Lf/+97+z1157TTP/scceKy83PZW/xP3ss8/SoUOHaeZ//vnnVZYDYN6wf65eTRz7ZmRu+jJjxozJJ598kl//+te/iF8efvHFF7/YIGxu1nNNqUvbyy95XdeWAQMGVDt9VsO9JHnyySerfS7drIR7ydyfqyST764bOXJkbrrppmy44YbTzK88h5zZNrz44ovns88+y7333lvtd6q8g3DxxRefbhlze+5UaYkllkiS9O/fP5tuuuk081966aUqy/1cZdRkOXVFTfRdaqr/80trW6DuO+yww9KuXbvargZTqUt9bqpnHdV9tZXbzEidCfi23nrrKsOqzO1z95ZeeunyQ8ZnR00NUzSnn59kpr/6nJE5aceDDjqoPEznM888U2WYzmeeeabKctNzxRVX5JBDDsn48ePz9ddfV7mY+PXXX2f8+PHl5apzzjnnZPfdd8/777+fESNGVBmmc8SIERk4cGB5uersvffeefjhh3Pffffl97//fZV548aNK58oT+8Xt0my8sorp23btrnnnnty0kknVTnBnzRpUu65554stthiWXnlladbBgA1z/65elMf+6YcpnNWj30zMjd9mVGjRmXs2LFZfvnl07x58zkqg3ljbtZzTfklbS/bbLNNlWE6t9lmmzkqZ6+99srVV19d5fWsWH311cvDb1599dVVhumcsrzVV199umUsv/zy5eE3zznnnCrDdE7ZF19++eVnWJczzjijPEznG2+8UWVYzjfeeKPKctNzwQUXlIfpHDhwYJZaaqnyvMrzg8rlZmRuz1WS5PLLL8++++6bIUOGZPDgwVVClcGDB5fvlrv88stnWJejjjoqu+yyS5566qkccsghVS7ejBkzJk8//XR5uemZ+txpyuPirJw7Vdp8881zww035NZbb81GG21UZWjMCRMm5LbbbkuDBg2y+eab/6xl1GQ5dUVN9F1qqv8zddtOqYhtC9R9Sy65ZK33L5nWL6nP/UtlHdV9c5Pb/FxqNeCb+vlw0wujZvQ8Bea+HbfccstywHfhhRfmwgsvrHZYzuk9fy9JlV9+H3jggWnUqFG233773HvvveUT5qmXm9JCCy2UVq1aZejQofn973+fioqK7Lrrrrn99tvLJ6itWrXKQgstVO37mzVrlh49euTFF1/MzjvvnC222CLLLLNMbrvttjz88MOZMGFCevTokWbNmk33OzRo0CD77bdfzjvvvJx99tn57W9/m2WWWSaff/557rnnnrz00ks54YQT0qBBg+mWAUDNs3+u3tTHvm233TYbb7xxHnvssdx///2zdOwD5t6UffFSqTTH5zRTljN48ODsvPPOs13OaaedVi7j4YcfLj9zr7rlpufSSy8tl/H8889P9/tceuml0y0jSbp06VL+90knnZSk+mE5p1xuaiuttFL530cffXR52rvvvjvd5aozt+cqSbLoooumYcOGmTBhQvbaa6+0bt06u+22W2677bZyuNewYcMsuuiiM6xLixYtsuKKK+aDDz7I7373u6y//vrZdtttc//99+fpp59OqVTKiiuumBYtWky3jKnPndq1a5c111wzt9xySz766KMkMz53qtS4ceNst9126devX/bZZ5/stttu6datW1566aXcdtttGTp0aHbYYYdpnvNa02XUZDl1RU30XWqq/zN12/72t7/NggsumMceeyz33HNP4doWAID/qfU7+KYOp6qbz8zNbTtO/f6pw71ZWQ9TljF+/Pjcfffds1XGLbfckj322CNDhw7NwIEDq1x4aNWqVW655ZYZvv/kk0/OWWedlRdffLHKL6eTpEePHtN9SP2U1l577Zxwwgm5/vrrc+yxx5anL7bYYjnhhBOy9tprz7QMAGqe/XP1pjz29e3bN3379i3Pm9VjHzD3auqcpibKqStlVFfO1OHenNRl6nBvTuoyJ+cqyeShPLfffvtMmDAhQ4YMqXLHX8OGDctDfc7MxRdfnN69e+eDDz7IU089laeeeqo8b8UVV5ylYWKnPHf66KOPysFeMmvnTpX22WefJMl9992XK6+8sjy9QYMG2WGHHcrzf+4yarKcuqIm+i411f+Zsm3/9re/lacXtW0BAJis1gO+ZPonkMK92TO37fjggw/moYceKt/Nl0welnNGd+5VV8YXX3yRww47LJMmTUr9+vVzxRVXzPKzXW655ZYMGzYsJ554YoYMGZLWrVvnnHPOmemvTyudfPLJGT16dK677rp89NFHadeuXfbff//Zunth7bXXTo8ePfLOO++Uh99ZeeWV57s7QwDqGvvn6lUe+2666aby0HN77723O/dgHqupc5qaKOfBBx/MaaedVh6uM5k8LOeM7tyrrowjjzyyPFxnMnlYzpnduVddOa+++mp5uM5k8rCcM7pzr7oy3n333fJwncnkYTlndudedeXMzblKMjnk+/7773P44YdnzJgxadq0aS6//PKZ3rk3tYsvvjgjR47MJZdckm+//TaLL754jjrqqBneuTe1ynOnE044IT/++GPatGmT8847b5bPnSpV3jH3yCOP5JtvvskSSyyRzTfffLbu6KqJMmqynLqiJvouNdX/qWzb+++/P++99146dOiQbbfdtrBtCwBAHQn4EmFeTZnbdtxyyy1nK9CrztJLL11+7s+cWGihhar8YnN2NWvWLPvtt1/efffdrLTSSnN0gbNBgwbp2LHjHNcBgJ+H/XP1mjVrVuVZW0DtqKlzmgcffDCjRo0q92fn5BkcsxPmTc/shnnT06VLl7lum5VWWil33XXXXLVJMvfnKsnk4TrvvPPOuSojmTxc59zeab3QQgvloosumut2ady4cbbddtu5qktNlFGT5dQVNdF3qan+T+PGjbPllltm+eWXz0orrSTcAwAouPozXwQAAAAAAACoKwR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAArkFxfwLbDAAqlfv34WWGCB2q7KHGvRokXq1auXFi1a1HZVAID5zC+hLwVzyvYPMH9q1qzZ5H/Ub1i7FQEA6qy6mNv84nouiy++eG6++eYstNBCtV2VObbYYovlmGOOyWKLLVbbVQEA5jO/hL4UzCnbP8D8aeGFF06S1G/UvJZrAgDUVXUxt/nF3cGX5BdxQl6XUmAAYP7yS+hLwZyy/QMAAFCdupbb/CIDPgAAAAAAAPilEvABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKpGFtV6CumjR+ZCaOHjz77xs3/GeoDQAAta0u9PMmjR1e5f9zXE4d+C4AUNc4PtZdNdUH4ufj7wdg3hPwTWXJJZdM/fr1M+6HNzPuhzfnqIxGjRunZcuWNVwzAABqQ8uWLdOoceOM+fqF2q5K2Zhv5r4u+qwAMFnLli3TsGGjOnWsp3o10Qfi59OwYSP9S4B5SMA3lYqKivztb3/L8OFz/quTli1bpm3btjVYKwAAakvbtm1zzdVXz1X/MEnGjBmTTz75JL/+9a/TtGnTGqrdnNNnBYDJFllkkRx22KFZbLHF6sQxmmnVtX4U0xozZkwGDRqURRZZpLarAjDfEPBVo23bti52AABQVhP9w1GjRmXs2LFZfvnl07x58xqqGQBQE1q1auUYXYfpR9V9lesIgHmnfm1XAAAAAAAAAJh1Aj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACgQAR8AAAAAAAAUiIAPAAAAAAAACkTABwAAAAAAAAUi4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBABHwAAAAAAABQIAI+AAAAAAAAKBABHwAAAAAAABSIgA8AAAAAAAAKRMAHAAAAAAAABSLgAwAAAAAAgAIR8AEAAAAAAECBCPgAAAAAAACgQAR8AAAAAAAAUCACPgAAAAAAACiQeqVSqTSzhV555ZWUSqU0btx4hsuVSqWMHz8+jRo1Sr169WqskvMb7Tj3tGHN0I41QzvWDO1YM7TjrBs3blzq1auXrl27zlU5s9qP+iWxnVVPu1RPu1RPu0xLm1RPu1RPu1RvXrVL0fpRtpe6zzqq+6yjus36qfuso7qvLvajGs5KgbNa2Xr16s1XF69+Ltpx7mnDmqEda4Z2rBnasWZox1lXr169GumwzY8dc9tZ9bRL9bRL9bTLtLRJ9bRL9bRL9eZVuxStH2V7qfuso7rPOqrbrJ+6zzqq++piP2qW7uADAAAAAAAA6gbP4AMAAAAAAIACEfABAAAAAABAgQj4AAAAAAAAoEAEfAAAAAAAAFAgAj4AAAAAAAAoEAEfAAAAAAAAFIiADwAAAAAAAApEwAcAAAAAAAAFIuADAAAAAACAAhHwAQAAAAAAQIEI+AAAAAAAAKBAaiTgmzRpUi677LKst956WW211fKHP/whX3zxRU0UPV8ZNGhQ2rdvP81//fr1q+2qFcZf//rX7LHHHlWmvfvuu9l9992z2mqrZcMNN8zNN99cS7Urhura8OSTT55mu9xwww1rqYZ119ChQ3PqqaemZ8+e6dq1a37/+99nwIAB5fnPP/98dthhh3Tu3DmbbbZZHnrooVqsbd01s3bcZ599ptkep95mSX788ccce+yxWXPNNdOlS5cccMAB+eijj8rz7RuZF6o7psyPZrZfm1/NbD9F8sknn6RLly7OB+JcaXruu+++bLHFFunYsWO23HLLPPLII7VdpVr14osvVrudtG/fPhtttFFtV69WTZgwIZdeeml69eqVLl26ZLfddstrr71W29WqFbPSPxkyZEiOPvrodOvWLd27d8/pp5+e0aNHz6MaMivr6IEHHqj2b/3LL7+cR7Wcv8xuf/bLL7/MgQcemK5du2bdddfNX/7yl0ycOHEe1nj+M7vr6Oqrr672b4ifz+ye/zgWzXuzu47qwrGoYU0UctVVV+X222/Peeedl8UXXzwXXnhh9t9//zz44INp3LhxTXzEfOG9995LkyZN8thjj6VevXrl6QsuuGAt1qo4brvttvzlL3/JGmusUZ42ZMiQ7LPPPtlwww1z+umn57XXXsvpp5+eFi1aZMcdd6zF2tZN1bVhkrz//vs56KCDsvvuu5enNWjQYF5Xr87r3bt3vv/++1x88cVp06ZNbrnlluy333659957UyqVcuCBB2afffbJhRdemKeeeirHHXdcFl544ay11lq1XfU6ZUbtuPzyy+f999/Paaedlo033rj8nkaNGtVijeumQw89NJMmTcq1116bFi1a5NJLL83ee++df//73xkzZox9Iz+76R1T5kcz26/Nr2a0n2rWrFltV6/WjR8/Psccc0xGjRpV21WpE5wrTev+++/PSSedlBNPPDHrrbdeHnroofTu3TuLL754unTpUtvVqxVdunTJs88+W2Xaa6+9lsMPPzyHHHJILdWqbrj66qtzzz335LzzzsvSSy+dv/3tb9l///3z8MMPp23btrVdvXlmVvsnRxxxREaPHp2bbropw4cPz0knnZRRo0bl/PPPn0c1nX/N6jp6//33071791x88cVVpi+88MI/Z/XmW7PTnx0/fnz222+/LLfccrnzzjvz+eef56STTkr9+vVzxBFH1NI3+OWb3XOO999/P9tuu22OPfbYWqjt/Gl2z38ci+a92V1HdeJYVJpLY8eOLXXp0qV02223lacNGzas1KlTp9KDDz44t8XPV6699trS1ltvXdvVKJxvv/22dOCBB5ZWW2210mabbVbafffdy/Ouueaa0rrrrlsaP358edpFF11U2mSTTWqjqnXWjNpw0qRJpdVWW63073//uxZrWPd9+umnpYqKitKAAQPK0yZNmlTaeOONS3/5y19Kp5xySmmnnXaq8p7evXuX9t1333ld1TptZu34ww8/lCoqKkpvv/12Lday7hs6dGipd+/epffff7887d133y1VVFSUXn/9dftGflYzOqbMj2a2X5tfzWw/xeT98p577lmqqKgo9e3bt7arU+ucK1U1adKkUq9evUrnnXdelen77rtv6ZprrqmlWtU9I0eOLPXq1at0wgkn1HZVat0222xTOvfcc8uvf/rpp1JFRUXp0UcfrcVazTuz0z955ZVXShUVFaUPP/ywPO0///lPqX379qVvv/12XlR3vjS7fcj999+/dOaZZ86j2s3fZrc/++CDD5ZWXXXV0tChQ8vT7rzzzlLXrl1LY8eOnSd1nt/MyTnH5ptvXrrxxhvnUQ2Z3fMfx6J5b07OUevCsWiuh+h87733MnLkyCp3oLRs2TIrr7xyXnrppbktfr7y/vvvp127drVdjcJ5++2306hRozzwwAPp3LlzlXkDBgxI9+7d07Dh/25WXXPNNfPpp5/mhx9+mNdVrbNm1Iaff/55Ro0aNV/fYTArWrdunWuvvTYdO3YsT6tXr17q1auX4cOHZ8CAAdPcqbfmmmvm5ZdfTqlUmtfVrbNm1o7vv/9+6tWrl1//+te1WMu6b6GFFspFF12UioqKJMngwYNz0003ZfHFF88KK6xg38jPakbHlPnRzPZr86uZ7afmdy+99FLuuuuunHfeebVdlTrDuVJVn3zySb766qtsvfXWVaZff/31OfDAA2upVnXPNddck9GjR+f444+v7arUujZt2uTJJ5/Ml19+mYkTJ+auu+5K48aN06FDh9qu2jwxO/2TAQMGZNFFF62yz+nevXvq1auXl19++eeu6nxrdvuQjgvzzuz2ZwcMGJBVVlklCy20UHnammuumREjRuTdd9+dJ3We38zuOho3blw+/fRT1/rmodk9/3Esmvfm5By1LhyL5nqIzm+//TZJssQSS1SZ3rZt2/I8Zs3AgQPTunXr7Lbbbvnkk0+y7LLL5uCDD07Pnj1ru2p12oYbbjjd58F9++235T/KSpXDj3zzzTdZZJFFfvb6FcGM2nDgwIFJkltuuSXPPPNM6tevn549e+aoo46ar4dEmlrLli2z/vrrV5n26KOP5rPPPsuJJ56Ye++9N4svvniV+W3bts3o0aMzZMgQw4j8fzNrx4EDB2bBBRfMGWeckf/+979p3rx5NttssxxyyCGGhJ6OU045JXfffXcaN26cq6++Os2bN7dv5Gc1o2PK/Ghm+zWq30/Nz4YPH57jjjsuJ5988jTnWPMz50pVffLJJ0mSUaNGZb/99ss777yTpZZaKgcffLB98P9XeVHm6KOPTqtWrWq7OrXupJNOypFHHpmNNtooDRo0SP369XP55ZdnmWWWqe2qzROz0z8ZNGjQNPvfxo0bp1WrVvnmm29+juqR2VtHw4YNy6BBgzJgwIDcfvvtGTJkSDp16pRjjz3Wj0F/BrPbn/3222+rvf6RTD7f9CPAmje76+jDDz/MxIkT8+ijj+bss8/O2LFj061btxx77LHz1bDNtWVWzn8ci2rXrKyjunIsmus7+Cof7Dj1hdUmTZpk7Nixc1v8fGPChAn5+OOPM2zYsBx++OG59tprs9pqq+WAAw7I888/X9vVK6wxY8ZUu20msX3OooEDB6Z+/fpp27Ztrrnmmpxwwgl59tlnc8ghh2TSpEm1Xb0665VXXsmf/vSnbLLJJtlggw2q3RYrX48bN642qlgIU7fjwIEDM3bs2HTq1CnXXXddDj744Nxzzz05+eSTa7uqddZee+2Vvn37Zquttsqhhx6at99+274RatHU+zWq30/Nz0477bR06dJlmjuz5mfOlaY1YsSIJMnxxx+frbbaKjfccEPWWWedHHLIIfNtm0zt9ttvz4ILLpidd965tqtSJ3z44YdZcMEFc+WVV+auu+7KDjvskGOOOcbdNNUYPXp0tT8edJ2r7vjggw+SJKVSKeeee27+8pe/ZOzYsdl1112NSDIPzKw/63yz9s1sHVX+mL9Zs2a59NJLc/bZZ+fjjz/OnnvumTFjxszj2s5/ZuX8x7Gods3KOqorx6K5voOvadOmSSZfoK78dzJ5h13dgwepXsOGDfPiiy+mQYMG5XZcddVV88EHH+T666+fZmg/Zk3Tpk2nCU8qd4Lz+6/DZ9XBBx+cXXfdNa1bt06SVFRUZNFFF83vfve7vPnmm355VY3HHnssxxxzTLp27Zo+ffokmXwAnnpbrHxtX1m96trxjDPOyPHHH18e6qOioiKNGjXKUUcdleOOO86dZ9WoHEbg7LPPzuuvv55bb73VvhFqSXX7NarfT5177rm1XKvacd9992XAgAF58MEHa7sqdYpzpWk1atQoSbLffvtl++23T5KstNJKeeedd3LjjTfOl20ytfvuuy/bbbddlesU86tvvvkmRx99dG666aasscYaSZKOHTvmww8/zOWXX56rrrqqlmtYt1TXV04m95f1leuGNdZYI88//3xat26devXqJUmuuOKKbLDBBunXr18OOOCAWq7hL9es9Gedb9auWVlH2223XXr27FllNKkVV1wxPXv2zBNPPJEttthiXlV3vjQr5z+ORbVrVtZRXTkWzfUdfJW3in733XdVpn/33XdZbLHF5rb4+UqLFi2mOflYccUVM2jQoFqqUfEtvvji1W6bSWyfs6h+/frlcK/SiiuumCSG4a3GrbfemsMPPzy9evXKNddcU/6V2hJLLFHttti8eXNDnVZjeu3YsGHDKuP4J7bH6gwePDgPPfRQJkyYUJ5Wv379rLDCCvnuu+/sG6EWTG+/Nr+a2X5qftW3b9/8+OOP2WCDDdKlS5d06dIlSfLnP/85+++/fy3XrnY5V6qq8ng99ZDbK6ywQr788svaqFKd8t577+WLL75wJ+z/9/rrr2f8+PFVns2UJJ07d85nn31WS7Wqu6rrK48bNy5Dhw41dF0dsvDCC5cvqCaTfzi71FJLzbfHhXlhVvuzzjdrz+ycc0z9qJi2bdumVatWrq38TGb3/MexaN6bk3PUunAsmuuAr0OHDllggQXy4osvlqcNHz4877zzTrp16za3xc83Pvjgg3Tt2rVKOybJW2+9Nd2HODJz3bp1y8svv5yJEyeWp73wwgv59a9/nTZt2tRizYrjuOOOy957711l2ptvvpkkts2p3H777TnzzDOz22675eKLL65yK/0aa6yR/v37V1n+hRdeSNeuXVO//lzvin9RZtSOe+yxR/70pz9VWf7NN99Mo0aNstxyy83jmtZdP/zwQ3r37l1liK7x48fnnXfeSbt27ewbYR6b0X5tfjWz/dT8qk+fPnn44Ydz3333lf9LkiOOOCJnn3127VauFjlXmtYqq6ySFi1a5PXXX68yfeDAgfPNM9VmZMCAAWnTpk06dOhQ21WpEyqfhfX+++9XmT5w4EB96Gp069Yt3377bZXws/JcbvXVV6+tajGFu+66Kz169MioUaPK00aMGJFPP/10vj0u/Nxmpz/brVu3vPPOO+XhpJPJ55stWrSwX/4Zzc46uuSSS7LpppumVCqVp3355ZcZMmSIv6Gfyeye/zgWzXuzu47qyrForq8qN27cOLvvvnv69OmTxx9/PO+9916OOuqoLL744tlkk01qoo7zhXbt2mX55ZfPGWeckQEDBuSjjz7Kueeem9deey0HH3xwbVevsHbccceMGDEiJ510Uj788MP069cvN910Uw488MDarlphbLrppnn++edzxRVX5PPPP8/TTz+dE088MVtttdV8fQFuap988knOOeec/OY3v8mBBx6YH374Id9//32+//77/PTTT9ljjz3yxhtvpE+fPvnoo49yww035F//+td8/2v8qc2sHTfddNPcf//9ueOOO/LFF1/k4YcfzgUXXJD99tsvCyywQG1Xv86oqKhIz549c9ZZZ+Wll17KwIEDc8IJJ2T48OHZ+/+1d/dRNWf7H8DfRYWJCnk2cZlTVKcHKabLLbpTQwyJsYgIjSRUc6ciyW0YSQ09oDSYboyM8jDMzFozVq4m5enKw8TgTkx5PF1K96KH0/79YfX9OXoSKYf3a62zVt/93d/v3vv7bZ3zOXt/z96zZvG9kagFNfa+9rZq7H3qbdW9e3cYGRmpvACgS5cub/UT7/yuVFu7du0wd+5cJCQk4ODBg/jjjz+wadMmZGdnY/bs2a1dvVaXn58PY2Pj1q7Ga0Mul2PIkCEICgpCbm4url27hvXr1yMnJ4dTGQJQKpVQKBTSulMWFhawtraGv78/zp07h9zcXISFhWHChAlv9Xtxa3r2Ho0cORLV1dX47LPPcOXKFZw/fx5+fn7o3Lkz3NzcWrm2b57G4tmKigooFAppOkEnJycYGhpiyZIluHTpEn7++WfExMTAy8uLD7q9Ik29R3/9619x48YNhIeHo6CgACdPnoSfnx+sra0xYsSIVm7Nm6mx7z/8LGp9Tb1Hr8tnkYZ4eqj+BSmVSsTExCAjIwOPHz/G0KFDERYWhj59+jRHHd8axcXFiI6ORlZWFh48eIDBgwfj008/lebIp8YFBwfjxo0b+Mc//iGlnTt3DqtWrUJ+fj4MDQ3h5eUFDw+PVqzl662ua/jDDz8gKSkJv//+Ozp27Ihx48ZhyZIlb/30Yk/bvHkzvvzyyzr3TZw4EWvWrMHRo0cRFRWFa9euoU+fPvDz8+O85s94nuu4Y8cO7NixA4WFhdJ6kN7e3vwl5DPKysoQHR2Nn3/+GWVlZbCxsUFwcLA0pSnfG6kl1PWZ8rZ5nve1t1Vj71P0hLGxMb744ou3vsOS35Xqtm3bNqSmpuLOnTsYMGAA/Pz84OTk1NrVanXz5s2Drq5uve+/b6PS0lKsX78eR44cQWlpKWQyGQICAmBra9vaVWtxz8YnRUVFGD16tMp77X/+8x+sXLkSWVlZ0NHRgYuLC0JCQvgduIU8zz369ddfER0djXPnzkEIAXt7e4SEhEhLCVHzaSyenThxImbOnImUlBTY2dkBAK5fv46VK1fi1KlT0NPTg7u7O/z8/Pi9/RV5kXuUk5ODDRs24LfffoO2tjZGjx6NoKCgWsuiUPNp6PsPP4teD029R6/DZ1GzDPARERERERERERERERERUcvgYxNEREREREREREREREREaoQDfERERERERERERERERERqhAN8RERERERERERERERERGqEA3xEREREREREREREREREaoQDfERERERERERERERERERqhAN8RERERERERERERERERGqEA3xEREREREREREREREREaoQDfERERERERNRkQojWrgIREREREdFbiwN8RC1oxowZGDx4MM6fP1/n/lGjRiE4OLhF6hIcHIxRo0a1SFlNUVVVheDgYFhZWcHa2hq5ubm18hw/fhzGxsYqLzMzM4wePRpr167Fo0ePmqUucXFxMDY2bpZzERERUdMxdmpca8VO3377LSIjI6XtjIwMGBsbo6io6KXaQ0RERK8XxmONe554rKioqFY89vTL1dUVAGMqImqatq1dAaK3jVKpREhICDIyMqCtrd3a1XntZGVlYe/evViwYAHef/99DB48uN68YWFhMDU1BQA8evQIly5dQmxsLBQKBaKiolqqykRERPQKMXZqWGvFTps2bYKtre1L1Z2IiIjUA+OxhjUlHvPx8YGDg0Ot9Hbt2r3CGhLRm4oDfEQtrGPHjrhy5QoSEhLg7+/f2tV57ZSUlAAA3Nzc0Ldv3wbzDhw4EJaWltL28OHDUVZWhk2bNmHFihXQ1dV9hTUlIiKilsDYqWGMnYiIiOhVYzzWsKbEY++++65KPEZE9DI4RSdRCxs0aBAmTJiA5ORkXLhwocG8xsbGiIuLU0l7dtrI4OBgzJkzB2lpaXBycoJcLsfUqVNRUFCAzMxMjBs3DhYWFpg8eTIuXrxYq4y0tDQ4ODhALpfD09MT+fn5Kvtv3ryJgIAA2NrawsLColaemikGtm3bBhcXF1hYWCA9Pb3O9iiVSuzYsQPjxo2DXC6Hg4MD1q1bh/LycqktNdM6ODk5YcaMGQ1en7p06tSpVlpJSQnCwsLw/vvvw9zcHFOmTEFOTo5KnvLycnzxxRewt7eHlZUVQkJCpHrVCA4OhqenJ1asWAFra2uMGTMGSqUS5eXlSEhIgIuLC8zNzfHBBx8gKSkJ1dXVKsd///33cHNzg5WVFezt7REWFobS0lJpf1xcHFxcXPDTTz/B1dUV5ubm+Oijj3DmzBnk5eVh8uTJkMvlcHV1Van/48ePER4ejpEjR8LMzAwuLi746quvmnztiIiIXkeMnVo+drp06RIWLlyIYcOGwdTUFCNGjMDnn3+Ox48fA3gyFdeNGzewd+/eWlNInT17FlOnToW5uTkcHByQnJz8XG0/f/485syZAzs7O1hbW2P+/Pm4cuWKSr3u3r2LkJAQ/OUvf4FcLoe7uzsOHz6sksfY2BjffPMNgoODMWTIENja2kp1j4yMxLBhw2BnZ4dly5apxHrZ2dmYMmUKrKysMHToUPj4+ODf//53k68nERHRm4jx2KuNxxqTnZ2NadOmYciQIbCzs0NgYCBu3bqlkufatWtYtGgR7O3tYWlpiRkzZuD06dONtpl9SkTqjb/gI2oFS5cuRXZ2NkJCQpCenv7S0xucOXMGd+/eRXBwMMrLyxEeHg5vb29oaGhg0aJFaN++PVasWIFPP/0Uhw4dko67ffs24uPjERgYCF1dXcTHx2PGjBn47rvv0KtXL9y7dw9Tp05F+/btsXz5crRv3x5ff/01pk+fjj179mDAgAHSueLi4rBs2TLo6urCwsKiznqGhYVh//79mDdvHmxsbJCfn4+EhARcvHgRycnJWLBgAXr06IFNmzYhPj4e/fv3b7Dd1dXVqKqqAgBUVlbi4sWLSElJwYQJE6Qn0MvLy+Hp6Yni4mL4+/ujW7duSE9Px9y5c5GcnIzhw4cDAP72t78hKysL/v7+MDIyQlpaGr777rtaZZ46dQo6OjpISEjAw4cPoampifnz5yMvLw8LFy6EiYkJjh8/jvXr16OwsBAREREAgI0bNyI2NhbTpk2Dv78/CgsLsWHDBuTl5WH37t3SVAy3b9/GmjVr4O/vjw4dOiAiIgKLFi2ClpYW5s+fj549e0r7jxw5gnbt2mH16tX45ZdfEBQUhK5du+Lo0aNYu3Yt9PX1MWnSpOf9NyIiInptMXZqudjp7t27mD59OiwtLbFmzRpoa2vj6NGj2LZtG7p16wZvb2/Ex8fD29sbgwcPxoIFC9CtWzepjPDwcCxatAiLFy/G7t27ERUVhQEDBsDR0bHetufm5mLu3Lmws7PD6tWrUV5ejsTEREydOhW7d+/GgAEDUFxcDHd3d+jo6MDf3x8GBgbIyMiAr68v1q5di/Hjx0vnj4qKgqurK+Lj45GZmYmvv/4av/zyC0xMTLBu3Trk5eUhLi4O/fv3x9y5c1FYWIgFCxZg0qRJCAgIwIMHDxATEwNvb2/89NNP0NTkc7FERESMx5o/HquhoaGBNm3a1Jl/3759CAoKgqurKz755BPcv38fsbGx+Pjjj7F371506dIFV69exZQpU9CvXz+EhoZCS0sLKSkp8PT0xNatW1WmVX+2zexTIlJzgohajIeHh/Dw8BBCCHH48GEhk8lETEyMtN/R0VEEBQVJ2zKZTMTGxqqcIzY2VshkMmk7KChIyGQycfXqVSktLCxMyGQycezYMSntq6++EjKZTJSWlqocd/bsWSnP3bt3hVwuF2vWrBFCCBETEyPMzc1FUVGRlKe8vFyMHj1a+Pn5CSGEKCwsFDKZTCxdurTBtl+5ckXIZDKRmJiokr5v3z4hk8nEkSNHhBBCpKenC5lMJgoLC+s9V25urpDJZHW+Ro0aJW7fvi3lTUtLEzKZTOTl5Ulp1dXVYvr06cLNzU0IIcTly5eFTCYTO3fulPIolUoxZsyYOq/1rVu3pLQjR44ImUwmDh48qFLHhIQEIZPJxOXLl0VJSYkwMzMTy5cvV8lz8uRJIZPJRGpqqhDi/+/tP//5TylPYmKikMlk4ttvv5XSfvzxRyGTyUR+fr4QQghnZ2cRGhqqcu74+HiRmZlZ7zUkIiJSB4ydWj52ysrKEtOnTxdlZWUq53B1dRVeXl7S9rPXvqYeT8dTDx8+FKampmL16tUNtt3d3V2MGTNGVFVVSWmlpaXC1tZWLFq0SAghxNq1a4WpqanKtRVCCE9PT2Fvby+USqUQ4sn/wOTJk6X9VVVVwtLSUowaNUpUVlaqtMfHx0cIIcTBgweFTCZTuQ5nz54VMTExta4DERHR24bxWPPEYzVl1vUyMzOT8j19LqVSKezt7VViMCGEuH79ujA1NRWRkZFCCCEWL14s7OzsVOKWyspK4ezsLCZNmtRgm9mnRKTe+CgiUSsZNWoUxo8fj+TkZPz6668vdS49PT2VJ5C6du0KACpPH+nr6wMAHjx4IKX17dsXcrlc2jY0NISlpSVOnjwJAMjJycGgQYPQvXt3VFVVoaqqCpqamhg5ciSOHTumUodBgwY1WMcTJ04AAMaOHauSPnbsWLRp0wbHjx9/3uZKVq5ciT179mDPnj3YuXMnIiMjoaOjA3d3d9y8eVNqg6GhIUxNTaU2KJVKODo64sKFCygtLcWpU6cAPLknNTQ1NeHs7FyrTH19ffTo0UOlXW3btoWLi4tKvpqnyE+cOIG8vDxUVFTA1dVVJY+NjQ169+4tXZsa1tbW0t/Pcy/t7Oywe/duzJs3D6mpqSgsLISvr2+dizYTERGpK8ZOkLZfZez05z//GampqdDR0cHVq1dx+PBhbNq0Cffu3UNFRUWjZdjY2Eh/t2/fHl27dlW5hoBq2x8+fIjz58/jww8/VHlyvVOnTnB0dJSuw4kTJ2BlZYXevXurnGv8+PFQKBT4/fffpTQrKyvp7zZt2sDAwACmpqZo2/b/J7DR19dHWVkZgCf3veY6rFq1CllZWTAxMYG/vz/XJSQiInoK4zFI2y8ajy1cuFCKx2peu3btqjNvQUEBFApFrf6kd999F1ZWVipxkqOjo0rc0rZtW4wdOxYXLlzA//73Pyn92TazT4lIvXGKTqJWFBoaipycHGl6gxdVX8dDhw4dGjyuJnh6WpcuXaR5vEtKSnD9+nWYmprWefyjR4+eu6yateYMDQ1V0tu2bQsDAwOpg6Up+vfvD3Nzc2m7Zp0VJycnbN26FaGhoSgpKYFCoai3DQqFQqqbgYGByr5n6woA77zzTq12GRgY1JpKoebYsrIy6fx1Xe+uXbvWantd97N9+/Z11h8Ali1bhh49euDAgQOIiIhAREQErKysEB4eDhMTk3qPIyIiUjeMnV597FRdXY2YmBjs2LEDDx8+RM+ePSGXy6Gjo/NcZTwbs2hqakIIoZL2dNvLysoghGg0TiotLUXfvn3rzAOodvzVdX8but59+vRBamoqkpKSsGfPHqSkpKBTp06YNm0alixZAg0NjXqPJSIietswHnu5eKx3794q8VhDSkpKANTfn1SzrmBpaWm9eYQQ+O9//yulPdtm9ikRqTcO8BG1Ij09PYSHh8PX1xcbN26sM49SqVTZfvjwYbOVXxOoPE2hUKBz584AgI4dO8LW1hafffZZncc3Zb51PT096fxPP3ldWVmJ+/fv1xpce1G9evVC586dce3aNQBP2tCvXz+sW7euzvx9+vSRyi4uLkavXr2kfTWBVEP09PRw//59KJVKlUG+u3fvAngyaFjT9uLiYvzpT39SOV6hUNTZWdUU2tra8PHxgY+PD27evInMzExs3LgRgYGBKvPUExERqTvGTq8+dkpKSsL27duxcuVKfPDBB+jYsSMAwN3dvVnKe1bHjh2hoaGB4uLiWvsUCoX05L6enh4UCkWdeYDaD2o1lVwuR3x8PCoqKnD69GmkpaVh8+bNMDExwYcffvhS5yYiInqTMB5r/nisPjVxUH1xUk35enp69eYBnsRJNf1Uz2KfEpF64xSdRK3MyckJrq6uSEpKwr1791T26erq4s6dOypp//rXv5qt7IKCAvzxxx/S9q1bt3DmzBnY2dkBAGxtbVFQUCA97V3z2r9/P/bs2VPvAsB1qVnQ99ng4NChQ1AqlRgyZEgztAgoKirCvXv30K9fP6ncW7duoUuXLiptyM7ORnJyMtq0aYNhw4YBAH788UeVc2VmZjZanq2tLaqqqmode+DAAQBPnoy3sLCAtrY2Dh48qJLn1KlTuHnzpsqUnE31+PFjODs7Y+vWrQCedNJNnz4dY8eOlabaIiIiepMwdnq1sdPp06cxcOBATJo0SRrcu3PnDi5fvozq6mrpOE3N5vkq2aFDB5iZmeGHH35Q6QwsKyvDkSNHpHYOHToUZ86cwY0bN1SOP3DgAAwNDWFkZPTCddi+fTscHR1RUVEBbW1tDB8+HBEREQDAeIqIiKgOjMeaNx6rT//+/WFoaFirP6mwsBB5eXlSf9LQoUORmZmp8ks9pVKJQ4cOwdzcvN5BTfYpEak//oKP6DWwfPly5Obm1nraxsHBAYcOHYKFhQWMjIyQkZGB69evN1u5Ojo68PHxgb+/P5RKJTZs2AB9fX14enoCAGbNmoX9+/dj1qxZ8PLygoGBAb7//nvs3r0bISEhTSpr4MCBmDhxImJjY/Ho0SMMHToUFy9eRHx8POzs7DBixIgm1//q1avSdFFCCNy8eRMJCQnQ0dGBh4cHAMDNzQ2pqamYPXs25s+fj549e+LYsWPYsmULPDw8oKWlBSMjI3z88cf48ssvUVVVhUGDBmH//v347bffGq3DyJEjYWdnh9DQUNy5cwcmJiY4ceIEtmzZgokTJ2LgwIEAAG9vbyQkJEBLSwuOjo4oKirChg0bpOvyotq1awdTU1PEx8dDS0sLxsbGKCgowN69e+tcQ5CIiOhNwNjp1cVOcrkcGzduRFJSEiwtLXH9+nUkJiaioqJCZUqrTp06IT8/HydOnFBZB+dFBAYGYs6cOfD29sa0adNQWVmJpKQkVFRUwNfXFwAwe/ZsHDhwALNmzcLChQuhr6+Pffv2ITc3F6tXr36pAcdhw4Zh3bp18PX1hYeHB9q0aYNdu3ZBW1sbjo6OL9U2IiKiNxXjsReLx5pCU1MTAQEBCAkJQWBgIMaPH4/79+8jPj4eenp6mD17NoAn6/odPXoUM2fOhLe3N7S0tKT19JKTk+s9P/uUiNQfB/iIXgP6+voIDw/HwoULVdJDQkJQVVWFyMhItG3bFmPGjEFgYCBCQ0ObpdzBgwfD2dkZ4eHhKCsrw/Dhw7F06VJpWoPu3btj165diI6ORnh4OMrLy9GvXz+sWrXqhaZpWrVqFYyMjJCeno4tW7agW7dumDlzJhYsWPBCnTJ///vfpb81NTWhr68PS0tLREVFSU+hd+jQATt27EB0dDSioqJQVlaG3r17IzAwEF5eXtLxK1asQNeuXZGamorS0lKMGDEC8+fPx/r16xusg4aGBhITExEbG4vt27fj3r176NOnDwICAqRACwD8/Pyk86elpUFfXx8uLi5YsmRJo3O+P891WL9+PbZu3QqFQoEuXbrA3d0dixcvfqnzEhERva4YO7262OmTTz7B/fv3kZKSgoSEBPTs2RMfffSRFPM8ePAAnTp1gpeXF1avXo05c+Zg27ZtTa7L04YPH45t27YhNjYWAQEB0NbWho2NDSIjI/Hee+8BeLL2zTfffIPo6Gh8/vnnqKyshImJCTZu3IjRo0e/VPkmJibYvHkzEhISEBAQAKVSCTMzM2zdurXW9OpERET0BOOxF4vHmsrNzQ3vvPMOEhMT4evrC11dXYwYMQIBAQHS2oDvvfcedu7ciZiYGISEhEBDQwNyuRwpKSmwsbFp8PzsUyJSbxri2RXPiYiIiIiIiIiIiIiIiOi1xTX4iIiIiIiIiIiIiIiIiNQIB/iIiIiIiIiIiIiIiIiI1AgH+IiIiIiIiIiIiIiIiIjUCAf4iIiIiIiIiIiIiIiIiNQIB/iIiIiIiIiIiIiIiIiI1AgH+IiIiIiIiIiIiIiIiIjUCAf4iIiIiIiIiIiIiIiIiNQIB/iIiIiIiIiIiIiIiIiI1AgH+IiIiIiIiIiIiIiIiIjUCAf4iIiIiIiIiIiIiIiIiNQIB/iIiIiIiIiIiIiIiIiI1AgH+IiIiIiIiIiIiIiIiIjUyP8B+I3dImO2nVwAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAJQCAYAAABGqhOlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7GklEQVR4nOzdd5hU1eE/4A9dlAiILUqiQV2wAGIBiRXsiolBTYxGo2iwG0Uj9hI1ROxdiS2xoFGJMWriFwtqjIodG7FgJyKKoghS5/cHvx1ZWMrC6i6X930eHnbuvXPmzLllzp3P3HMblEqlUgAAAAAAAIDFWsO6rgAAAAAAAACw6AR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AABYLJRKpbquQo0sbvWF+sT+AwAAsHAEfwAAzNNTTz2V9u3bz/FvnXXWSZcuXbLDDjvk5JNPziuvvFLt8y+99NK0b98+F1544ULX4d///nf69OlTo+ccf/zxad++fW6//fZ5TqttX3zxRc4666zcdddd863P4ubzzz/P7373u3Tr1i0dO3bMNttsk2nTps11+Z49e1a77XTq1ClbbbVVjjnmmLz88svfer2PPfbYtG/fPkOGDPnWX6toPvjgg2rXYfv27bPBBhtkhx12yFlnnZWxY8fWyuu9/fbbOfDAA/Pee+9VmV65Lb377ru18jrUD//5z3/Svn377LPPPgu0fOVxdEH+ffDBB0lq5zMIAAAWJ43rugIAACwell566Wy99dblx6VSKV999VXefPPN3H777RkyZEiOOeaYHHDAAbX6uqNHj84BBxyQlVZaqVbL/bYMGDAgQ4YMyVlnnVXXVal1f/jDH3L33XenTZs26dGjR1q1apXGjed/SvHjH/84bdq0KT+ePHlyPvjgg9xzzz355z//mUsuuSTbbLPNt1l1asEuu+xS/rty/3/99ddz44035t57781f//rX/OAHP1ik1zjwwAPLgQ3MTUVFRdq3bz/PZZZeeunvqDYAAFC/CP4AAFggrVu3znnnnVftvH/84x859dRTM3DgwKywwgr5yU9+Up639957Z6eddkrr1q0X6nVnzJixUM/r169ffvOb32TFFVdcqOcvrLkNUVhX9alNL774YpLkwgsvTLdu3Rb4eQcffHC1y99///058sgjc9JJJ2WzzTbLUkstVWt1pfZVt//PmDEjAwYMyF/+8peceeaZGTRo0CK9hiE+WRDbbbddjjjiiLquBgAA1EuG+gQAYJHtsssuOeOMM5Ik5557br7++uvyvOWWWy5rrLFGlltuue+0TiuuuGLWWGONfO973/tOX3du6lt9FsbUqVOTJCuvvHKtlLf99tunc+fO+fzzz/PMM8/USpl8txo2bJjf/va3ady4cR599NFMnjy5rqsEAACwRBP8AQBQK37yk59kvfXWy8cff5wHHnigPH1u91d65JFHcsABB2TzzTfPeuutl6222ir9+/fPW2+9VeW5lcOLjhkzJu3bt0/Pnj2TfHPvsUMPPTT//Oc/06NHj3Ts2DG77LJLvvzyy/neU2/w4MHZaaed0rFjx/Ts2TPnnntuvvjiiyrLDBkyJO3bt8+xxx5bbRmV95KqvM9d+/bt87e//S1JcvLJJ1e5r9zc6jN9+vTcfPPN2W233bL++utn/fXXz2677ZabbrppjvvnVd5v8eyzz86oUaNy5JFHplu3bunUqVN69+6dO++8s9p6zs3XX3+dK6+8Mrvssks6deqUDTbYIHvttVfuvvvuKstV1v3DDz9MMvNqm/bt2+epp56q0etVpzJE/Oqrr+aY98477+T444/PFltskfXWWy9bbLFFTjrppHI9qlv+d7/7XTbbbLOsv/76+dWvfjXXQLFyu7zvvvtyyimnpEuXLtl4441zzjnnlJf53//+l9NPPz09e/bMeuutl0022SSHHXZYXnjhhWrLXJh1ec455+TNN9/MYYcdlq5du2aDDTbIr3/967z00ktJkmeeeSb77LNPunTpki222CLHH398xo0bV6WsGTNm5MYbb8zPf/7zdO3aNZ07d87OO++c8847L5999ln1DV+LWrRokRYtWqRUKmXixIlV5o0fPz6XXnppevfunQ033DDrrbdeNttssxx55JEZMWLEHO0x+zY2+7CfkydPzmWXXZZtt922fNw466yzMmHChCrLWb8Lbtq0abn99tvz61//Ot26dcu6666brl27Zp999sm99947x/I9e/bMRhttlClTpuTSSy/Ndtttl/XWWy9bbrllzjrrrGrrNGXKlAwaNCg77bRTOnfunG222SaDBg3K9OnTF7n+i6Lyc6hr167p2LFjtt9++5x77rn5/PPPq12+JttM5XFz+PDhOeKII9KpU6dssskmueGGG5LM/Ew79dRTs+OOO6ZTp07p2rVr9t133zmOvwAAUFOG+gQAoNb07NkzL7/8cp544on06tVrrsvdddddOf7449O4ceNstNFGWXbZZfPGG2/krrvuyv/93//ltttuK9/DaZtttskDDzyQ5s2bZ5tttpnjysH//ve/eeSRR7LuuutmzTXXzLRp0+Z7Vd11112XUaNGZd11102PHj3y3HPP5ZprrsnDDz+cW265Ja1atVqo97/LLrvkhRdeyPvvv5/1118/P/jBD/LDH/5wrstPnjw5ffv2zZNPPpllllkm3bp1S4MGDfLUU0/lzDPPzIMPPpirr746TZs2rfK8N998M3vssUeaNWuWLl265PPPP8/zzz+fE088MePHj0+fPn3mW9fPPvss++67b15//fW0atUqm2++eb7++usMHz48zz77bB5//PH88Y9/TIMGDdKlS5dMmzYtDz74YCZOnJitt946Sy+9dJZffvmFaqdKM2bMyGuvvZZGjRqlU6dOVeY98cQTOfTQQzNx4sRUVFRk/fXXz9tvv5077rgjDzzwQK699tqst9565eVffvnl9OnTJ+PHj0/79u2zwQYb5OWXX85+++2XVVddda51uPjii/O///0vm266aUaPHp011lgjSTJixIgccMAB+eKLL7LaaqulZ8+eGTNmTB544IE89NBDOf300/OLX/yiXM7CrstXXnklt956a1q2bJmuXbvmjTfeyJNPPpl99903J554Yk477bSsscYa2XTTTfP000/nb3/7W15//fXceeedadCgQZLklFNOyR133JFWrVqlS5cuadSoUV588cX86U9/yoMPPpi77rorzZo1W6R1NS8ffPBBxo8fn9VXX73KkL6ffvpp9txzz7z33ntp27ZtNtlkk0ydOjWvvPJK7r///jz00EMZPHhwOnbsmOWXXz677LLLHNvY7Pdp++1vf5t33303G2+8cX70ox/l6aefzo033pgRI0Zk8ODBadSoUZXlrd95K5VKOeKII/LQQw+lZcuW6dy5c5o1a5Y333wzw4cPz/Dhw/Ppp59m3333rfK8GTNm5KCDDsrw4cPTpUuXrLHGGnnyySdz44035tlnn83tt99evv/n1KlT85vf/CZPPvlkWrVqlS222CLjxo3LBRdcUF4fdeHCCy/MVVddlUaNGmXDDTdM69at88ILL+Saa67JP//5z/z5z3+ucs/Kmm4zlU455ZSMGzcum2++ed588820b98+n376aXbfffd8/PHHqaioyFZbbZXx48fn6aefzlNPPZV3333XUKYAACy8EgAAzMOTTz5ZqqioKPXo0WO+y953332lioqK0i9/+cvytEsuuaRUUVFRuuCCC8rTtt5669I666xTeuONN8rTZsyYUTrrrLNKFRUVpf79+5env//++6WKiorS5ptvXuW1KqdXVFSUzjjjjPL06dOnl0qlUql///6lioqK0l//+tfyvMppFRUVpZtuuqk8feLEiaUDDzywVFFRUTrllFPK0++8885SRUVF6Zhjjqn2/VaWNXXq1DleY9bXndv0AQMGlCoqKkp77LFH6dNPPy1P/+STT0q77bZbqaKiojRgwIDy9Mp1UVFRUTrqqKNKX331VXneX/7yl1JFRUWpe/fupRkzZlRb31kdfvjhpYqKitLBBx9cmjBhQnn6O++8U9p6661LFRUVpb/85S9VntOjR49SRUVF6Z133plv+bMu/+STT1aZ/vXXX5def/310lFHHTXHeyyVSqVx48aVunbtWlp77bVL9913X5V5t956a6mioqK09dZblyZPnlwqlWau85/85CelioqK0tVXX11edsqUKaXjjz++3GZ33nlneV7ldtm+ffvSiy++WJ4+ffr00tdff13afPPNSxUVFaXLL7+8SnsOGzas1LFjx9I666xTeuWVV8rTF2VdHn300aUpU6aUSqVSafLkyeXlK1+/0scff1zaaKONShUVFaURI0aUSqVS6cMPPyxVVFSUtttuu9KXX35ZXnbSpEmln//853O875qadT+b1YwZM0oTJkwoDR8+vLTrrruW2rdvX3rggQeqLHPmmWeWKioqSr///e+rtOHXX39dOuSQQ0oVFRWlk046qcpz5raNVU7v3r176bXXXitPf+edd0qdO3cuVVRUlJ566qnydOt3wdx///2lioqK0u67717lOFAqlUpXX311qaKiorTttttWmV65LjbddNPSyJEjy9M/+OCDUteuXUsVFRWlhx9+uDz92muvLbfd+PHjy9OHDRtWWnfddUsVFRWlX/3qVwtU38rj6CWXXLLA77G6z6AHH3ywVFFRUdpkk01KL730Unn65MmTSyeddFKpoqKi9LOf/ay8bSzMNlNZ1/XXX7/03nvvlUqlmfvNjBkzSpdddlmpoqKidP7551ep64svvlhad911S506dSpNmjRpgd8jAADMylCfAADUmpYtWybJfIefGzt2bBo3bpwVV1yxPK1BgwY5+OCDc8opp2S33Xar0ev+6le/Kv/dsOH8u7hdu3bN3nvvXX7cvHnzDBgwIE2aNMnf//73OYYr/DZMnjw5gwcPTsOGDXP++edXuZKxTZs2ufDCC9OoUaPccsstcwyD2bhx45x22mlVrob6xS9+kaZNm+bTTz/Np59+Os/X/vDDD/N///d/+d73vpdzzz03yyyzTHneaqutlj/84Q9JkmuuuaY23mr23Xff8rCo7du3T6dOndKrV6/cd9996dWrV4477rgqy99+++35/PPPs9dee2XHHXesMu8Xv/hFevTokffffz9Dhw5Nkjz33HMZOXJk1llnnfTt27e8bJMmTXL66aenTZs2c61b586dq1xt2LBhw/zzn//MmDFj0rVr1xx66KHlK6+SZMstt0zfvn0zbdq0XH/99UkWbV02aNAgJ598cpo0aZIkadq0abbffvskyfe///0cdNBB5WVXWGGFdOnSJUny3nvvJUk++eSTJEnr1q3TokWL8rJLLbVUTj755Jx11lnp3LnzXN9/Tcy6Djt06JANNtggv/rVr/Lqq6/mtNNOKw/LW6lly5bZfPPNc+SRR1Zpw2bNmqV3795JMsdQnvPTt2/fdOjQofx4tdVWK7/uf//73zmWt37nberUqenZs2eOPfbYKseBJPnlL3+ZZO7rqG/fvmnfvn358aqrrloeivn1118vT7/11luTJL///e+z7LLLlqdvueWW2XPPPReq3pdddlmV7XHWfxtttNF8n1853OZxxx1X5crhpk2b5vTTT8/qq6+eV155JU8++WSS1HibmVWPHj3KVw42aNAgDRo0yNixY5Mkq6yySpVlO3XqlLPOOit/+MMfMmPGjJo1CgAA/H+G+gQAoNZMnTo1Sap8KVqdjTbaKP/+97/Tu3fv7LrrruV7uLVp06ZKiLcgllpqqfzoRz+q0XN22WWXOaYtv/zy6dixY5577rm8+OKL6d69e43KrKmXXnopX3/9ddZbb70qw8lV+sEPfpCOHTvmhRdeyIgRI6rUZ7XVVptjONKmTZumdevWGTNmTCZNmjTP13766aeTJD/+8Y+rhAmVunbtmhVWWCEfffRR3nvvvXkOV7ogfvzjH1cJ36ZMmZJPPvkkr7zySu65555MnDgxF1xwQZo3b54k5XsHduvWrdryNt988zz88MN56qmnsvPOO5ffzxZbbDHHss2aNctmm22Wv//979WWNWtwUWn48OFJkh122KHa5+y000659NJLy8styrr84Q9/OMfwtZWP11prrTmGrqwcxnby5MnlZVq1apXnn38+v/zlL7PTTjtl8803z+qrr56OHTumY8eO1b6HhTH7fjNp0qR8+OGH+e9//5uzzjorn376aQ4//PDy/OqGKhw/fnxef/31/Pvf/04yc1uoiQ022GCOad///veTZI57dCbW7/zsvPPO2XnnnatM+/rrrzNq1Kg8//zzSWbe23D69Olz1HX99defo7zKH3NUHoPGjBmTd999NyuuuGKVwLbS1ltvnRtvvLHG9a4cCro6sw8PO7tp06blueeeS8OGDbPtttvOMb9x48bZbrvtMmjQoDz11FPp3r17jbeZWVX3vjfeeOMMHjw4Z599dkaMGJEePXqke/fuadGiRXbdddd51h8AAOZH8AcAQK35/PPPk3xz5d/cnH322Tn00EPzyiuv5NJLL82ll15avvfTbrvtlk022WSBX/N73/vefIPG2c3tnm+VAcKYMWNqVN7C+Pjjj+dZlyRp27ZtXnjhhfKylWa9amZWlffUmt+VIgv62mPHjs3HH3+8yMHfwQcfXG2I9+mnn+awww7LQw89lHPOOSenn356kuR///tfklQJkarz0UcfJfnm/cx6Bems2rZtO9cyqruf4/zap7K8yquxFmVdVrevVG7P85pXqXnz5rn44otz7LHH5rnnnstzzz2XZGYYtfXWW2fPPfescTA+N+edd16101955ZUceOCBufTSS9OuXbvstNNO5Xnvv/9+brnlljz77LN55513Mn78+Crvo1Qq1agO1d2/szKQqm67t37nb8KECbntttvy2GOP5a233srYsWNTKpWq1KW69VTdcWj2Y1DlsXSllVaq9rXntW/Oy3bbbbfQ98D7/PPPM3Xq1DmuoqyuXpVX5tV0m5lVdet55513zssvv5wbbrghd955Z+688840btw4Xbp0yY477pjddtstSy21VM3fHAAARPAHAEAtGjlyZJLqr7KZ1corr5w777wzTz/9dB566KH85z//yeuvv5677747d999d/r06ZP+/fsv0GsuyNCes2vWrNk851cOyzcv06dPr/HrzmpBAo/K12jatGmV6TUNOhfG3F67NrVp0yYnn3xydttttwwZMiSnnnpqGjZsWH7tHj16zPWL+SRZc801k8y/PWa/UmlW1T13fuumMtSo3E4WZV1WBiWLYpNNNskDDzyQYcOG5ZFHHsmTTz6Z999/PzfccENuvvnmXHjhhdVe2VRb1l133fzmN7/JOeeckzvuuKMc/N1zzz3p379/pk2blh/84Afp3r172rVrl/XWWy+lUimHHXZYjV+rpvu79Ttvb7zxRn7961/n008/TevWrcvD8LZv3z7dunXLVlttNdfnLshxaH7L1Eb71NTCrM+abjOzmts2279///zqV7/K0KFD89hjj+W5557L008/naeffjo33nhjBg8enNatW8+3rgAAMDvBHwAAtWbYsGFJZg7tOD8NGjRI165d07Vr1yQzr/668847c+GFF+b666/PPvvsM8f9j2rL7FflVPrwww+TfHPlX+UXttVdSVTdsII1UXl1WuVrVuf9999PMnMY0tq0IK9deV+v2n7t2a211lpJZg5tOG7cuCy//PJZccUV884772TfffddoG2p8mqi0aNHVzt/but7bubXPpXrpXL40rpcl5WWWmqp7LDDDuWhCN96661cddVVufvuuzNw4MBvNfhLvglhK6/W/Oqrr3LqqaemVCrl8ssvzzbbbFNl+cr7M9YF6/cbv//97/Ppp5/mwAMPTL9+/aqE5JVXZy6K2t43a0OrVq3SpEmTjB8/PhMmTKj2xwU13QZmX35Brbrqqtlvv/2y3377ZerUqXniiSdy5pln5u23387gwYNz6KGH1qg8AABIkpr/PBoAAKpx3333ZdSoUVl55ZXneZXIm2++mV122SUHHnhglelt2rRJ37590759+5RKpfIQcd/G1W2PPfbYHNNGjx6dl156Kcsss0zWXXfdJN/cK+rTTz+dY/kXX3yx2rIXtL7rrbdemjdvnldffbX8pfGs3nvvvbz66qtZeumla/U+bUmy4YYbpkGDBnn88cczYcKEOeY/+eSTGTduXNq2bfutha+V3nnnnSQzg43KYRk33njjJMkjjzxS7XMGDhyYXXfdNX/961+TpHxPtQcffHCOKzGnT59evp/cgqp8/X/961/Vzv/nP/+ZJOXQui7X5d13351tt902V1xxRZXpa6yxRk499dQk34Rx36Z33303yTeh+RtvvJGvvvoqFRUVc4R+ScrrpKZDfdYG6/cbL7zwQpKZw/HOfmXs448/Xv57fsMHz82KK66YNddcM59++mmeffbZOeZX/ljku9SkSZN06dIlM2bMqDaAnjZtWh544IEk39xntKbbzPwcddRR6datW5UgsUmTJtliiy3K97mtHMoYAABqSvAHAMAiu//++3PKKackSU4++eR5Dg+5+uqr5+OPP86///3vOb5Effnll/PWW29l6aWXLl9BVDks58SJExf6y+fZ3XXXXVW+8J0wYUKOO+64TJ8+PXvvvXf5NTt06JAkeeaZZ/LKK6+Ul//oo49y7rnnVlt25Xv/8ssv51mH5s2b5+c//3lmzJiRY445JuPGjSvPGzduXPr165cZM2Z8K/d6qrw/2IQJE/K73/0uX331VXne+++/n5NPPjlJyl9Af1smTJiQs88+O0my0047lYf9+8UvfpGll146N910U+69994qz3nooYfyl7/8JSNHjiyHLJ06dcqGG26Yt99+OwMHDixvJzNmzMg555xTvnpxQe24445ZccUVM3z48Fx55ZVVwqlHH30011xzTRo1apRf/vKXSep2Xa611lp577338pe//CWjRo2qMu/uu+9OMrN9Kk2dOjVvvfVW3nrrrUydOrVW6jBq1KgMGjQoSbLLLrskSZZbbrkkydtvv12lXqVSKYMHDy6HtpMnT65SVuW+N7/9Z1FYv9+oXE8PPvhglelPP/10zjzzzPLjKVOmLPR72G+//ZIkp5xySpX7pz7zzDO5/vrrF7rcRfHrX/86ycwfEcx6bJ86dWrOOOOMvPfee+nQoUM23HDDJDXfZuZnhRVWyOeff56BAwdWaduvv/66/Nk0a4g8bty4vPXWW3O9chIAAGZlqE8AABbIZ599lmOPPbb8eMaMGfnyyy/z3//+N2PGjEmjRo1yyimnzHfIucaNG+fMM8/MkUcemd/+9rdZd91107Zt23z22Wd59tlnM3369Jx44on53ve+l2TmF9PLLrtsvvjii+y555754Q9/mPPOO2+R3kvnzp1z+OGHp0uXLllhhRXy9NNP57PPPkvXrl1zxBFHlJf74Q9/mO222y7/93//l1/84hflK8ueeuqprLnmmqmoqMjrr79epezVV189SXLFFVfk+eefz09/+tNqr3hKkn79+uXVV1/N008/nW222aZ8tcjw4cPz1VdfpVu3blXavDb9/ve/zzvvvJOHHnooW2+9dTbaaKNMmjQpw4cPz5QpU9KrV6/yl+OL6qqrrsrtt99eflwqlfLFF1/kueeey4QJE7L66qtXeZ8rrbRSzjnnnPTr1y/9+vXL5Zdfnnbt2uV///tfXn755STJiSeemLXXXrv8nAEDBmTffffNDTfckGHDhqVDhw4ZOXJk3n333XTu3HmuV2hWp3nz5rn44ovTt2/fXHTRRbnrrrvSoUOHjBkzJs8//3waNWqUk046qUrgUlfrcu21186+++6bv/zlL9lll12ywQYbpHXr1nn33XczcuTILL300jnhhBPKy48ZM6Z8D74HH3wwbdu2XeDXmr3+M2bMyMcff5znn38+06ZNyzbbbJNdd901ycx9p2fPnnnooYey6667pmvXrmnWrFleffXVjB49OmuuuWbefPPNfPLJJ1XKXG211TJq1KjyseF3v/tdfvCDHyxk61TP+v3G/vvvnwEDBqR///657bbbssIKK+S9997La6+9llatWmWFFVbI2LFjM3bs2Hneb3Nedt999zz55JO55557ssMOO6R79+6ZOHFihg8fnk6dOuX5559fqHIXxTbbbJM+ffrkuuuuyx577JENN9wwrVu3zosvvpiPPvooq666ai688MLycM8Ls83My6GHHpqHH344//rXv/Lss89mvfXWS5KMGDEin376aTbaaKP89Kc/LS9/880357LLLkvXrl1z44031n6DAABQKII/AAAWyMSJE/OPf/yj/LhBgwZp3rx52rZtm2222SZ777131lhjjQUqa7vttsu1116bG264IS+99FL++9//Ztlll80WW2yRX//61+WALZl5n73zzjsv55xzTnmovUW999QxxxyTF154Ibfeemtefvnl8n2W+vTpM8fViuedd14GDRqUf/zjH3niiSey/PLLZ++9987hhx+e/ffff46yf/nLX2bkyJF58MEH8+ijj2aNNdaYa/C31FJL5brrrsstt9ySu+++O08++WQaNWqUtdZaK717984ee+xR/uK5trVp0ya33XZbbrjhhvzzn//Mo48+mubNm6dLly7Zc889y+FBbfjPf/5T5XGjRo3yve99L2uttVZ69uyZvfbaa45QYbvttsudd96Za665Jk8++WSGDRuWNm3apEePHtl///3LQ/BVWm211XL77bfniiuuyMMPP5yHH344a665Zq644oq88sorNQr+kmSDDTbI3/72twwaNCiPPfZYHnzwwbRu3To77bRT9t9//zm+4K/LdXnCCSekXbt2+dvf/paXX345U6dOzfLLL5/ddtstBx98cH74wx/WyuvMuv8nM4cmbNWqVX784x+nV69e2WWXXaoMdXvhhRfm2muvzb333pvhw4enUaNGWX311fPLX/4yv/71r7P77rvn9ddfz8svv1wOPk488cR89dVXGTFiRP7zn/9k1KhRtR78JdZvpf322y/LL798brjhhvK6WGWVVbLPPvvkN7/5Tf70pz/lxhtvzMMPP5wf/ehHC/UaDRo0yHnnnZeNN944t956ax5//PG0bNkyffr0Se/evbPjjjsudP0XRf/+/bPRRhvlpptuyssvv5zJkyenbdu2OeSQQ7L//vunZcuWVZav6TYzL61bt84tt9ySK6+8Mo899lj+/e9/p0mTJll99dXTp0+f7LvvvvO8ch4AAOalQakubqoAAABAnfjss8+yySab5IknnigP9UhxWL8AALBkc48/AACAJcijjz6a73//+2ndunVdV4VvgfULAABLNsEfAADAEmL8+PEZOHBgTjnllCrDclIM1i8AAGCoTwAAgCXIV199lWWWWaauq8G3xPoFAIAlm+APAAAAAAAACsBQnwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAA9VipVKrrKgAAALCYEPwB1dpnn33Svn37Kv822mij7Lvvvhk+fHitvEb79u1z6aWX1kpZAAD1QW32oT766KP07ds3H374YXlaz549c/zxx9d2tQEACuP444+foz82679//etf+lRAoTWu6woA9dc666yT0047LUkyffr0fPbZZxk8eHAOOOCADBkyJGuttVYd1xAAoP6prT7Uf/7znzzyyCPfZlUBAApphRVWyGWXXVbtvNVXX/27rQzAd0zwB8xVixYtsv7661eZ9uMf/zjdu3fPkCFD0r9//7qpGABAPaYPBQBQt5o2bTpHfwxgSWGoT6BGmjdvnmbNmqVBgwblaQ888EB69+6djh07ZtNNN81ZZ52ViRMnVnne8OHD84tf/CKdO3fO9ttvn//85z9V5n/wwQdp3759rr/++uywww7p3Llz7rzzziTJSy+9lAMOOCDdunXLBhtskIMPPjhvvPFGled//PHHOeGEE7LlllumU6dO2X333fPggw9WWaZ9+/YZPHhwjj/++Gy44Ybp2rVrzjrrrHz99dc555xzsskmm6Rbt2456aSTMnny5PLzHn/88fz85z9Ply5dsvHGG+eQQw7JW2+9VSvtCQAsGWbvQ02fPj2DBg1Kr1690qlTp6y//vrZc8898+STTyZJhgwZkhNOOCFJsvXWW1cZimrq1KkZOHBgNt1006y//vrp06dP3n333fL8448/Pr/+9a9z2mmnZYMNNshOO+2U6dOnZ/Lkybn88suzww47pGPHjtluu+0yaNCgzJgxo0pd77vvvvTu3TtdunTJpptumlNPPTXjx48vz7/00kuzww47ZOjQoenVq1c6duyYn/70p3n++efzwgsvZI899kinTp3Sq1evPPHEE+Xnff311zn99NOzxRZbZL311ssOO+yQa6+9tvYbGwCghr788ssMGDAg22yzTTp27JhevXrljjvuqLLM9OnTc/PNN2eXXXZJp06dstVWW+W8886r8h3S3PphvlsCvkuu+APmqlQqZdq0aeW/P//88/z5z3/OlClTsttuuyVJ/vGPf+TYY4/NLrvskqOOOioffvhhLrzwwrz55pu5/vrr06BBg7zyyivp06dPNtlkk1xyySX54IMP0q9fv2pf89JLL81JJ52UFi1apHPnznnyySdz4IEHplu3bvnDH/6QyZMn5+qrr86ee+6Zv/71r1ljjTXyySefZPfdd0+zZs1y9NFHp3Xr1hkyZEgOO+ywDBw4MD/5yU/K5Z977rnp1atXLrvssjz88MP585//nH//+9/p0KFDzjvvvLzwwgu59NJL86Mf/SgHHnhg3n///Rx66KHZbbfd0q9fv3zxxRe54IIL0rdv3wwdOjQNG/r9BABQ1YL0oc4777wMHjw4xxxzTNq3b58xY8bk8ssvz29/+9sMGzYsW221VQ455JBceeWVueyyy9K+ffty+ffdd18222yz/PGPf8wnn3ySAQMG5Oijj86QIUPKyzzzzDNp1qxZLr/88kycODENGzbMwQcfnBdeeCGHH354OnTokKeeeioXXXRR3n///Zx55plJkiuuuCKXXHJJ9tprrxx99NF5//33c/HFF+eFF17IX//61yy11FJJZt5/8I9//GOOPvroLL300jnzzDNz5JFHpkmTJjn44IPz/e9/vzx/2LBhWWqppfKHP/wh//73v9O/f/8sv/zyefTRRzNw4MC0atWq3C4AALWlsj82q0aNGlX5MXsy88dJe+21Vz799NMceeSRWXXVVfPAAw/kpJNOyieffJKDDz44SXLqqafm73//e37zm99ko402yquvvprLL788r732Wq655ppyubP3w0aPHu27JeA7JfgD5urpp5/OuuuuO8f0fv36ZY011kipVMp5552XzTffPOedd155/uqrr5799tsvjzzySLbaaqtcffXVadOmTa688so0adIkSdK6descffTRc5S94447Vvni54gjjshqq62WQYMGpVGjRkmSzTbbLNtuu20uueSSXHzxxbn++uszbty43H///Vl11VWTJFtuuWX222+/DBw4ML169Sp3otZcc838/ve/T5J07do1t99+e6ZOnZrzzjsvjRs3zmabbZb7778/zz33XJJkxIgR+frrr3PQQQdlpZVWSpKsvPLKefDBBzNx4sS0aNFikdsZACiW+fWhkpmjFRx99NHZZ599yvObNWuWI444Iv/973+z/vrr54c//GGSZO21107btm3Ly6200kq54ooryv2qd999N1deeWUmTJhQ7ptMmzYtv//977PyyisnSR555JH85z//yQUXXJCdd945SbLppptmqaWWysUXX5x99903K664Yq688sr8/Oc/z6mnnlp+vYqKiuy999658847s/feeydJJk2alNNOOy1bbLFFkuTNN9/M+eefn7PPPju77757kmTixIk58sgj8/bbb2fttdfO8OHDs+mmm5Zfv1u3bll66aXTpk2bRW1yAIAqPvzww2r7Y8ccc0z69u1bZdqQIUPy+uuv59Zbb02XLl2SJJtvvnmmTZuWK664InvuuWc++eST3HHHHVWev+mmm2bFFVfMcccdl0cffTRbbrllkjn7Yffee6/vloDvlOAPmKt11103Z5xxRpKZv1b/4osv8uijj+bCCy/MxIkT85Of/CQfffRRDjrooCq/otp4443TokWLPP7449lqq63y7LPPpkePHuUvp5Jku+22Kwd5s1p77bXLf0+cODEvvfRSDj/88CrLLrvssunRo0ceeeSRJDOHEe3SpUs59Kv0k5/8JCeccEJGjRqVNddcM0nKHbhk5q+8WrdunXXXXTeNG39zOGzVqlW+/PLLJEnnzp3TrFmz7L777tlhhx2yxRZbpFu3bunUqVPNGxQAWCLMrw919NFH5/zzz0+SjBs3LqNGjcq7776bhx9+OEkyZcqUeZbfqVOnKv2qylDwiy++KH9x1KpVq/KXTcnM/lLjxo2zww47VCnrJz/5SS6++OIMHz48bdu2zZQpU9KrV68qy2y00UZZddVVM3z48HLwlyQbbLBB+e/ll18+ycy+U6VWrVqV65XMDPpuvfXWfPTRR9lyyy2z5ZZb5rDDDpvnewUAWBgrrLBCrrzyyjmmz9o/qjR8+PCsuuqqVb4zSmb2k+644468+OKL+fDDD5Ok/AOmSjvvvHNOOOGEPPXUU+Xgb/Z+mO+WgO+a4A+Yq2WWWSYdO3asMm2zzTbLxIkTc80112TTTTdNkpxxxhnlL7dm9fHHHydJxo8fn9atW1eZ17hx4zmmJcnSSy9d/vvLL79MqVQqf5E0q+WXX74czo0fPz4/+MEPql0m+ebLpiTV/opq1tecXdu2bXPTTTdl0KBBueOOO/KXv/wlyy67bPbaa68cddRRcwwPAQAwvz7Uvvvum9GjR+eMM87ISy+9lObNm2fNNdfMKquskmRmWDgvs/ddKkc2mPVefcsss0yVZSr7Y7P/8GqFFVZIMrPfVXkfv/n1vSpV169q3rz5XOt90kknZeWVV87dd9+dM888M2eeeWa6dOmS008/PR06dJjr8wAAaqpp06Zz9MfmZvz48eU+0axm/V6psp80+3KV32/N2k+avR/muyXguyb4A2psvfXWy+23315+fNxxx6Vr165zLNeyZcskM3/p9Mknn1SZVyqVyp2mufne976XBg0azPHcJBk7dmz5V+QtW7bM2LFjq10mSbUBY0106tQpl112WaZMmZJnn302t912W6666qp06NAhO+644yKVDQAsOSr7UG+99VaOOOKItG/fPvfee2/atWuXhg0b5pFHHsn999//rbx2y5Yt89lnn2X69OlVwr/KH2q1bt263Hf75JNP0q5duyrPHzt2bLU/tKqJpk2b5pBDDskhhxyS0aNH5+GHH84VV1yRY445Jvfee+8ilQ0AsLBatmyZd999d47ps36vVBnsjR07tsqIU1OnTs1nn3023++efLcEfJfcORSosREjRqRRo0Zp165d2rRpkw8++CAdO3Ys/1tppZVy/vnn59VXX02SdO/ePY8++mgmTZpULuOxxx7L1KlT5/k6Sy+9dNZbb73885//zPTp08vTv/zyywwbNiwbbrhhkplDiz7//PPlYRcq3X333VlhhRWy2mqrLfR7veGGG9KjR49MmTIlTZs2Tffu3XPmmWcmSUaPHr3Q5QIAS57KPlSzZs3y+eefZ999982aa65ZvmLv0UcfTfLNlXuV02tD165dM23atPzrX/+qMv3uu+9Okmy44Ybp3LlzmjZtmnvuuafKMs8880xGjx5dZWjPmvr666+z/fbb57rrrkuSrLLKKtl7772z884761MBAHVq4403zocffpjnn3++yvS77747TZo0SadOnco/eJ/9x0r33ntvpk+fXv6Oqjq+WwK+a674A+ZqwoQJeeGFF8qPp0yZkoceeih33nlnfvGLX2T55ZfP0UcfnVNPPTWNGjVKjx498sUXX+SKK67ImDFjyjdRPuyww/LAAw/kgAMOyIEHHphx48bloosuqnJvmrk55phjcsABB6Rv377Za6+9MnXq1AwaNChTpkwp3xNm//33z91335399tsvhx9+eFq1apW77rorTz75ZP7whz8s0pdmm2yySc4777wcdthh+dWvfpVGjRrl1ltvTdOmTdOjR4+FLhcAKK759aHatWuXFi1a5Kqrrkrjxo3TuHHj3H///bnjjjuSpPxjqWWXXTZJMnTo0GyxxRZZY401FrpOlfeSOfnkkzNmzJh06NAhw4cPz5/+9Kf87Gc/K98PuW/fvrn88svTpEmT9OjRIx988EEuvvjirLnmmvnZz3620K+/1FJLZd11181ll12WJk2apH379nn77bfzt7/9Ldtvv/1ClwsAsKh69+6dW265JYcddliOPPLItG3bttx3O/zww7Pssstm2WWXzc9+9rNccsklmTRpUjbeeOO89tprueyyy9KtW7dsvvnmcy3fd0vAd03wB8zVq6++ml/84hflx82aNcsPf/jDHH300TnggAOSJHvssUeWWWaZXHPNNbntttuy9NJLZ4MNNsh5551XHg5q9dVXz0033ZQ//vGPOfroo9OmTZv0798/f/zjH+dbh+7du+f666/PJZdckn79+qVp06bZaKONcs4552SttdZKMnN89cGDB+f888/PWWedlalTp6ZDhw654oorsvXWWy9SG3To0CFXXXVVLr/88vTr1y/Tp0/Peuutl+uuu26OIbAAAJL596GaNGmSK664IgMHDsxvf/vbLLPMMll77bVz00035Te/+U2eeeaZ9OzZM926dcuPf/zjnH/++XniiScyaNCgha5TgwYNcvXVV+eSSy7JDTfckHHjxqVt27bp169f9t9///JyRxxxRJZffvncdNNNue2229KqVavssMMOOeqoo+Z5X+QF8fvf/z4XXXRRrrvuuowdOzZt2rTJ7rvvnt/+9reLVC4AwKJo3rx5brzxxpx//vm5+OKLM2HChLRr1y5nn312dt999/JyZ599dlZbbbXceeed+dOf/pQVV1wx++67bw499NB5/ujcd0vAd61BaX53jgcAAAAAAADqPff4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACiAxguy0IwZMzJt2rQ0bNgwDRo0+LbrBABQ75RKpcyYMSONGzdOw4Y1++2UvhQAsKTTlwIAWHg16UstUPA3bdq0vPTSS7VSOQCAxVnHjh3TtGnTGj1HXwoAYCZ9KQCAhbcgfakFCv4q08OOHTumUaNGc11u+vTpeemll+a7HPOmHWuPtqwd2rF2aMfaoy1rh3asmcr2qukv1JMF70sVjW2setqletqletpl7rRN9bRL9bTL3H1XbbM49KVsJ4sH66n+s44WD9ZT/WcdLR7qY19qgYK/ymEUGjVqtEAVX9DlmDftWHu0Ze3QjrVDO9YebVk7tGPNLMzwUjXtSxXNkvq+50e7VE+7VE+7zJ22qZ52qZ52mbvvqm0Wh76U7WTxYD3Vf9bR4sF6qv+so8VDfepL1fxnVgAAAAAAAEC9I/gDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAATSu6wrUR2PGjMn48eMXqYyWLVtmpZVWqqUaAQBQH9RGP3H69On54IMPsvTSS6dRo0a1VLOFp98KAN/47LPP8vrrr9eLz2iqV9/6Usxp+vTp+eyzz+q6GgBLLMHfbEaOHJlDDz0sM2ZMX6RymjRtlptu/IsvUQAACmLMmDH51T77ZuqUyXVdlVql3woAM40ZMyZ/POecTJs6ta6rAou9xk2aZJ111skqq6xS11UBWOII/mbz/vvvZ8aM6fl61Q0yvWXbhSqj4dfjk1GPZPz48b5AAQAoiPHjx2fqlMmZ1G7LzFiqZZ3WpeGkz9P87Ucz6UdbZEbzVgtfjn4rAJSNHz8+06ZOrRef9cxdbfWD+PY0/Hp8mv//PqbgD+C7J/ibi1LTFpmxzPJ1XQ0AAOqZGUu1rDf9xBnNW9WbugBAUdSnz3rmTj8IAKrXsK4rAAAAAAAAACw6wR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKoJDB3+eff17XVVhkEyZMqOsqAABLsCL0p2BR2AcAAABYEPUtzylc8Dd69Oj07t07o0ePruuqLLTRo0fn9NNPX6zfAwCw+CpCfwoWhX0AYMk0duzYJEmDKV/VcU0AgMVFfcxzChf8TZgwITNmzKh3CWtNTJgwIaVSabF+DwDA4qsI/SlYFPYBgCXTpEmTkiQNpk+t45oAAIuL+pjnFC74AwAAAAAAgCWR4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAjeu6ApW22mqrOaYNGzbsO69HESxqW95111256KKLyo+POuqo7LrrrjWqw6hRo3LggQdmxowZadiwYa655pq0a9dugZ8/bty49OvXL59++mnatGmTCy64IMstt1yN6jBp0qRceeWVGTlyZDp06JBDDjkkzZs3X+DnT58+PSNGjMi4ceOy3HLLpVOnTmnUqFGN6gDAt8ux+huTJk3K1VdfnQ8++CBt27bNQQcdVKPPPaB21cb5TW2dI/Xv3z9PPfVU+XG3bt1yzjnn1Licvn375vXXXy8/rqioyKBBg2pUxvDhw3PccceVHw8cODBdu3atcV1GjBiRI488svz4kksuSadOnWpUxqKes1QaPXp0+vbtm0mTJqV58+YZNGhQVllllRqVMWHChAwYMCCjR4/OKquskhNOOCEtWrSocV0qz6PGjBmTlVZaaaHOo5JkypQp+fvf/16uz09/+tM0bdr0Oy+jNsupL2qr71Jb5UyZMiV/+9vfMmLEiLz55pv52c9+tli3LwAA9ST4q+6EtnK68K9mFrUtq3v+RRddlIsuumiB18XsZcyYMSN9+vRJsmBfVPTu3Tvjxo0rP/7yyy/Tu3fvLLfcchkyZMgC1eGkk07K448/Xn78+uuv5+67786mm26as88+e77Pf/TRR3PFFVfko48+Kk9beeWVc+ihh2aLLbZYoDoA8O1yrP7G7J97zzzzTO66664F/twDaldtnN/U1jlSdeU89dRTtVLO66+/vsjvqTIEXNS6VIaA39U5S6Vtt902U6dOLT+eMGFC9tprrzRp0iRDhw5doDIOPvjgjBw5svz47bffTq9evdKhQ4dcddVVC1yX2c+j3nnnnRqfRyXJVVddldtvvz3Tp0+vMm2PPfbIwQcf/J2VUZvl1Be11XeprXJmb9/HH388gwYNWmzbFwCAmep8qM+5ndAu6Hy+sahtOfv82X+luiDrYtZlmjRpkj59+qRJkyYLXMasJ6vrrLNOzj///KyzzjpJZv56tXfv3vOtQ+WXn02aNMmee+6ZE044IXvuuWeaNGmSxx9/PCeddNI8n//oo4/mtNNOS7t27XL55Zfnvvvuy+WXX5527drltNNOy6OPPjrfOgDw7XKs/sasn3t77bVXbrrppvKXzgvyuQfUrto4v6mtc6T6VM7sy3Tv3r1W6rLhhhsuUl0W5pyl0qyh33LLLZcTTjihfHXd1KlTs+222863jMrQr0GDBtluu+1yzTXXZLvttkuDBg0ycuTIBQ5fZj2PWnvttXPQQQdl7bXXTrLg51HJzCDo1ltvzbLLLptjjz02d955Z4499tgsu+yyufXWWxcoiKyNMmqznPqitvoutVXOrO3br1+/nHbaaenXr99i274AAHyjToO/2U+ohg0bVv43r+WY06K25V133VX++6STTsqwYcNyyy23ZNiwYVW+MJx1udmNGjWq/Pctt9ySoUOHZt99983QoUNzyy23VLvcrMaNG1c+Wb3nnntyxRVXZMMNN8wVV1yRe+65Z45lqjNp0qTyl5/33ntvfvOb32T55ZfPb37zm9x7773lL0EnTZpU7fOnT5+eK664It27d89ZZ52VddddN0svvXTWXXfdnHXWWenevXuuvPLKKr84BeC75Vj9jdk/9/r27Zu2bdumb9++C/S5B9SuWfvazZo1q9Inb9asWbXLzauMlVdeOQ8++GDOP//8PPjgg1l55ZUXqIxk5vCelXbdddcqdZl1GP9Zl6tO3759y39vueWWVcrZcsstq11udsOHDy//fckll2TYsGEZMGBAhg0blksuuaTa5aozYsSI8t+DBg3Kgw8+mL322isPPvhglSFHZ11udot6zlJp9OjR5dBvyJAhGTJkSLbffvvy38nM8G/06NFzLWPChAnl0O+f//xnTjzxxKy55po58cQT889//rMc/k2YMGGedZn9POqyyy5LRUVFLrvssgU+j0pmDvl4++23p3Xr1rn99tvTq1evtGnTJr169aoyfcqUKd9qGbVZTn1RW32X2ipn9vbdeeeds+yyy2bnnXdeLNsXAICq6sVQn8mcw6kMGzZskQK/d999d6Ge97///W+hX7O26vDee+8t0usuTFvOek+/2X+Zuu2225aHCbvooovmer+/Aw88MMnMX83OfrXgKquskiZNmmTq1Kk58MAD89BDD83x/H79+iWZeaXf7PezaNGiRdZee+289tpr6devX2644YZq63D11VcnSfbYY480bdq0yglP06ZNs/vuu2fw4MG5+uqrc9RRR83x/BEjRuSjjz7KKaeckoYNq+biDRs2zN57753DDjssI0aMSJcuXaqtAwDfLsfqb8z+uTerBfncm5+F7ctUmj59ej744IMsvfTShbj34qK2R31WH95bfdpeaqM97r///jke1/T85tZbb63Sn7311lsXuIxZ7+k3+/5/1FFHlX/QN+ty1Zn1nn5nnHFGlXlnnHFGuT6zLje7We/pN/t9+GZ9fNxxx81zmM1Z7+lXUVFRpW0qKiqqLDe3chb1nKVSZdC53HLLzXEPvcpp48aNS9++fcvh2+wGDBiQZOb51lJLLVVl3lJLLZVtttkmQ4cOzYABA+Y5bPPs51GztsuCnkclyd///vdMnz49BxxwQBo3rvpVQePGjdOnT5+cf/75+fvf/5499tjjWyujNsupL2qr71Jb5czevrNuM4tj+wL113vvvVfn/Trmrj71v6medbR4WNQ859tQb4K/2lYf7mdTH+pQU3O7Cf0KK6yQsWPHzvO5M2bMSJLss88+1c7fc889c+ONN5aXm92nn36aJDnggAOqnb///vvnuOOOKy9XnQ8++CBJstNOO1U7f6eddsrgwYPLy82u8lewP/rRj6qdXzl9fr+WBeDb41j9jUX93JufxbEvw8KxrvkuzD68Z6WNNtoozzzzzAKXs/3221c7vWfPnvMM65JFP2epVHkl9UEHHVTt/D59+uS8886b5xXXlVcD/vznP692/h577JGhQ4fO86rBpHbOo2atz9zWU+X0edWnNsqozXLqi9rqu9RWOUVrX6D+qvyRCwDfrcIGfyeddFJWW221Gj/vySefzHXXXVendXj77bfr7INxbh37+YV+ycxfGM6YMSM33nhj9t133znm33rrreXlqtOmTZt8+eWXufbaa+e4V0eSXH/99eXl5qZt27Z55plnct9991U73NB9991XXq46lb/Wffvtt7PuuuvOMf/tt9+ushwA3z3H6m8s6ufe/CxsX6bS9OnT8/rrr6eioqIQv0589913CxuQLeq6rg31aXsp8rquS0888US102sS+iUzr5484YQT5pg+v9AvWfRzlkrNmzfPhAkTcvXVV1cbRFaeUzZv3nyuZayyyip5++2389e//jUnnnjiHPNvv/328nLzUhvnUbO+zhNPPJFevXrNMb9y/c2rPrVRRm2WU1/UVt+ltsopWvsC9dcJJ5ww1x8rUPfqU/+b6llHi4e6zHPmpt4Ef1tttVWV4VgW9b5+q622WpXhXhZUbQ5ztLB1WNR7Ei1MWx511FHl4T6HDh1aZbjPoUOHVllubq655pr06dOnfC+LWU8SZr0HxjXXXFPt8y+44IL07t07r776aiZMmFBluM8JEybktddeKy83NwcddFDuuuuu3H777dlvv/2qHBCnTJmSO+64o7xcdTp16pSVV145N998c84666wqJ/wzZszIzTffnO9///tzDFEEwHfHsfobs3/uzTrc54J87s3PwvZlKk2fPj0TJ050krIYWNR1XRuKtr1sv/32VYb7nNtVavOy55575uabb67yeEF169atPIznRRddVKUfP+sw/926dZtnORUVFeVhPE877bQqw32edtppVZabm4EDB5aH+xwxYkSV4/Os9+MbOHDgPOtyySWXlIf7fP3117PGGmuU58061Ois9w2c3aKes1QaNGhQ9tprr/K982YNWma9n96s9x6c3QknnJBevXpl6NCh6devX5XhPr/++us88MAD5eXmZfbzqFnDxgU9j0qSn/70p7nqqqty7bXXZocddqgyxOa0adNy3XXXpVGjRvnpT3/6rZZRm+XUF7XVd6mtcmZv3wYNGpTnLY7tC9RfP/zhD+u8j8ncFa3/XUTW0eJhUfOcb0OdBn+z33tubgHVvO7zwEyL2pa77rpr+QuAs88+O2effXa1w3vO7f5+SdKuXbvy33vttVeaNGmSPffcM7feemv5BHr25WY1670wevXqlbXXXjv7779/rr/++vLJanX30JhV8+bNs+mmm+bxxx/PzjvvnN69e2f11VfPoEGDMmTIkEydOjWbbrrpXH9526hRoxx66KE57bTTcvLJJ2fvvffOj370o7z99tu5+eab88QTT+SMM85woAWoQ47V35j9c2/33XfPTjvtlPvuuy933HHHfD/3gNo1a5988uTJC3V+M2sZH330Ubbeeusal5Ek55xzTrmcu+66q3xPv+qWm5dBgwaVy3nkkUfm+p7mFXB17dq1/HdlcFfd8J6zLledWcOMyqucO3XqlGOOOWauy81uUc9ZKs16P8DevXtnueWWS58+fXLdddeVQ7/q7iM4qxYtWqRDhw4ZOXJkdtxxx2yzzTbZY489cvvtt+eBBx5IqVRKhw4d5rj/+exmP4/q0KFDNttss/zpT3/KyJEjqywzL02bNs0ee+yRW2+9NXvssUf69OmT7t2754knnsh1112Xzz77LHvuuecc95St7TJqs5z6orb6LrVVzuztu99+++V73/te7rnnntxwww2LXfsCAFBVnV/xN3tgVd18FsyituXsz5899FuQdTFrGVOnTs2NN95YozKGDBmS3r17Z9y4cXnttdfKvwxOZp6sDhkyZL51OPvss3PSSSfl8ccfz2233VZl3qabbjrfYZu22GKLnHHGGbniiity2GGHlad///vfzxlnnJEttthivnUA4NvlWP2NWT/3Bg8enMGDB5fnLcjnHlC7auP8prbOkepTObOXMXvot7B1mfWKwYWpy8Kcs1SqHCll6tSpGTduXM4777zyvCZNmlQZOWVurrrqqhx88MEZOXJkhg4dWuU5HTp0yFVXXbVAdZn1PGrkyJHlwC9Z8POoJDn44IOTzBxm9Pzzzy9Pb9SoUfbcc8/y/G+7jNosp76orb5LbZUza/teeOGF5emLa/sCAPCNOg/+krmfSAr9am5R23LYsGG56667qgz/c9RRR83zSr/qyhg1alQOPPDAzJgxIw0bNsw111wz31/NVhoyZEjGjRuXfv365dNPP02bNm1ywQUX1OheTWeffXYmTZqUK6+8MiNHjkyHDh1yyCGHLPAVD1tssUU23XTTjBgxojx0T6dOnZaIq0cAFheO1d+o/Ny7+uqr88EHH6Rt27Y56KCDXOkHdaQ2zm9q6xxp2LBh6d+/f3nYz2Tm8J7zu9KvunL69u1bZUjNioqKeV7pV10Zw4cPr/LjvoEDB873Sr/qyhkxYkT56sFk5vCeNRnieVHPWSoNHTo0o0ePTt++fTNp0qQ0b948gwYNqtG90a666qpMmDAhAwYMKA8/esIJJ8z3Sr/ZzXoeNWbMmKy00ko1Po9KZgZCffr0yd///vdyfX7605/W6Oqv2iijNsupL2qr71Jb5VS279/+9rfyMLw/+9nPFtv2BQBgpnoR/CVCvtq0qG2566671ijoq067du3y0EMPLfTzl1tuudxwww2LVIfmzZvnt7/9bV544YWsv/76NT4JatSoUbp06bJIdQDg2+VY/Y3mzZvP8168wHerNs5vhg0blunTpy90f7ZSTUO+ualJyDc3Xbt2rZW26dSpUx588MFFaptFPWeptMoqq+See+5ZpDJatGhRK1doL7fccrn22msXeZupHApyUdRGGbVZTn1RW32X2iqnadOm2X333bPmmmsu0jYDAED90XD+iwAAAAAAAAD1neAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAIUL/lq0aJGGDRumRYsWdV2VhdaiRYs0aNBgsX4PAMDiqwj9KVgU9gGAJVPz5s2TJKVGTeq4JgDA4qI+5jmN67oCtW2VVVbJkCFD0qpVq7quykJbZZVVcvrpp2eVVVap66oAAEugIvSnYFHYBwCWTCussEKSpNR0mTquCQCwuKiPeU7hrvhLUogT9PqUDgMAS54i9KdgUdgHAAAAWBD1Lc8pZPAHAAAAAAAASxrBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAAqgcV1XoL5qMGVCGn71yUI9t+HX42u5NgAA1Bf1oa/XcNLnVf5f6HLqwXsBgPrG52P9Vlv9IL499iGAuiX4m80PfvCDNGzYKEt9+Fzy4XMLXU6Tps3SsmXLWqwZAAB1qWXLlmnStFky6pG6rkpZ87cfXeQy9FsBYKaWLVumcZMmaV6PPuuZu9roB/HtadykiT4mQB0R/M2mQ4cOGTz4lowfv2i/TGnZsmVWWmmlWqoVAAB1baWVVspNN/5lkfuJ06dPz+uvv56Kioo0atSolmq38PRbAWCmlVZaKcf3759VV121XnxGU7361pdiTtOnT8+HH36ojwlQRwR/1VhppZV8MAEAMIfa6CdOnz49EydO9GUVANRDrVu39hldz+lL1X+V6wiAutGwrisAAAAAAAAALDrBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAAqg8YIsVCqVkiTTp0+f53KV8+e3HPOmHWuPtqwd2rF2aMfaoy1rh3asmcp2quwX1cSC9qWKxjZWPe1SPe1SPe0yd9qmetqletpl7r6rtlkc+lK2k8WD9VT/WUeLB+up/rOOFg/1sS/VoLQAS02ZMiUvvfTSotcMAGAx17FjxzRt2rRGz9GXAgCYSV8KAGDhLUhfaoGCvxkzZmTatGlp2LBhGjRoUGsVBABYXJRKpcyYMSONGzdOw4Y1Gy1dXwoAWNLpSwEALLya9KUWKPgDAAAAAAAA6rea/cQKAAAAAAAAqJcEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAqi14G/y5Mk58cQTs9FGG2WzzTbLddddV1tFL1GGDh2a9u3bV/l35JFH1nW1FhtTpkxJr1698tRTT5Wnvf/++9lvv/2y/vrrZ6eddsq///3vOqzh4qO6tjzrrLPm2D5vuummOqxl/TVmzJgceeSR6dq1azbffPMMGDAgkydPTmKbrKl5taVtcsG9++67OeCAA9KlS5dstdVWueaaa8rzbJN8W6r7LFmSzet4tqSb1zGKmfr27Zvjjz++rqtRLzhnmrspU6bkjDPOyMYbb5wf//jHueCCC1Iqleq6WnVqyJAhc2wv7du3T4cOHeq6anXuf//7Xw466KBssMEG6dmzZ2644Ya6rtJ3akH6Ka+++mr22GOPdO7cObvttltefvnl77CGJAu2ng455JA59vGHH374O6zlkqkmfVv7Ut2pyXqyL9WNmpwL2ZfqTk3WU33YlxrXVkEDBw7Myy+/nD//+c8ZPXp0+vfvn1VWWSU77LBDbb3EEuHNN99Mjx49cuaZZ5anNWvWrA5rtPiYPHlyjjnmmLzxxhvlaaVSKYcddlgqKipy55135oEHHsjhhx+e++67L6usskod1rZ+q64tk+Stt97KMccck5/97GflaS1atPiuq1fvlUqlHHnkkVl22WVz8803Z/z48TnxxBPTsGHDHHfccbbJGphXW/bv3982uYBmzJiRvn37pmPHjvnb3/6Wd999N/369ctKK62UXr162Sb5Vszts2RJNb/j2ZJsXseoXXbZpa6rVy/ce++9eeSRR6p83i3JnDPN3VlnnZWnnnoq1157bb766qscffTRWWWVVbLnnnvWddXqzE477ZTNN9+8/HjatGn59a9/na222qruKlVPHHXUUVlllVUyZMiQvPnmmzn22GOz6qqrZtttt63rqn3rFqSfMnHixPTt2ze77LJL/vjHP2bw4ME56KCDMnTo0Cy99NLfYW2XXAvan3zrrbdy7rnnpnv37uVpLVu2/Lart0SrSd/WvlR3anoOYl/67tXkXMi+VHdqes5aH/alWrnib+LEibn99ttz0kknZd111822226bAw88MDfffHNtFL9Eeeutt1JRUZEVVlih/G/ZZZet62rVe2+++WZ+/vOf57333qsy/cknn8z777+f3//+91ljjTVy0EEHZf3118+dd95ZRzWt/+bWlsnM7XOdddapsn02b968DmpZv40aNSovvPBCBgwYkLXWWisbbbRRjjzyyNxzzz22yRqaV1smtskF9cknn2TttdfO6aefntVXXz1bbrllunfvnmeffdY2ybdiXp8lS6r5Hc+WZPM6RpF8/vnnGThwYDp27FjXVak3nDNV7/PPP8+dd96ZM888M506dUr37t3Tp0+fvPjii3VdtTq11FJLVdlW7r777pRKpRx77LF1XbU6NX78+Lzwwgs55JBDsvrqq2ebbbbJ5ptvnieeeKKuq/atW9B+yn333ZdmzZrluOOOyxprrJGTTjopyyyzTP71r399RzVdsi3oepoyZUo++OCDdOzYscq+3rRp0++opkummvRt7Ut1pybryb5UN2pyLmRfqjs1WU/1ZV+qleBv5MiRmTZtWrp06VKetuGGG+bFF1/MjBkzauMllhhvvfVWVl999bquxmJn+PDh6datW2677bYq01988cWss846VX71sOGGG+aFF174jmu4+JhbW06YMCFjxoyxfS6AFVZYIddcc02WX375KtMnTJhgm6yhebWlbXLBrbjiirnooovSokWLlEqlPPvss3n66afTtWtX2yTfirl9lizJ5nU8W9LN6xhFcs455+SnP/1p1lxzzbquSr3hnKl6zz77bFq0aFFl3+nbt28GDBhQh7WqXz7//PP86U9/yjHHHLPEf5G51FJLpXnz5hkyZEimTp2aUaNG5bnnnsvaa69d11X71i1oP+XFF1/MhhtumAYNGiRJGjRokA022EA/+TuyoOtp1KhRadCgQX7wgx98RzUjqVnf1r5Ud2qynuxLdaMm50L2pbpTk/VUX/alWhnqc+zYsWndunWVjvPyyy+fyZMn5/PPP89yyy1XGy9TeKVSKW+//Xb+/e9/5+qrr8706dOzww475Mgjj1ziT0rmZ6+99qp2+tixY7PiiitWmdamTZt89NFH30W1Fktza8u33norDRo0yFVXXZVHH300rVq1yv7772/IqWosu+yyVYYTmjFjRm666aZssskmtskamldb2iYXTs+ePTN69Oj06NEj22+/ff7whz/YJql1c/ssWZLN63jGN2Y/Ri3pnnjiiTzzzDP5xz/+kdNPP72uq1MvOGeau/fffz+rrrpq7rrrrlx11VWZOnVqevfunUMOOSQNG9bKb34Xe4MHD86KK67oliSZOTzuqaeemjPPPDN/+ctfMn369PTu3Tt77LFHXVftW7eg/ZSxY8fO8aOLNm3aGMb8O7Kg62nUqFFp0aJFjjvuuAwfPjwrr7xyjjjiiGy55Zbfcg2XbDXp29qX6k5N1pN9qe7N71zIvlQ/zG891Zd9qVZ6/5MmTZrjJKvy8ZQpU2rjJZYIo0ePLrflRRddlP79++cf//hHBg4cWNdVW2zNbdu0XdZc5a8V2rVrl0GDBmWPPfbIKaeckqFDh9Z11eq9c889N6+++mqOPvpo2+QimrUtbZML55JLLslVV12V1157LQMGDLBNQh2Z9XjGN2Y/Ri3JJk+enNNOOy2nnnpqllpqqbquTr3hnGnuJk6cmHfffTe33nprBgwYkP79++fGG2/MDTfcUNdVqxdKpVJuv/32/OpXv6rrqtQbb731Vnr06JHbbrstAwYMyL/+9a/cfffddV2tekM/efEwatSofP3119lss81yzTXXZMstt8whhxySl156qa6rtkSZV9/WvlR/zGs92Zfq3vzOhexL9cP81lN92Zdq5Yq/Zs2azbGBVT52krrgVl111Tz11FNp2bJlGjRokLXXXjszZszI7373u5xwwglp1KhRXVdxsdOsWbN8/vnnVaZNmTLFdrkQdt111/To0SOtWrVKknTo0CHvvPNOBg8evETc/H1hnXvuufnzn/+cCy+8MBUVFbbJRTB7W6611lq2yYVQeY+oyZMn59hjj81uu+2WSZMmVVnGNgnfrtmPZ3xj9mPUcccdt8RexXXZZZdlvfXWq/IrbZwzzUvjxo0zYcKEnH/++Vl11VWTzAxKBw8enD59+tRx7ereSy+9lDFjxmTnnXeu66rUC0888UTuuOOOPPLII1lqqaXSsWPHjBkzJldeeWV+8pOf1HX16oW5fdeln1y/HHroodlnn33SsmXLJDPPC1955ZX89a9/dX/c78j8+rb2pfphfuvJvlT35ncuZF+qH+a3nurLvlQrV/yttNJK+eyzzzJt2rTytLFjx2appZZyk/UaatWqVXmc3iRZY401Mnny5IwfP74Oa7X4WmmllfLJJ59UmfbJJ5/MMawd89egQYNywFKpXbt2GTNmTN1UaDFw5pln5vrrr8+5555bvvTbNrlwqmtL2+SC++STT/LAAw9Umbbmmmtm6tSpWWGFFWyT8B2q7ni2pJvXMWpJvgfivffemwceeCBdunRJly5d8o9//CP/+Mc/qtxXfUnlnKl6K6ywQpo1a1YO/ZLkRz/6Uf73v//VYa3qj8ceeywbbbRR+UuYJd3LL7+c1VZbrcqXheuss05Gjx5dh7WqX5y7LR4aNmw4x37tvPC7syB9W/tS3VuQ9WRfqhs1OReyL9Wdmqyn+rIv1Urwt/baa6dx48ZVbiT57LPPpmPHju4lUAOPPfZYunXrVuXKi9deey2tWrVyn8SF1Llz57zyyiv5+uuvy9OeffbZdO7cuQ5rtXi6+OKLs99++1WZNnLkyLRr165uKlTPXXbZZbn11ltzwQUXVPlVsW2y5ubWlrbJBffBBx/k8MMPr9LJePnll7Pccstlww03tE3Cd2Rux7Ml3byOUUtyH/jGG2/MP/7xj9x1112566670rNnz/Ts2TN33XVXXVetTjlnmrvOnTtn8uTJefvtt8vTRo0aVSUIXJKNGDEiG2ywQV1Xo95YccUV8+6771a5cmDUqFFp27ZtHdaqfuncuXOef/75lEqlJDOHi33uuef0k+uZ448/PieccEKVac4LvxsL2re1L9WtBV1P9qW6UZNzIftS3anJeqov+1KtpHLNmzfPrrvumtNPPz0jRozIAw88kOuuuy777rtvbRS/xOjSpUuaNWuWk08+OaNGjcojjzySgQMH5sADD6zrqi22unbtmu9///s54YQT8sYbb2TQoEEZMWJEdt9997qu2mKnR48eefrpp3Pttdfmvffeyy233JK77rrLsEHVeOutt3LFFVfkN7/5TTbccMOMHTu2/M82WTPzakvb5ILr2LFj1l133Zx44ol5880388gjj+Tcc8/NwQcfbJuE78i8jmdLunkdo5Zkq666alZbbbXyv2WWWSbLLLNMVltttbquWp1yzjR37dq1y1ZbbZUTTjghI0eOzGOPPZZBgwbll7/8ZV1XrV544403suaaa9Z1NeqNnj17pkmTJjn55JPz9ttv56GHHspVV12VffbZp66rVqfGjh1b/kHcDjvskC+++CJnn3123nzzzZx99tmZNGlSdtxxxzquJbOup549e5Z/KPPuu+/msssuy7PPPut+nt+y+fVt7Uv1Q03Wk32pbszvXMi+VD/UZD3Vm32pVEsmTpxYOu6440rrr79+abPNNitdf/31tVX0EuX1118v7bfffqX111+/tOmmm5YuvfTS0owZM+q6WouVioqK0pNPPll+/M4775T23nvv0nrrrVfaeeedS48//ngd1m7xMntbDh06tLTLLruUOnbsWNphhx1K999/fx3Wrv66+uqrSxUVFdX+K5VskzUxv7a0TS64jz76qHTYYYeVNthgg9Kmm25auvLKK8ufL7ZJvk2zf5YsqeZ3PFvSzesYxUz9+/cv9e/fv66rUS84Z5q7L774ovS73/2utP7665e6d++ubWbRsWPH0qOPPlrX1ahX3njjjdJ+++1X2mCDDUrbbLNN6frrr1/itpfZ+ykVFRWlO++8s/z4xRdfLO26666ljh07lnbffffSK6+8UhfVXOLNbz399a9/LW233Xal9dZbr/Szn/2sNHz48Lqo5hJlfn1b+1L9UNP1ZF+qG/M6F7Iv1R81WU/1YV9qUCr9/2tDAQAAAAAAgMWWG/ABAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8wWKiffv2OeaYY+aYPmTIkPTs2fNbec2ePXtmyJAh30rZC+LBBx/MFltskc6dO+exxx6rMu+DDz5I+/bty//WXnvtbLbZZjn33HMzbdq0hX7N448/Pscff/yiVh0AqCf0ob6dPtQTTzyRt956K8m325YAwOJJH+yxOebP2gf7f+3dfVTO9/8H8KfR3Ew3FLH45hquGeueVEqrtrOdJM7IUdZEbRpGnBK5L2zlnM0pCgtzMzWJsE2Ik/ub2ThZZHVdUgpr3QjFVdf1/v3hd33WtZKKr5u+z8c519H1fn8+7/fr/eqfl+t99f7UfYWGhgJ48fETUevR7kUHQERN99NPP2Hs2LFwdHR80aE8F7GxsXB2dsa0adNgbGzc4DUpKSno2bMn1Go1rl27hrlz58LQ0BCff/75c46WiIiIXlasoep72hoqICAAW7ZsQd++fZ9l6ERERNSKsAarLy4uDjY2NjptHTp0eB7hEdH/EP7FH9ErxMzMDJGRkVCpVC86lOfi7t27sLOzg5mZ2WOLoK5du6Jbt27o0aMHHB0dMWHCBOzfv/85R0pEREQvM9ZQ9bGGIiIiov821mD1GRoaolu3bjovfX395xwpEbV23PgjeoWEhITg9u3b2LBhQ4P92qObbty4IbXFxcXB398fwKPjFPz9/ZGQkIAhQ4Zg2LBhSEtLQ3p6Otzc3DB48GCsXLlSZ8zc3FyMHj0aFhYWCAwMRHFxsdR38+ZNBAcHw8rKCu7u7li9ejXUarU01/jx4zFt2jTY2dlh79699eJ9+PAhVq5cCVdXV1hbWyM4OBg3b94E8Oh4g6KiIkRERDTrCIiOHTvqvK+srERYWBhsbW3h7OyMqKgoPHjwQOo/f/48Ro8eDUtLS8ycORPV1dU6uZs6dSomTJgAe3t7nDt3rtGYAeDWrVuYOXMm7O3tMXToUCxbtkwqcJub/9OnT2PUqFGwsLCAh4cHkpOTm5wHIiIi+gdrqCf7dw2Vl5eHwMBA2NjYwMLCAn5+ftLRntpxP/30U8TFxQEAhBCIi4vD0KFDMXjwYERHR0tjaY9S9/b2hqOjI/Lz83Hnzh0sXLgQTk5OsLOzQ1hYGO7cuSPdo1AoEBgYCFtbW7i4uGD16tXQaDTS72bOnDmIioqCjY0N3N3dceLECWzbtg1OTk5wcHDAli1bpLF++eUXfPjhh7CwsICnpycyMjKanBciIiJqOdZgLafRaJCYmAgPDw9YWlrC398fV69elfobq6XOnj0Ld3d3LF68GHZ2dli/fj2Ki4sxefJk2NjYwNHREVFRUaipqXnqOIno5cSNP6JXiKmpKWbMmIG1a9eisLCwRWNcuHABhYWF2LlzJ0aMGIElS5Zgy5YtSEhIwNy5c5GYmIjLly9L1yclJSEoKAipqamora1FeHg4gEcf7kyfPh3GxsbYvXs3vvrqK+zbtw9r167Vmatfv37YsWMHnJ2d68WyePFiHDp0CNHR0UhOTkZtbS2mTp0KjUaDnTt3okePHoiIiMDOnTubtLabN28iJSUF3t7eUtv8+fNx9+5dJCUlIT4+HpcuXUJkZCQAoKysDFOmTIGTkxPS0tLQr18/pKen64x5+PBheHl5YfPmzbC0tGw0ZpVKhYkTJ6K6uhpbt27FqlWrkJmZiZiYmGbnX61WIyQkBB999BH279+PmTNnYunSpcjLy2tSLoiIiOgfrKEa9+8aSqPRIDg4GGZmZtizZw+Sk5OhVqulD9a048bFxWHy5MkAgOLiYly7dg3JycmIjIzEpk2bcOzYMWmOPXv2ICQkBOvWrUOfPn0wffp0XLlyBWvXrsWmTZugUCik5yyXlZXBz88P3bt3R0pKChYvXoxt27bV28zT19fHnj17YGlpiZCQEJw4cQJbt26Fv78/oqOjUVZWhtLSUsyZMwdTpkxBeno6xowZg9mzZ6OioqJJuSEiIqKWYw3WcmvWrMHGjRsRERGB3bt3w8zMDEFBQaiqqgKARmspACgqKoJKpcKuXbvg5eWFqKgodOrUCWlpaVizZg0OHDiAHTt2PHWcRPSSEkT0SpDL5eLMmTOitrZWjBw5UkyZMkUIIURqaqpwc3MTQghRWFgo5HK5KCwslO6LjY0Vn3zyiXTtwIEDxf3794UQQuTl5Qm5XC5OnTolXe/o6Cj27dsnhBDCzc1NfP3111Kfdvy8vDxx6tQp4eDgINRqtdR/+PBhYW9vL8319ttvi+rq6gbXU1FRIQYMGCCOHz8utZWXlwsrKytx7Ngxaf7U1NQG79fGYmVlJaytrYWlpaWQy+Xigw8+EKWlpUIIIa5fvy4GDBggKisrpftycnKktm3bton3339faDQaqX/MmDEiPDxcyp2Tk1OTY87IyBBWVlaioqJC6j969KgYOHCguHfvXrPyX15eLuRyudixY4fUd/r0aZ2xiYiI6MlYQ+lqSg11//598d1330nrFUKIpKQk4eHhUS+v2pgHDRqkc/2oUaPEunXrhBBChIeHCx8fH6nvypUrQi6XC6VSKbVpc6pQKMTmzZuFq6urqKmpkfq3b98uhg0bJoR49LtxdnaWarjMzEwhl8tFQUGBEEKI6upqIZfLxe+//y6ys7OFXC4XJ0+eFEIIodFoxPHjx0VVVVWD+SEiIqJngzVYwzmxsLAQ1tbW0kubi7r3azQaYW9vL5KTk6U+lUolXF1dRVJS0hNrqTNnzkjr1ho5cqSYO3euUKlUQgghsrOzdfJORK1Luxe98UhEzdO2bVssWbIEfn5+LTqmyNjYGJ06dQIAtG/fHgDQq1cvqb9Dhw46Z69bWlpKP/fq1QtGRkZQKpW4ffs2KioqYGdnJ/VrNBo8ePAA5eXl0lyPO9M8Pz8fGo0GVlZWUpuRkRFkMhkUCgVcXFyatJ7169fD1NQUGo0Gf//9NxISEuDn54e9e/dCoVBAo9Fg+PDhOvdoNBpcv34deXl5GDBgANq0aSP1WVhY6Bz3aWZm1uSYVSoV+vTpA0NDQ6nf1tYWtbW1KCgokHLSlPwbGRnB19cXCxYsQHx8PNzc3DBmzBidsYmIiKjpWEPpaqyG6tSpE3x9fZGWloY//vgDSqUSly9fhomJSZPyAwD6+vo6+ahbUymVShgYGEAmk0ltffv2haGhIZRKJRQKBQYNGoR27f7576qNjQ1KSkpQWVkJ4FFOtTWcNlfaObTvVSoVrK2t8d5772HSpEmQyWTw8PCAj49PvaNNiYiI6L+DNZiuZcuW6Yzx2mv1D+QrLS1FRUWFznV6enp49913oVAoYGBg0GgtpX1mYN08BQUFISIiAocOHcLw4cPh6emJgQMHNilmInr1cOOP6BVka2uLMWPGYPny5QgKCpLa625gadXW1uq8r/sBSmP3abVt21bnvUajgZ6eHmpra/HWW28hPj6+3j3aAkNbkDXkcX1qtVp6fktTvPnmm1IhI5PJYG5uDhcXF5w8eRJqtRr6+vpITU2td5+pqSmAR0c91KWnp6ez8Vc3zifF3FC/9qx47b/Nyf+SJUswYcIEZGRkICMjAz/++CPi4+Ph6ura4PVERETUONZQ/2ishrK3t8fYsWPRpUsXuLu7w8vLC0qlEhs3bnzseP9eL6BbZ9WN+/XXX3/sGtRqdYNr1K6tsZqqoQ/O2rRpg3Xr1iErKwuHDx/GoUOHsH37dmzfvh3vvPPOY9dDREREzw5rsH+YmprC3Ny80WueNNeTaqmGxtE+azkjIwOZmZmYMWMGPvvsM8yaNavJsRPRq4PP+CN6RYWGhqKqqkrnAcl6enoAgPv370ttdR+Q3BJ//vmn9HN+fj4qKyshk8kgk8lQXFyMrl27wtzcHObm5rhx4wZiY2MbLcC0evfujXbt2uHixYtSW3l5Oa5fv67zjaXm0n7ApFarIZPJcPfuXbRp00aK8cGDB4iJiYFKpUL//v2l5+lpXblypcUxy2Qy5Ofn6zwz5uLFi2jXrh3+85//NGsdJSUlWLp0KczNzfHFF18gNTUVDg4OOHLkSLPGISIiIl2soRpWt4Y6d+4c/vrrL2zZsgVBQUFwcnJCcXFxvS9MtZRMJkNlZSWUSqXUlpeXh3v37kk5ys7ORk1NjdR/4cIFdO3aFUZGRs2aS6FQIDo6GpaWlpg1axZ+/vln9OzZE8ePH38mayEiIqKmYQ3WdPr6+jAxMdGZq6amBtnZ2dJaGqulGvLtt9+itLQUvr6+WLduHUJCQnDw4MFnGjcRvTy48Uf0iurSpQtCQ0NRVFQktZmYmKBnz57YsGEDCgsLsWvXLmRmZj7VPJs2bcLBgweRk5ODefPmwc3NDebm5nB2doaZmRnCwsJw9epVnD9/HgsXLkTHjh0b/Mb3v73xxhvw8fFBVFQUzp49i5ycHISFhaFHjx4YNmxYk+MrKytDSUkJSkpKkJubi8jISHTp0gUODg7o27cvXFxcEBoaiqysLGRnZ2PevHmoqqqCgYEBRowYgerqaixfvhxKpRKJiYn47bffWhzzsGHD0Lt3b8yZMwdXr17FmTNnEBUVBS8vLxgYGDR5TQBgaGiIQ4cOYcWKFSgoKMCvv/6KnJwcHsNARET0lFhDPdJYDWVkZISqqipkZGTgxo0bSElJwQ8//KBzjFanTp2Qm5uLu3fvNjs3ffv2xfDhwxEeHo6srCxkZWUhPDwcQ4YMgVwux8iRI6FSqbBo0SIoFApkZGQgLi4Ovr6+Tfpgri4DAwMkJSUhPj4ehYWFyMzMRFFREWsqIiKi54w1WPMEBAQgNjYWR44cgUKhwMKFC/Hw4UN4eno+sZZqiFKpRGRkJHJycpCbm4ujR4+yHiJqxbjxR/QKGzt2LGxsbKT3r732GpYvX46srCx4enoiPT0dwcHBTzXHpEmTsGrVKowbNw7GxsZYsWIFgEdHJyQkJECj0WDcuHH48ssv4erqigULFjR57PDwcDg5OWHGjBnw9fVF+/bt8f333z/2yIKG+Pj4wNnZGc7Ozhg/fjxqamqwceNGdO7cGQAQExODXr16ISAgQHq2yzfffAPg0eZaYmIiLl26hFGjRuHUqVMYNWpUi2Nu27atdGTEuHHjMHv2bHh4eCAyMrLJ69F6/fXXER8fj5ycHHh7eyMkJARjx46Fj49Ps8ciIiIiXayhGq+hbGxsMG3aNCxduhTe3t7YtWsXFi1ahNLSUty+fRsA4O/vj5iYGMTFxTUvMf8vOjoavXv3RkBAAAIDA9G/f3+sWbMGANC5c2ckJiaioKAAo0ePRlRUFCZOnIjp06c3e55u3bohLi4OBw4cwIgRIxAZGYnZs2fD2dm5RXETERFRy7EGa7rJkyfDx8cHCxcuxMcff4xbt25h69at6Nq1K4DGa6mGLFmyBCYmJvD398e4cePQvXt3zJ8//5nHTUQvhzbiWZ3XQkREREREREREREREREQvDP/ij4iIiIiIiIiIiIiIiKgV4MYfERERERERERERERERUSvAjT8iIiIiIiIiIiIiIiKiVoAbf0REREREREREREREREStADf+iIiIiIiIiIiIiIiIiFoBbvwRERERERERERERERERtQLc+CMiIiIiIiIiIiIiIiJqBbjxR0RERERERERERERERNQKcOOPiIiIiIiIiIiIiIiIqBXgxh8RERERERERERERERFRK8CNPyIiIiIiIiIiIiIiIqJW4P8AIgK16N9e0b0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1929,7 +1929,7 @@ }, { "cell_type": "code", - "execution_count": 530, + "execution_count": 230, "metadata": {}, "outputs": [], "source": [ @@ -1942,7 +1942,7 @@ }, { "cell_type": "code", - "execution_count": 531, + "execution_count": 231, "metadata": {}, "outputs": [ { @@ -1951,13 +1951,13 @@ "Text(0.5, 0, 'Number of Bedrooms')" ] }, - "execution_count": 531, + "execution_count": 231, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAHJCAYAAAD6nCFhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAApAElEQVR4nO3deXxNB97H8W9WQpCIrdRW5saWRCyJrSpqMLaiVO00WgR9JpaKpaS1PFrRksXWWJ7aGkQt1ZlOdbQ6dlNaU3mq7ajSWB8SMUG28/zhlTOuhIaanJv4vF8vr5d7zrn3/u4hyefec+6Nk2EYhgAAwGPN2eoBAACA9QgCAABAEAAAAIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCIBCN3jwYPn6+tr9adasmYYMGaJDhw49kvvw9fVVTEzMI7ktAI8HV6sHAB5HDRo00MyZMyVJ2dnZunr1qjZs2KDQ0FBt2bJFv/vd7yyeEMDjhiAALODp6anGjRvbLWvVqpVatmypLVu2aPLkydYMBuCxxSEDwEF4eHioRIkScnJyMpft2rVLvXv3lp+fn1q3bq3Zs2crPT3d7nqHDh1Sv379FBAQoE6dOmnfvn1268+ePStfX1+tWrVKnTt3VkBAgBITEyVJx48fV2hoqIKDg9WkSRONGjVK33//vd31L168qClTpuiZZ56Rv7+/+vTpo88++8xuG19fX23YsEERERFq2rSpgoKCNHv2bN28eVNvvfWWWrRooeDgYE2bNk23bt0yr7d371698MILCgwMVPPmzTV69Gj9+OOPj2R/AngwBAFgAcMwlJWVpaysLGVmZurSpUtasGCBMjIy9Pzzz0uSduzYoTFjxuipp55SXFycxo4dq+3btyssLEy5v6T022+/1UsvvaQyZcooOjpaQ4YM0fjx4/O9z5iYGL388st6++231bp1ax04cED9+/eXJM2dO1ezZ8/WuXPn9OKLL5o/lC9fvqw+ffroyJEjCg8PV0xMjKpVq6YxY8Zo+/btdrc/f/58ubu7KzY2Vj179tSaNWvUs2dPnTt3TlFRURo8eLA2b96sNWvWSJLOnDmjsLAwNWrUSEuWLNGcOXN06tQpvfLKK8rJyfmP7HcA98YhA8AChw8fVsOGDfMsHz9+vOrUqSPDMBQVFaWnn35aUVFR5vpatWpp2LBh+uKLL9SuXTstW7ZMPj4+WrJkidzc3CRJ3t7eCg8Pz3Pbf/jDH8zYkKRx48apZs2aWr58uVxcXCRJbdq00e9//3tFR0dr0aJFWrVqla5cuaJPPvlE1apVkyQ988wzGjZsmN5++21169ZNzs63n1fUrVtXb775piQpKChImzZtUmZmpqKiouTq6qo2bdrok08+0VdffSVJ+uabb3Tz5k2NHDlSlStXliRVqVJFn332mdLT0+Xp6fmb9zOAgiMIAAs0bNhQb7zxhqTbrxZcu3ZNe/bs0bvvvqv09HT16NFD58+f18iRI5WVlWVer3nz5vL09NTevXvVrl07/f3vf1dISIgZA5LUsWNH8wf8nerXr2/+PT09XcePH9fYsWPtti1btqxCQkL0xRdfSLp9OCIwMNCMgVw9evTQlClT9M9//lN169aVJAUGBprrXVxc5O3trYYNG8rV9d/fZry8vJSWliZJCggIUIkSJdSnTx917txZbdu2VXBwsPz9/R98hwL4zQgCwAKlS5eWn5+f3bI2bdooPT1d8fHxat26tSTpjTfeMMPhThcvXpQkpaamytvb226dq6trnmWSVKpUKfPvaWlpMgxDFSpUyLNdhQoVzB/aqampql69er7bSNK1a9fMZfk9o7/zPu/25JNPau3atVq+fLk2b96s999/X2XLltWAAQP0xz/+0e5cCgD/eQQB4EAaNWqkTZs2mZdfe+01BQUF5dmuXLlykm4/4758+bLdOsMwlJqaet/7KVOmjJycnPJcV5IuXbokLy8v834uXbqU7zaS8g2PB+Hv76/Y2FhlZGTo73//uxISErR06VLVq1dPf/jDH37TbQN4MJxUCDiQb775Ri4uLnrqqafk4+Ojs2fPys/Pz/xTuXJlLViwQCdOnJAktWzZUnv27NGNGzfM2/jyyy+VmZl53/spVaqUGjVqpD/96U/Kzs42l6elpenzzz9X06ZNJd0+RHH06FH98ssvdtffvn27KlasqJo1az70Y129erVCQkKUkZEhd3d3tWzZUrNmzZIkJScnP/TtAng4vEIAWOD69es6duyYeTkjI0N//etflZiYqH79+qlChQoKDw/XjBkz5OLiopCQEF27dk2LFy/WhQsXzBMSx4wZo127dik0NFQjRozQlStXtHDhQrtzCu5lwoQJCg0N1SuvvKIBAwYoMzNTy5cvV0ZGhsaMGSNJGj58uLZv365hw4Zp7Nix8vLy0tatW3XgwAHNnTvXPKHwYbRo0UJRUVEaM2aMBg0aJBcXF33wwQdyd3dXSEjIQ98ugIdDEAAWOHHihPr162deLlGihGrUqKHw8HCFhoZKkvr27avSpUsrPj5eCQkJKlWqlJo0aaKoqCjzuH6tWrW0du1azZs3T+Hh4fLx8dHkyZM1b968X52hZcuWWrVqlaKjozV+/Hi5u7urWbNmeuutt8xPSqxYsaI2bNigBQsWaPbs2crMzFS9evW0ePFiPfvss79pH9SrV09Lly5VXFycxo8fr+zsbDVq1EgrV67UU0899ZtuG8CDczJy39AMAAAeW5xDAAAACAIAAEAQAAAAEQQAAEAEAQAAEEEAAABUwM8hOHr0qAzDKNCHnQAAAMeQmZkpJycnu18+di8FeoXAMAzxcQX/ZhiGMjIy2Cf/YeznwsF+Lhzs58LBfrb3ID+/C/QKQe4rA3f/drbHVXp6upKSklS3bt37/jY3/Dbs58LBfi4c7OfCwX62d/z48QJvyzkEAACAIAAAAAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABAkqvVA6DwXLx4UdeuXbN6jAK7efOmUlJSrB4DAB4LBMFj4uTJk5o0aZJycnKsHuWBuLq66Xe/+51q1Khh9SgAUKwRBI+JX375RTk5OXKv4CdXzyesHqdAcjKu6WbygSL1qgYAFFUEwWPG2a20XDzKWz0GAMDBcFIhAAAgCAAAAEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQfDQ/vWvf1k9AhxUamqq1SMAwAMjCB7ChQsXFBUVpQsXLlg9ChzM+fPnNWTIEJ0/f97qUQDggRAED+Ff//qXDMPgVQLkcf36deXk5Oj69etWjwIAD4QgAAAABAEAACAIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAACSXK288+7du+dZtmPHDgsmAR5PRfFrcOfOnVq6dKl5edSoUeratauFE/26M2fOaOzYscrJyZGzs7NiY2NVvXp1q8e6r9TUVE2dOlVXr16Vt7e35s6dq3Llylk91n3duHFDK1as0I8//qg6depoxIgR8vDwsHqs+8rOztaJEyd05coVlS9fXg0aNJCLi4sls1gWBPl9I8pd7ujfkIDioCh+DeY389KlS7V06dIiM3NOTo7CwsIkOW58DR48WCkpKebltLQ0DRo0SF5eXlqzZo11g93H7NmzdfDgQfPyjz/+qL/85S8KDg7W9OnTLZzs3vbt26cVK1bo4sWL5rJKlSopNDRUrVq1KvR5LDlkcK9vRAVdD+C3KYpfg3fPVKlSpfuudwR3zuTm5qZnnnlGbm5u+a53FHfGgK+vr2bPni1fX19JUkpKigYPHmzhdPnLjQFXV1c999xzGjdunJ577jm5urrq4MGDmj17ttUj5rFv3z7NmzdPtWrV0vz587Vx40bNnz9ftWrV0rx587Rv375Cn6nQXyG4+wvgzkK+c50jP0sBirK7vwYTEhKUlJSk+vXrq1+/fnbbOcrX4M6dO82/T5o0SW3btjUv79mzR/Pnzze3c5TDB2fOnDH/vmzZMnl5eSkpKUlhYWFKSUnRyJEjze0c5fBBamqqGQMbNmyQp6enJCkgIEDXr19X//79lZKSotTUVIc5fHDjxg0zBhISEpSVlaWkpCS1adNGQ4YMUb9+/XTw4EHduHHDYQ4fZGdna8WKFWrevLmmTZsmZ+fbz83r1aunadOmac6cOVq5cqWCg4ML9fCBpecQ3P3NZseOHQ5ZzPfyyy+/qGTJklaPUSAXLlyweoSHVpT2850/BIqCHTt2KD093e6yI34N3nnOwJ0xkHs5NwiWLl3qMEEwduxYSbdfGahatardfq5atarc3NyUmZmpsWPHatu2bVaNaWfq1KmSbr8ykBsDuTw9PWWz2XTy5ElNnTpVcXFxVoyYx+rVqyVJPXv2lLu7u7Kyssx17u7ueu6555SYmKjVq1dr9OjRFk1p78SJE7p48aImTZpkxkAuZ2dn9e3bV5MmTdKJEyfk5+dXaHNZGgRFXWxsrNUjPBbYz8h192GCXOXLl9eVK1cKeZr7y8nJkSS98MIL+a7v1auXNm7caG7nCK5evSpJ9zwsMGDAAEVGRprbOYLk5GRJUseOHfNd36FDByUmJprbOYLc/6s1a9bMd32NGjXstissBMFvMHbsWNWpU8fqMQrkyJEjWrdundVjPJSitJ/PnDmjd955x+oxiq07T766k6PFgHT7mV5OTo42btyoF198Mc/6Dz/80NzOUXh7eystLU1r1qxRQEBAnvXr1683t3MUVatW1bFjx/SXv/xFQ4cOzbN+165d5naOonz58pKk06dPq169ennW//zzz3bbFRbL33Z4r3MIioJq1aqpbt26Vo9RIEXtpew7FaX9XNR0795dCQkJdpcd0ahRo8zDBnv27MlzDsGd2zmK2NhYhYWFKTMzU8nJyfLy8jLXJScnKzMz09zOUcydO1eDBg3Sd999p+vXr9sdNrh+/bpOnjxpbucohg0bpo8//lhbt25V//797dZlZGSYh2OGDRtmwXT5a9CggSpVqqRNmzbZnUMg3X5ladOmTapcubIaNGhQqHMVehDcfYzyXt+AHOVkJqC4uftr8M4TCe/ezlF07drVDIL58+dr/vz5+R4mcJTzByTZnSg4cuRIubq6qkWLFpo9e7bdcW5HOaFQksqVKycvLy+lpKSof//+stlsGjBggNavX2/GgJeXl8OcUChJHh4eCg4O1sGDB9WvXz916dJFNWrU0Lp16/Txxx8rKytLwcHBDnNCoSS5uLgoNDRU8+bN05w5c9S3b1/VqFFDP//8szZt2qTDhw8rIiKi0D+PwJLXqn7tG40jfSMCiqOi+DV490x3x4Cjz5yVlaW//e1vdjHgiDOvWbPGfDXj5MmTioyMtIsBR/wcgunTpys4OFhZWVnavn27YmNjtX37djMGHPFzCFq1aqWIiAj99NNPmjRpkvr166dJkybp9OnTioiIsORzCCw7ZHCvs5kd8QsEKI6K4tfgjh07itwnFe7YsaPIfVLhmjVritwnFU6fPl03btxQfHx8kfmkwlatWik4OJhPKpQc+xsP8DjIfdth7ucQlCpVyuqRflXXrl0dOgDyU716dW3YsKFI7edy5co5zFsLC8rDw0OhoaHmfnbkGMjl4uJSqG8tvB/HOb0VAABYhiAAAAAEAQAAIAgAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIHkrp0qXl5OSk0qVLWz0KHIynp6ecnZ3l6elp9SgA8EBcrR6gKKpcubImTpyoypUrWz0KHEyVKlX0/vvvq1y5claPAgAPhFcIHhKvDuBeiAEARRFBAAAACAIAAEAQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAAJLlaPQAKV07mv5R944rVYxRITsY1q0cAgMcGQfCYqFatmpydnZVx+bgyLh+3epwCc3V1U9myZa0eAwCKPYLgMWGz2fTee+/p2rWi86z75s2bunDhgipUqGD1KABQ7BEEj5FKlSqpUqVKVo9RYOnp6bp165bVYwDAY4GTCgEAAEEAAAAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAACSnAzDMH5to6+++kqGYcjd3b0wZnJ4hmEoMzNTbm5ucnJysnqcYov9XDjYz4WD/Vw42M/2MjIy5OTkpCZNmvzqtq4FuUF2qj0nJyfiqBCwnwsH+7lwsJ8LB/vZnpOTU4F/hhfoFQIAAFC8cQ4BAAAgCAAAAEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQPJCUlRTNmzFDbtm3VpEkT9e/fX0eOHLF6rGLt1KlTCgwM1JYtW6wepVjaunWrunTpIj8/P3Xt2lV/+tOfrB6pWMrKytKiRYsUEhKiwMBADRw4UMeOHbN6rGJl2bJlGjx4sN2ypKQkDRo0SI0bN1b79u31/vvvWzRd0UAQPIDx48fr6NGjeuedd5SYmKj69esrNDRU//znP60erVjKzMzUxIkTlZ6ebvUoxdK2bds0bdo0DRw4UDt37lS3bt3M/+N4tJYsWaJNmzZp1qxZ2rp1q2rXrq0RI0bo4sWLVo9WLKxbt04LFy60W3b16lUNHz5cNWrUUGJiosaMGaOoqCglJiZaM2QRQBAU0OnTp7V3715FRkaqWbNmql27tl5//XVVqlRJO3bssHq8YikmJkaenp5Wj1EsGYahRYsWaciQIRo4cKBq1Kih0aNHq1WrVjp06JDV4xU7u3btUrdu3dSmTRvVrFlTERERSktL41WC3+jChQsaNWqUoqKiVKtWLbt1GzdulJubm958803VqVNHzz//vIYNG6bly5dbM2wRQBAUkLe3t5YvXy4/Pz9zmZOTk5ycnHTt2jULJyueDh8+rISEBM2bN8/qUYqlU6dO6ZdfflH37t3tlq9YsUIjR460aKriy8fHR7t379bZs2eVnZ2thIQEubu7q169elaPVqR9++23cnNz0/bt2xUQEGC37siRIwoKCpKrq6u5rEWLFvrpp590+fLlwh61SCAICqhs2bJ65pln5O7ubi775JNPdPr0aT399NMWTlb8XLt2Ta+99pqmT5+uJ554wupxiqVTp05JktLT0xUaGqqWLVuqb9+++utf/2rxZMXTtGnT5ObmpmeffVZ+fn569913FR0drRo1alg9WpHWvn17xcTEqHr16nnWnT9/XlWqVLFbVqlSJUnSuXPnCmW+ooYgeEhfffWVpkyZoo4dO6pdu3ZWj1OsREZGKjAwMM+zVzw6169flyRNnjxZ3bp108qVK9W6dWuFhYVp//79Fk9X/Pzwww8qU6aM4uLilJCQoN69e2vixIlKSkqyerRi6+bNm3ZP4CSpRIkSkqRbt25ZMZLDc/31TXC3Xbt2aeLEiWrSpImioqKsHqdY2bp1q44cOcJ5Gf9hbm5ukqTQ0FD16tVLklS/fn2dOHFCq1atUsuWLa0cr1g5d+6cJkyYoNWrV6tZs2aSJD8/P/3www+KiYnR4sWLLZ6weCpZsqQyMjLsluWGQKlSpawYyeHxCsEDWrt2rcaNG6eQkBAtXbrULE48GomJifq///s/tWvXToGBgQoMDJQkzZw5UyNGjLB4uuKjcuXKkiSbzWa3vG7dujp79qwVIxVbX3/9tTIzM+3OP5KkgIAAnT592qKpir8qVarkeRdH7uXc//+wxysED2D9+vWaNWuWBg8erGnTpsnJycnqkYqdqKgo3bx5025Zx44d9eqrr6pHjx4WTVX8NGzYUKVLl9bXX39tPmuVpJMnT3Jc+xHLPY793Xffyd/f31x+8uTJPGfG49Fp3ry5PvjgA2VnZ8vFxUWSdODAAdWuXVs+Pj4WT+eYCIICOnXqlObOnavf//73GjlypN1ZqiVLllSZMmUsnK74uFe5+/j4UPWPUMmSJTVixAjFxcWpcuXK8vf3186dO7V3716tXr3a6vGKFX9/fzVt2lSTJ0/WzJkzVaVKFW3dulX79+/Xhg0brB6v2Hr++ecVHx+vadOmacSIEfrmm2+0evVqvfHGG1aP5rAIggL65JNPlJmZqU8//VSffvqp3bpevXrx9jgUOWFhYfLw8NC7776rCxcuqE6dOoqJiVFwcLDVoxUrzs7OWrJkiRYuXKgpU6YoNTVVNptNq1evzvNWOTw6Pj4+io+P15w5c9SrVy9VrFhRr732mnnODPJyMgzDsHoIAABgLU4qBAAABAEAACAIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggDFzODBg9WgQQMdP3483/Xt27dXREREocwSERGh9u3bF8p9PYisrCxFREQoMDBQTZo00YEDB/Jsc/DgQfn6+tr9adSokZ599lm9/fbbunHjxiOZJSYmRr6+vo/ktgD8Nnx0MYqd7OxsTZkyRVu2bMnz+9Ahffnll/rwww8VFhamVq1aqUGDBvfcdsaMGWrYsKEk6caNG/rf//1fRUdH69KlS5o/f35hjQygEPAKAYqdMmXK6Pvvv1dcXJzVoziklJQUSVLv3r3VvHlzlS5d+p7b1q1bV40bN1bjxo3VsmVLDR8+XMOHD9dHH32k69evF9LEAAoDQYBip379+urZs6fi4+P1j3/8477b+vr6KiYmxm7Z3S9jR0REKDQ0VAkJCerQoYP8/f314osv6tSpU9q9e7e6d++ugIAA9e3bV0lJSXnuIyEhQe3atZO/v7+GDh2qEydO2K1PTk7W+PHjFRQUpICAgDzbnD17Vr6+vlq1apU6d+6sgIAAJSYm5vt4srOztW7dOnXv3l3+/v5q166doqKidOvWLfOx5B4y6dChgwYPHnzf/ZOfsmXL5lmWkpKiGTNmqFWrVvLz89MLL7yg/fv3221z69Yt/fd//7dat26twMBATZkyxZwrV0REhIYOHaqZM2eqSZMm6tKli7Kzs3Xr1i3FxcWpc+fO8vPzU8eOHbV8+XLl5OTYXf/jjz9W7969FRgYqNatW2vGjBlKTU0118fExKhz58769NNP1a1bN/n5+em5557T0aNHdezYMfXt21f+/v7q1q2b3fw3b95UZGSk2rZtq0aNGqlz585asWLFA+87wJFxyADF0tSpU7V3715NmTJFiYmJv/nQwdGjR3Xx4kVFRETo1q1bioyM1CuvvCInJye9+uqr8vDw0MyZMzVx4kTt3LnTvN758+cVGxurCRMmyNPTU7GxsRo8eLB27NihqlWr6sqVK3rxxRfl4eGh119/XR4eHvqf//kfDRw4UJs3b1adOnXM24qJidG0adPk6el5z9+SN2PGDG3btk0vv/yymjVrphMnTiguLk5JSUmKj49XWFiYqlSpoiVLlig2Nla1a9e+7+POyclRVlaWJCkzM1NJSUl6//331bNnT3l6ekq6/YN+6NChunz5ssLDw1WpUiUlJiZqxIgRio+PV8uWLSVJkyZN0pdffqnw8HDVrFlTCQkJ2rFjR577PHLkiEqUKKG4uDilp6fL2dlZo0aN0rFjxzR27FjVq1dPBw8e1MKFC3XmzBnNmjVLkrR48WJFR0drwIABCg8P15kzZ7Ro0SIdO3ZMGzduVMmSJc1/k3nz5ik8PFylSpXSrFmz9Oqrr8rNzU2jRo3SE088Ya7//PPPVbJkSc2dO1d/+9vfNHnyZFWoUEF79uzR22+/LS8vLz3//PMF/W8EODYDKEYGDRpkDBo0yDAMw/jss88Mm81mvPPOO+b6kJAQY/LkyeZlm81mREdH291GdHS0YbPZzMuTJ082bDab8cMPP5jLZsyYYdhsNmPfvn3mshUrVhg2m81ITU21u97XX39tbnPx4kXD39/fmDdvnmEYhvHOO+8Yfn5+xtmzZ81tbt26ZTz77LPGuHHjDMMwjDNnzhg2m82YOnXqfR/7999/b9hsNmPZsmV2y7du3WrYbDbj888/NwzDMBITEw2bzWacOXPmnrd14MABw2az5funffv2xvnz581tExISDJvNZhw7dsxclpOTYwwcONDo3bu3YRiGcfLkScNmsxnr1683t8nOzja6dOmS774+d+6cuezzzz83bDab8dFHH9nNGBcXZ9hsNuPkyZNGSkqK0ahRI+P111+32+bw4cOGzWYz1q5daxjGv/9tv/jiC3ObZcuWGTabzdi0aZO57M9//rNhs9mMEydOGIZhGJ06dTKmT59ud9uxsbHG7t2777kPgaKGQwYottq3b68ePXooPj5e33777W+6rXLlytk9W69QoYIk2T1T9/LykiRdu3bNXFa9enX5+/ublytWrKjGjRvr8OHDkqT9+/erfv36qly5srKyspSVlSVnZ2e1bdtW+/bts5uhfv36953x0KFDkqSuXbvaLe/atatcXFx08ODBgj5c0xtvvKHNmzdr8+bNWr9+vd566y2VKFFCffr0UXJysvkYKlasqIYNG5qPITs7WyEhIfrHP/6h1NRUHTlyRJLs3nXh7OysTp065blPLy8vValSxe5xubq6qnPnznbb9ejRw1x/7NgxZWRkqFu3bnbbNGvWTNWqVTP3Ta4mTZqYfy/Iv2VwcLA2btyol19+WWvXrtWZM2c0ZswYtWvX7td3IlBEcMgAxdr06dO1f/9+89DBw8p9efxupUqVuu/1cn/Y3MnHx0fnzp2TdPvY++nTp80z+e9259v7fu2+co+VV6xY0W65q6urvL29lZaWdt/r56d27dry8/MzLzdt2lRBQUHq0KGDVq5cqenTpyslJUWXLl2652O4dOmSOZu3t7fdurtnlZTnJMfU1FR5e3vLxcUl3+umpaWZt5/f/q5QoUKex57fv6eHh0e+80vStGnTVKVKFW3fvl2zZs3SrFmzFBgYqMjISNWrV++e1wOKEoIAxVq5cuUUGRmpMWPGaPHixfluk52dbXc5PT39kd3/nSe05bp06ZLKly8v6fY7IoKCgvTaa6/le/0HOfehXLly5u1Xq1bNXJ6ZmamrV6/m+WH8sKpWrary5cvrp59+knT7MdSqVUtRUVH5bv/kk0+a93358mVVrVrVXJf7jof7KVeunK5evars7Gy7KLh48aKk25GR+9gvX76sp556yu76ly5dUvXq1Qv8+PLj7u6u0aNHa/To0UpOTtbu3bu1ePFiTZgwwe6cEaAo45ABir0OHTqoW7duWr58ua5cuWK3ztPTUxcuXLBb9tVXXz2y+z516pR+/vln8/K5c+d09OhRBQcHS5KCgoJ06tQp85l47p9t27Zp8+bNeZ4V309QUJAk5fkBtXPnTmVnZ6tp06aP4BHdftfDlStXVKtWLfN+z507Jx8fH7vHsHfvXsXHx8vFxUUtWrSQJP35z3+2u63du3f/6v0FBQUpKysrz3W3b98u6farFgEBAXJ3d9dHH31kt82RI0eUnJxsd4jgQd28eVOdOnXSypUrJd0OooEDB6pr167mYROgOOAVAjwWXn/9dR04cECXL1+2W96uXTvt3LlTAQEBqlmzprZs2aLTp08/svstUaKERo8erfDwcGVnZ2vRokXy8vLS0KFDJUnDhg3Ttm3bNGzYML300kvy9vbWxx9/rI0bN2rKlCkPdF9169ZVr169FB0drRs3bqh58+ZKSkpSbGysgoOD9fTTTz/w/D/88INKlCghSTIMQ8nJyYqLi1OJEiU0aNAgSbc/z2Dt2rUaPny4eZb+vn379N5772nQoEFyc3NTzZo11a9fP7377rvKyspS/fr1tW3bNn333Xe/OkPbtm0VHBys6dOn68KFC6pXr54OHTqk9957T7169VLdunUlSa+88ori4uLk5uamkJAQnT17VosWLTL3y8MqWbKkGjZsqNjYWLm5ucnX11enTp3Shx9+mO85EEBRRRDgseDl5aXIyEiNHTvWbvmUKVOUlZWlt956S66ururSpYsmTJig6dOnP5L7bdCggTp16qTIyEilpaWpZcuWmjp1qnnIoHLlyvrggw+0YMECRUZG6tatW6pVq5bmzJmjPn36PPD9zZkzRzVr1lRiYqLee+89VapUSUOGDFFYWJicnR/8BcE333zT/Luzs7O8vLzUuHFjzZ8/33yFoFSpUlq3bp0WLFig+fPnKy0tTdWqVdOECRP00ksvmdefOXOmKlSooLVr1yo1NVVPP/20Ro0apYULF953BicnJy1btkzR0dFavXq1rly5oieffFLjx4/X8OHDze3GjRtn3n5CQoK8vLzUuXNn/fGPf/zV8y8Ksh8WLlyolStX6tKlS/Lx8VGfPn30X//1X7/pdgFH4mQYhmH1EAAAwFqcQwAAAAgCAABAEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAASf8P46LdczYyvqAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAHFCAYAAACNXuEaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlmUlEQVR4nO3deVxVBf7/8bdsiuIGOhhYCJkLCqgUiuCC1mTmqA9Dcxn7uo2mOKZMuaSTK5lrjCmYD0tnrEFT+Pqw/evyVRuXabQYnTEbFTMUdTDcCBS49/z+8Mf5egUd0OJc4PV8PHjEPefcez+cvNwX9xwuNQzDMAQAAKo1F6sHAAAA1iMIAAAAQQAAAAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAq3PDhw9WyZUuHj8cff1wvvPCCvvzyy5/kPlq2bKm33nrrJ7ktANWDm9UDANVRcHCwZs+eLUmy2Wy6fPmyUlJSNHr0aKWlpemxxx6zeEIA1Q1BAFjAy8tL7dq1c1jWuXNnRUZGKi0tTdOmTbNmMADVFocMACfh6empmjVrqkaNGuayHTt2aMCAAQoJCVFUVJQWLFigvLw8h+t9+eWXev755xUWFqann35a+/fvd1h/9uxZtWzZUuvWrVOvXr0UFham1NRUSdLRo0c1evRodezYUR06dNCLL76oEydOOFz/3//+t2bMmKFu3bopNDRUsbGx2rlzp8M2LVu2VEpKiqZPn67w8HBFRERowYIFunHjhhYtWqROnTqpY8eOmjlzpm7evGleb9++fRo0aJDat2+vJ554QuPHj9epU6d+kv0JoHwIAsAChmGoqKhIRUVFKiwsVHZ2tpYtW6aCggI999xzkqQPP/xQcXFxCgoK0qpVqzRx4kRt27ZNEyZMUPEfKf3nP/+pUaNGqW7dulqxYoVeeOEFxcfHl3qfb731ln7zm99o8eLFioqK0sGDBzVkyBBJ0uuvv64FCxbo/PnzGjx4sPmkfOnSJcXGxurQoUOaMmWK3nrrLfn7+ysuLk7btm1zuP0lS5bIw8NDK1euVP/+/bVhwwb1799f58+f19KlSzV8+HBt2bJFGzZskCRlZmZqwoQJatu2rZKTk5WQkKDTp09r7NixstvtP8t+B3B3HDIALPC3v/1Nbdq0KbE8Pj5ejz76qAzD0NKlS9WlSxctXbrUXN+sWTONGDFCe/bsUffu3fX222/Lx8dHycnJcnd3lyQ1bNhQU6ZMKXHbzzzzjBkbkvTb3/5WAQEBWrNmjVxdXSVJ0dHReuqpp7RixQr94Q9/0Lp165STk6PPP/9c/v7+kqRu3bppxIgRWrx4sfr06SMXl1s/VzRv3lzz5s2TJEVERGjz5s0qLCzU0qVL5ebmpujoaH3++ef66quvJElHjhzRjRs3NG7cOPn6+kqSmjRpop07dyovL09eXl4PvJ8BlB1BAFigTZs2mjt3rqRbrxZcu3ZNe/fu1Ztvvqm8vDz17dtXFy5c0Lhx41RUVGRe74knnpCXl5f27dun7t276/Dhw4qJiTFjQJJ++ctfmk/wt2vdurX5eV5eno4ePaqJEyc6bFuvXj3FxMRoz549km4djmjfvr0ZA8X69u2rGTNmKCMjQ82bN5cktW/f3lzv6uqqhg0bqk2bNnJz+79vMw0aNND169clSWFhYapZs6ZiY2PVq1cvde3aVR07dlRoaGj5dyiAB0YQABaoU6eOQkJCHJZFR0crLy9Pa9euVVRUlCRp7ty5Zjjc7t///rck6erVq2rYsKHDOjc3txLLJKl27drm59evX5dhGGrUqFGJ7Ro1amQ+aV+9elUPP/xwqdtI0rVr18xlpf1Ef/t93qlp06Z67733tGbNGm3ZskV/+tOfVK9ePQ0dOlSTJ092OJcCwM+PIACcSNu2bbV582bz8tSpUxUREVFiu/r160u69RP3pUuXHNYZhqGrV6/e837q1q2rGjVqlLiuJGVnZ6tBgwbm/WRnZ5e6jaRSw6M8QkNDtXLlShUUFOjw4cPatGmTVq9erVatWumZZ555oNsGUD6cVAg4kSNHjsjV1VVBQUHy8fHR2bNnFRISYn74+vpq2bJlOnbsmCQpMjJSe/fuVX5+vnkbX3zxhQoLC+95P7Vr11bbtm316aefymazmcuvX7+u3bt3Kzw8XNKtQxRff/21zp0753D9bdu2qXHjxgoICLjvr3X9+vWKiYlRQUGBPDw8FBkZqfnz50uSsrKy7vt2AdwfXiEALJCbm6v09HTzckFBgXbt2qXU1FQ9//zzatSokaZMmaLXXntNrq6uiomJ0bVr15SUlKSLFy+aJyTGxcVpx44dGj16tMaMGaOcnBwlJiY6nFNwN7/73e80evRojR07VkOHDlVhYaHWrFmjgoICxcXFSZJGjhypbdu2acSIEZo4caIaNGigrVu36uDBg3r99dfNEwrvR6dOnbR06VLFxcXp17/+tVxdXbVx40Z5eHgoJibmvm8XwP0hCAALHDt2TM8//7x5uWbNmnrkkUc0ZcoUjR49WpI0cOBA1alTR2vXrtWmTZtUu3ZtdejQQUuXLjWP6zdr1kzvvfee3njjDU2ZMkU+Pj6aNm2a3njjjf84Q2RkpNatW6cVK1YoPj5eHh4eevzxx7Vo0SLznRIbN26slJQULVu2TAsWLFBhYaFatWqlpKQk9ezZ84H2QatWrbR69WqtWrVK8fHxstlsatu2rd59910FBQU90G0DKL8aRvEvNAMAgGqLcwgAAABBAAAACAIAACCCAAAAiCAAAAAiCAAAgMr4PgR2u11FRUVycXHh/cUBAKgkDMOQ3W6Xm5vbf3wjsTIFQVFRkY4ePfqTDAcAACpWSEiIPDw87rlNmYKguCpCQkJK/bOq1Y3NZtPRo0fZHz8z9nPFYD9XDPZzxWA/OyreH2V5m/EyBUHxYQJXV1d28G3YHxWD/Vwx2M8Vg/1cMdjPjspyuJ+TCgEAAEEAAAAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAACS3KweABXn4sWLunr1qtVjlJnNZtPly5etHgMAqgWCoJo4fvy4JkyIk91us3qUcnFzd1dwcLD8/PysHgUAqjSCoJrIzMyU3W7TDf8OstVvavU4ZeJy46o8M/bo6tWrBAEA/MwIgmrG8PCSvU4jq8cAADgZTioEAAAEAQAAIAgAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCO5bbm6u1SPASV25csXqEQCg3AiC+5CVlaU5c+YoKyvL6lHgZLKysjRgwAD+bQCodAiC+5CbmyvDMHiVACXk5ubKbrfzbwNApUMQAAAAggAAABAEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQJKblXfevXv3Est2795d4XMA1VVlfAxu3bpViYmJ5uXJkyerf//+ls1TFhkZGRozZozsdrtcXFy0du1aBQUFWT3WPeXk5Cg+Pl4//PCDfHx8tHz5cnl7e1s91j3l5+crOTlZx48fV6tWrTR+/Hh5enpaPdY92Ww2HTlyRDk5OfL29lZoaKhcXV0tmcWyICjtG1Hxcmf/hgRUBZXxMVjazImJiUpMTKw0M9vtdo0aNUqS88bXgAEDlJOTY16+fv26BgwYIG9vb6WlpVk42d3NnDlT+/btMy//61//0rZt2xQVFaWEhAQLJ7u7vXv3KikpSRcuXDCXNWnSRBMmTFDXrl0rfB5LDhnc7RtRWdcDeDCV8TF450x+fn73XO8Mbp/J3d1dTz/9tNzd3Utd7yxuj4Hg4GAtW7ZMwcHBkm69ajBgwAArxytVcQy4u7tr8ODBmjFjhgYPHix3d3ft27dPM2fOtHrEEvbu3avZs2crKChIq1at0ieffKJVq1YpKChIs2fP1t69eyt8pgp/heDOB8DthXz7Omf+KQWozO58DO7cuVPp6elq166devbs6bCdszwGt27dan4+c+ZMPfXUU+bl7du3mz8Bbt261WkOH2RkZJif//nPf5avr6/S09M1depUXbx4UUOHDjW3c5bDBzk5OWYMfPTRR/Ly8pIkhYeHKzc3V3369DG3cZbDB/n5+WYMfPzxx3J1dVV6erqefPJJjRo1Ss8++6z27dun/Px8pzl8YLPZlJSUpMjISC1YsEAuLrd+Nm/Tpo0WLFigWbNmKTk5WVFRURV6+MDScwju/Gaze/dupyzmu/n+++8tO9ZTXufPn7d6hPtWmfbzmTNnrB6hXHbv3i2bzeZw2Rkfg7efM3B7DBRfLg6CxMREpwmCMWPGSLr1yoCfn5/Dfvbz85O7u7sKCws1ZswY7dq1y6oxHcTHx0u69cpAcQwU8/LyUuvWrfXNN98oPj5e69evt2DCkt5++21J0sCBA+Xh4eGwnz08PBQbG6uUlBS9/fbbmjx5skVTOjpy5IguXLig3//+92YMFHNxcdGwYcMUFxenI0eOqH379hU2l6VBUNktXLjQ6hGqBfYzit15mKBY48aNlZ2dXcHT3JvdbpckDR8+vNT1gwcP1oYNG8ztnMEPP/wgSRo9enSp60eOHKmpU6ea2zmDs2fPSpJ69+5d6vrevXsrJSXF3M4ZFL8KExgYWOr64uW3n8dREQiCBzBjxoy7/g91NgcPHtS7775r9Rj3pTLt5zNnzjjtCUxVQVZWVqnLnS0GpFs/6dntdm3YsEEvvPBCifUbN240t3MWPj4+un79ut555x2Fh4eXWL9u3TpzO2fRtGlTHTp0SJ988onGjh1bYv0nn3xibucsig+3nD59Wm3atCmx/vTp0w7bVRTLf+3wbucQVAaPPPKIWrRoYfUYZVLZXsq+XWXaz5VN9+7dtXPnTofLzmjy5MnmYYPt27eXOIfg9u2cxdq1azVq1CgVFhYqKytLvr6+5rqsrCwVFhaa2zmL5cuXa8CAATp27Jhyc3MdDhvk5ubqm2++MbdzFuPGjdPWrVu1efNmjRgxwuHwYkFBgbZs2WJu5yxCQ0PVpEkTvf/++w7nEEi3Xll6//339dBDDyk0NLRC56rwILjzGOXdvgE5y8lMQFVz52Pw9hMJ79zOWfTv398MgoSEBCUkJJR6mMBZzh+Q5HCi4NChQ+Xu7q4uXbpo+vTpZgzcuZ3VvL295e3trZycHPXp00etW7fWyJEjtW7dOjMGirdxFp6enoqKitK+ffv07LPPasCAAWrWrJnWrFmjtLQ0FRYWKioqymlOKJQkV1dXTZgwQbNnz9asWbM0bNgwBQYG6vTp03r//fd14MABzZ07t8LPnbLktar/9I3Gmb4RAVVRZXwM3jnTnTHg7DMXFhZq165dDjHgjDOnpaWZT/jffPONpk6d6hADzvg+BAkJCYqKilJhYaE2bdqkRYsWadOmTWYMOONhvK5du2ru3LnKyMhQXFycevfurbi4OJ0+fVpz58615H0ILDtkcLezmZ3xAQJURZXxMbh79+5K906Fu3fvrnTvVJiWllbp3qkwISGh0r1TYdeuXRUVFcU7FUrO/Y0HqA6Kf+2w+H0IKsOvd/bv39+pA6A0QUFB2r59e6Xaz97e3k7zq4Vl5enpqZdeeqlS7WdXV9cK/dXCe3Ge01sBAIBlCAIAAEAQAAAAggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIILgvnh5ealGjRry8vKyehQ4GS8vL7m4uPBvA0Cl42b1AJWRn5+f5syZIz8/P6tHgZPx8/NTWlqaGjRoYPUoAFAuvEJwn/gJEHdDDACojAgCAABAEAAAAIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgyc3qAVCxahTkyuXHS1aPUSYuN65aPQIAVBsEQTXx8MMPy8XFVbXOfSWd+8rqccrMzd1d9evXt3oMAKjyCIJqolWrVkpJ+bOuXq08P3XbbDadO3dOvr6+Vo8CAFUeQVCN+Pr6VqonV5vNpry8PKvHAIBqgZMKAQAAQQAAAAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAAJLcyrKRYRiSJJvN9rMOU1kU7wf2x8+L/Vwx2M8Vg/1cMdjPjor3Q/Hz+L3UMMqwVUFBgY4ePfrgkwEAgAoXEhIiDw+Pe25TpiCw2+0qKiqSi4uLatSo8ZMNCAAAfj6GYchut8vNzU0uLvc+S6BMQQAAAKo2TioEAAAEAQAAIAgAAIAIAgAAIIIAAACIIAAAACIIAACACIJyuXjxoiZNmqSIiAh16dJFCxcu1M2bN60eq0obO3aspk+fbvUYVVZBQYHmzp2rJ554Qp07d9by5cvL9BanKJ/z589r3Lhx6tChg3r06KH169dbPVKVUlBQoD59+uivf/2ruSwzM1MjRoxQu3bt1Lt3b/3lL3+xcMLKgSAoI8MwNGnSJOXn5+v999/Xm2++qf/93/9VYmKi1aNVWR9//LH27Nlj9RhV2oIFC7R//3698847WrZsmT744ANt2rTJ6rGqnMmTJ6t27dpKS0vTq6++qsTERG3fvt3qsaqEmzdvKj4+XidOnDCXGYahuLg4NWrUSKmpqerXr58mTpyorKwsCyd1fgRBGWVkZCg9PV0LFy7UY489pscff1yTJk3SRx99ZPVoVdKVK1e0ePFihYSEWD1KlXXlyhWlpqZq/vz5Cg0NVWRkpEaNGqW///3vVo9WpVy9elXp6ekaP368mjVrpieffFJdunTRgQMHrB6t0jt58qQGDRqk77//3mH5wYMHlZmZqXnz5unRRx/VuHHj1K5dO6Wmplo0aeVAEJRR48aNtXbtWjVq1MhheW5urkUTVW2LFi1Sv3791Lx5c6tHqbIOHz4sLy8vRUREmMvGjh2rhQsXWjhV1VOrVi15enoqLS1NhYWFysjI0FdffaXWrVtbPVql9+WXX6pjx44lXtX6+9//ruDgYNWuXdtcFh4ervT09AqesHIhCMqoXr166tKli3nZbrfrvffeU6dOnSycqmo6cOCADh06pAkTJlg9SpWWmZkpf39/bd26Vb169VLPnj21atUq2e12q0erUmrWrKnXXntNmzZtUlhYmJ555hl17dpVAwcOtHq0Sm/o0KF69dVX5enp6bA8Oztbv/jFLxyW+fj46MKFCxU5XqXjZvUAldWSJUt07NgxbdmyxepRqpSbN29q9uzZeu2111SrVi2rx6nS8vLydObMGW3cuFELFy5Udna2XnvtNXl6emrUqFFWj1elnDp1SjExMRo5cqROnDih+fPnKzIyUn379rV6tCopPz+/xJ/69fDwUEFBgUUTVQ4EwX1YsmSJ/vjHP+rNN99UixYtrB6nSlm5cqXatm3r8GoMfh5ubm7Kzc3VsmXL5O/vL0nKyspSSkoKQfATOnDggLZs2aI9e/aoVq1aCgkJ0cWLF5WcnEwQ/Exq1qypK1euOCwrKCjgh4z/gCAop/nz5yslJUVLlizR008/bfU4Vc7HH3+sS5cuqX379pJkFv3nn3+ur7/+2srRqpzGjRurZs2aZgxIUmBgoM6fP2/hVFXPP/7xDwUEBDg8GQUHB2v16tUWTlW1+fr66uTJkw7LLl26VOIwAhwRBOWwcuVKbdy4UcuXL1evXr2sHqdK2rBhg4qKiszLS5culSS9/PLLVo1UZYWFhenmzZs6ffq0AgMDJd36bZrbAwEP7he/+IXOnDmjgoIC82XsjIwMNW3a1OLJqq6wsDCtWbNGN27cMEPs8OHDCg8Pt3gy58ZJhWV06tQpJSUl6Te/+Y3Cw8OVnZ1tfuCn4+/vr4CAAPOjTp06qlOnjgICAqwercoJCgpS9+7dNWPGDB0/flxffPGF1qxZoyFDhlg9WpXSo0cPubu7a9asWTp9+rR27dql1atXa/jw4VaPVmVFRETooYce0owZM3TixAmtWbNGR44cUWxsrNWjOTVeISijnTt3ymazKTk5WcnJyQ7rvv32W4umAh7M0qVLNX/+fA0ZMkSenp4aNmwYT1Q/sbp162r9+vVKSEhQbGysvL29NX78eD3//PNWj1Zlubq6KikpSTNnztSAAQMUEBCgVatWyc/Pz+rRnFoNg/cpBQCg2uOQAQAAIAgAAABBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAGrZsqV+97vflVielpamHj16/Cz32aNHD6Wlpf0st10WO3fuVNeuXRUWFqYvvvjCYd3Zs2fVsmVL86N169aKjo7WkiVLHN5WurymT5+u6dOnP+joAH4mvFMhIOmjjz5SbGysIiMjrR6lQqxYsULR0dGKi4uTj49Pqdts3rxZDz30kGw2m06fPq3p06erfv36Gjt2bAVPC6Ai8AoBoFt/Q2HevHnV5u+lX79+XeHh4fL397/rn4T19vZW48aN1aRJE0VGRmrYsGH69NNPK3hSABWFIAAkTZ48WRcvXtQ777xT6vril9HPnj1rLnvrrbfM9/1PS0vT8OHDlZycrCeeeEJRUVHaunWrPvvsM8XExOjxxx/XkiVLHG7zxIkT6t+/v0JCQjR69GhlZWWZ686fP68XX3xRYWFh6tGjh1auXCmbzWbe1+DBgxUXF6fw8HBt27atxLw3b97UkiVL1K1bN7Vr104vvvii+WeNe/TooXPnzunVV18t1yERT09Ph8vXrl3TK6+8og4dOig6Olrz58/XjRs3zPWHDh1S//79FRoaqpdeekn5+fkO+27ChAkaNmyYIiIi9OWXX95zZkm6cOGCXnrpJUVERKhjx45asGCBGXDl3f8HDhxQv379FBISop49e2rjxo1l3g9AVUUQALr199MnTZqk1atXKzMz875u4+uvv1ZmZqa2bNmiZ599VnPmzNGf/vQnJScna/r06Vq7dq2OHTtmbp+SkqIxY8YoNTVVRUVFmjZtmiTJMAxNnDhRPj4++u///m8tXLhQH374oVavXu1wX82bN9cHH3yg6OjoErPMnj1b27dv16JFi7Rx40YVFRVpwoQJstvt2rJli5o0aaJXX31VW7ZsKdPXdv78eW3evFl9+/Y1l82cOVPXr19XSkqKkpKSdPToUc2bN0+SlJOTo3Hjxqlz587aunWrmjdvrs8++8zhNnfu3Kk+ffroj3/8o0JDQ+85c0FBgf7rv/5L+fn52rBhgxITE7V7924tXry43PvfZrNp8uTJ6tWrlz799FO99NJLmjt3rk6ePFmmfQFUWQZQzbVo0cI4ePCgUVRUZPzqV78yxo0bZxiGYaSmphoxMTGGYRhGZmam0aJFCyMzM9O83ooVK4xf//rX5rbBwcHGjz/+aBiGYZw8edJo0aKFsX//fnP7yMhI48MPPzQMwzBiYmKMN954w1xXfPsnT5409u/fb3Tq1Mmw2Wzm+p07dxoRERHmfbVs2dLIz88v9eu5cuWK0apVK+OLL74wl12+fNkICwsz9u7da95/ampqqdcvniUsLMxo166dERoaarRo0cJ46qmnjB9++MEwDMM4c+aM0apVK+PatWvm9Y4fP24ue++994wnn3zSsNvt5vrnnnvOmDZtmrnvOnfuXOaZd+zYYYSFhRlXrlwx1+/Zs8cIDg42cnNzy7X/L1++bLRo0cL44IMPzHUHDhxwuG2gOuKkQuD/c3V11Zw5czR06FDt2LGj3Nf38fFR7dq1JUk1a9aUJDVt2tRcX6tWLYdzFEJDQ83PmzZtqgYNGigjI0MXL17UlStXFB4ebq632+26ceOGLl++bN7X3Y79f/fdd7Lb7QoLCzOXNWjQQIGBgTp16pS6dOlSpq9nzZo18vX1ld1u16VLl5ScnKyhQ4dq27ZtOnXqlOx2u7p27epwHbvdrjNnzujkyZNq1aqVatSoYa4LCQlxOGzg7+9f5pkLCgrUrFkz1a9f31zfoUMHFRUV6fvvvzf3SVn2f4MGDTRkyBDNmjVLSUlJiomJ0XPPPedw20B1RBAAt+nQoYOee+45JSQkaMyYMeby25/Yit35K3hubiUfTqVdr5irq6vDZbvdLnd3dxUVFSkoKEhJSUklrlO3bl1J//eEV5q7rbPZbLLb7Xe93p38/PzMJ9TAwEAFBASoS5cu2rdvn2w2m+rWravU1NQS1/P19ZV069DH7dzd3R2C4PY5/9PMpa0vPqei+L/l2f9z5szRsGHDtGPHDu3YsUObNm1SUlKSunXrVur2QHXAOQTAHV5++WXl5eU5nGDo7u4uSfrxxx/NZbefYHg//vWvf5mff/fdd7p27ZoCAwMVGBiorKwseXt7KyAgQAEBATp79qxWrFhxz8Ao9vDDD8vNzU3p6enmssuXL+vMmTMKDAy873mLn+BtNpsCAwN1/fp11ahRw5zxxo0bWrx4sQoKCvTYY4+Zx+uLffPNN/c9c2BgoL777jtduXLFXJ+eni43Nzc98sgj5fo6srOzNXfuXAUEBGj8+PFKTU1Vp06dtGvXrnLdDlDVEATAHRo2bKiXX35Z586dM5c1atRIDz30kN555x1lZmYqLS1Nu3fvfqD7Wbdunf7nf/5Hx48f14wZMxQTE6OAgABFR0fL399fr7zyir799lsdOnRIv//97+Xp6VniVYXS1KlTRwMHDtT8+fP117/+VcePH9crr7yiJk2aKCoqqszz5eTkKDs7W9nZ2Tpx4oTmzZunhg0bqlOnTnr00UfVpUsXvfzyyzpy5Ij++c9/asaMGcrLy1O9evX07LPPKj8/XwkJCcrIyNDatWt1+PDh+545KipKDz/8sKZOnapvv/1WBw8e1Pz589WnTx/Vq1evzF+TJNWvX1/bt2/X66+/ru+//15/+9vfdPz4cQUHB5frdoCqhiAAShEbG6v27dubl11cXJSQkKAjR46od+/e+uyzz/Tiiy8+0H2MHDlSiYmJGjRokHx8fPT6669LunUoITk5WXa7XYMGDdJvf/tbdevWTbNmzSrzbU+bNk2dO3fWpEmTNGTIENWsWVPr16+Xh4dHmW9j4MCBio6OVnR0tAYPHqzCwkK9++678vLykiQtXrxYTZs21YgRIzRy5EgFBgZq+fLlkm496a5du1ZHjx5Vv379tH//fvXr1+++Z3Z1dTUPoQwaNEjx8fHq2bOn+VsN5eHh4aGkpCQdP35cffv21eTJkxUbG6uBAweW+7aAqqSGceeBPgAAUO3wCgEAACAIAAAAQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAABJ/w+IQ3JGeFNfFAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1989,7 +1989,7 @@ }, { "cell_type": "code", - "execution_count": 532, + "execution_count": 232, "metadata": {}, "outputs": [ { @@ -2006,7 +2006,7 @@ "Name: count, dtype: int64" ] }, - "execution_count": 532, + "execution_count": 232, "metadata": {}, "output_type": "execute_result" } @@ -2026,7 +2026,7 @@ }, { "cell_type": "code", - "execution_count": 533, + "execution_count": 233, "metadata": {}, "outputs": [ { @@ -2075,124 +2075,124 @@ " \n", " \n", " \n", - " 16202\n", - " 4331000130\n", - " 2014-10-17\n", - " 315000.0\n", + " 19150\n", + " 1073100065\n", + " 2015-02-17\n", + " 348125.0\n", " 3\n", - " 2.00\n", - " 1770\n", - " 9685\n", " 1.0\n", + " 1400\n", + " 8451\n", + " 1.5\n", " 0\n", " 3.0\n", " ...\n", - " 1770\n", + " 1400\n", " 0.0\n", - " 1948\n", + " 1953\n", " 0.0\n", - " 1520\n", - " 11122\n", - " 76\n", + " 1590\n", + " 8433\n", + " 71\n", " 0.0\n", - " 13225.0\n", + " 11251.0\n", " 300K-600K\n", " \n", " \n", - " 16770\n", - " 1138010170\n", - " 2014-08-01\n", - " 350000.0\n", + " 3012\n", + " 16000015\n", + " 2015-04-17\n", + " 219950.0\n", " 3\n", - " 1.00\n", - " 860\n", - " 7030\n", + " 1.5\n", + " 1070\n", + " 6601\n", " 1.0\n", " 0\n", " 3.0\n", " ...\n", - " 860\n", + " 1070\n", " 0.0\n", - " 1973\n", + " 1985\n", " 0.0\n", - " 1360\n", - " 7500\n", - " 51\n", + " 1030\n", + " 6614\n", + " 39\n", " 0.0\n", - " 8750.0\n", - " 300K-600K\n", + " 8741.0\n", + " 100K-300K\n", " \n", " \n", - " 13526\n", - " 424000145\n", - " 2014-07-07\n", - " 230000.0\n", - " 3\n", - " 1.00\n", - " 1390\n", - " 6000\n", + " 14615\n", + " 7211400760\n", + " 2014-05-28\n", + " 277000.0\n", + " 4\n", + " 1.0\n", + " 1450\n", + " 6250\n", " 1.0\n", " 0\n", " 3.0\n", " ...\n", - " 1390\n", - " 0.0\n", - " 1954\n", + " 990\n", + " 460.0\n", + " 1964\n", " 0.0\n", - " 1170\n", - " 6000\n", - " 70\n", + " 1440\n", + " 4000\n", + " 60\n", " 0.0\n", - " 8780.0\n", + " 9150.0\n", " 100K-300K\n", " \n", " \n", - " 16900\n", - " 1324079007\n", - " 2014-11-10\n", - " 425000.0\n", - " 3\n", - " 1.75\n", - " 1610\n", - " 144619\n", + " 15714\n", + " 2450000275\n", + " 2014-07-16\n", + " 595000.0\n", + " 4\n", + " 1.5\n", + " 1350\n", + " 8113\n", " 1.0\n", " 0\n", - " 3.0\n", + " 4.0\n", " ...\n", - " 1610\n", + " 1350\n", " 0.0\n", - " 1977\n", + " 1959\n", " 0.0\n", - " 2220\n", - " 144619\n", - " 47\n", + " 1930\n", + " 8113\n", + " 65\n", " 0.0\n", - " 147839.0\n", + " 10813.0\n", " 300K-600K\n", " \n", " \n", - " 9417\n", - " 5149800040\n", - " 2014-09-18\n", - " 255000.0\n", - " 4\n", - " 2.00\n", - " 2560\n", - " 12155\n", - " 1.0\n", + " 3091\n", + " 9264950940\n", + " 2014-08-05\n", + " 348000.0\n", + " 3\n", + " 2.5\n", + " 2060\n", + " 7458\n", + " 2.0\n", " 0\n", - " 4.0\n", + " 3.0\n", " ...\n", - " 1350\n", - " 1210.0\n", - " 1960\n", + " 2060\n", + " 0.0\n", + " 1989\n", " 0.0\n", - " 1790\n", - " 11906\n", - " 64\n", + " 2480\n", + " 7743\n", + " 35\n", " 0.0\n", - " 17275.0\n", - " 100K-300K\n", + " 11578.0\n", + " 300K-600K\n", " \n", " \n", "\n", @@ -2201,37 +2201,37 @@ ], "text/plain": [ " id date price bedrooms bathrooms sqft_living \\\n", - "16202 4331000130 2014-10-17 315000.0 3 2.00 1770 \n", - "16770 1138010170 2014-08-01 350000.0 3 1.00 860 \n", - "13526 424000145 2014-07-07 230000.0 3 1.00 1390 \n", - "16900 1324079007 2014-11-10 425000.0 3 1.75 1610 \n", - "9417 5149800040 2014-09-18 255000.0 4 2.00 2560 \n", + "19150 1073100065 2015-02-17 348125.0 3 1.0 1400 \n", + "3012 16000015 2015-04-17 219950.0 3 1.5 1070 \n", + "14615 7211400760 2014-05-28 277000.0 4 1.0 1450 \n", + "15714 2450000275 2014-07-16 595000.0 4 1.5 1350 \n", + "3091 9264950940 2014-08-05 348000.0 3 2.5 2060 \n", "\n", " sqft_lot floors waterfront condition ... sqft_above \\\n", - "16202 9685 1.0 0 3.0 ... 1770 \n", - "16770 7030 1.0 0 3.0 ... 860 \n", - "13526 6000 1.0 0 3.0 ... 1390 \n", - "16900 144619 1.0 0 3.0 ... 1610 \n", - "9417 12155 1.0 0 4.0 ... 1350 \n", + "19150 8451 1.5 0 3.0 ... 1400 \n", + "3012 6601 1.0 0 3.0 ... 1070 \n", + "14615 6250 1.0 0 3.0 ... 990 \n", + "15714 8113 1.0 0 4.0 ... 1350 \n", + "3091 7458 2.0 0 3.0 ... 2060 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", - "16202 0.0 1948 0.0 1520 11122 \n", - "16770 0.0 1973 0.0 1360 7500 \n", - "13526 0.0 1954 0.0 1170 6000 \n", - "16900 0.0 1977 0.0 2220 144619 \n", - "9417 1210.0 1960 0.0 1790 11906 \n", + "19150 0.0 1953 0.0 1590 8433 \n", + "3012 0.0 1985 0.0 1030 6614 \n", + "14615 460.0 1964 0.0 1440 4000 \n", + "15714 0.0 1959 0.0 1930 8113 \n", + "3091 0.0 1989 0.0 2480 7743 \n", "\n", " house_age renovation_age total_sqft price_range \n", - "16202 76 0.0 13225.0 300K-600K \n", - "16770 51 0.0 8750.0 300K-600K \n", - "13526 70 0.0 8780.0 100K-300K \n", - "16900 47 0.0 147839.0 300K-600K \n", - "9417 64 0.0 17275.0 100K-300K \n", + "19150 71 0.0 11251.0 300K-600K \n", + "3012 39 0.0 8741.0 100K-300K \n", + "14615 60 0.0 9150.0 100K-300K \n", + "15714 65 0.0 10813.0 300K-600K \n", + "3091 35 0.0 11578.0 300K-600K \n", "\n", "[5 rows x 21 columns]" ] }, - "execution_count": 533, + "execution_count": 233, "metadata": {}, "output_type": "execute_result" } @@ -2242,12 +2242,12 @@ }, { "cell_type": "code", - "execution_count": 534, + "execution_count": 234, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAJYCAYAAADmEJ6pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACOOElEQVR4nOzdd3gU1dvG8Xs3vRBI6NIJJnSIEASlq4iCKCCiEJGOFGlSNXQILbTQe0eKIIiAFMWCSglKUAEVKYJ0EgikJzvvH7xZiaC/BBN2Sb6f6/KSnZk9+8yebDL3zpkzJsMwDAEAAAAAbMps6wIAAAAAAIQzAAAAALALhDMAAAAAsAOEMwAAAACwA4QzAAAAALADhDMAAAAAsAOEMwAAAACwA4QzAAAAALADhDMAsCHDMGxdAjKIPgMAZBVHWxcAAI+SIUOG6KOPPvrXbWrUqKGVK1f+6zbR0dEaO3asWrVqpcDAwAy9/sGDB/X555//63abNm3S+vXr9euvvyolJUVFixZVo0aN1KlTJ3l6eqb79ezZzJkzNWvWrH9cP2jQIHXq1ClTX3POnDlydnZW586dM7XdB3X+/Hk988wzGj9+vFq0aJGpbb/55ps6ePBgmmVOTk7Kly+fGjRooL59+yp37tw2qe1+r/N3Tk5Oyp07twICAvTuu++qVKlSWVYDAGQWwhkAZECPHj30+uuvWx/PmTNHx44dSxMS0hN+jh8/ri1btqhly5aZXuOsWbM0b948dezYUd27d5eTk5N++uknLVq0SF9//bU++OADOTk5Zfrr2sq6devuu/yxxx7L9NeaMWOGevXqlent2qvy5ctrxIgR1sdJSUn6+eefNXXqVB0/flwffPCBTCbTfZ9boEABrVu3TsWLF38otXbv3l3169e3Po6Li9PPP/9s/Sx8+umncnFxeSi1AMCDIpwBQAYUL148zcGmj4+PnJ2dVbVqVdsVdZfExEQtXLhQnTp1Ur9+/azLn3rqKZUuXVo9e/bUnj179MILL9iwysxlL+99duTp6XnP+xsYGKiYmBiFhYUpIiLiH9//h/25KF68+D2vV6tWLXl4eGjkyJHav3+/6tWr99DqAYAHwTVnAJAFvvnmG7Vp00bVqlXTk08+qXfffVcXL16UJB04cEDt2rWTJLVr105vvvmmJCklJUULFixQ06ZNVblyZVWtWlWvv/669u/fn+7XvX37tuLj42WxWO5ZV69ePfXr10/FihWzLrtx44YGDx6sGjVqqEaNGgoJCVFYWJgaNmxo3aZhw4YaMmRImrY2bdokf39/nT9/3rpsz549atOmjQICAlSxYkU1btxYq1evtq4/cOCA/P39tXbtWjVo0EBPPPGEvvnmG0lSeHi4goKCVKVKFdWoUUODBw9WZGRkuvf7f/m3/kh15swZ9e7dW08//bSqVq2qN998U4cPH7au9/f3l3TnzGTqv9Oz35L0+++/q0uXLnriiSf01FNPadq0aRo6dKi17yXJYrFowYIFeu6551SxYkU9//zz/3N4bKrLly+rW7duqly5surVq6ewsDClpKRIkiZOnKjKlSvr1q1baZ4zZ84cVatWTXFxcel6jbtVrFhRknThwgVJd4ZADhgwQL1791bVqlXVoUMHnT9/Xv7+/tq0aZP1eadOnVKvXr1Uo0YNBQYGqlu3bvr999+t6xMSEjRp0iTVq1dPFStW1EsvvaTt27dnuL67eXl53bPs0KFD6tSpkwIDA1WxYkU1bNhQM2fOtH5uUmvfsWOHevfurYCAANWoUUPBwcGKjY21tpOUlKTQ0FDVrVtXlStXVqdOnbR58+Z7PhtZ/fMNIPsgnAFAJtu8ebM6duyowoULa+rUqRo6dKh++OEHtW7dWtevX1eFChU0fPhwSdLw4cOtw8ZCQ0M1Z84ctW7dWosWLdKYMWN048YN9enTJ90H0D4+PqpSpYoWL16swYMHa8+ePdaDQCcnJ7399tvWA2uLxaLOnTvrq6++0sCBAxUSEqIjR45o1apVGd7nL774Qj179lSFChU0Z84czZw5U8WKFdPo0aMVERGRZttZs2Zp8ODBGj58uAICAnTo0CG1b99erq6umj59ut577z0dPHhQ7dq1U3x8/P987eTk5Hv+uzuc/q/+kKSTJ0+qRYsWOn/+vIKDgxUaGiqTyaS33nrLet1V6vDJV1991frv9Ox3ZGSkgoKCdPHiRY0fP17BwcH69NNP9cknn6TZj5EjRyosLEzNmjXTvHnz1LhxY4WEhGj27Nn/8z2YOXOm8ubNq9mzZ6tly5aaN2+eJk6caK03ISFBn376aZrnbNmyRS+++KLc3Nz+Z/t/d/r0aUlKE/R37NghDw8PzZ07977X5F2+fFmtW7fWmTNnNHLkSE2ePFnXrl3TW2+9pRs3bsgwDPXs2VNr165Vhw4dNHfuXAUEBKhfv37avHnz/6zJYrGk+Rm4ffu2vvnmG02ZMkVFihRR9erVJUknTpxQ+/btlSdPHk2bNk1z585V9erVNWvWLO3YsSNNmyNGjFCRIkU0Z84cderUSR9++KHmzp1rXT98+HAtX75cQUFBmj17tvLly6dhw4alaeO//nwDyGEMAMADGzx4sNGgQQPr45SUFOPpp582OnbsmGa7s2fPGhUqVDAmTpxoGIZh7N+/3/Dz8zP2799v3aZ///7GsmXL0jxv586dhp+fn/HDDz/c9/Xu5+LFi8abb75p+Pn5GX5+foa/v7/RtGlTY8aMGcaNGzes233++eeGn5+fsXfvXuuyW7duGTVq1EjzGg0aNDAGDx6c5jU2btxo+Pn5GefOnTMMwzAWLlx4zzZRUVGGn5+fMX/+/DT7PHv27DTbtW7d2mjatKmRnJxsXXbq1CmjXLlyxqpVq/5xP8PCwqz7+Pf/hg0bZhhG+vujT58+xpNPPmncunXLuk1SUpLx/PPPGy1btrQu8/PzM8LCwqyP07Pf06dPNypVqmRcunTJus358+eNChUqGEFBQdb99ff3tz4n1bRp04xKlSoZkZGR930Pzp07Z/j5+Rldu3ZNs3zcuHFGhQoVjKioKMMw7rzHbdu2ta4/fPiw4efnZ3z//ff3bdcwDCMoKMho27atkZSUZP3v2rVrxvbt240aNWoYrVu3NiwWi3XbKlWqGAkJCffUtnHjRsMwDGPChAlG5cqVjStXrli3uXjxolG/fn3jiy++MPbt22f4+fkZ27ZtS1PHgAEDjKefftpISkr61/fgfv9VrVrV6Nmzp/HHH39Yt//oo4+Mzp07GykpKdZlKSkpRrVq1aw/N6ltDhgwIM1rvfnmm0bTpk0Nw7jzM+Tv728sWbIkzTYdO3ZM89l40J9vADkT15wBQCY6ffq0rl69qnfffTfN8uLFiysgIOCe2e/uNmXKFEl3zrScOnVKZ8+e1d69eyXduZYsvQoVKqQVK1bo5MmT+uqrr3TgwAEdOnRIs2fP1vr167Vq1SqVLFlS4eHhcnJyUt26da3P9fT0VMOGDXXgwIGM7Lb1TElMTIxOnz6tP/74Qz/++ON9ay9Xrpz133FxcYqIiFCnTp1kGIaSk5Ml3Tkj4+vrq2+++UZt27b919f+8MMP71mWN29eSenvj4MHD6pBgwZpJnNxdHRUkyZNNHv2bMXExMjDw+OB9nv//v0KCAhQwYIFrc8rUqSIAgICrI/3798vwzDUsGFD63sg3RlSOnfuXB0+fFjPPvvsP74Hf7+GsFGjRlq+fLkiIiJUr149tWzZUsOGDdOff/6pIkWK6KOPPlKpUqXS1HA/hw4dUoUKFdIsM5vNeuqppzR69Og0k4GULl1azs7O/9jW4cOHVbVqVeXPn9+6rFChQtaf8dSzlfXq1bvnPfj444/122+/pfnZ+btevXqpfv36MgxDhw4d0vTp09WkSRONHDlSjo5/He688soreuWVV5SQkKDTp0/r7NmzOn78uFJSUpSUlJSmzb9fw1aoUCH9+eefku4M0zUMQ40bN06zTdOmTbVv3z5JmfPzDSBnIZwBQCa6ceOGJClfvnz3rMuXL5+OHTv2j8/98ccfNWrUKP34449yc3NTmTJlrDMOGg9wb60yZcqoTJky6tixo5KSkrRp0yaNHj1aU6dOVVhYmG7evKk8efLIbE47wr1AgQIZfq3IyEiNGDFCe/bskclkUokSJazDyP5eu7u7u/Xf0dHRslgsWrhwoRYuXHhPu+mZXa9SpUr/uC69/XHz5s1/3MYwDN2+ffu+4Sw9+x0ZGXlPwElt+9q1a2nqbNKkyX334/Lly/+4j5LSBB7pzvDW1P2SpBdffFEhISHasmWLOnXqpB07dqhr167/2qYkVahQQaNGjZIkmUwmubi4qHDhwvedkfR+78/dbty4oaJFi/7resMw9MQTT9x3/ZUrV/41nBUpUsT6s1C5cmV5e3tr6NChcnBwsO6DJMXHx2vMmDHasmWLkpOTVbRoUQUEBMjR0fGen9W/D/k0m81p+lX664uAVHc/zoyfbwA5C+EMADJRnjx5JMl60H23q1evytvb+77Pu337tjp37ix/f39t27ZNpUuXltls1pdffqmdO3em+/WXL1+uuXPnau/evWkOLJ2cnNS6dWt9+eWXOnnypCTJ29tbUVFRSklJkYODg3Xb1KBwt9TJJVLdPSmCJA0YMECnTp3SsmXLFBAQIGdnZ8XFxWn9+vX/Wq+Hh4dMJpPat29/32DyINdD3S29/ZE7d+5/3EbSP/Zbeva7UKFC92079Xo36a9JK5YvX37fkPO/bguQGsJSpb5ealDw8PBQ48aNtWPHDvn5+Sk2NlYvv/zyv7aZ+rx/C78ZkStXrvtOgvHdd9+paNGiypUrl9zd3bVixYr7Pr9EiRIZer0WLVpo586dWrt2rZ577jnVrl1bkjRu3Djt3LlT06dP11NPPWX9sqBWrVoZaj/1TOi1a9fS9M/d+5jVP98Ash8mBAGATFSqVCnlz5//nskezp07pyNHjljPCtwdhqQ7s9jduHFD7dq1U5kyZaxns7766itJuu/si/dTpkwZRUVF3XeWv5SUFJ07d05+fn6S7kyvn5ycrD179li3SUpK0tdff53meZ6enrp06VKaZXfPYpj6uFGjRnryySetQ9vSU7unp6fKly+vU6dOqVKlStb/Hn/8cc2cOTPDwyv/Lr39ERgYqL179+r27dvWbVJSUrRt2zZVqlTJuk9/P8uYnv0ODAzUkSNHrEFPunMW6MiRI9bHqWfboqKi0rwPkZGRmjFjxn0D892++OKLNI+3bdsmNzc3ValSxbrs1Vdf1a+//qrly5frqaeeSjPM8mGoXr26IiIi0oSX69evq3Pnzvryyy9Vo0YNxcbGyjCMNO/Br7/+qtmzZ6cZ6phew4YNk4uLi8aOHWsdsnj48GE9+eSTevbZZ63B7KefflJkZGS6P2eSVK1aNTk4OGj37t1plu/atcv676z++QaQ/XDmDAAykdlsVv/+/TV06FC9++67atasmaKiojRr1izlzp1bHTp0kHTnLIJ056A6d+7cKlWqlDw9PTVv3jw5OjrK0dFRO3futF5Pld7ZGp9++mk1bdpUU6dO1S+//KLnn39ePj4+unTpktauXatLly5p+vTpku6cKahXr56Cg4N17do1FS1aVKtWrdKFCxfSnAlo0KCB5s+fr/nz56tKlSr6/PPP75nev3Llytq6dasqVKigQoUK6fvvv9eCBQtkMpn+Z+39+/dX165dre9XSkqKlixZooiICPXo0SNd+/1P0tsfvXr10ldffaV27dqpa9eucnJy0qpVq3Tu3DktWrTI2p6Xl5e+//57HTp0SNWrV0/Xfrdr106rV69Wp06d1LNnT0l3prFPSkqyXrPl7++vZs2aWa8Lq1ixok6fPq1p06apaNGiKlmy5L/u565du1SwYEE99dRT2rdvn9atW6c+ffqkGX5YrVo1lSpVSgcPHtS0adP+0/v6INq3b6/Nmzerc+fO6tatm5ycnDR37lwVKlRIL730knLlyqXAwED16NFDPXr0kK+vr44ePaqwsDDVqVPHOlQzI4oWLapOnTppzpw5Wr58uTp37qzKlStrx44d+uCDD+Tr66sTJ05o7ty56fpZvVuxYsXUsmVLTZ06VUlJSSpbtqx2795tvYYuNcin9+f7yJEj8vHxeWg37QZgnwhnAJDJWrRoIQ8PD82fP189e/aUp6en6tSpo/79+1uvDXr88cfVtGlTrV69Wl9//bU++eQTzZkzR5MmTVKfPn3k4eGhcuXKadWqVerSpYvCw8PT3Hvs30yePFk1atTQxx9/bL0vk4+Pj55++mmNHz8+zfTnYWFhmjJlimbOnKmEhAQ1adJEjRs31tGjR63bdOvWTZGRkVq8eLGSkpJUv359jRs3Tt27d7duM2HCBI0ZM0ZjxoyRJJUsWVKjRo3Sxx9/rPDw8H+tt3bt2lq8eLFmzZql3r17y8nJSRUqVNDSpUsz5SbG6e2PNWvWWKfaN5lMqly5slasWGE9qyVJb7/9tubMmaMuXbpo+/bt6dpvLy8vrVixQuPGjdOgQYPk4eGhNm3ayM3NLc31d+PHj9f8+fOtITpv3rx68cUX1bdv33vOtP7d+++/r23btmnZsmXKnz+/3nvvPeu99O5Wv359RUZG/uvkIlmlcOHCWrNmjSZPnqwhQ4bI2dlZTz75pKZNm6bcuXNLkhYsWKAZM2Zo/vz5un79ugoWLKgOHTpYQ+2D6Nq1qzZv3qw5c+aoWbNmGjJkiJKSkjR9+nQlJiaqaNGi6t69u06ePKnPP//8niG8/2bYsGFyd3fXkiVLdPv2bdWqVUvdu3fX7NmzrX2b3p/v1q1bq3nz5powYcID7yuAR5/JeJCrzAEA2daQIUN08OBBff7557YuJVuIiIjQjRs3VK9ePeuy5ORk1a9fX02aNNHQoUMfSh2GYahJkyaqXbu23nvvvYfymtnZjRs39NVXX6lOnTpprkmcOHGiNm3axJBFAA+EM2cAAGShCxcuqF+/furZs6dq1KihuLg4rVu3Trdu3dJrr72W5a9/+/ZtLVu2TD/++KPOnTunN998M8tfMydwc3PTuHHjVK5cOb311ltyd3e33sS9W7duti4PwCOKcAYAQBZ64YUXdOPGDa1Zs0aLFy+Wk5OTqlSpolWrVsnX1zfLX9/V1VVr166VxWJRSEhImmGteHAuLi5atmyZpk+friFDhiguLk7FixfX4MGDuXcZgAfGsEYAAAAAsANMpQ8AAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoDZGrOIYRiyWJhrBQAAAMjJzGaTTCZTurYlnGURi8VQZGSMrcsAAAAAYEM+Ph5ycEhfOGNYIwAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAUdbFwAAAAAg85nNJpnNJluXkW1ZLIYsFiNT2yScAQAAANmM2WxSnjzucnBgoFxWSUmx6MaN2EwNaDYPZ5cvX1bdunXvWT5+/Hi1aNFCx48f17hx4/TTTz/Jx8dH7du3V7t27azbWSwWzZo1Sxs2bNCtW7cUGBio4cOHq1ixYtZtMqMNAAAA4FFhNpvk4GDW+5NX6/S5y7YuJ9spVaygxg1sK7PZlL3C2YkTJ+Ti4qI9e/bIZPrrtGuuXLkUFRWlDh06qGHDhho1apSOHDmiUaNGycPDQy1btpQkzZkzR2vWrNGECRNUqFAhTZ48WZ07d9bWrVvl7OycKW0AAAAAj6LT5y7rxO9/2roMpJPNw9mvv/6qkiVLqkCBAvesW758uZycnDR69Gg5OjrK19dXZ8+e1YIFC9SyZUslJiZqyZIlGjBggOrXry9JmjZtmurUqaNdu3apadOmWr9+/X9uAwAAAACyms0Hof7yyy/y9fW977rw8HDVqFFDjo5/ZciaNWvqzJkzunbtmk6cOKGYmBjVqlXLut7Ly0vly5fXoUOHMq0NAAAAAMhqdnHmzNvbW23bttXp06dVokQJde/eXXXr1tWlS5fk5+eXZvvUM2wXL17UpUuXJEmFCxe+Z5vUdZnRxoNydLR59gUAAEAOxEQgD0dmv882DWfJyck6deqUypQpoyFDhsjT01Pbtm1T165dtXTpUsXHx99zzZeLi4skKSEhQXFxcZJ0321u3rwpSZnSxoMwm03y9vZ44OcDAAAAsG9eXm6Z2p5Nw5mjo6MOHDggBwcHubq6SpIqVqyo3377TYsXL5arq6sSExPTPCchIUGS5O7ubn1OYmKi9d+p27i53XmjMqONB2GxGIqOjn3g5wMAAAAPysHBnOnBAfeKjo5TSorlX7fx8nJL9xk2mw9r9PC49+zS448/rn379qlQoUK6cuVKmnWpjwsWLKjk5GTrsuLFi6fZxt/fX5IypY0HlZz87x0FAAAA4NGVkmLJ1GN+mw5G/e233/TEE0/owIEDaZb/9NNPKlOmjAIDA3X48GGlpKRY1+3fv1+lSpVS3rx5VbZsWXl6eqZ5fnR0tI4dO6bAwEBJypQ2AAAAACCr2TSc+fr6qnTp0ho9erTCw8P1+++/a/z48Tpy5Ii6d++uli1b6vbt23r//fd18uRJbdq0ScuWLVO3bt0k3blOLCgoSKGhofrss8904sQJ9evXT4UKFVKjRo0kKVPaAAAAAICsZtNhjWazWfPmzdOUKVPUt29fRUdHq3z58lq6dKl1hsVFixZp3Lhxat68ufLnz69BgwapefPm1jZ69+6t5ORkBQcHKz4+XoGBgVq8eLGcnJwkSXnz5v3PbQAAAABAVjMZhmHYuojsKCXFosjIGFuXAQAAgBzI0dEsb28Ptek9VSd+/9PW5WQ7ZX2LaE1Yf0VFxfzPa858fDzSPSEIN0AAAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7YFfh7PTp0woICNCmTZusy44fP66goCBVrVpVDRs21IoVK9I8x2KxKCwsTHXq1FHVqlXVpUsXnTt3Ls02mdEGAAAAAGQluwlnSUlJGjBggGJjY63LoqKi1KFDBxUvXlwbN25Uz549FRoaqo0bN1q3mTNnjtasWaMxY8Zo7dq1slgs6ty5sxITEzOtDQAAAADIanYTzmbOnClPT880y9avXy8nJyeNHj1avr6+atmypdq3b68FCxZIkhITE7VkyRL17t1b9evXV9myZTVt2jRdunRJu3btyrQ2AAAAACCr2UU4O3TokNatW6cJEyakWR4eHq4aNWrI0dHRuqxmzZo6c+aMrl27phMnTigmJka1atWyrvfy8lL58uV16NChTGsDAAAAALKa4//eJGtFR0dr0KBBCg4OVuHChdOsu3Tpkvz8/NIsK1CggCTp4sWLunTpkiTd87wCBQpY12VGGw/K0dEusi8AAAByGAcHjkMfhsx+n20ezkaOHKmAgAC99NJL96yLj4+Xs7NzmmUuLi6SpISEBMXFxUnSfbe5efNmprXxIMxmk7y9PR74+QAAAADsm5eXW6a2Z9NwtnnzZoWHh2vr1q33Xe/q6nrPpBwJCQmSJHd3d7m6ukq6c91Y6r9Tt3Fzc8u0Nh6ExWIoOjr2f28IAAAAZDIHB3OmBwfcKzo6Tikpln/dxsvLLd1n2GwazjZu3Kjr16+rfv36aZaPGDFC27dvV6FChXTlypU061IfFyxYUMnJydZlxYsXT7ONv7+/JGVKGw8qOfnfOwoAAADAoyslxZKpx/w2DWehoaGKj49Ps6xRo0bq3bu3mjVrpi1btmjt2rVKSUmRg4ODJGn//v0qVaqU8ubNq1y5csnT01MHDhywBqvo6GgdO3ZMQUFBkqTAwMD/3AYAAAAAZDWbXilYsGBBlShRIs1/kpQ3b14VLFhQLVu21O3bt/X+++/r5MmT2rRpk5YtW6Zu3bpJunOdWFBQkEJDQ/XZZ5/pxIkT6tevnwoVKqRGjRpJUqa0AQAAAABZzeYTgvybvHnzatGiRRo3bpyaN2+u/Pnza9CgQWrevLl1m969eys5OVnBwcGKj49XYGCgFi9eLCcnp0xrAwAAAACymskwDMPWRWRHKSkWRUbG2LoMAAAA5ECOjmZ5e3uoTe+pOvH7n7YuJ9sp61tEa8L6Kyoq5n9ec+bj45HuCUG4AQIAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHHB33izZs3FR4eritXruj555/XjRs3VKpUKZlMpsysDwAAAAByhAcKZ3PnztX8+fMVHx8vk8mkypUra/r06YqKitKSJUvk5eWV2XUCAAAAQLaW4WGNq1at0syZM9WhQwetX79ehmFIkoKCgnTu3DnNmDEj04sEAAAAgOwuw+Fs5cqV6tq1q/r06aMKFSpYl9erV099+/bV559/nqkFAgAAAEBOkOFwduHCBdWoUeO+60qXLq1r167956IAAAAAIKfJcDgrXLiwfvjhh/uu++mnn1S4cOH/XBQAAAAA5DQZnhDk1Vdf1cyZM+Xq6qr69etLkmJjY7Vz507Nnz9fHTp0yOwaAQAAACDby3A469Kli86fP6/Q0FCFhoZKktq1aydJeumll9StW7fMrRAAAAAAcoAMhzOTyaTRo0erQ4cO2r9/v27evKlcuXIpMDBQfn5+WVEjAAAAAGR7D3wT6lKlSqlUqVKZWQsAAAAA5FgZDmdvvvmmTCbTfdeZzWa5u7urRIkSatWqlUqXLv2fCwQAAACAnCDDszUWK1ZMR44csc7YmC9fPplMJkVEROjQoUOKjIzUJ598opYtW+rYsWOZXjAAAAAAZEcZPnOWP39+PfbYY1qyZIkee+wx6/IrV66oa9euqlu3rrp166ZevXpp+vTpWrBgQaYWDAAAAADZUYbPnG3cuFF9+vRJE8wkqUCBAurevbvWrFkjBwcHtW7dWhEREZlWKAAAAABkZxkOZ3FxcXJycrrvOpPJpJiYGEmSu7u7EhMT/1t1AAAAAJBDZDicPfHEE5oxY4auXbuWZvn169c1e/ZsBQQESJIOHjyo4sWLZ06VAAAAAJDNZfias6FDh6pt27Z69tlnFRAQIB8fH12/fl1HjhyRh4eHpk6dqq+++kqzZ8/WyJEjs6BkAAAAAMh+MnzmrHTp0tq+fbs6dOighIQE/fzzz5KkLl266NNPP5Wvr6/y5MmjadOmqXXr1pleMAAAAABkRw90E2pvb2/16dPnH9dXrlxZlStXfuCiAAAAACCneaBwdvToUR04cECJiYkyDEOSZBiGYmNjdfjwYa1fvz5TiwQAAACA7C7D4Wz16tUaO3asNZTdzWw2q3bt2plSGAAAAADkJBm+5mzVqlWqW7euDhw4oI4dO+q1117TkSNHNGPGDLm4uKhZs2ZZUScAAAAAZGsZDmfnz59XmzZtlDt3blWsWFGHDx+Wq6urnn/+eXXt2lUrVqzIijoBAAAAIFvLcDhzcnKSq6urJKlEiRI6e/askpKSJEnVqlXTmTNnMrVAAAAAAMgJMhzOypUrp71790qSSpUqJYvFooiICEnSpUuXMrc6AAAAAMghMjwhSIcOHdSrVy9FR0crJCREzzzzjAYNGqRGjRpp69atqlatWlbUCQAAAADZWobPnD377LOaN2+efH19JUmjR49WyZIltXbtWpUuXVrDhg3L9CIBAAAAILt7oPuc1a9fX/Xr15d054bUS5Yssa5jaCMAAAAAZNwDXXN29OjR+64LDw/XCy+88J+LAgAAAICcJl1nzpYsWaLY2FhJkmEY2rBhg7766qt7tvvhhx/k7OycuRUCAADAZsxmk8xmk63LyNYsFkMWi2HrMmAH0hXOEhISNGvWLEmSyWTShg0b7tnGbDYrV65c6t69e+ZWCAAAAJswm03Kk8ddDg4ZHmyFDEhJsejGjVgCGtIXzrp3724NXWXLltX69etVuXLlLC0MAAAAtmU2m+TgYNbg2et06sJVW5eTLZV+LL8m9mwts9lEOEPGJwQ5ceKE9d9xcXG6ffu28uTJIycnp0wtDAAAAPbh1IWrOn7mgq3LALK9B5qtMTw8XJMmTdJPP/0kw7iT8CtXrqx+/fqpZs2amVogAAAAAOQEGQ5n33//vdq3b69ixYqpR48eypcvn65cuaJt27apc+fOWrlypQICArKiVgAAAADItjIczqZPn67q1atr8eLFcnBwsC7v1auXOnXqpJkzZ6a57xkAAAAA4H/L8NQ7P/74o9q1a5cmmEl3ZmsMCgr6x3ugAQAAAAD+WYbDmYeHh5KTk++7Ljk52XoNGgAAAAAg/TIczp544gktWLBAcXFxaZbHxsZqwYIFql69eqYVBwAAAAA5RYavOXv33XfVokULPfPMM6pfv77y58+vq1ev6osvvlB8fLzGjRuXFXUCAAAAQLaW4XBWokQJrV+/XjNnztSXX36pmzdvKnfu3KpRo4Z69eqlMmXKZEWdAAAAAJCtPdB9znx9fTV9+vRMLgUAAAAAcq4HCmeRkZFasmSJDh48qOjoaHl7e6t69epq37698ubNm9k1AgAAAEC2l+EJQS5duqTmzZtr+fLlcnFxUfny5eXo6KilS5fqlVde0eXLl7OiTgAAAADI1jIcziZPnixHR0dt375dK1eu1NSpU7Vy5Urt2LFDrq6umjZtWobau379ugYOHKiaNWsqICBAXbt21e+//25df/z4cQUFBalq1apq2LChVqxYkeb5FotFYWFhqlOnjqpWraouXbro3LlzabbJjDYAAAAAICtlOJzt27dPvXv3VrFixdIsL1asmHr27KmvvvoqQ+317NlTZ8+e1YIFC/Thhx/K1dVV7du3V1xcnKKiotShQwcVL15cGzduVM+ePRUaGqqNGzdanz9nzhytWbNGY8aM0dq1a2WxWNS5c2clJiZKUqa0AQAAAABZLcPhLCUlRd7e3vdd5+Pjo9u3b6e7rZs3b6pIkSIaO3asKleuLF9fX/Xo0UNXrlzRb7/9pvXr18vJyUmjR4+Wr6+vWrZsqfbt22vBggWSpMTERC1ZskS9e/dW/fr1VbZsWU2bNk2XLl3Srl27JClT2gAAAACArJbhcObv76+tW7fed92WLVvk5+eX7rZy586tKVOmWJ8TGRmpZcuWqVChQipTpozCw8NVo0YNOTr+NW9JzZo1debMGV27dk0nTpxQTEyMatWqZV3v5eWl8uXL69ChQ5KUKW0AAAAAQFbL8GyNPXr0UKdOnXTz5k29+OKL1ptQb9u2Tfv27VNYWNgDFTJs2DCtX79ezs7Omjt3rtzd3XXp0qV7wl6BAgUkSRcvXtSlS5ckSYULF75nm9R1mdHGg3J0zHD2BQAgWzKZTDKbTbYuI1uzWAwZhpGpbTo4cCzzsGT2e03fPRyZ/T5nOJw9/fTTmjBhgkJDQ9NcX5YvXz6FhIToueeee6BC3nrrLbVu3VqrV69Wz549tWbNGsXHx8vZ2TnNdi4uLpKkhIQExcXFSdJ9t7l586YkZUobD8JsNsnb2+OBnw8AQHaSYrHIwczBYlbiPX60eXm52boEPIDM7rcHus/ZK6+8opdfflmnTp3SzZs3lTt3bpUuXVom04N/I1amTBlJ0rhx4xQREaFVq1bJ1dX1nkk5EhISJEnu7u5ydXWVdOe6sdR/p27j5nbnjcqMNh6ExWIoOjr2gZ8PAEB24eBglpeXm4Yu+1CnLl2zdTnZUulC+TS+/auKjo5TSool09pN7TtkPfru0ZSefvPyckv3GbZ0hbOlS5fqpZdeUr58+azLTCaTfH190/Ui/yQyMlLfffednn/+ees1YWazWWXKlNGVK1dUqFAhXblyJc1zUh8XLFhQycnJ1mXFixdPs42/v78kZUobDyo5OfM+YAAAPOpOXbqmE+cv2rqMbC0lxcLxxyOKvns0ZXa/pSvCTZo0SRcuXLA+NgxDI0eO/M/XZF27dk39+/fXd999Z12WlJSkY8eOydfXV4GBgTp8+LBSUlKs6/fv369SpUopb968Klu2rDw9PXXgwAHr+ujoaB07dkyBgYGSlCltAAAAAEBWS1c4+/vFpRaLRevWrdP169f/04v7+fmpbt26Gjt2rA4dOqRff/1VQ4YMUXR0tNq3b6+WLVvq9u3bev/993Xy5Elt2rRJy5YtU7du3STduU4sKChIoaGh+uyzz3TixAn169dPhQoVUqNGjSQpU9oAAAAAgKz2QNecSfcGtgc1depUTZkyRf369dOtW7dUvXp1rV69Wo899pgkadGiRRo3bpyaN2+u/Pnza9CgQWrevLn1+b1791ZycrKCg4MVHx+vwMBALV68WE5OTpKkvHnz/uc2AAAAACCrPXA4yyy5cuXSyJEjNXLkyPuur1y5statW/ePz3dwcNDAgQM1cODAf9wmM9oAAAAAgKzEfKsAAAAAYAf+Uzj7L1PnAwAAAAD+ku5hja1bt75nWcuWLe9ZZjKZdOzYsf9WFQAAAADkMOkKZ7169crqOgAAAAAgRyOcAQAAAIAdYEIQAAAAALADhDMAAAAAsAOEMwAAAACwA4QzAAAAALADhDMAAAAAsAPpvs/Z3RITE/Xhhx/q22+/1dWrVxUSEqKDBw+qQoUKqly5cmbXCAAAAADZXobPnEVGRqply5YaN26czp49q6NHjyo+Pl5ffPGF3nzzTf3www9ZUScAAAAAZGsZDmeTJk1STEyMtm/fro8++kiGYUiSwsLCVKlSJYWFhWV6kQAAAACQ3WU4nO3du1d9+vRRiRIlZDKZrMtdXFzUsWNH/fzzz5laIAAAAADkBBkOZwkJCcqTJ8991zk4OCgpKem/1gQAAAAAOU6Gw1mlSpW0Zs2a+67bunWrKlas+J+LAgAAAICcJsOzNfbp00ft27fXyy+/rHr16slkMumTTz7RzJkztW/fPi1atCgr6gQAAACAbC3DZ86qV6+upUuXys3NTYsWLZJhGFq2bJmuXr2q+fPnq2bNmllRJwAAAABkaxk+c/bdd98pICBAa9euVXx8vG7evClPT095eHhkRX0AAAAAkCNk+MzZO++8o127dkmSXF1dVbBgQYIZAAAAAPxHGQ5nXl5ecnV1zYpaAAAAACDHyvCwxm7dumns2LE6ffq0ypYtK3d393u2CQwMzJTiAAAAACCnyHA4GzFihCRp2rRpkpTmRtSGYchkMun48eOZVB4AAAAA5AwZDmcrVqzIijoAAAAAIEfLcDirUaNGVtQBAAAAADlahsOZJB09elQHDhxQYmKiDMOQdGdIY2xsrA4fPqz169dnapEAAAAAkN1lOJytXr1aY8eOtYayu5nNZtWuXTtTCgMAAACAnCTDU+mvWrVKdevW1YEDB9SxY0e99tprOnLkiGbMmCEXFxc1a9YsK+oEAAAAgGwtw+Hs/PnzatOmjXLnzq2KFSvq8OHDcnV11fPPP6+uXbsyYQgAAAAAPIAMhzMnJyfrTahLlCihs2fPKikpSZJUrVo1nTlzJlMLBAAAAICcIMPhrFy5ctq7d68kqVSpUrJYLIqIiJAkXbp0KXOrAwAAAIAcIsMTgnTo0EG9evVSdHS0QkJC9Mwzz2jQoEFq1KiRtm7dqmrVqmVFnQAAAACQrWX4zNmzzz6refPmydfXV5I0evRolSxZUmvXrlXp0qU1fPjwTC8SAAAAALK7B7rPWf369VW/fn1Jkre3t5YsWZKZNQEAAABAjpPhcHbhwoX/uc1jjz32QMUAAAAAQE6V4XDWsGFDmUymf93m+PHjD1wQAAAAAOREGQ5nISEh94Sz2NhYhYeH68CBAwoJCcm04gAA+Duz2SSz+d+/JMSDs1gMWSyGrcsAgBwpw+GsRYsW913etm1bjR8/Xlu3brVejwYAQGYym03Kk8ddDg4Zns8K6ZSSYtGNG7EENACwgQeaEOSfNGzYUD169MjMJgEAsDKbTXJwMGvMho909uo1W5eT7ZTIn0/DWjWX2WwinAGADWRqOIuIiJCjY6Y2CQDAPc5evabfLl6ydRkAAGSqDCepoUOH3rPMYrHo0qVLOnTokF599dVMKQwAAAAAcpIMh7MDBw7cs8xkMsnT01NdunTR22+/nSmFAQAAAEBOkuFw9vnnn2dFHQAAAACQozHdFQAAAADYgSy5CXUqk8mkPXv2ZLgoAAAAAMhpMhzOmjdvrlWrVkm6E9QKFiyoGzdu6Ouvv9aFCxfUuHFjubq6ZnqhAAAAAJCdZTic3b59W6VKldLixYvl4eFhXZ6cnKwePXooV65cGj16dKYWCQAAAADZXYavOdu8ebO6du2aJphJkqOjo4KCgrRt27ZMKw4AAAAAcooHmhDkxo0b911+/vx5ubi4/Jd6AAAAACBHynA4q1+/vqZMmaKvvvrKuswwDO3evVszZszQSy+9lKkFAgAAAEBOkOFrzt577z116tRJXbt2lZOTk/LkyaOoqCilpKSobt26evfdd7OiTgAAAADI1jIcznLnzq0NGzboiy++0OHDh3Xz5k15e3urVq1aqlWrVlbUCAAAAADZXobDmXTn/mUNGjRQgwYNMrseAAAAAMiR0n3NWUpKinbu3Kljx45Zl/3xxx/q06ePmjZtqnfffVenT5/OkiIBAAAAILtLVziLiYnR66+/rr59+2rfvn2SpOjoaLVp00afffaZSpQooV9//VWvv/66/vzzzywtGAAAAACyo3SFs8WLF+uPP/7QrFmz1LFjR0nS8uXLdf36dY0YMUKzZ8/W5s2b5efnpzlz5mRpwQAAAACQHaUrnO3atUudO3fWM888I0dHR+syDw8PtWjRQpLk4OCg119/Xd98803WVQsAAAAA2VS6wtn58+dVsWJF6+OoqCidPHlS1atXl4ODg3V5wYIFdf369cyvEgAAAACyuXSFMwcHByUnJ1sfHz58WIZhqGbNmmm2i4qKkru7e+ZWCAAAAAA5QLrC2eOPP67Dhw9bH+/Zs0cmk0l16tRJs93OnTvl5+eXuRUCAAAAQA6Qrvucvfbaaxo+fLhMJpMsFou2bt2qJ598Ur6+vpKkhIQErVy5Utu3b9eoUaOytGAAAAAAyI7SFc5atGihCxcuaNGiRYqPj1eVKlU0ceJE6/r69evrxo0bevHFF9WqVassKxYAAAAAsqt0hTNJ6tWrl7p166Zbt27Jx8cnzbru3burTJkyeuqppzK9QAAAAADICdIdziTJycnpnmAmSe3atcu0ggAAAAAgJ0rXhCAAAAAAgKxFOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO5Cu2RobNmwok8mUrgZNJpP27Nnzn4oCAAAAgJwmXeGsRo0a6Q5nAAAAAICMS1c4mzBhQlbXAQAAAAA5WoZuQp0qISFBv/zyixITE2UYhiTJYrEoLi5O4eHhGjBgQKYWCQAAAADZXYbD2YEDB9SnTx/dvHnzvus9PDwIZwAAAACQQRmerXHatGny9vZWWFiYnn32WTVq1Ejz5s1TmzZtZDKZtHDhwgy1d+PGDQ0fPlx169bVE088oTfeeEPh4eHW9d99951atGihKlWqqHHjxtq2bVua5yckJGjUqFGqVauWAgIC9O677yoyMjLNNpnRBgAAAABkpQyHs19++UW9evXSc889pwYNGujixYuqV6+ehg0bpldffVVz587NUHv9+/fXDz/8oKlTp2rjxo0qV66cOnXqpFOnTun3339Xt27dVKdOHW3atEmtWrXSoEGD9N1331mfP3LkSO3bt08zZ87U8uXLderUKfXu3du6PjPaAAAAAICsluFhjRaLRQULFpQklShRQr/99pt13fPPP6/Bgwenu62zZ8/qm2++0Zo1a1StWjVJ0rBhw/T1119r69atun79uvz9/dWvXz9Jkq+vr44dO6ZFixapVq1aunz5sjZv3qx58+apevXqkqSpU6eqcePG+uGHHxQQEKDly5f/5zYAAAAAIKtl+MxZ8eLF9csvv0iSSpUqpbi4OJ06dUqSlJycrJiYmHS35e3trQULFqhSpUrWZSaTSSaTSdHR0QoPD1etWrXSPKdmzZo6fPiwDMPQ4cOHrctSlSpVSgULFtShQ4ckKVPaAAAAAICsluFw9tJLLyk0NFSrVq2Sj4+PKlasqDFjxujzzz/X7NmzVaZMmXS35eXlpXr16snZ2dm6bOfOnTp79qzq1KmjS5cuqVChQmmeU6BAAcXFxSkqKkqXL1+Wt7e3XFxc7tnm0qVLkpQpbQAAAABAVsvwsMbOnTsrKipKERERCgoK0ogRI9SlSxf16NFDnp6eGb7m7G7ff/+9hg4dqkaNGql+/fqKj49PE9wkWR8nJiYqLi7unvWS5OLiooSEBEnKlDYelKNjhrMvAOBfODjwe/VhyOz3mX57eOi7Rxd992jK7Pc5w+HMbDanua6sUqVK2rNnj06dOqXSpUvL09PzgQrZs2ePBgwYoCeeeEKhoaGS7gSkxMTENNulPnZzc5Orq+s966U7sy+6ubllWhsPwmw2ydvb44GfDwCArXh5PfjfP9gWfffoou8eTZndbxkOZ+3atdOIESPk6+trXebp6anKlSvrxIkTGjhwoLZu3ZqhNletWqVx48apcePGmjhxovVMVuHChXXlypU02165ckXu7u7KlSuXChUqpBs3bigxMTHN2a8rV65YJy3JjDYehMViKDo69oGfDwC4l4ODmQOYhyA6Ok4pKZZMa49+e3jou0cXffdoSk+/eXm5pfsMW7rCWXh4uAzDkCQdPHhQhw4duu99wPbu3atz586l64VTrVmzRmPGjNGbb76p999/XyaTybquevXqOnjwYJrt9+/fryeeeEJms1nVqlWTxWLR4cOHrZN+nD59WpcvX1ZgYGCmtfGgkpMz7wMGAMDDkpJi4W/YI4q+e3TRd4+mzO63dIWzDRs2aMuWLdaZFEeNGnXPNqnhrWnTpul+8dOnTyskJETPPfecunXrpmvXrlnXubq66s0331Tz5s0VGhqq5s2b68svv9Snn36qRYsWSZIKFiyoJk2aKDg4WCEhIXJzc9OIESNUo0YNVa1aVZIypQ0AAAAAyGrpCmfBwcFq2bKlDMPQW2+9peHDh98zK6PZbJaXl5cef/zxdL/4zp07lZSUpN27d2v37t1p1jVv3lwTJkzQnDlzNHnyZC1fvlxFixbV5MmT00yNP2bMGIWEhKhXr16SpLp16yo4ONi6/vHHH//PbQAAAABAVktXOMuVK5dq1KghSVqxYoXKly//wBN/3O3tt9/W22+//a/b1K1bV3Xr1v3H9e7u7ho7dqzGjh2bpW0AAAAAQFbK8IQgNWrUUGRkpEJDQ3Xw4EFFR0fL29tb1atXV/v27ZU3b96sqBMAAAAAsrUMT8x/6dIltWjRQsuXL5eLi4vKly8vR0dHLV26VK+88oouX76cFXUCAAAAQLaW4TNnkydPloODg7Zv365ixYpZl587d04dO3bUtGnTNGHChEwtEgAAAACyuwyfOdu3b5969+6dJphJUrFixdSzZ0999dVXmVYcAAAAAOQUGQ5nKSkp8vb2vu86Hx8f3b59+z8XBQAAAAA5TYbDmb+/v7Zu3XrfdVu2bJGfn99/LgoAAAAAcpoMX3PWo0cPderUSTdv3tSLL76o/Pnz6+rVq9q2bZv27dunsLCwrKgTAAAAALK1dIWzdu3aacSIEfL19dXTTz+tCRMmKDQ0NM31Zfny5VNISIiee+65LCsWAAAAALKrdIWzgwcPKiYmxvr4lVde0csvv6xTp07p5s2byp07t0qXLi2TyZRlhQIAAABAdpbhYY2pTCaTfH19M7MWAAAAAMixMjwhCAAAAAAg86X7zFnPnj3l7Oz8P7czmUzas2fPfyoKAAAAAHKadIez8uXLy8fHJytrAYCHxmw2yWzmOtmsYrEYslgMW5cBAMAjJUNnzipXrpyVtQDAQ2E2m5TH210OZkZ2Z5UUi0U3omIJaAAAZMADTwgCAI8qs9kkB7NZ03d8rPOR121dTrZT1Cev+r7QTGaziXAGAEAGEM4A5FjnI6/r9JXLti4DAABAUjpna2zevLm8vb2zuhYAAAAAyLHSdeZs/PjxWV0HAAAAAORoXA0PAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2wNHWBQCPMrPZJLPZZOsysjWLxZDFYti6DAAAgCxHOAMekNlsUh5vdzmYOQGdlVIsFt2IiiWgAQCAbI9wBjwgs9kkB7NZy77eoUs3I21dTrZUKLeP2td5QWaziXAGAACyPcIZ8B9duhmpc5FXbF0GAAAAHnGMxwIAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA7QDgDAAAAADtAOAMAAAAAO0A4AwAAAAA74GjrAiCZzSaZzSZbl5GtWSyGLBbD1mUAAAAA/4hwZmNms0ne3u4ymzmJmZUsFouiomIJaAAAALBbhDMbu3PWzKxPjuzW9duRti4nW8rr6aOmVZ+T2WwinAEAAMBu2VU4mz9/vvbt26eVK1dalx0/flzjxo3TTz/9JB8fH7Vv317t2rWzrrdYLJo1a5Y2bNigW7duKTAwUMOHD1exYsUytY2sdv12pC5HX3torwcAAADAvtjNWLrVq1dr+vTpaZZFRUWpQ4cOKl68uDZu3KiePXsqNDRUGzdutG4zZ84crVmzRmPGjNHatWtlsVjUuXNnJSYmZlobAAAAAJDVbH7m7PLlyxoxYoQOHDigkiVLplm3fv16OTk5afTo0XJ0dJSvr6/Onj2rBQsWqGXLlkpMTNSSJUs0YMAA1a9fX5I0bdo01alTR7t27VLTpk0zpQ0AAAAAyGo2P3P2888/y8nJSR9//LGqVKmSZl14eLhq1KghR8e/MmTNmjV15swZXbt2TSdOnFBMTIxq1aplXe/l5aXy5cvr0KFDmdYGAAAAAGQ1m585a9iwoRo2bHjfdZcuXZKfn1+aZQUKFJAkXbx4UZcuXZIkFS5c+J5tUtdlRhsPytHxf2dfBweb5+McI7Pfa/ru4aHvHk1Z8T7Tdw8Hn7lHF3336KLvHk2Z/T7bPJz9m/j4eDk7O6dZ5uLiIklKSEhQXFycJN13m5s3b2ZaGw/izhT5Hg/8fGQ+Ly83W5eAB0TfPZrot0cXfffoou8eXfTdoymz+82uw5mrq+s9k3IkJCRIktzd3eXq6ipJSkxMtP47dRs3N7dMa+NBWCyGoqNj/+d2Dg5mPowPSXR0nFJSLJnWHn338NB3j6bM7jeJvntY+Mw9uui7Rxd992hKT795ebml+wybXYezQoUK6cqVK2mWpT4uWLCgkpOTrcuKFy+eZht/f/9Ma+NBJSdn7kEJ/puUFAt98oii7x5N9Nuji757dNF3jy767tGU2f1m14NRAwMDdfjwYaWkpFiX7d+/X6VKlVLevHlVtmxZeXp66sCBA9b10dHROnbsmAIDAzOtDQAAAADIanYdzlq2bKnbt2/r/fff18mTJ7Vp0yYtW7ZM3bp1k3TnOrGgoCCFhobqs88+04kTJ9SvXz8VKlRIjRo1yrQ2AAAAACCr2fWwxrx582rRokUaN26cmjdvrvz582vQoEFq3ry5dZvevXsrOTlZwcHBio+PV2BgoBYvXiwnJ6dMawMAAAAAsppdhbMJEybcs6xy5cpat27dPz7HwcFBAwcO1MCBA/9xm8xoAwAAAACykl0PawQAAACAnIJwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcAYAAAAAdoBwBgAAAAB2gHAGAAAAAHaAcPb/LBaLwsLCVKdOHVWtWlVdunTRuXPnbF0WAAAAgByCcPb/5syZozVr1mjMmDFau3atLBaLOnfurMTERFuXBgAAACAHIJxJSkxM1JIlS9S7d2/Vr19fZcuW1bRp03Tp0iXt2rXL1uUBAAAAyAEIZ5JOnDihmJgY1apVy7rMy8tL5cuX16FDh2xYGQAAAICcwmQYhmHrImxt165deueddxQRESFXV1fr8j59+ig+Pl7z58/PcJuGYchi+d9vrckkmc1mxSTEymJYMvw6+N/MJrM8XNxlsViUmT/tqX13Ky5WKZaUzGsYVg5mB+Vyy7q+uxkbo+QUPneZzdHBrNzuHpneb9JffRd1O0bJKXzuMpujg4O8PTO/71L7LfLWbSXxmcsSTg5m+eTyzLK+u37zNp+5LOLo4KC8ubOu7yJv3FJyMn2X2RwdHeSTJ1e6+s1sNslkMqWv3Uyo7ZEXFxcnSXJ2dk6z3MXFRTdv3nygNk0mkxwc0tcJkuTh4v5Ar4P0M5uz5kRxLjf6LqtlVd/ldvfIknZxR1b1myR5e9J3WSmr+s4nl2eWtIu/ZFXf5c1N32W1LPvc5cmVJe3ijszuN4Y1StazZX+f/CMhIUFubm62KAkAAABADkM4k1S4cGFJ0pUrV9Isv3LligoWLGiLkgAAAADkMIQzSWXLlpWnp6cOHDhgXRYdHa1jx44pMDDQhpUBAAAAyCm45kx3rjULCgpSaGiofHx8VKRIEU2ePFmFChVSo0aNbF0eAAAAgByAcPb/evfureTkZAUHBys+Pl6BgYFavHixnJycbF0aAAAAgByAqfQBAAAAwA5wzRkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGQAAAADYAcIZAAAAANgBwhkAAAAA2AHCGWzm5MmTSkpKsnUZQI519OhRW5cAAADuQjiDTcyZM0dDhgwR90B/9O3cuVPXrl2zdRnIoHnz5ik4ONjWZeBfLFmyRLt27bJ1GUC2debMGVuXgAf0448/6vbt27YuI0sQzvBQpYaxiIgIFSlSRM7OzjauCP/FRx99pEGDBsnDw8PWpSCDzpw5o/z580uSkpOTbVwN/u6bb77RpEmTNHjwYO3Zs8fW5eBfbN++XVeuXLF1GcigqVOnqnHjxny+HkHz5s1Tq1attHnz5mwZ0AhneKhSUlKs/3ZxcbFhJcgMsbGxyp8/vxwdHWWxWGxdDjIgNjZWDg4OkiRHR0cbV4O/K1KkiMqVKydvb2+NHj1aH3/8sa1Lwn2sWbNG/fv319ChQ3X9+nVbl4MMOH36tCRp0KBB2rFjh42rQUZcvHhRkjRlyhR9+OGHio2NtXFFmYtwhocq9SDQMAzFx8fbuBo8qNQgZhiG9QAfj4a7r/M0mUySxPBiO1S0aFH5+/vLyclJL774oqZOnapPPvnE1mXhb/z8/OTk5KRvvvlG77zzDgHtEZD6+65Dhw4KDAxUmTJlNGDAAL4AeQSk9l337t1Vv359+fr6atKkSVq5cmW2OqYknOGhiIiI0I0bN6yPTSaTnJyc0mxz9wE/7FvqQX1sbKySkpLk4OAgs5lfJ/Zs3759kmT93Hl6elrPXt/9mWOIo20YhmHtB4vFIkdHR/Xv31/Ozs5ycHBQ7dq1NXHiRAKaHTEMQ35+fnrllVfUrFkz3bp1Sx07diSg2bnUv18lS5aUo6OjKlWqpF69emnIkCHaunWrjavDv0ntu1y5cilfvnwKDAzUyJEjNW3aNC1fvjzbBDSOppClDMPQ/v371bp1a23YsME6cYTZbJbFYlFERITi4uKUmJhoPbhP/fDB/mzevFmHDx+29pGzs7OcnZ3TBLOUlBTrQSZB2z58//336tWrl0aMGGFdFhsbq2vXrunPP//UuXPnrMsZ4mgbiYmJ1s+V2WxWcnKyvL299dxzz8nV1VVBQUF68sknNWHCBAKanTCZTPLy8lK5cuW0f/9+DRkyRM7OzurcuTMBzc5ZLBb5+PioZ8+e+uyzz1SuXDl16NBBQ4YM4fNl5ywWizw8PBQUFKQNGzaoaNGiGjFihKZNm6YVK1Zki4DGX2FkKZPJpJo1a6pDhw6aMWOGpDtDCVxdXbVz50598cUXcnBwUL58+VS2bFmVLFlSRYsWVd68eVWmTBkVK1bMxnuAVKdOndLSpUvl5uamIUOGqGrVqnJxcVF0dLTWrVun4sWLq0yZMnJyclKePHkkEbTtRfHixdW1a1d9+OGHGjVqlEaMGCE3Nzd9//33atq0qaQ7w+jy5csnX19fValSRYZhqGHDhvL09LRx9dnfnDlz9Omnnyo4OFilSpWyXscpSU888YQGDBig559/XoMGDdLkyZM1YcIEmc1mvfjiizauPGdLTk6Wo6Oj2rRpo/379+vLL79UcHCwBg8erC5dumjhwoXKmzevrcuEpE8++URVqlSRt7e3PD09ZTKZlJKSovLly6thw4Y6deqUevTooZiYGA0ePFiSrL8bYVubN29WwYIF5evrqwIFCshkMslisahs2bJq3769Pv/8cw0ZMkS3bt3S1KlTJUnt2rWTq6urjSt/cIQzPBSpv+ymTJmi3Llz6/bt26pcubIGDRqkgwcP6ty5czp27Ji+/PJLxcXFydPTU1u2bLFx1bhb6dKl1a1bN61bt06TJk1ScHCwvLy8FBkZqZCQECUnJyslJUV58uSxBmsfHx81aNBA1atXt3X5OVq+fPn0+uuvy2w2a/Xq1XJxcZGbm5uaNWumJk2a6Ny5c/rxxx917tw57dmzR6tWrZKjo6N2795NOMti4eHhmjdvnhITEzV06FBVrVpV1atX1xtvvCHDMFS7dm29/PLLmjNnjiZNmqTOnTvL0dFRgwcPloODg55//nlb70KOERYWppSUFD3zzDOqXLmyHB0drQGtfv36+uqrr+Tr66vp06erd+/e6tKlixYtWiQfHx9bl56jLV++XOPHj1eJEiUUGBiopk2bqmbNmnJwcJC7u7vKlCmjRYsWqXnz5ho5cqTMZrPef/99JSYmqkWLFrYuP0dbuXKlxo0bp4IFC6pkyZIKCgpSgwYNrF9e+fv7a/r06frzzz/VtWtXGYahmTNnKj4+Xt26dXtkJ54zGYw7QhbYunWrTp8+LZPJJD8/P+sBxPjx47V8+XI5Ozvrrbfe0rvvvmt9TkpKiuLi4nTp0iXlypVLBQsWtFX5uIvFYlFKSor1WqVdu3Zp2bJlcnR0VJ48efTnn39q3rx5unz5sn755RdduHDBGrhv3rypDRs2qEyZMjbei5xn8+bNOnfunK5du6aXXnpJ1apVU1xcnFauXKkNGzbo/PnzatWqlcaMGZPmeZGRkbp8+bK8vLxUpEgRG1Wfc1y+fFnr1q3TF198obi4ODVu3Fhr165VxYoV1bhxY7388sv65ZdfNG3aNAUHB6tkyZKKiIjQRx99pPbt26tkyZK23oUc4euvv1aXLl0kSU899ZRy586t999/X7ly5ZKLi4tu3bqlFi1aqGnTpurTp4+OHTumgQMHKjExUevWrSOg2dCHH36oyZMnKyEhQc8884x27typ119/XU899ZQaNmwoSerbt698fHwUHBysmJgYhYSEaO/evdqzZw9fUNnQwYMH1bdvX8XFxalOnTravXu3XnrpJQUEBOiNN96QJAUHB+vixYuaO3eunJ2dNXPmTK1atUqffvqpvL29bbwHD4Zwhkw3ZcoUbdiwQYGBgTpz5ozi4+Pl6+urefPmSbozhCcsLEzPPPOMJk6caP3Fl5SUdM8kIbCtZcuWKTw8XLGxsSpVqpT69OkjLy8v7d27V0uWLNGJEydUunRprVu3ToZhWIcxWiwWmc1m3bhxwzrEEQ/P5MmTtWnTJlWsWFExMTE6evSoXnvtNQUFBalo0aJasmSJVqxYobJly2rJkiWS7lzz5OzsnKYf8XBcuXJF69ev19atW1WnTh116dJFkyZN0qlTp2QymTR8+HCNHj1a/v7+Gj9+vKS/+gsPx7lz57RgwQJt2LBBzZo106VLl3Tq1Cm99NJLatiwoQIDA/Xtt99qyZIlGjBggMqWLauIiAiNGTNG06ZNY4i+DXz77beqUKGC3NzctGvXLg0fPlwvvviinnnmGS1atEi3b99W4cKFNXDgQH3//ff68ccfrSHt5s2bSkpKUr58+Wy9GzleeHi4unfvrmeffVZ16tTRl19+qSNHjih37tzq06ePLBaLPv/8czVv3lyVK1eWJEVFRT2ywUxiWCMy2YkTJ7Rjxw7NmDFDTz75pGJiYrR3715NmjRJrVu31tKlS9WjRw8lJCRo4cKFWrdunVq2bKk8efIQzOzMzJkztXr1ar322mtKTEzUtm3btG/fPg0YMEDPPfecHBwcNH36dF29elUnTpxQ2bJlZRiGLBaL9eA+d+7cNt6LnOfHH3/Unj17tGDBAlWqVEmStHbtWi1dulSXL19Wr1691LFjR5lMJq1cuVJjxozRsGHD5OzsrJSUFG6N8BB8+umnSklJUZMmTSRJBQoU0GuvvSbpTl/lz59fU6ZM0dmzZzV58mSNHTtWDg4O2rp1q1q2bKnq1asTzB6yYsWKqV+/foqJidFnn32mxYsX69ixY/r222/VpUsX61lMT09PnT9/XmXLllXFihW1Zs0a+soGRo0apYMHD2rlypVydnZWo0aNlJiYqGHDhql48eKaPn26fvvtN4WGhmro0KHy8fHRN998o2LFiqlLly787bKhw4cP6+rVqypQoIBKliyp6tWrKywsTN27d5ezs7O6desmR0dHhYSEaNasWYqJidHly5fl6upqDWePcjCTJBlAJjpw4IBRu3Zt4/r169ZliYmJxuHDh42GDRsarVu3ti6fMGGCUbFiRWPmzJnGzZs3bVEu7sNisRhXrlwxXnnlFWPXrl3W5XFxcUZQUJDx3HPPGR999JFhGIbx5ZdfGm3atDHatGljHDlyxEYV425Hjx416tata5w4cSLN8h07dhgvv/yy0bt3b+OPP/4wbt26ZcydO9do2LChMXjwYBtVm7OkpKQYCQkJRvv27Y1XX33V+OKLL9Ksv3r1qjFz5kzj6aefNiZOnGhdvnv3bmPKlCnGU089ZVy4cOFhl51jbdy40RgzZowxZMgQY+3atYZhGMatW7eMbt26GTVr1jQiIiKM+Ph4Y+vWrcYrr7xidOvWzfD39zcaNGhgXLlyxcbV51whISFGYGCgcezYMcMw7vxNMwzDSEhIMDZs2GCUL1/emDBhgnX7devWGWPGjDH8/f2NFi1aGDExMdbn4OGaPHmy0bBhQ6N+/fpG3bp1jUmTJhlxcXGGYRjGt99+a1StWtXo3bu3ERMTYxiGYXzzzTfGtGnTDH9/f6N+/fpGdHR0tug7whkyReqH4c8//zRq165tPXi/26FDh4zatWsbffv2tS4bM2aMUaNGDSMqKuohVYr0uHbtmtGwYUPrwWNCQoJhGIaRnJxsdOvWzWjUqJHx5ZdfGoZx56D/rbfeMpo2bWr8+OOPNqsZdxw+fNioUaOGER4ebhjGX31nGIaxbds2o2HDhkZoaKhhGHfCwNSpU40mTZpwMPkQJCcnG4ZhGD169DACAgKMDh06GHv27EmzTWpAq1OnjjF27Ng061IPSJD1Jk+ebDz99NPGsGHDjLZt2xqNGjUyRo8ebRjGnd+PPXr0MKpXr27s37/fMAzD+OOPP4zdu3cbr7/+uvHUU08Zly9ftmX5Odb48eONmjVrGsePH//HbdavX2+UL1/eGDlyZJrln332mXH69OksrhD/5KOPPjKefvpp44cffjBiYmKMkJAQ45lnnknzN+ybb74xqlatavTq1SvNceOhQ4eM8+fP26DqrEE4Q6aKiooyunXrZnTp0uWeX44JCQnG+vXrjaZNmxpHjx61Lr/7LBvsQ2JiotGoUSNj+PDh1mV3B7TXX3/daNKkiTWUb9myxejatWu2+uX4KOvWrZvRoEED48aNG4ZhpA1oy5cvNypUqGCcPHnSMAzDiIyMNCIjI21SZ07VunVro2PHjsbrr79uvPnmm/8Y0Bo0aGAMGzbMRlXmXF9//bXx7LPPGhEREYZh3Bk1MGHCBKNBgwbGuXPnDMMwjEuXLhnvvPOOERAQYA1oqfii4+GzWCzG6dOnDX9/f2Pp0qXW5SkpKcZHH31kTJ061VixYoXx22+/GYZxJ6BVqFDBCAkJsVHF+LupU6ca7733nvXx0aNHjaCgIGPmzJnGkiVLrJ/H1DNo/fr1My5evGircrMUN6HGf/Lxxx9rzpw5Gjt2rI4ePao8efKoT58+Onr0qBYuXKizZ89at3V2dladOnX0559/pln+yI8NziYMw1BycrIkycnJSd27d9fOnTu1cuVKSXf6LzExUQ4ODlq4cKEiIyO1cOFCSVKzZs00depUZvezga1btyosLEwzZ87Url27JElDhgyRl5eXunXrpps3b8rZ2VkJCQmS7tz/pWDBgvr+++8l3fn88Rl8OAzD0Pnz5xUbG6uBAwdq2LBhSkxM1PLly/XZZ59Zt0u99cELL7ygw4cPc0Pjh+zChQvy9PSUv7+/JMnV1VUtW7bUhQsXdPr0aUlSwYIFFRwcrNq1a6t379767rvvrM/Pnz+/TerOyUwmk0qWLKlu3bpp9uzZOn/+vCQpKChIH3zwgXbv3q3169erbdu2+uGHH9SqVSuNHj1ay5cvt94bC7ZlsVh06NAh/fHHH7p9+7aGDh2qixcv6vPPP9cnn3yi1157TTt37lStWrU0Z84cbd++XTNmzFBKSoqtS890TAiCB5Y6I1y5cuV0+/ZtrV27Vm3atFH37t01d+5cvfnmm5Kk9u3bWycmyJMnj/z8/OTu7m5th5nhbG/p0qU6fvy4Tp8+rcaNG6tWrVpq1qyZvv/+e61du1aurq5q1aqVnJ2dlZSUJHd3d/n5+enGjRvWNjw8PGy3AznU32dG3bJli7Zt26bQ0FD17dtX06ZNU+fOnbVgwQJrALt9+7bc3d3l5eVl4+pzHpPJJHd3dz3zzDNyd3dX8eLFNWDAAE2ZMkXLly+XJD3zzDOS7gS0jh07qlOnTkzD/pCZTCbdvHlTV65cUbFixZScnKxcuXLJyckpzd+rAgUKKDg4WAMHDtR7772nHTt2PNI3vn2UGf8/y2y7du30+++/Kzg4WMWLF1fRokXVr18/FSpUSL/88ovCwsI0ceJELVq0SE2bNpWTk5PKly9v6/KhO7eo2Ldvn5o3by4PDw/lz59fS5cuVf78+XX58mXNmTNHw4cPV6VKlVSrVi2tWrVKPj4+2XISK86c4YEcPXpUu3fv1sKFC7Vo0SKtX79egwYN0hdffKHhw4eraNGiWrVqlQ4dOqRp06Zp6dKlCg8P17Rp0/THH3+obNmytt4F/L8ZM2Zo3rx5KlKkiEqWLKmdO3eqb9+++u677zRo0CD5+/tryZIlWrZsmaQ7Z9XMZrNcXFyss5AZ3JHjobt7ZtSZM2dq7dq16tu3rw4fPqwuXbqoSpUqGjBggJKSktS0aVPt3LlTe/bs0cKFC3Xjxg1VrFjR1ruQI/n4+Khz584qXry4LBaLqlevrnfffVdJSUlavny59u7da902b968BDMbqFy5sooUKaK4uDhJkqOjo3U20/j4eEl//c4rUKCA5s6dqzVr1hDMbCg1NOfNm1evvPKKUlJS9PXXX+uZZ55R4cKFZTKZVLZsWTVp0kTnz59XTEyMnJ2d9dJLL8nX19fG1UOSatWqpcGDB2v48OEqUaKEmjVrZj0LXbBgQbVs2VKOjo66cuWKJKl69eoqXbq0LUvOMpw5wwMxDEOJiYlyc3OT2Xwn47dr107e3t5auHChxo8fr1GjRmnBggVavXq1li1bJldXV7m4uGjx4sV67LHHbLwHkKTr16/ru+++U0hIiPUb+x9++EHr169Xly5dNHfuXI0ePVrTpk3T7NmzFRERIT8/P124cEGHDx/WkCFDJHH20xaio6OVkJCgxx9/XNKdM5fPP/+8HnvsMQ0YMEADBgzQ4sWLVa5cOYWGhmrChAlydHRUrly5NH/+fIag2lDqWebUA/zUgJYatM1ms+rVq2fLEnMsi8Uif39/zZ49O80Ij4SEBJlMJmsAM5lMmjZtmm7duqXhw4en2Ra2kXr27Nlnn9W3336rkydP3vNFcNGiReXp6amkpCQbVYn7Sb03as2aNSXdGVp869atNNvkyZNHPj4+OeK2S4QzPJCkpCTFxcUpNjZW0l83RH3ppZdksVg0Y8YMLVmyRH369FFwcLASEhIUGxsrDw8P5cqVy8bVI1ViYqJ+++03JSYmWpcFBAQoX758cnJyUu/evTV//nwNGzZMdevW1bx583T16lV5enpq1apVKlWqlA2rz9mKFi0qSfrqq6/0yiuvSLpzVvOJJ57QpEmT1LdvXw0ePFgTJ07UhAkTdO7cOXl4eMjBwYF7+GSxPXv26KmnnrrngD05OVmOjo6Kj4+X2WxOc/+r6tWrq2fPnlq0aJHKlCnzsEvOsYy/3XQ99cvGu4f9WiwWXblyRSkpKdYzmWFhYVq6dKlWr179cAtGGnf3n8lksh6LDB8+XH379pWXl5diYmLk5OQkZ2dnffrpp3J3d+d3oB1IDWTSnc9d6u/HVB9++KHq1q2rxx9/XK6urtq4caPMZrMKFy5sq5IfGpPBeCQ8oK5du+rMmTP66KOP5OHhYf2lKEkLFy7UrFmz9Mknn6hYsWI2rhR3u/uPWUxMjHr37i0/Pz/17NlTnp6e1u3Onj2rOXPm6MSJE5o6dWqaoR939zUertQbRd+6dUsDBw6UYRjq169fmm+IExMTtWXLFq1YsULjx49XxYoV0/whRNZZt26dJkyYoAMHDqT5jKT22/nz5zV69Gj179//vsO74+PjGR73kCQkJMjFxeWeg8LUvkpdL90ZUfDGG29o9+7d2rp1q+bNm6c1a9YwPNgGUkffvPDCC5L++puW2m8XLlzQN998o1atWunEiRMaMGCA8ubNq9y5c+vAgQNatmyZypUrZ+O9yJlmzJihwoUL67XXXpP0V0C7u+927NihoKAgtWnTRhcvXlTevHlVuHBhHTt2TAsXLswRfcdfaqTLBx98oDNnzkiSdWacXr16ydXVVW+//bZiY2PTzAiXehF7eHi4rUrGP7BYLNYzZR4eHqpQoYI2bdqkQ4cOyWKxWLcrUaKEWrZsqZSUFP3++++S/hqGlROGFdibVatWadiwYercubN27dqlXLlyqWvXroqIiNDixYv/cWbU1M8twezhiImJUe7cueXg4GD9XWmxWOTg4KA///xTbdu2Vd68ea0zAf5dahhA1kodyh0ZGSlHR0frTLWpB4l//vmnOnfurBMnTki6cybNy8tLQ4cO1Zw5c7R69WqCmQ189913mjx5soYOHapPP/1U0l9nzFL77bXXXtOlS5ckSaVKlVJAQIAee+wxFS9eXGvXrs0RB/f26MiRI5o7d66GDx+uDz/8UNKdv0t3993rr7+uixcvysXFRRs3blSXLl1Uv3591atXTx988EGO6Tv+WiNd1qxZo379+uncuXPWmXHKly+vt99+Wzdu3FCXLl0UExNjPbC4ffu2PDw8mBHOzixfvlz9+vVTp06dFBoaKknq37+/qlevrmHDhungwYNppqWtUaOG3Nzc9M0330hSmuEjeHimTJmiOXPmyGQyyTAMffnll5KkJ554QhMnTtSOHTsUFhamH3/80fqc+82MiqyT+sVFXFycXFxc5ODgYP1daTabFRUVpQ4dOqh+/foKCQn5x88Qn62sFx8frz179ujatWsKCgrS9evX5ejoaD1IPH/+vNq0aSNfX19riM6VK5eio6N15MgRffjhh9YZiPFwPfbYYypfvrx8fHwUEhKiTZs2SbrzhdSFCxfUokULPfPMM+rVq5cMw5CLi4vGjBmj8ePHa8CAAQzFt6Hy5curXr168vb2VnBwsHWSMWdnZ128eFEvv/yyGjZsqPfee896HNKhQwe9++67atu2bY4ahcU1Z/hXqaecCxcurK+++so6TX6xYsXk6Oio5557TiaTSfPmzVOTJk00YsQImUwm/fDDD4qOjmZWRjsybdo0bdy4Ua1bt9b169e1atUqlS1bVk2bNlVYWJi6dOmivn37avTo0Xr66afl4eEhwzDk7e2t4sWL27r8HOuXX37RZ599prlz56pKlSpp1t2+fVv16tXTkiVLNGDAAEVGRqpu3bqqVKmSdu/ezcyoD1Hq0Kq/X8OUymw2q2vXrmrZsiUBzMZcXV3VoUMHffjhh4qLi9PLL7+sjz76SPnz59f169fVpk0b1a1b1/r3zGKxqECBAhozZoyeeOIJZvezoaJFi6pcuXIKDw/X888/r7CwMJlMJjVv3lw7d+5UixYtNGjQIOtn7O7h3P/02cTD4eTkpEqVKunatWtq27atJk2aJOnO7ZaOHDmitm3bqk+fPvftr5zWd1xzhnR5/fXXVaZMGZ06dUpXr17VkiVLrN9ipKSk6OzZs5o9e7bCw8OtM8KFhIRw/xA78euvv+qdd97RmDFjVKNGDV2/fl3t27fXO++8I39/f5UoUULJycl677339PXXX6t+/foqUqSIrly5ok8//VRr167NtlPW2ruff/5ZHTt21KJFi1SpUiVZLBa9//771pu5t2zZUkFBQYqKitKyZcv01VdfWWdGnThxYo4ZBmIrmzdvtn4bLElLlizRunXr9Omnn95zMJF6gMH1f7Z3/Phx9ezZU6+88op+/vln/fzzz9q8ebPc3d21e/duNWvW7J7+o98evrsPylPf/+vXr6tjx456+umndfv2bX3++ecaPny4GjVqdM9zYDup8eLu33kxMTFq3ry5GjZsKC8vL4WFhWnEiBF64403rM+h7zhzhnQ4e/asoqKi1KJFCxUsWFC9e/dWp06dtHjxYhUrVkwODg4qXbq0pkyZorNnz8rd3V1OTk7KkyePrUvH/4uOjlZcXJxKlCghSXJzc9OVK1c0fvx4Xbx4UWXLllWvXr00adIkrV69WkeOHNHu3btVrFgxrVixgmBmQwkJCbJYLNbr/Nq1aydnZ2fVrVtX165d0+bNm3X69GmNHj1aw4cPt86iysyoWe/y5csaM2aM1qxZowULFihPnjzWmWx3794tFxcXlSxZUkWKFJHZbE4zMxkePovFIpPJJJPJpHLlyqlt27bavXu3OnXqpJs3b+rVV1/Vpk2b9PLLL1uvPbsb/fbwJSQkWCfISZ3Rz8vLS88++6wMw9DLL7+suLg4jRo1ynoWlC9A7EPq3yHpr2vLPDw81LVrVx05ckTNmzdXTEyMRo0apaSkJLVr146++385e++RLsWKFVPlypWVN29eFSlSRJMmTVLu3LnVqVMnnTt3TtJfk4QUL15c+fPnJ5jZmQIFCsjLy0tXr16VJL333nsqWbKkhg8frg8++EBubm6aMGGCfvnlF7Vt21YTJ07UunXrNHXqVIbF2dgTTzyhSpUqKTg4WMeOHVOhQoUUGhqqzp07a8iQIerTp4++/vprHTlyRE5OTvLy8lKhQoUIZg9B/vz5tWjRIkVFRentt9/WrVu3ZDKZdOXKFY0ZM0Zvv/22Xn31VT377LNq1aqVRowYoZCQECZKesgOHjwo6c4Boslksk7+Ubt2bRUoUECenp4aOXKkcufOrVdeeUXXrl2Tg4MD98KysTlz5qhVq1bav3+/9cbDjo6OcnJyUvXq1bV69WoZhqHBgwerdu3amjx5srZu3SqJIG1rU6ZMUcOGDbV582YdP35ckqyz1/r7++vw4cO6du2aBg4cqE6dOikkJMR6Wwr6jmGN+B/+6RuM33//XUOGDNHNmzetZ9Bgn1KHCfz888+qUKGCpDs3eJRkvRl4YmKiGjdurAYNGmjYsGE2qxVppfbd119/renTp8tiscgwDK1du1YODg7Ws2kvvfSS6tSpo0GDBtm44pzj7ttJREREqE+fPvL19VXVqlUVERGh4OBgXbt2TSdPntTx48d18eJFnThxQomJiVq3bp31LDay1vz58zVt2jTVrVtXDRo0UMOGDVWwYEHr+iFDhujixYtavny5jh07puDgYN24cUNr165VgQIFbFh5znb48GF17NhRCQkJeuyxxxQQEKCAgAAFBQVZfy9OnDhRf/75p0JDQ3XmzBktX75cW7Zs0aRJk/Tiiy/aehdyrF9//VVdunTR5cuXVbFiRXl6eiogIECdOnWSm5ubHBwcNG/ePO3atUuLFi2S2WzW0qVLNX/+fI0aNUqtW7e29S7YHPEU/8psNsswDOuZsdT/+/r6asKECfLx8dGrr76q8+fP27JM/IvU8dupwSwxMVGPPfZYmmDm7OysKlWq6NatWzarE/dK7bsaNWro+eefV2xsrK5fv55mmGNSUpK8vLw42H9Ili1bpsGDB6tNmzZatmyZfvzxR1WpUkVhYWE6f/68Zs+erZs3b6pkyZKqXr26Xn/9dY0aNUoLFizQxo0b9emnn9JXD0lUVJT1b1NERIQOHTqk1q1ba+vWrdZbTwwfPlwJCQn65JNPVL58eQ0fPlyOjo7q0KGDUlJSxPfXtlG6dGl16dJFVapUkZOTk0qUKKG5c+eqU6dO+vDDD5WUlKRmzZopNjZW58+fl5+fn1q3bq3XXnuNa91taPPmzbp+/br69u2rUqVKKTIyUk2bNtWmTZvUuXNnzZw5U/Hx8WrZsqVKlSqlH3/8UXny5FHr1q3Vq1cvVatWzda7YBcIZ5Akffnll7p+/fo9y1NSUtIMA7l7DL6vr6/GjBmjcuXKpZl+HfYp9SAj9dv+27dvp3kcFxenQoUKpdkWD89333133/c9MTFRLi4ueuONN/Tqq68qOTlZLVu2VHh4uL799lvNmTNHv//+u2rWrGmDqnOW6dOna+7cucqXL5/8/Py0du1ajR07Vh9//LEqV66sSZMmqUKFCrpy5Yr1XoJ3/25kyPfD5e3trbfeektvvfWWoqOjrQf8EydO1MiRI7VkyRI5ODgoICBAx44dkyRVrlxZoaGhmjdvnhwcHJic4CHbtWuXli1bpq1bt6p8+fKqU6eOXF1dFRkZqc2bN8vHx0cffPCBWrVqpbi4OEVFRWnevHmS7vTdkCFDVLJkSdvuRA41duxYBQcHq0yZMnrhhRes98ANDw/X7t27Vbt2bX355Zdq3LixvvnmG125ckUbN26UdGcUT/fu3VWmTBkb74V9YFgjtGHDBk2cOFFffPGFPD09rcvvvhnn22+/rdDQ0PveODUpKYmbEtuJ5cuXq3r16tazZKlS+/L27dvWoaorV65UbGys/P399dNPP2nTpk3Mymgjy5Yt0+LFi/X111+nWZ7ab2fPntX8+fP19ttv69SpU1q+fLl+/PFH5c2bV7ly5dLo0aP5tjiLXb58Wb1791bPnj1Vt25dSVJ4eLjWr1+vAwcOqFevXmrVqpWOHj2q3r17q3DhwpozZ451Fkc8PFu2bNHly5fVtWtXSXeG4S9dulQffvih1q9fr3z58mnjxo1asmSJ6tSpI09PT23btk1z587VU089ZePqc67Q0FBt3rxZfn5+OnbsmEqVKqV69eopJSVFH3zwgd544w317NlT586d0+TJk/Xnn3/KwcFBP//8s/VvH2wjJCREW7Zs0bJly6wzBMfGxmr37t0aNmyYmjRpovHjxys5OVkTJkzQ6dOndf36dZ04cULTp09X48aNbbwH9oXZGqHr16+rYMGCcnNzS3OvntSbcbZr1061a9eWn5/ffZ9PMLMP3377rcaPH2+9QXGq1AP88+fP64033tC4ceNUtWpV6x+8YsWKycvLi1kZbejq1avy8fGRJCUnJ8vR0VEWi0UODg66cOGC2rVrp+rVq6t48eIqXry46tevr19++UU+Pj5ydnZW7ty5bbwHOcOZM2cUHR1tfVy9enXlyZNHrq6umj9/vjw8PPTiiy8qLCxMAwcOVFBQkD744AN5eXnZsOqcI/W75gMHDujLL7+Ut7e3WrVqJV9fX3Xu3FlJSUl67bXXtHjxYr3zzjt69dVXNWvWLN26dUsJCQnavn27AgMD+ZtmA9u2bdOOHTu0aNEilS1bVrGxsWrfvr0iIiI0cuRImUwmrVmzRrdu3dKQIUMUFhamzz//XEePHtWFCxdUpEgRW+9CjjVx4kRt3rxZGzduTDP/gLu7uxo1aiTDMDRx4kT16tVLs2bNUnBwsH744Qf99ttvWrhw4T1fJoNwlqOlHrSbzWa5uLikGb5hMpkUHR1tnWls1KhRDO+wc87OznJycpJhGGkmckk9+9muXTvVqVNHtWvXltlsVq9evdS5c2cZhiHDMOTu7m7jPci54uPjrQeEjo53fi2bzWZdu3ZNr776qp5//nkNHz5c0l+ThPj5+fGZzGJ3f1nl5OSkUqVK6cyZM0pMTJSTk5NMJpPKlCmjoKAgxcTEaO3atSpXrpwqV66scePGaezYsYqOjiacPSSpX2i4ubkpLi5OK1euVEJCgoKCglSyZEn16NFDJpNJnTp1UlhYmBo1aqRhw4YpKipKvr6+atq0KcHMRk6dOqXHH39c/v7+SkpKkru7u7p06aL+/fsrMTFRrVu3lmEYWrdunZKSkjRs2DA1bNhQDRs2VLdu3eTm5mbrXciRUlJSdOTIERUuXNgazJKSkjRz5kydPHlSrq6uKlGihAYPHqypU6eqe/fumjt3rnWCl1deecV6aQX+wjVnOVjq9WOp90VKvb4sVXJyssaMGaMxY8ZwEPgIMJlM99yXxzAMxcXFqVOnTqpdu7bGjRtnDW0Wi0Wurq5yc3MjmNlI6nVJku77GUs9kBw+fLh1/d//j6xjsVgk3XmvfXx8VLt2bc2fP18HDx60hjZJ1skITp06pd9++03SnbNq69atU9GiRW1Wf06T+vvvzJkzqlSpkvz8/LRu3TrrFN0lSpRQ9+7d1bx5c/Xu3VufffaZXF1dVbhwYetsm3i4Uj9DV69e1fXr12UymawB2cvLS8nJyYqNjVXevHn1+uuvq3Xr1tq7d6+GDh1qbYNgZjsODg4aOnSoLBaLpk2bJknq1q2bDh48qMKFC+vWrVvas2eP9u7dq/79++vIkSPq1KmT9fl8GXJ/hLMcaOfOnTp8+LD1ceqU3Hd/SCwWi3x8fPTcc89xEGjnUs+UxcTEKCUlRW5ubtYAZjKZ5ObmpkmTJt1z9pN7idjOjh07JP01GYuHh8c9wdpisShv3rzq2LFjmiCAh2PlypV699131bNnT40fP16JiYnq1auXmjRpon79+un7779P0y81atRQsWLF9O2331rbcHFxsVX5OZJhGIqMjFRMTIw6deqkvn37WiduuTugvf3222rZsqV69ux5zzBwPFypf5Oee+45JSQkWO+dKkm5c+eW2WxWQkKCJClv3rx688031aRJE/3666/W+3bCtvz8/NSsWTMdPHhQgwcPVt68eTV37lwNGzZMs2fPVtOmTXXu3DmVKVNG/fv318mTJ3X58mVJfMn4Tzg6y2FOnjypiRMnauHChfr+++8l3TkwjI+P1/r163X06FFdvXrVOpMf7Ne8efO0efNmmUwmmc1mOTs7y9HR8b5nzypXrmwdvgjb+v3339WvXz916dLFuiw2NlY3btxQRESEIiIidOvWrTQB++7/I+uFhYVpzpw5Klq0qLy9vfXZZ5/ppZde0nfffac+ffroqaeeUteuXbV3717rjYpTz0Rzpsx2TCaTvLy81KxZMxUpUkRFixZV9+7d5e/vf09A69Spk9q0aUN/2Yk6depowYIF1hmDpTszCjs5OVmvh5ek3bt3y8nJSQsXLlT+/PltVS7u4urqqmbNmil37tz6+OOPVbBgQeXJk0cWi0XOzs5q1aqVfv31V126dEkvv/yytm3bluZeg7gX15zlEKnXTpQpU0Z9+vTRihUrtGjRIvXu3Vvu7u46d+6cxo8fr7i4OJlMJhUuXFilS5fWY489pgIFCujJJ59UYGCgrXcD/+/27dv67bffNH36dLm4uOiFF16Qq6ur4uLiNHXqVHl5eal69ery8fFRkSJFrN9AwvYKFy6s0NBQjR07Vt26dbNOJHHmzBl17tzZOoQnd+7cKlKkiAICAmQ2m9W4cWNu9v4QXLlyRXv27NHo0aP13HPPSZKuXbumfv36aeDAgRo5cqTef/99zZgxQ3369NFrr72m3LlzKyoqSj///DM3cbcxR0dHvfbaa9ZJdcqUKaO3335b8+bN09q1a2UymdSmTRuVLl1aQ4cOZViVHbk7mEl3ZkhNTk5Wrly5ZDKZNH36dM2fP1+ffPKJdQIl2IeCBQuqX79+OnfunJo1ayaTyWQdWWAYhsqVKycvLy85OztzjVk6EM5yiNQLpSXp5Zdflslk0qJFi7RgwQLFxsaqTJkyWrJkic6cOaMzZ87o999/1/fff6/jx48rJiZGL7zwgo33AHfz9PRU37595enpqX79+skwDFWqVEmStHfvXhmGofnz58swDHl4eKhIkSLy8PDQSy+9pDfeeIOzMDZisVisM1iZzWYNGzZMffv2lb+/vxo3bqyOHTvq0qVL+vnnn3X69GmdP39ec+fOlSSmGn5IkpOTFRkZqXz58km6c8F7vnz5tHLlSnXs2FGjR49WWFiYxo0bJz8/Px0+fFjh4eF67LHHmPHUTqROqpP6ey41oC1cuFDz5s2Tk5OTWrVqRTCzc0lJSXJwcJCnp6dmz56tpUuXasOGDVwbaKf8/f21adMmubi46OLFi3J3d5fZbNaqVat09epVFS9e3NYlPjK4z1kOsHLlSh0+fFhJSUkqWrSo3n33XTk7O2v79u1asGCBLl68qPLly2vp0qXWM2ypDMPQzZs3uXGqnbh165YSExOVN29eSXdugzB16lRt3LhRr7zyin7//XfNnTtXnp6e+vXXXxUVFaWIiAj9+uuv+uOPPzR58uT73qsOWeuDDz7QyZMndf78eb388suqVq2aChYsqO3btyskJETXrl1T3bp1tWDBgjTPS0xM1OXLl+Xi4qICBQrYqPqcp0mTJqpWrZpGjx4t6U4/pH7b+8Ybb+jWrVv65JNPJEkJCQnWb4i5xsy+nThxQmvWrFGXLl04C23HUo9DduzYoZCQEFWrVk179uzR2rVrVbFiRVuXh//h+vXratasmSwWiwoXLqwbN25o1qxZ3IszAwhn2VxYWJg++OADtWzZUjdu3ND+/fvl4OCgUaNGqWbNmvrss880fvx4OTk5aerUqdabByYlJcnR0dF60MGZFtubNWuWvvzyS12+fFnFixfXG2+8oYYNGyolJUWTJ0/Wxo0b5eTkpK+++koeHh7WYQWp4uLimNXKBqZOnar169erQYMGunnzpsLDwxUYGKigoCDVqlVL27dv14wZM+Ts7KytW7dKShsGkPU++ugjnTp1SvHx8WrYsKF+++03rVu3Tu3atVPr1q0l/dUn58+fV1BQkDp16qQ333wzzW0rYP/4bD06jh8/rubNm8vFxcV6mwo8GsLDw3X06FEVKFBAAQEB3IcugxjWmE1ZLBZdvXr1H6+d6Nu3r0JCQvTMM8/IMAzNmjVLs2fPVpcuXVSlSpU0wz0IZra3ePFirVq1Su+++668vb21fv16zZs3TwcPHlT//v3Vv39/ubi4aMWKFQoPD1eDBg2sszhKd2ZmdHV1tfFe5DynTp3S3r17NWvWLFWvXl2StGfPHq1cuVJTpkxRr1699OKLL0qSgoODrdfGODs7W+9DiKw1efJkffjhh6pdu7YOHDigQoUK6YUXXtD333+vjz76SC4uLtZ78RiGofz58yt//vyKjIyUxKynjxqC2aOjVKlSatu2rdq0acNQxkdM9erVrX/zkHH8VcmmTCaT3N3d//HaiQoVKmjYsGGKiIjQs88+qw4dOujixYuaOnWqfvrpJxtXj1SGYSg+Pl4HDx5U9+7d1apVKz377LNasGCBGjdurIiICI0ePVomk0m9evXSq6++qu7du2v79u3WWRz/PusfHh4HBwddu3bNOqOfJD377LN65513lC9fPs2bN0+HDh3Siy++qLFjx+ro0aNq27at9bnIWkePHtXu3bs1f/58TZkyRfv27VOnTp302GOPqXv37vLw8NDmzZu1bNkySXc+Qy4uLvLx8bEOYWTwCZA1XF1dNWTIEIIZchzOnGVDM2fO1IULFzR+/Hi5u7tr8+bNCggIkIODg3VIx+LFi9WmTRu9//77+uSTT/Tyyy8rOTlZH330kTXMwfZMJpNcXV0VGxtrvS9I6hmVnj17ysPDQ1u2bNGsWbP07rvvqk+fPnJyclL//v3l6OioRo0a2XgPcq7UM5fu7u7/196dR1Vd538cfwICci9LmCgi2CikCK4lmpZiLqOTyzjZMTvJCMFxQfNUMmIuiJWWgsAoisvgQjKkOQJNRWY5M6XHBHGk0aOpCZlrKm7EZb+/P/hxJ7LFpvJe8fU4h3O83+/9fu/76/fcw/fFZ+PcuXNAfXdhR0dHevXqRV1dHcuXL7d013n00UepqqpixYoVnDt3jjZt2lj5Cpq+ixcvYjKZ8PHxAeq/W4mJiRw7dgwfHx9atmxJTU0Nb731FgcOHCAkJIRjx45RWFhoWQRXf/QQ+fVo0ha5G6nlrIlJSEhg5cqVfPbZZwCEhYWxf/9+tmzZAtR36aiqqgJg6dKllJWVkZGRAcDYsWNZvXr1TdPZivU0POB7eXlRWFiIyWSyhGyA8PBwQkND+fjjjzlw4ABeXl6Eh4cTHh6uWeOszM7Ojvbt29O/f39effVViouLcXR0tNy73r17M2HCBD744AOOHj2Ki4sLv/vd78jNzVUwu01cXV1xdHTkxo0bmM1mJk6cyKFDh+jYsSMXLlyguLiYixcvEhkZyeXLl3n77bc5e/Ysmzdv5je/+Y21yxcRkSZI4awJWbx4Mdu2beOFF16goqKCsrIyBg4cSEBAANnZ2eTm5gLcNHbiypUrlnO4urpaq3z5htLSUm7cuEFZWRn29vbExMRQUlJimT3umyH7ueeew93d3RLA77vvPmJiYggICLBa/XerrVu3smDBAuLi4tiwYQMAs2bNIjg4mLCwMC5cuICTk5Olm+Pw4cNp164dn3zyCQDOzs76Dt5G7du3x2Qy8eabb1JSUoKHhwdJSUnExsaSmprK0KFDuXbtGu3btyczM5PMzEzS0tIIDAy0dukiItJEKZw1Ea+99hrZ2dls2rSJ0NBQSkpKOH/+PH5+fkRHR2M0GsnKyiIzMxPQ2AlblpqayrPPPsuoUaN4/vnnycnJwcfHh7i4ON555x0WLFgA1Ae0hgk/HnroIW7cuGE5R8M6P3L7JCcnk5SUhNls5uzZs2RkZDB+/HguX77MrFmz8PX1ZezYsRw7dszSVaeqqgqDwaBp8q2kVatWzJs3j40bN7Jw4ULs7e3x9PQE6r9fTzzxBKdOneLf//43UP+90oQSIiLya9ITXBOQkJDApk2byM7OJjAwkMrKSjp06MCHH36Iv78/nTp1Yvbs2axdu9Yym98DDzygsRM2aN26dWRmZjJnzhwuX77MF198wezZszl16hTjx49n7ty5LF68mPLycuLi4jAajQCcO3eOe+65RzP8WcmXX37Jjh07WLp0KQMGDKC2tpZDhw4xb948oqOjWbJkCQsXLmTp0qWMHz+e6OhoDAYDX375JadOneKhhx6y9iXctYYOHcq0adNIT0+nc+fOlJeX4+7uDoCLiwtBQUG0bt3aylWKiMjdQuHsDldbW4u/vz+5ubl07NgRs9mMk5MTbdq0Yc+ePUyePBmA+++/n5iYGAoLC8nIyOCdd97BaDRq7IQNqa2t5eDBg0RFRTFq1Cigfm2yzp07s3DhQkwmE5MmTaJFixbExcUxceJE7r33XgwGA7t37yYrK0vBzErKy8u5fv067dq1A+pnWuzevTvp6elMmTKF2bNnk56eTnp6OklJSezYsYOysjJatmzJ+vXrLcfJ7efk5ERERARms5k1a9aQmJjIH/7wBzw9PcnOzqa4uFjrK4mIyG2jRaibgIZFohtupZ2dHXv37uVPf/oTixYtIjQ09KaFpGtra6mtrVUXHRtRV1dHRUUFY8aM4fe//z3Tpk1rtP/tt98mNjaWZ599lilTpnDlyhXS09O5cuUKLi4uPPXUU5pu2IoqKioYNmwY48aNs9y7hsWJz58/T3h4OF5eXrz++usAXLlyhebNm1NbW6sxZjaisrKSvLw8lixZgr29PW5ubtjb25OYmEhQUJC1yxMRkbuEWs6agIbQ9c3w5efnh4eHB/n5+Y3CWcMDo4ODg1pZbIi9vT0Gg4HBgwfz/vvvM3z48EZha+TIkVy7do1FixYREBDAkCFDiImJAf4bAuT22r17N9evX6eyspJhw4YxbNgwPvroI4KDgxk4cCD29vaYzWa8vb2Jj49n3rx5fPDBBwwZMgQPDw/dMxvTsNh0v379OH/+PM2aNcPb25sWLVpYuzQREbmL6OmgifL19WXixIls3LiRgwcPWh4U9UBoW3Jzc/nLX/5ieR0SEoKDgwNbt261rGsG9a2jo0eP5re//S179+61tHyCxgpaw5IlS5gzZw7r16/nxRdfZMWKFTzzzDPU1taSmZnJ3r17gf/em6CgIOrq6jhz5gyAvoc2rFWrVnTr1o2goCAFMxERue30hNCEPfbYYwwePJhly5Zx8uRJPcTbELPZjNlsZt++fWzYsIE333wTgEGDBjFo0CB27txJVlYW58+fB+of8t3c3DAajXz++eeNWj51X2+v7Oxs3n33XdauXcvGjRtZvHgx27dvx9vbm/nz53Pq1Ck2b97Me++9ZznG3d0dPz8/DAaDFSsXERERW6dw1oS5uroyevRovvrqKzIyMqipqbF2SfL/6urqsLOzw8XFBZPJxOuvv24ZjzR9+nSGDx/O3//+d9atW8fJkyctx9nZ2eHr66t7aUXHjx/nwQcfJDAwEFdXVzw8PDAajcTHx/Phhx/St29fSktLyczM5JVXXiEvL4+XXnqJI0eOaFZGERER+UEac9ZENYwxGzJkCBcuXGDAgAFa+8qGNLR6lZSU0LVrV7y8vNi6dSsAYWFhzJo1Cw8PD3bt2sWkSZPo0qULFRUVFBQUkJWVpXtpBQ0T7pw5c8bSWtkwwx9AWVkZ+/fvx93dHS8vL7p06UJubi779u3DaDSSkZGBn5+f1eoXERER26fZGpuwb8/QKLbDbDZz5coVoqOjiY6OpkOHDiQnJ3Ps2DHGjRtHWFgYAIWFhfznP//hwIED+Pj48MQTTxAQEGDl6u9uhw8f5sCBA4SFhXH69Gm2b9/OhAkTaNGiBWVlZbz22mucOHGClStX4unpyddff42Dg4O6NIqIiMiPUjgTsZKamhq2bt1Knz598Pf358SJE6xevZrPPvuMJ598kgkTJli7RLkFFRUVlmnxHRwcOHPmDIMHD2bNmjWEhoZauzwRERG5g2jMmYiVNGvWjHHjxuHv709dXR0BAQFMmTKFTp06sWXLFrKysqxdovyAhr9rNW/eHKjvqmo2m6mpqaFjx460adPGmuWJiIjIHUjhTMSKGsaONXQ/bQhoQUFBpKWlsW3bNmuWJz+g4Z6dPXuW/Px8SktLKSsrIycnB5PJhKenp5UrFBERkTuNZhUQsQHfHBsYEBBAREQEzs7O9OnTx4pVya24ePEiUVFRuLm50apVK65du0ZqaipeXl7WLk1ERETuMBpzJmKjqqqqcHJysnYZcgs+/fRTjh8/joeHB8HBwerSKCIiIv8ThTMREREREREboDFnIiIiIiIiNkDhTERERERExAYonImIiIiIiNgAhTMREREREREboHAmIiIiIiJiAxTOREREREREbIDCmYiIiIiIiA1QOBMREREREbEBzaxdgIiIyK0KCwsjPz+/0TZHR0datmzJo48+ynPPPYeHh8f3Hn/69GkGDx7Mq6++yuOPP/6r1dnwOd/m6OiIh4cHPXv2ZObMmbRv3/5Xq0FERO48CmciInJHCQoKYsGCBZbX1dXVHD58mKSkJI4cOUJWVhZ2dnbfeWyrVq3YsmUL7dq1uy21Tp06lYEDB1pem0wmDh8+zOrVq3nmmWd47733cHZ2vi21iIiI7VM4ExGRO4qrqys9evRotC0kJISvv/6a5cuXU1RUdNP+Bk5OTt+779fQrl27mz6vb9++GI1G4uPj+eSTTwgNDb1t9YiIiG3TmDMREWkSunTpAsDZs2eB+i6QMTExzJgxgx49ehAREcHp06fp1KkT27dvtxx38uRJpk+fTu/evQkJCWHy5Ml8/vnnlv2VlZUsXbqU0NBQunTpwqhRo3j33Xd/Vq3u7u43bSsoKCAyMpKQkBC6dOnCoEGDWLFiBXV1dQCW2vPy8pgxYwY9e/akd+/ezJs3j/Lycst5qqurSUxMZMCAAXTr1o3IyEhycnLo1KkTp0+ftrxv//79TJgwge7du9O7d29iY2MpLS39WdclIiI/j8KZiIg0CcXFxQD4+flZtuXl5WE0GklLSyMqKuqmYy5cuMCTTz5JSUkJ8fHxJCQkcOnSJSZOnMjVq1cxm81MmzaNN954g4iICNLS0ujZsyfPP/88OTk5P1pTXV0dNTU1lp+ysjL27NnDsmXLaNu2Lb169QLg6NGjhIeHc88995CcnExaWhq9evUiNTWVvLy8RudcsGABbdu2ZdWqVURGRrJt2zbS0tIs++Pi4ti0aRMTJkxg5cqVtGzZkvnz5zc6R0FBAeHh4TRv3pyUlBTmzJlDfn4+f/zjH6moqLjl/3MREfllqVujiIjcUcxmMzU1NZbX165dIz8/3xKcGlrQoH4CjoULF+Lk5ATQqOUIYOPGjVRVVbFhwwa8vLwACAwM5KmnnqKoqIhmzZrx8ccfk5yczGOPPQZA//79MZlMJCYmMnLkSJo1+/5fpXPnzmXu3LmNthkMBh5++GFiY2MxGo1AfTjr168fCQkJ2NvX/9304YcfZteuXezbt48RI0ZYjg8NDSU2Nhao7yK5Z88e/vnPfzJz5kxOnTpFdnY2sbGxREREWOq9dOkSu3fvtpxj2bJltG/fnjVr1uDg4ABA9+7dGTFiBH/72994+umnf/Q+iIjIL0/hTERE7igFBQUEBwc32mZvb0+/fv146aWXGk0G0qFDB0sw+y6FhYX06NHDEswAvL29+cc//gFAYmIidnZ2hIaGNgqEgwYN4q233uL48eN07tz5e88/ffp0Bg4ciNlspqCggJSUFEaMGEF8fHyjUDdmzBjGjBlDZWUlxcXFfPHFFxw5coTa2lqqq6sbnfPbY9i8vb05c+YMAPv27cNsNjN8+PBG7xk5cqQlnJlMJoqKioiMjGwUdP38/PD392fPnj0KZyIiVqJwJiIid5Tg4GAWLlwIgJ2dHc7OzrRp0wZXV9eb3tvQMvV9rl69iq+v7w/uN5vNPPDAA9+5/6uvvvrBcNa2bVu6du0KQLdu3fD09OTFF1/EwcHBcg0AFRUVvPzyy+Tm5lJTU4Ovry89e/akWbNmmM3mRud0cXFp9Nre3t7ynoYxY/fee2+j93zz9fXr16mrq2PdunWsW7fuppo1e6SIiPUonImIyB3FaDRaAs/P5ebm9p2TYOzduxdfX1/c3NwwGAxkZGR85/H33XffT/q8xx9/nB07dvDGG28wdOhQHnnkEQAWLVrEjh07SElJoV+/fhgMBqC+2+JP0bp1awAuXbqEj4+PZfs3r9FoNGJnZ0d4eHij7pINvh3+RETk9tGEICIictfq1asXRUVFjcLL5cuXiYqK4l//+he9e/emvLwcs9lM165dLT/Hjh1j5cqVjbo63qr58+fj7OzMK6+8YumyWFhYSJ8+fRgyZIglmB06dIjS0lLLbI234sEHH8TBwYGdO3c22v7+++9b/u3q6kpQUBAnT55sdE33338/K1asYN++fT/5mkRE5JehljMREblrhYeHk5OTQ1RUFJMnT8bR0ZG0tDS8vb0ZNWoUbm5uhISEEB0dTXR0NP7+/nz66acsX76c/v3706JFi5/8mb6+vkRGRrJq1So2bdpEVFQU3bp1Iy8vj6ysLPz9/Tl69ChpaWnY2dlhMplu+dx+fn6MHTuWpKQkqqurCQwMZOfOnZYxdA2TjbzwwgtMmjSJmTNnMnr0aGpra1m/fj1FRUVER0f/5GsSEZFfhsKZiIjctdq0acNf//pXEhISmD17Nk5OTvTp04fk5GQ8PDwAWLt2LX/+859Zs2YNly9fpnXr1kRERDBt2rT/+XMnTZpETk4Oq1atYvTo0cyePZvq6mpSUlKoqqrC19eXqVOncuLECXbt2kVtbe0tn3v+/PkYDAbWr19PWVkZffv2ZerUqaxcudLSKvfII4+Qnp5OamoqM2bMwNHRkeDgYDZs2HBbF+kWEZHG7MzfHmksIiIid6SrV6/y0Ucf0b9/fzw9PS3blyxZwvbt29VlUUTExqnlTEREpIlwcXFh0aJFdO7cmYkTJ2IwGDh48CCbN29m8uTJ1i5PRER+hFrOREREmpAjR46QkpLCwYMHMZlMtGvXjvHjx/P00083WgNORERsj8KZiIiIiIiIDdBU+iIiIiIiIjZA4UxERERERMQGKJyJiIiIiIjYAIUzERERERERG6BwJiIiIiIiYgMUzkRERERERGyAwpmIiIiIiIgNUDgTERERERGxAQpnIiIiIiIiNuD/AGHcXP7vRCUdAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAJOCAYAAABIu73jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLa0lEQVR4nOzdd3gUVd/G8XvTE0JJgdC79BZAUFoAeehNiihdwCBV6YTeIfQSOkhHkCIoXQRRUDqEJkiVCAQIJNLSM+8fPNnXCGriQ3ZJ8v1cl5fsnNnZ3+zJJnPvnDljMgzDEAAAAAAgWdlYuwAAAAAASAsIXwAAAABgAYQvAAAAALAAwhcAAAAAWADhCwAAAAAsgPAFAAAAABZA+AIAAAAACyB8AQAAAIAFEL4AIJlwD/uUhz4DACQnO2sXAACvi8GDB+vLL7/823UqVKigVatW/e06jx490rhx49SyZUu9+eabSXr9o0ePat++fX+73ubNm/XFF1/ol19+UWxsrHLmzKnatWurc+fOcnV1TfTrvc7mzJmjgICAv2wfOHCgOnfu/Epfc968eXJwcFCXLl1e6Xb/rd9++03vvPOOJk6cqGbNmr3Sbbdr105Hjx5NsMze3l6enp6qUaOGPv30U2XMmNEqtb3sdf7M3t5eGTNmlLe3t/r166d8+fIlWw0A8CoRvgDgv7p3767333/f/HjevHm6cOFCghCQmHDz888/a+vWrWrevPkrrzEgIEALFixQp06d1K1bN9nb2+vcuXNasmSJfvjhB33++eeyt7d/5a9rLevXr3/p8uzZs7/y15o1a5Z69uz5yrf7uipWrJhGjhxpfhwdHa3z589r+vTp+vnnn/X555/LZDK99LlZsmTR+vXrlTt3bovU2q1bN1WvXt38ODw8XOfPnzd/Fnbt2iVHR0eL1AIA/wvCFwD8V+7cuRMcTLq7u8vBwUFlypSxXlF/EBUVpcWLF6tz587q06ePeXmlSpWUP39+9ejRQ3v37lW9evWsWOWr9bq896mRq6vrC+/vm2++qadPn2r27NkKDAz8y/ff0p+L3Llzv/B6b7/9ttKlS6dRo0bp8OHD8vHxsVg9APBvcc0XACTRoUOH1Lp1a5UrV04VK1ZUv379dOfOHUnSkSNH1L59e0lS+/bt1a5dO0lSbGysFi1apIYNG6pUqVIqU6aM3n//fR0+fDjRr/vkyRNFREQoLi7uhTYfHx/16dNHuXLlMi8LCwvToEGDVKFCBVWoUEETJkzQ7NmzVbNmTfM6NWvW1ODBgxNsa/PmzSpcuLB+++0387K9e/eqdevW8vb2VokSJVS3bl2tWbPG3H7kyBEVLlxY69atU40aNVS2bFkdOnRIknT8+HG1bdtWpUuXVoUKFTRo0CA9fPgw0fv9T/6uP+LduHFDvXv3VuXKlVWmTBm1a9dOJ06cMLcXLlxY0vMzi/H/Tsx+S9LVq1f10UcfqWzZsqpUqZJmzJghPz8/c99LUlxcnBYtWqT//Oc/KlGihOrUqfOPw1fj3b17V127dlWpUqXk4+Oj2bNnKzY2VpLk7++vUqVK6fHjxwmeM2/ePJUrV07h4eGJeo0/KlGihCTp9u3bkp4PUezfv7969+6tMmXK6MMPP9Rvv/2mwoULa/PmzebnXbt2TT179lSFChX05ptvqmvXrrp69aq5PTIyUpMnT5aPj49KlCihRo0aaceOHUmu748yZMjwwrJjx46pc+fOevPNN1WiRAnVrFlTc+bMMX9u4mvfuXOnevfuLW9vb1WoUEHDhg3Ts2fPzNuJjo7W1KlTVa1aNZUqVUqdO3fWli1bXvhsJPfPN4DUhfAFAEmwZcsWderUSdmyZdP06dPl5+enU6dOqVWrVnrw4IGKFy+uESNGSJJGjBhhHtY1depUzZs3T61atdKSJUs0duxYhYWF6ZNPPkn0AbK7u7tKly6tpUuXatCgQdq7d6/5IM/e3l4ff/yx+cA5Li5OXbp00ffff68BAwZowoQJOn36tFavXp3kff7uu+/Uo0cPFS9eXPPmzdOcOXOUK1cujRkzRoGBgQnWDQgI0KBBgzRixAh5e3vr2LFj6tixo5ycnDRz5kwNGTJER48eVfv27RUREfGPrx0TE/PCf38Mn//UH5J05coVNWvWTL/99puGDRumqVOnymQyqUOHDubrnuKHN7Zo0cL878Ts98OHD9W2bVvduXNHEydO1LBhw7Rr1y5t27YtwX6MGjVKs2fPVuPGjbVgwQLVrVtXEyZM0Ny5c//xPZgzZ448PDw0d+5cNW/eXAsWLJC/v7+53sjISO3atSvBc7Zu3ar69evL2dn5H7f/Z9evX5ekBEF+586dSpcunebPn//Sa+Lu3r2rVq1a6caNGxo1apSmTJmikJAQdejQQWFhYTIMQz169NC6dev04Ycfav78+fL29lafPn20ZcuWf6wpLi4uwc/AkydPdOjQIU2bNk05cuRQ+fLlJUkXL15Ux44dlSlTJs2YMUPz589X+fLlFRAQoJ07dybY5siRI5UjRw7NmzdPnTt31saNGzV//nxz+4gRI7RixQq1bdtWc+fOlaenp4YPH55gG//rzzeANMgAALzUoEGDjBo1apgfx8bGGpUrVzY6deqUYL1ff/3VKF68uOHv728YhmEcPnzYKFSokHH48GHzOn379jWWL1+e4Hm7d+82ChUqZJw6deqlr/cyd+7cMdq1a2cUKlTIKFSokFG4cGGjYcOGxqxZs4ywsDDzevv27TMKFSpk7N+/37zs8ePHRoUKFRK8Ro0aNYxBgwYleI1NmzYZhQoVMoKCggzDMIzFixe/sE5oaKhRqFAhY+HChQn2ee7cuQnWa9WqldGwYUMjJibGvOzatWtG0aJFjdWrV//lfs6ePdu8j3/+b/jw4YZhJL4/PvnkE6NixYrG48ePzetER0cbderUMZo3b25eVqhQIWP27Nnmx4nZ75kzZxolS5Y0goODzev89ttvRvHixY22bdua97dw4cLm58SbMWOGUbJkSePhw4cvfQ+CgoKMQoUKGb6+vgmWjx8/3ihevLgRGhpqGMbz97hNmzbm9hMnThiFChUyTp48+dLtGoZhtG3b1mjTpo0RHR1t/i8kJMTYsWOHUaFCBaNVq1ZGXFyced3SpUsbkZGRL9S2adMmwzAMY9KkSUapUqWMe/fumde5c+eOUb16deO7774zDh48aBQqVMjYvn17gjr69+9vVK5c2YiOjv7b9+Bl/5UpU8bo0aOHcfPmTfP6X375pdGlSxcjNjbWvCw2NtYoV66c+ecmfpv9+/dP8Frt2rUzGjZsaBjG85+hwoULG5999lmCdTp16pTgs/Fvf74BpF1c8wUAiXT9+nXdv39f/fr1S7A8d+7c8vb2fmH2uD+aNm2apOdnSq5du6Zff/1V+/fvl/T8Wq7Eypo1q1auXKkrV67o+++/15EjR3Ts2DHNnTtXX3zxhVavXq28efPq+PHjsre3V7Vq1czPdXV1Vc2aNXXkyJGk7Lb5TMfTp091/fp13bx5U2fPnn1p7UWLFjX/Ozw8XIGBgercubMMw1BMTIyk52dUChQooEOHDqlNmzZ/+9obN258YZmHh4ekxPfH0aNHVaNGjQSTpdjZ2alBgwaaO3eunj59qnTp0v2r/T58+LC8vb3l5eVlfl6OHDnk7e1tfnz48GEZhqGaNWua3wPp+ZDP+fPn68SJE6pVq9Zfvgd/voavdu3aWrFihQIDA+Xj46PmzZtr+PDhunXrlnLkyKEvv/xS+fLlS1DDyxw7dkzFixdPsMzGxkaVKlXSmDFjEky2kT9/fjk4OPzltk6cOKEyZcooc+bM5mVZs2Y1/4zHn2308fF54T346quvdPny5QQ/O3/Ws2dPVa9eXYZh6NixY5o5c6YaNGigUaNGyc7u/w9lmjZtqqZNmyoyMlLXr1/Xr7/+qp9//lmxsbGKjo5OsM0/X0OWNWtW3bp1S9LzYbSGYahu3boJ1mnYsKEOHjwo6dX8fANIewhfAJBIYWFhkiRPT88X2jw9PXXhwoW/fO7Zs2c1evRonT17Vs7OzipYsKB5xj7jX9xbqmDBgipYsKA6deqk6Ohobd68WWPGjNH06dM1e/Zs/f7778qUKZNsbBKOLs+SJUuSX+vhw4caOXKk9u7dK5PJpDx58piHef25dhcXF/O/Hz16pLi4OC1evFiLFy9+YbuJmZ2uZMmSf9mW2P74/fff/3IdwzD05MmTl4avxOz3w4cPXwgw8dsOCQlJUGeDBg1euh937979y32UlCDQSM+Hn8bvlyTVr19fEyZM0NatW9W5c2ft3LlTvr6+f7tNSSpevLhGjx4tSTKZTHJ0dFS2bNleOqPny96fPwoLC1POnDn/tt0wDJUtW/al7ffu3fvb8JUjRw7zz0KpUqXk5uYmPz8/2dramvdBkiIiIjR27Fht3bpVMTExypkzp7y9vWVnZ/fCz+qfh2Ta2Ngk6Ffp/4N+vD8+fhU/3wDSHsIXACRSpkyZJMl8UP1H9+/fl5ub20uf9+TJE3Xp0kWFCxfW9u3blT9/ftnY2OjAgQPavXt3ol9/xYoVmj9/vvbv35/gwNHe3l6tWrXSgQMHdOXKFUmSm5ubQkNDFRsbK1tbW/O68UHgj+Inb4j3x0kHJKl///66du2ali9fLm9vbzk4OCg8PFxffPHF39abLl06mUwmdezY8aXB499cj/RHie2PjBkz/uU6kv6y3xKz31mzZn3ptuOvN5P+f1KIFStWvDTE/NO0+fEhK17868UHgXTp0qlu3brauXOnChUqpGfPnqlJkyZ/u8345/1duE2K9OnTv3SSiZ9++kk5c+ZU+vTp5eLiopUrV770+Xny5EnS6zVr1ky7d+/WunXr9J///EdVqlSRJI0fP167d+/WzJkzValSJfOXAW+//XaSth9/JjMkJCRB//xxH5P75xtA6sSEGwCQSPny5VPmzJlfmEwhKChIp0+fNn+r/8ewIz2fBS4sLEzt27dXwYIFzWejvv/+e0l66eyFL1OwYEGFhoa+dJa82NhYBQUFqVChQpKeTz8fExOjvXv3mteJjo7WDz/8kOB5rq6uCg4OTrDsj7MAxj+uXbu2KlasaB56lpjaXV1dVaxYMV27dk0lS5Y0//fGG29ozpw5SR7++GeJ7Y8333xT+/fv15MnT8zrxMbGavv27SpZsqR5n/58ljAx+/3mm2/q9OnT5iAnPT+Lc/r0afPj+LNloaGhCd6Hhw8fatasWS8NxH/03XffJXi8fft2OTs7q3Tp0uZlLVq00C+//KIVK1aoUqVKCYZBWkL58uUVGBiYIJw8ePBAXbp00YEDB1ShQgU9e/ZMhmEkeA9++eUXzZ07N8FQxMQaPny4HB0dNW7cOPOQwhMnTqhixYqqVauWOXidO3dODx8+TPTnTJLKlSsnW1tbffPNNwmW79mzx/zv5P75BpA6ceYLABLJxsZGffv2lZ+fn/r166fGjRsrNDRUAQEBypgxoz788ENJz88CSM8PmjNmzKh8+fLJ1dVVCxYskJ2dnezs7LR7927z9UyJne2wcuXKatiwoaZPn65Lly6pTp06cnd3V3BwsNatW6fg4GDNnDlT0vNv+n18fDRs2DCFhIQoZ86cWr16tW7fvp3gm/waNWpo4cKFWrhwoUqXLq19+/a9MP19qVKl9PXXX6t48eLKmjWrTp48qUWLFslkMv1j7X379pWvr6/5/YqNjdVnn32mwMBAde/ePVH7/VcS2x89e/bU999/r/bt28vX11f29vZavXq1goKCtGTJEvP2MmTIoJMnT+rYsWMqX758ova7ffv2WrNmjTp37qwePXpIej7Ne3R0tPmaqcKFC6tx48bm67JKlCih69eva8aMGcqZM6fy5s37t/u5Z88eeXl5qVKlSjp48KDWr1+vTz75JMHwwHLlyilfvnw6evSoZsyY8T+9r/9Gx44dtWXLFnXp0kVdu3aVvb295s+fr6xZs6pRo0ZKnz693nzzTXXv3l3du3dXgQIFdObMGc2ePVtVq1Y1D6VMipw5c6pz586aN2+eVqxYoS5duqhUqVLauXOnPv/8cxUoUEAXL17U/PnzE/Wz+ke5cuVS8+bNNX36dEVHR6tIkSL65ptvzNewxQf1xP58nz59Wu7u7ha7KTWA1xfhCwCSoFmzZkqXLp0WLlyoHj16yNXVVVWrVlXfvn3N1+a88cYbatiwodasWaMffvhB27Zt07x58zR58mR98sknSpcunYoWLarVq1fro48+0vHjxxPce+vvTJkyRRUqVNBXX31lvi+Ru7u7KleurIkTJyaYHnz27NmaNm2a5syZo8jISDVo0EB169bVmTNnzOt07dpVDx8+1NKlSxUdHa3q1atr/Pjx6tatm3mdSZMmaezYsRo7dqwkKW/evBo9erS++uorHT9+/G/rrVKlipYuXaqAgAD17t1b9vb2Kl68uJYtW/ZKbtKb2P5Yu3ateSp6k8mkUqVKaeXKleazUpL08ccfa968efroo4+0Y8eORO13hgwZtHLlSo0fP14DBw5UunTp1Lp1azk7Oye4/m3ixIlauHChOSR7eHiofv36+vTTT184U/pnQ4cO1fbt27V8+XJlzpxZQ4YMMd9L7o+qV6+uhw8f/u3kHcklW7ZsWrt2raZMmaLBgwfLwcFBFStW1IwZM5QxY0ZJ0qJFizRr1iwtXLhQDx48kJeXlz788ENzaP03fH19tWXLFs2bN0+NGzfW4MGDFR0drZkzZyoqKko5c+ZUt27ddOXKFe3bt++FIbZ/Z/jw4XJxcdFnn32mJ0+e6O2331a3bt00d+5cc98m9ue7VatWevfddzVp0qR/va8AUgeT8W+u9AYApEiDBw/W0aNHtW/fPmuXkioEBgYqLCxMPj4+5mUxMTGqXr26GjRoID8/P4vUYRiGGjRooCpVqmjIkCEWec3ULCwsTN9//72qVq2a4JpAf39/bd68mSGFAP41znwBAPAv3b59W3369FGPHj1UoUIFhYeHa/369Xr8+LHee++9ZH/9J0+eaPny5Tp79qyCgoLUrl27ZH/NtMDZ2Vnjx49X0aJF1aFDB7m4uJhvUt61a1drlwcgBSN8AQDwL9WrV09hYWFau3atli5dKnt7e5UuXVqrV69WgQIFkv31nZyctG7dOsXFxWnChAkJhp3i33N0dNTy5cs1c+ZMDR48WOHh4cqdO7cGDRrEvbsA/E8YdggAAAAAFsBU8wAAAABgAYQvAAAAALAAwhcAAAAAWADhCwAAAAAsgPAFAAAAABbAVPP/gwcPHou5IgEAAIC0y2SSPDzSJ2pdwtf/wDBE+AIAAACQKAw7BAAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAXYWbsAAAAAAEljY2OSjY3J2mWkanFxhuLijFe6TcIXAAAAkILY2JiUKZOLbG0ZxJacYmPjFBb27JUGMKuGr2+++UY9e/ZMsKxOnTqaPXu2Lly4oJEjR+qXX35RwYIFNXr0aJUoUcK83rZt2zRz5kzdv39fVapU0dixY+Xu7i5JMgxD06ZN08aNGxUXF6cWLVqof//+srF5/gMaGhqqESNG6ODBg3Jzc9Mnn3yiJk2aWG7HAQAAgH/JxsYkW1sbDZ2yRteD7lq7nFQpXy4vjR/QRjY2ptQTvq5cuaIaNWpo7Nix5mWOjo569uyZfH191ahRI02aNEmff/65unbtqm+++UYuLi46c+aMhg4dqtGjR6tIkSIaP368/Pz8tHDhQknSsmXLtG3bNgUEBCgmJkYDBgyQh4eHOnfuLEny8/NTRESE1q9fr8DAQA0bNkz58uVTqVKlrPI+AAAAAEl1PeiuLl69Ze0ykARWPVd59epVFSpUSJkzZzb/lyFDBu3YsUOOjo4aOHCgChQooKFDhypdunTatWuXJGn16tWqV6+emjZtqiJFimjy5Mk6cOCAgoKCJEkrV65U7969Vb58eb311lvq37+/1qxZI0m6efOm9u/fr3HjxqlQoUJq2bKlGjdurLVr11rtfQAAAACQ+lk9fOXNm/eF5YGBgSpXrpxMpucXEZpMJpUtW1anT582t5cvX968frZs2ZQ9e3YFBgbq7t27unPnjt58801ze7ly5XTr1i3du3dPgYGBypYtm3LmzJmg/dSpU8mzkwAAAAAgKw47NAxD169f18GDB7Vw4ULFxsaqbt266t27t+7fv6+CBQsmWN/Dw0OXL1+WJN27d09ZsmR5oT04OFj379+XpATtnp6ekmRuf9lz795N+nhZExPMAAAAAKnaPx3zJyUTWC183b59W+Hh4XJwcNDMmTP122+/ady4cYqIiDAv/yMHBwdFRUVJkiIiIv6yPSIiwvz4j22SFBUV9Y/bTgoPj/RJfg4AAACAlMHNLd0r3Z7VwleOHDl05MgRZcyYUSaTSUWLFlVcXJwGDBigChUqvBCGoqKi5OTkJOn5pBwva3d2dk4QtBwdHc3/liRnZ+e/fG78tpPiwYPHMl7t1P8AAADA37K1tXnloQAvFxr6VLGxcX+7jsmU+JMyVp3tMFOmTAkeFyhQQJGRkcqcObNCQkIStIWEhJiHC3p5eb20PXPmzPLy8pIk3b9/33xdV/xQxPj2v3puUhmGCF8AAABAKvYqj/etNuHGDz/8oIoVKyo8PNy87Oeff1amTJnME2AY/91TwzB08uRJlS5dWpJUunRpnThxwvy8O3fu6M6dOypdurS8vLyUPXv2BO0nTpxQ9uzZlSVLFpUpU0a3bt1ScHBwgvYyZcok8x4DAAAASMusFr68vb3l6OioYcOG6dq1azpw4IAmT56sLl26qG7dunr06JHGjx+vK1euaPz48QoPD1e9evUkSR988IG2bt2qDRs26OLFixo4cKCqV6+uXLlymdunTp2qI0eO6MiRI5o2bZrat28vScqVK5eqVKmiAQMG6OLFi9qwYYO2bdumNm3aWOutAAAAAJAGWG3Yoaurq5YuXaoJEyaoefPmSpcund5//3116dJFJpNJCxcu1MiRI/XFF1+ocOHCWrRokVxcXCQ9D25jxozR7Nmz9fvvv6ty5coJbtTcuXNnPXjwQD179pStra1atGihjh07mtsnT56soUOH6r333lPmzJk1YcIEbrAMAAAAIFmZDIOrlv6tkBAm3AAAAIBl2dk9n3Cjde/punj1lrXLSZWKFMihtbP7KjT0qWJi/nnCDU/PxE24YdWbLAMAAABAWkH4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAW8NuHL19dXgwcPNj++cOGCWrZsqdKlS6t58+Y6d+5cgvW3bdumWrVqqXTp0urRo4cePnxobjMMQ1OnTtVbb72lChUqaPLkyYqLizO3h4aGqlevXvL29lbNmjW1devW5N9BAAAAAGnaaxG+tm/frgMHDpgfP3v2TL6+vipfvrw2b94sb29vde3aVc+ePZMknTlzRkOHDlXPnj21fv16PXr0SH5+fubnL1u2TNu2bVNAQIBmz56tr7/+WsuWLTO3+/n56fHjx1q/fr26deumYcOG6cyZM5bbYQAAAABpjtXDV1hYmCZPnqySJUual+3YsUOOjo4aOHCgChQooKFDhypdunTatWuXJGn16tWqV6+emjZtqiJFimjy5Mk6cOCAgoKCJEkrV65U7969Vb58eb311lvq37+/1qxZI0m6efOm9u/fr3HjxqlQoUJq2bKlGjdurLVr11p+5wEAAACkGVYPX/7+/mrSpIkKFixoXhYYGKhy5crJZDJJkkwmk8qWLavTp0+b28uXL29eP1u2bMqePbsCAwN19+5d3blzR2+++aa5vVy5crp165bu3bunwMBAZcuWTTlz5kzQfurUqWTeUwAAAABpmZ01X/ynn37S8ePH9fXXX2vUqFHm5ffv308QxiTJw8NDly9fliTdu3dPWbJkeaE9ODhY9+/fl6QE7Z6enpJkbn/Zc+/evZvk+v+bDQEAAACkUv90zJ+UTGC18BUZGamRI0dqxIgRcnJyStAWHh4uBweHBMscHBwUFRUlSYqIiPjL9oiICPPjP7ZJUlRU1D9uOyk8PNIn+TkAAAAAUgY3t3SvdHtWC18BAQEqUaKEqlat+kKbo6PjC2EoKirKHNL+qt3Z2TlB0HJ0dDT/W5KcnZ3/cdtJ8eDBYxlGkp8GAAAA/Gu2tjavPBTg5UJDnyo2Nu5v1zGZEn9Sxmrha/v27QoJCZG3t7ek/w9Iu3fvVsOGDRUSEpJg/ZCQEPNwQS8vr5e2Z86cWV5eXpKeD12Mv64rfihifPtfPTepDEOELwAAACAVe5XH+1abcGPVqlX6+uuvtWXLFm3ZskU1a9ZUzZo1tWXLFpUuXVqnTp2S8d89NQxDJ0+eVOnSpSVJpUuX1okTJ8zbunPnju7cuaPSpUvLy8tL2bNnT9B+4sQJZc+eXVmyZFGZMmV069YtBQcHJ2gvU6aMZXYcAAAAQJpktTNfOXLkSPA4Xbrnp07z5MkjDw8PTZs2TePHj9f777+vdevWKTw8XPXq1ZMkffDBB2rXrp3KlCmjkiVLavz48apevbpy5cplbp86daqyZs0qSZo2bZo6deokScqVK5eqVKmiAQMGaOjQoTp79qy2bdum1atXW2rXAQAAAKRBVp3t8K+4urpq4cKFGjlypL744gsVLlxYixYtkouLiyTJ29tbY8aM0ezZs/X777+rcuXKGjt2rPn5nTt31oMHD9SzZ0/Z2tqqRYsW6tixo7l98uTJGjp0qN577z1lzpxZEyZMUKlSpSy9mwAAAADSEJNhcNXSvxUSwoQbAAAAsCw7u+cTbrTuPV0Xr96ydjmpUpECObR2dl+Fhj5VTMw/T7jh6Zm4CTesfpNlAAAAAEgLCF8AAAAAYAGELwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAWQPgCAAAAAAsgfAEAAACABRC+AAAAAMACCF8AAAAAYAGELwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAWQPgCAAAAAAsgfAEAAACABRC+AAAAAMACCF8AAAAAYAGELwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAWQPgCAAAAAAsgfAEAAACABRC+AAAAAMACCF8AAAAAYAGELwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAWQPgCAAAAAAsgfAEAAACABRC+AAAAAMACCF8AAAAAYAGELwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAWQPgCAAAAAAsgfAEAAACABRC+AAAAAMACCF8AAAAAYAGELwAAAACwAMIXAAAAAFjAvwpfsbGx+u6777R8+XI9evRIgYGBevz48auuDQAAAABSDbukPuHOnTvq3LmzwsLC9Pvvv+udd97RkiVLdOrUKS1dulSFCxdOjjoBAAAAIEVL8pmvMWPGqFy5cvrhhx/k4OAgSZo+fboqVaqkcePGvfICAQAAACA1SHL4On78uDp16iRbW1vzMnt7e3Xv3l3nzp17pcUBAAAAQGqR5PDl5OSkBw8evLD8+vXrcnV1fSVFAQAAAEBqk+Tw9f7772vEiBH67rvvJD0PXZs2bdLw4cPVokWLV10fAAAAAKQKSZ5wo0ePHsqQIYNGjRql8PBw+fr6ysPDQx07dlTnzp2To0YAAAAASPGSHL4kqV27dmrXrp2ePXum2NhYpU+f/lXXBQAAAACpSpLDV0BAwEuXm0wm2dvbK0uWLKpatao8PDz+5+IAAAAAILVIcvi6fv26duzYoaxZs6pEiRIyDEM///yzbt++rTJlyujx48caN26clixZojJlyiRDyQAAAACQ8vyrYYctWrTQqFGjzNPNx8XFafz48Xr27JkmTpyoBQsWaNKkSVq3bt0rLRYAAAAAUqokz3a4b9++F+7zZWNjo7Zt22rXrl2SpAYNGujixYuvrkoAAAAASOGSHL48PT11/PjxF5afOHFCmTJlkiSFhIRwzy8AAAAA+IMkDzvs1auXhg4dqhMnTqhkyZIyDEPnz5/X9u3bNWLECF2/fl2DBg1SgwYNkqNeAAAAAEiRkhy+GjdurOzZs+vzzz/XunXrZGtrq4IFC2rlypUqU6aMzpw5o7Zt26pNmzbJUS8AAAAApEj/asKN8uXLq3z58i9tK1WqlEqVKvU/FQUAAAAAqU2Sw1d4eLjWr1+vK1euKDY21rw8KipKFy5c0M6dO19pgQAAAEg+NjYm2diYrF1GqhUXZyguzrB2GXhNJDl8DRs2TD/99JPefvtt7dq1S/Xq1dOvv/6qs2fPqmfPnslRIwAAAJKBjY1JmTK5yNY2yXOwIZFiY+MUFvaMAAZJ/yJ8ff/995o1a5YqVaqky5cvq2PHjipRooQmTZqky5cvJ0eNAAAASAY2NibZ2tpo0Nz1unb7vrXLSXXyZ88s/x6tZGNjInxB0r8IX5GRkcqbN68k6Y033tC5c+dUokQJtWrVSm3btn3V9QEAACCZXbt9Xz/fuG3tMoBUL8nnmAsUKKAff/xR0vPwdeLECUnS48ePFRkZ+WqrAwAAAIBUIslnvnr27KlPPvlEcXFxatKkiRo0aKCPP/5Yly5dUpUqVZKjRgAAAABI8ZIcvt555x3t3LlTcXFxypYtm9auXautW7eqbNmyat++fXLUCAAAAAApXpKHHfr5+cnNzU158uSRJBUpUkSDBg1Sq1atNHDgwFdeIAAAAACkBok683Xq1Cn9+uuvkqQtW7aoePHicnV1TbDOtWvXdPDgwVdfIQAAAACkAokKX87OzpozZ44Mw5BhGFqyZIlsbP7/pJnJZJKLi4v69++fbIUCAAAAQEqWqPBVpEgRffvtt5Kkdu3aKSAgQBkzZkzWwgAAAAAgNUnyhBurVq2SJB06dEhXr15VXFyc8uXLp0qVKsne3v6VFwgAAAAAqUGSw9fdu3fVrVs3Xb9+Xfny5VNsbKx+/fVXZc+eXcuWLZOXl1dy1AkAAAAAKVqSZzscNWqUPDw89N1332nz5s3aunWr9u/fr+zZs2v8+PHJUSMAAAAApHhJDl+HDx/WgAEDElzz5ebmpv79++vQoUOvtDgAAAAASC2SHL4yZsyo33///YXljx49SvI1X7/++qs6d+4sb29vVa9eXUuWLDG3BQUFqWPHjipTpozq16//wjT2P/74oxo2bKjSpUurffv2CgoKStC+fPlyVa1aVd7e3hoyZIjCw8PNbZGRkRoyZIjKly+vKlWq6LPPPktS3QAAAACQVEkOXw0aNNCwYcP0008/6cmTJ3ry5IkOHTqk4cOHq379+oneTlxcnHx9feXm5qYvv/xSo0eP1vz58/X111/LMAz16NFDnp6e2rRpk5o0aaKePXvq9u3bkqTbt2+rR48eatasmTZu3Ch3d3d1795dhmFIknbv3q2AgACNGTNGK1asUGBgoKZMmWJ+7cmTJ+vcuXNasWKFRo4cqYCAAO3atSupbwUAAAAAJFqSJ9z45JNP9ODBA3Xu3Nl83y87Ozu1bNlSAwcOTPR2QkJCVLRoUY0aNUqurq7Kmzev3n77bZ04cUKenp4KCgrSunXr5OLiogIFCuinn37Spk2b1KtXL23YsEElSpRQp06dJEkTJ05U5cqVdfToUVWsWFErV65Uhw4dVKNGDUnS6NGj1blzZw0YMECGYWjDhg1avHixihcvruLFi+vy5ctas2aN6tatm9S3AwAAAAASJcnhy8HBQZMmTdKQIUN048YNOTg4KHfu3HJxcUnSdrJkyaKZM2dKkgzD0MmTJ3Xs2DGNHDlSgYGBKlasWIJtlitXTqdPn5YkBQYGqnz58uY2Z2dnFS9eXKdPn1b58uV19uxZ9ezZ09xepkwZRUdH6+LFizIMQzExMfL29k6w7QULFiguLi7BzaP/icmUpF0GACDVsrExycQfxmRlGIbi4gxrl4F/iY9HyvVPfZeUvk1y+JKke/fuac2aNbp69apiY2OVP39+tWzZUnnz5v03m1PNmjV1+/Zt1ahRQ3Xq1NGECROUJUuWBOt4eHgoODhYknT//v2/bH/06JEiIyMTtNvZ2SlTpkwKDg6WjY2N3Nzc5ODgYG739PRUZGSkwsLC5O7unui6PTzS/5vdBQAg1YmNi5NtEr7ARNLxHqdcbm7prF0C/qVX3XdJDl/Hjx/XRx99pMKFC6tMmTKKjY3VsWPHtHr1an322WcqV65ckouYPXu2QkJCNGrUKE2cOFHh4eEJwpH0/IxbVFSUJP1te0REhPnxy9oNw3hpmyTz9hPrwYPHMvgCCgCQxtna2sjNLZ38lm/UteAQa5eTKuXP6qmJHVsoNPSpYmPjXtl24/sOyYt+S7kS03cmU+JPyiQ5fE2aNElt27ZVv379EiyfOnWqpkyZonXr1iV1kypZsqSk57MQ9u/fX82bN08wO6H0PBg5OTlJkhwdHV8ISlFRUcqQIYMcHR3Nj//c7uzsrNjY2Je2STJvP7EMQ4QvAAD+61pwiC7+dsfaZaR6HHukTPRbyvUq+y7J564vX76s5s2bv7C8RYsW+vnnnxO9nZCQEO3duzfBsoIFCyo6OlqZM2dWSEjIC+vHDyX08vJ6aXvmzJmVKVMmOTo6JmiPiYlRWFiYMmfOLC8vL4WGhiomJsbcfv/+fTk5OSlDhgyJrh8AAAAAkiLJ4StHjhw6c+bMC8sDAwPl6emZ6O389ttv6tmzp+7evWtedu7cObm7u6tcuXI6f/68eQihJJ04cUKlS5eWJJUuXVonTpwwt4WHh+vChQsqXbq0bGxsVLJkyQTtp0+flp2dnYoUKaKiRYvKzs7OPHlH/LZLliyZpMk2AAAAACApkjzssEuXLho5cqSuXbumUqVKSXoevFatWqW+ffsmejslS5ZU8eLFNWTIEPn5+enWrVuaMmWKPv74Y1WoUEHZsmWTn5+funfvrv379+vMmTOaOHGiJKl58+ZaunSpFi1apBo1amju3LnKmTOnKlasKElq3bq1RowYoUKFCilLliwaNWqU3nvvPTk7O0uSmjZtqlGjRmnChAm6d++ePvvsM/O2AQAAACA5JDl8NWvWTJK0evVqLVu2TI6OjsqXL5/Gjx+vevXqJXo7tra2mjdvnsaOHatWrVrJ2dlZ7dq1U/v27WUymTRv3jwNHTpUzZo1U548eTR37lxlz55dkpQzZ07NmTNHEyZM0Ny5c+Xt7a25c+eap7ht0KCBbt26pREjRigqKkq1a9fWgAEDzK/t5+enUaNGqUOHDnJ1dVWvXr1Uu3btpL4VAAAAAJBoJsPg8r9/KySE2Q4BALCzez7zWqtJC5hwI5kUyZlN6wd/rNDQp4qJeXWz5sX3XcuhAfr5xu1Xtl08VzRvdm0Y3zPZ+q117+m6ePXWK9su/l+RAjm0dnbfRPWdySR5eiZutsNEXeRUvXp1hYaGJlh27dq1BJNWAAAAAAD+WqLCV3BwsOLiEia+Fi1a6M4dvt0CAAAAgMT419P7MVoRAAAAABKPudUBAAAAwAIIXwAAAABgAYmean7p0qVycXExP46OjtbKlSuVMWPGBOv17Nnz1VUHAAAAAKlEosLXm2++qbNnzyZY5u3trYsXLyZYFn+fLQAAAABAQokKX6tWrUruOgAAAAAgVeOaLwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAW8K/C1+PHj7VmzRqNGzdODx8+1P79+3Xz5s1XXRsAAAAApBpJDl+//PKLateurU2bNmndunV6+vSp9uzZoyZNmujo0aPJUSMAAAAApHhJDl/jxo3TBx98oM2bN8ve3l6SNHHiRLVu3VqTJ09+5QUCAAAAQGqQ5PB19uxZNW3a9IXl77//vq5cufIqagIAAACAVCfJ4cvd3V3Xr19/YfnJkyfl4eHxSooCAAAAgNTGLqlP+OijjzRs2DB9/PHHMgxDhw8f1pdffqkVK1aoT58+yVEjAAAAAKR4SQ5f77//vrJkyaKlS5fKyclJkydPVr58+TR27FjVr18/OWoEAAAAgBQvyeFryZIlatiwodasWZMc9QAAAABAqpTka74WLFig6Ojo5KgFAAAAAFKtJIevhg0bav78+bpx44aioqKSoyYAAAAASHWSPOzw+++/1+3bt/Xll1++tP3nn3/+n4sCAAAAgNQmyeFr0qRJyVEHAAAAAKRqSQ5fFSpU+Mu2e/fu/U/FAAAAAEBqleTwde3aNU2dOlVXrlxRbGysJMkwDEVFRenhw4e6cOHCKy8SAAAAAFK6JE+4MXz4cD18+FCdO3dWSEiIOnXqpLp16+rJkycaP358ctQIAAAAACleks98nT17VuvXr1fRokW1ZcsW5c+fX23atFG+fPm0ceNGvfvuu8lRJwAAAACkaEk+82VnZ6f06dNLkvLnz2+e3bBSpUq6dOnSq60OAAAAAFKJJIcvb29vLV26VBERESpRooT27dsnwzB07tw5OTo6JkeNAAAAAJDiJXnYoZ+fn7p166ZcuXLp/fff18qVK1WhQgU9e/ZM3bt3T44aAQAAACDFS3L4KliwoPbs2aOIiAg5Oztr06ZNOnr0qDJlyqQyZcokQ4kAAAAAkPIlOXzdvn3b/O/Q0FBJUqFChcxt2bNnf0WlAQAAAEDqkeTwVbNmTZlMpr9sj5+AAwAAAADw/5Icvr799tsEj2NjY3Xz5k3NmTOHa74AAAAA4C8kOXzlyJHjhWW5c+dWhgwZNGDAAPn4+LySwgAAaY+NjUk2Nn89ugL/u7g4Q3FxhrXLAIA0Kcnh66+YTCbdvXv3VW0OAJDG2NiYlCmTi2xtk3wXFCRBbGycwsKeEcAAwAqSHL4CAgJeWPb06VPt2rVLlStXfiVFAQDSHhsbk2xtbTR2w5f69X6ItctJlfJk9tTwlu/KxsZE+AIAK0hy+Dpy5EiCxyaTSfb29mrSpIk+/PDDV1YYACBt+vV+iC7fCbZ2GQAAvHJJDl+rVq1KjjoAAAAAIFVLcvjasmVLotdt2rRpUjcPAAAAAKlSksPXpk2bFBgYKJPJpDx58sjBwUE3btzQ06dPlS1bNvN6JpOJ8AUAAAAA/5Xk8FW2bFk5OzvL399fbm5ukqRnz55pxIgRyp49u/r27fvKiwQAAACAlC7J8/muXbtWAwcONAcvSXJxcVH37t21evXqV1ocAAAAAKQWSQ5frq6uunDhwgvLjx8/Lnd391dSFAAAAACkNkkedti1a1cNGzZMR48eVdGiRWUYhs6ePaudO3dq8uTJyVEjAAAAAKR4SQ5f77//vrJly6aNGzdq7dq1cnJyUsGCBfXFF1+oSJEiyVEjAAAAAKR4SQ5fkuTj4yMfH59XXQsAAAAApFqJvubr9u3bWrx4sR49eiRJioyM1IQJE9SoUSO1b99e3333XXLVCAAAAAApXqLC1/nz59WoUSNt2rRJT58+lSQNGjRIa9euVfXq1VWlShUNGjRI+/btS9ZiAQAAACClStSww5kzZ6phw4YaPXq0JCkoKEi7du1S69at1a9fP0mSu7u7Fi5cqJo1ayZftQAAAACQQiXqzNepU6fUrl078+MDBw7IZDKpfv365mXlypXTpUuXXn2FAAAAAJAKJCp8xcTEyNHR0fz4xx9/VPr06VW2bFnzsujoaNnb27/6CgEAAAAgFUhU+CpatKgOHTokSXr48KEOHTqk6tWry8bm/5/+9ddfM9U8AAAAAPyFRF3z1bNnT/Xo0UMHDx7UpUuXZGNjo65du0qSLl26pM2bN2v16tUKCAhI1mIBAAAAIKVK1JmvypUra/Xq1cqZM6dq1aqljRs3qkCBApKkLVu26KefftK0adNUo0aNZC0WAAAAAFKqRN9kuUSJEipRosQLywcNGvRKCwIAAACA1CjRN1kGAAAAAPx7hC8AAAAAsADCFwAAAABYAOELAAAAACwgURNuJGUK+Z49e/7rYgAAAAAgtUpU+Dpy5EiiNmYymf6nYgAAAAAgtUpU+Fq1alVy1wEAAAAAqVqi7/P1Rz///LMuX76suLg4SZJhGIqKitKFCxc0evToV1ogAAAAAKQGSQ5fAQEBCggIkKenpx48eCAvLy+FhIQoNjZW//nPf5KjRgAAAABI8ZI82+H69es1evRoHTx4UNmyZdOqVav0448/qlKlSsqdO3dy1AgAAAAAKV6Sw1doaKiqVq0qSSpatKhOnTqlDBkyqE+fPtqxY8crLxAAAAAAUoMkhy8vLy8FBQVJkgoUKKALFy5IklxdXfXw4cNXWx0AAAAApBJJvuarZcuW6tu3ryZMmKBatWqpY8eOypIli3788UcVKVIkOWoEAAAAgBQvyeHr448/VtasWeXs7KxSpUrJz89P69atU6ZMmTRx4sTkqBEAAAAAUrwkh68tW7aofv36cnBwkPT8TFjLli317Nkzbdy4Ufny5XvlRQIAAABASpeo8PXw4UNFRERIkvz8/PTGG2/Izc0twToXL17U1KlT1b59+1dfJQAAAACkcIkKX0ePHtWnn34qk8kkSWrRooWk5zdX/qPGjRu/4vIAAAAAIHVIVPiqW7eu9u3bp7i4ONWqVUsbNmyQu7u7ud1kMsnZ2fmFs2H/5O7duxo/frwOHz4sR0dH1a9fX3379pWjo6OCgoI0fPhwnT59WtmzZ9eQIUNUpUoV83N//PFHTZgwQUFBQSpdurTGjx+vXLlymduXL1+upUuX6smTJ6pXr56GDx8uZ2dnSVJkZKRGjx6tPXv2yMnJSZ06dVKnTp2SVDsAAAAAJEWip5rPnj27cubMqYsXL6pkyZJyd3fX48eP9fvvvytDhgxJDl6GYah3794KDw/XmjVrNGPGDO3fv18zZ86UYRjq0aOHPD09tWnTJjVp0kQ9e/bU7du3JUm3b99Wjx491KxZM23cuFHu7u7q3r27+Uzc7t27FRAQoDFjxmjFihUKDAzUlClTzK89efJknTt3TitWrNDIkSMVEBCgXbt2Jal+AAAAAEiKJE+4ER0drSlTpmjt2rWKiYl5vhE7OzVq1EijR482T8TxT65du6bTp0/r0KFD8vT0lCT17t1b/v7+qlatmoKCgrRu3Tq5uLioQIEC+umnn7Rp0yb16tVLGzZsUIkSJcxnqyZOnKjKlSvr6NGjqlixolauXKkOHTqoRo0akqTRo0erc+fOGjBggAzD0IYNG7R48WIVL15cxYsX1+XLl7VmzRrVrVs3qW8HAAAAACRKkm+y7O/vr/3792v+/Pk6fvy4jh49qrlz5+r48eOaMWNGoreTOXNmLVmyxBy84j158kSBgYEqVqyYXFxczMvLlSun06dPS5ICAwNVvnx5c5uzs7OKFy+u06dPKzY2VmfPnk3QXqZMGUVHR+vixYu6ePGiYmJi5O3tnWDbgYGBiouLS+rbAQAAAACJkuQzX9u2bdOsWbNUsWJF8zIfHx85Ojqqf//+GjRoUKK2kyFDBlWtWtX8OC4uTqtXr9Zbb72l+/fvK0uWLAnW9/DwUHBwsCT9bfujR48UGRmZoN3Ozk6ZMmVScHCwbGxs5ObmluAMnaenpyIjIxUWFpbgWrZ/8t/5RwAASHH4G5Zy0XcpE/2Wcv1T3yWlb5McvgzDkIeHxwvL3d3d9fTp06RuzmzKlCm6cOGCNm7cqOXLl78wfNHBwUFRUVGSpPDw8L9sj58S/6/aDcN4aZsk8/YTy8MjfZLWBwDgdeDmls7aJeBfou9SJvot5XrVfZfk8PXWW29p6tSpmjp1qlxdXSVJjx490vTp0xOcDUuKKVOmaMWKFZoxY4YKFSokR0dHhYWFJVgnKipKTk5OkiRHR8cXglJUVJQyZMggR0dH8+M/tzs7Oys2NvalbZLM20+sBw8e60+z7QMA/iVbWxsOUCwkNPSpYmNf3VB7+s5y6LuUiX5LuRLTdyZT4k/KJCp8HTt2TN7e3rKzs9OQIUPUvn17Va1aVfny5ZMkXb9+Xbly5dL8+fMT9aJ/NHbsWH3++eeaMmWK6tSpI0ny8vLSlStXEqwXEhJiHkro5eWlkJCQF9qLFi2qTJkyydHRUSEhISpQoIAkKSYmRmFhYcqcObMMw1BoaKhiYmJkZ/d89+/fvy8nJydlyJAhSbUbhghfAIAUib9fKRd9lzLRbynXq+y7RIWv9u3b6+DBg/Lw8JCXl5e2bdum77//XteuXZOjo6Py5cunypUry8YmafN3BAQEaN26dZo+fXqCmQZLly6tRYsWKSIiwnw26sSJEypXrpy5/cSJE+b1w8PDdeHCBfXs2VM2NjYqWbKkTpw4YT4Td/r0adnZ2alIkSLPd9rOTqdPnzZPynHixAmVLFkyyfUDAAAAQGIlKnwZf4p79vb2euedd/TOO+/86xe+evWq5s2bJ19fX5UrV0737983t1WoUEHZsmWTn5+funfvrv379+vMmTOaOHGiJKl58+ZaunSpFi1apBo1amju3LnKmTOnOWy1bt1aI0aMUKFChZQlSxaNGjVK7733nvkmy02bNtWoUaM0YcIE3bt3T5999pl52wAAAACQHBJ9zZfpFU/R8u233yo2Nlbz589/YbjipUuXNG/ePA0dOlTNmjVTnjx5NHfuXGXPnl2SlDNnTs2ZM0cTJkzQ3Llz5e3trblz55prbNCggW7duqURI0YoKipKtWvX1oABA8zb9/Pz06hRo9ShQwe5urqqV69eql279ivdPwAAAAD4o0SHr+bNmydqWN63336bqO35+vrK19f3L9vz5Mmj1atX/2W7j4+PfHx8/tX2nZ2d5e/vL39//0TVCgAAAAD/q0SHrw8//FDp0zO1OgAAAAD8G4kKXyaTSQ0aNHjp/b0AAAAAAP8sUdP7/XnCDQAAAABA0iQqfL377rvmmxcDAAAAAJIuUcMOmYYdAAAAAP433FUYAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsIBE3ecLAFIaGxuTbGxM1i4j1YqLMxQXZ1i7DAAAUhTCF4BUx8bGpExuLrK14eR+comNi1NY6DMCGAAASUD4ApDq2NiYZGtjo5k7v9JvDx9Yu5xUJ6e7hz6t11g2NibCFwAASUD4ApBq/fbwga7fu2vtMgAAACQx4QYAAAAAWAThCwAAAAAsgPAFAAAAABZA+AIAAAAACyB8AQAAAIAFEL4AAAAAwAIIXwAAAABgAYQvAAAAALAAwhcAAAAAWADhCwAAAAAsgPAFAAAAABZA+AIAAAAACyB8AQAAAIAFEL4AAAAAwAIIXwAAAABgAYQvAAAAALAAwhcAAAAAWADhCwAAAAAsgPAFAAAAABZA+AIAAAAACyB8AQAAAIAFEL4AAAAAwAIIXwAAAABgAYQvAAAAALAAwhcAAAAAWADhCwAAAAAsgPAFAAAAABZA+AIAAAAACyB8AQAAAIAFEL4AAAAAwAIIXwAAAABgAYQvAAAAALAAwhcAAAAAWADhCwAAAAAsgPAFAAAAABZgZ+0CgNeZjY1JNjYma5eRasXFGYqLM6xdBgAAgEUQvoC/YGNjUiY3F9nacII4ucTGxSks9BkBDAAApAmEL+Av2NiYZGtjo+U/7FTw7w+tXU6qkzWjuzpWrScbGxPhCwAApAmEL+AfBP/+UEEP71m7DAAAAKRwjKcCAAAAAAsgfAEAAACABRC+AAAAAMACCF8AAAAAYAGELwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAWQPgCAAAAAAsgfAEAAACABRC+AAAAAMACCF8AAAAAYAGELwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAWYGftAtICGxuTbGxM1i4jVYuLMxQXZ1i7DAAAAOAvEb6SmY2NSW5uLrKx4SRjcoqLi1No6DMCGAAAAF5bhK9k9vysl422nf5GD548tHY5qZKHq7salvmPbGxMhC8AAAC8tghfFvLgyUPdfRRi7TIAAAAAWMlrMRYuKipKDRs21JEjR8zLgoKC1LFjR5UpU0b169fXwYMHEzznxx9/VMOGDVW6dGm1b99eQUFBCdqXL1+uqlWrytvbW0OGDFF4eLi5LTIyUkOGDFH58uVVpUoVffbZZ8m7gwAAAADSPKuHr8jISPXt21eXL182LzMMQz169JCnp6c2bdqkJk2aqGfPnrp9+7Yk6fbt2+rRo4eaNWumjRs3yt3dXd27d5dhPB9ytnv3bgUEBGjMmDFasWKFAgMDNWXKFPP2J0+erHPnzmnFihUaOXKkAgICtGvXLsvuOAAAAIA0xarh68qVK3rvvfd08+bNBMsPHz6soKAgjRkzRgUKFFDXrl1VpkwZbdq0SZK0YcMGlShRQp06ddIbb7yhiRMn6tatWzp69KgkaeXKlerQoYNq1KihUqVKafTo0dq0aZPCw8P17NkzbdiwQUOHDlXx4sX1n//8R126dNGaNWssvv8AAAAA0g6rhq+jR4+qYsWKWr9+fYLlgYGBKlasmFxcXMzLypUrp9OnT5vby5cvb25zdnZW8eLFdfr0acXGxurs2bMJ2suUKaPo6GhdvHhRFy9eVExMjLy9vRNsOzAwUHFxccm0pwAAAADSOqtOuNG6deuXLr9//76yZMmSYJmHh4eCg4P/sf3Ro0eKjIxM0G5nZ6dMmTIpODhYNjY2cnNzk4ODg7nd09NTkZGRCgsLk7u7e6LrN3HrrtcOfZIy0W8pF32XctF3KRd9lzLRbynXP/VdUvr2tZztMDw8PEE4kiQHBwdFRUX9Y3tERIT58cvaDcN4aZsk8/YTy8MjfZLWR/Jyc0tn7RLwL9BvKRd9l3LRdykXfZcy0W8p16vuu9cyfDk6OiosLCzBsqioKDk5OZnb/xyUoqKilCFDBjk6Opof/7nd2dlZsbGxL22TZN5+Yj148FjGP9xWytbWhg+chYSGPlVs7KsbOkrfWcar7jeJvrMUPnMpF32XctF3KRP9lnIlpu9MpsSflHktw5eXl5euXLmSYFlISIh5KKGXl5dCQkJeaC9atKgyZcokR0dHhYSEqECBApKkmJgYhYWFKXPmzDIMQ6GhoYqJiZGd3fPdv3//vpycnJQhQ4Yk1WkY+sfwBcuiP1Im+i3lou9SLvou5aLvUib6LeV6lX1n9anmX6Z06dI6f/68eQihJJ04cUKlS5c2t584ccLcFh4ergsXLqh06dKysbFRyZIlE7SfPn1adnZ2KlKkiIoWLSo7Ozvz5B3x2y5ZsqRsbF7LtwMAAABAKvBapo0KFSooW7Zs8vPz0+XLl7Vo0SKdOXNGLVq0kCQ1b95cJ0+e1KJFi3T58mX5+fkpZ86cqlixoqTnE3ksXbpUe/fu1ZkzZzRq1Ci99957cnZ2lrOzs5o2bapRo0bpzJkz2rt3rz777DO1b9/emrsMAAAAIJV7LYcd2traat68eRo6dKiaNWumPHnyaO7cucqePbskKWfOnJozZ44mTJiguXPnytvbW3PnzpXpv1ONNGjQQLdu3dKIESMUFRWl2rVra8CAAebt+/n5adSoUerQoYNcXV3Vq1cv1a5d2yr7CgAAACBteG3C16VLlxI8zpMnj1avXv2X6/v4+MjHx+cv2319feXr6/vSNmdnZ/n7+8vf3//fFQsAAAAASfRaDjsEAAAAgNSG8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALSLPhKzIyUkOGDFH58uVVpUoVffbZZ9YuCQAAAEAqZmftAqxl8uTJOnfunFasWKHbt29r0KBByp49u+rWrWvt0gAAAACkQmkyfD179kwbNmzQ4sWLVbx4cRUvXlyXL1/WmjVrCF8AAAAAkkWaHHZ48eJFxcTEyNvb27ysXLlyCgwMVFxcnBUrAwAAAJBapckzX/fv35ebm5scHBzMyzw9PRUZGamwsDC5u7snajs2NpJhJO41vTJklr1tmny7k517Ojfzv22S4euEXO5Z5GBH371qXhn+/3OWHP0mSfmzeMnRzj55Np6G5XBP3r57I1tWOdnTb8khl6eH+d/J0XdFc2WVswN9lxzyeiVz3+XJJmdH+u5Vy5vV0/zv5Oi3IgVyyNnJ4Z9XRJLlyZHZ/O9/6juTKfHbNRlGYuND6rFlyxbNmjVL+/fvNy8LCgpSrVq1dODAAWXNmtWK1QEAAABIjdLksENHR0dFRUUlWBb/2MnJyRolAQAAAEjl0mT48vLyUmhoqGJiYszL7t+/LycnJ2XIkMGKlQEAAABIrdJk+CpatKjs7Ox0+vRp87ITJ06oZMmSskmui08AAAAApGlpMmk4OzuradOmGjVqlM6cOaO9e/fqs88+U/v27a1dGgAAAIBUKk1OuCFJ4eHhGjVqlPbs2SNXV1d17txZHTt2tHZZAAAAAFKpNBu+AAAAAMCS0uSwQwAAAACwNMIXAAAAAFgA4QsAAAAALIDwBQAAgFQjfjoDpjVIuVJz3xG+8EotWLBA+/fvt3YZQJp17tw5a5cAAFYVfx9Xk8mUqg/iU6OLFy9KSt19R/jCKxEXF6dff/1Vc+bMkbu7u7XLwf9ozZo15l+ASDmWLFmiESNGWLsM/IMvvvhCly9ftnYZ+AfLli3TgQMHrF0Gkuizzz7TBx98oEWLFklK3Qfxqc28efPUtGlTrV+/XlLq7TvCF14JGxsbeXh4yNXVVc+ePbN2OfiXDMPQqVOnNHbsWGXMmNHa5SCJHj16JBcXF0lSdHS0lavBy3z//fcaMWKE+vXrp+vXr1u7HPyFU6dOyd/fX/369dNPP/1k7XKQBPFfAE+fPl2zZ8+WlHoP4lMbBwcHSdKUKVO0fPlySamz7whfeCUMwzB/aJ48eWLlavBvmUwmubm5ycXFRZGRkdYuB0lkGIYiIiIkSXZ2dlauBi9TqlQp5cmTR7/88ou6deumq1evWrskvIS3t7eqVKmiJ0+eqGfPnpwBS0H+85//6L333lO1atW0ZMkSTZw4UVLqPIhPbWrVqqXq1aurYsWK+vzzz7Vw4UJJqa/vCF/4n5w8eVIxMTEymUyKjIyUi4uL+aAvNjZWUuq+aDI1cnZ2lmEYCg8Pp+9SgD+e4XJyclJcXJyk53+s8HqJjY1VpkyZ9Mknn6hJkyZKnz69OnTooCtXrli7NPxB/N+uzp07q0WLFqpUqZJ69Oihb7/91sqV4e/E/+5Lly6dcufOrdjYWE2fPl1ffvmlJk2aJCn1HcSnFvF9lzdvXuXOnVt37txRp06dtHnz5lQ5fJTwhX/tyJEjGjt2rBYuXKioqCilT59ejo6Ounv3riIiImRrayvp/w8C4z9ceP3cuHHD/O/4vrO3t5fJZKLfXmPr1q3T1q1b9fTpU0lS5syZX3rGMiYmxtKl4U9iY2PNvxPz5cunkJAQ9e7dWzVr1lSHDh04A/aaiIuLS9BPd+7ckY+PjwYNGqRPPvlE+/bts3KF+LNbt25Jen75Q/zfqy5duujZs2c6deqUJkyYoHXr1snf319S6jqIT+kePnwo6XnfxX+ROGjQIGXMmFH3799X27ZttW7dOi1ZskRS6uk7whf+tWLFiuntt9/W8ePHtWzZMhmGITc3Ny1atEgNGzbUkCFDtHjxYp04cUJhYWEcAL6mdu7cqSFDhuibb76RJHl6esre3l5hYWGSnv9S/KP4b4VhfcePH9fChQu1f/9+GYahdOnSKSQkRLt379b+/fv1+++/S2IIojX9+OOPevTokfmAXpKKFi2qypUra/Lkyfr4449VsWJFApiVffPNN7p8+XKC33dZs2ZV+/btNXfuXFWoUEHdunVT7969CWCvkYULF6pNmzZasGCBIiIiEnxZ2LNnTz169EhvvPGGJkyYoFWrVhHAXiOLFi1S79699cUXX0iS7O3tzW21a9dWZGSk6tSpo7Zt22r16tWpKoDxFxlJFh0drYiICKVPn149e/bU4sWL9d133ykmJkbR0dHKly+fypYtqyNHjmjv3r2KioqSYRhyd3dXw4YN1adPnxcO6GE9xYsXl4uLizZv3iw7OztVqVJFdnZ2mjFjhhwdHeXj46NcuXKpRIkSypw5c4KDSFjX1KlTNXLkSM2ZM8c8VPT333/XjBkz9Ntvv8nT01Ourq4qXbq0ypUrJxcXF9WuXZvPn4WsXLlSEyZMUP78+TVw4EDlyZNH+fLlkyS1adNG169f17Fjx+Tv76+ePXuqY8eOWr58uQoUKGDlytOWDRs2aPjw4XJ2dtbgwYNVpEgRlS5dWpJUrVo11atXTz/99JN69OihJ0+eqHfv3goICFD16tWtW3gad+/ePe3bt0/BwcGaOXOmLly4oJIlS6p58+Zyd3dX/vz5FRQUpKNHj6ply5aSpKFDhyo8PFyjRo1iaLYVXblyRatXr9a9e/d0/PhxHTx4UPXr19fbb7+tjBkzqly5clq8eLFKly6tTp06SZLWrl2riIgI9ezZM8X3nclI6fERFjV37lydOnVKQUFBatSokerUqaP8+fMrICBAx48f15kzZ9S/f3+1a9dOz549k2EYunr1qk6fPq3Lly+rbdu2Kly4sLV3A/8VFRUlBwcH3bp1S+PGjVNUVJQaNWqkWbNmKWfOnPLw8NCZM2d0+/ZtpU+fXu7u7sqWLZuaNm2qpk2bWrv8NOmHH35QXFycoqOjVatWLUnSuHHjdPz4cZUsWVLnz5/X1KlTFR4ersDAQJ09e1bXrl3TmTNn5Orqqq+++krZsmWz8l6kflFRUVq7dq1Wrlyp27dvq3LlynJxcVHlypX1/vvvS3oezr7//nvzN7o9evTQ999/r6+++soc0pB8DMNQbGys9uzZo6VLl+r8+fMqV66cPDw8lDVrVg0aNEi2trbas2eP5s+fr1WrVsnV1VVTp07VkiVLtGjRIlWrVs3au5EmnTp1St7e3vrpp5/01VdfKSgoSOnTp5ebm5sOHTqkESNGqGrVqjp37pz69++vefPmqUiRItqyZYumTp2qrVu3yt3dPcUfxKdkW7Zs0ddffy0nJyc9ePBAOXLkUFBQkIYPH66SJUvqm2++0cqVK+Xv7y9XV1etWbNGO3bs0KpVq5QxY8YU3XeELyTa8uXLtWDBAn366acKDw/X7t27lT59ejVq1EiNGjXSggULtGjRItWsWVPTpk174fl/vOYB1rVs2TL98ssvun//vpo1a6Y6deooLCxMQ4cO1bNnz3Tp0iVNnTpVVatW1b179/Ts2TOdPn1aJ0+e1NWrVzVy5EgVKlTI2ruR5vj7+2vr1q3KkiWL7ty5o+LFi6t///4qVqyY/P39tWzZMmXMmFFfffWVvLy8zM+Ljo5WcHCwHBwcEixH8goNDdXevXu1ceNGOTk5qUmTJvL391fFihXVuHFj1apVSx06dFC5cuXUu3dvRUdHa/DgwerVq5fy5s1r7fLTjNjYWH333Xdas2aNwsLC9PHHH2vevHlydHRU48aN1aZNG40ePVoRERHmmfMCAgJUr149zlJawdixY3XmzBktW7ZMrq6uOnDggHbu3Kk7d+7o448/1qVLl7Rx40bly5dP1apVU2hoqNKlS6c2bdooKipKUVFRcnV1tfZupEm3b9/W06dP9cYbb0iSNm3apAMHDih9+vSqXLmyzp8/r82bN6tBgwbKly+fHjx4oNKlS8vHx0chISGys7NTpkyZrLsTrwDhC4k2duxYZciQQZ988okk6dq1a9qwYYOOHz+uFi1aqFWrVpo3b56OHDmit99+W507d5a9vb1iYmK45uQ1Mm/ePK1cuVItW7bUo0eP9O2336patWpq3769smXLphEjRmj37t3q3bu3unfv/sLzIyMj5ejoaIXK07ZLly6pV69emjp1qvLnz6/Y2Fj16tVLsbGxat++verUqaN58+Zp+fLlGjdunCpXrqx06dJJej6JAEMNLePAgQOqXLmy+Xfew4cPtWfPHi1btkzNmzfXBx98oKlTp+rixYvKkCGDqlSpotOnT2vo0KHy9PS0cvVpx5YtW/Tzzz/LyclJZcuWlY+Pj/bt26eAgAAVLlxYEydO1KJFi3T48GHduXNHjRo10tmzZzV48GDlyZPH2uWnWRMnTtTGjRu1atUqFStWzLz8wIED2rRpk548eaLJkyfr8ePH+uabb7R06VJFRUUpQ4YM2r17t5ycnKxYfdo2Y8YM7d+/X8HBwSpatKhGjhyp/Pnza/369dq7d6+yZs0qPz8/nTt3Tt9884327dunW7duqVixYtq8ebO1y3+l+GuMfxSfz2/fvq1ffvnFvDx//vzq0KGDqlatqi+//FI7d+6Ur6+vvL29deTIEQUEBCg2Npbg9RqJiYnRxYsX1b9/f/Xr10+jR4/WlClT9PDhQ82YMUNXr17V+PHjVbt2bZ07d0579+5N8Fzp/2+CCMt6+vSpnjx5oixZssjV1VUZM2bUwoULlSNHDq1cuVLffvutunfvrkaNGmn69On69ttvzffcI3glv/jfk3379tXEiRPNM3e5u7urbt266tixo9auXatNmzZp9OjRmjp1qpycnLR06VLt3LlThw4dsmb5acqMGTM0Y8YMPX78WD///LMmTZqktWvXqmbNmurevbvOnDmjYcOGydfXV/PmzVPt2rX15Zdfav/+/dq6dau1y0+zZs+erZUrV2rLli3m4BX/ufPx8VH79u3l4OCggQMHSpJ8fX21ceNG1a1bVy4uLnrw4IHVak/rNmzYoI0bN8rPz08rV65UcHCw5s2bJ0lq1aqV6tatqxs3bmjSpEnKnz+/hg4dqoCAAL355pt69uyZ7t69a+U9eLX4i4x/FD+utk2bNvr111+1e/duc1vWrFnVsmVLlSxZUlu3btWDBw/UpUsXFShQQL/88osePXpkrbLxEnFxcbp+/bquXbtmXvb222+re/fucnZ21tKlSxUcHKwRI0YoLi5OmzZt0o4dOyT9/4x5KXmcdUoUf3CRN29e5cqVS4cPHzYvc3Z21pgxY5Q1a1YtW7ZMN2/e1PDhw/X2229r0qRJ+uGHH1L8rFApRfwsoAULFtSaNWs0btw483ufKVMm1a9fX127dtXKlSs1e/Zs5cqVS3PmzNHo0aP1wQcfqESJEtYsP8345ZdftHPnTk2dOlUTJkyQv7+/atWqpS1btujRo0eqXLmy+vTpo8DAQPXr109OTk7q06ePpk2bpr59+6pBgwbW3oU0KTQ0VNeuXVP9+vXNQwbj4uL05ZdfatGiRfrqq69UqlQpffrpp3JwcNCYMWN08eJF5cqVS8OHD9eGDRuUI0cOK+9F2nX37l01btxYb7/9tooUKaIuXbooY8aM+vHHHxUWFqbmzZurXbt2un79umbNmqWbN2+qaNGimjt3rj7//PNUN1ye8IW/dPDgQW3ZskWnTp3S3bt3VaFCBRUvXlw7duzQ8ePHzetly5ZNrVu31o0bN7Rv3z65urqqT58+Gj9+vNzc3Ky4B/gzBwcHNW/eXJcuXdKFCxfMy0uVKqUPP/xQkZGRWrNmjTw9PTVs2DDz0I34+0jBsqKjoxUeHi5JSp8+vfLnz6+vv/7aHJ4Nw5CTk5PGjRun8PBw8/UoI0eOVJMmTVS8eHHCsoXEfznh4OCgRo0a6ZtvvtGAAQPMASxjxoyqX7++PvroI23dulUzZsyQJNWoUUNDhw7l2iELiY6OlslkMr/fbm5u8vHx0fnz53Xz5k05OzurWrVq+uSTT3TlyhX17dtX0vPfkfFfLMLy3Nzc1LBhQ4WGhuqnn35SdHS02rZtqw0bNmjLli1avny5WrZsqdy5c6tnz55Knz69hg4dql9++UUuLi5c42Vljx8/1v79+xUVFaWIiAgtWrRIe/bsUY8ePdSpUydNmjRJ77zzjlq3bq3bt29r5syZCgoKUoYMGVLlcSThCy81depUDRo0SMuXL9fw4cM1YMAAnTp1Sn379lVoaKg+//xzHTt2zLx+vnz5VK5cOR07dkyxsbFKly6d3N3drbgHiHf+/HkdPnxYDx48UExMjKpWrapnz55p+/btunPnjnm90qVLq2PHjvrqq6/0008/KWfOnJo6daoGDhxovnYIljN37lx169ZN7777rgICAnTz5k0NGzZMISEhmjhxooKDg833O3F2dtaUKVN0/vx5c6geNGiQcufObeW9SFvu37+vyMhItWrVSitWrNCBAwc0aNCgFwKYr6+v1qxZYx52w9Bsy8mcObNu3rypn376SdLzM5YFCxZUhgwZzCM1HBwcVK1aNfXq1UsnT56Un5+fJIbvWkv856dWrVoqW7aspk6dqpkzZypXrlyaP3++Nm7cqClTpihjxowaPHiwSpQooebNm6tgwYKErtdEmzZt5OLioipVqqhOnTrKkCGD1q5dq71796pRo0Y6f/68Vq1apXr16qlmzZqKiopK1deW8xsfL7h48aJ27NihOXPmqGzZsjp37px27typ7t27a+rUqZo4caKGDh2qVatW6d69e2rQoIH5HkMeHh7MaPgamTJlirZt2yaTySQnJye99dZb6tq1q/r06aPBgwfLwcFBLVq0MA/HqFKlikqVKqXDhw/r7bffVtasWa28B2nT8uXLtWrVqgQzi546dUqtWrXSmjVr1LhxYw0dOlQDBw4037ohLi5O6dOn52DDiuLPmmTLlk05cuTQ0qVL1aVLFw0aNEj+/v4ymUzKmDGjateuLTs7O5UvX97aJacpcXFxypIli6ZNm6YsWbLIMAzZ2trKwcFBkZGRevjwoaTnB/sODg6qVauWHB0dmXnSykwmk3nSoJ49eyo4OFhLly5V7969zVOOFyhQQK1bt9aiRYv05MkT+fj46M0335SLi4u1y4eknDlzaubMmTpx4oS2b9+umjVrKleuXJKk9u3bKzg4WPv27VPHjh3Vpk0bNW7cWOnTp7dy1cmH8IUXODg4yMXFxTzzVokSJZQzZ05lyJBB3bt314IFCzR58mTNmzdPs2fP1uLFi+Xm5qZz585pzZo1Vq4e8Q4fPqytW7dq1qxZKlSokA4cOGCelGHGjBkaM2aMRo0apfDwcDVo0EAlS5aU9PwPXYYMGaxcfdoWFBSkDz74wHw/KB8fH23YsEELFy5UVFSUvvrqK3Xo0EGTJ09W5cqVVapUKX333XeKioriYMOKXF1d5evrKwcHB8XFxalUqVJasmTJCwHMzc1N7777LmdSLCz+/a5du7ZsbW3NQ3Lj4uJka2tr/uLQZDJpzpw55muaYX02Njbm29X07dtXz549U/Xq1RMMq86aNauePn2qsLAwubq68rvwNWJjY6PcuXMrd+7cCg4OTnDZg62trd58800dPnxYjx8/Vvr06VN18JIYdoiXsLe31927d3X27FnzskyZMqlDhw765JNP5Ofnp5s3b2rkyJGaNWuWfHx8VLNmTa1fv557P71GDMNQtmzZVKJECaVPn14NGzZUly5dVKxYMXXt2lW5c+fWpEmTdOnSJU2YMEHdunVTv379dPbsWdWoUcPa5adJcXFxkqRbt269dGZRHx8frVq1SsePH9eqVatUtGhR7dmzR35+fjpw4IBmzZrFdOUWEBwc/NLlcXFx5tlAbWxsZBiGOYAdPHhQPXv2NA+hInglv/gZJ//MxsYmwUF7/DWt8WeNZ86cqYULFyaYyhyWs3PnTl29evWF5fGfHQcHB40ePVrFihXTjRs3FBMTo8jISO3fv1/p0qXjy0MrOnDggCIjI19YHj9bclRUlLJmzaqgoCB9+eWX5r95J0+elKenZ9qZTdkADMN4+PBhgscLFy40qlevbhw7dizB8vv37xtjx441evXqZTx+/NiSJSKJjh07ZpQoUcL4+eefEyy/cuWK4efnZ7Rq1coIDg42fvvtN2PHjh3Gp59+avj7+xuXLl2yUsWI98MPPxgNGzY0du3alWD57du3jXHjxhldu3Y1goODjZiYGCMiIsK4c+eO8ejRIytVm7bMmTPHGDBggGEYhhEXF2deHhMTYxiGYYSGhho3btx44XknTpwwatasaQQHB1um0DRu4cKFxqJFi174OxXfTw8ePDACAwMNwzCMR48eGRUrVjT27NljzJkzxyhZsqRx9uxZi9cMw/j222+NwoULG7169TKuX79uXh4VFWUYhmHcvHnTaNu2rXHs2DHjwYMHRtu2bY1ixYoZrVu3NipXrmycP3/eSpXjyy+/NAoXLmyMGDHCiIiIMC+Pjo42DON533366afGsWPHjEGDBhnvvfeeUa1aNaNr167GW2+99cKxSmrGV2/Qnj17NGfOHN28edO8rF69eqpcubKmT5+u06dPS3r+rZOnp6eqVq2qU6dOKTQ01EoV469ERUVJev4NfPny5VW/fn1Nnjw5Qd8WKFBArVq1kru7u9atW6ccOXKoXr16mjFjhgYOHMjZSyv46quvNGvWLK1fv14XL15UmTJlVKJECe3evfsvZxbdv3+/bG1t5ejoqKxZs6b6YRqvi1OnTpm/nY3/1jZ+ONStW7fUqlUrnTt37oXnlS1bVjt27Eh1Uya/jq5evarp06dr1qxZ+vrrr81ntuKHF966dUvvvvuuLl68KOn5hCeenp4aPXq0lixZorVr1zL1v5VkzpxZ9vb22rNnj/z9/fXrr79Kej4iJygoSG3atFGePHlUvnx5ZciQQRMmTNCoUaPUqVMnrVu3jrOVVhT/u239+vUaOXKk+XjEzs7O3Hf29vYqX768hg0bpgEDBqhly5aqU6eO1q9fryJFilizfIsifEFxcXFat26d1q9fr+vXr0uScuXKpWbNmilHjhyaNGmSjhw5Yh6mUbJkSbm5uTH9+Gtm2bJlGjBggHr06KH169crLi5OzZo1k4ODgxYtWqRbt26Z1y1durQqVKigHTt2vHSIACxn+vTp8vf3188//6wvvvhCBw4ckKurq1q2bKmHDx9q/fr1L51Z9OjRo1asOu0x/nC/tPh7esVfIxR/QN+iRQtVqFBB9evXf+k2UvPsXa+TAgUK6L333lNMTIzGjx+vL774QhEREbKxsVFwcLCaNGkiHx8ftWzZ0jxb6Ntvvy0bGxutW7eO4GVFJUuW1IgRI+Tj46Pjx49ryJAhCgoKUnR0tGbPnq233npLY8eOlfT8oD5Xrlxq2bKl3nnnHeXMmdPK1adtb7/9tj799FNVr15de/fu1aeffqqYmBhFR0dr3Lhxqly5svz9/WUYhlxdXVW+fHn17NlT7777bpqbmZfwlYbFH0zEXyPy1Vdfac2aNbpx44ak59/Utm7dWoUKFdInn3yitWvXav/+/VqyZIl+//13Zc6c2Vql408CAgK0ePFilS9fXra2ttq6dasuX76sihUrqm7dugoKClJAQIA5XEtSxYoV5ejoqN9//92KladdhmEoKChI+/fv14wZM7RgwQItW7ZMXbt2lfT88zdw4EDdv39fK1eu1Pbt283Pi59ZFJYT/+VTpkyZEpxhlp73yTfffKP//Oc/GjNmDPdWs6L4YOzr66sOHTqoTp068vf314oVKxQREaHAwEA1b95cI0eOlMlkMvdV06ZNtW7dujT17fvrJDY21nxMUrBgQeXJk0cLFy7U48eP1a9fP92+fVv9+/fX5MmT+Xy9ZuI/c9LzLwednZ21YMECXb16Vb169VJUVJQGDBig8ePHJ/jMpWXMdpiGxX8ALl26pPLly+vjjz/WsGHDJElt27ZV3rx55e3trVy5cqlo0aL67LPPlD59esXFxWn+/Pkc/L0mHj16pB9++EHDhg1T/fr11bx5czVu3FgXL15U9uzZ1bRpU7m5uenzzz+Xn5+f+vXrJzc3N3399deKi4uTs7OztXchTTKZTHJ2dtazZ8/MZx9dXFw0Y8YMXb9+XVmyZFGTJk00depUBQQEMLOolezYsUOZM2fWm2++Ken5pAx3796V9P+TaphMJrVo0ULp0qXjwMKKjP9OHS89v6daVFSU3nrrLTVo0EDdu3eXjY2N3n//fdWpUyfBc0wmk4oXL26tstO006dPq0yZMgluUePt7a21a9fq888/15YtW9SoUSMNHjxYkydPNq8T32+wnkuXLqlw4cIJ+q5OnTrauHGjNm7cqIULF6pDhw7y8/PTtGnTmGToD3gnoCxZsihr1qyqVKmShg8frn379mn16tXmM2Cenp764IMPtGHDBq1Zs0arVq1iXPVrJDIyUvfv31emTJkkPT8gjIqK0oIFC9S4cWO9//77Klq0qAYMGKDChQvL19dXffr00a5duzR58mSuFbIiwzBkGIb5mrwuXbrozJkzSpcunR48eKB27drp9OnTGjVqFDOLWsGzZ880c+ZMzZ8/XydPnpQkOTk5KSwsTL/88ot+++0387e+rq6uHAxaybp163T48OEE73/69OnVsmVLTZ8+Xbly5VJAQICmTZumzz//PMFQa/rMehYuXKj3339fffr00YEDB8z3WZOksWPH6u7du/rhhx+0ceNGPXjwQAMHDlRQUJAk+s3aFi5cqCZNmmj48OG6evWqnjx5Ym4bNWqUnj17prCwMC1ZskQnTpxQnz59zDMeQjIZfxzIjjTp3r17iouLM99Q9/vvv9eoUaNUs2ZNtW/f3jwWN/4mh3j9jBo1St7e3mrSpIlmz56t7777TgMHDlRkZKRWrlyp69eva9u2bXJxcdH169fl6OgoR0dHzl6+BtatW6eZM2dq6NCh+vHHH/Xpp5/Ky8tLT5480apVq7Rp0ybNnz9fb7zxhrVLTZPu3r2rXr16ydXVVf3799fu3bu1cOFC5cmTR3fv3lXRokWVN29eFS5cWJUqVVJsbKyKFi1q7bLTjB07dqhv376SpJ49eypv3rxq2LChuX3ZsmW6ceOGRo8erc2bN2vIkCHq37+/2rZtKycnJ2uVDUlz587VnDlzZGdnp3fffVe//vqr+vXrpxIlSsjW1lbLli1TUFCQRowYoadPn6p58+ays7PTggULuL7Lis6cOaPt27drxYoVkqS6devKxcVFH330kfLly6fw8HBNmTJFGTJk0KeffqpffvnF3LZkyRLZ2THojiPpNOZlWTv+zFdcXJzi4uJUrVo1jRo1Svv27dOaNWvM1wkRvF4/8decDB48WE2aNJEk9e7dW4sWLdJbb70lHx8fzZo1S1myZNHq1atlGIby5s2r7NmzE7xeE7Vq1VK9evU0f/58HTlyxHyvIVdXV9WuXVuSzMPcYBk///yzrl69qmvXrsnLy0vz5s3TkydPtHTpUt2/f19lypSRv7+/Bg0apKJFi+rcuXNasmSJGjdurI8//pjrKC0of/78qlatmiTp119/1ZYtW+Tr66ugoCBFRUWpSpUqunr1qi5duqRmzZpp/Pjxmjp1qtavX2/lytOuy5cv6/r166pUqZImTZpkvj9e1apV1bFjR02ePFmHDx9Wy5YtdeDAAW3btk3p0qXTxo0b0859oF5T/v7+WrhwoRo1aiRfX1/lzp1bDg4O5hvHL168WMHBweratat5AqlChQpp4cKFCg4OVkhIiLV34bXAma80Yu3atapSpcoLM8rExMTIzs7OfFYrLi7OfEHkDz/8oN69e6tNmzb65JNPZG9vb6Xq8Wd/Nd49KioqwR+n+P7s1q2bcuXKpaFDh1qyTPzBjRs3lDdv3pe2nT9/XsuWLdO2bdu0YMECVa9eXdLz/mvZsqW6d++ud955x3LFpmGTJ0/W9u3b5ezsrJCQEHXu3FkdOnRQZGSkunXrptOnT6ts2bJau3at+TnR0dF69OiRTp8+rTfeeCPNzdxlDWfOnFH+/Pnl6uqqK1euaPTo0QoKCtL8+fM1a9YshYaGqnjx4vrkk0+0atUq/fjjj1qxYoXs7e319ddfq2jRoipYsKC1dyPNmTFjhr799luFh4fLxcVFtWvXVtasWTV8+HCtWrVKrq6uWr16tQ4dOqTmzZvLMAydP39eY8aMkZeXF9d6WdHEiRO1bt06bdy4UW+88YYuX76sTZs2ac+ePZo0aZIiIyO1fPlyhYaGqmHDhoqJidG9e/fUv39/OTk5vXB8kqZZ7pZisJaffvrJKFKkiHH//v0Ey+NvNnnr1i1j8ODBRlhYmLkt/uahhw4deukNQ2EdO3bseOnNreP7Ml5ISEiCx/369TOmT59uxMXFJbgxLCxjwYIFRocOHQzDSHhj3vgbhz569Mj4/PPPjcGDBxvFixc3li1bZmzfvt2YMmWKUbFiRePWrVvWKDvN+fHHH43KlSsbx48fN27evGns3r3bqFmzpjFgwADj2rVrxuPHj40PP/zQqFGjBjfhtZLY2Fjj/v37RsWKFY3FixcbT58+NQzj+c3jmzRpYnzwwQeGYRjG/v37jV69ehkVKlQw5s6da7z77rvGd999Z83S07x169YZVatWNQIDA41jx44ZX3zxhVGmTBlj48aNRkBAgFG4cGHjxx9/NAzj+U3J3333XaNp06YJlvP3yzomTJhgvPnmmwlufG0YhnHnzh1jzJgx5t+JERERxs6dOw0fHx+jatWqRrFixV54DrjJcprg4eEhJycnhYeHJ5gaOf7eNB988IFcXFyUMWPGF55bqVIl5cmTx9Il4yV27NihIUOGvHCvoPgbvN69e1eLFy/WkydPtHv3btWvX1/+/v4aPHiwvvvuOzVu3JhpXq3kypUr5utL/nhj3vgbhzZv3ly2trbq27ev/Pz8tG7dOq1YsUKnTp3SsmXLlD17dmuWn2aEhIQoS5YsKleunHLlyqXatWtrypQp+u233zR79mw9fPhQM2fOlIeHh2bOnKlTp05Zu+Q0xzAMeXp6KlOmTJo5c6bWrFmjqKgoFShQQNOmTdOjR4/03nvvycfHR7Nnz1afPn104sQJXbhwQdu3bzd//mB5V69eVc2aNVWqVCmVL19e77zzjsqUKaMrV67I19dXH330kT788EN98803Klu2rFauXKmuXbuqZs2aypYtmyQm2rCG4OBgHTx4UPXr1zeP3oiOjtahQ4d09epVFStWTM2aNVPv3r118uRJ1a1bV1u3blXHjh1VqlQp+uwlCF9pQPxwwujoaPN1WyaTSY8ePVKdOnXk4+NjnmI+Hh+W10+6dOnMp+7jZw2Ki4szh+jmzZvr8ePHcnV1VbVq1VSyZEndvXtXtra2+vzzz1WgQAEr70HaEz8T3h+vl3zZjXkrVqyoli1bKnPmzGrTpo3Wr1+vNWvWaNGiRUzeYAHGf0ff58mTRxERETp9+rS5rWzZsho8eLDu3LmjBQsWKEOGDOZrwPz9/XXmzBkrVZ02xX9+MmXKpIoVK2ratGlatGiROYDNmjVL4eHhatq0qQzD0Pvvv69Ro0YpICBAH3/8MdcuW0H85+v+/fsJrvlxd3dXnjx5dOjQIUlSt27d1LVrV/Xq1Ut79uwxX/c6Z86cvxyyjeTn7u6u1q1b68GDBzpy5Iik5zPzTpo0ScOHD9fkyZP1yy+/qH79+ho6dKi+//57ZcyYUe3bt9fy5cv5Av8l+C2USv3xZrqS5OzsbL5mK/6AMEOGDJo2bZpGjx5N2EoBbGxszDeijD8AsbGx0cOHD1WvXj298847+vTTTyVJOXPmlL+/v6ZPn66xY8cyU56V/PFAMf7GvMYfLrM9deqU6tSpozFjxpiXGYahDBkyyM7OTunSpbNswWlU/O8/Ly8veXh4aNeuXQoNDTW3lypVSv3799e+ffu0cuVKZc6cWbNmzZKTkxM3m7cw47+3Znj06JEmTZqkuXPnKiAgIEEAmzlzpiSpWbNmMgxDuXLlUq1atZQ/f37rFp9GxX++GjZsqKCgIN29e9d8HJI9e3bz70QXFxd17dpV3bp1U+/evbV3717Z2NgkuI8ULM/BwUF16tSRg4ODvvzyS/n7+ytjxoxauHChVqxYoQkTJuiHH34wf+nRp08fHTlyRHZ2di+M1MFzzPeYCu3du1dLly7Vhx9+qNq1a8vd3V2GYSgoKEi5cuV64YZ48cMwCGCvn4cPH8rd3V3S8/6xtbWVvb29TCaT+cJjOzs7+fn56f333zf34R9vC0C/Wt62bdsUFRWld99913wz5cePH5v7Jb7vGjZsqAYNGiToI/rLcpYvX67r16/rzp07ateunSpUqKDevXurW7duypQpkzp27CgnJycZhqHy5curT58+WrZsmerXry8vLy8tXbqUA0MLM5lMypIli+rXr6+oqCi98847mjp1qvr37y9J8vX1VYECBTRjxgx17txZbdq0STA5CqznnXfeUYkSJeTh4WH+PWdra2v+eyY9D2AVKlRQjhw5lC9fPmuWiz/w9PRUjx495Ovrq0ePHmno0KHm4fC5cuVSz549deLECTVt2lRPnz4137oIL0f4SoWyZMkiLy8vbd68WXZ2dqpSpYrs7e01f/58rVy5UpUrVzbPyJU9e3aGYbymvvzyS/3444/q3LmzihQpIk9PT8XGxurevXvKlSuX+Y9X+vTp9cEHH5hv2GsymRL0KQfzlhUZGakvv/xS0dHRsre3V6NGjZQxY0ZFRETo+++/V/bs2ZU5c2a5ublJon+sZd68eVq5cqXee+89PXz4UFOmTFHRokX16aefavr06fL19VVsbKxatWolT09PSc/PjLm6uppvB0Dwsg4nJyf5+vrKwcFBsbGx5vt6/TGA5c+fX8uWLaOPXjNeXl4JHj979kxPnz41fwk8Y8YMLVy4UIcOHeJ2KK+Z/Pnza9y4cRo2bJi8vb0TtNnZ2enBgwcqWbKkihcvznHlPyB8pTKGYahUqVLq1q2bFi1apDVr1ujhw4dKly6d0qVLp5iYGK1cuVJBQUFKnz69smfPrkyZMqlNmzbmewrh9WBnZ6erV6/qiy++UNu2bZUhQwZFRkZq6dKlcnZ2VrVq1ZQrVy5lyZJFDg4OHMS/JhwdHTV58mRNmDBBX3zxhZydneXg4KDLly9r2rRpunLlinLnzq08efIob968qlatmmxsbFSpUiVrl55mxMTE6MyZM+rXr59atmwp6fmIgW3btmngwIGaOHGiFi1apEGDBik0NFRVqlRRyZIldezYMfP1s9yg17rip6yOP2sSH8AGDx6siIgI9e7dm+uEXmN//KLQ1tZWTk5OmjNnjlauXKkNGzYQvF5Tb731lrZs2SJXV1eFhYUpU6ZMkp7fizL+S0Z+N/4z7vOVSsQPn7l9+7bat2+vsmXLKjQ0VDNmzFBISIhOnjypefPmqWrVqgoJCdHt27d1/fp1/fDDD7p9+7ZGjx7NdUGvoW+++UYLFy5UsWLF9NZbb2no0KEqUaKE7t27p7CwMD1+/Fh58uRRkSJF5OHhoffee0+FChWydtlp0okTJ2QYhlxcXFSsWDE9fvxYo0aNUmRkpGxsbHTp0iUtWLBAV65c0a+//qrvv/9e9+/f1/Xr15UxY0bt3LnTPMQUyevp06dq0aKFmjVrpo8++si8/MSJE1q3bp0ePHigiRMn6tatW1qxYoVOnjyp9OnT6/Hjx+bPI14f8YcxJpNJmzdv1qRJk7Rr1y4+T6+x+PC1Zs0abdy4Ud7e3tqwYYM+//xzlShRwtrl4R/cuXNHLVq0UK5cuZQuXTqdO3dOK1asUJEiRaxdWopA+EoF/jh85vr167p586aKFCkiX19fpUuXTv7+/tq5c6f69u0rX1/fF54fGRnJRZGviY0bNyokJERhYWFq166dcuTIoYMHDyogIEAeHh4KDAzU0qVL9cYbb+jnn3/WtWvXdPHiRf30008KCwvTkiVLuKjcCqZMmaKtW7fKzc1Nv/76q9577z198MEHypYtm0aMGKF9+/bJy8tLW7duTXCTyejoaAUGBip79uxMJ28B169fl7Ozs7y8vLR27Vpt2bJFkyZNSjAT6LFjx7Rq1Sq5ublp5MiRevr0qcLCwvT7778ra9as5iGIeL38MYA9efLEPDQUr7fAwEC1atVK9vb2Wr9+PV9spBBRUVHat2+fjh8/Li8vL9WqVYtr9JKA8JWCxcXFyTAMffzxx6pdu3aC4TPbt29XSEiIhgwZIi8vL40ZM0YRERFq0aKFatWqJen50Bs7O0aevi5mzJih9evXq1KlSrpx44b5fjXt2rXTmTNnNG7cOF2+fFkBAQHmPowXGxurZ8+eKX369FaqPu0KDAxU7969NW3aNBUpUkQXL17U7Nmz5eLiovbt26t8+fIaO3asfvzxRw0cOFC1a9eWyWQy358NljF16lQdOHBAoaGhKlmypCpVqqSDBw8qf/78at++vfk+QtLze+rNmDFDAQEBKly4sBWrRlLEn02J/z9ef+Hh4Zo2bZpat27NF4dIM7giLgU7e/asbG1t9dtvv+n33383L69Vq5batm2rbNmyacqUKXr06JH69u2rdOnSaePGjdqxY4ckEbxeI7///ruOHDlinh5+8+bNeu+99/TDDz9o0qRJKlKkiMaPH6/ChQvryJEjunjxovm5MTExsrW1JXhZyaNHj+Ti4qJSpUrJ1dVV5cuX15AhQ+Tq6qqlS5fq5MmTGjp0qMqUKaN169Zpx44d5vuzwTK2bdumLVu2aPTo0Ro4cKBatmypdu3aqXHjxgoMDNSGDRsUFBRkXr9+/fpKnz69du7cacWqkVTxgYvglXI4Oztr8ODBBC+kKYSvFGrOnDlq1aqVbty4oSZNmmjXrl26evWqub1cuXJq2bKlXF1dtWzZMuXMmVNdunSRJO3Zs0dPnz61Vun/196dR0VZt38cfw+7LDIs40FMyaUk08TMo6SGYaXZpiUuuCQdo5KtNAql5TE1Nbcks0VNNDtmaJl5PDUirrhVoqIZLqmp2BEtU1AGYeb3h4f7ZPo8j/0enQH9vP5h+M5931z3QQ9z3d/v97rkCmw2GwcPHjR6QcHFil09e/bk8OHDvPfee9x+++2MGDGCHTt2sGjRInbv3g0oiXa1xo0bY7PZWLdunTEWGRnJCy+8QGBgIJ999hmnTp3izTffJDg4mOzsbFauXOnCiG8+xcXFNG/enDZt2vD4448TExPDnj17aNy4MY0bN2bv3r3Mnz+fffv2ARdnUIKCgqhXr56LIxe58elvmNxs9C++FhozZgyLFy/GbDZTXFzMww8/zLZt21i8ePEly2fatWtHSUkJ06ZNY+/evUYZ5aCgIDVvrWHq1avH/fffT15eHm3btjU2ij/11FPY7XaWLl3KkiVLGDBgADabjSlTpuDt7c1tt912yR4icY7qBqHu7u5YLBbatWuH1WolIiLCKFzTtGlThg4dymuvvcaiRYsYPnw4o0aNYsqUKbRq1cqV4d80/roM7dy5c8Zyz4EDB3L27FnKysoICQnBZrMRFhZGamoqrVu3pry8nMLCQjIzM119CyIicoPRzFctM2HCBJYtW8Z3331H9+7dWb58OREREXTp0oXt27fzxRdfUFxcbBz/9+UzkZGRl/XZENf47bffOHjwoPF9TEwMBw4cIC8vj/PnzxvjcXFxtG/fnjlz5lBaWsqDDz5IRkYGAwcOVOLlAh999BHp6en069ePnJwcfv/9dxITE9mzZ89ly9datGjBsGHDWLRoEcXFxYSEhDB27FgV13CS6uVnMTEx7Nixg6VLl7JhwwaCgoKYNWsW06dPp3fv3pSUlODl5UVKSgrnz58nODiYBQsWaCmUiIhcc5r5qkUmTpzIggULyMnJISwsDIvFwpo1awCIj4/HZrNhtVo5e/Ys/fv3p2nTpsbyGSVcNcvkyZNZs2YNv/32G23atOG+++5j0KBBHDhwgOzsbHx9fenSpQu+vr4ApKamsnTpUqxWK08++SRdunRx7Q3cpGbPnk12djYvvPAC/v7+fPvttyxbtoyRI0cyfvx4UlNTsdvt9O7d2yi5GxYWRnh4uNH7RM0nnS8yMpLU1FTmzp1LaGgorVq1on79+tSvX58mTZpw7Ngxjhw5wiuvvEK3bt20H09ERK4bJV+1RHl5OQEBASxZssSovhUXF8eiRYv45ptveOyxx0hISKBu3bqsXr2a5ORkoqKiOH/+vJbP1DArVqzgyy+/ZMqUKfj5+ZGbm4vVaqWwsJCJEydSVlbGzJkzOXPmDN27d8dsNhtP46sbGopr7NmzhyFDhjB48GAAtm/fzrJly0hJSWHatGlkZWXxxhtvcOrUKe69917uueceVqxYgc1mUxEAF+vTpw8lJSV8/fXXl/TC8/f3x2w2s3HjRlWAFRGR605/ZWoJHx8fnnvuOdzd3Y1+Jr6+vrRs2ZKffvqJxx57DLi4RygqKooff/yR/Px8QkJCtHymhikrK6N169ZER0cDF5/Kr1u3jtmzZ5OWlsb06dOpW7cuy5YtY+3atURFRVFcXMyxY8fUCNuFKioqOHHiBGFhYcZYVFQUwcHBeHp68sorr/Duu+8ydepUPv/8c6ZPn05gYCA2m42srCyCgoJcGL0EBwfz/PPPc+bMGebNm0eTJk2Ii4vDbrdz6tQpQkJClHyJiMh1pz5ftZzVauWll15i4cKF3HXXXa4OR65CdnY2c+fOZe3atcZYVVUVmzdv5v3336dZs2a89dZb5Ofns379egoKCrBYLCQnJ6t7vAscP34cDw8PLBYLy5cvZ8KECcyYMYOoqCjjmIMHD5Kdnc3x48cZP348ISEhnD59mrNnz+Lv76/EqwY5ffo0n376KR9++CHNmjXDx8eHQ4cOkZ2dzR133OHq8ERE5Aan5OsGMGrUKGw2GyNHjiQ0NFQNJmugnTt3EhERQWBgIKWlpQwePJioqChef/1143dVWVmJ1Wpl4cKF9OnTx5jNrKiowM3NTU/kXWDatGls2rSJ4uJiOnfuzP3338+aNWsoLS0lJSXlkpnI77//nsmTJ5OSkkKnTp1cGLVcjZ9//pnCwkKjR1vDhg1dHZKIiNwEtPP7BhATE8OJEyfYtGkTFy5cUOJVg9jtdk6ePEliYiJLliyhtLQUPz8/+vXrx/79+5k1a5ZxrIeHB926deOWW25h1apVxriXl5cSLxeYN28eixcvJj09nbS0NA4dOsSff/5Jz549uXDhArNnz76k2XW7du3w8fHBarW6MGq5WpGRkcTFxfHII48o8RIREadR8nUD6NatG3feeSfjxo2jsLDQ1eHIXzgcDkJDQzGbzUydOpWFCxdiMpno0aMHbdq0YcOGDXz44YfY7XbgYt+oDh06cOTIEc6dO+fi6G9ue/fupXfv3rRr1464uDhuvfVWCgoK8Pb2JiwsDG9vb7KysigoKDDOCQoKMvrsiYiIiPydHqfXctVLDDMyMjh58qTRnFdqhuqS1WazmQYNGjBlyhTKy8tJSUlh6NChzJkzh40bN3L48GFGjx7NuXPn2LVrF4GBgZrtchGHw0FVVRW//vor/v7+wMU9efn5+fj4+LB161bKyspo1KgRHTt2JDExkXvuuYfKykq2bdtGcnKyi+9AREREaip9uqvlTCYTdrsdNzc3Jk+e7Opw5G8cDgdHjhzhzJkzvPfee+zcuZOkpCRMJhPJyck8++yzrFmzhnnz5tGxY0fCw8M5ceIEn3zyiRoou4jJZMLDw4O0tDR2794NwO7du7n99tv517/+hcPhYN++fYwYMYKYmBiysrLIy8vDz8+PjIwMmjZt6uI7EBERkZpKBTdErrPy8nJmz55Nr169aNCgAcuXL+fll18mOTnZSMQA8vLyqFu3LuHh4YSHh7s4avm78vJyo1EywMcff0xBQQEffPCBC6MSERGR2kQzXyLXmY+PD4mJiXh5eVFVVcWjjz4KwMsvvwzAM888g6+vL7Gxsa4MU/6N6pnlvyZeAJ6enpw8eVK9oUREROSq6RODiBNULyE0mUw4HA4jAcvIyKCiooJhw4Zd9uFeagY3t4t1iU6cOMHJkydp0aIFACUlJYSGhir5EhERkaumTwwiTuTm5obD4TASsIqKCiZMmMCQIUOUfNVg1Xv3nn76aZo1a0ZAQAD79+9n7ty5+r2JiIjIVdOeLxEXqP5vZzKZKC0tNarqSc1lt9vZunUrhYWFBAYG0qFDBxo1auTqsERERKQWUfIl4iLVbQKqv4qIiIjIjU3Jl4iIiIiIiBO4uToAERERERGRm4GSLxERERERESdQ8iUiIiIiIuIESr5EREREREScQMmXiIiIiIiIEyj5EhERERERcQIlXyIiIiIiIk7g4eoARERErkZsbCzHjh0zvvfw8KBhw4b069ePIUOGXPGco0eP0rVrV1atWsUtt9xyzWLZsmULgwcPvmTM09OTevXq0atXL1JSUq7ZzxIRkRuHki8REak1Ro0aRY8ePQCorKxk8+bNZGZmYjab6dmz52XH169fnw0bNhAcHHxd4tmwYYPx+vz586xatYqJEyfSsGHDK8YjIiI3Ny07FBGRWiMgIACLxYLFYqF+/fr06tWL6OhorFbrFY93d3fHYrHg7u5+XeKpjsVisdCoUSMSEhKIjo5m5cqV1+XniYhI7abkS0REajUPDw88PT0BGDRoEGPGjKFr16506dKFoqIimjdvztGjRwE4deoUL774InfffTcdO3Zk6tSpOBwOAI4fP87zzz9P69atiY2NZcaMGVRVVf3jeLy8vC5J9nJycujevTstW7akffv2jB492rhuRkYG48eP58UXX6R169bExMSwdOlS49zy8nIyMzNp27YtnTt3JicnhxYtWhj3c61iFhER59CyQxERqZUuXLjA6tWryc/P5+233zbGv/zyS+bMmYOXlxd+fn6XnJOUlIS7uzsLFiygrKyMl156iXr16jFgwACSk5OJjIzkq6++oqSkhDfeeAOTyURSUtJVxVNVVUVubi75+fm88847AGzdupWxY8cyadIkWrRowa5du0hPTyc6OpqHHnoIgM8++4y0tDRGjBjB/PnzefPNN+natSsBAQGMHTuWgoIC5syZQ2VlJZmZmUZy5XA4/ueYRUTEuUyO6kd+IiIiNVhsbCwlJSV4eFx8blheXo6Pjw/x8fGkp6cDF2e+QkNDmTZtGnBpwY3S0lKeeOIJcnNzadiwIQC5ubmcO3cOi8XC8OHDyc/Px83t4qKQvLw8Ro4cyZYtWy6Lpbrghq+vrzFms9kIDw8nISGBAQMGALBr1y4OHTrEo48+ahzXt29f7rvvPpKSksjIyGDfvn0sWbIEgNLSUtq2bcvChQtp3rw57du3Z9asWURHRwOwfv16hg4dyqpVqzhy5Mg/illERFxPM18iIlJrpKamGjNG3t7eV9zP1aBBgyuee/DgQcxms5F4ATzwwAMALFiwgNOnT9O2bVvjPbvdTnl5OX/88QdBQUFXvGb1EsEDBw4YM1bViRdAy5Yt8fHxISsri/3791NUVMThw4fp1KmTccytt95qvPb39wcuFhP55ZdfuHDhAq1atTLeb9OmjfH6wIED/6+YRUTEdZR8iYhIrRESEkJERMR/PMbb2/uK49X7wq6ksrKSJk2aMHPmzMveCwgI+LfnVccSERGB2WxmwIABhIWFkZCQAFycqUpKSqJnz5507tyZpKQkRo8e/V/jcjgcxgzf38f/15hFRMR1VHBDRERuChEREZw+fZrjx48bY/Pnz2fYsGE0btyY4uJigoODiYiIICIigqNHj5KVlYXJZLqq6999993Ex8fz7rvvGv3IcnJyeOqpp3jrrbeIi4ujadOm/Prrr1zNiv9GjRrh6enJrl27jLG/vr4WMYuIiHMp+RIRkZvCbbfdRocOHcjMzKSoqIgtW7bw8ccf07FjRzp16kSDBg1IT0+nqKiIH374gddff506der8ozL1aWlp+Pr6MmHCBADMZjMFBQUUFRWxb98+MjIyKCkpoaKi4r9ey8/PjyeffJJx48axY8cOtm/fzrhx4wAwmUzXLGYREXEeJV8iInLTmDRpEnXq1KFv376MGDGCvn37Eh8fj7u7Ox988AF2u50+ffqQkpJCTEwMr7322j+6ft26dRk+fDhWq5WNGzeSnJxMSEgIffv2JSEhAW9vb/r378+ePXuu6nqvvvoqzZs3Z8iQIaSkpBiFOzw9Pa9ZzCIi4jyqdigiIlJD5ebmEh0dbZTM37lzJ/Hx8RQUFPzHPWwiIlIzqeCGiIhIDTVjxgxWr15NYmIiZWVlTJo0idjYWCVeIiK1lGa+REREaqj9+/czZswYdu7ciZeXF7GxsYwaNUrVDEVEaiklXyIiIiIiIk6gghsiIiIiIiJOoORLRERERETECZR8iYiIiIiIOIGSLxERERERESdQ8iUiIiIiIuIESr5EREREREScQMmXiIiIiIiIEyj5EhERERERcYL/A8jl4PvmK64IAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2292,12 +2292,12 @@ }, { "cell_type": "code", - "execution_count": 535, + "execution_count": 235, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAImCAYAAADHWLzEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1OklEQVR4nOzdd3gU5drA4d/MtnQSAoTeTehIkSoi2BU4gCIqggUEKSoHEFGPIH4q2AtdEDx2VBQVrAfFggiCgCAgLSq9pbdt835/LFlYEjAbAptZnvu6Vsns7uwz+87OzDNv05RSCiGEEEIIIYQIgh7qAIQQQgghhBDmI4mEEEIIIYQQImiSSAghhBBCCCGCJomEEEIIIYQQImiSSAghhBBCCCGCJomEEEIIIYQQImiSSAghhBBCCCGCJomEEEIIIYQQImiSSIhyS+ZKPHPyHYpzQfYzIYQ4P0kiIQIMHDiQlJSUgEejRo1o3bo1ffv25eOPPw56nd27d2fChAlBvWfZsmU88MAD/r9XrVpFSkoKq1atCvrzz9TAgQMZOHDgaV8zbdo0UlJSzvizSvNdFScrK4vx48ezZs2aM15XqBSW+YmPZs2acdlll/H000+Tn59fJp9TVmVnFt27dy/y+27fvj133303W7duDXp927dv5+abbw5YlpKSwrRp08oqZHGSPXv2kJKSwocffnjK13z44YekpKSwZ8+eYp+fMGEC3bt3P1shnhUn77spKSk0b96cK664gueeew6n03na94fyPCJEuLKGOgBR/jRp0oRJkyb5//Z6vRw4cIDXXnuN8ePHEx8fT9euXc9qDK+99lrA302bNmXhwoU0bNjwrH5uafXr148uXbqEOgy/LVu28PHHH3P99deHOpQzNnHiRJo2bQpAfn4+W7du5eWXX+bw4cM888wzIY7OnLp27cqIESMA8Hg8HDp0iPnz53Pbbbfx2WefkZiYWOJ1ffHFF6xbt+5shSpEgBP3XQCn08mqVauYOXMme/fu5fnnnz/le8v7eUQIM5JEQhQRExPDhRdeWGT5JZdcQseOHfnwww/PeiJR0pjKi6pVq1K1atVQhxGWGjZsGFD2HTt2JDs7m1mzZjFp0iRiYmJCF5xJVaxYscjvqXnz5lx++eV88cUXDBgwIDSBCfEPitt327dvz4EDB/jwww+ZMGECVapUKfa95f08IoQZSdMmUWIOhwO73Y6maf5lhmHwyiuvcMUVV9CsWTOuuuoq3njjjdOuZ8+ePYwfP56LL76Ypk2b0rFjR8aPH096ejrga0q0evVqVq9e7a+GLq5KeuPGjQwePJj27dvTunVr7r77brZv3+5/vvA9K1eu5M4776Rly5Z07tyZZ555Bq/X63/dihUruPHGG2nVqhUXXXQRw4cPZ+fOnQExK6WYO3cul156KS1atKB///789ttv/udPbh4zcOBAJkyYwOzZs+nUqRNt2rRhxIgR7N279x+/Z7fbzeOPP85FF11E27ZteeCBB0hLSwt4zZo1a7j11ltp2bIl7dq1C3jNqlWrGDRoEACDBg1i4MCBjBo1il69egWs47bbbqNZs2YUFBT4lz3xxBNcddVV/r//97//0bdvX5o3b07nzp15/PHHycvLC1jPtm3bGDZsGK1bt6Z169aMHDmS3bt3B10OwYiLiyuyLCMjg4kTJ9KpUyeaN2/OjTfeyMqVKwNe43Q6mTJlCp07d6ZVq1Y8+OCDRZpDTJgwgdtuu41JkybRunVrrr32WrxeL06nkxkzZnD11VfTvHlzrrzySl555RUMwwh4/2effUbfvn1p1aoVnTt3ZuLEiWRmZvqfnzZtGldffTVff/01PXr0oHnz5vzrX/9i3bp1rF+/nn79+tGiRQt69OgREH9BQQGPPvool1xyCc2aNePqq6/m1VdfLdX3V5wKFSoUWVZQUMBzzz3HlVdeSbNmzWjdujV33HEHW7Zs8W/L9OnTgaLNmXJycnj44Ydp164drVq14t577+XIkSP+5wcOHMi4ceO49957ufDCC7njjjsAyM7OZsqUKVx++eU0b96cHj168MEHHwTE5fV6eeutt+jZsyctWrTg0ksv5dlnnw0oywkTJjB48GAWLlzI5ZdfTosWLbjppptITU3l22+/pWfPnrRs2ZJ+/fr5twcgLS2NsWPH0rlzZ3/ZLF68OOjv85+Oc+BrqvPyyy/z1FNP0alTJ1q0aMHgwYP5888/A9b11Vdf0atXL1q0aEGfPn1K1QStJFasWMEtt9xCmzZtaN++PWPHjmX//v3+50/VDPDksl+yZIk/3g4dOjBu3DgOHjwY8J7333+f6667jmbNmnHppZcybdq0Uh8PAJo1a4ZSyh9v9+7defLJJ7ntttto0aIFDz/8cLHnkfXr13PnnXfSunVrOnTowJgxYwJiLclxRYjzmSQSogilFB6Px/9wOp3s2rWLBx98kNzcXP71r3/5X/voo4/y8ssv06tXL2bPns3VV1/Nk08+yYwZM4pdd35+PoMGDWLnzp1MmjSJV199lUGDBrF06VJeeOEFACZNmkSTJk1o0qQJCxcu9DdrOdHPP//sb5f95JNP8vjjj7N//35uuummIknAuHHjaNOmDbNnz6ZHjx7MmzeP999/H4Ddu3czYsQImjVrxqxZs3jiiSdITU1l6NChAReIa9eu5euvv+aRRx7hmWee4dChQwwfPhyPx3PK73HZsmV8+OGH/Oc//2Hy5Mls2bKFgQMH/mPb/s8//5zff/+dqVOn8sADD7B8+XLuuusu/0n2l19+4fbbbyciIoIXX3yRhx56iNWrVzNo0CAKCgpo2rQpEydOBHzNgiZNmkTXrl3Ztm0bR48eBXwX1OvWrcPtdrN+/Xr/Z3///fd069YNgE8//ZSRI0dSv359ZsyYwahRo/jkk08YMWKEv3NtamoqN910E0ePHuWpp57iiSeeYPfu3dx8883+zypJOZyOYRj+fTE/P59ff/2V119/nd69e/trI5xOJ7fddhvLli3j3//+N9OnT6dq1aoMGTIk4KR///3389577zFs2DBefPFFMjMzizSjA1+itn//fmbMmMHYsWPRdZ27776befPm0a9fP/++/uKLLwY0A5w5cyZjxozhwgsv5OWXX2bkyJF8+eWXDBw4MCBhO3DgAFOnTuXuu+/mpZdeIisri3vvvZcxY8bQr18/ZsyYgVKKf//73/73Pfnkk3z//fc88MADvPrqq/6+IosWLfrH7/BkJ/7GXS4X+/bt44knnqBSpUpcc801/teNHz+eRYsWMXToUObPn8+DDz7I9u3bGTt2LEop+vXrxw033ADAwoUL6devn/+9r7/+Om63m5deeomxY8fyzTff8NhjjwXE8fnnnxMdHc2sWbMYMmQIBQUF3HLLLXz66acMGTKEmTNn0qZNGx5++GFmz57tf9/EiRP9ycasWbMYMGAAb775ZsC+CbBu3TrefPNNJkyYwJQpU9i5cydDhw5lypQpDBs2jOeff579+/czbtw4/3vuv/9+du7cyeTJk5k7dy5NmjThgQce4Oeffy7x91uS49yJ39OuXbuYMmUKjz/+OJs2bQroH/bNN99w7733kpKSwowZM7jmmmu4//77SxzLib+fEx8nd5BfvHgxd955J9WqVeP555/nwQcfZN26dfTv37/Ib/l01q5dy/jx47nyyiuZO3cuDz74ID///DNjx471v2bOnDk88sgjdOzYkdmzZzNgwADmzp3LI488UuLPOVlqaioAtWrV8i976623aN68OTNnzvTvpyfavHkzt956K06nk6effprJkyezadMmBg8e7D/3leS4IsR5TQlxgltvvVUlJycXeaSkpKiePXuqzz//3P/aXbt2qZSUFDVnzpyAdbzwwguqefPmKi0tTSmlVLdu3dQDDzyglFJq8+bN6uabb1Z///13wHuGDRumrrrqqoA4br31Vv/fP//8s0pOTlY///yzUkqpG264QV177bXK4/H4X5OZmanatWun7r333oD3vPDCCwGf1b17dzVs2DCllFJLlixRycnJ6sCBA/7nN2zYoJ5//nmVnZ3tj6VFixYqPT3d/5r33ntPJScnqy1btiillHr55ZdVcnJyQPxNmzYN2M7ff/9dJScnq7fffrvoF39Mt27dVKdOnVRubq5/2ddff62Sk5PVN998o5RSqn///qpHjx4B275r1y7VuHFj9eabbxb7fR08eFClpKSoTz/9VCml1E8//aQuvPBCddVVV6mXX35ZKaXU33//7X+PYRjqkksuUYMHDw6I76efflLJycnq22+/VUopNWbMGNWpUyf/d6WUUunp6apNmzZq6tSpJS6H4hS+r7hH9+7dA8ps4cKFKjk5Wa1fv96/zDAMNWDAANW3b1+llFLbtm0r8v17vV517bXXBpTdAw88oJKTk9X+/fv9y5YvX66Sk5PVkiVLAmKcMWOGSk5OVtu2bVMZGRmqWbNm6pFHHgl4zS+//KKSk5P9ZVO4r3z33Xf+18yZM0clJyer999/37/siy++UMnJyWrz5s1KKaWuuuoq9Z///Cdg3dOnT/eXRUl169btlL/xTz75xP86p9Op7rzzTrV06dKA98+fP18lJyerQ4cOBWzPiZKTk1W/fv0Clo0bN05ddNFF/r9vvfVW1bJlS+V0Ov3L3nrrLZWcnKx+/fXXgPc+9NBDqnnz5io9PV1t375dJScnFznuLF68WCUnJ6vly5crpY6X444dO/yvmThxokpOTlY//fSTf9mrr76qkpOTVWZmplJKqWbNmqlZs2b5n/d6vWrq1Klq7dq1p/pKiyjpca5bt26qW7duAb/ladOmqeTkZP/xs2/fvkW+y8L9ZdGiRaeMYdGiRaf8/RQ+unXr5t/Gzp07qzvvvDNgHX/99Zdq2rSpeuqpp5RSxZe1Ur7yLjyOzJkzR7Vq1SqgXJcvX66mTZumDMNQWVlZqkWLFmrixIkB6yg8pm7btu2U29StWzc1fvx45Xa7/Y8DBw6o9957TzVr1kyNHj064LWXX355wPtPPi7ec889qnPnzqqgoMD/ml9//VV169ZNbd68uUTHFRHeZs+eHXAtUlIfffSRuuaaa1SzZs3Utddeqz777LOzEF35IH0kRBFNmzZl8uTJABw6dIgXX3wRt9vNiy++SP369f2v+/nnn1FK0b1794A78927d2fWrFmsXbuWyy+/PGDdjRs35u2338YwDP7880/++usvduzYwa5du057d/9EeXl5bNy4kVGjRmGxWPzL4+Li6NatG999913A61u1ahXwd9WqVf3Nc1q2bInD4eCGG27g6quv5pJLLqF9+/a0aNEi4D0NGzYkPj7e/3fNmjUBXzOMU2ndunXA3bEmTZpQq1YtfvnllyKj3Jyoa9euREVF+f/u3r07VquVX375hQ4dOrBhwwYGDx7sv6sMvrtwDRo0YMWKFcW2b69SpQpNmjThp59+8jeZad26NdWrV2f16tWArzYiLi6ONm3asGvXLg4cOMCwYcMCyuWiiy4iJiaGFStWcOmll/Lzzz/Trl07IiIi/K+LiYmhbdu2/PTTTwExnK4cTmfy5Mn+WimXy8Xu3bt55ZVXuOGGG1i4cCHVq1dn5cqVVK5cmaZNmwbE261bN55++mkyMzP9I1idOFKNrutcddVV7NixI+Az4+PjA/q8rF69GqvVytVXXx3wul69evHSSy+xevVqatasicvlokePHgGvadu2LTVq1GD16tUBZdO6dWv/vytVqgT49scTYwDfCFzgawf+7rvvcuDAAbp27UrXrl0ZOXLkP35/xenWrZv/vUop0tLS+Pzzzxk3bhz5+fnceOON2O12f9OpgwcPkpqayp9//sm3334L+MridNq0aRPwd82aNf3bUqh+/frY7Xb/36tXr6ZGjRpF9pVevXrxwQcfsGHDBn/zwOuuuy7gNddddx0PPvggq1at8vfhqlChAg0aNPC/5p++57i4ONq3b8+0adPYvHkzXbp0oWvXrgE1BCURzHGuefPmAcexwv0uPz+fyMhIfv/9d+67776A91xzzTU899xzJYpl1qxZVK5cucjyGTNmsG3bNsB3N//w4cMBtQYAtWvXplWrVv5jRElcdNFFvPDCC/To0YOrrrqKrl27cvHFF/vLZN26dRQUFBR73gBf86oLLrjglOtfvHhxkaZmVquVK664IqB2EHzlcDpr166la9euOBwO/7JWrVrxzTffAPDKK6/843GluCaBIjy89dZbvPjii7Rt2zao93388cc8/PDDPPTQQ3Tp0oWlS5cyZswYqlatWuTYFg4kkRBFREdH07x5c//fLVu2pFevXtx55518+OGHVKxYEfC1HYWiJ/RCJ7eJLbRgwQJmz55NRkYGlSpVolmzZkRGRp72ovxE2dnZKKX8FwUnqlSpUpH1REREBPyt67q/Wr9mzZq8+eabvPLKK3zwwQe8/vrrxMXFccsttzB69Gh/f5ATL+wL1wEUaR9/oqSkpCLLEhMTA9rLF+fkk76u6yQkJJCVlUVWVhaGYTB37lzmzp1b5L0nnhBP1rVrV//wvStXruSKK66gWrVqfPzxx7hcLn744Qe6dOmC1Wr1l+3kyZP9SeWJDh06BPj2gc8++4zPPvusyGsK95NCpyuH06lXr17A/timTRvatWvH5Zdfzvz58/nPf/5DRkYGhw8fLrYZHMDhw4f933tCQkLAc8VdZEVHRwf8nZmZSUJCQsAF34nvzc7O9q+/pPtlcZ3EIyMji40f4OGHH6Zq1ap88skn/N///R//93//R6tWrXj00Udp1KjRKd9XnPj4+IDvFODSSy/l0KFDPPPMM1x//fVYLBZ++OEHnnzySXbt2kV0dDSNGjXy/xb+qeyK+82c/J7ivufiyqPwO83KyvJ/zye/zmq1kpCQEPA9n6oj/smxneiFF15g9uzZfP7553z55Zfouk6nTp147LHHqFGjxinfd7KSHudOLvMTjy2ZmZkopYrss6fqTFyc5ORk/42PE514Y6Tw936qfXfz5s0l/rxWrVrxyiuv8Nprr7FgwQJeeeUVKlWqxN13383AgQP9nzV06NBi3194bDmVE5NgTdOIjIykRo0aRY4vcPpyBt92n26EspIcVySRCD8HDx5k0qRJrFq1irp16wb1XqUUL730EoMGDfLfOBo+fDhr1qxh9erVkkiI81OlSpWYOHEi9913H0888YT/Tlhhh9f//ve/RS4IAKpXr15k2aeffsrUqVO5//776du3r/9i87777mPjxo0liic2NhZN0wI6bhY6fPhwwAmyJFq0aMH06dNxuVysXbuWhQsXMnv2bBo1ahTQXjxYJ3aqLHTkyBFq16592vcVnmgLeb1e0tPTSUxMJDo6Gk3TuP3224tN4E53IXrppZcyc+ZMfv/9d37//XcefvhhqlevjtPpZM2aNaxatcqfNBSW7fjx42nXrl2RdRWePGNjY+nUqZO/o+yJrNazd3ipXr06FStW9HdKjY2NpW7dujz77LPFvr5mzZr+i7EjR44E7Jsnf9/FqVChAunp6Xi93oBkovCiJyEhwf+dHDlyJKDmDnz75Ym1U6Vht9sZPnw4w4cPZ9++fXz77bfMnDmTsWPHsnTp0jNad6FmzZrx008/kZ6eTl5eHiNHjuTyyy9nzpw51KpVC03TeOutt/jhhx/K5PNOVqFCBf76668iyw8fPgwQkCgcPnw44MLe7XaTnp5e5KI7WLGxsdx///3cf//97Nq1i2XLljFz5kwmT57MK6+8UqJ1lMVxDnwX+7quFznWlWSfDUbhMfNUx9TC77TwxsqJv4Pc3Nwi7+nSpQtdunQhPz+fn3/+mddff53HH3+cli1b+o8tzz77bLEXacUlMyfHenISXFqxsbFFBrIA+O6772jcuHGJjisi/Pz+++/YbDY++eQTZsyYUWSQlG+//ZZp06axY8cOkpKSuO666xgxYgR2u53U1FT27t1Lz549A95TlgNjlDfS2VqUyNVXX02XLl1YsmSJv5q7sLovPT2d5s2b+x9paWm89NJLxZ7s1q5dS1xcHEOGDPGfXHNzc1m7dm3A3f3Cu3LFiYqKolmzZnz++ecBo3xkZ2ezfPnyIk0qTue1116jW7duuFwu7HY7HTt25P/+7/8A2LdvX4nXU5y1a9cGJBObNm1iz549dOzY8bTvW7FiRUA1+pdffonH46F9+/bExMTQpEkTdu3aFfCdX3DBBUybNs0/GsnJd87B14SiYsWKzJw5E4fDQbNmzahSpQr169dn+vTpOJ1OLrnkEsDX5CQxMZE9e/YEfE5SUhLPPfec/w5lu3bt2LFjB40bN/a/plmzZrz22mt8/fXXZ/T9nc6ePXtIS0vzX4i0a9eO/fv3k5iYGBDvihUrmDdvHhaLhQ4dOgC+eQ9OVNhU53TatWuHx+Mp8t5PPvkE8NWStGzZErvdzpIlSwJes2bNGvbt2xfQlClYBQUFXHXVVcyfPx/wJVIDBgzguuuuO+P99EQbN26kQoUKJCQksGnTJpxOJ0OHDqV27dr+i8jCJKKwduF0v9VgXXTRRezdu7fIvBSffPIJNpuNFi1a+BPbk5OnpUuX4vV6g/r9n2zv3r107drVX87169fnrrvuolOnTkF9zyU9zv0Th8NBq1at+OqrrwJqcwqb3pSVevXqUbly5SL77u7du1m/fr1/3y2s4Tlw4ID/NWvXrg14z1NPPcX111+PUorIyEi6devmbxq2b98+WrZsic1m4+DBgwG/VavVyvPPP3/KCfTOhrZt27JixYqAZnqbN29m6NCh/P777yU6rojw0717d6ZNm1bszZ/vv/+e0aNHc+ONN7JkyRImTZrE559/7h8AobDTf15eHoMHD6Zjx47069evzH+z5YnUSIgSe+ihh+jVqxePP/44H330ESkpKfTq1YtHHnmEvXv30qxZM1JTU3nhhReoWbNmsXebWrRowTvvvMPUqVPp1q0bhw4d4tVXX+XIkSMBVcRxcXGsW7eOlStX0qRJkyLrGTt2LIMHD2bo0KHccsstuN1uXnnlFVwuV1Dtxjt06MCzzz7LyJEjufXWW7FYLLz77rvY7Xb/6EWllZ+fz5AhQxg+fDi5ubm88MILJCcnF2lDf7LDhw9zzz33MHDgQP7880+ef/55Onfu7E9AxowZw9ChQxk7diy9evXC6/Uyf/58NmzY4J+oKTY2FoDly5dToUIFGjVqhK7rXHLJJSxevJiLL77YX2PQvn173nnnHdq2beu/M2mxWPj3v//NxIkTsVgsdOvWjaysLGbOnMnBgwf9Vf0jRozgpptuYtiwYdx88804HA4WLlzI//73P15++eUz+v4K7dixw99kSynFvn37mDFjBg6Hg1tvvRWAvn378uabb3LHHXdw9913U61aNX766Sfmzp3Lrbfeis1mo06dOvTv358XXngBj8dD48aN+fjjj/njjz/+MYbCvjP/+c9/OHjwII0aNWL16tXMnTuXPn36+Ce4Gjp0KDNmzMBms9GtWzf27NnDSy+9RMOGDenTp0+pv4OIiAiaNm3K9OnTsdlspKSkkJqaykcffRQwXO/mzZux2+3/OOFWWlpawGhd+fn5LF68mJUrVzJmzBgsFgtNmzbFarXyzDPPcOedd+Jyufjwww9Zvnw5gL9/S+Ed5iVLltCyZcszqnnp27cvb7/9NiNHjuTee++lZs2afPPNNyxatIhRo0YRFxdHXFwcffr04eWXXyY/P5+LLrqILVu2MH36dNq3b39GE0PWqFGDqlWr8vjjj5OTk0Pt2rXZtGkT3333HcOGDfO/bv369VSsWPGUtYslPc6VxJgxY7jtttsYNWoU/fv3JzU1NWAEq7Kg6zpjxozhwQcf9B9X0tPTmT59OhUqVPDXOHbt2pUpU6YwceJEBg8e7B/Z7MQa6Q4dOrBgwQImTJhAr169cLvdzJs3j/j4eDp06EB8fDxDhgzhpZdeIicnh/bt23Pw4EFeeuklNE0LupnemRgxYgT9+/dn2LBh/lHvXnzxRVq0aEHnzp3xeDz/eFwR55fZs2dz4403ctNNNwG+fkSTJ0/mtttuY8+ePeTk5ADwwAMPMGrUKMaNG8eXX37JiBEjWLBgwT/eSDQjSSREidWvX5+BAwcyf/583nnnHW699VamTJnCnDlz/J1AExMTufbaaxk9enSxd2v69OnDnj17WLRoEW+//TZJSUl07dqVW265hUceeYSdO3fSoEEDBgwYwKZNm7jrrruYMmVKkTbBHTt2ZMGCBbz88suMGTMGu91O27Zteeqpp07bUe9kjRo1Yvbs2cyYMYMxY8bg9Xpp1qwZ8+fPL9I8JVht27alQ4cOPPzww4DvLsf48eMDOpcW55ZbbiE7O5uRI0dit9vp2bMn999/v/+O8MUXX8yrr77K9OnTuffee7HZbDRt2pQFCxb4J1u64IIL6NGjh78ZSuGdxq5du7J48WLat2/v/7zCROLSSy8NiKNfv35ER0czb948Fi5cSFRUFK1bt+bZZ5/1Xyw2atSIt956ixdeeIHx48ejlCI5OZkZM2Zw2WWXndH3V+jEIUN1XSc+Pp4LL7yQZ555xp+sRkVF8dZbb/Hcc8/xzDPPkJ2dTY0aNRg7dix33nmn//2TJk2iUqVKvPnmm2RmZtKlSxfuvvtuXnzxxdPGoGkac+bM4eWXX+a1114jLS2NmjVrMmbMmIBmXffcc49//QsXLiQ+Pp6rr76a0aNH/2N77ZJ8Dy+++CLz58/n8OHDJCYmcsMNNwR0xB01ahQ1atT4x7lcvvvuu4BBCaKioqhXrx6TJk3illtuAaBOnTo899xzTJ8+neHDh1OhQgUuvPBC3njjDQYOHMiaNWtISUnhyiuv5OOPP2bChAnccMMNPProo6XexsjISN544w2ee+45/4Vm/fr1eeKJJwKG73ziiSeoU6cOixYtYu7cuVSpUoVBgwYxYsSIM64hmT59Os8//zwvvfQS6enpVKtWjVGjRgW06e/fvz99+vRh6tSpxa6jpMe5kmjbti1z587l+eefZ9SoUdSsWZMnn3ySu++++4y282R9+/YlOjqaOXPmMHLkSGJiYujSpQtjxozx90epV68eTz31FLNmzWLo0KE0aNDA31+nUNeuXXn22WeZP38+o0aNQtM02rRpw+uvv+6/UTF69GgqV67M22+/zbx586hQoQIdO3ZkzJgx/psg50KTJk38+9vo0aOJiYmha9eujBs3Drvdjt1uL9FxRZw/Nm/ezG+//RYwt01hbeHOnTv9yeXgwYP9N48aN27M5s2bwzaR0FRJejsKIYIycOBAgH+8oBOiLO3evZtHH300rNvjlgcrV67k888/LzIvhhAivEyYMIG9e/f6z+UtWrTgzjvvLLaGuXLlymzZsoVbbrmFt956K2C0p6effprly5cXOzCJ2UkfCSGECBOzZ8+mc+fOoQ4jrBmGwbx58+R7FuI8dMEFF5CamkqdOnX8jwMHDvD000+Tm5tL06ZNiY6OZsOGDQHv27Zt2z8OtGJW0rRJCCHCxIABA/5x7HxxZgr7E5xqSFAhRPi66667GD16NNOnT+e6667jwIEDPPzww9SsWdPfBHDIkCHMmDGDpKQkWrRowdKlS1mxYgWvvfZaaIM/S6RpkxBCCCGEECc5uWkTwOeff86cOXPYsWMH8fHxdO/enXHjxvkHngDfPDJvvvkmBw8epEGDBtxzzz1FJugNF5JICCGEEEIIIYImfSSEEEIIIYQQQZNEQgghhBBCCBE0SSSEEEIIIYQQQQu7UZuUUhiGdPsoS7quyXdqclKG5iblZ35ShuYnZVh2dF3zT7JaHnmVQYYqKPP1xmsRWLTwuocfdomEYSjS0nJDHUbYsFp1EhKiycrKw+MxQh2OKAUpQ3OT8jM/KUPzkzIsWxUrRmOxlN9EIkMVMDX/hzJf74TILiRqUWW+3lAKr7RICCGEEEIIcU5IIiGEEEIIIYQIWtg1bRJCCCGEEOKMqPLb9Ko8kRoJIYQQQgghRNAkkRBCCCGEEEIETZo2CSGEEEIIcSIZ6bdEpEZCCCGEEEIIETRJJIQQQgghhBBBk0RCCCGEEEIIETTpIyGEEEIIIcSJZPjXEpEaCSGEEEIIIUTQJJEQQgghhBBCBE0SCSGEEEIIIUTQpI+EEEIIIYQQJ5J5JEok5ImEx+NhxowZLF68mIyMDJo0acL999/PhRdeGOrQhBAipA5quWy3pmHFgtUCjbyViFH2UIdVZvJdit//dpOWo7BaIKW6leoVdTRNOjkKIYQZhDyRmDVrFu+//z5Tp06lVq1azJ07lyFDhvDZZ59RpUqVUIcnhBDnnAeDpfbtLLf/RabFiQMrrggPSdZo/uVMob2nRqhDPGOb/nbzwU8F7DnixVBgKIiL1OiQYqNvh0gi7JJMCCFEeRfyPhL/+9//6NGjBxdffDF16tRhwoQJZGdns379+lCHJoQQIfGlfSefOLZhQaORN5FmVOECb0UytALeitzIRsuhUId4Rv485OG/3+Sz76iXukkWGtW00rimhSiHxlfrnXz4cz5KSbsCIUSIqLP4CDMhTyQSExP59ttv2bNnD16vl4ULF2K322nUqFGoQxNCiHMuUyvgO9tfxCkHVYxodHx35q3o1DXiycPNd/a/UCY+I63Y4uJwlkGDahbsVt/2aZpGxVidpHgLq7a52Z9uhDhKIYQQ/yTkTZsefvhh7rvvPi677DIsFgu6rjNt2jRq165d6nVarSHPj8KGxaIH/F+Yj5ShuaRaMkmz5nOBtyK6rqHrvgvtwv8nEcMOWzrpngKqqOhQhloq+S7Fb395qFxBL3afrBSns2WPh50HDWpXsYUgwrInv0HzkzI8H0nzypIIeSKxY8cOYmNjmTFjBklJSbz//vuMGzeON998k8aNGwe9Pl3XSEgw38m1vIuLiwx1COIMSRmaQyR2bFiJISJgucPhu6j2AgV4iXZEkID5jnWWPAOLNZdom0ZkhKXY1zjs4IhwhN2xXH6D5idlKESgkCYS+/fvZ+zYsbz22mu0bdsWgObNm7Njxw6mTZvGzJkzg16nYSiysvLKOtTzlsWiExcXSVZWPl6vNDUwIylDc7HrGloEHDZyiMGOrms4HDacTjeGoTigZxOtbGj5BunkhjrcoHkNRYUIg7+PeImyFz0FOd0Kj8eLQ3eRnh6CAM8C+Q2an5Rh2YqLiyz/tTvmbT16ToU0kdiwYQNut5vmzZsHLG/ZsiXff/99qdfr8ciPvKx5vYZ8ryYnZWgOdahAQ0sCG22HSfFUxHqsK5thKPIMN+laAd2cdbF7LHgwZ3l2SLHxx14P2XleoiOOX0wopfjzoJdalSykVLOE3f4qv0HzkzIUIlBIE4mqVasC8Mcff9CiRQv/8m3btlG3bt0QRSWEEKGjo3G9szHpegFbrEdIVJFUIJIjei45uotW7iS6u+uGOswz0iHZzra9Xlb+4cJuM4iP0nF5FWnZiioVdPp1luFfhRDCDEKaSLRo0YI2bdrwwAMPMGnSJKpWrcrixYtZuXIl77zzTihDE0KIkKljVGBUfltW2Haz1n4AF16SjGj+5Uqmg6smMZh7UjqHTWNQt0iSa1j4aauLI5kGVovGVRfa6NzYQe3KxfedEEIIUb6ENJHQdZ1Zs2bx4osv8uCDD5KZmUlycjKvvfYaLVu2DGVoQggRUklGDH2djentbURUhANngQvlCXVUZcdh0+ja1EGXxnbyXAqbRcNhk1oIIUR5oIE6G8ej8DvGhXzUpgoVKjBp0iQmTZoU6lCEEKLcsWMhFgcePKbtE3E6uq4RExF+J1chhDgflPMu80IIIYQQQojyKOQ1EkIIIYQQQpQrMvxriUgiIYQQ5dRBlcd2bwbWfCtWr6KRSiBGM3dHayGEEOFDEgkhhChnPMpgqZHKcmMvmZoLR54Fl8dLkoriX3p92utVQx2iEEIIIYmEEEKUN18af/GJkUoCDhppCUTb7GS7nfytsnnLu5UobDTXE0MdphBCiPOcdLYWQohyJFM5+U7tJQ47VbQodM03opFV06mrxZGHh++MPSglDXiFEOKsUVrZP8KQJBJCCFGO7FCZHFEFVCGy2OerEMV2lcFh8s9xZEIIIUQgSSSEEKIccWMACotW/OHZho4HIyznlBBCCGEu0kdCCCHKkUpaBA4s5Cg3MZqtyPOZOKmgOYgnIgTRCSHEeUJaj5aIJBJCCFGO1KcCF2jxbFRHSVEJ6BxvV1ugPGTgpLtWiyhNDt9CCHG+WLVqFYMGDSr2uZo1a7Js2bJzHJGPnImEEKIc0TWN6y0NSfc62aLSSFSRVDAcHDHyyMFNK60K3fWaoQ5TCCHEOdSqVSt+/PHHgGXr16/nnnvuYcSIESGKShIJIYQod+pocYyytGSFsY+12mFcyiBJj+JfVKWDVq3YJk9CCCHCl91up3Llyv6/8/LymDJlCn369OH6668PWVySSAghRDmUpEXR19KQ3pYGRFWIwJnhRHlDHZUQQpwnyvlwrbNnzyY/P58HHnggpHHIqE1CCFGO2TULsbr9lKM4CSGEOL+kpaXx2muvcffddxMfHx/SWKRGQgghhBBCiEKKszNqk4J9+/YxcODAU76kJJ2m3377bWJjY+nfv39ZRlcqcotLCCGEEEIIk1i8eDG9e/cmIiL0w4BLjYQQQgghSiUtHTZv1cjN04iNUTRtrKgQF+qohCi/qlevfkZDtW7dupXdu3fTs2fPMoyq9CSREEIIIURQDAO+/lbn6290jqaDpoEyoHIlxbVXGnS9WKGV776qQpxeOZ2Qbs2aNSQmJtKoUaNQhwJIIiGEEEKIIP3wk8aij3WioxQpDUHXweuF/Qdg4SILkZFe2rctp1diQpjY5s2bSUlJCXUYftJHQgghhBAlVuCEZd/p2G1QraoviQCwWKBmDd+N3G++0/F4QhqmEGdIOwuPM3f48OGQj9R0IqmREEIIIUSJ/fmXxoGDGrVqFF/jkFRFsXuvxp59ULf2OQ5OiDA3d+7cUIcQQBIJIYQQQpSY2w0eD9hOMcG6zep73u3WKLcNzYX4J7Lrlog0bRJCCCFEiSVWVMTEQGZW8c9nZkFsjO91QojwJomEEEIIIUqsWlVo3sRg3wGtSD8ItxsOHdZo3dKgYkJo4hNCnDvStEkIIYQQJaZp0Otag4OHNP7YrhFfQREZCbl5kJ2t0aSR4porjVCHKYQ4BySREEIIIURQkqrA8CFeVq7W+fkXjfx8jYoJimuuMOjcwZBJ6YT5Scu8EpFEQgghhBBBS6wIPa42uOoycDohIgKsclUhwobMqFgS8pMXQgghRKnZbKcewUkIEd4kkRBCCCGEEOJE0rSpRGTUJiGEEEIIIUTQJJEQQgghhBBCBE0SCSGEEEIIIUTQpI+EEEIIIYQQJ5I+EiUiNRJCCCGEEEKIoEmNhBBCCCGEEAFkHomSkERCCCGEEEKIE0nTphKRpk1CCCGEEEKIoEkiIYQQQgghhAiaJBJCCCGEEEKIoEkfCSGEEEIIIU4kfSRKRGokhBBCCCGEEEGTGgkhhBBCCCECyPCvJSE1EkIIIYQQQoigSY2EEEIIIYQQhRRnp49EGPa7CGkisWrVKgYNGlTsczVr1mTZsmXnOCIhhBBCCCFESYQ0kWjVqhU//vhjwLL169dzzz33MGLEiBBFJYQQQgghhPgnIU0k7HY7lStX9v+dl5fHlClT6NOnD9dff30IIxNCCCGEEOetMGyGdDaUq87Ws2fPJj8/nwceeCDUoQghhBBCCCFOo9x0tk5LS+O1115j7NixxMfHn9G6rNZylR+ZmsWiB/xfmI+UoblJ+ZmflKH5SRkKUbxyk0i8/fbbxMbG0r9//zNaj65rJCREl1FUolBcXGSoQxBnSMrQ3KT8zE/K0PykDIUIVG4SicWLF9O7d28iIiLOaD2GocjKyiujqITFohMXF0lWVj5erxHqcEQpSBmam5Sf+UkZmp+UYdmKi4ss57U7GqizMSFd+E1yVy4Sia1bt7J792569uxZJuvzeORHXta8XkO+V5OTMjQ3KT/zkzI0PylDIQKVi3RwzZo1JCYm0qhRo1CHIoQQQgghhCiBclEjsXnzZlJSUkIdhhBCCCGEEDL8awmVixqJw4cPn/FITUIIIYQQQohzp1zUSMydOzfUIQghhBBCCHFM+HWMPhvKRY2EEEIIIYQQwlzKRY2EEEIIIYQQ5Yb0kSgRSSSEEKbkVYrt2XnsyStAATWjHCTHRmPRpDraLPIL4Pc/IC0DrFZIaQDVk0CKUAghzEESCSGE6RwqcPH2X/vZmpWLyzBQgEPXSYmL4pY61UiKcIQ6RPEPNv0BHyyBPfvAUL5HXAx0aA19rwUpQiGEKP8kkRBCmEqex8trqXvZnJVLnagIoq0WAHI9XjZk5OD07mNUci1irHJ4K6/+3AP/fQ8ys6FubbDbQClIz4Svvve95ubeUjMhhBDlnXS2FkKYym8Z2WzNzqVhTKQ/iQCItlpoGBPJtuxcfsvICWGE4p+sWA2Hj0KDOr4kAnxJQ8V4SKoEq9bB/oMhDVEIcb5TZ+ERhiSREEKYyqbMHHQ07HrRw5dd17FoGhszskMQmSiJ/AJY/zskViy+xqFiPGRlw7bUcx6aEEKcQDsLj/AjiYQQwlQKvAY2/dQHZJuuke81zmFEIhgeD3i9YDtFyzNN8z3c7nMblxBCiOBJIiGEMJUaUQ7yvV6UKlpPrJQiz2tQM0p66pZXUZFQOdHXP6I4LhfoOiQmnNu4hBAigDRtKhFJJIQQptIqIY44m5WDTleR5w453cRaLbROiAtBZKIkLBbodBE4nZCbF/icUvDXXqhdA5okhyY+IYQQJSfDmgghTKVOVAQ9q1fmwz2H2JadR4LdigakuTzYdI1/1ahMvejIUIcpTqNDa9i2E1auBbsd4uPA5fbNJ1ElEfr1kOFfhRDCDCSREEKYiqZpXJ6USFKEgxWHM9iZk4cCWifE0qlSPC3jY9Fk3NByzWGHQf0guQH8tAaOHAWrBa7qCp0v8tVICCGEKP8kkRBCmI6mabSIj6V5hRjyvb4J6aIsuiQQJuKwQ9cO0KUd5BX4Ol877KGOSgghOHt9GsKwn4QkEkII09I0jagT5pIQ5qPrEBMV6iiEEEKUhnS2FkIIIYQQIkD5nEdi8eLFXHvttTRv3pzrrruOzz//vEzWW1qSSAghhBBCCFHOffzxxzz88MMMGDCApUuX0qNHD8aMGcO6detCFpM0bRJCmJLXUGzf52XPUS9KQc1KFpKrW7CcZrI6szl4VLH9LwOrzYVVM2hUTxETHT7bJ4QQ5VY568+glOKll15i0KBBDBgwAIDhw4ezZs0aVq9eTatWrUISlyQSQgjTOZTp5e3v8tm614PLrVCAw6qRUtPKLZdEkhRv7n4THo9i6XcGy1crMnM0HA4nLpeXpET412Ua7VtIZbIQQpxPUlNT2bt3Lz179gxY/uqrr4YoIh9JJIQQppLnVLy2LJ/Nuz3UqWwhOsJ3hz7XqdiQ6sHpzmPUddHERJj3YvvLHw0++UaRUAEa1YfoKAvZOV7+3q9461NFVIRG82SpmRBCCLPZt28fAwcOPOXzy5YtK3Z5amoqAHl5eQwePJjNmzdTs2ZNhg8fTvfu3c9KrCVh3jOtEOK89Nufbrbu9dCw2vEkAiDaodGwmoVte7389qcnhBGemcxsxXdrIC4WqiRq6MeaalmtGnVraOTlw3e/GChVzurdhRAinKiz8DgDOTk5ADzwwAP06NGD+fPn07lzZ0aMGMHKlSvPbOVnQGokhBCmsulvD7oGdmvRO/J2q4ZFh41/uunUyJyTEuz4W3EkXXFBneKfr5II2/9SHE6HKhXPbWxCCCHOTPXq1U9Z63A6NpsNgMGDB9OnTx8AGjduzObNm1mwYAEdO3Ys0zhLSmokhBCmUuBS2E7TBcJmhXyXee/Wu49VplgsxTddstnA4wWPeStdhBDCBMrX8K9JSUkAJCcnByxv2LAhe/bsOaN1nwlJJIQQplIjUSffRbFNe5RS5Dl9IziZVaV4DYcdcvKKT4Yys6FCjEZ83DkOTAghRMg0bdqU6OhoNmzYELB827Zt1K5dO0RRSSIhhDCZVvVtxEVpHMwwijx3KNMgNlKjdQNbCCIrG/VrwQV1NHYfAMMITCYKnIqMLOjQEqIipLO1EEKcNeWsj0RERARDhgxhxowZLFmyhL///ptZs2axYsUK7rjjjjNb+RmQPhJCCFOpU9lCz4scfLiygG37PCTE6GhAWo6BzQL/ah9BvSrmrZHQdY3rr9RJzzTYslORmKCoEGtwJE2Rkwetmmh0by/3gIQQ4nwzYsQIIiMjeeGFFzh48CANGjRg2rRptG/fPmQxSSIhhDAVTdO4vKWDpHgLK7a42HnAg1LQur6NTo3stKxnRdPMfbe+TnWNUQN0VvxqsHYLuNyQVEnjXy00OlyoERNl7u0TQghROnfccUdIayBOJomEEMJ0NE2jRV0bzetYff0lgCg7pk8gTpRUSaPvlRZ6X6ERFRWNsyBXhnwVQohzRQ63JSKJhBDCtDRNI8oR6ijOLrtNIzZGw+PW8HjkzCaEEKL8kERCCCGEEEKIAOFTw302SY89IYQQQgghRNCkRkIIYUouj8GybXlsOuBEKUXTqg6uSInGbpX7I0IIIc6QtCQtEUkkhBCms/lAAY9+cZgdR514DN/x3qbDgl8cPHpVZZpViwh1iEIIIUTYk1t3QghTOZrr4cGlh9hy2ElipJV6Fe3Ur2gnMcrKH4edPLj0IAezPaEOUwghhAh7kkgIIUxl8cZsUtNc1IyzEuU4fgiLsuvUjLPyV7qbjzdmhzBCIYQQ4vwgiYQQwlR++jMPXdOK7Qtht+roGqxIzQ1BZEIIIcKGOguPMCR9JIQQppLnUlj0Ux+RLTrkucP0iC2EEOIckeFfS0JqJIQQplKvohWXF5RhFHlOGQYuL9RLsIUgMiGEEOL8IomEEMJUrmsSR5RN43Be0UTiaL5BpFXjumaxIYhMCCFE2JCmTSUiiYQQwlQ61o3g+mZxuLwGf6a7OJrnIS3Pw5/pLgrcBr2bxdGlXmSowxRCCCHCnvSREEKYiq7rjOueSINKDhZvymJXmgsFNE+KoFezOG5oGYOuyz0SIYQQ4myTREIIYTq6rnP9hXH0aRFDer6BYUBitC4JhBBCCHEOSSIhhDAtXddJjJbkQQghRBk6W30awrCfhJyBhRBCCCGEEEGTGgkhhBBCCCECyDwSJVEuEonFixfzyiuvsHv3bmrXrs2oUaO45pprQh2WEKIcy8nz8uLSHNZsNVAK2jTSGdMjhpgoS6hDKzMHXU62Z+dgLcjA6jRo5IghxlouDtuiBAxDkXrQy99HFNHRGrF2Nw2r6tiscoEiRLkXhs2QzoaQn5E+/vhjHn74YR566CG6dOnC0qVLGTNmDFWrVqVVq1ahDk8IUQ4t+TWPMS+4yDpqQSlfC81VP8Mbn2TxzD0OerePCnGEZ8ajDJYeOcDyjCNkGh4cNisut4ckq4N/Va5G+7iKoQ5R/IOMXIO3vytg058eCtzgsLswvF7qJVm45dIIalcOn4RXCHH+CmkfCaUUL730EoMGDWLAgAHUrl2b4cOH06lTJ1avXh3K0IQQ5dT2Ay7ue8ZF5mEr9kiDmHjfwxFpkHXUypjnXfy+2xnqMM/Il0cP8cnRA1g0jUZRMTSLq8AFUdFkeN28dWA3G3OyQh2iOA23R/HGN/ms/sNNYqxG41oWmtW1U7OyhT/2eljwdT5p2UUnVBRCCLMJaSKRmprK3r176dmzZ8DyV199lWHDhoUoKiFEeTb1/TxyMyxExnmw2Y8vt9ohMtZLXpaFZxblhS7AM5TpcfNd5hHiLFaq2B3omq8ZjFXTqRsRRZ7h5buMwygl9e7l1dY9Hjb+6aVukoXYKB3tWBlG2jWSa1hIPehl7Q53iKMUQogzF9KmTampqQDk5eUxePBgNm/eTM2aNRk+fDjdu3cv9XqtVhmMqqxYLHrA/4X5hFsZrvlNgQYWS9F25oXL1mw073EgNS+PNI+LC6Ji0DXNn0jomgY6JDkc7CjIJV15qGJzhDhaUZzt+w08hiIm0rcPnliGNqtOdITB+lQP11wkM7CbRbgdR0UJyL2aEglpIpGTkwPAAw88wKhRoxg3bhxffvklI0aMYMGCBXTs2DHodeq6RkJCdFmHet6Li5MTntmFSxm63emgHb84K0IHj9u8x4FIIw+bzUpMZGCS4HDYAPBadQpcBUTHRZAQae6+IOHKavMS6fAQGWELWO5w+E65sdEa6BbT7qPns3A5jgpRVkKaSNhsvoPs4MGD6dOnDwCNGzdm8+bNpU4kDEORlWXeZg3ljcWiExcXSVZWPl6vtOk1o3ArwypVDI4etOD1Gmgn3RxUBihDp3JlRXp6bmgCPEP2AgPNa3A4J48YqxVd03A4bDidbgylOODMJ9piRcv1kF5gzm0Md7EOD3kFXnLzXf5aJYfDitPpwVCKIxkeGtfUTLuPno/C7TgaanFxkVK7EyZCmkgkJSUBkJycHLC8YcOGLF++vNTr9XjkR17WvF5DvleTC5cyvOlyK49tVhTkaUTGBNY9F+Rr6BbFjZdZTbutdWyRNHREszE3i5SoGKzHTraGUuR5PKS73HSrXBm70ky7jeGuWW0LibEauw95qVXZ4u+NaCjFkUwvVouidX3z7qPns3A5jgpRVkKaDjZt2pTo6Gg2bNgQsHzbtm3Url07RFEJIcqzId2jaNvOjWFo5GTq5OdBQR7kZOgYHo3WrT0Mv9K8TX50TeP6KjWo6YhkS14O+5wFHHE5+Ss/j9T8PFrFxtM9vnKowxSnUbmCTt9ODjRg624PhzIMDmd62b7XQ1q24spWDprWluFfhSi/NFBn4RGGk9yFtEYiIiKCIUOGMGPGDJKSkmjRogVLly5lxYoVvPbaa6EMTQhRTlmtFj58qAIPv5XDkuUGGUd9F2SJSR6uuUTnqUFxWK3mvkirExHFqJr1WZGZxtqcDFyGQZI9gn8lJtChQkViLCGfAkj8g06N7STE6Py0xc0fez14vNCsjpX2KTbaNrSi6+F3QSGEOP9oqhyMIbhgwQLefPNNDh48SIMGDbjnnnu4/PLLS7Uur9cgLU3anZYVq1UnISGa9PRcqc41qXAuQ4/HS+oRL14vNEyymD6BKI6hQ1RcBM5sJ8ob8sO1KAW3oVEhLgpnfh5eKUNTCufjaChUrBhdrvtIHHU6mbp5Y5mvd0KT5iQ6wmu0vXJxW+uOO+7gjjvuCHUYQgiTsVotXFA1/JKHE9l1nVibDY/mwiPjEZpSpF0jOlLHVaAhY0oKYRLyUy2R8psOCiGEEEIIIcqtclEjIYQQQgghRPkh/ZhKQhIJIcJUTr7i9788ZOdB5USdGgkGleJCHVXZcXkMlqVms+mAE6WgaVUHV9SPxW7SGa3PR/kF8PsWjbR0sNogpaGielU41VyDQgghyhdJJIQIQ2u2eVi8wsm+owaaBjabhyi7wcVNrfTsaMdmNfeV2ubD+Ty69Ag79ig8HlAKbNYCFtTM4tHrKtGsisw+W95t2qLxwccae/ZpGAYYCuJioENbRd9eBhHh1R9RCGE20keiRCSRECLMbP7LwxtfF+DyKBpU13HYdCIibPx9wMmSVS6sFujVybxXaUfz3Tz48WF2/Q1VK0NUpC8pystX/JGqeHDxEeYNqEpStC3EkYpT+fNv+O87OplZULc22O2+ZDA9A776VgN0br7BkJoJIYQo56QNgBBhRCnF8g1ucvIVdZN0bBbflZimaVSJ14mP0fhho4f0bPMOX7h4cxape6BmteNJBPj+XbMa/LVP8fHmzBBGKP7Jip91Dh+BBvV8SQT4mjNVTICkKrBqrcb+A6GNUQghxD+TREKIMJKWrdi2x0uVeA2tmNu5lStoHM022L7XG4LoysZPO/PRNbDbim6f3aah67BiR34IIhMlkV8A6zdpJCYW3xeiYgJkZcO2nVIdIYQIIXUWHmFIEgkhwojHC14vp+wDYTk2m67HvHkEeU6F5TRTR1gskOc6d/GI4Hjchfto8c9rmu/hdp/buIQQQgRPEgkhwkiFaI0KMRoZucXf+sgtUNitkBhn3p9+vcpWXC5QxbTOUga4XL7XiPIpKgoqV1JkZhX/vMsFug6JFc9tXEIIEUg7C4/wY96rCSFEERF2jY5NrGTlKgpcgcmEYSh2HzZoWN1Cw+rm/elf1ySWqCg4nFE0WTqaqYiMgOuaxIQgMlESFgt0aqdwOiE3N/A5peCv3VC7pqJJozBtByCEEGFEbtsJEWa6trCza7/Br9s9RDkgLlpHy/Gw74iXmpV0rr/EgcVi3jsjHWtGcX3HPBb+WMCfexWx0b6mMFk5YLXA9Z0ddKkdHeowxWl0aKvYtlOx8hcNuw3iK4DLDWlpUKUy9OutZPhXIUTonK0+DWF4f6TUiUReXh5RUVEAfPnll+zbt49u3bpRt27dsopNCFEKMZEad14dQZPabn7a7CEzVxEXo9O7k4P2jaxUSzRvbQSAruuM61KJBpUzWbw+h137FMqA5g01erWI4YamFdB1c29juHM4YFB/g+QGGj+t1jhyVMNqgasuU3Rub1C7ZqgjFEIIURKaUiqo/GjXrl0MGzaM6667jtGjR/Piiy8yZ84clFI4HA7mz59PmzZtzla8/8jrNUhLy/3nF4oSsVp1EhKiSU/PxeMx75Ch5yuvV+E2dJIqR5Obkxd2ZWgYBulOL4YBiZGWsEwgwv03aBiQl+/rfO0I01qIcC/D84GUYdmqWDEai6X8Hq+PFjiZuvH3Ml/vhOZNSQyz6tagS/HZZ5/FarVy2WWX4XK5ePvtt7nmmmtYs2YNXbp04cUXXzwLYQohSsNi0YiJ1IodKjUc6LpOYqSNytG2sEwizge6DjHR4ZtECCFEOAv6zLtmzRrGjh1L8+bNWb16NdnZ2fTv35+YmBhuuukmNm3adDbiFEIIIYQQ4tyQeSRKJOg+Em63m7i4OAC+//57IiMj/U2ZvF4vVqv03xZCCCGEEGYWnjX5ZS3oq/7k5GS++uor6tWrxxdffMHFF1+M1WrF7Xbz1ltvkZycfDbiFEIE6fe/Xbz0aR770xUVYzO5vpOVXhdFhjqsMpOT7+XFZZms2eZBKUWbC2yMuaICMZGnma1OlCv5TsXvOxRpGWC1QkpdjepVKHZWdiGEEOVP0InEvffey8iRI3nrrbew2+3cddddAFx11VUcOXKE2bNnl3mQQojgjJyTwSffe3E7NRSgKQ9fr3TzbN08PnyoApXizF1zuGRjDmOm5ZN10I7y+rZl1feKNz5N45kREfRuFRviCMU/2bTD4IMvDfYcUBgKDAVx0dChpU7fy3UiHJJMCCFCKEybIpW1oK8mOnfuzKeffsrGjRtp2bIlNWrUAOC2226jQ4cOpKSklHmQQoiSm/xuNh99Y2AYGpHRCt0CKEV+PmzboXHTU5n874nEUIdZatsPOrnvxXxyDjpwVHBjc/iO9h6XRtY+B2NednLBkzaaVosIcaTiVP7cp/jvYoPMHKhbE+w2DaUU6Vnw1U++EXFuvlaXmgkhhCjnSjXMSa1atbj22mv9SQT4EglJIoQILY/Hw8JvnXi9EBmlKBzISNc1IqNAtyq27oLvfy8IbaBnYOqnWeQechBZ0eVPIgCsdkVkoou8w3ae+TQrhBGKf7LiV4PD6YoGtZR/RDFN06hYQSMpEVb9ZrD/cIiDFEKIcubgwYOkpKQUeXz44YchiynoGgmXy8Wbb77Jr7/+SlZW0ZO1pmn897//LZPghBDB+W6zh4wMHZv9eBJxIocD8nM13v6+gEuamvOO/ZpNvuEvLMUcvSxWQFP8svFcRyVKKt+pWL/VIDG++L4QFSvA1l2w7S9F9SpSIyGEEIW2bt2Kw+Hgf//7X8DxMzY2dM15g04kHnvsMT744AMuuOAC4uPjizwf5Px2QogylJ2nUAp0TVHciBOFyUWBy7y/U5cT0E8Tv67wOOUCtLzyeMDrBbu9+Oc1TUPTFG73uY1LCCEClMPT5LZt26hbty5VqlQJdSh+QScSX3/9Nffccw8jR448G/EIIc5A6wZWbHaF26VhK+ZCze1RoGkk1zBvZ+sqSYq0v3UMgyK1LoYByqtRparMPFteRUVA5Yoafx9QVKxQ9HmX21eblhh/zkMTQohy7Y8//qBBgwahDiNA0FcTuq7TqlWrsxGLEOIM1a5so3F92PC7jsfjxWo9fmfeMMCZrxMbZ3DvteYdBvbmbg4e+83AmWMhMs4b8JwzR0e3KW68VKZJLq8sFo1OrXS2L/aSm6eIjjq+jyql+GufRu2q0KSB1CoJIULp7ByD9u3bx8CBA0/5/LJly0753LZt20hISGDAgAGkpqZSp04dhg8fziWXXHI2Qi2RoDtb9+7dmw8++ADDkDt+QpRHzw+JJT7RizNfJzdXoyAfcnMUedkajgjFmH4RxESZt0ZiSOdY2nYqwPBo5By2kZ+jU5Cjk3PYhuG20LpDAcMvkeFfy7MOLTQ6Xqix+yDs2qNIy1QcOKLYsgsS4qDf1TL8qxAixMrZzNYej4ddu3aRmZnJPffcwyuvvMKFF17I0KFDWbly5Zmt/AxoKshODU6nk969e+PxeGjatCmRkYF3NjVN48knnyzTIIPh9RqkpeWG7PPDjdWqk5AQTXp6Lh6PJI9msXWPiwdfz2XdVgO3C3QL1KulMaqngxs7R4c6vDPm8Xh5+MMMlnznJeOQDYAKVdxcc7HOU/0SsFrDZ1K6cP0NOl2Kn39T/LTO4Ei6wmKBVo11OrfSqV0tvJKIcC3D84mUYdmqWDEai6VUA4eeE0cLnExdt6XM1zuhVWMSI0pfY56bm4vFYiEi4vhgKUOGDAFg3rx5ZxxfaQR9W/LZZ58lNTWVyMhIfvvttyLPy7jfQoReo5p2PnrITk6ehz0ZcEGtGByaK2xOgFarhaduTOSJvl5Sj3rwKmhYyRpWCUS4c9g1urbV6NJaI68AbFbfMiGEEMWLji56I/CCCy7gxx9/DEE0PkEnEp988gm3334748ePRy9ufEkhRLkRE2WlWZxOQoKN9HRXqMMpc1arhQuSJHkwM13XiIkKdRRCCFG+bd++nf79+zNr1izat2/vX75p0yYaNmwYsriCTiS8Xi/dunWTJEIIIYQQQoSncjb8a4MGDahfvz6PPfYYkydPJiEhgffee4/169ezaNGikMUVdDZwxRVX8Pnnn5+NWIQQQgghhBAn0XWd2bNn06JFC0aPHk2fPn3YsGEDCxYsIDk5OWRxBV0j0bJlS5599lm2bt1Kq1atirTX0jRN5pgQohxYs9nFlDfdHExTVIjJpf9lFgZdc4pZwEwop8DDi99ksmanC6WgTX07Yy6vQEyEeUekOtkPPysWf6VwuvKpFG8w8AZFg7rSj0CIc8XpUmzZqTiaoYiPd5FUUVGjipL+oOeF8lfGlSpVYsqUKaEOI0DQozY1atTo9CvUNLZsKfue7iUlozaVLRmpwpxumpjL8rVeDK+G72Co0DSoWhm+eCGCaom2UId4RpZszGbM65lkZWkUHsI0TSM2VvHMgAr0bmXu4V9zchV33Q+rNxm4vKBpoBREOTRuuk5j8tjyd4ITpybHUXPa+bfi3aUGqXsVSoHVZsVu9dKyEdx0jU5MtPwOS8sUozb9urXM1zuhdaMzGrWpPAr61t3WrWX/xQohys69z+Xx7S8GSmlYbaDrCmWA2wv7D0HPcQWsWWDeRGL7YSf3LcgkJ0fD4VDYjm2Kx63IytIY899MLkiy0bR6xOlXVI6NeAhWbDCwWyExVsNm03G5DDLzFK9/rEiM17l3sFzECHG2HDyimL/I4MBRRd3qEBmhExGhc+Cwlx/XKAzDYMgNOrouv8OwVc76SJRXZ5QO7ty5k/Xr1/P333+XVTxCiDPgdrv5ZIXn2N0zKDzH6TrYbYCm2HNIsfQn847gNHVpBrk5EBl5PIkA3/ZGRiry8jSe+SIzdAGeoc1/KH7+zcBmgbjo4xcqFotGxVgdj1fx7qcKr1fOckKcLT9vMNh7SHFB7ePDEmuaRnysRq1qsG6zYqdc+ghRukRiyZIldOnShR49enDzzTdz1VVX0aVLFxYvXlzG4QkhgrHkJ0V+voamH08iTmS1ahhejdc+c5/74MrImu2+2C3FjPrqW6b4Zbt5t2/xlxr5LoiJLP5OZ5RD50CaYuWv5zgwIc4TSinW/g5x0RRb4xAbrZHvhG1/STIvRNBNm7755hvuv/9+OnTowJgxY6hUqRKHDh3ik08+4cEHHyQ+Pp5LL730LIQqhPgnmTkGiuKTCE5YXuA8ZyGVOZeL098C0cFj3jyCAqfv4sRiKb4QLTo4FeTlSpMKIc4Gw/B1sradpgWopoHHc+5iEiEgeWKJBJ1IzJo1i6uvvpoXXnghYPn111/Pv//9b+bMmSOJhBAh0rm5BYvuwmtoUMwd+8J+nsm1y28nt39SpaJGWqbCMHxNtk5kGKAMjSoJoYmtLFxQz7dd+U5FpKNoslDgUjhsGk1SFOVxVBEhzM5i0ahVVWPDH4qkxKLPFzYrTIw/t3EJUR4FfTWxbds2+vTpU+xzffr0kc7YQoTQBbVt1KqqgQLvSYPDGAYYHrA7YOLt5h0i9ebOUb678sXUqjhdvs7lN3Yy71TJ/XtBlQo62QUGhhF4S8zlVrg90KaJRs1qkkQIcba0b6mhAZk5gb9BpRR/74eqlTRapMhvMLxpZ+ERfoJOJBISEsjMLL4jY0ZGBnZ7+IxTL4QZzRzrIDISvB5fMyC3G5xu8Lg1LBbF3X2sVIg176hNQzrF0raxjmFo5ORo5BdAQQHk5Pj6f7RO0RnexbzDv9rtGg+NhNgInSPZiswcg6xcg/Qc36hN1Stp/N+4UEcpRHhr1VijazuNQ0d8w8AezVAcOGywZZciwgH9rtaIiwnPC0MhghF0ItGxY0emT5/OgQMHApbv37+fGTNm0Llz5zILTggRvLZN7Cx+ykGT+hpWm+9umq5BtcqKyXfZ+c/tkSGO8MxYrVY+HFmF265wUKmi8t/jSayoGNDdzsf3VMFqNW+NC0CfazRm/59Gx+Y6NquGYUBMhEaPLhbenabJpHRCnGVWq0b/a3TuvF4nua6Gx+PrF9G9vc7IWyy0bmLe5qGiBNRZfISZoCekO3z4MNdffz0ZGRm0atWKSpUqceTIEdatW0eFChV49913qVGjxtmK9x/JhHRlSyZSMrfMbDc792k0rh9DbKQr7MrQ4/GQmu7F61U0rGQ1fQJRnKxsDa+KJCYyH5stDM9C5wE5jpqbYShcHp3KlaLJz8uTMiwD5X5CunwnU9f8UebrndA2hcTI8JqQLuhSrFy5Mh999BEDBw4kPz+fTZs2kZ+fz8CBA/noo49CmkQIIQJViLXRrqmd2tXN25TpdKxWKxdUdtCoakRYJhEAFRM0khtYiDzFcLBCiLNL1zViojQiihn8QIjzXanOvImJidx///1lHYsQQgghhBDCJEqVSKSmpvLyyy+zevVqsrKySEhIoG3btowYMYKGDRuWdYxCCCGEEEKcO9KStESCTiR27NjBTTfdhMVioXv37lSqVInDhw/z7bffsnz5ct5//30aNGhQ4vUdPHiQSy65pMjyKVOm0Ldv32DDE0Ic89UqJ5PmeEjP1IiMyOHGq3QeHBQR6rDKTFqmm7EzXfy2zUApaJ6s88JIOxUrhE8zrjc+dvPmEihwuagUb3D/nRY6tCxmghBRLhkGpP6l8fcejegog9gYaFif0050JoQoD87WcK3h1zwu6ETi2WefpWbNmrzxxhvExh4fYjE7O5vbbruNF154genTp5d4fVu3bsXhcPC///0PTTv+BZ+4biFEcLoMzeWP363gOT4c8wu7FLPfzeXbeTbqVzf3MM2zP81n8mwPXu/xZXsOGHz1YwEPDnFzb1/zziMBcCTd4Mq7XOzdbUV5C4+LFlb84qVzOy+LXjR3+Z0PMjLh7Q90Nm3WKSjQcNi9GIaFenU1bunnpXbNUEcohBBnLujO1r/88gt33313kQv92NhYhg4dyi+//BLU+rZt20bdunWpUqUKlStX9j8iIsLnzqkQ51Kf8bn8sdEGXg3sXnAYvv9rivyjdi4f6g51iGfklz9cPDrLc2zCPYWua+i6Bii8Bjw518sPG4uZrc5Err3bzZ6/bChNYY3y4ogxsEZ4MTw6P6zUGfaoK9QhitNwu+GNdy2sXqOTmKBonKJo1kSjZk3FH9s1FrxpIS091FEKIU5Lhn4tkaATCavVisNR/NBVdrsdlyu4E9wff/wRVFMoIcSpOZ0uVv6igaGBzfANfA5ouuarf9QNctKszF9aENpAz8ADM5wY/iTi+CFM13XQFIaC/8w274X2sp89/P23DhYDu0OhHytD3aJhjzTAq/HF9+B2yxCU5dXWbRobf9eoW0cRG+v/GRIZAckNFal/aaxdX36HvhRCiJIKumlT8+bNefvtt7n00ksDmiIppXjrrbdo1qxZUOvbtm0bCQkJDBgwgNTUVOrUqcPw4cOL7TdRUlarHKDLSuE4z+V5vGdx3JzFBkaBFSzHk4gAVgUuC69+5GLov8xZptv/9P1f14rGr2s6hlLs+Nu8x4H5HxkYbgvWSC9F29NqaDaDglydRf9T3NrTnNsY7rbv0vB4NWKifX/7k0FNw2aD6GhY/5vONVeEMEgRFDkXinCQlpbGq6++yk8//cThw4eZN28e//vf/2jUqBGXX355qdYZdCJx3333cfPNN9OrVy+uvvpqKleuzOHDh/niiy9ITU1lwYIFJV6Xx+Nh165dNGzYkAkTJhATE8PSpUsZOnQoCxYsoGPHjsGGh65rJCREB/0+cXpxceaeDfl8ked2A17Qi+YRmub7jwI8Xt20vxPDyARO32VNGZh2+zxeX9MziyVwCwvLU9fB6wW312babQx3VquXyAiDyIjAMnQ4fKfc2GgFmkZCQnjOfRLO5FwozGr37t3cfPPNOJ1O2rRpw9atW/F6vaSmpjJz5kxmzpzJpZdeGvR6S1UjMW/ePJ577jmmT5+OUgpN02jWrBlz587loosuKvmHW62sWrUKi8Xi7xPRrFkztm/fzquvvlqqRMIwFFlZeUG/TxTPYtGJi4skKysfr1eaUpR33VsZTNEVeDWUfrxBpqaBUoBXgQZ1ayrS0805A3xMlCI9W8Orjjf7KWQo3/ZFR5p3+y6orfhWB7dLYbUda5pWWH6A1wO6VdG2ide02xjuYqM18vJ1cvMUuu6riXA4rDidHgylOJKm0biRQXq6ufvynE/kXFi24uIiy3/tTpj1aXjqqadITEzkjTfeICoqyt+C6LnnnsPpdDJ79uxzk0h89NFHdOrUiffff5/8/HyysrKIi4sjMrJ0WXp0dNE7ahdccAE//vhjqdYHyPT1Z4HXa8j3agItG9qITcwh+6DDN/akfsKFtlLgsUCEl+n/tpq2PHt3t7Bg8bHYT66WOHbg73Gpbtrte+gunf9+6MGZY8GweI91JPfxenxlWKO2m8b1babdxnDXrAkkVtTYvUdRqyb+3oiGUhw5qrBaoHVLA48nzK5UzgNyLhRmtXLlSp588kni4uLwnjjkIdC/f39Gjx5dqvUGnQ4+9thj/PbbbwBERkaSlJRU6iRi+/bttG7dmlWrVgUs37Rpk0xsJ0QpzXrYhhbpAbcFXBp4QLk0cFnAatDnGi+VK5p3+ND/u9NO9STfBZhhqIAHQNVKiqeGFj8ghBlEReqMGqhhsRt48iy4CsDlBFe+htdpwRHnYcZ/ZCKC8qxyJejb04umaWz9Q+PQYTh8RLF9J6Sla1zZ3aBpI0kihBDnltVafP2By+UK6PccjKATiapVq5KTk1OqDztZgwYNqF+/Po899hhr1qxh586dTJkyhfXr1zN8+PAy+QwhzjdXtnfw7vM6lWq7wKYADXRFZKKL4bcbzJlg7nb1druN1XMj6dJWw3bCMdFmhU6tYM38SOx2c19oPzDYxpTxUK2OB92iQGlYHQaNm3j4aJpVJqUzgU7tFcMHe+ncwXf32uOBZo1hyCAvvXsY6OW8VYcQ5z2llf0jhNq2bcucOXPIyzve/F/TNAzD4J133qF169alWq+mlArqtshrr73G9OnTufbaa0lJSSm2aVLv3r1LvL4jR47w3HPP8cMPP5CVlUWTJk0YN24cbdu2DSYsP6/XIC1N2g2XFavV1yk3PT1XqnNN6HCaiw2p0DI5mmoJ3rArQ5fLzYZUhcetaJOsmz6BKM6+I5CVZ6dWJRfR5p5n77zl9uhUiIvC6cyT9vUmJefCslWxYnS57iNxNN/F1J+3lfl6J3RIJjEyNC0Ctm3bxs0330xkZCTt27fns88+49prr2Xnzp389ddfvP322zRu3Djo9QadSDRq1Oj0K9Q0tmzZEnQgZUUSibIlB0/zkzI0Nyk/85MyND8pw7IliURopKamMn36dFatWkVGRgaxsbFcdNFFjBw5kpSUlFKtM+jO1suWLSvVBwkhhBBCCCFCo169ejz99NNYLL7msfn5+Xg8HmJjY0u9zqATiRo1apT6w4QQQgghhCj3wmw8BLfbzeOPP86mTZtYtGgRAOvWrWPo0KEMHDiQ+++/H70UnbdKNRvOd999x88//0xWVhaGEVjFp2kaTz75ZGlWK4QoQ1+tcjFpvpP0bEVkRBY3XmrlwUERoQ6rzKQeyOP6Z7M4kOkbxi4pzsKH98dRr2r4dCT44Y98Fq/Jx+lNo1IMDLw4igZVzDvi1snSsxRLf3Kz94iB3aZxSUsrrZL1gCFvhRBCnLlp06bxySefcM899/iXFfZLnjZtGgkJCQwdOjTo9QbdR+LVV1/lmWeewWazUalSpSLDRWmaFtLmT9JHomxJu1Bz6jIimz9SFXhOuLugKyJjvHz7cjT1a5i7U/LQGWksXptPcRNJXNM8gv/+OzEUYZWZnAIvd81NY/V2Ny6vQsN3cyzKoXFT5ygmXx8f4gjP3Mffu5nxST6HsrwYvoGpiLRpdEi289jgSOJjwieZkOOo+UkZli1T9JFYub3M1zuh4wUh6yPRrVs3hg0bxk033VTkuTfffJPXX3+dr776Kuj1Bl0j8eabb3LdddfxxBNP+GejFkKUH30m5PDHTnxXZjavb1I65ZvtOj/LyuWjc9n1fnyowyy1d7/POZ5EKHV80j1Dgabx+cYC5n2VzZArS9/mM9RGzE9jxVYXdqtGYoyGzWrB5fGSmat4fXkuiTE6914VF+owS23Fbx6eWZRHrlNRLcGC3aqhlCIjT/HtJicTX4UX74mUmgkhhCgj6enp1KpVq9jn6tevz4EDB0q13qDTwaNHj9KvXz9JIoQoh5xONyt/94Khge34zNaapvluG1gMcrJ15i8tCG2gZ2DC21m+f5yYRMDxhAn4v0XZIYisbGze4+LnbW5sFo24KM3fZtWi61SM1fEY8O6PeUVmJjWTd79xkZlnUKuijt16fB9NiNZJiNZZtc3Fhu1y11cIEULqLDxCqH79+nz55ZfFPvfNN99Qp06dUq036BqJJk2asHPnTjp06FCqDxRCnD3zP/NiuHSwGFDcLJW6AreFVz91c+d15rwZkOc6djQu7m71sWQi323eXnKL1+aR71ZUjC7+bnyUXeNAhpeVO1xcnBJ5jqM7c+lZinW73MRFaMXOpBofpfHnEYMffvPQKkUm3hNCiLIwaNAgJkyYQEZGBpdffjmJiYmkpaXx7bff8vnnnzNlypRSrbdEicS+ffsCApk8eTI2m402bdoQGVn0RFa9evVSBSOEODNpmccuoE/VIuTYxbfTc27iEcErOJYEWSzFF6JFB6c6IaEymXynwmuAzVr89hUmFwUm3T4hhCiPevfuTW5uLjNnzgzoC5GQkMAjjzwS1GTSJypRItG9e/eAO0dKKSZOnFjs3SQgpBPSCXE+u6aDlZcWun1NmyzFXIh5AQ3qVzVz23MF6L4+ESfXShzrJwHmbRZzQVUrugb5LkWkvWg5FbjBYddoYtIO85XiNRJjdfZneEiILtq61uVWaBrUqlJ+O2IKIcLc2WqKFOL7IwMGDOCWW24hNTWVjIwM4uLiqF+/fqmGfS1UokTiySefPGXSIIQoP1o3shEbl0v2UauvedOJF9pKgccCDi8z/m3eIVKb17Kxcbf31LUuQONq5rzIBujfPoqXP8thf6aBw0pAh2OXR+H2Kjok26lZ0ZzbaLdpXNXGztyvPOQVGERFHD+BKaXYn2lQNc7CNR3NuX1CCFGeaZpG/fr1y2x9JUok+vbt6//3vn37qFy5MjZb0YO80+nk999/L7PghBDBmzUmioGP56MKLKAp0JWvD7LXAjaDPpfYqJxo3ou0T8bH0uDedAylHbtrVNicSwNNQ9MMPnsoPpQhnhG7zcJDfeN46J1MjmQrHFYDq0XD5THwGFA9wcL/3Vgh1GGekduusfPrDg+/7nJhyTWIidDxeBXZTkV8pM69fcJr+FchhBmZ/xjUuHFjFi5cSIsWLWjUqNFpKwU0TWPz5s1Bf0bQna0vu+wyf1An++233xgyZAgbNmwIOhAhRNm4sr2ddx+FkS/kcyQN8Oq+OSRiPdx+pZ3JQ81bGwEQHR3Fzpeh7YNZHM05sWZCkRBl4den4omONvc29mkbTcVonelfZrPxbw9eQxETqXNxIzvje8RSz+ST0sVFa7x0TxT//dzKl2tdpOUYWHSNy5rZuekyOx2almquVCGEECcYOXIkSUlJAIwaNeqsfEaJjtZPPfUUGRkZgK/qeebMmSQkJBR53ZYtW4iNNe/Y7UKEi25t7Gx+087ho242pELLlGiqJXjCZiKl6OgotrwcRW5uHp+uNXC54foOuukTiBN1bRxJ18aRZBUYeK0OYjQXtlN0wDajuGiNe25wMLy3naNZikiHRtwpRqoSQohzLgzGezgxeahRowadOnXyJxZlpUSJRP369Zk1axbgq/rYtGkTdnvgHTGLxUJsbCwPPvhgmQYohCi9yok2rk7SSUhwkJ4efkM1RUdHcdMloY7i7KoYYyUhIYL0dG/YJIInslo1kipKAiGEEGfTY489xtNPP80VV1xRpustUSLRr18/+vXrB/hGcJoxYwaNGzcu00CEEEIIIYQQZa9q1ark5OSU+XqDboj6zTffnPb5nJwcYmJiSh2QEEIIIYQQIRUGTZtO1L9/f5544gnWrVtHSkoK0dHRRV5Tmrkkgk4kXC4X//3vf1m9ejUulwt1bMQUpRR5eXns2LFDOluLcs/t9jBviZsPvnfjckONSjoPD3TQvIF5RzM62WV3ZbDx9whQOmh52CLd7F0WPn2Y3vw0gzEzgSivb0GezvMjNG7tGR/KsMpU6+vc7NltAZUNusF1V7hZ8Kwj1GGVmf1HDF790Mvf+8Bhh+u6alzRwXLKyfhE+bPzL8VXPygysiExXuOarlCrupSfEOXN1KlTAXjvvfeKfV7TtHOTSDz99NO8+eabJCcnk5aWhsPhoGLFimzbtg23233WeoULUVa273HzrwfzOHpER3l1QPHHdvhubR49uliZO75olm42VToVgCvGNzEdABbcThtV2rsYNzSP8YPjQxneGat+bQaeKnlwgRMKpyFQMOZDO2NnKA5+UXQwCDP58nsXA4fbwBl1rAwVoLH0YztVvnZxaIP5J2ub/q6bWa9pZGdZfCP4KljyhaJJEw/zn7CQlGj+bQxnHo/imbkGS5YrsnOPTQSpFG98otHvKp1Rg7SAOVCEMJ/w2n+XLVt2VtYb9JH6q6++4o477uCTTz7h1ltvpVmzZrz//vt89dVX1KhRA8MIv86AIrz0fjiXI4d8Q6JaI73Yow0sDi9et84ny71MejUv1CGekSoX54HT5rsA1ZRvhmtN+Y6JbgvPvhIZ6hDPyJUj0/BUzYX4AiiwQrbd98i3QrwLVSOPTrcdDXWYZ2TgcBvkHxvQwuIFm/L936tBjoOk1t7QBniGFi1z89IrGtnZOhXiDSpXMUisYmCzwYYNFu582IvXG2btCsLMrLcU732hMAyoU12jXg2N2tU0nG7472KD/y4KdYRCiBPVqFHjHx+lEXQikZaWxiWX+IZJSU5OZuPGjQAkJSUxdOhQPvvss1IFIsS5MG9JAUcO6WhWhc2uKJwV3mIBq8NAeTTeWeYObZBn4K+/MsB1rHmWpo7/wvUT/vZaaNQrKzQBloH1e4A4F+TYfXNkFPLqkG2DWBc7Ms17J6nPXU5fGer4ksDCu7q65ksolIbKs3LkiCukcZ6JV99TFOTpVEz0JQ/g27yYGEVUlGLLFp1lq82dLIWzjGzFx98YWC2KKonHax4sFo1qlTQUikVfGRQ4JRkUJqbOwiME3nvvPa699louvPBCevbsecqmTaUVdCIRGxuLy+U7gdWpU4f9+/f7e4HXrVuX/fv3l2mAQpSlRd+5UV4di7XoL1rXAatBZqbGum3mTCa6jdCPXVyr4n/dSoGhkXbExBOaxbmOHZSLSRYKZ7uOdZ7rqMrMijU2X82DdoraXd0At5VrbjdnsrT/iMH27RYcEQbFtXyJila4nRqffScXoeXVyrWKoxmKSvHF74OJFTT2H1Gs3XSOAxNCBFi0aBETJ07E6/XSrVs3LBYLkyZNYtq0aWX2GUEnEm3btuWNN94gPz+fOnXqEBkZyf/+9z8A1q1bJyM2iXKtwOW7LaCfYs/XNN+F6OFMczbRcxYcO7Gf6hpTP81zZqEbp7+zY2i+O/lmZQBoFHuVDb6aJSA735wFmZ3raw6jn6JDta4BGuTL3exyK78AvAZYT9HL0moFw1Dk50sZChFKb731Ftdccw1ffPEFL7zwAosXL2bgwIG88cYbZfYZQScSo0aNYv369QwdOhSr1cott9zCI488Qt++fXnppZe46qqryiw4Icpavao6aOA9RasJ5dWw2BStL7Cc28DKyNWdvb4LzVOdvwuXW8yZKAGQZz2WKBS3kcq3bflBjyNRbtgchi/ZM05RiIavf0/vy81ZhrWSdGJiFa6C4hMJtxs0TVGv5jkOTJRYvVoakQ6N7Nzin8/OhUiHRr1a5kx2hQgXqamp9OvXz3eT9JiBAweSlZXF7t27y+Qzgk4kUlJS+Pzzz7n77rsBGDt2LCNHjqRSpUoMHz6c8ePHl0lgQpwNj9zmwOow8Dp1Th4XwOsBFDSqp1Ep3pwXoq8+Fu/rlKu0Y3e2T2DgW64bzHzYvO3rybKB2wIRxWSDDi94dMg07zC+y143wOoBr6VoMqF8fSSwu5n6oDmbp0VGaHTvovAaUFAQ+JyhIDNDIy5ecUdvc/4GzwctG0OT+hpHMhUeT+A+6nYrMrIVbZpoNKgjiYQwsXLeRyI1NZVWrVrx4YcfnvI1BQUFReaLSEpKAiizyelKdaSuXLkylStXBnxNQQqTCiHKu3rVbdx8lZW3PvPiybeA1fCNWuj1NWmKqWAwZ1xUqMM8I81b5LNxQ7TvgtqLvymML4lQEOnkhqvjQxniGVk5S6PjuCiomQsxLnAdux9iN3zbuDealTPNewHTqJGd6Eoucg8d6++iAI4lEEoHu4frrnEB5p1P4qGhFtZt9LJzh4XcHHBEKLxehatAJzLa4J47keFfyzFd1xg7WOf+p+Gv/QbRkeCwQYEL8gsU9WvqjL5Dyk+YXfk9j7jdbsaNG0de3ulHmVRKBdRGAFgsvhYXZTXKalC/9Ly8vICgDxw4wBNPPMHQoUN58skny6yaRIiz6bmR0Txwm43KVT2+9tgKrBEGLZsqvnw+igtqmvduNsCyufG0aZsLDo8vcUDzHQ9tXixx+Rz63tz9mBrUj2flszbYVQHSI3zbpuH79644Vj5jo0H9+BBHeWZSV1ip1iAfItzHEkHN12QrxsX11xeYflK6yvE670+zcEMfL/EVDbxe38Xpha29PPMIDLtBaiPKu2YpGtMe0bnhCp3oCPB4oUIM3HiNzoxJutRGCHEWTZs2rdz0SS7R0bqgoIBJkyaxZMkSAPr06cO9997LjTfeyNGjR0lISGDFihV88MEHvPXWWzRu3PisBi3Emfr3jZH8+8ZIUve5OZoJTepqREWGz8XL5zPjAfjgiwxmfQiXXWRn4vAYPB5zNoc5WYP68RxaAjt3ZTD8OQdOl2L+oxbTJxAn2vCFL6F9/YN8Vq7Xua2PQYc2NiA8yrByvM4L43VcoxV7DytioqFyvLmT+PNNw7oaj462kJevyMqG+AoQ4ZAEQoSJcjpWwC+//MLChQtZvHgxl1566T++/rvvvmPXrl3+vw3DQNM0li9fzvbt2wNeW5qZrTWl1D9+Vc888wxvv/02d955J7Gxsbzxxhvouo7D4WDu3LlUq1aNPXv2MGzYMOrVq8f06dODDqSseL0GaWmn6AEmgma16iQkRJOenovHY87Onec7KUNzk/IzPylD85MyLFsVK0ZjsZTf5m9H81xM/W7XP78wSBO61icxqvQ3g7KysvjXv/7FmDFj6NmzJykpKUyZMoW+ffsW+/pGjRqVeN2aprFly5agYyrRLdgvv/yS++67j9tvvx2AFi1acMstt/DUU09RrVo1AGrWrMmIESN48skngw5CCCGEEEKIcLdv3z4GDhx4yueXLVt2yuceffRRWrVqRc+ePUv0WadbV1kpUSJx4MCBgOZKTZo0AaB27doBr6tRowYZGRllF50QQgghhBDnucWLF7NmzRo+/fTTEr+nRo0aZzEinxIlEh6Ph8jISP/fNpuvHavdHlg9o2lamfUCF+Jscrm8PP+Bkw/X5OH2KqrGWnlsQCwXNQ6ffhJtBx7h7xwNrMdGM8q1cOjzhFCHVWa++DGXQQ9px2e41hSvP6m4+uLo07/RRCa+ksd733lwezOIjdT4z0A7N3Q3d0frE6VnKZb+6GHvIYXdDpe0ttAqWUc/1WR8QghxrpylPhLVq1cvVU3BokWLOHr0aJF+EZMmTeKzzz5j3rx5ZRRhcMLnqkmIEtq000Ov5w+RE5sLUb7Edy/QY146lyRU5P3/xIc0vrJQpfdRiPZCzAlHwggPVW48xB2d7Tx1X3zIYisLjXrlkXbE6pucrXATNRg03iC2Qi47Pzd3MvHnPhcX35OLC+P4TNbZGiOmu3n8DSfrF8SFOMIz9/F3Hma87eXQIc03xYkB73zqpUMrD4+NsBMfI8mEEEIUevbZZyk4afKdK6+8knvvvZdevXqFKKogEonNmzfjdDoB8Hq9aJrG5s2bA4aDPbn3txDlUa/nD5GTkA0FFsi3o2saBgoV5ea7rCPcN93CS6NiQx1mqVXpdRTi3L4/vOCbKEP5hoJ1GCz40cVT94U0xDMyZGKuL4nw+mZ49g9irQCvTnaGlX5jcnn/efMmE5fcm4tLM3yTCHo10HTflbbFYF+Wm0tHZrN8hnn30RUbPDzzqpfcXI1q1RV2m2/zMrLg2xUaE3Hx4ji71EwIIUKofB1/CieSO1liYuIpnzsXSpxITJ48OeBvpRSPPPJIwEQXxU18IUR58vx7eeTE5EKBBd1j9R8ndDSMXBvEuli8JYuXMOdF2rZtGRDt8W1XYRLBsf8rDTDAYVCn91H+WpwYukDPwCff6seTiBMPNxq+ZYbOd7+U39FA/sn8T/IpME6YRLBwGzUNDN98Epv3eigocBERYc6hYN/9wktmpka9OgrtWFFpOiTEA0qxap3Ghu0GrVIsoQxTCHE+K6fDv5Y3JUokXn/99bMdhxDnxKLV+RBhQIG9yM0GXdMwnBbyo/NZuclNx2bmG9O+2xgF8cpXA6EVczFtaGCB/HMfWtnxFiZHxTynnfQaE5r9qduXEHkofhu9vmTiqTc9TBpivkQiPUux7neIi1PF7qLxFeDPv+GHdV5JJIQQ4jT++OOPoN9jGAbbtm3j0KFDtG7dGo/HQ3x8fKljKFEi0a5du1J/gBDlidOrQPmShmIZgFVx4Kg5Bw1we/FdfJ4qfO3YVN7mvWFPyaqbzZtIuNwAp0gET5CWbc5tzHcpvF6wnSIHKtzsAte5i0kIIc4HH3/8Mc899xyHDh1C13Xef/99pk2bhs1m47nnnisyiFJJmPpyQohg1U6wAhqGdoo6S7uB5rLSsak5xyHo1BRfrcMpmxgeyzDc5rwIBUA7tg3FFaE66TUmVL/qCSNRFUcDDI2eF5vz8F2pgkZiAuTmFP+8y+XbfWslmXgfFUKIcuazzz7jgQceoEOHDrzwwgv+UVavuOIKvvvuO2bOnFmq9ZrzTCREKU25PQYtzwaRLoyTJnU3dAMsitpaLFUrmbNJxeJnE8BV2K7+pCttpUDXwKsx9Q7z/vQtEV7f9hV3sa0ADXS7eROJ+Q86/H0hUCdnS77aJLuucflF5hwG1m7TuKqLjtutkZcXuH3KgP0HNKomKa7pbM5kXggRBtRZfITI7Nmzuemmm3j66ae58sor/cuvv/567rnnHpYuXVqq9Zr3akKIUkipbaVHjURwWSHWhWF3Y1g9GJEuiHRjz4hiwcj4UId5RmpH6ODRfL9uTfnuzmsKLPguUDOt3Nk3PsRRlt6vb2pgKRyVSvNVshSOboQGVjfr3g5hgGcovoKd69o4fB3KrerY8K8GHEt08Wq8ODIq1GGekdt6WGlzoeLQIZ3deyA9Aw4fgdS/NWJjFfcOtMjwr0IIUYZSU1O54oorin2uZcuWHDx4sFTrLVEisXr1avLzTd09Uwi/V8fFMaJZVWLSY0HpoIOWb6d+fiJf/LsazRqY+07omjcq0SDCBvmWY3ftj12QOXVIs3NoqTlHaypUrVo0Gz5QYHf77tpzbBstBtjcbHhfUa2aeYd+BVjwn2iGXBmBzbAAx2qYDJ04q5V5/442/aR0cdEaL91vZ8jNGtWrgccDFgtcdrHimfstXCe1EUKIkNPOwiN0EhMT2blzZ7HP7dy5k8TE0l0blOhoPWLECObMmUObNm0YNGgQkyZNokGDBqX6QCHKg0dvj+bR26P5428Ph9INWjW0EBNtzuZMxVm5oCIA8z/MYOZiL11aW5k2LgGPx7xNfk5UrVo0h76H/ftzeWQWFDjhmdGYPoE40ZPDo3hyeBRb/vSw54iNVg3cVEoInwvsuGiNe/rbGH694miWItKhERcttRBCCHE2XHvttbz88stUqVKFrl27AqBpGps2bWLmzJn06NGjVOst0VnJMAxWrlxJ1apVWb16NX/++SeRkZGnfH316tVLFYwQ51pKbSsptUMdxdlzZ994ht6ok5AQTXp6bqjDKXPVqkUz77FQR3F2NW9o55KLfOUXLongiaxWjaSKkkAIIcqZMJtHYvTo0Wzbto3Ro0ej674GSQMHDiQvL4+2bdty332lm6m2RInElVdeyfTp05kxYwaapjFq1KjTvn7Lli2lCkYIIYQQQghRtux2O/PmzWPFihX8/PPPZGRkEBsbS7t27ejatWupJ5QuUSLxxBNPcPXVV5Oens6DDz7I8OHDqV07jG/jCiGEEEIIEWY6d+5M586dAfB4POTk5JQ6iYASJhIWi4VLL70U8HW87tu3L7Vq1Sr1h55Kamoqffv25ZFHHqFv375lvn4hCuXmurntQYOVv2oYSiMqUvHEaI2bephvNutTqdH9KG4c+Dp4ZYPHy6Hv40IdVpl5dm4mT79h9XWYB9ANxt/qYdxdFUIbWBkafL+bL39WGIYTuw3uvxNGDgqffXTLDsXkp3X27tOw2aHvtV6G3QY2W3g0dfJ4FT/87mLdX24cjgJqJSgub24nKiI8tg8gLVOxeZdBbj7ERkPTBjoVZMQtEQ7CrGmTx+Nh9uzZ1KlTh549e7Jq1SruvfdesrKyaNeuHS+//DIVKgR//tSUKjJQeYl8//33rF69mqysLBISEmjbti1dunQpzaoAcLvd3HTTTWzatIkpU6aUOpHweg3S0sKvLXioWK3H29eHS/vsz75zc/t4wDhh0DLl+0+lKl42f2buEXEAqnTLOX6B7eeb1bpjy3w+fsncIzdV6ZINXju4LSdMQgdYvWBxc+jHmFCGd8Y2/eGm+20njEhVSFNEOTT+XG7+ZGL4/RqLP9Pxek5YqGkkVjT45E0vF9Q398XoX4e8PPxeBlsPF+A0FBZdQ1OKmrF2Hu4VT4eU4GeQLU8MQ/H1z16+/tngaKZC03zTnlRO0Lj2Ygtd2+hndJezvAnHc2EoVawYjcVSfmcgOJrrYuqyP8t8vRMuq0tidGh++88//zyvvvoqDz30EAMGDKBnz564XC4GDBjAggUL6NKlC489Fnynw6BL0eVyMWTIEIYOHcqCBQv45ptvmDdvHkOHDuWOO+7A5XIFHQTAtGnTiIkx98lfmMPt4/GN0V/If62mceSwlS63lG4fLi+qdMsGdWzY0GKGnVu5ISJEkZWNFn0zwWMHlwV0L9gM30P3+hILj43kazNCHeYZ6X7bsZn1ACicS0KBgrwCaHqNuffRJ19UfLREx+sFixXsDg2rDTRNcfSoRq9bLbjd5r0dmFegeOCddDYcyKOC3UL9CnYuqBhJUpSNPzNdTPwwnZ37Pf+8onLsh3UGi5YZeL2QUkejUV2d5NoaBU5Y+KWH1b/LxbYws7Mx9Gtoh4BdunQpY8aMYcCAAezcuZPt27czfPhwBg0axL///W+++eabUq036ERi2rRprF27lqeffprffvuNH3/8kQ0bNjBlyhTWr1/PrFmzgg7il19+YeHChUydOjXo9woRjAFjXb6aiJN/0yf8+48d5r2L9tNPR48lEae6CPNtaJVLMs9hVGXrwBGbL2Gwen0zdRfSNd8yj4WMHPPe7X1ihqvY/fL4vxWHMxS5ue5QhFcmXl9owTDAagWLxbeBuq5hs2loOqSl6cx7K8RBnoEv1jn546iTqtF2YhwW/535CJtOnTg7+/NcLPrZvHMzFbgUy1Z7sVsV1Spr6Md+hxaLRs0kDaXgm9UGHq95k0Ehws2hQ4do2bIlAMuXL0fXdS655BIAqlatSnZ2dqnWG/Sg5EuWLGHUqFH06tXr+EqsVnr37s3Ro0d55513ghpCKisri/Hjx/Of//yHatWqBRtOsazW8ltdZjaFVY/luQoyGN+vOc2TvpY/oHTe/MTD7X3NdzHae4It8OL6VCwW8/5OPPqxGbuL2c7CZR7NtNu34MNjbUROSYHSGfOkxqtPmW8bN28zSM/wlaFezL5qsYDHrfhoqYV7hoQgwDKwamcBXkMRbfeVT+FuqWlgtWg4dJ0VOwuwWs3Zn2f3boODR6F2Vb3YMqxWWWfPQcWBoxp1q5tvHy1OuJ0LRQmEWR5cpUoV9uzZQ9u2bfnmm29o3LgxFSv65pxat24dVatWLdV6g04k0tLSaNKkSbHPNWnSJOgpth999FFatWpFz549gw2lWLqukZAQPpNSlRdxcaeeN8RMDMPp+8c/XGvvP2w16X6UUbKXaZh0+wDyOZ71FUMDlG7a7TOMY82WtFNtny/RyM415z7qcrlBedA0rdifoUXX8KBwe3USEsx53DG0TKwWDZs1cJJLq8X3t8NqwYN5z1WRB9zoFi9xsZbik0Gr4mimQWRkJAlhNIkihM+5UJx/evTowZQpU/j0009Zu3YtEydOBHwjs77zzjvcfffdpVpv0L/w2rVrs3btWjp27FjkuV9++SWoWoXFixezZs0aPv3002DDOCXDUGRl5ZXZ+s53FotOXFwkWVn5eL3mb/MaF6M4WtiioLirGAVoip6Xekw5gVu1Si72p1k5fabkuxA14/YBoBm+5luqmFoJ5etHgMUw7fYlVVLk7D7NrbBj3Sf6XGnObaxXy8Bqs+B2acWmgt5jzWFqVPOacvsAqsVquA0Dp8uDrmvHaiIseLxelIIcl4dmSXbTbp9NN3BYvRw4bJAQV/RYcyhNYbcpbHoB6enmbSp6onA7F4ZaXFyk1O6cY6NHjyYqKopffvmFsWPHcssttwCwceNG7rzzToYPH16q9QadSNx0001MnTqViIgIrrvuOipVqsSRI0dYsmQJc+fO/cfJ6k60aNEijh496h9attCkSZP47LPPmDdvXrDhAciICmeB12uExfc6/T8aN49WoArbGpzw5LGrGptD0aiBzZTbu+HDSlS5tPDi5FSZEtx+jcuU2wf4OlXrVl9fF8tJl6KGDroCzbz768czoFmv0+2jGiiDftdaTLmN0dHQtJFi/W/g8fhmti5kGMrfAXvSWAOPx5wXode2jmDReisHcj1Uizk+wpZSkJbnxaJpXN0iypTlB1AlQdG0gcaP6w2iIzWsluPl5PYoDh5VXNnRQly0wuMJr/Yh4XIuFCUQXrsumqYxbNgwhg0bFrD83XffPaP1Bp1I3HzzzWzevJlnn32W5557zr9cKUWfPn0YOnRoidf17LPPUlBQELDsyiuv5N577w3ogyFEWbmss43atZz8/fexXb/wQOEfQtRg7hOhiKzs2PQC3EYk/lvXRXh4erx5h3/9erqXK0a6wOkAj+aroYDjw906XHw93bwj4lSpYuPCFBfrt3Gsz85JL9AMJg039528Oc96ufwGC9lZGi4vaLrydQtRoFvgxt6GqYd/bVTTym3t45i3MpPUDCdxDgs2q0FGvq+D/FXJsfS8yLzDTGuaRq+uVg4e9fDHnwbxsRDpgNwCyM5RNKmvc01nyz+vSAhxzvzyyy//+JqLLroo6PWWeh6JnTt3snr1ajIzM6lQoQLt2rWjQYMGpVlVgJSUFJlHohwJ17Gzewx1snqDfsJcEgpbhMHcxzWu7Wr+MfrrXH6UfCMCjMKhfo79zA03h743ZwfPE23YkMkV91jBY/E9wDdik9Xg62luWrY0/zbeNtbN5ytUQPFZLRqP3QtD+pt/H039SzFsnIVNWzS8Hg00SKxocOcAL+NGmDeJONHSNQV89EseW4840XWNajFWrm0exYCukQF38c3qaKZi5QYvP280yC+AmCho31yn84WWsJuULlzPhaFS/ueRcDP167/KfL0TrqhDYnRojt+NGjVC0zQKL/uLm+dly5YtQa+31InE2SKJRPkS7gfPZSvcpO6FXpf67gSHm/FPH+WtL6BZQ51l8xPDrgw3bMhk4GTwuOGdxwmLBOJkP6/3si3VRrd2bmrVCL+7vHl5is3bIDEB6tUJr4vPQln5iti4KCzefIzw+gkCvuZMThdEOAiLBKk44X4uPNckkTj3Vq9eXWRZXl4ea9as4eOPP2batGlceOGFQa+33CUSZ0oSibIlB0/zkzI0Nyk/85MyND8pw7JlikTiq7OQSFwZukTidGbOnMmGDRuYM2dO0O8tv6UohBBCCCGEOKvatm1bbI1FSUgiIYQQQgghxHnqm2++ITq6dPPaBD1q00cffUSnTp1ISkoq1QcKUR5kZHi5cgD8mWo7NlKMYuwoD/ffHT5t0Kt0PgzxVrApMI5Clsah5fGhDqvMvLwgi8dftR6fyVsp/nOnh3vviAttYGXohqEGP65WKJWF1Qqjbjd48J7w2UfTMxRLl8HeAxp2G1zSQdGqGcVOcmZGhgGpf8Pf+xTR0R5ioxQN64Kt/LVsEEKEuUGDBhVZZhgGBw4cYO/evdx1112lWm/QfSRatWrF008/zRVXXFGqDzzbpI9E2QrHdqHz3vby0KP2Y8OFBu7+thgPe9eFJq6yVOXaDEjKA7v3+EKvBukOGlrgp/cqhyy2slDl4hyw6HDyNbUX8Boc+jEmFGGVmV83ebn6Zt03l8RJ80jYHIq9a81/of3xl4oZCzQOHdEwDN8cC5GR0KGN4rH7FfHFTHRmJhlZ8PZi2LQVCgo0HHYLhuGlXm3FLX2gdo1QRyiCEY7nwlAyRR+JL89CH4mrQtdHYuDAgUWWaZpGTEwM3bp14/rrr0fXgy+ToGskqlatSk5OTtAfJER54UsiThhT84R/unOsJF/sZtuP5r2IqXJVBtTK8U3MlmcBTQdl+GomKhWw41BkqEM8I21vSAerw9cw01Acb6FpgEUDTadxj0y2LDHvCE5X36wDx5KIwhm8lW9eELdLo0Enxc6fzLuPrvhF8cxMjdw8qJYEdrtvF83Igm9/1JgIvDhZmbZmwu2GNz6Atb9BreoQFwtRUTpp6V7+2AkLFsI9d0LF+FBHKoQ4X7zxxhtnZb1BJxL9+/fniSeeYN26daSkpBTbpqp3795lEZsQZe7i3l5QNkAF3uk9IZnIOGTFd2vbfJYsOQwVDd+Mz4VJBPj+7wE0BQlOqnRJ49APFUMaa2n9fTDiWHOtE5MIfP82DNA1jmbaQxXeGXvgcS8oy/H9s3Cs78L/K8jO0sjO9hIba85mTu9+rJGZpVGvduAumhDv+/eqXzU2bPY1czKjrTtg41aoWwuiIo8XXWQEJNeHP3b6kowrLgltnEKI0zHnjYx/8v3337N69WqysrKoWLEibdq0oUuXLqVeX9CJxNSpUwF47733in1e0zRJJES5tW3bsSSiOIXJhNJ4/CUv/7nPfBdpdz5theRccOnHr9BO5NIhygtmbjaiFZZfcVWwx5qrmXjz3v5YD6yJKMK3fMh4jYWzznV0Zy49Q7Fuo05cbPG7aHwc/LkbflilmTaR+GOnr1YiqpjKP4vFt/zXjZJICFGuhdXkCOByuRgxYgQ//vgjFouFhIQE0tPTmTNnDh06dGDOnDnY7cHfhAs6kVi2bFnQHyJEuXPaC02NbbtMegTRtYDalSI0HfD6mj2ZVmEzn1NQmHr7jMLKsGKTiOPSM89+LGdDfgF4jVN3ONaOteoqcJ7TsMqU0wWna2pss5l7+4QQ5jNt2jTWrl3L008/zXXXXYfFYsHj8bBkyRImT57MrFmzuO+++4Jeb9CJRI0agT3EnE4ndru92Km2hShvbHYDt1v3XWyecpdVDBtkzv3ZbnHj8uhgNcBVzAt0w7ftzvLbye2fHatxUAZFayUM3wW4OVumAb4Zng8c4jQ1EhoouLGHOZOlShUhMUGx/6BGQjHdWFwuX/HWqn7aH2m5llQZvN5jLe2K+anl5ELLJuc+LiHE+WvJkiWMGjWKXr16+ZdZrVZ69+7N0aNHeeedd0qVSJTqamLXrl2MHj2adu3a0apVKzZv3szkyZPPWkcOIcrKUxNPuMI8+Tqs8G+bQec25mvWBLBnWWVIt4NVASeNLKIMcHgh38bVrdwhia9MeE/oJH+ywmWGOS+yAb5441iyV1zNizqWRGmKIbeYcx+12zWuuhTcHsjLC3xOGbD/kKJqkuKa7iEJr0y0bOJLmPYeKPpcWoavRuKiC891VEKI81laWhpNmhR/B6NJkyYcPHiwVOsNOpHYsmULN9xww/+3d99hUlXnA8e/596ZnW1shaF3XEApoogtKmIjtlhjJfYeTSxRsJIYDcZe0J9K1Ch2sUVNVBKNDTsYERTRpZcBtsK2mXvP7487W9lddtjZnT3D+3meeXZ3Znb2PXvu3DnvPY3vvvuOo446itrVY23b5tZbb+WVV17ZrkCE6AynH2eTntOgEa0b3KJ33Hq9wY1sgA0aylIgLQKBCNgO+COQEYEaG9al8eRt5i7/+p+HHQjjXa23NCjXu1nRK/hh+M//mdsl0aePzdAh0SSwboK1jvaieb0Rl59v9vKTZ/xas/tYTWgjrFwNxSWwYaO350K3DLjsHLOXf+2RD8cd7uV83y+F0EbYsEnzY6GXSBy6P+xSkOgohRAt0h14S5ABAwbw1VdfNfvYF198Qe/evbfrdWNOJG677TZGjRrFP//5T6ZNm1aXSFx//fWccMIJPPnkk9sViBCdZdkXir4DaxpM2gVvgX6HW/9YY+yV3lqhj3vACgvWZXqJgwW4FmxIg2UZhN41d1lUgFGjsvjPQxEvmYgoopfove/Div88FGHUKLM3pZv3usU+E9zGCQSgLM20Sx3jN6XLylTc+yfNuadp+vTSRCLeJOSD9tPcfqPmiIPMTSJq7TMeLjoD9t3D+zkSgVHD4dxT4ZjJrc+hEEKIeDv55JN5+OGHmTVrFmvXriUcDrN27VoeffRRHn30UY4//vjtet2Y50gsWLCAu+66C5/Ph+M0vup3+OGH88Ybb2xXIEJ0pvlzvUnHs192+GEpnPNrGDTIZusdzswU+sjrcfjNNRv418fQtyd8+1rPpNlIadSoLEIfwsKFZZw53aE6As/+2Y4mEGbvk1Hr1ce8luZ/Pnb57gebww9wGDrUIlmO0axMxaVnw0W/0Wwq0aSleveZOi+iOSN38m7hCGRnB6iuiuCY21kmxA4mec5FAKeccgqLFi3ijjvu4M4776y7X2vNsccey/nnn79drxtzIhEIBKiqqmr2sZKSku1aOkqIRDn9uORolLXkydt6NNqRNdmMGpXFly8lOoqOdegBPk46Jnl31PX5FD27JzqKjpWWqshIV9RUt7akmhBCdBzLsrjllls466yz6vaRyM7OZsKECQwdOnS7XzfmRGLfffflvvvuY7fddqNHD++qp1KKLVu28Nhjj7HPPvtsdzBCCCGEEEIkXJLm/MOGDWPYsGFxe72YE4k//OEPnHTSSUyePJkRI0aglGLGjBkUFhaiteauu+6KW3BCCCGEEEKI2E2bNq3Nz1VKceutt8b8N2JOJHr37s1rr73GE088waeffsqAAQOoqKjgyCOP5KyzziIYDMYchOh6wmH4YakitEHRrZtD9zwY2D95JghecUUZs9/OAF+DVXEqthBaavYk3YaCw8ugWxreOM8aCDuEvgkkOqy4Ce5cDNlpkOJ6Ray2oLSS0KLcRIcWN/ufGOb75QDe7mWnHg73TG9hJzcDLV7q8sd7vGVS/X447jC44DTw+5PjROO6msJ1Lis2RMjIUHQLRBjWW+H3JdfYayFE1/TZZ59tdd/atWvp3r07/ia7gm7vfnBK69a2iDWP47gUFSXfWPDOtGoNPP2ixU+FikhEkZJiY1sOu4xwOeUEl9ycREfYPsEhZZCVAamut0Fb7YSqiIIqi9D/zJ83Edw97O1y3ZQGNmwitLxnp8cUT8FxldA9An638U7eYQs2+Ql9nZrI8Nrtg0/CnPA7DX7Yqn89YhH63Pxk4qLrXV59G5yGe34oRX43eP0x2Gmw2clEyWaXZ96rZmGhQ1UNBAI+XCfC4F4Wp04KMCBo/nlmR9JwrlkyzlXqbHl5Gdh2132Pb9ocZsZbK+P+ulMP709+ZuLO35FIhFGjRjFnzhx22WWXuLxmzD0SAOvWrePJJ5/kyy+/pLS0lPz8fPbaay+mTJlCbm7yXA3cEZWUwmNPWyxbrhjYHzIyIC3VIrTR4bOvFDURi4vPdjF6Tn1WJqRHvMQhYlPXEvW7kOYSHAWhheZ+yAd3C4PdMIlo0NJWeDtlGSxYUAQD/V59OQ1X+dHg19A9THBENaHvzV3m1ksiojs76wZ1qTT4NH32CrPmU3OTiVsfdHnlX+BqjW2DrRSu1jgubCrXHH224n/vuMb2TIQjmqfmVvPVjxH697DIylCkp/kpKnX5YZXD429XcekxaeR1M7N8QggzbW+vQ2u2a0O6o446imeeeYb09HRGjRqFz+fj0Ucf5ZhjjmHlyvhncKLzfP2N4udCxbChkNZgFc1umTBkMCxcpFi8xNxu+eDODqQ6XgPUtahvhCrvarbtbmd63TUEB65vJomo/Rr93lIER1V2cmRx1DPNa2RHGiYReN9H8Hb17mFupnvG78LRngjVzO7rXlIYQVNcbO7GiU++6G0+7osmEQCWUvhtUCiKymHW8+Z2ln+/0uHbQodBvSy6pau6D++0gKKgn0XhOpevlkQSHKUQonWqA27JZ7s2pOvXrx9z587liSee4M477+TJJ5/knXfeITMzk7/85S8dEafoJPP/p0hL8z7gm0pLBceB7w1OJPBHd0N2miuDAseCgEtwWGmnhxYX2Q2vwrdSTwGDs6VAxJvT0tyVFRXtfQmYu1j/v+ZFy9BiO1qBBcdd2IlBxdHipS7FZd73VjN1aFsarTUv/9Pc88wPKx3CjiY90Fz5FOkB+HqpJBJCCPPFnEjMnz+f3/72t3Tv3njh7969e3PZZZcxb968uAUnOl9VNfhbaWP6fN5zjKW2+qax6GgSLEMnJW+z29LcxlmdtlzYUeZezdZtXHOw1NCpYJtKANXyoVqbXFTXdFpIcVcd1q0uTOH3KapqzD1Ghdgh6A64JaGYE4m8vDy2bGn+E8y2bTIyMtodlEic/n1hS0Xzj2ntrebUK2jwu8GNXultqaFpR3srXENbMZXb6kmJlts1uA4jDVbaaqr2voi5CVNGALyWdmvP0pwwuXPiibfRO4FtebupNseJ3j+gT2dGFV89cy0cx5sD0pzNlZr+PcydhyWEMFs850rEPL7hoosu4s4772To0KGNZnyvXLmSe++9d7u32BZdw/hxmnlfKDYVQX6TObmr13j37Tra4Ebo5i0QSAef682JaNhaUzq6Uqpl7DKwoSVBguPD9UN8GrVGG9RbUTFg6MpNm21vxS0baLp4ig2gYIu5jbR//x32OhVvCF6z2YSGsOLa35o52To722JUgcuCxRBxNL4Gc3pcrXEcb/jPTb9PXIztNXaoj399UcPqjZr+PRrXYVG5i98Heww3eHihEMIIkyZNajZpuPDCC5td/nXu3Lkx/402ncmaBrJx40ZOOOEE+vfvT/fu3SktLaWwsJCUlBTefvttfvOb38QciOgaRhZoDpvk8s+5FkXFXuKQkqJZs9abI3HMES49Dd4qJPRzFsHRDqRb3v4DTnRCqx1NIiptKN8MmJlIAFBeCVnp0R+aSfrCrtHLvx46vIp3Vvgh0/Hqza2dRB4t6xabQwuqgLQWX6MrGzLET35GmE2VOtpz1mBVKgBXceoR5va4ADw8Aw4+WVFeqamJaJRS0c4khQX8+kjNToPNTQZ7ZFsc94sAz71fzfcrHLrnWKSnOqzd5KBdmDw+hV0Gmls+IXYIBl8zrTVhwoQOWampoTbtIzF16tSYAknkhGvZR6L9XBe++kbxyWeKVWssUlN9DB4QZq89XHYengTvLCC4i+OtjBOIXtJ2oqs2lW8m9LPBSUSUtxld+tYdEmGX0DfmrmhU6/TTi3nn51TIcLzeJYCIBVt8HDqkktmzzV+Gep/jwyxdSbR8yhu25VicfSzMmGZmb0RDhatcLpgKC5eAE63C/Gw4+yS46vzkWBZ18YoIn3wX4YdVDikpPnrmaPYcYTN+Jx9Wc/u8iC5L9pGILyP2kXhjVdxfd+qR/RK6j0RHkA3pRIu0hpqwRX5eOpWVFThO8p08g0PKwFIUDNV89Lb5CURTwYHrITUNwlUUreiVdB+Ap59ezDufeys4HboHSZFANPXyWxG+WOjj5CMijN0l+YbDVFS4LPoR8vNhcL+u27Boj7CjyM5Op7qyAsdJqo/cHYYkEvFlRiKxOu6vO/XIvkmXSGz3p9LmzZspKytr9rE+fQyeJSfqKAUZ6ZCWpqiqSnQ0HSMZeh9aE1res9EHYLJJxsShqV8fncIFZyRvAyY93WL82ERH0bHSAoqMNIuaqobbsAshhPliTiS+//57/vCHP7B06dIWn7N48eJ2BSWEEEIIIUTCdMGcf9OmTcyYMYMPP/yQ6upq9thjD6655hqGDh2asJhiTiRuvPFGiouLufrqq8nJyemAkIQQQgghhBANXXLJJbiuyyOPPEJGRgb33nsvZ555Ju+88w5paYlZYCTmRGLJkiXcfffdHHjggR0Rj+gilhQ6XHi1xfJVGkttYfQuLo/d7pCTkxwrjRxxxCa++C4fbJ83IdkFIpsIrcje1q8aIzi8FALdoqvAloEbJrTQ/InWtcYeUsLaNVnUb4fj0rtPGd+8m5PAqOLrtEsd3vtU47pl+P2ay8/RXHFecrwHASqr4LvFiqIihc8Hw3dy6dO7DfsqGsJ1oXCZYsVqRUa6S7dMxbAh4E+uIdJCiE5QWlpK3759ueCCCygoKADg4osv5le/+hU//vgjY8aMSUhcMScS/fv3p7KysiNiEV3ERdNc5rzW+JPuo48tCn5hceMfwvz2DLMbMsEBmyDQExpuXm0DvnyCQzShn51EhRY3wbEOWDlQo0DXbm7m81arqlhNqLBvgiNsn+CoMOjcJsujWqxdk0twVA2hhWa31L753uGQUxQoq657vbpaMeNBuPsxl5Xzuu4kxbZauEjx0qsWq1YrXFfhasjqZrHXHi7H/col1dDN5WuVlMIzL9os/M6iqgoCARfXtRg8CE79tcuAfl1w3IQQosvKzs7mzjvvrPu5qKiIJ554gl69ejFs2LCExRVzInHFFVcwY8YMunfvzpgxY0hNTe2IuESCPPK04yURte2zhkvYu/Cnv/qZOCHMqJEGJxOBntGL2LUf5NEJkEqBXxEcbBMqNDeZCI5xoSaFuvLZun7jNseCdLMXQwiOKAE716vD6MqogFdcC3BTCI4oIfS9ub1Lh5waffM1OURBUV0Nww9w+eG/5iYTy1Yo/v6MTWkpDBro7VWjNRSXwDv/8c4tp5zoGtszEQ7DU8/YfLXAon8/TVaWIj1NUVQCP/yoePxJi0svcshL/rUChDBXB+X6a9asYcqUKS0+/u9//3ubr3HDDTfwwgsvkJKSwkMPPUR6evo2f6ejxPxJNHjwYLTWnHHGGYwbN46RI0c2uu28884dEafoJLc/GM0tGyYR0KixduE0cxswwUE0SCIaFrLBaio+Q1svQLBgtbefQu0J0GrwtW4EkE1wZ4OX4bKzo8PRdOMxMEp591mAbe5qXDf+1fF6kWDrQzR6mBaXwebN5ia7H89TbNgIQ4dASnS0nVKQlws9g5rPvrRYuy6xMbbH90sU3y5SDBqk6dat/jBNS4WCYVC43OKr+eaeR4XYMagOuMXHGWecwZw5czjyyCO55JJL+O677+L22rGKuUdi2rRplJSUcNJJJ9G9e/eOiEkkUGlJgwZMU9G5BD8VWnTJ5Qzawm7tkI+20ixFcEA5oRXdOiuq+PF3B8f2hvy01E7RgN/kuRINepC2eii6cRvmHqNPvtqGDxuluPh6zZP3dHg4cVdZBQu+tcjPa74K83K9hviSpRZ9epu53O0PPyrCYUhvZu6jbUN6Onz9jeKQSZ0fmxAisfr06dOmXofW1A5luuWWW/jmm2+YPXt2wjaDjjmRWLRoEX/5y184/PDDOyIekWia+ov1zVHeBELzbauxZuiQvW2NBakdDmS05F6Lv27fx9aqMtorYaJIGJwIpLQwB0Ip7xYOd25c8VRdDZbd8nHq92uqqszt+RQi6dW2hTridbdTUVER8+bN47DDDsPn85rvlmUxbNgwQqFQnAKMXcx9q8FgMGFLTImOp+xWjvLoQ+npBjfi6jZy30Y5taGttOoSUK1kCi7RydcG12FtpqubKYOu7akwt3zBvOg3rRZBc6Kh13LS06FHD01pWfMN6ZoasJQmP8/cOuwZ9JKlli66bN4M/WWytRAiBhs3buSKK65g3rx5dfeFw2EWLVqU0H0kYk4kzjvvPO655x6WLVvWAeGIRBs7yq1fDrWp6OfeKceaOzabSKhu0urWLbVoA9WB0Mr8Tg8tHkI/BsGKzkBuWoe1SYTlQqnBA9BrC9bS8Dvd4DkGevOxBpfCmjtEo35zgpkLHtg27LOnprpas6XJZutaw/KVMKCfZueR5ja0x4526d5ds3rN1o8VFYPfr9hjd3OPUSFE5ysoKGD//ffnz3/+M1988QVLlixh6tSplJWVceaZZyYsrpiHNr3zzjusWrWKX/7yl2RlZZGZmdnocaUUc+fOjVuAonO9/rjLsL0VNdXW1l17Crp319w61cwGDEBoRT7BwRr8qpkr19FVcsLrATMTCQAiZd7Sr7pJMlGbRKSECS02d/nX351axr2zc7wlexX1PRMqWn+u5nenlQE5iQqxXXr1shk51GHxT9Bo5aY6mqkXm9vIBthrD5clSxXzPlekpChysjU1NV4jO9gDTjzO7OVfe3SH445yeO4lm+9/gO7dIT1Ns3adV52TD3bYZYTZdSiE6Hx33XUXd955J5dffjnl5eWMHz+ep59+mj59Ercao9K6ufEBLZs2bdo2n5OoCR8AjuNSVLRl208ULSopcTjoZJuVK+tX/1E2jB3l8M6zyTGuNzhYgc+u75PTgAOE1xNaYXASERUcXgKBHAir+qFMlgYVNn6PBYBbbinh3mezQVuNl3/F5XenlnLddTmJCy5OTrrY4b15tYsfeEO5LAtu+K3mkrPMTeZrVVfDp19YfPKZYuNGhe2DcWNc9t1bJ80eC4t/UHzymcUPP1qk+H30DIbZcw+H8eO8uhTm8PkscnMzKC7eQiQivUntlZeXgW133TfBpvIwM15rpkuxnab+qg/53cz/DG4o5kSiq5NEIn6qqhw++MyiV88AOw+rxmfwsqgtCQ7YBKRCahWhJeYnEE0FB62GQCZEtlC0vF/SfQDecksJ9z7lff+7KSRFAtHUh5+7LP7R5tB9HQYN6rofvNvLdaGiEvw+CBjcC9GacNgiOzud6uoKHCe53oM7Ckkk4ksSieQhiYRolZw8zSd1aDapP/NJHZpP6jC+un4iEenARCLmWQVdWsylGTFiBGobS0wuXrx4uwMSQgghhBAioZLqMnvHiTmRuOSSS7ZKJLZs2cLXX3/NihUruOqqq+IWnBBCCCGEEKJrijmRuPTSS1t87Oqrr2bhwoUcf/zxbX69TZs2MWPGDD788EOqq6vZY489uOaaaxK6Jq6ATz53mfJbm83lgKqgZw+Xfz3r0qdP1+2KjMX++5fz/eosaNi1WlVMaEVW4oKKs+DgLZCWGV3VaDO4EUI/mD9Jt1ZwaCmQR+PZ1kWEfspOXFBxFixwwfUBlaAUObkRlnyePN3iaze4/O21CCvWuwT8cMQ+fg7Z28K2k2M+ViQCH36imP+tRSAlQv++ioMnentpJIuflmve+S+UlEF+LvxyIvTvmxz1B1BdA4uXwKYiyMlx6Nkd+vbe9t6fptAaVqyCn35WRBxv1bSRBTpp5yuJ+IvrHIl58+bx+9//ns8++6zNv3PyySfjui7XX389GRkZ3HvvvcyfP5933nlnuza+kzkS7XfgMZrvFvlovNeC9/2Jx4SZ+Vezk4lg/3JIz6HZvSRcTehH88e/Bkcqr3i1t1ouUFpCaLXZje3gMA1uCriqcR5RuzLVT4mMrv1uui3CQ4+ksvVmGd7qW6EfDd7LJeqB58I89PZmyt1I9F2o8WGzc49UHrs2jZ55Zp9nlq+E6262+X6JRXUYbEuh0PTrq7nuSoe99jB73EQkorn9/+CNuVC+hbr9h7Kz4MQj4LdngWWZ3dr+qRCee1VRuEKhNfh8PlL8DmN3cTn5WE1mRqIjbJ/NW+CFVyy+/kZ5e7oo8FkwcIDmpONcdurA67lGzJF4tQPmSByTfHMk4lqLK1asIBKJtPn5paWl9O3blz//+c+MGTOGoUOHcvHFFxMKhfjxxx/jGZpoo8uvdxskEdCoJarhxVf9zH3f8IZ2ek6DH5q0ti2L4LCue3Jri+BI6vdYgPr9QKL77ZGVk5jA4iQ4oDSaRFiAblB92ksstJ/gALMvJtQlEQ33ctFE9waxCO5k9jE6Z67Dvf8qp9yNkG376ZGSQr4/Bb9SfLNhC2ffWonjmNvQrqiAa26y+eZbi+wszZABsNMQRc8esGyF4sZbbX5alugo2+ehJ+GFN8DVMLAvDO4HA/p6V/D//hL8/cVER9g+60Pw2DOKn5crBvaDkQWK0SMV2Vnw0WeKZ+aoFncuN4HrwvMvW3zwsSKrG4wogJEFMGCAd4w+Pttircn7lsaD7oBbEoo5LXrggQe2us91XdatW8dbb73FgQce2ObXys7O5s4776z7uaioiCeeeIJevXoxbNiwWEMTcfDsy77ovgPNPBjdwO38K21+/srMd0RwiPI2o2tWtIfC4GEVwX6l204ULAgOCxNaaugSdP48L2HAhYZXPC3ltWq0An8W3sYg5hkwNgL46hO/Wo16liy++66GXXYx88rW3/5ZRZWOkO9PwYqOEbGUItNvQxgWb6ji358FOHQfM8v3r7mKH5Za9OqlSU+rHwaTmgYD+2mWr1LMedXi6t+b2RItKdO89o63FU+wwarZtg29g7ByLcx5C075lSY11czz6adfKVavU4zYibo9P5RS5GR79Tl/oeKnZZqdhiQ2zu21bAV8tUDRt4/Xi1QrkALDhsD3SxSffmlx7JFmHqOi88QlkQDIzMzk4IMPbtOGdc254YYbeOGFF0hJSeGhhx4ivR2DSH0+s6/WJZIbaSGJqKPYXG7h85mZSOCrHc7UWjIBwQGbKVpj4HyJtAyvn3Fb1ZOSYu6+IG70/d3csAkrupu3NvcYraoI0OqbUANKceBxFkU/mXeuWxNy+XFTNQHlw2pmV7YMv83GcA3//NTh8P1TEhBh+332pYUTgYx0rx4b9u/6/IpACnz8uY3PzDyJz+ZrNpW49OpBs6s4ds/VrNsACxZZ/GKCeecZrWH+t5CTrerqqGHCm50Fq9ZoflpmMbIggYG2w0+Fiqrq+sSoIcuC3Bz4+hs4/mhrB9480bxjNxFiPo19//33HREHZ5xxBieddBJPP/00l1xyCc888wy77LJLzK9jWYrcXMMHLiZURRueow3+H7elfAABM8tohdv8VCPLB6CqvGRhG+d4Y8tXe4y2Vj4NuJaRZVxXFEYr8CmF3ewYeoUKg4vPyPIBuLoGn8/F3+SiVu1FrkDAJRKxyM1NTUR47WbbYbSuIj1NNTsPIk174zhsXyq5ueZlS47jzbXKzIC0Jj0qgYAv+tUlELCNLB9ASopDIMUhPb35LKFbN41SkJXlw99iL74Q25FIdJTaoUy33HIL33zzDbNnz+Yvf/lLzK/jupqysrY2FkXzWj9pKBuKiw0dgx69mrvNJ7k1ZpaxcjPYOa1XoQJcbWb5ALBAWd4g36aNGFd7j+GaWz6lQdeOpWj5OYMHOkaWMTtdk2nblITDpLtbryIWdlzQ0CfP3Drs3dMiHFFU17hYVrQnwmcRibhovEmuo0aYWX8APfI1gRTNpmJNTtbWB+mmYk0gBYJ5VRQXm9kIDXaHBQu9XgnweiICAR/V1RHCEU1NjSY1EKG4uDrBkW6ftFSoCVuUlzvN9oytD2lG7Qzl5TUdskJVVlZal55sDSTtnIZ4a1MiEctwJaUUt956a5ueW1RUxLx58zjssMPwRY9ky7IYNmwYoVCozX+zKdl1cvvl5imKi1p/zt7jI0QiXfwE0JLKcsjIoeXhTRo0hFZlGHkchVZke5OtWxreFJ1aQFkpkYihKzcpog3tZuqvdtK1cohEzPwUeOCWCL+dGp0t3/QwbfDzZ3NtI49Rvw8O3DmVl76poSrskNrgqr2rNaWRMFm2jzOPNrN8AIcf6jLnH37WrYfevXTdxQsNFBVrbFsx+RBzj9HRwzU77wRffAsZ6Rpfg3wwHIGScjhwL28+iKll3GNXWLDQorhEe3MIooep42qWrdD07KHZZbgmhvVlupSdh0OvIBQuVwwZ1Pj6Wlm5d51mj91coxc9EJ2jTYlEW5ZzLS4uprKyMqZEYuPGjVxxxRXMmjWL/fbbD4BwOMyiRYuYNGlSm15DxNeX7zoM3b3hmqH1KzahwPa7vPqUoUkEEFrVzVs61G5urkT0hFlZAnTr9Njipmqzt39E03Z2bRLhuEYv/3rE/sW8+d980Ha0ByJabzp63FouR+xfAphZxl+f6OO31zng2N6ne8PP8WiilJNfRRfqUI7ZtWelMP+GNH4qr2RLjSKgLBytqcEhTfm49PBMo5d/HVEAZ5ziMOtJm8Jliqws8PtdSkoAFIcd5HLUZHMbaJaluPJ8zR9uheWrISPNm6RbVQ2VVTCkP/z+vERH2T7jRsMBe2ve/1ixcRPk5YLP1qxep8nuBicercky+GMiMxNOPEbz5HOK75dAXp43eb6kFBwH9t9XM35Xc49R0XnavY9EJBLhwQcf5JFHHiEnJ4fp06dz8MEHt/n3zzvvPFasWMGf//xnsrOzefjhh/nwww959dVX6dOnT8zxyD4S7bdmjcuek22qqxpe9dXk5rn88GlynFiCQ6MLZjdcI1UDlSWEVhr86RAVHFQOaVn1S6PWVpuTHJvSnXVWKW9+kOf1TOhoHSoNyuWI/Yt4/HEzk4iGggUuOLWTjaOVqKB7zyoWfWxuElFrQ7Hm1sdr+M+iSjaHHSylGNE9wLlHpvKrieYfowBvvqN45XWL75daWJaid0/N4Yc4nPZr19iJ1g0tXaaZPQc++NxLIjLSYP+94MwTkmNTukgEvpgPn3yhWBeySEvzUTAkzF7jXYYNTnR08fHzMvjoU4uFixSOA716avaZoJmwu8bfgQv7GbGPxJy1cX/dqcf3Trp9JNqVSCxevJhp06bxww8/cMQRR3DDDTeQnR3bB3h5eTl33nknc+fOpby8nPHjxzN16lR22mmn7YpJEon4KS93mf2SRZ+ePg49MMJ27A/Y5QX7lYNlQ4pDaKn5CURTwb6lkOKDcISidbnGDhVpyVlnlfLmvwEsjjjITYoEoqkzfuvw2VeK352juejc5GhgN1RTo1kd0mRmKHrkmt/4bE5ZuUW3bmnYViWuyZsPtKCiUlO2GXK6Yexyr61xXW8+QY/u6VRWViTdeRS8RDASgfQ0OmWVJkkkksd2JRKRSISZM2fy6KOPkpOTwx//+EcOOuigjogvZpJIxJfP560MU1y8JSlPnjsCqUOzSf2ZT+rQfFKH8WVGIhH/HfmmHt8r6RKJmEuzaNGiul6Io48+muuvv56sLAPX2xdCCCGEEEJstzYnEpFIhAceeIBZs2aRm5vLQw89FNMu1kIIIYQQQhghOaaEdrg2JRLfffcdU6dOZenSpRxzzDFce+21dOuWfOPJRb2X/6G5+Gob11FABYGA5t9zNAUFyTH+NThgM9jdQNW+BTSESwitzExoXPEUHLgZ/NneZGRVAUQILe26XcmxCg6shLS0+nULtYbKSkLLk2cyT/89a6gGsCohYjFikOaDF83c7bk5xSXw5ruK1WshJQX231szbnTnjNHuDDU1mhff1HzyNfjsCnYa7DDlWMhuZu8FIYQwUZvmSOyyyy64rku3bt0YMWJE6y+oFH//+9/jFmCsZI5E+42YoCgqU2A1XB5Vg6MYPzbCWy+Y/Skf7LcZ/LlstT6q0oBL6GcnEWHFVXCYBREfW5fRhZoNhFbnJCKsuAkWuGBHy1d7BqvdQ8JxCC0xu6H26FM1XPeQC9nV4NP1ZQzbUJRK6IsOXE6lk7z2T5g5yyK0UeF6e9CRlgp77a7507UuOYaPmP12seai6zWr1igcFxQKlCYvV/PHyxW/OtTsY3RHI3Mk4suIORIvdcAciROSb45Em2pxt912Y/z48QwfPhytdau3ZFyRYkfyq9PcaBKB98ne8GbDl9/4mP284f19TZOIBrkS2iY4uOue3NrCSyL8Xk9EbS5YW2XagkD3BEbXfsEBFV4SoWuXRK3dS0J799m29xyDXfegC3lVXnkqbajyQZUNPhd6VBDcPZzoENvl48/g9vstNmyC3r1g8CAYPABSA/DeR4obb7Uw+aOktExz/jTNspWKtDRN9zxNzyBkZWo2Fimu/avm64WGn0eFSHZN20DxuCWhNqVFTz31VEfHIbqIeV/4o1dAm27Wprz7bMVVN9qcfpKZn/LBwQ0222tSvLr9CLDxdm4zT7BPCQR61N9hNfnqAq5FcFiY0FJDr2pnZEQTpGbOyip69T4jA1PP2uMOq4bsMDgKGu0gr6DahtQIZNWwYoVmwAAzhzk997JFabli8ABQ0SIqC3Jzve8/+1rxzUIYNyZxMbbH4y9q1qxTZHfTBAL1J5qUFEV+rqaoSPHw05qH/yK9EkIIs5l96VXEX+2V3a22RabuPtfM9plHtZI7q/pvgv03d0Y08ZfeLbpJG628uxWQ2nkxdbZGSaF5Vm+ywedAuIUKDFuQFmG/k8x8IxaXwPyFiqzM+iSioZxsqKyEDz81tw4/+Bwcl0ZJRC3bUti25vMFnR+XECIWqgNuyUcSCdHYNo9znRzvhW2VwQ50Shjxt42C1b3jzWyEAtHJ49t4jsnHaF1PSwuFiJa/JmxmISurwHHAbqFDTEU3nK+q7tSw4qqqGqzmesyiLEtRY/boNCGEACSREE1paLkVFu2pMPhqb92Qpdba0UpD2NBWTE0ZrRZOb/WNeZRu/RisnTthKidaPquFMtguRCz2Hde5YcVL9zzIz9NsaaHTr6bGW4irf5/OjSueBvYBrRVuC9234Qj0DnZyUEKItuuI+RFJOk9CEgnRiM+CFo/2aPusX99I5wYVTzWlDSbmNnmswc+h1WYuAxtakQOW23iCda3aaR9KQ0Vx5wYWT67beo+Dij7HUC/fjze5OsVhq0pU2pvDVO7npUfNnB+RkgKHTdKEI1DRZE68dmHtek2voOaXh5j7ifubEyAQ0JSWbX2gbq7QWAqOPjgBgQkhRJxJIiEa+fYjx5vgWbs2f21SUftjRPH1e+b2SIRWZYJ2mqzUROMr9TUGN7IBnJL64TEuXtlc6pdH9dUQWpOToODar09aldfibNo7pqNjULXrPcdQv9g3BUpSoMaGVAf8jtcLEXC822Y/I/qafeo+42TN7rtqQhtg5SooLoYNG6FwOXTLhMvON3v51713szjxCG8I2oaNULZZU1au2Vikqa5STBinufB0c8+jQghRy+xPIxF3+fmKj96IeCvGuFA3QcgBn1aEfjR/j4VQoeslEw2v9tYuIRou9pINg4WWZ4K7EWynfniM0t4eEr5qQj8mNr72WrAgjT6pFUDTK/ZextQntYIFC8zelC70lZ+U0gAUB8C1vHqssWFjGrv28Ru/KV1WJtx7q8u5v3Hp01sTccC24aADNLf/0eWIQxIdYfv9Zapi6iWagiEahbdXRu+eirNPhqfvVaSkSCIhhDBfmzakM4lsSBc/mzZpbrvfok8vm7NOccjOTqpDBYhuTmcrcLTxCURzgn1KwO8DN0LR2ryk20hp110rWVPkHZd98pTxCURzpt9Vw0dfWFx6psuvDjM7gWhOJAKbir1NyrOS7y0IQGijIj0jlW7pVSTZR+4OQzaki68uvyFdWYQZL6yP++tO/XVP8rOSa0M6SSREq+TkaT6pQ7NJ/ZlP6tB8UofxZUYiEYr76079dTDpEomuW4tCCCGEEEKILiu50iIhhBBCCCHaK6nG63QcSSS208pV8Pa/LTZsUmR30xx6kMuwIYmOKn6CfSrBn4U32bo6ulvyFkIrk2MMerB3MaTkAbW7YmmIbCK02uClYpoIDqgAOzv6UxVoh9Cy5JngGexTDqm5NFqCq6qY0JpuiQwrrgbuCpXlFugqUIoxYzVzX06eOqyshO8WWRQVg88Hwws0fXrr+kXjDOe6ULgCVqyGjHSHbhkwbDD4W9iMTwghTCOJRIxcF/7vbxbPvWRTUlK73KRm9nNwxGSHay538Bn+Xw0OsCAlu8la/RbobIL9qgitMntEXLBPMaT0anKvAl8PggMdQssN3icjKjjYD3ZO4ztVgOBgoGYNodXdExFW3AQHakjLb3KvgrR8ggNrCC1PSFhx8/dnNX+41g9O9GSiAWXxv69sgkMdQj+Zv3rawkWKl+b4WLXaW9HI1ZDVDfaa4HDcMQ6pqYmOsH1KSuGZlxULv/d2ug6khHFdGDxAcerxmgF9Ex2hEEK0n9ktwgR45kWLvz3po6pSMaC/ZvBgl4GDNFrDiy/b3Pd/Zv9Lg30dsHzNb/ilAF+q11thMn+TJKJRWW2CA83OBIODfHgJLvVdsw2/9/dOSFzxEuxXDr5Ay0/wpRDsV9Hy4wbwkgibuoqzo5WnFYT9BIeZfZ5Ztlzx96d8rFkLgwZqRgzXjByuSU/TvDPX5uVXbUxeBiQchqdeVHz+NeTnwsidYNRIi3594Ief4PFnFEUliY5SCCHaz+xPo05WU+MlC64Lvfto7Gh707IgGNSk+OGNf9psKkpsnO3iS9v2rsF+c4f/BAc2KFy0Q6nu+zp25wUUZ8HeG0E1eFs3LF/tbtdKERxo8BXtlLw2PCd728/poiYcrMGNHoMW9Wfp2u81ELFZtcrclvbHn1hs2KgYOsTb6Rq8PTDz8qBnT81nX9isXWvu+Kbvf4RvF8OgAd4Ge7VDtdJSoWAIFK6Er75JbIxCiG3QHXBLQpJIxGDB/xSr1yjyc5s/GvK7azYVKT7+zNwPwFaTiLrnGFw+Whmc3KBYwX6bOz6UjhDI9b5qWq9Ly/BxI9ti8DG6rNDX+geO8hKN/Y/utJDiqrISFvzPIj+v+bkQeblQVgZLlppbhz/8pAhHIL2ZKWW2Demp8PX/zC2fEELUMnsMRyerqATHbXminN8H2oWqytpLv6LL2uZnuKkN7W1cG0iGtovBSUJMtlGV1VVm/h8iEXAiipRA8+dIpbxbONzJgcVRdbXXU90Sv9+bNyGE6MrMPMd2NumRiMHggZr0NCgrb/7xsnJITYXBg5I8iTC6eG79EJ9Wn9ZCJXd14W2Mq6ubM2HwhkptGTxv8gB7G0BBa1WkXA7Y18wypqdDjx4upaXNf0jX1HiN8Pw2jGDrqnr20DiOtzhHczZvgf4y2VoIkQQkkYjBwAEwYbxLaZlFTU3jxyIR2LRJMbzAZfddzfyAB9rWAHNrtv2criq8ofEE5IZ0/TehNbmdF1MchVbne3XYXLLUcLhT9frODSyeHGfb83hcc+eAvP5kBCzXm1jdtCHqAiiwXJ551MyrZbYN++ztUl0NW7Y0fkxrWL4CBvTX7DzS3GR37Cjonger1279WFGJ1yOxh8mfE0LsCGSORJtIIhGj318cYdhQl5WrFGvXKIqLYf06xfLlir59NVde5rTapd3VjRhY1vqVUBdCKzstnLjzEoQGjczm3uBhgxvZAG6p97U2mai91W23ECG01uDlX51Sb63QlrgaIqWdF0+c7bWXQqU2SSZqbwC2y5hxBo/7Afaa4LL3Xi4rVyt+LlQUFcG69bD4e0VuLpx4fMTo5V975MNxR3hzQL7/EUIbYcMmzY8/Q1ExHDoRdhme6CiFEKL9lNYmjwHYmuO4FBVt2fYT22H1GnjyOZv/vG+xZYsiNaDZdx+XKSc7FAzr0D/dKYL9K+s3Mmuw1xdaE1pudgOmVnCgxdYTrzWE1xvbG9FQsP9m8DXcrC1K1xBaloiI4ivYrxxSchuvUAXeJe2aIkKrzN+UbsAYqCr3g6u8hEJp8Gkm7FHDG8+Z2RvRUHU1fPq5xSfzLDZuVNg+GDfWZd99XAb0T46PpcU/wiefK374SZHi99GzR4Q9d3cZP7b1ORSi6/H5LHJzMygu3kIkYm5vWVeRl5eBbXfdN8Gmsggznt0Q99edekoP8rOSa3qyJBLtUFXlbTqU1c0b95ts9t+/ku9/AjSMGgH/+U9y7GrdULBPMVgBiFQTWmd+AtFUsPdG8KeDU0HR+mDSfQAG+9XOZfG6X5IhgWjq1rs0H30Kl5wPRxxsfgLRlOt6C1n4fRBoZXsQk4UjFtlZ6VRXV+A4yfUe3FFIIhFfRiQSz3RAInFq8iUSyVWaTpaaCr0M7n7flg8+SEv6k2d970MSZoJAaG33aB32pLi4cxLszpSMiUNTN15tJ/V70LIgMyPRUXSstFTIyFBbza0TQgjTSSIhhBBCCCFEI8nXA9wRum6/khBCCCGEEKLLkh6J7fTZF/DwYz5CGyA7G86eEuGgiYmOKn6CQ2rASY/OCKwGR3HgpBqefyIl0aHFRbBXKfhzwI5OuNZAZBOh1ckzVCbYvwJSsqI/VYHrEipMaEhxtdeBlfy8Jh109HqIchnSp4JP30ueuTyTT3L5eoENbiWWT3HObxxumWYnOqy4WbsO/vaMxYpVEEiBIw5xOWSit0SsEEIkVFLNIO44Mtk6RpEInHGBj/9+ZBOJRFfV1GDZsOtoh5efMXvZQoDgAAts39a9ehqIVBJaafanfLBvKaT0aFy+2neBowmtMH9lquAQX30Du44CXKgqIrTW7IQpWOCCEwCnSRltF6waQj+a3SX96VcOR/86BZyG13o0KI2V5rBukflzJR6YpXjocYvyclW3fY3PDzsPd3nsPpeePRIbXzwl+1yzHYHUYXwZMdn66Y1xf92pp3VPusnWXbcWu6jfXW3zn//aOI43gS4zHdKiF0C//sbm1HPMPkCC/SP1SUTDFLN2HwJfGsH+hs8YbJpEQP3PPkVwgOF1ONQG3VyyF63EVLNXpwoOrIRINIlQGqzoTWnvPifFe47BvCTCpm4TECv6ZtQKt8LPgLFmn7rnvAH3PmxRvhmys6BHd8jP91Zu+mahxdmXWTjm7ikohBAdoqSkhBtvvJH999+f3XbbjVNOOYUvv/wyoTGZ/WnUyTZvhn+9a6M1pKfVrwNuWV5SoRR8+ZXNjz8lNs528aXXJxENG9sN77PNXeEo2F+1PH+q9v4ufJVkW4K9y8G1aL1P1iI4KNJZIcVfaoZXRqW3PkaV9h5LNXcZoIuvccCNJoIW9WfpBt9XlduUlprb0v7b0xZVVYq8XIU/OrrQUt7qTelpsPgHi39/kNgYhRA7sI7Y1ToOu1tfccUVzJ8/n7vuuos5c+YwcuRIzjnnHH7++ef2vXA7mNtiSoCXXlVUVCpSmu5jFhVIgeoaeOrZJPi3NtfYVq09aAi7hcprSEGwr6FLpQYyaNPb2jJ4/J0TTZRaO0Yj5r4HX3nDv40PGy9ZOvUiM9+Ha9fBj0stAgEveWgqPR3CYXhrrrl1KIQQ8bZ8+XI+/vhjpk+fzvjx4xk8eDA33HADwWCQf/zjHwmLy+wxHJ2sNDqWt6UdSZXl9Ups2WLmB7xowDJ0Z6ymOz23+LyODaNDbfOKTtPuNLPo2uHX26jKklIzy1he4W1C19KEaksBCiqrOjUsIYRoomudY3Nzc3nkkUcYPXp03X1KKZRSlJWVJSwuueQTgz12c7EtqGlhLm447CUSY8cYPBGrtbn3tQ+prvXmionbhn5FDUQM7ZGIlLPtlrZq0Fo1kIomCs0VU+M9pswtX1ZWtHytFUG5nHi0mWXs3xsyM3WLm7OFw97H9+ABnRqWEEJ0aVlZWRxwwAGkpNSvnvn222+zfPly9ttvv4TFJT0SMdhnT+jfz6VwuTcRsOEVNdf1PgC752tOPdHghbB0K1dza+92DJ5sHdkIdnQ5mJbyIQ2htdmdFlI8hVZ2IzjYpfVrBBoqSwFDV26yHYj4mu940A2eY6i5L0YYP9HnzfVwdeOqdAEUWA6/v8DM1dPS0mDS/pqXXlVUVdFolTtXQ2m5JisLzjrVzERJCJEkOqgpt2bNGqZMmdLi4//+97/b9Dpff/0106ZN49BDD2XixIlxii520iMRo7tmhMnM1FRWQUUlVNVARfT7tFTNTdPC+AxOz665rKK+V6KFK76hFZ0aUlyF1mSD00oDRQPhDZ0WT4eIlNHqGVCFjV7+deoFleAP4121j165d/G+R4E/7D3HUAMG2PQZEAHLpa5novYGYLmcd67ByTxw7eUuQ4doyrfApiLYvAVKy2HTJkgNwKXnJdfyr0IIEU9z587l7LPPZtddd+WOO+5IaCyyj8R2+HI+TL/Fx7ff2YQj3iI/BTs5XHNFhEMndeif7hQnnVnDe+9neEOYaq/4arwNzZYbvNpPA8H+Fvh8jcsXTSJCq83sjWgo2H8zpOREV3CqpYEIoULz3/J33VXJjIfTIWLX7yVhu2A7TL2wgiuuMH9TuoNPdPnfVymglXezNPg0l55XzQ1/MLM3oqENRXDr3Rb/+UCxeYvCUjCiwOXc011+9ctERxdfsgeB+aQO46vL7yNRGmHG7E1xf92pp+eTn92+q82zZ8/mlltuYfLkydx2222NhjolgiQS7VBSAitWQZ9e0L17p/zJTnXnnTXcdrcCZXHdVS6/+10bVjwyTLBPKVgpEKkhtM78BKKpYO9y8NngOhStz066D8C77qpkxr3e91N/R1IkEE299Z5m/gIfx/0ywsgRBs9PakFNDaxeC5ndoEdeoqPpGNIINZ/UYXxJIrF9nnnmGf74xz8yZcoUrrvuOlQXmLMqiYRolZw8zSd1aDapP/NJHZpP6jC+jEgknuqARGLK9icShYWFHHXUUUycOJGbbrqp0WOpqal065aYIcsGj+YXQgghhBAi3qJz7jrkdbfP22+/TTgc5t133+Xdd99t9Nixxx7LjBkz2hvcdpFEQgghhBBCiC7swgsv5MILL0x0GFtJeCJRUlLCXXfdxfvvv8/mzZsZPnw4V155JePHj090aK16/S24+54UikoUmRlw4Xk1TDk1eUaJBXu5kJoS3eCs2lsRx3EJreq6XZGxCPaqADsT7OgkJa3BLSa0Oj2xgcVRsG8NWJl4V0BqAE1oZYKDiqOJh7ss+i6lfodI12XnXWp4/63kOEYBRu0JoZANugosm4MmuTw7K9FRCbHjqK6BxUu81cVychx6doe+vc3eTkm0UfI06TpUwudInH322WzYsIGbbrqJ/Px8nnrqKebMmcMrr7zCkCFDYn69jp4jUVMDBx4W4MefVf069tGvPXto5r1fTWZmh/35ThEcaINlN79Gf7jK+GQi2LcCrLzGix/Xvgu0S2il2UtrAgT7p7D16s7RgzVcRmhdYld5aK/gAAWWv/lj1I0QWmH2GOZ/vAXnXOQHt+HqTNorr88l9HMLu2KKLknG15vpp0J47lVF4QqF1uDz+UjxO4zdxeXkYzWZGYmO0Fxdf46Ew4wnO2COxG/yyc82f9W9hhJai8uXL+fjjz9m+vTpjB8/nsGDB3PDDTcQDAb5xz/+kcjQWvSrE1O8JALAil4Mjf4X129QHHBoIGGxxUOwr1ufRDRMMWuTJn+q11thMiuvvnxN02hlEexv9upUXvw29WM8m4z19Ju7hwRAsJ/bfBIB3n2Wz3uOwbwkwqLuILVq93ZRELYJDjX7GBWiq1sfgseeUfy8XDGwH4wsUIweqcjOgo8+UzwzR+GafZoRIi4Smkjk5ubyyCOPMHr06Lr7lFIopSgrK0tgZM0rKoL5//P+ZZYFVm0+oepHV6xarfjiqwQFGA8pqY16Weo0vC/V3KvZwb5W/VHfsH3d6Ku5VwuCvWrw4m+po9ErdLC/wZ+AvkDr89VU9DmG+uXxgI4epA0uVHjfR+s1ogiFOj82IXYUn36lWL1OsdMQCERPJ0opcrKhf1+Yv1Dx07KEhihEl5DQORJZWVkccMABje57++23Wb58Oddee+12v67P1zH50f0PbeMKhPKG2t/7QArPPWX4xm0tXe0FUFaH/Y87nN1KEtQgWQr2raRovYH91n4/bVsVIhWfz9RjtC3lU8Yeo1/Nt7cxNleDa3HosYqFn8lAbRPUDuHoykM5RD2tYf63kJOt8EVbSVZ0UoSlvF6JVWs0Py2zGFmQwEBFx5I5Em2S8MnWDX399ddMmzaNQw89lIkTJ27Xa1iWIje3YxqAlZURascpt9TO1hqqa2xyc029Ilq9dW9EMzrqf9zxomPLt3VFG7+hZdzc5meaWT6A6jY9y9zyVQGqvvehBRUVFrm5ybM4wI4gKyv5NkxMRo6jQYXJzIC01MYfFoGAL/rVJRCwyc3tUs0oITpdl3kHzJ07l6uuuorddtuNO+64Y7tfx3U1ZWUVcYys3j57wmNPpYD2hio3paMN8F3H1FBc3LbGTtfja7mR3SDBKC42dNM/7aNurEhr5XTCZpYxUh0d1rONTEm5ZpYPaOtpy9Ty2T4LJwy4tDz4VGmOnGxyHe5YbNsiKyuNsrJKHMfgYYU7kGB3WLDQ65UAryciEPBRXR0hHNHU1GhSAxGDP+sTKysrzYAeOunxbYsukUjMnj2bW265hcmTJ3PbbbeRktK+MfgdtSrG0UdB5tWwuQJcXT9HAryfAfw++MPlDhFTR41o11vytbVeCSdMJGJon59bAnae933TMjYoUmhdmpGrq4TWphDsX1uQ5iow+lhNBZGIoXNdXBe29QHkukbWH8C7L7tMOsL2llx2deNkwgUvEXS46y/a3PfhDspxzD0udzR77AoLFloUl2iys6h7HzquZtkKTc8eml2Ga3M/68W2yem1TRKeDj7zzDPcfPPNnHbaadx1113tTiI62p1/qfImVmuvPVN7Q3vrSl9+SQ1dvAitCmbWeI2V2jZow5WNonMIQivMfXeFVqeDdrwfGq7c1LBITlHnBxZPbnn0m6b1VPtz2OjlX6dPjR6jLXGjzzHUqFEQSI9EhzYpr6wuXmIRHfJ00CGy/KsQHWncaDhgb01og7cM7KYiWLdes3iJJjUAJx6tyTJ7ATwh4iKhiURhYSG33norhxxyCBdccAEbN25kw4YNbNiwgfLy8m2/QAIceww89mAVvXvqRtd783I0M/5YzVVXmH21aeFCCyJV3jit2iv2tQ1u1yVUaG4DrVZoZRjccPONUafI+E3pQqtTwCmjcYZU+7Wa0EonMYHFycUXW0y/psrL4JsuUaw106+p4uKLE36NpF1WLnbI71kNlluf1FsabIcjflktm9IJ0cF8PjjpGM3Zp7oUDPV6HpQFk34Bl5zjstuYREcoRNeQ0A3p/u///o+777672ceOPfZYZsyYEfNrdvSGdA2tWweLfoBhQ2BA/075k51q1CiX0CYFWtGnl2bBguQbLxjsG51P40BondkJRHOCvWq81WAdRdHGQNINq3jwQZfpt3rfT78W4xOI5jzymOKTzy3OnuKy/77m9gbuyGRDOrO5LtSELXp0T6eyskLqMA6M2JDuifiPTph6Zl7SbUiX8J2t460zE4kdgXwAmk/q0GxSf+aTOjSf1GF8GZFIPN4BicRZyZdIdN1aFEIIIYQQQnRZXWLVJiGEEEIIIbqO5BvO3REkkdhOn30ODz/mI7RRkZ2lOXtKhIMOTHRU8RPsFYHU2s2TqsC1IVxDaG1yHDLBnhXgzwTLXz9h1ykmtCZ55kkE+1RBoBveybAaHE1oRaKjip/hY8MUbwnUr8PsanIzqvnhG39iA4ujg45SfPuDBboSZSl+cxLc/qdERyWEEEJ4kqNV2IkiETjjfB///cgmEqlf2Oi9D2x2He3y8rNhUlMTHWX7BAfYkOZvvGKTDdhpBPtWE1pt9oi4YJ8K8Od5uwrWrgGuAJVHcIBLaIX5K1MFB/nBHwAH6q+qBAgO1FBdSmid2QdpcLALgQDYDa4Y2Yri6gDBwQ6hQrOvJH08D46dYtcnSQq0Vvz9WR9PPq9Z/4PZK28JIUSXl1QziDuO2S3CBPjdH2z+818bx4G0VMjMgLTohfuv/2dx6llm52bBvo632VfdHgvRbKJ2l92UgNdbYTIrmkTUniSi+4KgFTg2wf5mX9EODvJ5PUi1ddd0071AVoIii4/ggDAEfF75lK5PeFV0y/mATbC/2fss1CURDfc5iV610FrRb5fkmqwnhBDCTJJIxGDzZvjXuz60hvR0sKKf5ZblJRMK+HK+zY8/JTTM9vGn1icRqkELVEWTCaUaDHkyT7CfVZ9EWNS/Axq+E7S5jbRgr6rG8asGX1X9N8F+Bq86khqIJklNtyaP3qcVpAUSE1scnHspjd97DdVuTF6tKCnprIiEEEKI5kkiEYOXXrWoqISUFi5YB1Kgugaeetbchmh9w7OZhoyqbbwZrOGciK0eo65nItinohODiiN/arSRTcvzxDTesCdT1Z61WjxGMfrM9sa7dn0y35xoEvzrszoxKCGE2JE07Q2O5y3JGPxx2/lKyxRaez0QzVHREUFbNndqWJ3P7OHnnm0e+SmdEUX8tXQlu+7xzgkj4Qw+Wbd1Z5+SzXL6FkIIkVjySRSDPXZ3sG2oaWGKQDjstePGjjG4FdOa2haO0cWLjqlvbWSP0uAYOuE6XOnF3xIN0YH2nRVR/NXWXXNlSIJjNDNjG0+I9laceLTBw9OEEKLLUx1wSz6SSMRgnz2hfz+N44DTJJlwHQhHIC8XTv21wR/wdcPOm2mJ1b4HIgavGFNTUt/QblpNLl4ZLU1ovZnLwIbWplJXd02rsPZnpaHK4G6zSLQgLQ1tUg2eY6B/v+xsPf2jKa35w6WdFZEQQgjRPEkkYnTXjBoyM6GyGioqoKoKKiqhosqb33nTtBp8Ji/cVF3ZYMnQJgP7olfyQ6vMTZRC69JBOfWNNLfBrXbln0hxwuKLi3BZNFnSW4/LVBpUxOjlXy84rQZc3fL4U1d7zzHUoEEQ7OHWJxNNJ8y7cMapBifzQghhApkf0SaSSMRonz3h+Seq2WM3lxS/N5LCZ8OokS6PzKzm18ebfaSE1vqiyYRufNBrwIHQMrOX1QQIrQyDVQNWg6VDLQ22C26R8ZvShdakQk0p2Lq+90XVfh8mtMzsRujNN/u54ORqL5louPwrGhy44KRqbr7Z7CV8F37iMrLAqU+YoO6D6IKzI7IpnRBCiC5BaW3yYOmtOY5LUdGWTvlbJSWwYhX06QXdu3fKn+xUwd4Nd2uD0FqDV6NqQbBXhbdev2PucKbWBHtVeZcLXCjamE4kYm5vUnNuuCHMw3/3vr/gDIxPIJrz+r8UX31tceLRLqNGJdXpeofh81nk5mZQXLwl6d6DOwqpw/jKy8vAtrvutexNJQ4z/lYS99edek4O+TnJ1ZaSREK0Sk6e5pM6NJvUn/mkDs0ndRhfRiQSs0ri/rpTz02+RKLr1qIQQgghhBCiyzJ5WrAQQgghhBAdIDmXa403SSS20y0z4JHHA1TXgN8HJxxXzd23JTqq+An2dr2tui0FVIGjIOwSWpMcnVjBYCX4M6lbYktrqCkltC4tsYHFUbB3BKzM6E7XEdAQWpvoqOLnjrs1f33Qru9XdeHqix2uujx5Tv4zH1bMfs5HdVWYvFwf106tYdL+iY4qfopL4M1/Waxeo0hJgf1/4TJujG5x008hhBBdi8yRiNGWLTBi1wDVVdHGilbeyjEasDULv6gmGOywP98pggMsbykq3aRBpjRUVxNabfanfLBXJaTmNP+gowmtNHfp0FrBvqnR+mvaqNbglhNaZ/Y1hOBQDSkWNB1q6gDVmtDPiYgqftatg4mTAxQVNX0PwphRDnPfNH/1tNfeUMx82Edog8J1FVpDWjrstYfDn26MkJOV6AjjR8bXm0/qML6MmCPxaGncX3fqedkyR2JHN2bPANVVVv2awKrB8oyuYsyegQRG137Bvm7jJKJhW1QrCKR6vRUmaymJALAVwX5mr/wT7BsAbXn11WTpUFCguiUuuDgYs4+GQDSJcJvcLCBVUTDO7OsjBx3eIImwwLa9r2j437c2J00x+xj9eJ7i9nv8bNio6N0bBg/WDB6kSQ1o3vuvzY1/8uEafpoRQogdgSQSMSgshPLS6EZtzW0UpcGNKJ57MWEhtl8g0DiJqNXw+0BKZ0YUV8G+bbgS4DP3bRHsHfGSiFrNHKMojE4G12301S1puxUNWFCyxdwel9ffhA0bvYqzrOjoQryvtUN+PvzYpsbgjrPnXrIpLVX07wcp0dOJsiA3F3JzNZ99YfPNt8kzRE0IIZKVuS2mBLj0KhtQtLo7oVbc8ldzG9p1Lc/mPsPrGqIGf8C3cdvxYK/KDg6ko/ioO0ZbrCYFlsF7ZljutncItc1NlB7+W7S3oaWzs4JIBB570sz3YXEJzP/GIqubRjVTxpxsqKyEDz+RjychhOjqzL1slwClpVYbtjjX1FSb+QHvabUFugMxNRncxjGaDFXbsHclCVVVeV+31YwuKTXzn1BZBY6j8Pubj702uaj9PwghREKYd3pNCLnkE4ODJobZ5pGlFMOHR1p/TlfWam9L9KvJjVG3jWcG19RxIzXevJ2W1M6V0OZesW92SNP2PKeLGr6TV38tHqrRXP+giWYWsnse5Oe5bNnS/ImkpgaU0vTvK5/iQohEUh1wSz6SSMRg+vWAFf0Ub/oZVzuRFc2zTzidHVr81C7i1dpneI3BK8aE27AKg4ZQyMxlYENrffWdSs0dowov0XArOj22uKnN51s6J+vocwz111si3uRqvXU+VJtc5OVq9ti9syOLj5QUOOwQl3BEU9FkgT3twtp10KuX5peTzUyUhBBiRyKJRIwuPr/aa4gp1eDqLnir4WgmTawhIyOxMbZLTQ11LVDd5Ba9M7QqEYHFR2hdGmxr6b7qkk6JpeOUU7cgQMP6U0S/iRi9/Ou7r7gQwStPwzOYFb1Fos8xVGYmnDUl4k1FcsF1wIl+RYPtgwfvq050mO1yxmkOu4/ThDbAypWK4mLYsAEKlym6ZcJlFyfX8q9CCAM1bQPF45aEJJGI0fTr4arfV2H53MYr4tguJ/26iueeMrcBA3gbzlVXA26TK74atEuo0OBLvVGhVWGINNNrpIGqEuM3pfN6JWqTCV3fC4EGXUNojdl1OHas4t0XXKhW3r4RtT3GDlBj8e4LLmPHmt2FfOufIlw3tZrs7PqEUFnQv5/mhSerjN+ULqsb3Ht7mHPPcujTxyUS8Za4PehAh9tvDXPEYUn6iSuEEElGNqRrh4WL4b8fwt57wG7jOuVPdqpgH7fREJlk2dW6obrVmVxzhzO1JtgrUpcQFm1ISbqNlL75RjPlIojUwLN/w/gEojnLV1psKgowbHA1WVnJVX/grUC1qQjS0rwEIxnJZmbmkzqMLyM2pHu4LO6vO/WCrKTbkM7c8Q1dwKiR3i1ZhdZYSX/yNL33YVtC63yN6jDZjB2r+N8niY6iYw0dDON381FcXE3E4HUcWuLzQc9goqMQQgixPSSREEIIIYQQoqGkGq/Tcbpuv5IQQgghhBCiy5Ieie20co3m7fdhQ5EiuxsceoBm2KDkGZ9dWgpPPW/x3SKLQGqYCbspTjjGW7oxGUQimhdfh5f/aVFdo+nfG35/vmanIclTh0IIIYTYXtIeaAtJJGLkupr/e0rx3CsWJSXRmchaMftFzRGHuFxzCfh8Zh98b76juP6PPjZtstAaFJpXX/cx8xGLmXeH2XV0oiNsnxWrNCdeCCs3urhE0Cg+/wH+8YHi1MNtZlyf6AiFEEIIkTAdtVxrEg6XkqFNMXrmVfjbbIuqKhjQ32XwIBg40EVrePE1m/seS3SE7fPtdzD1eh8bN1pkddP06AE9eyrS0mD5CosLLvVTVJToKNvnpItg2UZvnf40n02m3ybVtqhxNU++4XDvI2YngkIIIYQQnUESiRjU1GhefF3huprevcC2vQanZSmCPSAlRfPGOxabis1NOR9+zKa41CIvT5MSqL8/LQ1ycjRr1ykef9rcw+alNzTLN7j4sEj1WVjKq0PbUqT5LBxc/v5y8q1OJYQQQggRb+a2CBNgwSJYvUaRn9d8opCfr9lUpPj4i04OLI4+/dzCZ2nsZpY5TkkB7So++MjcNZBf+aeFiyalmeFnllLYWKwvdfl+qbnJoBBCCCFEZ5A5EjGoqFQ4jsLva76R6feBdjVV1Z0cWBzVhL0ddFuiLE1lVefFE29VVd4QxdqeiKYsBa6GouLOjUsIIYQQXYhcT2wT6ZGIweABmvR0Tdnm5huhZeWQmgqDB3RyYHHUuxc4kebL57pej8SA/ua+u4YM0Cgg4jRfhoirSbEVOxd0blxCCCGEEKaRRCIGA/sqJuyuKS1V1IQbN0QjjmbTJovhO2l2N3hVo2OPclAWbC7f+rHSUkgJaKacZO72ur8/X5NqW1Q7Lq7eug5RmvEjbXKyZcK1EEIIsWNSHXiLj4cffpgpU6bE7fW2lyQSMfr9eZphQ11WrrRYuw6KSzTr18Py5RZ9+2iuvFBjWeY2Qs8702XvPR2qa2DjRigvh9IyzYYNgFYc+yuHA/ZLdJTbr29vxfm/tvFbioqwS2XYpSrisqXGodpx6J7h467pMtlaCCGEEF3T008/zT333JPoMABJJGI2sK9i5q2a037tkp0FkYgiPd27kn/fLS677mJuEgFg2/DkIxHOOdOhd29N7UX7YUM111wZ5o4/O4kNMA6u/Z3m5sssBgdtLAVaQ5rf4oBdU3jr7zCgn9l1KIQQQoh20h1wa6f169dz4YUXcscddzBo0KD2v2AcyGTr7dC3t2Lab+Hyc11KyiErE9LTkqfxmZICN17jcN1VDuvWW/TonkogUIXWyXOl/sxTFGeeAqvXWpSUwtBBkJqqkZ0shRBCCNEVfffdd/j9fl5//XVmzpzJ6tWrEx2SJBLtkZqq6JWa6Cg6jm3DwAGQm2tTXAwRc6dGtKhvb0Xf3omOQgghhBA7gjVr1rQ6t+Hf//53i49NmjSJSZMmdURY200SCSGEEEIIIRoyd4HKTiWJhBBCCCGEEJ2gT58+rfY6mKZLJRIPP/wwH330EU899VSiQ9mmYC/AF6BuTL1bTWhN8qSvwaALKWnR6fg14PqhppJQKDnm5weDDtgBsHxeFWoNkQpC683dtbupYC8XfOnRn8LgQmhNQkOKq0ced7n+xkD9Dora5c9/qub8s5LjGAWYOQtmz4Hq6krycuDa32sm7Z8883gqK+G7xRZFReDzwfACTZ/emhb2ixRCiE4kJ6K26DKJRO1SVuPHj090KK269lqY9WQq2Kpxt5dKJdhXM2ZMFXP/mbDw4iLYxw9pVuP3kAXYaQR7VRFaZ/abKxh0ICWDRgVUCvwZBPtqQqsN3po8Ktgv1Xt3N6wqO4VgX6IJk9mN7eAQoCYddOOD9PobbK6/uZrQz2Yn9evWayb+yqaotPYel1Vr4eQLbcaMhLlzzF/4YOEixUsv+1i1SuG63o7yWd1grwkOxx3jkJrE88+EECJZJLw10RWXsmrNrL8HGjdeGrWpFf/7n9mffsFeLvit5hNxBQRSvd4Kk9UmEQ2XY6v9qiyCfVMSE1ecBPsGmux706AyLRr0UpjpF5NdqEmtfx82LKtWUBNg173NPkYPOq5BEqHAtlW05wz+twhOOjfhp+52WbZc8fenfKxZC4MGaUaM0IwcoUlP17zzb5uXX7XRZueCQgjTdcHlX7uihH8aNVzKauzYsYkOp1XDRkLdv6xh46VJoy0Y7OTA4iklrfXePBV9jqGCvaOX6WtXem1Yh3UN04S/LbZbsJdL4wps5iBVEOxt7hltyeLUBolfgwfqkglYs8bchP71f2k2FAMaLEthRcf5WErVbXb54WdQU2NuHX78icWGjYqhQ7zlpsHrFMzLg549NZ99YbPW8J5PIYTYESR8aFNHLGXl83VMQ7CstIUr9U35U/D5DF0rtS3lszruf9zhrFYO+egVX5Qi2NOhaJO/s6KKH6UaXB5ooTIVYKfh89V0UlBx5rTyPqxNCB3L2GP0kSfxjsNWwo9E4IlnFRefY14ZKyvhfwttenSP9rQ00T0fFn+v+OlnmwH9ze5ZqmXbVqOvwjxShzuirn0xY8aMGYkOAegCiUS8WZYiNzejY15cVbX1iR0XQ4drW+PS3PKFvS/bPD8YWodqy7aeQO3lfCPLB0DYSxa2UYemli8crgRcbKtxAZtOQK6uSSE3N9B5gcWJbWts2yUjHdJSm6/EQEATCPjJze3aH+SxysoytzdXeKQOhWgs6RIJ19WUlVV0zIs7gN2Gf5l2KC7eVoOui9L+NiXhxpYPP42GNjVLg9ZmltFxvCvZrZUNQLtmlg+A6FiY5uqwwWgfU8u30xDN/IUKx9F1Q5mUon7OQLS34hd71VBcbF7Pp+NAdpbNilUW6RlbD8+qrvF6XAIBh+Jic4dvNWTbFllZaZSVVeI4ydHLsqOROoyvrKy0rt+7kxynnw6XdIkEQCTSMW/y0Dq8VW9g60ZMgwPu3DMj5u4C7bLtmTPhSIf9jztcuMKbbF07BKZpHUYv2IdCtpFlDK1X3jGqoMWDVAORKiKRLn4Sb4kV8ZYjbukkrwDb3GN0xg2aOW/YOC64WtfNkQDvQgkK8rJh3OiOO9d1tL32hB9+VJSXazIadBxpDcuWQf9+MHwnx9zzaAscxzW2zoRH6lCIxgxtSSSQU1n/fXMz8XWYW2/t5JjiqabS63mB5htqLoTWOs08YIZQyAYd/RCoHeVTe6ttfIfNvJJdx6loUHdNDlINaMfo5V8/eKcGL+OlhRUxXD5429D5H0BmpuKsk11vKJMG19E4jvaSCMC24cHbzH0PAuw1wWXvvVxWrlL8XKgoKoJ16725Ebk5cOJxEVn+VQghDGBuayJBQuuASCWopq1sDbqK0BqzL6GFQhZUN0gmamkgAqEV5u+xEFpdA64D6PrFjJQ3nImaLV6yYbDQOgsiFVsvb+sCbpjQ6nDigouDESMsPphbCXbEq7eGdWg7fDC3khEjzD613XoDXPd7l+ws6heKU9C/t+KFRx3jN6ULBOA3p0Y44/QIAwe4hMPgs+GwQxx+e1GEkSNkTIEQIsFk+dc2ScqhTR0ttB6gimA/vLnJNoTWJjamePJ2r67ear+IZNnVGiC0JgyEvc3pGgxnArOTiFqhdRZQRbCnGx1gD0WbzByu1ZwRIyxCK8J8/3015/7ey32fephoApEcx+ll58Nl57ssXwWbNqUybHAVWVnQ1VcSaatAAA7Yz2W/fV0qKsHv8+4TQghhDqV1cm374zguRUWGD03pQnw+i9zcDIqLtyRNI3RHI3VoNqk/80kdmk/qML7y8jK69GTrTcUuM+6L/8I9Uy9LJz+365Z7eyRXaYQQQgghhBCdQoY2CSGEEEII0VBSjdfpONIjsZ32/gUEe6cR7OPddt41OcYt13p4FgT7BsjrlYIKhMnr4+PLLxMdVfyUlMCE/W2Cg1MIDkqh15AUbr870VHF1/oN8PhTFrf81eavdzp8uzDREQkhhBAimUiPRIxWr4Zxe6RF16qvv3/jxlSCfeCNVyuZMCFh4cVF3yF+wjV24zRTWxx+TCr9+lfx9byEhRYXs/4O105PAZ/r3fAWNLr9AT/3PAirfzR7VSOA2c9aPPaUj41F0QWNlMMjT/g4YF+XG6dFSE9PdIRCCCGEMJ30SMRo3Pi0lncOtuDIY9I6O6S42nM/CIft5sunYNXKVG6/q9PDiqu6JKJuSTZVt1twGE3BWLPz6zf+aXH/Iz5Ky6B/Hxg8CIYO8fYfeOtdixl3JsfKVEIIIUSH6IilX5N0CVhJJGLwxlts+z+mYMqZnRBMByks3MYuUApuv9PcNRp/cZBdn0TUbUAQ/T66gFlJmblvC9eF516yqaqEvr3B5/fut5Siez5kZsB/PrApXJbQMIUQQgiRBMxtMSXA+Rf6t72Eu4K330nyLVmVufNBlvzc2tX4aLl8Ln+e0SnhxN3PhbD0Z0VONqhm3t15uVBWDh98LG99IYQQomWqA27JR1oTMYi4bf13GXywGBx6bFooaLTbccnSzosknqqqFK5b3xPRlB3No6rN36BcCCGEEAkmiUQMBvRvW+vL54t0cCQdKAnH7zXktzV1W1k3RwGu4oJzOjGoOOrXT5OZCeWbm3+8Ygv4bBjQP8krWgghhGgPmR/RJpJIxODLeWz7QNDwxTyDV/1pw0bnGRnmlu+2m8PeEk2quWQi+rOr2HfvTg4sTnKyYeIvHCoroKqq8WOuC+s3wsD+mkkHJOkZTQghhBCdRhKJGA0YUNlyMqEhkBqmb99ODSmuFnxR7TW0W+JC4Q9Op8UTb6efAukp2qtDBajoZQKlvZ8dxa3TaxIbZDtdcK7DqJGatetg9RooLoG16zWFy6F7PlxxWYSUlERHKYQQQgjTSSIRoy/nwfCdKr3Gdm1CoQEX8nKqWPmTwcOagD594K3XqrbuhtOAqwmtrmrhN82xbHGEvt1diFje0q/R4UxELG69Kcy5ZyQ6wvbp2QPuuyPMGac69MiHSBgCAcWRh2nu+kuY/faR3gghhBBCtJ/ZC+YnyIfvA1Qy+2l46hn41VFw8YWJjSmexo+H0Koq1qyBK6dZ9O7lY+qVEYLB1roqzDL/UwdwmP0s/PADnHMmDBqU4KDiqEcPuPJ3Dpde5FC+2aJf3zTC4RoiEUkihBBCiG2Sj8s2kUSiHU4/zbslqz594MWnITc3QHFxhIjZnS3NOv2UREfQsVJSoGcQMjMtiosTHY0QQghhih1mGct2kaFNQgghhBBCiJhJj4QQQgghhBANydCmNpFEYjuVlsKixRZlZYr0dM3OO7vk5yU6qvipqIB359r8+KMdLZ/FL/Z18ckRI4QQQgghkEQiZlrDRx9bvPGWzYYNFqDRWpGXpzn4IIfDDnGwDB8w9sWXFjffksLKFRaOA5al8flSGD7c5s9/qmbw4ERHKIQQQgghEk0SiRh99bXFs8/7sW3NTju52Da4rmZ9SPHyKzaBFJh0oLn7LCxfDjfcmMKaNRa9e2nS0sHvtygudvnmG5trpgV4bFY1mZmJjlQIIYQQQiSS4dfOO5fjwH/et3AcTf/+Gtv27rcs6N1Lk5rqPV5Rmdg422POy35Wr7bo31+TmlZ/f2Ym9O2rWbLE5p//shMXoBBCCCFER9MdcEtCkkjEYM1axfLlFj17Nn809OylWbfeorDQ3CXDPvrYIiWFZudCpKaC68C8eZJICCGEEELs6GRoUwzCNRCJKPz+5hMJvw8cRxMOK0xNPauqFLbdcuyWjdE9LkIIIYQQ22buReHOJD0SMcjL03Trpiktbf7gKi2FzAzo3t3MJAJg4ECX6qrmy6c1OBEYOLCTgxJCCCGE6EwytKlNJJGIQU4OjN/dYcMGRU1N48ciEViz1mLnnV369jH3aDnicAefn2Z3QV63DrplaY46Itz5gQkhhBBCiC5FhjbFaPKhDitXKRZ+Z5PVTZORoamsUpQUK4YOdTnmKAdlcG/Y4b90mPdphLf+6aOsTJOV5S3/WlysCKTA6afXMGqUuYmSEEIIIYSID0kkYpSTAxecG2Hep5pPPrXYvFnRLUNz0IEO++zt0D0/0RG2j2XBH2+qYfhwlzfftFm1ykYpGD/e5dhjwhx5hLlL2wohhBBCiPiRRGI7ZGXBYYc6HDTJoaoKAgHw+xMdVfz4fPCb0yOcfmqE0lKL7t3T0boG13UTHZoQQgghRMeTwRdtInMk2sHn8/ZXSKYkoiHLgh49IC9PGb9btxBCCCGEiC/pkRBCCCGEEKIRgye8diK5ziyEEEIIIYSImfRICCGEEEIIUauj9n1IwnkX0iMhhBBCCCGEiJkkEkIIIYQQQoiYydAmIYQQQgghGkrCYUgdQXokhBBCCCGEEDGTHgkhhBBCCCHqKDpm+dfkW1JWeiSEEEIIIYQQMZMeCSGEEEIIIRqSORJtIj0SQgghhBBCiJhJIiGEEEIIIYSImQxtEkIIIYQQoiEZ2tQmSmudVP8qrTWum1RFSjjbtnAcN9FhiHaQOjSb1J/5pA7NJ3UYP5alUKrrrmDkOJqSkvi/bk4O2HbXLff2SLpEQgghhBBCCNHxZI6EEEIIIYQQImaSSAghhBBCCCFiJomEEEIIIYQQImaSSAghhBBCCCFiJomEEEIIIYQQImaSSAghhBBCCCFiJomEEEIIIYQQImaSSAghhBBCCCFiJomEEEIIIYQQImaSSAghhBBCCCFiJomEEEIIIYQQImaSSAghhBBCCCFiJomEEEIIIYQQImaSSIhmlZSUcOONN7L//vuz2267ccopp/Dll18mOiyxnQoLCxk3bhwvv/xyokMRMXr11Vc5/PDDGT16NEcccQT//Oc/Ex2SaKNIJMK9997LgQceyLhx4zjttNNYsGBBosMSbfTwww8zZcqURvctXryY008/nV133ZVJkybx5JNPJig6IboGSSREs6644grmz5/PXXfdxZw5cxg5ciTnnHMOP//8c6JDEzEKh8NcddVVVFRUJDoUEaPXXnuN6667jtNOO40333yTI488su69Kbq+hx56iBdffJGbb76ZV199lcGDB3PuuecSCoUSHZrYhqeffpp77rmn0X3FxcWcddZZDBgwgDlz5nDJJZdwxx13MGfOnMQEKUQXIImE2Mry5cv5+OOPmT59OuPHj2fw4MHccMMNBINB/vGPfyQ6PBGj+++/n8zMzESHIWKktebee+/lN7/5DaeddhoDBgzgoosuYp999uHzzz9PdHiiDebOncuRRx7JL37xCwYOHMjUqVMpLy+XXokubP369Vx44YXccccdDBo0qNFjL7zwAn6/nz/96U8MHTqU448/njPPPJNHHnkkMcEK0QVIIiG2kpubyyOPPMLo0aPr7lNKoZSirKwsgZGJWH3xxRc8//zzzJgxI9GhiBgVFhayevVqjjrqqEb3/+1vf+OCCy5IUFQiFvn5+bz33nusWrUKx3F4/vnnSUlJYcSIEYkOTbTgu+++w+/38/rrrzN27NhGj3355ZdMmDABn89Xd99ee+3FsmXL2LhxY2eHKkSXIImE2EpWVhYHHHAAKSkpdfe9/fbbLF++nP322y+BkYlYlJWVcfXVV3P99dfTu3fvRIcjYlRYWAhARUUF55xzDnvvvTcnnngi//nPfxIcmWir6667Dr/fz0EHHcTo0aO5++67ue+++xgwYECiQxMtmDRpEvfffz/9+/ff6rF169bRq1evRvcFg0EA1q5d2ynxCdHVSCIhtunrr79m2rRpHHrooUycODHR4Yg2mj59OuPGjdvqirYww+bNmwG45pprOPLII3nsscfYd999ufjii5k3b16CoxNtsXTpUrp168bMmTN5/vnnOe6447jqqqtYvHhxokMT26GqqqrRBTaAQCAAQHV1dSJCEiLhfNt+itiRzZ07l6uuuorddtuNO+64I9HhiDZ69dVX+fLLL2VOi8H8fj8A55xzDsceeywAI0eOZNGiRTz++OPsvffeiQxPbMPatWu58soreeKJJxg/fjwAo0ePZunSpdx///08+OCDCY5QxCo1NZWamppG99UmEOnp6YkISYiEkx4J0aLZs2dz6aWXcuCBB/J///d/dVdeRNc3Z84cNm3axMSJExk3bhzjxo0D4KabbuLcc89NcHSiLXr27AlAQUFBo/uHDRvGqlWrEhGSiME333xDOBxuNNcMYOzYsSxfvjxBUYn26NWr11YrbtX+XPt+FWJHIz0SolnPPPMMN998M1OmTOG6665DKZXokEQM7rjjDqqqqhrdd+ihh3LZZZdx9NFHJygqEYtddtmFjIwMvvnmm7or2gBLliyRMfYGqB1L/8MPPzBmzJi6+5csWbLVakDCDHvssQfPPfccjuNg2zYAn376KYMHDyY/Pz/B0QmRGJJIiK0UFhZy6623csghh3DBBRc0Wo0iNTWVbt26JTA60RYtXR3Lz8+XK2eGSE1N5dxzz2XmzJn07NmTMWPG8Oabb/Lxxx/zxBNPJDo8sQ1jxoxh991355prruGmm26iV69evPrqq8ybN49nn3020eGJ7XD88ccza9YsrrvuOs4991z+97//8cQTT/DHP/4x0aEJkTCSSIitvP3224TDYd59913efffdRo8de+yxspSoEJ3k4osvJi0tjbvvvpv169czdOhQ7r//fvbcc89Ehya2wbIsHnroIe655x6mTZtGaWkpBQUFPPHEE1stKyrMkJ+fz6xZs7jllls49thj6dGjB1dffXXdHCYhdkRKa60THYQQQgghhBDCLDLZWgghhBBCCBEzSSSEEEIIIYQQMZNEQgghhBBCCBEzSSSEEEIIIYQQMZNEQgghhBBCCBEzSSSEEEIIIYQQMZNEQgghhBBCCBEzSSSEEJ1mypQp7Lzzznz77bfNPj5p0iSmTp3aKbFMnTqVSZMmdcrfikUkEmHq1KmMGzeO3XbbjU8//XSr53z22WcMHz680W3UqFEcdNBB/PWvf6WysjIusdx///0MHz48Lq8lhBAi+cjO1kKITuU4DtOmTePll18mJSUl0eF0OR9++CGvvPIKF198Mfvssw8777xzi8+98cYb2WWXXQCorKzk+++/57777mPDhg3cfvvtnRWyEEKIHZT0SAghOlW3bt348ccfmTlzZqJD6ZJKSkoAOO6449hjjz3IyMho8bnDhg1j1113Zdddd2XvvffmrLPO4qyzzuKNN95g8+bNnRSxEEKIHZUkEkKITjVy5EiOOeYYZs2axcKFC1t97vDhw7n//vsb3dd0uM3UqVM555xzeP755zn44IMZM2YMJ598MoWFhbz33nscddRRjB07lhNPPJHFixdv9Teef/55Jk6cyJgxYzjjjDNYtGhRo8fXrFnDFVdcwYQJExg7duxWz1m1ahXDhw/n8ccfZ/LkyYwdO5Y5c+Y0Wx7HcXj66ac56qijGDNmDBMnTuSOO+6gurq6riy1Q7sOPvhgpkyZ0ur/pzlZWVlb3VdSUsKNN97IPvvsw+jRo/n1r3/NvHnzGj2nurqav/zlL+y7776MGzeOadOm1cVVa+rUqZxxxhncdNNN7Lbbbhx++OE4jkN1dTUzZ85k8uTJjB49mkMPPZRHHnkE13Ub/f5bb73Fcccdx7hx49h333258cYbKS0trXv8/vvvZ/Lkybz77rsceeSRjB49ml/96lfMnz+fBQsWcOKJJzJmzBiOPPLIRvFXVVUxffp09t9/f0aNGsXkyZP529/+FvP/TgghRGxkaJMQotNde+21fPzxx0ybNo05c+a0e4jT/PnzCYVCTJ06lerqaqZPn87555+PUorLLruMtLQ0brrpJq666irefPPNut9bt24dDzzwAFdeeSWZmZk88MADTJkyhX/84x/06dOHoqIiTj75ZNLS0rjhhhtIS0vj73//O6eddhovvfQSQ4cOrXut+++/n+uuu47MzEzGjh3bbJw33ngjr732Gueddx7jx49n0aJFzJw5k8WLFzNr1iwuvvhievXqxUMPPcQDDzzA4MGDWy2367pEIhEAwuEwixcv5sknn+SYY44hMzMT8BKEM844g40bN3L55ZcTDAaZM2cO5557LrNmzWLvvfcG4A9/+AMffvghl19+OQMHDuT555/nH//4x1Z/88svvyQQCDBz5kwqKiqwLIsLL7yQBQsW8Nvf/pYRI0bw2Wefcc8997By5UpuvvlmAB588EHuu+8+Tj31VC6//HJWrlzJvffey4IFC3jhhRdITU2tq5MZM2Zw+eWXk56ezs0338xll12G3+/nwgsvpHfv3nWPv//++6SmpnLrrbfy0Ucfcc0119C9e3c++OAD/vrXv5KTk8Pxxx/f1sNICCFErLQQQnSS008/XZ9++ulaa63//e9/64KCAn3XXXfVPX7ggQfqa665pu7ngoICfd999zV6jfvuu08XFBTU/XzNNdfogoICvXTp0rr7brzxRl1QUKA/+eSTuvv+9re/6YKCAl1aWtro97755pu654RCIT1mzBg9Y8YMrbXWd911lx49erRetWpV3XOqq6v1QQcdpC+99FKttdYrV67UBQUF+tprr2217D/++KMuKCjQDz/8cKP7X331VV1QUKDff/99rbXWc+bM0QUFBXrlypUtvtann36qCwoKmr1NmjRJr1u3ru65zz//vC4oKNALFiyou891XX3aaafp4447Tmut9ZIlS3RBQYF+5pln6p7jOI4+/PDDm/1fr127tu6+999/XxcUFOg33nijUYwzZ87UBQUFesmSJbqkpESPGjVK33DDDY2e88UXX+iCggI9e/ZsrXV93f73v/+te87DDz+sCwoK9Isvvlh337/+9S9dUFCgFy1apLXW+rDDDtPXX399o9d+4IEH9Hvvvdfi/1AIIUT7ydAmIURCTJo0iaOPPppZs2bx3Xffteu1srOzG/UOdO/eHaBRz0BOTg4AZWVldff179+fMWPG1P3co0cPdt11V7744gsA5s2bx8iRI+nZsyeRSIRIJIJlWey///588sknjWIYOXJkqzF+/vnnABxxxBGN7j/iiCOwbZvPPvusrcWt88c//pGXXnqJl156iWeeeYbbbruNQCDACSecwJo1a+rK0KNHD3bZZZe6MjiOw4EHHsjChQspLS3lyy+/BGi0ipVlWRx22GFb/c2cnBx69erVqFw+n4/Jkyc3et7RRx9d9/iCBQuoqanhyCOPbPSc8ePH07dv37r/Ta3ddtut7vu21OWee+7JCy+8wHnnncfs2bNZuXIll1xyCRMnTtz2P1EIIcR2k6FNQoiEuf7665k3b17dEKftVTuMp6n09PRWf6+2kdpQfn4+a9euBby5BcuXL69bGamphsusbutv1c4F6NGjR6P7fT4fubm5lJeXt/r7zRk8eDCjR4+u+3n33XdnwoQJHHzwwTz22GNcf/31lJSUsGHDhhbLsGHDhrrYcnNzGz3WNFZgq8nfpaWl5ObmYtt2s79bXl5e9/rN/b+7d+++Vdmbq8+0tLRm4we47rrr6NWrF6+//jo333wzN998M+PGjWP69OmMGDGixd8TQgjRPpJICCESJjs7m+nTp3PJJZfw4IMPNvscx3Ea/VxRURG3v99wom+tDRs2kJeXB3grTE2YMIGrr7662d+PZW5HdnZ23ev37du37v5wOExxcfFWjfjt1adPH/Ly8li2bBnglWHQoEHccccdzT6/X79+dX9748aN9OnTp+6x2hWkWpOdnU1xcTGO4zRKJkKhEOAlJ7Vl37hxI0OGDGn0+xs2bKB///5tLl9zUlJSuOiii7joootYs2YN7733Hg8++CBXXnllozkxQggh4kuGNgkhEurggw/myCOP5JFHHqGoqKjRY5mZmaxfv77RfV9//XXc/nZhYSErVqyo+3nt2rXMnz+fPffcE4AJEyZQWFhYd+W/9vbaa6/x0ksvbXUVvjUTJkwA2Kph++abb+I4DrvvvnscSuStIlVUVMSgQYPq/u7atWvJz89vVIaPP/6YWbNmYds2e+21FwD/+te/Gr3We++9t82/N2HCBCKRyFa/+/rrrwNeL8nYsWNJSUnhjTfeaPScL7/8kjVr1jQayhSrqqoqDjvsMB577DHAS6ROO+00jjjiiLrhXUIIITqG9EgIIRLuhhtu4NNPP2Xjxo2N7p84cSJvvvkmY8eOZeDAgbz88sssX748bn83EAhw0UUXcfnll+M4Dvfeey85OTmcccYZAJx55pm89tprnHnmmZx99tnk5uby1ltv8cILLzBt2rSY/tawYcM49thjue+++6isrGSPPfZg8eLFPPDAA+y5557st99+Mce/dOlSAoEAAFpr1qxZw8yZMwkEApx++umAtx/F7NmzOeuss+pWPfrkk0949NFHOf300/H7/QwcOJCTTjqJu+++m0gkwsiRI3nttdf44YcfthnD/vvvz5577sn111/P+vXrGTFiBJ9//jmPPvooxx57LMOGDQPg/PPPZ+bMmfj9fg488EBWrVrFvffeW/d/2V6pqanssssuPPDAA/j9foYPH05hYSGvvPJKs3M8hBBCxI8kEkKIhMvJyWH69On89re/bXT/tGnTiEQi3Hbbbfh8Pg4//HCuvPJKrr/++rj83Z133pnDDjuM6dOnU15ezt577821115bN7SpZ8+ePPfcc9x5551Mnz6d6upqBg0axC233MIJJ5wQ89+75ZZbGDhwIHPmzOHRRx8lGAzym9/8hosvvhjLir2D+E9/+lPd95ZlkZOTw6677srtt99e1yORnp7O008/zZ133sntt99OeXk5ffv25corr+Tss8+u+/2bbrqJ7t27M3v2bEpLS9lvv/248MILueeee1qNQSnFww8/zH333ccTTzxBUVER/fr144orruCss86qe96ll15a9/rPP/88OTk5TJ48md///vfbnF/Slv/DPffcw2OPPcaGDRvIz8/nhBNO4He/+127XlcIIUTrlNZaJzoIIYQQQgghhFlkjoQQQgghhBAiZpJICCGEEEIIIWImiYQQQgghhBAiZpJICCGEEEIIIWImiYQQQgghhBAiZpJICCGEEEIIIWImiYQQQgghhBAiZpJICCGEEEIIIWImiYQQQgghhBAiZpJICCGEEEIIIWImiYQQQgghhBAiZpJICCGEEEIIIWL2/8nMQ27J+7+/AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwcAAAIhCAYAAAAb2sbQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADtNUlEQVR4nOzdd3gU5drA4d/MtvSEJIQSkB5aAClSpYqKqHhE+SyIekRRARsqgiKigogiNkBQQY+do3IQVGxYQKRYsFFEIPQS0vu2eb8/NllZEiCBhM2E576uVbZNnpl3dmaeeZumlFIIIYQQQgghznh6sAMQQgghhBBCVA+SHAghhBBCCCEASQ6EEEIIIYQQxSQ5EEIIIYQQQgCSHAghhBBCCCGKSXIghBBCCCGEACQ5EEIIIYQQQhST5EAIIYQQQggBSHIgqgmZi+/UyTYUp4PsZ0IIUbNJcnAGGzFiBC1btgx4tGrVik6dOjF06FA++uijCi9zwIABTJgwoULfWbFiBQ888ID/+bp162jZsiXr1q2r8N8/VSNGjGDEiBHH/cyLL75Iy5YtT/lvncy2KktOTg7jx4/np59+OuVlBUtJmR/5SE5O5rzzzuOpp56isLCwUv5OZZWdWQwYMKDU77tbt27cdtttbNmypcLL+/vvv7nmmmsCXmvZsiUvvvhiZYUsjrJ3715atmzJ4sWLj/mZxYsX07JlS/bu3Vvm+xMmTGDAgAFVFWKVOHrfbdmyJe3ateP888/nmWeewel0Hvf7wTyPCGF21mAHIIKrTZs2PPLII/7nXq+XgwcP8vrrrzN+/HhiYmLo27dvlcbw+uuvBzxv27YtixYtonnz5lX6d0/WsGHD6N27d7DD8Nu8eTMfffQRV1xxRbBDOWWTJ0+mbdu2ABQWFrJlyxZeeOEFDh8+zNNPPx3k6Mypb9++jB49GgCPx0NqaioLFy7khhtu4NNPPyUuLq7cy/rss8/YsGFDVYUqRIAj910Ap9PJunXrmDt3Lvv27WPWrFnH/G51P48IUZ1JcnCGi4iI4Oyzzy71ep8+fejRoweLFy+u8uSgvDFVF3Xr1qVu3brBDqNGat68eUDZ9+jRg9zcXF566SUeeeQRIiIighecScXGxpb6PbVr146BAwfy2WefMXz48OAEJsQJlLXvduvWjYMHD7J48WImTJhAQkJCmd+t7ucRIaozaVYkyuRwOLDb7Wia5n/NMAxefvllzj//fJKTk7nwwgt58803j7ucvXv3Mn78eM4991zatm1Ljx49GD9+PJmZmYCvGc/69etZv369vwq4rOrgP/74g5EjR9KtWzc6derEbbfdxt9//+1/v+Q7a9as4aabbqJDhw706tWLp59+Gq/X6//c6tWr+b//+z86duzIOeecw+2338727dsDYlZK8corr9CvXz/at2/PVVddxe+//+5//+imKSNGjGDChAnMmzePnj170rlzZ0aPHs2+fftOuJ3dbjdTp07lnHPOoUuXLjzwwANkZGQEfOann37iuuuuo0OHDnTt2jXgM+vWreP6668H4Prrr2fEiBGMHTuWIUOGBCzjhhtuIDk5maKiIv9r06ZN48ILL/Q//+qrrxg6dCjt2rWjV69eTJ06lYKCgoDlbN26lVtvvZVOnTrRqVMnxowZw549eypcDhURFRVV6rWsrCwmT55Mz549adeuHf/3f//HmjVrAj7jdDqZPn06vXr1omPHjkycOLFUU4QJEyZwww038Mgjj9CpUycGDx6M1+vF6XQyZ84cBg0aRLt27bjgggt4+eWXMQwj4PuffvopQ4cOpWPHjvTq1YvJkyeTnZ3tf//FF19k0KBBfPnll1xyySW0a9eOyy67jA0bNvDrr78ybNgw2rdvzyWXXBIQf1FREVOmTKFPnz4kJyczaNAgFixYcFLbryzR0dGlXisqKuKZZ57hggsuIDk5mU6dOvHvf/+bzZs3+9dl9uzZQOmmRHl5eTz00EN07dqVjh07cuedd5KWluZ/f8SIEdx3333ceeednH322fz73/8GIDc3l+nTpzNw4EDatWvHJZdcwgcffBAQl9fr5e233+bSSy+lffv29OvXj5kzZwaU5YQJExg5ciSLFi1i4MCBtG/fnquvvpqUlBS++eYbLr30Ujp06MCwYcP86wOQkZHBvffeS69evfxls2TJkgpvzxMd58DXTOaFF15gxowZ9OzZk/bt2zNy5Eh27twZsKwvvviCIUOG0L59ey6//PKTav5VHqtXr+baa6+lc+fOdOvWjXvvvZcDBw743z9WE7yjy/7jjz/2x9u9e3fuu+8+Dh06FPCd999/n4svvpjk5GT69evHiy++eNLHA4Dk5GSUUv54BwwYwBNPPMENN9xA+/bteeihh8o8j/z666/cdNNNdOrUie7duzNu3LiAWMtzXBHiTCDJwRlOKYXH4/E/nE4nO3bsYOLEieTn53PZZZf5PztlyhReeOEFhgwZwrx58xg0aBBPPPEEc+bMKXPZhYWFXH/99Wzfvp1HHnmEBQsWcP311/PJJ5/w7LPPAvDII4/Qpk0b2rRpw6JFi/xNSo60du1afzvnJ554gqlTp3LgwAGuvvrqUhf29913H507d2bevHlccsklvPrqq7z//vsA7Nmzh9GjR5OcnMxLL73EtGnTSElJYdSoUQEXfT///DNffvklDz/8ME8//TSpqancfvvteDyeY27HFStWsHjxYiZNmsSjjz7K5s2bGTFixAnbyi9fvpyNGzfy5JNP8sADD/Dtt99yyy23+E+cP/74IzfeeCMhISE899xzPPjgg6xfv57rr7+eoqIi2rZty+TJkwFfk5xHHnmEvn37snXrVtLT0wHfRfKGDRtwu938+uuv/r+9cuVK+vfvD8CyZcsYM2YMTZs2Zc6cOYwdO5alS5cyevRofwfUlJQUrr76atLT05kxYwbTpk1jz549XHPNNf6/VZ5yOB7DMPz7YmFhIb/88gtvvPEG//rXv/y1Bk6nkxtuuIEVK1Zwzz33MHv2bOrWrcvNN98ccCK///77+e9//8utt97Kc889R3Z2dqkmbOBLvg4cOMCcOXO499570XWd2267jVdffZVhw4b59/XnnnsuoAne3LlzGTduHGeffTYvvPACY8aM4fPPP2fEiBEBSdjBgwd58sknue2223j++efJycnhzjvvZNy4cQwbNow5c+aglOKee+7xf++JJ55g5cqVPPDAAyxYsMDf9+LDDz884TY82pG/cZfLxf79+5k2bRrx8fFcdNFF/s+NHz+eDz/8kFGjRrFw4UImTpzI33//zb333otSimHDhnHllVcCsGjRIoYNG+b/7htvvIHb7eb555/n3nvv5euvv+axxx4LiGP58uWEh4fz0ksvcfPNN1NUVMS1117LsmXLuPnmm5k7dy6dO3fmoYceYt68ef7vTZ482Z9AvPTSSwwfPpy33norYN8E2LBhA2+99RYTJkxg+vTpbN++nVGjRjF9+nRuvfVWZs2axYEDB7jvvvv837n//vvZvn07jz76KK+88gpt2rThgQceYO3ateXevuU5zh25nXbs2MH06dOZOnUqf/75Z0B/q6+//po777yTli1bMmfOHC666CLuv//+csdy5O/nyMfRnciXLFnCTTfdRL169Zg1axYTJ05kw4YNXHXVVaV+y8fz888/M378eC644AJeeeUVJk6cyNq1a7n33nv9n5k/fz4PP/wwPXr0YN68eQwfPpxXXnmFhx9+uNx/52gpKSkANGzY0P/a22+/Tbt27Zg7d65/Pz3Spk2buO6663A6nTz11FM8+uij/Pnnn4wcOdJ/7ivPcUWIM4ISZ6zrrrtOJSUllXq0bNlSXXrppWr58uX+z+7YsUO1bNlSzZ8/P2AZzz77rGrXrp3KyMhQSinVv39/9cADDyillNq0aZO65ppr1O7duwO+c+utt6oLL7wwII7rrrvO/3zt2rUqKSlJrV27Viml1JVXXqkGDx6sPB6P/zPZ2dmqa9eu6s477wz4zrPPPhvwtwYMGKBuvfVWpZRSH3/8sUpKSlIHDx70v//bb7+pWbNmqdzcXH8s7du3V5mZmf7P/Pe//1VJSUlq8+bNSimlXnjhBZWUlBQQf9u2bQPWc+PGjSopKUm98847pTd8sf79+6uePXuq/Px8/2tffvmlSkpKUl9//bVSSqmrrrpKXXLJJQHrvmPHDtW6dWv11ltvlbm9Dh06pFq2bKmWLVumlFLqhx9+UGeffba68MIL1QsvvKCUUmr37t3+7xiGofr06aNGjhwZEN8PP/ygkpKS1DfffKOUUmrcuHGqZ8+e/m2llFKZmZmqc+fO6sknnyx3OZSl5HtlPQYMGBBQZosWLVJJSUnq119/9b9mGIYaPny4Gjp0qFJKqa1bt5ba/l6vVw0ePDig7B544AGVlJSkDhw44H/t22+/VUlJSerjjz8OiHHOnDkqKSlJbd26VWVlZank5GT18MMPB3zmxx9/VElJSf6yKdlXvvvuO/9n5s+fr5KSktT777/vf+2zzz5TSUlJatOmTUoppS688EI1adKkgGXPnj3bXxbl1b9//2P+xpcuXer/nNPpVDfddJP65JNPAr6/cOFClZSUpFJTUwPW50hJSUlq2LBhAa/dd9996pxzzvE/v+6661SHDh2U0+n0v/b222+rpKQk9csvvwR898EHH1Tt2rVTmZmZ6u+//1ZJSUmljjtLlixRSUlJ6ttvv1VK/VOO27Zt839m8uTJKikpSf3www/+1xYsWKCSkpJUdna2Ukqp5ORk9dJLL/nf93q96sknn1Q///zzsTZpKeU9zvXv31/1798/4Lf84osvqqSkJP/xc+jQoaW2Zcn+8uGHHx4zhg8//PCYv5+SR//+/f3r2KtXL3XTTTcFLGPXrl2qbdu2asaMGUqpsstaKV95lxxH5s+frzp27BhQrt9++6168cUXlWEYKicnR7Vv315Nnjw5YBklx9StW7cec5369++vxo8fr9xut/9x8OBB9d///lclJyeru+++O+CzAwcODPj+0cfFO+64Q/Xq1UsVFRX5P/PLL7+o/v37q02bNpXruCJqPqfTqS6++GL/flMe69atU0OGDFHt27dXw4YN818rmJn0OTjDtW3blkcffRSA1NRUnnvuOdxuN8899xxNmzb1f27t2rUopRgwYEDAHfQBAwbw0ksv8fPPPzNw4MCAZbdu3Zp33nkHwzDYuXMnu3btYtu2bezYseO4d+GPVFBQwB9//MHYsWOxWCz+16Oioujfvz/fffddwOc7duwY8Lxu3br+pjEdOnTA4XBw5ZVXMmjQIPr06UO3bt1o3759wHeaN29OTEyM/3mDBg0AXxOIY+nUqVPAXaw2bdrQsGFDfvzxx1Kjuxypb9++hIWF+Z8PGDAAq9XKjz/+SPfu3fntt98YOXKk/+4v+O6WNWvWjNWrV5fZXjwhIYE2bdrwww8/+JurdOrUifr167N+/XrAV2sQFRVF586d2bFjBwcPHuTWW28NKJdzzjmHiIgIVq9eTb9+/Vi7di1du3YlJCTE/7mIiAi6dOnCDz/8EBDD8crheB599FF/7ZHL5WLPnj28/PLLXHnllSxatIj69euzZs0aateuTdu2bQPi7d+/P0899RTZ2dn+kZuOHKFF13UuvPBCtm3bFvA3Y2JiAvqQrF+/HqvVyqBBgwI+N2TIEJ5//nnWr19PgwYNcLlcXHLJJQGf6dKlC4mJiaxfvz6gbDp16uT/d3x8PODbH4+MAXwjT4GvXfV7773HwYMH6du3L3379mXMmDEn3H5l6d+/v/+7SikyMjJYvnw59913H4WFhfzf//0fdrvd32zp0KFDpKSksHPnTr755hvAVxbH07lz54DnDRo08K9LiaZNm2K32/3P169fT2JiYql9ZciQIXzwwQf89ttv/qZ5F198ccBnLr74YiZOnMi6dev8faKio6Np1qyZ/zMn2s5RUVF069aNF198kU2bNtG7d2/69u0bcCe/PCpynGvXrl3AcaxkvyssLCQ0NJSNGzdy1113BXznoosu4plnnilXLC+99BK1a9cu9fqcOXPYunUr4Lvrfvjw4YC7+wBnnXUWHTt29B8jyuOcc87h2Wef5ZJLLuHCCy+kb9++nHvuuf4y2bBhA0VFRWWeN8DXtKlFixbHXP6SJUtKNfOyWq2cf/75AbV44CuH4/n555/p27cvDofD/1rHjh35+uuvAXj55ZdPeFwpqzmeqDmcTif33ntvQJPlE9mzZw+33HILt9xyC5dccgkLFixg9OjRfPbZZwHHO7OR5OAMFx4eTrt27fzPO3TowJAhQ7jppptYvHgxsbGxgK8tJpQ+SZc4uo1piddee4158+aRlZVFfHw8ycnJhIaGHvdC+0i5ubkopfwn+iPFx8eXWk5ISEjAc13X/VXqDRo04K233uLll1/mgw8+4I033iAqKoprr72Wu+++29+/4siL9ZJlAKXamx+pTp06pV6Li4sLaH9elqNP5LquU6tWLXJycsjJycEwDF555RVeeeWVUt898iR3tL59+/qHol2zZg3nn38+9erV46OPPsLlcrFq1Sp69+6N1Wr1l+2jjz7qTxSPlJqaCvj2gU8//ZRPP/201GdK9pMSxyuH42nSpEnA/ti5c2e6du3KwIEDWbhwIZMmTSIrK4vDhw+X2QQN4PDhw/7tXqtWrYD3yrpwCg8PD3ienZ1NrVq1Ai7ijvxubm6uf/nl3S/L6kgdGhpaZvwADz30EHXr1mXp0qU8/vjjPP7443Ts2JEpU6bQqlWrY36vLDExMQHbFKBfv36kpqby9NNPc8UVV2CxWFi1ahVPPPEEO3bsIDw8nFatWvl/Cycqu7J+M0d/p6ztXFZ5lGzTnJwc/3Y++nNWq5VatWoFbOdjdVY/OrYjPfvss8ybN4/ly5fz+eefo+s6PXv25LHHHiMxMfGY3ztaeY9zR5f5kceW7OxslFKl9tljdbgtS1JSkv9mxpGOvNlR8ns/1r67adOmcv+9jh078vLLL/P666/z2muv8fLLLxMfH89tt93GiBEj/H9r1KhRZX6/5NhyLEcmtpqmERoaSmJiYqnjCxy/nMG33scbmas8xxVJDmqubdu2+ZtQVsRbb71F+/btGTt2LAAPPvggl156KTt27Kjwsbo6keRABIiPj2fy5MncddddTJs2zX/HqqRT6H/+859SJ3mA+vXrl3pt2bJlPPnkk9x///0MHTrUfwF511138ccff5QrnsjISDRNC+jcWOLw4cMBJ73yaN++PbNnz8blcvHzzz+zaNEi5s2bR6tWrQLaX1fUkR0PS6SlpXHWWWcd93slJ88SXq+XzMxM4uLiCA8PR9M0brzxxjKTsuNdXPbr14+5c+eyceNGNm7cyEMPPUT9+vVxOp389NNPrFu3zp8IlJTt+PHj6dq1a6lllZwQIyMj6dmzp78z6ZGs1qo7lNSvX5/Y2Fh/x83IyEgaN27MzJkzy/x8gwYN/BdYaWlpAfvm0du7LNHR0WRmZuL1egMShJILmVq1avm3SVpaWkANG/j2yyNrkU6G3W7n9ttv5/bbb2f//v188803zJ07l3vvvZdPPvnklJZdIjk5mR9++IHMzEwKCgoYM2YMAwcOZP78+TRs2BBN03j77bdZtWpVpfy9o0VHR7Nr165Srx8+fBgg4OL/8OHDARfrbrebzMzMUhfSFRUZGcn999/P/fffz44dO1ixYgVz587l0Ucf5eWXXy7XMirjOAe+C3hd10sd68qzz1ZEyTHzWMfUkm1acrPkyN9Bfn5+qe/07t2b3r17U1hYyNq1a3njjTeYOnUqHTp08B9bZs6cSePGjUt9t6wE5ehYj05sT1ZkZGSpwR4AvvvuO1q3bl2u44qoudavX0+3bt245557So1y9dNPP/HEE0+wbds2GjVqxNixY/2Deaxfv56hQ4f6PxsaGspXX311OkOvEtIhWZQyaNAgevfuzccff+yvYu7SpQvguwhu166d/5GRkcHzzz9f5gns559/Jioqiptvvtl/wszPz+fnn38OuAtfcvesLGFhYSQnJ7N8+fKA0S1yc3P59ttvSzVnOJ7XX3+d/v3743K5sNvt9OjRg8cffxyA/fv3l3s5Zfn5558DEoQ///yTvXv30qNHj+N+b/Xq1QFV2J9//jkej4du3boRERFBmzZt2LFjR8A2b9GiBS+++KJ/FI6j73CDr/lCbGwsc+fOxeFwkJycTEJCAk2bNmX27Nk4nU769OkD+Jp7xMXFsXfv3oC/U6dOHZ555hn/ncSuXbuybds2Wrdu7f9McnIyr7/+Ol9++eUpbb/j2bt3LxkZGf6Li65du3LgwAHi4uIC4l29ejWvvvoqFouF7t27A75x+Y9U0kzmeLp27YrH4yn13aVLlwK+2owOHTpgt9v5+OOPAz7z008/sX///oBmRBVVVFTEhRdeyMKFCwFfcjR8+HAuvvjiU95Pj/THH38QHR1NrVq1+PPPP3E6nYwaNYqzzjrLf2FYkhiU3E073m+1os455xz27dtXat6EpUuXYrPZaN++vT9ZPToh+uSTT/B6vRX6/R9t37599O3b11/OTZs25ZZbbqFnz54V2s7lPc6diMPhoGPHjnzxxRcBdy9Lmr1UliZNmlC7du1S++6ePXv49ddf/ftuSU3MwYMH/Z/5+eefA74zY8YMrrjiCpRShIaG0r9/f3+zrP3799OhQwdsNhuHDh0K+K1arVZmzZp1zEnbqkKXLl1YvXp1QBO5TZs2MWrUKDZu3Fiu44qoua699loefPDBUjfdDh8+zK233srQoUP9gydMmDDB33R1z549hISEcOedd9KzZ0+uv/76Uk1XzUhqDkSZHnzwQYYMGcLUqVP53//+R8uWLRkyZAgPP/ww+/btIzk5mZSUFJ599lkaNGhQ5l2h9u3b8+677/Lkk0/Sv39/UlNTWbBgAWlpaQHVs1FRUWzYsIE1a9bQpk2bUsu59957GTlyJKNGjeLaa6/F7Xbz8ssv43K5KtQOu3v37sycOZMxY8Zw3XXXYbFYeO+997Db7f5Re05WYWEhN998M7fffjv5+fk8++yzJCUllWqTfrTDhw9zxx13MGLECHbu3MmsWbPo1auXP6kYN24co0aN4t5772XIkCF4vV4WLlzIb7/95p8cKDIyEoBvv/2W6OhoWrVqha7r9OnThyVLlnDuuef67+x369aNd999ly5duvjvIFosFu655x4mT56MxWKhf//+5OTkMHfuXA4dOuSvZh89ejRXX301t956K9dccw0Oh4NFixbx1Vdf8cILL5zS9iuxbds2f3MppRT79+9nzpw5OBwOrrvuOgCGDh3KW2+9xb///W9uu+026tWrxw8//MArr7zCddddh81mo1GjRlx11VU8++yzeDweWrduzUcffcRff/11whhK+qJMmjSJQ4cO0apVK9avX88rr7zC5Zdf7p9UadSoUcyZMwebzUb//v3Zu3cvzz//PM2bN+fyyy8/6W0QEhJC27ZtmT17NjabjZYtW5KSksL//ve/gKFnN23ahN1uP+EkTxkZGQGjVBUWFrJkyRLWrFnDuHHjsFgstG3bFqvVytNPP81NN92Ey+Vi8eLFfPvttwD+/iIld4I//vhjOnTocEo1JEOHDuWdd95hzJgx3HnnnTRo0ICvv/6aDz/8kLFjxxIVFUVUVBSXX345L7zwAoWFhZxzzjls3ryZ2bNn061bt1OajDAxMZG6desydepU8vLyOOuss/jzzz/57rvvuPXWW/2f+/XXX4mNjT1mLWB5j3PlMW7cOG644QbGjh3LVVddRUpKSsDITZVB13XGjRvHxIkT/ceVzMxMZs+eTXR0tL9msG/fvkyfPp3JkyczcuRI/4heR9Ycd+/enddee40JEyYwZMgQ3G43r776KjExMXTv3p2YmBhuvvlmnn/+efLy8ujWrRuHDh3i+eefR9O009rsYvTo0Vx11VXceuut/tHennvuOdq3b0+vXr3weDwnPK6IM8/bb79Nz549/eefRo0asXnzZv7zn//QpUsXCgoKmDlzJmPHjuXWW2/ljTfe4MYbb+Tzzz8vs5WFWUhyIMrUtGlTRowYwcKFC3n33Xe57rrrmD59OvPnz/d3lIyLi2Pw4MHcfffdZd5Vufzyy9m7dy8ffvgh77zzDnXq1KFv375ce+21PPzww2zfvp1mzZoxfPhw/vzzT2655RamT59eqo1tjx49eO2113jhhRcYN24cdrudLl26MGPGjON2Zjtaq1atmDdvHnPmzGHcuHF4vV6Sk5NZuHBhqaYhFdWlSxe6d+/OQw89BPg63I0fP/6EHZKuvfZacnNzGTNmDHa7nUsvvZT777/ff+f23HPPZcGCBcyePZs777wTm81G27Ztee211/xVny1atOCSSy7xNwEpuSPYt29flixZQrdu3fx/ryQ56NevX0Acw4YNIzw8nFdffZVFixYRFhZGp06dmDlzpv8CsFWrVrz99ts8++yzjB8/HqUUSUlJzJkzh/POO++Utl+JI4e/1HWdmJgYzj77bJ5++ml/AhoWFsbbb7/NM888w9NPP01ubi6JiYnce++93HTTTf7vP/LII8THx/PWW2+RnZ1N7969ue2223juueeOG4OmacyfP58XXniB119/nYyMDBo0aMC4ceMCmlTdcccd/uUvWrSImJgYBg0axN13333C9s/l2Q7PPfccCxcu5PDhw8TFxXHllVcGdFYdO3YsiYmJJ5xr5LvvvgvouB8WFkaTJk145JFHuPbaawHfCe+ZZ55h9uzZ3H777URHR3P22Wfz5ptvMmLECH766SdatmzJBRdcwEcffcSECRO48sormTJlykmvY2hoKG+++SbPPPOM/+KxadOmTJs2LWAoymnTptGoUSM+/PBDXnnlFRISErj++usZPXr0KddkzJ49m1mzZvH888+TmZlJvXr1GDt2bEAb+auuuorLL7+cJ598ssxllPc4Vx5dunThlVdeYdasWYwdO5YGDRrwxBNPcNttt53Seh5t6NChhIeHM3/+fMaMGUNERAS9e/dm3Lhx/v4dTZo0YcaMGbz00kuMGjWKZs2a+fu/lOjbty8zZ85k4cKFjB07Fk3T6Ny5M2+88Yb/5sPdd99N7dq1eeedd3j11VeJjo6mR48ejBs3zn9j43Ro06aNf3+7++67iYiIoG/fvtx3333Y7Xbsdnu5jivizLJjxw6++eabgIET3G43TZo0AXw31wYMGMCIESMAePzxx+nXrx9ff/01l156aVBirgyaqmjvCyFEgJKDwoku0oSoTHv27GHKlCmVOjmaKG3NmjUsX7681LwNQoiaqWXLlrzxxht069aN0aNHEx0dXSpBt1qtJCYmMmDAAK6++uqAGwrDhg3j/PPPP2ZHfDOQPgdCCGFC8+bNo1evXsEOo0YzDINXX31VtrMQZ6gmTZqwa9cuGjVq5H+sWLGCZcuWAXD22WcHNFctGYLb7B3YJTkQQggTGj58eJkjR4nKU9I+/8i+HkKIM8e1117Ln3/+ybPPPsvOnTtZtmwZs2bN8o+Cd8MNN/D555/zzjvvsHPnTh577DEcDkepprtmI82KhBBCCCGEILBZEcAPP/zAzJkz2bp1K3Xq1OHf//63v4MywFdffcXMmTP9g7U89thjFeoPWR1JciCEEEIIIYQApFmREEIIIYQQopgkB0IIIYQQQghAkgMhhBBCCCFEMUkOhBBCCCHEGSnHcAY7hGrH9B2S09NzMfcaVB+aBnFxkbJNTUrKz/ykDM1PytDcpPwqX8k2rc6mFnxLkfJU6jJDNCuTwvpV6jJPF2uwAzhVSiE/4Eom29TcpPzMT8rQ/KQMzU3K78xSpDw48VbuQk28/5g+ORBCCCGEEOKkKQ3QKnmhlb2800f6HAghhBBCCCEASQ6EEEIIIYQQxSQ5EEIIIYQQQgDS50AIIYQQQpzJTNx5uCpIzYEQQgghhBACkORACCGEEEIIUUySAyGEEEIIIQQgfQ6EEEIIIcSZTOY5CCA1B0IIIYQQQghAkgMhhBBCCCFEMWlWJIQQQgghzlwylGkASQ6EEKIaUCjyNBd27CgUZm6veixFLoXTrQhzaNisNW/9hBCiJghqcnDgwAGmTJnCjz/+SExMDNdffz033nhjMEMSQojTSqH41XqI1bY9pFgzcWCjTmgYPV0N6eyph14DkoQDGV5WbXbxy3Y3TrciMkyje5Kd3m3sRIZK61YhhKhOgpoc3H333dSvX5/Fixezbds27rvvPhITEzn//PODGZYQQpwWCsUX9h0scfyFB4M4FYoDKxsth9kUmsZBZx6XuFqgmThB2HXYyytf5rPnsEFcpEaoQyMzT7Ho+yI27/Vw88AwosMlQRBCiOoiaEfk7Oxsfv31V26//XYaN27MwIED6d27N2vWrAlWSEIIcVrt1nP4xL6NUGWlhTeWOBVKPGG0MGKJMhx85tjONktmsMM8aYahWLymkP3pXlo3sFC3loWYcJ2G8RZa1LPw+04PX//hDHaYQogznaqih0kFLTkICQkhNDSUxYsX43a72bFjB7/88gutW7cOVkhCCHFabbAeJEd3UscIL/VebRVGAW5+sR4IQmSVIyXVy9b9HhrEW9D1wNoPu00jNlJj3VY3eUVGkCIUQghxtKA1K3I4HEyePJnHH3+cN954A6/Xy9ChQxk2bFiFlqOZt7a92inZlrJNzUnKz3wOWHIJURb0MgpN0yAcG/ssuaYt04w8A6cbIkPKvg8VE6aTmu0lO18RGXqag6si8js0Nym/ymeObSmToB0pqH0Otm/fTv/+/fn3v//N33//zeOPP06PHj0YMmRIuZcRFxdZhRGemWSbmpuUn3nUJgILaYThCHg9LMz3XEMnngjiw81ZpgkZRYSEuLA7bFgtpU+UTsNLRLiFugkRxMfWrMHz5HdoblJ+ZxgTNwGqCkE7Gq9Zs4YPPviA7777jpCQENq1a8ehQ4d46aWXKpQcpKfnoqRQK4Wm+Q6Isk3NScrPfBpbo3CGuMk08nEUH47DwhwUFDhx4SXf4qR5UTRp7twgR3py4kMNokMMUvYXkRhnCXhPKcXOg146NLZi8RaQlmbeu2xHkt+huUn5Vb6SbSrMI2jJwZ9//kmjRo0ICQnxv9amTRvmzZtXoeUohfyAK5lsU3OT8jOPZHcCbay1+c2WylneSCKxA5CHi516Nm08tWnvqmPam1rhITr9k+28/0MRBzK9JETr6LqG26PYm+4lzKHRv50D0GrcPiu/Q3OT8hNnsqAlBwkJCezatQuXy4Xd7jsh7tixgwYNGgQrJCGEOK1CsHJDUQfe4082WtPYp+X6ahB06OSpy9VFyUQUJwxmdV4HBx4vrPjDyV/7vGia705ivVo6l3ULIfksW7BDFEIIcYSgJQcDBgzg6aefZtKkSdx+++2kpKQwb9487rnnnmCFJIQQp12cCuX2wi6kWLLYbckm2hFKZKGVZp7YGjEBmkXXGNwlhO6t7Gze46HIpYgK12jT0Ea4w/zrJ4SoAZR0SD5S0JKDyMhIXn/9daZNm8aVV15JbGwst99+O1dddVWwQhJCiKDQ0WjmrUVzoxbxRJLmzTVtU6JjiY3Q6dXa3LUgQghxJgjq8BDNmzfntddeC2YIQgghhBBCiGIyZ70QQgghhBACCHLNgRBCCB+lFHm4sRtOlFKYub2qEEKYTmW35TTxIVySAyGECCKlFL+qNFYb+0khG0e2jTreUHpq9eisJZQ5e7IQQghRVSQ5EEKIIFFK8YWxmyXGdjyaIo4QHJqFjSqdTSqDg1o+l+hN0CRBEEIIcZpIciCEEEGym1w+MXYSio26hKFpEKbbCdMspBqFfKZ20UqPpQUxwQ5VCCFqLqUVD2damcx7U0c6JAshRJBsMA6Tg5M6hJZ6r7YWSgEefjFSgxCZEEKIM5UkB0IIEST7VT4OrMdsNhSGlb0q7zRHJYQQ4kwmyYEQQgRJqGbFg3HM910YhEnrTyGEEKeRJAdCCBEkyVocGuBU3lLvuZQXDwbt9fjTH5gQQpxJVBU9TEpuSQkhRJC00+Joo8Xym0rjLBVJJDYA8pSbneTQRoulg1Y7yFEKIYSoSosXL2bixImlXtc0jS1btpz2eCQ5EEKIIAnRrNxgacN73r/YqDLYRx4Otw0w6KQlcLUliQjNFuwwhRBCVKHBgwfTu3dv/3OPx8MNN9xAv379ghKPJAdCCBFEcVoIt1vak0I2u8klOjyMSK9OM2JkAjQhhDgdgjyUaUhICCEhIf7n8+fPRynFfffdV8kxlY8kB0IIEWS6ptGMGJprMcSHRJKWl4sycXtVIYQQJycrK4tXXnmFqVOnYrfbgxKDJAdCCCGEEOLMVYUdiPPyAoejttvtx73of/fdd0lISGDQoEFVE1A5SHIghBBCCCFEFejTpw/5+fn+52PHjuWOO+4o87NKKd5//31uvvnm0xVemSQ5EEIIIcQJKQX5BWB4ISICdBkMXYgTWrlyZcDz49Ua/PHHHxw6dIiLL764qsM6LkkOhBBCCHFcGzdrfL9GY+s2HUNB/bqKXt0NunVRWCzBjk6I6isiIqLcn121ahVdunQhOjq6CiM6MUkOhBBCCHFMq9dqvPeBhYJCiItV2C2wbYfG1m0Wdu8xGHa5IQmCMLdqMmnZ77//TqdOnYIdhsyQLIQQQoiyHU6D/y2zgKZo2UIRHwe1YqBZE0XteMXXK3X+3CRD7gpRGf7++2+aN28e7DAkORBCCCFE2X7/UyctHRLrlX4vJhq8Bqz/WZIDYXZaFT0qJi0tjaioqFNblUogzYqEEEIIUabDab6Ox8fqfBwZrtizT5IDYXLVqFlRdSA1B0IIIYQok8MByjj2+263Rljo6YtHCFH1JDkQQgghRJlatlDYHXDEMO1+Xq9vaNPOZ1eDW65CiEojyYEQQgghypTUXNGhncGuPRpZ2b65DgAKCuHvbRpNGik6dzxO1YIQwnSkz4EQQgghymS1woirDOw2+PUPnf0HfP0PbDZo3Upx9ZVeYmsFO0ohTlE16XNQXUhyIIQQQohjioyEkdcb7N5rkLJTwzCgbh1frYJVriKEqHHkZy2EEEKI49I0aNQQGjWU26uiJjq5oUdPvExzkj4HQgghhBBCCEBqDoQQQgghxJlM+hwEkJoDIYQQQgghBCDJgRBCCCGEEKKYNCsSQgghhBBnLmlWFEBqDoQQQgghhBCA1BwIIYQQQogzmgxleiSpORBCCCGEEEIAUnMghBBCCCHOZNLnIIDUHAghhBBCCCEASQ6EEEIIIYQQxaRZkRBCCCGEOHNJs6IAUnMghBBCCCGEAKTmQAghhBBCnNFkKNMjSc2BEEIIIYQQApCaAyGEEEIIcSaTPgcBpOZACCGEEEIIAQSx5mDx4sVMnDix1OuaprFly5YgRCSEEEIIIcSZLWjJweDBg+ndu7f/ucfj4YYbbqBfv37BCkkIIYQQQogzWtCSg5CQEEJCQvzP58+fj1KK++67L1ghCSGEEEKIM430OQhQLfocZGVl8corr3Dvvfdit9uDHY4QQgghhBBnpGoxWtG7775LQkICgwYNqvB3NfMOI1vtlGxL2abmJOVnflKG5idlaG5SfpVPtqX5BD05UErx/vvvc/PNN5/U9+PiIis5IiHb1Nyk/MxPytD8pAzNTcrvDKM036NSmTcrCnpy8Mcff3Do0CEuvvjik/p+enouStqJVQpN8x0QZZuak5Sf+UkZmp+UoblJ+VW+km0qzCPoycGqVavo0qUL0dHRJ/V9pZAfcCWTbWpuUn7mJ2VoflKG5iblJ85kQe+Q/Pvvv9OpU6dghyGEEEIIIcQZL+jJwd9//03z5s2DHYYQQgghhDgTqSp6mFTQk4O0tDSioqKCHYYQQgghhBBnvKD3Ofj999+DHYIQQgghhDhjaVT+6ELmHa0o6DUHQgghhBBCiOoh6DUHQghRHm7DoMDjxW7RCbVYgh2OOAlFTnA6ISwUbLZgRyOEEMVM3kegsklyIISo1vI8Hn5Iy2JNWjZZLjc2XaNjrSh6165Fg7CQYIcnyuHAIVi1Hn75w5ccREZC907QuytERgQ7OiGEEEeS5EAIUW3leTws3LGPXzJzibBaiLJacBoGnx1M5/esXEY2bUDzyLBghymOY9deeOUd2LMf4mIgNAQys2DRUtj8N9x8DUTLmBRCCFFtSJ8DIUS19V1qJj9n5NI0PJSzwkKIsduoE+KgdWQYqU4XH+w5hMcwgh2mOAbDgMWfwv6D0Lo51E2AmGhoWB9aNIbfN8HXq4MdpRDijCdDmQaQ5EAIUS0Veb2sScsi2mYhxBJ4qNI1jYahIezIL2BrbkGQIhQnkrIbtqZAg3qgH3W2sdshNgbWbYA8KUIhhKg2JDkQQlRLOW4vOW4P0bayWz+GWS14lCLD5T7NkYnySs/y9TGICC/7/egoyMmDrOzTGpYQQhxFq6KHOUlyIISoluy6hlXXcBll1816le9129G3pEW1YbeBpoHHU/b7LjdYLTJykRBCVCdyVhVCVEvRNiutoiI47HKhVOkE4bDTRazNRpJ0SK62mjeG2nFwKK30e0pBahq0aAIJcac9NCGECCT9DfwkORBCVEuaptEvoRYxNis78otwFXc8NpQitchFtttDn4Ra1LLLbefqKiIcBvSCggI4mOrroAzgdsPOvb75Dvr38tUuCCGEqB5kKFMhRLWVFBnODU0SWbznEDvzCzGU74ZMLbuVIYkJXFQvPtghihM471xfs6IV38Nf232JgKZBvQS4bBAktwx2hEIIIY4kyYEQolrrEBNJUmQYm7LzyXK7ceg6LaPCqe2wBzs0UQ4WCww+D7p39s1rUFQEUVHQpgWES4swIUR1UBVNgUzctEiSAyFEtRdqsdA5VmbKMrPYGOh1TrCjEEIIcSKSHAghhBBCiDNYVQw9at7OVNIhWQghhBBCiCByuVw8+uijnHPOOfTs2ZNZs2aVOVLf6SA1B0IIU3B7FAVOhd2mEWo37x2ZY1FKkVcA9hBVfEKoeesohBDVUjXoczB16lTWrVvHggULyM/P55577qF+/fpcffXVlRzYiUlyIISo1vKKDH7Y7GbNXy6y8g1sFo2OTa30buOgQbwl2OGdMqUUv25RrP5FkbJX4XDkUyfOoGdHjc5tNHRdkgQhhKjJsrKy+PDDD3nttddo3749ADfddBO//fabJAdCCHGkvCKDhV8W8MsONxEhOlFhGk634rMNLn7f6WHk+WE0r2few5hSii9WGyz5SuHxQlwMOOyw8W/Fpm2Kg/00Lumno8lEAEIIUWP9/PPPRERE0LVrV/9ro0aNClo80udACFFtffeni5+3e2hax8pZtS3EhOvUibHQuoGF1GyDD34oxOM173hxuw/AJ98pQkOhRWONuBiN+Fo6LRppREXCZ98rtu0OdpRCCCFOVl5eXsDD5XKV+syePXtITExkyZIlDBo0iPPOO485c+ZglMwceZqZ95abEKJGK3Ip1vzlIjpcI+SoPga6ptEw3sKOg1627vfQpqE5Z0nesNkgJw9aNyv9Xu1aGpszFL9sMmjRyPzNp4QQotqqwj4Hffr0IT8/3//y2LFjueOOOwI+WlBQwK5du3jvvfeYPn06hw8fZvLkyYSGhnLTTTdVcmAnJsmBEKJayik0yMlXRIeX3aQmzKHhMSAj17w1B/tTweHgmM2GwkJh76HTHJQQQpxxqm4o05UrVwa8areXnsDTarWSl5fHM888Q2JiIgD79+/n3XffleRACCFK2K0aVgu4PGW/7zUUKLCZ+CgWGgKeY6wfgMsNYY7TF48QQojKFRERccLP1K5dG4fD4U8MAJo0acKBAweqMrRjkj4HQohqKTpMo1UDG4ezvWWO9Xw4xyA2QiOpvnmzg+QWGhrgdJVeP5db4fFA+5bSGVkIIaqUqqJHOXXo0AGn00lKSor/tR07dgQkC6eTJAdCiGpJ0zT6JduJCdfZcciLy+M70hpKkZrlJTtf0SfZTq0I8x7G2rXQaNNcY9tuyM1X/iQor0Dx9y5o1VSjQytJDoQQoiZr2rQp/fr1Y+LEiWzZsoVVq1bx8ssvc8011wQlHvPechNC1HhJiVZuGBDG4rVF7Ez1YhigUNQK1xnS1cFFnUKCHeIpCXFo3PAvnfc+Ndi4TbHvEDjsXgA6tdG4erBORJgkB0IIUdPNnDmTxx9/nGuuuYbQ0FCGDx/OiBEjghKLJAdCiGqtQxMbSYlWNu3xkJVn4LBptGxgpXaUeWsMjhQXo3H71Tope2H3AUV0tIPIUEWzhsgEaEIIcYaIjIzkqaeeCnYYgCQHQggTCLVrdG5mzuFKy0PXNZqdBc0bacTH20lLc1JGNwshhBBVoQqHMjWjmnHrTQghhBBCCHHKpOZACCGEEEKcwapungMzkuRACGEKBS6D9HwPEQ6dWmFy6BJCCFFJpFlRADnDCiGqtUO5Hl5fl8WKbXnkOr1YdY3ODUIZ3jmGc84KDXZ4QgghRI0iyYEQoto6lOvhzsUH2ZRaRIgVwm06LgO+2pbPr/uKePiC2pyXdOLZJ4UQQghRPtIhWQhRbc1fncHGQ4XUj7RSP8pOdKiV2uFWmsRYySzy8tzKdIrcRrDDFEIIIWoMSQ6EENVSVqGHb3cUEGbTCbEFHqp0XSchwsrebDdfbc0PUoRCCCFqBFVFD5OS5EAIUS3tz/aQ5/QS6Sj7MBVm0/EasCfLfZojE0IIIWou6XMghKiWwu06Fl3D7S379ovX8DUnCrHKPQ4hhBCnyrxDj1Y2OasKIaqlhjFWWtZ2kFVkoIzS/QoyCg0iHTr9mocFITohhBCiZpLkQAhRLem6zrWdogm36+zJ8eLy+BIEwzBIy/eQ7zI4r3kETeLsQY5UCCGEqUmfgwDSrEgIUW1d0CqC7CKDl9dkcCDXg1F8sA2361zaOpIJA+ODG6AQQghRw0hyIISo1oadHcXApDA+3ZTHwRwvYQ6N/s3DaVXHEezQhBBCiBpHkgMhRLVXK8zK8C4xwQ5DCCFETVQVzYBM3KxI+hwIIYQQQgghAKk5EEIIIYQQZzSNyh/K1LxDo0pyIIQwhbRcD9sPeEiIttCkji3Y4VQ6pRR5Xg92txulFGY+sZypvIYiv0gRGl566F0hhDCLoCYHLpeL6dOn8/HHH2Oz2bjyyiu555570DQ5KQohfDbucTJxYQG//aHjdupouosGjfIYM9TO9f3Cgx3eKVNK8WteNquz00kpysdxwEYd7PSMiqVzZAy6HA+rvSKX4octbtZsdpGeYxAe7qJFXcW5bWw0rSv34ISo9qTPQYCgHrWmTp3KunXrWLBgAfn5+dxzzz3Ur1+fq6++OphhCSGqiY17nFzxYCGZh23oFoXFbmB4NXb+beOh5z0czsnl3iGRwQ7zpCml+CIjlSVp+/EoRZzNjkO3sDE3h035ORx01eWSuLpyw6Qac7oVb3xdyNotbkLsGjHhvrL65jcXv+1wc+PAUNo1rnk1XUKImitoHZKzsrL48MMPefzxx2nfvj09evTgpptu4rfffgtWSEKIambcvAIyD1sJifASFmXgCIHQcEVYlBeXU2fO216y8r3BDvOk7XYW8knGQUItFlqERRBnsxNvd9AiNJwoi5XPMg6xrTA/2GGK41j7l5u1W9w0rG2hcR0LtSJ06tay0LqhhbxCxfvfOylwmvgWohDijBO05ODnn38mIiKCrl27+l8bNWoU06dPD1ZIQohqZPdhN5s36+hWA+tRN151HUJCDQpyLTy/LC84AVaCDblZ5Hg81LGVnrOhtt1BgdfLL7lZpz8wUS6GofhhsxuHTSM8JLB2R9M0GiZY2JfuZdNuT5AiFEKUi8yQHCBozYr27NlDYmIiS5YsYd68ebjdboYOHcrtt9+Orpc/Z5Ha9spTsi1lm5pTTSu/P/a4cbt0bPayO3da7eAs0Ni2X5l2nQ+4igjR9X/6FZSshwaagnCLhX2uQtOuX01X6Ia0HC/R4do/3cePKEOH1fckI9eQMjSJmnYcrQ5kW5pP0JKDgoICdu3axXvvvcf06dM5fPgwkydPJjQ0lJtuuqncy4mLM2974+pKtqm51ZTya5qoo+vZGIaGXsbJxWso0BS1omzEx5tznWvnhmFx5RMWFlhzEBbqe655ncRHhpl2/Wq6SJciMtyJ26MICws8nYaF2lFKYbVBfFwY8fFhQYpSnIyachwV4mQELTmwWq3k5eXxzDPPkJiYCMD+/ft59913K5QcpKfnokxcdVOdaJrvgCjb1JxqWvklxXuJre0hdb8Vm8Pg6ArFonwNi1Ux7FydtLTc4AR5ihorB06nm0ytAIduAc2XGBQUOnF5DfKdLpprIaZdvzNB60TF8p9cRId4fR3HNV9iUFDoIiPHIMSiqBvpIi3NvH1jziQ17ThaHZRsU2EeQUsOateujcPh8CcGAE2aNOHAgQMVWo5SyA+4ksk2NbeaUn4Wi4XhF1t44XVFYZ5OSLgXi0XDMMBZqGF4NJI7eOjdKsq065scHkWbsEh+y8/hLEcokRYLAHkeDzuLCmkTFkn7iGjTrt+ZoGcrOxu2e9i630ujBAshNg2lFOnZBgezDC7oZKdeLV3K0GRqynFUlJPSfI/KXqZJBa1DcocOHXA6naSkpPhf27FjR0CyIIQ4s00YGsXwoQp7iEFRroW8LJ3CHN9hq017N+89ZO67USG6hRvqNaJrZAzpHhdbCvP4MyeLVLeLTpEx3FivEREWGSe/OmtY28K/B4bSOMHCrlSDzXs9/LHTTZFbcWEnO0N7hMhQtEIIUwnaWadp06b069ePiRMnMmXKFA4fPszLL7/M7bffHqyQhBDV0NM3RjP6IjezPspnb6oiIkzj2n52LuoUFezQKkWczc7tiU1JKcpnt7OQ6KhQIp3QLCRcJkAziZYNrNx/RThb9npIyzGoHRdOnQgndWIswQ5NCCEqLKi3pGbOnMnjjz/ONddcQ2hoKMOHD2fEiBHBDEkIUQ01qWPjxVExwQ6jyuiaRrPQCJqHRRAfH0lamrR3NhuHTaNDExuaBvHxoaSleaQMhRCmFNTkIDIykqeeeiqYIQghhBBCiDNZVcxLYOKbA9KYVQghhBBCnME0/pmkpDKXaU5B65AshKhcBU5FVq6Bx2vi2xXHUeD2sifbRWahzDZrVkVOyM4BtzvYkQghhDgWqTkQwuR2HfLy/R9uftvhwWJzEWrz0LONjZ5tbYQ5zHvnosShfDev/5TJij+LyM0HqwU6t7AyvEs059QPD3Z4ohwOHIRVa3V++RWcLo3ISEX3Lore3RWR5h5wSghRE0izogBScyCEiW3Z42Hu0iK+3ODGUBDm0EjNNHh7hZPXPy+iwGnioxO+xODODw/y1tdFZGaDww5eA776ycv9i9JZsSMn2CGKE9i1B+Ys0PnkCw2XWyM0FDKzNBb9T+fl/+hkSxEKIUS1IsmBECblcis++M5Feq6idUOdOrV0YqMsNKpjoXEdnR//8rD6T3O335i/Np2N2xT160D9BI3oCI3atTSaNIDMbHjuq2yKPDLzbHVlGLB4mc7+Axqtk6BuHYiJhoaJ0KIp/L5R4+uVchoSQojqRI7KQpjUlj1edqYanFVbKzXJUqhDIzwEftjoxu0xZ+1BVpGHbze6CAtThNgD10/XIaE27D2o+GpHXpAiFCeSsgu2btdokOgrsyPZ7RBbC9b9rJGXH5z4hBBClCbJgRAmlZ6jMIzSF84losI1MvMUuYXmTA7257rJy4fIsLLXL8yh4TVgT5a5a0dqsvRMDacTIo7RNSQ6GnJyISv79MYlhBABVBU9TEqSAyFMym4FpcA4xkxLbg9YdbBbzdkpOdymY7H41qMs3uLWRCEmXb8zgd0GmgaeY5ShywVWK9hspzcuIYQQxybJgRAm1aKBhVoRGmnZpZMDpRRp2YrkJlYiQs158dwwykbLs3SyckAZpd/PyFFEhkO/phGnPzhRLs2bKGrHKw4dLv2eUpCaCi2aKhLiT39sQgjxD62KHuYkyYEQJpUQo9Mr2UZGjuJwloFh+JIEl1ux/YAiPkqnT3vz3pLVdZ1ru0QRHgZ7Dilcbt/6GQakZSry8+G8s+00iXEEOVJxLBERMKC3oqAADh7ylR345jnYuRvCwqF/b4Vm3nOoEELUODLPgRAmdml3OwDf/+Fmyx6D0BAXLpdBg9o6V/Zx0LSeJcgRnpoLmkeRfbGXl7/J5UDqP02owsPg0h52JvSrHeQIxYmc11fh8RisWKnz17bi+2ka1KuruGywIrm1iRvmCiFqBpnnIIAkB0KYmN2mcUVvB+cm2/h7n5eQ0FCsFNGqoeWYHZXNZljbWgxsGsmnf+dwMNtDmEOnf9MIWsWHBDs0UQ4WCwy+QNH9HC+bt2oUFUFUFLRpqQgPC3Z0QgghjibJgRA1QJ1aOnVjdeLjQ0lL83CMPsqmVSvUyvD2scEOQ5yC2FrQq1sN2zGFEKIGkuRACCGEEEKcuaRZUQDpkCyEEEIIIYQApOZAiBrj7/1uthwqoG6Eh+iwmvfTTsvzsP2wm4RInSbxMkKRGRU5FU4XhIWCTeanEEJUG1Ux9Kh5j3E17wpCiDPMK1/k8fJyJ/sPglK52O2Ks1vpPP3vCFrUM+9QpiU2Hihi4tvZ/ParBXehBc2iaNAsizFDQri+R3SwwxPlcOCwYtXPBr9sUjhdisgIje7tNXp31okMN+8JVAghaiJJDoQwsanv5zJvsQu3S8NiU+gWRVGRxtpfFJftyuajKdGmThA2HijiikdzydwTim43sDi8GB6Nnb+H8lCKh8M5mdx7Ya1ghymOY9d+xSsfeNlzUBEXA6EhkJmjWPSZYvMOxc1XWIiOlARBCBFkJu4jUNmkz4EQJnUw082rH7vwuCEsQhEaCqEhGuHhCkeoQUa6zn0L84Id5ikZ91o2mXschMS6CavlwRGmCI0yCKvtwpVvYc57XrLyvcEOUxyDYSgWf+llf6qidVOoG68RE6XRsK5Gi0bw+1bF1+vKmP5aCCFE0EhyIIRJPbu0kKICDUeoQj/ql2y1amg6/LrFS1qOJzgBnqLd6W42/2lDd3ix2gJv6eg6hER7KEi38fyX2UGKUJxIyl7YukvRoC7oemDtgN2mERsN6/5Q5BXILTshxJntyy+/pGXLlgGPO++8MyixSLMiIUxqx0EPKF8iUBaLTeF26fy520O/ZPP91H/f78RdpGMLKbtmwGpXOBVsO2jO5OdMkJ7t64AcEVb2PhodCanpiqxciJAJ0YQQwVINhjLdtm0b/fv35/HHH/e/5nAEZ/AN810xCCEACHNogMIwKFVzAGAYoGmK2AhzVhDGhulomsLr1bCVcZQ1ilujhDqkvXp1ZbeBpoHHo8pMYl1usFrBJmciIcQZbvv27SQlJVG7du1ghyLNioQwq2HnhqBbweks/Z5hgNelk5CgaN/YfvqDqwRdGzmIS3Tjybf4E4EjOfN0LCEG150rt5yrq+ZnadSO1TiUXvo9pRSpadDiLI0EmfxaCBFUWhU9IC8vL+DhcrnKjGD79u00bty4alavgiQ5EMKkLukSSvNGCsOtUVj4z510r0dRWAA2u8FNg0KCG+QpsFotDB9kw+IwKMy04S1uPWQYUJijYzittO7gok+L8OAGKo4pIkxjQDeNgkI4mKYwDF8NkNuj2LkfwsKgfzcdTZPaHyFEzdSnTx86d+7sf8yfP7/UZ5RSpKSk8P3333PhhRcycOBAZs6cecxEoqqdVGVuTk4ODocDh8PBli1b+P7772nbti09evSo7PiEEMfx3wlR/N+TOWzbqVGYR/GNCh1HqMGIQXbuGBwR5AhPzYTBtUjPTWPRUoOiTBtKaWiA7vDS5pxC3rs7LtghihM4r5uOxwMr1hr8tRM0FJoG9WprXDZAJ7m53KMSQgRZFfY5WLlyZcDLdnvp2vz9+/dTWFiI3W7nueeeY+/evUydOpWioiImTZpUyYGdmKaUqtDm+Oqrr7jvvvuYO3cuiYmJDB06lLp167J//37uvfderrvuuqqKtUxpablUbA3EsWgaxMdHyjY1oaXrC/nvqiLcykL9GIN7LgvnrNrmnd/gaClpTmYtz2VvmkFEKFx7bhgXJZs78SlLTf4NZmT75jUockJUBLRpphEeWvNqDGpyGZ4JpPwqX8k2rc4mrf8dp7dyh1V2WHSmdm1f7s9nZWURHR3tr0n9/PPPuf/++9mwYQMWi6VSYzuRCtccPPfcc9x555307NmTmTNnUq9ePT7++GO++eYbHn/88dOeHAghYEjXUC7rFlpjT2pN4h28OCI4ozaIyhEbrdGrY81LBoQQojLExMQEPG/WrBlOp5Ps7GxiY09vx6wK1+fu3r2biy66CIAVK1Zw/vnnA9CiRQsyMjIqNzohhBBCCCFqsFWrVtGtWzcKCwv9r23evJmYmJjTnhjASdQc1K9fn3Xr1lGnTh1SUlIYMGAAAMuWLas2vayFEEIIIYQolyDPc9CxY0ccDgeTJk1izJgx7Nmzh6eeeoqbb765koMqnwonB3feeSfjx4/H6/XSr18/2rVrx4wZM3jvvfeYPXt2VcQohCiHP7a5KfqrkCYJbuJiak5/gxJpeW62p3pIiNRpUrvmNTHyehU7dsPhDC+x0arUjMJCiKrndCmycgxcboXtGBNMipron6FHK3eZ5RMREcGCBQt44oknuOKKKwgPD+fqq68OWnJQ4Q7JABkZGRw6dIjWrVsDsGPHDqKiooiPj6/0AE+kJravDhbpiGVOM94q5LVP3GRma6DAYlW0aKgz+14H7ZqZP0nYuL+Iie9n8Nt2A7fbt582qKMx5oJwru8RE+zwTpnXq5g5T+OjLw0OZSo0TSMuCi7urzFhDNjtcoFiJnIcNae0TMX3Pxus/wMUViyah67t4dzOOrHR8hs8FabokLzuj6rpkNytXaUu83Q5qeQgMzOT3bt3lzn+6jnnnFMpgZWXHIArj5zUzOee5wt49wsPhlcDzXdhqYqPb2FhimVPh5o6Qdi4v4grnk0jM1tD1xUWCxgKvG4Nu0Nx92Vh3Hu+eWfQ8noVtz4AX641UApC7BqaBoVO33CfvTvq/Oc5sFjk4sQs5DhqPofSFC//12DbbkVsNMTWspGe4SYzB1o20bhlmE7tWPkNnixTJAdrqyg56G7O5KDCzYrefPNNZsyYgcfjKfWepmls3ry5UgITQhzfnkNuFn3lwTDAagNd811YKgVeAwoKNMbMdLLyJfMmB+PeySAzWyMkRGE94mhl2BUFBRpzPilgZM9IYsLNuY5Lv4Cv1xtYdYiO8I0PYbFohIcocgoMvv/V4K0PdW74vyAHKkQNpZRi6Te+xKBlE7BZNcLCdEJsGgmxir9SFJ+uNLjhX6d3KEkhgqnCoxXNnTuX0aNH89tvv7Fly5aAhyQGQpw+U1514/FoWCwaRzdPtxT/sv/eY3Ag3X36g6sEuzOcbN5loOuBiQGArkOIQ1FQqPH8ipzgBFgJFi0Dlxciw0rflYwK0/F6FYs/C0JgQpwhDqXBn1sV9WuD9agaOqtVo04c/LpZcThDqoHEmaPCyYGu6wwaNAiHo+Z1CBTCTHYeMnx9DI7xK9Z0MLwaP20y50nt930u3G6wHaNSwGoDFGxLLV2LaRZ7DyosGsfsfGyxaOxLNWf5CWEGaVmQVwBRx2j1Eh3pez8j+7SGJURQVTg5GD16NE8//TT79u2riniEEOUUWjwDu3GMa0cFoEFtkzbJjw2zoGm+JlJlMYpfDzVniyIAQkM0jOM0TDcMCLGfxoCEOMPYbWC1gvsYFawuN1gtx75JIWoIVUUPk6pwn4PGjRvz3HPPMXDgwDLfl6ZFQpwe11xg48dNLjxehf2oIfcMBXghKlrRva05ry67NrITVwtS0zQMm0I/6laG0+Ubmem6nhHBCbAS9D4H/tql4XIr7LbAMnR7FEr5RksRQlSNxomQmKBxME3ROLH0+4fSoFF9jbPqnv7YhAiWCicHkydP5txzz+Xyyy8nJCSkKmISQpTD8AscPPWWiwOpGi6P7+6WpfhOu9er0C1w3YXmvd1ltVoZ3juMF5YWUFgIISH4RisyfImB4YHk5jp9WoQHO9STdusIWLZC50CmQWQIOGy+pkSFTkVukaJ2tMat1ykqf/xtIQSA3aZxXg+NNz9S7D2oqJ/ge93jVew/5BtpZ0APDavMeVDDBXeeg+qmwslBRkYG48aNo2HDhlURjxCiAj5+OoRL7i/i4GHwuKGk9b3FCv/qY+WRkaFBje9UTbgolvQ8L4tWOSkq9NXSamjoFkWbphrvja4d7BBPSZ14jZemKe6aorEvTZFXBOBF1yExTmPmgxpNGpn3BCOEGfTsqOFy63y2UrF1p8Lh8OJ0QkKcxuC+Gl3byW+wxgvyDMnVTYXnOZg6dSrR0dHccccdVRVThchY0pVHxuc2rzc/LeKdrzy4vRbqxykevtFGi7PMW2twtJTDTmZ9mc3eDC8RITrXdg/jouTqPW52Rbhcivc/hrW/aISE2GjbwsW1l8sEaGYkx1Hzys5VbN6hsNpC8XoKadNMIzJcfoOnyhTzHPzwZ9XMc9AzuVKXebpUODl44IEH+PTTT4mNjaVBgwZYLIFj/77xxhuVGuCJyAG48shJzdyk/MxPytD8pAzNTcqv8klyYD4VblbUsGFDbr311qqIRQghhBBCCBFEFU4Oxo4d6/93Xl4eXq+X6OjoSg1KCCGEEEKI00L6HASocHIA8J///IdXX32VtLQ0AGJjY7nmmmsCEgchxOm16jcX2UW5nN3YRWKCOYcvPZ7dh1z8ul1xVm2Ns1vUvPVzuw3W/2EQHe2kVSMDq1WGMDUbrxfyCyA01MRXBUKIM16Fk4M5c+bw1ltvcdddd9GxY0cMw+CXX35h9uzZ2O12Ro0aVe5lffnll6USigsvvJAXXnihomEJcca645kCFn8O7jwrKBdYFPF185n/sI3eHcx/Eb3qDyd3znSx/9A/N2Iiwoq48TIrk28IC2pslcHtNhg52cN366CoQAMKsId66dFJ5/WpFsJCJUmo7oqc8MM6jTXrddIzNMLDPbRoqnNud0XTJpIoCFH9yVCmR6pwcvDf//6XadOmMWDAAP9rrVu3pk6dOkybNq1CycG2bdvo378/jz/+uP81h8NR0ZCEOGNdOTGflSut4NFBN3zHIo9G2h47w+728P5zLlMnCKv+cHLVBBeeo/qJ5RVqzH7Xy8H0POaOM+8kaG63Qb8bXfz9txUM0KwKNIUzz8J3K6HP9W7WvGPDZpMEobpyOuGNd3XW/qgTEgIxUQoUfLNS57c/4cZrvbRrKwmCEMI8KnzGycvLo3HjxqVeb9KkCRkZGRVa1vbt20lKSqJ27dr+R1RUVEVDEuKM9NdOFyu/t4JXB7sXbKDZALsCmxejwMqox93BDvOU3Dbd6UsMlELXNf+jpA5h8ZeKg5muoMZ4Kma94WXbNivoYA83sDkUdgfYwwyUVbF7l4WHX/QGO0xxHGt/0lj7o07DBorGZylqxUDdOhqtWyry8uH9JToFhcGOUghxXKqKHiZV4eSgY8eOLFy4EMP451ae1+tl4cKFtG/fvkLL2r59e5mJhhDixO6c5Qa3Dlavb6y4I+kaaIr0g1Z27DfnxfOfO12kZWigQNcDD1W6pgMKQ8H4OeZcP4BFn3pRXg2rvfQQena7AgOWfVu5w+uJymMY8MM6HYcdwo9q4aZp0LCBYt8BjU1bzNu8QAhx5qlws6KJEycyfPhwfvjhB9q2bQvAxo0bcblcvPrqq+VejlKKlJQUvv/+e+bPn4/X62XQoEHceeed2O3lbwZx9DWROHkl21K2qTnsT/U1X0A/RoHpCrwa3/xs0CzxtIZWKVb/4S2+8eKbF/louq5jGIod+5Rp99mMLA10dcwiRIecHM2061fTFRZBWrpGdJT6Zw/V/vm/o3gewoxMDU0z8W3EM4icByufbEvzqXBy0KxZM5YvX86yZcvYsWMHDoeDXr16cemllxIeHl7u5ezfv5/CwkLsdjvPPfcce/fuZerUqRQVFTFp0qRyLycurnpPrGFGsk3NITSkuK2CUmhHXF2WHIgVgAYtm4YRH1/+32Z10aIhQC6gldmty1s8Q1FkuKXaT7BzLA6Hi4IcDe2os6d2RCFabdV/AqEzVWSkIjLSi9ulCAsLLMOwUDtKKaxWiI+zEB8v/UbMRM6DZxgZyjTASQ1lWqtWLfr06UNiYiKGYdCkSZMKJQYAiYmJrFu3jujoaDRNo3Xr1hiGwf3338/EiRNLzbx8LOnpMothZdE03wFRtqk5XHUBzPjLVzugjrjbpRS+/3gtWCPd9E42SEvLDWqsJ6N3WzcOGzjd4FVGcVOiIxTvo/++VDfl+gGc3Vrjm1TweAwsFl8hapqGUgqvF1A6bZtj2vU7E7RO0ln+pe6rPSge8CQs1E5BoYuMDAhxaNRNKKJ45G9Rzcl5sPKVbFNhHhVODnJycpgwYQLffPMNUVFReL1e8vPzOeecc5gzZw6RkeXfAWJiYgKeN2vWDKfTSXZ2NrGxseVahlLID7iSyTY1h3uvDeWFt/IpTLcDBljUP9mB2wIWg8HnKdOWpc1mY1AfJx+tUKA0DHwJgqEMSrKhuBjF//UNMe06Tr1TZ8DPXpx5VpTdi24FiwYeNxguC7ZwL1PGWEy7fmeCnt0MNvymsXW7RqOGihCHr9lsejocTNW4YIBBvbpyTDUbOQ+KM1mF6zmnTp3KoUOH+OSTT1i3bh0//fQTy5Yto6CggOnTp5d7OatWraJbt24UFv4zjMPmzZuJiYkpd2IgxJnui7k2QuNcvotllwXl1MFlAatB1+4eXp1ovuZER3rl/gjO7VzcrEhpGMY//Q9ioxWfPx8SzPBOWYtGFl6YZCE0yoPh0fEUWHDm6RgeHUekhyfHaXRJLl8tqgiOhonw7+sMGjdU7NqjsXmrxh+boMipceF5BkOHGNLmWghhKppSFcuNu3TpwmuvvUa7du0CXv/999+55ZZbWLduXbmWk5eXx+DBgznnnHMYM2YMe/bsYdKkSVx//fXccsst5Y4nLU2q/iqLpvnaNss2NZ8Zbxby3mcGbo9GnTjF03fZ6NTSvPMbHO3Xv1089LKTg+kQ6oAbL7Vy8+DQYIdVaQoKDZ54xcsPGwxsNgsdWhpMGW2VCdBMxOmELVs10jI0aseHUqd2PnUSgh2VqCg5D1a+km1anU1auQmnt3JHhnNYdKb2aVOpyzxdKtysyOFwlBpWEHztZL3e8o/HHRERwYIFC3jiiSe44oorCA8P5+qrr+bmm2+uaEhCnPEeGBHKhOtr7knt7BZ2Pnm65iQ7RwsL1Zl6py4XJibmcECHdgpNU8TH66SlSbMUIcTplZ2dTWRkJJpWeqCLiqhwcjBgwAAeffRRZs6cyVlnnQXAzp07mTp1Kn379q3Qslq0aMFrr71W0RCEEEIIIYQ44ymlmDdvHq+//jq5ubl8/vnnPP/884SFhTFp0qQKTQ9QosJ11vfffz8Oh4MLL7yQbt260a1bNy666CKio6N5+OGHKxyAEEIIIYQQQWPiGZLnzJnD0qVLefLJJ/2JwOWXX87q1at56qmnTmqZFa45yMrK4s0332TLli3+eQ6aNGlC06ZNTyoAIUTlWLXBRXZhLmc3d5NY2xbscCrdL9sKWP6LizYNbVzew9wdrcvi9XrZcdjL4aIiYm1edL3mdUTOylPk5iviojTCQqWXrhBCnKr//e9/PPnkk5xzzjn+pkS9evVixowZ3HXXXRWaO6xEhZODa665hvnz55OcnEyrVq0q/AeFEJXrjlkFLF7pwl2kg3KCxSC+Fsy/P5TeZ5u/nf6rX+Ty8Ps5eA2KhzBV3PpKJt2b21n6oPl7fHq9XmZ+msdH6ws5lG2g6WnERehc3DmECZdEYreZP0n49W8vb37h5Me/Pbg9BuEhOn2TbYy82EH92tLpWggRbMWTlFT6Mqteeno6CQmlz4VRUVEUFBSc1DIrfFSOj48nPT39pP6YEKJyXflQHou+8ODOK87zNQUenbRUC8MeLmTVr67gBniKXv0ilwffy8Hr1YqraFXx/3XWbnPTY8Kh4AZ4irxeL7cuyGTu53nszfBi0cGiaRzI9LJgRQE3vZxRoYEeqqMf/vAwbl4+n//qxO01cNg0cgoMFq0uYuwLBew5VLkjhAghxJmke/fuLFiwIOC1vLw8Zs2aRbdu3U5qmRWuOWjTpg2jR4+mXbt2JCYmluroUJG5DoQQJ++vXW5WbvCCVweHFzTffAAKBYaBUWRh1FOFbH7HvLUHDy7KBnTfsC96yTTQgOGb8G17qoc/dxaQ3DgsmGGetKUbivj6DydWi0Z0mG/9LLpOeAjkFCi+3+zirdUF3NCneg8DeCwej2LW+0Wk5XppEm9BLy7D6DBwuRVbD7p5aYmTJ26tOcPSCiFMqCr6CJymPgdTpkxh7Nix9OrVC6fTyejRo9m3bx+JiYm89NJLJ7XMCicHAEOGDDmpPyaEqDx3Puf0zYRs8yUGAXQNdEV6lsaOfW6aJpqvD8KnP+X7mxH5E4MSuuZPEK57MYdfnzFncrBoTQEuA+LLCD8qTONwjmLx+kLTJgerfvOScthDQqTuTwxK2G0akQ6N1ZtdHMpwUCdWmhcJIURF1a1blw8++IA1a9awY8cOPB4PTZo04dxzzy1z6oHyqHByIDUDQlQP+9MNQC994VxCU+DV+PpHrymTgyXrnIDmqzUoaxV1X1Oj9DzzNkvZm+bFAqUunEtYdNiXYd5mRbsPGbi9ivCQsvtNRITqZOYZ7D6kqBN7moMTQoga4u233yY6Oprhw4cDMGbMGPbt28c111xzUss7qZqD77//ni1btuB0Ojl6guWxY8eeVCBCiIqxl/x6jTLurIOvSlODerXNOSpM/VpHNCMqi+FLGiwW895xDrVrHC+1MQwIsZmz/ABCHb6mbh6vwmopvR5uj8KiQ5jj9McmhBA1wbPPPsuHH37IY4895n+tW7duzJ07l4yMDMaMGVPhZVY4OXjqqad47bXXaNWqFREREQHvncpsbEKIirnmPDtPveEGQys9tIBSYFiwhnm5uJc5r7zuv8zB3K8KAO3YCRBwbY+Q0xtYJerdxsFf+z24PAq7NXD93B6FAs5tZd4+I33OtjBnmYX0XIM6MYG1B0opMvMNWifaaN3YvAmeEKIGMHGfgw8//JDnnnuOLl26+F+7/vrradmyJffff//pSQ7ef/99nnnmGQYPHlzhPyaEqDz3DQ/hxcVFFOZYAQP04gtor2/EIiwGg3uYrzlRifDwMBrF5bIr3ftPJ+SSvgZQPPKc4okRtYIZ5im5dUAEy34s5ECWQWQIOGy+pkSFLkVukaJ2pM6t50WceEHVVN04ncFd7Ly7qpDUHC/xEb6+B26v4lC2lxCbxjX9HcdsViWEEKeHeYcyLSwsLHWzHqBWrVrk5uae1DIrfLvGYrHQtm3bk/pjQojK9cWscEKjPL6Ou24LyqmDxwI2Rdd2Oq9OMGdH3RI/Pl2HuAj9n+N2cVMpNA00xWcTzd1QvU60lZdujqVRvIVClyI9T3Ewy0OBU5FYy8IL/46hSYJ5aw4A7rnKwRU9QtDQ2Jnm66C8L8NLdKiFMZeEcVkf8yawQggRbL1792batGns37/f/9qhQ4eYMWMG55577kktU1NHdxo4gdmzZ5OSksITTzyBwxH85gppablUbA3EsWgaxMdHyjY1oRlvFPLeN27cXo060fD0mBA6tao5F13/W5PP/W/lUuDyYtE1Lu0QwtzR5k4MjuRye3l/fSFrtzkJCbHRtp7GtT3CasQEaCW27zP46kc3eYVQO0bjoh5WasfUvOZEchw1Nym/yleyTauzSV9vwemt3MEtHBadqQOqfrLgjIwMRo8ezW+//UZ0dDQA2dnZdO/enaeffpr4+PgKL7NcycGAAQP8/QmUUuzfvx+bzUZ8fHypYZJWrFhR4SBOhfyAK48cFM1Nys/8pAzNT8rQ3KT8Kp8kB6fHli1b2LlzJ1arlcaNG9O8efOTXla5+hzccccdJ/0HhBBCCCGEEJVj//791KtXD03T/M2JoqKiaN++fcBnAOrXr1/h5ZcrObj88sv9/549ezYjR44kNDRwRsu8vDxmz55d4QCEEEIIIYQQ5TNgwABWr15NXFxcQOueIyml0DSNzZs3V3j55UoOduzYQXp6OgBz5syhVatW/nZNJbZu3cp7773HhAkTKhyEEFWtoNDDj1sMHA6Nzi00bLaTmuKjWvvXPVns3J/LbcO83HpFTLDDqXST52ax6Cto2dBg6fM1p79BibQ0F3dNVThsXp6e4CUuztwdkctyKN0gPUuRWEcnOkJGKDIbw1AczgCPB+rEg9UqZShqCJMNZbpixQpiY33nwaVLlxIeHl6pyy/XFVJqaio33nij/3lZE52FhoZyww03VFpgQlSGgkIPI54oZP1GA1eR70QWGq44r4uFeeNCakSSkNA3DwrtYESCgoenKx6e6aRX90L+92xMsMM7ZT1vSGdbvoJaRVDPy1qXRsI1bshwkPp5TLDDO2VpaS7aDLRAkQM8vv3x42VeCPGw8j0PrUw8z0GJr9Z5mP2WYtMmDa9HwxHipWsXgwdHWUhqVHM6XddkS78y+PAzxd+7FUpBnTiNwX11brwC7HZJEoQ4nRITE/3/vu2225g9ezZt2rSptOWX68qoe/fubNmyBfBVZXzwwQf+jEWI6qqg0EPPsfkc2KujNB3N4kvjC3J0ln2jSDlQwNfPRQU5ylOTcG4BFIUcMRGa8v3baWX16nAuvyfL1AlCzxvS2aY5oWGRb+4Glw4WBXXzIdpJwiBF6mfmnecgLc1Fm75WXxmiQCu+1eS2gNtCnys0Nn3nIj7evAnC/75x8+B0jdwcC44QhdWmKCzU+GqFlT83eXljJrRpJglCdTb/HYMFHxg43RAVDroFdh8wmPuuweZtOjMe0CVBECZn3nkOdF3H7XZX6jIrfNv066+/PuZ7qampJCQknFJAQlSWCfOd7N+no1kVdvsR9Xt2hcupsXErvPS/Qm6/PPTYC6nGJr2QBUURvjkONHXEsU35qjM9OqvXmnPdSmzLN3yJQZ4NjOKR0TyA0wKRbkgs4Nm3Ne4ZHhPMME/aOZfpvhoDTfmSHj8FXg2K7HQYbLBvfdBCPCUul+KJ2ZCXqxNf26BkcLvwcIXbrTh4wMKU2V7++6wkB9XVlu2KNz4yQIPGif9c7MREamTnKr79SfHRV4phgyU5ECZmsmZFR+rXrx///ve/6d+/P4mJidjtgTeTymrtcyIVTg527NjBzJkz2bZtG16vF/B1enC5XGRkZLBp06YKByFEVfjiRw8YOrbQ0r9Qq03hKbTw2mcu0yYHL//X4UsMUKWnMyw5T7stPLUgi/EjY05vcJXgqgmZEFcEbv2fxMBPgwIrRLiY/lYY9wwPSoinLD/L4juB6Aal7jJZFLh13HnmvXB+/ysPqYcsRET9kxiUsNnA4VD89rtGyj6DJok1b86DmuCTrxU5+YrG9Utf/EdHamTmKj79VjFscBCCE0Lw119/0bZtW1JTU0lNTQ14r6yOyuVR4eTg4Ycfxuv1MnLkSJ544gnGjx/Pvn37eOedd5g2bdpJBSFEVcjN56i7sf/QdUBXZGSf1pAql6H7LiyPde2oKVAaryzRGT/ydAZWOVb9rkFTr6+JTVm8xTMnO0w8GHnJOujHOIBrCgwL4D2dUVWabbvB8EJoSNnvh4Qq8vN0NqVIclBd7Tmo0DTQj7GPhjpgzyET/waFMLk333yz0pdZ4eTgjz/+YNGiRbRu3ZolS5bQtGlThg8fTpMmTfjggw8Chj0VIpgsFoXb0Dlm3Z7SMHd/5OL1MihdcwC+mWcUJNSu3IldTpcwhyJHaaAf68JDBfzPlDT+qf0piwJfAZtTWIhvN/R6wVJGjufxgK4rosJOf2yifMJCKN5Hy+bxKELtktgJcbp99NFHfPnll9hsNgYOHMjFF19cacuu8C/aarUSGemb6a5p06b+8VN79uzJX3/9VWmBCXGqWjby7d5GGTddvR4ARbc25j2phUS4i/sZlHHiNoofFi+rF8ac3sAqyefPaJBjB4eXMi+eHV5w6UQc58Kl2nN4i2t4ylg/QwEa2M1ZawAwdKCF0FCD3NzSZWQoKCjQqFPXoGcH8zadqul6dtKwWBQFBaX3Ua9X4XRD7y4m/g0KAf/0OajsRxX5z3/+w4MPPkhRURGFhYU88MADzJo1q9KWX+Ero44dO7JgwQKKiopITk7m66+/RinFn3/+icPhqLTAhDhVk0aEYA0x8BRZ8Hh8rxkGeNzgdVpwRBg8frM5+xsA7P4iEqze4oOQ9s8NZgOg+I57iCt4AZ6iZk1jIC3E1+cg3PPPSD4ocHjAbsDhMHYsNe9oRffd7vGVoUf3XS0bJbVBCrwWsHm54lJPcIM8Bc0a6PTtbeBxQ3a2hlG8j3o8kJWuY7PC8KFgscjFZXU18FyNts10DqYrsvMUqngfLShS7D4A9eI1rhgk5SdEZRo1atRx5w177733mDZtGq+++irz5s1j1qxZvP3226iybjSdhAonBxMnTuT777/nnXfe4bLLLiM9PZ2uXbsybtw4rr322koJSojK0LejncduceCI8GC4dVwFFjyFOoZXJzzaw4IJITRMMHW7IkYNLwhMELzFQxZpCkLcpK6MCHaIpyR1eS3YFQVFVgh3Q6TL99CAfRHc1t8W7BBPyfhb7bTq4AS7r/M8XktxB2wL2D00aF7ES9PMO4wpwPMTbAzo56v9SE/TOZyqk5WhExJmcONwg7FXm7sMa7oQh8ZTE3TOaaeTXwAp+xUp+wzSMhVNG2hMvdtCs0aSHAiz06roUXGffPIJ33333XE/s2fPHnr06OF/PmDAAAoLC0t1SD5ZmjqJNEMpRVFREaGhoRQUFLB+/XpiYmI4++yzKyWoikhLyy2zRl5UnKZBfHxkjdum2bkepvzHya9/e9F16NPByoPD7TViArQSDc7LxVVo8yUIuuLS84pY8FhMsMOqNEPuymDtDsDuG+LT5tbZ90lMsMOqNFu2uBh4vY6ryNe8xuow+PpNb42YAK3EL1u8/He5QU6eom6Cxg1DLDSqZ95mfcdSU4+jhqFYuwF++kPh8UBSE1+tQoijZiUGNbX8gqlkm1Znk77citNbuf27HBadqecnVeg7WVlZXHbZZdSuXZvmzZvz5JNPlvm5Vq1asXr1auLi4vyvdezYkaVLl9KwYcNTihtOokMy+IZGCg0Nxe128+OPP2IYBi1atDjlYISoCtGRVp4dW3MSgbLsXRF51EntGMPDmNTS52v2pIutWtnZu/7oC5Oa1Q6/UysLnVrVrHU6k+i6Rs/O0LNzzUoGhPCrBsngjBkzuOyyyyqtBuBkleuKyTAMFi5cyKeffgrAZZddxpAhQ7j22mtJSUkBIDY2loULF9KqVauqi1YIIYQQQgiTyMvLC3hut9tLTVQGsGbNGn766SeWLVvGlClTTrjc5cuXExHxT9NhwzD48ssviY0NvJn2r3/9q8Ixlys5mDVrFh9//DHXXnstYWFhvP/++7zzzjs0aNCAN954A8MweOyxx3juueeYN29ehYMQQgghhBCipunTpw/5+fn+52PHjuWOO+4I+IzT6eSRRx5h8uTJhIScuOa/fv36LFy4MOC1uLg43nrrrYDXNE2ruuRg6dKlPP3003Tr1g2A8847j/79+zNt2jRq164NwN133y0dkkW1lZfvZeUfXkJscG47C3Z7zWve0HdUJnvTM7nlEo0HbowJdjiV7tX383nzU0X7JI0XJ4YHO5xKV1TkYslKg8hIGNjJhcNRc/oblMjKU+TmK+KiNMJCpXmKEKKaqIqhR4uXt3LlyoCXy6o1mD17NsnJyfTu3btci/76669PObzjKVdykJaWRuPGjf3P69WrR0hIiD8xAKhVq1apqhMhgi0v38u/puWwMS8Hb4gL0LC95qB7QiTvToisEUlCwuAMiHSDTUEIPPMlPPPxYdrEWfl2vnmH+SwxbFw+363XwevrcL15Myz6uAh7mIe9X5p7NCbwJQX97yhi+2Ev6AaQD0qjYS0rK54NISba/EnCr1u9vPmJhx9/A7cbwsOgbzeNkf+yUj++5nVKFkKIEkc2/TmWTz75hLS0NDp27AiAy+Ubhvzzzz9nw4YNVRpfWcrd58BqDfyopmnouhzURfWVl++l0/jDZEXnQATg8u2v7ugCVhUW0muChx9nxQc3yFOUMCQDYt3/TKSl8PVqDfWyKceg362Zpk4Qho3L57u1VvAWH2s0AAUeC65cnYR++aR+a95ahKIiF62uL6DA6wUL/8xVoSv2ZLtpd5OXv9+GkBDzJgg//O5h0gteUg9rREYqHHbIydVYtAw2bHbz/HgbDevIuUQIEUwnP/To8ZdZPm+++SYezz9z2sycOROA++67r5JjKp9yD+Fy8OBBnE5nwGuHDh3CYvHdeU1PT6/cyIQ4RaNn55MVlQMuHd1zxK7usWLY3eyyZfLkO2FMuDYseEGegtsez/TVGGgKvIBWfIGl8CUKVsWmDPNOoAXw3TrdlxjoKvA4qxQYGjit/PfTfP5vsDkThNtnun2JQck8FQBovknQNIVTM7j6ERdLZpgzOfB4FLPe8JKWptHkLIVeXFEXHa1wuWDr3xovve/mibEygaYQ4syVmJgY8Dw83HdOa9SoUTDCKX9ycOWVVwY8V0px3XXXoWma/3nJv4WoDlbuzoUYFZgYlHBaIdLJm2tyTZscLP7JgCjlu9tc6ren+S6g7V4eeD6LGXfFBCHCUzP+2XxfUyIofQNGw5cwKJ2xT2r83+DTHV3l+HKDqzi500qvY/GcFeu2uoMSW2VY9auXlF0aCQkG+lGzINvtEBmpWP0THMowqBMrtQdCiCCpwj4HZlSu5GDFihVVHYcQla7I5gZP2RccuqZhGDo5hnkvvLCWHHmOkZQrBZrGO18bzLjrtEVVaZZ+U1zNqx/jCKtR3AzHvDclXF7AopWR3BVTCq+JZ2LafVAV9zEoe/0iwiEzS2P3QUkOhBCixLEmPzsWr9fLqlWr2LlzJ0OHDiUlJYWmTZsSGXlyk8+VKzk4urpDCDPQvDpYjnNhpSmsmPiCpGTVipOAUopfigkz58VlbLRBRirF/SjK+IA66v8mpKFQ2rFWkOJyNW/yE+rwrYLHA9YyzjZuD1gsEBZi3nUUQohgOnDgACNHjiQrK4vs7GzOO+88Xn31VTZs2MCCBQto2bJlhZdp4isjIY6vkS0MdIVRxtWjoRmARofa5mxSBKA5Lb4L47LurJckDB6NP96NK/2+CXz4lAa619e8pqwEoPiaulED7+kOrdI0iLXiu/g/RhmiqB1p3hG1+nSyEBOjSM8offGvDF+tQZOzFK0by6lICCFOxmOPPUbnzp1ZtWqVf5jUWbNm0bNnT6ZOnXpSy5QjsqixJv9fFFqeAyJcGLpvGBhDKQyLF8JdWHJCmDXKvENhHvqklm8EJk0DzSi+mARQvpFvFJBb7m5F1U69euFgM4qbD2mBNQUGvqTB4uHHd81bhnPucfj6G5TUcB3ZhMiqwKsz/RbzdtatG6czuC8UFUFqGhjFeZzbDfsOQIgDrhlsQdel5kAIEUSqih6nwU8//cRNN93kHyAIwGazMXr0aP7888+TWma5koPVq1f7x1wVwiwGd7fzQM8ELDkhEOLBiHBCpAvsXmxZ4cy9sg5N65v34hlgaDsbOHVA8yUEuvL9qg0g10bqJ+asNSiR+l0Y2ItHZDI034W0UdzUxubhibuNEy6jOuvezsH4YaHgsfjKzqrA4vX926tz20UhDOlj3uQA4J7hdq64yJfj7dyjkbJTY98+jegoGDNC47K+5v4NCiFqAq2KHlUvJCSkzBFDU1JSyjXHQlk0pU7c261jx44sX76cunXrct555/HBBx9Qq1b1GDs9LS0XE/fXq1Y0DeLjI2vcNs3I8nLvK/n8sd+FrkGv5iHMuDm0RkyAViJhcCaEen0X0R6dns11lsysHr/RynDH9HwWLdd8tQUaxNdSbPrIvE3CjpaV7eLmJ138ttOLRddIStR54yF7jZgArcT2fQZfrfOSV6CoHatxUU8LtWNqXuV1TT2Onimk/CpfyTatziZ9tg2np3JvNjmsOlMHNa/UZZZlzpw5fPLJJ4wfP5577rmH559/nsOHD/Pss88ybNgw7rqr4iOSlCs56Nu3L3369KFTp05MnDiRSZMmHTMb+de//lXhIE6F/IArjxwUzU3Kz/ykDM1PytDcpPwqnymSg+VVlBxcVPXJAfgmUVuwYAEHDx4EIC4ujhtvvJGRI0ee1ITF5arPnTx5Mi+++CI//PADmqbx6quvlvnHNE077cmBEEIIIYQQZ6oRI0YwYsQICgoK8Hq9Jz2EaYlyJQfnnXce5513HgADBgzggw8+IDY29pT+sBBCCCGEEOLkeTwe3n//ffr27Uv9+vV5/vnn+eKLL2jTpg0PPfQQMTExFV5mhesavv76a2JjY1m9ejVvvPEGr7/+Ot999x1ut4knkxI1Xmqqm6dedTHnbRf5+TVzX216fhpa2z3c+FDpjkk1wS2TsqnfN5euw7KDHUqVyM93M2uBmydm59fYffTvHYoVqxQHUmtmew2XW7En1UtqlifYoVQJpRR5hYqcPIVh1MwyFMJsnnzySebOnUtOTg5fffUVr7zyCpdddhkHDhzg8ccfP6lllqvPwZEOHTrE7bffTkpKCk2aNMHr9bJr1y7q16/Pa6+9Rp06dU4qkFGjRhEbG1vhWeGkXWDlqYltLVNT3XS9WlGQWzyiDwCKuHgvP32gEx5uC2Z4lSKhXy6+oYr+WT90RaS1kO1fxAcxssqRNDiLrFwHuC2+kYo0wOYB5SF1dfVux1oe+fluOl4GWfmGr8M1gKaIDNFZswgSEsy/j778huKFVy2kpWkoQ0O3KM5qqHhmipdzu5t/GNOsfIPXvi7gy80FZBZ5sFt02iQ4uKp7OP3a1YxO5Ru3G3y/wcvWXQpDQf3aGr3O1umWrGOxmL8MS9TE82CwmaLPwadV1OdgcNX3OejZsydz587l7LPP5t577yU/P5958+bx999/c/XVV/Pzzz9XeJkVrjmYMmUKcXFxfPvttyxevJiPPvqIb775hvr16zNt2rQKBwDwySef8N13353Ud4U4ltRUN8mXQkGO5Z+LLgA00tOsJF0YtNAqTUL/ksTgSL7hPnNdYTS7IC0YYVWapMFZZGWFQKENvLpvNCYFFNnA4yDh3Pxgh3hK8vPdNB2oyMojcB9VGrmFiuQhhulrEWa8qHjkSSuphzQMA9AUXg+kpGhcPcrKilXmvgLLKTC4+z9ZvLY+i0P5bhy6Dhqs3p3Hg/9LY/GaomCHeMpW/+pl3vtu1v9pYLFAiB227TF47SMP73/pxes1dxkKYWaFhYXExcXh8XhYuXIl/fv3B8AwDKxlTU1fDhVODtauXcv9999PdHS0/7VatWpx3333sXr16goHkJWVxVNPPUW7du0q/F0hjueCmw0wfCdqSioOSh4K3E6dK+90BjXGU9HvpnRQJYnB0XfufM9zPaGnNabKlpXjAJcVrF6wGr5ytCjfc0MHj5UHZpq3mdHloxVKFe+QZQ6RrTFgRBADPEUFBYrZr1rxesFqA7tdw2bTsDs0LFZwOeHeyeYeUvg/3xTyy4EC6oTaaBBpJybEQkK4ncZRDgo9BnO/ySY9x7zzcRzOVPzvay9oGi0b68THaNSK0mjWQKd2LY2vfzT4c7skB8LszDvPQadOnXj66aeZPHkyhYWFDBw4kC1btvDYY4/RvXv3k1pmhZOD6OhosrNLn4xzcnKw2Spe/T1jxgwuu+wymjc/PcM9iTPH/oPFu3dZv8/i11auN291+KYUO8c/APlqEC67y5x9EPpcn+1rSqQpX730kTQNdC94Lby21LyTaP3614mm0dRI2W/eC68nntdwFmnoFkrNgmyx+JqIHTyk8dOv5lxHj1fx+aZ8bLpGmD3wdKprGnXD7RwudLP8F/PehPh9q0FaliKxdun3YiI1vIZi/Z/e0x+YEJXJxDMkT506FbfbzcaNG5k+fTpxcXEsX76cuLg4HnnkkZNaZoXPqhdffDGTJk1iypQp/rv9v/32G4899hiDBw+u0LLWrFnDTz/9xLJly5gyZUpFQwFKXzOIk1eyLWvMNlWa78d5rOTAAAzNvOur6fgaxR5vBTTWbLCZch23pOi+MtQNylxHXQMvoExchiXJnXass4jvdbOu31/bfbUiVmvZK2DRwevV+OEnOKfj6Y2tMmTkKTIKPYRb9X/2UO2f/zuK2+LvzfCYtgwPZyksFo7ZryAqXGPvIWXa9TtajTsPVgOyLatWvXr1eOmllwJeu+eee05pmRVODu666y7S09MZOXIkJX2ZLRYLw4YNY/z48eVejtPp5JFHHmHy5MmEhIRUNAy/uLjq3cnFjGrONs08/tvF12XVvaPUsZWvvb3F6jHlOlr1XDxwVH+RI5T0FjR1GaZzopoDNGXa9asVXQQYGIYvETiawpfYnZUYQny8+Tru2kO9OGwWPF6FzRbYPMpmtWAoA02H2OgQ05Zh7bhCrFYnYWFlXy7oFi9xtSzEx5c9MapZ1ZzzoKjpZs+efdz3x44dW+FlVjg5sNvtPPnkkzz44IPs3LkTu93OWWedRVhYWIWWM3v2bJKTk+ndu3dFQwiQni4jClQWTfMdEGvKNrWFGLgLLWXXHhRX+dWKUaSl5QYhukrg8YJ+vKZ8vkI8+E2sKdfxsxcNBt7mAZfN14To6NtPhg66ArymXD+AyFBfx+Nj7qNAiA3Trt/I4Yqly614PArdHriChqEwvBAaCpecX0Ramjmb3nSs5+DLbbnUcujomq+plM1qwe3xklngwaHrdGls3jKsH2f4RgZL9xIRGliGXq8iI0sxqIeJj6NHqWnnweqgZJuKqrFu3bqA516vl71795KTk8OFF57cyCsn3Vg3KiqK9u3bn+zX+eSTT0hLS6NjR19dssvlAuDzzz9nw4YN5V6OUsgPuJLVlG161w0wc37xVVfJxdeR66UpFk7XTLuuqSujSOhXUPzsGFeWeEy7fu3bR4Ml35cAeHWwGL6zjFK+xMDQIMRF6spI067ji5Phxokl+2jx/49sn6IpJo8x7z7arZNG8yaKrds0XC6F1erre+D1KrweX63B4PO9WK3mXcere4Tz894idue4qBtuI8SqYyiDjAIPmU4PA5pGcnYTq2nXr8VZGh1a6qz/w6B+bYiOAE3TKChS7D6gaFxPo3Nr3bTrdyw15Twoyqkq+gicpv3nzTffLPP1J554Au0k23RVuENyZXnzzTdZtmwZS5YsYcmSJQwYMIABAwawZMmSYIUkapjxN9s5v4+B/xca8EM1GD3CoFcnc48h36Zp4RHPjuoFpXtJ/TYqCFFVntRV4RDi8o1Q5LWAWwdPcfONEBeX9TP3MJ+D+9sYfklJn4Pig3hJEWoGl56rcfNV5t5HP3nHS5MmCg0NjxtcTt9QphaLom9vLy89be4rsK4tbUwcXIt6ETYO5rvZke1ke6YTl6E4r1kkj14VVaoztplYLRojBls5t6NOTr5ic4piS4rBgcOK1k11bvqXldho866fEDXViBEjWLx48Ul9N2jDfCQmJgY8Dw8PB6BRo0bBCEfUUG8/Yydlt5sr7vJy6LAOKJo3hk/na4SHm6+N89G+XRgHQEKfHLAWXzQrRd2YIn7/n/knQANIXRlO12HZ7DxkK+5/oACD1FU1o43zs5PsTBzl5vKxsHO/L0lIjFd8/LJeIyZAi47WWPeZwbIvvMx/3UJePiQkKCbeadCxXc24qBzUyUHPVrX5fIOT3Wle4mo56HwWtGts/vIDiAzXGPkvK7sPKlL2KQwD6sZrJDXSsNagCdDEma5m7cvfffcdDofjpL5b4eTg448/5txzzyUmJuak/qAQp1uTs2z88r9gR1G1UldGHTWzZ824cC6x/v3oE3/IxBISbKz+b82enfXSCzQuveDI8f5r1ok4KkxnWK/QGluGmqbRqJ5Go3rBjkQIcaQBAwaUaj6Un59PdnY2DzzwwEkts8LJwaOPPsqiRYsqPTl48sknK3V5QgghhBBCnJCJ+xzccccdAc81TcNms5GcnHzSrXEqnBx069aNjz/+mNtuuw273fzNMoQQQgghhDCjyy+/HIDCwkJ27dqFYRicddZZREScfAuCCicH6enpzJ07l3nz5hEbG1uqPdOKFStOOhghqsrOnV6emg/hYfDQHRATYznxl0ymdu/DYKTTuZXB8lfLmM7U5MY8ksPS1dCojuL7t2teM6PcXC+zXoXwsDxuG+4lIqLm7aNZOYrcPIiLgbCwmtWsCMDrhfwCCA2rQe2JhBDVmtvt5umnn+add97B6/WilMJqtXLppZfy6KOPntSNfE2pirWK/N//jt94uySDOV1qWrvOYKqJbWV37vTS7RIryqnjG5zLV3doC/ey8VtvjUgSEgZmQ6wLIly+UW88FshyQKaX1JXmTxJaX5JNeo7dN6RpyfWkFzAUqd+HBzO0SpGb6yV5oE5h/hHDmCpwhCjWLTWoX9/8++ivGxVvfqDx46/gdmuEhyv69oCRVyvq1zV/klDkhB9+gjU/QXomhIfbaNHEzbnnQFMZY8NUauJ5MNhKtml1Nmnpdpyeyi1wh1Vj6pBmlbrMskydOpXvvvuOyZMn07FjRwzDYMOGDUydOpWBAweeVL+DCicHR8rOziYyMhJN0056LNVTJT/gylPTDoo7d3rpeoH92DPs2gxSNxllv2cSCRdkQYN8sBvg0nzralWgG5DjgH26qROE1pdkk55rAwvFeV1xgqAVz13hUb7hTk0qN9dLs176P/uof9bnkrk5FNt/MIiMNG+C8MNPikkzNFLTNCIjwGGHgkLfI6mZ4vnHFA3rmzdBcLrgP+/D2p8hxAEx0WCx2Ni7301sDNz4f9CudbCjFOVV086D1YEkB1Wre/fuPP/883Tr1i3g9bVr13Lffffx/fffV3iZFZ7nQCnFSy+9RLdu3ejRowf79u3j/vvvZ/Lkyf6JzISoDvpeYfnnoks76gHgttD1Ym9wgqsE7S87DPUKwWZAvgU8Vt9cAE4rFFkhygmx5r2oBEjPLk4MDFVcljoo3fdcAywaDz+bE+QoT94Fw7XA5FXT/pkJWvP9p8dlQZuO5pR5PIpZ8zXS0jWanAUJ8RAdBfXqQMP6sHW7xkv/MW9iALD2F19i0LA+NG4ItaKhboJG6xaQlw/vf+xLhIQQ1dnRFwmV9ah6Sini4uJKvR4bG0t+fv5JLbPCZ505c+awdOlSnnzySX87pssvv5zVq1fz1FNPnVQQQlSFwtziC+Nj/j4VO7eZdxzygy4bODxQaAHtqJ+y0n2zCEcX0fP/DgcnwFM08N/ZxTUGitKHquIEQYf5i4M2Xcsp255yVI1BGVJTT1MwVWDVOkjZrZFQG/SjitBuh8hwWP0jHEoz5y1aw/A1J3LYff2ZjqRp0DAR9h2ETVuDE58Qoubr3r07M2fOJC8vz/9aTk4Os2bNKlWbUF4VTg7+97//8dhjj9G/f39/U6JevXoxY8YMli9fflJBCFEljtWcCI5o223iu5Y2o3g9jvEz9mhgM9h2wJwXz7//bfmnm0iZitc7SE0aK0XJuh1rHRSYeT6A3fvB7S594VwiIhzyCzR27z29cVWWgiJIS4eoY7SYsNt8RZieeVrDEkJUlKqix2nw4IMPkpKSQu/evRk6dChDhw6lb9++7N+/n4cffviklnlSoxUlJCSUej0qKoqCgoKTCkKIquGbbbbGKpktWBmlaw7At+pKA2XOplM2u4Fb6cXrUdYnDEA7bQfgKlGybsfaTTWKaxXMuR+HhvjyHo8HrGWcbdwesFggLPT0x1YZbFbferndZb+vlK92wWbeCkohRDVXp04dPv74Y1auXMmOHTtwOBw0adKEXr16oR9dZVtOFf5W9+7dWbBgQcBreXl5p1R9IUSVsBV3Ni7r4rH4NUuoiTsk52q+Pga2MtZBGb7Xc22kfh9/+mOrBJ+/AHhL2uCXsY7FF9YW6zGuzEzA4eCIBOAoxa9ZTDydTJ9uEBOtSM8o/Z4yIDMbmpylaN3i9MdWGRx26JQM6VllF2FmNkRFQMuq75MohDiD2Ww2zjvvPG655Rauv/56evfufdKJAZxEzcGUKVMYO3YsvXr1wul0Mnr0aPbv30/9+vV56aWXTjoQISrblZd5+OCD4n4HJTdfA07gipee9OBr2G4+qd/GkHCFG+KLAC+4teIaBANCveDWIdNxosVUW8nJUWDk+2o/dM13C5bi9SsZscgNB1ZFBTnSkzdrisGYCZbi0YmOHKlI+UcsGn+rgVn30boJGoMHwLtLIDUN4mN9fQ/cbjh02De6zzX/Uui6OWtGAHqeAxs2wt8p0CgRQkJ8HQTTM+FgKlzQD+rXCXaUQojjMtkMyQMGDCj3KKEnM/9YhZODunXr8sEHH7BmzRp27NiBx+OhSZMmnHvuuaeUpQhR2eZOt/D7ZidbN9op3fxEMWiwk39dZM72+CXqeuBgWgjEOCHMi7/5idMCB8JI/dLck4Wlfh9OQu8C37WxfkQbHAW4YdgAT3ADPEXDLrGw/FsvH39m8ScDvlX0/btPT4N7bjVnYlDinlEKlxuWf6Oxc88/eV1cLcWNVykuu9C8iQH4Rin691Xw/jLYudfXT95mVYSGwIX94fJB5u4WI4Sofu64446A50oppkyZwp133lnmyEUVddLzHKSkpLB9+3ZsNhtNmzalYcOGpxzMyZCxiCtPTR3f+dffvVx2k4XCAl/yGhvnZe0yo0ZMgFYioW8WRCvfJGhuHbvTzd4V5p3f4GjnDs9m6277ER3JvaSuOvmp4aub/fu9DL5B52DxwFJxteDLt2vGBGgltu9SfLVSIy8fascpLjoPasfWnKtmpwu2bIO0DKgdH0qduELq1Jyf4Bmjpp4Hg8kU8xwsSamaeQ7+1aRSl3k8HTt2ZOnSpZVyPV7h26YHDhxg/Pjx/Pjjj0RHR6OUIjc3lwEDBjBt2jRiYmJOOSghKtPZ7S3s+gn+abeuYdZmGseS+l1MjT6pff+2uWtATqR+fQu/fnn0hUnN2kebNdJoNqLkWc1JCko47NChTUkZWklLO+4ItUIIUW1VuB3QpEmTsFgsrFixgnXr1rF+/XqWL19OZmYmkydProoYhRBCCCGEqBomHsq0KlS45uDHH39k8eLFJCYm+l9r3LgxkydP5uqrr67U4IQQQgghhBCnT4WTg2bNmv1/e3ceH1V1Pn78c+5s2UhCSCZAWBVRUMQFEBSwoK3Wte57rdYvVkuptbYutXXB5avUpdZK609b168raq12c18quKNVZN+3DAkEEpLMcu/5/XFnJglkQoCZTM7wvF+vIWRuMnnOnDsz57lnY+HChQwZMqTN/atWrWqTMAizRCLQHIaiIoNT3Q6MP2YLC5d5QWvOP9Hm7rvNXeEmlYqhdeBrhPp6Qityb3mU4F6boDAPmpoJLe6Z7XDSbtOmKL+aAXkFW/jN1Bilpbm3OP6iZQ4r12qG76PoE8y9BSxsW7M1rMkvNHiJZCFEt/fSSy9td5/jOLz22muUlZW1uf973/veTj9+pyYktw5iwYIFPP3005x33nmMGDECj8fDggULeOSRR7jooou4/PLLdzqI3ZGL46u70uYt8P5sxexPFFu3KkpLfYwYFuGIsU5OTKYbf8wWFq4rctf898ZPlKgFMTj/6K05kSQED4qA12o7jFsD9Q2EFpRmKar0Ce63GXr7IGCDpd2yRSzY4iX0SV62w9ttmzZFGXaswlFOy0BPB5SjmP007LWX+UnCg/9nc99fFDWb3HH4lgUD+mru+rVi/Cjzk4TmiOaDeVFmz4tRu8WhsMDPPn0cxh/gY68+uTV3JNfl8tytbDFiQvKLGZqQfEpmJiRPnjy5Uz+nlNqlpUw7lRxkOojdIS/gXbepDv7fYxbz5iuKi6GoENA+1qyPMqi/5n8udOjXN9tR7rrxx2xh4foiKIgvd2krtwFtxZfDbPQQ+sLshknwkCh4OpjcucXsBCG432bob4HfceeTO8ptQCsNjgUbfYQ+MjdB2LQpyr7f0eCDtlslJxJZxYJ/K3r2NDdBuOOPDvc+BHZ8p2elNDq+u7ffp3j0Ls1RR5jbgA5HNY++FmbOvCh5ASgtVHi8flZXhykrVvzgO3mMGGz2ksl7EkkO0s+I5OCFDCUHp3bdakXp1Kl3rDfffDPTcYgseO0ti6+/UewzBPw+t1lSUKAo7gELFiteetXix5c4xq7RvXBdIRTG3KTAaZUE2IDX3SgsuL8m9LWZDZPgXtXQZj3jbbsOgB6GL/fZ2wM+G2KKZPkc3OJ5HSiNEhzSZOwwo8NPJ54Y4G72lhRPZH1w8Imw/P2ujy0dGhsd7n8k/pLzxLeqiNejrSES1fx8umLuP7MY5G6a802MOfOi9A9aFOap+Puohx4BiyXrNM+9G2bvvh4KAoa+kQqxR8jE69Pc1/wuXc6YP38+S5cuJRKJbHdsV8Y2ia63eQt8/LmivNxNDFrzeKCqL8xfqFi5GgZmZwuL3WfhvjaddnoHYsq9Gm1mXuDq2Xpc4bZvQvENwxQEB1YbOQchuPcm2McbbzRvUz6lWpK8ivxshJcWtVs0+PQ2iUGcBpSmMWLuB8xtD0A4CpbSWNtcZfAohQ2sr4FPvnAYNdK8XjzH0XzwdZSAHwrz2pZPKUX/ICxb5zBvhc2oodJ7IIQww06/W/32t7/loYceolevXgQCgTbHlFKSHBhi4yaob4C+fdo/3qMI1q6D2o2Kgf0N7Vv1ancYSrviu9GanBwkG1s7aDwWGzqvojgPrGjL9hTbiSdAXkPPT+jc+WeZW74FSwA03hRD3zxKY6P4z2cwamSXhpYWjWGo2eJQXNB++fxehQZqt8gEZSG6tUwsPWruW/fOJwfPPPMMt956K6eddlom4hFdxO8Hr9ddpSgvsP3xaMydNOgzd6hz8sprSvG2pflaj1VvRyzWZZGklU3H9ZMYEGxyHZoceycUxjt1HL19zwG4eZ8CykrMfCJ8XvB6FNEUY5W11jiO+3NCCGGKne7H7dGjByNGjMhELKIL9amEwQM01RvaP14dgt6Vmr0Hm/mhDUAssYJPO2VQ8VVvUvYsGCBid3CwpeEc+qZ7TwRL5TsHNrurEnl0+1vNenCH49R3eWhpo9obTrQtg8/RH10AllLE2imDo92JyXk+OPtEM8sY8CkOGeKhtl7T3toemxo0xQWKffuZ3EUphNjT7HRycPXVV3PzzTfz0UcfsXr1atauXdvmJsxgWXDUkZqAH1asdHsKwF2ne+16aG6GoyZqCswdzg1N8cal32nVg6DdYRo+xz1W35DVEHdH6MtAq7yndZ9oq0aKbe5whiee6AkNXrdx3DpB0PE6VECTRegLc0/SG3+MWz6l23b+KOIJrOLiU7IUXBqMPdhiyEC37iIxNyEAd+WimO2OjDvuKPD5zJtvkHD4/j769LRYtEYTjrrl01pTu8Vh/UbN2GFe+vYyt3xCiD3PTnd2Njc38/XXX/P9738f1aqbWGuNUopvvvkmrQGKzBl5gOb8Mxz+9k/F0mUKrSHgh6IiOP1khyOPMLjXAAgtLCA43AadSBDiBxyg2QMNUULLDB2Pn7CxFsp6tWpYtqozRxP63J+NqNIm9GEewcM19Ii5k4/jk6xxFDRasDKa7RB3y2UX+njlrSgfz6dliVYAFDiK/for/vdak8f2wat/Vnzn+5rlayDmkEzyPEoxYQzMvMXshnP/Cg8XHZPHc++GWV7t4GgHny9KvheOGeXjlCMCbT4rhRDdkMw5aKNT+xy0Nn78eI4//njOPPNM8vK2X1+8q3dJlrWId1/DVpi3QFHfAH0qC+jbeyulJdmOKn36jdxCxCl09wPQgA3nf6chJzZASwgeGAZ/fOiCo6FhE6GFwewGlUbBIZugdz54HDcxaIDQ5+b2GGxr6dIoR/8AGprd7/N98NbjubEBWsLfXrf505OKhq0QLIdrp8LBw81ODFoLRzXzV9rUbHGo6FVAZY8IlT1zp3x7CtnnIP2M2Ofg+eWZ2efg9EFpfcyustPJwZgxY5g1axb9+3eP9S3lBZw+8qZoNqk/80kdmk/q0GxSf+lnRnKwIkPJwcC0PmZX2enLGhdffDF/+tOfCIfDmYhHCCGEEEKIrqMzdDPUTs85+M9//sPcuXN56aWXKC8vx+NpuwrDG2+8kbbghBBCCCGEyHUrVqzg5ptv5rPPPqOkpITzzz+fSy65JCux7HRycOqpp3LqqadmIhaRRV99Y/Pxl3D46DD77Z3taNIvOLQWmosAh9EjGnn11V7ZDintKoZsAl8TNG4ktLxr5/50heCBdeAEIBomtKA02+GkXUODzf2PQmF+AxefZVNYmHvLXzaHIRyGgnzD91BJwbZh61bIzzf4kqEQoss5jsOUKVMYMWIEL774IitWrODKK6+ksrKSE088scvj2enk4JRTDF5XT2znz8/Y3Hinh+am+Ce1juELKH54foybrzK/cRIcWguxSvBWQnz+6seLehDcSzN6WCgnkoTggTGwveDp5U7WzS8geKCGpk2EFvXMdni7LbjfZvCUgIqXxVdAcH8Nyib0lfnnaEODzYHHKhq2qviu1w7Tf68oyHOY86Kmd2/zy7huPbz3gcVncy3CYehRDGNHO0wY59Cjew9F7pTmMHwwx2L2R4raWkVhkc0+e3kYP85hL5P3ihFCdImamhqGDRvGjTfeSFFREYMGDWLcuHF8+umnWUkOdnpC8gUXXNDhsmyPPfbYbge1M2TS0K67/1Gbm+9IJAW07Bgcr97TTo4x83ZzV9sIDq0FXdlqZk2rZSLREFOElhi6e3Bc8EAHot6WtfJbsxyImp0guIlBqVuHWrecnyq+8pS2CX1t7jna0GCz10TlbubWZqfr+P+VZum7mqIicxOEFasU/+8RD6tWK3qVafICUL8VtmxRHHiAwyUX2pQYvHBYOAyP/p+HOR9b5AWgtETj8fhYvTZKWU/4wXk2I/aXDylTyITk9DNiQvKzGZqQfObOT0jWWvPZZ59x+eWXc8MNN3DcccelNa7O2Omeg8MOO6zN97FYjFWrVvHOO+9w2WWXpS0wkXm33t2q+hPtq0QbRcOsv3m554YoeXmGNkyiQfC3Tgi2SWq9EBwEoeVdG1a6BPdeA/5+8Xakbru8gAM4FuSbmxgAYJW45XK0+wmT3KtCg6VAe+g7ehNrPy7NYpC77vgfQLJQbS66JJIfxYTT4fN/dnloaeE48MJfLdauhWH7aqz4OVpaCpEKzZdfWbz5tuaUk8zdrG/OxxZzPlb0r9IUFrq1WVCg6FEES5bBcy962HuvmNkbSgohdllDQ9vNVv1+P35/6j2IJk+ezNq1a5k0aRLHHHNMpsNr104nB1OnTm33/hdeeIF///vf/PCHP9ztoETm/fkZGzvqcxsg2154bbVZ2GXXWvzlni4OLl28ndh4yOsFDO09KOwNkXgZt61DCzdBiCqCg1cTWmbeHITgvnXg6+n2GGzbW6lUPGGAWJO5l52/WdLBORpP1NdUd1k4abdsuWLhYot+/VoSgwS/H8p6aj78xOLbRzkUFWYnxt3hOPDBh4qAX1FY2Paqo1LQvz8sWw7z5itGHSyXoYXovjKxUaH7mBMnTmTr1q3Je6dOncpPfvKTlL913333UVNTw4033sjtt9/O9ddfn4HYOrbTyUEqo0eP5qabbkrXw4kMe+O9+Cd1R68HDfMWdkk4maGg7VCNbQ+20+g0ibYABVYHjQ5tQb6h8yp88dZiyiqM9yQ45g4rSjL4NOxI7SZ32E2qhn9JMYQ2KOrqUv9Md9bYBDW1iuLi9l+Dfp+b29bWJrpkhRB7mnfffbfN9x31GgCMGDECgHA4zFVXXcUvf/nLHf5Ouu10crB27drt7tu6dSsPP/xwl++OLHZdz9JOfFApyM/prvBcaJFpt4cgZftYgxMFtt/NvPuLAR28ISZ7FFJlDyLb/D5QShOLxTvpthGJgter8XXt517a+LxuuaLR9o9rDY6jcnJlJiFySib2JYg/XlFR0Q5/tKamhrlz53L00Ucn7xsyZAjRaJSGhgbKysrSHFzHdjo5mDx58nYTkrXW9OnTh9tuuy1tgYnMuuUqzbMvkvrFEG9vXX+FAxg658AmPrSovcZj/D67y6NKHx3FfQm3U4kO7iRXj01oXveeCJbKT88J87v/K3DnFjjtDS0iXo1hzEx+oCAPGptJfYriNkBNNWQvTUUFVIegqm/bY1pDKAQjD9AEy7MT3+4KBOCQkQ5/f81DZVBvd4puqoPiHpp99zF3ToUQIvNWr17N1KlTeeedd6isrATgq6++oqysrMsTA9iF5GDbTc6UUvh8PsrLyztcxUh0L6WlHobsbbN4sWe7RXwSDZXiUoejxxuaGABEt4KncJury60Kq4FoNWDmsJvQV36C+9tgW24yAC1zDcAdbuSLkcbRg13qV78q5Xf/Z4P2xKsuniBoHW9Iu0lDaJ6ZiQHAvTdqplwDyfMx/t+WfE9z3eXmDkcpKoLJEx2ee9FifTUEK8Cy3Cvtq9cqCgo0k450jB7dd/hhDp9/YbFoCQzsD3kB94JZ7UZYH1J8Z7JN3z7ZjlII0Z2NGDGC/fffn+uuu45rr72WNWvWMGPGDH70ox9lJZ6dXsq0u5HlxnZdc7PNYSd4WLfW2u7KZUGRzdx/O5SWGpwc4K5GhN8bX+az1TKRWkFzE6GVZvf3B/deA3lVYHtIlktp9+aLEfrS7PoDCB6wzaz5ROPZ0eCtI/RlaXYCS5PLfmUz6+/trKaF5tvjNU/+3uw6tG341+sWb7xjsXGTik8V0fTpDSefYDP6EPPfwBcsUjz3gsXylQpHK3w+L/l5UQ4b5XDKSQ55gWxHKDpLljJNPyOWMn1mJeFompcy9SluOWtAp3++urqa6dOnM3v2bPLz8zn//PO59NJLs3LhvVPJQXtDidp9MKV4/fXX0xJYZ8kLePe9/G+bG+/ysKVeUVCguPT7UX78fbMbJK0FB9SCJ+gOTwFwHEYP35ATG6AlBA+IgPLFe0lsaKoltCiY7bDSJrhvHXhLaFn2M0roK7MTu9bWr7c58RLF6nWApags0/zz0dzYAC1h4yb4ZoFFczMUF2uG76cpLMh2VOkTDsP8hYqaWkVFeT6Vwa1U5s5LcI8hyUH6SXJgnk4lBy+++GLKY42Njfz5z39mzZo1HHzwwTz11FNpDXBH5AWcPvKmaDapP/NJHZpP6tBsUn/pZ0ZysCpDyUH/tD5mV+nUYORTTjml3fvfeOMNfv/739PY2Mgtt9zC6aefntbghBBCCCGEEF1nl2YqrlmzhltuuYV33nmHU089lauuuorS0tI0hyaEEEIIIUSGZXApUxPtVHIQi8V4+OGHmTlzJgMHDuTJJ5/k4IMPzlRsogu9/rbDa+/CURObOGZStqNJv+CQeoj4Ac1+g6K8+2737uLcFRUDNoMvAk1NhNaUZDuctAsO2AyeArAbCa3MvfJ9/XWMk74PlrWZvz7qMHy4matMdaR6o0PtRk1VpUVJD4OXKEohEoHQBnC0k5zilEscR7OhFmIxqKwAb2d2oTdMOAJ1mzWRCDm5P4XjQMNWd9WwwgKz9wEVmdPp1Yo+/PBDbr75Zqqrq5k6dSrf//73sazd25l0xYoV3HzzzXz22WeUlJRw/vnnc8kll+zUY8i4wN1z9U0Of3nSizvRs2UNxYlHRHn+L+bvPBscUg9WacvSl4C7MZhmvz6bcyJJCO6rwWO1VKGDW42NdYRWmN+IDg7YCr4ScFqt6KMcUDahJea/+L/+Osak7wXalg8Nlub+28KceYb5ScLrc2Lc/0KYeaEwttYELIsxg/K47sIAQweZ/z5Ttxn+8oTFa29bbKpT+P2K4UNtzjrN4VvjzT9HAV7+t2bWP2DRMnc14cpyOG4y/OAM8PvNb2HWbIT3P1R89Blo/HhUhDGHwPjDNGU9sx3d7otG4cNPFB98pFhXrfBYsO8+mgnjNPsNzew5asScg6czNOfgbDPnHHQqObjqqqt49dVXqaqq4oorrkhu0NCe0aNHd+oPO47Dd7/7XUaMGMHUqVNZsWIFV155JTfeeCMnnnhipwsgycGu+/EvHZ57ycd2SyjG15Hff3iMt14y900/OKQePKWt7mnV8MJdLz+00ORd0CA4DHcVpjZr48dpYKvZCUJwwFbwloJjAfElWgG0FV+yNUZoqbkbTH39dYxJJ+W1LEGrE8lPy74cb73czP77m5sgvPimzXWPbaFeRwkoD16liDgOURx6BwI89ssihg8xd1WmLfUw7WoPn31h4fNBj0KN1opNde4+D1dNjXHqSWZ/SP3pcc3Dz7hX1YuL3KvO9Q3uasKTxsEd15mdIFSH4MHHFYuXKcpKoaynj9qNUTZthn2HaP7nAk2FwYvbxWLw9CyLt99XeL3QsxRiNtRuhKJCOPcMh7GjMneOGpEcPJWh5OAcM5ODTn3ivPLKK4C7g9tVV12V8ueUUnzzzTed+sM1NTUMGzaMG2+8kaKiIgYNGsS4ceP49NNPdyo5ELuu3cQAkv2MX8/zUl8fpUcPQ6/sqVZLX7Y9EP+iCO6tjL36HOxXB8XxS1rtFUEBBaUpDhrCWxJPDJz4UrTxutNOvEHtIThoE6HlZiZAk05p/RpUrU7XxKZoikmn+AgtNLMOIxHNbU9vpUHHKPf5seLvLYV4iNqa9eEwN/7Zx7O3mbum6aP/Z/HZFxaV5ZqCQrcKfT6LkmKbVWsVDzzs4cjxMXp1/SanaTF/seaxF9z/D+rXcn9pMWyuh7fnwF//DWeckJ34dpfW8PK/FIuXK/bdB3weKChQ5AXcTfsWLFb8/XW48CwzX4MAc/+reOcDRe9KKG7VRi8vg5Wr4cW/Wew7xKZnadZCFN1Mp5KD+fPnp/0PB4NB7r33XsDdTfKzzz7j448/5oYbbkj73xLbu/omB9jR1TrFd860mP2ProgoA6zWOyO3Jz4cB0N7D3qUpi5agoJg1WYj5yAEB2wGbwXuEJttCmq5uyOjFXjKMLYO7Q5eg6r1z8S6Ipq0e+41m1A4QpHlTSYGCT6PImBbfLG2mWWr8xjcz7yLELEY/OtNC58XCgrbHrMs6B3UrF2n+MdrivMNbVy++jpsaYBBVdsfK+kBmzbD3980Nzmo3gBfzVf0rQTvNi9HrxcqgzD3K8VxR5vbe/DhJ+7FhuJtLt4rBf36wsLF8OXXiiOPMPMcTY9M9HyZ25vWLfqqJ0+ezNq1a5k0aRLHHHPMTv2uTKbZNW/+x2LHJ65mzTqFUia/YXRURncoh7HnkEoxnKg1C8gvNLOM/uJ4mz9Fgmep5Dh9I8uXsIP8FWXu+9ziNTYOmnxv+w3/PMvDVsfmm2UOe/U3LznYWAcbNykKC3W7VRjwu19XrzH3fXTVevdtxJMijy3Ig9XrzD1Haze5E3T7BLeZmhYf6VdaDMtXwqY6CJZnL85dpTWsXqsoLm6/jrzxKYcbN2buHDX13NiTdYvk4L777qOmpoYbb7yR22+/neuvv77Tv9urV/cex9Zd9eq5lRXLd/RTioBfUV5e1AURZULjDo67b4TdfSxkSrphxyOGNKCjlJcbOKPO3ggEUjecHR0/ps2tQ5o6dXHJ1PJVlCmUqgel8LSzfI9jazxK0b9vAeXlgSxEuHv8fodAIEos5g4las3n8+A4DkopysoClJd3i4/bndarZxNYse3Kl+Bohx5FFuXlhe0e7+4qgw5FhVG8PkV+Xss5WpDvZnZbt2oKCzWVQR/l5eYlsABlPWOEajQFBe2/2fh9DuXlHsrLzZ37s9tkKdM2usW71YgRIwAIh8NcddVV/PKXv8Tv93fqd2trZULyrvjLvQ4jj0ys05b6suU102LU1NR3VVjppT2tJnam+hnMLV/MhoA39RtQfOWiDUvzjSzjCZMaeeXtArd3QLcztCjxrROmpsbQYUWWJ14+tj9NE/cpc8/RYw9z+N0rFnXhCKX+tutCOlrTYEfplx9g/8FhamoiWYpy9xw8wsNrb1v0LLFJLODn83mIRm021UEgAKMObqamxswPqoMP0LzwD6irsyncpv0fi0FjM4w92Db2HC0pgl5liqXLFYMHAMpNDBqbIqBh2QoY0F9TVBChpibb0e6a/Ycpvn7BolfP7XuA6uvdIXB9KsMZK59SciHXNFlLg2tqanj99dfb3DdkyBCi0SgNDQ2dfhyt5bYrtz59LAqKHDocz2Bpfni+lfVYd/VGc2NLWdorH0BjXdbj3NVbaJHHXbY05YsDsJ2sx7mrtz//uQSUHW8gx+cYQHyugXbPXeUQWubNeqy7ejvooLBbUYnhYbpV3SV6RSqbsx7nrt726m9x5JACYmg2R2M42i1gzNbURWP4sDjvW/lYlsp6rLt6O/tUh7JSzcrViuZw/BR1HHfIUZ1i7CiHg0borMe5q7ejj4D994H1NVC3xV0nX2vY2gQr10KfCjjt+OzHuas3nw+OmuCWa9VasOPTe2IxWLnGfR1OnqDxeLIf667eRh+iGdBfs3AxNDa69zmOO1Rq5Wo4eKRmr0GZjUGYJWvJwerVq5k6dSrV1dXJ+7766ivKysooKzN0WQfD/PcdG5/fhmSrRLtf0KAc5r5p5iTIhNDKAERbt54T5Yxraia02vCrGVs20eaqc+vVWh1NaIHZgz1DSxywEr0CLSv4JBIDYrXZCy4N/v2cFwLxBAG2ydU1eCLM+0+36ODdZb+7KsDkwe7QxNpolA2RCHV2hDzLww+OKGLq2WbvNDVmlObaK236VGrWVyuWrlAsWaaIRBRHTXS46bqWHgUT5eUp7rweRh8EWxth2Sr3VrMR9hoAt/wC9h5o9vvM4aM1Z52iyc/TLFwKX813WLQUCgs055yqGWP4Xq8VveDi8x2G7qNZsw7mL3Rv9Q0w8QjNuac7Rp+jIv06vQlautm2zZlnnklpaSnXXnsta9as4brrrmPKlClceOGFnX4c2edg993zgMNdf/QQjSk8Hs2px9ncf0fuvFME+9VDfknLrChHs1/f3NgALSE41AZPvBGpgcZNhFaWZjOktAoO2Ay+MlqWoY0SWmx2g6S1Z5+LMfVXPnDiff6Wzf23RnNiA7SEz76xefa1GFsaoXcZXHiCj4F9c+d9Zks9/OsNxcpVil69Ahw6sokR+2c7qvRxHM2cz+CTL9wRjUP3gqPHu8lDrti8Bb5ZBF5vAbbdyPCh0MPUKXftiEbdpVlDIXdE496DNf36Zn7CsBH7HDy5OjP7HJzXb8c/2A1lLTkAqK6uZvr06cyePZv8/HzOP/98Lr30UtROnKmSHKRP4gUsz6mZpP7MJ3VoPqlDs0n9pZ8kB+bJ6mWpyspK7r///myGIIQQQggh9miyz0FrudNnLYQQQgghxM7aZkpi2h7TULkz4FPsliee0Zz+fYfb7m7KdigZEezXQHBgmODAJoIDOr8alkkq+m9G9ailok9dtkPJiGC/JoJ7RQn2z81zdOXKCGNPjrDfxE2sXGnmsp47UrcFVq1xV0zJRU1NmnkLNctWmr2YgxBiz5bVOQfpIOMCd88ZFzq8M9sHlnZTRce9DRpg89Hr5naJJQT7NYC/FHR8hRsgsRoTsc2EVpo/2yy4DxDzgU7k+ho8DkRrCa0syWZoaREc0Ii7wHqiDuOXeGyH0ELzz9GVKyOMOtWCHmHIizcqm73Q4OeFezXjj+jcni/d2dyv4PFnLT7+HKJRRWGB5sgjND88T9O3d7aj233VGzS3/F7zzhzY2qjweGDwAM0PTodzTpZrcCaROQfpZ8ScgyfWZGbOwflVaX3MriLvWnuw4850eGeOF7zaTQ50/KsXlq/2sN8YsxtewX4N4OvZqtGcoEB7wGvgrsHbCA6xIOp3y5hckVaB7QFPubvKj8HcxKCobeID7veWh+C+WQstLVaujDDqTAcqG6Ag6m6I5ij3/8FGTv2FY3wvwgcfw5W/tvjXm4poTBHww5Z6xTMvWky9xmLVmmxHuHs2bNSc9WPNS/9SbGkAr9c9R+ctUFz/W7j34Y42IxFCiO5HkoM92CdzveAhvktJ/KqsTuxGCxs3K2prDb504iuhZelL1XLhOdmBoAgONjcBCvavA7vV8qVWqxu4DWhfr6zEljYFhe45qbY5DxM7X1uW0cOMRp2ioCwMtgVhr/s1+X8FPcOM+l62o9x1sRjc/QeLmlrF4IEQLIeSEujTG/pXwcLFipl/Mftj6Lb7YckKRY8iTVmporBAUVKs6FWmiUXhwSdh9XqD30eF2BPoDN0MZfa7sthlZ1zotCQG282ojycIHs2Yb5t8isRj76j9rwyekx/o2ZLUtdM54u6QbBGsquvy0NIh2L8pntSleIdNJAiF+V0aV1oFbLe3LtbOSRqz3GP55o5ff28OLFupCJaz3SZLfj/0KIT/fAjVG7IT3+6KRDRvfqDxWJq8QNs6tCxFcTE0bIVHnjO4lSCE2OOY3PITu+HjLzypG11JivoGg0+RDpOC+FejP7M7kfygIN/QeRX5AXa4FJwm8zv4ZJLf3mY+zDYcBXnmnqQrVyui0fiUkXYUFblj9Feu7tq40mXNerfx708xLcTnVWhg+aouDUsIsdNUhm5mMrjlJ3ZHQV5nfkpjWeY2TMxu+O+EVEOaE+9LUUPHrMfsTvyQ4ZVsd9AzAu6xzjwN3VR+npu7xVJ0fkSj4PFAgaGdP0VF4LEUttN+I8Bx3CGb+Z16vxVCiO5BkoM91EuPOW7DJFVmqwBHcckFBrdMOuodSNy3w96T7iya+lAiYVAOoRUFXRJNuvUtjrWaD5OCAiIdPA/dXbPP/dreeZi4r9HXdfGk2cTDNaUlmtra7Y9pBzZthsEDNcOGdn1s6VBRphi2jyYcjicC22hsAp8Pjp9s7hVEIfYIMuegDUkO9lBDh8YTA6XjjZDEWZz4XoEDt/zK4A81u6GlgdWqeC0vWA2Rui4PK11Ciy13SdbE/IJEQqBpqVOvuQ3nuXPz3RZkonzb0oDWhJaYO2/ke5M0NPnicw8ckgW1NOTZ0OzloH2yGuJu6R2E476taY5AqAac+DkajcCadZAXgHNOdbabj2CS/zlbUZiv2VgHkfhSiI6jqW/QNDYphg/VfHtCdmMUQoidYfBbsthd33wQcyc9OqrVaj7xFYtiivdfMbjXAAitCICO0bL8ZeujGnQjodWGjsdPiG1wEwTYvhHtjRFalI2g0ie0AMButb2BipcxfkeD2btpPXinn+KIFxp84IsnBHkx8DnQ4CNQ7+ffT5q9z8HPfqQ57QQHBSxfCcuWu4lBSbHmx5c4nPzdbEe4e044WvHLy6Ckh7tE64ZazYYasB3FwQdoHr5T4fEYfJFFCLHHkU3QBNOu1jz9kjfZsBx1UJS/P5s7eaO730EJqHiZtA32lpzYAC0hOMQBfPFlPx2IbCS0sjTbYaVNsH8TFLUaHmXbhBbmzjn6/n8inDpNgTdxaV3xwu/JiQ3QEpYsh9ffVjQ0QkU5fPcoTYXhK+22tmGj5rHnNUtWQs9SH0cfHmXS4blzju4pZBO09DNiE7RH12ZmE7QL+6b1MbuKJAciSd4UzSb1Zz6pQ/NJHZpN6i/9JDkwj7mDdYUQQgghhNhtmRj6Z+5wQunzFEIIIYQQQgCSHHTahhpYtRoihi4ZvyPBvk1U9LVRvlC2Q8mIYO9NBPtFCPZrJthnU7bDyYiKqi2ogk1U9KnJdigZEexbT3BgjGBVfbZDyYjVqzUTT9AceMQWVq/OzfEMzc2webO7v0Eusm3YvAW2bs3N+hMiZ8lSpm3IsKIdeOMdxTPPe/j6GwvHgV5lmmOOtrnofIeiHJjPGqyywZvvbvGpAJ1PxUDAjhDKgV09g703QSAIgd4td3pKCA60IbKB0Lqe2QsuTYKDLFBe8JW7dwQKCA7WEK0ltLo4u8GlQbBfI/hLIL+Xe456CwjupcGOEVph8Ltv3OrVmkO+5Y2vHOYB4ODxDlg2Lz8ZY+xYc7umE9atU7z3gcVnn1mEw4oexZqxYxwmHGHTo3sPRe6U5jB88DHM/kRRuxEKCyPsM1gxfoxmr0HZjk4IIXaO9Bx04OlZFtff5GP2RxZKaQJ+zbr1ioce8fKza7w0NGQ7wt0T7OeAL989CxLtj8S+aB4/wQFmnx5uYtC7ZZWiNjzgr+zymNItOMjrJgawzdUKBb5ygv22ZC+4NAj2a4RAqTujDVptXqfA6yM4yJOt0NJi9WrNIRN8EPaBY5GsQFtB1MtJ5/iM70VYsVLxhz95efXvHiIRRX6+ZtMm96LLgw972bw52xHunnAEHntW8cTzyt27Ib4b8lv/gT/8RfHfedmNTwghdpbZrb8MWl8Nf3rYQzjs7uDZqxeUlEK/fprycs1Hn1r83/OGP33evNTzZRRgeZk4sakrI0qvQIX7Nb6nW5sbAIrgQHOvygaralotz0rb8iXakz7D14r0l3R83OMh2NfcYUaHHu0B2+tuWmfR9gZgezlkkrkJkOPACy96WLtWMWw/Te/emtJS6N9Ps8/emi//a/Hm2+aWD2DOJzDnU+jfFwb1h54l0DuoGLYPNGyF5/6maDT4bVSIPYIMK2rD8NZt5rz6L4vaWkWfPnq7C89FRWBZ8I9/e5I7fpomWGXveCK9gvnLTR47FW90dFhOX1cEkhn++FCpRGLQWjJBUG4SYaBgVX1Lj0FH8swdGqbDVuoPkERHQszcxvOy5YqFiy36VentdkH2+6GsDD78yKJha3bi212OAx98rAj4obCg7TGloH+Vu+HbvIXZiU8IIXaFJAcprFnnNkq8KWZlFBZoNmxQxn6o4enk5krK3IZJh9R2/zGQavMlJa+hjWdvUSerx+A61Kql16A9Srs/Y6jajYpwmJTzs0qKNVvqFXV1ZpaxsQlqNkJxinkTfp+b39Vu7NKwhBA7bdvhBem6mUmSgxTyAhqtQafoGYjFFD6fJi/QtXGlT2f7uwzuF9tT7KiKtKlLw9jZDqBr7LDxb+5r0O9zr6DHYu0fj0TcCzA+n5ll9Pnc+FOtvqS127vgM7iDUgix55HkIIUjxmry8mBLO8OZHQe2NigOG63xd/ICfLejt3aiUQlETZ7Qqtt82e6QAjB0XBiADndwjORFi9DKvC4JJ+3sps61i+3mjIeSMR7H7R1o7zRM3Ocxs+EMMGRvh4oKTXVo+wRIawhtUOyzt0OwIgvBpUHAD4eMgNo62t1Nd1Od26uw795dHZkQYqfInIM2JDlIYdwYzaGHONTWKjZtaulBaG6GlSsVvcodzj7d3CuboVX5nUoOQmvzuySejLBbLSelW31t/f+oufs6hJbHX76J+QWty5Voi+kUl2wNEFrdA5wdzI3RmtAKc4e+nXl6DKz40CGHloTAwb3P0owZbWrPjzucaPK3bBobYf16lZyjFY3C8hWKggKYNMnu1NSS7urw0Zo+FbBoGYTj+brWmtqNsH4DjD0U+vbu+DGEEKI7keQgBcuCW38T48iJDuGwYvkKxbJliupqRb8qza+viXHQCIPTQmC/gZtTZ7cO4Ji9xmBotR9otWvdtuW0txJaa+h4/ITIWvdr6+GNyYaWQ2i5wT0jQGiZTbuz/hXupdpmswdz33+HoqwyDB6bZCU68a9eh/zSCK88bXDLGThqksMpJ9soS7NgoWL+AsXSZYpeZZoLzotxwHCz30f7V8FF52gG9YMVq+GbRfDfbzTNYThmEpx6vDY6+RFC7HmU1u11hpqjpqa+3e7cdHEc+OK/ivdnK6IxGNhfc8xROic2QEsIVjWBr6TlinOsmdDq3Mkb3f0OKmi1PiREanJiA7SE4CANqtUYt8h6QmsMX8a0lWBVPQTKWu6wI4RW5E6La84czUnf97r7GwAoh5efsHNiA7SEjZvgm28smpuhuASGD3O2W+HHZOEIzF/kTlCuKC+gsryRSkOHS+3JlILy8h4Zb1vsSRLPaXd2/Z/XE46mt8IDPsUtF5vZbSjJgUiSN0WzSf2ZT+rQfFKHZpP6Sz8jkoOHM5Qc/NDM5CDFQp1CCCGEEELsCTLRS2tuz2/ujB0RQgghhBBC7BbpOeik+Qth82bYf1jqDX1MFuwfwc0V69iw2tzVX1IJ9t4MvgJ32alYM6H1JdkOKe0q+tWDFYVIM6F13bsLd1cEhzZBzAtOjNByg1fRSmHzZptb7oH8QCNX/dimuDj3XofVG6C2Fqr6QEnuvQSFEKbKxNKjBg9Lk+RgB+66z+Lxpz1s2GChgYBfc9hoh3vviNG7MtvR7b5g/xh488HrTy6JWTFQgxMltDLb0e2+YO/N7mTk/IqWHj5fD4IDtDspOQeShOBeCrQXvL0ABXmFBPd2ILKJ0Crzk4TgwCYIFEGsGBwL0ASH2GDZhBZmO7rdt3mzzfAjfEQbffHywR//n4Unz+bDf0YZMMD8JOH1d+H+/2cxb4HCthWBgGbMoZrrfuYwdK9sRyeEEKI1GVbUgZ9d7eGu3/tYt95ylxy3oCmsePs9D8d8z8f66mxHuHuC/W3wFrizhRJr5SvAUuDxExxg9ukR7L3ZTQq2bVspwKsgz/ylRIJ7eUD7aLWxgfvFscBbRrB/O7v4GSQ4sAm8xRDxxpf4jJcv5oWon+DQrIa32zZvttnnUD/RBl98p+T45SutsJu8jJrkZ/Nmc/dTAXjxVfjJ1R4+mWthOwqvF5qaFK+/bXHuFA/z5mc7QiGEEK2Z3frLoC+/gudf8uI4UFAA+QF3N8zCfPD7oDpkcc0Nhne8ePJakgJo275UgMfLXXdF2v1VI/jL21n7vxULgv3NnTAUrKoH3dFVZQV+w5dr9ReBbbm7CFu03FR847CYj70PbspykLvuyJO9bqKDjifm8VvidWl7GfVtc99nIhG47R4PDQ2K8jIo6QGFBdCzFHqWwPpqxY0z5GNICCGqq6uZNm0aY8aMYcKECdx+++2EEzsrdjF5V07hdzO9RGOQn+deSG/N53O/vv+BRczQDWiD/WMkd+bZtn3cqhfhjt8ZPLbb04mGv8eX+TgyJa90xz/jWAT7mNl7EBzU5CYGiYZzawo3QXAs6pvMXSx/7aoO3oLjhzbXmDus6LmXIVSjKCpye15b8/ncCy5f/FexbEV24hNCCKBlzkG6b53981ozbdo0mpqaePLJJ7nnnnt46623uPfee9NRup0myUEKq9e49brtB1qC5YGmZkX1hi4NK31UoG2vQSqpnoBcYW7HAZ0LXkHA0MazP5Acg9+uZE+Xweeojic/KYuQ6MYz0+JlFo7tXmRpT14ehCOKeTkwd0QIIXbV0qVLmTt3Lrfffjv77LMPo0aNYtq0abzyyitZicfgT9XMygu4X50UjWet3R6FEmPne3YypZVdYLqxzjQaNdiGDg2L7WCsvd7uPwYyu/G/IwX5bgelnaIqY7Z7/aHY2PdRIURuUBm6dU5FRQUPPfQQ5eXlbe5vaGjYjTLtOkkOUvjudxwsBdHo9sccBxwbBg9yjF3WdNLk5o7bVIleBaexiyLKgM60GZ2MR5E5doQdv/loQqvMHBp2zdQYeGxAtV+XOv5PzNDkB/DkOYBu/zyM36d85p6kpx7vkJ+nqW/n883R0NgIlUHN4aO7PjYhhEjK4LCihoaGNrdIZPvPrOLiYiZMmJD83nEcnnjiCcaOHZuBwu6YJAcpXHKhQ59Kh2gUmiMtPQgxGxqb3UnJUy81dMIB8MwjfrdXYJtFbto0whxNaJW/iyNLI3trxwmCBiKmjguD0HLFDrMbZe45euWV+eCJx996/KYmXmwFPpvQEnMn7P7vb6JgxXsPHFqqM1E+SzP1EnOTn70Hw5FHaGIx2FzvXlgBiMWgrg58XjjvdAePudMqhBCiQxMnTuTQQw9N3v70pz/t8HdmzJjBvHnz+NnPftYFEW5PkoMUvF545rEoA/o5aBuamqChEcJhKMjTXPHjKGeeavJwBrj6J1vdrKf1yIZkj4Fm0qSt2QsuDUKrfBCLpr7qHGsktM7wfQ4iG0k5NMWyCS01+xwNLQQCEbcBrZW7nKmOd9f6YqCy0+WaLhee7eFbRzWD5ZDshnbiXy2HQ0aH+fUvzG45/+42h8kT3aygdhNsqIG6zZCXp/nBuQ5TLzH7HBVCiI68++67fPrpp8nbpZde2uHPz5gxg0cffZQZM2YwdGh21utWWps9qLympj6jw+JjMXjuRcVfX/UQjcKQwQ4/+4mTExugJQT7R8BT6A4O1hrsZkKrzG6QtBbsvdld1jSx7JRjQ2RjTmyAlhAcDFg+3DXygWhubICWEBzUBP4CwHLb0E6U0KLcubaxcqXNd87ysrHWLVNxicObs2I5sQFawmdfwrMvWmxpgN6VcOHZDgP7ZTuq9FMKyst7ZPyzSWSG1F/6JZ7T7uz6B0OEo+mt8IBPccuU4E79zvTp03nqqaeYMWMGxx9/fFrj2RmSHIgkeVM0m9Sf+aQOzSd1aDapv/QzIjn4U4aSg0s7nxzcf//9zJw5k7vuuotjjz02rbHsLHMH6wohhBBCCGG4JUuW8MADDzBlyhQOPfRQNmxomQ9ZUVHR5fFIciCEEEIIIfZgmVhSuvOP+cYbb2DbNjNnzmTmzJltji1YsCDdge2QJAedNHsObNgI48dCWVm2o0m/YG8HPIBdz4bqbEeTfsHejeDxAg7YDqH1hm4M1oGKPhHw1EHUJrTe4FWmUui3n0OkHrAg1NHOwoYKheCyn4Pf18h9d0AWLhYJsccLR6BusyYScXfxFqIrTJkyhSlTpmQ7jKSsJgfV1dXceuutzJkzh0AgwHHHHceVV15JIBDIZlhtXD7Nyyv/8NIcX01QWbDXAM2Tj4TZa3B2Y0uHYJUDvjzIJ7lSUcUgwI4SWmn+gMtg70bw9wR/XstKTB4I9ncgWpcTSUKwvwfwgSe+n4FPE+yvwa4ntNb8JCHYL36OaiBenOAgQNuEVuxgozQDhEJwwFgf2Cq5I/T+b3jB4/Dmy1EOOCDLAQqxB6jZCO9/qPjoM9BE8SjFmENg/GGasp7Zjk5kXOvlstP5mIbK2uU3rTXTpk2jqamJJ598knvuuYe33nqLe++9N1shbefk0/w8/9eWxABAO7BkmeLI7+SxdFn2YkuHYD/HbTQnzoLEiawAj4/gQLNXSgn2bgRfGcmuvdblUxb4ze8CCvb3Adte3oovhekpJtjX3DXyIX6OevPcb1r30CpAeQgONLvzMxSCA0b7IOqJL9Ea/4TSQMzD5ON9hEJZDlKIHFcdgpl/Ubz4qqKpSVGQBw1bFbNeUfzxUcWG2mxHKETXylpysHTpUubOncvtt9/OPvvsw6hRo5g2bRqvvPJKtkJq4813YPYn8adHgWW13FDufgcXTTH8qqyv1dX01rt9J763PBxwgLm7s+Irbbt/w7a7mSsIVpk7PCXYO4I7Fgy2H9sY/97TvVeI2CFPXuphm/Ekb/9R5p6jhx7pAccDxDcktOI3hbussONh5HizEyAhujOt4eV/KRYvV+y7D/TtDWU9FVV9YN8hsGCx4u+vZ2I8uhDdV9ZaRhUVFTz00EOUl5e3ub+hoXtsanTL7f5kI9na5n0hkSAsWGzRzi7YRghWOW0TgdZa3R+qN3nQpbV9QrAtj8Hl8xXG/9Nh6zmeRJgnOMDZ8XwuBRs2mJukhxs7eAuOH7LD5iawQnR31Rvgq/mKvpXg3aaz3OuFyiDM/Up6D/YIOs03g2XtklRxcTETJkxIfu84Dk888QRjx47dqcdRGUroN9SodhOD1hwHli+HfffNTAwZ5e1ko9iyUMrQcd2pkp/Wx7TK2DmUeZ1pNCrw+Qwto6dziz0oy9DyQbKAHValyefonidRV1JnZqjdBA1boU8w/mps1dusNJQWw/KVsKkOguWpH0ekJq8F83Sb/uoZM2Ywb948nn/++Z36vV69MjNsIhCIARqtUycIChg2LJ+ysm7zNO6Exs79mNbdfvOS1KIdH44nCOaWr5M9AjpGebmB8yvsLS2jpjpk8jka7sTPmFy+PVemPptEelUGHYoKo3h9ivy8lg/7gny3R3LrVk1hoaYy6KO8XHrxcld2lzLtbrpFq3bGjBk8+uij3HPPPQwdOnSnfre2NjO7GB41yctfHveidXyeYCtO/O8V9wDHaaKmJv1/P+NsB6wdXJnVQHOEmppYV0WVZvGJrO31HuiW/9TU1HddSGmX38Ext5Ab1viMLONN12tuuIMdv7/GItTU7CAR7K48PvcNxWH73gMHQINl+jm6Z1HKTQwy9dkk0qukCHqVKZYuVwweACg3MWhsioCGZStgQH9NUUHEzM/6biDxmhDmyHpyMH36dJ566ilmzJjBMcccs9O/rzUZeQOe/psYTz/rpSnsDh9KDDFyWo0lu/TiiLFv/qHVFsHBrVrNif+2XtHHhtB6y9gyuleei9sOL2pdPg3Ym9DazOVMQ6twlywFUmc/UWPr77LLLG74X8ddWSoVB0KrlbFlnHpplPsfCICjWq46WMQTAwWW5vhjzK3DPVmmPptEevl8cNQEePxZWLUW+la698disHY9oGDyBI3HI/WZ02Qp0zay2kd2//338/TTT3P33Xdz/PHHZzOU7fj98PxTzRTELz6j40mCdrPg00+OcdWV5q6SAhAsDMc/wdh+VR8HsJuzFls6hNb4wY60fYEmyqkBu4HQWjMTg6TollbfbDsTyia0ytD5InGhFTH3hdfem6wD/nyzz9HfXA2D9w6DFb8CgXIThXhiEOwd5i9/zHKQQuS4w0drzjpFk5+nWbgUvprvsGgpFBZozjlVM+bgbEcoRNdSWmcnF16yZAknnngiU6ZM4bzzzmtzrGIntgatqcls120kAnf/zuKvr/iIxmDgAIcZt0VzYgO0hGAfB/ICJC+nR8OEVufO2Ep3v4PSlivQTgxiW3JiA7SEYH9FcocwNMQaCK0zdxWfbQX7O+AJuJm5Bpzc2KQv4auv4DuneYlF3OzV8mpefzEmG6AZSCl3HlOmP5tE+m3eAt8sAq+3ANtuZPhQ6FGU7ajMl3hNdGfXz6whHEnvCzbgV9xymZmz2LOWHDz44IPcdddd7R5bsGBBpx9H3oDTRz7UzCb1Zz6pQ/NJHZpN6i/9jEgOHshQcnC5mclB1uYcTJkyhSlTpmTrzwshhBBCCCG2kfUJyUIIIYQQQmSPLGXamiQHnTR/IWyug/2HQ1EOjkEM9o6BR4FTx4b1nVpc3ijBysb4bsgO2Dah6tyZb5BQ0bsZPDbEooTW5+34FwwTHBhNTpYPrTR4Z+sU6urghjshP9DItVdASUm2IxJCCLEnkuRgB+76nYfHn/awocZdLjEQgMNG2dx7Z4zeldmObvcFq2zw5UFBS2OrYiAQswmtNns1JognBf6ebhkTG1b4NMEBDoTrciJJCA7ygPa6ZQQIaHeZ2uYthNaZnyQE+0ehIA/yrWQdBvfVEHUILc1ycGlQVwfDxnmwoyq5ftyfH/dieTRz/mUzaFA2oxNCiD2ALGXaRu4sSZMBP7vaw12/97KuWqEBy4KmJnj7PQ/HnOxnfXW2I9w9wSoH/HktZ0HiRPYAfg/BAWb3IAQrG8FXBo7lLg+ZXOlTQcwDgZ7ZDnG3BQd53cSg9U59WoGtwF9CsI/ZS30G+0ehMOB+o+OraSkABX6L4BCz38Lq6mDoKA+2rUDplnNUaRytGHO0h7q67MYohBBiz2L2J2sGffkVPP+SF8eBgnzIz3N7DQoLwe+D6pDiml8b3vHiC7hngAZQ7pICqPgGTIDHItjH1N2RgUBpS1Jgtbol2tG2RbCfuS+BYO9m0J62G7slbsTLnVecrfDSIz/gJgUqnhSoVhtVaAVeCA42dHdkYPxxlru7YuI1mJQ4bxWHTDI7SRdCCGEWc1tGGfa7B7xEo25SYG3zLPniy8e/P8dDzNC2c7DKbmmUKNX2oGrVoPYZPCzFsdz2VqqzXAMYPHY9LzH5RW0/7ymRIDjKTSIMFBwQbVV37ZyjKp4geAJdHVrahEI7nrDWUN8FgQghhBBxkhyksHpNfChRiot2lscdYlS9oUvDSh9PoGUYQyrtJQ6mSVW+VI1Ok6j4GPyOiqCV20NkIo8HN/FJVYnxglsG12Gnzj+TyyeEEAbQGboZSpKDFPLi7SknxZxcrd0ehZLuva9HBzp51uZyuyQnyraDBA/AjnRJJGmn7fjXVMd1269GMjl2IYTIFSpDNzNJcpDCd4+xsRRE2xnO7DjubfBAbe6yptGwO7cg1bmbuD/c1EUBZYClk0tfbidxX8qr0gawI6SswOQ8BE1orZk9B5deAPHuq/YTABXvNYmGuzawNErVM9n2hzIehhBCCJEkHzspXHKhQ59KTTQGzc0tPQixGDQ2uZOSp15q7kTI0Dpvq+RAb3MVNt4gs+M/Z6pYQ8tE1kQy4NA2MYhuyk5saRBaSTy50W27MHX8H6VBGTopBpg+3QcxWk2w3qanQAOOJrTc3Hkjt/zKTr7cthNfnOnSH5hbh0IIYQQZVtSGJAcpeL3wzOMRBlRptOPOL2jYCuGIu3rRFZfHOPM0g2seINLkNr6gJUmw4t/Y2j1usNBaHxBp6R1o3YNgaXAaCK03fJ+D8OZWDUvdKjEAlE1ouZ210NIhtNhxz0WV6EGAlgJrCJvbawBwyffh8DGxlkS99c2BEfvZTL8uqyEKIYTYwxh8WTjz9tkbZr8V4bkXFX99xUM0CkP20vzsJ3ZObIDm9gpECfaNgS8/eaWSWDOhNRa5cHqEVjsEKze6y5omGpXahsiWnNgAzd0JOUxwgIrvAB3vBQrX58QGaAChRY67clEg0DJBPhIltMzC6NWm4l56EpYvj/Ht0zxsrnfLV1igeesl2QBNCCFE1zO/9ZdhXi+cc4bmnDNyt2s/tNZNEpSC8vIe1NREzZ7juQ03Cdh2Uq75iUFroZUapSLx+qtH69xIDBJCK31s0/WTrVAyYtAgWPSp3eo1WJ9Tr0EhhBDmkORACCGEEELsuTIxR8DgCzy5dflNCCGEEEIIscuk56CTHnsSVq2Cc8+CwYOzHU36Bfs4bqrobGbD+tzLGYPBJrC8gLsObSiUn+2Q0q6idwyoA60Jrc+9l/b/XKZ59Q3oVwUfvWXu+tGpRCLwzntQXBLjkJHgM386xXbqtkD9FuhVBgW5NbJPCGG83Ptc2VW514JIs3Hf8rFkSWInWsXv/qDxBzTPPBbmiMOzHd3uC1Y54A9AvkouqVgxSEM0Smh1tqPbfcFgE+SVQEHbtf6D/TWEN+dEkhDs6wO8LZN1lSbYF9D1Zi9FGzf0YE1dowc8GnywPATB/YAIhJYa3G8bF4nAGef5+PhTD7EYgMbjzePAETaznoyau5dKK3O/VDz+tIePP7GIRhWFhZojJ9j88EKbvr2zHZ0QQojWcu8ScRoNPTDAkiVe0PGnKT5DMBJWnHJWgP98kMXg0iBY5bgrwCSXiKRlqUi/n+AAs0+PYLAJCkrBaudqgEdBfmlXh5R2waoAbo6vWq2tHF8LU/Ug2MfsifRDD9bUNVvgiy+zmyijF8iD4N5mX+mJRGD0+ACzP/QQi5JcxtSOwuefexg9PkDE0A2uEz74UHHltT7+9Zq74lsgoNmyBZ553svUK32syoGLEEIIw8k+B22Y3frLoD88CHWbEmt76pa1xyHZADv3IjN3nk3yB+INSbbf7VsDXg/Bvu1tL2yIQEnHxxUEqzqzRW33FOwTa5W40rYOE0me6pGt8NKirtECD203ryP+fwsIwNW/Mvcd+MZbvKxb777oLI+bx3qslp2Tazcqpv3c3N6fWAzuvs9LzQbF4EGaYBBKSqBPH+jfT7NwocXM/2du+YQQIhdJcpDCjLvjDf/2di+NN8CaGhVbt3ZxYGkSrHJaDUPZ5mAyQVBmD3z2dOKqstfgholViNtjoNqvw3ibOdjbzN6Dicdpt4cgVds/niD85VlzE7wX/hqPvZ13Yit+37/fMLd8732gWLbcIlihk+VJ8PuhRw/Nf+ZYVIeyE58QQojtSXKQQnOY9htdCfEOhTmfdGFQ6eT1da7La9tP9Fxj8qiURK9Bh2VQoMxsXM5fEP/Pjs5Tg+uwviHea9DBzzQ1mVvAlassolEoTDFvoqgItm5VrFxtbhmFEDlAhhW1keMtv11ntR5ek4qCvQZ0RTQZ0NkdlmQnpu5vh1Vkd0UUaWd1Oqcxt2Hp8ez49WVyfp6fp1FKxydaby8aBY8HCvLlfUYIIboLgz92MmvYfnbHvQYoUNrcZU1jMVA7+EBWYPRsyM60NxyDGyW6uYNjxM9fbeyKRf96jpa5BaloQJs5bApg2DB3IkV7M3sS9+29l7nzfiaOdygthdqa7Y9pBzbVKQYPchi2b5eHJoQQragM3cwkyUEKLz8XA+Lj8lt3D7VKDCYfGc1afLsrtNZqW6Zt/69w18tfa/ApEm7oxM9sznwcGRJa12qy/LZ1qBJ3mNtwHjlSQZT25/2A++4Vg9Aic9+A77o9iic+4drRLQmBo937LAtuvcHcBL13JRx3jE1zGEIhcOIFjEZgzVpFXgDOOSNmdO+IEELkGnlLTqGwEO67OwwqniCoVhM/lWbvvW2eftzcK3oAhMO4CVD8+0TjMp4YuMfNFVrvg2gHjePmRkLVhu9zoOvZbjWt5FeH0FpzE1iA0GINkZY9OLDiNwVE4eTJZr8GDxgOd97a7M6LjycEtu3+3+OFX18bZsL4LAe5m3421ea079koC5avUCxbplizFkpKND/+UYyTTzC4904IkRtkzkEbSmuzB5XX1NRndFj81q1w4RSLOR/60BqKizUP/SGSExugJbgbofnjCZCGSITQmtzJG4PBJndZ08REEtuByJac2AAtIdjHAhVfYUtpcBqMHU7UnjGTNMvXeN2yacC2CS0xt8dgWw0NcM1vvHz4sYXXYzFi/xh33xHLiQ3QEpYsg9ff9NCwFSoq4Lvftqkoz3ZU6acUlJf3yPhnk8gMqb/0Szyn3dn192winOZO2oAfbvlZz/Q+aBeR5EAkyZui2aT+zCd1aD6pQ7NJ/aWfJAfmyZ1Li0IIIYQQQuysTAwDMji5zJ2xI0IIIYQQQojdIj0HnbShVtMchspy8PtzZ6xzwsaNUL0Bhg6xjd40OJXmZs1X88Hvg+H7gtebe3UohBBCiF0hbYLWcrAZmF5vvA/P/BW+nm/hONCrTHPMZLjoTE1Rofkn07z58L93e/n4U0UkbOHz2xww3MdPL48yIQcmXTc3a6Zdr3jrI83WiNvHV1pgceK34NbrtCQJQgghhBCtSHLQgaf/qvndgxYNWxUlxZqAX7NuveKhxxRffu1wz01mJwhz/wsXX+ZjQ8jC69P4fZpYTDHnI4t5833MuC3G8d8xd9Bcc7PmmHNh4doYGvAot65qG20e+zssWenj+YfMLZ8QQggh0kDmHLQhcw5SWL9B86fHLMJhGDzQoVcZlJQo+lVBebnDR58p/u/FbEe5e2681UcoZFHaU9OzJxQWQc9SRa9emvp6i1vv8Lprrhvqjt8rFqy1sZSi0Ochz2uR57Uo8nkAxQdfxXjqBYNfvUIIIYQQaSbJQQqvvg61tYo+vTVKte0dKCpUWAr+8abCccxsXM6bD19/o8jL0/h8bY95PFBYqFm7zuLlv5vbM/K3NzVaQ553+9M8z6uw0TzyXBYCE0IIIYTopiQ5SGHNerdRnGpMemERbKhRNDR2ZVTp8/U3ikhEkZfX/vG8PLBtzYKF5p4iGxs0lmq//iylUEB1TdfGJIQQQgjRnZnb8suwvIC7WXCqPeJiUfD5IM/fxYGlSY8id8PgWKz94+5wIkVBgZk9IwA+C3QHg/407sbQQgghhNiD6QzdDCXJQQpHjNHk5Wm2bNn+mONotm6Fww7Vxi5rOvlITa9yh8YUPR8NDVBU5HDqSU7XBpZGB+3nQaNx2knwYrZGARNGmVl/QgghhEgXlaGbmSQ5SGHcIXDoQZraWotNdTrZg9Ac1qxcZdGrF5x9srlpod8PZ53m4LEUGzeSnHhs25rNde73R09y6FeV1TB3yy8ucyjwemiM2URtt64crYnYmmbHoTjP4heXm1uHQgghhMgtkUiEE044gQ8//DBrMUhykIJlKW69RnPkBIdwWLF8ucWy5VBdbdGvr8Ovr9QctL+5WSHAlVNtzjsnRl5As3EjbNigqKkFywPfOdrhrtsMXqoIGHWQYsY1imK/h4jj0BC1aYo5xByH8gIPj8xQ9K40uw6FEEIIsZu6ybCicDjMlVdeyaJFi3arOLtL9jnoQK+eivuma76Yp3n/Y0U0CgOrHI75Fkbvb5Dg8cAtv7b54fdtHvs/D9UbFL2DPk4+oYmRB2Q7uvQ4/QTFsd+Ce/+fl8+/UlgWTByruexC2QBNCCGEEN3D4sWL+fnPf55yrmtXkuRgByxLcfABcHCysZx7DcrBA+GGa22UgvLyfGpq3MnYuaKoSHH9z6BtGp979SiEEEIIM3300Uccdthh/OxnP+Oggw7KaiySHAghhBBCCJEBDQ0Nbb73+/3421kq8dxzz+2qkHZIkgMhhBBCCLHnysTSo/HHmzhxIlu3bk3ePXXqVH7yk5+k+Y+llyQHnRQMAhYU94TF32Q7mvQLBh13erqzmQ0bcm+eejBot4wk0hAKebIaTyZUBB2wtoCjCVXnXh3+/FcOL7wEe+8Nr7+ce+WLRDTvfADFxVEOGaHx+XJv6FtzM4TDUFDAdjuzCyFELnr33XfbfN9er0F30y2Sg0gkwqmnnsqvf/1rDjvssGyH00awygd4If5BtmULBPtpiDUTWp/V0NIi2NsBXz7k4zaeNVT0B6IxQuvMXq0I4kmBrwD8rdcc1gSrNEQbcyJJcM9RDyTebzQE++GWLweShIPGOaxdkw+OW4dffhZ/DXqihFaYf45GIpozLvLw8ZeJTQmjeDweDhwGs/5iU1RkfpKwbp3ivQ8sPvvcIhxW9OihGXuYw4TDbXr0yHZ0QgiRuffZoqKijD12pmS95dBdlm1qT7AqQLv5k1bgySfYu8tDSqtgbw2BfPDQ8rpQuGeF30uwr9mX9oJBG/yFoOKnebLbMF5IX2H2gkuTYFUAlKftKzmRB3kLCFaau4kdxBODVQVgW+7rLrlEnALbR3BAt7i+scsiEc3ob3uY/Wnr3co1tg2ffwWjv+MhEjF7dYAVKxV/+JOXV//hIRJR5OdrNtUpnnnOw4N/9rJ5c7YjFELs8brJUqbdRVaTg8WLF3PmmWeycuXKbIbRrmAQ2jw97W145w10aUxp589LnSwrwGe5w41M5StoaVCitq8/pQj2MbdxGax0QKlWZdrmJLVwnwODrV2V79YhbP8a1AocL7feae45euMdinUhQLkro1mWwuNxvwLUboJp12b9Gs4ucxx44SUPa9cqhu2n6d1bU1oK/ftp9hmi+fK/Fm++bX7vnRBC5JKsfuoklm165plnshlG+/ytGv7bNqCTjROL667rqoDSK9jb2XEvmgJ8eV0RTmaodhKCbVnmJgd487dJDFpr+d7U3oMTznZIliPla1Dxu9+bm6S/8Gr8LbidczSRIPz7HXOHFS1brli42KJfP421zaeN3w9lZfDhxxYNW9v/fSGE6BoqQzczZbVllI5lm1TGnvsUjZJtPPRnuP32TMWQQZ4Oeg1as1QGn+MuoGm/nKrlmLHlSwbeQQEUYFlGlvGjjyx2WDYAZWb5AOq3ArolEWhPU5O55+jGTYpwGHqkGHJbWqwJbVBs3qzoUWRwH3wriboytc72dFJ/6SfP5c5bsGBBVv++wZdNXb16ZWo2W9T9kqpxGVdR6aG83MChG7qZTmUHGsrLTZ0xGO34cLz45pdvBycpmvLy4i6IJ70K8+vZGungB3T8H6WNrUOvt5FoTG/34dn6e8ujjC1fsEKTl+fg99PujuThsKaoCHpX+ikvz60WROY+m0RXkPrbw2RwKVMTGZ8c1NbWZ2Y3X8cHKsXT0+rvzfvSpqamPgMBZFgsvkoRpG5XaiDSRE1NuKuiSi+d16aHoO2x+H1am1l/ALbqYN5L/CR1YMN6ZWQZ//mCw4Sj4hWVsgdIEShopqamoyyi+xo2xOKzr8C2dbL3QCl3h3LHcetw7wHmnqPlvaCk2Mey5Yqqvm3fqLWG5SsVI0c4eDwxamqyFGSaKeU2LDP22SQySuov/RLPqTCH8cmB1mTkBXzJD6I89Gj86Uk8vqJtJqijxr55hEIWwf64KxWl4rg/Z2oZiW11VyRSrRqXresSdzlTrc2cEBlapwlWEZ851M5JqgFsY+tv330tsGJuoo52JyC3eQ26l3pWfWPuOfrb6TbfPs2D7cSTAQUepZKJgWXBrb+y0drMq+qFhTDpSJvnZnlZt14RDLpzD6JRWL1GUVAAk77lLkdrah2mkqnPJtE1pP7EnszcZTAy7LbbgGhT2zvbvFHECK2NYbRwE9hs3/Wlce8PN23/OwYJVXvAjtGmgMk2Vo7scxBrhDbzjVslBloTWrODoVXdXGhlzE0QADdBiH9VgNJccKHZ5+gB+ynu/I2NN3GZRru9CAAeD/z6Zw4TxpmZGCQcNcnhlJNtlNIsWKiYv0CxdJmiV5nmgnNjHDBcWmBCCNGdGN9zkEmhEFx3XRMPPeJtWdVGO2BHcmIDtFDIAsLuajb+/JarstFmQusTGx6YLbQuRjAYblnWFAAHIk3mJwYQ3+SsmWBfC6xWuy7myAZoAKGVUY4+KcyXX+S11KG3mdBSyIVz9IKzFKccb3PNLRYffmbhtRQjhtncPd3JiQ3QPB447libsYfZfDPforkZioth+DCHQgOnawkhcpDMOWhDkoMduO02uO22GGB4L0EH3EZkGKXcybk1NeGc6k51k4Bt502Ynxi0FlrroFRzvP7q0dr8RnNrr79sAWbOK+iMoiLF/f+rUcpuVYfmJwatlfWEI8aZuayuECLX5db77e7qNslBtpdtEkIIIYQQYk/XbZIDIYQQQgghsiKHRkzsrtwae5BBZ5wN48bDK3/PdiSZMeNuOOJb8KOphi5bugPLl8PlP4VfXAt1ddmOJjNqa2HFCofm5mxHIoQQQghTSc/BDgT7BkBZyeFoF/8PoOHKK5u45qqshpYW4yfBwoV5yTRx4SL40//Lo0ePKEu+sbMbXBosXw6HTfKjlQaPe1ng0WcUPgu+/iRKaWlWw0uLD+YonnrWw9z/WmhiFBX4OepbNhd/36ZXr2xHJ4QQQgiTSM9BB4J9892FxlvPU4kv4nP3Pfn872+zFVl6HDIOFi7Ka3sWKPdW3+Cjai9ftkJLi+XLYcwkP9qr3fnHidUIPJqo0gw92N/xAxjgH/+yuOY3Pt7+j4WjIS8ANZvg8ac9TPuFj9rabEcohBBCCJNIcpDCMcfT8eR1BXffld9V4WTE6lV5HZYxGvGwdm3XxZNuRx7jA68T380GkplPcjlMhzETzV21qKEB7pvpZUsDDB4AFb2gZ6miXx/oUwn//Vrx8KPmlk8IIYToEjpDN0NJcpDC55/l73hlKwvWrOmScNJu/CR2XD4Fh44z9+p6UyRRwHYKGn/RLl9p7kvgX69ZrAtBZdAd+dZaXj4EAvD62x4aG7MTnxBCCCHMY27LKNM6s+Stgj/MzHgkGbFoSeca/bZt8ClidZS2xyvYMndt41VrFY7jDiVqT2EhbKmHdTmwYZ8QQgiROSpDNzPJhOTdoeHww7MdxK7xBTSRzqxqY/JuaJ0J3eDi5ceTAsdxp8ZsKxZ1d6ctLOzauIQQQgijyA7JbRh8WTizlKdzK/WccFyGA8mQl56K7vjE1XDc8QYvbZrcYba9gmpA4TH4FTBhgkNhAWzctP0x7bi9BgcMd+hd2fWxCSGEEMJMBjeNMuuzOZGOG88aAnnRLosn3UaN6sQPaXjkwYyHkjGnnxQBR8V79hKVGb88oAAbZt4dyVp8u2v4vpqJRzjUN7h7HDiOe38kAqvWQHExnHum+cvRCiGEEKLrSHKQQlUVHPPtptQXnbXDqiWxrg4rreZ+1Jy6K82Bv//V7N20HvgdDB3kgB1PEJRuGQZoK46dHOV7J2c5yN3066tjfPfbDrYDy1fC4mWaNeuhohx+8dMYR443uF9TCCGEEF1O5hx04PFHYM2aJg47wkskkljzX3Pllc05sQFa374QWt3MqWfD++/nJe/v17+Zz2ZnMbA0ev8Nm7lf2Jx8lo+msDvMqKzEZs7bsZzYAK2oCO6YHuPrbxTvvmeBClDWs5ljvu1QWpLt6IQQQggDyJyDNiQ52IGqKli9PAaY3UvQkReeBmhGKSgv70FNTbPR85C3ddBIWDHf3CFgnbH/MM0Bw23Kyz3U1Dg5VX9CCCGE6DqSHAghhBBCiD2YucuOZoLMORBCCCGEEEIA0nPQaVsb3XXji4rcteNzTUMD1NWB1yvjUYQQQgixB5E5B21IcrADixcr3vuPh6/nWdg2BCs0h4+zGTfWwd+5TYa7tVWr4M9/8fPOex6aGhX5+Zoxo/1ccEGU/YcbfGYLIYQQQoidJslBBz6fa/HYE17qNivKe2ny8jQrVysWPeFjyRKb88+LGZ0gLFsGV/w8j6WLLfILNQUFmkhE8crfvXz6mYfbbg0zepST7TCFEEIIIUQXkTkHKTQ0wPOzPDQ1wX77OlRUaHr2hMGDNP2qHD6YY/HJp2Y/fff/wc+SxRb9Bmj69IbSEujTRzFooKZ6veLue3zJjbWEEEIIIXKSztDNUGa3bjPoq68t1q23GDBAo7aZxJ6Yd/DBHMvYJSNXrYIPP/JQUqzx+9oe83qhvEKzeLGHOR/KKSKEEEIIsaeQll8KtRvdjMCbYuBVcQlUV1tEIl0YVBotX2HR2Kgo6tH+8aIiCIdhxQo5RYQQQgiRy1SGbmaSll8Kfh9oTcqegWgE/D6dMnno7goK3N6PaIq93aIxUAry8g3tGhFCCCGEEDtNkoMU9tnHobBQs3nz9sccx13289BDHGOXNR15oEP//g4ba9s/XlsDvXppJk6wuzYwIYQQQoiuJHMO2pDkIIWBAzSjRzmsXWuxcWNLD0JzMyxabNG3r2bcWHNn63q9cPZZMXw+xZo1ili8ByEW01RXQySiOPGEGL3KshunEEIIIYToOoYOisk8peCM02N4PPDRJxbV1QqlNB4P7DXY4azTY/TpY3BaCJx+Woz6enjiSR+rVyu0Bo8FhUVw1llRfjI1mu0QhRBCCCFEF5LkoAMF+XDeOTEmf0uxaLHCthXl5Zr99s2NDdAsC354cYwTTojxz396qalR9OkT4PBxTQwalO3ohBBCCCG6gOyQ3IYkBzugFPTtq+nb1+Ba3oHKIFz4/RhKQXl5HjU1qSdiCyGEEEKI3CXJgRBCCCGE2IOZu+xoJsiEZCGEEEIIIQQgPQdCCCGEEGJPJnMO2pCeAyGEEEIIIQQgyYEQQgghhBAiTpIDIYQQQgghBCBzDoQQQgghxJ5M5hy0IT0HQgghhBBCCEB6DoQQQgghxB5N9jloTZIDIYQQQgix55JhRW3IsCIhhBBCCCEEIMmBEEIIIYQQIk6SAyGEEEIIIQQgcw6EEEIIIcSeTOYctGF8cqBkgnnaJJ5LeU7NJPVnPqlD80kdmk3qL/1MeC7z8sx4zK6itNYG5zZCCCGEEEKIdJE5B0IIIYQQQghAkgMhhBBCCCFEnCQHQgghhBBCCECSAyGEEEIIIUScJAdCCCGEEEIIQJIDIYQQQgghRJwkB0IIIYQQQghAkgMhhBBCCCFEnCQHQgghhBBCCECSAwFUV1czbdo0xowZw4QJE7j99tsJh8PZDkvsoilTpnDNNddkOwyxkyKRCDfddBOjR4/m8MMP5+6770Y2sDfHunXruPTSSznkkEOYPHkyjzzySLZDEp0UiUQ44YQT+PDDD5P3rVq1ih/84AccdNBBHHfccbz//vtZjFCIriXJwR5Oa820adNoamriySef5J577uGtt97i3nvvzXZoYhe8+uqrvPPOO9kOQ+yCW265hQ8++ICHH36Yu+66i2effZZnnnkm22GJTrriiisoKCjghRde4LrrruPee+/ltddey3ZYYgfC4TBXXnklixYtSt6ntebHP/4x5eXlzJo1i5NPPpmpU6eydu3aLEYqRNeR5GAPt3TpUubOncvtt9/OPvvsw6hRo5g2bRqvvPJKtkMTO6muro4777yTESNGZDsUsZPq6uqYNWsW06dP58ADD2TcuHFcfPHFfPHFF9kOTXTC5s2bmTt3LpdddhmDBg3i6KOPZsKECcyePTvboYkOLF68mDPPPJOVK1e2uX/OnDmsWrWKm2++mb333ptLL72Ugw46iFmzZmUpUiG6liQHe7iKigoeeughysvL29zf0NCQpYjErrrjjjs4+eSTGTJkSLZDETvp008/paioiDFjxiTvmzJlCrfffnsWoxKdlZeXR35+Pi+88ALRaJSlS5fy2WefMWzYsGyHJjrw0Ucfcdhhh23XQ/fFF18wfPhwCgoKkvcdeuihzJ07t4sjFCI7JDnYwxUXFzNhwoTk947j8MQTTzB27NgsRiV21uzZs/nkk0+4/PLLsx2K2AWrVq2iqqqKl156iWOPPZajjjqKP/zhDziOk+3QRCcEAgF+85vf8MwzzzBy5Ei++93vMnHiRM4444xshyY6cO6553LdddeRn5/f5v4NGzYQDAbb3NerVy/Wr1/fleEJkTXebAcgupcZM2Ywb948nn/++WyHIjopHA5zww038Jvf/Ia8vLxshyN2QWNjIytWrODpp5/m9ttvZ8OGDfzmN78hPz+fiy++ONvhiU5YsmQJkyZN4qKLLmLRokVMnz6dcePGcdJJJ2U7NLGTmpqa8Pv9be7z+/1EIpEsRSRE15LkQCTNmDGDRx99lHvuuYehQ4dmOxzRSffffz8HHHBAmx4gYRav10tDQwN33XUXVVVVAKxdu5annnpKkgMDzJ49m+eff5533nmHvLw8RowYQXV1NTNnzpTkwECBQIC6uro290UiEbn4IvYYkhwIAKZPn85TTz3FjBkzOOaYY7IdjtgJr776KjU1NRx88MEAyatb//rXv/j888+zGZropIqKCgKBQDIxABg8eDDr1q3LYlSis7766isGDhzYpvE4fPhw/vjHP2YxKrGrKisrWbx4cZv7ampqthtqJESukuRAcP/99/P0009z9913c+yxx2Y7HLGTHn/8cWKxWPL73/72twBcddVV2QpJ7KSRI0cSDodZtmwZgwcPBtyVxFonC6L7CgaDrFixgkgkkhyOsnTpUvr165flyMSuGDlyJA8++CDNzc3JhO/TTz/l0EMPzXJkQnQNmZC8h1uyZAkPPPAA//M//8Ohhx7Khg0bkjdhhqqqKgYOHJi8FRYWUlhYyMCBA7Mdmuikvfbai29961tce+21zJ8/n/fee48HH3yQc845J9uhiU6YPHkyPp+P66+/nmXLlvHmm2/yxz/+kQsuuCDboYldMGbMGPr06cO1117LokWLePDBB/nyyy85/fTTsx2aEF1Ceg72cG+88Qa2bTNz5kxmzpzZ5tiCBQuyFJUQe57f/va3TJ8+nXPOOYf8/HzOO+88aVwaokePHjzyyCPceuutnH766ZSVlXHZZZdx1llnZTs0sQs8Hg8PPPAAv/rVrzj11FMZOHAgf/jDH+jbt2+2QxOiSyittc52EEIIIYQQQojsk2FFQgghhBBCCECSAyGEEEIIIUScJAdCCCGEEEIIQJIDIYQQQgghRJwkB0IIIYQQQghAkgMhhBBCCCFEnCQHQgghhBBCCECSAyGEEEIIIUScJAdCiG5j33335ec///l297/wwgtMnjw5I39z8uTJvPDCCxl57M544403mDhxIiNHjuS9995rc2z16tXsu+++yduwYcMYP348M2bMIBaL7fLfvOaaa7jmmmt2N3QhhBA5yJvtAIQQorVXXnmF008/nXHjxmU7lC5x3333MX78eH784x/Tq1evdn/mueeeo0+fPti2zbJly7jmmmsoKSlhypQpXRytEEKIXCc9B0KIbqWqqoqbb76ZSCSS7VC6RH19PYceeihVVVXk5eW1+zNlZWVUVFTQu3dvxo0bx3nnncc//vGPLo5UCCHEnkCSAyFEt3LFFVdQXV3Nww8/3O7xxFCb1atXJ+/7/e9/zwUXXAC4Q5AuuOACZs6cyejRozniiCN46aWX+Oc//8mkSZMYNWoUM2bMaPOYixYt4nvf+x4jRozghz/8IWvXrk0eW7duHT/60Y8YOXIkkydP5v7778e27eTfOvvss/nxj3/MoYceyssvv7xdvOFwmBkzZnDkkUdy0EEH8aMf/Yh169YB7pCmNWvWcN111+3UsKn8/Pw232/ZsoVf/OIXHHLIIYwfP57p06fT3NycPP7JJ5/wve99jwMPPJCf/vSnNDU1tXnuLr/8cs477zzGjBnDRx991GHMAOvXr+enP/0pY8aM4bDDDuOWW25JJnM7+/zPnj2bk08+mREjRnDUUUfx9NNPd/p5EEIIkX6SHAghupXKykqmTZvGH//4R1atWrVLj/H555+zatUqnn/+eY4//nhuvPFGHnvsMWbOnMk111zDQw89xLx585I//9RTT3HJJZcwa9YsYrEYV199NQBaa6ZOnUqvXr148cUXuf322/nb3/7GH//4xzZ/a8iQITz77LOMHz9+u1huuOEGXnvtNe644w6efvppYrEYl19+OY7j8Pzzz9O7d2+uu+46nn/++U6Vbd26dTz33HOcdNJJyft+9atfUV9fz1NPPcUDDzzAf//7X26++WYANm7cyKWXXsrhhx/OSy+9xJAhQ/jnP//Z5jHfeOMNTjjhBB599FEOPPDADmOORCJceOGFNDU18fjjj3Pvvffy9ttvc+edd+7082/bNldccQXHHnss//jHP/jpT3/KTTfdxOLFizv1XAghhMgALYQQ3cTQoUP1nDlzdCwW0yeeeKK+9NJLtdZaz5o1S0+aNElrrfWqVav00KFD9apVq5K/d9999+nzzz8/+bPDhw/XW7du1VprvXjxYj106FD9wQcfJH9+3Lhx+m9/+5vWWutJkybp//3f/00eSzz+4sWL9QcffKDHjh2rbdtOHn/jjTf0mDFjkn9r33331U1NTe2Wp66uTu+33376vffeS963adMmPXLkSP3uu+8m//6sWbPa/f1ELCNHjtQHHXSQPvDAA/XQoUP1t7/9bV1bW6u11nrFihV6v/3201u2bEn+3vz585P3PfHEE/roo4/WjuMkj5922mn66quvTj53hx9+eKdjfv311/XIkSN1XV1d8vg777yjhw8frhsaGnbq+d+0aZMeOnSofvbZZ5PHZs+e3eaxhRBCdC2ZkCyE6HY8Hg833ngj5557Lq+//vpO/36vXr0oKCgAIBAIANCvX7/k8by8vDZzGg488MDk//v160dpaSlLly6lurqauro6Dj300ORxx3Fobm5m06ZNyb+Vaq7A8uXLcRyHkSNHJu8rLS1l8ODBLFmyhAkTJnSqPA8++CCVlZU4jkNNTQ0zZ87k3HPP5eWXX2bJkiU4jsPEiRPb/I7jOKxYsYLFixez3377oZRKHhsxYkSboUVVVVWdjjkSiTBo0CBKSkqSxw855BBisRgrV65MPiedef5LS0s555xzuP7663nggQeYNGkSp512WpvHFkII0bUkORBCdEuHHHIIp512GrfeeiuXXHJJ8v7WjdyEbZf19Hq3f2tr7/cSPB5Pm+8dx8Hn8xGLxdhrr7144IEHtvudHj16AC2N3/akOmbbNo7jpPy9bfXt2zfZuB48eDADBw5kwoQJ/Oc//8G2bXr06MGsWbO2+73KykrAHR7Vms/na5MctI5zRzG3dzwxByPxdWee/xtvvJHzzjuP119/nddff51nnnmGBx54gCOPPLLdnxdCCJFZMudACNFtXXXVVTQ2NraZnOzz+QDYunVr8r7Wk5N3xcKFC5P/X758OVu2bGHw4MEMHjyYtWvXUlZWxsCBAxk4cCCrV6/mvvvu6zDZSOjfvz9er5e5c+cm79u0aRMrVqxg8ODBuxxvorFv2zaDBw+mvr4epVQyxubmZu68804ikQj77LNPcnx/wjfffLPLMQ8ePJjly5dTV1eXPD537ly8Xi8DBgzYqXJs2LCBm266iYEDB3LZZZcxa9Ysxo4dy5tvvrlTjyOEECJ9JDkQQnRbPXv25KqrrmLNmjXJ+8rLy+nTpw8PP/wwq1at4oUXXuDtt9/erb/zl7/8hX//+9/Mnz+fa6+9lkmTJjFw4EDGjx9PVVUVv/jFL1iwYAGffPIJv/71r8nPz9+ut6E9hYWFnHHGGUyfPp0PP/yQ+fPn84tf/ILevXtzxBFHdDq+jRs3smHDBjZs2MCiRYu4+eab6dmzJ2PHjmXvvfdmwoQJXHXVVXz55Zd8/fXXXHvttTQ2NlJcXMzxxx9PU1MTt956K0uXLuWhhx7i008/3eWYjzjiCPr3788vf/lLFixYwJw5c5g+fTonnHACxcXFnS4TQElJCa+99hq33XYbK1eu5OOPP2b+/PkMHz58px5HCCFE+khyIITo1k4//XQOPvjg5PeWZXHrrbfy5Zdfctxxx/HPf/6TH/3oR7v1Ny666CLuvfdezjzzTHr16sVtt90GuMONZs6cieM4nHnmmfzkJz/hyCOP5Prrr+/0Y1999dUcfvjhTJs2jXPOOYdAIMAjjzyC3+/v9GOcccYZjB8/nvHjx3P22WcTjUb585//TFFREQB33nkn/fr14wc/+AEXXXQRgwcP5u677wbcBvhDDz3Ef//7X04++WQ++OADTj755F2O2ePxJIdZnXnmmVx55ZUcddRRydWRdobf7+eBBx5g/vz5nHTSSVxxxRWcfvrpnHHGGTv9WEIIIdJD6W0HowohhBBCCCH2SNJzIIQQQgghhAAkORBCCCGEEELESXIghBBCCCGEACQ5EEIIIYQQQsRJciCEEEIIIYQAJDkQQgghhBBCxElyIIQQQgghhAAkORBCCCGEEELESXIghBBCCCGEACQ5EEIIIYQQQsRJciCEEEIIIYQA4P8Dh3lY7VCbGnQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2335,12 +2335,12 @@ }, { "cell_type": "code", - "execution_count": 536, + "execution_count": 236, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA28AAAImCAYAAADE77LsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7wcZdn+r5ntZ0/v6aSdE9IgpBA6hAi+VAOIECItvEhTVEAQfVHen4JvBEFIAAUBBSkiBBFENCgoQoAECCXJSSDtJDm97znbZ35/zD6zs7uzuzO7s/3+fj58NHu2zNZ57ue67uvmRFEUQRAEQRAEQRAEQeQ1fK4PgCAIgiAIgiAIgkgOFW8EQRAEQRAEQRAFABVvBEEQBEEQBEEQBQAVbwRBEARBEARBEAUAFW8EQRAEQRAEQRAFABVvBEEQBEEQBEEQBQAVbwRBEARBEARBEAUAFW8EQRAEQRAEQRAFABVvBEEQBEEQBEEQBQAVbwRBEDnihhtuQGtrKx599NFcH0pW2b9/P1pbW/HCCy+o/v2FF15Aa2sr9u/fn+UjS51bbrkFra2tEf/NmTMHxx57LG666SZ0dHQkvY/W1lbcf//9GT3OZK99Otxyyy1YtmxZ3L8vW7YMt9xyi+GPm2kEQcCJJ56I1tZWfPrpp7k+HIIgShxzrg+AIAiiFBkZGcGGDRvQ0tKCZ599Fpdddhk4jsv1YRFp0NDQgLVr18r/DgQC2L17N+666y58+OGHePnll2G32+Pe/tlnn0Vzc3M2DpXQwX/+8x/09vZi2rRpeOaZZ/CTn/wk14dEEEQJQ8obQRBEDnj55ZcBAD/4wQ+wZ88ebNy4McdHRKSL1WrF4YcfLv+3aNEifPWrX8X3v/99tLe34/XXX094+8MPP5yKtzzkhRdewIIFC7BixQq88sorcLlcuT4kgiBKGCreCIIgcsDzzz+Po446CkuXLsWUKVPwzDPPyH+7/PLLcc4558Tc5pprrsFZZ50l/3vTpk1YtWoVDjvsMCxZsgQ333wz+vv75b+/8MILmD17Np577jkcc8wxWLJkCT7//HMEg0H8+te/xhlnnIH58+fj8MMPxwUXXBBTQL7xxhs455xzMH/+fJx66ql4+eWX8aUvfSnC2jc4OIjbbrsNRx99NObNm4fzzz8f77zzjpEvFQBgz549+Na3voVjjjkGhx9+OL7+9a9j8+bN8t/fffddtLa24t1334243de//nV8/etfl//96aef4pJLLsHChQuxYMECXHrppfjoo48ibpPsddXLvHnzAAAHDhwAINkLL7nkEvzoRz/CEUccgdNOOw3BYDDGNtnd3Y2bb74ZRx11FBYsWIBVq1bhww8/lP8uCAJ+/etf40tf+hLmzp2LU089FU888YSmY+rq6sI3vvENzJ8/HyeccALuu+8+BINBAMD//d//Yf78+RgZGYm4zQMPPICFCxfC7Xan/FooCQaD+P3vf48zzzwT8+fPx4knnoi77roLXq9Xvk70+wfEvteCIOCee+7BsmXLMHfuXCxbtgx33303/H6/fBuv14s1a9bghBNOwNy5c3HmmWfiL3/5S9JjHBoawoYNG3DSSSfhjDPOgNvtxp/+9KeY67lcLtx2223ye/Wd73wHjz/+OFpbWyOut2HDBpxzzjmYN28ejjnmGPzkJz/B2NiYrteNIIjShoo3giCILLNz50588skn+MpXvgIA+MpXvoLXX38dvb29AICzzjoLn332Gfbu3SvfZnh4GP/6179w9tlnAwDef/99XHrppbDb7bj33ntx66234r333sPFF18Mj8cj3y4YDOLRRx/FT3/6U3z/+9/H9OnTcdddd+GBBx7A1772NTzyyCP4f//v/2FwcBDXX3+9vDDfuHEjrrnmGowbNw73338/LrroIvzoRz+K6N3yer245JJL8Prrr+M73/kO1q5di+bmZlxxxRWaCjhBEBAIBGL+EwQh4nqff/45zjnnHOzfvx8//OEPcdddd4HjOFxyySV47733NL/uLpcLV1xxBWpqanD//ffjnnvugdvtxurVq+VCRevrqofdu3cDACZPnixftmnTJnR0dGDdunW44YYbYDKZIm4zOjqKCy+8EO+++y5uuukmrF27FjabDZdffjn27NkDAPjxj3+M++67D2eddRYeeughfPnLX8Ydd9yBdevWJT2m+++/H3V1dVi3bh3OPfdcPPTQQ/i///s/AMB5550Hr9eLv/71rxG3+dOf/oTTTjsNDocj4X2rvaeBQCDmerfddhvuvPNOLF++HA8++CAuuugiPPnkk7jmmmsgimLS58B4+OGH8fTTT+Paa6/Fo48+igsvvBC/+c1v8OCDDwIARFHEtddei2eeeQaXXXYZHnzwQbnAevHFFxPe95///GcEg0GceeaZGD9+PJYuXYpnn3025nrXXHMNXn31VXzzm9/EPffcg9HRUdx9990x93Xttddi2rRpWLduHa677jq89NJLup8vQRAljkgQBEFklTvvvFNcsmSJ6PV6RVEUxYMHD4qzZs0SH3zwQVEURXF0dFQ8/PDDxbVr18q3ee6558RZs2aJnZ2doiiK4te+9jXxjDPOEAOBgHydXbt2iYceeqj45JNPiqIois8//7zY0tIivvjiixGP/93vfld8/PHHIy577bXXxJaWFvHDDz8URVEUV65cKZ511lmiIAjydV5++WWxpaVFvO+++0RRFMVnn31WbGlpET/66CP5OoIgiBdddJF4zjnnxH3+7e3tYktLS9L/2tvbRVEUxeuvv1488sgjxZGREfk+/H6/eOqpp4rnnnuuKIqiuHHjRrGlpUXcuHFjxGOtWrVKXLVqlSiKovjhhx+KLS0t4ubNm+W/7927V1yzZo3Y0dGh+XVV4+abbxZPOukk0e/3y/8NDAyI//rXv8Rly5aJy5YtE91ut3zdlpYW+TEZytf2iSeeEFtbW8WtW7fKfx8bGxNPOeUU8Q9/+IO4a9cusbW1VfzVr34VcR/33HOPOG/ePLG/vz/ha3/llVdGXP7Tn/5UnDNnjjgwMCC/DhdddJH8982bN4stLS3iBx98kPA1SPae3nzzzaIoiuLOnTvFlpaWmON/8cUXxZaWFvGNN94QRTHy/WNEv9eXX365eNlll0Vc54knnpA/92+99ZbY0tIivvLKKxHXufHGG8VjjjlG9Pv9cZ/TihUrxG984xvyv//0pz/FfIbefvttsaWlRXzttdfky4LBoPhf//VfYktLiyiK0vfi+OOPF1evXh1x/+y2//znP+MeA0EQhBJS3giCILKI3+/HSy+9hOXLl8Pj8WB4eBhOpxMLFy7EH/7wBwiCgLKyMixfvjzC1vXKK6/gqKOOQlNTE9xuN7Zs2YITTjgBoijKysakSZMwffp0/Oc//4l4zEMPPTTi33fffTcuueQS9Pf3Y9OmTXj++efx0ksvAQB8Ph98Ph8+/PBDnHLKKREhKl/+8pdhNodzrt555x00NDRgzpw58jEEg0GcdNJJ+PTTTzE0NJTwtbjuuuvwxz/+Mea/6667LuJ67733Hk466SSUl5fLl5nNZpx++un49NNPMTo6qum1nzlzJmpra3HVVVfhtttuw9///nfU19fjpptuQnNzs+7XNZoDBw5gzpw58n9HHnkkrrjiClnhUoaVVFdXJ+xv27x5MyZOnBjx3jkcDrz22mv46le/io0bN0IURSxbtixC3Vq2bBm8Xm+EpVSN//qv/4r49ymnnAK/348tW7YAAM4991xs2rRJtnquX78eU6dOxYIFCxLeb0NDg+p7+sc//hENDQ3y9Zhievrpp0fc/vTTT4fJZIqxvybiyCOPxH/+8x+sXLkSjzzyCD7//HOsWrVKVqnfeecdcByHE044Iea16unpwc6dO1Xvd/v27fjss89wyimnYHh4GMPDw1i6dCnKysoi1LeNGzfCYrFg+fLl8mU8z+O0006T/71r1y50dnbGvF+LFy9GeXl50s8WQRAEg9ImCYIgssgbb7yBvr4+eUEbzb///W+ccMIJOPvss/HSSy9h+/btqK+vx7vvvos77rgDgGShFAQBDz/8MB5++OGY+7DZbBH/Lisri/j3J598gttvvx2ffPIJHA4HZsyYgfHjxwOQLGaDg4MIBoOoq6uLuJ3JZEJ1dbX878HBQfT09GDOnDmqz7WnpwdVVVVxX4sJEybI/WBKohfTQ0NDqK+vj7lefX09RFHUHCDhdDrx+9//Hg8++CBeffVVPPvss7Db7Tj77LPxwx/+UPfrGk1DQ4Ns1QOkAJPm5mbV18DpdCa8r8HBwZjXP/rvQGzxw+jq6kp6rEpqa2sBQC64TzvtNNxxxx3405/+hNWrV+PVV1/FlVdemfA+Aek5q72n7G8M9jjRx2E2m1FTUxPTb5eIK664Ak6nE88//zzuuusu/PznP8fMmTPxwx/+EEuXLsXg4CBEUcQRRxyhevvu7u6YDQ4A8vfz+9//Pr7//e9H/O3VV1/FrbfeiqqqKgwMDKC6uho8H7kfrnz/2Pt1++234/bbb1c9BoIgCC1Q8UYQBJFFnn/+eUyaNAk//elPIy4XRRHXXXcdnnnmGZxwwgk46qij0NDQgFdffRUNDQ2w2Ww45ZRTAEgLf47jcOmll6ou3hP1JLG+r9bWVrzyyiuYNm0aeJ7Hm2++iddeew2AtOi0WCxyDx5DEAR5EQoAFRUVOOSQQ3DXXXepPtbEiRM1vSbJqKqqijkWQCoOAaCmpkbuD4zulxsdHY0olKZNm4af//znCAaD+Pjjj/GnP/0JTz/9NCZPnowLLrgg5dcVSFy46KWiokJ1zt0HH3yAqqoqVFZWAgB++9vfqhaCrBiPR7Qqyl5fVnA4nU58+ctfxquvvoqWlhaMjY3JSpYRsIK2p6cHEyZMkC/3+/0YGBhATU2NfBkLUmFEB3zwPI+LLroIF110Efr6+vDmm2/ioYcewje/+U385z//QUVFBcrKyvC73/1O9VimTJkSc5nP58Of//xnnHLKKVi1alXE3/bv349bb70V69evx6WXXoqmpiYMDAxAEISIAq6vr0/+/+z9+t73voclS5bEfT0IgiCSQbZJgiCILNHT04N///vfOP3003HkkUdG/Ld06VJ8+ctfxptvvomuri6YTCaceeaZ+Oc//4m//vWvWL58uayglZeXY/bs2di1axfmzZsn/zdz5kzcf//9CS1nu3btwuDgIC6++GLMmDFDXmz+61//AiAVPyaTCUcccURMtP0//vGPiOCJJUuWoKOjA3V1dRHH8Z///AePPPJITAhHqixevBj//Oc/IxS2YDCIV155BfPmzYPVapUtlZ2dnfJ1hoaG8MUXX8j//utf/4qlS5eip6cHJpMJCxYswI9//GNUVlbi4MGDab2uRrNo0SK0t7dHqJBerxff/OY38cc//hGLFi0CAAwMDEQca39/P375y19GFNlqvPHGGxH/fuWVV+BwOHDYYYfJl5133nnYsWMHfvvb3+Loo49GU1OTYc+PFTCvvPJKzHEEg0EsXLgQgPRZV76nAGIsoRdccIE8e62urg7nnHMOLrroIgwPD8PlcmHJkiUYGxuDKIoRr9WOHTuwbt061TCVf/zjHxgcHMQFF1wQ810999xzccghh8jWySVLliAQCOAf//iHfHtRFLFhwwb539OmTUNdXR32798fcQxNTU24++67sXXr1lRfSoIgSgxS3giCILLEiy++iEAgENfq9pWvfAXPPfcc/vCHP+Cb3/wmzj77bDz66KPgeT7Gxvfd734XV155JW644QacddZZcqrkli1bcM0118Q9hqlTp6K8vBwPPfQQzGYzzGYzXnvtNdkixtImv/Wtb+HrX/86vvWtb+G8887DwYMH8ctf/hIA5D64c845B08++SQuu+wyXHXVVRg3bhzefvttPPzww1i1ahUsFkvarxkg9cb961//wsUXX4wrr7wSFosFTz75JNrb2/HII48AAFpbWzFu3DisW7cO5eXl4DgOv/rVryLUsiOOOAKCIODaa6/FlVdeCafTiVdffRUjIyOyqpnq62o055xzDp544glcffXV+Na3voWamhr87ne/g9/vx8qVKzFp0iScddZZ+J//+R8cOHAAc+fOxe7du3HPPfdg4sSJOOSQQxLe/9/+9jc0NTXh6KOPxltvvYVnn30W119/fURf4cKFCzF16lS89957uOeeewx9fjNmzMCKFStw3333we12Y/Hixdi2bRvWrl2LI488EscddxwA4KSTTsI//vEP3HnnnVi2bBk2bdoUkxC5ePFiPProo6ivr8eCBQvQ1dWFxx57DEuWLEFtbS1OOOEELF68GNdccw2uueYaTJ8+HR9//DHuu+8+HHfccbJlVMnzzz+Puro6LF26VPX4zzrrLNx333149913ceSRR+KYY47BD37wA/T29mL8+PH44x//iLa2Nvm7YjKZ8J3vfAe33XYbTCYTTjrpJAwPD+OBBx5AV1eXbD32+XzYunUrmpubaeYfQRDq5CwqhSAIosT48pe/LJ5++ulx/y4Igrhs2TLxuOOOk9MOzzjjDPGYY46JSD9kvP322+LKlSvF+fPniwsXLhQvvvhi8f3335f/ztImWWojY+PGjeI555wjzp8/XzzqqKPEyy+/XNy0aZO4YMEC8f/+7//k6/39738XzzjjDHHOnDniKaecIr7yyitiS0uL+Oijj8rX6e3tFb///e+LRx11lDh37lzx1FNPFR9++GExGAzGfZ4s8fD5559X/bvacW/dulW84oorxMMPP1xcsGCBeMkll0Q8V1EUxS1btohf+9rXxLlz54onnnii+Nhjj4n/8z//E5FWuGXLFvHyyy8XlyxZIs6bN08855xzxL/97W+6Xlc1WNqkFuJdV5k2KYqi2NnZKX73u98VFy1aJB5xxBHi5ZdfLm7btk3+u9/vF9euXSuefPLJ4pw5c8Tjjz9e/NGPfiQnRqrBXvs//OEP4iWXXCLOnTtXPOmkk8Tf/va3qte/8847xcWLF8vJqKk8L8ZJJ50kp02KoigGAgHxgQcekI//pJNOEn/xi1+IHo8n4jo///nPxaOPPlqcP3++uHr1ajn5kqVN+v1+8b777hOXL18uzp07VzzqqKPEH/zgBxGJm6Ojo+Idd9whHn/88eKcOXPEZcuWiXfffXfEYzE6OzvFQw89VLz99tvjPpf29naxtbVV/Pa3vy2KoigODg6Kt9xyi7ho0SLx8MMPF2+44Qbx9ttvFxcsWBBxu1deeUVcsWKFOHfuXHHJkiXiVVddJW7fvj3ifqM/BwRBEEo4UaThIgRBEEQkr7/+OpqbmyPCSHbu3IkzzjgDDzzwAE4++eQcHh2RDURRxOmnn45jjz0Wt956a64PJ285cOAAPvroI5x88skRiaLf+ta30N7ejvXr1+fw6AiCKDbINkkQBEHE8NZbb+Evf/kLbrzxRkydOhVdXV148MEHMW3aNBx77LG5Pjwig7hcLjz++OP45JNP0N7ejq9//eu5PqS8hud53HLLLTj55JNx3nnnwWQy4d///jf+9re/4c4778z14REEUWSQ8kYQBEHE4PF48Mtf/hKvvfYauru7UV1djeOOOw433HCDamw/UTwEAgGceOKJEAQB3//+93HmmWfm+pDyno0bN2LdunXYtm0bAoEApk+fjssuuwxnnHFGrg+NIIgig4o3giAIgiAIgiCIAoBGBRAEQRAEQRAEQRQAVLwRBEEQBEEQBEEUAFS8EQRBEARBEARBFABUvBEEQRAEQRAEQRQANCogh4iiCEGgvJh8g+c5el9KBHqvSwd6r0sDep9LB3qvS4NSep95ngPHcUmvR8VbDhEEEf39o7k+DEKB2cyjpsaJ4eExBAJCrg+HyCD0XpcO9F6XBvQ+lw70XpcGpfY+19Y6YTIlL97INkkQBEEQBEEQBFEAUPFGEARBEARBEARRAFDxRhAEQRAEQRAEUQBQ8UYQBEEQBEEQBFEAUPFGEARBEARBEARRAFDxRhAEQRAEQRAEUQBQ8UYQBEEQBEEQBFEAUPFGEARBEARBEARRAFDxRhAEQRAEQRAEUQBQ8UYQBEEQBEEQBFEAUPFGEARBEARBEARRAFDxRhAEQRAEQRAEUQBQ8UYQBEEQBEEQBFEAUPFGEARBEARBEARRAJhzfQAEQRAEQRCEMQiCiB3tgxgc9aLaaUPLpGrwPJfrwyIIwiCoeCMIgiAIgigCNrd146kNOzEw4pUvq6mwYeXymVjY2pjDIyMIwijINkkQBEEQBFHgbG7rxrr1n0YUbgAwMOLFuvWfYnNbd46OjCAII6HijSAIgiAIooARBBFPbdiZ8DpPb9gJQRCzdEQEQWQKKt4IgiAIgiAKmB3tgzGKWzT9I17saB/MzgERBJExqOetxKHGZoIgCIIobAZHExdueq9HEET+QsVbCUONzQRBEARR+FQ7bYZejyCI/IVskyUKNTYTBEEQRHHQMqkaNRWJC7PaCsldQxBEYUPFWwlCjc0EQRAEUTzwPIeVy2cmvM6Fy2dSWwRBFAFUvJUg1NhMEARBEMXFwtZGXLtibowCV1thw7Ur5lI7BEEUCdTzVoJQYzNBEARBFB8LWxuxYGYD7nxyM744OIy5U2vw7a8eToobQRQRpLyVINTYTBAEQRDFCc9zsFtNAIDyMisVbgRRZFDxVoJQYzNBEARBFC+BoNSzHgxS7zpBFBtUvJUg1NhMEARBEMVLQBCk/w0KOT4SgiCMhoq3EoUamwmCIAiiOAkEQsobpUYTRNFBgSUlDGtsfmD9J/hgZy+WzmnCFafPJsWNIAiCIAoYprxR8UYQxQcpbyUOz3OY2FgOAHBYzVS4EQRBEESBE+55I9skQRQbVLwRcNotAIBRjz/HR0IQBEEQRLoEAqS8EUSxQsUbgXJHqHhzU/FGEARBEIUO2SYJonih4o2A0yG1PrrcgRwfCUEQBEEQ6cJGBFDaJEEUH1S8EWSbJAiCIIgiwh8k5Y0gihUq3gg4HVS8EQRBEESxwIJKaEg3QRQfVLwRcNol26TbGySLBUEQBEEUMKIohtMmBTqnE0SxQcUbIdsmAWDMQ31vBEEQBFGoKK2SZJskiOKDijcCPM+hzCapb2SdJAiCIIjCRemgIdskQRQfVLwRAMKJk6OUOEkQBEEQBUsgSMobQRQzVLwRAMLWSRcpbwRBEARRsCiVN+pjJ4jig4o3AgAN6iYIgiCIYiDCNknKG0EUHVS8EQAU4wKoeCMIgiCIgkXZ50Y9bwRRfFDxRgAIjwtwUdokQRAEQRQsfoXyJogiRJEKOIIoJsy5PgAiP2A9b5Q2aQyCIGJH+yAGR72odtrQMqkaPM/l+rAIgiCIIidabQsKIswmOv8QRLFAxRsBgHrejGRzWzee2rATAyNe+bKaChtWLp+Jha2NOTwygiAIotiJDikJBkWYTTk6GIIgDIdskwQA5agAKt7SYXNbN9at/zSicAOAgREv1q3/FJvbunN0ZARBEEQpEF28BQRKnCTyF0EQsX3vADZu7cT2vQMQKGQnKaS8EQCUowKo5y1VBEHEUxt2JrzO0xt2YsHMBrJQEgRBEBkhEG2bpNASIk8hp1JqkPJGAKC0SSPY0T4Yo7hF0z/ixY72wewcEEEQBFFyxNgmSckg8hByKqUOFW8EgHDa5CgpbykzOJq4cNN7PYIgCILQS2zPG9kmifxCq1OJLJTqUPFGAAgHlri9AQTJH58S1U6bodcjCIIgCL3E2CZpAUzkGVqdSm37BrJ0RIUFFW8EAKDMHm5/JPUtNVomVaOmInFhVlshjQ0gCIIgiEwQG1hCxRuRX2h2Krl8GT6SwoSKNwIAYOJ5OGyUOJkOPM9h5fKZCa9z4fKZFFZCEARBZAyyTRL5jmanUrk1w0dSmFDxRshQ31v6LGxtxLUr5sqvJaO2woZrV8yl9CSCIAgio5Btksh3tDqVWifXZOmICgsq3ggZGtRtDAtbG3H+shnyv5fObsKaq4+mwo0gCILIOGpDugkinyCnUnpQ8UbIsHEBLire0ka588lxoB8ggiAIIivEjgog2ySRfzCnkt1qiricnErJoSHdhAzZJo3D7w/K/79/mEYDEARBENkhWmmjwBIiX1nY2ojP9vTjjQ8PAgDOOX4aTls6hTa8k0DKGyFDg7qNwxsI73Qmi8MlCIIgCKPwk22SKCBGRsNrzsYaBxVuGqDijZApt4eKNw8Vb+niDyiUtxEvRJFOngRBEETmiS7WyDZJ5DPKsQFehWuJiA8Vb4SMrLyRbTJtfP7wyTIQFDAyRgUxQRAEkXkosIQoJIYUs9yUayciPlS8ETKs540CS9LHF4j8Aeof8eToSAiCIIhSInZINy2IifxEFEUMjYaLN1LetEHFGyFDPW/G4Y/6AaLQEoIgCCIbxMx5I+WNyFPc3iD8is1uHxVvmqDijZCR57xRz1vaeKOUNwotIQiCILJBtNJGQ7qJfGVoNHJtRMqbNqh4I2TkUQFu6nlLF6a82ULzS/qHyTZJEARBZJ5AgIo3ojBQ9rsBgJd63jRBxRshw2yTY94ApVOlCet5a64pAyAlThIEQRBEpom1TdL5nMhPBqOVNx8pb1qg4o2QYcobAIxR4mRa+EKjAprrQsUbKW8EQRBEFoi2TUYXcwSRLwxHKW++ABVvWqDijZAx8TwcNsnmR+MC0sMfkv6bahwAqOeNIAiCyA7MNmk1S0s8ctIQ+cpgKGmSiQfU86YNKt6ICJx2Spw0AhZY0lwrKW8DI14INKibIAiCyDCBUI8b67mmnjciX2E9b42hjW4f2SY1QcUbEYGTEicNwR+S/huqHeA46eQ5POpLciuCIAiCSA/W42azhIo3sk0SeQpLm2yoloo3CizRBhVvRATlNKjbEHyhHyC71YTqchsAmvVGEARBZB5/IKS8WUh5I/KbGOWNet40QcUbEUF4UDf1vKUD+wGyWEyorWTFG4WWEARBEJmF9biFbZOkZhD5yVDIkdRYLbWYUM+bNqh4IyIg22T6iKIoB5bYzDxqK+wAKLSEIAiCyDyBKNskpU0S+UggKMguL6a80agAbVDxRkQQDiwh5S1VAkER7FRpMZtQUxFS3kZIeSMIgiAyCyvWyDZJ5DMsB8DEc6gNrZOo500bVLwREcg9b6S8pYzSs2218KitlJQ36nkjCIIgMg1T3uzMNklDuok8ZDDU71bptMoW30BQgECbDUmh4o2IINzzRsVbqrCwEp7jInaUSHkjCIIgMg1T3qykvBF5DEuarHJaZZUYoL43LVDxRkRAPW/pEw4r4cFxHClvBEEQRNaI7nmj4o3IR1jSZHW5DRYzDy50uY+Kt6RQ8UZEUE49b2nDwkqsZunrxdImh1w+Sv0iCIIgMopcvJFtkshjWNJkpdMKjuNkpZiUt+RQ8UZE4HRIPW+kvKWOL8CKN+mHqLLMChPPQRBFeaeJIAiCIIxGEESIIaHNZpGWeKS8EfnIkEtyI1WXWwGEP68+Ci1JChVvRAQsbXLME6Cm0RRhkr819EPE81x4UDeNCyAIgiAyhF+hstGoACKfYcpbVWh9RMqbdqh4IyJgypsIYMxL1slUiFbeANCgboIgCCLjKC2SNKSbyGdY2mSVM6S8Wal40woVb0QEJp6HwyZ9gShxMjX8isASBoWWEARBEJnGr1DZ5MASUt6IPGSYpU2GbJNsw5uKt+RQ8UbEwKyTNOstNXxRgSUA5HEBA2SbJAiCIDIEU97MJg4mnnreiPxEFMWwbdJJPW96oeKNiMFpp1lv6cBGBShtkzU0640gCILIMCxp0mTiYTJJ4etkmyTyjVFPQO7FrHJK6yMb9bxphoo3IgY5cZLGBaSErLyRbZIgCILIIsw2aTHxMPOh4o1sk0SewZImnXYzLCGXEvW8aSenxdu7776L1tZW1f9OPvlkAMD+/fvxjW98A0cccQSOPfZY3HvvvQgGI9/Y3//+9zj55JMxf/58rFy5Elu3bo34e7buo1god5BtMh3UlDc5sISUN4IgCCJDBGXljYMpVLwFyDZJ5BnRSZNAeM1EQ7qTk9PibcGCBXjrrbci/lu7di04jsM111wDv9+P1atXAwCeeeYZ/PjHP8bTTz+NdevWyfexfv16rFmzBtdffz1eeOEFTJw4EZdddhn6+/sBIGv3UUyQbTI9/KG0yYjAkgpJeRt2+WRbC0EQBEEYCbOimXkeJlOo543OOUQaCIKI7XsHsHFrJ7bvHTBkjNRQVNIkoLRN0uc1GeZcPrjVakVDQ4P877GxMdx5551YsWIFzj33XLz88ss4ePAg/vCHP6CqqgotLS3o6+vDmjVrcNVVV8FqteKhhx7CqlWrcNZZZwEA7rjjDixfvhzPPfccvvGNb+C1117Lyn0UE2SbTA+1wJKKMgvMJg6BoIhBlxf1VY5cHR5BEARRpLDNQbNZ2fNGyhuRGpvbuvHUhp0RYWs1FTasXD4TC1sbU77fsPIWXj9brSywhJS3ZORVz9tDDz0Et9uNm2++GQCwadMmzJkzB1VVVfJ1li5dCpfLhW3btqGvrw979uzBUUcdJf/dbDZj0aJFeP/997N2H8WGrLyRbTIl1GyTHMeFQ0uo740gCILIAAFF2qSZ0iaJNNjc1o116z+NSckeGPFi3fpPsbmtO+X7Hgz1vKkrb1S8JSOnypuS/v5+PP7447jhhhtQXV0NAOjs7ERzc3PE9RobpUq/o6MDZrN0+OPGjYu5zvbt27N2H4cddpj+JxzCbM6r+hkAUBn6Mo15A3l5fJmE2UzY/6aCP3TytNtMEa9fXaUdPYMeDI36Su51zUeMeK+JwoDe69KA3meAlWkWEw+rPKRbLLpzDr3XmUUQRDy9YWfC6zz9+k4sPrQJfKi3Ug8jY5I4UFtplz+bDpu0HvcHBPkyep/VyZvi7amnnkJFRQW+9rWvyZd5PB5UVlZGXM9mk9QLr9cLt9sNADG2RZvNBq/Xm7X7SBWe51BT40z59pmiuaECAODxB/Py+LJBZWXqtkaOk35kqiodEa9fc0M5tu8bhNsvlOzrmo+k814ThQW916VBKb/PNvswAMBuM6OmugyAtBAv1nNOKb/XmeSTz3vRn2Qubf+wFwcHPJg3o173/Y96pbac8Y0V8mezJtROIgAxn1d6nyPJm+LtxRdfxFe+8hXY7Xb5MrvdDp/PF3E9ViyVlZXJ11W7jsPhyNp9pIogiBgeHkv59plCDKVoDo14MTAwmuOjyS4mE4/KSgeGh90pN3m7xqTPStAfiHj9KkK7Svu7hkvudc1HjHivicKA3uvSgN5nYGhY2pCGKGLUJaUb+wNC0Z1z6L3OLO0dQ5qvN7FOf2HVOyh9Ti0c5M9mMGSXdI355MtK7X2urHRoUhnzonjbvn072tvbceaZZ0Zc3tzcjB07dkRc1t0teWybmppkq2N3dzemT58ecZ2mpqas3Uc6BAL592G0h3zHLrc/L48vGwSDQsrP3euTdpRMPBdxH9Whxty+IU/Jvq75SDrvNVFY0HtdGpTy++zzSQtgE8+BmdmCQvG+HqX8XmeSitDIKC3XS+X1Hwypek7F7c2hgB2PLxhzn/Q+R5IXJtJNmzahrq4Os2bNirh88eLF2Lp1K1wul3zZxo0b4XQ6MWvWLNTV1WHq1Kl499135b8HAgFs2rQJixcvztp9FBtsztuYJ2BIJGyp4QuwtElTxOU1oXEByawIBEEQBJEKfjmwhJfnvNGQbkIvLZOq5ZC1eNRW2NAyqVr3ffsDQYyFbJPVyrTJkHDANiCI+ORF8bZ161a0trbGXL58+XI0NDTg29/+NrZv344NGzbgF7/4BS6//HK5R+3yyy/HY489hvXr1+Pzzz/HrbfeCo/Hg/POOy+r91FMlNklQVYE5C8YoR25eLNEfr3YoO6BYRrUTRAEQRhPUFm8hexXIkAbsYQueJ7DyuUzE17nwuUzUworYTPezCYeZbawAZDSJrWTF7bJnp4eOWFSic1mwyOPPILbb78d559/PqqqqrBy5Upcc8018nXOP/98jIyM4N5778Xg4CDmzp2Lxx57DLW1tVm9j2LCbOJht5rg8QUx6vHLShyhDTajxBKlvNVWhgZ1j/nhDwiwFFn6F0EQBJFb2JBuk4mTlTdAsk7yvCnezQgihiNaGlDusMDljhwbVVthw4VpzHmTZ7w5reC48GeUFW8+skcmJS+Kt4cffjju36ZMmYJHH3004e1Xr16N1atX5/w+igmn3QKPLwiX24+mmlwfTWHhj6O8Oe1mWM08fAEBAyMeNNakHnZDEARBENGwOW8WhW1SulyEJS9WfESh0DPojijcqitsuPKM2WiZVJ2S4sYYdMUO6AbCayYv2SaTQlv/hCpOh/QrP+om26RemPIW3fPGcRxqQupb9NBLgiAIgkgXVryZTDxMJqXyRrZJQh9b9wwAABw2aS1j4oBZU2rSKtwAYHg0dkA3QLZJPVDxRqjCrJKjHn+SaxLRxOt5AyS7ASDNRyEIgiAII2G2SYuJB6+wpJVCzDphLFv3SsXbvGl1AKQUSCMIK2+RgSgssCQoiPImBKEOFW+EKk57qHhzU/GmF3+ctElAUbyNUGgJQRAEYSxh5Y0Dx3Fy/Dopb4QeBFHE9lDxdvhMaQi3UYoY63mrjqO8AYDPT8VbIqh4I1Rxysob2Sb1EAgK8klSLZCkOlS8bdszgO17BygBjCAIgjAMpryZQ0mTJl763wCdawgd7O92weX2w2Yx4dApUnhfIGiMIjbkkpxHlVE9b2YTJ6vFZJ1MDLWvEqo4Q+MColOGBEHEjvZBDI56Ue20pd24Wmz4FSlJtijb5Oa2bvzzgwMAJDvC1r0DqKmwYWUaqU0EQRAEwQgIkQOPw7PeSMkgtMP63VomVcvrQUDq6WcbA6kSVt4ibZMcx8Fq4eHxBeXsAEIdKt4IVdR63ja3deOpDTsjwjao+IiE9btxQMQP3Oa2bqxb/2nM9QdGvFi3/lNcu2IuvYYEQRBEWgQC4TlvAOTQErJNEnrYFrJMHjqlBmYTD7OJQyAowuMLosye3vgoeVRAeeycZJtFGlNFyltiyDZJqBLueZNsk6z4iE5JZMXH5rburB9jPhKe8cbL80sEQcRTG3YmvN3TG3aShZIgCIJIi1jbJFPe6PxCaCMQFLCjfRAAMPsQaVaUUUmQgihiWDHnLRp51hv1vCWEijdCFXlUgMdPxYcOwkmT4cbbHe2DSUcD9I945R9LgiAIgkiFYIxtkvW80WKY0Maug8Pw+oMod1gwsbEcAGC3SmuadBMnXW6/rAJXqhRvVhoXoAkq3ghVmPLmcvup+NCBUnljDI5qGwug9XoEQRAEoYY/yjYpp02S8kZohFkmZ02pkQNE5KIqzeJtODQmoNxhUe2dY1kBVLwlhoo3QpUym6S8Dbm82LqnX9NtqPhQjAlQKG/RTbnx0Ho9giAIglCDqRqs180UWiBTzxuhlW2hNd/sKTXyZbLylmZRxdaJav1uAClvWqHAEiKGzW3dePLvOwAAXr+Al9/Zq+l2VHwAvoD0g2NVKG8tk6pRU2FLqF7WVkjJnQRBEASRKmwD0RLd80a2SUIDXl8QXxwcBgAceki4eLMZpLwNudRnvEU/DqVNJoaUNyICFkzCvmBaoeJDgjXZKos3nuewcvnMhLe7cPlMGrlAEARBpAUbCUCBJUQq7Ng/iKAgoq7ShsZqh3y53SppPekqYixpsjLOZr/NypQ32mxIBBVvhIyWYJJ4UPEhIStvCtskACxsbcS1K+aipiLyB6u2wkZjAgiCIAhDCMTYJmlUAJEcQRCxfe8AXt+8HwAwa3KNnJgNhIuqdANLZOUtnm3STD1vWiDbJCGjJZgkmtoKGy6kOW8yTHlTBpYwFrY2YsHMBry7rRMP/3kbzDyHn111VNoDLwmCIAgCCM95C9smQ2mTNKSbiIPaDN+PPu/F5rZueW0Xtk0G0nqsIdbzRrbJtKBVIyGjNXDk0MnVAIC5h9RgzdVHU+GmQC2wRAnPc1hyaJM08FIQMeiikBeCIAjCGMLKW1TaJClvhArxZviOegIRM3yNCCwRBBEdvaPy/auNlwrbJvU/DlMPN27txPa9A0U9voqUN0JGa+DIhIZybNs3CLvNTFbJKNQCS6Ix8TyaaspwoHcUnX1jqK9yxL0uQRAEQWglEFSf80Y9b0Q0Wmf4LpjZkHZgSbS69+e39+CtTzqwMsq5ZU1ReVNTD2sqbDH3XyyQ8kbIsFTERNRW2OShjWwgNRFGLbBEjebaMgBAR99Yxo+JIAiCKA0C8QJLKG2SiELPDF+mvKVSvMVT9wZGvBHqHgDY5J437Z9XPfdfLFDxRshoTUVM50tc7MQLLImmuU4q3jr7qXgjCIIgjCEQUtjk4o1sk0QctLbKDI56w4ElOhUxreoeszhada4v9d5/sUDFGxGBllREuaE0QMVbNP4EgSVKxtUx5W0048dEEARBlAbBGNskjQog1NHaKlPttKVsm9Sj7gHQvb7Ue//FAvW8ETGwVMQd7YMYHPWi2inNcGP9bUxVojkcsWjpeQOA5lonAKCDlDeCIAjCIPwxtslQz1uRKQ9E+rBWmUTFD5vh++HOHgD6lTc96h6gSLXU+Dh6779YIOWNUIXnOcyaUoOls5sxa0pNRDBJuo2rxYwvSdokg/W8Dbl8cHvTi94lCIIgCCCssJmj0iZpVAARjdZWGZ7nwimQOtd9etQ9ALBaQj1vPm2fV733XyxQ8Uboxhb6cpFtMhatgSVldjOqQkMqqe+NIAiCSBdBFGWFLTykm5Q3Ij6sVcZpjzTiKVtlAMBukf6ut3jTGoTXMqkagP45b3rvv1ig4o3QjVWnrF1KaA0sAYBxtdT3RhAEQRhDUKGuWShtktDIwtZGnHD4eADAoVOq8b0LF8TM8E01sESPugconF0axQG9918sUPFG6Ca8MyJAEGk3T4nWwBIAaK4L9b3RuACCIAgiTQKKUBIKLCH00D3gBgAcNr0+plUGQMq2SUAqDmsrY9WxaHUP0K+8sftPFrRXbFBgCaEb5kkGAH9AkL9shDKwRLvy1knFG0EQBJEmyr42E40KIHTA2jeaQuuSaOwKx5UgiuA57UrWgR4X+oe94DngunPmweMPxgThMWRnl0+AqEMcYEF73//1O+gZ9GDquEr84OsLi05xY1DxRuhGaQn0+oNUvCkIB5YkV97G0aw3giAIwiCY8mbiOXlxLadNkvJGxEEQRXSFlDc2gzYaprwBkipmt2ovH97bJg3JnjetDofPbEh4XZapIIgiAkERFovmhwHPc/Ln3WTiirZwA8g2SaQAz3FyIIceabsUYK+HFuWN/Uh2DYxRPwJBEASRFkx5Y2obAJhDC9gAnWOIOPQPe+APCDDxHOqr7KrXsZp5sE+VHuukKIp4b7tUvC2Z3ZT0+kpxIJVQPH9oA93jLe61KRVvRErQrDd19ChvtZV2WM08AkERvUOeTB8aQRAEUcSw4s3Mh88/sm2SlDciDsz901jjkJWraDhOMS5Ax6Z9e7cLXf1jsJh5HD6jPun1zSZe7tNMpb+OzTn0+Ip7BBMVb0RKyOMCSHmLQE9gCc9xsr+c+t4IgiCIdGC2SbPi/BMe0k0brYQ6bP3RHKffjSEnTuooqt7d1gUAmD+tDg6bNqtlOonm/pBaV+zzc6l4I1LCmkIiUCmgJ7AECPe9UeIkQRAEkQ6y8qawTVJgCZGMrv5Qv1uS4s2us6gSRRHvh/rdFh+qPfExLA7o33CQbZO+oK7Ak0KDijciJWjWWyyCIMo7n1psk0D4x7Kzn2a9EQRBEKnDrJFK26SZRgUQSWDrD63Km1Y74+6OEfQOeWCzmHDY9OSWSflxUlxfspATQNqsYIVcMUJpk0RKKGe9ERLKHwqtylszKW8EQRAlhSCI2NE+iMFRb9zI9FRg/T4RtkkTs03mtnjL1HMm0ifZmAAGU9602ibfC1kmD5tRF5FWmYxUZr0BQCCqWPP4ghEBKMUEFW9ESjBliZS3MF5FMpJFo/I2rlYa1E3jAgiCIIqfzW3deGrDTgyMeOXLaipsWLl8ZtrDhINyYInCNsnSJoO522jN5HMm0sPnD6JvWHpf4o0JYFg1BpYIgojt7QP4zycdAIBFs/S9x6k6u/xRn3G3L4BKp1XXfRQKZJskUiJVWbuYYWElZhOveYAlsymMjPnhcvszdmwEQRBEbtnc1o116z+NKGIAYGDEi3XrP8Xmtu607l+e82ZSSZvMkfKW6edMpAeb7+a0m1HhSDxUTYvytrmtGzc9+DbuevojjHqk0JCn/75D1/tsS1EciHaCFfO4ACreiJRgtkCyTYYJh5Vo/1rZrCbUVtoAUOIkQRBEsSIIIp7asDPhdZ7esBNCGkUWU9csEXPe2JDu7J+rs/GcifRQWia5JJvOyUYFxC3UXT5dhbo1xbacGOWtiBMnqXgjUiKVeR/FDvuh0RpWwhhXy/reKLSEIAiiGNnRPhizqI2mf8SLHe2DKT9GeEi3clRA7pS3bDxnIj06+7SFlQCA3SJ1Wqkpb0YW6qmuL6MDSvSMNCg0qHgjUoLmvMXCfji0hpUwmuuo740gCKKYGRxNXMTovZ4azDZpMcfaJgM5KN6y8ZyJ9OjUOCYASJw2aWShztZQeou36MASdxEP6qbAEiIlUv1yFTMssERrWAmDZr0RBEEUN9VOm6HXU0NW3iICS5htMnHxlok0yGw8ZyI92KaxruLNH1sUGVmop5qpEKO8FbFtkoo3IiXINhkLCyzRrbwx26RByhtFMhMEQeQXLZOqUVNhS6hO1FZIv9epEh7SrWabjN8/lKk0yGw8ZyJ1RFHUVbwlCiwxslC3WVMb0u0LRB6Xu4htk1S8ESnBQjkosCRMKoElADAuZJvsGXAjEBQiTrx6oUhmgiCI/IPnOaxcPhPr1n8a9zoXLp+Z1kYbs00qzyHs/8dT3ljIRDQsDfLaFXNTPndk4zkTqTMy5ofbGwAHoLHGkfT6iWyTRhbqRilvFFhCEFHQqIBYWCGr1zZZXW6FzWqCIIroGXSn/PgUyUwQBJG/LGxtxLUr5sJpj903v+TU1rQ32MLKm8I2aYqvvGUjDZI95+j6rNJpTaswJNKHqW61lXZNw6ztCRxXrFBPhNZCPZxmToEl8aDijUgJtgNDgSVh/CHlzabTNslxXNg6mWLfG0UyEwRB5D8LWxux4oRpAIApzRWY1CA5Lw4YkDacyDapFliSrTTI1sk1YA9fWyHZ5s45fhoVbjlGtkwmGc7NsCWZ88YK9ejE7doKm65CPZHCl4joUQHF3PNGxRuREuHAErJNMrwpKm8A0FwrWRbe29aF7XsHdBdZFMlMEARRGHhDw4Mn1jvx1WUzAAD/2nIQw2O+tO5XzTYp97yp2CazlQa56+AwAKCpxiEv4Pd3u9K6TyJ99PS7AYmVN8bC1kbMnlIDADh2/jh878IFWHP10boKdVb8+QI657zFpE0Wr7hAPW9ESuRiVEC+B3H45Z43fcrb5rZubPm8DwDw3rZuvLetW3efGkUyEwRBFAZjIUWgzG7BnENqMaW5Ans7R7Bh036cc/y0lO9X3TYZ6nlT2RDMVhrkroNDAIBp4ysxuakcALCPirec09mnr3hjilgyO+JYaHNi7tRazAoVcnqgnrfkUPFGpIQ1yz1vhRDE4ZPnvGlX3oxqFqdIZoIgiMJg1MOKNzM4jsPpS6fggRc/xYZN7Zg+vhJuXyClDUqmrqkP6Y5VMbKVBrmrQ1Lepo2vwuSmCgBAe/cIRFEEx+XPBmypoVd5k4uqJMXbqMcPAHA6LCkdV6rrS1a8Oe1mjHoC1PNGENGwL3E2lLdCCeLQG1hiZJ8aOwkngiKZCYIgcs9YaHFbZpP2z49obUB1uRUeXxC//OPH+PVLW7Hm6Q9x04Nv6zq/sZ4fi1J5S2CbNDJkIh6iKGL3QVa8VWJcXRnMJg5ubxA9Q56U75dIj6AgyAFp2m2T0ufV6w9CFOOvS0bd0ue73J5a8aa1SIyGuZ8qyqwAAE8RD+mm4o1ICSvzPuv0JOulkII49AaWGNmnlo2TMEEQBJE+YduktBj+cEcPBl2x/W56NyiDKoElZoVtUm3BzUImHNbI85bekIl4dA24MeoJwGziMamxHGYTjwn1knWyvWskrfsmUqd30IOgIMJq5lFTqc2Rw4qqoCDK/ZVqMGVZLVVVz+Po7nkLff4ry6SisZhtk1S8ESlhY3PefIl3YNKlkII49AaWGN2ntrC1EeefND3mcqNOwgRBEET6uJlt0mY2dIOSJUpG2CYVKpxa3xsgnTtOXjhR/vfcabW6QybiwfrdpjSXy4Uk63vb20V9b7miI2SZbKwpA6/RusqGZwPxLY0+fzBsX0zRNskyFVK1TVY4JeWNAksIIgrmSRYhfWG0zAhJhUIK4tAbWJKJPrXaSnvEv2+84DDMmlxLihtBEESeoFTe9GxQJgt/CATi2yYBqXiLd3pSKik+v2DYOYMlTU4fXyVfJvW9dZDylkO6dI4JAAATz8Ni5uEPCPD4AihXKc6Y6sZznJxOqRe2ntQrDjClrjJkm/T6ghBEUXNxWkiQ8kakhE1RrOmVtvVQSEEcegNLMtGnxhqQGRPqy6lwIwiCyCPGQgtch81s6AYlS5uMDCwJ/3+1vjeGMqmvayC1eaNq7FL0uzEocTL36A0rYSTrR2P9biyMJxVsUeKAVmTlrSxcVOrtmysUqHgjUoLnOdkCkckvRyEFcbDwFq22yUz0qXVFFW/DY37NtyUIgiAyj1J5M3KDktkmI0cFKJW3+AthfzB8Hh9y+QwJe/D5g2gPFWjTxoWLt4kN5eAg9fSlO9uOSI3wmACHrtsxNc0Tx9KYbtIkECkO6LFOMuW5zGaWFedi7Xuj4o1IGXnWWyBzxVs6BY4giNi+dwAbt3amNPhaL2zXR2tgCRBuFo8uUFPtU+sacEf8m06MBEEQ+YM/EO4JKrNZDN2gZItXZWAJz3FgAkiikIloB0131LkkFfZ1uRAURFSWWVBXFbb0O2xmNNZIRUM79b3lhM4BVrw5dd2OzXrzxVPeQqpyeYphJUCUOODXr7xZLCY4Qkmuxdr3Rj1vRMpYLSaMegIZn/XGCpzf/rUNLndYSUo05y0Xc+F8AX2BJYyFrY1YMLMBf39/H5795xeoqbBhzdVH67Y7iqIo76ZVllkwPObHyCgVbwRBEPkCG2DMAbDbTOA5aYNSbd4nQ6sDIyDEFm/s3/6AkFh5Uyne2Ey2VAkP566KsdBNaqpA14Ab+7pHMGdqbVqPQ2hHEER8sqsPQ6F008ZqncqbJYny5k5feQMkcSAQFHStL8OjMnjYrSa43H54SHkjiEhSncWRCgtbG7HyS5EK3JVnzo5buOViLhyzTWoNLFHC8xwWhJ6Ly+1HKlZxl9uPMW8AHIDpE6TmcLJNEgRB5A9sxpvDZpaDFIxyYDBlTWmbBJSDupP3vLFjMqLvLTycuzLmb1NY3xspb1ljc1s3bnrwbfzyjx/Ll/3osfd0rYmY8ha35y3NMQEMawrrS7l1xczLyluxDuqm4o1ImVRncaSKL0o+39MZm1SVy7lwcmCJTuWNUVthA8dJJ9FUiq6ufsnmUltpQ10odXIki7bJbNtUCYIgCo3oGW+Mha2N+PnVR2PBzHoAwFFzmnTH9QdU5rwBiQd1M1jx1hTqgWLnk3T44kD84m1So6Tq7aPEyaxg1Ka2LZnyxnreUhzQHf04vlSUNzMv9+YVa88b2SaJlGFFSrbSfKJ3UFiKlRIjY5f1Et71SS0e12ziUV1uw8CIF71DblSFZpVohaVHNdWWyXNOhrNkm8yFTZUgCKLQGFPMeIuG5zlMbCjHhzt7YbeZdVvnw8pbVPGmGNQdD9a7PrGhHB19Y+hOU3kbGvWhb9gDDsDUcfGVt87+MXj9wYiQCsJYtG5qL5jZkPQzl1R5U6RNpoPs7NJTvAXCxVu45604i7eUlbehoSG8/vrrePrpp9Hf349du3ZldFgzkX+ElbdsFW/Sl5B5tNWKt1zOhQsHlqQuaNeHmrr7hjy6b8tsLk21ZagMReWOZME2mSubKkEQRKEhF29xFresV2jUrf+3OyiPCohnm0ze8zaxQQqwiA6/0gvrdxtf75QX0kqqym2odFohisD+HrJOZhI9m9rJsCcbFcBsk2n2vFlTGNTtV4xrklMxvWSblHnwwQdxwgkn4Nprr8X//u//oqOjA3feeSe++tWvYng4dkFNFCeyJ1lHGlA6MOVt1pRqcAD6hj0YilKWcjUXThRFRWBJ6juIdWkUb/LclpoyeUhlptMmc2lTJQiCKDTCtkn1xW25Qyp02CJYD8rABiWseEuUNhku3iRFbGjUl5bljG2uTlWxTDImN0qPRYmTmcXITW2bxlEB5QbZJvU4u9hn2EzKWyxPPvkk7r//flx22WX4wx/+IKttq1atQnt7O375y18afpBEfmLLkW2yutyG8fXS7iDb3WPkai6cMqlL65BuNZjy1puK8hbqUcimbdLIHT2CIIhihwWWqNkmgXCvUGrKm7QeM6mkTUp/T668VZZbUR5STdIZF6A2nDsalmZJfW+ZxchN7eRDupnyZoxtUk+mgmybNPFwWCmwJIInnngCV155Ja6//nrMmTNHvvyEE07At7/9bfzjH/8w9ACJ/CVXtkm71Szv5kVbJzMx+FoLyh8YS1rFm2QJ7RvWV7wJoij3KDTXOrJmm8ylTZUgCKLQiBdYwmB2M1cKxVs4sCTKNmlKnjbpUyx8WWhJ96D+4k0QRGzd04/P9w8CAA5JMG5gMkuc7CblLZMYualtT1IUGRVYkkrapLLnLWybJOUNAHDw4EEsWbJE9W/Tpk1Db29v2gdFFAbWFBpK04F5l+02k7ybp9b3trC1Eau+1BJzeaqDr7XAfjRMiuGSqcBSIvUqb4MjXvgCAkw8h7oqOypCtkmvP5hRZTRXNlWCIIhCxJ0gsAQIR6ynYpsMJLFNahkVYLWY0FRTBgDo6tcXWsKi6O965iP4Qyrg/S98ErfvmSlv+7tdZK3PIEZuasuBJcnSJg2Y85bocdSISJss8iHduleZ48aNw4cffqj6t08//RTjxo1L+6CIwsAqR7lmq+eNKW8mTAulV+3uGFb90Q+ELmP2D7uF1x27rAd5xluKYwIYysASPQFArN+todoBEy/tOjEFMJPjAnJlUyUIgihEmPLmiKO8sXOW2xtIGDASjSiKck9btG3SxDPbZKLiLZSWbOLRWBMaF6AjcTKV4KrGGgdsFhN8AUE+hxGZYWFrI67+ypyYy/VuaocDS2I3FwJBAe7QJrthc940Fm+iKCoCS0xwFPmoAN0rzfPOOw8PPfQQfvOb32DPnj0AgLGxMbz22mv41a9+hRUrVhh9jESeksrOSDowmd5uNWNCgxM2iwkeXxAdfaMx1/1oZw8A4EuLJkq39QsZPU7ZcpLimABGbaVUCHn9QV22GbZD2lwr7ZhyHCdbJzM5qDtXNlWCIIhCJNGoACDSTjmmQ31TqmrxbZPqxaCgKPwsFl5W3rT2vKUaXMVzHCY1smHd1PeWaarLpfWF3cLjv8+Yje9duED3pnaiwJIxRaFk1KgArXPelGE8NKRbhf/+7//GihUrcNddd+GMM84AAFx88cW4/vrrceKJJ+Ib3/iG4QdJ5CfWFIYopgP7EjqsJph4Hoc0S5aLaOvkqMePHe1SkMmRs5vkncxUEhy1IitvafS7AVLxV1UuWR71WCc75bASh3xZRZYSJxe2NuLaFXNRURZpk8ikTZUgCKIQSdbzZuLDC089G3gBRRhJtHXfnMQ2GVD2bCt63rSOC0gnuGpioxQ+tnFrF7bvHSD7ZAb5dFc/AGDe9HocNbcZs6bU6N5YTTTnjW02OGwmWe1NlWTz5KLxK7IXSqHnTXdpzHEc/vd//xeXX345Nm7ciMHBQVRUVGDx4sVoaYntMyKKF1vObJPSx3ba+Eq0tQ9iV8cwjjtsvHy9T3b1QRBFjK93orGmDHWVdrjcfvQOeTAxtMtnND5Fv0C61FfZMeTyoW/IozrcVA3ljDdGZShxciQLg7oXtjaC4zisfeETAMChh9TghvMPJ8WNIAhCQTLlDZAsZ25vQFffm1J5iFHe5FEB6udqZeCW1cKjsVo6jwyHxgWozWlTkmpw1ea2bry3TbJTfvxFHz7+og81FTasXD4zK5t+giBiR/sgBke9qHZK9v5iPmd9ulsq3uZOrU35PphtUk3RYgmp6YaVAOGNcK2OKWaZ5CB93u1FPiogJV1z37592LRpEy644AIAwBdffIHnn38eq1atwvjx45PcmigWUhmimA5h26T04xEvtGTL530AgMNn1AOQiqG9XSO6Exz1IPcLpKm8AVJoyRcHhnUpb8w2yewuAGQlLNPKG0Np8eGAoj4JEgRBpII8KiDBAtfpsKB3yKNrXAArzDhIdkQlJlPinje28OU5DiaeR5mdR0WZBSNjfnQPuDGlOX5iJJBacBXrkYuG9chl2rWxua0bT23YGaEYZrNwzDYutx97OqS10pw0irdEgSVGJU0CipEEOos3i5kHx3GKnjeyTQIAPvroI3zlK1/Bb37zG/my4eFhvPTSS1ixYgV27Nhh6AES+YteT3I6iKIoy+fh4q0KALC/xyX/LRAU8PEXkcVbnTw7LfWZNclg6mO6tklA/7iAQFBAz6B03Wal8hayTWZ6XABDafEZHs3OYxIEQRQKoiiGbZMJ1Cxm9WeLYS3IYwJCi1clydIm5c1HReCWnDipIbREb3BVqj1yRpFKuEqhs3VPP0QAExqcqA2lWqeCPUGEv1Ez3oBwkajV2aVMmgSg6HkrTuVN90rz7rvvxhFHHIH169fLly1YsACvv/465s+fjzVr1hh6gET+ks1RAV5/EOxnnNkmaypsqKmwQRSBPZ3SjtLO/UNwewOoKLPIylydIsExU7BZd0bYJvUeb++QB4IowmrhUR3qlwOy1/PGiCjesvSYBEEQhYI/IMj2xkSBDvK4ALeOwJLQ/UZbJgGF8ha3eIsdMRBOnEy+6ak3uCqdHrl0yXXhmCtYv1s6lklAUVQFhJjXyGWg8qZ3falU3oDwJn8gGE6hLCZ0F2+fffYZVq9eDbs9snK32Wy45JJLsGXLFsMOjshv9Mra6cAskxwXGccfbZ38aKc0Z3D+9Dr5RFGf4uw0PRirvOlTClnEcnNNWcSOa6UzNKg7Cz1vAOByhx9nZMxXdCc/giCIdGCqG8eFF5dqpDKomykPakERcmBJkp43a4TyFhrUrTHCnwVXOWyRz0stuCrVHjkjyGXhmCtEUcSnuyVH0typdWndl/JzG732C/e8GaC8sZ43jYElvpjiLXwMxai+6X6F7XY7urq6VP82MDAAPs2EGaJwyGZgibLfTVmgTBtfic1tPdh1cBiiKGLL51LxdviMBvk6spKVwZ43owNLAOl4RVGMscBEI/e7KSyTQNg2OZQlC6NLsUssitLCg4WmEARBlDrKsJJEv+tMudBjm2TKm1rfdXLbZKzyxs4nWhMnAamAa9s3iA2b92P+9Dp8eclk1RCQVHrkjCKXhWOuONAzikGXD1Yzj5ZJVWndl9nEg+c4CKIIjy8YEWbDAnbSHdANANYkw8Cj8UeNa+J5DjaLCV5/EG5fEBVliW5deOiutI477jjcd999aGtri7j8iy++wP3334/jjz/esIMj8ptsBpZEJ00y2LDuXR3DONg3hu5BN8wmHnOm1sjXYcXQyJhf8y6OXowMLGF+dLc3GDE3JR7s5BpdvFXIPW9ZUt6iHoeskwRBEGGSjQlghHve9KRNMuVNzTaZOG0y2nIGQDHrTd/wbKZqzZ1aGzeKXm+PnJHksnDMFSxlsmVyddqzaDmOixtaMpYPgSWKDQi7rXjHBehead54443gOA4rVqzAKaecggsuuACnnnoqzjzzTADA9773PcMPkshPlMqbKGbWIufxRoaVMA5prgQH6YTxTMjHPmtydUSRV2a3yLtDmVLfvAbaJm0WkzxgW0vfWzhp0hFxuTwqYMwPIcPvDwC4ohYaw1myaxIEQRQCYeUt8eI23POmP7BEVXnT2vOmWNiznrfhMT/cOha//SPSOStRKIbeHjkjyWXhmA6CIGL73gFs3Nqpex4es0zOS9MyybDHmcEmK29G2CZTLd4U1l+HtXgHdet+hRsaGvDnP/8ZL7zwAj744AMMDg6iqakJq1atwjnnnAOn05mJ4yTyEGvoh14QRQSCIizmzEXDR48JYHy6uw88zyEoiPhsj7S7tOvgMDa3dUd47Osq7djf40LvkAfj643/jPoNDCwBJKvn8Jg0m25yU+KYZrnnLUZ5kxYIgihizBOQd3MzhUvhdx/1BKh4IwiCUDDmZWMCEi+9Uul5Y0Eoaj1vyWyTPhXniMNmRmWZBcNjfnQNjOGQZm0zR/uGJeWtLkmiIeuRi47rB4CqcisOn1mv6fH0wgpHtTEFjEwVjqmSzlgDrz+IHe1DAIC509ILK2HY5FlvkUW93PNmhG1SIQ5oKVT9wdBnWKm8yeMCik95S6k8Lisrw6pVq7Bq1Sqjj4coIGzW8JfE6w8aYhmMh5ptMt6cmDFvIGZOTH2VVLxlSnmTe94Meg3qqhzY3TGSNGTF6wvKP+jRtkmziUeZzYwxr1RIZbJ4E0VR/uEeX+/Ezv1DVLwRBEEocGsY0A0A5Sn0vMmjAlTSJs28tjlv0eevxtoyDI8NoXvAral48wcE+Xe/pjK57XBhayMWzGyQB2U7rGY88vJWDLl8eOvjDpxw+ISk95EKrHB8+OWtET37tRU2XJhnc97SnYfXtm8QgaCAukpbzAZvqsSzTboMVd7Cn0Ut46j8/ljl2VHEg7o1vcJr167FV7/6VTQ1NWHt2rUJr8txHK699lpDDo7Ib0w8D7OJQyAoSl+uDBYH0cqb1rjfBTMbwPNcxscFsB8Xo5S3eo3Hy2bwlDssqsVZhdOKMW8g1PeWOVXc7Q3Ku7qseBuinjeCIAgZ1vPmSKq86R8VoJzzFo3c8ybE6XmLY7lsqnbg8/1DsjU/GQMhy6TFzKNC43qA5znMmhLuUT/rmKl4+vWd+NNbu3HUnGZd51RBEOVCsNppUw1LYSxsbcTf3tuHnQekpOqvnTQdX1o8Oa8UN73rnOjb7mgfxIZN7QCA2YfUJg0/04pdVt7ipE0aqLwB2qyTap9htl70FOGgbs3F2/HHH0/FGxGD1WxCIBjIeGhJdPGmJ+531pQa2cKRqUHdag3f6aD1eMNhJQ7Vv1eWWdDVL/UtZBI2JsBq4eVjH6FB3QRBEDJjGpU3tvgd8wYgCKKmgoLZJs1qgSXJ0iZVVAtAUt4A7YmT/SHLZG2FLeVC4cQFE/C399vRN+zB0xt2onVKddJCDEjNWtij2BxtrC3Lq8IN0L/OYai9Fh/s6MH86XWGqIpqypsgirJSbERgCc9xsJp5+AICPL4grEneGrU1WMkrb9u3b5f//9atW2kcACFjs5ow5g1kfFxAtG1Sb9xvfYbHBRg55w3QfrxdihlvarBxAZm2MLIxARUOixyUQmmTBEEQYVigQ9KeN8Xfx7za+pXDtskEPW/x0ibjKW/yoG5tyhs7XyUKK0mGxczj8Bl1eP2DA3hzy0G8ueUggMSFWCrWQp8/iEFX+ByVjdRsvaQy1iDeazHqiW0nSRW1wBKPNwiWi2aEbRKQ1DepeAvAakuswKpZf4tZedO90jzrrLPwz3/+MxPHQhQg7IuSbeVNb9xvXVVmB3X7MhBYAmiwTYaKt8Y4XvYKZ3bGBTDlzemwKObLUfFGEATBkEcFJFHeTDwvD7vWGlqSqHhjl8XreZNt/1Ex8uFxARqVt5DSU6uh3y0em9u68foHB2IuZ4XY5rbuiMu1WgujQy96BiOfU6bGCKWD3nVOqq+FXtSSINmYAIuZN2wdxPretLw34VEB4ccuZuVNd/HW0dEBh0PdokWUHuFxAZku3pjyJj2e3rhfpmQNuXzyl9xIDA8sCe1cjnoCCZOSOgfUkyYZbORA5m2T0v1HKG9UvBEEQci4PdrSJgHFoG7NxVvINqkSWJLUNhlHeWPjAkbG/LLlMxH9IeUtWdJkPFIpPtr2DWi2FirpGYzcGPVm2D2UCnrXOXpslulgU+l5M3JMAMMaJ9VSDTXbJClvCs4880w8/vjj6O7uTn5louixyt7nTNsmmfIm/TDonRNT7rDIQ8X7M2CdZMVrugMwGQ6bWbbKJFLfuvpDPW816hsq8qDuLNkmnQ4LKp3ScY+M+TI+/48gCKJQCCtvyW2QTp2Jk8FEtsnQZQGdPW8Om1keOfP65vak88XknrcUi7dUig+l9TER0RbE7mjlLQ9tk3rXOanYLFPBpmKbdHmMCyuRH8cS+zjxYMWbmXre1NmzZw82bdqEE044AdXV1Sgri9zx5zgOGzZsMOwAifzGFvqiZF55i53zFm9OjFrcL8dxqKu0o6NvDL3DnphY/XRhPxzKeNt0qau0w+WWZr1NbCyP+JsgiNjyRa+seDVUxQksyVL/GbNNljssqAo9ZiAowu0NoMyA5mWCIIhCZ0xjzxsAlOtMnPRnoOdtc1u37PxY/+/dABL3nvXLPW+p2SZTKT6qy62abhNtQewZyH/bJCCtc75+Sgue+NuOiMuddjMu/a9ZEe+DXptlqsiKlmLdJydNGni+t8ZJtVRDnvOmLN5oSHeYcePG4cwzz8zEsRAFCPtyeQMZLt5CJxB7VK9A9JyYRKlU9VUOdPSNZWRcgE/euTRGeQMkq+ferpGY0BK1JKkf/uZd1RNq9myT0vtT7rDAYjbBYTPB7Q1iaNRHxRtBEAQUypsW26TOQd3BNGyTPhXlLZUQkP7QqIDaitSUt1SKj9bJNaipsCVU7JTWQgZT3iqdVgyP+vJSeWOwc2hzrQMTGsqxua0HMyZUxbz+zGap97XQi5oilgnbZPhxtNsm1QNLSHnDnXfemYnjIAoUuectwzsbasobI3pOTDwyGVoSDiwxUHmrih0XoPeEmjXb5FhYeWOP6/a6MTzqw7i6zM2XIwiCKAREUdQ8KgDQb5tkM9xMqrZJbT1vLLAklfliY54A3KHeolSVt1SKD2YtVDsvMpTWQgYr3iY1OPHZqC9vlTcA2HVQmkU3+5BanHj4BGxu68Fnewbg8QXkVhIg9ddCL2qjAjKhvDEnkyblTa3nTbZN5u97myqaV5o+nw9/+ctf8Mgjj+Dvf/87fD4KIyAUylsObJN6CQ++Nn7Wm9GBJUBssZlKMzezTY55A3IaWSZgu8PlIaUvbNekWW8EQRC+gCAXT9qUN322yUBAum+Lqm2SpU3GsU36Iy1nqfSeMdXNaTdHFBR60NvjxVjY2ojVZxwac93aCpuqQigIInpZ8dZYASA/e94YuzqGAADTxldiQoMTjTUOBIICPtnVH3Pdha2NOHxGXczl8V6LVLCr2BHZxgT73BqBNYWeN+XnnyW2Jgp9K1Q0vcqdnZ24+OKL0d7eLgcQTJ48Gffffz9aW1szeoBEfiMrbxlIcFQSPectFVgCltG2SVEUDQ8sAZTFpnS8qQzsLLObwXMcBFHEyJg/aXJVqsjFW0h5q8rSfDmCIIhCgC1ueY6Tz5uJKNervAWZ8harqjArZdzAkqiet1R6z9INK2HE62Uvd1hwyZdb4xYf0bNOm2sd+MkVS1VVpv4RD4KCCBPPoblOul22izdBEDW1ewSCAvZ2ugAA08ZXgeM4LGxpwKvv7sPmtm4sntUYc/3PD0hK3TnHT0N9tV3TkHM9qNkmXQYO6I5+HC3Km09tSHcR97xpkgl+8YtfYHh4GD/72c/wyiuvYO3atRAEAT/60Y8MOYgXX3wRp512GubNm4fTTz8dr776qvy3/fv34xvf+AaOOOIIHHvssbj33nsRDEa+Eb///e9x8sknY/78+Vi5ciW2bt0a8fds3UcpYtUxhyMdDFXeDE6bDAqiPJzS6MASIKy8pXJC5TlOTgvLZCEVHhUgFW00LoAgCCKMst+N45IvouWeN822Sdbzlkh5i1O8RakWqfSeyWElBmwQLmxtxM+vPhrfu3ABZkysBAB8adHEhKpRZ2jmKdug7B/xAnFeZhZWUl/tUB04nWk2t3XjpgffxpqnP8SvX9qKNU9/iJsefDtmhh0A7O9xIRAU4LSb5VTpI1obAABbvuiDPypv4KOdUpBZVbkV/7V0MpbObsasKTWGFW5AksCSDKRNahoVoBK6o+x5K7bka00rzbfffhs33ngjzj77bEyfPh3Lly/Hj370I2zZsgUjIyNpHcCf/vQn/OAHP8BFF12EV155BWeccQa++93v4sMPP4Tf78fq1asBAM888wx+/OMf4+mnn8a6devk269fvx5r1qzB9ddfjxdeeAETJ07EZZddhv5+SU7O1n2UKmrDGo0mKAjyrko6xRuzIfaPeA21EPoUYxIyoby53H54fcGUk6TkvrcMJU6KoqgYFWAOPSYLSqHijSAIgg0x1tLvBqQw541FpasFlsg9b+rnPdn2H9p81DtfDFCElVSlp7wxWC/7vGn1AMLFWTw6+qS/Hza9DmYTD59fiNvfzvrdGqsdWVnDKGF969EumnhDyFm/29RxlXLRP3VcJWoqbPD6gti6ZyDi+v/6+CAA4Nh54+Si3WjUgkQyM+cthSHdijUY63kTkd+22FTQ9M4ODg5i6tSpEZfNnz8foiiis7Mz5QcXRRG//OUvcfHFF+Oiiy7C5MmTcfXVV+Poo4/Ge++9h9deew0HDx7EmjVr0NLSguXLl+O73/0ufvvb38o9dw899BBWrVqFs846CzNmzMAdd9wBh8OB5557DgCydh+lijULtknlFzcd22Sl0wqziYcoAoMq9kNBELFtTz/e/GA/tu3pTzjPRgkLK+E49RNnqpTZLfKckt5hT0onVADy3LVMFVJef1AuhmXbJClvBEEQMsw26dC4uNXd8yZoGBUQ55wWiFLeUuk96xsK2SYNtuaPD9kaWXEWj46+UQDAhIZy+TYHelyq11UWb3aV8I1MkUrfurJ4Y/AchyNmSurb5h098uX9wx58FuqDO3b+OMOOOxq112w0k3PeNLw3ARXbpNXMgw8VvO4iG9StqXgLBAKwWCLfkPJyae5UOsXL7t27ceDAgZjRA7/5zW/wjW98A5s2bcKcOXNQVVUl/23p0qVwuVzYtm0b+vr6sGfPHhx11FHy381mMxYtWoT3338fALJyH6WMLQu2SWaZNPFczBwaPfAch7pQClb0jhyzMdz55Ae46/ebceeTH8S1MUQTDisxabLD6EEZssLzHC48WX8zd6Xcf5aZ8BBmmTSbePnHNlvz5QiCIAqB8IBuncqb5p63RLZJNuctzqiA0AakRdGLx3rPojcM4wVfDISUt7o0e96iYWnFHf1jCa1vTJlrrivDhAbpNgd6RlWvy2yTDTWOrIWuAakFwbDibdr4yojrMevkRzt7ZUX1rY87IAKYNbkaTTXGzrJVwtImPb6g/J6E0yaNDyzRZJtUKd44jpNDS7TcRyFh3KucArt3S0Mfx8bGsHr1amzduhUTJ07E1VdfjWXLlqGzsxPNzc0Rt2lslH4wOjo6YDZLhz9u3LiY62zfvh0AsnIfhx12WArPXsJsYDphLnCETjD+oJCx58K8zHabOe3HqK92oGvAjQGXV76v97cnjt//5nnzY5qClbBdMquFN/w1aKh2oL3bhQGXD2YzH3dXq7bShotOaVU9zqrQENNRjz8j7xGL4a0os8gn/5rQCXxkNDOPaQQsUlstWpsoLui9Lg3y+X1mxUG5w6LpN7E6VDSNeQLgeS5pzxJbwFstppj7t4YW20FBVH1sVvjZbZG3PXJOMxYf2oTX3tuHpzfsRHW5Fb/45rHqISChwJKGGoehv/njG5ww8Ry8viCGx/xy+4PyvQ4EBXQPsPTIckxqqsA7n3XhYN+o6rH0hDZvm+vKUBY6p3r9mVvDMEY0WmBH3NJ5c9Ttl4vSmZOqI45v9tQalDsscLn9+OLgMGZNqcFbn3QAAE5cMCGjz4WtQ0RRsiRazLxsm6xy2gx7bJbK6vEFk36nw+vEyM+w3WrGqCeQ0TVqLki7eEtHaXC5JEn75ptvxnXXXYcbb7wRr732Gq655ho89thj8Hg8qKyM3G2w2aQfNK/XC7db+rJardaY63i90g9JNu4jVXieQ01NYc/Aqq2WdneCgpix59IdOik47ea0H2NCYwU+292PUW8QNTVOBAURT/19R8LbPL1hJ04+8hB59zKanhFJXbLb0j++mONtqsAHO3rg8gRQXV2Gl97eDAA487ipOGruePQPe1BbacfsaXVxj6+pXlLJPQEhI+/R7m5pd7Oq3Cbf/6TQYmB4zJf3n/HKSkeuD4HIEvRelwb5+D4LobVSdaVd029iReg5iAAsdqvsZogHF+pvqlK5/1qXVDSIovp5mqkW9bXlqn8//bjpeHrDTgy6fHA4bfLQaPm5CaIUEAJg2qRa1Bis+jTXOXGgx4VhbxAzoo6vstKB/d0jCAoi7FYTpk2uRf+oH8Dn6Ox3xzwfURTRE7JNzphSizJbqHjzBTN+rpo0rir5lULXq6lxYne35PxprivDlImxs2yPmjcOf39vH9746CA+PziC3iEPymwmLD9qqqZE01SpVNg67WU22G1m+TM0YVyVYdbJ2tDnyOsLJv1Os9aN6M9weZkFfcMemC2WvF+L6EFz8XbttdfGFDgAcNVVV0VYKjmOw4YNGzTdJ7vd6tWrsWLFCgDAoYceiq1bt+Kxxx6D3W6PsWWyYqmsrAx2u7QDo3Ydh0N6o7NxH6kiCCKGhxP7uPOdgE86KYy6/RgYULcopEt3r1TkW8182o9RYZd+0Nq7hjEwMIpte/qTjg7oHXTj3S37ceghtap/7+uXjsnMc4a/Bux493eN4M1N+9C2dwBWM48vLZyI6nIbJtZJn9HhofifI0uopusdGMvIe9TRLYUWOaym8P2HbDgeXxCdXcOyzSKfMJl4VFY6MDzsjjv/iCgO6L0uDfL5fe4LKUNmHpp/h+1WEzy+IA50DiFYm3it4QnZK72e2HPx6Kh0jvMHBNXHZqNu3GNeDAyoqxNsePYnO7pj+qoHXVIIGAeAE4KGn2eaax040OPCjj19mNooLcCV7/X2Xb2h65VhcHAM1aF+wfauEfT0jkRYSUfGfHL/oZ0HPG5pLRcICjHXNZrxNXbUVtjkQleN2kobxtfYMTAwio/bugAAhzRXqL6m9lDbysZPOwFI+RNBAXhz076EbiEjsFqkUJiu7hFZ0eI5Dl63Fz6PMe0S/pDV2OsLJP1Oe+N8htns3e4+FwYGMmclNYrKSocm54Cm4o0VVkbT1NQEAGhpaYm4fMaMGXjjjTewZMkS7NgRqYp0h3YimpqaZKtjd3c3pk+fHnEddt/Nzc0Zv490CGR4PlqmYWqP1x/M2HNhDds2qyntx6itkIr1ngE3AgFB89iAvmFP3MdmAyAtJt7w14AFf+w6OIy9nZL3/cQFE1But2h+LNY7MeTyZeQ9GnaFlFFH+JjMof5Ef+g1bqzOv51wRjAoFPz3kNAGvdelQT6+z6PukEPDov085rRb4PEFMeTyoj5JLxnrveY5lXVFSCgJqLwuoigqbsvFPbZJjeUYGPFi98FhTBsX6URiPWTVFTZANH5d01zLAkhGY+47GBRwMNTb1lxbhkBAQJXTCpvVBK8viAM9o5hQH1ZcOnqljc7qcit4joNZ4VgZc/tjVEWjuXD5TNU2DfnvJ8+EIIgQBBGf75eGc09trox53pvbuvHn/+yJub3XH8T9f/zYsIHc8bBbTPD5BanXLfQSltnNob5KY2L52Xvj8QUTfqdFUZSVPx6Rnz+2cTzq9ufdb0I6aCre7rzzzow8+Jw5c+B0OrFlyxYsWrRIvnzHjh2YPHkyFi9ejBdffBEul0sOSNm4cSOcTidmzZoFq9WKqVOn4t1335UDRwKBADZt2oSVK1cCQFbuo5TJRsyuEQO6GXVRs95Sjd9XwkYFWA22KWxu68bv/yZtGjCbB4CIE5EWKkJpk5kaFRA9oBuQFPjKMiv6hj0YGfXldfFGEASRaZjao6c4KHdIli8tiZNBeUi3SmCJKX7aZEARYmJJsOM/qbEcH3/Rh/bu2PFQzL1idNIkYxxLnOxVV/RYEiUbuM1xHCbWO/HFwWEc6HFFnDO7B6XrsnOS2cTDxHMICiK8fgFlxuatxMCCYB588VMo3w6bxYQrzjhULrhEUcSujlDSZFRYidbUygUzGwyd76bEZjUBY354/EH5s2dk0qT8GEg+ZFs5azc61K5YB3XntHvPbrfjiiuuwLp16/Dyyy9j3759ePDBB/Gf//wHl112GZYvX46GhgZ8+9vfxvbt27Fhwwb84he/wOWXXy5bOC+//HI89thjWL9+PT7//HPceuut8Hg8OO+88wAga/dRqrDiTTnrzGiMGNDNYOmN/cNeCIKYcvy+EjYkM50kzGjYLJjhsdgG58de3a4pBZMhp02O+TMyqFKteANoUDdBEARDOaRbK/K4AA2Jk/4AS5tUmfOWYFSAcshzonPY5KYKAEB7d2z8PrMB1hqcNMmQEyf74hRvodYFdj0AcRMnlUmTjGwmTgJSAcdmmB07TwrD4zhg3rQ6+Tq9Qx6MjPlh4jlMaSqPuH0qqZVGY7NIn02vLyiHlZQbmDQJKN6XJEmRfoWiFv0ZZutG5pAqFnKaNgkA11xzDRwOB+655x50dXVh+vTpuP/++3HkkUcCAB555BHcfvvtOP/881FVVYWVK1fimmuukW9//vnnY2RkBPfeey8GBwcxd+5cPPbYY6itlfqTbDZbVu6jVJHnvGVFeUu/eKsut8m7bIMuL2or7ViZzMagEr+vhFlOjGoQNnpXjRVv/oAAjy8oz44zinjFG7N8DtG4AIIgihhBELGjfRCDo15UO6XNvujfZll50/H7yyzvLg0phSxtUk09Y8OaAyo9Q2zhyyHxnNJJjVIBsb9nFEFBiBgA3R9ystRWZkZ5Y7bJ4TE/XG5/xLlGFEV0hpS3cYq+wAmhoK4DUWqdcsYbw241we0NZHTkkRJ/IAiPT3rdz182E9v2DqJv2IMPdvZg6WypmGMjAiY1lkcMngaAwVFtQXlar5cKdoUqJg+gN9hyajNrG0WlLN6iexbZesdNowKM57LLLsNll12m+rcpU6bg0UcfTXj71atXY/Xq1XH/nq37KEXYnLegICIQFDLS7BtW3tL/uPI8h5oKG3qHPOgdkpIaF7Y2YtGsBmza3hNx3YoyCy4+tTWpb5wVrkYpb3p21WZNiU2gisZmNcnNxSNjvgwWb5H3W1EWGg5OyhtBEEXK5rZuPLVhZ8Rvdk2FDSuXz4w4d6SmvIVmvWko3gIJbJOsKBNFQBBFeXAxEDkfK1F6eGO1AzaLCV5/EF39boxXWBHDxVtmlDeHzSwHpnT0jWLmxGr5byNjfox6AuAANCrUNKa87Y8a1J0PyttQ6JxoNnFw2s04Zl4zXvrPHrz1cUdM8RY93w0wpt0jXWzyoO6ArLw5HcauLVgQii8g4LPd/Zg5oUp1wzrRZ1guMktxSDdBxEPZ55Up9c1I2ySgGHwdOuH4/EFs3zsIAPjKcVMxbYL0Y3nmMYdoavgND+k25uuUiV01pXXSaMLFW6SFmNkmRzI0HJwgCCKXMHt79GYbmxGqtLenprwx22Ry1SA8pFvNNhk+N0UP6vYpFr6J4HkOE0NJj/ui+t76QuN8WCBYJhjP+t76IpOVD4aUtboqe8R6ZEKDpLz1DLgjirKw8hZW6ewWbb1VRjESOg9XlFnBcRyOmScF523bM4DeIen4dnfEL96MaPdIF7tsaQzKtl6ngcrb5rZu/O/j78v//r/ff4CbHnxbtWWEzXhTU52LVXmj4o1IC9bsC0hDLjOBkbZJAKgL7Q6yJuuNW7vgcvtRV2nH2cdNxYKW0AD2Pm1jHFjRalRgSSZ21SrKWCFlvAqWrOeNbJMEQRQbWu3tgiBCFMWUA0sAbT1vTHlTc7+YFAUds1cy/BqLNwCY1Bjqe+uKVLP6R6RzaV1V5pSeeH1v7N/KfjcAqCyzoNxhgai4js8fxKBLOh8pVTrmIMpk+4cSpryxc2RDtQOHTqmBCODtTzoRCArY2yUVyNPGx86G43kOK5fPTPgYydo90kUOE/GHe96cBvW8sU0R9l4x1DZFgMSfYVLeFPh8Pjz11FO47rrr8LWvfQ1ffPEFnn76aXz88cdGHx9RAGS6781I2yQQTpzsHfJAFEW89t4+AMDyRRNh4nlMbpZ2uuIlW0Wj5+SnhUzsqlUyC2MGCim5eCtT73kj2yRBEMWGHnu71x+EEAqLylTPW1h5U+t5UxZvkcqbX3aOJN98nBzqe1OGlgSCAoZDi+xMKm/j6lnxFrmpyv7NEikZHMdhYlRoCUttdtjMEYWG1Zpd2yQ7J1YpBq8fG1Lf3vqkA+3dLvgDAsps5ogiUwlLrYxeK9RW2DI+JgBQ2CZ9QdnWa0TapJ5NEYYvQWgcU948Raa86V4N9/f345JLLsGuXbswbdo0fP755/B4PHjjjTfws5/9DI8//jgWLFiQiWMl8hSrhYfbm7kfPqNtk8pxAZ/u7kdH3xjsVhOOmz8eQDhVK7rROR5Gjwpgu2rphKhEU+HMjG3S5w/Kz788akeZqX1UvBEEUWzosbePeaQFuInn5JRBLchpkxpGBcjKm8p5IaJ4C0YXb9p7tieFUg/3KYq3gREvREhFY0WZsYEVSlgYycFedeWtOap4A6TQku37BuXijVkmG6rtEb1R2bdNSudE5et1RGsDHH83oXfIg2f/8TmAkDooQp6jFs3C1kYsmNmQNCwnE9gVfYJMGY5eA6RCKj3/gYTKW8g2WerK25o1azA6Ooq//OUvWL9+vRw9ft9992HevHm47777DD9IIr/J9Kw3I+e8AeHdwfZuF9b/axcA4Lj54+VG8olN5eAg+dK1KFVs18eonjfA+F21ygzZJtmOsInn4LBFFq9yzxvZJgmCKDL02NtZWInDZk4YChINU9502SZVzkMcx8UdF6C15w0AJtZL58bhUR+GXNICW5k0qee56YUpb31DngiXDxu6rUyaZMihJb1SscnCSqLnjtqykJqtJNo2yY5hamj4OYv439M5ErfPi8HzHGZNqcHS2c2YNaUmK4UbEK28GRdYkkrPfyL3E1uXFFvPm+5X+p///CduvfVWTJkyBcFg+INus9lw+eWX45ZbbjH0AIn8h9ktMjXrTVbebOkrW5vbuvFkaPD18KhPVoWaa5WxwWY0VDvQPejGwZ5RVE5JPMvP6MAShpG7apmyTboUdonoEzezhIx6AhlLIiUIgsgFzN6eSCVg9vbPDwwB0Jc0CSh63pLYJgXFkOJ4v7NsRE70uAA9tn+b1YSm2jJ09o+hvduFqnIb+kNhJXUZSppkVJZZ4LSbMeoJoLN/DNMmVMHnD8pWyOieNwCYGAotiVHeoqyIWodBG4VsmywLry02t3Vj656BmOuyPq9sWCH1wApej0J5M2JUQCo9/wmLNxrSLeH1elFdXa36N5PJBL+fkuVKDZs1NIsjU8qb1xjbJGuCHVJRn574246I3S22Y3cwzlBQJUYHligxaletQlbBjP1+xgsrAaSFCtvtJeskQRDFhJ7QCHlMgM4xLayHaMwTkHvm1PArCjJTnHMEGyEQv+dN23KQzXtj1kmW2lybpE87XTiOU4SWSGrbwd5RiJBeVzXLJhtnMDDixZjHrzrjDci8eygaOW0ydF5Opc8r10Qob3LaZPrKWyo9/4nSJsOBJcWlvOku3ubNm4ennnpK9W9//vOfMXfu3LQPiigsMm05MMI2qffHcTxrdNbQ92Z0YEkmCI8KyIzypla88RwXnvWm8riCIGL73gFs3NqJ7XsH8urERBAEkYyFrY2YEuoDUxJtb3d79M94A8KLYRHhUQNqBBXFW7zzkGybjFbe2MJXQ2AJAExuigwt6Q8pj5ma8aZknDwuQDov7w+NLBhXV6Zq2Syzm+XB4Qd6R9EzKBWaubZNDkfZJvX0eeULrOdtzBOQ+8mMCCxJJUmTub7UPsP20IaJLyCoDqkvVHSvhq+//npceumlOPvss3HCCSeA4zi8/PLLuP/++/HWW2/hkUceycRxEnkMs01mOrDEkYbypvXHsW3fAI6uK8fEeukEdbAnt8qbUbAiKlM9b2rFGyAVjYMuX4zylmywrSCIOWnCJgiC0EogKKCzX1Jzjj9sHP61pQO1lTasueroiN+r8IBufYtbs4mHzWqS1Y14v7MBRQhJfOUtTs9b6Pyl1iunBhsXsC8UZa/secs0THk7GFLeDoQKSLWwEsaE+nL0D3vR3u1CbzLbZLaKt7FI22QmZrtmGvaaKc/hRo0KYD3/0WuE2gobLgytEZSENyDiK2+AtJYsd+TvJrsedL/SixYtwmOPPYa7774bjzzyCERRxOOPP47Zs2fjV7/6FZYuXZqJ4yTyGFk+z0DPmz8gyCebdGyTmn8cQ5HHE3Qob5nqeTMSOTzE7YcgiIYVQkmLN3lcQNiuyeyr0TBv/5eXTMK727rjFnYEQRD5wBcHhuD1B1FRZsFZx0zFv7Z0YGDEi6AggOfD56sx1hOk0zYJAOV2czgUokb9OuEZb1zc0BBznMAStvDVa5vs7B+Dzx+Ui7dM97wBasqbK3R5bL8bY0KDE5/s6sOnu/oRFESYeC5mpIFNMXA60wQFAa4o22QmZrtmGqa8sRl/DpspYhh8urCe/wde/AQf7OjFMXObcdlph6quXRK5n8wmHlYzD19AgMcbiLtWKTRSKpMXL16MZ555Bh6PB0NDQygvL4fTGf/LQxQ37Ec/E5YD5WwOWxrFm+Yfx3Lpx3RcvRMcpOJkeMwn2w7V0NszkAvYD5YoAi6PP+Hz0YPm4i2006jFvvrX99pjLsvXpm2CIEqXz0IBE7MPqUVNhU0O1DjYO4YpzRXy9UZTtE0CkhWtb9ibMHGSFW+mBKFQbGEdMyrAr8/2X11uRUWZBSNjfhzoHUVfKLCkJhvFW6iHrat/DEFBCNsmVZImGRNCt/lsTz8AoL7aEVMA2LI458015pfT/ytC50094Tf5gi3UxsJUX6cBYSXR8DyH8fXl+GBHL5xllribzsnGXditJql4K6LQkpRWmy6XC11dXbDb7aitrcWzzz6Ln/zkJ3j//feNPj6iAMhksy/7slnNfFq7OlqbYFsnS1ubNosJ9dXSySiZddJbALZJs4mXLQ1GWie1K2/SY2qxryYi35q2CYIoXbaGCoLZh9SA4zhZldrf44q4XqqBJYC2Qd3ygO4Ejgpmm4xJm0xgOVOD4zh5WPeO9kG4Q88t04ElAFBfaYfFzCMQFNE94JaVt0S2SZY4yTZZo/vdgOwGlrBZq+WKYiSVPq9cE72ZnsrGhBbYkG13gsCRZLkDrO+tmMYF6F4Nb9myBSeddBKefPJJAMBPfvITrFmzBi+99BIuueQSvP7664YfJJHfsC9xJkYFGDWgO5Ufxwmhvrdk1slCCCwBwn1v727tMiwgREvPGxAu3tL17Odb0zZBEKXJqMeP3R3DAIA5h9QCCBcK7d2RxVuqgSVAOAQi0biARDPeGLLyFidtUs/5i/W9bfm8F4BUlDpSKEz1wvMcmkMq29Y9A/D4gjDxHBpUCjLGuKjCzmLiYs59Ydtk5gMtosNKGEbPds009qjN6kwob4BiTpuW4i2O8uwowkHdur9t9957L6ZPn47zzz8fbrcbf/rTn7By5UrcdtttuO222/DQQw/h5JNPzsSxEnkKswtmRnkzbkC33ibY8fVOfPR5Lw4mKd7kId15rLxtbutG75DkTX/5nb14+Z29hvSRMe9+fOUtMm3SCM9+PjVtEwRRmmzfOwBRlIoDlrQ4MQPKW3mo4BtNkDYZVt4SFG9yYElkgRLu2dZ+/prUxJQ3aX5dNpImGePqytDe7cLm7dJon8YaR8IZop/s6gPPAaxe+2BnL2568O2Ic1/YNpl5ZUYu3lRaF4yc7ZppopU3I5Im1Qgrb/HXl8k2IFgB6Cki5U33L8mWLVtwzz33YNKkSdiwYQO8Xi/OPvtsAMBpp52Gl156yfCDJPKbTMbsGqW8MfT8ODKvfNLizZ/fPW/JAkLS2dWTlTeVGTtArG1Si7c/GfnUtE0QRGmi7HdjMOVtf5TVfixbypsp/iJfDiyJ7nlL0i+kBrNNstlz2UiaZLBwkm17ByL+rYbWc1/YNpkF5W1MXXljsNmu+U70mqw8l7bJJNZfe4JB3YWabK371eZ5Hjab9EX997//jcrKSsyfPx+A1Atnt2dvB4bID6xZ6HkzqngDtP84sgGfiWyTQSGchpmPypvW+XYLZjak9IOl1zbJ7KtqJ1Qt5FvTNkEQpcnW3VK/2xxF8TYhFHQ1POrD0KgPVaEF+piXpU3qVyfknjcNgSWJbZNx0iZTsE0215XBxHPyffEcZ2iKcSKYDZI99rh69X43Pec+5cDpTJNIeSskzCY+4jOQKeWtTEfPWzz12B7HeplsZFE+o1sqmDt3Lp577jl89NFH+Otf/4oTTzwRHMehr68PDz/8MA3pLkEyqryFvmz2LPjpo2muKwsnTsYJ+VD2+eVjz1smh38GguH0pnjFW1XUiAJAUj+/fmpLzHVrK2z48pJJCR8z35q2CYIoPXoG3egedMPEc2idXC1fbrOa5BliSuskU94cKSlvIdukO13bpPS3QJRtMpXi7aOdvZH//lyyIm5u69Z8H6kyPlppE6Hav63n3KdcwzA1MVOEe94KP7JeuameqZ63eIWXkqS2SWtsAchU2ejPCFNls/FZTgfdq82bbroJb7/9Ni644AKYTCZcffXVAIAzzjgDe/bswbe//W2jj5HIc2TlLZC/gSWpYLOY5EboeOqbP5DfxVsmh38y1Y3j4tuBysss4CCNKBhR2H78AekEOanBiSvPmo3vXbgAa64+Gucvm4lrV8yVRzYw8rVpmyCI0oPFzk8bXxkT1DEpZJ1kA6RFUUyz5y1km0ygvAU12CZNcWyTeueUskVvtIKXrUVv9Ln4lXf2qhaOes59LHxDRHh0QqZgaZOFrrwBkX1vRg3ojkZL2EjytEnW8ybdh1ZVNp+TrXWvNufMmYO///3vePbZZ7FhwwYccsghAIAf//jHePnll0l5K0FsltCctwxYDsKBJbmxJI5P0vfGjs/Ec9ixbzDvvuyZHP7Jijen3QI+zmBYE8/LdgrliIIPQifaYw8bj6WzmzFrSo2sqC1sbcRd1xwjv+eX/tcsrLn6aCrcCILIC9QskwwWWtIeUt48viCYmJOpnje/XLzFX9Kxv8W3TSY/x+Z60bu5rRu/eumzmMvVCkc95z6LJfy6ZXpcQLy0yULEpmgVKctY2qT0nfH6g3E/V3LfZtK0SWm9lklHUrZISSooLy/HYYcdhrKysNf41FNPRUNDg2EHRhQO2el5y75tEkhcvG1u68YdT34AQDohrnn6w6xZR7Sidb5dKn1ko0n63RjMOjkUatQeGvVh534ppWxhi/pvBs9z8jye6nIrWSUJgsgLBEGUwzJmT1Up3lhoSbd0zmALRhPPpRRqJRdvCdImmZqmTXmLtk0mXvgqyeWiV2/hqOfcx3McrJbMpWYrSRZYUkgoN9XLHZkNLAHip0UmVd6skcpbJh1J2UL3q33xxRcnvc7vfve7lA6GKExkv3iR2SaBcOJktFUjkwmORqIlICTVPrKRJGMCGJVOKw70jso7jh/u7IEIYOq4ioQR07WVduzrdqF/OH9/QAmCKB0EQcSbWw5g1BOA1cJjSigyX8nExtCGX98ogoIgF11OuxlcHIdCIsKjAvwQRFHV5cACS0wJCjB5SHc85c2SvHjL5aJXT+HInBx6zn12iwk+v5DR0BJRFDEyVhyBJUCk8papnjeLmYfFzMMfEDDmDagqfMnSJh1RQ7oz6UjKFrq3gURRjPlvdHQUH3/8MT7//HNMmzYtE8dJ5DHyjlVGbZO5V97EkPcl19YRvbD5dlVOY/vIWPqZluINCNtFPmjrAQAcEUd1Y9SE4qf7RzwpHZ+RCIKI7XsHsHFrp2EDzgmCKBw2t3XjpgffxhOv7QAghVXd8quNMU6LhmoHrBZpsdk94MZY6HfSkeLili1WRTF+aAMr3hKpZ8l63rQob7lc9KZSOOoZfJ1JBxFjzBuQw2WKI7AkvC7LVNokELYbe+L0vSVX3iJvn0lHUrbQvSJ+4oknVC8fGhrCf//3f1PxVoKElbfCGBWgh3GKxMmRMT8qnVbdO4D5wMLWRhw6pQbX3ftvAMB3vnoY5kytTcuOmGxAN6OiLDyoe8zjly1HyYrG2tCP60COlbdCjhMmCCJ99DgteI7DxIZy7Do4jPZul7ygTCWsBJAWpDaLCV5/EKNuv6rCwQoCU0LbJOt5U0+btGpQ3rTM6czUojfVwlHrbFfZWpfB4o1tYDpsJk09hvlONgJLAGnExpDLJytn0fg0Dulmt8+kIylbGBaPV1VVhSuvvBKPP/64UXdJFAhsxyoQFGNODOmS6+LNqpI4Wah+aYfNLO++jq93pv3DlGxAN6NKobxt+bwPQUHEhHonmmvV5/MwaiskS2V/GgO906XQ44QJgkiPVJwWymHd6QzoZrB+onh9bwENgSWssIsbWKJBeWOL3kRkatGbjlrCZrtGh2MpkTehM2ibLJYZbwzWw2niOew6OJwxR0qZI3HipF7lDQBaJ9dA7WNaKMnWhmeb9/X1GX2XRJ6j9D17fUYXb7m1TQKxoSWF6pfmOE5WyRLFTmsl2YBuRnhQtx+bd2izTAKQT9T9w7mxTRaaPZYgCONJJaRjYoN0ztjf7UprTABDHtQdJ3FSU/EWWqkGgvF63rRtkOqxIhpJpgvHbNgm5TEBRRBWsrmtG+9tkzYvMx3Yxobbx7MNJ9uAcMijAsK3f397NwRRGlf0vQsXRIwsyvfCDUjBNvn+++/HXBYMBtHZ2YkHHngAc+bMMeTAiMLBbOLAcZIn3xcIokz/xyouuVbeAGBCgxMffd4rK28tk6pR6bTGHdwN5K9f2umwYGjUF3cRoAfNxVvoRNU75EbfkFSILWxNXrzVhnreBka8EEUxpWb/dChEeyxBEMaSitNiUiNT3lw4pLkCQHrKW7JxAQENaZPhUQFxhnRrUN4YWq2IRsMKx2gbe22FDRemaWPPpm2y0JW3bAe2se9OPNukHFgSZwPCrpgVx9YSGz/rBAAcNXdcQZ6/df+afP3rX49ZRLEgh3HjxuHWW2815siIgoHjONgsJnh8QcN3reTizZa74i1aeRNEEXaLCcMJbpOvfulwcln82GmtaB0VwP7e0TcGAKirtMmLm0SwnV1fQEpsS/Y4RlOo9liCIIwjFafFhJBtsnfIg76QcyA95c0A26RKYEkgKEAIrd+09LwpYVbEbMMKxy8ODsEvcrBwIqaPr0r7fJtV22QBK29aHSkLZjYYtgZyJAksCWhU3gRRhC8gYCQ0rogDcOTsJkOOMdvo/jVRGwPAcRzKy8vR2toKnjfciUkUAKx48/mL0DZZJxVv+7pGsPGzTny6uw/dg25YzTwcNjOGFAqcETuAmYTt4BqhvI1oKN42t3Xjyb/tiLjM5Qnggx09SV8ji9mEijILRsb86B/2ZL14K1R7LEEQxpFKSEe5wyLfhs20zI7ypq/nza8Y76NHecs1PM/h0ENqUVPjxMDAqLx4TwdbNpS3IpjxlgtHCrMNq9kmg4Igf6bj9bzZLCZwAEQAHm8AG7d2AQBmTalJ2keZr+j+NVmyZIn8/91uN1wuF6qrq2GxFH7sKZE6mRhwKYpiXtgmO/slxc3jC+LXf94qX37C4RPwtWUzsm4dSYdkiwA9JFPe4lkrvL6gZmtFbYVdKt5GvJjcVJH2Meshl8lqBEHkB6km001sKMfAiBed/ZLjIB3ljf3GuuL0KgcEprxpSZuMU7ylMEC8mLBlo+dNtk0W7no5F44U2TapUrxp+QxzHAe7zQS3Nwi3L4h3QpbJpQWqugEpBpZs2rQJ559/PhYuXIjjjz8e8+fPx9e+9jVs3LjR6OMjCoRM/PD5/AJCjo6cFW+b27rxq5e2qv7t75va8eHOnqQpVvlEeZLGdyWJZpsph8+qFW9GhX3IfW85CC3JZbIaQRD5w8LWRnz91JaYyxOFdLBh3QxHOsqbPYnyFtAwpFu2TYYXu2zhazbxWe8pzjessm3SWPeQkmJQ3nLhSIkesq1E6wYEc2/taB9ER98YzCY+bx1SWtD9a/LBBx/g0ksvxaRJk3DNNdegvr4e3d3deOWVV3DFFVfgiSeewIIFCzJxrEQeI//wGVi8Mcskh8hEy2yRC293pnHKkdOJi7dks82UvRfsPpUYZa2QEydzNC6ANcj/9q9tEQVvvttjCYIwloYqaWRMbaUN5504PanTYlJDZF8vS8xLheQ9byHbmAbbpDJtks1mLXXVDVAGlqTfDx6PkdHCT5vMhSOFDapX63kLb0Bw4BNsQDhsZgyMePHPDw4AAA6fUZeWlTnX6D7ye++9F4sWLcJvfvMbmEzhBfV1112H1atX4/7778ejjz5q6EES+U8mlDdmmbRZTTnZFSzGtMGwbTL+CUpLktS4UB9gmc0s23GUGGWtqK0MzXozeFC3IIjYtqcf/t0DSRveF7Y2YsTtx+/+2gYAmDGhErdctLBgCnaCINKnI2R/PKS5EktnNye9/sTo4i2DPW8sQTLRkG6zypBueUA3FW+KNUzmlLehscJPm8zFgGtngrRJOWkyyWfYHmrt2ds1AgBYUsCWSSCF4u2TTz7B3XffHVG4AQDP81i1ahVuvvlmww6OKBzkpCYdP3yCICbsF8t1v1sxpg3Ktsk4yptWtfGKM2ZL9xfHu2+UtaK2go0LMM42mUxVVGNQcV0Tz1PhRhAlRmcoLbe5tkzT9ZvrysBzAHOGd/aNYdq4ypR+O9ji1RVHeVPaH+ORKLCElDdF8ZahtEmvPyjfdyErb0BmRzaoUZYgsMTvTz7qYnNbN/Z1uyIue/rvO8EBBeue0V28OZ1OBAJxpPtAQB4bQJQWegNLtCygc500WYxpg8l2cLWqjTv3DwKIH1ZilLXCaNtkqvNp+hQ9d0YMOCcIorBgwSPj6rQVb1s+75UcI6E10aN/2Yb1/96VcJMoHizsZHDEi+17B2I2OllBljiwJHZUABVvYVjaZKYCS0ZCYSVmE5/TADajyOasP4ccWKJim0yivMU957syM5MuW+j+xh5xxBH49a9/DbfbHXH52NgYfv3rX2PRokWGHRxROOjpeWNfpuiFPVtAb27rBgC4c6y8sQIkEYWWNliepHjTqiL2hWyM8Yo3o8I+mG2SDepOh3RCVJS2TSNm5BEEUViw4k2L8sbOccGo35Loc5wWNrd14xfPbQEgFRZrnv4QNz34dsR9aJvzppI2qdFyVgrYMpCYrYRZJquclqIJh2Gz/jId2FamIbDEbI5dJxoVnJaP6P7G3nDDDdi9ezdOPvlk3Hrrrbjnnntw6623Yvny5di9eze+853vZOI4iTzHZtbmF9fzZQorb7kp3ooxbVDZ+K5WDGlVEdkzTjR7jVkrogvgRAltMcdTLt3WHxDkuXKpoqeHMeZyhfI2RsUbQZQUbm9A/u1oTqK8GblgZEXgkMsXcXl0ERjQZZsMn6NZm4NVZeFbamTaNlkMA7pzBXMMJQosUevbTOecn+/o9qNNmTIFzz77LNauXYs333wTQ0NDqKqqwpIlS3DddddhxowZmThOIs+xWqUvTjLlTc+XKdzzlrtEoGx7uzMNK7aCgjRDzxE1e0ir3dFuM0XcXzzStVZYzDwqnVYMj/owMOxNq9E71R5GURQjbJtefxCBoJBwoUQQRPHQNSCpbpVlFjm2Px5GBV3pSTsO6LBNKtMm/UFKm2Rk3DY5Jm0+VhRwWEmuYOsUrz+IoCBEhKQlsv4WY24BI6VV8YwZM3DvvfcafChEIWPTaJvU82ViuyysUMgV2fR2ZxqrxQSLmYc/IMDl9scUb1qTpLZ80QcgefHG7jOdNM7aChuGR33oH/FgSnPqg7pT7WF0uf0Rs2QASbmsoh1UgigJOlhYSZ0zyTWNWzDqKQK12CbZ3yLSJv1km2RkWnkbIuUtZZRJrR5fEE57+PMqj7tQ+ewXY24BQ1PxdvDgQV13On78+JQOhihcrGZtu1Z6vkws3SuXyhsj3QIknyh3WDAw4sWox48GOGL+ztTGR17eqmqDLbOZ0dE7CkAqbARBzGghW1Nhw57OkbTHBaQaosIet8pphT8gYMwbwJjHT8UbQZQIepImjVow6ikCmZpmTvA7rBpYQj1vMpkYd6SE2SbpvKEfi9kEi4mHPyjA7Q1EqN+JlLdczKTLFppWxcuWLdPVYLlt27aUD4goTMKWg8Q9b3q+TB993gsgdz1vxYrTLg2rdCXoIVvY2oh3PuvEBzt6cczcZhwzbxze+awD//64E3c/+5Ecf/2399vx/vbulBLUtKIMLUmHVOfTsH632kobRsb8GPMGEs7JIwiiuOjQkTRp1IJRTxEoK28JijC1UQHhnjcq3tgaJiiIGbHFj4QCS8g2mRoOuxn+UV9M31uiDYhczKTLFpqKtzvuuCOieAsGg/jhD3+I6667DhMmTMjYwRGFA/vxT2ab5HkOXzluKh77y/a412FfplzPeStWmNUxUfEGhD3682fUY9aUGvSPePHvjzsR3WefLGY/XWor2biA9Ge9MVXx4T9vhU9hhUzUw8j63Wor7BAEoHfIQ+MCCKKE0KO8GbVg1FMEBiltMm2Y8gZI6pvRxVs4sCR5qwERi8NqwvAoMBY16y3ZuItiyy1gaCrezjnnnIh/s+LtpJNOwpw5czJyYERhocdywPoHTDwXcSKJ/jLles5bscIsB8nUI/lkU2aBIIh4/s0vEl6fNc8bvYslz3pL0zbJWNjaiD+/vQf7uqShnQ3Vdtx55VFxj7tPVt7sclQxJU4SpYAgiEXR65sOgijKgSVaZ7wZsWDUUwT6Q1ZIkybbpKLnTe4Xog1Ss4mX1yReXzBpMI1ehkOboVWkvKUE68/3RI0LCGiYVVhMuQUMWhUThsAsB74ktsnhUR/+8cF+AMA1K+aibd8g/vZ+Ow5prsAPL14U8WUi5S0zJBvUzRgeCzdYG5Wglgq1Fcw2mb7yBkjpkT2D4TmVQy5fePaBCkrb5IBLeg1cpLwRRc7mtu6Y4qOmwpZRi3Q+0j/kgT8gwGziUF8V2yMcDyMWjPGKwOj3IahBQVOzTcqqhYWUN0Baa4x6Ahnpe2OboRXU85YSrHiLHtTtk4u3xOvEYsotAFKY80YQajDbZLIfvVff3QufX8DUcZU4fEY9Fs2STj6DLm/MSY2Kt8zgdEg/gokKEH8gKP9IVjmtOY3cZbbJgREvhDQHdQOSHdTtDYKD9IPuCwgxc5SUMMWvrtIuz8kj5Y0oZth8segNm1SGTBc6rN+tqaZM9069EUOMF7Y24udXH42bLjxcLs6+de78iAKaBZaYEqVNhmyTAYXyJi98aewJACmNGTA+tCQQFOQ2BUqbTA1HnEHd/hL9DJfWsyUyRqIZKYIgYvveAfzzwwN4fZOkup197FRwHIcJ9VL08qDLF9ODRbbJzFCuQXljscZmEweHzZzTyN3qchs4SAsU1oeXDswCVVtpR1ONZIPqDl2mBuu1q6m0hS2npLwRRYqRQ6aLAT39bpmC5zkcOqVWHpXS0Tca8XdWkCVawCZS3qykvAFIPi6ArWU2bu3E9r0Dmr8DbG3DcUC5wXbMUsERGhnl1tnzVqzQqpgwBDYqIDqwRM16Y+I5+XoOmxn1VXb0Dnmwv9sVIWuT8pYZwgVIfPVoeDS8S8hxXE4jd80mHpXlVgy5fBgY8aQdtdzVL1kmm2rLYLeZ0dE3iq4BN1onx1oqgoKAwRGpkK2tCCtvxZQ2SX1NhJJcWqTzEaa8NWvsd8skExvK8fn+IezvCRdvgijKBZlJw5Bu5aiAQImqFvFItAmdjo1YtkyWWem3NUXi2SZZ6E6pJaZqKt5efPHFiH8LggCO4/DGG29g587YHbqvfOUrRhwbUUCEA0vClgxmvYkmKIh44MVwOuHEhnL0DnnQ3kPFWzbQkjYZDiuRCqVcR+7WVtgw5PKhf9iLQ5rTuy+mvDXXOuBwWIE2oHvArXrdIZcPgijCxHOoKrfKw0LHikR5o74mIppcWqTzkc6QypVL5Y3BnCoHelzyZcpijFkj1TCZYtMmZdukhc6xgPo6Boi/ltGatBx9PiX04wg5sDwxylsodIeKt1huueUW1cvvv//+mMs4jqPirQRhO1aBoCBbCbRYbxbMbMDExnJ89Hkv9ne7Iv4u2yZtJBAbiRbbpDKshJHLyN3aCjt2d4zI4SHp0DUQVt6cIZtnVxzbJOt3q6mwgee4sGrpLXzlLd0FCVGc5NIinY+EZ7w5c3wkwMQG6RiUypuyh81ijr95xgZ4BwVl2iQpb0rYRrEy0VCrjThR0nL4fEqWyVRx2BP3vCWacViMaFoVv/7665k+DqLAUUrWXn8QeztHNFtvJjWWA4g8IQmCKCdXkvJmLMz6l0h5GxqNLd6A3EXu1ihCS9Kluz/cw1IRSrKMp7yxfrfa0LiCsG2ysJU3IxYkRHGSS4t0vuH2BuQwo7xQ3hqkc2XfsAdubwAOmzmieDMlUt4UtklRFMFxnKxaUM+bBAssUaZmG2EjVrYhEKkR1zZJPW/xoUHcRDIsZh4cABFS35se682UJqkJ+0CvC4IogufCA7oBaTgjYRxMeRvzBOTXOxpm81DrL8tF5C4bF9CfZvEmimKE8lYViv7uHnDLCxol8oy3Kunxy+zh166Qob4mIh65tkjnE52hjZ4qZ9gynUvKHRZUl1sx6PLhQO8oZkyokpMmeY5L+J4w26QIqU/OxHGkvEVhV0mbNMJGTLbJ9GHrwLiBJSX2GS6tZ0tkDI7jwjG7AUGX9aaxxgGLmYfPL8jzt5htwcRzMJfYlzLTsDlvIuIXIfl2smHjAtK1TQ6N+uD1B8FxQGONA021ZeA46WTNnrMSZptkxSMbszDqCUA0YGxBrqC+JiIRC1sb8eUlk2Mur62wlZSdNh+SJqOZ2MCcKlKbAVPezAksk0DkAG/WJ+ejOW8RsJ435eaxETZitTYEQh/xhnSHE1NLa5OfvrGEYdhCJwCfLyhbbxLBrDcmnsf4UD8B63tThpVEqyFEephNvNyjGC/yfjiObTJXhAd1p1dMdIV20usq7TCbeFjMJtRVSvfdpWKdZMViXSWzTUqFbyAoyAufQoT6mohkMMtwfej70VBtx5qrjy6Zwg0AOvolK/+4PEiaZLDi7UC3dGxy8ZbAMglIY18YLLSkVFWLeFitoTWMQnnTs5aJR75thhYiydImS+0zXFrPlsgoygGXPM/h8Jn1Ca+vtN5MbJSKt3aV4o0wnvIkfW/5tlPITp7pDupWWiYZbFddLbREDiwJLWDtVpNsMy1k66QRCxKiePH5g9jyeR8A4IxjDgEgLZpKwSqpJB+Vtwmh0JIDvUx5k34PzQnGBACR/XDh4o31vNF5FgjbJpXKG7MRJyKZjTjfzqeFSLh4izzvsv7EUut5K61nS2QUmyU8623M48em7d0AwsMVGWrWm0lsNzEUWkIDujOLU06cTGKbzJOTTXWFFRwnLTpGVOyNWmHBJE01DvmyxtqyiL8piQ4s4ThO7n0p5EHdRixIiOLlk1198PqDqKu044iWBgDSRk/0HM9iJzzjLfdJk4ywbXIUoigqbJOJl3M8z4F9m4Oh25DyFolyDaOEJS2zfnGGVhtx+HxKaZOpIg/pjrZNBkuzeEtrZTwyMoLu7m5MmjQJJpMJJhPt3pQyVsWMlBff2o2RMT/G1ZXhR5cuxq6DwwnTCSeEEifbe0h5ywZy5L2K8hYICvIA73QHYhuFiedRXS4l4PWPeFFVnpqdj6lrTTXhnXRWyEUXbz5/ECNj0utTFwosAaTESZfbX9DKGxBekPz2r20xCuyEBmdJ2eOISN4PbbwtntUIp90Mq5mHLyBg0OVFY03+qFCZRBBEdPVLvwn5MKCbMa5O6tN1uf0YGvXJ/WvJbJOANMQ7EAwP9faVaFJfPBIN6V7Y2giX24/f/rVNvuzHly1BeVnigkwQRfk8QrbJ1GHKm88vICgIspIcKNE5byk923fffRdf/epXsWTJEpx55pnYuXMnbrjhBvzsZz8z+viIAkEQRASC0pfove1deH3TfgDAyuUtsFpMmDWlBktnN2PWlBrV3XymvPUMuOH1BRXKGxVvmUAe1K2iHrFdQhPP5UXCGoPZ/NIJLWGLsabasPLWFMc2yfrrbBYTyhSzBssSFL6FxsLWRpx+1BQAwNTmCnzjrNkw8ZIC/tnu/hwfHZELvArL5KJZjeA4LsK2XCr0DnsQCAowm3i57y8fsFpMcgF9oGdUVh5MSWyTQNg6GYhW3kps4RsPtcASJcNjkb/5zJmRiDFPQC6W88XJUog4FOdg5ftTqp9h3c/2nXfewerVq2G323HjjTfKiWuzZs3C7373Ozz22GOGHySR32xu68ZND76N9lAD9cbPuiACmDquEnOm1mq6j0qnFZVOK0QAB3pHFcpb/hQPxYQzwaBu5s+vKLOojhHIFcy6mOq4AFEU0T2YWHlTJkjKYwIqbRGhOcrEyWKAhbjMmVaLI2c3Y9kRkwAAf3zji7T6C4nC5JMvwpbJqeOkMS41aX73ChHW79ZU68g7+3B4WLdLtkBqsT6yvrigIEIQwgpcqS184xHPNskYdEV+/lk6djwEQcRHO3tD983n1fm00JACxqTPqVtx7i1V26TuZ3vvvffi5JNPxhNPPIFLLrlEXuxcddVVuOKKK/Dcc88ZfpBE/rK5rRvr1n+quiO7u2MYm9u6Nd+X8oREtsnMUs4KEJWet3xNxqphiZPDqS0gB10++PwCeI6LsEE21DjAQdrNG1HsrMpjAqJ23Z3yrLfCV94AoCO0SB1XK33/Tj96CuxWE/Z2jeC9bV3YvncAG7d2YvveAQgCFXPFzqa2sGWSbVrUGJT2Wkh09oWSJvMorIShHBfAAktMGoo35aBuvyIt12qm8ywQtk164hVvI9HFW3zljW1qP/qXbQCkdpKbHnxb15qIiESe9aZQ3uTAkhLr29T9bLdt24Zzzz0XAGIi3I855hgcOHDAmCMj8h5BEPHUhp0Jr/P0hp2aF3zyCanbRYElGYYVIGq2yaE8CythyLPeNFhV1GAKU321PWJ2oNVsku9b2fcWHVbCYFZSV46VN0EQDSmsOtgitV5apFaWWeUZX4/8eSvWPP0hfv2S9L+0+ChuvP4gPvpcUgoWzQr3PJaibbIzD8NKGBPqQ4mTPaPhwBIttsnQ715QEGXFAig91SIeTHnzxrFNsnMje/3jKW/xNrUHRrxYt/5T+g1NEXtU4mQpq8e6V8YVFRXo6elR/VtHRwcqKirSPiiiMNjRPpj0ZN4/4sWO9kHMmlKT9P6Uu4ns/9tttCOYCcoT2SbztniTdv9TtW6phZUwGmvK0DfsRdfAGGZMrJIeR57xln/K2+a2bjy1YWfE96+mwoaVy2fqChpxuf1yH4cyDr2hWrKSRteDbPFRSoOaS4lPvuiDzy9EWCaB3BRvgiBiR/tgwqCrTBJWpPNQeQsFfB3sHYUvFNhg1qG8BQRBtgaaeC7vbKG5gilvyWyTMydW4UDvqGrxpnVTe8HMBnrddRI9qLuUNyB0F28nn3wy7rnnHrS0tGD27NkAJAWus7MTDz30EE488USjj5HIUwZHtZ3ItV5vUmM4Arm+Slo8km0yM8jKm0rxJidj5VnxJi8gUwwsYTPeGhVjAhiNNQ5s2zsQMag7POMtUnlzhpS3XKVNsl3daFIprFhfT22lTVa5BUHEH9/8IuHtaPFRXLBC6a/v7QMALGptiHDW1MrFW+phQXowanMiFdhrsa97BID670Wuaax2wBJKAGVFpp7iLRgUS7ZXKBFyYIlK8SaIIoZc0sbmzInVeOOjg6rFm9Gb2kQYZpscCylvSutvqX2OdRdvN9xwA7Zs2YLzzz8f9fXSEObvfve76OzsxLhx4/Dd737X8IMk8pNqp7a4dq3XG18fjkDuDKkkZJvMDLLyliBtMt963sILSB8EQdRdODDbZJPKYoypcd2KxEmm8EX3vIVtk9lX3oze1e1Q6euhxUdpoVYovf1ZJ2ZMrJILpZrK7AWWGLk5kcpjR78W69Z/gou+1JJXSjPPcxhf58TerhHs7ZSKTN22yVCvkLXEFr2JCAeWCBBEMSJgxOX2yxa96RMqAQC9Q56Yc5HRm9pEGFl580rFNSveTDwXMYS+FND9bKuqqvDcc8/h9ttvx+LFi3H00UejtbUVN910E1544QXU1mpLFyQKn5ZJ1bIaEo/aCsnuogWL2SRbt/Z0SCckUt4yA0tMdKkEljBff77MeGNUl9vAc5y0A5rCoG55QLeKDaoxatabKIpy2mS0bbJctk1mX3nTU1hpQbaGKfp6aPFROsTrzRkZ80f05tSE5ioOu3xyj1UmMLqPWg/xXotBly8v+5RYwNceuXjTo7wJpLypYFOsN6KtkyyspKLMgvoqB0w8h6AgxnxejN7UJsKwzXw2qNvPLMMl+BlOSdawWq04//zzcf755xt9PEQBwfMcVi6fqbpLyrhw+UxdCsnEhnJ09I3JCwQq3jIDGxXg9gYiBl4C4VEB+Wab5HkOlU4LBl0+/Pvjg2iZWK25D0YQRXSHLC5qyhsr3rpC4wLc3oDctB69QcGUt1yMCjC6sJKVN8UQYlp8lAZ6VNwKp1VerA6P+mLUaKPIlepbiH1KE0J94cz6rkV5Y9cJCKJcnFgoaVLGaubBARAhpUPaFafAwZBlsrrcBp7nUF9lR9eAGz2D7oj0YrapnehzrGdTmwhTJgeWRCpvpZY0CaRQvK1duzbu33ieR1lZGaZMmYJjjjkGVmt+Lf4I41nY2ohrV8yNsZrUVthwYQr9CRMbnHh/e/jfZJvMDE7F8O1RTyDCIpmvgSWb27rlfrwX/70bgPY+mIFhL/wBASY+ckwAgwV0uL0BuNx++URd7rDIVhqGM4dDuo0urJjypkzUo8VHaaC3UKout6Fv2IP+EW/Girdcqb6FaBVmyhtD26iAkG2Set5U4TgOVqsJXl8Q3ijlbSgUVlJVLp0XG6odcvGm/ExkYlObkGABdixtspQ/w7pXxi+99BI6Ozvh8/lgNptRXV2NwcFBBAIBcBwnz32bMWMGfve735GNsgRY2NqIBTMbDEkGYylaDFLeMoOJ5+GwmeH2BjDq9svFW1AQ4MrDwJJ0+2BY0mR9tUPVG2+zmOSCpXvALe9m11bGFkFMtRzzBCCKYszIlExiZGHlDwTRMySpkeMVyhstPkoDvYVSTaVUvGUycTJXqm8hWoWZ8sbQoj7ItklBgD+091SKC99E2Cyh4i1qXABLmqwOWYjZhh/7DVXCNrUfe3V7hL0+1U1tQiLc8xYZWFKKfZu6n/H1118Pq9WKX/ziF/j444/x1ltv4ZNPPsHatWtRU1ODe++9F3/+85/BcRx+8YtfZOKYiTyE5znMmlKDpbObMWtKTcoLu0kNVLxlC6a+KQd1u8b8EAFwHFARKlJyjRF9MCxFUs0yyWhS9L3JYSUVsQoDs00KoigPk88WrLBKhNbCSrKISifE6EKdLT6iL6+tsNGYgCJBb6HE+t4yWbwZ3UetlUK0CleXWyMcFCZNgSWseAsrb6W48E2EzSK9HtHKW9g2GVbegPiDuhe2NuKo2U0AgHnTavG9CxdgzdVH029nGkQP6ZZtkyX4Gdb9jO+//358+9vfxmmnnQY+tIPNcRyWL1+Ob33rW/jlL3+JmTNn4qqrrsKbb75p+AETxU1dlV3+8QSkIaSZaE4nwomTynEBLAikwmHJG2XFiJCOcNJk/JlN4b63sbgz3gBpscN6R9TSOjMNK6yi3x+rmddVWDHL5Pi6MlX1cGFrI3582WL53zdecBgtPooIvYVSTRbGBRi5OaGHXBWN6cBxXIT6pi2wJGyb9IXSJksx7CERNotUECdX3qRzQ7xB3QBwoFfqKV5yaFNam9qEhCNqSLePijftdHR0YMqUKap/mzBhAg4cOAAAaGpqwtDQUHpHR5QcH+zoQSAYLtYeeukz3PTg23mX9FUMOFXGBeRjWIkRlqZw0mR85a1RHhfglos3Ndskx3GKQd25mfU2d2qdvKlx6uJJAKSEzNmHaLeps7CS5rr4BW1FmQVsuTGxoYIWH0WE3kKpNkuDutnmhHITjz1+plTfXBWN6TKhPvzdHXR5k250Kod0h5U3crcosVmTKW9Rtsk4xZsoimjvdgEIz7Al0sMeVbwFSjiwRPcznjFjBp577jnVv/3xj3/E1KlTAQB79uxBYyPt0BLaYX1NwagTEOtrogLOWNSUt3wMKzHC0sR63hIqb9XhxMl4A7oZuUycBID2HmlRUOW04vxlM9BU44A/KOKDHT2a7yOsvDnjXsfE8+G5djkIaDECQRCxbU8/3vxgP7bt6SclX0E8FVetUKoJqdDZmPW2sLURc6aGNyLOPuaQjKu+7LWIVuDy1Sq8ua0b724NnxM3ftaVdKOTOQaCQbGkLWeJsIcCqmICS0YjA0vqq6TzxciYXy4mlAyMeDHqCYDnuIhRLETqkG0yjO7Akm9+85u49tprsWLFCpxyyimoq6tDb28vNmzYgLa2Ntx3333YunUrfv7zn+Pcc8/NxDETRUghRjUXOnLPm1J5G82/sJJ0QzoEQZR3RxP2vNWGB3Uze4aabRLIbeIkAHkw75TmCnAch6PmNuPFf+/GO5914ph54zTdhxblDZCK/FFPoCCLN7Why1oTSkuFw2bUA6GgsQuXz8SkhnLVwClW1AxmoXgDImdQVobi2TMNC9+65aF30DvswfknTccpiyfn3Tkn1QCniCHdATYqoPQWvomwsuJNYZsURBFDIeWN9X6W2c0od1jgcvvRO+SJUdf2hzbYxtWV0WtsEDGBJXLaZOmpx7o/USeeeCJ+85vfoKysDGvXrsVtt92GBx54ABUVFfjtb3+Lk08+GZ2dnTj99NPx7W9/OwOHTBQjRg8fJpITVt7CiyRZeSvLn+ItXUtT37AHgaAIs4lLGHHOlLdRT0Ae0K0WWAKEC98xlR3XbLC3SyreJjdVAACOmtMMANi2Z0CTrU0QRXRqUN4AoLxM+pywMQ2FQryhy6TkR9I14IYgSgOKly+cGLc3RxlYIoiZVy9HQhbu6P+faXieA/MKz5yYWmpyJkknwCkibbKEVYtEsEHdSuXNNeaXHUHKjc1EfW/MMhmdoE2kTnTPWyl/hlMaorV06VIsXboUPp8PQ0NDqKurk8NLAGDZsmVYtmyZYQdJFD+FGNVc6KipRyywpCqPlDcgvXmCzDLZUO1IuBCzWU2oKrdiyOWDKEqJm9UV6q9DmT22XzCb7GPKW6h4a6h2YObEKuzcP4SNWzvxX0eq9yUz+oc98IXm3tVXJ57ZVeGQXoNcPddUICVfOwdCCsGEemfCsRdV5VZwkFSbkTF/xn8jlEpvtjcO2MLdlodpx+nMpJOLt6Aohz1Q2mQkdhXljYWVVJRZIoJhGqod2N0xolq87e+RnA3R8/iI1GHFmy8gIBAs7Q2IlIo3r9eLtrY2+Hw+iKKIPXv2QBAEuN1ubNq0CTfeeKPRx0kUOYUY1VzoqPa85WFgCYNZmu565kNs3zeIEw8fj1WntCZdfHf1M8tkYnsgADRVO2R7THW5TXUmHKA+ZiFb+AOCnGI2pTm8q3vUnGbs3D+Edz5NXryxfrem2rK4z5HhdEjPNZvqR7oU4tDlXHEgtMicUJ94kWk28agMbW4MjHgyWrwJohjxu5Rty65cvFnyr3hLZ6Mz0jZZugvfRFhVet6iw0oYiUJL9lNYieEoR0d5fEH4Stj6q7t4e/fdd3H99dfHTZJ0Op1UvBG6MXL4MKENtiiP7HnL3+INkCxN0ydUYfu+QXA8l7RwEwQR2/b2AwAsZg6CICa8TWNNGXbsl37b1JImGeFB3dlXow70uhAURDjt5oievMWHNuKpDTuwv2cU7d2uhIsGVryNS9LvBoSVt0LqeSMlXztsIyB66LMatRW2UPHmxSHNmTumUbcfSmdmNjcOBDEco5+PxVs6G51y2mRQUPS85d9zzCWsQPD4Y5W3+MVb5PgMf0CQf2MnavheEdowm3hYzDz8AQEebyC8AUFpk8m55557UFNTg/vuuw/Lly/HKaecgoceeggrV64Ex3F4+OGHM3GcRJFTqFHNhYw8KkAtbTKPet6iSRbRzNjc1o2bHnwbH+zoBQC8v70naRpbY024GLKY+LjJhLlMm4wOK2E47RYcNr0eAPDy23uwcWsntu8dUH0OLKxES/HGet4KqXgjJV874eItub2rOguDuoHYz5ori7ZJn2LRno/FWzoz6czKId0lvPBNBHvPfQrb5JArMmmS0VCl3vPW0TcKQZQ22JK9V4Q+mHVyTFm8WUrvM6z7Gbe1teG6667Dl770JZx00kno6OjACSecgP/5n//BeeedhwcffDATx0mUAIUW1VzolIf6tlyhAkQQRbm3JF+VN0B5wow/LDiVsIrNbd147b12+d/b9w3GLfbUkjqzxd4uyY7D+t2UsEHj72/vxq9f2oo1T3+o+hzCylvyBbtsry2gwJJCHLqcC3z+ILpDPaHJbJNAOMAn08VbdI/bSBY3Drwh1Y1Dfi4K09nojBjSTbZJVVKxTfYOeSJCfJTz3RL1kRL6YeMCPL5gOG2yBDcgdD9jQRDQ1NQEAJgyZQp27gw3hZ966qnYunWrcUdHlBwLWxvx86uPxvcuXIArz5qN7124IOPzfUoVprx5fUEEggJcbr98AqoIqS35CDth9g25VVPvUkljY8VetJIWr9iTw15yoLzt6worb0o2t3Xj1Xf3xVxf7TnoUt5UeiPzHZ7n8LVlMxJeh5R8qYgXRWkzQksPG5t7yOYgZgpmk2QF+MiY1F+fDdii3Woxgc/ThXeqG51qaZMUWBJJYttk5HekptIGE88hEBTkXmkgPCaALJPGoxzUXcp9m7p73iZPnoy2tjYsWrQIU6dOhdvtxq5duzBt2jQEAgGMjo5m4jiJEoLnuZIPEcgGZXYzOAAiJOsk290ud0QmauUb4ROmiMERb0z8v9awirZ9Azi6rjylZEJWvGW75y0oCPKurlJ50/McxrwBWdlori3O4g0A7Fbp9MZxiOif0pJQWiocVPS7aVEI5FlvrgwXb6HP2vi6MgyMeBEIivD4grJlKpOwlEFbHqpuSliA0472QQyOelHttKnO51NiUrNNluDCNxFqtsl4ypuJ51FXaUf3oBs9g275+0FjAjJHeFC3snjLP3tzptH9rT3zzDNx11134cknn0RtbS3mzp2L//f//h/+8Y9/YN26dZgxI/FuJ0EQ+QHPcXLvlsvtz/uwEoaJ5+UwEbW+N81hFaETctu+5LPRomcMluUobbKjbwz+gAC71YQGxcBxPemKbL5bbaVNLnASUajF28bPOgEAJy2YgJsuXCAvXL913nwq3ELs7w2NCdAYZ85mvfVnyTZZW2mHNVREZcs6qVTe8h220bl0dnPc+XxKlKMCSnnhmwibjsASQH3WGyVNZo7wrLdgSW9A6H7GV1xxBS644AJs2bIFAPCjH/0I27ZtwzXXXINdu3bhe9/7nuEHSRBEZmAL81FPQBFWkr+WSUa8lC9AR1hFyAIz6NKWZKcsCpnl1O0NZGVgMYOFlUxuLI+wdOlJVzzILJMaVDcgHFgy6gkgKAh6DjdnuL0BfLCjBwBw9NxxmDe9DofNaAAg9TISElrHBDCYbXJgxJNRGyOzTZaXWVDhsERclmlY8WbPwxlv6SL3vNGQ7rjY5J436fURRFE+N0bbJoHYAK2hUR+Gx/zgAIzX+L0itMOKN2XaZClaf3V7EHbv3o2bb75Z/ve8efOwYcMG2TpZXk47DQRRKDgdFmDAXVDKG8BOmAPoHYpV3rSOnWidLFlz1U7IaiiLQhZYIkIqFJiNMtPsDfW7TY7qd9OTrvjxF30AtIWVANJzle21nkBeJ5EyPtzZA19AQFONA1PHSa/VYTMb8EFbN7bu6ccpiyfl+AjzA93FW0h58PkFjGXwc8/CcSocVpSXWdE37M1aYI7Pl78z3tKFqc+BoCjPyCrFhW8iZNtkqIh3jfkRDPVHq50bo4s3pro11pYV5Wco1zhCbhHJNlm6c950P+OVK1fixRdfjLisvLwc8+fPp8KNIAqMcsW4gKGx/B8TwEg0LkBvGlvr5BrdyYRmEy/buUazaCfcx8YERCVN6klXPKgjrASQdutle22BJE6+81kXAGlwOevlOrxFUt7a9g0iECwMBTGTuL0B9A1LyrWWGW+AZCVkvxmZTJxkFsmKCOUtO589TwHZJvVipiHdSbEp0gyBsGWysky9FzzaBSInTWq0IhP6sNtCPW9eSpvUhcViQU0NhUkQRDHAFCSXpxCVt/jjAha2NuKqs+fEXK6WxpZq9Ha2EycFUcReFlYSpbzpeQ6dOsYEMAqp723I5cXWPdJg9qVzmuTLDxlXiYoyC7z+IHYdHM7V4eUNrIivclrl91cL2Zj1xiySFWVWOfk2W589ZpssRtUk3PNGtsl4KJU3URRlW32VSr8bANRH9bzJSZPU75YRypRpk/7S/Qzrtk1ef/31WLNmDUZGRjBr1iyUlcXu3o4fP96QgyMIIrOEB3UHMDya/zPeGPVxhqMqYf0GVguPS788C9Xl8dPYWPT2Uxt2RixKEyUTOu1mDIx4MZal4q1nwA2vLwiLmVdVzeI9ByWf7upDd+g1a1IEniSjvMyCrpC9Nt95d1s3RBGYPqESjTXh14nnOcw+pBbvbu3C1j39JT/jTbZM6lQIaitt2N/jynDxplDeQk6AbPW8Mdtkcfa8UdpkMljxFhREKdE4QVgJEN5IHBr1wesPhsNKaExARogYFRAs3c+w7uLtxz/+MYLBIG666aa419m2bZvm++vq6sLxxx8fc/mdd96Jc845B9u2bcNPf/pTfPrpp6itrcWll16Kiy++WL6eIAhYu3YtnnvuOYyMjGDx4sW47bbbMGlSuKchG/dBEIWIPKi7IHvewidMtV1ytjid3FiBpXOak96n3ujtMll5y05Bw/rdJjWWy8ED0ag9h4+/6MVf32vHAy9+GhGZ/5MnNmOlxsh85eck33knlDK5dHbsez5naqh42zuArxyX7SPLL+QxAfX6FpnMnts/rK56p4soivLnrMJhkVXBbNkmCyltUi/KUQE+Oeyh+J5nOtis4d9Wrz8Yd8Ybw2m3oMxmxpg3gK7+MVnRpqTJzBAxpLuEE1N1F28/+clPDD2A7du3w2azYcOGDRFzZioqKjAwMIDLLrsMy5Ytw+23346PPvoIt99+O5xOJ84991wAwAMPPICnnnoKP/vZz9Dc3Iyf//znuOL/t3fv8U3W5//4Xzn0fKDnFjmDUEBAChRhDgVEPvtN0AHu5xDcpqIoChNFxMlE3RCmRRTEAyowJ6cpB8dEUWTqREBaUVRooRzLoS09N22TNMn9/SO57yZtmibpncOdvp6Phw8huXP3DneS3leu631ds2Zh165dCA8P99s+iJRIyrzpG1Fj+2bbnWG9gRYTqUVUhBYNBhPKqvVOGy5c9LANOuDZjEGx5NRfZZPnWlnv1lzz51Bt60TZvDmgOLzb1VBfkdhx0l/ZD09ZLAJOFFXhTHENzhXXQq0Csge0fE7X9EoCAJy+WIMGg8kvc8OC1cUrnr8/gKbgzVeZN0Nj00VZIMom9SFcNqm1feljMlukdZ8dMWvhikathlajhslsgbHRLA3fbq1sErB+mXiupBY/ni6HySwgMlyD5E6RrW5P3uOQbiuPf3NNmTJF1gM4ceIEevbsibS0lr9o//GPfyAsLAzPPfcctFot+vTpg3PnzmHt2rWYNm0ajEYj1q1bhwULFmDs2LEAgJUrV2LMmDH49NNPMWnSJPzrX//y+T6IlComqqkRRdOogOAP3lQqFVITInG+RIcrVQ3OgzcPO+l5yt+DusXMW/P1bq5YLAL+9d9TLrdpPoDcmbgo62vC33Pt3JFXUNqiVFSjVuNkUVWLoDQ1IQppCVEorWpAwfkqDO2b4u/DDRoXyrx7f4gdJyt9NKhbzLCFaa1NgWKj/F02ab0gjAjhskm93QDqjnjh25aIMGvwpjc2Zd4SXXQlTk2IxLmSWhw5WQbAut7NnaH35LloBm8AvGhYAgBGoxGbNm3Cww8/jDvuuAOnTp3C5s2bcfToUY/3VVBQgD59+ji9Lzc3FyNHjoRW2xRjjho1CmfPnkVZWRny8/NRV1eH0aNHS/fHx8dj4MCBOHz4sN/2QaRUYknSleoGu3bIwT/nDXDdcRJoWjjubic9T/lzULcgCG5n3ux5MrzbFTHIr20IrsxbXkEp1uz4qcVzbDRbsGbHT8grKG3xmIE9rVlJsalJR6RraJQyCp7Oomqa9ebb4C0uOgwqlUrKvPl7SHdEWOhdEGpsXfkaDE2fWR3xwrctYuBuXzbZVuYNgNQIievdfEdci9pgNEulvx2x26THmbeKigr84Q9/kOa6FRYWQq/X44svvsDy5cuxYcMGZGVlub2/EydOIDExETNmzMCZM2fQo0cPPPjgg7jhhhtQXFyMfv36OWwvZuguX76M4mLr2obOnTu32Ea8zx/7SEnx/ttbLT84g4r4y03TQT4M4mPE9SvWX1DREVpE+WlmWXuJzSjKa/Qt3kcGo1nqRNkjI87p+6y951pcG9hgNDndv8UioOB8Jap0RiTEhiOze6LL7JYrZVUNqNOboFGr0L2V5+OMuxe8tQ2NLvcpXrjU6Z0/10CwWARs3nvS5TabPz+J7AHpDud6UJ9kfPH9JRw/Vxk0z8XfSiqtHUdTOkUizsMyafFCtbLW4JN/vwajNbCIjw6HVquWgkVdvevXKCDP57fRVk4YFakNudeHON5EDFBVKmugosQskS9/V0eGawEYYDJbpC85kjtFtvp6SE9ybCDV2u8c8lzz8yw2MGrQm6TS31B8r7bF4+DthRdeQF1dHXbv3o0uXbpg0KBBAIBVq1bh3nvvxapVq7B+/Xq39mUymXD69GlcffXVWLRoEWJjY/HRRx/h/vvvx/r166HX6xEe7viLJSLC+kFuMBjQ0GD9xt3ZNtXV1QDgl314S61WITGRs0CCUXy8+534lKxLs3FXifERinlN9uzSCQBQXdfY4phPnK8EYO0Q1qOr6zVs3p7rlCTrzzSahRY//5ujl7B2548or25q6pDcKRL3/2YwfjHEs268ZouAPYeLAFgHvyYnx0rlT23p1rmT29u5Ou8ZqdZsX4PRHDSvjx8Ly1DRVlaxxoBLlXoMvtr6BVt8fBRGX9sVa7b/iItldbCo1Uju1DHe6/Yqjlszkj2vcn3enYmwlTHW602Iio6Q1qDIxQzrEPnE+EgkJsZAE24rTzaYEBsX5VamqD2f37YCBCR1ig6a17pcEhKs1zsNhqZ1fUlJys4S+eJ3dbStIkUbHoYq23KCnl0TkZjg/Gf17JLg8Pf+vVJC7rUTaOJ5Fj8PGu1mdaamxEoNxDoKjz91//vf/+LPf/4zevToAbO5qW46IiIC99xzDxYtWuT+D9dqcejQIWg0GkRGWhd3Dho0CCdPnsQ777yDyMhIGI2OZTpisBQdHS09xmg0Sn8Wt4mKsp5of+zDWxaLgJqaeq8fT/LTaNSIj49CTU0DzB1gkK/Z6FjyFxsZhsrKugAdjWdibOUTF0trWxzz8VPWcuarUqJbfT7tPdcqi/UxVTV6h59xOL8Uqz9oWUJeXq3Hsn8cxtzbhyC7f9sdHsV9bdxTIAUpl8vqcM9zezDj/zLd2sdViZFIiotwGeQkxUfgqsRIl+ddZbENrK01BM3ro+hytdvb9UiLcTjXPTLicPZyLQ58fxHXD+nc9k5CzAlbyWh6guvz3prIcA30RjNOF1V4NC/QHcW2cueocA0qK+tgEQSoVSpYBAEXLlUhwcUwejk+v3W2Bj9mkzloXutyabA9NzFjodWoFfscffm7Osz25diZi5WwWASoAAgmk9N/q8P5pXj343yH2/7+7mHM/JV7n9HkWvPzbHJyrut0ehiCrKTfW/HxUW5lkz0O3gwGAxISEpzep9Fo0NjoWV16TEzLD/6+ffvi66+/RkZGBkpLHdcsiH9PT0+HyWSSbuvevbvDNpmZmQDgl320h8kU+gGCEpnNlg5xbsI0KunCCLCuM1HK8062XcSVVjWgsdHsUPpz3tbc46qUmDafj7fnWmxZrGtolB5vsQh4b0+By8dt3FOAa3snt1lCKa7naq6i1oDVHxx1q0skYB3O7Ww/0v039YXFIsBiEVrdJipcbGxjDJrXR5ybg6XjosKkizvxXA/okYizl2vx9dFLECC0ORYi1IizqDonR3t1PhPjInC5vB5llQ1IlTlzKXZHjYls+iyKjdKipr4RlbUGtwaKt+fzW2zmoVWrgua17ithWrXin6MvfleL2d3LZdYv1+OiwwCh5fVaa5/RlTrPPqOpbfbnOVyrlta7qVSAYBFgEpT9OvaUx0WigwcPxqZNm5zet2vXLqmM0h0nT57EsGHDcOjQIYfbf/rpJ1x99dXIzs5GXl6eQ4bv4MGD6NWrF5KTk9G/f3/ExsY6PL6mpgbHjh1DdnY2APhlH0RKpVKppGYUgDJmvImS4iOhAmBstKCm2Qyoi7ZOel19uHA82km3SbkahFgsAja1tZ5r70mXAZdIHN6d2CxjkRQX4fbFhTgqoE5vgtkSHL8k+3VLaPGcmkuKi3A6jFtc4P7z2Uqs/fcxvLD5CB5//RunDU5CjSAI0vvD0xlvImnWmw+altg3LBHF+nFQtyGERwU0L7dmsxLnxHMvrg11NqBbzs9o8ox9qXaYVq3INZvt5fE7909/+hP279+P2267Da+88gpUKhX+85//4IEHHsAnn3yChx56yO199enTB71798Zzzz2H3NxcnDp1CsuWLcP333+PBx98ENOmTYNOp8NTTz2FwsJCbN++HRs2bMDs2bMBWNepzZw5Ezk5Ofj888+Rn5+P+fPnIyMjAxMnTgQAv+yDSMnsv8lWUvAWZtfMoKxZx0lphpWPxgQAzue8VdW5dzHb1nZyBYGi4ZlpePHBX2Dh9Czcf+tALJyehRce/IXb3wqLzxXw31y7tqjVKtw5oa/LbaZP6Nsim5ZXUIp/7z/bYltx7l2oB3A1dUboGhqhUlkzb97w5aw3nS14i7UL3sQsqz9mvUnBWyiOCmhWjhXO4M0p8dyXVlh/rzjrNCn3ZzS5L8ruvdkRO00CXpRNjhgxAuvXr8eKFSvw9ttvQxAEbNiwAQMHDsSbb76JUaNGub0vtVqNN954AytWrMAjjzyCmpoaDBw4EOvXr5e6O7799ttYunQppkyZgtTUVCxcuNBh1ty8efNgMpmwePFi6PV6ZGdn45133kFYmPXDPjk52S/7IFKqmEhlBm8AkNopChU1BlypakAfWwMTXUMjqrxsg+4JccC53miGyWyBVqNGQozrTJCore3kCgLteTKAvDmNWo2YSC3q9Cbo6huDZhagmFX8554T0pB5wJpxmz6hb4vg1N1vy9uae6dUFouAAz9buygnxIRD6+WFjxS8+WDWmziOQpwtCNgPifdD8GYM3cyblpk3t4jnvszWcCrByYw3X3xGk3ui7DJv4SH4PnWHV22isrOzsWXLFuj1elRXVyM2Ntbp2jV3pKSkYNmyZa3eP2TIEGzdurXV+zUaDR5//HE8/vjjAd0HkVLZZ946BclFubtSE6JQUFTlMOvtkq0kLDk+0uFDXm7RdvuuN5gQHx0ulfK5+ka2tVI+e3IFgXKKjQqzBm9+mrflruGZaVCrVVi97Uckx0fg3lsGtrp+reB8pdvflnsb6Aar5sPMK3VGPP76N7jTSZDblsQ4a3Ovyhr/lE3G+bVs0jakOwQvCluWTYbec5SDOEtMXAvurGwyGD+jOwr73+sdNfPm8bP+zW9+gw0bNqCsrAyRkZFIT0/3OnAjosCLjmj6BV5Za1BUjX5qgvUiUpzpBtgP5/bt55JarUKU7d+u3lZK6G0pX3PtWc/lK7F+LF3zVJUtIOmWFof+PVqfpydmZNvcX4h9W97aMHNvS0V9WTbpNHiL8s+gbrOlqZtdRyibZObNuebZHGeZt2D8jO4oIu3LJjvoa9jjZ33VVVdhxYoVuPHGG3Hvvfdi165d0Ov1bT+QiIJOXkEp8k6USX9/77MTimrckGKbu1NW3ZR5u3jF1ozBx8Eb0FRyWmd3UTk8M63Vn52aEInBvZORf64SB48VI/9cpdNgWa4gUE7BHLyJjTOS4l1fTDm7CHO6XQh9W+6LxgoJtvLq0sr6Vl/D3jCZLWgwWL8IiYv2f9mkwdjUjCciLPQuCltk3jpo1qItzbOuzjJvwfgZ3VHYZ9462nBukcc1Ra+99hpqa2uxZ88e7N69G4sWLcKSJUtw880347bbbsPo0aM7ZOcXIqVptc2x7dt4JbQ5TrUFb/Zlk2Kzkq5edtLzRHSkFqh2bOJhaDSjpMLapWzWpAFQq1XQqNX4x8fHcaVKj0dWfy21IwesWQxnpWvDM9Mw+pp0HPi5xOH21tZz+VrTBXTwzdMpr7F+gZgcH+lyu8zuibKUtSqJJ40V3CkVzSsoxcbPTgCwDm1/YfORVl/DnhK/GFCpbO8tGzELp/Pxa09sVqJWqbxeDxjMNBrHa7PwEAxQ5RDZLOvqrGEJ0LTm1r4cGQjcZ3RHEdWs22RH5NWCkLi4ONx+++24/fbbUV5ejk8++QSffPIJ7rvvPqSkpODLL7+U+ziJSEah0rhBDN4qagwwmS3QqFVNbdD9mHlrPi7AZBaQHB+B0ddkSF9mnbpYjU8PFzkEboDrYFks85swvCt6d4kP6DwyMfNW1xAc3SbtVdgaCyS1EbyJ35a7nHsXYt+Wy9lYwddf+IiZtdioMKjtvgQWm5f4umzSKHWaDM3241p1s7LJEAxQ5dA8qHWVsR+emYasvqk4UVSFqjpDh5sZGQhRdks9OmrH1HY/6/LycpSVlaGmpgZmsxmdOnWS47iIyIdCpc1xfHQYwsPUEACUV+tRpTOiTm+CWqXyug26J5yNC/j5TAUA4JpeSdIFoMUi4HC+61LU5qVrBqMZJy9UAQDGD++KUQMzXK7n8rVYad1R8GXe3C2bBOSZe6ckcjVW8MdcKzGrG9escVKcv8ombcFbqHawa555CwvR59lekWFNeQ0V2u7CLHbyDfRndEcRFc6GJV5l3oqKivCf//wHu3fvRmFhIVJSUjBp0iT8/e9/R//+/eU+RiKSWai0OVapVEhNiMLFK3XW0knb78z0pCi/dFITB3XX2WXemoK3ZOk2b0rXCqQMXiTSE6PkPnSPiRfUOj+0a/eExSJI/7ZtlU2KxG/Ll2/MQ+HFGkwY3hW/uymwGTeLRfDJt/dydUCVu/zSGbFsMs6uAy7g+NoTBMFnWTF9CI8JALjmzV326x3josNCsoRWyZoP6e6IPA7epk2bhmPHjiEyMhI333wzFi1ahNGjR0NtS8f78oOViOQRSm2OUzvZgrdqvVT25Mvh3PbEzJvYbbKy1oCLZXVQARhgdwHrTbDsLIMXSGKJqE4fXMFbdZ0RZosAtUqFTm42JAGs35b3zIhH4cUaaLXqgAZuzdv4A62vhfSUXKWi/vjCx1mnSaAp62sRBNQbTA6zKeUkfn5EhmjwplKpoFappBb4XPPmXLjdmjdnzUoosOzLJjtq8Obxs05ISMDy5cvxzTff4IUXXsD1118PtVqN0tJSvPrqqxg/frwvjpOIZBRKbY5TpHEBDXadJn3frARoGtQtdps8dtYacPXsHOcwP8+bYPln274G9UqS5Vjbq6lpRHAFbxW2ZiWJceHQqD37lZbcKdJhH4Egdxt/Z8RS0eYBmielov74wkcsm4xtVjYZplVLTSR8+fqTyiZDcEyAyL50kpk35+yD94Q2fk+S/zmUTXbQ4M3jzNs777zj8Pf//e9/2LJlC7788kuYTCZ07dpVtoMjIt8IpcYN9h0nxYtwf2XeoputebPPltnztHStokaPS2V1UKmAAT2DY1h0sI4KEDtNJrpZMmlPLLMsrw5M8ObPxkFD+iRL69Fm3NwPXVJiPCrNlKv80pXaVsomAevrT280o7a+Eek++j5DDN5CtWwSsJZOiu/gMGbenLIPagVBgMUiKOJ3YUfh2G0ydN+rrnj1zq2oqMDatWsxYcIE3H///fj2228xZcoUvPfee9i7d6/cx0hEPhAqjRvE4K20ssGvnSYBx26TFkGQsmXX9HS8uvR0JpAYBPbuHO+zEjFPicFbvd4Es8XSxtb+U1Hj2Xo3e2LmrSxAmTd/Ng66VGYdXxEbFYbxw7p43FjBH3OtWiubtN5m6zjpw3EBhhBf8wY4rntj5q2lvIJSLN/0nfT3H09XKGr2aUfAId0eZt4OHjyIrVu3Yu/evTCbzRg+fDguXryINWvWYOTIkb46RiLykVBocywGbxdKdRAAaDVqpPmpwYd9t8miEh1q6xsREa5Bny4tu+62NhNIq1Fh9q3XOATLUhAYJCWTABATZX2uAqzPNz7a/fVlviRm3tzpNNmcGPBV64xoNFn8fiHgz8ZBRaW2+YepMV6voWztNQxYvw0f1Du5lUe6RyeVTToL3sRup74sm7R+KRHKwZt9841Q7arprVCYfdoRREew26RbwduGDRuwdetWnDlzBj169MCcOXMwZcoUREdHY+TIkUGxmJ6IvCO2OVaqFFv2RGxQflVytMdrn7wVY9dtUlzvNqB7YqvdyeyD5YtlOmz67CRMZkEKQAFrKZ2YeRvUq30Xw3LSqNWIidSiTm+Crr4xaII3sVQ2Kc7zzFtcdBjCtWoYTRZU1uqRluj78RL2/Nk46II4vD6tfetBm3/hExcVhg0f56O8xoB9eRfw/43q4fW+mzJvLV9bYimlTzNv0py30A1quObNuVCZfdoRsNukm2WTy5cvR3h4ON59913s2bMHDz74IDIyMhi0EVHARYRpEG/3TX1sdFi7Zk15Itqu2+RPtoBrYBtr1MRg+abh3TCiv/Vb3L15F6T7z5XUok5vQlSEBr2uivPRkXsnJgjXvbWnbFKlUkmDvf217s1iEZB/rhIHjxXDYhEcSoCckatxkBi8dZOhmY/9XKtreiXjN2N6AwB2HzyHBoP3Q9xdrXlrKpv0fcOSiBBeC+ZQNtlBL3ydCZXZpx2B/WDuylq9337fBxO33rm33HILzp07h9mzZ2POnDn47LPPYDJ5/wFNRCSXvIJShyHZx85W+m2Ngph5M5os0i91T0odbx7RDQBw8OcS1NgyCmIQOKBHkt8yiO6KC8LgrT1lkwCQbHtceY3vZxrmFZTi8de/wQubj2Dtv48hZ+v30myx1sjVOOhCqTyZN2dGX5OBzsnRqNObsOmzEzh4rBj55yo9uqiyCILUSdJp5i3a96+9jrHmrekzhcFbk1CZfRrq8gpK8eTag9Lf/3vkUodck+hW2eSKFSug0+mwa9cubN++HXPnzkViYiImTJgAlUrFDBwRBUSg1yhERmigUgGCAJgtApLjI5CR5H7pXZ8u8eiZEYezxbX48vtLmPyLnnYlk8Gz3k0UbB0njY1m6ViSvMi8AU1NS8p93LSktdeqSCxJbS6lU/vXb1bXGVFT3wgVgKt80IlVrVZhcO9kXC6vx/6firH/p2IAns2qq9ebpPljsa10mwT8lHnrKGWTDN4koTT7NFQF+vd9MHH7nRsbG4vp06fj/fffx65du3Dbbbdh3759EAQBf/7zn/HKK6+gsLDQl8dKRCRxd42CT0sqBCDC7gJoYM9Ej77MUqlUUvZtX14Rjpy8gpMXqgA4DvkOFsEWvFXYypwiwjRS8xhP+WNcgDuv1XCtGgt+NxT33zoQC6dn4bqB1ouQ7V+dbvfPF7NuaUnRPskq5RWU4tPDRS1u92RWnfiaiorQOA0qxGycrsEPa95COvPW9PkU3kHbrDsTSrNPQ1FQ/L4PIl597dK3b18sWrQIX375JVavXo3evXvjrbfewuTJk3HrrbfKfYxERC0Eeo2CWAKnb2xqm//diTKPyzeyB6QhOkKL6rpGrN72I2zJB7yw+UjQlYLEBtmgbvuSSW8rQKQ1bz7MvLnzWq3UGaFWqTBqYAb690jEb8b0hkatwo+ny5F/rlJaJ+dpOSLQ1Gmymw9GaMh1USU2IomLct4IR3zt+TTz1gHKJu2bKTHz1sQfozDIewXnK7km0Y53X1WKD9ZqcfPNN+Pmm29GWVkZduzYgR07dsh1bERErQrkGoXWyjfq9CaPyzd+KCxDvZMmD8FYCiKVrvkw++EJqdOklyWTQFO3Ul8Gb968VtMTozFmSGd88f0lvPSv72EyNwU/npQjAvJ1mnTGky9RXHW1FYMyZ2MCALtRAX5pWBK6wRsblrSutVEYSXERmO7B+43kV6Vz73dOR1mT2K7gzV5KSgruu+8+3HfffXLtkoioVYFaoyBnS2mltacWg7e6huBoWNXUadL7cyyWTVbU6GERBKh9sIbb29dqj4x4AJccAjfA88D+Qql8nSabk+tLFJ2LTpPW260ZOUOjGcZGs09mlHWINW8M3lwKhdmnoSgh1r3RNB1lTSLfuUSkSIFaoyBnuWagSz89FWu7gA6WzFu5DJm3hLgIqFSAySygps43z8ub16rFIuDf+8+4fIw75YgmswWXyusA+CbzJteXKFLZZCvzA6MiNFLg4as1lx1hSLfGfkg3gzen7Edh9O+RyMAtCGR2T+SaRDt85xKRIgVqjYKc5ZpKa08dF2Rr3iptwZs3M95EWo0aCbHiuADflE5681qVK7AvqaiHyWydJyd21pSTXF+itFU2qVKpfL7uzWC0ZpRDOnhj5o0UiGsSHfGdS0SKJa5RaH7xmBQX4bO1YnKWayqtPXWwDekWZ7MltRE8tEUaF+DDjpPDM9Nw36SBLW5v7bUqV2BfZFvv1iU1xicloXJdVDVl3pwHb0BTSaWvMr9i5i28wwzpDt0glUJPIH7fByvZ1rwREQWCv9coiJkGV1kRd8s35NyXP4gXz/V6E8wWS0CHiAuC0NSwpJ0ZpZT4SBSi2uez3mKirL9yO8WE4Y6b+rp8rcoV2F8otZZM+mK9m6i1Rg9x0WH4/f9lunVRVSuteWt9bYu1pLLOZ5k3o23NW2R46F4aid0mVQC0mo6RpaDQwTWJVqH7CUVEHYa4RsFfP+vOCX1dDlx2t3xDzn35gxh8CLB21oxvZX2SP9TpTTCarJmS9mbexDVzFdW+LU/NP1cFABjSJwWjBma43FauwN6XnSbt2V9Ubf78JIpKdbj1l73c/jZcDMhcZt58WLZrMltgtq0fjAjlzJstYAvTqr0er0EUSP78fR+sQvcTiojIR+Qs31BSKYhGrUZ0hDWAqwtw6aRY4hgfHdbu8q9kP4wLAIDj5yoBuDeAXa5yRCl482HmTSReVInPr7Siwe3H6mxlk62teQN8O6pCb5vxBsAnnSyDhVg2yfVuRMrFzBsRkRfkLN9QUilIbHQY6g0m1NY3onNy4I5DjhlvIrHhSZkP17zV6RtxvqQWANz+1ri1csSE2HDMuLlfm4F9nb5RGqfgj+BNlJEcDQAorqh3+zFS2aSLbK54ny/KJsWSSY1a5TDIOtSIpc5aBm9EisXgjYjIS3KWbyilFCQuKgyllQ0Bb1pSLkOnSZE4J67Ch5m3E+erIADISIqWulu6wz6w/+eeAlyuqMeEEd08mu+WHB+J6Ej//brvnCQGb3VubW+d3WYtgW1tzhvg27JJg7TeLXSzbkBT2STHBBApF9+9RETktmDpOFlhy0QltmNAt0gsm6w3mNBg8M0Ack9KJpsTA/sJI7oCAHLzS9163IUrtmYlPl7v1lyGLXgrq9Kj0WRuY+umTpNajcpl8CSVTdbLXzYpBm+hXDIJ2JdNhvbzJAplDN6IiMhtccESvMmYeYsM1yLGlpny1biA/PPW4K092dXhmWlQq1Q4W1yLksq2SxKLSsVmJTFe/0xvxMeEIypCAwFASWXb696ampWEu2yiIZVN+uC1Z7CteQvlGW8AoLH9+xobzcg/V9nmkHciCj4M3oiIyG2xMpauWSwC8s9V4uCxYo8vJOUsmwR827Skpt4oZcEyuyd4vZ/4mHAM6GkN/r493nb2zZ/NSuypVCop+1Zc3naQqZPGBLReMml/vy/WvImZt1AO3vIKSvHlD5cAWNd3vrD5CB5//RvkFbiXySWi4MA1b0RE5LZYmTJveQWlLRpxJMZF4M4Jfd1azyU24pCjbBKwBoHnS3Q+Cd4KzlcBALqmxrR7vMLIAWn4+UwFDh8vweRf9Gx1O4sgBCx4A4CMpBicuVzrVtOSWjc6TQJNa97qGhphsQiyNvQRB3RHhOiat7yCUqcjSSprDViz46eg62xLRK1j5o2IiNwmR/AmXkg2n2EmXki2lQkwmS2o0lkfK1vmzbYfX5RN5tvWu/Xv3v6GNMP6pUKjVuHClTpctAVnzlypaoCx0QKtRo30pKh2/1xPedJx0r5s0hVxvaV1zqC82bdQLpu0WARs2nvS5Tab955kCSWRQjB4IyIit8VGieuOvGsaIceFZJXOAEGwNl+Ij5FnULgvyyblWO8miokMw+De1hkNrkonxU6TXVJipPbw/tTUcVK+skmtpmnOoNylk01lk6F3WXSiqMrlsHfA2gDoRFGVfw6IiNol9D6liIjIZ6R27Q3edWWU40JSLJlMio+A2kWDC09ImTcPg7e21u1V1hpwubweKrRvvZu9kQOs5W3fHi+BILQMci0WAd+fLAMAxEVrA5JREde8XS6vd3qM9sSyybg2yibtt5G742Qor3mrqnP9fvN0OyIKLK55IyIit0mjAry8eJbjQlIa0B0nT8kkYJd586Bs0p11ewW2rFv39DjERLYdnLjj2qtTEKZVo6SyAV99fwkRERppsPuRk1ccjumnM5V4/PVv3F5LKJe0xCioADQYTKipb0QnFxlSMYsW68Z6wNjoMJT4YM6gVDYZgmveEmLcWxfq7nZEFFgM3oiIyG1iaVu93uRV0wg5LiTF7FiSTOvdgKbMW7XOCJPZulbMFXcbQDSVTCbIdqxREVp0T4vFqUs1+MeeAun2mEgt6vQtM6KBaEoRHqZBcqdIlFXrUVxe5zp4c7Ns0rqNrWzXZ2WToRe89euWgMS4CJcZ76Q4a/BPRMGPZZNEROS2mCjrd37eNo0QLyRdaetCUhzQndxJvkxBXHQYwrRqCHb7b4076/Y2fXYCx85W4IitfFHOC+O8glKculTT4nZngZs9fzelcLdpSVPDEpZN+oJarcKdE/q63Gb6hL6ydu8kIt9h8EZERG7TqJuaRnhTuibHhWRFtfxlkyqVSsrktVU66c66vUqdETlbvpcCk3/uKZBlnpY7gWNr/N2UIsPNpiU6aVSAe2WTgPyDusXgLTwEgzfAOuD9oSmDWnxxkhQXwTEBRArDskkiIvJIbHQY6g0m1NY3onOy548XLyRf3/kzLM2aWYzITG3zQrJcalgiX/AGACnxESipqJfW1LXGm8YOVTqjLKWL7gSOLo/Dj00pOts1LWmNsdEsZQyLK+rQOSnaZeAurhs8e7kG+ecq0a9bgiwZI3HNW2QIrnkTDc9MQ1bfVJwoqkJVnUFaJ8mMG5GyMHgjIiKPxEWFobSdTSMG9kySAre7/i8TtXUG7Pz6LI6eLkdlrcFlaWVlrTW4SpZpQLfI3aYl7WnssHnvSWT1TfX6grm9wZc/m1K0lXnLKyjFe5+dkP6+ZvtPLge15xWU4uOD5wAAhRdr8MLmIx4NdnfFGMJlk/bUapUsIyuIKHBYNklERB6JjrR+73f0VLnT9vjuOF9SC8Da7n9cVhdMvr4X+nSJh7HRgg+/PtPq4xoMJilTI3fmTdxfWRuZN3fW7bWmvaWL7Qm+/N2UIiM5BgBQVqWHyWxxuE9s+FKtc1y71tqgdnH75uv63B3s3hZ9iJdNElHoYPBGRERuyysoRcH5KgDAVz9cwgubj+Dx17/x+OL5bLE1eOuRHgfAuubs/x93tbTfr49edjo7TWwmEhWhRVSEvMUjYsfJtsom3Vm350p7smftCRz93ZQiITYcEeEaWAQBpZUN0u2eDmqXY7B7WwxGa3AZEc7LIiIKbvyUIiIit4jZD6PJMYviTfbjnC1465kRJ93Wt2sCenWOBwCs230ca/99zCE4tFgE/FBo7d4YEyn/8OkUD2a9Dc9Mw80junr1c9qTPXMncIyJdAxqA9WUQqVSOS2d9HRQu7vbizP1vCGWTUaGcTUJEQU3fkoREVGb3M1+uLueS8q8ZcRLt+UVlOLM5ZYt8MXg0H6OWVm1Xvbh01K3yRoDLIIAtcr18yizBXmjrknHkD7JiI8Kxzu7j/t8npbY8KX5gPCkuAhMn9A3qJpSdE6KxrniWofgzdNB7W5vr/N+fEBTt0l+p01EwY3BGxERtcmTbElbDREaDCaU2C7mxcybO8Fha+ud5MoqJcZFQKUCTGYLausbXQ6WbjCY8OPpCgDAr0Z2R3db+eedE/o6Hd4tkqt0sa3OgcHSlCJD6jhZJ93m6aB2t7ePbXvUQGvENW8RIdxtkohCA79iIiKiNnmaLXGlqFQHAdZgKd4WILWnBb5cw6e1GjUSYq2BQlulkz+eLofJbEFaYhS6pcVKt/tznpbYOXDUwAz075EYlC3fnQ3q9nRQu7vbZ3b3LmAVBAFGY8foNklEysfMGxERtcnTbIkrZ52sd2tPEw93M37uSIqPQGWtAQePFcPYaG615DA337q+b0RmGlTNyis5T6uJtObNbtabWq3C7Tf2wVv/Odbq4+wzlOI6P19lNBtNFoihP4M3Igp2DN6IiKhNYvZDjvVc54qt69rETpNA++ePyTF8Oq+gFEUlOgDA3twL2Jt7wekcMYPRjKOnywEA2f2dZ9I4T8sq3Ra81elNqK03Ii7ammltMFpLYNVqlUPWVFy31zxD2dY6v/ZkNMX1bgCDNyIKfgzeiIioTXJmP5qalTQFb+4Eh660N/gTO2k252xd3Y+ny2FstCClUyS6p8e2eAw1iQjTIDk+AuU1BhRX1CMuOhyCIOC/Ry4CAH47rg96pMW5laEUM5rPv5eH05dq8H8ju+G3Y69ud0bTYCuZDNOqO2R2lIiUhWveiIjILa2t5xJpNWrkn6t0Op9NpDeapBI6+7LJ9sxOa28HR0/niOXaRiKM6N+yZJJaampaYj3vJy9U4+KVOoSHqTFmcGeP1u2p1SqkJ1r3Fx8TLkuwJWbemHUjIiVg5o2IiNzmbD1XXkEpPv/uIlZtOwrBLl5zVnJ4vsTarCQhNhydYiNa7NtZaVxspBa6Zp0m7bW3g6MnnTR7XxWPH05ZSyZH+HlumlJlJMfg57OVUtOSL763Zt2uG5CO6Mgwj/cXE2W9dKlraP014QlDo21AN4M3IlIABm9EROSR5uu5qusM+Py7iw6BG+C85PBcidisJB7OtNbs48jJKz5Z7wR41knz5zMVMBjNSIqPQK/OcW0/iByaltTUG6VmL2Ozuni1v1hbwFenb5Tl+AwcE0BECsLgjYiIvGaxCPjXf0+53MZ+ePc5J+vdmnPW7MOXHRzdXS9XozMi74Q18BjeL5Ulk26yHxew/8fLMJkF9MyIQ6/OzgP4tkRH2jJvLrKxnjBIYwK4koSIgh+DNyIi8pqnw7vdCd5a46sOju40S1GpgC37CqW/HzxWgn7dEmSd2xaqOtsyb6WV9fjk4HkAwA1Dr/J6fzFRtsxbg8yZN5ZNEpEC8GsmIiLymiclhwajGZfK6wA4NisJNHeapTQvCa2tb8SaHT8hz9a8hFp36pJ1NIRFAGptAde/vz7j9b9djK/KJhm8EZECMHgjIiKveTK8u6hUB0EAOsWEIyG2fa395dZaJ822KiPtu1BSS3kFpXh9Z8sRDFU6o9fBr/wNS7jmjYiUg2WTRETkNU+Gd+/77gIA70om/aH5uroandGhVNIZ+5JQcuTuCAZxPaS7ZG9YYlvzFs7MGxEpADNvRETkNXdKDsVW/uJ6t2AqmWxOXFc3amAG4mPD3XqMu6WjHY0n6yE9Ia550xvNMJkt3h6eRMy8RTJ4IyIFYPBGRETt4mp49zU9E1uMCQjWzFtznpSEUkuerIf0RHREU9FQvaH9pZMsmyQiJWHZJBERtVvzksPa+kZs3nsS+eerUFJZj8TYCFwqsw5pbm3GW7DxpCSUWvJV8KtWqxAVoUWDwYS6hkbER7uXIW2NsZFlk0SkHMy8ERGRLOxLDm8e0Q1D+iTDbBGw86vT+ProZVgEAdGRWsRHhwX6UN3iSUkotSQGv654G/zGyDjrTW9kt0kiUg4Gb0RE5BNTxvQGABw6Xor3PjsBAKjXm7DwjQOKabHfWkloUlwEHpoyiHPeXPBl8CvnrDdjo3XdXCTLJolIAVg2SUREPlFW3eD09spaA9bs+EkxwU/zktCEGGu2iBm3tonB76a9Jx3KT5PiIjB9Ql+vz3+slHlrf/BmkMom+X02EQU/Bm9ERCQ7X7WJDxSxJJQ854vgN1oaFyBjwxKWTRKRAjB4IyIi2XnSJp5BUeiTO/iVs2zSwDVvRKQgrBEgIiLZ+apNPBEgb8MSjgogIiVh8EZERLLjjDTypRipbFK+NW/MvBGREjB4IyIi2fmyTTxRTJQt89bANW9E1LEweCMiItlxRhr5UqxMmTeLIEijAhi8EZESMHgjIiKf4Iw08pVomda8GW1ZN4Br3ohIGdhtkoiIfIYz0sgX5Oo2abBl3VQAwrX8PpuIgh+DNyIi8inOSCO52TcssQgC1CrvvgxoGtCtgcrLfRAR+RO/ZiIiIiJFEUcFCAKgN5jb2Lp1TTPeeDlERMrATysiIiJSlPAwjVTm2J6mJZzxRkRKw+CNiIiIFEda9yZH8MZOk0SkEAzeiIiISHHk6DhpNDJ4IyJlYfBGREREiiM1LWlHx0m9XcMSIiIlYPBGREREihMjQ+ZNLJuM5Jo3IlIIBm9ERESkOHLMemPZJBEpDYM3IiIiUpzYSPkalrBskoiUgsEbERERKU5MlK1sssH7skk9u00SkcIweCMiIiLFiZYh82Y0WgBwzhsRKQeDNyIiIlIcORuWRITxcoiIlIGfVkRERKQ4cgzpZtkkESlNUAVvZ86cQVZWFrZv3y7ddvz4ccycORNDhw7F+PHj8e677zo8xmKxYNWqVRgzZgyGDh2K++67D0VFRQ7b+GMfRERE5D+xMsx5MzJ4IyKFCZrgrbGxEQsWLEB9fb10W2VlJe6++250794d27Ztw0MPPYScnBxs27ZN2ua1117Dpk2b8Ne//hVbtmyBxWLBrFmzYDQa/boPIiIi8h9ZyibFUQFc80ZECqEN9AGIVq9ejdjYWIfb/vWvfyEsLAzPPfcctFot+vTpg3PnzmHt2rWYNm0ajEYj1q1bhwULFmDs2LEAgJUrV2LMmDH49NNPMWnSJL/sg4iIiPxLLJtsNFlgbDRDq/X8+2gDM29EpDBBkXk7fPgwtm7diuXLlzvcnpubi5EjR0KrbYoxR40ahbNnz6KsrAz5+fmoq6vD6NGjpfvj4+MxcOBAHD582G/7ICIiIv+KDNdArVIB8D77xuCNiJQm4MFbTU0NFi5ciMWLF6Nz584O9xUXFyMjI8PhtrS0NADA5cuXUVxcDAAtHpeWlibd5499EBERkX+pVCpES6WT3q17k4I3lk0SkUIEvGzymWeeQVZWFiZPntziPr1ej/DwcIfbIiIiAAAGgwENDQ0A4HSb6upqv+2jPbwp8yDf0WjUDv+n0MVz3XHwXIeu2Kgw6BoaoTeavTrPhkbrnLfoqDD+PlYQvqc7Bp5n5wIavO3cuRO5ubnYtWuX0/sjIyOlpiEiMViKjo5GZGQkAMBoNEp/FreJiory2z68pVarkJgY4/XjyXfi46MCfQjkJzzXHQfPdejpFBeB4op6QKORzq8n51nsNpmWEovERO9/n1Ng8D3dMfA8Owpo8LZt2zaUl5dLjUJES5Yswe7du5GRkYHS0lKH+8S/p6enw2QySbd1797dYZvMzEwA8Ms+vGWxCKipqW97Q/IbjUaN+Pgo1NQ0wGy2BPpwyId4rjsOnuvQFWkbrl1SVouamgSPzrPZYkGjybqdvt6ASgg+PVaSD9/THUNHO8/x8VFuZRkDGrzl5ORAr9c73DZx4kTMmzcPt956Kz788ENs2bIFZrMZGo21Hv3gwYPo1asXkpOTERcXh9jYWBw6dEgKvGpqanDs2DHMnDkTAJCdne3zfbSHyRT6L0YlMpstPDcdBM91x8FzHXqiI6yXMbV1jdLFnbvnud6uyYlWreJrQ4H4nu4YeJ4dBbSIND09HT169HD4DwCSk5ORnp6OadOmQafT4amnnkJhYSG2b9+ODRs2YPbs2QCs69RmzpyJnJwcfP7558jPz8f8+fORkZGBiRMnAoBf9kFERET+Fy0O6vaiYYnYrEStUkHLNTVEpBABb1jiSnJyMt5++20sXboUU6ZMQWpqKhYuXIgpU6ZI28ybNw8mkwmLFy+GXq9HdnY23nnnHYSFhfl1H0RERORf7RnUbZQ6Taqhso0cICIKdipBEFjkHSBmswUVFXWBPgyyo9WqkZgYg8rKOqboQxzPdcfBcx26Psstwua9J5HdPw1zbx/i0Xk+V1yLZzccRqfYcKx8+Jd+OFqSC9/THUNHO89JSTFurXljnQAREREpUqwMZZMc0E1ESsLgjYiIiBQpJspWNtngfdlkJIM3IlIQBm9ERESkSHI0LAkPZ/BGRMrB4I2IiIgUqT0NS/RGlk0SkfIweCMiIiJFiomyZt4aDCaYLZ41NDByzRsRKRCDNyIiIlIkMfMGOA7ddoeh0RrsMXgjIiVh8EZERESKpFGrERVhDb50De6ve7NYBFy8ogMA1BtMsFg4NYmIlIHBGxERESlWjNi0xM2Ok3kFpXj89W+w/6diAMAPhWV4/PVvkFdQ6rNjJCKSC4M3IiIiUqxoqWlJ25m3vIJSrNnxEyprDQ63V9YasGbHTwzgiCjoMXgjIiIixWrKvLkO3iwWAZv2nnS5zea9J1lCSURBjcEbERERKZbYcVLXRubtRFFVi4xbcxW1BpwoqpLr0IiIZMfgjYiIiBQrViybbGPNW1Wd68DN0+2IiAKBwRsREREplph5a6tsMiEmwq39ubsdEVEgMHgjIiIixRLXvLU1KqBftwQkxrkOzJLiItCvW4Jch0ZEJDsGb0RERKRYTd0mXZdNqtUq3Dmhr8ttpk/oC7VaJduxERHJjcEbERERKZbUbdKNUQHDM9Pw0JRBiLEFfKKkuAg8NGUQhmem+eQYiYjkom17EyIiIqLgFBslNixpO3gDrAHc5fI6bP/qDPp2jceUMX3Qr1sCM25EpAgM3oiIiEix3F3zZq+0Ug8AuKZXMvr3SPTJcRER+QLLJomIiEixmrpNmiAI7g3YLq6sBwCkJ0b77LiIiHyBwRsREREplrh+zSIIaDC4bloiKq2wBm8ZSQzeiEhZGLwRERGRYoWHaaDVWC9ndPVtl07W602osW2Xlhjl02MjIpIbgzciIiJStBhb05LaemOb25bYSiY7xYQjKoJL/4lIWRi8ERERkaLFik1L3Mi8lVSI692YdSMi5WHwRkRERIomrnurbXAn89YAAEjjejciUiAGb0RERKRoYsfJWncyb5VsVkJEysXgjYiIiBRNmvXmzpo3lk0SkYIxeCMiIiJFi7aVTba15k0QBJRUWMsm05l5IyIFYvBGREREitZUNuk681bb0Ih62yy4tARm3ohIeRi8ERERkaLFipm3BteZt1Jb1i05PgLhYRqfHxcRkdwYvBEREZGiuZt5K7atd0tLZMkkESkTgzciIiJStKhwa+atuLwex89WwGIRnG7HTpNEpHTaQB8AERERkbfyCkrxzz0FAICyqgYse+87JMZF4M4JfTE8M81hW3HGGztNEpFSMfNGREREipRXUIo1O35CTbMuk5W1BqzZ8RPyCkodbhfHBHBANxEpFYM3IiIiUhyLRcCmvSddbrN570mphFIQBJZNEpHiMXgjIiIixTlRVIXKWoPLbSpqDThRVAUAqNIZYWy0QK1SIaVTpB+OkIhIfgzeiIiISHGq6lwHbs23E0smUxIiodXw8oeIlImfXkRERKQ4CTERHm1XbCuZTOeYACJSMAZvREREpDj9uiUgMc51AJcUF4F+3RIANA3oTk9ip0kiUi4Gb0RERKQ4arUKd07o63Kb6RP6Qq1WAWia8cbMGxEpGYM3IiIiUqThmWl4aMqgFhm4MI0KD00Z5DDnrbiCnSaJSPk4pJuIiIgUa3hmGrL6puLUpWqUVOuxbtcxmC0CMrsnSttYLAKuVHFANxEpHzNvREREpGhqtQoDeiZhyti+6JYWC4sAHDlxRbq/vEYPk1mAVqNGUjzHBBCRcjF4IyIiopBx3cB0AMDh/FLpNnG9W1pilLQGjohIiRi8ERERUcjIHmBd53b8XCV0DY0AgJIKlkwSUWhg8EZEREQho3NyDLqlxcJsEfCdrXRSHNCdzmYlRKRwDN6IiIgopIzob82+5dpKJ0sqmXkjotDA4I2IiIhCSrYteDt21lo6WcIxAUQUIhi8ERERUUjJSIq2dZ0UcPh4Ccqq9QCANA7oJiKFY/BGREREIUfMvu3afxYWQUCYRo346LAAHxURUfsweCMiIqKQExWhBQBU1RkBAI1mCxa+cQB5BaWuHkZEFNQYvBEREVFIySsoxcbPTrS4vbLWgDU7fmIAR0SKxeCNiIiIQobFImDT3pMut9m89yQsFsFPR0REJB8Gb0RERBQyCs5XorLW4HKbiloDThRV+eeAiIhkxOCNiIiIQkaVzujednWuAzwiomDE4I2IiIhCRkJsuHvbxUT4+EiIiOTH4I2IiIhCRmb3RCTGuQ7MkuIi0K9bgn8OiIhIRgzeiIiIKGSo1SrcOaGvy22mT+gLtVrlpyMiIpIPgzciIiIKKcMz0/DQlEEtMnBJcRF4aMogDM9MC9CRERG1jzbQB0BEREQkt+GZacjqm4oTRVWoqjMgIcZaKsmMGxEpGYM3IiIiCklqtQr9eyQG+jCIiGTDskkiIiIiIiIFYPBGRERERESkAAzeiIiIiIiIFIDBGxERERERkQIweCMiIiIiIlIABm9EREREREQKwOCNiIiIiIhIARi8ERERERERKQCDNyIiIiIiIgVg8EZERERERKQADN6IiIiIiIgUgMEbERERERGRAjB4IyIiIiIiUgCVIAhCoA+ioxIEARYL//mDjUajhtlsCfRhkB/wXHccPNcdA89zx8Fz3TF0pPOsVqugUqna3I7BGxERERERkQKwbJKIiIiIiEgBGLwREREREREpAIM3IiIiIiIiBWDwRkREREREpAAM3oiIiIiIiBSAwRsREREREZECMHgjIiIiIiJSAAZvRERERERECsDgjYiIiIiISAEYvBERERERESkAgzciIiIiIiIFYPBGRERERESkAAzeiIiIiIiIFIDBG3VIVVVVePrpp3HDDTdg2LBhmD59OnJzc6X7Dxw4gKlTp+Laa6/Fr371K3z00UcBPFqSy5kzZ5CVlYXt27dLtx0/fhwzZ87E0KFDMX78eLz77rsBPEJqr507d+LXv/41Bg8ejFtuuQUff/yxdN+FCxcwe/ZsDBs2DL/85S/x8ssvw2w2B/BoyRsmkwmvvPIKxo0bh6ysLMyYMQPff/+9dD/f06HhzTffxF133eVwW1vn1mKxYNWqVRgzZgyGDh2K++67D0VFRf48bPKQs/O8b98+TJs2DVlZWRg/fjz+/ve/Q6/XS/cbDAY8++yzGD16NLKysvDYY4+hoqLC34ceMAzeqEN69NFHceTIEbz00kvYtm0bBgwYgHvvvRenT5/GqVOnMHv2bIwZMwbbt2/Hb3/7WyxcuBAHDhwI9GFTOzQ2NmLBggWor6+XbqusrMTdd9+N7t27Y9u2bXjooYeQk5ODbdu2BfBIyVsffvghnnrqKcyYMQMfffQRJk2aJL3XGxsbce+99wIAtmzZgmeeeQabN2/GmjVrAnzU5KnXX38d77//Pv76179i586d6NWrF2bNmoXS0lK+p0PExo0b8fLLLzvc5s65fe2117Bp0yb89a9/xZYtW2CxWDBr1iwYjUY/PwNyh7PznJubi4cffhg333wzduzYgSVLlmD37t149tlnpW2eeeYZfP3111i9ejX+8Y9/4PTp05g3b56fjz6ABKIO5uzZs0K/fv2E3Nxc6TaLxSJMmDBBePnll4W//OUvwu233+7wmEcffVS45557/H2oJKMVK1YIv//974V+/foJ27ZtEwRBEN544w3hl7/8pdDY2Oiw3cSJEwN1mOQli8UijBs3Tli+fLnD7ffcc4/wxhtvCLt27RIGDRokVFVVSfdt2bJFGDZsmGAwGPx9uNQOt956q7Bs2TLp77W1tUK/fv2EPXv28D2tcMXFxcLs2bOFoUOHCr/61a+EmTNnSve1dW4NBoOQlZUlbNy4Ubq/urpaGDJkiLBr1y7/PQlqk6vz/Nhjjwl//OMfHbbfsWOHcM011wgGg0EoLi4W+vfvL3zxxRfS/adPnxb69esnfPfdd357DoHEzBt1OImJiVi7di0GDx4s3aZSqaBSqVBTU4Pc3FyMHj3a4TGjRo1CXl4eBEHw9+GSDA4fPoytW7di+fLlDrfn5uZi5MiR0Gq10m2jRo3C2bNnUVZW5u/DpHY4c+YMLl68iMmTJzvc/s4772D27NnIzc3FNddcg06dOkn3jRo1CjqdDsePH/f34VI7JCcn47///S8uXLgAs9mMrVu3Ijw8HP379+d7WuF+/vlnhIWF4d///jeuvfZah/vaOrf5+fmoq6tz+P0dHx+PgQMH4vDhw357DtQ2V+f5nnvuwRNPPOFwm1qtRmNjI3Q6HfLy8gBYz72oV69eSE9P7zDnmcEbdTjx8fG48cYbER4eLt22Z88enDt3DmPGjEFxcTEyMjIcHpOWloaGhgZUVlb6+3CpnWpqarBw4UIsXrwYnTt3drivtXMNAJcvX/bbMVL7nTlzBgBQX1+Pe++9F6NHj8Zvf/tb7Nu3DwDPdSh56qmnEBYWhptuugmDBw/GypUrsWrVKnTv3p3nWeHGjx+P1atXo1u3bi3ua+vcFhcXA0CLz/m0tDTpPgoOrs7zwIED0b9/f+nvjY2N2LBhAwYNGoSkpCSUlJQgMTERERERDo/rSOeZwRt1eN999x2efPJJTJw4EWPHjoVer3cI7ABIf2fdvPI888wzyMrKapGRAeD0XIu/EAwGg1+Oj+Sh0+kAAE888QQmTZqEdevW4frrr8ecOXNw4MABnusQUlhYiLi4OKxZswZbt27F1KlTsWDBAhw/fpznOYS1dW4bGhoAwOk2PPfKZDKZsHDhQpw8eRJLliwBADQ0NLQ4x0DHOs/atjchCl179+7FggULMGzYMOTk5ACwfgA0D9LEv0dFRfn9GMl7O3fuRG5uLnbt2uX0/sjIyBbnWvzwj46O9vnxkXzCwsIAAPfeey+mTJkCABgwYACOHTuG9evX81yHiMuXL+Oxxx7Dhg0bMGLECADA4MGDUVhYiNWrV/M8h7C2zm1kZCQA6+9r8c/iNvzdrTw6nQ6PPPIIvv32W7z66qsYMmQIAOevA6BjnWdm3qjDeu+99zB37lyMGzcOb7zxhvQNXufOnVFaWuqwbWlpKaKjoxEXFxeIQyUvbdu2DeXl5Rg7diyysrKQlZUFAFiyZAlmzZqFjIwMp+caANLT0/1+vOQ98Xz169fP4farr74aFy5c4LkOET/88AMaGxsd1iwDwLXXXotz587xPIewts6tWC7pbBuee2UpLS2VRoC88847uPHGG6X7MjIyUFVV1SKA60jnmcEbdUhiK+EZM2bgpZdeckjBjxgxAt9++63D9gcPHsSwYcOgVvMtoyQ5OTnYvXs3du7cKf0HAPPmzcPSpUuRnZ2NvLw8h1lfBw8eRK9evZCcnBygoyZvXHPNNYiJicEPP/zgcPuJEyfQvXt3ZGdn49ixY1J5JWA91zExMQ7rKyi4iWueCgoKHG4/ceIEevbsyfd0CGvr3Pbv3x+xsbE4dOiQdH9NTQ2OHTuG7OzsQBwyeaG6uhp/+MMfUFFRgY0bN7Y4d8OHD4fFYpEalwDWNc8lJSUd5jzzSpQ6nDNnzuD555/HzTffjNmzZ6OsrAxXrlzBlStXUFtbi7vuugtHjx5FTk4OTp06hXXr1uGTTz7BrFmzAn3o5KH09HT06NHD4T/A2q0uPT0d06ZNg06nw1NPPYXCwkJs374dGzZswOzZswN85OSpyMhIzJo1C2vWrMF//vMfnD9/Hq+//jr279+Pu+++GxMmTEBqaioeeeQR5OfnY+/evXjppZdwzz33OF0/QcFpyJAhGD58OJ544gkcPHgQZ8+excsvv4wDBw7g/vvv53s6hLV1bsPDwzFz5kzk5OTg888/R35+PubPn4+MjAxMnDgxwEdP7lq2bBmKiorw4osvIikpSbo+u3LlCsxmM9LT03HLLbdg8eLFOHToEI4ePYpHH30UI0eOxNChQwN9+H6hEtj7nDqYN954AytXrnR635QpU7B8+XJ89dVXePHFF3H27Fl07doVc+fOxa9//Ws/Hyn5QmZmJpYtW4apU6cCAI4ePYqlS5fi2LFjSE1NxT333IOZM2cG+CjJW+vXr8d7772HkpIS9OnTB3PnzsWECRMAAOfOncOzzz6L3NxcdOrUCbfffjvmzp3LjLrCVFdX4+WXX8YXX3yB6upq9OvXT7p4A/ieDhWLFi3CxYsX8c9//lO6ra1zazab8dJLL2H79u3Q6/XIzs7G008/ja5duwbiKZAb7M+z2WxGVlZWq41HPv/8c3Tt2hX19fV4/vnnsWfPHgDADTfcgMWLFyMxMdGfhx4wDN6IiIiIiIgUgF83EhERERERKQCDNyIiIiIiIgVg8EZERERERKQADN6IiIiIiIgUgMEbERERERGRAjB4IyIiIiIiUgAGb0RERERERArA4I2IiPxq0aJFGD9+fKv3jx8/HosWLfLjEcnDYrFg7NixyMzMxE8//RSw41i3bh0WLFiA06dPY8iQIZg+fTqcjXS1WCz43e9+h+uuuw4lJSUBONImH3zwAe6///6AHgMRkRIweCMiIpLB/v37UVZWht69e2PLli0BOYZTp07hzTffxOOPP47evXtj7ty5+O6777Bp06YW27733ns4cuQInn76aaSnpwfgaJtMmzYNV65cwQcffBDQ4yAiCnYM3oiIiGSwfft2ZGVlYcqUKfjoo4+g0+n8fgwvvvgiJk2aJAVj99xzDwYPHowVK1bg8uXL0nYXLlzAypUr8etf/xq33HKL34+zOZVKhdmzZ+Oll16CXq8P9OEQEQUtBm9ERBTUzGYzNm7ciMmTJ2PIkCEYO3YscnJyYDAYpG3uuusu3HXXXQ6PO3ToEDIzM3Ho0CEA1jLBlStXYvz48Rg0aBDGjx+PFStWoLGxUXqMwWDACy+8gBtvvBGDBg3C5MmTsXv37jaPsbq6Gnv37sW4ceMwadIkNDQ04MMPP2yxnU6nw9NPP43Ro0cjKysL8+fPx4YNG5CZmemw3d69ezF16lQMHjwY119/Pf72t7+hvr7e5TGcOHECX3zxBSZNmiTdptFosGzZMhiNRjzzzDPS7UuWLEFMTAyWLFki3fb+++/jlltuwaBBgzB27FisXr0aZrPZ4We8//77mDp1KoYOHYohQ4bgtttuw8cffyzdv337dgwcOBDvv/8+rr/+eowcORKFhYU4f/48HnjgAVx33XW49tprcccdd+DLL7902Pe4ceNgMBiwbds2l8+TiKgj0wb6AIiIqGMymUxubff000/jww8/xH333YcRI0bg2LFjWLNmDY4fP463334bKpXKrf289dZb2Lx5M5544gl069YNP/zwA1auXImwsDDMmzcPgiDgoYcewnfffYd58+ahT58++OyzzzB//nwYjUb85je/aXXfu3btgtlsxuTJk5GamopRo0Zh69atmDFjhsN2c+bMwfHjxzF//nxcddVV2LRpE1asWNFiXwsWLMDkyZPxyCOP4OLFi1i5ciUKCwuxfv36Vp/vrl27kJqaiqFDhzrc3rdvXzz88MNYuXIl9u3bB71ej6+//hpr165FQkICAODNN9/EypUrMXPmTDz55JM4fvw4Vq9ejcuXL+P5558HAGzcuBF/+9vfMHfuXAwfPhzV1dV46623sGDBAmRlZSEjIwOANdhet24dli5disrKSvTq1QuTJk1CWloaXnjhBWi1Wrz77rt48MEH8fHHH6NHjx4AgIiICIwbNw67du1q8e9GRERWDN6IiMjvLl68iGuuuabN7QoLC/HBBx/gsccekxpaXH/99UhLS8PChQvx1Vdf4cYbb3TrZ3777bcYNGgQpk2bBgAYOXIkoqKiEBcXBwD45ptv8L///U8qJwSAMWPGoKGhATk5OZg0aRK0Wue/Nrdv344bbrgBqampAICpU6fi8ccfx3fffYdhw4YBAA4cOIBDhw5h9erVmDhxIgDghhtuwKRJk3Dq1CkAgCAIyMnJwZgxY5CTkyPtv2fPnvjjH/+IL7/8EmPHjnV6DAcPHsTgwYOdBnezZs3Cp59+imXLlkGv1+OOO+6Q/t1qa2vx2muv4Y477sDixYsBAL/85S+RkJCAxYsX4+6770bfvn1RVFSEe++9F3PmzJH226VLF0ydOhV5eXkO5ZcPPPCAdJxXrlzB6dOnMWfOHOlnDhkyBK+++iqMRqPDcQ4ePBi7d++GTqdDbGys0+dJRNSRsWySiIj8LjU1FR988IHT/8QACLAGXABarMu65ZZboNFopJJId1x33XXYv38/7rzzTrz99tsoLCzEzJkzcdtttwGwBlcqlQo33ngjTCaT9N/48eNx5coVnDx50ul+8/Pz8fPPP2PixImoqalBTU0NRo0ahejoaGzdulXa7uDBgwgLC8OECROk29RqtRQoAsDp06dRXFyM8ePHOxxDdnY2YmNjsX///lafX1FREbp27er0Pq1Wi2XLluHy5csIDw/HE088Id135MgR6PX6Fj9T7Agq/sxFixZhwYIFqKmpwffff48PP/wQGzduBIAWQdiAAQOkP6ekpODqq6/GX/7yFzzxxBPYtWsXLBYLnnzySfTt29fhcV26dIHZbEZxcXGrz5OIqCNj5o2IiPwuPDwcgwcPbvU+UXV1NQA4BHSANRhJTExEbW2t2z9z1qxZiImJwbZt25CTk4MXX3wRffv2xeLFizFq1ChUVVVBEAQpU9ZcaWmpQ1AiEjskPvnkk3jyyScd7vv444/x5z//GZ06dUJlZSUSEhKgVjt+b5qcnCz9uaqqCgDw7LPP4tlnn3V6DK3R6XSIiopq9f7MzEykpaUhOzsbMTExLX5ma636xZ95/vx5PP300zhw4ADCwsLQu3dv9O/fHwBajCKIjo6W/qxSqbBu3Tq8/vrr+Oyzz7Bz504piH322WfRqVOnFo/z5LwSEXUkDN6IiChoiRf2V65cQZcuXaTbGxsbUVlZicTEROm25s01mjf4UKvVmDFjBmbMmIHy8nJ8+eWXeOONNzB37lzs378fcXFxiI6Oxrvvvuv0WMS1WfaMRiN27dqFiRMnYubMmQ73XbhwAX/+85+xY8cO/PGPf0R6ejoqKythsVgcArjy8nLpz/Hx8QCAhQsXYuTIka3+eziTkJDgVdAj/sycnBz07Nmzxf0pKSmwWCy4//77ERYWhg8++AADBgyAVqtFYWGh08YszaWnp+OZZ57BkiVLkJ+fj08++QRvvfUWEhMTHZqmiMG6/XklIqImLJskIqKgJQYwH330kcPtH330EcxmM4YPHw4AiI2NbVFql5eX5/D33/3ud/jb3/4GwJrtmjp1KmbMmIGamhrodDqMHDkS9fX1EAQBgwcPlv47ceIE1qxZ47TByr59+1BVVSUNu7b/b9q0aejZs6dUOjly5EiYTCbs27dPerwgCNi7d6/09969eyM5ORkXLlxwOIb09HSsWLECx44da/XfqkuXLg7jANx17bXXIiwsDCUlJQ4/U6vV4qWXXsKFCxdQWVmJM2fO4Pbbb5fuA4CvvvoKgLWTZ2uOHDmCX/ziFzh69ChUKhUGDBiA+fPno1+/frh06ZLDtiUlJdBoNAGfO0dEFKyYeSMioqB19dVXY8qUKVi1ahUaGhqQnZ2N48eP49VXX8V1112HMWPGALC2md+3bx+WLVuG8ePHIzc3Fzt37nTYV3Z2NtatW4eUlBRkZWWhpKQE69evx8iRI5GUlIQbb7wR2dnZmDNnDubMmYM+ffrg6NGjWLVqFcaMGYOkpKQWx7dt2zYkJydj1KhRTo//1ltvxapVq3Do0CFcd911uP766/HUU0+hrKwMV111FT744AMUFBRITUY0Gg3mz5+Pp59+GhqNBuPGjUNNTQ1ee+01lJSUuGzycv3112PTpk0QBMHtDpyANcs1a9YsvPLKK9DpdLjuuutQUlKCV155BSqVCv3790dcXBy6dOmCjRs3IiMjA/Hx8fjf//4nZSkbGhpa3f/AgQMRGRmJhQsXYu7cuUhJScE333yD48eP4/e//73Dtnl5eRgxYoTL8k8ioo6MwRsREQW1pUuXokePHti2bRveeustpKWl4fe//z3mzJkjlR9OmzYN58+fx44dO7BlyxZkZ2dj1apVmD59urSfP/3pTwgPD8e2bduwZs0axMXFYfz48XjssccAWMsq165di1deeQVvvvkmysvLkZ6ejrvvvhsPPfRQi+MqKSnB/v378bvf/Q4ajcbpsd92221YvXo1tmzZguuuuw4rV67E8uXLsWLFCphMJtx0002YPn26Q6D529/+FjExMXj77bexdetWREdHY9iwYcjJyUG3bt1a/XeaOHEi1qxZg6NHj+Laa6/16N/4kUceQWpqKjZt2oS3334bnTp1wujRo/Hoo49K3Thfe+01LF26FIsWLUJ4eDiuvvpqvP7663j++eeRm5vbYs6eKCIiAuvWrcOKFSuwdOlS1NTUoGfPnnjuuecwdepUaTuDwYBDhw7hkUce8ejYiYg6EpXQfJUxERERye7ixYv4/vvvcdNNNyEyMlK6fd68eSgqKsKOHTva/TMeeOABJCYmYtmyZe3el7/t3LkTOTk52Lt3r8O/DxERNeGaNyIiIj9Qq9VYtGgRFi1ahK+//hoHDhzACy+8gE8//bRF+aC35s+fj08//bTFWrJgZ7FYsG7dOjz88MMM3IiIXGDmjYiIyE8OHjyINWvW4Pjx4zCZTOjTpw/uvvtuTJo0SbafsXbtWuTn5+Oll16SbZ++9v777+OTTz7BO++8E+hDISIKagzeiIiIiIiIFIBlk0RERERERArA4I2IiIiI33lFyAAAAE1JREFUiEgBGLwREREREREpAIM3IiIiIiIiBWDwRkREREREpAAM3oiIiIiIiBSAwRsREREREZECMHgjIiIiIiJSAAZvRERERERECvD/AMWwdF9DNRrcAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAAIhCAYAAAAl/6meAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8x0lEQVR4nOydd5gb5fX9z6hrtb26rdva64oLNrapxktvBkwJhBoghNDyCwSIgS+EHhw7JASCAwGSQEIvdmgOYYEQAgaMC8Y2rPt6be+uthd1ze+PmXc06jPSqKx0P8/jB1bSSrPSaGbOe+49l+N5ngdBEARBEARBEASRMXSZ3gCCIAiCIAiCIIh8h4QZQRAEQRAEQRBEhiFhRhAEQRAEQRAEkWFImBEEQRAEQRAEQWQYEmYEQRAEQRAEQRAZhoQZQRAEQRAEQRBEhiFhRhAEQRAEQRAEkWFImBEEQRAEQRAEQWQYEmYEQRAEQRAEQRAZhoQZQRBECrj55psxadIkPPPMM5nelLSyb98+TJo0Ca+//nrE+19//XVMmjQJ+/btS/OWJc4vf/lLTJo0KejftGnTcNRRR+GWW27BgQMH4j7HpEmT8Ic//CGl2xnvvU+GX/7yl2hoaIh6f0NDA375y19q/rqpxu/349hjj8WkSZOwefPmTG8OQRB5jiHTG0AQBJFr9PX14d///jfq6+vx0ksv4Uc/+hE4jsv0ZhFJUFVVhccee0z62ev1YteuXVi+fDnWr1+Pt956CxaLJervv/TSSxg2bFg6NpVQwaeffgq73Y7x48fjxRdfxP3335/pTSIIIo8hx4wgCEJj3nrrLQDAHXfcgd27d+Pzzz/P8BYRyWIymTBr1izp39y5c3Heeedh6dKlaG5uxgcffBDz92fNmkXCLAt5/fXXMXv2bJx99tl4++230d/fn+lNIggijyFhRhAEoTGvvfYaDj/8cCxYsABjxozBiy++KN13xRVXYMmSJWG/c+2112Lx4sXSz1999RUuvvhizJw5E/PmzcNtt92Gzs5O6f7XX38dU6dOxSuvvIIjjzwS8+bNw/bt2+Hz+fDkk0/i9NNPx4wZMzBr1ixccMEFYeLwo48+wpIlSzBjxgycdNJJeOutt3DCCScEldt1d3fjrrvuwhFHHIFDDjkE559/Pj777DMt3yoAwO7du3HjjTfiyCOPxKxZs3DJJZdg3bp10v1r167FpEmTsHbt2qDfu+SSS3DJJZdIP2/evBmXXXYZ5syZg9mzZ+Pyyy/Hhg0bgn4n3vuqlkMOOQQA0NLSAkAo+bvssstw991349BDD8Wpp54Kn88XVsrY1taG2267DYcffjhmz56Niy++GOvXr5fu9/v9ePLJJ3HCCSdg+vTpOOmkk/Dcc88p2qbW1lb85Cc/wYwZM7Bw4UI8+uij8Pl8AICHH34YM2bMQF9fX9Dv/PGPf8ScOXPgcDgSfi/k+Hw+/P3vf8cZZ5yBGTNm4Nhjj8Xy5cvhcrmkx4R+fkD4Z+33+/HII4+goaEB06dPR0NDA1asWAGPxyP9jsvlwrJly7Bw4UJMnz4dZ5xxBt55552429jT04N///vfWLRoEU4//XQ4HA6sWrUq7HH9/f246667pM/q5z//Of7yl79g0qRJQY/797//jSVLluCQQw7BkUceifvvvx+Dg4Oq3jeCIPIbEmYEQRAa0tTUhG+++QZnnXUWAOCss87CBx98ALvdDgBYvHgxvv32W+zZs0f6nd7eXvznP//BmWeeCQD48ssvcfnll8NiseB3v/sdbr/9dnzxxRe49NJL4XQ6pd/z+Xx45pln8MADD2Dp0qWoq6vD8uXL8cc//hE/+MEP8Oc//xn33Xcfuru78bOf/Uy66P78889x7bXXYvjw4fjDH/6Aiy66CHfffXdQr5TL5cJll12GDz74AD//+c/x2GOPYdiwYbjqqqsUiTO/3w+v1xv2z+/3Bz1u+/btWLJkCfbt24c777wTy5cvB8dxuOyyy/DFF18oft/7+/tx1VVXoaysDH/4wx/wyCOPwOFw4Morr5REiNL3VQ27du0CAIwePVq67auvvsKBAwfw+OOP4+abb4Zerw/6nYGBAVx44YVYu3YtbrnlFjz22GMwm8244oorsHv3bgDAr371Kzz66KNYvHgxVq5ciZNPPhkPPvggHn/88bjb9Ic//AEVFRV4/PHHcc4552DlypV4+OGHAQDnnnsuXC4X3nvvvaDfWbVqFU499VRYrdaYzx3pM/V6vWGPu+uuu/DQQw/h+OOPxxNPPIGLLroIzz//PK699lrwPB/3b2A89dRTeOGFF3DdddfhmWeewYUXXoinn34aTzzxBACA53lcd911ePHFF/GjH/0ITzzxhCSe3nzzzZjP/c9//hM+nw9nnHEGRowYgQULFuCll14Ke9y1116Ld999FzfccAMeeeQRDAwMYMWKFWHPdd1112H8+PF4/PHHcf3112P16tWq/16CIPIcniAIgtCMhx56iJ83bx7vcrl4nuf5/fv385MnT+afeOIJnud5fmBggJ81axb/2GOPSb/zyiuv8JMnT+YPHjzI8zzP/+AHP+BPP/103uv1So/ZuXMnP2XKFP7555/neZ7nX3vtNb6+vp5/8803g17/pptu4v/yl78E3bZmzRq+vr6eX79+Pc/zPP/DH/6QX7x4Me/3+6XHvPXWW3x9fT3/6KOP8jzP8y+99BJfX1/Pb9iwQXqM3+/nL7roIn7JkiVR//7m5ma+vr4+7r/m5mae53n+Zz/7GT9//ny+r69Peg6Px8OfdNJJ/DnnnMPzPM9//vnnfH19Pf/5558HvdbFF1/MX3zxxTzP8/z69ev5+vp6ft26ddL9e/bs4ZctW8YfOHBA8fsaidtuu41ftGgR7/F4pH9dXV38f/7zH76hoYFvaGjgHQ6H9Nj6+nrpNRny9/a5557jJ02axG/ZskW6f3BwkD/xxBP5l19+md+5cyc/adIk/k9/+lPQczzyyCP8IYccwnd2dsZ876+++uqg2x944AF+2rRpfFdXl/Q+XHTRRdL969at4+vr6/mvv/465nsQ7zO97bbbeJ7n+aamJr6+vj5s+998802+vr6e/+ijj3ieD/78GKGf9RVXXMH/6Ec/CnrMc889J+33//3vf/n6+nr+7bffDnrML37xC/7II4/kPR5P1L/p7LPP5n/yk59IP69atSpsH/rf//7H19fX82vWrJFu8/l8/CmnnMLX19fzPC98L4455hj+yiuvDHp+9rsffvhh1G0gCIKQQ44ZQRCERng8HqxevRrHH388nE4nent7YbPZMGfOHLz88svw+/0oKCjA8ccfH1Rq9fbbb+Pwww9HTU0NHA4HNm7ciIULF4LnecmRqK2tRV1dHT799NOg15wyZUrQzytWrMBll12Gzs5OfPXVV3jttdewevVqAIDb7Ybb7cb69etx4oknBgWSnHzyyTAYAnlQn332GaqqqjBt2jRpG3w+HxYtWoTNmzejp6cn5ntx/fXX49VXXw37d/311wc97osvvsCiRYtQWFgo3WYwGHDaaadh8+bNGBgYUPTeT5w4EeXl5bjmmmtw11134f3330dlZSVuueUWDBs2TPX7GkpLSwumTZsm/Zs/fz6uuuoqyZmSB3+UlpbG7Cdbt24dRo0aFfTZWa1WrFmzBueddx4+//xz8DyPhoaGIFeqoaEBLpcrqMwzEqecckrQzyeeeCI8Hg82btwIADjnnHPw1VdfSeWXb7zxBsaNG4fZs2fHfN6qqqqIn+mrr76Kqqoq6XHM6TzttNOCfv+0006DXq8PK0mNxfz58/Hpp5/ihz/8If785z9j+/btuPjiiyV3+bPPPgPHcVi4cGHYe9Xe3o6mpqaIz7tt2zZ8++23OPHEE9Hb24ve3l4sWLAABQUFQa7Z559/DqPRiOOPP166TafT4dRTT5V+3rlzJw4ePBj2eR122GEoLCyMu28RBEEwKJWRIAhCIz766CN0dHRIF6uhfPLJJ1i4cCHOPPNMrF69Gtu2bUNlZSXWrl2LBx98EIBQ1uj3+/HUU0/hqaeeCnsOs9kc9HNBQUHQz9988w3uuecefPPNN7BarZgwYQJGjBgBQCj76u7uhs/nQ0VFRdDv6fV6lJaWSj93d3ejvb0d06ZNi/i3tre3o6SkJOp7MXLkSKn/Sk7ohXJPTw8qKyvDHldZWQme5xWHMdhsNvz973/HE088gXfffRcvvfQSLBYLzjzzTNx5552q39dQqqqqpPI5QAgDGTZsWMT3wGazxXyu7u7usPc/9H4gXNgwWltb426rnPLycgCQxPSpp56KBx98EKtWrcKVV16Jd999F1dffXXM5wSEvznSZ8ruY7DXCd0Og8GAsrKysP62WFx11VWw2Wx47bXXsHz5cvzmN7/BxIkTceedd2LBggXo7u4Gz/M49NBDI/5+W1tb2OIFAOn7uXTpUixdujTovnfffRe33347SkpK0NXVhdLSUuh0wevY8s+PfV733HMP7rnnnojbQBAEoQQSZgRBEBrx2muvoba2Fg888EDQ7TzP4/rrr8eLL76IhQsX4vDDD0dVVRXeffddVFVVwWw248QTTwQgXNRzHIfLL7884oV5rB4g1mc1adIkvP322xg/fjx0Oh0+/vhjrFmzBoBwQWk0GqWeN4bf75cuMAGgqKgIY8eOxfLlyyO+1qhRoxS9J/EoKSkJ2xZAEH4AUFZWJvXjhfanDQwMBImg8ePH4ze/+Q18Ph82bdqEVatW4YUXXsDo0aNxwQUXJPy+ArFFiVqKiooiznH7+uuvUVJSguLiYgDAX//614gijwntaIS6mez9ZWLCZrPh5JNPxrvvvov6+noMDg5KDpQWMLHa3t6OkSNHSrd7PB50dXWhrKxMuo2FkjBCwzJ0Oh0uuugiXHTRRejo6MDHH3+MlStX4oYbbsCnn36KoqIiFBQU4G9/+1vEbRkzZkzYbW63G//85z9x4okn4uKLLw66b9++fbj99tvxxhtv4PLLL0dNTQ26urrg9/uDxFlHR4f0/+zzuvXWWzFv3ryo7wdBEEQ8qJSRIAhCA9rb2/HJJ5/gtNNOw/z584P+LViwACeffDI+/vhjtLa2Qq/X44wzzsCHH36I9957D8cff7zkfBUWFmLq1KnYuXMnDjnkEOnfxIkT8Yc//CFmGdjOnTvR3d2NSy+9FBMmTJAuJP/zn/8AEISNXq/HoYceGhbv3tjYGBTiMG/ePBw4cAAVFRVB2/Hpp5/iz3/+c1igRaIcdthh+PDDD4OcMZ/Ph7fffhuHHHIITCaTVOZ48OBB6TE9PT3YsWOH9PN7772HBQsWoL29HXq9HrNnz8avfvUrFBcXY//+/Um9r1ozd+5cNDc3B7mHLpcLN9xwA1599VXMnTsXANDV1RW0rZ2dnfj9738fJKAj8dFHHwX9/Pbbb8NqtWLmzJnSbeeeey6+//57/PWvf8URRxyBmpoazf4+Jk7efvvtsO3w+XyYM2cOAGFfl3+mAMLKNC+44AJptlhFRQWWLFmCiy66CL29vejv78e8efMwODgInueD3qvvv/8ejz/+eMRgksbGRnR3d+OCCy4I+66ec845GDt2rFTOOG/ePHi9XjQ2Nkq/z/M8/v3vf0s/jx8/HhUVFdi3b1/QNtTU1GDFihXYsmVLom8lQRB5BjlmBEEQGvDmm2/C6/VGLT8766yz8Morr+Dll1/GDTfcgDPPPBPPPPMMdDpdWGndTTfdhKuvvho333wzFi9eLKUvbty4Eddee23UbRg3bhwKCwuxcuVKGAwGGAwGrFmzRirbYqmMN954Iy655BLceOONOPfcc7F//378/ve/BwCp72zJkiV4/vnn8aMf/QjXXHMNhg8fjv/973946qmncPHFF8NoNCb9ngFCL9p//vMfXHrppbj66qthNBrx/PPPo7m5GX/+858BAJMmTcLw4cPx+OOPo7CwEBzH4U9/+lOQy3XooYfC7/fjuuuuw9VXXw2bzYZ3330XfX19khuZ6PuqNUuWLMFzzz2Hn/70p7jxxhtRVlaGv/3tb/B4PPjhD3+I2tpaLF68GP/3f/+HlpYWTJ8+Hbt27cIjjzyCUaNGYezYsTGf/1//+hdqampwxBFH4L///S9eeukl/OxnPwvq45szZw7GjRuHL774Ao888oimf9+ECRNw9tln49FHH4XD4cBhhx2GrVu34rHHHsP8+fNx9NFHAwAWLVqExsZGPPTQQ2hoaMBXX30VlqR42GGH4ZlnnkFlZSVmz56N1tZWPPvss5g3bx7Ky8uxcOFCHHbYYbj22mtx7bXXoq6uDps2bcKjjz6Ko48+WirjlPPaa6+hoqICCxYsiLj9ixcvxqOPPoq1a9di/vz5OPLII3HHHXfAbrdjxIgRePXVV/Hdd99J3xW9Xo+f//znuOuuu6DX67Fo0SL09vbij3/8I1pbW6VyYLfbjS1btmDYsGE0044giMhkLHaEIAgihzj55JP50047Ler9fr+fb2ho4I8++mgpFfD000/njzzyyKCUQMb//vc//oc//CE/Y8YMfs6cOfyll17Kf/nll9L9LJWRpRsyPv/8c37JkiX8jBkz+MMPP5y/4oor+K+++oqfPXs2//DDD0uPe//99/nTTz+dnzZtGn/iiSfyb7/9Nl9fX88/88wz0mPsdju/dOlS/vDDD+enT5/On3TSSfxTTz3F+3y+qH8nSwZ87bXXIt4fabu3bNnCX3XVVfysWbP42bNn85dddlnQ38rzPL9x40b+Bz/4AT99+nT+2GOP5Z999ln+//7v/4JS/TZu3MhfccUV/Lx58/hDDjmEX7JkCf+vf/1L1fsaCZbKqIRoj5WnMvI8zx88eJC/6aab+Llz5/KHHnoof8UVV/Bbt26V7vd4PPxjjz3GH3fccfy0adP4Y445hr/77rulZMVIsPf+5Zdf5i+77DJ++vTp/KJFi/i//vWvER//0EMP8YcddpiUIJrI38VYtGiRlMrI8zzv9Xr5P/7xj9L2L1q0iP/tb3/LO53OoMf85je/4Y844gh+xowZ/JVXXiklRLJURo/Hwz/66KP88ccfz0+fPp0//PDD+TvuuCMomXJgYIB/8MEH+WOOOYafNm0a39DQwK9YsSLotRgHDx7kp0yZwt9zzz1R/5bm5mZ+0qRJ/P/7f/+P53me7+7u5n/5y1/yc+fO5WfNmsXffPPN/D333MPPnj076Pfefvtt/uyzz+anT5/Oz5s3j7/mmmv4bdu2BT1v6H5AEAQhh+N5GrBBEASRT3zwwQcYNmxYULBHU1MTTj/9dPzxj3/Ecccdl8GtI9IBz/M47bTTcNRRR+H222/P9OZkLS0tLdiwYQOOO+64oOTNG2+8Ec3NzXjjjTcyuHUEQeQaVMpIEASRZ/z3v//FO++8g1/84hcYN24cWltb8cQTT2D8+PE46qijMr15RArp7+/HX/7yF3zzzTdobm7GJZdckulNymp0Oh1++ctf4rjjjsO5554LvV6PTz75BP/617/w0EMPZXrzCILIMcgxIwiCyDOcTid+//vfY82aNWhra0NpaSmOPvpo3HzzzRGj64ncwev14thjj4Xf78fSpUtxxhlnZHqTsp7PP/8cjz/+OLZu3Qqv14u6ujr86Ec/wumnn57pTSMIIscgYUYQBEEQBEEQBJFhKC6fIAiCIAiCIAgiw5AwIwiCIAiCIAiCyDAkzAiCIAiCIAiCIDIMCTOCIAiCIAiCIIgMQ8KMIAiCIAiCIAgiw9AcsxTS0dEHyrzMHjgOqKgoos8lD6DPOj+gzzl/oM86P6DPOX/It8+a/b3xIGGWQngeebGzDTXoc8kf6LPOD+hzzh/os84P6HPOH+izDoZKGQmCIAiCIAiCIDIMCTOCIAiCIAiCIIgMQ8KMIAiCIAiCIAgiw5AwIwiCIAiCIAiCyDAkzAiCIAiCIAiCIDIMCTOCIAiCIAiCIIgMQ8KMIAiCIAiCIAgiw5AwIwiCIAiCIAiCyDAkzAiCIAiCIAiCIDIMCTOCIAiCIAiCIIgMQ8KMIAiCIAiCIAgiw5AwIwiCIAiCIAiCyDAkzAiCIAiCIAiCIDKMIdMbQBAEQRAEQcTH5+exoaUH9n43KgtNmDWyBHodl+nNIghCI0iYEQRBEARBZDmNTXasaNyOtn63dFt1oQk3N0xAw8TKDG4ZQRBaQaWMBEEQBEEQWUxjkx23rd4SJMoAoK3fjdtWb0Fjkz1DW0YQhJaQMCMIgiAIgshSfH4eKxq3x3zMbz/cAZ+fT9MWEQSRKkiYEQRBEARBZCkbWnrCnLJQWvtc2NDSk6YtIggiVVCPWQ5DTcIEQRAEMbSxxxFlah9HEET2QsIsR6EmYYIgCIIY+lQWmjR9HEEQ2QuVMuYg1CRMEARBELnBrJElqI4jumqKzJg1siRNW0QQRKogYZZjUJMwQRAEQeQOeh2HmxsmxHzMTYvqqFWBIHIAEmY5BjUJEwRBEERu0TCxEg8vnhrmnNUUmfHw4qnUokAQOQL1mOUY1CRMEARBELlHw8RKLKyrwLGPfQqnx48LDx2Bny0kp4wgcglyzHIMahImCIIgiNxEr+PAi50II0qsJMoIIscgYZZjUJMwQRAEQeQuXp9f+C/1ihNEzkHCLMegJmGCIAiCyE18fh4+UY8xgUYQRO5AwiwHoSZhgiAIgsg9PDIxRo4ZQeQeFP6Ro7Am4YueW4cd9kH8+PDRuHLBGHLKCIIgCGKIIhdjHhJmBJFzkGOWw+h1HEaVWAEAlTYTiTKCIAiCGMK45Y6Zj4QZQeQaJMxynGKLYIr2OL0Z3hKCIAiCIJLBIxNjXj/1mBFErkHCLMcpthgBAL0kzAiCIAhiSCPvMfNRKSNB5BwkzHKcEqvgmPU6PRneEoIgCIIgkiHYMSNhRhC5BgmzHKfEwoQZOWYEQRAEMZTxUI8ZQeQ0JMxyHFbK2OMgx4wgCIIghjKeoFRG6jEjiFyDhFmOQ+EfBEEQBJEbeLzkmBFELkPCLMcpofAPgiAIgsgJ5C4Z9ZgRRO5BwizHkYd/8DwdxAmCIAhiqELhHwSR25Awy3FYj5nbx8PppXp0giAIghiqBIV/UI8ZQeQcJMxyHKtRB4OOA0ABIARBEAQxlAlyzKjHjCByDhJmOQ7HcVIACPWZEQRBEMTQRd5j5qFSRoLIOUiY5QEUAEIQBEEQQx+PlxwzgshlSJjlAfIAEIIgCIIghibBqYzUY0YQuYYh0xtApB4WANJNjpkm+Pw8NrT0wN7vRmWhCbNGlkAv9vERBEEQRKqgVEaCyG1ImOUBUo8ZhX8kTWOTHSsat6Ot3y3dVl1ows0NE9AwsTKDW0YQBEHkOsGpjCTMiOyGFrLVQ8IsD6DwD21obLLjttVbwm5v63fjttVb8PDiqSTOCIIgiJQhd8x8JMyILIYWshODeszygFIrhX8ki8/PY0Xj9piP+e2HO+hESRAEQaSMIMfMRz1mRHbCFrLlogwILGQ3NtkztGXZDwmzPIA5Zj0U/pEwG1p6wg4wobT2ubChpSdNW0QQBEHkG26ZY0Zx+UQ2QgvZyUHCLA9g4R895JgljD2OKFP7OIIgCIJQizyJkeLyiWxE6UL2+n20kB0JEmZ5QKDHjByzRKksNGn6OIIgCIJQC6UyEtmO4oXsAVrIjgQJszyglAZMJ82skSWojiO6aorMmDWyJE1bRBAEQeQbbh/NMSOyG8UL2TZayI4ECbM8oFgcMN3j8IDnaYUtEfQ6Djc3TIj5mJsW1VEMLEEQBJEyvBSXT2Q5SheyZ4+ihexIkDDLA1gpo9vHw+WlFbZEaZhYiYcXT4XVGPy1qSkyU1Q+QRAEkXLk4R9eH0+LrUTWQQvZyUHCLA8oMOqlLwAFgCRHw8RKHF8fEGCXz6vFqqvmkSgjCIIgUo48Lp8HQPkfRDbCFrLNBlrIVgsNmM4DOI5DicWAzkEPep0e1BSZM71JQxr5imWBSU+rPgRBEERaCC1f9Pr8MOj0GdoagohOw8RKvFBTiA0tvQCAR86ahsPHldM1UxzIMcsTSigARDPk5aCtfa4MbglBEASRT7hD2hGoz4zIZjoHA2ngk4cVkShTAAmzPEEaMu2gyPxkcXpImBEEQRDpJ3SoNAkzIpvpkEXiOz2+DG7J0IGEWZ4gCTNyzJLG5Q0cXEiYEQRBEOlCnsoIkDAjsheHx4cBty/oZyI+JMzyhGIrlTJqhVNWStJGwowgCIJIE25feI8ZQWQjoYOmHR7aV5VAwixPKBEds14nlTImi1yY9Ti9ZM8TBEEQacFDjhkxRJCXMQJUyqgUEmZ5Agv/6HGQY5YsobPgqJyRIAiCSAfhqYwkzIjsxD5AjlkikDDLEwI9ZuSYJQtb9WHZQiTMCIIgiHRAqYzEUIEcs8QgYZYnFEuljOSYJQtzzIYXC/PgSJgRBEEQ6SA8lZFcCCI7CXfMSJgpgYRZnlBC4R+awYTZ6LICACTMCIIgiPRAqYzEUCHMMfPSIoISSJjlCRT+oQ1ePy+dCMeUWwGQMCMIgiDSg1sUZnqxlp56zIhshTlmbKg0OWbKIGGWJxSz8A9yzJJCPsNsdJkgzNr6SZgRBEEQqccjCjGrSQ+AHDMie2GO2Qix7YN6zJRBwixPYD1mLq+fvhxJIE9krC0jx4wgCIJIDzwfqNiwGgVh5qEeMyJLYY7ZyFLhWolSGZVBwixPsJn0kp1MfWaJ4xQPLGaDDjVFFP5BEARBpAePrGyRCTMqZSSyEZ+fR7dDaJ2pFYWZ00umgBJImOUJHMfJ+sxImCUKc8wsMmHW7/JhwE3vKUEQBJE65O5YgZFKGYnspWvQDT8P6LhAgjU5ZsogYZZH0Cyz5GErPmaDDjaTAYVm4eTY1ueO9WsEQRAEkRTBjplw+UbCjMhGOgaE68yyAhNsYj8ktdEog4RZHkEBIMnjEld8LOJqZaCc0ZmxbSIIgiByH48skdGoZ8KMXAgi+2D9ZZU2k3S9RKmMyiBhlkdIpYwOcswShZUymg3CV4f6zAiCIIh0wBwzg14Hg5iXTz1mRDbCEhkrbEZJmDmplFERJMzyiGIaMp008lJGAKguJGFGEARBpB7mmJn0Ohh0wjnIQ6WMRBYid8xY2S05ZsogYZZHlEg9ZiTMEkUe/gGQY0YQBEGkB+aYGfUcjOSYEVlMwDEzwWoQHTMvOWZKIGGWR1D4R/IE4vKDe8wo/IMgCIJIJSyV0aDjYBDH31CPGZGNBPeYkWOmBhJmeQQL/6BSxsRxUo8ZQRAEkQGYY2Yy6CRh5qNSRiILkTtm1GOmDhJmeURgjhk5ZoniEnvM2AqQXJjxPJ0gCYIgiNTAesyMukCPGcXlE9lIcI8ZpTKqgYRZHlFCjlnSRHPMBj0+9LvooEMQBEGkBibMDHqOUhmJrIXn+eAeM9nMPa+PXLN4kDDLI4qtYo8ZxeUnTCD8Q1gBshj1khPZ2k/ljARBEERqcLNSRn2glNFDPWZEljHg9kmL2BU2k3S9BAAOKmeMCwmzPKKYUhmTJnSOGQBUU58ZQRAEkWKY22DUc4FSRnLMiCyDuWU2kx5Wox5GPQfR4JVGDhHRIWGWR7BSRpfXDyfV+iYEe9/kwowCQAiCIIhUE3HANPWYEVmGXVbGCAAcx0kBIOSYxYeEWR5hM+mlVYs+F7lmiSCVMhoD1jwJM4IgCCLVuKUB0/K4fBJmRHbRESLMAFAAiApImOURHMdJkfk9DhJmiRAa/gGQMCMIgiBSj0cUYUIqI80xI7ITeSIjgyVZU7VWfDImzF5//XVMmjQp7N/kyZMBAFu2bMF5552HmTNn4pxzzsHmzZuDfv+tt97C8ccfj5kzZ+K6665DZ2endB/P81i+fDkWLFiAefPmYdmyZfDLDl5dXV244YYbMHv2bDQ0NGDVqlVBzx3vtYcyNGQ6OVhcfiRh1kbCjCAIgkgRwT1mlMpIJIfPz2NdczfWbG3DuuZuzWbidUQQZlaaZaaYjAmzU089Ff/973+lfx999BHGjBmDSy+9FIODg7j66qsxd+5cvP7665g9ezZ+8pOfYHBwEACwadMm3HHHHbj++uvx0ksvobe3F0uXLpWe+9lnn8Vbb72Fxx57DI8++ij++c9/4tlnn5XuX7p0Kfr6+vDSSy/hpz/9Ke68805s2rQJAOK+9lCnxEqR+ckQSGUkx4wgCIJIHyyV0ajXwaCnOWZE4jQ22bH4qbW45uVNuPOdbbjm5U1Y/NRaNDbZk37uSKWMLJmRShnjkzFhZrFYUFVVJf1bvXo1eJ7HL37xC7zzzjswm8249dZbUVdXhzvuuAM2mw3vvfceAOD555/HKaecgrPOOguTJ0/GsmXL8PHHH6O5uRkA8Le//Q033ngj5s6diwULFuAXv/gF/v73vwMA9u7diw8//BD3338/6uvrcd5552Hx4sX4xz/+AQBxX3uoU0xDppOCrfaYDZF7zGjINEEQBJEKPBEcMw85ZoRKGpvsuG31FrT1u4Nub+t347bVW5IWZ5FKGdksMwelMsYlK3rMuru78dRTT+Hmm2+GyWTCxo0bMWfOHHCccODhOA6HHnooNmzYAADYuHEj5s6dK/3+8OHDMWLECGzcuBGtra04cOAADjvsMOn+OXPmoKWlBW1tbdi4cSOGDx+OUaNGBd2/fv166bljvfZQp0QSZuSYJUIg/CPw1akqNEv30SgCgiAIIhV4ZY6ZUU89ZoR6fH4eKxq3x3zMbz/ckVRZY8eAsPBfYTNKt1Eqo3IMmd4AAHjhhRdQXV2Nk08+GQDQ3t6OCRMmBD2moqICTU1NAIC2tjZUV1eH3X/w4EG0t7cDQND9lZWVACDdH+l3W1tbFb22GkRtl1UUi6WMPU5vVm5fKmF/bzJ/N+sxsxh10vNYjDqUWY3ocnjQ3u9CWYExxjMQ6UCLz5rIfuhzzh/osw4MkzbJ4vJ9fj6n3hP6nFPLhpaeMKcslNY+Fza09GDu6NKEXoM5ZlWFZulzZI6Zy+sL+4zz5bNW+ndmXJjxPI9XXnkFV111lXSbw+GAyWQKepzJZILbLXzYTqcz6v1Op1P6WX4fALjd7rjPHe9+NVRUFKn+nVQzotwGAHADqKzMvu1LB8l8Lm5xFWlYZVHQ+zey3IquFg8cnC5v39dsJBu/g4T20OecP+TzZ20wCZdsxYVmlBUXAAA4gz4nzzn5/DmnEte+XmWP0yV2LePx+dHtEByzibVlqBArisqKLAAAndEQ9rz0WQeTcWH2zTffoLW1Faeddpp0m9lsDhNCbrcbFosl5v1WqzVIhJnNZun/AcBqtSb83Ox+NXR09CHbWo4M4opba5cDdntfhrcmvXCccABI5nNxuAXHzNnvhN0eKGesEJ3IppZuzKwqSHpbieTQ4rMmsh/6nPMH+qyB3n4hYMrj9sAxKPy/w+nJqXM5fc6pxayw9NXs9ye0X7EQNL2Og8/hgt0pXE9zYn9kR0/g2jPfPmv298Yj48Lsk08+wdy5c1FSUiLdVlNTA7s9uPnQbrdLJYjR7q+qqkJNTQ0AoSSR9ZGx8kZ2f7TfVfLaauB5ZN3OJg//yLZtSxfJfC5sBofJoAt6jhpxVehgrytv39dsJBu/g4T20OecP+TzZ80GTAfNMfP5c/L9yOfPOZXMGlmC6kJTzHLGmiIzZo0sSej9t4vPW1FgBAdOeg42YmjQ7Qt7Xvqsg8l4+MemTZtw6KGHBt02c+ZMrF+/Xkq443keX3/9NWbOnCndv27dOunxBw4cwIEDBzBz5kzU1NRgxIgRQfevW7cOI0aMQHV1NWbNmoWWlhYcPHgw6P5Zs2Ypeu2hTmCOGYVUqMXP81JcsTwuH6DIfIIgCCK1eORx+SyVkeLyCRXodRxubpgQ8zE3LaqDXpdY45c9QlQ+IJtj5qXwj3hkXJg1NTWFhW2cfPLJ6O3txQMPPIDt27fjgQcegMPhwCmnnAIAuPDCC7Fq1Sq88sor2LZtG2699VYce+yxqK2tle5fvnw51q5di7Vr12LFihW49NJLAQC1tbU46qijcMstt2Dbtm145ZVX8NZbb+Giiy5S9NpDnWKLGP7hoLh8tbhlBxR5XD4AVLMh0/0kzAiCIAjtCYrLZ3PMKC6fUEnDxEo8ePrksNtrisx4ePFUNEysTPi5I80wAwJJ1k6aYxaXjJcy2u12FBcXB91WWFiIP/3pT7j77rvx8ssvY9KkSXjyySdRUCD07syePRv33nsvHn30UfT09ODII4/EfffdJ/3+lVdeiY6ODlx//fXQ6/U499xzcfnll0v3L1u2DHfccQfOP/98VFVV4cEHH8SMGTMUvfZQp8RKcfmJIp9YbybHjCAIgkgjkRwzGjBNJEKVzRz08zF15Vi2eFrCThkj0gwzIOCYUVx+fDIuzDZt2hTx9hkzZuCNN96I+ntLlizBkiVLIt6n1+uxdOlSLF26NOL9FRUVWLlyZdTnjvfaQ5kS0TFzev1wef1hAoOIjlOMyjfqubCDFxNmbeKQaS5f8l8JgiCItCA5ZjpOJszoQpdQz5d7u4N+LjQbkhZlQHzHzEGOWVzoqjzPsJn0EMefoM9J5YxqYLXRkcRsdaEJHAC3j0cXlYkSBEEQGsP6yUwGcsyI5PhybxcAYFJ1IQAhlEMLOqI5ZmL7h5Mcs7iQMMszOI5DkeiadVM5oypckjDTh91n0OukFaI2KmckCIIgNIY5ZgYd9ZgRiePw+PDNASGyfmFdhXSbFkRzzALhH+SYxYOEWR5SIovMJ5TDhFloIiOjqlA4EL23tQ3rmrvho5VMgiAIQiMolZHQgvX7euD18xhebMaEKhsAYNCtjZMVrceMShmVk/EeMyL9CMmMDvQ6gh0zn5/HhpYe2PvdqCw0YdbIEk1qjnMFliYUqZSxscmOnR2DAIC/r2vB39e1oLrQhJsbJiSVcEQQBEEQQMAxM+l1MOoDc8wIQg2sv+yw0aUoMLFQjuQFE8/zMXrMKPxDKSTM8pBIyYyNTXasaNweNHSQhEUwkmNmDC5lbGyy47bVW8Ie39bvxm2rtyQdP0sQBEEQzDEz6DkYdGIpIzlmhEoCwqwMBeL1zKAGwqzP5ZVmvUYtZSTHLC5UypiHBIZMC6WMTFiEToJnwqKxyZ72bcxGXBHCP3x+Hisat8f8vd9+uIPKGgmCIIikCJpjRuEfRAJ0Ozz4vq0fADB3dCmszDHTIPyjY0C4piwyG8Iqi6yyOWY8T/tsLEiY5SEsMr/H6SVhoQLWtCo/4Gxo6QkTtKG09rmwoaUnpdtGEARB5DZSKiPNMSMSZF1zN3gA4ysKUGkzaeqY2QeE4LPQ/jIg4Jj5+IDzS0SGhFkeUiwL/yBhoZxI4R/2OO+d2scRBEEQRCQCc8x0MIg9Zj4/Tw4EoRh5fxkASZi5vP6kF+DtUn+ZMew++XUTBYDEhoRZHlIsOma9Ti8JCxWw+Rtyx6yyMHxlKBJKH0cQBEEQkQjuMQsEc1FFC6GUL/YI88sOG10GAFIpI5C8YGKljKH9ZYAwUojts2wmLBEZEmZ5SJFZ+CLu7BhEx6AywUXCInL4x6yRJaiO897UFJkxa2RJSreNIAiCyG3kqYws/AOgyHxCGQd7nWjudkLHAXNqhWsSk56DaL4mLczYAn4kYQYEyhnJMYsNCbM8o7HJjt9+tAMAsKtjEI98tDPu75CwEHCJPWZyS16v43Bzw4SYv3fTojoaO0AQBEEkhTz8g8XlAzRkmlDGF2IZ49RhRSg0Cy0tHMcFAkCSjLJnC/2ResyA4AAQIjokzPIIlr7YHTK/LB4kLAScEVIZAaBhYiUeXjw1zDmrKTJTVD5BEASRNDzPy0oZdUGljF4/lYYR0fH5eaxr7saqbw4CCLhlDNZnlmwyoz3KDDMGzTJTBs0xyxOUpC/qOEBeEVFTZMZNi+pIWIgEwj/0Yfc1TKzEwroKLG/cjlc3HsDskcV44vyZJGgJgiCIpPH5ebDTs0nPgeOEEjQfT8mMRHQizahd9U0rpg4rlq7trBolM7Lh0tEcM1ZtRKWMsSHHLE9Qkr7o54Gx5VYAwCVzR2HVVfNIlMmI5pgx9DoOR9dVABBGEZAoIwiCILRA3kdm1AvnIIOehkwT0Yk2o7bb4QmaUVtgSl6Y+fw8WnudAICDfa6IgTTSkGkK/4gJCbM8QWmqYqFJMFFriswkLEJwecLnmIUytrwAANDc7aCkLIIgCEITWH8ZABjFc7M0y4x6zIgQ1MyotSZZytjYZMcZT63FoFiieN+a77H4qbWS8GNYkugxY+WYa7a2YV1zd05fX1EpY56gNFWxSJxxRisa4TilVMbowmxYsRlmgw4urx8Hep0YVWpN1+YRBEEQOYpbFF8cIC2aMmHmoR4zIgQ1M2qTccyYKxdKW78bt63eEtRnn2gqY6RyzOpCE25umJCTVV3kmOUJSmPdR5ZYAFANcCQCpYzhPWYMHcdhdJkgxnZ3DqZluwiCIIjcxitLZOQ4UZixUkZyzIgQ1MyoTdQxU+PKAYmFf0Qrx2TCL9SVywVImOUJSmPdC0w0ZyIaLg8L/4j9tRlTJpQz7u50pHybCIIgiNyHJTKy/jJAVsqYw2VdRGIorZKqLDRJqYxqHTM1rhygPi5frfDLFUiY5RFKYt1Z4qCLShnDYHPMzDFKGYFAgMoecswIgiAIDXBLjhkJMyI+SqukZo0skc0xUyfM1LhyQCDRWqljplb45QrUY5ZnsFj3DS09sPe7UVlowqyRJVLNOuufIscsnHipjIwxYgAICTOCIAhCC7ySYxYI5QoIM1pIJYJhVVKR+r8YbEYtc7IGVZYyqnHlAPWOmVrhlyuQY5aH6HUc5tSW4qQp1ZhTWxqUvijFmdIAwDBizTGTwxwzKmUkCIIgtIAFfBhl52uDnlIZieiwKinWosKQV0kBiYdyqHHlAHmPmbLXUSv8cgUSZkQQ5JhFx6kgLh8ARos9Zl0OD3ocnpRvF0EQBJHbRC5lFP7fQ6WMRBQaJlZiwZhSAMApU6qx8vwZYTNqpR4zt7oFeaXZBWzxX+0cM7XCL1cgYUYEEXDMSJiF4lIQlw8IwxpriswAgD1d5JoRBEEQyREp/MNIjhmhgL1dwuDnEydXhVVJAUi4xwwAjp1QgRJLeFdUqCsHBILTlL6OWuGXK1CPGREEK9OjOWbB8DwvCbNYcfmMMWVWtPa5sLtzEDNGFKd68wiCIIgcJlaPmY96zIgo+Hkezd3CAjFLjA4l0VRGAPhmfy96nF4UGHX49eKp6HV4w7ILGIks/LNyzNA5ZjVFZty0qC4n55iRMCOCoFLGyLh9PNiaZLy4fAAYW16AL/Z2UwAIQRAEkTSUykgkQmufCy6vHwYdh+HinNpQJMdMZfgHALz/XTsAYOGEShw+tjzmYxOZYwYI4mxubQmOe/wzAMApU6pw98mTc84pY1ApIxEEhX9EhkXlA8qEGUtmpAAQgiAIIlk8sgHTDNZjRsKMiAZbHK4ttUpCPpREHTOfn8e/vxcGPJ84uSru46VURq96ASifVVZsMeasKANImBEhkGMWGVbGqOcAg16JY8aSGckxIwiCIJKDiS+jTuaYUY8ZEYc94uLw6DJr1McUJJjKuKGlBx0DbhRbDJg/pizu4xN1zIDg2br9CTh7QwkSZkQQalNz8gXmICrpLwMCjllLjxNeH72XBEEQROK4vZEcM5pjRsRmrxhANqY8ujBjpYxq55ixMsZjJ1QEldhGfR2Vc8zkyIXZgMur+veHEiTMiCBYmZ7L64efp1U4htJERkZ1oQlWow4+P4993c5UbhpBEASR47BI/Eg9Zh5yzIgo7OkSqnaiBX8AQIGsUopXeN3n9fP4QCxjPGFS/DJGIPF5aUCgxxJQLyCHGiTMiCDYFwegPjM5rCY63gwzBsdxGCv1mVE5I0EQBJE4EXvM9NRjRsRGSSkjc8z8fLAzFYuv9nah2+FBqdWIuaPjlzECgVJGp8evWAAy3HLHjIQZkU/IhUciDZq5iuSYKSxlBAIHQhJmBEEQRDJEmmOWLamMPj+Pdc3dWLO1Deuau4OCGojM4fT4cLDPBSB2KaP8ukapm8XKGI+rr4waKhL+OsK+y0O5AGS4fHJhltuljBSXTwTBcRwsBh2cXj8FgMhwSjPMlK9lMMeMhkwTBEHkBz4/jw0tPbD3u6POc0qEyKmMme8xa2yyh82Yqi404eaGCTk5Y2ooweaXFVsMKLUaoz5Orwtc9w16fIjlf/n8PL7a24V/bROFmYrPOLQiizl1SnDlkWNGwowIw2rUi8KMShkZLo+6UkZAJszIMSMIgsh5UilSPJFSGXWZTWVsbLLjttVbwm5v63fjttVb8PDiqSTOMoi8jJHjYi8OFJjE6z539Ou+SPv3r977TvH+rddxMOk5uH08HF4fyhBdLIYSVMroym1hRqWMRBgs4MJFjpmEU2X4BwBZj5lDdT01QRAEMXRgIkV+0QoEREpjkz2p5/d4IwyYzmCPmc/PY0Xj9piP+e2HO6isMYNIiYwx+ssY1jizzLTavxOdlSt3zAY9vpwOpyNhRoSRzKyJXCVQyqjceh9VagEHoM/lReegJ0VbRhAEQWSSdIiUQCpjeCljJlIZN7T0hF2kh9La58KGlp40bRERipTIWB49kZFRYIqemKjl/s2qjtS2yrhDxg7lcjIjCTMijGQiTXOVQPiH8q+MxajH8BILgMABkiAIgsgt0iFSWI+ZSeaYMZGWiR4ze5y/V+3jCO1RksjIkK77IggeLffvRK8v3SFhIbncZ0bCjAiDiQ8aMh0gkR4zABhbzpIZKQCEIAgiF0mHSGHCzBAx/CO2U5GK1MTKQpOmjyO0hed5WSmjAscsRimjlvt3oqWModejuZzMSOEfRBjkmIWTSCojIPSZ/W9XFwWAEARB5CjpECmR4/Lj95ilKpBk1sgSVBeaYjopNUVmzBpZkvBrEInT5fCgz+UFB6GtIh7WGKWMWu7fViNb+E/OMaNSRiKvYAEXNGA6gFTKaFTeYwYEmm61mGVGs2IIgiCyDyZSYpGsSAmUMip3zFIZSKLXcbi5YULMx9y0qE6TUQGEevaKVTrDi82KrlsKxOu+SIJHy/3bnGgpY0iPWS4nM5IwI8IITGfP3R1fLa4EHbMxUmR+cqWMjU12LH5qLa55eRPufGcbrnl5ExY/tTbppC+CIAgiOdIhUphjZghKZWRx+eGLqOkIJGmYWImHTp8SdntNkZmi8jMM62sfraCMEYhdKaXl/m1NMFzO5Q3eT3O5lJGEGRGGNcHUnFzGmXCPmXBQ3N/jVD3pnpHqGGaCIAgiORomVuLhxVOlUi05tx5Xp8EcMzEuX6fMMUtXamJtqTVsu567eDaJsgzDFoPHlMcP/gACqYyDUeaYsf3bECK+1IpwqZQxScesn0oZiXxCcswo/EMi0VLG8gIjCs168ACau9S7ZjQrhiAIYmjQMLESR44rBwCcOrUaU2oKAQA77MmXsrtFx8wUaY5ZhLj8dKUmbj7YCwCYPaoEI8QUYi3+XiI5WPCHFo4Zo2FiJSptwlDonxwxBivPn4FVV81TJcITn2MWvF2UykjkFWxFgxyzAImGf3AcJ/WZvfnNAdW9YTQrhiAIYujAVvLnjS7DzxaOBwD8c/NB2PtdST0vK1eMNMcskmOWrtTEzQf6AADThxehvsoGAPi+vT+p5ySSR5phpiAqH5A5ZnGu+/rE3q4TJ1djTm2p6vLchOeYhYV/UCkjkUdYDOl3zLI92IKt1qiZYwYIZYhs9fCl9ftV94bRrBiCIIihQ79LuGAsNBtw6KgSzBhRDLePxz/WtST1vBF7zHTR55ilI5AEAL6VhFkx6qsFh/C7NhJmmcTr57Gv2wlAeSljrDlm0vP6/JJTVWxJLNQ90dRv1mPGFiZyOfyD4vKJMNId/pGqOF8tSWTANOsNC4X1himpy6ZZMQRBEEOHPqcgzIosenAchx/Nr8XP3/gWr27Yj1mjiuFw+1FZaMKskSWq3Aa3ylRGFtgQ6RzESDaQpM/pxS4xcXj68CKwrfi+bSDh5ySS50CPE14/D7NBh+ois6LfiTXHjNHrCrhUReYkhZnKhX+2/5dZjWjrd1MpI5FfpLOUcagEW7B6aLNBWY+ZVr1h6Vr1JAiCIJKnT7x4ZReuR44rx/BiMxxeP25+c0vCqbreSHPMYvSYAYHABrM++FJPq9TELQcFt2xEiQVlBSaplHFXx0DCYVdE8gQSGa3QccqEd6w5ZoxeB3OD9QkLenZ96UqwlLHCJlwPUSojkVdYEmzOVMtQCrYIhH8o+8po1RtGs2IIgiCGDv0hwuzD7R040BveX6Z28ZGlMhoUpjIyGiZWYvaoYunnq48YozqwIRos+GP6sCIAguArsRjg44GdHeSaZQopkVFhfxkgc8xiOFHMMSu2GBPeNtYqoz4uX9iusgLhtckxI/KKdDlmQynYgh0UlIZ/aNkbxlY9baZgt45mxRAEQWQPLq9fSk8sNBs0XXxkjoHJEN5j5okwxyzod2WOmkmv02whTwr+GCEIP47jAn1mrdRnlimkRMZyZYmMgELHzOkBAJQk2F8GBBa3VfeYiftwmZWEGZGHpCv8YygFWzilHjNlpYxa94Y1TKzEUePLpZ+HFZs1W/UkCIIgkoeVMeo4IeVOy8VH5ooZdYHLNhaEEMsxA4JnQCUytiUSPM8Hgj9ExwwAJonC7Pt2cswyhdpERiCwIB/TMXMyxyxxYZZo+AdbmCgrEEsZXVTKSOQRiQ4AVMtQCrZwqYzLT0VvWLOYsgQIZaZUvkgQBJE9SMEfZgN0HKfp4mMglVFeyij2mMURZvJ+r+ZubYRZS48TXQ4PDLqASwYA9dVCnxklM2aOZEoZYwmmHmfypYzWBOfkssWFciplJPIRizGxGmC1DKVgCyZSlQozrXvDeJ7H3q7A0M4ehyfuyZggCIJIH32yqHxA28XHQCpjpLj89Asz5pbVVxcGnReZY9bU3g8/T+eodDPg9sI+IAj9MWpKGcXrPrePl2bmhdLrEEoZk3HMLAku/LN9uJw5ZiTMiHwi0S+OWpIRL+mce+b1+cFK9JWGfwCB3rBQ8ZlIb1iXw4N+lw8cAA4AD0GcEQRBENlBaCKjlouPEQdMs1LGeD1mMmHW3u/WpH98s5jIeMjwoqDbR5cVwGzQweHxa1Y2SSiH9ZeVFxilBQIlFMh62KMtymtRypjowj/bh0tFx4wGTBN5hdxqTvWKFxMvzEZnxBIvjU12LH5qLa55eVPC0cNqkFvuSuPyGQ0TK7H6x/NxwaEjAAAzRhQn1BvGTnDDi80oEZtfuwZJmBEEQWQL/eKFa6F44apV5YTPz0uLg/Ies0QcM0CbPrNvDwiJjNNChJlBx2FCpVDOSH1m6cXn5/GReB1UXmBUtWBt1Ouk/SnaLDMtUhkTDZcLOGbCa7t9fNCCQy5BwowIwyoTSemYRdIwsRKnTKkKum3l+TOiirJ0zz1jwoxD8HBPpeh1HBaMEYI7HB5fQr1he1jKUlmBFBfbOZj5UBSCIAhCINQxA7SpnJCnLhoN6nvMWBlkqbioty/Jcka3149tYg/Z9GHFYfdTn1n6YQvWz6xtBgBstw+qXrBmrpkjSpkgS2XUIvzDpXLh3yUbMM2IFVQylCFhRoQhrxdPdTkjI3QK/NYIUbuZmnsmj8rnFA5rDGVYsRkAcKDXGeeRkWHlCbVlVmnFKJ2OWTpLRwmCIIYiAWEWXFnBKifqKoWen6sPH62qckIuvCKmMkYZMM1gi4sTxNffm6Rj1tTeD4+PR4nFgFGllrD7pWRGEmZpQasFayaaojpmoiOcVFy+rOrIpbCc0evnpWsOi1EvuW79OVrOmPi7S+QsOo6D2aCDy+uHw+NHWRpek618sNfdfKAXJ0wKdtHURA/PqS3VbNvYoG2lwR+RGF4snLz6XT70Ob0oUnlgk+aSlFklQdaZph6zxiY7VjRuD3rvqwtNuLlhAsX1EwRBiPSHhH/I0es4jCyxYod9EJWFZlWVE3LHLDiVkZUyRr/AlV/U1lXa8FVzT9IBINL8suHFERcr66vEWWYkzFKO0gXrhXUVcfe5eMmMvRqkMsr79JWWM8r3f4tBB5vJAIfHnbMBIOSYERGxiCLE6U3Pjs++YLNHCU3QLPFJTqbmnrFyTotRXX+ZnAKTXlplSsQ1Y4mMo4Mcs9SXMmaidJQgCGIoEqmUUQ4rAVMb3MQGRBt0HHRcJGEW3TGT9+Gw3i/56JVEYMEfof1ljIlVNug4oHPQIyUEEqlBy1l5bMh0tBLBHg1SGdnCP6BcmMlbaox6nVRySaWMRF5hTVNkPoN9weaPEfy5bW39YUlTmZp7pnaGWTRGlAiu2YFel6rf8/M89okn0tFlVlmPWWods0yVjhIEQQxF+pzCeSyeMGPOg1I8ERIZgUCPmZ9H1H6dIGFWJQqzJEsZWfDH9CjCzGLUY7Q4Q4tcs9Si5YJ1QYxgDj/PSwsPyZQyAupnmbFrMIOOg17HwSYKs4EcLWUkYUZERPripKnHjAmzydWFKDIb4PL6sd0enOiUqblnTq+6GWbRYOWMah2ztj4XXF4/DDoOw4staesx03IljiAIItdhpYzRStVLxBIwtcKM9ZAZ9cHnIHlZY7Q+M3b+Mug4SSzZB9wJuw3dgx7JcZs2LLIwAwLljNRnllq0XLC2xihlHHD5wNZgi5IoZQQCFVlKHTN3yOK4TVz4GHCRY0bkEYFZZulxzNjKh82slw7234SUM2o9tFkprEHVojIqP5REA0BYIuOoUgv0Og5l4oDFVJcyZqp0lCAIYigSOmA6lBKrWMroVFvKyByzEGEmO9d5ovSZsTJIs0GHYotRcjsS6TPz+Xm8+c0BAEKfsc0U3TmhAJD0oOWCtVQiGOG6r9cl7LNmgy7pRerAwr9CxyxkuHohOWZEPmKJ0wSqNSwFqMCol+rWWbmEnIaJlWiYWBF2eyJDm5UilTKqGC4diRHFiZUy7pVF5QOBOR6pLmXMVOkoQRDEUCR+j1lijplHtCqMIYuOBplQi+aYuUIqPphrpjYyn8WxP/7f3QCEPuNYcewsMp9mmaUWLResJccsgpuqRSIjw6JyllmoY1YgCTNyzIg8Ip3hHzzPS2UVNpNeqlvfHCEABAg0Ls8cIcxPGVdekNDQZqWw98CS5CrRMCbMetQ5ZvJERgAyxyy1wixTpaMEQRBDkT5n7FJGKfxDpWPmjdJjJv8xWgBI6EVtrXgeUROZn0gIVL3omO3tcuSss5EtNEysxCVzR4XdrnbBOuCYRRBmjuQTGRlqHTO2D5tYKaPo1JIwI/KKdIZ/CIMGhf8vMBmkgZV7uhzSQEPG/h4nmtoHoOeAqw4fDUBYpdS6fDF0+4DkhdmIksRKGeWJjEDAMRv0+FLaA5ip0lGCIIihBi8LR4jmmJUkGP4RrZSR47i4yYyhZWCjSoXziNIAkERDoMoLTKgSF/a2k2uWcphIWTShAvefOhkrz5+hesE6lmPWo8FwaYZaxyw0gM1GjhmRj1ilHrPU7/jsy8WJr1taYJSGVm45GOyafbKjAwAwY2QJJlcLzpp9wB2UPKU1WswxAwLhHz1Or6oVxFDHzGbSwyQulXaleJZZw8RKPLx4qnQgZKSydJQgCGKo4fL6JXEUVZhZEyxljBL+AcSfZRZ6UTuaCTOFpYzJhEDViymQb246gHXN3ZTgmyJ4nsdnuzsBAIsPGYaTplRjTm2p6kXTghgDpgMzzJIXZrFCRiIRurggCTNXbjqxJMyIiFhUWs3JwMoYC0x6aVglCwAJLWf8ZKcgzI6pq0CJ1SC5WK196vq21KDFHDNAaAhnJ2ylfWYen18qfRwjCjOOCwSApLrPDBDE2WnTaqSfzzpkWEpLRwmCIIYazC3Tc4GFzVDYRa3L61e16BktLh8IJDNG6zGLVsqodJZZoiFQjU12rG8R+sTf2tKGa17eFLMnTWt8fh7rmruxZmtbzovCPV0OHOh1wajnMKe2NOHnYXPMIgmmQI9Z8qWMFpUVWaGljAU5XsqYvPQlchKWQJiO8A+5MGNMH16MNdva8a3MMet3ebGuWViVO3p8OThOiI/f1TmI/b1O6YSjNU6N5pgBwPBiM/ravTjY65SGfcaipccJHy+sZFXYAv1e5QVGtPa50jJkGghe4S0w6al8kSAIQoY8kZHjIh8fC4zCsdPn59Hj9Cpe7IvtmOkA+KKXMoYKM9Ex6xhwY8DtjZmsCCQWAsV60kJhPWmprrZobLJjReP2IKevutCEmxsm5OSC4ue7uwAIfeHWJBaQJccsRiljtP5JNVjFfdGlMMOAlfKyfbjQTAOmiTxEistPYYkgY8AjnNAKjHJhJkbm7+8FLw7O/Hx3F7x+HmPKrBhTLiQUDhf7tg6q7NtSQ2iqVTKwcsb9PcocM1bGWFtmDTrZp2vINKNHVjKZrtckCIIYKsQL/gCEaodAn5ny4yiLwg9NZQRkpYxRUxmD3YYiiwGlYknlvq745021IVCJ9qRpRSJBJUMdJswOH1uW1PPEcsz6NCxlVOuYSYsLoaWMORoqQ8KMiIjaGuBkiOSY1VcVwqjn0OP0okUs5fuP2F92dF0gLl8SOioj6NXglMI/kitlBIDhJcL2KhWSof1ljHQlMzK65cJsgOaWEQRByOkXh91G6y9jFCcQAOLxRnfMWHlj/B6zwPmrVkWfmdoQqGR60pIl06IwE7i8fqxr7gYALEhSmBWIC/KRnCgt4/KtCYZ/hKYy9pNjRuQT6Qz/kEflM0wGnTSgcvOBPnj9PD7dJTS3HhNBmKXWMdO2lBFQnswYmsjIKLcyxyw9IqlHdhFBjhlBEEQw8YZLM1iPTo8aYeaP0WMWJ5XRLQUnBH53dJlw3lQaAMJCoEwhrx8pBCrRnjQtyKQozBQbWnrg9PpRaTMpao+IRawF+V4plVG7uHy1c8wkYWbO7fCPhKRvX18fVq9ejV27duHaa6/Fxo0bUVdXh9GjR2u9fUSGYO5QWkoZJccseHecNqwImw/0YfOBXlQXmdDr9KLEYsAh4vwyQCZ0VM4GUwMTp5YkB0wDASGpNPwjumMmHBzT5ZgFlzKSY0YQBCEnXlQ+Q3LMVCTqxu8xixGXH2FhkUXmq5ll1jCxEo8XmbG324kfza/F/DFlmDWyJKzfOJGeNK3IpCjMFKyMccHYsqi9jUoJzDELv+7rSUEpo9JwOZbKyEoZWdtLroZ/qL7S/P7773HiiSfitddew4svvoiBgQH861//wplnnokvvvgiFdtIZAC1cyaSIVIpIyAEgADAtwf78J/tglt25PhyaYUQUC90EkFLx2yEtL3KhCSbNTMm1DFLYymjx+cPOgB2Ozw5VQpCEASRLFKPWTxhZk3AMYvgejHipTJGKmVkC31KZ5kBQiQ7c6NOnzYsahy72p40LcmkKMwUWvWXAbHnmGmaymhQV5EVmixqE79jg26flEGQS6i+0rz//vtx4YUX4vXXX4fRKHxADz30EH74wx9i2bJlmm8gkRkyEZcfOiuLBYBsbe3DO1taAQBHjS8PegxzzNr6XfD6UrOtzggntkQZJm5v56An7kFp0O2TToShiZOB8I/Ur/yxCwh2CvbzgYQmgiAIQk0pYwLhH6LoMsScYxYn/EP2u4HIfOXCrMfplc6FsYSX2p40LcmkKEyGRKP92/td2G4fAAdg3pjkhVmBLPzDLxM8PM9L+6smqYxMAKpMZWSljIXidvJQHiAylFAtzL755hucddZZYbdfcMEF2L49dtMlMXRQ25yZDFIpY0jM6/dt/eAA+PyBQcqPfLQzKFWp3GaCSc/BzyNubXmiSHPMNHDMii0GSYAejOPysZNmqdUYVtddzkoZUzxgGggEfxRbDNJFRecACTOCIAiGVMpoib2Al1CPGZtjFiOV0RNlYVJyG2Sl+Cz8o3PQg36FfTpsVmiZ1Rg35p/1pEUSScUWA47QwN2JRCZFYaI0Ntmx+Km1uOblTbjznW2q5r19JrplU4YVSUmbycCuwXgErnsg/r9bXBzQdsB0YqmMZoMOzDzOxWRG1Vea5eXl2LVrV9jtX3/9NSoqKiL8BjEUsUqOWRpKGVlcvswxa2yy47Z/bkXoulF7SOStjuMwTGV5oFq0jMtns9cAYH+c7Y3WXwYgaMB0qq181l9WajWiXJyl1kF9ZgRBEBL9anvMVAgzdlFsinAOYi5aVMcspD8HEFy9MhaZr9A1YwuJrOojHg0TK7H6x/Ox8vwZuP/UyXj0nOmoKRR6xV/ZsF/Rc8hR6ioxURgqvSIFlWSaZKP9tSxjBIRrHPa+yZMZ2b6q58IrmxLBojJcLjSVkeO4wJBpV+71mamWvj/+8Y9x55134pprrgHP8/j888/xxhtv4C9/+QtuuummVGwjkQHSGf4R2mOmNPJ2YV0F9DoOw4rM2NvlSJkwY+WcWggzQDixbbcPxE2SjJbICEA6qfr8PPpcXk2SkqLBhFmJ1QiTnsOuDgoAIQiCkKNkjhkQEGY9KqodWBQ+C/qQo7SUMfT8VVtmRZfDg71dDkyuKYq7DcwxqylSJswAwcGaU1sq/fyTI8fi3jXf49m1ezG2vACDbh8qC00RQ0TkqB0YPX9MadCi7iNnTcPh48qzyilTe50T+rvrmrvx353CCKH5o0s12SZB8Ogx4PYFVUv1SsEfxqQDRgD1c8xCUxkBQSD2ubw56ZipFmYXXHABqqur8fTTT8NisWDZsmUYN24c7r//fpx66qmp2EYiA6Qz/GMgpMdMTeTtnNpSaTZYqgJApFLGOOUbShmhcPZaLMfMZNCh0KxHv8uHzkFPSoVZt3hQLrUapXLOdKVBEgRBDAWUpjKyUkZVc8ykVMZYcfmxSxlD3bbaUgs27e/Fvm5lC5qtfcLj1AizUE6dWoOVn+5GW78bN735rXR7LJHFXKVQmKsUyQUL/ZvqqwuzSpQB6q9zGJFE6p3vbIv6/qnFahSEmdwx63EG2hm0QO04JtZjJl9csJn1QF9uJjMm9C4fc8wxmDFjBiorhZ1g/fr1mDZtmqYbRmQWefgHz/OarJJEYzAkLl9t5G2qI/OdGpYyAoFSkHiOWXMMYQYIyYz9Lge6Bj0YWx7xIZogOWYWg5SG1EE9ZgRBEBKKSxmt6sM/ArPIYjhmcVMZwx0zANirsJQxEccslI93dEQUI3KRdVx9QFwk6iq1hPxN6VhgVksi0f6JiFS1FJj0wACiOmZaoHaOWWiPGRAYMp2Lwkz1lebWrVtx3HHH4ZlnnpFu+8UvfoGTTz4ZTU1Nmm4ckTnYikZoE2gqCC1lVBt5K0Xm96XYMdNImI0QHb79PYk7ZkCgnLErxWWF3bJSxvI0pkESBEEMFfrEXpdUDJhmicMRHbMEesyAQACI0sj8QI+ZRdHjQ1EqsuS9Y4kOjA51zLJRmKm9zknk/UsEdp0zGCTM2DWARo6Z2Crj9vGKtje0xwwIXC/mYimj6ivNe++9FyeccAJ+/vOfS7e9//77aGhowL333qvpxhGZwyKLhk91ZD47ANjEVRS1kbeSMEuBY+bz81IZiUWDuHxAPnst+vZ2OzzSiZudQEMJROan1r3qkZUykjAjCIIIhud51QOmXV6/4lIuJXH5nmjCLEqPNHPMlIZ/JOuYKRVZ6/cFRFaiA6P39YQ6ZtkXqa72OidRkaoWKTI/QvhHvH1bKRZZQqgS0RzJMWaR+bkY/pGQY3bZZZdJM8wAQKfT4dJLL8XmzZs13Tgic+h1nDTM0qlw1kSiDIQ4Zmojb1kpY2ufS/PBx3K3UB43nAxse+0Dbqn+X47Pz+Nf29oACK6YMcLJGEjfkGl5KWM6B1sTBEEMBZxev3TuiRf+YTPppahvpX1m7hgDpo3SgOkoPWa+aD1mgcj8Vd8ciJl06PPzaO8XHbMEhZlikTUQeFyiA6OHgmOm9jonUZGqFlZmOBixlFEbYRac/hj/OxAoxw3s/6yUcTALP9tkUX2lOXz4cHz22Wdht3/99ddSzxmRG6idNZEo7Ispj8uPNgclUuRtVaEZeh0Hr58POqhrgUsmSrXqMZOHaBwMKb9kM01+07gDgDCnLNpMk3QNmY4Yl6/x+0wQBDFUYYmMeh0Xt+Sd4zipV0epMGNlisaEUhkj90h/sbcbrHX8/n81xZyfZR9ww8cLf1+FTZlYCkWxyJI9f6IDo1mPGROt2SjMAOE655Qp1WG3l1gMYdc5iYpUtbDrsEF34LqP7aclGvWYcRwXCJhT0CMmzeKTVS3ZzML/9+egY6Za/l5zzTW44447sH79ekyfPh0AsG3bNqxevRp333235htIZA52IE/lQc3P85LwC52P0TCxEgvrKrChpQf2fnfUWF29jkNNkRn7e5w42OtMqjk5FKm2Wc9Bp1EACptltqtzEAd6nVIPmdrG3nQNmZb3mFXIXjPVoTAEQRBDgV5ZGaOSY2KJ1YAuh0dKu4sHGx5tiJjKGLvHzB0h/EPtuYYFVVUXmhJON2QiK1Y5Xk2RGbNHBUQWc5UibSsjdGC0x+eXFjzHlhegqX0ga4UZELi+WjJjGFr73Ph0VycWjC0LC/FQ+v6FilS1RArm6NU4lZG9jsPjh8Pjg80Qe5+K5PraqMcswJlnnoknnngC/f39eOGFF/DKK6+gt7cXTz/9NJYsWZKKbSQyhDRkOoWljPJIVpbKKIfNQTlpSjXm1JZGPSmw8sB4Q5vVwvrrtIrKZwwvCU6STKSxVz5kOpXIe8zYa3p8gZ4KgiCIfKZf6sFRdp5Q65hJA6ZjpTJGEWZOb3B/TiLnGi0SGdWW7jEaJlbi+qPHhj022sDoA70u+HlBiLJyTbn7k218e7APAHDSlGr8aH4tAODTXZ2SGGck+v6ppSCCMGPXAMUahX8AspARBY5ZpFTGghxOZUzoXT766KNx9NFHa70tRJaRjlJG9qWU97QlgpAU1SMlR2lFtKjhZAkNAElkponkmKWwlNHr56UynRKrAWaDDjZxAGXnQGrnpxEEQQwF2CJVvERGhtoh07FTGWPH5YfOgErkXKOFMAMCLQpqhkUDQKUt+HXPmF6DO06ojyhCWsTgj5ElFlhNbOxP+i7efX4+bpUPo7XPhfZ+N/QcMKWmCGaDDhU2EzoG3PiquRuHh8zBOWJsGcwGXVhSdk2RGTctqtNmjpkpkmOmbVw+IBsy7fYBBbG/N5FSGSXHLAcXiBUdRZYuXYo77rgDhYWFWLp0aczHPvTQQ5psGJF5WA2wK4UHtUHZcOlkyuJGMMdM42RGrWeYMQLCTDjhJdLYWyYJs9Q5Zn1OD9jpnh2UK2wmDLgd6HS4MRYFKXttgiCIoYDSREZGiYXNMlN2UakklTHegGl2DkvkXBMQZolF5cthLQrr93Xj/72xGS4vj0fOmo76msKov7O7cxCAsIDr8/NwevxRxQ4L/hhVaoU1QvR7Kok0/DmW6GRu2fhKm7QQfuyECry28QA+bLKHCbPGJjtcXj+GF5vxfyfVo3PAE1f8qYU5ZoPu8FLGEo1LGUNfJxqRwm+YMKPwD41xu9245557cNhhh+GII47Ab3/7W/C8cADasmULzjvvPMycORPnnHNOWOLjW2+9heOPPx4zZ87Eddddh87OTuk+nuexfPlyLFiwAPPmzcOyZcvglx20urq6cMMNN2D27NloaGjAqlWrgp473mvnC5Y0OGYD4peqIMlSQTZbRWvHzCnNMNO4lJENxRYds0Qae8utwv/3OL1RE7mSpccRuOBgFwBSZD4NmSYIgggMl1Z44VqscpZZrFRGaY5ZBMfMz/NSGSQTZomcawIzzLTp39brOMwdXYb6KkGM7YkT2c+E2bzRpQCAHfaBqI9l8f+jSi2B6Pc0XLyzvr1QN5L17UUKVfn2QC8AYPrwIum2RRMEAffx9o6wlMw3vzkIADjzkGE4bHRZ3BaPRIjlmGkVlw8EZuXG+2z8fOSRRTZxW3IxLl/Ruyx3werq6nDaaadh+PDhSb/4/fffj7Vr1+Lpp5/GwMAAfv7zn2PEiBFYvHgxrr76apxxxhn49a9/jRdeeAE/+clP8P7776OgoACbNm3CHXfcgXvuuQeTJ0/GAw88gKVLl+JPf/oTAODZZ5/FW2+9hcceewxerxe33HILKioqcOWVVwIQHECn04mXXnoJGzduxJ133olx48ZhxowZGBwcjPna+YQlDeEfkRIZE2GEKMy07jFLfSmjcMJLpLG32GqAjgP8vBDQUVmoXegJIxD8EThUBHrbKJmRIAhCtWNmZY6ZwlLGBFMZ5eNYWBlYIucarUoZQxlbXoBvDvRhd8dgzMftEYdgH1dfic92d2FPlwMenz/iKJkW0TEbWWKVwlVSPYtVad/ewrqKIBG1+YDgmE0fVizdNqe2BEVmAzoHPdi0v1cKQ9nTOYj1+3qg44DTpw1LwV8hUGAM7v3y+vxSH5dWqYyAvJQx9uJEpH0YCMy9pfAPACtXroTXm/wb0d3djddeew333XcfZsyYgcMPPxxXXHEFNm7ciHfeeQdmsxm33nor6urqcMcdd8Bms+G9994DADz//PM45ZRTcNZZZ2Hy5MlYtmwZPv74YzQ3NwMA/va3v+HGG2/E3LlzsWDBAvziF7/A3//+dwDA3r178eGHH+L+++9HfX09zjvvPCxevBj/+Mc/ACDua+cTgfCP1PeYhSYyqmWYbJYZc13l+Pw8vtrbjVUbWvDV3ujzWkJhtemaC7MSQZi197vg9fkTauzVcRxKrakdMs1ObOx1gIBj1kGzzAiCINDnFM4TSoWZWsfME6vHLEYpY9AcTkNic0KBwFiXRGeYRWNchbDYvaszujDz+nk0i8Js3pgy2Ex6+Py8JNZCYcOlR5VaAmV5KXbMEhn+7PPz2NoqCLOpMsfMoNfhmDqhhPFDmcu2enMrAODwseWaC2Q5oamM8pCvQg1LGZn7Fa+U0RVNmJmZMMs9x0z11ebpp5+OJ554Art374bbnfiK+bp161BYWIh58+ZJt1199dV46KGHsHHjRsyZM0fqOeI4Doceeig2bNgAANi4cSPmzp0r/d7w4cMxYsQIbNy4Ea2trThw4AAOO+ww6f45c+agpaUFbW1t2LhxI4YPH45Ro0YF3b9+/XrpuWO9dj4RKTZVa0KHSydKTZEZOk74EoeKFDYb7JqXN+FnL26IOa8lFHZQsGg0XJpRUWCE2aCDnwdaxcGdxVFO6tHSp4DUD5mWHDPZSlmF9JrkmBEEQagtZQz0mCk7brNyxEgOUUzHTBR0ei7wOEDdnFCnxyedB7QWBGPKBWG2O4Yw29/jhNfPw2LQoabIjLpKGwBgZ4RyRp7nJcdsVKlVKpdLdfhHIn17OzsG4PD4UWDUY1x5cDXWIvH9/7DJDp7n4fX58fYWQZgtPiR1bhkgm2Mmuoxs8aDQrA/ah5LFalSWyhhtH7ZRKmOA//znP9i/fz/eeOONiPdv3bpV0fM0Nzdj5MiRePPNN7Fy5Up4PB4sWbIEP/3pT9He3o4JE4JXdCoqKtDU1AQAaGtrQ3V1ddj9Bw8eRHt7OwAE3c8GX7P7I/1ua6uw08d7bTUM9RFPUviH15+yv4WJvgKTIanXMBl0qCo0obXPjYN9Tqk+vvH72PNali2eiob66ElGgUQrvabvAccJs9f2djlwsNeFkSUW/Ol/uwEA584ajuPrq2AfcKPSZsLsUdEbewOzzNwp+YwCUfmBz6fcFnDpsnUfZ9uVrdtHaAN9zvlDNn/WfUFzzOI/PlDK6FX0eK9sjlPo45lY8/r5sPtinb+Oq6/EsRMq8IdPduL5L1swudqGv158aNi5pn1AEBNWow4l1uTO06GMFx2zPZ2D8PM89Dou7HPe0yWItjHlBdDrONRVFmDT/l5stw/gpJBt6Rhww+n1Q8cBI0rMUr/UoMeX0v1GTd8e2w4W/DF1WGHYfLoFY8tgMehwsM+F79r60drvQseAG+UFRhxTV57Sv0Xqy3ML7xnbt0ssRk1fV56YGet53VH2/ULRMXN5/fD5/RGDcbINpe+famH261//Wu2vRGRwcBB79uzBiy++iIceegjt7e246667YLVa4XA4YDIF7+gmk0ly6JxOZ9T7nU6n9LP8PkAIG4n33PHuV0NFRVH8B2UxFSXCDBDodaisTNHfYhR2wfIiS9KvUVtuQ2ufG/08h8rKIvj8PB75+Iuoj+cAPPLxTpyzYGxU4aM3CSKktNCs+XswptKGvV0O9PqB77rd2NDSC5NBh1tOnYqaYmXpV8PKCoC93XBxqfmM3OKRZFi5TXr+scOEmvdety91+4VGDPXvIKEM+pzzh2z8rF1i+fyIqkJFx8QxTuFis1/hMZS5YdWVhaissAXdVyqeK/QGfdhzdYpmgsUUfh/j/Plj8fyXLWjtd6O6qigsHfm7bqGiY0SpFVVVxZGeImHKygthMujg9vrh0hswuiLgHLHPuf3bNgBA/fBiVFYWYeaYcryx6SCae91hf9Oufo+0rcNrSlBjF8oavTxSeq46obwQw9d8j4M9TkRqkuAADCux4IRZo6RrjR1duwAAh9VVRty2hinVeOebg3htcyua2voBAEvmjMLwmuQGSMdjhLhvunx+YbvsgjAu1/gaqEzcbwfdvpjf6S5xH7aaDEGvXyILPLMUWVFaoEwcDwVUCbNt27ahoqIC48ePTyraHAAMBgP6+/uxYsUKjBw5EgCwf/9+vPDCCxgzZkyYEHK73bBYhA/SbDZHvN9qtQaJMLPZLP0/AFit1qi/G++52f1q6OjoQ4R2pyGD3yOslHT2OWG396XkNdrF1TA970/6NapE9+i7fd1YMKIIX+3tlgY4R4KHMOD5/Q37MFdMewqlo0cssfD5NH8PKizCis+7G1uwp1M4gSyZMQx6twd2u7ISF5u40ravvT8ln9GBDqFcxAReen6DT9gv2npSt18kC8cJJ/ah/h0kYkOfc/6QzZ91h9iDxbu9io6Jfqfw+K4Bt6LHs5L6/l4H7HxwL5nTIVyv9DvCn+tgu/CzUcdFfZ1yvVAm1jXowdbdHagOKVf8fl8XAKDKZkrJ8X50qRXb7QP4ensbCviKsM/522bh9YfbjLDb+zBMdBu37u8J255vd3cAAEYUmWG398Ejvjd9Dk/Kz1U/Xzget0aozgGEa42fLxyPrs5+6bavdglJ4nUl5ojbViK2kry5Yb902xvr9qG+zBqzyidZXIPCNVO/S9iXm8U+OKsh+j6UEGK11KDbF/M73Wpn+zDCXp/NdNt7oAfekuRHOaQatm/HQ5Ew27lzJ376059i7969AIRkxuXLl2Py5MkJb2BVVRXMZrMkygBg3LhxOHDgAObNmwe7Pbj/x263SyWINTU1Ee+vqqpCTU0NAKEkkfWRsfJGdn+034313KHlj0rgeWTdCUQNrDnT6fGn7O+QesyM+qRfgwWAHOhxgufV1X1He22W5mTS6zR9Dxqb7Hj/O2E/+7CpQ7p9QoVN1euwWWadg9H/hmRgcfmlFoP0/Cymv2MgNa+pJUP9O0gogz7n/CEbP+s+1odjUnYeY+EfTq8fTo8/ZrgUz/OSY2bQcWHPL/WY+fiw+1yeQKpwtO0yG/QYU16AnR2D+K6tH1Uh6b4sObim0JyS931seQG22wews2MQR46vkG5nnzNbtBxTZgXPB8ofW3qcGHT7pF54AGhmiYylFvB88KysVO8zi8S+veWN29Eecu3xs4XjsGhipbQNg24fdoqLntOGFYVtW2OTHS983RL2Gh2DHty6ekvUnnMtsBqC3zPWzlBsNmr6HspTGWN9p2Ndg9lMeri8fvS7vFl3TEgGRUWZv/vd71BTU4MXX3wRL7/8MoYNG4bbb789qReeOXMmXC4Xdu3aJd22c+dOjBw5EjNnzsT69euldD2e5/H1119j5syZ0u+uW7dO+r0DBw7gwIEDmDlzJmpqajBixIig+9etW4cRI0aguroas2bNQktLCw4ePBh0/6xZs6TnjvXa+YTSORPJoFVcPhAeQZ/IvJZQAuEf2s0xY/NOIjWt3v9+k6JQEkZZilMZA3H5slRGW+CiIh3zYQiCILIZteEfNpMerK0oXgCIRzafLHJcfqDHLBR2/jLF6b+ZWCWUR37fFh6oIUXlazTDLJSx5ULLRLQAEHb7WDEgo6zAJPVW7wyJ2WczzEaKbRjpuIaR0zCxEn86X7hW1HPAoaOE0s/Q+apbW/vg54Xh06FjbpRG7ytNllYLuxbz+nl4fH70OcNH5miB0vAPaR+OsHghDZnOsQAQRcLsf//7H+666y7MnDkThxxyCB544AFs3boV/f398X85CuPHj8exxx6LpUuXYtu2bfjkk0/w5JNP4sILL8TJJ5+M3t5ePPDAA9i+fTseeOABOBwOnHLKKQCACy+8EKtWrcIrr7yCbdu24dZbb8Wxxx6L2tpa6f7ly5dj7dq1WLt2LVasWIFLL70UAFBbW4ujjjoKt9xyC7Zt24ZXXnkFb731Fi666CIAiPva+UTAMUulMNMmLh8IH9rM5rXEInReSyhazzHT+qBbluJUxkhx+QVGvfR+dAxQMiNBELmJz89jXXM31mxtw7rmyGNWeJ5XPceM4zgUKYzM98hi8GPH5UcQZj5l569J1cKg56b28Gu61t7UzDBjSJH5HeHx992DHvQ4veAAjC6zSrePF5MZQwdNt/SwREZhkTYdydKhMKFdVWjGpfNGAwDe29oWNI9Lml82PLxnL5HofS2RL0IPun3ScOliDaPygcD1ZbzPJjBcPZIwE7apPx+F2cDAAEpLS6Wfa2pqYDKZ0N3dndSLL1++HKNHj8aFF16I2267DRdddBEuueQSFBYW4k9/+hPWrVuHJUuWYOPGjXjyySelAc+zZ8/Gvffei8cffxwXXnghSkpKgoZgX3nllTj11FNx/fXX42c/+xnOPPNMXH755dL9y5Ytg81mw/nnn4+VK1fiwQcfxIwZMwAg7mvnE5Y0zDHTKi4fkDtmTvBiwpPaeS2hOL3C9lk0EmZaH3SlVMYURdd3OwKJTAyO41BRkFqnjiAIIpPIx6zc+c62qGNWBj0+ME2kVJgByiPzgxyzWHH5vnBh5o7hNsiprxKE2fft0R0zrWeYMZgTtqdrMGwGKXPLhhebgwRDnSjmQoXZPhaVLzlm8naM9NS6sfmeZQVGLBhThqpCE3qcXnyyM9CysPlALwBg+vDwfqNEove1xKDjJCHv8PgCpYwaDpcGALNB7I/vcsScLcv24UjXYOy6ccAVe3FjqKHoKMLzfFjYh06nS3pHLyoqwrJlyyLeN2PGjKiR/ACwZMkSLFmyJOJ9er0eS5cuxdKlSyPeX1FRgZUrV0Z97nivnS9Y0lLKGIjLT5ZhojBzePzocXpRajXiiLFlKDDqpJkcjEqbCbccNyFunXbAMdOmlFHrg25ZCgWSn+eli4bSkDKGsgIT9ve60EmOGUEQOQYrNw+FjVmR9/iw/jL5Ba0ShAtdh9THGw02XFrHIeIiIotajzVgOt52TawWHKjmLgcG3T7pgpfneRzsE8ROqhyz0WVWcBBGB3QOeoJaC5gwGx0y5yswyyxQytjv8kql9yNDHDMewnuhZUtCNNg5scJmgl7H4bSpNfjLF8345+ZWHFcvZBlsEaPyp0UQZlq0YCSL1Sj0bg16fNI1gJaOWWOTHQ9/IFQO7bIP4JqXN6G60ISbG8KvyVy++KWMuTbLTNFRhOO4MGGWbCojkf3IV5tSxaAo+mwaHDDNBh0qbMLBipUzvr2lFYMeP0YUm/HH8w6RAkLuPGmiouZZ9rdr5ZhpfdBlA6ZT0e/V7/JKK8HyHjPhdUVB6CDHjCCI3EFtuXm/SzjuCjPMlF8XBWaZKXPMIrllgMJSxjg9ZuUFJlTaTOABbJe5UH0uLxziOTBVwsxi1GOEmKgX2me2Wwz+GBsizCawUsaOwLayMsZSqxGFonPJFpeBwLVGqukSz4ms//v0aUIg3We7O9HW5xL+9buh44ApNeHCTIsWjGQpYIvyslLGEo2EGVv06A5ZkGCLHqGOtMsTo5TRnJtDphVdbfI8j3POOQfHHXec9M/hcOCSSy4Juu24445L9fYSaSQdjbNaljIC8j4zF/w8jxfWCclGF84ZhXljyjBnTDkAYHeEevZIuFgpo1EbYab1Qddq1EmroZ0alzOyA2eBUR92UVAuCmByzAiCyCXUlpv3qQz+YBRLpYzKHLNI/WXC7WL4R4RSRjU90oEAkECfGQutKLUaU+o2MeG1KyTMgw2XZgEhDNaX1t7vRo8ohFrE4A/WXwYAOo6TFlXT1WfG+q7ZOXJMeQFmjSyGnwfe2dKKzaJbVldpC0qUZGjRgpEs8sHcbP9Uu39HIpEee3eMPslA+EceljLK+7eI/EEel58qBjUWZsOKLNh8oA8He534365O7OlywGbS44zpwqrVBLHJeWdHeC19JLQO/2AH3UhlMgw1B12O41BeYMSBXhe6Bj1SGpUWsBNeaBkjAOoxIwgiJ1Fbbq42+INRojT8gzlmERIZAbljFn6eVtpjBgD11YX4bHcXmmR9ZqnuL2OMLS/Ap7s6wxyzPSGJjIxCswHDi8040OvCzo5BzB5VIvWXjQyZZ2U16oWKEnfqrmPksHMiqyoBgDOmDcOGll6s3nwQk8VrkOpCE3x+PuK5vkGM3l/RuD1okaCmyIybFtWlLCqfUSCNGfBL1wFa9JipWfSYU1sKQFkqY645ZoqOJGeffXaqt4PIQphj5vT6IvYZagFb6dAilREARpQIJ5D9PU58slMY4Hj2jOFSek+9WDoQGrMbDafGwgzQ/qBbVmDCgV6X5iIpUlS+/DUB7V06giCITKK23Lw/QWFWrDT8wx/bMYtZyihWfCg5f9Uzx0yWzHiwL7WJjIxxFcKCotwxc3v9UnnimPLw8LW6ShsO9Lqwwz4gCLMe5pgFL05aTXp0OTxpc8xYEBdrMwCA4yZV4uEPmtDc7ZRmrX26qwuLn1obsa8KEK4TFtZVYENLD+z9blQWmjBrZElKnTIGc/IG3F5p4UGLUsZEeuxjO2ZiKaMrD4UZkZ+w0gU/D7h9vJSioxVenx9ucTVQK8esWjyB/Pv7dnQMeKAD8IPZI6T762uE1apdHYOKxKY0x0yj8A+GlgfdVCUz9jijCzOpx4xKGQmCyCFYuXmslX15ubk0XFq1MBMds7jhH/F6zGLNMRNuUybMhHPj9vYBycmRHLMUzTBjMEdM7pg1dzvg54FCs16q0JAzvsKG/+7slJIZpUTG0lDHTJyXla5SxgiO2do93dK1jpxIYTJy9DpOco7SCbse6xhwJ5Q4Go1EeuzdMWbxBRyz3Cpl1M4GIHIOeU15KmaZye1nLVIZG5vs+PP/9gAAOgaEg6PRoMOW1sAK4JgKG/Q6DgNun3TSiQX7u80a9ZjJYQfdk6ZUY05tacIrYakaMh2Iyo9Qysh6zKiUkSCIHEJtj0+v1GOmbvFOeVx+bMdMr48el6/GMasts8Js0MHp9aNZ7Nc62JvaREYGE2Zt/W7pIls+WDrSAmpdpRiZL7psUo9ZSDl/gRRilh5h1hnSY5bpgdGJwBwz1mNoNug06TFMpMc+VtWSzSxsU17OMSPyE4OOk04GqSgDYCtYZoNOKsdIFCnpJ6Re3+X1ByX9mAw6jBEHVSopZ0yVY6YlqRoyHegxi+SYkTAjCCI3YeXmoeelEoshzN1IuJRR7N2N32PGhJn6VMZYw3lD0eu4sACQtjSVMpZYjZLDxIK5WCLjmLLIfdOByPwBeHx+qewy1DGzSEOmU99j5vXz0ufJ/p5MD4xOBOaYsfdUq0TGRIJNYjtmwnYNkjAj8olUBoBIiYxJrsSoXZEaLyY6KRFmqegx0xqprDADpYx9Lq904JTj8/NY19yNNVvbsK45MDwy2u0EQRDZxKGjSiSxM0UMbDhj+rCwkrNESxlZ+Ef8VMbYpYxs8ZQJODlqw6uYMGMBIOnqMQNkyYyiU8Ycs0j9ZezxOk4Qtt8c6IWfDx6Zw2DuTzpKGbvFc7COC3y+mR4YnQgBx0xwTLUcLs0WPUKds5oic8SSTneMOWYFOVrKmJAMXr16Nf7yl79g7969eOONN/C3v/0NVVVVuPrqq7XePiLDWI069LmEABCt0SqRUemK1Pp9PTi5uhjjK23A93bsipPMyPO85qmMqaBM6jFLTSljJMesyGKAXsfB5+fROeiWhnsDgnsZGmxSXWjCSZOrsWZbW9jt0ZqfCYIgMsWXe7sBCCVziw8Zhq0fbA+LcwcST2Vk4R89cWZBeiTXK1r4R/QeM7fK8xfrM/u+vR8+Py8dq+XH91QxrqIAX+/rwW7xPd4TZYYZw2zQobbUij1dDny8vQOAkMgYWvYohZilQZixCpJSq1FyfbJhYLRa2HvG2j20iMqXw3rsz376CxzodeHnx47DD2aPitjOEesarJAJsxwL/1B9tfmPf/wDy5Ytw5IlS+DxCDvh9OnT8fTTT+Oxxx7TfAOJzJLKMgCWyJisMFO8IiXWfit1zFwyJ0irOWapQAr/0HjYM7tgiFTGoBNj+kNfl5WUhgrltn43nvtqX8TbIw2VJAiCyCRr93QBAOaPKZM5Sf1hj0u0lJE5Kk6vP+hcEwpzzAwKShl5PlicOWOUgUVC7ph1DLiFEBAOqLSlXjTIA0B4no8alS+HlTP+Z4cgzEITGQGZY5aGcrfOCImM2TAwWi3sPevReLi0HL2OQ1Wh4MSOLLFG7bFnoSkxUxnzvZTxueeew/3334+LL74YOnGl5swzz8SyZcvwyiuvaL6BRGZhwxlT6ZglG5WveEVKPLkwYcaSGaMhP1mah0CPWTrj8gFZn5kYtKKkpDQa2db8TBBE/sLzPL4Qhdm8MWWSAGjrd4eFdfSJq/WFKi9ebWY92LVoX4wAECkuP8qFq7wPLjT/Q3LMFC4sTqiygYMwuHmrGJpVVWhOS0T7OFkpY1ufCwNuH/RceM+YHBYAEi2REQgs/KajxyzSDLNsGBitltDF8uIUCDMgcO3HFjciwQJsIvaYmQMDpmNdyw01VAuz/fv3o66uLuz22tpadHd3a7FNRBZhTaFjNqBRKaPSFanZo4QVqdFlVhgUJDOy1UaDjks6nCSVsJNA96Abfg0PTmy1LFIpo/x1O8RVQiUlpdHItuZngiDyl+ZuJw70umDUczh0VIk00BgAttuDS+ATLWXUcZz0O7ECQJhjEM31MshKHL0hfWbSDCiFjpnNZECtGLbx352CC5WO/jIAGFMuvO6+Lge2HugFAIwstUbtrQMCjhljZEm4Y2ZJYyojE2ZlIfH+avuqMo3VGCrMtOsxkyMJsxiOV6xyXHbt6OMR03UeaqgWZjNnzsSbb74ZdBvP83jmmWcwY8YMrbaLyBIsKazPlnrMjMmtxqhdkTLodRitIJlxKPSXAYELAh8PfLKjQxPnief5gGMWZbWMxQGzeOBkm5ezqfmZIIj8hZUxzhhRLF2kThBFwPb2YGGWaCkjEKhGiBUA4o0Tl896zIDwPrPAOUz54icrZ/zvzk4AqZ9hxqgpMqPAqIePBxq3tQGIXcYIAHUVwcLM4fGGnf8K0hj+wc6FoQEkgCDOVv94PlaePwP3nzoZK8+fgVVXzcs6UQaEB7KlzDEzxy9FZLP4Ii1MWI16sG9FLkXmq77ivPPOO/Haa6/hnHPOgdvtxj333IMTTjgBH374IW6//fZUbCORQawpXG1iB8pkSxkB9StSSvrMnB7lM2AyRWOTHec886X08y9WbcHip9Ym3bM14PZJJ7iojpk1uMcs2eblbGp+Jggif/lC1l/GmBCSWAgAfp6XCTP157ESBQEgSnvMgPBZZkyYmQzKKz5YAAjryU6XY8ZxnOSa/evbVgDRo/IZoe7lY5/sDjv/pTf8I7zHTI5Ws0tTjTXkmiwVPWaAPLwjlmMcvRxXx3GBZMYYzzHUUP1u19fXY82aNfjnP/+JHTt2wOfz4bjjjsPixYths9niPwExpGCiJJtLGRks6WdDSw/s/W5UFpowa2RJxIPf+AobADt22qMnM0ozzDQYrJgKWNBGKCxQI5kSCRaVH2uwJHPMOsQTOCspTaScMduanwmCyE+8fl5KZJwnF2aiY7ZDds4YdPvADJqiBMq9ihVE5rvjpDLqdRx0HODnAa8/+DydiGNWXx18HVdTlPpERsa4igJsbe2XYtpjOWaNTXYsfWtr2O2h5z9LOh2zKKWMQ41QxyyRfVsJzDFTUsoYrZTXZtJjwO0Lc918fl7RtWA2kpAMNpvNWLJkCXQ6Hdra2rBu3Tq0tbVh3LhxWm8fkWEkxyyL4/LlsBWpeIyvjO+YZXMpo9LZbQvrKhI6GMWKymcE5qcJJyNWUhpJLMYj25qfCYLIT7490IsBtw/FFgMmi/PLAGCi6CRttw/Az/PQcZzUX2bScwmdJ6TI/BjhH944c8wAwTVz+/iwUka1PWZA4O9k9LmE8sB0HJ9DhRhz0EJRc/4rSOOAaXYurIjimA0VQh2zVId/xHK7WPhHtO+XzWwA+t1BqZvRRvYMldE8qo8k69atw9FHH40vvvgCbW1tWLJkCe666y6cccYZePfdd1OxjUQGSWX4B4vL16KUUS3jxdr0WMmMTIxaslCYKZ3dlmigRqyofEaFlAYZ2I6GiZU4rj78wFdTZMYlc0cNmeZngiDyky/2dAMADhsdXGpWW2aFSc/B4fFjf4/g6CQ6XJqhpMeMpTLGCqCKNssskcXFbw/0Qv5KKz8NLw9MFaNDShcjxd8D6s5/qWzHCEUqZbTllmOWqlJGlqoYs8csTviNLWTIdKyRPUNlNI/qK86HHnoIp556KmbOnImXX34ZZrMZn376Ke677z48+uijqdhGIoOkMvxD61JGNdSWWmDQcRj0RE9mlEoZs1CYKZ7dlmCgRryofCBQrsHi8hlsCOvl82qDmpxvXDgeq388H7cfLwS1FJn1Wdv8TBBEfrJWFpMvx6DjMK4iOAAk0URGhhLHzB0j/EDaNrHMMXqPmbJzWGOTHbf9cytClyrTcVHb2GTHbz4IdsEuff7riK+p5vxnNQl/e6rnmPE8HyhljHHeHAqEh3+k5u8plOaQxSjljbMPB4SZT7GTmu2jeVRfcX7//fe47LLLYLVa0djYiBNPPBEmkwnz5s3D/v37U7GNRAYJrDalwjHLnDCTJzPuiFLO6BDFaJ/Lh3XN3Vn1ZVY8uy3BQI14UflAoMes2+GR3pvdnYPY2TEIvY7DpYfVhjU563UcjhWFWJ/Ll1XvKUEQ+U2/y4vNYlT7/DGlYfdLASBin5kU/JGgo8CciJipjP7YqYxA8JBpBs/zqoRZJi9qmcvRETKLM5ogVHP+C1T9pFaY9ToDiZDRwj+GCukqZSw0szlmMXrMfLEXyNmQ6X6XL+WVROlCtTCrrKzE9u3bsX37dmzZsgWLFi0CAPzvf//D8OHDNd9AIrMEwj9Sl8qYbFx+orByxkgBII1Ndvz2wx0AhJ6Ca17elLZyDiUond2WaKBGvKh8QBBtHABe9viPxPfnsNGlUS9WSq1GqZG9fSD6HDmCIIh0sq65Bz5eGFQcaSbWxMrIjlmipYzMiYg1xyxeKiMQEGYeWfiHR+aeKan6yNRFbSKCUM35z2pIT49Zlygqi8wGxQ5ltmLSc2DrAHoude0mTFRF6zFTsrggL2VMdSVRulC991x++eW47rrrcM455+CQQw7BvHnzsHLlStxzzz247rrrUrGNRAZJ5WoTK2XMRI8ZEAgA2RXimLHVu76QVZxsqlFWO7tNLazHLJZjZtBx0v2stv7D7cJQ0kUxyhM5jkO1GMEca8A3QRBEOvD5eaxr7sarG1oAAPNGl0Z8HHPMWEw7O0ckW8rYGyMuP5DKGKuUUewxk4kx+cDdWL/LyNRFbSKCUM35j7k/qXbMOsRz4FBPZASEczR734otRnBcaoJf5GWIkXDL9udo+zCruBp0+1JeSZQuVB9NLr30UsydOxf79+/HUUcdBQBYsGABjj32WEyePFnzDSQySyCVMbdKGYHIs8xSnXaoJWx2W2j6UE2RGTctqkuqd6tHTGWM1WMGCE3OXQ4POgc8OGh2YsvBPnAAFtZVxPy9miIz9nU7s0KYDeVYXYIgkiNSgtsH39sxf2x52DGUReY3dzng9PjQ70yux0xR+EecAdNA5FJGl/h7XJzfZWTqojZRQaj0/MfmmHn9PDw+f8x0y2QIJDIOfWEGCH1m/S5fwmW6SiiUxeXzPB8mAN2y686YqYwQxJ2SkT1DYTRPQu/41KlTMXXqVOnnWbNmabU9RJbBSiBSMmA648IsOJmR4zhVq3dKYvlTDZvd9uqG/Vj+4Q5U2oxYddW8pIVFtzO+YwYAZQUmAIPodLixc7sgcGeNLEaFLfbJu7pQcMza+jJbUjDUY3UJgkicaLMge5zeiLMgK2wmlBcY0TnowY6OwaRLGUsUhH9IpYy6+KWM8jlm8tAEJY5Hpi5qkxGESmaXWmVBFg6PL2XCrEtyzLLbjVGCz89LyZx6Dikbl8BSGX1+oWQxdGaqfHEhWippoayUUcnInqEwmkf1Hjp58mRMmTIl6j8it0iVY8bzvJTEk6lSRnky40HRuRmKNcp6HScliLl92hxApbh8a+wLjgpZMuOHYonnsQoETU0WlDLmQqwuQRCJkWjYxQSpz6xflsqY2DmMlTI6PP4gd0COJ86AaSCKY6YyVTjV5fHRSLZfms0uDQ2aYhj1Oun9SWWfGQsuKR/ijlljkx2Ln1qLVvG8uKvTkbL+eqtRD7ZmEGnItFs27iHa4kJgFprw+w0TK3Hq1Oqwxw2l0Tyql3n+9re/Bf3s8/mwd+9ePPvss/h//+//abVdRJbA4vK1rs92ef1g55BMOWYGvQ5jyq3YYReSBIcXW4ZsjTI7wfc5tRkGGphjFqeUUVwd3G4fwIZ9Qg9ArP4yRqaF2VAqWSUIQnsSrY6YUGXDF3u7sd0+mHQqY6HZAB0H+Hmg1+VFpSH8vOLxKxgwHaHHLF7MeCRSWR4fjXS4HFajHn0uLxwpjMzvHGAzzLLr2kAN0RxktliptbDRcRwKzQb0Ob0YcHlRGfLeuRXM4StgASKya9QmMZznh3NGYmpN0ZBrUVB9NJk3b17YbYcffjjGjh2Lhx56CCeffLImG0ZkB5YUDZiWN3tajZkRZgAwrtwmCDP7AI4cV46ZI4ph0uukhutIZGONMiuJ4SGIs9IkVu14nlcUlw8EVgf//V07eABTagoxvNgS9zVY+EdbhoTZUCtZJQhCWxKtjpA7ZkwGJdpjpuM4FJkN6HF60ev0hF2YAup6zDwyx8zpFc6xaoZLA8rKA7Um1YLQatShzwU4vKkTZl1D3DHL1GJlERNmEUSzknEPAcdMuGbZbh9AU/sADDoOV8wfHbdPPhvRrKuvvLwcO3fu1OrpiCwhMMdM2wOa1F9m1EOXosQfJYytECKRP9nZganDirC7czCmKAOys0bZoNfBZtJjwO1Dj9OTlDBzev3SATFeKSN7HVbqunBC7NAPRqYds6FYskoQhHYkWh0xkc0yax+QFpgS7TEDhACQHqdXClwKhfWYxXLMjNKAaVmPmYI0x2iw8sB0IheELp0OZr9fM0HIrmNSOWSaJRMP1RlmmVqsLLQYgJ7ATEA5LgX7MOtTY8Luva1tAICjxpcPSVEGJCDM3nzzzbDbBgYG8Oqrr1IISA4iD/+IlJqTKJkO/gAE2/6V9cJQ9PX7enHNy5uk+06dWo2v9nanrZxDC0osBlGYRU/4UgIrYzTqORTEcDMbm+x47D+7gm57Zf1+jKuwxX2PasTwjy6HBy6vX/WqbrIM1ZJVgiC0IdGwi3EVNug4ISCELWAlM4BXisyPEgCScCqjgjKwbEOv4zB3dCkqK4tgt/eB12iWNbvOcKawx6xziDtmmVqsLJSlKoaipBxXmoXm9sHP81gjCrOTp4T3mQ0VVB9NHn300aCfOY6D0WjEIYccQj1mOQhbafLxwkFfSeyuEgY8gnjIlDCLVkvNOKauAnedNGlIxagXW4zY3+uKeoKXEysiXorKjzG/JNr71zHoUVSLXmI1wGzQweX1o73fhVGl4cNcU0muxOoSBJEYifY2mQ06jC6zYnenQ6oUSMYxK5aSGeM4ZjFTGQOR8Awl/Tn5giWF81gZQ90xy9RiZZHYx87C4OQwxyxWgI28lHFDSw8O9rlgM+lx1Hhl1TvZiOqjSWNjYyq2g8hSWPgHoG3U7GAGh0srqaV+5KOdOHZC5ZDqL2Jlh9FKYhjxIuK74wyX1qIWneM41BSZsbfLgda+9AuzXInVJQgicVhv031rvkO/K3DRHq86YkJlIXZ3OqSfE+0xA4QFNSD6LDPJMTOoc8yYaEyklDHXYLPMBlMkzBwen9SHX24bmo5ZphYrC8WFiQFXDMcsVimjKZAc/s63glt2XH3lkF6QSGjL29ra8Mgjj+D666/HT3/6U/zmN7/B7t27Nd40Ihsw6nXSxamWASCZLGVcv095LfVQgiUoxpqJoyQinv1+tP4yNbXosWARyZnqM2MXZVZj8GFwKMXqEgSRHA0TK3HyZKHs6ejx5Vh5/gysumpezO8/6zNjJNVjFq+U0a/AMZN6zMgxi0RBinrlGcwtMxt0Mcv/s5lMjUsokoZMR3DMVJQyAsCabUO/jBFIQJh99dVXOOmkk7B27VqMGjUKo0aNwpdffokzzzwT69atS8U2EhmGXbhqeVAbkIV/pBv7QG4GP8QriVHqdLGTTLSofK1q0VMVAOLz8/hqbzdWbWjBV3u7w+YQyWmYWIn54gw4ADh9ak3cizKCIHKLPV2C+7VoYmXEWVihTJAJM4OOw+YDvTGPM7GQFtSihn+o6TELLJ4OxR6zVGFJcfhH50Cgv0yrPvxMwBYrQ+fKpXKxUuoxi+GYxdqH9ToOzFBzev2otBlx6KhSzbcznahe5vn1r3+Niy++GDfffHPQ7cuXL8dvfvMbvPjii5ptHJEdWAx69Lt8qhpnY/UwAZl1zCJFEkd83BALfmAJRL2OyCuvSp2u71qFGSDRShm1qkVPhTCLV6YZCfljCy0GKl8kiDxjT+cgAGBMeYGix7fLjlleP49rXt4U9zgTjfjhHwrmmOkiOGY+EmYMtgDsiDLEO1mGen+ZnHSPSwj0mEWIy4+TysjO9/Ig7UG3Hx/v6BjSi6uqv7FNTU0455xzwm4/99xzsXXrVk02isguJMdM4QwQNjn+mpc34c53tuGalzeFTY4P9JhpNrFBMbNHlYStCIUyFIMf4jlmip2uAeGiI1opI6tFj4WS90/rWWZKyjQjIReGSoJTCILIHQbdPumYMaYsfq9rY5Mdv/4gvPIg3nEmGoUWQTTs7BjEuuZwhz/gmCkYMB0hlVHNgOlcxZLyUkbhvFE2RBMZQ2HjEk6aUq3IQU4GqccsQiljLMcs2vl+0ONL6HuYTaj+xo4cORKbNm0Ku33jxo2orBy6CpWIjppEI6UXxwMZdMwyVUudapjDFU1cKHW62IVBNMdMq/dPS8dMaZlm6EWP2+tHh6y0NVoDPkEQucneLsEtK7Ma4849SvQ4E43GJjt+95Ew/3Vnx2DERczkSxmHZs+TlkjhH6kqZRQds4occMzSjdRjFqmU0Rd5cUHr72G2oVqYXXXVVbj77rvxu9/9Do2NjWhsbMQjjzyCe+65Bz/60Y9SsY1EhrEYmDCLXQag5ssymOG4/EzUUqcayTGL0qug1OliJfLReswAbd4/LYVZooEkbf3Br91Hwowg8gqWrji2PL5bplXwERBYxOwOOV7LFzF5nldXyugPL2WkVMbAdUaq4vKlHrMhmsiYSWI5ZixZ1ByyD2v5PcxGVNeRLVmyBADw/PPP49lnn4XZbMa4cePwwAMP4JRTTtF8A4nMo7SUUc2XJZNx+Yx011KnmhJLbMdMaUT8s5/vBRDdMWMk+/5Vi0Ome5xeOD0+yZlNhEQDSUJFITlmBJFfsP6y0Qr6y7QKPlK6iHnkuHIwqWWMcVyV5pj5wksZY82AyhcCVT+p6jFjpYzkmKmlSBJmygdMZ2oYdrpIqMFnyZIlkkAjch+lBzU1X5ZMpjLKYbXUuUC8HjMg4HTd+dZWKYaZMbmmEIsmVOB3H+0AEL3HTE4y71+xxQCLQQen14+2fjdGK+jviEaigSRMmJVYDOhxetHrImFGEPlEwDGLL8y0Cj5Suoi5rrlb+jl2j1m4Y0Y9ZgEKUjxgOlDKSI6ZWgKpjNF7zEL34UwNw04XioTZm2++qfgJzzrrrAQ3hchWlMblq/myZDKVMVdh/REDbh+8Pr/UEB5Kw8RKDCs2o7nbiSsX1GJEiRUPvf89trX24+0trVLPVXOXA1NqilLmIHIch2pxyHRbnyspYZbocEwmzCZWF+Krvd3oc3rA8/yQjjwmCEI5e8QeMyXBH1oN4VW6iCkPRjIp6DHz+CguPxLsGiZVwqxrkMXlD00hkEmYY9YfI5Ux1PXN1DDsdKFImD366KNhtx08eBBVVVXQ6wMX1hzHkTDLQViPWby4/FkjS1BpM8WcE8a+LJlMZcxViswGcAB4CK5ZRYyxAKz04uQpNRhbXoCOATf++N/duPe976XSmbve/Q6PfbIroQhopdSIwizZPjOlZZqhIvNgryjMKm34am833D4eLq8/qbJKgiCGBn6ex94u5Y5ZoseZUJQuYrIqCPba0TBGcMyiuQ35iJoAs0RgjlmupDKmk0KzuKDs8oYtikr7cMgis1bfw2xF0VVxY2Nj2G2zZ8/G888/j9raWs03isguLApXm/Q6DocML8KH2zuiPoZ9WQY95JhpjV7HochiQK/Ti94Ywszl9UulpCxFqrZUWC0OzTBijeipCkTRMgCkYWIlHj5jCn75z61Bf0dNkRk3LaqLuP3sdcdVFEDPAT5e6DMjYUYQuU9rnwsurx8GHYfhJRZFv8PKwUPnJcY6zoSidMV/UnUhAEF4xXLxpR6zCKWMocEJ+UhBCnvMvD6/1D5AqYzqYY6Zj0fYomi0VEZAm+9htkJ2BREXK5sBEmc4Y/egB2v3dAMI9OwwQr8smYzLz2WKRWHWE2XINBBY3TPqORSa9fD5eTwi9pVF47cf7sDCugrNV6CkWWb92swymzGyJEiUzR5ZjCfOnxl1u5kwG1ZsRpHFiG6HB70ur7RdBJGr+Px8zgQfJcpuMfijtswqlQMqIdngI6Ur/kxnxUtWjJTK6KIB0xLsGsaRgrj8LvFcq+eAYgV92UQwBSa9VOnT7w4OAYu3uJBrAW4M2ouIuCh1zJ77ah8GPT5Mri7Esz+chbvf/Q7/+q4dx9SVY9niaUFflkExGjWTqYy5SInFiH1wxgwA6RRLTcsLTOA4Dhv2dStO09Q6KEVLxwwQ+uLk9Lt9MQ/SB/ucAIBhRRYUWwyCMKMh00SO09hkD1tpri40pbRsORvZIwZ/KOkvCyXZ4CglK/47OwYAIK5olIRZhFRGKmUErKbU9ZixqPzSAhN01JusGo7jYDPr0e/yod/lRaWs0kfJPpxLAW4M+sYScZEcsxgHta5BN17Z0AIA+PERY2DQ63B0XQUAYa6W/OLYz/NSSQE5ZtoSSGaMLi46pEZlobY7k9GzqRJmI4rN0s88H3nI5IDbKw21rCkyS+8dzTIjchk2Pyt0MUY+PytfYI6Zkv6yVNAwsRKrfzwfy8+cKt32j0sPlcSxxyscu+KJq0AqY6CqxU3hHxLyqh9/lPOBz89jXXM31mxtw7rmbsXDiTsG2UIn9ZclCssaCI3Mz9d9OGHHjFLL8geWiBMa/iEvhfnPDjscHj+m1BTi6PHlAIAJlTYAwHb7QFBT56Dsy5fpuPxcgyUzxprHxRwz1oOWyejZGnGWWZtGwmxvtyDM5o8tw6pvDsLp9aNjwI3KwvDSRCYGi8wGFJj0KBJje2mWGZGrKJ2flYqy5Wxkj7iQM0bBcOlUoddxWDihUgrO2t3pwIwRwnHcIwqtWDPMgNgDpqnHLCDMAOE6JnRBOBkHuStkoZNQT6FZj9a+8Mj8WD1muYwiYdbQ0BAmxBwOBy655JKgVEYA+OCDD7TbOiIriJRoFOlABgALxpRJ+8qYcqFuf8Dtw8E+F4YXC83VTJjpufxbCUk1Jcwxi9ljFnwiyWT0LHPMtBgyDQQcs/EVNowss6K504HmbmdEYcYSGYeJ7hpzzHJJmFEfESFH6fysVJQtZyN7MuyYyZlQaYN9wI0d9gHMGFEMAPCIpYnRRp8w2IwzeSkjq3AxG+kcazbopD4mh8cXJMyYgxyK0uCrzsFAawCRGNEcs3wNsFEkzG644YZUbweRxYSGf0Q7kAHAs180Y/KwIjRMrIRRr8O4igI0tQ+gqX0gTJgVmAzkvGpMiUWBYxZyIslk9GyhWY8Cox6DHkG8J3uB1Cw6ZrVlVoytsAnCrMuB2aPCRSVzzJg4LGbvXY4MmaY+IiKUTJYtZxsDbi/axb9zTFnmhVldpQ2f7+nCDvuAdJvkGCgO/5CVMooiLd7v5gM6joPFqIPD4w9aYNbCQe4YoBlmyVIoCuX+kHNvvvZJKhJmZ599dqq3g8hi5OEfag9kdZU2NLUPYHv7AI4Re84GKCo/ZSjqMWMnElmTbaaiZ4Uh0ybs7hSGTCcjzHielxyz2lILxlbY8EmTXRJroRwMEWZFOdRjluwqMJGbZLJsOdtgwR/lBUbpu59J6iqFY992mTBjDpgxxnBpIEoqo1d0zPLsojYaVqM+TJhp4SB3OajHLFls5ig9Znlajpv5oxGR9VgNgfAPtQeyiZU2vIfgkw1LZCRhpj2sxyxmKqPomFWEnEgyFT1bU2TG7s7kh0y397vh9Pqh54CRJRaMqRAudPZFEWZhjpnUYza0Uxmpj4iIRibLlrONPV1CGeOYLChjBIAJVWJPdnugJ5tdmLI5ZdHQR5hjlq/BCdEQKn88QT3uWjjIndJCJwmzRCk0C9eCA+6QHrM83Yfz668lEoI5Zk6vX/WBrE52smGwAyNF5WtPsaIes+g18Sx69qQp1ZhTW5qWC/fqQm1mmTFnbHiJBQa9DmMrbOLtzoiPDy9lzI0eMzWLJ0R+wcqWY5GqsuVsY7fomI3NYPCHnHHlBeAgLKqx5FyPFH4QxzHTB8fle31+sHazfLuojQZbCJaHmGnhIFOPWfJIPWauyD1m+VbKmF9/LZEQ8vAPtQeyiWIy496uQelLJg2XpkRGzVGUyjiYXSt8WkXm75XKGIULrbFiaVC0yPzWXnGGWUj4R98Q7zGjPiIiFg0TK1EvLpjJqSky51WJ614x+CMb+ssA4TxbK85T2yEuZDIHzBjHMQstZWTDpQHqMWNYDOEhZsxBjkU8Bzk0TItQD1uk75c5ZjzP520qY379tURCBOaY+VUfyKoKTSixGODjgd0dwokwEP5Bwkxr4qUyenx+SbRlywqfVsKM9ZeNFi9uRpUJK9CDHp908mTwPC+5SqE9ZkPdMaM+IiIWPQ4PdojH4qPGlwEADqstwaqr5uWNKAPkjll2CDNACAABgB3iYGlWymVQ2GPGHDa2CAqQY8awipU/gzJhlqyD7Od5dJFjljSF5nDHzOvnwSpz863HLKG/dvXq1ViyZAnmzp2L5uZmPPDAA3jyySe13jYiS2BzzLx+HjzP48Zjxsd8vPxAxnGcdLJpsvcDoFLGVMJSGZ1ef9DJmcEEil7HSQ5RpqkuYrPMknNwpERG0TGzGPWSGxbaZ9bt8MDl9YNDoJSyWEGi5VBAi1VgInf5eHsHfH4eE6tsOGVKDQDAyyMvyhcZPj8vHS8yOcMslAksAER0zDx+ZcmKUly++Hgm6Ex6jpKPRQKljMHlciz4qjDkekSJg9zr9Eolo2XkmCUMuxaUh3/Ir1/IMYvDP/7xDyxbtgxLliyBxyNc5E2fPh1PP/00HnvsMc03kMg88uGMDo8fu8USkNDzeLQD2USpz0z4vUAqY3YIg1zCZtZLn0ukEItAPbwRuiw5YWteylgWuNBiIi00mZElMlbYTNJFDQv/6HN6IpY+DhWoj4iIxfvftwMAjq+vCvR3ajTgfahwsM8Jl9cPo56TxrhkA2wRk4VlMQdMbSqjM097c2LBWjIGPeELlg0TK3HatBrp5/EVBYocZHY+LbYYpPMIoR5bhPAPd1A5bn6dq1RfGT/33HO4//77ceyxx2LFihUAgDPPPBOlpaW46667cP3112u+kURm0XGQhjO+s6UVf/1iLwDggdMmo6zAFDfBL3CyCXbMqJRRe3Qch2KLEd0OD3ocXlSFDFbuzMKZK0yY9bm8GHT7Etov/DyPlh6hZ2y0TJiNKrPii73dYQEgrb3BwR9AoMfMxwsrd6y8YijCVoF/9e42OEIuREaWWLBoQkWGtozIJN0OD77c0wUAOK6+UrqYbOt3SUmA+QCLyq8ttWbVAgU7V+7sGISf5xUPmA4VZoE0OzrHMgqM4T1mcuTl7j1Or6L9InA+JbcsGVj4R7+slFGeyJgvxyWGaom/f/9+1NXVhd1eW1uL7u5uLbaJyCIam+w4889fgPkHyz/cAY9fmLlyXH2VogQ/yTGzsx4zYVWEShlTQ6xZZh2D2TdzpdBskPaFRFfu2/pccHn90Os4DJOtgNeWCv/P+s8YzDFjpY6AcAJgK3NDPQAEEMTZ1JpCAMA5M4Zj2eIpsBp0aOlxorHJnuGtIzLBx9vt8PHCMXlMeQGqxJJXj49Hd4wk11yDVX1kU38ZIAhFk56Dy+tHS7czkMoYzzGTUhmDe8zMeeY0xEKax+qOLMzsslTgjgF3WMljKD4/j6+ahUUOg04Hn3/oVllkmkhx+VIiYx46kar/4pkzZ+LNN98Muo3neTzzzDOYMWOGVttFZAFsSG2k6O0d9kF8uL1D0fOMr7CBg3Cw6xx0BxwzSmVMCazPLNIss84BUZjZsscxAwJ9ZomWM7IyxpElFmn1GAiUNYb2mIVG5QNCP2RRjvSZMfZ0CU7hGdNrsGhiFS4+bBQA4PFPduGLPV1Ys7UN65q76aIiT/j3d4IgP2FSFQChN4kt0sQbsZBLsONFNvWXAUIZ8riKQDmjR3EqY0iPmY8cs1CscRwz+0Dw/s8qMCLR2GTH4qfW4unPmwEIn9Xip9bSgleCFJrCB0zna1Q+kIAwu/POO/Haa6/hnHPOgdvtxj333IMTTjgBH330EW6//fZUbCORAZQOqVVyQVdg0mOk6Fxsbx8IxOWTY5YSSqxiumCEFXBWrhE6XDrTSH1mCc4yYz1k8jJGILjHTN43FkmYAbkzZBoA+l1e6WKDDdH94ZxRKDDp0dztxHWvfoM739mGa17eRBcVeUC3w4Mv97Iyxirp9nzsM8tWxwwIBIDssA/AozKVUYrLz+OL2mhIpYwRQrF4nke7uDBRJJ4DogmzaAvWbf1u3LZ6Cx1HE0DqMXN5pfO0tLiQh66v6m9tfX091qxZgwsuuACXXnopxo8fjyuvvBJr1qzBlClTUrGNRAbQekjtBFlTM6UyphYpMj+SY5al0b41hdo4ZkyIMUaWCAsC/S4fehyB9+Og2GM2LFSYsVlmGXbMfH4e65q7k3K02MVnVaFJ6pf7Ym+39P2TQxcVuc9HTUIZY32VLWgBQ0pFTXLAuxq02L+TgfWYjSnLLscMkEXmyxyz+KmMUUoZSZhJSPNYIxz/Btw+KTBlxohiAJGFmZYL1kQA1mPm4wPBNa487pNMqLvdbDbjvPPO03pbiCxC6yG1Eypt+Gh7B7a3D0hzRMgxSw2B2PdIPWbCbdkW7ZtsMmNzhERGQDgZVxea0Nbvxt5uB0rFv7u1zxn0uoxsmGXW2GTHisbtQQsj1YUm3NwwQdWcqV0dwa6A0ouKhXUVWRWIQCSHz89jQ0sPXlq/HwDQUB+8D7HRCulyzLTavxPB5+fx2a5OyUkeVZq9wmy7fQAlVuF4pTSV0ceLg3nJMQujwCT2mEUoZWTXMYVmPeoqbfh0VydaQsrfAXUL1nNqS5Pf6DzBatRBxwF+XnDNrEZ93g6XBhIQZpMnT46akGI0GlFVVYVTTjkFP/vZz2A0ZtfFH6EcrYfUBgJA5KWMQzf1LpthpYxyh4jBeswqsswxqy5K7uJQKmWMcKFVW2ZFW78b+7odmDGiGF4/L12Y1YREZRdnWJixMplQmKMVb66OnNABunRRkX9EEkGvrN+PcRU2aT8KOGap7zHTcv9O5LVD34sf/m1dWgShGlh1SXOXA5NrigAgbhS7QdaD5vXzkttgycOL2mjE6jFrHxDOO5U2E0aWCN+HSI6Z1gvWhADHcbCZDOhzedHv9qES8ll8+bcPq/6Lf/WrX6GiogK/+tWv8Oabb+KNN97Afffdh+rqalx11VW45ZZb8PHHH+N3v/tdCjaXSBdaD6mdUCWkw+3sGMSAmHhHjllqCIR/RO8xK7dl16JJMo6Zzx+Iyg91zABZn5noqtn7XfDzwipzaDql5DZmIJVR6zKZPVIfjfD300VFfhGtF6Zj0BNUtpquHrNMloENpb6gqkITii0G+HigqV0YMRNXmMkcNa+fh8uXvxe10ZBKGSPMMWP9ZZWFZowsEY6XkYSZ1gvWRABpyLR47g2UMuZf9Ybqb+3TTz+NBx98ED/4wQ8wadIkTJ48Geeeey4efPBBvP322zj55JNx7733YtWqVanYXiJNaD2kdmSJBWaDDi6vX+p9oh6z1FAcpcfM6+fR48i+OWYAUGUTVym7Hap7Tg72OeHx8TDqubDSRCB8yDQTf9VF5rAh24Eh0+kXZlr3de4KCTigi4r8QY0IktzqFPeYab1/K2Wo9QVxHIe6CuE7y8qRjXHOs/IkWq+Ppx6zCMSaY9YhVlBU2kxSUNn+HmdQYBSg/YI1EYAFgPSLFVX5HGCj+i+22+0YNmxY2O2VlZVobW0FAFRVVWFgYCD5rSMyChtSG3ogqikyqy450es4qXaeQXH5qYH1JYT2mHU7POAhDAwvtWaPY9bYZMcNr38DAHD5eNUpgcwJG1USeVjsqDImzIQV0GjBH4C8xyz9qYxaOloen1/qkWDCjC4q8gc1IqhaFrwTeiGqJZlybDMlCJOBnSuZVlTaYwYAHr+feswiYDVG7zFjjlmVzYRhRWboOEEYdIRE6Gu9YE0ECI3Mz+eRD6q/tUceeSTuvfdetLS0SLe1tLTggQcewIIFC+Dz+fDaa6+hvr5e0w0lMkPDxEqs/vF8rDx/Bu4/dTJWnj8Dq66al1BNPosBZpBjlhqkVMaQHjPWX1ZqNWbNiYOVGLUnUWK0tyt6GSMQGDK9L8Qxi+SuZbLHTEtHq7nbAR8vfMfYEGG6qMgf1Igg1mPm8PiD5ghpTaYc26FYwjuhKngRM14pI8dx0vdWcMyEz9FMpYwSsXrMWM9xZaEJBr1OWrSLVM7IFqxDWzESWbAmAsgj8wH5gOn8Ox+p/tbef//9MBqNOO6447BgwQLMnz8fxx9/PMxmM+677z58/PHHeOGFF3DbbbelYnuJDKDXcZhTW4qTplRjTm1pwhdurM8MEL5sBjpppAS5YyZfAc+2qHytSoxYiWJoVD6DJa/1Or3ocXgUCbO+DPSYaeloseCPMeUFQWFNWrrgRPaiRgRZjXppdlMqyxkz5dgOxRLeugp1wgwInmXm8grHTCplDGCVxeWHOsP2/kD4BwCMKI3eZwYIx9FZYqz+6dNqklqwJgRYZD4rZXTncTmu6li80tJSPPvss9i1axe+//576PV6TJgwAWPHjgUAHHHEEfjss8+iJjcS+ctEWSmjQafDuuZuzBpZQiv0GsPEhdvHw+n1SyckKfgjS6LytUoJZKWMo8ssEe+3GgXXqF1MZjwoCrNhxRFKGc3RZ8ClGuZoRUqtYyh1tHaLvSnjysPFasPESiysq8BTn+3G0583Y2KlDc9dcih9D3MIJoJifb/kIqi6yIQ+lxdtfS6MDxEFWqHl/q0Gte9FNhBa9h+vlBEQhJkLTJgJF7dUyhiAnQd9PODx8TDJQiXaRcesSizrHVliwVcAWrojCzNASJgGgLMOGYaZWbTvDFWihX/kY4BNQn+x1+tFQUEBDjnkEEydOhVGoxG7du3CO++8A4vFQqKMiMiB3sBBbtDjU91LRCijwKiXVk9Z2AcQaHAut2XHyrBWJUaSYxZjWOyo0kCfWSzHjCVaZmrAdMPESty8qC7sdotRpzIqXxBmY8oLIt6v13E4dFQpAMAPnkRZjqG2bDWQzJjacj7m2IaGWaTSsR2KJbxFFkPQ8UmdY+aX9efk30VtNFiPGQBpliogzH1j5xhW9j2yRFjka+kJn2UGCOdVJvRDRTSRGIXmyD1m+bi4oNox+/e//43/+7//Q3d3d9h9VVVVOPXUU7XYLiLHaGyy494134fdno75NfkGx3EothjQOehBj9OLYULFRdY5ZlqUGHnlUfkxhsXWllqwfl8PmrscOCguEAwrCnfYWPhHv8sLnz8zgoXNoRtfUYBFEyvw9OfN0AE4YmyZ4udgwmxcFGEmvI6wH3RHmHc3FGCDk137emH2+8l9D6FhYiV+fcYU/PKfW4Nuryky46ZFdUHHW9Zn1priZEa2XTVFJuzrEV5rxVlTceS41A41Z4IwdI5ZpPciWxhfYZUWkXZ3DuDIceUx3yPWGkCpjJEx6HUw6jl4fDycHh8gHv8G3D44xfeLlTIGhFlkx4y5ZSOKzZKgIJJDcszcwY5ZPs7iU71HrVixAieccAIuv/xyXHjhhXjyySfR3d2N++67D9dee20qtpEY4ijtJVpYl9qTcz5RYjWic9ATlC7IesyyZbi0FiVGB3qc8Pl5mA066eIyEswxa7IPSGWKsXrMeAjirCQD6ZXbWoXZRXNrS3H1EWPx9rdtONjnwic7O3HCpKq4v8/zvCTMxsYQZqWSMBN6EYdSpUOkYcHVhaasGxacaSZVC329Bh1w10mTUC1+n0KPs6z3qz0NwgwAumWO9JiygrQc9xsmVuLwMWU45g+fAgAeOWsaDo8jdjJFY5MdG1v6pJ//8J/deOnr/TH37+AeMxJmkSgw6tHj8wbNMmPBU4VmvTTrbGScHrPt7YIwk/fNE8lhM7NFUXLMVP/Fzc3NuOqqqzB+/HhMnz4d7e3tWLhwIe6++248++yzqdhGYogzFOOKhzqRkhk7B7JruLQWJUZ7xTLGUaWWsJlkckaLZY5fN3cDEE7QhebwVFCjXieVvGQiAAQAvmsThNmk6kLoOA6nTK0GALyzpVXR77f2ueDw+KHXcRhVGrnvDgjsIz4/n9I0Pq0ZSsOCM80OcWV/fIUNp0ytiRrelK5SRkAY5cAuvgBhYSBdsMHLALAgi0XZbau3BJXbAfH3bybMPL5AKWM+9ufEggkv+XtrHxAWI9gsTSDgmLX3uwV3LYQmOxNmVMaoFYUhjpmbesyUU1xcDIdDuBgaN24ctm3bBgAYP3489u3bp+3WETnBUIwrHuqwXim5Y9aRZamMQPSUwOpCk6LyVhb8EauMEQg4ZpJbVmyO6hCxAJBMRObzPB8QZjXCauypU2oAAJ/t7kLXYPzvyJ5O9p5YYiafWox6qUwknRfHyTDUhgVnmh12wTmN1wfD3OZUD5kGgvtegfTue+wi26jngmZ/ZQvJ7N8sIIQcs+iwRTe52GKOWYXsHFRiMUildQd6w78TzDGbSP1lmsEcswFX8IDpfNyHVf/FCxcuxD333IPt27dj/vz5WLVqFb799lu89NJLqK6uTsU2EkOcoRhXPNRhJXnydEHWY5YtpYwMNivvifMOgVlMyvr9kumKStKUC7Ng5yhSGSOjOIMBIC09TvS7fDDqOYyvEMoQx1YUYEpNIXx+Hv/a1h73OXYpKGNksHLG0IvlbIXcd3Xs7BAuIBULs77UC7OuDAozVsJWYMzOGZrJ7N8Gndhj5ufzOmo8FiyZcVBWIcBCsapkoVgcx0UNAPH5ecmJJsdMOwI9ZsHCjBwzBdxxxx0YM2YMNm/ejOOPPx4zZ87Eueeei7///e80u4yISKbm1+QzJdIFtyAu/DyPbuaYZUkpoxy9jsPc0WUYUyaIiUirlKH4/Dw2H+gFIPx9sVwSm8kQFHoSW5gxUZt+scLcsgmVtqAktlOmCq7ZO1vb4j6Hkv4yhtRnlqEUSrWQ+64O5pgxkR8NdnzucXojlm5pSdegJ+bPqYQNF7ZkqTBLZv+W95g5SZhFJNKQaeaYVYakFUt9ZiGR+S09Tji9fpgNurgLgoRyWCljv9hCICWLGvNvH1b9F3/00Ue49dZbcdZZZ4HjOCxfvhxffvklPv/8czQ0NKRiG4khzlCMKx7qhIqLHocHPlG3lGUg0EIp8ZquGY1Ndix+ai22iEEZf1/XEnf0Qq3MNfP7owu5TA6ZZsEfLLSBcdLkKug5YMvBPkl4RWOPCmHGEiCHimNG7rtyvD6/tK/Ec8yKzAaprLU9xaI21CELddBSCbsgt2bpxV4y+7eBlTL6Ao5ZPgYnxKJAvPh3Rgj/CH1PmWO2vzf4XLS9XThGj69IT2hNvmALjctniwvkmMXnnnvuQVdXV9BthYWFMBqz92KPyDzReolSOb8mn2GOGeuT6hBXpUsshph9R5kmXkwxkFj4Q2OTHd+1DUg///Pb1qhCLpM9ZttEx2xyTbAwKy8wYcHYcgDAM5/vxZqtbVjX3B1RXO4Se8zGxnFJgOBkxqEAue/Kae52wuvnUWDURxymLofjuLT1mYXua+lcFAgIs+x0zJLZv5lj5vP7A/05WXyszwQWQ3j4RwcL/ygM/o5I56IQx+x71l9GZYyaIg//4HkeLnElOR8XF1T/xfPnz8dbb70Ft5tKRQh1sF6ilefPwP2nTsbK82dg1VXzSJSlgEAqo3DR05llw6WjIa1SRhFmiTTHMyHHynsY0YQcm2WWbmHG8zy+Ex2zydXhMcxjxGTJd7e24c53tkUc0N7n9Eo9E2NiDNxmDLUeM3LflSMlMlYWxEwsZUizzFLcZ8ZKF1mZXXodM+EYkK3CLJn9O5DKyMsGTGfn35kpmFMaVMo4EK2UMfIiIUXlpwbmmPl5wOn1w+UVPiPqMVNAR0cH/vjHP2LWrFk46qijcNxxxwX9I4hY6HUc5tSW4qQp1VGjm4nkYamMrJQxEPyR3c524GToiHi/0ub49fuE5vhEhFxJhsI/2vrd6HJ4oOfCS88am+z4x9ctEX9HLi5Z6VpVoUnR4FP2tw6lIdMNEyvxwzkjw24vMOrJfZcRiMqP75wC8llmqV10ZUKMldpmoscsW4UZkHh1iTRgWpbKmI9uQyxYKSPbD3iel/b3qrBSRlZW7wDPB84PLCqfEhm1xWLQQazGRb/Lm9cBNqoHTJ9//vk4//zzU7EtBEFoRHGI69OZhVH5kRhRHCgfiTT0WHFzvLgKun6f8pSzObWlAGSOWZp7zFh/2diKgqBwAjUD2tUEfwCBktehUsrIYGmcJ0+pwvByG579dDeGFZtIlMnY0aGsv4wRmGWWWsesRxJmVnzX1p/eUkZ3dveYMRomVmJhXQU2tPTA3u9GZaEp4mBwOYHwD39eR43HwiKFfwjvz4DbJ71XoY7Z8GIzOPGxXQ4PygtM6Hd5pWoOSmTUFo7jYDMb0Ov0YsDly+t9WLUwO/vss6X/7+npQVFRETiOizoTiCCI9COlMjqFeu0Oabh0dguz4cUWcBBKGToHPagI2V7FzfHi7zGBFg+54CuWeszSK1a+b4tcxqgmQlutMCu1Zi6BMlG6Bz34326hz/mK+aMxsbYcf/l0N3Z2OGAfcIddYOUrO8WV/boKhcIsTT1mzDEbJzp5mQj/yNZURjmsukQpTJi5fTy8YgUA9ZgFUxCSysjcskKzPmyfMOp1qCky42CfCy3dTpQXmCQXurrQJJWBE9phM+kFYeb2wk09ZsrheR5PPPEE5s+fj8MPPxwtLS245ZZbcNddd1HfGUFkCazHzOfnMeD2yRyz7D6ZmAw66QIxUgCI0ub42aOE5nilF+lywVdszUyP2TZpsHRR0O1qIrR3s+CPHHbM3v++HT4/j8nVhRhfaUOZzSSFpXy5tyvOb+cHLq8fzd3CvjC+UmkpY3p7zMaJgtHh8ac8op/h8Gb3HLNkYHPM5DO68jFqPBYW1mMmvkd2FvxhixyOE9pntp3ml6UUm0k49/a7fYFk0TxcXFD9Fz/++ONYvXo1fv3rX8NkEi5mzj77bHz66adYtmyZ5htIEIR6LEa9VALQ4/RIwizbhktHIlYAiNrm+Nmj1KecMccs3T1m21r7AIQ7ZmoitAOOmbL5OoFUxqHTY/buFmGW2ylTq6Xb5o0pAwB8sac7E5uUdezuHISfF0qalS5OVBelp8eMLQKMKrFILk+6FgacQ8gxUwuLyx9wB77L+XhRG4tojlm0Y6xUWi/2PDex4I9KCv5IBdKQaZdXCv/Ix1JG1X/xG2+8gXvvvReLFi2SyhePPPJIPPzww3j33Xc130CCIBJD3mfWKZUyZrdjBsgj8yMHgDRMrMStDXVht0dqjk8k5azIEjxqIB10DrqlcsX66uDVWKUu4dSaIrSILsk4hYEP8rh8eYN7trKv24FvDvRCxwEnTqqSbp83phQA8MWeriHxd6SanR2sjLFAcZsBc8w6Btzw+vxxHp0Yfp6XesrKCoxpH9cwOER6zBKBidwBl0/6mcK1ggkdMG2PMlyaITlmYmT+dorKTykssKrH6ZXmrubj4kJCqYzV1dVhtxcXF2NwMPbgU4Ig0oeUzOjwDJnwDwAYEWV+jBw2c6a21BJ39ILalDMmaAc9vpRdoIbynVjGOLrMKpVzMJSIy58fOx77e53w8cKqo1KXJLTkNdt5d6vgls0bXYZK2dyhmSOKYdJzaOt3Y09XZEGfT+ywC+fi8SqS48oKjDDoOPBQ3puplj7ZBVeJxYiygvQKs6GQypgoxhDHLB+dhniEhn+w/Tw0kZERSGYUwqiolDG1MMdMntSaj/ux6vCPBQsW4Omnn8a9994r3dbf34/f/va3mD9/vqYbRxBE4hRLs8y8Ulx+tveYAdHnx8jZIToCM0YU46Qp4QtFoahJOSuSxcz3ubwoS4OY3RZjfhkQEJcrGrdHDAI50OuUwh6qbCb4eUjRw7GwGPWwGHRwev3odngURexnCp7n8d7W8DJGQPg7Zo4swZd7u/HFnm7FPXa5SiAqX/kFpI7jUF1owv5eF1r7XBgmlnFpCQv6sJn0MBl0Uo9jugJAnGyOmSn3hBnrMWMLLPl4QRuPApPYhxdSyhgaMsUIVG84sb/XiQG3DwYdh7EKZkQS6rGZhe8lW0gGKPxDEb/61a+wZcsWHHnkkXC5XLj22muxcOFCtLS04M4771T1XO+//z4mTZoU9O/GG28EAGzZsgXnnXceZs6ciXPOOQebN28O+t233noLxx9/PGbOnInrrrsOnZ2d0n08z2P58uVYsGAB5s2bh2XLlsHvD6x8d3V14YYbbsDs2bPR0NCAVatWBT13vNcmiKEAu+jZ1+OQUrrSITKSha1SRhsyDQDb29VFgQPKZ+jpdZy0cteTpnJG5pixEItIRBrQftvxgpP2+4934cnP9gIAdnc5wgZPxyLbh0z7/DzWNXfjmc/3Ym+XA2Y9h2MnhDuj80aXAqAAEECWyKgw+IPBgndS1WcmL2MEgDImzNI0yyzgmOXexZ5UyujO38G88WBOKes17GDhH4Wxwz/a+lzYclA4Ro+rKJBmxhHawqpF2EKyUc9Bl4eJ76qXR4cNG4ZXX30Vn332GXbu3Amv14tx48bhqKOOgk6nbmfdvn07Fi1ahPvuu0+6zWw2Y3BwEFdffTXOOOMM/PrXv8YLL7yAn/zkJ3j//fdRUFCATZs24Y477sA999yDyZMn44EHHsDSpUvxpz/9CQDw7LPP4q233sJjjz0Gr9eLW265BRUVFbjyyisBAEuXLoXT6cRLL72EjRs34s4778S4ceMwY8b/b+++45uq9/+Bv5K0SboLTVtoCwXLdrRlo6JSvTJUnDiuol63gtyrV0XAC16G/EBB5YoDrw9xCwpWlohY5AuOyuYiAqWMltJNd5OmTc7vj+ScNh1Zze7r+Xj4kGae5GScd97jc5nN+ybyF2LG7LR5PaNwlcIvfkUVf6UsrmlAo8GI4Ha+BMWMmSOlWo6IUgehTm/w2AAQMTAb0EHGTNR6hHZHwZS48LQ9Cy5HhQSjqKYBlR4edmKPrJyytllCmQy/na1o87hGJnfDyt1nsDe/Ek1GQTpQ7Wrq9QacrzYdcNo7Kl8kHqC6a2S+GICJAVk3D/8oIAVmQYGYMTO93sU+uq6YabAlpFUpY6lYythBxqxbSDBCguXQNhqxK7ccAPvL3Cm8Vcasq/644PCj/te//oXffvsNo0ePxr333osHHngAV111lcNBGQDk5uZiwIABiI2Nlf6LjIzEli1boFKp8MILLyAlJQVz5sxBWFgYtm7dCgD49NNPMXHiRNxyyy0YNGgQli5dip07dyI/Px8A8PHHH2PGjBkYPnw4Ro8ejeeeew6fffYZACAvLw87duzAwoULMWDAAEyZMgWTJ0/G559/DgA275vIX4g9ZmJg5g/9ZYCp3FIdJIcAoLC67QGivsmIPHMfUYqdQy4cJQ0A8cAi0zW6Jpwz99MNtBGYtWQwCli2I9fqZZbvyIXBaH0YhrSWmY9lzLJyyjBzw9E2pZsNTUbM3HC0TUZwYFw4ItVBqG0w4M+iGk9uqk85bf7RIiZMiWgHS5fdPTJfLFkUs/nRHi5lFA/IA7HHrPVURn/4Ec7TWg7/EATB5lRGmUwmVXDsPmWqyurnph8DqW3GrKu+hh1+1PX19Zg2bRrGjh2LBQsWYN++fU7feW5uLvr06dPm9EOHDmHYsGHSNCmZTIahQ4fi4MGD0vnDhw+XLt+zZ08kJCTg0KFDKC4uRmFhIUaMGCGdP2zYMBQUFKCkpASHDh1Cz549kZSUZHH+gQMH7LpvIn8hDnYQhyHE+EF/GWB6zyVYmcyYV6GFwSggTKlAfET7JSidFSFNtHT/AeOJUlO2rGekyqFFSx1ZeNoaT0/Gs4fBKGBZ1kmrl2kddLbMJv7ehcsZpcEfTvxoIY7ML6lxTymj+BoTM2XR0vAPz2RrpYxZQPaYWZYydtWDWmvEEtaGJiOqdU1oMK+VZW1YkljBUWP+kY4ZM/dpPfyjq76GHS5lXLZsGfR6PXbv3o0ffvgBTz31FEJCQjBx4kRMmjQJl156qV23IwgCTp8+jd27d+O9996DwWDAhAkTMGPGDJSWlqJfP8spZDExMcjJyQEAlJSUtJkMGRMTg6KiIpSWlgKAxfkajankRTy/vesWFxcDgM37dkQXLI31aeL+6Cr7JSrU9PYWv3y6hyn95rEnRqtxqrwe56t0bbZZLGNM0YRB3kG5Wmf3tRjU1uia2tyGwSjgwLkqlNXpoQlTIj2p/SEi9jAYBfxw3PSZFR+hglEQ7L4teyfnldXprT4PYvaiStfoM68PR4LO8XGR0naPSo7Gjpwy/H62Eo+MSfbAlvoecVR+P02Yw/tT/KGjtK7BLa+FyhY9ZjJZ8zCiSq311yjgms9vsbcoVCn3mde6q4h9T+K4fFWQfz5Gd35Ph7YIyM+Zf/SLUAVZDdR7Rln++JfixPuK2td6X0vj8s2fE0o/fQ13xN7H4tQILqVSiYyMDGRkZECv12P16tV49913sXr1avz555923cb58+eh1WqhVCrxxhtv4Ny5c1i4cCF0Op10euv71OtNX9Q6na7D83U6nfR3y/MAQK/X27xtW+c7IiYmwuHrkPt1lf3SK67O4u/EmDBoNP7x2Pv1iMSu3Auo0BvbbHNhfQEA4JJe0TYfj7P7Oi7aVL5iUCgs7mPrkUL8e+NRFLYYTNIzSo15Nw3BhEt6OnQfrW/rYEE1bvlgj923lZJg32dSSoL15ynB3IekE2Q+8/poOFdt1+V0MtPBqLifx6cl4f9tP4n/FVYjNDIEoUrfnTLpLnnm8t/UPt0d3p/960xZgbK6Rre8FrTmGVyJmnBoNBHoXWXa1uoGg93315nPb635R6qEuEhoHOy/83XREabMjjhxMDxE6TPvZ2e443taEATIZIAgAJXmJG18lLrD52nrkUJsMS9oL3r4y0NOfd5Tx8R9nVhp+jwQ6yBCVcF+/Rp2llPfWgaDAdnZ2di2bRu2b98Og8GAm266CTfccIPdt5GYmIjs7GxERUVBJpNh8ODBMBqNeP755zFy5Mg2gZBer4dabfrgUalU7Z4fEhJiEYSpVCrp3wAQEhLS4XVt3bZ4viPKy2vAtU59h0xm+gDoKvtFprcsTQuVA2Vl/tF7E2NuAs4prG6zzf/LqwQAJIYFd/h4Oruvg81XKrxQJ91H1okyvLDhaJvLFlbp8MSn+7F08hBkDLA+aEPkitu6KCIYceFKq5ml+AgVLoro+HkCAKX5sRZdqPeZ14fKaN/6cWrBdDlxP4cLAuLDlSiu1WPJpj8wpk/3TmU0/dGxQlNQG6dWOLw/VQbT0WpRtQ4lpdUun4hWVGEqs1QKRpSV1UBu7ocqr9Xb3NbOvqcFQYDWXOanrdWhTPDMGoWe0qCz/ByQm59jf+Pu7+nQYAXq9Ab8kWfqGeuuDmr3eXLl5z21r/W+btJavoYVEPzyNdwR8fHa4nBg9uKLL2LHjh0wGo247rrrsHjxYlx++eVQKBQoKSmxfQMtREdHW/ydkpKChoYGxMbGoqzMsrG7rKxMKkGMj49v9/zY2FjEx8cDMJUkin1kYnmjeH5H17V22+0tqm2LIKBLBAD+pqvsl0i1Zb9St1Cl3zzuhMjm9WNab3NuWXMpo63H4+y+Fp+7al0TBMFUcviajZ6nZTtycVVKjM0gwFW3JZeZFp6e2c7Bg+jZcSmQy2RWnwOxbLNK1+gzr4+0xCi7gs60xCgAzfs5K6dcWuLgo9/P4aPfzyEuXIl/ZvSzOZ0yEFTrGqWBBn27hzq8P2NClZDLTK/R8rpGuxcqt5dYyhgdEgxBaFFGq21Ek8G+Ml5n39O6RqP0S3xIkMJnXuuuopBZ9uMoFXK/fozu+p5WmwMzcYCUJrzt96IrP+/JNnFfh7YqKfX317CzHO6s0+v1WLRoEX7++WcsXrwYo0aNwtatW/HII49g3Lhxdt/Orl27MGrUKGi1zc39f/75J6Kjo6VhHIJ5jwiCgP379yM1NRUAkJqaajF0pLCwEIWFhUhNTUV8fDwSEhIszt+3bx8SEhIQFxeHtLQ0FBQUoKioyOL8tLQ06bat3TeRvxAPuEX+MvwDgDT8o/VaZtpGg7TwtDPDDewV0aLHDHDdoA1X35a48HRcq6li8REqu0blA80Hx740/EMhNwWd1jw7LsXioEic4qhrssyEiEsH2Luumz87ZR780SNC5dRi4UEKubTYbqkbRuaLTf3iwJlo8/tMANy+NIU4+AMA1IG4jlmrFeW76uAEW8QBIPnmSbjt/fjgys9osl/rz6yu+hp2+JN7+fLlAEzBTGZmJrZu3Yra2lqkpKRg9uzZdt9Oeno6VCoVXnrpJUybNg35+flYunQpHnnkEUyYMAHLli3DokWLcPfdd+PLL7+EVqvFxIkTAQD33HMPpk6dirS0NFx66aVYtGgRrrnmGvTq1Us6/7XXXkOPHj0AmAaWPPTQQwCAXr164corr8Tzzz+POXPm4H//+x82bdqETz/9FABs3jeRv2idMfOXcfmA5SSsal2j9FjEhXO7hwa7dbHsSJXlVMYyOxfctedyrrwtwBScXZ0Sg4MFVSir1UMTrkRaov3le81TGX1rHTMx6Fy07QSqWxy0x0eo8Oy4FIug094pjlcH+C/cLQfjOCs2XIXSWj1KahowON61/R0VWsvALEghR6Q6CNW6JlRoGx0e7+8IsfdKFSQPyEVrW6/b11XXgLJFHJmfZy6r1bSzuLSrP6PJPuGtMmYMzOxQUFCAzMxMfPvtt8jPz0dkZCRqa2uxfPlyhwOX8PBwfPDBB3jllVdw++23IywsDHfffTceeeQRyGQyvPfee5g3bx7Wrl2LgQMHYtWqVdICz+np6Zg/fz5WrFiBqqoqXHHFFRaLVD/88MMoLy/H9OnToVAocMcdd+DBBx+Uzl+6dCnmzJmDO++8E7GxsXjllVdw2WWXSdtl7b6J/IUySC4tjgkA3cP8J2OmDlYgJkyJ8jo9Cqp0UmAmjgLvzIGnPSKlcfmmgKCjdW5as+dyrrwtUeuFpx0hlTJqG83N8b5z0JrRX4O8C/VYufsMLkuIxFNX9mk36Dxwzv5fuJ19nnydwSjg19OmZQJCg+UwGO2f8NlSXLgSRwEUu3hkvq7RIE2I7dYiAIsOCTYHZnr0hfu+ZwN5DTOgbWCmCsBFtF1B3P+15umV7WXM3PEZTbapguRQyACDuXyxq/64YFdgtm7dOmRmZmLv3r2Ii4tDRkYGrr/+eowYMQKpqano37+/U3fev39/fPjhh+2ed9lll+Gbb77p8Lq33XYbbrvttnbPUygUmDVrFmbNmtXu+TExMXj33Xc7vG1b903kL6LUwdA2mkqSYvwoYwaYsmbldXoUVOqkX+5dkRGwhxiYiWvXONrzZI0rb8sVxOxFk1FAnd7gVAmcO4nP09CkqA6DKruXDgjQX7izcsqwLOuk9Fz9cKIMh85nO9VbJ47ML3FxKaOYLVMqZAhtERxFhwQjr0Lr9oytNCo/AMsYASC41UGsKsh3fmDxJaGtAvPYdgIzX/uM7ipkMhnCVEHSD6LKLpoxs+tRz5kzByUlJViyZAl27tyJefPmYcyYMQgK8q0vcCKyFGGebqhUyPBHUY3Fgry+rnmR6eY+M2nwhxv7y4CWC0ybviDs6Xm64eI4HCyowvd/lmBffmWHz7Uz/VPupA5WQG3+AvSlPjNRcY0pQLC2mLi9QyoC8Rdusbeu9UGks7114nN5qKDK6uvYUS37y1pmZaVS2nr3Bs1ij5m6i2TMuupBrS2t+wvb+0zwtc/orqRlOWNXLWW061G/8sorSEpKwqxZszBmzBjMmjULP/74IxoaXN8cTESukZVThjPmyVN6g4An1h7G5Pez/WYIQmI7A0A8VcoYZS6dbGgySuVXGf01mP2XttUBYjP56ux8PLH2MF7acszmc53RX4OxF3Vvc7ojQztcqXmRad/qMwNMo9sBoEdkx4FZelJUmwEorQXiL9z29tbZG1xl5ZThk73nAJjW1XPlZ0Zlq/4yUTfz3xVu/lGgXs9SRmq7/zv6UccVg5XIcWEtKja6amBmV8pLLBu8cOECvvvuO2zZsgXTp0+HWq2G0WhEdnY2kpOTERzsPz0sRIFM/BW9NfFXdH/4YkmUMmam4LJS2yiVrF2kcW/GLFSpgFwGGAWgRtcIlblBXDz46dMtBI+MSYYmXInimgbM++44Wh/72nquxUzgo6N7I7l7qMNDO1wpOiQYxTUNPp0x6xHR8VqS4i/ctpYOCLRfuB2ZHmert87dnxnia6tbqwEf4sAPT5UyhigDM2BpPZWxq/bn2NJyJHuEKshqBrWzg5XIcWEt9k9XfQ079Ki7d++Oe++9F5999hl27NiBadOmYfDgwViwYAHGjh2LxYsXu2s7ichOrv4V3VsSoy1LGU+Z+8sSIlUIU7q3jFoukyFCJa7v1XzAmH3WNFwhY4AG4wfHIS0xCit3nbZ6W+091yU1DThVXg8ZgLuGJmL84DgM6xXttS/86JDmASC+RNtokJ5/axkzoONfuOPClX7xQ4QzXDU9zhOfGa1H5YvEvys8VMoYEqC/wrfOmKkD9HF2lrpFJtGe0mZxsJK3P6O7ipbf7V21HNfpR92jRw888sgjWL9+PbZu3Yr77rsPu3btcuW2EZETAmUNlsSoEABAYXUDDEZBKmO8yM1ljKLIVmuZGQUB2WcrAQCj+nQD4Pxz/Zs5wBvSI0IqI/QmsXTT1zJmxdWmbFmYUmHXUJKM/hpseHQU3plyqXSguvKOy7welBmMAvblV9rsP3SUq6bHeeIzo/WofFE3aZFpN69j1hTopYytFpjuoge1toQqm58XVy+gTp0XrmrRY9ZFM2Yu+dm5T58+mD59OqZPn+6KmyOiTgiUNVhiw5UIVsjQaBBQUtvQPPjDQ4FZhDoYgA7V5smMOSV1qNQ2IjRYgUt7RgJw/rnOPmMKzEabAzxvi5YOjn0rMCuqMWVLrQ3+aE0hl2F4725IjFLjbIUWpXUN6OPmYTHWtJ6YCJiyeM5MTGzNVdPjPPGZYauU0d09Zlq9OWMWoIFZMBeYtkvL/R8bgMOA/B0zZp3ImBGRbwqUNVjkMhl6RprLGSt1LQIzzxxkt15kWsxyDesVJY2mdua5NmXezIFZsm8FZr62yHSROWNmq4yxPeJrp7Dae0OqXD0xsTVXTY/zxGdGpa+UMgZqjxmnMtqlZU+ZJszxzxVyrzBOZWRgRhRoxF/RrfGXCXXiAJBzldrmiYwxni1lFEfmi4FZyyyXM8/18ZJaVOmaEKZU4JKeEa7ebKdEiT1mOt/KmNkzKr8j8eZgTpzq6Gme6vXM6K/Bc+NS2pzuyPQ4T3xmiBmxbh2VMuqaIAju63uVArMAXcesdSkje8za1/J50TYafL7XuqsJUzEw65qPmiiABdIaLGJgdvB8NWoamqCQAcndPZMxi2jRY6ZtNOCQub9mVIsslzPP9W/mMsbhvaIR5CM19M0ZM98KzIrsmMjYkZ5SYOadjJknez1jzL0yfbqFYOGkQXj3zsvw7SMj7S6V9MRnhjQuv3UpY0jz0hTaRqPTt2+LrjHQe8w4ldGWrJwyvLnzlPT3VwfP+9USMl1BeMtSxi76Gu6aj5oowAXKGiyJ0aYBID+fugAA6NUtxGO/orXMmO0/V4VGg4AeESr07hZicbmOnmsAmDo8qc1z/ZuP9ZcBzeuY+Wxg1plSxhrvBGae7PXMMZf5piZFOT09ztrrePyg2E5/Zkg9ZiGWtx8SLJfe0xVa95Uz1gf6AtPsMbNKLCtuvVajq8qKyTVaZsy6ajmue2dOE5HXBMIaLAnmjJl4UOepwR8AEGmeVFjd0ITfzWWMo/p0g0zW9vlr/VzvPl2OrX+W4khRjcXl6vRNOHy+GoBvBWbRas9MxnNUSWdKGSO8W8royV7Pk6WmwKx/J98frV/HueV1+DA7H7+crkCNrknKIjuqyWCUSoLFpRlEMpmsxTp6TXBXhbVYyhgasKWM7DHriL1lxVenxPjV92Mgajn8g1MZiSjgiGuw+CuxlFHk0cBM1VzKeKKkFoD1YR0tn+v0pCj8cLwMB85V4XhJLQbGhQMA9udXockoIDFKjaTokA5vy9PEHrNKbSMEQWg3+PQ0QRCkoMqZwEzMmBXXNMAoCJB74DEZjIIU1HQPDUakOkgKSNrjql7Pk6Wm12e/2M6/P1q+jg1GATtPluNUeT0+3XcOT17Rx6nbFLMUMjT/4NGSFJjVuy9jKy0wHagZM65j1iFXLsRO7tWyB/TMhXoM79311o5jYEZEPqt1YAaYDhY98UEtZgdOldehsLoBMgAjekfbdd24CBWu7a/BtuOl+HJ/AeZNGAjAN8sYgeY+nyajgDq9wa41w9ytQtsIvUGADEBcuOOBWVy4EnIZ0GgQcKFOD40Tt+GI9sbi2+KKXs/ahiacN/fR9XPxDxcKuQyPX9EHMzccxRd7z2FwXBgamgSHs+/i4I+okOB2r9PNA6W0Yv9a4JYych2zjgTKEjKBLiunDP9ve47092s7cvHxnnyXLC3iT/jOJSKf9XteJVoexq365azHmrXFHjNx3Lqji0HfPTQRAPD9sRJcMI8C/83HxuSL1MEKqSfFVyYzihMZu4cpnTrIDFLIEWsOxtw9Mr+jsfiiqHZKAAfEhrnkYENcRiIuXOmWxcrH9YtBYqQa2iYjnt/wJ17acgxPrD3s0PuweVR++wG/mLF151pm9QE/lZHDPzoSKEvIBDLxM7SiVda8K/YA8p1LRD5J/KBuPczYUx/U4a3WOxqRHO3Q9S9NiMTFPSLQaBCw/lAhzlfpkFehhUIGDLcz8+ZJvraWmbSGmRNljCLxukVuHABiT/+KKkiOlXdcioWTBmHBpIGQy4ATpXXYl1/Z6fs/aQ7M+seGd/q22rPjZDkK2unTc+R92NGofFG3UNMBceuDMlfSST1mAZoxYyljhwJpCZlA5KmlRfwF37lE5HO8/UGdlVOGv3/zh8Vp3x4ucjgYvGtoAgDTWObP950DAPSJCfXJPhdfG5nfmYmMoh4eWMvMnv6Vklo9FHIZxg+Ow4TB8bj1sp4AgHd2n+n02l05peLC667vv3TV+7B5VH77B8fSWmYsZXRay1JGuQxdri/HmkBaQiYQHTjnuaVF/AEDMyLyOZ5cA6o1MVNXXmd5/xXaRoczddcNiEWEKggX6hux5sB5AEBuWb1Prp0jltu58+DYEcXVzk9kFEkj891YyuhM/8rDo3tDFSTHofPV+Oj3fHz/Zwn25Vc69UODNJHRBYM/WnPV+1AsZewoYxbtgVJGbYAP/2g5LV8VJPeJAT6+JFCWkAlEZXXsAWzJ+x3eRESteKtZ29VjlXeduoCahralgWIZmC8dEPhaxqy4xvmJjCJPZMyc6V+JDVdhdHI37Mwtx8rdZ6TT48KVDjW6C4IglTK6YiJja656H4oBV0c9ZtFuLmU0GAU0NIkLTAfm79EymQxBchmajAL7yzoQCEvIBCJNGHsAW+K7l4h8jreatV2ZqfN2Oaajoj1QTuaI5lLGtpM57SVe1509Zs70r2TllGFnbnmbyznaP1lY3YA6vQFBchn6dHP98guueh/aXcropsEzuiaD9O9AzZgBQLA5bcbFpTsmLgfh7ELs5HrpSewBbInvXiLyOd5q1nZlps6b5ZjOkAIzK+tueZI4lbEzwz96RopTGd2XMXO0f8WVAbvYX9Y3JrTNuHRXcNX70NbwD/G1566MmdhfJkNgBy1BctNjC+THSIGHPYCW+O4lIp/jrQ9qV2bq/G3tnJaLTHtbo8EoPS+dKmWMMGXMahsMqG2npNRVMvpr8MK1KW1Ob69/xZUBe26Z+/rLANe9D22NyxcDtpqGJjQZjE5sqXUtF5cO5N4rcTKjKihws4IUmNgD2Iw9ZkTkk8QP6taL9sZHqPDsuBS3fFCLGQJrB872Zur8be0cX+oxK6ltgABAqZChW6jza3OFKhWIUgehSteEouoG9It131ee2NeTognF30b27rB/xZUBu5gxc/XC0i254n3YnDFr/7UeoQ6CDIAAoFLXZHfPib3q9abATB2g/WWiIHMpIxeXJn/EHkATBmZE5LM8/UEtZghmbjja4WXszdS5MsjzhCipx8z7pYxiGWN8hAryTmY4ekSqUaWrRWG1zi0DMkR78ioBANf002D84LgOL+fKgP1kWS0A92XMROL7cF9eBaavPwJBAFbdlYqEKNv9f4IgtOgxaz/IVshliAoJRqW2EZX1jS4PzMSJjKHKwM4kNWfMGJiRfxJ7ALsyvnuJyKd5ulnbVSUV/lY3H632nYxZkQtG5YvEPjN3DgARBAH78k2lhyNsLB7uqr4tXaMBeRVaAO7NmIkUchlG9umOXtGmISPnKrV2Xa+2wSD1y0V30GMGNJczuuP1p2sUJzJ2kcCMUxmJ/BYzZkRErbgqU+eNckxntewxEwTBq704UsasExMZRWJw586R+WcvaFFWp4dSIcMlPSOtXtZVWdnTF+phFEzBToyLM0zWJHcLQV6FFmcuaDEyuZvNy4tljKHBCquZHHeuZSZmzNQB3nslDoBhKSOR/2JgRkTUDleVVPhL3byYzWgyCqhvNCBM6b2vBzFj1pmJjCJPLDK9N78SAHBZQqRdZWQdBewA8K/xA+wK2KX+stgwjwbRyd1DsevUBeRV1Nt1eVtljCJ3rmVWLw3/COyAhaWMRP6PgRkRkZv5Q9282pzRaGgyolLb6NXArGWPWWdJpYxuDMz2mQOz4TbKGFtqHbCv+vUM8ip00DfZN5XwpDkw6++BMsaWks3rpZ29YF8poxhodTQqXyRmzNyxjp6ui/WYMWNG5L/47iUiIgAtJzN6dwBIUY2p7LBHZOcDs3hpkWn3lDIaBQF7zf1lwx0Mvlv2T956WQIAYNvxUruum1PWnDHzpD7dQwEAZ+3OmJkygtb6y4DmwM09pYymYFcd8D1mpkM6NQMzIr/Fdy8REQFosci0lweANJcydr7HTMyYldXq0eiGNbJOldWjUtsIdZAcQ3pEOH071w0wlS8ePFeFEhuDSgRBaM6YeTgwS+5uypgVVTdImShrxCDf3lJGdwz/0HaBUkaDUZAeZ0V9o10LlBOR7wncTykiInJIlNp1i0wbjAL25Vfi+z9LsC+/0u4DxdqGJtSZ151yRSljt5BgqILkENBcIulKYn9ZWlIUgjsxDa9HpBqpCZEQAGw/YT1rVl7fiEptI+QyoK85g+Up0SHBiFQHQQCkqZDWOFrK6M7hH4E6lTErpwyT38/GSXMWVfw7K6fMy1tGRI5iYEZERABct8i0eGD4xNrDeGnLMTyx9rDdB4riWPtIdZBLeoJkMpk0RMQdfWZ7zeuXOVrG2J7rB8UCAH6wUc54stS0flnvbiEeL8+TyWTNfWZ2BGaOljJWumH4hzaAx+Vn5ZRh5oajbYbIlNTqMXPDUQZnRH6GgRkREQFwTSljZw8Ui124hplI7FUrdPHIfINRwP5zYn9Z5xcKzxgQC7kMOFJYg4KqjoMeaSKjhwd/iHqLfWYXbPeZiRkwWxmzbiGeKGUMrMDMYBSwLOuk1css35HLskYiP8LAjIiIADSvZValc274hysOFIvFwR8uDczEASCuzZidKK1FTUMTwpQKDIx3vr9MpAlTYqg587b9ePsBrMEoIPtsBQAgRKnwykF3H4cyZvb1mLVeR8+VArXH7GBBVZsfQForrmnAwYIqD20REXVWYH1KERGR0zpbyuiKA8UiF47KFzWPzHcsY2arT04sY0xPipJGlXfW9QNN5YzbjpW0OU8sEc0+a7rfjUeKvdJLlOxAxqyy3r5Sxpbr6NU22B4q4ghpgekAy5iV2XivOXo5IvI+rmNGREQAOh+YueJAUZrIGNn5iYwicbqjI4tMZ+WUtVkAOi5ciX9m9JMWgN7n5Jh8a8b11+D/bc/BidI6fLo3H4PjI5CWGIWdueWYueFom8uLJaJLJg+xa2FqVxAnM+ZVaCEIgtUFru0tZVQHKxASLIe20bSOXoTadYcnYo9ZaIAFZppwpUsvR0Tex8CMiIgAAFFqscfMuVJGVxwoipMTXVvKqLK4bVvEPrnWxCBo8U2DEalUYE+eqaRwaFLn+8tE+89VIUgug94g4M2dpwEAsWHB0Busl/ct35GLq1NioHBR5s6apKgQyGVAnd6Asjo9YsPb31e6RoMUFHWzUcoImII3bWMDKrSN6GUul3QFXYD2mKUlRiEuXGk1Sx0foUJaouten0TkXixlJCIiAJ3PmIkHitbYOlB0TymjucesWgejjf4le/rk5mz6E9PWHZGCpee+/cMl5YRiQNg6CCuta7TZ9+fJXiJlkBwJUabn9OyFjvvMxNdRkFyGMDsmbLprLbN6vVjKGFiHPAq5DP/M6Gf1Ms+OS/FIsE5ErhFYn1JEROS0zg5g6OyBolEQpMWVxSyXK8SFKyGXAXqDgAs2xrHb0yfXet6GK0aT2xMQ2uLJXqI+Yp9ZRft9ZgajgF9PXwAAhCoVbZ6z9kSpTcHb7txyh9a+syVQpzICQEZ/DZZMHtLmB5H4CJVHy1uJyDVYykhERAAsBzDUNxoQpnT8KyKjvwbPXHMRXv/pVJvzLu/TzeqB4oU6PZqMAuQyQNNBeZwzghRyaMJMJV9F1TpowjrO6nUmuOlMOaE9AaEtnuwl6i1OZmwnY9a6P69a14TJ72db9Oe1d50D56oBAN/8rwjf/K+oTU+fs3RNgdljJsror8HVKTE4WFCFslo9NOFKpCVGMVNG5IeYMSMiIgBAsEKOYPPB3K7ccqczFpHmwQ39NGFYOGkQnrn6IgBAdl4l8qyMWBfLGDVhSpdNORQ1lzNa7zPrTHDTmXLCzma7PN1LlNxBxsyZdezE64gBlD3XcUTzVMbAPeRRyGUY1isa4wfHYVivaAZlRH4qcD+liIjIbuIo9kZzMPavLcedHsV+rLgWADAy2XSg+NfhSbiib3cYjAJW7jrV4Qh6d0xkFNm7yLQ9fXLWOBtgdTbb5eleomRzxuxMi4yZM+vYuXuR5CaDEY3mnr1ALGUkosDCwIyIqItzJsthzZ/mwGxQfLh02vSr+kIGICunHE+sPYyXthzDE2sPS8GfwShgb34lAECpkLl84eQedmbM7OmTs8bZAMuegDBKHeQzvURixqywSocGc6bLmXXs7L3OgXPOZSLFqZAAAzMi8n3sMSMi6sLszVjY2ztlMAo4UWIKzAbHRUin51Vo0V6oJQZ/UeogafLg3vwqmz1JjpIWmbZjZH5Gfw36xoTidLllmZ5c1nbwR0udKScUA8L2xvSLZl8/wGd6iWJCgxGuUqC2wYD8Si36acKcWsfO7uvUOZeJFMsYFXIZghUs7yMi38aMGRFRF+ZMlsOaMxfqoWsyIjRYgd7mhYjtCf5aj4N3VX+RSMyY2SplBIDyOj3OmIOyV24YhIWTBuHdOy/DohsGW71eZ8sJ7Zmw5yu9RDKZDMndTFmzvAum58qZdezsvo6VgS3WNE9klFtdCJuIyBcwY0ZE1IU5k+WwRuwvGxgXBrn5QLgzEwddtXCyuGC1rVJGAPjpZBkEABf3iMBfBsVZnCeXyywmDgKmwOnZcSkuye7504S95O4h+KOoBmfNA12cWfDY3uukO7mIdyCPyieiwMPAjIioC3Mmy2HNn8U1AIBB8c1ljJ2ZOChm64b1inb6NoDmqYw1DU349n+FSIoO6TDg+fGEKUt37YC2gZYnAicxK+brxIzZWXPGzJ5yzNZZRWeu4wixx4yBGRH5AwZmRERdmDNZDmuOl7Qd/NHZiYOuWDj5t7MVkAEQACzclgMA7a6TVVGvx37zEJJxHWTA/CVwcrfk7m0nM2b01+DGIfHYdLTY4rLWsopiCedrWSdR6uJMJDNmRORPGJgREXVh9mQsHh7d2+7BH+0FZvYEf9Z0NrATp062JvaxtZxquPNkOQwCMCguHEnRIZ2630DXci0zQRAgk8lgFAQcLjQtFP3XYYkYEh9hV1ZRzESOfXM3Go0CFkwaiL8MjOt0JlLXoseMiMjX8ZOKiKiL62johLjIc9aJMjQZjB2uPybKq9BC22hESLBcKnMDOjeCvrMLJzu6TtaP5mEjGe2UMZKlXtEhkAGobTDgQn0jAGCveRHxMKUCj1/ex6EhJQq5DN1CgwGYgj5XlIfWS4tLM2NGRL6PGTMiImq3dypaHYwHPj+A385W4C/v/IraBoN0+fbKAMX+sgGx4W0OqsXgr/XgjJZj8tvT2UmHjkyd7KcJw568Sml7yTpVkBw9o9Q4X6XD2Yp6xIQpse5QIQBg4uA4hCodD4Yi1cEoqdWjWtvxa8IR7DEjIn/CwIyIiAC03zs1YVAsvj1SbBGUAe2XAR5rZ2HpljoanLEzt9xtkw4dmTp5vkoHg1FA/9gwqUyPrEvuFmIKzC5o0Ss6BDtPmjKOt6cmOHV7kWrTYUmVrtEl2yeWMoaylJGI/AADMyIiapfBKODXMxVWL9NynP0xc8ZscIuJjK21F/y5c9KhI1MnP9lzTtoesk9y91D8eqYCZy7Uo7xOD4MApCZEol9smFO3JwZm1VayqI7QspSRiPwIAzMiImqXI2WA6UlROF5SB6DjjJk17pp0aM/gkbhwJWp1Tfj1zAUAwLh+DMzs1bubaRmCPWcrUVprWiPuttSeTt9elNrUY+aqwKxez1JGIvIfzO0TEVG7HCkDzLugRX2jAaoguU+VAdozeKReb8BzG45CnGcyY/3/kGUeAkIdy8opw6pf8gAAOWV1qNQ1QYbmoTHOcHkpYxOnMhKR/+AnFRERtcuRMsA/S5oHf3TmwNwdOpo6qTBvZq2+/f45BmcdE5cgqNRaBlACgDmbjzn93EWYA7MaF5cyMmNGRP6ApYxERNQuRxafXvF/pwAAg50oY/SE1n1s3UODMfe74yir6/ixteyfo2b2LkHgzHMX5fIeM5YyEpH/YMaMiIjaZU8ZoDjO3tZERl8g9rGNHxwHuVxmNSgDmvvnyJIjvYeOipR6zFxTyqjVM2NGRP6DgRkREXWoozJAAHg+wzTO3igIOF5iCsysTWT0JY70z5Eldz53zT1mri5l5OEOEfk+ljISEZFVrcsAvzxQgCOFNTh8vhp3piciv0KLOr1p8EefGN8Z/GGNI/1zZMmdz52rpzJKgZkTi10TEXkaf0IiIiKbWpYBvnhdfwDA98dKcaKkVipjHBAb5nODPzoi9s9ZI/bPkSV3PneRIWKPmaumMpp7zIIYmBGR72NgRkREDhkYF47rB8YCAN7efRo/nTRN4OseqoRBnDnv4xzpnyNL7nzuIlSmwExvEKBrNNi4tG317DEjIj/CwIyIiBz2+BV9IAfw8+kKbD9hCsx25pZj8vvZfjNmvqP+ufgIFZZMHoKM/lxouiPueu7ClAppGQNXlDOylJGI/Al7zIiIyGEny+pgbOd0cQ0wfwlsWvfPacKVSEuMYqbMDu547mQyGSLVwajQNqJa14S4CJXTtyUIzVk3Dv8gIn/AwIyIiBziznWsvEHsnyPHueO5i1QHoULbiKpO9pk1GgQYzJW1LGUkIn/An5CIiMgh7lzHiijSRZMZ61v0qKkZmBGRH2BgRkREDuEaYOROUS6azCiWMSoVMr+ZFkpEXRsDMyIicgjXACN3EiczdjZjpm00j8pntoyI/AQDMyIicgjXACN3ilS7KjAzZcxYxkhE/oKBGREROYRrgJE7Rbmox0zLiYxE5Gf4aUVERA7jGmDkLs0Zs871mDUHZsyYEZF/4Lh8IiJyCtcAI3eINA//qGKPGRF1MQzMiIjIaVwDjFzNVePymTEjIn/DUkYiIiLyGZHmqYw1nS1l1LPHjIj8Cz+tiIiIyGeIPWadL2VkxoyI/AsDMyIiIvIZ4lTGOr0BTQaj07ejbWKPGRH5FwZmRERE5DPC1c3t7zUNzmfNdFzHjIj8DAMzIiIi8hlBchnCVaZgqjPljPXsMSMiP8NPKyIiIvIp4gCQzkxmFHvMQpXMmBGRf2BgRkRERD5FHJlf04nATGdex4yljETkLxiYERERkU9pnszo/Mj85qmMPNQhIv/ATysiIiLyKa5YZFoKzIKYMSMi/8DAjIiIiHxKVIjYY9aZjJl5XD57zIjITzAwIyIiIp8iljK6JGPGHjMi8hMMzIiIiMinRLhwKiN7zIjIX/jMp9Vjjz2GF198Ufr76NGjmDJlClJTU3H77bfjyJEjFpfftGkTrrvuOqSmpmLatGm4cOGCdJ4gCHjttdcwevRojBw5EkuXLoXRaJTOr6iowNNPP4309HRkZGTg22+/tbhtW/dNRERE7hPlyh4zZsyIyE/4RGC2efNm7Ny5U/q7vr4ejz32GIYPH47169cjPT0djz/+OOrr6wEAhw8fxpw5czB9+nSsWbMG1dXVmDVrlnT9Dz/8EJs2bcJbb72FFStWYOPGjfjwww+l82fNmoWamhqsWbMGTz75JF566SUcPnzYrvsmIiIi92ouZXSux0wQBGlcPgMzIvIXXg/MKisrsXTpUlx66aXSaVu2bIFKpcILL7yAlJQUzJkzB2FhYdi6dSsA4NNPP8XEiRNxyy23YNCgQVi6dCl27tyJ/Px8AMDHH3+MGTNmYPjw4Rg9ejSee+45fPbZZwCAvLw87NixAwsXLsSAAQMwZcoUTJ48GZ9//rld901ERETuFRkijst3LmPW0GSEYP43AzMi8hdeD8yWLFmCm2++Gf369ZNOO3ToEIYNGwaZTAYAkMlkGDp0KA4ePCidP3z4cOnyPXv2REJCAg4dOoTi4mIUFhZixIgR0vnDhg1DQUEBSkpKcOjQIfTs2RNJSUkW5x84cMCu+yYiIiL36uy4fLGMEQDU7DEjIj8R5M07//XXX7F3715s3LgRL7/8snR6aWmpRaAGADExMcjJyQEAlJSUIC4urs35RUVFKC0tBQCL8zUaDQBI57d33eLiYrvu2xHm2I58hLg/uF8CH/d118D9HLiizRmzGl0jAKHFj6X2XV8MzFRBcijkfIH4C76nu46utq/tfZxeC8waGhowb948zJ07F2q12uI8rVYLpVJpcZpSqYRerwcA6HS6Ds/X6XTS3y3PAwC9Xm/ztm2d74iYmAiHr0Pux/3SdXBfdw3cz4EnPCoUAGAQAHVECCLMGTR793W5OdEWrgqCRsPXh7/he7rr4L625LXA7K233sIll1yCsWPHtjlPpVK1CYT0er0UwHV0fkhIiEUQplKppH8DQEhIiNO33Tp4tEd5eQ0EwfblyDNkMtMHAPdL4OO+7hq4nwObKkiOhiYjThdUIjFa7dC+LiytNt2GQoaysho3bym5Ct/TXUdX29fi47XFa4HZ5s2bUVZWhvT0dADNwdP333+PG2+8EWVlZRaXLysrk0oQ4+Pj2z0/NjYW8fHxAEwliWIfmVjeKJ7f0XWt3Xbr8kd7CAK6xIvN33C/dB3c110D93NgilQHobRWjyptIxKiTD+O2ruv6/WmUkZ1sIKvDT/E93TXwX1tyWsdsZ988gk2btyIzMxMZGZmIiMjAxkZGcjMzERqaioOHDgAwbynBEHA/v37kZqaCgBITU3Fvn37pNsqLCxEYWEhUlNTER8fj4SEBIvz9+3bh4SEBMTFxSEtLQ0FBQUoKiqyOD8tLU26bWv3TURERO4njsx3ZjJjvZ6j8onI/3gtMEtMTERycrL0X1hYGMLCwpCcnIwJEyaguroaixYtwsmTJ7Fo0SJotVpMnDgRAHDPPffg22+/xVdffYVjx47hhRdewDXXXINevXpJ57/22mvIzs5GdnY2li1bhvvvvx8A0KtXL1x55ZV4/vnncezYMXz11VfYtGkT7r33XgCwed9ERETkfp2ZzKgTF5dWMjAjIv/h1amMHQkPD8d7772HefPmYe3atRg4cCBWrVqF0FBTM3B6ejrmz5+PFStWoKqqCldccQUWLFggXf/hhx9GeXk5pk+fDoVCgTvuuAMPPvigdP7SpUsxZ84c3HnnnYiNjcUrr7yCyy67zK77JiIiIveL6sQi0+JUxpAgjsonIv8hEwRWdrpLWVnXaGj0FzIZoNFEcL90AdzXXQP3c2Cbv/U4Nv5RjKeu7IOHRvd2aF9/sb8Ay3fk4vqBsVh042D3byy5BN/TXUdX29fi47WFPyURERGRz+lMKaPWPPyDPWZE5E8YmBEREZHPiQpxQSkje8yIyI8wMCMiIiKfEyn1mDmRMRMDs2Ae5hCR/+AnFhEREfkcsZTRmXH5zYEZM2ZE5D8YmBEREZHPiezUVEbTOmZqBmZE5EcYmBEREZHPEQOzmk5kzEJZykhEfoSfWERERORzxMDM0VJGg1FASU0DAKCwWgeDsQvM4iaigMDAjIiIiHxOlLnHrKHJCJ05A2ZLVk4ZJr+fjROldQCAD37Lx+T3s5GVU+a27SQichUGZkRERORzwpQKKGSmf9c02M6aZeWUYeaGoyip1VucXlKrx8wNRxmcEZHPY2BGREREPkcmkyFCnMyotR6YGYwClmWdtHqZ5TtyWdZIRD6NgRkRERH5JHsnMx4sqGqTKWutuKYBBwuqXLZtRESuxsCMiIiIfJIUmNkoZSyzEZQ5ejkiIm9gYEZEREQ+SQrMbJQyasKVdt2evZcjIvIGBmZERETkkyLNPWbVNkbmpyVGIc5G0BUfoUJaYpTLto2IyNUYmBEREZFPipLWMrPeY6aQy/DPjH5WL/PsuBQo5DKXbRsRkasxMCMiIiKf1Dz8w/a4/Iz+GiyZPATqIMtDm/gIFZZMHoKM/hq3bCMRkasEeXsDiIiIiNoTYWcpoyijvwafaMJwpKgGd6UnYFx/DdISo5gpIyK/wMCMiIiIfFKUnePyWzpXpQMA3HRJDwyMC3fLdhERuQNLGYmIiMgnOVLKaLpcIyq1piCuV3SI27aLiMgdGJgRERGRT7J3KqMov0ILANCEKRGqVLhtu4iI3IGBGREREfmkSDunMoryKk2BWe9uzJYRkf9hYEZEREQ+Sewxq20woMlgtHn5vAumwKwXAzMi8kMMzIiIiMgnRaiaZ5TZU86Yb86YJTMwIyI/xMCMiIiIfFKQQo4wc69YldZ2OWOeuceMgz+IyB8xMCMiIiKfJfaZVdbrrV5OEAQpMOvdnYEZEfkfBmZERETks8TJjJU2MmYX6htRpzdABiAxioEZEfkfBmZERETks6TJjPXWAzNxVH7PSBVUQTy8ISL/w08uIiIi8llRdpYyiqPyOZGRiPwVAzMiIiLyWRFiYGajlJGDP4jI3zEwIyIiIp8Vbh6ZfyCvAnvzKmEwCu1eLl8a/BHqsW0jInKlINsXISIiIvK8rJwyfHOoEACw80QZdp4oQ1y4Ev/M6IeM/hqLy0oTGZkxIyI/xYwZERER+ZysnDLM3HAUtXqDxekltXrM3HAUWTll0mlGQZAWl+7NHjMi8lMMzIiIiMinGIwClmWdtHqZ5TtypbLGkpoGNDQZoZDL0DNK7YlNJCJyOQZmRERE5FMOFlShpNb6FMbimgYcLKgCAClblhilRpBc5vbtIyJyBwZmRERE5FPKbARlrS8nDf5gGSMR+TEGZkRERORTNOFKhy53loEZEQUABmZERETkU9ISoxBnIziLj1AhLTEKQHPGjGuYEZE/Y2BGREREPkUhl+GfGf2sXubZcSlQmPvJ8pgxI6IAwMCMiIiIfE5Gfw2WTB7SJnMWpQ7CkslDpHXMmowCCqp0ABiYEZF/4wLTRERE5JMy+mtwdUoMDhZU4av/FeHHP0swNCnKYnHpomodmowCVEFyxEWovLi1RESdw8CMiIiIfJZCLsPw3tFIio/Ej3+W4JczFdA2GhASrADQXMaYFK2GXMZR+UTkv1jKSERERD7v4oRIJEap0dBkxO5TF6TTOfiDiAIFAzMiIiLyeTKZDH8ZGAsA2H68VDq9efBHqFe2i4jIVRiYERERkV+4zhyY/Xz6Aur1BgBAXqUYmKm9tl1ERK7AwIyIiIj8wsC4MCRFi+WM5QCYMSOiwMHAjIiIiPyCTCbDdQNMWbMfT5RB32REUbVpVH4vjsonIj/HwIyIiIj8hhiY/Xz6Ak6W1cEoAGFKBWJCg728ZUREncPAjIiIiPzGgLgw9DKXM36+7xwA00RGGUflE5GfY2BGREREfkMmk+Fac9Zs2zHTdMZwlQIGo+DNzSIi6jQGZkRERORXokKCAABiKLY3vwqT389GVk6Z9zaKiKiTGJgRERGR38jKKcObO0+3Ob2kVo+ZG44yOCMiv8XAjIiIiPyCwShgWdZJq5dZviOXZY1E5JcYmBEREZFfOHCuCiW1equXKa5pwMGCKg9tERGR6zAwIyIiIr9QVmc9KJMuZyN4IyLyRQzMiIiIyC9owpT2XS7cvssREfkSBmZERETkF9KTohBnI+iKj1AhLTHKQ1tEROQ6DMyIiIjILyjkMvwzo5/Vyzw7LgUKORebJiL/w8CMiIiI/EZGfw2WTB7SJnMWH6HCkslDkNFf46UtIyLqnCBvbwARERGRIzL6a3B1SgwOFlShrFYPTbgSaYlRzJQRkV9jYEZERER+RyGXYVivaG9vBhGRy7CUkYiIiIiIyMsYmBEREREREXkZAzMiIiIiIiIvY2BGRERERETkZQzMiIiIiIiIvIyBGRERERERkZcxMCMiIiIiIvIyBmZERERERERexsCMiIiIiIjIyxiYEREREREReRkDMyIiIiIiIi9jYEZERERERORlDMyIiIiIiIi8LMjbGxDIZDJvbwG1JO4P7pfAx33dNXA/dx3c110D93PX0dX2tb2PUyYIguDeTSEiIiIiIiJrWMpIRERERETkZQzMiIiIiIiIvIyBGRERERERkZcxMCMiIiIiIvIyBmZERERERERexsCMiIiIiIjIyxiYEREREREReRkDMyIiIiIiIi9jYEZERERERORlDMwoIBUXF2PGjBkYOXIkxo4di8WLF6OhoQEAkJ+fjwcffBBpaWmYNGkSdu/e7eWtJVd47LHH8OKLL0p/Hz16FFOmTEFqaipuv/12HDlyxItbR52l1+vx73//GyNGjMDll1+O5cuXQxAEANzXgaawsBCPP/44hg4dioyMDKxevVo6j/va/+n1etx4443Izs6WTrP1vfzLL7/gxhtvRGpqKu6//37k5+d7erPJCe3t64MHD+Luu+9Geno6xo8fj6+++sriOl19XzMwo4AjCAJmzJgBrVaLzz77DK+//jp27NiBN954A4IgYNq0adBoNFi3bh1uvvlmTJ8+HefPn/f2ZlMnbN68GTt37pT+rq+vx2OPPYbhw4dj/fr1SE9Px+OPP476+novbiV1xsKFC/HLL7/ggw8+wLJly7B27VqsWbOG+zoA/eMf/0BoaCjWr1+P2bNn44033sAPP/zAfR0AGhoa8OyzzyInJ0c6zdb38vnz5zFt2jTcdttt+Prrr9G9e3c89dRT0g8z5Jva29elpaV49NFHMXLkSHzzzTeYMWMGFixYgJ9++gkA9zUAQCAKMCdPnhQGDBgglJaWSqdt3LhRuPLKK4VffvlFSEtLE+rq6qTzHnjgAWHFihXe2FRygYqKCuGqq64Sbr/9dmHmzJmCIAjCV199JWRkZAhGo1EQBEEwGo3CX/7yF2HdunXe3FRyUkVFhTBkyBAhOztbOu29994TXnzxRe7rAFNZWSkMGDBAOH78uHTa9OnThX//+9/c134uJydHmDx5snDTTTcJAwYMEH777TdBEASb38tvvPGGcN9990nn1dfXC+np6dL1yfd0tK8///xzYcKECRaX/de//iU8++yzgiBwXwuCIDBjRgEnNjYW//3vf6HRaCxOr62txaFDhzBkyBCEhoZKpw8bNgwHDx708FaSqyxZsgQ333wz+vXrJ5126NAhDBs2DDKZDAAgk8kwdOhQ7mc/tW/fPoSHh2PkyJHSaY899hgWL17MfR1g1Go1QkJCsH79ejQ2NuLUqVPYv38/Bg8ezH3t537//XeMGjUKa9assTjd1vfyoUOHMHz4cOm8kJAQXHzxxdzvPqyjfS22lrRWW1sLgPsaYCkjBaDIyEiMHTtW+ttoNOLTTz/F6NGjUVpairi4OIvLx8TEoKioyNObSS7w66+/Yu/evXjqqacsTud+Diz5+flITExEZmYmJkyYgGuvvRYrV66E0Wjkvg4wKpUKc+fOxZo1a5CamoqJEyfiqquuwpQpU7iv/dxf//pXzJ49GyEhIRan29qv3O/+p6N9nZSUhLS0NOnv8vJybN68GWPGjAHAfQ0AQd7eACJ3e/XVV3H06FF8/fXXWL16NZRKpcX5SqUSer3eS1tHzmpoaMC8efMwd+5cqNVqi/O0Wi33cwCpr6/H2bNn8eWXX2Lx4sUoLS3F3LlzERISwn0dgHJzczFu3Dj87W9/Q05ODhYsWIAxY8ZwXwcoW/uV+z0w6XQ6PP3009BoNLjrrrsAcF8DDMwowL366qv46KOP8Prrr2PAgAFQqVSorKy0uIxer29zYE++76233sIll1xikR0VqVSqNh/k3M/+KygoCLW1tVi2bBkSExMBmJrEv/jiCyQnJ3NfB5Bff/0VX3/9NXbu3Am1Wo1LL70UxcXFeOedd9CrVy/u6wBk63u5o8/zyMhIT20iuVhdXR2eeuopnDlzBp9//rmUWeO+ZikjBbAFCxbgww8/xKuvvorx48cDAOLj41FWVmZxubKysjapc/J9mzdvxvbt25Geno709HRs3LgRGzduRHp6OvdzgImNjYVKpZKCMgDo27cvCgsLua8DzJEjR5CcnGwRbA0ZMgTnz5/nvg5QtvZrR+fHxsZ6bBvJdWpra/Hwww8jJycHH330Efr06SOdx33NwIwC1FtvvYUvv/wSy5cvxw033CCdnpqaij/++AM6nU46bd++fUhNTfXGZlInfPLJJ9i4cSMyMzORmZmJjIwMZGRkIDMzE6mpqThw4IA0YlcQBOzfv5/72U+lpqaioaEBp0+flk47deoUEhMTua8DTFxcHM6ePWvxq/mpU6eQlJTEfR2gbH0vp6amYt++fdJ5Wq0WR48e5X73Q0ajEdOnT8e5c+fwySefoH///hbnc18zMKMAlJubi7fffhuPPvoohg0bhtLSUum/kSNHomfPnpg1axZycnKwatUqHD58GHfccYe3N5sclJiYiOTkZOm/sLAwhIWFITk5GRMmTEB1dTUWLVqEkydPYtGiRdBqtZg4caK3N5uccNFFF+Gaa67BrFmzcOzYMezatQurVq3CPffcw30dYDIyMhAcHIyXXnoJp0+fRlZWFt59911MnTqV+zpA2fpevv3227F//36sWrUKOTk5mDVrFpKSkjBq1Cgvbzk56uuvv0Z2djYWLlyIyMhI6dhMLGXlvmZgRgHoxx9/hMFgwDvvvIMrr7zS4j+FQoG3334bpaWluO2227BhwwasXLkSCQkJ3t5scqHw8HC899572LdvH2677TYcOnQIq1atshjHTP7ltddeQ+/evXHPPfdg5syZuPfeezF16lTu6wATERGB1atXo7S0FHfccQcWL16MJ598EnfddRf3dYCy9b2clJSE//znP1i3bh3uuOMOVFZWYuXKldKyCeQ/vv/+exiNRjz++OMWx2ZPP/00AO5rAJAJQldaTpuIiIiIiMj3MGNGRERERETkZQzMiIiIiIiIvIyBGRERERERkZcxMCMiIiIiIvIyBmZERERERERexsCMiIiIiIjIyxiYEREREREReRkDMyIiIiIiIi9jYEZERF6RkZGB9evXtzl9/fr1yMjI8MIW2Zafn4+BAwfi+eef98j95eTkYOrUqcjJycHFF1+Mjz/+uM1l9u7di0GDBmHXrl0e2SYAWLt2LV5//XWP3R8RUVfAwIyIiMhOW7ZsQe/evbF9+3bU1dW5/f7mz5+PadOmoX///pg6dSr+85//4MKFC9L5RqMRCxcuxKRJkzB27Fi3b4/otttuw7Zt23D69GmP3ScRUaBjYEZERGSnTZs24b777kNwcDC+//57t97Xnj17UFpaitGjRwMApk+fDrVabZGp+vLLL1FQUIDZs2e7dVtaCwoKwq233or333/fo/dLRBTIGJgREZFPKyoqwt///neMHDkSo0aNwsKFC6HX6wG0X/YoZpYA4Pz583jooYeQnp6OMWPGYMGCBWhsbAQACIKAlStX4sorr8Tw4cPxxBNP4Pz58x1ux8mTJ3HixAmMGjUKY8eOxTfffNPmMqtXr8bYsWMxdOhQLFy4EFOnTpXKNfV6PRYuXIhRo0Zh1KhReO6551BZWdnh/X3xxRe47rrrpL/Dw8Px4osv4uuvv8axY8dQXV2NN998E//85z+h0WgAmAK1jIwMpKenY+rUqTh+/Lh0/eLiYsyYMQMjRozAJZdcgltvvRX79u0DAJw7dw4DBw7EypUrMWLECMyfPx/V1dV4+umnMXz4cIwYMQLPPfccamtrpdu79tprsXnzZlRXV3f4GIiIyH4MzIiIyGfp9Xo88MAD0Gq1+OSTT/DGG2/gp59+wtKlS+26/oIFCxAaGorMzEysXLkS33//PdauXQsA+PTTT7Fx40YsW7YMa9asQUxMDB566CEpcGtt06ZNSExMxKBBg3Dttddiz549KCgokM7fsGEDVqxYgdmzZ2PNmjU4d+4c9uzZI52/fPlyHDlyBO+//z4+/vhj1NbW4u9//3u79yUIAn7++WdcccUVFqffcMMNGDlyJF577TW8/fbb6Nu3L+666y4AQFZWFt566y3861//wjfffINhw4bh/vvvR1VVFQDgueeeg8FgwJdffonMzEzEx8fj5Zdftrj9/fv3Y926dbj//vuxYsUKlJaW4osvvsDHH3+MY8eO4e2335Yum5KSgqioKIvHSEREzgvy9gYQEVHXNW/ePCxYsMDitKamJsTGxgIAdu3aheLiYqxduxZRUVEAgLlz5+LJJ5/EM888Y/P2CwoKcPHFFyMhIQHJyclYtWoVIiMjAQD//e9/MW/ePIwaNQqAqZ/ryiuvxK5du9odPrJlyxbp9KuvvhpKpRKZmZmYNm0aAODzzz/HAw88gIkTJwIAlixZgquvvhoAoNVq8emnn2LdunUYOHAgAGDp0qUYNWoUjh8/Lp0mOnfuHCorK3HRRRe12Y65c+fi5ptvxp49e/DVV19BJpNJj+fxxx/HuHHjAAD/+Mc/8H//93/YsGED7rvvPlx33XUYP348evToAQC499578dhjj1nc9gMPPIDevXtLz11YWBiSkpIQEhKCN998s8229OvXD0ePHsW1115rfUcQEZFNDMyIiMhrZsyYgeuvv97itG3btuGLL74AAOTm5qJPnz5SUAYAQ4cORVNTE/Ly8mze/iOPPILZs2fjhx9+wFVXXYVJkyZhyJAhqKurQ1FREZ555hnI5c3FIzqdDmfOnGlzO4cPH8bZs2el0sKwsDBcfvnl+Pbbb6XA7Pjx4xaBTlRUFPr27QvANM2xsbERd999t8XtGo1GnDlzpk1gVlFRAQDo1q1bm21JSUmRtmPAgAHS6bm5uXj11VexfPly6bSGhgacOXMGMpkM99xzD7Zs2YL9+/fj9OnTOHLkCIxGo8VtJyYmSv++//778dRTT2HMmDEYM2YMxo8fj5tuusni8tHR0SgvL2+zjURE5DgGZkRE5DUxMTFITk5uc5pIpVK1uY7BYJD+L2aLWmpqapL+PXnyZIwZMwbbt2/HTz/9hBkzZuDRRx/Fww8/DAB48803peBJ1DIIFG3evBkA8NBDD0mnGY1GCIKAffv2YdiwYVAoFBAEweJ64t/iNn/++ecIDQ3t8PG21jpwEqnV6janGQwGzJ49G2PGjLE4PTw8HEajEQ899BCqq6sxadIkZGRkoLGxEdOnT7e4bMvne8yYMdi5cyd+/PFH/PTTT5g7dy52796N1157zWL7Wga2RETkPH6aEhGRz+rbty/OnDljMSTj4MGDCAoKQu/evREcHGwxtl4QBJw7d076+/XXX0d5eTnuuecevPfee/jHP/6Bbdu2ITIyEjExMSgtLUVycjKSk5PRs2dPvPrqq21GwBuNRnz33Xe4+eabkZmZKf33zTffIDw8HJmZmQBMZX1//PGHdL3a2lqcPXsWANCrVy8oFApUVlZK9xceHo7Fixe3m3ESh3lYGw7S3nNVVFQk3X5ycjLeffddHDx4ECdPnsSePXuwevVqPPHEE7jmmmtQUlIiPWftWb16Nf744w/ceuutePPNN7F48WJs27bN4jIVFRXSthIRUecwMCMiIp91xRVXoFevXnjhhRdw/Phx/Pbbb1iwYAFuvPFGREZG4pJLLkFlZSU++eQT5OfnY/HixdKwCwA4deoU5s+fj2PHjiEnJwc7d+7EkCFDAAAPPvgg3njjDWRlZeHMmTN46aWXsH///jZ9XXv37kVxcTGmTp2KAQMGSP8NHjwYkydPxnfffYeGhgZMnToVH3/8MbZt24bc3FzMnj0b9fX1kMlkCA8Px5QpU/Dyyy8jOzsbJ0+exAsvvICzZ88iKSmpzePu2bMnunXrZjFV0Za//e1v+Oijj5CZmYm8vDy8+uqr+O6775CSkoLIyEjI5XJs3rwZBQUF2Lp1qzS5Upxw2VpRURHmz5+PgwcP4syZM/j++++l50504sQJXHzxxXZvIxERdYyBGRER+SyFQiFNArzzzjvx7LPP4tprr8X8+fMBAH369MHMmTPxzjvv4JZbboEgCBg/frx0/ZdffhkajQZTp07FnXfeibi4OMyZMwcA8PDDD+OOO+7A3Llzccstt+D8+fP44IMP2pQybtq0CQMHDsSll17aZvvuuece1NTUYPv27bjhhhvw0EMPYd68eZgyZQoSExORmJiI4OBgAMCLL76IMWPGYMaMGbjzzjsRFBSEVatWQaFQtLldmUyGK664Qhpnb49JkybhmWeewYoVK3DjjTfi119/xTvvvIM+ffqgR48eePnll/H+++/jxhtvxKpVq/DSSy8hKCgIR48ebff2/v73v2Po0KF48skncfPNN6O+vh6vvvqqdP6pU6dQV1eHkSNH2r2NRETUMZnQUQ0DERER2e33339Hr1690LNnTwCmXrfRo0dj5cqV0uRHR2RnZ2POnDnYvn27qzfVJd566y0UFhZi0aJF3t4UIqKAwIwZERGRC2zfvh0zZszA0aNHcfbsWSxevBjh4eFIS0tz6vZGjRoFjUaDn3/+2bUb6gKNjY349ttvLYahEBFR5zAwIyIicoEZM2agb9+++Nvf/oabb74Zp06dwn//+992J0va6+WXX8Y777zjwq10jXXr1mH8+PFISUnx9qYQEQUMljISERERERF5GTNmREREREREXsbAjIiIiIiIyMsYmBEREREREXkZAzMiIiIiIiIvY2BGRERERETkZQzMiIiIiIiIvIyBGRERERERkZcxMCMiIiIiIvKy/w+bR1+4MC1UVQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2378,12 +2378,12 @@ }, { "cell_type": "code", - "execution_count": 537, + "execution_count": 237, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWgAAAJICAYAAAD8eA38AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfzUlEQVR4nO3deZyVdd0//tecGVBZFCRBw3KBxGQRVEByx/WWLLMy7zRX0rRcUlPM/Ta1FJLcd2wxb/2qt2XIz7K6tbyVtEUzJAXJWy0WQUAEBmbO+f3BzegIKuAMFzPzfD4e89BrOdd5f875cM5nXnNdn6uqUqlUAgAAAADAWlcqugAAAAAAgLZKQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACrAMqlUrRJQAAAAAFENACrdZf//rXfOtb38qee+6ZAQMGZJ999sn555+fV155Za3WMXz48IwaNaphuU+fPrnmmmuSJEuWLMlll12WBx98sGH7qFGjMnz48LVaY3P7yle+kj59+jT66devX/bcc89cfPHFmTdv3vs+/tVXX02fPn1y//33r6WKAQCaz9SpU3PJJZdk//33z/bbb58dd9wxhx12WH7605+mrq6uWZ+7pY01hw8fvsI4sn///tl3330zZsyY1NbWvu/jJ06cmD59+mTixIlrqWKA1VdTdAEAzeHOO+/MZZddlqFDh+aMM85I9+7d8/LLL+e2227LL3/5y/zwhz/MtttuW0htd999dzbddNMkycyZM/PDH/4wl19+ecP2k046KUceeWQhtTWn7bbbLhdeeGHD8tKlS/O3v/0t3//+9/P888/nrrvuSlVV1Uof271799x99935+Mc/vrbKBQBoFg899FDOOeec9OrVK8ccc0y22mqrLF68OI8++mguu+yy/O53v8v111//nuOitmiPPfbISSed1LBcW1ubiRMn5vrrr89rr72W73//++/52L59++buu+9O796910apAGtEQAu0On/84x9z6aWX5vDDD8+5557bsH7o0KHZZ599cvDBB+fb3/52YWdjDhw48H23t9YQslOnTiu0ffDgwXnrrbdy9dVX55lnnnnP16Z9+/Yf+LoBAKzrpk6dmnPOOSe77bZbxo4dm5qat38l32OPPTJ06NCccsopmTBhQg488MACK123bLzxxiuMBYcOHZrp06fn/vvvz6hRo9K9e/eVPnZlY1CAdY0pDoBW57bbbkvnzp1z+umnr7Bt4403zqhRo7L33ntn4cKFSZL6+vrceeedOeiggzJgwIDsueeeGT16dKPLpUaNGpWjjz469913X/bff//069cvn/3sZ/PYY481Ov7kyZNzzDHHZNCgQdlrr73y85//fIUalk9x8Oqrr2bvvfdOkpxzzjkNl5q9+7KzpqzvnW688cb069dvhekF7rjjjvTt2zezZ89OuVzOVVddleHDh6dfv34ZPnx4xowZk6VLl77ncVdXv379kiT//Oc/kyybDuHMM8/MKaeckoEDB+aYY45Z6RQHL730Ur7xjW9kyJAhGTx4cE444YRMnTq1YXttbW2uuOKK7LHHHunXr18OOuigPPTQQ01WNwDA6rr11ltTKpVy8cUXNwpnl9t///1z8MEHN1rXp0+fXHvttTnkkEMyYMCAXHvttUmSp556Kscdd1wGDx7cME675pprUi6XGx47b968nHPOOQ3jpSuvvLLR9uUeeeSRHHLIIenfv3922WWXfOc732kYK6/M+eefn1122SX19fWN1l966aUZOnRoli5dmsWLF+eiiy7K7rvvnn79+uWAAw7Ibbfdtjov1wfq169fKpVK/vWvfyVZNh3CZZddlqOOOioDBgzIueeeu9IpDv7yl7/k2GOPzQ477JCdd945p59+embMmNGwfe7cubngggvyqU99Kv3798+hhx6aJ554oklrB3gnZ9ACrUqlUsnvf//7DB8+PBtssMFK93n32QgXXHBBfvazn+WrX/1qdtppp0yaNCnXXXddnn/++dx6660Nl5c999xzmTlzZk455ZR06tQpP/jBD3LyySfnsccey0YbbZQZM2bkiCOOyJZbbpkrr7wyCxYsyOjRozN79uyV1tG9e/dce+21+cY3vpETTzwx++2330r3a6r63u2ggw7K2LFj88tf/jJf/OIXG9aPHz8+u+66a7p165abbropd911V84+++x87GMfyzPPPJOrrroq7dq1yymnnPLBb8gqmDZtWpLkYx/7WMO6CRMm5DOf+UxuuOGGlf4SMWPGjHzpS19Kjx49ctFFF6VDhw655pprctRRR+UXv/hFNtpoo3z961/Pn/70p5xyyinp1atXfvWrX+Wb3/xmlixZssIvPgAAa8Ovf/3r7LzzzunWrdt77vO9731vhXU33nhjzjjjjGy11Vbp2bNnJk+enKOPPjoHHHBArrrqqlQqlTz44IO59tprs/XWW2fEiBEpl8sZOXJkXnvttZx99tnp0qVLbr311vz1r39tdLbpgw8+mDPPPDMHHXRQTjvttLz22mu56qqrMmXKlIwbN26lUy189rOfzT333JOJEyfmU5/6VJKkXC5nwoQJGTFiRNq1a5dLLrkkv//973P22WfnIx/5SB577LFcccUV6dKlSz7/+c83wau58nHknXfemWOOOSZf/epX07FjxyxZsqTRYyZNmpQjjjgi22+/fa644orU19dnzJgxOe644/LAAw+kvr4+Rx11VF5//fV885vfTPfu3XPfffdl5MiRufXWWzNs2LAmqR3gndpEQHvTTTfl97//fX784x+v1uMeeOCB3HzzzXnllVfy8Y9/PN/4xjfyb//2b81UJdAU3njjjdTW1mbzzTdfpf2nTJmSe++9N2eccUaOP/74JMkuu+yS7t2756yzzspjjz2WPfbYI0ny5ptv5v7772+YgqBDhw454ogj8uSTT2b//ffPHXfckfr6+tx8883ZeOONkyRbbbVVDj300JU+d/v27fPJT34yybJpDbbbbrtmre/devbsmcGDB+cXv/hFQ0D7v//7v3n22Wdz1VVXJUn+8Ic/pF+/fg2D6CFDhmSDDTZI586dV+n1fadKpdLophfz5s3LH/7wh9xwww0ZNGhQw5m0SdKuXbtcfPHFad++fZJlNwl7pzvuuCNLlizJuHHjsskmmyRJtt122/z7v/97nnnmmdTU1OR3v/tdrrrqqoZAfrfddsuiRYsyevTofPrTn17pWSsAAM1l3rx5mTdvXrbccssVtr37xmBVVVWprq5uWN5pp51yzDHHNCw/8MAD+dSnPpUrr7wypdKyC2N32WWX/OY3v8nEiRMzYsSIPPbYY3n22Wdzyy23ZPfdd0+SDBs2rNGVWpVKJaNHj85uu+2W0aNHN6zfcsstc/TRR+fRRx/NnnvuuUK9O+64Y3r27Jlf/OIXDQHtxIkTM2vWrHz2s59Nsmwcucsuu2TEiBFJlk1J0KFDh/cNp9/Lu8eRs2fPzmOPPZb//M//zIEHHtgw9k6Sj370oznzzDMblt99c7Abb7wxXbp0ye2335711lsvybITJ84444y8+OKL+etf/5rJkyfnnnvuyfbbb58k2X333fOVr3wlo0ePzn333bfa9QN8kFY/xcGdd96ZsWPHrvbjfvazn+Xcc8/N4YcfnvHjx+fTn/50Tj/99Pz5z39u+iKBJrN8IPvuy63eyx/+8IckaRg4LjdixIhUV1c3GtBtvPHGjeaHXX6jr0WLFiVZNvftwIEDGw0Qt99++3z0ox9dg5Y0fX0r85nPfCZPPfVUZs2alWTZ2bOdOnVqGLgPHTo0jz/+eL785S/n1ltvzZQpU3LEEUc0DLxXx1NPPZW+ffs2/HzqU5/K6aefnn79+mXMmDGNzs7YeuutG8LZlVn+Wi8PZ5e397e//W322GOPPPHEE6mqqsoee+yRurq6hp/hw4dn1qxZefHFF1e7fgCAD2NlVwUlycsvv9xojNS3b9/su+++jfZZ/kf95Q4++ODccsstWbp0aSZPnpyHH344V199derr6xumonr66afTrl277Lbbbg2P69ChQ8Mf95NlU0ZNnz49w4cPbzRmGjx4cDp16pTHH398pTVXVVXlM5/5TB555JGGM1THjx+fLbfcsiHUHDp0aO6555589atfzU9+8pO88sor+frXv77SwPeDPPDAA41en9133z0XXXRR9t5770Y3oV3Za/Vuf/zjH7P77rs3hLNJMmjQoPzmN7/JJz/5yTzxxBPZZJNN0rdv34bXo76+PnvttVeee+65FaYHA2gKrfb0oRkzZuTCCy/MxIkTV/oXyvdTqVTygx/8IEceeWQOP/zwJMmJJ56Yp59+On/4wx8yaNCgZqgYaAobbbRROnbs2DCf6cosXLgwS5cuzUYbbdQwwHpn0JckNTU16dq1a958882Gde+eMmF5oLh8sD1v3ryVnrn77mOvjqasb2UOOOCAXHLJJZkwYUKOPPLIjB8/Pvvvv3/WX3/9JMnIkSPTsWPH3HfffRk9enSuvPLKfOITn8h5552XnXfeebXa0rdv31x88cUNta233nrZbLPN0qlTpxX27dix4/sea+7cue97lvTcuXNTqVSyww47rHT7zJkzP3DwDgDQlLp27ZoOHTrktddea7R+s802y7333tuwfN111+WFF15otE+HDh0aLS9evDiXXHJJfvazn6Wuri6bb755Bg0alJqamlQqlSTLxpFdunRZYYqCd44r586dmyS5+OKLG8Zp7zRz5sz3bM9nP/vZ3HDDDfnd736X3XbbLb/85S9z1FFHNWw/99xzs+mmm+bnP/95LrnkklxyySUZNGhQLrroomy77bbvedyV2WuvvfL1r389ybJx5AYbbJCePXs2jFnf6d2v1bvNnTv3fc/inTt3bmbNmpW+ffuudPusWbNWOn0YwIfRagPav/3tb2nXrl1+/vOf57rrrlvhS/C3v/1trrnmmkyZMiU9evTIiBEjctJJJ6V9+/aZNm1aXnvttRx00EGNHtPUE5oDzWPXXXfNxIkTU1tb2+gv48vdc889+d73vpd77723YXA1a9as9OzZs2GfpUuX5o033kjXrl1X+Xm7du2a119/fYX1ywe+a6Ip61uZzp07Z/jw4ZkwYUJ23nnnvPjiizn//PMbtpdKpRx++OE5/PDDM3v27Dz66KO58cYbc/LJJ+fxxx9/37Nc361jx47p37//h6r3nXXPmTNnhfVPPPFENt9883Tu3DkdOnTIj370o5U+fosttmiSOgAAVsfw4cPz29/+NgsWLGj4I3X79u0bjZG6dOnygce59NJL8/DDD2fs2LH51Kc+1RBKvnN+1K5du+aNN95IfX19o+kS3jk23XDDDZMkZ511VoYMGbLC87xfELnVVltlwIABmTBhQkqlUubPn5/PfOYzDdvbt2+fE088MSeeeGL++c9/5re//W2uv/76nHHGGRk/fvwHtvGdunTp0uzjyEcffTSf/OQn07lz52y55ZaNpnx4p1WdSg1gdbTaKQ6W38HynZOFL/fYY4/ltNNOy6GHHppf/OIXufDCCzNhwoR861vfSvL2ROMLFy7Mcccdl2HDhuWLX/xifvOb36zVNgBr5thjj83cuXNXOr3JrFmzcvvtt6d3797p27dvw0D03YPE8ePHp76+PjvuuOMqP+/OO++cP//5z43uADtlypS88sor7/mYdw6WV6Yp63svn/3sZ/OXv/wld911Vz760Y82Gpwfdthh+c53vpMk6datWw455JAcfvjhmT9/fhYsWPChn3tN7bTTTnnmmWcaDa5nz56dkSNH5tFHH82QIUOycOHCVCqV9O/fv+HnhRdeyHXXXbfCPG8AAGvD8ccfn7q6upx33nkr3LwqWXZm7PuNHZf74x//mKFDh2afffZpCGefe+65zJkzp+HqqWHDhqWuri6PPPJIw+OWLFnSaNqCrbfeOt26dcurr77aaMzUo0ePjBkzJpMmTXrfOj772c/md7/7XcaPH58ddtih4ffvxYsXZ//998/tt9+eZNm8sIcffnhGjBjxvle6rQ077bRTHn/88Uav/6RJk3L88cfnb3/7W4YMGZJ//etf6datW6PX5PHHH8+tt976geN3gDXRas+gfT833nhjDj300Bx22GFJlt2c5+KLL85RRx2VV199tSF0OPvss/ONb3wjZ555Zh5++OGcdNJJGTdunLs2wjpu4MCBOfXUUzN27NhMnTo1Bx98cLp27ZoXX3wxt912W2praxvC2969e+dzn/tcrr766ixatCiDBw/O888/n2uvvTZDhw5tNGfXBznqqKNy77335rjjjsvJJ5+c+vr6XHXVVWnXrt17Pmb5zbaeeOKJ9OrVq2HOruWasr73sttuu6VLly65++67M3LkyEaXwQ0ePDi33357PvKRj2TQoEGZMWNGxo0blyFDhjTMtTtlypQsWbJkpTc5ay5HH310HnjggYwcOTInnHBC2rVrlxtuuCGbbrppDjrooHTu3DmDBw/OSSedlJNOOim9evXKs88+m6uvvjq77bZbo3mCAQDWlj59+uTKK6/MOeeck0MOOSRf+MIX0qdPn9TV1eXPf/5z7r333rz++usZOXLk+x5n+Zmrd911V3r16pXJkyfnhhtuSFVVVcP9B4YNG5Zdd9015513XmbPnp2ePXvmRz/6UebMmdNwiX91dXW++c1v5oILLkh1dXX22muvzJ8/P9dff31mzJjxnpf5L3fggQfmu9/9bh566KFGc8Guv/766du3b6699tq0a9cuffr0ybRp0/Jf//VfjW5eO2nSpLRv3z69e/de05d0tZ100kn50pe+lBNOOCFHHnlkFi9enLFjx2bAgAHZZZddUldXl5/85Cc55phj8rWvfS2bbbZZ/ud//ie33HJLjjjiiPcd2wOsqTYZ0E6aNCnPPvtso3l+ls/TM3Xq1IYP3OOOOy6f+9znkiybaHzSpEkCWmghTjzxxGy33Xa58847c9lll2XevHnZbLPNsueeezYMtJa79NJLs8UWW+S+++7LLbfcku7du+fII4/MSSed1HBX3FXRtWvX3HXXXbn00kszatSodOzYMSNHjsxDDz30no/p1KlTjjnmmNx999159NFHV3ojhqaq773U1NRkxIgR+fGPf9zosrQkOfXUU9O+ffvcd999ue666xqmRDjjjDMa9rn44ovz2muvrdWrDDbbbLP89Kc/zZVXXplRo0alffv2GTp0aK666qqGS/Fuvvnm/OAHP8hNN92U2bNnp0ePHjnmmGMa5i8DACjC/vvvn379+uWuu+7Kvffem9deey2VSiUf+9jHcuCBB+awww77wPuojBo1KkuXLs3YsWOzZMmSbL755jnxxBMzZcqU/OY3v2mY1uDaa6/N6NGjc/XVV6e2tjYHHnhgDj300Pz6179uONYXv/jFdOzYMbfeemvuvvvudOjQITvssENGjx690itS32njjTfOrrvumscffzwHHHBAo23/8R//kbFjx+b222/PrFmz0q1bt3zhC1/Iqaee2rDPN77xjfTs2TM//vGPV/+FXEPbbbddfvzjH2fMmDE57bTT0qlTp+yxxx4588wz0759+7Rv3z533nlnxowZkyuvvDJvvvlmevbsmTPOOCPHHnvsWqsTaFuqKsuTyVZs1KhRee211xo+9AcMGJBjjz22IXx9p0022STPP/98vvzlL+fOO+/MTjvt1LDtiiuuyH//93+/b9gCAAAAALCqWu0ctO/nE5/4RKZNm5Ytttii4Wf69Om54oor8tZbb6Vv377p2LFjnnnmmUaPe+GFF/Lxj3+8oKoBAAAAgNamTU5x8NWvfjWnnXZarr322owYMSLTp0/Pueeem8033zybbLJJkmTkyJG57rrr0qNHjwwYMCDjx4/P448/njvuuKPY4gEAAACAVqNNBrQHHHBArrrqqtx000258cYb06VLlwwfPjxnnnlmwz4nnXRSNthgg1x11VWZMWNGevXqlWuuuSZDhw4tsHIAAAAAoDVpE3PQAgAAAACsi9rkHLQAAAAAAOsCAS0AAAAAQEEEtAAAAAAABSn8JmEzZszI7rvvvsL6yy+/PIcccshqH69SqaRcbtvT6pZKVW3+NWAZfYFEP+Bt+gKJflAqVaWqqqpJjlXUuLMtvYfa2nq1pfZqa+vUltqatK32amvrVERbV2fcWXhAO3ny5Ky33np55JFHGhXduXPnNTpeuVzJnDlvNVV5LU5NTSldu3bM/PkLU1dXLrocCqQvkOgHvE1fINEPkmTjjTumurppAtoixp1t6T3U1tarLbVXW1unttTWpG21V1tbp6LaujrjzsID2hdeeCFbbrllunfvXnQpAAAAAABrVeFz0P79739Pr169ii4DAAAAAGCtWyfOoO3atWsOP/zwTJs2LVtssUVOPPHElc5Lu6pqagrPnQtTXV1q9F/aLn2BRD/gbfoCiX7QHNb2uLMtvYfa2nq1pfZqa+vUltqatK32amvr1BLaWlWpVAqbDbiuri4DBw5M7969M2rUqHTq1Cnjx4/PuHHjMm7cuAwbNmy1j1mpVJrsxg8AAPBejDsBAGgKhQa0SfLWW2+luro666+/fsO6kSNHJkluvfXW1T5efX058+cvarL6Wprq6lI23HCDzJ+/KPX1rXuSZ96fvkCiH/A2fYFEP0iSDTfcoMnOnihi3NmW3kNtbb3aUnu1tXVqS21N2lZ7tbV1KqqtqzPuLHyKg44dO66w7hOf+ER+//vfr/ExW/vd51ZFfX3Z60ASfYFl9AOW0xdI9IOmVNTr2JbeQ21tvdpSe7W1dWpLbU3aVnu1tXVal9ta6OQLL774YnbYYYdMnDix0frnnnsuvXv3LqgqAAAAAIC1o9CAtlevXtl6663zH//xH3n66aczderUXH755fnLX/6SE088scjSAAAAAACaXaFTHJRKpdx4440ZM2ZMTjvttMyfPz/bbbddxo0bl2222abI0gAAAAAAml3hc9B+5CMfyeWXX150GQAAAAAAa12hUxwAAAAAALRlAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAABapXHjbsm+++6bceNuKbqU9ySgBQAAAABandra2kyYMD7lcjkTJoxPbW1t0SWtlIAWAAAAAGh16uqWplwuJ0nK5XLq6pYWXNHKCWgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCrFMB7bRp0zJo0KDcf//9RZcCAAAAANDs1pmAdunSpTnzzDOzcOHCoksBAAAAAFgr1pmA9pprrkmnTp2KLgMAAAAAYK1ZJwLap556KnfffXe++93vFl0KAAAAAMBaU3hAO3/+/Jx11lk577zzstlmmxVdDgAAAADAWlNTdAEXXXRRBg0alIMOOqjJjllTU3juXJjq6lKj/9J26Qsk+gFv0xdI9IPmsLbHnW3pPdTW1qsttVdbW6e21NakbbVXW1ufd4/VampK62RuWGhA+8ADD+Tpp5/Ogw8+2GTHLJWq0rVrxyY7Xku14YYbFF0C6wh9gUQ/4G36Aol+0FSKHHe2pfdQW1uvttRebW2d2lJbk7bVXm1tPdq1qzRa7tKlYzp1Wvdyw0ID2vvuuy+zZ8/Onnvu2Wj9hRdemIceeii33nrrah+zXK5k/vyFTVRhy1NdXcqGG26Q+fMXpb6+XHQ5FEhfINEPeJu+QKIfJMt+CWmqM0WKGHe2pfdQW1uvttRebW2d2lJbk7bVXm1tfd56661Gy3PnvpWlS6vWynOvzriz0IB29OjRWbx4caN1++23X0455ZR85jOfWePj1tW13o61qurry14HkugLLKMfsJy+QKIfNKWiXse29B5qa+vVltqrra1TW2pr0rbaq62tx7vbVle3bra30IC2R48eK13frVu399wGAAAAANBarHuz4gIAAAAAtBGFnkG7Mn//+9+LLgEAAAAAYK1wBi0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEFqii4AAAAAAGjbSqWqlEpVTXrMmprSCsvvXtcUyuVKyuXKGj9eQAsAAAAAFKZUqkrXrhukVKpu0uO2a9c4NO3SpWM6derYpM+RJOVyfd54Y9Eah7QCWgAAAACgMMvOnq3O7FcuzdLFLzfZcd9aWN9oecbUU7OgQxOHwOtvkW4fOzelUpWAFgAAAABouZYufjlLF7/YhMdL3nkLrqWLX8rSdfCOXOtgSQAAAAAAbYOAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKEjhAe3s2bPzrW99KzvvvHMGDRqU448/PlOnTi26LAAAAACAZld4QPv1r389L7/8cm6++ebce++9WX/99XP00Udn0aJFRZcGAAAAANCsCg1o582bl549e+Y73/lOBgwYkF69euWkk07KzJkz8+KLLxZZGgAAAABAs6sp8sk32mijjBkzpmF5zpw5ueOOO7Lpppumd+/eBVYGAAAAAND8Cg1o3+n888/PPffck/bt2+eGG25Ihw4dii4JAAAAAKBZrTMB7VFHHZUvfelLufPOO/P1r389P/3pT9O3b981OlZNTeFT6xamurrU6L+0XfoCiX7A2/QFEv2gOaztcWdbeg+1tfVqS+3V1tapLbU1aVvt1dbirCt1fBgfpg1VlUql0oS1fGjlcjmf/vSns/322+fyyy9f7cdXKpVUVVU1Q2UAAPA2404AgKY1/cXjs3Rx092X6q2Fyde//XZwet1l5XRs4ov2263/iWz6iZs/1DEKPYN2zpw5eeKJJ7L//vunpmZZKaVSKb17987MmTPX6JjlciXz5y9syjJblOrqUjbccIPMn78o9fXlosuhQPoCiX7A2/QFEv0gSTbccIMmO0OjiHFnW3oPtbX1akvt1dbWqS21NWlb7dXW4utpyd79Wq7OuLPQgPb111/P6aefnltvvTW77bZbkmTp0qWZNGlShg8fvsbHrasrvmMVrb6+7HUgib7AMvoBy+kLJPpBUyrqdWxL76G2tl5tqb3a2jq1pbYmbau92sqa+DCvZaETPGyzzTbZfffd853vfCdPPfVUXnjhhYwaNSrz58/P0UcfXWRpAAAAAADNrvAZeL///e9n2LBh+eY3v5kvfvGLmTt3bu6888589KMfLbo0AAAAAIBmVegUB0nSuXPnXHTRRbnooouKLgUAAAAAYK0q/AxaAAAAAIC2SkALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAABAq1NTk1RVVZIkpVIlNTUFF/QeBLQAAAAAQKuzXvtkn92WhbN777pseV20jubGAAAAAAAfzuGHVHL4IUVX8f6cQQsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABLQAAAABAQT5UQFsulzN58uQ89thjWbBgQebOndtEZQEAAAAAtH41a/rAn/3sZxkzZkxmzpyZUqmU//f//l+uueaatGvXLmPGjEn79u2bsk4AAAAAgFZnjc6gfeihh3L22Wdn5513zlVXXZVyuZwk2XffffPoo4/m+uuvb9IiAQAAAABaozU6g/bGG2/MYYcdlosuuij19fUN6z//+c9nzpw5ueeee3Laaac1VY0AAAAAAK3SGp1BO23atOy7774r3bb99ttnxowZH6ooAAAAAIC2YI0C2m7dumXq1Kkr3TZ16tR069btQxUFAAAAANAWrFFAe+CBB+bqq6/O//f//X9ZsmRJkqSqqirPPfdcrr/++hxwwAFNWiQAAAAAQGu0RnPQnnbaaXnhhRdy2mmnpVRalvF+5StfycKFC7PTTjvl1FNPbdIiAQAAAABaozUKaNu3b59bb701//M//5Mnnngic+fOTefOnTNkyJDsscceqaqqauo6AQAAAABanTUKaJNk/vz5qauryxlnnJEkefXVV/Poo49mwYIF6dy5c5MVCAAAAADQWq3RHLRTp07NiBEjctFFFzWse+WVV3L55Zfn85//fP75z382VX0AAAAAAK3WGgW0V155ZXr06JG77rqrYd2wYcPy6KOPpkuXLrniiiuarEAAAAAAgNZqjQLaP/3pTzn55JPTo0ePRuu7deuWr33ta3nyySebpDgAAAAAgNZsjQLaqqqqLFq0aKXb6urqsnTp0g9VFAAAAABAW7BGAe3gwYNz3XXXZc6cOY3Wz507NzfeeGOGDBnSJMUBAAAAALRmNWvyoDPOOCOHHnpo9t577wwcODAbb7xx3njjjfzlL39J+/btM2bMmKauEwAAAACg1VmjM2i32mqr/OIXv8hhhx2WhQsX5rnnnsv8+fNz6KGH5oEHHshWW23V1HUCAAAAALQ6a3QGbZL06NEjZ599dlPWAgAAAADQpqxyQPvAAw9kjz32SNeuXfPAAw984P4HH3zwhygLAAAAAKD1W+WAdtSoUbnnnnvStWvXjBo16n33raqqEtACAAAAAHyAVQ5of/3rX2eTTTZp+H8AAAAAAD6cVQ5oe/bs2fD/F1xwQUaOHJlhw4Y1S1EAAAAAAG1BaU0e9Kc//SlVVVVNXQsAAAAAQJuyRgHtbrvtlp///OdZunRpU9cDAAAAANBmrPIUB++03nrr5ec//3kmTJiQXr16pUOHDo22V1VV5Yc//GGTFAgAAAAA0FqtUUA7ffr0DBo0qGG5Uqk02v7uZQAAAAAAVrTaAe2zzz6bL3/5y/n4xz+evn37NkdNAAAAAEAzGTfulkyYMD7/9m8j8pWvHFd0OW3eKge08+fPzwknnJC//OUvDesGDRqUMWPGZLPNNmuO2gAAAACAJlRbW5sJE8anXC5nwoTxOfTQI7LeeusVXVabtso3CRs7dmwmTZqUk08+OTfddFPOPvvsvPTSS7nggguasz4AAAAAoInU1S1NuVxOkpTL5dTVLS24Ilb5DNrf/va3Of3003PUUUclSXbffff06NEjZ555ZhYuXLjCjcIAAAAAAHh/q3wG7axZs1aYc3bo0KGpr6/Pv/71ryYvDAAAAACgtVvlgLauri7t27dvtG6jjTZKsmzuCgAAAAAAVs8qB7Tvp1KpNMVhAAAAAADalCYJaKuqqpriMAAAAAAAbcoq3yQsSS666KJ06tSpYXn5mbPnn39+Onbs2LC+qqoqP/zhD5uoRAAAAACA1mmVA9rBgwcnWXE6g5WtN+UBAAAAAMAHW+WA9sc//nFz1gEAAAAA0OY0yRy0AAAAAACsPgEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBaoouAAAAAABorFSqSqlU1eTHrakprbD87nVNoVyupFyuNPlxWyMBLQAAAACsQ0qlqnTtukFKpeomP3a7do1D0y5dOqZTp45N/jzlcn3eeGORkHYVCGgBAAAAYB2y7OzZ6jw15ZK8uejlJj324oX1jZYf+9vJWb9D0wbBnTfYIoN7n59SqUpAuwoEtAAAAACwDnpz0cuZt/CFJj1m7aIkadewPH/R1NQ26TOwutwkDAAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAApSeEA7d+7cXHDBBdl9992zww475N///d/z9NNPF10WAAAAAECzKzygPf300/PnP/853//+93Pfffflk5/8ZI477ri89NJLRZcGAAAAANCsCg1oX3755Tz++OO56KKLstNOO2WrrbbK+eefn+7du+fBBx8ssjQAAAAAgGZXaEDbtWvX3Hzzzenfv3/DuqqqqlRVVWX+/PkFVgYAAAAA0PwKDWg33HDD7LHHHmnfvn3Duocffjgvv/xydttttwIrAwAAAABofjVFF/BOf/rTn3LOOedkv/32y5577rnGx6mpKXxq3cJUV5ca/Ze2S18g0Q94m75Aoh80h7U97mxL76G2tl5tqb3a2jq1pbYmbau961Jb14UamsKqtqM1tPfDtGGdCWgfeeSRnHnmmdlhhx0yevToNT5OqVSVrl07NmFlLdOGG25QdAmsI/QFEv2At+kLJPpBUyly3NmW3kNtbb3aUnu1tXVqS21N2lZ7W3tbS9VJVVUllUpVqkqVlKqb77la+2v5Th+mretEQPuTn/wkl156aQ444IB873vfazTlweoqlyuZP39hE1bXslRXl7Lhhhtk/vxFqa8vF10OBdIXSPQD3qYvkOgHybKBc1OdoVHEuLMtvYfa2nq1pfZqa+vUltqatK32rkttXV5Lc2jXPhkwrJxnnyxlwM7ltFvzGO4Drepr2ZztXVve3dbVGXcWHtD+9Kc/zSWXXJKvfOUrOffcc1NVVfWhj1lX17o/MFZFfX3Z60ASfYFl9AOW0xdI9IOmVNTr2JbeQ21tvdpSe7W1dWpLbU3aVnvbQlt3+3Q5u326+dvYFl7L5T5MWwsNaKdNm5bLLrss++67b0444YS8/vrrDdvWX3/9dO7cucDqAAAAAACaV6EB7cMPP5ylS5fmV7/6VX71q1812va5z30u3/3udwuqDAAAAACg+RUa0H7ta1/L1772tSJLAAAAAAAoTNPcIQEAAAAAgNUmoAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAAAoioAUAAAAAKIiAFgAAAACgIAJaAAAAAICCCGgBAAAAaPPGjbsl++67b8aNu6XoUmhjBLQAAAAAtGm1tbWZMGF8yuVyJkwYn9ra2qJLog0R0AIAAADQptXVLU25XE6SlMvl1NUtLbgi2hIBLQAAAABAQQS0AAAAAAAFEdACAAAAABSkpugCAAAAAGBVlEpVKZWqmvy4NTWlFZbfva4plMuVlMuVJj8uLZuAFgAAAIB1XqlUlS5dN0h1qbrJj92uXePQtEuXjunUqWOTP099uT5z31gkpKURAS0AAAAA67xSqSrVpercP/nmzFr4zyY99pJFdY2Wxz3z3bTfoGljs006fDSHbHt8SqUqAS2NCGgBAAAAaDFmLfxnpi/43yY9Zt3icqPlmW+9mpp6t25i7dDTAAAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAGjTqqqTVC1f+L9lWEsEtAAAAAC0adXtSuk5pHNSlfQc0jnV7URmrD01RRcAAAAAAEXrdcDG6XXAxkWXQRvkzwEAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAAAAUR0AIAAAAAFERACwAAAABQEAEtAAAAAEBBBLQAAAAArNS4cbdk3333zbhxtxRdCrRaAloAAAAAVlBbW5sJE8anXC5nwoTxqa2tLbokaJUEtAAAAACsoK5uacrlcpKkXC6nrm5pwRVB61RTdAEAAAAArLlSqSqlUlWTH7emprTC8rvXfVjlciXlcqVJjwktjYAWAAAAoIUqlarSpWuHVJea/iLpdu0aB6ddunRMp04dm/Q56svlzH1joZCWNk1ACwAAANBClUpVqS6V8oM/3pVX35zZpMeuW9x4SoPzf39jatZv12TH37xz95y647+nVKoS0NKmrVMB7U033ZTf//73+fGPf1x0KQAAAAAtxqtvzsy0ea816THLtXWNll+e/8+UatepKAlahXXmJmF33nlnxo4dW3QZAAAAACSpKpWS5VPbVv3fMtDkCv+zx4wZM3LhhRdm4sSJ2XLLLYsuBwAAAIAkVe1KWW/77ql9ZmbW2757qtoJaKE5FP4v629/+1vatWuXn//859l+++2LLgcAAACA/9Nh94+l68k7psPuHyu6FGi1Cj+Ddvjw4Rk+fHiTHrOmpvDcuTDV1aVG/6Xt0hdI9APepi+Q6AfNYW2PO9vSe6itrVdbaq+2tk7rWlvXlTo+jFVtQ2toa7Jq7WhLbV2d/dZlH6YNhQe0Ta1UqkrXrh2LLqNwG264QdElsI7QF0j0A96mL5DoB02lyHFnW3oPtbX1akvt1dbWqS21tbm1tdeyLbVXW1dNqwtoy+VK5s9fWHQZhamuLmXDDTfI/PmLUl9fLrocCqQvkOgHvE1fINEPkmUD56Y6Q6OIcWdbeg+1tfVqS+3V1tZpXWvr8npaslV9LVtDW5NVa29bamvSOtr77rauzriz1QW0SVJXV/wHZNHq68teB5LoCyyjH7CcvkCiHzSlol7HtvQeamvr1Zbaq62tU1tqa3Nra69lW2qvtq6alj/BAwAAAABACyWgBQAAAAAoiIAWAAAAAKAg69QctN/97neLLgEAAAAAYK1xBi0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAACraNy4W7Lvvvtm3Lhbii4FaCVqii4AAAAAoKmVSlUplaqa9Ji1tbWZMGF8yuVyJkwYny9/+cist956TfocSVIuV1IuV5r8uMC6SUALAAAAtCqlUlW6dO2Q6lLTXji8YEEl5XI5SVIul9OpU/t06tSxSZ8jSerL5cx9Y6GQFtoIAS0AAADQqpRKVakulXLer/9fpr0xq8mOW1lal1QlqSSpqsrxD96eqnZNG61s1XWTfGfvL6ZUqhLQQhshoAUAAABapWlvzMrfX/9Xkx5z/d6bpf2Uf2VJ703zwrymC3+BtktACwAAALCKFg/cKosHblV0GUAr0rSTsQAAAAAAsMoEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAbcS4cbdk3333zbhxtxRdCgAA8H8EtAAAbUBtbW0mTBifcrmcCRPGp7a2tuiSAACAJDVFFwAAsC4rlapSKlUVXcaHVltbn3K5nCT/99/61NS0/L/Vl8uVlMuVossAAIA1JqAFAHgPpVJVunbdIKVSddGlfGjt2jUOMbt06ZhOnToWVE3TKZfr88Ybi4S0AAC0WAJaAID3sOzs2erMfuXSLF38ctHlfChvLaxvtDxj6qlZ0KFlB8/t1t8i3T52bkqlKgEtAAAtloAWAOADLF38cpYufrHoMj6USl1SVVWVSqUqpVIllbqXsnRx0VUBAAAtf+IxAAA+0Hrtk312S0qlSvbeddkyAABQPGfQAgC0EYcfUsnhhxRdBQAA8E7OoAVoxcaNuyX77rtvxo27pehSAABoxYw7AdacM2gB3mXZTYGqii7jQ6utrc2ECeNTLpczYcL4fPnLR2a99dYruqwPrVyuuBkQAMAaaK5x7toadxoHAq2VgBbgHUqlqnTp0iHV1S3/AoMFCyopl8tJknK5nE6d2qdTp44FV/Xh1deXM3fuQoPz1TRu3C2ZMGF8/u3fRuQrXzmu6HIAgLWsOce5ixdXN1ru0qVD1l9//SZ/HuNAoLUS0AK8Q6lUlerqUr79wH156fXXiy7nQ6nU1SVVVUmlklRV5bif/DBVNS37Y3/rj3wklx38+ZRKVc0+MG8tZ1InzqYGAJp/nLte715Z9OKUrNe7V47+yQ+b/PhrcxwIsLa17N/UAZrJS6+/nsnT/1V0GR9ah56bZf3X/pnFPTfL31+fVXQ5LUapVJUuXTdIdan6g3duAVrt2dTl+sx9Y5Ff0gBgNTTbOLfnpst+kqQVjKMB1iYBLUArtvATvbLwE72KLqPFKZWqUl2qzg+f+1GmL5xRdDkfWv2S+qQqSSWpKlXl6r9cm+r2LTt83rRDjxzV70hn0QAAAC2egBYA3sP0hTPy6puvFl1Gk9h4p26Z8/TsdN1x4/yr9l9JbdEVAQAAkAhoAaBN2HTfzbLpvpsVXQYAAADv0vJvUw4AAAAA0EIJaAEAAAAACiKgbWXGjbsl++67b8aNu6XoUgAAAACADyCgbUVqa2szYcL4lMvlTJgwPrW17gADAAAAAOsyAW0rUle3NOVyOUlSLpdTV7e04IoAAAAAgPcjoAUAAAAAKIiAFgAAAJqBe4QAsCpqii4AAAAAilIqVaVUqmry4777HiFf/vKRWW+99Zr8ecrlSsrlSpMfF4C1R0ALAABAm1QqVaVLlw6prm76i0sXL65utNylS4esv/76Tf489fXlzJ27UEgL0IIJaAEAAGiTSqWqVFeXcsFP/iv/mPF6kx9/g4/3zlsvv5gNPt47x1/34yY//pY9PpL/OOJzKZWqBLQALZiAFlqpceNuyYQJ4/Nv/zYiX/nKcUWXAwAA66x/zHg9f39tetMfeKOPJgM+mgVJZjTH8QFoFdwkDFqhd893VVtbW3RJAAAAAKyEgBZaobq6pSmXy0mScrmcurqlBVcEAAAAwMqY4iDNd9fOta2mprTC8rvXtVTuTAoAAABAa9TmA9pSqSpdNtog1TXVH7zzOq5du8YBZpcuHdOpU8eCqmla9XX1mTtvUbOHtML6dZugHgAAAGhtBLSlqlTXVOeS467My39/pehyPpT61Cfrvb188gFnpzotP3jeos/Hcv5t32r2O5OWSlXp0qVDqqtbfpDZWsP6+vpy5s5dKKQFAAAAWo02H9Au9/LfX8mLz0wtuowPp7qSmh3fXnzpuWlJfcs/G3RtKZWqUl1dynevuT//+9rrRZfzodTXLWm0fMZFd6S6pn1B1TSNj/f8SEadfEizB/UAADSvceNuyYQJ4/Nv/zYiX/nKcUWXAwCFE9DCu/zva69nyrTpRZfxoVTKdY2WX3p5ZqpK/rkDALBqmmvqr9ra2kyYMD7lcjkTJozPl798ZNZbb70PfuBqMC0WAC2NxAYAAIAGzTn11+LFjadg69KlQ9Zff/0mfQ7TYgHQ0ghooTWqqnr/ZQAAeA/Lp/669Kb/ysv/bPqpvzpv2jvz/vliOm/aO6dc/uMmPfYWH/1Izj3hc6bFAqBFEdBCK1RVVZ2q9Xumsvi1VK3fM1VVLf9mcQAArdW6Oifry/98PS++3AxTf1V/NPnYR/NGkjea4/gA0MIIaKGVKnXqnXTqXXQZANDmNNfcnUkaLjlvjkvPE3N3FuHdc7IeeugRTT4nKwCwbhPQAgBAEymVqtJlow1SXdO8V69suOEGzXLc+rr6zJ23aJ0IadfFs0qbI3yvra1PuVxOkv/7b31qapo+gBe+A8C6S0DbmlSSSmXZdKOVyrJlAADWnlKpKtU11bnkuCvz8t9fKbqc1bJFn4/l/Nu+tU7M3bkunlXaXDfOateu8WvdpUvHdOrUsUmfI3HjLABYlwloW5NyVSozqpMe9cv+W3ZjKACAIrz891fy4jNTiy6jxaqrW9rorNK6uqXrREBbXV3KlaPvzSuvNt2Ns8rluncsVWXUt+9IqdS0v6Z9bPOP5FtnfmGdCN8BgBUJaFuZ8v+2S/63XdFlAADQBjTXfLvvvsS/pqa0zlz2/8qrr2fq1H81aR3VNR9Nfd0/U12zWaZNm9WkxwYA1n0CWgAAYLUtu+R/g1RXN/18u2vvsv/6zJ1b/Jy77dpvnXbtty60BgCgOAJaAABgtS275L86V5xzR155aXqTHru+vLTR8lnHXJXqUtNeJfaxrTfNWZcf7bJ/AKBwAloAAGCNvfLS9Eyd/GqTHrNSVZ90e3t52ov/TFWl6c/UBQBYFzT9RE4AAAAAAKwSAS0AALBuqVQly2cdqPzfMgBAKyWgBQAA1ilVKaV6cdekklQv7poqv7YAAK2YOWgBAIB1Ts1bm6bmrU2LLgMAoNn5UzQAAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEEtAAAAAAABRHQAgAAAAAUREALAAAAAFAQAS0AAAAAQEEKD2jL5XKuvvrq7Lbbbhk4cGC++tWv5pVXXim6LAAAAACAZld4QHv99dfnpz/9aS655JL853/+Z8rlckaOHJklS5YUXRoAAAAAQLMqNKBdsmRJbr/99pxyyinZc889s+222+aqq67K9OnT88tf/rLI0gAAAAAAml2hAe3kyZPz1ltvZdiwYQ3rNtxww2y33XZ56qmnCqwMAAAAAKD5VVUqlUpRT/7LX/4yJ598cp555pmsv/76DetPPfXULF68ODfddNNqH7NSqaRcXvUmVVUlpVIpb8yam7qldav9fDS/mnY16bpJl5TL5TRnb13eF+bOeyt1dfXN90SskZqa6nTZqONa6wdz3norS+v1g3VNu+rqbNxx7fWDN5e8mfqyfrAuqi5Vp3P7zmutL9TXvZFKxThhXVNVVZPqmq6r1Q9KpapUVVU1yfOvbNzZkseWqzvmahg7zXkzdUtb3mdlTbvqdNl41T9HGto7d0Hq6srNX2ATqqkppUuXTqvd1jfmt7xxcU1NdbpuuOpjhYax35tvpa4Fjv1qqquzcedVa29LH+eu7jiwob2LFrS497amujobb7D6/2bn1S5IXQsbu9aUqrPReqvf1reWzE99pWW1NUmqq6rTsf2Gq/VvdvHSljkOraqqyfrtVn2c1pLH3e81Jl2dcWdNM9W2ShYtWpQkad++faP16623XubNm7dGx6yqqkp19eoPurtu0mWNno+1p1RaOyd8d9mo41p5HtbM2uoHG3fUD9Zla6sfdG7fea08D2tubfWF6pqua+V5WDNrqx+82/uNO1vy2HJ1X88uG7fsz8rVbm+XTs1USfNb3bZ23bDljodWt60bd265bU1Wr70tfZy72u/tBm3n3+xG67WdtnZsv2EzVbJ2rE5712/Xssehq/vetuRx94cZkxY6xcHys2bffUOw2trabLDBBkWUBAAAAACw1hQa0G622WZJkpkzZzZaP3PmzPTo0aOIkgAAAAAA1ppCA9ptt902nTp1ysSJExvWzZ8/P5MmTcrgwYMLrAwAAAAAoPkVOgdt+/btc8QRR2T06NHZeOON07Nnz1x55ZXZdNNNs99++xVZGgAAAABAsys0oE2SU045JXV1dTnvvPOyePHiDB48OLfddlvatWtXdGkAAAAAAM2qqlKpVIouAgAAAACgLSp0DloAAAAAgLZMQAsAAAAAUBABLQAAAABAQQS0AAAAAAAFEdACAAAAABREQAsAAAAAUBABbQt200035Stf+cr77vPGG2/kjDPOyODBgzNkyJBcfPHFWbRo0VqqkOY0d+7cXHDBBdl9992zww475N///d/z9NNPv+f+r776ak444YTssMMO2XXXXTN27NjU19evxYppDrNnz863vvWt7Lzzzhk0aFCOP/74TJ069T3395nQ+k2bNi2DBg3K/fff/5776Aet14wZM9KnT58Vft6rP+gL67bWPtZrS2OZtvp93Ra+k9ra5+4DDzyQAw88MP3798+IESMyYcKE99y3trY2F198cYYNG5ZBgwbljDPOyJw5c9ZitWtm4sSJK31P+/Tpk7333nulj2mpbV2urq4uP/jBD7LXXntl0KBBOfzww/OXv/zlPfdvyf14wYIFufDCC7PrrrtmyJAhOfPMMzN79uz33L+lfvesbAzx/PPP54gjjsjAgQMzfPjw/OhHP/rA40yYMCEHHnhgBgwYkIMPPjhPPPFEc5X8obzXmOnll1/OwIED8+qrr37gMe68887svffeGTBgQL785S9n0qRJzVHqe6vQIv3kJz+pbLvttpUjjjjiffc74ogjKp///Ocrzz33XOV//ud/KnvttVflrLPOWktV0pyOOeaYyqc//enKU089VXnppZcqF198cWXAgAGVqVOnrrDvkiVLKvvtt1/l+OOPr/z973+v/OpXv6oMGTKk8oMf/KCAymlKX/rSlypf/OIXK88880xlypQplZNPPrmy6667VhYuXLjS/X0mtG5LliypHHLIIZVtttmmct99973nfvpB6/Xf//3flf79+1dmzJhRmTlzZsPPokWLVrq/vrDuagtjvbY0lmmL39dt5TupLX3uPvDAA5Xtttuu8pOf/KTy8ssvV66//vrKtttuW/nTn/600v1HjRpV2WeffSpPPfVU5ZlnnqkcfPDBlcMPP3wtV736amtrG72XM2fOrPzyl7+s9OnTp3Lvvfeu9DEtta3LXX311ZVddtml8rvf/a7yj3/8o3LuuedWdtxxx8qMGTNWun9L7sfHHntsZY899qj893//d+WFF16onHTSSZUDDzywUltbu8K+LfW7Z2VjiDlz5lSGDh1aOeeccypTpkyp3HvvvZX+/fu/Z5+uVCqVJ554otK3b9/KD3/4w8qUKVMq3/3udyv9+vWrTJkyZW00Y5W915hpypQpleHDh1e22WabyiuvvPK+x7j//vsrAwYMqPzsZz+rvPjii5VvfetblSFDhlRmz57dnKU3IqBtYaZPn1454YQTKgMHDqwccMAB7zto/9Of/lTZZpttGv3j+d3vflfp06dPZfr06WujXJrJP/7xj8o222xTefrppxvWlcvlyj777FMZO3bsCvs/+OCDlX79+lXmzp3bsO4///M/KzvssMNKv4hoGebOnVs5/fTTK3//+98b1j3//POVbbbZpvLMM8+ssL/PhNZvzJgxlSOPPPJ9fxnWD1q3m2++uXLQQQet0r76wrqprYz12tJYpq1+X7eV76S28rlbLpcre+21V+W73/1uo/XHHnts5cYbb1xh/+nTp1e23Xbbyn//9383rHvppZcq22yzzXsGuuuqt956q7LXXntVRo0atdLtraGtn/nMZyqXX355w/Kbb75Z2WabbSoPP/zwCvu25H48adKkyjbbbFN59NFHG9YtWLCgstNOO1Xuv//+FfZvad897zeGuPHGGyu77rprZenSpQ3rxowZU9lvv/3e83jHHnts5dRTT2207ktf+lLl/PPPb/La18QHtXfgwIGVz33uc6sU0O63336VK664omF56dKllT322GOln2/NxRQHLczf/va3tGvXLj//+c+z/fbbv+++Tz/9dDbZZJP06tWrYd2QIUNSVVWVP/7xj81dKs2oa9euufnmm9O/f/+GdVVVVamqqsr8+fNX2P/pp59O3759s9FGGzWs23nnnbNgwYI8//zza6Vmmt5GG22UMWPGZJtttkmSzJkzJ3fccUc23XTT9O7de4X9fSa0bk899VTuvvvufPe7333f/fSD1u3vf/97o/f2/egL66a2MtZrS2OZtvh93Za+k9rK5+60adPy2muv5aCDDmq0/rbbbssJJ5ywwv7L27Pzzjs3rNtqq63So0ePPPXUU81bbBO78cYbs2jRopx99tkr3d4a2tqtW7f89re/zauvvpr6+vrcfffdad++fbbddtsV9m3J/fgf//hHkmSnnXZqWNexY8dsscUW+cMf/rDC/i3tu+f9xhBPP/10hgwZkpqamoZ1O++8c/7xj3/k9ddfX+FY5XI5f/rTnzJs2LBG64cOHbrO9Ov3a+8jjzySyy+//D3/3b7T7Nmz849//KNRW2tqarLTTjut1bbWfPAurEuGDx+e4cOHr9K+M2bMyGabbdZoXfv27dOlS5f861//ao7yWEs23HDD7LHHHo3WPfzww3n55Zfz7W9/e4X9p0+fnk033bTRuu7duydJ/vWvf33gL4Cs+84///zcc889ad++fW644YZ06NBhhX18JrRe8+fPz1lnnZXzzjtvhff43fSD1u2FF15I165dc/jhh2fatGnZYostcuKJJ2b33XdfYV99Yd3UVsZ6bXUs0xa+r9vad1Jb+dydNm1akmThwoU57rjjMmnSpGy++eY58cQTV/qZNWPGjHTt2jXrrbdeo/Xdu3fP9OnT10rNTWH5H1TOOOOMdOnSZaX7tIa2nnvuuTn11FOz9957p7q6OqVSKddcc00+/vGPr7BvS+7H7/zeWB4w19fXZ/r06enWrdsK+7e07573G0NMnz694Q+Fy72zLR/5yEcabZs/f34WLly40vavK/36/dr7//7f/0uybE7pD7K8Pe/u1927d8/kyZM/ZJWrzhm0rdiiRYvSvn37Fdavt956qa2tLaAimsuf/vSnnHPOOdlvv/2y5557rrB98eLFK/SF5QMIfaF1OOqoo3Lffffl05/+dL7+9a/nb3/72wr7+ExovS666KIMGjRohbNaVkY/aL3q6ury0ksvZd68eTn55JNz8803Z+DAgTn++ONXekMHfaHla03vYVsZy7SF7+u29J3Ulj53FyxYkCQ5++yz8+lPfzq33357dtlll5x00kmtrq3v9NOf/jSdO3fOl770pffcpzW0dcqUKencuXOuu+663H333TnkkENy5plnrvQs0Zbc3v79+2frrbfOhRdemBkzZmTx4sUZM2ZM3njjjSxdunSF/VvLd0+y+m1ZvHhxkqz0MS2t7R9k+Q3uim6rM2hbsfXXXz9LlixZYX1tbe1K/1pPy/TII4/kzDPPzA477JDRo0evdJ+V9YXlHzT6Quuw/BLJSy+9NM8880x+8pOf5PLLL2+0j8+E1umBBx7I008/nQcffHCV9tcPWq+amppMnDgx1dXVWX/99ZMk/fr1y4svvpjbbrtthUvU9IWWr7W8h21pLNPav6/b2ndSW/rcbdeuXZLkuOOOy+c+97kkySc/+clMmjQp48aNW622brDBBs1fcBN54IEHcvDBBze8vyvT0tv6r3/9K2eccUbuuOOOhkv/+/fvnylTpuSaa67J9ddf32j/ltyP27dvn2uvvTZnnXVWdt9997Rr1y4HHXRQ9tprr5RKK56/2Fq+e5LVb8vy8HZlj2kJ/Xp1LP/3XXRbnUHbim266aaZOXNmo3VLlizJ3LlzG05lp2X7yU9+kpNPPjl77bVXbrzxxhUuq1luZX1h+XKPHj2avU6ax5w5czJ+/PjU1dU1rCuVSundu/cK73fiM6G1uu+++zJ79uzsueeeGTRoUAYNGpQkufDCCzNy5MgV9tcPWreOHTuu8EvkJz7xicyYMWOFffWFlq81vIdtYSzTlr6v2+J3Ulv53F3+7+zdl0j37t07r7766gr7b7rpppk7d+4KgcfMmTPX+X+zy02ePDmvvPLKB54N3tLb+swzz2Tp0qWN5gRPku233z4vv/zyCvu35H6cJL169cp9992XiRMn5sknn8zll1+e6dOnr3Q6h5b83fNuq9uWLl26pEOHDit9TEtr+wdZPrVB0W0V0LZigwcPzvTp0xt9qC6f+HrHHXcsqiyayE9/+tNccsklOfzww/P9739/pZeZLDd48OBMmjSp4dKkJHnyySfTsWPHlU78Tsvw+uuv5/TTT290WdnSpUszadKkld6swmdC6zR69Og89NBDeeCBBxp+kuSUU07JpZdeusL++kHr9eKLL2aHHXZYYa6t5557bqU3ItIXWr6W/h62lbFMW/q+bmvfSW3pc7dv377p2LFjnnnmmUbrX3jhhZUGWzvuuGPK5XKjm0ZNmzYtM2bMyODBg5u93qbw9NNPp1u3bh/4GdPS27p8jtG///3vjda/8MIL2XLLLVfYvyX34wULFuSII47I5MmT06VLl3Tq1CmvvvpqJk2alF122WWF/Vvyd8+7DR48OH/84x9TX1/fsO7JJ5/MVltttdL5d6uqqrLDDjuscPO0iRMnNrrJWmvQrVu3bLXVVo0+y+vq6vL000+v1X/DAtpWpL6+PrNmzWqYK2T77bfPDjvskG9+85t59tln8+STT+aCCy7IwQcf3Or+4tHWTJs2LZdddln23XffnHDCCXn99dcza9aszJo1K2+++WaWLFmSWbNmNfwVd5999skmm2yS0047LZMnT84jjzyS73//+zn22GPf95ch1m3bbLNNdt9993znO9/JU089lRdeeCGjRo3K/Pnzc/TRR/tMaCN69OiRLbbYotFPsmyg0aNHD/2gDenVq1e23nrr/Md//EeefvrpTJ06NZdffnn+8pe/5MQTT9QXWoHW9B62pbFMW/q+bmvfSW3pc3f99dfPyJEjc9111+UXv/hF/vd//zc33HBDHn/88RxzzDFJklmzZuWtt95KsqwvjBgxIuedd14mTpyYZ599NqeffnqGDBmSgQMHFtiSVTdp0qT06dNnpdtaU1sHDBiQHXfcMWeffXaefPLJ/OMf/8jYsWPzxBNP5Pjjj29V/bhTp06pVCq59NJL8+KLL+avf/1rTjzxxOy8884ZNmxYq/ruebfPf/7zWbBgQc4999xMmTIl999/f+64446ccMIJDfu8+eabmTNnTsPyMccck/Hjx2fcuHGZOnVqrrjiijz//PM56qijimhCk5o7d27mzp3bsHzsscdm3Lhx+a//+q9MmTIl3/72t7N48eJ84QtfWHtFVWixzj777MoRRxzRsPzKK69Uttlmm8p9993XsO7111+vnHzyyZWBAwdWhg4dWrnwwgsrixcvLqJcmtANN9xQ2WabbVb6c/bZZ1eefPLJyjbbbFN58sknGx7zj3/8o3LMMcdU+vfvX9l1110rY8eOrdTX1xfYCprC/PnzKxdeeGFll112qQwYMKBy7LHHVl544YVKpeIzoS175/uuH7Qts2bNqowaNaqyyy67VPr371/50pe+VHnqqacqlYq+0BK15rFeWxvLtOXv69b+ndTWPndvv/32yvDhwyt9+/atfOYzn6n86le/ati2zTbbVK6++uqG5bfeeqty7rnnVnbaaafKTjvtVDn99NMrc+bMKaLsNTJy5MjKaaedttJtra2tc+fOrVx00UWVPffcszJo0KDKl770pcrEiRMrlUrr68fTp0+vfP3rX6/suOOOlWHDhlUuvPDCyoIFCyqVSqVVffe8ewxRqVQqzzzzTOXQQw+t9OvXr7LXXntVfvzjH6/wmL322qvRuv/6r/+q7LvvvpX+/ftXPve5z1X+53/+p9lrXxMra2+l8vZ7+sorrzRaf8QRR6yw/6233lrZfffdKwMGDKh8+ctfrkyaNKlZa363qkqlUll7cTAAAAAAAMuZ4gAAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFAAAAACiIgBYAAAAAoCACWgAAAACAgghoAQAAAAAKIqAFoEGlUim6BAAAAGhTBLQAa8Ff//rXfOtb38qee+6ZAQMGZJ999sn555+fV155Za3VMHz48IwaNaphuU+fPrnmmmuSJEuWLMlll12WBx98sGH7qFGjMnz48LVWHwAAa9/UqVNzySWXZP/998/222+fHXfcMYcddlh++tOfpq6urtme11gT4G0CWoBmduedd+awww7L7Nmzc8YZZ+SWW27J8ccfnz/84Q/5whe+kMmTJxdS1913350vfvGLSZKZM2fmhz/8YaNB+EknnZRrr722kNoAAGh+Dz30UA455JD8+c9/zjHHHJObb7453//+97Pddtvlsssuy8knn+wKK4C1oKboAgBasz/+8Y+59NJLc/jhh+fcc89tWD906NDss88+Ofjgg/Ptb387999//1qvbeDAge+7/eMf//jaKQQAgLVu6tSpOeecc7Lbbrtl7Nixqal5Ox7YY489MnTo0JxyyimZMGFCDjzwwAIrBWj9nEEL0Ixuu+22dO7cOaeffvoK2zbeeOOMGjUqe++9dxYuXJj6+vrceeedOeiggzJgwIDsueeeGT16dGpraxseM2rUqBx99NG57777sv/++6dfv3757Gc/m8cee6zRsSdPnpxjjjkmgwYNyl577ZWf//znKzz/8ikOXn311ey9995JknPOOafhUrN3X3bWlPUBAFCsW2+9NaVSKRdffHGjcHa5/fffPwcffHDDcp8+fXLttdfmkEMOyYABAxqutHrqqady3HHHZfDgwenXr1+GDx+ea665JuVyueGx8+bNyznnnJMhQ4Zk8ODBufLKKxttX+6RRx7JIYcckv79+2eXXXbJd77znSxcuLDpGw+wjnEGLUAzqVQq+f3vf5/hw4dngw02WOk+7zwb4dxzz83PfvazfPWrX81OO+2USZMm5brrrsvzzz+fW2+9NVVVVUmS5557LjNnzswpp5ySTp065Qc/+EFOPvnkPPbYY9loo40yY8aMHHHEEdlyyy1z5ZVXZsGCBRk9enRmz5690hq6d++ea6+9Nt/4xjdy4oknZr/99lvpfhdccEGT1AcAQPF+/etfZ+edd063bt3ec5/vfe97jZZvvPHGnHHGGdlqq63Ss2fPTJ48OUcffXQOOOCAXHXVValUKnnwwQdz7bXXZuutt86IESNSLpczcuTIvPbaazn77LPTpUuX3HrrrfnrX/+a7t27Nxz7wQcfzJlnnpmDDjoop512Wl577bVcddVVmTJlSsaNG9cw1gRojQS0AM3kjTfeSG1tbTbffPMP3HfKlCm59957c8YZZ+T4449Pkuyyyy7p3r17zjrrrDz22GPZY489kiRvvvlm7r///oYpCDp06JAjjjgiTz75ZPbff//ccccdqa+vz80335yNN944SbLVVlvl0EMPXelzt2/fPp/85CeTLJvWYLvttmvW+gAAKNa8efMyb968bLnllitse/eNwaqqqlJdXZ0k2WmnnXLMMcc0bHvggQfyqU99KldeeWVKpWUX6O6yyy75zW9+k4kTJ2bEiBF57LHH8uyzz+aWW27J7rvvniQZNmxYoyu1KpVKRo8end122y2jR49uWL/lllvm6KOPzqOPPpo999yzqZoPsM4xxQFAM1k+kK2vr//Aff/whz8kSUaMGNFo/YgRI1JdXZ2JEyc2rNt4440bzQ+76aabJkkWLVqUZNm8twMHDmwIZ5Nk++23z0c/+tE1bEnT1gcAQLFWNr1Akrz88svp27dvo5999923YfvyP+ovd/DBB+eWW27J0qVLM3ny5Dz88MO5+uqrU19fn6VLlyZJnn766bRr1y677bZbw+M6dOjQ8Mf9JHnppZcyffr0DB8+PHV1dQ0/gwcPTqdOnfL44483ZfMB1jnOoAVoJhtttFE6duyYf/7zn++5z8KFC7N06dLMmzcvSbLJJps02l5TU5OuXbvmzTffbFj37ukSll/utXygPW/evJWetfvuY6+OpqwPAIBide3aNR06dMhrr73WaP1mm22We++9t2H5uuuuywsvvNCw3KFDh0b7L168OJdcckl+9rOfpa6uLptvvnkGDRqUmpqaVCqVJMvGkV26dFlhioJ3jivnzp2bJLn44otz8cUXr1DvzJkz16yhAC2EgBagGe26666ZOHFiamtrs956662w/Z577sn3vve9nHLKKUmSWbNmpWfPng3bly5dmjfeeCNdu3Zd5efs2rVrXn/99RXWLx/4ronlc8c2RX0AABRv+PDh+e1vf5sFCxakU6dOSZZNfdW/f/+Gfbp06fK+x7j00kvz8MMPZ+zYsfnUpz7VEOAOGzasYZ+uXbvmjTfeSH19fcMVZknjsemGG26YJDnrrLMyZMiQFZ7HfQyA1s4UBwDN6Nhjj83cuXMzduzYFbbNmjUrt99+e3r37t1w6dj48eMb7TN+/PjU19dnxx13XOXn3HnnnfPnP/85M2bMaFg3ZcqUvPLKK+/5mHcOlldm+UC5KeoDAKB4xx9/fOrq6nLeeedlyZIlK2xfvHjx+44fk2VTaw0dOjT77LNPQzj73HPPZc6cOQ1XTw0bNix1dXV55JFHGh63ZMmSRtMWbL311unWrVteffXV9O/fv+GnR48eGTNmTCZNmtQUTQZYZzmDFqAZDRw4MKeeemrGjh2bqVOn5uCDD07Xrl3z4osv5rbbbkttbW3Gjh2bXr165XOf+1yuvvrqLFq0KIMHD87zzz+fa6+9NkOHDm00Z9cHOeqoo3LvvffmuOOOy8knn5z6+vpcddVVadeu3Xs+pnPnzkmSJ554Ir169cr222/faHvv3r2brD4AAIrXp0+fXHnllTnnnHNyyCGH5Atf+EL69OmTurq6/PnPf869996b119/PSNHjnzPYwwYMCATJkzIXXfdlV69emXy5Mm54YYbUlVV1XD/gWHDhmXXXXfNeeedl9mzZ6dnz5750Y9+lDlz5qRbt25Jlp0s8M1vfjMXXHBBqqurs9dee2X+/Pm5/vrrM2PGjPTt23etvCYARRHQAjSzE088Mdttt13uvPPOXHbZZZk3b14222yz7Lnnnvna176WzTbbLMmyS8S22GKL3HfffbnlllvSvXv3HHnkkTnppJMa7oq7Krp27Zq77rorl156aUaNGpWOHTtm5MiReeihh97zMZ06dcoxxxyTu+++O48++uhKb8TQVPUBALBu2H///dOvX7/cdddduffee/Paa6+lUqnkYx/7WA488MAcdthh2XLLLd/z8aNGjcrSpUszduzYLFmyJJtvvnlOPPHETJkyJb/5zW8apjW49tprM3r06Fx99dWpra3NgQcemEMPPTS//vWvG471xS9+MR07dsytt96au+++Ox06dMgOO+yQ0aNH52Mf+9haeDUAilNVWT5zNwAAAAAAa5VTngAAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIIIaAEAAAAACiKgBQAAAAAoiIAWAAAAAKAgAloAAAAAgIL8/0F/ACmjK9pQAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABW4AAAJOCAYAAAAnP56mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABY4ElEQVR4nO3deZyVZd0/8M/MsIMKorigD5oLqSzihhsupD99NNOszHJPw1zCSs3dNFNTXHjU1AoNUzPXLHPBzDIz0zLX1GIxxA2BACVggDnn9wcP8zACKjBw7pnzfr9e85J7Off5Xve5POeaz9znumvK5XI5AAAAAAAURm2lCwAAAAAAoCnBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFqKByuVzpEgAAAIACEtwCrc6LL76YU089Nbvttlv69euXPfbYI+ecc04mTJiwUusYPHhwTj/99Mbl3r175+qrr06SzJkzJxdddFHuu+++xu2nn356Bg8evFJrXNEOO+yw9O7du8lPnz59sttuu+X888/P9OnTP/Txb7zxRnr37p177rlnJVUMALDyjB07NhdccEH22muv9O/fP1tvvXUOPvjg/OxnP8u8efNW6HO3tLHn4MGDFxlX9u3bN3vuuWcuv/zy1NfXf+jjn3rqqfTu3TtPPfXUSqoYYPm1qXQBAM3p1ltvzUUXXZSBAwfm5JNPTo8ePTJ+/PjccMMNefjhh3PTTTflk5/8ZEVqu/3227P22msnSd59993cdNNNufjiixu3H3/88Tn88MMrUtuKtPnmm+c73/lO4/LcuXPz97//PVdccUVeeeWV3HbbbampqVnsY3v06JHbb789//Vf/7WyygUAWCkeeOCBnHHGGdloo41y1FFHZcMNN8zs2bPz2GOP5aKLLsrjjz+ea6+9donjpGq066675vjjj29crq+vz1NPPZVrr702b775Zq644oolPnaLLbbI7bffno033nhllArQLAS3QKvxzDPP5MILL8whhxySs846q3H9wIEDs8cee+SAAw7ImWeeWbGrN7fccssP3d5aw8kuXbos0vZtt902//nPf3LVVVfl+eefX+K5adeu3UeeNwCAlmbs2LE544wzMmjQoAwfPjxt2vzfr+a77rprBg4cmKFDh+bBBx/MPvvsU8FKi2X11VdfZGw4cODAvPPOO7nnnnty+umnp0ePHot97OLGpABFZ6oEoNW44YYbssoqq+Rb3/rWIttWX331nH766fnUpz6VmTNnJkkaGhpy6623Zr/99ku/fv2y22675bLLLmvyNavTTz89Rx55ZO6+++7stdde6dOnT/bff//84Q9/aHL8V199NUcddVQGDBiQ3XffPb/61a8WqWHBVAlvvPFGPvWpTyVJzjjjjMavqH3w62rNWd/Crr/++vTp02eRaQpGjhyZLbbYIlOmTEmpVMqVV16ZwYMHp0+fPhk8eHAuv/zyzJ07d4nHXVp9+vRJkrz11ltJ5k+rcMopp2To0KHZcsstc9RRRy12qoRx48blxBNPzHbbbZdtt902xx57bMaOHdu4vb6+Ppdeeml23XXX9OnTJ/vtt18eeOCBZqsbAGB5jRgxIrW1tTn//PObhLYL7LXXXjnggAOarOvdu3euueaaHHjggenXr1+uueaaJMlf/vKXHH300dl2220bx21XX311SqVS42OnT5+eM844o3H8NGzYsCbbF3jkkUdy4IEHpm/fvtlpp53yve99r3HsvDjnnHNOdtpppzQ0NDRZf+GFF2bgwIGZO3duZs+enfPOOy+77LJL+vTpk7333js33HDD0pyuj9SnT5+Uy+W8/fbbSeZPq3DRRRfliCOOSL9+/XLWWWctdqqE5557Ll/5yley1VZbZfvtt8+3vvWtTJw4sXH7tGnTcu6552bHHXdM3759c9BBB+XJJ59s1toBPowrboFWoVwu549//GMGDx6cjh07LnafD16tcO655+aXv/xlvvrVr2abbbbJyy+/nB/84Ad55ZVXMmLEiMavpb300kt59913M3To0HTp0iX/8z//k69//ev5wx/+kNVWWy0TJ07MoYcemg022CDDhg3LjBkzctlll2XKlCmLraNHjx655pprcuKJJ+a4447L//t//2+x+zVXfR+03377Zfjw4Xn44YfzhS98oXH9/fffn5133jndu3fPD3/4w9x222057bTTsv766+f555/PlVdembZt22bo0KEf/YJ8DK+99lqSZP31129c9+CDD+Yzn/lMrrvuusX+MjFx4sR88YtfzFprrZXzzjsvnTp1ytVXX50jjjgiv/71r7PaaqvlhBNOyN/+9rcMHTo0G220UX7zm9/km9/8ZubMmbPIL0AAAJXw29/+Nttvv326d+++xH0uueSSRdZdf/31Ofnkk7PhhhumZ8+eefXVV3PkkUdm7733zpVXXplyuZz77rsv11xzTT7xiU9k3333TalUyjHHHJM333wzp512Wrp27ZoRI0bkxRdfbHJ16n333ZdTTjkl++23X77xjW/kzTffzJVXXpkxY8bkJz/5yWKnbNh///1zxx135KmnnsqOO+6YJCmVSnnwwQez7777pm3btrngggvyxz/+MaeddlrWWGON/OEPf8ill16arl275nOf+1wznM3FjytvvfXWHHXUUfnqV7+azp07Z86cOU0e8/LLL+fQQw9N//79c+mll6ahoSGXX355jj766Nx7771paGjIEUcckcmTJ+eb3/xmevTokbvvvjvHHHNMRowYkR122KFZagf4MK0quJ0zZ04OPPDAnHPOORk4cODHeszTTz+dCy+8MP/617/Su3fvfPe7363Y/JfAsps6dWrq6+uz3nrrfaz9x4wZk7vuuisnn3xyhgwZkiTZaaed0qNHj3z729/OH/7wh+y6665Jkvfffz/33HNP41QGnTp1yqGHHpo///nP2WuvvTJy5Mg0NDTkRz/6UVZfffUkyYYbbpiDDjposc/drl27bLbZZknmT4+w+eabr9D6Pqhnz57Zdttt8+tf/7oxuH399dfzwgsv5Morr0wy/72xT58+jYPp7bbbLh07dswqq6zysc7vwsrlcpOba0yfPj1PP/10rrvuugwYMKDxytskadu2bc4///y0a9cuyfybky1s5MiRmTNnTn7yk59kzTXXTJJ88pOfzJe+9KU8//zzadOmTR5//PFceeWVjUH9oEGDMmvWrFx22WX59Kc/vdirWgAAVpbp06dn+vTp2WCDDRbZ9sEbktXU1KSurq5xeZtttslRRx3VuHzvvfdmxx13zLBhw1JbO/8LtTvttFMeffTRPPXUU9l3333zhz/8IS+88EJ+/OMfZ5dddkmS7LDDDk2+6VUul3PZZZdl0KBBueyyyxrXb7DBBjnyyCPz2GOPZbfddluk3q233jo9e/bMr3/968bg9qmnnsqkSZOy//77J5k/rtxpp52y7777Jpk/tUGnTp0+NLRekg+OK6dMmZI//OEP+fnPf5599tmncSyeJOuuu25OOeWUxuUP3pTs+uuvT9euXXPjjTemffv2SeZfYHHyySdn9OjRefHFF/Pqq6/mjjvuSP/+/ZMku+yySw477LBcdtllufvuu5e6foCl1WqmSqivr8+3vvWtjB49+mM/ZsKECfnqV7+aPffcM7/85S/Tu3fvHH/88Yv8JQ4ovgUD2g9+TWtJnn766SRpHEAusO+++6aurq7JwG711VdvMv/sghuMzZo1K8n8uXW33HLLJgPF/v37Z911112GljR/fYvzmc98Jn/5y18yadKkJPOvtu3SpUvjAH7gwIF54okn8uUvfzkjRozImDFjcuihhzYOwJfGX/7yl2yxxRaNPzvuuGO+9a1vpU+fPrn88subXL3xiU98ojG0XZwF53pBaLugvb/73e+y66675sknn0xNTU123XXXzJs3r/Fn8ODBmTRp0lJ9RgAArAiL+1ZRkowfP77JmGmLLbbInnvu2WSfBX/8X+CAAw7Ij3/848ydOzevvvpqRo0alauuuioNDQ2NU1z99a9/Tdu2bTNo0KDGx3Xq1KnxIoBk/lRU77zzTgYPHtxkDLXtttumS5cueeKJJxZbc01NTT7zmc/kkUceafw9+v77788GG2zQGHYOHDgwd9xxR7761a/mlltuyYQJE3LCCScsNgj+KPfee2+T87PLLrvkvPPOy6c+9akmN8Nd3Ln6oGeeeSa77LJLY2ibJAMGDMijjz6azTbbLE8++WTWXHPNbLHFFo3no6GhIbvvvnteeumlRaYdA1gRWsVlR2PGjMnJJ5+ccrm8VI+75ZZb0q9fv5x44olJkjPPPDP77bdfxo0b56pbaGFWW221dO7cuXG+1MWZOXNm5s6dm9VWW61xoLVwAJgkbdq0Sbdu3fL+++83rvvg1AsLgsYFg+7p06cv9krfDx57aTRnfYuz995754ILLsiDDz6Yww8/PPfff3/22muvdOjQIUlyzDHHpHPnzrn77rtz2WWXZdiwYdlkk01y9tlnZ/vtt1+qtmyxxRY5//zzG2tr37591llnnXTp0mWRfTt37vyhx5o2bdqHXlU9bdq0lMvlbLXVVovd/u67737kIB4AYEXq1q1bOnXqlDfffLPJ+nXWWSd33XVX4/IPfvCD/POf/2yyT6dOnZosz549OxdccEF++ctfZt68eVlvvfUyYMCAtGnTpvH34+nTp6dr166LTHWw8Dhz2rRpSZLzzz+/cdy2sHfffXeJ7dl///1z3XXX5fHHH8+gQYPy8MMP54gjjmjcftZZZ2XttdfOr371q1xwwQW54IILMmDAgJx33nlL/Xv37rvvnhNOOCHJ/HFlx44d07Nnz8Yx7MI+eK4+aNq0aR961e+0adMyadKkbLHFFovdPmnSpMVOSwbQnFpFcPv0009n4MCB+eY3v7nIXSL/+te/5qKLLsqYMWPSq1evnHjiiY1fHX766adz4IEHNu7bsWPHPPLIIyuzdKAZ7bzzznnqqadSX1/f5C/nC9xxxx255JJLctdddzUOsiZNmpSePXs27jN37txMnTo13bp1+9jP261bt0yePHmR9QsGwMuiOetbnFVWWSWDBw/Ogw8+mO233z6jR4/OOeec07i9trY2hxxySA455JBMmTIljz32WK6//vp8/etfzxNPPPGhV8V+UOfOndO3b9/lqnfhuv/9738vsv7JJ5/Meuutl1VWWSWdOnXKT3/608U+vlevXs1SBwDA8hg8eHB+97vfZcaMGY1/zG7Xrl2TMVPXrl0/8jgXXnhhRo0aleHDh2fHHXdsDCsXnn+1W7dumTp1ahoaGppMu7DwWHXVVVdNknz729/Odtttt8jzfFhAueGGG6Zfv3558MEHU1tbm/feey+f+cxnGre3a9cuxx13XI477ri89dZb+d3vfpdrr702J598cu6///6PbOPCunbtusLHlY899lg222yzrLLKKtlggw2aTB2xsI87RRvA8mgVUyV8+ctfzplnnrnIVWeTJk3KsccemwMPPDD33XdfjjnmmJx++un561//mmT+VAkdOnTI0KFDs+OOO+bwww/PmDFjKtEEoBl85StfybRp0zJ8+PBFtk2aNCk33nhjNt5442yxxRaNA9IPDhbvv//+NDQ0ZOutt/7Yz7v99tvn2WefbXIH2jFjxmTChAlLfMzCg+bFac76lmT//ffPc889l9tuuy3rrrtuk0H6wQcfnO9973tJku7du+fAAw/MIYcckvfeey8zZsxY7udeVttss02ef/75JoPsKVOm5Jhjjsljjz2W7bbbLjNnzky5XE7fvn0bf/75z3/mBz/4wSLzxgEAVMKQIUMyb968nH322Yudqm/27NkfOpZc4JlnnsnAgQOzxx57NIa2L730Uv797383fvtqhx12yLx585pcpDRnzpwm0x984hOfSPfu3fPGG280GUOttdZaufzyy/Pyyy9/aB37779/Hn/88dx///3ZaqutGm8SNnv27Oy111658cYbk8yfd/aQQw7Jvvvu+6HflFsZttlmmzzxxBNNzv/LL7+cIUOG5O9//3u22267vP322+nevXuTc/LEE09kxIgRHzmeB2gOreKK2yW59dZbs+OOO+bQQw9NMv9Kq1deeSU33XRTttlmm8ycOTOXXXZZTjzxxBx77LH56U9/miOPPDKjRo36yK/rAsWz5ZZb5qSTTsrw4cMzduzYHHDAAenWrVtGjx6dG264IfX19Y2h7sYbb5zPfvazueqqqzJr1qxsu+22eeWVV3LNNddk4MCBTeYA+yhHHHFE7rrrrhx99NH5+te/noaGhlx55ZVp27btEh+z4CZfTz75ZDbaaKPGOcAWaM76lmTQoEHp2rVrbr/99hxzzDFNvj637bbb5sYbb8waa6yRAQMGZOLEifnJT36S7bbbrnEu3zFjxmTOnDmLvbnainLkkUfm3nvvzTHHHJNjjz02bdu2zXXXXZe11147++23X1ZZZZVsu+22Of7443P88cdno402ygsvvJCrrroqgwYNajIPMQBApfTu3TvDhg3LGWeckQMPPDCf//zn07t378ybNy/PPvts7rrrrkyePDnHHHPMhx5nwZWut912WzbaaKO8+uqrue6661JTU9N4v4MddtghO++8c84+++xMmTIlPXv2zE9/+tP8+9//bpwqoK6uLt/85jdz7rnnpq6uLrvvvnvee++9XHvttZk4ceISpwtYYJ999sn3v//9PPDAA03mmu3QoUO22GKLXHPNNWnbtm169+6d1157Lb/4xS+a3ET35ZdfTrt27bLxxhsv6yldascff3y++MUv5thjj83hhx+e2bNnZ/jw4enXr1922mmnzJs3L7fcckuOOuqofO1rX8s666yTP/3pT/nxj3+cQw899EPH+gDNpVUHt+PGjcvvfve7DBgwoHHd3Llzs+GGGyaZ/+E0ePDgHHbYYUmSCy64ILvttlseffTR7LfffhWpGVg+xx13XDbffPPceuutueiiizJ9+vSss8462W233RoHXAtceOGF6dWrV+6+++78+Mc/To8ePXL44Yfn+OOPb7wr78fRrVu33Hbbbbnwwgtz+umnp3PnzjnmmGPywAMPLPExXbp0yVFHHZXbb789jz322GJv+NBc9S1JmzZtsu++++bmm29u8nW2JDnppJPSrl273H333fnBD37QOLXCySef3LjP+eefnzfffDOPPvroctfyca2zzjr52c9+lmHDhuX0009Pu3btMnDgwFx55ZWNX+H70Y9+lP/5n//JD3/4w0yZMiVrrbVWjjrqqMb50AAAimCvvfZKnz59ctttt+Wuu+7Km2++mXK5nPXXXz/77LNPDj744GywwQYfeozTTz89c+fOzfDhwzNnzpyst956Oe644zJmzJg8+uijjdMjXHPNNbnsssty1VVXpb6+Pvvss08OOuig/Pa3v2081he+8IV07tw5I0aMyO23355OnTplq622ymWXXdZ4Be2SrL766tl5553zxBNPZO+9926y7bvf/W6GDx+eG2+8MZMmTUr37t3z+c9/PieddFLjPieeeGJ69uyZm2++eelP5DLafPPNc/PNN+fyyy/PN77xjXTp0iW77rprTjnllLRr1y7t2rXLrbfemssvvzzDhg3L+++/n549e+bkk0/OV77ylZVWJ1DdaspLe0evguvdu3d++tOfZuDAgTn++OOz2mqr5Wtf+1qTfdq0aZOePXtm8ODBOfjggzNkyJDGbV/4whey5557NlkHAAAAALAytYo5bpdkww03zPjx49OrV6/Gn9/+9re57777ksz/WvU//vGPxv3nzJmTCRMmmGQcAAAAAKioVh3cfvnLX85LL72UK6+8Mv/6179y33335Yorrsi6666bZP68lKNGjcrPfvaz/Otf/8p3v/vdtG/fPrvttltlCwcAAAAAqlqrniohSf70pz/lsssuyz//+c/GeQ4X3KwsSR555JFcdtllefPNN9OnT59897vfzSabbFKp8gEAAAAAWl9wCwAAAADQ0rXqqRIAAAAAAFoiwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMG0qXcDymjLl/VTz7dVqapLu3Vep+vPAfPoDC9MfWEBfYGH6w3wLzsPyWNnnsNpeO+1t3bS3daum9lZTWxPtbe20d+U+78fR4oPbcjlV0Zk+ivPAwvQHFqY/sIC+wML0h+VXqXNYba+d9rZu2tu6VVN7q6mtifa2dtpbHKZKAAAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAKCqjBw5InvuuWdGjhxR6VKWSHALAAAAAFSN+vr6PPTQAymVShk16oHU19dXuqTFEtwCAAAAAFVj3ry5KZdLSZJSqZR58+ZWuKLFE9wCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFU5jgdsiQITn99NMrXQYAAAAAQMUVIri9//7789hjj1W6DAAAAACAQqh4cDtt2rRceuml6du3b6VLAQAAAAAohDaVLuCSSy7J/vvvn3fffbfSpQAAAAAAFEJFg9snn3wyf/3rX3PfffflvPPOW6Zj1NQ0b00tzYL2V/t5YD79gYXpDyygL7Aw/WG+5mj/yj6H1fbaaW/rpr2tWzW1t5rammhva1dN7f1gG2tqVl67l+Z5Khbc1tfX5zvf+U7OPffcdOjQYZmP0737Ks1YVcvlPLAw/YGF6Q8soC+wMP1h+VXqHFbba6e9rZv2tm7V1N5qamuiva1dNbS3Q4em6Wn37qukS5cuFapmySoW3F5zzTXp06dPBg0atFzHmTLl/ZTLzVRUC1RTM79zVft5YD79gYXpDyygL7Aw/WG+Bedheazsc1htr532tm7a27pVU3urqa2J9rZ21dTe//xnRpPlKVPez+zZK6fRSzMOrVhwe//992fy5MkZMGBAkmTOnDlJklGjRuXZZ5/92Mcpl9PqO9PH4TywMP2BhekPLKAvsDD9YflV6hxW22unva2b9rZu1dTeampror2tXTW094PtK2qbKxbc3nzzzZk3b17j8mWXXZYkOeWUUypVEgAAAABAIVQsuO3Zs2eT5c6dOydJevXqVYlyAAAAAAAKo7bSBQAAAAAA0FTFrrj9oO9///uVLgEAAAAAoBBccQsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAomDaVLgAAAAAA4INqa2tSW1vT7Mdt06Z2keUPrmsOpVI5pVJ5mR8vuAUAAAAACqW2tibdunVMbW1dsx+7bdumYWrXrp3TpUvnZn+eUqkhU6fOWubwVnALAAAAABTK/Ktt6zJlwoWZO3t8sx77PzMbmixPHHtSZnRq3oC4bYde6b7+WamtrRHcAgAAAACty9zZ4zN39uhmPmay8K2/5s4el7kFvBNYAUsCAAAAAKhuglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAAqmosHt+PHjc/TRR2fAgAHZbbfdMmLEiEqWAwAAAABQCG0q9cSlUilDhgxJ375984tf/CLjx4/Pt771ray11lrZb7/9KlUWAAAAAEDFVeyK28mTJ2ezzTbLeeedlw022CC77rprdthhhzzzzDOVKgkAAAAAoBAqFtz26NEjw4cPT5cuXVIul/PMM8/kL3/5S7bbbrtKlQQAAAAAUAgVmyphYYMHD85bb72V3XffPXvttddSPbamZgUV1UIsaH+1nwfm0x9YmP7AAvoCC9Mf5muO9q/sc1htr532tm7a27pVU3urqa2J9rZ21dbelWnhc7o057emXC6Xm7+cpfPiiy9m8uTJOe+887Lnnnvm7LPPrnRJAAAAAECFvTN6SObOHt2sx/zPzOSEM/9vIoIfXFRK507N+hRp22GTrL3Jj5brGIW44rZv375Jkvr6+pxyyin59re/nXbt2n2sx06Z8n4qHz1XTk1N0r37KlV/HphPf2Bh+gML6AssTH+Yb8F5WB4r+xxW22unva2b9rZu1dTeampror2tXdHaW1dXm27dOle6jOU2dep/0tBQalxemnFoxYLbyZMn57nnnssee+zRuG7jjTfO3LlzM2PGjKy++uof6zjlcgrRmSrNeWBh+gML0x9YQF9gYfrD8qvUOay21057Wzftbd2qqb3V1NZEe1u7amvvyrCs57NiNyd74403cuKJJ2bixImN61566aWsvvrqHzu0BQAAAABojSoW3Pbt2zdbbLFFzjzzzIwZMyaPPfZYhg0blq997WuVKgkAAAAAoBAqFtzW1dXl2muvTceOHfPFL34xZ511Vg477LAcfvjhlSoJAAAAAKAQKnpzsrXWWivXXHNNJUsAAAAAACicil1xCwAAAADA4gluAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAFA12rRJamrKSZLa2nLatKlwQUsguAUAAAAAqkb7dskeg+aHtp/aef5yERU0TwYAAAAAWDEOObCcQw6sdBUfzhW3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAglnu4Hb69OkplUopl8vNUQ8AAAAAQNVbpuC2XC7nuuuuy8CBA7PDDjvkzTffzKmnnppzzz03c+bMae4aAQAAAACqyjIFtz/4wQ/yq1/9Kt///vfTrl27JMlnP/vZPPHEE7n00kubtUAAAAAAgGqzTMHtL37xi3z3u9/N7rvvnpqamiTJTjvtlEsuuSQPPvhgsxYIAAAAAFBtlim4nTJlSnr06LHI+lVXXTUzZ85c7qIAAAAAAKrZMgW322+/fW644YYm62bMmJErrrgiAwcObJbCAAAAAACq1TIFt+edd15efvnl7LTTTqmvr8/xxx+fXXbZJW+++WbOPvvs5q4RAAAAAKCqtFmWB6299tq566678uSTT2bcuHGZN29eNtxww+y8886prV2mLBgAAAAAgP+1TMFtktx6661ZbbXVcsghhyRJTjjhhLz55pv50pe+1GzFAQAAAABUo2W6PPbKK6/Mddddl06dOjWuGzhwYK699tr84Ac/aLbiAAAAAACq0TIFt3fffXeGDx+ewYMHN647/PDDc9lll+X2229vtuIAAAAAAKrRMgW3s2bNSpcuXRZZ361bt7z//vvLXRQAAAAAQDVbpuB20KBBufDCC/PWW281rps4cWIuueSS7Lzzzs1WHAAAAABANVqm4Pbcc8/N3Llz86lPfSrbb799tt9+++y2224plUr5zne+09w1AgAAAABUlTbL8qDVV189P//5z/Pqq6/mX//6V9q0aZMNNtggG2+8cXPXBwAAAABQdT52cPvWW29lnXXWSU1NTeMUCauuumr69evXZJ8kWXfddZu5TAAAAACA6vGxg9vBgwfniSeeSPfu3TN48ODU1NQssk+5XE5NTU1eeeWVZi0SAAAAAKCafOzg9re//W1WX331JMmvfvWrdO7ceYUVBQAAAABQzT52cNuzZ8/Gf3/ta1/LNddck80333yFFAUAAAAAUM1ql+lBtbWZO3duc9cCAAAAAFTAyJEjsueee2bkyBGVLoX/9bGvuF3YbrvtlqOOOiq77757evbsmXbt2jXZfuKJJzZLcQAAAADAilVfX5+HHnog5XIpo0Y9kIMPPizt27evdFlVb5mC23/84x/ZYost8u677+bdd99tsm1xNy0DAAAAAIpp3ry5KZdLSZJSqZR58+YKbgtgqYLbX/7yl/nNb36TNdZYI5/61Kfy6U9/ekXVBQAAAABQtT72HLc33XRTzjzzzMyePTuzZs3KGWeckSuuuGJF1gYAAAAAUJU+9hW3P//5z3PhhRfmgAMOSJI8/PDDOeOMM/LNb37T9AgAAAAAAM3oY19xO2HChOywww6Ny4MHD86sWbMWmeMWAAAAAIDl87GD23nz5qVNm/+7QLdNmzZp37595syZs0IKAwAAAACoVh87uAUAAAAAYOX42HPcJsmDDz6YLl26NC6XSqX85je/yeqrr95kvwXz4AIAAAAAsPQ+dnC77rrr5sYbb2yyrnv37rnllluarKupqRHcAgAAAAAsh48d3D766KMrsg4AAAAAAP6XOW4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwbSpdAAAAAADw0Wpra1JbW9Psx23TpnaR5Q+uaw6lUjmlUrnZj9taCW4BAAAAoOBqa2vSrVvH1NbWNfux27ZtGqZ27do5Xbp0bvbnKZUaMnXqLOHtxyS4BQAAAICCm3+1bV3+MuaCvD9rfLMee/bMhibLf/j719OhU/MGxKt07JVtNz4ntbU1gtuPSXALAAAAAC3E+7PGZ/rMfzbrMetnJUnbxuX3Zo1NfbM+A8vCzckAAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFExFg9uJEydm6NCh2W677TJo0KBcfPHFqa+vr2RJAAAAAAAV16ZST1wulzN06NCsuuqqufXWWzN9+vSceeaZqa2tzWmnnVapsgAAAAAAKq5iV9yOGzcuzz33XC6++OJssskm2WabbTJ06ND8+te/rlRJAAAAAACFULHgds0118yIESOyxhprNFk/Y8aMClUEAAAAAFAMFQtuV1111QwaNKhxuVQq5ZZbbsn2229fqZIAAAAAAAqhYnPcftCwYcPy8ssv56677lqqx9XUrKCCWogF7a/288B8+gML0x9YQF9gYfrDfM3R/pV9DqvttdPe1k17W7dqam81tTXR3tasti6pqSmnXK5JTW05tXUr9vmq4ZwubOH2Lk3bCxHcDhs2LDfddFOuvPLKbLrppkv12O7dV1lBVbUszgML0x9YmP7AAvoCC9Mfll+lzmG1vXba27ppb+tWTe2tprYm2tsatW2X9NuhlBf+XJt+25fStt2Ke65u3TqvuIMX0PK0t+LB7QUXXJDbbrstw4YNy1577bXUj58y5f2UyyugsBaipmb+G0i1nwfm0x9YmP7AAvoCC9Mf5ltwHpbHyj6H1fbaaW/rpr2tWzW1t5rammhvpdXV1a7Q0HPQp0sZ9OnSCjv+AlOn/icNDR/9PCu6vSvLB9u7NOPQiga311xzTX7+85/niiuuyN57771MxyiXU4j/eSrNeWBh+gML0x9YQF9gYfrD8qvUOay21057Wzftbd2qqb3V1NZEe1l+1XY+l7W9FQtux44dm2uvvTZDhgzJ1ltvnUmTJjVuW3PNNStVFgAAAABAxVUsuP3tb3+bhoaGXHfddbnuuuuabPvHP/5RoaoAAAAAACqvYsHtkCFDMmTIkEo9PQAAAABAYdVWugAAAAAAAJoS3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAHzAyJEjsueee2bkyBGVLoUqJbgFAAAAgIXU19fnoYceSKlUyqhRD6S+vr7SJVGFBLcAAAAAsJB58+amXC4lSUqlUubNm1vhiqhGglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAF06bSBQAAAADAsqitrUltbU2zH7dNm9pFlj+4rjmUSuWUSuVmPy6tg+AWAAAAgBantrYmXbt1TF1tXbMfu23bpmFq166d06VL52Z/noZSQ6ZNnSW8ZbEEtwAAAAC0OLW1Namrrcs9r/4ok2a+1azHnjNrXpPlnzz//bTr2Lwx2pqd1s2BnxyS2toawS2LJbgFAAAAoMWaNPOtvDPj9WY95rzZpSbL7/7njbRpcKsoVi49DgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAABgITV1SWoWLPzvMqxkglsAAAAAWEhd29r03G6VpCbpud0qqWsrQmPla1PpAgAAAACgaDbae/VstPfqlS6DKubPBQAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAPCRRo4ckT333DMjR46odClQFQS3AAAAAHyo+vr6PPTQAymVShk16oHU19dXuiRo9dpUugAAAAAAmkdtbU1qa2ua/bj19Q0pl0tJklKplKQhbdo0//WApVI5pVK52Y8LLZHgFgAAAKAVqK2tSddunVJX2/yBatu2TcPUrl07p0uXzs3+PA2lUqZNnSm8hQhuAQAAAFqF2tqa1NXW5n+euS1vvP9usx573uy5TZbP+eP1adOhbbM+x3qr9MhJW38ptbU1gltIQYLbOXPm5MADD8w555yTgQMHVrocAAAAgBbrjfffzWvT32zWY5bq5zVZHv/eW6mtL0SsBK1WxW9OVl9fn29961sZPXp0pUsBAAAAYDFqamuTBVPn1vzvMrBCVfT/sjFjxuSggw7K66+/XskyAAAAAPgQNW1r075/j6Qmad+/R2raCm5hRavo/2VPP/10Bg4cmNtvv72SZQAAAADwETrtsn66fX3rdNpl/UqXAlWhopORfPnLX67k0wMAAAAAFFKLn0W6puaj92nNFrS/2s8D8+kPLEx/YAF9gYXpD/M1R/tX9jmsttdOe1s37W3dqqm91dTWla3azqn2tm4Lt3dp2t7ig9vu3VepdAmF4DywMP2BhekPLKAvsDD9YflV6hxW22unva2b9rZu1dTeamrrytCtW+dKl7BSaW/rtjztbfHB7ZQp76dcrnQVlVNTM/8DotrPA/PpDyxMf2ABfYGF6Q/zLTgPy2Nln8Nqe+20t3XT3tatmtpbtLbW1dW2ilBs6tT/pKGh9JH7aW/LVO3tXZpxaIsPbsvlFOLNsdKcBxamP7Aw/YEF9AUWpj8sv0qdw2p77bS3ddPe1q2a2ltNbV1Zqu18am/rtqztrW3eMgAAAAAAWF6CWwAAAACAginMVAn/+Mc/Kl0CAAAAAEAhuOIWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAALIORI0dkzz33zMiRIypdCtAKtal0AQAAAAArSm1tTWpra5r9uPX19Rk16oGUSqWMGvVADj30iLRv377Zn6dUKqdUKjf7cYHiE9wCAAAArVJtbU26duuUutrm/8LxjBnllEqlJEmpVEqXLu3SpUvnZn+ehlIp06bOFN5CFRLcAgAAAK1SbW1N6mprc/Zv78xrUyc167HLc+clNUnKSWpqMuS+G1PTtnljlg27rZnvfeoLqa2tEdxCFRLcAgAAAK3aa1Mn5R+T327243bYeJ20G/N25my8dv45vXmDYQDBLQAAAMAymL3lhpm95YaVLgNopZp/khcAAAAAAJaL4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAKCKjBw5InvuuWdGjhxR6VIAAIAPIbgFAKgS9fX1eeihB1IqlTJq1AOpr6+vdEkAAMAStKl0AQAARVZbW5Pa2ppKl9Es6usbUi6XkiSlUilJQ9q0aR1/xy+VyimVypUuAwAAmo3gFgBgCWpra9KtW8fU1tZVupRm0bZt02Cza9fO6dKlc4WqaV6lUkOmTp0lvAUAoNUQ3AIALMH8q23rMmXChZk7e3yly1lu/5nZ0GR54tiTMqNTyw+l23bole7rn5Xa2hrBLQAArYbgFgDgI8ydPT5zZ4+udBnLrTwvqampSblck9racsrzxmXu7EpXBQAALE7rmNQMAICP1L5dssegpLa2nE/tPH8ZAAAoJlfcAgBUkUMOLOeQAytdBQAA8FFccQsAAAAAUDCuuAX4X/NvQlRT6TKazU9+8uM8+OD9+e//3jdHHfXVSpfTLEqlshsPAQA0gxU59l3R41BjQqBaCG4BMn/g2rVrp9TVtY4vIsyePTsPPnh/SqVSHnzw/hx//NfSoUOHSpe13BoaSpk2baaBOgDAcliRY9+VMQ41JgSqheAWIPMHr3V1tTnz3rszbvLkSpez3Mrz5qVUnj+QLZXLOWLkDalp07Lf8j+xxhq56IDPpba2xiB9KY0cOSKjRj2QvfbaJ0cccUylywEAKmxFjn1X9DjUmBCoJi37t3iAZjZu8uS8+s7blS6jWXTquU46vPlWZvdcJ/+YPKnS5bQ4rWXqjPr6+owa9UBKpVJGjXoghx56RNq3b1/pspqFr0kCwPJZUWNf41CA5iG4BWilZm6yUWZuslGly2iRamtr0rVbx9TV1lW6lOU2Y0Y5pVIpSVIqldKlS7t06dK5wlU1j4ZSQ6ZNnSW8BYCCMQ4FaB6CWwD4gNramtTV1uWml36ad2ZOrHQ5y6VhTkNSk6Sc1NTW5Krnrkldu5YfSK/daa0c0edwX5MEAABaLcEtACzBOzMn5o3336h0Gctt9W26599/nZJuW6+et+vfTuorXREAAAAfRXALAK3c2nuuk7X3XKfSZQAAALAUaitdAAAAAAAATQluAQAAAAAKRnDbwo0cOSJ77rlnRo4cUelSAAAAAIBmIrhtwerr6/PQQw+kVCpl1KgHUl/vbjMAAAAA0BoIbluwefPmplwuJUlKpVLmzZtb4YoAAAAAgOYguAUAAAAAKBjBLQAAAKxA7k0CwLJoU+kCAAAAoNJqa2tSW1vT7Metr6/PqFH/d2+SQw89Iu3bt2/25ymVyimVys1+XAAqR3ALAABAVautrUnXrp1SV9f8X0qdPbuuyXLXrp3SoUOHZn+ehoZSpk2bKbwFaEUEtwAAAFS12tqa1NXV5txbfpF/TZzc7Mfv+F8b5z/jR6fjf22cIT+4udmPv8Faa+S7h342tbU1gluAVkRwC63IyJEjMmrUA9lrr31yxBHHVLocAABoUf41cXL+8eY7zX/g1dZN+q2bGUkmrojjA9AquTkZtBL19fV56KH/mzurvr6+0iUBAAAAsIwEt9BKzJs3N+VyKUlSKpUyb97cClcEAAAAwLKquqkSVtSdQiuhTZvaRZY/uK6lckdUAAAAAKpZVQW3tbU16bpax9S1qfvonVuAtm2bBptdu3ZOly6dK1RN82qY15Bp02cJbwEAAACoSlUX3Na1qcsFRw/L+H9MqHQ5y60hDUn7/1v++t6npS4tP5Tu1Xv9nHPDqSvljqiuwC4+V18DAAAA1aiqgtsFxv9jQkY/P7bSZSy/unLabP1/i+Neei1paB0h5MpQW1uTrl07pa6u5YebSeu9AruhoZRp02YKbwEAWpGRI0dk1KgHstde++SII46pdDkAUEhVGdxC8r9XYNfV5vtX35PX35xc6XKWW8O8OU2WTz5vZOratKtQNc3jv3qukdO/fuBKufoaAICmVtS30+rr6zNq1AMplUoZNeqBHHroEWnfvv1HP3Ap+eYWAC2d4Jaq9/qbkzPmtXcqXcZyK5fmNVkeN/7d1NT6XxwAgKW3Ir+dNnt20+ndunbtlA4dOjT78/jmFgAtnVQHWouamg9fBgCAj2nBt9Mu/OEvMv6t5v922iprb5zpb43OKmtvnKEX39zsx++17ho569jP+uYWAC2a4BZaiZqautR06Jny7DdT06Fnampa/o3qAACorPFvTc7o8Svg22l16ybrr5upSaauiOMDQCsguIVWpLbLxkmXjStdBgBUrRU1J+jCVuSNVc0JWjlu1gUAfJDgtiUrJ+Xy/G/El8vzlwEAqIza2pp0Xa1j6tqs2G+9dOvWeYUdu2FeQ6ZNn1WI8LaIQaabdQEAK5PgtiUr1aQ8sS5Zq2H+f0vmNAUAqJTa2prUtanLBUcPy/h/TKh0OUutV+/1c84NpxZiTtD6+vo89NADKZfnB5kHH3zYCgkyl8aKvFnXjBnllEqlJEmpVEqXLu3SpUvzB/Ru1gUALYvgtoUrvd42eb1tpcsAAOB/jf/HhIx+fmyly2jR5s2bm3L5/4LMefPmFiK4raurzbDL7sqEN5r3Zl0NDXOaLJ92xo2pq2vXrM+x/npr5NRTPl+IYB4A+HgEtwAAAB/ThDcmZ+zYt5v1mOVyQ5Pl1157141mAQDBLQAAsGxW1JyvbdrULrL8wXXNoShzvtbU1KWuzbppmPdW6tqsK7QFAJIIbgEAgGUwf87Xjqmra/6QsW3bpmFq166dV9Ccrw2ZNq0YN2Nr2+4TadvuE5UuAwAoEMEtAACw1ObP+VqXS88YmQnj3mnWYzeU5jZZ/vZRV6autnnv67D+J9bOty8+0pyvAEBhCW4BAIBlNmHcOxn76hvNesxyTUPS/f+WXxv9VmrKpg8AAKpL808UBQAAsDzKNcmCi2DL/7sMAFBlBLcAAECh1KQ2dbO7JeWkbna31Pi1BQCoQqZKAAAACqfNf9ZOm/+sXekyAAAqxp+uAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMBUNbuvr63PmmWdmm222yc4775wbb7yxkuUAAAAAABRCm0o++aWXXpqXXnopN910U956662cdtppWXfddbP33ntXsiwAAAAAgIqqWHA7c+bM3Hnnnfnxj3+cLbbYIltssUVGjx6dW2+9VXALAAAAAFS1ik2V8Oqrr2bevHkZMGBA47qtt946zz//fEqlUqXKAgAAAACouIoFt5MmTUq3bt3Srl27xnVrrLFG6uvrM23atEqVBQAAAABQcRWbKmHWrFlNQtskjctz5sz52MeprU3K5aV77k36b5QOnTos3YNYadbfpGfjv2tXwp8WNt5g7XRo33bFPxFLbb11ujf+e2X0hSTZbO2107Gt/lBEG3Rf+f1h/S7rpV1tu4/ekZVurU49Gv+9MvpDu46bpKbW2KGo2rZfv/HfH7c/1NQs//MuaRzaUseayzoG22iz9dOhY8t7r+y5wVqN/16q9n6iZY4de/Zcts/RTXq1zPauv/aytbf3emunQ7uW195ePZatvS1x7LusY8JPrrFOOrZpWW1Nkl5d12j899K09xOrrZv2dS3wvbnLsrV3nS690ra2/QqoaMVao9Pajf9emvau1mmT1LXAsWmXDks/Zkta7lh8SWPUpRmH1pTLSxt7No8HH3ww3/ve9/LEE080rhs7dmz22WefPPXUU+natWslygIAAAAAqLiKTZWw1lprZerUqZk3b17jukmTJqVDhw5ZddVVK1UWAAAAAEDFVSy43WyzzdKmTZs899xzjeueeeaZ9O3bN7Ur6zuwAAAAAAAFVLGEtGPHjjnggANy3nnn5YUXXsgjjzySG2+8MYcffnilSgIAAAAAKISKzXGbzL9B2XnnnZeHH344Xbp0ydFHH50jjzyyUuUAAAAAABRCRYNbAAAAAAAWZTJZAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEty3InDlz8ulPfzpPPfXUEvd5+eWX84UvfCH9+/fP5z73ubz00ksrsUJWtIkTJ2bo0KHZbrvtMmjQoFx88cWpr69f7L76Qus3fvz4HH300RkwYEB22223jBgxYon76g/VZciQITn99NOXuP1Pf/pTPv3pT6d///45/PDDM2HChJVYHSvDb37zm/Tu3bvJz9ChQxe7r/5QTNUy7qu2sU21fnZXy+dSNb33zpkzJ+eff3623Xbb7LjjjrniiiuypNvntPS23nPPPYu8rr17984nP/nJxe7f0tubJG+//XaOPfbYbLXVVhk8eHBGjhy5xH1bQ3unTJmSoUOHZptttsmee+6Ze+65Z4n7tuT35sWNLSZMmJAjjzwyW265ZfbZZ5/88Y9//NBj/PrXv84ee+yR/v3754QTTsi///3vFV32clnSeGr8+PHp16/fRz6+CO0V3LYQ9fX1+da3vpXRo0cvcZ+ZM2dmyJAh2WabbXLPPfdkwIABOfbYYzNz5syVWCkrSrlcztChQzNr1qzceuutufLKK/O73/0uw4cPX2RffaH1K5VKGTJkSLp165Zf/OIXOf/883PdddflvvvuW2Rf/aG63H///XnssceWuP2tt97KCSeckAMPPDB33XVXVl999Rx//PFL/GWLlmnMmDHZfffd88c//rHx53vf+94i++kPxVQt475qG9tU62d3NX0uVdN77/e+97386U9/yg033JDLL788d9xxR26//fZF9msNbV0QZi34+f3vf59evXrl8MMPX2Tf1tDeJPnGN76RTp065Z577smZZ56Z4cOH5ze/+c0i+7WG9pbL5Zxwwgl555138tOf/jRnnnlmvv/97+fhhx9eZN+W/N68uLHFgravscYaufvuu7P//vvnxBNPzFtvvbXYY7zwwgs566yzcuKJJ+b222/Pe++9lzPOOGNlNWGpLWk8teAPE0v6Q/EChWlvmcIbPXp0+TOf+Ux5v/32K2+66ablP//5z4vd78477ywPHjy4XCqVyuVyuVwqlcp77rln+e67716Z5bKCjBkzprzpppuWJ02a1LjuvvvuK++8886L7KsvtH4TJ04sn3TSSeX333+/cd0JJ5xQ/s53vrPIvvpD9Zg6dWp5l112KX/uc58rn3baaYvdZ/jw4eVDDz20cXnmzJnlAQMGLPGzhZbp5JNPLl9++eUfuZ/+UDzVNO6rtrFNNX52V9vnUrW8906dOrW8+eabl5966qnGdT/84Q/Lp59++iL7tvS2Ls71119f3mOPPcr19fWLbGsN7Z02bVp50003Lf/jH/9oXHfiiSeWzz///EX2bQ3tfeGFF8qbbrpp+fXXX29c98Mf/rB80EEHLbJvS31vXtLY4k9/+lN5yy23LP/nP/9p3PeII44oX3XVVYs9zqmnntrkvfytt94q9+7du8m5K4oltfk3v/lNefvtt29c/2GK0l5X3LYATz/9dAYOHLjYv2Au7Pnnn8/WW2+dmpqaJElNTU222mqrPPfccyuhSla0NddcMyNGjMgaa6zRZP2MGTMW2VdfaP169OiR4cOHp0uXLimXy3nmmWfyl7/8Jdttt90i++oP1eOSSy7J/vvvn4033niJ+zz//PPZZpttGpc7duyYLbbYQn9oZcaOHZsNNtjgI/fTH4qnmsZ91Ta2qcbP7mr7XKqW995nnnkmXbp0adJ3hwwZkosvvniRfVt6Wz9o2rRp+fGPf5yTTz457dq1W2R7a2hvhw4d0rFjx9xzzz2ZO3duxo0bl7/97W/ZbLPNFtm3NbR3woQJWX311bP++us3ruvdu3deeumlzJ07t8m+LfW9eUlji+effz6bb755OnXq1Lhu6623XmJ7Pvh6r7POOll33XXz/PPPr5C6l8eS2vz73/8+J510Us4666yPPEZR2ttmpT4by+TLX/7yx9pv0qRJiwyKunfv/qFfs6PlWHXVVTNo0KDG5VKplFtuuSXbb7/9IvvqC9Vl8ODBeeutt7L77rtnr732WmS7/lAdnnzyyfz1r3/Nfffdl/POO2+J+02aNCk9evRosq579+555513VnCFrCzlcjmvvfZa/vjHP+aHP/xhGhoasvfee2fo0KGL/JKpPxRPNY37qnlsUw2f3dX2uVRN770TJkxIz549c++99+b666/P3Llzc+CBB+a4445LbW3Ta8Naels/6LbbbkuPHj2y9957L3Z7a2hv+/btc+655+aCCy7IT3/60zQ0NOTAAw/MF77whUX2bQ3tXWONNfL+++9n1qxZ6dixY5LknXfeybx58/L+++9n9dVXb9y3pb43L2lssbSv37vvvttiXu8ltXnB9DUfdg+BBYrSXlfctiKzZs1aZFDQrl27zJkzp0IVsSINGzYsL7/8cr75zW8usk1fqC5XXXVVrr/++rzyyiuLvdJBf2j96uvr853vfCfnnntuOnTo8KH76g+t31tvvdX4Og8fPjynnXZa7rvvvlx66aWL7Ks/tFyt8bWrprFNa//srsbPpWp67505c2bGjx+fn//857n44otz2mmn5eabb17sDaxaelsXVi6Xc+edd+bQQw9d4j6tpb1jx47N7rvvnttvvz0XX3xxHnroofzqV79aZL/W0N7+/funR48eueCCCxr79k9+8pMkWeSK29bQ3oUtbXtmz57dqtr/UYrSXlfctiLt27dfpAPNmTPnIwdLtDzDhg3LTTfdlCuvvDKbbrrpItv1herSt2/fJPN/STrllFPy7W9/u8kHjP7Q+l1zzTXp06dPkyvXlmRJ/WHVVVddUeWxkvXs2TNPPfVUVltttdTU1GSzzTZLqVTKqaeemjPOOCN1dXWN++oPLVdre2+vtrFNa//srsbPpWp6723Tpk1mzJiRyy+/PD179kwyP7i+7bbb8pWvfKXJvi29rQt78cUXM3HixOy7775L3Kc1tPfJJ5/MXXfdlcceeywdOnRI3759M3HixFx33XX5zGc+02Tf1tDe9u3bZ/jw4fnGN76RrbfeOt27d88xxxyTiy++OF26dFlk35b83vxB7du3z7Rp05qs+7D2LKn9C65Ubm2K0l7BbSuy1lprZfLkyU3WTZ48eZFLu2nZLrjggtx2220ZNmzYYr9al+gL1WDy5Ml57rnnssceezSu23jjjTN37tzMmDGjyVd69IfW7/7778/kyZMzYMCAJGkcYIwaNSrPPvtsk32X1B8WN28ZLVfXrl2bLG+00Uapr6/P9OnTP9b7g/5QfK3pvb1axjbV9NldrZ9L1fLeu+aaa6Z9+/aNoW2SbLjhhnn77bcX2belt3Vhjz/+eLbZZpusttpqS9ynNbT3pZdeSq9evZqEd5tvvnmuv/76RfZtDe1Nkn79+uXRRx/NpEmT0q1btzzxxBPp1q1bOnfu3GS/lv7e/EFrrbVWxowZ02Tdh7VnSe1fc801V1iNlVSU9poqoRXp379/nn322ZTL5STzv8rxt7/9Lf37969wZTSXa665Jj//+c9zxRVXfOhfevWF1u+NN97IiSeemIkTJzaue+mll7L66qs3+cUg0R+qwc0335z77rsv9957b+69994MHjw4gwcPzr333rvIvv37988zzzzTuDxr1qy8/PLL+kMr8vjjj2fgwIGZNWtW47pXXnklXbt2Xez7g/7QMrWW9/ZqGttU02d3NX4uVdN7b//+/VNfX5/XXnutcd24ceOaBLkL79uS27qwF154IVtttdWH7tMa2tujR4+MHz++yZWG48aNy3rrrbfIvq2hvdOmTcuXvvSlTJ06NWuuuWbatGmT3//+94u9cWRLf2/+oP79++fvf/97Zs+e3bjumWeeWWJ7Pvh6v/3223n77bdbbPs/SlHaK7ht4SZNmtT4P9nee++d9957LxdeeGHGjBmTCy+8MLNmzcp///d/V7hKmsPYsWNz7bXX5qtf/Wq23nrrTJo0qfEn0ReqTd++fbPFFlvkzDPPzJgxY/LYY49l2LBh+drXvpZEf6g2PXv2TK9evRp/OnfunM6dO6dXr15paGjIpEmTGgffn/vc5/K3v/0tP/rRjzJ69OicccYZWW+99TJw4MAKt4LmMmDAgLRv3z5nn312xo0bl8ceeyyXXnppjjnmGP2hhWtt7+3VNrapps/uavxcqqb33k984hPZbbfdcsYZZ+TVV1/N448/nh/96Ef50pe+1OraurDRo0cvcmOq1tjewYMHp23btjn77LPz2muv5dFHH83111+fww47rFW2t2vXrpk5c2aGDRuWCRMm5M4778zdd9+dY445Jknrem/+oO222y7rrLNOzjjjjIwePTo/+tGP8sILL+Tzn/98kvnflpg0aVIaGhqSJF/60pfyy1/+MnfeeWdeffXVfPvb385uu+2W9ddfv5LNaDaFbW+ZFmXTTTct//nPf26yfPfddzcuP//88+UDDjig3Ldv3/LnP//58t///vdKlMkK8MMf/rC86aabLvanXNYXqtE777xTPuGEE8pbbbVVeaeddipfd9115VKpVC6X9Ydqd9ppp5VPO+20crlcLk+YMGGRz47f//735f/3//5fuV+/fuUjjjii/Prrr1eqVFaQf/7zn+UjjzyyvOWWW5Z32mmn8tVXX10ulUr6QwvT2sd91Ti2qdbP7mr5XKqm99733nuvfOqpp5a33HLL8g477NCq27pA3759y3/4wx+arGut7R09enT5yCOPLG+11VblPfbYo/yTn/ykVb++Y8eOLR966KHl/v37l/fdd9/yo48+2rittb03f/D1+9e//lU+5JBDyn369Cnvu+++5SeeeKJx25///OfypptuWp4wYULjurvvvru86667lrfccsvyCSecUP73v/+9UutfFh9sc7n8f21b3LqitbemXP7fa7wBAAAAACgEUyUAAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAqxk06dPz/e///0MHjw4/fv3z3//939n5MiRKZVKK+T5Bg8enHvuuSdJcthhh+Xqq69OksyZMyd33HFH434LbwMAoHrNnDkzw4cPz957751+/fpl4MCBGTp0aEaPHt1sz3HPPfdk8ODBzXY8gNaoTaULAKgmU6dOzRe/+MX06NEjF154YdZbb728+OKLueCCCzJhwoScc845K/T5r7766rRt2zZJcv/99+f666/PQQcdtMg2AACq03/+8598+ctfzsyZM3P66afnk5/8ZKZOnZpbb701Bx98cO69996sv/76lS4ToCoIbgFWossvvzzt2rXLDTfckPbt2ydJ1l9//XTo0CHHH398Dj300Gy44YYr7Pm7du3a+O9yubzEbQAAVKcf/OAHmTJlSh544IGsuuqqSZKePXvm4osvzttvv52RI0eu8IsNAJjPVAkAK8mcOXNy//3355BDDmkMbRfYfffdM3LkyPTs2TPTp0/POeeckx133DFbb711Tj311EyfPj1J8tRTT2Xw4MH52c9+lkGDBmXLLbfMqaeemjlz5jQe6+c//3l22223bLXVVrn22mubPM+C6RCeeuqpnHHGGXnzzTfTu3fvvPHGG4tMlXDPPffkv//7v9OvX78ceOCB+ctf/tK4bfDgwbn11ltz0EEHpW/fvtl///3z0ksvrYjTBgDASlIqlfKLX/wiRx11VGNou7BLL700p556au65554cfPDBOeGEE7L11lvnV7/6VWbMmJEzzjgjO+ywQ/r06ZO99947jzzySONjJ06cmGOOOSZbbrllPvvZz+b1119vcux//vOfOeyww9KvX7/stddeufXWW1d4ewGKTnALsJK8/vrrmTlzZvr27bvItpqammy//fZp165dTjzxxLzyyiu5/vrr85Of/CRjx47N6aef3rjvu+++m1GjRmXEiBG5+uqr8/DDD+fee+9Nkjz++OO58MIL841vfCO33357Xnzxxbz55puLPN+AAQNy5plnZu21184f//jHrLPOOk2233PPPbngggty7LHH5t57782OO+6YIUOGZOLEiY37XH311RkyZEh+9atfZZVVVsn3vve9ZjpTAABUwuuvv55///vf2WabbRa7vUePHunQoUOS5Nlnn83GG2+cO+64IzvvvHMuvPDCvPbaa7nxxhvz61//Ottss03OOuusxgsMTjrppJRKpdx555356le/mptuuqnxuLNnz85Xv/rVxhD4tNNOy7XXXts4xgWoVqZKAFhJ3nvvvSTJKqusssR9Xn311Tz99NN56KGHGqdMGDZsWPbZZ5+MGzcuSTJ37tycffbZ2WSTTdK7d+8MGjQoL774Yg466KDceeed2W+//XLAAQckSS666KLsuuuuizxPu3btssoqq6Suri5rrrnmIttvvvnmHHbYYY3HOeWUU/KXv/wlt9xyS04++eQkyWc/+9nsscceSZKjjjoqJ5100rKdGAAACmHq1KlJktVWW61x3Z/+9KeccMIJjcvrrrtujj766NTU1OS4445rDHK33XbbHHXUUdl0002TJF/5yldy5513ZsqUKZkxY0aeffbZ/O53v8u6666bTTbZJC+99FIeeuihJMl9992X7t275xvf+EaSZIMNNsibb76Zn/70p43jUYBqJLgFWEkWzCG7YNqDxRk3blxWXXXVJvPcbrTRRllttdUybty4xtC3V69ejdu7dOmSefPmJUnGjh2bgw8+uHFbt27dlunmEWPHjm0yQE+SLbfcMmPHjm1c3mCDDZrUMHfu3KV+HgAAimPB9AgLLjhI5n9Ta8GVrw8//HBuu+22JEn37t0bQ9skOeCAA/LII4/kjjvuyLhx4/L3v/89SdLQ0JAxY8aka9euWXfddRv379u3b2NwO27cuLz66qsZMGBA4/aGhobU1dWtmIYCtBCCW4CV5L/+67+yyiqr5O9//3v69eu3yPbjjjsun/vc5xb72IaGhjQ0NDQut2vXrsn2hW809sGbjrVt23apa/3gHLwLaiiVSst1XAAAiqtXr17p2rVrnn322cbxaseOHRsvGujevXvjvh8cL37729/Os88+m/333z9f+tKXsuaaa+aLX/xi4/YPG6POmzcvO+ywQ84999xmbxNAS2aOW4CVpE2bNtlnn31y6623NrmZWJI8+uijefTRR7PBBhvkvffea5wWIUnGjBmTGTNmNLkKd0k22WSTvPjii43LM2bMyPjx4xe7b01NzRKPs+GGG+b5559vsu7555//WDUAANAytWnTJp/73Ody0003ZcaMGYtsX/h+BwubMWNGfv3rX+fKK6/M0KFDs+eeezZ+y6xcLmfTTTfN9OnTm4xLX3nllcZ/b7jhhnnttdey3nrrpVevXunVq1eee+653Hzzzc3cQoCWRXALsBJ9/etfz4wZM3L00Ufn6aefzuuvv54777wzp59+eg4//PBsvPHG2WWXXXLaaaflhRdeyAsvvJDTTjst2267beN8YR/m0EMPzYMPPpg77rgjY8eOzbnnnpvZs2cvdt+OHTtm+vTp+de//tU41cICRx55ZG655Zbce++9ee2113LZZZfl1Vdfzec///lmOQ8AABTT17/+9ay55po5+OCD89BDD2XChAl54YUXcs455+Sqq67K1ltvvchj2rVrl44dO+bhhx/OG2+8kccffzzf/e53kyRz5szJRhttlB122CFnnnlmXn311TzyyCO55ZZbGh//mc98JrNnz865556bsWPH5rHHHsuFF17Y5ApfgGpkqgSAlWjNNdfMbbfdlquvvjqnnHJKpk2blv/6r//K0KFD86UvfSlJcskll+R73/tejjzyyNTV1eVTn/pUzjjjjI91/G222SYXX3xxhg8fnn//+9/53Oc+l80222yx+26//fbp1atX9ttvv/zsZz9rsm2fffbJ5MmTc9VVV2XSpEnZbLPNcuONN2ajjTZavhMAAEChdezYMTfffHNuuummXHvttRk/fnzatWuXfv365eqrr84ee+yRe+65p8lj2rVrl2HDhuWSSy7JzTffnPXWWy/HHXdchg8fnldeeSUbbbRRrrzyypxzzjk5+OCDs+666+awww5rPE6XLl3y4x//OBdddFEOOOCAdO3aNYccckiOPfbYSpwCgMKoKX9wohkAAAAAACrKVAkAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACub/A7/UaeDefSCHAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2440,12 +2440,12 @@ }, { "cell_type": "code", - "execution_count": 538, + "execution_count": 238, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABjAAAAaiCAYAAACMybG2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QU1d/H8Xd6JyFACkloAUKTEiD0IlWK9CogoqKiYseOilixIyoWkC5dkS7SW+i9E0o6hE56Npvnj00Cm00ANSHL8/u8zvEcd3bu5N5h5s7d+d5ik5WVlYWIiIiIiIiIiIiIiIgVsS3uDIiIiIiIiIiIiIiIiOSlAIaIiIiIiIiIiIiIiFgdBTBERERERERERERERMTqKIAhIiIiIiIiIiIiIiJWRwEMERERERERERERERGxOgpgiIiIiIiIiIiIiIiI1VEAQ0RERERERERERERErI4CGCIiIiIiIiIiIiIiYnUUwBARERERKUZZWVnFnYUi8f+1XCIiIiIicvcogCEiIiIi94QDBw4watQoWrduTe3atWnXrh2jR48mKiqquLPGtm3bCAkJYdu2bXecJj09nY8++ojFixfnbnv99ddp06ZNUWTRwuuvv05ISAgtW7YsMNjw+eefExISwpAhQ/7RsU+cOMHAgQNvu9/ChQsJCQkhOjr6Hx1fRERERET+NyiAISIiIiJWb+bMmQwYMICLFy/y8ssv8/PPP/PEE0+wfft2+vTpw9GjR4s7i//Y+fPnmTp1KgaDIXfb008/zYQJE+5aHmxtbTl37hy7d+/O9/tly5b9q+OuWLGCPXv23Ha/1q1bM2fOHHx8fP7V3xERERERkf/f7Is7AyIiIiIit7Jr1y4+/PBDBg0axFtvvZW7vVGjRrRr144ePXrw5ptvsnDhwmLMZeEoV67cXf17/v7+ZGVlsXz5curXr2/23d69ezl37hxVq1Ytsr/v7e2Nt7d3kR1fRERERETubRqBISIiIiJWbdKkSXh4ePDSSy9ZfOft7c3rr79O27ZtSU5OBiAzM5OZM2fy4IMPUrt2bVq3bs3nn39OWlpabrrXX3+doUOH8u677xIaGkrnzp3JzMwkJCSECRMm0KtXL2rXrp07GiI2NpaXXnqJsLAw6tSpw9ChQzl8+PAt8/3333/z0EMPUa9ePWrVqsUDDzzAzJkzAYiOjqZt27YAvPHGG7nTRuWdQupOy/LII4+wYMECOnbsSK1atejevTsbNmy4o/P7wAMP8Ndff1lMI7Vs2TKaNm2Kl5eX2fbU1FS++OILOnToQK1atQgNDWXYsGEcOXIEgG+//Tb3vIWEhPDtt9/m/n/ec3vzFFJxcXHUr1/fbLqqtLQ0OnfuTJcuXczKLCIiIiIi/xs0AkNERERErFZWVhabNm2iTZs2uLi45LtP586dzT6/8847LFq0iOHDh9OgQQMOHz7Md999x5EjR/jll1+wsbEBYOfOnTg5OfHdd9+RnJyMnZ0dABMnTuTll1+mYsWKBAQEcOnSJQYMGICLiwujR4/GxcWFqVOnMmjQIObPn09wcLBFntatW8czzzzDww8/zMiRI0lNTWXWrFm8//771KpVi+rVqzNhwgSeffZZRowYQYcOHfIt252W5eDBg5w/f57nnnsOd3d3vvnmG0aOHMmGDRvw9PS85Tnu3LkzkydPZvfu3bmjMIxGIytWrOCll15iwYIFZvu/+uqr7Ny5k5deeoly5cpx9uxZvvnmG15++WWWLl1K3759iY+PZ/78+cyZMwc/P7/ctHnP7YEDB3K/8/f35/XXX+ftt99mwYIF9O7dmy+++ILIyEjmz5+Pk5PTLcshIiIiIiL//yiAISIiIiJW6/Lly6SlpREYGHhH+588eZL58+fz8ssv88QTTwDQrFkzfHx8ePXVV9mwYQOtWrUCwGAw8P7775u9YAdo0KABw4YNy/381VdfceXKFX777TcCAgIAaNmyJZ07d+abb75h/Pjx+eajZ8+eZlNe1atXj0aNGrFt2zbq1KlD9erVAdO0UTVq1PhPZbl+/ToLFy7MnYLK1dWVwYMHEx4eTseOHW95zu677z6CgoLMppHauXMnV65coV27dmYBjPT0dJKSknj77bdzA0dhYWEkJibyySefcOHCBfz8/HLPad26dW95bm8OYAD07duXv/76i3HjxuHl5cW0adMYNWoU1apVu2UZRERERETk/ydNISUiIiIiVitnVERmZuYd7b99+3YAunTpYra9S5cu2NnZsW3bttxtXl5eFsELIDewkGPr1q1Ur14dX19fDAYDBoMBW1tbWrZsyZYtW/LNx+OPP84nn3xCUlISBw8eZNmyZfz444+AKQhQ2GXx9vY2Wz8jp1wpKSl39Lc6d+5sNo3U0qVLad26Ne7u7mb7OTo6MmnSJDp37sy5c+cIDw9n9uzZrF279o7Klvfc5ueDDz7AaDTy7LPPEhYWxqOPPnpHZRARERERkf9/NAJDRERERKyWp6cnbm5uxMbGFrhPcnIyGRkZeHp6cvXqVQDKlCljto+9vT0lS5bk+vXrudvc3NzyPZ6rq6vZ5ytXrnD27Flq1qyZ7/75BQkuXbrEu+++y99//42NjQ3ly5enQYMGABZrTRTkn5Ql7/RaOVNLGY3GO/pbnTt35scff2T37t3UrVuXv/76i/feey/ffTdu3MhHH33EqVOncHNzo1q1arnn7HZly3tu8+Pr60uTJk1YuXIlrVu3zi2LiIiIiIj871EAQ0RERESsWvPmzdm2bRtpaWn5roMwd+5cPv30U+bPn5+73kNCQkLudE8AGRkZXL58mZIlS/7jv+/h4UFYWBivvvpqvt87OjpabHvllVc4deoUU6ZMoV69ejg6OpKSksLcuXPv+O8WRVkKUq1aNSpWrMiKFStITU0lLS2N1q1bW+wXGRnJM888Q7t27fjxxx8JCgrCxsaGmTNnsnHjxkLJy6ZNm1i5ciXVq1fn22+/pX379gQFBRXKsUVERERE5N6iKaRERERExKo9+uijXLlyha+//triu4SEBCZPnkzlypWpWbMmYWFhgGkKpJstXbqUzMzM3DUe/omwsDBOnz5NxYoVue+++3L/W7RoEfPnz8+d5upmu3btokOHDjRq1Cg3wLFhwwbgxqiI/NLl/buFXZZbyZlGatmyZbRv3z7fYNHBgwdJS0vjiSeeoFy5crmjI3KCFzkjMGxt/93PjOvXr/P222/TtGlTZsyYQYkSJXjzzTfveNSKiIiIiIj8/6IRGCIiIiJi1erWrcvzzz/P119/TUREBD169KBkyZKcOHGCSZMmkZaWlhvcqFy5Mj179mT8+PGkpKTQsGFDjhw5woQJE2jUqBEtWrT4x3//kUceYdGiRTzyyCM8+uijlCxZkmXLljF37lzeeOONfNPUrl2bxYsXU7NmTfz8/Ni9ezc//fQTNjY2uVNOeXh4AKY1NoKDg6lTp47ZMYqiLLfSuXNnvvvuOxYtWsT333+f7z41a9bE3t6ezz77jEcffZT09HQWLlzIunXrANN0XgAlSpQAYMmSJdSpU+eOR1B89NFHXL58mWnTpuHu7s7o0aN55plnmDFjBkOGDPnvhRQRERERkXuKAhgiIiIiYvVGjBhBjRo1mDlzJh999BFXr17F39+f1q1b89RTT+Hv75+774cffkj58uVZsGABP//8Mz4+Pjz88MM8/fTT/2pkgK+vL7Nnz+aLL77gvffeIy0tjQoVKvDhhx/Sp0+ffNN88sknjB07lrFjxwJQoUIFxowZw59//snOnTsBcHd3Z9iwYcyZM4f169ezefNmi+MUdllupXLlylStWpWEhASaNm2a7z7ly5fniy++YMKECYwYMQJPT0/q1q3L9OnTGTJkCDt37iQkJIQOHTqwaNEiXn/9dfr06VPgeho3W79+PQsXLmTUqFG5C5K3a9eODh068MUXX9CyZUvKly9fmEUWERERERErZ5Ol8dgiIiIiIiIiIiIiImJltAaGiIiIiIiIiIiIiIhYHQUwRERERERERERERETE6iiAISIiIiIiIiIiIiLyP+LHH39kyJAht9zn8uXLvPzyyzRs2JCwsDDGjBlDSkqK2T7Lly+nc+fO1K5dmx49erB169ZCz6sCGCIiIiIiIiIiIiIi/wNmzpzJ119/fdv9nnvuOc6ePcuUKVP45ptvWL9+Pe+9917u9+Hh4YwaNYoBAwbw+++/06RJE5544gkiIiIKNb9axFtERERERERERERE5P+xc+fO8e6777Jt2zb8/PwoXbo006dPz3ffPXv2MGDAAJYtW0ZwcDAAmzZt4vHHH2f9+vX4+vry2GOP4eHhYRYMGTBgAFWrVuX9998vtHxrBIaIiIiIiIiIiIiIyP9jhw4dwsHBgT///JM6dercct+dO3dSpkyZ3OAFQFhYGDY2NuzatQuj0cju3btp0qSJWbpGjRqxY8eOQs23faEeTURERERERERERERECl3btm1v+f3q1asL/K5Nmza0adPmjv7OuXPn8Pf3N9vm6OiIl5cXcXFxXLt2jeTkZPz8/Mz28fHxIT4+/o7+xp1SAENERERERERERERE7qqlDiHFnYV7T8vAu/JnUlJScHR0tNju5OREWloaqampABb75HxfmBTAEFUWeXTJOEbqqinFnQ2r4tz+ERK/e7W4s2FV3J8ZR/TIfsWdDasS+O1czh3ZVdzZsCq+1euTvHlBcWfDqrg2603yhrnFnQ2r4tqyH5EnjhR3NqxKuSrViR81uLizYTX8PpvBpQ+eLO5sWBXvt38k9a9fizsbVsW5wzCijx8s7mxYlcCqtUg4tK24s2FVytRsxOWPny7ubFiVkm98T/zRPcWdDaviV60eRyJiijsbVqV6cICukzz8qtXjwsGtxZ0Nq1G6VpPb7yRSCG41wqIwOTs7k56ebrE9LS0NV1dXnJycACz2SUtLw8XFpVDzojUwREREREREREREREQEAD8/P86fP2+2LT09nStXruDj44OXlxeurq4W+5w/fx5fX99CzYsCGCIiIiIiIiIiIiIiAkDDhg2Jj4/n7Nmzudu2b98OQP369bGxsSE0NDR3W45t27bRoEGDQs2LAhgiIiIiIiIiIiIiIv+jMjMzSUhIyF3bok6dOoSGhvLiiy+yf/9+wsPDeeedd+jRo0fuCIthw4axdOlSfv31VyIiIhg3bhxHjhxh6NChhZo3BTBERERERERERERERP5HxcXF0bx5c5YtWwaAjY0NEyZMIDAwkKFDh/LCCy/QsmVL3nvvvdw0zZs356OPPuK3336jZ8+ehIeHM3HiRIKDgws1b1rEW0RERERERERERETuKhsHm+LOwv+sTz75xOxzYGAgx44dM9tWqlQpxo8ff8vj9OjRgx49ehR29sxoBIaIiIiIiIiIiIiIiFgdBTBERERERERERERERMTqKIAhIiIiIiIiIiIiIiJWRwEMERERERERERERERGxOgpgiIiIiIiIiIiIiIiI1bEv7gyIiIiIiIiIiIiIyP8WW3ub4s6C3AM0AkNERERERERERERERKyOAhgiIiIiIiIiIiIiImJ1FMAQERERERERERERERGrowCGiIiIiIiIiIiIiIhYHQUwRERERERERERERETE6tgXdwZERERERERERERE5H+LjYP61svt6SoRERERERERERERERGrowCGiIiIiIiIiIiIiIhYHQUwRERERERERERERETE6iiAISIiIiIiIiIiIiIiVkcBDBERERERERERERERsTr2xZ0BEREREREREREREfnfYmtvU9xZkHuARmCIiIiIiIiIiIiIiIjVUQBDRERERERERERERESsjgIYIiIiIiIiIiIiIiJidRTAEBERERERERERERERq6MAhoiIiIiIiIiIiIiIWB374s6AiIiIiIiIiIiIiPxvsXGwKe4syD1AIzBERERERERERERERMTqKIAhIiIiIiIiIiIiIiJWRwEMERERERERERERERGxOgpgiIiIiIiIiIiIiIiI1VEAQ0RERERERERERERErI59cWfgf93ChQt54403OHbsWHFnpUg4B/jScu8SdvZ+hksbtt9y37L9u1D5jRG4Vgoi5UwMJz/7iZjpf5jt41m/FtU/fRXP+rUwXEsietpCjr8/gayMjCIsxX+35cgpJixeT0TcBbxLuDGgRX0ebhuGjY1NvvunZRj4cfkmlu04xOXEZKoG+PBU5xY0q1Epdx+jMYv5m/cwd+Nuoi9cwdvDjftrV2FE5xa4uzjdraL9a1vPnuf7rUeIuHSdUq5O9K1dkSH1ggs8J1FXEukxbbXF9mBvD+YObgOAMSuLGXsiWHjgDOcTUyhX0p2HQyvTuVpQkZalsDhVq41n1wHY+wdhvH6VxA0rSVyzON99XRu1wnvwMwUe69L070jevh4Ah6BKePUcgkO5YLJSk0natp5ry+ZCZmaRlKMwbd+zn19mzuV0ZDQlvTzp2bk9A7p3KfA6Afh7wxamzfud2HPn8fMpw6Be3ejUpqXZPstXr2f2oqXExJ2jlLcXndq0YnCf7tjb2RV1kf6zrQdPMGHhX5yKPY93CXf6t2nMkI7NCzwn6RkGpq/cxJItu4m/dBXfkp50alKHRzu3wsH+RjPgdNx5vp63gl1HT2NnZ0v9qhV5qX9nAn2871bR/rWth04y4fe/ORV3Hm8PN/rf34ghHZrd+pz8tZkl4Xuzz0kJOjWqw6OdWuBgb0/shct0eePLAv9et6b1GDOsV1EVp1Ds3L2HX6fP5GxkJCW9vOjWpTN9ena/5b2zZv0GZs2ZR1z8OXx9fBjQtxcd2rYpcP8ffp7EwkWLWbXkjyIoQeFzrFoLjwf6Ye8bQGbiVZK3/E3y+mW3TONUrS5u7Xvi4B+EMSmR1AM7SFw+l6yMNOxKlqbMm18XmDZ5xwauzf2pkEtReOwrVce1dQ/sypTFmHSNtJ3rSA1fdcs0DpVr4dKiK3Y+AWSlJJF+dDfJa/+AjHTLnR2d8HziHVI2LCF9/9aiKUQh23LkNBOWZLfXPNwY0DKUh9vcrr22mWU7b26vNadZdfP22vS125m/eS/nrlynfJmSPNKuMV0a1rxbxfpPdu7ey+TpszgTGUVJLy+6d3mAvj273aYu2ciMOfOJy34OD+jTk45t7zfbp/8jw7lw8ZJF2oUzfsXTs0Shl6Mwbd97gJ9mzud0VAzeXiXo+UA7BnbvdMtzkuP4qTMMf20Ms78bh79PGbPv1mzZzqzfl3I2Jg4PN1ca1K7JU0P64e3lWVRFKTT2Favj0qobdqX9TfXJrg2kbf+7wP1tS5bB86kxFtszE2K59ssH2Z9scApri1Noc2w9SmK8cpG03etJ27W+iEpRuHbs2cfPM+ZwJrcN24H+Pbrepg27melzfyf23DlTG7Z3dx5o08psn43hO5g2dyFRMbF4e3nR4f4WDOrdAweHe+PVTkpKCtMm/8TWLRtITUmhRq3aPPbE0wQElrtluiuXLzH55x/Ys2sHmZmZ1G8YxrDhT+PtXSp3n1UrlvLd+C8s0nbu2p0nnn6+0MtSGHSdWNq29yA/zVqQW8f2eqAtA7s9cId17Fkef/195kz4JN86duYfy2+qY2swYnDfe6KO/f/O1v72/7Yi1l97/T/XuXNnWrRoUdzZKBLOgX6ELZ2Eg9ftf4T49exA3Wmfc/rbaSSs3Ihf93bUnfwpxrR04uaaXi64VAyk0YpfuRy+l90DX8C9WjAhY1/EwduLg8+8W9TF+df2n45h5MR5dAytzjNdW7InIpqvFq3BYDTyWIcm+aZ5b9YyNhw4yXPdWlHex5s/tx1g5MS5/PLcIEIrm17G//p3ON8tWc/Qto1pFFKes+cv8d2SDZyMTWDiswPu6AFfXA7EXeKFxeF0qBLAiMbV2Bt3ifGbDpFpNDKsQdV80xxLuAbADz2b4mJ/4yWzs8ON/58YfpSpu07wVONq1PQtyaYz5xj9125sbWx4ICSwaAv1HzlWqELpJ18nefcWri6dg1Olanh2H4SNnS3XVy2y2D/10G7Of/GWxfaSA5/ExtmV1MO7AbAr5UOZZ0eTfuY4lyZ/hb1fAJ5dB2Dr6s6VOT8Xebn+i0PHTvD6h5/RplkTHnuoL/uPHGPi1N/IzDQyuHe3fNOs27KdsV99R5+uD9AotDYbt+3k4/ETcXSwp22LpgDMW7ycbydNp3XTMEYMfYgr164xedZ8Tp4+ywevv3g3i/iP7Y+I5LlvptEx7D6e7tmevSfO8PW8FRgyjTzapVW+acb9toSlW/Yw/ME21KwYwOEzMfz05xriLlzhvUd7AxB/6QrDPvqR8n5l+PjJ/qSmZ/DdwlU8/eVk5r7/PM6ODnezmP/I/ogonvt2Bh0b1uLpHm3Ze+IsXy/4C4PRyKOdWuabZtzsZSwN38vwrq2pWSH7nCxZR9zFK7z3SE9Ke3ow9fUnLNLNXbeNlTsO0qN5/aIu1n9y+OgxRr//Ia1aNOORwQ9x8PARfv51KpmZmQzo2zvfNBs3b+GTz7+iZ7euNAgNZUv4Nj77ajwO9g7c38qynbL/4CF+/3NJURel0DiUC6bksFdI3RfO9ZXzcaxQFY/OA7CxtSNpbf6BYqfq9fB65EVSdm0icdkc7H0DcO/UD1t3D67O+p7Ma1e4+K1l+8O1aXuc6zQmZfu6Ii7Vv2cXUBGP/s+SfngnKev+xL5cZVza9gJbW1K3rMw3jUOV2rj3HUH6gXCS1/6OXWl/XO/vgY2rB0l/TDLb18bZFfd+T2PnVfpuFKdQ7D8dw8gfs9trXVqy51Q0Xy1aiyHzVu215Ww4eJLnHsxur20/wMiJ8/hl5EO57bXvl23k17/DebpzC2qV92fjoQjenLYYWxsbOjWocTeL+I8dPnqct8Z+TOvmTXlk8EAOHj7CT1Omk5mZycC++QdxN2zeykdffEOvB7vQsH5dNodvZ9zXE3BwcKBNy+YAXL16jQsXL/HksIepVaO6WXp3d7ciL9d/cfDYSV796EvaNmvE4wN7s//ocX6YPodMYyZDej14y7SnzkYz6sMvycynA8nfm8J578vv6d7hfp4Y1IeLl6/yy28LeO7dT5j02RicHB2Lqkj/mV3ZCqa64cguUjYsxj4wGJc2PcDWlrTwv/JP42Nql1+f9TVZNwdAb+qU5tK2F85hbUnbvYH04/uw9SqNS8sHsfUsRcqahUVZpP/s0LETvP7BOO5v3oTHBvXjwOFjTJw6i8xMI4P6dM83zfot2/jgywn06foAYaFD2LhtBx9/8wMO9g60bWlqw+7Yu5/Rn3zJ/c2b8MTDAzkTGc1P03/jyrXrvPDEsLtZxH/ty3EfcPzoER5+9AlcXV2ZM2sab7/+Mt/+MBl3D49802RmZvL+O6+TnJzMU8++gMGQyfQpP/PeW6/y5bc/Yp/dIef0qZMEBAbx3EuvmaX3KmmdnXF0nVg6ePwkr378FW2bhjF8YE/2HznB99PnkpmZyZBeXW+Z9lRkNK989FWBdey7X02ke4fWPPFQby5ducrPvy1k5LufMvmz96y6jhUREwUwipmzszPOzs7FnY3CZWND4JAeVP/0NbjDd+ghY18ibv4KjrzyMQAXVm3CoaQnIe89nxvACB41HMP1JHb2epqsjAwSVmwgMyWVWt+M5uQnE0mNiiuqEv0n3y/dSLVAXz4aanrh2qxGMBmZRib9tYVBrRtYvBiMuXiFZTsO8UbfDvRvaXpJFla1AntPxTBn4y5CKwdhNGbx66pw+jSrx/PdWwPQuFpFPN1ceO3XRRyOjKdmef+7Ws5/YuK2o4SU8WRsR1P5mlbwxWA08uuOEwysG4yzvWUv+OMXruLr7kxYUBmL7wBSMgzM2hvBwLrBuUGQsKAyHD1/hdn7Tll9AKNE575kRJ/m8vQJAKQd2YeNnT0e7Xtyfd0ysx90AMbE66QnXjfb5t6qE/Z+gSR8+TbG7O882nXHmJbChZ/GmUZcHN5DVnoaXn0f4/pfC8m8fPHuFPBfmPzbfKpUrMDbLz4NQKPQOhgMmcyYv4i+XR/AycmyofnzjDm0btqIkY8NASCsXh2uXU/il1nzaNuiKZmZRqbO/Z0Gde7j/VdfyE1XtVJFHnn+NXbsPUDDuvfdlfL9GxP/WE21cv58MLwfAM3uq4oh08jkpet4qH1Ti/rkSmIyC9fv4Pk+HRma/TK/UY3KAIyfv5Ln+nTEu4Q7E/9YjbuLMxNfeRSX7PNatnRJXhg/ncNnogmtWvEulvKfmfjnGtM5eawPAM1qVcGQmcnkZRt4qG2T/M/Jxp0837sDQzuaXqY1qh4MwPiFq3iudwe8PdyoHWw+cuvw2RhW7jjIyJ7tqFel/F0o2b83beZvVK5UkddfNgXkGtYPxWAw8Nvc+fTs1hUnJ8tRepOnzaBl86aMGP5Ydpp6XE+8zpQZsywCGCkpKXz+9XhKl/Im4YL11iE3c+/Qm4zYM1ydPRGA9GP7wc4OtzbdSNq4AgyWIzk9ug0mdf/23FEU6RGHwdYW1+YdwMERMtLJiIwwS2MfUAHnOo25vmIuGWeOF33B/iXXlg+SGR9F0qJfAcg4dQhs7XBp1onU7WvyPR+u7fuSfmQ3SYunAmA4cwxsbHEOawP2DrlpHKrUxrVjf2wc76327ffLNpnaaw+bXkI3q1GJjMxMJq3aWnB7bech3ujbnv4tQwEIq1qevaeimbNxN6GVg0hJz2DG2h0Mat0gNwjSKKQCR6LimbV+p9UHMKbOmk3lShV542VTz+Ww+vUwZGYya95CenXrkm9dMmn6LFo1a8LTw00vyRqG1uP69USmzPgtN4Bx8vRpAJo3aURZf7+7VJrCMXnOQqpULM/o558CoHFobdPL1AWL6delY75tk4wMA/OXrWLS7AU4OuTfIWD6gsU0Ca3DqKduvFwsF+DPk6+PYcvOvdzfNKxoClQIXFp0JfNcFMk5dcOpw9jY2uHStCNpO9fmW5/Y+QZivHYZw9n860kbFzecGrQmbe8mklfOzt2edf0ybr2fIm3vZoyXzhVNgQrBr7PmZbdhnwWgUWhdDJkGZsz/gz4Pdsq/DTt9Nq2bNuLZx4cCEBZah+vXE5k0a27ui+nlq9fhW6YUb7/4LHZ2tjSsW5vLV64yd9FSnn10SO6LfGt19MghdmzbyugxH1O/YSMAatSqzZPDHmL50kX0HTA433SbN67jVMRJvp04maByFQCoFBzMcyMeY/PGdbS6vx0Ap09FULlKCCHVrLtuzaHrxNKk2X9QtWJ53nn+SQAa16uNITOTaQuX0K9Lh4Lr2OWr+GX27wXWsdMWLKFJaG1effKR3G3lyvrxxBtj2bJrH/c3aVgk5RGRwqM1MApRSEgIM2fOpF+/ftx33308+OCDrF59Y8qbb7/9lsGDB/Piiy8SGhrK2LFjWbhwISEhIbn7JCUlMXbsWJo3b069evUYPHgwBw8ezP1+9+7dDBo0iNq1a9O6dWvGjBlDYmLiXS3n7ZSoHUKt78YQPeMP9j7y6m33dykfgHtIReIXmU9bELdwJW5VKuBa2fSiqEz75pxfvt5suqj4BSuwsbOjTIfmhVuIQpKeYWDnyUja1Akx296+XghJqensiYi2SFOmhDuzRj1Cl7AbUwvY2tpgZ2tDWoapN0Fiahpdw2rSqYH59AMVfU1DaKMuXC7sohSadEMmu6Ivcn+weYClbeWyJGUY2Bub/8uwYwlXqVq64OGdjnZ2/Nq3BYPrBZttt7e1Jd1g/O8ZL0r29jhVrknKfvNp1pL3hmPr4opTpWq3PYSthycluvQnadNfpJ89mbvduXodUg/tMZsuKmVvODa2tjhXr1toRShs6RkZ7D14hBaNzRuTrZuGkZySwv4jltPuxZ1LICo2jpaNG1ikiYk7R1RsHJevXuXa9USaNqxntk+l8kF4lvBg6849hV+YQpKeYWDnsVPcH2p+37drUIuk1DT2njhjkSYpJZU+rcNoVde8h2sFf1MgMCbhMllZWazedYjuLernBi8AalYMZNVXb1h18CI9w8DO46e5v555+drVr2k6JyfPWqRJSkmjT6uGtMpTL984J5ZTmmRlZfHJzCVU8i/DoPZNC7EEhS89I4P9Bw7SrEljs+0tmzUlOSWFg4ePWKSJP3eO6JhYmjU2T9OiWVNi4+KIjok12/7T5KmULFmSDu3aFn4BioKdPY7B1Uk7uMtsc+r+Hdg6u+BYMcQiiX3Z8tiX9iV5s3nv4eRNK7nwycv5T5kElOj5CIbzMSRvWF54+S9sdvbYl69K+jHz+i79yC5snFywD6psmcQ3CDtvH9J2rjHbnrZjDVe/ezv3BaWNkwvufUdgiDzB9d/GF10ZCllue622+SjQ9nWrmdprpwpqrw01mwrK1F6zJc1gAMDR3o5pLw3h4TbmL5/t7e1y97FW6RkZ7DtwiOaNzfPesmkTklNSOHD4qEWa+HPnTXVJk0bmaZo1ISYunuhYU10SceoMri4u+Pv5Fl0BikB6RgZ7Dh6lZSPzUXj3N2lIckoq+4/k/zJ+6+59/Dr3d4b07saIIf0tvjcajTSoXZNuHVqbbS8fYGorx8SfL5wCFAU7e+zLVSH92D6zzenH9pjqk8Dg/JP5BmI4Z3lf5bD19sXG1o6MEwfMtmecPY6NrS0Owdb7gtrUhj1Mizz3TqumjbPbsJb3Tty580TFxlmmadY4+94xddRLT8/A2ckZO7sbr3FKeLiTYTCQnJJaBKUpXHt27cDZ2Zm6oTfa6p6eXtS8rw67dmwrON3unQQEBuUGLwCCylUgMKhcbrqsrCzOnD5FxWDLZ5g10nViKT0jgz2HjtIyLNRs+/1NGpCcksq+owXXsZPnLuLhXl0ZMaSfxfdGo5GGdWrSvX1rs+33RB0rIrkUwChkn3/+Od27d2fRokW0atWKZ599lt27d+d+v2PHDkqXLs2iRYsYMmSIRfoXXniBDRs28PHHH/PHH38QFBTEo48+ytWrVzl69CjDhg2jRYsW/Pnnn3z++eccOnSIRx99lKysrLtZzFtKiYxjXbX2HBn1CZnJt39AulczNWyT8rx8S44wvXhyr1oRW2cnXCsEknTitNk+6Rcuk3H1Ou5W+oIt+uIVMgyZlM8zh3y5MiUBOHPe8mW9o4M9Ncv74+HijNGYRfzla4ybv4roC1fo29z00rWEqzOv9+1AvWDzUQVr95se6sH++Y9SsAYx15LJMBop7+Vutj3I0zRlwNnL+QfkjidcJTnDwLC5G2jy3WI6/LKC8ZsPkZFpCk7Y2dpQpbQnpd2cycrK4mJyKr/uPM72qAT61K5QpGX6r+xL+WLj4EDGefNRRIaEeNP3vmVve4wSnftBVhZXl9zopYaDA/alfDCcN3/5aEy8jjElGXuf2x+3uMTGnyfDYCCorHnPzEB/08uOyDwvVAHORseY9ilrHhwLyO7dGRUTh7ubK3Z2dsSfv2C2z/XERBITk4g9Z70N2OiES6b6xK+U2fYgH9PnM/EXLNIElPHmzSHdc1/O51i3+zD2dnaU9ytN7IXLJKak4l+qJB9PX0SrkWNp9MQ7vDB+OucuXS26AhWC6AvZ58T3n5yTkrw56EEq+OU5J3uOmM6Jr+WUNyt3HODA6WhGDeiMna11N53i4uPJMBgICDC/v8tm3xdR2ffJzSKjTC+RAvOkCfA3pYmOuZFm1569/L1mLaNeGImtFU9VeDO7Uj7Y2DtgSDCvYzMvZtexZSxHLDqUNXWeyDJk4DXsZXw/mozPmIl4dBsMdvn3XHSu0xjH8pW5vmgGWFG7LC9br9LY2DuQedG8vjNeTgDArpTlS2U7P9OIpCyDAff+z1DytW/xevlLXNv3MzsfWRnpXJ34Hkl/TiEr2bo62NzKbdtr5ywDm44O9tQsl6e9tuBvs/aana0tVQN8KF3C3dQ2uZbEpL+2su3YGfo3D7U4pjWJiz9HhsFgWS9kP5dvrhdynM2pS8rmqX9ynsPRpmf3ydNn8PBwZ8zHn9Gt/xC69B3E2E+/4OIl6+2AAxB7ztQ2KZenbRKQ0zaJzX80ePXKFZk/8UuG9umGXT5rbdna2jJy2EO0CDMPjGzcbgq6ViwXUBjZLxI59YnxUt76xPQ5v/oEwN4nEBtHJzyGvILXqG/wHPkxLq27Q/YzNivFVH/Yepo/3+28yuT+XWuV24YNMH+25LRho27Rhs2bJiBPu7dn5w5Ex8Ux+/fFXE9M4tCxE8xfvJzG9etRwsP8t5U1io6KxNevrMV94O8fQExMVMHpIs9SNsByNL1/2QBiok3p4uNiSUlJ5uTxYzw9/GF6P9iep4c/zNrV+U9jVtx0nViKPZeQ7++/AL+c8sXnm6565Uos+OFzUx2bTzvd1taWkY8MpEWewMiG7ab3dBWDrLeOFZEbrHfs2D2qV69eDBo0CIBXXnmF7du3M2PGDEJDb1SWzz33HB7Z8zveHNw4deoUGzZsYNKkSTRvbhpR8N5771GiRAkuX77MpEmTaNasGU89ZRqyXKFCBb744gvatWvH9u3badTIvLdTccm4fJWMy3f+0sve0/QQNVwz/6FruJ5k+r6EOw6eHvnuk7OffQnrfBAnpqQB4O5sPtTRNXvIfVJq/j04c/y6aivjF5sWquvdtC6Nq1UocN/9Z2KYvCqcVrUqU6Ws9QYwEtNMvTTdHM2rH9fsz0nplj0SL6ekcT4plcysLJ5rVgN/D1e2RycwdedJziWm8mFH8x98K4/H8NZK04++5hV8rX4Rb1sXVwCyUlPMtmelmT7bOrveOr17CdzCWnF9zWKyUpJvbM9OZ8xz3JxtNs4u/ynfRSkp2VQON1fzPLq4mD4nJ1uWqaA0ri7O2d+n4OzkRJvmjfl92V9ULBdIy8YNuHz1GuN/mYadnR2pqWmFXpbCkpjdY8otz7SDrtn1S1LKneV9za5DLN6yh/5tGlPCzYXIc6aX/N/MW0GtSoF88uQALl1P5Nv5fzF83C/MGTPSbGSGNUlMNpX5P5+T3YdZvHUv/e9vRAk3y/ti2srN1K1cjgYh1hksv1lSUs59YF5vuObcOzfVEXnTuOZJc+N+S87eL4kvxk/g4UEDCQy4d37s2WbXdTl1ao6sNNM9lV9daOtuaneUHPoCKXu2kLxhGQ5BlXDv0Btb9xJcnfW9RRq31l1IP32M9FOWo1ysSU55s9ILOB9O+ZwPV1M7y73vU6Qf3EFq+Crsy1bApeWD2LjdtAaGMdOqp3UpyI32mvmUSK7ZdV/SbZ4Nv/4dflN7rQ6NQypY7LNi1xFen/onAC1qBlv9It436oW8z1TT56R/9Bw2f3ZHnDrNhYuX6NKxPb26dyUyKpopM+fw4huj+fGbz3Gx0ul1E5NM+c8pT46b2xn5KVPqn8+/HxN/ju+mzqZKxXI0Ca3zj9PfLTZOprJb1iemeya/qeRsXNywLVESbG1JWfsHxquXsK8QgnPj9tiUKEnyn1MwXjpPRtRJnFt0wXj9Mhlnj2HnVRrXToPIMmRg42A5fZm1yLkP8l4nLre6d3Kurdvcb6G1azGwZzd+mDKTH6bMBKBKpQqMfnlkIZag6CQnJ1m0NcB0blKSLdsnN6fLL4Dh4uKam+70KdMI9HPxcQx7fAT29vasXf0X33zxCRkZ6XR44NbrJ9xtuk4sJeY8QwqqY1MKqmNL/uO/FR1/nu+mzcmuY2v/4/QicvcpgFHI8gYR6tWrx+bNm3M/lypVKjd4kdfx46be83Xr1s3d5uTkxBtvvAHA4cOHOXv2LPXq1bNIGxERYTUBjH/K5ja9WbOMxtzeOAXvY509HY236YF5u4W2W95XhbrBgeyJiObH5ZtIzcjIXUvjZnsiohk5cR4BpTx5f3CX/5Tnona7yZzyOyUuDvZ816MJ5bzcKVvC1OitH1gaRztbvt96lMcbVqWi9437qqZvSX7u3YwTF67xQ/hRRv6xlZ96N7Pehc1vl6+sW581t6ZtwdaWxPXL8hz3Nj3FrbiH8G3vnXzqBONt6gFbW9N5fvmpx3Cwd2Dcdz/z6YSfcHJ0ZFDvbiSnpOJspS/q4b/XJwCrdx3kzR/nUrdKeV7o9wAAGQbT9GKlPN354plB2Gaf2yCfUgz9cCLLtu6ld2vrnHv79tfJHZyT3Yd48+f51K1cjhf6dLD4fu/JSI5ExvLlMw/963zeTbcbkWmbT72QdZs6xiY7zfc/T6JM6dL07mH5HLJq/6YuzB5VkHpwJ4nL5gCQHnEEbGzx6NyfxL8WknnhRk9Ah/JVcAisyOUpXxZatovKbeuK/K6H7PORcXRv7uK5hrPHwcYG1za9SNmw2KIH9r3kP7fXalWmbqUAU3ttxWZSMwy5a2nkqFXen8nPP8TxmAS+W7qBp3+Yy6TnHrLatsnt6oX8RmDdrj2eUye/NHIEdrZ2VKtqmuqlds0aVChXjudfe4tVa9bRrfMD/zLXRet29eudPHPuxNnoWF58fxx2trZ8MGpk7nPZKt2mfs3vnGVlpHP9t/EYL5/HeNU0uskQdQIyDbi06kbq5hUYL8aTtPBnXDs9hHtv01z4xpRkUtb+jkuLLuYLf1uZLOPt7p182rC3vd9Mab78YRLLVq/l4X49Ca1di/jzCUyZPZ9RYz7mq7Fv45zPujTFxWg0Wvz7G29xbm5VF96qbsm572rUqs1b737IfXXq4pwdqK9XvyFXr1zht+lTaN+xi1XVt7pOLN3uGVJYI3/PRsfy4tjPTXXsK89adx37P8LGwXruTbFeCmAUsrwLImVmZppViLdasPt2iykZjUYefPDB3BEYN/P2/uc9e6yF4appsWF7Dzez7TmjKgxXE3NHXuTdJ2e/nGNYG3eX7JEWaeaN7JyefB4ut2485IykqF+5HAajkR+WbmTkg63w976xFsSKXYd5Z8ZSyvt48/3T/fFyv3Vv/eLmnjPSIsN8pEXOyAt3R8uFt5zt7Whczsdie/MKfny/9SjHL1w1C2AEebkR5OVGaEBp3BzteXfVHvbEXiQ0wDqHmxuze0Tn9GLLkdNL1phPj+mbudRtROrRfbkLd+fISjWls82vd7Gzi9loDWvjnt07K+88rTm9N91dLcvk7pZ/mpzeSDk90l1dnHl95BM89/jDnEu4gG+Z0ri6OLNk1drcIdjWyCO791Fynp7AOaMM3F1vXZ/M+GsTX81ZToNqFfny2SE4ZS9y55rd47jZfVXNnle1g8vh7uLM0UjLIezWIqcOtTgn2Z/dXW7di3fGqi18NW8FDUIq8uUzD+Wek5v9vesQJVxdaF6raj5HsD4513neUUq5PaPdLJ8Rbm6mZ2tKnp5tyTelCd++g3UbNvHdV5+TlZVFZmZm7kvfzMxMbGxsrPYHYE5dmHdkQc5nY6plXZgzGiHtiPk6EWnH9uHRuT8OAeXNAhjOtcMwJieSdsR8HnhrlDPaL2/P6Nye1PmM2ss5H+kn95ttz4g4BG16Ye9XjvR7OIBxo72Wf13yj9tryzYxsmtLs/ZaUJmSBJUpSf3K5XB3duTtGUvZHRFF/crlCrMohSanLkmxeKbeqi7JeQ7nrX/Mn8M1q1muO1OrRjXc3FyJOG25dpG1yBlZUnDb5L+3wXcfPMJb48bj4uzE+PffyJ06xVrljGwrsD5Jy6fHtCEDwxnL+f0zTh7EpVU37HwCMF6MJyv5OkkLfiTZyQUbd0+MVy6A0YjrAwPJSk0q/MIUkoLug5zrxC2fkZ7ud5Am4eIlFv+1msF9evDYoBtrqVSvUpmhI19h2d9r6dXFeoJ/c2ZNY86saWbbmjZvydUrllPFJack4+pW8IwKrm5upOTzu8U0osPUhvHyKknDRk0s9qkf1oh9e3dx5fJlSlrROxNdJ5Zy27CpRVvHvvnZBFydnfh2zGsE+lm+YxAR62SdvzTvYQcOmC80tmfPHmrWvLMh4sHBwRbHMBgMtGnThhUrVlClShVOnjxJ+fLlc/8zGAx8/PHHxMXlP+fqvSDxuGldC9fg8mbb3bI/Jx6NIDMpmZToeIt9HMt441DCncSjEXcns/9QUOmS2NnaEJVg3lCLzP5cMc+87QCxl66ycMs+0vK84K8eaPoBk3D1xjRaU//exutTFlG7YgCTXxhEGU/rnErrZoGebtjZ2BB9xfyHR1T255sDETkirySy4MAZrqdlmG1Py+45XtLFicvJaSw5EsmlZPOXD9V8vABISLLeBcsMF86RlZmJfRnz+T5zPhviLeeZzmHrWRLHoEqk7Nlq8V1WehqGyxexL21+XFv3Eti6uJJxi8UTi1tZPx/sbG2JiTOf6zQ6+3P5QMvpa3Lmg82bJibunFmaLTt2c+DIMVxdnKlYLhBXF2cuX7lKwsVLVK1UobCLUmgCfbyxs7UlKs/aOTmfK/nn3wDPysri05mL+WL2MjqE3ceEFx/B7aaXcUE+3tjY2JCekWmRNtNoxCmfoKK1yD0neRbejjpv+lypgPWAsrKy+PS3pXwxdzkdGtZiwvNDcHPO/wXlxv3HuL9edRzsLectt0Zl/f2wtbUlNk+7IDZ7bvZygZZTMORMBxWTN03253JBgWzYvIX09HSGP/McD3TvzQPdezNz9lwAHujem8+/+bbQy1JYDBfPk5WZaTEXu31p0+fMc5ZBOkN2cMLGLs/1b2sKwmdlmD+PnKrXJfXgLjBa3kfWJvNyAlnGTOxKmtcZtt6mzzlrg9wsZ3SF5fkw3RfW3Bv6Ttxor10x257bXvMroL22NZ/2WpDpmZtwNZFL15NZvO0AF6+bt3mqZe9z/qr1rhOSU5dY1gum66NckGVdEpS9XkZsnudwTl1SPiiQxKQklq9azemzkWb7GI1GDBkGvDxLFFoZCltATtsk3nyatOj4nHbGf1tbbNXGrbz0/jh8Snnz48fv/Ofj3Q3G7PrEtqT58zbnszGf+sS2ZBkc6za3nK4uuxNBzvo5DtXrY1cmgKy0FNNxMg3Y+QZiY2tLZnzB6yUUt7J+vtltWPPrJOaWbdiy2fvkubZuSnMu4QJZWVnUqm7eoaJCuUA8PTw4HWld7fqOnbry+dc/mP0XEBDEufh4i5EYcbExBAYVHMwNCAwiLtby91BcbCyB5UzvBw4d3M+av1da7JOelo6trS3uBcyCUVx0nVgK8CuDna0t0XnLl73IdvlAyzXL/olVG8N5cezn+HiX5MePRt8TdayI3KAARiGbOnUqixcv5vTp03z66accO3aMoUOH3lHaihUr0qFDB8aMGUN4eDinT59m9OjRpKWlERYWxqOPPsrhw4cZM2YMERER7Nmzh5dffpkzZ85QoUKFoi1YEUqOiCT5VBT+vTqabffr2YHE46dJOWtqrFz4ezM+nVtje9PLNL9eHTEaDFxYG35X83ynnBzsCa1cjtV7j5kNof177zE8XJyoVcHyoRl36SpjZi1jzb5jZtu3Hj2Ng70dFXxNPUfmbdrDl3+soUO96vzwdP/c3tnWzsnejnoBpVgTEWd2TtZExOLuaE9NXy+LNBeSUvlo7T5WnTBvuP51IgY3R3uq+3iRmpnJu6v28Mch85574WdNDZ4qpaz3BzGGDNIijuBSx3waONc6jTEmJ5F+9mSBSR0rVAEg7dSxfL9PO7of51qhcNMIL5e6jcjKzCTt+MFCyHzRcHJ0pHbNamwI32F2nazfugN3V1eqVw22SBPo74e/bxnWbdlutn391u0EljV9B7Bo5Wq+z54PNse8xcuxtbWlaQPrXVTVycGB0KoVWL37kNk5Wb3rEO4uztSsaPkyCeDbBX8xe/VWBndozkdP9Mchz2g/V2cnQqtWYM3uQ6Tf9CJu2+GTpKSlE1qlQpGUpzA4OTgQWqU8q3cfzv+cVMh/nYZvf1/F7DXhDG7flI8e72txTnJcTUom8vxF6gRbZw/p/Dg6OlK7Vk02bQk3Oycbt2zFzc2VkKqWI0kCyvrj5+vLxs1bzLZv3LKVgLJl8fP15eGHBjDhq8/N/uvcsT0AE776nIcfGlC0BfsvDBmknz6K830NzDY73dcQY0oS6VGWnSAyTh3FmJaKcz3z3pzONUPJyjSQfvZE7jYbFzfsy/iTceZ40eS/sGUaMESewLGa+ZSkjtVCMaYmY4g5bZEkI/IEWempONZsaJ6mah2yMjMxxJwq0iwXNScHe0KDg1i9L097bV92e618Qe215azZZ/7vfqO9Voq0jAzenrGUP7but9gHoGpZ6+35aapLarBxyzazc7JhSzhubq5Uq1LFIk1AWX/8fX3YsNm8U8XGLeHZ9YwPjg4OfDvxF36bt9Bsny3bdpCWnk7d+2oVTYEKgZOjI3VqhLA+fKfZOVm3dSfurq7UqFLpXx976659fPDNj9QKqcL3H779r9bNKBaZBgyRJ3EMqWu22TGknqk+iT1jkcTW3RO3Tg/hUM28zeVYvT5ZqSlkxpuCWy7NOuHc1HxqR6ewNhhTk8mItN761tSGrc6G8O152rDbcHdzpXr21Gk3M7VhfVi/2fw37YYt27LbsD4E+vthZ2vL/sPmo1cio2O5ev06ZX2ta7SOd6nSVK4aYvZf3dAGpKQks2fXjtz9rl69wuGD+6kb2qDAY9UNbUB0VCRRkWdyt0VFniE66ix165nSHdy/l/Fffpq7qDeYAqNbNq+nWvWaOOQzyrY46TqxlFvHbttlXseG78Td1eU/1bFbdu1j7PifuC+kMj98+Na/WjdDRIqXppAqZAMGDGDKlCkcP36catWqMWnSJKpVq3bH6T/66CPGjRvH888/T3p6OnXq1GHSpEl4e3vj7e3NL7/8wjfffEPPnj1xdXWlSZMmvPbaazg6Wu+87XnZe7jhXqMyyRGRpF8w9Ww78eF31Jn0CRmXrnBu8Rp8u7WlbL/O7H7ohdx0EZ//Qtn+XWi45BdOf/0rblUrEDL2JaJ+mUtqlPWOQBnesSlPTviNUZP/oEfj2uw9Hc3U1eE83+1+XBwdSExJ41T8BQJLl8Tbw5V6lYJoHFKBT+atIjE1naDSXmw4eJI5G3YzoksLSri6cOFaIp8v+JuypTwZ0Ko+R6LMezflHMtaPdawKk//voXXlu+ke41y7Iu7xLRdJxnZrAYuDvYkpmVw+tJ1Aj3dKOnqRN2ypQgLKs3XGw+RZsikkrcHm86cY/beU7zUohYeTg54ODnQvUY5ftl+DHs7W6qV8WRPzEWm7DpB9xrlqGTNAQzg+soFlH5mNN6Pvkhy+FocK4bg3vZBrv45i6yMdGycXXDwC8RwId5sqiiHsuXIykgn80L+i6ZeX70I1/rNKD3iTRLXLMHexx/PBweStOVvMi9fzDeNtXi4b09eevcj3v3sGzq3bc3Bo8eZ/ccSnhwyAGcnJ5KSkzkTFUOAn29uj81H+vXi429/xNPDnWZh9dm0fSdrN4fz7is3Fq3r3aUjr4z5hG8nTadZWCi79h9ixoI/eajXg1Y9hRTA4w/ez1OfT+bVH36je/P67DsZydQVG3muT0dcnBxJTEnlVOx5Ast4413CnWORsUxZvoGaFQNp37AWB06Z91isVNYHdxdnRvbuyPBxPzPy6ykM6diCS9cS+Wb+Cu6rFESretWLqbR35vEurXnqqym8+uMcujcLZV9EJFP/2sxzvdrfdE4SCPTxxtvDjWORcUxZsYmaFQJoX78WB06Z90SrVLZM7tRTJ6LP5W67lzzUvy+vvf0uYz/5jAfat+XwkaPMW/gHjw0dgrOz6d45GxlFWX8/vDxNU9wMHtiPz7/+lhIeHjRpFMaW8O2s37iZt159BQA/X1/88vzo3bbd9AIipIrlj2xrk/T3Iko+8Tpeg0eSvGM9jhWq4taqC4nL50BGOjZOLtj7ljWN1ki6TlZ6Gol/LaDEg4MwpiSRdmAnDhWq4Na6K8mbVpKVdKMetvcPAsBwvuDRctYmZdMyPAa9gHuvJ0jbtxn7wGCcm7QnZc3vYMgAR2fsyvibelcnJ0JGGinrF+Pavi9ZqcmkH92DfWAlnJt2JHX76twe0/ey4R2b8uR3s29qr8UwdfU2nu/W+tbttfmrSExNI6h0STYcym6vdW5OCVdnSrg606NxbX5csdnUNgn0ZXdEFJNXhdOzSW2C/a1zasscg/v1YdToMbz/6Rc80K4Nh48eY+7CRTw+dPBNdUk0Zf19b9QlA/ry2TffZdclDdmybTvrNm3h7VdfAkyBkQF9ejJ11hy8vDxp1CCU02cimfbbXJo2aki9OvcVZ5Fva2jf7rzw3qeM/nwCXdq25ODRE/y2aBlPDe6X3TZJ4XRUDAF+PpS8w9EkaenpfPL9JFxcnBnauxuno8zrEp9S3viUtt6ARuqW5bgPfA63Ho+Ttn8L9oGVcGrcjpS1i27UJ6X9MF6+QFZKIoaoCDJOH8W1bS9sHBzIvBCHQ3AtnBq0JmX1gtxpp1J3rsX1gYE4J8RhiD6FY436ONUMI2nFb5BmvSOrAR7u15OX3vmQd8d9Ted2rTl09Dizf1/CEw8PLLANO7R/Lz4ZP5ESEyeZ2rDbctqwzwHg5VmCPt06Mfv3JQA0qFObcwkJTJm9AD+f0nTt0KbYynunat5Xh1q16/LVZx8x9NEn8ChRgtkzp+Lm5k6nzjfW14qKPENGRgaVgk2B0uYtWzN/zkzeH/06Q4YNB2D6rz9TvkIlmrdsDZhGfKxY+icfjnmLhwYPw8nZmeVLFxF55gwfjfv6bhf1jug6sfRInwd5fsxnjP7iO7q0acmBYyeYtWg5Iwb3vVHHRscQ4PsP69gffsXVxZmHez/I6eh86th7JWgs8j/MJut2q5HJHQsJCeHjjz+mV69exZ2Vf2Spg+U8tIXFu2UYTVZPZ2vbIVzasN1s277HXid62u+5+5Yb3p9KLz6Kc5A/yaeiiBj3EzEzF5kdr2Sz+lT/9FVK1KlO+oXLxMxcxPH3xpNlMB++/190yThG6qophXY8gNX7jvHD0o2cOX8JH08P+rcMZWhbU2/7HcfP8vj4Wbw/uAvdG9cGTHMuT1y2ib/3HSPhaiLlypRk8P1h9GpaB4Dft+7jvZnLCvx7Nx+rMDi3f4TE714ttOOBacTFj+HHOHs5ER93Z/rWrsiQUNNLsJ3RF3hy4WbebVePbjVMPZ8T0zL4afsx1kbEcSEplUBPNx6qG0zPWjemFcvINDJt9wmWHIki7loKvh4u9KpVniGhlQtt0a8c7s+MI3pkv0I9pnPthpTo3A8Hn7JkXr1E4saVJK4xNT6dKtegzPPvcWnGdyRvW5+bxqvfY7jUaUTcW08UeFzH4Gp4dh+MY2AFMhOvk7xjA9eWzi30qU4Cv53LuSO7CvWYG8J3MPm3+UTFxFG6VEl6durAgB6mher3HDjM86M/4I2RT9KpbavcNItWrmb2H0tIuHAJf18fBvfuRsf7W5gd9+8NW5g273fiziXg61Oang+0p3dX81FghcG3en2SNy8o1GOu2XWIiYtWcyY+AR+vEvRr05iHHzCVb+fRUwwf9wtjHu1Nt+b1+f73Vfy8eG2Bx/r51cdpUM3Um2nvybN8t/AvDp6KxtnRgdb1avBS/0545LPeyH/h2qw3yRvmFuox1+w+zMQ/13Dm3AXTObm/EQ93aAbAzmOnGf75ZMY80pNuzUL5ftFqfl6yrsBj/fzKozQIqQjAXzsO8NpPc1n4/nNULGA6qsLg2rIfkSeOFOoxN20JZ9qs34iOjqFUqVJ069KJvr16ALBv/wFeeXM0r7wwko7t2uamWbJ8JfMW/kHChQv4+/kyoG9v2re5v8C/MW3mb0z/bQ6rlvxRqHkHKFelOvGjBhfqMZ1qNcC9Qy/sy/iTefUyyVtWkbxhOQCOlarjPeItrs75kZSdG3PTuDRoiWurTtiX9iPz2mVSwteStG6J2cLfzrUb4TVkJAnjRpGZUDQdKvw+m8GlD54s1GM6hNTFpeWD2JXyxXj9Cmk715G67W8A7MtXpcSQl0n8cwrp+2/0pnes0xTnRu2w8/bBmHiVtN0bSd2yErD8OWHrWQqvkR9ZHKOweL/9I6l//Vqox1y97xg/LNuU3V5zp3+Lm9prJ87y+PjfeH9QZ/P22vLN/L33GAnXctprDenVpE7uMTMMmUxZvY0/tx0g7vI1/Lw86N2sLkPbNMK2kBZ9zuHcYRjRhTy6ctPWbUyZNZvo6FhKl/KmW5dO9OtpetG498BBXn7zXUY9/wwPtLvxUmzx8r+Y9/sizl+4iL+fLw/16Un7Nq1zvzcajSxZ8ReLlq4gNv4cJTzcadu6JUMH9sOpkBeXDaxai4RD2wr1mOvDdzJ5zu9EZrdNej3QjoHdOwGm+dWfe+dj3nx2OJ3btLBIu2zNRj6a8DPzJn6Bv4/pubLrwGGef/eTAv/esH49eGxA4f2+LFOzEZc/frrQjgfgULUOzi26muqG61dJ272etO2rAbAvVwWPQS+StGQa6Qeye447OuPSvDMOIXWxdffEeDmB1B1rSN9nPhLQqcH9ODVoha2bJ5mXzpG67W8yDu8s1LwDlHzje+KP7rn9jv/Ahq3b+fW3+UTFmO6dnp070L9HVwD2HDjEC2+P5fXnnqJT29a5af5c8Xd2G/Yi/r4+DOrTnY73t8z9Pisri/mLl/Pnir+JO3eeUt5eNKhbm+GDBxT69Gt+1epxJKLwA/OJ168z+efv2Ra+mSxjFtVq1OSxJ54mIPDGaNe3XnuR8+fi+XnKb7nbEhLOM+nHCezdswt7O3vqhjbg0Seextv7xhR/cbExTJ/yM4cOHiAlJZkqVUIYNPQxatQsnMBo9eAAXSd5+FWrx4WDhfuMX79tF5Nm/05kbDxlvEvSq1MbBna7UceOfPdT3nzmMbrkU8cuXbORj76bxPwfPjOrY597b1yBf+/Rft15rH/PQsl76VqW67DI7a2tUuf2O4mZ+09Y/7p7hU0BjEKkAMb/D0URwLjXFUUA415XFAGMe11RBDDudUURwLjXFUUA415XFAGMe11RBDDuZUURwLjXFUUA415XFAGMe11RBDDudUURwLjXFUUA415XVAGMe1lRBDDudUURwLiXKYDx76yvXre4s3DPaXVkb3Fn4a7TGhgiIiIiIiIiIiIiImJ1tAZGITp2LP9FdEVERERERERERERE5J/RCAwREREREREREREREbE6CmCIiIiIiIiIiIiIiIjVUQBDRERERERERERERESsjtbAEBEREREREREREZG7ysbOprizIPcAjcAQERERERERERERERGrowCGiIiIiIiIiIiIiIhYHQUwRERERERERERERETE6iiAISIiIiIiIiIiIiIiVkcBDBERERERERERERERsTr2xZ0BEREREREREREREfnfYmtnU9xZkHuARmCIiIiIiIiIiIiIiIjVUQBDRERERERERERERESsjgIYIiIiIiIiIiIiIiJidRTAEBERERERERERERERq6MAhoiIiIiIiIiIiIiIWB374s6AiIiIiIiIiIiIiPxvsbG1Ke4syD1AIzBERERERERERERERMTqKIAhIiIiIiIiIiIiIiJWRwEMERERERERERERERGxOgpgiIiIiIiIiIiIiIiI1VEAQ0RERERERERERERErI59cWdARERERERERERERP632Nipb73cnq4SERERERERERERERGxOgpgiIiIiIiIiIiIiIiI1VEAQ0RERERERERERERErI4CGCIiIiIiIiIiIiIiYnUUwBAREREREREREREREatjX9wZEBEREREREREREZH/LbZ2NsWdBbkHaASGiIiIiIiIiIiIiIhYHQUwRERERERERERERETE6iiAISIiIiIiIiIiIiIiVkcBDBERERERERERERERsToKYIiIiIiIiIiIiIiIiNWxL+4MiIiIiIiIiIiIiMj/Fhtbm+LOgtwDbLKysrKKOxMiIiIiIiIiIiIi8r9jW5NGxZ2Fe06jrduKOwt3nUZgCKmrphR3FqyKc/tHWOoQUtzZsCpdMo6R+N2rxZ0Nq+L+zDguf/x0cWfDqpR843siTxwp7mxYlXJVqnNt96rizoZVKRHanlMREcWdDatSKTiYMyePF3c2rEqFylVJXfJDcWfDajh3HUHSz28XdzasitvwD0hdPa24s2FVnNs+zJW964o7G1bFq25r1a95VKhcldQFXxV3NqyKc+8X1YbNo1yV6mw9cq24s2FVmlQvQcSpU8WdDasSXKkSMccPFHc2rEZA1fuKOwsi/29pDQwREREREREREREREbE6CmCIiIiIiIiIiIiIiIjVUQBDRERERERERERERESsjtbAEBEREREREREREZG7ytbOprizIPcAjcAQERERERERERERERGrowCGiIiIiIiIiIiIiIhYHQUwRERERERERERERETE6iiAISIiIiIiIiIiIiIiVkcBDBERERERERERERERsTr2xZ0BEREREREREREREfnfYmNnU9xZkHuARmCIiIiIiIiIiIiIiIjVUQBDRERERERERERERESsjgIYIiIiIiIiIiIiIiJidRTAEBERERERERERERERq6MAhoiIiIiIiIiIiIiIWB374s6AiIiIiIiIiIiIiPxvsbFV33q5PV0lIiIiIiIiIiIiIiJidRTAEBERERERERERERERq6MAhoiIiIiIiIiIiIiIWB0FMERERERERERERERExOoogCEiIiIiIiIiIiIiIlbHvrgzICIiIiIiIiIiIiL/W2xsbYo7C3IP0AgMERERERERERERERGxOgpgiIiIiIiIiIiIiIiI1VEAQ0RERERERERERERErI4CGCIiIiIiIiIiIiIiYnUUwBAREREREREREREREatjX9wZEBEREREREREREZH/LbZ2NsWdBbkHaASGiIiIiIiIiIiIiIhYHQUwRERERERERERERETE6iiAISIiIiIiIiIiIiIiVkcBDBERERERERERERERsToKYIiIiIiIiIiIiIiIiNWxL+4MiIiIiIiIiIiIiMj/Fhtbm+LOgtwDFMCQIrHlyCkmLF5PRNwFvEu4MaBFfR5uG4aNTf4VU1qGgR+Xb2LZjkNcTkymaoAPT3VuQbMalXL3MRqzmL95D3M37ib6whW8Pdy4v3YVRnRugbuL090q2n/iHOBLy71L2Nn7GS5t2H7Lfcv270LlN0bgWimIlDMxnPzsJ2Km/2G2j2f9WlT/9FU869fCcC2J6GkLOf7+BLIyMoqwFIVj69nzfL/1CBGXrlPK1Ym+tSsypF5wgddI1JVEekxbbbE92NuDuYPbAGDMymLGnggWHjjD+cQUypV05+HQynSuFlSkZSks9hWr49KqG3al/TEmXSNt1wbStv9d4P62Jcvg+dQYi+2ZCbFc++WD7E82OIW1xSm0ObYeJTFeuUja7vWk7VpfRKUoXDt37+HX6TM5GxlJSS8vunXpTJ+e3Qu8TgDWrN/ArDnziIs/h6+PDwP69qJD2zZm+6z8ezXzFy4iNj4enzKl6dalMz0e7HLL41qL8P1H+H7OYk5Fx1HKswR9OrRgcJe2d5T3Y6ejGDr6MxZ+9S5ly5Qy+27djn1M+n0FZ2PPUcqrBJ2bh/FIjw442Ft/U2HX7t1MnTqVyMhIvLy86Nq1K7179brlOVm3bh2/zZ5NfHw8vr6+9O3bl/bt2pntc/z4cX6ZNIkTJ07g6upK+3btGDRoEA4ODkVdpP9s1+7dTJk2nbPZ5+TBLl3o06vnLc/J2nXrmTVnDvHZ907/vn1o366t2T4bNm5i3oIFREXH4ObmRr26dXjskaGULFmyqIv0n205dpYJy7cQEX8Rbw9XBjStw8OtQ2/dNlm1jWW7j3I5MYWqZUvzVIfGNKtWAYAdJ6N4/IcFBf69ER0a81THxkVRlEKx9Uw83208yKmL1/B2daJfvcoMaVD1juoSg9HIsFlrcLa35+cBrc2++/PgGabvOEbUlUTKuLvwYM0KPNq4Gva21j/we8vhU0z4cx0RcQmm9mvLBjzcrtGtr5FlG1m24yCXrydTNdCXp7q0oFmN4Hz3P3f5Gr0/+ImvnuxLw6rli7IohSZ832Emzv6DU9GxeHuWoE/H1gzq2v4OnzmRDHvrY+Z/PZayPqXNvjsTE8+EmQvYdfg49ra21KtRleeH9CHAt0xRFaXQqH61tOVEFBP+2k7E+ct4u7swoHFNHm5e587qk0wjD//4Oy4O9kwa3t3su0PR5/ly+VYOxSTg7uRIt9AQRrRtgIO9XVEVpdCoDZu/1JRk5k77lp1b15CWmkJIjXoMfOxF/AMq3PExJnz6Gk7OLgx//j2z7VlZWaxYNIN1K3/n4oVzlC7jR7uu/WnXuV/hFqKQpaSkMHnyZLZs3kxKSgq1atXiiSefJDAw8JbpLl++zM8//cSuXbvIzMykYcOGDH/iCby9vXP3yczMZObMmfy9ahXXr1+ncuXKPPb441SrVq2oi/Wv7di9l8nTf+NMZBQlvbzo3qUj/Xp2u+U1vnr9JmbMmU/cufP4+ZRhYJ+edGzb2myfyKgYfpwynX0HDmFnZ0ftWjUY8dhQyvr5FnGJRKQwWP9bidsICQnh448/plevXvfEcf8X7D8dw8iJ8+gYWp1nurZkT0Q0Xy1ag8Fo5LEOTfJN896sZWw4cJLnurWivI83f247wMiJc/nluUGEVja9fP7173C+W7KeoW0b0yikPGfPX+K7JRs4GZvAxGcHWH2jzTnQj7Clk3DwKnHbff16dqDutM85/e00ElZuxK97O+pO/hRjWjpxc5cB4FIxkEYrfuVy+F52D3wB92rBhIx9EQdvLw4+825RF+c/ORB3iRcWh9OhSgAjGldjb9wlxm86RKbRyLAGVfNNcyzhGgA/9GyKy00/Wpwdbvz/xPCjTN11gqcaV6Omb0k2nTnH6L92Y2tjwwMht24AFje7shVw7zuC9CO7SNmwGPvAYFza9ABbW9LC/8o/jY+pTNdnfU1WRvqNL24KYLm07YVzWFvSdm8g/fg+bL1K49LyQWw9S5GyZmFRFuk/O3z0GKPf/5BWLZrxyOCHOHj4CD//OpXMzEwG9O2db5qNm7fwyedf0bNbVxqEhrIlfBuffTUeB3sH7m/VAoBlK1fx1bff0a93T+rXq8vR48eZ+MtkUlJTeKhf37tZxH/swInTvDhuIu2bhPJU367sOxbBt7MWkZlp5JHuHW6Z9mRULC+M+4HMTKPFd9v2H+HVr36hfeNQnh3QjYjoeL6f/SdXricyaph1/+g7cvQo7733Hi1btODhIUM4dOgQkydPxpiZSb9++ed906ZNjPvsM7p3706D+vXZsnUrX375JQ4ODrRu1QqAuLg43nzrLapXq8Ybb7xBVFQUU6dO5fr164wcOfJuFvEfO3L0KO+MGUurFs15ePBgDh0+zKRfp2DMzKR/Adf4xs2b+fTzL+jR7UHTOQkP5/Ovvs4+Jy0BWLd+Ax+P+4zOnR7gkYeHcOnyFaZNn8Grb77Fd998jaOj490s5j+y/2wcIyctomPdqjzzQBP2nI7lq6UbTW2Ttg3zTfPe3L/ZcPgUz3VuRvkyJflz52FGTlrELyP6EFopgOqBPkx/rr9FugnLt3Ao6hwPhIYUdbH+tf2xF3l+4SY6VAtiRPNa7I25wDfr95NpzGJYo9u/1Jiy7SiH4i9TP9D8ZfOsXSf4fO1e2lUN5IVWtbmcksYPmw9xPOEKn3dvWlTFKRT7T8cw8oc5dKxfg2cebMWeiCi++mO16RrpmH/e35uxlA0HTvBc99aU9y3Fn+H7Gfn9HH55YTChlcuZ7Rt/6RojJvzG9ZS0u1GcQnHg+Cle/nQC7Zo24Mn+3dh39CQTZi4kM9PI0B4P3DJtRGQML306Id9nzrkLlxj+zjjKl/Vl7HOPk5aWzsQ5i3juw2+Y+fk7OFtxXaL61dL+yHOMnLacjvcF80z7huw5E89XK8IxGLN4rFW926afvH4Ph6ITaFDR32x79KVrPDl5CbXL+fLZwPacOn+FCau2czUljdE9WhZVcQqF2rAFm/jl20QcP0i/h0fi4urGojm/8OnbI/jw2zm4ud/6d7LRaOS3yV+xc+samt3fxeL7OVPHs2rJbHoOfJJKVWqyf9dmZvz0GfZ29rTuaL3vdcZ9+ilHjx7l0ccew9XVlVkzZ/L6a6/xw8SJeHh45JsmMzOTd0aPJjk5mWdHjsRgMDDl11956623+Pbbb7HP7oD0808/sXLlSoYNG4avry+///47b735Jt9OmEDZsmXvZjHvyOGjx3lr7Ce0bt6UYYMHcODwUX6aMoPMTCMP9e2Zb5oNm8P56Itv6PVgZ8Lq12NT+HY+/XoCDg72tGnZHIDzCRd47rW3CAwoy9ujXiA1LY3JM2bz6jtjmfTtFzg53RsdYkX+l93zAQyxPt8v3Ui1QF8+GtoNgGY1gsnINDLpry0Mat0AZ0fznqsxF6+wbMch3ujbgf4t6wMQVrUCe0/FMGfjLkIrB2E0ZvHrqnD6NKvH891bA9C4WkU83Vx47ddFHI6Mp2Z580av1bCxIXBID6p/+hrcYYwlZOxLxM1fwZFXPgbgwqpNOJT0JOS953MDGMGjhmO4nsTOXk+TlZFBwooNZKakUuub0Zz8ZCKpUXFFVaL/bOK2o4SU8WRsR9O/d9MKvhiMRn7dcYKBdYNxzqdX1fELV/F1dyYsKP+eeSkZBmbtjWBg3eDcIEhYUBmOnr/C7H2nrD6A4dKiK5nnokhePBUAw6nD2Nja4dK0I2k714LBclSNnW8gxmuXMZw9nu8xbVzccGrQmrS9m0heOTt3e9b1y7j1foq0vZsxXjpXNAUqBNNm/kblShV5/eUXAWhYPxSDwcBvc+fTs1vXfBuak6fNoGXzpowY/lh2mnpcT7zOlBmzcn/8/TZ3Pi2aNWX4sKEAhNatQ3RMLIsWL7P6H38/zV9KSIVA3n/GlPemdWtgyMxkyqK/GNCpdb4vfTIMBuasWM+P85fi5JD/Y3/x+nD8SpXk/WeHYmdrS6Pa1bl09Rqzlq3lxSG9sbfino4zZswguFIlRo0aBUCDBg0wZGYye84cunfvnu91MmXqVFo0b86TTzwBQP369Um8fp3p06fnBjDmzZ+Pi4sL77zzDg4ODoQ1bIiTkxM//PAD/fv3x8fH5+4V8h+aPnMWwZUq8eorLwPQsEF9DIZMZs+dR4/u3Qo4J9Np0bwZTz0xHIAG9UO5fv06U2fMyH3BNnvuPMIaNOD5Z5/JTRcUEMDzL7/Ctu07aNG82V0o3b/z/YqtVAsow0cPmV66NqtWgYzMTCat3sGglvVwznNvxFy6yrLdR3mj5/30b1YHgLDKQew9HcuczfsIrRSAu7MTtfO0PdYdjGDbiSg+f7gLFcpYb6/piVsOUc2nJB90bgRAs4p+GDKNTN52hIGhVcw6B+R1/PwVJm87Smk3Z7PtmcYsft56mMblfRnX7UaHlWo+Jek39S/Cz5yjcQXr7eX4/ZINVAvy46NHTD3Am9XMbr+u3Myg+xsW0H49yBv9O9K/VQMgu/0aEc2cDbtyAxhGYxaLt+3ny4Wrybq7RfrPfp63mJCKQYx59lEAmtStZXrm/LGc/p3bFPjMmbt8LT/N+xPHAkar/Tx/Ce6uLkx4+0WcnUzHKOtTilc++54jEWepV71K0RXqP1L9aun71Tuo5l+aj/qZRpQ0q1qODKORSet2M6jpfRb1682OxV1g0vo9lPZwtfhu8vo9uDo58M3gB3Cwt6NFSHlcHOz5ePEmHm9dD3+v/F/sWgO1YfN38uh+9u7YyEujv6Z2fdM1XbVGPUY92Z3Vy+fTre+jBaaNOnOCGT9/xukTh3F0tDx/CediWfnnLIYMH0WbTn0AqFG7IZcunOPAnnCrDWAcOXKEbdu2Meb992nY0NSholbNmgwbNoylS5YwYODAfNNt3LiRiIgIJk6cSLnyphF9wZUqMWLECDZu2MD9bdqQkJDA0qVLeeqpp+jStSsAoaGhPD58OPPmzeP555+/O4X8B6bMmkPlShV48+XnAAirX4/MTAOz5i2kd7fO+d47v0yfRatmTXhm+DAAGobW5fr1RH6dMTs3gDH1t7m4ubry+dh3cXY2HcPf14e3P/iUYycjqF2zxl0qoYj8W9Y/llvuKekZBnaejKRNHfNeh+3rhZCUms6eiGiLNGVKuDNr1CN0CauZu83W1gY7WxvSMjIBSExNo2tYTTo1qGmWtqKvaQqUqAuXC7sohaZE7RBqfTeG6Bl/sPeRV2+7v0v5ANxDKhK/aJXZ9riFK3GrUgHXyqYGSpn2zTm/fL3ZdFHxC1ZgY2dHmQ7NC7cQhSjdkMmu6IvcH2z+0qdt5bIkZRjYG3sx33THEq5StbRngcd1tLPj174tGFzPfNoGe1tb0g2Wvf+sip099uWqkH5sn9nm9GN7sHFywT4w/6ko7HwDMZyzvKdy2Hr7YmNrR8aJA2bbM84ex8bWFodg622opWdksP/AQZo1MZ9+pWWzpiSnpHDw8BGLNPHnzhEdE0uzxuZpWjRrSmxcHNExsQB88N7bPPHoULN9HOztSU9Px5qlZ2Sw6/BJWjesY7a9TaN6JKWksu9oRL7pNu85xC8LlzOseweeHdgj333SMgw4Ozlid9MUL54ebmQYDCSlphZaGQpbekYG+/fvp2lT897RzZs3JyUlhUOHDlmkOXfuHDExMTTJJ01sbCwxMTEA7Nq1i7CGDc2mi2revDlGo5Fdu3cXQWkKh+mcHLC4d1o0z7l3DlukMd07MTRrYj5KskWzZsTGxhETE4vRaKRevbp0eqCj2T5BQabgcGyc9QbN0w0GdkbE0KZWZbPt7WtXISktnT2nYizSlCnhxqwXBtKl/o3RCKa2iS1phsx8/05qhoFP/lhHi+oVaV/Hel/Aphsy2RWVwP1VAsy2t6saSFK6gb0xFwpMm5FpZPTy7QwIrUz5kuYvDy8lp3I1NZ0WeZ7vlct44uXiyMZTVnyNZBjYeeJsPu3Xatnt1yiLNGVKuDPrtWF0CauVu83W1gY7O1vSMgy5247HnOOD35bTtdF9fJjduedekJ6Rwe7Dx2nV0LwHfZtG9UlOSWXf0ZP5ptuy5yC/LFjCIz068exDli8Ms7KyWLttNw+2bpobvACoHlyBpRPHWXXwQvWrpXRDJjtPxdKmZkWz7e1rVSIpLYM9ZwrOe4Yhk7fnrWVgk1pUyKeNv/VEFC1CyptNF9WuViWMWVlsOWF5T1oLtWELdmBPOE7OLtSqe6OcJTxLElIzlP27Nt8y7U9fv4vRaGT0uF/x8PS2+H73tnU4ODjSop15Pfv0qI8Z+fq4wilAEdi1axfOzs6EhobmbvP08uK+++5jx86dBabbvWsXgYGBucELgHLlyxMUFMSOHTsA2Lt3L5mZmWZtXgdHR8LCwtiZvY81Sc/IYN+BQzRv3Mhse8umTUhOSeHA4aMWaeLPnSc6JpbmTcLM0zRrTExcPNGxcWRlZbFhSzgPtG+TG7wACKlSmXlTf1bwQuQe8f8igHHq1CkGDBhArVq16NSpE8uXLzf7fu3atfTq1YvatWvTvn17vv76a7OHfHx8PCNGjKBevXq0bNmSxYsXm6X/9ttvGTx4MC+++CKhoaGMHTsWgD179vDwww9Tv359GjVqxBtvvMHlyzdepKempvL111/Ttm1b7rvvPrp3787KlStzv1+4cCHt27dn9uzZtG7dmjp16vDcc89x7tw5Xnnlldz8zJ8/PzfNmTNneOyxx6hfvz716tXjscce49ixY4V6Pv+L6ItXyDBkUt7HvFFRLrsX4pnzli+nHR3sqVneHw8XZ4zGLOIvX2Pc/FVEX7hC3+amH00lXJ15vW8H6gWb96Jfu9/U8zzY33rny02JjGNdtfYcGfUJmcm3fxHoXs30sjrpxBmz7ckRZ03fV62IrbMTrhUCSTpx2myf9AuXybh6Hfeq5j8irEnMtWQyjEbKe7mbbQ/ydAPg7OXEfNMdT7hKcoaBYXM30OS7xXT4ZQXjNx8iI3tqAjtbG6qU9qS0mzNZWVlcTE7l153H2R6VQJ/aFYq0TP+VrVdpbOwdMF46b7bdeNn02a5U/j1W7X0CsXF0wmPIK3iN+gbPkR/j0ro7ZL+EzkoxnUtbT/O1Duy8yuT+XWsVFx9PhsFAQID50OayZU0vxqKiLV84RkaZgjmBedIE+JvSRGe/mC4fFISfry9ZWVlcu36dZStXsWrNOh7s0qnQy1GYYs5fJMNgoJy/ec//oOz5ws/Gnc8vGTWCy7No/Bge7fkAdnb5P/b7dmhJVHwC05f8zfWkZA6cOM3s5etoVrcmnu5uhVuQQhQfF4fBYCAgwPxFbNk8/+Y3i4yMBCAwTxr/7GH00dHRpKWlcf78eYvjenl64urqSnR0wYHD4hYfl3Pv5D0nOeWzPCdRUaYXQQXebzHR2Nra8uTjj9E0zwuZLVvDAShf3ny6HGsSffEaGZmZlM8zIqJcaS8AziRYdoJwtLenZpAvHi5O2W2T64z7Yx3RF6/St8l9+f6dmRv2cP5qIq/2aFXoZShM0VeTyMg0Uq5knudw9uczl64XmPanrYcxZBp5qmlNi+/cnRywt7Uh7mqy2fZrqelcT80g5mr+z3drEH2hgParT3b79VxB7deyN9qvl64xbt5fRCdcpm+LGy+i/L09WTLmaUb1aW8xisOaxZy7kO8zJ9DP9MyJjM1/BGf14PL8MeEjhvXqnO8zJy7hIonJKfiVKcW4SbNo/+iLtBj8DK989j3nLlpvhyRQ/Zqf6EvXyMg0Ur6UeQCiXPbnMxeuFpj2xzW7MGQaebqd5TR+qRkGYq8kUj5PYMPb3QV3J0fOJBR83OKmNmzB4qJPU8Y3AFs781F+vv6BxMecvWXaJ154n7c+/oWgCvkHOSNPH8fXP4hjh/bw7kuDeax3Y14e3o11K617ytyoqCj8/Pywy3NO/MuWJeYW7c3IqCiLugigbNmyuddLVGQkLi4uZmti5Oxz8eJFUlJSCqEEhScu/hwZBgOBAeYdIQLK+gEQlR3Iu9nZnHunbN57JztNdAzx586TlJSMb5kyfPPDz3Qf+Agdew3k7Q8+IeFC/p0nRcT6/L+YQmrq1Km89dZbfPzxxyxatIgXX3yRoKAgatWqxYYNG3jhhRd44403aNq0KZGRkYwdO5bTp0/zzTffYDAYePzxx3F3d2fGjBmkp6czZozlorg7duzg4YcfZtGiRWRmZrJ//36GDBlC//79effdd0lISOD999/nscceY968edjZ2fHSSy9x+PBh3nvvPcqXL8+SJUt4/vnnmTBhAu2yFwqNjY1lxYoV/PTTT8TFxfH0008THh7OiBEjePrpp5k8eTLvvfcebdu2pWTJkrz00ktUq1aNBQsWYDAY+PTTT3n22WdZtWqVRZ6LQ2L2vL7uzuZDyl2zh/olpd66d8ivq7YyfrFpceHeTevSOHuhzPzsPxPD5FXhtKpVmSplrTeAkXH5KhmX77yRbe9peoFguGb+Q99wPcn0fQl3HDw98t0nZz/7Eu4W261FYpppxIibo3n145r9OSndYJHmckoa55NSyczK4rlmNfD3cGV7dAJTd57kXGIqH2ZPRZVj5fEY3lq5C4DmFXytfhFvGyfTNBxZ6eaNyKw00/1k4+hsmcbFDdsSJcHWlpS1f2C8egn7CiE4N26PTYmSJP85BeOl82REncS5RReM1y+TcfYYdl6lce00iCxDBjYO1jvXZ1KS6QWYm6v5lAKuLi4AJKckF5jGNU8al5w0yeZpjhw9xvOjXgegapXK9OlpvnCktUlMNl0fbi7m14OrS3b9mpJ/gNTH2+u2x25YsyoPP9iO8TP/YPzMPwAIqRDIByMf+df5vRuSkvP/N8/5nPff/JZpbrpOkpKS8t0HTNdTfse1FknJ+efd1TX/+wD++b2TIzYujp8nTSa4UiXCGjT4bxkvQompBbVNTJ9v2zZZu4Pxy7YA0LtxLRpXtXyZmGHIZNbGPXSsG5IbGLFWOc9hdyfzl+k3nsOWUxYCHIq7xPQdx/hlwP045jOtnIuDPe1Dgpiz9ySVSpegTZUALiWn8dmaPdjZ2pCSkf/IFWuQe424mD8X77j9+tcWxv+5DoDezerSuNqNjiSebi54urkUYm7vjhvPHPO8u2Y/g5IKePHl433rqdMuXzMFyL6btZAawRUY+/xwLl+7xve//cHT73/JjE/fxsXZOtsnql8tJWbfGxb1a3awLikt/3vnYPR5pm7ax+Th3fKtT3KP62Q5TZmrk0OBx7UGasMWLDk5ERdXy44xzi5upKQk3TJtUIXKt/z++tXLXLmUwI9fjaZH/+H4B1Zg28a/mPKDaUpma51CKjkp6V+1N5OTkgjIZw2Lm9MlJScXeGwwXVcuLtbzfLrtvXOLdr2ba95nVU6aFK5cM62l+fPUGVSrUpm3R73AlavX+GXaTF56811+Gv85Ls6Wv7fl7rGx/X/Rt16K2P+LAMZDDz3EgAEDAHjhhRcIDw9nypQpfP7550ycOJF+/frlfl+uXDnGjBnD0KFDiY6O5vTp05w4cYJVq1ZRrpzpB+nHH39Mjx49LP7Oc889l7uI0gsvvEBISAijR48GIDg4mC+//JLu3buzadMmAgMDWb16NRMnTqR169YAjBw5kqNHjzJx4sTcAIbBYGD06NEEBwdTtWpVqlWrhoODA8OGmebvGzZsGPPmzePMmTOULFmSyMhImjZtSkBAAA4ODnz00UecOnUKo9GIrRXc9MasW8/ue7uFtlveV4W6wYHsiYjmx+WbSM3IyF1L42Z7IqIZOXEeAaU8eX+w5QJe97LbVd5ZRmNuD/uC97HeWZZvN5lTfpeIi4M93/VoQjkvd8qWMDVo6geWxtHOlu+3HuXxhlWp6H1jKouaviX5uXczTly4xg/hRxn5x1Z+6t3Mehd6t7nNv2c+91VWRjrXfxuP8fJ5jFcvAWCIOgGZBlxadSN18wqMF+NJWvgzrp0ewr33kwAYU5JJWfs7Li26mC/8bWXyK/PNbPM5Z1lZt766bPKk8fHx4fOPPyD+3DmmTJ/FC6Ne5/uvvzQbWmxN/mv9eiufTJrNn+vCebTnA4TVqkpswiV+nr+M5z75ju/fes5smg9rkmW89b+5bT7n5HZpbGxt7+D6s9K6BNN8+7eSX96Nt7l38rvfIqOieHP0O9jZ2fH2m69bRRukILc7J7dtm9SoRN0KZdlzOpYfV20jNcOQu5ZGjlX7T3DhejKP3F+/gKNYj39zfacZMnln+XYeql+FWv6WU3fkeKt9fRztbBm7cifvr9yJs70dj4RVIzndkO/6VtbiP18jtatQNziIPRFR/Lhso+kaeeTeeKFYkNtdJ3mfqXcqI3sKNm/PEnz68lO5dUegrw+Pj/6UFZu20bOddS7QrPrV0r9pm6RlGBg9by2Dmt7HfUH5jzIuyjZPUVMb1sRoNFqU61a/Uf9tnZLDYMjg+rUrPPvapzRo0gYwrYFx8UI8f8z5xSoCGKZzkmWxrSC3us5vdY/k1EW3bfNa2X10u/oyv2vkdu89bGxtMGRP61jSy5Mxb47KrVMD/P14dtSbrF63ka4PtP+XuRaRu+X/RQCjfn3zH4t16tQhPNw05Pbw4cPs37/fbBqmnIdGREQEJ0+exNPTMzd4AVC9enWc80RgS5UqlRu8ADh+/DjNmpkvplatWjU8PDw4duxYbu/NvHlr2LAhX375pdm2m/+2q6sr/v43hszlLFKUM+XViy++yEcffcSsWbMICwujRYsWdO3a1Woatjk91/L2iknK7tnm4XLrRlXOSIr6lcthMBr5YelGRj7YCn/vG8OHV+w6zDszllLex5vvn+6Pl7tlr4J7meGqqWeavYd575ScURWGq4m5Iy/y7pOzX84xrJF7Tg/PDPORFjkjL9zzmV7B2d6OxuUsF8xtXsGP77ce5fiFq2YBjCAvN4K83AgNKI2boz3vrtrDntiLhAZY55RJWWmmXox5R1rkjsxIy6eXoyEDwxnLeUAzTh7EpVU37HwCMF6MJyv5OkkLfiTZyQUbd0+MVy6A0YjrAwPJSr11T6fi5Jbbg9687Lm9bNws73s3N9P9kHc4dHIBaUqX8qZ0KW/q3FcLfz8/Xn79LTZu3kL7tvcXTiEKmXtOT6Ls+jRHzsgLd9d/14Pq/KUr/L5mC8O6d2BEP9MCf/WBmsHl6T/qQ/5ct5V+Ha1zSpycf/PkAv7NXd0s68jbpXFzdc3trZbf0Prk5OR8j2stcq7zvHlPutU5cf1n986+/Qd4/8OPcHFx5tOPP8ydsstaFdg2yf7s4XLrAF0Vf9Ozo35woKltsjKckZ2a4l+yRO4+q/afINivFCFWPCI0R87Ii7wjHpPSDGbf3+z7TQfJAoY3roEh+4VIVvaS1AajETsbG2xsbHB1tOfdBxoyqk094q4l4V/CDVdHe/44cIogL+sdHZp7jeStX++4/Wpqo9Svkt1+XbKBkd1am7Vf7zU5z5TkPOsg/ddnjmv2C9YmdWua/X65r2ol3F1dOH7Getc2UP1qKWfkRVKa+cit3Po1nw4QE1btwJiVxRNt6mPIngo2512sIdOIna1N7siL/EZaJKWlW4z4sCZqw5osmvMLi+b8bLatQdO2XMvueHWzlOQkXF3/2zPC2cUNGxub3MXBc9xXrwkH94Rz9cpFPL1KFZD67pg1axazZs4029a8eXOuXLlisW9KcnLudZEfN1fX27ZT3dzcCtwn53trklNf5m2j3/recS0gTfYoQlfX3FFyYfXrmT13alSripubKydOmU/LLSLW6f9FACPvy/vMzEwcHU2NGqPRyOOPP07Pnj0t0pUpU4aIiIh8o9729uanJm9Ao6CeFVlZWWYLfub3fd5j593/VsGIQYMG8cADD7B+/Xq2bt3K+PHj+eGHH/jjjz8oXbr4X84GlS6Jna0NUXnmk47M/pyz6PbNYi9dJfzoGbo0rImTw41zUz3Q1CMn4Wpi7g/AqX9v46tFa2hQpTxfDe+Fh8v/v6F+icdND1DX4PJc23tjkTe3YNMCXYlHI8hMSiYlOh7X4PJmaR3LeONQwp3EAhbztQaBnm7Y2dgQfcX85XlU9uebAxE5Iq8ksiPqAh2qBuBx04uVnIVUS7o4cTk5jc1nz9G0vC/erjdeNFTz8QIgIcl6FyI2Xk4gy5iJbUnzF185n40X4y3S2JYsg335EDKO7DIPcGTXJ1nJpiCXQ/X6GC/Ek5kQk7ufnV85bGxtyYy33pcEZf39sLW1tVi4MjbW9LlcYKBFmpw1DWLi4qgcXOlGmuxjlAsKJCUlha3bthNStSoBZW+8FKiSvf/FS5Y/qqxFoG9p7GxtiY5PMNue87liQP69GG8n/sIlsrKyqB1SyWx7pUB/PN3dOBVtvYuH+vv7Y2trS1ys+Zy4sdmfywVZTh8XmH3txMXGUjk42DJNuXK4uLhQqlSp3G05rly5QkpKSr7HtRZls89JgfdOvuckIHcfs3OSfYygm9KsXbeez7/6mqDAQD4Y8x6lSxfvy4A7EVTK09Q2uXDFbHtk9ueKPpYjCmIvXSP8RCRdQqvlaZuYXlQnXEvKDWBkZGay5dhZht1vvdO83CzQyx07Gxui8qw5FXXF9Dm/5/Dfx6OJu5ZMs/G/W3wX9uUC3nugId1qVWBDRCwlnB2pG1Ca4Oy56y8lpXLuegrVfG89tVBxCipTUPvV9Eyo6GfZxo69eJXwo6fpElbL/BoJMs27fXP79V4U4FsGO1tbouLN11eKzv5cIcDvXx030K8MNjY2ZGRYThmamWnEyYrXCVH9ainIu4Tp3rloPl1uZPbnitnt8Jv9fTCC2CuJNHlvksV39Uf/xPu9W9O9fjV8SrgRdfGa2fcXE1NISsugUhnL41oLtWFNWnfsSd2Gzc227d62noN7wi1mjzgfF4V/YIX/9Pd8/YPIysoi05ABjjd+C2Zmmn4vOjreOhB9N3Tq1ImwMPPFprdu3cquXbsszklsbKxZ/ZBXYGAgERGWv/ljY2MJCQkBICAwkOTkZK5euYKnl1fuPnGxsfj4+OR2lrUWAf6+2NraEhNn/ts353P5IMs1P4Ky142JiYvPvRcAYnPTBOJZwuM2zx3rDYiKyA3W0W3/Pzp06JDZ5927d1OlimlxpypVqnD69GnKly+f+198fDzjxo0jKSmJ6tWrc/36dU6cOJGb/syZMyQm3nqhwZCQEHbt2mW27ejRoyQmJhIcHJz70Mi7z86dO6lc+dbzNxbk4sWLvP/++2RkZNCrVy8+++wz/vzzTxISEti+ffu/OmZhc3KwJ7RyOVbvPWYW5Pl77zE8XJyoVcFynsa4S1cZM2sZa/aZL0a+9ehpHOztqOBrerEwb9MevvxjDR3qVeeHp/v/vwxeACRHRJJ8Kgr/Xh3Ntvv17EDi8dOknDUtynXh7834dG6N7U0/9Px6dcRoMHBhbfhdzfM/4WRvR72AUqyJiDO7RtZExOLuaE9NXy+LNBeSUvlo7T5WnTBf9O6vEzG4OdpT3ceL1MxM3l21hz8OmS8AF37W9EO7SqkSWK1MA4bIkziG1DXb7BhSD2NqMobYMxZJbN09cev0EA7VQs3TVK9PVmoKmfGmhYpdmnXCuWkHs32cwtpgTE0mI/J4oRajMDk6OlK7Vk02bQk3u042btmKm5srIVWrWqQJKOuPn68vGzdvMdu+cctWAsqWxc/XFzs7O7789jvmLTR/Cbdzz14AKlYwDwpaEydHB+pVq8zaHXvN753te3F3daFmcIV/ddwgP9NLqr15Ap9nYs9xNTGJAJ/iD44XxNHRkftq1WLzli1m52TT5s24ublRNZ/rpGzZsvj5+bFp0yaz7Zs3byagbFl8fU2BoNDQULZv3056xo1epZs2b8bW1pY6deoUUYn+u4LPyRbc3NwIqWq5+GXO/bFx82az7Zs2b8n9DmD7jp2M++JLalSvxheffXpPvFyD7LZJpQBWHzhp3jbZfwIPZ0dqlbN8ERt3+Rpj5v7NmgMnzbZvPRaJg50dFW5aEPxk3EVS0w3Uy6eNY42c7O2oF1iaNSeizc7H6uPRuDs5UDOfKaK+7tmcGYPbmv1XzdeLar5ezBjclpbBppdp8/ed4qt1+8zSztx9AjtbG1oEW29P8gLbr3tu036duZQ1e/O0X4+cMmu/3qucHB2oW70K67bvMTsna7ftNj1zKle8ReqCuTo7U696FdZu32NWv+44cISUtDTqVst/gV5roPrVkpODPaEV/Fl96LT5vXPotKl+DbQcQT3+4U7MerqX2X/Vy5ametnSzHq6F62qVwCgSZVANhw7S7rhxvo5qw+ews7WhrBgyxeZ1kJtWJOS3mWoWLmG2X+16jYiNSWJg3u25u537epljh3eQ626jW9xtNvLGXmxbeNfZtv3bt9AUIUquPzHER6FoVSpUlStWtXsv9DQUFJSUszeG129coWDBw8SGhpa4LFCQ0OJiooi8uyN376RZ88SFRVFvex09erVAzBr82akp7N9+/ZbHru4mO6dGmzasi3PvROOm5sr1arkV8f64+/rw4bN5u8/NmwJJ7CsP36+Pri4uFC7ZnU2btlm9tzZvW8/qamp3FezetEVSkQKzf+LERhTpkyhXLly1KlTh9mzZ3P8+HG++OILAIYPH84LL7zAhAkT6NKlC/Hx8bz11lsEBgZSpkwZSpUqRZ06dXj11Vd59913sbOzY+zYsbedkmnYsGE89NBDjB07loceeogLFy4wduxYatSoQZMmTXBwcOD+++9nzJgx2NjYUL58eZYuXcrq1av5+uuv/1U5PT09WbduHZGRkbz88su4u7uzcOFCHBwcqFWr1r86ZlEY3rEpT074jVGT/6BH49rsPR3N1NXhPN/tflwcHUhMSeNU/AUCS5fE28OVepWCaBxSgU/mrSIxNZ2g0l5sOHiSORt2M6JLC0q4unDhWiKfL/ibsqU8GdCqPkeizKPyOce6F9l7uOFeozLJEZGkXzD1/Dvx4XfUmfQJGZeucG7xGny7taVsv87sfuiF3HQRn/9C2f5daLjkF05//StuVSsQMvYlon6ZS2qU9faYBnisYVWe/n0Lry3fSfca5dgXd4lpu04yslkNXBzsSUzL4PSl6wR6ulHS1Ym6ZUsRFlSarzceIs2QSSVvDzadOcfsvad4qUUtPJwc8HByoHuNcvyy/Rj2drZUK+PJnpiLTNl1gu41ylHJmgMYQOqW5bgPfA63Ho+Ttn8L9oGVcGrcjpS1i8CQAY7O2JX2w3j5AlkpiRiiIsg4fRTXtr2wcXAg80IcDsG1cGrQmpTVC3JHW6TuXIvrAwNxTojDEH0Kxxr1caoZRtKK3yDNekelADzUvy+vvf0uYz/5jAfat+XwkaPMW/gHjw0dgrOzE0nJyZyNjKKsvx9enqZeroMH9uPzr7+lhIcHTRqFsSV8O+s3buatV18BTA3jAX16M23WbLw8PalT+z5OnT7D9N9mE1q3DmENrHv++kd7duSZjybwxjeTebB1Y/YfP830Jat5dkA3nJ0cSUxO4XRMPIG+pSlZwrIXdX5KlvBgQKfWTF/yNwCN7qtG3IVL/LJgOf6lvenRpmlRFuk/GzBgAG++9RYfffwxHdq358iRIyxYsIBhjzyCs7MzScnJREZG4u/vn3udPDRwIF9+9RUeJUrQuFEjtoaHs2HjRl5/7bXc4/bt04f169fzzujR9OzZk5iYGKZMnUqnTp3w8bF8IWNNHhrQj9ffGs2HH39Kxw7tOHzkKPMXLuTRR4YWeE4GDRzAF19/QwkPD9M52baNDRs38cZrrwKmqSy/Gv8tri4uDOjfj8jISLO/Wbp0acpYwUjQggxv14gnf1zAqGnL6BFWg71n4pi6bhfPd25uapukpnHq3CUCS3ni7e5KvYoBNK5Sjk9+X0diWjpBpbzYcPgUczbvY0THxpRwvdGJ4kTcBQAq+d0bLxwBHm9SgxFz1/Pa4nC616rAvtiLTNtxjJEt78t9Dp+6eI0gL3dKujpRpYzlSAK37BF/NfxuvKgfGFqZZ+Zv5PO1e2kVXJbtkef5ddtRHgkLseoppACGd2rOk+NnMuqXhfRoWoe9p6KZ+vdWnu/eJk/71QtvDzfqBQfRuFpFPpm7ksTUNILKlGTDgRPMWb+LEV1bUuJfTrFkTR7t1ZlnP/iaN7/6iQfvb8b+4xHMWLyKZwb2vPHMiY4j0K/MHT9zAJ4e2IMRY77kxU++ZVDXDly6eo0JsxZSs3JFWjSw3gAxqH7Nz/D76/Pk5MWM+m0VPepXY29kPFM37uX5jo2y69d0Tp2/TKB3CbzdXaiST13plj3CuuZNAY9hLeqyYt9Jnp6ylCHN63D2whW+/Ws7vRtWx9/rzq+34qA2bP5CaoZSrVZ9fvzqHfoNHYm7hyd/zP4ZVzcP2nTqnbtfTNQpDBkZlK8UcsfHrn5ffeo2bMGsyV+RlpZKQLlgNq9dyomj+3jujc+LojiF4r777qN27dp8Nm4cjz72GCU8PJg5cyZubm507nJjrc/Is2fJyMggOLszbMuWLZkzZw6j33knd/3UX3/9lQoVKtCypWkdIV9fX9q1a8dPP/1EWno6AQEB/P777yQmJtKnb9+7X9g7MLhfb0aNfp8xn35Bp3ZtOHT0GHMW/snwoYNuuneiKevvm3vvDBnQl3HffEcJDw+aNmrA5m07WLdpC6NffTH3uI8PHcRLb7zLG+99SL+e3bh85So/T51B9ZAqNA27N0bQivyvs8m63SpTVi4kJIRXXnmF5cuXc/z4cSpXrsyrr75K06Y3XrgsX76cH3/8kZMnT+Ll5UWbNm145ZVXKFHC9ELz8uXLfPDBB6xduxZnZ2eefPJJfvrpJ15++WV69erFt99+y++//86aNWvM/vbWrVv5+uuvOXz4MO7u7rRr146XX34Zr+zhecnJyXz55ZcsX76ca9euUbVqVZ566inatzctELRw4ULeeOMNjh270XNryJAhBAQE8MknnwAQHR1N27ZtmTZtGo0aNSIiIoJPP/2Uffv2kZKSQvXq1Xn++efNyvtPpa6a8q/TFmT1vmP8sHQjZ85fwsfTg/4tQxnathEAO46f5fHxs3h/cBe6N64NmOYYnrhsE3/vO0bC1UTKlSnJ4PvD6NXU9CPm9637eG/msgL/3s3H+q+c2z/CUoc7byz9E94tw2iyejpb2w7h0obtZtv2PfY60dNu9KgpN7w/lV58FOcgf5JPRREx7idiZi4yO17JZvWp/umrlKhTnfQLl4mZuYjj740ny2A5PPK/6JJxjMTvXi3UY66JiOXH8GOcvZyIj7szfWtXZEioqUG2M/oCTy7czLvt6tGthmmNmMS0DH7afoy1EXFcSEol0NONh+oG07PWjd5GGZlGpu0+wZIjUcRdS8HXw4VetcozJLRyoS+66/7MOC5//HShHtOhah2cW3TFztsH4/WrpO1eT9r21QDYl6uCx6AXSVoyjfQD2T1MHJ1xad4Zh5C62Lp7YrycQOqONaTvM++95dTgfpwatMLWzZPMS+dI3fY3GYd3FmreAUq+8T2RJ47cfsd/YNOWcKbN+o3o6BhKlSpFty6d6NurB2CaJ/qVN0fzygsj6diubW6aJctXMm/hHyRcuIC/ny8D+vamfZsbcwJnZWWxZPlK/lyyjNj4eDw9S9CmVUsefmhA7vSDhaVclepc272qUI+5dsc+fpq3lLNx5ynj7Unf9i0Z3NVU/l2Hj/PU2PG889RgHmxl2ZNt8fpw3p84g0Xjx1C2zI0XCFlZWfy2fB0LV28i9vxFSnuVoFHtajzd/8F/9FLqTpQIbc+pfIa8/xebt2xhxowZREdHU7p0abp27UrvXqbFGvfv389rr7/OSy++mPv8BVi2bBkLFi4kISEBPz8/+vfrR9u2bc2Oe/DgQX6ZNIlTp05RokQJ2rZpw5AhQyymgvyvKgUHc+Zk4Y6I2rxlK9NnziI6OppSpUrxYNcu9Ollmk5z3/4DvPrGm7z8wvN0aN8uN83S5cuZv/B3EhIu4O/nR/9+fWjXxrQQ5t59+3jtzbcL/HuDHxrIkEEPFVr+K1SuSuqSHwrteACrD5zkh5XhnDl/GR9PN/o3q8PQ1qYXPjtORvH4Dwt4v397uofVBCApNZ2Jf4Xz94GTJFxNolwZLwa3rEevRuadRn5ds5Ovl25i+yfPmk0lVJicu44g6eeCz/+/seZEDBM3H+Ls5ev4uLvQr24wQxqa2j87I8/zxNz1uVND5Wf47HUA/Dygtdn2FUci+SX8CLFXk/Ar4Uq/usEMCC38XvVuwz8gdfW0Qj3m6r1H+WHJRs6cv2hqv7aqz9B2prp0x/GzPP71DN4f0pXuTUzt06TUNCYu3cjfe49mt1+9GdwmjF7N6uZ7/Jxj/PLCYBpWLfze0s5tH+bK3nWFesx12/fw87zFnI09RxlvL/p0aM2gB0116f+xd9fRUVx/G8CftbiHeAIJIQKE4MHd3d0ptLi0xaoU2lLsR4sV9+LF3Z3gLsECcQ9xWXv/2CSw7Ia0kJDJ2+dzTs/p3p073JnMzr0z3ys3HgRh1Iz/4fuRg9C+se6zyIEzlzDzz/XYvegXOL8zmu9u0HP8uXUPHjwLhpGhARrVqIJxA7rDXM8c5x/Dqkpj3l/f4V7OG5l/Lyi0/QHAyQfB+PPkNbyMfQ17C1P0qu2HQQ00v5NrL8IxbNX+vKmh9PlspeYZZ/XwTlrpN4Mj8b8jlxEUGQ8rEyO0r+qNUc1rQCaRFGr5jbpNZBv2HaW9yuPyo+SCN/yX0lKTsWXNAty8chZqtQpevpXR57OJcHJxz9tm1rdfIC4mEvNX7tO7j6+Gd4SvXzUMHz9dKz07Owt7t63E5TOHkZz8Gi5uHujYcxiq125cKGWvU94Cz1+8KJR9vS0lJQUrV65E4OXLUKlUqFChAj7/4ou8aU8BYMrkyYiOjsa69evz0mJjY7F82TLcunULEokE1apVw+dffAEbmzcdC+TZ2Vi7di3OnDmDjIwMlPPywmeffQZfX/2/xX/Ls2xZhD+5Vyj7ynX+8hWs37wNoWERKGVrg07tWqNnl44AgNv37uPLb6Zj8vjRaN38zW9j/+Fj2L57H2Li4uHs6IA+3bugZVPtNfzuP3qMNRu34FHQUxgaGqJ+7QCMGDoQZmaFtxaIi3elQtvXf8m99sJZv6ekqHTgdHEX4ZMr8QEM+nhFEcAoyYoygFFSFUUAo6QrigBGSVcUAYySrigCGCVdUQQwSrqiCGCUdEURwCjJiiKAUdIVRQCjpCuKAEZJVxQBjJKuKAIYJV1RBDBKuqIKYJRkRRXAKMmKIoBRkjGA8WEYwPj3/osBjP8Xa2AQEREREREREREREdH/LwxgEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCY60uAtARERERERERERERP8tYomouItAJQBHYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgSIu7AERERERERERERET03yISi4q7CFQCcAQGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCY60uAtARERERERERERERP8tIjH71lPBeJUQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4EiLuwBERERERERERERE9N8iEouKuwhUAnAEBhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQmOtLgLQERERERERERERET/LSKxqLiLQCUAR2AQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4EiLuwBERERERERERERE9N8iEouKuwhUAnAEBhERERERERERERERCQ4DGEREREREREREREREJDgitVqtLu5CEBEREREREREREdF/x5M+rYu7CCWO95YjxV2ET45rYBBSl0wu7iIIitnoOTwn7zAbPQcHZT7FXQxBaScPwovB7Yu7GIJSdt0BRD+6UdzFEBSH8tWRtvzb4i6GoJh+8Qsigu4WdzEExdnHH9eDEou7GIJSw8caUZP6F3cxBMNx7iZETOxT3MUQFOcFW5BxZktxF0NQjBv3QeqyacVdDEExGzELYU/uF3cxBMXV2w9J88YXdzEExfLrP9iGfYdD+eqYt0tV3MUQlK+7ihH8/FlxF0NQPDzLIe7+5eIuhmCU8qtT3EUg+n+LU0gREREREREREREREZHgcAQGEREREREREREREX1SIjH71lPBeJUQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4EiLuwBERERERERERERE9N8iloiKuwhUAnAEBhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQmOtLgLQERERERERERERET/LSKxqLiLQCUAAxhERERERERERERERP+PqVQqLF68GDt27EBKSgpq1qyJH374AW5ubjrbLlq0CIsXL9a7n65du2LWrFkAgCFDhuDSpUta3wcEBGDjxo2FVm4GMIiIiIiIiIiIiIiI/h9bunQpNm/ejN9++w2Ojo6YO3cuhg0bhv3798PAwEBr26FDh6J3795aaWvXrsWWLVswePDgvLSgoCBMnz4dzZs3z0uTyWSFWm4GMIiIiIiIiIiIiIiI/p/Kzs7GmjVr8PXXX6Nx48YAgAULFqBBgwY4duwY2rdvr7W9qakpTE1N8z4/fPgQGzZswMyZM+Hj4wMAiI+PR3x8PCpXrgw7O7siKzsX8SYiIiIiIiIiIiIi+n/q8ePHSEtLQ506dfLSLCwsUKFCBVy7dq3A/DNmzECNGjXQpUuXvLSgoCCIRCJ4eHgUSZlzcQQGEREREREREREREZHANWvW7L3fnzx5Um96VFQUAMDJyUkr3d7ePu+7/Jw+fRq3bt3Cnj17tNKfPHkCc3NzzJgxAxcvXoSJiQlat26NUaNG6UxJ9TEYwCAiIiIiIiIiIiKiT0ok5uRAn0pGRgYA6AQWDA0NkZSU9N68a9euRZMmTVC+fHmt9CdPniArKwv+/v4YMmQIHj16hDlz5iAiIgJz5swptLIzgEFEREREREREREREJHD5jbAoiJGREQDNWhi5/w8AWVlZMDY2zjdfREQErly5ghUrVuh8N2PGDEyZMgWWlpYAAG9vb8hkMkycOBGTJ09GqVKlPqis72KYi4iIiIiIiIiIiIjo/6ncqaNiYmK00mNiYuDg4JBvvhMnTsDGxgb16tXT+U4qleYFL3J5eXkBQIHTUv0bDGAQEREREREREREREf0/5evrCzMzM1y5ciUvLTk5GQ8fPkTNmjXzzXf9+nUEBARAKtWdyGnAgAGYNm2aVtq9e/cgk8ng7u5eaGXnFFJERERERERERERERP9PGRgYoH///pg3bx5sbGzg4uKCuXPnwtHRES1btoRSqURCQgLMzc21pph6+PAhunXrpnefrVq1wq+//gp/f3/Ur18f9+7dw5w5c/DZZ5/BzMys0MrOAAYRERERERERERER0f9j48aNg0KhwHfffYfMzEzUrFkTq1evhkwmQ1hYGJo1a4ZZs2aha9eueXliY2NhZWWld3/9+/eHSCTCxo0b8euvv8LOzg6DBw/G559/XqjlZgCDiIiIiIiIiIiIiD4pkVhU3EX4T5FIJJg0aRImTZqk852rqyuCgoJ00u/cufPeffbr1w/9+vUrtDLqwzUwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHCkxV0AIiIiIiIiIiIiIvpvEYlFxV0EKgE4AoOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhKcEjeFlI+PD2bNmoWuXbt+8D4iIiJw69YttGvXDgDQtGlTdOnSBWPHji2sYv7nXX4Vg6WXH+F5QgpsTQzRw98DA6p6QiTSPzQs9HUqOm84qZPuaWOO7f2bAgBUajU23XqOXfdeIiY1A6WtzTCwWjm09XUr0mMpDDwf+TNycUDD2wdwvdtoJJy7+t5tnXu1Q7lpI2FS1g0ZL8PxbO4KhG/co7WNZXU/lJ89GZbV/aBITkPYhl14MmMx1HJ5ER5F4TCuWBXW3QbAwKU0lMmvkXzyIJKO7Na7rVn9ZrAfNjHffcWs/B9SL54CAMicXGHTcwiMfStBrVQiM+g+4reugiI2ukiOozBdvXUXq/7ajuCQMFhbWaJL2xbo3aldvr8dADhx7hI27NiNiOgYONrboV/XjmjTtKHWNodPnsXWvQcRHhkNWxsrtGnaCP27d4JUIinqQ/pol19GYcnFB3gRnwwbE0P0rOKJAdW98z0nIYmp6Lz2iE66p60Fdgxq+cH7FZJrt+5g9cYteBkSCmsrS3Ru1xo9O3d4b9lPnr2Ajdv/RmR0NBzt7dGnW2e0btZYa5uQsHAsX7cRt+89hEQiRmW/Chg5dBCcHR2K+IgKR2ZGOrasX4Jrl04jMzMDvhWroP9nE+DsWuYf7+P336bByMgYIyb8oJUeHxeDLWsX4f6da5DLs+FXuSb6DB4NR+fShX0YhcbA2w/mrXtC6uACZWoS0i+dQPrZQ+/NY+hbBaYtukDm5AZVWioy711D6uHtUMuzILEuBbtvfs83b/q1c0jevqKQj6LwGPpUgnnbXpA6ukKVkoS0C8eQdubg+/NUqArzll0hcyoNVXoKMu5eRcrBbVBnZ+VtY1yzIcyatIe0lAOUyYlIv3oOqSf2ACpVER/Rx7v08BkW7zmFFxExsLEwQ6/GNTGwRd187yXZcgU2HL+EA4F3EJWYDAdrC7QNqIShretDJn3zmHXq9iOsPHgOL6PjUMrCDO1qVcZnbbS3EarLr6Kx9OIDPI/PacNWLosB1b3e34Zde0wn3dPWAtsHNtdJj05JR8+NJzG/Q23UcLMr9PIXhes3b2PNxs05dY4VOrVrjR5dOr63zjl19jw2bduJyJy2Se/uXdCqWROtbXoNHo64+ASdvLs2rYWlpUWhH0dhkpbxgWGD9pDYOkKdnoKsW+eRff10vtuLrUrBfNj3OunKuEikrvsNErdyMOuV/7N55sXDyLqs27YRErZh9ZNnpeHqkfkIvn8c8ux0OLlXR+3202Bl5/HefKe3Tcaz2/t10pv1/R1lK7XSSQ88OBtx4Q/Q/vMNhVb2onDj5k2sW78BISEhsLKyQof27dCta9f3Xienz5zBlq3bEBUVBQcHe/Ts0QMtmuveXwEgPT0dI0ePQb++fdCyRYuiOoxCdeX2fazY/DeCQ8NhY2WBrq2boU/H1v/omeTJi1cYNnUGti3+DU722nXKqUtX8deew3gVHglzUxPU8K+Akf17wMbKsqgOhYgKkfBbzUVgypQpcHFxyQtgUOG6F5mACfsD0dLLBSNr++J2ZAIWXngApUqFITW89eYJik0GAPzZpS6MpW8aX0ayN/+/LPAx1t94ihG1fVHRwRoXXkbj+2M3IRaJ0NrHtWgP6iPwfOTPyNURAQdXQ2ZV8EOZY5eWqLJhHoIXbUDs0fNw7NQcVdbMhiorG5HbNS+gjD1cUevIWiQG3sbNPhNg5usJn5kTIbOxwv3RPxb14XwUQ08fOE78AalXzyNx9yYYeVWATc8hgESCpIM7dbZPv3MN4TO/0km3GzIOYmNjpN+9DgCQ2JSC87dzII8MR/SyORAbGMK66wA4fT0TYd+NgVqeXeTH9qEeBD3F1F/momm9Ovisbw/cfRSEZeu3QKlUoX+3jnrznLl0FTMXLEH39q1Rq5o/zl+5jlkLl8FAJkWzBnUBADv2H8ai1RvRuG4ARg7qi9fJyVizeSeeBb/Cz1PzDwoJwd2IeIzfcxEtfdwwsm5F3I6Iwx/n7kGpUmNIgK/ePE9iXwMAlnVvCKN87icfsl+hePj4Cb6ZOQtN6tfF0H69cO/RYyxftwlKpRJ9u3fRm+fspUD88r+F6NahLWpWq4KLgVcx+48lMJDJ0LRhPQBATGwcxk75Dm4uzvju6/HIysrGmr+2YNIPM7Fm0XwYGhp+ysP8IEvm/4BnQQ/Qe/BomBibYtfW1fjlu9GYs3gzTM3ef99VqVT4a/UfuHbpNBo0bav1XWZmBmZ9PxYiETBk5GTIZDLs3rYWM6eNxOzFm2FmLrwHQVlpT1gP+RqZdwKRcnQnDNy9Yd62N0RiCdJO674QAQDD8lVhNXgiMm5cQOqhbZA6uMCsTU+IzcyRtHkplMmvEb9It24xqdsCRpVrI+PqmSI+qg8nK1MONsMmI+P2ZaQc3gEDDx9YdOgLkUSC1JP79OYxrFgNNkO/Qsa1c0g+sBVSRxdYtOsFsakFXm9aDAAwbdgall0GIeN2IJL3/QWxmQXM2/SAzLk0Etf9/gmP8N+7+yIU4xZvRqsafhjdsQluPQvB77uOQ6lSYWjrBnrzzNl+GAcC7+Lzdg1RsYwLHr6KwPIDZxCZkITpAzsBAC4/fI6vlm1Dqxp+GNelOZ5HxGDRnpN4nZqOqX3a6t2vUNyLTMCEPZfQ0tsVI+tWwO3weCw8fz+nbvDRmycoJgkA8Ge3+jCWvXnUfLv+yRWVko4xuy4iNUv4nUxyPXz8BN/OnIXG9eticP8+uP/wEVas2wilUok+PfR3sDt38TJ+nf8HunZoh5rVNXXOnN8XQyaToWnD+gCApKRkxMUn4IshA+FXobxWfjMz0yI/ro8hcSoDk66fQ/74FrIuHITEpSyMGnWESCxB1tUTevOI7V0AAKnbFgOKN23R3A5HyuhQpP71P518RvXbQeJYGvLHN4rgSAoP27D5O7VtEmJC7qBWm68hMzTFzZNLcXDlIHSfuB+Gxvm3H+IjH8GzcjtUrNtfK92ylLvOtnfPr8W9C+vg5FGzsItfqB49fowfp/+Ehg0aYNCA/rj/4CFWr1kLpVKJXj176s1z4cJFzJk7D507dUT16tVx+XIg5v9vAWQyGRo3aqS1bUpKCn6aMRPR0cLvtJbr/pNnmDxrAZrVDcDwPl1w99FTLN24HUqlEgO6tn9v3hchYfj61wVQKpU63524EIgfFyxDp5aN8Xnfbkh4nYSVW3Zh7I+zsWbudBgaGBTVIRFRIflPBjCoaC278hg+dpaY2ao6AKCuuwMUKhXWXnuKPlU89T7APIlLgoOZEQLy6XmVIVdg8+3n6FPFM++lf4CbHR7HvMbWOy8E/cKe50MPkQiuAzqj/OwpwD/s3O0z80tE7jyCR1/PAgDEHb8AmbUlfKaPzwtgeE4aDkVKGq53HQW1XI7YI+egzMiE3x/f49lvy5AZGllUR/TRrDv3Q9arF4hdoXlYy7h3EyKJFNbteyL52D6dQIMqJRlZKclaaRbNO0Dm7IqInydBlfOddee+UKWnI3Lud3k9ZOWx0XAc/z0MPbyQ+eTBJzi6D7Nmy054ebjju4mjAAC1qlWGQqHEpp170aN9axga6jY0V27ahsZ1a2HsZwMAAAFVKyM5JQ2rNu9AswZ1oVSqsH77btSoXAkzJk/Iy+dd1gODx0/Btdv3ULNKpU9yfB9i2eWH8LW3ws9tAgAA9TwcoVCqsObqY/Sp6qUVlMgVFPsaDmbGCChtX6j7FYq1W7ajXFkPfPPlOABAQPWqUCiU+GvHbnTr0FZvoGH1xs1oVK82Rg8brMlTrQqSU1Ox5q+teQGMdVu2w9TEBPNm/gCjnH04Odjj219mI+jZC/hXLK+zXyF5+vgebl69gEk//g9VqmtefPhUrIIJw7vi+KG/0bnnkHzzhgQ/xfoV/8OLpw9hYKB7/q5ePIXI8FeYvXgzXEuXBQC4lfHEhOFdceXiKTRrrT9wVJzMWnaDPOIlkrYuAwBkB90FJBKYNu2ItPNHAIXuC1Tzjv2Refdq3iiK7OcPAbEYJvVbAjIDQJ4NechzrTxSF3cYVa6NlCPbIX/5pOgP7AOZt+4OefhLvP5rKQAg6/EdQCKBWfNOSD13GNAzatGy0wBk3rmC11uXAwCynz2ASCyGaYPWEMkMoFbIYd6yKzKD7iJx/R95+eRhwbCfMhfp3pWQ9eTepznAD/Dn/jPwdXPCL0M1L6Hr+XlBoVRh9eHz6Nu0NowMZFrbv05Nx9/nb2B8lxYY3Epz36hVXvN7+GP3CYzr0hw25qbYe+kWHG0s8cvQrpCIxahTwRMJKWnYeOIyvurZCjIB95pedvkhfOytMLON5iVgXXdHKFRqrL0WhD7Vyulvw/6DOkelVuPAwxD8fk6410N+1m/einJlPTDtq/EAcuocpRKbd+xC147t3lPn1MGo4Zr7bs1qVZGSkop1m7bkBTCeBQcDAOrXqQVnJ8dPdDSFw7BuGyhjwpBxeBMAQPHyMUQSCQxrtUDWzbN6768SOxeokhOhDH2qf6fZWVBGvtJKknr6QVrGB2n71kCVGFvox1GY2IbVL/rVLYQ8Oo3Wg5fDzUczssTRvQa2zm2Bh4FbULXJCL35FPIsvI59Cb96g+BQukq++09OCMOVQ7Px6tFpGBiZF8UhFKqNm/6CZ9mymDzpawBAjRo1oFQqsG3bdnTu1Env/WTt+vVoUL8+vvj8c02e6tWRkpKCDRs3aQUwLgcG4s9ly5GRkfFpDqaQrN66B94eZfDD+C8AALWr+kOhVGLDrgPo2a6l3t+OXK7AzsPHsWrrbhjIZDrfA8CGvw+gTjV/TP5icF5aaWdHfD5tJi7duIMmdYQd7CKiEroGxosXL9C7d2/4+fmhTZs2OHz4cN53KpUKy5cvR6tWreDn54dq1aph2LBhCAkJAQAMGDAAV69exe7du9G0adO8fLGxsRgzZgyqVKmCWrVqYdasWXmR2127dqFFixb4+eefUb16dYwapWmIPH/+HCNGjECtWrVQvXp1jBs3DuHh4Xn7VCqVWLduHVq1aoVKlSqhVatW2LJlS973V65cQYUKFXD8+HG0atUK/v7+GDhwICIjI/Hzzz+jRo0aqFOnDv7888+8PPHx8Rg3bhxq1aoFf39/9O7dG1evvn/anU8pW6HEjbB4NPF00kpvVs4ZaXIFbkfE680XFJsE71L597gwkEiwtkcD9K/qqZUuFYuRrRDulAQ8H/pZ+PvAb8lPCNu0B7cHTy5we+MyLjDz8UDU3uNa6ZG7jsLUyx0m5TTTodi1qI+Yw2e1pouK+vsIRBIJ7FrWL9yDKExSKYx9KyHt5mWt5LTrFyE2NoGRd4UCdyGxsIJNtwFIPnUYWS/evDQzrVEXKeePa03vkf3yGUImDhJ08CJbLsft+4/QoLZ2Y7Jx3QCkZ2Tg7qMgnTyR0bEIjYhEw9o1dPKER0YjNCISiUlJSE5JRd2aVbW2KVvGDZYW5rh8/VbhH0wh0dxPYtGknItWenNvV6RlK3A7Ik5vvqCY1/C2tyr0/QpBtlyOO/ceoEHtAK30RvVqIz0jA/cePtbJExUdg9DwSDSoXUs7T906CI+MQlhEJNRqNc5dvoI2zZvmBS8AwMfLEzvXrRB88AIA7t4MhKGRMfyrvDlOC0trlPeritvXL70375+/z4BKpcRPc1fBwspa5/satRvhx9kr8oIXACCVah4Y5dkCHNUlkcLAszyy7mv32M28ew1iI2MYeOj2JJc6l4G0lAPSL2pPhZN+4SjifvsKyGf0mkWXwVDEhCP93GG93wuCRArDchWQee+aVnLmnSsQG5nA0EN31JXUxR1SO0eknT+qlZ527ghifpkAtTwbYnMriE3NkfXgptY2iqgwKFOTYVhB+74rJNlyBa4/eYmmVbWPvXn1CkjLzMatZyE6edIys9C9YQ00rqx9/bg7lgIAhMcl5u3b2MAAEvGbxy5LU2PIFUqkZ2ZBqDR1QxyaeDprpTfzctbUDeH51DmxSfC2e/8orKexSZh18hbaVyiNGa1rvHdbIcmtc+q/U+c0rFvnvXVOWHgE6tXRrnMa1sutcyIAAM9fvISJsTGcSsgUhXkkEkjdvKB4qh2Mkj+5A5GhEaQuZfVns3eFMjZc73d6SWUwbtYN8ucPoHhy52NKXOTYhs1f2NOLkBqYwMWrXl6asZkNnDxqIDToXL75EqOfQq1SwNb5/e2vwIO/ISnuFdoNWwtbJ2GPIM6Wy3Hv7l3UrVtHK71+/fpIz8jAgwcPdfJERUcjPDxcT556iIiIyHsXlZqaipk//wL/SpXwy8yZRXcQhSxbLsetB4/RMKCaVnqTOjWQnpGJO4/1dwy5fPMO1mzfi4Fd22PkAN2RKyqVCjUrV0SnFo210su4aN7RhEfFFM4B0AcTicX871/+919UIo96/fr16Ny5M/bv349WrVph4sSJuH//PgBgw4YNWL16NaZOnYqjR49iyZIlePnyJX777TcAwKJFi1C1alW0adMGO3e+mZZl586dqFmzJvbv349JkyZh3bp12L37zdzzISEhiImJwZ49ezBx4kSEh4ejV69eMDAwwPr167FmzRrExsaif//+SE1NBQD89ttvWLp0KcaMGYP9+/ejX79++OWXX7Bu3bq8/SqVSvz555+YN28e1q9fj8ePH6NTp06QyWTYsWMHevfujd9//x1BQZqGzvTp05GVlYVNmzZh//798PDwwKhRo5Cenl7Up/0fCU9Oh1ylQhkrM610N0vN0OdXial68z2JTUK6XIEh28+hzpL9aLnqCBZefAC5UvMyXiIWwauUJUqZGkGtViM+PRNrrz/B1dBYdPd3L9Jj+hg8H/plhETijG8LPJr0G5TpmQVub+arCdSkPX2plZ7+XNMzy8zbA2IjQ5i4uyLtabDWNtlxiZAnpcDM+/3zqhYnmZ0jRDIZ5FHaD3LyaM1Drcyx4BE11l36Qa1WIXHXxrw0aSkHSEzMoIiPge2AESizeAvcV+6Cw7jvILG2LdyDKGQRUTGQKxRwc9buhejqpHmwDwmP0MnzKkxz/lydtQOGLjk9GUPDI2FmagKJRIKoGO0XLympqUhNTUNEtHAbsGFJaZArVShtrd2jzC3n/vIyIUVvviexSUjPlmPwllOo/ccutFi2HwvP38u7n3zofoUgMioacoUCrs7aL9je/M3fc5245HedRCAqOgZpaelwsC+F35etQse+g9GyW198+/NsxMbpDzwLTXjYS9g7OEP8Tu9uBydXRIbrvox928iJP+LH2StQ2sNL7/cmpmbwLu8PAFDI5QgJfoplv8+AuYUVatVvVjgHUIgktvYQSWVQxGqPwlPGRwEApHZOOnlkzprAuFohh9WQr+Dw6xrY/7QM5h37AxL9A5iNKteGQZlySNm7CVCrC/koCo8093zEaJ8PRZxmigmJvZ7z4fLmfNgMmwSn2evh+PNKWHQemHc+1BlpUCsVkFhrjx4VGZtCbGwKqW3+PfKLW1hcIuQKJcrYa9eNpe1sAACvonVf1ruUssa3fdvnBSxynb79GFKJOG9fvRoHICQmHuuPXURyegbuvgjFXycDUd/PC5amJkV0RB8vPKduKGP9Ths2p27Ivw37WtOG3XoGdRbuQcvlB7Hw/P28OgcAHC1MsGdIS3zZyF/vKA6hyqtzXN6pc3LaKmHhui/kX4WGAYBOPZU7yiI0TFNPPQt+CXNzM/w0ay469hqAdj36Yebs+YhPSCz04yhMYstSEEmlUCZqt5+UOSMkxDb6f/cSexeIDAxh2mcCLCbMg/nImTBs0AHI56WMYbVGEJlZIvP0rsI9gCLANmz+Xsc8h4WNK8Ri7d+9hW0ZvI4NzieXZvooAAi6tgObfm2A1d/5Y9/y/ogJ0Q5m1WgxDt3G7xX81FEAEBUZCblCARcX7Q5Ezk6aayAsPEwnT2hIKADo5sm5v4TlXEeGhoZYvuxPfP3Vl7AQ+Po5b4uIjtX723FxzP3tROnNV75cWfz95zwM6t5Rq7NALrFYjLGD+6DBO4GRc1c1HS483Fx08hCR8JTIKaT69u2L3r17AwAmTJiAwMBArFu3DvPmzUPp0qUxe/ZsNGmiWRTNxcUFrVu3xpEjmkW+rKysIJPJYGRkBBsbm7x9tmzZEoMGDQIAuLm5YcOGDbh//z66d++et82oUaPg5qZZIHnu3LkwMTHBvHnzYJAzX97ChQvRrFkz7N27F506dcKWLVswdepUdOjQAQDg7u6OsLAwrFixIu/fAoDx48ejUiXNcM/atWvjzp07mDx5MkQiEb744gssXboUT58+hY+PD0JCQuDt7Q03NzcYGRnh22+/RYcOHSARyPDz3DlsTQ20Ly2TnM9p2QqdPIkZWYhJy4RSrca4ehXgZG6Cq2GxWH/9GaJTM/FLztRLuY4+Cce3RzW9KOu7Owh60WqeD/3kiUmQJyb94+2llpqHZUWy9sOyIiVN872FGWSW5nq3yd1OamGmky4UYhNNQEudoR2IVGVqhvyKjY3fn9/cEmb1miLpyG6o0tPy0iU589Db9BiMrOAniPlzDiQWlrDpPgjOU2Yh7IexWiMzhCQtJyhraqJ97MY55yI9XXc4dH55TIyNcr7PgJGhIZrWr43dh47Bo7QrGtaugcSkZCxctQESiQSZAu4Nm3s/Mcv3fqI7RUNiRhZiUjOgVKkwvqG/5n4SEoN114MQnZKOX9rW+qD9CkVaWn5/c83nNH3XSW4e4/yuk3S8TtZMwbZi/V/w9SqH7ydNxOvXSVi5cTMmfjsdK/+YC2Mjo8I9mEKWkZYGYxPdedONjE2QkZGmJ8cbpd3L/eN/Z97PX+PerSsQicUYPvYbWNuUKjjTJyY20vyt1Vna14M6SxNAFxnp3mPFZpo6xXrQBGTcuoT0c4cgcysLs5bdIDazQNLmpTp5TBu3Q3ZwELJfPCrsQyhUImPNS3OVzvnIqXP0nA9JzpopNkO+RPrNi0g9cxAGpT1h3qo7xGaaNTDU8mxk3AqEaYOWkEeFIfPeNYjNLGDZZRCgUkKkZzoyoUjN0FwLpsbaZTQxMsj5/p/VDaduPcL+wNvo3TgAFqaa8xjg64HBLethwd/HseBvzUhSXzdHzBrWrbCKXyRSc9qopu9MnVVwnZMJpUqNcQ384GRhgqshsVh//QmiUzPwS85UVJZGBrA0KnnzjefWHyb/ps7Jt22i3Z55/iIYcfEJaNeqBbp2ao+Q0DCs+2sbJk77Hsv/mCfYOkdkqClX7v00T077UmSgW26RsSnE5laAWIzMs/ugSk6AtIw3DGs2h9jcChmHNmpnEEtgUK0h5I9vQfVauKNCc7ENm7/szFTIDHWfyWSGJpBn5d82iY/QjG6SZ2egae/5yEp/jdtnVuLAqsHoNHIrbJ00I+FsHPWvLylEuX9zExPtQHbuZ30dVNNynvNM382Td21p8shkMri5CnxKaT1S0wtoo+czHZadre5o4YKERcVgyYZt8PIojTrV/P91fiL69EpkAKN6de0XuJUrV0ZgYCAAoGnTprhz5w7++OMPBAcHIzg4GM+ePYODw/uH47q7u2t9trS0RFZWVr7bPHnyBH5+fnnBCwCws7ODh4cHnjx5ghcvXkAul+uUNSAgAOvXr0d8/JsenGXKlMn7fxMTE7i6ukIk0iwMYJTTWM3OmZJhzJgxmDRpEo4ePYrq1aujfv36aN++vWAWEy1o8iKRnvUOjGVSLOlcB6WtzOBsoamMq7uWgoFEjKWXH2NYTW942LzpGVzRwRoru9XD07hk/Bn4GGP3XMaKbvXyzpmQ8HwUjoKGyKlVqnx7bL3ZRri9YfVeCG9RF9CT16JRS4jEYiQdf2fhVanmFq9Mfo3oRb/m9QiWx0TC5fv5MKvTGClnj767O0FQFXDM+q4JVQF/Y7FYc56/GvEZZFIZ5ixZidmLV8DQwAD9unVEekYmjPTMqyoUahRwfHquI2OpFEu7NdDcT3JGflV3s4NMKsbSiw/wWa3yH7RfoSjoOsn9m2vnef+dWSwSQ6HQvLiztrTEjGlfQ5xzvbk4OWL05G9x4sx5dGjd4gNLXfhUKhXU7xzX+45TLCq8Abhdeg1B+679cenMUaz442eolSo0bql/gdJiU9Dx6ruOckYVZN6/jtRD2wAA2c8fASIxzNv2QuqxXVDGvekJKCvjBZmrBxLX6S46KzgF/abfcz4y7l1DygHNdKjZzx4CIhEs2vdBytGdUMZGIWnHKs2olV7DIerzBVTZWUg9uQ9iIyOo5cJ9ufYh95J3nbz5ENNW/42qnqUxodub+8Mvmw9gz8VbGN62IQJ8PRAR/xrLDpzB6D82YfmXA2Es0IVDC6yH9SxiZiyTYknXetp1jqudpg176SGGBfjAw7bk9AZ+17v32Xfpqy8Lan+Kcq6tL8eOhEQsga+3JoDsX7EC3EuXxvgp3+L4qTPo2Lb1B5a6iH3A/UQtz0bajqVQJsZCnZwAAFCGPQcUChg1aI+swGNQJbxZdFjmXQViM0tkXTtZqEUvKmzDaqj1tE3e9xt637Nrxbr9Ubp8E7h5v5kS2NmzNrbPb43bp5ehWd8FH1/gT0ytev/9RN/5+Kf3k5KqoOMrrGeSV2ERmDhzHiRiMX7+ekxeO5+IhK1EBjDevcEolcq8QMKKFSuwZMkSdOnSBXXq1MHgwYNx8uRJHDx48L371DeC4d2XhkZv9XzJ74WiSqWCTCZ77/cAIJW+OfVv/z+ge3xva9GiBc6fP4/z58/j0qVLWLt2LRYvXozt27fDy0v/VA+fUm4P3jS59siC3JEGZga6iyoZSSWorWehv/rujlh6+TGexCVpvbB3szKFm5UpqrmUgqmBFD8ev4VbEfGo5iK8Xp88H4VDkaSZwkZqrt2bOHdUhSIpNW/kxbvb5G6Xuw8hUuX0NhEZafemEef2kk1/f29p0xr1kH7/Vt7C3bnUOSM40u/e0HqAzHoeBGV6KgzLeEKoZ8Ust/dRhnaPvtxea2Ymuj2EzUz158ntEZnbW8nE2AhTx36OccMGIjo2Dg52pWBibIQDx0/DxUm4c0/n3i/eHbmVlpVzPzHUcz+RSVC7jO4xNfBwwtKLD/A0NgnlSln86/0KhWne31y7R9abnoy607OY5nNt5fbqMjU1yeslGVC9qladXMHXG6amJnj2Iv9pDorD7q2rsWvraq20gLpNkfw6QWfbjHT9IzM+lE+FKgAAv8o1ERsTiT071gkugKHOzLnHGmrfN3I/qzJ1eznm9ibOeqQ9p3hW0B2Yt+0FmUsZrQCGkX8AVOmpyHok7LnZgTd1g9hQu2d07kgUVYa+86HJk/VQe32LzEd3YNG+D2Qu7lDGRkGdnYWkbSuQvHs9JDZ2UCbEQp2dBZPaTfKmqBIis5zenemZ2mubpOX0aM79Pj8bT1zGgp3HUMPbHQtG9YZhziKi0YnJ+Pv8DXzWugFGd3qz9p6fuwu6/bQUey/eQu8mtfLbbbHKq3PeWdA9rw2rr86R6q9z6ns4Yumlh5o2bAkOYOTWHxk67YycOkfPlGD511PabZOKvrpr8fhV8IWpqQmeB7/S+U4o8kayvTPS4s3IDD09phVyKF7prgMhf/EQRg3aQ2Ln/E4AozKUcZFQxepOvSREbMNq3Dy1FDdPLtFK8/BrhYxU3ak45Zlp711028rOA1Z22tMBGxpbwKFMNcRH6V5LJYGJqaYt9u4i2+l59xPdtppJge3ewmvfFYe8Nnpmfr+dj5928eb9R/hm7mKYGBli0U9T4Ooo3OktiUhbiQxgPHjwAM2bN8/7fPPmTfj6ahZpWrZsGUaPHo3PP/887/vVq1cX2IP53/Lx8cG+ffuQnZ2dFzyJi4vDq1ev0LdvX3h6ekImk+HGjRsoX/7NYlPXr1+HnZ0dLC3fv7idPtnZ2Zg/fz46deqEtm3bom3btsjMzES9evVw5swZQQQwXC1NIRGJEPZa+4VraM7nt1+85wp5nYproXFo6e0C87cehrIUmkXUrY0NkZiehYuvolG3jANsTN6MNvHNWZg2Nq3gdRSKA89H4Uh9onlZaOJZBsm330zNYeqpGb2U+vg5lGnpyAiLgolnGa28BnY2kFmYIfXx809X4H9JERsJtVIJmYP2vLcye818pvJI3TlQc0msbGHoXg5JK3R7/cpjIqFWqSCS6b5kEIklUAlxsd0czo72kIjFCI/Unus0LOdzGVfduUrdchdii4yCd1n3vPTwyGitPJeu3YS5mSkqlfeBR2nN8OrE10mIjU/Qyic0rlZmkIhECH2tPU1a7me995PEFFwNjUUrb1eYvzVdR2bO/cTKxOCD9isULo4OEOu5TnI/l3HTHT5fOmfu8vDIKHh5eujmcXWBpYU5RCIR5HLdKVKUSiUMBNbLsWmrzqhas75W2vUrZ3H3ViBUKpVWECY6Mgwubu4f9e89f/oQsdERqF2/uVa6u6cPnj6+l0+u4qOIj4FaqYTEVvvljrSU5rMyWvelmCInOCGSvHP/FOes9/DOtWFYvgoy798AVMrCKnaRUcRFa85HKe05pqU5nxXRuvP4K2JzfmNS7fMhyukAlHs+DCtUhTojDdnBT6CI0tRdYjMLSCxtIA8TVuDvbW521pCIRQiJ0Q765X72cNTfKUStVmPOtsPYcvoqWtf0w8zBnSF7q2NSVEIS1GqgSrnSWvk8ne1hZWqM5xGxhXwkhcfVKr827PvqnFRcC41By3fqnLfbsCWZs5NjTp2jvX5MRE79UVpPneOWU+dEREbBy7PsW3k0+yjj5orUtDScvxQIX28veJR5c62oVCoo5ApYCXgOe9XrOKhVSoittX8jYivNZ2WCbuBSbGUHaWkvZAfdAt4KcIhy7i+qt6c5FIsh9fBF1tWSMfoCYBs2l29AT5T2bayV9vLhCYQ9vaB5PnmrbZIc/wpWdvoXfAeA53cPwdDIEq7e9bTSFfJMGJna5JNL2JydnCAWixER8c79JELTJsmduvxtudNCRUREoJynZ156ZM4+3EoLfyrp93FxtINELEZYpPZ9Iyxnke0yrrprdP0bx88H4ufFK1HG2Qnzv/vqg6aeIqLiUyLHSuUusP3ixQv8+uuvePLkCYYPHw4AcHJywsWLF/Hs2TO8ePECCxYswLFjx/KmYAI00ezw8HBERelfBOif6NOnD9LS0jBp0iQ8fvwYd+/exfjx42FtbY127drBzMwMvXr1wsKFC3HgwAG8evUKf/31FzZv3oyhQ4d+0PQ+BgYGuHfvHr7//nvcvn0bYWFh2LVrF9LT01G1atUPPpbCZCiVoKqLLU49j9QKGp16HgEzAykqOljp5IlLy8Svp+/g+FPtB+ZjT8NhaiBFeXsrZCqV+PH4Lex5oN0DKfCVpjLzEmhvLp6PwpH+PATpL0Lh1LWVVrpjl5ZIfRKMjFeacxV34iLs2zaG+K2RLY5dW0GlUCDudOAnLfO/oZbLkRl0H6bV62qlm9aoC2V6KrJePMk3r6GnZq7XzKcPdfeblYnMJw9gWr1O3nRSAGBUvjLERsbIfPKgkI6g8BkaGMC/oi/OBV7T+u2cvXwNZiYmKO/tqZPH1ckRTg52OHPpqlb62ctX4eqs+Q4A9h49iaXr/tLaZsf+wxCLxahbQ3txNyExlEpQ1bUUTj0L1zonJ5+GwcxQhoqOug9wsWmZ+PXETRx/oh0EOxYUCjMDKSrYW3/QfoXCwMAAlSuWx/nLV7TKfu7SFZiamuRNxfE2F2cnODnY4+yly1rp5y4FwtXZCY4O9jA2NoZ/zn6z33pRfePOPWRmZsG/Qvl3d1usrG3tUNarvNZ/larUQmZGOu7eenPvS05KxOMHt1Gpysf1+L5z4zKWzv8R8bFvHjBVSiUe3r0Ot3+xfsYno5AjO/gxjCrV0Eo2rFQTqow0ZIfqBrjlLx5DlZUJo6p1tNKNKlaDWqlA9quneWkiY1NI7Zwgf5n/vVpQFHJkv3gMY3/tRU6N/AOgykiDPET3fGQ/fwRVViaMq2rXU0Z+1aFWKvKO3bRuc1h07Ke1jWnDNoBahcwH2qM3hMRQJkM1rzI4deuR9n3w5iOYGRvCz0P/Ap+L9pzEltNXMaB5Hcz6rJtW8AIA3OxtIBGLcPOpdnvtZVQcXqdlwKWUcF+evKkbIrTbsE8jcuoG3bLHpWXi15O3dduwT8Ly2rAlmYGBAfz9KuD8pXfrnEBNnaOnM1lunXPuonadc/5SIFxy6hwDmQyLlq3Clh3aC1RfunINWdnZqFLJr2gOqDAoFVCGPYfMS3sOeZl3Zagz06GM1B09IjKzgHHLXpB5V9HO41sV6qwMKKND89LEpZwhkhlCES7cAOi72IbVMLWwh52rn9Z/rl71IM9KQ9jTC3nbZaQmIPLlDbh41ct3X4+ubMeFPdOhVLx5p5OWFI3oV7fgXDagSI+jqBgYGKCSnx8uXrqkdZ1cuHgRpqam8PHWXc/D2dkZjo4OuHDholb6hYsX4eLsDMcCpk0XOkMDA1Su4IOzV25onZMzgddhZmKMCl75B7kKcunGHcxcuAKVfMrhz1++ZfBCYERiEf/7l//9F5XIERijRo3Cxo0b8f3336NcuXJYsWIFPDw0vSjnzJmDGTNmoFu3bjA1NUXlypXx008/Yfr06YiIiICzszN69+6NKVOmoGPHjrh8+XIB/5p+rq6u2LRpE+bOnYtevXrBwMAA9erVw9y5c2FhoXl5PG3aNFhbW2PevHmIi4uDu7s7fvjhB/Ts2fODj33BggWYNWsWRo4ciZSUFJQtWxbz5s1DjRo1Cs78iXxW0xujdl/ClMPX0alCadyJTMCGG88wtl4FGMukSM2SIzghBa6WprA2MUQVZ1sEuJXC7+cfIEuhRFkbc1x4GY2tt1/gywZ+MDeUwdxQhk4VSmPV1SBIJWL42lniVng81t14ik4VSqOsgF/Y83z8e1JzU5hVKIf05yHIjksEADz9ZQkqr/4N8oTXiN5/Cg4dm8G5Z1vc7DshL9/zeavg3Ksdah5YheDf18LU2x0+M79E6KrtyAyNzOdfE4bE/dvgNOln2I+eipRzx2HkVR6WbboiYcd6qLOzIDIyhoFLachjIrWmijJwdYdKnv2md+w7Enash/PUWXD68ie8PrwLEksr2PQYjMznj5F+68qnOrwPMrBHF3z546/4ce4faNusMe4/foKtew7giwG9YWRoiLT0dLwMDYeLo0Ne78TBPbti1qLlsDQ3Q72A6rhw9TpOXwzEj1+Pzdtvt3at8PVPv2HR6o2oF1ANN+4+wKa/96Fv1w6CG37/rmG1ymPkznOYciAQnfzccSciHhuuP8HYBpXy7icv4pPhZmUGaxNDVHUphYDS9lhw7q7mfmJrgfPBkdh66xm+bFw5r4dsQfsVsv49u+HrH2bip9n/Q5sWTfHgURC27d6H4QP75V0nr0LC4OzkAKuc0Y8De3fH7D+WwsJ8JeoF1MDFK9dw5sJlfD9pQt5+hw/si4nfTMfUn35Fry4dkfj6NVas+wvlvb1QN0A4dW5+yvtVRflK1bB0/nT0GTwaZuaW2LVlFUxMzdC8bde87cJCgqGQZ8PdU3f6kvw0a9UZJ4/sxryZX6Fr788gkclw4tDfCH31HFN+WlgUh/PR0k7shfXnU2HVfyzSr52Fgbs3TBu1Q+rhbYA8GyJDY0gdnDWjNdJSoM7OQuqxv2HRoR9UGWnIuncdMncvmDZuj/QLR6FOezMBn9RJ0+NREaM7ckGoUo7thu3Ib2A9aDzSr5yBgYc3zJq0R8rBrVDnng9HFyjjoqHKOR8ph3fAsvMAqDPSkHH3KgzcvWHWtCPSzh2BKud8pJ0/AtsR38Ci8wBk3r8BQy8/mLfojJSTe6GMjynmo36/4W0b4ovfN2DSih3oXK8q7jwPxfrjFzGuS3MYGxggNSMTLyJj4WpnAxtzUzwOjcTaoxdQ0d0ZLapXwL1g7UBxWSc72Jibol+z2thw7BIAoE4FT0TEv8byA2fhZGuJrg2E9cLxXZ8F+GDU3xcw5eBVdKpYBncic+qG+n7627Autghws8Pv5+7ltGEtcCE4CltvPceXjfy1RmWUVP17dsek73/CjNnz0bp5Uzx8HITtu/Zi2KD+MDLSX+f0790Dc/9YAgtzc9SpVROXrlzFmQuX8N3kLwFoXmT27t4F6zdvg5WVJWrVqIbglyHYsGU76taqiaqVKxXnIRco8/IxmPYcBZMOg5F9/wokzh4wqNkUmef2Awo5YGAIia2jZrRGRhqUYS+geBUE48adIZLKoIyPgqxsRRhUa4jM03u0RmVI7DQ9rlXxH97xsDiwDaufk0dNOJUNwOltkxHQ5isYmljh5oklMDQyR4XavfO2S4x+BqUyG6WcKwAAqjUdiUOrh+LYxjHwqzsAWRlJuHlyCYxMLOHfYEhxHc5H69O7N6Z9+y1+mTULrVq0xMNHj7Dz710YOngwjIyMkJaejpCQEDg5OeXdT/r26YP/LfgdFhbmqF2rFi4HXsG58+cxbcqUYj6awjG4eweM/2kuvp+/BO2aNsS9oKfYvPcwRvbvkfPbyUBwWDhcHOxh/Q9Hp2VlZ+O3P9fCxNgIA7t1QHCYdnvN3tYG9rbC7bBFRBoidWHPrUQlTuqSyYW+z1PPI7A8MAivElNhb2aEHv4eGFBN0yvzelgcvth1ET82r4qOFTTDpFOz5FhxNQinn0ciLi0Trpam6FvFE1383kwHJFeqsOHmUxx4FIrI5Aw4mBujq18ZDKhWrlAXmTUbPafQz0lJPh+A5pwclP3zl1v/hk3DANQ5uRGXmw1AwrmrWml3PpuKsA2787YtPbwXyk4cCiM3J6S/CMXzOSsQ/tderf1Z16uO8rMnw6JyeWTHJSL8r714Mn0h1Art+f0/Vjt5EF4Mbl+o+zSpVgfWXfrCwNEVisR4JJ86iKQjmuM38q0E56mzELNqAVIvvBlGbztgJExr1EXI+AH57tewnC9sug2EYVlvqLOzkHYzEAnb1hS4tsa/VXbdAUQ/ulGo+zwXeA1rtuxEaHgkStlao0ublujduR0A4Na9hxj//c+YNvYLtGnWKC/P3qMnsXXPAcTGJcDJwR79u3VEqyYNtPZ74twlbNixG5HRsXCwL4UurVugW3vtET6FwaF8daQt/7ZQ93nqaTiWXX6IV4kpsDczRs/KnhhQQ9NL63poDD7fcQ7TW9VAx4ruAHLuJ4EPceppuOZ+YmWGftW80KWSxz/eb2Ey/eIXRATdLdR9nr98Bes2b0doeARK2dqgc9vW6NmlAwDg9r0HmPjtdEwZPwqtmzXJy7PvyHFs370PMXHxcHa0R9/uXdCySSOt/d5/FITVm7bgUdBTGBoaon7tmhg5ZCDMzAp3jmFnH39cD0os1H0CQFpqMjat/gPXA89BrVbBu7w/+n82Ac6ub+qSn78ZidiYSPyxao/efYwf1hnl/aphxIQftNJjosKxZd0SPH5wC5kZ6fD0qYge/T7PWxPjY9XwsUbUpP6Fsq9chn41YNayK6R2TlAmJSL90nGknzsMADAoWx42I79F0rblyLh+Pi+PcY2GMGnUBtJSjlAmJyIj8DTSzhzQWlfIyL8WrAaMReycSVDGFk2w3HHuJkRM7FOo+zSqVAPmrXtAau8EZVIC0i4cR9oZzZpxBp7lUWrMD0jc/Ccyrp3Ly2Mc0AhmjdtBaueoOYeXTyH11D6t82FctS7MWnbRrIGRGIf0i8eRdv5ooZYdAJwXbEHGmS2Fus9Ttx7hz/2n8TI6HvZW5ujVOAADW2hGnVwLCsbw/63HT4M6oVPdqli67xRWHDyX775WfjkINX08oFar8dfJQOw8dx3h8a9RytIMdcp7YkznZrDRs27XxzBu3Aepy6YV6j5PPQvH8suPNG1YUyP0qOKJAdU1Iw2uh8bii53n8WPL6uhYMWdazyw5VgQ+wulnEW/asNXK6dQ5uXL3sbx7A9RwsyvUsgOA2YhZCHtyv1D3eeHyFazbvBVhYZo6p2O7NujZRbP2z+179/HVNz9i0vjRaN38zbon+w8fw47dexETFw8nRwf07d4FLZo2zvtepVLhwJFj2HvwCCKiomFhboZmjRtiUJ+eMDQs3Km3XL39kDRvfKHuU1rOH0b12kBsbQ916mtk3b6A7OunAQASt3Iw6zUW6Yf/gvxBzggDA0MY1W0DmZc/RKYWUL2OQ9aNM5Df0x4xbVCzKYwbdULSgq8AZeG25d9m+fUfbMO+w6F8dczb9f6Fpj9EVkYSAg/OxssHJ6FWq+BYpipqt5+mtcbFgRUDkZIYjj5T3jzzhD+7jBsnlyAhMggikRhu3vUR0OYrmFk56/13DqwYCABo//mGQiv7113FCH7+rND2BwAXL13Cxk1/ITwsDLalbNGhfXt066rpaHLn7l1MmToNX06cgJYtWuTlOXjoMP7etQuxsbFwcnREz5490bxZU737j4qOxuAhQ3X2UVg8PMsh7v6HdQrOz9krN7B6626ERETBzsYaXds0RZ+ObQBo1rAY++NsfDP6M7Rr2kAn78FT5/HrktXY+edcONlr6pQb9x5i3PQ5+f57Q3t2wme9uhRK2Uv51Sl4I9IROqpbcRehxHFb+ndxF+GTYwCDiiSAUZIVRQCjpCvKAEZJVRQBjJKuKAIYJV1RBDBKuqIIYJR0RRXAKMmKIoBRkhVFAKOkK4oARklXFAGMkq4oAhglXVEEMEq6oghglHRFFcAoyYoigFHSFUUAoyRjAOPDMIDx7/0XAxglcg0MIiIiIiIiIiIiIiL6/40BDCIiIiIiIiIiIiIiEhxhr8xJRERERERERERERP/viMTsW08F41VCRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgiMt7gIQERERERERERER0X+MSFTcJaASgCMwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHCkxV0AIiIiIiIiIiIiIvpvEYlFxV0EKgE4AoOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgER1rcBSAiIiIiIiIiIiKi/xaRmH3rqWC8SoiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwpMVdACIiIiIiIiIiIiL6bxGJRcVdBCoBOAKDiIiIiIiIiIiIiIgEhwEMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBEda3AUgIiIiIiIiIiIiov8WkZh966lgvEqIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgER6RWq9XFXQgiIiIiIiIiIiIi+u+ImtS/uItQ4jjO3VTcRfjkuIg3IWxsz+IugqC4LtqOxFmjirsYgmI9bSleDG5f3MUQlLLrDuCgzKe4iyEo7eRBSLp5oriLISiW1Zoj8+Cy4i6GoBi1G4HYh1eLuxiCYlchAA+fRRR3MQSlQjlnPB/YrriLIRieGw7iWv3axV0MQal5IRCZW2YXdzEExajPFGQeX1fcxRAUoxaDEfbkfnEXQ1Bcvf3Yrn9H2XUHkHzzeHEXQ1AsqrXArquq4i6GoHQNEOPVs6DiLoaglCnng5SrB4u7GIJhHsC2K1FRYQCDiIiIiIiIiIiIiD4pkVhU3EWgEoBrYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgSIu7AERERERERERERET03yISi4q7CFQCcAQGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCY60uAtARERERERERERERP8xYvatp4LxKiEiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBkRZ3AYiIiIiIiIiIiIjov0UkEhV3EagE4AgMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhxpcReAiIiIiIiIiIiIiP5bRGL2raeC8SohIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgEhwEMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwZEWdwGIiIiIiIiIiIiI6L9FJBYVdxGoBOAIDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsHhGhhU6Ax9/WHZvjekTm5QpSQh9dxRpJ7ar3dbk1qNYNN/dL77Sti4BOlXzwIAZG5lYdVlAGSlPaHOTEfalbNIPrQdUCqL5DgKk9SjPIwbdYSklBNUacnIunEOWVdP5Lu92NoOliN+0klXxkYgedXPOZ9EMAxoBsNq9SE2t4bqdTyybp5F1o2zRXQUhcu4YlVYdxsAA5fSUCa/RvLJg0g6slvvtmb1m8F+2MR89xWz8n9IvXgKACBzcoVNzyEw9q0EtVKJzKD7iN+6CorY6CI5jqJg5OKAhrcP4Hq30Ug4d/W92zr3aody00bCpKwbMl6G49ncFQjfuEdrG8vqfig/ezIsq/tBkZyGsA278GTGYqjl8iI8isIRePcR/ty2Dy/CImFjaYEeLRuiX7tmEIkKniczKDgUg7+fg78XTIeznS0AICI2Hp3H/ZBvnvaNauOHEQMKrfxF4VLQKyw+dBHPo+JhY26C3vUqY2Dj6vmekyy5AsuPBeLQzcdITM2At7MdRrSqjXq+7lrb1J22BAqVSiuvsYEMgb+NKcrDKRRXb9/Dir92IDgkHDZWFujSpjn6dGr7j66TJy9eYvjk6di6dC6c7O3+9fdClpGRgQ1rlyPw4jlkZmaggl9lDB0+Ci6upd+b73ViAtauWoqbN65BpVSiWo1aGDJ8FGxsbPO2UavV2LtrO44d2Y+42BjY2TuiXccuaNu+S1Ef1gcz9qsKm+4D8+qdpBMHkXR4l95tzes3h/3n76l3VvwPKRdOAtDUO7a9hsK4vKbeyXh8D/FbVkMRG1Ukx1FYLGoGwPXzETDyKAtFQgJidu9E1JbN+WeQSODYpy/s2nWErFQpZIWFInLjBiSc0m7PWDVoCOfBQ2HkVhryhHjEHz2CyI3roVYoiviIPt6lZ+FYfOoGnsckwsbMGL1rlsfAun7/6F6iUKowcPUBGMukWD2krdZ3e289xfpL9xCWmAJHS1P0qlkefWtV+Ef7LW6XHr3A4v1n8TwyDjYWpujdoDoGNgt4f51z+AIOXXuAxNR0eLvYY0TbBqhXoWzeNiqVGjsv3sL28zcRFvcaNuamaOLvhZFtG8DM2PBTHdoHu37zNtZs3IyXIaGwtrJCp3at0aNLx/f+PU+dPY9N23YiMjoGjvZ26N29C1o1a6K1Ta/BwxEXn6CTd9emtbC0tCj04yhMbNfrCrz7CEu37ceLsEjYWlqge8sG6P8v2rCDvp+LXQt+zGvD5jpz7Q5W7z6CVxHRsLWyQNv6ARjcuSVk0pLxaicrMw1Hts7H/evHkZ2ZDnef6mjffxrsnDzem+/V01s4un0Bwl8+gKGhCfwCWqNVjwkwNDbN2yYu+hWObf8dL5/cQHZWBhzdvNG86xiUq1inqA/rg12/eQvrNmzEq5AQWFlZoWO7dujetfN7r5PTZ85i87btiIyKhoO9PXr16IaWzZtpbXPs+Ens2L0bkZFRsLezQ4f2bdG5Q/sSUe8E3gvC0h2H8Dw8CrYW5ujRvB76t22cb9mz5QpsOnwGBy9cR3T8a9jbWKJN3WoY3KGZ1u/ixJXb2HDwNF5GxsDcxBgBFb0wpld72Fqaf6pDI6KPUDJquSL0+vVrTJgwATdu3ICPjw927NiBPXv2oGHDhrC1tS14BwCaNm2KLl26YOzYsdi1axemTZuGoKCgAvP9m21LCgN3L5T6YirSb15C0sFtMCzrC8tO/SCSiJFyfK/O9pkPbiJm/rc66dZ9voDIyASZD28CACS29rAb8z2yXz5BwpoFkDq6wLJ9b4hNzPB628oiP66PIXF2h1mPkch+dAMZ5/ZD6uoJ46adAbEYWYHH9OexdwUApGz+HWp59psv3nrhbNysK4wCmiHr5jlkP7kDsVUpGDfsALGlLTJO6X8hIxSGnj5wnPgDUq+eR+LuTTDyqgCbnkMAiQRJB3fqbJ9+5xrCZ36lk243ZBzExsZIv3sdACCxKQXnb+dAHhmO6GVzIDYwhHXXAXD6eibCvhujfS4FysjVEQEHV0NmVfCDqmOXlqiyYR6CF21A7NHzcOzUHFXWzIYqKxuR2w8BAIw9XFHryFokBt7GzT4TYObrCZ+ZEyGzscL90T8W9eF8lHtPg/HlnD/Rok41jOjRHreDXmDR5j1QKlUY1Knle/M+D43AxDl/QqnUfiFfysoCq2d8rbP9zmNncfzyTXRsLNwHHAC4+zISY1ftQasq3hjdui5uBYdjwYHzUKhU+KxZgN4807cdx7mHLzCuXX2UsbPCvmsPMXbVHqwa1R3VymruNc+i4qBQqfBrv9Zws7XKyysuAQuq3Q96hsm/zEezerUxrE933H0UhD83bINSqcKAbh3em/fFq1BM+nk+lPkEwgv6XugWzPkZQUEPMWjIFzA2McH2Levx/bQvsXDpWpiZ639YUyqVmPnjVKSnp2HE6IlQKhXYuG4lfvpuEuYvXAFpzoPg+jXLcXDf3+jdbwi8fHxx89oVrPxzIaQSKVq2ef95Lw6Gnj5w+vJHpF45j4S/N8HYuwJsew2BSCLB6wM7dLZPu3MVYT99qZNu/9k4iIxNkHbnGgBNvePy/VxNvbN0DkQGhrDpPgDOk2ci9JvRgq13TCtWhNec+Ug4eQJhq1bA3L8yXEeOASQSRG3aqDePy9BhcOo/EBHr1iDl7h1YN2wEzxk/Q61UIvHsaQCARY0AlPvlNyScOoGwP5fC2MMDriNGQmpphZDf53/KQ/zX7obGYOzm42jl54HRTarhVkg0Fhy/prm/NqhcYP41F+7iQUQcapRx1ErfdSMIP+2/iMH1KqGupwvuhcVi/tGryMhWYFjDgvdbnO4Gh2Pssh1oVa08RrdviFvPw7Bg7ynNOWmpv76cvvkQzt17hnEdG6GMvQ32XbmHscu2Y9W4fqhWzg0AsPZEIJYcOItBzWqjlk8ZvIpJwJID5/AsIhbLxvQW9Au2h4+f4NuZs9C4fl0M7t8H9x8+wop1G6FUKtGnR1e9ec5dvIxf5/+Brh3aoWb1KrgYeBVzfl8MmUyGpg3rAwCSkpIRF5+AL4YMhF+F8lr5zcxM9e1WMNiu13XvaTAmzlmW14a9E/QcizbvhVKpwuAC2rDPQiMwQU8bFgCu3H2EyQtWoUXtahjTuyOeh0Vh6dZ9eJ2SiklDehbV4RSqbUsnIeTZHbTp/TUMjU1xcvdSrPx1ECb+th/GppZ680SGBGH1b0PhWaE2+o1biJTEGBzZ/j/ERQVj6ORVAIC0lESs/GUgTMys0L7/NBgam+Ha6R1YM3sYhk1bi7Ll9beTi9Ojx4/xw08z0ahBfQzq3w/3Hz7CqrXroFQq0btnd715zl+8hN/m/Q+dO3ZAzerVcCkwEPMW/AGZTIYmjRoCAA4fPYYFCxejZ7euqF6tKh4HBWH5ytXIzMhAn17Cvk7uPXuJCfNXoUXtKhjRvTVuBwVj4bYDUKpUGNyhmd488zbtxqELNzCscwtUKOuGh8GhWLn7GCLjEvHD8N4AgKOXb+HbpRvRtWkdjOrRFnFJyVi28whGzlqKjTO+hKGB7FMeJhF9gP98AGPfvn24fv06Nm/eDAcHB1y7dg1Tp07FyZMnP2h/bdu2RYMGDQp925LCom0PyMOCkbhxMQAg69EdiCRSmLfogpQzh7RewAOAKjUF2akpWmlmjdpA6uiK2P99B1XOd+bNO0GVlYG4FXM0Iy4e3oI6OwtWPT5DyrFdUCbGf5oD/ADGDdpDGR2K9P3rAQCKFw8hEktgXLcVsq6fBhS6veAlDq5QJSdC8eqJ3n2KjE1hWKMxsm5fQPrRrXnp6pREmHYbgazbF6FKEG7PJOvO/ZD16gViV/wPAJBx7yZEEims2/dE8rF9Og8kqpRkZKUka6VZNO8AmbMrIn6eBFXOd9ad+0KVno7Iud9BnZ0FAJDHRsNx/Pcw9PBC5pMHn+DoPpBIBNcBnVF+9hTgHz63+8z8EpE7j+DR17MAAHHHL0BmbQmf6ePzAhiek4ZDkZKG611HQS2XI/bIOSgzMuH3x/d49tsyZIZGFtURfbQVOw/Cx90VP40eDACoU6UiFEol1u09il5tGsPIwEAnj1yhwPYjZ7B850EYyHQbogYyGSp5affwevQiBMcv38So3h1RxbdckRxLYVl69DJ8Xezxa782AIB65d0hV6qw+sQ19GtQDUYG2tV6eEISDt18jGldm6BXPc2LsoBypXE7OALbLt7NC2AEhcdCKhajRWUvGJSQHny51mzdBS+PMvh+wggAQO1q/lAoldj49z70bN8KhoZ6rhO5AjsPHcPqLX/DQPbvvy8JHj96gGtXL+G7n35D9Rq1AAAV/PwxYmgfHD64Fz1699eb79L5M3jx/CkW/rkWbqXdAQAeZcth/KihuHj+NBo1aYGY6Cjs37MDw0eMQ+t2nQAA/pWrIS4uBrduXhNkAMOmq6beiVmueYmece8GIJHCukNPJB3d+4/qHcsWHSBzdkP4jDf1jk2XflClpyNi9rd59Y4iLgqOE34QdL3jMnQ40p8+QfDPmtGeyVcCIZJK4TxgMKK3b887lreVatce8cePIWLtagBAyo3rMPXxhX237nkBjFLt2iE7OhovZkwHVCokX78KmY0NHHr1Qeii36EWcDBw6Zlb8HWywa9dGwEA6nm5Qq5SYfX5u+hXuyKMZPnfG4Oi4rH6/B2UMjPW+W7V+TtoUcEdE1vUBADUKuuMV/FJ2HL1oeADGEsPnoevqwN+HdQRAFCvgqemzjl2Cf0a14DROy98wuNf49C1B5jWoyV6NawOAAjwdsftF+HYdv4GqpVzg0qlxtrjgeheryrGd2oMAKjt6wFLU2NMWbsXD0OiULGM0yc9zn9j/eatKFfWA9O+Gg8ACKheFQqlEpt37ELXju1gaKg7gmT1xs1oVK8ORg0fAgCoWa0qUlJSsW7TlrwAxrPgYABA/Tq14OzkqLMPIWO7XlduG3bG6EEAgLpVKuS0YY+h93vasNuOnMXynQdhmM/9Zv/ZQDjaWmPGmEGQiMWo5V8eCUnJ2HzoNCYO6AapVFKkx/WxXj29hUe3TmPw18vhU1nzst3dpwbmftkCgSe2oEmnEXrzXTyyHsamlug3/g9IpW/O3c6V3yA2Mhh2Th64eWEv0pITMWr6dljaOAAAvPzqYuE3nXHu0BpBBjA2/LUFnmXLYsrXmg4TNWtUh1KhwNbtO9ClUwe995O16zeiYf16GPn5MABAjerVkJKSivWb/soLYGzZtgMN6tXFsKGDAQBVq1RGWHgE9u4/KPgAxvJdR+FTxgUzR/QDANT1Lw+FUom1+06gd6sGOr+d1ylp2H06EGN7tcPAdk0BAAEVvQEAi7cdxNhe7WFtYYa1+0+gXuXy+GZIj7y87o72GPzTHzh/+yGaBwi7Pv5/T8zVDahg//mrJDk5GXZ2dvD394eDgwPUavVH7c/IyAh2dv9siol/s22JIJXCsFxFZNzVnvIm/XYgxMYmMCzrW+AuxOaWsGjXC2kXjiH71bO8dKPylZH54JbWdFEZtwMhEothVL5KoR1CoZNIIS3theygO1rJ2UG3IDI0htTVU382B1coosPy3a3YxgEisQTyp/e00uWvnkAkFkPmWeHjy15UpFIY+1ZC2s3LWslp1y9CbGwCI++Cyy6xsIJNtwFIPnUYWS/eBHlMa9RFyvnjWi9esl8+Q8jEQYJ+yAEAC38f+C35CWGb9uD24MkFbm9cxgVmPh6I2ntcKz1y11GYernDpFwZAIBdi/qIOXxWa7qoqL+PQCSRwK5l/cI9iEKULZfj5sOnaFyzilZ6s1pVkZaRiTuPn+vNd/HWA6zadRiDO7XCmD6dCvx31Go15q7dBg9XR/Rp27Qwil5kshUKXH8WhqaVtO8bLSp7IS0rG7eCw3Xy2FmYYvPEPmhX/U1vTrFYBIlEjCz5m+lcHofHwt3eusQFL7Llcty6/wgNa9XQSm9SJwDpGZm4+0j/CMfLN29j7bbdGNCtI0YO7PWvvy8Jbt+8BiMjI1Sp+ubcWFpaoaJfZdy8Hphvvls3r8HF1S0veAEAbqXd4epWGjevXwEABF46D5nMAM1attHK+/XUHzHl2xmFeyCFQSqFsa8/0m68U+9cu/Dv6p3uA5F88hCyXry5rkxr1EXyuWNa9U5W8DO8Gj9QsPWOSCaDedVqSDx3Ris98fQpSExNYe6v/yFebGAAZXqaVpoiKQlSC8u3tjGEKjMDeGs6OkVyEsQGBhCbCLcXebZCiesvI9HUt4xWeosK7kjLluNWSP6dQuQKJb7bfQ59alWAu61u7+HF/VrmBS9yySRiZCmEG8wBNFNyXH8WgqaVfbTSW1T1QVpmNm49122n2lmYYfOkwWgXUDEvTSwWQSIWIUuuOd7UzCy0D6iINjUqauX1cNCMfA+NSyzsQyk02XI57tx7gPq1tV+ENqxbB+kZGbj38LFOnqjoGISFR6BenVraeerVQXhkFMIiIgAAz1+8hImxMZwcHYruAIoC2/U6suVy3Hj4DI1rat9Lm/7DNuyQTi0xpk9nvdtkyRUwMjSA5K2XfZbmppArFEjLzCy0YygqT+9dhIGhCbwq1ctLM7OwgYdvDQTdOZdvvhbdx2Pw18u1ghcSqSaAqsi5PixtHFC/zaC84AUAiMUS2DqWQUJMaGEfykfLlstx9+491KtTWyu9Qf16SM/IwP2HD3XyREVHIyw8HHXfzVOvLiIiIhEerrmf/Dz9Bwz/bIjWNlKpFNnZwh21BGjqnRuPnqFJjUpa6c0CKiMtMwu3g4J18qRlZKJb0zpoWM1PK93dSXMdhMfEQ6VSoZafN7o00R456O5sDwAIi4krzMMgoiLy/yKAcfbsWXTt2hWVK1dGnTp1MHXqVCQlJQEArl+/jp49e8Lf3x8dO3bEoUOH4OPjg7CwMEydOhWLFi1CREQEfHx8sGvXLgwcOBAA0KxZM+za9e+n4dm1axd8fDQN/alTp6JHjx5a34eHh8PX1xeXLl3S2hYAfHx8sHPnTgwePBj+/v6oX78+Fi9erJV///79aNOmDSpVqoQePXpgw4YNWvsoTlJbB4hkMshjtHt0584BLXVwLnAfFm17Amo1kg68GVUAmQxSW3soYiK0tlWlpkCVkQ6pfcH7LS5iq1IQSWVQJcRopasSNZ8ltvofUqT2rhAZGMJ8wNewmvQHLMfOgnHjTnmRaXVGqmb/ltrTnEms7PL+XaGS2TlqrpMo7Zet8mjN31fm6FrgPqy79INarULirjfTXEhLOUBiYgZFfAxsB4xAmcVb4L5yFxzGfQeJ9T+bDq44ZYRE4oxvCzya9BuU6QU/gJj5al5ipz19qZWe/vyV5ntvD4iNDGHi7oq0p9qNvey4RMiTUmDm/f65ZotTeEw85AoFSjvZa6W7Omiu8VeR+l8mVfAsgz0LZ2Bol9aQSgqu4o5fvoH7z17iy4HdtR4GhSgsPglypRJl7Ky10kuXsgIAvIzRfeljIJWiopsjzI0NoVKpEZWYgjm7zyAsLgk96vrnbRcUEQuJRIwvlv2NWlMXocG3SzFj+wmkZQr7QSciKkZznThr91Z1yXloCYnQvwZB+XJlsXP5Agzq0QkSPddJQd+XBGGhr+Dg6AyJRLs3pqOzC8LD83+QDwt9BWdnN510RycXhIdp8gUHP4OTswse3L+Lr8Z9ju4dm+PzIb1x7LD+9a6Km8zeKZ96R9NekTn9g3qnaz+oVSok/P1OvWNqBkVcDEoNHAn3pVvhsWo3HCd8L+h6x9DZBWIDA2SFaF8HmeGaF9JGpfWvkRK9fRtKtW4Di1q1ITYxgU2LVrCsVRvxRw+/2WbXThi6usGxT19IzMxgWrEiHHr0xutLF6F8p8e1kIQlpkCuVKHMOwGI0jaa6RxfxiXlm3f52dtQKNUY1aSa3u/L2lnBxdocarUaSelZ2HUjCPvvPEevmgV37ClOYfGvIVcoUcbeRiu9dE4d9DJGd/SzgUyKimWcYG5slFPnJGPOzuMIi3uNHvWrAgAsTIwwtUdLVPXU/t2dvqt5ce3pJNzOXZFR0ZArFHB10X72cMmpg8LCdTsSvArV/K5cnbXz5I6yCA3TtH+fBb+EubkZfpo1Fx17DUC7Hv0wc/Z8xCcIN6ADsF2vT35tWLe8NmyMvmyo4FkGexf+hKFdWufb9ujRsiFCo2Kx8cAJpKSl497TYGw9fAb1qlSEpcCnGgOAmIjnsLF3hVis3TaxdSiD2Ejdl9O5LG0c4FRa884jOzMdz+5fwtEdC1DGuxqcymjupf612qB1L+2pyTLSkhD8+DocXIQ3wjoqMkrv/cTZSTMCLSxM934Skns/cXHRzuOsyROacw8qXdoNjjmdc5NTUnD46DGcOHUaHdppr88kNJrfjhKlHbXrATcHzbuNV1G6vx0Xe1tMHdwd7u/83s7euAepRILSTnYQi8WY2LcTGlfXDnKcuXEfAODpUrJGvRH9V5WsrpZ6JCQkYMyYMZg6dSoaN26MqKgoTJ48GXPmzMHnn3+OoUOHomPHjpg1axYePXqEmTNn5uX99ttvYW1tjUOHDmHnzp0wMjKCmZkZxo4dix07dsDb2/ujyta1a1cMGDAAISEhKJ3zMLh//344Ojqidu3a2LNnj06e2bNn47vvvsPMmTNx8OBBLFiwALVq1ULNmjVx+vRpTJkyBV999RWaNm2KwMBAzJo166PKWJjExiYAAHVmhla6OkvzWWxk8v78ZhYwDWiElFP7oc5If5Oek0/1zn5z00RGusP1hUJkaAQAUGe/e040PUVEBka6eYxNIbawBsRiZJzeA1VSAqTuPjCq3QIiC2uk71sHVUIM5KHPYNSgHVQpiZC/CoLEqhRM2vSDWiGHSCbcBRBze2C+/TcG3vx9xcbv/3uKzS1hVq8pko7shuqtnqASc81LB5seg5EV/AQxf86BxMISNt0HwXnKLIT9MFbvlBhCIU9Mgjwx/xck75JamgEAFMmpWumKFM05kVqYQZazINm72+RuJ7Uw+9DiFrnUdM31YGqs/RsxyVncMy1Df5DH3sbqX/07mw6cQGWfsqhe4ePu959CaoYmmGBmpD102iRniqS0rPcHG9aeuoaFhy4CALrV9kNtb029pFar8TQiDmqo0bWWHz5vUQv3Q6Ox/GggXkTHY83onoJdCyP3OjEx0b5vmORcN2npuvUGANjZ2uhN/6fflwTpaWkwNtGtd42NTZCRnq4nR06+9DQ4Oeu+cDI2NkF6Tr7kpCQkxMdhwdxf0LvvILi4lcaFs6fw52LN9CFCm0Iqt32i0ql30rW+z4/E3BLm9Zsh6fA79U7OyAPbXkOQ9eIJopfOhsTCCrY9BsF52iyEfSfMekeS85Lr3dEUypy/r8RU/0uwqG1bYepXCT7zf89Liz2wD1Fb/sr7nHLjOqI2b4Lb6HFwGz0OAJAWFIQXP/1QmIdQ6FJzgrVmhtpTIpnkTJGUlqU73ScA3A+PxfpL97FmSFsYFDB1y92wWAxcfQAAUNG5FAbWqfTe7Ytbaobm2tWtc3Lq4QIC3GuPX8bC/WcBAN3qVkFtX/d8t737MhxrjgeikV85eDkLN4CRlqb5jejWOZrP+uqctJzflWk+edJz8jx/EYy4+AS0a9UCXTu1R0hoGNb9tQ0Tp32P5X/Mg7GR7jODELBdr6so27A1K3pjYIfmWPjXHiz8aw8AwMfdFT+PHfzB5f2UMtNTYWis+/xhaGSCrIw0PTm0qdVqzBxVFwp5FkzMrNBxgO5amrlUKhV2rf4BWRmpaNjus48qd1FIy7neTd5pq+XeX9L1tNXS0tK0tsllbKw/z6PHQZjwtWZkv7dXOXTr2vnjC16EUjPy+e0Y5f52/tlv/vT1uzhw4Tp6Nq8HC1P9bbyw6Dj8vmUfvMu4oF7l8nq3ISJhKfEBjOjoaGRnZ8PZ2RkuLi5wcXHBsmXLoFQqsW3bNpQqVQrTp0+HVCqFp6cnoqOjMWfOHACAubk5TExMIJFI8qZysrTMaSzZ2MDoIxuKNWvWhJubG/bt24cxY8YA0AQwOnXqBHE+PX07d+6MTp00056MGDECq1evxs2bN1GzZk2sXr0arVu3xmefaSpgDw8PvHz5EuvWrfuochaaghbcU+suRPY207rNALEYqWcPvbPfAnq/fuS0X0WqgLLrm7JMLc9GypaFUCXGQJWUAABQhD4FlAoYN+qIzItHoIqPQtqulTBp0xdm3b4AoHkxk3F6N4wbtBP0onYFXScFTeNm0aglRGIxko7v0/4iZ+obZfJrRC/6Ne+6kMdEwuX7+TCr0xgpZ49+eLkFRlTAaAG1SlXgXJJqlXB/OwVdB+KC7gv/wN0nL/A4OBRzv/r8o/f1KagKOCcF3YIbViyLKh7OuBUcgeXHApEpV+DXfm2gVgN/fNYR1mbGKOeo6eFU3dMVpcxN8M1fR3Ap6CXqlxfmaB11AfWKkBeCLUwqlUrnN/O+6+V950X1nvtCbiBLIZcjOTkJk7/5CXXqaeZb9q9cDXGxMdi2ZYPgAhgf244wb9wKIrEYr4/t1d7tW/VO1MJf3tQ70RFw/fF/MKvbBClnjnx4uYuIqMC2ie7vSiSTofzSZZDZlsLLub8h89UrmPlVgtOgIVBlZCDkjwUAgDJfT0apdh0QsW4Nkm9ch4GjE1yGDoP3/N8RNH4MVFnCfOH4IffXLLkC3+8+j361K6CSa8Ev3Z0szbB6cBuEJ6Zi8akbGLj6ALZ+0QnGBsJ8HCv4nLz//tqwkheqeLri1vMwLD98AZlyed5aGm+79TwMY5ftgIutJWb0b/dRZS5qBdU5Yj3npKC2lijnvvrl2JGQiCXw9db0FPevWAHupUtj/JRvcfzUGXRs2/oDS13E2K7X8bG/nff5bfVW7DsTiKFdWiPAzxsRsQlYufMQxv22BEu/HQcjPet+FRdN20T7N/O+35DoH3SWUSkVGDhxCRTybJzZvwLLfxmAEd/9lTcKI5dSIceOFd/g/rVj6DjwO7h5+uezx+LzvvYWoL+uLuj39O615WBvh3m//YqoqGis27gJE76ejKV//A4jI2F2dizonOi7x77r1LW7+O7PTaji7YFxvfW3R19GRGP0nOWQiMWYM3ZQvu/miEhYhNli/hfKly+P9u3bY8SIEbCzs0O9evXQuHFjtGjRAs+ePUOFChUgfWtO74CAT7d4k0gkQufOnbF//36MGTMGDx8+xLNnz7B06dJ883h6as9tbm5uDnnO3PUPHjxAy5Yttb6vWbOmYAIYuT0bc0cd5ModIfFuz8d3GVephczHd/IW7s6lzu0hqWekhdjIWKfHj5Dkjj55d6RF3siMLD29gxVyKF7qzqErf3Yfxo06QmLvAlV8FNTpKUj7eznSDY0hMrOE6nUcoFLBpHUfqDML7sFSXFQ5PUNE74zIyeshm/7+spvWqIf0+7fyFvjLlTvyJ/3uDa2XUVnPg6BMT4VhGU9oX1klmyJJczRSc+2esrmjKhRJqXkjL97dJne73H0IUW7Pm3fn883ttWZq8vE9EU9euQULUxPUq+JX8MYCYGacM9IiU7sncG4vWPMCHka8nN4EJxRKFf48ehlj29aDk7UFapbTnTKoQQVN0CIoIlawAQzTnF5r6e/0Zszt0WpmKtwReoVp+5YN2LZ5vVZanXqNkPQ6QWfbjPQ0mJjmP/rK1NQUGXrq1Yz0dJjk9LQ1NjGBSCRC9ZraczBXrR6AWzev4XViAqyshTOKRZXTq/PddsQ/rXfMauqvd1Q5PQXT71zXrXfSUmFYpqwg6x1FWs40lO/0+pTk/H2Vqbrnw7pxE5h4eSNowlgkX78GAEi5fQuKtDS4fzUJsfv2QpGSAruOnRG5cT3CV63Iy5v26AEqbdqKUu06IGbXzqI6rI+SO8ogLfud+2vOyAtzI92XgotP3YRKrcbnjapAodS8lMu9ChRKFSRikdbLJHsLE9hbmKCGO+BqbY6h6w7hxMNgdKjiVfgHVAjMcnuLvzO6Ly1TE4QyNy6gzskZSVG9XGkoVCr8efA8xnZoBCebN9N0HbnxED9sOogy9jZYOqoXrMzePxqquOXWORnv1Dl5oyz09PTNTUvPyHgnT4bWPiv66k4J7FfBF6amJnge/OojS1502K7XZZbbGz5TO2Cb24Y1M/mwtklMwmvsPnUJQzq1xMie7QEA1QFU9CyDXpN+wb4zl9GzVaMPL3ghO7VnKU7uXqKV5lezFVKTdKefy8xIg5GxeYH7lEhleetnePjWwOyJzXHx2EZ0H/5L3jYZacnY9Mc4BD++hg4Dv0OdFv0+8kiKhmnOaEfde8N77id59yDtPLntXtN3RlDa2trC1tYW/pX84OjkgK+nfIPzFy+iRTNhrvuX+9tIz+f5z8z4/c9/fx0+iz+27EP18uUwb8IQGBrIdLa5/ugZJv+xFsZGhlj+zSi4Ogh36m0i0lbiAxgAMH/+fIwePRrnzp3DpUuXMGnSJFSvXh2GhoZQqbSj/AYGn7ZXQpcuXbB48WLcu3cPhw4dQrVq1VCmTJl8t9dXvtxIu1Qq1TkeIVHERUOtVEJqpz2HYO5nRZTuPI65xJbWMHAri4Qzi3W+U2dnQZEYD2kp7f2KzSwgNjaB/D2LXRc3VWIs1ColxNbaPfNyP6vidednF1vbQVrGB/JHN7QDHDJNBaxO17x4kJWvDlVcFJSx4XnbSRxLQyQWQxklvIXKciliI6FWKiFzcNJKl+WsZSKPzP/vKbGyhaF7OSSt+J/Od/KYSKhVKohkug0VkVgClcAXLfu3Up9o5ok18SyD5NuP8tJNPTX3l9THz6FMS0dGWBRMPLXvOQZ2NpBZmCE1n0UEhcDVwQ4SsRhhUbFa6bmfPQphrtILN++jUQ1/SAuY9kMo3GytIBGLEBr3Wis9JOezh4PuC+OIhGQEPglBu+q+MJS9qfLLu2rmiY1NSoNELMb5h8Go61sGTtYWedvkLvJtnc/QayFwcbSHRCxG+DtrooTlfC7j6qIv2/87LVu3R40A7YUJr1y+gNs3r0GlUmn1LIuMjICrm/41DgDA2cUNwS+e6qRHRobDy1vTw9HJ2QVqtRoKhVyr3aJQaq4ZA0Nh9exTxORT7+SszZUdkX+dKbHW1Duvl8/X+e699Y5EItjRkFnh4VArFDBy0Z4qzMhV8znz1UudPIYOmntuyt27Wumpt28BAIw9yiIrOgoisRip97S3yXz5EvLXr2HsUbawDqHQuVmbQyISITRB+5VoSILmpapHzlpDbzvx8CUiklJR59eNOt9Vn7kOMzo1QIsK7jgTFAI/FzuUtn1zfy3vpJnDPyZFuJ1w3EpZa+qcWO01GEJyPucuuv22iIQkBD5+iXY1K75T52jWJYpNSs0LYKw/cQUL9p5CDa8yWDC8K8wLeDElBM5OjhCLxQiP1F7vLyJS054v7aY7/Z5bzvz2EZFR8PIs+1YezT7KuLkiNS0N5y8FwtfbCx5l3tyfVSoVFHIFrCwtIFRs1+tydShVQBv2wxZqj4pLgFqthr+P9r20rKsTLM1M8SIsMp+cxSOgSU/4Vmmslfbwxgk8vXdBp20SH/0Kds751xGPbp6GkYkZPHxr5qUZmZjD1sENyYlv1kVISojC6tmfITE2DH1Gz0elWgIduYQ395OId+8nEZrPpd10Oxe55rRrIyIiUe6tjq+5+yjt5oqMjAxcvnIVPt5ecHlr7R2vnO3j43U7twiFq70tJGIxQqO1F9XO/eyez29HrVZj3sbd2Hb8AlrVqYrpn/eBTKr7qvPI5ZuYvnwL3J3tsfDr4f966mEqOv9kBBZRiR8rdefOHfz6668oW7YsBg8ejBUrVuDXX39FYGAgnJyccP/+fWS/1cC5f//+e/dX2NNNuLi4oFatWjh69CgOHz6Mrl27fvC+fH19cefOHa20W7dufWwRC49Cjqznj2BcuZZWsknl2lClpyH71bN8sxq4a3qfZb0I0vt91uO7MPKrljecGNCM2FArlch68v6/abFSKqAIeQYDnypayQY+VaHKTIci4qVOFrGZJUzb9IXMV3sxSIPy1aHOzIAyKgQAYFyvDYzqao/IMQxoClVmOuQhTwr1MAqTWi5HZtB9mFavq5VuWqMulOmpyHqRf9kNPTXrFGQ+fai736xMZD55ANPqdbSuE6PylSE2MkbmkweFdATCkP48BOkvQuHUtZVWumOXlkh9EoyMV5qAYdyJi7Bv2xjit3qgOHZtBZVCgbjTgZ+0zP+GoYEMVXzL4fS1O1rDpU9dvQ0zE2NU9HT/qP0npaYhNCoG/j6eBW8sEIYyKaqVdcXJe8+0zsmJu09hbmQIv9K6QZ3IxGT8tP04Tt3Tvv9eDnoFmUQCd3trKFUqzNhxAjsv39Pa5uitJ5CIRahWVrhBAEMDA1Su4IOzgde1zsmZwGswMzFBBS/hvjAtTDa2pVDOy0frvyrVaiAjIx23bl7L2y4p6TUe3r+DKlVr5LuvKtVqICw0BKEhL/PSQkNeIiz0FapU0+SrXkMz8uLC2VNaea9duQR3j7J5IzWEIq/eqfFuvVMPyrT31ztGnppe0fnWO7n7fbt9UiGn3gkSZr2jzs5Gyp3bsG7UWCvdunETKFJSkPZQt9wZIZoe4OaVK2ulm/lrpuXIighHVngY1AoFzPy1tzFyKw2ZlRWyIvLvyFLcDGVSVCvjiJOPXmrfXx+9hLmhAfxcdKeIWti3OTYP76j1X3knW5R3ssXm4R3RyMcNErEIP+27gHWXtO+vl55rzoW3nsCzUBjKpKhWrjRO3g7SPie3g2BubAg/d2edPJEJSfhp8yGcuqPdnr/8OBgyqQTuOce748It/G/PKbSsWh5/jupVIoIXgKajmb9fBZy/dEXrnJy7FAhTUxP4eumOpnFxdoKTgz3OXbyslX7+UiBcnJ3g6GAPA5kMi5atwpYdu7S2uXTlGrKys1GlknBHirJdr8vQQIaqvuVw+trtQm3DujlqOvfcfqcD0suIaCSlpsHFXlg9yS2s7eFa1k/rP69K9ZCVmYan9y7kbZeanICXQTfyRlboc+HIeuxZ9xNUKmVeWlJCFGLCn8PJLec6ykjFqllDkJwYg6FTVgs6eAFo7ieV/Cri4qXLWtfJhYuXYGpqCh8967G6ODvD0cEB5y9e0kq/cPFS3ncSiQQLFi7Cjr93a21z46bmvVFZD/fCP5hCYmggQ1Wfsjh9/Z72b+faXZiZGMGvrP4OOEu2H8S24xfQr00j/Dyyv97gxYXbD/Hjss3w93LHqu/HMnhBVAKV+BEYZmZm2Lx5M2QyGXr27ImsrCwcOnQI7u7uGDVqFI4cOYJp06Zh5MiRCA8Px4IFC967v9xFlB4/fgxra2udYXgfokuXLpgxYwZUKhXatGnzwfsZPnw4vvjiC/j7+6NJkya4ceMGNm3a9NHlK0wpR/9GqdHfw2boRKQHnoaBhw/MmnVA0r7NUMuzITIyhszRFYq4KK2pomTOpaGWZ0MZF61/vyf3wqR6PZQa+Q1STx2A1N4Jlh36IO3SCSgTdYehCknmpcMw6zMOpp2HIevuJUhdy8KwdnNknN4LKOSAgREkpRyhSoyDOiMVitDnkAc/hkmzrhDJZFDGRULm6QfDGo2RcfLvvNEWmddPw6R1HxjFRkIR9gIGFarDsGIA0o5sAbL0Lw4nFIn7t8Fp0s+wHz0VKeeOw8irPCzbdEXCjvVQZ2dBZGQMA5fSkMdEag0pN3B1h0qeDUWs7sgVAEjYsR7OU2fB6cuf8PrwLkgsrWDTYzAynz9G+q0rn+rwioTU3BRmFcoh/XkIsuM0vR+f/rIElVf/BnnCa0TvPwWHjs3g3LMtbvadkJfv+bxVcO7VDjUPrELw72th6u0On5lfInTVdmSGCqun1ruGdmmNMb8uwrQ/VqNj4zq4++QFNh04gdG9O8HI0ACp6RkIDo+Cq0MpWFsUPOz8bc9DIgAUzkiOT2l4iwB8sexvTNpwEJ0DKuL2y0isP3Md49vVh7GBDKmZWXgRlQDXUpawMTNBVQ8X1PYujd92n0ZqZjbcSlni3INgbLt4ByNb14GFiREsTIzQKaAi1p2+DkOZFJXLOOFWcDhWnbiG3vWqwN3eurgP+70G9eiECdNn4/u5i9CuWSPcD3qKLXsOYcSAnjAyNERaegaCQ8Ph4mgPawH3Yi1sFf0qw69SFfw+9xcMHPoFzM0tsG3zOpiamqF1205524WGvIRcLkdZT82Lt/oNm+Dv7X9h5g9TMWDwcADAxnUrUca9LOo1aAIA8POvgpoBdbFm5VJkZmaitLsHzpw8hscP72Pa9z9/+oP9BxL3boXTlF/gMGYaUs4dg6FXeVi17YqE7esKqHfKQJWdDUWM/nonfsd6uEz7DU5f/YSkw7sgsbCGTa/ByHz2GGk3hVvvRKxfC5/fF8Fz5i+IO3gAZn6V4NinH8KWLYUqKwtiExMYe3ggKzwcitev8frCeaQ+uI+yP0xH+OpVyHz1EqYVK8J54BAknj+HtMeakYDRO7bBsW9/AEDytauaNTCGfIasyEjE7t/7viIVu+ENK+OLDUcwacdpdK7qhduhMVh/8R7GN68BYwMpUjOz8SL2NVxtzGFjagwvPcEH05zOAhVd3rxIHNqgMv48fRM2pkao6e6EJ9EJWH7mNmqXdUZ9L90e+0IyvFVdfLF4Cyat2YPOtf1xOzgM608GYnzHJpo6JyMLL6Li4FrKGjbmJqha1g21fdzx247jOXWOFc7df4Zt525iZLsGsDAxRlxyKub9fQLOtpbo3ag6HoVq/7Zy9yVU/Xt2x6Tvf8KM2fPRunlTPHwchO279mLYoP4wMjJEWno6XoWEwdnJAVY5ayv2790Dc/9YAgtzc9SpVROXrlzFmQuX8N3kLwFoXmT27t4F6zdvg5WVJWrVqIbglyHYsGU76taqiaqVhb3gO9v1uoZ2aYXRvy7GtD/WoEPj2rj7JBgbD5zEmN4dP7gNa21hjt5tGmPjgRMAgFqVfBEZl4BVfx+GUykbdG5at4A9FD8P35ooWz4A2/6cjDa9v4KJmRVO7FoCIxNz1G7WO2+76PBnUMqz4exeAQDQtPNIrJn9GbYs/hI1m/REWnICTu/9E8amFqjfdggA4MTfixAX9RLNuoyBRCJFyLPbefuTSg3y9iUkfXv3xNRvf8DPs2ajVcsWePjoEXbs2o3PBg/Mu5+EhITAycnpzf2kT2/M+/0PmJubo06tAFy+cgVnz1/AN1MmAdDcT3r16I6Nf22BlZUlKvtXwosXL7Fpy1ZUrVIZNWtUL85DLtBnnVpg1OxlmLpoAzo2CsDdpy+x8dAZjOnZTvPbycjU/HbsS8HawgxBr8Kx/uBpVCjrhuYBlXH/ufaUex4ujpBJJPh59XaYGBliaMfmCA7XvufY21jBgQENIsEr8QEMT09PLFq0CIsXL8bmzZshFotRu3ZtrFy5Eg4ODli/fj1++eUXdOnSBa6urujRo8d716Dw9vZGo0aNMGHCBHz55ZcYOnToR5exVatWmDFjBpo3bw4zs/znnS5Iw4YNMWPGDCxfvhzz58+Hn58f+vTpI6ggRtaTB4hfPR8WbXvCdtgkKJMSkLR3E1JPHQAAGLh6wG78dCRsWoL0K2fz8knMLd+7RoYiOgKxS3+GZaf+sP3sSyhTU5By+iCSD24v8mP6WIpXT5C2ayWMGrSHWbcvoEpJQsap3ci6ehIAIHV0g3m/iUg7sAHZ9wIBqJG6awWM67eFYc2mEJtZQpUYi/TDm5F9501vi+zbFyGSGsCwRiMY1WkFZUI0Uveugfzh9WI60n8u89FdRC+eBesufeE47jsoEuORsH0tko5oeooYupeD89RZiFm1AKkXTublk1hYvXcu3aznjxExexpsug2Ew5hpUGdnIe1mIBK2rSlwEXmhs6haEXVObsSdz6YibIPmPIVt+Vwz7wABAABJREFU2A2xoQHKThwK18HdkP4iFLcHT0bkjsN5+dKCXuBKm6EoP3syqm1biOy4RAT/sQ5Ppi8srkP5x2r6+eC3icOwcsdBTJq/AnY2lhjXtzP6tW8OAAh6GYqRM//ADyP6o32jOgXsTVt8kuYB2kLA0yPpU8urNOYP6oA/j17GhDX7YW9piokdGmJQY83DyKOwGAxbuhMzerdEp4CKEItF+N/gDlh2LBBrTl1DbFIaSttZ4fsezdG19psend91bwpXW0scuP4IK49fgYOlGUa1roPBTfLvqS8U1f0r4ufJ47Bm6y5889vvKGVrjVGDeqNPp7YAgKAXLzHu+1/xzdjhaNu0YTGX9tOa8u0MrF21FOtXL4NarYZvBT98PfVHmJm/eVmyfOnviImOwoq1WwEAMpkBpv88D6uWL8bSxfMhlUhRpVoNDBk+GhLJm+nWvp72I7ZtXo99e3YgOek13Eq7Y8q3M1CzljBfoGQ8uovoRb/Cuks/OI7/HorEeMRvXaNV77h88xtiVixAyoUTefkkltbvr3eePUb4rGmw7T4QDmO/0dQ7NwIRv3W1oOudlJs38Oy7aXAZOhzlfp2N7LhYhC5djOitmwEApj6+8F20FC9+mYn4wwcBlQpBE8fB9fORcB48BFJzC2RFRCBiw1pEb92St9/QJYuQHRMDu85d4Ni7L+Tx8Ui6dgXhK5ZBmZpaXIf7j9Qq64z5vZriz9O3MGHrSdibm2Biy5oYVFfz8vhRZDyGrT+MGZ0aoFPVf75uxecNK8PaxAhbrz7Ehkv3YW1ihO41fDCycdVCH/ld2Gr5uGP+sK748+B5TFj5N+wtzTGxc1MMaqYZbf0oNArDFm7GjP7t0Km2v6bOGd4Vyw5dwJrjlxGblIrSdtb4vk8bdK2rGZlz/sFzZMoViIhPwpAFus8wufsSqqqVK2H6tElYt3krfvxlNkrZ2uDzIQPRs4tmgfKnz1/gq29+xKTxo9G6uWae+dbNm0IuV2DH7r04fOIUnBwdMHXiWDRp8KbHef9e3WFlaYG9B49g/+FjsDA3Q/s2LTGoT89iOc5/g+16XTX9fDB74jCs2HEQk+avzGvD9m/fDICmDTti5kL8MKI/OjSqXcDe3hjfrwvsbayx6+QF/HXwFEpZWaCWvy9G9eoA8xLSpu0/fiEO/jUbh7bMg1qtQhmvqug7dgGMTd+sj7N33QwkxoVjygLN9eJZoRaGTlmNE38vwuaF4yGWSOHtXx+te30Fc0tNwPj+9eMAgJO7F+Pkbu1pqa1KOeftS0iqVq6M77+Zio1/bcZPM3+Bra0thg8djO5duwAAnj17jknTvsXXE8ajZQvNtdOyRTNkK+TYuWs3jh4/ASdHR0z+aiIaN2yQt99+vXvBytISew8cxM5de2BpaYH2bVpjQL8+gq93alb0wpxxg7B811F8/fsa2FtbYnzvDujftjEA4PHLMIz4dSl+HN4bHRoG4PT1u1Cr1Xj4IhRDftJ9vl32zSioVWrEvdY8+42Zs1xnm+FdWuKLrsIesUNEgEj99tis/4ArV65g4MCBOHnyJFxdhd3r6V1Xr15FqVKlULbsmykxli1bhp07d+LEiRPvyfl+YWOF3zD+lFwXbUfirFHFXQxBsZ62FC8Gty/uYghK2XUHcFCmu+Dif1k7eRCSbn74vej/I8tqzZF5cFlxF0NQjNqNQOzDq8VdDEGxqxCAh88iirsYglKhnDOeD2xX3MUQDM8NB3Gt/j9/yfVfUPNCIDK3zC7uYgiKUZ8pyDy+rriLIShGLQYjTMjTzRYDV28/tuvfUXbdASTfPF7cxRAUi2otsOuqsANFn1rXADFePdM/5fV/VZlyPki5erC4iyEY5gFsu36IhJ+/KO4ilDg23+kG4/6/K/FrYPyXXLhwAZ999hkCAwMRERGBkydPYv369ejUqVPBmYmIiIiIiIiIiIiISpASP4VUUZoxYwZ279793m2WLFmCunU/zXQJY8aMQXp6OiZPnoyEhAQ4OTlh8ODBGDZs2Cf594mIiIiIiIiIiIgKg0jEvvVUsP9cAKNWrVoICvpnw/7GjBmDQYMGvXcbe3v7wijWP2JgYIDvvvsO33333Sf7N4mIiIiIiIiIiIiIisN/LoDxb9jY2MDGxqa4i0FERERERERERERE9J/DcTpERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwzUwiIiIiIiIiIiIiOjTEouKuwRUAnAEBhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQmOtLgLQERERERERERERET/LSIx+9ZTwXiVEBERERERERERERH9H3v3HRbF0ccB/EuvAqJ0sIACKjZQLGCJvffeSzRGYzTFHo0lxq6x94pixxJ7RaWpgF0QxUJHVECqwB3vHwfIcQdYDlnefD/Pw/PI3s4yc87OzO5vdpYEhwEMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBEe1tDNARERERERERERERP8tSspKpZ0FKgP4BAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJjmppZ4CIiIiIiIiIiIiI/mOUOLeeisdaQkREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERIKjWtoZICIiIiIiIiIiIqL/FiVlpdLOApUBfAKDiIiIiIiIiIiIiIgEhwEMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBEcpOzs7u7QzQURERERERERERET/He//+bW0s1Dm6E1eWdpZ+OZUSzsDVPpigwJKOwuCYlLDCWFPg0o7G4JSqXoN1pMCTGo4ITHwUmlnQ1D0HdvgtJpdaWdDUDpnPkHo8+elnQ1BsbG2xstnIaWdDUGpUs0Wz0JflHY2BKWaTVXEPbpZ2tkQDKNajfA+8GJpZ0NQ9Bzb4kXos9LOhqBUtamGiJCHpZ0NQbG0dcDz0NDSzoagWNvY4N39G6WdDUExrNMMYeN6lXY2BKXSJg8EhUaWdjYEpYaNBfudAqraVOP1Xz6dM5+UdhaI/m9xCSkiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgEhy/xJiIiIiIiIiIiIqJvSklJqbSzQGUAn8AgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgEhwEMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwVEt7QwQERERERERERER0X+MMufWU/FYS4iIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwVEs7A0RERERERERERET036KkrFTaWaAygE9gEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERIKjWtoZICIiIiIiIiIiIqL/GCXOrafisZYQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4KiWdgaIiIiIiIiIiIiI6D9GWam0c0BlAJ/AICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHD4Em8FSUhIwOTJkxEQEAA7OzscPnwYx48fR/PmzVGhQoVPOkarVq3Qs2dPTJw48ZP2j4+Px6VLl9C3b9+vybrC3bpzH9v2HcKLsAiUN9BHz05tMaB7ZygpFf5inkvXfbDn8DFExb6GqbERBvfqho6tmkvtc/byNRw4cRqR0bGoYGiAjq1aYEif7lBVUSnpIn01/8A72Om2D6/CwlDewADdOndCn57di/xOrly7DveDhxEdEwsTY2MM6NsL7Vq3ktrn/KXLOOJxAlExMTA2qohunTuhR9eiv2uhYD2R5Xc/CBsPnsTziGgY6uuhb7vmGNy59Sf9fz55EY4Rs5fi6Kq5MDeStDlRcW/R4+c5habp0qIx5owbqrD8lyRNCxM0v3sK/r0n4N31W0Xua96/M6rN+BHa1lZIexmJZ8u2INLtuNQ++k4OqLFkKvSdHJD1PgURezwQMn8dsjMzS7AUipOWloYdO3bAx9sbaWlpcHBwwNgffoClpWWR6eLj47F1yxYEBARAJBKhYcOGGDN2LAwNDeXuf/LECXh4eGDX7t0lUQyFCQgMxK49bngVFgYDAwN07dwZfXr1LPLcuep5De4HDyImp43t37cP2rZpLbXP9RteOHz0KMIjIqGjo4P69epi9IjhKF++fEkXSSHS0tKwc8d2ePt4Iz0tDQ4OtTFm7FhYWloVmS4+Ph7btm5BQIA/RCIRGjRsiDFjxsLQUP545uTJEzjmcRQ7d+0piWIozK27D7Bl3xG8CI+EoYEeenZog4HdO35SGxvy/CXGTJuHA+uXwszY6LM/FyK/+0HYcPBfPI+IRgV9PfRp1wxDPqPPGT57GTxW/ZnX5+TyvH0P24+dw6uoWFQw0EMnV2eM6NEOaqrCv+wICAzErt17EJbblnTpjN69ehXTlnhi/4GDiImJgYmJMfr17Yu2bdpI7XP9xg0cPnIUEREROW1JPYwaOaJMtCX+gXexw80dL8PCUd7AAN07d0Dfnt2KGcPewN6DRxCdM14b0Kcn2rf+Tmqf/iPG4M3bdzJpPfbuhL6+nsLLoUgBgYHYvXt3Xj3p0qVLsfXE09MT+w8cyKknJugrp56EhIRg2/btePr0KbS1tdG2TRsMHjwYampqJV2kr3bz3iNs3n8Mz8OjYKivh94dvsOgru0+sT0Jw+gZC3F4zUKYGVcsdL9/dh3AwdOX4Ht4myKzXmI0a9SFfvfBUDO3gvh9ApKunUPSxRNy99Vp8h0qDC/8HsDbXWuQ4ucJANBybAK9dj2hZmoBcWoK0oPvI+GYG8RJiSVRDIVLS0vDnh1b4OtzHelpaajpUAejx46HhWWlItMlxL/Djq0bcSfgNkQiEZwaOmPkmPFSY5OL505j/ZoVMmk7demOseMnKbwsilBS/U6u1NRU/DjhJwweNBDt2rYtqWKUCF7/EVF+wr+SKCNOnjwJf39/uLu7w8TEBLdv38b06dNx+fLlEvubS5cuRUREhKACGI+ePMX0hcvQyqUJRg/qi/tBT7Bp936IRGIM6d1NbhpPn1tYsGo9+nTpgEaOdXDjpj8WrdkEdTVVtG7WFABw+N+zWLvdDS2bOuPH4YOQ8P49drgfwbMXr/DX9F++ZRE/2+PgJ5g9fyFaNHPBiCGD8PBxELbu3A2RSIQBfXvLTXPD2weLl69Cz25d0MDRET5+N7Fs1RqoqarhuxbNAABnzl/EqrXr0a93TzjVr4fgkBBs2rYDaelpGNRPOHVCHtYTWQ+evsCvSzeibRNHjOvbBXefPMda9+MQicQY3r1dkWlDw6Pwy9KNEInEUtsrGuhh+/zfZfY/cuEaLvoGolvLJgotQ0nRtDSF8+ntUDMo/oaGac92qLdnOV6s3YO48zdg2r0N6u1YAvGHDEQfOgMA0KpqiUbndiLe7y4CB06Grr0N7Bb8AjVDAzyc8GdJF0chli5ZguDgYIwaPRra2tpw37cP06dNw8ZNm1CuXDm5aUQiEebMno3U1FT8NHEisrKysGvnTsyaNQtr166FaoGbi9c8PbF169ZPDsKXlqDgYMyZtwAtmrli2JAhePT4Mbbv3AWxSIT+hbSFN7y9sWT5CvTo1hUNnJzg4+eH5av+gZqaGlq2kARFPa9dx6Kly9CpYweMGDYU7+ITsMdtL6bOnIX1q/+Burr6tyzmF1m6dDGeBAdj5ChJPdnvvg8zpk/Dho2bi6wnf875A6mpqZjw00SIskTYtWsH/pg1C2vWrpOtJ9c8sW3rFsHXk4dPnmHq3yvR2qURvh/YG/eDQ7DR7SBEYhGG9upaZNrnryIwZeFKiESiL/pciB48fYFflm7K63PuPQnFWvcTEInEGFFMn/MsPAqT5fQ5AHDzfhCmrtqGto0d8dOAbgiNiMGGAyeRkJSMKSP7lVRxFCIoOBh/zp2H5s2aYfjQIXj46DG279gJkUiE/v3k593LyxtLly1Hj+7d4OTkBF9fP6xYuSqnLWkBAPC8dg2LlyxFp44dMWL4MMTHx2PPHjdMmzET69asFnRb8jg4BLMWLEJL16YYMWQgHj4OwpZdbhCJRBjYt5fcNNe9ffH3itXo1bUzGjrVg7ffLSz9Zx3U1NTQqrkrACAx8T3evH2HH0YOg0PNGlLpdXV1SrxcXyMoOBhz585F82bNMGzoUDx69Ag7duyAWCRCv0LriReWLluG7t27S/ocX1+sXLlSqp5ER0dj5qxZqGFvjxkzZiA8PBy7d+9GUlLSJ09uKy0PQ0Lx+6I1aNO0Icb074H7wU+xfu8RiEQiDOvZqci0oWGR+H3R6mLbzzuPQ3DoTMldVyuaelVbGE2YiVR/bySe3A+NavYw6DkUSsrKeH/+mMz+aQ8CELNkusx2wyHjoaylhbSHgQAA7QYuqPj9b0i6fh6JJ/ZBRa889LsNhPEv8xDz9xQgS/g3Ylcu/QshwUEYNmostLW1cdB9D/6Y/hvWbtwB3SLGJvPnTEdqairG/TQZWVkiuO3airmzpmLl2s15Y5MXz5/BwtIKP/86TSq9QXn5E3VKW0n1O7mSkpIwb/4CxMbGfoviKBSv//5blJS4OBAVjwEMBXn//j2MjIxQp04dAMDLly9L/G9mZ2eX+N/4XDv2H0H1qlXwxy/jAQCNHOsiK0uEvUdOoG+XDtDQkL1I27r3IFo2bYSJoyUzwZ3r18X7pBRscz+M1s2aQiQSY/ehY2hQtzbmT52cl87WuipGTJqG23cfoGG92t+kfF9iz779qGZdFdN/k9xAb+jkiKysLOw/dAQ9u3WBhoaGTJode/aiuWtT/DhmdE6a+khKTsKuve55AYz9h46gmUtTjBk5HADgWK8uIiKjcOLfM4IPYLCeyNpy5DTsqlhi3oQRAIAm9WohSyTCrhPn0b9jS2jKucGRmZWFQ+c8sfnIaajLmZ2nrqaG2tWrSm0Leh6Gi76BGD+gG+rZVyuRsiiMkhIsh/ZAjSXTgE98qMhuwa+IPnIOQb8vAgC8uegFtfL6sJs7KW8AazNlDLKSUuDfazyyMzMRd+46RGnpcFg9G88Wb0J6eHRJlUghgoKCcPPmTcybPx8NGzYEADjUqoWRI0fi9KlTGDBwoNx0N27cQGhoKDZt2oRKlSsDAGysrfHjjz/ixvXr+K6V5AmvhIQEuO3Zg7NnzxZ6k1tI3Pa5w8baGlN//w0A0LCBE7KyRDhw6DB6dO8mt43dtdsNzVxdMG7sGABAAydHJCUlYffevXkBjAOHDsO5QQNM+mlCXjorCwtM+u133Lx1G81cXb5B6b5cUNBj3Lp5E/PmLUCD3Hri4IBRI0fg9OlTGDCgsHpyHaGhodi4aTMqVZLUE2sba4z/cRxu3LiO777LV0/cduNcGaknOw56oHrVypg9aRwAoLFjHckNkKP/ol/n9nL7nczMLBw5cxHbDxyV28YW97mQ5fY58ydIxhBN69XM6XMuYEARfc7Bc9ew+chpaKjJv4T495ofTCuUx/yfhkNFWRmN6tTAu8T3cD9zFb8M7Q1VVeE+Dem2d5+kLZkiCfw3aNAAIlEWDh48hB7du8ttS3bu3o1mrq74YexYSRonJyQlJWGP2968G0kHDh5Cw4YN8PPEn/LSWVpYYPKvv+HmrVto5ur6DUr3ZXa7H0A166qY8Ztk5rKzU31kiURwP+yBXt06y/1Otru5o4VLE4wfMxIA0NCxPpKSkrFr7/68AMazFy8AAK5NGsHczPQblUYx9u7dCxtra0yZMgWApJ5kiUQ4cPAguhdST3YVqCdOTk5ITkqCm5tbXj05fOQItLS0MGfOHKipqcG5YUNoaGhg48aN6N+/P4yNjb9dIT/TtkMnYVu1Ev78+XsAQJP6DsgSibD72Bn069QGmoW0r4fPXcbWgyeKbT9T09KxcMNOGBka4PXb+BIpg6Lpd+mPjPAXeLtrDQAg/fEdKKmoQq9DbyRdOY3szAyp/cXJ75GR/F5qm+53naBmZoHYpTMhzvlMr0NvpD0IQLz75rz9MmMjYTp9CbTqNEBaoG8Jl+zrBAc9wu2bvpg9bxGcGjYCANR0qIMfRg7C2dMn0HfAELnpvG944nnoM6zdtANWlaoAAKxtbPDzj6PhfcMTLb6TPH3w4nkoqlW3g519zW9Qmq9XUv0OAPj6+WHjps1IS0v7NoVRFF7/EZU4sViMdevW4fDhw0hKSkLDhg0xZ84cWFnJf0r/5MmTeeOe/C5fvpy3AsTZs2exdu1aREREwNraGtOmTUOTJoqdMMswVz7Xrl1Dr169ULduXTRp0gTTp09HYqLkUUx/f3/069cPderUQbdu3XDmzBnY2dkhIiIC06dPx9q1axEVFQU7Ozt4eHhg2LBhAIDWrVvDw8Pji/Jz584dDBs2DE5OTmjUqBFmzJiB+HjJoG369Ok4duwYbt26BTs7O8V8AV8pIzMTdx8GoVnjhlLbWzZ1RmpaGu4HPZFJEx0bh/CoaDRv3EAmTWR0LMKjohGfmIj3Sclo2rC+1D7Wla2gr1cOvv53FF8YBcnIzMT9Bw/h0qSx1PbmLk2RmpaGh4+DZNLExMYiIjIKLo2l0zRzaYqo6GhEREYBAP6a+wfGjhoutY+aqioyMqQHxELDeiIrIzMTgY+fomXDelLbWzeqj5S0dNwLDpWbzvvOI2zzOIsR3dvjp4Hdi/072dnZWLbzIKpammJgp1bF7l/a9OrYwWH9PETsPY67I6YWu79WZQvo2lVFzImLUtujPc5Dp3oVaFeT3Iw1auuK12evST0uHHP0HJRUVGDUTrg3knIFBARAU1MTjo6Oedv0DQxQu3Zt3Pb3LzRdYEAALC0t84IXAFCpcmVYWVnh9u3bedsOHjiAgIAAzPrjDzRq1KhkCqEgGZmZuH//gUwb28w1t419LJNG0sZGwqXAgKqZiwuioqIRGRkFsViM+vXroWOH9lL7WFlJBmhR0cK/yAnMqSf189cTfQM41K4N/3z/3zLpAnPqSaV89aSSpJ7kT3fo4AEEBgRg5qw/4FwG6smdh8Fo3shJavt3TRoiNS0d94NC5KbzDbyHnYeOYWjvbvhxaP/P/lyoMjIzEfD4GVo2rCu1vdUn9jkju7fDTwN7yN3nQ2YWNDXUoaL88RJDv5wOMrOykJKerrAyKFpGZiYe3L+Ppk2l2wVXV1ekpqXh0SP5bUlkZKScNC6IiopCZGQkxGIxHOvXR6cOHaT2yb1AjBZwW5KRmYl7Dx7BtbGz1PbmTZsgNS0NDx4Hy6SJiX0tGcM2kW4Tmrs0QWR0DCKiJGPY0Ocvoa2lBTNTk5IrQAmQ9Dn30bRpU6ntrq6uSEtLw6NHj2TSxObUkyZy0uTWE0DStzs3bCi1XJSrqyvEYjECAgNLoDSKkZGZicBHT9DCWXr8/V1jJ0n7GvxUbjqfOw+w/fC/GN6zEyYMkf9Eeq51bodhaKCHzi2FPXEgj6oqNG0dkHb3ptTm1EBfKGtpQ6NajUISfqRcTh8G3QYh+fp5ZLzM+Q6VlJAedB/JXhek9s2MkdQh1YrCDwbeCbgNTU1N1HP8eE2nr2+AWrXrIuD2zcLTBfrDwtIqL3gBAFaVqsDSqlJeuuzsbLx88RxVbQQ+QStHSfU7AJCcnIwFfy1Endq1sXDBgpIrRAng9R9RyduwYQPc3d2xYMECHDhwAGKxGN9//32h9xKfPHkCZ2dneHl5Sf2YmZkBAPz8/DBlyhQMGDAAx44dQ5MmTTB27FiEhsq/pvhSDGDkePfuHX766Sf07t0bZ86cwbp163D79m0sXboUr169wqhRo2Bra4tjx45h7NixWJCvI5g1axZGjRoFU1NTeHl5oW3btli7di0A4PDhw+jUqehHZ+W5f/8+hg4diurVq+PQoUNYvXo17t27h9GjR0MkEmHWrFno2LEj6tevDy8vL4V9D18jKuY1MrOyYGUuPXiyNJNcnITl3HjP71WEpJO1NDeT2m6RMxsrPDIaujraUFFRQczrN1L7JCUnIzk5BVGxrxVWBkWLjolBZlYWLCzMpbab55Q3PKf8+YWFRwAALAukschpHCJyBiaVraxgamKC7OxsvE9KwpnzF3Hxiie6du6o8HIoEuuJrMjXb5GZlYVKZtKz6yxNJOuov4qW/9hvTZvKOL5mPkb17ABVleKb84u+AXj47CV+HdZH6uaSUKWFRcPTvi2CpiyGKLX4G1+69jYAgJSnL6W2p4a+knxuWxXKmhrQrmKJlKcvpPbJeBOPzMQk6NpKP7EiROHh4TA1NYVKgfe6mJmbIzIiotB0YeHhsLCwkNlubm6e164AQKfOnbFt+3a4uAj/RkFMdG4bK10uczNJ+xkhp40NDw8HgMLb5cgIKCsr44fvR6NpgcCIj68fAKBy5aLXaRaCwuqJuZk5IiMLryfhYeEwl1NPzMzNEZGvfnXs1Blbt+2Ai4vwL/qiYiX9TqUC/Y5Fbr8TJf8mco1qVXFk00oM79NN5nv8lM+FqrA+xyqvz5HfX9a0qYwTa+ZhVM8OUCmkz+nbrjnCY+LgduoSklJS8eDpCxw46wmXerWgL+ClgWKiowtpS3LHXrLnTHhYbltSII35x/ZHWVkZY8d8LzMDzcdXMku6cr5AodBEx8QiMytLdjyacx7l7zdyvcodw5oXaF9zx2sRkjHesxcvUa6cLuYtWoZu/Yeic9/BWLBkBd6+E/bs+pjoaGQVWU/kjOvDwgBInrrJzyyvnkTgw4cPeP36tcxxDfT1oa2tLdX2Ck1UbFxO+yodjLI0lbQvr6Lkj2Fr2FSBx/rFGNG7C1SUC28/b917hLPXffHH+JFQVhb+O/4AQLWiCZTU1JAZK31Nkxkn6WtUTczlJZOi33UAkJ2NhBPuHzdmZyPh6C6k3ZOehKBdTxJkzIwO+8qcl7yI8DCYmJrLjmHNLBAZGV54urBXMLeQfc+bmbkFIiMk6WKio5CWlopnIU8wfsww9O7aFuPHDMPVyxdk0glBSfU7AKChoYHNmzbi999+hZ7A3ylUEK//iEpWRkYGduzYgZ9//hktW7aEvb09Vq1ahZiYGFy4IL+9DAkJgZ2dHYyMjKR+ctvyrVu3ok2bNhg2bBhsbGwwbdo01KpVC7sV/B5NLiGVIzY2FhkZGTA3N4eFhQUsLCywadMmiEQiHDx4EBUrVsTcuXOhqqoKGxsbxMbGYunSpQCAcuXKQVtbcvPUyEhy8aevrw8AMDQ0hKam5mfnZ8eOHbCzs8Ps2bMBADY2Nli5ciW6d+8OLy8vtGjRApqamlBTU8v7m6UtJTUVAKCjrSW1XUtL8ntqquzji4Wl0dbSzPk8DZoaGmjl2hjHzlxA1UqWaN64AeIT32PNtj1QUVFBevoHhZdFUVJScsunLbVdO/c7SUstNI12gTQfv0fpNEHBTzBpimTNVNvq1dCnZ/Ez8UsT64ms5Jwy62hJtxXaWpLHhlPS5A/ejA0NPuvv7D11CXXtrOFU0/bzM1kKMuMTkRn/6S8kVNXXBQBkvU+W2p6VlCL5XE8Xavrl5O6Tu5+qnu6XZvebSU1JkWkfAMk5VLB9KJjOwlz2orlgusIeHRWilFTJ/23B70NbW357CXx+G5srKjoaW7fvgI21NZwbNJC7j5CkpH5hPUlNgbnF/1c9SU6RtLG5fW+u/H2IPEYVil4zu7jPhaok+5yGtWwxrGsbrNl3HGv2HQcA2FWxxF8TR3xxfr+F3HGGbFsi+V1uW5LT/hQ6xiuiLdm2bTtsrK3RsKFw25KPbWXB80byu7zzpvDxmvQYL/T5C7x5+w6d27dFr+5dEBYegV37DuKXGbOxefVyaH3BtdO38GX1pJA0+epJSor8vgwovs0ubbntSaHtayHL1xhXKP4F9skpqfh7426M6d9dJgAtZMpakmCtOF267Nk5vytryv4/S6Uvpw+dxi2RdOkksuVcK+anWtEEBr2HIyPsOdIfCvdJnVypRYxN0oodm8gGMLS0tPPSvXj+DAAQGxONkd//CFVVVVy9fAGrVyxGZmYG2nXooqBSKEZJ9jtqamqwspT9vsoCXv8Rlazg4GCkpKRITa7R09NDzZo1cfv2bXTpIttWPnnyBK1ayV/BQywWIzAwENOnS7/HqVGjRoUGRL4UAxg5atSogS5dumDcuHEwMjKCi4sLWrZsibZt2+LZs2eoWbOm1IsrnZ2dizja1wsJCZGZ/Wpvb49y5crhyZMnaFHgBU1CIC7mnRxKcmZ8i8VFp8mdafPbuNFQU1XD0vVbsWTdFmioq2Nw725ITUuXu66qUBT3nhJlOS8rys6WfSlmfgVfcGRsbIzli/5CTGwsdrm5Y/KU6djwz0poasqumSkErCeyvqSefK77Ic8R/CIcy34b+9XHEip5dSe/bLEYKHYfYb1bSCwWy9QPsbjwNkJJqfDZiUWde8pFpBOyYtsGOeUSF9PGyjvfwsLDMXP2HKioqOCPmdOhLLAnmOTVk6LqcpH1pIh0ZWX2a0HFtbFKZbRcX6rYfvgr2oPF2w/gpKcfRvXsAGcHW0TFvcPWI2fw8+L12DDrZ8H2xdlFtKuA/O+kuP5CXr0KDw/HzD9mQ1lFBbNmzRRcW5JfceNRee3rp34nv078ESrKKrC3lSz1UqdWTVSpVAmTps3CxSue6NapQ1GHKTXF1RP530kxdUtZ+RPGgcJto4prT74m7//sOgDjiuUxoHPbLz5GqSiuzMWcW7oubaCkrIykK6eL3E/VxALGk+YAYjHebFkGCOz9mIocwxY5pslpV2o61MGsPxeidt160NSU3NCv79QQiQkJ2O+2C23bd/6q/k3RvlW/8//u//H6j+hTtG7dusjPL1++LHd7TEwMAOQt/5TL2Ng477P8EhMTERsbC39/f7i7uyM+Ph516tTBlClTULVqVbx//x6pqakwNTX9pON9DQYw8lmxYgUmTJiA69evw8fHB1OmTIGTkxM0NDRkOlt1OS83VKTCBrLZ2dlSa6MKiW7ubIECM/dyZ1vpFpiNBQC6OvLT5M7qyp1doK2liekTx+Ln74chNu4NTIwqQltLE6cuXs1bAkKIdPJmUEjPwMmboaYjOwNFR0cya6fgC7dSC0lTsYIhKlYwRN3aDjAzNcVv02fhhrcP2rb+TjGFUDDWE1m5s2ALrg+eOwtWR/vrZyJevnkHejracKnn8NXHEqqsxCQAgGo56WVKcmfVZCUm5828KbhP7n65xxAKd3d3uO/bJ7XN1dUVCQkJMvumpabmtR/y6Ghry32RX2pqKrSLSCdkue1hwXLlzWqTUy4d7c9rY+/df4D5C/+GlpYmlixamPdov5Dsd98Hd3fpeuLi6oqEBNnlWFLTiqknOkXUE+0yWk9yn8gptN8pejbs/xvd3JmaBZ5MzO1z5PXDn+L1uwQcu+KDkd3b4cd+ktlbTgBq2VRG/ykLcdLTF/3aC28CDvCxrSi8XZCt+9p5Y5NCxngFzpd79+9jwV8LoaWlhaWLFwmyLckvd2yVJjP2KmoMW9h3Ij1eq2Uv+/4+h5r20NHRRuiLV1+Z85KTWw8Kli+1qD6nmDQ62tp5M67LYh+tW0j7mlLEuP5TeAXcw0Xv29i55A+Is7MhFonyAuxZIhGUlZQEGwDMfWpCWVO67LlPXoiLeapC27EJ0h/fy3txtzwatrVQ8YepyP6QjtiVc5D1Rv5SXaXpoPseHHTfI7WtqWtzJBYyNtHWKXwWvLaODtLkfG+SJzok54eBQXk0bCT7wlgn50a4dzcACfHxKG8onCcnv0W/81/w/3j995/0Hwy+lZbcNqfgPW0NDY28d0Dn9/Sp5D1M2dnZWLRoEdLT07Fx40YMGjQI//77L7Kysgo93ocPil0FhQGMHPfu3cPp06cxc+ZMWFtbY8SIEXlvWh8wYACuXr2KjIyMvP+Uhw8fFnm8r43u29nZISAgQGpbcHAwkpOTYWNjo5C/oWjmpsZQUVZGZLR0lC0i5/fKlrJraltZSC7eIqNjYGtdJW97ZM6a/7lpfG4HopyuDmrXsEPVSpLHIeMTEhH39p1UOqExNzOFsrKyzAtfo3LW264k59HO3DVyI6OjUc3G+mOanGNUsrJEWloafG/egp2tLSzyvReies7+b9+9U2xBFIj1RJaliRFUlJURERMntT3396oWX//YvFfgQ7RoUAeqqmVnnfbPlRwiWddU26Yy3t8NytuuYyNZYzw5OBSilFSkRcRA20Z63XF1I0Oo6ekiuZCX15aWjh07yjzx5+vri4CAAIjFYqmL96ioqCKX9bG0tJT7Iq2oqCjY2cneTCoLzM3Mim5j5XwfljntRVRUNKrl9KfAxzY2/3d41fMalq/6B1aWlvhr3lxUrFhB4WVQhA4dO8HZWfqlub6+PggMCJSpJ9FR0UXWEwtLSzyXU0+io6Jha1c2lp8ryCK334mRvsETEZPbhxS/Hvn/E0uTisX0OV8W8I958w7Z2dmoY2cttd3a0gz6ujp4HiHcF1bntSVRBdsSyRr28s6Z3OU5oqKipNqS6JxjWFXK35Z4YsXKVbC0tMRf8+ehYsWKCi+DouWOYSMLtq8547VKVrJjWKuc5eeiomPyxqSS3yXHqGxlieSUFNzw8YO9bXVUzfc+IbFYjKzMLBgIeL12s5x6Eh0l/W6D3Hoiv8+RfE/RBepJXppKlaClpYUKFSrkbcuVkJCAtLQ0uccVCgsT45z2RPrdObm/V7H8skDdVd8AZGRmYvCvf8p81mzAD+jUoilm/zTqi45d0jLjYpAtEkHVSHr8rmos+T0zpvB3mqgYGEK9kjXeXj5V6D7aDVxRYcREZMZEIm7dXxAlCPO6r33HLmjoLB1QuOnrhTsB/nLGJpGwtCr8/WIWllZ4Hir7QvjoqChUt7MHADx6eB+xMdFo1aa91D4ZHzKgrKwM3XLlvqY4ClfS/c5/xf/j9R/RpyjsCYvi5L7iICMjQ+p1Bx8+fMhbUjm/Bg0awNfXF+XLl8+7B71u3Tq0bNkSHh4e6Nu3b97x8ivseF9DmNMWSoGuri7c3d2xbNkyvHr1CiEhIThz5gyqVKmC8ePH48OHD5gxYwaePXuGa9euYdWqVUUeL3cmTe76Yp9r5MiRePLkCRYsWIDQ0FDcvHkTv//+O2rWrJm3Vpm2tjZev36d90LS0qahro46texx3e+21BMk13xvQ1dbGzVsbWTSWJqZwszECJ4+t6S2X/O9BUtzyWcAcOL8ZWzYJT279PC/Z6GsrIymDRxLoDSKoa6ujjoOteDl4yf1ndzw8YWOjjbsbGVvBlmYm8HUxAQ3vH2ktt/w8YWFuTlMTUygoqKClWvX47DHMal9/O/cBQBUrSLcl0KynsjSUFdDPftquHr7ntR3cuXWXehqa6GWTZWvOn5icgrCY16jjp3sd/v/JDU0DKnPw2HWS/rCxbRnOySHvEDaK8mL7d5c8oZxp5ZQVv/4NJtpr/YQZ2XhzVW/b5rn4lSoUAG2trZSP46OjkhLS5MKcicmJODhw4dwdCy8njs6OiI8PBxhrz7Obg179Qrh4eGoX0Q6IVNXV0dtBwd4+/hInTte3j7Q0dGBnW11mTS57egNb2+p7V7ePnmfAcCt2/5YumIlatawx4plSwQbvAAk9aS6ra3Uj6OjE9LSUhGYv54kJuDhwweo7+hU6LEcHZ0k9SQsXz0Je4Xw8DA41i88nZBpqKujbk07XPPzl6onnr7+0NXWRs3q1kWk/v+joa6G+vbVcPX2XYX2OVamkmD83QI3Al5GxSIxOQUWxsK9aV94W+Kd05bIjtfMzc1hamoCL6+CbYl3gbbkNpYtX4EaNWpgxfJlZSJ4AeSOYWvihs9Nqe/kuo8fdHS0YV9dXvtqBjMTY1z39pXafsPHL2d8awx1NTWs3bQN+w97SO3jc/M2PmRkoF5t4T4pWlw9sS20npjCy8tLart3Tj0xyaknjo6OuHXrFjIyM6WOq6ysjLp165ZQib6ehroa6tWwxbWbgdLt681A6GproWa1L3s57vf9umHH4j+kfrq3bg4A2LH4D3zfr5tC8l8isjLx4eljaNdvLLVZu34TiFNTkPFC9kZ8LvUqkvPqQ2iQ3M81HRxRYeQkfHj+BLHLZwk2eAEAhhUqopqtndRPPccGSEtLxZ2Ajy8iT0xMwOOH91HPsfB3AtVzbICI8DCEh73M2xYe9hIR4a9Qr74k3cP7d7Fm5ZK8l3oDksCoj/c12NeoJbhVLEqy3/kv+X+8/iMqSblLR71+LT3x4PXr13ljkoIMDQ2lJtBraWnB0tISsbGxMDAwyLs3/anH+1IMYOSwsbHB2rVr4efnhx49emDgwIFQUVHB1q1bYWJigt27d+P169fo2bMnFi9enBdlKoytrS1atGiByZMn4+DBg5+dn7p162Lbtm14+PAhevTogcmTJ6N+/frYuXNnXufbo0cPpKWloUuXLoiNFcZjo8P69sTjkFD8uWw1/ALuYtu+Qzhw/BSG9OkOTQ0NpKSm4tGTp0hI/PhI7Ih+vXDV2w8rN+3AzcB7WLFpO656+2H0oI/fce/O7fHoyTOs3e6GwAePsHXfIew9ehL9u3cS9NJAADCof18Eh4RgweJluOUfgF1u+3DY4zgG9u0DTU3Jd/I4+AkS8j2uNWRgP1y74Y01GzbhdkAgVq/fhGs3vDFiyCAAkgHPgD69ceb8Rexy24c79+7j6PGTWLF6LRzr1YVzA2HfZGI9kTWqZwc8evYSM1Zvh8/dR9h06F/sPXUJI7q3h6aGOpJT0/Dg6QvEv//8R1xDwyQzeRTxJIeQqJbTgUGjulCv+PFFkE8Xrod5v05wWPsnjNo1g8O6uTDv1wkhc1fn7RO6fBs0jCug4altMO7UElUnj0DN5TMQvu0Q0sOFO0M4V+3atVGnTh0sW7oU586dg4+3N2bOnAkdHR106tw5b7+wV68Q+uxZ3u/NmzeHhYUFZs+ZA09PT3h6emL2nDmoUqUKmjdvXhpFUYhBA/oh+EkIFi5agtv+/tjtthdHPDwwoF9faGpqIiU1FUHBwVJt7OCBA3D9hhfWrt+A2/4BWLN+A67f8MKwoUMASGaQrFqzFtpaWhjQvx/CwsIQFByc9xP35k1pFfeTOdSujdp16mDZsiU4f+4sfHy8MWvmDOjo6KJTp3z1JOwVQkNl68mc2bPh6XkVnp5XMWf2bFSpUgXNynA9Gd63Ox4/fY7Zy9fBN/Aetrofwf4TZzC0d9ecficND588Q3xi4Ut2/D8Z1bM9Hj57hRmrd8D77iNsPHQKbqcuY2T3dl/c55TXK4cBHVvC7dQlrD9wEv6PQvDvNT9MWrwBZhUN0aNV0xIs0dcbOGAAnjx5goWLFuH2bX/s3uOGI0c9MKBfv0LbkkEDB+L6jRtYt349/P39sXbdely/cQPDhg4FIGlL/lm9BtraWhjYv3+Za0uG9OuD4JCnmL9kBW76B2Ln3v045HECg/r2zjeGDZEeww7oC08vH6zesAW3Au7gnw2b4enlg5FDBgLIHcP2xOVrN7Bh204E3L2HI8f/xdJ/1qFpo4aoX7d2aRX3kwzIqSd/L1qE27dvY8+ePTh69Cj6f1Y9WYfrN25gaE49AYC+ffogITERc2bPxs2bN+Hh4YEtW7agY8eOMDY2Lo2ifrIRvTvj0bMXmLVyE3zvPMDmA8ex7+R5DO/V6WP7GhKK+M9YpsXMuCJq2FSR+qloqA8AqGFTBWYCDogCQOLZw1CvUh0Vx/wOzVr1od91IMq17Y7Ec0eRnZkBJU0tqFe1hbKu9BNHahaVkZ2ZIX9JKFU1GA4Zj+z0NLw/exRqZlZQr2qb96NiINyJFrlq1a4Lhzr1sGrZ37h47jT8fG7gz5m/Q0dHFx07fQxKhYe9lHriwrV5S5hbWGL+7Om47nkZ1z0vY/7s6ahcxRquzVsCkDzxUb68IRbOmwWva1dx+6Yv/po7E2EvX2LE6HHfuqifpCT6nf93/9XrPyJFsbe3h66uLm7evJm37f3793j8+DEaNmwos//BgwfRqFGjvOXtACA5ORkvX75EtWrVoKSklDcJI7+bN2+iQYPCA9NfQim7uLeGkVw3b97EsGHDcPny5bxHg8uq2KCA4nf6DNf9bmPH/iMIj4xGxQrl0bNjOwzoIblZcufBY0ya/RdmTPwBHVt/XAf5xPnLOHD8FOLevIOZiTGG9O6G9t81kzrupes+2HP4GKJj42BiXBE9O7RF7y7SkXZFMKnhhLCn8me9fCkvHz/scd+PiIhIVKhQAd06d0TfXj0ASNZX/33mbPw+eSLat/n4Ip5TZ8/jsMdxxL15AzNTEwzo2xttW318r0V2djZOnT2Pk6fOIComBvr6emjVojmGDRqg8He0VKpeg/WkAJMaTkgMvKTQY169fRdbD5/Gq+jXMDLUR9+2zTG4SxsAQMDjEPy4YDXmjBuCLi1k13c9dc0X8zftxfE182FuJH0Bc9E3ALPW7MCh5bNRpQSDGPqObXBarWSWIjJs7owml93g23oo3l2/JbXt3ujpiNjz8WmkSmP6w/qXUdC0MkPq83CELt2CyH0npI5X3sUJNZZMhV7dGsh4E4/IfScQMncNsnPWcFSUzplPEPr8uUKPCQBJSUnYunUr/Hx9IRaLUbNmTYz94Qep/mja1KmIjY3Frt2787bFxcVh86ZNuHPnDlRUVODo6IixP/wAw0LWBF65YgXu378vdYyvZWNtjZfPQhR2PADw9vGF2z53REREoEKFCujapTP69OoJQNLGTp0xE79NnoR2bdvkpTl99iyOeBxDXNwbmJmaon+/PmjTqhUA4O69e5g2849C/96QQQMxdPAgheW/SjVbPAt9obDj5UpKSsK2rVvg6+eLbLEYNWvWwpixY2Fp+XGJgenTpiA2NhY7d31cpzouLg6bN2/E3bx64oQxY8fC0FD+zZGVK5fjwf37Usf4WtVsqiLu0c3id/wM1/z8sePgMYTl9Du9OrTBwO4dAQCBD4Pw85xFmPnTGHRq1Uwm7ZkrN/D3uq04vGkFzIyNPvvzr2VUqxHeB15U6DGv3r6HLQX6nCFdJOOQgMchGLdgDeaMG4KuLRrLpP33mh/mb9qLE2vmSfU52dnZ2H/WEx6XvRD1+i0qGuihUR17jO/fFeX1FLt8h55jW7zIF3xTBG8fH7jt3YfIiAhUqFgBXbt0Qe9evQBI3mExbfoM/PrLZLRr+/GlwqfPnMVRDw/ExcXBzNQU/fr1Q5vWOW3J3XuYPnNmoX9v8KBBGDpksMLyX9WmGiJCil7m9nN5+d7ELvcDiIiIQsUKhujWuSP69ZTcaLz74CF+m/knpkyagA5tWuWl+ffsBRw+dgKv37yFmakJBvXpibatWuZ9LhaLcercBZw4fQ5RMbHQK6eL1i2bY/jAftDQ0FBo/i1tHeQui/c1vH18sHfvXkRERKBixYrokq+e3L9/H9OmT8evv/yCtvnqyZkzZ/LqiampKfr36yfzAs6HDx9i2/bteP78OfT09NC6VSsMHToUqqqKXfXZ2sYG7+7fUOgxPW8GYtuhEwiLioWRoQF6d/gOg7pKxt+Bj4IxYe5y/DF+JDp/5yKT9vRVb/y1YSc81i8uMjCx7dAJbD/8L3wPb1No3gHAsE4zhI3rpdBjatVrBP0u/aFmYgFRwlskXTuHpEsnAUjeYWHy6wK83b0WKb5X89KUHzgW2vUaIXLaaJnjadg5wOSX+YX+vcRTB5F46vMnTham0iYPBIVGKux4uZKTkrBj6wbc9PNGtjgb9jVrYfTY8bCw/LiE1Kxpv+B1bAy27tqfty0u7jW2b16Hu3cCoKqiinqODTBq7HipsUl0VCTcdm3Fo4cPkJaWiurV7TB4+GjUrKWYwGgNGwvB9zsFxcTGYsTIUTLHUJSqNtV4/ZdP58wnCjvWf0nK1sKvu0g+nTF/fXHaVatW4cCBA/j7779hYWGBZcuWISIiAqdOnYKysjLevXuHcuXKQVNTE9HR0ejWrRsaNWqESZMmIT09HStXrszbX0NDA15eXhg7diymTJmC5s2b4+jRo9i3bx88PDzyXoGgCAxgfCEGMP5/lUQAo6wriQBGWVcSAYyyriQDGGVVSQUwyrKSCGCUdSUVwCjLSiKAUZaVRACjrCuJAEZZVxIBjLKuJAIYZV1JBDDKupIIYJR1JRXAKMtKIoBR1pVkAKMsYgDjyzCA8fm+JoAhEomwcuVKeHh4ID09HQ0bNsScOXNgaWmJiIgItG7dGosWLUKvnGDqo0ePsCJnYmN2djZcXFwwY8aMvOWoAOD48ePYsGEDYmJiUK1aNUyZMiXv9QeKwpd4fwPz58/HsWPHitxn/fr1aNpU2I/WExERERERERERESmCkjLfbvAtqaioYMqUKZgyZYrMZ5aWlnjyRDoQV6tWLezYsaPIY/bo0QM9evRQZDZlMIDxhRo1aiTzn1qYn376CcOHDy9yH6GvbUpERERERERERERE9C0xgPENGBoaFrq+OBERERERERERERERyeJzOkREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERILDd2AQERERERERERER0belpFTaOaAygE9gEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeColnYGiIiIiIiIiIiIiOg/Rplz66l4rCVERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOKqlnQEiIiIiIiIiIiIi+o9RUirtHFAZwCcwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHBUSzsDRERERERERERERPTfoqTMufVUPNYSIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhzV0s4AEREREREREREREf3HKHFuPRWPtYSIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgERyk7Ozu7tDNBRERERERERERERP8dae6LSjsLZY7WoBmlnYVvTrW0M0ClL9X7aGlnQVC0XXrjfeDF0s6GoOg5tkXK5lmlnQ1B0flhIdJPbyrtbAiKZudxCH3+vLSzISg21tY4rWZX2tkQlM6ZT/DyWUhpZ0NQqlSzxdk7maWdDUHpWF8NaW5/lXY2BENr6B9IXj+1tLMhKLoTluLCvYzSzoagtKurjtTtc0o7G4KiPXo+noeGlnY2BMXaxgap1w6UdjYERbvFADwLfVHa2RCUajZV8c9JznXNb3I3JV7rFGBjbY0Xoc9KOxuCUdWmWmlngej/FpeQIiIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHD4Em8iIiIiIiIiIiIi+qaUlDi3norHWkJERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCo1raGSAiIiIiIiIiIiKi/xhlpdLOAZUBfAKDiIiIiIiIiIiIiIgEhwEMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBEe1tDNARERERERERERERP8xSpxbT8VjLSEiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBUS3tDBARERERERERERHRf4ySUmnngMoAPoFBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgqNa2hkgIiIiIiIiIiIiov8YZc6tp+KxlhARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgqJZ2Buj/j+/Dp1jncQHPo17DUE8X/Vs1xtD2rlBSUpK7f0ZmFtzOe+GUTyBi3iXCpLw+Ojapi1GdWkBN9WMVfRH9Gv8cPoeA4BdQUVGGk21V/Nq/EyyNDb9V0b6Y3/0gbDj4L55HRKOCvh76tGuGIZ1bF/qd5PfkRTiGz14Gj1V/wtyogtRnnrfvYfuxc3gVFYsKBnro5OqMET3aSX1vQuX7MgbrvR/h+dv3MNTWQL96NhjqZFvodxIWn4weO8/JbLepoIfDw9t98XGFxOfJK6w7443QmLcwLKeNAS51MaylU6F5/5CZhc0X/HAmMBjxyWmwNTfCuPaN4WJfRWqfpjPWI0sslkqrpa4Gv8U/lWRxFCYtLQ07duyAj7c30tLS4ODggLE//ABLS8si08XHx2Prli0ICAiASCRCw4YNMWbsWBgaym8zTp44AQ8PD+zavbskiqFwmhYmaH73FPx7T8C767eK3Ne8f2dUm/EjtK2tkPYyEs+WbUGk23GpffSdHFBjyVToOzkg630KIvZ4IGT+OmRnZpZgKRQjIDAQu/a44VVYGAwMDNC1c2f06dWzyPP+quc1uB88iJiYWJgYG6N/3z5o26a11D7Xb3jh8NGjCI+IhI6ODurXq4vRI4ajfPnyJV0khfiQnop/3Vfi3s2L+JCeCpsaDdBj2FSYmFctMl34i8c4c3AtwkIfIjtbDKuqNdFl0C+wqlozb5/s7GxcPbULPpcPI+FtDMpXNEfzDoPRrP3Aki7WF/MJjcI6z7t4HpcAQx1N9G9gh2GNa35S/5AlFmP4rnPQVFXF9mHtpD578SYR/1wOhP+rWKgoK8Gpsgl+a+MEy/LlSqooCuP76jU2+AYh9F0SKmhroG+dqhha36bQ7yQ8IRk99lyW2W5jWA6HhrQCAIizs+Hx8CUO33+JyPcpMNTSQAtrU/zQyB66GmolWh5F+JCeihN7V+LuzUv4kJ6KajWd0Gv4J5w3zx/j1MG1CHv2COJsMSpZ10S3QZNhZf3xvPG5fBT7N8+VSdus/QD0Gz1L0UVRCN8XMVh34z6ev3kvOW/qV8PQhnaffN6M2HsZmmoq2DawldRnJx+8wJ7bwQiPT4aRrha6OlTF6CY1oKos/Pl1AYGB2L17N8Jy+pwuXbqgd69eRX4nnp6e2H/gAGJiYmBiYoK+ffuibZs2UvuEhIRg2/btePr0KbS1tdG2TRsMHjwYamrCP298Hz3DuuOX8TwqDoZ6Ouj/nTOGtm1a9PXfRR+c8r2HmPhEmJTXQ8dGdTCqg6vUdczVO0HYevoaXsa+RUU9XXRuXAejOjYrE9c6gGQMu3PHdnj7eCM9LQ0ODrUxZuxYWFpaFZkuPj4e27ZuQUCAP0QiERo0bIgxY8bC0LCC3P1PnjyBYx5HsXPXnpIohkJlfkiB7+kVeP7gAjIzUmFu3QBNu05HeWPrTz7Gi4eXcW73BHQbtxsWNo3yticnxsL31FKEP/GCWJwF08r14NxhMoytapdEURSmJK91RCIR9u3bh0sXLyIpKQnVqlXD6O+/h729fUkX64sFBAZi1+49eW1s1y6di21jr3p6Yv+BgzltrDH6yWljc6WmpuLHCT9h8KCBaNe2bUkVgz6HkvD7fip9ZaPnF6gHDx5g6tSpCA8Ph62tLWxtbbF48eLSzlapuh8ahp9X70F759oY37Mt7j59iX8On0OWSIxRnVvITbN0/ymc9rmDMV1boVZVCzx+GYktJ68g+k0C5o7qDQCIeZeAkX9vRmVTIyz6oT/SMzKx3uMixq/cgUPzJ0FTXbgD+wdPX+CXpZvQtokjxvXtgntPQrHW/QREIjFGdG9XZNpn4VGYvHQjRCKxzGc37wdh6qptaNvYET8N6IbQiBhsOHASCUnJmDKyX0kVRyHuR73FpOPeaGdnhR+b1sLdqDdYff0BROJsjHSWP5gKiUsAAGzq0xyaqip52zXVPv77S44rFPdfRmPituNoX88WEzo0xZ0XkVh16gayxGKMbu0sN83cgxdx/fFz/NzZFZWNDHDy9mNM3HYc28b3gaO1ZMD7LOYNssRi/D24A6wqGOSlVVYWfkAn19IlSxAcHIxRo0dDW1sb7vv2Yfq0adi4aRPKlZN/g1AkEmHO7NlITU3FTxMnIisrC7t27sSsWbOwdu1aqBa48L3m6YmtW7eiQgX5F4ZCo2lpCufT26FmoFfsvqY926HenuV4sXYP4s7fgGn3Nqi3YwnEHzIQfegMAECrqiUanduJeL+7CBw4Gbr2NrBb8AvUDA3wcMKfJV2crxIUHIw58xagRTNXDBsyBI8eP8b2nbsgFonQv19fuWlueHtjyfIV6NGtKxo4OcHHzw/LV/0DNTU1tGzRHADgee06Fi1dhk4dO2DEsKF4F5+APW57MXXmLKxf/Q/U1dW/ZTG/yJ61U/Hq6X10HfQrNLV1cP7IRqxfMArTlx2Htq6+3DRxMWFYN28ELKvWxMAf5gNKSrh6ahfW/DkMvy8+nHcT9+S+Fbh+di869vsJlWxqI+jOdRzduRAqKqpo2kb+916a7kfE4eeDV9G+ZmVMaFkXd8Je45/LgRCJszHKxaHY9Du9H+JR1Fs4VTKR2h6TmIIRu8+hcgV9LOrpivRMEdZ73sWP7pdxeGwXaKoJd6j9IPodJv/rh3bVLfBjY3vcjX6HNV6PIBKLMbKBrdw0T+LeAwA29mwKrUL64t0BT7HRNxhDHavB2aoiXiWkYJNfEELfJmF9jyaCn1Cwa/U0vHx6H92H/AJNLV2cPbIRa+aNxqwVx4o8b1bPHQkr65oY9OM8AEq48u8urJozHNOWHso7byJeBsPYvAqGjP9LKr2eQcWSLtYXuR/1Bj8fvYH29lYY71obdyPf4B/Pe8gSZ2NU4xrFpt/pF4RHMe/gZGUktd3dPwTLrtxBGztLTG5ZD/Gp6djo9RAhcQlY0cOlpIqjEEHBwZg7dy6aN2uGYUOH4tGjR9ixYwfEIhH69ZM//vby8sLSZcvQvXt3SZ/j64uVK1fm9DmS66Po6GjMnDULNeztMWPGDISHh2P37t1ISkrCxIkTv2URP9v95+H4eZ072jeohfHdW+HuszD8c/Si5PqvYzO5aZYePIvTfvcwpnML1KpigcevIrHl32uIfpuAucN7AAD8Hofit00H0a5BLfzcqy1Co15j7bFLiE9OxfSBnb9hCb/c0qWL8SQ4GCNHScaw+933Ycb0adiwcXORY9g/5/yB1NRUTPhpIkRZIuzatQN/zJqFNWvXyY5hr3li29YtZWYMe9H9d8S+uocmnX+HuqYu/C+ux8nNwzHgt1PQ0JbfxuaXnhKPa0dlx6Yf0pJwfP0gZGakwbnDJOhXrIznDy7gxMah6DZuD0wq1SmJ4ihESV7rbN2yBefPn8fIkSNhYmKCY8eOYdbMmVi7bh3Mzc2/ZTE/SVBwMP6cOw/NmzXD8KFD8PDRY2zfsRMikQj9C21jvbF02XL06N4NTk5O8PX1w4qVq6Ta2FxJSUmYN38BYmNjv0VxiEiBhHtVVQZs3rwZampqOHPmDCZMmFDa2RGETccvw76SGf4aI+lcXGrbIkskxo7TnhjUtqlMoCEhORUe125jUp/2GN5RctOoUc1qAIA1R87j5z7tYaini03HL0NXSxObfh8FLQ3JTSPziuUxeY0bHr+MgKNt0bPiStOWI6dhV8US8ycMBwA0rVcTWSIRdp24gAEdW0JTzk2wzKwsHDx3DZuPnIZGITc//r3mB9MK5TH/p+FQUVZGozo18C7xPdzPXMUvQ3tDNd+NBaHZ5PsY9sYG+Kuj5Ma8S1VTST25FYyB9atL3QjJ9SQuASa6WnCuZKzQ4wrFhvO+sLcwxt+DOwIAXGpUQaZIjO2XbmNwM0doqkvXg8h3iTgTGIwZvb5Df5e6AADnapVw90UUDnrfzwtgPImMg6qyMtrWrQ71MjJbLb+goCDcvHkT8+bPR8OGDQEADrVqYeTIkTh96hQGDJQ/2/vGjRsIDQ3Fpk2bUKlyZQCAjbU1fvzxR9y4fh3ftZLMBE1ISIDbnj04e/ZsoRcIgqKkBMuhPVBjyTTgE+8B2i34FdFHziHo90UAgDcXvaBWXh92cyflBTBspoxBVlIK/HuNR3ZmJuLOXYcoLR0Oq2fj2eJNSA+PLqkSfTW3fe6wsbbG1N9/AwA0bOCErCwRDhw6jB7du0FDQ0Mmza7dbmjm6oJxY8cAABo4OSIpKQm79+7NC2AcOHQYzg0aYNJPH/t3KwsLTPrtd9y8dRvNXIV9k+1FyF08CvDE2GkbUbO+5AaSjb0T5k9sD6+LB9Cu5w9y010/txdqGpoYO20DNDS1AQDVazlj/sT2uHHOHX1GzcLb15HwPL0HvUfOhGu7AQAAW4dGiH8bg+D73oIMYGy8fg/2puWxsIcrAMDFxgJZ4mxs936IQc72RQYansS+w3bvh6ioqyXz2abr96CroY7Ng9tAK+cYFga6mHzoKh5Hv4VjgYCHkGy6GQw7I30saO8EAGhaxQRZYjF23n6KgfVspCYL5Ap5kwgTXU04F7ghnUucnY3dAc/Qy6EyJrpInjxoVAkw0FTHjHP+CHqdgJomwn2C6UXIXTwM8MS4GRtQK/e8qeGIuRM64MaFg2jfa6zcdNfO7IO6hibGTV+fd97YOjhj7oQOuHbWPe/pisiXT1DZxgFVbet+mwJ9pU1ej2BvYoC/ujQGALhYm0nGVX6PMcipetHnzet47PALQkUdTantIrEYW3weoXEVEyzr/rEdrWFSHn13noffyxg0rmJaMgVSgL1798LG2hpTpkwBADRo0ABZIhEOHDyI7t27F9Ln7EYzV1f8MFZSf5ycnJCclAQ3N7e8m2uHjxyBlpYW5syZAzU1NTg3bAgNDQ1s3LgR/fv3h7Fx4ePf0rbp5FXYW5nir9GSiWcuDtWRJRJhx9kbGNS6sfzrvxsBmNSrDYa3l7TJjWpIZt+v8biEn3u1hWE5HZzwuQNTQ30sHN0bKsrKaFzTBm/fJ2PvJV/81rcD1AR8rQMAQUGPcevmTcybtwANcsewDg4YNXIETp8+hQEDChvDXkdoaCg2btqMSpUkY1hrG2uM/3Ecbty4ju++yzeGdduNc2VlDAsg5uUdvHp8FZ1Gb0Fle8l4y6xqA+xd1AYPfffDqfW4Yo9x/dh8KKvItj3Bt48iKT4SPca7w6yqIwDAytYF6Snx8Dm5CD1/2q/YwihISV7rxMXF4fTp0xg3bhw6d+kCAHB0dMT3Y8bg8OHDmDRp0rcp5Gdw27tPMq6f8jsASRsrEmXh4MFD6FFIG7uzQBvbwMkJSUlJ2OO2VyqA4evnh42bNiMtLe3bFIaIFIrP6XyFxMRE1KhRA5UqVYKBgUFpZ6fUZWRmwf/Jc3znWEtqe5sGDkhJ/4C7T1/KpElJS0efls5oUU96FlcVM8mFcWRcPLKzs3E54BG6N3PKC14AQK2qlri4aoaggxcZmZkIePwMLRtKX6i2alQfKWnpuBccKjed951H2OZxFiO7t8NPA3vI3edDZhY0NdShku9Re/1yOsjMykJKerrCyqBoGVkiBETE4btqFlLb29haIiUjC3ej3shN9+R1AmyNDRR+XCHIyMqC/7MItKptI7W9bd3qSPmQgTsvImXSGOnpwP2Xgejs9PHcUVZWgoqKMj5kZuVtC46MQxXj8mUyeAEAAQEB0NTUhKOjY942fQMD1K5dG7f9/QtNFxgQAEtLy7wBPQBUqlwZVlZWuH37dt62gwcOICAgALP++AONGjWSdyhB0atjB4f18xCx9zjujpha7P5alS2ga1cVMScuSm2P9jgPnepVoF1N8v0YtXXF67PXpJaLijl6DkoqKjBq56rYQihQRmYm7t9/AJcmjaW2N3NtitS0NDx8/FgmTUxsLCIiI+HSpIl0GhcXREVFIzIyCmKxGPXr10PHDu2l9rGykgQGo6KFG9DJFXzPG+oaWrCv2zRvm66eIarVbICgOzcKTWdibo1WXUbk3YQFAA1NbRhUMMGb2HAAwIPbl6GmroHG3/WSSjti8gqM+vUfxRZEATKyRPB/FYtWdpWktrepUQkpGZm4E/660LSZIhFmn/DBQGd7VDaUfuIpOzsbl4LD0KOuTV7wAgBqmVfAxcl9BB28kPSZb/GdjZnU9tbVzJGSmYW7UW/lpnsSlwjbioXPkE3JyEIne0t0sJNe9qJKeV0AQERi6lfmvGQF3fWBuoYWauQ7b8rlnDePijpvLK3RqmvR5012djaiwkJgUUXYT4TmysgSwT/8Nb6rLv1/2cYuZ1wVWfi4KlMkwuzTNzHAqToqG0rfWH2b8gGJ6RloZiM987eakQEMtDRwIzRKcYVQMEmfcx9NmzaV2u7q6oq0tDQ8evRIJk1sbCwiIyPRRE6aqKgoREZKxngBAQFwbthQarkoV1dXiMViBAQGlkBpFCMjMwv+IS/xXX3pa7k2TrUk13/PwmTSpKR/QJ/mDdCirvS5UMX04/Vf7rG11NWkrnUMdLWRmSVC6ocPii6KwgXmjGHr5x/D6hvAoXZt+Ocbi8qkC8wZw1bKN4atJBnD5k936OABBAYEYOasP+BcBsawABAe4gVVdW1Y2X4MXmrpGsLcuiHCgq4Vm/7Z3TOICPFBk86/y3wW/zoUGlr6ecGLXBY2jRDz6g4+pCZ+fQFKQEle69y9excikUiq/VFTV4ezs3ORdbC0ZGRm4sH9+2jaVHqM7urqitS0NDx6JH9cHxkZKSeNi1Qbm5ycjAV/LUSd2rWxcMGCkisEEZUYBjC+UKtWrXDr1i0cP34cdnZ2eQ1jrtDQUIwbNw6NGjWCk5MTfv75Z6l9RCIRdu3ahfbt26N27dpo37499u//OCvg5s2bqFmzJrZs2YJGjRqhV69eEIvFOH78ODp37ozatWujWbNmWLhwITIyMr5ZuYsSEfcOmVkiVDaVfnzVyljy+8sY2QsdCyNDzBzaPS9gkcsz8DFUVVRQ2bQiot7EIzktHWYVymOR2wm0mLgAjcbOweQ1boh9J8yBSK7I12+RmZWFSmbSs6asTCTlfRUt/6ZJTZvKOLFmHkb17AAVFfmnad92zREeEwe3U5eQlJKKB09f4MBZT7jUqwV9XR3FFkSBIhJTkCkSo1KBtcGtDCQ3N16+S5KbLiQuEakZmRix/woar/ZA203/Ys2NB8jMWV7rS48rBBFvE5EpEqGykfSs1EoVDQAAL1/Hy6RRV1VFLStTlNPSgFicjZj4JCw95omIN4no2/TjI9JPouKgoqKMHzYdRaPpa9Fs1gbMP3QJKenCaDeKEx4eDlNTU6ioSM+yMzM3R2RERKHpwsLDYWFhIbPd3NwcEfna4k6dO2Pb9u1wcRH2bPpcaWHR8LRvi6ApiyFKLT5QqWsvCYqlFAggp4a+knxuWxXKmhrQrmKJlKcvpPbJeBOPzMQk6Ao4SBwTHYPMrCyZ/2tzM8mNsYgI2eBfeLjkZqKFhfTNM3NzyY3c8MgIKCsr44fvR6NpgcCIj68fAKByZekb4UIUG/kcFUwsoawsfe5UNKmE19EvC03n2m4AWnUdJbUtLiYM0eHPYGYpqU+Rr4JR0bQSQoP8sXx6X/w6uB7m/dQOPpcOK7wcihCRkIxMkRiVK0gHIHL7i1dv3xeadvP1+8gSi/Fjc9kZ81EJyUj+kAkzfV38ffYmmi8/COdF+zD50FXEvk9RbCEULPJ9KjLFYlTO6SNzWelLxg+v4pPlpguJS0RqZhZGHrqOJuv/Rbtt57DG+1FeX1xOQw1TW9RBPfMC7+x6Lgn6WVcQ9izhmMjnqCjnvDEyrYTXUS8LTdesXX+06TZSaltcTBiiwp/BzFLyZPGb2HCkp6UgLPQhFkzqikkD62PBpK64ee2kwsuhCLnjqoIBCKuc86aocdUWn8fIEmfjRznLs5XTVIOqshKiE6XPkffpGUhKz0BEgnDPnZjoaGTJ7XMk/UdEpGyfExYmuYFvWSCNmXluPxWBDx8+4PXr1zLHNdDXh7a2NiKKGO+Utog38ZLrP5MC139GkjX45V7/VSyPmYO7oIqp9NJpnneDJNd/Ocfq19IZYa/fYc8FbySlpuH+83Dsu+QHV4fq0NfRljmu0BQ2hjU3M0dkZOH/p+Fh4TCXM4Y1MzeXqgsdO3XG1m074OIi3IkmBcW/fg49Q9k2Vr9iJSTEvSgklURq0hvcODYfLt1nQltP9ilATZ3yyPyQIhOoSHwrOQffvxPmeVSS1zrhYWHQ0tKSef+fubk53r59K7gnEWKiowsZ1+e2sbLfR3hY7ri+QBpz6WsBDQ0NbN60Eb//9iv09ItfgpeIhKdsTskVgCNHjmD8+PEwNTXFrFmzpB6/i4yMRP/+/dG0aVPs3r0bHz58wOLFizFkyBD8+++/0NXVxeLFi3HixAnMnj0btWvXxvXr17Fw4UJ8+PABI0aMACAJcly7dg0HDx5EWloaQkJC8Mcff2D58uWoU6cOQkND8dtvv6F8+fIYP358KX0THyWnSW6m6WhKPyqurSl5aiIl7dNmylwJeIR/fe6gf6vG0NPRQlisZOC7+vA5OFhbYvEPA/AuKRlrj1zAmKXbcHDeRKknM4QkOVUyKNDRKvCdaEkefUxJk38D0tjQoNhjN6xli2Fd22DNvuNYs+84AMCuiiX+mjjii/P7LSR/kMzw1i2wJJJ2zu8pGbIvDI5P+4DXyWkQicWY1LwOzMpp41bYa+zyf4LYpFQs7NToi44rFMlpkmCCrqZ0PdbOqdcpH4oONuy8chtrzngDAHo3dkBjW8nN1ezsbDyNeoNsZKNXIweMbdsID8Njsfm8H57HvsWOCf0E/y6M1JQUaGvLXqRqaWkhNbXwmbypKSmwkLOua8F0VlZFv0RRaDLjE5EZ/+mBW1V9yc3JrPfSNyOzkiQ3iFT1dKGmX07uPrn7qerpymwXipRUSTkK1hFtbclSP/LqSEpKqtw0WlqFpwEkT11s3b4DNtbWcG7Q4Osy/g2kpyVDU0v2/05DSwfpqfJvTsuTkZEO9w0zoaamjmYdBgMAkt/HI/Hda7itm44OfcbD2Lwq7vicxaFt8wBAcEtIJecEbHUKLGOinfNC6dz+o6CHUW+wx+8xtg9rD3U5S5W8S5WMa1ZfCUQt8wpY3LMZ4lPTsebKHXzvdhGHxnSGlkDf0ZVbZp1C+8wsmTTxaR/wOiUdouxs/OxSU9IXR8Rht/8zxCanY2HOUlQFPYh5h13+T9G8qimqVRD2TYP0VPnnjaaW9mefN27rZ0FNTR0tOg4CIHn/BQC8fR2JnsN+h4qKKm5dP4m962chKzMDLm36KKYQCpL8Ife8KaSOFHLePIp+iz23grF9UCu5542Wmira2VfCwTvPYFNRH61sLfEuJR3LrtyBirIS0jNl655QpKTK7z9yf5fb5xSWJl+fk5Iivy8Dih/vlLaP13/Sy7rkXf+lf+L1350g/Ot7D/2/c4aejuS7cbavihHtXbDqyAWsOnIBAGBvZYa/vxfWuVKYlNQvHMOmpsDc4v9vDAsAGWlJUNeUbWPVNHSQ8aHo4OW1I3NgUrke7Jy6IzL0psznto7dcO/aTpx3mwTX7rOgo2+CV0HXEOx/DACQmSGsm/W5SvJaJyU1tdBjA5L2J/ffQvBlbayk3ugU0cYCgJqaGqyKeSk6EQkbAxhfyNDQEGpqatDU1ISRkZFUxNzd3R3a2tpYvnx53ks+16xZg9atW+PEiRPo3r079u/fj+nTp6Nr164AgCpVqiAiIgJbtmzB8OHD8441atQoVKlSBQBw6dIlKCkpwcLCAubm5jA3N8f27duhqyuMm0vi7OwiP/+UlzZeDniImZsPoV71ypjcrwMAIDNLBACooK+LFRMGQznnMWIr4woYvnATzvjeRe+W8l9yXNoU8Z0UZvH2Azjp6YdRPTvA2cEWUXHvsPXIGfy8eD02zPoZmgIN6mSj6O9EWc53oqWqig29m6GSgS7Mc2aHOlkZQU1VGRu8H2F0oxpfdFyhKL6eFJ2+eS1r1KtqjjsvorD5gh/SM7Pw9+COyM4GVo/uhvK6WqiWM8vNycYSFctpY+a+c/B58hKuNYQzu14sFiO7wHchFsu+wD5XUedPUd+pkOuCoikpF/2gZbZYDBS7T9H1szSJi8mbvP9rcXbhdUqSRvb7CAsPx8zZc6CiooI/Zk7P64eEQnLuSJcru6hz5xPzn56Wgu3Lf8ar0IcY+ctKGBpJLpRFWZlISYrHyF9Xoa5zWwC578CIxvmjGwUXwCiujZVXTz5kiTDnpA8GN6qB2hbyX7CclfPUgaGOJlb2bZl3HKvy5TBs1zmcfvgCfRzlvwy7tBV9Fsjvd7TUVLG+RxNJX6wnuVHgZFkR6irK2OAbjO8b2qJqgdn6d6PeYvK/N2Gup40/29RXUO4VQ+55U0T78DnnzdZlk/Dq2UOM/nVF3nlTrYYTfpi2DtVrNcxbaqpGPRckJb7DmUPr0bR1b0G94Ly4pl9eXj9kiTD7zC0MamALB7PCXyg8q50T1FSUMf/cbcw7dxuaqioY0agGUjIyBf3i+6LaVUB+W1JcGiVlZZmxz6ccVygUcv0X+Bgztx1FvWqVMLl327ztC/edwgnvO/i+c3M0srdG1NsEbPrXExPWuGHzL8MFNYFN3hi2qPFTkWPYItIJfeJRftmf28YW8Z0E+x9D9IsA9P/930L3MTSphk4jN+La0Tk4uEJyj8XIshac202E14mFUFPXLDTtt/Ktr3WKbX8E1rZ8SX6Lu05RKkPnzH8a/5/oEwh3hFiGhYSEwMHBIS94AQBGRkaoWrUqQkJC8Pz5c2RmZsLJSXqmmrOzM3bv3o23bz+uO5wbvACAZs2aoX79+ujTpw8sLS3h4uKC1q1bw8FB9vHs0lAu5ymD1AIzbXKfvNDVln3hUn57L3hh1cGzaGBfFSt/GgqNnDVgtXNm9LjUtpW6aVTHphJ0tTQRHCbctXJ1cyP/Mt+JZLaSrvaXzXh4/S4Bx674YGT3dvixn+SFXE4AatlURv8pC3HS0xf92rco+iClRDdnNmrB2Z0pHyS/62rIzlbVVFNB48qya4k3q2qGDd6P8DQuEdUq6n32cYVCVyt3lpr0bMbcZZ7KaRZ97lQ3+xicyBKJsfG8LyZ2coFZeT00rCY7O6tZTUnQ4klUnKACGO7u7nDft09qm6urKxISEmT2TUtNhY5O4Uul6Whry30sOjU1FdpFpPt/k5UoWeJDtZx0mXOfqshKTM578qLgPrn75R5DiHRylpAo+H+dN4NLzv+1jraO3DS5M7R0CixLce/+A8xf+De0tDSxZNHCvMfYheT80Y04f3Sj1La6jdohKVH2PQbpacnQ1C5+4kP8m2hsXToBr6NfYvikZajdoFXeZxpa2lBSUkLNes2l0tjXdUXwPW8kJbxBOQP5N/1LQ+7TbakFnsTLnUGuqynbP6z3vAtxdjbGutZGVt4FteQiOUsshoqSErQ1JMNoFxsLqRuMdSyNoKuhhicxssv/CUXu04opBWa75/ahunKeHNFUVUHjSrIvEnatYooNvsEIeZMoFcC4EBKJuRcDUam8LtZ2bwIDLeHcbASAc0c24ewR6fOmXuO2eC/vvElNgdYnnTcx2LRkAl5HvcTIyctQp+HH86acfgU4OMmOzWo5NseTB35ISnwLPQGdN+Vyxk2pMuOqnPNGzrhq/Y0HyM7OxtgmtfLOm9x7bLnnjZKSErTV1TC3ozOmtq6P6PepMNPThra6Go7ffw4rA+EuM5Y77kgtpP+Q2+cUk0ZHWztvdnFZHLfkXf8VeFo498kLXa1irv8u+mDVkQtoYFcFK8cPzLv+ex3/Hh43AjC6YzNM6N46b/9aVSzQZ+56nPC+gwGthPPeh/3u++DuLj2GdXF1RUKCbD+QmlbMGFaniDGstnDrQkH+l9bD/+J6qW3WddojLVm2jc1MT4a6pvxzPzkhBt4n/kbTrtOhpWMIsSgr70Z3tlgMsViUtySVlZ0rBs+4jKR4ybJBeoaWCLp1FACgoW2gqKJ9sW99raOjo1PoPrmfC0luvgsfo8vmVztn3F6wjU3Ja2OFVUYi+nIMYJSAwmbRiMViqKmpFfk5AKjme9muhoaG1L/37NmDx48fw8vLC15eXhg3bhx69OiBRYsWKbAEX8bS2BAqysoIfy09KMn93dpM9qIXkHxfS91P4cBlX3RoVAfzR/eBWr7vwMrYEEpKSsjIFMmkFYnF0BDo8gwAYGlSESrKyoiIiZPanvt7VYsve8FnzJt3yM7ORh07a6nt1pZm0NfVwfMI4b5g1tJAFypKSghPkF6KIff3grM3ASAsPgm3wuPQ3tYS5fIts5Se83SOgbb6Fx1XKKwqGEBFWQnhbxKktofl/F7VxFAmTdS79/ALCUNnJ3to5JutWMNScp7FJaZARVkZNx6/QFP7yjAr/3HZjtyXfJcX2PrBHTt2hLOz9NNUvr6+CAgIgFgslgpgRkVFFfnovKWlJUJDQ2W2R0VFwc7OTnGZFrjkEMl6wto2lfH+blDedh0byQv/koNDIUpJRVpEDLRtKkulVTcyhJqeLpKDZb9HoTA3M4OysrLMS7WjoiS/V5JTRywtLfL2qWZj8zFNzjHy16urntewfNU/sLK0xF/z5qJixcJnFJempq37opaj9I3RB/5XEHzfW+bceRMTDhNz64KHkBIVFoJNi35AZsYH/DhzC2xqSC+ZZWRaGdnZ2RBlZUJN/eM4RSyS3NgUwizH/KzKl4OKkhLC4qWDcWE5a/hXrSD7UuqLQa8QnZiCJksPyHzW4O99mNe1KdrWqAQlSF5YXJBInA0NNdnlc4TCUl8HKkpKMu8bCM/5XW5fnJCM2+Fv0M7WIu/mNiCZdQ8A5fPdqNwT+AxrvB7BybIilnd2ltpfKFza9JEJKNy/fRnB93xkzpu42DCYWBR/3qxfOA6ZGemYMGszqtWUPm+eBQXgbWwEGrXsLrU9M+MDlJVVoK1b+MvRS0PeuCpe/rjKWs5yYJeehCP6fSqa/nNU5rOGyw9jXkdndKtdFdefRUFPUw31LI1gk/NS+Hcp6YhNSkUNk/IyaYXCLKfPiY6SnjwVlfO7/D5HsmRJdFSUdJ+Tm6ZSJWhpaaFChQp523IlJCQgLS1N7nGFwtKofCHXf+8AANYF3nOYKzs7G0sPnsWBKzfRwbk25o/oIXX9F/0uEdnZ2ahrI/3OKRtzYxjoaCO0kPcIlpYOHTvB2Vk6oOLr64PAgECZ9iQ6KrrIMayFpSWeyxnDRkdFw9ZOmE/1yVOzUT9UrtFSatuLR5cR/sQL2WKx1FNtiW/DUN5Yfhsb8dQHGelJ8Dw8C56HZ0l99u+WkShX3hxDZl5BUnwUIp76wNaxG/QMPy4V9CbyETS09VGuvOz7Ir61b32tY2FpidTUVCQmJEDfwCBvn+ioKBgbG0vdaxKCvHF9VMFxvaRtlPd95C4LFVWgjY3OOYZVJeG2n0T0eYS1BsL/CTs7Ozx48EDq5dpv3rzBq1evYGNjAxsbG6ipqSEgIEAqnb+/P4yMjKCvL/8C5tq1a1i3bh1q1qyJsWPHYs+ePfj5559x5syZEi3Pp9JQU4OjbRVcDnwkFaS5HPAIulqaqFVV/pqDa49ewIHLvhjSzhV/j+0vNXgFJE9gONpWwZXAR8jIN1Pw5uNnSPuQAcfqVUqkPIqgoa6G+vbVcPX2Xanv5Mqtu9DV1kItmypfdFwrUyOoKCvjboEbiy+jYpGYnAILY+HM4CtIQ1UF9S0r4sqzSOl68jQCuhpqqGUqe7M+LiUdf18KxMUQ6Rd3XXgSDl11VdQ0Lv9FxxUKDTVVOFpb4vKDZ1J5v3T/KcppasChkqlMmuj495h36CKuPHgmtd33ySuoqaiginF5iMRizD98CUd8H0jtc/5OCFSUleBoXfoD+fwqVKgAW1tbqR9HR0ekpaVJtZeJCQl4+PAhHB0dCz2Wo6MjwsPDEfbqVd62sFevEB4ejvpFpPt/kxoahtTn4TDr1V5qu2nPdkgOeYG0V5IZam8uecO4U0so5wsIm/ZqD3FWFt5c9fumef4c6urqqO3gAG8fH6lzx8vbBzo6OrCzrS6TxsLcHKYmJrjh7S213cvbJ+8zALh12x9LV6xEzRr2WLFsiWCDFwCgb2iMSjYOUj/2dZriQ1oKgu99LGfy+3cIDfKHfZ2mhR4r/k00Niz8HkpQwqR5bjLBCwCoUa8ZACDQ56zU9of+njCvZPtJT3h8SxqqKnCsZIwrwWHS/UNwGHQ11OAgZ4moNf2/w75RnaR+apgaooapIfaN6oQW1S2hra4Gx0omuBwchoysj0GMmy+ikZaZBUcr+RM3hEBDVQX1LSrgSmi09PgkNAq66qqoZWIgk+ZNSjr+vnoPF59Kv6j4wtNI6KirooaxJM3RBy+x2usR2la3wLruTQQZvAByz5taUj/2dZoiPS0FQfnOm6T37/DscUAx500M1i0YAyUo4ZcFbjLBCwB4+ugW9m74Q+pl4GKxGHf9LqCqXV2oqgrre9JQVYGjlREuP42QPm+e5IyrzGTHVat7N8PeoW2lfmqYlEcNk/LYO7QtmleTLKd15O4zrPS8J5V2X4BkbNLMRnZNd6EovM/xho6ODmxtZW8um5ubw9TUFF5eXlLbvb29YWFuDpOcPsfR0RG3bt1CRubHJ8W8vL2hrKyMunXrllCJvp6Gmhocq1fG5TtB0vUk8LHk+q+K/LHm2mOXcODKTQxp2wR/j+4tc/1nlTMx7s6zV1LbX8a8QUJKKiwrCivQVaFCBVS3tZX6cXR0QlpaKgLzj2ETE/Dw4QPUd5T/ziAAcHR0koxhw/KNYcNeITw8DI71C08nNDr6JjC2qi31Y2XrgswPKQgL+Xg+pCW/Q9Rzf1jausg9TpWa36H3z4elfpr3mgsAaN5rLjqO3JhznLfwPPyH1PsxUt/H4end06hSs5Uglkv61tc69etLlm7M3/5kZmTg1q1bRR67tBTXxtoV2saawMur4LjeW2pcT0RlH5/AKAEDBw7E/v37MWXKFPz444/IyMjAkiVLUL58eXTu3Bm6urro378/1qxZAwMDA9SuXRteXl5wd3fHr7/+WmjnqqamhvXr10NXVxetW7dGYmIiPD098zomIfi+63cYt3wHpm7cj+6uTrj3LAy7z93Az33aQ0tDHclp6Xge9RqWRoYw1NPFk7Ao7Dp7HbWqWqJtQwc8eB4udTxrc2PoamliYu/2GLN0Kyb+swtD2zfDu/fJWH3kHGpbW6FF/RqlVNpPM6pne0z4ex1mrN6Bri0b437IC7iduoyfBnSDpoY6klPT8CIyBpYmFVFe79OeEiivVw4DOraE26lLAIBGte0R/eYdth09C7OKhujRqvCLbCH4vlEN/HjkOqad8kN3hyq4F/UWe/xDMLFZbWipqSL5Qyaev30PKwNdlNfWQH2LinCuZIxV1+/jQ5YI1hX0cONFNA7ceYZfW9bNeyqjuOMK2Zi2zvhh01FM2XMaPZxr4e7LaOz29Mekzq7QUldDcvoHPI95B8uK+jDU1Ub9qhZobFsJi49dRXJ6Bqwq6uP6oxc46H0PP3ZoAj1tTehpa6K7cy3suuoPDTVV1K1shjsvIrHt0m0McKmHKsbCuviTp3bt2qhTpw6WLV2KUaNHQ69cOezbtw86Ojro1Llz3n5hr14hMzMTNtWqAQCaN2+OgwcPYvacORg5ciQAYOfOnahSpQqaN28u92/9P1AtpwPdmtWQGhqGjDeSZQueLlyPutsXI/NdAmL/vQKTbq1h3q8TAgdNzksXunwbzPt3RsNT2/Din53Qsa0CuwW/InzbIaSHC/eJLgAYNKAfps+ajYWLlqB9uzZ4HBSMIx4eGDViODQ1NZGSmoqwsDCYmZnBIGeCwOCBA7Din9XQK1cOjRs1gu/Nm7h+wwszpk0FAGRkZGDVmrXQ1tLCgP79EBYWJvU3K1asCKOKwg0UA4BNjQaoVrMh9q6bhq6Df4WOrgHOHdkALR09uLTtn7dfTEQosjIzYFlV0pd67F6E5MR36Pv9HKSnJePl0483GTW1dGFqaYPqtZxRy6kljrstRcaHNJhZVcPt6yfxIuQORv++9puX9VOMca2NH/ZdwhSP6+hRtxruRcRht+8j/NzKMaffycDzuERYli8HQx1NVJfTPmrnBPhqmX8MZv3cqj6+d7uAnw5cwbDGNfE2JR2rrwSitkVFtLAV9ssiRze0xfhjPph21h/da1bCveh32BPwDBNdaub1xS/eJcFSXwfltTVQz7wCnK0q4p8bjyR9sWE5eL2MxYG7z/FrMweU01DDm5R0rLjxEOZ62uhXtyqCXydI/c3cYwlVtZoNUL1WQ+xZMx3dh/wKnXIGOHN4A7R1yqFZu355+0XnnDdWOefNkZ2LkJT4Dv3HzEZ6ajJehOQ7b7R1YWZpA5c2feF14RA2L5mITv0nQENDCzcuHEB0+DNMmrfrWxf1k3zfpCbGHfTE1JM+6F7bGvci32D3rWD83KJOvvFaIiwNdGGorYnqRgYyx8h96Xf+gMdAJ1uMP3wNyy/fQYtq5rgV9ho7/IIwopE9rMoLKwBa0IABAzBz1iz8vWgR2rVti6CgIBw9ehQjR4wotM8ZNHAgVq5ahXJ6epI+x88P12/cwPRp0/KO27dPH1y7dg1zZs9Gz549ERkZiV27d6Njx44wNhZuMBQAvu/cHONW7cHUzYfQ3cUR956HYfcFH/zcs83H67/oOMn1XzkdPAmPxq7z3qhVxQJtnWrhwQvpCUrWZkYwLKeDQa0bY895yU3JxjVsEP0uAZv/9YRZBQP0aib8G/kOtWujdp06WLZsCUaNGo1yenpw37cXOjq66NQp3xg2LGcMa/NxDHvo4AHMmT0bI3LGsLtyxrDNyvgY1ty6IcxtnHHZfQoad/4dmtoG8L+4Dhpa5eDQZGDefu9in0GUlQEji5rQ1CkPTR3pPjkzQ7I8kIFxVVQwkzxtYGTpANMqjrjuMQ9NOk+BsrIqbp77B8rKqmjYbuK3K+RnKslrHRMTE7Rp0wZbtmzBh4wMWFhY4NixY0hOTkafvsJ6X1mugQMGYMasWVi4aBHat22Hx0FBOHLUA6OKbWP/gZ5ezrje7yau37iBGfnaWCIq+5Syi3trGBVq6NChsLCwwOLFi6X+DQCPHz/GsmXLEBgYCHV1dbi4uGDq1KkwN5fMKsrKysKmTZtw5MgRvHnzBlWqVMGwYcPQr5/k4ujmzZsYNmwYLl++nPfoMQB4eHhgx44dCA8Ph6amJlq0aIHp06fD0PDLZ5eness+5v01rgQ8wqYTl/EyJg7GBnro16oxhnWQzNb0D36OMUu3Yd6o3ujm6oQNxy5i679XCz3W1qnfo4G95HHSu89eYb3HBTx8HgFNdTW0rF8Tv/bviHJf+B6Jwmi79Mb7wIsKPebV2/ew5fBpvIp+DSNDffRt2xxDukjWcw14HIJxC9Zgzrgh6NqisUzaf6/5Yf6mvTixZh7MjT7eNMnOzsb+s57wuOyFqNdvUdFAD43q2GN8/66fHAj5VHqObZGyeVbxO36GK08jscn3MV7FJ8FYVwv96tpgaAPJrAr/8NcYe/g65rZvgG61qgAAkj9kYovfY1x5Gok3KemwNNDFYMfq6Fm76icfV5F0fliI9NObFHrMy/efYeN5X7x8HQ9jfR30d62H4S0lF2i3n4Xj+w1HMH9AO3R3rgVA8o6MTRf8cOn+U8QlpqCSkQGGNHdEr8Yf34uTkZWFXVcDcMo/CNHx72Gir4tejWtjxHcNFP4iQM3O4xD6/LlCjwkASUlJ2Lp1K/x8fSEWiyVPof3wg1TbOG3qVMTGxmLX7t152+Li4rB50ybcuXMHKioqcHR0xNgffii0vVy5YgXu378vdYyvZWNtjdNqJbNklWFzZzS57Abf1kPx7votqW33Rk9HxJ5jeftWGtMf1r+MgqaVGVKfhyN06RZE7jshdbzyLk6osWQq9OrWQMabeETuO4GQuWuQnSW9/vnX6pz5BC+fhSj0mN4+vnDb546IiAhUqFABXbt0Rp9ePQFI3mExdcZM/DZ5Etq1bZOX5vTZszjicQxxcW9gZmqK/v36oE0ryXr1d+/dw7SZfxT694YMGoihgwcpLP9Vqtni7J3M4nf8TKnJiTjutgwP/K8gWyxGVbv66DFsKkzMP7aba+eNwLu4KPy57gKysjIxdXhDiEXy/89tajTAxD93AZAse3Pu6AYE3DiF5KR4mFrYoF3vcajTsLXctJ+rY301pLn9pZBj5boSHIaN1+/h5dv3MC6njf4N7DCscU0AwO2XMRiz9yLmdW2K7nVt5KYfvecCAGD7sHZS2++Gv8Y6z7t4GPkGmmqq+M7OCr+0cYKepuLe+aA19A8kr5+qsOPluhIahc1+T/AqPhnGuproW6cqhjpKbo74R7zBDx7e+LNNfXSrKVnGJflDJrbceoKrodGSvlhfB4Pq2aCng2QJuhOPXmH+5buF/r38x/pauhOW4sK9jOJ3/EypyYnw2LMM929fQbY4G9b29dBruPR5s3ruSLyLi8K89eeRlZWJ34Y6F3reVKvZAJPm7gQAxMWE4aT7PwgNCkB6Wioq29RCl4E/w8ZeMTNh29VVR+r2OQo5Vq4rIRHY5P0QL9/ljKvqV8MwZ3sAgH/Ya4w5cDVvaSh5vt9/BQCwbWArqe1nH7/CNt/HiEpMgZmeNvrWr4aBToofr2mPni93OZ6v4e3jg7179yIiIgIVK1ZEly5d0LtXLwDA/fv3MW36dPz6yy9o2/bjC6nPnDmDox4eiIuLg6mpKfr364fWraXby4cPH2Lb9u14/vw59PT00LpVKwwdOlRqeWFFsLaxQeo12eXxvsaVO0HYdPIqXsa+kVz/tWyIYe0kM+r9n7zAmBW7MG9ED3RrWh8bTlzB1tPXCj3W1t9GoIFdVWRnZ8P9sh+OXPNH5Nt4VNQvhyY1bTChR2sYynlv19fQbjEAz0JfKPSYgGQMu23rFvj6+SJbLEbNmrUwZuxYWFp+XNZm+rQpiI2Nxc5de/K2xcXFYfPmjbibN4Z1wpixY2FoKP9p0JUrl+PB/ftSx/ha1Wyq4p+Tir9V9CE1Ed7/LsaLR5eBbDFMqziiadfpUktIndg4FEnxkRgy84rcY0SG3sTJTcPRbdxuWNh8XLorNekNvE8uQkSIN7KRDQubRmjU8RcYGCnmnX+TuymVuWudzIwM7Ny5E56enkhLS0O16tUxevRo2NvbKyTvNtbWeBH6rPgdP4O3jw/c9u5DZEQEKlSsgK752th79+9j2vQZ+PWXyWiXr409feZsXhtrZmqKfv36oU3rVnKPHxMbixEjR8kcQxGq5gQi6fOkH19T2lkoczR7/FzaWfjmGMAghQcwyrqSCGCUdSURwCjrSiKAUdaVVACjLCvJAEZZVRIBjLKupAIYZVlJBDDKspIKYJRlJRXAKMtKIoBR1pVEAKOsK4kARllXUgGMsqykAhhlWUkFMMqykghglGUMYHyZ9BPrSjsLZY5m959KOwvfHN+BQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERIKjWtoZICIiIiIiIiIiIqL/GCWl0s4BlQF8AoOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgER7W0M0BERERERERERERE/zHKnFtPxWMtISIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFRLe0MEBEREREREREREdF/jJJSaeeAygA+gUFERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCo1raGSAiIiIiIiIiIiKi/xglzq2n4rGWEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeColnYGiIiIiIiIiIiIiOg/Rplz66l4rCVERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOKqlnQEiIiIiIiIiIiIi+o9RUirtHFAZwCcwiIiIiIiIiIiIiIhIcJSys7OzSzsTRERERERERERERPTfkX5+e2lnoczRbD+6tLPwzXEJKULq9UOlnQVB0W7eD89DQ0s7G4JibWODqCf3SzsbgmJuVwdxj2+VdjYExaimM14+CyntbAhKlWq2/E4KqFLNFqfV7Eo7G4LSOfMJ60kBVarZIib4TmlnQzBM7esjOvhuaWdDUMzs67GOFGBqXx8hoWGlnQ1BsbWpxDFsAeZ2dXjuFGBqXx+vnj0p7WwISuVqdvxOCqhczY7nTgE8d6RVrsZrHKKSwiWkiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiweESUkRERERERERERET0bSlxbj0Vj7WEiIiIiIiIiIiIiIgEhwEMIiIiIiIiIiIiIiISHAYwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBEe1tDNARERERERERERERP8xSkqlnQMqA/gEBhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQmOamlngIiIiIiIiIiIiIj+Y5Q5t56Kx1pCRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgqNa2hkgIiIiIiIiIiIiov+WbCWl0s4ClQF8AoOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgER7W0M0BERERERERERERE/zFKnFtPxWMtISIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFRLe0MEBEREREREREREdF/jBLn1lPxWEuIiIiIiIiIiIiIiEhw+ARGPtnZ2Th+/DiaN2+OChUqfPFxEhISMHnyZAQEBMDOzg5HjhxRYC6lXb16FVZWVqhWrVqJ/Y3P5fvoGdYdu4Tn0a9hWE4H/b9rhKHtXKCkpCR3/4zMLLhd8MYpv7uIeZcIk/J66NioLkZ1bAY1VVVEvYlH5xkrC/173ZrWx7yRvUqqOAoREBiI3bt3IywsDAYGBujSpQt69+pV6HcCAJ6enth/4ABiYmJgYmKCvn37om2bNlL7hISEYNv27Xj69Cm0tbXRtk0bDB48GGpqaiVdpK92+849bHfbj5dh4ShvoI8enTugX4+uRX4nl695we3QUUTHxsLU2BgDe/dAh9YtpfYJi4jE5l1uuPvgMVRUlFHXoSZ+HDUc5qYmJVwixbh19wG27DuMF2GRMDTQQ8+ObTCwe6civ5dcIc9fYszUuTiwYRnMjI0++3MhCggMxK49bniVc+507dwZfXr1LPL7uOp5De4HDyImJhYmxsbo37cP2rZpLbXP9RteOHz0KMIjIqGjo4P69epi9IjhKF++fEkX6avxOymcpoUJmt89Bf/eE/Du+q0i9zXv3xnVZvwIbWsrpL2MxLNlWxDpdlxqH30nB9RYMhX6Tg7Iep+CiD0eCJm/DtmZmSVYCsVgPZF1+849bN17EC/DIlDeQB89O7VD/x5divxOLl33htuhY4iKjYWpsREG9+6ODq1aSO1zw+829hzyQHhkFAwNDNDuu2YY3LsH1NSEPcy+fecetu09kPd99OjUvtjv4/J1b7gd8sj7Pgb17pH3fUTHvsbAsRMLTduhVQtMnzRe4eVQJNYR+dLS0rBrx1b4+HghPS0NtRxq4/uxP8LS0qrIdPHx8di+dRMCA25DJBKhQUNnjB4zDoaGH6+z4t+9w163XbgTGICkpPewsLRC79790KxFyxIu1ZdT9Bg2JvY1Bo6ZUGjaDq1bYtqkwj8XgpI6d85e9sTB46cQGR2LCobl0aFVCwzp2wOqKiolXaSv5h94R6of7ta5M/r06vEJ/fAhROf1w73RrkA/fOHiZRw+dgzR0TEwNjJC1y6d0KNr0d+1UJTUd3L9hhcOHfXIG5s41quL0SOGcWxSRvsdnjtEJI/wW69v6Pbt25g+fTouX778Vcc5efIk/P394e7uDhOTkrtpGhkZiXHjxmHPnj2CCWDcDw3Hz2v3on1DB4zv0Rp3n77CP0cvIEssxqiOzeWmWXrgDE773cWYLi1Rq4oFHr+MxJZTnoh+m4C5I3qion457J4+VibdIc+bOH/7IXq4OpV0sb5KUHAw5s6di+bNmmHY0KF49OgRduzYAbFIhH79+slN4+XlhaXLlqF79+5o4OQEH19frFy5EmpqamjZIudGQXQ0Zs6ahRr29pgxYwbCw8Oxe/duJCUlYeLEwm8gCMHj4BDMXLAI37k2xajB/fEgKBibd+2FSCTCoD495aa55uOHhSvXoHfXTmjoWA/efrewZPV6qKupoVVzFwDA67g3mDjtD1hZmOOP3yfhw4cM7Ni3H1PmLMCOtSugoaHxLYv52R4+eYapC1egtUtjfD+wD+4HPcHGPQchEokxtHfXItM+fxWOKX+tgEgk+qLPhSgoOBhz5i1Ai2auGDZkCB49foztO3dBLBKhf7++ctPc8PbGkuUr0KNbV8m54+eH5av+yTl3JG2Q57XrWLR0GTp17IARw4biXXwC9rjtxdSZs7B+9T9QV1f/lsX8LPxOCqdpaQrn09uhZqBX7L6mPduh3p7leLF2D+LO34Bp9zaot2MJxB8yEH3oDABAq6olGp3biXi/uwgcOBm69jawW/AL1AwN8HDCnyVdnK/CeiLr0ZOnmP7XUnzn2gSjB/fDg8dPsGm3O0QiMQb36S43zTWfm/hr5Tr06dIBzo5DcePmbSxavRFqqmpo3bwpAOD23fuYvXglvnNtgrHDBuJlWAS2uO1HwvskTB478lsW8bM8ehKCGX8t+dgPPw7G5t37IBKJMLhPD7lpJN/HWvTu0hHOjnXhddMfi1dvgJqqKlo3d0EFw/JYv3SBTLrjZy7gqpcPOrVtVcKl+jqsI4VbvvRvPAkOxohR30NbWxv73fdi1vTfsX7jNuiWKyc3jUgkwtw5M5GWmorxP01CVpYIu3dtw5xZ0/HP2o1QVVVFZmYG/pwzAynJKRg8dDgMDSvA2/sGli5ZiMysTLRq3fYbl7R4JTGGNTQsj/VLF8qkO37m3H/63Dny7xms3bYHLZo2wrgRg5GQmISd+w8h9OUrLJj+67cs4mfL3w8PHzIYDx8HYdvOXRCJRBjQr4/cNDe8fbB4+Ur06NYVDZ0cc/rh1VBTU8N3Of3w2fMXsGrNOvTr3QtOjvUR/OQJNm/djvS0NAzsL/+6UihK6ju5eu06Fi1djs45Y5P4+HjsdtuHqTP/wPrVqzg2KWP9Ds8dIioMAxj5ZGdnK+Q479+/h5GREerUqaOQ4xVGUflVpE0nr8C+khn+Gi3pXFwcqiNLJMKOM9cxqHUTaKpLPxmQkJwKjxv+mNS7HYa3dwUANKphAwBY43ERP/duB8NyOqhjIz3D6/GrSJy//RATe7ZB/eqVv0HJvtzevXthY22NKVOmAAAaNGiALJEIBw4eRPfu3eXeVN+1ezeaubrih7GSwI2TkxOSk5Lg5uaWF8A4fOQItLS0MGfOHKipqcG5YUNoaGhg48aN6N+/P4yNjb9dIT/Tzv2HUM26Kmb++jMAwNmpPrKyRNh3+Bh6d+0k9zvZ7uaOFi6NMeH7EZI0jvXwPjkZO/YdyAtg7Np/CDra2li+YA40c45hZmKMWQuX4Mmz56hTq8a3KeAX2nHAA9WrVsbsyeMAAI0d6yBLJILb0ZPo16U9NDRkB+CZmVk4cuYCtu8/CnW1z/9cyNz2ucPG2hpTf/8NANCwgROyskQ4cOgwenTvVsi544Zmri4YN3YMAKCBkyOSkpKwe+/evJuwBw4dhnODBpj008fZjFYWFpj02++4ees2mrm6fIPSfRl+J3IoKcFyaA/UWDIN+MQJVHYLfkX0kXMI+n0RAODNRS+oldeH3dxJeQEMmyljkJWUAv9e4//H3n2GRXE0cAD/0zsoqHREkSoqoNh771FjNxp7YhKNxm4sMabYSzRq7L1HY4vGXiiiggULqKj0piJSjnLcvR8ODpc7QOMhx5v/73n4wO7OMjPs7szuNEhzc5F8+gryRFnwXDUHTxauR1Z0fFml6IPxOlG0dc9BONdwxOxJ3wAAGvl4QZwnxq5Df6Fvjy5Kn68bd+5D66aN8M3ozwEADX3qIS0tHZv3HJB/JDh1/hIsq1pg9qRvoKWlCV+vukh5nYoDR0/im5FDoa2tnlXtbXsOwrlGDXz/Vn7k5eVh96G/0LdHV6X5sWnnXrRu2vit/PBCWlo6tuw5gHYtm0FXRwe1XV0EYcKfPMVFvwCM/mwQ6nq4lX3CPgCvEeXCHj7A9aBrmDf/ZzTwbQgAshEYI4bi5MljGDBwiNJwflcv42nEE/y+fhMcHGR19ZpOTvhm3Bj4Xb2M1m3a4cb1IDx7+hTLVq6Bi4srAMDbpz6Sk5Lw56EDatmAURZ1WF0dHXi4Fb13ImT3ztDBqOOh3vXXsrh38vIk2L7/MBp41cGP0yfJw7k41cCICVNx4/Zd+HqV7bv2h9ixey+catbE9CmyhhbfBvWRJxZj34GD6P1JD6XXydbtO9GyeTOMGzsaQEE5nI7tu3bLP8Lu3X8QLZo1xeiRwwEA3l71EBMbh6PHT6r9R9iyypPCuknhCD87W1t8O3kqrl2/gZasm1Socof3DhEVp8KvgdGnTx/89NNP8t/PnTsHV1dXnD59Wr5t4cKFGD58OB49eoQvvvgCvr6+8PT0RLt27bBlyxYAQFBQEIYNGwYAaNeuHQ4fPgwACAkJwZAhQ1C3bl20bt0a8+fPR3p6uvzcbdu2xaJFi9C1a1c0atQIQ4cOxerVqxEXFwdXV1ccPnwYq1evxmeffYZJkybBx8cHCxbIeqfdunULw4YNQ/369dGoUSPMnDkTKSkpgnNv3rwZ48ePh7e3Nxo1aoSffvoJYrEYMTExaNdONiRu2LBhWL16dRnl8LvLyRXj5qNnaOMtrGS3r18bGVnZuP0kUiFMhigbfVv5olU9V8F2R2vZ9Daxya8UwkilUizcfQI1ratiSIemKkyB6uXk5uLu3bto2lQYz+bNm0MkEuH+/fsKYRITExEbG4smSsLExcUhNjYWABAcHIyGvr6C6aKaN28OiUSC4JCQMkiNauTk5uJO6H20aNxQsL1Vs8bIFIkQ+iBMIUxCYhKiY+PRonEjYZimTRAbn4CYuHhIpVJcCQxCl/Zt5Y0XAODq7IRD2zaofeNFTm4ubt17iJaNGgi2t2nSEJmiLNx9GK40XGDIbWzdfwRDP+2JccMGvPd+dSW7d0LRrEljwfYWzZsiUyTCvQcPFMIkJCYiJjYWzZo0EYZp1gxxcfGIjY2DRCKBt7cXunTuJDjG3t4OABAXr74fpZknypnWdYXn7/MRs+sv3B4+rdTjDarbwti1BhKOnhVsjz/8D4ycHWFYS/ahrWqH5kg6dVkwXVTCn6ehoaWFqh2bqzYRKsTrRFFObi5u33ugWO40lZU7dx8qljvxiUmIjotXWlYVlDsAkJOTC309fWhpFVapTU2MkSsWI1OUVQap+XAF+dG8sa9ge6umjWTlcAn5oRCmWSNBfrxNKpVi5R+bUd3eDv16dlNtIlSM10jxQoJvQl9fH94+hSOezcwqwbNOXQTfKH6qvpCQm7C1s5c3XgCAg0N12Nk74GZ+OENDI3Tu0g3OzsKP93b29kiIj1NxSj5cWdVhi5JKpVi1Xnbv9P2P3jspr1/jTVo6mjTwERxTs7o9zExNcO3mLdUnRkWKL4eblVoONy0apllTeTkMAD/9MBdjRgl70GtrayMnJ0fFqVCtssoTiUQCH28vdO3cUXCMQ37dJD4+QcUpUR2WO4p47xBRSSp8A0abNm3g7+8v/z0gIAAaGhoICgqSb7t06RLatGmDkSNHolKlSti3bx9OnDiBzp07Y9GiRXj48CG8vb3ljQAHDx5E165dERYWhhEjRqBFixY4duwYli5divv372PkyJGC0Q+7du3C7NmzsWnTJqxduxYjR46ElZUV/Pz80LVrVwCy6amqVKmCo0ePYujQobh79y6GDh0KZ2dnHDhwAKtWrcKdO3cwatQowRQvq1atgq+vL44dO4Zp06Zh165dOHHiBKytrXHw4EEAwOrVqzFy5Mgyzed3EfPiFXLFeahuKVw/xL6a7PfnCS8UwthWrYxZQ3rA0Uo4H/+lWw+hraWF6pZVFML8cyMUoc9iMHVgV2hpqvclnBAfD7FYDFtbW8F2G2trAEBMfmPE26KiogDIeo68zdrGRhYmJgbZ2dlISkpSOG8lMzMYGhoiJiZGZWlQtfiEROSKxbDLT08BW2srAEB0rOILa2SMLJ/sbK2LDZOQmISMjExYVquCles3oefg4ej46WB8/9MiJL94WRZJUam4hCTkisVwsLESbLe1lk1DFxWnvALuXqsmDv2xAp/3+0RQSX3X/eoqIT4BuUrvnYL7QPHeiY6OBgDY2gqvLRsb2XUTHRsDTU1NfDF6lEIlNyDwGgCgenUH1SSgDDBPlBNFxeOSWwc8nLoQeZmlv5QZu8lG+WU8fi7Ynhkha2Q3dqkBTX09GDraIePxM8ExOS9SkJuaBmOXGqqJfBngdaKo4PlqX6QMsct/vpZU7hQNI38m54fp3bUjYuLjse/IcaSlZ+B++GMcOn4Kjet7w9TEWOVpUYWCclgxbbLyJ0pJfkQVmx/Fh7lwNQAPHz3BN6M+V/vyh9dI8aKjo2BlZQ2tImsOWFvbICa2+PpmTFS0wnMIAGxsbBAbI3vmeHn74OvxEwXzj4vFYty8HiRo+FAXZVWHLeri1QA8fPQY34weoZDv6qas7h1jYyNoaWkhMVn4/piWno709AzEJSSpLA2qVlAO2xUtUwve/5SUw1HRsnup6PtfYTksC+PgYA8rS0tIpVK8SUvDqX/O4NyFi+jRravK06FKZZUnxdVN/Fk3qZDlDu+d/y6phgZ/3vPnv0h9x469o7Zt22LNmjWIj4+HtbU1/P390a5dO3kDRlRUFJ49e4b27dsjOzsbQ4YMgZGREQBgwoQJ2LRpE8LDw+Hu7g4zMzMAgLm5OfT19bF582Y0a9YMX34pm87F0dERy5YtQ/v27XH9+nU0aiTrSdOqVStBD3tDQ0NoaWmhalXhR/kJEybAJH+e2IkTJ8LV1RVz5swBADg5OWH58uX45JNP4Ofnh1b50wQ1b95cPjLE3t4eO3fuREhICHr16gVzc3MAgJmZmTxN5Sk9MxsAYKSvL9huqC8b+pghyn6n81wIeYDjgbcxoE0jmBoZKOzf8Y8/vGo5oIGr+n5AKpCRmQlAdk28reD3zPz97xTGwEAeJiMjQ+kxAGBgYKD0vOoiI0MWNyND4f+2IH0ZmaLiwxgUDaOfHyYTr9+8AQBs2L4bbs61MGfqJLx+nYqNO/dg0vc/YOOqJTAocm2qk/T8dBsq5EtBGhXzBQCqWpiXeN7S9qurjEzl13hB/ii9dzKU3zsGBsWHAWQ9xzdu3gKnmjXRsEEDpceoA+aJcrkpqchNSX3n47XNZC9u4jfpgu3iNFn+apsaQ8fMROkxBcdpm6rvyx+vE0XycrVIGWJQYrlT3DNZGManricG9e6Jddt2Y9223QAA55qOmDNZfdeiSi8lPzKV5Ed6qdeIYpj9fx2Hp7srvOvU/vBIlzFeI8XLzMyAgdL6piFEJdQ3MzIzYKOkAcPAwLDEeurWLRsRFxeLmd/P/XcRLkNlVYctat+Ro/B0d4XXf/je0dfTQ9vmTXDk5D9wdLBDy8a+SHn9Bqs3bYeWlhaystW3F/m/K4czBMcUKK4cfhgWjolTZKNOXZxr4dM+vT484mXoY+RJAVndZCucatZAwwbqu1Ymyx1FvHeIqCTq3R3qHdSuXRuWlpbw9/dHXFwcYmJi8MUXXyAiIgLJycm4dOkS3N3dYWtri8GDB+PEiROYN28eRowYgdatWwMAJBKJ0nM/ePAAV65cgbe3t/ynZ8+eAICIiAj5cdWrl95DyMLCQt54AQCPHj2Cj49wSKybmxtMTEwQHl44VYyTk5PgGBMTE+S+NZ2FOpGUsiaHhmbprYTnQ+5j5saD8KrlgIl9Oyrsv/0kCg+j4jCsk/pO3/E2aTHXVgFNJS2npYXR0NQsdf0TZedVF6VdJ5pKrhOJtLR81IRYLAYAVDYzw48zp8DXux46tGmJH6Z9h9j4BJy7dPXfR/ojkJaSRg01/p+WBYnk/a/xd7lOioqKjsa0mbOgpaWF2bNmQFONR3UxT1RDo5T0SCUSoNRj1G8NqgK8ThSVXhYrxv1d82T5us3Ye+QYhvXvjZU/zcGMCV8iLT0dU+f/iqzsd+u48bGVdv0qK29Kq3cUDXPvYTgeRTzDwN493j+C5YDXiIxEIkFeXp7gp7j3JKDkuklJearsOSyVSrF180Yc++sw+nzaH02btXi/yH8EZVWHfdu9h+F4HPEMA3orX8BX3ZTlvfPduNHo0Lo5lqzZgO5DRmP0pBmo7eYCF6caSufBVxellcMaSvLkfZ+xltWqYunCXzBl4rd49SoFE6dMQ1aWej1P3vYx8gSQ9cafOvN7aGlpYQ7rJhWi3Hkb7x0iKkmFH4EBCKeRqlOnDurWrQtLS0sEBQXh8uXLaNeuHZKTkzFgwACYm5ujbdu2aN68OerUqSMf6aCMRCJBjx495CMw3lYw+gEA9N+hV3fRY4p70EqlUsGaBrq6igs3qePi3QBgYiCrSGYWKQAy8n83Nig5n3adDcCKg6fRwLUGln89GHpv5UOBc8H3YWpogOaeLkrOoH4KRsZkioQ9KAp6AhgqGTlTWhgjQ0N5rwSRSLFnRmZmptLzqgsjo/zRJ0XinvFW+hTCFIxYKTJnZ0b+OYyMDOW9LBrW9xZUVj3cXGBkZIgnT4VTwaib4tJY0KvVWMlopP9nBddJ0Ws8o6R7x9BIaRj5vWMkvLbu3A3Fjz//AgMDfSz69Wf58GR1xTxRDXFqGgBA20SYXwWjKsSp6fKRF0WPKTiu4BzqiNeJouLKnYLnq5GS56vxO4RJfvkKx8+cx2d9e2HUkMI1htyda+Hz8VPw97mL6NOts+oSoiKF10hx5Y2ScriY66rgGika5nJAEEyMjdC4vrdqIl3GeI3I7NuzC3v37BRsa9a8BV6/fq1wbKYos8QR4IZGRhCJFHvLZmZmyJ85BXJzc7By+RJcuXwJfT7tjxGjxvy7BJSxsqrDvu1yQKDs3mnw3753ANkolenjv8T40cORmJwMy6pVYWigj5NnL8in4FJHxb3LZRRTpgKF14niM7YgT4T3jIWFBSwsLFC3jiesrC0xZfosXPX3R4d2bVWTCBX7GHkiq5v8Cn0DfSxm3aTClDtv471DRCVR3ybp99C2bVsEBgYiMDAQTfIXoGzSpAkuXLiAoKAgtGvXDidOnMDr16+xd+9efPXVV+jQoQNSU2VTThQ0CBRtnXV2dsaTJ09QvXp1+Y9YLMavv/6K+A9crNLV1RXBwcGCbWFhYUhPT1cYdVEcdeuRbVfNHFqamogusvB2dJLs95rWVZUFg1QqxaK9J7HswCl09PXEmm+Hwkhfea+aq3fD0cbbHTra6j0fbAFra2toamoiPk44h2Vc/u8O9vYKYezs8hcdKy6MgwMMDAxgYWEh31bg9evXEIlESs+rLmytLKGpqYnYIouqFfxePX/Rtbc55M+DWWwYO1vYWllCQ0ND6QilvLw86OopNgaqE1uratDS1ERsfKJge0z+79XtFKdh+H9mk3/vFF0YOC5/cTrl946t4Bh5mPxz2L8V5uKly5g1Zy6qVqmClUuXqvU9U4B5ohrpj2SNmYZOwtGTRvm/p4dFIC8jE6KYBIVjdKuaQ8fUGOlhEVBXvE4U2VhZKn2+vl2GFGUvL3eKPpMLwyQmv4BUKoWnu7BThaODHcxMTPAsSj3Xo7IppRx2KDE/ioZJVBom8GYImjfyhbZ2xegrxWtEplOXrli+co3gx9bWHokJCQojMeLjYmFnX/z88nZ29gr1VFm4ONg5FD43MjIy8P3MafC7egVjxo5T28YLoOzqsG+7diMEzRo1/M/fOwAQcCMYoQ/DYWigjxoO9jA00EfK61Qkv3wFFydHVSdFZWysrVReDjvY20EkEuHCpcuILXJfOed/O3j5UvgOrk7KKk8KXLx0GTPnzEOVKhZYtXSJYJ+6YrmjiPcOEZXk/6IBo0mTJsjOzsaZM2cEDRinTp1C1apV4eHhASsrK4hEIpw+fRpxcXHw8/PDd999BwDIyckBUDjXXlhYGDIyMjBy5Eg8ePAA8+fPR0REBG7duoXJkyfj+fPncHR0/KA4jxgxAuHh4ViwYAEiIiIQFBSEKVOmwMPDQ56G0hTE99GjR0hLK//eoHo6OvBxro7zIQ8Eo0TOB9+HsYE+ajsq/wC7+shZ7LtwDZ91aIpfRveDTjEV9tSMTEQlvUQ9J/VdjKsoXV1d1PH0hH9AgCBP/Pz9YWRkBBcXxZEkNjY28kXg3+bv7w9bGxtYWsoW6fLx8cH169eR89YHez9/f2hqaqJevXpllKIPp6uri3q13XE1MEiQJ1cCgmBkZAg3l1oKYWxtrGFtWQ2XAwIF268EXIOdjTWsLKvBwMAAdfPP+3aeBN8JRVZWNup6uJddolRAT1cX9TxccfnaTUG+XLp2A8aGhvBwrlmOsfv4ir93AmBkZARXF2eFMLY2NrCytMTV/BF5b4cp2AcA12/cxOJly+Hh7oZlSxahShWLsk2MijBPVCMzIgqZT6Nh3aeTYLtV745If/QMokjZYn8vzvmjWtfW0NQtHA1o1acTJGIxXly89lHj/D54nSjS09VF3druuHLtuiBPLgcGwdjIEO5Kyh07aytZueMv/F9fCQiCnY1sn521FbQ0NXH3QZjgmKiYOKSmpcEmP9/UjV5+OVw0P64EysrhkvMjSLBdlh+yMrrAm7R0xMTFw9PdtewSoWK8RmQsLKrA2cVV8OPtUx8iUSZCgm/Kj0tNfY3790Lh7VP8/PLePvUREx2FqKhI+baoqEhER0fB21u2Zk5eXh4W/DAHjx+FY9qM79GzV5+yS5wKlFUdtsCbtDTeO/n3DgAcO30Oa7fuEhxz8Pjf0NTURJMGwqmY1YmsHK4N/4DAYsphxfe/wnI4QLD97XJYS0sLK35bjYN/HhEcExxyCwBQs4aj6hOjImWVJ4CsbrJo2Qp4uLthOesmFa7ceRvvHSIqScXo2lEKXV1dNG3aFH5+fvDy8gIga8CQSCRo21Y2FKxz5864f/8+Fi5ciPT0dNja2qJfv344f/48QkNDMWjQILi4uKBVq1aYOHEivvvuO4wcORKbNm3CqlWr0Lt3bxgaGqJJkyaYPn260qmd3ke9evWwadMmrFy5Er169YKxsTHat2+PyZMnC6aQKknlypXx6aefYvHixYiMjMTs2bM/KE6qMLpba3y5Yhum/bEfnzTzwZ2IKGw/448JfTrAQE8X6aIsPI1Lhl01c5ibGCE8Kh7bTvuhtqMtOtT3ROhTYY+AmjZV5VNPPY5JlG+rSAYOHIhZ33+PX379FR07dMDDhw/x559/YsTw4dDX10dGZiaioqJgbW2NSvkLyQ8eNAjLV6yAiakpGjdqhMBr13Dl6lXMmD5dft5+ffvi8uXLmDtnDnr37o3Y2Fhs274dXbp0QbVq1YqLjlr4rP+nmDJ3AeYvWo4uHdri/sNw7D9yDGOGDYG+nh4yMjMRGRUDG2tLeZ4MG9gXi1athanJRjRr2AD+QTdwyS8Qc6ZOlJ93zLDBmDTrB8yY/wsG9O6JlNevsWHbbri7OKNpQ/VdYLbA5/0+wcQfFmHOktXo1q4V7oU/xt6//saXQ/vn54sIz6JjYWtVDZXNTMs7umVu8MD+mPH9HPz86yJ06tgeDx6G4dDhwxg5/PNi750hgwZi2cpVMDUxkd07QUG4ctUPM6fLFmvLycnBit9Ww9DAAAMH9EdUVJTgb1apUgVVq1T56Gl9V8yT96dtYgRjj1rIjIhCzosUAMDjn39Hvc0LkfvqNRKPX4Blz3aw6d8VIYMnysNFLN0EmwHd4HtiE56t3AojF0e4LvgO0ZsOICv6w0ZhljVeJ4qG9e+N7+b+jHmLV6Jr+9a4H/YI+46cwNhhg+TlzvPoWNhaWaJS/vP18wF9sPC39TBdvxnNGtaHX9BNXPS/hnlTJgAAKpmZom/PLth35AQAoEG9ukhMTsa2fX/CqloVdO+ovtMRDO3fB5Pn/oQfFq9A1/ZtcC/sEfYdOV4kP2Jga2Ulz49hAz7Fot/WwXS9MZo2bAD/oJu46B+IuVO+FZz7aaTs2nCsAD1g38ZrRDnPOnVRp249LFuyEMNHjoapqSn27N4JIyNjdO1auMZJVFQkcnNz4eQk++jWomUrHNi/Fz/MmYXPR4wCAGzfuhmOjjXQoqVsCt+Tx4/i/v1QdO7SDRZVqiAs7IHgb7u5eXykVL67sqrDAm/dOw68dwDg0+6dMeWHX7Fm03Y0bdgAIXfvYfehoxjcp6daTyEFFJTDc/HTr4vQqWMHPHj4EAcPH8Go4cOgr6+ntBz+bNBALF25CiYmJmjSqCECg4Jw+aofZk2fCkD2zWNAv77YuXsvKlUyQ726dfD06XPs2rsP3l714KvGC1YDZZMnOTk5WP7bGhgaGGDQgH6sm6Dilzu8d/6jlKxvQlSUhlRdF1SgjybzygGVnu9CyAOsP3YBzxNfoFolU/Rv0wjDOjYDANwMf4YxS7dg/vDe6NnMB2uPnsfGE5eKPdfGKSPRwLUGAODMjVBM33AAh3+cgBrFTEelCoYt++NphGqnB/EPCMCuXbsQExODKlWqoHv37vi0j6yX2d27dzF9xgx8N2kSOnToIA/z999/48/Dh5GcnAwrKysM6N8f7dq1E5z33r172LR5M54+fQpTU1O0a9sWQ4cOVfmw85pOTogLv6vSc14NDMK2PQcQHRuHKhbm6NW1M/rnL/Z5O/Q+Jn3/A6Z/+xU6t2sjD3Ps9FkcOHIMSS9ewsaqGgb37Y2ObYTr2Nx7GI7Nu/biYfhj6OnpoXljX4wbMQzGxqpdF8TGtS6SH1xX6TkB4PK1m9iy7zCiYuNRxaIy+nRpj0GfdAUAhNx7iAlzfsGs8WPQtW1LhbB/X7iCX1ZvxME/lsO6muI9Utr+D1XVoyGeP3mk0nP6BwRi5+49iImJgYWFBXp074a+fXoDkM11O23mLEye+C06dmgvD3Py1CkcOnwEyckvYG1lhQH9+6J9fmP27Tt3MH1W8Y29nw0ehKFDBqss/o61XJgnRTjWcsFJnbLpXWresiGanN+JwHZD8erKdcG2O6NmIGZHYc8rhzEDUHPSSOjbWyPzaTQiFm9A7O6jgvNVblYf7oumwbSeO3JepCB291E8+uE3SMVilca7W244r5MiHGu5ICHslsrOBwBXAq9j695D8nKnd9eOGNCrOwDgVuh9TJy9ADMmfIku7VrLwxw7fQ77/jqB5BcvYW1ZDUP6foJObQqfv1KpFIeOn8Kx0+cQn5gEC/NKaOBVF2M+Gyj/2KAKVm7eiA+7rbLzAcDVwOvYuvfgW+VwRwzoJSuHb4Xex6TZP2L6hHFF8uMs9v91QlYOW1bDkL690LGNsDy66BeI+UtWYvvvy8t0+kNrNy9eI0VYuXnjUURU6Qe+p/S0NGzauB7XrgVAKpHA3aM2Ro8dBzu7wuk8Zk6fjKTERGzeVthjPjk5CRv/WIvbt0KgpaUNb5/6GD32S5iby3pIz5j6He7fDy327x7/++wHx93FyaHC1GEv+gXgx8UrsH3tSqVTuamKjWvdCnHvAMC5K/7YeeAI4hOTYFmtCnp16YhPu6t+/n4rN29EPglX6Tn95OVwLCwsLNCze1dBOTx15veYMvFbdOxQ+H534tRpQTk8sH9ftG9beB1JpVKcPHUaR0+cRHx8AszMTNG2VSsMHTLogztYFlW9lqva58mtO3cwfdacYv/eZ4MHYpgK6ybVa7lWiHvnY5c76n6dAB/v3qleq+KMoFMnqv4m+V9g2LJ/eUfho2MDBvFhUURZNGBUdGXRgFHRlVUDRkVWFg0YFV1ZNGBUdGXZgFFRlUUDRkVXFg0YFVlZNGBUdGXRgFHRlVUDRkVWFg0YFV1ZNGBUdGXxEbaiK4sGjIquLBowKjreO0JswPh3+E3y/f0XGzA4ToeIiIiIiIiIiIiIiNQOGzCIiIiIiIiIiIiIiEjtsAGDiIiIiIiIiIiIiIjUjmpX+iUiIiIiIiIiIiIiKo2GRnnHgCoAjsAgIiIiIiIiIiIiIiK1wwYMIiIiIiIiIiIiIiJSO2zAICIiIiIiIiIiIiIitcMGDCIiIiIiIiIiIiIiUjtswCAiIiIiIiIiIiIiIrWjXd4RICIiIiIiIiIiIqL/GE32rafS8SohIiIiIiIiIiIiIvo/JpFI8Ntvv6FFixbw8vLCmDFjEB0dXezxjx8/xtixY9GoUSM0adIEEyZMQFxcnHx/Xl4e6tatC1dXV8HP6tWrVRpvNmAQEREREREREREREf0fW7t2Lfbs2YMFCxZg3759kEgkGD16NHJychSOTUlJwYgRI6Cvr4+dO3di48aNePXqFUaPHo3s7GwAwPPnz5GdnY2jR4/Cz89P/jNy5EiVxpsNGERERERERERERERE/6dycnKwZcsWTJgwAa1bt4abmxtWrFiBhIQEnDlzRuH4c+fOITMzE4sXL4aLiws8PT2xZMkSREREICQkBAAQHh4OY2NjuLm5oWrVqvIfIyMjlcadDRhERERERERERERERP+nwsLCkJGRgSZNmsi3mZqawsPDAzdu3FA4vkmTJli7di309fXl2zTz1yx58+YNAFkDhpOTUxnHnIt4ExERERERERERERGpvXbt2pW4//z580q3JyQkAACsra0F26tVqybf9zY7OzvY2dkJtm3YsAH6+vrw9fUFADx69AhisRijRo1CWFgYLC0t8fnnn+OTTz555/S8CzZgEBEREREREREREdFHJdXQKO8o/GeIRCIAgK6urmC7np4eUlNTSw2/c+dO7Nq1C7Nnz4a5uTkA2SLfEokEEyZMgJWVFS5fvoyZM2ciNzcXffv2VVnc2YBBRERERERERERERKTmihthUZqCqaBycnIE00JlZ2fDwMCg2HBSqRSrVq3CunXrMG7cOAwdOlS+78SJE8jLy5OveeHm5oa4uDhs3rxZpQ0YXAODiIiIiIiIiIiIiOj/VMHUUUlJSYLtSUlJsLS0VBomNzcXU6dOxfr16zFz5kxMnDhRsF9fX19hwW4XFxelU1J9CDZgEBERERERERERERH9n3Jzc4OxsTGCgoLk2968eYMHDx7I17Qoatq0aTh9+jSWLVuG4cOHC/a9efMGDRs2xOHDhwXbQ0ND4ezsrNK4cwopIiIiIiIiIiIiIqL/U7q6uvjss8+wdOlSmJubw9bWFkuWLIGVlRU6duyIvLw8vHr1CiYmJtDX18fhw4fx999/Y9q0aWjYsCGSk5Pl5zIxMYGpqSkaN26MFStWwMLCAtWrV8eZM2dw7Ngx/PHHHyqNOxswiIiIiIiIiIiIiIj+j02YMAFisRizZ89GVlYWfH19sXnzZujo6CAmJgbt2rXDr7/+ij59+uDEiRMAgMWLF2Px4sWC8xQc88svv2D16tWYN28eXr58CScnJ/z2229o0aKFSuPNBgwiIiIiIiIiIiIi+rg0uLrBx6SlpYWpU6di6tSpCvvs7OwQHh4u/33Lli2lns/Y2BgzZ87EzJkzVRrPoniVEBERERERERERERGR2mEDBhERERERERERERERqR02YBARERERERERERERkdphAwYREREREREREREREakdNmAQEREREREREREREZHa0S7vCBARERERERERERHRf4tUg33rqXS8SoiIiIiIiIiIiIiISO2wAYOIiIiIiIiIiIiIiNQOGzCIiIiIiIiIiIiIiEjtsAGDiIiIiIiIiIiIiIjUDhswiIiIiIiIiIiIiIhI7WiXdwSIiIiIiIiIiIiI6D9GQ6O8Y0AVAEdgEBERERERERERERGR2mEDBhERERERERERERERqR0NqVQqLe9IEBEREREREREREdF/R3rQ8fKOQoVj3KhHeUfho+MaGISoxw/LOwpqxcHZHc+fPCrvaKgVx1ouuBmeUt7RUCsNXCvjwZO48o6GWvGoZYMnEc/KOxpqpZZTDZy6lVve0VArXbx1+IwtwrGWC07quJZ3NNRKt9xwXAtLLe9oqI3GbmYIfPimvKOhVpq4m+L1rQvlHQ21Usm7Lfb4sW/a2wY312B9rQiPWja4+zipvKOhVuo6V0PE06flHQ214lSzJrJOrCvvaKgV/e7j8DgisryjoVacnarz/e8ttZxqlHcUiP5vcQopIiIiIiIiIiIiIiJSOxyBQUREREREREREREQflVSDfeupdLxKiIiIiIiIiIiIiIhI7bABg4iIiIiIiIiIiIiI1A4bMIiIiIiIiIiIiIiISO2wAYOIiIiIiIiIiIiIiNQOGzCIiIiIiIiIiIiIiEjtaJd3BIiIiIiIiIiIiIjoP0ZDo7xjQBUAR2AQEREREREREREREZHaYQMGERERERERERERERGpHTZgEBERERERERERERGR2mEDBhERERERERERERERqR02YBARERERERERERERkdrRLu8IEBEREREREREREdF/jAb71lPpeJUQEREREREREREREZHaYQMGERERERERERERERGpHTZgEBERERERERERERGR2mEDBhERERERERERERERqR02YBARERERERERERERkdrRLu8IEBEREREREREREdF/i1RDo7yjQBUAR2AQEREREREREREREZHaYQMGERERERERERERERGpHTZgEBERERERERERERGR2mEDBhERERERERERERERqR02YBARERERERERERERkdrRLu8IEBEREREREREREdF/jAb71lPpeJUQEREREREREREREZHaYQMGERERERERERERERGpHTZgEBERERERERERERGR2mEDBhERERERERERERERqR02YBARERERERERERERkdrRLu8IEBEREREREREREdF/ixQa5R0FqgA4AoOIiIiIiIiIiIiIiNQOGzCIiIiIiIiIiIiIiEjtcAopUrmbIbewdeduREZFoXKlSujZrSv69v4EGhrFDwu7cPkK9uw/iPiERFhWq4aB/fqgY7u2xR6/buNmHD56HGdP/FUGKVC94JAQbNuxE5FRUahUqRJ6dOuGvn16l5gnFy9dxp79+5GQnycD+vVFh/btBMdcueqHg3/+ieiYWBgZGcHbqx5GDf8clStXLuskqUSWKBN7t/+OGwEXkZUlglttL3w2aiJs7Kq/8zlWLpwJfX0DfDlxrmD7yxdJ2Lt1Ne7duYHc3Bx41vPFoOFfw8rGQdXJUCmRSIQdW//ANf8ryMoSwcOzHkaO+Qq2diXH+3XKK2zdtBYhwTcgycuDT4NGGDHmK5ibW8iPkUqlOHr4AM6cPo4XyUmoWs0K3Xr2Rtfuvcs6WR9EJBJh65bN8A/wR5ZIBE/POhgzdizs7OxLDJeSkoJNGzcgOPgm8vLy0MDXF2PGjBXkyduOHTuKI4f/xNZtO8oiGSqVnZWJ43uW407QWWRnZcLJvQF6DZsGS5saJYaLfvYAf+9fjaiIe5BKJbCv4YHugyfBvoaH/BipVIqLJ7Yh4PxBvH6ZgMpVbNCy8xC06DSorJP1r/EZWzx9W0u0vH0CNz/9Gq+uXC/xWJsB3VBr5jgY1rSH6HksnizZgNidfwmOMavvCfdF02BW3xPiNxmI2XEYj35cA2lubhmmQnWyRJk4sH0NbgZeQFaWCK61vTF45CRYv0e5s3rhDOgbGGDMt/ME2y+d+Qtbf/9F4fh2Xfth2BdTPzjuZSFLlIkDO1bjZuAFZGeJ4OrhjUGjJsHa1vGdz7Fm0XTo6RtgzLc/CLZLpVKcProLl/45gpcvElGlqhXadx+A9l37qzYRKnTtzgOs338MT2PiYG5mir4dW2FI9/YlPksKhD+LxojZC3FoxY+wqSYrZ+KSXqL3hNnFhunWqgnmjhumsviXlZysDJw9tAwPg88gJzsT1V0aoNPAGahiVbPEcNFPbuH84eWIf34fuvpG8GjQCW17T4SegbH8GHFuDi4fW4O7144jM+0VLCwd0aL7l6jt26Wsk/VBWF9TJBJlYve29bjmf1mWJ7Xr4fMx498pT7ZvWoPbIUHIy8uDT4PG+Hz0N6hsXkV+zMsXydi5dS1uBwdBkpcHF7faGDRsLJyc3co6WR9EJBJhy5YtCPD3h0gkgqenJ8Z+8QXs7OxKDJeSkoKNGzYgODgYeXl58PX1xZixY2Fubi4/Ji8vD7t378a5s2eRlpaGWrVqYdTo0XBzU988CQiPxJpTAYhIeAlzE0MMbFoPw1r7FPuMzc4V44+zQfg7JAwp6SK42FTBlx0bo5mbo+C4u5HxWHXSH/eiE2Coq4tmbtUxqXsLWJgYfoRUfTiRSIRtWzbBP8APWSIRanvWwZixX77ju856hMjfdRpi9JgvBM+TlFevsHPndtwKCUZa2hvY2tnh00/7o2Wr1mWcqg/D9z8iKoojMFTs8OHDcHV1lf/etm1brF69GoCsMnrkyBG8fPlS6bH/Dx6EhWPOjz/D3s4W82bNQNvWrbBx63bsP3S42DBX/QOwcOkK1Pf2wg/fz0S9Op5YsuI3XLx8Venxd+/dx5FjJ8oqCSr3MCwMc+cvgL2dHebMmoW2rVtj89ZtOHDwULFhrvr7Y9HSZajv7Y15s79H3bp1sHTFSly6fEV+zKXLV/DzwkWoVasW5syageHDhuLOnbuYNut75OTkfIykfbDfl83Fdf8LGPD5Vxg3cS5SXibj59lfIyP9TalhJRIJdm5cgRsBFxX2ZWWJ8Ouc8Yh89ggjxk3D15Pn49XLZCyYOQ7paallkRSVWbH4JwT4XcbQ4WMx4buZePUyGXNmfof0tLRiw+Tl5WHBvBl4FP4QX349CV98PRFhD+9h/uypEIvF8uO2b/kDu3dsQrsOXTF7/kL4NmyCjet+w5lTxz9G0v61xYsXws/vKoYPH4HvJk/By5cvMHPGdKSVkifz5s5GeHgYvv5mPL7+ejwePniA2d9/L8iTApcvX8KmjRvKMhkqtWP1NNy+dgbdB03CkK9/QeqrRPy+YCQy04u/vpMTorBm/nDkZIsw6IsfMXjczxCLc/HbvGFIjHsmP+7Y7mU4uW8VGrfpg7HT18HTpxX+3PozAs4d/BhJe298xhZP384KDf/eAp1KpqUea9W7I7x2LEXyOX/c/PRrvLxyHV5bFsG6f1f5MQY17NDo9FbkibIRMmginq7YghoTR6D2yuI/0Kqbdcvm4HrAefQb9g3GTvwBKS+TsHD2uHcud3ZvWo6bgReU7o969hjWttUxZ/FmwU+XXkNUnQyVWb98Nm4EnEe/od9gzLc/IOVVMha9V34sKzY/9m//DYd2rUWL9j3x3ZyV8PJtgV0bluDSP8XXCctT6OOnmLx4LarbWGLRd1+gc3NfrNlzBDuOnSk1bER0LL5b/Dvy8iSC7VUqm2LTgqkKP52bN4S2lhZ6tmlaVslRqT83TMGDm6fR/tPv0HvUQqSlJGL74s8hyii+zEmMDseOZSOgp2+E/l/9hnZ9JuH+jdM4uO5bwXFHNk7FjYt70LzrWAyasA5WDm449Md3eBKq/D1AXbC+pmjVkh8R6HcRQ4Z/gfHffY9XL5Mxf9YEpKeXlCdi/PLDFDx+9ABjv56CMV9NRtjDUCyYM1meJxkZ6Zgz/WuE3r6JQUPHYPKsn1DN0gZzZ3yDx+EPPlby/pXFixbB7+pVDB8xApOnTMHLly8xY3rpddi5c+YgPDwc34wfj6+/+QYPHjzA90XqsBs3bMCRw4fRt29fzJgxA1paWvh+1izExcV9jKS9t7uR8Ri/+Sgcq1XG8uHd0c3HDStOXsWWCzeLDfPDgXPY738HI9o0wKqRPWFfpRLGbz6KkKex8mMeRCdi9NpDMNTTwYrhPTCxWzMEhkdi0lb1vl/etmTxr/Dzu4Lhw0fhu8nT8PLlS8yaMbXU58kPc7/Ho/BwfP3Nt/jq6wl4+OA+5nw/U36d5ObmYO7cWbh9KwSfDR2G72fPg7OzCxYv+gUXzp/7WMn7V/j+R0RFcQRGGTt06BD09PQAADdu3MCMGTNw/vx5AEDXrl3RokWL8oyeyu3YvRe1atbAjMmTAAC+9X0gFoux98Ah9O7ZXZ4Xb9uyYxdaNm+KcWNG5YfxRlp6Grbt2oM2rYT5IxKJsHTlb6hiYY7kFy/LPkEqsHP3HjjVrIlpUyYDAHwb1IdYnId9Bw6i1yc9lebJtu070aJ5M3w5dgwAoEF9H6SlpWH7rl1o3aolAGDfgYNo2KABvv3ma3k4e1tbfDt5CoKu30CL5s0+Qur+vcdhoQi57oep85bDq77sBd61thcmjumDs3//iV79RxQbNurZY2zfsBxPHz+Arq5i/l33v4D42EgsWrMHdg6y3oH21Z0wcUwfBPlfQLvO6tmDLezhfdy4HoDZ8xeifoNGAAAPz7r4cuQgnDp5FP0GfqY0XMDVS3ga8Ri/rdsKewdHAECNmrXw7Vcj4X/1Ilq16YCkxAQc/+sgxnw5AZ27fQIAqFvPBy9eJOFWyA107NLjYyTxvT18+ADXg4Iwf/4CNPD1BQB4enpi5IjhOHnyBAYOVD4q4OrVK4iIiMC69X/AwUHWs7qmU018Ne5LXL16BW3ayEZ4vX79Gjt3bsfpU6dgYmLycRL1gZ49uo37wZcwdvo6eHjLnpFObvXx4/hO8Du7Dx17f6E03JXTu6Cjp4+x09dCT1/WI825dkP8OL4Trp7eg74jv8fLpFhcOrkDn46YheYdBwIAXDwbIeVlAsLu+qNp+34fJ5Hvgc9YJTQ0YDe0F9wXTce7ronnuuA7xB86jYdTfgUAvDjrB53KZnD94VvEH/gbAOA0dQzEaRm42ecrSHNzkXz6CvJEWfBcNQdPFq5HVnR8WaVIJZ6E3cXtG1fx3dyVqJdf7rh4eGHK2F44//ch9Ow/stiwUc8fY9eGpXhWTLkDAFHPHqGGswdqudYpk/irmjw/5qxE3fqy69nFwxtTv/gE508dQs9+xedH9PPH2LVxSbH5kZwYh3+O7cHQMVPRtktfAIBHXV+8epGI0FvX0LpTn7JJ1AfYePAEXB3tMf8bWf2jiVdtiMUSbPvrNAZ0aQN9XV2FMLliMQ6cvoQNB49DV0dHYb+ujg7qOAtHKTx8GolzgcEYN/ATeLnVKpvEqFD0k1t4dOciBk/cAOc6suejg0sDrJreHjcu7kXL7l8qDXft7DYYGJmh/1e/QUu7MO+Obp2FFwlPUcWqJiIf3cSD4H8E567h3gSvkqLwOPQKatVRz/ck1tcUhT+8h+Dr/pj1wxJ4N2gMAHCrXRdfjxqAf04ewacDlI80CvS7hGcRj7F87Q7YO8hGkTrWrIXJX3+OwKsX0KJNR1w8exLJifFYsPh3uHnUBQDU8/bFmzevsX3Tavy0ZN3HSeR7evjwIYKCgjD/xx/hW1CHrV0bI0aMwMkTJzBwUHF12KuIiIjA+vXr4VBdVod1qlkT48aNw9UrV9CmbVskJyfj5MmT+PLLL9Gte3cAgI+PD0aPGYODBw/i22+/VXru8rT2dCDcbKvil8GdAQDN3ByRm5eHzedvYEhLb+jrCD9Nxb5Kxd8hYZjZuw0GNKsHAGhYyx63n8Vhv/8d+NS0BQCsOOEHN9tqWDWiJzQ1ZZUeI309LP7rEmJepsLOwuwjpvL9yd51ruGH+T+hgW9DAEBtT0+MGjEMJ08ex4CBg5WG87t6BRERT7B2/ca33nWc8PW4sbh69TLatGmHG9ev49nTp1i+cjVcXGQdZ7196iM5KQmHDu1H23btP04i3xPf/4hIGY7AKGPm5uYwMjICIBuB8TZ9fX1UrVq1PKJVJnJyc3E39B6aNWks2N6yWVNkikS49+ChQpiExETExMahWWNhmBbNmiIuPh4xscIeJBu2bEflypXRscg0H+oqJzcXd++GKuRJi+YFeaLYa0iWJ7Fo1qSJMEyzZoiLi0dsbBwkEgm8vb3QpXMnwTH29rLhyHHx6v0RCQDuhlyDnr4B6no1km8zNasMd09v3L4ZUGLYdSt/hESSh/lLNsG0kuJULg0at8K8RRvkjRcAoK0t+7CQq8Y9p2+H3IC+vj68vBvIt5mZVUJtz3oIuXmt2HC3Qm7A1s5e/jIMAPYOjrCzd0DIzSAAwLWAq9DR0UW7jsIpGabMmIfp3/+o2oSoUEhwMPT19eHt4yPfZmZWCZ516uDmjRvFhwsJhp2dnbzyCgAODtVhb28vCHdg/z6EBAdj1vez0bBRI2WnUjthd/yhq2cAt3qFPXeNTc1Ry6MBHt4qvseqpU1NtO0+XN54AQB6+oaoZGGJF4nRAIDQG+eho6uHxm2EHxeHT1yGkd+tVG1CVIDPWOVM67rC8/f5iNn1F24Pn1bq8QbVbWHsWgMJR88Ktscf/gdGzo4wrCW7j6p2aI6kU5cF00Ul/HkaGlpaqNqxuWoTUQZCb8nKnTpFyh232j64E1xyubNx5Q+QSCSYs2QLTCuZK+yXSqWIfv4EDjVcVB7vslKQH55ehfePqVlluNb2wd1g/xLDblg5T5Yfi7fCxEwxP0KCLkFHRxct2vcUbP9q6q8YP2OxahKgQjm5uQh58BitGnoJtrdt7I1MURbuhEUoDRdw6x42/XkSw3t1xjeDe5X6d6RSKZZs2YcadtYY1K1i1GUj7vtBR88QTrULG22NTMzh6OKLJ6GXiw3XpvdEDPl2g6DxQiu/LibOldXFHtz8B5WrOcgbLwBAQ0MDI2fuRZfB36s6KSrD+pqiOyHXZfV6b1/5NjOzyvDwrIdbNwOLDXc7JAg2dg7yxgsAsHeoAVv76vK8jImOhJGxibzxooBnXR+EP7xX4giP8hScX4f1ebsOW6kS6tSpgxs3ix91EBKcX4et/lYdtrqsDnsjvw57+/Zt5OXloUnTwrqgjq4uGjZsWGL9uLzkiMW4GRGLtp7CRtsOdZ2RkZ2DW2+NqChQ1dQIeyYOQrf6hVNiaWpqQEtTE9niPADA6wwRbkbEoH+zuvLGCwBoX7cWzswdrfaNFwAQEnwz/12nvnyb7F2nLm7eKH7qz5CQm8W86zjIwxkaGqJzl25wdhbWTezs7ZGgxnVZvv/990g1NPnznj//Rf/3IzAyMjKwfPly/PPPP8jIyEDt2rUxY8YMeHp64tatW1ixYgXu378PbW1ttG3bFtOmTZPPbd22bVsMGTIEt2/fhp+fH3R1ddGjRw/MmDED2tqyrDt79ix+++03PH/+HHXq1EHTpsKh4G3btkXv3r3RsGFDDBsm63nSrl07/PqrrIfjzJkzER4eDkDWErxq1SpcuHABKSkp8PDwwKRJk9Ao/6G6evVqBAcHo2nTpti1axdSUlJQr149zJ8/H05OTh8lP0sSn5CAXLEYtrY2gu02NtYAgOiYWNT39hLsi4qOAQDYFQljay0LExMbK98XfOs2zl24iHW/LceFS1dQESTEF+SJrWC7jbUsTTExsajv7S3YFx0t+5BYbD7GxsDW1gZfjB6l8PcCAmUV/erV1XudBwCIjXmOapY20NTSEmy3tLaD/6V/Sgw7btI8ODgW32vR0MgYLu6ylxxxbi7iYp5j95bfYGJaCY2aq+8Hg5joSFha2UCrSJ5Y2djiyqXih/nGREfCxkZxPlAra1vExsiup2fPnsDaxhb3793Fzq0bEPn8KcwtqqBv/yFq25sPkN0PVlZWCnliY22DS5cUpw+Th4uKhk2R+w4ArG1sEBMTI/+9S9duGDlqNLS1tREUVPxHB3WSGPsUFpZ20NQU5kkVSwcE+58sNlzBiIq3JSdEIT76CVxqy8qZ2MgwVLFyQMTDmzi+ZwXioh/DrHI1dOg1Ri1HX/AZq5woKh6X3DogKzYR5i0blnq8sZusDpHx+Llge2ZEpGy/Sw1kxSTA0NEOGY+fCY7JeZGC3NQ0GLuUvP6KOoiLfo6qlrYK5U41azsEXj5dYtixE+fDvoRyJykhBlmiDDx7/ADTx/VFcmIsqlraoke/EWjetptK4q9q8THPlOaH5Tvlx48l5kfUs0ewtLZH+P1bOLhjNWIin6CSeTX06DtcLUdfxCa9QK5YDAfraoLtdpayjkZRcYloVNddIZy7kyP+Wv0TzIyNcOJS8R9pC5wNvIn7T55j7ZxJ0NKsGC+fL+KfonJVxTKncjUHhAYVP0WLaWVLmFa2BADkZGciJuI2zh9eAftaPrCyl32QTIx+iGo2zgi9dhxXTqzDy8RIWFhWR7s+38HNRz17BgOsrykTExMJSytrxTyxtoPf5bPFhAJioyNhrTRP7BAXGwUAMDU1Q5YoE+npaTA2LuwtnRAv++idlBAH41rqNy1zcXVYaxsbXLpYfB02KjpaoV4DADY2NoiJlaU5OioKBgYGgjUxCo55+fIlRCIRDAwMVJAK1Yh5+Qa5eXmoXlXY8cyhSiUAwPPkFDRxFa5Fpautjdr2smeIRCJFUmo6dlwORszLVMzo3RoA8Cj+BSRSKSobGWDmrlO49OAppFKgXZ1amN67FUwN9Ms6aR8sJjoaVkruHWtrG1y+pHyKRkB2DdjYKq6lYm1jg9j8dx0vbx94efsI9ovFYty4fl3wkV/d8P2PiJSpGDXnDzBx4kRcuXIFv/76K/766y/Y29tj5MiRuHPnDoYOHQpnZ2ccOHAAq1atwp07dzBq1Cjk5eXJw69atQq+vr44duwYpk2bhl27duHECdn6CyEhIRg/fjw6deqEY8eOoXfv3tiwQfkcet7e3vK1MA4ePIiuXbsK9ufl5WHkyJG4efMmlixZgsOHD8PFxQWjRo3C3bt35cfdvHkTwcHB2LBhA/bs2YOXL19i/vz5qs62fyUjIxMAYGQoXCzLML/ylCnKLDaMYZEwBRWuzMzM/OMysOy3NRg2ZBDslBRK6iojMwOAYvoMDYXpE4R5xzwpKi4+Hhs3b4FTzZpo2KCB0mPUiSgjAwaGRgrb9Q0MIRJllBi2pMaLopb+NAUzvx2K+6HBGDRCuCCgusnMyIBBkf87ABgYGEJUzP8dADIziw9XcL28SU3Fq5cvsGLJz2jfsSvmLlgML+8GWLdmuVrPqZyRmaFwLwCy+6G4ewGQ5cm7hLO3t5c3SFcUWaJ06L+1AGoBPQMjZGWmv/N5cnKysGftLFkv6c6yOfrT36Qg9VUSdq6ZgcZtP8WXM/+AW92mOLBpvlqugcFnrHK5KanIik185+O1zWTXk/iN8PoRp8nyV9vUGDpmJkqPKThO21TxmlQ3osz0f13ulPSxHgCinj4CIJs6adDIbzFp9nLUqOWOjavm49KZv/51nMtSZrH5YfTB+ZGWmoLXr5Lxx4o5aNn+E0yetxqeXo2wbd2varkGRnqmCABgVORjl2H+7xkikdJw1cwrwcxYMQ+Ls+v4WdR1dUL92hVnpE6WKA16+krKHH0jZJdynQD5o06+bYKdy0YiJzsTXQYXrpmTkZaC2Gd3ce7QMjTvOhZDJm5AFaua2L92vFqvgcH6mqLMDOXPEwNDQ2RmFn+dlFRfE+WHa9GmIzQ0NLHsl9mIjnyGjPQ0XL14BpfOyaY3zM7KUlEqVCsz41/WYd8hXEZmZrHHAMXXZcpLelY2AMBYXzgVn6Ge7PeMrJJHyG+9eAOdftqM3Vdvo3ej2mjsIutIkpIuezbP238WejraWDm8B77r0QKXHzzF+E3HFGbAUEfFvesYquhdp6itWzYiLi4W/Qcon4ZJHfD9j4iU+b++a58+fYorV65g8+bNaN5cNrXBDz/8AFNTU2zatAmurq6YM2cOAMDJyQnLly/HJ598Aj8/P7Rq1QoA0Lx5c/nICXt7e+zcuRMhISHo1asXdu3aBR8fH3zzzTcAgBo1auDRo0fYsWOHQlx0dXVhZiYbwmhubg59feELkp+fH+7fv4/jx4/DxUX2UjN//nyEhoZi8+bNWLVqFQBZi/nixYvl5xo4cCCWLFmi0nz7t0qrIGgqGeYklUqUHFlIIz/M2o2bUbVKFXzaq2eJx6sbiaS0PFGcnFxSSp4oy8eo6GjMmjMXWlpamD1rBjTVrFefRCJR+F+XlE5lafy3eg8Yge59PkPApX+wYdVPkOZJ0Lpj+V9HsjwRXh+SEu4hDSXXSuG5ig9XMJxanJuLN29SMW3WfDRpJpuqoW49H7xITsL+vTvUolefsjyRlpC2D82TikDZvSOVFH/vaLzjvZ8lysDmpRMQGXEPIyYth3lV2WiEPHEuMtJSMOK7FajXsAOAgjUw4vHPn+vUbhQGn7GqUdp1I5VIgFKPUa+PBMrLnRKeCx9Y7rjW9sak2cvgXqcB9PRlH5Dq+DTBm9QUHN7zB1p1+KTEZ1ZZU/4sKen5+mH5IRbnIu3Na3wzfREaNJHNOe1R1xcvXyTgr/2b1G4URmnX77s+W0tyNzwC4c+isXiK8jUj1IH0fcucd7imJXliDBy/FuLcbPj9vQHbFn2GETP3wMreDXl5uUhPTcbYuX/CunptAEAN98ZYP68XLh//XS3WwGB9TZHS58m/fL6+S53G3qEGZsxdiD/WLMF3X8vey2vWcsWAz0Zhyx+roKtf/r3slV4n//LeKbmskoUrKd9KO395KK2+Vlp8W3rUhJejDW49i8MfZ4OQlSvGL4M7Ize/46mHnSV+GCCrtzZycYCJgR5m7DqFwEdRaOqqPiMNlL/r/Mvr5D3fdaRSKbZu2YSjfx1Bn0/7oWkz9Zj6k+9/RPSu/q8bMB49kvWG8/Lykm/T09PDzJkz0bVrVzRrJlyA083NDSYmJggPD5c3YBSdmsnExAS5+XM/P3r0SOEc3t7eShsw3iWuJiYm8sYLQPZwbtCgAfz8/OTbqlSpIm+8KBqf8lYw8iIzU9hLLSO/tdvISLE1vGB9EFGRnm2Zb4W5dv0GLl3xw+8rlkIqlSIvL09escvLy4OGhobafkwqSHPR9BXkiaGRYk8lI8PS8+Rtd+6G4seff4GBgT4W/fozbPKn31InR/ZtxuF9mwXbGjZtizevXykcK8pUPjLj33L18AIAeNbzRXJSPP46uE0tGjAO7N2B/Xu2C7Y1adYKqcXkiaFR8b2bjYyMIFIywkmUmQnD/Lw0MDSEhoYG6vsK1wrwrt8Qt0Ju4HXKK1SqrDiP+ce0d89u7NmzW7CtWfPmeP06ReHYTFGm/PmhjJGRocI9BMjuI0MVXl9l7Z8/1+GfP4WLU9Zr1BFpqS8Vjs0SpUPfsPRe8Ckv4rFx8ddIin+Oz79dgjoN2sr36RnIrhMPr5aCMG71miPsjj/SXr+ASSX1GcXEZ6xqiFNl84drmwjzq2BUhTg1XT7yougxBccVnENdHN2/CX/t2yTY5tu0Ld68VnLvZGbA4B3unZKYVjKHl6/ix9Z6DZrh/p3rSH39EpUql9+9c3T/Jhzdv1GwrUHTdniTWkyZ84H5oW9gBA0NDfni4AXqeDfBvVvXkPr6JcwqWXzQ31Al44JRW6JswfYMkaxnt7EKpiG5EHQLpkaGaObl+cHnKiuXj/+Oy8d+F2zzqN8JGW8U75vsrHToG5a++KmWto58/YzqLr5YNb0dgs7uwCcjf4GenhGMzarKGy8AQFNTCzU9miD48v4PTI1qsL6m6NDebTi4d6tgW+NmrZGaUlyeFF/vMjQyfqf6Wj2fhvh98wEkJcrm7be0ssGFM7JpM9+eVqq87NmzB3t2C+uwzZs3x+vXrxWOFWWWUoc1LKEOmx9Odi0pP6ZgvzoxNtADAGRkC0daFPxuYqCrEOZtztay8rO+kx3EEgnW/XMN47s0hVH+CI6WHsJpLJu5yRotwmKT1KoBY++eXdi7Z5dgW7PmLZCi5Dop/V2n+Gug6LtObm4OVixfiiuXL6HPp/0wctSYf5eAMsD3PyJ6V//XDRglDQsrrpeIVCqFjo6O/HddXcXCtCCshoaGQs+Kt8O+j5Li83Y6lMVHXdhYW0FTU1NhcdO4ONnvDnaKczQWTAcVGx+PWk6FCy4XnMPB3g479uxDTk4Oxnw9QSF8508+RYd2bTBt0rcqS4cq2Vhbl5wn9opzvtrZ2cqPqfVWA1rBOezfCnPx0mUsXbES9nZ2+Gn+D6hSRX0+Brytbade8PYV9vK4GXQZd29dg0QiETRAJcbHwNbe8YP+XsTjB0hOjEPj5sL5kx2dXPE4LPSDzq0qHTt3R4OGwkWEgwL9cDvkhkKexMfHwc6++Dn3bWzt8ezpY4Xt8fGxcHaRzTNtbWMLqVQKsThX8BwR54kBALp6eh+UHlXo3KUrGjYULqQWGBiAkOAQxTyJixfcC0XZ2tnhaYTioqvxcfFwca04U3c0bdcPtX1aCbaF3ryAsLv+CnnyIiEaljY1i55CIC7qEdb/+gVyc7IxbtYGOLkLp0KqalVd1lAszoWObuE1IcmTNZTr6JZ/L8e38RmrGumPZOtaGDpVx5vbD+XbjZxkL/3pYRHIy8iEKCYBhk5F5qiuag4dU2OkF7PIcXlp3bE3vBoIy53goMsIvRWkWO4kxMDmA8ud8Pu3kJwYi+Ztuwu25+RkQ1NTC8bG5buQaOtOveFVpBwOCbqMe0rK4aT4aFjbOX7Q37O0tpc/S/DWs6RgmlZd3fIvc95ma1kVWpqaiE5MEmyPSUgGADjafnjDpV9IKFr61oO2tlbpB5eT+i37w6Vea8G2sJDzeHLfD1KJRDAS5VVSFKpYF1/mhN++AH0DE1R3LVzUWd/QBJWr2iMtVZbP5pbVkZoSD6lUKuhVm5cnhraOepQ3rK8pat+5J+o3FK77eP3aVdwJua6QJwlxsbC1K/4DcnF5khAfg1ousnVnkpMScff2DbRs0wmWVoXrVz2NeARjE1NUsyz/jgVdunRBw4bCNacCAwMRHByskCdxcXEl1mHt7OwQoaQOGxcXB1dX2VoftnZ2yMzMROrr1zCrVEl+THxcHKpVqwY9NbhO3mZvYQYtTQ1Ev3gt2B6V/3uNaoqNcnGv3uDa4yh083GDnk7h9xB3O9laRclvMuRraOSI8wRhxXmybzRvh1MHnbt0Q8OGwsbJa4H+CCnmOinpeVL8u04cXFwL14TJyMjA/HmzERb2EGPGjsMnvXqrICWqw/c/InpX6tltXUUKRk+EhhZ+sBSLxWjbti2eP3+O4OBgwfFhYWFIT09/5wWx3dzccOvWLcG2e/fuFXt8ScPdXF1dkZaWJh81AsgaL4KDg1Gr1rvP91+edHV1UdezNvwCrgkaZK4GBMLIyBCuLoqFhq2NNawsLXHVP0Cw/WpAIGxtbGBlaYlhgwdizYqlgp+unWRDRNesWIphgxUXplUXurq6qOPpCf+AAEGe+PkHwMjICK4uzgphCtJ91d9fsN3PP0C+DwCu37iJxcuWw8PdDcuWLFLrD2uVLaqiprO74KeOVyNkiTJx91bhwllvUlMQdv826ng1KuFspbsTHIi1y+bhZXLhHPCSvDw8uHuz1Hm7PxZziyqo5ewq+PHyaQCRKBO3Qm7Ij0tNfY0H9+7Ay7v4Ofe9fBogJjoK0VHP5duio54jJjoSXj6ycPUbyCrLfpeFi8HdCAqAY42aatErxcLCAs4uLoIfH5/6EIkyEfLW8zo19TXu3QuFt0/9Ys/l41Mf0dHRiIqKlG+LiopEdHQUfLyLD6duzMyrwcHJU/DjVrcpskUZCLtT+IxIf/MKEQ9vwq1u02LPlfIiHmt/Hg0NaODb+TsVGi8AwN1L1oM8JOCUYPu9m5dg4+DyTiM8PiY+Y1UjMyIKmU+jYd2nk2C7Ve+OSH/0DKJI2aKhL875o1rX1tDULeysYdWnEyRiMV5cVK9FECtbVEUNZw/Bj6d3I2SJMhBapNwJv38Lnh9Y7jwMDcbGVT8iIbbwmSORSHAj4AJqudWB9r/s4KIqlc2rokYtD8GPp5csP+7dKlx8+k1qCsIf3IKnV+MSzla6gpEXQVfPCLbfvn4F9o7OHzziRdX0dHXg5V4Ll67fFjxLLgbdgrGhAWrXcvyg86emZyA6IQn1XN7tHaO8mFS2hI1jHcGPU+1myMnKwJP7hSPCM9JeIfLRTfnICmWund2Ok7vmQyIp/LD45lUCkuMjYGkn+7jmXKclROmv8fR+4fM4T5yDiHtXUd1FPcpq1tcUmVtUgZOzm+CnnrcvRKJM3Am5Lj8uNTUFD+7fQT0f32LPVc+7IWKjIxEd9Uy+LTrqGWKjI1HPW9Yg8CY1Bet/W4T7d0Pkx6SkvIT/lXNo0KiZWkyXZGFhARcXF8GPj48PRCKR4JtD6uvXuHfvHnx8fIo9l4+Pj6wOG/lWHTYyEtHR0fDOD+ft7Q0AgpkacnNycP369RLPXV70dLThU9MW50OfCJ6x5+4+hom+LjwdrBTCxKe8wfwD53Ah9Ilge2B4FHS0tOBYtTJqWprDxtwU/9wOF5z30v2nAACfGuq1dqaydx1v+bvOTflxqamvcf9eKHxKeNfx9qmP6Ogope863vnvOnl5efjxhzl49Cgc02bMUrvGC4Dvf5RPQ5M/7/vzH6ReTdIqVqNGDXTs2BHz58/HDz/8AEtLS2zYsAHZ2dnYt28fBg8ejAULFmDw4MF48eIFFixYAA8PDzRp0qT0kwMYOXIk+vXrh0WLFqF///4IDQ3Frl27ij2+YEGhsLAwVK5cWbCvefPmcHd3x+TJkzFnzhxYWFhg165dePToEebNm/fvM+EjGzygH6bPnocFC5egc4d2ePAwDAcP/4VRnw+Fvr4eMjIzERkVDRtrK1TKnwrrs0H9sXTlapiamKBJo4YIuHYdl6/64/tpUwAAVpaW8g9KBYKuy14YXJ3V42N0SQYP7I8Z38/Bz78uQqeO7fHgYRgOHT6MkcM/h76+PjIyMxEVFQVra2t5ngwZNBDLVq6CqYkJGjdqhMCgIFy56oeZ06cBAHJycrDit9UwNDDAwAH9ERUVJfibVapUQdUq6jPNizLunt5wr+ODtct+wKDhX8PYxAyH926CoZEx2nctnBs7JuoZxLk5cHRyLeFsQu069cL500ewdMFk9Bk4Clo6Ojj395+IjozA9Pm/lUVyVKK2Zz141vHCyiU/Y9jIL2BiYor9e7bByMgYnbt+Ij8uOuo5cnNzUdNJ9nG2ecs2+PPAbiyYOwNDh8uGBO/cthHVHWuiWYs2AADPul7wbdgUWzauRVZWFhwca+DS+TMIe3APM+f89PET+44869RBnbp1sWTJIowcOQompqbYs3sXjIyM0bVrN/lxUVGRyM3NhZOT7JnQsmVLHNi/D3PnzMHwESMAANu2boWjoyNatGyp9G9VFE7uDVDLwxe71kxHjyHfwci4Ek4fWgsDI1M06zBAflxCTATEuTmwqyHrwXh4+69IT32FfqPnIkuUjueP78iP1TcwhpWdE5xrN0Tt+q3x187FyMkWwdq+Fm5cOYZnj25h1JTVHz2t74LP2PenbWIEY49ayIyIQs4L2RD9xz//jnqbFyL31WskHr8Ay57tYNO/K0IGT5SHi1i6CTYDusH3xCY8W7kVRi6OcF3wHaI3HUBWdHwxf019uNX2gZtnffyxfC76f/4NjE3M8Ne+jTA0MkHbLp/Kj4uNegqxOBfVa757udOmc29cOP0nVvw0GX0GfwE9fX2cP/UnYiMjMOuXP8oiOR/MtSA/VsxF/8/HF58f0U8hzn2//HCvUx9evi2wZ8sKZGdnwdbBCf4XT+Jx2B1MmLm0LJLzwUb27oJvfv4Ns1ZuQo/WTXD30VPsOnEWXw/qBX09XaRnivAsNh52llVR2fT9pqyJiJI1AtawK/+e4u+ruqsvHF0b4vCGqejQbwoMjCvh8tE10Dc0QYPWhYvAJsc9gTg3B9bVPQAALXuMw85lo3Bo/STUb9kfGekpuHJ8LQwMTdGko6xcrtO4B65f2IXDG6ei3affwbSyFYLO7cCblAT0G7eyPJL7TlhfU+Th6YXadbyxaumPGDpiHIxNzHBwzxYYGRmjY9fCj6bRUc8gzs1FDSdZx7amLdvi8MGd+GXeVAwZLlsfZve29XBwrImm+XlSs5YrXD3qYOPaZRg68itoaWlh746N0NLSQv/Boz5+Yt9RnTp1ULduXSxZvBgjR42CqYkJdu/eDSMjI3Tt9lYdNjK/DlursA67f/9+zJk7FyPy67Bb8+uwLfPrsJaWlmjfvr3s20ZODmxtbXHkyBGkp6ejbz/1Wq+swJj2jfDFH39i6o6/0auhB24/j8f2S8H4tmtzGOjqID0rG08TX8HOwgzmxobwrmGLxs4OWHjkEtKzc2BvUQlXHjzFfv87GNepMUwNZaO0vuveAlN3nsS0nX/j08Z1EJH4EmtOBaB93Vry0RrqzLNOXdSpWw9LlyzCiJGjYWJq8ta7TuGoTsV3nVY4uH8v5s35HsNHyO6DbVs3w9GxBlq0lI3ePnH8GO7fv4fOXbqhSpWqCAt7KPjbbm7uHymV74fvf0SkjIa0tJWXK7i0tDQsXrwYZ86cQU5ODurVq4cZM2bAzc0NgYGBWLlyJR48eABjY2O0b98ekydPRqX8YZht27ZF7969MX78ePn5hg4dCltbWyxcuBCAbGjokiVL8PjxYzg7O6NLly5YunQpwsPDFc6Rk5ODb775BgEBAfjuu+9QqVIlzJw5U37sq1evsGjRIly8eBE5OTnw9PTEt99+C19fWa+V1atX48iRI7hwobBHzuHDhwXn+DeiHj8s/aD34BdwDTv27EVMTCwsLCzQs1sX9OvTC4BsLvEps+ZgysTx6NS+nTzMiVP/4ODhv5D84gWsrSwxsN+n6NC2TbF/Y8fuvdi5dz/OnvhLpXEHAAdndzx/8qj0A9+Df0Agdu7eg5iYGFhYWKBH927o20dWmb9zNxTTZs7C5InfomOHwimPTp46hUOHjyA5+QWsrawwoH9ftG8rm6v+9p07mD5rdrF/77PBgzB0yGCVxd+xlgtuhivOQ/mhMtLfYNfmVbh57QqkUglc3Ovis1ETYfPWUPOfZo1DclI8Vm36S+k5vh3dC+6ePvhy4lzB9qSEWOzd9jvC7t9CligTTq610W/IWPmaGB+qgWtlPHgSp5JzvS09LQ1bN61FUKAfpFIp3Dw8MXLMV7C1KxxCPHvGRCQlJmDD1n3ybS+Sk7DpjzW4c/smtLW04eXTACPGfA1z88Je4zk5Odi/ZzsuXzyLN6mvYe/giP6DhqFRE9Us4uZRywZPIp6VfuB7SktLw6aNGxB4LRBSiQQeHrUxZuxY2NkVDiGeMX0qEhMTsXVb4RpEycnJ+OOPdbh96xa0tLTg41MfY8aOFeTJ25YvX4rQu3cF5/hQtZxq4NQt1a9TlJmeir92LkHozQuQSiSo4eqNXsOmwdKmcA7g1fOH41VyHOatOQOxOBfTPveFJH8KiqKc3Btg/LxtAIDcnGyc/nMtgq+eQHpaCqxsndDx0y9R17ed0rDvq4u3Dp+xRTjWcsFJnXf/OPw+zFs2RJPzOxHYbiheXbku2HZn1AzE7DgiP9ZhzADUnDQS+vbWyHwajYjFGxC7+6jgfJWb1Yf7omkwreeOnBcpiN19FI9++A1SsfJr69/qlhuOa2GpKj0nICt39mxeiZCgy5BKJXB2r4fBIyfB+q1y59fvv8SLpHgs23hU6Tkmj/kEbp4+GPOtsINJYnw0Du74HeH3byNLlIEazh7o+9k4uKig3GnsZobAh28++DxFZaS/wd4tKwrzw60eBo2aBGtbR/kxv37/RX5+HFN6jsljeubnxw+C7Tk52Ti6fyMCL53CmzevYWtfAz37j0b9xq1VEvcm7qZ4fetC6Qe+h0vXb2PjoROIjEtEVXMz9O3YGkO6y54bwfcf4asFKzDny2Ho3lqxs9OJS4FYsH4Hjvz2E2yqCcuZc4HB+H7VJuxfNg+Otoo9jVWlkndb7PFT/audKCMVZ/YvRNit85BKJbCv5YNOA2egilXhFFLbFg/F6xexmLi48H/yLOwaLv21GgnRYdDU1EatOs3Rvu8UmJlbC859/vAKhIWcRXZWBqwdPNDu0+9Q3aX4kQzvY3BzDdbXivCoZYO7j5NKP/A9paenYfum1bgReBUSqRRu7nXw+ZjxgjyZN2M8kpMSsHbLQfm2F8mJ2LrhN9y9fQNaWtqo5+2L4WPGo7J5YUeB1ymvsG3Taty9dQNSqRS163hj8OdjYWNb/BQ776OuczVEPH2qknO9LS0tDRs3bsS1wEBIJBJ4eHhg7BdfwO6tqZWnT5uGxMREbNteuNZKcnIy/li/HrfkdVgfjP3iC5ibF061lJuTg61bt+LSpUsQiUSo5eyMUaNGwc3NTSVxd6pZE1kn1pV+4Hs4H/oE6/65hudJKahmZoQBzerh89aynvE3nkRj9Lo/8eOADvikoWxdnIysHKw/cw3nQp8gOTUDDlUr4bOW3ujTSLiW0OUHT/HHmSA8jn8BM0N9dPVxwzddmkC3hCnF/w397uPwOCKy9APfU3paGjZt/AOB1wIglUjg7lEbY8Z+WeRdZwqSEhOxZdtO+bbk5CRs+GMdbt8KgZaWNrx9fDBm7Jfy58n0qd/h/v3iZwg58feZYve9K2en6nz/e0stpxqlH0QKXt++VN5RqHAqebUu7yh8dP/3DRhUOlU3YFR0ZdGAUdGVVQNGRVZWDRgVWVk1YFRkZdWAUZGVRQNGRVeWDRgVVVk1YFRUZdWAUZGVRQNGRVdWDRgVWVk1YFRkZdWAUZGVVQNGRVYWDRgVXVk1YFRkZdWAUVGxAePfYQPG+/svNmD8NyfOIiIiIiIiIiIiIiIitcYGDCIiIiIiIiIiIiIiUjv/14t4ExEREREREREREZH6kWpolHcUqALgCAwiIiIiIiIiIiIiIlI7bMAgIiIiIiIiIiIiIiK1wwYMIiIiIiIiIiIiIiJSO2zAICIiIiIiIiIiIiIitcMGDCIiIiIiIiIiIiIiUjva5R0BIiIiIiIiIiIiIvpvkWqwbz2VjlcJERERERERERERERGpHTZgEBERERERERERERGR2mEDBhERERERERERERERqR02YBARERERERERERERkdphAwYREREREREREREREakd7fKOABERERERERERERH9x2holHcMqALgCAwiIiIiIiIiIiIiIlI7bMAgIiIiIiIiIiIiIiK1wwYMIiIiIiIiIiIiIiJSO2zAICIiIiIiIiIiIiIitcMGDCIiIiIiIiIiIiIiUjva5R0BIiIiIiIiIiIiIvpvkWqwbz2VjlcJERERERERERERERGpHTZgEBERERERERERERGR2mEDBhERERERERERERERqR02YBARERERERERERERkdphAwYREREREREREREREakd7fKOABERERERERERERH9t0ihUd5RoAqAIzCIiIiIiIiIiIiIiEjtsAGDiIiIiIiIiIiIiIjUDhswiIiIiIiIiIiIiIhI7bABg4iIiIiIiIiIiIiI1A4bMIiIiIiIiIiIiIiISO1ol3cEiIiIiIiIiIiIiOi/RarBvvVUOl4lRERERERERERERESkdtiAQUREREREREREREREaocNGEREREREREREREREpHbYgEFERERERERERERERGpHQyqVSss7EkRERERERERERET035F8P6i8o1DhVK3dqLyj8NFpl3cEqPwlTP2svKOgVqyW7ELWiXXlHQ21ot99HK+TIqyW7ELEsG7lHQ214rTjJCsfRVSt3QiinT+VdzTUisHQ2UgIu1Xe0VArVm7euBaWWt7RUCuN3cxwUse1vKOhNrrlhuPp8O7lHQ21UnPbCby+daG8o6FWKnm3hWjXL+UdDbVi8NksPH/yqLyjoVYca7kg+qtPyzsaasV+7Z94cS+wvKOhVqp4NsG60+UdC/UyrjPwJOJZeUdDrdRyqoFXd6+WdzTUhnndFuUdhYpJQ6O8Y0AVAKeQIiIiIiIiIiIiIiIitcMGDCIiIiIiIiIiIiIiUjtswCAiIiIiIiIiIiIiIrXDBgwiIiIiIiIiIiIiIlI7bMAgIiIiIiIiIiIiIiK1o13eESAiIiIiIiIiIiKi/xYp+9bTO+BVQkREREREREREREREaocNGEREREREREREREREpHbYgEFERERERERERERERGqHDRhERERERERERERERKR22IBBRERERERERERERERqR7u8I0BERERERERERERE/y1SDY3yjgJVAByBQUREREREREREREREaocNGEREREREREREREREpHbYgEFERERERERERERERGqHDRhERERERERERERERKR22IBBRERERERERERERERqR7u8I0BERERERERERERE/y1SDfatp9LxKiEiIiIiIiIiIiIiIrXDBgwiIiIiIiIiIiIiIlI7bMAgIiIiIiIiIiIiIiK1wwYMIiIiIiIiIiIiIiJSO2zAICIiIiIiIiIiIiIitaNd3hEgIiIiIiIiIiIiov8WKTTKOwpUAXAEBhERERERERERERERqR02YBARERERERERERERkdphAwYREREREREREREREakdNmAQEREREREREREREZHaYQMGERERERERERERERGpHe3yjgARERERERERERER/bdINdi3nkrHq4SIiIiIiIiIiIiIiNQOGzCIiIiIiIiIiIiIiEjtsAGDiIiIiIiIiIiIiIjUDhswiIiIiIiIiIiIiIhI7XARb1I5XRdPmHTuD21LW+SlpyIz4BwyL/9dYhg9Ny8YdegNHWt7SDLSkRV6A+mnDkCamw2tylVQddbKYsNm3riCNwc2qDgVqhUQHok1pwIQkfAS5iaGGNi0Hoa19oGGhobS47NzxfjjbBD+DglDSroILjZV8GXHxmjm5ggAuPEkGqPX/Vns3xvXsTG+7NS4LJKiMrxOFBl4esO87zDo2jog781rpJ47idRTh5Uea9K8PaqNnVTsuZI2LEea33kAgI61HSwGjISBex1I8/IgCgvFy72bIU5OKJN0qNr126HYsPsQnkXHwrySKXp3bo9Bn3Qp9v5526OnzzFm+nzs+30xrKtVfe/96iggIg5rLt3G0+TXMDfSx4AGrhjW2OOd8kMskeDzbaehr62NzcM6CvY9e5GKledDcDMyEVqaGqhf3RKT29eHXWWTskqKyty4dQcbd+3H86gYVK5kht5dO2JAr+4l5sm5K/7YeeAI4hITYVWtKoZ8+gk6t20lOObqtRvYceAwomPjYF6pEjq2aYEhn/aCjk7FqD5liTJxYPsa3Ay8gKwsEVxre2PwyEmwtqv+zudYvXAG9A0MMObbeYLtl878ha2//6JwfLuu/TDsi6kfHPeypG9riZa3T+Dmp1/j1ZXrJR5rM6Abas0cB8Oa9hA9j8WTJRsQu/MvwTFm9T3hvmgazOp7QvwmAzE7DuPRj2sgzc0tw1R8OIPa3qj86VB5mfPm/Emknj6i9Fjj5u1QbXQJZc7G5Uj3vwBAVuaY9x8BAzdZmZMVfg8v922CODmxTNKhStfuPMD6/cfwNCYO5mam6NuxFYZ0b/9Oz9fwZ9EYMXshDq34ETbVLAAAcUkv0XvC7GLDdGvVBHPHDVNZ/MtCQEQs1ly8JStzjA3yy5za717mbP0b+jra2Dyss2Bfx5UHkZSWqRDm4uQBqGyor7L4l4XgkBBs27ETkVFRqFSpEnp064a+fXqXmCcXL13Gnv37kZCQCMtq1TCgX190aN9OcMyVq344+OefiI6JhZGREby96mHU8M9RuXLlsk7SB9Nzr4dKPQdD29oekjevkX7lNNLOHVN6rGHjNrAY9k2x53q5fTUygy4Jtmno6cPq++VI/fsgMq9dVGXUy0zQ7XvYsOdPef21T+d2GNSz8zvWXyMxesaP2L9moUL99ELAdez+6xQiY+NhYmSIBnU9MO6zfjCvZFZWSVGpnOwM+B1biid3ziA3OxO2Tg3QsvdMmFvWfOdzRISew/FNX+PTb3bA3rmRfPu9wIM4t0/xmVuvxRC06TtXJfEvCyKRCFu3bIZ/gD+yRCJ4etbBmLFjYWdnX2K4lJQUbNq4AcHBN5GXl4cGvr4YM2YszM0tlB5/7NhRHDn8J7Zu21EWyVCZoDv38cfeI3gaLSuLP+3cBoN7dHzHsjgKo2b+jIO//QzralUE+3p+MRXJr1IUwpzavAKVTNX/fYfov65ivIH/h7Vt2xa9e/fG+PHjyzsq70THwQmVR0xB1p1rSPvnEHQdXWDSdSA0NLWQcfG40jB67t6oNHwSRMF+SP97P7QtbWHcpT80jU2Qumct8t68xsvV8xTCGTbtAP16jSG6fqmMU/Vh7kbGY/zmo+jk5YKvOzfBrWdxWHHyKsQSCUa181Ua5ocD53DlwVNM6NoM1atWxrGbDzB+81FsGtcXPjVt4W5XDTsnDFAIt+ZUAO5HJ6Kzj2tZJ+uD8DpRpOfkCuvv5iE96Cpe/bkLBi4esBgwAhpaWnh94qDC8Rl3riNm/ncK26uNmgANA0Nk3LkBANAyrwLbOUuQGx+LxLWLoaGrB/O+Q2EzbQGiZ30NaW5OmaftQ9wLf4JpvyxHu2aNMHrQp7gb9gjrdu5HniQPQ/v0KDHs08gYTP15OfLy8v7VfnV0NyYZE/ZfRCeP6vi6dT3cikrCyvMhyJNIMbKZZ6nht/rfw/24l6jvYCnYnpCageHbT6O6hRl+7d0cWbl5+P3SbYzbcx4Hx3aHvhp/sL8f/hgzflqMNs2bYNSQ/gh9EI712/cgL0+CIX0/URrmckAQflq+Bn27d0ZDn6G4GnQDv65aBx1tHbRr2RQAcOP2XcxZuBxtmjfB2GGD8DwqBht27sXrN2mYOHbEx0ziv7Zu2RxEPLqHAZ+Ph4GhEf7atxELZ4/DL2v2wcjYtMSwEokEe7esxM3AC2jetpvC/qhnj2FtWx2jvxV+EDCrpPylWV3o21mh4cnN0KlUcvoBwKp3R3jtWIpnq3cg+Z+rsPqkPby2LIIkOwfxB2QN7gY17NDo9FakXLuNkEETYezmBNcFk6BjXgn3vlYsk9SFnpMrrCbNRfr1q0g5sgv6zh4w7z8C0NJC6slDCsdn3rmB2AWTFbZXHTEBmgYGyLx7E4CszLH5frGszFm/GJq6eqjcZyispyxAzOxv1LrMCX38FJMXr0X7JvXxRf8euBP+BGv2HEGeRILPP+lUYtiI6Fh8t/h35OVJBNurVDbFpgWKDXqH/rmMc4HB6NmmqUrToGp3Y5IxYd8FdKrtiK9be+NWdCJWngvOL3PqlBp+q3+orMypLixzUjKzkJSWiUnt68PbXrjPRF9XpWlQtYdhYZg7fwFatWiOYZ99hvsPHmDz1m2Q5OVhQP9+SsNc9ffHoqXL0KtnDzSoXx8B165h6YqV0NHRQetWLQEAly5fwa+Ll6Brl84YPmwoXqW8xo6duzBt1vf4fdVK6Oqqb77oOjqj6riZyAwOQOrxvdB1codZr6GAphbSzig2imbdC0bi4hkK280/+woa+gbIuh8i2K5hYIQqX86AdhVLhTDq6t6jJ5j26wq0a9oQYwb1xt2Hj7F25wHk5eVhaJ/uJYZ9GhWDKb+sUFo/Ped3DfNWrMcnHVtj7OBP8ep1KjbuPYzx8xZhy5IfoKfG10mB0zsmI/75HTTvORV6+sa4dnoN/lwzDENnnoS+YemNMKKMFJzfr7x8TY59iMrVaqDjkIWC7YYmVZQery4WL16I8LAwjBg5CoaGhti7ZzdmzpiOtev+gImJ8g/reXl5mDd3NjIzM/H1N+ORJ87Dtm1bMPv77/Hb6jXQ1hbW3S9fvoRNGzfAwkK962n3HkVgyq+/oX1TX4wZ0At3wx7j912HkJeXh2G9u5YYNiIqFlN+XaX03nn9Jg3Jr1LwzdB+qOdWS7DP2MhQpWmg9yd9h8YpIvX9IkEVknHHT5Eb9xyp+9YDAHLC7wJaWjBq2xMZV08DYsXeiCY9P0PW3evy3vE5EQ8ATU0YNu8I6OgCuTnIjYoQhNG2dYR+vcZIO30Auc8flX3CPsDa04Fws62KXwbLep41c3NEbl4eNp+/gSEtvRU+DMa+SsXfIWGY2bsNBjSrBwBoWMset5/FYb//HfjUtIWxvh7qVrcWhLt0LwJBj6OxdFg3OFZV755avE4UmfcZguzIp0j6YxkAQBQaDGhpo3KP/kj956jCRx9J2htkp70RbDPr0AM6NvaI/XEqJPn7zHsPgSQzE3GLvoc0JxsAIH6RAKuJc6FXwxlZj+5/hNT9e1v2H4ZzjeqY8+2XAIDGPnUhFudh55/H0b9bJ+jpKb6o5eaKcejvs9i870/o6ui89351tu7KHbhZVcbPvZoDAJo52UIskWKz/z0MbuhWYkNDeOIrbPa/hyrGBgr71l+5A2M9XfwxpD0M8s9hW8kYEw9cxIP4l/BxUN+PBlv3HIRzDUfMniTrzdnIxwviPDF2HfoLfXt0UXqNbNy5D62bNsI3oz8HADT0qYe0tHRs3nNA3oBx6vwlWFa1wOxJ30BLSxO+XnWR8joVB46exDcjhyq8GKqbJ2F3cfvGVXw3dyXq1ZelycXDC1PG9sL5vw+hZ/+RxYaNev4YuzYsxbPHD6Crq6f8mGePUMPZA7VcS/+IqRY0NGA3tBfcF00H3vEdyXXBd4g/dBoPp/wKAHhx1g86lc3g+sO38gYMp6ljIE7LwM0+X0Gam4vk01eQJ8qC56o5eLJwPbKi48sqRR+kci9ZmZO8YTkAQBQaAg0tbVTu3h9vzhx7pzLHtH0P6NjYIe6nwjKncq/BkGRmIn7JbHmZk5ucCKtv56h9mbPx4Am4Otpj/jeyBsomXrUhFkuw7a/TGNClDfSVfBjMFYtx4PQlbDh4XGl5oqujgzrOwl7FD59G4lxgMMYN/AReRT6iqJt1l2/DzcocP/dqAQBoVssW4jwpNvuFYnBD95LLnIRX2OwXqrTMCU94BQBo6+oAe/PSGxPVyc7de+BUsyamTZE16Pk2qA+xOA/7DhxEr096Qk9P8Zm5bftOtGjeDF+OHQMAaFDfB2lpadi+a5e8AWPfgYNo2KABvv3ma3k4e1tbfDt5CoKu30CL5s0+Qur+HdPuA5ET/Qyvtv8GAMh6cBsaWlow7dQH6RdPKj5P0t8gJ134PDFu3RXaVrZIWvo9JG/t06/TAJX7j4KGnuJ1pM427/sLLjWqY+63XwAAGnvXhTgvDzsOn0D/bh2Lr7+eOotN+44UWz/d8ecJNPGpi2lfDJdvc7CxwtiZCxAQfAdtmijvHKcu4p7dwtN7F/HJFxtQw0M26tXGqQG2zm+Hu3570LDjuFLPceHgfGhqKX/2JMc8hKVDHVg7eqky2mXq4cMHuB4UhPnzF6CBr+z/5+npiZEjhuPkyRMYOHCQ0nBXr15BREQE1q3/Aw4OspG1NZ1q4qtxX+Lq1Sto06YtAOD169fYuXM7Tp86VWxjiDrZdOAYXGo4YN6E0QCAJt6eEOflYfuRv9G/a3voF3PvHDx9Hhv3Hy323nn0PBoA0KqhN+ysqpVdAoiozHANDFIdLW3oOrkj+16wYHPW3RvQ1DeAbg3FUQHaNtWhXcUSmf5nBNsz/f7Bi4WTgWJ66pn2Hg5xUiwyr5xSXfzLQI5YjJsRsWjrKXxB7VDXGRnZObj1NFYhTFVTI+yZOAjd6rvJt2lqakBLUxPZYuU9xbNyxVj41yW0cK+BDvWcVZsIVeN1okhbGwZudZERHCjYnHHDD5oGhtB38Sj1FFqmlWDedxjenP8b2U/D5duNGjTFmytn5B+SACD72RNEfjtMrT8kAUBObi5u3QtDy0b1BdvbNPFFpigLdx8qb5QKDLmDrQeOYOinPTFuqOJIpdL2q6sccR5uRiairauDYHt7dwdk5OTiVnRSsWFz8/Iw52gABjV0Q/UiH4ukUinOhUWhVz0neeMFANS2scDZiX3VuvEiJzcXt+89QIvGDQXbWzVtjEyRCHcfhimEiU9MQnRcvGKYZo0RG5+AmDjZB+ecnFzo6+lDS6uwqmRqYoxcsRiZoqwySI1qhd66Bj19A9TxKpxawdSsMtxq++BOcECJYTeu/AESiQRzlmyBaSVzhf1SqRTRz5/AoYaLyuNdVkzrusLz9/mI2fUXbg+fVurxBtVtYexaAwlHzwq2xx/+B0bOjjCsJftYULVDcySduiyYLirhz9PQ0NJC1Y7NVZsIVdHWhoFbHWSEFClzbvq/X5nz6VC8uXAK2U8Ln8VGDZoi7epZQZmT8/wJoiZ9rtZlTk5uLkIePEarhl6C7W0beyNTlIU7YRFKwwXcuodNf57E8F6d8c3gXqX+HalUiiVb9qGGnTUGdWtX6vHlSVbmJKCtW5Eyx6P6O5Y5fhjU0B3VLRQbKMITX8FIV6dCTFH4tpzcXNy9G4pmTYTTtLZo3hSZIhHuPXigECYhMRExsbFo1qSJMEyzZoiLi0dsbBwkEgm8vb3QpbNwpI+9vR0AIC5ePRtCAQDa2tB3rg3RHeF0fKJbgdA0MISuk1sxAQtpmpjBrMcgpF85g5znj+XbNQwMUeWLach+fB/JaxaoPOplJSc3F7fuh6FlQx/B9jZNGuQ/T4qvv245cBTD+nTHuKH9FfZLJBL41quNTzq0Fmyvbivr1BabUPw9qS4iw/ygo2uI6m6F5aOhsTlsa/ni2YPLpYYPD/kbUeEBaN5TcWSbVCrFi7hwVLV1V2mcy1pIcDD09fXh7VN4vZiZVYJnnTq4eeNG8eFCgmFnZydvvAAAB4fqsLe3F4Q7sH8fQoKDMev72WjYqJGyU6mNnNxchNwPR6uG3oLtbRrXl737hT1WGi7gVig2HzyOz3t3xdeffar0mMfPo2FooA9by4oxZTARKVLv7oNq7NWrV1iwYAGuXr0KLS0t9OvXD3fv3oVvfqt5UFAQqlatisuXL6N3796YM2cODh48iB07diAyMhKamprw8PDAzJkzUaeOrPdiWloafvrpJ5w/fx7a2tr44osvFP5uSEgIli1bhtDQUJibm6NNmzaYPHkyjI2NP2r6ldGyqAYNbR2Ik4WV7LyXsnn2tataI+fxPcE+HRtZgSsV56LSiMnQc64NaW4ORMF+SDu5D8gTK/wd/XqNoVu9Fl6t+xmQSssoNaoR8/INcvPyUL3IiAiHKpUAAM+TU9DEVTgXua62NmrnD6eXSKRISk3HjsvBiHmZihm9Wyv9O7uv3EJSajo2fKm8wFYnvE4U6VSzhoaODnIThA1auYmyPNKxtoPo/u0Sz1G5zxBIJRK8+nOnfJt2FUtoGRlD/CIJVYaNg3HjVtDQ1YPoXgiSt69FXspLladFleISk5ArFsPBxkqw3dZadn9ExcXD10tx2iT3WjVwaP1ymJoY4+8LV997v7qKeZ2O3DyJwscgh/wPQJEv36BJTRulYf+4chdiiQTjWtbDuD3nBfviXqcjPTsX1mbG+OVUEE7ff46sXDGaOtlgZueGsDQ1KpsEqUBcguwasbcVjkizy79GomPj4OtVV7AvMkZ2nxUNI7+uYuNgZ2ON3l07YtqPC7HvyHF069AWUbFxOHT8FBrX94apSfmXuaWJi36Oqpa20NTSEmyvZm2HwMunSww7duJ82DsW3zM8KSEGWaIMPHv8ANPH9UVyYiyqWtqiR78RSqebUgeiqHhccuuArNhEmLdsWOrxxm5OAICMx88F2zMjImX7XWogKyYBho52yHj8THBMzosU5Kamwdilhmoir2I6Va2KKXPiZPut3qHM6T0EUqkEKYeLlDmGxhC/TILF0C9h3KgVNPT0IAoNwYud69S6zIlNeiErb6yFvTLt8j90RMUlolFdxY9i7k6O+Gv1TzAzNsKJS4EK+4s6G3gT9588x9o5k6Clqd79yGJS0mRljnlxZU5qCWXOHVmZ08oL4/acVdgfnpACUwNdTDl0CUHP4pEnkaKFsx2mdvRFVRP1ncojIT4BuWIxbG1tBdttrGX5EBMTi/rewg9v0dGyXr+2tsK8srGRlUHRsTGwtbXBF6NHKfy9gMBrAIDq1R0U9qkL7SqW0NDRgTgpTrA9N0lWr9extEV22N0Sz2HWfQAglSL1+B7BdmlODhJ+nAhxUhy0zCvOR8e4xGRZ3aRo/dWqoJ6RgIb1lNVfa+LPdUthaojmJQAAAQAASURBVGKMk0rqp5qamhg/XLE3/pXrsim3atjbKuxTN68SI2BmYQdNTWHdpFIVB4QFK59GuEDGmxe4eGg+WveZBSNTxesh9UUUcrIzkBgViu0/d0LqixiYVbGDb4dx8GjYS5XJUKno6GhYWVlBq0h9zcbaBpcuFb/eS3RUNGxsFf/n1jY2iImJkf/epWs3jBw1Gtra2ggKuqa6iJeBgnvHwUbYeapgxERkXCIa1qutEM7dyRGHf18IMxNjnLzor/Tcj59HwdTYCLOWrcONuw8hkUjQ1KcOJo4YiCqVK6k8LUSkeupdc1ZTEokEX3zxBSIjI7Fp0yZs2bIFt2/fxvXrhT1Pbty4gSpVquDo0aMYOnQozp49ix9//BGjR4/GqVOnsG3bNmRnZ2P27MJFpiZOnIi7d+9i/fr12Lp1Ky5duoTY2MKXy7CwMIwYMQItWrTAsWPHsHTpUty/fx8jR46EVA0+0Grqy4b2SrNFgu3SbFlPVQ19xaG/msayl6DKn0+EODEGKZuXIOPicRg2bguzAWOV/h2j1t2Q8ywcOU8fqjL6ZSI9S9YD0bjIfL6G+UMfM7JKngt668Ub6PTTZuy+ehu9G9VGYxfFF5hccR72XL2FTl6u8oYRdcbrRJGmgexlXSISLmYpycoU7C+OlokZTJq3w5tzJyDJzCjcbiqbR9ZiwAhoV7ZA4tpFSN7yG/SqO8Fm5q/QKGZqGHWRniG7RgwNhNeEoYFscc+MTJFCGACoamFe4gfm0varq/T854WRrnBotKGe7Pf0bOULBt+Le4Ed1x5gfo+m0NXWUtj/KlP2nFp1IQRJaZlY2LsF5nVvgofxrzB651mIctR3IeKMTNk9UvQaMcj/Xdk1klFwXRkWva6EYXzqemJQ755Yt203ug8Zha+mzUElM1PMmVwx1qQSZabDwFCx8UnfwBAiUYaSEIVKarwAgKj8HvfJiXEYNPJbTJq9HDVquWPjqvm4dOavfx3nspSbkoqs2HdfRFrbTPaMEL9JF2wXp8nyTtvUGDpmJkqPKThO21Q9nzOa+deFVKHMkV37mgYlT9WiaWIG42ZtFcscE1mZY95vOLQrWyBp3WK8KChzpqt3mZOef98bGQgXj5aXNyLl5U0180owM373Rt5dx8+irqsT6tdW/9FLBWWKkd6/KHMC72N+z2ZKyxxANgIjOS0T7tYW+G1gO0zu6IvgyASM2vGPmpc5suvd0FBYLysoTzIzFRclz8jIVBqmoJxSFgaQjbrYuHkLnGrWRMMGDT4s4mVIU7+gDlu0Xi/7XVm9XhDe2BSGjVoj7fIphWcS8sQKDSMVQXr+/9SouPprMc+TqhaV37t+GpOQhN937IdzDQc08albeoByliNKg66+Yhp19Y2Qk1Vy3eT8/jmwdvSGu28vpfuTY2XvfKmvYtDikxnoOXY9qtl74szu6QgNOPDBcS8rGZkZCs8HQPaMKO75AACZ7xjO3t5e7ac9LVBQFhf77ldcWWxRGWal3DuPn0cj+dVruNasjqUzx2PC5/1x68EjfDVvCURZ2SWGJSL1UDGeZGrm+vXruHv3Lk6dOoWaNWXz2q5cuRJt27YVHDdhwgT5PIPJycn4+eef0bNnTwCAra0t+vbtix9//BEA8PTpU/j5+WHbtm1okF9JXbZsGdq0aSM/3+bNm9GsWTN8+aVsLnhHR0csW7YM7du3x/Xr19GovIcEapTSHqaskSV//sqsezeR/vd+AEBOxENAQxMmXQcg/cxh5L1IkB+uU90ZOnY1kLJtucqiXZYkkpIbljRKWayopUdNeDna4NazOPxxNghZuWL5WhoFzt59jBdpmRjepn4xZ1EzvE4U/Zs8eYtJ607Q0NTE6zNHhafNr6zmvXmNhN8KR6LkJsbBbt5yGDdtg7RLJffELk+lNcxqaP63FvuSlJIfmkqeJ9niPMw9FoAhjdxRx1b5Aobi/EVnzY30sbxfa/l57CubYNi20zh57xn6+qjnxzapRFLifk0l95ZE+m5hlq/bjL/PX8Sw/r3hU9cTCUnJ2LbvEKbO/xUrFsyGvpJ5zsuLRCKBtEi6SrpelOXL+3Ct7Y1Js5fBvU4D6OV/nKrj0wRvUlNweM8faNXhk1LLN3WnUUrveKlEApR6TPl3LlGqlP9Nac9e01YdoaGpidSzx4Q73ipzElf/UljmJMXDds4yGDdpjbTL//z7eJeh0v5XpV0P7+JueATCn0Vj8ZQvP/hcH8O/LnOO+mFIIw/UsS2+x/zc7k2gpakJTxtZueTjYAmnqpUwYtspHL8bgf4NSp92qDyUVq9XlifvWua8LSo6GrPmzIWWlhZmz5oBTXUerVNa3Eq5joyatYeGpibSL55UYaTKV2nPE2XXyb8RGROHSQuWQktTEz9N+UbtrhOpkrpJSeVLSfWGB9ePIPZpMIbNOFHsMbZOvug5Zj3snRtBR0/2Yd/RvQVEaa8QeOo3eDbpV+51E1l9TZgHJV0vJcW3pOeRZgV9R/o35c67mvHF59DS0oRHLdnoWC93F9Swt8GXcxbh1OUA9OnUppQzEFF5YwPGv/DgwQOYmZnJGy8AoEqVKqhRo3CqAAsLC8EiSb6+voiIiMDvv/+Op0+fIjIyEuHh4ZDkf3x59EjWm7FgOqmCc9rb2wv+bmRkJLyLDE0GgIiIiHJvwJDm9xYvushawe8FvckFYfJ73Wc/vCXYnh1+ByZdB0DHtrrgw7R+3YaQZKYj++Edlca9rBgbyD5wZWQLR1oU/G5ioLgI1ducrWUvdvWd7CCWSLDun2sY36UprCsXDuc/e/cxnKws4GpTMYZW8zpRJMnvDa1ZpJeafGRGZsk9kox9myHz3i35IqqF55X1Usm8c1PwApkdEY68jHToVa+JtA+OfdkxKujRWGS9gcz83jnGSnod/T8rGMmVWaR3akZ+L1hjfcVF636/dBsSqRRjm9eBWP6xX3YtiCUSaGlowFBPVhVo5mQreDGoa1cVxno6CE9IUXVSVMbISHYNZBbpkVVwjRgZKfb8NH6HMMkvX+H4mfP4rG8vjBpSuE6Ku3MtfD5+Cv4+dxF9ugkbk8vT0f2b8Ne+TYJtvk3b4s1rxSl7sjIzYGD4YSMDTCuZw8u3hcL2eg2a4f6d60h9/RKVKitvMKsoxKmyp6O2ibB3fcGoCnFqunzkRdFjCo4rOIe6keT3zNTQFz5D37XMMWqgvMyR5o/gyLwbrFjmZKZDr7qT2pY5xvLyRtgLMyO//DEuMjLj37gQdAumRoZopmTqQ3VknD/SotgyR09JmXMxRFbmtKhbWObkXwoFZY6Ghgbq2SkuoOptXw3Gejp4lKj+ZY6oSPkhHw1opPgsMMof8VQ0TEEP6YJzFrhzNxQ//vwLDAz0sejXn2FjLZzuUN0UjB7W1BfeI4UjM4rvQQ4Aht5NkPXwjmDh7orOKL9+mplVdvXXkHsPMWvJGhjq62H1/OlquSjxtX9+R9DpNYJtzl6dkJn2QuHYnKwM6OkrXxMn7XUCLh3+Ga16zYCBsTkkeWJ5BxapRAKJJA+amlowNLFATU/Fj9COtVsh6lEAMtNeKJ166mPau2c39uzZLdjWrHlzvH6t+NzLFGXCSMkzpYCRkaHCcwWQPVsMlYzArQiMi3n3y5DfOyWP6CpJHVcnhW313JxhbGiAx5ExSkLQxyRFxWx0o4+LDRj/gpaWlrzhoTj6RSpxx48fx4wZM9CjRw/4+Phg4MCBePTokXwERkHretHzvj3cTyKRoEePHvIRGG8zN1dcZPNjE79MgjQvD1oWwjkLtavIfs9LVBwCLM7/6KyhVeQlSFOW7rcXxQQAPXcvZN0LBiTKF7NWN/YWZtDS1ED0i9eC7VH5v9eopvh/i3v1BtceR6Gbjxv03lpQ1z3/ZS/5TYa8ASM3Lw8B4ZEY0UZ9h5YXxetEkTgpHtK8POhYCl9SdSxl8yXnxEUXG1arsgX0HGvh9R/LFPblJsVDKpFAQ0fxI4OGlhakxSx+ri5srapBS1MTsQnCaV9i8n+vbqd87u3/V/aVTaCloYGoFOEnwKhXst9rWJgphDn7MBLxqRlosnifwr4Gv+zG/B5N0cHdARqQPU+KypNIoaejfAoQdWBjZSm7RuKF10hsvOyZUd1OcW5g+/x5yGPjE+FSs7DjQcxbYRKTX0AqlcLTXTjyxNHBDmYmJngWpV4vOq079oZXA+GC0cFBlxF6KwgSiUTQKzMxIQY29o4f9PfC799CcmIsmrftLtiek5MNTU0tGBsrXosVTfoj2boWhk7V8eZ24VSERk6yNZnSwyKQl5EJUUwCDJ2KrGVV1Rw6psZIL2bh5/ImTi6mzKkmuzdy44u/vrUqycqc1A2KIxxLLHM0tSDJUd8yx9ayKrQ0NRGdKFwENyYhGQDgaPvhH5H9QkLR0rcetIuZVknd2JubysqcV0XLHNmH5hpKpi2VlzmL9ijsa/DzTszv2QxtXR1wPiwSnjZVUKta4RpxEqkU4jwJKht+eGNRWbGxtoampqbCotpxcbLfHd7qeFbALr8ciouLRy2nwg9oBed4u7PaxUuXsXTFStjb2eGn+T+gShULladB1cTJCZDm5UG7qvAe0a4qW/9BnFDC88TMHLoONfFye/G96isiWyvZ8yQmvmj9VfZ8qW73Yc+Ts1ev4ac1G1HdxhrLZk9GVYvKpQcqB3Wa9kfN2q0F2yJCzyHyoZ+srHirbvI6ORKVrRQ/MANAVHgAckRpOLv3e5zd+71g3+G1w2FibotR8y4gNuImUl9Gw6Nhb8Ex4txsaGhqQd+w/Osmnbt0RcOGwk6ngYEBCAkOUaivxcfFC54PRdna2eFphGI9Iz4uHi6u6jlyujS2lrJ3v5iEomWx7HfHf3nvpGdk4mJQCDxq1YCTQ+G7gUQiQa44D5VMlTeeEZF6Ua9xhhWEm5sb0tLSEPFWgZGSkoLIyMhiw2zYsAF9+/bFwoULMWTIEPj6+soXdZNKpXB3ly0MGBISIg/z5s0bREVFyX93dnbGkydPUL16dfmPWCzGr7/+ivgiFelyIc5FzrMw6NcRfkzXq+MLiSgDOdGKBWzu0zBIsrOg791EsF2/tg+keWLkRD6Wb9MwMIJ2VWvkPn9UNvEvA3o62vCpaYvzoU8Ew0XP3X0ME31deDpYKYSJT3mD+QfO4ULoE8H2wPAo6GhpwfGtBcGfxL9EVo4Y3o4V6EMurxMF0txcZIXfg1GDpoLtRg2aIS8jHdlPi0+LvpMrACDr8QPF82ZnFZ73rcZQA4960NQ3QFb4fRWloGzo6eqinocrLl+7Kbh/LgXehLGhITyca5YQ+v+PnrYWfByq4UJYlCA/zodFwVhPB55Kpoj6bUAb7B7ZVfDjbmUOdytz7B7ZFa2c7WCoqwMfB0ucD4tCjriwESPoWTxEuWL42Ktfr74Cerq6qFvbHVeuXRfkyeXAIBgbGcLdRXEtBztrK1hbVsNlf+FChlcCgmBnI9tnZ20FLU1N3H0QJjgmKiYOqWlpsLEUNsCWt8oWVVHD2UPw4+ndCFmiDITeKkznm9QUhN+/BU+vDxux+TA0GBtX/YiE2MJ6j0QiwY2AC6jlVgfaSj5gVzSZEVHIfBoN6z6dBNutendE+qNnEEXK1ih7cc4f1bq2huZba9NY9ekEiViMFxfVc7FMeZlTv2iZ0xR5mSWXOXpOso8ixZY5j+7DqH4TQZmj755f5jxS3zJHT1cHXu61cOn6bcGz5GLQLRgbGqB2LccPOn9qegaiE5JQz0X5Bzp1pKetBZ/qloplzsOSypx22D2qm+BHXuaM6oZWznbQ1dbCwlNB2OwfKgh7KTwaWeI8+Doq1o3Vha6uLup4esI/IECQJ37+ATAyMoKri7NCGFsbG1hZWuKqv3BhWT//APk+ALh+4yYWL1sOD3c3LFuyqEI0XgAAxLnIfvIABkXKFQPvxpBkZiDn+eNiAgK6Nf7H3n1HR1H9fRx/p/eQhJKEJLTQe++9Se8dREBAFEHQH4piQ0QFVKSoKEWadEE6FnqX3ntLDx1Cetnnj00CyyaAGsjy+Hmdwzlkdu7k3snsnTvzvcV4vuIvnM50n+dRevt17wHT9uue/bg6O/2r9uuuA0cYM/lHyhQrzPdjR1ls8ALANYc33vnKmPzLV6w2CfHRXD59f5HymHs3Cb2wn/zFamV4nEKlG9D9rWUm/xp2GQ1Awy6jaTvgewCCz+3h959HcuvqpfS0hpQUzh/+jbwFK2Bj++iZD56FnDlzUqRoUZN/FStWIjY2hoMHDqTvd+fObY4fP0aFiplPEV2xYiWCg4MJCrrfFgsKukJwcBAVKzwnU0s/xHgvLsrWvQdNvzt7Dxq/O4ULPiJ15uzs7Phq5gLmrlhnsn37/iPEJyRQqVSxf5VvEXk2NALjH6hWrRrlypXj7bff5oMPPsDR0ZEJEyYQGxuLlZVVhnM7+vr6cvDgQU6cOIGbmxubNm1i/vz5ACQkJJAvXz6aNWvGJ598gr29Pbly5eLrr78m4YHeav369aNnz56MHj2aXr16cffuXUaPHk1cXBwFChR4VsV/pOg/V+I5cCQevYYQs28r9gWK4lKvJffWL4bEBKwcnLD1zmvshR8dhSEhnnu//4J7656kxEYTf2w/dgWK4FK/FTE7fsMQfb/Xl62vsQdC0tXQzH69RRrQuBqv/PALI+auo13Vkhy+HM6cLQd4o0VtnOztuBcXz8XIm/jnzIGXqzMVCvpRvUg+vlixhXvxCQTk9GDbyYss3nmEV1+ojvsDPdPOhRuH4BbyeU4eclLpOjF3a+UifN8Zi/fr7xK17XccipTAo0UHbi6ZjSEhHitHJ+z98pF4Ndxk2g57//ykJCSQdDUiw+PeWDoHv3e/wPet0dxZvxwbd0+8uvYh7vxpog/ufVbF+8de6tyWYR+P44Mvp9KyUV2Onz7HwpXrGNSrC44ODkTHxHIpOBQ/nzx45nB//AGfcwNql+GVn/9kxPJttCtXmCMh15iz+wRDG1bEyc6We/EJXLx2B39PN7xcHCmSx/zB1jn1RWupvPfrjaENK9B/3u+8vmgTvauX5EZ0HJM2HaSMXy7qFfV/ZuX7J3p3ac+bH47lo/Hf0KJxfU6cPsuiFWsY2Lt76jUSw+XgUPx8vPFIvUZe6tqBLyZPw33aTGpVrcSOvfvZvHMPH/1vKAAeOdzp1KY5i1YYe4VWLleWyGvXmL3oF3zy5KJV04aZ5sdSFC9VkeKlK/HD1x/S5aXXcXXLwa+LpuPs4kbD5h3T9wsNukhSUiL5Cz35w1uDZu3ZtOEXJn76Fh16vIKDoyMb1/9C6JULvPfZD0+jOE+drZsLriULE3MhiITrxqkczo39lnIzvyDx5m0iV2/Cu00j8nZpwcEew9LTXfhyBnm7tqTKmhlc+uYnXIoWoNiYNwmesYS4YAvoXJKJW6sX4zviU/IMHknUtj9wLFKCHM07cHPpnMfccwqQkphA0rWM7zk3l84h78jP8X1zNLfXL8cmhwdenfsQd+E0MYcs+57Tr31zXh87mfe+mUHr+jU4evYi89f8weDu7XB0sOdeTCyXQsPx986N59/srXkhyNgmKfgve14/awNql+WV+b8z4pettCtfmCPB15iz+zhDG1XK+J7jncE9xyHtnnM/4NG3Vhm+33qYnC5O1C7sx7mrt/hh2xHqFw2gakHLPkc9unVh5KgPGPv5OF5o2piTp06zbPly+vV5CUdHR6JjYggKCsLX1xePHMYe3z27d+Orbybh7uZG9WrV2L13L9u27+Ddd94GjM+CEydPwdnJiW5du5h0YAPjtMK5c1nutHx31y8j99CPyNn/LaJ3bcK+UDHcGrflzsr5GBITsHJ0ws7Hn6TrkSZTRdnlzYchMYHk65GPOPrzqU+n1rwxegIffPUtLRvW5diZcyxYuZ5Xe3W+334NCcXP+8nbr/EJCXzx/U84OznSu2NrLoWYPuvkyelFnpzZPyvDo/gXroJ/4apsmDeCOm1G4OjswZ4NU3BwcqNs7e7p+92IOE9yUgJ5/Evi5OKJk4tp3ZIQb5yazDNPQXLlNbZfytTsxtGdi1g1fRDVm7+Bnb0TR3cs4Eb4WToNNZ22yZKULlOGMmXLMmHCOPr1exk3d3cW/DwfFxdXWrRomb5fUNAVEhMTCQw0ds6pW7cuSxYv4sMPPqBP374AzP7pJwoUKECdunWzpSxZoU/Hlgwd8zWjvp5G64a1OXrmAj+v+o3XenZ44LsTlvrdebJ7sYO9HS+2a86MJSvxyuFOjYpluBAUwswlq6lbpTyVy5R4yqUSkaygAMY/NGXKFD755BP69OmDg4MDPXr04OLFi9jZ2ZkEHdJ88MEHfPjhh/Tq1Qt7e3uKFy/O+PHjGT58OMeOHaNy5cqMGzeOcePGMXz4cFJSUujatSs3b95MP0b58uWZMWMGkyZNon379jg7O1OjRg3eeecd7O2zv0cBQMKFk9yeNxnXph3w7DOc5Du3iFq7kJht6wGw8yuA16ujuLP4B2L3G3texGxbjyEmGud6zXGuWp/ku7e49/svRG8xHU5skzolxePmZrY01YoE8NVLrfj+tz0M+2kNeXK4MLxVHV6qb+wZcSrkKv2//4VPujahbdVSWFtb8XWfVkz7fQ+zNu3n2p1o8uX24IPOjehQzXTe5BtRxsabu5PlLCb7JHSdmIs9dZTIKZ/h2b4nPm98QNKtG9xYNIs7G1YA4FCgMH7vfcHVHycStePP9HQ2OTwfWdb486cJ/fxdcnbqjfeQ9zAkxBN9YA83Fs2ExywsaQkqlSnJpyOGMGvxCt77YhK5cnryWu9udG/bHIAzFy8z9MPPee/1AbRoaD4n//83VQv68lWneny/7QjDl24hj5szwxtXonf1kgCcCr/JgPl/MLp1TdqWe/KevuX8czO9VxOmbjnM/5ZtxdHOlgbFAhjeuBI2FrYo5MMqli3NJ+8M56eFy3j/s6/IldOLV/v0pGs74/RGZy9cYtj7Yxg5dBDNG9UHoHmj+iQmJrHo1zWs/3MLvt55eG/YazSsc79H+qt9epE7Z05WbfiTJb+uJaeXB5XLl2VAr264uT4fcwsPfXccC2Z+w+LZUzAYUihSohyDR3yOi+v9lyVzfxjP9avhfDV95RMfN4dHTkZ9/iNL537L/OlfERcbTcEiJXlnzLcEFns+5vd/mHuFUtTYOI8jL48kZK6x3g2ZuwJrB3sKDe+Hf5+OxFwM5nCftwlfuj49XfSZi+xt3o8S496m4uLJJFy/xaVJszn78eTsKsoTiTt1lMipn+PZvgc+Q98n6dYNbi75yeSek3fk51ydMZF7Ozamp7Nx93j0PefCacLGvYtXx954v/6u8Z5zcA83F8+y+HtO5dLF+WL4QKYvW8PbX/1Abq8cDOnZgZ6tGgNw5lIwr42ZyAeDetOqfo3HHM3UzdT1UNxc/v3c989S1YK+fNW5Pt9vPcLwJZtT7zmV6V2jFJB6z5n3G6Pb1KJtOfMRb5kZUKcsns4OLN5/hqUHzpDDyYFOFYsxqF65p1WULFO+XDk+eO9d5v28gNFjxpIzZ0769+tLpw7GaWvOn7/A2+++x1vD3qBpE+O107RJYxKTElm2fAW//fEnvj4+jHhrOPXrGtstJ0+dSn/me+/9D81+Z68e3XmxZ49nVMK/L/7scW5Mn4B7q27keuUdku/c5M6KuURtXA2AfUAh8gz/hBtzpxKzZ3N6usfVJ8+zSmVKMnbE68xctIJ3x00mt5cng3t3oXub++3XIR+N473BL9PyCduvx8+c58at2wAM/+RLs8/7dWnLy13bm223NK1ensq2FV+wfeV4DIYU8hasSIs+35hM8bRp6Wju3gzl5Y82PfFxXdxz0WXoz+xc8xVbf/mUhPhovPOVocPg2fgWsOy6ZdSoD5gx/UdmzpqJISWFkiVLMfLd90zWVP3u26lERkby0+y5ANjZ2fPp2M/54YfvmTplMjY2NlSsWIkBAwdiY/N8TFWYkcplSvDZW68yY8lK3hn/Lbm9PHj9xU70aG0cEXvm0hUGf/wl77/Wl5YNMh61k5G+HVvi6e7KL79tZvnvW8jh5kr7pvV4uXObp1UUEcliVoaMhgvII928eZMjR45Qu3Zt7FKnSUhISKBatWp89NFHtGvXLnsz+DdFjOiV3VmwKD4T5hO35vvszoZFcWz1qq6Th/hMmM+F3i0fv+N/SODctVw7Ydk9bJ+13KWqETvv0+zOhkVxevF9Ik4fyu5sWBSf4hXYc/pOdmfDolQvnoO1dhrSn6Zl4hku9mn1+B3/QwrNXsPtQ0/+cuu/wKNCQ2Lnf5bd2bAoTr3e4/L552da0WehQOGiBL/W8fE7/ocEfPcL14/vzu5sWJRcpWvw/YbszoVlebUZnL9w6fE7/ocUDizIzaPbH7/jf4RX2f//HeqehpCzx7M7C88d/6LPZ6exf0MjMP4BW1tbhg8fTrdu3ejevTuJiYnMnDkTe3t76j7Hw/VEREREREREREREngWDlWWP+BfLoKvkH3B3d2fatGkcPnyYdu3a0bVrV65fv87cuXPx8rLseSdFRERERERERERERJ4HGoHxD1WvXp1FixZldzZERERERERERERERP5f0ggMERERERERERERERGxOApgiIiIiIiIiIiIiIiIxVEAQ0RERERERERERERELI7WwBARERERERERERGRZ8qAVXZnQZ4DGoEhIiIiIiIiIiIiIiIWRwEMERERERERERERERGxOApgiIiIiIiIiIiIiIiIxVEAQ0RERERERERERERELI4CGCIiIiIiIiIiIiIiYnFsszsDIiIiIiIiIiIiIvLfYrBS33p5PF0lIiIiIiIiIiIiIiJicRTAEBERERERERERERERi6MAhoiIiIiIiIiIiIiIWBwFMERERERERERERERExOIogCEiIiIiIiIiIiIiIhZHAQwREREREREREREREbE4ttmdARERERERERERERH5bzFgld1ZkOeARmCIiIiIiIiIiIiIiIjFUQBDREREREREREREREQsjgIYIiIiIiIiIiIiIiJicRTAEBERERERERERERERi6MAhoiIiIiIiIiIiIiIWBzb7M6AiIiIiIiIiIiIiPy3GKzUt14eT1eJiIiIiIiIiIiIiIhYHAUwRERERERERERERETE4iiAISIiIiIiIiIiIiIiFkcBDBERERERERERERERsTgKYIiIiIiIiIiIiIiIiMWxze4MiIiIiIiIiIiIiMh/iwGr7M6CPAc0AkNERERERERERERE5P+xlJQUJk+eTJ06dShfvjwDBgwgODg40/1v3brFW2+9RZUqVahatSqjR48mNjbWZJ/169fTokULypYtS7t27di9e3eW51sBDBERERERERERERGR/8e+++47FixYwJgxY1i0aBEpKSn079+fhISEDPcfOnQoV65cYfbs2UyaNImtW7fy8ccfp3++Z88eRowYQbdu3VixYgU1atRg4MCBXLhwIUvzrQCGiIiIiIiIiIiIiMj/UwkJCcyaNYuhQ4dSv359ihcvzsSJE4mIiOD333832//QoUP89ddfjBs3jlKlSlGjRg0++eQTVq5cSWRkJADTp0+ncePG9O7dm8DAQN555x1KlSrFnDlzsjTvCmCIiIiIiIiIiIiIiPw/dfr0aaKjo6lRo0b6Nnd3d0qWLMm+ffvM9t+/fz+5c+cmMDAwfVvVqlWxsrLiwIEDpKSkcPDgQZPjAVSrVi3D4/0bWsRbRERERERERERERMTCNWrU6JGfb9y4McPtERERAPj6+ppsz5MnT/pnD4qMjDTb197eHg8PD8LDw7l79y4xMTH4+Pg80fH+DQUwBJ8J87M7CxbHsdWr2Z0Fi6PrxFzg3LXZnQWLk7tUtezOgsVxevH97M6CxfEpXiG7s2BxqhfPkd1ZsDgtE89kdxYsSqHZa7I7CxbHo0LD7M6CxXHq9V52Z8HiFChcNLuzYHECvvslu7NgcXKVrvH4nf5jXm2W3TmwPIUDC2Z3FiyOV9k62Z0Fec4ZrKyyOwv/GWmLb9vb25tsd3Bw4M6dOxnu//C+afvHx8cTFxeX6fHi4+OzKtuAAhgC3Pz0lezOgkXxev8HoqfrheODXAZ8Stjw7tmdDYuSd+JC9tWunt3ZsChVduzh7sE/sjsbFsW9YhPufft2dmfDorgOHk/46cPZnQ2L4lu8PLtP3c3ubFiUGiXcudinVXZnw2IUmr2GtXbFsjsbFqVl4hlOXQjN7mxYlBKBfsQtHp/d2bAojl3f5vL5s9mdDYtSoHBRrgxsl93ZsCj5f/yVqP0bsjsbFsWtcjOm/5ndubAsAxrDpQvnszsbFqVgYGHu7V2d3dmwGK7VWmd3FuQ/IrMRFo/j6OgIGNfCSPs/QHx8PE5OThnun9Hi3vHx8Tg7O+Pg4JB+vIc/z+h4/4bWwBARERERERERERER+X8qbTqoq1evmmy/evUq3t7eZvv7+PiY7ZuQkMDt27fJkycPHh4eODs7P/Hx/g0FMERERERERERERERE/p8qXrw4rq6u7N27N33b3bt3OXnyJFWqVDHbv0qVKkRERHDlypX0bX/99RcAlSpVwsrKiooVK6ZvS7N3714qV66cpXnXFFIiIiIiIiIiIiIiIv9P2dvb06tXL7788ku8vLzw8/NjwoQJ+Pj40LRpU5KTk7l58yZubm44OjpSrlw5KlasyPDhw/n444+JiYnhww8/pF27dukjLPr27cvAgQMpWbIkdevW5ZdffuHUqVOMHTs2S/OuERgiIiIiIiIiIiIiIv+PDR06lE6dOvH+++/TvXt3bGxsmDlzJnZ2doSHh1O7dm3WrVsHgJWVFVOnTsXf35+XXnqJYcOGUbduXT7++OP049WuXZvPPvuMhQsX0r59e/bs2cO0adMIDAzM0nxrBIaIiIiIiIiIiIiIPFMGg1V2Z+E/xcbGhhEjRjBixAizz/z9/Tlz5ozJtpw5czJ58uRHHrNdu3a0a9cuK7NpRiMwRERERERERERERETE4iiAISIiIiIiIiIiIiIiFkcBDBERERERERERERERsTgKYIiIiIiIiIiIiIiIiMVRAENERERERERERERERCyObXZnQERERERERERERET+WwzqWy9PQFeJiIiIiIiIiIiIiIhYHAUwRERERERERERERETE4iiAISIiIiIiIiIiIiIiFkcBDBERERERERERERERsTgKYIiIiIiIiIiIiIiIiMWxze4MiIiIiIiIiIiIiMh/iwGr7M6CPAc0AkNERERERERERERERCyOAhgiIiIiIiIiIiIiImJxFMAQERERERERERERERGLowCGiIiIiIiIiIiIiIhYHAUwRERERERERERERETE4thmdwZERERERERERERE5L/FgFV2Z0GeAxqBISIiIiIiIiIiIiIiFkcBDBERERERERERERERsTgKYIiIiIiIiIiIiIiIiMVRAENERERERERERERERCyOAhgiIiIiIiIiIiIiImJxbLM7AyIiIiIiIiIiIiLy32LAKruzIM8BjcAQERERERERERERERGLowCGiIiIiIiIiIiIiIhYHAUwRERERERERERERETE4iiAISIiIiIiIiIiIiIiFkcBDBERERERERERERERsTi22Z2BZ+H27dsMGzaMAwcOUKxYMZYuXcqvv/5K3bp1yZkzZ5b8juXLl/Puu+9y5syZLDne88y2UAmc67fDJndeUqLvEr9/C3F7/nhkGrvCpXGq0wqbPH4YYqNJOH2QmM2/QmKC+c72DuQY+CGx29aQcHT30ylEFtt9OYJvtx/n4o27eDk70KVCYV6sXBQrK6vHpk1KSaHvgk042toyvVt9k89WHb/MvH1nCL59j9yuTrQuVYB+1Ytja235sUmHYmVwa9EVWx9/UqLuEL3jd6K3rH10mpIVcGvaATvffKTERBF79C+i1i7GkBCfvo9Tlbq4NmiFbS5vku/eIuavbdz781dISXnKJfr33KtUxX/gIBwLFiLp5k2urlhGxMIFmSewscGnew9yt2yDXa5cxIcEEz5vLjc3/Wmym0eduuTt0w/HgHwk3rzBjd82ED5vDoakpKdcon9vz9FTfLd4NRdDwsmZw51OTevQq2WjJ/runLkUzEsfTGD5xI/Im9u0rt+y7wgzV2zgSlgkOT3caVG7Kn3aNcXO1vJvi7uvXOW73ae4cDOKnM4OdC5bkBcrBGZ6ToJv36Pd3I1m2wO93FjSqyEAKQYDy49fZunRy4TejcbLyYF6hXx4pVpxXB3snmp5ssK+Q0eYMX8Rl4NC8PTIQbsWL9C1XatHXicbt+1k3pLlhEVG4pMnNz06tqNZw3oAhEdepfvAIZmmbdawHiPfeC3Ly5HV4mJjWDJ3Cvt3byI+LpZiJSvQ/eXh+PoVeOJjTB33Dg6OTgx442OT7QaDgQ0r57PltxXcuB5Jrtw+NG7VlcYtumRtIbKQU6kKeHZ8EXu/fCTfvc3djWu5s2FFhvu61m5Env7DMz3W1elfc2/nJgDsfP3x6tIXp+JlMCQnE3fmODcWzSDpWuRTKcfT4OjnTd3Da9jfcTA3t/31yH3zdm1J4XdfxblQALGXQzk/4UdC5/1qsk+OSqUpMe5tclQqTdLdaELmLufsJ1MxJCY+xVJkjdjYWObO+pHdu7YRFxtLydJleXnga/j553tkutu3bjJr+vccOrCP5ORkKlWpSt8Br+Hldf/+88eGtXw7+SuztC1atWXga29keVmywq7zIUz98wAXrt3Cy8WJblVL0rtW6Sdrwyan0HvGapzsbJnZr6XJZysPnWXOzmOE3IzCJ4crXauVoEe1kk903Ox24OBBZs+dx5WgIDw8PGjdsiWdOrR/ZN43b9nKgsWLiYiIxDtPHrp27kSTxo1M9tm2fQdLf/mF4JBQXFxcqFC+HC/3eQlPT8+nXaR/zbFkeTza9cQubz5S7t4mavM67v6xMsN9XWo0JFffoZke6/pPk4jevTl9X/embbHN7UPyzetEbVlH1KZHPy9Yij1HT/Pd0jVcCIkgZw43OjepQ68WDTK9ThISk5i/bhNrt+8j8uZt8nh50LxmJfq0aWzSPj15MYhvFqzk1MUgXJwcaV23KgM7Nn8u2rAACXHRbFv5JWcP/U5ifAz+hSvToNO7eHkXeuJjnD/yJ7/+OJgub8wlX9Fq6dujbkWwdcV4rpzZRXJSAvmK1aBeuxF45inwFEqSNQ4cPMjsOXMJSqtPWrWkY4cOj6lPtrBw0WIiIiLw9s5Dl86dadK4cYb7xsTE8Org1+nZoztNmzR5WsXIUruPneG7Zeu5EBpJTndXOjeuxYvN6z36u7N+K2t27ifyxm28vTxoVrMCfVs1NPle/PHXEeau3czl8Gu4OTtStVQRhnRpSc4cbs+qaJIJA5Z/75fs93zc5f6lVatWsX//fhYsWIC3tzf79u1j5MiRbNxo/kJH/h0bv4K4dX2dhJP7id2yCtt8hXFq1AGsrYnb9VuGaeyKlMW186skHNtDzOYV2OTyxblBO6yc3Yj+dabJvlaOzrh2eQ0bj1zPojhZ4mjYDd5YvoOmxQN4tXZpDodeZ9LWoySnGOhbrfhj08/ee5oTEbeo5J/bZPuCA+f4cvNhGhf1Z1i9styKjef7nSc4e+02X7at+bSKkyXs8hfGq//bxB7eTdT6pdgXLIZ76x5Y2dhwb+OqDNM4lKqIV7+3iN23jbtrFmHr44d7y65Yu7hze/5UAFzqNiNH+5eIPbyHu6t+xtrVHbfmnbHLm49bs795hiX8+1xKlaLI+K+4ufFPQmb8iFvZcvi/+jrY2BAxf16Gafz69ce3V2/CZs8i6ugRPOvWI/CTTzEkJ3Nrq/HBz71yVQqP/YKbm/4k5PvvcCpYEP9Br2Kbw4Ogb8xfoliSY+cuMXz8NJrUqMigzq04cuYCUxasJDk5hT5tmz4y7fngMIaN/57kZPPA1d6jp3h74gyaVK/I693acCEkgu8WreJ21D1G9LXcl68Ax8JvMmz1HpoW8ePV6sU5HH6TyTtOkJySQt/KRTNMc+baXQC+b18TJ1ub9O2Odvf/P+fAOb7ffZoXKxamakAurtyOZtqeU1y4EcW37WpY9AulE2fO8u6n42hQuyb9enbl2MnT/DDnZ5KTk+nZqV2Gabbu2sunX0+hY6vmVK1Yjh179/PFpO+ws7WlUd1a5PTy5NvxY8zS/brudzbv2EWLJg2fcqmyxrSv3+fC2eN06T0EJ2cXVi6ewbj3X2XslMW4uLo/Mm1KSgoLZ01k/+5N1GrQ0uzzxXMm88eaRbTv/gqFipTi6IGdzP9xArY2ttR/ocPTKtI/5hBYDJ/hH3Lvr+3cWjEfxyIl8erSF2xsuLN2mdn+MUf2ETrmLbPtufsOxdrJiZij+wGw8cpF3lHjSQwPJXLaeKztHfDs8CK+/xtDyPuvY8ioI4aFcfT3oeramdh5PPqaAPBp35Tyc7/k0pS5XPttOz5tG1N+1jhS4hMIX7IOAKeC/lTb8BO39hzmYPdhuBYPpNiY4dh5eXB88EdPuzj/2tfjP+Xs6VP07jcQZ2dnFi+Yy/sj32LK97Nwdcv4JUdycjKffDiSmJgYBr0+jKSkZObNns7Ho97m6yk/YJv6AuXSxfP4+Qcw9M13TNJ7eHo99XL9E0eDrzLk5z94oXRBBjeqxKErEUz84y+SUlJ4uW65x6aftf0IJ0KvU7mAj8n25QfOMHrlDvrULkPNQH+OhVzlqw17iY1PpH+98k+pNFnj1OnTfDh6DPXq1KZ3r16cOHmSmT/NJiU5ma5dOmeYZvvOnYz78ivatWlN5UqV2LVnD19O/AY7Ozvq16sLwJat2/h8/ARaNG9Gn94vcvPWbebOm8/b743i20nfYG9v/yyL+bfYFyxKntdHEb1/J7dXLsCxcAk8Or4ENjbc3bDcbP/YY/sJ//xts+05ew/G2smZ2GMHAHCt3ZicvV/nzoblxJ08jH3Bonh27oeVgxN315vX25bk2LnLDPvyR5pUr8CgTi05fOYikxeuIjk5mT5tMn6J/OXcX1i3cz/92zWlZKF8nLwUzPTlGwi/fpMPB/YAIOTqdV77/DvKFi7A50P7cDk0ku+WruXOvRjee7nrsyziP7Z29luEXTpCvXYjsHdyZfe6qSye1Ju+76/F0TnHY9PH3rvF7wvN7yUJ8TEsndIHsKJx14+xtbNn9/rvWDSxF33eX4OTi0eWl+XfOnX6NB99PJq6derw0ou9OH7iJDNn/URycjJdu2T8TLJjx07GT/iSdm3bUKlSJXbv3sNXX09MrU/qmewbFRXF6E/GEBn5/HSoOHb+CsO+nkXTauV4tWMzDp+9xOTFa0lOTqFv64zb31/O/5W1Ow/Qv20TShUK4OSlYH789Q8irt/mw/7G8/jbnkO8993PdGxQndc6NefGnSi+/2UDg76YxvzRw3Cwt/wOWyL/df+JAMbdu3fJnTs3ZcuWBeDy5cvZm6H/x5zrtiY5IpjolT8BkHjxBFjb4FSrOXF/bYIk8553zk06k3DqINGr5wCQdPkMWFnjWLUh2Nqlp7ErUhbnF7piZe/47AqUBabtOkHxPJ582sLYO6RWQR+SklOYtfcU3SsWMXmJ+LCzV28za+9pcrmYljk5xcD03Sepnt+b8W1qpG8vnseTLnN+Z8/lSKoX8H46BcoCbs06kRh6mds/fwdA/OkjYGODa+O23Nu2HjLooZmj7YvEHdnL7UU/AJBw/gRW1ta41GmGlZ09hqRE3Jp2IO7MUW7NmZSeLjHkEnnemUBM0TLEnz32bAr4D/j1G0DMubNc+nQ0AHf37sHK1pa8L/YhcskSk1EmaXK1bMWNP34n7CdjoC/qwH5cihUnT8dO6QGMXC1bkhAZycVPPoaUFO7u/ws7Ly+8u3YneMo3GJKTn1UR/7Yfl62lWAF/Phn8EgA1y5ckKTmZ2St/p1vz+jhm8DCfmJTE4g1b+WHZWhzsMr7Frd66B5+cnnzy+kvYWFtTrWwJbt65y4J1mxn+YkdsbTP/Tma3aXtPUyx3Dsa8UAmAmgW8SUpJ4ad95+hePhDHDPJ+9vodvF0dqRqQ2+wzMI6+mHPgPB1K52dIrZIAVMsHHo72vLthP6eu3qakt+X2/py9YClFChZk1PDXAahWsTzJycn8vOxXOrVugYOD+XUyY95C6teszuv9jddW1YrliYq6x6wFS2hUtxb2dnaUKmYaEDpz/iKbd+yif6/ulC35+OBzdjt/+iiH923nzQ++oWylWgAULVmBEa+0ZeP6ZbTp3C/TtMGXzzF/+gQunTuJvb2D2efXIsP4bdUCXhwwgobNOwFQsmwVbl6P5NihPRYZwPBs15P4Kxe59uPXAMQeO4iVjS2erbpw9/dVZoGGlKi7xEfdNdnm3rg1dnn9Cft0BCmpn3m260FKTAzhE95Pr6cTr0Xi88YHOBQsQtzZE8+gdP+QlRX+L7ajxLh3eNKOb8XGvEn4sg2c+t/nAFz/Ywd2njko9vEb6QGMwBEDSIqKZn+H1zAkJnJtwzaSY+MoPekDzn8xjbjg8KdVon/t9KkT7Nu7mw9Gf06lKsZ2W8nSZXmlbw/Wr11J5269Mky3c/sWLl44z5RpswjIVwCAQoGBDH31ZXZu30K9BsaesZcuXqBwkWIUK17yGZTm3/tu00GK++Tks471AahVxJ/ElBRmbj9CzxqlcMzkPgtwJuIGM7cfIZerk9lnM7YdoUmpAgxvWhWAaoF5uXLjLgv3nrT4AMa8nxcQWKgQb//PGOCsUrkSSUnJLFqylHZt2+DgYF5nzp4zjzq1azFo4AAAKleqSFRUFHPmz08PYCxaspSqlSvzxuuD09MF+Pnxxlv/Y+9f+6hTu9YzKN0/49GmOwnBl7gx6xsA4k4cAhtbcjTvRNTGNeb16727JNwzrV/dGrbEztefiHEjSUn9zL15J6IP7OT28rnG454+ip13XtwatrD4AMYPv6ynWAF/xrz2IgA1y5UgKTmZn1b+Qbdm9czasLejolmxeTdDurWmdyvjyJyqpYsBMHXRaoZ0a4OnuytzVm/ExdGBr97qj52tLbXLl8LRwZ7xs5fRr20TfHJZZjA0TdjFQ1w4tpkOr/1IoVLGl+3+gZWZ/mEjDm9bQPVmrz72GH8uHo2NjXndc/bQb9yMvESfUWvIlbcIALnyFmX6h404e3AD5ep0y9rCZIF583821icj/gdA5cqVSU5OYvHiJbRr2zbD+uSnOXOoU7s2rwwcaExTqRJRUVHMnTffJICxe88evp/2A7Gxsc+mMFlk2vLfKJY/L2MGGYN2NcsWN353Vm+k+wt1cHwo0HA7KprlW/YytEsLerdsAEDVUsa//5Ql6xjSpQWe7q7MWr2JWuWK817fTulp8/vmps/oKWw/fJLGVR8flBeR7GX588yk2rp1Kx06dKBcuXLUqFGDkSNHcufOHQD2799Ply5dKFu2LG3atGHdunUUK1aMkJAQRo4cyZQpUwgLC6NYsWIsX76c3r17A9CoUSOWLzfvFZKRsLAwhg8fTo0aNShVqhR169ZlwoQJpDw0Lc2SJUuoU6cO5cqVY9CgQYSGhqZ/FhcXxzfffEOjRo0oU6YMbdu25bffjKMSoqOjqVChAgsWmE4XM3XqVOrXr09KSgoGg4Hp06fTqFEjypUrR9u2bVm1KuPe6tnCxhbb/EVJOHPIZHPCqQNYOThhG1DYPIl3ADZeeYjfv8lke/y+Tdz59v304IWVgxOunV8lKegcUQsnP70yZLGEpGQOBF+jQRE/k+2Ni/oTnZDE4dDrmaZNTE7hg/V/0a1iYfJ7mvb4uxkTx524BOoE+ppsL5w7Bx5O9my/aLkvB7CxxaFwSeKO7TPZHHdkL9aOzjgUNH8xaOtXANvcPkRvNx3FE71tA1fHDsOQmIC1mwfWLm7Enzhosk9SRAjJ9+7iULJC1pcli1jZ2eFWoSK3tm0x2X5r8yZsXFxwK5txg8ra3p7kmGiTbUl37mDrnuOBfRxIiYs1mUIr6e4drO3tsXZ2ybpCZLGExEQOnDxP/SqmZW9YrQLRsXEcOX0hw3Q7D51gxvL19G3blNe7t8twn/jEJBwd7LF5YKq1HG4uJCYlER0Xl2VlyGoJSckcCLlBg4e+940K5yU6MYnDYTcyTHfm2h2K5sq8R1t0QhItivvTrJi/yfYCnq4AhNyJ+Zc5f3oSEhM5fPwktatXMdler2Y1YmJjOXbqtFma8MirBIeFm6epVY3Q8AhCwszrT4PBwDc/zCR/gD+d25iPRrBExw7twcHRidLlq6dvc8/hSbFSFTl6YOcj0/74zUekpKTwwfifcMth/jLk4N4t2NnZU6dxG5Ptr434nCEjx2dNAbKSrS1OxcsQfdB02sno/TuxdnLGsejjXybbuHvg1fFF7m5aT/zFs+nbXSrXJGr7HyZB5oTL5wka/pJlBy8A97LFKP3taELm/8rhPua9oR/mlN8P12IFiVhpOi1o+PLfcClSAOfC+QHI3aQ2V9dvNZkuKuKXDVjZ2JC7ae2sLUQWO3RgH46OjpSvWDl9W44cHpQqU44D+/Zmnu7gfvz8A9KDFwAB+QrgH5AvPZ3BYODypYsUDDRvD1uihKRk9l8Op2GJ/Cbbm5QqSHR8IoeuZN6jNzEpmfd/2Ub3aqUokMH9Z2qvpunBizR2NtbEJ1lupwow3nOOHj1GrRrVTbbXqV2TmNhYjp88aZYmIjKSkNBQatWoYZqmVi3CwsIJDQ0jJSWFChXK07zZCyb7BAQY78th4Rbcrre1xbFoaWIO7THZHHNgF9ZOzjgULvHYQ1i75cCjbU+itm4g4dK59O1Xp3zKrWVzTPY1JCVhZWu5o1HAOJ3NgVPnaFC5jMn2RlXLER0Xz+EzF83SRMfG0bFRTepWLG2yvYCvsUNa6FXjM+Oeo6epVb6kybQ4jaqWJ8VgYPdR8zaPpbl0agd29s4UKHH/XuDs5oV/kSpcPLH1selPH1jHldO7qNt+hNlnRco1pvtbC9ODFwA2NsaX3UlJ5h3BsltCYiLHjh6lZk3TuqF27drExMZy4kTG9UloaGgGaWoRFhaW/u7p3r17jPl0LGXLlGHsGPMRxZYqITGJA6cv0KDSQ9+dKmWN352zl8zSRMfF0bFBdepWLGWyvYBvHgBCrt0gJSWFaqWK0KF+9Yz3uZrxM5SIWJbnIoBx8+ZNXn/9dTp27Mi6deuYOnUq+/btY/z48Vy5coV+/fpRtGhRVqxYwcCBAxnzQCU9atQo+vXrh4+PDzt27KBJkyZMmTIFgKVLl9KiRYsnysOrr75KVFQUP/30Exs2bKBfv37MmDGDTZtMX7zPmzePSZMm8fPPP3Pr1i0GDx6MwWAA4M033+TXX3/lgw8+YNWqVTRu3Jg33niDP//8ExcXF5o1a8aaNWtMjrd69Wratm2LtbU1EydOZOHChXzwwQesXr2a3r178/HHH/Pzzz//m9ObZaw9cmFla0fyjasm21NuXQPAJqf5iAAbnwDA2Bh17ToYz3em4PHW1zg36QIP9KwwJCZwZ9rHRK+ajSHm3lMsRdYKuRNNYnIK+VJfBKYJSP358s2oTNP+uPskSckpDKpZyuwzVwc7bK2tCH/oxeLduASi4hIJvWO558g2Zx6sbO1Iumr6MJZ03fggbJPH1yyNnZ/x4dmQlIhX/xH4jpuDz6fTcW/XO/06McRGY0hOwsbTtJe5lZML1k4u2ObM8zSKkyUc8vphbW9PfFCwyfa40BAAHPNlPO925JLF5GrWHPdq1bF2dsaryQvkqFadG7+tv7/P8mU4+Afg070HNq6uuJQqhXfnbtzetZPkh3oXW5LQqzdITEoin6/p3y3A2/j3vRJ+NaNklAzMz8rJo+nXvhk2Nhnf4jo3rUtwxDXmrfmTqOgYjp27xKL1W6hVvhQ5XC03qBN6N4bElBTyezxUn+Qw5vnKrYy/92ev3SEmMYm+S7ZR49vVNJ2xgck7T5CYOr2Wm4Mdb9crS/m8D60TkhoILZTTcueFDY+IJDEpiQA/03rDz9c4XUlQaJhZmqAQ48Pd30mzafsuTp09z+svv5TpdWVpwkMukdvbD2sb01E53r7+RIReeWTagcM+YdTnMwgoUCTDz4MuncXbN4AzJw7x0Zu9eLljdd4a0IYtvz1Zp5BnzS63D1Z2diRGhJpsT4w0/q3tfPwzSmbCs31PDIYUbi2/P6WfbS5vbJxdSbpxlZwvDiL/1IUUmL4c76HvY+OZNWusPU2xQeFsKd6EUyO+IDnm8cFb1+KBAESfu2yyPeaC8XpyLVoQa0cHnAv4E33O9CVDwvVbJN6JwrVowazJ/FMSEhyEt09ebB763vj6+hEaGpxJKggJukJeP/PryDevH6EhxnQR4WHExsZw/uwZXhvQm46tm/DagN5s3vh71hYii4TciiIxOYX8DwUg8nkZpxq7fONOpml/2HKIpJQUXmtYMcPPC+X2wM/TDYPBwJ2YeJYfOMPqI+fpWvXxL7uzU0R4BIlJSfj5mXZMyuubF4CQkFCzNMHBxr+/n19e0zR5jfeg4NAQrK2teaX/y9R8KDCya7cxKJA//6PXX8lOtrlS69dI03tn0jVjG8LOxy+jZCY82nQHg4Hbv5p25EuKCEl/rrR2dsW1dmNca9Tn3tb1GR3GYoRevU5iUrJ5G9Yn8zasX56cjOzbhQJ5TZ+Xtx44iq2NDfl88xCXkED49Ztmx/V0d8XFyTHTtrEluRlxgRy5/LG2Nq1jPXPn41ak+cvpB0Xfvc7GxaNp0Ok9XNzNRxU7OLnhV8hY5yQnJXAt9DTr543EydWTYhWbZ10hskhEeHgm9YmxbghJfQ58UHBQWn3yUJq8pnWQg4MDP0z7nv+99SbuOR4/PaSlMD7/JZPfx/TvG+BtnD48w+9O7py826djejAizZaDx7G1sSG/T26sra15s0cb6lcyDRBuOXAcgEJ+ptMciohlei6mkIqMjCQhIYG8efPi5+eHn58f06ZNIzk5mcWLF5MrVy4+/vhjbG1tCQwMJDIykvHjjT0A3dzccHZ2xsbGhty5jRVhjhzGhriXlxeOjo+fjiguLo62bdvSvHlzfFNvKH369GH69OmcOXOGxg8smDRhwgSKFzf2IB83bhwvvPACu3fvxtvbm40bNzJt2jTq168PwJAhQzh9+jTTpk2jcePGtG/fnt69exMaGoqfnx9Hjx7l8uXLdOjQgZiYGGbPns3XX3+dnj5fvnyEhoYyc+ZMevbsmSXn+t+wcjQOETckmA5TNMQbH4qtHMyHkFs7G1/EuXYeRMLxfcTt+QPbvAVwqtsaK5cH1sBISSbl5vMzd2Oae/HG3ocPL4LrbG/86kUnZLyY5Ynwm8zbd4YZ3Rpgn8GUME52tjQpFsDiw+cplMudhkX8uBkTz4RNh7CxtiI20XJ7sFk5OQOQEv/wdWL82drR/DqxSZ2r3avvm8Qc3Mm9LWuxzxeI2wudsHY1roFhSEwg9tAeXOo0JTEihLhj+7B2dSdH+5cgJRmrDKZBsRQ2qS/NHx5NkRxjDFDZuGT8Uj1i8SJcSpeh2FffpG+7tmYVEQvvBzWjDuwnYsF8AgYPJWCwccHE6DNnuDj6w6wsQpa7F2O8HlycTOtoZyfj3zE6NuOXbXm8PB577CqlitK7dWMm//wrk3/+FYBiBfz5dEiff5zfZyGtPnGxN711369PzBdlvxUbz9XoOJINBobWKomvmzN/hVxjzv7zRN6LY2zqVFQPOxZxk9n7z1G3oA+Fc1rug8+91O+Is5NpveGU+nNMjPmw+XvRqWmcnZ84zeJfV1O6RDEqlDEPKFuqmJh7OGUwysrRyYXY2OgMUtwXUODRPcSj7tzi9s1r/DDxA9p1HYCvfwH2bv+d2d8bpxWytCmk0kabGWJNg/4pcan3HSfz+45JerccuNZqyJ0NK0h5oJ62cUttT3buQ/yls1z9fjw27jnw6vQSed/5nJAPh2Q4/Z+lSLx1h8Rbmb+EfphtDmObLemuabA0Kcp4TmzdXbFLXQjz4X3S9rN1dzXbbkliYqLN6gYw1g+xMZmPRouJic4wgOHk5Jye7tLF8wBERoTTt/+r2Nrasnnj70z66gsSExNo2qxVFpUia9yLM077Y96GNf4cHZfx+i7HQ68xZ9dxZvVrmWEb9kFHg6/Se4ax81apvLnoXbPMI/fPbtGp3/+HrxFn57T7h/k1Ev3Ye07G11VYeDjTZ84isFAhqlaunOE+lsA6tV1viMu4frVyNP8+maR3y4FLjQZE/bESQyb3JvtCxfAdOQ6A+MvnuPt7xouDW4p7qQFhszas46PbsA/bvO8Ia7bvo0uTOri7OHP9trHjkauT+fsLF0eHJz5udoqPjcLB0fw+YO/oQnzco9smvy/4AN+CFShVrR1BZzMfEQewYtqrXD61Aysra17oORbXHJbXkS06JuO6Ie3nDOuT1DrI5eE0D9UndnZ2BPg/vnOGpbkXm/bdMX1uv//debI21ab9x1iz4wBdGtfC3SXjOig48jrfLFpDsXx5qV3O8qeGFZHnJIBRokQJWrVqxaBBg8idOze1atWifv36NGnShPPnz1OyZMn0xfEAqlat+oij/X2Ojo706tWLDRs2cPToUa5cucKZM2e4fv26yRRSLi4u6cELgAIFCpAjRw7Onj3L7du3AahUyfRlUZUqVfj666/T/+/v78+aNWt45ZVXWLVqFRUrViR//vwcPXqU+Ph43nrrLawfmPYkKSmJhIQE4uLinigY8zQ9dpFXg/liumm95xNPHyZ2k7HnZtKVs2BlhXPDDsRuW03KTcvvTZKZtNE3mbHO4JzFJyXz4fq/6FGpCKV9M5/HdFSTStjbWDPmt/188tt+HG1t6FO1ODEJSRnOg28xHnudZHDOUq+T2GP7iFqzEICE8yfBygr3Vt2J+m0ZydciuLN0BoakRDy6DsCq+yukJMRzb+MqrB0dMSRa7kskK6tH9+g2ZPDdsbKzo8R307DLmYvLE74g7soVXEuXwfelvqTExhI0aSIA+f/3NrlatiZs9izuHtiPvY8vfv36U/SrbzjzxuukxFvmeUl5zHfn3ywq/cXMRazasod+7ZtRtXRRwq7dZPqydQz94lu+GzUUxwzWTLAEGdSgJjI6JU52tnzbrgb5PFzJ625swFfyz4W9jTXf7T5N/ypFKehlOsLicNgNhq3eS153Zz5qbLlTrwEYUv7+dfK4evnhNMdPneHshUt8+t7//n4GnxHjNJOmV8ijzs3j6pzHSUpKJOrubV5/ZxyVaxgXVCxZtgo3rkfw6+IZFhfAeNx953HXhHu9plhZW3Pnj4em7UxteybfvU3klM/S71+JV8Px++ArXGvUJ2rrbw8f7rllZf2Ye1VKCjx2n0ef62cpbXrWh7dl5lH3nUd+36yN6UqWLsuoj8ZSplx5HFM7a1SoVIU7t2+zcN5smrzQ8l/d27LaP7kPxycm8cHybfSsXooy/hmvu/QgXw9XZvZtQejtKKZuPEDvGatZNKgdTvaW+Yia8pjrN6N2fUpGzz8macy/M0HBwbz3wYfY2Njw/nsjTZ79LM0/ev57gGvtJlhZW3N345pM90m+cZWIL0dhm9Mbj3Y98Bn5BeGfvokhIeMgWnZ73Hcno+vkYZv2HeH9b+dSvmghhnY3Ttf4d9sv2c2QUdvkEWV4VP6P71lB6IUD9Hk/8+vkQdWbvUqVxv05tW8VG+a/i8GQTJmanZ8s48+I4RH3G8ikDfu4dq+1ZV0Df1dWPP9t2neMUdN+pnzRArzRNeNpXy+FXWXw+B+xsbZm3JDeFl3H/lcYDM/3tSvPhmW2DjPw1VdfMXjwYLZt28auXbsYMWIElSpVwsHBwexhwz6DhV3/jZiYGHr16kVcXBzNmjWjffv2lC1b1mzUw8PDzcH4IPSo/BgMhvTgi5WVFe3atWP16tX079+f9evXM2zYsPT9AL755hsKFSpkdpysLvM/YUjrafPQIttWDo4mn5ukSR2dkXD+qMn2xAsnoGEHbH3ykfAcBzDSeq093DM6Oj7J5PMHfbfjOAZgQPWSJKVe2waMf/+klBRsrKywsrLC2d6Wj5pVYUTDCoTfjcbX3QVne1t+PXaRAA/L7eGYdh1YOzx0naQ+zKfEmvc2SRudEX/SdH2LuFNHcG/VHTu/AiRfi8CQEM+dxT9yd8UcbLxyk3zzGoaEeJyrN0ifosoSJUUbe6paP9Sbxia113DyPfMeSZ71G+BcpChnhg3h7n7jeiJRhw+RFB1NgbdGcG3VSpKiosjdph3h8+YQOuPH9LTRp05QZv4icrVszdXllrkIomtaT6I40wBLWu8yV+dH95jOzNWbt1mxaRd92zbl1S7G3q6VgFKB+ek6Yiyrtuymywv1Hn2QbOKaNtIi8aH6JLV+cbU3r08cbW2ons+811ntAj58t/s0Z6/fMQlg/H42lI//OEg+T1emtK2Bh1P231sexSW1V1XsQ70O00ZRuGbQ6+p+mtiH0sRkmGbrrr24ubpQvZLlBnNWLp7BysXTTbZVrtmIu3dumu0bGxONs/O/u0c4OrlgZWWVvjh4mjIVanD80B7u3L5BDg/LmUIpJfVv+3BP4LSewykxj+716VK5FjHHD6Uv3J0m7X4Wc/SASfA9/sIZkmPu4ZA/kMwninz+JN0xlsbWzXRkT9qoiqQ799JHXjy8T9p+acewBIsXzGXxgrkm22rWrsud27fM9o2JjcHZJfPvjbOLC7EZtF+MIzqM58LDw5Mq1WqY7VOpajWOHD7A7Vu38PSynAV4XR2N9X90vOlo4bSf3RzN7w9TNx4gxWBgYP3yJKVOU5j21UhKTsHG2srkBVQedxfyuLtQGV/8Pd3oN2sdf568ROvyGU9fl90yu3+k96TOYMSsS+rfP7N7jstD95wjR4/xydjPcHJyZNznY9Onk7FUae32h0faW6fWtxm16x/kXKkGsScPpy/cnZHkO7dIvnOLeE6QdD0CnxGf4VyxJtF7tvy7zD8lrs7GZ5yYh9omT9qG/Xn9Zib9vJJKJQvz5fD+OKS279JGdGS0Xlt0bNw/bhs/LbvWf8vudVNNthWt8AIxUeZrQMbHRuPglPGUpVG3Iti8bCz1O4zE2dWLlOSk9Jf/hpQUUlKSzaak8i9sHLWUv3gN7twMZc+GaRYXwEirLzKvG8zrE+fU+iImkzrIxYLXN3wSrunX+MPPf8af075bmfl5wza+WbiaSiUC+eqNPunfnQftP3WeEZPn4OTgwA/vvpo+PZWIWL7nIoBx5MgR1q5dy3vvvUehQoXo06cPq1atYsSIEXTr1o3NmzeTkJCQ/hL/+PHjjzze3+2dsGPHDk6cOMHOnTvJlctYwd2+fZsbN26Y9CK4e/cuQUFB5Eudr/7MmTNERUVRtGhRPD09AThw4AANGjRIT7N//34KF74/VUP79u2ZOnUqixYtIjo6mubNjfM1FipUCFtbW8LCwkzSz507l/Pnz/PJJ5/8rTI9Dcm3rmFIScbGMw8PPupYexlfniXfiDBLkza6wsrmoZtLaiPEkGiZPWuelL+HKzZWVgQ/NDd98G3jzw/3fAb482wI4XdjqDV5hdlnVb/+hY+bVaFN6QJsuxCGu6M95f1yEZg6P/HN6Dgio2Ip7u35FEqTNZKuR2JITsYml+lck7apPydFms8fnHQt9dqxNb1OrGzSrhPjFedQsgKG2GgSLp0lKcI4b6i1qzs2ObxIDHn0vKrZKT40FENSEo4PTT/hmDr0N+7KZbM0Dt7G8xV11DT4d+/wIQCcChYiPjICK2tr7h0z3Sfu8mUSb9/GqaB5MNRS+HvnwsbampCIaybb034u6Ge+ps6TiLh+E4PBQNlipmUv5O9LDlcXLoZY7kKZ/jlcsLGyIuS26cvW4NSfM6pPgm7fY1/wdZoW9cPtgYBp2kKpng8M0Z578DyTd5ygkn8uvmxZ1WR/S5XXxxtra2tCw03vL2k/5/M3n3s7IHUe8tDwCIoUKvhAmsgM0+zef5Da1aqYjPS0NPVfaE/5KqaLIx/cu5Xjh/aQkpJi0rPsangwvv4F/tXv8/YNwGAwkJyUCA9Mz5ecbLyu7C1syr6ka+EYkpOx8zZ9EWiXx3gtJIabzzOdxsYjJw4FCnPnx6/NPku8Go4hJQUrO/PvipW1DSkW2jv4n7qXunimc2B+7h4+lb7dJdC4TtW90xdIjo4hNiQC50DThZ/tc3th5+7KvdMXnl2GH+OF5q2oUtU0oLB39w4OHdhv9r0JDwvFPyDzdQj8/AO4eOGc2fbwsDCKFDOOzj5x/CiREeE0bGy6UHNCfALW1ta4ulnWekMBnm7YWFsRfNP0xXJQ6s8Fc3uYpfnz5GXCbt+jxqdzzT6rNPonPmlfhyYlC7LlTBCl/XKT74EpCkv4Gp+xrt599Avv7JTX1xdra2uzRbXDwow/5wsIMEvjn3pPCQsLp3Bg4P00qccIeCDN5i1b+XLiNwT4+/Pp6I/JlctyAsGZSbwWYaxf8/jy4CtV29Q17R5dv3rhkC+Q63+uNvvMysERp3JVjW36a/fv8QlBF9PTWir/PMY2bHCk6Yv6tJ8fXucijcFg4Mu5y1n8+zZeqFGRjwf1NFms29nRgTyeOQiJMD3uzTtRRMfFUzCT42aXcrW6EFi6vsm280f/5PKpHcZ75wN17O1rV/DyCSQjV07vIj42it9+HsVvP48y+WzplD64e/kxcMwmwq8c5c71EIpXMl3j1DugFGEXD2VNobJQen0S9nB9YlxPJiCD+iRtWqiwsDCT+iQ89RgB+czTPE/88+Q0Pv9l8t0pmDfjqcAMBgMT5q9k8R87eKF6BUYP7Gry3UmzYfchPvpxEQXy5mHKW/3J45Ujg6OJiKV6LsZKubq6smDBAiZMmMCVK1c4e/Ys69ato0CBArz22mvEx8fz7rvvcv78ebZu3crEiRMfeby0eQVPnz5NdPSje90B+PgYXxSuWrWK0NBQ9u/fz2uvvUZiYiIJDzycWltbM2zYMA4fPszhw4d5++23qVq1KpUrVyYwMJAGDRowevRotmzZwqVLl5g6dSobN26kX79+6cfw8/OjWrVqfPXVVzRu3BhXV2NvLzc3N7p168akSZNYuXIlwcHBLFu2jAkTJpAnj4XM6ZicRFLQOeyLm/ZStS9ekZS4GJJCzV8gJwadw5AQh32pKqZpipbDkJxMUujFp5rlp83B1oYK/rnYdC7EJNi18WwIrg52lMpgiqhv2tdmfq9GJv+Ke3tQ3NuD+b0aUTfQ+ECw7MhFJm45YpL254PnsLG2ok6gBffWSkok4eJpnMqa/s0dy1YlJTaaxCDzlxsJF06REh+HU4WapmlKV8KQnETi5bMAuNRsjHsb05FRLnWbgyGFuBOmozcsiSEhgagjh/GsV99ku2f9BiRFRRF98oRZmtgg46KpbuXKmWx3LVsWgPiwUOJDQzAkJeFa1nQfx4B82Hl4EB9mHiyyFA72dlQoXpjN+w6bfHc2/XUYV2cnSgUW+EfHDfDJjY21NYcfeol2OSySO/ei8ctjub1wHGxtqOCXk00Xwk3PyYUwXO1tKeXtYZbmenQcn20+wh/nTP/Wv58LxcXelhJ5jGl+OXaZSTtO0KSIH1Pb1ngughcADvb2lCtVgm17/jI5J9t278XFxZkSRc3XcvD39cHXOw9bd5rOn7xt11788/ri633/nno36h4hYeGULlHs6RUiC3h65aZg4ZIm/0qXr0ZcbDTHD+1O3+/unVucOXmI0uWrP+Joj5c28mLvdtPFhw//tY2AAkVw+pcjPLKaITGRuDPHcalkeg9xqVyT5Jh7xF88m2lah8CiAMSdO2l+3Pg44s6ewKVSjfTppAAcS5TD2tGJuLPmdffzLOZCEDEXg/HtYPoC3qd9U+6dvUTsFWM9c/3PneRpUR/rB3o++nR4gZSkJK5v3vNM8/woXjlzUbhoMZN/5StWJjY2hkMH9qXvd+fObU4eP0r5ipmvQ1C+YmVCgoMIDrqcvi046DIhwVcoX8GY7vjRw0z+elz6ot5gHKm9a+dWipcohV0GgbDs5GBnS8X8Pmw8edmkfv3z5CXcHO0p7Wc+RdTknk1Y8Eobk38lfHNSwjcnC15pQ71i+bCxtmL0yu3M3mnauWLXBeP1U9THcl9M29vbU6Z0aXbu2mVyTnbs3IWLiwvFipqPHPHLmxcfb2+279xpsn3Hzl3pnwH8tW8/47/6mpIlivPVhHHPRfACgKRE4s+dwLmC6X3FuWINUmKiSbicef1qX9BYv8ZfOG32mSE5mZy9B+P+QnuT7Y4lywOQEHLlX2b86TG2YQPZvO/oQ23YI7g6O1H6oQBvmm8Xr2Hx79vo2bw+nw7uneEL2Gpli7P90AkSHhiNu2nfEWysralSyrJGLrl6eOOTv4zJv/zFa5MQF82lU9vT94uJuknI+f0UKF4rw+MElmlAr7eXmfxr0m00AE26jab9oO8BuHRiG+tmj+DurfsBgZSUZILO7iG3n+W14zKvT3am1idFzdLkzZsXHx9vdux4uD7ZaVKfPK8c7O2oUKwgm/YfN/3u7D+Kq7MjpQpl3JFg6tL1LP5jBz2b1WXsqz0y/O7sOHKKD39YSLki+Zn5/mAFL0SeQ5bbnfABgYGBTJkyhalTp7JgwQKsra2pXr0606dPx9vbmzlz5jB27Fjat2+Pv78/nTt35rvvvsv0eEWLFqVevXoMGzaMN9980ySAkJGyZcvy7rvvMnv2bL755hu8vb1p0aIFvr6+HDt2LH0/Ly8v2rZty2uvvUZsbCwNGjTg/fffT//866+/5uuvv2bUqFHcvXuXokWLMmXKFJo0aWLy+zp06MCePXvo0MF0Dul3330XT09PJk2axNWrV/H19WXo0KH079//75zOpyp2xzrceg7DtcNA4o/sxNY/EMcaTYjdtAKSEsHeEZvcvqTcuoYh5h4kxhO7dTXOTTpjiIsh4fQhbP0L4VjzBeL+2mjc5znXv0ZJXl2ylXdW76Ft6QIcCbvB3H1nGFK3DE52ttyLT+TijbsEeLji6exAkdzmN1OX1Ifakg881HWvWJjBy7bz5ebD1AvMy19BV/lp72n6VC1m0VNIAUT9voKcr76H50tvELN3C/YFi+LaoBVRaxdhSEzAysEJWx8/kq9HkhIdhSEhnqj1S8nR7kUMsdHEHv0L+wJFcW3YhuhtG0iJNk5JEb19AzkHvYd7uxeJO34AhyKlcWvSjqiNK0m+YdlTkYXN+Yli30whcMxYrq9dg2vpMvh070nItO9IiY/H2tkZp4IFiQ8NJen2bW7v2M69E8cp9OHHhM6cQdyVy7iUKkXe3n25tX0b0aeNvWMjly7Gp0cvAO7u+8u4Bkbfl4kPD+faasteBLFf+xcY/NlU3p00i9b1q3P07CXmrdnI693a4Ohgz72YWC6FRuDvnQtP9yfruerp7ka35vWZt+ZPAKqVKU749ZvM+GU9vrm8aNew5mOOkL1erlKU11bs4p31+2lbMh9Hwm8y98B5htQqmV6fXLoZhX8OFzydHSifNydVA3LxzfYTxCclU8jLjR2XI1l0+CJv1imNm4Md16Pj+Gr7cfK6O9OlXEFOX71t8jvTjmWpXuzSgbc+/JSPx0+kReMGHD99lkUrVjOwd3ccHRyIjonhcnAIfj4+eOQw9vbt3bUj4yZ/j/s0V2pWrczOvfvZvHM3H/7vDZNjX7wSBECBgOdvIcRipSpSvHQlfpj4IV1eGoKrWw5+XTQdZxc3GjbvmL5faPBFkhITyV/oyR/uS5SpRPkqdVgwayLx8XH45Qtk5+a1nDt9hKHvfvk0ivOv3Vq9GN8Rn5Jn8Eiitv2BY5ES5GjegZtL52BIiMfK0Ql7v3wkXg03mSrK3r8AKYkJJj2AH3Rz6Rzyjvwc3zdHc3v9cmxyeODVuQ9xF04Tc+jRi4xaOls3F1xLFibmQhAJ143TKp0b+y3lZn5B4s3bRK7ehHebRuTt0oKDPYalp7vw5Qzydm1JlTUzuPTNT7gULUCxMW8SPGMJccGWO8oNoFSZcpQuW56JEz7jpX4DcXN3Z9HPc3BxcaV5izbp+wUHXSYxMZFCgcYXhrXr1mfZ4p/55IORvNh3AADzfppO/gKFqF23PmAc8bFh7SrGjh5Fj159cXB0ZP3alQRdvsxn47951kV9IgPqleeVOesZsWQT7SoU5XDwVebsPMYbjavgZG/LvbgELl67jb+XG14uThTxNg8+uKQGxEs9EPDoV6cc328+iJeLE1UK+nI24iY/bDlE9UJ5qV3EsuvbHt26MHLUB4z9fBwvNG3MyVOnWbZ8Of36vISjoyPRMTEEBQXh6+uLRw5jm75n92589c0k3N3cqF6tGrv37mXb9h28+87bACQkJDBx8hScnZzo1rULQUFBJr8zV65c5M5luR0s7qxdSp7ho8n1ygju7dyIQ6HiuDdtx+0V8zAkJGDl6ISdbwBJ1yJMpoqy98uPIbP6NSmRu+t/IUfrbiTfvUP8mWPYBRTAo1U3Yk8eJu74gWdYwr/v5XZNee3z7xg5eTZt6lXj6LlLzFu7ide7tk5tw8Y90IZ15czlEOas2UjJQvloXK0Cx8+bBmgK+vng6uzIS60a8fuugwwdP42ezetzJeIa3y1ZQ/uGNfDJZbnBvzQBRaoQUKQq62aPoG67ETi5eLBr3RQcnN0oX7d7+n7Xw8+TnJSAd0BJnFw9cXI1nV0gId44UsvTu2B6cKJc7W4c2bGIFd+/Qo0Wr2NjY8fhbQu4HnqWTkNmPrtC/g3du3Xj3VGjGPv557zQpCknT51i2S/L6denT6b1SY/u3fl64je4u6fWJ3v2sm37dt59551sLk3WeLltY14b9yPvTJ1H27pVOHLuCnPXbWVIlxY4OdhzLzaOS6GR+OfJafzuXAllztrNlCoUQJOq5Th+wbT+LOjnjZ2NDWNmLsXZ0YF+bRpzKdR0auk8Xjnw9vJ4hqUUkX/CyvC41aCeQ3v37qV3795s3LgRf3/LbgRbgpufvpKlx7MrVh6nuq2xyelNStRt4vdvIW6v8WWhbf6iuL/4FvdWzSbh6P1eofblauJYrTE2XnlIuXeH+IPbidv1G2B+eVrnyInHkM/MjpFVvN7/gejp7z9+x79h07lQpu08wZVbUeRxdaJL+UBerGJsbO0PusrAJVvTp4bKyIBFWwCY3q2+yfYNp4KYsecUYXei8XF3pkv5QLpVzPreNy4DPiVsePfH7/g3OJapjFuzztjm8SX5zk2id/xB9Ja1ANgHliDX6x9ya8H3xO7blp7GqWo9XOu3xDa3D8l3bhGzexP3Nq0ymXvcqUJNXJu2N66Bces6MTv/IHp71i+imnfiQvbV/ne9mB/mUbcefv0G4JgvHwnXr3F1+S9ELloAgFuFihSf8h0Xx47hxnrjebJ2dsZ/4Kt41q+PrZs78WFhXP9tHZGLFmJIut8zy7tzV3K3a4+Db14Sb9zgzr69hP44jaTbt7M0/1V27OHuwT+y9Jib9x3hx6VruRJ+ldxeOejcpC69WjUC4MDJswwaM5kPB/WidT3zv8XqrXv4ZNp8Vk4eTd7c93syGgwGFq7fwvKNOwi7eoNcHu5UK1uc17q2fuJAyJNyr9iEe9++naXH3HQhjB/2nOHKrXvkcXWkc9mCvFjRONJgf8h1Xlm+k48aV6BNSWMvpXvxifz41xk2XwjnenQc/jlc6FE+kPaljT0AV564wicbD2f6+x48VlZwHTye8NOZ/75/Yvvuv/hp4VKCQ8PIldOLdi2a0rVdawAOHTvB8Pc/4Z2hr9K8Uf30NKs2/MHiX9dw9foN8nrnoWendjRtUNfkuJt37Gb0hG+Y8+3X5M9gOqqs4lu8PLtPZT7/9z8Vfe8uC2dN5ODerRgMKRQpXo7uLw/H169A+j6fj3qF61fD+Wr6qgyP8daANhQvXZEBb3xssj0hIZ6Vi6eze8t67t69jV9AQdp06U+l6vWzJO81SrhzsU+rLDlWGueKNfBs3wN7H3+Sbt3g7qa13NlgnK7RsXgZ8o78nKszJnJvx8b0NDlffBWXyjUJeuPFTI/rULg4Xh1741CoKIaEeKIP7uHm4lmPXVvj7yg0ew1r7Z5eD1KvulWpsXEeuxu9yM1tf5lsO/LySELm3p/WMt+ArhQa3g/HAF9iLgZzYfyPhP5sGhD3rFWJEuPexr1cCRKu3yL055Wc/Xiyyb3p32qZeIZTF7J+JOG9qChmTf+OvXt2YkgxULxkKV4e+Bp+/vfrwVHvDOdqZATTZy9M33bt2lVm/jCVw4cOYGtjS/mKlek38DW8vO7ff8LDQpk3ezonjh8jNjaGIkWK0fOllylZqkyW5L1EoB9xi8dnybHSbDx5me83H+Ty9TvkcXeha9USvFTLmN99l8Lp/9M6Pmlfh7YVzHsLA7w8y9hmmdnv/mKqBoOBpftPs2jvSUJuRuHp4kjzMoG82qACDnZZ27/OsevbXD6f+SiAf2Lnrt3M+3kBISEh5MyZk9atWtKpg3GkwJGjx3j73fd4a9gbNG3SOD3N2vXrWbZ8BdeuXcfXx4euXTrRuGFDAA4fOcI772X+7NGrR3de7Nkjy/JfoHBRrgxsl2XHA3AqXw2PNt2x8/Yj6fYNorasJ+oPY73gULQ0Pv/7lOs/TSZ696b0NF49XsG5QnVCRvTN9LiudV/ArUELbHP7kHLvLtF7t3F79SJjx7gslP/HX4navyFLj7l53xF++GU9V8KvksfTg85NatOrpfFvvv/kOQaNncpHA3vQul41pi1bx4wVmT+vTBv1OpVLGp/xDp2+wKQFKzkbFIqHqwstaldhUKcW2Nqar8f5b7hVbsb0P7P0kADExdxh8y9fcP7InxgMKfgVqkiDTu/i5X1/etdF37zI3RuhDByzKcNjBJ3dy5JJvenyxlzyFa2Wvv329WC2/TqB4HP7SIyPwbdAWWq1eiN9TYx/a0BjuHThfJYcK83OXbuYN/9nQkNCyJkrJ61btaJjakfWI0eP8s7Id3lz+DCaPtDpde269fyyfDnXrl3D18eHLl260LhRwwyPHxEZSZ++/cyOkVUKBhbm3l7zaeD+jU37j/HDit9Tvzs56Ny4Ji82rw8Y17B45fNpfDSgK23qVOH7XzYwY2XmF+oP7w4ixWDg1S9+yHSfge2a8MpDo0v/KddqrbPkOP81J8+HZXcWnjslC+fN7iw8cwpgSJYHMJ53TyOA8bx7GgGM593TCGA8755GAON59zQCGM+7pxHAeN49rQDG8+xpBDCeZ087gPE8eloBjOfZ0whgPO+eRgDjefc0AhjPu6cRwHjePa0AxvPsaQQwnndPI4DxPFMA4585cd6yR+haolKFLXja+KfkuZhC6mn65JNPWLHCfLHkB3377bfUrGnZ04qIiIiIiIiIiIiIiPx/8v8ygFGtWjXOnDnzRPu+/vrrvPTSS4/cx2IWyRYRERERERERERER+Y/4fxnA+Du8vLzw8rL8Ba9ERERERERERERERP5LrLM7AyIiIiIiIiIiIiIiIg9TAENERERERERERERERCzOf34KKRERERERERERERF5tgxYZXcW5DmgERgiIiIiIiIiIiIiImJxFMAQERERERERERERERGLowCGiIiIiIiIiIiIiIhYHAUwRERERERERERERETE4iiAISIiIiIiIiIiIiIiFsc2uzMgIiIiIiIiIiIiIv8tBqyyOwvyHNAIDBERERERERERERERsTgKYIiIiIiIiIiIiIiIiMVRAENERERERERERERERCyOAhgiIiIiIiIiIiIiImJxFMAQERERERERERERERGLY5vdGRARERERERERERGR/xaDwSq7syDPAY3AEBERERERERERERERi6MAhoiIiIiIiIiIiIiIWBwFMERERERERERERERExOIogCEiIiIiIiIiIiIiIhZHAQwREREREREREREREbE4ttmdARERERERERERERH5b0nBKruzIM8BjcAQERERERERERERERGLowCGiIiIiIiIiIiIiIhYHAUwRERERERERERERETE4iiAISIiIiIiIiIiIiIiFkcBDBERERERERERERERsTi22Z0BEREREREREREREflvMWCV3VmQ54BGYIiIiIiIiIiIiIiIiMVRAENERERERERERERERCyOAhgiIiIiIiIiIiIiImJxFMAQERERERERERERERGLowCGiIiIiIiIiIiIiIhYHNvszoCIiIiIiIiIiIiI/LcYDFbZnQV5DlgZDAZDdmdCRERERERERERERP47Dp69kd1ZeO5ULJozu7PwzGkEhhD3+0/ZnQWL4ti0L3Eb52Z3NiyKY6PexG5ZmN3ZsChO9bsTt3BcdmfDojh2f4dLF85ndzYsSsHAwvx+JCG7s2FRmpazJ+L0oezOhkXxKV6B24c2ZXc2LIpHhYY6Jw/wqNCQUxdCszsbFqVEoB9r7YpldzYsSsvEM+w7czu7s2FRqhTzIOzM0ezOhkXJW6wsUfs3ZHc2LIpb5WZcPn82u7NhUQoULsrNYzuyOxsWxatMbYLOncrubFiUfEVK6Jw8IF+REtmdBZH/t7QGhoiIiIiIiIiIiIiIWBwFMERERERERERERERExOIogCEiIiIiIiIiIiIiIhZHa2CIiIiIiIiIiIiIyDNlwCq7syDPAY3AEBERERERERERERERi6MAhoiIiIiIiIiIiIiIWBwFMERERERERERERERExOIogCEiIiIiIiIiIiIiIhZHAQwREREREREREREREbE4ttmdARERERERERERERH5bzEYrLI7C/Ic0AgMERERERERERERERGxOApgiIiIiIiIiIiIiIiIxVEAQ0RERERERERERERELI4CGCIiIiIiIiIiIiIiYnEUwBAREREREREREREREYtjm90ZEBEREREREREREZH/FgNW2Z0FeQ5oBIaIiIiIiIiIiIiIiFgcBTBERERERERERERERMTiKIAhIiIiIiIiIiIiIiIWRwEMERERERERERERERGxOApgiIiIiIiIiIiIiIiIxbHN7gyIiIiIiIiIiIiIyH+LwWCV3VmQ54BGYIiIiIiIiIiIiIiIiMVRAENERERERERERERERCyOAhgiIiIiIiIiIiIiImJxFMAQERERERERERERERGLowCGiIiIiIiIiIiIiIhYHNvszoCIiIiIiIiIiIiI/LekZHcG5LmgERgiIiIiIiIiIiIiImJxFMAQERERERERERERERGLowCGiIiIiIiIiIiIiIhYHAUwRERERERERERERETE4iiAISIiIiIiIiIiIiIiFsc2uzMgIiIiIiIiIiIiIv8tBoNVdmdBngMKYMhTsevUJaau2cqF8Ot4ubnQrW5FejesipVVxhVTfGISP6zfybr9J7h1L4aifnkY1KI2tUoUSt8nJcXAvM1/sWznYSJvR5E/tyd9GlenZZVSz6pY/9iukxeZumoLF8Kv4eXuQre6lenduNqjz8e67azbd5xbUTEU9fdmUMs61CoZmOH+kbfu0vHTH5n4SmeqFM3/NIuSZXadPM/UXzdxMewqXu6udK1fhd5NamZ6ThISk5j7xy7W7DlCxK27eHu606JqGfo1q42d7f2qbNPhU0xfu43LkdfJ5e5Ky2rleLm56T6Watf5UKZuOsCFq7fwcnWiW5US9K5ZOtNz8qCk5BR6z1yDk50tM/u2MPls5aFzzNl1jJBbUfjkcKFrlRL0qFbyiY6b3Q4cPMjsOXMJCgrCw8OD1q1a0rFDh0fmffOWLSxctJiIiAi8vfPQpXNnmjRubLLPtu3bWbrsF0JCQnBxcaFC+fL069sHT0/Pp12kLBEfF8PK+V9zeO+fxMfFULhkJTq89DbeeQs+Ml3wxZOsWTyFoPMnSDGkkK9QSdr0GEZAoZLp++za+AsLf/jYLG2dF7rR5eVRWV2ULLHv0BGmz1/M5aAQPD1y0L5FU7q2a/XI6+TPbTuZt2QFYZGR+OTJTc+ObWnWsJ7JPtv37GPukuUEh4bh5eFB0wZ16NmxHXZ2ll+f7DlykmmLV3ExJAyvHO50alqPnq0aP9H3/sylYPq+/wXLJn5C3jw5AQi7eoP2Q9/PNE3LejX48NXeWZb/p0HnJGOxsbHMnfUju3dtIy42lpKly/LywNfw88/3yHS3b91k1vTvOXRgH8nJyVSqUpW+A17Dyytn+j5/bFjLt5O/MkvbolVbBr72RpaXJas4+nlT9/Aa9ncczM1tfz1y37xdW1L43VdxLhRA7OVQzk/4kdB5v5rsk6NSaUqMe5sclUqTdDeakLnLOfvJVAyJiU+xFFknLjaGRXOmsm/XZuLiYileqjw9Xx5OXv8nb3NO+mIkjo7OvDLsQ5PtN65HsvCnKZw4so/ExARKlatC9z6v45P30ddfdtp36Agz5y3kclAwnh45aNeyGV3atX5kXbJx6w7mLfmF8MhIfPLkoXvHdjRrVB+AiMirdB8wONO0zRrV5503Mv/cEuw5eprvlq7hQkgEOXO40blJHXq1aPDIdv38dZtYu30fkTdvk8fLg+Y1K9GnTWOTNvvJi0F8s2Alpy4G4eLkSOu6VRnYsflz0a4/cPAgs+fO40paG7ZlSzp1aP+YNuxWFixeTEREJN558tC1cyeaNG5kss+27TtY+ssvBIeEprZhy/Fyn5eeizbs3sPH+WHhCi4Gh+Hl4U7HFxrQo80LT3YfvniFl98dy9Ipn+GbJ5fJZ2s372DBqt8IibyGTy4vOr7QkM4tGj0Xzzr7Dx7ip3k/cyUoCE8PD9q0bEGn9m0fmfdNW7exYPFSwlOvk26dO9C0UcNM9/9++kyWr1zNH2t+fQolyHpP65z89udGli1fSVhEBHly56JNyxa0a93yubhORMQCAhi3b99m2LBhHDhwgGLFirF06VJ+/fVX6tatS86cOR9/AKBhw4a0b9+eIUOGPOXcWp6wsDAOHTpEy5Ytszsr6Y5eCmXID0t5oWIJBresy6GLIUxcuZmk5BReblojwzQfL1jPtuPnGdq6HvnzeLHqr2MMmbaUGUN6ULFwAADfrdvOT3/u4bUWdSid35ftJy7w3tzVWFtZ0bxyyQyPawmOXgplyPeLeaFSSQa3rsehC8FM/HUjSSkpvPxCzQzTfDx/LduOnWNo2/rk987Jqj1HGfLdYmYM60XFwqYPdBE37/Lq1IVExcY/i+JkiaMXgxk6dQEvVC7N4DYNOHQ+iG+W/0FySgr9mtXJMM34JetZs+coA1vWpVR+P05eCeOHNVsIv3mHj3u3BWD3yQu8NW0xL1QuzdD2jbkQdpUpv27k9r0YRnZvkeFxLcXR4KsMWfAHL5QuyOAGFTkUFMnEP/YZr5M65R6bftaOo5wIu07l/D4m25cfOMPo1TvpU6sMNQP9OBZyja9++4vYhCT61338cbPTqdOn+ejj0dStU4eXXuzF8RMnmTnrJ5KTk+napUuGaXbs2Mn4CV/Srm0bKlWqxO7de/jq64nY2dlRv57x5fSWrVv5Ytx4WjRvTp+XenPr1i3mzp3HO+++x9TJk7C3t3+WxfxHZk96h8vnjtK213AcnVxZv+x7Jo9+mVFfrcDZNUeGaa5FBDHp474EFCpJj1dHA1ZsWj2biR++xDvjl6QHP0IunyZP3gL0eu1Tk/TuHrkyOGr2O3HmHCM/HU+D2jV4uWcXjp08w7Q5C0hOTqFnp7YZptm6ay+ffj2VTq2aUbXii2zfu4/PJ32Pna0djeoa6+V9h4/ywRdf06B2DQb27s7loBB+nLeQ23ejGDaw77Ms4t927NxF3hr/HY1rVOKVLq05cuY8UxesIDklhZfavvDItBeCQ3lz/LckJ6eYbM/l6c6MMSPM9l/221b+3H2ANg0yvp9ZCp2TzH09/lPOnj5F734DcXZ2ZvGCubw/8i2mfD8LVze3DNMkJyfzyYcjiYmJYdDrw0hKSmbe7Ol8POptvp7yA7apLxcvXTyPn38AQ998xyS9h6fXUy/XP+Xo70PVtTOx83B/7L4+7ZtSfu6XXJoyl2u/bcenbWPKzxpHSnwC4UvWAeBU0J9qG37i1p7DHOw+DNfigRQbMxw7Lw+OD/7oaRcnS3z71YdcOHOcbn1ex8nJhRWLZvDZ+68xbupCXFwffZ5SUlL4eeY37Nu1mToNTZ9X4uJi+eKDIVhZWdH31bextbPn18WzGPPuIMZNXYirW8b3s+x08vRZ3hvzOQ1q16Rfz64cO3WaH2bPJzk5mR6d2meYZuuuPYz9ejIdW7egSsXy7NzzF+MmfYu9nR0N69bCy8uTb8ePNUv367oNbN6xixZNMn8xaQmOnbvMsC9/pEn1Cgzq1JLDZy4yeeEqkpOT6dOmSYZpvpz7C+t27qd/u6aULJSPk5eCmb58A+HXb/LhwB4AhFy9zmuff0fZwgX4fGgfLodG8t3Stdy5F8N7L3d9lkX8206dPs2Ho8dQr05tevfqxYmTJ5n502xSkpPp2qVzhmm279zJuC+/ol2b1lSuVIlde/bw5cRvUtuwdQHYsnUbn4+fQIvmzejT+0Vu3rrN3Hnzefu9UXw76RuLbsMeP3uB/30xmcY1qzCgWzuOnj7Ht/OXkZySQu/2j35OuxAUwv8+n0RycrLZZ6v+3Mbn0+bQq20zqpYrxYlzl5g8ZzExcfH06Wg570gycvL0GT74ZCz16tSiT68eHD95iuk/zSE5OZlunTtmmGb7zl188eVE2rdpReWKFdm1Zy8TJk7GztaOBvXMn6OPHj/BilVrnnZRsszTOifrfvuDiVO+pUvH9lSqUJ7TZ88ybcYsYuNi6ZHJd1JELEu2BzBWrVrF/v37WbBgAd7e3uzbt4+RI0eycePG7M7ac+Gdd97Bz8/PogIY363bQXF/bz7r3RqAWiULkZiczMw/dtOzfmUc7e1M9g+9cZt1+0/wbucmdK1bEYCqRfNz+GIIi7cfpGLhAGITEpm/eR8961dOD4JUK1aAU8ERLNi636IDGN+t2UbxAB8+62N8kVarVCCJySnM/G0nPRtUyfh87DvOu11foGu9ygBULVqAwxdCWLztQHoAIyXFwOq9R/l6+UYMz7ZI/9r3q7dQPMCXsf06AFCrdBGSklOYuX47PRpWNzsnt+/F8Mv2A7zRvgl9XqgFQLXU0TmTVvzJ0PaN8XJzYeWuQ/h45WBsvw7YWFtTo2QgN6Oimffnbt7q8gJ2NjbPtJx/x3dbDlHc14vPOhhfstcq4k9iSgoztx+lZ/VSOD6ix/eZiBvM3H6EXK5OZp/N2H6EJiULMLxJFQCqFcrLlRt3WPjXSYsPYMyb/zOBhQrx9oj/AVC5cmWSk5NYvHgJ7dq2xcHBwSzNT3PmUKd2bV4ZONCYplIloqKimDtvfnoAY9HiJVSpUpmhQ15PT+fv58ewN99i719/Uad27WdQun/u0tnDHD+whUHvfkepCsZGeWCJinw8uBnbf1/MCx0GZphu67qfsXdwZNDIb3FwdAagaOmqfDy4GVvXL0gfXRF6+Qz5A0tTsKhlXx9pflqwlCIFC/D+cOPfs1rF8iQlJzF/2a90at0cBwfzh/np8xZRv2Y1Xu//EgBVK5YjKuoeMxcsSQ9grN+4Be/cOXl/+OvY2FhTpXxZbt2+w5KVa3m934vpL2gt0fSlayhWIIDRrxsDLTXKlyIpKYXZv26ga/MGOGbwgiMxKYklG7bw49LV2NvZmX1ub2dHmSKFTLaduniFP3cf4NVubSlfvPDTKUwW0TnJ2OlTJ9i3dzcfjP6cSlWqAVCydFle6duD9WtX0rlbrwzT7dy+hYsXzjNl2iwC8hUAoFBgIENffZmd27dQr4Fx1NulixcoXKQYxYpbbjstnZUV/i+2o8S4d+AJO2MWG/Mm4cs2cOp/nwNw/Y8d2HnmoNjHb6QHMAJHDCApKpr9HV7DkJjItQ3bSI6No/SkDzj/xTTigsOfVomyxLnTxzj013ZGfDSRcpWM9WOxUuUZPqA9f677hbZdMg/oBl06x9wfv+LiuZPY25vfs//auYnw0Ct8MXUh/vmM36WA/IEMH9CevTs30qhZh6dTqH/hp4VLKFyoIO+9ORSAqpUqkJSUzM9LV9CxdYsM2yYz5y2gXq3qDO7fx5imYnnu3rvHrJ8X0bBuLezt7ChZvKhJmjPnL7B5xy76v9iDMiVLPPVy/Rs//LKeYgX8GfPaiwDULFeCpORkflr5B92a1TOrX29HRbNi826GdGtN71bG0QVVSxcDYOqi1Qzp1gZPd1fmrN6Ii6MDX73VHztbW2qXL4Wjgz3jZy+jX9sm+OSy3EDovJ8XGNuw/3sLgCqVK5GUlMyiJUtp17ZNhtfJ7DnzqFO7FoMGDgCgcqWKREVFMWf+/PQAxqIlS6lauTJvvH5/RE6Anx9vvPU/9v61jzq1az2D0v0zMxavpGiBfHw01Fi+GhXKkJSUzJzla+nSojGOGbTXEhOTWLp+I9MX/5rhfRhgzvK1NKheicEvGl9CVylbkuDwCJat32jxAYy5Py+kcKGCjHxrOABVKlUkKSmJhUuW0b5Nqwyvk1lz51O3dk1eHfByapoKRN2LYvb8BWYBjNjYWL78ZjK5cnpx7fqNp1+gLPC0zsnCJcuoU6smA/oa2/4Vy5cjJDSMlavXKYAh8pzI9kW87969S+7cuSlbtize3t4YDM/bq1h5UEJiEvvPB9GwrGkjvEn54kTHJXDoYohZmtzuriwY8ZLJVFDW1lbYWFsTn5QEgL2tDXPffJHeDauapLW1tUnfxxIlJCax/9wVGpYrZrK9SYXU83Eh2CxNbndXFrzTl5ZVS6dvs7a2wsbGmvjE+2U9GxrJpwvX06paGca+1ObpFSKLJSQmsf/sZRpWKG6yvXGlksZzcj7ILE10XDyd6lam/kPnsYCPsUd46PVb6cd2srfHxvp+1ZbDxYnEpGRi4ix3hEpCUjL7L4fTsLjpVAxNShYgOiGRQ0GRmaZNTErm/RXb6F6tJAVymvdUnNqzaXrwIo2djTXxSeY9mCxJQmIix44epWZN01FbtWvXJiY2lhMnTpqliYiMJDQ0NIM0tQgLCyM0NJSUlBQqVqhAi2bNTPYJCDCO9AoPt+wXSQCnDu/C3sGJEuXu9+52c/eicMnKnDi0PdN03v6FaNi6T3rwAsDB0RmPnN5cjzTWRQaDgbCgs/gVKJ7ZYSxKQmIih4+fpE5103tDvZrViYmN5eip02ZpwiOvEhwWbp6mVnVCwyMICTNeAwkJiTg6OGJjc78+cXdzJTEpiZjYuKdQmqyRkJjIwZPnqFe1vMn2htUrEBMbx5HTFzJMt+vQcWb8spY+7Zrxeo92j/09BoOBCbMWUdDfl+4tGz12/+ykc5K5Qwf24ejoSPmKldO35cjhQaky5Tiwb2/m6Q7ux88/ID14ARCQrwD+AfnS0xkMBi5fukjBQMsP5AC4ly1G6W9HEzL/Vw73efux+zvl98O1WEEiVv5hsj18+W+4FCmAc2HjPT13k9pcXb/VZLqoiF82YGVjQ+6mlh0wBzh6cA8Ojk6UKV8tfZt7Dk+Kl67A4f27Hpl22jejSUlJ5uMJM3H3MH/ZXLl6PT4cNz09eAFga2t8SZmYkJBFJcg6CYmJHDl2IsP7R0xsLMdOmt9zIiKvEhwaTp3q1UzT1Kxhcs95kMFgYNK0meQP8KdTG8t+AZuQmMSBU+doULmMyfZGVcsRHRfP4TMXzdJEx8bRsVFN6lYsbbK9gK83AKFXrwPGaalqlS9pMl1Uo6rlSTEY2H3U/FxbioTERI4ePUatGtVNttepXZOY2FiOn8y4DRsSGkqtGqZt2Dq1ahEWFk5oaBgpKSlUqFCe5s1MRw0GBPgDEGbBbdiExEQOnjhDvWoVTbY3qFGZmNg4jp4+l2G6XYeOMnPpKl7q0JLBvTpluM9X773BkN6mI7PtbG1JsPAp+hISEzl67LjZdVK3Vtp1csosjfE6CaNW9YeurVo1CQsPJyQ0zGT7j7Pm4OnpSdPGz0eb5Gmek08/fp+B/V4y2cfO1pYEC7zXiEjGsiSAsXXrVjp06EC5cuWoUaMGI0eO5M6dOwDs37+fLl26ULZsWdq0acO6desoVqwYISEhjBw5kilTphAWFkaxYsVYvnw5vXsb5wpu1KgRy5cvf+I8XLt2jf79+1OmTBkaNmzIzz//bPL50qVLad26NWXLlqV8+fL06NGDY8eOpX9+9OhRevToQYUKFahSpQpDhgwhLOz+DSAyMpLhw4dTuXJlqlWrxqBBg7h8+XL65yNHjuTtt9/m008/pXLlylStWpXJkydz4cIFevToQdmyZWndujVHjhxJTxMVFcUHH3xA9erVqVSpEr179zbJ05QpU+jTpw8//vgjdevWpUyZMvTq1YsLF4wP2i+++CJ//fUXK1asoGFDyxhaHHLjNolJyeTPY/qQki+3cU7Oy5E3zdLY29lSKp8vbk6OpKQYiLh1l/G//EnI9dt0rl0BABtra4r65SGXuysGg4Ebd6OZ+ftu9p65TNfaFc2OaSlCrmdyPvKknQ/znhD2draUyp/3/vm4eZfxS38n5NotOte5X1ZfrxysGf0aIzo1MRuxYMlCrt9KPSemU8Tly208R1cir5ul8cvlyagerdIDFmk2Hz6NrY11+rG61q9K0NUbzPl9J3djYjl6MZifN+6hduki5HBxNjuupQi5FUVicgr5HwpA5PMyTstw+fqdTNP+sPUwSckGXmuQ8fegUG4P/DzdMBgM3ImJZ/mBM6w+coGuVSz7BXVEeDiJSUn4+fmZbM/r6wtASKh5MDQ4yPgS3ixN3rzGNCGhWFtbM3BAf2o89IC4a/duAPLns/w1ZCJCL5LL2x9ra9MRRbl98nE17HKm6eo07UrjNqY9Za9FBBEWfB5ff+MLxuuRwcTFRhN04Thj3mjNG90rMOaN1uzduirLy5EVwiKukpiURICfr8l2/9SXIMEPPcgBXAkJBTBL45eaJig1TfsWTQkJD2fRitVE3YvmxJlzLFu9nuqVKuDu5prlZckqoVevk5iURD7fPCbb/b1zAxAUlnFAtERgAX6d8il92zfHxvrxo9X+2L2fE+cvM7x3Z5OgsSXSOclcSHAQ3j55sXlohKKvrx+hoeadLNLTBV0hr5+/2XbfvH6EhhjTRYSHERsbw/mzZ3htQG86tm7CawN6s3nj71lbiCwSGxTOluJNODXiC5JjHh+kdC1uXJcs+txlk+0xF64YPy9aEGtHB5wL+BN97pLJPgnXb5F4JwrXoo9et8gShIVcJo+3H9YPXSPevv6Eh155ZNpXh3/Mh+Omk69gkQw/d3ZxpWiJsgAkJSYSdOkcP3zzCW7uHlSr3TjDNNkpPCKSxKQk/FPbFWn8fI3Tdz7qnuNvds/JPM3m7bs4dfYcr/fva/bdtDTG+jXZrH4N8DHWr1fCr5ql8cuTk5F9u1Agr7fJ9q0HjmJrY0M+3zzEJSQQfv2m2XE93V1xcXLM8LiWIiI8IpM27P326MOCg9PasKbXVt68xusmODQEa2trXun/MjUferm7a/ceAPLnt9x1Y8Iir6Xeh03/5v4+xr/vlbCIDNOVCCzI8u/G0adjK5MOJQ8q4J8X3zy5jM86UfdY9ec21m/dRYcXGmRtIbJYeETadZLJ3zyD6yQo2Pj84+/3cB2U9nx0P82BQ4f5c9NmRgwbgvVzssbD0zwn+QMC8EntMH03Kop1v/3BH5u20Lpl8ywvh4g8Hf96/oObN2/y+uuvM3LkSOrXr09ERARvv/0248ePZ+DAgfTr1482bdrw+eefc+rUKcaMGZOedtSoUXh6erJu3TqWLVuGo6Mjrq6uDBkyhKVLl1K0aNFH/GZTS5YsYdiwYYwaNYodO3YwduxY8uTJQ5MmTfjjjz/45JNP0oML165dY8yYMbz//vusXLmS5ORkXnnlFbp06cK4ceO4e/cuH374Ie+99x6zZ88mJiaGF198kVKlSjF//nysra356aef6NKlC6tXr8bb23gjXrduHT179mT58uWsWbOGSZMmsXr1akaOHIm/vz+jRo1i9OjRLF++HIPBwIABA3B0dOSHH37A1dWVlStX0r17d5YsWULJksah9vv378fBwYEff/yRxMRE3n77bUaPHs3cuXOZMmUKgwYNwsfHhw8//PBRp+eZuZe6DoOro+nQPufUIaHRj+kF/9Ofe5i8eisAHWuWo3qxAmb7bDhwipFzjC/T6pQKtOhFvO+lltfV6eHzYfw5Ou7REf+fft/F5FVbAOhYqzzVi99/0M3h4kQOF/MpgyzdvdSeyy4PnxNH+9TPn2ykxKZDp1i95zDd6lfFPfU8VC1ekD5NazHxlz+Y+IuxR2TxAB8+75/xfJmW4l7qdeDqYBqIck4NTEXHZ9yD6HjoNebsOs6svi2wt330A+7RkGv0nmmc/7RU3lz0rlHmkftnt+iYGACcnU0DT2k/x6R+bpomGgCXh9M4OWWaBow91mbMmElgoUJUqVI5w30sSVzMPRydzF+gOzo5Exdz74mPk5AQx7xvR2FnZ0+95qnzTV829mi8cTWU9r3/h42NLX9tW8X8b0eRlJhArcYZ937LLunXiZNpXeiU+nN0TKx5mmjjNmdn0zTOD6WpWLY03du34fvZP/P9bGOniCKFCvDBW5a93ta91Py7ODmabHdO/Tk61vycAOTx8vhbv2f+6j8oWyyQSqWevK2WXXROMhcTE21Wz4LxOxSbSZ2Zli6jAIaTk3N6uksXzwMQGRFO3/6vYmtry+aNvzPpqy9ITEygabNWWVSKrJF46w6JtzLvMPAw2xzGejjprmm9mxRlvBfZurtil8Mtw33S9rN1t9xgaJqY6Hs4ZXiNuBAbG/3ItAEFnnz0zVefvsWxQ3uxsrZmwJBReHpZ3rpL0dHGa9vlMfePDNM4PZwmtf7J4Hu2aMVKSpcoRvkylvuMk+ZeTFq7/qH6NfVZMPoJRyxu3neENdv30aVJHdxdnLl++y4Arg8dF8DF0eGJj5sd0tqj5m3YzNujadfJw2mcnqANO33mLAILFaJqZcttw6bdh83bXmnfg4z/nnlyPvnC5MfPXmDgKON0fiUCC9C9ddN/ktVn5n59kslzS+w/v06io6P5avJUevfsjv9DgTRL9jTPSZpTp8/wxoiRABQtUphO7TNeL0+eLcOTzt0p/2n/OoARGRlJQkICefPmxc/PDz8/P6ZNm0ZycjKLFy8mV65cfPzxx9ja2hIYGEhkZCTjx48HwM3NDWdnZ2xsbMid29hLI0cOYw9kLy8vHB3NGyyZady4MYMGDQKgYMGCHD58mFmzZtGkSRM8PDwYO3YsbdoYp9nx8/OjU6dOfPLJJwDcu3ePW7dukSdPHvz8/AgICOCbb77hxg1j7/i1a9dy9+5dJkyYkD7n9dixY9m7dy9LlixJXzzcw8ODd955B2tra/r06cOkSZNo0aIFjRoZh+x16NCBzz77DIA9e/Zw+PBh9uzZg4eHBwBvvvkmBw8eZO7cuXzxxRcAJCUlMX78+PTz0q1bNyZMmJD+++zs7HB0dMTLyzLmAE15zBRgVo+J/tctXZjyhfw4dCGEHzbsJC4xKX0tjTSl8/sy640enA29xrdrt/Ha90uYObTHY4+dHVJS/uX5KFuE8oEBHLoQzA/rthvPR5/n+yb7uGvE2vrxf8eNB0/y7sxfqBCYj2Ed7y8OOHbBGn7deYgBLepStXhBwm7cZtqaLQyeNJ8f3uyNk4UubPf47435tvjEJD5YsZ2e1UtSxj/3Y3+Hbw5XZvZpTuite0zddIDeM9ew6JW2ONlb5jz+hpSUR36e0XfH8LjvWwbXVnBwMO+9/wHWNjaMGvUe1hbWazolJQWDwfRcPPzzg6yeMP9xsdFMn/AGV84f5+U3v8Irt7HXUuESlXjlnakUKVUlfaqpEuVrEXXnJuuWfEvNRh0tqq593HVibWV+PlIecf4eTPP19zNZt3Ezvbu0p2LZ0kRcvcbsRcsYMfpzJo55H8cM5uC1BI//Hvz7a/zomQucuRTM+P8N+tfHehZ0ToyM9YnBbFtmHvVdf9Q5TatrS5Yuy6iPxlKmXHkcHY0vEipUqsKd27dZOG82TV5oaVH1yd/1uOvGkJICj93HsqbO/bv3nIzq2H+qXdd+tOzwIru2bODHSWNISU6hflPLmiL1n7Rhn/Sek+b4qTOcu3CJMe89fhozS/DYc/IE3/FN+47w/rdzKV+0EEO7G//mj5tW2pLrjsc9/2V0Tv7udQIQFBzMex98iI2NDe+/N9Li2rAPeuw5eYLnv8fxyZ2Tb0e/TfjVa/yw8FcGjvqcORM+tNz22mO/O+Z/z0fVxwBWqWm+mz6T3Lly0bGdZdWhj/M0z0maPHny8OXnnxIRGcnseQsYNmIk333zNY6OlnmdiMh9//rNVYkSJWjVqhWDBg0id+7c1KpVi/r169OkSRPOnz9PyZIlTRa6rFq16iOO9s9VqlTJ5Ody5cqxdauxJ3+VKlW4cOEC3377LRcvXuTKlSucOXMm/aEtR44c9O/fnzFjxjB58mSqV69OvXr1aN7cOJzs5MmT3LlzhypVTOeRj4+PT5/OCcDf3z+94ZAWAU6bVx3A0dGRxNS5GE+cOIHBYKBBA9OhjQkJCcTH3++BnitXrvTgBRiDPokWPJ9j2kiD6HjTXvRpIy/cnB59YyiS1/gitlLhfCSlpPD9uh0MaVUXX6/75yAgtycBuT2pVDgfro72vD9/LQcvBFOpsOUNm00/H3H/9HwYh9VWKpJ6PtZsY0ib+ibn43mT1pMq5qHRJ9Hpo1UeHbic9+duJi77ncpFCzDxtW44pC7oFnnrLr9sP8DLzeowuO39KdVKF/Cj4+jvWLnzEN0aVMvssNnKNXX0SXSC6Xc7beSFm6N54GXqpoOkGAwMrFeepGRjXZbW5EtKTsHG2srk4S6PuzN53J2pXAD8Pd3oN3sdf568ROvyGU/rkN2cXVwA4+JzD0rrReOS+rlpmtTRGQ+lSevd6OJsmubI0aOM+XQsTk5OjP/i8/TpqSzJhmXTWL/se5Nt5as34e4d8+nn4mKicXJ+fG/eW9cjmDZuMFfDLtN32ATKVrn/fXHLkZPSleqZpSlVsS5nju0h6s4N3D0sp1esSyZ/85i0HvcZjFJzfYI0127cZPXvG+nVqR0v9+yavk+JIoV5acj/WPfnZjq0NF1HxVK4pvXwfGg0W1pv1cfVsU9i095DuLs4U6t86cfvbAF0TowWL5jL4gVzTbbVrF2XO7dvme0bExuDs0vm9YmziwuxGfSENI7oMNa1Hh6eVKlWw2yfSlWrceTwAW7fuoWnhXTA+SeS7kQBYOtmem9JG1WRdOde+siLh/dJ2y/tGJZixaKZrFg0w2Rb1ZoNuXvbfArY2JhonJzNy/VPFStZHoDS5apw/Wo4K5f+ZHEBjMzuOffbGeYjVdK2Pbx2UtrIL5eHpjjdums3bq4uVK9cIWsy/ZS5Oqe2683Kl1q/Opvfhx/08/rNTPp5JZVKFubL4f1xSB19nDaiIzrOvGd+dGzcY4+bndL+pg+3YdNHjWbQhk1ro2be7jW9To4cPcYnYz/DycmRcZ+Ptcg27INcXdLuww9dJ6ltr6z4e+b28iS3lyeUKkZe79y89uF4Nu0+QIv6NR+fOBuk1w0xmdQnGUx/7PLY5yNn9vy1jy3bdvDtxC8xGAwkJyenBxqTk5OxsrKy2GDX0zonD8qV04tcOb0oV6Y0vj4+vDVyFNt37qJJI8ueckxEsiCAAfDVV18xePBgtm3bxq5duxgxYgSVKlXCwcHBrGeX/VPqAf1wJZySkpL+u9KmcWrdujUVK1akW7dunD17Nn0EBsD//vc/evTowdatW9m9ezdjxoxhxowZ/Prrr6SkpFCwYEG+/970JRKYDlWzszNfhyCzm0NKSgqurq4ZrvPx4Dl6WufraQnI5YmNtRXB126bbA+6Znw4LuiT0yxN2M077DlzmZaVS+Fgd/+SLBFgnBv22p17ONjZsfPkBWqWLETOBx4Ci6fuc/XOk0+b8iwF5E47H6YvB4KuGR8EC/qYvwgMu3GHPacv0bJq6UzPx/McwEg7J0FXTR+G037O6JyAsUfG+MXrWbj5L5pVKc2YPu1MFvWLuHkHgwHKPxTICsybBw8XJy6EXcvikmSdAE83bKysCL5p+iIj6KZx+HzBXB5maf48eZmwO/eo8dk8s88qjZnNJ23r0KRkAbacCaK0X27y5XRP/7yEr/F7eDUq8+lBslteX1+sra0Je2hxy7S1iR4MDqcJ8PdP36dwYGD69vDUYwTku59m85YtfPX1RPz9/fn0k9HkymU5L+UfVKtxJ7OAwtF9Gzl9ZBcpKSkm95hrkUF4+xV6+BAmwoLO8u3YQSQmxDF41A8ULmk63cD5Uwe4ERlCtfqmI70SE+KxtrbB2dWy6p68Pt7YWFsTGm66hkFouHEu5fz+5sPmA1LnyA0Nj6RoofvT8oU8kCby2nUMBgOlS5hOBVQgnz853Ny4FGS+Boul8PPOjY21NcGRpvODh0QY68ACfv/+JceOg8eoW6Ucto+Zus5S6JwYvdC8FVWqmgYU9u7ewaED+83qk/CwUPwDMu8Y4ucfwMUL5ouuhoeFUaSYcY2lE8ePEhkRTsPGpgvOJsQnYG1tjaub278pTra7d9a4roVzYH7uHr6/sKhLoHEtpXunL5AcHUNsSATO/8fefYdFcfRxAP/Se1XpTVC6SLP33nvvPVFjLEmM3Vhi7DVqrLH33k2MFaTYABUFFFE6iCjS671/HJwed2ADOV6/n+fheWRvZ5gdb3Zn97czYyO+vpJyNX0oaWsirYQF5CtKy3bd4VZHfGHxu/7XcT/AT+I7khAXBRPzL1vDI/zJI7xMiEX9YutdWNnY4UnIgxJSVRxTI0PIy8uLrjFFRNccc8lp1SxE15x41LSpLpmm2HXK7/Y9NKpXV+wFQFlmZlC18PwqvoZd0e/F17koIhAIsGL3cRz69wbaNXDHvLGDxPr16qoqMNDTQXS8eL7JKalIz8pG9RLylQWiPmxc8T6s8HcLKX1Ys8LvQWxsnFgftiiP9/u9V69dx4rVa2BuZobf589D1aqS99eyxtTQAAry8oiOL34dFv7+udfhjMwseN0JhGON6jB/b30Nu+rCc27S6zefV+CvwMTYqPTviZnk+aRoOqiYuDjUsHnX5y/Kw8LcDLv3H0ROTg7G/DBRIn37br3QplUL/DplUpkdR1kqrzrJzMyEr/8t2NnawtTk3XetZuH+r5Ilg/REJHu+OPQaFBSEP/74A9bW1qIFp//44w/4+fnB2NgYDx8+RE7OuzetHz58WGp+nzscNDg4WOz3u3fvomZN4ZvFW7ZsQe/evbFkyRIMGjQIderUES2UJRAI8OzZM/z222+oUqUKBgwYgHXr1mHbtm0IDw9HSEgIbG1tERsbCy0tLVhaWsLS0hImJiZYuXIlbt++/VnltbW1RVpaGnJzc0V5WlpaYuvWrbh8+fJn5SkLVJQU4W5jjstBoWJDAP8LCoWWmgqcLU0k0sQlp2D+/gu4EhQmtt03JAJKigqwMqyC7NxczN57Did970vsAwC2JuILvMkKFSVFuNewwOXAYvURUFgfViXUx75zuBIYKrbd9/GzwvqovG8rAoCKkhLca1riSsBjsTq5fO8xNNVU4Fxd+jydf568jANXb2FI6wZYPKqX2E0OAJgb6ENBXg73nogvKPk8Pglv0jNhWvXj51D92lSUFOFuaYTLj5+Lf08eP4eWijKcTSWniFo3sDX2j+kq9uNgXAUOxlWwf0xXNLMzh4K8HOaf9sZOH/GHAD7hwsXMbGX4u6SsrIxazs646eMjVifeN29CQ0MDdlLWSDIxMYGRkSG8vW+Kbfe+eROmJiYwKlyv6Nbt21i+YiUcHBywcsVymQ1eAICOvgEsbJzEfuxdGiIrMx2Pg94dZ+rbZDx9dBf2LiW/ZfY6KR7rF46BHOQwZeEeieAFADwJvoW9G2eLLQZeUFCAQL9/Ud2uNhQVJQP1FUlFWRkuTg644XdL7Hty3dcfmhrqcLCVnH/dzNgIxoYGuH7TT2z7DR9/mJkIPzMzNoKCvDzuPwoR2ycyOhYpqakwMZTdBycqykpwdaiBa7cCxerkqn8ANNXV4FTD6ovyT0lLR1R8Imrb2nx4ZxnBOhHSr1IVNWztxH5c3T2RmZmBgLvv+rMpKW/w6OF9uLqXPJ+6q7snoqMiERX5XLQtKvI5oqNewNVNmO7h/UCsW7VUtKg3IDyf+Ny8DnsHJ6kv/lQmGeGRyHgWBeOe4gEaox5tkRYWgcwXwmtt0n83YdCxOeSV3x2vUc92KMjLQ9JV8fNQRdOrUg3WNR3Efmq51kNWZgYeBLwr69uU1wgJDkQt1y8b2Xr/rg/+WjkXr16+C0IX5Ocj+P7dT1o/42tRVlZGbScHePn6i51Lbvj4Q0NDHfZSrjmmJsbCa46Pr9j2Gz5+MDMxhpHhu3uYt6mpiI6Ng7ODXfkdRBlTUVaCm70Nrt6+L1YnV24FQVNdDc7FgndFNhw6i0P/3sCgDs3x+w9DJfr1AFDPxR5eAcHIyc17l+/tICjIy6OOk2yOIAZK68P6FPZhJcte1E/1ulm8D+tTrA97B8tWroKjgz1WLl9aKYIXQOF12NEW1/3vitXJNb+70FRXg2PNzwuGKigoYPFfu7Dv9D9i228FCZ8N1bCUfOAtK5SVleHi7ARvHz+xOvHy8YWGhrrUex1TE+PC74mP2HYvH1/R92TowP5Yv3qF2E/HdsIpl9evXoGhA/uX74F9gfKqEwUFBaz6cwOOHD8hts+dgEAAQHUr6ecpIpItX/xqh6amJvbv3w8lJSX07dsX2dnZOH/+PKysrDB+/HhcvHgRM2bMwLhx4xATE4PVq1eXml/RiIaQkBDo6elJnSZEmnPnzsHe3h7NmzfHf//9h0uXLmHXrl0AAGNjY9y7dw/BwcHQ0tLClStXsHfvXgDCKZv09PRw7tw5ZGVl4bvvvoO8vDxOnDgBHR0dWFtbo3r16tiyZQsmTpyIqVOnQlNTExs3bsSNGzcwadLnRa+bNGkCBwcHTJkyBbNmzYKxsTH279+P48ePY/v27R+dj4aGBmJiYhAfHw8jI6PPKktZG9OuIb7fcBBT/z6J7vVdEBgRg12X/TGpa3OoKSshLTMbz+KTYFZVD/pa6nCzNkd9OyssOXoJaVnZMK+qhxvBT3Hoxj2M69gY2uqq0FZXRff6Lth88SYUFeRhb2aIe+FR+PuSH3o0cIGNsew+gBzToTG+X7cPU7cdR/eGtRH4LBq7/vPFpG4ti9WHLvS1NOBmY4769tWx5PA/wvqopocbD57g0PW7GNe5KbRleMj0xxrTsSm+X7MbU7ccQfdGbggKj8KuSzcxsUdrqCkrIy0zC8/iXsKsmj70tTQQEhWHHf94w8nKBG08HPEgQvztZ2vjatDX0sCgVvWx+19h56WBow1iX73B5rPXYVxFBz2buFfEoX60MU1r4/vdFzH1yFV0d6uJwKhE7Lr5AJNae0JNWRFpWTl49vINzPS1oK+hhppSgg8ahQ9HnEzftYeRTWrjr6v3oK+hijpWxghLSMbma4Gob22CxjVlt1MPAAP698eMWbOwaPFitGvTFo8eP8bRY8cxcvhwqKqqIj0jA5GRkTA2NoZu4VR7AwcMwKrVa6CtrYX69erB188fN7y8MGPaNADCc/6ateugrq6GAf36ITIyUuxvVq1aFdVkOKABADUcPVHTqQ52r5uOboN/goaWLs4f2Qh1DS00adtXtF9cdDjycnNgXt0BAHB0x2KkpiSj35g5yMpIQ0RYkGhfVXVNGJvZoFHrPvD+9zA2L/0RHfv9ABUVNXj9exBxUU8xaf7Or32oH2Vo3x74ae4i/LZsDTq2bo7gkDAcPHEW3w0dAFUVFaRnZOB5VAxMjQyhqyMciTSsX08sWbcJ2pu2o1FdD3j738HVm3747Rfh22q6Otro3bUDDp4QLnzvWdsFCS9fYufBYzAyqIrObVuWWB5ZMLJHB0xYtA4z12xDl+YNcD/sGfaevYQfBnSHqooy0jIyERETBzPDatDT/rS34MMjhQ9lq5vJ9nQVxbFOpHOqVRvOLq5YvfwPDBv5HbS0tXFw3y5oaGiiQ8d30/dERT5Hbm4urG2ED94aN22Oo4f2YcGc6RgyYgwAYM+OrbC0skbjps0BCEd8XDx3Govmz8LAwSOgoqqKC+dOIfL5c/yxbM3XPtQvpqilAU3HGsgIj0ROknBk7ZNFG1B7+xLkJr9BwpkrMOzaCiZ9O+LewMmidOErtsGkXyfUObsNEWt2QMPWCnYLf0LUtsPIioor4a/JDntnNzjUcsfGlb+h//AJ0NTSwYkDW6GuoYnWHXuK9ouJfIbc3FxY2Xz8w/eW7Xrg8sUTWLnwJ/ToPxqKSkr47/xRRL94imnz15XH4XyxwX174Ze5CzF/6Sp0aNMSwY9DcejEaYwZOkh0zXkRGQ0TY0NR32Ro/95YunYjtLW2olFdT9z0v41r3r6YM3WyWN7PXgj7JFYWst0/K25U97YYv3gjpq/bia7N6uH+kwjsOXcFE/p1KTy/ZiEiJh5mhlWhp62J0OfR2HX2MhytLdC6nhsePhV/+ai6qRE01VUxrHMr/OtzDxOXbcKgDs3xIv4lNh4+ix4tG8Coquy+hAMAA/v3xfRZc7Bo8VK0a9sajx6H4Ojx4xg5fFiJfdhBA/pj5Zq10NYq7MP6++OGlzdmTBOuh5KTk4PV6/6Eupoa+vfrW+n6sMN7dcbEBSsxa+Vf6NKyCe6HPsW+0/9g/KBehW0nExHRsTA1NICezsddh1WUlTC0R0dsO3wKetpa8HC2x5PnUfj7yGnUcXFEA7da5XxUX2Zgvz6YNvs3LFyyHO3btMKjxyE4cvwkRg0bAlXVovNJFEyMjUTfk8ED+mLFmj+hraWFBvXqwsfvFq573cSsX38BABgZGooCXkX8bwlfUrCrKXuB4eLKo06UlZXRv3cv7N5/ELo6OqjtUgvPIp5jz4GDcHetjbqeHqUViYhkhJzgQyvlfISrV69i/fr1ePbsGeTl5VG/fn1MmzYNFhYWCAkJwaJFixAYGAgzMzO0b98eGzduxOXLl2FmZoY///wTJ06cwJUrVwAIL8wTJkyAj48PfvrpJ4wcOfKDf79ly5bo3LkzAgICEBAQAFNTU0ycOBGdOnUCIFykde7cuQgMDISysjLs7e3Rr18/TJkyBfv27YOnpycCAgKwcuVKPH78GPn5+XB1dcXUqVPh5OQkymPZsmXw9fVFfn4+nJyc8NNPP8HdXfhQdPr06YiJicGePe+mc7Gzs8PixYvRs6ewc3/8+HHMmDEDoaHCN+uTk5OxfPlyXL16FZmZmbCxscGECRPQsqXwwUjxupGWx7Vr1zBt2jQIBAL4+vpCQeHTpy7I+nfHJ6f5kMtBofjrvDeeJybDQEcT/Zq4Y1gr4Vtat5+8wOh1B7BgUEd0q+8CQLj+waYLN/FfYChevk2DRTU9DG5RBz0b1BblmZuXj52X/XHa/wHiXr+Fka4WejVyxbCW9cpk4a8iqm1HIOvy7g/v+AkuB4bgr7NeeJ74CgY6WujXzAPDWtcHANwOe4HRa/ZiwZDO6FZ4vOlZ2dh0zgv/BYbgZUoaLKrpY3DLuujZyFVq/kV5bJs8GHVsy/4NAtVWQ5F57UCZ5nkl4DH+OnMVzxNewUBXC/2a18XQNsK3x2+HRmDMql2YP6wbujV0w8bTV7Dl3I0S89r60zDUsasOgUCAfZf9cPTGHcS8eoOqOppo4GCDCd1bQV/K/NNfQq35AGQdWFqmeV5+/Bx/XQ3A81cpMNBSR7+6DhjWUNjxvh0Rh9G7LmBBtybo5ib9rbNRO84DALaP6CjaJhAIcOROKA7eeoTo16nQU1dFh1rWGNfcTWyKsrKgOmAaIsKflmmeN318sGfvPsRER6NK1Sro0rkzehWeU4Pu38e06TPw05TJaNvm3WLu585fwLHjx/Hy5UsYGxmhb9++aN1KeF4NDAzC9JkzS/x7gwYOxJDBg8qs/NVtauDfoJwP7/iJMtJScHz3cty/fQWCAgGs7V3Rc9ivMDR59wbb2nkjkPwyFvM3/IO8vFz8PKQuCvLzpOZXw9ETk+YJrwUv4yNxev8ahD++i6zMDFjaOKHzgImwsS+bIGDb2sqIDwkok7yK3PC9hR0HjiIqJhZVq+ijR8e26Ne9MwAg4EEwJs9eiOkTx6JDq+aiNKcv/oeDJ8/iZdIrGBsaYFDvbmjXoqnoc4FAgKNnLuD0xf8Ql5CIKvq68HR1wZjB/UWBkLJiZO+GNwFXPrzjJ7h2KxBbj57Fi9gEVNPXQe+2zTGos3CalrvBYRi/cDXmjB2Kzs0l1yg4e80XCzftxol1v8PEQPztzv9872LW2m04tPI3WJmW34sTum4tWSfv0XVriceFo+fKWlpqKv7euhH+fjchKBDA3tEJo74bD1Ozd1NIzZo2BYkJ8di6811f4OXLRGzfvB6BAXehqKAIV3dPjPxuPPT139VPXGwM9uzciuCHD5CZmYGaNe0waNgoODp9+UMlBxtTnFMqnzfV9ZvWRYPLe+DbagiSb9wS2xY0ajqid797i9NiTD9YTxkJVXNjZDyLQviyLYjZd0osP71GHnBY+iu0azsgJ+k1YvadQti8dRDkST8nf65OuaG4HfqmTPMEgPS0t9i7fQ3u+t2AQFAAWwcXDBo1BSZm7/qcv88ch6TEOKzZdlJqHpNHd4eDszu+nzxXbHtifAwO7lyPkOAAZGVmwMbOCb0HfS9aE+NL1bHTRWzo/Q/v+Am8fP2xc/9h0TWne8f26NujCwAg8EEwpsyah2mTxqP9e3Oqn754CYdPnEZi0iuYGBlgYO8eaNtCfIrIq94+WLBsNXZtXAMLKVMglhUTOxek3rlYpnlevR2Ezccu4EVcIgz0dNGnTWMM7iTse9159ARjF63Hb98NRJdm9bDp6HlsO/FPiXltmjUBno7Cvm5ASDjW7j+FsMgY6GpqoGPjOhjbu2OZT9en5dkez5+GfXjHT3DTxxd79u1HdHQ0qlSpgi6dO6F3zx4AhGtY/DpjJn6ePAlt27ybQu3chQs4evwEXr5MgrGREfr17Y3Whc8GAoOCMG3m7BL/3uCBAzBk0MAyK79VDVskP/Aus/wA4Jr/PWw7dAqRsfGopq+LXu1bYmBX4Si2ew9D8MO85Zj9wwh0atFYIu25q974fcMOHN+4FMYG7wI1AoEAJ/69jmMXLyM64SX0tLXQtnE9jOrbTbSmSlnRr9UYkU8ef3jHT+Dt44fd+w8gOjoGVapUQddOHdCnZ3cAwu/JLzPn4JfJP6Jd61aiNGcv/IMjx0/iZVISjI0M0b9PL7RpWfIaDrv3HcCeA4dw6ezJMi07AFjUdKgUdSIQCHD2wj84ffY8YuPjoaOjjZbNmmLowP5lOm27RU2HMsvrW3LzkWxOCS/LGjl+eO3L/zdlEsD4FP7+/hg6dKgogEEVrzwCGJVZeQQwKrvyCGBUduURwKjsyiOAUdmVVwCjMiuPAEZlVx4BjMquPAIYlVl5BjAqq/IMYFRW5RXAqMzKI4BR2ZVHAKOyK48ARmVXHgGMyq48AhiVXXkEMCozBjA+DwMYn+5bDGB88RoYREREREREREREREREZa1s5w8pYwsWLMCJEydK3WfDhg1o2LDkRUuJiIiIiIiIiIiIiKjy+eoBjHr16onWb/iQCRMmYNiwYaXuY2BgUBbFIiIiIiIiIiIiIiIiGSLTIzD09fWhr69f0cUgIiIiIiIiIiIiIqKvTKYDGERERERERERERET0/0cAuYouAlUCXMSbiIiIiIiIiIiIiIhkDgMYREREREREREREREQkcxjAICIiIiIiIiIiIiIimcMABhERERERERERERERyRwGMIiIiIiIiIiIiIiISOYoVnQBiIiIiIiIiIiIiOjbUiCo6BJQZcARGEREREREREREREREJHMYwCAiIiIiIiIiIiIiIpnDAAYREREREREREREREckcBjCIiIiIiIiIiIiIiEjmMIBBREREREREREREREQyR7GiC0BERERERERERERE3xYB5Cq6CFQJcAQGERERERERERERERHJHAYwiIiIiIiIiIiIiIhI5jCAQUREREREREREREREMocBDCIiIiIiIiIiIiIikjkMYBARERERERERERERkcxRrOgCEBEREREREREREdG3RSCQq+giUCXAERhERERERERERERERCRzGMAgIiIiIiIiIiIiIiKZwwAGERERERERERERERHJHAYwiIiIiIiIiIiIiIhI5jCAQUREREREREREREREMkexogtARERERERERERERN8WgaCiS0CVAUdgEBERERERERERERGRzGEAg4iIiIiIiIiIiIiIZA4DGEREREREREREREREJHMYwCAiIiIiIiIiIiIiIpnDAAYREREREREREREREckcxYouABERERERERERERF9WwogV9FFoEqAIzCIiIiIiIiIiIiIiEjmMIBBREREREREREREREQyR04gEAgquhBERERERERERERE9O24/CCrootQ6bSqpVrRRfjquAYGITrsYUUXQaaY2TrjTeC1ii6GTNF1bY60TTMquhgyRXPsYmRd2lnRxZApqm2G83xSjJmtMzK2z63oYsgU9VELEBYeWdHFkCm2NhbY7833Sd43sLEcMvf+UdHFkBlqg2ci69Cyii6GTFHt9ytuh76p6GLIlDp2ujinZFfRxZApnXJDcT04o6KLIVOaOakj698dFV0MmaLadgTiQgIruhgyxdjeFY27XK/oYsgU7zPNcCM4vaKLIVOaOmkgNvR+RRdDZpjYuVR0EYj+b3EKKSIiIiIiIiIiIiIikjkcgUFEREREREREREREX5VAIFfRRaBKgCMwiIiIiIiIiIiIiIhI5jCAQUREREREREREREREMocBDCIiIiIiIiIiIiIikjkMYBARERERERERERERkcxhAIOIiIiIiIiIiIiIiGSOYkUXgIiIiIiIiIiIiIi+LQJBRZeAKgOOwCAiIiIiIiIiIiIiIpnDAAYREREREREREREREckcBjCIiIiIiIiIiIiIiEjmMIBBREREREREREREREQyhwEMIiIiIiIiIiIiIiKSOYoVXQAiIiIiIiIiIiIi+rYIIFfRRaBKgCMwiIiIiIiIiIiIiIi+YdnZ2Zg/fz4aNGgANzc3/Pzzz0hOTi41zb179zBkyBB4eHigSZMmmDVrFt68eSP6PCEhAXZ2dhI/x48f/+hyMYBBRERERERERERERPQNmzdvHry9vfHnn39i165dePbsGSZOnFji/hERERg1ahTs7Oxw+PBhrF69Gvfv38ekSZNE+4SEhEBFRQVeXl7w9vYW/XTs2PGjy8UppIiIiIiIiIiIiIiIvlEJCQk4efIkNm3aBE9PTwDAqlWr0L59ewQEBMDNzU0izcmTJ2FgYIBZs2ZBTk44Hdhvv/2GQYMGISoqCubm5ggLC4OVlRUMDAw+u2wcgUFERERERERERERE9I26e/cuAKB+/fqibdWrV4ehoSFu374tNU3Xrl2xdOlSUfACgOjfKSkpAIDQ0FDY2Nh8Udk4AoOIiIiIiIiIiIiISMa1atWq1M8vX778WfkmJCRAT08PKioqYtsNDAwQHx8vNY20wMTWrVtRrVo12NnZAQDCwsKgp6eHQYMGISIiApaWlhg3bhyaNm360WVjAIOIiIiIiIiIiIiIvqoCQUWX4NsRHR1davBj0qRJUFZWltiuoqKC7Ozsj/obS5cuxbVr17B+/XooKSkhLy8Pz549Q40aNTB9+nRoamri3Llz+O6777Bjxw40aNDgo/JlAIOIiIiIiIiIiIiISMZ97ggLQ0NDnD9/vsTPr1+/jpycHInt2dnZUFNTKzXv3NxczJ07FydPnsTChQvRunVrAICioiL8/f2hoKAAVVVVAICzszOePHmC7du3M4BBRERERERERERERPStU1JSKnUtitDQULx58wY5OTliIzESExNhaGhYYrq0tDRMmDABd+7cwapVq9ChQwexzzU0NCTS1KxZE97e3h9ddi7iTURERERERERERET0jfLw8EBBQYFoMW8AiIiIQEJCAurUqSM1TU5ODr7//nvcv38f27dvlwhePHnyBO7u7vD39xfb/vDhQ9SoUeOjy8YABhERERERERERERHRN8rQ0BCdOnXC7Nmz4e/vj/v37+Onn35C3bp14erqCkAYsHj58qVoqqnNmzfj7t27WLhwIaytrfHy5UvRT05ODmxsbGBtbY0FCxbgzp07CA8Px+LFixEYGIhx48Z9dNk4hRQRERERERERERER0Tds4cKF+OOPPzBhwgQAQNOmTTF79mzR5wEBARg6dCh2796NevXq4ezZsxAIBPjpp58k8iraZ9OmTVi5ciUmT56Mt2/fwtHRETt27ICtre1Hl4sBDCIiIiIiIiIiIiL6qgQCuYouAr1HXV0dv//+O37//Xepn9erVw+hoaGi3//5558P5lm1alUsXrz4i8rFKaSIiIiIiIiIiIiIiEjmMIBBREREREREREREREQyhwEMIiIiIiIiIiIiIiKSOQxgEBERERERERERERGRzGEAg4iIiIiIiIiIiIiIZI5iRReAiIiIiIiIiIiIiL4tAkFFl4AqA47AICIiIiIiIiIiIiIimcMABhERERERERERERERyRxOIVWOhgwZAlNTUyxZsqRM8jh+/DhmzJiB0NBQAMDr16/x33//oU+fPmVV5DJz514g/t6zH88jo6Cnq4tundqjT4+ukJOTKzHNlete2HvoKOISEmFkUA39e/dAu1YtxPbpN3wMkl4lS6Q9vncHdHS0y/w4yopf0CNsOngSz6Jjoa+jjd7tmmNQ5zal1keR0IhIjJi1GEfXLISJQVWxz57HxGP9vmO4+ygMivLycHO0xaQhvWFqWK28DqXM+L5IwMabwQh/lYoq6iroU9saQzxqllgnUW/S0H3HvxLbbapo4/DQ1hLbE1Iz0HfPZazsUh+e5rJfHwDg8/gZ1p+5jvC4JOhra6B/Ew8MbVW3xDrJzs3D5gveOH87GK/TMmBraoCxHZugkaO1aJ+CAgGO3gzAYa97iE56A30tDbRwqYlxHZtAU03lax3aZ+O5RJJvRDzWe93Hs6S30NdQRT+3GhhSx+6jzid5BQUYvvcyVJUUsG1AS7HPTj+IwO7bIYh6nYZqmmro4lwdoxo4QFG+crzrkJmZiZ1/b4WPjzeyMjPh5FwLo78bBzMz81LTvX79Gtu3bsK9u7eRn58Pzzp1MWrMWOjrV3m3T3Iy9u7ZiYB7d5Ga+hamZubo1asvmjRrXs5H9WVystJx6ehKPL77L3KyM2Bp64l2/aejqpF1qemingbg8vFViHseDGVVDTh6tkPLHpOhoqYp2icvNwfXT6/Hfb8zyEhNRhVDKzTpPBZOdTqU92F9Np/wGKy/GoBnL99AX1MN/TztMLS+00e3nWE7zkNVSRHbh7YX+6ztmiNITM2QSHP1537QU1cts/KXB5+n0Vj/312Ev3wNfQ019K/riKGNnD+uTvILMHTbGagpKWL7yE5in50KCMOumw8QnZwKIx1N9KvngIH1HD8q34qWlZmBg7vW47bPVWRlZcLeyRWDRk2BiZnlR+exdsl0qKqq4/vJc8W2v0pKwIEdfyI46DZyc3PgVLsOBgyfACMTi7I+jDKnamqIpoFncafXD0i+cavUfU36dUKNGeOgbm2OzOcxeLp8C2L2nBTbR8fDGQ5Lf4WOhzPy3qYjevdxhC1YD0FubjkeRdnJyszA8T1rcc/vMrKzMlDT0R19R/wCI1OrUtO9CH+MUwc24PnTYAgKBLCwcUDPwRNhaeMg2ic/Pw9nD22Gz9UzSEtNgaWNA3oPmwJr21rlfFSfz+dxBNafLezDammgf1N3DG35oT7sTZy/834ftjEaOYj3YfdcvYWjNwOR8CYVltX0MLx1fXSq4/S1DuuL3A4Iwra9B/E8Mhp6ujro3rEd+nXvXOp58PKNm9hz+DhiExJgZFANA3t1R/uWzQAAcQmJGPDdjyWmbd+yGaZPGl/mx1GeJoy0hl0NLfw4M+iD++rpKuHHUTao564PBQU5+N1Jxp/bw/HqdY5oHwV5YMQAK3RoZQgdbSWEPk3Dhr/D8SgstTwP44tlZWbg2J61uOd3RXQ+6Tfi5w+eT97317KpUFFTx8gf54ttf/0qEUd3r8HDAB8U5OfD2q4WegycAKsajmV8FGXndkAQtu85UHj/p4Pundqjb/cupbed697Yc/gY4hISYGRggAG9uqN9q+YAgPiERAwY80OJadu3ao5pk0r+nIhkAwMYMu7PP/+EgoKC1M+WLVuG6OhomQtgPAoJw6yFi9G8cUMMHzwADx89xpade5Cfn48BfXpKTXPjpi/+WLkWPbt0Qh0PV9z0u4Vla9ZDSUkJLZs2BgCkpLxF0qtkfD9iKJwdHcTSa2pqlPtxfa4HYc/w89L1aN3QE9/364qgkKdYv+848vMLMKx7+1LThkfG4Kel65GfXyDxWUJSMsbMXQZLE0MsnDga2dk52HToFCYuWot9K+ZCVVm5vA7piz2IS8bkkz5oa2uGcQ0dERjzCuu8HiK/QIARde2kpglNTAEA/NWrMdSU3p26VBUl20d8agYmHL+JtOzKcRMMAPcjYvDjpiNo5+6AHzo3RUB4NFafuoK8ggKMattAapp5+8/jxoOnmNi1GSwN9HHa/wF+3HQY2yYOgnsN4UPbHf/5YcPZ6xjWqj7q2VniRWIyNpy9gaexL7FpQn+ZfpjEc4mk+7FJmHjMC+3szTG+cS0ExiRhzbUg5BUIMLK+wwfT7/B7jOD4ZHgUC+rtvxOG5VcC0NrODJObu+J1Rhb+8n6IsJdvsLJ7o/I6nDK1YtkfCA0JwfCRo6Guro4D+/di1vRfsOGvbdDU0pKaJj8/H/PmzkRmRgbGT5iEvLx87Nq5DXNnTceaP/+CoqIicnNz8NvcGUhPS8egIcOgr18FN296YdnSRcjNy0XLVm2+8pF+vGNbfkH0syC06f0LVNQ0cf30BuxaNgzjF56FmoaO1DQJUaHYvXIErB3qo+/4dUh9k4j/jq3Cq/gIDP5pu2i/E1unIvzRTbTq9TOqGFrivu8pHN38E1RUNVGjVpOvdYgf7X70S0w8eAXtnKzwQ3M3BEQlYM1/d5FfIMDIRh9+KLjj5gMEx76Ch6Wh2PbXGVlITM3AlNYecDMX/0xLVXavwwBwPyoRP+67hHbO1fFDKw8EvIjH6ku3hNedprU/mP5vryAExyTB08pIbPvxu6GYf8obwxvXQkMbMzyITsTKi/7IzM7F6Gau5XQ0ZWfDyrkID32I/sMnQE1NAycObsMfs8dj6foD0NAsPcBdUFCAfdvX4LbPVTRpKR7UycrKxJI5P0JOTg4jxv0KRSVlnDz0NxbOGIul6w9AU0t6m5QFqmZGqHtuO5R0PxzgN+rRFq67VyDiz914+Y8XjLq1huvfS1GQnYO4w+cBAGrVzVDv4g689gvEvQGToWlvA7uFU6Ckr4uHP/xW3odTJratnoGIsAfoNXQyVNU1cPbQZqycOwbz1h4r8XuSGBeJFXNGw9LGAUPH/wY5OTn8e2o3ls0aiTkrD4geVh7ZsRLel0+i5+CJqGJggktn9mL1vLGYs/IADIxlL9h1PyIGP24u7MN2aoqAZ9FYfeoq8vJL68NewI2HTzGxS2Ef9tYD/LjpCLb9OFDUh9143gs7/vPD+I5N4GxpDK/gcMzcfQbycnLo4Cm7D18BIDg0DDN+X4oWjRti5KB+ePAoBJt37UN+fj4G9e4uNc11H3/8vupP9OrcAXXda8Pb/w6WrN0IJUVFtGraCFX09bBh2UKJdCfP/4ur3j7o2KallFxlV//uZujfwxwBD958cF8FeWDFvFrQUFPEio1hUFSUx9hh1bFqQS2MnHwP+fnCCfQnjLZB5zbG2LTrGeITstGvuxnWLHTBiMl3EROXVc5H9Pm2rZ6JZ2EP0GvoJKipa+DMoS1YMfc7zF979KOuO4d3rMQ9v8to0KKL2GcZ6alYOmskcrIy0X3AeBgaW+Cu32Usnz0avyzcguo1ncvzsD7Lo5AwzFy4+F3beRyCzTv3Ij8/HwN795Ca5rqPHxatWodeXTqijrvw/m/p2g1QVlJCy6aNoK+vhw3LFkmkO3n+YqVsO0TfKgYwZJyurm6JnwlkdKWbXfsPooZ1dcz4eRIAoK6HG/Ly87H/yHH07NoJKiqSb31v37MfzRo1wPgxIwAAddzdkJqahp17D4geOj6NiAAANG5QDybGRhJ5yKqtR87Arro55k8YCQBo4OqMvPx87Dx5Af06tpQaaMjNy8PhC1ex5chpKCspSc/36Floqqth/ewpUFUR5mFiUAW/LN+Ix+Ev4OZQs/wO6gtt8n0EOwNdLOxQBwDQ0MoIeQUC7LgdigHuNaQGJcJevoGhphrqWhiUmG+BQICzjyKx5saDcit7edl4zgv2Zob4Y1hXAEAjRxvk5hdg+78+GNTcE6rK4t+DmFdvcP52MGb0aYt+TT0AAHVtrRD4LAaHvO7CvYY5CgoE2HHJD70buWFSt+YAgPr21aGjoYZpO07hUWQ8nCyNv+pxfgqeSyRt8g6GvaEufu9cHwDQyNoYefkF+NvvEQZ61ISqUsmX9dDE1/jb7zGqaoi/EZ5fUIAtPsGob2WI5d3eBSscDPXQZ8c/8Hsej/pWsl1PIY8f4Za/H36bvwiedeoCgHAExoghOHfuNPr1HyQ1nbfXdTwLf4oNm7bBwkL4drW1jQ0mjBsDb6/raN6iFW7f8kfEs2dYuWY9bG2FAVY3dw+8TEzEsaOHZTaAEfU0AGFBVzFw8hbUrNUUAGBh64m101rj9tUDaNp5rNR0fpd2Qk1DB33Hr4OC4rvr06kdM5EU/wxVjazxIuwOHt39Ryzv6g4NkJwYiScPbshkAOOv64GwN9LHou7CsjWqYYq8fAG2ez/AwLoOpbed+GRs936AqppqUj8DgJZ2FjDXl+3RW8VtvHIP9kZV8Eev5gCARjXNkFtQgO1eQRjUwOkDdfIK272CpNbJthtBaONkhSlthW2xno0JXrx6iwP+j2Q+gPEk5AECbnlh6m+rUdujIQDAzskVU8b0wH/nj6Fb3xElpo2MeILdW1bi2ZNHUFaWvD7dunkFcTEvsGT9AZhZCN8yN7e0wZQxPeB/8zJatZcemK9QcnIwG9IdDkunAR/5voPdwp8Qd/QiHv+yGACQdMkbSno6sJs3SRTAsJk6Bnmp6bjTczwEubl4efEG8jOz4Lx2Dp4u2YSsqLjyOqIyER4ahPt3buDH2X+ilruwb1HTwQ0zx3XGtYuH0an3aKnprpw7AGUVVfw460+oqArbjn2tupgxtiOunD+IgWOmIzkpHtf+OYr+o6aiefu+AABH1waY80M3XDyxE0PHz5Wad0XaeN5b2IcdKnx42sjRGrn5+dh+ybfkPuydYMzo0wb9mroDAOraWiLwWTQOed2Dew1zZObkYu/V2xjU3FMUBKlnZ4XHUfHYf/2OzAcwdu4/gprVq2PWlAkAgHrursjPz8e+oyfRu0tHqKhI3v9t23MAzRvWx4TRwwAAdd1dkZqahr/3H0arpo2grKQEJztbsTShT5/hqrcPRg8eABdH+/I/sDJgbKiKCSOt0aheVaSm5X1UmhaNq8HORguDx9/G8yjhiMcnz9Kwe70nWjauhkvXE2FQVQU9OphgzZanOHlBeA65FZCMA5vrYlAvCyxbH1Zux/QlwkODEHTnBibO/hO13IX98JoO7pjxgfMJAEQ/D8OBbcvw/OkjKCtLjvi8eeUUXiXGYtqiv1HDwRUA4OhaH2lv3+DQ3ysxffGOcjmmL7HjwGHUsK6OmT9NBFB4/5eXj31HTqBXl46l3P/Vxw+jhwvTuLvibVoa/t53EC0L246jffG2Ey5sO0MGopbjh18CI6KKVznmhfgK/vjjD7RuLT4NTWpqKlxcXLBv3z60adMGv//+Ozw8PDB+/McPzUxPT8fPP/+M2rVro3Hjxli3bh0KCoRv0/v7+8POzg7R0dGi/YtvGzJkCKZPny6R7/Tp03HixAncunULdnbS31ivCDm5uQh6EIzG9euKbW/asAEyMjPx4FGIRJr4hEREx8SiUYN64mkaNUBMXDyiY2MBAOHPnkNdTQ3GRoYSeciqnNxc3HsUhmZ13MS2t6zngYzMLASFPJWazifgIbYdO4vh3TtgwkDJG1qBQICr/vfQpXlDUfACABxsrHBu0zKZDl7k5OXjbnQSWtiYiG1vVdME6Tl5CIxJkpou9GUKbKuV/nbik5cpWHw5AJ0dLbCgvWeZlbm85eTm4c7TSLSsLd6W27jZIT0rBwHh0RJpqmlrYv/U4ehU990wenl5OSjIyyE7Nx8AkJaVjc51ndDBU3yofXVD4dQ4UUmvy/pQygzPJZJy8vJxJyoRLWqaiW1vbWdWatsBgNz8fMw554/+HjVhqS8+GuFVejZSsnLQpFibrFFNF7pqKvAKjy27gygn9+7egaqqKtzcPUTbdHR04VzLBXdvlzzVyb17d2BqZi4KXgCAhYUlzMwtcKcwnbq6Btp36ISaNcVvfMzMzREfJ7t1Ex7sDSUVddg4vQtKaWjpw8q2Dp4+uF5iuhY9JmPQpC1iwQsFReHDp7xc4TQNj+78Az0DC1HwAgDk5OQwcsYBdBg4q6wP5Yvl5OXjzot4tLQXf3O5taMl0nNyERCVWGLa3Px8zDnljQF1HWBZRTJAEZqQDA1lJZjpSR/lI6ty8vJx53kcWjqIT4vUxqk60rNzEfAiocS0uXn5mH3sBgbUc4JVVcnr8vrBbUXBiyJKCvLIzssvm8KXo/v3/KCiqoZaru+uI9o6erB3dkPgHZ9S025aMx8FBfmYt3w7tHX1JT73rN8Mc5duFQUvAECxsG3l5uRI7C8LtF3s4LxhPqL3nkTg8F8/uL+apSk07aoj/tQlse1xx/+BRk0rqNcQft+qtWmMxAvXxaaLij92EXIKCqjWtnHZHkQ5CA7whYqqGpxqvxtdoKWjj5qOHnh417vEdEZm1dG221BR8AIAVFTVoFfFEC/jowAAIfdvoSA/D2713r0RrKSkDBfPpnh4r+S8K4qoD+sifo1s42ov7MM+K6kPO0xsKihhH1Ye2XnCB9rKigrY/dMQDG0pfi5RVFQQ7SOrcnJzEfjwERrXryO2vVnDesI+7GPJPmxcQiKiYuMk0zSqV9iHlQzqCQQCrNm8HZbmZujTtZPE57Lqx9E2MDNRw6RZQXgakfZRaeq66+NFdIYoeAEAz6My8CI6Aw08hedbj9q6UFSUxw3fd/3h3DwBfG6/Eu0ji96dT+qLtmnp6MHW0QMP7t4sNe32dXNRUFCAGUt2QktHT+LzuOgIqGtqi4IXRexreSI8NAjpaW/L5BjKStH9X5Ni93/NGtUv9f4vKiYOTeqL3/81a9ig1LazdpOw7fSuRG3n/1kB5PjziT/fIgYwCvXs2RNRUVG4c+eOaNv58+ehra0NZWVlREZGIjExESdPnsSUKVM+Ot9///0Xenp6OH78OH799Vfs2LEDu3fv/uLyzpo1Cx06dICbmxu8vWWnMxsXn4DcvDyYmYo/CDM1Eb69Gx0TI5HmRZSwY2tmIp6m6M3oqGjhA6KnEc+hpaWJ+YuXo2u/IejUZxAWLl2JV8my+xA2JiEJuXl5sDAWHzVgZiScviUyVvoDAgcbS5xc/wdG9OwIBQXJZhr38hXSMjJhVK0Klm3fjzYjp6DJ4B/wy/KNSHglu/UBADEp6cjNL4ClnqbYdnNd4e8vXkvvyIa9fIOM3DyMOHgNDdadRNvN57DO6yFy35tey0hbHSdHtMVPzVykjuKQVdGv3iA3Lx+WBuKda4tqwo7o88RXEmmUlRThZGkMLTVVFBQIEP/6LZYdvYTopDfo01gYMNNWV8X0Pm3hZiP+wPvqfeEbSDbGsrs2CM8lkqKL2k6xAIR54YPT58klz++7xecR8goEGNdIcqi4lqoSFOXlEJeSLrb9bVYOUrNyEP0mXSKNrImKioSRkbHElIvGxiaIjpF8eFIkOjIKpqamEttNTEwQEy18mOTq5o4ffpwsNt1aXl4e7tzyFwt8yJqkuGfQq2YGeXnxOtEzsEBSfESJ6bT1DGFoLgym5mRn4NkjH1w+vhrmNdxhZC58uzMh6jEMTGrigd8ZbJjdEQvGOGHD7I4Iufdf+R3QF4h+nVrYdsQDEBaFbefFq5QS026+EYS8ggKMK2HkQGj8a2irKeOXo9fQeNl+NFiyD78eu46XUtbEkCWiOikWgLAorKPnpdXJtQDkFRRgfEt3qZ9bV9OFqZ4WBAIBUjKycfxuKM4EPUW/urL/hmNs9HMYGJpCvti5xNDYDHExL0pNO27KPMxduhUW1aW/RKKuoQlbBxcAQF5uLiIjnmDzmgXQ0tZFvcaSa3nJgszIOFyzb4PHU5cgP+PD069o2tsAANKfPBfbnhEurDtN2+qQV1WBupUZ0p+In4dykl4jNyUVmrbVy6bw5Sg+OgJVDc0kvicGxuaIjy35e9K8fV+06z5MbFtiXCRiIsNhYi6su7joCKiqaUBHT3zdu2rG5niT/BJZmbJ1bvlgHzZBcr0xZSVFOFkU68Me+0+sD6sgLw9bUwNU1daEQCDAq7fp2P6vL/xDn6NfY+nnHllR1Ic1NxUf5Wxa2B+NjJF8+SEyWtiv/ZQ0V7x88DjsKSaMGib1flFWbd0TgWE/3kVQcMnXmeKszNQRFSP53Y+OzYSFqbpon/SMPCS/EZ9CODouE9WqqEBNVTbrKC46AlWlXHcMjM2RUMr5BABGTVqIaX/8DTMrW6mfa2rpIjszQyJQkRgv7BsnJUjeT1Uk0f1fsXu5onYQJaUdvChsO2YltB1paa56+eBx2BNMGD2ixOnaiUj2cAqpQvb29nBycsLp06fh6Sl8c/vEiRPo2rWr6KQ2fvx4mJuXvhhocY6Ojpg9ezYAwMbGBuHh4fj7778xfPjwLyqvlpYWVFVVoaSkhGrVZOchZHq6sGOhri4+pYC6mvD39IxMyTQZwjQaJaTJKEwT/iwCSa+S0aldG/Ts1hmRUdHYue8QpsyYg81rV0BNVfYWykwrLLuGWvFjE5Y1PVOyPgDAQF/yDYr3vX4rfFC5Yf9xONpYYeGkMXj99i02HjiJ8QtWYe/S2VBTlc0FmtNyhG9NaRQbTq6uLDwdpedIrlvxOjMbiWlZyC8QYGITZxhrq+NW5EvsuhOGhLRMLCqcikpHVRk6Mj7nuDRpmdkAAM1iZVcvHCKbnlX6m5k7Lvli3RnhG9W9Grqivr1Vifvefx6Dvy/5oZlzDdQ0kZ1zR3E8l0hKyxZ+DzSUxS/dorZTwpovwXGvsPtWCLYPbAllKYE9NSVFtLW3wKGAp7CpqoOWtmZITs/C8isBUJCXQ1aubL/pCAAZGelQU1eX2K6mpo7MjJIf9qRnpMNESgBDTU0dGaWk2/H3VsTGxmDGLNmbyqNIVmYqVFQ1JbarqGogO/PDQSmBQIDlkxogLzcbapq66DBwtuiz9NTXeJXwAnEvgtGy52Ro6lTDnasHcGjjjxg0aYvMTSFVtB6Shkqx607h7yWtl/QwNgm7fYOxfVh7qW0HEI7AeJmaAQd3Wwyq54hnSSn461oARu3+B4fGdIaasvRpICtaWuF1RbN4nRSWt6TrzsOYl9jl8xB/j+xUYp0UuR+ViKHbzgIAnEyqYmhD2V2AuEhGeloJ5xINZH6g3Zhb1fjov7Py95/xIMAfcvLyGPPjLOjpV/1wogqQ+zoFua8//iGjoo7wnJP3VvxllLxUYd0pamtCSUdL6j5F+ylqS563ZE1mRhpU1STXzFJV00BW5se9UQ4AOdlZ2LFuLpSUlNGyY//CvFOl560q/F5mZaZBVU3yO1pR3vVhxe871AtHiKdnZZeafsd/fu/1YWujvp2VxD4X7z7G9F2nAQBNnGxkfhHvtML+g3qx+z+1Yv1RsTSifq/6R6c5dPIMnB3s4FZLtuujuIjITw/CaWgoIipWsg4yMvOhoa4g2ic9Q3KkX0amcJu6uiIyP3BPVREyM9Kgpialv6amjswPnE/MLEufdaF+s064dHovNi2fiv6jfoVeFQPcv+MFnyvC9pSdLf1ZREUpuv8r6V5O6v1fUZqSnrdI6c8fPHEKzg52cK1kbYfoW8cAxnt69eqFNWvWYPbs2YiLi0NAQAAWLVqEoKAgAICVldUn5+nh4SH2u4uLCzZt2oS3b2VruF5ZEQgkF5t+n7yUBYMFBaWv5SEnL0zz04/joCCvAHtb4Q2ii5MjrCwsMGnaLFy6cg1dO5a+IHZF+NA6JXJyn/cmSG7hNAz6OtpY+vNYyMsL8zEzNMDoOUtx0dsfPVo3LS2LClPwoTqRMhxOTUkRG3o2goWuJkx0hDd1HmbVoKwgj40+jzC6rh2qS5nao7L4YJ18YKHtprVqwtXGDAHh0dh8wRtZubmitTTeFxAejR83HYFpFR0sGCzbw2V5LpH0gcOT+j3JzsvHnPO3MNDTFs7GVUpMO6utB5QU5LHg4m3Mv3gbqooKGF7PAek5uaXOg18RCgoKJM6tRVMzSlNa+xGUlk5e8vwsEAiw8+9tOH3yOHr26ouGjWTjQb2goECizZR6bB84pwBAQX4e+v+4EXm52fA+vwU7lw7GiBn7YWRuj/z8XKSlvMR3c4/B2FJ481fdoT42/dYd189skLkAxofOsdLOJ9l5+Zh7yhuD6jmilmnJwd65nRtAQV4ezibCB9DuFoawqaaLETsv4Mz9cPT1lM05yT/nupOdm4c5x29gUH0n1DL7cADcWFcT20d0RMybVKy/fBdDt53BwbHdoaYsG+eUAmntppRrj/xn9tmk6d5vJDr1HAKfaxexZe1CFOQXoHlbyet2ZSPtvPk+QUEB8MF9ZGuNP2nfk4JSvicf27fPykzHxiU/IeJpMMZOXYYqBsI3jsvr3qG8fHEf1rkGXK1NhX3YizeRlZsnWkujiLOlMf6eNBBhMS+x4dwNjP/rMLZPHPhR17KK8MH+qLQ+7CfW48PHoQgLj8DvM3/59AJ+JXJygHyxQ80vvXtfouL5vK+oukvbB5CNc4v0607J5frS9m5ibo0JM9dgz1+/Y97kPgAASxsHdO0/Dge3L4OKimy9tPXB/pqU/+TSzseA5LX74eNQPAmPwMKZH54WkYhki2zcQciILl26YOnSpbh69SrCwsLg4uICGxsbUQBD9TPeypUv1kkvKCiAnJwclEpYmDk/X/bnBy6NRuFbI5mZ4sPMRW9Ga0i+MVS0LaPYaISiCHtRnk72kmt9ODvaQ0NDHeERpQ+vrCiahW8PZGQVq4/C+tFUl1z88mOoF77l1MDVSew7VsvWGprqagh7HvVZ+X4NmkVvd+aKv/GaXjgyo/jboACgqqiA+paS6xU0rm6EjT6PEJaUUqkDGJpqhSMtssXfCip6a01LrfTRNEUjKTxqWCCvoAB/nfPCj12awVj/3dQgF+8+wty952BpoI+N4/tBV1N23t6ThucSSVqFbSMjR3xERNHIC2ltZ4PXAwgEAnzXwAl5hQ+0i+4N8goKoCAnBzk5OagrK2Feh7r4tZUb4t5mwFhbHerKSjh5/xnMdWVrbv+D+/fiwP49YtsaNW6CN2/eSOybkZkBDQ3JN1mLqGtoIFPKdBwZGenQUBdPl5ubgzWrluPG9Wvo2asvRowa83kHUA6un9mA66c3iG1z9GiH9LeS089lZ6VBVf3D/6cKikqi9TMsbetg7bRW8L+0G91G/gEVFQ1o6lQTBS8AQF5eAdaODXD3+qEvPJqypylqO8WuO6W1nav3UCAQ4LsmLqK2Ayltp7aZgURaN3MDaKooISxBdqelKxrxV3zkVtHvWlJGM66/fFdYJ81dkZdf7HySXwAFeTmxh2wG2how0NaAJ4xhpqeFkX+fx3+PItDFVTbW6TpxcDtOHNwmtq1uw5Z4+0ZyypvMjHSoqZd8LvlUdo6uAADn2nWQlBiHU0d2/F8EMPJShCOEFbXE66poVEVeSppo5EXxfYr2K8pDVpw9vAVnD28W2+beoDVS30ieX7My0qCm/uERJMlJ8Vi/aCLiY1/gu5+XwLVuC9FnauqayMqSvC5lFY4A+pj8v6Z3fVjxkRaf3Yc9740fOzcV68OaV9ODeTU9eNSwgKaqMmbvPYd74VHwqGFRUrYVqqg/WrwPWzSKQrOUPmxmsT5s0WjQ4mmu+/hDS1MD9T3E11mUJSP6W2LkQCuxbY27lLwGV2nSMvKgriY56k9DXQHp6XmF++RL30dNUfR5RTt7eAvOHN4its2jQWu8lXo+SS+T9u7k2gCLN51FUqJwKqVqhqbwvnwSAKCuWfr6kl9byfdyRSMzpLQd9aI0xZ+3ZIrlWeS6j6+w7XjKbtshIukYwHiPtrY22rRpg0uXLiEkJASDBg364jyDg4PFfr979y7MzMygpqYmCmKkpb0bGvj8+fOPzlsW3zoxMTaCvLw8YuLEF0uKjYsHAFiYm0mkMS+c4z42Lh41bazfSyPMw9LcDGnp6fDy8YO9bU1Ut3zXWS0oKEBebh50dWTz4bWpYTUoyMsjKl58gdDowt+tTI0+K18zo2qQk5NDrpSpXfLzC6Aio1NWAICZrgYU5OQk5tWPeiNsB9X1JR+sRb5Ow+2oRLS1NRN7qFK0IKjeB26OZJ15VT0oyMsh6qX4w67Iwt+LFt1+X2xyCvxCnqNTHSeovPeGvIOZMNDzMiVNdPO36z9/rD51BZ41LbF6TE9oqcnW2zbS8FwiyUxXEwpycogqtk5MUduxlhLE+y80CnFvM9BwzTGJz+qsOIL5Heqia63quPE0FtqqSnA1qwabwjnxk9OzkJCaAQfD0qe0+9radeiIOnXFF+rz8/XBvbt3UVBQIBbUjYuNgZl5yQ84zMzMER7+VGJ7XGwsatq9C3Slp6dj/m+zEBryGGO+G4eu3XuWwZGUHY+mfWFbu7nYtpB7l/E02BuCggKxt6KTEyNR1dgaJQkNvAJVNS1Y2r1bSFRVXQt61cyRmiK8dukbWiLldRwEAoFYXyQ/Pw+KSrJ3fjHX14aCnBwii60TE5ksHA1bvaquRJpLj18gLiUdDZbul/jMc9EezO/aCC3tLHA55AWcTaqihsG7dlIgECAvvwB66rJXF0XM9bSE151k8RHBojqppiuR5r9HzxH7Jg0Nfpdcy81j/g4s6NEEbRyr41poJJxNq8HivXOSg7FwhEriW9mZv79lu+5wqyO+YPRd/+u4H+AncS5JiIuCifmXrc0Q/uQRXibEon6x9S6sbOzwJOTBF+UtK9LChOtaqNtY4m3gY9F2DRvhekFpIeHIT89AZnQ81G3E1xBSrqYPJW1NpIWEf70Cf4SmbXvCxVN8VFngrWt4FOgr8T1JjI+CsVnp35PoF0+wdsF45OZkY/LcjbB1Eh+tb2hiiayMNKSmJENL5926EolxUahSzRjKMvbG9Ls+7Bux7aI+rFEJfdjQ5+jkWawPay68L3qZkgYVJSXcfBSOho7WqPJesMu+cJ/ElI+fqutrMzEyLOzDxottL/rdwkxy6sqiPmxMXDxqWld/L02C1DS+d+6hcb06UFSU3cc5p/6Jw83bkg/mP0dkdCZsbSQf5psaq+HxE+G1PTImA5oaitDVVsKbt++C82YmqohLyEJOzmcO/yhDTdv2goun+CwJAbeuIvgzzycf8uplHB4F+aNBs06oZvjuOxT5LAQamjqoamBSSuqvz/QDbcdSyv2fxfttx6a6ZJpibcfv9j00qldXptsOEUknW2NQZUCvXr1w6dIlREZGolOnL59i5d69e1i+fDnCw8Nx5MgR7N+/H+PHjwcA2NraQl1dHVu2bEFkZCS8vLywY8eOj85bXV0diYmJiIqSnbftlZWV4eLsCC8ff7HhkDd8/KChoQ77mpJv3ZmaGMPY0AA3bvqKbffy8YOpiTGMDA2grKSEPzdtw4Ejx8X28fG/jeycHLjWklyYVhaoKCvB1aEmrt0KEKuPq/73oKmuBqcan9cpUVdVhZtDTVy9FYCc90Yy3H7wGJnZ2XC1l423G6VRUVSAm1lVXHkaK1YnV57EQlNFCU5Gkg9Lk9Kz8MflQFx6Ir7Q2L9h0dBQVoSDgW55F7tcqSgpwr2GBS4HhorVyX+BodBSU4GzlWTnMi45BfP3n8eVoFCx7b4hEVBSVICVofCm94h3AFadvIK2bg74a3y/ShG8AHgukUZFUQHu5tVw+Um0WJ1cDo0Wth1jfYk0a3s1wd4hbcR+HAz14GCoh71D2qBpDeF362jgU6y6FiSWdt/dMCjIy6GJjWzd3FSpUhU1be3EftzcPZCZmYF7d++I9ktJeYPghw/g5u5RYl5u7h6IjopEZOS7kTeRkS8QFRUJNzfhelj5+flYOG8OnoSF4tfps2QueAEAWnqGMLGqJfZj49QIOVnpeBrsLdovPTUZL8LuiEZWSON3aRfO7Z2PgoJ3byq+TY7Hy7hwGJoJgzo1azVFZtobPAu+KdonPy8H4Q+9YGlbcn1XFBVFBbhbGuJKSKR423kcCU0VJTibSq4/sK5fK+wb1Unsx8FIHw5G+tg3qhOa1TSDsqICllzwx/ab4g+fr4VGISsvH3WsPu8lha9BRUkR7pZGuPzoufh151EEtFSV4Sxl2qx1g9pg//ddxX4cjKvAwbgK9n/fFc3sLKAgL4f5p7yw8+Z9sbQ+4cLrt62R5HmqouhVqQbrmg5iP7Vc6yErMwMPAvxE+71NeY2Q4EDUcq1XSm4fdv+uD/5aORevXiaIthXk5yP4/t1PWj9DlmWERyLjWRSMe7YT227Uoy3SwiKQ+UL4PUj67yYMOjaH/Hsv3Bj1bIeCvDwkXfWDLNHVN4BVDSexH8fa9ZGVmY7gQB/RfqkpyXjy6B4cazcoMa/kpHisnjcWcnJy+PWPHRLBCwBwrF0fAHDX9z/RttzcHNy/6wVH15LzrigqSopwtzHH5aBifdigwj6sZUl92Au4EhQmtv1dH7YKsnNzMXvvOZz0vS+xDwDYmkiOfpMVKsrKqO3kgBt+t8T7sL7+0NBQh4OtZHs3MzaCsaEBrt/0F9t+w8cfZoX92yJvU9MQHRsHZwfJEcWy5FVyDkKfpon9fK7bAa9haaYOK/N3b9NbmaujuoUGbge8Fu0DAM0bvbumKynKoWGdKrgdIDmyriLo6leDVQ1HsR8n0fnk3f1LasrrwvNJ/S/6e6kpr7F74wKEPLwt2pbyOgm3vP5B7TpNZe6FWOXCtuPlW/z+T9h27KW0naL7v+s+4vd/N3z8YFZ4/1fkbWpqpWg73yKBgD+f+vMtYtixmAYNGkBPTw/u7u7Q1v7yN3H79OmD58+fo0ePHtDX18fPP/+Mnj2FDz80NTWxfPlyrFixAh07doS9vT2mTZuGH3744aPy7t69Oy5duoTOnTvj33//haGh5BQ7FWFw396YOmc+FixdifatW+JRSCgOHz+F0cMGQ1VVBekZGXgRGQ0TY0Po6gjf9B3cvw+Wr90AbS0tNKhXBz7+t3DN2wezf/0JgPBi1r93D+zafwi6ujqo5+mOiOeR2H3gMBrWqwO32rK7MOTInh0x4fc1mLl6C7q0aIT7YeHYe+YSfhjQA6oqykjLyEREdBzMjKpBT/vjp2oZP6A7xs1fhSlL/sSgzm2RnPIW6/cfh1ON6mjiWbscj+jLjaprh/HHvDHt3C10c7JEUNwr7L4Thh8bO0NNSRFp2bmISE6FmY4G9NRV4GpaBXXNq2HNjQfIzsuHtb42vCPicTAgHD81c5E61UVlM6ZdQ3y//gCm/n0S3eu7IDAiGrsu+2FS1xZQU1ZCWmY2nsUnwayqHvS11OFmbY76dlZYcuQS0rJyYF5VFzcePsWhG/cwrlMTaKurIeltGlYc+w8mVXTQv5kHHkeJv81SlJes4rlE0ugGjhh76Bp+Pe2DbrWsERSThF23QjCxmYuo7Tx7lQIzXU3oq6uippS3qIsW/X4/4DHAwxbjj1zHissBaFbDBLciE/G332MMr2cPcz3Zmq5CGudaLqjlUhsrly/B8JGjoa2tjf379kBDQxMdO76bSzsy8gVyc3NhYyO8AWrStBkOHzqAeXNmYtiIUQCAXTu2w8qqOpo0bQYAOHfmFIKDH6B9h06oUrUqQkIeif1te3vHr3SUn8bSrg6s7Ori+JapaNPnF6hp6uL6qfVQVdeCZ/MBov1exj5FXm4OjC2Fx9G0yzjsWTkKRzdNgUfTvkhPe40bZzZCTV0bDdqOAADUqt8Ft67sxfGtU9Gq10/Q1jOC/3+78fZ1PPqMW1MRh/tBYxq74Pu9/2Lqsevo7loDQVEvscv3ISa28ihsOzl49jIFZnpa0NdQRU0pI4+KFv12Mnn3cGREo1r463ogqmiooXENUzxJfI3NN4LQ3NYcdasbf7Xj+xxjmrni+10XMPXwFXR3s0VgVCJ23XyASa3rQE1ZEWlZOXj28g3M9LWgr6GGmoaSwYeihdGd3gt4jGxSG39dvQd9DTXUqW6MsPhkbL4WgPrWJmhcU/LtSVli7+wGh1ru2LjyN/QfPgGaWjo4cWAr1DU00brju+BlTOQz5Obmwsrm4x+CtGzXA5cvnsDKhT+hR//RUFRSwn/njyL6xVNMm7+uPA6n3ClqaUDTsQYywiORkyR8ePhk0QbU3r4EuclvkHDmCgy7toJJ3464N3CyKF34im0w6dcJdc5uQ8SaHdCwtYLdwp8Qte0wsqLiSvhrssPWyQO2zp7YvmYWeg2ZBE0tXZw5tAlq6lpo1r6PaL/YqHDk5ebCwlq4Fs7BbcuQmpKMQd/PQlZGOp6Fvns4r6quARNzG1QxMEGDFl1weMdK5OZkw9DEEpdO70VmeiradR/21Y/1Y4xp1xDfbzj4Xh82Brsu+2NS1+al92GPXkJaVjbMq+rhRnBhH7ZjY2irq0JbXRXd67tg88WbUFSQh72ZIe6FR+HvS37o0cAFNsayufB9kSF9e+Lnub9j3rLV6Ni6BR6GhOHgiTP4bugAqKoI+7DPo6JhamQkGv07tF8vLF33F7Q3aaJhXU/c9L+Dqzd9MfeXSWJ5P3sRCQCwkvI2+v8LK3N1KCnJ48kzYdDjslcihvS1wIp5tbBp1zMAwNhh1ngakYYrXsLRoQkvs3H+cjx+HF0DKsoKiIrNQL9uZtDUUMS+47Lzwmdxtk4esHP2xLY1s9B7yCRoaOngzKHNUFPXQnOx88kz5OXmiM4nH8PSxgE17F2xb8ti9B46GQoKCjixbwPkFRTQtf/Y8jicLza4by/8Mnch5i9dhQ5tWiL4cSgOnTiNMUMHidpO8fu/of17Y+najdDW2opGdT1x0/82rnn7Ys7UyWJ5i9qOxf9v2yH6fyYn+NCKUd+Y9PR0NG7cGBs2bEDDhg0rujhfRXTYwzLP09vXHzv3H0R0dCyqVtFH104d0LeHcG7fwAcP8fPM3zB10g9o37qlKM2ZC//iyIlTSEx6BWMjQwzs3QNtWjYXfV5QUICzF//FqXMXERufAG0tTbRq3hTDBvSFikrZTSFkZuuMN4HXyiw/ALh2KwBbj5zBi9gEVNPXRe+2zTGoSxsAwN3gUIxfsApzxg1D5+aS37mz13yw8K9dOPHnIpgYiHfW74eG46+DJxH8NAKqKspo5umKiUN6Q0vK3KpfQte1OdI2zSjTPK88jcFm38d48ToNBhqq6ONqgyEewrfq70S9xPdHvfBbWw90dSqcdiA7F1v8HuPq01gkpWfBTEcDA91roEct6aNYivLY3LsJPM0/vNjop9IcuxhZl3aWaZ6Xg0Lx1zkvPE9MhoGOFvo1dcewVsI3Pm+HvcDodfuxYHAndKvvAkA4v/Cm8974LygUL1PSYFFND4Nb1EXPhsIA1gnfIMzbd77Ev/d+XmVBtc3wMj+fVOZzCSA8n2Rsn1umeV4Ji8ammw/xPDkVBppq6OtWA0PrCm9m7kQmYszBq6KpoaQZfeAKAGDbgJZi2y88eoFtvo8Qm5IOY2119HGrgQEetmVadgBQH7UAYeGRZZ5vWmoqtm3dBD8/HwgKCuDg6ITR342DmZm5aJ8Z035GYkICtu/cK9r28mUitm7eiMCAe1BQUISbuwdGfzcW+vrCaS+mT/0JwcElT+9y5vylLy67rY0F9nuXfXcsMz0F/x5agpCAyxAICmBewx3t+k9HVaN3U0jtXDYEb5JiMHnZFdG2iBA/XDv5J+KjQiAvr4gatRqjde9foKNvLJb35eOrEXLvErKz0mFs4YhWvX6Cpa1nmZR9YGM5ZO79o0zyKnIl5AX+uh6E569SYKCljn6e9hjaQLiOx+3n8Riz5x/M79oI3WpLfxt+1O6LAIDtQ9uLthUIBDh6NxSH7oQi+nUqdNRU0NHZGmOb1YaqUtm9J6Q2eCayDi0rs/yKXH70HH9dvYfnSSkw0NZAv7oOGNZIGMi9HRGH0TvOY0GPJujmJv1cMOrvcwCA7SPfjVoWCAQ4cicEB/0fITo5FXoaquhQywbjWriJTRfzpVT7/YrboW/KLL8i6WlvsXf7Gtz1uwGBoAC2Di4YNGoKTMzeTXn0+8xxSEqMw5ptJ6XmMXl0dzg4u+P7yeLn/8T4GBzcuR4hwQHIysyAjZ0Teg/6XrQmxpeqY6eLc0rl82apftO6aHB5D3xbDUHyjVti24JGTUf07hOifS3G9IP1lJFQNTdGxrMohC/bgph9p8Ty02vkAYelv0K7tgNykl4jZt8phM1bB0Ge5PSoX6JTbiiuB5f91GXpaW9xZMdKBN66igKBADXsa6PviF9gZGol2mfFnNF4lRiLxZvPIy83FxMGNkRBvvTjs3XywC8LhWuy5Obm4PiedbjldQHZWRmwtHFAr6FTYG1bNi9ZNHNSR9a/Hz/q/2NcDgrFX+e9C/uwmujX5L0+7JMXGL3uABYM6ijeh71wE/8FhuLl26I+bB30bPDuJazcvHzsvOyP0/4PEPf6LYx0tdCrkSuGtawndTHfL6HadgTiQgLLNE8v31vYceAIomKEfdjuHduiX3fhSxUBD4IxZfYCTJs4Dh1aNRelOX3xEg6dPIvEpFcwMTTAoN7d0baF+JRDV719MX/5GuzasEpiepyyZGzv+tlrVnysP/8Q/n//ODNIYruRgSr6jH43IsWgqgomjbFBHVc95OULcCvgNf7cFo5Xr9+tIaikKIexw63RpqkB1NQUEPo0FRt3PMOjsLJZW8f7TDPcCE7/8I6fKD3tLQ7vWInAW9cgEAhgY18b/Ub8LHY+WT5nDF4lxmLJ5nNS85j+fSfYOnti5I/zxba/ffMKh3asxKNAPwgEAtg5e6LH4AkwMrGUms+nauqkgdjQ+x/e8RN4+fpj5/7D77Wd9ujbQ9h2Ah8EY8qseZg2aTzat3q3ftDpi5dw+MRpYdsxMsDA3j3QtkUzsXyvevtgwbLV2LVxjdSp3MqCiV3Z3Vt/S87cLdtr/7egi8e3Nx6BAYxCKSkp8PPzw4ULF/D06VOcOXNG5obUlZfyCGBUZuURwKjsyiOAUdmVRwCjsiuPAEZlVx4BjMquvAIYlVl5BTAqs/IIYFRm5RXAqMzKK4BRmZVnAKOyKq8ARmVWHgGMyq48AhiV3dcIYFQ25RXAqMzKI4BRmTGA8XkYwPh032IA49s74hLk5+dj1qxZ0NfXx5o1a0oNXmzduhUbN24sNb+ZM2eiT58+pe5DRERERERERERERETSMYBRSF9fH3fu3PnwjgD69u2Ltm3blrpPlSpVyqJYRERERERERERERETfJAYwPoOOjg50ChcMIiIiIiIiIiIiIqJPIxB8G9P305eRr+gCEBERERERERERERERFccABhERERERERERERERyRwGMIiIiIiIiIiIiIiISOYwgEFERERERERERERERDKHAQwiIiIiIiIiIiIiIpI5ihVdACIiIiIiIiIiIiL6thQIKroEVBlwBAYREREREREREREREckcBjCIiIiIiIiIiIiIiEjmMIBBREREREREREREREQyhwEMIiIiIiIiIiIiIiKSOQxgEBERERERERERERGRzFGs6AIQERERERERERER0bdFIKjoElBlwBEYREREREREREREREQkcxjAICIiIiIiIiIiIiIimcMABhERERERERERERERyRwGMIiIiIiIiIiIiIiISOYwgEFERERERERERERERDJHsaILQERERERERERERETfFgHkKroIVAlwBAYREREREREREREREckcBjCIiIiIiIiIiIiIiEjmMIBBREREREREREREREQyhwEMIiIiIiIiIiIiIiKSOQxgEBERERERERERERGRzFGs6AIQERERERERERER0belQFDRJaDKgCMwiIiIiIiIiIiIiIhI5jCAQUREREREREREREREMocBDCIiIiIiIiIiIiIikjkMYBARERERERERERERkcxhAIOIiIiIiIiIiIiIiGSOYkUXgIiIiIiIiIiIiIi+LQJBRZeAKgOOwCAiIiIiIiIiIiIiIpnDAAYREREREREREREREckcBjCIiIiIiIiIiIiIiEjmyAkEnG2MiIiIiIiIiIiIiL6eI34FFV2ESqdP/W9vPAIX8Sa8DPav6CLIlGpO9fD8aVhFF0OmWNWwRXTYw4ouhkwxs3VmnRRjZuuMZ+HhFV0MmWJtY8M6KcbaxgaxofcruhgyxcTOBY+exlZ0MWSKYw0TXovfY1XDlvVRjFUNW55LijGxc8H14IyKLoZMaeakjnNKdhVdDJnSKTeUfZNi2F+TZG1jg9Q7Fyu6GDJFy7M97jRrUNHFkCme133Zdt5jbWNT0UUg+r/FAAYRERERERERERERfVWcF4g+xrc35oSIiIiIiIiIiIiIiGQeAxhERERERERERERERCRzGMAgIiIiIiIiIiIiIiKZwwAGERERERERERERERHJHAYwiIiIiIiIiIiIiIhI5ihWdAGIiIiIiIiIiIiI6NtSIJCr6CJQJcARGEREREREREREREREJHMYwCAiIiIiIiIiIiIiIpnDAAYREREREREREREREckcBjCIiIiIiIiIiIiIiEjmMIBBREREREREREREREQyR7GiC0BERERERERERERE3xaBoKJLQJUBR2AQEREREREREREREZHMYQCDiIiIiIiIiIiIiIhkDgMYREREREREREREREQkcxjAICIiIiIiIiIiIiIimcMABhERERERERERERERyRzFii4AEREREREREREREX1bBIKKLgFVBhyBQUREREREREREREREMocBDCIiIiIiIiIiIiIikjkMYBARERERERERERERkcxhAIOIiIiIiIiIiIiIiGQOAxhERERERERERERERCRzFCu6AERERERERERERET0bSkQVHQJqDLgCAwiIiIiIiIiIiIiIpI5DGAQEREREREREREREZHMYQCDiIiIiIiIiIiIiIhkDgMYREREREREREREREQkcxjAICIiIiIiIiIiIiIimaNY0QUgIiIiIiIiIiIiom+LQCBX0UWgSoAjMIiIiIiIiIiIiIiISOYwgEFERERERERERERERDKHAQwiIiIiIiIiIiIiIpI5XAODytytwAfYsu8oIqJioK+rjR7tW2NAtw6Qk/vwvHZhz55jzLT5OLhhGYwNqol9dsXnFvafOIcXMXHQ0lCHp4sTxg7pC31dnfI6lDJz99497Ny9By8iI6Grq4sunTqhd88epdbJ1WvXsf/QIcTHJ8DQwAD9+vRGm9atxPa54eWNI8eOISo6BhoaGnBzrY1Rw4dBT0+vvA/pi925F4i/9+zH88go6Onqolun9ujTo2updXLluhf2HjqKuIREGBlUQ//ePdCuVQuxffoNH4OkV8kSaY/v3QEdHe0yP46yxDqRdPfePezatQuRhW2nc+fO6NWzZ6l1cu3aNRw4eBDx8fEwNDREnz590KZ1a7F9wsLCsG37djx58gTq6upo07o1Bg0aBCUlpfI+pC/GOpF0OyAI2/ccKGw7OujeqT36du9Sap1cvu6NPYePIS4hAUYGBhjQqzvat2oOAIhPSMSAMT+UmLZ9q+aYNqnkz2VFZmYmdu/YDL+bN5CVlQlH59oYOWY8TM0sSk335nUydmzbiHt3b6MgPx/unvUwYsx46OtXEe0jEAhw6vhh/HvxDJJeJqKagRE6de2Bjp17lPdhfTZei8WxPiTxXCJdVmYGju9Zi3t+l5GdlYGaju7oO+IXGJlalZruRfhjnDqwAc+fBkNQIICFjQN6Dp4ISxsH0T75+Xk4e2gzfK6eQVpqCixtHNB72BRY29Yq56P6cqqmhmgaeBZ3ev2A5Bu3St3XpF8n1JgxDurW5sh8HoOny7cgZs9JsX10PJzhsPRX6Hg4I+9tOqJ3H0fYgvUQ5OaW41GUDfZNJLFOJPndD8HGI2cRHh2PKjpa6NOmCQZ3bFFineTk5mHv+Ss453UbCclvYKCviw4NPTC8a2soKb57lPXoWSTW7D+Fx88ioaGmii5N6+K7Xh3E9pFV2p51YTrme6haWSPvdTISTxxDwqH9JSdQUIBRv4Go2qkLlKpURXZ0FOL27cbrq5cBAMpGRnA5dKLE5EkXzuL5kkVlfRhlqrzaTpGMjAyM/+EHDBo4EG3atCmvwyCiMib7Z/T/U7GxsQgICECnTp0+O4/jx49jxowZCA0NLcOSfZmHoU/x6x+r0KpRPYwe0Av3Q8Lw155DyC/Ix5CeXUpN++xFNKYuWoX8/HyJz/7z9sO8VRvRrW0LfDeoN169TsG2A8cw8bcl2L58PlSUlcvrkL7Y45AQzJ2/EM2aNMbQwYMR/OgRtu/YiYL8fPTr20dqGq+bN7F0xUp079oFnh4e8PHzw4rVa6CkpITmzZoCAK5dv4HFy5ajY4f2GD50CJJfv8HuPXvx68xZ2LB2DZRluE4ehYRh1sLFaN64IYYPHoCHjx5jy849yM/Px4A+PaWmuXHTF3+sXIueXTqhjocrbvrdwrI166GkpISWTRsDAFJS3iLpVTK+HzEUzo4OYuk1NTXK/bi+BOtE0uOQEMybNw9NmzTB0CFDEBwcjL///hsF+fno27ev1DTe3t5Ytnw5unXrJmw7vr5YtWpVYdtpBgCIi4vDzFmz4GBvjxkzZiAqKgq7du1Camoqfvzxx695iJ+MdSLpUUgYZi5cjBaNG2LkoH548DgEm3fuRX5+Pgb2lv4w/bqPHxatWodeXTqijruw7SxduwHKSkpo2bQR9PX1sGGZ5M3dyfMXcdXbBx3btCzvwyoTq5f9jtDQRxg24nuoqavj8IFdmDPjJ6zbuAOaWlpS0+Tn52Phb9ORkZGOsT9MQX5+Hvbs3Ir5s6di5botUCx8GLDr7804d/oY+g8agZp29rh32x9b/1oHRQVFtO1Q+vW+IvBaLI71IYnnkpJtWz0DEWEP0GvoZKiqa+Dsoc1YOXcM5q09Bg1N6S9CJMZFYsWc0bC0ccDQ8b9BTk4O/57ajWWzRmLOygOi4MeRHSvhffkkeg6eiCoGJrh0Zi9WzxuLOSsPwMC49GBrRVI1M0Ldc9uhpPvhF0GMerSF6+4ViPhzN17+4wWjbq3h+vdSFGTnIO7weQCAWnUz1Lu4A6/9AnFvwGRo2tvAbuEUKOnr4uEPv5X34XwR9k0ksU4kPXjyHJNXbEGb+m4Y27sTAkOfYd2B08jPz8fwrtIfIq/YfQznb97B6O5t4WhtgUcRUdh6/CLikpIx97uBAIDoxCSMX7wRLjWssHjicDyPScDGI+eQkpaBmaP6fc1D/GQajk6osWQFXl/9DzHbt0KzlgvMxv4AOQUFxO/fIzWNyfBRMB40FLG7/kbag/vQa9IMNvN+x9P8fLy5cQ25r17h8bjREukMevSCXovWSDp3prwP64uUV9spkpqaigULFiAhIeFrHA4RlSEGMCrItGnTYGpq+kUBDFn096HjqFndEnMmjQUA1Hd3QV5ePvYcO4O+ndpBRUXyxjU3Nw9Hz1/C9oPHoFzCmyN7jp1BA/famDp2hGibhakxvp8+Hz53AtGiYd3yOaAysGfffthYW+PXX34GANTx9EBeXj4OHj6C7t26QkVFRSLNzl170KRxI4z9bgwAwNPDHampqdi1d6/oIcHBw0dQ19MTkya8e3PP3NQUk37+Bf63bqNJ40Zf4eg+z679B1HDujpm/DwJAFDXww15+fnYf+Q4enbtJLVOtu/Zj2aNGmD8GOF3oI67G1JT07Bz7wHRw/qnEREAgMYN6sHE2OgrHU3ZYJ1I2rt3L2ysrTF16lQAgKenJ/Ly83Hw0CF069athLazC00aN8b3330HAPDw8EBaair27Nkj6sAeOXoUampqmDt3LpSUlFC3Th2oqKjgr7/+Qr9+/WBgYPD1DvITsU4k7ThwGDWsq2PmTxMBFLadvHzsO3ICvbp0LKXt1McPo4cL07i74m1aGv7edxAtmzaCspISHO1txdKEPg3HVW8fjB4yELWKBQNlUcjjYNy+5YPZ85fAw7MeAMDR2QVjRw7AhXOn0Kf/YKnpfLyu4Vn4E6z7awfMLawAANWta2DS+JG46XUVzVq0QWJCPM6cPIIxYyeifaduAACX2u5ISkpEwL3bMhnA4LVYHOtDEs8l0oWHBuH+nRv4cfafqOUu7FvUdHDDzHGdce3iYXTqLfmgDACunDsAZRVV/DjrT6ioqgEA7GvVxYyxHXHl/EEMHDMdyUnxuPbPUfQfNRXN2wsfTDm6NsCcH7rh4omdGDp+7tc5yE8hJwezId3hsHQa8OHB5QAAu4U/Ie7oRTz+ZTEAIOmSN5T0dGA3b5IogGEzdQzyUtNxp+d4CHJz8fLiDeRnZsF57Rw8XbIJWVFx5XVEX4x9E0msE0mbj12AnZUZFo4fAgBoWNsBefn52HHqEvq3bwbVYgHuN6npOHHVFz/274KhnYUj/eo62wEA1h88gx/7d4WetiZ2nbkMDVUVrPx5NJQUFdHY1QmqKspYtvMoRnZrA6Oq+l/3QD+ByYjRyHgShohFCwAAb2/5QU5REcaDhyHh6GEIcrIl0lTt2BnJl/9F3K6/AQCp9+5A3c4OBj17482NaxDk5iL9UbBYGnVbO+i1aI2YrZuQ9uB++R/YFyivtgMAfn5++GvTJmRmZn6dg6GPJhBUdAmoMuAaGFRmcnJzEfAwBE3reYhtb9GgDjIys3D/cZjUdL73grDj8AkM6dUV44ZIviVRUFAATxcndG3bXGy7pakxACAmPrFsDqAc5OTm4v79B2jUoL7Y9iaNGyIjMxMPHz2SSBOfkIDomBg0atBAPE2jRoiNjUNMTCwKCgrg5uaKDu3bie1jbm4GAIiNk92bnJzcXAQ9CEbj+uJBp6YNGyAjMxMPHoVIpIlPSER0TCwaNagnnqZRA8TExSM6NhYAEP7sOdTV1GBsZFh+B1AOWCeShG3nPho2bCi2vXHjxsjMzERwcLBEmoSEBMTExKCBlDSxsbGIiYkBANy9exd169QRG2rfuHFjFBQU4O69e+VwNGWDdSKpqO00KdZ2mjWqX2rbiYqJQ5P64m2nWcOitiN5/hQIBFi7aTsszc3Qu2vlePEg8N5tqKqqwtXNU7RNR0cXTs61ce+OX4npAu7dhqmZuSh4AQDmFlYwM7fAvTv+AAA/Hy8oKSmjVdsOYml/mf4bps1aULYHUgZ4LRbH+pDEc0nJggN8oaKqBqfa7/7vtXT0UdPRAw/vepeYzsisOtp2GyoKXgCAiqoa9KoY4mV8FAAg5P4tFOTnwa3eu5EoSkrKcPFsiof3Ss67Imm72MF5w3xE7z2JwOG/fnB/NUtTaNpVR/ypS2Lb447/A42aVlCvYQkAqNamMRIvXBebLir+2EXIKSigWtvGZXsQZYh9E0msE0k5uXm4+/gJWniKTw3Xqm5tpGdlIzD0mUSa9Mws9GrVEE3dncW2WxkL72liEpMACKelauTqKDZdVKu6rigQCOB7X/LcLSvklJSg5eqON17Xxba/vn4VChoa0HJxkZpOXlkF+ekZYtvyUt5CUbvkabUtJv+CrOcRSDhy8MsLXo7Ks+2kpaVh4e+/o1atWvh94cLyOwgiKjdfLYDxxx9/oHWxOehSU1Ph4uKCffv2oU2bNvj999/h4eGB8ePHf1SeQ4YMwZw5c9CnTx94enri9OnTAIBjx46hQ4cOcHFxQYcOHbBr1y4UFBQAAKKjo2FnZ4d//vkHffr0gbOzM1q2bIlDhw6J5X3y5El07doVLi4uaNmyJTZu3Cia2mjIkCGYPHmy2P63b9+GnZ0dXrx4gYKCAmzevBnt2rWDs7Mz3N3dMXr0aERGRorS37p1CydOnEDLlsIOe05ODpYvX44mTZrAzc0Nffv2hbe3eMf90qVL6NKlC2rVqoWBAwcitvABpayITUhEbl4eLEzE3/I2LexkREq5kQMAhxrVcXTTKgzr3RUKCgoSn8vLy+PHEQPRpK54YMTr1l0AQHUL07IofrmIj4tHbl4eTE3Fy2hibAIAiI6OkUgTFSW8qTM1NRFPYyIM2ETFRENeXh7fjx6FhsUePvj4Ch9KWVrK7pD7uPgE5OblwazY8ZkWfm+iYyTr5EVUNADAzKRYnRSOKIiKFraFpxHPoaWlifmLl6NrvyHo1GcQFi5diVfJr8v8OMoS60RSfFwc8qS2HWE7kFYnRedYs2JpjE2K2ls0srOzkZiYKJGvro4O1NXVER0dXWbHUNZYJ5JEbadYOzAtagcxktfJF4XnXbPCIPjHpLnq5YPHYU8wYfQIqdcpWRQd9QKGRiYS5TUyMUVMTFSp6UxMzCW2GxmbIiZamC4i4imMTUwR/PA+fp74HXp3bY3vRvTHvxdkc1oCXovFsT4k8VxSsvjoCFQ1NIN8sfIaGJsjPvZFiemat++Ldt2HiW1LjItETGQ4TMxtAABx0RFQVdOAjl5Vsf2qGZvjTfJLZGWKP6STBZmRcbhm3waPpy5BfkbWB/fXtBcea/qT52LbM8KFdadpWx3yqipQtzJD+pMIsX1ykl4jNyUVmrbVy6bw5YB9E0msE0kxiUnIzcuHhbH4CBFzI+Galy/iJF9INDWogukj+sLKRPwlrOt370NRQQEWxgbIyslBXFKyRL562prQUFOVmq+sUDExgbyyMrKiIsW2Zxf+P6qYW0pNl3D0EKq0aw/tuvUhr64O/dZtoVO3Hl79e1Hq/notW0PTyRlR69cAhc/EZFV5tR0AUFFRweZNm/DLzz9DR0f211AlIklfLYDRs2dPREVF4c6dO6Jt58+fh7a2NpSVlREZGYnExEScPHkSU6ZM+eh8jxw5gqFDh2L//v1o0qQJDh06hGXLlmHChAk4d+7A4HXIAAEAAElEQVQcJk+ejK1bt2LFihVi6RYvXoyxY8fiwoULaN68OebNmye6Odu5cyfmzJmDfv364fTp05g0aRK2b9+OJUuWiI7l6tWrSEtLE+V3+vRpuLu7w9LSErt378b27dsxffp0/PPPP9iwYQOeP38uSv/nn3/Czc0NHTp0wNGjRwEAM2bMwM2bN7FixQqcOHECHTp0wNixY3Ht2jUAwL179/Djjz+iXbt2OH36NHr06IEtW7Z8+n9EOUpLFw7FU1dTE9uurqYKAEjPkD5Ur1oVfWhraX7S34qJT8CGXQdRs7oFGrjX/ozSfh3pGekAAHV1dbHt6urCOsrIkLwxSy98o6J4GjW1ktMAwjcbt27/GzbW1qjr6Sl1H1nw7viKf0+Ev0v7nqQXHrNGCWkyCtOEP4tA0qtk1Kxhg9/nzsC4UcMQ9PARpsyYg8ysD99kVhTWiaSi45NsO8LfpbadktK813bS06W3SUDYxkpqX7KAdSKpqO2U1A6ktp2iNCVeqySP9+CJU3B2sINrLacvL/RXkpGeDjWp/6fqyCzl/zQjo+R0Rd+FtykpSH6VhNXLF6F1246Yu3AZXN088df6VTIZxOC1WBzrQxLPJSXLzEiDqprkmlmqahrIykyTkkK6nOws7Fg3F0pKymjZsX9h3qnS81YVfs8+Jf+vJfd1CrJiPn7udEUd4T1O3lvxY8lLFbZDRW1NKOloSd2naD9F7U+7T/qa2DeRxDqRlFYY7NMoPD8WUVcVTgeUnvlx9yRXbwfhrNdt9GrVCNoa6qJ8NYvlCwAaqiofnW9FUNAQtuv8Yv9v+YWBWwUN6WsVJhw+iLQH92G7fDXcL1yG9Zz5SPrnAhIO7pO6v1H/QUi9H4TUwIAyLH35KK+2AwBKSkowMzMr2wIT0Vf11dbAsLe3h5OTE06fPg3PwhuYEydOoGvXd2/djx8/Hubmkm/9lcbBwQFduryba3njxo0YN26caG0Jc3NzpKWlYf78+Zg0aZJov+HDh6NVK+FcilOmTMG+ffsQFBQEMzMzbN26FYMHD8agQYMAAFZWVnjz5g2WL1+OiRMnol27dliwYAH+++8/dO/eHTk5Ofjnn39E8/RZWFhg6dKlaNGiBQDA1NQU7du3x8WLwqi4rq4ulJSUoKqqCn19fbx48QJnz57FyZMn4eAgnAt3xIgRCAkJwfbt29G8eXPs3bsX7u7umDBhAgCgevXqCAsLw+7duz+pvsqT4AMT18nJf+REsR/wIjoWUxYsg4K8PH6f+iPk5WV3JrSCgtLrRF5Osk4KBKW/GSEvJ3m8kVFRmDlnLhQUFDB75nSZrhPBB49Psk4EH6jHou/WTz+Og4K8AuxtawAAXJwcYWVhgUnTZuHSlWvo2rH9Z5a6fLFOJAk+8IaQ9DopPY2cvPwHz1PS8pUVrBNJBR8qu5TrzqeeYx8+DsWT8AgsnPnhqUIqSkFBgcT/Y2l1I1fK/2lp162i+szLzcXbtyn4deZ8NGgkXPvApbY7kl4m4tCB3TK3BgavxeJYH5J4LhESnkvEj6u045ST8v8uTVZmOjYu+QkRT4MxduoyVDEQvhn7wXuHj8xflsl94HsvKCgAPriP7E4Ozr6JJNaJpA+eYz+i7FduB2H2ht1wtbXGxAFdAXzMOUR26wQfOr9J+U7IKSnB/s+/oFSlKp6vWIqsyBfQdK4F4yHDUZCZgag/14jtr+FUCxp29ngqw9ed95VX2yGi/w9fdRHvXr16Yc2aNZg9ezbi4uIQEBCARYsWISgoCIAwUPCpLC3fDa1LTk5GfHw8Vq1ahbVr14q2FxQUIDs7G9HR0aJFf2xsbESfa2kJ33rJzc1FcnIykpKS4OEhPl1R3bp1kZubi2fPnqF27dpo3749zpw5g+7du+P69evIyclBhw7CuaBbtmyJoKAgrF27FhEREYiIiMDTp09haCh9DvpHhXMNDxw4UGx7bm4utLW1AQBhYWFo1Eh84UM3NzeZCmAUvbWWUexNh6I3wTWlvC3yqe49fIxZy9ZBTVUF6xbMgKmMz+uvoSE85uILRYneFJDyZoWGuobUNEVvDxTlWSTo/gMsWPQH1NRUsXTxItEQS1mloV5UJ+Lfk/QSju/9bRkS9ZgplqeTvZ1EWmdHe2hoqCM8ouRpDioa60SSRmHbKH58GaW1nQ+k0VBXF72dI23xtoyMDKn5ygrWiaSS28G745NIU/QWV/H2VphH8fZ23ccXWpoaqO/pVjaFLgeHD+zGof27xLY1aNQMKW+SJfbNzEiHukbJb/NqaGggU8q0LZkZGVAvvD6pqatDTk4OHnXEpwpy86iLgHu38eZ1MnT1ZGfRTF6LxbE+JPFcInT28BacPbxZbJt7g9ZIffNKYt+sjDSoqX94ZEByUjzWL5qI+NgX+O7nJXCt20L0mZq6JrKyJM83WZnpos8ru7yUVACAopZ4uyoaVZGXkiYaeVF8n6L9ivKQReybSGKdSNJUF46QkDxfFo6gKDb6rbh9F65i7b5T8HCsgRVTRkNFWbgGSNGIjnQpo8rTM7M+mG9Fyk8XtnuFYtcXhcLrbdHn79Nr1gLqNW0R+tNEpN69DQBICwpAfnoaLKdMxcuzp5EV8W49Eb3mLZD39i1S/HzK6zDKVHm1HSL6//BVAxhdunTB0qVLcfXqVYSFhcHFxQU2NjaiAIaqquTQvw95P03ROhczZsyQWPgHAIyNjZGYKJwHUVlZWeJzgUBQYhS/KG/FwsWhevbsiWHDhiEpKQlnzpxB69atoakp7Ihu2bIFGzZsQI8ePdCgQQMMHz4cly9fxrlz56TmXfQ39+3bJzoBFyl6W01OTk5UhiLvL94lC0yNDKAgL4+YePFh1dGFv1uamUhL9tEuefli0Z9bYGlqghWzf0a1KrLzcKQkJsbGkJeXl1i4MrZwPRALKSOOzMxMRfvUeC/QVpTH+6OUrl67jhWr18DczAy/z5+HqlWrlPkxlDUTYyPIy8sjpnidxMUDACzMJYd2mhfOuR0bF4+aNtbvpRHmYWluhrT0dHj5+MHetiaqvzfPdkFBAfJy86Cro13mx1JWWCeSjAvbTlyxtX6K1v6R3naE9RQXGyvedorSWFhATU0NVapUkVhD6M2bN8jMzJSar6xgnUgyNTIsbDvxYtuLfreU0nYsCttOTFw8atpUl0xjJj6Hrt/te2hUr67o+i+L2rbvDM+64osr+/t6I/DebRQUFIi9+R4XFwsz85LXIjAxNUfEsycS2+PiYlDT1h4AYGxiCoFAgLy8XLH+VF5+HgBAufBlEVnBa7E41ocknkuEmrbtCRfPJmLbAm9dw6NAX4lzSWJ8FIzNSl+bIfrFE6xdMB65OdmYPHcjbJ3EXxAzNLFEVkYaUlOSoaXzrl+fGBeFKtWMoazy6feGsiYtTLiuhbqNJd4GPhZt17ARvoSXFhKO/PQMZEbHQ91GfM575Wr6UNLWRFpI+Ncr8Cdi30QS60SSmUFVKMjLIyohSWx70e/F17koIhAIsGL3cRz69wbaNXDHvLGDxBbrVldVgYGeDqLjxfNNTklFelY2qpeQryzIjo2BIC8PKqbi1xfVwt+zXjyXSKNsKFxjKe3BfbHtqUGBAAA1q+piAQzdBo3wxvsGBIVrucq68mo7JPtkeKAhyZCvOp5KW1sbbdq0waVLl/DPP/+gZ8+eZZp/lSpVoK+vj6ioKFhaWop+goODsWbNmo/Ko2rVqqhatSru3r0rtv3OnTtQUlISnQA9PT1hamqKU6dO4dq1a2LHsmnTJvzwww+YN28e+vXrB1dXVzx//rzE4EjNmjUBAC9fvhQr9/Hjx3H8+HEAwim4AgLE5y18+PDhRx3T16KirIzajna47ndH7Fiv+d6Bpro6HGtal5K6dL53g/D72s1wtquJjYtmV4rgBSAMlNVydsZNHx+xOvG+6QMNDQ3Y2daUSGNqYgIjQ0N43bwptt37po/oMwC4dfsOlq1cBUcHe6xcvrRSPCAAhHXi4uwILx9/sTq54eMHDQ112NeUVifGMDY0wI2bvmLbvXz8YGpiDCNDAygrKeHPTdtw4MhxsX18/G8jOycHrrWcy+eAygDrRFLJbecmNDQ0YGtrK5HGxMQERkZG8Pb2Ftt+8+ZNmJqYiEbBubu749atW8jJzRXLV15eHrVry+6aOqwTScrKyqjt5AAv3+Jtx1/YdgqnTntfUdu57iPedm74+MGssO0UeZuaiujYODg7SI5kkiX6VaqiRk07sR9Xd09kZmYg4N5t0X4pKW/w6GEQXN1KXovA1d0T0VGRiIp8LtoWFfkc0VEv4OouTOfhKRx54X39ilja2/4+sKpuLRqpISt4LRbH+pDEc4mQrr4BrGo4if041q6PrMx0BAe+e4M3NSUZTx7dg2PtBiXmlZwUj9XzxkJOTg6//rFDIngBAI61heeSu77/ibbl5ubg/l0vOLqWnHdlkhEeiYxnUTDu2U5su1GPtkgLi0DmC+GitEn/3YRBx+aQV373gppRz3YoyMtD0lW/r1rmT8G+iSTWiSQVZSW42dvg6u37YnVy5VYQNNXV4FwseFdkw6GzOPTvDQzq0By//zBULHhRpJ6LPbwCgpGTm/cu39tBUJCXRx0nyeuZrBDk5CD1fiD0mjYT267brDnyUlOR/viRRJqsSOHoeS0X8f9rTWcXAEB23LsH/wpa2lA1t5AIdsiy8mw7RFT5ffVXgHr16oVx48ZBIBCI1qkoK3JychgzZgxWr14NExMTNG3aFKGhoZg3bx5atWolddSFNKNGjcLq1athbm6ORo0a4f79+1i/fj369esnmm5KTk4O3bt3x4YNG6Cvr4/69d9No2BsbIybN2+iZcuWkJeXx6lTp/Dvv/+iatWqon00NDQQExOD+Ph41KxZEy1atMBvv/2GuXPnombNmrh48SI2b96MxYsXAwBGjhyJPn36YOnSpejbty8ePHiAvXv3lmHtlY1hfbph8rylmLNiPTq1aoqHIU9w4NR5jB3cF6oqKkjPyEREVAxMjQyg95Fvf2fn5GDJxu1QU1PFsF5dEREVI/a5QRV9GFSV3YDGwP59MX3WHCxavBTt2rbGo8chOHr8OEYOHwZVVVWkZ2QgMjISxsbG0NXRAQAMGtAfK9eshbaWFurXqwdff3/c8PLGjGnC+StzcnKwet2fUFdTQ/9+fREZGSn2N6tWrYpq733fZM3gvr0xdc58LFi6Eu1bt8SjkFAcPn4Ko4cNhqqqCtIzMvAiMhomxoaiOhncvw+Wr90AbS0tNKhXBz7+t3DN2wezf/0JgLDD0793D+zafwi6ujqo5+mOiOeR2H3gMBrWqwO32rUq8pA/iHUiqX///pg5axb+WLwYbdu0wePHj3Hs2DGMGD68xLYzcMAArFq9Glra2sK24+eHG15emD5tmijfPr174/r165g7Zw569OiBmJgY7Ny1Cx06dICBgUFJxZEJrBNJg/v2wi9zF2L+0lXo0KYlgh+H4tCJ0xgzdFDhdUey7Qzt3xtL126EttZWNKrriZv+t3HN2xdzpk4Wy/vZC+G51cqi8i365+RcG861XLFm+SIMHfk9tLS0cWj/TmhoaKJ9x26i/aIinyM3NxfWNsKb/MZNW+DY4X1YOHc6hgwfAwDYs3MrLK2s0aiJcOoXZxdX1KnbEH9v3YisrCxYWFXHtcv/IuTRQ8yY8/vXP9iPwGuxONaHJJ5LpLN18oCtsye2r5mFXkMmQVNLF2cObYKauhaate8j2i82Khx5ubmwsBaO1Dq4bRlSU5Ix6PtZyMpIx7PQdw/RVNU1YGJugyoGJmjQogsO71iJ3JxsGJpY4tLpvchMT0W77sO++rGWBUUtDWg61kBGeCRykl4DAJ4s2oDa25cgN/kNEs5cgWHXVjDp2xH3Bk4WpQtfsQ0m/TqhztltiFizAxq2VrBb+BOith1GVlRcCX9NNrBvIol1ImlU97YYv3gjpq/bia7N6uH+kwjsOXcFE/p1gaqKMtIyshAREw8zw6rQ09ZE6PNo7Dp7GY7WFmhdzw0Pn4pPfVvd1Aia6qoY1rkV/vW5h4nLNmFQh+Z4Ef8SGw+fRY+WDWAkw88IACBu907YrloH6/mLkHT+DDSdXGDUfxBitmxEQXY25NXVoWZVHdkxMchLeYM3N72QFvwQ1Wf/htgd25AV+QIaDk4wHjIcr71vICPk3SgvNWvhaITMFxEVdXifpbzaDhFVfnKCD618VMYEAgFatGgBd3d3rFq1CgBw/PhxzJgxA6GhoZ+U15AhQ2BqaoolS5aIbd+3bx/27NmD6OhoVK1aFZ07d8bEiROhrKyM6OhotGrVCrt370a9evVEaezs7LB48WLRSIq9e/diz549iImJgZGREfr27YtRo0aJFhwHhMPSWrVqhe+++w5TpkwRbQ8ODsaCBQsQEhICDQ0N1K5dG82aNcO8efNw5coVmJiY4Nq1a5g2bRoEAgF8fX2FN32rV+P8+fNISUmBhYUFRo4ciV69eony9fX1xfLly/HkyRPUrFkTHTp0wIoVKz653op7Gez/RemLu+53B38fOoHImDhUraKHnu1bY0A34fog9x4+xsS5izFzwhh0bNlEIu35K174Y/1WHNm0EsYG1QAAdx88wqTflkjsW2RE3+4Y1b/sRvNUc6qH50/Dyiw/ALjp44s9+/YjOjoaVapUQZfOndC7Zw8Awnmif50xEz9PnoS2bVqL0py7cAFHj5/Ay5dJMDYyQr++vdG6ZUsAQGBQEKbNnF3i3xs8cACGDBpY4uefyqqGLaLDynbEj7evP3buP4jo6FhUraKPrp06oG8P4YJsgQ8e4ueZv2HqpB/QvnVLUZozF/7FkROnkJj0CsZGhhjYuwfatGwu+rygoABnL/6LU+cuIjY+AdpammjVvCmGDegrWv+mrJjZOrNOijGzdcaz8LKd5uCmjw/27t0rdj7vVXievn//PqZNn46fpkxBmzZtRGnOnz+PY8eP4+XLlzAyMkK/vn3RqlUrsXwfPnyIbdu349mzZ9DW1karli0xZMiQMp/aw9rGhnVSjLWNDWJDy/ZtMC9ff+zcfxhRMcK2071je/TtIVxIOvBBMKbMmodpk8ajfat3c6+fvngJh0+cRmLSK5gYGWBg7x5o20L8Lbir3j5YsGw1dm1cA4ti08GUJRM7Fzx6GvvhHT9RWmoqdmzbCH9fbwgEAtg7OmPkmPEwNXs3nH729MlITIjHlh0HRduSXiZi2+b1CAq8A0UFRbi6e2LEmB+gr//ubfqcnBwc2r8L169ewtuUNzC3sELfAUNRr0HjMim7Yw0TXovfY1XDlvVRjFUNW55LijGxc8H1YMk1Jb5UetpbHNmxEoG3rqJAIEAN+9roO+IXGJlaifZZMWc0XiXGYvHm88jLzcWEgQ1RkJ8nNT9bJw/8snAbAOGIi+N71uGW1wVkZ2XA0sYBvYZOgbVt2bxk0cxJHeeUymfki37TumhweQ98Ww1B8o1bYtuCRk1H9O4Ton0txvSD9ZSRUDU3RsazKIQv24KYfafE8tNr5AGHpb9Cu7YDcpJeI2bfKYTNWwdBnvR6/FydckPZNymG/TVJ1jY2SL1zsUzzvHo7CJuPXcCLuEQY6OmiT5vGGNxJeA258+gJxi5aj9++G4guzeph09Hz2HbinxLz2jRrAjwdhS9fBISEY+3+UwiLjIGupgY6Nq6Dsb07QlFRocT0n0PLsz3uNCvb0WG6TZrBZMRoqJpbIDfpJRJPHEPC4QPCv+fqBru1GxGxeCFeXTwPAJBXV4fpmLHQa9ocilrayI6Lxat/LiDh8AGxc4Vei1awmfc7Hg7pLxq5UR48r/tWmrZTJCEhAcNHjJDIoyxYvzeNFX28ndcqugSVz/DmFV2Cr++rBzDS09PRuHFjbNiwQeo6FfT1lXUAo7IrjwBGZVceAYzKrjwCGJVdeQQwKrvyuCGu7MojgFHZlVcAozIrjwBGZVYeAYzKrjwCGJVdeQUwKrPyDGBUVuURwKjs2F+TVB4BjMquPAIYlV15BDAqMwYwPg8DGJ/uWwxgfLUppFJSUuDn54cLFy7A1NQUDRrwxE9ERERERERERERERNJ9tQBGfn4+Zs2aBX19faxZswZycnIl7rt161Zs3Lix1PxmzpyJPn36lLoPEREREREREREREcmerzsvEFVWXy2Aoa+vjzt37nzUvn379kXbtm1L3adKlSqlfk5ERERERERERERERJXXVwtgfAodHR3o6OhUdDGIiIiIiIiIiIiIiKiCyFd0AYiIiIiIiIiIiIiIiIpjAIOIiIiIiIiIiIiIiGQOAxhERERERERERERERCRzZHINDCIiIiIiIiIiIiL6/yUQVHQJqDLgCAwiIiIiIiIiIiIiIpI5DGAQEREREREREREREZHMYQCDiIiIiIiIiP7H3l3GRZX9YQB/GLq7ERFUDCzE7sDu7tY1Vzes1S11ddfd1V117Q7s7rULVMQuDFQ6VEBgiKn/iwF0mAEMcC7/fb6fDy+4c8/l3Mu55565vxNEREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDh62s4AEREREREREREREf23yBXazgGVBByBQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERIKjp+0MEBEREREREREREdF/i0Kh7RxQScARGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4etrOABERERERERERERH9t8jl2s4BlQQcgUFERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCo6ftDBARERERERERERHRf4tCoe0cUEnAERhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkODoKBdd7JyIiIiIiIiIiIqLPZ9kxbeeg5BnTRts5+Pz0tJ0B0r7EeWO1nQVBsZ6+FBm7F2o7G4Ji1P0rJP8xUdvZEBTLb/9G2JAO2s6GoHiuP4TXty9oOxuCYlO1EcTntmk7G4Ji0qQPYh/e0HY2BMWpQg3cfhyv7WwIStVyDogY213b2RCMUkt348WoLtrOhqCUXrkPKdf4jfdd5n5tkPHvOm1nQ1CMWg1F2NOn2s6GoHh6eeGwvre2syEo7SWheHP9hLazISgWvv7YdUWu7WwISo86IjwNC9N2NgTFy9MTyddPajsbgmHp21LbWSD6v8UppIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcLuJNRERERERERERERJ+VXKHtHFBJwBEYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDh62s4AEREREREREREREf23KBQKbWehBNLRdgY+O47AICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsHR03YGiIiIiIiIiIiIiOi/RaHQdg6oJOAIDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhw9LSdASIiIiIiIiIiIiL6b5HLtZ0DKgk4AoOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgER0/bGSAiIiIiIiIiIiKi/xaFQts5oJKAIzCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgEhwEMIiIiIiIiIiIiIiISnBK9iHdSUhImTZqEkJAQeHt7Y+fOndi3bx8aN24MW1vb9zpG8+bN0bVrV0yYMAF79uzB9OnTERoaWmi6D9n3Y6xYsQIXL17Epk2bVLbPnDkTO3fuVNnm6uqK06dPF0s+PoZemYowbtIJunbOkKe9QWbIeWRePZnv/iJre1iO/lltuywhGm9Wz8n+TQeGtVvA0LchRObWkCe9Qub1c8gMOVdMZ1G0Ah9HYMm/V/E0PhE2ZsboU7cyBjWsBh0dnULTSmVyDFqxF8b6elgzsrPKZ/ci47HgaBDuRSXAzNAAnXy9MaaFH/T1dIvrVIqMXmlvGDbqAF1bJyjEKci8cQFZ187ku7/Iyg7mI75X2y57GYPU9b9Ct1RZmPWekG/6jEtHkRl0rEjyXlyMK9eAdfeBMHB1h+xNEt6cOozkY3s17mvWsAUcRnyV77HiVy1A6iVlvaDv7AabXkNhXKEKFDIZMkLv4tW21ZAmxBXLeRSlK7fuYcXWvQiLiIaNpQW6t2mGfh1bvde9E/osHMOn/4Kdi36Bs4Ndvvv9tX4bth8+iaCdq4sy68Um6N4TLNl3CmHRCbCxMEXvZrUx0L9+vtckSyLFphOBOBR0C7GJyXC0tkDbOlUxrE1D6Ou9bQacufEAqw6fw/O4V7CzMEP7ulUxrG0jlX2EKvjGLazavB3PwyNhbWWJru1aoXeXDgWWk5PnL2HTjr2IjouDk4M9+nfvjDbNm6jsc/TUWWzfdwhRMXGwtbFGm+ZNMKBnF+jpCr+OBYD0dDG2rF+Oy5fOISMjHZUqV8PgkRPg6uZeYLqkxNfYsHoJbl6/AplMBl+/uhg8Yjysbd7eR69eJmDTuqW4GXIFcpkM5StURt9Bo+BVrkJxn9ZHM6xYDVad+kHPuRTkb5KQev4YUk4e0LivSd1msB00Pt9jvdqwGOIrZ1W26RgawWnGAiQf2Qnx5fyfZ0JiVKk6rLr0h76LO+RvkpBy5gjenNivcV/Tes1hN/TLfI/1ct3fSAs6k7uvRavO0LN3guz1S6ScPYKU04eL5RyK0uXbD7F05yE8jYyFraU5evo3woB2zQqsXzcfOY3DF4IR9zoJDjZWaFu/JoZ0aqlSd94PC8dfAfvxICwcpsZG6Ni4NkZ1b1si6tfAB8+w5NA5PI15CRtzU/Rp7ItBzWvne00yJVKsOHoJR67dQ2KqGOVdHTC6XUM0qOiZu49crsCmM1ex69JNxCWloLS9NYa0rIv2tSp/rtP6JCHXr2PDhg0IDw+HlZUVOnTogO7duhX4zDl79iy2btuG2NhYODo6omfPnvBv2VJln0ePHmH1mjV4/PgxTExM4N+yJfr37w99ff3iPqUiY+TqiMY3D+Fa93F4ff5qgfu69G6PstPHwMSzFNKfR+HJ7ysRtWmfyj6WNX1Q8bcpsKzpA+mbNERu3INHs5ZAIZEU41kUjcu3H2Dp9oMIi4yBraUFerRqhAHtW7xnGzYCg7//HXsW/ggXe9X3GmeDb2HN3mN4ER0HWysLtGtYG0O6tCoR9QkAZGak4fj2P3Hv2glkZYjh4V0T7fpPh71zmQLThT++gX93LkTU83swMDRBldpt4N9jEgyNTXP3iY96gmPb/sCLxzego6ODCtWbonXvb2BuZV/cp/VJ0tPTsXbtWgReuoT09HT4+Phg1BdfwM3NrcB0iYmJWLVyJUJCQiCTyVCrVi2MHDUKNjY2ufvIZDJs2bIFJ0+cQEpKCsqWLYvhI0agQgXhttcu336AZdsPICwyBjaWFujZqjH6f8C9M+T7+di98CeN987avUdz7522DWtjSJfWJebeIfqvK9F36oEDB3Dt2jUEBATA0dERwcHBmDZtGk6dOvVRx2vXrh0aNWpU5Pt+qC1btuCvv/6Cn5+f2mehoaEYPXo0BgwYkLtNV0AvUnRdPGDWcwyyHoQg/fxB6Ll5wbh5F0AkQublfzWncVA+mFMC/oJCkvX2g3capsYtusGodgtkXj+PrEe3ILKyg3HjjhBZ2iL99J7iPKVPdjs8DhM2HkXrKl4Y518LN57HYuGxy5DKFRjepEah6deeu4F7kQnwK+Ossj3y9Rt8sfYQqro74ve+/giLT8KSE1eRnJ6J77s0Lq7TKRK6zqVh0m0UJA9vIPPiYei6esKoSSfoiHTzDXaJHFwBAKnblwDSt+Uk5wuMLC4CqVsWqKUzatgeuk7ukDwMKYYzKTqGXt5w+uoHpF69gMS9m2FUrhJseg0FdHWRfHiX2v7iW8GImv2N2nb7oV9CZGwM8e1rAABdGzu4zJgPSUwU4pbPh8jAENbdBsL529mInDle9Z4TmLuPnuLbeYvQsn4tjOzdBbcfPsY/m3dBJpNhUNd2BaZ9Gh6Fb+f9DZlMVuB+N+4/wo4jH/fM0IbbYRH4ckkAWvtVxtjOzXHzSTj+2n0CUpkcw9pqfibN334Uhy/fwsj2TVDZwxX3X0Rh5cFziHmVhJ8GdwEAXL7/FN8s345WfpXxZTd/PI2Ox+K9J5GYKsa0vu0/4xl+uHuhjzFtznw0a1gPw/v3wp37oVi+IQAymRz9e3TWmOZc4BXMWbAEPTq0QW3fgbhwJRjz/l4GfT19tGhcHwCw6+ARLF69EU3q18HoIf2RlJyCdVt34OnzF5g97evPeYof7e/fZ+Fx6D0MGDoGJiam2BmwDj9/9yUWLN0EMzNzjWlkMinm/vQtxGIxRo37FlKpFFs2LMfs77/B/L/XQE9PD2lpqfh+6jhkZqSj78CRcHJxw5VL5/DDtPH4ae4ilPOu9JnPtHAGHuVgP2Y6xCGBSD64FQZeFWHZZSAg0kXKv+qB4oy7IYibP01tu82AsdAxMkbGvesq23WMTWE3ehr07ByL7RyKmkGZ8nAYPwNp1y4haX8AjMpWhFX3wYCuLt4cU29bpd+5hph5U9S22w4aB5GxCdLvKJ+zZg1bwnbQeCQf24OM+zdhUKY8rHsOg46hMd4cVX+eCcWdx88x6Y+V8K9bA6N7tMfN0DAs2noAMpkMQzr5a0zzx8bdOHLpGkZ0aYVKnu64/ywCq/YcQ8zL1/hhVD8AQGT8S4ydtxRVy3pg3pdD8DwqDkt3HkZyqhjfDe/9OU/xg91+FoUJK3aitW9FjGvfGDfCIrFw/xlIZXIMb1VPY5qfAo7i/N0n+LJjE5R2sMGBq3cwYflOrJ7QD75lSwEAlh65gHUnL2Nsu0bwKe2MC/ee4ruNByHS0UFbP+HVH+968PAhfvrpJzRu1AiDBg7EvXv3sHbtWshlMvTq1UtjmosXL2L+77+jc+fO8KtZE4FBQViwYAH09fXRtIkycB4TE4PvZsxAxQoVMH36dERERGDDhg1ISUnBhAn5d9AREiM3J9Q+vAb6VhaF7uvUtRWqb/wDzxZvRMLxC3Dq3BLV1/4GeWYWYnYcAQAYl3FDnWPrkHj5Jq73nQSzCl7wnv0V9G2scHfcj8V9Op/kzuNn+Gr+cvjX88Xonh1wK/QpFgfsh0wmx5DOrQpM+yQiGpPmL4NMJlf77MrtB5iycDX86/pifJ9OeBoZi6XbDiApJRWTh2ouf0KzY9lkRDy5hTZ9voWhkSlO71uKNfMGY+K8gzA2tdSYJjY8FGt/GwbPSnXRb8IipCTF4/iOBUiIeYahU5QdkN4kxmP1vCGwdSiFnqN/gyQrAyd2LsTa34Zh/Ow90NUTbiBw/m+/4eHDhxg2fDhMTEwQsGULpk2dimXLl8PcPL/2mgw/fP89xGIxxk+YAKlUivXr1mHGjBlYvHgx9LJfyq9auRLHjx/H0KFD4ejoiL1792LGd99h8ZIlcHFx+Zyn+V7uPH6Gr+cvy713boaGYXHAPshkcgwu5N55GhGNrwq4d6YuXAX/ur4Y16czwiJjsu+dtBJz7/w/kyu0nQMqCUp0AOPNmzewt7dH1apVAQDPnz//pOMZGRnByMioyPd9X3Fxcfjxxx9x5coVeHh4qH2uUCjw5MkTjBo1Cvb2wuxFYNyoA2RxERAf3AAAkIbdh45IF8b1WyPz2hlAqt5bRtfRDfI3iZC+eKTxmDrGpjD0a4rMmxchPr4td7siJRGm3Ucj8+YlyF8Ltyf50lPBqOBsh7m9WgAAGpR3h0Qux5qz19G/fhUY6ed/G4bGvMSaczdgZ26i9tnaczdgYqiPvwe0gb6eLhp5l4axvh7mHbyIEU1rwNlKc2NHCAzrt4UsPhLpRzcDAKTPH0JHVxeGdfyRef2c5nJi7wr5m0TIIh5rPmhWJmQxL1Q26Xn5QK+0N9IOrIU8MaHIz6MoWXfpj8wXYUhYqQzCpN+5Dh1dPVh36IU3/x5QCzTIU94gM+WNyjaLlh2h7+KG6DmTIc/+zLpLP8jFYsT8PhOKrEwAgCQhDk4Tv4dhmXLIeHTvM5zdx1m94wDKl3HHj1+OAADUq+EDqUyGDXuPoFe7ljAyNFBLI5FIsfPYKazavh8GhfRYFKdn4Jel62BvY4X4V4nFcg5FbfmBM6hQyglzhncHADTwKQepTIa1Ry+gX4u6MDJQPeekVDH2XAjBxG4tMbh1QwBAnexesIv2nMSX3fxhY26K/YE34GRjiV+Gd4euSIS6lbzw6k0qNp8Mwjc92wh6VNe6gJ0oV8YDM79S9pav41sdUpkUm3ftQ4+ObWGooZys2rQNTevXwfgRgwEAtX2rISUlFWsCdqBF4/qQyeTYsH0P/KpXwaypb0c6lfcqg6FfTkbwzduoVb3q5znBjxT64C5Crl7Cdz/9jhp+dQEAFSpXxbjhvXH88F507z1IY7qgi2fx7OljLFi6EaXclb0hPTzL4ptxgxF04TQaNWuFMycOIyEuBrPn/4MKlZTXoVqNWnjzJgkbVi/GnN+XfZ6T/AAWHfogK+IZXm9YBADIuH8TOrq6sGjdDalnDqvXsalvkJWqWseaNW0HPSdXxP8xA/J3PjOq4gfrXsOhY2hc/CdShKw69UVWxDO8WvsXACDj3g1AVw+WbXsg5dSh97om5s3bQ9/ZDbG/Tcu9JhZteyAt5BKS9mxUHvfhbeg7usC8eTtBBzBW7D4Kbw83zB47EABQv1pFSGUyrNt/An3aNIGRgWpdkpSShr1ngjChT0cM6qBs49X28QYALNl2EBP6dIK1hRk2HDwFUyND/PnNCOjr6aFh9cowMjTA/PW7MKyzP5zsbCBUS49cRAU3R8wd1BEA0KCSJyQyGdacCEL/pn5qz5yoV0k4cu0epvf0R+/GvgCA2uVL42ZYJLZfuA7fsqWQniXB5jPB6N/ULzcIUsfbAw8iYhFw7prgAxibN2+Gl6cnJk+eDADw8/ODVCbDtu3b0blzZxgaGqqlWb9hAxo1bIgvRo0CANSsWROpKSnYtGlTbgBj565dMDY2xg8//AB9fX3UrlULhoaGWLZsGXr37g0HB4fPd5IfSkcHbgO7oOJvU4HCO0gDALxnf42YXcfw4Nt5AICXJy5C39oS3j9NzA1geE0eCWlKGq51GwuFRIKEY+chS8+Az9/f48mvy5EREVNcZ/TJVu46DG8PN8wap2xn1K9eCVKZDOv3/4s+bZuq1ScAIJFKsf3YOazYdRiG+Xw/PHjuMpxsrTFr/GDoikSoU7UiXie/QcCRM/hqYHfoCbi9BihHUTy8cQaDvlkB72rKDnce3n744xt/XD61Fc06jdaY7tLxDTA2tUS/L/+Gnt7ba7d71XdIiHkGe+cyCD67E5npKRj41VKYmFsDAEzNbbBm3mCE3b+CclUbFv8JfoQHDx7gypUr+HnWLNSqVQsA4FO5MoYOHYrDhw6hT9++GtNduHABT58+xfLly+FeujQAwMvTE2PGjMGF8+fRrHlzJCQk4PDhwxg9ejTad+gAAPD19cWIkSOxc+dOTJw48fOc5AfIuXd+HjcEAFCveuXse+c4ehdw7+w4dhYrdh3O9/tfzr3z8/gh79w7KQg4crpE3DtEn1NmZiZ+/fVXHDt2DBkZGWjevDlmzJihMrorr2XLluGvv/5S2/7urEVbtmzB2rVrkZCQAB8fH8ycOROVKr1/u0/ra2CcO3cO3bp1Q7Vq1VCvXj1MmzYNycnJAIBr166hV69eqFq1Kjp16oQjR47A29sbkZGRmDZtGhYvXozo6Gh4e3tjz549GDRI+WW8RYsW2LPnw3vl79mzB97eyi8e06ZNQ8+ePVU+j4qKQoUKFRAYGKiyLwB4e3tj165dGDJkCKpWrYqGDRtiyZIlKukPHjyItm3bokqVKujZsyc2btyocox79+5BX18fBw4cQLVq1dTyFx4eDrFYDE9PT7XPBEFXD3ru5ZAVektlc1boDegYGkPPzUtzMkc3SOMi8z2syMYROiJdSB7fUdkuefEIOiIR9L2E+0UnSyrDtbBoNK+sOiTW38cTaZkS3Hief8NbIpVh5s4z6FvPBx526r1Rgh5HoJF3aZUXiy19PCFXKBD4OKLoTqKo6epCr1Q5SPP+Px/dgo6hEfRcNZdvXQc3yBKi3v/v6OnDuEV3SJ7eg/TRrcL31yY9PRhXqIK060Eqm9OuXYLI2ARG5Qsv47oWVrDpPhBvTh9FZtjbYKCpX32kXDiRG7wAgKznTxD+1WBBBy+yJBJcvxeKJrVVRyk1q1sT4vQM3H6oOZAVeOMO1uw8iMFd22HcgO4F/o0lm3bCxsoC7Zs2KLJ8F6csiRTXHj1HsxoVVba3rFkZaRmZuPkkXC1NWkYmejT2Q5NqqsPEPZyUQfCohMTcYxsb6ENX9LZZYGVmAolUBnFmJoQqSyLBzbv30ahubZXtTerXhTg9HbcfPFRLExMXj4joGPU0DeoiKiYWkdExSExKwpuUVNTz81XZx7N0KVhamOPytRtFfzJF7Nb1qzA0MkbVGrVyt1laWqOSTzXcuBaUb7qb16/Axc09N3gBAKXcy8C1VGlcv3YZABAZ8QKmZua5wYscPlV9EfrgLlJTU4r4bD6Rnh6MylVG+i3V6UzSbwRBZGwCA6/Cp1EQmVvCsmNfpJ7/F1nP39Y/OsYmsPtiCjIf30PCktlFnvVio6cHo/I+EN+4rLJZHBIIkbEJDMtWzCfhWyJzS1h17o+Uc8eQ9eztNYlfPAeJuzao7KuQSqGjp/7SQSiyJFKEPHiMZn5VVLa3qF1NWb+GhqmlSUvPQPcW9dHY10dlu4ezchROVPxLAMppqRpUr6QyRUWL2tUhVygQdFu9jhKKLIkU156Eo3nV8irb/atXQFpGFm6Eqbfd7S3MEDB5sMpUUCKRDnRFImRKpQAAAz1dbPx6IAY1V62D9fR0c/cRqiyJBLdv30b9+vVVtjds2BDp6em4d0+9XRUXF4eoqCjU05AmOjoaUVHKtm1ISAhq16qlMl1Uw4YNIZfLEXJddcSX0FhU9YbPPz8jcvM+3ByiPkorL+PSrjDzLoPY/SdUtsfsOQ7Tch4wKat8GWvv3xDxR8+pTBcVu/sYdHR1Yd9KmC+jAWU5Cbn/BE1rqX6fb16nBtLSM3Dr4VON6S7duIfVe45iaOdWGN+3i8Z9MiVSGBkaqLTXLM1NIZFKkZaRUWTnUFwe37kEA0MTlKvytu1tamEDjwp+eHTrfL7pWnafiMHfrFAJXujqKu8VqUTZTq3boi9GztiSG7wAkDvqQiIRbls2JCQERkZG8PV92+a0tLJClSpVEHztWr7proeEwM3NLTd4AQDupUujVKlSCA4OBgDcvHkTMplMpf7RNzBA7dq1cS17HyHJkkhw/f5jNK1VXWV7i/e8d4Z0bo3xfTWPvs6SSEr0vUP0Of3000+4ePEiFi9ejA0bNiAsLAxffpn/NLKAMlDRuXNnXLx4UeUnx969ezF//nxMnDgRe/bsgZubG4YOHYrXr1+/d760GsB4/fo1xo8fj+7du+PIkSNYsmQJgoODMX/+fLx48QLDhg1D+fLlsXfvXowaNQqzZ7/9YjhjxgwMGzYMTk5OuHjxIvz9/bF48WIAwM6dO9GuXcHTixSmW7duuH37NsLD374QOnjwIJycnFC3bl2NaX777Td07doVhw8fxoABA7B48eLch8eZM2cwdepU9OjRAwcOHEC3bt3wxx9/qKRv3rw5Fi9ejFKlSmk8/qNHypeSmzZtQvPmzdGyZUvMmjULKSnCeFEgsrKDjp4+5K/jVbbLE5W/69pqnlZBz8ENOgaGMB/4Lawm/w3LCfNg3LQzkP1wUaSnKo9vqTqHoW72XJYiq/zntte2yNdvIJHJUdpWNQDhnv3785fJ+aZdcToEUpkcY1vWUvssQyJFdFIqSucJbNiYGcPM0ADPE/I/rraJLO2go6cHWaJqOZFlj5AQ2WjuYabr4AodA0OY9p0Ei0l/wHzMbBg26phbTvIy9G0CHTNLZJwR9hRjAKBv7wQdfX1IYlUDNJK4aOXnTgXPfwoA1l37Q6GQI3HP23Vz9OwcoWtiBumreNgOHI3SS7bCY9UeOH45E7rW77dOkLZExyVAIpXC3UW13nBzUpaPF9GaR11V9PLAnn9+xZDuHaAryr8nzdVb93D0fBBmjh0Kkeg9uwtqWeTLREikMpR2VP3flbJX9oR4HvtSLY2rnTW+698BHk6q9eTZmw+gp6ube6xeTWsjPP41Nv57CSnidNwOi8CWk5fR0KccLE3VR4AJRXRsPCRSKUq5qk6x55b9AjEiKlotzYtI5X2WN41rdprwqGiYmZlCV1cXcQmq1zQlNRWpqWmIjlWtv4QoMvIFHJ2c1aaZdHJ2Q3RU/kHuqIgXcHZRb4co0ynbRBYWlshIF6sFKmJjlNc2Plb9umuTnp0jdPT1IY1XzZckPhYAoO/oWugxLDv0BhQKJB8MUNmuyMpC7KxJeL1xicqoDKHTs8t+7sSpXhNpgrJjhb5T4dfEqlNfQKFA0j7VayKNjYTslfIeEZmYwaxhS5jVa4rUc0eLKPdFLyr+JSRSGdydVdsgpbKDvS9i1O95VwdbTBvaCx55nlPnQm5DT1cX7s4OyMjKQszL12rHtbYwg6mxkcbjCkXkqyTlM8dBtbedu73y5eDzOPUvnAb6eqjs7gxzYyPI5QrEJr7B/N0nEfkyCT0bKjsk6IpEKO/qADsLMygUCrx6k4Y1/wbhSuhz9G7oq3ZMIYmNiYFUKoWrq+r94eKsfJ5ERql3tMn5LumWJ41z9tQtkZGRyMzMRHx8vNpxrSwtYWJigsjI/Dt6CUF6eAzOVvDHg8m/QiYu/EWgWQVlp7a0x89VtoufKkdSm5UvA5GRIUw83JD2+JnKPlkvEyFJToFZ+YLXS9CmqPhXyjZs3vrEMf/6BAAqeZXG/kU/Y1jXNtDV1fz9pmerxoiITcCmQyeRkibGncfPsO3oWTSoXhmWZqYa0whJQvRTWDu4QZSnjW7rWBovY57lkwqwtHGEk7uy42dWphhP7gbi310LUbqcL5zdlZ0QTC1s4OapDChLsjIR/uQmDm6YDRsHd5WAidBERETAyclJrb3m7OKCqALu/fCICLU6AwBcXFxy66KI8HAYGxur9Zp2cXHBq1evkJ6eXgRnUHTyu3fccu8dzd//KnmVxr5FszCsaxvo5XPv9Mi+dzar3DtnSsy9Q/S5xMXFYd++fZg5cyb8/PxQtWpVLFiwAMHBwbhxI/9OfI8ePUKlSpVgb2+v8pNj+fLlGDBgADp16oSyZcti7ty5MDY2VlvjuSBanUIqLi4OWVlZcHFxgaurK1xdXbF8+XLIZDJs374ddnZ2+Omnn6CnpwcvLy/ExcVh/vz5AABzc3OYmJhAV1c396JYWipf5trY2Hzy9E61atVCqVKlcODAAYwfr5yW4uDBg+jcuTNE+bww7dKlCzp3VkZ8R48ejTVr1uD69euoVasW1qxZgzZt2mD48OEAgDJlyuD58+dYv379e+fp0aNHEIlEcHBwwPLlyxEeHo758+fj8ePH2LBhQ775+lx0DJXXXJGl+iBUZPfe1TFQ/5/oGJtCZGENiERIP7MP8uTX0PPwhlFdf+hYWEN8YD3kr+MhiXgCo0btIU9JhORFKHSt7GDStj8UUgl09NWHagtFaoZy+gUzI9VehybZQ+7TMjWvP3A3Mh4bLt7C2pGdYKBhOGPucTVMjWJiqJ/vcYUgt5xk5vmCk1VIOTG3AkQiZJw7APmb19ArXR6GtVpCZG6F9COqi91DpAsD38aQPLwBeZL6S12hEZkoG02KdLHKdnmG8l4SGRc8LYnI3BJmDZoj+dheyMVpudt1zbPrxJ5DkPnsEeKXzYeuhSVsegyGy9R5iPxhgsrIDCFJFSvP3STPuZsYK8tHWj4Nbgdba43bVY6dJsbcZRswsndnuLs4fWJOP5/UdOU9Y2qkWueZZNcvaRnv9788feMBDgbdQu9mtWFhqry+tSuUwZDWDbBw179YuEu5XlGFUs6YO6JHUWW/WKSJlfdM3nJinP17mli9nKSlZZctk7xl620aI0NDNG9YD3sPH4eHuxsa162FxKQ3WLx6A3R1dZGRt/4SIHFaKoxN1L+QGZuYQPxOPaGWTpwGZxf1oKmxsTHSs9M1atYKB/dux59zZ2LYF5NgY2uH68FBOHtSOe1HpsB6somMlEE4eXre9onydx2jQupYMwuY1GmKlFMH1eppyKRqgZGSQGSsvCaKDM3PHR2jggOXInNLmNZrhpQT+6FI11yeDDy94TztNwBA5vPHePOv5sXBhSA1+6WrqbFqG8Qku75NS3+/Mn0m+BYOXQhGL/9GsDA1wcskZVDLzFi9bWNqZPjex9WG1HTlM8Us7zPH8P2eOetOXsaig+cAAN3rV0Ndbw+1fY6FPMC0DQcAAI0qewl+Ee/cZ46J6v2R87tYLH7/NNnPHLFYjLS0NI37AMq6V9NxhUSSmAxJ4vt3ntKzNAMASN+kqmyXpiivg56FGfQtzTXuk7OfnoXZx2a32OW0YdXqE+OC6xMHG6tCj12rcnkM6tgSi7bsw6It+wAA3h5umDNhyEfn93PKSE+FkZH6/87QyASZ+TxL3qVQKPDL2PqQSjJhYmaFDgNnaNxvycwueBn7HPoGRuj/5WLoa/h+KRTitLSPuvfFaWlw1bCGxbvp0sTifI8NKOsf40K+Z35OxXvveGNgR38s2rIXi7Yo1z7z9iiF2ROGfkKOif7/hIQo17R7t+N+mTJlctedrlFDfR3frKwsPH/+PN/Zgl69eoXnz5+jXr2366fp6enBz88PwcHB+OKLL94rb1oNYFSsWBEdOnTA6NGjYW9vjwYNGqBp06bw9/fHkydPUKlSpdzFhwCgdu3aBRytaOno6KBLly44ePAgxo8fj/v37+PJkydYunRpvmm8vFSnSDI3N4cke8jrvXv30KqV6qJDtWrV+qAAxpgxY9CvXz9YWytf0JUvXx729vbo1asX7ty5o3Haqc9Kp+AAikKhvjKPQpKFlK2LIE+MhzxZ2ZNLGvEYkElh3KQTMi4dg/xVLNL2rIJJ234w664s2PJ0MdLP7IVxo/aCXoRYruGc36Wjo97zO1Mixfc7z6B//SqoUkrzqJWPOa5gFJa3fMpJ2s6lkCUmQPFGWU5kkU8BqRRGjTog8/K/Kuug6JevDpGZJTKDS8jizIVcE033zrssmrSCjkiE5BMHVD/Irj9lb5IQt3hu7rWVxMfA9fs/YVavKVLOHf/4fBejwsq46BPK+F/rt8HBzhp92mtelFWoiuK+P3X9Pr5bvRvVy7pjUve35//LlkPYf+kGRrRvjDoVPBH9KgnLD57FuEWbsOKrwTDWECwVAoVcfZG+d4k0PJfkivdL8/WYEdDX18PvS1Zi/uIVMDQwQL/unSFOT9c4x7k2yeVyKPKcV0H1hqbrkpuugGuqk91RopR7GUz74VesWPI7vh6nnL7Ts6w3eg8YjrUr/oZBEa8R9skK6+BRyL1l2qAldEQipJ45XISZ0q5C64tC7hOzhv7QEYnw5tShfPeRvYpH7B8zoGfrCKsu/eA07VfEzPkaiizhtduK4plzOvgWZv6zEdXLe+LLvp0AFP78FnJ77VOfOY19yqK6pytuPI3EimOXkCGR5q6lkcOntDPWTuyHR1EJ+OfweYxdtgNrvuwn2OtS+DNHPd+FpdERiQotJ5/S5hEinULqZIVcXmi9rRDwiq/F+T3t1zXbcODsZQzr2ga1fcojOuE1Vu06gi9//QdLZ3ypcX04bdHcNimojVH4dZHLpBj41T+QSLJw/uBKrJo7EKNmbskdhZGj46DvoVAoEHRiMzYuHINBXy0TxBoYymuiUNuWn4LKSkHlLKfOKLT+EVjdUnhd+PEddn9dsw0HzwZhWNc2qOXjjZiEV4K9d4jeR4sWLQr8/NSpj3sXFhcXB2tra7Xvuw4ODoiNjdWY5smTJ5DJZDh+/Dh++eUXZGZmolatWpg8ebJKOmdn1RkQHBwc8PDh+0+nqvVFvP/880+MGzcO58+fR2BgICZPnoyaNWvC0NBQrTI30LBgT3Hq2rUrlixZgjt37uDIkSPw9fVF6XfmGMxLU/5yKmE9Pb0CH07vQyQS5QYvcpQrVw4AEBsbq/UARm5Pxjw9HN72uNfQY1oqgfS5eoGVPLkL4yadoOvgCvmrWCjEKUjbvQJiQ2PomFkqe9XL5TBp0xeKjMJ7a2hLzsiLtEzVRalzRkiYa3hQLjkRDLlCgVHNa0IqU5aZnGe5VCaHrkgnd+SFppEWaZlZaiM+hCRn5MUHl5MXoWqbJWH3YdSoA3TtXfIEMKpB9jIG8oSS0StWnt1LJm+P15wesvICeksDgKlfA4jv3shduDuHIrsnrfh2iMoLusynoZCJU2FY2gvCmIBOnVl273hxnp42OT3qzUw+rrfQxZBbOHEpGOt+mwm5QgG5TAZ59pdgqUwGkY6O1kez5cc8uzeSOM99n9ML1sy44Jfqm08EYuGuf+Hn7YEFY/vCMHue7fjEN9hzIQTD2zbCuM5vG0KVPVzR46d/sP/SDfRpXqcoT6XImGZPbyXO07NenNODy1S9nJi9ZxoTYyNMnTAaE0YMQVxCAhzt7WFibITDJ07D1VlYI3d2bV2PnVvXqWyr26ApkhPVp3hJF6fBxDT/ofImpmYapxQQi8UweWdERzXf2vhnzQ7ExymnHHJ0csHpf5Uv+M3MzD/qPIqLPHvUhChPYOXtyIyCezeb1KiHjAe3StQUUYXJOee8C4+/9zWpWQ/p928WeE1kyYmQJSciE/cgfRkLp8lzYeJbH2mXz35a5ouBmUl2/Zr3mZP9e2HPnC1Hz+DvLftRs1JZ/PHVCBhmj7TN6UWqaX7ttPSMj36WfQ45z5S0POsg5TxzzAt55pRzUY6Qr1nWHVK5HMuOXMSEDo3hbPN2+tNS9tYoZW+NmmXdYWZkgJmbD+P60wjULOtelKdSZEyz607150f2KAsNdWthaUxNTHJ7SOdb9xZQZ5dE0mRl61PPXPW8ckZVSJNTc0de5N0nZ7+cYwiRWU7v9jyjlN63PslP/Osk7D0diKGdW2FML+WCzDUBVPYqjd6Tf8GBs0Ho1brJx2e8iJ3ZtxSn9/2jss2nVmukJr9S2zczPQ2GxoW3HXT19FHWRzkdVBlvP/z+dUsEHt+E7iN/UdmvrI9yzQfPSnWwaHpHnD+8WhABjICAAARs2aKyrWHDhkhKSlLbN10szq0/NDE1MSm0zjA1Nc13n5zPhSS/Z2bOvWNq8nEdZOJfJ2Hf6UsY0rk1Rvd6G0iv5OWBPpPn4MDZQPRq3fTjMk1FopDYFRWhyMjIAoMfEydO1Phu29DQEJn5rI2Zs9yBsbEx/v77b7x69QoLFizAoEGDsG/fvtx6KO9xCzqmJloNYNy6dQuHDx/Gd999B09PTwwZMgQHDhzA5MmT0adPH5w5cwZZWVm5J3n37t0Cj1fUEWRXV1fUqVMHx48fx9GjRzFu3LiPPlaFChVw65bqQsIFzR+myZQpUxAfH68yauPOHeVCyGXLlv3ovBUVeWICFHIZRNb2Kttzfpe/Uo/WiaztoVfaG5IHIaovrrNfrCnEysarfsWakL+MhSwhKnc/XSd36IhEkMUKd8HqUjYW0BXpIOKV6rDq8OzfyzhYqaU5efcpopNSUe+nNWqf1fx+JWZ1b4rONSvAwcIUEa9UXxy8Sk1HWqYEnvbqxxUKedLL7HKiOid/zlomsncCEW8/s89eIP4G8E450clemE3+7pBjkQh6ZSog82oJGX0B5ZzjCpkM+o6qEWl9B+WwYElM/vOf6lrZwtCjLJJXLlD7TBIfA4VcDp13FoTMoSPShVyAvWBzuDo6QFckQmSetQZyfvdwc9aUrFBngkKQJZGg/9c/qn3WqM8XaNekPr4fP+yjjl3c3OytoSsSISJe9YtfRLzyJbWns72mZFAoFJi//Si2nb6CNrWrYNaQLiqLyca8ToZCoUA1L9UXRl4uDrAyNcFTAc/R7uLkCF2RCFF55sSNilE+b0q7qc8NXMrVJXufOJT3fDuHdmSeNIHBITA3M0OVit4o465cEyIxKRkJr16jvJdHkZ/Lp2jZphNq1lZdIPbq5Qu4df0q5HK5SlAuNjoKrm75d8ZwcS2FZ2GP1bbHxkSibHnlws4J8XG4fTMYjZu1hqPT2+kLwp4+gpm5BRwcP+7+LC7ShFgoZDLo2avmS89eGYiSxhZQx1rawMDdE6825D/SoCSSZF8TfQdnvPtqQ89BeY0Kfu7YwNDdCy9PHlT7TMfQCMbVaiPr2SNIE962+7LCw3LTCpGbg52yfo1TnXYy5/e861zkUCgU+GPjHmz/9zxa1/PFT6P7q9SvJkaGcLC2RGSeNYpeJ6cgLSMTZfI5rhCUsrNWtmETklS2hyckAgDKOKmvpRX9OhmXQ5+jvV9lGOq/vQ4VSynvtYTkVBjq6+PS/aeoX8kTtu+8nK6QvU98svqUQULh7OwMkUiEmGjVDjLR2b+7a1jH0M1NOSVfTHQ0yr4zWj83jbs7jI2NYWtrm7stR1JSEtLT0zUetyRLfaRc68DEqzTe3HyQu93US/lsSn34FLI0MdIjY2Hipfq8MrC3gb6FGVLzWcxXCNwc7bLbsAkq23N+L+P6cfd97MvXUCgUqOqtOkWHp5szLM1MERYZ83EZLia1mvWCd/WmKtseXD+Jx3cuqrVNXsW9gIOL5qlHAODBjTMwMjZDmQpv14Y0MjGHjUMppCQp26lh969AIsmAd7W3QRxdXT04liqPuEj1do02tG3bVm1WkaCgIISEhKhdk+jo6HzXRgWUdcvTp+r3QXR0NLy9leuFuLq5QSwWIzkpCZZWVrn7xERHw8HBQXAjit0c7Qu5dz6uA1HOvVOthNw7RO/jY0dYODo64siRI/l+fu7cOWRpeE+UmZmZ75RzXbp0QePGjVXW2ylXrhwaN26M06dPw91d+Z4h73ELOqYmWu1mamZmhoCAAPz+++948eIFHj16hCNHjsDDwwNjx45FZmYmpk+fjidPnuDcuXNYuHBhgcfL6b3y8OHD3LlEP1XXrl0REBCApKQktG3b9qOPM3LkSBw7dgzr1q3D8+fPsXv3bmzevPmDjtG6dWsEBQVhyZIlCA8Px7lz5/Ddd9+hQ4cOatNXaYVMCmn4Exh4V1fZbOBdA/IMMaTRz9WSiMwsYdq2H/QrqC7aZ1CxJhQZ6ZDFKhe+M27QFkb1VafgMqzdHPIMMSThj4r0NIqSob4efD2ccereM5UhkSfvPYO5kQF83NQXrF40qC0CxnZT+anoYoeKLnYIGNsNTSp6AADqlXPD+dAXyJLKctOeuhsGXZEOansVvvim1sikkEU+hX65qiqb9ctXgyJDDFnMC7UkOmYWMG7VG/rlq6umqVADisx0yOLeBrFEdi7Q0TeENCr/heCERiGRICP0Lkxrqr6ANPWrD5k4FZlh+ZdxQ6/yAICMx/fVj5uZgYxH92Bas17udFIAYFSxGkRGxsh4dK+IzqDoGRroo3rF8jh35brKvXP2ynWYmRijUtmPW7xxRK9OWPvrTJWfzi0aAwDW/joTI3p1KpL8FwdDfX34liuNUzceqFyTU9fvw8zYCJU9NN/3i/eexLbTVzDAvx7mDu+u8nINAEo52EBXJMKNJ6r33vPYl0hKE8PNrvB1RbTF0MAAVStXxPnLV1WuybmgKzAzNUHF8urBfTdnJzg7OuDcpcsq288HXoGbi/IzADhw7CSWrlN9Tu88eAQikQj1/IS10KyNrR28ylVQ+alWoxbS08W4df1q7n7JyYm4f+8WqvnWyvdY1WrURlTEC0SEv61DI8KfISriBarVUH7pfpOciOWLfsO929dz90lMfIVL50/Cr04DwU1JAKkEmU/uw7i66kgi4xp1IRenIet5/i82DMooR7pmPn3/4c0lglSCzMf3YFKjrspmE9962dck/+eOQRnlc0fTNVHIZLAdNA4WrbuqbDeqVB0AkBWp/owXAkMDfdSo4IUzwbdV6pLTV2/BzMQYPl6ag37/bD+E7f+eR/+2TTFn3CC1+hUA6lStgAs37iFLIn173OBb0BWJUKtyuaI/mSJiqK8HX69SOHUrVLUNeysU5saG8CmtPvd6zOtk/BxwFKdvqZafoIfPoK+nCw9HW2RKJJi5+TD2Bd1W2wcAyruot42FwsDAAFV8fHApMFDlmly8dAmmpqYoX768WhoXFxc4OTnh4sWLKtsvXboEVxcXODoqX2b7+vri6tWryJK8HbV98dIliEQirY+yL2rip+EQh0XAuVtrle1OXVsh9dEzpL9QLkD88uQlOLRrCpHB2444Tt1aQy6V4uUZ1We4kCjrk7I4E3wzT31yE2Ymxqj8kZ0gSjkpX+7ezBO8eR4dh+TUNLg62OWTUjssrB3g5umj8lPWpwEyM9Lw+M7b+yHtzWs8Dw3JHVmhSeCxDTiw4WfI5W+/9ya/jkVC9FM4lVLedzcuHcCuFdNU1tLITE9D+JObcCrlXQxn+OFsbW1Rvnx5lR9fX1+kp6fnzjsPAMlJSbh79y58ffNvb/r6+iIiIgLhL94+V8NfvEBERARqZKfLmav+3fpHkpWFq1evFnhsbTE00Ef1CmVxJvhWMd07T1S2vxDovUNUnPT19eHl5ZXvj5OTE5KSktSCDfHx8bltFk3eDV4AyumhrKysEBsbmzt1VHy8asfIwo6Zl1ZHYHh5eWHx4sVYsmQJAgICIBKJULduXaxatQqOjo7YsGEDfvnlF3Tt2hVubm7o2bNngWtQlC9fHk2aNMGkSZPw9ddfY9iwT+9F27p1a8yaNQstW7aEmdnHLxbWuHFjzJo1CytWrMCff/4JHx8f9O3b94OCGC1atMBff/2FlStXYtWqVTA3N0fHjh0xadKkj85XUcsIPAqzvl/CtMsIZN4OhJ6bJwzrtkT6mf2AVAIYGEHXzgnyxJdQpKdCGvEUkmcPYdKiG3T09SF7GQN9Lx8Y+jVF+qnduaMtMq6dgUmbvjBKiIE0MgwGlWrCsHJtpB3bCgh8MdWRzWrii7UHMXnrCXSpWQE3w2Ox4cJNTGxdB8YG+kjNyEJYfCLcbCxgY2aMchp6tJkaKhvuld8JeAxtVB3Hbj3B2PWHMbBhNbx4mYTF/15F91oV4WwlrOk78soI+hemvcbCpOMQZN29Al2XMjCo1RwZ5w9mlxND6No6KUdrpKdBFhkG6YtQGDftAh09fchexULfszIMfBsj48w+lVEZutk9bDWN+BGyxIPb4Tx5DhzGTUPK+RMwKlcRlm274fXODVBkZULHyBgGru6QxMeoTBVl4OYBuSRLpafru17v3ACXafPg/PXPSDq6B7qWVrDpOQQZTx9CfOPK5zq9jzKke3t8OXsBZixYjo7NG+J26FNsOXAcY/t3g5GhIdLE6XgWGQ1XRwdYW75fmXd2sINznkbqpRDl6LiKAutVr8mI9o0xeuFGTFmxA50b+OJWWDg2/BuIL7u2hLGhAVLTMxAWkwA3exvYmJsiNCIG649fQmUPV/jXrIw7z1R7VXs628PG3BT9WtTFxuOXAAB1K3oh5nUSVhw8C2dbK3RrVFMLZ/r+BvXqiq9/+AU/zv8L7Vo2xb2Hj7Bt7yGMGtQ3u5yI8TwiCq5OjrCytAAADO7dDb8uWg6L5WvQoHZNXLxyDWcuXcaP336Ze9zuHdrg25/mYcnqDahf2w/Xb9/Fll370a9bJ8FNIaVJJZ/qqFylBv7+YxYGDh0DM3NL7AxYC1NTM7Rq9/blckT4M0glEpTJDobWb9wce3ZuwtwfJ6P/kNEAgC3rl8PdwxP1GzUDoFzvwrtSFaxa+icGDhsLXV1dbN24Crq6uujVb/jnP9n38OboLth/+SNsR3yDtMDTMPD0hnnLzkjevxkKSRZ0jIyh7+QG6cs4lWmR9F3coZBkQfZSfXRgSZd8eCccvvoZdl9MRuqlUzD0rACLVl2QtHcTFFnZ18S5FKQJsSrXxMC1NBT5PXekErw5uhuWHftA9iYZmaF3oF/KA1Yd+iD9/k1k3A1RTyMQw7u0wth5SzFt0Xp0alIHtx8/w6bDpzG+d0cYGRogVZyBZ1GxcHO0g7WFGUKfR2LDoVOo5OmOlnVq4G6eIHAZVyeYmRhhcIcW+DfwOr6cvxz92zbFi9gELN1xCF2b14OTnTBHpOQY2bo+vvhnGyav3Ycudavi5rMobDh1BRM7NVW2YdMzERb7Em521rAxN0ENz1Ko6+2BX3edQGpGJkrZWeP8vSfYfv46xrRrCAsTI1iYGKFL3apYcewS9HRFqODmiOtPI7D2xGV0rVcVXs7CfpHUp08ffDdjBubOm4dW/v548OABdu/ejaFDhsDIyAhpYjHCw8Ph7OwMK0vldFn9+vbFgoULYW5hgbp16iDo8mWcv3AB06ZOzT1uzx49cO7cOfzw/ffo2rUroqKisH7DBrRt2xYODsIN6rwPPXNTmFUqC/HTcGS9VI7gefzLP6i25ldIXich7uBpOHZqAZde7XC936TcdE//WA2X3u1R69BqPPtrHUzLe8B79teIWL0DGRHC7jE9rGtrjJu7BNP/XouOTevi9qNn2HToFMb36ZRdn6S/U5+8XxvW2sIcfdo2xaZDJwEAdapUQMzL11i9+yic7WzQpXn9Qo6gfWUq1EKZirWxc/kUtO79DUzMrHB67z8wMjFHnRZ9cveLj3oCqSQLLh6VAADNOo/BuvnDse2fr1GraS+kpbzGmf3LYGRqgYZtlYswN2o3DHevHsOmhWPQsN0wyCRZOH94DbLS09Ci68fPpFHcqlSpgqpVq+L3+fMxbPhwWJibY8uWLTA1NUW79u1z9wt/8QISiQRe2TNvNG7cGNu3b8f3P/yAoUOV12DdunXw8PBA48bKzlmOjo5o2bIlVq5cicysLLi6umLv3r1ITU1Fj549P//JvodhXdtg/NzFmP73GnRqWg+3H4Vh86GTGNen8yfeO81y753aVSoi9uUrrMq9d/IPnhH919SsWRNyuRwhISG5i24/e/YMcXFxqFVLcye4hQsX4tixYzh27FhuR7bIyEgkJiaibNmysLW1RZkyZXDlypXcY0qlUly7dg39+vV777zpKApbKUdArly5gkGDBuHUqVO5w3FLiqtXr8LOzk5lVfbly5dj165dOHnypBZzBiTOG1ukx9MvX025LoGNA+Qpyci8fi53Oh8993Iw7/8V0g5tRNad7J4zBkYwbtgO+t7KhZfliQnICD6NrFuBKsc19GsGQ78mEJlaQvY6DhlXTkJy/1qR5h0ArKcvRcbugkf7fKhT955h2algPE9IgoOFKXrX9cHgRsreVMFhURix+mDu1FCaDF+1HwCwZmRnle3Xn8VgwbEghMa8gpWJETrUKI+xLf2gr6tbpPk36v4Vkv+YWKTH1CtbFUYN2kJk7QBFahIyb15E1rUzAADdUmVh1nsCxEe3QHIvu/ewgSGM6reFfrmq0DG1gDzpJTJDzkJyR7UHlkGt5jBu0hnJC78BZNK8f7bIWH77N8KGdCjSY5r41oN1134wcHKDNPEV3pw+jORjewEARhWqwGXaPMSvXojUi2+HC9oOHANTv/oInzgw3+Malq0Am+6DYOhZHoqsTKRdv4zX29cWurbGh/Jcfwivb18o0mOevXIdq3fsR3h0HOxtrNC9TTP066jssXf93kOM++kPzBw7FO2bqTc8D5+5hDlL12HPP7+qBS3etXrHfqzZeRBBO1cXad4BwKZqI4jPbSvSY56+8QDLD5zB87iXcLCyQK+mtTColfL8r4U+w8g/1+PnIV3QqX4NLN1/GqsOn8v3WKu+GQI/7zJQKBQIOHUZu85dQ9SrRNhZmqNeJS+M69ICNhrmn/4UJk36IPbhh02hWJjzQVexbusuRERFw87WBl3btULvLsr788ade5g0czamfTkabVs0zU1z4NhJbNt3CAkvX8HZ0QH9e3RG62aNVY578vwlbNqxFzFx8XB0sEOXtq3QvUObIs07ADhVqIHbj4t+qq7U1BRsWL0YwUEXIFcoUKFiFQweOQGubm+nC/tx2gQkxMdi6dqdudteJsRh3cpFuH0zGLq6eqhWoxaGjJwAa5u391FS4musX70Yt28EQ6FQoHKVGug3eBRcXItm7vqq5RwQMbZ7kRwrh3G12rDo0Af6Di6QJb9G6rmjSDmlnAbJsFxlOHw1C682LoH48pncNNZ9RsK4Wh1ETx9R6PF1bezhMme52jGKQqmlu/FiVJciPSYAGFevA6tOfaHv6App0iuknD2KlBPKNodheR84fTsHL9ctQlrQ6dw0Nv2+gEmNuoicPDTf45o1bg3zZu2gZ+8EeeobpF05j6SD25SdFIpI6ZX7kHLtWJEdDwDOBN/Cit1H8SImHg7WVujp3xAD2jcHAFy7/xijf1mCH0f1Q8cmdbB81xGs3ns832MtnzEefpWUIyxuPHyKvwP241F4FKzMTNGuYS2M7tEOenpF214z92uDjH/XFb7jBzh1KxTLjlzE8/jXcLA0Q+9GvhjcQjmaKfjxC4xYtBWz+rdD57rKkbVpGZlYfvQSTt4MRcKbVLjbW2NAs1roVu/tKAKJVIb1p67gwJU7iEl8Aycrc3RvUB2Dm9eB6D0W8v0QRq2GIkzDNCuf4lJgIDZv3ozIyEjY2dmhQ4cO6N6tGwDg9u3bmDptGr7+6iv4+/vnpjly5Ah279mDhIQEODk5oXevXmpzUN+9exer16xBWFgYLCws0KJ5cwwcOBB6Gkb2fApPLy8c1i+eHuk2jWuj3qlNCGoxEK/PX1XZdmv4NERu3Ju7r/vI3vD8ahiMSjlDHBaBp/NXImrLfpXjWTeoiYq/TYFFtYrIepmIqC378einRVBIi7aN314SijfXTxTpMc8E38LKnYfxIiYe9jaW6OnfGAM6KP/nIfcfYfTsRfhh9AB0bFJXLe3Bc5cxa/lm7F/0M1zs33ZuUygU2Hr0LPacuojo+Fews7JAnaoVMLZ3x/d+mfu+LHz9sevKp63hqUl6WjKOBPyG+yGnoFDIUbpcDbTrPx32zm9HV6+eOwiJL6MwecHb7zxh96/g5J7FiA1/CJGuHspVaYjWvb+Ble3b6SGjn9/HvzsXIjLsDuQyKTwq1ELrXl/B0U19dNTH6FFHhKdhYUVyrHelpKRg1apVuBwUBLlcjkqVKmHUF1+ovPOaOmUK4uLisH7DhtxtCQkJWLF8OW7cuAFdXV34+vpi1BdfqPSElmRlYd26dTh79izS09NRtlw5DB8+HBUqaH7v8KG8PD2RfL1o32edCb6JVXnunf4dWgJQ3jtjZv+NH0YPQIcm9dTSHjoXhFnLN2Pfollq9862o2fy3DsVMaaI7x1L35ZFdqz/kj/3lZjX0oLxTZfiG/H+zTff4ObNm5g7dy6MjY3x448/wszMDJs2bQKgnAoqOTkZlpaWMDAwwN27d9GnTx90794dQ4YMwcuXLzF37lwYGRkhICAAOjo62LFjB3755Rf89NNPqFKlClauXInz58/jyJEjaqM38sMAxmeyYMECHDx4EPPmzYO7uzsePHiAmTNnol+/fpgwYYJW81bUAYySrjgCGCVdcQQwSrriCGCUdMURwCjpiiOAUdIVRwCjpCuuAEZJVhwBjJKsuAIYJVlxBDBKuuIIYJR0xRHAKOmKM4BRUhVHAKOkK64ARklWXAGMkqw4AhglGQMYH4cBjA9XnAEMsViMuXPn4vhxZUedxo0bY+bMmbC2Vk4tnfNufuPGjahTR9mpJSgoCH///TdCQ0NhYGCAFi1aYOrUqbDMHo0KAGvWrMHGjRuRlJQEHx8fzJw5ExUrVnzvfGl1CqniNGvWLOzdu7fAff755x/Ur/95hlqOHz8eYrEYU6ZMwevXr+Hs7IwhQ4ZgxIjCe/QRERERERERERER/T9RyBnA+HDFF8AwMTHBnDlzMGfOHI2f16lTB6GhoSrb6tWrlzs9VH6GDx+O4cM/frrhEhXA0HSR8jN+/HgMHjy4wH0+53yiBgYGmDlzJmbOnPnZ/iYRERERERERERERUUlVogIYH8LGxua959EiIiIiIiIiIiIiIiJhEWk7A0RERERERERERERERHkxgEFERERERERERERERILDAAYREREREREREREREQnO/+0aGEREREREREREREQkTHKFtnNAJQFHYBARERERERERERERkeAwgEFERERERERERERERILDAAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHg6Gk7A0RERERERERERET036JQaDsHVBJwBAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJjp62M0BERERERERERERE/y1yuULbWaASgCMwiIiIiIiIiIiIiIhIcBjAICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHD0tJ0BIiIiIiIiIiIiIvpvUSi0nQMqCTgCg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiARHT9sZICIiIiIiIiIiIqL/FoVC2zmgkoAjMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwdBQKrvdORERERERERERERJ/P7K1SbWehxPm+r562s/DZ/ffOmNTEPryh7SwIilOFGgh//EDb2RAU93IVEfcgRNvZEBTHijXx5voJbWdDUCx8/RE+upu2syEo7sv34MnTZ9rOhqCU9SqDF09CtZ0NQSld1htPw8K0nQ1B8fL0xMu7QdrOhmDY+dRDyrVj2s6GoJj7tcHzJ4+0nQ1B8ShbHjEPb2o7G4LiXKE6wp4+1XY2BMXTy4tt2DwsfP1xWN9b29kQlPaSUNx9EqvtbAiKT1kn1id5eHp58fvfO9yX79F2Foj+b3EKKSIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHi3gTERERERERERER0WelkGs7B1QScAQGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCY6etjNARERERERERERERP8tCoVC21mgEoAjMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhw9LSdASIiIiIiIiIiIiL6b5HLtZ0DKgk4AoOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLBYQCDiIiIiIiIiIiIiIgER0/bGSAiIiIiIiIiIiKi/xaFQqHtLFAJwBEYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDh62s4AEREREREREREREf23yBXazgGVBByBQUREREREREREREREgsMABhERERERERERERERCQ4DGEREREREREREREREJDgMYBARERERERERERERkeAwgEFERERERERERERERIKjp+0M0P+f4Bu3sGrzdjwPj4S1lSW6tmuF3l06QEdHJ980J89fwqYdexEdFwcnB3v0794ZbZo3UdnnwuVgbNyxBxFR0bCxskKrZo3Qv3sX6OsLvxhfu34D6zZtwYvwcFhbWaFT+3bo0bVzgdfk9LnzCNi+EzGxcXB0cECfnt3QqkVzlX2OnzyFXXv2Izo2Fg72dujUvh26dGxf4HGF4uqN21i9ZQee5ZYTf/TpXHDeT54PxMadexEdF68sJ906oW3zxir7HD11Dtv2H0ZUTBxsbazQtnkTDOjRGXq6usV9Sp/s8u0HWLr9IMIiY2BraYEerRphQPsW7/X/DH0WgcHf/449C3+Ei72tymdng29hzd5jeBEdB1srC7RrWBtDurSCvp7w7x2jitVg2bk/9F1KQf4mCSnnjiHlxH6N+5rWawbbwRPyPdar9YuQdvksAMDYtx4sWnWFvpMr5OI0ZDy8jaS9myBPSS6O0yhy6enpWLd2DS4FXkJGejp8fKpg5KhRcHMrVWC6xMRErF61EiEh1yCTyeBXqxZGjhwFGxtbjfsfOLAfe/fsxrr1G4vjNIrMtes3sH7jJrwID4eVlRU6tW+PHt26FHjvnDl7DgHbd+TWsb17dkerli1U9vn3xCns3LsXMTGxcLC3R8cO7dClY8HPMyFJT0/H2rVrEXjpEtLT0+Hj44NRX3wBNze3AtMlJiZi1cqVCAkJgUwmQ61atTBy1CjY2Njk7iOTybBlyxacPHECKSkpKFu2LIaPGIEKFSoU92l9tCs372JlwG48i4iCjZUFurVpgb6d2rzX//NR2AuMmDYL25f8CmcHe5XPTgdexZZ9R/EiKgbmpibwq1oJYwb0hI2VZXGdSpG4fPshlu48hKeRsbC1NEdP/0YY0K5ZvtcjSyLF5iOncfhCMOJeJ8HBxgpt69fEkE4tVZ4n98PC8VfAfjwIC4epsRE6Nq6NUd3blohnTsj16yp1Scf27dGjW9f3qEu2Iza3LukB/zx1yfkLF7Fz925EREbB1NQUNapXw/Ahg2FtbV3cp/TJgm/cwurN23Lb9V3atS60XX/q/CVs2rEnt13fr3uX3HZ9TFw8+o7K/1ndpnkTTJs4tsjPoyiFXL+ODRs2IDy7nHTo0AHdu3Ur8JqcPXsWW7dtQ2xsLBwdHdGzZ0/4t2ypss+jR4+wes0aPH78GCYmJvBv2RL9+/eHvr5+cZ/SJ2MbNn9Gro5ofPMQrnUfh9fnrxa4r0vv9ig7fQxMPEsh/XkUnvy+ElGb9qnsY1nTBxV/mwLLmj6QvklD5MY9eDRrCRQSSTGeRdFJTxdj87oVuHzpPDIy0lHRpyqGjhwPVzf3AtMlJb7G+tX/4EbIVchlMtTwq4OhI8fDOrsNu3jBPJw9dSzf9MvWbYeDg1ORnktRKK76JIdYLMbYcePQv18/+Pv7F9dpFCl+//vvUcgV2s4ClQAl58lfjJKSkjBp0iSEhITA29sbO3fuxL59+9C4cWPY2mp+qZNX8+bN0bVrV0yYkH/l+a7ExEScPHkSPXv2VPssJCQEAwYMwIMHD1S2HzhwAJMnT1bb/9SpU4W+jPhc7oU+xrQ589GsYT0M798Ld+6HYvmGAMhkcvTv0VljmnOBVzBnwRL06NAGtX0H4sKVYMz7exn09fTRonF9AEDwzdv4/tcFaNawHkYN6ovn4ZFYuWkrkt6kYNKooZ/zFD/Y/Yeh+H7WL2jSqAGGDOiHu/cfYNW6DZDJZOjTs7vGNBcuBeLXPxaia6cO8PP1ReDlK/h94SLo6+mjWZNGAIAjx09g4eJ/0Kt7V9SsUR0PHz3C8tVrkZ6Rjn691MuVkNwLfYxpv/yO5g3qYXi/nrj9IBTLN2yFTCbHgO6dNKY5G3gVsxf+gx4d2qCOb1VcuHIN8xYth4G+Hlo0UpaTnQePYvGaTWhavzbGDO6HpDdvsDZgF548e4E50776nKf4we48foav5i+Hfz1fjO7ZAbdCn2JxwH7IZHIM6dyqwLRPIqIxaf4yyGRytc+u3H6AKQtXw7+uL8b36YSnkbFYuu0AklJSMXlor+I6nSJhUKY87Md9B/G1S0g+sBWGZSvAqutA6IhEeHN8r9r+6XdCEPvbNLXtNgPGQmRsjPS71wEAJn4NYDfiG6ScP47k/Vuga2ENy0594fDVz4idOxmQCv8L4Pz5vyL04UMMHTYcJiYm2BqwBdOnTcXSZStgbm6uMY1MJsOPP8yEWCzGuPETIJPKsH79WsycMQOLFi+BXp6XAefOncXqVSvf+zmoLQ8ePsQPP89Gk0YNMXhAf9y9/wCr161X1rG9emhMo6xjF6BLp46oVdMXgZcv44+Ff0NfXx/NmiiDokeP/4uFi5agV/duqOlbAw9DQ7Fi1RpkpKejb29h3zs55v/2Gx4+fIhhw5XlJGDLFkybOhXLli8vsJz88P33EIvFGD9hAqRSKdavW4cZM2Zg8eLFueVk1cqVOH78OIYOHQpHR0fs3bsXM777DouXLIGLi8vnPM33cvfRE0yZtxAt6tfGyL5dcfvBYyzdtAMymQwDu3UoMG1YeCS+nbsQMplM7bOTFy/jx4XL0blVU4zq1x2vk5KxauseTPjxN6z9/ScYGhgU1yl9kjuPn2PSHyvhX7cGRvdoj5uhYVi09QBkMhmGdNL8guOPjbtx5NI1jOjSCpU83XH/WQRW7TmGmJev8cOofgCAyPiXGDtvKaqW9cC8L4fgeVQclu48jORUMb4b3vtznuIHe7cuGTRgAO7dv48169ZDLpOhdz7tqguXLuG3P/5El04d4VezZnZd8hf09fXRNLsuOXvuPObN/x3t2rbBkEED8ToxCRs3bcaU72bgn7//goFAywgA3At9hOlzfkOzhvUxrH9v3Ln/ECs2bIFMJkP/Hl00plG26xeje4e2qO1bDRevXMOvfy+Fvp4eWjRuAFsba/wzf7Zaun1H/sWZi4Fo599cw1GF48HDh/jpp5/QuFEjDBo4EPfu3cPatWshl8nQq5fmZ8PFixcx//ff0blzZ2U5CQrCggULsstJdmAnJgbfzZiBihUqYPr06YiIiMCGDRuQkpLy3t8vtYVt2PwZuTmh9uE10LeyKHRfp66tUH3jH3i2eCMSjl+AU+eWqL72N8gzsxCz4wgAwLiMG+ocW4fEyzdxve8kmFXwgvfsr6BvY4W7434s7tMpEn/Nn41HofcxcOhomJiYYsfW9fhx+iT8tXQDzPJtm0gx58cpSBeL8cW4ryGTSbF5/UrMmvkNfl+0Gnp6eujZdxBat1P9HpmSkoI/5/2IylWqw97e8XOc3gcprvokR0pKCmbNmoW4uLjPcTpFgt//iCg/DGBAGRi4du0aAgIC4OjoiODgYEybNg2nTp0qtr85f/58REZGqgUwQkJCMHbsWMjl6o240NBQ1K5dGwsWLFDZ/m6PSG1bF7AT5cp4YOZX4wEAdXyrQyqTYvOufejRsS0MDdW/pK3atA1N69fB+BGDAQC1fashJSUVawJ25AYwjp46C0d7W8z8ajx0dUWoVb0qEpOSsWP/YYwfNlDtxZuQbNyyFWU9y2DaN8oX6LVq+kIqlWLrjl3o2qkDDA0N1dKs3bgZjRvWx5iRw7PT1EBKagrWbw7IDWBs3bELjRrUx8ihyuvmW70aIqOisf/gEcEHMNZu3ZVdTpQ97Or4VoNUKsPmXfvRs0MbzeVk83Y0rV8HE4YPBADUrlENb1LSsDpgJ1o0qg+ZTI4NO/bCr1oVzJoyKTddec8yGDJxKoJv3kGt6lU+y/l9jJW7DsPbww2zxin/n/WrV4JUJsP6/f+iT9umMNLwgkMilWL7sXNYseswDPMZiXTw3GU42Vpj1vjB0BWJUKdqRbxOfoOAI2fw1cDu0NMT7sgUyw69kRXxDK/WLwIAZNy/AR1dPVi06Y6U04ehkGSp7C9PfYOs1Dcq28yatYO+syvi5n8HefZnFm26I/1OCBIDVuTuJ4mLgtO032Bc1Q/p14OK+cw+zYMH93H1yhX8/PNs+NWqBQDw8fHBsKFDcPjwIfTp01djugsXzuPp06dYtnwF3N1LAwA8vTwxdsxoXLhwHs2aKV8aJSUlYdOmDTh29Gi+L7mFZOOWrfDy9MTUb78GANTyqwmZVIptO3aia+eOGuvYdRs2oXHDBhgzagQAwK+mL1JSUrFh85bcAMbW7TvRqEF9jBg2BABQI7eOPVwiAhgPHjzAlStX8POsWaiVU04qV8bQoUNx+NAh9OmbXzm5gKdPn2L58uVwL60sJ16enhgzZgwunD+PZs2bIyEhAYcPH8bo0aPRvoPy5b+vry9GjByJnTt3YuLEiZ/nJD/Amm37UL5Mafww8QsAQN0aVSGVybBxzyH0at9K43NHIpFi19ETWL1tLwzy6QG9cfch1POtiilfDMnd5u7ihFHTZyMw5Baa1atVLOfzqVbsPgpvDzfMHqt8ptavVhFSmQzr9p9AnzZN1J45SSlp2HsmCBP6dMSgDsrRBbV9vAEAS7YdxIQ+nWBtYYYNB0/B1MgQf34zAvp6emhYvTKMDA0wf/0uDOvsDyc74bRZ89q0JQBenp6Y8u03AJR1iVQqw7YdO9GlcyeNdcn6DZvQqGEDjB41EkBOXZKCDZs35wYwtu3Yidp+fpg4flxuulKurpj4zbe4cjUYjRo2+Axn93HWB+xEuTJlMOOddr1MJsOWXfvQo2M7jffN6k1b0bR+3Xfa9dWRkpKKtQE70KJxAxjo66Oyd3mVNKFPwnDmYiBGDOiLqpWEO4oLADZv3gwvT8/cTmV+fn6QymTYtn07OnfunE852YBGDRvii1GjAAA1a9ZEakoKNm3alPvCceeuXTA2NsYPP/wAfX191K5VC4aGhli2bBl69+4NBweHz3eSH4htWA10dOA2sAsq/jYVeM9Bm96zv0bMrmN48O08AMDLExehb20J758m5gYwvCaPhDQlDde6jYVCIkHCsfOQpWfA5+/v8eTX5ciIiCmuMyoSoQ/u4trVQMz4+Tf4+tUFAFT0qYqxw/rg2OF96NFnoMZ0gRfO4tnTx/hr2QaUcvcAAHh4lsNXY4cg8MIZNG7mDydnVzg5u6qkm//L9zAzN8ekyTMFOXq2uOoTALh8+TKWLV+O9PT0z3MyRYTf/4goP1wDA8CbN29gb2+PqlWrwtHREQpF8Q9fyvs3pFIp5s2bh8GDB8PV1VVjmkePHsHb2xv29vYqP7oCmRonSyLBzbv30ahubZXtTerXhTg9HbcfPFRLExMXj4joGPU0DeoiKiYWkdHKRlhWlgRGhkbQ1X1bZC3MzSCRSiFOzyiGsykaWRIJbt+5iwb16qpsb9ygPsTp6bh7/4Famti4OERGRaNBXdU0jRrUR3RMDCKjogEAc36aiVHDBqvso6+nh6ws1Ye60CjLyQM0qqv6Uqdp/drZ5SRULU1MXAIiomPQuK6fWpqomDhERMcgMTkZb1JSUb9WDZV9PEuXgqWFOYKu3Sj6kykiWRIJQu4/QdNa1VS2N69TA2npGbj18KnGdJdu3MPqPUcxtHMrjO/bReM+mRIpjAwNoCt6e+9YmptCIpUiLUO49w709GBU3gfpN6+obBZfD4LI2ASGZSsWegiRuSWsOvVD6vnjyHr+WLlRRwcZD24j9eK/KvtKYqOUf9ZOeEPL87oeEgIjIyPU8PXN3WZpaQWfKlVwLTg4/3TXQ+Dm5pYbvAAAd/fSKFWqlEq6Hdu34XpICL6bMRO169QpnpMoIlkSCW7fvqNWxzZq2CC7jr2vlkZZx0ahft40DeojOjoGUbl17A8YOVx1hJ9eCahjc4RklxPfd8uJlRWqVKmC4GvX8k13PSS7nJR+p5yUVpaT4OxycvPmTchkMtSrXz93H30DA9SuXbvAMqgtWRIJbtx7iMa1fVW2N6vnB3F6Bm49fKQxXdD1W1i7Yz8GdeuAMQPVg1ZyuRy1qlVGZ/+mKttLuzoDAKJi44vmBIpYlkSKkAeP0cxPNajfonY1pGVk4mZomFqatPQMdG9RH419fVS2ezgre7RGxb8EoJyWqkH1SirTu7SoXR1yhQJBt9XbgUKRf11Sv9C6pEG9eqppGjTIrUvkcjlq1KiOtm1aq+xTqpRy5HR0jHBfNua06xvmaa81qV8H4vR03CmgXa+WpkEdlXb9uxQKBf5asQalS7mhZ6f2RXsSRUxZTm6j/jt1HwA0bNgQ6enpuHfvnlqauLg4REVFqdSXOWmio6MRFaVsf4SEhKB2rVoq00U1bNgQcrkcIdevF8PZFA22YTWzqOoNn39+RuTmfbg5ZEqh+xuXdoWZdxnE7j+hsj1mz3GYlvOASVnlM9nevyHij55TmS4qdvcx6Ojqwr5Vw6I9iWJw83owjIyMUa3G2zrC0tIKlXyq4fq1ywWmc3Fzzw1eAEApdw+4liqdb7qQ4Mu4EngeQ0eOh6mZ8DrkFGd9kpqaitlz5qBKlSqYM1t9xJtg8fsfERXg/yaAce7cOXTr1g3VqlVDvXr1MG3aNCQnK+eyu3btGnr16oWqVauiU6dOOHLkCLy9vREZGYlp06Zh8eLFiI6Ohre3N/bs2YNBgwYBAFq0aIE9e/Z8VH5u3LiBQYMGoWbNmqhTpw6mT5+OxMREAMC0adOwd+9eXL16Fd7eyt5rYrEYwcHBWL16NQYMGKDxmKGhofDy8vqo/HwO0bHxkEilKJX9xT2HW/aX24jsl0LvehGpfGjkTeOanSY8O03Xdq0QGRODbXsPIiU1DfdCH2PXwaOoW7MGLMzNivxcikpMbCwkUilcXVWn03BxUZ5vRPb5vys8IhIA4JYnjauzMk1kdsOkdKlScMoOuL1JScGR4ydw4vRZdGzftsjPoyjllhMX1YaCW57/+btyyombS95yojxGRFQMzExNoKuri9jslyg5UlJTkZqahug4Yb5IAoCo+FeQSKVwd1btXVfKUTnP+osYzXmv5FUa+xf9jGFd26gE997Vs1VjRMQmYNOhk0hJE+PO42fYdvQsGlSvDEsz06I9kSKkZ+cIHX19SOJUy4MkQfnyQ8+x8ClqLDv2ARQKJO0PeLtRoUDS7vVIv6X6ktWkujKIKokJ/8ScF7+IiAg4OTmpBa9dnF0QFRWZf7rwCLhoCJA7u7ggMvJturbt2mPV6rVo0ED4X4RjY5R1bN760iWnviywjlW9Frn1cnYd6+6uWscePf4vTp4+g47t2xX5eRSH/MqJs4sLoiLzLyfhEREaO1K4uLjkPn8iwsNhbGysNgLUxcUFr169Elxvv+i4BI3PHVennOdOrMZ0Fct6YveyPzC4RyeVF2g5RCIRJgzpi0Z5AiPnrypfNpYppblDirZFxb+ERCpTf+Y45f/McXWwxbShveDhojoFx7mQ29DT1YW7swMysrIQ8/K12nGtLcxgamyU77NMCHLqkrxl38VZWbdoqksiIiIAIP82XlQkRCIRvhgxXC1gGhikfOFWunTBc75rU0xsnMZ2fU7bS1N7LTzfdn3+aU5fCMSDR08wfvjgfNsyQhEbEwOpxnKi2kZ/V3i4sl2R95nj7JJTtiKRmZmJ+Ph4teNaWVrCxMRE5RktNGzDapYeHoOzFfzxYPKvkIkLD7aYVVB+x097/Fxlu/jpC+Xn5ctAZGQIEw83pD1+prJP1stESJJTYFa+TNFkvhhFRryAg5OzWtvEycUV0VER+aaLingBFxf1KbOdnV0RHameTqFQYOOapahcpTrqNWz6yfkuDsVVnwCAoaEhVixfjm+/+QaWlsJej+td/P5HRAUR7rw7H+D169cYP348pk2bhqZNmyI2NhZTpkzB/PnzMWrUKAwbNgydOnXCvHnz8ODBA8x+Jwo9Y8YMWFtb48iRI9i1axeMjIxgZmaGCRMmYOfOnShfvnwBf1mz27dvY+DAgejduzd+/PFHJCQkYNasWRg+fDh27tyJGTNmICMjA7GxsVi8eDEAwMLCIjdYoilokpycjLi4uNyprhITE1G1alVMnjwZZcoIo7GSJhYDAEyMjVW2G2f/niZWf6GRlqbcZmKimsYkTxrfqj7o27UTlq3fgmXrtwAAynl64PtvhD0nbFqa8pqYmpiobM85P3G6ON80JnnS5FxHsVg1zYOHoZg4WTnvY/lyZdGjq+a1RoQip5yYmmguJ2JN5SSfNCbGRtmfp8PI0BDNG9bF3iP/ooy7GxrX9UNi8hssWr0Rurq6yMjILPJzKSqp2edsmn0+OUyMlcOG0/IZZeRgY1XosWtVLo9BHVti0ZZ9WLRlHwDA28MNcyYM+ej8fg4iY+UXU3mGanlQZP8uMjJRS6OS3twSpnWbIuXkASg03Gfv0rNzhFX3wcgKD0PGXeH2csyRJk5Tqx8A5T2Ut354l1icBhdX9YZ/3nSlShW8ELiQpInTAKjXlznPFE3XIy0tTWWfHAXVsZO+VfaeLF+uLLp36/LpGf8MxGkfWU7S0uCqYQ2Ld9OlicX5HhtQXkPjPG0BbUrNeYYY5/MMySfgYm/74QssR8bG45+N21GujDvq+Vb94PSfQ2r2yzS1Z45Rwc+cvM4E38KhC8Ho5d8IFqYmeJmknKbBLM9xAcDUyPC9j6sNH1eXfFh7LUd0TAxWrVkLL09P1Pbz07iPEKQW0q7X1F5LLfSaqKfZvu8gfCp6o0aVyp+e6WKW+11HrZwof9dYTvJL8045eftc+vA6W9vYhtVMkpgMSeL7LwysZ6nskCd9k6qyXZqiLBt6FmbQtzTXuE/OfnoWwu3Ul0PZNlEPPhkbmyA9ux7WJE2cBmcNAQxjYxOINaS7diUQkREvMOyLLz8tw8WouOoTANDX1xfMGqkfgt//iKggwu7m8p7i4uKQlZUFFxcXuLq6ombNmli+fDkGDhyI7du3w87ODj/99BO8vLzQoUMHjBgxIjetubk5TEyUPbft7e1hbm6eG6W2sbGBkZH6l7DCrF27Ft7e3vj+++/h5eWFunXrYsGCBbh37x4uXrwIc3NzGBkZQV9fH/b29u91zMePlcPfFAoF5s2bh7/++guZmZno168fXr58WUjqz0OhYd2Od4l01IubXPF+aRYsW4Otew9gUK+u+GvO95j25WikpKZi8s/zkJEp3BfThU1HpumaKAq5Jjp50jg4OOCPeXPw7aQJeP06EZMmTxP0y3p5IddER0MvV7m8kOsoUs5p+s3o4fBv0hDz/1mF9gNGYfhX38GnQnmU9yoDIw3zNAtFodfkE+Zs/XXNNmw8eBLDurbB8u+/xA+jB+BNqhhf/voPMjIFPBVOYedcyH1i1qAldEQipJw+XOB+eo6ucPh6FiCX4+XK34HPMIXgh5DL5ZDJZCo/igLuh4LKSkH3Uc49VNIUVjfkrS+BwuvlvNfQ0cEef/w6F99OmqisY7+dIrg6VlM50bSWVo4Cy0kB10eUna6w573Q5pku6J4B3p7Xp3oRGY0vf/wVuiIR5nw7HiINzzMhKOyZ8z7X43TwLcz4ZyOql/fEl32Vi6Z+6L0lJIW2MzTk/X3bsO8Kj4jAlOnfQVdXFzO/mybYMgIUft9o+n9+aBm4+yAUj54+Q5+uHT88g1pQ+HcdDdeksPpSJHqP7wsCvnfYhi0Smr7/vEshlwOF7iPENqxU5aeg77ma2mw5CrqPNF27o4f2oIxnWVSrIdwgcXHVJyUav//9ZykU/PnQn/+i/4sRGBUrVkSHDh0wevRo2Nvbo0GDBmjatCn8/f3x5MkTVKpUSWWR59q1axdwtE/36NEjNGiguiBfhQoVYG5ujtDQUDR5Z3Gl9+Xn54egoCBYW1vnNgSXLFmCpk2bYs+ePRiVvYiTNpmaZvcWyNOTMae3lampem9Ms/dIk/DqNQ7+ewoDenTB8P69c/epWK4sBk/4FkdOnkG39m2K7kSKkGluDwrV88sdUWCq3ovA1FTZ8yDvFBzifNLY2drAztYG1ar4wNnJCd9Mm4ELlwLh36JZ0ZxEETPLuSZ5emTlXCMzk4LKiWqanBE6OdfZxNgI0yaMwpcjBiEu4SUc7e1gYmyEQyfO5E5LJkRmOb1m8rwUzem1pumavI/410nYezoQQzu3wpheyoV2awKo7FUavSf/ggNng9Cr9YfXR59DTq8ZkZHquef0vJEX0qvGxLceMu7fyl24TRPD8pVh98UUKDIzELfgB0hfxn1irove1oAtCAjYorKtQcOGSEpKVNtXnC7OrT80MTU10Ti1j1gs1tgbriTIOd+8z5AC69js+kK9js157qheC1tbW9ja2qJqFR84OTvi26nf4cKlS/Bv0bxoTqIIBAQEIGCLajlp2LAhkpKS1PZNFxdSTkwKKCfZ6UxNTfPdJ+dzIcl9Fmfk99wpuEff+7h+9wG++30JTIwMsfjnqXBzEu6Cu2Ymys45as/U93zmbDl6Bn9v2Y+alcrij69GwNBAOWd/Tg9sTXPTp6VnfPSz7HPIqSvyluvc3q4ayrSpyYe1127dvoNZv8yFsbERfpv3S+40IUL19prkc99obMPmV7+KNaY5F3gF5mamqFtTdf0yocrvmSMuqJwUksbUxCS3N3Vhda8QsQ1bNKTJKQAAPXPV/3XOqAppcmruyIu8++Tsl3MModi5dQN2BKxX2VavQRONbdh0cVqB5dzE1BTpGtr+YnFabl2cIyXlDe7evoH+g7X/fqQgxVWflGT8/kdEBfm/CGAAwJ9//olx48bh/PnzCAwMxOTJk1GzZk0YGhqq9UI0MCjentj59aJRKBQqC7N9qLxzTRsbG8PNzQ1xccKodF2cHKErEiEqRjU/UTHKuaVLu6nPBV0qezqTqJg4lPd8OxVW5Dtp4hJeQqFQwKei6nReHu5usDQ3x7Nw4c4L6+LsBJFIpLZIY3T2IobuGoZ25sxpGRUTg7Jenm/TZB/DvZQb0tPTEXTlKrzLl4frO+tClMve/9Xr10V7IkXIxckhu5yozjkeWWA5yV4QNSYW5T09crfnlLWcNIHB12FuZooqFb1Rxl15bROTkpHw6rVKOqFxc7SDrkiEyNgEle05v5dx/bjgS+zL11AoFKjq7amy3dPNGZZmpgiLFO7ioZKEWChkMujZq85Zr+eg/F0Sm/99r2tlAwN3T7w6dSjffUz8GsJ2yARIYqOQsGQOZEnCvGfatG2H2rVVF9IOCgrE9ZDrkMvlKr13Y6JjCpz+ydXNDWFP1RfTjImOQXnvD58uUQgKrWM1XA+37PoiOjoGZd9ZV0pzHVtOZTqlctn7v3olrPLStm1btc4ZQUFBCAkJUSsn0dHRBZYTNzc3PNVQTnLWCgOUZUksFiM5KQmWVla5+8RER8PBwQGGhoafeEZFy9XJXlnH5mmfRGYvsl3a7dNeJJ+4cBlzlqxCaRdn/Dnzm4+aeupzcnNQPnMi4lRH8Ob8nnedixwKhQJ/bNyD7f+eR+t6vvhpdH+VxbpNjAzhYG2JyFjV475OTkFaRibK5HNcIXBxdi7yuuTd++zM2XP4Y+FfKOXmhjk//wQ7O9siP4ei5uLkCJGG9lrO7+4FtutjUe6ddn1Oey1vmqBr19GwTi2VjmZC5pxdTmKiVednj87+XXM5UbZHY6KjVctJThp3dxgbG8PW1jZ3W46kpCSkp6drPK5QsA1bNFIfKde1MPEqjTc3H+RuN/VSLt6d+vApZGlipEfGwiR7Ww4DexvoW5ghNZ8F07XFv01H1KxdT2Xb1aCLuHk9WL0NGxMFt1Kl8x4il6urO8LCHqttj42JQtnyqgs73wy5AplMhnqNmn7aCRSz4qpPSjJ+/yOigpTwMWZKt27dwty5c+Hp6YkhQ4Zg5cqVmDt3Li5fvgxnZ2fcvXsXWVlvh5nevXu3wON96hB3b29vhISEqGx7+PAhUlNTcxfh/tC/sX37dtSpU0dlLsTU1FQ8f/4cZcuW/aT8FhVDAwNUrVwR5y9fVQninAu6AjNTE1Qsr55PN2cnODs64NylyyrbzwdegZuL8jM3ZyfoikS4ff+hyj7hkdFITkmBi6NwvxAbGBigqk9lXAy8rHJNLgQGwdTUBN4a1lhxdXGGk6MjLlwKVNl+ITAIri4ucHJ0hK6uLhYs/gc79+xV2efajZsAgDIe+TcAtU1ZTirg/OXgPOUkGGYmJqhYXn2hemU5scfZwKsq288FXc0uJ8qp2PYfP4Wl61V7Ie88eBQikQj1/VQXWRUSQwN91KhQFmeCb6pck9NXb8LMxBiVvTw+6rilsl/a3czzheZ5dBySU9Pg6mD3KdkuXlIJMh/fh0kN1YVPTWrUg1ychqxn6l9ichh4lAMAZD59oPFzIx9f2A6diMywUMT9MUPQjVdbW1uUK19e5cfXtybS08W4/s5zJjk5CXfv3kEN35r5HsvXtyYiIiIQHv4id1t4+AtERITDt0b+6YTMwMAAVXwq41JgkMq9c/FSIExNTfOpY1001rEXLwWq1LELFy3Gzt2qdWzI9RsAAM8yHkV/Mp/A1tYW5cuXV/nx9fVFenq6SnskOSkJd+/eha9v/vWhr6+vspy8eKecvHiBiIgI1MhOV6OGsrf0xYsXc/eRZGXh6tWrBR5bWwwNDFCtkjfOXQlRKSdnL1+DmYkxKpXzLCB1wQJDbmH2opWo4l0Wy36ZIfjgBZDzzPHCmeDbeZ45t2BmYgwfL81tiH+2H8L2f8+jf9ummDNukErwIkedqhVw4cY9ZEmkb48bfAu6IhFqVS5X9CdTRJR1iQ8uBQbmU5eo5/1tXXJJZfu7dQkAXA2+hvl/LkClihXw5++/lYjgBZB932ho158PugLTQtv1V1S2K9v1znB2fDsy6U1KKiKjY+BT0bv4TqKI5V9OLsHU1FTj2okuLi5wcnJSqS8B4NKlS3B1cYFjdjnx9fXF1atXkSWRqBxXJBKhWrVqxXRGn45t2KIhfhoOcVgEnLu1Vtnu1LUVUh89Q/oL5YLOL09egkO7phAZvO0U6dStNeRSKV6eUf0+rW02tnYoW66Cyk8131pITxfj5vW33+mSk5Pw4O7tAqd7qubrh6iIF4gIf567LSL8OSIjXqC6r2q6Rw/vw9bOHg4OThCy4qxPSix+/yOiApSM7i6FMDMzQ0BAAPT19dGrVy9kZmbiyJEj8PDwwNixY3Hs2DFMnz4dY8aMQVRUFBYuXFjg8XKG8T58+BDW1tYfPBXC0KFD0a9fP8yePTt3jYrZs2ejUqVKqFevXu7fiI+PR0RExHstmNq4cWP88ccfmDJlCiZOnIiMjAwsWLAANjY26Nat2wflrzgN6tUVX//wC36c/xfatWyKew8fYdveQxg1qC+MDA2RJhbjeUQUXJ0cYWVpAQAY3Lsbfl20HBbL16BB7Zq4eOUazly6jB+/VS66ZWVpgR6d2mLbXmU03a9aVcQlJGD9tt1wcrBDh1bCmcZDk369e2LqzB8x+9ff0ca/Be4/eIide/Zh+OCBMDJSXpMX4RFwcXaCVfb6KwP69sIffy2Ghbk56tWpjcDLV3HuwiXMmPItAGWDp0+P7tgYsA1WlpaoVrUKwp49x6at2+BbvRpq+wn7ZeSgnl3x9Y9z8ePvf6Ndi6a4+/ARtu07hC8G9sm3nAzp1Q3zFq+ApbmZspxczSknbxdy796+Nb79+VcsXrMJDWr7IuT2PWzefQD9unUU9BRSADCsa2uMm7sE0/9ei45N6+L2o2fYdOgUxvfpBCNDA6SK0/EsKhZujnawtjB/r2NaW5ijT9um2HToJACgTpUKiHn5Gqt3H4WznQ26NK9fnKf0yZKP7oTDxJ9gN/JbpAaegqFnBZj7d0bSvs1QSLKgY2QMfedSkCbEqgwV1nctDYUkS/OQYD192AwYC0VGOt4c3Q19Z9X6V5b4CrKkV8V9ap/Ep0oVVKlaFb///huGDRsOcwsLBGzZDFNTM7Rr1z53v/DwF5BIJPDyUr5katy4MXZs34Yfvv8eQ4YOBQCsX7cOHh4eaNS4sVbOpSj069ML02b8gDnzfkPrVv64/+ABdu7Zi+FDBuXWseHh4XB2dn6nju2DP/76G+bZdWzQlSs4d+Eivps6GYCyju3dswc2bdkKK6vsOjbsOTZv3YYa1auhlsDrWACoUqUKqlatit/nz8ew4cNhYW6OLVu2wNTUFO3av1NOXmSXk7Jvy8n27dvx/Q8/YGh2OVmXXU4aZ5cTR0dHtGzZEitXrkRmVhZcXV2xd+9epKamokfPnp//ZN/DkB4dMfHn3/H9n/+gffPGuBP6GAH7j2LMgJ7Zz510PIuMgqujA6yznzuFyczKwq/L1sHE2AiDunfEs8golc8dbG3gYGuTT2rtGt6lFcbOW4ppi9ajU5M6uP34GTYdPo3xvTtmP3My3nnmmCH0eSQ2HDqFSp7uaFmnBu4+eaFyvDKuTjAzMcLgDi3wb+B1fDl/Ofq3bYoXsQlYuuMQujavByc7YV6LHMq65Hv8Mu83tG7VEvcfPMSuPXswbMhgGBkZaaxL+vftgz//+hsW5uaoW6cOgq5cwfkLFzF96hQAQFZWFhYuWgwTY2P06d0L4eHhKn/Tzs4O9nbCfRE7sFc3fPPDHPw0fyHatWymbK/tPZinXR8JVyen3PbaoN7d8duiZbBYbob6tf1w6co1nLkUhB++nahy7LAXymvhUapkLTTbp08ffDdjBubOm4dW/v548OABdu/ejaFDhuRbTvr17YsFCxfC3MJCWU4uX8b5CxcwberU3OP27NED586dww/ff4+uXbsiKioK6zdsQNu2beHgINwp6QC2YT+GnrkpzCqVhfhpOLJeKqdUevzLP6i25ldIXich7uBpOHZqAZde7XC936TcdE//WA2X3u1R69BqPPtrHUzLe8B79teIWL0DGRHCH5VS2acaKlepjr9/n4OBw0bD3NwC2wPWw8TUDK3bdcndLyL8OSSSLHh6KV/iN2jcHLt3bMGcH6ZgwBDl1FCb16+Eu4cn6jdSnTb5xfMwuLl7fK5T+iTFVZ+UZPz+R0T50VEUtmpYCXHmzBksWbIEYWFhEIlEqFu3LqZOnQp3d3c8fPgQv/zyC27evAk3Nze0adMGS5cuxalTp+Dm5obFixdj7969OH36NADll43x48cjMDAQX3/9NYYNG1bo32/evDm6du2KCROUL1ODgoLw119/4f79+zAzM0PLli3xzTffwCp7qoU7d+5g3LhxSE5Oxr///qsSLd+zZw+mT5+O0NBQlb9x7949/Pnnn7h9W9ljrkGDBpg+fTqcP3EO3diHNz4pfV7ng65i3dZdiIiKhp2tDbq2a4XeXZRzl964cw+TZs7GtC9Ho22LprlpDhw7iW37DiHh5Ss4Ozqgf4/OaN3s7Qs1hUKBXQeP4sCxk4iJi4etjRX8qlfFyAF9cr8wFRWnCjUQ/lhz5P5jXQy8jI0BWxEZGQVbW1t0at8WPbt1AaCcE/nb777Ht5MmoHXLFrlpDh09jp179iHh5Us4OzmiT8/u8G/+toGmUChw6OhxHDh0BNGxsbC0tEDzJo0xqF+fIp8mzb1cRcQ9CCl8xw9w/nIw1m7dhYioGNjZWqNr21bo00X5Uu3GnfuY+P0cTJ/wBdq2eDu/7f7jp7LLyWs4OzpgQPdOaN2skcpxT54PxMadexETlwBHBzt0beOP7h1UezMVBceKNfHm+okiPeaZ4FtYufMwXsTEw97GEj39G2NAB2WZCLn/CKNnL8IPowegY5O6amkPnruMWcs3Y/+in+Fi/7Z3p0KhwNajZ7Hn1EVEx7+CnZUF6lStgLG9O773l8j3ZeHrj/DRRRtQNa5eB5YdekPf0RWypFdIOXcMKScPAFDOYer49Wy82rAYaUFnctNY9x0Fk+p1EDV1uNrxDL194PjVrHz/XvKh7Ug+tL3I8u++fA+ePH1WZMfLkZKSgtWrViLochAUcjkqVaqMkaNGwc3tbYN82tTJiIuLw7r1G3O3JSQkYMWKZbh54wZ0dXXh61sTI0eNgo2N5h7BCxb8gTu3b6sc41OV9SqDF09CC9/xA1wMDMKmLQFv69gO7dCjW1cAyjp28vQZ+HbSRLTyf7eOPYZde/YiIeElnJ2c0KdXD7TMU8cePnoM+w8dRkxMTh3bBAP79y3yOrZ0WW88DQsr0mMCynKyatUqXA4KglwuR6VKlTDqiy9ypyAAgKlTpiAuLg7rN2zI3ZaQkIAVy5fjRm458cWoL75QmcpSkpWFdevW4ezZs0hPT0fZcuUwfPhwVKhQoUjy7uXpiZd3g4rkWDnOXQnBmm17ER4dC3sba3Rr2xx9O7UFoFzDYsKPv+G7ccPRvnkjtbSHT1/A3H/WYNey3+HsoBz1F3LnPr78aX6+f29Yr84Y3rtrkeTdzqceUq4dK5Jj5TgTfAsrdh/Fi5h4OFhboad/Qwxor+wUcu3+Y4z+ZQl+HNUPHZvUwfJdR7B67/F8j7V8xnj4VVL2frzx8Cn+DtiPR+FRsDIzRbuGtTC6Rzvo6ekWaf7N/drg+ZNHRXrMS7l1SSRsbW3RsUN7lbpkyvTv8M2kiWjl3zI3zeGjR1Xqkt69eqBlc+V1vHnrFqZ+NzPfvzegX18M7N+vyPLvUbY8Yh7eLLLjAcCFoKtYt3Vnbru+S7tW6N1Fuej2jTv38NXMWZj65Zg87foT2L7vEOJfvoKLowP69+iCVs1UA+VnLgbh59//woZ/FmicPrSoOFeornH6xE9xKTAQmzdvRmRkJOzs7NChQwd0z+5Qdvv2bUydNg1ff/UV/P39c9McOXIEu/fsQUJCApycnNC7Vy+0aNFC5bh3797F6jVrEBYWBgsLC7Ro3hwDBw4s8im2PL282IbNw8LXH4f1i2c0kE3j2qh3ahOCWgzE6/NXVbbdGj4NkRvfjvZ0H9kbnl8Ng1EpZ4jDIvB0/kpEbdmvcjzrBjVR8bcpsKhWEVkvExG1ZT8e/bQICqkURam9JBR3n8QWvuMHSk1JwfrVS3A16CIUCgW8K/lg6MjxcHV7O/3RD9MmIj4uFsvXvW2Tv0yIx9oVi3Dr5jXo6eqhmm8tDB05HtZ52rATRw9C6TJe+Hrqj0Wed5+yTiWmPskRFxeHIUOHqh2jqHh6efH73zvcl+8pkuP813y3JrPwnUjF3OHCmrL3c/i/CWB8iCtXrmDQoEG5AYz/uqIOYJR0xRHAKOmKI4BR0hVHAKOkK44ARklXXAGMkqw4AhglXXEFMEqy4ghglGTFEcAo6YojgFHSFUcAo6QrjgBGSVccAYySrjgDGCVVcQUwSrLiCGCUdMURwCjJGMD4ONNWZWg7CyXOryONtJ2Fz+7/Yg0MIiIiIiIiIiIiIiL6//J/sQZGcZo1axb27t1b4D7//PMP6tcv2fNwEhEREREREREREREJyX8ygFGnTh219SXyM378eAwePLjAfYS+sBoRERERERERERERUUnznwxgfAgbGxuVRSuJiIiIiIiIiIiIiKj4cQ0MIiIiIiIiIiIiIiISHI7AICIiIiIiIiIiIqLPSqFQaDsLVAJwBAYREREREREREREREQkOAxhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJjp62M0BERERERERERERE/y0KubZzQCUBR2AQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4OhpOwNERERERERERERE9N8iVyi0nQUqATgCg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiARHT9sZICIiIiIiIiIiIqL/FoVCoe0sUAnAERhERERERERERERERCQ4DGAQEREREREREREREZHgMIBBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOHrazgARERERERERERER/bfI5QptZ4FKAI7AICIiIiIiIiIiIiIiwWEAg4iIiIiIiIiIiIiIBIcBDCIiIiIiIiIiIiIiEhwGMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsHR03YGiIiIiIiIiIiIiOi/RaHQdg6oJOAIDCIiIiIiIiIiIiIiEhwdhYKxLiIiIiIiIiIiIiL6fCYtTtV2FkqcvyaYaTsLnx2nkCI8eBql7SwISkUvVwQ9eKPtbAhKvYoW+GOPXNvZEJRvu4mw5yqvybu61RaxPsmjopcr/jrAfgLvmtRJBy+ehGo7G4JSuqw3Mg4t03Y2BMWowxgsO6btXAjHmDbAqpPazoWwjGwJvL5zUdvZEBSbKg3RsOM5bWdDUC4ebIKUa6xM3mXu1wa7rrAN+64edUS4+yRW29kQFJ+yTjis763tbAhKe0ko3oQc13Y2BMWiZmvcexKj7WwIRuWyztrOAtH/LU4hRUREREREREREREREgsMABhERERERERERERERCQ6nkCIiIiIiIiIiIiKiz0oh55TLVDiOwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhwGMAgIiIiIiIiIiIiIiLB0dN2BoiIiIiIiIiIiIjov0WuUGg7C1QCcAQGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQUREREREREREREREgsMABhERERERERERERERCY6etjNARERERERERERERP8tCrlC21mgEoAjMIiIiIiIiIiIiIiISHAYwCAiIiIiIiIiIiIiIsFhAIOIiIiIiIiIiIiIiASHAQwiIiIiIiIiIiIiIhIcBjCIiIiIiIiIiIiIiEhw9LSdASIiIiIiIiIiIiL6b1HIFdrOApUAHIFBRERERERERERERESCwwAGEREREREREREREREJDgMYREREREREREREREQkOAxgEBERERERERERERGR4DCAQURERET0P/buOiyqrI8D+Fe6QZQOKcUAlbS7u3t17c5V1651XXPttbuxu1tRDMAGFEQaxACJoYZ5/xgYHWcAV0GGd7+f5+HZ5c45l3OO95575v7uOZeIiIiIiIgUjkpxF4CIiIiIiIiIiIiI/luyRcVdAioJOAODiIiIiIiIiIiIiIgUDgMYRERERERERERERESkcBjAICIiIiIiIiIiIiIihcMABhERERERERERERERKRwGMIiIiIiIiIiIiIiISOGoFHcBiIiIiIiIiIiIiOi/RZQtKu4iUAnAGRhERERERERERERERKRwOAODioxAIMCubZtw985NpAkEqOxUFYOGjoSFpXW++RI+fsC2zevh7/sAQqEQbh6eGDBkJAwNy0jSXDp/Bv+s/lsmb+u2HTB05LhCr0thSBOk4uCuNXh49yrS0wRwrOyCXoMmwMzC5pv3sXbxFKhraGLIuLlS20UiEc6f2IPrF47h/bs4lDUyRdO2PdC0dffCrUQhy0xPwf3zfyP02SVkZqTCzMYNNdtOg4GRbb75rnn9juBHp2S2N+m9EnbOLWS2+5xZjHdRz9F26K5CK3tRSU9LwfkDf+PZw0vISEuFjaMb2v4yDUZm+bdJ2Ct/XDi4AlFvnkNdXQtOni3Rott4qGtqS9K8iwvDxYMr8ealLzLSBTC1qoCmnUfDoUqtoq7WD2FfIiszPQV3z/yN108vIjMjFeZ27qjdbipKG9t98z5Cn13B+Z2j0H74TljY15BsT06Mw93TSxARdBvZ2VkwLVcdni3Hw9jKuSiqUige+vljx67dCAsPh4GBAdq3aYOunTuiVKlSeea5dv0G9nkdRExsHEyMjdGjWxc0b9pEKs3NW7dx8MhRRERGQVtbG67Vq2FQ/34oXbp0UVfph90JCsPac3cQEvsehrpa6Fm7Gvo1dM2zTdIzs7Dx0j2c9QvEx2QBKpiXxfDmNVGnoo1UuidhMVh1xhvPImKhpaaGOhXLYULbeiijq/UTavXjMtJTcPvkMgQ/vojM9FRY2LujfqdpMDT59nMn5OllnNoyCl1G74JV+c/nzrO7h3D5wEyZ9NXq9UGjrrMLpfxFISMtBTdPLMNLf3GbWDq4o1HXf9cmwY8v4/imUeg+bhesK3xuk6SPsbhxbAnCgu5AmJUBa8daaNBxMkob2xRBTX7cvUfPsHH/MbyOiIahgR66tGiE3u1b5NuX5Ap6HYZB0xbg0Jq/YGZcVuqzM9duY9/JC4iMi4dpWUN0adEY3Vo3+ab9KprRA+3g6KCLMdMfF5i2tIEqxgyyRw1XQygrl4LPww9YszUE7z9mSNIoKwEDetmgVRMT6OupIig4Gf9sC8GLl0lFWY0f4vMkEOsOnUZIZCzK6OuiW7N6+KV1ozz/PTMys7Dn7FWcufUAcR8SYGxogFa13dC/fVOoqnz+Ov7idThW7juBgNfh0NbUQLv6nhjapZVUGkWWnpaCC15/4/kXY9jWfQoew4a/8sfFQ+IxrJq6Fpw9W6JZV+kx7NuoYJw/sAxhr/xRqlQpVKzeEC16TISugVFRV+uHCASp2LN9I3y8byItTYBKTlUxYMjobxrD7tjyD/x97yNbKISLew0MGDIapXPGsGuWL8T1K+fzzL9+uxeMjU0LtS6FScPCBPUfncbDLqPw4eb9fNOa92gDh2kjoGVnBcGbKAQv3YSo3cel0ui7OaHS4t+h7+aErE8piNx1FC//WAtRZmYR1qJw+DwJwLqDZ/A6MgZl9HXRtVk9/NKm8bddd95E4NdZf+Po8lkwNyoj9dmpG/ew58xVRMbFo6yBPto28MSADs2hoqxcVFUpVAJBKnZv3wQf7xtISxOgslM1DBgy6pvOne1b1knOHVf3Gug/ZJTk+9+a5Qtx7cqFPPNv2H5Aoc8dov+yEjEacnR0xMKFC9G5c+fiLgr9C8uX/ImXgQHoN3AotLS04LVvF2ZOnYg167dBR1dXbh6hUIg/Zk9Famoqho8ej6wsIXbv2Iy5M37H8jUboZIzgA99HQwLSyuM/W2KVH6D0oZFXq/vtWH5TIS8fIbu/cZAU0sbJ7y2YPHMEViwxgvaOnr55s3Ozsb+bSvw8O5V1GnURuZzr52rcen0AXTqNQx25avgia839mxaChVlFTRsobjnzVWvyXgb/hg1Wk2Cqro2/K6sw5nNv6LrhFNQ19TPM9/7mADYV2uDKrV/kdquX9ZGJu2TW9vx9PYOmNl6FHbxi4TXuskID36MVj0nQV1TG1eOrcPmv37FhEWnoKktv01iwoOwddFA2FeuiT5jVyPp41ucP7gc72JDMfD3LQCAlKSP2LygH7R0DND2l2lQ19TBg2uHsG3xYAyeth12lTx/ZjX/FfYlsi7tm4S4sMeo1WYS1DR08PDSPzi58Vf0nHga6lp5nzu50lI+4saROTLb0wVJOP5Pb2RmCODZchz0y5bD66cXcWJ9X7Qfvgsm1lWLojo/JCAwELPnzUeDenXx6y998OxFALZs3wGhUIie3bvKzXPL+w4WLVuOju3bwcPNFXd8fLBsxSqoqqqiUYP6AIBrN25i4ZJlaNOqJfr364uPHz9i5+69+H36TPyzagXU1NR+ZjX/lSdhMRiz9QRaVK+AUS1rwT80GivO3EJWdjYGNZHfF849eBk3X7zG2NZ1UM6oNE4+fIExW09gy4iucLWzAAC8iIjD4HWHUaOCNVb0b4f4xGSsPuuN8PgE7Brb42dW8bud3zURMW8eo277yVDX0IHP+bU4srYf+k47A41vOHcEKR9xxUv23AGA+KgAlDa2RfM+i6S2a+mWlZteUZzZMRHRoY/RoONkqGnq4O7ZtfBa1Q8DZn5jmyR/xMX9sm2SkZ6KQ2v6AyiFpj3mQkVVDXfPrcOBFb+g/8zT0NQ2KPS6/IhnL0MwadFqNK3tgSE9O+JJ4Cv8s+cwhNnZ6Nepdb55Q8IjMWnhKgiFQpnPTl6+iYUbduKXDi3hWa0Knr8KxeqdXkhNS0f/LrJjOkXWs6Mlenaygv/ThALTKisBy+Y6Q1tTBcvWvYSKihKG/2qL5X84Y+B4PwiF4uUiRg+2R9tmZtiw8zVi49LRo6MlVs6vigHjfREVk1bENfr3nr56g/HLNqFZTRcM79oGj4JeY/X+kxAKhejfvpncPMt2HcFZ74cY3LE5KttZ40VoBDYfPY+Ydx8we2hvAEDk23cYuXAdqjrYYOHY/ngTFYd1h84gMTkV0weVjP714PrJiAh+jJY9J0FdQxtXj6/D1oW/YtzCvMewseFB2LZ4IOwq10TvMauRlPAWFw4uR3xMKAbkjGE/fXyLLQv7o4yxFboNX4zMjDRcOrQC2xYPxOj5R6Gsovozq/mvrFwyHy+DXqDvgOHQ0tLGwf07MGfaeKxctzOfMWwW/pzzOwSpqRg26jcIhVnYs2MT/pg5EUtXb4GKigq69eqHFq3bS+VLSkrC3wvnoIpzdRgZmfyM6n0XDUtTeJ7ZClWD/L//AoBpp+aovmsZQtfsQvyFWzDt0BTVty1GdnoGYg6eBQBo2lqixvnt+OjzCH69xkOnoj0c50+AqqEBno2Sf71WFE9fhWLC0k1oVssFw7u1xuOg11iz/ySE2dl59ie5giOiMX7JRgiF2TKf7T93Hct3H0UTz+oY27sDEj4lY+Phs3gVFo0lEwYVVXUK1Yolf+Jl0Av0GzAMWlra8Nq/E7OnTcCqdTvyPXfmz5kCQWoKho/6DVmSc2cSlq3eLDl3mn917iQnJWHZwrkKf+4Q/deViAAGlTyBAc/x4N5dzJq3EG4e4ifxKjtVxbABvXHuzAl06/mL3Hzet67jdUgw1mzYBitrGwCAnb09xo4YBO9b19GgUVMAQOjrEDiUd4Rjxco/oTY/LjjwCR49uIXfZq1EVbc6AIAKlV0weVgHXDl3GO27Dcwzb8SbV9izeSlCX72Ampq6zOfxcdG4cHIf+g6ZjMatxDfrKlf1wId3cXjq76OwAYy4MH+EB1xDy/4bYeUovmFoauOOA0ub4YXPfrg0Gi43X1ZmOhLi38Cpzq8wsa6e5/4/fYjEvbOLERZwDWoa8gc5iibslT8C/K+h/6SNcKwmbhMbR3cs/a0ZfC7vR6MO8tvE+/xOaGrro8+4VVBR+XxT9fDm6YiPCYWRmS38bp9AyqePGDn3IPQNxQOz8k61sXp6R9w8u01hAxjsS2TFvvFH2ItraD1oE8pVFB8nZrbu2LOwKZ7d3Q+3JvKPky/dPPYHlJRlhwCBD44g6WMUOo7cBzNbVwCAVYU6SEv5iDsnF6LT6P2FW5lCsGvvftjb2WHKpN8AAB7ubhBmZeHAwUPo1KEd1NVl+83tO3ejft06GDF0MADA3c0VSUnJ2LlnrySAceDgIXi6u2Pc6JGSfJYWFhg3cTJ87j9A/bp1fkLtvs+683dR0cIIf/VuCQCoU9EGmUIhtl55gD71XaChKv1vH/UhEWf9AjGtUyP0qFMNAODpYIVHodHw8n4sCWCsOH0bFS2MsWpAeygpiZ8M1NZQx5Lj1xH5PhGWZQq+2V2cokP98frZNXQYtgm2lRsAAMzt3bF9XhM8ub0Pns1HFLiPq4fmyT13ACA+MgAm1s4ws6lemMUuUtGv/RHy9Bo6j9wEuyriNrG0d8fm2U3w6OY+1GxZcJtc9poHZTlt8tL/Aj7EhaL/jNMoa14eAFDWvAI2z26Cl37nUa1ez8KtzA/a4nUCFWysMWfsEABALRdnZGUJsfPoGXRv3RQa6rJBy8zMLBw6dwWbvY5DTVX+TdSdR8+gUU03jOrbDQDgUbUyImJicfjclRITwDAz0cDogXaoU6MskpKzvilPo7pGcLTXxS8jH+BNRCoA4NXrZOxa647GdY1w6cZbGJdVR6dW5li5KRjHz8UAAO77f8D+jZ7o08UaS9a+LLI6fa+NR87B0cYS80f2BQDUrlYJWUIhtp+4hJ4tG0Djq+B2QlIKjl27izE926FfW/EsP08nRwDA2gOnMKZne5TW08HOU1egraGOvycOhqqKCupWrwINdTUs2XEYAzs0g2lZxX6wIvyVPwL9r6HfROkx7LKJzeBzZT8atc9jDHtBPIbtPVZ6DHvkizHsg+uHkC5IQt8J66ClK54Bqa1riK0Lf8XrF/dQvmrdoq/gdwgKeIaH9+9gxrzFcHWvCQCo5FQVIwf2xPkzx9G1Z1+5+e7cuo7QkFdYuX6nZAxrY1ceE0b2x51b11C/UTOYmlnA1MxCKt+SBbOgo6uL8ZNnKubsrlKlYNm3IyotngJ8Y/Ec5/+GmMPnETBpIQDg3aXbUC2tD8e54yQBDPvJQ5CVlIKHnUdClJmJ+PM3IRSkwWnVLAQv2oC0iJiiqtEP23RY3J/8MbIfAKB2tcrIEgqx48RFuf0JAGRmZcHrwk1sPHwW6qqy115hdja2HjuPGs6OWDT+8z0GR1tL9JqyCPeeBqKGc8Wiq1QhCAp4jof372DmvMVwdRd//6vkVBUjCjx3biA05BVWrd8hOXds7RwwfuQAeN+6hgZ5njuzoaOriwmTZyjmuUNEAPgODCoi/r4PoKGhgequ7pJt+voGqOJcDb4P7uWdz+8hLCytJBccALCytoGllbUkn0gkwpvQ17C1dyiy8he2p/4+UNfQhFP1mpJtevql4VjFFU98vfPNu2nlHGRnZ2PWku3Q1Zf98uJ37zpUVdVQr6n0kwQjJy/EmKlLCqcCRSDylTdU1LRgUf7zTUBNHUOY2bojIuhmnvk+xr2CKDsLZcwr5bt/nzOLkPguDG0Gb0cZM8UepOV69dQbaupaKO/8uU109AxhW9EdQY/zbpNmXceh/6SNUl/8cp9Gy8pIBwDoG5qgbqtfJcELAFBSUkYZ03L48DaisKtSaNiXyIp4eRsqalqwqiB97pjbeSA84EaB+YMfnUXkyzuo1WaSzGcf34ZAXVNfErzIZWFfA7Fh/khPTfzxChSijMxMPHnyFHVq1ZTaXq9uHaQKBHj24oVMnti4OERGRaH213nq1EZ0dAyioqKRnZ0NV5fqaN2yuVQaaytLAEBMTGwh16TwZGRl4WFIFBo7SR/XzaqWR0p6BvxfR8nkMdLTxr7xvdDG7XNfqaRUCspKSkjPEj9RnpAiwMOQSHSvU1USvACAplUdcHH2YIUPXgBAWOBtqKppoVzFzze7tHQMYeHggdAXBZ87QX5nER50B3XbT5b5TCQS4V10EIws8r82KZrQAHGb2FT6ok10DWFZ3gOvnxfcJoG+ZxEWeAf1O8m2SflqTdFr4n5J8AIAlJVzrk1Z6YVQ+sKTkZkJv+dBaFBDuu9rVMsdqYI0PAl8JTffHf8n2HroJH7t3AajfpE/4+vv6eMwpp/0kp6qKirIKAFLm+QaM9geluaaGDfjMYJDk78pj6erIcIiUyXBCwB4E5GKsMhU1HIXj2fdqhlARUUJN+++k6TJzBLhzoP3kjSKJCMzC74Br9DIXXpJxSae1ZCSlo5HQa9l8qQI0tClSW3Ud3WS2m5jJh6PRb0V193nSSDqVK8stVxUE8/qyBaJcPdJYGFXpdDJG8Nq6xnCpqI7XuYzhm3aZRx+nfjVGDa3n8gU9xM1m/TCkBl7JcEL4PM4NzNTsfqSLz3yewANDU1Uc/k881Ff3wCVnarB76FPvvnMLa1lxrAWVuXyzOf7wAf37tzEgCGjoa2jmA9u6VV1hNM/8xC55zge9f+9wPSa5Syg42iL2BOXpLbHHL0A7fI20HIoBwAwalYXb8/dkFouKvbIeZRSVoZRc8UMbgHi645vwCs09JCe3dzYszpSBOl4LKc/AQBv/xfYcvQcBnRohtG92st8/iExCYnJqajrIt3nOFiZw0BXG7f9nxdeJYqIv999aGhooJqL9Pe/yk7V4fsw7+9/j/zu5/H9rxz88sjn+8AHPnduYsCQUQp77hCRWIkJYISGhqJ///5wdnZGvXr1sHHjRqnPr1+/ju7du8PFxQV169bFwoULkZb2edqxo6Mjjh49KpXny20CgQAzZsxAnTp14OzsjI4dO+LixYuStCKRCJs3b0aTJk1QrVo1dOjQASdPnvxXdUhMTMTMmTNRr149VKlSBbVq1cLMmTMhEAgkaZ49e4Y+ffqgWrVqaNKkCU6ePInKlSvj3r3PN9x+tBw/Q2REOExMzaH81RqLZmYWiIrK+2ZpZHgYzC0sZbabmVsgKlKcLzYmGgJBKoJfBmHkkH7o0q4ZRg7ph2tXLsrkUxQxkaEwMrGA0lftYWJmidiosHzzDh3/B2Ys3AIrm/JyPw8PfQkTMysEPffHnN9+waAuNTFxSHtcv3BUbnpFkfA2BHqGllBSkm4TvTLlkBAfmme+9zEBAICgB4ew56962DqzKk5u/AVvw6XXYnZvNhZdxp0oMUtHAcDb6BAYGsu2SRmTcoiPybtN9A1NYGYtfpovIy0Vwc/u4MKhFShXwRVm5cQ3JKvWaIWWPSZK5ROkJCI08CFMLBT3Bj77Elkf376We+7ol7XO99wBgNSkd7h17A/U6TAdWnqy60ZraJdGZnqKTKAi8X04APHMJkUSGxOLzKwsWFqYS203NzMDAERGyt6sD48Q18HSQvrpK3NzcZ6IqCgoKSlh2OBBMkEO77viGwflyuW//m5xinz/CZlCIcoZSb+nw7qsAQDgTfxHmTxqKiqoYmUCXU11ZGeLEPsxSTKrolst8Y26lzHvkC0SobS2JqbtOYda0/9BzWn/YMa+C/gkULxlXuT5EBcC/TKy545BWWt8fJv/uZPy6R2uHZ6Hhp2nQ1vOuZP4LhwZ6SmIC3+KnQtaYPWEKti5oAVe3D9emFUodB9iQ6BfVrZNShtZ42NcwW1yxWseGnWV3ybqmrqwsBMHBIRZGYiPCsS53VOhqVMajq6tCq8ShSA6Lh6ZWVmwNpNeOsLS1BgAEBYtP2hZyd4WR9ctRv8ubaGsLP9rlY2lOcyMy0IkEiExKRknL9/EuRt30LlFo8KtRBHavDsUv47xxePn3x7EtrHUQkRUqsz2yGgBrC20JGlSUrPwIUE6mBMZI4BRGXVoaijWV9Wot++QmSWEtZmx1HYrU/HxHxbzViaPhXEZTB3QHTbm0sfWDd8nUFFWhrWZMdIyMhDz7oPMfkvr6UBbU0PufhVNfHQISucxhn1XwBjWNHcMmy4ew148vALlyrvCzFo8htXWM4SlnfhmbGZGOsKDH+HUzvkwNLaWCpgomsiIMBibmsmMYU3NLRCdzxg2KiIM5uZyxrBmFoiOlM0nEomwa+s6VHGujlp1G/5wuYuKIDwG1ys2Q8DkRRCmFjxu0KloDwBIefVGantqiPi7s04FWyhpqEPLxhIpr6SPsYx3H5GZmASdCvm/f6U4Rb19L+5PTL/qT0xy+pNo+ed9ZXtrnFg1FwM7toCykuz7LHS1NKGsrISYdx+ktn9KTkVSigBRb98XUg2KTp7f/8wtEB0Vnm8+M3Mrme2mZhaIjpTNJxKJsHPrelRxrobaCnzu/BeIRCL+/Muf/6ISs4TUnj17MGfOHMyfPx+nTp3C8uXLUbVqVdSqVQuXLl3C2LFjMWbMGCxevBivX7/G3LlzERERgXXr1n3T/letWoWgoCBs2rQJenp6OHToECZMmIALFy7A0tISK1aswOnTpzF79mzY2dnhwYMHmDt3LpKSktCnT59v+htTp05FXFwc1q5dizJlysDPzw/Tp0+Hg4MD+vfvj7i4OPz6669o0qQJ5s2bh6ioKMydO1dqPd3CKMfPkJqaAi0t2Rd6ampqQpAq+2Xmy3zybjpqampJ8oW+DgYAxMXGYMDgEVBRUcG1Kxex6u9FyMzMQPOWbQupFoUnNTUZmlraMts1NLUhEKTkm9fKJv+by0mJH5HwIR4bV8xCxx5DYGZpg3u3LmLHevFUW0VdQiojLRmq6joy21XVtZCZnnebvI8WP4WWmSFA455/Iz01AY+ub8bpLf3RYcQBlDETfwkyNK1QNAUvQmmpyVDXlG0TdQ0tpBdwnADiC//8kbWRlZkOLR0DtO87I8+02dnZOLp1NtIFyajfRnHXQmVfIitDkAQ1DXnnjjYy8jl3AODG4dkwKVcdjm4dEBUi+yRSBdf2eHxjOy7sHoe6HWZAW98EYQE3EPjwGADxeadIUlLF9f36GNHS0gQApMo5RlJSUqTS5NLUzDsPAETHxGDz1u2wt7OFp7vbjxW8CCWniZ9G1dGQXnZAK2f5m5S0DJk8X9p+7QFWn70DAOhS0wk1K4iDNR+Txf/2c7wuoW5FG6zs3w5h7xKw+qw3It8nYsfobgo/7T6vc0dNQxsZafmfO1e8ZsHMxgWVPDoi4pXsuRMfJQ6uJ36IRL0OU6GkrIKAB8dxce8UCLMy4Fy7u0weRZAuSIJ6Hm2SXkCbXNw3C2a2LqhSoyPCX+b9RCQAHNswAm8CbqNUKSW06LMAOvrG+ab/2ZJTxcf31/2ClqYGACAlj5ttxmVKy90uz7OXIRg6Qzw2q2Rvg17tmheQQ3GEhud9vc2LtrYKIqJlrxmpAiG0tZQlaVJSZd8bkioQb9PSUoGggD7rZ0rOOQ60c46LXFoa4qUKU74xmHvtwWOcvvUA3ZvVg562Ft4lfAIA6Hy1X0C8TN+37rc4pQmSoSGnL/k3Y9gFX4xh2+Yxhl07syPexb6BqpoG+oxdA1U12TZTFKkpKdCS8/1PPBbNu01SUlNgJieAoamphVQ5+R7eu4PIiDAMHDb2xwpcxDI/JiLz47cHQVX0xcdT1ifpWV9ZSeI2UNHTgaq+rtw0uelU9GSPSUWRe92R6U808+9PjA0N8t2vhroamtV0xaGLN2FvaYqG7tXw4VMS/t51BMrKShCkK06fmpfUlGRoftf3v2SYmVvIbNfU1JQ7vn+Qc+4MGjbmxwpMRD9FiQlg9O7dGx07dgQAjBw5Etu2bcOzZ89Qq1YtbNq0Cc2aNcPIkeJ1qm1tbSESiTBq1CgEBwfDwaHgp4vDw8Ohra0NKysr6OnpYdy4cfDw8IC+vj5SU1OxY8cOLF++HA0bNgQAWFtbIyoqClu3bv3mwEGdOnXg4eEBR0fxDVZLS0vs2bMHL1+K13f18vKCrq4uFixYAFVVVTg4OGDmzJmSehVWOQpbdna2TAQwO1v2ZVK58rvBIcrOO5JYKmfJispOVTFjzgI4V6sODQ3xF00XNw8kJiRg/+4daNaiTbHeRBG3h3T9861XqR97uiwrKxNJnxIwespiuNdqDED8Doz372Jx3GuLQgQwRPLaRPR9x0iV2r/AulIjWFX4PCXY3L4mDv7dEo+ubUCT3it+vMA/gdzjJL82USr4mM4WZqHfhH+QlZmB66c2YeOCvhg+c69kFkYuYVYmDm2ajmcPLqJ9v5mwsleMFzOzL5FVmOdO4MNjiAn1RY9Jp/JMY2jigNYD1uPGkdnw+rsdAMDIsgo8m4/B7RMLFO5GQXY+/86A/P61oCdW5LVheEQkps2aDWVlZcyaPhVKSor1VPCXCm6T/I/p+pXtUN3GHP6h0dh46R7SMrPwV++WyMx5mKKypQnm9hC/WLJGBWvoaqpj6p5zuPsyHLUdyxVOJQqB/HMnv2tx3u3y4v4xRL32Rb+pp/NMY2HvgfZDNsCqfA2oquc8XV6pHgRJH3D33Go41Sr+AE9htskzn2OICvFF/5l5t8mXarYcAY+mgxHw4CTO75kGkUgI59rdvq3gP0FB543SN1yDC2JqVAb/zPsdMW/jsXH/cQydsRA7l86Ghpz39BSXUqWAr6sq5/2w3yS/Jstt7oKaNb9reXHILuD6ofQN5/jVB48x859dqF7BDmNzln/5nutScSqqMWzfCf8gMzMDN09twua/+mLozL2SWRi52vWbBZFIhLuX9mDXihHoN2G9QrwD41+3ST7f/0T5jX3ljD/OnT4KWzsHqeV2/h/Iq+uXRNnZQIFpFKsP+VJB/cm3nDd5mTaoB9RUVfDn5gOYv2k/1NVU8Wv7pkhNS4eGmmK99F7+ufN9Y5P8ruXyruPnTh/7vzx3iP5flZgAho2NjdTvenp6SE8XP2X48uVLtGkj/RI8T09PyWffEsAYMmQIhg8fjlq1aqFq1aqoU6cO2rVrB11dXTx58gTp6emYOHGi1E2LrKwsZGRkIC0tDRoaBd/U6d27N65evYpjx47hzZs3CA4ORmRkJOzs7AAAL168gJOTE1S/eAmgh8fn5W+Cg4MLpRyFzWvfLnjt2yW1rXbd+khMkF2mIlWQCi3tvJ+E0NLWhkAgGx0XP4UtfoLFwKA0PGrUkknj5lkDjx/5IuHjR5Q2LL51c094bcEJr81S29xrN8GnxA8yaQWpKdDS+rEnQzQ0tVGqVCnJy8FzObvUwjN/HyQmvIe+QZkf+hs/yu/qOvhd+Udqm61TCwiSZaewZqal5PvSbQMjWxgYSU8HVtfUg0k5V7yPDSqcAv8EV4+vw5Vj0m3i5NECyYmybZImSIGGZsFrciqrqEqm0ttWdMfiCU3hfXE3ug5ZIEkjSPmEPavGIjTwAdr1m4lazRRn5hb7ElkPL/+Dh5ekjxO7qnmdO8l5njvJCbHwPvEXarebCk1tQ2QLsyRfkEXZ2cjOFkqWfbByrIs+064g6aN4+SU9Q0sE3D8CAFDXMiisqhUKbW3xv2WqQPop35Scp6y0tWWf3tLOeaJL8FWe1Nwn4bSln5Z8/OQp/liwEBqaGliycIFkeSpFpZP75N5XT9jl/q6rKftCyC+VNysLAHCzt0RWdjbWX/DBmFa1oZ0zg6N+Zen+t05FcdAiMOqtQgUwfC78g3vn10ptK1+9BVKT3smkzUhLgXoe505SQiyuH12ABh2nQlMn73NHS7cM7JxklwSyqdIA4S/vIDXpndxlln6mO+f+wd2z0m1SwUV+m6QLUqCex3Un6WMsrh1egIadp0Irnzb5kqWD+OZAuYq1kPghCj7nNyhUAENHO2cG1ldPvKbk9As6X83M+B5GhqVhZFgaqOIIcxMjjJy9BFfv+qJ1w9o/vO/CMqBnOQzsbSO1rW67gt+FIk9yaha0NGWXN9HWUkZKSlZOGqH8NJoqks8ViY6W+HuWzHGS83tBx8nec9ewau8JuFV2wLIJg6GecyMx9wnslDTZJ65TBGmFcvwVpmvH1+Hq8W8bw+bXl3xJWUUVDk45Y1hHdyz9rSnuXNiNLl+MYQHAwUl8vthVroHV09rh5pktChHAOLR/Jw7u2yG1rVadBkiQM4YVpKZAS1t2Zkau/Maw2l/N6EhK+oRnT/zR59eh31dwBZaVmAQAUNGVrnPurIqsxGTJzIuv0+Smy92HIso9r1PT8uhP5MzI+lZaGuqYNbQ3Jvbrgph3H2BW1hBaGuo4cc1HskSVoji4fycO7tsptS2vcyc19Vu+/8mZ+ZeaKnPP5fO5M+Q7S05EP1uJCWB8vf4d8DkyKy9Cm/vUroqK/CpmZWVJ/e7i4oIbN27A29sbd+/exfHjx7F+/Xps2bJFsjTFypUrJcGGL6mp5X8zILc8w4YNw6tXr9C2bVu0bt0aVapUwaxZs6TqmN/Txrn1/JFyFIUWrdrCw1P6JuC9u7fh7/sQ2dnZUsGWmOgoWFrlvXa4haUVXofIvigxJjoa5R3FT+A8f/YEcbExaNy0hVSajPQMKCkpQUe3eF++1LBFJ1T3kB5I+927gWf+PjLt8TYmAmaWNj/090zMrCASiSDMygTUPj/Fl7v0mJpa8T/ZV9GzO6wrNpTa9ubFZUS+ug1RdrbUEzaf3ofBwEj2+M4V8uQs1DX0YVlBOmCTlZkGDW3Fe+FjXjwbdUfF6g2ltr3wvYxXT2/LHCfv48JgZJ53mwT4XYOGlg5sK34OeGpo6aKMiRU+ffy8fmrih1hsXTwIH+Mj0WvU33Cu0bLwKlQI2JfIqlyjO8pVaii1LfT5FUQEyZ47ie/DUdpY/nES+eoOMtKScP3QDFw/JL0sw6lNA6Bb2hy/TL+KpI/RiHx1BxVc20PP8PPyBe+inkNdSx+6pWWnZRcnczNTKCkpITomRmp7dLT4d2sr2XVwLS0tJGkc7O0/54nJzfO53teu38DSFatgZWmBBfPmomzZ4g0GfwurMvpQViqFiHcJUtvDc363NZbtJ6M/fILPq3C0ca0IddXP46ZKluJlfuI/pUjeoZGRJX1DMSvn8ewv8ykC59rdYVelodS2kKeXERYge+4kxIehtKk95AkPuoMMQRIu7Z+BS/ulz52j6/pD19ACg+ZcRVTIQyS+j0Blz05SabIy01FKSRkaWsX/kvNqdbrD3qmh1LbgJ5fxJo82McyjTcIC7yBdkIQLe2fgwl7pNjm0pj/0DC0wdP5VxIQ9QeK7SFR0ay2VxsSqCqJf+xdOpQqJhYkxlJWUEBkrveZ47u82Ft8XuEwVpOHWw0eo7GALqy/er+FoKw72vfuY8H0FLiInLsTA+0HhrI8eHilABXvZG00WZpoIeCW+qRgelQodbRUY6Kki4dPn92BYmmsgJi4NGRnfOf2jiFgal4WykhIi4qSDfrm/f/2ei1wikQjLdh2F18WbaFHLFXOH95F6WbeWhjqMS+sjMlZ6vx8Sk5CSlg7bPPZbXDwadYfjV2PYAL+8x7DG+Y1h/a9BQ1N2DGtobIWkBPH59/rFPWRmpsGxWgNJGmVlFZhYVUBcpOxYrzg0a9kObl+NYe/fvY1Hfg9kx7AxUbC0yjvgb2FhjdevZesVGxMFhwqVpLY98r0HoVCIWvUa/lgFFFDyS/F7LbTsy+HTowDJdm17cdslB4ZAmJIKQWQstOyl21PNyBCqejpIDgz5eQX+l3L7k6/P+9zfbS1Mv3vft/yeQU9bC9Uc7WBvKb5+fUhMwtsPCXC0kV2erDg1b9kO7t947sTGFPD9z8JKskTwl2JjolC+gvRsLn/f+xAKhaj9f3juEP2/Utw1EP4FR0dH+Pn5SW17+PAhAMA+5+aEqqoqkpM/r40YFib94uTVq1fD19cXTZo0wcyZM3HhwgVYWVnhwoULsLOzg4qKCqKjo1GuXDnJz40bN7B169ZvWkoiICAAN2/exKpVqzBp0iS0b98e1tbWCA8PlwQmKlasiBcvXiAz8/MA3t//8xe8wihHUTAsUxYOFRylfqq7ukMgSIW/7wNJusTEBLx49gTVXfOeolfd1R2REeGICH8j2RYR/gaREWGonjO179mTR1i9fLHkRbyAOEB0x/sGKlaqIjWDpTiUNjSCrUNlqR+n6jWQJkjBM/+7knSfEj8i6IU/nKrXzGdvBcudeXHvlvSLhx/dvwkrm/LQ/MEZHoVBW88YRpZOUj+W5esgMz0Fka9uS9IJkj8g5o0vLMrn/UK+gHsHcfv4XAizPj9dnJIYh7gwf5jbeRZpPQqTXmljWNo5Sf2Ud66D9LQUvHr6uU2SP33AmyDffF9SePv8ThzfMQ/Z2Z9vLCZ+iMXbqBCYWYnfBZImSMaWhQPw6eNbDJyyVeGCFwD7Enm09U1gbOUs9WNVQXzuhL+UPneiXz+UCezlsqncCF3GHpL6qd95LgCgfue5aDVgfc5+3uP6oZlS78dI/RSPV4/OwKZyY4VbxkJNTQ3OTlXgfeeu1MMMt73vQFtbG44VZN+FY2FuDlMTE9zyviO1/bb3HclnAHD/wUMs/nsFKleqiOVLF5eI4AUgDiS42lngytNgqTa5/OQVdDXU4GQt+4U45uMnzDt4GVefSn/puxsUDlVlZdgYlYadiSHMDfVw4VGQ1H6vP38NAHC1Vazglo6+CUysnaV+rB3rIiM9BW8Cb0nSpSZ/QFTIQ5RzlH/u2Dk1Qq+Jh6V+GnefBwBo3H0eOgwRnzsRr3xwce9UqZeBi7KzEfzoAsxtXaCsUjwPmXxJx8AEpuWcpX7KVayLjLQUhAZ80SZJHxAZ/BA2FeW3ib1zI/zy+2Gpn2Y9xW3SrOc8dBoubpPQ5zdxdsdkfPr4OcCYnS1E+EsfGFk4FmFN/z11NVVUr1wBN+75Sh/fPr7Q0dJE5fLf9yJYZWVlLFy/E3tPXpDafv/xcwCAQznFupH0/kMGgoKTpX6+1wP/jyhnqQUbq88z4WystGBrrY0H/h8laQCgYZ2ykjSqKqVQ26MMHvjLzlwubupqqnCpaI9rD55IHSdX7z+GjpYmnOzl35T+x+s0vC7eRJ9WDfHnqH5SwYtcNapWxC3/58jI/PyQ3dUHj6GspASPKuULvzI/QN4Y1sFJdgybkjOGzZ1ZIc+d8ztxcqfsGDY+OgSmOWNYf++TOLxxqtS7NNIFKQgPfgRTK8XoSwzLlIVD+YpSP9VcPSAQpOKR331JusTEBAQ8e5LvkjXVXN0RFREmfwz71dj3ZeALlClrBGPj77/ZrahSQ8KR+joCZp2lHzQy7dQcyS9DIQgTzxR+d9kbxq0bQumLpZFMO7dAdlYW3l3z+all/jc+9yePpfuTB4+go6WJKnn0J9/i6BVvrNp7XGrb/nPXoaRUCvVcq3z3fotC/ufO19//HqOai0ee+6rm6oHIPM6daq7S+f6fzx2i/1eK9bjcdxo8eDDGjRuHdevWoVWrVnjz5g3mz5+PRo0aSQIY1atXx6FDh+Dh4QGRSISFCxdKzViIiIjAyZMnMX/+fFhbW+Px48eIjo6Gi4sLdHV10bNnT6xatQo6OjpwdXXFvXv3sHTpUgwbNuybyli2bFmoqKjg3LlzMDQ0REJCAjZs2ID4+HhkZIhvxPbu3Rvbt2/HrFmzMGTIEMTFxWH+/PkAxGv9FUY5fpYqztXgVLU6Viz9C78OHApdPT0c2LsT2to6aNW6vSRdRPgbZGZmws5ePDCvW78hDnvtxR+zpqLvAPF0vt3bN6OcjR3q1m8IQPyU9vkzJ7Fg3gz0/mUA1DU0cO7MCYS/eYO/lqz82VX9Jo5VXFHRyQ0bV8xG91/HQEdXH8cPbIaWti4at+oiSRcV8RpZmZkoZ/ftg/FKzm6o7lEP+7atQHp6Giys7eF97QxeBT7G2GnLiqI6hcLM1gNmdp645vU7PFtNhLqWAfwu/wN1DV1UrtlTku5jXDCEwgyUNa8MAHBtPAJntw7Exd2j4VS7L9IFifC78g80tPRRtd6A4qpOobCt6AG7Sp7wWv87WvWcCC0dA1w++g80tHRRs8nnNomLCoYwMwPmNuI2adxxBLYtHoT9a3+DR6PuSPn0AddOrIemth7qtha3yeUja/Au9g2adBoNZWUVhAc/kuxPRUVNsi9Fw75ElrmdB8ztPXFl32TUbDMJGloGeHhpLdQ1deFUq5ck3Ye4YAizMmBkURka2qWhoS39stnMDPHyBAbGtihjJu5zjCydYGrjiptH56FWm8lQUlLBvfMroaSkAo/mivmCu949u2PqjNn4c+FitGjeDC8CAnDo6DEM6t8PGhrqSElNRXh4OMzMzGCgL34K/pdePbFs5Sro6uqiVg1P3L13Dzdu3cb0KZMBABkZGVi+ei20NDXRq0c3hIeHS/3NsmXLwqhsWZmyKIohTWtg2MYjmLzrLDp6VsajNzHYed0X41rXhaaaKpLT0vE67gMsy+jDUEcLLrYWqFneGouOXUdyegasyhjg5ovX8PJ+jBEtakIvZ9mU39rWw+TdZ/D77rPoUtMZIXHvsfbcHTSt6iCZraHILB08YOngifO7J6Ne+8nQ0DKAz/k1UNfURdW6n8+d97Hic8fYsjI0tUtD86tzJyNdfO6UNrZFWXPxueNcuyeeeB/Ayc3DUbPVOKiqaeLJ7X14H/MSXcfu/XmV/JesynvAqrwnzu6YjPodJ0NT2wB3zq6BupYuqtf/3CbvYsRtYmJVGZo6paGpk0ebmNhKghPV6vbE49sHcGz9MNRqPRrKyqp4dHMf3kW9RNcxW39eJb9R/y5tMfaPvzHj7/Vo17gengQFY+/JCxjZpws01NWRkipAaGQ0LEyMUVr/22boqaupol+n1thy8ARK6+nCzakiXr2JwLZDJ+FRtTJquTgXca1+HhsrLaiqKuHVa3HQ48qtt+jb3RrL5jpjw05xoHP4r3YIDk3G1VviJ+vj4tNx9kosxgx2gLqaMiKiU9GjgyV0tFWw92hEnn+rOA3q2BwjF67D1NU70L5BDTx5FYrdZ65idI920FBXQ3JqGkKjYmFpUhal9XQQ9CYSO09fQWU7azSt4YJnwdIP0dlamEJHSwO/tm2Ci3f8MHbJBvRp1RBhsfFYd/A0OjWuBdOyij/D2LaiB2wreeLQht/Rood4DHv1mHgMW+OLMezbqGBkfTGGbdRhBLYvGYQD//wGj4bdkZIkHsNqaOuhbivxGLZe64F4dv88dq8YgbqtB0KYmYGbZ7YiQ5CCJp1GFUt9v0UVp2qo4lwdq5b+ib4Dh0NXVw9e+3ZAS1sHLVp3lKQTj2EzYGcvDtjUqd8YRw7uxZ+zf8cv/cVLQ+3ZsQnWNnaoXU96qcKwN69haW3zs6pUpFR0taFT2QGpIeHIeCcObr5a8A+qbV2EzA8JiDt1FSbtm8C8e2v49R4vyReybAvMe7SBx+ktCF25HdoVbOA4/zdEbDmItIiYPP6aYhjYqQVG/fUPpq3ajnYNa+LJy1DsPn0Vo3vm9ieCL/qTb58Z3qNFfYxZtB7Ldx9FfVcnPHj+EjtOXkK/dk1hqWBLSMlTxakanJyrY+XSP9F34DDo6upLzp2WrTtI0sl+/2uEowf3YP7sKeibc+7s3rEJ5WzsUOermRbhb17D6v/k3Pl/UNC7yIgAoJSooLeGKQBHR0csXLgQnTt/fhlx48aN0alTJ4wZI76hcvbsWaxfvx6hoaEwNDRE27ZtMXbsWMk7IYKDgzF37lw8fvwYxsbGGDduHNasWYMRI0agc+fOSE5OxuLFi3Ht2jUkJCTAwsICffr0Qb9+/QCIl5zasGEDjh49irdv38LMzAzdu3fH4MGDv/mJ1FOnTmHNmjWIiYmBkZERGjZsCFVVVVy9ehWXLl0CAPj5+eGvv/5CYGAgTE1N0atXLyxZsgQHDhyAi4tLoZTjawEhUd+VryDJSUnYtnkd7vl4Q5QtQsXKVTBo6EhYWH6e9jdjygS8jYvF5h37Jdvi499i68a1eOTvCxVlFVR3dcfAoSNhaPj56deY6Cjs3rEZz589hUCQivLlHdHn10GoXOXHvwhWsrfA3YBPP7yfr6Ukf8L+bSvgd+8GRKJslK9YDb0GTYCZhY0kzcIZw/DubQz+3nxS7j4mDmmPik6uGDJurtT2jIx0nPDajLvXz+HTpwRYWNmifffBcKvZsFDKXquSHpYdLfxp/OmCRPicWYw3z69AJMqGaTkX1Gw7TeodF6c39UPSxyj0mnJFsi0q+C58r/yDDzFBKFVKCVYV6sKz1UToGJjL/TunN4nP47ZDd8n9/HtM6qyEo/cLv00EKYk4s3cxnvuK26RceRe0/WUajMw+t8mmBf3w8V0Upqz43CYhL+7h8pE1iAkPhJKyCipUrYuWPSbCoIx42vCi8Y2R+F7+IN6grLnUvr5XZ0+lIulPSmpfAoj7k5UnC/8ym56aCO9TixD6/AogyoapjStqt5sqtYTUifV9kfQxCr9Mvyp3H1Eh93Byw69oP3wnLOxrSLanJr2D98mFiHzpDRFEsLCvgRqtJsi8e+Z7jW9fCmHBhfu+mtt37mL33n2IjIxCmTJl0L5ta3TtLF7K5/GTp5g8bQYmjR+H5s2aSPKcPnceh48eQ3z8O5iZmqJn965o2lh8Y8D/8WNMmT5L7t8CgF9690S/Pr0LrfzlHByRdnp9oe0PAK48Dcb6Cz548/YjjPW10aNONfza0A0A8CA4AoPXH8EfPZqhg6f4SbyUtAxsuOiDy0+DEZ+YAmsjA/xS3wWdazhJ7ffGi9fYePEeXsW8g76WBlq7VsToVrWglseSnd9Lo+0IrD9fqLsEAKSlJuLmsUUIeXoZIlE2zG1dUb/TNBiafD53Dq3pi08fojBojvxzJ+LVPRxZ2w9dRu+CVfnP505CfBi8T/+NqOCHyEhPgYm1M2q3GQ8L+x9/OeSIlsDmyz+8G7nSUhNx7cgiBD8Wt4mFnSsadZVukwMr++LT+ygMnS+/TcJf3sPBVf3QfdwuWFf4ok3eReDm8aWIePUAmempMLOpijptx0neifEjhjQFPnzxtHdhuH7PD1u8TiA8OhZGhgbo0rIxercXP/3r9ywQo+YuxcxRA9Cmkeya+2eu3caf/2zH0XWLYWb8OcApEolw7OINHDl/BZFx8Sitp4vmdWtgUPcOkncgFBZD57rf/c6Kb7Xmr2oAgDHTH8tsNzXWQLfBn2fwGZdVx7gh9vCoXhpZQhHu+3/Emi0heP/x8yxaVZVSGN7fDs3qG0NTUxlBwUlYt/01XrwsnLXrb59qgKSHhduZXHvwGBuPnENYzFsYlzZAt2Z18UubxgCAhy9eYfiCtZgztDfaNaiBDYfPYsuxC3nua8OM0XCvLL755h8YglX7TuBleBQMdLTRuq4HhndtDRUV2aWUf4Sue0scvlc0Y9iz+xbjxRdj2NZ9pMewW/4Sj2EnL/887nz94h4uH12D2JwxbHnnumjxxRgWAKLfvMDFQysQ+fopsoVZsKnogRbdJ8DEUnam5ffoWkMJz4JjC2VfX0pOSsKOLWtx/+5tiEQiOFZ2woAho6XGsLOnjsPbuFhs2O4l2fYu/i22bVyNx48eQkVZBdVcPTBgyGiUNpSeDTpueD+Us7XHb1PmFHrZnRxMcUa1aGa4GNb3RK0ru3G3SV98uHlfatvjQVMRueuYJK31kB6wmzAQGlZmSH0dgZAlmxC194TU/krXcUOlxb9Dr1olZLz7iKi9J/By7mqIvlo2/Ee1yQzCJ9+8z+fvce3BY2w6fA5hMXEwKm2Abs3rSfoT3xevMPzPNZg9rA/aNaghk/fUjXv4Y+NenFg1B+ZG0sfGhTu+2HrsAqLj38OsrCG6NquLHi0ayOzjR+m5tcDz4MIPFCUnJWH7ln8k507Fyk4YMGSU1LkzK+fc2fjVubN145ovzh13DBgyWur7HwCMHf4rytnaYWIhnztVHBT7XXmKashfhbN85X/J5uklY3WAwlQiAhj/FcHBwUhMTISbm5tkm5+fH3r16oXr16/DrIheHFpUAYySqqgCGCVZUQUwSrKiCmCUZEUVwCjJiiqAUZIVRQCjpCuKAEZJV1QBjJKqKAMYJVVRBDBKup8RwChpiiKAUdIVVQCjJCuqAEZJVpQBjJKqKAIYJV1RBTBKKgYwvg8DGP/efzGA8X/xDoz/F7GxsejXrx+OHz+OqKgo+Pv7Y+HChfD09Cyy4AURERERERERERERkSL6v3gHRnHbvHkz1q1bl2+a6dOno1u3bvmmqVu3LmbMmIGNGzdi1qxZ0NXVRePGjTFp0qTCLC4RERERERERERERkcJjAKMQdO/eHc2bN883TZky3za9p3fv3ujdu/DW1SYiIiIiIiIiIiIiKokYwCgE+vr60NfXL+5iEBEREREREREREZUIfDUzfQu+A4OIiIiIiIiIiIiIiBQOAxhERERERERERERERKRwGMAgIiIiIiIiIiIiIiKFwwAGEREREREREREREREpHAYwiIiIiIiIiIiIiIhI4agUdwGIiIiIiIiIiIiI6L9FlC0q7iJQCcAABhERERERERERERHRf1h6ejoWLVqE8+fPIy0tDY0bN8aMGTNgaGgoN/3UqVNx7NgxuZ+NGTMGo0ePBgA0b94cYWFhUp936tQJixYt+qZyMYBBRERERERERERERPQfNnfuXDx8+BBr1qyBmpoa5syZg7Fjx2LPnj1y08+YMQMTJ06U2rZw4ULcv38f3bp1AwCkpqYiIiICGzduRJUqVSTpNDQ0vrlcDGAQEREREREREREREf1HxcXF4fjx49iwYQPc3d0BAMuXL0fLli3h7+8PFxcXmTy6urrQ1dWV/H716lWcPXsWO3fuhImJCQAgODgY2dnZcHFxgb6+/neVjS/xJiIiIiIiIiIiIiL6j/L19QUA1KxZU7LN1tYWJiYmePDgQYH509PTsWDBAnTp0gU1atSQbA8KCkLZsmW/O3gBcAYGEREREREREREREZHCa9KkSb6fX7ly5bv2GxcXh9KlS0NdXV1qu7GxMWJjYwvMf+jQIbx79w7jx4+X2h4UFAQtLS2MHTsWfn5+KF26NLp06YJ+/fpBSenb5lYwgEFEREREREREREREP5UoW1TcRfjPiIyMzDf4MW7cOKipqclsV1dXR3p6er77zs7Oxs6dO9GtWzcYGRlJffbq1St8+vQJLVq0wKhRo+Dr64ulS5ciMTER48aN+6ayM4BBRERERERERERERKTgvneGhYmJCc6ePZvn5zdu3EBGRobM9vT0dGhqaua7bz8/P4SHh6NXr14yn23evBnp6emSd2U4OjoiOTkZ69evx5gxY75pFgYDGERERERERERERERE/6dUVVVhb2+f5+dBQUFISEhARkaG1EyMt2/fSl7InZdLly6hcuXKcvevpqYmM7OjQoUKSE1NRWJiIkqXLl1g2fkSbyIiIiIiIiIiIiKi/yg3NzdkZ2dLXuYNAKGhoYiLi4OHh0e+eR88eIBatWrJbBeJRGjatCnWrl0rtf3p06cwMjL6puAFwAAGEREREREREREREdF/lomJCdq0aYOZM2fi3r17ePLkCX777Td4enqievXqAICMjAzEx8dLLTUlFArx8uVLVKxYUWafpUqVQrNmzbB161acPXsW4eHh8PLywpYtWzB27NhvLhuXkCIiIiIiIiIiIiIi+g+bP38+/vrrL4wePRoAUL9+fcycOVPyub+/P/r164ddu3ahRo0aAICEhARkZmbCwMBA7j4nTpwIHR0dLF++HLGxsbC0tMSMGTPQvXv3by4XAxhERERERERERERE9FNli0TFXQT6gpaWFv7880/8+eefcj+vUaMGgoKCpLaVKVNGZtuXVFRUMGrUKIwaNeq7y8UlpIiIiIiIiIiIiIiISOEwgEFERERERERERERERAqHAQwiIiIiIiIiIiIiIlI4DGAQEREREREREREREZHCYQCDiIiIiIiIiIiIiIgUjkpxF4CIiIiIiIiIiIiI/ltE2aLiLgKVAJyBQURERERERERERERECocBDCIiIiIiIiIiIiIiUjgMYBARERERERERERERkcJhAIOIiIiIiIiIiIiIiBQOAxhERERERERERERERKRwVIq7AERERERERERERET03yISiYq7CFQCcAYGEREREREREREREREpHAYwiIiIiIiIiIiIiIhI4ZQSca4OEREREREREREREf1E/WbFFHcRSpxd882Kuwg/Hd+BQYgN9C/uIigU04ouCHn9uriLoVDs7ewQGhJc3MVQKLb2DggLDiruYiiUcg6OPE6+YmvvwP7kK/Z2drzufMW0ogtehYQVdzEUSnn7cggOCS3uYigMB3tb9q9fsbV3QPirgOIuhkKxLl8JN5+nFHcxFEr9Ktp42KBWcRdDobjfuMuxyVfs7ezwOiSkuIuhUOzs7fHJ90JxF0Oh6Lm1wBlVx+IuhkJpkxnE8ckXbO0dirsIRP+3uIQUEREREREREREREREpHM7AICIiIiIiIiIiIqKfKjubbzaggnEGBhERERERERERERERKRwGMIiIiIiIiIiIiIiISOEwgEFERERERERERERERAqHAQwiIiIiIiIiIiIiIlI4DGAQEREREREREREREZHCUSnuAhARERERERERERHRf4soW1TcRaASgDMwiIiIiIiIiIiIiIhI4TCAQURERERERERERERECocBDCIiIiIiIiIiIiIiUjgMYBARERERERERERERkcJhAIOIiIiIiIiIiIiIiBSOSnEXgIiIiIiIiIiIiIj+W0QiUXEXgUoAzsAgIiIiIiIiIiIiIiKFwwAGEREREREREREREREpHAYwiIiIiIiIiIiIiIhI4TCAQURERERERERERERECocBDCIiIiIiIiIiIiIiUjgqxV0AIiIiIiIiIiIiIvpvEWVnF3cRqATgDAwiIiIiIiIiIiIiIlI4DGAQEREREREREREREZHCYQCDiIiIiIiIiIiIiIgUDgMYRERERERERERERESkcBjAICIiIiIiIiIiIiIihaNS3AUgIiIiIiIiIiIiov+W7GxRcReBSgDOwCAiIiIiIiIiIiIiIoXDAAYRERERERERERERESkcBjCIiIiIiIiIiIiIiEjhMIBBREREREREREREREQKhwEMIiIiIiIiIiIiIiJSOCrFXQAiIiIiIiIiIiIi+m8RiUTFXQQqATgDg4iIiIiIiIiIiIiIFA4DGEREREREREREREREpHAYwCAiIiIiIiIiIiIiIoXzn3kHhq+vL0QiEdzd3REZGYkmTZpg165dqFGjRnEX7f/OA//H2LzHC2/CI1HaQB+dWjdHj45tUapUqTzzXL7pjd0HjyE6Lg6mxkbo06UDWjZuIJXmls8D7Dp4FBFR0TA0MEDzRvXQp0tHqKqWjMNYIBBg27ZtuOPtDYFAACcnJwwdNgyWlpb55vv48SM2b9oEX19fCIVCeHh4YMjQoTA0NJSkEQqF2Lt3Ly5fuoSkpCQ4ODhg0ODBqFixYlFX67v5+vlhx85dCA8Ph4GBAdq1bYMunTvne5xcu34d+w94ITY2FiYmxujerRuaNW0qN21qaipGjBqNPr17oXmzZkVVjUL10M8fO3btRlhOm7Rv0wZdO3csoE1uYJ/XQcTExsHE2Bg9unVB86ZNpNJcvHQFh44dQ0xMLIyNjNCubWt0bJf/OakoeJzIx/5EGq878gkEAuzYtgXed24jTSBAFSdnDBk6HJaWVvnm+/jxI7Zs3gA/34cQCoVw9/DE4CHDYGhY5nOaDx+we/dO+Pv5IinpEywsLdGlS3fUb9CwiGv1YwQCAbZv2wrvO95IEwjg5OSMIUOHfmObbIKvpE08MGTIUKk2+dLJkydw7OgRbN+xqyiqUSjYv8p66OeP7bv3Iiw8HKUNDNC+TWt07dQh3za5euMm9nkdklyHe3brjOZNGueZfv3mrTh64hQunT5eBDUoGmmCVBzZvQp+PleRnpaK8pVd0WPARJha2HzzPtYvmQx1TS0MHDNPavvH929xeNdKPPO/g2yhEHaOzujUezRsHCoXci0Kj567JyyGDIOGjR2yPn7A22NHEOe1L+8Mysow7dEbZdu0g2qZskiPjEDM3l34eO0KAEDN1BRVvY7lmf3dudN4s2hBYVej0HFsIs3Xzw87d+6U9LFt27YtsI+9fv069h84kNPHmqBbAX3syFGj0Kd3bzQrIX2sz5MArDt4Bq8jY1BGXxddm9XDL20af9N3kqA3Efh11t84unwWzI2kr72nbtzDnjNXERkXj7IG+mjbwBMDOjSHirJyUVWl0GlYmKD+o9N42GUUPty8n29a8x5t4DBtBLTsrCB4E4XgpZsQtfu4VBp9NydUWvw79N2ckPUpBZG7juLlH2shyswswloUDo5PiEie/8wMjN69eyM8PBwAYGZmhtu3b8PFxaWYS/X/53nQK0z9cwmsLc0xf9pvaNagLjbs3Id9R07mmefGnXv4c/laeFR3xoJpk1DdqTIWrlqPKzfvSNI8ePQEsxYth6W5GeZPm4hObVpg75ET+Gf77p9RrUKxZPFi3L51C/0HDMDESZPw/v17TJ0yBUlJSXnmEQqFmD1rFoKCgjB6zBiMGj0aL168wIwZM5CVlSVJt3nTJhw7ehRdu3bF1KlToaysjBnTpyM6OvpnVO1fCwgMxJy582BlaYlZM6ajUcOG2LptOw4eOpRnntu3vbFk6TK4ubpg9qyZqOpcFX8vX4HrN27IpE1KSsLsOXMRFxdXlNUoVAGBgZg9bz6sLC0xe/o0NG7YEFu274DXoSN55rnlfQeLli2Hq4sL5s6cjmpVnbBsxSpcu3FTkubchYtYtnIVari7Y/6cWWjWpBE2bt6KAwfzbmtFweMkb+xPPuN1J29LlyzE7ds30b//IPw28Xe8f/8e06dORnIBx8nc2TPwMigIo0aPw8hRYxHw4jlmzZgmOU4yMzMwe/Z0PPL3wy99+2HGzDkoX74Cliz+C1evXP5Z1fsuS5Yswu3bt9C//wD8NnES3r9/h2lTCz535syeiaCgQIwaPQajRo1BwIsXmPnVuZPrxo3r2LJ5U1FW44exf5X1IjAIs/5YACtLC8yZPhWNGzbA5u074XX4aJ55xNfhFXBzqY65M6ahmrMTlq5YjWs3bslN/+TZcxw7ebqoqlBktqyYDt87l9H5lzEYOPYPJLx/i2WzhyIl+VOBebOzs3Fg61L4+VyR+Sw1JQmLZwxEwON76NhrJEZMXoqyxhZYOnMwQl89K4qq/DDtylXgsGgZ0sLDEDJrGt5fugDL4aNg2rtvnnnM+w+CxeBheH/xPIKn/47kp09gP/dPGNRvCADIfP8eASMGy/y8v3gO2ZmZeHfm1E+q3Y/h2OSzgMBAzJ07F1aWlpg5YwYaNWyIbdu24VC+fextLFm6FK6urpg9axacnZ2xfPnyPPvYOXPmlKg+9umrUExYugk25sZYMmEQWtZxx5r9J7HzVMHjhuCIaIxfshFCYbbMZ/vPXccfG/fC1twESyYMxtAurXDq+j1MX72jCGpRNDQsTeF5dhtUDfQKTGvaqTmq71qG+MveeNhlFN7fvI/q2xbDrHtrSRpNW0vUOL8dQkE6/HqNx+sV22A7fgCqrJxZlNUoFByfEFFeSsYjhIVMWVkZRkZGxV2M/0vb9x1CeVsbzJwwGgBQw7U6soRZ2HP4OLq2awV1dTWZPJt3H0DD2jUwevCvAABP12pISkrG1n0H0aR+bQDAuSvXYWJUBjMnjIayshI8qlfFx4REHDxxBqMH9oWKimIfygEBAbh37x7m/fEHPDw8AABOVapgwIABOHP6NHr26iU3361btxASEoINGzbAulw5AIC9nR1GjBiBWzdvolHjxoiPj8eZM2cwfPhwtGnbFgDg6uqKwUOG4NChQxg3btzPqeS/sHvPXtjb2eH3yZMAAO7u7hAKs+DldRAdO3SAurq6TJ7tO3eiXt26GDZ0qDiPmxuSkpKwa/ceNGzw+anpuz4+WL9hIwQCwc+pTCHZtXc/7O3sMGXSbwAAD3c3CLOycODgIXTq0C6PNtmN+nXrYMTQwQAAdzdXJCUlY+eevWjUoD4AYL/XIdSrUxuDB/YHALhUr4bIqGicOHUGvXp0/zmV+048TuRjfyKN1x35AgJe4P49H8yd9yfcPTwBAFWcnDBoQD+cOXMKPXr2lpvv9q2bCAkJxroNm2FtLT5O7OztMWrEUNy6dQONGjXBg/v3Efr6NZavXIMKFRwBAC6uboh/+xaHD3uhcRP5T7wVN3Gb3MO8efPhnnvuODlh4ID+OHPmNHr2zOvcuYmQkBCs37Dxizaxw8gRw3Hr1k00aiR+2j4hIQG7d+/E+XPnoKur+3Mq9Z3Yv8ratXc/HOxsMXXiBACAh5srsrKysP/gYXRq31Zum2zbtQf169bGiCGDcvK4ICk5CTv27EOjBvWk0goEAixbuRplyxgi/t37oq9QIQkJeozHD29i7Mw1cHatAwAoX8kV00a0xfXzB9Gm6+A880a+eYn9W5bgTfALqKlpyHzuffUE3r+NxpQF2+BQqToAoHL1mkj+lACvbX9j6sLtRVKnH2E+YDBSX71E6II/AACf7vuglIoKzH75FXGHD0KUkS6Tp2zrtvhw5SJidm4DACT5PYSWoyOMO3dFws3rEGVmIuXFc6k8WhUcUbpRU0Rt3oDkp0+KvmI/iGMTaXv27IG9nR0mT54MQNzHZgmFOODlhQ559LE7vupj3dzckJyUhN27d0v1sT4+Pli/YUOJ62M3HT4HRxtL/DGyHwCgdrXKyBIKsePERfRs2QAaarLjtcysLHhduImNh89CXc7sV2F2NrYeO48azo5YNH6gZLujrSV6TVmEe08DUcNZcWfpoFQpWPbtiEqLpwDfODHecf5viDl8HgGTFgIA3l26DdXS+nCcOw4xB88CAOwnD0FWUgoedh4JUWYm4s/fhFCQBqdVsxC8aAPSImKKqkY/jOOT/yZRtqi4i0AlwL+ageHo6IjVq1ejUaNGqFu3Lt68eYOMjAwsXboU9erVg4uLC7p3747bt29L8hw9ehTNmjWT/NfJyQmdO3eGr6+vJE1aWhpWrlyJJk2awNnZGR06dMCFCxcAACkpKXBxccG+fdLTcteuXYuGDRsiOzsbiYmJmDlzJurVq4cqVaqgVq1amDlzpqRjcnQUf7meNm0apk6disjISDg6OuLevXsAxE9+7NixAy1atICzszNatGiB/fv3S/7WvXv3ULlyZdy4cQNt27aFk5MTWrZsicuX/91ThpcvX0a3bt1QvXp1ODs7o3Pnzrh16/MTWkKhECtWrEDdunVRvXp1jB07FgsWLEDfvp+f6AkJCcGQIUPg4uKCunXrYuLEiYiPj/9X5SgqGZmZePTsBerV9JTa3qB2TaQKBHgSECiTJybuLSKiY2Tz1KmJqJhYREaLL64ZGZnQUNeAsvLnQ1ZPVweZWVlIFaQVQW0Kl6+vLzQ0NODq6irZpm9gAGdnZzx4+DDPfH6+vrC0tJQM6AHAulw5WFlZ4cGDBwCAR48eQSgUolbt2pI0qmpq8PT0xMOcNIokIzMTT588Qe3ataS2161bF6kCAZ4/fyGTJzYuDlFRUXLy1EF0dDSioqIAAMnJyZj/5wJUdXbGgvnzi64ShSwjMxNPnjxFnVo1pbbXq1sHqQIBnr2Q3yaRUVGo/XWeOrURHR2DqCjxE2l/zp2NIYMGSKVRUVFBRkZGIdeicPE4yRv7k8943cmbn+9DaGhowMXVTbJNX98ATs5V8fBB3ksT+Pk9FB8n1l8cJ9blYGVlLcmnpaWFlq3aoHz5ClJ5La2sEBujuF+K/XLOHZcvzx19Azg5O+d7fPv5+ebRJlZS+Q56HYCfry+mz5gJTwVeopT9q6yMzEw8efpM5jpcv07tnOtwgEwe8XU4GnVqyrkOx8QgMkr6yfBN23aidOnSMss8Krrn/nehrqGJKtU+11NXvzQqVHbDU1/vfPNuXT0b2dnZmLZoB3T1S8t8HhMZCi0dPUnwIldFZ3eEBD3+phkeP1MpVVXoVndFwi3pp3o/3rgGZW1t6FatKjefkpo6hCmpUtuyEj9BRU8/z79lPX4S0t6EIu7QgR8v+E/Ascln4nH9E9T+oryAuI8VCAR4/vy5TJ64nD62lpw8sn3sn3B2dsafJayP9Q14hYYe0udIY8/qSBGk43HQa7n5vP1fYMvRcxjQoRlG92ov8/mHxCQkJqeirouT1HYHK3MY6Grjtr9sWysSvaqOcPpnHiL3HMej/r8XmF6znAV0HG0Re+KS1PaYoxegXd4GWg7i88ioWV28PXdDarmo2CPnUUpZGUbN6xZuJQoRxydElJ9/vYTUvn37sHr1aqxduxY2NjaYNm0avL29sWzZMhw7dgytWrXC8OHDcf36dUmemJgYHDhwAEuXLsWxY8egqamJqVOnQiQSR9l+++03HD9+HLNmzcLJkyfRtGlTjBs3DpcvX4a2tjZatmyJ06elp1ufOnUKHTp0gJKSEqZOnYoXL15g7dq1uHDhAqZNm4bjx4/Dy8sLACQBlenTp2PGjBkydVq0aBHWrVuH0aNH49SpU+jTpw8WLFiAHTt2SNIIhUIsXboUM2bMwOnTp1GhQgVMmTIFKSkp39Ruz549w5gxY9CmTRucOnUKBw8ehKGhIX7//XfJjcRly5bBy8sLc+bMwZEjR2BkZITduz8vVREXF4fevXujXLlyOHz4MDZs2IDk5GT06NEDqampef3pnyY69i0ys7JgZWEmtd3SzAQAEBElO8U3LFJ8Qfk6j0VOnvCcPJ1aN0dkTAwOHDuFpOQUPA96hcOnzqGmmwv0dHUKvS6FLSIiAqamplD+ah1OM3NzREVG5pkvPCICFhYWMtvNzc0RmXMxjggPh6amptQ6sblp3r9/r3BPGMTGxCAzK0umXuZm4mMgMkq2PSLCIwBANo+5uThPznGkrq6OjRvWY9LE36CnX/AUXEURGxOLzKwsWFqYS22XtElO/b4UHiFuJ0uZNhHnicg5PqytrWBqYgKRSIRPSUk4d+EiLl+9hnZtWkOR8TjJG/uTz3jdyVtkRARMTc1kjxMzc0TJOX9yRYSHw9xCdr3yL4+v6i6uGD1mnNRaxFlZWXhw/77UTX5Fk9e5Y15gm0TAXM65Y2ZujsgvzrlWrdtg85ZtqFNHcW8OAOxf5YmJjc1pk6+uw7nX1Hyvw9J5LCTt+DmPr/8jXL56DZPHj4FSCXj/1JdiIkNR1sQCSl+dN8ZmVoiLDss376Bx8zHlr22wtKkg93MdXQOkC1JlAhVvY8Vt+y5Ott2Lk7q5OZTU1JAWES61PT2nH1C3kt//xR32QpkWLaHnWRNKWlowbNoc+p418P7iebnpSzduCp0qTohYuxLIll0yRxFxbPJZbEwMsvLtY+X0JzlLXX89rjeT9LE5x5i6OjZu2IBJEydCXz/vAJiiiXr7HplZQlibGktttzIRr4oRFv1Wbr7K9tY4sWouBnZsAWUl2fdZ6GppQllZCTHvPkht/5SciqQUAaLeKvZsN0F4DK5XbIaAyYsgTC344RidivYAgJRXb6S2p4aI+2KdCrZQ0lCHlo0lUl6FSqXJePcRmYlJ0KlgWziFLwIcnxBRfv71+gcdOnSAs7MzACAsLAynT5/G8ePHUalSJQDAgAEDEBgYiK1bt6Jhw4YAgMzMTMybN08qzahRoxAfH4+kpCRcuXIFGzZskKQfM2YMAgMDsWHDBjRt2hSdOnVCv379EBUVBQsLCzx58gRv3rxB586dAQB16tSBh4eHZKaFpaUl9uzZg5cvXwKAZLkoXV1d6OrqIjExUVKf5ORk7N+/H1OnTkW7du0AADY2NoiMjMSmTZvw66+/StKOHz8etWqJI7sjR47EhQsX8PLly296l4aysjJmzZqF3r0/L9nQr18/DBkyBO/fv4eBgQH27duHadOmSV7CNXPmTPj7+0vS79+/H6amppg58/PahStXrkTNmjVx/vx5SXsUl5ScIIqWpqbUds2c31NSZQeXKSnibVpa0nm0vsrjWtUJvTq1x/ode7F+x14AQHk7G8yaOKYQa1B0UlNSoKWlJbNdU1Mz3+BTakoKLMzNZbZ/mS8lNTXPfQPil1RpfvVvUpwkx8lXZc79XV57pKSKA4XaX+f5oo4AoKqqCqsCXhSoiHLrJ9sm0vWTypOSIpUml6am/DwBgUEYP0n8ZE+F8g7o0rnjjxe8CPE4yRv7k8943clbSqr840SroOMkNUXuzfqCjq/t2zYjOjoK02fM/r4C/wR5tUmB505qCswt8j93AMDKKv8XgSsK9q+yUnKejs+zfgJ512H57fj1dTglJQV/r16Lfn16ydycLAkEqcnQ1JQN2qprakEgSM43r2W58vl+XrNBG1w6uQcblk5Gz0G/o3QZYzx5eAt3rorfYZSerlg3ppW1xe0g/OocEeYcH8ra2nLzxR08AJ0qTqiwdIVkW/yZU4g7sFduetOefZD05DGSHvnL/VwRcWzy2ff1sXnkkdPHFvRSdEWUnDO20taUXkpOS1O8HFBKHjNbjQ0N8t2vhroamtV0xaGLN2FvaYqG7tXw4VMS/t51BMrKShCkK/aM88yPicj8mFhwwhwq+uI+KOuTdN+blSS+Rqvo6UBVX1dumtx0KnqK+xAOxydElJ9/HcAo98X0zhc5y5p8eVMeEAcs9PSko5r29vaS/89dFzgzMxNBQUEAxGs8fsnDwwPLly+X/L+lpSVOnz6NYcOG4eTJk3B1dZWUpXfv3rh69SqOHTuGN2/eIDg4GJGRkbCzsyuwPq9fv0ZmZqbM3/f09MTOnTvx/v3nqP2X+9PR0ZHU4VtUqlQJ+vr62LRpE16/fo2wsDAEBoqXthAKhQgJCUFaWhqqV68uyVOqVCm4ublJ0r148QKvXr2SCZikp6cjJCTkm8pRlEQFPCGkVEp2wk+26NvyLF+/FWevXEO/7p3gWtUJsW/jsePAYUyetxAr5s+Ehpy1EItLdna2ZHbRl9vyUiqfJ/GyRXmvBZj7BF9B7Z7f/ovD95S3oDURSykpVh3/reyC6ifn3Pn6GJPNI90mJsZGWLboL8TGxmHH7j0YP+l3rFu1EhoainPufInHiRj7k/zxuiMm7zjJr23yPU7yOY+U5JxDIpEI27dtwYnjx9C5SzfUVpDZB/LbJO+6FWabKDr2r7IKuqbK60tEBfQludfudZu3wqhsWXTpKLv8iaIRnzfS9cqvbeSNT/4Ncys7jJ6+ErvX/4m547sBAMrZV0L7niNwYOsSqKvLvjejWBVUXznnVilVVVRcsx6qZcrizbLFSAsPg46TM8z69ke2IBURa1ZKpdeu4gxtx4oInl7wcjLFhWOT/BU8NpHXxxZQR6UfO9eKW37/zsCPXUOmDeoBNVUV/Ln5AOZv2g91NVX82r4pUtPSoaGm+t37VUQFHQei7GygwDSK+64Bjk+IKD//OoChofF5IJk7cNm7dy+0v3riROmrjlNNzkuZ8hsQi0QiyQsyS5UqhY4dO+LUqVMYPHgwzp07h/HjxwMQD5aGDRuGV69eoW3btmjdujWqVKmCWbNmfVN98ipD7iDsy5d0/ts6fOn+/fsYNGgQGjZsCDc3N7Rr1w4CgQCjRo2S+jv57S87Oxs1a9bEnDlzZD5ThJdFamvnRMa/msabmvvEhbbskzE635An/v0HnLp4Bb907YhBfXpI0lQq74Bfx0zC2cvX0LlNy8KryA/at28f9u2VfqKqbt26SEhIkEkrSE2VOXe+pK2lJXdadGpqKrRy8mlra+eZJvdzRZJb7q/LnF95tfI4TnKf0tDWUqw6/lu5dc6zftqyT53lPmUi24655450m5QpUwZlypRBVWcnmJqZYNKU6bjl7Y1mTRoXTiUKGY8TMfYn+eN1R2z/vj3Yv2+P1LY6devho5zjJFVQwHGSzzGg9dU5lJmZgRXLl+Hmjevo3KUbBg4a8n0VKAL79+3Fvn3S506dunWRkPBRJm3BbZLPuVMC+xX2r7K0JU93/ovrcIHtqAWf+w9w/eZt/LNiGUQiEYRCoeRGnlAoRKlSpWS+MxWn0wc34dTBTVLb3Go1xacE2WVY0lJToKn140/yVqleCws3nMa7t+Ll+4xMLHD7ynEAgJaOYi2RI0wRP9Gs/NWTvso5x3/u518q3aARtMpXQNBvY5HkK35fQ/JjfwhTklFuwmTEnz6JtNDP6/+XbtgIWZ8+IdHnTlFV44dxbJK/vMb1ueXVklPegvJ8/XR5SaOTO6s8TXqmRe7MCx3N7w9WammoY9bQ3pjYrwti3n2AWVlDaGmo48Q1H8kSVf8vshKTAAAqutLHUO6siqzEZMnMi6/T5KbL3Yci4viEiPLzrwMYXypfXjwtOD4+HpUrV5ZsX7FiBZSUlDBu3LgC95G77JOvry8aNWok2f7w4UM4ODhIfu/UqRPWrl2LAwcOICUlBa1atQIABAQE4ObNmzh48CCqVasGQDwrIjw8/Jum8tvb20NVVRW+vr6SJa5y/76RkVGhrS25bds21KhRA2vWrJFsy32/hUgkQrly5aChoYFHjx5JlePx48dQz3nKs3z58jh79izMzMwkwZSEhARMmTIFAwYMQM2vXiL4s5mbmkBZSQlRMXFS26NiYgEA5Sxlp81b5SzJEBUThwp2n9djjPwiT1z8O4hEIjhVkl4/18baEvq6uggNz3td1eLQqlUreHpKvxz27t278PX1RXZ2ttQX1ejo6HyPU0tLS7mza6KjoyXnjoWlJVJTU5GYkAB9AwNJmpjoaBgbG0uOH0VhbmYGJSUlREdLv+g1Olr8xVVee+RO94yOjobDF7O5YnL2YWVdMpbtyIu5mam4TWK+bhPx79Zy2sQy53yKjo6RapPcfVhbWUIgEODuvftwrFBeanp++Zz0799LrxerSHiciLE/yR+vO2ItW7WBp6f0GMDnrjf88jhOLK2s89yXhaUlXss5TmKio1Eh5zgBxMvizJszE4GBARgydAQ6dOxUCDUpPC1btYanp/SLtO/evQM/Xz+ZNomJjsn33Mm7TWJQwVH+2v6KjP2rrAKvw3KWnchdDioqJgYO9p9naX95Hd617wAyMjIwZNRYmfwtO3RBsyaN8PuEgr8v/Sz1m3dBVff6Utv871/D80d3Zc6bt7ERMLP8sbXU38fH4MXje6jVoA2MTD731+GvA6Gto4+yxrJLCxWn9OgoiLKyoP7Ve4I0cn5PC3sjk0fNxBQAkPz0idT2pMePAACaNrZSAQyDWnWQcPsmREJhIZa8cHFskj+znD42Jlr6PVy5faz8cb34GIr5qo+V5LHO+7pdElgal4WykhIiY99Jbc/93dbC9Lv3fcvvGfS0tVDN0Q72luJ3JXxITMLbDwlwtPn/WjIo+aX4vRZa9uXw6VGAZLu2vXhlkuTAEAhTUiGIjIWWvfQ7edSMDKGqp4PkwOJfuSMvHJ/8dynyzCBSHD/0yE/58uXRqFEjzJkzB1evXkVERAQ2b96MjRs3fvNF1t7eHo0aNcK8efNw/fp1hIaGYu3atbhy5QoGDhwoSWdhYYEaNWrg77//RtOmTSVLOJUtWxYqKio4d+4cIiIi8PTpU4wfPx7x8fGSl2MD4nXzQkJC8PGj9JN3Ojo66NGjB1avXo3Tp08jLCwMe/fuxb59+zBw4MBCm5JqZmaGoKAgPHz4EJGRkThy5AhWrVoFAMjIyICmpib69u2L1atX4/LlywgNDcXixYvx+PFjyT569+6NpKQkTJo0CYGBgQgMDMSECRPw9OlTVKhQ/F+g1dXUULVKJdz0uS81k+TG3XvQ0dZCpQoOMnkszUxhZmKMG94+Uttv3rkHS3PxZ5ZmplBWUsKTF4FSacIjo5GYlARzE5OiqdB3KlOmDCpUqCD14+rqCoFAAF9fX0m6xIQEPHv2DK6urnnuy9XVFREREQgP+/ySxPCwMERERMAlJ1/ukmK5L6sHgMyMDNy/fz/f7W1/mAAAq2lJREFUfRcXNTU1ODs5wfvOHanj5La3N7S1teEo51g2NzeHqakJbt/2ltp+29sbFubmMFWwY+DfErdJFXjfuftVm9zJs01y633LW/oJvdvedySfKSsrY8XqNTh05JhUGl8/8ZrKdrY2hV+ZQsLjRIz9Sf543RErU6YMyleoIPXj4uoGgSAVfr4PJekSExPw/NlTuLq65bkvF1c3RESEIzz8i+MkPAwREeFwcRHnEwqF+GPuLLx8GYTfp05XuOAFIL9NXCVt8sW5k5iAZ8+ewiWfNnF1dROfO3LaxNUl73yKiv2rLDU1NVR1qoLbd3yk2uTWnbvQ1tbK4zpsJvc6fOvOXUmb9OvdE2tXLJP6ad1C/K67tSuWoV/vnkVbsX/JwNAINg6VpX6qVKuJNEEKnj+6K0mXlPgRr174oXK1H3t4KinxI3at+wOBzx5ItiV+fIf7ty6gmkd9xVsaKCMDSU8eoXT9BlLbDRo0RFZSElICXsjkScvpN3SrVpParuNUFQCQHvP5Jreyrh40rKxlgh2KhmOT/BXUx8r73i7uY02l6ggA3jl9rEkJ72PV1VThUtEe1x48lmqTqw8eQUdLE1W+utn+bxy94o1Ve49Lbdt/7jqUlEqhnmuV796vIkoNCUfq6wiYdW4htd20U3MkvwyFIEz8wup3l71h3LohlL5YQsu0cwtkZ2Xh3TXp8a8i4fiEiPLzQzMwAPFsixUrVmD27NlITEyEtbU1FixYgE6dvv3L7PLly7F8+XLMmDEDnz59QoUKFbBmzRrJy6xzde7cGT4+PlIvqzYxMcGiRYuwZs0a7N27F0ZGRmjYsCH69++Pq1evStINHDgQW7ZsQUhIiNRLsAFg2rRpKF26NJYtW4Z3797BxsYGs2fPRvfu3b+zVWSNHTsW7969w/DhwwEADg4O+OuvvzB58mQ8ffoU9vb2GDduHDIzMzFz5kwIBAI0atQITZo0QXp6OgBxxHnPnj34+++/0atXLygrK8PV1RW7du2CoaFhoZX1R/Tr3gm/zV6AOUtWonXThnge+BIHjp3G0H69oKGujpTUVLyJiIKFqQkM9MXvSfm1R2csWr0Behu2oo6nG27fe4hr3j6YM0n8tJqBvh66tm+FA8dOAwDcq1VFXHw8dhw4AlPjsmjbXDGXwPmSs7MzqlatiqVLlmDgoEHQ09WVLL3Wuk0bSbrwsDBkZmbCPmf2Uf369eHl5YVZs2djwIABAIDt27fDxsYG9euLn5AzMTFB06ZNsWnTJqRnZMDCwgLHjh1DcnIyunbr9vMr+w169eyJaTNmYMHChWjRrDleBATg8JGjGNi/PzQ0NJCSmorw8HCYmZnBIGcWVO9evbB8xUro6emiZo0auOtzDzdv3cK0KVOKuTaFo3fP7pg6Yzb+XLgYLZo3w4uAABw6egyD+veDhoa63Db5pVdPLFu5Crq6uqhVwxN3793DjVu3MX3KZADiQWCPbl2xe+9+GBjoo1pVZ7x+/QZ79h+AS/Vq8HBX7BtvPE7kY38ijdcd+Zycq8K5ajUsW7oYAwYOhq6eLvbt3QNtbR20bt1Wki48POc4sc89ThrgkNd+zJk1A/0HDAIA7Ni+FTY2tqiXc9Pu9KmTeP78GVq2aoOyZY0QGBgg9bcrVqwEReTk7AznqlWxdOliDBw4CLp6el+0yRfnjkyb1MdBrwOYPWsW+uecOztyzp169evL/VuKjv2rrN49umHKzDmYv2gpWjZrghcBgTh09DgG/dpXch0OC4+AuZnpF9fh7li2cg30cq7Dd3zu48Ytb8z4fRIAwNTERObmyb374pv1juVlA6yKqEIVNzg6uWPLyhno2ncctHX1ccprIzS1dNGw5efrQnTEa2RlZsDaruI377ucfSU4VKyOvZsWomu/8VBWVsaxvf9ASVkZ7XsOL4rq/LCYXTtQYflq2M1bgHdnT0GnSlWY9uyDqE3rkJ2eDiUtLWja2CI9KgpZiQlI8L6F5OfPYDtzDqK3b0FaeBi0K1WBWd/++Hj7JlK/6D817cRPDwvCQouret+NYxNpPXv2xPQZM/DXwoVo3qwZAgICcOTIEQwosI9dAV09vZw+1gc3b93C1P+TPnZgpxYY9dc/mLZqO9o1rIknL0Ox+/RVjO7ZDhrqakhOFSA0KhaWJmVRWu/bl8fu0aI+xixaj+W7j6K+qxMePH+JHScvoV+7prAs4UtIqehqQ6eyA1JDwpHxTvwg7qsF/6Da1kXI/JCAuFNXYdK+Ccy7t4Zf7/GSfCHLtsC8Rxt4nN6C0JXboV3BBo7zf0PEloNIi4jJ468pBo5PiCgvpUTf+hIHKnKXLl2Cm5ubVDBi4MCBMDU1xV9//VVkfzc20L9Q93fz7n1s338YEVHRKFvGEJ1aN0ePjuKbJf5Pn2P8zPmYOnY4WjVpKMlz8vxlHDh+GvHv3sPMxBh9unZAi0afbwqIRCIcPnUOJ89fRkzcW5QxNIB79aoY8ktPyQ2pwmJa0QUhr18XnPBfSkpKwubNm+FzVzwNv3Llyhg6bJhkyjAATPn9d8TFxWHHzp2SbfHx8di4YQP8/f0lQauhw4ZJHSeZGRnYvn07rl+/DoFAAIfy5TFo0CBUrPjtXyLzY29nh9CQ4ELZVy7vO3ewe89eREVGokzZMmjXti265AQnHz95gilTp+G3CePR/ItA5pmz53Dk6FHEx8fDzNQU3bt3R9M83uEQGxeH/gMGyuyjsNjaOyAsOKhQ93n7zl3s3rsPkZFRKFOmDNq3bY2uncXB4MdPnmLytBmYNH4cmjdrIslz+tx5HD56DPHx72Bmaoqe3buiaePPy/GJRCKcOXceJ06fQUxMLPT19dC4QQP07dNL7nt9fkQ5B0ceJ1+xtXdgf/IVezs7Xne+YlrRBa9CwgpO+C8lJyVhy+aNuOtzB6LsbFSqXAVDhg6HpeXn6fRTp0zC27g4bNuxW7ItPv4tNm1cj0f+flBWVoGLqyuGDB0OQ8MyAIApk3/D8+fP8vy7p89e/OGyl7cvh+CQwr+Jl5SUhC2bN+Guz12IsrNRuXIVDBk69Ks2mYy4uDhs37FLsi0+Ph4bN67HI8m544YhQ4dK2uRry5cvw9MnT6T28SMc7G3Zv37F1t4B4a8CCk74L9y+44Nd+/Z/vg63aYVunTsCEF+HJ02fhUnjx6BF0y+vwxdw6OhxxL97BzNTE/Ts1gXNvrgOf23X3v3Yvd8Ll04fL9SyA4B1+Uq4+Tyl0PebkvwJB7f/jUf3r0MkEsG+YjX0GDARphY2kjRLZw3B+7fRWLTxjNx9TB3WBhWc3DFwzDyp7Z8S3sNr+9948Ug8+8XRyR2dfhkNU/PvfyL7S/WraONhg1qFsq9cBvUawHzAYGhYWSPzXTzeHjuCuIP7AQC61V3guGodQhfOx/vzZwEASlpasBgyHKXrN4SKrh7SY6Lx/sI5xB3cD1FWlmS/pRs1gf3cP/Gsb0/JzI2i4H7jLscmX7G3s5O7VOCP8L5zB3v27EFkZCTKli2Ltl/0sU+ePMGUqVPx24QJUg9tnj17VtLHmpqaokf37mjSpInc/cfFxaH/gAEy+ygsdvb2+OR7oVD3ee3BY2w6fA5hMXEwKm2Abs3r4Zc24muI74tXGP7nGswe1gftGtSQyXvqxj38sXEvTqyaA3Mj6WvvhTu+2HrsAqLj38OsrCG6NquLHi0ayOzjR+m5tcAZVceCE34Hw/qeqHVlN+426YsPN+9LbXs8aCoid32eUW89pAfsJgyEhpUZUl9HIGTJJkTtPSG1v9J13FBp8e/Qq1YJGe8+ImrvCbycu1qqzykMbTKDOD75gq19yXg4QdF0HVf416T/d4dX2RWc6P8MAxgKpGfPntDU1MTvv/8OHR0dXLlyBUuWLMG2bduK9P0WhX0jqaQrqgBGSVYUAYySrigCGCVdUQQwSrqiCmCUZEURwCjpiiqAUZIVVQCjpCqKAEZJVxQBjJKuqAIYJVlRBDBKuqIKYJRkRRHAKOmKIoBR0hVlAKOkKooARknGAMb3YQDj3/svBjB+eAkpAtzd3SHM50VrZcqUweXLlwvcz7Jly7Bo0SL0798faWlpcHBwwKpVq4r95dxERERERERERERERD8bAxiF4OjRo8hvIouysvI37cfS0hJr164trGIRERERERERERERKaRsUXZxF4FKAAYwCoG1tXVxF4GIiIiIiIiIiIiI6P+KUnEXgIiIiIiIiIiIiIiI6GsMYBARERERERERERERkcJhAIOIiIiIiIiIiIiIiBQOAxhERERERERERERERKRw+BJvIiIiIiIiIiIiIvqpRNmi4i4ClQCcgUFERERERERERERERAqHAQwiIiIiIiIiIiIiIlI4DGAQEREREREREREREZHCYQCDiIiIiIiIiIiIiIgUDgMYRERERERERERERESkcFSKuwBERERERERERERE9N8iyhYVdxGoBOAMDCIiIiIiIiIiIiIiUjgMYBARERERERERERERkcJhAIOIiIiIiIiIiIiIiBQOAxhERERERERERERERKRwGMAgIiIiIiIiIiIiIiKFo1LcBSAiIiIiIiIiIiKi/xaRSFTcRaASgDMwiIiIiIiIiIiIiIhI4TCAQURERERERERERERECocBDCIiIiIiIiIiIiIiUjgMYBARERERERERERERkcJhAIOIiIiIiIiIiIiIiBSOSnEXgIiIiIiIiIiIiIj+W7Kzs4u7CFQCcAYGEREREREREREREREpHAYwiIiIiIiIiIiIiIhI4TCAQURERERERERERERECocBDCIiIiIiIiIiIiIiUjgMYBARERERERERERERkcJRKe4CEBEREREREREREdF/iyhbVNxFoBKAMzCIiIiIiIiIiIiIiEjhMIBBREREREREREREREQKhwEMIiIiIiIiIiIiIiJSOAxgEBERERERERERERGRwiklEon4thQiIiIiIiIiIiIi+mnaDnlR3EUocU5vrlzcRfjpVIq7AFT83j27W9xFUChlnWoh6uXT4i6GQrGo4Mzj5CtlnWoh6f6Z4i6GQtH1bIMzqo7FXQyF0iYzCKEhwcVdDIVia++AsOCg4i6GQinn4IjgkNDiLoZCcbC3xYcnt4q7GArDsGo9JN87VdzFUCg6Ndoh/FVAcRdDoViXr4TooCfFXQyFYu5YFa9DQoq7GArFzt4eiX6Xi7sYCkXftSnCh3cu7mIoFOsNR/E8OKa4i6FQqjiYcVz/FVt7B37/+0KbTH7H+R4iUXZxF4FKAC4hRURERERERERERERECocBDCIiIiIiIiIiIiIiUjgMYBARERERERERERERkcJhAIOIiIiIiIiIiIiIiBQOAxhERERERERERERERKRwVIq7AERERERERERERET03yLKFhV3EagE4AwMIiIiIiIiIiIiIiJSOAxgEBERERERERERERGRwmEAg4iIiIiIiIiIiIiIFA4DGEREREREREREREREpHAYwCAiIiIiIiIiIiIiIoWjUtwFICIiIiIiIiIiIqL/FlG2qLiLQCUAZ2AQEREREREREREREZHCYQCDiIiIiIiIiIiIiIgUDgMYRERERERERERERESkcBjAICIiIiIiIiIiIiIihcMABhERERERERERERERKRyV4i4AEREREREREREREf23ZIuyi7sIVAJwBgYRERERERERERERESkcBjCIiIiIiIiIiIiIiEjhMIBBREREREREREREREQKhwEMIiIiIiIiIiIiIiJSOAxgEBERERERERERERGRwlEp7gIQERERERERERER0X+LKFtU3EWgEoAzMIiIiIiIiIiIiIiISOEwgEFERERERERERERERAqHAQwiIiIiIiIiIiIiIlI4DGAQEREREREREREREZHCYQCDiIiIiIiIiIiIiIgUjkpxF4CIiIiIiIiIiIiI/ltE2dnFXQQqATgDg4iIiIiIiIiIiIiIFA4DGEREREREREREREREpHAYwCAiIiIiIiIiIiIiIoXDAAYRERERERERERERESkcvsSbCt29R8+wad8RhEZEwdBAD51bNkGv9i1RqlSpAvO+fB2GwVP/gNfaRTAzNpL67Oqd+9h7/BzComKgq60F96qVMeKXbjA00C+qqhSaB36PsG33frwJj0BpAwN0aNMC3Tu1z7dNrty4jT1ehxET9xamxkbo1bUTWjRpKJUmPCIKG3fsxuOnz6GsrIyqTpUxYtCvMDc1KeIa/TgeJ7J8ngZh3aGzCImKRRk9XXRrWge/tG6YZ5tkZGZhz7nrOHP7IeLeJ8DYUB+taruif7smUFX53L1fvvcIu85cw5uYt9DV0oRnlfIY3aMtyujr/qyq/TANCxPUf3QaD7uMwoeb9/NNa96jDRymjYCWnRUEb6IQvHQTonYfl0qj7+aESot/h76bE7I+pSBy11G8/GMtRJmZRViLwuHr54cdO3chPDwcBgYGaNe2Dbp07pzvuXPt+nXsP+CF2NhYmJgYo3u3bmjWtKnctKmpqRgxajT69O6F5s2aFVU1CtVDP3/s2LUbYTlt0r5NG3Tt3LGANrmBfV4HERMbBxNjY/To1gXNmzaRSnPx0hUcOnYMMTGxMDYyQru2rdGxXdtv6qcUgUAgwPZtW+F9xxtpAgGcnJwxZOhQWFpa5Zvv48eP2LJ5E3x9H0IoFMLdwwNDhgyFoWEZuelPnjyBY0ePYPuOXUVRjUJz7/FzbNx/DK8jomGor4cuLRuhd7vm3/TvGRQajkHTFuDQ6gUwMy4r9Vn7YZMR/+GjTJ5zW1fAQE9x+9m7T4Ow7vA5hETFoYyeDro1rYO+rRoUcM25gdPe4muOiaEBWtZ2wYC2jaWuOZfuP8655sRDV0sDnlXKY0z3NiXimvPQzx/bd+9FWHg4ShsYoH2b1ujaqUO+x8jVGzexz+uQpC/p2a0zmjdpLJXmwuUrOHz0BKJjY2FsVBbt27RGx3ZtSkRf8sD/MbZKxrD66NimJbp3bFfgGHb3wSOIiYuDqbExenXpiJY5Y9jYuLfoNWRUnnlbNmmIKePy/lwR+Pr5YefOnZLrcNu2bQu8Dl+/fh37DxzIuQ6boFsB1+GRo0ahT+/eaFZCrsM+TwKw3uskXkfGwFBfD92a10efNk2+sX+NQP9ZS3BkxVyYG0lfZ64/eIxtx84hLDoOZQz00KquJ/p3bCHV5ygqjUrVoN+hD1TNrZD9KQFJN84j6dIJuWm1azVCmV/H5Lmv9ztWI8XnOgBA07UW9Jp3gqqpBbJTU5AW+AQJx3YjOymxKKpR6ASCVOzevgk+3jeQliZAZadqGDBkFCwsrfPNl/DxA7ZvWQd/3/vIFgrh6l4D/YeMkoxN1ixfiGtXLuSZf8P2AzA2Ni3UuhQGjuvzxu9/RPQlxb/y/4Do6Gj4+/ujTZs235T+2rVrsLKygoODwzel79u3LywsLLBo0aIfKea/Mm/ePBw/fhxKSkq4cOECwsLCIBKJ4O7u/tPKkJ9nL4Px+8IVaFLbE0N6dcKTgFdYt/sghEIh+nZum2/e1+GRmPTXCgiFQpnPLt/2wZwVG9CheUMM7d0FHxISsXn/UYyZsxjbls6FuppaUVXph70IfIkZ8xehYd3aGPBLTzx9EYhNO/ZAKMxG726d5Oa56e2Dv/5ehc7tWsPTzQW3fe5j8cq1UFVVQeP6dQEAb+PfYeyUGbC0MMfMyeORlp6ObXsO4PfZ87F1zd9QV1f/mdX8V3icyHoa/Abj/96CZjWrY3jXlngUFIrVXqchzM5G/3ZN5OZZtucYzt72xeCOzVDZzgovQiOw+dhFxLz7iNlDegIALtz1x4x1u9G5cS2M7NYa7xI/YcPh8xixcB12//Eb1NVUf2Y1v4uGpSk8z2yFqoFegWlNOzVH9V3LELpmF+Iv3IJph6aovm0xstMzEHPwLABA09YSNc5vx0efR/DrNR46Fe3hOH8CVA0N8GzUnKKuzg8JCAzEnLnzUL9ePfza9xc8e/4CW7dth1AoRI/u3eXmuX3bG0uWLkPHDu3h5uaGu3d98PfyFVBVVUXDBg2k0iYlJWHeH/MRFxf3M6pTKAICAzF73nw0qFcXv/7SB89eBGDL9h0QCoXo2b2r3Dy3vO9g0bLl6Ni+HTzcXHHHxwfLVqyCqqoqGjWoDwA4d+EiVqxei+5dOsPN1QWBQUHYuHkr0gQC9Oohv60VzZIlixAUGIgBAwdBS0sL+/ftxbSpU7Bu/Ubo6sq/mSwUCjFn9kykpqZi1OgxEGYJsWPHNsycMQOr16yFylc3jW7cuI4tmzehTBn5wQ1F8exlCCYtXI2mtT0wpEdHPAl8hX/2HIZQKES/Tq3zzRsSHoVJC1fJve4kfEpC/IePGN23G6pVlB4/6mhrFWodCtPT4DCMX74NzWtUw4guLfHoZShWe52BUJiNAe0ay82zbM9xnPH2xeAOzVAl55qz6fglxL5LwOzB4nPigo8/pq/biy6NamJk11Z4n5iE9UfOY/iiDdgzb7xCX3NeBAZh1h8L0KBeHfT/pTeevQjA5u07xX1Jty5y84j7khXo1L4t3F1dccfnHpauWA1VFVU0alAPAHD2wiWsWPMPunfpBDeX6gh8+RIbtmyDIE2A3t27/cwq/msvAl9i+vyFaFS3Ngb26YGnAYHYuGMPhEIheneVP4a9cccHC5avRpd2reHhWh3ePvexeNU/UFNVReP6dWBoWBr/LFkgk+/42fO4dvsOWjeTf/wpioDAQMydOxf169VDv7598fz5c2zbtg3ZQiG653kdvo0lS5eiQ4cOcHdzw527d7F8+fI8r8N//PFHiboOP30Vit+WrEezWq4Y3q0tHgW9xpp9xyEUZuPXDs3zzRsSEY0JS9ZDKMyW+ezekwBMWbEZzWq6YlTPDngdGYN1B04iISkFkwco9nVYzbYCjEZNR+pDbySe3A91h4ow6NQXpZSU8OnCMZn0gqe+iF08VWa74S8joaSpCcEzPwCAlnsdlB08EUk3LyDxxF4o65WGfvteMJ4wD7F/TQayFP9G7Iolf+Jl0Av0GzAMWlra8Nq/E7OnTcCqdTugk+fYJAvz50yBIDUFw0f9hixhFvbs2IQ/Zk7CstWboaKigm69+qF56/ZS+ZKTkrBs4VxUca4OIyPFe8CP4/q88fvff4soW1TcRaAS4P86gDFlyhRYWFh8UwAjKioKw4cPx65du745gPGzBQYGYt++fZg3bx7q1q2LsmXLok6dOli4cKHCBDC2HjiOCrblMHvcMABATZeqyBIKsevoaXRv0xzq6rI3kDMzs3D43CVsOXAMaqryv9juOnIatVyr4vdh/SXbrM1NMXTafNzxfYxGtTyKpD6FYcc+LzjY2WD6xLEAAE83FwiFWdh36Ci6tG8tN9CwZfc+NKhTC6OGDAAAeLhWR1JSMrbvOSAJYOzcfxDaWlpYNn8ONDTE+zAzMcbMPxcjKDgEVatU/kk1/Pd4nMjaePQCHMtZYP7wPgCA2lUrIUsoxPaTl9GzRT1ofBV8SUhKwbFrPhjTow36tRF/2fesUgEAsNbrDMb0aIvSejrYfuoy6lSrhOkDPt8ksTE1Rv95q3Dr0Qs09az2k2r4HUqVgmXfjqi0eArwjQ+pOs7/DTGHzyNg0kIAwLtLt6FaWh+Oc8dJBrD2k4cgKykFDzuPhCgzE/Hnb0IoSIPTqlkIXrQBaRExRVWjH7Z7z17Y29nh98mTAADu7u4QCrPg5XUQHTt0kNufbN+5E/Xq1sWwoUPFedzckJSUhF2790h90bnr44P1GzZCIBD8nMoUkl1798Pezg5TJv0GAPBwd4MwKwsHDh5Cpw7t8miT3ahftw5GDB0MAHB3c0VSUjJ27tkrCWDs9zqEenVqY/DA/gAAl+rVEBkVjROnzpSIAEZAwAvcv3cP8+bNh7uHuO9zcnLCwAH9cebMafTs2Utuvlu3biIkJATrN2yEtXU5AICdvR1GjhiOW7duolEjcX+TkJCA3bt34vy5c3kGQxTJloMnUcHWGnPGiv/Na7k4IUsoxM5jZ9G9dVNo5HHdOXT+CjZ7ncjzuvPyTQQAoIGnCyxNjYuuAoVsw9ELcCxnjvnDewMAaletKL7mnLqCXi3qQeOrQENCUgqOXr+Hsd1bo1+bRgAAzyrlAQBrDp7FmO6tUVpPB9tOXUWdahUxfcDn4GE5MyP0n7dG4a85u/buh4OdLaZOnAAA8HBzRVZWFvYfPIxO7dvK7Uu27dqD+nVrY8SQQTl5XJCUnIQde/ZJAhj7Dx5GvTq1MWTArwAAV0lfclbhAxjb9x+Eg50tpv/2eQyblSXE3kPH0KWd/DHs1t370KBOTYwa3F+cx7U6PiUnY9veA2hcvw7UVFVRuWIFqTxBwSG4dvsOBvftDefKlYq8Xj9iz549sLezw+TJkwGIr8NZQiEOeHmhQx7X4R1fXYfd3NyQnJSE3bt3S12HfXx8sH7DhhJ3Hd50+AwcbSwxb1R/AECt6lWQJRRix4kL6NGqocwYFgAys7Jw8Px1bDx8Js/+9dQNH5iWKY15o/tDWUkJNapWwofEJOw7exUT+naBiopyUVbrh+i37YGMiFC837EaAJD2wh+llFWg17ILkq6egSgzQyp9dvInZCR/ktqm06g1VM0sELdkOrJzPtNr2QWCp774uG+jJF1mXBRMpy6GZlV3CPzuFnHNfkxQwHM8vH8HM+cthqt7DQBAJaeqGDGwJ86fOY6uPfvKzXfn1g2EhrzCqvU7YGVtAwCwtXPA+JED4H3rGho0agZTMwuYmllI5VuyYDZ0dHUxYfIMhZzxxnG9HPz+R0R54DswcohEih/x+/RJPHCpU6cOLC0ti7k0sjIyM+H/PBD1PV2ltjeq5Y5UQRoeB76Um++u32NsO3gC/Tq3xYi+sjeFsrOz4VGtCjo0ayi1vZyFGQAgKvZt4VSgCGRkZuLx0+eoW7OG1Pb6tWshVSDA0xeBMnli494iMioadWt5SuepUxNRMbGIjI6BSCTCzTs+aNmssSR4AQCO5R1waOdmhQ5e8DiRlZGZBd+AYDRyd5ba3sSzGlLS0vEo6H/s3XlcjdkfB/DPbZNCVGijFC2iFFJ2yr7HZE9k3zODEsaSomgiDQnZEjFEGMbakC1lVColSxtZGksLpfv8/kh3XLcw8+Oeq+f7fr3m9eLc5+Zzn7k92znne+5LvKew+A2GdrdDZ+sWYu0G2uWji3KePIdQKES7FsYY0s1OfBud8ods2U+efc2P8dXVsTBBi6DlyN4Tib9cFnx2+5r6uqhl0gSPj5wWa3906BRUmxlApWn5w9j6PTriye/RYtOFH/92EgJ5edTv2fHrfoivqKS0FIkJCWjfXvz/Z8eOHVFUXIzbt5Ml3vM4Lw85OTmVvKcDcnNzkZOTAwAoKCjASq9VsGjZEqtWrvx2H+IrKyktRUJCIjrY2Yq1d+rYAUXFxUhKrnyfZOfkoP3H7+nQHrm5j5CTkwsA8Fq2FJNcx4tto6CggJIS8YcOsio+Lg7Kysqwsv7nWKumVhctWrbEjdjYqt8XHwc9PT1R5wUANG6sj0aNGom9L2L/PsTHxWGR52LYtGtX2Y+SGSWlpYi/fQddbKzE2rvZtkZR8RskpKZX+r7LNxOx7UAUxg3pixljKh+Bn/4gCyo1laHbsH6lr8uiktJ3iEvNQLfWH51z2lqUn3PSKjnnvHmDod1s0dnaXKzdQPv9+eTp+3OOeTM4drWtfJsnz7/mx/iqSkpLkZCYJHEs6dyh/ftjSYrEe8qPJbnoYFvJseTRI2SLjiWLMXnCOLFtFL+DY0nFNWwnW/Hr0S4dbD95DZuV8widPrru7dLeTnQN+zGO47B+8zboN9LDsIFfNmuelfJzTgLat28v1t6xY0cUFxfj9u3bEu/Je38etqvkPZLnYS+0bNkSXt/ZeTg+OR1d27YSa7dvZ4XC4je4lZpR6ftibt7G1kO/w2VQL8wcOajKn61cQwnycv88slCrrYrSd+9Q+ObNV/sMX52CApSNW6D4r2tizUXxVyBXUwU1mn6+k06uthrqDhyFgj9PoeTB+3OUQIA3KQkouPSH2Lalj8u/Qwqaslce6WM3469DWVkZllb/DL5UU6uL5i1aIe7GtSrf91f8dejqNRJ1XgBAo8YG0Gukj/gq3hcXexVXL/+J8ZNmQLWW7A20oOv6ytH9HyGkKtW2A2Ps2LG4fv06Dh8+jO7du+PNmzcICAiAvb09WrZsiUGDBuHUqfIaidnZ2bC3Ly/R4uzsjMDAQADAmTNn8MMPP6BVq1Zo2bIlHB0dcfHixf+c6cGDB3B1dUXr1q1hZWUFV1dX3LlzR/R6Xl4eZsyYASsrK3Tp0gUHDhxA9+7dcejQIRw6dAhjx5aPSHBwcIC7uztMTEwAAB4eHnB3l5xyKm25eU9R+u4dGumIXzzpvl+PITPncaXvM2tqiN82rcW4YQPFLlAryMnJYZbLSHT66IH3n9fLp9I2aaQr8R5Z8ehxHkrfvYPe+4foFXTf76Os9ze3H3qYlQ0A0NPREX+P9vv3ZOfgcd4TFBYWoWH9+li/KQSDRrqgl+NILPZajafPZPcBAUDfk8rkPHmO0ndlaKwl/gCsUcPyOusPK+l80W2gAXeXYaIHQxWi4xKhIC+Pxtr1IScnB7dRg9C1tXgnx4W4JACAka5s3+gUZz7CBdMeSJm/GmVFn79RrWVqBAAoTH8g1l6U8bD8deMmkFOuARUDPRSmiz+gK3n2N0pfvkYt4yZfJ/w38PjRI5S+ewddXfHvso52+fElOydb4j1ZmeWjwyXe8/74kp1dfqNTo0YNBG/ehJ9+nIc6ap+fqi0rHj96/P4YK368FO2T95/vQ5kVx1iJfVL+nqz3N3+NGzeCVsOG4DgOr16/xu+n/sCZc+cxoN+nyw3JiqysLGhpaUFeXnyEqo62DnIq+a6I3peZBR1dyeOlto4OsrP/eV+fvv0QsnU7OnSQ/Zu+ivNOYx3x8hEVMyYe5lZeWsHMyACHglbDZWh/yMtVPtI3/UEm6tRSxaJ1m+DgPAvdx8zAYv/NePb3i6/6Gb6minOOflXnnEeVnHPqa8DDZajEOedCfBIU5OWhr1V+zpk3amCV5xxDGT7nPHr8+P3x9aNjScVx4ZPHko+v1yqOyeXv0W8kfiw5ceo0Tp+7gAH9+nz1z/E1ia5hq7oerewa9v1+krju/cR7zl+8jJS0dMycOF7ieCVrHj96hHefPA9X8j3JzAQgec7RFp2Hy79H5efhzfjpxx+hpib767ZVKD+evEPjj44Neu87dR8+qvz42txIH5EbVmDCkN5QkK/8kcSwnp2R9fgp9hw7g9eFRUhMv499v59Hh1bmUKul+nU/yFekoNkQAkVFlOaJf99Ln5Z34Ck01KnsbWLUBowAOA4vjuz9p5Hj8OK3HSi+JT4IQaVVeSdj6aPM/zP5t5edlYmGWjoSv+vaOrrIzak6f3ZWJrR1JNfv0tLWRW625Ps4jsPObZtg3tIS7Tt2/b9zfwt0XV85uv8jhFSl2nZgBAYGwsrKCn369MHBgwcxb948REZGYsmSJTh69CgcHBwwZ84cnDlzBtra2jhw4IDofRMmTEBSUhJmzZqFfv36ISoqChEREVBXV8eCBQv+84ipefPmoWHDhvjtt99w4MAByMnJYebMmQCA0tJSTJgwAc+ePcPu3buxbt067NixA0+elN9E9u3bV9SxcuDAAXh6euLSpUsAgEWLFsHT0/P/3WX/t4KiIgCAas2aYu0qNZUBAIVVTF+sr1EPdWrX+lf/VvbjJwjatR/NmjSGnbXFf0grHYWF7/eJingdbJX3+6jo/T4Te0/FflT5eD9WvKcYL97PxgnZuQfPnudj8fy5+GnWNKRn3Me8RT+jWIZHJdH3RFLB+8+s+n4fVFB5P7umsPjtF/2c8zcScOzSDQztboc6VdRez857hoDwozDW10UHS9ku01D690u8yfnymq0KauXfj3evCsTa370uLH+9Ti0ovl9E9uNtKrZTqPPvvmPSVHFsUPn4ePL+75UfT8o/++eOQYqKimgkgzP7Pqfi80nuk08cYwsLxbapULOK43JK6h0MGzEav2zYiCYG+hjqOPirZP/WCosKJfYLUP45K9svFYq+8H2NGjWSWA9DVhUUlR9jVf7leaeBRj2ofea8k/4gC0/zX8DEUB9rPWZh9jgn3ExOw/Sf/VD85suO3dJWUFx+jaBaU7w0xb8955y7kYhjl+I+ec7JynuGgH3HYNJYBx0tTf+P1N/WZ6/Xiis7llR+TP7UsWToyLH4JTAITQz0MWxI5aPOZcU/+6Ty69HCIsnfG9F7qvpdq+TYs+/wEbQwM0GrluYSr8ma/3YeruI9lZyHZXGG/edUHF8lrmFrVhxPKr8naaBe97OdEG3NTTB2QA9sCDsM+4nz4bp0LerVqY2Vs8Z/8n2sydUs/1zCN+K/I9z7v8spf3p9JLnaalC17YrXF06Aq+TY8yEFzYaoO3QcSjLv4c37dTJkWVFhAWpWcY1R/Mlrk4J/dU0Te+0ysrMeYtjwyktSyQK6rq8c3f8RQqryfdx5/gd169aFoqIilJWV8ffff+Ps2bPYvHkzunbtCgCYNWsWUlNTsXnzZjg4OEBdXR0AoKamBlVVVcjLy2PJkiUYNWqU6Gc6Oztj0qRJeP78ObS1tSv7Zz8pMzMT7du3h66uLhQVFeHt7Y179+5BKBTi8uXLuHv3Lk6dOgUDAwMAwOrVqzFsWHkNYWVlZdFoHHV1ddSuXVtUc/rDP7P0uYV35L5S3cmH2blwW7kW8nJy8PppJuQqGY0vK4Sc5IJ0HxIIJLN/bj8K5AR4V/oOAFCvrhqWL5ov2ge62lqYOX8Rzl64iP69e/zH1N8WfU8kCb/CPjkXm4DFm/aglXETzB4xoNJtHuTmYYZvMOTl5OA7a5xM75P/QvCZz8MJhcBnt5HdcoKc8HPHE8nvyZccT75nn/vdqfQY+5mSkR/vx4YN6mPtam88fpyHHbv3YO5PC/Dr+gCx8n2sCYVCic/1qf/3n6oD/al9Kvedfl+En/l//v+cd9ynjIO8vByaNy0fvdfKzBhNGulg6pI1+D36Mhx7dfvPP/tb+dz++JI64ediE+G5OQytjA0wZ3jlZX/u5z7BDN8tkJeTw5pZzjJ9zvnccUGu0mPJv7vGa9CgAdb6eOFxXh527N6LufPd8WuAv0wdSz702d+bSo4Hn7vu/Xg/JqXcQXrGfaxc9PkyIbLgc+fhyo4lnz13y/DvxZf4L787X2r1tn2IunAFE4b0RtsWJnj09DlCDp7A7NVB+NVzdqVrF8mEzx1DP/N7UquDAwRycnh97vgnt1NoqIsGc5YCQiGebfEDZKwkdvm1ifhn/dT35Wtem/x+7DCaGDYVK1Ula+i6/uuo7vd/hJB/VNsOjA9VlGlq3bq1WHvbtm3h7+9f6XvMzMygpqaGLVu24N69e3j48CFSU8trvZaVlf2nHG5ubvD29sbevXthY2ODTp06oX///pCTk0N6ejrU1NREnRcA0LJly0pHGsiqipEARR+N/i96PzKn1lf4LPFJKVjktxEqyjUQuHyhzC+YqapSPgKn6KPRnaJZFpWMWKxok3zP+xFOKiqikcM2ra3EHgg0NzWGqqoK0u9J1q+WFfQ9kVSrYrT4R/ukYtRarY9GtX0s7PdorA8/itZmTbF27njUUJJcDPFGyl0sWB+Kmso1ELxoOvTelwqpTt69fA0AUKgtPqKvYlTNu5cFopE3H29TsV3Fz5BFKqrlmT9ejK9IdDyR/EwqVR5PKkbWym4Jhi9R8Zn/1TH2/TFGcj8Wi/3MChoaGtDQ0IBFyxbQ0m6InxYuwsWYGPSw7/51PsRXEL43DHv3hom1dejYES9e/C2xbVFxUaXflQqqqiqVLvhYVFQEle/0+yI6xn40ErhQdN6pKfGeL9XSxEiizdK0GWqp1ET6w6pLdbFUcU4p/GiGSMXMi1oqnznnnPwTAeFRaG1mhHVzXKo858zfsBM1a9RAsMc0UXkqWSW6Nin6N9drnzsmi79HU0MdmhrqsGzZAtpaWvjR3RMXYy6jh73sdXIBn7oerXy2yodtEr9rFTNNP9on0ZevoHYtVdi2EV+fRlZVdc6p+H+uUsmx9XPvqWw/fk9URceTyq9hVT9zPKnKk/wXiDwXA5dBvTDV6Z+BOc2NDDBivheOXrgMp15d/1vob6xi1oScsvi5pWLmhfAzsypUrO3wJvmWaOHuytQwNofmlAXg3r5Bnv9SvHv25SPWpSUifCci9u4Ua7Pr0KXya5OiIqioVj0KXkVV9RPXJuLve/36FZISbmL0uEn/Mbl00HX911Hd7//44nODQggBeNKBURWO46osf3D9+nW4urqia9euaN26NQYMGIDi4mLMmDHjP/97o0ePRu/evREdHY0rV65gw4YN2LRpEyIjIwGUj1L4mJKSjI4sqYSuVn3Iy8kh+6Nap9nv6/fr6/37WSsfOn3xKrw2hkBfRxvrFv+I+hr1/q+fJw262g0hJyeHnEfi6zpU/F2/knUZGr2vpZzz6DGaGRmK2nNF79GDWp3aEAgEKH0/E+NDZWVC1JDh7w19TyTpNdCAvJwcsvLEF9Wu+LuBbsPK3gaO47B292HsP30JveyssGzySChWckw7eSUey4LDYaDTABt+moQG6nW/+meQBQXvF55VMdLHq7/+WXBV1ah88baC1AyUFRahOPsxVIz0xd6rVF8dinVqoaCKxSZlgY62NuTk5JD70SKoubnlNZYbNZKsDVwxfTw3NxdNjf550Pro/c9o1FjyPd8THW2t8n3y6ON9Uv73xpXsEz09XdE2H+6Tip/RuJEeiouLceXadZgYN4PuB/Xfm73f/vnz/K/7Qf5Pvfv0hY2N+KK5V65cRnxcPIRCoVhH96PcR5V+Vyro6unhXobk78Gj3EcwNjH+eqGlSLdhg/LzzkfrCVX83eA/nncKCotw/lo8mjdtAqPG/5zPhUIhSt+VoW4d9rNjK1Nxzsmu4pzTRKfyTn+O4+C350j5OcfWCssnD6/inHMTP2/ZBwOdBgj8cSIaqMt+Pf/PHksqKcVRsaZBzqNHaCp2vVbZscQYujr/fM8qru+e58vWseRDulqfu4aV3CeNxa5hm0i+R0/8uvdqbDw6tLP5bsrRab8/Dz/KFV/boOI8XPk5p3w/PfroPCx6T+PG3yquVOg1fH9d//ipWHvF35v8x7VvHj/LB8dxsDQxFGs31NOGWi1V3MuWXBBeVpQ+fQyurAwK9cU/u0KD8r+XPq66c1u+rjqUGhvi+dljVW6j0qYjNFxmofRxDp5u9ELZC9k8jvTsPQBtbMQXm75+5RL+io+VuDZ5/CgHeo2q/l3Q1W2E+/fuSrQ/fpSDZsbi5Qlvxl1HWVkZ2nfq+v99gG+Mruu/jup+/0cI+cf3PWf1C1Usdh0XFyfWfuPGDTRt2hSA5BS97du3o127dggMDISLiws6dOiAR+9vSD43VbYyz58/x4oVK1BaWgpHR0f4+fnh6NGjePr0Ka5fvw5zc3O8fv0a6enpovdkZWXhxYsX//rfYqWGkhIsm5sg+lqc2D66cPUGaqnURPNmhp9496ddjruFlRu2oKVJU2xa5fldPJQGyjugLFo0x6XL18T2ycXLV6GqqgLTZs0k3qOrow3thg3wZ8xVsfY/L1+Fno42tBo2QM2aNWFhboaLl6+hpLRUtE38rQS8efMGLc1ld20D+p5IqqGkCCsTQ5y/kSi2T87FJqCWijJaGFZ+QR8UcRz7T1/C6D5d4DVtTKUPki79lYyfN++FRTMDbF0yq9p2XgBAUUYmiu5lQduxl1i71pCeKEi7j+KH5QvbPTsTgwZ9u0Lug1HDWo69IHz3Ds/Oi//eyRIlJSW0bNECMZcvi31PLsXEQFVVFSbGkg+XdXR0oKXVEJcuxYi1X4qJga6ODrQaVt459r0o3yfmiLl85aN9crnKfVLxuS/GXBZrvxRzWfSavLw8ftkQiAO/HRbbJi7+JgDAsInB1/8w/wcNDQ00MzYW+8/aujWKi4sQ/8G1z8uXL5CUlAgr69ZV/ixr69bIyspCZuZDUVtm5kNkZWXC2qrq98myGkqKaGVmjOhr8eLnnWvx5eedpv9t8UZFRUWs27YXuw6fEGu/eOMW3paUoLW5yf+V+1spP+c0wbkbSeLnnBvl5xzzKs45Gw/8Xn7O6d0Zq6aNqvyccysFS4PDYdlMH9sWz/guOi+Aius1c1y6fPWj67UrUFVVqeJYol3pseTi5StixxL/wCAcOCR+LLlx8y8AQBMD8YcpskRJSQmW5ma4eEX8GvbPy9fKr2GNm0q8p+IaNvryFbH2D69hK7x6/RrZuY/Qwkw2f08q87nzsHGV52Et0dqFFWLen4cbfufn4RpKimhl2hTnY2+JH0+u/4VaKjVhbmTwn35uo/cDnv5KFX9o/TA3Dy8LCqHbQIZndb0rxdv0ZKhY2Yo1q1jZQVhUiJL76VW8EVAyKL83fJuRUunryi2soTF+Dt7eu4O8tZ4y23kBAOoammjazFTsP0vrtiguLsJf8f8sRP7y5QskJ92CpVXbKn+WpXVbZGc9RFbmA1FbVuYDZGc9hKW1+PvSUpOhoVkfDRr8t84zaaHr+q+jut//EUL+8X0Md/mPVFVVkZOTA1VVVXTr1g3Lly+HQCCAvr4+jh8/jrNnzyIgIADAP4slpaWloXnz5tDW1saZM2dw48YNaGlp4dq1a1i/fj0A/KdFvNXU1HDhwgVkZmbixx9/RK1atXDo0CEoKiqiRYsWaNSoEaysrDB//nz8/PPPUFJSwsqVKz/7c1VUVJCRkYG///4b9eqxf1jrMmwA5iz3w5J1QejXvTMS76Rj75HfMW3MD1CuUQOFRcW4n50D3YYNUE+tzhf9zLclJVi9KRQqNZXhPHQA7mfniL3eQEMdDTTUv8XH+SrGOA3F/CUrsHzNOvRx6I7bqXew/9BRTBo3GsrKNVBYVISHmdnQ0W6Iuu/XORk74gf4rg9Cndq10b5dG8Rci8WFS5exZIGb6OdOHDca8zx+hseyVXAaMhB/v3iJkJ17YGbSDO1tZLfeJ0Dfk8q4DuqB6Ws2wz1wFwZ2sUFC+gPsPnEBM536QbmGEgqK3+B+zmPoNdBEvTq1cOdhDnYeP4/mho3gYGOJpIyHYj+via4WFOXl4bUtAirKNTBhoAPu54iPomygXhcNv+MODYXaqqjVvCmKMjJR8qx8Onr6qiBYbluN0vwXyIs6h4YD7aHj1Bfxo+aK3pexdit0hvdD22NbcT8gFKrGBjBZOQ9ZWyPwJkt2R/QBwMgRI+Dh6YlVPj7o1aMnklNScPC3Q5jg4gJlZWUUFhUhMzMT2traouPJqJEj4f9LAOrUqQ3bdu1w5eo1/HnxIjwWLmT8ab6OUSOc4O65FF4+a9CrZw8kp6TgwKHDcHVxFh1jP94nY0aOwNqA9ahduzbs2tngyrVriL54CYsWzgdQflM5/Idh2B0Wjrp11WBp0RL37j3AnvB9sGplibZtZP9BfouWLdHSwgJ+fmswYYIratepg71he6CqWgt9+/6zZkFm5kOUlpbCyKj8YWTnzp0RsX8fli5ZApfx5Qul7ggNhYGBATp17szks3wNLkP7YfZKf3j6b8aA7h2RcCcDYUdPYfpoxw/OO7nvzztfNnOihpIixg7ug60RR6CuVgd21i2RkZmNbRFR6Ny2Fdq0lN3BBK6DHDB9zRYs3Lgbgzq3xa30h9h1IhqznPqipuickwe9Bhpi5xxzw0boYWOJpIxMsZ/XRLchFOXlsXLbgQ/OOeIzLRuoq8n0OWfU8B+wcPHPWLnaD7172CM5JRUHDkXCddzYD67XsqCjrfXBscQJawMCUef9seTy1euIvhgDzwU/ASg/lowYNhS79u5DXbX3x5L7D7A7fB+sW1nCRsaPJWOchuKnpSuxfI0/+vTojtspd7D/8FFMch79/vdG8hrWecQwrFn/K+rUDkEHm4pr2CtYMn+u2M++97D8O2TQ+PtaaHbEiBFY5OkJbx8f9OzRAykpKfjtt98w/rPn4V9Qu06d9+fhq/jz4kW4V5Pz8IQhvTHTOxAe67dhYFc7JKTdw55jZzBjxKDya9ii4vJr2IaaqPeFM9Pq1amNEX26YfexMwAAm5ZmePzsOUJ++x3amuoY3L3Dt/xI/7eXvx9AgznLoDnpJxRcPosahqao3WMQXkTuAVdaAoFyTShqN8K7p4/FSkUp6uqDKy2pvCSUgiLUx0wH96YYr37/DYra4qPty/5+jrIXz7/1R/u/mLewRIuWrRDg54WxE6agdm017N+7AyqqtdC77yDRdlmZD1BaWgpDo/IOnY6du+FQxB6sXLoQY10mAwB279gCfQNDdPhopkXmg3to1NhAWh/p/0LX9f8eH+//CCHlqnUHxogRI7Bw4UIMHDgQFy5cgL+/Pzw9PfHq1SsYGxsjMDAQPXqUL3Rcr149DB06FL6+vnj48CFmz56NZ8+eYerUqQCApk2bwtvbG/Pnz0diYiKMjCRrHn+KgoICQkJCsGbNGri4uKC4uBhmZmbYsmWLaOrw5s2bsWrVKkyYMAE1a9bE5MmTcfPmzU/+3AkTJmDr1q3IyMjA5s2b/8Ne+rpat2yOVfNnYtu+w/BYswH11ethhrMTRg7sAwC4c+8BZv28BotmuKJf905f9DOT7tzF879fAADcVqyVeH2C0yC4Dh/y1T7D12Zt2RLLPH7Czr37sXSVLzQ11DFl/Fg4DRkIAEjPuId5i5ZhwZwZ6O1QXge5t0M3lJaWIuLwUfx+5hx0tBrC3W0WunX652Ld3NQE67yXYfvucCzzWYsaNWqgo60Npk5whry8PJPP+qXoeyKprXkz+M4eh+BDp/BTwHY0qKeGOSMGYEzfrgCA1AfZmOr9K36eNAIDOtvg/I0EcByH5HtZGL98g8TP27xoOjghh2cvym+KZvoGS2wzaUhPTHHs/U0/17dUx8ocdmd345arO7J3lY9uzd51GHI1lGDoNgF6LkNRdC8Lf7kswKMDv4veV3jnHq71mQCzNQtgvX8DSp79jfvrdyBtmeR+lDWtWlliseci7N4ThhUrV0JDUwMTXSdgqKMjAODu3btY6O6BeW5z0fP9+a1njx4oLX2H3w4dwqk/TkNbSws//fgjunT5fh9Gf8jK0hJLFrljd9heLF+5ChoaGpg0wQXDHMt/3+/ezcB8D0/8NHcOevawBwD07GGPknelOHjoME6dPgNtLS0s+NENXTv/c7wZPWI46qqp4cix4zh4KBJqanXQv09vjB098osWOZYFnp5LsDVkC7Zt3wZOKETz5uZw91iE2rX/eYD0a9BG5OXlIXTHLgCAoqISvFb5IDh4EzYGboC8vDysrVtj0uTJMn9u+ZQ2Lc3g/eM0bI04goW+QaivXhczxw7DqAHlI/bu3H+IGcvWYvH08ejX7csfjI0f2g/16tTCb6fO49AfF6BWuxaG9OwC1x8GfquP8lXYNG8G31nOCD78B35cv+P9OacfxvbpCqD8nDPFZzN+njQcAzu1xbn3MwRv38uCy4pAiZ8X7DEVQu6fc84M3y0S20we3ANTPhohKUusLC2w1GMhdu0NxzIvn/Jjyfhx+MFxMIDyY8lPi5bgp7mz0Muh/FjSy8EepaXvcOBQJE6ePgttrYZYMG8OunbuKPq5o0c4QU1NDUePncCBw0dExxLnUSNk/lhibdkSy91/xI69EVjy/hp2qstYOA0pX5MgPeM+3DyXYeGc6ej9fi2P3vbdUFL67v017HnoaDWAh9tMdO8k/nv194uXAIDataquey+LWrVqBU9PT+zZswcrVq6EpqYmXF1dRefhjLt3sdDdHfPc3ET3mT169EBpaSl+O3QIf/zxB7RE5+EuLD/KV9O2hQlWu01EyIHjmL9uC+qrq2H2qMEY3d8BAHDnQRamrVyPpVPHoH8Xu8/8tH/MHj0EDdTr4tDZSwg7fg6adeugnYUZpg0fgNqVrEsjS97eScKzLX5Q6z8c9ae6o+zFc7w4tAuvzxwFACg1NkTDeSvxfGcgCq+cF71Pvk5dCIsKK/2ZNYxMoFC3fDBWgzk/S7z+8th+vDy2/xt8mq9rgedKhG4Nwq5tm8FxHEybt8BP7j+j1gfXJlt+/QVP8h4jOLT88ygqKuFnr3XYFhyITRvXQkFeAZbWbTB+0kzIy4s/0nrx4m/oN/nvM/qlia7r/z0+3v8RQsoJuP9SD4lIjYmJCXx8fOD4/iT2LTxLuvL5jXhEs4UdctISWceQKbrGLel78hHNFnZ4ff046xgypbZNPxxX/H5KQUhDv9I7uJ8hWbOXz5oYNcXDu3dYx5Ap+k1NcDfjPusYMqWpURPkJ1xkHUNmqFt0QsG1KNYxZEqtdgOQmV55mRW+atzMDLl3EljHkCk6JhaVruvDZ4ZGRngZf4Z1DJmiZu2AzKnf7n77e9R48yHcvksj0z9k3lSbrus/0sSoKd3/faBfKd3j/Bf2I66zjvDdObvPhnUEqavWMzAIIYQQQgghhBBCCCGEyB6hkMbVk8+jDoyvICQkBL/++usnt1m0aBF++OEHKSUihBBCCCGEEEIIIYQQQr5v1IHxFTg5OaFnz56f3EZDQ+M//ew7d2gKGiGEEEIIIYQQQgghhBD+oQ6Mr0BNTQ1qamqsYxBCCCGEEEIIIYQQQggh1YYc6wCEEEIIIYQQQgghhBBCCCEfow4MQgghhBBCCCGEEEIIIYTIHCohRQghhBBCCCGEEEIIIUSqOKGQdQTyHaAZGIQQQgghhBBCCCGEEEIIkTnUgUEIIYQQQgghhBBCCCGEEJlDHRiEEEIIIYQQQgghhBBCCJE51IFBCCGEEEIIIYQQQgghhBCZQx0YhBBCCCGEEEIIIYQQQgiROQqsAxBCCCGEEEIIIYQQQgjhF07IsY5AvgM0A4MQQgghhBBCCCGEEEIIITKHOjAIIYQQQgghhBBCCCGEECJzqAODEEIIIYQQQgghhBBCCCEyhzowCCGEEEIIIYQQQgghhBAic6gDgxBCCCGEEEIIIYQQQgghMoc6MAghhBBCCCGEEEIIIYQQInMUWAcghBBCCCGEEEIIIYQQwi8cJ2QdgXwHaAYGIYQQQgghhBBCCCGEEEJkDnVgEEIIIYQQQgghhBBCCCFE5lAHBiGEEEIIIYQQQgghhBBCZA51YBBCCCGEEEIIIYQQQgghROZQBwYhhBBCCCGEEEIIIYQQQmSOAusAhBBCCCGEEEIIIYQQQviFE3KsI5DvAM3AIIQQQgghhBBCCCGEEEKIzKEODEIIIYQQQgghhBBCCCGEyBzqwCCEEEIIIYQQQgghhBBCiMyhDgxCCCGEEEIIIYQQQgghhMgc6sAghBBCCCGEEEIIIYQQQojMUWAdgBBCCCGEEEIIIYQQQgi/cEIh6wjkO0AzMAghhBBCCCGEEEIIIYQQAgBYunQp3N3dP7tddnY2pkyZAmtra3Ts2BEBAQEoKysT2yYsLAz29vawsLDAqFGjkJyc/K+yUAcGIYQQQgghhBBCCCGEEMJzQqEQ/v7+2L9//2e3LS0thaurKwBg3759WLZsGcLDwxEUFCTa5vDhw/D19cWcOXNw6NAh6OnpYfz48cjPz//iTNSBQQghhBBCCCGEEEIIIYTwWEZGBkaNGoUDBw5AR0fns9ufOnUKubm58PX1hbGxMRwcHDBv3jzs3LkTJSUlAIDNmzdjzJgxGDhwIJo2bQpvb2/UrFkTBw4c+OJc1IFBCCGEEEIIIYQQQgghhPDY1atXYWRkhGPHjkFPT++z29+4cQPm5uZQU1MTtdna2qKgoAApKSl4/vw5Hjx4ADs7O9HrCgoKaNOmDWJjY784Fy3iTQghhBBCCCGEEEIIIYTIOHt7+0++fvbs2f/8s0ePHv2vtn/8+DG0tLTE2ho0aAAAePToERQUyrsetLW1JbZJTU394n+HOjAINFvYfX4jntE1bsk6gsyh74mk2jb9WEeQOf1K77COIHOaGDVlHUHm6Dc1YR1B5jQ1asI6gsxRt+jEOoJMqdVuAOsIMqdxMzPWEWSOjokF6wgyx9DIiHUEmaNm7cA6gsxpvPkQ6wgyx7yp9uc34hm6rpdE93/k/3UpqgvrCN+dz/RfVCk7O/uTnR9XrlyBurr6v/qZb968QZ06dcTaatSoAQB4+/YtiouLAQBKSkoS27x9+/aL/x3qwCCEEEIIIYQQQgghhBBCZNx/nWHRsGFDnDhxosrXPywD9aWUlZVFa11UqOiYUFFRgbKyMgBUuk3NmjW/+N+hDgxCCCGEEEIIIYQQQgghpJpSVFSE0VeemaqlpYW0tDSxtidPngAo7zCpKB315MkTsX/7yZMnaNiw4Rf/O7SINyGEEEIIIYQQQgghhBBCvljbtm2RnJyMgoICUdvVq1ehqqoKU1NTaGhooEmTJrh27Zro9Xfv3uHGjRto27btF/871IFBCCGEEEIIIYQQQgghhJAqlZSU4OnTp6KSUA4ODqhfvz7mzp2L1NRUnDlzBv7+/pgwYYJo3YsJEyYgNDQUhw8fxt27d7Fo0SK8efMGw4YN++J/lzowCCGEEEIIIYQQQgghhBBSpZs3b6Jjx464efMmgPLFuLdu3QqhUAgnJycsX74co0aNwvTp00XvcXJywuzZsxEQEIChQ4ciJycHoaGh/2rBcAHHcdxX/zSEEEIIIYQQQgghhBBCCCH/B5qBQQghhBBCCCGEEEIIIYQQmUMdGIQQQgghhBBCCCGEEEIIkTnUgUEIIYQQQgghhBBCCCGEEJlDHRiEEEIIIYQQQgghhBBCCJE51IFBCCGEEEIIIYQQQgghhBCZQx0YhBBCCCGEEEIIIYQQQgiROdSBQQghhBBCCCGEEEIIIYQQmUMdGIQQQgghhBBCCCGEEEIIkTnUgUEIIaTaevr0KesIRAZs3LgRxcXFEu0FBQVYtWoVg0SEfH9KSkpYR5B5HMexjiBz6DxMCPmv6LxDKuPh4YGCggKJ9hcvXmD69OkMEhFCpEGBdQBCYmNjkZGRgf79++Px48cwMDCAggJ9NQEgPz8f169fh7m5ORo1asQ6DjNv3ryBnJwclJSUkJGRgQsXLsDKygrW1tasoxEZYGZmhpiYGKirq4u1Z2dnY8CAAbh58yajZGyUlJRg+/bt6NOnD/T19eHp6YkTJ07A2toaa9euRb169VhHlIqMjAzk5+cDAIKCgmBqago1NTWxbdLS0hAREQFPT08WEYkMo2uTf4SHhyMkJASPHz/GqVOnsHXrVjRs2JC3Dwns7e3x22+/oW7dumLteXl5GDhwIK5du8YmGEN0Hib/VkJCAvLy8tC0aVM0adKEdRypys3Nhba2NgQCgagtPz8fhw4dwuPHj2FsbIzBgwdDSUmJYUq26Lwj6c2bNzh58iQyMjLg6uqKtLQ0NGvWjDfX9XFxccjKygIAREZGwtzcHLVq1RLbJiMjA1euXGERjxAiBfy8EyMyoaCgABMnTsRff/0FgUCADh06YO3atcjKysL27dvRsGFD1hGlLi0tDbNmzYKXlxdMTEwwcOBAPHv2DEpKStiyZQtsbW1ZR5S62NhYzJgxA+vXr4eRkRF++OEHyMnJobi4GGvXrkWfPn1YR5QqU1NTsRueDykqKkJLSwuDBg3C9OnTq9yuOjh48CCOHj0KoHzE64wZM6CoqCi2zZMnT1CnTh0W8Zhau3Ytjhw5gk6dOuHPP//E4cOHMXv2bFy4cAG+vr7w8fFhHVEqsrKyMHXqVNHvwcyZMyvdbujQodKMJVPu3buHFStWID4+HqWlpRKvp6SkMEjFFl2biIuKisK6deswbtw4bN26FQBgZGSEtWvXQllZGRMmTGCcUDpOnDiBixcvAgBycnKwYsUK1KhRQ2ybnJycan3e/RidhyV96hrtY3w5vtrb2+PgwYOih6wFBQWYPn06rl+/DgAQCAQYMGAAvLy8ePPA3t7eHpcuXYKGhgYA4MGDBxg1ahSEQiH09PQQGRmJbdu2YdeuXbw75wB03qnMs2fPMHz4cDx//hwlJSVwcnLC9u3bkZSUhJ07d8LIyIh1xG9OIBDA3d1d9GcvLy+JbVRUVODq6irtaIQQKaEODMKMv78/AOD06dMYOHAgAGD+/Pn46aef4Ovri3Xr1rGMx8SaNWugr68PQ0NDHDt2DO/evUN0dDT27duHgIAA7Nu3j3VEqfP394e9vT1atmyJiIgI1KpVC6dPn8Zvv/2G4OBg3nVgLFq0COvWrcPIkSPRpk0bAMDNmzcRFhaGkSNHQk1NDbt27YKSkhImTZrEOO234+DggLi4ONHftbS0oKysLLZNxQg2vjl58iT8/f1hbm6On3/+GTY2Npg6dSo6duxYrb8TH+vatSvOnTsHoVAIBwcHHDhwQGx0sEAggIqKisQoaj75+eef8fz5c/z000+oXbs26zgyga5NxG3fvh2enp4YMmQItm/fDgBwdnaGiooKQkJCePMgycrKCvv27ROViMrNzRV7WF9xPFmzZg2riFJH52FJ3t7eog6MnJwchISEYPjw4bCysoKioiISExMRFhaGadOmMU4qPTk5ORAKhaK///LLL8jLy0NERASaNWuGhIQEeHp6Yv369Zg/fz7DpNLzcak5Pz8/NG/eHBs3boSysjIKCgowa9YsrF69Gr/88gujlOzQeUfS6tWr0axZMxw7dgzt27cHUP7cYO7cufDz88PmzZsZJ/z2DAwMkJqaCqC8szgmJkbUCUgI4QmOEEa6du3KxcXFcRzHca1ateIyMzM5juO4+Ph4zs7OjmU0ZqysrLi7d+9yHMdxU6dO5RYsWMBxHMdlZmZylpaWDJOxY2FhIfpujB8/nluyZAnHcRyXnZ3NtWzZkmU0JpycnLh9+/ZJtB88eJAbMWIEx3Ecd+bMGa5nz57SjsaMu7s79/r1a9YxZEbLli25R48ecRzHcfb29tyWLVs4juO4rKwsrlWrViyjMZOdnc0JhULWMWROy5YtuaSkJNYxZApdm4iztLQU7YMP90dmZiYvz8Ecx3FjxozhXrx4wTqGTKHzsKTRo0dzBw4ckGg/cuQI5+joyCARGyYmJtyzZ89Ef3dwcODOnj0rts2FCxe4Tp06STsaMx/vk44dO3I3btwQ2yYhIYFr06aNtKPJBDrvSOrQoQN3+/ZtjuPE90lKSgrXtm1bltGkpk2bNlxubi7HcXTOIYSvaAYGYSY/Px/169eXaK9Tpw6KiooYJGKvYp2Hd+/e4fr161iyZAkAoLCwUGJUG1/UrFkTJSUlePv2LeLi4vDDDz8AKJ9Ky8cRwykpKZWWEmvTpg2WL18OAGjevDkePXok7WjM+Pj4gOM4/Pnnn0hLS4OCggKaNWsGW1tbyMvLs44ndY0bN0ZiYiKeP3+O7OxsdOrUCQBw5swZ6OnpMU7Hhra2No4ePSoqlcR9NPqRL2W1PlavXj2Jki98R9cm4jQ1NXH//n2Jdbhu3ryJBg0aMErF1u7du1lHkDl8PYZ+SkJCAlatWiXRbmFhgbt37zJIxMbHJbWEQiEaN24s1mZoaIjXr19LMxZTAoFAbL/UrVsXNWvWFNumZs2avCpJ9yE670gqLCyEiopKpa+9e/dOymnYKCsrw6VLl9C+fXtERkZizJgxVa7/oaOjI+V0hBBpoA4MwkzLli3x+++/Y/LkyWLtYWFhaN68OaNUbLVq1QrBwcFQV1fH27dv0blzZ+Tl5cHf3x+tWrViHY+Jdu3awc/PD2pqapCTk0OnTp2QkpICLy8vtGvXjnU8qdPT08P58+fh4uIi1n7+/HloaWkBADIzMyUW0qzOXrx4AVdXV9y+fRu1a9cGx3EoKCiAubk5QkNDeVV/GwAmTpyIefPmQU5ODra2tjA1NUVQUBCCgoLg7e3NOh4T3t7eCAsLg6mpqcSCf3w2ZswY+Pv7Y+3atbRf3qNrE3HDhw/HihUr4OHhAaB83ZRLly4hICAA48aNY5yODVo7phyt9/Bp+vr6OH78uMSiw/v370fTpk0ZpZI+juOwZ88emJubw8jICJ07d8bZs2fF9sHRo0d5tZA3x3Fwc3ODiYkJjIyMYGJigu3bt2Pt2rUAyhdr3rBhA1q2bMk4KRt03pHUtm1bhIeHi/YJAJSWlmLTpk2wtrZmmEx6Bg0ahCVLlojOO8OGDZPYhuM4CAQCXp5zCOEDAffxMERCpCQ+Ph4TJkxAx44dER0djQEDBiAjIwO3b9/Gtm3bePlw+uHDh3Bzc0NWVhbc3NwwatQorFy5EhcuXEBISAgMDQ1ZR5S6/Px8/Pzzz8jKysLMmTPh4OCA1atXIzExEQEBAZWOlK3OoqKi4O7ujt69e8PKygpCoRC3bt3CyZMnsWLFClhbW8PV1RUODg5YtGgR67hS4eHhgYSEBKxbtw6mpqYAgNTUVMyfPx/W1taimSl8cufOHWRlZaFz585QUlLCn3/+CUVFRdjZ2bGOxkS7du3g7u6OIUOGsI4iU8aPH48bN26grKwMGhoaEguonj17llEydujaRJK/vz927tyJt2/fAgAUFBQwYsQILFq0CHJycozTSd/YsWPx/PlzjBgxotKZoHw5zhw6dOiLOzD4sk8+dPr0acyePRutW7dGy5YtIRQKcfPmTaSkpCAkJKTS2bTV0eLFi5GWlob09HS8efMGHMdBXl4ely9fhpqaGsaPH4+rV68iICAAvXr1Yh1XKqKionDnzh2kpaXhzp07yMvLg0AgwJUrV1C3bl3ReWbHjh0wMzNjnJYNOu+Iy8jIwOjRo6GtrY309HS0a9cO9+7dw+vXr7Fnzx7R/U91d+fOHbx8+RLOzs4IDAyEmppapdvZ2NhIORkhRBqoA4MwlZqaiu3btyM5ORlCoRDNmjXDhAkTYGlpyTqazMjPz4eamhovS+FUpaSkROJBG5+cP38e27dvx+3bt6GgoAATExNMnjwZnTp1QmxsLC5duoSZM2fypjSMra0tNmzYIHGxeu3aNcybNw8xMTGMkrExbNgweHl58eZm5ktYWVkhKiqKtyW0qrJx48ZPvj5z5kwpJZEtdG0iqbi4GHfv3gXHcTA0NOT1jB0LCwuEh4fD3NycdRQi4+Lj47Fnzx6kp6cDAMzMzDBhwgTenp8zMzORlpaGtLQ00cyUhQsXolevXujevTvjdOy8evUKaWlpaNOmDQAgIiICnTt3Fs2s5is674jLy8tDeHg4UlJSRNcmo0aN4uW17eHDh9GvXz9ePw8ghI+oA4Mw9fr1a/z999+iWqh//PEHbGxsULduXbbBGHr58iUePHiAkpISidfatm3LIBF76enpSE9Pr3SfDB48WPqBiExp06YNIiIiJGYoZWRkwNHREbdu3WKUjI127drhwIEDEjWm+Wz27Nlo164dRo8ezToKId+V7t27Y/DgwRgyZIhEPXK+6tKlC0JCQmBsbMw6ClMeHh7w9PRErVq1xMqafEwgEPC2fCEh5N+LjY2ttF0gEEBRURFaWlpo2LChlFMRWRIZGfnF29KzAkKqD1oDgzBz+/ZtTJgwAY6Ojli4cCEAYPXq1SgpKcH27dt5eWP422+/Yfny5ZU+qOdrPcfNmzcjICCg0tcEAgEvL0pu3LhR5WLEfBwxbW5ujvDwcHh6eoq1h4eH83Lq/cSJE+Hp6QlXV1c0btwYysrKYq/zcWG7Vq1awc/PD1euXIGRkZHE7CQ+/t5USEpKwrZt25CWlgYFBQU0bdoU48aNg4WFBetoUvO5mSgf4tt3xdHREceOHRPV2XZ0dETv3r2hqqrKOhoztHZMuezsbAiFQtGfiaTo6Ghs27YN9+7dw/79+3Ho0CE0btwYgwYNYh2NEJnl4uIiOrZU3Od8XK7OxsYGgYGBvFnnbuzYsZWW7PuwU2fQoEG8Gey4YcMGPHv2DCUlJVBRUYGioiJevnwJgUAgdm/M12cFhFRXNAODMDN27Fjo6elh+fLloul/7969w5IlS5CXl4ft27czTih9Xbp0QefOneHi4iLx0BEAdHV1GaRiq3379hgxYgSmTJmCGjVqsI7DXFBQkOiC/eMHJwKBgJc162/evAlnZ2eYmpqKFrKLi4tDamoqtm7dyps60xXMzc1RVlYGQPyGj88L232qNAVff28A4Pr165gwYQKMjY3Rpk0bCIVCxMfHIy0tDTt37kTr1q1ZR5SKj78fjx49gqKiIho1agQFBQVkZmaitLQULVq0wL59+xilZCshIQFHjx7FyZMnUVhYiJ49e2LIkCG8O74CtHYM+TIxMTGYOnUq+vXrhxMnTuD48eM4ePAgQkJC4O3tTQ/VCKlCVFQUfvnlFyxevFj0QD4+Ph5eXl4YNWoULC0tsXr1apiammLFihWM00qHt7c3du/eDTMzM1GpsVu3buHWrVtwcHBAcXExrl27hvXr18Pe3p5x2m/v4MGD2LFjB1avXo0WLVoAALKysrBgwQL06dMHzs7OjBMSQr4F6sAgzFhZWeHo0aMSJQnu37+PYcOGIS4ujlEydqysrHD48GEYGBiwjiIz2rZti4MHD0JfX591FJnQsWNHjB07FlOmTGEdRaYkJCRg+/btSE9PB8dxMDExwfjx43k1irzC9evXP/k6LWxHKowcORLGxsYSC90vX74cd+/exe7duxklY2fHjh24cOEC1q1bBw0NDQDl9ckXLFgAY2NjzJs3j3FCtoRCIcLDw+Hv74+ioiJedojS2jGScnNzP/k6H2f+jRgxAr1794aLi4vYPU9ISAiOHj2KqKgo1hGloqqR45XZtWvXN04jG5o3by4xg7oqfDzG9ujRA0uXLkWnTp3E2i9fvoxly5bhjz/+wM2bNzFr1ixcunSJUUrpmj17Nho0aIDFixeLta9ZswZ5eXnw9/fHjh07cPz4cRw4cIBRSunp1q0b1q1bJxq4VuH27duYMmUKb74XhPANlZAizKiqqiIrK0uiA+PJkye8XZDJwcEB0dHR1IHxgUGDBiEiIgLz589nHUUmvH79Gv3792cdQ+ZYWFhUWWqMbz7soMjPz4eCggJvpth/CsdxuHjxoqhUUrNmzWBrawt5eXnW0ZhJTk6Gl5eXRPuYMWMwbNgwBonY27JlC7Zv3y7qvACAOnXqYN68eRg7dixvOzAePXqEqKgoREVFISMjAzY2NnB0dGQdiwk+dlB8Tvfu3T/5kJqPD2Hv3LkDX19fifbevXv/q7J137uOHTti/fr1aNKkCS8HlVRm9+7dmD59OvT09DBmzBjWcWTO06dPK+30bNiwIR4/fiz68+vXr6UdjZmLFy/i0KFDEu3Dhw/HkCFDAAD29vZYv369tKMx8fLlS9SsWVOivbS0FEVFRQwSEUKkgTowCDO9evXC8uXLsWzZMtEFbWJiIlasWIEePXowTsfG/PnzMWDAAJw6dQqNGzeWuBn08fFhlIydiRMnYtCgQThx4gT09PQk9glfRmtVsLa2xs2bN3lZTuxDVLP+03bt2oUtW7bg+fPnAABNTU24urrCxcWFbTBGXrx4AVdXV9y+fRu1a9cGx3EoKCiAubk5QkNDedvBU69ePfz9998S7fn5+bwdSFDVze/z58+/eBRxdbJv3z4cO3YM8fHx0NXVFS3ozccR9R9KTU3Fzp07cf/+faxfvx5nzpxBs2bNeDvD7eNrsbKyMty/fx87duyAu7s7o1Rs1a5dG0+ePEHjxo3F2u/evQs1NTVGqaRvypQpqFWrFtatW4fg4GDo6emxjsRc69at8euvv2LcuHHQ09PjzboFX6pFixbYunUrvLy8RINMysrKsHXrVpiamgIon23Mp+9SrVq1cO/ePTRp0kSs/e7du6IH+YWFhZWWoK6O7OzssHz5cvj5+YkGw2ZkZPD6ORIhfEAdGISZH3/8EZmZmRg/frzYQ4EePXpgwYIFDJOx4+XlhcLCQpSUlCAnJ4d1HJlQceNrYWEBFRUVxmnY69+/P1auXImkpCQYGhpKPGTkS03lykYhVUYgEPCuA2Pfvn3w8/PDqFGj0LZtW3Ach9jYWPj7+6NWrVq8HFm/Zs0avHnzBpGRkaKb39TUVMyfPx/r1q2TKKHEF926dcPKlSvh7+8PIyMjAOU3w15eXp9cN6Q66969O5YsWYKlS5eiRYsW4DgOcXFxWLlyJfr168c6ntStWbMGvXv3xpw5c+gh23tJSUkYOXIkWrVqhaSkJJSUlCAlJQU+Pj4ICgpCly5dWEeUuso6buzs7NCoUSMEBgby8ngyYMAAeHt7w9vbGwKBAIWFhfjzzz+xcuVK9O3bl3U8qRo9ejQuXrwIX19fbNiwgXUcmdC6dWuMHj0aa9aswcGDB1nHkSnu7u5wcXHBtWvX0KJFCwiFQiQnJ+PVq1fYunUr4uPjsXjxYolyStWZo6MjlixZgvz8fFhaWkIoFOLWrVvYsGEDBg0ahL///hu+vr68OU8vXboUEyZMQM+ePVGnTh1wHIfXr1/D0tISnp6erOMRQr4RWgODMHfv3j2kpaVBUVERRkZGvC6f1KpVKwQGBkrU/OQzS0tL7Nq1C5aWlqyjyISKh6+V4esCzV/qypUrsLa2rvaLwffu3RtjxoyRKEsQFhaGffv28abu9odsbW2xYcMGiYds165dw7x58xATE8MoGVsvX77E+PHjkZKSgtq1awMoL1NnamqK7du3o169eowTSl9BQQHmzJmDmJgY0eAKjuPQu3dv+Pr68m5mSlFREQ0e+IiLiwssLS3h5uYmtraBj48P4uLi6GHkB7KystCvXz8kJCSwjiJ1paWlcHd3x/HjxwGUX6NxHIeuXbsiICCANyOlKzx58gS3b99Gt27dWEeRGWVlZSgqKhKdf8k/njx5gn379iE5ORkKCgowNTXFqFGjoK6ujoyMDDx+/BgdOnRgHVNqhEIh/Pz8EB4ejrdv34LjOCgrK2Ps2LGYM2cOLly4gK1bt8Lf3583MyTfvXuHmJgY3L17F0D52jJ2dnaMUxFCviXqwCBEhnTr1g1bt24VjYQl5Q9j/f390bx5c9ZRyHfO2toaR44ckVh3p7qxsLDAsWPHJMpWZGZmon///rx8kNSmTRtERETA0NBQrD0jIwOOjo64desWo2TsCYVCXLx4Eenp6eA4DiYmJujYsSPk5ORYR2OqYnCFnJwczMzMqv1x41POnj2L4OBg0foxTZs2haurK2/LNLRp0wYHDhxAkyZNxDowMjMzMWjQINy8eZN1RKmrbBHvgoICBAcHIyUlBSdOnGCQSjY8fPgQKSkpEAqFMDY2RtOmTcFxHC9L0pF/5+nTp6hfvz7rGESGvHnzBhkZGZCXl4eBgQHvOkKrkp+fj+vXr6NFixa8Ki1GCN9QCSkiVWZmZrh06RI0NDRgampKC/59ZOrUqVi1ahWWLFmCxo0b83px2Qo//fQTli5dirlz56Jx48ZQUBA/bPFllAn5//Glv15HRwdJSUkSHRiJiYnQ1NRklIotc3NzhIeHS0wrDw8Ph5mZGaNUskFOTg5dunThZdmbTzE0NBTr8CopKUFiYiJat27NMJX0/fHHH5gzZw7s7e3Rr18/UUm6OXPmIDAwEPb29qwjSp2ioiIKCgok2h89elTpoqJ8UNki3hzHQUVFBX5+foxSsWVvb4/ffvsN+vr60NfXF7Xn5eVh4MCBuHbtGsN0RFaYmZkhJiYG6urqYu3Z2dkYMGAALztE3759i/379yMtLQ1lZWWi9pKSEiQlJeHUqVMM07Hz7t07vHz5UjQ79vnz56Jrk4EDBzJOJ11paWmYNWsWvLy8YGJigkGDBuHp06dQUlLCli1bYGtryzoiIeQboA4MIlXe3t6iabJ8XJD6c7Zt24bc3Nwqa+PysVNnzpw5KCsrw8SJE8VujitGr/Fhn1DHH/k3RowYgeXLl+PFixewtrYGAMTFxWHDhg1wdnZmnI6NuXPnwtnZGX/99ZfYPklNTcXWrVsZp5MuOp58WlJSEpYsWYK0tDQIhUKJ1/m2T3799VfMmDFDbC0hFxcXbNy4EZs3b+ZlB4aDgwMCAgLwyy+/iNoyMjKwatUqdO3alV0whj5exBso7+gxNjaGqqoqg0RsnDhxAhcvXgQA5OTkYMWKFRJlK3Nycng7++JT5xxFRUVoaWlh0KBBmD59erXeRwcPHsTRo0cBlN/PzJgxA4qKimLbPHnyBHXq1GERjzkvLy9ERkaiefPmSExMhJWVFR4+fIjnz5/DxcWFdTwmLl26hIULFyI/P1/iNWVlZd51YKxZswb6+vowNDTEsWPHUFpaiujoaOzbtw8BAQHYt28f64iEkG+AOjCIVA0ZMkT059u3b8PZ2VlilDCfTZs2jXUEmRMaGso6AnPU8Uf+DWdnZ+Tk5MDb2xtlZWXgOA4KCgoYMWIEb48xVlZWCAsLQ2hoKC5duiQqlbR06VJYWFiwjidVdDz5NB8fH8jLy2Px4sXw8fGBu7s7MjMzERYWBl9fX9bxpO7evXsYMGCARHv//v0REhLCIBF7CxcuxMSJE2FrawuhUAhHR0cUFBTA1NQUCxYsYB2PiQ/XFyooKICiomK1X2+qMlZWVti3b59oxmdubq7Yg2mBQAAVFRWsWbOGVUSmFi1ahHXr1mHkyJFo06YNAODmzZsICwvDyJEjoaamhl27dkFJSQmTJk1inPbbcXBwQFxcnOjvWlpaEqWAjI2NMXjwYCknkw1nz56Fj48P+vfvjx49emDlypVo1KgR3NzcUFpayjoeExXllCvWvFi7di1yc3OxYcMGXl7L3bx5EwcOHICGhgYuXryILl26oGHDhnB0dKRnB4RUY9SBQZg5fPgwb0dRVOXDDh5S7sOb4vz8fCgoKPBuRNKH3wstLS1aoIx8kpycHDw9PTFnzhzcu3cPQHk5nFq1ajFOxo6XlxecnZ3FRkzz1YfHE4FAgL59+0osTF1UVISIiAhpR5MJycnJ2LlzJywsLHDo0CEYGxtj1KhR0NLSQkREBPr06cM6olQ1aNAADx8+FCuBA5TX9efrwrO1atXCvn37cOXKFSQnJ4vWNujUqROv147ZuXMnQkNDkZeXB4FAAD09PUyfPp1XD2G1tbVFs1HGjh2LjRs3Qk1NjXEq2XH8+HEsWrQIw4cPF7U5ODjA0NAQBw8eRHh4OJo1awZfX99q3YFRt25dsYfOnp6evL5G+9irV69Es2WbNm2K5ORkGBoaYsqUKZg7dy4WL17MOKH03b17F97e3jA1NYWZmRlUVFQwduxYqKioYNu2bXBwcGAdUark5OSgpKSEd+/e4fr161iyZAkAoLCwkNYFIaQaow4MwkyXLl2wZ88ezJw5ky7aPkCLZUratWsXtmzZgufPnwMANDU14erqyssOsAkTJkBbWxuDBw/GkCFDeL2wLKlaYWEhoqKiRMeRZs2aoW/fvrw91lKH+T/y8/Px5s0bAICHhweaNWsmqqdcISUlBf7+/rzcZ0KhULRoqr6+PtLS0tCmTRvY29sjODiYcTrp69+/P5YtW4aff/5ZtP5HXFwcli9fXmW5S76ws7OjAQXvBQYGYvv27XB2doalpSWEQiFu3LiBZcuWoaCgAGPGjGEdUep2795d5WuPHz+GlpaWFNPIhpSUlEpr07dp0wbLly8HADRv3hyPHj2SdjRmfHx8wHEc/vzzT7FrNltbW96uhaiuro7nz59DR0cHBgYGSEtLAwDUq1cPz549Y5yODXl5edGggYprEzs7O9ja2vJyRlerVq0QHBwMdXV1vH37Fp07d0ZeXh78/f3RqlUr1vEIId8IdWAQZp4+fYoTJ05g586d0NDQkJhqfvbsWUbJ2KHFMiXt27cPfn5+GDVqFNq2bSvaJ/7+/qhVqxaGDRvGOqJUnTlzBlFRUTh27Bg2bdoEa2trDBkyBH369OFVnWlStdzcXIwZMwbPnz9HkyZNIBQKERERgc2bN2Pv3r28fGhCHeb/+PPPP+Hu7g6BQACO4yo9hnIcx9tFvfX19REXF4f+/fvD0NAQiYmJAIDXr1+jpKSEcTrpmzZtGtLS0jBlyhRRTXqO49C1a1fMmzePcTo2EhISsHz5cqSnp1dazoRv66QAQEREBFauXIn+/fuL2hwcHGBkZIRNmzbxsgMjKysLa9asEVuImOM4lJSUID8/H8nJyYwTSp+enh7Onz8v0Tl+/vx50bVJZmamxILW1dmLFy/g6uqK27dvo3bt2uA4DgUFBTA3N0doaCjvZp0DQOfOnbF8+XL4+PigdevW8Pb2Ro8ePXDixAleXsMCQLNmzXDu3DmMHTsWhoaGiIuLw7hx4/D48WPW0ZhYsmQJ3NzckJWVhUWLFkFdXR0rV65ERkYGb8tbEsIHAq6iSCchUrZx48ZPvv7hgpF8MXjwYDg4OEh89o0bNyI6OhoHDhxglIyd3r17Y8yYMRI3v2FhYdi3bx+ioqIYJWMvOTkZUVFROHnyJF68eIGePXvychTOl7KyssLRo0er/ayV2bNn49mzZ9iwYQM0NTUBAM+ePcPcuXPRsGFDrFu3jnFC6Rs7dixiY2MhEAiowxxAbGwshEIhxo0bh8DAQLESJxU12o2NjSUWFeWDAwcOwMvLC6tWrYKZmRkGDRqEH374AfHx8dDU1MS2bdtYR2QiIyMDaWlpovVjjIyMWEdiZuDAgahRowYcHR0rLVXBx3KgrVq1wuHDh9GkSROx9nv37mHIkCG4desWo2TsTJo0CQ8ePEDv3r0RGhqKCRMm4P79+zh9+jRWrFgBJycn1hGlLioqCu7u7ujduzesrKwgFApx69YtnDx5EitWrIC1tTVcXV3h4OCARYsWsY4rFR4eHkhISMC6detgamoKAEhNTcX8+fNhbW0tmpnCJ69evYK7uzs6dOiAUaNGYfLkybh48SIUFBSwZs0a9OvXj3VEqTtz5gxmz56NpUuXokuXLujVqxdsbW1x584dWFpaYsOGDawjMpefnw81NTWxmUu//fYbevfuTYP8CKkmqAODEBliYWGBqKgoiVrTDx48wKBBg3h5A2hhYYFjx45JLPaemZmJ/v37IyEhgVEy2XD79m2cPHkSe/fuhUAgwI0bN1hHkrrIyMhP1vGvGOm3cuVKzJw5U6JcTnXTpk0bbN++XWJx6oSEBEyaNAnXrl1jlIwd6jCv3PXr12FtbQ0FBZqQ+6EzZ86gbt26aNOmDaKiohASEgJtbW0sWbIEenp6rOMxceXKFaSnp0NJSQnGxsai+uR8ZGlpiYMHD6JZs2aso8iMH3/8ERoaGhIPndetW4cHDx4gMDCQUTJ2WrdujV9//RXt2rXD4MGDsWLFClhYWOCXX37B3bt3ERQUxDoiE+fPn8f27dtx+/ZtKCgowMTEBJMnT0anTp0QGxuLS5cuYebMmbzpQLe1tcWGDRvE1vwDgGvXrmHevHmIiYlhlEx2cByHlJQUaGpqokGDBqJ2vj2cvn37NuTl5WFqaorr168jNDQU2tramD17NurWrcs6nkyytrbGkSNHqv3gNUL4gu5YCVN//fUXdu/ejbS0NMjLy8Pc3BwuLi68vSmkxTIl6ejoICkpSaIDIzExUTS6nG+ysrIQFRWFqKgoPHz4EO3atcPSpUvRq1cv1tGk5kvq+CcnJ4vV8a9Y4K26k5eXR82aNSXaa9SowasSOE5OTggKCkL9+vWhp6dXaScXH23cuBGurq6oWbMmrl+/juvXr1e5LR87dioWfK845wwYMAADBgxgnIqd3NxczJw5E8nJyVBTU4NQKMTr169ha2uLgIAAXj40adGiBXJycnh7rVrBw8ND9OfS0lLs3r0bN27cQOvWrSEvL4/bt28jPj4eP/zwA8OU7JSUlIiOI02aNMGdO3dgYWGBwYMHY+zYsYzTsdOtWzd069at0tfatm2Ltm3bSjkRW+/evav0fkZTUxMFBQUMEskegUCA5s2bS7SvWrUKNjY2vOnAMDc3F/3ZxsZGotMLAHr27IkdO3ZAR0dHmtFkFo3VJqR6oQ4Mwsy5c+cwc+ZMtGzZEh06dEBZWRlu3rwJR0dHhIaGok2bNqwjSh0tlilpxIgRWL58OV68eCEa8RkXF4cNGzbA2dmZcTrpc3JyQmJiIvT09EQLefPxIpXq+FfN2toav/76K3x9fUUjGEtLS7F582ZejZpOTU3FkydPUL9+fXh4eKBz5868qqtdlUOHDmH06NGoWbMmDh06VOV2AoGAlx0YtOC7uBUrVkBJSQmnTp0SDa64c+cOFi5cCC8vL6xdu5ZxQulbsWIFpk+fjlu3bqFRo0aQk5MTe33w4MFsgklZdna22N8rrttTU1NFbdbW1rh3755Uc8kKXV1dpKWlQVtbG02aNBGtjSIUClFYWMg4HTs3btxAfHw8SktLJR4u8vGcY25ujvDwcHh6eoq1h4eHw8zMjFGq7wM9nJb09OlT0Zo7hBBS3VAJKcLMgAED0LVrV/z4449i7WvWrEF8fDz279/PKBk7b9++hZubG86dOyexWGZAQECltZarO6FQCB8fH4SHh6OsrAwcx0FBQQEjRozAokWLJB4cVHceHh5wdHTk3Qi1ylAd/8plZGRgxIgRUFVVRYsWLQCUz1gqLCzEnj17RDWWqzsXFxfRugW5ubnQ1tau8njBtzUwSNXmzZuHBg0a0ILv77Vq1Qp79+6VGP36119/YcKECYiPj2eUjJ3AwMAqy/8IBAJeLuL9pfhU8iU4OBjbt2+Hr68v6tWrB2dnZ8ycORMxMTEoLi7Gvn37WEeUuqCgIAQGBqJOnToSx1eBQMDLc/HNmzfh7OwMU1NTsYFaqamp2Lp1K2xtbRknlF18Wdvu36B9Io72ByHVC83AIMw8fPgQQ4cOlWgfPnw49u7dyyARezVq1MCvv/5Ki2V+QE5ODp6enpgzZ45oFJ+hoSFvHyz5+PiwjiATPiwP5OPjAzs7O95+Jz5mZGSEyMhI7N27F+np6eA4DgMGDMDIkSOhq6vLOp7UrF+/HkePHsXLly+xceNG3jw0I/+fp0+f4sSJE9i5cyct+A6gTp06KC0tlWgXCASVlqrjgz179mDu3LkYN24cb/fBf8Wnki+TJ09GjRo1wHEcLCwsMH36dGzatAna2trw8/NjHY+J8PBwuLm5YcqUKayjyAwrKyuEhYVh+/btuHTpkujeb+nSpRJrmRFCCCF8Rh0YhBkzMzNcuXIFBgYGYu1JSUm8rivMcRxycnKQk5MDBQUFqKmpwcDAAPLy8qyjMVNYWIioqCikpaVBQUEBzZo1Q9++fXnzwNrMzAyXLl2ChoYGTE1NRbNzKsOXkZ8flgdatGgRL0tFfYquri7mz5/POgZTampqojrj169fx4wZM3hzzPiUzx1DPsSX48mH2rVrh3bt2rGOITNmzZqFpUuXYu3ataJrs6ysLKxcuRJTp05lnI4NoVCIfv36UefFf8Cnif/Z2dli5egmT56MyZMnswskA16/fo3+/fuzjiFzLCwsEBAQwDoGIYQQItOoA4MwM3DgQKxduxb37t1Du3btoKCggMTEROzcuRMjRoxAZGSkaFu+1BN+8eIFXF1dcfv2bdSuXRscx6GgoADm5uYIDQ1FnTp1WEeUutzcXIwZMwbPnz9HkyZNIBQKERERgc2bN2Pv3r3Q0tJiHfGb8/b2Fi3i7u3t/cUPH6sza2trjBw5EpqamuA4DkOHDuV1eaAPF1P9HD7O4klPT8fDhw/FFkDkqw+PITk5OQgJCcHw4cNhZWUFRUVFJCYmIiwsDNOmTWOcVLYIBAIoKiri6NGj6Ny5c7VevPrjTi6O4zBw4ECoqqpCXl4er169gkAgwOPHj3m5GPGgQYOwd+9eLFy4kHUUIsN69OiB1q1bw9HRkWYAvmdtbY2bN2/yajZoZTZu3PjF2/JxXRBCCCGkMtSBQZhZuXIlAGD37t3YvXu32Gtbt24V/VkgEPCmA2PNmjV48+YNIiMjRXXqU1NTMX/+fKxbtw7Lly9nnFD6Vq9eDS0tLUREREBTUxMA8OzZM8ydOxd+fn5Yt24d44Tf3pAhQ0R/dnR0ZJhEdlB5IHFpaWkoKSlB3bp1kZubCy0tLd6tD/Mp6urqeP36NesYMuHDY8iYMWOwZMkSDBs2TNTm4OAAIyMj7Ny5E66uriwiMhUbG4vY2FgoKiqiSZMmAMpLXr558wba2tp48eIFatSogV27dlXb2aLUUf5pr1+/xvHjx3Hs2DE0atQICgrit1O7du1ilIzIkt27d+Po0aPw9fWFl5cXevTogSFDhsDOzo51NGb69++PlStXIikpCYaGhlBSUhJ7nS/3e4cOHfqi7QQCAXVgEEIIIe/RIt6EyBBbW1ts2LABNjY2Yu3Xrl3DvHnzEBMTwygZO23atMH27dsl6sAmJCRg0qRJuHbtGqNk0vOlI7UEAgFmzJjxjdPIHg8PD3h6evK6PFDLli1x4sQJNGrUCKampoiJiYGGhgbrWDJjzZo12Lt3L7p06QJ9fX2JdQ34+oDAwsICUVFR0NfXF2t/8OABBg0ahFu3bjFKxs66devw119/ISAgQPQ79Pfff+Onn35Cq1atMHXqVCxduhT5+fkIDg5mnJaw8LkZb3yc5fal+LigamlpKS5cuICoqChER0dDQ0MDgwcPxuzZs1lHk7qKwVmVEQgEvCxb+KWuXLkCa2triesXPuPj8eRzrK2tceTIEdon723duhXDhw8XVTIghHzfaAYGITLk3bt3olkGH9LU1ERBQQGDROzJy8tXWme6Ro0aKCkpYZBI+v7NSC0+dmDMmjULr169wqtXrz67rY6OjhQSSZ+enh5mzZoFMzMzAOULpVZ2kysQCODt7S3teMydOnUKGhoaSEpKQlJSkthrfB7hqK+vj+PHj2P69Oli7fv370fTpk0ZpWLr4MGD2L59u1gHYL169TB//nyMHz8es2bNgqurK0aOHMkwpXSdPXsWaWlpKCsrE7WVlJQgMTERoaGhDJOxQR0U5N9QVFQUlZOKjIxEUFAQgoODedmBkZqayjrCd2vGjBm8fDBdUlIiMVOnwowZM6p1Ocf/ojqvmflfyuVOnDjxW8UhhDBAHRiEyBBzc3OEh4fD09NTrD08PFz0YJJvrK2t8euvv8LX1xeKiooAykezbd68GdbW1ozTSce5c+f+9Xv4NFKre/funy13wnFctR7d5+fnh+DgYOTk5EAgECA3N1f0+0L+2+8QH8yePRuzZ8/G5cuX0bJlSwiFQty8eRMpKSkICQlhHY+Jd+/eobS0VKL97du3ePPmDQBASUkJQqFQ2tGYWLt2LbZu3QpNTU08f/4cDRs2xLNnz1BWVoZ+/fqxjsfMkydPEBERgfv372PRokWIjY2FsbExDA0NWUcjMqSoqAinT59GVFQUrl69Cl1dXbi6uoqVBiXkS/CtaEZ4eDhCQkLw+PFjnDp1Clu3bkXDhg3FBlzw7eF0cXEx0tLSUFpaKvF9aNu2LYDyMpjVVXZ2NusIhBDGqAODEBkyd+5cODs746+//hI9nI+Li0NqaqrYuiB88tNPP2HEiBHo0aMHWrRoAQBITExEYWEh9uzZwzid7OLTSC1/f394eXlh4sSJsLGxgZKSEhITExEQEAAnJye0a9eOdcRvrkWLFggMDARQ3qGzadMm1KtXj3Eq2RMbG4uMjAz0798fjx8/hoGBgUT9ej7p0aMHwsLCsGfPHly6dAkAYGZmhhUrVnyy1Ed11rFjRyxfvhz+/v6i0lr379+Hl5cXOnbsiLKyMoSHh8PExIRxUumIiorCokWL4OzsjC5dumDv3r1QUVHBjBkzeHF+qczDhw/h5OSEWrVqIS8vD3PnzsWJEyfg4eGBHTt2wNLSknVEIgPc3Nxw4cIFCAQC9O7dGzt27ECbNm1Yx5I6MzMzXLp0CRoaGjA1Nf3kgJPqOsiE/DtRUVFYt24dxo0bJ7r/NTIywtq1a6GsrIwJEyYwTih9Z8+ehbu7OwoKCiQ6L6rzAK0PfbxmKiGEf2gNDEJkTEJCAkJDQ5GWlgaO42BiYoLx48dLrAHBJ7m5uQgLC0N6erpon4wcORK6urqso8ksPtWFHTx4MCZPnoy+ffuKtUdHR8PX1xfHjx9nlIzIioKCAri6uuLWrVsQCAT4448/sGrVKmRmZiI0NBQNGzZkHZHIiPz8fEyZMgVJSUmoU6cOOI7D69evYWlpicDAQNy+fRtubm4IDg6WWK+qOmrRogVOnjwJPT09TJ48GY6Ojujduzdu3LgBT09PnDp1inVEqZs2bRrU1dXh5eUFa2trHD16FNra2li4cCGePHnCy4csM2fOhJubG4yMjD65HZ/qkY8dOxZDhw5Fr169Ki2FyheHDx9Gv379oKSkhMOHD39yW5qZUjU+XdcPGTIEzs7OGDJkiNjnPnjwIEJCQnh53unTpw+aNWuG6dOnV3r85OM98bt37/D8+XNReUuO40TlLQcOHMg4HSHkW+DvsENCZJCXlxecnZ3xyy+/sI4iMypuiufPn886CpFR9+/fr7TEmp6eHk03JgDKZ+kIBAKcPn1adFMzf/58/PTTT/D19cW6desYJ2RDKBQiKioK8fHxlZYk4GOtf3V1dURERODatWtISUmBvLw8TE1NRZ0VlpaW+PPPP3nxABYA6tSpg6KiIgBA48aNcffuXQDl6wnl5eWxjMZMfHw8wsLCxEaSKygoYPr06XBycmKYjJ2rV69+UclKPpV8qejIKigoQEJCAhQVFdGoUSPUqlWLcTLp+rBTQktLC3Z2dgzTkO/B/fv3K52t1K5dO6xYsYJBIvays7MRHByMxo0bs44iEy5duoSFCxciPz9f4jVlZWXqwCCkmpJjHYAQ8o/Dhw9DTo5+LT/0pTfFhL9MTU0RGhoqVpP+3bt32Lx5M5XyIACA8+fPY8GCBWIjF42MjLB06VJcuXKFYTK2vL294e7ujoSEBGRlZSE7O1vsP74SCASwtbXF+PHj4ezsLDbTol69erzpvADKHxitXbsWeXl5sLS0xMmTJ5Gfn49Tp05BXV2ddTwmhEJhpWugFBYWVusFVD9lyJAhWLt2LdLT01FSUsI6jkzgOA4+Pj6ws7PD8OHDMWTIELRv3x6rVq3i3XoGFSZMmIDu3btjw4YNyMrKYh2HyChNTU3cv39fov3mzZto0KABg0TsGRgY4PHjx6xjyAx/f380b94cwcHBUFZWxsaNG7Fo0SLUqlULfn5+rOMRQr4RmoFBiAzp0qUL9uzZg5kzZ/JuhFZVKm6KZ8yYAX19fSgpKbGORGTM/Pnz4erqipiYGJibm0MoFCIpKQnFxcW8LOVBJOXn56N+/foS7R+OLuejqKgoeHt7U9kOUqUFCxZg2rRp+P333zFq1CiEhoaiQ4cOAAB3d3fG6djo2LEjgoODxR6SvHjxAn5+frC1tWWYjJ3o6GhkZmZWWdqFD/XZP7Z582b89ttvmD9/PmxsbCAUChEbG4ugoCA0bNiQV7NRKpw5cwZRUVE4duwYNm3aBGtrawwZMgR9+vSBqqoq63hERgwfPhwrVqyAh4cHAODevXu4dOkSAgICMG7cOMbp2Pjpp5+wcuVKuLm5wdDQUOJ+WEdHh1EyNu7evQtvb2+YmprCzMwMKioqGDt2LFRUVLBt2zY4ODiwjkgI+QZoDQxCZMjYsWMRGxsLgUAADQ0NiZkHZ8+eZZSMnZ49eyIzM7PKRf/4eFP8JfhUKxcAMjMzsX//frHyJtOmTePtSC0ibsyYMejcuTMmT54s9ruxYsUKpKamYu/evawjMmFlZYWoqCjo6emxjkJk3Nu3b1GjRg0UFxfj0qVLaNiwodjaXFeuXIG1tTUvZkzm5eXB2dkZr1+/xosXL2BoaIicnBzUrVsXe/bs4WUt8rCwMCgrK1c5i5iPnaTdu3eHm5sbBgwYINYeFRWFwMBA/PHHH4ySyYbk5GRERUXh5MmTePHiBXr27Ik1a9awjiWz+HZd7+/vj507d+Lt27cAysv0jRgxAosWLeJltQJzc3PRWg8f3hNzHMebRbw/ZGVlhWPHjkFXVxceHh4wNTXFuHHjkJOTgyFDhuD69eusIxJCvgGagUGIDGnXrh3atWvHOoZMmTZtGusIRMa9evUKISEhGDNmDJo2bQpXV1eEh4fj6tWr2LJlC29u9kjV5s2bhwkTJiAhIQHv3r3Dpk2bkJGRgdu3b2Pbtm2s4zHTqVMnREdHY/To0ayjEBlX0TFRs2ZN9OjRQ+L1GTNm4MiRI7w43jZs2BCRkZE4duwYUlJSIBQKMXLkSAwaNIi3s2d9fX2hpqaGgQMHwtHREYaGhqwjMff8+fNKy1haWlri0aNHDBLJlubNm4PjOCgoKGDv3r28HKQFAJGRkejbt6/EiPqioiJERETAxcUFAODo6Mir48u8efMwbdo03L17FxzHwdDQkFef/2OhoaGsI8iUZs2a4dy5cxg7diwMDQ0RFxeHcePGUZktQqo5moFBCCHVEJ9Ganl4eODGjRvYvHkz0tPTsWDBAqxatQonTpyAgoICAgMDWUckMiA1NRXbt29HcnIyhEIhmjVrhgkTJvB6nZTt27djw4YN6NixI4yMjKCoqCj2+syZMxklI98bPp1zPlZaWorU1FQYGhrytgxOQUEBjh8/jsjISPz111+wsLCAo6Mj+vXrx9uHjoMGDcLIkSMxYsQIsfbw8HDs3LkTJ0+eZJSMraysLERFRSEqKgoPHz5Eu3btMHjwYPTq1QvKysqs40lFfn4+3rx5AwCwt7fHwYMHUa9ePbFtkpOTMW/ePCQkJLCIyFxubi7q1KmDWrVq4erVq/jjjz9gbW2N/v37s47GXH5+PhQUFFCnTh3WUZg5c+YMZs+ejaVLl6JLly7o1asXbG1tcefOHVhaWmLDhg2sIxJCvgHqwCCEscjIyC/edvDgwd8sh6ziOA6HDx9GUlIS3rx5I7bwoUAggLe3N8N00velI7VWrlyJmTNnStwQVUft27dHUFAQrKys4O7ujhcvXmDz5s1IS0vD6NGjERsbyzoiYexLf2/4pnv37lW+JhAIeDsilvx7fOrAePToETw9PTF37lwYGxtj2LBhyMjIQJ06dbBjxw6YmZmxjsjUw4cPERUVhVOnTiErKwsODg4YNmwY79YHiYyMxNKlSzF27FhYW1sDAOLi4hAWFoYFCxbwcuabk5MTEhMToaenh8GDB2PIkCG8q90PlH833N3dIRAIRCWAPsZxHLp06YLg4GAGCdk6ffo03NzcEBwcjEaNGqFv375o1KgRHj16hPnz5/PydwcAdu3ahS1btuD58+cAyhc7d3V15e017O3btyEvLw9TU1Ncv34doaGh0NbWxpw5c6CmpsY6HiHkG6ASUoQw9vEimBUXs8rKylBQUEBBQQHk5eVRr149XnZgrFmzBjt27ICJiQlvR5p8OFLLw8MDzZo1q3Sklr+/v+gidsmSJdKOyUxRURG0tbUBADExMZg0aRIAQFlZWVQvlvDPf/m94Ztz586xjkDId8fHxwevX7+Guro6fv/9d+Tk5CAsLAyHDh2Cn58ftm/fzjoiUzo6OjAxMcHDhw+RlZWFuLg4nDt3Drq6uvDz84OpqSnriFIxePBgvHjxAlu3bhWVKtTU1MTcuXN5+wDWyMgI8+fPR9u2bVlHYWrw4MHQ1dWFUCjEuHHjsGHDBrEHrgKBACoqKjA2NmaYkp1ff/0Vrq6usLOzw6ZNm6Cjo4Pjx4/j5MmTCAwM5OXvz759++Dn54dRo0ahbdu24DgOsbGx8Pf3R61atTBs2DDWEaVq48aNcHV1Rc2aNQEANjY2sLGxQUFBAdavXw9PT0/GCQkh3wJ1YBDCWGpqqujPx44dw7Zt2+Dj4yO6wXvw4AEWLlzI2ymzkZGR8Pb2hqOjI+sozPz5559iI7Uqu0itGKnFR0ZGRrhw4QK0tbXx9OlTdO7cGQAQEREBIyMjxukIK/R782U4jsPFixeRlpYGBQUFNGvWDLa2tpCXl2cdjRCZdPXqVezcuRN6enpYu3YtOnfuDGtra9SrV4/X1yrx8fE4cuQITp48ibdv38LBwQGbNm2CnZ0dCgsLRbNW+FQ6ycXFBS4uLsjPzwfHcdDQ0GAdiSkfHx/WEWSCk5MTgoKCUL9+ffj4+MDOzo63pdYqk5GRgY0bN0JOTg4xMTHo0qUL5OTk0KpVK+Tk5LCOx8SOHTuwcOFCjBkzRtTWo0cP6OvrY+fOnbzowMjIyEB+fj4AICgoCKamphIzLdLS0hAREUEdGIRUU9SBQYgMWbt2LdavXy82Os3AwACLFy/GtGnTMHbsWIbp2Hj79i3vFzankVqfNnv2bMyaNQulpaXo378/DAwM4OPjg7CwMAQFBbGORxih35vPe/HiBVxdXXH79m3Url0bHMehoKAA5ubmCA0N5e2sN0I+pbS0FGpqauA4DleuXMG8efMAAEKhEAoK/Ly16tGjB7Kzs9G8eXPMmTMHAwYMQO3atUWvq6qqok+fPoiJiWGYUvpycnJw69YtlJSUSLzGl1nVZmZmuHTpEjQ0NGBqalppuaQKKSkpUkzGTmpqKp48eYL69etj0aJFvB9I8bE6derg9evXeP36NRISEkQzqzMzM1G3bl224RjJzc0VDdD6UKdOnbBmzRoGiaQvKysLU6dOFR1DqlqnbejQodKMRQiRIn5eZRMio169eoUaNWpItAuFQlEpFL7p2LEjzp8/LzbihG9opNandenSBdHR0cjLyxN1/vXr1w9OTk40A4PnKspU7Nq1C9bW1rx9uFiVNWvW4M2bN4iMjBT97qSmpmL+/PlYt24dli9fzjghIbKnefPmOHjwIOrXr49Xr16hS5cuKCkpQUhICG/KI32se/fucHR0hImJSZXb2NnZ4dSpU1JMxVZERASWL19eaSlLgUDAmw4Mb29vUWeWt7f3Jzsw+MLa2hojR46EpqYmOI7D0KFDIScnV+m2fFyLqkuXLli6dClUVVVRu3ZtdOjQAZcvX8ayZcvQtWtX1vGY0NHRQVJSEho3bizWnpiYCE1NTUappKtr1644d+4chEIhHBwccODAAairq4terxiYxNdOLkL4gBbxJkSGTJs2DS9fvoSvry/09PQAlE+XnD9/PgwNDbF27VrGCaVj48aNoj8/efIEhw4dQq9evaCvry9xgV/V6IvqxMLCAuHh4TA3N4eZmRliYmLELtgIIZ+XmpqKtLQ0CIVCAOWlk0pKSpCYmAgvLy/G6diwtbXFhg0bYGNjI9Z+7do1zJs3j3ejpcl/x6dFvBMSEjB16lT8/fffmDRpEubNm4dly5bh+PHj2Lp1KywtLVlHJDKge/fu6NatG9zc3GjQCRHz8uVLHD16FC9fvsTGjRsxfvx4qKqqVrotH+5zPvbmzRsEBAQgKysLkyZNQqtWrRAYGIisrCz8/PPPVe6r6mzHjh3YtGkT5syZA2trawBAXFwcNmzYAGdnZ8yYMYNxQunKycmBjo4OdYgSwjPUgUGIDMnLy4OrqysyMjJQp04dcByH169fw8LCAlu2bJGo81hdde/e/Yu2EwgEvBiZ5OLigvj4eGhqaiI3Nxfa2to0UouQfyE0NFQ0xb5iTYyKP7dp0wa7d+9mGY+ZNm3aICIiAoaGhmLtGRkZcHR0xK1btxglI7IiMjISffv2hZKSklh7UVERIiIi4OLiAgBYuXIlZs6ciXr16jFIKX1CoRAFBQWiMmv3799HvXr1aOQnEWnZsiV+//130YAkvvpwUNKnCAQC3j2EBQAPDw94enpSJxf5JKFQCB8fH4SHh6OsrAwcx0FBQQEjRozAokWLqrwvrM7Onj2L4OBg0RpuTZs2haurK3r06ME6GiHkG6EODEJkTFlZGS5fvoz09HQIBAKYmprC1taWRhhUQigU8uKCjUZqEfL/cXBwQJ8+fTBz5kx069YNhw8fxosXL/Djjz9i2LBhooewfDNu3DgYGxtLLHbo5eWFpKQk7Nu3j1EywlJ+fr6obKW9vT0OHjwo0TGRnJyMefPmISEhgUVEmVQxo6t169asoxAZ4OTkhOnTp/O25E0FGpT0abm5uV+8rY6OzjdMIjsiIyM/+Tpfyq9VpqCgAPfu3QMAGBoa8rbj648//sCcOXNgb2+Ptm3bguM4xMbG4vz58wgMDIS9vT3riISQb4A6MAiRQbm5ucjIyEDbtm1RWFgIDQ0N1pGYsbe3x2+//SYxqjEvLw8DBw7EtWvX2ARjhEZqEfLvtWjRAidOnEDjxo0xYcIEjBo1Cg4ODrh06RJWr16NY8eOsY7IxM2bN+Hs7AxTU1OxkgSpqanYunUrbG1tGSckLERGRsLd3V00W6myARQcx6FLly4IDg5mkJCtpKQkLFmyRKwk3Yf4shAx+bQ//vgDq1evxvjx42FoaCgxi6lijSYi6cqVK7C2tq50XcDq5nMLmwMQHYf5cmypai2hGjVqQEtLizdr6cTGxsLKygoKCgqIjY395LZ8O54MHjwYDg4OEgP3Nm7ciOjoaBw4cIBRMkLIt0QdGITIkJKSEixcuBC///475OTkcOrUKaxZswaFhYUIDAzkzUPrEydO4OLFiwCAw4cPo2/fvhI3MTk5OUhLS8PVq1dZRGSGRmoR8u/Z2Nhg//79aNKkCZYtWwYtLS1MnToVjx49Qt++fXHz5k3WEZlJSEjA1q1bkZGRAY7j8PDhQ4SHh8PCwoJ1NMJQbGwshEIhxo0bh8DAQLESlhULZRobG0NRUZFhSjZGjx6Nt2/fYujQofDx8YG7uzsyMzMRFhYGX19f9OnTh3VEIgM+taA7nx5G/xfW1tY4cuQIL9bUOXHiBLy8vDBx4kTY2NhASUkJiYmJCAgIgJOTE9q1ayfa9uP1qviirKwMDx48wLJlyzB8+HD079+fdSSpMDU1RUxMDDQ0NEQdXZU9uuPj8cTCwgJRUVHQ19cXa3/w4AEGDRpEJVAJqaYUWAcghPxj06ZNSE1Nxc6dOzF16lQAwNixY+Hh4YG1a9di2bJlbANKiZWVFfbt2ye6SMvNzRV7SFLx8KSipj2fdO/enUZqEfIvWVlZYcuWLVi6dCmaN2+OgwcPYvLkyYiLi+PlYpAVbt++jUmTJsHR0REbNmwAUH6MmT59OkJDQ9GsWTPGCQkLTk5OCAoKQv369eHj4wM7OzveDKD4EsnJydi5cycsLCxw6NAhGBsbY9SoUdDS0kJERAR1YBAAtCbZ/4NP4yu3bNmCxYsXo2/fvqI2Y2NjaGpqwtfXF7NmzWKYTjbIy8vDyMgIHh4emDNnDm86MM6ePSsq30jHE3ENGjTAw4cPJTowHj58iNq1azNKRQj51qgDgxAZcvz4cSxbtkxstE27du2watUqLFiwgDcdGNra2ti1axeA8g6cjRs38mYB88/x9/f/4pFahJByP/30E8aPH4+wsDCMHDkSmzdvho2NDYqLi+Hq6so6HjOrV69G9+7d4ebmJmo7ffo0Fi9eDB8fH2zfvp1hOsJKamoqnjx5gvr162PRokXo0qUL60gyRSgUon79+gAAfX19pKWloU2bNrC3t+dlSS1SOV1dXQDls6uzs7PRuHFjcBzHy1lLpGr379+HmZmZRLuenh6ys7MZJJJdcnJyePLkCesYUlNxDAHKSyNVVkL4xYsXWLRoEX799Vdpx2Oqf//+WLZsGX7++WfRulNxcXFYvnw5DSIgpBqjDgxCZEheXh4aN24s0a6trY2XL18ySMTe7t27q3zt8ePH0NLSkmIa9mikFiH/no+PD6ZMmQIHBweoqqoiIiICx44dg5aWFnr37s06HjNJSUnw9vYWq80uLy+PyZMnY9iwYQyTEZasra0xcuRIaGpqguM4DB06FHJycpVuy8dRofr6+oiLi0P//v1haGiIxMREAMDr169RUlLCOB2RFRzHYd26ddi9ezdKS0tx6tQp/PLLL6hZsyaWLVtGHRkEQHmZoNDQUCxbtkx0nH337h02b94MS0tLxunYqGwR74KCAkRERPCqvGVcXByysrIAlO8Tc3NziQ6MjIwMXLlyhUU8pqZNm4a0tDRMmTJFVJmA4zh07doVP/74I+N0hJBvhTowCJEhRkZGuHLlCn744Qex9uPHj6Np06aMUrGVlZWFNWvWIC0tDWVlZQDKL1BKSkqQn5+P5ORkxgmli0ZqEfLvGRsbY+/evfD29oaZmRm6d+8OBweHT9Yo5wNVVVVkZWVJ1Bl/8uSJxIKzhD/Wr1+Po0eP4uXLl9i4cSN69+7N61JrHxs7diw8PT0BAL169cKgQYOgrKyM+Ph4tGrVim04IjN2796NI0eO4Oeff8aKFSsAAA4ODli+fDk0NTXFZr4R/po/fz5cXV0RExMDc3NzCIVCJCUlobi4+JODuKozd3d3iTYFBQVYWVnxphoBUF4yuWJfCAQCeHl5SWyjoqLCy5nEffv2xcGDB5Gfn4+0tDRwHAcTExPUqlULXbp0wbVr11hHJIR8A7SINyEy5Pz583Bzc8Pw4cMRHh6OiRMn4v79+6JRW7169WIdUeomTZqEBw8eoHfv3ggNDcWECRNw//59nD59GitWrICTkxPriFI1fPhwmJiYSIzU8vDwQF5enqj0FiFEUmZmJi5cuIDo6GjExsZCU1MT9vb2ooeRfLNy5UpcunQJy5YtE41qTExMxIoVK9CmTRvRQzfCXx4eHpWWreC7M2fOoG7dumjTpg2ioqIQEhICbW1tLFmyBHp6eqzjERnQr18/zJ07Fz169ICVlRWOHj2KRo0a4fTp0/Dx8cG5c+dYR5RZH+4vPsjMzMT+/ftx9+5dAICOjg6mTZuGBg0aME5GZIWpqSkuXboETU1N1lGYOXHiBC5evAgAOHz4MPr27YsaNWqIbZOTk4O0tDRcvXqVRURCyDdGHRiEyJg///wTwcHBSE5OhlAoRLNmzTBp0iRedl4AQOvWrfHrr7+iXbt2GDx4MFasWAELCwv88ssvuHv3LoKCglhHlKobN27A1dUVmpqalY7UMjY2Zh2REJn2/PlzXL16FefOncPvv/8OjuN4u+B9UVER5syZg4sXL4qm4ANAjx494O3tTQ+tCXJzc794Wx0dnW+YhJDvi6WlJY4fPw49PT2xB/JZWVno27evqPQYkcSnDoxXr17Bz88PY8aMQdOmTeHq6oqrV6+iSZMm2LJlCy/2QVUyMjKQlpYGRUVFGBkZoUmTJqwjEYYePXqEhQsXguM4xMbGolWrVmKl+AQCAVRUVDBy5Ehau4uQaopKSBEiYzp37ozOnTuzjiEzSkpKROuCNGnSBHfu3IGFhQUGDx6MsWPHMk4nfRWjPT8cqdWtWzcaqUXIJ/zxxx+4du0arl27hoyMDDRo0AB2dnbw9vZG+/btWcdjRkVFBSEhIbh//z7S0tKgoKAAIyMjGBgYsI5GZET37t3FOrcqw3EcBAIBrzoCz5w5g9DQUKSnp0NJSQnGxsaYPn062rRpwzoakRG6urpITEyUmJHz559/8vqhNBHn4+ODGzduwMXFBadPn0Z8fDz8/Pxw4sQJ+Pr6IjAwkHVEqXv79i1+/PFHnDlzRtQmEAjQrVs3BAQE8LLE5du3b7F//36xkspA+X1yUlISTp06xTCddGhra4sqDYwdOxZBQUGoU6cO41SEEGmiDgxCZExycjJ27NghdlM8adKkShf35gNdXV2kpaVBW1sbTZo0ET0gEQqFKCwsZJxO+l69eoWQkBCxkVrh4eG4evUq70dqEVKV2bNnQ05ODvb29li9ejVatGjBOpJMadKkCY1sJJXy9/eHl5cXJk6cCBsbGygpKSExMREBAQFwcnJCu3btWEeUurCwMHh7e6NPnz7o3bs3ysrKEBcXB2dnZ6xbtw59+vRhHZHIAFdXVyxfvhxPnz4Fx3G4cuUK9u/fj927d1da458PIiMj0bdvX4kH0EVFRYiIiICLiwsAwNHRkTczAKOjoxEUFAQjIyOEhISgffv2GDBgAExMTDB69GjW8Zj45ZdfkJCQgKCgINjY2EAoFCI2NhZeXl4IDAzk5SLNXl5eiIyMRPPmzZGYmAgrKys8fPgQz58/F/3e8Alf14chhO+ohBQhMuTkyZNwc3NDq1atYGlpibKyMsTHxyM9PR1btmyBra0t64hSFxwcjO3bt8PX1xf16tWDs7MzZs6ciZiYGBQXF2Pfvn2sI0qVh4cHbty4gc2bNyM9PR0LFizAqlWrcOLECSgoKPBypBYhn3PmzBlcuXIFMTExyM7OhoWFBezs7GBnZ4dWrVpBQYHGcxBSmcGDB2Py5Mno27evWHt0dDR8fX1x/PhxRsnYsbe3x/jx4zFmzBix9i1btuDw4cP4/fffGSUjsmb//v3YtGkTHj9+DABQV1fHpEmTMH78eMbJpCc/Px9v3rwBUP67c/DgQdSrV09sm+TkZMybNw8JCQksIjLVqlUrnDx5ElpaWujUqRMmTZoEZ2dnZGZmYvDgwYiPj2cdUeo6duyIlStXolu3bmLt58+fx/Lly3HhwgU2wRhq3749Fi1ahP79+6NHjx4IDg5Go0aN4ObmBi0tLSxevJh1REII+ebojp0QGbJhwwZMnToVc+bMEWv39vaGr68vDh06xCgZO5MnT0aNGjXAcRwsLCwwffp0bNq0Cdra2vDz82MdT+popBYh/56DgwMcHBwAlNfQvXz5Mq5cuYKtW7dCTk4ON2/eZJyQENl0//59mJmZSbTr6ekhOzubQSL2nj59ik6dOkm09+jRAxs3bmSQiMiiY8eOoXfv3hg+fDjy8/PBcRw0NDRYx5K6P//8E+7u7hAIBOA4DsOGDZPYhuM43tasNzIywoULF6CtrY2nT5+KyghHRETAyMiIcTo2CgsLYWhoKNHepEkT5OfnM0jE3qtXr2BtbQ0AaNq0KZKTk2FoaIgpU6Zg7ty51IFBCOEF6sAgRIZkZWVh8ODBEu0jR47k3UyDCgKBQGxq7OTJkzF58mR2gRgrKiqCtrY2ACAmJgaTJk0CACgrK4vVRCWESMrLy8OVK1dw+fJlXL58GXJycujQoQPrWITILFNTU4SGhmLZsmWQk5MDALx79w6bN2+GpaUl43RstGvXDqdOnZK4Frlw4QKsrKwYpSKyZsWKFdi7dy/U1NSgrq7OOg4zgwcPhq6uLoRCIcaNG4cNGzZATU1N9HrFwrvGxsYMU7Ize/ZszJo1C6Wlpejfvz8MDAzg4+ODsLAwBAUFsY7HhLGxMU6ePIkpU6aItf/++++8LXeprq6O58+fQ0dHBwYGBkhLSwMA1KtXD8+ePWOcjhBCpIM6MAiRIebm5rh+/Tr09fXF2m/duoWmTZsySsUerQvyDxqpRci/t2rVKly+fBn37t1DgwYN0K1bN6xevRp2dna8XAySkC81f/58uLq6IiYmBubm5hAKhUhKSkJxcTGvalB/OLNCW1sbAQEBSEpKgrW1NeTl5XH79m0cO3YMrq6uDFMSWVLxkJHP1+8A4OTkhKCgINSvXx8+Pj6ws7PjzfoWX6JLly6Ijo5GXl4eTE1NAQD9+vWDk5MTb6/rp02bhunTpyMlJUU06yAuLg6nT5/GunXrGKdjo3Pnzli+fDl8fHzQunVreHt7o0ePHjhx4gS0tLRYxyOEEKmgNTAIYSwyMlL054yMDOzatQujRo1C69atIScnh9u3byM0NBQzZszg5Y0xrQsiLjo6WjRSq1+/fli7dq3YSC2+TsEn5FMcHR3RvXt3dO/eHc2bN2cdh5DvSmZmJvbv34+7d+8CAHR0dDBt2jQ0aNCAcTLp6d69+xdtJxAIcPbs2W+chnwPli5dioMHD8LU1BQGBgaoUaOG2Os+Pj6MkkmXhYUFwsPDYW5uDjMzM8TExPB6Rgr5MqdPn0ZISAjS0tLAcRxMTEwwceJE9OzZk3U0Jl69egV3d3d06NABo0aNwuTJk3Hx4kUoKChgzZo16NevH+uIhBDyzVEHBiGMVYy2+RyBQICUlJRvnEb29O3bF7169ap0XZAbN27wcl2Qv//+W2ykVkJCAlRVVXk7UosQQsi38erVK/j5+WHMmDFo2rQpXF1dcfXqVTRp0gRbtmxBo0aNWEeUWVeuXIG1tbXEg2vCD2PHjv3k63yZweTi4oL4+HhoamoiNzcX2traonJ0H6POP0K+DMdxSElJgaamJq8GExBC+I06MAghMq1ly5Y4duyYRFmt+/fvY9CgQUhISGCUjBBCCKnePDw8cOPGDWzevBnp6elYsGABVq1ahRMnTkBBQQGBgYGsI8osa2trHDlyhDp5yCf99ttv6N27N1RVVVlH+SZevnyJo0eP4uXLl9i4cSPGjx9f5WedOXOmlNMRWXXt2jUkJSXhzZs3+PhxFR+/J927d8fgwYMxZMgQOqcQQniL1sAghMg0WheEEEIIYSM6OhpBQUEwMjJCSEgI2rdvjwEDBsDExASjR49mHU+m0Rgx8iVWrVoFGxubatuBoaamJpqNkpOTgxkzZtAaGOSTtmzZAn9/f9SuXRu1a9cWe00gEPCyA8PR0RHHjh3Dpk2bYG1tDUdHx2rd8UkIIZWhDgxCiMz5cF2Qtm3bwsvLC/fu3at0XRBCCCGEfBtFRUXQ1tYGAMTExGDSpEkAAGVlZZSVlbGMRki1wKeOrlmzZuHVq1d49erVZ7fV0dGRQiIii/bs2YM5c+Zg2rRprKPIjJkzZ2LmzJlISEjA0aNH8csvv8DLyws9e/bEkCFDeLcmJCGEn6iEFCFE5tC6IIQQQgh7Q4cOxQ8//ABtbW1MmTIFJ0+ehIGBAdauXYtr167hwIEDrCPKLCsrKxw9epTKfZBP4tP3xNTUFAKB4JPbcBxH1/c8Z2FhgRMnTkBPT491FJklFAoRHh4Of39/FBUV0e8LIYQXaAYGIUTmpKamso5ACCGE8N7s2bMxa9YslJaWon///jAwMICPjw/CwsIQFBTEOh4h5Dvi7+8PLy8vTJw4ETY2NlBSUkJiYiICAgLg5OSEdu3asY5IZEDr1q1x8+ZN6sCoxKNHjxAVFYWoqChkZGTAxsYGjo6OrGMRQohUUAcGIYQQQgghREKXLl0QHR2NvLw80ezIfv36wcnJCUZGRozTEUK+J1u2bMHixYvRt29fUZuxsTE0NTXh6+uLWbNmMUxHWPqwfHDLli2xbNkypKenQ19fH/Ly8mLbDh48WLrhZMC+fftw7NgxxMfHQ1dXV7SgN5VaI4TwCXVgEEIIIYQQQipVr1491KtXT/R3CwsLhmkIId+r+/fvw8zMTKJdT08P2dnZDBIRWeHu7i7RtmXLFok2gUDAyw6MNWvWoHfv3pgzZw7atm3LOg4hhDBBHRiEEEIIIYQQQgj5ZkxNTREaGoply5ZBTk4OAPDu3Tts3rwZlpaWjNMRlqh88KfFxMRARUWFdQxCCGGKOjAIIYQQQggh5AtERkaib9++UFJSEmsvKipCREQEXFxcAACOjo6oVasWg4SEyKb58+fD1dUVMTExMDc3h1AoRFJSEoqLi7F7927W8QiRWSoqKjh79iyCg4ORlpYGBQUFNG3aFK6urujRowfreIQQIhUCjuM41iEIIYQQQgghRBbl5+fjzZs3AAB7e3scPHhQrKwWACQnJ2PevHlISEhgEZHImJkzZ8LNze2za8Vs3boVw4cPR+3ataWUjK3MzEzs378fd+/eBQDo6Ohg2rRpaNCgAeNkhMiuP/74A3PmzIG9vT3atm0LjuMQGxuL8+fPIzAwEPb29qwjEkLIN0cdGIQQQgghhBBShcjISLi7u0MgEIDjOAgEAoltOI5Dly5dEBwczCAhkTVt2rRBZGQk9PT0WEeRGa9evYKfnx/GjBkjGj1+9epVNGnSBFu2bEGjRo1YRyREJg0ePBgODg6YOXOmWPvGjRsRHR2NAwcOMEpGCCHSQx0YhBBCCCGEEPIJsbGxEAqFGDduHAIDA6GmpiZ6TSAQQEVFBcbGxlBUVGSYksiKVatW4enTp5gxYwb09fUlSo7xkYeHB27cuIHNmzcjPT0dCxYswKpVq3DixAkoKCggMDCQdURCZJKFhQWioqKgr68v1v7gwQMMGjQIt27dYpSMEEKkh9bAIIQQQgghhJAqODk5ISgoCPXr14ePjw/s7OxofQvySdHR0cjMzMSpU6cqfT0lJUXKidiLjo5GUFAQjIyMEBISgvbt22PAgAEwMTHB6NGjWccjRGY1aNAADx8+lOjAePjwIW/KzxFCCHVgEEIIIYQQQkgVUlNT8eTJE9SvXx+LFi1Cly5dWEciMm7cuHFQVlaGnJwc6ygyo6ioCNra2gCAmJgYTJo0CQCgrKyMsrIyltEIkWn9+/fHsmXL8PPPP6N169YAgLi4OCxfvhx9+/ZlnI4QQqSDOjAIIYQQQgghpArW1tYYOXIkNDU1wXEchg4dWuWD6bNnz0o5HZFFvr6+UFNTw8CBA+Ho6AhDQ0PWkZgzMjLChQsXoK2tjadPn6Jz584AgIiIiM8udk4In02bNg1paWmYMmWKaA0mjuPQtWtXzJs3j3E6QgiRDloDgxBCCCGEEEKq8PLlSxw9ehQvX77Exo0bMX78eKiqqla67ceLrBJ+KigowPHjxxEZGYm//voLFhYWcHR0RL9+/Xhbfiw6OhqzZs1CaWkp+vXrh7Vr18LHxwdhYWEICgqimU2EfEZGRgbS0tLAcRxMTEyo448QwivUgUEIIYQQQgghX8DDwwOenp68fQhN/r2HDx8iKioKp06dQlZWFhwcHDBs2DDY2tqyjiZ1f//9N/Ly8mBqagoASEhIgKqqKj2IJeQLPHv2DKWlpfj4EZ6Ojg6jRIQQIj3UgUEIIYQQQgghXyA3N/eLt6WHSgQASktLceHCBfzxxx84ffo06tWrh5cvX0JXVxd+fn6ih/mEEFKZ+Ph4eHh4IDMzU6yd4zgIBAKkpKQwSkYIIdJDHRiEEEIIIYQQ8gVMTU1FNcirQg+VCFD+0PHIkSM4efIk3r59CwcHBwwdOhR2dnYoLCyEp6cnUlNTcfLkSdZRCSEyzNHRESoqKhg/fjxq164t8bqNjQ2DVIQQIl20iDchhBBCCCGEfAF/f394eXlh4sSJsLGxgZKSEhITExEQEAAnJye0a9eOdUQiA3r06IHs7Gw0b94cc+bMwYABA8QePKqqqqJPnz6IiYlhmJIQ8j1IT09HZGQklVojhPAadWAQQgghhBBCyBfYsmULFi9ejL59+4rajI2NoampCV9fX8yaNYthOiIrunfvDkdHR5iYmFS5jZ2dHU6dOiXFVISQ75G2tjYKCwtZxyCEEKbkWAcghBBCCCGEkO/B/fv3YWZmJtGup6eH7OxsBomILPLw8Phk5wUA1KlTB+rq6lJKRAj5Xk2bNg3e3t64c+cOSktLWcchhBAmaA0MQgghhBBCCPkCw4cPh4mJCZYtWwY5ufKxYO/evYOHhwfy8vKwa9cuxgkJIYRUJz179kRubi7KysoqfZ3WWyKE8AF1YBBCCCGEEELIF7hx4wZcXV2hqakJc3NzCIVCJCUlobi4GLt374axsTHriIQQQqqRw4cPf/L1IUOGSCkJIYSwQx0YhBBCCCGEEPKFMjMzsX//fty9excAoKOjg2nTpqFBgwaMkxFCCCGEEFL90BoYhBBCCCGEEPIFXr16hZCQEAwcOBC//vor3r59i/DwcIwbNw5ZWVms4xFCCKmGoqOj4ezsjI4dOyInJweBgYE4cuQI61iEECI11IFBCCGEEEIIIV/Ax8cHV69ehYKCAk6fPo34+Hj4+fnBwMAAvr6+rOMRQgipZmJiYjBz5kzo6Ojg1atXEAqForWXIiMjWccjhBCpoA4MQgghhBBCCPkC0dHR8PX1hZGRES5cuID27dtjwIABcHNzw9WrV1nHI4QQUs0EBgbixx9/xOrVqyEvLw8AcHNzg5ubG7Zt28Y4HSGESAd1YBBCCCGEEELIFygqKoK2tjaA8lGx7du3BwAoKyujrKyMZTRCCCHV0J07d9C9e3eJ9t69eyMzM5NBIkIIkT4F1gEIIYQQQggh5HtQMfNCW1sbT58+RefOnQEAERERMDIyYpyOEEJIdVO7dm08efIEjRs3Fmu/e/cu1NTUGKUihBDpog4MQgghhBBCCPkCs2fPxqxZs1BaWor+/fvDwMAAPj4+CAsLQ1BQEOt4hBBCqpkBAwbA29v7f+3dIa4iQQBF0deTTyBhD2AIQbEDEjQG2AOLwJPgESyFDbAEBPh2KBSKhP76i3EzdE3mHFvmqTI33ZX9fp+qqvJ8PnM+n7Pb7bJYLNqeB/ARVdM0TdsjAAAA/gWPxyP3+z2TySRJcrlc0u/3fYEBwB/3er2y3W5zOp2SJFVVpWmazOfzHA6HdLvdlhcC/H0CBgAAAAAUpq7rDAaD1HWd6/Wa9/ud8Xic0WjU9jSAjxEwAAAAAKAws9ksx+Mx0+m07SkArfnV9gAAAAAA4KdOp5OvL8/XAv83tyAAAAAAFGa9Xmez2WS5XGY4HKbX6/04X61W7QwD+CC/kAIAAACAwkwmk9+eVVWV2+32wTUA7RAwAAAAAACA4ngDAwAAAAAAKI6AAQAAAAAAFEfAAAAAAAAAiiNgAAAAAAAAxREwAAAAAACA4ggYAAAAAABAcQQMAAAAAACgON91T706jE5gWAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABcsAAAaWCAYAAABibOViAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXhT1xsH8G/aNKk7UlpKlSruUFyGS7EBQ7fhjA0YP2BjsGEzYOiQwRiD4TCGu0txKRVKCxW81CXSNL8/UlJCAmNd0jbr9/M8eR5y77m377kkJ+e+99xzBUqlUgkiIiIiIiIiIiIiojLMpKQDICIiIiIiIiIiIiIqaUyWExEREREREREREVGZx2Q5EREREREREREREZV5TJYTERERERERERERUZnHZDkRERERERERERERlXlMlhMRERERERERERFRmcdkORERERERERERERGVeUyWExEREREREREREVGZx2Q5EREREUGpVJZ0CAbxX60XERERERHpH5PlRERERP/A7du38fnnn6NFixaoXr062rRpg+nTpyMxMbGkQ0NYWBj8/PwQFhb2ztvIZDLMnTsXe/bsUS+bMmUKWrVqZYgQtUyZMgV+fn5o1qzZGxPbP/74I/z8/DBw4MB/tO+YmBj069fvb8vt3LkTfn5+SEpK+kf7JyIiIiKi/xYmy4mIiIje0caNG/H+++/jxYsXmDhxIlavXo3hw4fj0qVL6NWrF6Kioko6xH/s2bNn+O2335CXl6deNnr0aCxdurTYYjAxMcHTp09x7do1nev3799fpP0ePHgQ169f/9tyLVq0wJYtW1C+fPki/R0iIiIiIvpvEJZ0AERERETG4OrVq5gzZw4GDBiAL774Qr28QYMGaNOmDbp3745p06Zh586dJRilfri7uxfr33NxcYFSqcSBAwdQp04djXU3btzA06dPUbVqVYP9fUdHRzg6Ohps/0REREREZBw4spyIiIjoHaxZswY2NjaYMGGC1jpHR0dMmTIFrVu3Rk5ODgBAoVBg48aN6NKlC6pXr44WLVrgxx9/hFQqVW83ZcoUDB48GDNmzEDt2rXRsWNHKBQK+Pn5YenSpQgNDUX16tXVo7wfPXqECRMmoH79+qhRowYGDx6MiIiIt8Z99OhR9O/fH7Vq1UJwcDDat2+PjRs3AgCSkpLQunVrAMDUqVPVU6+8Pg3Lu9ZlyJAh2LFjB9577z0EBwejW7duOH369Dsd3/bt2+Pw4cNaU7Hs378fjRs3hr29vcZyiUSC+fPno127dggODkbt2rUxdOhQREZGAgCWLFmiPm5+fn5YsmSJ+t+vH9tXp2F5/Pgx6tSpozHli1QqRceOHdGpUyeNOhMRERER0X8LR5YTERER/Q2lUomzZ8+iVatWsLCw0FmmY8eOGu+/+uor7N69Gx9//DHq1q2LiIgILFu2DJGRkfjll18gEAgAAFeuXIFYLMayZcuQk5MDU1NTAMCKFSswceJEeHp6wtXVFSkpKXj//fdhYWGB6dOnw8LCAr/99hsGDBiA7du3w9vbWyumkydPYsyYMRg0aBDGjRsHiUSCP/74A9988w2Cg4MREBCApUuXYuzYsRg1ahTatWuns27vWpfw8HA8e/YMn3zyCaytrbFo0SKMGzcOp0+fhp2d3VuPcceOHbF27Vpcu3ZNPbo8Pz8fBw8exIQJE7Bjxw6N8pMnT8aVK1cwYcIEuLu7Iz4+HosWLcLEiROxb98+9O7dG0+ePMH27duxZcsWVKxYUb3t68f29u3b6nUuLi6YMmUKvvzyS+zYsQM9e/bE/PnzkZCQgO3bt0MsFr+1HkREREREZLyYLCciIiL6G6mpqZBKpXBzc3un8vfu3cP27dsxceJEDB8+HADQpEkTlC9fHpMnT8bp06fRvHlzAEBeXh6++eYbjWQuANStWxdDhw5Vv1+4cCHS0tKwadMmuLq6AgCaNWuGjh07YtGiRVi8eLHOOHr06KExbUytWrXQoEEDhIWFoUaNGggICACgmnolMDDwX9UlMzMTO3fuVE/jYmlpiQ8++AAXL17Ee++999ZjVq1aNVSuXFljKpYrV64gLS0Nbdq00UiWy2QyZGdn48svv1RfpKhfvz6ysrLw7bffIjk5GRUrVlQf05o1a7712L6aLAeA3r174/Dhw/j+++9hb2+P9evX4/PPP4e/v/9b60BERERERMaN07AQERER/Y2Xo70VCsU7lb906RIAoFOnThrLO3XqBFNTU4SFhamX2dvbayXKAaiT2C9duHABAQEBqFChAvLy8pCXlwcTExM0a9YM58+f1xnHRx99hG+//RbZ2dkIDw/H/v37sXLlSgCqhLO+6+Lo6Kgx3/nLeuXm5r7T3+rYsaPGVCz79u1DixYtYG1trVFOJBJhzZo16NixI54+fYqLFy9i8+bNOHHixDvV7fVjq8vs2bORn5+PsWPHon79+hg2bNg71YGIiIiIiIwXR5YTERER/Q07OztYWVnh0aNHbyyTk5MDuVwOOzs7pKenAwDKlSunUUYoFMLBwQGZmZnqZVZWVjr3Z2lpqfE+LS0N8fHxCAoK0lleV0I6JSUFM2bMwNGjRyEQCFClShXUrVsXALTmBn+Tf1KX16eoeTk9S35+/jv9rY4dO2LlypW4du0aatasicOHD2PmzJk6y545cwZz585FXFwcrKys4O/vrz5mf1e314+tLhUqVECjRo1w6NAhtGjRQl0XIiIiIiL672KynIiIiOgdhISEICwsDFKpVOe81Vu3bsV3332H7du3q+fnfv78uXrKFACQy+VITU2Fg4PDP/77NjY2qF+/PiZPnqxzvUgk0lo2adIkxMXFYd26dahVqxZEIhFyc3OxdevWd/67hqjLm/j7+8PT0xMHDx6ERCKBVCpFixYttMolJCRgzJgxaNOmDVauXInKlStDIBBg48aNOHPmjF5iOXv2LA4dOoSAgAAsWbIEbdu2ReXKlfWybyIiIiIiKp04DQsRERHROxg2bBjS0tLw008/aa17/vw51q5dCx8fHwQFBaF+/foAVNOIvGrfvn1QKBTqObn/ifr16+P+/fvw9PREtWrV1K/du3dj+/bt6qliXnX16lW0a9cODRo0UCfTT58+DaBwtLeu7V7/u/quy9u8nIpl//79aNu2rc4LE+Hh4ZBKpRg+fDjc3d3Vo75fJspfjiw3MSlaVzczMxNffvklGjdujA0bNsDW1hbTpk1759H4RERERERknDiynIiIiOgd1KxZE+PHj8dPP/2E2NhYdO/eHQ4ODoiJicGaNWsglUrViXQfHx/06NEDixcvRm5uLurVq4fIyEgsXboUDRo0QNOmTf/x3x8yZAh2796NIUOGYNiwYXBwcMD+/fuxdetWTJ06Vec21atXx549exAUFISKFSvi2rVrWLVqFQQCgXraFhsbGwCqOdG9vb1Ro0YNjX0Yoi5v07FjRyxbtgy7d+/G8uXLdZYJCgqCUCjEDz/8gGHDhkEmk2Hnzp04efIkANWUOABga2sLANi7dy9q1KjxziPD586di9TUVKxfvx7W1taYPn06xowZgw0bNmDgwIH/vpJERERERFQqMVlORERE9I5GjRqFwMBAbNy4EXPnzkV6ejpcXFzQokULjBw5Ei4uLuqyc+bMQZUqVbBjxw6sXr0a5cuXx6BBgzB69OgijXiuUKECNm/ejPnz52PmzJmQSqXw8PDAnDlz0KtXL53bfPvtt5g1axZmzZoFAPDw8MDXX3+Nv/76C1euXAEAWFtbY+jQodiyZQtOnTqFc+fOae1H33V5Gx8fH1StWhXPnz9H48aNdZapUqUK5s+fj6VLl2LUqFGws7NDzZo18fvvv2PgwIG4cuUK/Pz80K5dO+zevRtTpkxBr1693jj/+atOnTqFnTt34vPPP1c/rLRNmzZo164d5s+fj2bNmqFKlSr6rDIREREREZUSAiXvJyUiIiIiIiIiIiKiMo5zlhMRERERERERERFRmcdkORERERERERERERGVeUyWExEREREREREREZFByWQydO7cGWFhYW8sExERgd69e6NGjRro2bMnwsPDNdbv3bsXbdq0QY0aNTBmzBikpKToNUYmy4mIiIiIiIiIiIjIYKRSKSZMmICYmJg3lsnJycHw4cNRt25d7Ny5E7Vq1cKIESOQk5MDALh16xa++OILjB07Flu2bEFGRgamTp2q1ziZLCciIiIiIiIiIiIig7h37x769OmDhISEt5bbv38/xGIxJk+eDG9vb3zxxRewsrLCwYMHAQAbNmxAhw4d0L17d/j7++P777/HqVOnkJiYqLdYmSwnIiIiIiIiIiIiIoO4dOkSGjRogC1btry13M2bN1GnTh0IBAIAgEAgQO3atXHjxg31+rp166rLu7i4oFKlSrh586beYhXqbU9ERERERERERERE9J8mk8kgk8k0lolEIohEIp3l+/fv/077ff78OXx8fDSWOTk5qaduefbsGcqXL6+1/smTJ+8a+t9ispyIiIiIiIiIiIjKpH1mfiUdgtGJWzAWS5cu1Vg2duxYjBs37l/tNzc3VyvhLhKJ1Il5iUTy1vX6UKqS5fxwauokj4bkyLqSDqNUMW87BFnLJpd0GKWK9ZjvkTSuT0mHUWq4LdmKp5FXSzqMUqVCQB3knNtR0mGUKpZNeiLn9NaSDqNUsWzWBwkxkSUdRqni7huAJ59/UNJhlCoVf9iAlNkjSjqMUsXxy5WQHP61pMMoVczbDUXS3fCSDqNUcasajOd3wko6jFKjXFADpM4bXdJhlCoOU5fjSdT1kg6jVKnoXwuRsQ9LOoxSJcDblZ+T11T0r4Xk8AslHUap4hzcqKRDoDJgxIgRGDp0qMayN40q/yfEYrFW4lsmk8Hc3Pyt6y0sLP71336pVCXLiYiIiIiIiIiIiKj0etuUK/9GhQoVkJycrLEsOTlZPfXKm9aXK1dObzHwAZ9EREREREREREREVKJq1KiB69evQ6lUAgCUSiWuXbuGGjVqqNdfvVo4m8Djx4/x+PFj9Xp9YLKciIiIiIiIiIiIiIrd8+fPIZFIAADt27dHRkYG5syZg3v37mHOnDnIzc1Fhw4dAAD9+vXD7t27sW3bNkRFRWHy5Mlo0aIFKleurLd4mCwnIiIiIiIiIiIiomIXEhKC/fv3AwCsra2xcuVKXL16FaGhobh58yZWrVoFS0tLAECtWrXwzTffYNmyZejXrx/s7Owwb948vcbDOcuJiIiIiIiIiIioTBKYCUo6hDIlOjr6re+rV6+OXbt2vXH70NBQhIaGGiQ2gCPLiYiIiIiIiIiIiIiYLCciIiIiIiIiIiIiYrKciIiIiIiIiIiIiMo8JsuJiIiIiIiIiIiIqMxjspyIiIiIiIiIiIiIyjxhSQdAREREREREREREVBJMhIKSDoFKEY4sJyIiIiIiIiIiIqIyj8lyIiIiIiIiIiIiIirzmCwnIiIiIiIiIiIiojKPyXIiIiIiIiIiIiIiKvOYLCciIiIiIiIiIiKiMk9Y0gEQERERERERERERlQSBGccSUyF+GoiIiIiIiIiIiIiozGOynIiIiIiIiIiIiIjKPCbLiYiIiIiIiIiIiKjMY7KciIiIiIiIiIiIiMo8JsuJiIiIiIiIiIiIqMwTlnQARERERERERERERCXBRCgo6RCoFOHIciIiIiIiIiIiIiIq85gsJyIiIiIiIiIiIqIyj8lyIiIiIiIiIiIiIirzmCwnIiIiIiIiIiIiojKPyXIiIiIiIiIiIiIiKvOE/2bjmJgYPHjwAE2aNMGLFy/g5uYGgYBPkCUiIiIiIiIiIqLST2DGXCYVKlKyPD09HePHj8elS5cAAIcOHcKcOXOQmJiIVatWwdXVVa9BEhEREREREREREREZUpGmYZk9ezYsLCxw8eJFiMViAMDcuXNRsWJFzJ49W68BEhEREREREREREREZWpGS5WfOnMGECRNga2urXubo6IipU6fi8uXLeguOiIiIiIiIiIiIiKg4FPkBn1KpVGtZSkoKhMJ/NQ06EREREREREREREVGxK1KyvHPnzpgzZw5iYmIgEAiQk5ODixcvYvr06ejYsaO+YyQiIiIiIiIiIiIiMqgiDQOfPHkyFixYgNDQUMjlcnTv3h0mJibo3bs3Jk+erO8Y9cJEZIaQsJ0IHz8LKacv6SxjWzMAwcu+hm1wVWRG3MPtMTOQce2Oen2lvp1Q9etPYe5SDs8Pn8WtkdMhf5FaXFXQG6k8D3O3HsKxG9EQmwkxqHUDDG7dQGfZfZfDsWL/WTxNy4S/WwV83rMNqnlUAgAolUr8evQitp29jvTsXAS5u2BK73bwdnEuzurohTRPge9O3sKxe48gFppiYG0fDKzto7PshD1hOHX/icayhV0aoJlnReTK8/Dj6XCciH2EfCXQxqcSJjQNhqXICO+4EJrBoc+HsKjRAEq5DJnH9yDr+F6tYuU+mQGxb5DW8uwLJ5D6x88AAOsWHWHTuisE5hbIvX4BadvWQimXGbwK+iaVybBw5TqcvnAJIrEI73frhPe7d9JZ9m7cA8z/eQ3i4hPh6e6GiSOHwc/HC4Dqu7N59z7s2n8EWVnZaNqwLsZ/PASWFubFWR29kMrlmPf7Xzh29Q7MRWYY+F4IBrVvqrPsmZtRWLrzCBKfvYBbOUeM7tEWLWoFqNcfuXIbS3ccxrPUDNT0rYLpg3ugkrNDcVVFb6RyOeZt3Itj1yJgLhJiYLsQDGrXRGfZM7eisXTXUSQ+T4GbswNGd2+NFjVVx6TWx9N1bvPN0FB0aVzLYPEbgkwmw5KfV+LM+QsQi8To1aMbeod211n2XmwcFi37Gffj41HF3R3jx4xEVR/t9vjU2XOY/e0POLL3T8MGbyhCM9j2GAzzavWglMuRfWofck4f0F20ohtsQ4fCzM0TeclPkbl7PWSxkTB1cEa5aT/p3ObF8lmQ3482YAX0zFQIqw79YOZfG5DLIbl4GJKwo7qLlqsEy44DIKzoDkXqc+Qc2oy8+Lta5Sw7fQBlZhpyT2v/dhkDVX/tMI7dLOivtar/lv7aHaw48Ep/LbS1ur+myM/Hkj2n8VfYbeTK5AgJ9MKUXm3hZGtVnNXRC5lMhkUrVuPM+YsQi0To3aMb+vToqrNsTGwcflq+CvcfxMPDvTI+HTMCVX281eu7vj8Q2dk5Gtvs3boBFhYWBq2DvkllMixYvR6nLlyBWGSG97t1RL9uHd66zc3IaMxevArbfp6vXqZUKrFx1z7sPnwc6ZlZCPDxwqcfDYRnZVdDV0H/TIWwfO99mPnVBPLkkIQdhfTSMZ1FrXqOgKhqDY1lWduWQ34vHDAxgUWzrhAF1wdMTSG7HYbcE38CynzD10HPpDIZflq5VtWHFYnwfvfO6Nu9s86yd+PuY8HyXxAXnwgPdzdMHPWRRh923ebt2HfkBHIlUtSrWQ2fjhgGeztbnfsq7eJiY/DzkoWIj78Pd3cPjBz7GXx8q76x/F9/bsefO7YgJycHTZq2wPCR4yA2V/XfL54/g29nz9Ao36hJM/zvi5mGrIJe8XOiSdW+/o6TF69ALBKhX7f26Nf179rXu5i9eDW2/fyDeplSqcTGP/fjz8MnCtpXT3z24QfG2b7+h5kIBSUdApUiRRpZLhKJMGXKFFy+fBl79uzBrl27cPnyZcycORPm5qUv2WMiFqHWhgWwCX7zD5+ppQXq/bUKqWev4GyDUKReuI56u1fC1FLVYbarVw3VV81BzOylOBfSF2YOtqixZl5xVUGvFuw6joiEJ1j9SX9M6/seVh44iyPXo7TKXbuXiJkb92NEhxDs/OIj1PB0xZjlW5AjVSU5t529jvXHwjClV1v88fkQuDrZY8zyLciVyYu7Sv/aorN3EPEsDStCm2BKy+pYHRaNozGPdJaNS8nErHa1cejD99SvhpXLAQB+PB2OyKdpWNa9MX7u0Rh3nqZiwZnw4qyK3th3/wBm7l54vuQbpG79Bbbte8GipvZJevIvP+LRtI/Vr+RV30MplyPrzCEAgEWNBrDt0Bupm1fh+ZJvIPLwhV33D4q7Onrx87o/EB0bh4WzvsCEEUOxbstOnDwfplUuVyLB5Fnfo3qgP1bPn4Mgf1/8b/YPyJVIAAB/HT6OdZt3YPgHfbHs25l4/iIV3yxYWtzV0YuFWw8g4sFDrJr8IaZ+0BWr/jqOI1dua5W7m/gYE5dtRLeQOtg8cxx6Nq+Hz5f/geiExwCAG/fiMW3lFgx8LwSbZoyFSCjElJWbi7s6erFw2yFExD/EqolDMbV/F6zacwJHrmq3A3eTnmDiz5vQLaQ2Nn81WnVMVmxBdKLqmBz5cbLGa8h7IXBxslcn043JqrXrcDcmFj/MmYVxo0Zgw6YtOH32vFa5XIkEX8ycheCgQCz7aT4C/f3x5czZ6u/OS1lZWVi+8pfiCt8gbDr1g5mbJ1JWzkPGrnWwbhsKcbV6WuUE5hZwGD4FeU8fInn+VEjDL8N+8KcwsbKFIu0Fnn0zRuOVe/08ZAmxkMffK4FaFZ1lm14wdamCzA0LkH3wD1g066xKnL9GIDaHzYBPoXj+GOmrvoE86jqse4+CwNJGo5x5o3Ywr6X7wp2xWPDncUQkPMbqcf0wrU87rDx47s39tT/2Y0SHJtg5raC/9vNWdX9t7ZGLOHQtAj8M64YNEwchPTsX037fU9zV0YuVv67H3ZhY/Dj7a4wfNRy/b9qKU+cuaJXLlUgw7es5qBYYgJ9/+gGBAX6Y9vVcdVvy/MULZGfn4PfVy7Bt/S/qV2k8j/k7y3/bjKh797Ho6ymYMHwwft26CyfO6x4YBACx8YmY/sNSKPOVGst3Hz6BzX8dwKcfDcQvP3wNl/LlMGnWj5DomHqztLNoFQrTiu7I+mMRcg5thkVIR5j56b7IbOrsguy/fkXa4inql/y+6ntm3rQLRNUaIHv/BmRtXgphFT9YtOlZnFXRm5/XbUT0vTgsnDUdn40YhnWbd+DkuYta5XIlEvzvm+9QPcgfqxbMQ7B/VUyZ9Z36u7Pn0DHsO3ICX04YiyXzZiI5NRXfL11Z3NXRC4kkF7O+morA4GqYv2gF/AOCMHvmVEgkuTrLnz97Gps3/oZRYydg1rz5uBsVgd/WFtY9MSEe9Ro0wq8btqtfY8ZPKq7q6AU/J5qWrd+CqNgHWPz1/zBx+CCs3bobJy68+Rl9sfGJ+PLHpch/7YLan4dPYNNfB/HZhx9gzfcz4VK+HCbOXmCU7StRWVGkZHlaWhrGjx+PX375Bb6+vvD390eHDh3w2WefITMzU98x/ivWAd5ofG4rLL3d31rOpU9H5OdKEfm/75EVFYeICXOgyMyGS6/2AACP0R/g0fYDeLhhNzJvR+PGkMko36E5LDzciqMaepMjlWHXhZuY3LMNAipXROsafhjSpiE2n7qqVTY5IwvD2zdB5/rBcHN2wIgOIUjPkSD2cTIA4K+w2xjUugGaV/OFRwUnfPH+e0jLzsWN2KTirta/kivPw5934jGpWTUElLdHK+9KGFTHB1tvxWmVleUp8CgjB0EVHOBsZa5+iYSmAAAzEwEmt1DtJ6C8PboGuuPGoxfFXaV/TSASw6pRa6RvXwd50n1Ibl1G5rG/YN2svVZZZU428jPTVa+sDNh16YfMY39Bnqg6ftYtOiDr5H5I7lyDPCEWqZtXwbJhSwjMRMVdrX8lVyLB3qMn8MmHg+Dn7YlmDeuhX4/O2LnvsFbZ42cvQiwyw+gh/eFR2RWffDgIFhbmOHlOlVjfue8Q+nbrhDbNGsPT3Q3Txo/EhSvXkfBQ9wWa0ipXKsOfp69gcv/OCKjiilZ1gjC4Q1NsOabdqT5w8Sbq+Xujf9vGcK/ghL6tG6GevxeOXFYl1n8/eAYdG9ZErxYN4OFSDpP7d0ZyWiZSM7OLu1r/Sq5Uhj/PXsXk9zshoEoltKodiMHvhWDLce2LKgfCbqGevxf6t24E9/JO6NuyAer5eeLIFVVi3dnORv2SyvKw6fhFfDWoO2wsjSuZkyuR4MDhoxg9/EP4+ngjpHFD9OnZA7v37tMqe+r0WYhEIgwfNgRVKlfG6OEfwsLCAqfPntMot2rtb3BxqVhcVdA7gZkYlg1aIHP3BuQ9fABp+BVkn9wLqybttMpa1GkKpVSKjJ2/QvHiKbIO74Qi+SmElT0BpbKw/c1Mh6ljeZhXq4f0zSuAfEUJ1KyIzEQQ12yCnMNboXiSCHn0DeReOAzzei20ioqqN4JSJkXOgY3IT32O3NN7kJ/yDEKXKgUFzGHdczjMG7eHIj2leOuhR6r+2i1M7vVKf611A2w+raO/lpmt6q/VC4absz1GtG+i0V9TKPIxKbQ16vi4w9vFGf1b1DW6vhqgakv2Hz6GMcOHoaqPF0IaNUDfnt2xe6/2HRknz5yDWCTCiGGDUKWyG8Z8PAyWFuY4VXCRLiExCU6ODqhUsSIcHRzUL4HAuEaV5Uqk2HPsFMZ/+AH8vD3QvGFd9O/eCTsO6L4r489DxzFy6iw46Bjduf/4GbzftQOa1K0F90oumDRiMDKysnA7MsbQ1dAvMxHENRoj9+g2KJ4mQn73JiQXj0Bcp7l2WVMhTOydkPc4HsrsDPULijwAgHmdZsg9uRt5cRFQPE1EzqFNENdqCpiJi7lS/06uRIJ9R45j3EeDUdXbE80a1Ue/0C7Ytf+QVtnjZy9ALBJh1JAP4FHZFeM+GgwLCwt1wvTi1eto1bQRagYHwqtKZfTr0RXXbhnnwKCzp09CJBZjyIcjUdm9Cj4cMQYWFpY4d+aUzvJ7d+9Al249Ua9BI/hW9ceocRNw9MhBSAsSxEmJCXCv4gkHR0f1y9raujir9K/wc6JJ1b6exvhh/eHn5YHmDepgQPeOb25fD5/AiGlz4Ghnp7Vu/4mz6Ne1PZrUrQn3ShXx+fBByMjKwq0oI2tficqQIiXLZ8yYgRcvXqBDh8JbUFasWIHk5GTMnj1bb8Hpg2Oz+nhxMgznQvq+tZxDgxpIOa95ApJy4RrsG9YEANjXr4GUM1fU6yRJT5Cb8AgODTRv2yvt7j58hjyFAjW9CpP8tbzccDv+EfJfG2HSrnYAPm6vmjpAIpNjw4lLcLSxVE+zMqFHK3SqWzj9hgACKAFkSYzrCund5Azk5StRw8VRvaxmJSeEP0lFvlLzmMSnZQECwNXOUue+prSsgZqVnAAAjzJycDD6Ieq4Gd+0NGauVQBTU0hfuYVfFhsFURVf4C0nkpYNWsDE0hqZR/5ULRAIIHL3gTQ2onA/D2IgMBWq/oYRufcgAYo8BYL9C+9QqR7gh4iYe8jP1xw9EBEdg+oBfuqTboFAgGr+fgiPVnWIHj15hgDfwlvBnR0dYG9rgztG1mGKTnyMPEU+avgUXoys5euB8LhErWPSpUltfNLrPa19ZOWqTjCuRN9HqzqF7YlrOUfs/2EyHGyMa5qA6MQnqmPiXVm9rJZvFYTfT9I+Jo1r4pPQtlr7yMrVbkN//usY6vt7oWGgt9a60i7u/gPk5eUhMMBfvSw4MABRd2O0jklkdDSCAwM0vjtBgf6IjCpsi27eDsfN2+Ho36dX8VTAAISV3AETU8hemTpEfv8uzNy9tdpYkXcApHeuAq/8Hr1Y/BVkUTe19mvTsS9ywk5A8fyx4YI3AGEFN8DUFHmJsepleYn3IKzkCUDzeJhV8YPs7k2N45Gxdh7ksaqTcFN7Z0Bohoxf5iA/7XmxxG8I6v6a5yv9NW833I5/rN1fq+WPj99rDOBlf+2yRn9tZMcQtK7hBwB4kZmNnedvoq7v2weRlEYv25Igfz/1suBAf0TqbEvuarclAf6IiFJ95+ITkuBWqVLxBW8gL/sm1fx81cuqB1RFREys1jEBgLDrt/DlJx+jbxftwQ9jhryPds0aFy4QCKBUKpGVk6NVtjQzLV/QniQVDnrJS4qFsJIHXm9PTB0rAEogPzVZaz8CS2sIxBbIe/RAvUzx7CEEpkIIXYzr+xN7P76gD1v43akW4IeIu7r7sNVe78MGVMWdgj6srY0NLly5jucvUiCVynDszDn4eHkUW130KToqAgGBwRp19Q8MRnRUhFZZhUKBezHRCAqurl7m5x+IPLkc9++rfrsSEx6gkqtxDaR7FT8nmnS2r/6+uBMTp7N9vXjtFr4c9xH6dNYe+DB28Pto16xR4YKC9jU7R/ddDERU8oo0kfK5c+ewZcsWeHsXnrQHBATgq6++woABA/QWnD4krNz0TuXEFcshM0LzlmXZ0xewCVI1juYu5SF99ExjvfTZC5i7GtfItuT0LNhbWcKsYCQ0ADjZWkEqz0Nadi4cbbSTwGHRDzBy6WYoocS8wV1hKVaNCK79SjIIAHaevwFFfj5qeRtXJyE5WwJ7CxHMTAuvHTlZiiFV5CM9VwYHy8LRI/dTsmAtMsNXh6/hSlIyKtpYYEQDfzTxqKCxz68OX8O+qERUsrXEx/X9YGxMbR2Qn50JKApHJioy0yEQiWBiZY38LN13kNi07Yask/uhlKmSfSYWVhCIRFCkvzK3f34+8rMzYWrvBMB4ksMvUtJgZ2sDM7PCZtPB3g4ymRwZmVkac/C9SE2Dh7vm98DB3g73ExLV/05OKTwmuRIJMrKykVbK7sz5O8lpmbC3toSZsPCYONpaq9qTrBw42haOpvGqVF5j29iHT3EpMha9WtRHZk4uMrJzoVDkY/T8X3E38TGCvSpj2sCuKO+gPTqjNEtO13VMXm1jC5P/Xi46jklUHHo115yK4/GLNBwIu4V1Uz42bPAGkpKSAjtbW5iZmamX2TvYQyaTISMzE/avjMBJSUlFlSqaSQgHe3s8iE8AAMjkcvy0dDnGjRqucYyNjYmtPfJzXmtjs9IhMBNBYGkNZXZhW2DqVB7yxDjY9hwGcVBtKFKSkbl3I+QPNNtPMw9fmFXxQdrGZcVWD30RWNtBmZOlMRo+Pyuj4HhYqdYVMLF3Rt6j+7Ds+AFEVasjP+0Fco5uR16SKlmheJaErC3Gdwxel5yho79m8w79tWVbVP21QYX9tZeW7zuDlQfPwdbSHL99ZnzTob1ISdVqSxzsdbclL1JS4eGu2U91cChsSxKSkiCRSjFh6ldIfPgQPl6eGP3xMFR2Na4E+otU7b6Jo70tZDI50jOztEaQz5vyKQDVKPLX1QjQ7K/uPXoKCkU+qge8eRrL0sjE2la7PcnOVLUnFlZQ5r7SnjhXhFKaC6uugyF0r4r8jFTkntmLvLgIKHNzoFTkwcTGHvkvVM8qMrFVPUdFYGE8o4UB3Z8T1XdHdx/Ws7KOPmy86m6UwX1DMXXOD+g1bDRMTUzg6GCP5d/PKp6K6Flqygu4V/HQWGZv74CE+PtaZbOzsyCTyeDoVDgIytTUFDa2dniR/BxKpRIPk5Jw49pl7NjyBxT5CjRp2hz9Phiq0WaVZvycaEpOTYOdrfVr7avdG9vXb6eMBwDs09m+araje162r/6+WmWJqHQo0shyc3NzPHnyRGt5SkoKhEZ68mpqaYF8qeYDB/OlMpgUnGiYWpq/db2xyJXL1VOGvPTyvTwvT+c2Pi7lsOl/QzG6UzNM37APt+4/1Cpz68FDzN91HENaN4CzrXF1ICVyhUaiHID6vUyhedX4QWomJHkKNHQvj6XdGqFJlQr4bE8YIp5qPuh1SB0frOvdFC42Fvhk90WtEeqlnUAkgjJPc+75l+8FQt0dPrFvEEztnZB1vvDWNIFIrLFt4b7y3rif0koqlWp1dkUFnSeZXLN+EqkMIh1l5QXlWoU0xIYdu/Eg8SGkMhmWrt0AAMiT6/4OllYSmVyjAwkAooLfAHnem6eASM3MxqRlG1HDxx0tagUgR6JqW7//Yy86NqqJReMHQZ6Xh08Wrdc5cqM0k8jkGskt4JVj8pb/39TMbExasVl1TGr6a6z78+xVBHq4oppX5TdsXbpJdH53VO/lWt8d7bJmZmbqchs3b4WPtzfq1jauB5y+TmAmAl7/zX1DGysQmcOqZWfkZ6Yh9ZcfIIuLhMPH/4OJnaNGOcsGrSC5fQX5Gcb34HGBmQhKxWvH4+V7U802RiASw7xxeyiz0pG5aQnkCTGw6T9encT6r8iV5enor71sX9/SX5s8BKM7NsX0jdr9tc71g/HH54PR0M8DI5dt0XkXS2mm+h3W/Dy8fP96+yqVyrTbEmHh73BC0kNkZmVhQN+emPXlFIhFInz+5UzkGNkoP4lUpnXh0Ez4sn0tep/izt1YLF33B/p17wgnB/t/E2Kx092eFPzWvHasTJ0qQGAmgjwuEllblkIeewfWvUfBtKI7oMyHPPoGLFp0g8DGHhCbw6JVKJQKBWCq+d0s7XT/Duvuw+rq75oJC3+Hnzx7DnORCPO+/ByL5s5AOWcnfLdkhQGjNxxVXTXP5V/tc7xe9uV6XeWfP3sKqVQCoZkIk6Z+haEfjcSpE8fw2xrjmaebnxNNUqlM3Z6+ZPY3v8Pv4s7dWCz9bTP6d+tgdO0rUVlSpMx2aGgopk2bhs8++wxBQarb5qOiorBo0SJ069ZNrwEWl3yJVCvxbSIWQZGjmiJA8ab1ucbVqRYLhZC9lsR6+d5cpDt56WRrBSdbK/i7VcCt+w+x7ex1VPcsfHLzzbgkjPl5K0ICvTC6UzPDBW8gIqEJ5K8lxV++NzfT7Ax/VN8P79fwgq256rNQtZwdIp+lYWd4PAIrFJ6oezmprjTP61AX7dccwrWHL1DXiKZjUcrl2gmbgvf5Mt0n1xY1G0IScQPKnMI5ppV5Mo1tC/clRL7cuE7SRSLtzrOs4ETUXCzWKvt6p1Imz4O4oNzgPj3w+MkzDP5kMoSmpuj6Xmv4elaBZcEDhY2F2EyodTIuK+g8vqk9eZGeiVHzf0W+UokfRveHiYkJTAsuTvVoVhedG6uSoHOG90WbT+fiVlwiavoYz5Q9YjOh1oUC9TERv+GYZGRh1IJ1yM9X4oeR78PERPPi3dGrd9CreX3DBFwMRCKRju+O6r1Y67ujXVYul0MsFuP+g3jsP3gYq5YuMmzAxUCZJ9dK2qCgnVS+3sbmKyB/GI+swzsBAFmP4iGuWg0WdUKQffwvVRkTE4iDaiN9k3GdiL6kzJND8FpSXJ0kl2sOVEB+PhRPEpF7WvWAytyniTDzCoCoWkNIzmnPXW2sxGa6+mtvb181+msPHmn119zLqfopswd2Rrvpy3DsZjS6Nayuc1+lkap90PzNefle/FofXddvtjyv8Hf426+nQ5GXBwsL1e/utEmf4v2hI3Dh0hW0bmE8D4YVicy0kjbyggtv5kUc0BMeHYNJs+ajYa0a+Oj90H8dY3HT3Z4UfGdea08kZw9AeuUElAUPdFQ8ewjTiu4Q1wxBzsE/kHNkK6y6fQj7sXOhlEmQe+6gajoXmeZDp0s73b/Db+jDmun4Hc5T/Q4rlUrM/Wk5Rg0ZgMb16gAAvv58PPp8PA4R0TEI9Cvdo2S3bdmIHVs2qt/7+gVA/tpn4mWf43UikUi9Xlf58hUq4vctf8La2gYCgQBe3j7Iz1fipx/nYujHo2BqBBdY+DnRpGpftX9HAMBcVNT29R4mzp6PhrWq46P3e/zrGEm/BGbG9dwSMqwiJcvHjx8PpVKJb7/9FmlpaQAABwcHDBw4EMOHD9dnfMVG8ugpxBU1k5niis6QPFFNvSJ5qGN9BWdIHxvXfJjl7W2Qlp2DPEU+hAUJquSMbJibCWFjofnQuPD4RzA1MUFA5cKpZrxdnNUPjAKAy3fjMW7FNjQK8MS3Q7vBxMT4Gpjy1hZIy5UhLz8fwoIkVXK2BGKhKWxeS26ZCATqRPlLno42iE3JhFyRj9P3n6BB5XKwLtjOydIcduYipOW+drJfyinSU2BiZQOYmAAFI3tNbe2RL5NCmat77krzgBrIOLBNY1l+dhaUMhlMbeyR97Tg4ZUmJjCxskF+unGNfnR2ckR6RibyFAoICzq8KWlpEItEsLbSvB2+nKMDUlLTNZalpKWpRw9YmJvj68njkZWdA4EAsLK0RNfBI+FSvlyx1EVfyjnYIi0rR+OYvEjPhLnITOdDKJ+lpmP492sAAKsnf6yepsXe2hJCU1N4uBTW397aEnbWFniakq61n9KsnL2uY5KlOiYWuo5JBobPXwsAWP35MI1pWgDgSUo64h4/1xptbkycnZyQnpEBhUKhPllMTU2DWCyCtZXVa2UdkZKq2TakpqbBydEBZ89fQEZmJgZ9PBIA1HcddOn1Pj4dMwqtW+p4eFsplZ+eChPL19pYGzsoZVIoJZptrCIjDYrnmg//zXv+BKb2hSPLzar4qp4zEWNcD896SZmZBoGlNSAwAZSq42FibQulXKZOYr2Un5UOxQvNuxsVL57950aWl7ez/gf9tccwNRFo9tcqOiP2iaq/dir8HvzdKqCCvQ0AVSLe1ckeadnGNeBD9Tus2ZakpKYW/A7rakvSNJalpKbB0UH1ORGZmQGvjIoUiUSoWKE8klOM66Hs5RwdtPsmqek6+ybv4lp4JP43dwHq1QjGzAmjtC7eGoP8zHTt9sRKd3sCKLXbmBdPYOrsolqbk4WsTYsgMLdUXeQUCGDZsjsUaf+Fz4nuPqyzkwNSCs7vX0pJTYeToz3S0jPwLPkFvD0LBzGUL+cMO1sbPHmeXOqToO07dkFI0xbq9zu3bULqa32OtNQUODg6aW1rY2MLkUiE1NQUuFVWTRenUCiQmZGuLm9jozktR2V3d8hkMmRlZcLOzl6/lTEAfk40qY5Hlmaf/l+2r5Pn/YR6NYLx9WcjjbJ9JSpLivQNNTU1xcSJE3Hx4kWcP38ely9fxoULFzB69GijnYYlNewmHBpq3tbt0Kg20sJUD9BKu3QTDk3qqNeZu1WERWUXpIZpP2CrNPNzqwChqSluPSi8Nfd6bCKCqrhoJbp3nb+FRbtPaiyLSHgCr4KLBjGPnmP8qu0ICfLGD8N6wMwIrpjrUtXZFkITAW4/Kews3XicgqDy9jB57UFrM45cw9dHr2ssi36eDg8HawgEqvVnHzxVr3ucmYO0XBk8HY1rahp50gNAoYDIo7AzI/Lyhzw+VuOhai+ZWNlAWK4ipHHRmiuUSsgS7kHkXZjoE3lWBRSqkZLGxNezCkyFpoiILpwn+HZENPx9vbQ6O4F+vgiPvgtlwbFSKpUIj7yLID8fAMDP6/7AgeOnYW1lCStLS0TGxCI7O0fj4aHGwK+yC4SmJrgdm6hedj0mHoEerlrHJFcqw5gF62BiIsAvUz5GeYfCEwqhqSkCPCrhbmLhQwlTM7ORlpmDSk7GlQDzq1xRdUziktTLrt97yzFZ9BtMBAL88vmHKG9v+/rucPt+Iio62sHFyd7QoRuMt6cnhEKhxkM6w+9EoKqvr9YxCfDzQ0RktMZ3505kJPz9/NCtSyesXbEMKxYvxIrFCzFh3BgAwIrFC9GogXGNvJc/igfyFTBz91EvM/P0gzwxTquNlSfc03qYnLC8CxQphReuzdy9kZf0QD2Vi7HJe5IIKBQQunmqlwkr+xQ8WE/zeOQ9jFM9wO8Vps4VkG9kyau/o7O/Fpeku7924SYW/XVKY1lE4hN4VVQlcBbsOo69lwovpGRLpEh4ngLPCtoJodLsZVvy8iGdABAeEQU/Xx8dbUlV3Il6vS2JQqB/VSiVSnzw8WgcPHpcXT5XIsHDR49R2c0VxsTX0x2mQlPcuVv43KVbkXcR4OP5jxMxcfFJmDJvIRrUqo5vJo012nM6xVNVe2Lq+mp74o28x/F4vT2x7DQQlh015+83reCmviBn2WUwhJ4BqouYeXKYeQchPzsD+cna05GWZj5eHtp92Mgo+Pt66+7DRr3eh41GYFVf2NhYQ2RmhvjEwnYpLSMDGZmZcKmg+RyW0sjGxhYulVzVL7+AIERH3NGoa2REOPz8ArS2NTExgY+vHyLv3FYvi4q8A6FQCE9Pb1y/ehkD+3aHVFJ410FcbCxsbG2NIlEO8HPyusL2tfDh47eiiti+JiThf98uQsNa1TBrovHmzIjKknf+lv/555+QyWTqf798nT59GseOHdNYZizEFZxhYq66pejJjoMws7dF4IIvYB3gjcAFX8DUygKPt6lu6Y1fuQmuA7qh8tBesKnmh5q/fo9n+04i90HS2/5EqWMhMkOX+tUwe/NBhMc/wvGbd7H+2CX0b6F6oFxyRhYkMtXJdq+Qmrh8Nx4bT1xG/LMULN93GuHxjzGgpars7M0HUMHeFpNCWyMtOwfJGVka2xsLCzMhOge4Y97xm7jzNBUnYh/j92v30K+mFwDVKHNJwa3QzT0rYn9UIvZGJiAxLQurwqJx43EK3q/hBaGJCUKDPbDsQiSuP3qByGdpmHrgCpp7VYS3k3YSrDRTymXIvnQKDn0/hpm7N8yr14NN6y7IPLUfAGBiY6cxIsvMpTKUMhkUL55p7SvrzGHYtO4K8+r1YObuDYc+HyHr/DEoX7+1vpQzF4vRvmUzzF+xFpExsThz8TI2796HXp3bA1A96EZa8FyDFo3rIys7B4vXrMeDxCQsXrMeuVIpWjZpCABwcnTAui07EBkTi+h7cZi9cDm6tW8DWxvjuqhiIRahc5PamPP7n7hzPwknrkXg90Nn0L9tYwCqh12+bA/W7D2JpOcp+ObDXup1yemZyCyY6mrgeyHYdPQCjly+jbhHzzBz7Q74ubsg2Mu4HhhsIRahc6NamLPhL9UxuR6B3w+fQ//Wqv97jWOy/xSSnqfim2E91etePSYAEPvwGbxcjOuOg9eZm4vRtlVLLFq2AtF3Y3DuwkVs27UbPbp2BqAaGfpyLtCmIY2RnZ2N5avWID4hEctXrYFEIkXzpk1ga2MD10ou6pezk2pktWslF6ObwghyGXKvnIFtz6EQunlBHFQHVs06IvvsIQAFbWzBtCw5F45B6OIO67ahMHWqAOt2PWHqWB65186pd2dW0Q15T7WfJ2I08uSQ3roAyw4DYOpSBWZVa8C8YTtILqmSmQIrW/XxkF47DWEFV1g06wwTh3KwaN4FpvblIA0PK8ka6J2qvxaM2VsOITz+cWF/rXldAK/115oU9NdOvuyvnVH11wr6dn2b1ca6Y2E4cycW9x4/x7T1e1DZ2QEhgd4lVr+iMDcXo12rFvhp+UpE3b2HsxfCsG3XXwjt2gmAZlvSrEkjZGdnY9nqtXiQkIhlq9dCIpGgeUhjCAQCNKxbB7/9sQU3bofjQXwCvl2wGOWcndCgTu2SrOI/Zi4Wo0OLEPy4Yh0iY+JwOuwqNv11AL07twOg2Tf5Oz+s+BXlnZ0wbmh/pGdk4kVq2j/avtTIk0N2OwxW7fup2hPfGjCv3wbSyycAaLYn8pjbEAXXhyi4AUwcysG8SQcI3bwhvXoSAKDMzYZF864wcXaB0N0Xlu36QnLhEF5Pupd2qj5scyz4+Rd1H3bLn3vRq0sHAK/3YRsgKzsHS375DQ8SkrDkl99UfdiQhhCamqJ96+ZY/usG3LwTibj4RMxZsAyBVX3h7+NVklUsksYhzZCdnYU1K5chMeEB1qxcBqlEgibNWgBQzcudmpKiLt+hczf8uWMrLp4/i5i7UVi57Ce0bd8JYnNz+AcEQSQSYemiH/EwKQFXL4fht7Ur0KPn+yVUu3+OnxNNqva1CX5Y+Rsi771sXw+id6e2AP5Z+/r9inUo7+SIcUP6GXf7SlSGCJTKd3vyYKtWrbBjxw44ODigVatWb96hQIBjx44VKZh9Zn5/X+hf6CSPxoXWA5Fy+pL6/c0PpyBp/S4AgF29aqi27GtY+3sj43Y0wsfMQMaNSPX2boN6oOqMT2DmaIfkI+dwa+R0yFPSDBqv5Mg6ve83VybHnM0HcfRGNKwtxBjSpgE+aKkalVdj7Dx880En9RyWp27HYMmeU0h4ngofF2dM7tUWNb3ckJyRhdbTlujc/6vb65t52yHIWjZZ7/vNledh3olbOB77CNYiMwyq7YP+tVQnkXUW78aMNrXQNVA1sm9XeDzWX4vBk8xceDnaYGKzYNR2VY22l+UpsOxCJA5EJ0EiV6Cljws+b1ZNPS2LIViP+R5J4/rofb8CMxHs+34Mi5oNoMzNQeaxv5B1UpUsd1uyFSkbliEnTDWSzaJ2I9iHDsHjL0fo3JdN226wbtEJAqEZcm+GIXXrGoONgHRbshVPI68aZN8SqRTzV6zF6QuXYGVpife7d0afrqoOZLPu/TF13Ah0aK2aCiLi7j3MX7EW8UkP4V3FHRNHfYiqXh4AAIUiH8t+3YAjp85CYGKCds1DMHJwP/UtfvpWIaAOcs7tMMi+c6UyzP19N45dvQNrC3MMbt8UA9o1AQDUGjYNXw/ria4hddBj2gI8eJKstX2XJrXVCfSdpy7jl70nkJqZjTp+npg+uAcqONoZJG7LJj2Rc3qrQfadK5Vh7sY9OHYtAtYWYgx+LwQD2qguINT6eDq+HtIDXZvURo/pi3Qfk0a18M0w1Tyxczb8hcwcCb4drv/v+Ossm/VBQkzk3xcsAolEisXLV+DM+QuwsrREn57dEdqtKwCgbefumPTpOLzXpjUAICr6LhYtX4GExCR4eVTB+DGj4OOtfXJ189ZtTJo2HUf2/mmQmAHA3TcATz7/4O8LFoWZCHahQyGuVg9KSQ6yT+5DTkGyvOIPG5C+ZSVyr5xRFfXwhW23QRBWcEXes0fI2P075PcLR+o7fPg55I/ikXXAMJ/pV1X8YQNSZutu6/8VoRmsOg6AyL8WlJJc5F48AuklVX/S8cuVyPprHWS3LqiKunnD8r2+MC1XCYrkx8g5vBV5CTFau7QZOAF58XeRe3qv/uN9heOXKyE5/Kve95srk2POlkOF/bXWDfBBwYCFGuO+xTcDOhb218LvafbXerZBzYKLjfn5Svx69CK2nb2O1KwcNPL3xLS+7VDezkbvMb9k3m4oku7qf1ogiUSKn35ehTPnL8LK0hJ9Q7uhZzfVhbfWXXri8/Fj0L6N6jwl6m4MFi5biYSkh/DyqIJPRw+Hb0FbIpPJsOb3P3Di9FlkZ+egZvVgjB81HOXLGe75Mm5Vg/H8jv4v6kikUvy4ch1OXbwCK0tL9O/WAX26qC7kh4QOwrSxH6NjK8152PcfP4O1W3Zh+8oFAFRJn24ffqJz/7q214dyQQ2QOm+03vcLABCawbJ9P4j8akIplUASdkSdLHeYuhzZe9dDdvsiAEBUozHMG7aFia0jFM8fI/fYduQlFozUNxPD8r33YeZbDZBJIbl6CtKLhw0Tc0FsT6Ku/33BIpBIpVjw8xqcvhCm6sP26ILeXTsCAJp3ex9TPhmJDq1bAAAi797D/J9/UfdhJ4z+CFW9VCP1pTIZ1mzcguNnLkAqk6FujWoYP3wo7O0MMzCoon8tRMYa7mLw3ehIrFi6EEmJCaji4YVR4z6Dl7fqztpjRw5iycLv8ef+wrtQdmz9A3/9uQNyuQyNmjTDiNHj1fOZJ8Tfx5qVyxEdHQELC0u816Ez+vYfBIFAv9OUBni78nPymor+tZAcfkHv+5VIpfhh1fqC9tUC/bt1QN/O7wEAmvQcgmljPkSn19rHfcfPYO3WP7FjxXwAqva160ef6ty/ru31xTm4kUH2+192wrdGSYdgdFrGGNdMG//EOyfLX3X58mVUr15d58Mv/g1DJ8uNjaGS5cbMUMlyY2aoZLmxMmSy3FgZMllurAyZLDdWhkyWGyuDJsuNlMGS5UbMUMlyY2aoZLkxM1Sy3FgZNFlupAyZLDdWhk6WGyNDJsuNlaGS5caMyfJ/jsnyf+6/nCwv0mRJY8eOxfr16+Hnx+Q2ERERERERERERGScToX7vAiHjVqQHfPr6+uLmzf/uFQQiIiIiIiIiIiIiKluKNLLczs4OX331FRYvXgw3Nzf1PF0vrV+/Xi/BEREREREREREREREVhyIlywMCAhAQEAClUom0tDQIBALY29vrOTQiIiIiIiIiIiIiouJRpGT5qFGjsHjxYmzbtg0pKSkAgAoVKmDAgAEYPny4XgMkIiIiIiIiIiIiIjK0IiXLv/vuOxw6dAiTJk1CcHAw8vPzcfv2bSxevBgymQxjx47Vd5xERERERERERERERAZTpGT5rl27sGzZMtSvX1+9zN/fH66urpg0aRKT5URERERERERERFTqCUwFJR0ClSImRdnIwsICZmZmWsttbW0hEPADRkRERERERERERETGpUjJ8smTJ2PatGk4ceIE0tLSkJWVhStXrmD69OkYPHgwHj16pH4REREREREREREREZV2RZqGZdKkSQBUD/p8OZJcqVQCACIjI7Fw4UIolUoIBAJERkbqKVQiIiIiIiIiIiIiIsMoUrL82LFj+o6DiIiIiIiIiIiIiKjEFClZ7urqqu84iIiIiIiIiIiIiIhKTJGS5URERERERERERETGzsRUUNIhUClSpAd8EhERERERERERERH9lzBZTkRERERERERERERlHpPlRERERERERERERFTmMVlORERERERERERERGUek+VEREREREREREREVOYJSzoAIiIiIiIiIiIiopIgMBGUdAhUinBkORERERERERERERGVeUyWExEREREREREREVGZx2Q5EREREREREREREZV5TJYTERERERERERERUZnHZDkRERERERERERERlXnCkg6AiIiIiIiIiIiIqCQITDmWmArx00BEREREREREREREZR6T5URERERERERERERU5jFZTkRERERERERERERlHpPlRERERERERERERFTmMVlORERERERERERERGWesKQDICIiIiIiIiIiIioJJqaCkg6BShGOLCciIiIiIiIiIiKiMo/JciIiIiIiIiIiIiIq85gsJyIiIiIiIiIiIqIyj8lyIiIiIiIiIiIiIirzmCwnIiIiIiIiIiIiojJPWNIBEBEREREREREREZUEgYmgpEOgUoQjy4mIiIiIiIiIiIiozBMolUplSQdBREREREREREREVNzCGjUo6RCMToMLYSUdgsGUqmlYJEfWlXQIpYp52yHYZ+ZX0mGUKp3k0chaNrmkwyhVrMd8j9R5o0s6jFLDYepyJMRElnQYpYq7bwAyrh0p6TBKFdvabREXG1vSYZQqXt7eeHDvbkmHUap4+FSFZO/PJR1GqWLeeRSyV39Z0mGUKlYfz4bk2PqSDqNUMW89CGk3TpZ0GKWKfc0WbGNf4eFTFZIdC0s6jFLFvOdn7MO+xt03ABciM0o6jFKlUYAtYuPiSjqMUsXbywsP794u6TBKFdeq1Uo6BCKjxmlYiIiIiIiIiIiIiKjMY7KciIiIiIiIiIiIiMq8UjUNCxEREREREREREVFxMTEVlHQIVIpwZDkRERERERERERERlXlMlhMRERERERERERFRmcdkORERERERERERERGVeUyWExEREREREREREVGZx2Q5EREREREREREREZV5wpIOgIiIiIiIiIiIiKgkCEwFJR0ClSIcWU5EREREREREREREZR6T5URERERERERERERU5jFZTkRERERERERERERlnl6S5VKpFLdu3UJmZqY+dkdEREREREREREREVKyKlCy/d+8e+vTpg2vXriEjIwPdu3dHnz590KxZM1y8eFHfMRIRERERERERERERGZSwKBt9/fXXqFy5Mjw9PbF9+3ZkZmbi7Nmz2LFjB7777jvs2rVL33ESERERERERERER6ZXAhLNUU6EifRpu3bqFTz/9FA4ODjh69Cjatm0LZ2dndO7cGXFxcfqOkYiIiIiIiIiIiIjIoIqULLexsUFycjIeP36MGzduoEWLFgCAyMhIODk56TM+IiIiIiIiIiIiIiKDK9I0LKGhoRg1ahREIhHc3NwQEhKCTZs24fvvv8f48eP1HSMRERERERERERERkUEVKVk+YcIEVKtWDQ8fPkTnzp1hamqKSpUqYcGCBWjZsqW+YyQiIiIiIiIiIiIiMqgiJcsBoG3bthrvmzdv/q+DISIiIiIiIiIiIiIqCUVKll+5cgWzZ89GXFwc5HK51vrIyMh/HRgRERERERERERGRIQlMBCUdApUiRUqWf/HFF/D19cWECRNgbm6u75iIiIiIiIiIiIiIiIpVkZLlz549w4oVK+Dp6anveIiIiIiIiIiIiIiIip1JUTbq0qUL9u3bp+9YiIiIiIiIiIiIiIhKRJFGln/00Ufo1asXdu7cCVdXVwgEmnP7rF+/Xi/BEREREREREREREREVhyIlyydNmgRHR0e0adOGc5YTERERERERERERkdErUrI8OjoaO3fuhLe3t77jISIiIiIiIiIiIioWJqaCvy9EZUaR5iyvU6cOYmNj9R0LEREREREREREREVGJKNLI8pCQEEybNg2HDx9G5cqVYWpqqrF+7NixegmOiIiIiIiIiIiIiKg4FClZfuLECQQEBODp06d4+vSpxrrXH/ZJRERERERERERERFTaFSlZ/vvvv+s7DiIiIiIiIiIiIiKiElOkZDkAREREYM2aNYiLi4NCoYCnpycGDBiA+vXr6zM+IiIiIiIiIiIiIiKDK9IDPo8cOYI+ffpAqVQiNDQUoaGhEAgEGDZsGI4eParvGImIiIiIiIiIiIj0TmAi4Osfvv7LijSyfNGiRZg0aRKGDBmisXzdunVYsmQJ2rRpo4/YiIiIiIiIiIiIiIiKRZGS5YmJiWjZsqXW8pYtW2LBggX/Oih9ksrzMHfrIRy7EQ2xmRCDWjfA4NYNdJbddzkcK/afxdO0TPi7VcDnPdugmkclAIBSqcSvRy9i29nrSM/ORZC7C6b0bgdvF+firI5emYjMEBK2E+HjZyHl9CWdZWxrBiB42dewDa6KzIh7uD1mBjKu3VGvr9S3E6p+/SnMXcrh+eGzuDVyOuQvUourCnojzVPgu5O3cOzeI4iFphhY2wcDa/voLDthTxhO3X+isWxhlwZo5lkRufI8/Hg6HCdiHyFfCbTxqYQJTYNhKSryjEclx1QIy/feh5lfTSBPDknYUUgvHdNZ1KrnCIiq1tBYlrVtOeT3wgETE1g06wpRcH3A1BSy22HIPfEnoMw3fB30TCaTYcnPK3Hm/AWIRWL06tENvUO76yx7LzYOi5b9jPvx8aji7o7xY0aiqo/qM6VQKPDr7xtx+OhxSKQS1KtTG2NHDIeDg33xVUZPpDI5vv91K45fugGxyAwfdGqNDzq3fus2N6JiMePn9di96Gv1MqVSidU79mP3iQvIlUrRoFoAJg/tDQdbG0NXQe9kMhmWLV+Oc+fOQSQSoWfPnugZGqqz7L3YWCxdsgQP4uPh7u6OcWPHwtfXV73+5MmT+G39eqSmpqJ27doY/8knsLOzK66q6I1MJsPS5Stw9vx5iEUi9AztgV6hPXSWvRcbi8VLl+NB/ANUcXfHJ2PGwNdX9d1RKpXYun0H9h04gMyMTFSt6ovRI0egirt7cVZHL6TyPMzdeQLHbsWo+ict6mBwizo6y+67GoUVhy+q+ieu5fF59+ao5l4RAFBj4k86t5ndrx261A00VPh6J81T4Nuj13As5iHMhaYYWLcqBtbze+s2j9Kz0XvdISzqEYK67uUBAHJFPpafDce+iHjk5eejS5AHxjWrBqFJkW6mLFFSeR7mbj6IYzeiVJ+RNg0xuE1DnWX3XQrHiv1n8DQ1Q9WH7d0W1TxctcqtPnAWCc9TMWtQF0OHbxBSmRw/rN2EE2HXIBaZYUDndhjQpe1bt7kRdQ9fL/sVu5bM0Vh+7OJV/Lz5TzxPSUN1P29MGz4QLuWcDBm+QbB91SaV52HuX2dx7E6c6rsTUgODm9Z46zYPUzPQc9FWLBnUAfW8Cr87G87dwrozN5AtkaNdNW9M6dIEFiIzQ1dB79iH1S0+Lhq//TwPSfH34OruhcEjp8LDJ+Bvt1u7bDYcHMujR7/h6mVyuQyb1i7ExdOHIBSaoVmbruj5wWgIBMY1+jL23j0sWboU8Q8ewN3dHWPHjdPom77uz127sGPHDuTk5KBp06YYOWoUzM3NAag+d8uXLdPoE4f27FlcVdELmUyGRSt+wenzFyEWidCnR1f06dFVZ9mY2DgsXL4K9x8kwMO9Mj4bMxxVfbzV60+du4A16/9A8osUBAX4YeK4UahYvlxxVYWI/oEinTl4e3vj9OnTWstPnToFV1ftjnlJWrDrOCISnmD1J/0xre97WHngLI5cj9Iqd+1eImZu3I8RHUKw84uPUMPTFWOWb0GOVAYA2Hb2OtYfC8OUXm3xx+dD4OpkjzHLtyBXJi/uKumFiViEWhsWwCa46hvLmFpaoN5fq5B69grONghF6oXrqLd7JUwtLQAAdvWqofqqOYiZvRTnQvrCzMEWNdbMK64q6NWis3cQ8SwNK0KbYErL6lgdFo2jMY90lo1LycSsdrVx6MP31K+GlVU/cj+eDkfk0zQs694YP/dojDtPU7HgTHhxVkVvLFqFwrSiO7L+WIScQ5thEdIRZn61dJY1dXZB9l+/Im3xFPVLfl/1PTNv2gWiag2QvX8DsjYvhbCKHyzaGFcn6aVVa9fhbkwsfpgzC+NGjcCGTVtw+ux5rXK5Egm+mDkLwUGBWPbTfAT6++PLmbORK5EAADZv34mTp8/gyymfY8n8H5CZmYVvFyws7uroxeKNuxAZl4Cfv/wE/xvWF7/sPIBjYdffWP5ewkP876dfoMxXaizfdewcdp+4gG/GDMaqGZ8hOTUds1f9YejwDeKXNWsQExODb+fNw5gxY7Bx40acOXtWq5xEIsFXX32FoOBgLF60CIEBAZgxcyYkBZ+T6Oho/LRoEQYMGICFCxYgKyur1F2Qfler1/yKu/di8N3c2Rg7ehQ2/rEJZ86e0yonkUgwfcbXCA4KxNKffkJgQACmz/xafUz2HTiIHTt3YfTIEViyaCEqVqiAL78qPGbGZMGeM4hIfIrVo3phWs9WWHk4DEduxmiVuxb3EDO3HsGIdg2wc/Ig1PBwwZjVf6r7J8dmfKzxGtKyDio52KBFkLfWvkqzn07dQsTTVKzs0xxT2tTGqgsROBqd9NZt5h65hly5QmPZinN3sPfOA8x4ry6W9WqGSwnPsODETUOGbjALdh5DRMJjrB4/ANPeb4+V+8/gyLVIrXLX7iVg5oa9qj7s9OGo4eWGMcu2IEci0yh34PId/LxPu/9uTJZs2I7I2Hgsmz4Bkz/sj1927MWxi1ffWP5ewkNMXbASSqXmb86t6FhMX/wL+ndqi/XffgGRUIgvF602dPgGwfZV24IDFxHx8DlWf9gF07o2xcrjV3Dkduxbt5mz+wxyZXkay46Gx2HFsSuY3r05Vn/UBbcSn2LhwYuGDN1g2IfVJpXkYsGs8agaWBMz5/8OH//qWDD7U0gluW/dbv/O9Th9ZLfW8o2/zMedm5cwacYSjJwwC6eO/ImTh3cZKnyDeNk3DQ4KwqLFixEQGIiZM2a8sR04e/YsNm7ciLHjxmHevHmIiorC2rVr1evX/PILYmJiMO/bb9V94rNnzhRXdfRixa+/IzomFvNnz8T4UR9j/aZtOHXugla5XIkEU7+ei2qBAVjx0/cICvDD1K/nqb874ZFRmP3DT+jdvQtW/PQ9zMzMMPt74/zuEJUFRUqWjxs3Dt999x0mTZqE33//Hb///jsmTpyI77//HuPGjdN3jEWWI5Vh14WbmNyzDQIqV0TrGn4Y0qYhNp/S7lQnZ2RhePsm6Fw/GG7ODhjRIQTpORLEPk4GAPwVdhuDWjdA82q+8KjghC/efw9p2bm4Efv2E7nSyDrAG43PbYWl99tHirj06Yj8XCki//c9sqLiEDFhDhSZ2XDp1R4A4DH6AzzafgAPN+xG5u1o3BgyGeU7NIeFh1txVENvcuV5+PNOPCY1q4aA8vZo5V0Jg+r4YOutOK2ysjwFHmXkIKiCA5ytzNUvkdAUAGBmIsDkFqr9BJS3R9dAd9x49KK4q/TvmYkgrtEYuUe3QfE0EfK7NyG5eATiOs21y5oKYWLvhLzH8VBmZ6hfUKhOOMzrNEPuyd3Ii4uA4mkicg5tgrhWU8BMXMyV+ndyJRIcOHwUo4d/CF8fb4Q0bog+PXtg9959WmVPnT4LkUiE4cOGoErlyhg9/ENYWFjgdMHJa75CgZEffYjqwUGo4l4Z3bt2xp0I7QRIaZcrkWL3iQuYOLgn/D0ro2W9GhjYuQ22Hjqls/zOo2fx4YwFcLKz1Vp37sYdtG1UG3UCfeFTuRIGdmmDy+HRhq6C3kkkEhw6dAgjR4yAj48PmjRujN69emHPnj1aZU+dPg2xWIyPPvwQ7u7uGDFiBCwsLHCm4CRiz549aNq0Kdq0bg1PT098PmkSLl+5gidPnmjtqzSTSCQ4ePgwRg0fDl8fHzRp3Ai9e/XEX3v3apU9dfoMRCIRPv5wGNzdK2Pk8I9hYWmB02dUFxuOHD2GnqE90LB+fbi5umLcmNHIyMzEnUjj+v7kSOXYFRaOyd2bI8CtPFpX88GQlnWw+dwNrbLJmdkY3rYBOtcJgJuTHUa0a6DqnzxNAQA421qpXxJ5HjaduYEZfdrCxsJ42thcWR7+vB2Hz1vWREAFB7TydcXgen7Ycv3eG7fZHxGPHLnmgAWlUomtN+5hbNNqaOLlgoAKDpjWtja234xFzmtJsNIuRyrDrvM3MLl3OwS4u6B1TX8MadsIm09d0SqbnJGN4R1C0LlBNVUftmNTpGfnIvbJcwBAniIfszcdwIwNe+Hm7FDcVdGbXIkUfx0/hwlD+sDfyx0t6tfCwC7tsP3QSZ3ldx45jY+nfwdHHb85G/ccRvuQBght2wxVKlXExKHv40VaBtIysgxcC/1i+6otRybHriuRmNy5MQJcy6F1kCeGNK2JzRffPHhl3427yJZqD4DaeP42BjSuhub+VRDsVh7TuzfD7qvRRjdYin1Y3cLOHoFIJEbfIeNRqbIn+n84ERYWVrh0Tvcz2HJzsrD0u/9h387f4OhcQWNdVmY6zhzdjaGjp8GrahACa9THe90GIO6ucQ2aOn3qFMRiMT786COdfdPX7d69G926d0eDBg1Q1c8P48aNw5HDhyGRSNR94hEjR8LHxweNmzRBr969dfaJS6tciQT7Dx/D2OFDUdXHC00bNUDfnt3w594DWmVPnjkHsUiEkcMGoUplN4z5eCgsLcxx6qwqsb51119o06IZunRoB3c3V4wbPgwvUlORnp5R3NUiondQpGR5y5YtsXr1akilUmzatAk7d+6EUqnEH3/8gY4dO+o7xiK7+/AZ8hQK1PQqTN7W8nLD7fhHyH9tVGO72gH4uH0TAIBEJseGE5fgaGOpnmZlQo9W6FQ3SF1eAAGUALIkUsNXRM8cm9XHi5NhOBfS963lHBrUQMp5zQsLKReuwb5hTQCAff0aSDlTeNImSXqC3IRHcGjw9tscS5u7yRnIy1eihoujelnNSk4If5KK/NdGIsWnZQECwNXOUue+prSsgZqVVLfwPsrIwcHoh6jjZnxT9ZiWdwNMTZGXVHjBIC8pFsJKHgA0byU0dawAKIH81GSt/QgsrSEQWyDv0QP1MsWzhxCYCiF0Ma7beuPuP0BeXh4CA/zVy4IDAxB1Nwb5+ZpTykRGRyM4MEB926VAIEBQoD8io1TJ34H930dIY9Wt9KlpaThw6AiqBwcXU030527CQ+QpFKhe1Uu9rKa/F+7ci9c6JgBw/mYEZowaiH4dtafxsrO2wrnrd/AsJQ0SmQyHz1+Bn0dlg8ZvCHFxccjLy0NAQOEtvEFBQYiOjtY6JlFRUQgKDNT4nAQGBiIyKkq9PviVz0W5cuVQrlw5REVp3x1VmsXG3df67gQFBiIq+q72dycqGkFBmsckKCBAfUw+/nAoWrVsoS4vEAigVCqRk51j8Hro091Hz5GXn4+aBVO9AUAtz0q4Hf9Eu39Soyo+blMfACCR52HDqetwtLaEdwVHvG75oQuo7+uOhlWNq329+zwNeQolargW/l7WdHVG+JMXWr/DAJCWK8Wi07fwRVvNaWtSc6TIluWhmkvhVBq+zvbIy1ci4kmK4SpgAHeTdPRhvSvj9oM39GE7hAAo6MMeD4OjjRW8K6ruesuRyhDz8Bk2fD4ENbyMa0DDq2Lik1S/OX6Fd03U8PfBnZj7On9zLtwIx1ejh6BfJ+2pwa5F3EXLBoV3y1Uq74w/l86Fva21YYI3ELav2u4+fqFqXwumqgKAWh4VcTvxmdZ3BwDSciRYePAipndvprFckZ+PO0nPUNuzsJ2uXrkC5AoF7j4xroEw7MPqFht9G74BNTXq6uNfHbHRt3WWf/70EeRyGWbO/x3lKmjeTR8TeQMWltbwDy78Xerccwg+HPeV4SpgAFFRUQgMCtLqm0bpuGimUCgQc/euRl/VPyAAcrkc9+/f/0d94tIqtuC7E+RfOC1ctUB/RN69p1WHiOgYBAf6axy74AB/RETdBQDcvB2Bpo0LpwN2qVgBm9b8DDsdF3SJqOQVeSLlRo0aoVGjRsjKyoJCoSiVc6gmp2fB3soSZgWjfgHAydYKUnke0rJz4WijnfAMi36AkUs3Qwkl5g3uCkuxCABQ21szabPz/A0o8vNRy9v4TjoSVm56p3LiiuWQGaE5qkv29AVsglRzlpm7lIf00TON9dJnL2DuWhHGJDlbAnsLEcxMC68dOVmKIVXkIz1XBgfLwtF591OyYC0yw1eHr+FKUjIq2lhgRAN/NPHQHF3w1eFr2BeViEq2lvi4/tvnXC2NTKxtoczJAvILb2/Pz86EwEwEgYUVlLmFI69MnCtCKc2FVdfBELpXRX5GKnLP7EVeXASUuTlQKvJgYmOP/Beq0bAmtqpRbQIL4zohTUlJgZ2tLczMCueptHewh0wmQ0ZmJuxfaQNTUlJRpYpmssrB3h4P4hM0lv22cRM2bNoCG2trLPzB+KYwepGaDjsbK5gJC39KHO1sIZXLkZ6VrTXf+I8TVfM67jmlfQvzRz07YMIPK9BpzJcwNTGBk70t1n4z0bAVMICUlBTY2dlpfk7s3/Q5SUGVKlU0tre3t0d8fLxqfWoqnBw1E6IO9vZITta+MFWapaRqf3cc3nRMUlO05se1t3dQH5PgoCCNdQcOHUa+QoGgQOOZmxtQjRa3t7LQ7J/YWEGap0BaTi4crXX0T+4mYOSqXar+Sf/26v7JS49TM3DgWjR+G9fH4PHrm67fYUcrc0jztH+HAWDBiZvoHOQBb2fNvqethQhCEwGeZeXCy1l18vk0U5XoS8vVnJKktEvOyIK9taX2Z0Seh7TsHDjaWGltExZ1HyOXbFJ9RoZ0h6W56jNia2mO3yYNLrbYDSU5LR12Ntbv/Jvzw+ejAQB7T2pONZGZnYOM7BwoFPn4ZM4ixMQnIcjXE5M/7IfyjsY18p7tq7bkzBzYW5prfnesLQvaVwkcrS00yv+47zy61vKDz2sXIDMlMkjzFCj/yvmi0NQEdhbmeJqebdhK6Bn7sLqlpSbD1d1LY5mdvROSEnRP2ePuWRWffal72oxnTx7CuXwlnDuxD3u2/wpFnhwhrbqgS+9hMDGiZ2b8Xd/0VdnZ2ZDJZHByKrxAbWpqCltbWyQnJ0MgELyxT5yZkQE7e3uD1UNfUlLS3rmNfZGSCg93zZyRg4Md7scnIisrG5kFebPJX81C7P14BPj5YPyoj1HOyfielfFfJTCi7yoZXpE/Db/99huaNm2KevXqoWHDhmjSpAmWLl2qz9j+tVy5XD09xksv38vzdN+O6+NSDpv+NxSjOzXD9A37cOv+Q60ytx48xPxdxzGkdQM4G9kIlH/C1NIC+VLNk8t8qQwmBSfoppbmb11vLCRyhcYJOgD1e5lC84rxg9RMSPIUaOheHku7NUKTKhXw2Z4wRDzVfKjpkDo+WNe7KVxsLPDJ7os6R8aVZgIzEZSK174jioJbToWa19hMnSpAYCaCPC4SWVuWQh57B9a9R8G0ojugzIc8+gYsWnSDwMYeEJvDolUolAoFYKr53SztJFKpRkcJAEQF7+WvTQWgq6yZmZlWuTYtW2Dpwh9Rq2Z1TJ0+E9k5xjV6SyKTQ2Sm+Xl4mcSQyf/ZlAePn7+AuUiEBZ+PwMqvxqOCkz1mrdyot1iLi1Qq1UjkAFB/Fl7//5f+zefk79YbizfVA3jXYyKETEedo6KiseqXNejVMxSORpbgypXlvaV/otC1CXxcnLDps34Y/V4jTN98BLfiH2us3xV2B4GVy6N6FRfDBG1AuXIFzF77TRCpf4c1j0dY/FPceJiMjxtqJ/CEJiZo5euGpWdu42lmDjKlciw8dRNCEwHkRjKK7aVcmY4+rNnffEYqlcOmKcMwunNzTP99j84+rDGTSGVavzkv3/+T35ycgrtC56/bgvZNG2D+5DGQy+WY+N0yoxnt+BLbV2258re0r6+1JxfvJeF6/BMMb6X9cGVJwdRNZjr2JXvDd7C0Yh9WN5lUAjMzzfNWoZkZ8uT//OKqVJKLp48TcOLQTnw07iv0HTIeR/dtwaG/jOv5O/+k7ymVStXrdZWXSqUQvmP7VFqpvg9v6tdr/u5IpVL190pdVqg6Fi/nLV+6ai3atGiGOdOnQC7PwxffzDO63x2isqJII8uXLVuGDRs2YPz48ahVqxby8/Nx7do1LF26VDXH2fDhf7+TYiAWCrU6My/fm7/hKeZOtlZwsrWCv1sF3Lr/ENvOXkd1z8LbrG7GJWHMz1sREuiF0Z2a6dzHf0W+RKqV+DYRi6DIUTX2ijetz337Q1FKG5HQBPLXkuIv35ubaXaQP6rvh/dreMG2YLRW1XJ2iHyWhp3h8QisUHgy4eWkGtE2r0NdtF9zCNcevkBdI5qORZknh8D0tebBtOA781oHUnL2AKRXTkBZ8DAcxbOHMK3oDnHNEOQc/AM5R7bCqtuHsB87F0qZBLnnDqqmc5EZ1wOjRCKRVsfu5QmmWCz+27JyuVyrnGslVVLrfxM+Rb8hH+Ls+Qt4r4327eKllchMqJWgeHkh0vwfXDRTKpWYsfx3fDKgO5rWrgYAmDv+Q3Qd9xXC7z1AsI+H3mI2NJFIpHUx9uVnwfwffk50nZzo+hyVdiIz3fUEdHx3dJbN0zp2EZFR+HLGTNSrWweDPhhggKgNS2ymnWz52/6JjRWcbKzg71oet+KfYNv5WxqJ8SO3YtC7UXXDBW1AYqGJVhLr5cVq81cuPknkCsw5fBVT2tTW+n1+aXKrmpiy9yI6rNwHCzNTfNQwEOGPU2AlKvLNlCVCbKajDyv/uz6sNZxsreFfuaKqD3vmmkYf1tiJzcy0fnNevv8nvznCggsx3Vo2Qcdmqukkvhn3IToM/xzhMfc1pnkp7di+ahPrSGar21ezV9uTPMz68zSmdW2qsfylN13AlOUpdJYvzdiHVdmz7Vfs3fGr+r2XbxDkr53X5MnlEInN//G+TUxNkZuTjZETZsO5vOrYvHj+BMcP7kCH7h/8u8ANaMvmzdiyZYv6vZ+f3zv3Pd90weVl+fz8fOS9qX0y/+fHuCSIRGZaSfHCNlb0WlmR1sVHeZ7qWJgW/O50bNca7VqpngE2beJ49Bz4ISKi7yL4lSmSiKh0KNIv/datWzFnzhy0atVKvSwgIAAVKlTAnDlzSk2yvLy9DdKyc5CnyFd3jJMzsmFuJoSNhWYDHR7/CKYmJgioXDiFiLeLs/oBnwBw+W48xq3YhkYBnvh2aDeYmGjO3fxfI3n0FOKKmglecUVnSJ6opl6RPNSxvoIzpI+fF1uM+lDe2gJpuTLk5edDWHDrTXK2BGKhKWzEmiekJgKBOlH+kqejDWJTMiFX5OP0/SdoULkcrAu2c7I0h525yOhu/87PTIfA0hoQmABKVcLCxMoWSrlMnRQvpNRalv/iCUydVR1FZU4WsjYtgsDcEso8OSAQwLJldyjSjGu+R2cnJ6RnZEChUMC0YARkamoaxGIRrK2sXivriJRUzbsNUlPT4FQwOuvipcvw8fKCs7PqtjuRSASXChWRkZFZDDXRn3KO9kjPzEaeQgFhwTF5kZYBscgMNpYWf7N1odSMLDx9kYqq7oVJnYpODrC3scLj5ylGlSx3cnJCenr6a5+TVIjFYli99jlxcnJCqtbnJBWOBVOvOP/NemPhpOO7k5KaqvO7o/OYpKVqjGy8ees2vvr6G9SpVQtTJ39uVLc3v1Te1hpp2bma/ZPMgv6JueYJaXjCE1X/xK28epl3BUf1Az4B4ElqJuKepqBlsObt5MZC1+/wi2wJzIWmsDEv/B2+8yQFSenZ+PwvzWk1xu08g85BHviibR04WpljVd8WSM+VQSQ0AZTAkjO3UclWe9qS0qy8nQ3Ssl7vw2bp7sM+eARTEwEC3AsvnnhXdEbsE+OasunvqH5zsv71b46djTWEpqao8sq0gXY21rC1scLTFykAjCdZzvZVW3lbK6TlSF5rX3O02tfwxGdISsnAxD8OaWw/Zt1+dKnthy+6NoVYaIrkrBx4llcdozxFPtJzJShnq/vZRaUV+7AqLduHon5IG/X7fTt/Q3qq5vlIetoL2Dv88wFO9g7OMBOJ1YlyAHBxrYKU5KdFD7gYdOzUCU2bFQ4A3LZt2zv3PW1sbSESiZCamorKlVXTjygUCmRkZMDR0RFKpfKd+8SllbOTo442Ng1ike7vTmpqmsaylNQ0ODk4wM7WFkKhEO5uhec6drY2sLO1wfNk4zonJioritQDysrKgoeHh9ZyT09PpKSUngco+blVgNDUFLceFN6Gej02EUFVXLQS3bvO38Ki3Sc1lkUkPIFXQTI45tFzjF+1HSFB3vhhWA+t24X/i1LDbsKhYS2NZQ6NaiMt7CYAIO3STTg0Kbxt0dytIiwquyC1YL2xqOpsC6GJALefFHYMbjxOQVB5e5gIND8nM45cw9dHr2ssi36eDg8HawgEqvVnHxR2ih5n5iAtVwZPR+OarkfxNBFQKGDq6qleJqzsjbzH8QA0p5Sx7DQQlh01R0yYVnCDomCOcssugyH0DIBSkgPkyWHmHYT87AzkJz8xeD30ydvTE0KhUP2AIwAIvxOBqr6+WieTAX5+iIiMhrJg+h2lUok7kZHw91PNX79q7TocOX5CXT4nJxdJjx7CvbJxPQPBr4obhKamCI95oF52IzoWgV5V/tEJtq21JURmQsQ9LPxMpGVkIT0zG5XKG9c8fl5eXgWfk8KHcN65cwe+Oj4n/v7+iIyI0PicREREqD8n/v7+uHPnjrr88+fP8Tw5Gf7+xjX6xNvLU/uYRLzhu+Pvh4jIKM3vTkSkus4PHsRj5jezUK9OHXwx9X8QCo1rdN9Lfq7lIDQx0ZhK5fr9RwiqXEG7f3LpDhbtO6uxLCLpGbxemV/3dsITVLS3gYuDcT4kqmp5ewhNBbj9qLAPeeNhMgIrOmj8DgdVdMSfH3bApkHt1C8AmN6uLkY1Vs23/OX+MFx48AR2FiJYmAlx9v5jOFqK1XOYGwu/ygV92Puv92Er6ejD3tDuwyYW9mH/K6p6VC74zbmvXnYz+h4CvT3+0W+O0NQU/l7uiIlPUi9Ly8hCekYWXMoZ1zFj+6rNz8VJ1b4mFvbHr8c/QZBrOY3vTnDl8tgzsR+2juutfgHAjNDmGN2mHkxMBAhyK4/rDwr7JrcSnkJoYoKqFY2rb8I+rIq1jR0quFRWv3z8quNe9G2NusZE3oS33z9/YKm3XzDkMimePCyc2/tR0gON5HlpZGNjg0qVKqlfAf7+iIiM1Oqb+unoe5qYmMC3alWNvmpkZCSEQiE8PT3VfeJXHw76pj5xaeVT8N15+ZBOAAiPiISfr49WHQL9fHEnSvO7Ex4ZjQB/X5iamqKqtxdi7z9Ql09Pz0B6RiYqli9XLHUhon+mSK1UrVq1sHbtWo35lRQKBdauXYvq1UvPLcAWIjN0qV8NszcfRHj8Ixy/eRfrj11C/xb1AKhG6EhkqltleoXUxOW78dh44jLin6Vg+b7TCI9/jAEtVWVnbz6ACva2mBTaGmnZOUjOyNLY/r9CXMEZJgWjLp7sOAgze1sELvgC1gHeCFzwBUytLPB42wEAQPzKTXAd0A2Vh/aCTTU/1Pz1ezzbdxK5D5Le9idKHQszIToHuGPe8Zu48zQVJ2If4/dr99CvpmqEXnK2BJKCWzCbe1bE/qhE7I1MQGJaFlaFRePG4xS8X8MLQhMThAZ7YNmFSFx/9AKRz9Iw9cAVNPeqCG8n4zpJR54cstthsGrfD6YuVWDmWwPm9dtAelnVORZY2QLCglvvYm5DFFwfouAGMHEoB/MmHSB084b06kkAgDI3GxbNu8LE2QVCd19YtusLyYVDeD3pXtqZm4vRtlVLLFq2AtF3Y3DuwkVs27UbPbp2BqAayfVy7r6mIY2RnZ2N5avWID4hEctXrYFEIkXzpk0AAF07dcC2nX8i7PIVPIhPwLfzF6KSiwvq1aldYvUrCnOxCJ2a1ce8NZtxJzYeJy/fxIa9x/B+hxYAgOS0DEhkf39XhdDUFF2aN8SijbtwLfIe7iU+wvRlvyHY1xOBXu5/u31pYm5ujjatW2Pp0qWIvnsX58+fx46dO9G9WzcAqgcnvfychISEICs7GytXrkR8QgJWrlwJiUSCZgUjfDp16oRjx4/j0KFDuH//Pn6cPx/169dHxYrG9RBl1TFphcXLlquOyYUL2L5zF7p37QpA9TCxwmPSBFnZ2VixajXiExKwYtVqSCUSNG8aAgBYtHQZnMs5Y/jHHyI9PQMpKaka2xsLC5EZutQLxOwdxxGe8ATHb9/D+pNX0b+p6gJ1ckY2JAW3/fZqWA2X7yVh4+nriH+eiuUHLyA88QkGNCu8mH3vSbJG8tzYWJgJ0TnIA3OPXMWdxyk4EfMQv1+ORr/aqgeKJ2dLIJErYG5mCncHa40XoBqZ7milGm1tZy7GsjPhuPc8HVcSnuG7Y9cxtIG/1sXv0s5CZIYuDaph9qYDCH/wCMdvRGP90TD0L+iXJqe/2oethcvRD7Dx+CVVH3bvKYQ/eIQBreqVZBX0zlwsQsfmjfDd6o2IuPcApy7fwMY9h9G3g+pO1xdp6e/0mwMA/Tu3xdYDJ3DswlXcT3qMWT+vg69HZQQZ0Z1MANtXXSxEZuhS2w+z/zyN8KRnOB5xH+vP3ET/xqpp3pIzcyCR58HcTAh3JzuNF6Aame5U8BDQPg2C8NuZmzgecR/hSc8we/dphNYLgMUbpkIqrdiH1a1e41bIyc7EH2vm42FiHP5YMx9SaS7qN2kLQDWneVrqu92h4+LqgRp1Q/DL4q+RcP8ubl+/gH07f0Or9j0NWQW9CwkJQXZWFlauXImE+HitvqlUKtUYHNm5Uyfs2L4d58+fx93oaCxbuhTt27eHubk5zM3N0bpNGyxduhR3o6Nx/vx57NyxA926dy+h2v1z5uZivNeqORYuX4Wou/dw9sIlbN21B6FdOwLQ/O40a9IIWdnZWLb6VzxISMSy1b9CIpGgRUhjAEDvHl2wc88BnDx7HvGJSfhu0TJ4e3rAv6pvidWPiN5MoFT+8ycPxsbGYsCAAbC0tERQwZPT79y5A5lMhl9++aXIo94kR9YVabu3yZXJMWfzQRy9EQ1rCzGGtGmAD1rWBwDUGDsP33zQCd0aqhL8p27HYMmeU0h4ngofF2dM7tUWNb3ckJyRhdbTlujc/6vb65t52yHYZ+ZnkH2/1EkejQutByLl9CX1+5sfTkHS+l0AALt61VBt2dew9vdGxu1ohI+ZgYwbhVeH3Qb1QNUZn8DM0Q7JR87h1sjpkKekGTTerGWT9b7fXHke5p24heOxj2AtMsOg2j7oX0t1G26dxbsxo00tdA1UJe12hcdj/bUYPMnMhZejDSY2C0ZtV9VIJFmeAssuROJAdBIkcgVa+rjg82bV1NOyGIL1mO+ROm+0/ncsNINl+34Q+dWEUiqBJOyIOlnuMHU5sveuh+z2RQCAqEZjmDdsCxNbRyieP0buse3IS7yn2o+ZGJbvvQ8z32qATArJ1VOQXjys/3gLOExdjoSYyL8vWAQSiRSLl6/AmfMXYGVpiT49uyO0m+qEtG3n7pj06Tj1fI1R0XexaPkKJCQmwcujCsaPGQUfb9UFmPz8fGzdsQt79h9EekY66tSqiXGjRsLZyTDJLnffAGRcO2KQfUukMny7ZjOOX7oBa0sLfNC5Dfp3bAkAqNdvLL4a+QG6NG+osc2eUxexevt+/LXkG/UyqUyOn7fuwZEL1yCVyVC/mj8+H9IbDrY2BonbtnZbxMXGGmTfEokES5ctw7lz52BlZYWePXuiR8GJQYeOHTHhs8/Qtq3qRCw6OhpLli5FYmIiPD08MHbcOPh4F04BcOTIEfy+YQMyMzNRu3ZtjP/kE9jaGubim5e3Nx7cu/v3BYtAIpFgyfKfcfbceVhZWaJXaChCu6suILzXqQsmfjoe7dqqbo2Oir6LJcuWISExCZ4eHvhk7Gj4eHsjJSUV/QYO0rn/V7fXJw+fqpDs/Vnv+wUK+ic7juPorXuwNhdhSMs6+KCZKtlQY+JP+KZvW3Srr+pjnYqIw5L95wv7J92ao6ZnJfW+Zm8/hsxcKb4b2NEgsb7KvPMoZK/+Uu/7zZXnYd6RazgWkwRrsRkG1fPDgDpVAQC1f9yGme3roWuwh9Z2tX/chlV9mqOuu2qamhxZHuYdvYZTsY9gaSZE31o+GNrAsHdjWH08G5Jj6/W+31yZHHM2HcDRG1GwNhdjSNtG+KBVQR929Bx8M7AzujWqAaCgD7v7JBKep8DHpRwm926Hmt7aIz2nr98DAJg1qIve432VeetBSLtxUu/7lUhl+O6XjTgRdh3WlhYY0KUt+nVSffcb9B2B6aMGo3OLxhrb7D15Hr9s34s/l87VWP7nsTNYt+sAUtIzUDvQD1OHf4AKToZ7mKV9zRYGaWONun3dsVDv+wUKvju7z+DonThV+9q0Jj5oojpfqzFtBb7p2QLd6mi3CzWmrcAvH3VBPa/CqRLWnLqODWdvQa5QoHWQF6Z1DYHYQHOWm/f8jH3Y17j7BuBCZIZB9g0AcXfv4LcV8/Ao6QEqV/HB4FFTUcVLdf595tgerFnyDdb9eVlru3lfjIB/cB306Fc4/WxOdhY2rP4B1y6ehEhsjtYde6Frn48g0PPF2kYBtoiNi9PrPl8VHR2NpUuWIDExER6enhg3diy8fXwAqPqlCxcswP4DB9Tlt27dij937YJcLkeTJk0weswYiESqaUslEgmWLV2q0Sfu3qOH3mP29vLCw7u39b5fQPXd+ennVTh9PgxWlpboG9oVvbqpLjS16tILk8ePQfs2qnOfyLsxWLhsFRKSHsLLwx2fjR4OX+/CKfL2HjqCjVt3Ii0tHTWqBWHi2JEo52yYO1Vcq1YzyH7/y253blnSIRidantP/H0hI1WkZDmgmm9qz549iIuLg1gshqenJ7p06fKv5p8yRLLcmBVHstzYGCpZbswMliw3UoZMlhsrQybLjZUhk+XGypDJcmNlyGS5sTJUstyYGSpZbswMlSw3ZoZKlhsrQybLjZUhk+XGytDJcmNk6GS5MTJkstxYMVn+zzFZ/s/9l5PlRbosHhoainnz5mHQIN0jEIiIiIiIiIiIiIiIjEmR5ix/9uyZ+mnARERERERERERERETGrkgjy7t3746PPvoIXbt2haurK8RisdZ6IiIiIiIiIiIiIiJjUaRk+f79+2FiYoK9e/dqrRMIBEyWExEREREREREREZFRKVKy/Pjx4/qOg4iIiIiIiIiIiIioxLxzsvzy5cvvvNN69eoVKRgiIiIiIiIiIiKi4mJiKijpEKgUeedk+cCBAzXeCwQCKJVKWFhYwMzMDBkZGTA1NYWtrS0uXLig90CJiIiIiIiIiIiIiAzlnZPlUVFR6n9v374d27dvx5w5c+Dt7Q0ASEpKwpdffomQkBD9R0lEREREREREREREZEAmRdlo/vz5mDlzpjpRDgBubm6YNm0aVq1apbfgiIiIiIiIiIiIiIiKQ5GS5QKBAE+fPtVa/uDBA4jF4n8dFBERERERERERERFRcXrnaVhe1b9/f0yePBlDhw6Fv78/lEolbt++jfXr12PcuHH6jpGIiIiIiIiIiIiIyKCKlCwfO3YsypUrh23btmHlypUAAF9fX3z11Vfo2rWrXgMkIiIiIiIiIiIiMgSBiaCkQ6BSpEjJcgDo27cv+vbtq89YiIiIiIiIiIiIiIhKRJHmLAeAq1ev4pNPPkG3bt3w+PFjrFq1Cvv27dNnbERERERERERERERExaJIyfLDhw9j+PDhcHV1xf3795GXlwehUIgpU6bgjz/+0HeMREREREREREREREQGVaRk+dKlSzFz5kz873//g6mpKQBg2LBhmDt3Ln799Ve9BkhEREREREREREREZGhFSpbHx8ejZs2aWsurV6+Op0+f/tuYiIiIiIiIiIiIiIiKVZEe8Onj44MzZ86gf//+Gst37doFHx8fvQRGREREREREREREZEgCkyI/0pH+g4qULJ86dSpGjhyJixcvQi6XY8WKFXjw4AHCw8OxYsUKfcdIRERERERERERERGRQRbp0UrduXRw8eBDe3t6oV68enjx5gtq1a+PAgQNo1KiRvmMkIiIiIiIiIiIiIjKoIo0sl8vl2Lx5M7Zt24bk5GQAQFxcHJydnTF48GC9BkhEREREREREREREZGhFSpbPmjULZ86cwaRJkxAYGIj8/HzcunULixcvxosXLzBhwgR9x0lEREREREREREREZDBFSpbv27cPK1euRN26ddXL/P394erqigkTJjBZTkRERERERERERERGpUjJcmtrawiF2pva2NjoXE5ERERERERERERU2ghMBCUdApUi7/yAz0ePHqlfgwYNwv/+9z+cPn0aqampyMjIwJUrV/Dll19i3LhxhoyXiIiIiIiIiIiIiEjv3nkYeKtWrSAQqK60KJVKAMDw4cO1ln399dd4//339R0nEREREREREREREZHBvHOy/NixY4aMg4iIiIiIiIiIiIioxLxzstzV1dWQcRARERERERERERERlZh3nrOciIiIiIiIiIiIiOi/6p1HlhMRERERERERERH9lwhMBCUdApUiHFlORERERERERERERGUek+VEREREREREREREVOYxWU5EREREREREREREZR6T5URERERERERERERU5jFZTkRERERERERERERlnrCkAyAiIiIiIiIiIiIqCQITQUmHQKUIR5YTERERERERERERUZknUCqVypIOgoiIiIiIiIiIiKi43e3XvqRDMDpVNx0s6RAMplRNw5K1bHJJh1CqWI/5nsfkNdZjvsc+M7+SDqNU6SSPRtyQziUdRqnhtW4vnkZeLekwSpUKAXWQvfKLkg6jVLEaMQePom+VdBilSiW/6rgSnVrSYZQqdf0c8OTzD0o6jFKl4g8b8OizfiUdRqlSaeEm5J7cVNJhlCoWLfoha8XUkg6jVLEeOQ9Jd8NLOoxSw61qMNJ/HF/SYZQqdpMWsQ/7mgoBdfDjzvySDqNUmRRqgvux90o6jFLF09sHyeEXSjqMUsU5uFFJh0Bk1DgNCxERERERERERERGVeUyWExEREREREREREVGZV6qmYSEiIiIiIiIiIiIqLgITjiWmQvw0EBEREREREREREVGZx2Q5EREREREREREREZV5TJYTERERERERERERUZnHZDkRERERERERERERlXlMlhMRERERERERERFRmScs6QCIiIiIiIiIiIiISoKJqaCkQ6BShCPLiYiIiIiIiIiIiKjM01uyPCUlBUqlUl+7IyIiIiIiIiIiIiIqNkVKlj99+hSfffYZIiMjIZVK8cEHH6BJkyZo1aoVoqKi9B0jEREREREREREREZFBFSlZPnPmTKSkpMDe3h47d+7E3bt3sXnzZrRq1QqzZs3Sd4xERERERERERERERAZVpAd8Xrx4ETt37oSLiwuOHj2K1q1bo0aNGnB0dETnzp31HSMRERERERERERERkUEVKVkuFoshlUqRnp6OsLAwzJ8/HwCQlJQEOzs7vQZIREREREREREREZAgCE0FJh/CfJ5VK8fXXX+Pw4cMwNzfHsGHDMGzYMK1yAwcOxKVLl7SWh4aGYt68eUhPT0f9+vU11tnb2yMsLExvsRYpWd6mTRt8+umnMDc3h52dHVq0aIH9+/dj7ty56NGjh96CIyIiIiIiIiIiIiLj9f333yM8PBy//fYbHj16hP/973+oVKkS2rdvr1FuyZIlkMvl6vc3b97Ep59+iv79+wMA7t27B3t7e+zdu1ddxsSkSLOMv1GRkuUzZ87Ehg0b8PDhQ/Tt2xdisRgymQwjR47EgAED9BogERERERERERERERmfnJwcbNu2DatXr0ZQUBCCgoIQExODjRs3aiXL7e3t1f9WKBRYuHAhPvroI1SrVg0AEBcXB09PT5QrV85g8RYpWS4UCjFkyBCNZd27d9dDOERERERERERERET0XxAVFYW8vDzUqlVLvaxOnTpYsWIF8vPz3zgyfOfOnUhPT8fHH3+sXnbv3j14eHgYNN4iJctjY2OxYMECxMXFQSaTaa0/duzYvw6MiIiIiIiIiIiIiIzX8+fP4eDgAJFIpF7m7OwMqVSKtLQ0ODo6am2jVCrxyy+/YNCgQbCyslIvj42NRV5eHnr16oWnT5+ibt26mDp1KsqXL6+3eIuULJ84cSLMzc0xaNAgmJub6y0YIiIiIiIiIiIiIiq9ZDKZ1gBqkUikkRB/KTc3V2v5y/e6BmEDQFhYGJ48eYI+ffpoLI+Li4OjoyOmTp0KpVKJhQsXYuTIkdi2bRtMTU3/TZXUipQsf/DgAXbs2AFvb2+9BEFERERERERERERU3AR6fkBkWbBy5UosXbpUY9nYsWMxbtw4rbIvn3X5qpfv3zQI+9ChQ2jWrJnGHOYAsG/fPggEAvV2ixcvRkhICG7evInatWsXtToaipQsb9asGa5evcpkOREREREREREREVEZMmLECAwdOlRjma5R5QBQoUIFpKamIi8vD0KhKhX9/PlzmJubw9bWVuc2Z86cwdixY7WWW1hYaLx3cnKCvb09nj59WpRq6FSkZPmUKVPQo0cP7NmzB66urhAIBBrr582bp5fgiIiIiIiIiIiIiKj0eNOUK7oEBARAKBTixo0bqFu3LgDg6tWrqFatms6He6akpCAxMRF16tTRWJ6VlYWWLVtiyZIlaNiwIQDg6dOnSE1NhZeX17+sUaEi3Wcwffp0mJiYwNnZWStRTkRERERERERERERkYWGB7t27Y+bMmbh16xaOHj2KtWvXYtCgQQBUo8wlEom6fExMDMRiMdzc3DT2Y21tjTp16mDevHm4desW7ty5g88++wxNmzaFn5+f3uIt0sjyK1euYNOmTQgMDNRbIERERERERERERET03zJ16lTMnDkTgwcPhrW1NcaNG4d27doBAEJCQjBv3jyEhoYCAF68eAFbW1udA7S/++47fPvttxg+fDhkMhlat26NL7/8Uq+xFilZ7uvri4yMDL0GQkRERERERERERET/LRYWFvjuu+/w3Xffaa2Ljo7WeN+xY0d07NhR537s7OwMPv13kZLl/fr1w+TJkxEaGgo3Nzf15Owvde/eXR+xERERERERERERERmMwIRTTFOhIiXLly1bBqFQiL/++ktrnUAgYLKciIiIiIiIiIiIiIxKkZLlx48f13ccREREREREREREREQlpkjJcgB49uwZNm7ciNjYWCgUCnh5eaF3797w8PDQY3hERERERERERERERIZnUpSNrly5gvfeew9hYWFwc3ODm5sbLl++jG7duuHq1av6jpGIiIiIiIiIiIiIyKCKNLL822+/xQcffICJEydqLP/xxx/xww8/YPPmzXoJjoiIiIiIiIiIiIioOBQpWR4TE4Mff/xRa3mvXr3w+++//+ugiIiIiIiIiIiIiAxNYCIo6RCoFCnSNCyurq64deuW1vKbN2/C2dn5XwdFRERERERERERERFScijSy/KOPPsKMGTMQFxeH6tWrA1Alyn///XdMmDBBrwH+W9I8Bb47eQvH7j2CWGiKgbV9MLC2j86yE/aE4dT9JxrLFnZpgGaeFZErz8OPp8NxIvYR8pVAG59KmNA0GJaiIj8jtcTwmLyZicgMIWE7ET5+FlJOX9JZxrZmAIKXfQ3b4KrIjLiH22NmIOPaHfX6Sn07oerXn8LcpRyeHz6LWyOnQ/4itbiqoDcCMzM4DRwFq7qNoZTJkH5wF9IP7tIq5zJlHiz8q2ktzzx9BM/XLgIA2LbuBPuOPWFiaY2c8GtIXrcU+dlZBq+DvkllMixcuQ6nL1yCSCzC+9064f3unXSWvRv3APN/XoO4+ER4urth4shh8PPxAgAolUps3r0Pu/YfQVZWNpo2/D979x3eVNXHAfybZnXvxWhpSwctZe+9VYZsFVABRfZSEBwgiCA4EGRPBRmyp+y9kSGb0gm0tGV1z8zm/SMlJSQglqRtXr6f58nz2ntP8v7O5eack98999y6GD2wP2xtrEuyOiYhV6nxw+HLOBybBGuREB/WCcaHdYONlv1sx2kcj7uvt+3Xro3RPKA8AGDtpRisuhCFXIUK7YIrYnzrmrARW157olAo8Ovi5Thx9hykEgne69oZ73Z722jZmLg7mLVoKe7cTYCfrw8+GzYQIYGVdfuPnz6L5avXISU1DeGhIRg7Ygi8PT1KqiomdTcuCr8v+hH37sahom8APh72BfwDq/zr+5bNnw5XVw/06DNQt+1B8j2sXDIT0beuwd7eEW90egedun9gzvBNTySGY7d+sK5WDxqlErnHdyPvxF7jRb0rwrH7RxBX9Icq5SGyd6yCIu4WhC7u8Pj6V6PvSV04Fco7UWasgImJxHDq8RFsatSHRqlAztHdyD2223jRcj5w6vkxJBUDoEp5gMxtf0ARG6HdaSWEQ4d3YVu3GSAUIv/CCWTtWgcUFJRgZUxDrlRixro9OHQpAtZiMfq+0Rh92zU2WvbE9WjM334Y9x6noaK7C4Z3aY2WNbTfL41Gg8W7jmHbqUvIVyjRKLQyvuzdAa4OdiVZHZOQq9T48cgV7RhWaIUP6wbjwzpBRsuO2XEWx2/r9zmzuzRC84ByetumHrwET3trDG4UZra4zUmhUGDO4mU4eeZvSCUSvNOtC97t1tlo2Zi42/h14VLcuRsPP18ffDp8MIKf6nM69/oQubl5eu/ZtXENbGxszFoHkxOKYNP2HYiDqkOjUkJ+8SgUF48aLWrb9ROIA/XHsblbl0Kdch+OgyYbfU/O+rlQJ8aZPGxz4hjWuJTkCJzaNgVpD6Ph4hmIpt2+hUeFqkbLyvMzseq7hnrbpLbO6PvNWb1tsrwMbJ7dCV2GbYCDSwWzxW4OCoUC8xcuxOnTZyCRSNCzR3f06N7daNnYuDjMmzcfd+Pj4evri1EjhiMoyLA9Xrd+PZKSk/F5GcsTvQy5QoFZy1bj2N8XIZVI0LvLW+jduf0L33P1VjSmzV2GTYt+1m3TaDRYu30Pth84iszsHIQG+uOzAR/A38eyzg+i10mxshDdCxvMNWvWYMWKFZBKpfD398f333+P9u1f3HiUtDmnbiLiUQYWd2+C+9l5+PbAZZRzsEXboPIGZW+nZWPqG7VR36coEeEoFQMAZp64gVsPM7Cgq/ZHyneHLmPWyRuY2KZmidTDlHhMjLOSSlBr9S9wCDee6AMAoa0N6u1ciuR1f+HagC/hO6g36u1YgmMh7aDOy4dTvWqovvR7bQL9aiSqzp6AGr/NwMWuQ0qwJqbh+t7HkPoF4f6PEyBy84TnwM+gSnmE3Iun9co9nPc9BKKipkQaEAKvYV8i84g2yWFXvxlc3/0Ij5fNguJ+Ejw+HgX3D4fi0eKfYWkWrfwTUXG3MXvqBDx8nILpcxbD29MdLRs30CuXL5Nh/NSf0K55E3w1agh27D+EL6b9jHWLZ8PG2ho7DxzByvVbMG7YQFT288W831bju1nz8cOEz0upZsX364lriHiYjiU9m+N+Vh4m77+Aco62aBtc0aDs7dRsTGtfH/V9PXXbnrQnh6MTseRsBKa1rwc3W2tM3n8Rc05cx5dtapVYXUxl8YrViIq9jVnTJuPho8f44dcF8PJ0R4smjfTK5ctk+PK76Wjbohm+HD0cO/cdwFffzcDapfNhY22NG7eiMHXmHIwaPAA1w8OweMVqTP15Nhb8PL2UalZ8Mlk+fv5uDBq3eBODR3+Dw/u24efvxmDW0i2wtn5+EuavLatx7MBOdO81QLetoKAAM6eORUBgKKb/+gceJCdi/sxv4OLmgSYt3iyJ6piEQ8feEFf0R9qSGRC6uMPpvcFQp6dAfv2CXjmBtQ1cBn0J+c1LyNywFDZ1msC536dI+XEc1BmpePTdcP3Pfft9CN28oIyPLcnqvDLHzu9D4hOA1IXTIHRxh3OfoVCnP4bsqv6Fa4G1DdyGfA3ZzX+QsW4xbOs2g+vHY/Bo+hgU5GTBof07sK3XHBnrFqMgJxPO7w2GY5cPkbXtj1KqWfHN3nwQEfHJWDamH+6nZuKbldtQztUJ7eroJ3KiEx9g7OIN+KxHOzQND8KZm3H4fMlGrP1qEEJ8vLHl5D/Yfvoypg/oAWc7G3z/5258t3onfh3Wu5RqVnxzTl5HxMMMLO7RVDuG3f+PdgwbbJhwuJ2Whalv1TXa5zzxx4VobL9xF4Ma/vuFu7JqyYpViI6Jw8xpU/Do8WP8OHsevDw9jPY5X0/5Hm1aNMf4T0fgr7378fWU6Vi9bAFsrK3xODUVubl5WL1sAaylUt37rK0tLwlq3aILhF4+yNm4AFaOrrBt/z4KstKgir5qUNbKzRt5u1dBFR+t26aR5wEFBchaOFH/c1t1g5WzO9TJd8xeB1PjGNaQUpGHfSsHI7Dm22jxznTcOrcB+1cOwXvj9kMssTUon/4wDlJbZ/T8dKdum0Cgf6O+PD8TB1YNQ35OqtnjN4flv/2GmJhY/DBjOh49eoRffpkFT09PNGvaVK+cTCbDN5Mmo3Wrlhg75jPs3rMXk779Fit++02vzTh67BhWr1mL1q1blXBNTGPBqg2IjLuLuVO+wIPHqZg2bxm8PdzRqlE9o+Xj4u9h4sz5kIj1+5rtB45i3c59+Hr4APiU98ba7Xswdtos/Dl3ul57S0RlR7GWYQG0CfOtW7fi6tWrOH/+PDZs2FDmEuX5ShW234zH582rIdTTGa0rl0ffOoHYeO22QVmFSo3krDxU9XKBu5217iURCQEAYisBxrfUfk6opzM6h/niSrLldYI8JsbZh1ZG49MbYVvZ94Xlyr3bAQX5ctz64ifkRN5GxJjvoc7ORbmebwEA/IZ9gOTNe5G0Zgeyr0fhSv/x8GzfAjZ+honDskwgkcKh+RtI/XMpFPFxyLt0Fhl7tsCxbSeDsgW5OVBnZmhfWVlw7dkXGXu3QHFXm6hx7tADGXu2IPfiGSiT4pG24XdIKvoBgmI3P6UiXybDrkNHMWpAX4RU9kfzhvXQu1snbN19wKDskVN/QyoRY1j/PvDzqYBRA/rCxsYax06fAwBs3b0f73XpiLbNG8PftyK+Hj0EZy9eRkJScklX65XkK1XYfv0OxrWqgVAvF7QOqoB+dUOw4Yphkk6hUiM5MxdVvY23J39ejkWfWoFoHlAeVb1dMaFtbey8eRf5SlVJV+uV5Mtk2H3wMEYO/AjBlQPQrFED9OreBdt27zMoe/TkGUglEgz56ENU8qmIEZ98BFsbGxw/rZ2htHHbTrRr2Qyd32oH34oVMHLgR0hNz0BmVlZJV+uV/X3yEMQSKfp8NBIVfPzx4SefwdrGFudOHzZaPi8vF7/+8BX+2rIabu5eevsyM9Lg6x+Ej4aOh3d5X9Ss2xhVq9dFdIRhEqSsEoilsG3QEtk71kCVdBfyGxeRe2wX7Jq8YVDWpk4zaORyZG1dAXXqQ+Qc2Ap1ykOIfPwBjQYF2Zm6l9DVE9bV6iFz/WKgQF0KNSsegUQKuwatkLntDygT70J2/SJyjuyCXVPDix+29ZpDI5chc9NvUKc8RPa+zVA9fgCxj3bWo13TdsjavR7yyKtQJt5FxqblsGvcFgKJZf0YzZcrsO30JYx79y2E+pZH61qh6P9GE6w/ZnjX297z11E/xB99WjeEr6cberWqj3oh/jjwj/aut1M3YvBm3aqoG+yHwApe6P9GE5yLNBz3lXXaPucuPm9ZXdvnBFZA37rB2HjVcIavts/Je26fkyNXYvxff2PlhSh4OVjYrOmn5Mtk2HPgMIYP+hjBgQFo2qgB3uvRFTt2Gd6lcuzkaUglEgz+uC8q+VTE8IEfw9bGGsdPnQEAJNxLhJurC8p7e8PVxUX3EggsbA1XsQSSag2Rf3QrCh4lQhV7DfILhyGt1cywrFAIKydXqB8kQJOXrXtBrQY0Gr1tVs5uEAfVQP7eNRZ3pwrHsMbdvrYXIpE1GrQfBxfPymjU6SuIpba4c32/0fIZj+Pg5O4HWwcP3cvG3k23/8Hdf7BtXk8o5XlG31/WyWQy7Nt/AEMGD0JQYCCaNG6Mnj17YudfuwzKHj9xAlKpBJ8MGABfX18MGTwINja2OHHyJABArVZj3vwFmP3rHJQrV87g/ZYgXybHX4dPYPTHfRAS4IcWDerg/a4dsGXvIaPltx84isFffw9XJyeDfXuOnkLvzm+hSd2a8C3vjXGD+iIrJwfXImPMXQ0iKqZiZ6sOHTqEXr16oX79+qhTpw569uyJ7du3mzC0VxedkgVVgQY1yrnqttUs74YbD9JRoNHolY3PyAEEQAUnw6vIAPBlqxqoWV7bGSZn5WFfVBLqVLS89dl5TIxzbV4fqcfO4XTT915YzqVBDaSd+UdvW9rZS3BuWBMA4Fy/BtJOXtTtkyU+QH5CMlwa1DB5zOYk8fWHQCiCLOaWbpssJgLSgGDgBT+aHJq1gZWdAzJ2bwagnQEo9QtE7j9nij4n+iYSJw4HNJb1QyP2bgLUKjXCqxTdeVA9NAQRMbEoeOZHU0RUDKqHhuh+YAoEAlSrEoIbUdoBUfKDRwgNKrrt2d3VBc6ODrhpYQOm6McZ2vakfNH3vmYFN9y4n2bQntxNz4ZAAFRwMrztX12gQcSDNNSuWHQHS7VyrlCqCxD9ONN8FTCDuDvxUKnUqPrUeVItrApuRccYOU+iER5WRe88CQ8Nwc1I7ey2Kzduolmjohlf5by9sH75Qjg5OpZATUwrNuoGQsJq6NU1OLQ6YiNvGC3/+GEylAoFvp+9Ep7e+nc9ubi6Y9T472FjaweNRoOoiKuIvHkFodVqm70epiIq7wtYCaF4aiaj8k40xL6VDdpYSeVQyG/+Azz1nUqdOwmKSMOLAw4d3kPeuaNQP75vsK8sE5X3BYRCKO4WHQ/F7UhIfAMNj0dgGGQ39I9HyuyJkN+6Ait7R1hZ2+rNqlfeT4BAJNIl0y1FVOIDqNRq1Kzso9tWM9AXN+4kGbQlbzeqiVHd2hp8Rk6+DADgZGeDk9dj8DA9CzKFEnsvXEcVH8tLXkQ/zizsc4qSUzXLG+9z4tOfjGGNLzWTnJULuboAa99vjYrPKWMJbt+5C5VKhapVQnTbwp/T59yKikZ4WKheO1w1tAoiCvuc+IREVCxveJeppRF6lAeEQqiTimZ/q5JuQ+hdCYB+e2Ll4gVogIKMf5/sY93sbSiun0FB2iNTh2x2HMMa9yjhKrz8auvV1atSbTxMuGK0fPpDbbL8eRKjTyG4bne0fX+OGaI1v9u3b0OlUiEsNFS3rWrVMERFRRmcJ5GRkagaVlXv2IWFheJWZCQAID8/H3fu3MGvs2chNNQy79x58r2pFlK0tEz1KkG4GXPb4HgAwN+XrmHiyE/wbifDiQ8j+vXCG82futtHIIBGo0FuXr5ZYieiV1esZVjWr1+PH3/8ER988AEGDRqEgoICXLp0CVOmTIFSqcQ777xj6jiLJSVXBmcbCcTComsCbrZSyNUFyMxXwMW2aJbRnbQc2EvEmHTgEi4mpsDbwQaDG1RBEz/9GW2TDlzC7sh7KO9oi4H1Q2BpeEyMS1iy7qXKSb09kB2hP2tW8TAVDlW1nah1OU/Ik/UH0fJHqbCu4G2aQEuIyNkV6pwsQF00q1edmQ4riRRW9g4oyDY+s9WpQ09kHtgBjVz7A13sqa230MEJHhN+gsjdC/k3ryD1z6UoyMs1f0VMKDUtA06ODhA/tYa2i7MTFAolsrJz4OxUlMBMTc+An6/+3QQuzk64k3BP998paUXr2OfLZMjKyUVGdraZa2FaKTmG7YmrrfVz2pNs2EvE+GbvBfyT+Bhe9jYY0jgMTfzLIVuugFxdAA/7ots2RVZWcLKR4FGOZQ0iU9PTC8+Totsvi86TbDg/Ndskzeh54ow7CQnIyclFdk4u1Go1xk2ehrg7dxEaHIRPh34CDzc3WJqM9BRU9NVPVjo5uyIxwfjs1kr+QRg36Zd//dzRn3RD6uMHqFWvCeo3spxbfK0cnVHwZPZiIXVOJgRiCQS29tDkFrUFQjdPKO/dhmOPjyGtWhvqtBRk71oL5V39xITYLwjiSoHIWLugxOphKkJHFxTk6h+PguxMCCQSWNnaa/cVErl5QpkQB6d3P4F11TpQpz1G1s41UNyJRkFeDjQqFYROrlA9TNJ+trP2+2Jl71CylXpFKZk5cLa3hfipZc7cHO0hV6qQkZuvt954QDn95xjEJj/C+cjbeKd5XQDAoI4tMHrBOrz55SwIrQRwd3LAqi8GwNL8tzGsts+ZtO8iLt57DG8HWwxuFIom/tpxSbCHM+Z0Nb7+uyVJTUuHk6PjM32OMxQKhUGfk5qWDj9fH733u7g44258AgAgITERMrkcY76ahHtJSQgM8MewgR/Dp4JlJdAFdk7Q5Ofq3V2jyc3Wtq82ttp9hYRuXtDI82HT4QOIfAJRkJ0B+Zm9UN25pfeZwvL+EJb3R97uVSVWD1PiGNa4vOzHcPHSf26Xjb0b0h8aT/xnPL6NArUS2xe8i9ysh/D2q4NGHb+EraN2qae6b4wGAGSnJ5k3cDNJS0uHk9PLtSdpaemoVEn/jmwXZ2fcjY8HANjb22PWLzNLJnAzSUnPgJOjvd73xrXwe5OZnQMXJ/3JKz98qf33333kpMFn1QjVX+b1r0PHoVYXoHoV48/coNIhsLKsO9/JvIp1NixfvhyTJ0/G2LFj0bp1a7Rt2xbjx4/HpEmTsHz5clPHWGwypVpvQA1A97dCrX818G56NmQqNRr6emJ+l0ZoUskLn/11DhEP9R/M2L9OIFa+0wzlHGwwasffBjNZyjoek1cjtLVBgVyht61AroCVVFK43/qF+y2FQCKFRqnU26ZRaf8WiMTG3gLrKtUgcnFD9vGiWxcFUu2tze4fDkXG7s14uOAHSCr4wmPQWDNFbj5yuVxv8AgAksLBk+KZYyWTKwzWqpOIRVAWlmvdtCHWbNmBu/eSIFcoMP/3NQAAlaUtOaJSQywU6m2T6NoT/SUg7qZp25NGfl6Y370pmvh749PtZxDxIA0ylbrwvYafpVBZzlISgPY8efbf/sl5o3zm31dm5JwSi0VQKlXIl2kvOM1btgLtWjbD9G++hFKpxNff/WB0NktZp5DLIRLrt4NisQRKpeI573g5n345A2O/mYn4OzFY/duvr/RZJUkglgCqZ77vz2ljBRJr2LXqhILsDKQv/xmK27fgMvALWDm56pWzbdAasusXUZBlgQ+Ulkh0fcwTmicXa40cD/s2nVGQlYHUpT9CHncLroO/gpWzK1BQANm183Do+B6snFwhsLaBU+cPoFGrIBBa1sOCZQolJCL9mJ8sIaJ89tx5SnpOLj5fvAE1K/uiZQ3tBIbk1AxYS8SYO7w3lo/9CF7Ojpj8xw7zBW8mxsew2mPyvD6nYSUvzO/eBE38vfDZjrOIeGB5348X0Y5N9M+TJ38/2+fI5QrDPkdUNDZJSExCdk4O3n+vB6ZO/BJSiQTjJn6LPAub+SgQi/UmewBPtSfPtANWrl4QiCVQ3Y1E7pbFUN2JgG23gRB66V9UkNRoDGXMVWhyLOtutyc4hjVOpZRBKNQfmwhFEqhVxscmGY9vQynPRcOOX6JN71nIy3qE/X8MRYEFLXv2IjK5HGLR88aw+ueJsXNKLBYblLNkcrnC8HgU9ssv6of/zc3oOMz/Yz36dGkPNxfnVwmRiMyoWL8cUlNTUbNmTYPttWrVwv37ZefWX4nICspnEsBP/rYW6ydlPqkfgl41AuBore0wgz2ccOtRBrbeiEeYl4uuXICb9grijPZ18dZv+3EpKRV1LWjpER6TV1Mgkxskvq2kEqjztIkt9fP251vWDw2NUqH9sfGUJwkcjUJu9D129Zog//o/KMjNKdpYOHjM2L0JeVe066w+XjEXFb+bB6GzK9QZaWaI3jwkEsMBoKLwh8GzD2aRSMQGPz4UShWkheX6vdsN9x88Qr9R4yESCtH5zTYI8q8EW1vLWjdVKhJC+UyC4slFN+tnkjwDG4aid63Ap9oTZ9x6lIEt1+9gRJPwwvcafpa12LISXBKxxODf/sl5I32mbTB2TimVKlhLJRAWJoQ6tmuDN1q1AABMGDsa3ft+goioGISHlu27eHZsXIkdm4seqBgYXBWqZxLjSqUCUumrPTguIEh7q7BSocDCXybj/Y9GQSQ2fkGvLNGolMAz3xE8r40tUEOZFI+cA1sBADnJ8ZAGV4NNnabIPVL4kDErK0ir1kbmusXmDt0sNEql4UWCwqSWRql/PDQFaigT7yJ7n3a5r+yku7AOqQ7bus2Qc2gHMrf9AZe+o+D97QIUyGXIObgN4kqBKJBZVj8sEYugeObH+JOLh9YS4+d4alYOhvy6CgUaDX4e/C6srKyg0WjwzYpt+KzHG2heXdtu/DToHbT/ejau30lENX/LeaaK8TFs4TF5pq/4pGEV9KpVWb/PeZiBrdfvIMzbBf8vJBKJQVL8yd8v1eeoisYmP0z5BmqVCjY22rHI159/il4fDcbZ8xfRpqWR9b7LKI1KZZAU110se+ainPzsfsgvHQfk2vZB/jgZQi8fSKo3Rv7BDYVvtoK4cjjy9qwxe+zmwjGs1uWjS3Dl2FLd354+1aFW649N1CoFRBLjdXnn078AgQAisXbs0vb9OVg7vTke37sGr0qW90D6Z0kkYihVxsewz54nYqNjWKXuPPl/YPR4FPbL1pLiTYS7ERWLsdN+QcNa1fFJr26vHCMRmU+xshChoaHYvn07Pv30U73t27ZtQ2BgoPE3lQJPextk5CugKiiAqPCWipRcGaQiIRyk+j80rAQC3YD6CX9XB8SlZUOpLsCJOw/QwMcD9oXvc7O1hpO1BBn5rzYrrqTxmLwaWfJDSL31LwRIvd0he6BdekWWZGS/lzvk9x+XWIymoEpPhdDeEbCy0j3ESOjkggK57LnLp9hWq4P07X/qbXuSDFfeT9RtU97X3poocnW3qGS5u5srMrOyoVKrISqcyZaWkQGpRAJ7O/11/T1cXZCWrj/7KC0jQzd7wMbaGlPGj0ZObh4EAsDO1had+w1BOU/9W+nLOk97a4P2JDVXBmuREA7WL9ee3E7NgpONBFKhFVJzZfB31V58UxVob6t3t3u1ZGpJe3KeqNVqCJ+cJ+lPzhP9dXHdXV2Rlp6hty0tPQOuLi5wcnSESCSET8Wi29+dHB3g5OCARykpAMp2srxN+25o0LSN7u+/tq5GRrr+mrCZ6WlwdvnvF1Yz01MRE3UDdRu20G2r4OMPlUqJ/PxcOIidix13SSnITIeVrYN+G+vgBI1CDo1M/8Fg6qwMqB/rPzhN9fgBhM5FM8vFlYIAoRDyGONrwJd16sw0WNnpHw8rR2cUKOTQ5Osfj4KsDKgePXs87uuWWynIyULqwmkQ2NoBSiUgEMCxU2+o0yyrH/Z0dkBGTp5en5OalQNrsQgONobt4sP0LAyarb1AtXxsf90yLenZuXiQnoVgn6Il9LxdneBsb4vk1AyLSpYbHcPmyf/jGNbyHpD8Ito+J+uZPifdeJ/j9vw+B4B2NvFTFxslEgm8vTyRkvbv63mXJZqcDAhs7LQPki98Po7AzgEapQIag4tmGl2i/ImC1Iewci9aPlFY3g8QCqGKjzJz5ObDMaxWaIP3EFDtLd3fV08sR152il6Z/OwU2DoYr8uzSXQbezdIbZ2Rm/XQ9MGWAnc3N2Rm6rcn6enpkEqlsDNoT9yQlq5/p056egZcXfXverNkHq4uyMzK0e+H0zONfm9exqUbtzB+xq+oVyMcUz4bAisu+UFUphXrGzpu3DisWLECvXv3xg8//IAffvgBvXr1wh9//IHx48ebOsZiC3Z3hMhKgOtP3XJ55X4aqno6w+qZB0ZNPngJUw5d1tsW9TgTfi72EAi0+0/dLeoI72fnISNfAX9Xe/NWwsR4TF5N+rmrcGmoP3PApVFtZJzTPmgt4/xVuDSpo9tnXdEbNj7lkH7O8EFsZZki4Q40ahWklYseyGIdXBXyOzF6D1V7wsreEWLPcpDFROhtV6U+hio9FRIff902cXkfaAoKoEq1rAckBflXglAkRERU0TqG1yOiUCUowGCwExYShBtR0dAUHiuNRoMbt6JRNUR7MXHRyj+x98gJ2NvZws7WFrdi4pCbm6f34CVLEOzhrG1P7hdd9LiSnIIwLxfD9mTfBXy7/6LetujHGfBzdYCVQIAwb1dcSSr6QX4tORUiKwGCPQyfKF+WBQb4QSQSIiKq6EGF1yMiERJU2ch5Eoybkc+eJ5EICwmGUChEcOUAxN2J15XPzMpCZnYWvD09S6Yyr8DewQne5X10r6CQaoiJvK5X1+hb1xAYEv6fP/vRw/v4dcaXSHuqDbkTFwlHJxc4ODqbqgpmpUyOBwrUEPsWTTAQ+4dAee+2QRurTIiFqJz+uqAiz3JQpxX9wBf7VoYq8a7BrElLoUqKB9RqSCoVrd0p8Q+BMsHweCjiYyEuX0lvm8izvC4Z7vz+MEhDqkGTlwuNUgFpaE2oszN1a5hbihAfb4iEQly/U3Sx+XJsAqr6VTBoS/LlCgyfuwZWAgF+G9sfns5F66g62tlAIhLidnLRxYL0nFxk5uSjgrtlzbAO9nAy7HOSUlDVWJ+z/yKmHNB/ILt2DGtZa9f/m8r+/hCJRLqHdALAjYhIhAQFGpwnoSHBuBkZpdcO37wVibAqwdBoNPhg4DDsO3REVz5fJkNS8n34VKxQMpUxEfWjJECt1ia5C4kqBED9IAGAfnti81Yf2LzZW2+blWcFvYd4CstVgvrBPYOlXSwJx7Ba1rbOcHKvpHt5+dbEw/jLenV9GH8Znj41DN6rkOXgjykNkBx3TrctN/MhZHnpcPawrAdIP09AQABEIpHuIZ0AcONmBIKDggzOkypVquBWxC399iQiAqEhlvkwT2OC/H0hFAlxMzpOt+1aZDRCA/3/c6L7dkIivvhhDhrWqoapY4dB9OzdhURU5hQrWV6rVi1s3boVNWrUQFxcHBITE1GvXj3s3bsXDRs2NHWMxWYjFqFTqC9mHLmKmw/TcTTuPlZfikXvmtoOLSVXplsrt4W/N/ZE3sOuWwm4l5GDpeeicOV+GnrVCIDIygrdw/2w4OwtXE5Oxa1HGfhq70W0CPBGZTfHF4VQ5vCY/HdSL3dYWWtvKXuwZR/Ezo4ImzUB9qGVETZrAoR2Nri/aS8AIH7JOlR4vwt8PuoJh2ohqLniJzzafQz5dxNf9H9R5mgUcuScPgKPfsMh9Q+Cbe2GcH6rGzIPam/5Fzo5a9fcLSSpWAkFCjlUjw1nVmTu3w6X7h/ApmpNSHz84d53GPIu/Q11ZkZJVcckrKVSvNWqOX5Z/DtuxcTh5N8XsH7HbvTspJ2hkpqeAXnhevUtG9dHTm4e5v62CnfvJWLub6uQL5ejVRNt++jm6oKVG7bgVkwcomJvY9rshejyVls4OljWhSYbsQidqvph+qFLuPkgDUdjk7D6YjR619YmvFJyZZApte1J88rlsedWPHZFxCMhPQdLz0bgSlIqetXU/vh6t0ZlrLoYhaOxSbj5IA0zDl9Gt2oBsLGwZVispVK82bolZi1chsiYWJz6+zw2bt+JHm93BKCd8SeXa5eVaNGkIXJyczF/+QrcTbiH+ctXQCaXo2XTRgCAd7u+ja279uDYqbOIv5eIH+csRGV/P4QGl507uF5W/SatkZebg9XLZyMx4Q5WL58NuTxfN/tcIZcZzDx/nspBofCvXAVL536PxIQ7uHLxDNatmIcu7/Q3Yw1MTKlA/sWTcOzxEUQVAyCtWgd2zTsg95T2mQ9WDk66ZVnyzh6GqJwv7Nt1h9DNC/Zv9IDQ1RP5l07rPk7sXdHiksFP0ygVyLt4Ak7vDIDYJwDW4XVh36oTck9o+1YrByfdjNe8M4cgKu8Lhzd7QOjuBYe3ekLo5om8f04BAApyc+DQ4T2IvCtCUjkUTj0+Qs6hHUYv9JZlNhIJ3m5UA9PW7sKNu0k4cuUWVh04gz6tGwAAUjKzIVNoL44s33sSiY/T8F3/rrp9KZnZyM6XQSQUokvjWpi15QD+ib6L2KSHmPDbVlQLqIiqlSzrwY02YhE6hVXCjMNXCvucZKz+Jwa9a1UG8MwYNqAc9txKwK6IeO0Y9u9buJKcil41K5dmFUzO2lqKN1q3xK8LlyAyOhanzp7Dpm070b2zYZ/TvEkj5ObmYsGy33E34R4WLPsdMpkMLZo2hkAgQMO6dfDHnxtw5foN3I1PwA+z5sLD3Q0N6tQuzSr+dyolFDcvwKbduxB6+0IUWA3Seq21y60AENg66NpXZdwNiMPqQhxWD1bO7pA2ehOiCgGQXzqh+zihezmoUy175jDHsMb5h78JhSwbZ3fNQPrDWJzdNQNKZR4CqmuPi0opQ1629kKjxNoe3v51cHb3D3h87zpSkm7i8Pqx8AlqClfvsn+h4GVYW1ujbZs2mDd/AaKio3HmzFls2boVXbp0BgCkpaXp2pOmTZsiJzcXi5csRXxCAhYvWQqZTIbmzS1nyaZ/Yy2Von3LJvh5yR+4FXsbJ879g3U79+Gdju0A6H9v/s1Pi1fC080VI/v3RmZWNlLTM/7T+4mo5Ak0mv/+62HYsGEYO3YsKlc27YAzZ4HpZ6XnK1WYcfQajsQlw14iRt/agehTOKiuM3cHJrethc5h2hlb227EY9WlGDzIzkeAqwPGNg9H7QraW8QVKjUWnL2FvVGJkCnVaBVYDuOaV9MtQWIO9sN/4jF5hv3wn7BbbN7lBzoqo3C2zYdIO3Fe9/fVAV8icdU2AIBTvWqotmAK7KtURtb1KNwYPhlZV27p3l+xbzcETx4FsasTUg6exrUh30CZlmHWeG/372TyzxVIpHDvOwx2dRujID8PGXu3IOuANlkesHIXHi2fjZxThwEAdvWbwa3PQCR82tfoZzm//R4c23aCldQaeZfP4fGqhQa31ptKwMpdeHjrn38vWAwyuRy/LP4dJ86eh52tLXp17YR3O7cHADTv2gdfjRyM9m20S0NERMfil8W/Iz4xCZUr+WLs0AEIDvADAKjVBViwYg0OHj8FgZUV3mjRFEP69dbd4mdqXqF1kLtkglk+O1+pwozDl3E4JlHbntQLwfuFyfLaszbj2zfronNVPwDAtut38MeFKDzIzkOAmyPGtqyBOhWLbnVdcT4Say/FQKEuQJvACviyTS1IReY5JnaDv0dy1DWzfLZMLsfshctw4uzfsLe1xXvduqBnF23iolXnd/DF6GF4q00rAMCt6BjMXrgM8YmJCPCrhDFDByGoctGdGLv2H8KaTVuRkZGJmtWqYuzwwfBwdzNL3OVDquNilPkefhcXfRO/L/wRSYnx8PWrjI+HfgG/ytr2/PjhXVg6ZxrW7vzb4H3Tvh6K0PDa6NFnoG5beupjrFwyEzevXYTU2gZvdOiJzu/0g+CZ2aWvqm6ICx6M+8Ckn6kjlsCp+0eQVqsHjSwPucd2I68wWe798xpkbliC/IsntUX9guDYpS9EXhWgepSMrB2robxTtCSAy4BxUCbHI2fvRvPE+hTvn9cg+bPe/17wPxKIJXB6ZwCsq9eHJj8POUd36ZLl5WevQ/qfi5B/QZvAkvgHw7Fbv8KLBMnI3PYHFLe1M+EEEimcen4M6/A60MhlyD11ADmHd5o83qeVn70O+cfWmfxz8xUKfL92Nw5fjoC9jTX6tWuMD9pqL6bVHPwtpvTrgi6Na6HrpHm4+9DwYtPbjWpgav9ukCuVWLDjCPZduAG5UoWGoQH4olcH3VIt5mDTsjdyFn9l8s/V9jlXcCQ2Sdvn1A1Gn9raC4h1Zm/F5DfqoHNV7Z0H267fwaqLMUV9TovqqG3kmTqDNp1AnYruGNwozOTxPs1+yAwkRpt+qSSZTI5fFy3FyTN/w87WFu9174IeXbTjwjZv98C40cPxVtvWAIDI6BjMXrAECYlJCPCrhE+HDUJQZe2EGYVCgd9W/4mjJ04hNzcPNauHY/TQQfD0MM9ziCoGhyNz5mizfDZEYti0exfioBrQyPMhv3AEisJkudPnc5C3dy2UN7XjfHG1hpDWawMrRxcUpDxA/rFtUCcWzSS17TEY6kdJkJ/cZZ5Yn+L0+RyOYZ/hFVoHM7ea78Hmj+5dw6nt3yLj0W24eoegabfJcC+vbQui/9mG45u/xsAZ2t958vxM/L37JyREHoVapUCl0NZo3HkCpDb6d0Fmpydh/U9t0Wv8ITi4mP7OjM+7W+FOXKzJPxcAZDIZ5i9YiFOnT8POzg49e3RHt65dAQBvdeiIMZ99ijfaaZPFUVFRmDt/Ae7duwd/Pz+MHDkCgUbyQzNnzdLGPWaMWWIGAP/KgUi5cdbknyuTy/Hz0lU4/vdF2NnaoE+X9niv05sAgCY9+uPr4QPQsbX+BYLdR07i943bsWXxLwC0SfXOn3xq9PONvd9U3MMbmeVz/5/dG9ajtEOwOD4Lt5R2CGZTrGR5w4YNsWHDBlSqVOnfC/8H5kgMWzJzJcstWUkkyy2NuZLllsqcyXJLZc5kuaUyZ7LcUpk7WW6JzJost1DmSpZbMnMlyy2ZuZLllsxcyXJLZdZkuYUyZ7LcUpk7WW6JzJkst1TmSpZbMibL/zsmy/+7/+dkebHub+/Tpw8+++wz9OrVC+XLlzd46nG9evVMEhwRERERERERERERUUkoVrJ84cKFAIBJkyYZ7BMIBLh165bBdiIiIiIiIiIiIiKisqpYyfLIp56QTERERERERERERERk6YqVLH/iyRORn132vHz58q8UFBERERERERERERFRSSpWsvzs2bMYP348UlJSAAAajQYCgUD3v1yGhYiIiIiIiIiIiMo6gZVVaYdAZUixkuVTpkxBgwYN8Mknn8DBwcHUMRERERERERERERERlahiJcuTk5OxbNky+Pj4mDoeIiIiIiIiIiIiIqISV6z7DBo0aIB//vnH1LEQEREREREREREREZWKl55ZPn/+fN1/e3t7Y9KkSTh16hR8fX1h9czaPiNGjDBdhEREREREREREREREZvbSyfJz587p/V2jRg08fPgQDx8+1NsuEAhMExkRERERERERERERUQl56WT56tWrdf+dnJwMb29vgxnlarUakZGRpouOiIiIiIiIiIiIyFw48ZeeUqw1y9u0aYOMjAyD7YmJiejTp8+rxkREREREREREREREVKJeemb5pk2bsHjxYgCARqNBjx49DGaWZ2VloXLlyqaNkIiIiIiIiIiIiIjIzF46Wd61a1eIxWIUFBTg66+/xkcffQQHBwfdfoFAABsbGzRs2NAsgRIRERERERERERERmctLJ8vFYjG6du0KAKhYsSJq164Nkeil305EREREREREREREVGYVK9tdr149HD58GDExMVCr1brtCoUCERERWL58uckCJCIiIiIiIiIiIiIyt2Ily6dOnYrNmzcjLCwM165dQ61atZCQkICUlBT07t3b1DESERERERERERERmZzASlDaIVAZYvXvRQzt2bMHM2fOxPr16+Hr64tvv/0WR48eRceOHaFUKk0dIxERERERERERERGRWRUrWZ6Tk4Pw8HAAQHBwMK5duwaRSITBgwfj+PHjJg2QiIiIiIiIiIiIiMjcipUs9/HxQUREBAAgKCgI165dAwBoNBpkZ2ebLjoiIiIiIiIiIiIiohJQrDXLP/74Y3z++eeYPn06OnTogO7du0MkEuHy5cuoU6eOqWMkIiIiIiIiIiIiIjKrYiXL33nnHfj5+cHOzg6enp6YNWsWduzYgWrVqmHEiBGmjpGIiIiIiIiIiIiIyKyKlSxXKpU4d+4c1q9fj9TUVACAt7c3+vXrBw8PD5MGSERERERERERERGQOAqtirVJN/6eKlSyfOnUqTp48ic8//xxhYWEoKCjAtWvXMHfuXKSlpWHMmDGmjpOIiIiIiIiIiIiIyGyKlSzfvXs3lixZgrp16+q2ValSBRUqVMCYMWOYLCciIiIiIiIiIiIii1Ks+wzs7e0hEhnm2R0cHIxuJyIiIiIiIiIiIiIqy146WZ6cnKx79e3bF1988QVOnDiB9PR0ZGVl4eLFi5g4cSJGjhxpzniJiIiIiIiIiIiIiEzupaeBt27dGgKBAACg0WgAAIMGDTLYNmXKFPTq1cvUcRIRERERERERERERmc1LJ8sPHz5szjiIiIiIiIiIiIiISpTASlDaIVAZ8tLJ8goVKpgzDiIiIiIiIiIiIiKiUlOsB3wSEREREREREREREf0/YbKciIiIiIiIiIiIiF57TJYTERERERERERER0WuPyXIiIiIiIiIiIiIieu299AM+iYiIiIiIiIiIiP6fCKw4l5iK8GwgIiIiIiIiIiIiotcek+VERERERERERERE9NpjspyIiIiIiIiIiIiIXnsCjUajKe0giIiIiIiIiIiIiErag3EflHYIFsf75zWlHYLZlKkHfCaOfLe0QyhTKs7biPQZw0o7jDLF5auFuN2/U2mHUaYErNyF3eKQ0g6jzOiojELmpUOlHUaZ4lS7LWS7F5d2GGWKdccheBxxvrTDKFM8wuojIja5tMMoU8ICyyOub8fSDqNMqbxqNy40bVjaYZQp9U79Ddm6H0s7jDLFuvcXkB1cWdphlCnW7fojMfpGaYdRZlQMDueY/hkBK3ch69LB0g6jTHGs3Q5bzxeUdhhlSvf6VoiPjSrtMMqUSoEhyD6/u7TDKFMc6nP8SvQqylSynIiIiIiIiIiIiKikCKwEpR0ClSFcs5yIiIiIiIiIiIiIXntMlhMRERERERERERHRa4/JciIiIiIiIiIiIiJ67TFZTkRERERERERERESvPSbLiYiIiIiIiIiIiOi1JyrtAIiIiIiIiIiIiIhKg8BKUNohUBnCmeVERERERERERERE9NpjspyIiIiIiIiIiIiIXntMlhMRERERERERERHRa4/JciIiIiIiIiIiIiJ67TFZTkRERERERERERESvPVFx3nThwgWj2wUCAcRiMTw8PFC+fPlXCoyIiIiIiIiIiIjIrKw4l5iKFCtZPmHCBCQmJqKgoABOTk7QaDTIysqCQCCAQCCARqNB9erVMW/ePHh6epo6ZiIiIiIiIiIiIiIikyrWpZNu3bqhWrVq2Lt3L86dO4fz58/j4MGDqFu3LsaNG4fTp0/Dy8sL06ZNM3W8REREREREREREREQmV6xk+R9//IEpU6bA399ft83HxwcTJkzAkiVL4OrqitGjR+Ps2bMmC5SIiIiIiIiIiIiIyFyKvShPenq60W1qtVr3t0AgKO7HExERERERERERERGVmGKtWd6zZ0988cUX+OyzzxAeHg6NRoObN29izpw56NatG9LT0/Hzzz+jfv36po6XiIiIiIiIiIiIiMjkipUsHzt2LOzs7DB79mw8evQIAODp6YkPPvgAAwYMwJkzZyASiTBp0iSTBktERERERERERERkKlwZg55WrGS5QCDA0KFDMXToUKSnp0MkEsHBwUG3v1mzZmjWrJnJgiQiIiIiIiIiIiIiMqdiJcsBID4+Hjdu3IBSqTTY17Vr11eJiYiIiIiIiIiIiIioRBUrWb58+XLMnDkTTk5OsLOz09snEAiYLCciIiIiIiIiIiIii1KsZPnvv/+OcePGYcCAAaaOh4iIiIiIiIiIiIioxFkV501yuRxvvPGGqWMhIiIiIiIiIiIiIioVxZpZ/vbbb+PPP//E+PHj+cRYIiIiIiIiIiIiskgCq2LNJab/U8VKlufk5GDz5s3YtWsXKlasCLFYrLd/1apVJgmOiIiIiIiIiIiIiKgkFCtZ7ufnhyFDhpg6FiIiIiIiIiIiIiKiUlGsZPmIESNMHQcRERERERERERERUal56WT5V199hQkTJsDe3h5fffXVC8vOmDHjlQMjIiIiIiIiIiIiIiopXMGeiIiIiIiIiIiIiF57Lz2z/OnZ4p9++im8vLzMEhARERERERERERFRSRBYCUo7BCpDijWzvGXLlnj//fexdu1apKWlmTomIiIiIiIiIiIiIqISVaxk+d69e9GiRQts2bIFzZs3R//+/bFp0yZkZmaaOj4iIiIiIiIiIiIiIrMrVrLcz88PgwYNwtatW7Fv3z60aNEC27dvR4sWLTB48GBTx0hEREREREREREREZFYvvWb580ilUkilUtjZ2UEgECA/P98UcZmOSAyXdwfApkYDaJQKZB/5CzlHdhkU8xg1GdKgqgbbc88eRfqfiwAA9i07wKFNZwisbZB/+SwyNv0OjVJh9iqYnFAE2zd7QRxSE1ApITt3CPLzh40WtesxGJLgGnrbcjYthDL2BmBlBZvmnSEJrw8IhVBcP4f8o9sBTYH562BiArEYbh8OhV3dxtAoFMjctw2Z+7YZlCv35QzYVKlmsD37xEE8/n0OAMCxTUc4d+gBK1t75N24hJSV81GQm2P2OpiLlUSMpue24sboqUg7cd5oGceaoQhfMAWO4cHIjojF9eGTkXXppm5/+fc6InjKp7Au54HHB07h2pBvoExNL6kqmIxcocRPKzbg6PkrkErE+KBjG7zfqe0L33MlMhbfLlqF7XO+022r33u40bKTh/ZFx+YNTBqzucmVKkzfcgSHr8VCKhaib6u66NeyjtGyu/+5hcUH/sbD9GxUqeiJcV1aololb93+pl8vRLZMrveeszOGw1YqMWsdTE2uUGDW0j9w/OxFSKVi9OrSAb27dHjhe65GRGHa3CXYtHiWwb4/Nu1A4v0HmDDKsi9G346LweL5sxAffwe+vn4YMvwzVA4KeW75v7ZvxvatG5CXl4smTVti4JBRkFpbAwCUSgV+X7YQJ48dhkgsRts32uP9vp9AILCctQYFYjHc+w7T9jtKBTL2bDXa75T/agZsQqsbbM86cQCPlz/V73TqCaGtPfKuX8LjFfMsrt8RSCSoNOZzuLRohQK5HA/W/4mH6/80Wta5eQtUHDQUEk9P5MXGIOHXWciLjtJ9js+wkXBt0wYAkH7iOO7Nm4MCmazE6mIqcqUK0/ecxeGIeG372jgc/RobjkGelpSejR4Lt2Fen3ao518OAJCnUOLnfedw+FY8CjQavBHmh8/fbABbqbgkqmFScqUK0zfux+ErUZCKRejbpgH6tTHeb+6+cAOL95zCw4xsVKnohXE92qKaX3kAgEajwYpDf2PTqcvIzM1HVd9y+PKdN1C5nHtJVsckFAoF5ixehpNn/oZUIsE73brg3W6djZaNibuNXxcuxZ278fDz9cGnwwcjOLCybn/nXh8iNzdP7z27Nq6BjY2NWetgahzXG9KOYTfiyFNj2A86tXnhe65ExmHyolXYMWeKbptGo8GyLXuw4+hZ5MvlaFAtFOM/egcujg7mroJZJN+NwLYVU/AwMRqeFQLR7aNvUcHfMCcAAApZHnatnYEbFw9CU6BBtfpvouP7X0BqbQcAyEx7iF1rpiMu4hzEEimqNWiPN9/5DGKJtCSr9EoUCgXmLVyMU2fOQiqRoGf3rujZvZvRsrFxcZgzfxHuxt9FJV9fjBo+DMFBgQAAtVqNlavW4MChw5DJ5ahXpzaGDxkEFxeXkqzOK5MrlPjxjy04cvEapGIxPuzQCh90aGm07KkrEVi4aQ/uPUxBBU83DO3ZHi1qhwPQfm/+2H0EWw+fRWZOLsICfDGubzcEVPA2+llEVPqKlSxPSkrCwYMHsX//fly7dg3VqlVD+/btMW3aNHh6epo6xlfi3PUDiH0D8HjedxC6usP1g+FQpz1G/pVzeuVSls+EQFh0OCR+QXD76DPknNwPALCp0QCO7d9B2qp5UGdnwvWDYXDq+gEyNv1eovUxBZvW3SH09kXOn3Ng5eQKu059UZCZBmXUZYOyQvdyyN25Asq7UbptGpl2EG3d7G1IqjVA7u7V0ORmw7bDB7Bp2wP5BzeVWF1MxfW9jyH1C8L9HydA5OYJz4GfQZXyCLkXT+uVezjvewhEReeJNCAEXsO+ROaR3QAAu/rN4PruR3i8bBYU95Pg8fEouH84FI8W/1yi9TEVK6kEtVb/Aofw4OeWEdraoN7OpUhe9xeuDfgSvoN6o96OJTgW0g7qvHw41auG6ku/1ybQr0ai6uwJqPHbDFzsOqQEa2Iac9duw63bCVg4cRTup6Thu0Wr4e3hijYNahstH5uQhC9/XQ6pWD8hsWfRdL2/1+05ikNn/0GLuoYJsbJu1l8nEXHvIZYN64HktGx8s24/yrs4oF0N/XPm0u1EfLvhICa/2w41/cthw+lrGL5sG/Z9MwC2UgkeZuQgWybH7gkfwfqp42UjsbxkzsI/1iMy7g7mfPcVHjxOwfdzl8Dbwx2tGtc3Wj4u/h6++XkeJGLDuh48eRa/r9+KN1o0NnfYZiWT5WPa5C/RvGVbjPzsS+zfuxPTvv0Ki35bC2trwyTM2dPHsf7Plfj08wlwdnbBvNk/4I8VSzBo6GgAwPIl83H96mVMmvoTZPl5+OXHqfDw9MKb7Y0niMoit14DIPUPRPIPX0Ps7gnPQWOgSn2E3Av6/c6Dud9DICo6N6SVQ+A9/EtkHS7sdxo0g1uvj/FoyS9Q3k+Cxyej4d53GB4t+qlE6/OqfIaNhF2VUESNHgGJtzcCJkyC4sF9pB87qlfO2t8flSdPwd2ff0TOtWvweq8Xgn76Bdff64ECuRwVPhoAh5q1EP35GAgEAvhPmISKg4ciYc7sUqpZ8c06eAERySlY1u8tJGfm4JttJ1HeyR7tqvo/9z3f7z6DfKVKb9vP+87hZnIKFn/4JgQAJu84hZn7z2FS56ZmroHpzdp2BBEJD7BsVB8kp2Xim9W7UN7VCe1qVdErdyn2Hr5duweT+3RAzYAK2HDiEoYv3IB9U7UXYDeduoxVh89hyvsdUcnTFSsPncPwhRuw7ZtBFtfvLFmxCtExcZg5bQoePX6MH2fPg5enB1o0aaRXLl8mw9dTvkebFs0x/tMR+Gvvfnw9ZTpWL1sAG2trPE5NRW5uHlYvWwBraVFyz7rwIqUl4bje0JMx7KLCMeyURatRzsMVbRrUMlo+NiEJXxgZw247fBo7jp7Fd8P7wcnBDj/+tgHTlv6JXz63vAv6ClkeVs4cjJqN38Y7g6bj3JENWPnLEIybuR8Sa1uD8rvWzkDinZsYMP43QABsWTYRu9f+iO4DvoNGo8HaeaNhY+uIwRNXIy83E1uWTYCVlRAdeo8rhdoVz7LfViAmNhY/TZ+Gh48eYeasX+Hp6YnmTZvolcuXyTBx8ndo3bIFxn02Grv27sM3336Hlb8thY21NTZs2oJjJ05iwlfj4eToiIWLl+HHX2bjh2nfPef/uWyas/4v3LpzD4u/Gob7KWn4dsk6eLu7oG19/cmEMQnJGDdnBUb3ehtNaobi7LUofDH3D6ya8imCK1XAliNnsWbPMUwe2Au+3h5YtfsoRv28DJt//ALWFjYpiOh1UaxlWNq0aYPt27ejVatWOHDgANavX49+/fqVuUS5QCKFXaM2yNy8EsrEO5Bdu4Dswzth3/wtg7KavFwUZGdqXzlZcHq7N7IP74Ty3m0AgH3L9sg5tgeym5egTIhD+vqlsG3YCgKxhTVuYgmkNRoj/9AmqB/egzL6KmR/H4S0TgvDskIRrJzdoLofD01ulu4FtfZHmHWd5sg/tgOq2xFQP7yHvP3rIK3VDBBbztVzQHueODR/A6l/LoUiPg55l84iY88WOLbtZFC2IDcH6swM7SsrC649+yJj7xYo7sYCAJw79EDGni3IvXgGyqR4pG34HZKKfoCgWF+1UmUfWhmNT2+EbWXfF5Yr924HFOTLceuLn5ATeRsRY76HOjsX5Xpqv2d+wz5A8ua9SFqzA9nXo3Cl/3h4tm8BG7+KJVENk8mXybHz6BmM7dcTVfx90apeTXzQqS027T9htPzWQyfxyeRf4OrkaLDP3dlJ95IrlNi47xgmDHof9raWNXMrT67Etr+vY3y3lgit6IU21QPRv3VdrD911aBsSlYeBrVrgE51Q1HRzRmD32iAzDwZ4h5oHxJ951EqPBztUNHNGe6OdrqXJc0UBrQ/Hv46dAyjB3yIkMp+aNGwLvp064gtew4aLb99/xEM+fI7uDjrnycqtRozF6/AjPnLUN67bPWtxXHqxFFIJFL0GzAEPr6VMGDQCNjY2uLMyeNGy+/asRVvd+mJevUbISi4CoaMGIvDB/dCLpMhOzsLhw/swbBRYxEcEorqNeugc7d3ER11q4RrVXwCiRQOLd5Ayhptv5P7z1mk794Mp+f2O+naV1Ym3Hr2RfqezZDf0fY7Lh17ImP3ZuRePANFUjxS1/8GqU8li+p3rKyt4fH220iYMxt50VHIOHEc9/9cA88e7xiUdarXAPl37iB1317Ik5OQuHgRJO7usPbTJpCdGjXG453bkRcVidzIW3i0fSsc6tQt6Sq9sjyFEtsuRWP8Ww0RWt4dbUL90L9JNaw///zzfPe1OOTKlQbbxUIrfNWhEcLKuyO0vDu61ArC5YRH5gzfLPLkCmw7exXje7RFqI832tQIQf+2DbH++D8GZVOycjDorSboVD8cFd1dMLh9U22fcz8FALDz3HX0bdMALaoFwc/LDRN6vYmM3HxciUss6Wq9knyZDHsOHMbwQR8jODAATRs1wHs9umLHrr0GZY+dPA2pRILBH/dFJZ+KGD7wY9jaWOP4qTMAgIR7iXBzdUF5b2+4urjoXpbWD3NcbyhfJseOo2cxtl8PVPH3Qat6NfBhp7bYuN94H7z10CkMmDwLbkbGsKev3ES7RrVRJywIgT7l8eHbbXHhRpSRTyn7rp3bC5HEGu17j4Nnhcro9MFXkFrb4vr5/UbLC4VidO47ERX8q6KCX1XUad4d8dGXAACP79/Bvdir6DloOrwqBsE/pC7a9hiFq2cN72gvq/JlMuw9cBBDBw1EUGBlNG3cCO/07I6du3YblD1+4iQkEgkGDvgIvr4+GDroE9jY2uDkSe0FKXWBGoMHDkD18HBU8vVF186dcDMioqSr9EryZXLsOPY3xn7YDVX8KqJV3er4sGNrbDx4yqDsvrOXUC8sCL3ebA4fLw+8264p6oYF4uB57W+iXSfP44MOLdGsVlVUKueJr/r3RGZOLq5E3ynpatGLWFnx9V9f/8eKVbs9e/Zg+/btGDRoECpUqGDqmExGXKESIBRCfqeoA1fERUJSKQh4wcDPtkFLWNnaI/vgdu0GgQAS30DI44oaeMXdGAiEIu3/hwURelYEhEKoEm/rtqkS4yAq7wdA/5gIXb0ADVCQnmLwOQJbewikNlAl39VtUz9KgkAogqjci5OrZY3E1x8CoQiymKIfoLKYCEgDgl94njg0awMrOwdk7N4MABBY20DqF4jcf84UfU70TSROHG6RS9O4Nq+P1GPncLrpey8s59KgBtLO6P9QTTt7Cc4NawIAnOvXQNrJi7p9ssQHyE9IhksD/SvyZV1MQhJUajWqBwfottWsUhk3Y++ioMDw3/fM1QhMHtoXfTq0euHnLt20C3XDQ1C/WpUXliuLopMfQ1VQgJqFt7UDQC3/8rgefx8FBRq9sm/UDMbAdtpb5WUKFdYcvwRXe1tU9nYFAMQ9SEMlD8u6NdOY2LsJUKvUqBYSpNtWPTQEETFxRs+Tc5euYuKoQXjvbf2LuPkyGeLi72Hpj98iPCTQ7HGbW3RkBEKrhuuSLgKBAFVCwxEVedOgrFqtRmxMJMLCi+60CKkSBpVSiTt34nDr5nXY2tkhvFpN3f4e7/bByE+/MHs9TEXiG2DY70RHQFo55F/6nbawsndAxq5n+p2LT/U7UTdx72vL6ndsA4MgEIqQc/2ablvOtauwDwszOB6qrEzY+PvDvlp1QCCAe8dOUOXkQJ6cpN2fmQmXVq0hdHCA0MEBLi1aIi86ukTrYwrRD9KgUhegpk/RxbJavl64nvTYoH0FgIw8GWYfvIBv3m5isO/rjo1Ry9cLgHaZlr3Xb6Oun+Xd+h2d9AgqtRo1A4outtcKqIjr8cmGfU7tUAx8S3ssZAol1hw9D1cHW90yK2O6tUbHukVLLQgggAZAzjNLgZV1t+/chUqlQtUqRUtahYdVwa3oGIM+51ZUNMLDQvXa4aqhVRARqf1+xCckomL58rB0HNcbijY6hg3Azdj4F4xhP0RvI2NYJ3s7nL58E4/SMiBTKHDgzEWE+PmYNX5zSYi9Cr/g2nrfiUpBtZEQe8Vo+S79J8EvWHs3afrjJFw9uwv+ofUAAA5O7vho3DI4OOkv5STLs5wle27fvgOVSoWw0KLfJOFhYYiMijZsTyKjEF417Jn2JBQRkZEAgA/79EbTxtq7W9IzMrB3/0FUr/biZcTKmuiEZKjUBagR5KfbVjPEHzfjDL83nZrWw4h3Oxp8Rk6edoniT3t3RvvGTy1TKQA0GiAn3/KWiCN6Xbz0Mizz58/HgAEDYGNjgz179ryw7IgRI145MFMQOrqgIDcbUKt129TZmRBIJLCys0dBTrbR9zm064KcY3ugUWgHzFY2dhBIJFBnPrXGckEBCnKzIXR2AxBjzmqYlJW9IzR5OUBB0TEpyM2GQCyBwMYOmvyiDt3K3RsaeT7sOveDyDcYBVnpyD+5C6rbEdDk50GjVsHKwRkFqQ+05R21iS6BjX3JVuoViZxdoc4pmjEPAOrMdFhJpLCyd0BBdpbR9zl16InMAzugkWs7ObGn9oen0MEJHhN+gsjdC/k3ryD1z6UoyMs1f0VMLGHJupcqJ/X2QHZErN42xcNUOFTVJguty3lCnqw/g03+KBXWFrZGW0p6Jpwc7CB+6nZdVydHyJVKZObkGqzVOHOs9nbUXcfPPvczH6SkYf/pi1j+3VjzBG1mKVm5cLazgVgk1G1zc7CFXKVGRl4+XO0Nb2E9F52AIUu2QgMNZrzfXrce+Z1HachXKDFgwSbcfZSGKhU8Ma5rS/h5WlYCPTU9E06ODhCL9c8ThUKJzOwcuDwzS2vGV58BAPYc0b9DwcHODotmTDJ/wCUkPT0NPr5+etucnV2QEG84oyY3NwcKhQKurkU/OIVCIRwcnZCa8hhpqSnw9PTG0cP7sWXjWqiUKrRu9xZ6vvcBrCxkhoPI2QXq7Gf6nayMf+13nDv1ROb+p/sd7ZrUQgcnlJ/4M8QeXsi/eRkpayyr3xG7uUOVmQmNquh4KNPSYCW1hsjJCaqMDN32tMOH4NykGUIXLYVGpYJGo0HMuLFQZ2vHdPcWzkPg9z+g1m7tzMD823GI+cJyboF/IiUnH8621vrtq72Ntn3Nl8HVTv9OpJn7z6NzjUAEvqDNnLjtBP66GovyzvYY3KKmuUI3m5TMHDjb2eofE0c7yJUqZOTmw9XBSJ8TdRdD5q/X9jn9Ouv6nNqV9ZN7W89cgbqgALUqW9Zdb6lp6XBydIT4qaUyXJydoVAokJWdDWcnJ72yfr769XZxccbd+AQAQEJiImRyOcZ8NQn3kpIQGOCPYQM/hk8Fy0qgc1xvKPU/j2EHAQD+Ov63wWd90qM9xvy8GB2HT4TQygpuzo743ULHsdkZj+FVUX9Cgr2TGx4mvvi3/cYlX+LyqR1wca+ANl2HAQBs7BwRXL1oaauCggL8fXAtKldtaPrAzSQt/eXbk7T0dPj56k+Qc3Euak+eWLXmT6xZtx4O9vaY/fOP5q2AiaVkZsH5me+Nm6MD5EoVMnPy4OJYlPPwr+Cl9964xAe4cDMGPVprLxjUDAnQ27/92DmoC9SoGfz8ZdWIqHS99K/Kc+fOQalU6v77ea/z540/ALA0CCQSaFT6t6M++fvp9T+fJg2qCqGzG3LOHHrqc6R67y36LNVzP6esEogl0Kj117KEurBeIv1rJ0I3LwjEEihv30LOhvlQxt2E/TtDIfT2BTQFUEZdgU3LLhA4OANSa9i07g6NWg0IhbAkAokUGuV/O0+sq1SDyMUN2ceLbtMTSLU/XN0/HIqM3ZvxcMEPkFTwhccgyxxAviyhrQ0K5PoPui2QK2BV+INUaGv9wv2WQqZQQCLW/45ICr8zimfWh31ZO4+eQWiAL8IDLXOglK9UQiLS/74/+VupUht7CwLLuWHdmD4Y9lZjfLPuAK7dvQ8AuPMwDVl5MgxsVx+/ftwFUrEIgxZvRq7Msh6iLJPL9RLlAHQ/OpTFPE/+H8jlMr0fXwAgEot144qnKeTaC9XPlhcXlpfJ8nE/OQkH9v6FEZ9+gX4DhmD3zq34a/tm81XAxAQSqeGYQvkv/U5odYhc3JB1bJ9um1XhWsLu/YZp+535MyCuUAmegy2r37GylqLgmQemP3mAuuDZ88bRCWI3N8TP+hkRgwcgdd9e+H89ESJnbZLYuoIPFA8fImr0CESP+RQCiQS+I0eXTEVMKF+pgkSkP0yXCLV/K1X6M9r+jkvC5YSHGPQvCfCPmlTD6gGdUN7JHsPWHjA6Q70se3GfY7x9DSzngXVffIRhHZvjmzW7ce1OkkGZa3eT8Mu2I+jfpgHcHS1rwofcaJ+j/fvZPkcuVxi2qyKRrh1OSExCdk4O3n+vB6ZO/BJSiQTjJn6LvMKZkZaC43pDMoXSYAwrLuYY9v7jVFhLJJg1bjCWTBoNLzdnTF2y1mSxliSlQgahSP/3iEgsgUr14rFni06fYOjkdXB2L48VMwcbnZ2/b/1MJN2NwBs9Laf/0bYnhmMvAAbjteeVfbZcm9YtMf/XX1CrZg18+c1k5ObpP0C4LJPJlXqJcqCofVU8p88BgIzsHIyfuxI1gvx0D/h82o3YePz650582KEV3J0NlzoiorLhpWeWr1692uh/l2UapdJgUPTk7wKF8dssbWo2hCziCjRPzRjQFHaYhp8lQoHSsm7X1KiUeg8yBQAIC+v1zA9V2am9kF88Co1MO0hWP0qC0NsX0ppNkbfvT+Qd3Ai7LgPgPGI6NAoZ8k/v0y7norCs24k0SoXBj/En/9aa55wndvWaIP/6PyjIferWusLZ+hm7NyHvivai0eMVc1Hxu3kQOrtCnZFmhuhLX4FMbpD4tpJKoM7Tngfq5+3Pt6wfXxKx2OAHxZOBUnEfzHL43GV0b9vslWMrLVKRCIpnkuJP/rY28rBKAHBzsIObgx2qVPDEtfj72HT2Gqr7lcOiwd2gUhfoZv3N+KA93vxuOY7fvI0OdSxniRqJWGyQoHjyw+F1eoDP5g1rsGVj0Y/noJBQgx9QKqUSUqnhg+PEEu1xera8UqmEVCqFlZUQeXm5+Gz8RHgWzvxLefwIe3fvQJfu75q6KmZhdHwifnG/Y1+vCfKu6fc7msI75zJ2bULeZe2Dyx//Nhc+0yyr3ylQKGD1zDNgnjwTpuCZZTEqDh2O/Lg4PNq6BQBw96cZCF+7Hu4dO+HRti3w+/JrRH06ErkR2iV+7s74HlXmL0LSb0uhTE0tgdqYhlQkhOKZpLhCrf3b+qmkl0ypwtRdZ/B1x0Z6242pXDjr/Kd3WqHtL+vxT/wD1PMvZ+LIzeeFfc5zHsrp5mgHN0c7VKnohWt3krDp1GVU9y9aQvLq7UQMX7QRTcMCMKxjc/MFbyYSicRIn6P9W/pMnyORGCaylCoVpIUP8/xhyjdQq1SwsdEmib/+/FP0+mgwzp6/iDYtLWeswnG9IYlYZDCGVRZjDKvRaDB54WqMer8rmtXWLqkxffQAdB45CTdi7yI80M9kMZvD0Z1LcGznUt3fPpWrQ/1MYlylVEAiefEzhLwqaGej9x4xCzNGtsDdqIsICC16iPve9TNxev8q9B4xC94+wc/7mDJHYiTZ/eRvqVT6TFnJc8dpT6tQuLTT+LGfoU+/j3D69Fm80a6NqUM3C6lYZHAh9kn7+rw+JzUzG8N/XAyNRoMfR/U3uOPxWsxdjJq5FI1rVMGQHobP0SOisuOlk+Xbt29/6Q/t2rVrMUIxPXVmGqzsHLQLzxde8RU6OqNAIYcm3/hVTevQGsjau0lvW0FuDjQKBYQOzlA9TNZutLKClZ0DCp5emsUCFGRnQmBrr30wTeF6e1Z2jtAoFbqkeBGNwbaC1AcQumt/WGnycpCzbg4E1rbaGRsCAWxbdYU6w3J+jAKAKj0VQntH/fPEyQUFctlzb7O0rVYH6dv/1Nv2ZNCsvF/0cCjlfe0MJpGru0UNqv8LWfJDSL311+eTertD9kC79Iosych+L3fI7z8usRhNwdPVGZnZuVCp1RAV3j2RmpEFqUQMh2I8mPNhajruJD1Ai7rV/71wGeXpZI+M3Hyo1AUQFc54TMnKg7VYBAcb/cHyjYQHEFoJEFqx6DbFyl6uiHuo/V5IRCJInuqRpGIRyrs64lGm5az1CAAebi7IzMrWO0/SMjIhlUhgb2e4RMD/qzc7dEaTZkVrnW7dvA4Z6fptYHpGGlxcXQ3e6+DgCIlEgoz0NFT00d7iq1arkZ2VCRdXN+Tn50EikegS5QBQvqIPUlMs54GFqvRUCB3+e7+Ttk1/9t6TfkWR/HS/o/1vkauHxfQ7ysePIXJy0t6ZVngBQOzqCrVMBvUzS+bZhVTBw80bizZoNMiPjYHU2xs2lfwgtLVFXmzRLfR50VEQCIWQeHpZVLLc08EWGXky/fY1Jx/WIiEcrIuSWzeSHiMxPRtjNxzRe//wtQfwdo1AfNm+IY5H30PDgPKwL3yfm70NnGykyMizrMkNns4OyMjNe6bPyS3sc/QvvN2IT4bQygqhPkXtROVy7roHfALAheh4jFy8CY1C/fHDR11gZWVZD7IEAHc3V2RmZUGtVkP4pM9JTy/sc+wMyqalZ+htS0vPgKuL9iKKRCwGnkoySyQSeHt5IiXNcr43AMf1xniYaAybnpWDh6npCPYtuuDk7eYCZwc73H+cVuaT5Q1av4dqDYoSlCd2LUd2hv6zubIzU+Dg7GHwXpVKgcjLxxAY3hjWhUuOOji5w9beGbnZRfmAnaum4dzh9Xh3yI8Ir/eGmWpiHm5ubsbbE6lhe+Lm5oq0dP08SFpGOlxdte3J3+cvIDAgAO7ubgC07Uk5b29kZhlfBqks8nBxQsaz35vM539vHqVlYMiMRQCAJV8P01umBQAu3orFZ78sR8NqIZg+7EOLWTqQ6HX10t/QuXPnvtRr3rx55oz3P1Em3gXUakj8ih60JgmoAmV8nPaJCs+wsnOAyMMb8tvPPNFbo4EiIRaSykWzGyX+wYBaDWVSvLnCNwv1w3uAWg1hhaJlH0Q+laG6Hw9A/5jYdvwQth0+0Nsm9KoIdeEa5bZv94PIPxQaWR6gUkJcuSoKcrNQkPLA7PUwJUXCHWjUKkif+ve1Dq4K+Z0Y4+eJvSPEnuUgi9F/orcq9TFU6amQ+BQdW3F5H2gKCqBKtZwkzn+Vfu4qXBrW0tvm0qg2Ms5pn/6dcf4qXJoUPdDEuqI3bHzKIb1wv6UIrlQRIqEQN2KK1li+GhWHsIBKxRrs3Ii9Ay83F3i7GyYLLUVIBQ+IrKxwLf6+btvlO0mo6uNlkHTYdu4G5uw+rbctIvERAjxdodFo0PH737HjfNHDHvPkSiSkZMDPy7LWLA/yrwShSIibUUXr+F+7FY3QQP/XalDs4OCIcuUr6F4hVcIQeesmNIVtqkajQWTEDQRXCTN4r5WVFQKDquBWxHXdtqhbNyESieDvXxkhVcKgUCiQlHRPtz/xXjw8PC3nOQiKhNvQqFWwDizqd2yCw17c73iV03tgHVDY76SlQOJr2f1OXkw0NGoV7KsW3a5sX70Gcm9FGBwPRWoKbPz0l66y9q0EeXIyFCnai7BP77eu5AcAkN9PNlP05hHi7QaR0ArXEov+HS8nPETVCh567Wt4BQ/8NbInNg7pqnsBwOTOTTGslfbBdRO3ncDJmKLvy/2MHGTkyeDv4VxS1TGJkIpeEAmFuHa3aCmVy3H3ULVSOcM+58w1zNlxTG9bRMIDBBRevI9JfozRSzejadXK+PnjbhBb2BKCT1T294dIJNI9pBMAbkREIiQo0KDPCQ0Jxs3IKL12+OatSIRVCYZGo8EHA4dh36Giiy75MhmSku/Dp2IFWBKO6w2F6Mawd3XbrhRjDOtobwuJWITbSUW/9TKycpCZnYvynm6mDNksbO2d4e5VSffyDayJ+NjLet+J+OjL8AmsYfBegcAKm5Z8hcgrx3XbMlKSkZeTDs/y2vWoD21dgHNHNqDX8F9Qo5Hhwx7LusoBARCJRLgVWZQLuRERgeCgIMP2pEoIIm5F6h27iIhbCC182PDS337HwSNF7UleXh4Sk5Lh62M5z4UIqVQBIqEVbsQW5XuuRN9BVX8fg+ORL5Nj5M9LYWUlwNIJw+Hh4qS3P/befYyd9RsaVw/FjBF9IRJZZp/z/05gJeDrP77+n71073jkyJGXeh0+fFj3nl27diGvFNel0igVyD1/HC7vDYTYtzKsq9eDQ5u3kX1c+4BSKwcnvRkU4nI+0CgUUBsZAOWcPACHNp1hXb0exL6V4fLuJ8g5c1i3pqbFUCmhuH4Odm/1hrBcJYiDasC6flvILxwFAAjsHIHCWxWVMdchCa8PSXgDWLl4wLpJe4gqVob8n2MAAE1+LmxadIaVezmIfINg+8Z7kJ3dj2eT7mWdRiFHzukj8Og3HFL/INjWbgjnt7oh8+BOAIDQyVl3OzgASCpWQoFCDtXjhwaflbl/O1y6fwCbqjUh8fGHe99hyLv0N9SZGSVVnRIh9XKHlbV25vCDLfsgdnZE2KwJsA+tjLBZEyC0s8H9TXsBAPFL1qHC+13g81FPOFQLQc0VP+HR7mPIv5v4ov+LMsdaKkGH5g3ww2/rEREXj2MXrmLNrkPo1V47ezYlIxMyxcu3B3H37sPfwh5y+iwbiRhv1wvDtM2HcSPhAY5cj8WqY/+gT3PtxZOUrFzIFNrbFXs2qoYLMfew9sQlxD9Ox8J9Z3Aj4QHeb65N5jQL9cei/WdxIfYeYh+kYMKf++DlZI9moZa1nru1VIr2LZth5uIVuBVzGyfOXcS6HXvwTqc3AQCp6RmQyy2s3zCBxk1bIDc3B78tnY97CXfx29L5kMtkaNKsJQDt2pfpaUWz9N7q2AXbt2zAubOnEBMdicULZ6Pdmx0htbZGhYq+qFOvIebN+hF3bsfi8j/nsXXTOrzVsXMp1e6/0yjkyD51GB79i/odp/bdkXngSb/j8px+x/BidMb+HXB9qt/x6D8cuZf+1n8oeRlXIJcjZe8eVPp8POyqhMK5WXN4934fjzZpZ5CLXF11z49J2bkDHp07w+3NtyCtUBEVhwyDxMsbKXv3QPn4MTL+Pgu/8V/CNiQEtiFV4Df+S6QeOqD3kFBLYCMR4e0agZi26wxuJD3GkVvxWHXmOvo00F5gSsnOg0ypgrVYBF83R70XoJ2Z7mZvA5HQCj3rhmDu4X9wKf4BIpJTMH7zUbSs4vvCh4GWRTYSMd6uXw3T1u/DjfhkHLkajVWHz6NPy3oAgJSsHMgU2mUBejatiQvR8Vh79ALiH6Vh4e4TuBF/H++30padtn4vvJwd8Xn3NsjIzUNKVo7e+y2FtbUUb7RuiV8XLkFkdCxOnT2HTdt2ontnbaIuLT0d8sLnQDRv0gi5ublYsOx33E24hwXLfodMJkOLpo0hEAjQsG4d/PHnBly5fgN34xPww6y58HB3Q4M6tUuziv8Zx/WGrKUSdGxeHzN+W4+bujHsYfRq3xIAkJKR9VJjWJFQiLdbNMSctdtw6VYsYu8l45sFfyA8yB9hAb7/+v6yJrz+m5DlZmPXmhl4mBSLXWtmQCnPQ/X62tnnSoUM2Rnai7BCoQj1W7+LAxtn427UP0i6cxN/LhiD0Nqt4VUxCI+S4nB0xyK06PQJ/IJrIzvjse5lKaytpWjXpjXmLFiIqOgYnD77NzZv3Y5und8GAKSlFbUnzZo2QU5uLhYtXY74hAQsWrocMpkczZtpH3LauWNHbN6yDecvXMTd+AT8OHMWypcrh3p16zz3/7+ssZZK0LFZPUxfsRk3byfg2MXrWL3nGHq9qV2y6+nvze9/HUbio1R8O6i3bl9KRhZyCp/5MH3FJni5OeOz9zsjIztXt/+//HYkopL10suwFMekSZNQo0YN2NqW3q3nmVv/gPN7A+ExajI0+XnI2rMRsqvadefKT1+GtDULkHdOe4XYytEJBfnGb8/Lv3QGIjcPuLw3EAKRGPlXzyFzx5oSq4cp5R3eDNu3esOhz2ho5DLkn9oFZfQVAIDzqB+Qu2sVFNf/hjL6CvL2r4d1k7dg5egK9eP7yNkwHwWZ2oRG/vG/YPtmLzh8OBZQyCE7f0SXdLc0qeuWw73vMJT7YjoK8vOQtn0t8v45CwCoNGcNHi2fjZxT2gtBQkfn597GmblvGwRiCTwGjYWV1Bp5l8/h8aqFJVaPktI28TSuDvgSiau2QZWdiwtdB6Paginw/eRdZF2PwoXOg6AuHBxk/H0FN4ZNQvDkURC7OiHl4GlcG/JNKdegeD77sAd++G09hk79Ffa2NhjUsyNa1a8JAOgw9GtMGvIBOrVo9FKflZaZBcf/g2U5Pu/SAt9vPoxPFm6GvbUEQ99shLbVtXfztPl2Kb7r9Qa61K+K0IpemPXR25i35zTm7DqFwHLuWDSoO7yctbcofvZ2M4iEVvhqzV5ky+SoH+iDBQO7QWiBs7FHftwHMxevxKhJ02Fna4sBvbqjRSNtgqbLxyPx9ciB6NDa8tbGfRW2tnaYMHk6liyYjYP7dqGSXwAmTvkB1tba21hPnziKeb/+iG27tX1Isxat8ejhAyyaPwtKpQKNGjdH34+H6D7vs3ETsHzxXHw9fhSkUmt06NQVHd/uXip1K67UP5fDo/8wlP9qBgrycpG+bS1yL54BAPjNW4NHS2cj+5T2YeNCpxf0O3u3QiAWw3Pw57Cytkbu5XNIWbmgxOphKvfmzUGlz8cjZO4CqHNzkPzbMqSfOAYAqLVzD25/PxWpe3cj7cghWNnYoNyH/SHx9EBeTAyiRo+AKkN7ceD2lEnwGTEKwT/PBjQapJ88jnsLys5dj//F5282wPe7z+CTlXu17WvL2mgb5gcAaPPLenzXpRm61Ap68YcAGNWmLgQQYNymo8hXqNAmtBK+aN/QzNGbx+c92uD79fvwyZw/YW8jxdCOTdG2pnYmY5uv5+G7DzqiS8PqCPXxxqyB3THvr+OYs/OYts8Z/h68nB2QkpWDK7e1s9Pf/Eb/u/Lk/ZZk6ID++HXRUoydMBl2trbo1+c9NGus/fd9p+8nGDd6ON5q2xp2trb4ftLXmL1gCXbvP4QAv0qYPnkCbAofFDzoow8hFAkxfeavyM3NQ83q4Zg+eYJuOQZLwnG9oaIx7BzdGLZ14Ri2feEY9u0W/94ufPZhD1hv/AvfzF8JuUKB+tWq4LvhfSEQWN4MQ2sbe/QbuwjbV3yL80c3wtsnBP0/XwKJtXZ8fu3vvdi87GvMWK29q+vNdz6DAAL8Oe9TKOT5qFq3Hd7uOwEAEHHpCAoK1Di6YzGO7lis9//z5P2WYPAnAzB34UKM+2oC7Oxs0ff93mjapDEAoNeH/fD5p6PxRrs2sLO1xdTJ32DugoXYs28//P38MG3KJF170rlTB8hkMsxdsAiZWZmoXasWvps0weLushzTpwtmrNyMIdMXwt7WGoO7v4nW9bR9xFsjv8Xkgb3wdvP6OHLhGuQKJfp/O0fv/Z2a1sOI9zriWuFdHZ0+naq3/8n7iajsEWg0Ru5HM5FatWph586d8PHxeanyiSMt48FcJaXivI1InzGstMMoU1y+Wojb/TuVdhhlSsDKXdgtDintMMqMjsooZF46VNphlClOtdtCtnvxvxd8jVh3HILHEedLO4wyxSOsPiJiLWupCnMLCyyPuL6Wdyu1OVVetRsXmlpmotVc6p36G7J1P5Z2GGWKde8vIDu4srTDKFOs2/VHYvSN0g6jzKgYHM4x/TMCVu5C1qWDpR1GmeJYux22ni/494Kvke71rRAfG/XvBV8jlQJDkH1+d2mHUaY41Of49b9Kmza4tEOwOK4Tl5R2CGZjWZf2iIiIiIiIiIiIiIjMgMlyIiIiIiIiIiIiInrtmXXNciIiIiIiIiIiIqKySiDgXGIqwrOBiIiIiIiIiIiIiF57TJYTERERERERERER0WuvWMnyCxcuQKVSGWxXKBQ4dOiQ7u8mTZrAxsam+NEREREREREREREREZWAYiXL+/bti6ysLIPtMTExGDNmjO7v+fPnw93dvfjRERERERERERERERGVgJd+wOeff/6J7777DgKBABqNBk2aNDFarnHjxiYLjoiIiIiIiIiIiIioJLx0srxPnz4ICgpCQUEB+vXrh7lz58LJyUm3XyAQwMbGBsHBwWYJlIiIiIiIiIiIiMikrASlHQGVIS+dLG/Xrh3WrFkDLy8vdOvWDY0aNYK9vb05YyMiIiIiIiIiIiIiKhEvvWZ5SkoKYmJiAADbt2+HQqEwW1BERERERERERERERCXppWeWd+rUCZ988gkEAu2tCc9bsxwAbt269eqRERERERERERERERGVkJdOlk+dOhXvv/8+srKy0LdvX8ybN09vzXIiIiIiIiIiIiIiIkv10slyAKhSpQoAYNWqVahduzZEov/0diIiIiIiIiIiIiKiMqlY2e5t27Zh27ZtL1V2xowZxfm/ICIiIiIiIiIiIjIrgdVLP9KRXgPFOhucnJywa9cuxMTEwM7ODi4uLnjw4AG2bduGnJwcU8dIRERERERERERERGRWxZpZfu/ePXz88cf47LPP9LavWLEC586d42xyIiIiIiIiIiIiIrIoxZpZfubMGXTt2tVge8uWLXH27NlXjYmIiIiIiIiIiIiIqEQVK1nu5+eHrVu36m3TaDRYvXq17iGgRERERERERERERESWoljLsEyYMAGDBw/GgQMHEBISAgC4ceMGCgoKsHTpUpMGSERERERERERERERkbsVKltetWxcHDhzAnj17cPv2bcjlcvTp0wetW7dGQECAqWMkIiIiIiIiIiIiMjmBlaC0Q6AypFjLsPzzzz/o2rUrgoKCMHToUJw4cQJLlixB586dsXfvXlPHSERERERERERERERkVsVKlk+fPh0dOnRAjRo1sHHjRkilUpw+fRpTp07F3LlzTR0jEREREREREREREZFZFStZHhMTg379+sHGxgZHjhzBG2+8AYlEgvr16yM5OdnUMRIRERERERERERERmVWxkuXu7u6IjY1FbGwsIiIi0KpVKwDAmTNnUK5cOZMGSERERERERERERERkbsV6wGf//v0xfPhwWFlZoVq1aqhfvz4WL16M+fPnY8aMGaaOkYiIiIiIiIiIiIjIrIqVLO/bty/q1auHpKQkNG3aFADQsGFDtGzZElWqVDFpgERERERERERERERmISjWwhv0f6pYyXIACA0NRWhoqO7vmjVrmiIeIiIiIiIiIiIiIqISx0snRERERERERERERPTaY7KciIiIiIiIiIiIiF57TJYTERERERERERER0WuPyXIiIiIiIiIiIiIieu0V+wGfRERERERERERERJZMYCUo7RCoDOHMciIiIiIiIiIiIiJ67TFZTkRERERERERERESvPSbLiYiIiIiIiIiIiOi1x2Q5EREREREREREREb32BBqNRlPaQRARERERERERERGVtKxZn5Z2CBbHccyvpR2C2YhKO4CnPbz1T2mHUKZ4hdZBQsyt0g6jTPENCuV58gyv0DrIvHSotMMoM5xqt8VucUhph1GmdFRGIe727dIOo0ypHBCAu7HRpR1GmeIXGIzYuDulHUaZEljZH49vnivtMMoUj6oNkHXpYGmHUaY41m6HO3GxpR1GmeJfORCJ0TdKO4wypWJwOG7HxZV2GGVGQOXKSLt2srTDKFNcqzdDwpDupR1GmeK7eCtuxSWVdhhlSmjlCuxznuFfOZC//57RURlV2iFYHisuvEFFeDYQERERERERERER0WuPyXIiIiIiIiIiIiIieu0xWU5ERERERERERERErz0my4mIiIiIiIiIiIjotcdkORERERERERERERG99kSlHQARERERERERERFRaRAIBKUdApUhnFlORERERERERERERK89JsuJiIiIiIiIiIiI6LXHZDkRERERERERERERvfaYLCciIiIiIiIiIiKi1x6T5URERERERERERET02hOVdgBEREREREREREREpcKKc4mpCM8GIiIiIiIiIiIiInrtMVlORERERERERERERK89JsuJiIiIiIiIiIiI6LXHZDkRERERERERERERvfaYLCciIiIiIiIiIiKi156otAMgIiIiIiIiIiIiKg0CK0Fph0BlCGeWExEREREREREREdFrj8lyIiIiIiIiIiIiInrtMVlORERERERERERERK+9YiXL+/bti6ysLIPtaWlp6N69+ysHRURERERERERERERUkl76AZ8nTpzAtWvXAAAXLlzA4sWLYWtrq1cmPj4eSUlJpo2QiIiIiIiIiIiIiMjMXjpZ7u/vj+XLl0Oj0UCj0eDSpUsQi8W6/QKBALa2tvj+++/NEigRERERERERERGRSQm4SjUVeelkuY+PD1atWgUA+OqrrzBhwgTY29ubLTAiIiIiIiIiIiIiopLy0snyp82YMQMymQwbN25EXFwc1Go1AgIC0L59e7i4uJg6RiIiIiIiIiIiIiIisyrWfQbR0dF44403sGjRIiQnJyM5ORlLlixBhw4dEBsba+oYiYiIiIiIiIiIiIjMqlgzy6dNm4YmTZpg6tSpEIm0H6FSqTBx4kRMnz4dv//+u0mDJCIiIiIiIiIiIiIyp2LNLL969SoGDhyoS5QDgEgkwsCBA3H58mWTBUdEREREREREREREVBKKNbPcw8MDCQkJCAgI0NuekJAAOzs7kwRGREREREREREREZFZWgtKOgMqQYiXLe/XqhYkTJ2L06NGoXr06AO1s87lz5+Kdd94xaYBEREREREREREREROZWrGT5gAEDkJ+fj5kzZyIzMxMA4O7ujv79++Pjjz82aYBEREREREREREREROZWrGS5QCDAyJEjMXLkSKSmpkIqlcLe3t7UsRERERERERERERERlYiXTpZv3779pT+0a9euxQiFiIiIiIiIiIiIiKh0vHSyfO7cuS9VTiAQlKlkuVyhwOwlK3Hi7HlIpBL06tIRvbp2NFo2+vZd/LLoN9yOvwd/34oYO+RjhARqH2Kq0WiwfsdubNtzEDk5uWjWsC5GD+wPWxvrkqyOSSgUCsxbtAQnz5yFVCJFz25d8E73rkbLxsbdxpwFi3AnPh6VfH0xevgQBAcGAgDUajVWrF6LA4eOQCaXoV6d2hgxeBBcXJxLrjImwvPEkFyhxE8rNuDo+SuQSsT4oGMbvN+p7QvfcyUyFt8uWoXtc77Tbavfe7jRspOH9kXH5g1MGnNJsZKI0fTcVtwYPRVpJ84bLeNYMxThC6bAMTwY2RGxuD58MrIu3dTtL/9eRwRP+RTW5Tzw+MApXBvyDZSp6SVVBZOKi43FvPnzEX/3Lnx9fTFi5EgEBQU9t/z2bduwZcsW5OXloVmzZhgydCisrfW/I0qFAqNGjcLQYcN0z8awFAqFAvMXLsapM2cglUjQo3s39OzezWjZ2Lg4zJ2/EHfj76KSry9GDR+OoCBtG6vRaLBx8xbs3rsX2VnZCA4OwrAhg1HJ17ckq2MycXGxmD9vHuLjtefJ8BGjXnyebN+GrVs2Iy8vD02bNcOQIcMMzxOlAqNHjcSQocNQvXoNc1fBpOQKBWYtW4XjZy9CKhGjV5cO6N2l/Qvfc/VWFKbNXYpNi34x2PfH5p1IvP8AE0YOMlfIZqXtczbiyFN9zged2rzwPVci4zB50SrsmDNFt02j0WDZlj3YcfQs8uVyNKgWivEfvQMXRwdzV8HktG3JQpw+fQYSiQQ9e3RHj+7djZaNjYvDvHnzcTc+Hr6+vhg1Yrju+6XRaLBp82bs3rMX2VlZCA4OxtChQyyyLVEoFJizeBlOnvkbUokE73Trgne7dTZaNibuNn5duBR37sbDz9cHnw4fjODAyrr9nXt9iNzcPL337Nq4BjY2Nmatg6kpFAosWLgQp0+fhkQiQY8ePV54nsyfN093nowcMUKvHT527Bj+WLUK6enpqF27NkaPGgUnJ6eSqorJyBVKzFy+FsfO/QOpRII+nd9An7fffOF7rt6KwXfzf8OWBT8Y3X/47EVMnLUYZzctN0fI5icSw7X3QNjWagSNUoGsgzuQfWinQTHPMd/BOjjcYHvO6cNIW70AEIng3LkPbOs1g5VEClnMTaSvXw51RmpJ1MLkbsfFYNG82YiPvwNfXz8MGfEZAoOCn1t+5/bN2L5lA/Ly8tCkWUsMGjIS0sKxyd9nTuKHaZP1yjdq0hxfTPjWnFUwKVP1O09bt349kpKT8fmYMeYO32z424/o9WP1sgWPHDnyUq/Dhw/r3rNr1y7k5eW94FPNb9HKPxEVdxuzp07AmMEfYeWGrTh25pxBuXyZDOOn/oTqYVWw7JfvUbVKEL6Y9jPyZTIAwM4DR7By/RYM+uA9LPjhWzxOTcd3s+aXdHVMYunvKxEdE4efv5+KkUMHY826DThx6oxBuXyZDBO+nYrwqmFY8OsvCKtSBRO/naY7Jus3b8WxEycx8ctxmPfLz8jOzsEPs2aXdHVMgueJoblrt+HW7QQsnDgK4z9+D8u37sXhc5eeWz42IQlf/rocmgKN3vY9i6brvT58ux3KubuiRV3LSoA+YSWVoNaaWXAIf/5AWmhrg3o7lyL91EWcatAd6Wcvo96OJRDaan+AO9WrhupLv0fMtPk43fQ9iF0cUeO3GSVVBZOSyWSYNGkSwqtWxZy5cxEaFoZvJ0+GrPA78axTp05h7dq1GDFyJGbMmIHIyEj8/vvvemUUCgV+/PFHxMfHl0QVTG7ZbysQHRuDH6dPw4hhQ7H2z3U4eeq0QTmZTIZvJk9BeNUwzP/1V4SFhuKbb6fojt3uvfuwZes2DBsyGPPmzIa3lxcmTvr2uce2LJPJZJg86RtUDQ/Hr3PmITQ0DN9+O+m5dTl96hT+XLsGI0aMwvQZPyAqMhIrfv9Nr4z2PPnBYs+ThX+sR2TsHcyZ8iXGDOqHFRu34egZ4z/AACAu/h6++Xm+QRsLAAdPnsXv67eaM1yze9LnLJo4Cl/o+pzLzy0fm5CEL4z0OdsOn8aOo2fx3fB+WDr5M6SkZ2La0j/NHb5ZLP/tN8TExOKHGdMxYvgwrF37J06eOmVQTiaT4ZtJkxEeXhXz5mjbkknfFrUVe/bsxZYtWzFsyBDMnTMHXl5e+Oab53//yrIlK1YhOiYOM6dNweihg7B63UYcP33WoFy+TIavp3yPamGhWPTrzwgLDcHXU6brxmuPU1ORm5uH1csWYNOq5brXsxfkLIH2PInBDzNmYPjw4Vi7du1zz5NJkyahang45s6Zg7DQUEx+6jyJiorCr3Pm4P3338fsWbOQk5ODWbNmlXR1TGL+6k2IvH0X8yd/js8/eR+/bfoLR85efG752PhEfP3LIhRoDNtXAMjOzcPs39eZK9wS4dKjHySVAvFw9mSkrVsKp47vwqZ2I4NyKYt/QuL4j3Wvx4tmQKNUIuf4PgCAU6desKnZAKm/z8aDmV9DYCWE+5DxJV0dk5DJ8jF10lcIC6+GX+YsRpXQqpj27VeQyfKNlj9z6gTWr/0DQ0eMwdQZvyA6MgJ//L5Et/9eQjzqNWiEFWs2617DR39eUtUxCVP1O08cPXYMq9esLanwzYK//V4fAoEVX//x9f/MrLWbNGkSUlNL7ypzvkyGXYeOYtSAvgip7I/mDeuhd7dO2Lr7gEHZI6f+hlQixrD+feDnUwGjBvSFjY01jp3WJky37t6P97p0RNvmjeHvWxFfjx6CsxcvIyEpuaSr9UryZTLsPXAIwwYNQFBgZTRt3BDv9uiGHbt2G5Q9fuIUJBIJBn3cH5V8fDBs0ADY2NjgRGHSp0CtxpBPBqB6eFVU8vVB186dcDPiVklX6ZXxPDGUL5Nj59EzGNuvJ6r4+6JVvZr4oFNbbNp/wmj5rYdO4pPJv8DVydFgn7uzk+4lVyixcd8xTBj0PuxtLWvmFgDYh1ZG49MbYVv5xbPxyr3bAQX5ctz64ifkRN5GxJjvoc7ORbmebwEA/IZ9gOTNe5G0Zgeyr0fhSv/x8GzfAjZ+FUuiGiZ14vhxSKVSDPjkE/j6+mLw4MGwsbHByZMnjZbfsWMHunTtigYNGiA4JAQjR47EwQMHdIPrhPh4jPnsM9y/f78kq2EyMpkM+w4cwNBBgxAUGIgmjRvhnZ49sHPXLoOyx0+chEQiwcABH8PX1wdDBg2Eja0NTpzU/ig5eOgwenTvhob166NihQoYOXwYsrKzcfOW5bWzJ04ch0QqxYAB2vNk0OAhsLWxwcmTxtuUHTu2o0uXrqjfoAGCg0MwYuQoHDz41HmSEI8xYz7FAws9T/Jlcvx1+DhGD/gAIZX90KJhXfTp2hFb9h4yWn77/iMY8tVUuDzTxqrUasxcshIzFixHeW/PkgjdLPJlcuw4ehZj+/VAFX8ftKpXAx92aouN+48bLb/10CkMmDwLbkb6nNNXbqJdo9qoExaEQJ/y+PDttrhwI8rcVTA5mUyGffsPYMjgJ21JY/Ts2RM7/zLWlpyAVCrBJwMGwNfXF0MGD4KNjS1OFLbDBw8dQo8e3dGgQX1UrFgBI0cMR1Z2NiIsbMyWL5Nhz4HDGD7oYwQHBqBpowZ4r0dX7Ni116DssZOnIZVIMPjjvqjkUxHDB34MWxtrHC+cHJJwLxFuri4o7+0NVxcX3UsgEJR0tV6JTCbD/v37MWTwYAQWnifv9OyJv/76y6Cs9jyR6s6TZ/vrv/76C82aNUPbNm3g7++PcZ9/jgsXL+LBgwclXa1Xki+TY+fhk/jso14ICaiElg1q44Mub2HzviNGy287eByDJ86Aq7Nhe/LE/NWbUMHLw1whm51AIoVdkzZI3/gblPduI//KOWQd2A6HloZ3MxXk5aAgK0P7ys6CU5f3kXVgOxQJcQAA+0atkLnjT8hjIqC6n4jUNYsg9QuCyLNcSVfrlZ06cQwSqRT9BwyBj28lDBg8HDY2tjh90njfs2vHFrzdpQfqNWiEoOAqGDpyDA4d3Ad54dgk8V4CfCv5w8XVVfeypOe6mbLfUavVmDd/AWb/OgflylneufEEf/sRmZZcLsfXX3+NunXromnTpgaT5p42dOhQhISE6L2OHj2q279y5Uo0a9YMtWrVwtdff438fOMXOovLrMlyzXOuzpeU2LsJUKvUCK9SdBWwemgIImJiUVBQoFc2IioG1UNDdINkgUCAalVCcCMqBgCQ/OARQoOKbt10d3WBs6MDbkbGlEBNTOf2nbtQqVQIC62i2xYeForI6BiDY3IrKgrhYaF6x6RqWBXcitT+6PywTy80bdwQAJCekYG9+w+ierjhbXtlHc8TQzEJSVCp1ageHKDbVrNKZdyMvWtwTADgzNUITB7aF306tHrh5y7dtAt1w0NQv1qVF5Yrq1yb10fqsXM43fS9F5ZzaVADaWf+0duWdvYSnBvWBAA416+BtJNFM5xkiQ+Qn5AMlwaWtYwEAERGRiKsalW970RYWBgijSR01Wo1YqKjEf5UO1ElNBRKpRJ37twBAFy/fh3Vq1fHLxY6my3u9h2DNrZqWBgio6IN29jIKFStGqbfxoaG4lZkJABg4ICP0LpVS115gUAAjUaDvNzSvWOrOCIjI1E1TP88CQ0LQ2Tkc86TmGiEh1fTbatS5cl5chvAk/OkBmb+Ypl3Mz3pd6qFFN2uXD00GBExcUbb2HOXr2HiqIF47+239Lbny2SIu3sPS3+YjPCQQLPHbS7RRvucANyMjX9Bn/Mhehvpc5zs7XD68k08SsuATKHAgTMXEeLnY9b4zeH27duFbUmoblvVqmGIiooyOCbGvl9hYUVtySefDECrVkXH6klbkpuXWwI1MZ0nY9iqVUJ028LDquCW0TFstOEYNrQKIiKjAQDxCYmoWL58yQVvJk/Ok1C986TqC86TMIP++sl5EhkZqdc/e3h4wMPDA5GF+y1FTPw9qNVqVAsuahNrVAnEzZg7RtuTvy9fxzcjPkavju2Mft6lm1G4dDMK/XsYX57REogr+kEgFEEeV3ThUB53CxK/IOAFF4jsGrWC0M4BWQe2aTcIBEhZMQeyW1cNylpZ25o8bnOLioxAaFi43neiSlg4oiIjDMqq1WrExkShanjRnbEhVcKgUipx5472QsK9hLsoX8Fyk5+m7Hfy8/Nx584d/Dp7FkJDLfN3H8DffkSm9tNPP+HGjRv4448/MHnyZMyfPx/79u0zWjYuLg4///wzTp06pXs1adIEALB//37Mnz8f3333Hf744w9cvXoVP//8s0ljfek1yy1RaloGnBwdIBYXVdPF2QkKhRJZ2TlwfmpGUmp6Bvx89Ts3F2cn3Em4p/vvlLSiNaXyZTJk5eQiIzvbzLUwrbS0NDg5OkIsFuu2Obs4Q6FQICs7G85PrUuYlpaOSpX0r6K6ODvjbnyC3rY/1q7DmnUb4GBvj9k/W97tRDxPDKWkZ8LJwQ5iUdExcXVyhFypRGZOrsHarzPHDgYA7DpueCv0Ew9S0rD/9EUs/26seYIuAQlLXu4WXKm3B7IjYvW2KR6mwqGqNjFmXc4T8uRHevvlj1JhXcHbNIGWoLS0NFSqVElvm7Ozs9GlMXJzc6FQKODm5qbbJhQK4ejoiJSUFABAx06dzBuwmaWlG7axLs7PaWPT0wzWDHZ2dtEdu/CqVfX27d1/AAVqNaqGhZmxBuaRnpYGX4PzxAXx8XcNyj45T1xfdJ50tOzzJDXdsN9xdXaEQqFEZnaOwQzyGV9+CgDYc0T/jg0HOzssmvGN2eM1t9T/3Odo12X/6/jfBp/1SY/2GPPzYnQcPhFCKyu4OTvidwvsd9LS0uHk9JJtyXPHa8bbkn379ltkW5Kalv7S7WtqWjr8fPUvkri4FI1hExITIZPLMearSbiXlITAAH8MG/gxfCpYVgI9LS0NTk5O+uP6554nL+6v09LT4ebqqrffxdlZ1+5aCm17Yq/fvjo5QqFUIjM7Fy5O+u3Jj+NHAAB2HzVcLk2hVOLHJavw0T64UwABAABJREFU+SfvQywSmjdwMxI6uaAgJwtQq3Tb1FkZsJJIYWXnoN1nhOOb3ZB1eBc08sKlNTQayCOv6ZVxaN0R6uxMKJIsb0m09LRU+Fby09vm7OyChPg7BmVzc3MKxybuum1CoRAOjk5ITXkMjUaDpMREXLl0AVs2/Al1gRpNmrVA7w8+0vt+lmWm7Hfs7e0x65eZJRO4GfG3H5Hp5OXlYdOmTVi2bBmqVq2KqlWrIiYmBmvXrsVbb+lPCFIoFEhMTES1atXg4WF4Z9eqVavQr18/3WSQKVOmYMCAARg3bpzJnj3zf73IjFwuN+icJIUDJ4VSqbddJldAYqSssrBc66YNsWbLDty9lwS5QoH5v68BAKiUKlgSmdFjov1baXBMDMuKxWKDcm1btcT82TNRq2Z1fPXNt8gt5XXq/yueJ4ZkCoXuGDwhET05JsWry86jZxAa4IvwQP9Xjq+sE9raoECu0NtWIFfASiop3G/9wv2WxNj3x1g78aTsk/0vU94SPe94AIZtrPGyIoN2BwAiI6OwdPlv6NmjO1xdXUwctfnxPNEnkyv0EsMAIBY9OU8sq78wBZlCadDniIvZ59x/nApriQSzxg3Gkkmj4eXmjKlLLG+9VJlcrjsnnvhvbYnx70tkZCSWLl+OHj16wPWZxGhZp63nM+dJ4d/Pfm/kcoXhMREVjdcSEpOQnZOD99/rgakTv4RUIsG4id8iL8+0t/Cam1wuN2xLinme/JfzqCzTjtWfc0xU/60uKzbvQkhAJTSoUfXfC5dhAokUGpX+d+TJ3wKR8USuNDgcQhc35J46+NzPtalRD47tuiBj+1q9RLyl0J7z+mPv4o5NHj96CLlcBpFYgs+/moSPPhmC40cP44/flhh8Vlllrn7ndfA6/fYjKq7IyEioVCrUqlVLt61OnTq4evWqwd0rt2/fhkAggI+P4d2harUa169fR926dXXbatasCaVSadK74f6vZ5ZLJIYN9pMfXdZSqUHZZxMUCqUK0sJy/d7thvsPHqHfqPEQCYXo/GYbBPlXgq2FrbsskUiMHBPt31KDY2JYVqlUGpSrUF67DtkXYz5F7/4DcOrMWbzZto2pQzcbnieGJGKxQYJCoXpyTIrXqR8+dxnd2zZ75dgsQYFMbjD4sZJKoM7TzsxRP2+/idfZMocN69djw4YNur9DQkJeqp0Ann9h7nnlLZFEbLzdBIy0sUbLqgzanYhbkZg4+VvUq1sHfT943wxRm96GDeuxccN63d8hIVVe/jyRvAbniUQM5TOJiydJnOK2sZZMIhYZ9DnKYvQ5Go0Gkxeuxqj3u6JZbe0yPtNHD0DnkZNwI/YuwgP9TBazuWnPEeNtybNthNjIOMbY9yXi1i18M2ky6tWti74ffmCGqM1LOy595jwp/Fv6zHlibGynVBWN136Y8g3UKpVu9tHXn3+KXh8NxtnzF9GmpeWMVSQSiWFb8pzz5N/G9cYSXZbY7mrH6saPiVTy8u1JXEISdhw6gTW/fGvK8EqFRqmA4JmLKk/+1ijkRt9jW7sRZDcuoSAvx+h+mxr14f7JWGQf24Pc08aft1HWbNqwFls2FF08DQoJhVKpn8B8/thEottvrLynlzdWb9gOe3sHCAQCBFQOREGBBr/OnI6PBg6FUFj270wwR7/zuvh//u1H9CIKhQIKhX47KpFIdG3m0x4/fgwXFxe9fe7u7vgfe/cdFsW1hgH8XViW3lUQFenV3gv2ksReozF2YxdNbNEYe89NrFiwx5JYYotRY1cUe1d6x67I0tld2v1jcXFdTER3gQ3v73n2uZeZM5vvjDNzznx75oxUKkVSUpLSII7o6GiYmJhg6tSpuH79OmxtbeHr64sWLVogJSUFUqkUFSoUvK9JKBTCwsJCre9Z+U8ny8tZWyE5JRXZOTkQ5jdQiUlJ0BeJYGKsPK9aeStLJIqTlZYlJiXB2tICAGBoYIC5UycgLT0DAgFgbGSELoNGoWIF7XrZSzlraySnpCAnJ0fRaIvFSdDXF8HE2PidslZIFIuVlonFSbDOH9V49foNuDg5oVw5+aPyIpEIFW1skZKiXVOO8DhRVcHKAsmp6Ur75HVSCvRFejD9iMT/i9dixDx5jhb1avx74f8AydMX0Lctp7RM37YcJM/lj99JnhSy3qYcpM9eFVuMH6tDx45o1ry54u99+/ZBrHKdEBc6YtHUzAwikQhisVjxK3FOTg5SUlK0boTj+1gXco1NFIsLvcZaW1ur7rsksdLI8Xv3H2DW3HmoW7s2pk+dAh0d7XggrEOHjmjWrOA4+WPfXojFiUplkt53nJi+OU4S/7PHSXkrS9V2R5xcaLtTFpRXU5sjTknDi9diuNlXUiyztbaEhakxnr1K1KpkeTlrayQnv9tfE0NfXx/GKv0160L7a2+fL/fu38fsOXNRp05tTPt+qtZcS94m768Vcn0Vva8Pm6S0LFGcBCtL+fVVpKcHvDUqUiQSwdamAhISX2u2EmpmbW2N5OTkDzpOCm1z3roOl/uX9dpCfj1JK+R6IoJpEa6v56/dQkpaOnqN+wEAkJM/6q11/7H4fuQAfNaskfqD15CcpETomJgBOjpAfj10zSyRK5MiN7PwdxcYeNdG8l97Cl1nVK8prIdMQFrASSTt26qxuNXt8w6d4dOspeLvA/t+Vznmk8SJsLSyxrve7ptUriKffiQnJwepKcmK8qamylOoVbG3h0wmQ1paKszNLdRbGQ1Qd7tTlvyX7/3KFB3tesl3aeDv7w8/Pz+lZePGjYOvr69K2czMTJUk+pu/3024R0dHQyKRwMfHByNGjMCpU6cwevRo7NmzB+XKlVPa9u3vevd7PoX29ZSLwNWxKnSFuggOK3i54oPgMHi4OqncJHi5u+JhWLjipaR5eXl4GBIO7/wXZq3b9huOnw2AibERjI2MEBIRhfT0DKWXQmoDZ0dHCIVCxUs6AeBhUDDcXF1V9omnuzuCQ8KU9klQSAg83OUvVtqwZRtOnS14G21GRiYeP30C+yra9WITHieq3KpWhlBXFw8jCubsuxcWBS+nqh91g/0wMgY21pawLVc2OlDia/dg2ai20jLLxnWQdE3+QqSk6/dg2bSuYp1BZVsYVqkI8TXVFyaVNqamprCzs1N8PD08EBwSonROBAcHw91D9WU+Ojo6cHVzQ1BQkGJZSEgIhEIhHB3/G9PzODu9ucYWPAIWFPyea6yHO4JDQpWvscEh8Mjfd7GxcZgzbz7q162LGdO/h1CoPb9vv3uceHh6IiT43eMkCB7unirb6ujowNXVDcGFHidOKuW1kaujPXSFuggKL5jf8n5IODxdHLUyifmp3BVtTqxi2d2PaHPMTIwg0hMi+knBqJKklDQkp6bDroJq8qM0c3JyUrmWvK+/5uHhoXJ+BQUHw9P9zbUkFnPnzkO9enUxY/p0rbqWvO1NH/bNSzoB4GFwKNxdXQrpw7ohKPTdPmwovDzckJeXh/7Dx+Dv02cV5TMlEjx5+gxVKleCNinsOAkKCoLre4+TYJX2+k2/3sPDQ6l9fvXqFV4lJCjaJG3h5lAFurq6CAqPViy7FxoBT2eHIl1Pen3eGr+vmI9f/zcLv/5vFn4YPQgA8Ov/ZsGnXi11h61RWY9ikJeTDX3HgvsRfRdPyGIjgfzj4W06xqbQK28LaZTq4+z67tVhPWQCUs8fh3jPJo3GrW6mpmaoaFdJ8XH39EZYcJDSORES/BDu7+mbuLi6IyTogWJZaEhQft/EGXdu3cCAPt0glUgU66OjomBqZqYViXJAve1OWfNfvvcj+icjR47ErVu3lD4jR44stKy+vr5KMvvN3wYGBkrLx4wZg4CAAPTo0QMeHh7w9fVF8+bNsXfvXsUTLIV9l7rmKwc+Mll+48YNZGerzksmk8lw+nTBY1hNmzZVa7BFZaCvj89bNccv67cgJCIKF6/ewO7DR9Grk3zy+NfiJEjz545q2aQB0tIzsGrzdsQ+eoxVm7cjUypFq6byUQPWVpbYtmc/QiKiEBYZjQXL16Lr521hZmpSYvX7GAYG+mjXuhVWrlmPsPAIBF65in0HD6N7F/nL0hLFYsWcbM18miA9PR1rN2xGXPwjrN2wGRKJFC2ayd9A26XjF9h34BCu3biJ2Lh4LPllOewqVkT9unVKrH4fg8eJKgN9ETo0b4glm3cjOCoO52/cw86/TqPvF/IXKCQkJUNShF/toh49g+N//AUm+jbloGMgv3A/3/839CzM4LVsBkw8neG1bAZ0jQ3xbN9xAECc/++o9HVXVBnSC6bV3VFr6094efQ8MmMfl2QVPoqPjw/S09Lg7++P+Lg4+Pv7QyKRoHn+6HOpVIrExIIRxZ06dsT+P/7A5cuXER4WhjV+fvj8889VGkhtZWBggLZtWmPVmrUICw/H5StX8MeBg+jWpQsA+QuR3lxjfXyaIi09Hes3bERcfDzWb9gIqUSCFs18AAAr/dagXPlyGDF8GJKTU5CYKFbaXpv4+PggPT0NG/zXIz4+Dhv810MikSieUnj3OOnYqRP27/8DVy5fRnh4GNauWY3P/kvHib4+vmjpg5/Xb0NIRDQCrt3C738eR+9O7QEotztlgYG+CB2bN8DizbsRpGhzzqDvFy0BAAlJKR/U5gh1ddG5RSOs3HUQt0MiEfnoKWau+RXVXB3h5WT/r9uXJvJrSRus9lsjv5ZcvoL9Bw6ga9c315LEt64lPvJrif8G+bXEf0P+dVg+nciq1X4oV748Rg4fjuTkZCQmJiptry0MDPTRvnVLrFjrj9DwSFy6cg37Dv6JHl06AlDuwzZv2hjp6elYs3ELYuMfYc3GLZBIJGjh0wQCgQCN6tXFr7/twd0HD+V92GWrUL6cNRpqWx82/zjx8/PLP04uY/+BA+jWtSuAwo8Tf39/xMXHq7TXHTt2xJmzZ3HixAnExMTg519+QYMGDWBrq139NwN9fXRo2QQ/bdyB4MgYXLh+B7/9eRJ9OsqniHwtTobkA66v5qYmqFLRRvEpb2UBAKhS0QbGhtrVFuVlyZB+9Tws+42CqKoLDGs2gFm7Lkg9+xcAQMfMAoK35u7Wq2SPXJkUOQkvlL9IRwfWA8dBGh6ElBMHoWNmofhAV/t+hGvi0xzp6WnY7L8Gj+Jjsdl/DaQSCZo2bwlA3jcRv9U3+aJTVxzavxdXL19CRHgo/NesQLvPO0LfwAAent4QiUTwW/kznjyOx60b1/DrlvXo3rNvCdWu6NTZ7pQFZfXej+htIpEIJiYmSp/CpmABABsbG4jFYqVc8qtXr2BgYAAzM+Unc3R0dGD+1kuFAfkPei9evICFhQX09fWVXkCenZ2NpKSkQl8G+rE+Klk+cOBApKSovjU7IiICEydOVPzt5+enGCJfUsYN7Q83Z0d8O3MBlm/YhiF9e6FF4wYAgO5DxuDspSsA5NNlLJkxGfeDw/DNpBkIDovETzOnwjD/xrxnx8/QtH5dTJ23FFPm/4TG9WpjzBDtmDv2XaO+GQpXF2dM/mEmVq/bgEFf90WzJo0BAH0GDMH5i5cAyPfJ/Fkz8DA4GGO+nYTQsDAsnDNTsU+6dOyAL3t2x6q1/hg3cTIEAmDezBlaOSqOx4mq7wb0hIejPUbPX4H/bd2DEb06olWDWgCADqN/wOkrtz74uxKTU2D2H59aoO3jQNh92QEAkJ2ajhvdRsLKpy58rh2ARcOauNFlBHLyXxyWdPUuHo6ZBdcfx6JJwO/IEifj3jfTSzL8j2ZkbIw5c+ci6OFDjB8/HqGhoZg3b54iqRkQEID+XxecAy1atsSXffrAb/VqzJgxA+7u7hg6bFhJha8RI78ZBlcXF0ydPgN+69ZjwNf94NO0CQDgqwEDcSHgIgD59WTe7Fl4GBSEcRO+Q0hoGObPnQ0DAwMkJooRHBKC+PhHGDB4KL4aMFDxebO9NjEyMsbsOfMQFPQQE8b7IjQ0FHPnzX/rOLmAAf37Kcq3aNESvb/sAz+/Vfhxxg9wc3fH0KHflFT4GuE7pB/cnR0wfvZiLNu4HcP6dEeLRvUBAF2HjceZwGslHGHx+m5AT3g6VsHo+Svx09a9GNGrI1rntzlfjP4Bp67c/uDvaVW/Jmb6bcOoeStgamyInycNh0CgfY/Wjhj+DVxdXPD9tOlYs24dBvT/Gj5N5QMW+vUfgAsBAQDyryVzZuNhUBB8x09AaGgo5s+bm38tScy/lsRjwKDB6Nd/gOLzZnttMnrYYLi6OGPSjNlYtX4TBvXrg2ZN5AMWeg/8BucuBgKQ75OFs37Ag6AQjP5uKkLCIrBo9gxFf23EkAFo3rQxFv28AmMnTUN2djYWzZ6hFfMKv2v48OFwcXHBtGnTsHbdOvTv3x9N84+Tr/v3R8Bbx8ncOXPwMCio0Pba09MT4319seu33zBx0iSYmJhg4nfflVi9PsWEQV/C3akqxs35GT9v2oVv+nRBy4byUZ2dRkzCmcs3SjjC4pe0bytk8VGo8N1cWH41HMlH9iDzrrydqfzTFhjVa6ooq2tqgbzMDJXvEFV1gdC6PAw8a6LyT1uUPvrO7sVWF3UxMjLGjDkLERx0H5PGj0JYaDBmzlsMAwP5YL9LAecwpH8vRflmLVqj55dfYZ3fcsyeMQWu7p4YNFQ+gtLQyAizFyxFSnIyJk0YDb+VP6P9553QvVefEqnbx1JHu1NWlNV7P6KP5enpCaFQiLt37yqW3bp1C9WrV1fJIU6bNg3TpyufI6GhoXByks/+UL16ddy6VZCPunv3LoRCoVqfhhPk5RXy7FUhfvvtN8ybNw8CgQB5eXnvvelo0qQJNm/e/FHBvAj58ORbWWDjWRfxESElHUapYu/qyePkHTaedZF8WzterFMczOu0xVE97euwa1LHrDBERUf/e8EyxNnJCbGR4f9esAxxcHFDZFTMvxcsQ1ycHfEqqGwlrf9Nee+GSLl9qqTDKFXM6rRDTFTkvxcsQxydXfA4/GFJh1GqVHarhuioqJIOo9RwcnZG4n3t+/FXk6xqNEP8qB4lHUapYr/+AEKinpR0GKWKp3MltjnvcHR24f3fOzpmhf17IVKSvvHHkg5B6xgPX1Ck8rNmzcLt27exaNEivHz5Et9//z0WL16M9u3b49WrVzA1NYWBgQFOnjyJiRMnYsGCBahduzaOHDmCjRs34ujRo6hcuTKOHj2KWbNmYenSpahQoQJ++OEHNGrUCD/+qL5/ww9+Xqpfv35wdXVFbm4uBg0ahFWrVikNixcIBDA0NISbm3bNzUxEREREREREREREmjF9+nTMmTMHgwYNgomJCXx9fdG+vXwaSh8fHyxevBg9evRA+/btMXv2bKxbtw5Pnz6Fq6srNm3ahMqV5e9H7NixI548eYJZs2ZBJpOhffv2mDJlilpj/eBkebt27bBz507Y2Nige/fuaNy4MUxMtGseZiIiIiIiIiIiIqI3BFo4nbC2MTQ0xNKlS7F06VKVdWFhyk9D9O7dG717937vd40YMQIjRoxQe4xvfPDRkJCQgIiICADAoUOHVN48SkRERERERERERESkrT54ZHmnTp3wzTffKOYqf/PimMKEhHCebSIiIiIiIiIiIiLSHh+cLJ8/fz6+/vprpKSkYODAgVi9erXSnOVERERERERERERERNrqg5PlAODh4QEA2L59O+rUqQOhsEibExERERERERERERGVSh+V7T548CAOHjz4QWUXL178Mf8JIiIiIiIiIiIiIqJi81GvezU3N8dff/2FiIgIGBsbw9LSEs+fP8fBgweRlpam7hiJiIiIiIiIiIiI1E8g4Keon/+wjxpZ/ujRIwwdOhTfffed0vKtW7fi2rVrHE1ORERERERERERERFrlo0aWX758Gd26dVNZ3rJlS1y5cuVTYyIiIiIiIiIiIiIiKlYflSx3cHDAgQMHlJbl5eVhx44dipeAEhERERERERERERFpi4+ahmXGjBkYOXIkTp48CXd3dwDAw4cPkZubiw0bNqg1QCIiIiIiIiIiIiIiTfuoZHm9evVw8uRJHDt2DNHR0ZBKpejXrx9at24NJycndcdIRERERERERERERKRRHzUNy61bt9CtWze4urpi9OjRCAgIgL+/P7p06YLjx4+rO0YiIiIiIiIiIiIi9dPR4aeon/+wj6rdokWL0KFDB9SsWRN79+6Fvr4+AgMDMX/+fKxatUrdMRIRERERERERERERadRHJcsjIiIwaNAgGBoa4uzZs2jfvj1EIhEaNGiAp0+fqjtGIiIiIiIiIiIiIiKN+qhkebly5RAZGYnIyEgEBwejVatWAIDLly+jYsWKag2QiIiIiIiIiIiIiEjTPuoFn4MHD8bYsWOho6OD6tWro0GDBli/fj38/PywePFidcdIRERERERERERERKRRH5UsHzhwIOrXr48nT57Ax8cHANCoUSO0bNkSHh4eag2QiIiIiIiIiIiIiEjTPipZDgCenp7w9PRU/F2rVi11xENERERERERERERUPASCko6ASpGPmrOciIiIiIiIiIiIiOi/hMlyIiIiIiIiIiIiIirzmCwnIiIiIiIiIiIiojKPyXIiIiIiIiIiIiIiKvOYLCciIiIiIiIiIiKiMk9Y0gEQERERERERERERlQSBDscSUwEeDURERERERERERERU5jFZTkRERERERERERERlHpPlRERERERERERERFTmMVlORERERERERERERGUek+VEREREREREREREVOYJSzoAIiIiIiIiIiIiohIh4FhiKsCjgYiIiIiIiIiIiIjKPCbLiYiIiIiIiIiIiKjMY7KciIiIiIiIiIiIiMo8JsuJiIiIiIiIiIiIqMxjspyIiIiIiIiIiIiIyjxhSQdAREREREREREREVCJ0BCUdAZUigry8vLySDoKIiIiIiIiIiIiouGX+trikQ9A6hv2ml3QIGlOqRpZnBO4v6RBKFaOmPZFy+1RJh1GqmNVph3T/GSUdRqliPHIhJEfXl3QYpYZBx1GIio4u6TBKFWcnJxzVcy/pMEqVjllhiI0ML+kwShUHFzccv5NV0mGUKl/U1kPmjgUlHUapYjjgR6StmVrSYZQqJmN/wsl7spIOo1RpX1OEjM2zSjqMUsVo2DxER0WVdBilhpOzMzIu7C7pMEoVoxZ9ERkVU9JhlCouzo5Y8SfH9r3t2y4C3uu8w9nJCTFRkSUdRqni6OxS0iEQaTXOWU5EREREREREREREZR6T5URERERERERERERU5jFZTkRERERERERERERlXqmas5yIiIiIiIiIiIiouAgEHEtMBXg0EBEREREREREREVGZx2Q5EREREREREREREZV5TJYTERERERERERERUZnHZDkRERERERERERERlXlMlhMRERERERERERFRmScs6QCIiIiIiIiIiIiISoSOoKQjoFKEI8uJiIiIiIiIiIiIqMxjspyIiIiIiIiIiIiIyjwmy4mIiIiIiIiIiIiozGOynIiIiIiIiIiIiIjKPCbLiYiIiIiIiIiIiKjME5Z0AEREREREREREREQlQsCxxFSARwMRERERERERERERlXlMlhMRERERERERERFRmcdkORERERERERERERGVeUyWExEREREREREREVGZx2Q5EREREREREREREZV5wpIOgIiIiIiIiIiIiKhECAQlHQGVIhxZTkRERERERERERERlHpPlRERERERERERERFTmMVlORERERERERERERGUek+VEREREREREREREVOZ9VLI8KioKqampAICLFy9i7ty52Ldvn1oDIyIiIiIiIiIiIiIqLsKibrBnzx7MmzcPW7duhYmJCUaPHo1GjRrh1KlTePr0KSZMmKCJOImIiIiIiIiIiIjUS4cTb1CBIh8NmzZtwtKlS9GgQQPs378fnp6e2LRpE5YvX87R5URERERERERERESklYqcLH/x4gXq1q0LADh37hzatm0LALC1tUV6erp6oyMiIiIiIiIiIiIiKgZFnobFyckJR44cgZWVFZ4+fYq2bdsiKysLW7ZsgYeHhyZiJCIiIiIiIiIiIiLSqCIny6dNm4YJEyYgOTkZ/fr1g7OzM+bNm4dTp05h/fr1moiRiIiIiIiIiIiIiEijipwsFwqFOH/+PGQyGczNzQEAY8aMwfTp06Gnp6f2AImIiIiIiIiIiIiINK3Ic5aPHTsW8fHxikQ5AJQrV46JciIiIiIiIiIiItIuAh1+ivr5DyvyyHJXV1fcu3cP7u7umohH7aRZWVi840+cuRUEA5EeBnzmg4GfNyu07MV7ofA7cAqPXr5G5fJWGNO9HVrW9lSsP3XzAfz2n8RLcQpquVbFzEHdYVfOsriqojZSWRZ+2roXZ6/fhb5ID/07tkH/Tm3+cZu7oVGYvW47Dq+cq1iWl5eHjfuP4fC5K8iUStGwuiemDukNSzNTTVdB7aTZOVhy5g7ORD6BgVAXA+q6YUA9t0LLfnc4EBeiniktW9GtCZo72QEAdt2OwPYbYUiXZaOdW2VMbV0LhnpFPtVKnDQrG4v2n8WZ+5HQ19PFwFb1MKhl3ULLHr0VgvUnr+KFOBUelStgSteWqF7VVrHe54e1SJVIlba5sngsjPRFGq2DJkRFRmK1nx/iYmNhb2+Pcb6+cHV1fW/5QwcPYv/+/cjIyECzZs0wavRoGBgYKJXJkskwfvx4jB4zBjVq1NB0FTRCR6QHn2sH8HDCfCQGXC+0jFktT1RbMxdm1dyQGhyJB2NnI+V2kGK9XZ+OcJv7LQwqlserk5dwf9RMZL0WF1cV1EYmk8Fv7XpcunwZ+iIRevbojl49uhdaNjIqCqv81iI2LhZV7e0xfuxYuLq6AJBfY/f+sR9Hjx9Hakoq3NxcMWbUSFS1ty/O6qjN45gQ7N00D88eRcC2sjO+/GYWqjh5F1o2O0uGo3tW4fbl45BJM+HiVQ89B/8AC2tbxfpDO37CrcBj0BUK0ahlD3TsOwECgaA4q/RJpNk5WHz8Gk6HxsNAT4iBjbwwsJHXP27zJCkNvfyPYFWfVqjvUHCN3X0zDNsuP0SqJAuNnStiZodGMDfU13QV1EqanYOl5+/jTORT6At1MaCOCwbUcSm07MQj13Ah5rnSsuWdG6K5oy1k2TlYezUUJ8IeIzM7B3UrWWNqixqwMTUsjmpoxKOYEOzZOB9P4yNQsYoz+gyfCfv3nDtZWTIc3b0atwKPQSrNhKtXffQaOh2W+efOvetnsOnnb5W2qdWwHYZNWqbpaqiFNDsHi0/dwpnwx/L+Wn13DGzwz+9Mepqcjl5b/saqns1Qz74CACArJxdrLz7AX0GxyM7NQ+dqDhjfogaEOtp34yeTybBm7VoEBgZCJBKhZ8+e6NmjR6FlI6Oi4Ld6NWLj4mBvbw/fceOU+jDnz5/Hr9u3QywWo06dOpgwfrzSACltIc3KwuLfjuLM7RAY6AkxoH0TDGzftNCyF++Hw+/QGTx6lYjK5SwxpmtrtKwlP6by8vLgf+Q8Dl66jUyZDI29nPH9Vx1hZWpcjLVRn6ioSPitXo24OHkfduy48f/chz10EAf2/4GMjAz4NGuGUaPGqPZhs2SYMN4Xo0aPQY0aNTVdBbV79SQYAfvnIPF5OCxtXNCi5xyUr1ztX7e7c34zgi7vQv8fziqWJSfEI+DAHLyIvwtTy0po1GESqnq21GD0mqHOex2ZTIa1a9YoXZ969OxZXFX5ZPI+/VoEBl6GSCRCr549/vH6unq1n+L6On7c2EL32++7d+PJ06eYPHGipsMnok9Q5B6hubk5Zs+eDR8fH/Tt2xcDBw5U+pQ2y/ceR3DsE2yYOgzT+3fBhj/P4tTNByrlwh89w6Q1u9DVpy52z/FFzxb1MWXtbwiLlydF70bG4Qf/PRjwmQ9+nz0OIqEQ0/x3F3d11GLVroMIiY7Huh/H4/uhfbDpwHGcuXbnveUj45/g+xWbkJebp7T84JlAHD53BfPGDsKG2d8hQZyMBRt+03T4GrEi4D6CX4jh36s5prWujQ1Xg3E6/HGhZaNfp2LBFw1wcmQnxaeRvQ0A4Ez4Y/hfCcaMdnXg37s5HjxPxMoA1eNNGyw7chHBj15g45ie+KFnG/ifuIpT98JVyt2Ofow5e05hZLtGOPD9QNR0sMPYjQeRIZUBAF4kpSFVIsXRGUNwZs4IxcdQpH1Po0gkEsyaNQvVvL2xctUqeHp5Yc7s2ZBIJIWWv3TpEnbt2oVxvr5YvHgxQkNDsWXLFqUyMpkMS5cuRVxcXHFUQSN09EWovXMZTKsV/gMTAOgaGaL+nxsgvnQTlxr2gPjKHdQ/7A9dI3kCy7x+ddTYsBARC/wQ6NMHepZmqLl5cXFVQa02bt6K8MgILF20AOPGjMau337HxUuBKuUkEglmzp6Lat5e8FuxAl6enpg5Z67ieDp6/G/sP3AQY0aNxOqVy2FrY4MfZ8157/FWmkklGdiwdDScPepg0uI9cHSrhQ1Lx0AqySi0/PF9a/DgxhkMGLcEE+buQE52NrYs+xZ5efJ26MCvixF2/wpGTffHwHE/4crZ/bh8Zl9xVumTLT99C8HPErGxfzv88HkD+Afcx6mQf74OLDp+DZlZ2UrLTgTFYsXpW5jcrh5+HfwZnienY/Hxwn+wKs1WXgpC8MskrO/RFNNa1cDGa2E4HfG00LLRiamY374OTgz7TPFpVKU8AGD9tVCci3qGBZ/VxZZePsjOzcOUY9cVx462kUoysH7xGDh71MHUJfJzZ/3ise89d47tXYN7189g4Pgl+G7+DuTkZGPTz98p6v/8cRSq1W2JhRvOKT5fjZpTjDX6NMvP30Xw80Rs6NMS09vVxYbLQTgV9ugft1l48qbKebPu0kMcCYrF7C8aYG3v5rge9wK/nL2rwcg1Z9PmzYiIiMCSxYsxduxY7Nq1CxcvXVIp96YP412tGlatXAkvT0/MnlPQpoSFhWHFypX4+uuvsXzZMqSlpWHZMu34EeVdy/84ieC4p9gwcRCmf90JG/66gFO3glTKhT9+jknrd6Nr09rYPXMUejaviyn+exH2SP5j3P6AmzgUeBsLh/XElilD8SopFfO2Hy7u6qiFRCLB7Fkz4V2tGlasXA1PTy/MmTPrvX2KwEuX8NuunRg3bjwWLV6CsNBQbN2yWamMvA+7RGv7sFmyDBzbPBIVHeui14T9sHWojaObRyFLVvj19Y2U149w86Sf0rLsLCmObBwKXT199Bi3B7VafoOTOyfiRfx9TVZB7dR9r7N50yZERERg8ZIliuvTpYsXi6s6n0x+fY3EksWLMG7sGOza9dt7r68zZ81GtWreWL1S3qefNUe1z37u/Hns2LmruMInok9Q5GS5p6cnxo4di759+8LHxwcNGjRQ+pQmmVIZDgXcxNR+neBZtRJa1/XGoC+aYc+Zqyplj1+9h/oezujXrgnsbazRp01j1Pdwwqkb8kTnjr8vokOjWujVsiEcKpbH1H6dkJCUCnFqenFX65NkSqQ4fO4KJg3qCQ/HKmhVvyYGdGqLvScuFFr+wOlLGDZ7GazNzVTWBd4NQrvGdVDXyxUuVewwoHNb3HgYpukqqF1mVjYOPYjBlFY14WljidaulTConjv23I1UKSvLzsHT5HR421qinLGB4iMS6gIAfrsTiX61XdDcyQ7etlaY0bYO/gyKVblJK+0ypFk4ePUBpnZvCc/KNmhTwwWDW9fD7kv3VMompGRgRLuG6FTPE5WtLTCyfUMkZ0gQ9TwRABDz8jXKmxmjsrUFypkZKz7aNAL0jYALF6Cvr49h33wDe3t7jBw5EoaGhrj4nk7f4cOH0bVbNzRs2BBu7u7w9fXFqZMnFR2n+Lg4TPzuOzx79qzQ7bWBiaczmgTuhZHzP492rvhlB+RmShHy/U9IC41G8MSFyElNR8VenwMAHMb0x9M/juPJzsNIfRCGu4OnosIXLWDoULk4qqE2EokEf588idEjRsDVxQVNmzRG71498edff6mUvRBwESKRCMOHDYW9fRWMGjEchkaGCLgo74SfOn0GPXt0R6MGDVC5UiX4jh2DlNRUBIWEFHe1PtmdK39DT2SALv0nw7aSM7oPmgZ9Q2PcvXqy0PLXLxxChz7j4eJVH7aVndFnxFzERz1EwvN4pKcl4+q5g+gzYg6qulSHW/VGaNVpEOIiteeGNFOWhYN3IzGlfT14VrRGaw97DG7shd033t+GHn0QjXRplsryrVeCMLiJN9p6VoVLBUt816YuIl6JkZObq8kqqFVmVjYOBcVhcvPq8KxggdbOdhhY1wV770erlJVl5+BpSga8bQpvh/8KeYSxjT1Rt3I5OFmb4cc2tRD0IgmPkrWrv/bG7csnoCfSR7cBk2Bb2Qk9B38PA0Nj3HnPuXPt/GF0+mo8XL3qo2JlZ3w1cg7iox7i1fN4AMDzx9GoWMUFZhblFB8jY9U+XmmUKcvGofsxmNqmDjxtrdDarTIGNfDAntsR793mWFAsMmTKfbC8vDzsvRMB3+bV4eNUEZ62VpjRvh7+uBuFDJnqOVaaSSQSnDhxAqNGjoSLiwuaNmmC3r164ciRIyplLwQEQF9fH98MG1ZoH+bIkSNo1qwZ2rZpA0dHR0yZPBk3bt7E8+fPVb6rNMuUynDo0m1M7fMFPKvaoXVtTwz6rCn2nFP9EfH49Qeo7+6Ifm0awb6CNfq0aoj67g44dfMhAODSwwi0r1cN9dwd4FLJBoM+88H10JjirpJaBARcgEhfH8OGyfuwI0aOgpGhIS5eDCi0/OHDh9C1azc0aNgQbm7uGOc7HqdOvdWHjY/DxInf4rkW92Ej7x6Hrp4+GneaCksbZzTt8gNEBsaIuvf3P253Yf9slKvkqbQsLuQcJOlitOn7E6xsXeFetyvc6nTB/YvbNFgD9VPnvc6b69PIUaPg4uKCJk2bolfv3oVen0ojiUSCv0+cxKiRb/r0TdCrVy/8eaSwPn0A9PVFiuvrqJEjYGhohID8/ZaTk4PVfmuwfMVKVKxYsbirQkQfocjJ8nHjxik+gwcPxoABA5SWlSZhj54hOycXNV0Kkji1XR3wMPoRct+5iezctA7G9/pM5TvSMuUdgpthMWhdt+CR10rlrXDsf1NhqWWP4YXHP0F2Tg5quDkpltXycEJQZJzKPgGAy/eCMXv0AHzVoZXKOnMTYwTeCcLLxCRIZDKcvHwT7g5VNBq/JoS/SkJ2bh5q2pVTLKtVyRoPnyUi952RaLHiVAgEQCVz1X/3nNw8BD9PRJ3K5RXLqle0QlZOLsJfJWuuAhoQ/vQVsnNzUcvBTrGstqMdHsQ9Q+47Txi0r+WG4e0aAgAksmzsvHAbViZGcLa1AgBEPU9E1fLaN11RYUJDQ+Hl7a1I9AsEAnh5eSG0kORlTk4OIsLDUa1awaOcHp6eyMrKQkyM/EbrwYMHqFGjBn7R0pFbAGDVvAFen7+GQJ8+/1jOsmFNJF6+pbQs8cptWDSqBQCwaFATiRdvKtZJHj9HZvxTWDbUrkd6o6JjkJ2dDS/PgmkBvL28EBoWrnKNDQkNg7e3l9Lx5O3piZDQUADA8GFD0LpVS0V5gUCAvLw8ZKT/84in0igu4j4c3Wsr1dXRrTZiI1R/gMvNzUX/cUvgXqOJyrrMjFTEhN6GoZEJXLzqK5a37foN+o1aoLkKqFnYCzGyc3JRq0pBe1GrSgU8fJqg0u4AQFKGFCvO3saPHRspLU+TyhD6PBFtPAr6OXWr2mD/yC7Q1aLpJMITUuTtcEUrxbJadtZ4+Fyssj/iktIAAVDJ3Ejle3Lz8jC/fR00tC+vsi6tkB8atEFsxD04edRRPnfcayE2vPBzZ6DvYnjUaKyyTpKRBgB4/iQaFeyqajZoDQl7lSTv11eyViyrXbl8of01AEjKlGLFhfv48bN6SsvFGVKky7JRrWLB97iWN0d2bi6Cn2vX1F/R0dHIzs6Gp2dB4s7b2xthYWEqbU5oaCi8vbxU+jBv2pzQ0FClPkv58uVRvnx5hOav1xZhj5/LjxPngnuS2i72eBjzWPX+r3EtjO/RTuU70jLlUwdaGBvh0oNwvBSnQCLLwt83HsCjiq1KeW0g//dX7sN6enkhNPQ9fdiIcFSrVl2xzMPjTR9W/iOmvA9bEz//srx4KqABL+LvoqJDXaV9Ylu1Nl7E3X3vNmE3DyE7SwLPBspTiaS8fgzLCk7QNyyYjtS6ovs/fldppM57naJcn0qjN/F7KcXv9Q/X13f3W0GfPjMzEzExMVixfBk8Pf956jAiKh0+aiLlX3/9FZs2bUJCQgIAwMrKCl999VWpS5YnJKXCwsQIesKCalqZmUCalY2ktAxYmZkoljvZVVDaNurJC1wPiUKvlg2QmpGJlPRM5OTkYswvWxH+6BmqOVXBDwO6oIKlds3j91qcDHNTY+V9Ym4GaVYWktPSVeYb/3nSCADAkQuqo/G/6fkFJv5vPTqO/RG6OjqwtjDDlnmTNFsBDUhIk8DCUAQ93YLEgpWRAaQ5uUjOlMHSqGDe15jEVJiI9DDz+A3cevwKNiaGGNXEC00dKyJVKoM0JxflTQrm8hPq6MDcUISXaZnFWqdPlZCSDgtjQ+jlj9QDAGtTI0izc5CUkQkrE9UkxbXweIzyP4A85GHx118o5iOPeZmITFkWhq3Zh9iXifCoVAFTurWEQwXtS6AnJiaialXlJIOFhUWhj5+mp6dDJpPB2rrgZlxXVxdmZmaKa2fHTp00G3AxiPf//YPK6duWR2qw8tMashevYeotn8vPoGIFSJ++VFovffkaBpW066Y0UZwIczMzpZdeW1pYQCaTISU1FRZvzf2aKE5UmX/cwsJScTxV81aek/j4iZPIzcmBt9c/z2tdGqUkvYJtZeX5p03NrfH8seqIUB0dHbhXV072BRzfCWNTS9hVdUd02B1YlbfD9YDDOH1oE3Kys9CgRTe06z4COlqSIE5Iy4SFkT70dN+6xpoY5l9jpbAyVp4T9udTN9G5ujNcylsoLX8slidAxekSDNr2N54mpaGhY0VM/aw+zAy0550QCemq7bC1kf572uE0mIj0MOvkbdx8nABbU0OMbOiBpg420BEI0NBeuT/3+90oWBiI4FpOu/prb6SIE2BbxVlpmZm5NZ4+Un36TUdHRyVRfv7YTpiYWsKuqhvy8vLw8mksQu5exsmDm5CXm4NajdqjY59xEApL/9RohZ03VsYG8vMmUworI+Xz5pezd9G5mgOc3/m3NzMUQaijg1dpmYp1L1Ll/TRxpvL7VUq7xMREmJubK7U5Fu9rc/6lD5MoFsPaykppvaWFhaLPoi0SktLef/+Xnqk037hTReUf1qKevsT10Bj0aiH/MXZEpxaY4PcbPvv+F+jq6KCcuQl+nfZN8VREzcSJibBX+fe3RFxcrErZN31Yq3/qw3bU/j5sRsorWNkqzyltaFoOic8Lf1olMy0RV4/9gs4jtuDlowfvbGeN9JRXyMvLUyRM05KfITM9SSOxa4o673UEAsF7r0+pKSkwt7DQWD3UITFRDHPzD+zTJ4pRtapyn97SwgKx+fvNxMQEy375uXgCJyK1KPJd5Zo1a7B+/XqMHTsWhw4dwoEDBzBmzBjs2rULGzZs0ESMH00iy4LeOy9WFOV3nLKyc967nTg1HZPX7EJNF3u0rO2JDIl87uWffvsLHRrXwsoJA5GVnY3xK7drxa+ib5PIsiB6Z5+86UzKijhVyLNXr2EgEmHZlJHwnzUBNtYWmO+vfXNwZWbnKN14AYAo/4ZdlqN8nMQmpkKSnYPGDjbw6+GDpo62+PbQZQQ/T4Qk/5gSFfJdsn843kqjzKwsxSPtb7z5+33njktFa/w+sR/GfN4EM38/ifux8scyY14kIiVDguHtGmDF0K7Q1xNixPo/kJ5/XmkTqVSq1GECAD09PWRlqY5YlEqlivUfUv6/TtfIELlS5X/zXKkMOvk/qugaGfzjem3xvmMEgMq/e+FlhZAVcnyEhoZhw6bN6NWzB6ystO+HJplUAuE7dRXqiZD9AefCg5tnce6vbej01QQIhXqQSTLw6lk8rpzeh69GzUeX/pMQ8PcuXDi2XVPhq50kK6fQtgIAst5pd65GP8PdRy8xoll1vCszf3qJxX9fx5Am3vipZ3NEJyThx8Oq82mWZpKsHKVEOQDF37Ic5X5WrFjeDjeyrwC/ro3RtKoNvjtyDcEvVEcEn496hp23ozCuiZfK92sLmUwCoZ7ydVCoJ0J29r+3ofdvnMXZI7+icz/5uSNOeAaZNBNCPT0M/e5ndBswGTcvHcWhHb9oKny1kmSrHicF543ycXI19jnuPnmF4Y1Vf1wU6uigtVslrA64jxepGUiVyrDs3F0IdQTIztGufr1UKlVKCgNFbXMK+iRF6eOUZhJZltJgD+DtPuz773XEqemYvG4PajpXQcua7gCAp6+TYCDSw8px/bBp8hBUsDTDnG3aOWc5+7CqsrMk0NFVrqOuUISc91xfA/9cDPd63VQS7ABg79EcMkkqbpxcjZxsGV4+eoDQ6/uRm6Nd+0udx4lUKlXp+73v+lQaSaRS6Ak/pU//3zpfygQdAT9F/fyHFXlk+d69e7Fw4UK0bt1asczT0xM2NjZYuHAhRowYodYAP4W+nhBZ7ySAZfmdJIP3vFzwdXIqRv+yFbl5efjfmH7Q0dGBbn5HvHvzeujUpDYAYOGIPmj77SLcj36EWi7a8zirSE+okhR/03E0KEJSKi8vD7PX7sD4r7uhWR35DfyiCcPQxXcWHkbGopqLg9pi1jR9oa5KcuLNzbnBOzcgwxt54qvaLooRe27lLRDyMgn7H8RgXNNq+duqfpeB3kc9xFFi9IVClQT/m78N9Ao/d6xNjWFtagyPShVwP+4Z9l25jxoOFbFuZHdk5+QqRpov7v8FPpu3CReCotGhbul+DG3P7t3Ys2eP4m93d3eVTk9WVhb09fXf3RSi93Sm3lf+vy5XIlVJfOvoi5CTIZ/qKud96zO166kMkZ6o0H9zACr/7oWXzYbBO+WCQ0Lx4+w5qF+vLgb2/1oDUavfqYMbcOrQRsXfVV1qqCTGs7Nk0NM3eHdTJfdvnMGvKyej2Wf90Lh1LwCAjq4uJJlpGOD7E6zKy6eKEic8R+DJ3WjVabB6K6IhIqFuoW0FAKX2QpKVjQXHruKHLxoW2o7o5ndShzSphpZu8ikHZnVsjL6bjuJlagYqmKo+BVQaiYQ6KsnOLMX+UE56fdPAHX1rOr3VDpsj5GUSDjyMg5dNwQ9J56KeYfrxm+hT0xHdq2lPP+3EgY04ebDg3HFwrYHsLOXETXaWDCKR4T9+z73rZ7BtxRQ0//wrNGkjny7Aqrwdlmy5BCNjMwgEAlR28EBebi62r56OHoOmQEdH9x+/s6Tp6+qqHCcF/bWC2CVZ2Vh48iamt6v73v7X923qYNqRK/h83REY6gnxTWMvPHz2GsZa9vJxkUikkgB+066825aIRIW3T2/apsISO9rYZ9HXE6oM7FD0Yd93/5eShtHLt8vv/0b1gY6ODvLy8jBzy0F826s9mteQJ89/GvElOkxfjgfRj1HdqXS/U2XPnt3Yu2e34m93d48P78OK/pt92Ftn1uP22YLBfTb2NVSS2TnZMghFqn2T+LCLeBF3Fy17Fz7ftpGJNdp9vQxn90zH7TPrYWpVGdWb9sf9i7+qtxJqpsl7ndzcXJW+n6JPbPDP/b/SQCTSQ1Z24fG/e33VE/03rp9EVKDIGby0tDQ4ODioLHd0dERiYqI6YlKb8pZmSErLQHZODoT5I7heJ6fCQKQHUyPVC/RLcTJG/CR/y/fGqcMV07RYmBhBqKsLh7ce1bMwMYK5iSFeJGrXXNTlrSyQnJquvE+SUqAv0oOp0T/feL1NnJKGF6/FcLOvpFhma20JC1NjPHuVqFXJ8gomBkjKlCE7NxfC/Ef4X6dLYCDUhamBcqdaRyBQebTd0coU0a9TYG4ogr6uDl6nS+BoJX9ZVnau/BHycsalv0PwtgrmJkhKz0R2Ti6E+T8WJaRkwEBPCFND5Ub/Yfxz6OoI4FnZRrHM2cYKUS/k1wORUAjRW1cafT0h7KzM8DI5TfMV+UQdOnZEs+bNFX/v27cPYrHy6EWxWAyrdx5bBgBTMzOIRCKIxWJUqSJPYuXk5CAlJaXQ8v91kqcvoG9bTmmZvm05SJ7Lp16RPClkvU05SJ+9KrYY1cHa2hrJKSnIycmBbv41NlEshr6+CCbGxiplVY6nJLHSyPF79x9g1tx5qFu7NqZPnaI104w0adcHtRp/rvj7zJ+bkZKk/Ch/anICzCxU55Z+4/blY9i55gc0bfslug/6XrHczKI89PT0FYlyAKhQ0QFJr7XnJXQVTA2RlCFVbnfSMvPbnYI25uHT13iclIZJfyi/hHvc7rPoXMMJQ5vIf6R1LFfwgkYHa/n/f5GSrjXJ8gomhirtcEK6BPpCXZjqf1g7HJWYqvj7RPhjzDx5G72qOWBSc9UR+aWZT/svUadJwTt0Th3aonLupCS9hrlluXc3VbgVeBzb/X6AT7ve6Dn4e6V1xibKU5LYVHZCVpYU6WnJMDUr3W1T+Q89b54l4nFSOiYfuqy0/bg/AtDJ2wE/flYPVsYG2NC3FZIzpfJRx3nA6oD7sCtkLvzSzNraGsnJyUptjlgshr6+Pow/pM15qw9T7l/Wa4vylqaF3P+lwUBPD6aGhd3/pWDEsm0AgI2TByumaRGnpuO5OBlub/Vvba3MYWFihGeJSaU+Wd6hQ0c0a1bQh/1j316Ixcr36knv68OavunDJv6n+rDejfvCpeYXir/vnNuEjBTlfmZG6isYm6r2TSLvHkNa8nNsnSN/n0pebjZycrKwcUYddBy2AXZO9VDVswUGzw5ERuorGJmUQ9DV3TC1qqTyXaWJJu918vLyPvj6VBqVs7ZGcnLKB8VfztoaiSr7LUmrzxeisq7Id921a9fGli1blKYfycnJwZYtW1CjRg21Bvep3KtUhFBXBw+iHimW3YmIg5dDJZWEQ6ZUhrHLtkFHR4BN04ajgmXBjadQVxeeDnYIf1Twtm9xajqSUjNgZ61dj8O7V60Moa4uHkbEKpbdDYuCl1PVIiVhzEyMINITIvpJQXIiKSUNyanpsKtg/Q9blj5u5S0g1BHgwbOCDuTdpwnwsrGEjkD50ZLZf9/AnBM3lZaFv0qCg5UpdAQCeNla4e6T14p195++hlBHALfy2jVXqnul8hDq6OB+XMExfyfmCbyr2EDnncdtDl57iJVHA5WWBT9+CacK8k5Sx4VbcPh6kGJdhjQL8QlJcLAp/eeOqakp7OzsFB9PDw8Eh4QgL/9FYnl5eQgODoa7h+oIeR0dHbi6uSEoqKDuISEhEAqFcHR0LLY6lBbia/dg2ai20jLLxnWQdE3+krqk6/dg2bSuYp1BZVsYVqkI8TXVl9iVZs5OjhAKhYoX+gBAUHAw3FxdVa6xnh7uCA4JVTqegoJD4JF/PMXGxmHOvPmoX7cuZkz/HkKh9jyhYmxijvK29oqPg2tNxIbfVaprTNgdOLgW3m8If3AVO9f8gGbtv0LPIT8oravqWgNZWVK8fBqrWPbiaTQs30qel3butlby/snjgiTonUcv4W1nrdTuVLOzxp9jumLP8I6KDwDM6tgIY1rUREVzY5Q3NUTYW1OQxCQkQwCgonnBe1lKO7dyZvJ2+K2XK959lgjvChaq7fCp25h7+o7SsrBXyXCwlNf3+qNXmHnyNvrUcMTUlqWrX/oh3j13HN1qIib8ntK5E/0P507Yg6vY7vcDmn/WF72HKp87IXcD8f1QH8ikBU/sPIkNhbGpRalPlAOAewUL+XnztKCfdedJArxsrZTPm4pWODy8A3YPbq/4AMCsz+phjI/8B6Yf/7qKKzHPYW6oD0M9IS5FP4OVkT6ctGxueycnJ9U2JygIroW0OR4eHggJDlbpw3i4uyvWv91nefXqFV4lJCjaJG3hXtlWfpxEP1YsuxMZBy8Hu8Lv/1bugI5AIJ9mxaLg/s/M2BAioRDRb/1oL05NR3JaBiqV074+rIenJ0KC3+3DBsHD3VNlWx0dHbi6uiG40D6sU7HVQd0MjCxgXq6q4mNTtRaex91R2ifPY+/Apqrqy+UbdZyMvpP/wpffHcSX3x1E/fbjYWxWAV9+dxAVqlSD+EUU/vQfDOTlwdisAgQ6OogLuQA754bFXMui0eS9zpvr09svB33f9ak0Kuz6+jCo8D69/Poa8k6fPhie7tp1/SSiAkW+Sk2fPh2nT59G27Zt4evrC19fX7Rr1w4XLlzAjBkzNBHjRzPUF6FT0zpYuOMQgmIe49ztYOw4cRH92sl/EU5IToVEJn9cZvNf5/H4VSLmDeulWJeQnIrU/CkCBnzmg99PX8GpGw8Q/fQl5mzZD3f7iqhWykcVvMtAX4SOzRtg8ebdCIqKw/kb97DzrzPo+0VLAEBCUgoksn+fB1Ooq4vOLRph5a6DuB0SichHTzFzza+o5uoILyf7f92+NDHUE6KTtwMWnb6NoOeJOBf5BDtuhuOrOvL56BLSJZBkyR/fbO5sh2MhcfgrOA7x4jRsuBKMu09eo28t+YvrvqzpjO03w3Au8gmCnidi8Zk76F7dCYZaNg2LoUgPnet7YcEfZ/Aw/jnOPojE9vO30K+5PNmZkJIOSf5cub0aV8eNiEfYFXAbca/EWPv3ZTyMf46vm9eBQCBAM09HrDtxBTciHyHyeQJm/PY3bMxN0MxT+xLGPj4+SE9Lg7+/P+Lj4uDv7w+JRILm+SMypFKp0hM2nTp2xP4//sDly5cRHhaGNX5++Pzzz2GgBY8eqoO+TTnoGMifRHi+/2/oWZjBa9kMmHg6w2vZDOgaG+LZvuMAgDj/31Hp666oMqQXTKu7o9bWn/Dy6Hlkxj7+p/9EqWNgYIC2bVpj1Zq1CAsPx+UrV/DHgYPo1qULAPkLgN7M8ejj0xRp6elYv2Ej4uLjsX7DRkglErRo5gMAWOm3BuXKl8OI4cOQnJyCxESx0vbapFbD9sjMSMXBX5fg+eMoHPx1CWTSTNRqJB9BK5NJFKNnc3Ky8bv/TLh41kObrsOQkpSg+GRnZ8HGzhFetZvjt3Uz8CQuFCH3AnHm8GY0bdenJKtYJIZ6QnSu4YQFx6/i4dMEnA2Lx/arwejXQJ60SEjLhCQrGwZ6QthbmSl9AKCCqRGsjA0hEAjQv4En1l24hyvRTxH2IhELj19DK/cqKGfy4U+LlTRDPSE6edpj8dl7CHohxrmoZ9hxOxJf1ZInZRLSJYr3grRwtMWx0Ef4KyQej5LSsOFaGO4+S0Tfmk7Izs3F3NN3ULeSNQbVdUVCukTxeXf6Dm1Rq1E7ZKanYv+2pXj2OAr7ty2FTJqJ2o0LP3d2rZsFF6+6aNdN9dxxdK8FkUgfv62fjRdPYxB05yIO7ViGtl2GlGQVP9ib/trCkzcR9Ow1zkU8xo7rYehXzw3AO+eNpanSB3hz3sjbX3NDEfwu3kfkqyTcjH+JJadvYWgjT5UfZ0o7eZvTBn5+fvI25/Jl7D9wAN26dgUgf1lfQZvjg7T0dPj7+yMuPl6lD9OxY0ecOXsWJ06cQExMDH7+5Rc0aNAAtrba9aJtQ30ROjWuhYW7/kJQ7BOcuxOCHScvo1+bRgDeuf87FoDHr8SYN6S7Yt2b+z+hri66NK2F5X+cxK3wWEQ+eYEftxxAdafK8KqqPT/OvuHj44P09DRs8F+P+Pg4bPBfD4lEohhV/G4ftmOnTti//w9cuXwZ4eFhWLtmNT77j/VhnWt8BmlmKgL/XITEF5EI/HMRsmWZcM4ffZ6dJVGMPDcysVZKtBuaWEFHRxfm5apCqGcAU6tKEL+Iwo2Tq5GS+Bg3T63F89hbqN60f0lWscjUea9jYGCANm3bws/PD+FhYbh8+TIO7N+Prt26lVDtiubN9XW135r86+sV7D9wAF27vunTq15f1/tvkPfp/Tfk77dmJVkFIvoEgrw3P38VgVgsxpEjRxAdHQ19fX04Ojqic+fOn/w4TUbg/k/avjCZUhkW7TiMM7eCYGJogEGfN8PX7ZsCAGoP/QFzh/ZEF5+66P7DMsQ+V33be+emdRQJ9AMXbmDTX+cgTk1HXXdHzBzUHTZWmhuBYtS0J1Jun1L790qkMizZvBtnr9+FiZEh+ndqi34dWgEA6n81DrNG9UfnFo2Utjly4So2/nEMf66ep1gmlWVh3d4jOHXlNqQyGRpU98CUwb1haWaq9pjfMKvTDun+6v9RJjMrG4vP3MGZiMcwEelhYH13fJ2fLK+z7A/M+aweung7AAAOPojBrzfC8Dw1A07WZpjUsibqVi54XG/r9VDsuh0BWU4u2rhUwrQ2taEv1Nw8oMYjF0JydL3avzdTloWFf5zB6fuRMDEQYXCreujfog4AoObE5ZjXtz26NvAGAFwIisbqY4GIfyWGS8VymNqtJWo5ym8kpFnZWH0sEH/fCUOqRIoGLlUwo2cb2Fpq5jgx6DgKUdHRGvluAAgLC4Pf6tV49OgRHBwd4TtuHJxd5D+WnDp1CsuXLcOx48cV5ffu3YtDBw8iKysLTZs2xZixYyESqb4foMMXX2DJ0qUaeULH2ckJR/Xc1f697+qYFYYrbQYgMeC64u97w6bh8faDAADz+tVRfc1cmHg4I+VBGB6OnY2UuwWjTSoP7A632eOhZ2WOhFOBuD9qJrISkzQWa2xkuEa+WyKRYPXadbgUeBnGxkbo1aMHenSTJy4+69gZk76dgPbt2gIAQsPCsXrNGsQ/egxHBweMHzcGLs7OSEwU46sBAwv9/re3VycHFzccv6O5FxHFRT7Avk3z8OJJNCrau+HLb2ahsqM8OXzt/CH8vv5HrNj9ELER97BiZuFzs4+duQWu3g2QmZGK/VsX4cGNM9DTN4BP+6/wWY9REKg50fVFbT1k7lig1u98IzMrGwuPXcOZ0HiYGOhhUCNv9G8o3x+1FuzA3M5N0LWms8p2tRbswMb+7VDfQZ7AysvLw6ZLD7D7ZhgyZNlo4VYZM75oqDQthToZDvgRaWumqv17M7OysfjcfZyNeipvh+u4oF9tef3rrjqM2W1ro4uX/Mf4gw/jsP12BJ6nZsLJyhSTmldDnUrl8OBZIgbvu1jo9/v3aIp6ld8/dcmnMBn7E07e09xLq2MjH2DPxvl48TgadlXd0Gf4TFTJP3eunj+EXWtnYvXeB4gJv4dlPxaemBk/ewtcvevj2aNI7N+2FLER96FvaIymbXvji17qP3fa1xQhY/MstX4nID9OFp28hTPhj2Gir4dBDdzxdT15+1b7pz2Y+0UDdKmu+mN87Z/2YGPfVqhnXwEAkCHLwqJTt3Ah8imM9IToU8cVQxupjrBVJ6Nh8xAdFaX275VIJPBbswaBgYEwNjZGz5490T0/GfVFhw6Y+N13aNeuHQB5H2a1nx8ePXoERwcHjPP1hYtzwXXm1KlT2LFzJ1JTU1GnTh1MGD8eZmZmhf1nP5mTszMyLuz+94IfIVMqw6Lf/sKZ2yEwMdTHoPZN8XXbxgCA2iNmY+7gbujSpDa6z1yN2BeF3P81roV5Q7pDmpWFNYfO4sSNh5BmZaGhpzO+/6qDYqoWdTNq0ReRUTEa+W5A/u+/xm+VvA/r4Ihxvr5wdn7Thz2JFcuX4eixvxXl9+7dg8OH5H3YJk2bYsyYcYX2YTt2+ByLlyxFjRqqI7I/lYuzI1b8WeR0xQd7EX8fAQfmQPwiCtYV3dG85xyUryR/MXDojQM4t/cHjP5fqMp2oTcO4OYpP/T/4axi2fO4u7h0aD7EL6JhZeuKpl2mw9ahtsq2n+rbLgKtudeRSCRY4+endH3q1r272mN2dnJCTFSk2r9Xfn1di0v58ffq2UNxff28Q0dM/O5btH/r+rrKb43i+urrO07p+vrGz8uWAQAmT5yo9njf5ph/btOHkxxaVdIhaB2DbuNLOgSN+ahkOQDExsYiKioKubm5cHR0hIvLp5+MmkiWazNNJcu1maaS5dpMU8lybaXpZLk2Kq5kuTbRZLJcW2k6Wa6NNJks11aaSpZrM00ny7WRppLl2kxTyXJtpclkubbSdLJcG2k6Wa6NNJ0s10aaSpZrMybLi05y2K+kQ9A6Bl3HlXQIGlPkuSFSUlIwbdo0nDt3DmZmZsjJyUF6ejrq16+PNWvWwNRUc6OKiYiIiIiIiIiIiIg0ochzli9YsAAvXrzA0aNHce3aNdy8eRNHjhxBRkYGFi9erIkYiYiIiIiIiIiIiIg0qsjJ8rNnz2LOnDlwcip4E7aLiwtmzZqFM2fOqDU4IiIiIiIiIiIiIqLiUORkub6+PnR0VDcTCATIyclRS1BERERERERERERERMWpyMny1q1bY+7cuYiPj1csi42NxYIFC9CiRQu1BkdEREREREREREREVByK/ILPKVOmYOzYsfjss89gZmYGQP7Sz2bNmmHmzJlqD5CIiIiIiIiIiIhIIwSCko6ASpEiJ8vNzMywY8cOhIaGIjo6Gvr6+nB0dFSaw5yIiIiIiIiIiIiISJt8ULL86dOnKsvMzMxQq1YtlTJ2dnbqiYyIiIiIiIiIiIiIqJh8ULK8devWEAgEyMvLgyD/0YS3///bf4eEhGgmUiIiIiIiIiIiIiIiDfmgZLmBgQE2bdoEW1tbDBw4ECtXroSVlZWmYyMiIiIiIiIiIiIiKhYflCw3NzfH4cOHUadOHTx79gz37t2DiYlJoWUrVaqk1gCJiIiIiIiIiIiIiDTtg5Lls2bNwurVq3H58mUAwKZNm6Cjo6NSTiAQoFu3bmoNkIiIiIiIiIiIiEgjCslxUtn1QcnyNm3aoE2bNgDk85fv378flpaWGg2MiIiIiIiIiIiIiKi4fFCy/G1nz57VRBxERERERERERERERCWGzxkQERERERERERERUZnHZDkRERERERERERERlXlMlhMRERERERERERFRmVfkOcuJiIiIiIiIiIiI/hMEgpKOgEoRjiwnIiIiIiIiIiIiojKPyXIiIiIiIiIiIiIiKvOYLCciIiIiIiIiIiKiMo/JciIiIiIiIiIiIiIq85gsJyIiIiIiIiIiIqIyT1jSARARERERERERERGVCAHHElMBHg1EREREREREREREVOYxWU5EREREREREREREZR6T5URERERERERERERU5jFZTkRERERERERERERlHpPlRERERERERERERFTmCUs6ACIiIiIiIiIiIqISocOxxFSARwMRERERERERERERlXlMlhMRERERERERERFRmcdkORERERERERERERGVeUyWExEREREREREREVGZx2Q5EREREREREREREZV5wpIOgIiIiIiIiIiIiKhECAQlHQGVIhxZTkRERERERERERERlniAvLy+vpIMgIiIiIiIiIiIiKm6SE5tLOgStY/DZsJIOQWNK1TQsGQF7SzqEUsWo+ZeIjooq6TBKFSdnZzwNu1/SYZQqdu418Cr4ekmHUWqU92qA2Mjwkg6jVHFwceM+eYeDixuO6rmXdBilSsesMB4n73BwccPz0DslHUapYutRG89C75Z0GKVKRY9aPE7eYetRG+FR8SUdRqni5mzPPuxb7Nxr8Lx5h61HbcRFhpV0GKVKVRd37pN3VHVx57nzDp47qqq68D6H6FNwGhYiIiIiIiIiIiIiKvOYLCciIiIiIiIiIiKiMq9UTcNCREREREREREREVGwEHEtMBXg0EBEREREREREREVGZx2Q5EREREREREREREZV5TJYTERERERERERERUZnHZDkRERERERERERERlXlMlhMRERERERERERFRmcdkORERERERERERERGVecKSDoCIiIiIiIiIiIioRAgEJR0BlSIcWU5EREREREREREREZR6T5URERERERERERERU5hU5WT5w4ECkpKSoLE9MTESPHj3UEhQRERERERERERERUXH6oDnLAwICcP/+fQDAjRs3sH79ehgZGSmViYuLw5MnT9QfIRERERERERERERGRhn1QstzR0RGbNm1CXl4e8vLycPv2bejp6SnWCwQCGBkZYeHChRoLlIiIiIiIiIiIiIhIUz4oWV6lShVs374dADB9+nTMmDEDJiYmGg2MiIiIiIiIiIiISKN0+EpHKvBByfK3LV68GADw6tUrZGdnIy8vT2m9nZ2deiIjIiIiIiIiIiIiIiomRU6WBwYGYubMmXj27BkAIC8vDwKBQPG/ISEhag+SiIiIiIiIiIiIiEiTipwsnzdvHmrUqIF169ZxKhYiIiIiIiIiIiIi+k8ocrL8+fPn2LRpE6pUqaKJeIiIiIiIiIiIiIiIil2RZ7CvV68ebt26pYlYiIiIiIiIiIiIiIhKRJFHltevXx9z587F+fPnUbVqVejp6SmtHzdunNqCIyIiIiIiIiIiItKUPIGgpEOgUuSjXvBZrVo1vH79Gq9fv1ZaJ+DBRURERERERERERERaqMjJ8h07dmgiDiIiIiIiIiIiIiKiElPkZDkABAcHY/PmzYiOjkZOTg4cHR3x9ddfo0GDBuqOj4iIiIiIiIiIiIhI44r8gs9Tp07hyy+/RF5eHnr06IEePXpAIBBg6NChOH36tCZiJCIiIiIiIiIiIiLSqCKPLF+5ciUmT56MwYMHKy3ftm0bVq9ejbZt26orNiIiIiIiIiIiIiKiYlHkkeWPHj1Cq1atVJa3atUKMTExagmKiIiIiIiIiIiISOMEOvwU9fMfVuTaOTs7IyAgQGX5hQsXUKlSJbUERURERERERERERERUnIo8DYuvry98fX1x79491KxZEwBw9+5dnDhxAj/99JPaAyQiIiIiIiIiIiIi0rQijyxv1aoVNm7cCKlUit9//x0HDhxAXl4efvvtN3To0EETMRIRERERERERERERaVSRR5YvWLAAAwcOxOrVqzURDxERERERERERERFRsSvyyPI///wTOjr/7YnciYiIiIiIiIiIiKhsKfLI8sGDB2Pu3LkYPHgw7OzsoK+vr7Tezs5ObcERERERERERERERaYyAg4KpQJGT5atWrQIAXLx4EQAgEAgAAHl5eRAIBAgJCVFjeJ9OmpWFxbv+wpnbwTAQCTGgvQ8Gtm9aaNmL98Pgd/A0Hr1KROVylhjTrQ1a1vIEANQePrPQbeYN6YHOTWprLH5NkMlkWLN2LQIDAyESidCzZ0/07NGj0LKRUVHwW70asXFxsLe3h++4cXB1dVWsP3/+PH7dvh1isRh16tTBhPHjYW5uXlxVURuZTIYV6zch4Mo16ItE6NOtC77s3rnQshFRMVi2bgNiYuPhYF8F340ZDncXZ8X6C4FXsGnH70h4nYhqnu6YNG4UbCuUL66qqJVUJsOyDb/iwpWb0NfXQ9+uHfBV139+N8G94DAsWOWPfeuXqaz7dd9hPH72HDPGj9RUyBolk8ngt3Y9Ll2+DH2RCD17dEevHt0LLRsZFYVVfmsRGxeLqvb2GD92LFxdXQDIr5d7/9iPo8ePIzUlFW5urhgzaiSq2tsXZ3XUgvvk/XREevC5dgAPJ8xHYsD1QsuY1fJEtTVzYVbNDanBkXgwdjZSbgcp1tv16Qi3ud/CoGJ5vDp5CfdHzUTWa3FxVUFteJyokspkWOG/BQFXrkMkEqFvt07o061ToWXDo2OwbO0mRMc9goN9ZUwa/Q3cXZwAyPfJtt1/4Oipc8iUSFG/VnV8O3IoLMzNirM6n0wqk2Gl/xZcULTDndCn23vaYcX+iIeDfWVMHD1csT9adu1T6DbTJ4zBZ61baCx+TeAx8n5RUZFYu3olYuNiYG9fFWPHTYCLq9t7yx8+dAAH9u9FZkYGfJq1wIhRY2FgYAAAeJ2QgA3+a3H/3l2I9EVo1qwlBg4eCpFIVFzV+STq6sO26tK70G2mfTuuTJ87ew79hYPHTiItPR0+DetjwoghMDI0KM7qqIVMJsPqtetx6fIV6ItE6NWj2z+2wyv91r3VDo+BW347nJOTg23bd+Lk6TOQSKWoX7cOxo4aAUtLy+Ksjlqoa5/I+yYH8NdbfZOxo0awb/IfaHd43hCVXR/000lgYCBkMhkA4MyZM0qf06dP4/Tp04r/X9os33cCwXFPsGHSEEzv1xkbjpzDqVsPVcqFP36OSet+R1efOtg9awx6tqiPKev3IOzRMwDAqZ+nKn0Gf+aDitYWimS6Ntm0eTMiIiKwZPFijB07Frt27cLFS5dUykkkEsyaNQve1aph1cqV8PL0xOw5cyCRSAAAYWFhWLFyJb7++mssX7YMaWlpWLZMNUGqDdZv3YGwyGgsWzAb3476Br/u3ocLgVdUymVKJJg2bxFqeHnCf/lSeHu6Yfq8xcjM3ycPQ8Iw/+eV6N2tM/yXL4Wenh7m/295cVdHbdb+uhuhUTFYOW86Jo4YjK17DuLc5cKTfgAQFfcIM/+3Gnm5eSrrTl28gi27D2gyXI3buHkrwiMjsHTRAowbMxq7fvsdFy8FqpSTSCSYOXsuqnl7wW/FCnh5emLmnLmKc+fo8b+x/8BBjBk1EqtXLoetjQ1+nFVwbmkT7pPC6eiLUHvnMphWe3/yRtfIEPX/3ADxpZu41LAHxFfuoP5hf+gaGQIAzOtXR40NCxGxwA+BPn2gZ2mGmpsXF1cV1IrHiap123YhLDIay+fPxHcjh2Lb7v04H3hVpVymRILv5y1FDW8PbFi2GNU83DBt/lJFu3PkxBkcPXUOP04ch9WL5yBBLMZPfv7FXZ1Ptn7bToRFRuXvj2H49R/3xxJUV+wPd0ybv0SxP/Zv81f6fNWjC2wqlEfThvWLu0qfjMdI4SSSTMydNQNe1aphxco18PT0wtw5P0IiySy0fOCli/h913aMHfctFiz+H0JDQ7Bty0YA8oTO4kXzIJVKsOR/yzD1+xm4fv0Kdu7YVow1+jTq6sPu/3WD0qdvj67550694q7SJ1PnubNt9x8YPqAv/JbMRUJiIub/op3v7dq4eSsiIiPx06IFGDdmFHb+thsBhbTDmRIJfpw9D9W9vbBmxfL8dnieYp/s2bcf5wMuYsb0qVi17H9ITU3D0l+0815HXfvk6PG/8ceBgxg7aiT8Vi6DrY0NZsyaC4lEWtxV+mRsd5TxvCEquz4oWT5u3DgkJiYCAAYOHAgjIyNUqlSp0E9pkimV4dClW5jatyM8q9qhdR0vDPrMB3vOXlMpe/zafdT3cEK/No1hX8EafVo1RH13R5y6KU+slzM3VXyksmz8fvYqZg3sBlMj7RpZIJFIcOLECYwaORIuLi5o2qQJevfqhSNHjqiUvRAQAH19fXwzbBjs7e0xcuRIGBoaKp4qOHLkCJo1a4a2bdrA0dERUyZPxo2bN/H8+fPirtYnyZRIcPTUGfgOHwI3Zyc0a9wQfXt0xcGjf6uUPXdRPipy1JABqFqlMsZ9MwRGhoaKm5K9B/9Eu5bN0OXzdrCvXAm+w4fgtTgJySkpxV2tT5YpkeDI6fOYMGwA3J0d0KJRPfTr3hH7j50qtPyhE2cxato8WFoojxjIzsnBz+u3YrHfRtjZViiO0DVCIpHg75MnMXrECLi6uKBpk8bo3asn/vzrL5WyFwIuQiQSYfiwobC3r4JRI4bD0MgQARflP0qdOn0GPXt0R6MGDVC5UiX4jh2DlNRUBJWyJ3P+DfdJ4Uw8ndEkcC+MnP95RFHFLzsgN1OKkO9/QlpoNIInLkROajoq9vocAOAwpj+e/nEcT3YeRuqDMNwdPBUVvmgBQ4fKxVENteFxokre7pyF7zeD4ObsiOaNG+CrHp1x8NgJlbJnL8lHM40e3B8OVSrB95tBMDQ0VNy8Xr11B62bNUatal5wqloFX3Xvgtv3VQcFlGZv9se4bwbnt8MN0Pc9++PcW/tD3g4PgtFb+8Pa0kLxkclk2P/XcUwZOwImxkbFXa1PwmPk/S4GXIBIX4Shw0agin1VDB85BoaGhrh0MaDQ8kcOH0SXrj3QoGEjuLm5Y6zvtzh16gQkEgkeP36EsNAQTPhuCqpWdYB3ter4uv8gXDh/tphr9XHU2Ye1srRUfKRSGQ78dQxTxo2CibFxcVfrk6jz3Dlw9G982bUT2jZvCkf7KvhhwhhcuXkb8Y+fFne1PkmmRILjJ09h9IjhcHVxhk+Txujdqwf+/OuoStmCdngI7O2rYPSIb2BoZIiLF+UJwpzcHIwcPgw1qlVDVXt7dOvSCUHBwcVdpU+mzn1y8vQZ9OrRHY0a1EflSpUwfuzo/L6Jdu0XtjvKeN4QlW0flCw3MzPDmjVrcPDgQTx58gRHjx7FoUOHCv2UJmGPniM7Jxc1nasoltV2rYqHMY+Rm5urVLZzk1oY36OdynekZar+IrzuzzNo4OGERl7OKutKu+joaGRnZ8PTs2BEvLe3N8LCwlT2SWhoKLy9vBRT7QgEAnh5eSEkNFSxvlq1aory5cuXR/ny5RGav15bRMXEITs7B94eBSNAq3t5ICQ8QmWfBIeFo5qXh9I+qebpjqDQcADA3YdBaNa4oaJ8RVsb7N60FuZm2vXIGQBExsYjJzsH1d0Lpt2p4emO4Igolf0CANdu38OP40egT+fPlZZnSiSIinuEDUvnoJq7i8bj1pSo6BhkZ2fDy9NDsczbywuhYeEq+yMkNAze3srnjrenp+LcGT5sCFq3aqkoLxAIkJeXh4z0DI3XQ524Twpn1bwBXp+/hkCfwqeDeMOyYU0kXr6ltCzxym1YNKoFALBoUBOJF28q1kkeP0dm/FNYNqyp9pg1iceJqqiYOORk56Cah7tiWXVPdwSHRxbS7kSguqe70j6p7umGoLAIAICZqSmu3LyDV68TIZXKcOZiIFycHIqtLurwph1W3h/va4dV90c1T3cEh4WrfO+W3/aiTo3qqFerhmYroAE8Rt4vLDQEXl7VlOrr6eWN0FDVH81ycnIQEREG72rVFcs8PDyRnZWF2JhoWFpaYe78RSqPwmekp2u2Emqizj7s27b+tgd1alRH3TJ+7jx9/hJebgV9V2srS1iYmSGokOtNaRZdSDtc7R/a4WqFtMPB+e3wgH5fwadJYwCAOCkJx0+cQo3q1aFt1LlPRgwbitatCqYqetM3SWffRKvbHZ43RGXbB81ZPmvWLKxevRqXL18GAGzatAk6Oqp5doFAgG7duqk1wE+RkJwKCxMj6AkLqmllZgxpVjaS0jNhZVowUsKpovKI16gnL3A9NBq9Wig/tvvsdRKOX7uPbdOGazZ4DUlMTIS5uTn09PQUyyws5KOvUlJTYfHWfOOJiYmoWrWq0vYWFhaIi4uTrxeLYW1lpbTe0sICCQkJGqyB+r0Wi2FuZqq0TywtzCGTZanuE3ESHOyVR3VaWlggJj4eaWnpSE1LR05ODqbMXoComFh4urni29HfoLy1dbHVR11ei5Pz98tb54+5GWSyLCSnpsHynTnnFk//DgBw7KzyyC5TY2OsWzxL8wFrWKI4EeZmZu8cJ+85d8SJKvMUWlhYKs6dat7eSuuOnziJ3JwceHt5abAG6sd9Urh4/98/qJy+bXmkBkcqLZO9eA1Tb/kPVAYVK0D69KXSeunL1zCoZKueQIsJjxNVr8VJKtdX+T7JQkpqmtKcnq/FSXCs8m67Y46YuMcAgEF9emD6wv+h19Ax0NXRgZWlBdb+NL94KqImhe0PK0U7/O7+EMOhShWl7a0szBET90hp2YtXCTgTcAl+S7RrX7zBY+T9EhMTYf9O/9TSwhJxcbEqZdPT0yGTyWD1Vj9MV1cXZmZmSEh4BQ9PL9SpW9DXz83NxdEjh1Gzlna8j0hdfdi3vXj1CmcCLmH10oWaDV5D1HnuWFqY41X+09WAfABISloaklNSNVwL9UoUi4vQDovh8E47bGlhgdg45eNk+87fsPP33TA1McHy/y3VbAU0QJ37pJq3ch/kTd+kGvsmWt3u8LwhKts+aGR5mzZtcOjQIZw5cwbm5uY4ePAgzp49q/I5c+aMpuMtEoksC3pCXaVlovzEeVZW9nu3E6emY/L63ajpYo+WtTyU1h26dAteDpVQ3anKe7Yu3aRSqdKPBwAUDUBWVpZq2bcahzdl35T7t/XaQiqVQlRIPQDV40RSaJ2FyMrKVsxJtnrjVrRr2QyLZk5DVlYWfpi3pNCR2KWdvK7vO1bef/78V73veAc+9NwRQlbIuREaGoYNmzajV88esLLSrpe8cJ98Gl0jQ+RKZUrLcqUy6OiL8tcb/ON6bcHjRFVhbYko/3r7bl0L3SfCgrb2+ctXMBCJsPjHKVi5aDbKl7PG0tXrNRi9+v1TO6y6P2SKfaUoK9RTKXfs1Fm4OzvD662no7QJj5H3k0olKvUVvqf/KZXK+2YfWn7rlo2IiorEgIFD1Bix5qirD/u2Y6fOws2F5w4AtPZpjF1/HEbsoyeQymRYs2UHACArW7v6wZ/eDqueL21at4Tfil9Qu1ZNTJs5G+kZ2jWKWhP7BJCPMPbftIV9k/9Au8PzpuzJEwj4KeLnv+yDkuVvMzIywrNnzzQRi9rp6wmRlZ2jtEyW37kx0NcrbBO8TknDyF+2Ijc3D/8b1VdlBP3pW0HooGWPwL9NJBKpdPDeXMQN9PVVy75zgc/KyoJ+frnCGoC312sLkZ5IpQPwpl767ySlRKLC6pwNA30RdHXlx0rHdm3QvlULeLi6YMakCYiOi0dw/iNp2kSkp6dyA1VwrGhXsk4dRHqFnw8AVI75wstmq5xjwSGh+GHWbNSvVxcD+3+tgag1i/vk0+RKpCqJbx19EXIy5MmdnPetzyz8JXalFY8TVYW1r7KsN/2TD9gn2fK2Ni8vD4tWrMWXXTuiSf26qO7pjrlTJuDWvYda1e6IRKrJ7vf2TfT0FPtKUTY7S6XchcvX0K6ljwaiLR48Rgrs3fMbevforPgAqomK7Pf0P0Ui0QeX37ZlI/48dAATJ09DVQdHdVZBY9TVh33bhcCraNeyuQaiLR7qOncAYGCfHnB3ccJg38no+NVQ6An14OJYFcb5L+LWFqL33LMBH9oOq54vlezs4ObqiqmTvoNMJkVgIS+VLc00sU/kfZM5qF+vLgb176eBqDWL7Y4ynjdEZdsHTcPyNl1dXa0ZOVzewgxJaRnIzsmBUFc+wvx1choMRHowNVR9MedLcQpG/LIFALBxylClaVoA4HliMqKfvVIZba5NrK2tkZycjJycHOjm7xOxWAx9fX0Yv/MCH2tra4jFYqVlYrEYVvlTr5T7l/Xaopy1FZJTUpX2SaI4CfoikcpLjcpZWSFRnKS0LFGcBCtLS5ibmUEo1EWVynaKdeZmpjA3NcXLhAQA7tAm5a0tkZySqnT+JCYl5+8X7XpRmjpYW1sjOSXlneNEDH191eOk0HMnSaw0wuTe/QeYNXce6taujelTpxQ6tVVpx33yaSRPX0DftpzSMn3bcpA8l0+9InlSyHqbcpA+e1VsMaoDjxNV5a0Kub4q2h3l62s5a0skJiUpLUsUJ8PaygJJySl4mfAazo4FU1JUKF8O5mameP4qQWtGhpazsirC/rAqZH8kwdrKQvH3y1cJiH30GE0bKk+lp014jBT4okMn+DQrmA94/749EIsTlcqIxWJYWqlOeWdqagaRSIQksRhVqsgfkc/JyUFKSgqs3irvv84Px44ewaQp09DUp5mGaqJ+6urDvvHyVQLiHj1G04b1NB67pqjr3AEAQwMDzJ36LdLSMyAQAMZGRug6cARsK5QvjqqoTdHaYSskvtMOJ77VDl+9fgMuTk4oV05+/ohEIlS0tUVySkox1ER91LlPAHnfZObc+ahbuxZ+mDqZfRMtb3cAnjdEZV2Rr+ItW7bEkCFDMGnSJCxbtgx+fn5Kn9LEvYothLo6eBD9WLHsTmQcvBwqqTRgmVIZxq78FToCATZNGYYKFqovZHwQ8wi2VuaoaG2h6dA1xsnJCUKhUPGyNAAICgqCq6uryj7x8PBASHAw8vLyAAB5eXkIDg6Gh7u7Yn1QUJCi/KtXr/AqIQEeHtr1Y4KLkwOEQl2ll4M9CA6Fu6uzyj7xcndDUGi40j55GBIKL3c36Orqws3ZCVExcYryySkpSE5NgW0F5TnxtYGrY1XoCnURFFYwp/L9kHB4ujhqZQfwUzk7OaqeO8HBcCvk3PH0cEdwSKjScRIUHKI4N2Jj4zBn3nzUr1sXM6Z/D6GwyL9blgrcJ59GfO0eLBspz4tr2bgOkq7dAwAkXb8Hy6Z1FesMKtvCsEpFiPPXawseJ6pcnBygK9RVGmH1ICQUHoW2O654qNLuhMHLzRWmpiYQ6ekh7tETRfmklBSkpKaioo32tDsF7fDb+yPsvfvj3Xb4Qf7+eCM4PBIVylnDprzyj03ahMdIAVNTM9jZVVJ8PDy9EPpO/zQkOAge7qr9Tx0dHbi6uiM46KFiWWhIMIRCIRwcnQAAv+/agePH/sLUaTPQvEWr4qmUmqirD/tGSHhE/rmjXcngt6nr3AGAddt24e+zF2BibARjIyOEREQhPT1D6QWI2sBZcf8Xplj2sAjtcHBwCDzz67xh8xacOntWUT4jIwOPnzyF/TvzV5d26twnMbFxmD1vAerXrYMf2Tf5T7Q7AM8borKuyBmvsLAweHt74+XLl7hz5w6uXbum+Fy/fl0TMX40Q30ROjWujYU7/0RQzGOcuxOMHScD0a9NIwDyF4BKZPJR8puPXcDjV2LMG9pTsS4hORWp+Y/DA0DUk5dwqqi9nUcAMDAwQNs2beDn54ew8HBcvnwZ+w8cQLeuXQHIX5oklUoBAD4+PkhLT4e/vz/i4uPh7+8PiUSC5s3lj2Z27NgRZ86exYkTJxATE4Off/kFDRo0gK2tdr18zkBfH5+1bollazciNCISl65ex95Df6Jn544A5L8gv9knLZo2Qlp6Ovw2bUVs/CP4bdoKiVSKlj7yt1t/2a0zDvx1DOcvXUHco8dYunItnB0d4OnmUmL1+1gG+vr4omUz/Lx+K0IiohFw7SZ+P3wMvTt9BkD+YhfpO/Mp/5fJz53WWLVmrfzcuXIFfxw4iG5dugAAEhPFb507TZGWno71GzYiLj4e6zdshFQiQYtm8ikBVvqtQbny5TBi+DAkJ6cgMVGstL224D4pOn2bctAxkD+S+Xz/39CzMIPXshkw8XSG17IZ0DU2xLN9xwEAcf6/o9LXXVFlSC+YVndHra0/4eXR88iMffxP/4lSh8eJKgN9fXzeqgWWrduEkIgoXLx6A3sO/YVenb8AoHx9bdmkIdLSM7B606+IjX+M1Zt+RaZUilY+jSDU1cXnbVpg7daduBcUgui4R1i4bA283Fzh4eJUklUsEgN9fXzWqgWWrZO3w/L9cQQ9C9kfLZo0zG+H5fvDb9OvSu0wAMTEP0JVLb8B5THyfk19miE9PR0b/dciPj4OG/3XQiKRwKe5fPS5VCqF+K2XMnbo1BkH9u/FlcuBCA8Pw9o1q9D+8w4wMDDAo/g47P59J3r17gsvr2oQJyYqPtpAnX1YAIiJ47nz5twBgHJWlti2ez9CIqIQFhmNhcv80PWLdjAzNSmx+n0MAwN9tGvTGivXrEVYeAQCr1zFHwcOoXsX+bRGb7ejzfLb4XUbNiEuPh7rNmyCRCJF8/x2uEvHjvhj/0Fcv3ETsXHxWPrzMthVrIj69eq+979fGqlzn6z0W4Py5cthJPsm/6l2h+cNUdkmyHvz81cpkBGwV+3fmSmVYdGuIzhzOxgmhvoY9JkPvm7bBABQe/hMzB3cHV2a1kH3mSsR+zxBZfvOjWtj3tAeAICFO/9EaoYES0Z8qfY4C2PU/EtER0Wp/XslEgn81qxBYGAgjI2N0bNnT3Tv1g0A8EWHDpj43Xdo164dAPmPI6v9/PDo0SM4OjhgnK8vXJydFd916tQp7Ni5E6mpqahTpw4mjB8PMzPVUfnq4uTsjKdh99X+vRKpFMvXbkTAlaswMTJCn+5d0aur/EajVZfe+H7CGHzeRj7aKCQ8AsvXbkTc48dwcqiKiaNHwNW5YG7Lv06cxs59B5CUlIxa1b0xaexIlC+n+miwuti518CrYM38UCWRSvHz+m24cPUGjI2M0K9bB3zZ+XMAgE/3AfjBdzg6tFae1/LY2QBs2X0Qf2xYrvJ9C1f5AwBmjB+pkXgBoLxXA8RGhv97wY8gkUiweu06XAq8DGNjI/Tq0QM9usl/aPqsY2dM+nYC2rdrCwAIDQvH6jVrEP/oMRwdHDB+3Bi4ODsjMVGMrwYMLPT7395enRxc3LhP3uHg4oajepofGdYxKwxX2gxAYsB1xd/3hk3D4+0HAQDm9auj+pq5MPFwRsqDMDwcOxspd0MU21ce2B1us8dDz8ocCacCcX/UTGQlJmksVh4nyhxc3PA89I7avxeQX1+XrduMgCvXYGxkhL7dO6N3lw4AgBZd+2La+FH4ok1LAEBIeCR+WbcJcY+fwLmqPSaO+QZuTvJ2RyqTYfOuPTh78QqkMhnq1ayOCSOGwMJcM22xrUdtPAu9q/bvlUilWL5uEy5cuZbfDndG7y7ydrhl1z74fvxopf2xbN3G/P1RFRPHfANXp4J2eNm6TUhLT8esyRPUHmdhKnrU0shxoq3HCCA/TsKj4jX2/eFhoVjjtxKPH8XDwcEJY3wnwNlZPjDh9KkTWLn8Zxw5dkpRft/e3fjz0H5kZWWhSdNmGDXGFyKRCPv27sb2bZsL/W+8vb06uDnbl/o+7PK1G5CWnoGZU75Ve5zvsnOvUeqvrzk5uVi7dQdOnb8EgY4A7Vs2w8hB/RRTVKibrUdtxEWG/XvBjyCRSLFq7VpcCrwCY2Mj9O7RXdEOt+/YBZO/nYD27doAkLfDq9asVbTDE8aNVtz/5ebmYu8fB/DXseNITklGndq1MX7MKFhba+Zep6qLe6neJ4mJYvQdMKjQ7397e3Wq6uJe6s+dkuibaOI40dbzBpAfJ1Q0GRd2l3QIWseoRd+SDkFjPipZ/ujRI/z222+Ii4vDnDlzEBAQAEdHR9St+2m/jGkiWa7NNJUs12aaSpZrM00my7WRJpPl2kqTyXJtVVzJcm2iyWS5ttJkslxbaSpZrs00lSzXZppOlmsjTSXLtZUmk+XaSpPJcm2lyWS5ttJkslxb8dxRxWR50TEfWXRGzYtnIHFJKPI0LDdu3ECXLl3w5MkTXLx4EVKpFNHR0Rg0aBBOnjypiRiJiIiIiIiIiIiIiDSqyMny//3vf5g0aRJWrVqleHnF1KlTMXnyZKxatUrtARIRERERERERERERaVqRk+Xh4eFo0aKFyvI2bdogPp6PWxIRERERERERERGR9ilysrxSpUp48OCByvLz58+jUqVKagmKiIiIiIiIiIiIiKg4CYu6wbfffotp06bhwYMHyMnJwaFDh/D48WMcPXoUP/30kyZiJCIiIiIiIiIiIiLSqCIny9u1a4cqVapgy5YtcHV1xZkzZ+Do6Ihdu3ahZs2amoiRiIiIiIiIiIiISP0EgpKOgEqRIifLDx06hA4dOqiMIs/IyMD27dsxcOBAtQVHRERERERERERERFQcPihZnpiYCIlEAgCYPn06XF1dYWlpqVQmNDQUP//8M5PlRERERERERERERKR1PihZfv36dXz77bcQ5D+W0KtXLwBAXl4eBAIB8vLyAABdunTRUJhERERERERERERERJrzQcnyzz//HGfPnkVubi7atm2Lffv2wcrKSrFeIBDA0NBQZbQ5EREREREREREREZE2+OA5y+3s7ADIp1t5n6ysLOjp6X16VERERERERERERERExajIL/hMSEiAv78/IiMjkZOTA0A+HUtWVhaioqJw48YNtQdJREREREREREREpHY6OiUdwX+eVCrF3LlzcfLkSRgYGGDo0KEYOnRooWXPnz+P5cuXIz4+HpUrV8a3336LNm3aKNbXq1cPqampStvcvn0bxsbGaom1yMnyH374AfHx8Wjfvj22bNmCIUOGID4+HqdOncK0adPUEhQRERERERERERERab+ffvoJDx8+xK+//oqnT5/i+++/h52dHT7//HOlcqGhoRg3bhymTp2KFi1a4NKlS5gwYQL++OMPeHh44MWLF0hNTcXp06dhYGCg2M7IyEhtsRY5WX7jxg1s2bIFtWvXRmBgIFq2bIm6detiw4YNCAgIwMCBA9UWHBERERERERERERFpp4yMDOzbtw8bN26Et7c3vL29ERERgV27dqkky//66y80atRIkV+uWrUqzp49i+PHj8PDwwNRUVEoX748qlSporF4i/ycQV5eHmxsbAAALi4uCA4OBgB88cUXePDggXqjIyIiIiIiIiIiIiKtFBoaiuzsbNSuXVuxrG7durh37x5yc3OVynbv3h2TJ09W+Y43065ERkbC0dFRo/EWOVnu5eWFw4cPAwA8PT0RGBgIAHj8+LF6IyMiIiIiIiIiIiIirfXq1StYWlpCJBIplpUrVw5SqRRJSUlKZZ2dneHh4aH4OyIiAleuXEHjxo0BAFFRUcjMzMSAAQPg4+OD4cOHIyYmRq3xFnkalsmTJ2PkyJEwNDRE165dsWnTJnTu3BlPnz5Fly5d1BocEREREREREREREZUeMpkMMplMaZlIJFJKiL+RmZmpsvzN3+9+x9sSExPh6+uLOnXqKF7wGR0djeTkZEycOBEmJibYuHEjBg8ejKNHj8LExORTqwXgI5LlP//8MwYPHowaNWrA0tIS+/fvx+nTp2FhYYEvvvhCLUERERERERERERERaVqeQFDSIWgdf39/+Pn5KS0bN24cfH19Vcrq6+urJMXf/P32SzrflpCQgCFDhiAvLw+rVq2Cjo58cpTNmzcjKysLxsbGAOR56hYtWuDcuXPo3LnzJ9cL+Ihkebdu3RAYGIgdO3ZAV1cXTZs2RbNmzdCkSRNF4ERERERERERERET03zNy5EgMGTJEaVlho8oBwMbGBmKxGNnZ2RAK5anoV69ewcDAAGZmZirlX7x4oXjB5/bt22FlZaX033j7v6Ovr4/KlSvjxYsXn1ynN4qc3f7yyy+xcuVKXLlyBRs2bICbmxsOHDiAZs2aoXfv3moLjIiIiIiIiIiIiIhKF5FIBBMTE6XP+5Llnp6eEAqFuHv3rmLZrVu3UL16dZWB1xkZGfjmm2+go6ODnTt3wsbGRrEuLy8Pbdu2xYEDB5TKx8XFwcnJSW11K/LIcgDIyclBUFAQbt++jXv37iE8PBwikajQXwOIiIiIiIiIiIiIqOwxNDREt27dMGfOHCxatAgvX77Eli1bsHjxYgDyUeampqYwMDCAv78/4uPjsWPHDsU6QD5di6mpKVq2bInVq1ejUqVKsLKywsqVK2Fra4sWLVqoLd4iJ8sHDBiAhw8fwszMDDVr1kTdunUxcuRIeHl5cRoWIiIiIiIiIiIiIlKYPn065syZg0GDBsHExAS+vr5o3749AMDHxweLFy9Gjx49cOLECUgkEpXZS7p3744lS5ZgypQpEAqFmDRpEtLS0tCoUSNs2LABurq6aou1yMlyoVAIgUAAS0tLVKhQATY2NrCxsWGinIiIiIiIiIiIiIiUGBoaYunSpVi6dKnKurCwMMX///vvv//xe/T19TFt2jRMmzZN7TG+UeRk+datW5GdnY2goCDcuHEDhw8fxty5c2Fqaop69eophtATERERERERERERlWoCDgCmAh81Z7lQKETNmjVhbGwMQ0NDiEQinDt3DlevXlV3fEREREREREREREREGlfkZPmuXbtw/fp13Lx5ExkZGahfvz6aNm2KCRMmwNnZWRMxEhERERERERERERFpVJGT5Xv37oWPjw/69u2LunXrQiQSaSIuIiIiIiIiIiIiIqJiU+Rk+eHDhzURBxERERERERERERFRieEM9kRERERERERERERU5n3UCz6JiIiIiIiIiIiItF2egGOJqQCPBiIiIiIiIiIiIiIq85gsJyIiIiIiIiIiIqIyj8lyIiIiIiIiIiIiIirzmCwnIiIiIiIiIiIiojKPyXIiIiIiIiIiIiIiKvOEJR0AERERERERERERUYkQCEo6AipFOLKciIiIiIiIiIiIiMo8JsuJiIiIiIiIiIiIqMwT5OXl5ZV0EERERERERERERETFLe3akZIOQeuYNOxc0iFoTKmaszw+IqSkQyhV7F09ERsZXtJhlCoOLm64GSYu6TBKlXrulgiOfFrSYZQaXi52iIyKKekwShUXZ0ccv5NV0mGUKl/U1uP19R0OLm44qude0mGUKh2zwnA1NLmkwyhVGnmY40pISkmHUao09jRD0p2zJR1GqWJRuzV+u8TxOG/r5yNgf+0tXi52uB/xsqTDKFVquFZAVHR0SYdRqjg7OUHy17qSDqNUMeg0GhFRcSUdRqni6lyV93/vcHF2LOkQiLQap2EhIiIiIiIiIiIiojKvVI0sJyIiIiIiIiIiIioueQKOJaYCPBqIiIiIiIiIiIiIqMxjspyIiIiIiIiIiIiIyjwmy4mIiIiIiIiIiIiozGOynIiIiIiIiIiIiIjKPCbLiYiIiIiIiIiIiKjME5Z0AEREREREREREREQlQiAo6QioFOHIciIiIiIiIiIiIiIq85gsJyIiIiIiIiIiIqIyj8lyIiIiIiIiIiIiIirzmCwnIiIiIiIiIiIiojKPyXIiIiIiIiIiIiIiKvOEJR0AERERERERERERUYkQcCwxFeDRQERERERERERERERlHpPlRERERERERERERFTmfdQ0LCkpKdiyZQsePHiA7Oxs5OXlKa3fvn27WoIjIiIiIiIiIiIiIioOH5Usnzp1Kh48eIDOnTvDxMRE3TERERERERERERERERWrj0qWX758GTt37kSNGjXUHQ8RERERERERERERUbH7qGS5jY0NdHQ43TkRERERERERERFprzyBoKRDoFLko6dhmTNnDsaPH4+qVatCT09Pab2dnZ1agiMiIiIiIiIiIiIiKg4flSz39fUFAIwYMUKxTCAQIC8vDwKBACEhIeqJjoiIiIiIiIiIiIioGHxUsvzMmTPqjoOIiIiIiIiIiIiIqMR8VLK8UqVKAIDAwEBERUUhNzcXjo6OaNKkicqULEREREREREREREREpd1HJcufP3+OMWPGICYmBo6OjsjJyUFcXBzs7OywdetW2NjYqDtOIiIiIiIiIiIiIiKN+ahk+dy5c2FtbY2tW7fC3NwcACAWizFlyhQsXLgQq1atUmuQRERERERERERERGon0CnpCKgU+aij4erVq5gyZYoiUQ4AlpaWmDx5MgIDA9UWHBERERERERERERFRcfioZLm5uTmSk5NVlqekpHDOciIiIiIiIiIiIiLSOh+VLO/YsSN+/PFHXLlyBWlpaUhLS0NgYCBmzpyJDh06qDtGIiIiIiIiIiIiIiKN+qg5yydMmIDXr19j2LBhyMvLAwDo6uqid+/emDp1qloDJCIiIiIiIiIiIiLStI9KlotEIixZsgQ//PADYmNjIRKJYG9vDyMjI3XHR0RERERERERERESkcR+cLL9x4wZq164NoVCIGzduKK2TSqUICgpS/F2/fn31RUhERERERERERESkAXkQlHQIVIp8cLJ8wIABCAwMhLW1NQYMGPDecgKBACEhIWoJjoiIiIiIiIiIiIioOHxwsjw0NLTQ/09EREREREREREREpO0+as7yNm3aYP/+/bCwsFBa/uLFC3Tr1g1XrlxRR2xqIZPJsHqdPy5evgJ9kT56de+K3j26FVo2MioaK9esQ0xcHKra22PC2FFwc3FRKXfhUiAWLPkfTv11SLPBa4hMJoPf2vW4dPky9EUi9OzRHb16dC+0bGRUFFb5rUVsXCyq2ttj/NixcHWV75O8vDzs/WM/jh4/jtSUVLi5uWLMqJGoam9fnNVRq9ioMGxZtxSPYqNQ2d4JQ8d8D0cXj3/dbqPfIlhZlUfPfsMVy54/fYRt/j8jPOQ+TEzM0L5Tb3Tq0V+T4WtEdFQE1vstQ1xcDOztHTBq7HdwdnV/b/kjh/7AoQN7kJGRjqY+LTF81HjoGxgAALKyZNiycS0unj8DoZ4e2rb/Al8P/AYCgfY88hQVFQm/1asRFxcLe3t7jB03Hq6uru8tf+jQQRzY/wcyMjLg06wZRo0aA4P8/fFGVpYME8b7YtToMahRo6amq6B2j2NCsHfTPDx7FAHbys748ptZqOLkXWjZ7CwZju5ZhduXj0MmzYSLVz30HPwDLKxtFesP7fgJtwKPQVcoRKOWPdCx7wStOkZ4jX0/HZEefK4dwMMJ85EYcL3QMma1PFFtzVyYVXNDanAkHoydjZTbBVO92fXpCLe538KgYnm8OnkJ90fNRNZrcXFVQa3iosOwbe0SPI6LRCV7JwwaPQ2OLp7/ut0Wv4WwtC6P7l+NUCy7eeUcVi/5Xqlcvcat4Tttidrj1qS46DD8um5xwT4ZNR0OH7JP1iyApVUFpX2SlSXD71uW42rACQiFemjetgt69h+jNdcTqSwL/9uyG+eu34G+SA9fd2qHrzu1/cdt7oZGYu7abTi4aoFiWcO+owstO3vMIHRo3kitMReXZ3HBOLpjDl48CUcFOxd0HDAHdg7VCi0rk2bg798XI/T2SeTl5cGr3mf4rM80iAyMAcjbnRN7luDhtb+gK9RDbZ+eaN3jO605Tt5gf01ZTFQ4Nqz5GfFx0ahi74jhYyfD2eX9++Po4b04vP93ZGamo7FPawwb+a1ifyQnibFx7S94cO8WTM3M0bPPQLRq26G4qqI2UZGRWO3nh7hYeR92nK/vP/dhDx7E/v37kZGRgWbNmmHU6NGKPqxMJsPaNWsQGBgIkUiEnj17okfPnsVVFbWQZmVj0YFzOHM/Avp6QgxsWReDWtYttOzRW6FYf/IqXiSlwqNSBUzp1gLV7W0V60/di8CqY4F4mZKGWg52mN27LeyszIqrKmoVFRWJNatX5t/rVMXYcePh4ur23vKHDx3A/v37kJmRAZ9mzTFy1FjFcZKQkIAN/mtx/949iPRFaNasBQYNHgqRSFRc1VEL3v8RlT06H1rw77//xvTp0zF9+nQ8efIE8+bNU/z95jNlyhTo6upqMt4i27BlG8IjovC/hfPhO3okdv6+BwGXLquUy5RIMGPOfFTz9sKaFb/Ay8MDP85ZgEyJRKlcWloa1vpvKq7wNWLj5q0Ij4zA0kULMG7MaOz67XdcvBSoUk4ikWDm7Lmo5u0FvxUr4OXpiZlz5kKSv0+OHv8b+w8cxJhRI7F65XLY2tjgx1lzFOu1jUSSif/Nmwh3r1pYsHwbXD2r43/zJkIiyfzH7Y7s34HzJ/9UWpabm4uf50+CmZkFFq34FUPHfI9De7ci8MIJTVZB7SSSTCyYPQ1e3jXw8wp/uHt6Y8Gc6e/dJ1cCL2D3b9swatxEzFu0DOFhwfh1q79i/SZ/P9y7cwuz5v+EiVNm4NTfR3Hy7yPFVZ1PJpFIMHvWTHhXq4YVK1fD09MLc+bMeu8xH3jpEn7btRPjxo3HosVLEBYaiq1bNiuVkclkWLp0CeLi4oqjCmonlWRgw9LRcPaog0mL98DRrRY2LB0DqSSj0PLH963BgxtnMGDcEkyYuwM52dnYsuxb5OXlAQAO/LoYYfevYNR0fwwc9xOunN2Py2f2FWeVPhmvsYXT0Reh9s5lMK32/hsuXSND1P9zA8SXbuJSwx4QX7mD+of9oWtkCAAwr18dNTYsRMQCPwT69IGepRlqbl5cXFVQK6kkE7/M+xZu3rUwd9l2uHjUwPL530H6L23O0QPbceHUYZXlTx/FoFb9Zli57ZjiM3TcDE2FrxFSSSaWzZ8AN69amPPLDrh41MCyBd/+6z45dmA7AgrZJ7s2/YKge9cxefZqjJo4HxdOHcL5kwc1Fb7ard51ACHRcVgz81tMHfoVNu0/ijNXb7+3fGT8E0xfvhF5uXlKy4+tX6L0GdC5PSqWs0Lzetp5cy6TZuC3lSNh71oXI2buR2Xn2vht5SjIpIW3O3//vhjPYh+i/8TNGDh5K57EPMCJPUveWr8Q0cGB6P/dJvQY/jNuB+zDrQt7iqs6asH+mjKJJBOL5kyBp3dNLF2xCW4e1bB4ztT37o+rgeex97etGDluMmYvXImIsCDs2LoOgPyH6/8t/AGJr19hzqKVGDLcF79u8sO1yxeKs0qfTCKRYNasWajm7Y2V/2fvvsOjKPo4gH+TXEnvhBISEtITeu8dpXdFpCq9iaKiIFVAFBWUJh1RmnSk916llzTSCaGkXHqu5t4/Di5cLiDEuyT38v08zz4PNzt7zGz2dmZ/Ozu7aBGCgoMxc8aMl/Ypzp07h40bN2Lc+PGYN28ewsPDsXbtWu36NatX4/79+5j3/fcYO3YsNm7ciHNnz5ZUdQxiwd6zCH3wBKtG98GU3m2w4shlHL11Xy/f9ZiHmLn1KEa+0xA7Jw1CTa+KGLtqN3JlcgDAzdgkfL3hIAa1qoO/PvsQIoEFvtpwoKSrYxBSaR5mTp+KkGrV8cuvSxEYFIyZM6e99Ldz/txZbNr4J8aNm4C58+Y/u9bRxErUajXmfTcbMpkMP/z4MyZ9NQVXrlzChj9/L8Ea/Xe8/iN6O712sLxBgwY6n58HNl7k5+eHZcuW/fdSGUieVIqDR45hzIih8PP1QbMmjfB+757Ys2+/Xt7TZ85BJBJhxMdDUMXDA2NGDIWVlRXOFApwrFy7HhUrVtDb3lRIpVIcOnIEo0eMgJ+vL5o2aYz3+vTG3/v26eU9feYsRCIRhg/9GJ6eHhg1YjisrK1w5uw5AMDRY8fRu1dPNGrQAJXd3TF+7BhkZmXhnonOWX/p7DEIRWJ8+NF4uHt4Y+Cwz2BpZY3L548XmT83Nwe/fD8Ze3f8CRfX8jrrMtLT4Onth49GT0KFSp6oVa8JQmrUQ2TorZKoisGcO3MSIpEYg4eOgodnFQwdMQ5W1ta4cLboC4R9e3aia/c+qN+gMfz8AzFq3Oc4fvQgZFIpsrIycfzIAYz55HP4BwShRq266NbzfURGmM7xcubMaYjEYgwdOgyenp4YMXIUrK2scPbsmSLz79mzG92790CDhg3h7x+AceM/wdGjR7Sdq4SEeEyc+CkeP3pUktUwqBsXD0EoskS3AV+ggrsPeg7+GmIrG9y8dKTI/FdO70anvp/AN7g+KlT2Qd8Rs5AQfRcpjxOQk52BSyd3oe+ImajiWx3+1RuhdZfBiI+6XcK1Kj6eY4tmG+SDJue3wtrn1aPiK77fCfl5MoR9NR/Z4TEInTgXqqwcVOzTAQDgNWYAkrYfxMMNe5B1JwI3h0yCW8eWsPKqXBLVMKjL545CJBLjgyGfoJKHN/oPmwhLKxtceUmbk5ebjcXff439O/6Ac6E2BwCSEuNQuYoPHJ1ctYuNrZ2xq2FQz/dJ3yETUMnDGx8O/RxWVja4cv5YkfnzcrOx5IevsH/ner19kp2VgbPH9uCjMVNQ1T8EwTUb4N3u/RETebckqvKf5Ull+PvEeUwc/D4CvT3RqkEtDOzaHtsPnyoy/85jZzF8+o9wdtD/m7s4OmgXmVyBrYdOYsrIAbB9dhPK1Ny7chACoRjt35+EcpV80KHfFIgtbRD6z6Ei81sIhOjYfxoqeVVDxSohqN2sFxLua2465GWn48a5Heg6eDbcq9ZA1eDGaPzuR3gYYzrtDsD+WmEXzpyASCTGwI/HoLKHFz4a8QmsrKxx8dzJIvMf+Hs7Ond7D3UbNIWvfxBGjP0SJ4/th0wqRUxUBCLC7mLClzPg7eOPug2aokef/tizY3MJ1+q/OXP6NMRiMYYO0/RhR44cCSsrK5x9SYB7z5496N6jBxo2bAj/gACMHz8eR49o+rBSqRSHDx/GyFGj4OvriyZNm6LPe+9h717TuaGSK1Ng1+W7mNSjJYIqu6FtdV8MaV0XW87f1MubkpWDEe0bokvdIFR2ccDIdxoiI1eK6CdpAID1p6+hU91AvNe4BrzcnPFVj1ZIycyBJPvVN3rLIs21jggfDx0OD09PjBg5GlZWVi+9EfL3nl3o1r0nGjRsBH//AIwdPwHHjh6GVCpFYuIDRISH4dPPvkCVKl6oVq06BgwYjFOniv4dllW8/iN6O712sNzZ2Rnz5s3DvHnzMG7cOHz33Xfaz8+XadOmoUaNGsYs7xuJiY2DUqlEcFDBNBrVgoMQHnkf+fn5OnnDIiJQLThI+3ihmZkZQoIDERYeoc1z685d3LpzFx++36dkKmAE0TGxevskJDgY4RGR+vskPAIhIcG6+yQoCGHP5qwfPvQjtGndSpvfzMwMarUauTlFj+wp66Ii7iIguKZOff2DaiAqvOgL6+QnSVDI5Zi78He4Vaiks87J2RWfTJoLK2sbqNVqRITeQvi9mwiqXsfo9TCkyPBQBIVU09kngUHVEBF+Ty+vSqVC1P1wBFcrOAcEBAZDqVAgNjYaYffuwNrGBtWq19Ku7/3+hxj/6Vd631VWhYeHIyQ4RGd/BAUHIzxc/wJSpVLh/v1IVKtWXZsWGBgEhUKB2NgYAMCdO3dQo0ZN/PTzwpKpgBHE378N74DaOvvE27824u7r3xjKz8/HgHHfI6BGE711eblZiA2/DitrW/gG19emt+s+DB+OmqOXv6ziObZozi0aIPXUZZxv1veV+Zwa1kTahWs6aWkXr8OxUS0AgGODmkg7e1W7Tpr4GHkJSXBqaHojZKMi7sIvSLfN8QuqgaiIO0XmT36SBIVChlkL/oBbBXe99UkPYlGhkulO0QMA0RF34BdUS2ef+AbWQPQr94kcM3/+E+XK6+6T+2E3YWVti8BqBY/Ud+k9BEPHTzdeBQzofnwilCoVagRU1abVDPDFvag4vXMJAFy8eQ/TxwxGv05tX/m9K7buRb1qAWhQ/d+ntimrEmNuwtOvrs5x4uFbGw9ibhaZv/OA6fD00/S/0lMScefyfngFaAYBJURdh9jKVvsZAJp1GoHuH39n3EoYGPtruiIj7iEwuIbO/ggIrobIl+6PMARVK2hH/AODoVQoERcbhSePk2Dv4IjyL/T1q3j5ICYqHEql0viVMZDw8HAEh+j2YYODgxFexA14lUqF+5GRqFatYGqjwKDnfdhYxMTEQKlUIiio4DwSEhKCiIiIIs9PZVFkUjKU+fmo5VXwd63tXQl34h8jv9DTOe/U9MfwdppzhFShxIbTN+Bsaw2f8s4AgKtRiWhbvWDq1souDjg4dSicbE3vhmREeBiCg6sVOk5CEB4eqpf33651nJycMWv2d3ByctLZLjcnx7iVMDBe/7091GbmXN5w+X/22nOW//PPP6hduzYEAgEaNmyIu3dfPjKnfv36L11XktLS0uBgbw+hUKhNc3RyhFwuR2ZWFhwdHF7IK0GVKroXmU6OjoiLTwAAyBUK/LJkGcaPHgGhoFhTvZcJaRL9feLk+JJ9IknTmxvX0dFJ+7hQtRDdOYkPHj6CfJUKIcHBRqyB8aRLUlDZs6pOmoOjMxITYorMX8XbD19O//lfv3fCsJ5ITX6M2vWbokHj1gYpa0mRSNLg4emlk+bo6ISE+Fi9vDk52ZDL5XB2dtWmWVhYwM7eAakpyUhLTYGbWwWcPH4YO7ZuhFKhRJv2HdCn7wCYm5vGiVaSlgbPKlV00jS/iTi9vDk5OZr94eKiTbOwsIC9vT1SUlIAAJ07dzFqeUtCZnoyKlTWfbeDnYMLHifqP8Zqbm6OgOqNddLOHNwAGzsnVKoSgJiIG3AuVwlXzuzBsd2roVIq0KBlD7TvOcJkjhGeY4uWsOL1RuCJK5RDVmiUTpr8SSrsQjTzQlpWdIMs6anOetnTVFi6m94TXxmSFLh76LY59o7OeBhfdJvj6e2PidOKvrBSq9V49DAed25cwt7t65Cfn48GTdqi14cjIXjhWCzr0iUpcNdrh12QmBBdZH5Pb398NrXoffL08UO4ulXC+ZP7sXf7OqiUCjRr0xVd3/vYJM4nKekZcLCz1elzOjvaQaZQICM7B072uiPIf/xiFABg36mXvzfocUoajpz/B6u+/dI4hS4h2RnJKFdJd65YG3tXJD/Ub3detHvNV7h1YQ8cXd3RstsYAIAk+QEcXdxx68JunN2/AiqlArWa9UKLzqNgZgLHyXPsr+lKT0tF5SreOmmOjs5IKOL8mpuTDYXe/hDAzt4eaanJcHB0Qk5ONmRSqXYO85SUp1CpVMjNyYa9g6NR62IoaWlpqKLXh3UschqI531Yl5f0Yc3MzODg4KB7jf2sr5OVmQmHQu81K4tSsnLgaGMFoaBgClkXOxvIlCqk5+bB2dZab5vLkQkYtXIX1FBj3ocdYC0WITNPisw8GVT5+Ri1YiciH6WgumcFTOndBuUdbEuySgahOU68dNKKc62TmpKCoKBg1K1bT7suPz8f+/buQc1atY1VfKPg9R/R2+m1o74DBw7E+fPn4eLigoEDB740n5mZGcLKyCPiUplMpxEHANGzzwqF4l/zCoVCbb6NW7bC18cH9erUxq3bRY9wMgWyl9QT0N8nRecVQF4oHwCEh0dg5eo16NO7F5ydnfTWmwK5TAaBUPdlI0KhCAqF/D9976dfz0N6eirW/TYff675BYNHfP6fvq8kyWRSvWNA8MLv4kVymQwAXvo7kkrz8CjpIY4c3Itxn34FSVoqli9ZALHYEt17vW+8ShjQy34/Re0P2b/sj/8XcplULxgnEIqgfI063rl6Aif3/Y73hk2DQCCEXJqL5EcJuHhsG/qNmo3M9GRsXfUtRGJLtO4yxEg1MCyeY/8bC2sr5Mt0z7n5MjnMxaJn6y1fud6UaH47hdocQfHanNTkx5A/O1+P/XIekp88xMZVP0Mul2HAcNNpczR10N0nAqEQymLsE5k0D08eJeDk4Z0YNn460iUpWP/bPIjElujYo+y/bFsqU0Ak1O2mi54FzuWK4o1m/fvkeQRVrYJqft7/nrkMU8iksBAU0e4oX32cNO04HPVa9cOxHT9j48IRGDF9B+TSXKQ9jce103+h+0ffITsjGfv+mAGhyBJN3v3YmNUwKPbXdL1sfxTVN5HJpNr1hfMrFHL4BQTD2dkVa1b8go9HToAkLRX7dmvmtDelkeWG7MOq1Wq9/fWyvk5ZlSdXQiTQfdfa888KparIbXwrumDzZ/1wJjQW07YchbuLgzYg/sOuUxjfqSnGuTlh6aGLGL96D7Z89iHMzU3npbjAmx4nUu16/fz65+N1a1cjOjoKC35ZbMASGx+v/4jeTq8dLA9/9lh44X+XZSKRSO+k9DwIIRaL/zWvQqGAWCxGbFw8Dhw6gpVLfjVugUuASFh0PYEi9kmReZWwLJQvNCwcU2fMRP16dTFoQH8jlNo49mz9HXu2r9d+9vUP0bsgVyjkEIstC2/6Rqr6aR5RVMjlWPbzDPT/6JMyO9Jv+18bsGPrRu1nv4AgvWNAqVAUuU+Ez95q/rLfkbm5BXJzc/DZpKlwc9OMAk1JfoqD+/eU2Yuvv/7agq1/bdF+DggIfGn9ChOJir5oeFl+U3F010oc3b1K+7mKbw29i0+lQg7hv/xubv9zHOt//QLN3/0QjdtoprYyt7CANC8bA8fPh3M5zWOxkpTHOH9ki8kEy3mO/W/ypTK9wLe5WARVruaCTPWy9Xllf17QvdvWYe/237WffYpqc5RyiIrR5ri6VcTSDUdhY2sPMzMzVKnqD7VajRULZ+DDjz+FeRl7+fpze7etw74d67Sfq/qF6F1gKxWKYu0TcwsL5OXmYNTEOXB1qwhAc1PhxKEdJhEsF4sEekFx+bPAnGUxbw6duHwDvdo1/89lK2ln9y/H2f0rtZ8re9eASllEuyN69XFSrpLmKag+IxdiwectEB/5D8wtLCDLy0av4T/B0VUzlU9G2iP8c3JTmQ6Ws7+ma+fWP7Bz6wbtZz//ovdHUeeS5/tDvy+j2X8ikRgTv/4WC36YgUHvd4CDgyO69/4Q61cvgZW1/ujjsuKvLVvw118FL6oNCAh4/T7sSwLfz/Pn5+fr7S9tX8fyv103lRSx0ALyQkHx558tRUVfp7nY2cDFzgaB7m64Hf8Y2y7cxoTOzQAAvRpWQ9d6mmu+ef07oM3Mlbgd/wi1vCsV+V1lxda/NmPrXwVP//m/0bXOq84lusfBurWrsWf3Tnz19Tfw8irbN2x5/UdEwBsEy5OSkl77SytVKhuNgquLCzIyM6FSqWDx7EJRIkmHWCyCrY1NobzOSJNIdNIkknS4ODvh3IWLyMzKwqDhmkdcn8/F1rXPB/h07Gi0bd2yBGpjGC5F7JM0iaTIfeLi4gJJ4X2SLtEZ1Xjr9h1Mn/Ut6taujcmTvjSZxzMBoG3HnmjYrGBuz707/0S6JFUnT4YkDY5OroU3/VcZklTcj7iLeo0Kjg13D28olQrk5eXATuhY7HIb07uduqFp84KpYnZu34x0SZpOHkl6GpycnfW2tbOzh0gkQrokDZU9NFNLqFQqZGVmwMnZBXl5uRCJRNoLLwCoVNkDqSlP9b6rrOjUqTOaN2+h/bx921ZICu2PdIkEzq/YHxJJGjw8PABo9kdmZmaR+U1Fk/Z9UatxB+3n43+vQWZ6ik6erIwU2DuWe+l3XL9wABuWTkHTdu+j5+CCOVDtHctBKBRrA+UA4FbRC+mpjw1YA+PiOfa/kSY9gbiC7jlXXMEV0sea84T0YRHry7tC9ii5xMpYXK079EKDZu20n/fv+AMZ6YXbnFQ4Or95mwMAtnYOOp8rVfaCQi5DdnYm7B3K5tMIevtk53pkFG6H01OL1Q47OrlCKBJrA+UAUNG9CtJSnhS/wCWonJMjMrKyoVSpIHh2LklNz4RYJIRdMV7M+SQlDbGJj9CinunN71+v5QcIqddR+/ncwdXIztD9zedkJsO2iHZHpZQj4uZJ+IQ0hdhKMwLU1sEVVraOyM2WwNahHARCsTZQDgAuFbyRmVa22x3213S179gDjZu10X7es32jXp8+XZIGJ2eXwpvCzs4Bwmf7w91DM9WCSqVEVmYmHJ00+X39g7BszVZIJKmwt3fArev/wM7eAVZWZTdY3qlzZzRvUdCH3bZtm36f42V9WPvnfVhJkX1YtVqNjIyMQtfYEojFYtgU6uuUVW72tkjPyYNSlQ+BhaZvlZKVA0uhAHaWukHNuwmPYWFujqDKbto0n/LOiH6SBkcbKwgszOHlVtDOOtpYwcHaCo/Ts0qmMv9Bx06d0exfrnUkkrR/udaRwOOFc0lmZqbOuWf5b0txYP9efP7lV2jarOzfsOX1HxEBb/CCzzZt2qBt27Z6S5s2bfTWlRU+3t4QCAQ6L+m8ey8U/n5+egGHoIAAhIZFQK3WvNBDrVbjXlgYAgMC0L1rZ6xdvhTLFy3E8kULMXH8WADA8kUL0bhhA5gSn6rP90nB0wH3Ql+yTwIDEBoWrrtPQsMQGKh5cV1cXDxmfjsb9evWxTeTv4LAxOZyt7VzQIVKHtrFL6A67off0alvZNht+AZU+5dv0vf0ySP8Mu9rpKUWXFjERofD3sEJdvaOhqqCwdnZ2aNiJXftEhAYjPCwezr7JDz0LvwD9edMNjc3h69fIMJCC6Ypigi7B4FAAG9vHwQEBkMul+Phwwfa9YkP4lHOrezONWxnZ4dKlSppl8CgIISFhunsj9DQewgM0H9Rmrm5Ofz8/BF6r+BlUmFhYc/2R1W9/KbCxtYB5Sp4ahcvv5qIi7yps09iI27Ay6/olz1H3rmEDUunoPk7/dD7oyk666r41YBCIcPTpDht2pOkGDiVKxs3YF8Hz7H/jeTyLTg10p3L0qlxHaRf1rwwNv3KLTg1LXhho2XlCrDyqAjJZf0XypY1tnYOKF/RQ7v4BlbH/fDbOn//+2G34eP/5m3OnesXMWZAO+0j0QCQEBsJWzuHMhsoB4rYJwGaF5zq7pNb8ClGO+wTUA0KuQyPHxbMx5uUGKcTPC/L/L08ILCwwN37BXNO3wqPRrCPV7Fumt2NikN5FydUcDW9i3UrW0c4l6+iXTx8auFB9A2d4yQh6gYqV9W/EWBmZo7daycj8vYpbVpGahJysyVwreiDyj41oVTIkPq4YD+nJEXrBM/LIvbXdGn2R2Xt4h9YDZFhd3X3R9gd+Ae8bH8EITz0tjYtMuweLAQW8PL2RVZWJqZOGqO5meDkAgsLAa5fvYiQ6mV73uXCfdigwECEhhXuw4YiIDBQb1tzc3P4+fvjXpF9WG9UrVoVAoFA5+Wg9+7dg18RfZ2yKsC9HATm5rgd/0ibdiM2CSEe5fWmTtl15R5+3X9OJy008SmqlneGwMIcwZXdEPmoYOCIJDsP6Tl5qORsb9xKGICdnT0qVXLXLpprnVCd4yQsNBQBr7zWKXiXXVhYqM61zqaNf+LggX2Y9PUUtGxpGu/u4vUfEQFvECw/fvw4jh07hmPHjmHq1KmoUqUKli9fjgsXLuDq1av4/fffERgYiOnTpxuzvG/E0lKM9m1a49elyxEReR/nL17Ctl170LOb5qUKaRKJdl6p5s2aICcnB8tWrkF8wgMsW7kGUqkMLZs3hb2dHdwrVdQuri6aCw33ShVhXYzRPaXJ0tIS7dq2waKlyxARGYkLFy9i+85d6NGtGwDNi06f75NmzZoiOycHy1euQnxCApavXAWZVIqWzTWPm/26ZClcy7lixPChyMjIRFqaRGd7U9OgaRvk5mTjz9ULkZgQiz9XL4RMlqcdfS6XSfVGqbyMj18QvH0CsXLRXCQmxOLm1QvYvG4xur83xIg1MLwmzVoiJycba1YuwYOEOKxZuQQyqRRNm7cCoJmXTZJWcKe9Q+fu2L3jL1y+eA73I8OxfNlCtH+3M8SWlnCv7Im69Rth8YIfEBsThRvXrmDnts3o0LlbKdXuzTVr1gw5OdlYuWI5EhLisXLFckilUu3IHZlMhrQX9kfnLl2wY8d2XLxwAZGREVi2dDHe7dABlibyiOrrqNXwHeTlZmHX+u/xODEau9Z/D7ksD7UavQsAkMul2pHnKpUSm1dMg29QPbTtPhSZ6SnaRalUoHwlbwTXboFNv32Dh/HhCLt1Hsf3rEHT9n1Ls4pvhOfYNycu7wrzZ6O4Hu84BKGjPYIXfAPbIB8EL/gGFjZWeLTtIAAgfsVmuPfvDo+P+sCuegBqrZuPp/tPIS8usTSrUCz1m2janI2rF+BhQgw2rl7wrM3RjLTWtDkp//ItGr6BNSASWWLtkjl4lBiPW9cuYMvvi9Gp18vfMVMWafZJFjat+RkPH8Rg05qfIZPloUHT9gDebJ9UdPdCzXrNsHrRLCTERuLOjYvYv3M92nTobcwqGIylWIROLRvhh9WbEBodh9P/3MTGfUfRt6Mm2JCangGp/PXnco95kATvyqZxo+DfBNd7F9LcLBza/B2Sk6JwaPN3UMjyEFJfM/pcIZdqR56bWwhQt+X7OLFzIRLuX0NS3F1sX/4ZAmu1hZu7H1wrVIVfjZbYvXYyHj8IR9Tdszh3cBXqtfqgNKv4xthf09WoWSvk5GRj3cpFeJAQi3UrF0EmzUPj5prR5zKZDJIX+vTvduqBPTs348rFM4iKDMOqZT+j3btdIba0hJ2dPaR5efhz3W948jgJxw/vxYmj+9G994elVb1iadasGXKys7FixQokxMdjxYoVkEqlaPGSPmyXzp2xY/t2XLhwAZEREVi6ZAk6POvDWlpaom27dliyZAkiIyJw4cIF7NyxA9179Cil2r05K5EQXesHY86OE7ib8Bgn7kThj1PX8GFzzU2QlMwcSJ9NhdWnUXX8E5WIjWduID5ZgmWHLuLug8fo30KTd1DLuth09iaO3IpEzJM0TP/rCALcy6G6Z9m9wfQyzZo1f3at89uza53f9K51XjyXdOrSFTt3bMPFC+efXesswrsdOsLS0hIPEhKwZfNG9HmvL0KCq0GSlqZdTAmv/94iZuZc3nT5P2amfn6L7A20atUKv/76K2rW1B3BcefOHYwePRrnzp17yZavlnDf8C8GlUplWLRsOc5euAgba2u837sHenXXdPbad+mBLz4dj3fbaYKh4RGR+HXZciQ8SERVryqYMHY0fH307wDeun0HX0yZhqP7dhu8vC/y9AtCXFSkwb9XKpVi8bLfcO78BdjYWKNPr17o1aM7AODdzl3x+acT8E57zcV6eEQkFi9dioQHifD28sIn48bA18cHaWkS9Bs4qMjvf3F7Q/Py9cfVCMm/Zyym6Mh7WLvsBzxMjIenlw8+Hv0VvHwCAACnj+/Dyl/nYOPfl/S2mzNlNIKq1UHvD4dr0ySpyfh9xU+4d/sqxJZWeKdTH3R7bzDMzAz7opd6AU4IjXr9aZLeVGREGFYsXYjEB/Go4lUVo8ZNRFUfPwDAiaOHsPiXH7Br/0lt/h1bN2Hvnu1QKORo3KQFRoz5VDunXU5ONlYvX4RLF89BLLZEx87d8X6/QQbdJ8G+lRAVHfvvGYspIiICS5cswoMHD+Dl5Y1x48fDx0czD+rRo0fwy8IF2H/gkDb/1q1/Yc/uXVAoFGjStCnGjBmn3R8v6typA+Z9/wNq1DD8I/K+Pt44eMN4L5WJj7qDbau/xZOHMajo6Y/3h01HZW/NaIvLp3Zj8/Kp+GXLXcTdv4VfphU95/bYaWvhF9IAeblZ2LHuO9z55ziEYks0e6cf3u01yuC/m461hUY5vwKme4718vXHfmGAwb+3sM6KCFxsOxBpZ65oP98a+jUS/9gFAHCoXx3Vl86CbaAPMu9E4O7YGci8WdA/qDyoJ/xnfAKhswNSjp7H7VHToEhLN1pZL4VnGOW7AU2bs/6375GUGAePKr4YMuZrVKmq+RucPb4Pqxd9i/V7ruhtN++bUQisVgc9+43QpiUmRGPT6oWIjrgLSytrtOrQEz36DjP4b6dRoAMuhmUa9DtfFBN5D+uXz9Puk8GjJ7+wT/ZizeJv8fvuf/S2m/fNSARWq6uzT3JzsrFh1Y+4fukURGJLtO3UB93eN/w+aRxkj/QbJwz6nQAglcnxw5pNOHn5JmytLdG/a3v066Tpszb8YDSmjRqELq0a62yz79RFrN6+D7uXzNVJ/2H1JmTl5mHOJ0MNXs6iONZug03n3vgS47U9jLmNfX/ORMqjaJSvHIDOA2eiYhXNqOGb53Ziz7opmLFG84SPUiHHiZ0LcefyPshluQiq0x4dP5yqnZZFmpuFg5vmIPz6UQjFVqjf+kO06DrG4MfJh83M2F97QbBvJdy+b7ypXe5HhGLVsp+e7Q8fjBj7Bbx9/AEAJ48dwLJf5mHbvrPa/Lu2bcD+PVuhUCjQsElLDBv9GUQizY3ch4kJWLnkR0TfD4db+YroP2Qk6jZoavAy1/BzQ3RMjMG/97mIiAgsWbxY04f19sb4cePg4/u8D3sUCxcswIGDB7X5t27dit27NH3Ypk2bYszYsdpjRCqVYumSJTh//jxsbGzQu3dv9OjZ0+Bl9qlaFdJ9vxn8ewEgT67A3B0ncOx2FGwtRRjSui4GtKgDAKj5+S/4tm97dG8QAgA4HRqDxQcuICFZAt+KrpjUvaXOfOQ7Lt3B6mNXkJadh3o+lTH9vbYo72hnlHJbdhmN+9Hx/56xmCIiwrFsySI8eJAALy9vjB0/QXutc+zoEfyy8CfsO3BEm3/b1i3Ys3vns2udZhg9ZjxEIhG2bd2C9b+vLfL/eHF7Q/DzqcLrv0J8fcr23PBlUfrNU6VdBJPjWKtVaRfBaIoVLK9fvz6WL1+OunXr6qRfvHgRn376KS5fvlyswhgjWG7KjBUsN2XGDpabImMHy02NsYPlpsjYwXJTZMxguakqqWC5KTF2sNwUGTtYboqMFSw3ZcYOlpsiYwfLTY2xg+WmyNjBclNkzGC5qTJ2sNwUGTtYbooYLH9zDJa/uf/nYHmxJkDt1q0bJk2ahE8//RSBgYFQq9W4c+cOFi1ahA8+MK3HFomIiIiIiIiIiIiIihUsnzx5MmxsbDBv3jzt/Eyurq7o378/Ro0aZdACEhEREREREREREREZW7GC5QKBABMnTsTEiRO1wXJnZ2eDFoyIiIiIiIiIiIiIqKQUK1gOAPHx8bh79y4UCv15cHuY0JuwiYiIiIiIiIiI6O2kNvCLvcm0FStYvnr1avz0009wcHCAjY2NzjozMzMGy4mIiIiIiIiIiIjIpBQrWL527Vp8+eWXGDp0qKHLQ0RERERERERERERU4syLs5FMJsM777xj6LIQEREREREREREREZWKYgXLu3btik2bNkGtVhu6PEREREREREREREREJa5Y07BkZ2dj+/bt2LdvHypXrgyhUKiz/o8//jBI4YiIiIiIiIiIiIiISkKxguVeXl4YNWqUoctCREREREREREREVGLUZsWaeIP+TxUrWD5u3Djtv7Ozs6FSqeDg4GCwQhERERERERERERERlaRiBcsBYP369Vi9ejVSUlIAAM7OzujXr59OIJ2IiIiIiIiIiIiIyBQUK1i+dOlSbNiwARMmTEDt2rWRn5+P69evY8mSJRCJRBgxYoShy0lEREREREREREREZDTFCpZv3boVc+fORZs2bbRpQUFBKF++PObOnctgORERERERERERERGZlGLNYJ+dnQ0vLy+9dG9vb6Slpf3XMhERERERERERERERlahiBctr166NtWvXIj8/X5umUqmwZs0a1KhRw2CFIyIiIiIiIiIiIjIaMzMub7r8HyvWNCyTJ09G//79ceHCBYSEhAAA7t27B7lcjtWrVxu0gERERERERERERERExlasYLmPjw+mTJmC9PR0xMTEQCwW4+TJk1i0aBECAwMNXUYiIiIiIiIiIiIiIqMq1jQsf/75J2bOnAk7OzvMnDkTkydPxsCBA/HFF19g69athi4jEREREREREREREZFRFStYvm7dOvz888/o2bOnNu2rr77Cjz/+iJUrVxqscEREREREREREREREJaFYwXKJRAJPT0+9dG9vb6SkpPznQhERERERERERERERlaRiBcvr1q2LxYsXIy8vT5smk8mwfPly1K5d22CFIyIiIiIiIiIiIjIWtZk5lzdc/p8V6wWf06dPx8cff4xmzZrBy8sLAJCQkABXV1csW7bMkOUjIiIiIiIiIiIiIjK6YgXLPT09ceDAAZw9exZxcXEQCATw8vJCs2bNYGFhYegyEhEREREREREREREZVbGC5QAgEonQtm1bQ5aFiIiIiIiIiIiIiKhU/H9PMkNERERERERERERE9BoYLCciIiIiIiIiIiKit16xp2EhIiIiIiIiIiIiMmVqmJV2EagM4chyIiIiIiIiIiIiInrrMVhORERERERERERERG89BsuJiIiIiIiIiIiI6K3HYDkRERERERERERERvfUYLCciIiIiIiIiIiKit56gtAtAREREREREREREVBrUZhxLTAV4NBARERERERERERHRW4/BciIiIiIiIiIiIiJ66zFYTkRERERERERERERvPQbLiYiIiIiIiIiIiOitZ6ZWq9WlXQgiIiIiIiIiIiKikpZ873JpF8HklAtpWNpFMBpBaRfgRY+/HFDaRShTKvy4AdJ9v5V2McoUyy6jeZwUUuHHDYge1Lm0i1Fm+Pyxnw1dIeVCGiLvzzmlXYwyxWrgVDwOv1HaxShTKgTWxqXwjNIuRpnSKNAB+4UBpV2MMqWzIgIxQ7qUdjHKlKq/70P6jROlXYwyxbF2G+Rt+K60i1GmWA2YgrioyNIuRpnh5euPB2N6l3YxyhSPZTuQcvdiaRejTHGt1hi/HSrtUpQtozsAUdGxpV2MMsXXxxtpt8+WdjHKFOcazUu7CKbHzKy0S0BlCKdhISIiIiIiIiIiIqK3HoPlRERERERERERERPTWY7CciIiIiIiIiIiIiN56DJYTERERERERERER0VuPwXIiIiIiIiIiIiIieusJSrsARERERERERERERKVBzbHE9AIeDURERERERERERET01mOwnIiIiIiIiIiIiIjeegyWExEREREREREREdFbj8FyIiIiIiIiIiIiInrrMVhORERERERERERERG89QWkXgIiIiIiIiIiIiKg0qM3MSrsIVIZwZDkRERERERERERERvfUYLCciIiIiIiIiIiKitx6D5URERERERERERET01mOwnIiIiIiIiIiIiIjeegyWExEREREREREREdFbT1DaBSAiIiIiIiIiIiIqDWozjiWmAjwaiIiIiIiIiIiIiOitx2A5EREREREREREREb31GCwnIiIiIiIiIiIiorceg+VERERERERERERE9NZjsJyIiIiIiIiIiIiI3nqC0i4AERERERERERERUWlQw6y0i0BlCEeWExEREREREREREdFbr9jB8r///hu9evVCvXr18ODBA8ydOxcrV640ZNmIiIiIiIiIiIiIiEpEsYLlmzZtwvz589GrVy8oFAoAQLVq1bBmzRosWbLEoAUkIiIiIiIiIiIiIjK2YgXL//zzT8yZMwcDBgyAubnmK7p374758+dj27ZtBi0gEREREREREREREZGxFStYnpSUBB8fH710Dw8PpKen/9cyERERERERERERERGVqGIFy2vWrIndu3frpKnVaqxduxY1atQwRLmIiIiIiIiIiIiIjEptZs7lDZf/Z4LibDR16lSMGDECp06dglwux6xZsxAXFwepVIpVq1YZuoxEREREREREREREREZVrGC5v78/Dh8+jL///hsxMTFQqVRo27YtunXrBhsbG0OXkYiIiIiIiIiIiIjIqIoVLAcAsViM9957z5BlISIiIiIiIiIiIiIqFa8dLG/Tpg3MzMxeK+/x48eLXSAiIiIiIiIiIiIiopL22sHy8ePHa/+dkJCA9evXo1+/fqhevTqEQiFCQ0OxYcMGDB482CgFLTaBEPY9B8Oyen2oFQrknN6P3DMHi85aoTLse30EYWVvKFOeIGvPH5BHh8HCyRXlpvxS5Dapy2ZDERthxAoYnkyhxHc7T+L47fsQCwUY1KouBreqW2Te/dfCsfzIJTxJz0Kguxu+7NES1T0rAABqfv5LkdvM6fcOutYLNlbxjYPHiR4zoRCug8bApl4TqBVypB/YiYxDu/TyVZo8D1ZB+i/2zTxzBMmrfwUA2LftDMcufWBhbYvcO9eRvG4x8nOyjV4HQ5PJ5Viw6g+cvngVYpEQH3TvhH7dO75ym1thEZizaCW2/faz3rr12/9G4qPH+Gb8CGMV2ehkShXmHbyMY+EJsBQKMKhRMAY1evXv/2F6Nvqs2ItFfVujvlcFbfqWqxH4/cJdZEkVaOxTEdM6NYKDldjYVTA4mVyOX1asxZmLVyASifBBjy7o26NLkXkjY2KxYNlqxMQ/gJdnZXw+ehgCfKsC0Lw4+/ct27H/6EnkSWWoX6s6Ph35MRwd7EuyOgYTHxOB35d9j8T4KLh7VsXg0V/D2zfoX7dbu2QunFzKoWe/gt/J1Ysnsfj7r3Ty1WvcBuO//t7g5TYmc5EQzS7vxN0Js5F25kqReexrBaHa0lmwr+aPrNAo3Bk7A5nX72nXV+rbGf6zPoVlxXJIPnIOt0dNgyJVUlJVMBgzoRAuA0dr2hy5HBmHdhXZ5lT8eh6sAqvrpWedOYrktS+0OZ16w9zaFrl3ryPl9yUm2uYo8OPaLTh55QbEIiH6d2mP/l3avXKbm+FRmLXsd+xaNEeb1vCD0UXmnTFmMDq1aGTQMhubps25hGNh8c/anBAMahzyym0epmejz/I9WPRBW22bk5knQ4uftujkc7QS49QXHxit7MYil8uxZNlynLtwAWKRCL179USfXj2LzBsVHY1FS5YhLj4OVTw98cnYsfDz8wWgaXO2bt+B/QcPIiszC/7+fhgzaiSqeHqWZHUMQyCE0wfDYV2rEdQKObKO7UHW8b162cp9OguW/tX00rMvHIdkwzKdNKcPR0GVkYbM/VuNVmxj0vRh/8SpS1chFonQr3sH9Ov2b33YSMxZtArbfvtRm6ZWq7Fx9wHsPnISGVnZCPL1xmdDB8Dbw93YVTCKp4mhOL51BlKTIuFSwRdt+s5CeQ/9Y6Kwq8dX49a5TRg644Q27frJ33Fm9zydfHVaf4wWPb4qvHmZFh0dhSWLFyM+Pg6enp4YO+4T+Pn5vTT/7t27sHPHduTm5qJZ8+YYNWoMLC0tdfIoFHJM+GQ8Ro0egxo1ahq7CgYlkyvw0+qNOHX5GsQiET7s9g4+7PruK7e5FXYf3y5Zgx1Ldful7QePR3Zunk7a8T+WwNpKd38RUel77WB5z54Fna5evXph7ty56NixoIFt27YtgoKC8Msvv2DMmDGGLeV/YNe5H4SVvZG2Yh4snFzh0HckVJIUyO78o5PPzNIKTiO+huzedWT8tRJWdZvCcfCnSPnhS6jSU/H027G639u1PyxcykMRH1WS1TGIBXvPIvTBE6wa3QdJkkxM23wElZzs0b6mbiN4PeYhZm49ihnvt0Mtr0r46/wtjF21G4emfgxrsQjHZwzXyf/nmes4cjMSrUJ8SrI6BsHjRJ/LB0Mh9vZF0vdTIHR1g9uIiVCmPkXOP+d18j1eNBdmAqH2s9gnABXGfo3M4/sBADYNm8Plg4/xdMXPUDx6iHLDJsB10Bg8/W1+idbHEJat34LwqFj8OutrPE5OwdzFK1GhnAtaN2lQZP7o+AeY9uMSiIRCvXVHz17E2i078U7LJsYutlEtPHYNoY/SsGpAezzKyMG0vy+gooMN2gdVeek23x28jDyFUift8L04/HLsGuZ0bwovF3vM3HcR8w5ewfe9mhu7Cgb32+8bEREVg4Wzp+Hx02TM+/U3lC/nilZNdYNSeVIpvvr2B7Rv2RRfTxiDvw8dxdezf8CmFb/CytISew8fx/6jJzF14jjY29lhwfLVmL9kBb775stSqlnxyaR5+PnbT9G4ZQcMnzAdJw7txMLZn+HHFbsgtrR66Xb7d/6B00f3oMcHw3TSkx7Eolb95vho7GRtmlBoWjdWzMUi1P7zZ9hV839pHgtrK9T/eyWSNu/F7aFfw3NEP9TfswKnAtpDlZsHh/rVUWPlXE0A/VY4QhZ+g5pr5uFqj1ElWBPDcO77McRefnj0wzcQuLjBbfhnUKY8Rc5V3TbnyeK5MBMUdF/FVQNQfszXyDjxrM1p0BzO73+E5FULIH/0EOU+/gSuA0fj6fIfYWoWb9yJsJh4LJ32KR4np2HWb+tRwdUZbRvVKTJ/VMJDTF64CmKhbvf+wHLdi/XN+0/g2MWraFHPtAIWALDw2FWEJqVi1cB38SgjG9P2nNe0OcFeL93muwOX9Nqc6JQMOFqJsX1Ud22a+es9QFvmrFqzDpFR9/HDd3Pw9GkyflqwEOXd3NC8WVOdfFKpFNNmzELrVi3xxWefYv/Bg5g2cxZ+X7MKlpaW2H/wEHbs3IWJn01AZXd3bNu+A1Onz8Sq5cv0Al9lnWOvQRB5+uDprzMgcC4H50HjoUxLRt6NSzr5Ulf+CLxwPhF5+cF16OfIPnNYJ59d++6wbdYeGfv/KpHyG8PSP/5CeHQcFs36Co+TUzFn8SpUKOeK1o3rF5k/Ov4Bpv6k34fdfeQkNv99CFPGDoVHpQrYuPsAPp+zAJsWfQdLsWm1wwpZLnavGIHAul3x7off4/b5zdizYiQ+mnYUQrH1S7fLSHmAS4eWwMrWWSc97UkUajT7EA3fLYiFCEUv7+OURVKpFDOmT0Or1m3w2cTPcfDAfsycOR1r1qwr8jxw/tw5bNq4AV98MQmOTo5YuOBnrFu7BqPHFFwTy+VyzJ//PeLj40uyKgaz5M9tCI+Jw5IZX+BRcipmL12LCq4uaNO4XpH5o+ITMeXn3yAS6f52nqZKkJ2bh+1L5sFSJNKmW1ma1u/m/5n6NWfSoLeDeXE2io2Nhb+//sWdh4cHHj58+J8LZShmQjGsG7ZC1p4NUD6Mg+zuVeSc2gebpu/o5bWq2xxqmQyZO9dBlfoE2Ud2QpXyBAIPb0CtRn5WhnaxcHaDZfX6yNiyHMhXlULNii9XpsCuy3cxqUdLBFV2Q9vqvhjSui62nL+plzclKwcj2jdEl7pBqOzigJHvNERGrhTRT9IAAK72NtpFqlBi89mbmPF+e9iZ2EhQHif6zERi2LV8BykbVkIeH42caxch2b8dDu30R8fm52RDlSHRLJkZcOkzCJID2yGL1dwgcOrcB+n7tyPn6gXIH8YjdcsaiD2qAGbFOv2UmjypDHuPn8aEoQMQ4OOFlo3q4cMenbHj4LEi8+8+fAKjJs+GU6FRwEqVCj+t+B3zlq5GpQpuJVF0o8mTK7DrZhS+fKcegiq6oE2gJ4Y0DsaWf17+FMX+OzHIkSn00tddvIchTULQLqgKfN2c8FnburifLIEqP9+YVTC4PKkU+4+ewPhhg+Hv440WjRugX6+u2HXgsF7eE+cuQiwSYfSQAfDycMf4YYNhZWWFU+c1F/OXrt1Am+aNUataMKpW8UC/nt1w/fbdkq6SQVw+dxQikRgfDPkElTy80X/YRFha2eDK+aKnbcvLzcbi77/G/h1/wNm1vN76pMQ4VK7iA0cnV+1iY2tn7GoYjG2QD5qc3wprn1eP2Kz4fifk58kQ9tV8ZIfHIHTiXKiyclCxTwcAgNeYAUjafhAPN+xB1p0I3BwyCW4dW8LKq3JJVMNgzERi2LV4B6mbNG1O7vWLSD+wA/YvbXPSNUtmJpz7DEL6wR2Qx2naHMdOvZF+YAdyrl6A4mE80v5aC1FlL5Nsc/4+cR4TB7+PQG9PtGpQCwO7tsf2w6eKzL/z2FkMn/4jnB30fwcujg7aRSZXYOuhk5gycgBsrU0riJMnV2DXjfv48t0Gz9qcKhjSJARbroa/dJv9d2KQI9dvc2JT0uHpYg9XWyvt4mxjWvsD0AS2Dh05gtEjRsDP1xdNmzTGe3164+99+/Tynj5zFiKRCMOHfgxPTw+MGjEcVtZWOHP2HADg6LHj6N2rJxo1aIDK7u4YP3YMMrOycC8srKSr9Z+YicSwadIW6dvWQvEgFnm3riDr6G7YttQfRZ2fm438zHTNkpUJx279kXl0NxQJ0ZrvsrSCy7AvYPdOTyjTkku6Kgaj6cOewYSPP0RAVS+0bFgX/Xt0enkf9shJjJwyF84ODnrrDpw8h37dOqBpvVrwrFQBX44YhMzsbNwOv2/sahhc5I0DEAjFaN59Epwr+KBlr28gEtsg8uahV253fOsMuLnrPxmX9jga5dwDYWNfTruILG2NVXyjOHPmNERiMYYOHQZPT0+MGDkK1lZWOHv2TJH59+zZje7de6BBw4bw9w/AuPGf4OjRI5BKpQCAhIR4TJz4KR4/elSS1TCYPKkMfx8/i88++gABVaugVcM6GNC9A7YfOlFk/l1HT2Pk1HlwdtR/CjTu4SO4OjnAvXw5uDg5aJfXneqYiEpWsa4c6tati++++w5PnjzRpj148ABz5sxB8+ZlZxSgoJInYG4BeXykNk0RGwmhpw9Q6KQk8gmC7N41QK3WpqUumg55+C2977Xr1Be5l09ClWx6J/3IpGQo8/NRy6uSNq22dyXciX+M/Hy1Tt53avpjeDvNiFmpQokNp2/A2dYaPuV176IDwLLDF9HAzxON/E3vUU0eJ/pEnlVhZiGA9H7BBZI0MhRinwC9ffIiu+btYG5rh/R92wFoLjLEXr7IuXqh4Hsi7uHBlLGA2rSCoFFxCVApVageUPAERo0gf4Tej0Z+EQHdyzduY+onw9G3awed9DypFNFxD7Dy+xmoFuBr9HIbU8QTCZSqfNTyKKdNq+XhhrtJKchXq/Xyp+fK8MuJ65jaWXeEdbZMjvDHaWgbWHD+qFulPHaM7AYLc9MKcEXHxkOlVKFaYIA2rXpQAEIjo/SOk9CI+6geFKDtJJuZmaF6kD/uRWguOO3t7HDx6g0kp6ZBJpPj+Nnz8K3qVWJ1MaSoiLvwC6qpU1e/oBqIirhTZP7kJ0lQKGSYteAPuFXQf7Q76UEsKlQyvfbmOecWDZB66jLON+v7ynxODWsi7cI1nbS0i9fh2KgWAMCxQU2knb2qXSdNfIy8hCQ4NTStEcMiT2/9Nud+KMRV/f+lzWkLcxs7pO8v1OZce6HNibyHxKmm1+bcj0+EUqVCjYCq2rSaAb64FxVXZJtz8eY9TB8zGP06tX3l967Yuhf1qgWgQfV/nwKprCm6zSmPuw9f1uZI8cvxq5jaSX+qmZjkDFRxNs0prV4UHRMLpVKJ4KBAbVpIcDDCIyL1jpOw8AiEhATrnIdDgoIQFq652TB86Edo07qVNr+ZmRnUajVyc3KNXg9DElb2gpmFALKYghv3suhwiLz8Xnk+sWncGuY2tsg6ulubJnBxg5lQiCfzvoQy5clLty3riuzDBvrh3v2YIs8nl67fxtTxw/B+F/2BQ+MGf4B3WjQuSHh2nOQUmlrCFDyKuwX3qnV1fhMVq9bBo7ibL90m9MpuKOV5CGnUR29d2pMYOJbzMlJpS0Z4eDhCgkN09klQcDDCw/VvmqlUKty/H4lq1QqmRgsMDIJCoUBsbAwA4M6dO6hRoyZ++nlhyVTAwO7HP4BKpUJ1/4JrtpqBvrh3P7bo386NO5g27mN80Lm93rq4xCR4VNQfAEJEZdNrT8Pyou+++w6ffPIJWrVqBQcHB6jVamRmZqJRo0b49ttvDV3GYjO3d0R+bhagKhjVq8rOgJlQBDNrW6hzsrTpFi5uUDyIgX3vjyEOqQNVWgqy9m2EIk73LrnQyw/CKr5I37i0xOphSClZOXC0sYJQYKFNc7GzgUypQnpuHpxt9R85uxyZgFErd0ENNeZ92AHWYpHO+keSTBy8HoH14983evmNgceJPoGjE1RZmYCq4LFlVWY6zEVimNvaIT8rs8jtHLv0QcbhPVDLNKMJhG4VAQAWdg6oNPVHCMuVR969G0jZsBL5uTnGr4gBpUrS4WBvB+ELj7c7O9pDLlcgIytbbwT5vK8/BQAcOHFWJ93Oxga/zZtm9PKWhJTsPDhaiyG0eOF8Ymv17Hwig7ON7uOaPx29iq7VfeBbzlEnPVGimUtYkiPF4N8PISk9Gw29K2LSu/Vhb6l7vinrijpOnBwdIZcrkJmVrTPfeKokHd4euiOAnRwdEBufCAAY3LcXJs/9EX0+HgMLc3M4Ozli2fzZJVMRA8uQpMDdo6pOmr2jMx7GxxSZ39PbHxOnFX1hpVar8ehhPO7cuIS929chPz8fDZq0Ra8PR0JQxJRHZVHCis2vlU9coRyyQnWn8ZI/SYVdiCbgYVnRDbKkpzrrZU9TYeleAaZE4OgMVXahNidD8q9tjkOnPsg48mKbo6m3hZ0Dyn0zHwLX8si7dxOpm0yvzUlJz4CDnS2EghfbHDvIFApkZOfAyV53BPmPX2im3tl36uJLv/NxShqOnP8Hq741vamcgJe0OTaWr25zavjC181J77tiUzKgzM9H/zX78DQrF3U8yuOLd+qjnN3Lp14oi9IkaXCwt4fwhXOfps2RIzMrC44vjAxOk6TpzT/u6OiknRqhWoju3O8HDx9BvkqFkGDTeg+Rhb0T8gufT7Ke9WFt7DTrimDXvgeyTuzTnk8AQPEwHim/zSsyvylJkaTDwd62UB/W4aV92O+/ngAA2F+oDwsANYN0ny7fe+w0VKp81Ah8+ZzWZVVOZjJcKugOXLG2c0Hqo6JHyedmp+Hc3p/Qe8w6PE7Qvdmfk5kCaW46Qq/swpFNkyEQilGtUR/Uaf2xSY0clqSlwbOK7lSKmvNEnF7enJwcyOVyOLu4aNMsLCxgb2+PlJQUAEDnzkW/s8dUpEqetcUv/nYc7CFXKJCRlQOnQk9z/TBpHABg/0ndKeQAIC7xEaQyOcbMmI+EpCfw9/bAp0M+gGcl0+qzEb0tijVkz83NDVu2bMHff/+NmTNnYtasWdi3bx/WrVsHR0dHAxex+MyEIkCpO0chlJpHMV+cYxkAzESWsGndBflZ6ZCs/hHymDA4Df8K5g66o6itG7aB9M5V5Gea3suzACBProTohUA5AO1nhbLoqUJ8K7pg82f9MObdxpi25Shux+uOlN51+R6CPdxQo0pF4xTayHic6DMTiaFW6j62rFYUvU+eswyqAYGTCzJPFTy6aP5sbjvXwWOQvn87niyZB6F7FbiN/NxIJTceqUyuE7QAAOGzfaEoNBfq20KqUEFkUeh8YqFpVhQq3fPJpZhHuPngKUY0138xX55cs//mHbqCj5qEYH7vFohJScfUPeeMVHLjkcpkOkELABA962DLFbq/KVkReYUCIRTP8j1+mgxLkQjzpn6JX7+bgXKuLvhh8XIjlt545DIpBELdGx9CgQgKhfyNvys1+THkMimEQiHGfjkPHwz5BBdPH8KW3xcZqrhlhoW1FfJluvsoXyaH+bOb1hbWlq9cbyrMRGJtG/Oc+iXt8HOWgdUhcHJB1umCKY7MxJppNFwHjta0OUu/h8jdE+VGmGKbo9CeO54TCZ6fS4rX5vx98jyCqlZBNT/v/1y+0iBVvKIPq9fmJOHmgycY0Vz/BeQAEJuagWyZHF+80wDze7VEcnYuPtly3OSm/iqyHRE+75u8RpsjFOi1TQAQHh6BlavXoE/vXnB21r/ZUJZp+rC6vxH1s9+MmaDocWJi/2qwcHJBzvmipyUxdTKZXNtnfe55n1ZR+BroDdyLjMaS9VvwYfeOcHFy/C9FLBVKeR4sBLrtpUAggkpZdN/kzM7vENygJ1wq6t8YkDzV3Py3tnNB9+G/oX67kbh85DfcOLXe8AU3opedUwqfT57nfb7+dfKbIqlMrtcWa8+xyjerY3zSY2Rm52BI7y74YdJYiEUijP/2Z+TkSf99YyIqccUaWQ4ASqUS9vb2qFFD0wlVq9WIjY1FWFgYOnXqZLAC/hdqpULnpS0AgGcdBbVcppuer4LiYTyyj+wEAGQnxUPsXx1WdZsh58Tfmjzm5hCH1EHGZtMMVgCAWGgBeaGg+PPPlqKiL0hd7GzgYmeDQHc33I5/jG0XbusExo/evo/3Ghd9MWIKeJzoUysU+jcKhC/ZJ8/Y1m+K3NvXkJ+TXfA9zy5e0/dtQ+6NywCA5DWL4DFnMSwcnaFKTzNG8Y1CJBLqXVA87yRZmlhgylBEAgvICwUo5CpNoMHyhY6lVKHEnAOXMKVjQ5305yyevVXtoybV0MrfAwAwvXNjfLB6P55m5cLNhEb6iUQivQuE54Gtwi++Egn18yqUCojFYqjVanz3yzKMHtIfTerXBQDM+nIC3h8+HqER9xEcULZHcO3dtg57t/+u/ezjHwJlocC4QimHSPzmL41zdauIpRuOwsbWHmZmZqhS1R9qtRorFs7Ahx9/CvNCN3BMWb5Uphf4NheLoMrVXFipXrY+z7Qeh1cr5No25jmzl7XDz9jUb4q8O7ptzvP3g6Tv34bcm1cAAMnrFqHyt6bX5ohFAr2guFz5/FxSvDbnxOUb6NWu7EyX+KZEglf0YfXanIuY0rFRkW0OAOwY1R1mL2z3U59WaLdwG+48TEEtD9N5n0iR7cizz+LXaXMUSr22KTQsHFNnzET9enUxaEB/I5TauNQKuV5Q3OzZ31ktLzoIalW7EaT3biA/N7vI9aZO04ct3N94dj4RFe98cjciCp/P+RmNatfAsA96/ucyloQrR5bjn6MrtJ8rVKmhFxhXKuUQivT7JnFhZ/Eo7iYGfjCnyO+u7NsAI7+7BCsbzc0l10oByMtOw+3zm1Gn9RDDVcLA/vprC7b+tUX7OSAgsMhzSuHzCQDtCyxfN78pEomEem2x9hz7hr+dhd98CqVSBWsrzfE185Ph6DHqS5y7egvvNm9omAITkcEUK1h+7NgxTJs2Denp6XrrypUrV2aC5fkZEphb2wHm5sCzkSIWdg5Qy2VQS3Xn31NlpkOVnKSTpkx+DAvHghHDwip+gIUFZPdN8wVrAOBmb4v0nDwoVfkQPBsBmpKVA0uhAHaF3sR8N+ExLMzNEVS54KLBp7yz9gWfAPBYkoWYJ2loXU338XpTwuNEn1KSCgs7e9194uCEfJn0pY+yW1evi7RdG3XSngcm5EmJ2jTFI82/Bc7lTCpwUc7ZCRmZWVCqVBA8C8alSTIgFolga2M6wVxDcrOzQnquDMr8fAiezS2emp0HS4EF7F6YPuVuUioS07Px+fbTOtuP23ICXWtUxcdNqgEAvF0LHgP2ctH8+0lmjkkFy4s+TtKLPE5cXZyQVqgdTZNkwMXZEekZmXiakgof74JHYd3KucLB3g6Pk1PKfLC8dYdeaNCsnfbz/h1/ICM9VSdPhiQVjs6uxfp+Wzvdl45VquwFhVyG7OxM2DuY1ijIV5EmPYG4gu4+EldwhfSxZuoV6cMi1pd3heyRab2ITilJhYXtm7c5kt2bdNKetynP2xnNvzUvnhc4u5pWm+PkiIysbJ1zSWp6JsQiIeyK8WLOJylpiE18hBb1TGs++xe52Vnrtzk5RbU5KUiUZOPzbad0th+3+Ri61vDB1M6NYVUoiO5sYwUHKzGeZpnW/NwuLi7IyMyESqWChbbNkUAsFsHWxkYvr0Si+8SjJF2iM3L81u07mD7rW9StXRuTJ30JcxN7bwgAqDLSYF74fGLvhHy5DPl5RZ9PrIJrI2P/1pIsZonS9E0KnU/+Qx/2+t0wTJr3C+rXrIZZn40ymeOkRtMP4F+74EWvV4+vQk5Wik6e3MwUWNvr3zCLvH4AWemPseIbzXzt+flKqFQKLP2yNnqMWgV3n3raQPlzzuV9kJ1Rtue679SpM5o3b6H9vH3bVkgkum1lukQCZ2f9d5bZ2dlDJBJBIkmDh4dmsItKpUJmZmaR+U1ROeeXtcUi2L3hb0ckFEL0wsAAsUiIim6uSE4zzSfR/x+pYTpTJpHxFatl+/nnn9G+fXvs378f9vb22LJlC5YvXw53d3d8+umnBi5i8SmS4oF8FYSeBXORCb0DoHgQo/OCRgBQJERBUFF3Hj+BW0Wo0goaUKGnD5SJcdopOkxRgHs5CMzNdaZSuRGbhBCP8jA31z057LpyD7/u150GITTxKaq+8ILPOwmPUcHRDhWdTPclSTxO9MkTYqBWKWHpW/DCKCv/YMhi7+vtEwAwt7WHsHxFnZezAYAyNRnKtBSIPAse+RZW8oA6Px/K1KeFv6ZM8/P2hIXAAvciC+YPvh0WiSBfb5O5SDC0gArOEFiY405iwfF/48FThFRygfkL8zNWq+SCv8d0x1/DO2sXAJjeuRHGtKyJig42KGdnhYgnBZ3F2JQMmAGo6GBbYvUxBN+qXrAQWCA0omC+yzth4Qj089E7ToID/HA3PBLqZ78ptVqNu2ERCPb3g52dLURCIeIfPNTmT8/MRGZWFiqWL/ujHm3tHFC+ood28Q2sjvvht3Xqej/sNnz8q73xd9+5fhFjBrSD7IV5ZRNiI2Fr5/B/FSgHAMnlW3BqVFsnzalxHaRf1rxUOv3KLTg1ratdZ1m5Aqw8KkJyWf+l02WZPCEWapUSYp+CNsfSP+TVbY5bRUjvh+qkK1OToZSkQuRh+m2Ov5cHBBYWuHs/Vpt2KzwawT5exWpz7kbFobyLEyq4mm4Ao6DNKbgZdCPhKUIquRZqc1zx99ie+GtEV+0CANO7NMGYVrWQLZOj+Y+b8U9cQV/4SWYO0nOl8HbRvRFX1vlU9YZAINC+pBMA7oWGwt/PT+84CQoMQGhYuM55+F5oGAIDNb+7uLh4zPx2NurXrYtvJn8FwUumLCnrFA805xORd8Hc2mKfQMjjo4o+n9jYQVCuAmTR4Xrr/l8U9GGjtWm3w4vXh41JSMRX3/+KRrWrY/bnY0zqOLG0cYRjuSrapaJXLTyKvaHzm0iKvY6KVfRvKjbr9gUGTd6P/pN2o/+k3Wjc6RPY2ruh/6TdKO9RDXcvbsP6ue9qvwsAkh+GwdmtbA8os7OzQ6VKlbRLYFAQwkLDdPZJaOg9BAbovxTa3Nwcfn7+CL13T5sWFhYGgUAAb++yXe/X5e/lAQsLC9yLLHjHzq3w+wh6w7ZYrVajz7jJOnOZ50llSHz8FFVM7D0zRG+LYkV4Hjx4gGHDhqFq1aqoVq0akpOT0bJlS8yYMQPr1q0zdBmLTyFH3tWzsO/9EQSVq0IcUhc2LToh55xmfktzOwftdBu5F49DUNETtu17wcKlPGzf6Q0LZzfkXS84oQkrVIbyycMi/ytTYSUSomv9YMzZcQJ3Ex7jxJ0o/HHqGj5srrkYT8nMgfTZo0Z9GlXHP1GJ2HjmBuKTJVh26CLuPniM/i0KLtyjHqfoBM9NEo8TPWq5DFnnjqPckLEQe/vBuk4jOHTshYwjmqlmLBycNHO9PyOqXAX5chmUyY/1viv98B449xoAq5BaEHl4o9yQsci5fgmqDNO6i24pFqNjq2b4afnvCLsfgzOXr2Hz3wfxXpd3AGhe1iiTvfn8y6bMSihA1xpVMefgJdxNSsGJiAT8cSkUHzbQdKhTsvMgVShhKRTA09leZwE0owSdbaxgZmaGAQ2C8NvpW7gYk4SIJ2mYe/AyWgd4wNX2zUdQliZLsRgdWrfEgt9WI+x+NM5e+gd/7d6HPl01I5lePE5aNWmI7JxcLF69HnEJiVi8ej3yZDK0btYIAgsLdGjbEsvWbcCte2GIiX+AuQuWItjfD4G+pncBUr9JG+TmZGPj6gV4mBCDjasXQCbLQ8Nno8/lMinSJSn/8i0avoE1IBJZYu2SOXiUGI9b1y5gy++L0anXQGNWocSIy7vC/NmTXo93HILQ0R7BC76BbZAPghd8AwsbKzzadhAAEL9iM9z7d4fHR31gVz0AtdbNx9P9p5AXl/iq/6LMUctlyD5/AuUGF7Q5jh16IuPo8zbH8SVtjv6IvYzDu+H0QpvjOmgMcq9fgiojvaSqYxCWYhE6tWyEH1ZvQmh0HE7/cxMb9x1F346tAQCp6RmQvmRKiaLEPEiCd2XTfLfMc5o2xwdzDjxrc8IT8Mele2/c5tiKRajj4YYfj/yDu0kpCHuUiq93nkETX3f4lTetG26WlpZo17YNFi1dhojISFy4eBHbd+5Cj27dAABpaRLtvMLNmjVFdk4Olq9chfiEBCxfuQoyqRQtmzcDAPy6ZClcy7lixPChyMjIRFqaRGd7U6FWyJF7+RSc+42EqIoPrGo2gF27bsg+uR8AYG6vez4RVvJEvlwGVWrZHgH8X2j6sE3x44r1CIt63oc9hPc6twfwZn3Y+ct/h5uLM8YP6YeMzCykStJNtg/sW6sDZHmZOL1zLlIfR+H0zrlQyPO0o8+VcilyMjU356ztXHQC7Va2LjCzEMCxXBUIRJbwDGiCnIxknN39A9KT4xFxfT+uHl+Feu2GlWYV31izZs2Qk5ONlSuWIyEhHitXLIdUKkXzFprR5zKZDGlpBSPPO3fpgh07tuPihQuIjIzAsqWL8W6HDrC0fPNp9soiS7EYnVo1wfxVfyI0Khanr9zApr+PoG/ntgA0T2hIX+PYNzMzQ5M61bF66x5cvxeOmAcPMWvxapRzdkKT2qY7nS3R/7NiBcvt7e2R92w+TG9vb4Q/G81QtWpVJCaWrQu0zL0boUyMg/OoKbDvORjZR3ZAdvcqAMBt+lJY1WoEAMhPT4Vk9Q8QB9eG6+fzIA6uDcnan3Re0Ghu6/DSx/dMyRfdWiC4shuG/bYD3+08idHvNkK7GppR1W1nrcLhGxEAgKDKbljwURfsunIP7/20AefC4/Db8J4o/8JIz9SsXNhbmf6cZDxO9KVuWg1ZXBQqTZ6HcoNGQ7JrI3KuXgAAeC3eANuGBY/sWTg4vvRR+YyDO5FxbC/cRn4B92k/QvH0EZJXLSyROhja+I8+RICPFz6ZMQ8LVv2BoX17omWj+gCA7kM/wfHzl0u5hCXv8/b1EFTBBcP/PIp5h65gVIuaaBuoefqi3S/bcTg0/rW+Z1CjYHxQLwBT95zHkN8Po7KTHWZ1bWLMohvN2KED4e9TFZ9N/Ra/rFiLj/q9hxaNGwAAeg0ZhRPnNL8jG2trfD91Em6HhmP455MRGnEfP0z/ClbPLjDGDR2EFo3rY/bPizHhm1mwtbHG3ClfwMzM9B4RtLK2xWdTFyAy9CZmfD4Y0RF38fn0XyC21NwMuXzuGCYMeb0p3KysbfDFzF+RlZGOmZ8PxtrFc9Dq3R7o1PP/I1jeLvE8Kr2v2RfKrBz802MknJvVRbPLO+HYsCb+6TYCqlxNHyz90k3cHTMdflPHosmZzVBIMnBr2OTSLH6xpW7WtDkVv/oOrgNHI233RuReuwgAqPLrBtg0LJhr28L+FW3OoV3IPLYP5UZ8jkrfzIfy6SM8XfNLSVTB4D4d2AeBVT0x5ttf8OPaLRj+Xhe0bqAZsNBp1Nc4duHaa39XWkbmGz8yXhZ9/k59BFV0wfA/DmPeoUsY1bIW2gZppqtqt3ArDofGvdb3zO7eDEEVXDB+8zEM++MwKjnaYl4P05zPfeSwofDz9cWkyd9gyW/LMbD/h2jWVNN+9hs4CKfPnAWgaXO+nTEdd+/dw7gJnyEsPAKzZ82ApaUl0tIkCA0LQ0LCAwwc8jH6DRykXZ5vb0rSt/8OeUI0yk2YBce+w5Cx7y/k3dT00dy/XwOruk21ec3tHaDOM63pd4rjkyH9EODjhfEzfsDPq//E0L490KpRPQBAt2Gf4thr9GFTJem4ExGFuMQk9Br5OboN+1S7vM72ZY3Y0hbdR6zAw5hr2PRTLzyKv4UeI1dCKNacKyNuHMCqac1e67vsnd3RfeRKJMXdwIYfuuH83p/RrOsX8K9dNqanfV3W1jaYMfNb3Lt3FxM+GY/w8HDM+na2Nvh95sxpDBzwoTZ/y5at8N77fbFkySJM/WYK/AMC8PHHpnWD4N9MGPw+AqpWwbiZP+Gn1RsxrG83tGqoeaqvy4jPcfzCP6/1PWMHvIfWjepixq+rMHTyXChVKiyYMgEWFm/nE8pEZZ2ZWl3E82j/YvLkyYiPj8e3336L2NhYzJ8/H7/88gsOHz6sXYrj8ZcDirXd/6sKP26AdN9vpV2MMsWyy2geJ4VU+HEDogd1Lu1ilBk+f+xH8j3T67AbU7mQhsj7s+gXEr2trAZOxePwG6VdjDKlQmBtXArPKO1ilCmNAh2wXxhQ2sUoUzorIhAzpEtpF6NMqfr7PqTfOFHaxShTHGu3Qd6G70q7GGWK1YApiIuKLO1ilBlevv54MKZ3aRejTPFYtgMpdy+WdjHKFNdqjfHbodIuRdkyugMQFR377xnfIr4+3ki7bXo39ozJuYZp3gAuTYmRpvvOudJSuRhTapqKYt3G+uabb1ClShXcvXsX7dq1Q82aNdGnTx9s3LgRX331laHLSERERERERERERERkVMV6I8epU6cwadIkODlp5vX76aefMHPmTIjFYghfeMMvERERERERERERUVmlNuOUOFSgWEfDrFmzIJHovpzP1taWgXIiIiIiIiIiIiIiMknFCpY3bNgQ+/btg1xuem+9JiIiIiIiIiIiIiIqrFjTsKSmpmLZsmVYvnw5nJ2dIRaLddYfP37cIIUjIiIiIiIiIiIiIioJxQqWv//++3j//feLXGdmZvafCkREREREREREREREVNKKFSxfvHhxkUFxMzMzCIVC7Ny5Ex07dkS/fv3+cwGJiIiIiIiIiIiIiIytWMHyAQMGYMmSJRgwYABq1aoFtVqNu3fv4s8//0Tv3r3h5uaG3377DdnZ2Rg+fLihy0xERERERERERET0n6nBWTKoQLGC5bt378bs2bPRuXNnbVrbtm0REBCA5cuXY/fu3QgKCsLUqVMZLCciIiIiIiIiIiKiMs+8OBslJCQgMDBQL93Pzw8xMTEAAC8vL6Smpv630hERERERERERERERlYBiBctr1aqFxYsXIzc3V5uWm5uLpUuXokaNGgCA06dPo0qVKoYpJRERERERERERERGRERVrGpbZs2dj1KhRaN68Oby8vKBWqxEfH4+KFSti8eLFOHfuHL777jv8+uuvhi4vEREREREREREREZHBFStY7uHhgb///hsXL15EZGQkLCws4Ofnh8aNG8PMzAwODg44ffo0nJ2dDV1eIiIiIiIiIiIiIiKDK1awHAAsLCzQrFkzNGvWTG8dg+RERERERERERERU1qnNijVLNf2f4tFARERERERERERERG89BsuJiIiIiIiIiIiI6K3HYDkRERERERERERERvfUYLCciIiIiIiIiIiKitx6D5URERERERERERET01hOUdgGIiIiIiIiIiIiISoMaZqVdBCpDOLKciIiIiIiIiIiIiN56DJYTERERERERERER0VuPwXIiIiIiIiIiIiIieusxWE5EREREREREREREbz0Gy4mIiIiIiIiIiIjorSco7QIQERERERERERERlQa1GccSUwEeDURERERERERERET01mOwnIiIiIiIiIiIiIjeegyWExEREREREREREdFbj8FyIiIiIiIiIiIiInrrMVhORERERERERERERG89QWkXgIiIiIiIiIiIiKg0qGFW2kWgMoQjy4mIiIiIiIiIiIjIKGQyGaZMmYJ69eqhWbNmWLt27UvzhoaG4r333kPNmjXRu3dv3L17V2f9vn370K5dO9SsWRNjx45FWlqaQcvKYDkRERERERERERERGcX8+fNx9+5drF+/HjNmzMCSJUtw6NAhvXy5ubkYMWIE6tWrh507d6J27doYOXIkcnNzAQC3b9/GN998g3HjxuGvv/5CZmYmJk+ebNCyMlhORERERERERERERAaXm5uLbdu24ZtvvkFISAjat2+PYcOGYePGjXp5Dxw4ALFYjEmTJsHHxwfffPMNbGxstIH1DRs2oGPHjujRowcCAwMxf/58nD59Gg8ePDBYeRksJyIiIiIiIiIiIiKDCw8Ph1KpRO3atbVpdevWxa1bt5Cfn6+T99atW6hbty7MzDTzyJuZmaFOnTq4efOmdn29evW0+StWrIhKlSrh1q1bBisvg+VERERERERERERE9Frkcjmys7N1FrlcXmTe5ORkODk5QSQSadNcXV0hk8mQnp6ul9fNzU0nzcXFBY8fPwYAPH369JXrDUFgsG8ygAo/bijtIpQ5ll1Gl3YRyhweJ/p8/thf2kUoU8qFNCztIpQ5VgOnlnYRypwKgbX/PdNbplGgQ2kXoczprIgo7SKUOVV/31faRShzHGu3Ke0ilDlWA6aUdhHKHC9f/9IuQpnisWxHaRehzHGt1ri0i1DmjO5Q2iUoe3x9vEu7CGWOc43mpV0EMnHqZ6OY6fWtWLECS5Ys0UkbN24cxo8fr5c3Ly9PJ1AOQPu5cID9ZXmf55NKpa9cbwhlKlieNmdkaRehTHGeugI5qxjgepHN8DlI+qxfaRejTKm0cDP+adaotItRZtQ/dwmZ14+WdjHKFPs67ZG9dFJpF6NMsR07H4/Cb5Z2McqUioG1cDEss7SLUaY0DrJHzJAupV2MMqXq7/uwXxhQ2sUoUzorIhAW/bC0i1GmBPm4Q/rX/NIuRpli2XcS4qIiS7sYZYaXrz/iR/Qo7WKUKVVW7kbWVf0Xnb3N7Op1wKpjpV2KsmV4OyA2Oqq0i1GmePv4Ivvy3tIuRpli27BraReB3gIjR47ERx99pJNWOIj9nFgs1gtmP/9saWn5Wnmf53vZeisrqzevxEuUqWA5EREREREREREREZVdIpHopcHxwsqXLw+JRAKlUgmBQBOKTk5OhqWlJezt7fXypqSk6KSlpKRop1552fpy5coVtyp6OGc5ERERERERERERERlcUFAQBAKB9iWdAHDt2jVUr14d5ua6oemaNWvixo0bUKvVAAC1Wo3r16+jZs2a2vXXrl3T5n/06BEePXqkXW8IDJYTERERERERERERkcFZWVmhR48emDlzJm7fvo1jx45h7dq1GDRoEADNKHOpVAoA6NChAzIzMzF37lxERUVh7ty5yMvLQ8eOHQEA/fr1w549e7Bt2zaEh4dj0qRJaNWqFTw8PAxWXgbLiYiIiIiIiIiIiMgoJk+ejJCQEAwePBizZs3C+PHj8c477wAAmjVrhgMHDgAAbG1tsWLFCly7dg29evXCrVu3sHLlSlhbWwMAateujW+//RZLly5Fv3794ODggHnz5hm0rJyznIiIiIiIiIiIiN5KarVZaRfh/56VlRV++OEH/PDDD3rrIiIidD7XqFEDu3bteul39erVC7169TJ4GZ/jyHIiIiIiIiIiIiIieusxWE5EREREREREREREbz0Gy4mIiIiIiIiIiIjorcdgORERERERERERERG99YodLM/KysLGjRsxZ84cpKWl4eTJk0hISDBk2YiIiIiIiIiIiIiISkSxguWRkZF45513sGPHDmzZsgU5OTk4cuQIunfvjitXrhi6jEREREREREREREQGp4Y5lzdc/p8Vq3Zz5sxBv379sHPnTgiFQgDAvHnz8OGHH2L+/PkGLSARERERERERERERkbEVK1h+584d9OjRQy/9gw8+QFRU1H8tExERERERERERERFRiSpWsNzZ2RmxsbF66devX4eLi8t/LhQRERERERERERERUUkSFGej4cOHY+rUqRg1ahTUajUuXbqEXbt2Yf369fjss88MXUYiIiIiIiIiIiIiIqMqVrD8gw8+gJubG9asWQNLS0vMnz8f3t7emD17Njp16mToMhIRERERERERERERGVWxguVPnjxBmzZt0KZNG0OXh4iIiIiIiIiIiKhEqGFW2kWgMqRYc5a3atUK/fv3x8aNG5GWlmboMhERERERERERERERlahiBcsPHjyIli1bYseOHWjRogWGDBmCbdu2ISMjw9DlIyIiIiIiIiIiIiIyumIFy728vDBixAjs3LkThw4dQsuWLbF79260bNkSI0eONHQZiYiIiIiIiIiIiIiMqljB8heJxWKIxWLY2NjAzMwMeXl5higXEREREREREREREVGJKdYLPh8+fIijR4/i8OHDuH37NqpXr46OHTtizpw5cHNzM3QZiYiIiIiIiIiIiIiMqljB8rZt2yIoKAgdO3bETz/9BHd3d0OXi4iIiIiIiIiIiMio1DAr7SJQGVKsYPmBAwdQtWpVQ5eFiIiIiIiIiIiIiKhUFCtYXrVqVRw7dgyrV69GTEwMVCoVvL29MWDAAPTo0cPARSQiIiIiIiIiIiIiMq5iBcu3bNmCH374AQMGDMCIESOQn5+P69evY9asWVAoFHjvvfcMXU4iIiIiIiIiIiIiIqMpVrB89erVmDFjhs4o8nbt2sHPzw/Lly9nsJyIiIiIiIiIiIiITIp5cTZKTU1FrVq19NJr166NR48e/dcyERERERERERERERGVqGIFy4OCgrB792699F27dsHX1/e/lomIiIiIiIiIiIjI6NQw4/KGy/+zYk3D8uWXX2LIkCG4fPkyatasCQC4efMmwsPDsXz5coMWkIiIiIiIiIiIiIjI2Io1srx27drYuXMnatSogejoaCQmJqJ+/fo4ePAgGjVqZOgyEhEREREREREREREZVbFGlgOAj48PJk+ejKysLAiFQlhaWhqyXEREREREREREREREJaZYwXKFQoEVK1Zgy5YtSE1NBQBUqFABQ4YMweDBgw1aQCIiIiIiIiIiIiIiYytWsHz27Nk4e/YsvvjiCwQHByM/Px+3b9/GokWLkJqaiokTJxq6nERERERERERERERERlOsYPn+/fuxYsUK1KtXT5sWGBgId3d3TJw4sWwFyy0EsOnYD8LAOoBCAemlI5BePlZ01nKVYN2pPwQVPKGSJCP38BYo4yP18ll3HgB1VjryzuwzdumNQqZU4ftj13H8/kNYCiwwsJ4/BtYPeOU2SRk5eO/3w/i1ZzPU83QDAChU+Vh27i72h8ZDmZ+PriFeGN+iOgTmxZoKv3QJhHDo/RGsajaAWiFH9sn9yDm1v+isFT3g0OdjiCpXhTLlMTJ2rYc8KlSz0twCdp3eh3W95oCFBfL+OYPMfZuB/PwSrIxhmIlEqDLxCzi1bI18mQyPt2zCky2biszr2KIlKo8YDZGbG3Kj7iPhlwXIjYzQfo/HmPFwbtsWACA5cxoPFv+KfKm0xOpiKDK5AvPXbcWJKzchFgkxoHNbDOjS9pXb3AyPxozf/sCeX2dp09RqNVbtOIA9Jy8iTyZDw+pBmPTRe3CytzN2FQxOplThh1O3cTwqCWKBBQbW8cXAOr5F5p249zJOxz7WSVvYtSFaeFeAXKnCskvhOByRiDylCnXdXTCpZQ2Ut7MqiWoYlEwux68r1uL0xcsQi0To26ML+vboWmTe+zGxWLBsNWLiE+DlWRkTRw9HgG9VAECr7n2L3GbyhDF4t01Lo5XfWOJjIrD+t3lIjI+Cu2dVDB41GV6+Qf+63dqlc+Dk7Iae/UZo0xQKOTavXYhLZw5DIBCiRbtu6D1gDMzMTOet7GZCIVwGjoZNvSZQy+XIOLQLGYd26eWr+PU8WAVW10vPOnMUyWt/BQDYt+0Mx069YW5ti9y715Hy+xLk52QbvQ7GYC4Sotnlnbg7YTbSzlwpMo99rSBUWzoL9tX8kRUahTtjZyDz+j3t+kp9O8N/1qewrFgOyUfO4faoaVCkSkqqCgYXE30fvy1eiPj4WHh6emHUuM/g6+f/0vx/796O3Tv+Qm5uLpo2b4URo8ZD/Gy6xEsXzuL7OTN08jdu2gJffTPTmFUwGJlCie/2X8Tx0DiIBRYY1LQ6BjfV/3286KEkC72X7sTi/u+gvndFAECuXIEfD17C8dB45KvVeCfEG190aAhrsbAkqmFQcrkcS5Ytx7kLFyAWidC7V0/06dWzyLxR0dFYtGQZ4uLjUMXTE5+MHQs/P02brVarsXX7Duw/eBBZmVnw9/fDmFEjUcXTsySrYxgCIVw+HAnrOo2Rr5Ah88geZB3do5et/OdzYBlQTS89+/wxpK5fAjORGE59h8K6diPAzBy51y5Asm0t1DLT7MP+8Ps2nPjnNsQiIQZ2ao0BndsUmffcjXtYtnU/HjxJhrubC0a/1xkt6xb8zg5duIbftu1HSnomGtcIxNRhH8DRzrakqmJQTx6E4ujmGUhJioRLRV+07zcLFTz1j4nCrhxdjZtnNmHE7BPatMfxd3Bi21w8TQyDnVMFNOowGiENexix9IanOZ8sw/nzFyASidCndy/07tWryLxR0dFYvHgJ4uLj4enpiU/GjYWfn59evs1btuBhUhK+KEsxotckkyvwwx+7cPzqbYiFQgzs1BIDO7YqMu/Zm6FYtv0QHjxJgbubC8b07oCWdUIAaM6v6/efxI4TF5GRnYvgqh6YNLAHqrpXKMHa0L9Rw3SuI8j4ihXVtLW1hUCgH2e3s7MrMr00WbfrA4uKVZC1YQFyDm2CVYsumsB5IWZiS9j1/xSq5EfIWPktFOE3YPveaJhZ6wavLBu/A8vazUuq+Ebxy+nbCH0iwYr3W+LrdnWw8mIojkUkvnKb745eR55CpZO2/Pw97LsXhxnv1sPSPi1wJeEpFpy8ZcyiG419t/4QeVRF6rI5yNi+Fnbv9oJlzQZ6+cwsreAyagqUTx7i6Y+TIL3zD5w/nghzW3sAgF3H92BdvwXSt6xA2op5EPtVg333gSVdHYPwGDMeNoFBiJgwDvELfoT7R0Ph1Kq1Xj5Lb2/4zJiFRxvW496Qgci9Hwm/+T/DXCwGALh/NBR2tWoj8ouJuP/l57CrUQuVR44u6eoYxKKNuxAWk4Dfpn6Crz7ui9U7D+L45RsvzR+V8BBf/bIa6ny1Tvqu4+ex5+RFfDt2MFbO+AwpkgzMWVn0jYiy7tdz9xD6NB3LezXF161rYNXlCBy7n1Rk3pi0LMx+pw4OD31XuzTyKAcAWH45HCejH2HOu3Wxtk8zKPPV+PLAFajV6iK/qyxb/vsGRERFY+Hsafhs5FCs37IDp85f0suXJ5Xiq2+/R/WQQKxcMA/VAgPw9ezvkffsRtKO31foLP16dUN5t3Jo2rB+SVfpP5NJ87Bg9gT4B9fCzJ//hG9gDSyY8ylk0rxXbndg5x84U0SAY+Pqn3Hv1hV8MWMxRk2cjdNHd+PUEf1Ac1nm3PdjiL388OiHb5Dyx29w6t4PNvWa6uV7sngu4icM0C6Pf50NtUKBjBOaG7o2DZrD+f2PkLp5NR7O+RIC53JwHWia51hzsQi1NyyAXbWXB4ItrK1Q/++VkJy7inMNe0Fy8Qbq71kBC2vNjTWH+tVRY+Vc3J+zBOeb9YXQyR4118wrqSoYnFSah9nTJyO4WnX8/OtyBAaFYM7MyZC+5Ldz4dwZbNm4HqPHTcTseT8jMjwU69eu0K5/kBCP+g0bY92G7dpl7IQvSqo6/9mCI/8g9GEKVg3piCldmmDFqRs4ei/2ldvM3XsBeXKlTtqPBy/h3sMULB/cAauGdMTdh8n46dBlYxbdaFatWYfIqPv44bs5GDdmNDZu2oyz587r5ZNKpZg2YxaqhQRjyS+/IDgoCNNmzoL0WZuz/+Ah7Ni5C2NGjcTiXxeiQvnymDp9pna9KXHqMwSiKj54smAa0jaugGOXvrCu01gvX/Jv3+PBF0O0y9Ol30GtUCDr1EHN9/QdCnEVXzz9ZRaeLpwOsbcfnN77uKSrYxC/bt6DsNgHWD5lLL4e0gerdh7Cscs39fLdT3iIL39Zg24tG2LTd5PQq01TfPXrOkTGPwQA3I2Ox+xVmzG8Vwf8PuszZObkYebyjSVcG8OQy3Kxc9kIVPath4Ff74R71drYuWwk5LLcV26XnvIAFw4s0UmT5WVhx7LhqFS1NoZM3YfGHcfi8MapeBh9zZhVMLjVa9bg/v0ofD/vO4wbOwYbN27C2XPn9PJJpVJMmz4D1aqFYPGvmvPJ9Jn654uTp07hzw2meXwAwK9b9iE09gGWfz0KXw/uhVW7juLYFf14x/2EJHy5aD26taiPzXMmonfrRpi0+A9EJmiuiXacvIg/D57GlwN74s9Zn6JSOWeM/2k18mTykq4SEb2m1w6WJyUlaZdBgwbhq6++wpkzZyCRSJCZmYmrV69i6tSpGD9+vDHL+2aEIohrNUXuka1QPX4ARcRN5F08Asv6rfSyimo0hlouQ+7BjciXJCPvzF7kpz2FoGKVZxksYdt7BCybdIAqI61k62FAeXIldt+JwZetayGovBPa+LljcP0A/HUj6qXbHAiNR65CoZOmVqux9WYUxjWvjqZVKyKovBOmtK+D7beikVvogqSsMxOJYdOwNTJ2rYciMQ7SO1eRfWIfbJq9q5fXun4LqGVSZGxbA1XKE2Qd2g5l8mMIPTQjQW2atUfm/i2Qhd+CIjEO6dtWw6ZJO5iJxCVdrf/E3NIS5bp2RcKvC5EbGYH0M6fxaNMGuPV+Ty+vQ/2GyIuNReqhg5AlPUTi8t8gcnWFpZe3Zn3jJkj+ezdyI8KREx6Gp7t3wq5uPb3vKevypDLsOXkRnw/ujUBvD7SuXxMDu7TD1sOni8y/89g5DJ2xAC4O9nrrzt+8h/aN66BusB98PSphYNd2+OduhLGrYHB5CiV234vHFy2qI8jNEW18KmFQXV9svR2jl1euVCEpMxch5Z3gamOpXUQCCwDAvrAHGNs4CHUru6Kqiz2mtq2Fe0/S8SAjp6Sr9Z/kSaXYf/QExg0bAn+fqmjeuAE+6NUVuw4c1st78txFiEUijB4yAFU8KmPcsMGwtrLSBtZdnBy1i1wux459B/Hl2BGwtbEu6Wr9Z5fPHYVIJEbfIRNQycMbHw79HFZWNrhyvugnvfJys7Hkh6+wf+d6OLuW11mXnZWBs8f24KMxU1DVPwTBNRvg3e79ERN5tySqYhBmIjHsWryD1E0rIY+PRu71i0g/sAP27bro5c3PyYYqI12zZGbCuc8gpB/cAXmcpt127NQb6Qd2IOfqBSgexiPtr7UQVfYCzEzrKS/bIB80Ob8V1j6vHsVa8f1OyM+TIeyr+cgOj0HoxLlQZeWgYp8OAACvMQOQtP0gHm7Yg6w7Ebg5ZBLcOraElVflkqiGwZ07cwoisRhDho6Ch2cVDB05FlZW1jh/tui2Z9+eHejavTfqN2wMP/9AjB4/EceOHoLsWQAj8UECPKt4w8nZWbvY2prGiNBcuQK7rkVgUqdGCKrkirbBXhjStDq2XA596Tb7b0UhR67QSxdaWGBy5yYIruSKoEqu6F7HHzcSnhiz+EYhlUpx6MgRjB4xAn6+vmjapDHe69Mbf+/Tf/r19JmzEIlEGD70Y3h6emDUiOGwsrbCmbOaQNjRY8fRu1dPNGrQAJXd3TF+7BhkZmXhXlhYSVfrPzETiWHbrB3S/loDeUIM8m5eRubhXbBr3Vkvb35uNvIz0zVLViYcew5AxuFdkMdHazIolUjbvBLyhGjIE2KQff4YxK/xRFRZo+nDXsLnA3u90Idti61Hz+rlPXThGuoH++ODDi3hUaEc3n+nOeoF++Hos8EhW4+cRfuGtdGleQP4ebrj29EDcP5WGB4+TS3pav1nEdcOQCAUo2XPSXCp4IPWfb6ByNIGkdcPvXK7o5tnoHxl3eMgU/II3sEt0LLnJDi6eiC4QTe4VvLDw5jrxqyCQUmlUhw6fASjRj4/nzRBnz598Pfeos4nZyAWizBs6FB4enpi1MgRsLKyxpmzmmNKpVJh8ZKlWPjLr6hYsWJJV8Ug8mQy7D59GV8M6I4gr8poU686BnVuja3H9G9GHrx4A/WDfdHvnebwKO+K99s1Rb0gHxy9rAms7z17FQM7tkSL2sGoUrEcJg/ujYzsXNy6H1fCtSKi1/XaV1Jt2rRB27Zt0bZtW/z444+Ij4/HiBEj0KRJEzRs2BADBgxAZGQkZs2a9e9fVkIE5SsDFhZQPojWpikfREFQyRso9IiFsEoA5JG3gBdGMWaunQdFtObi28LRFRAIkbl6LvLTk0uk/MYQmZwOpUqNmu6u2rRa7q64+zgV+UWM4EzPk+HXM7fxTfu6OumSXBly5EpUr+iiTfNzdYQyX43Qx6Z1M0FQyROwsIA8rmDKHXlMOESevkChR/pFvsGQ3r2mc5ykLJwKWdhNmNvaw9zSGor4ghsPikcJMBMItMF0U2Ht6wczCwGy79zWpmXfvgXb4GC9faLMzICVtzdsq9cAzMzg2rkLlNnZkCVpRqAoMzLg1LoNLOzsYGFnB6eWrZAbqT+9UVkXmfAQSpUKNfwL/pa1AqviXlQ88ouYZufCrVDMGD0Q/Trpj8Z3sLXB+Rv38DQtHVK5HEcuXEWAl4dRy28MkSmZUOarUbOiszatViUX3H0s0TufxKdnA2aAu4N+oDdfrcbsd+qgoWc5vXXZMv0gR1kWHRsPpVKFaoEFU1tVDwpEWOR9veMkNOI+qgcFaKcOMTMzQ7WgAIRG6P8+1m7aijo1qqNerRrGrYCRREfcgV9QLZ26+gbWQHTEnSLzJz9JgkIhx8yf/0S58u466+6H3YSVtS0CqxW0S116D8HQ8dONVwEDE3l6w8xCAOn9giCU9H4oxFX99c6xL7Jr3hbmNnZI378dgOZpJ7GXL3KuXSj4nsh7SJw6FlCb1vRfzi0aIPXUZZxvVvT0Q885NayJtAu6I/XSLl6HY6NaAADHBjWRdvaqdp008THyEpLg1LCmwctcEiLCQxEUXE3ntxMYXA0R4foBYpVKhaj7EQipVnCeCAgMhlKhQGyspi/8ICEOldxN88ZB5OM0KPPzUcvDTZtWu0oF3ElMRn5+EX3YXCkWHvkH07rpP7ExpUsT1K6iuRH3UJKFg7ejUc/L9B6Hj46JhVKpRHBQoDYtJDgY4RGRem1OWHgEQkKCdY6lkKAghIWHAwCGD/0IbVq30uY3MzODWq1Gbs6rR9mWNaLKXjCzEEAWHa5Nk0aFQeTt98rzq22TNjC3sUXm4Z3atLTNK7XfY+HiBpsGLSAzoRuzz0UmJEGpUqGmv7c2rVZA0X3YLs0bYNwH+lPHZedqbrjdjYpD7UAfbXoFFydUcHHCnag44xTeiB7F3YK7T12d34R71TpIir350m3uXd4NpTwP1Zr00UkvV8kfnQbP1/xu8vMRfecE0p7EorKv6TwNGBMT8+x8UnAjICQkGBEREXrHSXh4OEKCQ3T2XXBwwfkkLy8PsbGx+GXhAgS9cH4yJZEJj6BU5aOmn5c2rZa/F+5GJ+jtj67N6mH8+/o35LLzNE+BffpBV3RsUjC7gZmZZvBhdu6rn7AkotLz2nOmHD9+3JjlMAozWweoc7OB/ILpQ/KzM2EmFMHM2kaz7hlzR1cok2Jh3WkARP41kJ+eitxj26FM1FxcqJ4mIvuvpSVeB0NLyZHC0UoEoUXBfRJnG0vIlPnIyJPDyVp3BPSCk7fQJcQLPq4OOun2ViIIzM3wNDsPVV01I2efZGk60+l5pvU4kYW9E/JzsgDVC8dJVgbMRCKYW9tq1j0jcHGDIiEaDu8Pg2VIXajSkpH59wbIYyORn5sNtVIJCwdnKJ9oAsUWjpqbCea2pjUXtdDFFcqMDKiVBU8JKNLSYC62hMDBAcr0dG162vFjcGzaHEG/rYRaqYRarcb9Lz+HKkuz3x4sWwzfud+j9n7NyNq8mGjc/+rLEq2PIaRKMuBgZwPhC1NNOTvYQ6ZQICM7R2++8Z8+18yvvPe0/vQbw3p3xMQfl6Pz2KmwMDeHi6M91n77uXErYARFnU9crMWQqfTPJ7Fp2bAVCTH9yHVcTUxBBTsrjGwYiKZe5WFuZoaGnm463735ZjQcLUXwK3TuKetSJelwsLeDUPjCceLoALlcgcysbDi+8KRBqkQCLw/dmyTOjg6IjX+gk/YkOQXHz5zDku9nG7fwRpQuSYG7p+5NQwdHFyQmRBeZ39PbH59NXVjkuqePH8LVrRLOn9yPvdvXQaVUoFmbruj63scwN5F3ZggcnaHKzgRUBedYVYYE5iIxzG3tkJ+VWeR2Dp36IOPIHu18uUI3TXDPws4B5b6ZD4FreeTdu4nUTSuRn2taT2UkrNj8WvnEFcohK1T3aTj5k1TYhWjmSbWs6AZZ0lOd9bKnqbA00XlBJWmp8KzipZPm6OiEhHj9qUdycrIhl8vh7FIwIMLCwgJ29g5ITUmGWq3Gw8RE3Lz+D3b8tQmqfBWaNm+JfgM+glBY9ufqTsnKhaO1JYTPnkgCABdbK8iUKqTnSeFso/uOi58OXUa3Wn7wdXN66XdO3Xkae29GoZKjLUa2qm20shtLmiQNDvb2On8/J0fN00iZWVlwdHDQyVt4/nFHRyfEx8cDAKqFhOisO3j4CPJVKoQEBxuxBoZn4eiM/MLn18x0zfnVxk6zrgj2HXoi69jeIucjdxnyCWybtIEy5QnS9/1ltLIbS0p6BhwL9WFdHOye9WFz4WRf8HSJd6FzZXTiI/xzLxK92zZ59l2ZKOek2zdzdrDD07R041XASLIzkuFaUfc9O9b2LkhJul9k/tysNJzZ/RPeG78Oj+OLvtmvUsrx68Q6yFcpULPZB6jkXcvQxTaatDQJHBxe83ySJkGVKrrnEydHR8Q9O/oM2McAAQAASURBVJ/Y2tpiwc8/lUzBjSQlPVP/d2NvB5lCWcTvRvcpyOjEx/gnNAq922imf6od4K2zfvfpy1Dl56OWv246EZUdr31V6e7u/q9LuXLlkJKSYszyvhEzoQhqVaEpQZ5/ttC9T2AmEsOySQeoszOQtXkxFAn3YffhBJjbv7yDbYryFCoILSx00kTPAl1yle6c5Jfjn+DmwxQMb6TfSRaYm6ONX2UsOXsHT7JykSVTYOHpWxCYm0FhYi+zNBOJoFYWmmbm+XEiEBbKawnbtt2Qn5mO1JU/QBYdBueRk2Hu6Azk50N6+wrsOveFuYMzzCyt4NBtANQqJcwsytZc/v/G3FKMfIXuTQ/1s89mhS6oBfYOELq4IH7BjwgdORSphw7Ce8pUCBw1vx1Ldw/InzxBxIRxiJz4KcxEIniOn1AyFTEgqVwBkVD37/i88yRXvNnUQ4+SU2EpEmHBlyOxYvoElHdxxOwVpjefn1Sh0gmUA9B+lqt0zwNxkixIlSo08nTDku6N0bRKeXy29zJCn+i/dO9U9CNsuB6NcU2C9b6/rJPJZBAV+o08v+iQF5rOSiaTF3FMCfXyHTh6AgE+PggO0H9pkqmQy6QQCkU6aQKhEErFm99clUnz8ORRAk4e3olh46ej75AJOLb/Lxz+23Tm/TcTiaEuPL3Zs3bITFB00NIysDoETi7IOl0wpY+ZWBMcdB04Gun7t+PJ0u8hcvdEuRGmd/PtdVlYWyG/0Byf+TI5zMWiZ+stX7ne1MhkMr3fjlAohEKh/9SNTCbTri8qf/LTJ5DJpBAIRfhi8nR8NGwUTp88jvVrVuh9V1mUp1Bq+6zPPf+sUOq2OZeiH+JG/BOMaFXrld/5UbMa+HN4V1RytMWYPw8XOUK9LNMcH0W3OYWPkaLzCvTaHAAID4/AytVr0Kd3Lzg7m9a1kJlIrNevx7+cX8UB1WDh5Irss0eLXJ95eCcezZsEZWoyyn8y/ZUj1MsiqUyhE/ADoL2p/6o+bHpWNib9shY1/b21L/iUyuQQFfoukUDwxn3hskApz4OFQPf8aiEQQaUsum9ycsd3CGnUE66VXt0f6//FX+g85CeEXzuAq8fXGay8xiaVySAU/JfzSdFtk6mSyhU6N2eBF343ypcf75KsHHy5eD1q+nmhVZ0QvfV3ouOxcNNeDOrUCq6O+tN1ElHZUKwI3vXr1zFr1ixERUXpPYJiYWGBu3fLxuNpaqVCP0j5/HPhC/T8fKgeP0Demb0AgLwnDyCsGgRR9UaQnj9YAqUtGWKBORSFguLPg1qWL3R8pAoV5h65hq/b1YGlULeReG5Sm1r4et8ldFyxH1ZCCwxrFIy7j9JgIzKtwLBaodDrPD8/btQKmW7efBUUiXHIOqR5BD7rYRwsA2rAul5zZB/bg4xd6+E06BNUmLkU+TIpso/ugrCKL/L/5SV2ZU2+XA7zQhfnZs8+50t190nl0WORFx2Npzt3AADi5s9DtY1b4Nq5C57u2gGvr6cg4tPxyAm9p1k/by4Cl/yGh2tWQpFqOvMbioT6FwKKZx0lyzcIwqjVasxY9ic+6d8DzetoLjy+mzAU3cZPx92oOFTz9TJYmY1NJDCHolBQ/PnnwueNYQ0C8EHNqrC31Owr/3IOCHuajp134xFcvuBC/GT0I0w+eBV9a3qjZ7UqRq6B4YlE+sHu5xcOlmLdJ3dEQmERx5RCL9/pC5fRrUM7I5TWePZuW4d9OwouEKv6hUBRqN1VKhQQiS3f+LvNLSyQl5uDURPnwNVNMw9mavJjnDi0Ax17DPhvBS8haoVc78bj83ZILZcVtQls6jdF3p1ryM8peCru+ZNz6fu3IffmFQBA8rpFqPztYlg4OkOVblrTor2OfKlML/BtLhZB9WyKANXL1ueZRju87a+N2PFXwc1Tv4Agvd+OQqGAWKz/LhSRSKRdX1R+t/IV8Odfu2FrawczMzNU9fFFfr4av/z0HT4aPhoWFkX398oKsUCgdyNW24cVvtiHVWL23+cxpUsTnfSi+DwbdT7//TZo9+NmXIt/jPrepjO/rkgoKvLvDUDvGCk6r1KvzQkNC8fUGTNRv15dDBrQ3wilNi61Qq4fFP+382udJsi7ex35Lzx1/CLFo0QAQPLKH1H5x7UQ+4WY1HQsYpFA22d9TqF43oct+gZCakYmxs5bBrVajR8mFDy5JRIJ9QKFcqXyjfrCpeXSoeW4fLjg5mBFrxp6gXGVUg6hSL9vEht6FkmxNzHkwzmv/D8sBCKU9wxBec8QZGc8xfVTf6Je248MUwEjE4mEUChfrw8rFOkHxl/WNpkqkVAAhVI3bqL93YiKPt5TM7IwZv5KqPPVmD9+kN4Tj7fvx2H8z6vRtGYgRvXSfz8alS612rRuhJJxFSuqOWfOHLi7u+OLL77AhAkTMH/+fDx58gRLlizBtGnTDF3GYlNnpcPM2lbzkqtnc3ea29pDrZBDXSh4mZ+dAVXqY500VerT/7uR5W62VkjPk0OZnw/Bs5N3ao4UlgIL2FkWdJbuPU5DYkYOvvz7gs7243eeRZcQL3zTvi6cbSyxsm8rZOTJIRKYA2pg8dk7qGRvU6J1+q9UGWkwt7EDzM2BZzd/zO0dkS+XQZ2nO09jfmY6lE+TdNKUyY+0063kZ2ciddkcmFnbAAoFYGYG+y79oEozrXnuFcnJEDg4ABYW2ulphM7OUEmlUGVn6eS1CQjEk+1bCxLUauRF3Ye4QgVYVfGChbU1cqMKHmfMjYyAmYUFRG7lTSpYXs7ZERlZOVCqVBA8CyikpmdCLBLCztrqX7YuIMnMxpNUCfw9C+ZhruDiBEc7GzxKTjOpYHlR55OUHCnEAgvYFbr4Mjcz0wbKn/N2tkN0WsHxdDgyEdOOXEefal74vEV141fACFydnZGRmaVznKRJ0iEWifRezOnq4oy0F6Y0ep7XxdlR+/lpcgriHiSiaUPTmfMSAFp36IUGzQoC/Pt3rkeGRPf3npGeCkcn18Kb/itHJ1cIRWJtoBwAKrpXQVqK6bycTylJhYWtvU67Y+HghHyZ9KXTp1hXrwvJbt3R88+D4c8DOZp/a6YBEzi7/l8Gy6VJTyCuoHvciCu4QvpYM/WK9GER68u7QvbINNrhDp26olnzVtrPO7dthkSi+wROuiQNTs4uKMzOzh4ikQgSSRoqe2gej1epVMjKzNDmt7PTHcXm4ekJuVyO7OwsODg4GrYyBuZmb430XCmUqnwIno0oT8nKhaXQAnYvtC93E5ORKMnC53/pTiE59s/D6FrLD193aoTTEQlo5OMO22fbudhawcFajPRc/Sk4yjIXFxdkZGZCpVJpb3akSSQQi0WwtbHRy1v4WJKkS3RGjt+6fQfTZ32LurVrY/KkL01maqsXqSSpMNc7v2r69fl5RZ9fLavVQcbeLbqJFgJY16yPvNCb2uvG/KwM5GdnwcLEplcs5+SIdL0+bNZL+7BP09Ix6jvN9KMrpo7XmW7CzckBqem6U9mkpmeaxAjZms0/QECdjtrPV46uQk6m7lPxOZkpsLF3K7wpwq8dQJbkMZZ9pZlWIz9fCZVKgV8/q43eY1fB1rE8JE/j4B3cXLuNSwVf5GXrP0FZVrm6uCAjQ/d8IpFIIBaLYVPofOLq4oK0wucTSTqcnZ3x/8LNyUHvd5OS8fx3o39D5WlaBkZ9vxwAsHLKaJ3fDQBcDYvCpwvWolE1f8wdPcAkz69Eb5Ni/ULv37+Pzz//HM2bN0dISAiEQiH69++PGTNmYM2aNYYuY7EpHz8AVCoIKhfMBSXw8IUyKQ6A7mOWyocxsHDTfeGRhWt55KebTjDvdfi7OUJgYYY7SQUX0DcfpiC4ghPMX3ikMKSCM3YP7YjNg97RLgAw7Z16GN1E8zjR1AOXcTHuMRysRLASCnAu9hGcrcXaOcxNhfJhPKBSQVSl4JE6kXcAFAkxOi/yBAB5fBT+x95dhzd1vXEA/9aSumOFlrriDi0y3J3h7rYNhruzjQ2GuzsbMtzdGQ71Qh2ra5JKfn+kpIQUBl3SJr99P8+T5yH3nhvec5t7cu57zz3XwE5xtKt+STt5Mtyy9ygIPSpCmpEOaZYEQq8qyElNls9hri0yQoIhzcmGqU8F+TLTSpWRHuCvvE/i42DkqDjfmqFDeYhjYyGJk+2XD9cb5s29Kn6leNFB03mULwd9PT08++Cp5Y+CwuDtXP6rOjvmpsYQGOjjRUz+xbmklDQkp6bDrqRy8kOTuduaQ19XB09f53eWH71KgE9JS4X2BABmn3uAuecfKiwLepcMRytZR/Ju1DvMPPsA3Ss5YVIj7XyIJQC4OjtCX18P/kH5F4ieBgTB081F6Xvi7eGG54HBkOYdU1KpFE8DguDtnt8W+QeHoqStDUqV+PqkcnEyNbNAqTL28perRyWEBj1VqGtIwGO4eFT4h09S5uJRAVkSMV7HRMiXxUaHKyTPNZ0k8iWkOdkQuuQ/9MrQ3QfilyFKbSwgu9BvULIMRCGKD3XMjn+H7MR4COzz21gDO3tIc3ORHf/244/5v5B45zGs6ijOLW1VtxqS7jwGACTdfQwr3/yHvxqWKw0j+zJIzFuv6czMzFHGrqz85eHlgyD/5wrHToD/M3h4eCltq6urC1c3DwQ8z59LNzDgOfT19eHk5IKH9++hb/eOEIvyE8IvwsJgZm6u8YlyAPAobQN9XV08ic7/bj+MfAMfuxLQ1c3/zalQrgSOfd8NB0Z2kr8AYHYHP4xqXA06OjqYcfgqrgXnPx/iVVIakjJEcCphWWT1UQUXZyfo6+vLH6oHAM/9/eHu5qb0m+Pl6QH/gECF79Jz/wB4esraofDwCMyZNx81q1fH9KmToa+vXXeKvieJzmtfnfMftG3o6g1J+KfaVzMYlCgNcWiA4gppLmwGfAejijXki/SsbaFraq5wgVIbeJQvK+vDfvAQzkfBL+Dj7KD0PckUiTH253XQ1dHBhhljleYnr+DqiEfBL+TvX8cn4k1CEipqwWAPIxNLWJUsL3/ZOVVB7MuHCsdEbNgDlHFSfiB0g44TMHDGCfSbegT9ph6Bb9vvYGpREv2mHkEphwp4Hf4Ex7eMQ5Ykv319E/UM1qWdlT5LUzk7Oyu1J8+eF9yeeHp6IsA/4KP2xB9eHtr5MM+CuDvYQV9PF09DI+XLHgW/hI+TvfJxIxZjzK8boaOjgw3TRiodN6HRrzB+2VbUq+SJn8b0VZrehYg0T6GS5UZGRvKrjc7OzggKCgIAVKpUCS9fKj9wqNhkZ0H85BaMW/WGXpnyMHCvDMM6zSG6exEAoGNiLr8tT/zgKvRLlYVRg7bQtSoBo4btoGdZAuJnd4qzBipnZKCPtj6OWHTuPp6/SsClkBjsvBeEntVkyZm4dBFEWTkwNNCDg5WpwguQjSS1NpFdSbUwFGL1tWcIfZeMvyPf4ucLDzGwtqdSkkzTSbMkyPj7Kiy6DYaBvTMMK9SA6TdtkX5VNv2OrpkFkHe7fMbN89C3c4BZiy7Qsy0Fs5ZdoWdTEhn3rwMActPTYNa6O/RLl4PAxQsWXQYi7fxfBXbONVmuWIy4UydRfsIkmHh6wbJ+A5Tu2Rtv/5CNINe3toaOQHabXdzRv1CifXvYtGgJYdlyKDdiFASlSiPu1ElkvXuHpNu34DhpCow9PGDs4QnHSVMQf/6swkNCtYGhUIA2DWph8eZ9eB4Wgcv3HmPX8Qvo0aoRANlDYESSf55/WV9PD+0a1sHy3YfxICAUoVGxmLl6Oyq4OcHb2eEft9ckRgb6aOvlgMUXH+P5m0RcCnuFnQ9C0bOK7MQgLl0EUd7tiw2dSuNkYBSOB0QiKikNG+4E4dGrBPSo7Izs3FzMPf8Q1cvaoH91N8Sli+Svj6d50XSGQiFafNMQS9duRGBIKK7dvof9R46hSzvZSKb4xCSI8+ZTblivNtLS07Fq03aER0Zj1abtEInFaORXV/55LyOjUN6+XIH/lzapWa8xMtJTsWfzb4iJeoE9m3+DWJyJWr7NAMjmNE9K/LJnnpQp64jKNfywacVcRL4MxtOHt3Di0HY0btlFnVVQKalEjLQbF1Gi/2gIndxgXK0OLFt2QvK5owBkoyB1PpgKS1CuPHIlYmS/Ux49n3zmCKw694GRTxUI7J1g228UMh7cRk5yUlFVR+2EpWyhayj7zXl98DQMLM3hvXQ6TL1c4L10OvRMjPDqD9lvdsT6vSjbuwPsB3aFWUUPVNn6C96euIzMcO1Kbr1Xz68B0tPTsHn9akRFhmPz+tUQi0TwbdAIgGze2MSE/AEQrdp2wJGDB3D75nWEBAdi/erf0axlGwgNDeHp5QOBQIBVy39FTHQk7t+7g+1b1qFTlx7FVLuvYyTQR7sqblhw7AaexbzDxYBw7LjxFL3qygZxxKVmQJSVDUMDfTjYmCu8AKCkuQlsTI2gr6eLrjU8seL833gQ8Rr+sXGYdOAiGnmW/+zDQDWRoaEhmjZpjBWr1yAoOBg3b93Cn4cOo2P79gBkD+F7P5e9n58v0tLTsW7DRkRERmLdho0Qi0RoWN8PALB81WrYlrDFsKGDkZycgoSERIXttYVUIkH6rUuw7j0CgvKuMKpSG+bNOyDlwnEAsrtHP2xfDezy2teP707KzUXa1bOw6tQHQlcvCBxcUGLoBGQ+vousV4oP4tZ0hkIB2tSviUVbDsj6sH8/wc4TF9GjZUMAin3YLUfPIfptHOaM6C1fF5eUgrQM2ej6rk19cfL6PRy5fAshkTGYvXYX/Kr6oKyWDfgAAPeqLSHKSMGlPxci7lUoLv25EFmSTPno8yyJCOnJsoE/JmY2Col2Y1Mb6Orqw6pkeRgIDOFcoREEhmY4t3cWEt68RMC9Y7h7bhPqthxZnFX8KrL2pAlWrlota09u3sLBQ4fQocP79iThg/bET9aerN8ga0/Wb4BIJEKDBvU/919oFSOhAG39amDxtj/x/EUkLt1/hp2nrqBnc1kdZceNbCqaLUcvIvptPOYO6yFfF5eUgtS842bR1oMoZWOJ8b3aIyk1Xb7+/fZEpHkKNWSgTp06+O233zBjxgxUrVoV27Ztw7fffouLFy/C3FyzRhVnnPsDJq17w7zveEhFmci8egxZQbLRjVbjliDt6DZIntxCbnICUvesgHGL7jCs1xI5ca+Qun8VpKlJxVsBNRjfqDIWn3uAYQcuw1RogOG+PmjiLkvGNF97DHNa1kT7Co7/+Dmj/Spg8fkHGLTvEowN9NG7ujt6V3dXc/TqkXJkJyy6DYbN6JmQZmYg9fSfED29BwAoPW8dEvesRea9q8hJjEPC+sUw79Qfpk3aI/tNLBI2/oLcZNnI2tST+2HRdRBsv5sDqViE9Csn5Ul3bRO1cjnKT5gEjxWrkZOehtjNG5F49TIAoOrRk3ixcD7iT51AwsXz0DUyQpm+AyAoWQIZISEI+n4MspNk++TF3FmwH/Md3JcsA6RSJF67gqjVK4uxZoU3rm8X/LR5H0bOXw5TYyMM69oGjWtVAQC0GjkNs0b0QbuGdb7ocwwPHMPMVdsglkhQq6In5o3uBx0tu9AEAOPq+2DxpScYfugGTAUGGFHbE41d7QAALTafweymVdHe2wGNXe0wpVFlbL4XjNepmXC2NsOqDnVgZ26Mp68S8Do1E69TM9Fi8xmFz1/f2Rc1ymnXqOrRg/th2dpN+GHGPJgaG2NAz25oULc2AKDLgOGY/N1ItGrSCCbGxlg8YzKWrt2IY2fPw6V8efw8awqMDPNv7UxMSoaZqXZNbVUQI2NTjJu+DNvXLcbls0dgX94V42cuh9BQdvv3nevnsHnlPGw7cu+LPm/4uPnYtXEJFk0dCoHQEE1bd0PTNt3VWQWVi9+7Cbb9RqHM5EXIzcxAwpHdyLh/CwBQfvkuvN20DGnXZdNI6JlbfnJ6luTTh6FjIECJYT9CV2iIjId38G7HmiKrR1FoGn0DjwdPQfSOw8hOTce9jsNRcfVcOAz5FilPg3Cv/TDk5J2QJt1+hGejZsF99ncwsLZA3LkbeDJCc6YI/FrGxiaYPmch1q1ahrOnj6O8ozNmzlsMw7xj5/rVS1i57BccOSkbCFK/YWO8ffMaa1ctQ1aWBHV9G6D/oOEAACNjY8xe8DM2r1+DH78fCSMjY7Ro1RadumrPsTOhZW0sPH4DQ7aehKlQgJHfVENTb0cAQJMlezGvU310qPrPfdHvmtaADoCJ+y8iMysbTbwcMbn1P/9+a6LhQwZj5Zq1mDR1OkxMjNG3dy/4+dYDAPTs2w8//vA9mjdrChNjY8ybPQsrV6/GydNn4OToiPlzZ8PQ0BAJCYnwD5CNrO47YJDC57/fXpsk/rEF1r1GoNSP85GbmYGko/uQ+fA2AMD+122I27oC6bdkx4yeucUnp2dJPLITUkhhO3widAWGyHh4Gwn7NhZZPVRpfJ9OWLz1AEYsXAVTYyMM79IKjWvKRlC3HD0Ts4f1QruGtXHx7mOIJVkYMGupwvZt69fCnBG9UcnNCdMGdce6gyeRkpaBOhU9MX2Idlxw+5jQyBSdR67HuX2z8eTGAdjaeaDzqA0QCGXT5gXdP4nTu6Ziwuqgf/wsgaEJuo7ZhAsH5mPnT51hZGaFxl2nwbWydh07w4YOwarVazB5ylSYmJigb5/e8PP1BQD06tMX48f9gObNmsnakzmzsWLVapw6fVrWnsybC0PDr38WjSYb16s9Fm87iOGL18HU2BAjOjVH45qyqSJbfDcPs4d2R/v6NXHh7ycQS7LQf+4Khe3b+tXA2G9b43HencltxinOef9+eyLSPDpS6dcPeX3z5g0mTpyIZs2aoUePHhg4cCD+/vtv6OnpYc6cOejWrVuhgklYMLxQ2/2/sp6xHukbZxR3GBrFZOgCxI7rWdxhaBS7ZXtxz087T/DUoeb120h5cK64w9Ao5tWaIW31pOIOQ6OYjv4FrwIfFXcYGqWMZxXcCkj554L/IXW9zPFiQNviDkOjOG87jhMGHv9c8D+kTVYQAsK0a7o1dfNyKQvR/l+KOwyNYth9EsJDg4s7DI3h6OqOiGEdizsMjVJ+wxGk/n26uMPQKGY1WmLj+eKOQrMMbQq8DAst7jA0ipOLK9LuHCvuMDSKae12xR2C1vEP1a5pYjWBd94guf9HhRpZXqpUKezYsUP+fufOnQgNDYW5uTlKlSolX378+HE0btwYxsbGBX0MERERERERERERUbGRQvvu8ib1UckjeHV0dODm5qaQKAeAWbNmIT7+/+sBmURERERERERERET0/0clyfJPKcQML0RERERERERERERERU6tyXIiIiIiIiIiIiIiIm3AZDkRERERERERERER/ecxWU5ERERERERERERE/3n6xR0AERERERERERERUXGQQqe4QyANwpHlRERERERERERERPSfV6hk+b1795Cdna20XCKR4Pz58/L3vr6+MDIyKnx0RERERERERERERERFoFDJ8n79+iElJUVpeUhICMaPHy9/v2rVKtja2hY+OiIiIiIiIiIiIiKiIvDFc5bv2bMH8+bNg46ODqRSKXx9fQssV69ePZUFR0RERERERERERERUFL44Wd6rVy+4ubkhNzcX/fv3x4oVK2BhYSFfr6OjAyMjI7i7u6slUCIiIiIiIiIiIiIidfniZHmzZs2wa9culCpVCp06dULdunVhamqqztiIiIiIiIiIiIiI1EYKneIOgTTIF89ZHhcXh5CQEADAkSNHIJFI1BYUEREREREREREREVFR+uKR5W3btsWQIUOgoyO72vKpOcsBICAg4N9HRkRERERERERERERURL44WT5//nz07t0bKSkp6NevH1auXKkwZzkRERERERERERERkbb64mQ5AHh6egIAduzYgWrVqkFf/6s2JyIiIiIiIiIiIiLSSIXKdh8+fBiHDx/+orKLFy8uzH9BRERERERERERERFRkvvgBnx+ysLDA8ePHERISAhMTE1hZWeH169c4fPgw0tLSVB0jERERERERERERkcpJpTp8feXr/1mhRpZHRUVh0KBBGDdunMLyrVu34s6dOxxNTkRERERERERERERapVAjy2/evImOHTsqLW/UqBFu3br1b2MiIiIiIiIiIiIiIipShUqWOzo64tChQwrLpFIpdu7cKX8IKBERERERERERERGRtijUNCzTp0/H8OHDcfbsWXh4eAAAnj17htzcXGzYsEGlARIRERERERERERERqVuhkuU1atTA2bNncfLkSbx48QJisRi9evVC48aN4ezsrOoYiYiIiIiIiIiIiIjUqlDTsNy/fx8dO3aEm5sbRo4ciatXr2L9+vVo3749Tp06peoYiYiIiIiIiIiIiFQuFzp8feXr/1mhkuWLFi1C69atUblyZRw4cABCoRA3btzA/PnzsWLFClXHSERERERERERERESkVoVKloeEhKB///4wMjLCxYsX0bx5cwgEAtSqVQuxsbGqjpGIiIiIiIiIiIiISK0KlSy3tbVFaGgoQkND4e/vj2+++QYAcPPmTZQpU0alARIRERERERERERERqVuhHvA5YMAAjB49Grq6uqhYsSJq1aqFdevWYdWqVVi8eLGqYyQiIiIiIiIiIiIiUqtCJcv79euHmjVrIiYmBn5+fgCAOnXqoFGjRvD09FRpgERERERERERERERE6laoZDkAeHl5wcvLS/6+SpUqqoiHiIiIiIiIiIiIqEhIoVPcIZAGKdSc5URERERERERERERE/0+YLCciIiIiIiIiIiKi/zwmy4mIiIiIiIiIiIjoP4/JciIiIiIiIiIiIiL6z2OynIiIiIiIiIiIiIj+8/RV/YEJCQmwtrZW9ccSERERERERERERqZRUqlPcIZAGKdTIci8vLyQkJCgtj4mJQZMmTf51UERERERERERERERERUlHKpVKv6TgkSNHcOjQIQDA3bt3UbVqVRgYGCiUefv2LXJzc3H27FnVR0pERERERERERESkQg+C44s7BK1Tzd2muENQmy+ehqVZs2aIjo4GIEuWV6lSBSYmJgpljI2N0axZs0IHIzq7tdDb/j8ybD4Qogs7ijsMjWLYpB8yL+8t7jA0ilGjnhDt/bm4w9AYhj0n42VYaHGHoVGcXFxx9rGkuMPQKM0rC/A68GFxh6FRSntWRdLDi8UdhkaxrNqY++QjllUbIyAsprjD0CheLmVxwsCjuMPQKG2ygnAvKKm4w9AoNT0sERv0pLjD0Bh2HpWQ+vfp4g5Do5jVaInw0ODiDkOjOLq6I+Hp9eIOQ6NYV/RDZEhAcYehURzcvLhPPuLg5lXcIRBptS9OlpuYmGDMmDEAgLJly6J169YQCoVqC4yIiIiIiIiIiIiIqKgU6gGfnTp1QkREBJ49e4asrCyl9R07dvy3cRERERERERERERERFZlCJcs3bdqEX3/9FRYWFkpTsejo6DBZTkRERERERERERBpPCp3iDoE0SKGS5Vu2bMHEiRMxePBgVcdDRERERERERERERFTkdAuzkVgsRvPmzVUdCxERERERERERERFRsShUsrxdu3bYs2cPpFKpquMhIiIiIiIiIiIiIipyhZqGJS0tDX/++SeOHz+OcuXKwcDAQGH9jh07VBIcEREREREREREREVFRKFSy3NHRESNGjFB1LERERERERERERERExaJQyfIxY8aoOg4iIiIiIiIiIiKiIiWV6hR3CKRBCjVnOQAcPXoUnTt3Ro0aNRAVFYWFCxdiw4YNqoyNiIiIiIiIiIiIiKhIFCpZvmfPHvzyyy/o3LkzsrKyAAAVKlTA5s2bsWrVKpUGSERERERERERERESkboVKlu/cuRMLFixAnz59oKsr+4gOHTrgl19+wR9//KHSAImIiIiIiIiIiIiI1K1QyfLY2Fi4uLgoLbe3t0dSUtK/jYmIiIiIiIiIiIiIqEgVKlleuXJlHDlyRGGZVCrFli1bUKlSJVXERURERERERERERERUZPQLs9GMGTMwbNgwXL58GRKJBHPnzkV4eDhEIhE2btyo6hiJiIiIiIiIiIiIVE4KneIOgTRIoZLl7u7uOHPmDI4ePYoXL14gJycHTZo0Qfv27WFiYqLqGImIiIiIiIiIiIiI1KpQyXIAEAqF6NatmypjISIiIiIiIiIiIiIqFoVKlv/9999YsGABXrx4gaysLKX1AQEB/zowIiIiIiIiIiIiIqKiUqhk+fTp0+Hm5obx48fD0NBQ1TERERERERERERERERWpQiXL3759i3Xr1sHJyUnV8RARERERERERERERFTndwmzUrl07nDhxQtWxEBERERERERERERUZqVSHr698/T8r1MjyIUOGoGvXrjh06BDKli0LHR3FnbRjxw6VBEdEREREREREREREVBQKlSyfMGECrK2t0bRpU85ZTkRERERERERERERar1DJ8qCgIBw6dAguLi6qjoeIiIiIiIiIiIiIqMgVas7y6tWrIywsTNWxEBEREREREREREREVi0KNLPfz88O0adNw9uxZ2NvbQ09PT2H9mDFjVBIcEREREREREREREVFRKFSy/NKlS/Dy8sKbN2/w5s0bhXUfP+yTiIiIiIiIiIiISBPlFncApFEKlSzfuXOnquMgIiIiIiIiIiIiIio2hZqzHACioqLw888/Y9SoUXj79i3+/PNP3L9/X5WxEREREREREREREREViUIly+/du4f27dsjJiYG165dg1gsxosXL9C/f3+cPXtW1TESEREREREREREREalVoZLlS5YswY8//ogVK1ZAX182k8ukSZMwYcIErFixQqUBEhERERERERERERGpW6GS5cHBwWjYsKHS8iZNmiAyMvJfB0VEREREREREREREVJQK9YDPsmXL4unTp7C3t1dYfvnyZZQtW1YlgRERERERERERERGpk1SqU9whkAYpVLL8hx9+wJQpU/D06VPk5OTgyJEjiI6OxokTJ/DLL7+oOkYiIiIiIiIiIiIiIrUqVLK8WbNmsLe3x5YtW+Dm5oYLFy7AyckJu3fvRuXKlVUd478izsrGogNnceFxEIQG+ujXuBb6N6ldYNkT955j3anreJOUCs9ypTCxcxNUdLQDAOTk5mLlsas4eucpMiVZ8PN2xpSuzWBjblKU1VEJcVY2Fu07jQuPAmX7pGkd9G9ap8CyJ+4+w7qT1/AmMUW2T7o1Q0VH5bsHNp66jsh3iZjfr526w1cLcVYWFu89ifMP/GFoYIB+zeuhX7N6BZa9+jQYq45cQNS7BJSztcLoDo3RqLInAEAqlWLd8cs4fP0BMiVZqOvlgik9W8PaTEu/Jydv4YJ/BIQGeuhXrwL616v42W1iElPRZc1hrOzVDDWdygAAMiRZWHL6Di4ERCBXKkVzb0dMaFEbxkKDoqiGSkkkEqxaswY3btyEQCBA1y6d0aVz5wLLhoaFYeXKVQiPiICDgwO+GzMabm5uAGTfkz/+/BMnTp5CakoK3N3dMXLkCJR3cCjK6qhM1MsA7N84H7GRIShj74LuQ2fCwdmnwLJZWRKc2LcS92+chFicCTfvmug6aCqsbEoDAB7fvYBNv/6gsE2V2s0w+Mel6q6GyoglEvy+fguu3roLgUCAHh3bonvHtgWWDX7xEkvXbMKLiCg4OpTDjyOHwMPVGYDse7Jt3584ce4SMkVi1KxSET8MHwRLC/OirI5KiCVZWLJlHy7dfQihwAC92zZD77ZNP7vNo8BQzF2zDYdXLJAvq91jZIFlZ4/qj9YNCv4d01TcJwV7ERaCtSuXISLiJRwcHDFizDi4url/svzRI3/iyMH9yMjIgG/9Rhg2YiyEhoYAgNs3r+GnBbMVytf1bYDJ0+eoswoqpyswgN+dQ3j2/XwkXL1bYBnzKl6osHouzCu4I9U/FE9Hz0bKg+fy9Xbd28B97g8wLFMC785ex5MRM5EVn1hUVVC58LAgbF37M6LCQ1HWwRmDRk2Gk6vXP263adUiWFmXQJdeQ+XLXsdGYfv6JQgOeAJTU3M0a9sNbTv3VWf4KiWRSPD7uk24eusOhAIBundsj287FdwfDwl7iaVrN+BleCQcHewxbtRQeLi6AAC+ad+twG2m/DAGLRorT7+pycSSLPy87Q9cvPcEQoEB+rb+Bn3aNC6w7PWHz7HmwAlEvXmHsiVtMLJbGzSsnt/fPX3zPtb+cQJxSSmoW8kTM4b0gKWZaVFVRWVkfdh1uH7zJoQCAbp07oSunTsVWDY0LAwrVq1BeEQ4yjs44LvRo+Hm5gpA1jc58OdBnDh1CqkpqXB3d8OoEcO1sg8rlmTh1027cPn2fQgFAvRq3wK92rf47DaPA0Iwb+UmHFzzs3xZTk4u1u89hBOXb0AkEqNO1Yr4cXAvWFtaqLsKKieRSLBy7Xpcu3kLQoEQXTt1QLfOHQssGxr2AstXr8XLiAiUd3DA96NHwN3VVancles3sOCnJTh3/Ih6g1cDVe2PnJwcbN25G2fPX4RILELN6tUwZvgwWFlZFl1liOirFGrOcgDw9PTEL7/8goMHD+LIkSOYOXMmKlWqpMrYVGLpkYvwj3yFjWN7Ytq3zbH+9A2cexioVO5BaBTm7DmJ4a18cWjaEFR2KovRaw8gQywBAGw5dxtnHvhjyaAO2PVjPySnZ2LazmNFXR2VWHrogmyffN8b03q0xPqT13DuQYBSuQehkZiz6ziGt/LDoZnDUNm5HEav3o8MkUSh3Kl7z7H2xNWiCl8tlv15Dv4Rsdg4vj+m9WqD9ccv49z950rlgqNf48d1+9HRtyr2zxiBLvVrYML6AwiKeg0AOHjtPo7ceIhFg7tg64SBeJecink7jxZ1dVRi6bl78I+Nw8b+LTGtTV2sv/wI556//Ow2C0/cRGZWtsKyJafv4HlsHNb1bYGN/VriWUwcfj1zR52hq82mzZsREhKKnxYvwpjRo7B79x5cu35dqZxIJMLMWbNRoYIPVi7/Hd5eXpg1Zw5EIhEA4OTJUzh48BBGjRiBFcuXo1SpUpg5c5Z8vTYRizKwbvEouHhWw6Sf9sPJvQrWLR4NsSijwPInD6zG47sX0O+7nzBu/k7k5GRj06/jIJVKAQCvo8NQoXojLNxwSf7qOWJOEdbo31u7bTeCQl9g2fyZGDd8ELbtO4jLN24rlcsUiTB53s+o5OOJDUsXo4KnO6bM/xmZed+DY2cu4MS5S5gxfgxWLp6DuMRE/LJqfVFXRyVW7j6EgBcRWD3zB0wa1BObDp7AhdsPPlk+NDIGU5dthDRXqrD85LqfFF592zVHGVtrNKihWRfqvwT3iTKRKBPzZ02Fd4WK+G35Onh6+WDBnKkQiTILLH/z+lXs270dI8eMx/zFvyE40B/bt+QfI1GREahZuy627vpT/hr9/YSiqo5K6AoFqLprKcwqfPqCgZ6xEWoe3YDE63/jeu3OSLz1EDX/Wg89YyMAgEXNiqi0YSFCFqzCDb/uMLAyR+XNi4uqCionEmViybxx8PCujPnLtsPNqyJ+nTf+k9+T944f3InLZ/9SWJabm4tf54+HmbkVFv6+AwNHTcZfB7bi5pUz6qyCSq3buhNBoS+wdMFs/DBiCLbv+wNXbtxSKpcpEmHKvEWo5O2F9ct+ho+XO6bOWyz/zTm4fYPCq0fnDihVsgR8a9co6ir9a8v3/oWAl1FYN200pgzoio2HTuP8nUdK5UIiYzDx981o37A29iyahM6NfTF5+VYER8QAAJ6FRWD+xr0Y2rklts0dh5T0TMxZt7uIa6MaGzdvRXBoCH5etABjRo3E7j17ce36DaVyIpEIM2fPRQUfb6z6XdaHnTlnrryPeuLUaRw8dBijRgzHyuXLULpUKcyYNUcr+7Crdh5AYFg4Vs2ZiAlD+2DzH0dx8dbfnywfGhGNab+tQa5U8Xd455GTOHfjLhaMH4FNi2cgJS0dc1dsUnf4arFhyzYEh4RhycL5GDtyOHbt3Y+r128qlcsUiTB9znxU8PHG6t9/g7enJ2bMWSBvT95LS0vDmvXauS8A1e2PfX8ewuWr1zBjykSs/G0JUlPT8NPSZUVdHSL6CoVKlr958wbjxo1DQEAAxGIx+vTpA19fXzRu3BiBgcqJ6OKSIZbg8K0nmNS1KbzsS6NJZQ8MaFIb+67eVyobl5qOYS190bZmBZSztcTwlr5IzhAh7FUcANkV4wmdm6C6qwNcytiiV6MaeBQWXdRV+tcyxBIcvvkIk7o1h5dDGTSp4okBzepi3xXljkFcSjqGtfJD29oVUc7WCsNb10dyeibCXr8DAGTn5GLB3lOYves4ytlaFXVVVCZTLMHhGw8w8duW8HKwQ+OqXhjQ3Bf7LiuP3jp19ylqeTihV+M6cChpgx7f1EJNDyeczUusX38WghY1fFDD3RGuZUthQHNf3Al8UdRV+tcyJFk4/CAYk1rWgZedLZp4OWKAb0Xsu6t8UeW9E0/CkC7OUlpuoKeLqa3rwtvOFl52tuhQ1Q0PI9+qM3y1EIlEOH3mLEYMHwY3V1f41quHrl274uix40plr1y9CqFQgCGDB8PBwQEjhg+DkZExrl67BgA4d/48unTpjNq1a6FcubIYO2Y0UlJT4e//6f2rqR7cPAMDgRAd+/6I0uWc0WXAZBgameDh7bMFlr9z+S+07fkd3Lxrokw5F/QcPgeRYc/w7rXs4dCvo1+gjL0rzC1t5S9jE+0ZSZ0pEuHEuYsYO6Q/3F2c0KBuLfTs3A6HTyonXi5evwWhQICRA/rA0b4sxg7pDyMjI3li/fb9h2hcvy6qVPCGc3l79OzUHg+ePCvqKv1rmSIxjl68gfH9v4WnkwMa1aqCvu2a4c8zlwssf+j8NQydtQTWFmZK62wsLeQvsSQLB05fwrThfWCalxTUFtwnBbt+9TIEQiEGDB4Be4fyGDx8NIyMjHHj2pUCyx//6yDadeiCmrXrws3dEyPHjsf5c6chzjs5jY6KhEN5J1hZW8tfpqbaMyLU1MsF9W4cgLHL50dslvm2NXIzxQiY/AvSAl/Af/xC5KSmo0zXlgAAx1F9EPvnKcTs+gupT4PwaMAklGzVEEaO5YqiGip359o5CARC9Bz4HcraO6HvkPEwNDLG3RsXCiyfkZGG5T9NwbGDO2BjW0phXXJSAso7uWPgyEkobeeAKjV84VOpJoL8HxdFVf412W/OBYwdOhDuLs6oX7c2enTugMMnTiuVvXRNNqJ4xMC+KG9fDmOGDISxkZE8sW5tZSV/icUSHDp+EhPHjICpiXbdHZkpEuOvS7fxY9/O8HSyxzc1K6Nv2yY4cO6aUtnTN++jprc7erRsCPvSJfBt8/qo4e2Gc3ceAgAOnL2GZrWrom39WnBzKIt5I/vgxuMAxLyNL+pq/SsikQinz57FyGHv+7B10a1rFxw9XlAf9hoEAgGGDh4EBwd7jBg2FEbGRrh6TTY45Nz5C+jSuRPq1KqFcmXLYuzoUUhJTcXzAO3qw2aKxDh64RrGDewJD+fyaFS7Gvp0aIk/T10ssPzhs5cxfPoiWBdwd19OTg6+H9ADVb094GRvh29bN8XjwFB1V0HlMkUinDp7HqOGDYabqwv86tXBt1064a/jJ5TKXrl6HQKBAMMGDUB5e3uMGjYYRkZGuPrRBZgNW7ajTJnSRVUFlVLl/sjNycGIIYNRqYIPyjvYo2P7tniuhed9RP8lhUqWz5kzBwkJCbC0tMShQ4cQHByMffv2oXHjxpg/f76qYyy04Ji3yM7JQRWn/JOBqi7l8DTiFXI/GpnVvKonhraQTbshkmRh16V7sDYzhksZWwDAiNZ+aFLZAwAQn5qOQzcfo4ab9t1uFhydt0+cP9wn9ngaHqu8T6p5YWgrPwB5++TiHVibmcCldAkAssR7SMxb7Jo4AJWdtfOECwCCol/L9olL/gNrq7g64NnLGOTm5iqUbVe3Cr7rpHybfFqm7MTcwsQI156G4E1iCkSSLJy69xSe9mXUWwE1CH6dgOycXFSxLylfVtWhFJ7GvFP6ngBAUoYIy87dw8x2vkrrprWph6oOspPTmMRUnHr6AjUcta/T9OLFC2RnZ8PbK/82bx8fbwQFBSl9TwIDA+Hj7QMdHdlDQnR0dODt7YWAvIuJQ4YMxjfffCMvr6OjA6lUivSM9CKoiWqFhzyGs2c1hbo6eVRBeLByoiE3Nxf9xi6GZ6W6SutEGWkAgNcxL1DSrrx6g1ajsJcRyMnOQQVPD/myil4e8A8OVfqe+AeFoKKXh8K+q+jljudBIQAAczMz3Pr7Id7FJ0AsluDCtRtwdXYssrqoSkhENLJzclDJw1m+rLKHK56HhivtEwC49eg5Zo3qj56tm3z2c9cfOIYaFTxQq+I/T72gabhPChYU6A8v7woKx4SndwUEBforlc3JyUFoSBB8KuTf1ejh6Y3srCy8fBkGAIiKDIddWe3tn1g3qIX4y3dww6/7Z8tZ1a6MhJuKA0ESbj2AZZ0qAADLWpWRcC1/UIQo+jUyI2NhVVv77j4AgNCgZ/DwrqzwPXH3qoyQwKcFln/3JhZZEgkWLNuOEqUVpxK0srbF2EkLYWRsAqlUimD/xwh8/hBeFaupvR6qEPYyAtnZOfDxzL/zoKK3JwKCQwr4zQlGBW9Phf1WwcsDzwODlT536579qFapIqpX0by7hv9JcGQssnNyUNndSb6siocznodGKO2TtvVrYUwP5Slr0jJk/fpnoeGo6ukiX17axgqlbazwNDRcPcGrSdiLl3l9WE/5Mh9vbwQGBSvtk4DAIPj4eCt8T3y88vuwQwcPRONvGsnLv+/DZqQXfEehpgoJj0JOdg4qeuRPG1LZ0w3PQ18U+Dt8++FTzBwzGD3aNlNaN/jbDmhUW9ZmJCSn4OiFq6jm46FUTtO9eBmu9D2p4O2FwALak4CgIFTw9lL8nnh7IiAwSF7m8dNnePz0GXp927VoKqBiqtwffXv1gF892dR4iUlJOHXmHCpVqFBENSGiwijUnOW3b9/GoUOHUKZMGZw/fx5NmjRB5cqVYW1tjbZtC56XtTjEpaTB0sQYBvp68mU2ZiYQZ2UjKT0T1mbGStvcCQrHiNX7IYUUi/u1h7FQoLB+zYlrWH/6BsyNDbF9XB+110HV4lLSYGn6qX2SUeDc2ncCX2LEyr2yfTKgI4wNZfvE3NgQ2yf0L7LY1SUu+f0+yT8cbMxNP/ie5O8T5zIlFLYNjX2Lu4Ev0K2B7BbVYW0a4vvVe9FiylLo6erA1sIMOyYPLpqKqFBcWiYsjQ0VvyemRhBn5yApUwRrE8URi7+euYv2lV3hWvLTdxjMOHwVxx6Hws7SFMMbVlFX6GqTkJAICwtzGBjkz7VuZWkJiUSClNRUWFpYKJQtX17xYpqVpSXCIyIAABV8FOfzPn36DHJzcuDj7a3GGqhHSmIcStu7KCwzt7BBbJTyiBpdXV2lRPnlk7tgamYFu/LukEqleBsbjoBHN3H28CZIc3NQpU5ztOk+Bvr62jHHfXxiEizMzWBgkN+eyL4nWUhJTVOYbzw+MQlO9oqJPCtLC7yMkN211L97Z0xduARdB42Cnq4urK0sseYXzbkg/aXikpJhYWaq0MZaW5pBnJWF5LR0WJkrjpZeMmEEAOD4ZeVpBN57HZeAszfuYeO8ieoJWs24TwqWmBAPh/KOCsssLa0QGaE8BVh6ehokEgmsbWzly/T09GBmboH4uHeQSqWIiY7Gowf3cHD/HuTk5sC3fkP07DNQoR3XZJHr935ROWHpEkj1V2xzJW/iYeYje06GYZmSEMcq3tElfhsPw7Lad+EaAJIS41HWwVlhmYWlNaIiwwosX97JHRNm/fNzL34Y0hHx716jak0/1Kr7zT+W1wTxiYl5vzkf9k0s8n5zPuqbJCbB0eHj3xxLvIyMVFj25t07XLh6HSt/Xqje4NUkLikZlmYmiv16i/ftawaszPPvLnH66BgIi36Fe8+D0aVJvbzPSkEJK8V5p60tzPA2IUl9FVCDhMQEWJh/YR82MUFp/nFLSytEfKIPe+rMWa3sw8YnJcHC3FShv2ZtaQ6JJAvJqemw+uhOrp8njwUAnLikPP3iexv3H8GWP47BzNQYGxZMVU/gapSQoPw9sbT62nMdWXsiycrC76vWYOzIYQrHojZR5f54b/vuvdi1dz/MTE2xbIn2Tof2/0oKneIOgTRIoUaWC4VCiMViJCcn486dO2jUqBEAIDo6GhYWmvMgi0xJNgQfJPsAQJDXWGdlZxe0CVzLlMDeSQMwqnV9zNx9Ak9exiisb1urAvZM7I86Ho4YsXo/0jLF6gleTTIlWcr7xED2Pis7p8BtXO1KYO+UQRjVtiFm7jymtE+0nUiSJf9evPd+H33qewIAiWnpmLBuP6q4OKBR3l0HsfFJMBQYYMXontj040CUsjTH7O1/ffIzNFVmVjYE+orNg0BP9j4rW/FK+u2wGDyMfINh/5AAH+hbETsHt4WdhSlG7T5b4Ah1TSYSi2HwUcL2fecpK0tx+hmxWKyUjDEwMFAqB8hGoW/YtAldunSBtbW1iqNWP4lEBH0DxYuK+gYCZGdLPrFFvif3LuLise1o1+t76OsbIDHuFSTiTOgbGGDQuF/Rse8E/H39BI7s/E1d4aucqIC/vSDvREzyJd8T/fzvyeu372AoEGDxjIlYvmg2Stja4OeV69QYvXqIxFnyffDe+zZXkvXpNvZzjl66AS/n8qjg5vTPhTUQ90nBZMeEYnvyqbZTLBbL1xdU/t3bNxCLZe3ThKmzMHDICFy5dAHbN2vnvP+fo2dshFyxYpubK5ZAN2/Ah56x4WfXaxuxWKT0d9c3MEB2Ad+Tr/H9lJ/w48zfEPEyGLs2//6vPquoiMViCAo4BgAg66O2pKDfJwMDfaVyJ89dhLurC7w93NQQsfqJxFlKyTkDg39uX5NS0zDp9y2o7O4kf8CnSCwp4BxBv9DtdHH5VL8U+NI+rL5SHwYAAgODsGHTZnTt0hnW1to1JWdBf1v5PskuXFvSskFdbPlpJmpW9Mb385ciPePzz1HQNAX3YQv+nhTcnuT/Xu/edwCuLi6oUa2qGiNWL1Xuj/eaftMIq5b9iqpVKmHqzDlIz9CuOzKI/ksKdZmvadOm+OGHH2BoaAgLCws0atQIJ0+exKJFi9CpU8FP1S4OQgN9SD5KAEvykp+GgoJHFdmYm8DG3ASe5UrhSXgs/rj+EJWc8m/ZdCgh6wgs6NsWzWeuxoXHQehQR3tuUSxwn2TJ3n96n5jCxtwUnval8eRlDP649kBhn2g7gYG+/Hvx3vt99Kl9Ep+ShhG/70CuVIolw7+Frq4upFIpZm49jHFdmqNBJVny/Jdh3dBq2jI8fRmNik7acyu4UF8Pko+S4pIc2XvDDxI8oqxszD9+E9Pa1FVYXhCXvFHnv3T7Bk1/24f7Ea9R00l7pqgRCAyUOs/vO0CGQqHCcgOBcucoKysLwo/K+QcEYOas2ahZowb69dWOO1XOHNqIs4c3yt87ulVCdpZiEiY7SwKB4PPzJT++ewHbfp+IBi17ol6TLgAA6xJ2+GnLdRibmENHRwflHD0hzc3FjpVT0bn/ROjq6n32MzWBQCBQ+tu/P6n++HsiMFAum5Ut+55IpVIs+n0NRg7ojXo1qwMA5k78Ht8OHQv/oBCtSmIIBcqJBflvcSGTdRfvPETnpvX/dWzFhftE5o/9u3Fwf/7D8tw8vJD1UXtSUNsJyI619+sLKl+yVGns3H8EpqZm0NHRgbOLK3Jzpfj910UYOHQk9PQ0vz35UrkisVLiW1coQE7eVBI5n1qfqR2JnL8ObMPRP7fJ37u4+yj93bOzsiAQGv6r/8fZTTZ9UZZEjDW/zUavgd9BX8PvQhAYCJSSmO/3jfCjv7mgwL5JtlKbc+XGbbRv1VwN0RYNoUBfabBLlvx3+BP9+uQUjF68BlKpFD9/Pwi6urIBIgKBQQHnCMr7TNMV2N+Qf0++oG+Sla3Uh/EPCMSM2XNQs0Z19OvTWw1Rq5fAQPlvK98ngsL9fe3LyKadnDV2CDoMn4DLd+6jzTd+/y7QIlRwH/YT35MCyr7//X0ZHoGTp89iw6rl6g1YzVS1Pz5U1k527jt5/A/oOWAwrt+8hRZNPz/FHhEVj0Ily+fMmYNdu3YhJiYG3bt3h1AohEQiwYgRI9C7t+b8WJa0MEVSegayc3KhnzcqNi4lHYYG+jAzUuxQP4t4BT1dHXjZ59+O51LaFmGvZQ/4vPIsFJ7lSqGUpeyWLKGBPsraWCIpXTtONN4raWGGpLSP90lawfskPFa2TxzyE5of7pP/FyUt3++THOjnnTzHf2KfAMCbxBQMW7YdALDpxwHyaVoSU9PxOjEF7vb5D48qbW0BS1NjxMYnaVWyvKSZMZIyRIrfk7RMGOrrwcwwvwP5LOYdohNT8eN+xYfhjN59Fu0qu2JKqzq4EhyFOs52MM3bzsbUCBZGQiRlKD4tXdPZ2tggOTkFOTk58iRLYmIihEIhTD56+JWtjQ0SEhMVliUmJimMHH/85Almz5mLatWqYsrkSfITM03n1/xbVKvXQv7+3JEtSElSbBNSkuJhYWX78aZy92+cwo5V0+DXrBu6DJissM7EVPHupFLlnJGVJUZ6WjLMzDV/5H0Jayskp6QqtCcJiUkQCgQwNVGc+svWxgoJSUkKyxISk2FjbYmk5BS8jYuHi1P+/O0lS9jCwtwMr9/FaVWyvISVJZJT0xTb2KQUCAUGMCvEQyjfxCXgZfQrNKihnfMtA9wn77Vs3Q5+9RvJ3x/6Yy8SP2o7kxITYGVto7StmZk5BAIBEhMTUM5edutzTk4OUlOS5eXNzBQfxGbv4ACJRIK0tFRYWFiqtjLFSBT7BsLSim2usLQtRK9lU6+IYgpYX8oW4lfviizGf6NJq06o7ZefTDh+aCeSExUfsJiUGA9LK+XvyT9JToxHSNAz1KjTUL6srL0TsrOzkJmZDjMDy0LHXRRsbayRnJKq0DfJ/835qG9ibY2ExCSFZQmJSbC2yh8R/PZdHCKiouFbu4baY1eXElaWSEpN/6h9Tf1k+/o2IQkjFq0GAKyfMVZhmpaSVhaIT0pRKB+flAJbS+158DgA2NjYIDkl5aPvSSKEQuXviY2NjVI7nJiUqDBy/PGTp5g1dx6qV62KqZMmak0f9kOy/lpBv8MCmJkoT9X6Odf/fgx3JweUtJHtI6HAAHalSiApJU3lcauTbQHfk8TEpAK/J7Y21gWe69hYW+H6zVtISU1Fv6GyKeTez+/drmsP/DB6JJp80xDaQFX7AwBu370HV2dn2NrKfqcEAgHKlCqNlJTUIqgJERVGoX7Z9PX1MWDAAEyfPh2urrKHYnTs2BF9+vRB9memrShqHuVKQV9PD0/C86cNefgiGj7ly0BXV3E+osO3HmP50SsKy/yjXsO5tKxBW3r4Io7ffSZfly4SI/JdApxKfX3HvDh52Oftkw+mUnkYFgWf8nbK++TmIyz/67LCMtk++XQSTBt52JeGvp4enr6Mli97GBoJH8eySp2/TLEEo1fsgq6ODjb/OAAlP+gsm5sYQaCvhxex+SefiWnpSE7LRFlb7bo10aO0DfT1dPEkOn+O04eRb+BTtoTC96RC2RI4NrYrDozoKH8BwOz2fhj1jeyhjzMOX8W1kCj5Nq+S0pCUIYJTCcuiqo5KODs7Q19fX/6AIwB49twf7m5uSt8TT09PBPgHQCqVTTUjlUrx3N8fXh6yB8SEh4dj7tx5qFGjOqZPnQp9LZrLz8TUAiVKO8hfTu6V8TL4sUJdXwQ9hKNbwXfcBD29jR2rpqFBix7oNmiawrqARzcweZAfJOL8i5Ax4YEwMbPUikQ5ALg6O0JPXw/+eQ/pBICnAYHwdHNR+p54e7jhWWCwwr57FhAEb3c3mJmZQmBggIio/LY6KSUFKampKFOqJLSJu6M99PX08Cwkf97px4Fh8HZxLNQJ9rPQcJSysUJpW+34ThSE+0TGzMwcZezKyl8eXj4I8n+ucEwE+D+Dh4fyA0t1dXXh6uaBgOf5D3UMDHgOfX19ODm54OH9e+jbvSPEovwLsy/CwmBmbv5/lSgHgMQ7j2FVR/FWd6u61ZB0R/ag5aS7j2HlW12+zrBcaRjZl0HiHeUHMWsiUzMLlLazl7/cPCogJPCJwvckOOAJXD2+/mFp797EYvniyUiIz+/vvAwLhLmFFczMLVVVBbVxdXaEvr4e/IPyH9L51D8QHgX+5rjjudJvTiC8PfIfDhoQHIKStjYoVULxGT3axKN8WVn7+sFDOB8Fv4CPs4Nyv14kxtif10FXRwcbZoxVmp+8gqsjHgW/kL9/HZ+INwlJqOjqqM4qqJyLs5NSH/a5f8F9WC9PD/gHBH7Uhw2Ap+f7PmwE5sybj5rVq2P61Mla1Yf9kLuTPfT09fD8g7/v44AQeLl+/e/wyh0HcOrKTfn79MxMRMW+hmM57bmDFgBcnN5/T/If0vmpcx0vDw/4BwQpfk8CAuDp4YEO7dpgy7rVWLdiGdatWIbxY0cDANatWIa6tWsVXYX+JVXtDwDYsGUbzl28JC+fkZGJ6NgYONhrz2A6ov+aQiXL4+LisHDhQgwcOBD9+vVDv3790LdvX/To0QP16tVTdYyFZiQwQLtaFbBg/xk8i3iFi4+DsePCXfRqKBstEZeSBpFEdrtMV98quBccgd2X7yHibQLWnLiGZxGv0LtRTQBA9wbVsO3CHVx7HobQV+8wbccx2Ntawc/b5ZP/vyYyEhigXe2KWLD3FJ6Fx+LioyDsOH8Hvb6R1TMu+YN94lcV94LCsfviXdk+OX4Fz8Jj0btxzeKsgsoZCQRoV7cyFuw+jmfhMbj4KAA7zt5Er8a1AQBxyanyfbLp1DVEv0vAvAEd5eviklORmimCvp4eOtSriqUHz+J+cDhCY95g+uZDqOhcDj7l7YqreoViJNBHu8quWHD8Jp7FvMPFgAjsuPkUvWrLHt4Tl5oBUVY2DA304WBjrvACZCPTbUyNoK+ni641PLDiwn08iHgN/9g4TPrzEhp5Onz2YaCayNDQEE2bNMHKVasRFByMmzdv4eChQ+jQoT0A2UNg3s+h6+fnh7T0dKxbvwERkZFYt34DRCIRGjSQTZGwYuUq2JYogeFDhyI5ORkJCQkK22uTKnWaITM9FQe3/YxX0WE4uO1nSMSZqFpXNvpcIhHJR57n5GRj99pZcPWujmYdByMlKU7+ys7OgpNHFQgEQuxZNxtvYl/i+cNrOLJzKZq2H1icVfwqhkIhWn7TEEvXbkJASBiu3b6H/UeOo2u7VgBkD/UU580d3KhebaSlZ2Dlpu0Ij4zGyk3bkSkW4xu/OtDX00PLJg2xZusuPH4egBcRUVi4dDW83d3g6er8uRA0jqFQgNYN6+DnTXvgHxaOK/ceYffxc+jeSvYAvfikZIgk/zzH/XsvomLhpGUnoB/jPilYPb8GSE9Pw+b1qxEVGY7N61dDLBLBt0EjALK5dBMTEuTlW7XtgCMHD+D2zesICQ7E+tW/o1nLNhAaGsLTywcCgQCrlv+KmOhI3L93B9u3rEOnLj2KqXaqJSxlC11D2e3drw+ehoGlObyXToeplwu8l06HnokRXv1xCgAQsX4vyvbuAPuBXWFW0QNVtv6CtycuIzM8+nP/hcaq6dsYGelp2LlpKWIiX2DnpqUQizNR268pAEAiFiHpo5Hnn+Ls5g1HF09sXLEAMZEv8OjvG9i7dSXadxugxhqojqFQiBaNG2Hpmo0IDAnF9dt3ceDIUXRp1waAbPTw+75FQ986SEtPx6pNWxEeGYVVm7ZCJBajkV/+g7dfRkShvJYnbwyFArSpXxOLthzA87AIXP77CXaeuIgeLWWjWeOSUuTt65aj5xD9Ng5zRvSWr4tLSkFa3lzTXZv64uT1ezhy+RZCImMwe+0u+FX1QdmS2jVYStaHbYwVq9fI+rC3buHPQ4fRsf37PmziB31YX1kfdsNGWR92w0aIRSI0rC+bTmT5qtWwLWGLYUMHIzk5BQkJiQrbawtDoRCtG9bDLxt2wD/0Ja7cfYA9x86ge2tZOxKfmAyR+Mt+h7u2bIzdR0/j5oMneBEVg7nLN6Fc6ZKoW7WiOqugcoaGQjRr/A2Wr16HoOAQ3Lh1G38c/gud2rcFoNie1Perh/T0dKzZsBkRkVFYs2EzRCIxGtb3hbmZGcralZG/bG1kF/LL2pWBcSHunisuqtofANC+TSv8cegI7tz7G+ERkfjpt2WwK1MGNatXK7b6EdHn6UjfX/76CsOGDUNkZCSaN2+OLVu2YODAgYiMjMS5c+cwZcoU9OvXr1DBiM5uLdR2n5MpycLC/Wdw/lEQTI2EGNCkNvrkJYYrj/0J83q3ls85fuVZKFYeu4LId4lwLWOLSV2aooqzrMOYmyvF1vO38cf1h0hMy0BdTydM694cJT96UrYqGTYfCNGFHSr/3ExJFhbuPYXzjwJhaijEgGZ10aex7Cpv5VELMa9vW3SoK7uV+8rTEKz86zIi3yXAtUwJTOrWHFVclDvRM3ccAwDM79dO5fF+yLBJP2Re3qvyz82USLBw9wlceOgPUyND9G9WD32ayk4eqgyfg7n9O6BDvaroOGslwt8on4C1q1sZ8wd0gjgrC6v/uojT955BnJWNOl7OmNyjtXyqFnUwatQTor0/q/xzMyXZWHjiJs77h8PUUIAB9SqiT10fAEDlOVswr0N9dKiqPBVE5TlbsKl/K/l85JLsHKy8cB8nn4YhU5KNJl7lMblVHfm0LKpm2HMyXoaFquWzRSIRVq1eg+s3bsDExARdu3RGp44dAQAtW7fB+HE/oHmzZgCAoKAgrFi1GlFRUXBydMTYsWPg6uKChIQE9OrTt8DP/3B7VXJyccXZx1+eePta4aFPsX/jfLyJfgG78u7oPnQm7J1kI0FvXz6C3WtmYuWBp3gZ/BhLZxQ8N/t3s7fAzacmXkWF4uC2nxEe8gRCIxP4Nu2GVl1HQEdHtU8nb15ZgNeBD1X6me+JxGIsXbsZV2/dgYmxMXp0aodu7VsDABp26IEp341AqyaNAAABwaH4be0mRETHwKW8A8aPGgJ3Z9kDGsUSCTbv3o+L125BLJGgRuWK+H7YQFhaqOf279KeVZH08OI/FywEkViCnzfvwaU7j2BqbIje7ZqhZ2vZtAq1e4zEzBH90LZRXYVtjl++hU1/HseRVQsVlv+8aQ9SMzKx4LvBaon1Q5ZVG3OffMSyamMEhKnvQd/BQQFYt2oZoqMiUd7RGSPHjoOzi+y35sK501i57BccOZn/Nzl4YA+OHjmIrCwJ6vo2wPBR38vnM4+MeInN69cgKMgfRkbGaNGqLbr36qfy9sTLpSxOGHio9DM/1iYrCLea9EXC1bvy948HT0H0jsMAAIuaFVFx9VyYerog5WkQno2ejZRHAfLty/XrBPfZ38HA2gJx527gyYiZyEpIUmu894LU9/lhwc+xZc3PiI0Oh4OjKwaOnAxHF9nf4OqF49iwfD52Hb2jtN2CaSPhVaEauvQaKl+WGP8O29f/iudP7kFoaIRmrbuhfbf+Kv+e1PSwRGzQE5V+JiD7zVm2ZiOu3roNU2NjdO/UAV07yJLl37Tvhsnfj0LLJrILcQHBIVi2ZiMioqPh7Fge40cOg5tL/kOBl63ZgLT0DMyc+IPK4/yYnUclpP59Wi2fLRJLsHjrAVy8+ximxkbo26YxerVqBACo0ft7zB7WC+0a1kaXCQsR8eqt0vZt69eSJ9CPXbmDdQdPIiUtA3UqemL6kB6wVFO/3qxGS4SHBv9zwUIQiURYuWYtrt+4CRMTY3Tt3BmdO3YAALRo0w4//vA9mjeTJYoDg4KxcvVqREZFw8nREd+NGZXXh01Ez74Fn+d/uL0qObq6I+HpdZV/LiA7dn7ZsAuX79yHibERerdviR5tZf3wul0HY8bogUpzjp+4dB2bDhzF4bW/yJfl5uZi11+ncfjMJSSmpKF2ZW9MGNoHJdT00FPrin6IDAn454KFIBKJsWLNOly7eQsmxsb4tktHdM4bGNSsbUdM+GGsfI7twKBgLF+zDpFRsvbk+9Ej4eqiPKDj8ZOnmDBtJs4dP6KWmAHAwc1LLftEVfsjNzcXBw4exrGTp5GckozqVatg7MgR8gsJ6uDgpnxXHn3eDX/tmjpJE/h6m/5zIS1VqGR51apVsWXLFlStWhVdunTBtGnTUL16dWzYsAF3797Fpk2bChWMOpLl2kxdyXJtpq5kuTZTV7JcW6kzWa6t1J0s10bqTJZrK3Umy7WVOpPl2krdyXJtVBTJcm2j7mS5NlJXslxbqTNZrq3UmSzXVupMlmsrdSbLtZW6kuXajMnyr8dk+df7f06WF2oaFqlUilKlZA8xdHV1hb+/PwCgVatWePr06ec2JSIiIiIiIiIiIiLSOIVKlnt7e+Ovv/4CAHh5eeHGjRsAgOho7Zz7kIiIiIiIiIiIiIj+2wr1+Ooff/wRI0aMgJGRETp06IBNmzahXbt2iI2NRfu8B4UQEREREREREREREWmLQiXLq1evjkuXLkEkEsHKygoHDx7E+fPnYWlpiVatWqk6RiIiIiIiIiIiIiIitSpUshwATE1N8e7dOzx69AgGBgZo0KAB7O3tVRkbEREREREREREREVGRKFSy/NWrV5g0aRLu3bsHCwsLSKVSpKamonHjxli4cCEsLS1VHCYRERERERERERGRakmhU9whkAYp1AM+Z8yYAT09PVy4cAF37tzB3bt3cerUKSQmJmLWrFmqjpGIiIiIiIiIiIiISK0KNbL83r17OHToEMqWLStf5ujoiFmzZqFHjx4qC46IiIiIiIiIiIiIqCgUamS5i4sLgoODlZZHRUUpJNCJiIiIiIiIiIiIiLTBF48sP3LkiPzfderUwfTp0+Hv74+KFStCT08PQUFB2LZtGwYOHKiOOImIiIiIiIiIiIiI1OaLk+UrVqxQeG9lZYWTJ0/i5MmT8mVmZmY4ePAgRo0apboIiYiIiIiIiIiIiIjU7IuT5RcvXvzqDz9+/DgaN24MY2Pjr96WiIiIiIiIiIiISJ1ypcUdAWmSQs1Z/qVmzZqF+Ph4df4XRERERERERERERET/mlqT5VIpL80QERERERERERERkeZTa7KciIiIiIiIiIiIiEgbMFlORERERERERERERP95TJYTERERERERERER0X+efnEHQERERERERERERFQcpNAp7hBIg3BkORERERERERERERH95xUqWX7v3j1kZ2crLZdIJDh//rz8va+vL4yMjAofHRERERERERERERFREShUsrxfv35ISUlRWh4SEoLx48fL369atQq2traFj46IiIiIiIiIiIiIqAh88Zzle/bswbx586CjowOpVApfX98Cy9WrV09lwRERERERERERERERFYUvTpb36tULbm5uyM3NRf/+/bFixQpYWFjI1+vo6MDIyAju7u5qCZSIiIiIiIiIiIiISF2+OFnerFkz7Nq1C6VKlUKnTp1Qt25dmJqaqjM2IiIiIiIiIiIiIrWRSnWKOwTSIF88Z3lcXBxCQkIAAEeOHIFEIlFbUERERERERERERERERemLR5a3bdsWQ4YMgY6O7GrLp+YsB4CAgIB/HxkRERERERERERERURH54mT5/Pnz0bt3b6SkpKBfv35YuXKlwpzlRERERERERERERETa6ouT5QDg6ekJANixYweqVasGff2v2pyIiIiIiIiIiIiISCMVKtt9+PBhHD58+IvKLl68uDD/BRERERERERERERFRkfniB3x+yMLCAsePH0dISAhMTExgZWWF169f4/Dhw0hLS1N1jEREREREREREREQqJ5Xy9bWv/2eFGlkeFRWFQYMGYdy4cQrLt27dijt37nA0ORERERERERERERFplUKNLL958yY6duyotLxRo0a4devWv42JiIiIiIiIiIiIiKhIFSpZ7ujoiEOHDiksk0ql2Llzp/whoERERERERERERERE2qJQ07BMnz4dw4cPx9mzZ+Hh4QEAePbsGXJzc7FhwwaVBkhEREREREREREREpG6FSpbXqFEDZ8+excmTJ/HixQuIxWL06tULjRs3hrOzs6pjJCIiIiIiIiIiIiJSq0JNw3L//n107NgRbm5uGDlyJK5evYr169ejffv2OHXqlKpjJCIiIiIiIiIiIlK5XOjw9ZWv/2eFSpYvWrQIrVu3RuXKlXHgwAEIhULcuHED8+fPx4oVK1QdIxERERERERERERGRWulIpVLp125UqVIlnD59GnZ2dujcuTNq166NyZMnIyYmBq1bt8bjx4/VESsRERERERERERGRylx4KiruELROk4qGxR2C2hRqznJbW1uEhoYiIyMD/v7+mDJlCgDg5s2bKFOmTKGDiQ5+Vuht/x+Vc6+ApEeXizsMjWJZpRHS1k0t7jA0iumIxRCd21bcYWgMw2YD2JZ8pJx7BWRsnlXcYWgU48HzEBwWWdxhaBR3Fwfsuf7V18//r/Xy00HmrkXFHYZGMeozDaL9vxR3GBrFsPsk3AtKKu4wNEpND0ucMPAo7jA0SpusIFx5nlHcYWiMhj7GEJ3dWtxhaBTD5gPxKvBRcYehUcp4VoFfuyvFHYZGuX6sIa4+Ty/uMDRKAx8TxAY9Ke4wNIqdR6XiDoFIqxUqWT5gwACMHj0aurq6qFixImrVqoV169Zh1apVWLx4sapjJCIiIiIiIiIiIiJSq0Ily/v164eaNWsiJiYGfn5+AIA6deqgUaNG8PT0VGmARERERERERERERETqVqhkOQB4eXnBy8tL/r5KlSqqiIeIiIiIiIiIiIioSEilOsUdAmkQ3eIOgIiIiIiIiIiIiIiouDFZTkRERERERERERET/eUyWExEREREREREREdF/HpPlRERERERERERERPSfx2Q5EREREREREREREf3n6Rd3AERERERERERERETFQSot7ghIk3BkORERERERERERERH95zFZTkRERERERERERET/eUyWExEREREREREREdF/HpPlRERERERERERERPSfx2Q5EREREREREREREf3nMVlORERERERERERE/0lS6PD1lS+V7n+pFL/++ivq1KmDWrVq4ZdffkFubu4nyz969Ag9evRA1apV0aJFC/zxxx8K69u3bw8PDw+FV3Bw8BfHo1/omhARERERERERERERFdLWrVtx/PhxrFq1CtnZ2Zg4cSJsbGwwePBgpbLv3r3D0KFD0bNnT/z00094/vw5pk6dihIlSqBRo0bIyclBeHg4du3aBUdHR/l2VlZWXxwPk+VEREREREREREREVOR27NiB7777DjVq1AAATJgwAcuXLy8wWX7+/HnY2tpi/PjxAABHR0fcuXMHx44dQ6NGjRAdHY2srCxUqlQJQqGwUPEwWU5ERERERERERERERerNmzd49eoVatasKV9WvXp1xMTE4O3btyhZsqRC+fr168PLy0vpc9LS0gAAoaGhKFOmTKET5QDnLCciIiIiIiIiIiKiIvbu3TsAUEiK29raAgBev36tVL5cuXKoUqWK/H18fDxOnDiBunXrAgDCwsJgYGCA4cOHw9fXF3369MGTJ0++KiaOLCciIiIiIiIiIiKiLyKRSCCRSBSWCQQCCAQCpbIikQhv3rwp8HMyMjLk2374Oe//j88RiUQYO3YsbG1t0b17dwDAy5cvkZycjG7duuG7777DgQMH0L9/f5w8eRJlypT5oroxWU5ERERERERERET/SbnS4o5A+6xfvx6rVq1SWDZmzBiMHTtWqezjx4/Rr1+/Aj9n4sSJAGSJ8fdTp7xPkhsZGX3y/09PT8eoUaMQHh6OPXv2yMvOnz8fIpEIpqamAIA5c+bgwYMH+OuvvzBixIgvqttXJ8v79euHVatWwdzcXGF5QkIChgwZgkOHDn3tRxIRERERERERERGRFhg+fDgGDhyosKygUeUAULt2bQQFBRW47s2bN1iyZAnevXuHcuXKAcifmqVEiRIFbpOWloYhQ4YgMjIS27dvh6Ojo3ydvr6+PFEOADo6OnB2dv7kyPaCfFGy/OrVq/L5Xe7du4d169bB2NhYoUxERARiYmK++D8mIiIiIiIiIiIiIu3yqSlXvlapUqVgZ2eH+/fvy5Pl9+/fh52dndLDPQEgNzcXY8aMQXR0NHbu3AkXFxeF9X379kXt2rUxZswYefmgoCD07t37i2P6omS5k5MTNm3aBKlUCqlUigcPHsDAwEC+XkdHB8bGxli4cOEX/8dERERERERERERE9N/Vs2dP/PrrryhdujQA4LfffsOgQYPk6xMSEiAUCmFiYoI///wTd+7cwdq1a2Fubi4fhW5gYABLS0s0btwYq1evhpeXF5ycnLBjxw6kpqaiU6dOXxzPFyXL7e3tsWPHDgDA1KlTMX36dIUh7UREREREREREREREX2Pw4MGIj4/HmDFjoKenh65du2LAgAHy9V27dkWnTp0wduxYnDlzBrm5uRg+fLjCZ9SqVQs7d+7EgAEDIBaLsWDBAsTFxaFy5crYunXrV+WxvyhZHhsbK//32LFjkZKSgpSUlALL2tnZffF/TkRERERERERERET/TXp6epg6dSqmTp1a4PqLFy/K/7158+bPfpaOjg5GjBjxxQ/zLMgXJcsbN24MHR0dSKVS6OjoAACk0vxHxX64LiAgoNDBEBERERERERERERUVqVSnuEMgDfJFyfILFy6oOw4iIiIiIiIiIiIiomLzRcnysmXLqjsOIiIiIiIiIiIiIqJi80XJci8vL1y/fh02Njbw9PSUT8VSEE7DQkRERERERERERETa5ouS5du3b4eFhYX8359LlhMRERERERERERERaZsvSpbXqlVL/u/atWurLRgiIiIiIiIiIiIiouLwRcnyDzVu3PizI8v5MFAiIiIiIiIiIiLSBlJpcUdAmuSrk+Vjx45VeJ+dnY2oqCgcOnQI33//vcoCIyIiIiIiIiIiIiIqKl+dLO/UqVOByytXrowtW7agW7du/zooVZJIJFi+biOu3bwNoUCAbp064NtO7QssGxL2Ar+v2YCX4RFwdLDHD6OHw93VRb6+fY++SE/PUNjm+IFdMDIyUmsdVE0sycKSLXtx6c4DCAUG6N22OXq3a/bZbR4FhmLu6q04vHKhwvILt+9j7b4jeJeQhEoeLpg2rC/KlLBRZ/hqIc7Owc8XH+FCaCyEerroW8Mdfau7FVh2/F+3cOXFK4VlyzrURQPnMgrL5p97gJKmhhhe11ttcauTOCsbiw6cwYVHQRAa6KNfk9ro36TgaZhO3HuGdSev401SKjzLlcLELk1R0dEOACCVSrH1/G38cf0hktMz4eNQBlO6NYdLGduirI5KsD1RJs7OweJz93EhOBqG+nroW9MD/Wp5fnab2OR0dN1yGiu61EcNh5IAgKycXKy59hTHn4cjO1eKdhUc8V3DStDX1S2KaqhcWFgo1qxcjvCIl3BwKI/RY76Hq5v7J8v/deQQDh08gMyMDPjVb4hhI0bD0NAQABAfF4cN69fgyeNHEAgFqF+/EfoNGASBQFBU1VGJVxH+OLFzDt7EBKOknSva9J0DO8cKBZaViDNweu9iBD44C6lUCu8aLdCi+xQIDE0AANlZEpzZ/xOe3TkOPX0DVPXrgsadx2nVM1XE2TlYfOo2zgdEwNBAH/3q+KBfXZ/PbhOTlIau6/7Cih5NUNOxNAAgJVOMBr/uUyhnaSTE5Qk91Ba7OoizsrHoxC1c8A+HUF8P/Xwror9vxc9uE5OYii6rD2Fl7+ao6ST7Dc6QZGHJqdu44B+BXKkUzX2cMKFlbRgLDYqiGmoRHhaErWt/RlR4KMo6OGPQqMlwcvX6x+02rVoEK+sS6NJrqHzZ69gobF+/BMEBT2Bqao5mbbuhbee+6gxfLXQFBvC7cwjPvp+PhKt3CyxjXsULFVbPhXkFd6T6h+Lp6NlIefBcvt6uexu4z/0BhmVK4N3Z63gyYiay4hOLqgoqF/kiELvWL0RMRCjs7J3RZ8R0lHcpuA+alSXBX3tW4+6105CIM+HuUwM9h0yGlW0p2XqJGHs2LsaDWxdgIDBE8w590bxDv6Kszr8i68OexYXHeX3YxrU+04d9jnWnPujDdm4i78Pm5OZi5bGrOHrnKTIlWfDzdsaUrs1gY25SlNVRCbFEguXrt+DKrTsQCgTo3rEtundsV2DZkBcvsXTNJryIiISjQzmMHzkUHq7OAIBGHboXuM3U70ehReOGaotf3Sp5m2PGOE98O7Tg9uS9bu3Loldne5gY6eHi9XdYtiEUYnEuAEBgoIPxI9zQsF4JiCU52Hc4GvuORBdF+Cola0sWISYiFGXsndF3xLRPtiUf2rFmPiytS6B9jxHyZSlJCdi9YTECntyBqbkl2nQdAt/GBZ87aSqJRILf123CVfmx0x7fdvrEsRP2EkvXbsDL8Eg4Othj3Kih8Mg7//umfcF5sik/jNHqY4fo/5XKshCurq54+vSpqj5OZdZv3YHgkDD8umAuvh85DDv3HsCVG7eUymWKRJg2dyEqenth7e9L4O3lgWlzFyFTJAIAvIuPR3p6BnZuXI0/dmySv94nM7TJyl1/IiAsAqtnjsekwb2w6eBxXLh9/5PlQyNjMHXpekg/ui/lSVAYZq7YhF5tmmHHT9Mh0NfHjOUb1R2+Wiy/9hT+b5KwrosfpjSpgo23A3A+OKbAsi8SUjC/ZQ2cGdZa/qqTl/B7b/u9YBx5Fl4EkavP0sMX4R/5Ghu/64Vp3Vtg/anrOPcwUKncg9AozNl9EsNb+eHQ9CGo7FQWo9fsR4ZYAgD44/pD7LhwB1O6NsOeiQNQ1sYSo9fsR6Ykq6ir9K+xPVG27PIj+L9OwIbujTC1WXVsuPkc54KiPrvNwrN/IzMrW2HZ2uvPcOx5OGa3qoU13RrgbsQb/HbxkRojVx+RKBNzZ02Hd4UK+H35anh5eWPunBkQiTILLH/j+jXs3b0Do8f8gAWLlyAwMADbtsjaUqlUisWL5kEsFuGnJUsxafJ03L17C7t2bivCGv17EnEG9iwfDge36hg28yDKuVTFnuUjIBFnFFj+9N7FeBX+DH3Gb0a/CVsR8/Ipzuz/6YP1C/HC/wb6jNuEzkN/xYOrf+D+lf1FVR2VWHb+b/jHxmNj3xaY1qo21l99jHP+4Z/dZtHJ20rHTlhcMiyNhDg/7lv569DIDmqMXD2Wnr0H/5g4bBzQCtPa1sP6yw9x7vnLz26z8NhNZEoU98eSU7fxPCYO6/q3xMYBrfAs5h1+PX1HnaGrlUiUiSXzxsHDuzLmL9sON6+K+HXe+E+2J+8dP7gTl8/+pbAsNzcXv84fDzNzKyz8fQcGjpqMvw5sxc0rZ9RZBZXTFQpQdddSmFX49AVIPWMj1Dy6AYnX/8b12p2ReOshav61HnrGsgvSFjUrotKGhQhZsAo3/LrDwMoclTcvLqoqqJxYlIkVC8bCzasqZvy6Gy6elbFy4XcQf+J7cmzfWjy8cwmDxy3EpEVbkZOTjbW//Cjv6/+5fRkiQv0xfu4G9B42FccPbMD9m+eKskr/ytIjF+Ef+Qobx/bEtG+bY/3pG5/uw+45ieGtfHFoWl4fdu0BeR92y7nbOPPAH0sGdcCuH/shOT0T03YeK+rqqMS6bbsQFBqGZfNnYtzwwdi+7yAu37itVC5TJMLkeT+hoo8nNixdjAqeHpgy/yd5H/bgtvUKr56d26NUyRLwrV2zqKukMs7lTTB/is8/XnBvWM8Wg3o6YsnqYHw34wl8PM0xaoCzfP2ogS7wdDPD9zMeY+naEAzsWR6N6mnX4CBZW/JdXluyC66elbFi4fefbEveO314G66dP6ywTCqVYs3PPyIx/g0mzNuA7oMm4MC2pXhwW7um7V23dSeCQl9g6YLZ+GHEEGzf98cnz/+mzFuESt5eWL/sZ/h4uWPqvMX5x872DQqvHp075B07NYq6SkT0Bb46WX7v3j2l1+XLlzFv3jy4uRU8Ere4ZIpEOHn2AkYPGwR3V2f41a2N7l064q/jp5TKXr52A0KBAMMH9UN5+3IYPXQQjI0MceX6TQBAZFQ0bKytYFe6NKytrOQvbRrFBgCZIjGOXryB8QO+haezAxrVqoq+7ZrjzzOXCyx/6NxVDJ35M6wtzJXW7T52Fi39aqNzswYob1caPw7sgfikFCSlpKm5FqqVmZWNI0/DMaFRJXiVskJj17LoV8MdBx6HKZWVZOcgNjkDPqWtYGtiKH8J9PUAAGniLEw6dhvb7gWhlJl2jRD+UIZYgsO3HmNSl6bwsi+NJpU9MKBpHey7onxRJS4lDcNa+qJtrQooZ2uF4a38kJwhQtirOADA0TtP0a9JbTSs6AbHUjaY3qMFktIz8ShMu0ZasD1RlinJxpEnLzGpSTV4lbZGY/dy6F/LE/sfhHxym5PPw5HxUXJLKpXiwMMQjG1QEX7OZeBV2hrTm9fAn4/CkKGFF1WuXb0CgVCAQYOHwd6hPIYOHwUjIyNcv3a1wPLH/jqM9h06o1btOnB398DosT/g3LkzEIlEiI6OQlBgAL4fNxHlyzvCp0JF9O7TH1cuXyziWv07z++egr6BEM2+nYQSdi5o2XMahIYm8L93usDyevoGaNV7JuwcK6BMeR9U9euMyJAHAIDMtCQ8vH4Q7frPR1nnSnD2rou6LQYi5sWToqzSv5IpycLhhyGY2KIWvMrYoLFneQyo54N9fysnc9478fQF0gs4Hl7GJcHBxhy2pkbyl7WJdv3+ZEiycPh+ECa1rgMvO1s08XbEAN+K2HfH/5PbnHgcWuD+MNDTw9Q29eBtZwsvO1t0qOaOh5Fv1Bm+Wt25dg4CgRA9B36HsvZO6DtkPAyNjHH3RsHJhoyMNCz/aQqOHdwBm7xRwu8lJyWgvJM7Bo6chNJ2DqhSwxc+lWoiyP9xUVRFJUy9XFDvxgEYuzh8tlyZb1sjN1OMgMm/IC3wBfzHL0ROajrKdG0JAHAc1Qexf55CzK6/kPo0CI8GTELJVg1h5FiuKKqhcvdunIFAKETX/uNQppwzug+aCEMj408muG9eOoaOvUbDw6cG7Oxd0HfkTISHPsfbV5EQizJx/cIRdB88CeVdvFC1TmO06Ngfl05pxwVJWR/2CSZ1/aAP26Q29l0toA+bmi7rw9asgHK2lhje0lehD5uTk4sJnZuguqsDXMrYolejGlrXfwVkfdgT5y5izJABcHdxRv26tdCjczscPql8oezS9VsQCgQYOaAPytuXw5gh/WFsZCRPrNtYWcpfEokEB4+fwsTRw2BqYlzU1VKJDi3LYN0vVZCYJPnHst3alcUfR6Nx814CAkNSsWR1MNo0Kw2hUBeGQl20a14ayzeEIjgsDVdvx2PPwSh0aVu2CGqhOvdunIGBUIiu/X/Ia0smwNDIGH9/oi3JzEjD2l8m4tThbbC2La2wLiIsAGFBjzF03CI4OHuico0GaNlxAM4c2VEUVVEJ2bFzAWOHDsw7dmqjR+cOOHxCuf966dpNCAUCjBjYN+/YGQhjIyN5Yv3Dcz6xWIJDx09i4pgRMDXRvjtViP4LvjpZ3rdvX6XX2LFjkZmZiQULFqgjxkJ78TIc2dnZ8PH0kC+r4O2JgOAQ5ObmKpQNCApGBW8vebJKR0cHPl6e8A8MBgBEREajnJ1d0QWvJiER0cjOyUElj/zpICp7uuJ5yEulfQIAtx49w6xRA9CzTROldQ/8g/FN7ary93YlbXFk1SJYmpuqJ3g1CX6XjOxcKSrb5U8fU8XOBs9eJSD3o9H0EYlpgA5Q1qLgH7XYlHSIc3Kxu3djlPtEGW0QHPMW2Tk5qOKcf9JY1bkcnkbEIjdXcZ80r+aFoS19AQAiSRZ2XboLazNj+TQr4zs1Rpsa+VML6EAHUgBpIrH6K6JCbE+UBb1LQnZOLiqXzT92qpYrUeCxAwBJmWL8fuUJZrRQHEGRmCFGuiQbFcrkf45bCQtk5+bC/7X23RIfFBgAb+8KCn9/L28fBAYGKJXNyclBSEgQfCrkTzfh6emF7KwshL98ASsra8ydvwhWVlYK22Wkp6u3EioW/eIRHNyqK+wTe9eqiHrxqMDybfrMgoNbNQBAUlw0nt45AUePWgCAyNAHEBqZyt8DgF/rYegwaJF6K6FCQW8SkZ2Tiyr2JeTLqtiXwrOYuIKPnQwRfr/wN2a0rqO07sW7ZJS3Vr6grU2CXycgOzcXVezz79KqWr40nka/U/rNAWT7Y9nZe5jZ3ldp3bS29VC1vCxJHJOYilNPwlDDsbRSOW0RGvQMHt6VFY4dd6/KCAks+G7Od29ikSWRYMGy7ShRWjFJY2Vti7GTFsLI2ARSqRTB/o8R+PwhvCpWU3s9VMW6QS3EX76DG34FTwXxnlXtyki4qZgcTbj1AJZ1qgAALGtVRsK1v+XrRNGvkRkZC6valVUec1F4GfwUrp5VFL4nLp5VEBakfBExNzcXg75fAO/Kyu1JZkYaosODkJOdDReP/H3h6lUVL0OeFXiuoGnkfVinD/qwLuXwNOKVch+2qieGtqgH4H0f9p5CH3ZEaz80qSzr98WnpuPQzceo4fb5CzWaKOxlBLKzc1Dhgz5sRa+C+7D+QSGo6OWh8F2q4OUB/6Bgpc/dsucAqlWqiBpVKqm3AmpUu7o1FvwehP1/ff4iiK4u4OVmhkfPk+XLngemQF9fF66OpnB1MoWevi6eBqbI1z/xT4a3uxm0aSzMi0+0JS8KaEsAIO5NLLKyxJj56x7YllL8zXn3Jhpm5lYoUTr/WCzn6IaIsABkZ2vHYJj3x46PZ/6dTBU/cf7nHxSMCt6eSsfO80DlY2frnv2oVqkiqmvxsUP0/+6r5ywPDPz0qCdNE5+QCAtzcxgY5M9TaWUpuwqekpoKSwsLhbKODvYK21tZWSI8IhIAEBkdDZFYjPFTZyEqJgauzk4YNXQQ7MtqV8IrLikZFmamMNDP/9NbW5hDnJWF5LR0WJmbKZRfMnEUAOD45ZsKy1PTM5CSnoGcnFx8t3A5QiKi4ePmhEmDe6KktWJSR9PFpYtgaSSAgV7+tSMbYyHEOblIzpTAylgoX/4yIRWmAgPMOv03/o56h9Jmxhhe1wu+TrITcfcSlljesV6R10HV4pLTYGliDIO8EfMAYGNuAnFWNpLSM2Ftpjx65E5QOEas2gcppFjcvz2MhbL5lKu5KB5Xh24+Qk5uLqq6aNfoLbYnyuLSMmFpLISBXv73xNrEEOLsHCRlimFtrDitzG8XH6FdBUe42FooLDc3EkBfVxfv0jLl696kym73TMzUrosqAJCQkACH8uUVlllZWiEiIlypbHp6OiQSCaxt8i8U6OnpwdzcHHFx7+Dp5Y1q1fNvbc7NzcWJY3+hcpWqSp+lydKS36GEneLdZybmtngX8+m7EADgyObJeHzzL1jalkXD9rLfo8R3UbC0KYvHN4/g2on1yMnOQhW/zmjQZgR0tGSO+4KOHZv3x06GGNYmisfOr+f+RrtKrnAtqfz7+jIuGdm5uei9+Tjepmagmn0pTGheEyUKaKc1VVxqBiyNDRV/c0yN8toSkdJI+V9P30H7Km4F7o/3Zhy6gmOPQmFnaYrhjbTrePlQUmI8yjo4KyyzsLRGVKTy3W8AUN7JHRNmLf3Hz/1hSEfEv3uNqjX9UKvuNyqJtShErt/7ReWEpUsg1T9UYZnkTTzMfGTtkGGZkhDHvlVYL34bD8Oy2nlhJTkxDnb2it8TcwsbxESGKpXV1dVVSpRfPLEHpuaWKFfeHY//vgJTc0vof9DfMbe0RpZEjPTUJJhZWKunEioSl1JAH9bsC/qwq/fL+rD98vuw7605cQ3rT9+AubEhto/ro/Y6qFp8YhIszM1gYPDB+Z+lBSSSLKSkpsHygzuI4xMT4Wiv2Ie1trTAywjFKfbevIvDhavXseqn+eoNXs2mLZQ9x6BVk1KfLWdqog+hUA9xCfn90pxcICUlCyVtBciVAskpWcjOzr8gk5CUBaFQDxZmBkhK0Y7ksKwtcVFYZm5hjdhP/ObYO7nju+krClxnbmmDjIxUiMWZEAplv+OJca+Rk5ONzIw0mJlrfs4gPjEx79j58Pzv/bGjeP6XkJgERwfF81srS0u8jIxUWPbm3TtcuHodK39WfBYcFb9caNGVLVK7Qp1VSqVSXL9+Hdu3b8eePXtw545mzgUpFosVOgUA5O+zPprzUyyWKDSCAGCgr4+sLNkPW2R0DFLT0tC7exfMnzEFQoEAE2fMQUbG5+fv0jQisQSCj/bJ+/eSj/bJ52TkjQr+bdt+tKxfG79NGo2srCz8+PNqrRh18iFRVo5CohyAPIEhyclRWB6ekApRdg7qlC+FVZ194etUCuP+uqWVo18/JzMrSz61zHvv32dlF/w9cS1TAnsnD8SoNg0wc9cJPHmpPOf7k/AY/Hb4IgY0qQ1bLbsDge2JMlG28rEjyHuflaPYDtwOf41HMe8wtIAH3urr6qKxe1msvPoEb1IzkCqWYOmlR9DX1UF2jna1JwAgFouU/v76Bgbyv//HZQF8cfmtWzYiLCwUffsNVGHE6pclFkFP/+M6CpCd/fnbnn1bDcXgaftgYWOH3cuGQZqbC4koAwlvI3D/yn50GLgIzb+dhLvnd+LWuW1qrIFqibKyP93GfvS7c/tFLB5FvcGw+gWPPnoZn4w0sQQTmtfCL50b4l1aBr7bdwE5WvRbnJmVLW873pO3JdkftSVhMXgY8QbDGlX57GcO9KuEnUPbwc7SFKN2nilwhLo2+FR7kl1A+/A1vp/yE36c+RsiXgZj1+bf/9VnaSI9YyPkihXbl1yxBLp5SVA9Y8PPrtc2ErEI+gaKsesbGPxjGwsAj+5ewtm/dqJT77HQNzCQfdbH7bW+7LP/7feuKGRKCmpf8/prn+vDThqAUa3rY+Zu5T5s21oVsGdif9TxcMSI1fuRpmUX8sViMQQf90vz3ks++puKCzhXNNA3UCp38txFeLi4wNtDs6ZhVRdDYd5vdJbib0lWdi4MDGTTsGRlKf5evX9vYKA9CThZW/Lxd+Wf+2sFcXarAEurEti76ReIRZl4+yoS547tBgDkfOJY1DSfO3Y+Pv8TicXK538G+krlTp67CHfX/86xQ6StvnpkeVBQEMaMGYP4+Hg4OjpCKpUiPDwcjo6OWLlyJcqV05zRogKBQKlxev9e+FFnWCBQTkxkZWdDKJSNKv5p7kzkZGfDyEh2VXTahB/QY+Bw3Lr7N5o0qq+uKqic0MBAKSn+/r3hV5wg6OedxHb4xhetG8hGp8wbOxithk3Es5CXCtO8aDqBvq5SYu99ssLwo87ikDqe6FHVBeaGsn3lXsISAW+ScOjpS3iX1vyr419KqK8PSbZiwub9e0OBQUGbwMbcBDbmJvAsVwpPXsbgj+sPUckp/3a8xy+iMXrtAfh5O2NUmwbqC15N2J4oE+rpKR07krz3hh+cqIqysrHw7N+Y2qy60jH13uQm1TDl2C20XHsMRgb6GFLXG89excPkE983TXJg/x78sT9/tKO7h6fS3z87K0v+9/+QQCD77nxJ+W1bNuLokUOYNGUGyjs6qSp8tbh2Yh2undggf1/OqRJysj+uowQGgs8/1LaEnSsAoOvwZVj6YwNEBN+Drp4exJlp6Dz0V1jaytqY5IRXuHdpD+q1GKTimqiHQF/v023sB8eIKCsbC07ewrRWdT557Bwc0QE6H2z3a9dGaLrsDzyNiVOY1kSTCfX15W3He/K25KP9Mf/oDUxrW++T++M9l7xR57982xhNl+zF/YjXqOlURsWRq95fB7bh6J/b5O9d3H0KbB8Ewn/3QGhnNy8AQJZEjDW/zUavgd8pJUi0Wa5IrJT41hUKkJMhu0CZ86n1mdpx0frkn5tx6tBm+Xsnt4rIzlJMZmVnZUHwD23swzuXsPG3yfimdQ/Ub9YZAGAgECpNkfA+UfZvv3dFQWhQUB8271znS/qw4bFKfViHErL2ZEHftmg+czUuPA5ChzraM32CQKCc7H7frhh+1NcQFHCumJWdpVTuys07aN+yqRqiVZ++3RzQt1v+NDoT5jzFE//kz2yRTyIpOPFtoK8LkTgXerqAgcFHg6/y3ovEmnvx+sSfm3Hq0Bb5eye3CkoXxbKyJP/YlhTEQCDE8Am/YP1vkzG2T32Ym1ujRad+OLB1KQyNtGO6UoGB4JPHzhed/2VlK+VYrty4jfatmqshWiJSpa9Ols+ePRuVK1fG3LlzYZL3MIKUlBRMmzYNM2fOxNatW1UeZGHZ2lgjOSUFOTk50MsbKZyQmAihQKD0IAVbG2skJCYpLEtITIJ13jyxAgMD4IOTCIFAgNKlSiIuIV69lVCxEtaWSE5NQ3ZODvTz9kl8UgqEAgOYGX/5A8EszEyhr6eH8h/crmphZgpzMxO8iU8AoD3J8pKmRkjKlCA7Nxf6ebfwx2WIIdTXg5lQsVOtq6MjT5S/52RthrCEFPw/KWlphqT0DGTn5MovjMSlpMPQQB9mRoqdpWcRsdDT1YWXff53waWMrfzhSABwLzgCY9f9gbpeTvhpYAfo6mrPCIv32J4oK2FmhKQMscKxE5+WCUN9PZh9cJw8e5WA6KR0TDiiOJ3TmD+voq2PI2a0qAFrE0Ns6PENkjPFshFhUmDl1Sews9D8qSRatW4Lv/oN5e8P/rEfiYkJCmUSExNhZW3z8aYwMzOHQCBAUmIi7O1lJ3A5OTlISUmB9Qfl169dhZMnjuHHiVPg66f5F1RqNOwBnxqt5O+vn9qEtOR3CmXSU97B1LLEx5siJ1uCoEeX4OLjC6GR7A4UUwtbGJlaIiMtEaYWJaBvIJQnygHAprQTUhJeq6k2qlfSzFj52Ekv4NiJjUN0Yhp+/OOywvZj9p5Hu0oumNGmLow+ShpbmxjBwkiIt6kZaq+HqpQ0N0ZShkjxNyc1A4YGH+2P6HeITkzFj/sVH245eucZtKvihimt6+BKUCTquJSFad52NqZGsDAWIikvSarpmrTqhNp++c+JOX5oJ5ITFX8bkhLjYWml3J78k+TEeIQEPUONOvntVVl7J2RnZyEzMx1mBpaFjlvTiGLfQFjaVmGZsLQtRK9lU6+IYgpYX8oW4leK7ZSmatiiK2r4NpO/P314G5KTFL8nKUlxsLBSbmPfu3v9NLYsn4mGzbug+6AJ8uVW1iWQlpKEnJxs6OnJ2pfkxHgYCAxhZGL2qY/TGCUtTL+iD/sKero6in3Y0rYIey3rw155FgrPcqVQylJWb6GBPsraWCIpXTsuqrxna22N5JRUhfO/hMSkvD6sYj/L1sYaCUlJCssSEpNgY20pf//2XRzCo6LhW7smtMmRU7G4eD1/+qV38V8+Wjo5NQticQ5sLAWIjJb9/fV0AXNzA8QnSKCjA1iYG0BPVzY9CwBYWwkgEucgLV1zR1E3atEVNRXaku0FtCXxsLCy/XjTL+Lk5oOf1h1HcmIcTM0t4f/oNkzNLWFopPn9e+D9+V/qR+d/SQWf/1l//vwPkB07EVHR8K2t+PwmItI8Xz0Ni7+/P0aPHi1PlAOAubk5xo0bhwcPHqg0uH/LxckJ+vr68ofqAcAz/0B4uLlC96N5Tb083PE8MAjSvAdrSaVSPA8IhLenO6RSKfoMHYXT5y/Ky2eKRIiJfQX7ctr1hGt3R3vo6+nhWchL+bLHQaHwdnFU2iefo6+nB09nB4RE5D8MJSklDckpaShTonA/psXFvYQF9HV18PRVfnLrUUwcfEpZQfejJ7LMPvM35p5VfGBU0LtkOFpp/snD1/AoVwr6enp4Ep5/G+rDsCj4lC+jlOg+fPMJlv91WWGZf+RrOOedhIbEvsP3G/6En48LlgzqpDBHrzZhe6LMo6Ql9PV08TQ2v1P9MCYO3qWtFY6dCmWs8dfQ1tg3oLn8BQCzWtTAKL8KAIAZx2/j1svXsDASwshAH9dfvIK1sRDOH81vronMzMxhZ1dW/vL08kagv7/C3z/A/zk8PTyVttXV1YWbmwf8nz+TLwsM8Ie+vj4cnWTzz+7dvROnTh7HpCnT0aChdswtbGRqCetS5eUve5cqiAp7qLBPIkMfopyz8sP0dHR0cWTLVAQ/uSxflhwfi4y0RNiWcUE5l8rIzhIj/nX+71hcbJhC8lzTeZS2lh070fmJuYeRb+FjZ6t47NjZ4ujoTtg/rJ38BQCz2tbDqEZVkCaWoP6SvbgX/kq+zZuUdCRliOBko/nHznsepW2gr6uLJ9H5SYyHkW/gY1dC4TenQrkSOPZ9NxwY2Un+AoDZHfwwqnE16OjoYMbhq7gWnD+37qukNNn+KGFZZPX5N0zNLFDazl7+cvOogJDAJwrHTnDAE7h6VPjqz373JhbLF09GQnz+fn4ZFghzCyuYmVuqqgoaIfHOY1jVUZyr3qpuNSTdeQwASLr7GFa+1eXrDMuVhpF9GSTmrdd0JmYWKFnGQf5y9qiEsMDHCt+T0MDHcHavWOD2AU/uYMvymfimVXf0HDpFYV05Jw/o6evjRXD+Q2RDAx7C0dX7q84VikuBfdgX0QX3YW89xvKjVxSW+Ue9hnNp2cWopYcv4vjd/N/ndJEYke8S4FTq6y9WFSdXZ0fo6+vBPyj/OSFPA4Lg6eai9Df19nDD88Bghe/S04AgeLvnTxnhHxyKkrY2KKVl53ypadmIeSWSv96PFv8SUikQEJKKSt75v60+nhbIyc5FaHgaQl6mISc7Fz6e+fO/V/I2R0BIKgp4brfGUG5LKhbQljz6ZFvyOempyfh52iCkpSbBwsoWenr6eHL/Gjx8tCdRnH/s5J//PfUPhEeBx4670rHzLCAQ3h75DwcNCA7JO3Y+fSGTiDTDV/d4KleujFu3biktf/DgAby8vFQSlKoYGgrRvHEj/L5mPQKDQ3H91h38cfgoOrdvA0A2KlQsls0518C3LtLT07F64xaER0Zh9cYtEIlEaOhXDzo6OqhTozq279mPR0+fITwiEj8tXYEStjaoXb1acVbxqxkKBWjdsC5+3rgb/qHhuHLvEXYfO4vurRoDAOKTkiGSfNlV9l5tm+HAqUu4cOs+Xka/wvy12+DmaA8fV0c11kD1jAz00da7PBZfeITnrxNwKTQWO++HoGdV2ej4uHQRRHm3czZ0LoOTAZE47h+BqKQ0bLgdgEex8ehRRXtG0n8JI4EB2tWqiAX7TuNZRCwuPg7Gjgt30auRbARJXEoaRBLZbWZd/argXnAEdl+6h4i3CVhz4iqeRbxC729kZRfsO4VSluaY0LkJktIzEJeSprC9tmB7oszIQB9tfRyx8OzfeP4qHpdCorHzbhB61ZB1CuPSMiHKyoahgT4crMwUXoBsdO37BxlaGAmw6toThL5Lwt+Rb/HT+fsYVMdL6YKVNvD1q4/09HRsXL8GkZER2Lh+DUQiEfwayEZzisViJCbkX5xr3bYdDh08gFs3byA4OAhrVq9A85atYWhoiKjICOzbuwtdu/WAt3cFJCYkyF/axLtGC4gyUnF67yK8iw3F6b2LkCXOhE9N2ejzLIlIPvJcV08f1Rt+i4uHliEy5D5iw5/hz3Xj4FmlCUqWdYNtaWe4VWqII1um4nVUIEKfXcP1UxtRo1GP4qziVzEy0Ee7Si5YcPI2nsXG4WJgJHbcfo5etWT9KIVjx9pc4QW8P3aMYCoUoJp9SSw5ew/PYuMQ8CoeUw5dRT3XsnArpT1TgxkJ9NGuihsWHLuBZzHvcDEgHDtuPEWvuj4AZKPM5fvDxlzhBQAlzU1gY2oEfT1ddK3hiRXn/8aDiNfwj43DpAMX0ciz/GcfBqrJavo2RkZ6GnZuWoqYyBfYuWkpxOJM1PaTTX8gEYuQlPhldyU5u3nD0cUTG1csQEzkCzz6+wb2bl2J9t0GqLEGRUdYyha6hrKpIl4fPA0DS3N4L50OUy8XeC+dDj0TI7z64xQAIGL9XpTt3QH2A7vCrKIHqmz9BW9PXEZmePTn/guNVb1uU2Smp2L/liWIjQrD/i1LIBZlooav7OK0RCxCcqJstHROTja2r5oDd59qaNlpAJIT4+Qv2RRgRqjbqC12r1uI8JDneHjnEs4e3YkmbXsVZxW/mKwPWwEL9p/Bs4hX+X3YhrIEnUIf1jevD3v5fR/2mqwPm9ff7d6gGrZduINrz8MQ+uodpu04BntbK/h5a1e/31AoRItvGmLp2o0IDAnFtdv3sP/IMXRpJ/sNjk9MgjhvDv+G9WojLT0dqzZtR3hkNFZt2g6RWIxGfnXln/cyMgrl7TVn6lV1EQh0YW2Zfyfo4ZOx6NnZHvXr2MDTzQwTRrnh6NlXEItzIRbn4tTFN5gwyh2ebmaoX8cGPTvZ44+jys9w0mT5bcmviI16gf1bfoVEJCqwLfknJmYWEIky8OeO5Xj3OhrXzh3GjYtH0aJjf3VWQaUMhUK0aNwIS9fIjp3rt+/iwJGj6NJO+fyvoW+dvGNnK8Ijo7Bq01blYyfiv3HsEP0/+KJpWFatWiX/d/ny5bFo0SLcvXsXlSpVgq6uLoKDg3H8+HH06aN5TwcfOXgAfl+7AT9Onw0TY2P079Ud9evJ5tju1m8IJn4/Gi2bNoaJsTEWzpqGZavX48SZ83B2LI9Fs6fDyFCWyBk2sC/09PWw6NffkZ6egSqVKmDR7Ony23G0yQ/9uuHnTbsxat5SmBobYWi3dvimtixJ13r4JMwc2R9tG9X7x89pUqc6UtMzsHL3QSQkp6CatweWTBwFHS1Mbo1rWBGLLzzC8D+vwVRggBF1vdHYTTZKscWGk5jdvDra+5RHY7eymNK4CjbfCcLr1Aw425hjVSdf2Flox7xrX2NClyZYuO80hizfA1MjIUa28UPTKh4AgCbTVmJenzboUKcSvOxLY+nQzlh57AqWH70M1zK2WDu6O0pZmiEuJQ2PXsg6iS1mrlb4/PfbaxO2J8p+bFwFi87ex9B9l2EqNMAIPx80cZd1AputOYq5rWqhfcV/nl97dP2KWHTuPgbuuQhjA330ruGB3jU81B2+Whgbm2DWnPlYvWo5zpw+CUdHZ8yetxCGhrKprq5dvYzly37FsZPnAAANGn6DN2/eYM2q35GVlYV6vvUxcNBQAMDt27eQm5uL/ft2Y/++3Qr/z/vttYHQyBS9vluH4zvn4MHVAyhVzgO9vl8PgVB2G+7zuyfx19ZpmL05EADQpPN46EAHf6z9ARJxBryqNUOrXjPkn9d56K84tWcBti7uBQOhEWo17o1aTfoWS90K68fmNbHw5G0M3XEGpoYGGNGwCpp4lQcANF12AHPb+6JDZdd//Jz5Hfzw27m/MXbveUiyc9HIwx6TW9RSd/gqN6FlbSw8fgNDtp6EqVCAkd9UQ1NvRwBAkyV7Ma9TfXSo6v75DwHwXdMa0AEwcf9FZGZlo4mXIya3rqPe4NXI2NgUP878DVvW/IxLZ/6Cg6MrJs5aJm9Pbl8/jw3L52PX0Tv/+Fm6enoYP30Jtq//FXMmDYHQ0AjN23ZHi3bd1V2NItE0+gYeD56C6B2HkZ2ajnsdh6Pi6rlwGPItUp4G4V77YcjJe5B20u1HeDZqFtxnfwcDawvEnbuBJyNmFnMNCs/I2BRjpq/ArnULce3cIZQt74bvZqyEMO978veNs9i2ajY2HHqIiFB/JMS9RkLca0wc3Ezhc36ctxEeFWqg28AfsWf9Ivw2eyiMjE3RvvsIVKvTpKD/WiNN6NwEC/efwZAVeX3Y1h/0YaevwrzerQvow16R9WFHfSufdqVH/erIFGdh4f4zSEzLQF1PJywf3kUrpxMcPbgflq3dhB9mzIOpsTEG9OyGBnVrAwC6DBiOyd+NRKsmjWBibIzFMyZj6dqNOHb2PFzKl8fPs6bI+7AAkJiUDDPT/79zn481qV8C03/whF872d0HF669Q5lShpg4yh0GBrq4cvMd1m59IS+/cnMYJox0w4qFlZGekY3Ne8Jx9daXJZY1hZGxKcZOX45d6xbh6rlDKFfeDd/NWCFvS+7dOIttq+Zg46Evm1Fg+I8/Yee6hZgz7lvYliyL4RN+hpObjzqroHKjBvfHsjUbMW76nLxjpzsa1Ms7dvoPw+TvR6Flk29gYmyMRTOnYNmajTied/7306xpHx07STAzNS2uqtA/0OS7QKjo6Uil//yV6Nv3y05AdXR0sGPHjkIHEx387J8L/YeUc6+ApEeXizsMjWJZpRHS1k0t7jA0iumIxRCd21bcYWgMw2YD2JZ8pJx7BWRsnlXcYWgU48HzEBwWWdxhaBR3Fwfsuc5e4od6+ekgc9ei4g5Doxj1mQbR/l+KOwyNYth9Eu4FJRV3GBqlpoclThho5wVPdWmTFYQrz7XnWQLq1tDHGKKzmvOsK01g2HwgXgU+Ku4wNEoZzyryZDXJXD/WEFefpxd3GBqlgY8JYoOeFHcYGsXOQ7sGpWmCY/c19/kCmqpd9a9+DKbW+KKa7dy586s/eMOGDejRowfMzc3/uTARERERERERERERUTFS21Na1q1bh+TkZHV9PBERERERERERERGRyqgtWf4Fs7sQEREREREREREREWkEtSXLiYiIiIiIiIiIiIi0xf/vbOxEREREREREREREnyGV6hR3CKRBOLKciIiIiIiIiIiIiP7zmCwnIiIiIiIiIiIiov88JsuJiIiIiIiIiIiI6D/vq5PlCxYsQGRk5D+W69atG0xNTQsVFBERERERERERERFRUfrqZPnRo0eho/PPE99PmzYNVlZWhQqKiIiIiIiIiIiIiKgo/Y+9u45uImvDAP6kktS9WGmpO7o4FIfFpbC4u+8usgaL27I4xXVxd3cti3u9heJWt0jbfH8EUkICSyGpfDy/c3IOvXMz+967M3cmb27uGOT2DT179sSkSZPQs2dPlChRAiKRSGV7iRIltBYcERERERERERERka5ky/M7AipIcp0sX7BgAQDg/PnzyjKBQAC5XA6BQIDQ0FDtRUdERERERERERERElAdynSxv2bIlypUrh5o1a0JfX18XMRERERERERERERER5alcr1luYWGBJUuWoH379li2bBmePHmCEiVKwMHBAQ4ODrqIkYiIiIiIiIiIiIhIp3KdLB87dizOnTuHBQsWwMDAACNHjkRAQACmTp2KW7du6SBEIiIiIiIiIiIiIiLdynWyHFCsUV65cmWMGzcOR44cQbt27bBt2zZ06tQJ9evXx7JlyyCRSLQdKxERERERERERERGRTuR6zXIASEtLw+nTp3HkyBFcuHABRYsWRa9evdC0aVO8fv0as2bNwpUrV7Bq1Sptx0tERERERERERESkFXJ5fkdABUmuk+WDBg1CcHAwLCws0KRJE6xbtw5lypRRbvf09ERycjLGjBmj1UCJiIiIiIiIiIiIiHQl18lyOzs7LFu2DFWqVIFAINBYp2LFiti+fftXB0dERERERERERERElBdynSyfPHnyf9axt7eHvb39FwVERERERERERERERJTXvugBn0RERERERERERERE/0+YLCciIiIiIiIiIiKib16ul2EhIiIiIiIiIiIi+n8gh+ZnMtK3iTPLiYiIiIiIiIiIiOibx2Q5EREREREREREREX3zmCwnIiIiIiIiIiIiom8ek+VERERERERERERE9M1jspyIiIiIiIiIiIiIvnkG+R0AERERERERERERUX7Ilud3BFSQcGY5EREREREREREREX3zmCwnIiIiIiIiIiIiom8ek+VERERERERERERE9M1jspyIiIiIiIiIiIiIvnlMlhMRERERERERERHRN88gvwMgIiIiIiIiIiIiyg9yeX5HQAUJZ5YTERERERERERER0TePyXIiIiIiIiIiIiIi+uYxWU5ERERERERERERE3zyBXM6VeYiIiIiIiIiIiOjbs/3f7PwOodD5oer/7/zrAvWAz9f3L+d3CAWKvV8VPIyKyO8wChRnd088ibiX32EUKCU9/dkn7ynp6Y+Y6Oj8DqNAcXVzY598wNXNDc/C7+R3GAVKCa8yCIl6lt9hFCi+7iV4Hf6As7sn++QDzu6eHE8+UMKrDM7eT8/vMAqU2n4mOGjold9hFBjNZOG8N/kA79fUubq5IeXakfwOo0Axr9gY12pXy+8wCpSKZy/x3PmAq5tbfodAVKgVqGQ5ERERERERERERUV7hmhv0vv/fOfNERERERERERERERJ/ps2aW79mz57N32Lp16y8MhYiIiIiIiIiIiIgof3xWsnzBggUqfz9//hxCoRCOjo4wNDREbGwsJBIJvL29mSwnIiIiIiIiIiIiokLns5Llp06dUv57yZIluHv3LqZNmwYrKysAQGpqKsaNGwc7OzudBElEREREREREREREpEu5XrN81apVGDlypDJRDgBmZmYYOnQoduzYoc3YiIiIiIiIiIiIiIjyxGfNLH+fubk5QkJC4ObmplJ+/fp12NjYaC0wIiIiIiIiIiIiIl3KlgvyOwQqQHKdLB8wYADGjBmDy5cvw8fHB3K5HHfv3sXhw4cxffp0XcRIRERERERERERERKRTuU6Wd+zYEQ4ODtixYwc2b94MAPDw8MDq1atRsWJFrQdIRERERERERERERKRruU6WA0BAQAACAgK0HQsRERERERERERERUb7I9QM+AWDfvn0IDAxExYoV8fjxY0ybNg3Lly/XdmxERERERERERERERHki18nyTZs2YebMmQgMDIRMJgMA+Pn5YdWqVQgKCtJ6gEREREREREREREREupbrZPn69esxZcoUdO3aFXp6ire3atUKM2fOxPbt27UeIBEREREREREREZEuyOV85fb1/yzXyfJnz57Bzc1NrdzR0RGJiYnaiImIiIiIiIiIiIiIKE/lOlletmxZ7NmzR6VMLpdj9erVKFOmjLbiIiIiIiIiIiIiIiLKMwa5fcPYsWPRv39/nDlzBlKpFBMnTsTDhw8hFouxYsUKXcRIRERERERERERERKRTuU6We3p64ujRo9i/fz+io6ORlZWF+vXro2XLljA1NdVFjEREREREREREREREOpXrZPnvv/+OMWPGoF27dirlSUlJGD58OBYsWKC14IiIiIiIiIiIiIiI8sJnJctv3ryJ2NhYAMCePXvg5+cHMzMzlToxMTG4cOGC9iMkIiIiIiIiIiIi0gG5PL8joILks5LlxsbGWLhwIeRyOeRyOVauXAk9vZxngwoEApiYmGDUqFE6C5SIiIiIiIiIiIiISFc+K1nu7e2NkydPAgC6deuGoKAgWFpa6jQwIiIiIiIiIiIiIqK8ovffVVStX79eY6JcKpXi9u3bWgmKiIiIiIiIiIiIiCgv5foBnzdv3sSECRMQFRWF7OxslW36+vq4d++e1oIjIiIiIiIiIiIiIsoLuZ5ZPnnyZDg4OGDp0qXKtczHjh0LKysrzJw5UxcxEhERERERERERERHpVK5nlkdGRuLvv/+Gm5sb/Pz8YGhoiC5dusDW1hYrVqxA06ZNdREnERERERERERERkVZly/M7AipIcj2z3NjYGPr6+gAAV1dXhIeHAwDKlCmDBw8eaDc6IiIiIiIiIiIiIqI8kOtkedWqVTF79my8fPkS5cuXx6FDh5CYmIhTp07BwsJCFzESEREREREREREREelUrpPlY8aMQVJSEo4dO4ZmzZrBzMwMVatWxfTp0zFkyBBdxEhEREREREREREREpFO5XrO8aNGiWLdunfLv9evXIyoqChYWFihatKhWgyMiIiIiIiIiIiIiygu5nln+/fffY8GCBYiKigIACAQCeHh4MFFORERERERERERERIVWrmeW9+7dG8eOHcPy5cvh4uKCJk2aoFmzZihVqpQu4iMiIiIiIiIiIiLSCblckN8hUAGS62R5hw4d0KFDByQlJeHkyZPKxLmrqyuaNWuGPn366CJOIiIiIiIiIiIiIiKdyfUyLO9YWloiMDAQo0aNQp8+ffDw4UMEBQVpMzYiIiIiIiIiIiIiojyR65nlABASEoKjR4/i+PHjePr0KQICAjBlyhTUrVtX2/EREREREREREREREelcrpPl9erVw6tXr1C1alX069cPDRs2hJmZmS5i0wqJVIo5K9bh7KVrEAkN0bFVU3Rq1eST77kdGo4pC5Zj+5LZyjK5XI6Nuw9i77FTSEpJhY+7K37q2w0ujg66boLWSaVSBC1eigvBwRAJhWgb2AbtAttorBsVHY0FQYvxMPYhSjk5YfiQIfDwcAeg6JNtO3bi4OHDSElOgaenBwYPHIBSTk552RytkEqlmL90Bc4H/wuRUIgf2rRC+zYtNdaNjI7BvMXL8eBhLJydHPHTkAHwdHdTbm/ZsRvS0tJV3nNg2wYYGxvrtA3axj5RJ5VKsWjxYly8eBFCoRBt27ZF28BAjXWjoqMRtHAhHsbGwsnJCcOGDoWHh4dy+5kzZ/DPunVISEhAhQoV8OPw4bC0tMyrpmgN+0SdVCrFvKUrce7SZYiEQnRo3RLt27TQWDcy+gHmLFmOBw8fwdnJET8P7gevt+dO3ZY/aHzPbz8Nxff1aussfl2JiY7E0qA5iI19ACcnZwwc8jPcPLw+Wn//nh3Ys2sr0tPTUKNmHfQbOBwiIyMAgEwmxeoVi3H+zEkYGBqiQaMm6NK9LwSCwrHWIK/D6tgn6jiWfNyjmDBsWDYVT2OjUMLRFV0HjkEpN1+NdWUyKfZuWoQr549AKsmAp19FdOr7K6ztiiq2SyXYtGI6blw6CUOhERq16oZGrbrnZXO0Qk9oiJqXd+Hej5MRf+6KxjoW5Xzgv2giLPw9kRIShbtDxiP5xn3l9hIdmsFz4k8wKm6P18cu4M7APyGLS8irJmgN703UsU/USaQy/LV2O05dvQOR0BDdmtZF12b1NNa9cPM+Fm87iMcvX8OhiC0G/dAMtb8rrdx+JPg6lmw/iDeJyahWxhtj+3aElXnBzZF8jEAohNNPo2Bdqw6ypRK83LIJL7dt1ljXKqA2HPoNhNC+CNKjIvF4wRykR0ZAWKwYymzdrfE9YcMGIfXOLR22QLu0ed68s3nLFjx79gwjR4zQdfhE9BVyvQxL//79cf78eaxcuRJt2rQp0IlyAFj8zxaERT3A/Im/YUT/HlizbTdOB2u+gQSA6NjH+PPvIMiz5Srle4+dxpZ9h/FT325Y+fdEFC9ij1GTZ0Eskei6CVq3YtUaRERF4q9pUzB08CBs3LQZ5y9cVKsnFovx5/iJ8PfzRdC8efD18cGfEyZCLBYDAA4ePoKdu3Zj8MABWDh/LooVLYqx4yYotxcmy9asQ0RkNGZNmYgfB/XH+s3bcPbiJbV6GWIx/pg4FaV9fbBk3t/w9fHCHxOnIeNtm1/HxSEtLR3rVyzC9nUrlS+jtwmewoR9om7lqlWIjIzEjOnTMWTIEGzcuBHnL1xQqycWizFu3Dj4+ftjwfz58PXxwfgJOedGeHg45s2fjy5dumDunDlITU3FnDlz8ro5WsE+Ubd0zXqER8VgzpTx+GlgX/yzZftHz53fJk1DGV8fLJv7F/x8PPH7pOnKc2fnP8tVXh0DW6FoEXvUqFIxr5v01cTiDEwZ/xt8/cpg1rxl8PLxw5QJv0MsztBY/9LFs9iyaS0GDh2BSdPmICI8BP+sWabcvnJZEG7fvI5xk2dixOgxOH7kII4d2Z9XzflqvA6rY5+o41iimUScgQVThsHDpzzGztoIN++yWDh1OCQfGU/2b1mCm5dPo8/PU/HLtDXIysrEkpkjIZcr7vV3/DMXsVEhGDFxObr0/x0Hti3H9eDjedmkr6YnEqL8hjkw9/f8aB19E2NU2rccCReu4UKVQCRcuolKe5dB30QxccGyUmmUWT4VkVOCcLFmBxhaW6Dsqul51QSt4r2JOvaJuvmb9yL0wWMs/WMIfuvZDit2HcGJy7fU6kU+eorR81ahZe0q2DTtFwTWq4Ff569BROxTAMC96FhMXrEZ/QIbY+3En5GcloEJSzfmcWu0o+SgoTD18kbEz0PxaO4slOjZB9a11VcPMHJ2geufE/Fi4zqE9OmOjKhIuP81G3oiEaSvXuFWm2Yqr7gTx5AWGoK0+3fzoVVfTlvnzTtnzpzBhg0b8ip8IvoKuU6Wd+zYETKZDHPnzsXQoUMxaNAgzJw5Ew8ePNBFfF8lQyzB/pNn8WOfrvByc0btqhXRuXUz7Dx8QmP9PUdPYeDvk2FtaaG27dCp8+jYsglqVCwPpxLFMWpADySnpuJuaKSum6FVYrEYR44dw6D+/eHh7o4a1avhh3Ztse/AAbW6Z8+dh1AoRL8+veHk5IiB/fvB2MQY584rLhDHT5xE28A2qFq5Mko6OGDYkMFITknB/dDQvG7WV8kQi3Ho2EkM6d8bnu6uqFmtCjq0bY29Bw6r1T1z/iJEQiEG9O6OUo4lMaRfb5gYG+HshWAAwKPHT2BrY40SxYrBxtpa+Sossx3fYZ+oE4vFOHr0KAYOGAB3d3fUqF4dP7Rrh/371RN0Z8+dg0gkQt8+feDk5IQBAwbA2NgY58+fBwDs378fAQEBaFC/PlxcXDB61ChcvXYNL168yOtmfRX2iboMsRgHj5/EsH694OnmioBqVdAxsBV2HzyiVvf0ecUM2oG9uqGUY0kM7dsLJsbGymTY++eLRCLFrgOHMHroQJiZmuZ1s77ahXOnIRSK0KPPQDg6lUKf/kNhbGKC4PNnNdY/sHcXWrRqh0qVq8HD0xsDh47EyeOHIRGLkZKSjJPHDmHw8JHw9PJBmXLfoWWb9ogILxzXHl6H1bFP1HEs+birF49CKBKhXY+fUbykKzr0Hg0jY5OPJriDT+9H685D4OVXESUc3dBt0J94GHUfr54/gkScgQsn96BDn19Qys0H5avWw/ete+D04a153KovZ+bjhuoXt8HE7dO/nijevimyMyQI/XUmUsNiEDJiKrJS0lC8XWMAgPPgrni24zCebtiLlLvhuNXzFxRpUhvGziXzohlaw3sTdewTdRliCfae/hcjuwXC28URdSuVRbfm9bHt+Hm1ukeCr6OSryc6Nq4Nx2L2aN8oABV9PXD88k0AwLZj59GwSnk0D6gMDycHTBrUFRdvh+Lpq7i8btZX0TMygn2zlni8cC7SIyOQeP4sXmzegCJt2qnVtaxUBRkPYhB39DAkz57iyfIlENrawcjZBcjORmZ8vPIlKu4A61p18GDaJMizsvKhZV9Gm+dNVlYWFgYFYe68eShevHheN4U+k1zOV25f/89ynSy/du0avv/+e1y+fBklS5ZEyZIlce3aNbRu3RrXr1/XRYxfLOrhI2RlZqG0V87PX8r4eCIkMhrZ2dlq9S/fvIOxw/uhQ4vGatuG9OyIRrWq5xQIBJDL5UhNT1erW5BFxzxAZmYmfH28lWV+vr4IC49Q65PQsHD4+fkqk5oCgQB+Pj4IDQsDAPTr0wv16tZR1he87ZP0tMLVJzEPHiIzMxN+3jnLAfj7eiM0IlK9T8Ij4O/r80GfeCMkLAIAEPvoCUqWKJF3wesI+0RdTEwMMjMz4ePjoyzz8/NDeHi4Wp+EhYXBz1f13PH19VWeO2FhYfD391fWt7e3h729PcLebi8s2Cfqoh/EIjMzC37eObP7Sn/k3AkJj4C/r7dKn/j7eOH+23PnfWs2bUWFMqXxXbkyum2AjkSEhcDHz1+lrd4+/ggPu69WNysrC1GRYfD1z2mrl7cvMmUyPHgQjdD7d2Fiagr/0uWU29u274xhP/2q83ZoA6/D6tgn6jiWfNyDiLtw9y6n0l4373KIDr+jVjc7Oxu9f5wC37JV1bZlpKfiycNwZGVmws2rrLLc3ac8HkTe0/hZoSCyqVUZcWcu42LNDp+sZ12lLOKDVT+rxV+6Aauq5QAAVpXLIv78NeU28ZMXyHj0DNZVyqIw4b2JOvaJuohHz5CZlYWyni7KsnJerrgfFavWJ80DKmNoR/UlsFLTFbOG70U9RHnvnOUni9lao5itNe5GPdRN8Dpi7OYBgb4+Uu/lzP5OvXsbpr5+wAeTnDKTk2Ds4goz/zKAQAC7ps2QmZoKydOnavstOWAQ3hzYB/GjWJ23QZu0ed5kZGTg4YMHmDd3rsr+iKjgynWyfMaMGejatSu2bNmC3377DWPGjMG2bdvQrVs3/P3337qI8YvFJSTC0sIchoY5S7PbWFlAKpUhKSVVrf70335C7aqVNO6rrI8XitjZKP8+cOIssrKyUcbn4z93LIjiE+JhaWEBQ0NDZZm1lRWkUimSU1LU6tra2KiUWVlZ480bxbfk/n5+sLezU247fPQYsrOy4Oerec3IgiouPuGz+yQuPgG2NtYqZdbWVngTp+iTR0+eQCyRYMTv4/BD9z74fcIUPH76TPeN0DL2ibr4+HhYWlqq9InVx86d+HjY2NqqlFlZWeHNmzeK7QkJaueW9XvbCwv2ibq4hIS31533zx1LSKUyDWNsIuw+PHesrPA6TnUm0svXr3Hy3AV066A+s6ewSEiIh7WNnUqZlZU14t68VqublpYKqVQKm/fq6+vrw9zCEnFvXuPli+coUqQYTp88iqEDumNg787YtnldoUls8Tqsjn2ijmPJxyUlvIGVjb1KmYWlLRLiXqrV1dPTg2/ZqjA1z1lP+dTBTTCzsELJUp5ITHgDMwsrGLzXzxZWNpBJJUhLSdRZG7Tp0bLNCB01HdkZn15qSFTMHuJnr1TKpC/jYOxQDABgVLwIJB9sl7yKg9Hb7YUF703UsU/UvUlMgpW5KQwNcvIEtpbmkMhkSEpV/XLVxaEYPEvlPKcs+slzXL0fgcp+Hm/3lQx7a9U1220szfEqPlF3DdABQ1tbZCYlQZ6ZqSyTJcRDTySCgYVq++JPnUDipYvwXrQM3504h5KDhiFm/B/ISlU9nsz8y8DUrzSeb1yXJ23QJm2eN2ZmZpg9ezZcXFxARIVDrpPlkZGRaNu2rVp5u3btEFrAfuIqlkhVLoAAYGigGOxkskxNb/ks9yOiEbR2Ezq1bgpba6uvCTHPSSQSlQEfgPJvmUz2GXUNIP2gHgCEhYVj+cpVaNc2EDYffGAr6BTt/OA4efv3h8eJRCJV7xMDA2XfPXryFCmpqejSoS0mj/0NIqEQo8dOQHq65nU0Cyr2iTqJRKI+nuTq3DFU1vuv7YUF+0SdRCKB8KNjrOq5I/7IGPthvUPHT8HT3Q2+7/1KqrCRSMRqbTX4yP9f6dtngXzseBCLM/D82VMcO7wfQ3/6FT36DMTBfbuwf88O3TVAi3gdVsc+Ucex5OOkEjEMDIUqZQaGhsjMlP7ne29dOY1je9ejTZdhMDA0VOzL4IOxyUCx78xCdv35L/omxsiWqPZRtkQKPZHw7XajT24vLHhvoo59ok4skWnoE8Xf0k/kCRJTUvHLvNUo6+mifMCnWCKF8IN9CQ0MPrmfgkjPyAjZsg/GAKni/6tA+ME4aWEJQxtbxM6dhdBBfRF39DCcfx0LAyvVa61di1ZIPHcGMg2TIwo6bZ43RFT4GPx3FVUODg64c+cOnJ2dVcpv374NOzs7zW/KJ0KhIWSZqhcpWaZiwDL6whu/e+GRGDV5NqqWL4u+HTU/CbkgExoK1Qbtd3+LRKLPqJsJow/qhYSGYez4CahU8Tt079pFB1HrllAoVPtA+e5v0QfHiVCoftGTZWYq+27GxD+RlZkJY2PFw5L+GPUTOvYagEtXrqF+nQBdNUHr2CfqhEKh+ngiezeeiNTrajjP3vWJppun97cXFuwTdUJDoVrSLmeM/YxzR5apdn06e/FftGzSSAfR6s6OrRuwc1vOw608vHzU2popk0EkUn/Qr6FQ0f6PHQ96evpIT0/Dz7+MRZEiihmPb16/wuGDe9EqsL22m6J1vA6rY5+o41iS49COVTi8a5XybxeP0sj8IKGTKZNBKPz0g8NvXj6NFbN/Rd2mHRHQUHEPbygUITPzg7HpbdJdqGF8KsyyxRK1xLeeSIist0tJZH1se0bhmtzAexN17BN1IqGBhj5R/G0kMtT0FsQlJWPI9MWQy+X468fe0NNTzDsUCg0h/WBf0kz1Mbigk0ul0Pvgi0i9t0nybLFEpbzkwMHIeBCN13t2AgBiZ82A/7rNsGvSDC82v32Apb4+rGoE4MG0SboPXge0ed4QUeGT62R53759MX78eMTExKBMGcV6h7dv38b69esxYsQIrQf4NextrJGUnILMrCwY6OsDAOITkiASCmFmapLr/d24F4pfp81BpbL+mDBikPICWZjY2toiKTkZWVlZ0Ff2SQJEIqHag55sbW2RkJCgUpaQmKAyO+v2nbsYN3ESvitfHr//MrpQ9omdrY3mPhGq94mdrQ3iExJVyuITEmFjregToaEh8N63ykKhEMWKFsGb+ML1gBf2iTpbW1skJSWp9ElCQgJEIhFMP+fcSUiAzdufrdr9x/bCgn2iTnHupHxw7iRqPndsPn3uAMCr128Q+/gJalSpqPPYten7pi1RI6Cu8u9dOzYjMSFepU5CYjysNfz/NTe3gFAoRGJCPEo6Kh5Yl5WVhZTkJFjb2CIjIx1CoVCZKAeAEiUdEffmldq+CiJeh9WxT9RxLMlR+/t2qFijofLvI7vXIilR9R4iOfENLK3tP3yr0pULR7B6/p+o3agtOvQepSy3trFHanIisrIyoa+v+FiUlBAHQ6ERjE3NtdyS/CV+9hKiYqoTm0TF7CB+oRg7xU81bC9qB8nzwjUjlPcm6tgn6uytrZCYkqaSJ4hLTIFIaAhzE2O1+q/iEzFw2iIAwLKxw2BtYabcVsTaEnGJySr14xKTYWdlocMWaJ/09WsYWFoC+vrA2wdxGtrYIkssVltexcTTG692bs8pkMuRHh0FYbGcezMzP38IDAyQfO1KnsSvbdo8b4io8Mn1p4fAwED8+eefOHfuHH7++Wf89ttv+PfffzF16lR07dpVFzF+MQ8XJ+gb6ON+RJSy7E5oBHzcXXL9wSkm9gl+mz4XVcqXwaRRQ2FgkOvvGQoEN1cXGBgYKB82AQD3Q0Lg6eGh1ic+3l4ICQ2D/O1jbuVyOe6HhMLbW/EArocPYzFh0mRU+u47jPn918LbJy6KPgl570FY90LC4OXhrt4nXp64Hxau2iehYfD19oRcLkfXfoNx5MQpZf0MsRhPnz2HY0kHFCbsE3Wurq7q5879+/DQcO54e3sjNCREpU9CQkLg7eWl3H7/fs6DDV+/fo3Xb94oz63Cgn2izt3VGQYG+ggJzzl37oaEwcvDTa1PfL08cT8sQqVP7oWGwdcr51kYoRGRKGJni6L2H08CFUTm5hYoXsJB+fLy9kVY6H2VtoaF3IOnt/o60np6enD38EZoSM4DpsJD78PAwAAuLm7w8vaFVCrF06ePldufPI6FfZHCsa4ur8Pq2CfqOJbkMDW3RJHiTsqXq1cZRIfdVmlvVNhtuHqW1vj+0DuXsXr+n6jbpAM69ftNZVtJFy/oGxggJiJnvIkKvQlnd99C+SXLpyRcvg3rquVVyqyrVUDi5dsAgMQrt2Fd4zvlNqOSxWDsWBwJb7cXFrw3Ucc+UedVygEG+vq4995DOG9FxMDP1UmtTzLEEgz7ayn0BAIsHztMbX1yf3dn3IqIUf79Ii4BL+MTUdrdWZdN0LqMqAjIs7Jg5uunLDMrXRbpYaHA2+PhHdmbNzD6YKUBI0cnSJ4/V/5t6uOH9IgwyKX/vURWQaTN84YKh2w5X7l9/T/7orvAwMBA7Nq1C7dv38aVK1ewdetWNGnSRNuxfTUjkQhN6tTErKVrERoZg3OXr2PzvsP4obniJ6hxCYmQSD5v8P576RoUsbPFsF6dkZScgriExFy9v6AwMjJCg/r1sGDRYoRHRCD40iXs2LUbrVu2BADExydA8na92Jo1ayA1LQ1Ll69A7KNHWLp8BSRiMWoH1AQAzA9aBDt7O/Tv1wdJScmIj09QeX9hYWQkQqN6dTBv8TKERUThwqXL2L57HwJbNgOgmN32rk21alRDWloaFq1YjYePHmPRitUQi8WoXbM6BAIBqlb8Dv9s2opbd+/hYewjzJizAPZ2tqjyXYX8bGKusU/UKc6d+ggKClKcO8HB2LlrF1q3agVA8WCXnHOnJlLT0rBs2TLEPnqEZcuWQSwWo1atWgCAZs2a4eSpUzh69CgePHiAWbNno3LlyihWrHAk+95hn6gzEonwfb06mLN4BcIio3Dh3yvYtmcf2rZQP3dq16iK1LQ0BK1cg4ePHiNo5RqIJRLUqVlNub8HsY9RyrFkvrRFm6rXrI20tFSsWh6Ex48eYtXyIEjEYtQIqANAsdZjQnzOzPPGzVphz86tuHzpAiIjwrB08Vw0/L4ZREZGcCjphO8qVcXCOX/hQUwUbl6/gl3bN6Nxs5b51Lrc4XVYHftEHceSj/uuWgNkpKVg6+q/8exxNLau/hsScQYq1lDc30slYiQlKB6qlpWViX+CJsDTrwIat+mJpIQ3ypdiKShjVKvTHBuXTsXDyPu4efk0ju1bj/rNO+dnE7VGVNQOekaKZQBe7DwCQysL+M4ZAzMfN/jOGQN9U2M8334YABC7bDMcurSCY692MC/thXJrZuLVwTPIePgkP5uQa7w3Ucc+UWckEqJZQCVMW70N96NjcebaHaw/eAodG9cGoHhop/htknf1vuN48uoNJgzsotz2JjEZqW+fv9SuQQ0cunAVe85cQuSjpxi/ZANqlveDQxFbzf/xAipbIsGbI4dQasQvMPH2gVXNWijaoTNe7tgKADCwsYFAqBhPXh/YC/vmrWDTqDFEDiXh0H8QhEWLIe7IIeX+jF1ckfHwYX40RSu0ed4QUeEjkMvluf4+4NKlS7h79y5kMhk+fPvQoUO/OJjX9y9/8Xs/RiyRYNaytTj77zWYmpigc6smaN+iMQCgZmB3/DG0H5rWU103+dCp81i9dTd2LJsDQJFUb9VnuMb9a3q/ttj7VcHDqIj/rphLYrEYCxcvwYWLwTA1NUG7wEAEtlYM+t83a4GRP/2IRg0bAADCwiOwcNEiPHr8BC7Ozhg+dDDc3dwQH5+ATt26a9z/++/XNmd3TzyJuKf1/YrFEsxbshzng/+FqYkJOgS2QttWzQEA9Vu0xegfh6Bxg3oAgLCISMxdtAyPnjyFq3Mp/DS4PzzcXAEAUqkUq9ZvwulzF5CWlo5yZfzx46D+KGKvu/X8S3r6s0/eU9LTHzHR0TrZt1gsRtCiRbh48SJMTU3Rtm1btGndGgDQpGlTjPj5ZzRsqPipeHh4OBYGBeHx48dwcXbG0GHD4O7mptzX8ePHsX7DBqSkpKBChQr4cfhwWFjo5uearm5u7JMPuLq54Vn4HZ3sWyyRYO7iFTh36V+YmZigQ5tWaNdKkeCq2/IH/PrjYDSur1iiJDQiEnMXr0DskydwdS6FEYP6w8PNRbmvuYuXIzUtHX+O/kknsb6vhFcZhEQ909n+I8JDsWzRXDx5HItSzq4YOHQEXN0UDxo8dfwIFs77C7sPnlbW37ltE/bv3QGZTIpq1Wuh/+CfIHy7nnlaWipWLl2Afy9dgEhkhCbNWqF9p+4QCARajdnXvQSvwx9wdvdkn3zA2d1TJ+NJYR1LAMV4cvZ+us72/yDyHjYsnYoXTx/AoZQHug4YAydXxczW4FP7sDZoPJbvuomY8DuY8XsPjfsYOWkFvPwrQiLJwKZl03Dj35MwNjFDo1Y90KCF9te5r+1ngoOGup1l2EwWjkv1uyH+3BXl37f7/IYn63YDACwrlUbpRRNh5u2G5LvhuDdkPJJvhSrfX7J7G3iOHw5DG0u8OX4Rdwb+CVl8os5i5b2JKt6vqXN1c0PKtSM62bdYIsX0Ndtw6sptmJkYo1uzeujcpA4AoGKXHzG+f2e0qF0FbUdNRexz9aXemgdUVibQ95+9jKU7DyE5NR1VS3tjTN+OsDI3VXuPNphXbIxrtav9d8UvoCcSwWnEL7CuVQdZaWl4sWUjXr1Nllc8ewkPpk9WJsTtmrZA0Y6dIbS3R3pUJB4vmIv0yJz7A4+Zc5AeGYmnK5boJNb3VTx7SSfnjjbPm3dmz1HkmEbqeAljVw3/bfq0tWfyO4LCp2ed/I5Ad3KdLJ8xYwbWrVsHb29vtbWaBAIB1q1b98XB6CJZXpjpKllemOkqWV6Y6SpZXljpMlleWOnyw1dhpctkeWGl62R5YaSrZHlhpqtkeWGmq2R5YabrZHlhlBfJ8sJEl8nywor3a+p0mSwvrHSZLC+sdJUsL8yYLM89Jstz7/85WZ7rhRx37tyJGTNmoGXLwvFzZyIiIiIiIiIiIiKi/5LrNcv19fVRpkwZXcRCRERERERERERERJQvcp0s79KlCxYuXIj0dP60koiIiIiIiIiIiAovuZyv3L7+n+V6GZYrV67g5s2bOHLkCGxtbWFoaKiy/eTJk1oLjoiIiIiIiIiIiIgoL+Q6WR4YGIjAwEBdxEJERERERERERERElC9ynSxv06aN8t9JSUkwNzeHQCCAQCDQamBERERERERERERERHkl12uWy+VyLFmyBFWqVEG1atXw9OlTjB49GuPGjYNUKtVFjEREREREREREREREOpXrZPmiRYuwb98+zJgxA0KhEIBitvnFixcxc+ZMrQdIRERERERERERERKRruU6W7969G5MmTULdunWVS6/UqFEDf/31Fw4fPqz1AImIiIiIiIiIiIh0QS7nK7ev/2e5TpbHxcWhSJEiauUWFhZIT0/XSlBERERERERERERERHkp18nyqlWrYtWqVSplqampmDNnDqpUqaK1wIiIiIiIiIiIiIiI8kquk+UTJkxASEgIatSoAYlEgsGDB6N27dp4+vQpxo4dq4sYiYiIiIiIiIiIiIh0yiC3b7CwsMCOHTtw6dIlxMTEIDMzEy4uLqhZsyb09HKdeyciIiIiIiIiIiIiyne5TpY3b94cQUFBqFatGqpVq6aLmIiIiIiIiIiIiIiI8lSuk+V6enqQyWS6iIWIiIiIiIiIiIgoz2TL8zsCKkhynSyvU6cOevXqhbp168LBwQFCoVBl+9ChQ7UWHBERERERERERERFRXsh1sjw8PBx+fn549eoVXr16pbJNIBBoLTAiIiIiIiIiIiIioryS62T5+vXrP6ve8uXL0bFjR1hYWOQ6KCIiIiIiIiIiIiKivKSnqx0vXboUSUlJuto9EREREREREREREZHW6CxZLpdzdXwiIiIiIiIiIiIiKhxyvQwLERERERERERER0f8Dzvel9+lsZjkRERERERERERERUWHBZDkRERERERERERERffOYLCciIiIiIiIiIiKibx6T5URERERERERERET0zct1snzKlCl49OjRf9b74YcfYGZm9kVBERERERERERERERHlJYPcvmHfvn3o0aPHf9b7448/viggIiIiIiIiIiIioryQnZ3fEVBBkutkec+ePTFp0iT07NkTJUqUgEgkUtleokQJrQVHRERERERERERERJQXcp0sX7BgAQDg/PnzyjKBQAC5XA6BQIDQ0FDtRUdERERERERERERElAdynSxv2bIlypUrh5o1a0JfX18XMRERERERERERERER5alcP+DTwsICS5YsQfv27bFs2TI8efIEJUqUgIODAxwcHHQRIxERERERERERERGRTuU6WT527FicO3cOCxYsgIGBAUaOHImAgABMnToVt27d0kGIRERERERERERERES6letlWADFGuWVK1dG5cqVMWLECKxcuRJr1qzBhg0bUKJECbRv3x49e/ZUe/gnERERERERERERUUEhl+d3BFSQfFGyPC0tDadPn8aRI0dw4cIFFC1aFL169ULTpk3x+vVrzJo1C1euXMGqVau0HS8RERERERERERERkdblOlk+aNAgBAcHw8LCAk2aNMG6detQpkwZ5XZPT08kJydjzJgxWg2UiIiIiIiIiIiIiEhXcp0st7Ozw7Jly1ClShUIBAKNdSpWrIjt27d/dXBERERERERERERERHkh18nyyZMn/2cde3t72Nvbf1FARERERERERERERER5TSCXcxl7IiIiIiIiIiIi+vYsPZrfERQ+A7/P7wh054se8KkrCdMH53cIBYr174sh3jk3v8MoUIza/oykWT/mdxgFiuWo+Yjp2Ty/wygwXNceQPyd8/kdRoFiUyYA6We35HcYBYpJ7Y54EXYzv8MoUIp5l8edyFf5HUaBUsajCB4PbpvfYRQojot3IrZ/6/wOo0AptXwPUq4dye8wChTzio0hPrYmv8MoUIwa9UJMdHR+h1FguLq54aChV36HUaA0k4Uj+cbx/A6jQLGo0BA7LmfndxgFSrsqeoiOicnvMAoUN1dXJN04kd9hFCiWFRrkdwiFDqcR0/v08jsAIiIiIiIiIiIiIqL8xmQ5EREREREREREREX3zmCwnIiIiIiIiIiIiom8ek+VERERERERERERE9M1jspyIiIiIiIiIiIiIvnmfnSyfOXMm0tPTVcr++ecfNG7cGOXLl0fbtm1x9OhRrQdIREREREREREREpAvZcr5y+/p/9tnJ8jVr1iAjI0P59+rVqxEUFIQOHTpg3rx5aNiwIcaOHYtt27bpJFAiIiIiIiIiIiIiIl0x+NyKcrnq1wY7duzA2LFj0apVKwBA7dq14ejoiLlz56J9+/bajZKIiIiIiIiIiIiISIc+e2a5QCCAQCBQ/i0Wi+Hr66tSp3Tp0oiLi9NedEREREREREREREREeeCzk+VyuRyLFi3C9u3bcfXqVVSpUgX79+9XqbN582Z4eXlpPUgiIiIiIiIiIiIiIl367GVYfvvtN0RHR2P37t2Ijo5GUlISBAIB+vTpA0tLSzRu3Bhv3rzB8uXLdRkvEREREREREREREZHWfXayvGfPnip/x8XFISYmBpaWlgCAPn36oEaNGihRooRWAyQiIiIiIiIiIiLShQ+f00ifQ/DfVQqpz06Wf8jW1ha2trbKv3/44QetBERERERERERERERElNc+e81yIiIiIiIiIiIiIqL/V589s3zPnj2fvdPWrVt/QShERERERERERERERPnjs5Pl+/fvR3BwMCwsLGBqavrRegKBgMlyIiIiIiIiIiIiIipUPjtZvmrVKkyePBmnT5/Grl27YGVlpcOwiIiIiIiIiIiIiIjyTq7WLB87dixKliyJGTNm6CoeIiIiIiIiIiIiojwhl/OV29f/s8+eWQ4ollj5+++/ERISoqt4iIiIiIiIiIiIiIjyXK6S5QBQtGhRFC1aVBexEBERERERERERERHli1wnywHg6tWrGssFAgEMDQ1hb2+PEiVKfFVgRERERERERERERER55YuS5WPGjMGTJ0+QnZ0NS0tLyOVyJCcnQyAQQCAQQC6Xo0yZMli4cCGKFCmi7ZiJiIiIiIiIiIiIiLQqVw/4fKdNmzYoXbo0Dh8+jMuXL+PKlSs4fvw4KlasiNGjR+PixYsoWrQopkyZou14iYiIiIiIiIiIiIi07otmlv/zzz9Yu3YtXFxclGWOjo4YM2YMevbsiV69euHHH39Ex44dtRYoERERERERERERkTZlZ+d3BFSQfNHMcgBISEjQWJaVlaX8WyAQfOnuiYiIiIiIiIiIiIjyzBfNLG/Xrh1+/fVX/Pzzz/D394dcLsf9+/cxf/58tGnTBgkJCfj7779RuXJlbcdLRERERERERERERKR1X5QsHzlyJExNTTF37ly8evUKAFCkSBF07doVffr0QXBwMAwMDDBu3DitBktEREREREREREREpAtflCwXCAQYNGgQBg0ahISEBBgYGMDc3Fy5PSAgAAEBAVoLkoiIiIiIiIiIiIhIl74oWQ4AsbGxuHfvHmQymdq21q1bf01MRERERERERERERER56ouS5StXrsSsWbNgaWkJU1NTlW0CgYDJciIiIiIiIiIiIirw5PL8joAKki9Klq9evRqjR49Gnz59tB0PEREREREREREREVGe0/uSN0kkEjRq1EjbsRARERERERERERER5YsvSpa3aNECmzZtgpy/UyAiIiIiIiIiIiKi/wNftAxLamoqduzYgQMHDqBkyZIwNDRU2b5u3TqtBEdERERERERERERElBe+KFnu7OyMgQMHajsW3dA3gMn3HWHoVQ7IlEF8+QQkV05qrGradgCEnmVVylK3L4Ys6h6gpwfjWi0h9K8M6OtDevcyMk7vAeTZum+DlklkmZi27wJO3o+ByNAA3WuWRY+Asp98z9OEZLSdvw0LuzdBJVcHZfmGi3ew9vwtpIllaFTaDb+1qAFjoeEn9lRA6RvAuMEPMPQoA3mmDJJrpyG9dlpjVZPWfWHoXlqlLG3XcmS9eQ6L/uM1vid1ywJkPYnWeti6JDA0hG23QTCtWB1yqRRJR3Yj6chutXrFf5sOY+/SauUp547j9er5AACL+s1g1bQt9EzMkH7vBt6sDUJ2WqrO26BtEqkMs1ZuxJnL1yESCtG5ZSN0bvH9J99zOzQSk4JWYeeiGRq3n7x0DWPnLMWl7St1EbLOSWQyTN90ECdvhMLI0ADdGlVH90Y1NNY9fycCQXtO4vHreJS0s8bgVvVQp5w3AEAul2PZ/jPYfeEGMqRSVPN1w6+dmsHG3FTjvgoyiVSKectW49ylKxAKhejYujk6tG6usW5EzAPMWbwSMbGP4exUEiMH9YWXuysARZ9s3XMAuw8dQ2paGmpWqYQf+/eCibFRXjZHax5ER2D5oll4FBsDRycX9BsyCm7uXh+tf3DvNuzduRkZGWmoVrMe+gz4CSIjRduTEhOwYvFs3L19HeYWlmjboTvqNmiaV03RDgNDWHfsB5NyVSGXSZFyYi9STu5Xq2b/00QYefqrlacGn0TChsUqZdadByIrKR7JB7fpLGydMTCEbecBMKlQDdkyCZKP7UXK8b1q1YqOnAIjLw39cfEE4v4JgkAognWHPjApXxUQ6CH9ejAStq+GXCLOi1ZolUQqw19rt+PU1TsQCQ3RrWlddG1WT2PdCzfvY/G2g3j88jUcithi0A/NUPu7nGvzkeDrWLL9IN4kJqNaGW+M7dsRVuZmedUUrZHIMjFt2zGcvB2uuIetVxk96lfRWPfg1ftYevgCXiamwLtkUYwOrI/SziUAAFnZ2Vi4/xz2Xb6LDKkMNX1d8Vu7hrC1KHzXHKlUikWLF+PixYsQCoVo27Yt2gYGaqwbFR2NoIUL8TA2Fk5OThg2dCg8PDyU28+cOYN/1q1DQkICKlSogB+HD4elpWVeNUXr9ISGqHl5F+79OBnx565orGNRzgf+iybCwt8TKSFRuDtkPJJv3FduL9GhGTwn/gSj4vZ4fewC7gz8E7K4hLxqgtZIpDLMXLMNp67cgkhoiK7N6qNr8/qffM+tsGiMX7IOe+dPVJbJ5XKs2HkIe09fQoZEgiqlffBLrx9gbWGu6yboxLOHIdi7diJePolAEQd3tOo5AQ4ufhrrSiXpOLhhOu5fOw65XA7/yt+jaedfITJSjBtxL2Ox75/JeBR5E8amlqjWsAsCmhW+Z7xFR0VhYVAQYh8+hJOTE4YOG6YyTnxoz+7d2LlzJ9LT0xEQEICBgwbB6O39mlQqxeJFi1TGp8C2bfOqKVqhOHe24vR7506X5g0++Z5bYVGYsGQd9syfpCx7d+7sOx2sPHdG92pfaM8dov93X5QsHzp0qLbj0BnjeoHQL+aE1E3zoWdpA9Pm3ZGdFA9Z+E21uvp2xZG2bw1kD8OVZXJxOgDAKKAFhKWrIO3gesjTUmDStCuMG7RFxvHtedYWbZlz+F+EPH2NFX1a4FliKv7ccQolrMzQsLTbR98zde95ZEgzVcpO3IvB0pPXMLV9fdiaGePPHacx98i/+KNlgK6boHVGtVtBv6gjUrctgp6FDUyadEF2cjwyI26r1dWzLYb0g+uQGRuhLJNL0oHsbCQvHqu637ptoGdlh6xnD3TeBm2z6dAbImcPPP9rDAxsi6BIv5+R+eYV0q5dVKn3cuFUCAxyhhKRqxeKDv4NSacOAgBMKwfApn0vvF4xB9LnT2Hfezjsug3Cq6V/52l7tCFo/XaExTxE0PhReP46DpMXrUYxO1vUq1ZRY/2o2Cf4Y/YSCD/yBVJKWjrmrt6sy5B1bu6OYwiJfYblI3rgeXwSxq3ZjeK2Vmj4neoHjYgnLzBy6Rb81LYRapb2wKX7URi9bBs2/NEfXo7FsPPcNey5eANT+7SFlZkxpm08gEnr9mLekM751LIvt2TtRoRHxWDu5D/x4tVrTJ+/BEXt7VCnRlWVehliMX6d9Bca1q6B334cjH1HjuO3yX9h07L5MDYywv6jJ7F2yw6MGtIfbs5OCFq1DpNnL8T0saPzqWVfTizOwLQJoxFQpxGG/PwHjh3ai+kTfkHQyi0wMjJWq//vxTPYtmkNho8cC0srGyyaNw3r1yxB30E/Qy6X4++pfyA7OxsTps1HfNxrLJwzFSYmpqhSvXY+tO7LWAV2h9DJDa/mj4eBjT1sug9DZvxrZNz8V6Ve3PK/gffGWKGzB+z6jETquaMq9cwbtoJZzYZIOrg1T+LXNut2PSEs5YaXc/6Evo097Hr9iKy4V0i/cUml3uslM1T6Q+TiCfv+o5Fy5rBiPx36QFTKHa/mTQQgh22PYbD+oTfiP/hioTCYv3kvQh88xtI/huD5m3hMWLoRxexs0KBKOZV6kY+eYvS8VfixUyvUKOeLS3fC8Ov8NVg3eSQ8SzngXnQsJq/YjN97t4dXKQf8vW4XJizdiHmjB+RPw77CnD2nEPLoOVYM64Rn8Un4c8NBlLCxRMPy3ir1bkQ9xoRNhzC+cxOUcymJredvYMiSbTgyaTBMREKsPv4vjt4Iwd+9W8HK1AR/7TiOP9bvx7IhHfOpZV9u5apViIyMxIzp0/Hy1SvMnj0bRYoUQUDNmir1xGIxxo0bh7p162LEiBE4dOgQxk+YgNWrVsHIyAjh4eGYN38+hg4dCjdXVyxZuhRz5szBxIkTP/JfLtj0REKUXz8b5v6eH62jb2KMSvuW49nm/bjT5zc49e+ESnuX4YxXQ2SlZ8CyUmmUWT5VkUC/HQa/uWNQdtV0XGtdSCaNvWfBxt0IjXmEJWOH4/mbeExcsh7F7W1Qv0p5jfWjHj3Fr/NWQvTBL8h3n7yIvacvYdKQHrA0N8Vfq7ZiyvJNmD2q8I0nUkk6/pk9AOWqt0DbftNw5fRWrJszECNnHYVQZKJW/+CG6Xj64D56/bIKEAC7Vo7FoU1/oU3vScjOzsa62QPh4FoaQybvRNzLWGxdPAoW1kVRtrrmCRMFkaZxYsL48Vi1erUyAf6+CxcuYOPGjRg1ejSsrawwZ84crF69GoMHDwYArFq5EpGRkZg+YwZevXypHJ9qBhSefMG7c2fx23Nn0pL1KGZvg/pVKmisH/XoKX7TeO5cwL7TwZg0pCcszU0xY9UWTF2+EbNGFb7x5P9VNleZpvd89prlv//+O1JTU5X//tSrwDAUQlS2OjJObEfWy8eQRdyG+N/jEH2n4cO0vgH0rGyR+TwW8rRk5QtZigSx0Xe1kHFmLzJjQpD18jHSj26GqHwAYCjK40Z9nXSpDLuvheKX5tXh42CP+n4u6BlQDlv+vffR9xy8FYE0iUytfGPwXXSpXhq1vUvBv2QR/Nm6FvZeD0eGVL1ugWYohLB0VWSc3oXsV0+QGXUHkqsnFf9/P6SvDz1LG2S9eAR5eoryhawsQC5XKdOzsoWhR1lkHN4AZBeuXyAIhCKY12qEuE3LIY2NRvqNS0g8tBMWDdRv9rLTUpGVlKh4JSfDpl13JB7eCenDKACAVdO2SDy0E2nXgiF7Gov4rashLOkMCL7okQn5JkMswb6T5/Fzr47wci2FOlUqoGurxthx5JTG+ruPn8WAsdNhY2Xx0X0Grd8Oh6L2ugpZ5zIkUuy5cAO/dGgCn1IlUK+8D3p8XwNbT6vP3jp85S4qebmgc/2qcCpiiw51q6CSlzOOX1OMPRfuRaJRRX9U9HKGu0NR9Pi+Jq6EFb4vmTLEYhw8fgrD+vaAp5sLalWrjE6BLbD70FG1uqcuXIJIKMSgnl3h7OiAYX17wNjYGGcuKpKluw4eQftWzdGgVg24ODnijx8H49K1G3j05FleN+urBZ87BaFQhG69B6OkozN69R8OY2MTXLqg+Rc8h/btQLOWP+C7yjXg7umD/kNG4/SJg5CIxYiJCkd46D38OHo8XNw88V3lGmjdrgv27iw8XzwJhCKYVq+PxO2rIXv8ABm3ryDl+B6Y1W6iVjc7PRXZyYmKV0oyrFp2QfLxPZA9UvxaSWBkDNu+o2DeqA0y41/ndVO0QiAUwaxmA8RvXQXpoxhk3LqM5KO7YV63mVpdtf5o0xVJR3dDGvv211uZmYjfvBzSR9GQPopB6sUTELn75HGLvl6GWIK9p//FyG6B8HZxRN1KZdGteX1sO35ere6R4Ouo5OuJjo1rw7GYPdo3CkBFXw8cv6yYGLLt2Hk0rFIezQMqw8PJAZMGdcXF26F4+iour5v1VdIlUuy+dAe/tGsAH8diqF/WCz3rV8GWc9fV6r5JSUP/xjXQvJI/StpZYUDjGkhKFyP6+RsAQFZWNkYF1sd37k5wK26HznUq4lb0k7xu0lcTi8U4evQoBg4YAHd3d9SoXh0/tGuH/fvVf6Vy9tw5iEQi9O3TB05OThgwYACMjY1x/rzimNq/fz8CAgLQoH59uLi4YPSoUbh67RpevHiR1836amY+bqh+cRtM3Jw+Wa94+6bIzpAg9NeZSA2LQciIqchKSUPxdo0BAM6Du+LZjsN4umEvUu6G41bPX1CkSW0YO5fMi2ZojWI8uYSRPdq+N540wLajZzXW33XiAvqMnwNbS/V72Iu37qNhtQr4ztcD7o4l0K1FA1y9F65hLwXfnX8Pw1BohMYdR6OIgxuadfkdIiMT3Luifs8GAPoGhmjRfSwcXPzg4OyH72oFIjbiBgAgNfkNijt5o1WP8bAr5gyvsrXh5lsVDyPUx6eC7NzZsxCJROjTt6/GceJDe/fuRavWrVGlShV4enlh2LBhOH7sGMRisXJ8GjBwINzd3VG9Rg20++EHjeNTQZUhlmDf6WCM7NEO3i5OqFupHLo2b4DtR89prL/rxHn0HT8bNhrOneBb99Gw2neo4OsBN8cS6N6iYaE9d4h0QS6XY9asWahatSoqV66MmTNnIvsTebQpU6bAy8tL5bVhwwbl9gMHDqBBgwYoW7YshgwZgvj4+FzFU7iyVbmkX6QkoK+PzCcxyrLMJ9EwKOEMQKBa16YoIAeyE96o7UdgYgaByBiZzx4qy7JePYVA3wAGxT99E1bQRDyPQ2Z2Nso5FVOWlXcuhruPXyFbw1dpielizD3yL/5sXUulPCs7G/efvEIFlxLKsjKORSHLykLEi8L14UvfvgSgr4+spzmJucynMdAvVgofHid61m+Pk8T/bqNRQAtI7wYjO/6VtkPWOaGTCwT6BhBHhirLxJEhELl6AgLBR99nHlAfeqbmSDy4A4AiiSNydkfa9eCc/UTcx5OxQwrdEkaRsY+RlZWF0p7uyrKy3u64H/lA4yD+7827+HNob3Rs1lDj/m7cD8eN++Ho2VY9GVRYhD95gcysbJR1c1SWlXd3wr0HT9T6pEW1chgeqN4XqRkSAICVqQku3I3Aq4RkiKUyHLl6F96OxdTqF3TRD2KRlZkFf++c5UVK+3ghJCJKrU9CwiNR2scLgrfnlEAgQGkfT9wPjwQAPHvxCr7vHW+2NtawsrDA/fAIFDYR4ffh7VtGpa1evv6ICLuvVjcrKwtRkaHw8c9ZHszT2xeZskw8fBCFly+ewcLSCkWL5Vx/Sjm7ISYqDJmZmWr7K4gMSzpDoG8ASUzOhyRJdBiEzh6fHGNNq9WFnqkZUo7vUZYZ2BaBwNAQL6ePRuabl7oMW2eE7/ojOkxZJo4KhdDl0/1hVr0e9EzNkHx0l7IsfvNy5X70bYvAtHItSCI+PiGgoIp49AyZWVko6+miLCvn5Yr7UbFqY0nzgMoY2rGF2j5S0xVLz9yLeojy3jm/Hixma41itta4G/VQN8HrSMTTV8jMykI5l5xEZXm3krgb+1ztHrZReW/0+746AEAslWHD6auwMTeBW3E7AMDApjVRv6xinI5LScOu4Nuo6FG47ukBICYmBpmZmfDxyflCyM/PD+Hh4WrHSVhYGPx8fVXGYV9fX4SGhSm3+/vnLHFkb28Pe3t7hIWFobCxqVUZcWcu42LNDp+sZ12lLOKDVZOZ8ZduwKpqOQCAVeWyiD9/TblN/OQFMh49g3WVTy9fWdBEPHqKzKwslPF0VZaV89Y8ngBA8O0QjB/UDZ2a1lXbZmlmios37+NVfCLEUimOBV+Dl7OjWr3C4HH0bZTyrKByTjh5VMCjqFsa67fsMQ6lPBWziRNeP8WdSwfg4l0JAGBhVQQdh86FyNgUcrkcsRE38DD8Glx9KudJW7QlLCwMvn5+auNEWGioWt2srCxERkSojBvePj6QyWR48OBBrsangipS47njhvtRDz9x7nRH54+eO/eU587R4GvwLKTnDpEurFmzBgcOHEBQUBAWLFiA/fv3Y82aNR+tHx0djZEjR+LChQvKV9u3yzzduXMHY8aMwdChQ7F161YkJyfnemL3Zy/DMn36dOW/f/rpJxQtWjRX/6H8oGdmAXl6KpCdpSzLTkuBwFAIgbEp5Bk5aybr2RWDXJIB05Y9YODkiezkBGScP4DMmBDIM9Ihz8qEnrkVsuMUsyv0LKwBAALjwrXe45uUdFiZGMHQQF9ZZmtmAklmFhLTxbAxU/05/KyDwWhZ3gvuRW1UylPEUkgys1DEPOcnagb6erA0NsLLpDTdNkLLBKaWkGekqRwncuVxYqLY9pa+bVHIJRkwbtoVBo7uyE5JhCT4MDIfqN5A6JdwgX4JF6QfLJwPuzWwskFWas4vKwAgKykBekIR9MzMkZ2SrPF9lk3bIenYXuXasIZFFMlOfXNL2I+ZCQO7osi4fwtxm5YjO71wHSdxCUmwNDeDoWHOsGljaQGpTIaklDRYW6quN/fXL4rlqg6eVl22BgCkMhn+WrYOo/p2UTkXC5s3iamwMjOB4XtLIthYmEEiy0RiWobKeuOuxVVn0Ec/e4UrYQ/QrrbiQ0b/5rXxY9AmfP/rbOjr6cHO0gz//NY3bxqiRXEJibC0MFc5TqytrCCVypCckgqr92aaxCUkwsVRdXaatZUlHsQ+Uf779XvfgGeIxUhOTUVScoqOW6F9ifFxKFnKRaXMysoGj2Jj1Oqmp6VCJpXCxsZOWaavbwBzCwvEx72GpZU10tJSIRGLlWuYv3nzCllZWUhPS4WFpZVO26IN+hbWyP5wjE1JVIyxpuaKbRqYN2yNlFMHVNbflj2NxZsl0zXWLyz0rWzU+yP5v/vDonEbpJzYr3E9ctuew2FWvR4y37xE4oHCtzTNm8QkWJmbqoyvtpbmkMhkSEpNh7VFzv2ni4PqF4vRT57j6v0ItK1f/e2+kmFvrbrutI2lOV7FJ+quATrwJjkVVqYmqvew5qbvXXPUl024HP4QAxdthRxyTO/eEiYiocr2xQfPY9mRi7AwMcI/P3fVeRu0LT4+HpaWljB87+f+VlZWkEqlSE5JgdV7643Hx8ejVKlSKu+3srJCbGysYntCAmxtVO/3ra2s8OaN+kSigu7Rss/7pZGomD1SQqJUyqQv42Dup1if2ah4EUieqU56kbyKg5FD4foyX3EPqzqe2FhavB1P0tTWTJ41sj8AYP9Z1WXBAKBv2yYY8fdSNBsyFvp6erC1ssDqSSN12wAdSUl8jaIO7iplZpa2ePkk8pPv27HsN9y8uBfWdg6o13qw2vZZI+ojMe45vMrVgV+lRlqNWdf+a5x4X1paGqRSKWxtbZVl+vr6sLCwwJs3byAQCD46PqUkJ8PSykpn7dCWN7k+dxTLER04q7qEHAD0adsUI/9eiuZDxijPnVWTRum2AUSFyLp16zB8+HBUrKhY4nbUqFGYP38++vTR/OyH6Oho9OnTB/b26r/U37BhA5o0aYLWrVsDAGbOnIm6devi8ePHcHT8vC+pvmhmeZ06ddClSxds3Lgx11PZ85LAUAh51gezzLLeLhFioPo9gb5tUQgMhZDFhCJ1axBk0fdh9sMg6BdzAuTZkIXfgnGdVhCYWwEiIxjXC4Q8KwvQL1yJrgxZJoQfJOfe/S3LylIp/zfqCW7GvkD/et+p7Uf8dv3yDxN9QgN9SDOz1OoXZAJDQ5UP6AByjht91eNEz0ZxnGQ+DEPazqXIfBACkzb9oF9U9YQTlq0OWeRtyFOTdBq7rgiEIshlqsvpyDMVfwsMNK+/beRdGgbWtkg5m/PTRYFI8eWLXbdBSDy4Ay8XzYDQwQn2/QvfTbVYIoXQUPV4eHfzJ8vM3dJDa3YcgJdrKVQpq/kBQoWFWCrTOAYAgOwTM3wTUtIwaslWlHVzRJ23M/uexSXCSGiI+UM7Y+WoXihibYEJa9Uf7lfQiSUSlQ8FAJTHjfSDc0qioa6hgSFkb+vVq1kNG3fsxcPHTyGRSrFo9XoAn+7bgkoiEau11cDQEJky9XNH8jbxaaChvkwmhYeXL2xs7LBq2TyIxRl4/uwJDuxRJEMLy8xygVAE+QexymWKvwUGmucxiDz9oW9ti7SLJ3QeX15T9McHx8J/XHNEXv7Qt7ZD6vnjGrcnH92F59N/QWbcaxQdPu6TM9QLIrFEpvLhHIDySzip7OPHeWJKKn6ZtxplPV2UD/gUS6QQfrAvoYHBJ/dTEGVINd3DKtr1sXHRvbg9Nv/SE4ObBuDPjQdx58FTle3NK/tj0+geqOrljIGLtip/7VRYSCQSDcfJ23uTz7nmGOZcc/5r+/8jfRNjZEukKmXZEin03n6pom9i9MnthYVYKlO/hzX47/FEk+ev42AkFGLO6AFYNu5HFLW1wuRlG7UWa16SScXQN1T9f2lgIESWTPqRdyjUat4XA8ZthpVdCfwza4DaDONOwxag28+L8eJRGA5tnKH1uHUpN+OARCJRbtdUXyKRqN3LfWx8KqjEUvXPf8KvOncMMXv0QCwd9xOK2FpjyrIN//1Gom/Ay5cv8fz5c1SqVElZ9t133+Hp06d49Up9pYbU1FS8fPkSzs7OGvd3+/ZtZdIdAIoXL44SJUrg9m31ZxJ+zBclyw8fPozatWtj586dqFWrFnr27Int27cjKalgJQblmTIIPkh2Qv/tgP3BRVB84TCSgn6H9O6/yHr1FOILByGLDoGonOLhOOnHt0EuEcNq6DRYDZ2GzCcxkIvTAKn6bKaCTKQhmf3ub6P3LgRiWSYm7zmHP1oGqJS/k5MQU9+XpvoFmTwzUy0prjxuPvjwLrl0FMlLx0F2/wqyXz+DJPgIMh+EQlim+ntv1oOhmz9kIddQWMllUsWXCO95l7CQSzV/kDStVAMZd68jOy3nFxvvZusnHtyO9FtXIIkKxes1C2BarjL0rWw07qegEgoN1W6K3t3oiYSf/6Ep+tFT7D1xDj/1/PRPgwsDkaGBxjEAAIw+8lDTuORUDJjzD7Llcvw9sAP09PQgl8vx5+rd6NqwOmqV8UI5dyfM7N8el8NicDemcK0hKxQK1T4AvDtujESqz7gQGqrXlWXKIHpbr3uHQHi5u6LnsFFo1qk3DA0M4e5SCqYm6g/ELGh2bVuHru0aKV+A+gejTJkMQpH6w6IM355PHybSM2UyiERGEApFGPHbJNy7cwPd2zfGuF+HoGHjlgAAYxP1maUFkVwmVUuKC95eO+VSzR/SjctXhfj+TWSnp2rcXpgp+uODMeO/rjkVqiPj3o2P9ofs+RNIH0Tg9fK/YViyFEQehevLSZHQQC0BLFOOJR8ZX5OSMXBqEORyOf76sTf09BS3+UKhIaQf7EuamQmjQpbwExkaaLiHfdsnH7nm2FqYwrtkUfRvXANVvZyx/cJNle1O9tbwcyqOKd2aQyLLxMnbhWv9WKFQqOE4UYydatccDdcnmSznmqMpIfb+9v9H2WKJWuJbTyRE1tsljLI+tj0jI89i1AahofqXY++Om9yMA3K5HOMXr0fnZvUQUKE0ynq5YdqPfXDlXjjuFYJlnc7sW4aJ/b5TvgCoJcYzM6UwFH36PquIgzuc3Muh45A5ePE4HA/DVT/zlXT1h3f5umja+TdcOb0VmZmfTr7np61btiCwTRvlC1C/X/vYOCD8SOL7XX2hUKh2L6f87KThYaEFkdBQ/fOf9AvPnQmL16Fzs/rKc2e68twpfM9oInpHKpUiNTVV5SX9yGeZT3n9WvHcpSJFiijL7OwUvzLW9OyU6OhoCAQCLF26FLVq1ULLli2xe/du5fZXr16p7AsAbG1tc/Ucli/Kajo7O6N///7o378/njx5guPHj2PPnj2YOnUqqlSpgmXLln3JbrUuOyUJAhMzxYME366PrGdqAblMCrn4w5scuVpZdtwL6NsVV2xNT0Xq5vkQGJkoZj8JBDCp2xpZn7F2dUFSxMIUieliZGZlw0Bf8SHqTUo6jAwNYG6UcxG89/gVnsQnY+Qm1QecDFl7CC0qeGFMywCIDPTxJjUdLkUUS9JkZmUjKUMMe4vCkax4R56aCIGxqcpxIjA1/+hxAsmHx8lL6Nnl/BxTv4SzYq382ML1get9mQlx0DezAPT0lA8n1be0RrZE/NHlU0xKf4eEPZtUyrISFb88kT3PSXjKnitmdRnY2Cm3Fwb2NlZISklFZlYWDN7+oiQuMRkioRDmpp9/zJ+5fB3JqWloN/QPAIr1/wGgXtch+HVAN3wfUFX7weuIvbU5ElPTVfskKRVGhoYwN1a/CX6VkIz+c9YCAFaM6qlcpiUhJQ0vEpLgWTJnea9iNpawMjPB8/hElHYtPA/SsrexRlJyikqfxCckQiQUwuyD48TO1hrxiYkqZfEJSbC1sQIAGBsZYeIvPyE1LR0CAWBqYoJW3fujWJGC/1DYhk1ao1rNesq/9+7YiMQE1etlYkI8rG1sP3wrzM0tYSgUIjEhHg6Oip8CZ2VlIiU5GVbWivrunj5YvGobEhLiYGFhids3rsLcwhLGxoXj+pOVFA+9D8dYC2tkSyXIztA8xhr7lkfSwW15GWaeyUqIU+8PS6tP9oeRfwUk7d+iWqhvAJOylZARckt5/c5OSUJ2agr0zcw17KXgsre2QmJK2gfXnBSIhIYw1/CF2av4RAyctggAsGzsMJVlWopYWyIuUXUpm7jEZNh94gHUBVERSzMkpqWr3sMmpynuYT+45tyLfQ59PQF83nv2hVsxO0S/UCwpcvZeFLxLFkVRK8VxITI0gIOtFRLTClcS1NbWFklJScjKyoL+2+MkISEBIpEIpqamanUTEhJUyhISEmDzdukVu//Y/v9I/OwlRMXsVMpExewgfqGYxSZ+qmF7UTtInheuhykr7mE/HE+SPzqefExCcipexiXA08lBWVbM1hpW5qZ4/joe/u7O2g5dqyrX64DSVRor/z53YCVSklSXGUpNfANzK/X7rMxMKcJunoG7f3UYvV2G1czSDiZmVkhPSUBq0hs8iroF3+8aKN9TxMENWZkySDLSYGBeML+cbNqsGQJq5TybbPv27Z89DphbWEAoFCIhIUG5rEFWVhaSk5NhY2MDuVz+2eNTQVVEy+eOx3vnTlGVc8flE++mvCJXf4Qf/Ydly5YhKChIpWzo0KEYNmyYWl2xWIyXLzU/Xyk9PR2A4ov9d979W1PyPSYmBgKBAK6urujatSuuXr2KP//8E2ZmZmjYsCHEYrHKvt7tLzeJ/K9+wKdIJFIOeAKBABkF6Jv2rJePgaws6DvkDD4Gjm7IfB4LQPVMMGnWDSZNVdcq1C9aEllv1yg3adEDBi4+kIvTgUwZDN38kJ2WjOw3hesJ8V7FbWGgp4c7j3MO0puxL+DnYA89vZyfKPs7FsH+kZ2wbdgPyhcAjA+sjcENKkFPTwC/kkVw82FO++88egkDPT14FlNPfhRkWa+eKo6TEs7KMgMHV2S9eIQPjxPjxp1h/H0nlTK9Ig4qD/HUL14KWS8eqy3tUphIHz2APCsTIjdvZZmRpx8kDyI1XkX0zCxgWKQ4xJEhKuWZca+RmRAHoWPOOWhYwhHy7GxkxhWuB596OjtCX18f9yNy1li+HRYJHzdn5ey9z9GucT1snjcZ//w9Dv/8PQ5/DOoBAPjn73GoWbGctsPWKa+SxWCgr6cy+/tmVCx8nUuo9UmGRIoh89dDTyBQLLPyXpLGwtQYQgMDxLz34TMhJQ1JqelwsLPWfUO0yN3VGfoG+ggJz1nv8m5oGLw93NT6xNfLA/fCIiB/e07J5XLcCw2Hr6dirdQlazfiyKmzMDM1gamJCUIjo5GWlq7y8NCCytzcAsVLlFS+PL39ERF6T6WtYaF34enlq/ZePT09uHv4ICzkjrIsIvQ+9A304ezijpSUZIz9ZTBSkpNgbW0LfX0D3Lh2CX6ly+dZ+76W7LFijBW6eCrLRG7ekMZGaR5jTc1hYF9M5QGY/0+kT95ec1xzjm0jd19IH37smmMOQ/tikER98MAxeTZsew6Hcemcn13q29hBz8xC5UvbwsCrlAMM9PVVZmveioiBn6uT+vgqlmDYX0uhJxBg+dhhauuT+7s749Z7164XcQl4GZ+I0gU8sfUhr5JFYaCvjzsPc5ZSuRnzBH6liqvcwwLA7ku3MX/fWZWykMcv4Pr2HnXO7lM4cCXnwa9pYgkevY6HS9HCdQ/r6uoKAwMD5UM6AeD+/fvw8PBQO068vb0RGhKiMg6HhITA28tLuf3+/ZyHLr9+/Rqv37yBt7c3/l8lXL4N66qq1w7rahWQeFnxM+3EK7dhXSNnOUqjksVg7FgcCZc//2fcBYFXqZKK8STyobLsVng0fF1L5eoe1sLMBEJDA8Q8zfn8l5iciqSUNJQoUvDPHRMzK9gWLaV8ObqXw6PImyrnRGzkTTi6qT/AVSDQw87lvyP8Vs64kvjmGdJTE2BfwhXxr59g04LhSIrP+Yz99OF9mJrbwNS84N7Lmpubo0SJEsqXj7c3QkJD1cYJLw3jgJ6eHjw8PVXGjdDQUBgYGMDFxUU5Pr3/cNCPjU8Flafy3MmZ/X37K86dBxrOHYcidp94J1HBNmDAAFy/fl3lNWDAAI11b9++jUaNGml83bmj+Nz3fjL73b+NjdW/mGrdujUuXbqE3r17w9vbG926dUOHDh2webPimSUikUgtMS6VSjXu62O+aJR6+vQp1q5di06dOqFOnTrYt28fatSogaNHj2LdugL0QMNMGaR3L8O0cSfoFy8FQ4+yMKrcAJKrpwEAAlML5c98ZZF3IfSvDKF/FehZ28OoRhMYlHSD5PoZAIA8Iw3GtVtCz644DJw8YNKoA8SXjuLDZGpBZyw0RIsKXpiy5xzuPXmFUyEPsO78bXSurljX8k1KOsSyTBgZGsDJ1lLlBShmptu+fQho+yp++Of8bZwKeYB7T15hyt5zCKzkA+OP/BS2wMqUQXr/Kowbtod+MScYuJeGqFI9SG4oboYEJuY5x0n0PRj6VoShbyXoWdlBVO17GDi4QnLjnHJ3+nbFkRWn+RuzwkIulSD14inY9xgCkYsHTCpUhVXjNkg6vg+AYsaf4L01/oQlSyFbKkHma/V2Jx3dA+vArjD2Kwehowvsug9G+o1/kZWUmFfN0QojkQhN61THzBXrERL1AGev3MSmfcfQoVl9AIqHJ4kl//1NpaW5GRyLF1W+7N/OInYsXhSmGmZjF2TGIiGaVyuHqRsP4P7Dpzh9MxTrjwWjc33F7Pg3SSkQSxU/t1x16ByevE7ApF5tlNveJKUgJV0MA319tKxRDnN3HMP1iIeIevoSY1fvQmnXkvAtVSLf2vcljEQiNK5bG3OWrERoZDTO/3sVW/ccQLsWTQAoHuopeXuc1KleBalp6Vi48h88fPQEC1f+gwyJBHVrKvrPzsYaa7fsRGhkNMKjYjB1ThBaNWkIC/PC9WBpAKhasw7S0lKxZvkCPH70AGuWL4BEnIFqAYrZ5xKJBAnvzTz/vmlr7N21GVcunUNURChWLJ6NBt+3gMjICObmFhBnZGD9miV4+eIZTh7dj1PHD6JV28751bxck8ukSL98BjadBkBYyg3GZSvDvEFLpJ4+CADQs1AdYw1LOCFbKin015aPkUulSLt0GjZdBkJYyh3G5arAolErJJ88AEBTf7y95rz5oD+ys5F67his23SFyN0HQic32PcbhYzbVyB7/jgvm/TVjERCNAuohGmrt+F+dCzOXLuD9QdPoWPj2gAUD+0Uv/0QsHrfcTx59QYTBnZRbnuTmIzUdMUElnYNauDQhavYc+YSIh89xfglG1CzvB8cCkFy633GQkO0qOyPKVuP4l7sc5y6HYF1J6+gc23FlyNvklOV15x2NcrhakQsNp65ithX8Vh88DzuxT5HlzqKtTA71KqAtScv4/z9aEQ9f40/1u2Ho501avq65Vv7voSRkREa1K+PoKAghEdEIDg4GDt37ULrVq0AKB7W925d4Zo1ayI1LQ3Lli1D7KNHWLZsGcRiMWq9nVXarFkznDx1CkePHsWDBw8wa/ZsVK5cGcWKFa6HWf4XUVE76L39Ne2LnUdgaGUB3zljYObjBt85Y6Bvaozn2w8DAGKXbYZDl1Zw7NUO5qW9UG7NTLw6eAYZDwvXl29GIiGa1aqM6au2KMaTq7ex4cBJdGxSB4DqePIpBvr6aFG7KuZv3I0boVGIevwMfy76B/4eLvB1ddJxK7TPv/L3EKen4ODG6Xj1NAoHN06HVJKunH0uk4qRkqiYyKGvb4BKddvj+Pa5eBh+HU8f3MeWRSPgXaEeipb0QEnX0ijh7IddK8fg1dMohN8+iyNbZqFOS81Jo4KqZs2aSEtNxbJly/AoNlZtnJBIJCrPrGverBl27tiB4OBgRISHY1FQEBo3bgwjIyMYGRmhfoMGCAoKQkR4OIKDg7Fr5060evvAvcLASCRE01pVMGPVFoQoz50T6NikLgDFw7g/99xpXrsq5m/chRuhkYh+/AzjFq2Fv4cLfArhuUP0jlAohJmZmcrrwxnd71SpUgXh4eEaXy1atACQsxzL+//W9ABPgUAAqw8eEuzq6qqcuV60aFG1B5S/efNG474+5ouWYalfvz68vb3RtGlTzJo1Cw4ODv/9pnySfnIHTBp3gnnnHyGXiJFx4QBkEbcAAFbDZyDtwDpI7/4LWcQtpB/dAqMajaFnYYOs18+RujUI2UmKi0HG2f0w+b4jzLuNBKQSiK+cUibdC5tRTath6t7z6LtyH8yMhBjUoCIa+LsCAOpPX4dJbeug1Xf/PYukSVl3PEtMweTd5yDLykJ9P1f83LjwLCHxPvGZ3TBu2B6m7YdCLsmA+OJhZEYqvt2yGDwF6Yc3Qnb/CjIj7yDjxHaIqjaCnoU1st+8QNrOpZAn59w0CEzNkf3q6cf+U4VG3OaVsOs+GMV/nYbsjHTE79mI9OuKJ3uXmr8Br1bOReqFkwAAfQurjy7PknRkNwSGQtj3Hwk9kRHSb17G63WL86wd2vRjj/aYuWIDhk6YBVMTY/Tt0BJ1qihmHDXvPxJjB/dCs7o18jnKvDXyh+8xbdMB9Ju9FmbGIgxsWRf1KyhmCzccPQsTe7ZGy+rlcfJGKMQyGbpNX6Hy/hbVymFSrzYY1b4xFu05hT9W7oREJkMVHzdM7h0IQSF7KB8ADOnTDXOWrMLPYyfB1MQEvTr9gFrVKgMAAnsOxG/DB6JJ/TowNTHBjLG/YPaSldh/7CTcSjnhr3G/wvjtOo6BzRrjxavX+HXiDAj0BGhUJwADehSehPD7TExM8du4v7Bi8SycOLoPpZzd8MeEv2FkpPjyNfj8SSyeNx3bD5wHANSo3QCvXr3A8kWzIJPJUKV6bXTtNUi5v59/nYjlQX9j5JAeKFK0OEb+Ngnunj750rYvlbhjLaw79Yf9jxORLU5H0oGtyLh1GQDgMGMV4tYFIf1fxX2GnoUl5Bnp+RmuziVsXw2bzgNRdORkZGekI3HfFmTc/BcA4DhrLd6sWYC0S6cAAPoWlh9dniVhz3rIIYfdgNHQExoh/ea/iN+yQmPdgm5E1zaYvmYbBk4NgpmJMQa0bYJ6lRQzHhsP+RPj+3dGi9pVcOrKbUikMvQcN0fl/c0DKmPCwC4o4+GCP3p3wNKdh5Ccmo6qpb0xpm/H/GjSVxsVWB9Ttx5F3wWbYGYswqCmNdGgnGJmdP0xQZjUpSlaVS0DH8dimNMvEAv3n8X8fWfhXtwOSwa3Vy670jHgO2RIZJi69SgSUtNRzdsF8we0VZuhXhj069cPQYsW4bfffoOpqSm6du2KGjUU9yJdunbFiJ9/RsOGDWFqYoKJEyZgYVAQDh85AhdnZ0yaNAlGb685Pj4+GD5sGNZv2ICUlBRUqFABPw4fnp9N04kGTy7idp/f8GTdbmSmpOFq6wEovWginPq2R/LdcFxt2R9Zb79oSvz3Fu4NHgfP8cNhaGOJN8cv4s7AP/O5BV/m525tMWPVFgyaPB9mJsbo364Z6lUuBwBoMugPjBvYFS1q//fnuJ+7tYXRtv34M2gtJFIpKpf2xqQh3Qvl/ZqRsRm6jViCvWsn4OrpbSjm6IUeI5dBKFIs6Xb38mHsXPEHpq5TzIxu9MPPEAgE2Bz0E2SSDPhWbIjm3cYAAPT09NH1p0XYv24ylk7qBKHIGNUadkW1Rt3yrX1fwsTUFBMmTkTQwoU4cvgwnF1cVMaJc+fOYe6cOTh0WPGFUu06dfDy1SsELVwImUyGGjVqoHefPsr99evXD4uCgjSOT4VFzrkzT3nu1H177jR9e+40r13tM/bTDku37ce4oLUQS2WoUtobE4f0KJTnDpG2FS1aFCVKlMD169dRsqRiCdbr16+jRIkSamuPA8D8+fNx8+ZNrF27VlkWFhYGV1dFXrNs2bK4fv06AgMDAQDPnz/H8+fPUbas+i+HPkYgl+d+ZZ6YmBhlENqUMH2w1vdZmFn/vhjinXPzO4wCxajtz0ia9WN+h1GgWI6aj5iezfM7jALDde0BxN85n99hFCg2ZQKQfnbLf1f8hpjU7ogXYTf/u+I3pJh3edyJLFzLI+laGY8ieDy4bX6HUaA4Lt6J2P6t8zuMAqXU8j1IuXYkv8MoUMwrNob42Jr8DqNAMWrUCzHR0fkdRoHh6uaGg4YFf1mxvNRMFo7kG8fzO4wCxaJCQ+y4nJ3fYRQo7aroITom5r8rfkPcXF2RdONEfodRoFhWaPDflUjF7D2Fa9WIgmBka+192bN8+XKsX78es2bNAgCMGjUKvXv3Rq9evQAofi33bgnwO3fuoFOnThgxYgQaNmyICxcuYPr06Vi3bh3Kly+Pmzdvolu3bhg/fjxKly6NqVOnwtTUFEuXLv3seD57ZnlQUBD69OkDY2NjHDp06JN1hw4d+tkBEBEREREREREREdG3p0+fPoiLi8PQoUOhr6+Pdu3aoWfPnsrt7dq1Q5s2bTBs2DCUKVMG8+fPx4IFCzB//nw4ODhg9uzZKF9e8RyS8uXLY9KkSViwYAGSkpJQo0YNTJ48OVfxfHay/PLly+jevTuMjY1x+fLlj9bjz0iIiIiIiIiIiIioMJBnc2Z57mkv/6uvr4/ff/8dv//+u8btp06dUvm7QYMGaNDg47+gCAwMVC7D8iU+O1m+fv16jf8mIiIiIiIiIiIiIirsPjtZvmfPns/eaetC9IRjIiIiIiIiIiIiIqLPTpYvWLDgs+oJBAImy4mIiIiIiIiIiIioUPnsZPmH68N8jgMHDqBevXowMTHJ9XuJiIiIiIiIiIiIiPKKni53Pm7cOMTFxenyP0FERERERERERERE9NU+e2b5l5DL+TRZIiIiIiIiIiIiKpiymb6k9+h0ZjkRERERERERERERUWHAZDkRERERERERERERffOYLCciIiIiIiIiIiKibx6T5URERERERERERET0zWOynIiIiIiIiIiIiIi+eV+ULL969SoyMzPVyqVSKU6cOKH8u0aNGjA2Nv7y6IiIiIiIiIiIiIh0RC7nK7ev/2dflCzv3r07kpOT1cojIyMxYsQI5d9BQUGws7P78uiIiIiIiIiIiIiIiPKAwedW3LRpEyZNmgSBQAC5XI4aNWporFe9enWtBUdERERERERERERElBc+O1neuXNneHh4IDs7Gz169MCCBQtgaWmp3C4QCGBsbAxPT0+dBEpEREREREREREREpCufnSxv2LAhNmzYgKJFi6JNmzaoVq0azMzMdBkbEREREREREREREVGe+Ow1y9+8eYPIyEgAwJ49eyCVSnUWFBERERERERERERFRXvrsmeXNmzdH3759IRAIAOCja5YDQGho6NdHRkRERERERERERKRD2dny/A6BCpDPTpZPnjwZXbp0QXJyMrp3746FCxeqrFlORERERERERERERFRYfXayHAC8vb0BAOvWrUOFChVgYJCrtxMRERERERERERERFUhflO3evXs3du/e/Vl1p0+f/iX/CSIiIiIiIiIiIiKiPPPZD/h8n6WlJQ4cOIDIyEiYmprC2toaL168wO7du5GamqrtGImIiIiIiIiIiIiIdOqLZpY/fvwYvXv3xs8//6xSvmbNGly+fJmzyYmIiIiIiIiIiIioUPmimeXBwcFo3bq1WnmdOnVw6dKlr42JiIiIiIiIiIiISOfkcr5y+/p/9kXJcmdnZ+zatUulTC6XY/369cqHgBIRERERERERERERFRZftAzLmDFjMGDAABw7dgxeXl4AgHv37iE7OxvLly/XaoBERERERERERERERLr2RcnyihUr4tixYzh06BBiYmIgkUjQuXNn1KtXD66urtqOkYiIiIiIiIiIiIhIp75oGZbr16+jdevW8PDwwKBBg3Du3DksW7YMLVu2xOHDh7UdIxERERERERERERGRTn1RsnzatGlo2rQpypYti23btkEkEuHixYuYPHkyFixYoO0YiYiIiIiIiIiIiIh06ouS5ZGRkejRoweMjY1x6tQpNGrUCEKhEJUrV8azZ8+0HSMRERERERERERGR1snlfOX29f/si5LldnZ2iIqKQlRUFEJCQlC3bl0AQHBwMIoXL67VAImIiIiIiIiIiIiIdO2LHvDZs2dPDBkyBHp6eihdujQqV66MpUuXIigoCNOnT9d2jEREREREREREREREOvVFyfLu3bujUqVKePr0KWrWrAkAqFq1KurUqQNvb2+tBkhEREREREREREREpGtflCwHAB8fH/j4+Cj/LleunDbiISIiIiIiIiIiIiLKc1+0ZjkRERERERERERER0f+TL55ZTkRERERERERERFSYZcvl+R0CFSACuZxHBBEREREREREREX17Jm/OzO8QCp0/O/3/zr8uUC17EXYzv0MoUIp5l8ejyND8DqNAcfLwwcvQ6/kdRoFS1Oc7JN84nt9hFBgWFRri0cDA/A6jQHFaugtR0Q/yO4wCxd3NBbFR4fkdRoFSyt0L0TEx+R1GgeLm6oo39y7ldxgFip1/NaRcO5LfYRQo5hUb42FURH6HUaA4u3viedit/A6jQCnuXQ4x0dH5HUaB4ermxvvXD1hUaIiDhl75HUaB0kwWjntRL/I7jALF370Yx5IPuLq58fPfB5yW7srvEIgKNa5ZTkRERERERERERETfPCbLiYiIiIiIiIiIiOibx2Q5EREREREREREREX3zCtSa5URERERERERERER5RZ6d3xFQQcKZ5URERERERERERET0zWOynIiIiIiIiIiIiIi+eUyWExEREREREREREdE3j8lyIiIiIiIiIiIiIvrmMVlORERERERERERERN88g/wOgIiIiIiIiIiIiCg/yOXy/A6BChDOLCciIiIiIiIiIiKibx6T5URERERERERERET0zWOynIiIiIiIiIiIiIi+eZ+dLN+4cSMkEolK2YkTJ9CnTx+0aNECw4cPx507d7QeIBERERERERERERGRrn12snzKlClITU1V/r1nzx78/PPPcHFxQadOnWBpaYlu3brhxIkTOgmUiIiIiIiIiIiIiEhXDD634odPhl2zZg1+/fVXdO3aVVnm4+ODuXPnokGDBtqLkIiIiIiIiIiIiEgHsrPzOwIqSD57ZrlAIFD5OzExEZUrV1YpCwgIwNOnT7UTGRERERERERERERFRHvnsZLlcLsfu3bsRHByMZ8+eoVatWggODlapc+LECZQqVUrrQRIRERERERERERER6dJnL8PStWtXBAcHY/369Xj58iUEAgH09PQQGBgICwsL9OrVC1evXsWCBQt0GS8RERERERERERERkdZ9drJ87Nixyn+npqYiJiYGMTExsLCwAACUL18eI0aMQOnSpbUfJRERERERERERERGRDn12svx9ZmZmKFOmDMqUKaMsGz58uNaCIiIiIiIiIiIiIiLKS1+ULCciIiIiIiIiIiIq7ORyeX6HQAXIZyfLr169+tk7rVSp0hcFQ0RERERERERERESUHz47WT5p0iRERUUB+PQ3LgKBAKGhoV8fGRERERERERERERFRHvnsZPnOnTsxYsQIPHnyBFu3boVIJNJlXEREREREREREREREeUbvcysKhULMmTMHADBv3jxdxUNERERERERERERElOc+O1kOKBLms2fPhpOTk67iISIiIiIiIiIiIiLKc5+9DMs7bm5ucHNz00UsRERERERERERERHkm++OPZqRvUK5mlr/TvXt3JCcnq5XHx8cjMDDwq4MiIiIiIiIiIiIiIspLnz2z/Ny5c7hz5w4A4OrVq1i6dClMTExU6sTGxuLp06fajZCIiIiIiIiIiIiISMc+O1nu4uKClStXQi6XQy6X48aNGzA0NFRuFwgEMDExwdSpU3USKBERERERERERERGRrnx2stzR0RHr1q0DAPz+++8YM2YMzMzMdBYYEREREREREREREVFeyfUDPgFg+vTpEIvF2LZtG6Kjo5GVlQVXV1c0adIE1tbW2o6RiIiIiIiIiIiIiEinvihZHhERgb59+0JfXx/+/v7IysrC8ePHsXDhQqxfvx7u7u7ajpOIiIiIiIiIiIhIq+TZ8vwOgQqQL0qWT5kyBTVq1MDkyZNhYKDYRWZmJsaOHYtp06Zh9erVWg3ya0ikUsxbthrnLl2BUChEx9bN0aF1c411I2IeYM7ilYiJfQxnp5IYOagvvNxdAQByuRxrt+zAweOnkSGWoFK50vhpQG9YWVrkZXO0QiqVYuGSZTgffAkioQjt2rTCD4GtNdaNio7B/EVL8CA2FqWcnPDjkIHwfPtlSFZWFtas34hjJ05BLBGj0ncVMHRAf1hbW+VdY7REIpVi7rK1iuNEJETHVs3QsXUzjXUjYh5i9pJViIl9DBenkhg5sLfKcbJl70HsPnQcqalpCKhaET/26wkTY6O8bI5WSKQyzFyzDaeu3IJIaIiuzeoLvBzbAAEAAElEQVSja/P6n3zPrbBojF+yDnvnT1SWyeVyrNh5CHtPX0KGRIIqpX3wS68fYG1hrusmaJ+BIWw69YNJ+WqQy6RIPr4XKSf2qVUrMmISjDz91cpTL55E/PpFgIEBrFp2hkmlAOgJRRBH3kfClpXISozLi1ZoXXR0FIIWLkRs7EM4OTlhyNDh8PDw+Gj9PXt2Y9fOHUhPT0fNgAAMHDgYRkaq54hMJsWPw4dh4KDBKFOmrK6boFVSqRQLFy/FheBLEAmFaBfYGu0C22isGxUdjflBS/Aw9iFKOTlh+JDB8PTIGWPXrtuAYydOQiyRoNJ3FTBkYP9C+wuu6KgoLAwKQuxDxXEydNiwTx8nu3dj586dSE9PR0BAAAYOGqQ8TqRSKRYvWoSLFy9CKBSibdu2CGzbNq+a8tUkUinmrFiPM/9eg0goRKdWjdGpZZNPvud2aASmLFiB7Uv+VpbJ5XJs3HMIe46dRlJKKnzcXfBzn65wcXTQdRO0TiKV4a+123Hq6h2IhIbo1rQuujarp7HuhZv3sXjbQTx++RoORWwx6IdmqP1daeX2I8HXsWT7QbxJTEa1Mt4Y27cjrMwL39KBUqkUQYuX4kJwMERCIdoGtvnkWLIgaPF7Y8kQeLwdS+RyObbt2ImDhw8jJTkFnp4eGDxwAEo5OeVlc7RCIpVi/rLVOHvpMkRCITq0bo4OrVtorBupvK9/BGenkhgxqJ/yfq1Oqw4a3/P7j4Pxfb3aOotfF6RSKRYtXqwyHrYNDNRYNyo6GkELF+JhbCycnJwwbOhQlXH4zJkz+GfdOiQkJKBChQr4cfhwWFpa5lVTtIb3sB+nJzREzcu7cO/HyYg/d0VjHYtyPvBfNBEW/p5ICYnC3SHjkXzjvnJ7iQ7N4DnxJxgVt8frYxdwZ+CfkMUl5FUTtComOgLLg+YgNjYGjk7OGDBkJNw8vD5a/8Ce7di7awvS09NQvWZd9B34I0RGRjh1/DAWzZuhVl8gEGDHgTM6bIF2aXM8eWfzli149uwZRo4YoevwdYOf/4i+SXpf8qbbt2+jX79+ykQ5ABgYGKBfv364efOm1oLThiVrNyI8KgZzJ/+Jnwf0xtotO3Hm4r9q9TLEYvw66S+U8fPG8jnT4e/tid8m/4UMsRgAsP/oSRw8fhpjRwzFwukT8CYhATODluV1c7Ri+eq1iIiMxt9TJ2PYoAHYsHkrzl0IVquXIRZjzITJ8PfzxaJ5s+Hr7Y2xE6Yo+2TLjl04c+48xv42Ggtn/42UlFTMmDM3r5ujFUvWbkJ4dAzmTh6DEQN6Ye3WXTgTfFmtXoZYjF8mz0QZX2+smD0Vft4e+HXK38o+2XfsFNZu2Yn+XTtg0YwJeB2XgElzgvK6OVqxYONuhMY8wpKxw/Fr7w5YueswTl7++Pkd9egpfp23Uu0b2d0nL2Lv6UuYNKQHlo//GW8SkjBl+SZdh68T1m17QFjKHS/njkf85uWwbNYexhWqqdV7s3QmnvzSW/l6vWQ65DIZUs8eAQBYNu8I43JVELd6Ll7M+gMCPX3YDfwlr5ujFWKxGOPH/Qk/f3/Mm78QPj6+mDBhHMRvz4kPXbxwAZs2bsDQocMxbfoMhIeFYc3qVSp1pFIp/vprBmJjY/OiCVq3YtUaREZFYea0KRg6eCA2bNqCcxcuqtXLEIsxdvwklPbzxaJ5c+Hr44M/J0xSjidbt+/EmXPnMeb3X7BgjmKM/Wt24RxjxWIxxo0bB38/P8xfsAA+vr6YMH78R4+TCxcuYOPGjRg6bBimT5+OsLAwlS/iV61cicjISEyfMQNDhgzBxo0bceH8+bxqzldbtG4rwqIfYsHEXzGyf3es3rYXpy9d/Wj96NjHGDsrCNnybJXyPcdOY/O+I/i5T1esmjkBxYvYY+SUORBLJLpugtbN37wXoQ8eY+kfQ/Bbz3ZYsesITly+pVYv8tFTjJ63Ci1rV8Gmab8gsF4N/Dp/DSJinwIA7kXHYvKKzegX2BhrJ/6M5LQMTFi6MY9box0rVq1BRFQk/po2BUMHD8LGTZtxXsNYIhaL8ef4ifD380XQvHlvx5KJyvPr4OEj2LlrNwYPHICF8+eiWNGiGDtuwkfPv4Js6doNCI+Kfntf3wf/fPK+fgZKK+/rvfDb5BnK8XXn2mUqr06BLVG0iD1qVKmU1036aitXrUJkZCRmTJ+uHA/PX7igVu/dOOzn748F8+fD18cH4yfkHAfh4eGYN38+unTpgrlz5iA1NRVz5szJ6+ZoBe9hNdMTCVF+wxyY+3t+tI6+iTEq7VuOhAvXcKFKIBIu3USlvcugb2IMALCsVBpllk9F5JQgXKzZAYbWFii7anpeNUGrxOIMTB3/K3z8yuDvecvh5eOPaRN+g1icobH+pYtnsXXTWgwYOhITp81FRHgI1q1ZCgCoUaseVq7fpXwtW7sdxUo4oFnLdnnZpK+mrfHknTNnzmDDhg15Fb5O8PMf0bfpi5Ll9vb2ePTokVr5o0ePYGpq+tVBaUuGWIyDx09hWN8e8HRzQa1qldEpsAV2HzqqVvfUBcUMwEE9u8LZ0QHD+vaAsbGx8gb83+s3US+gGsr5+8K1lCM6tWmJG3fu5XWTvlqGWIzDx05gcP8+8HB3Q83qVdG+bRvsPXBQre7ZcxcgFArRv3dPlHJ0xOD+fWBsbKxM+mRnZWFg3z4o4++HUk6OaN2yOe6HhOZ1k75ahliMAydOY3if7vByc0GtqpXQqU1z7Dp4TK3uqQv/QiQ0xOCeneHs6IDhfbrD2NgIZy4qEuu7Dh5Fh1bN0KBWdbg4lcQfPw7EpWs38ejps7xu1lfJEEuw9/QljOzRFt4ujqhbqSy6NW+AbUfPaqy/68QF9Bk/B7Yafmlx8dZ9NKxWAd/5esDdsQS6tWiAq/fCdd0ErRMIRTCtUR8J21ZB9jgGGbcuI/nYHpjXUZ8Nmp2eiuzkRMUrJRmWrbog+dgeSB9FAwDMqtVF0t5NkESGIPP5E8RtWAKRswcMihTP62Z9tXPnzkIoEqFPn75wcnJC/wEDYWJsjPPnz2msv3fvHrRq1RqVq1SBp6cXhg4bjuPHjylvrh89isWIET/hxfPnedkMrVGMsccxqH+/t2NsNfzQLhD7NI6x5yEUCtGvTy84OTliUP++MDYxxvnzijE2KzsLA/r1QRl/f5Rycno7xobkdZO04tzZsxCJROjTV3GcDBgwAMbGxjj/kQT33r170ap1a1SpUgWeXl4YNmwYjh9THCdisRhHjx7FgIED4e7ujuo1aqDdDz9g//79edyqL5MhlmD/yXP4sXdneLk6o3aV79CldVPsPHxCY/09x05jwB9TYaNhdueh0xfQqWVj1KhYDk4limF0/+5ITk3FnbBIXTdDqxTXnH8xslvge9ec+th2XP34OBJ8HZV8PdGxcW04FrNH+0YBqOjrgeNvE2Hbjp1Hwyrl0TygMjycHDBpUFdcvB2Kp68K18wtsViMI8eOYVD//vBwd0eN6tXwQ7u22HfggFrdnLGkN5ycHDGwfz8Ymxjj3HlFguP4iZNoG9gGVStXRkkHBwwbMhjJKSm4H1q47tne3dcP7dsTnm6uCKhWGR0/cl9/+r37+lKOJTG0bw+YvHdfb2ttpXxJpVLsPHAYo4f0h5mpSV4366u8Gw8HDhgAd3d31KheHT+0a6dxPDx77hxEIhH69umjcRzev38/AgIC0KB+fbi4uGD0qFG4eu0aXrx4kdfN+iq8h9XMzMcN1S9ug4nbp39RUrx9U2RnSBD660ykhsUgZMRUZKWkoXi7xgAA58Fd8WzHYTzdsBcpd8Nxq+cvKNKkNoydS+ZFM7Tq4rlTEApF6N5nEEo6OaN3/2EwMjFG8PkzGusf3LsDzVu1Q8XK1eHu6YOBQ0fi1PFDkIjFEIlEsLaxVb7OnT4GyIGuvfrnaZu+hjbHk6ysLCwMCsLcefNQvHjh+3zzDj//EX27vihZ3rFjR4wdOxbbt29HeHg4wsPDsW3bNvz555/44YcftB3jF4t+EIuszCz4e+f8lKq0jxdCIqKQna06OyskPBKlfbwgEAgAKH4yVdrHE/fDFR84LczNcenaTbyOi4dEIsXJ8xfh7uqcZ23RlpgHD5GZmQlfH29lmb+vD8IiItX6JDQ8HP6+Pip94ufrjdAwxU1it84dUbN6VQBAQmIiDh89jjL+6j89KuiiHj56e5zkzLIo4+OFkEjNx0mZD48Tby/ce3ucPHvxCj4ebsr6djbWsLIwx/1ClriIePQUmVlZKOPpqiwr5+2K+1Gxan0CAMG3QzB+UDd0alpXbZulmSku3ryPV/GJEEulOBZ8DV7OjjqNXxcMSzpDoG8ASXTOhyRJdCiEzh7A2+NBE9NqdaFvao7kY7sVBQIB3qyZD3HobbW6ekaF60M6AISFhcHP10/lnPDx9UVYmHoSJisrC5GREfD3z1kuwdvbBzKZDA8exAAA7t69izJlymJWIZ1BHRPzQMMY64uw8Aj1MTYsHP5+vqpjrI8PQsLCAADdOndCzeqKmSvKMbZ0aRRGYWFh8PVTPU58fX0RpiFZl5WVhciICPi/dz3x9nl3nDxATEwMMjMz4ePjo9zu5+eH8PBwjeNTQfPumlPaK+enymW8PXA/MkZj/P/euIOxw/qiffNGatuG9uiIRrXem90kEEAulyMtXfOsuIIq4tEzZGZloayni7KsnJfma07zgMoY2lF92Y3UdMUXbveiHqK8d851uJitNYrZWuNu1EPdBK8j0RrGEr9PjCV+GsaS0LdjSb8+vVCvbh1lfcHb4yQ9LV3n7dCm6AexyFS7r/dGqIZ7WE339f4+XggJj1Db7+pN21ChTGlULFdGtw3QgdyMh4rrta/aOPzuOAkLC1MZd+3t7WFvb4+wt9sLC97DamZTqzLizlzGxZqalyB6x7pKWcQHX1cpi790A1ZVywEArCqXRfz5a8pt4icvkPHoGayrFK4l8wAgIiwEPn6lVc4Jb5/SiAi7r1Y3KysL0ZFh8PXPaaenty8yZZl4+CBKpW5KSjJ279iMrj37w9BQqNtGaJE2x5OMjAw8fPAA8+bOVdlfYcPPf0Tfri9as7xPnz7IyMjArFmzkJSUBACws7NDz5490bt3b60G+DXiEhJhaWEOQ8OcZlpbWUEqlSE5JVVlvfG4hES4OKp+I25tZYkHsU8AAD06BOL3qX+jXe/B0NfTg421FRbPnJw3DdGi+Ph4WFpYwNDQUFlm9XZWTXJKCqzem7kWH5+AUqVUZx9YW1nhYazqrwr+2bgZGzZvhbmZGeb+Xfh+hhf3P/buO7yp6o0D+Lcr6d5AWd2bsvdGhoyyh6KAoiCUJcoQEGQIPxCVXUZZKkv2kiEgyEaWzO4Bbdm0TXeTdOT3R9qUNCkjJG0j38/z5HnIvSe37znce+7Jm3vPTVG3n9iUup+4OqvZTxISFf9OSimesy9HLEZ6ZhZSMzJ0XAvtShalwcbKAiYvTLVkb2MNSW4u0jKzVOZq/Hmi/KqJP86o3go9vF9XTPhpDQLHzICRoSEcbK2x8fuJuq2ADhjZ2KEgMx3Iz1Msy09PhaFACEMLK/k6Naw790H6yUOQSQpvS5TJIIm4rVTGqn0g8jPSIH2of9OOiFJS4OziorTM1tYO8fH3VcpmZWVBKpXC3sFBsczIyAjW1tZISkoCAAQGqn+mhL5IEYlU+lj5eUdNHysSwdX51X3spi3bsOX37YV97ELdVkBHUlJS4KKyn9iqnWqnaD9xKGU/MTAwgI2NjfJ5rLCNM9LTYWNrq7N6aEOSKBU21pZK5xz7wnNOWkYm7Epc3fjD1PEAgMOnVK+yruunfCv9H3+dQX5+Aer4lj4XfEWUlJoG2xLnHAcbq8JzTjbsrIvnG3er7qT02dgHj3E1NAr9OrQo3FY6KtkpX4Vvb2OFZympuquADqSIVMdrpfclKSrzj8v7YfnxFVCrltK6o8eOoyA/H7X8/XVYA+1TN663L3W8JoJrTeWkpr2tDe7FJyote/o8CSfPnkfwD/o3pgcKx/Wl9Ieq4/qX98MpIhEc7O2V1tvZ2irOz/qCY1j1EkJ+f61yQqdKyAhTTv5KnybDqpb8vGJatTIkj54prZc8S4Zpib5ZH4hEyajp7Ka0zNbWDgnx91TKZmdlQiqVws7+xbGJMaysrZGc9Fyp7LHDB2Bv74DmrdrpJG5d0WZ/YmlpiUWLFpVN4DrE739E7y6Nriw3MDDAuHHjcPnyZVy4cAHXrl3D+fPnMXz4cBgaarRJnRBLJEqdPQAICgfY0txcpeUSNWVNjE2QW1juybPnMBUIsGDGZCybPwuVHB2wcMUaHUavG+rbRP4+t0SbqCtrYmKiUq7je+0QvORn1K9XB9O+m42sbP26Uknd/31p+4lYIlW014tli9qkfatm2LLnAO4nPoREKkXwRvkcbXm5edAnYmmuog2KFH3pkL5hXR4/T4apQIDFk0ciZOZ4VHGwxdwQ/Zs/1kAghCxPue5F7w2MTdR9BELvABjZOSDr/IlSt2tWtzGsO/VC6v6tSgMxfaG271TTTxSVLVr/OuX1UWntAaj2sa/bdh3at0Pw0kWoX68upn43S+/6WEC7+4lEIoHxa7ZxRSSRSGFiXHK8Ie9fc/M07wNCo2IR/Nt2fNyrKxz07EHbYkmuUmILgCIh+rJzTmpGJr5ZuhF1vd0UD/gUS6QQlNiWwNj4jc9d5e3t+xJjlTEMAERERGLt+g3o368v7O3162HBEolEZQxWVG/Vcb1UzTjGRKXckROn4OPhAX8f/fqBqYhEIlFz7Gh2znmTfroi4xj27RiZm6FAIlVaViCRwlAoKFxv+tL1+kSqZp83fuXYRLmeJY8RmUyGk8cPoWsP9Q/FrMi02Z/8V/D737tFJuPrTV//Za99Zfn+/ftfe6O9e/fWIBTtEwgEKh120SDJVChULmuiWjY3LxdCoRAymQzzl67CqKGD0KJxQwDAnMnj8cEX4xAWGa1XA2z1bSJ/LyzZJmrK5ubmqpSrXk0+z9aUCV/ho6HDcP7iJXTu+PInzlckAoHqib3U/USg+kVLmpunaJNPP+iDx0+e4dMvv4GxkRF6du4ALzcXmBc+FEdfCExUEwtFSRzTNxgMy2QyzFq1GV8O6o3WDeSJjPnjh6HnuJm4G3MfAZ6uWotZ12S5UhiUGEAWvZdJ1T9Mz7xBc4jv/ouC7Ey1683qNoHj8InIOH0EWRfUz1dc0ezYsR07d2xXvPfx8X2tfgKQHz9F61+nvD4SqPmikFtaH6vuvKO2j60GAPhm4tf4+NPPcOHCJbzfqWL3sTu2b8eOHTsU7318fF5/Pynli1lR+YKCAuSV1samplqJX5cEAhPk5pUcbxT2rwLNkg13I2Mwcd4iNKtfB8MH9nnrGMuaUGCs8kNBruI8rP7LaHJaOsYsWAWZTIaF4z9XXKwhEJhAWmJb0ry8Nzp3VQSl9Q/A6/YleSpjmLDwCMyYNRuNGzXEJ4MH6SBq3VI3Biuqt+q43kTNOCZXpdyZi5fRs0tHHURbNgQCgZpjp5Q2ecW4Xl2iSx/PzxzDvp0CsUQl8W0oFCC/cKqr/NLW51T86b/27NiMvTuLf+zw8vFT2efzStnnTQrPz7m5yj8UyI+R4rFHbHQEkpOeo1Wbij1OU0eb/cl/Bb//Eb27XjtZvnz58tcqZ2BgUGGS5ZXs7ZCWnoG8/HwYGxkBAFJEqRAKBCoP8HF0sENKaqrSshRRGhzsbZGalo5nScnwcCu+1ahyJUfYWFvhyfMkvUqWOzo4IC09Hfn5+TAqbBORKBVCoQCWJR7O6uhgjxSRSGmZSJQKh8Irkf65chWe7u5wdJTfjiYQCFC1ihPS0/VryhFHB3vV/SRV/X5Syd4OKaI0pWUpqamKq/jMTE0x55vxyMzKhoEBYGFujp6fBqFq5UplUhdtqWRvi7SMLKU2SU5Nh1BgAqs3SPyL0jPxNFkEb+fqimVODnawtbLA4+cpevVFIz81BYaW1oChIVA4b5+RtR0KpBIU5GSp/YxprfpIO7RD7TrzRi3h8Nl4ZJ49jtRdv+gsbm3r1i0QrVu3UbzfvWsnRKIUpTKpIhHsS9zKDQBWVtYQCAQQiVJQs/D2+Pz8fKSnp6str48c1PSxKSKR2j7WQU0fm5IqUlztqbaPdXJCWrr6Wz4rkm6BgWjdpng/2bVrF0Qq55NS9hProv1EpHY/kclkSEtLK3EeE0EoFFaoh4yXRj42yVTuX0Vpas85r+Pfu+H4ZsFSNK4bgDlfB1WoO/xeVyU7W6SqnHMySj3nPEtJRdD8lQCAkBnjlKZpqWxng+RU5WMkOTUdjraqD++ryN6sL3FQPb5e6EsA4NbtO5g553s0rF8f076ZrJf7iaO9mvFaqeN6ezXj+lQ42Nsq3j97noT7iQ/QsmljXYeuMw4ODq/dH6rdT17ohx1fsV5fcAz7dsSPnkLo5Ki0TOjkCPET+dQr4odq1ldxhOSx8lQkFdH73XqhReviuen3796G1JJj2NQUpalWihSNYVNFKahRU54TyM/PQ0Z6OuxeOEZuXL8C/4C6sLSyUtlGRafN/uS/gt//iN5drz1SPnXq1Gu9Tp48qfjMoUOHkF2Ot4t7urvCyNgIYZHFD1e8Ex4BXy8PlS8J/j5euBsRBVnhvQQymQx3wyPh7+0FKytLCExMEJ/4UFE+NT0d6RkZqFqlctlURks83NxgbGyseEgnANwNDYO3l5dKm/j5+CAsPFKpTULDw+HrI3+w0tqNv+LEqb8V5bOzc/Dg0UM4l5j7vaLzcnNR3U/CIuHr5a5+P4ksuZ9EoZaPJwBg9a/bcPTUWVhamMPC3Bzh0bHIyspWenioPvBxqQFjIyPcjb6vWHYzMhb+7i5v9AXb2tIcAhNjxD18oliWmp6JtIwsVKusOhCtyHIT70GWnwehW/H/pdDTD9L7MWrvQTK0sIJJJSdIYlUfjCX0qQ2Hz8Yj4/RRiHas12nc2mZlZYVq1aopXr5+fggPC1c6JsLCQuHro/owH0NDQ3h5eSMstPjBSeHh4TA2Noabm7tKeX3k4e6u2seGldLH+vogLDyiRNuFw6/w4XVrN2zEiVOnFOWzs7Px4OEjvehjS+4nfr6+CAsvuZ+EwcfXV+WzhoaG8PL2Rqja/cQN7oVt/OLDQUNDQ+Glpo0rIi83ZxgZGyE0Klax7HZEFPw83d44/riEB5jywzI0q18bcyeOhrHxa18DUaH4uFSXn3NeeAjnzag41HJ3VmmTHLEE4xaugaGBAdbOGKcyP3mApytuRsUp3j9JFuFpSipq61liy8O9aLxWfA4JfYO+JDQsHL6Fx9f9+/GY/f1cNG7YENOnTdHb/cTT3RXGKuP6yFLH9aElxvV3Csf1RcKiYlDZ0QFVKikn/vSJu+Kc88J+Ukp/6Ovri/CwMJV+uGhc7+vrq9TvPn/+HM+TkhT7kb7gGPbtiC7fgl2z+krL7Jo3QOpl+YMJU6/cgl3Lhop1pjWcYFazKkSXVR9cWNFYWVmjarUaipe3by1Eht9VOiYiwu7C21f1eQ6Ghobw8PJFRNgdxbLI8FAYGxvB1c1TsSw6Mhw+fgEqn9cH2uxP/iv4/Y/o3aXTb5UzZ85EcnKyLv/ES5kKhejyXlssXr0e4dGxOPfPVezYfwj9e3QFIH9QkKRwzrV2LZoiMysbK9b/hvsJD7Bi/W/IkUjwXqtmMDYyQpcObbHqly24FRqOuPhE/G/xSvh7e8HXU78SPKamQnRq/x6WrVyDyKhoXLj0D3btO4A+PeUP1UsRiRRzsrVu1QJZWVlYtXYD4hMSsWrtBojFErRt3RIA0DOwK3bt3Y/LV6/hfnwCfli0BNWqVkXjhg3KrX6akO8nbbBozUbFfrL9wGH0794FQMn9pAkys7KxfMMm3E98gOUbNsn3k5bNAAAO9nb4dccehEfHIjImDvOWrEKvLh1hbWVZ6t+viEyFAgS2aYIFG7YjNDYep6/ewpZDJzGwazsA8geoiaXSl28EgLGREXq0bYZlW/fh3/AYxCQ+wncrf0OAlxv83Z1f+fmKRJYrRdY/p2H3cRAELp4wq9sE1p16IuPUIQCAobUtDF6Yx9CkujMKpBLkJz1V3pChIRw+GQtJVCjSj+2DobWt4gUj/UtgtGrVCllZmVgbsgYJCfFYG7IGYrFYcVWxRCJBSkrxVTuB3btjz57duHTxIqKiIrFq5Qp07tIFpnowfcbrMDUVolOH9li2cpWij929dz/69OwBQP7g5OI+tiUys7Kweu16xCckYPXa9RCLJWjTuhUAoGdgIHbv2YcrhX3swp8Xy/vYRg1L/fsVVatWrZCVmYmQkBAkxMcjJCQEYrEYbUrZT7oHBmLP7t24ePEioiIjsTI4GF0K9xNTU1N06NgRwcHBiIqMxMWLF7F3zx70qiB3tb2KqVCIru1a4qeQ3xAeE4ezl6/j94N/YkBgJwDK55xX+XHNr6jsYI9xQz9CWnoGkkWpb/T5isJUKEBg68aYv3Gn/Jxz7TY2Hz6FgV3aAlA+52w8eAIPniVhdtAgxbqk1HRkZsunAOjfsSWOnL+K/acvITrhIWat3oJW9Wuhup4lt0xNTdGxQ3ssX7kKkVFRuHjpEnbv3YfePXsCUO5LWhX2JWvWrkN8QgLWrF0HiViMtoV9ybLglXCs5IgRXwxDWlo6UlJESp/XF6ZCITq/1xaLV69DRHRM4bj+D/RTM65v26IpMrOyEFw4rg9e/xvEEgnatWqu2N69hES46MGPjy8j3086IDg4WL6fXLyIPXv3onevXgDkD+Er3k9aITMrCyEhIYhPSFDphwMDA3Hy1CkcO3YM9+7dw8+LFqFJkyZwctKvBzdyDPvmhFUcYWgqnz7jyZ4/YWJrDf/F02Hp5wH/xdNhZGGGx7uOAgDiQ35H9UG9UPOz/rCq7YN6v/yIZ4dPI+f+g/Ksgkaat2qHrKxMbFy7AokJ97Fx7QqIxTmKq88lEglEKcW5jC6BvXFgz3ZcvnQOMVHhWLtqCTp27q40BVxC/D3UdHYt66pohTb7k/8Kfv8jencZyGS6m5a9fv36OHjwoOI26ld5EnFD6zGIJRIsXr0BZy9dhoW5OQb26YEBPbsBANr2GoipXwaha4d2AIDwqBgsWr0e8Q8ewsPFGRNGD4e3u/wJ2RKpFBu27sCpc5cgkUrRqG5tjB/xGWxtdHdbr5NvfSREh7+64BsSiyVYvmoNzl28BAtzc3zQrzf69pJ/+erUvTcmfTVOMed4RGQUlq1ag4TEB3B3dcH4MaPg6SH/gaCgoAA79+zDH0f+RFp6GhrWr4dxo4Lg6KC726+cvfzwNPy61rcrlkiwaM1GnL10Rb6f9O6OD3rKv3y16f0xpo0bia4d5F/aw6JisGjNRsV+MnHUMHi7uwIA8vMLsPKXLThx5jwMDA3xfttWCPr0I8VtoLpQxa8h0v8t/QEimhJLpPhhw3acunITluZmGNy9Iz7uJh88Nv5oLGYGDUaPts2UPvPHmX+wbvcRHFzxvWKZRJqL1Tv/wIlL/0IilaJJbV9MHjoAdta6uT3RukEnJATp5qE6BiYC2H08Eub1m6FAnI2M4wcUgyXnNXuR/NsKZF2S321h3rAl7D74HA+nDFPahsDNG05TflC7/aeLv4MkKlTturfhvGYvYmLvaX27RSIjI7EyeDkSExPh6uqGsePGwcNDfpXNiRPHsXTJYhw+8qei/M6dO3Bg/z7k5uaiRcuWGD16LARq5moO7NYFC35YiDp16mo9Zk8PN8THRL66oAbkfewqnL9wCRYW5hjQtw/69pZ/0Xg/sCcmfTVeMed4RGQUlq9chYTEB3BzdcX4saPg6eEBoLCP3b0Xh44cRVp6GhrUr48vRwfBwUE3ST8XTx/ExsW9uqCGIiMjEbxihXw/cXPDuLFj4eFZtJ+cwJLFi3Hk6FFF+Z07d2L/Pvl+0rJlS4weM0axn4jFYqwMDsaFCxdgYWGBfv36oXcf7c/V7eHujqS7l7S+XbFEgp/WbsKZf67BwtwMH/fqig+7dwYAtOw3FN+OGYbA9q2VPnP41Dls3Lkfe9YsAiBPDPYc/pXa7av7vLY4BjRHxrU/X13wDYklUiz4ZSdOXbkFS3MzDAlsj48Lk1uNBo3HrBEfo0fbpug36X+If/xM5fPdWzdRJND/OHMZa/YcQXpmNprV9sX04QNha6W7KXqsGnXB/ZgorW9XLBZjxarVOH/hIiwszNG/b19FX9I5sAcmfjUe73eSz7cdERmFFStXKvqSL8eOhqeHB1JSRPhoyCdqt//i57XN1dMbjyNuan27YokES1avx5lLl2Fpbo4P+/TAgJ6BAIB2vT7ElC9HKY3rF69eVzhec8GE0cPhVTiuB4DFq9cjMysLMyeN13qc6lT1rYe42NhXF3xDYrEYwStXKvWHfQp/POzarRsmfP01OnWS/xgXGRmJFcHBSExMhJurK8aOG6c45wDyvnjzli3IyMhAgwYNMP7LL2FtrZvvOu4eHjoZvwL6PYY9bKL7K3MDcyNxqcMQpJy9onh/a9hUPNi0DwBg07g2aq+cA0tfD6TficTdMbOQfrP4O2mNT/rAe9aXMLG3QdKJC7gd9B1yU1J1FuvdmCevLqih6MhwhKxchIeJ8XBx9cCIsRPg7iG/ivjUiaNYufQH7Dl8RlF+786tOHRgF3Jzc9GsRRt8MforCATF83R/1KcTvpnxP9Rv2ERnMQd4OumkLwG0258UWbR4MQBg4oQJOokZkPcn/P6nzHnNXq1v87/u2w36dRFBRTB/2H/rOQUv+s8ny/WZrpLl+kxXyXJ9pqtkub7SZbJcX+k6Wa6PdJks11e6TpbrI10ly/WZrpLl+kxXyXJ9pqtkuT7TVbJcX+kyWa6vyipZrk90nSzXR7pMlusrXSbL9RWT5W9u6jpxeYegd3744r9xd7g6FX9yTyIiIiIiIiIiIiIiHWOynIiIiIiIiIiIiIjeeUyWExEREREREREREdE7j8lyIiIiIiIiIiIiInrnaZQsv3r1KvLy8lSWS6VS/PXXX4r3LVu2hJmZmebRERERERERERERERGVAY2S5Z988gnS09NVlkdHR2PChAmK98HBwXB0dNQ8OiIiIiIiIiIiIiIdkclkfL3h67/M+HULbtu2Dd9//z0MDAwgk8nQsmVLteVatGihteCIiIiIiIiIiIiIiMrCayfLP/74Y3h5eaGgoACffvopli9fDhsbG8V6AwMDmJmZwdvbWyeBEhERERERERERERHpymsnyzt16oQtW7agSpUq6NOnD5o3bw5LS0tdxkZEREREREREREREVCZee87ypKQkREdHAwD2798PqVSqs6CIiIiIiIiIiIiIiMrSa19Z3r17dwwfPhwGBgYAUOqc5QAQHh7+9pEREREREREREREREZWR106Wz507F4MGDUJ6ejo++eQTrFixQmnOciIiIiIiIiIiIiJ9Iiso7wioInntZDkA+Pr6AgA2bdqEBg0awNj4jT5ORERERERERERERFQhaZTt3rdvH/bt2/daZRcsWKDJnyAiIiIiIiIiIiIiKjOv/YDPF9nY2ODQoUOIjo6GhYUF7Ozs8OTJE+zbtw+ZmZnajpGIiIiIiIiIiIiISKc0urI8MTERn3/+Ob7++mul5b/88gsuX77Mq8mJiIiIiIiIiIiISK9odGX5xYsX0bt3b5Xl7dq1w6VLl942JiIiIiIiIiIiIiKiMqVRstzV1RV79+5VWiaTybB582bFQ0CJiIiIiIiIiIiIKrICmYyvN3z9l2k0Dcv06dMxcuRIHD9+HD4+PgCAu3fvoqCgAGvXrtVqgEREREREREREREREuqZRsrxRo0Y4fvw4jhw5gri4OEgkEnz88cdo37493N3dtR0jEREREREREREREZFOaTQNy/Xr19G7d294eXlh1KhROHv2LEJCQtCzZ08cPXpU2zESEREREREREREREemURsny+fPno1u3bqhbty527twJoVCICxcuYO7cuVi+fLm2YyQiIiIiIiIiIiIi0imNkuXR0dH49NNPYWZmhlOnTuH999+HQCBAkyZN8OjRI23HSERERERERERERESkUxrNWe7o6IiYmBhkZ2cjLCwMU6dOBQBcvHgRVatW1WqARERERERERERERLogk8nKOwSqQDRKlg8dOhRjxoyBoaEhateujSZNmmDNmjUIDg7GggULtB0jEREREREREREREZFOaZQs/+STT9C4cWM8fPgQrVq1AgA0a9YM7dq1g6+vr1YDJCIiIiIiIiIiIiLSNY2S5QDg5+cHPz8/xft69eppIx4iIiIiIiIiIiIiojKn0QM+iYiIiIiIiIiIiIj+S5gsJyIiIiIiIiIiIqJ3nsbTsBARERERERERERHps4ICWXmHQBUIrywnIiIiIiIiIiIioncek+VERERERERERERE9M5jspyIiIiIiIiIiIiI3nlMlhMRERERERERERHRO4/JciIiIiIiIiIiIiJ65xmXdwBERERERERERERE5UEmK+8IqCLhleVERERERERERERE9M4zkMn4+wkRERERERERERG9e75akVneIeidpeMsyzsEnalQ07CExz4s7xAqFD+P6rgUnl7eYVQozf2s8fPegvIOo0KZ1NcQe6+wTYr0bWLIvqQEP4/qWHqQv4u+6KueBoiPiSzvMCoUF08fiA+tLu8wKhTT7qOw+s/yjqJiGdUFWPdXeUdRsXzREUi5c768w6hQ7Gu3QqseZ8o7jArl/B9tkXGNHUoRq0ZdsPsyx68v6t/UEHdjnpR3GBVKgKcTDpv4lHcYFUpgbiTSrx8r7zAqFOuGnREa87i8w6hQanlWLe8QiPQap2EhIiIiIiIiIiIioncek+VERERERERERERE9M6rUNOwEBEREREREREREZUVWQGnLaVivLKciIiIiIiIiIiIiN55TJYTERERERERERER0TuPyXIiIiIiIiIiIiIieucxWU5ERERERERERERE7zwmy4mIiIiIiIiIiIjoncdkORERERERERERERG984zf5sOZmZlISEiAp6cnpFIpLC0ttRUXERERERERERERkU4VyGTlHQJVIBpdWS6RSDBjxgw0adIE/fv3x9OnTzF16lQMGzYMaWlp2o6RiIiIiIiIiIiIiEinNEqW//TTT4iJicG+ffsgFAoBAOPGjYNIJMK8efO0GiARERERERERERERka5plCw/fvw4pk+fDh8fH8UyHx8fzJ07F2fPntVacEREREREREREREREZUGjZHlWVhbMzMxUlhcUFCA/P/+tgyIiIiIiIiIiIiIiKksaJcvbt2+PJUuWIDMzU7EsMTER8+bNQ9u2bbUWHBERERERERERERFRWdAoWT5z5kwYGhqiSZMmyMnJQb9+/fD+++/D2toa3333nbZjJCIiIiIiIiIiItI6WYGMrzd8/ZcZa/IhKysrrFixAomJiYiNjUVeXh7c3Nzg4eGh7fiIiIiIiIiIiIiIiHROo2T51atXFf+2sLAAAKSkpEAkEsHExASVKlVCtWrVtBMhEREREREREREREZGOaZQsnz59Oh48eICCggLY2NhAJpMhPT0dBgYGMDAwgEwmQ506dbBixQpUrlxZ2zETEREREREREREREWmVRnOW9+nTB7Vr18bRo0dx+fJlXLlyBSdOnECjRo0wefJkXLhwAVWqVMG8efO0HS8RERERERERERERkdZplCz/7bffMGfOHLi5uSmW1axZE9OnT0dISAjs7e0xfvx4XLp0SWuBEhERERERERERERHpikbTsACASCRSuyw/P1/x3sDAQNPNExEREREREREREemUrEBW3iFQBaJRsrx///6YMmUKvv76awQEBEAmkyE0NBTLli1Dnz59IBKJ8NNPP6FJkybajpeIiIiIiIiIiIiISOs0SpZPnDgRFhYWWLJkCZ49ewYAqFy5MgYPHoxhw4bh4sWLMDY2xsyZM7UaLBERERERERERERGRLmiULDcwMMCoUaMwatQoiEQiGBsbw8rKSrG+devWaN26tdaCJCIiIiIiIiIiIiLSJY3nLA8PD0d0dDQKCgoAADKZDFKpFGFhYZgzZ47WAiQiIiIiIiIiIiIi0jWNkuXBwcEIDg6Go6MjkpOTUaVKFSQlJSE/Px+dOnXSdoxERERERERERERERDplqMmHduzYgTlz5uD8+fOoWrUqNm/ejIsXL6JFixZwdnbWdoxEREREREREREREWlcg4+tNX/9lGiXLRSKRYk5yPz8/3LhxA9bW1vj6669x5MgRrQZIRERERERERERERKRrGiXLq1SpgsTERACAh4cHwsLCAACWlpZISUnRXnRERERERERERERERGVAoznLBwwYgAkTJmD+/Pno2LEjhg4disqVK+PixYvw9fXVdoxERERERERERERERDqlUbI8KCgITk5OMDMzQ506dTBt2jRs374dtra2mD9/vrZjJCIiIiIiIiIiIiLSKY2S5QDQu3dvxb8HDBiAAQMGqJQZMWIE5s2bh8qVK2v6Z4iIiIiIiIiIiIiIdE7jZPnruHr1KiQSiS7/BBEREREREREREZFGZAWy8g6BKhCdJssrkrjYaKxesQTx8ffg7OyKoLFfw9PLu9TyB/fvxv49O5CdnY2WrdthRNA4CE1NAQD/XDyHH+bNUirfvGUbTJk+W5dV0Lr4uEj8tnoBHsTHoLqzOz4NmgZXT79Xfm7jynmws6+MPh+NUCzLzZXi941L8M/ZYzA2NkGbjj3Rb/BoGBgY6LIKWpf0KAzn981BytMo2FX2RKs+s1Gpei21ZSU5adj0fTOlZUJzW3zy3SWlZeLsVOxe0h29Ru+AlV11ncWuK4/uh2HfL3Pw9EEUKlf3RJ/PZqO6m/o2kYqzcWjrAty9dgKyAhlqN+mMwEFTIDS1AACkpTzFoS3zERt2GSYCIWo37YrOA76GiUBYllV6a+xPlD1/GIaze2Yj5UkU7Kp4om2/2ahUI+CVn7txegNCL27F4G9PKZalJSXg7N7ZeJpwE1Z21dGs20S4+LXTYfTaJ5VKsWLVGpy/eAlCgQD9+/ZG/7591JaNiY3FsuDVuB9/Hy7OzvhyzGh4e3kCAGQyGXbu3otDR48iIz0D3t5eGBM0Ai7OzmVZHa2Q5OZh/t6/cfJ2NIQmxvikXUN82q6h2rKHr0dgzfF/8DQ1A77VK2Ny77ao7eykWH/iVjSWH7mAZ+mZqOdaDbMGdEQ1e+uyqopWPXsQhpM7ZyH5URQcnDzR/sM5qFLz1cfOtZPrcev8NgybVXzs/Pv3rzi7f4FSuQbvfY42vadoPW5depoYhhO/z0LSoyg4VPVEp4/mwMn51W1y5cR63Dy7DSPmFrfJk/g7OLXrf3j2IBxWdk5o1mUUajXtrcPotUsizcXP67fg9D/XIRQI8HHPzvi4Z+eXfuZWeDS+X7Eee1YtVCzLzy9AyO97cfj0BYjFEjSrXxsTh30Me1sbXVdB5+r4W2PG17744IsrLy03oGd1fNy3JizMjHDq/HMsWRsDiaQAACAwMcCEIC+0bVEJEmk+tu97gO37H5RF+FohkeZi4a+7cOrqbQgFJhjS7T0MDmyvtuz5G6FYtfMwEp8+R/XKDhg1IBBtG9ZWrP/z4nWs3nUYSanpaF7HFzOGD4StlWVZVUWrHt0Pw4Ffi8evvYa+ZPwqycbhLQsQeu0EZDIZApp0RrePi8evyU/jcfC3uUiIvgEzCxs07zQIrQOHlWV1tCIuNgprgxcjPj4ONZ1dMXLMRHh4+ZRa/tD+XTiwdzuys7PQotV7GB40HkJTU5w6cRQrl/6gUt7AwAC7D53WYQ10w1BgglaX9+Lu+LlIOau+L7Gu54eAlXNgHeCNjLAY3BkzC+n/hirWV/swEN5zvoJp1Up4fvw8bgd9h9xkUVlVQWsk0lz8+OsunLpyC0KBCQYHti+1PylyMyIWs1ZvwYFlxd9nZDIZthw+hd0nziE9KwftGtXB5KH9YW6qX9/5isTFRiPkhWMnaMyElx47f+zfhQN7dyA7OwstW72H4UFfKo6d4KULVcobGBhgz6G/dVkFInpDhuUdQFkQi3Mwd+Y0+AfUxqJla+DrVwvzZk+DWJyjtvzF82exfetvGDV2AuYuWISoiDD8tjFEsT4xIR6NmzbHL1t2K15jxk8qq+pohUScg8Vzx8Pbvx5mL9oMT986WDzvK0hKaZMiR/ZuwtkTB1SWb12/CKG3rmDSrBUImjAXZ07sx+nj+3QVvk7kSrPx568j4eTWEH3G7kYVl/o49msQcqXZasuLnsZCaG6LQd+eVbwGfH1IqYwkJw3HN41GTmZyWVRB66TibPz680i4+TTE2O93w8WrPn5dFASpWH2bHNq6AA/uhWLYNxswfNpGPIi7g8Nb5QMCmUyGrSvGQyrJwcgZmzFwzCJE3PgbJ/YsL8sqvTX2J8pypdk4smEkqro1RP/xe+DkWh+HN5R+3BRJT07EtePBSsvyciX4Y93nMDIRou/YHajXbjiOb5mApwm3dVkFrVu34RdEx8Tgx/nzMHZ0ELZs246z5y+olMsRizFj1veoXcsfK5cugb+fH76b/T1yxGIAwOGjf2L33n0YEzQSwcsWw6lKFUyfOQdisf7dsbX4j3MIS3yKdaP649t+7RFy/DJO3IpWKfdv3EPM3nkCI99vir3ffIK6rlUxZt1+ZEukAICb9x5h6paj+KRdA+z4+mMIjI0wZcuRsq6OVuRKsrE/ZASquzfCx5P2oqpbfRwIGYlcycuPnbSkRPzzZ7DK8pSnMajT6mN8Mfe84tWsyxhdha8TUkk29q4agRqejTBk6l5Ud6+PvatGQvqKNklNSsTFI8ptIsnJwJ5VX6Cae30MnXEIzbuOwbGtM/Aw9rouq6BVwZt3IiL2PoJnT8akLwZjw66DOHXpWqnlY+If4NtFq1AgU74yavP+Izhx4QrmTQjC+gUzkJ6ZhTnL1+s6fJ1zd7HA3Km1XnlhRtsWjvj8I1f8tDIKX864jVq+1hg91F2xfvRnHvD1ssL4GbeweHU0PvvIBe1aOOo6fK1Z9vsBhN9LxJpvx2Dq0P5Yt/dP/HX5pkq56ISHmLx0A3q2bYpt879B3/YtMWXZL4iKfwgAuBsbj7nrfscXfbvg1zlfIz0rB7PXbC3j2miHVJKN3xaNhKtPQ4yesxvOXvWxaXFQqX3J4S0L8PBeKD77ZgM+nyofvx7ZJh+/FhQUYNOiIFhY22PM3D3o9dks/H1wDW5dPKR2WxWVWJyD/82aAr9adfDT0rXw8QvA/NlTSx2/XrpwBju2/YqRYydizvwliIoMw6Zf1gAAWrZpj/Wb9ypeIb/uglO16gjs2b8sq6QVhkIB6m9ZDKuA0i96MTI3Q+ODayE6fw3nm/aF6NINND4QAiNzMwCATePaqLP2f4ieF4wLrT6EiZ016m5YUOr2KrLl2w4gPC4Bq6ePxZTPBmD93qM4eflGqeVjEh5hyrKNkJU47+w7dRHr9hzF6A97YP3sr/BclIoZwb/pOnydEItzMG/WFPjVqo2fl66Fr18A/vcax07Q2Alqj50Nm/coXmt/3Ymq1aojsGe/sqwSEb2GdyJZfv7saQiEQgwdFoSazi4YNnIMzMzMceHcGbXlDx3Ygx69+qFx0+bw8vbFqHET8NeJPyEpTGA8SEyAs4sb7OztFS9LS/266uLy+RMQCIT4cOh4VKvpho+HTYSZmQWuXPhLbfmc7EwEL5yCw3t/g71jFaV1mRlpOPfXAXw2+lu4e9eCf90m6NxrEOKi7pZFVbQm7vZRGBubomnXybCr7IHm3afBRGiOe3eOqS2f+jwWNo6uMLeqpHiZWToo1j+5fx37VvR/ZeKjIrt9+SiMBabo+tFkVK7uge6Dp0Foao47V9S3iZGRCXp+MgPV3WqhumstNGzTF/FR/wIAnj++h8SYW+g/Yj6q1PCCm08jdOz3JW5d0q8vG+xPlMXcPAojEyGad/8GdlU80LLntxCYWiD21p8v/dyZPbPgWF35Tpb48L8hzhKhw8AfYe/kBZ+GveDdoCdun/tVhzXQrhyxGEePn8CoEV/Ay9MDrVo0x4D+fXHw0GGVsmfOnoNAIMAXwz6Ds3NNjBoxHGbmZjh3Tp5YP/7XSfTv2wfNmjRGjerV8eWYUUjPyEBoeFhZV+utZEtyse/yXXzTuy38alRGh9qeGPpeQ2y/cFOlbFJGFkZ0aoruDf1Qw8EGI99virRsMWKfpgAAfjtzHd0a+mJA8zpwrWyPKb3bISk9C6LMl//QWxFF3TgCYxMhWvf6BvZOHmjbdzoEQgtE3Xz5sXNy5yxUrq56F1jKk1hUqu4LC+tKipfAVH/6EgCIvC5vk7Z9voGDkwfe6z8dAlMLRP378jY58fssVKmh3Cbposdw82+Dtn2+ga1jTfg36QnHal54GPevLqugNTliCQ6ePIevP/sIPu4uaNe0AQb36oLdR0+pLb/v+GmMnD4f9jaqd1nk5+dj/NCBqO/vA7ea1fBBt464FRGj6yroVK8uVbHmx3oQpUpfWXZAj+rYdfABLl5NQUR0Bn5aGYXATk4QCg1hKjREj/edsGxtDKJiM3H2n2Rs25OIft31407AHLEEB/7+BxOH9IWvW02817guhnTvgJ0nzqmU/fPidTT298bALm1R06kSPni/NRr5e+FEYSJs5/Fz6NS0Prq3bgIv5+r4ftRgXLgVjofP9O+Cj9v/HIWJwBRdBsrHr4GD5OPXu6WNX41N0KOU8WtmehKqOvui16ez4OjkCp+6beHh3wz3o/TnhzcAuHD2FAQCIT4ZNgo1nF3x+YhxMDU3w8Vzp9WWP3xgN7r36o9GTVrA09sPQWMn4tSJI5CIxRAKhbCzd1C8zv59HJABgz8boXZbFZWlnwdaXNgJc4+X37FX9YNuKMiRIHzKj8iMiEPYhP8hPyMLVft3AQC4jh6MR7uP4uGWA8i4E4mbQ79B5a5tYeZaoyyqoTXy/uQSJn7S74X+pCN2HlftTwBg78kLGDZ7CRxsrFTW7Th2FoMC26Nzi4bwqFEVs4MG4/yNUNx/9FTX1dC6C2f/hlAgxKfDRqGGsws+HzEWZubmLzl29iiOHS9vXwSNnYCTJ46qPXbO/C2/m2WInh07RO+CdyJZHhkRBj//AMWVJwYGBvD1D0BkhGrCIT8/HzHRkagVUEexzMfXH3m5ubh3LxYAkJhwH9Wq69fJr6TYyDvw8qun1CaevnUQG3lHbfnnTx8hN1eK2Ys2o1IV5S8Q0eE3YWZuCd+A4lvqu/cbimHjZuquAjrwLOEWqrg2UGqTKi4N8DThptryoqfyZHlpHkSdh3ejvug4aJkOoi0bCTG34Oqt3CYuXg2QEHNTbfleQ2fC1bsBAED0/CFuXToEN7/GAAArG0d8NnkdrGyUr9YSZ2fqrgI6wP5E2dOEm6jq2lCpPZxc6uNp/M1SPxN5bT/ycsXwa6J8FUV68gPYVXaH0Kx40O1Q1eel26po4uLuIS8vD/5+voplAf7+iIiMQkFBgVLZ8IhIBNTyV2q7Wn5+CIuIAACMGPY52r/XVlHewMAAMpkMWVn69QNc1KPnyCsoQD3Xaopl9d2q4U78ExSUmBvw/bre+KJjEwCAODcPW87cgL2lOTyq2AMArsU8QIfanoryNRxscHTGMNhZmpVBTbTr8f1bqO6ufOxUdW+Ax/dvlvqZsCv7kSfNQa1mqlfvpTyNg20lVx1FWzYe37+F6h7KbVLdvQEe3btZ6mdCL8vbJKCFcptUquaNbp/+KD9uCgoQe+cUUp7eQw3PxrqsgtZE309Efl4+avsU7+91fb0QGhOn0pcAwD837uC7scMwsHsnlXXDPuiFdk3l5+aUtHQcPHkWDWqVfvu4Pmja0B7zlkZix4GXT5diaAj4eVnhZmiaYlloRDqMjQ3h6WoJTzdLGBkb4k5EumL97bA0+HtbQR9mEoxKeIS8/HzU9XZTLKvn447QmHiV/aR76yYYO7CHyjYys+U/3t+NuY/6vh6K5U4OdnBysMOdmPu6CV6HEmNvwaXE+NX5JePXnp/OhMsL49fblw7BzVfeV1jbVsbAsUsgNLOATCZDfNS/uB95De5+TcqkLtoSFREGv1q1lcevfrURFRGqUjY/Px+x0RHwD6irWObt64+83Dzcv6f8Q1tGRjr27f4dg4eOgImJQLeV0DL7Nk2QfPoyLrT68KXl7JrWRcpF5R9HUi79C9tm9QAAtk3qIuVc8V0/4gdPkJPwCHZN60KfRCU8RF5+Puq8Rn8CABdvhmFW0GB81PU9lXUPnyUhwMNF8d7RzgZ2Vpa4E31fJ7HrUlREGHxVjp2XffeLQC2VYycX9wu/+xWRHzvb9PLYIXoXvBNzlotSkuHs4qq0zNbWDgnx91TKZmVlQiqVwt6hOKFnZGQEK2sbJCc9h0wmw8MHD3Dz36vYs2Mb8gvy0bJ1W3w0+DOYmJjouipakypKQnVnd6VlNrYOeJAQq7a8s5s3vp6xRO26Z08ewrFyNVz4+zD+2P0L8vNy0ap9D/QY8DkMDfXn95jsjOewq+KptMzM0gGip6pTBQBA6vM4FOTnYv/KD5CV/hROrg3RPHAqzK0rAwAavT8eAJAheqjbwHUoI/U5qtRQbhNLGwc8faC+TYrsDJmKG+cPwM6xOjr0Hg0AMLOwhnedVooyBQUF+OfEVnjUalbaZiok9ifKstOfw97JS2mZmZUjUp6o30dyMlPwz5FF6DFiI54l3inxOQdkpcvbpWhAmpn2GDlZqTqJXRdSRCLYWFsr/f/Z2dpCKpUiPSMDtjY2SmVdS8w/bmdri/vxCQCAgFr+SuuOHjuOgvx8BPgrL6/okjKyYGthBhNjI8UyBysLSPLykZqdA3tLc5XPXI5KQNDafZBBhgUfd4G5UID0HDHScyTILyhAUMheRD1OQm1nJ3zbrz2q2OjXFdQAkJX+HA5Oyv2ruZUDkh+rP3ayM1Nw/o+f0W/0L3iSoHzsZKUnQZydirAr+3B82zQYmwgR0Kw/Grz3uV49OyQz7Tkcq5ZoE2sHJD0qpU0yUnB2/88YMO4XPIlX/2N/fp4UyyY0QEF+Luq2GohqbvW0HbZOJKemwsbaEiYmxUN1e1trSKW5SMvIgl2JK/kWThkHADj89/lSt7lux35s3PUHrCzNsXbeNN0EXka+/Z88wde1Q5WXlrO0MIZQaISklOLpq/ILgPT0XFR2FKBABqSl5yIvr/iHu5TUXAiFRrCxMkFqeq5uKqAlSalpsLWygIlx8X7iYGMFSW4u0jKzYWdd3De6VXdS+mzsg8e4GhqFfh1aFG4rHZXslOext7exwrOUVN1VQEcyUp+jSvU3H7/uDpmKGxfk49f2hePXF/08oQNSkx/Dp1471Gr8vlZj1jWRKBk1nd2UlpU2fs0uHL/a2RffMWtkZAwra2skJz1XKnvs8AHY2zugeat2OolblxJCfn+tckKnSsgIU/6RQPo0GVa15ONf06qVIXn0TGm95FkyTEsccxVdcmo6bEr0J/aK/iQLdtbK552fJ34BAPjjzGWVbTnYWOGZqPhHyhyxBGlZWUjN0K+LpICiY8dVaZmNrf0bHjs2pRw7jmihh8cO0btAfzKZb0Eikaj8WmdiYoLcXNUBsEQiUaxXV/75s6eQSMQwNhFg0rSZ+Gx4EM78fRK/bQhR2VZFJpWIVdrE2MQEebmvvp21JIk4B08fJ+DvY3sxfNxMfDh0PP46vAPHDm7TVrhlIi9XDCMj5TYxMhYgP099m6Q+j0OuJAvNAqeiw0eLkZ3+DMd+G4WCgvyyCLdM5ErFMDIuuZ8IkFdKmxRp2304Rs36HbaO1fDLzyPVXo3w5/af8fB+GN7vP16rMesa+xNlebliGBop1+9lx82Fgwvg06i3SoIdAJx920AqzsDV4yuQnyfFs8Q7iLiyBwX5FTtZ8SL5/qH6/w1AZR8pray6fSk8IhIh6zeif7++sLe303LUupUjzYPghUQ5AMX73Dz1/aVnVQf8/vVHGN25Ob7bfgK34x8jRyJvl4X7TiOwoR+Wf94T0rx8jFt/QOUKdX2QJ81R7V9fcuyc3Tsf/k36wKGq6rEjehYHQJ5s7/XFajTuOBKXj6/GjdP6NT+oujZ5WX/y9575qNWsDxyrqbbJiwZN2oHAoT8j4voRXDv5i9bi1SWxRAqBsfI1LYq+JE+zPrFLm+bY+MN3aFzbH+PnLkZWtv5NX/SmTIWFfU2uch+Rm1cAExP5NCy5ucpjlKL3JiYV/4cmsSRXKbEFQPEDizQ3r9TPpWZk4pulG1HX203xgE91+5zA2Pil26mocqViGJX8nmMsQP4rvue06T4cI2fKx6+/qRm/fjRuOYZ8vQpPEiJwZKvqAy4rMqmaMYfxK8evLx/vymQynDx+CF179NVBxBWHkbkZCiTK+06BRApDoaBwvelL1+sLsUQKgUmJ/sT41f2JOh2bNcCvB07g3sMnkEhzsWSL/FlmeaWM+yqy0r77qcubvPzYKS4vk8nw1/HD6PYfP3b0jUwm4+sNX/9lb3VleWZmJhISEuDp6QmpVKoyz+7ChQvh6Fj2D8jZtWMr9uwofiCNl4+fUucEyJMWQqHq05gFAoFivbrylas4YfOO/bC0tIKBgQHcPTxRUCDD0p/n47MvRsHIyEhlmxXBH7t+waE9xV8Q3b1qqbRJXm4uBELTN962oZERcrKzEDRhHhwrVwUAJD9/glN/7kHX3oPfLnAduvF3CG6eXqt4X7lmHeTnK7dJfp4UxgL1t/cP+OoPwMAAxibyNus4aBm2zm+D54m3UcWlvu4C16G/D4bg9MHiNqnpUUclSZGXK4WglDYpUnQ1z0djF2PBuLYqt6se3f4zLhzbhI/GLoZTzdIfqFMRsD9Rdv3kGvx7qngfqeJcRyWZLT9uVPuShMhzeBp/E+0G/KF22+aWDug0aDFO7ZiGf0+ugZV9DdRuORi3z+lPwk+g5otn0fuS+4jARFDqvvGisPAITJ81B40bNcSngz/WQdS6JTQxgrTEl6Oi96YC9XdQOFhZwMHKAr7VK+N2/BPsungb4wPld6b0bRqAHo3k81MvGNQF7Wevxe34x6jnVk3ttiqKK8fX4OqJ4h/CnFzU9K95UpioOXbuh5/D4/s3MWTgPLXbruHZBCPn/wMzC/kPKY7VfJCTmYLbF35Hg/eGaq8SWvbPn2tw+Vhxm1R1VW2T/FLa5F7YOTy6dxNDP1bfJkWMjAWo4lwLVZxrITPtGf49vRmNOnymnQrokMDEBNI85eSEoi8RaJaAqVlVfhX2zHHD0WvkJJy+fB2B77V6xafK35ABzhgyoPgunEmz7+B2WNpLPlFMKlWf+DYxNoRYUgAjQ8DERPnaoaL3YonqD/0VjVBgjFyV/UT+3lSovn9NTkvHmAWrIJPJsHB88V2gAoHqPifNy4OpHiT8Th8MwZk/iscmNTzqqCTG8/KkMBG+fPxauXD8OnDMYvzwper4tYZ7gHxbuVLsXDMZXT6aDGPjitk+e3Zsxt6dJcevymOOvFLGryaK8au68W5xfxwbHYHkpOdo1aaDNkOvcArEEpXEt6FQgPzCKYzyS1ufo18/SApMTFSS4kX9y5v2A8P7dMajZ0n48JsFMDYyRN8OLeHtUgMWZm+eayhru3dswd6dWxTvvXz81R4L6vImr3vsxERHFh477bUZOhFpkUbJcolEgrlz52Lv3r0AgGPHjmHhwoXIycnB4sWLYVN4m/n775fP7WlduvVAq9btFO/37vodIpFIqUyqKEXp9pgiVlbWEAgEEIlSUKOmfGCen5+PjPQ0RXkrK+WHJ9V0doZUKkVmZgZsbGy1Wxktea9LXzRp1VHx/vDe35AmUn5gT1pqMmzt3vzHDVs7R5gIhIpEOQBUre6ClKSK/QAPv6Yfwr12F8X7W2fXIzsjSalMTkYSzK0qqf18ySS6maUDhOa2yEqv2PV+mabtP0TtpsVtcvbQemSkKrdJRloSrGxV2yQvT4qIG6fhGdACpmbyH86sbBxhbmmLrIzi4+/gpnm4fHI7PghaiAA9uIWV/YmyWs0HwrNuV8X7G3+vR3a68m2F2RnPYaHmuIm5eQSZaU/wy2z5Ld+ygjzk5+di3fQGCBy2FtXcG8HFry2GzrqA7IznMLd0ROg/22Flrx8PWgMABwcHpKWnIz8/X/FjR4pIBKFQAEsLixJl7ZFSYl9KSRUpXTl+6/YdfDdnLhrWr4dvv5mkV1NbFalsbYnUrBzk5RfA2Egef1JGFkxNjGFlqvwl/W7CExgZGsKvRmXFMo8q9oh9mgJbCzMYGxnCtXJx+9hamMHG3AxPUjPKpjJvoU7LgfCuX3zsXDu5DlklzjnZ6UmKqbxeFPXvEWSkPkHI9OYAgILCY2fl5ProHbQO1T0aKRLlReyreCAzrWKfj+q2HgifBsVtcuXEOmSlK7dJVnoSLNS0ScT1I8gQPcGqKcptsuzr+ug3Zh0sbatA9Ow+3PxbKz7j4OSJnEyRyrYqokr2dkhLz0Refj6MC/uS5NR0CAUCWFmoTl30Muev3YK3mzMqO8j3EaHABNWqVEJqun7cDr//6COcOl88xcHz5Ne/CzItIxcSST4cbAVIeCBPXBkZAtbWJkhOkcLAALCxNoGRoXx6FgCwtxNALMlHZlbFv6K6kp0tUjOySuwnGRAKTGBlrpoYfpaSiqD5KwEAITPGKU3TUtnOBsmp6Urlk1PT4Wir+tDYiqaJuvFrmnJfkpn6+uNXy8Lxa3aGCJlpSUiIuQn/hsXfoypX90B+Xi4kOVkwtqqYyfL3u/VCi9bFc0nv370NqaIUpTKpqS8fv6aKUlCjpnze6fz8PGSkp8PO3l5R7sb1K/APqAtLK9UHPP6XiB89hdBJ+Tuy0MkR4ifyfkn8UM36Ko6QPFYeH1d0lextkKbSn6SX2p+8jJmpEAvGf47MwjuYLM3N8H7Qt6hayf4Vnyx/nbv1RMsXvvvt2/27Fo6dNKXy78qxQ6TPNPrW/dNPPyEmJgb79u1T/Bo9btw4iEQizJv38it8yoKVlTWqVquuePn41UJkWKjiNgGZTIbwsLvw8fFT+ayhoSE8vXwQHlo892VEeCiMjY3h5uaBG9evYsiHvSERixXr42JjYWVtXSETW0UsrWxQpWpNxcvTpw5iIu8otUl0+C14+AS88bY9fAKQK5XgycN4xbJHD+4rJc8rIlNzW9g4uiheVZzr4Wn8DaU2eRp/A5Vrqj6cRSrOxG9zmuJRbPEcbVlpTyHOFsG2krtKeX1hbmkLxyouipezZz3Exyi3SXzUDdT0VG0TAwND7AqZhoibZxTLUpMeITtThMrV5G3y196VuHxqBwaOWYS6zQPLplJvif2JMpXjxqUenpQ4bp7cv4EqLqr7SLPASRg46RA++HofPvh6Hxq//yUsrCvjg6/3oXLNAIiexuJgyFBAJoOFdWUYGBoiPvwMqnk0LeNaas7D3R3GxsYIj4hULLsbFgZvLy+VRLefrw/CwiOU2i4sLBx+vvIH7927H49Z389D44YNMGPaFBgbv9XNYOXGp3olGBsa4nb8Y8WyG/ceoVbNKjA0VL7ac9+VUCw7rDznctiDZ3CvYg9jI0P416iMqMfFCRBRZg5Ss3JQzb7iJ3NMLWxhW8lF8arqWg+P7ykfO4/u/Yuqao6dVj0n4ZNphzHom/0Y9M1+NO/2JSytK2PQN/tRpWYA7l7ahd/+11npdsjnD8NhX7lin4/MLGxhV9lF8armVg+PSrZJ7L+o6qbaJm16T8JnMw7jk2n78cm0/WjZ/UtY2lTGJ9P2o4pzAJ7cv41DG79GrrS4f32aeBf2ThW7TYp4u9WEkbERQqPiFMtuhUfDz9P1jX80W7FpJ46euah4n5WTg8RHT+Bao2KP04pkZObh4WOx4lV0tfjrkMmA8OgM1PEvnou7lq8N8vMKEHM/E9H3MpGfV4BavsV9SB1/a4RHZ0Af7i72cakOYyMj3H3hIZw3o+JQy91ZZT/JEUswbuEaGBoYYO2McSrzkwd4uuLmC/vbk2QRnqakoranqy6roBXmlrZwqOKieNX0rIeE6BLj1+gbqOmhfvy6Z+00RKoZv1aq5o6U5w+wbfmXSEsp/vHx4f1QWFjZw8Kq4k6LJh+/1lC8vH1rITL8rlKbRITdhbev6nNQDA0N4eHli4iw4vFrZHgojI2N4OpWPBd8dGQ4fPze/LujvhFdvgW7Zsp3Dds1b4DUy7cAAKlXbsGuZUPFOtMaTjCrWRWiwvX6wselhrw/eeEhnDcj4+Cvpj95leXbDuDQ2cuwNDeDpbkZQmPjkZmdo/Tw0Iqq5LHj41sLEeGhJY6dO6UeO55evghXOnbCYGxsDFe34gcoR0eGwfcdOHaI9JlGyfLjx49j+vTp8PHxUSzz8fHB3LlzcfbsWa0Fpy0tWrVBVlYmNoSsRGLCfWwIWQmJWIyWbdoBkF8pL0op/rWwa/de2L9nJ/65eB7RUREIWbkUnboEQmhqCl+/WhAIBAhe9jMePkjA9auX8dvGNejTb2A51U4zjVu0R3ZWBrZtWISHiXHYtmERJJIcNGnZCYB8TvNUUdIrtiJXtbor6jZqhfXL5yDhXhTu3LiEw3t/Q/su/XRZBa1zC+gMqTgDlw4tgOhpDC4dWoDc3Gy415FfqZKXK0Z2hvwKAYGpJZzcGuLS4R/wPPEOkh6G4uT2iajp1Qr2ThV7WpE3EdCkM8RZGTi0ZQGePozBoS0LkCvJRp0m8jbJlYqRkSpvEyMjYzRp/wGO71yC+5HX8fBeKLatnAC/Bu1RpYYXnj2Mxd8HVqNt9+Fw9W6AjNTnipc+YX+izKNOZ0hyMnDh4HykPI3BhYPzkSfNgUfh1ed5uWLFlefmlg5KiXYzS3sYGhrBxtEFxiamsLKvDtHTWFw9vgLpKQ9w7cQqPLl/HbVbVtzpnEoyNRWiU4f2WLZyFSKjonHh0j/YvXc/+vTsAQBISREp5jNs3aolMrOysHrtesQnJGD12vUQiyVo01o+LcKy4JWoVMkRI78YhrS0dKSkiJQ+ry/MBCbo0dgf8/acwt2EJzh1JwabTl/Hx63lXzyT0rMgLrztt3+z2rga8wBbz95A/HMRVv15CXcTn2BQG3nZT9o2xLZzN3H8VhTinqZg5o7j8KleCbWd9eshWgDgWa8LJDnpOLP3f0h+EoMze/+HXGmO4urzPKkYWUXHjpWDUqLdzNIBBkbGsK3kAmOBKZx9WiAr7TnO7V+I1OfxiPz3MK6dXIdGHYeXZxXfmHf9LhBnp+Pv3f9D0uMY/L1b3iZFV5/nSsXISpO3iYWVg1Ki3dzSAYaGxrCr7AITgSncA9pBYGqFE7/PRMrTewi/+geunFiP5l1GlWcVX5upUIhubVvgx7WbEBZzD2eu/IttfxzDh93kV7cmi9IglrzeFdb9u7TH1oN/4uK/txGX+BBzlq1HDafKaF6/ti6rUG4EAkPY2xZPQbLvyCN81LcmWjdzgK+XFSaN9sLB448hkRRAIinA0VNPMWm0N3y9rNC6mQM+6lMTuw7qx8PZTYUCBLZujPkbdyI0Nh6nr93G5sOnMLBLWwDyh3aKpfL9ZOPBE3jwLAmzgwYp1iWlpiuu/OzfsSWOnL+K/acvITrhIWat3oJW9WuhemXVqycruoAmnSHOzsDhrQvw7GEMDm9dAKkkW3H1ecnxa+P3PsCJXcXj1+0rJ8C3cPxaw702qrnWwt710/HsYQwib53Bn9t/RrueI8uzim+seat2yMrKxMa1K5CYcB8b166AWJyjuPpcPn4tvuu4S2BvHNizHZcvnUNMVDjWrlqCjp27Q2haPJVEQvw9lQcf/lcIqzjCsPDutyd7/oSJrTX8F0+HpZ8H/BdPh5GFGR7vOgoAiA/5HdUH9ULNz/rDqrYP6v3yI54dPo2c+w/KswpvzFQoQGCbJlhQ1J9cvY0th09hYJd2AJT7k1dxtLPGuj1/IjQ2HuFxCZi5ajP6dWwFG0uLV3+4gmneqm3hsRNceOwEQywWK64+Vz12euHAnh24fOmc/LvfqsWlHDsuZV0VInoDGl2mlpWVBTMz1VtxCgoKkJ9f8R7aYG5ugemz/4c1wUtw/M9DcHF1x3ffL4CpqbwO58/+jRVLfsT+I6cAAK3btsezp0+wOngJcnOlaN6yDT79XD4gMjM3x6x5C7EhZBUmjh8FMzNzdO7aHX36f1hu9dOEmbklvp6+BL+tWYDTx/ejposnJny3DMLCNrl8/gQ2rPgev+6/+lrbG/n1XGxZ9xPmT/sCAqEpOnYbgI6B+tUmAlNLdP50Nc7vn42IKzth7+SDLkNDYCKQ3+4cd/sozuz+Fl8sCAcAtBuwAP8c/hF//jYS+XlSuPi1R4ue08uzClpnamaJTyeuxv5fZuPK3zvhVNMHQyeFQGAqb5Pb/xzF7nXfYsFmeZt0HvA1DGCAbSu+glSSg1qNOqHHJ/I2Cfv3FAoK8vH3gTX4+8Aapb9T9Hl9wP5EmcDUEt0+X4Oze2cj7J+dcKjqg27Dio+bmJtH8PfObzHqp4hXbsvYxBSdP12B8/vn4tbZX2Hv5IXAYetgZVex56IuaeTwYVi+ahUmT5sOCwtzfDLoI7RqKZ96ZuCQTzHpq/F4v1MHWJibY+6s77B85Soc+fMY3FxdMW/OTJiZmiIlRYSwcHmbDR46TGn7RZ/XJ5N6tsH/9pzC8NV7YGkqwKjOzdCxjvzqtA5z1uH7DzuhV5Na8KtRGYs/644VRy5i2eHz8KzqiNVf9EEVG/mt8Z3qeiE9R4wlf5xDSmYOGnnUwLLPesDAoOI/iK8koakleo0Iwcmds3Dn0k44VvNB75FrYSKUHzuRN47gxLZp+GpZ5Cu2BFjbV0evkWtx7uBPuH3hd5hbOaBVj0nwrt9N19XQKqGZJfqOCsGJ7bNw+4K8TfqOXgtBUZtcP4I/t0zDpJWvbhOBqQX6j12PkzvnYvMPfWFmZYf2/b+FZ92Or/xsRTF+6If4ce0WjJ39EyzMzTD8g15o10x+9WL3LyZgxpjPXmvO8X5d3kOORIKf1m6GKD0TTev648ep4/RyWqfX0aF1JUz/yhetesivFD557jmqVjHF5NHeMDExxJmLz7H6l+IrqFdsiMWkUV5Y/r+6yMrOw4Zt93H20utdMFIRTBjcBwt+2Ymg/wXD0twMI/t1RfvG8iuou4z5DrNGfIwebZvi1JVbkEhzMXTmYqXPd2/dBLODBqGOlxu+/fxDrNlzBOmZ2WhW2xfTh+vPj/cvMjWzxJAJq3Hg19m4Wjh+/XRiiKIvuXP5KPas+xb/2yQff74/4GsYGBjg9+CvkCvJgX+jTug+RD5+NTQ0wuCvVuKPTXOx5vuPIBCaoXmnwWj+/pByq58mzM0t8O2sHxCychH++vMPuLh6YPqchYrx64Wzp7By6Q/Yc1h+3LRq2wHPnj5BSPAi5ObmolmLNhjyeZDSNtNSU2Bh+d+cRqLjgwu4NWwqHmzah7yMLFztPRK1V86B8/APkH4nEld7jkB+4Q9Nqf/cxN3RM+E960uY2Nsg6cQF3A76rpxroJmvB/fBDxt3YtS8FbA0N8OI/l3Rvom8P+k6egZmjhyEHm1ffcfnh53b4vHzFIxfuAaGhgbo2qoxxn3UU9fh64S5uQWmz1qANSsX40ThsTOjxLETvHQh9h4+DaD42FkTvFj+3a9FW3zyufKPa2mpov/ssUP0X2Eg0+ARppMnT0Z2djYWLlyI1q1b4+DBgwCASZMmoUaNGli0aJFGwYTH6sdVHGXFz6M6LoWnv7rgO6S5nzV+3lvxH7hUlib1NcTeK2yTIn2bGLIvKcHPozqWHtSD+8nL0Fc9DRAf8+qE27vExdMH4kOryzuMCsW0+yis/rO8o6hYRnUB1v1V3lFULF90BFLunH91wXeIfe1WimQ1yZ3/oy0yrrFDKWLVqAt2X+b49UX9mxribsyT8g6jQgnwdMJhE59XF3yHBOZGIv36sfIOo0KxbtgZoTGPX13wHVLLUz+mWqtIvpif/OpCpGTdt/p399nr0uiSkpkzZ8LQ0BBNmjRBTk4O+vXrh06dOsHa2hrffaefv6ISERERERERERER0btLo2lYrKyssGLFCiQmJiI2NhZ5eXlwc3ODh4fHqz9MRERERERERERERFTBaDxZYWxsLGxtbdGuXTsIhUJs2bIFu3bt0mZsRERERERERERERERlQqNk+Y4dO9CzZ0+Eh4cjLCwMo0aNQmJiIpYtW4Zly5ZpO0YiIiIiIiIiIiIiIp3SKFm+fv16LFy4EE2aNMGePXvg5+eH9evXY8mSJby6nIiIiIiIiIiIiIj0jkZzlj99+hQNGzYEAPz999/48MMPAQBOTk7IysrSXnREREREREREREREOiKTyco7BKpANEqWu7u7448//oC9vT0ePXqEjh07Ijc3Fxs3boSvr6+2YyQiIiIiIiIiIiIi0imNkuVTpkzBV199hbS0NHz88cfw8PDA999/jxMnTmDNmjXajpGIiIiIiIiIiIiISKc0SpY3b94cly5dQkZGBmxsbAAAo0ePxrRp02BiYqLVAImIiIiIiIiIiIiIdE2jZPnVq1dfur5x48YaBUNEREREREREREREVB40SpYPGTJE7XKBQIBKlSrh5MmTbxUUEREREREREREREVFZ0ihZHhERofQ+Pz8fCQkJmDt3Lnr06KGVwIiIiIiIiIiIiIh0SVYgK+8Q3mkymQyLFi3C7t27UVBQgP79+2PSpEkwNDRUKTt16lTs27dPZXnTpk2xadMmAECjRo2QkZGhtP7ff/+FhYXFa8WjUbK8JCMjI7i5uWHq1KkYMWIE+vTpo43NEhEREREREREREdF/1C+//IJDhw4hODgYeXl5mDx5MhwcHDBs2DCVstOnT8fEiRMV7x8+fIghQ4bgk08+AQA8ffoUGRkZ+Ouvv2BqaqooZ25u/trxaCVZXiQ5ORnp6ena3CQRERERERERERER/Qdt2rQJX375JRo1agQAmDRpEpYtW6Y2WW5lZQUrKyvF+6lTp6JLly7o2LEjACA2NhaVKlVCzZo1NY5Ho2T5tGnTVJZlZWXh4sWL6NKli8bBEBEREREREREREdF/39OnT/H48WM0btxYsaxhw4Z4+PAhnj17hsqVK5f62UuXLuHq1as4duyYYllMTAzc3NzeKibVyV80ZGtriylTpmD27Nna2iQRERERERERERER/Qc9f/4cAJSS4o6OjgCAJ0+evPSza9euRZ8+fVC1alXFstjYWOTk5GDIkCFo1aoVvvjiC9y7d++NYtLoyvIFCxZo8jEiIiIiIiIiIiIi0mNSqRRSqVRpmUAggEAgUCkrFovx9OlTtdvJzs5WfPbF7RT9jdIkJibin3/+wfTp05WWx8XFIS0tDRMmTIClpSXWrVuHoUOH4vDhw7C0tHytumk8Z/lff/2F9evXIy4uDvn5+XBzc8PgwYPRu3dvTTdJREREREREREREVGZkBbLyDkHvhISEIDg4WGnZ2LFjMW7cOJWyt27dUjyAs6TJkycDkCfGhUKh4t8AYGZmVurfP3bsGPz8/ODp6am0fMOGDcjNzYWFhQUA4Oeff0bbtm3x999/o0ePHq9VN42S5du3b8fChQsxePBgjBgxAgUFBfj3338xZ84c5ObmYsCAAZpsloiIiIiIiIiIiIgqsJEjR+Kzzz5TWqbuqnIAaNq0KSIjI9Wue/r0KX766Sc8f/4cNWrUAFA8NUulSpVK/fvnzp1Dhw4dVJaXvLpdKBSiRo0apV7Zro5GyfL169dj1qxZSleRd+zYEV5eXlizZg2T5URERERERERERET/QaVNufKmqlSpgmrVquH69euKZPn169dRrVq1Uh/uKZPJcOfOHQQFBaks79SpE0aPHo2+ffsCkE/zEh8fD3d399eOSaNkeXJyMurVq6eyvH79+nj8+LEmmyQiIiIiIiIiIiKid8hHH32En3/+GU5OTgCARYsW4fPPP1esT0lJgVAoVEyt8vDhQ2RlZalMwWJgYIB27dphxYoVqF69Ouzt7bFs2TI4OTmhbdu2rx2PRslyPz8/7N+/H1999ZXS8n379qkESkRERERERERERERU0rBhw5CcnIyxY8fCyMgI/fv3x9ChQxXr+/fvjz59+ijmQ09OTgYA2NjYqGxr8uTJMDY2xsSJE5GZmYlmzZph7dq1MDIyeu14NEqWT548GUOHDsXly5dRt25dAMDNmzcRHh6OkJAQTTZJRERERERERERERO8QIyMjTJs2DdOmTVO7/tSpU0rv69atW+oc6EKhEFOnTsXUqVM1jkejZHn9+vWxd+9e7Nq1C3FxcRAKhWjSpAmWLl2quGSeiIiIiIiIiIiIqCIrkMnKOwSqQDRKlmdkZODAgQOIi4uDWCxGTk4Obt68iZs3bwIANm3apM0YiYiIiIiIiIiIiIh0SqNk+TfffIPQ0FB07doVVlZW2o6JiIiIiIiIiIiIiKhMaZQsv3TpEjZt2oQ6depoOx4iIiIiIiIiIiIiojJnqMmHKlWq9EZPESUiIiIiIiIiIiIiqshe+8ryR48eKf49aNAgzJgxA9988w1q1KihkjivVq2a9iIkIiIiIiIiIiIiItKx106Wt2/fHgYGBgAAWeFTYj/77DPFsqLlBgYGCA8P13KYRERERERERERERNolK5CVdwhUgbx2svzkyZO6jIOIiIiIiIiIiIiIqNy8drK8evXquoyDiIiIiIiIiIiIiKjcaPSATyIiIiIiIiIiIiKi/xImy4mIiIiIiIiIiIjoncdkORERERERERERERG98157zvKS8vPzce7cOdy/fx99+/bFvXv34O7uDisrK23GR0RERERERERERKQTMpmsvEOgCkSjZPnjx48xbNgwpKamIi0tDR06dMD69etx48YNbNiwAT4+PtqOk4iIiIiIiIiIiIhIZzSahuX7779Hw4YNce7cOQgEAgDA4sWL0aJFC8ybN0+rARIRERERERERERER6ZqBTIN7DRo3boydO3fCzc0N9evXx8GDB1GzZk3cv38fffr0wY0bN3QRKxEREREREREREZHWfPLd4/IOQe9smlu1vEPQGY2mYTE1NUVycjLc3NyUlt+7dw+WlpYaB/Mkgkn2Fzn51kdsXFx5h1GheLi7415sTHmHUaG4eXgiPiayvMOoMFw8fbiPlODm4cm+pAQPd3eec0pw8q2P6Nj48g6jQvHycEFM7L3yDqNC8fRwYx9bgpuHJxKiw8s7jArF2csPZ0OzyjuMCqVNLQtca9u8vMOoMBqducSxSQke7u6Ii40t7zAqFHcPD6RfP1beYVQo1g0747AJp719UWBuJMcmJbh5eJZ3CER6TaNpWAYOHIiZM2fi9OnTAORJ8j179uC7775D//79tRkfEREREREREREREZHOaXRl+ZgxY2BtbY3Zs2cjJycHI0aMgIODA4YOHYphw4ZpO0YiIiIiIiIiIiIirSsoeOMZquk/TKNkOQAMGTIEQ4YMQXZ2NvLz82FlZaXNuIiIiIiIiIiIiIiIyoxGyfLg4GC1yw0MDGBiYoLKlSujdevWcHBweKvgiIiIiIiIiIiIiIjKgkbJ8nv37uHIkSNwcnJCQEAAZDIZwsPD8ejRI9SrVw8ZGRmYN28e1q9fj3r16mk5ZCIiIiIiIiIiIiIi7dJ4Gpb+/ftj9uzZMDIyAgAUFBTgf//7H7Kzs7FgwQKsWbMGP/zwA7Zv3661YImIiIiIiIiIiIiIdMFQkw+dOnUKn3/+uSJRDgCGhoYYPHgw/vzzTwBAYGAgIiIitBMlEREREREREREREZEOaXRluaOjI65duwY3Nzel5devX4etrS0AICkpCZaWlm8dIBEREREREREREZEuyApk5R0CVSAaJcvHjRuH6dOn4/r166hduzZkMhlCQ0Nx+PBhzJw5E/fu3cOUKVMQGBio7XiJiIiIiIiIiIiIiLROo2R5z549Ua1aNfz+++/Yvn07jIyM4OnpiU2bNqFevXq4ffs2Bg8ejEGDBmk7XiIiIiIiIiIiIiIirdP4AZ+NGjVCo0aN1K6rU6cO6tSpo3FQRERERERERERERERlSaNkeU5ODnbs2IGYmBjk5+crlkulUoSFheHo0aNaC5CIiIiIiIiIiIiISNcMNfnQjBkzsHbtWuTk5ODgwYPIzc1FTEwMDh8+zHnKiYiIiIiIiIiIiEjvaHRl+dmzZ7Fs2TK0aNEC0dHRGDp0KAICAvDDDz8gOjpa2zESERERERERERERaZ1MJivvEKgC0ejKcolEAldXVwCAl5cX7t69CwD48MMPce3aNa0FR0RERERERERERERUFjRKlnt4eODixYsA5Mny69evAwAyMjIgkUi0Fx0RERERERERERERURnQaBqWsWPHYvz48SgoKECvXr0QGBiIoKAgREZGonXr1tqOkYiIiIiIiIiIiIhIpzRKlnfo0AFHjx5FQUEBqlatim3btuHAgQNo0KABhgwZou0YiYiIiIiIiIiIiIh0SqNkOQDUrFlT8W9fX1/4+vqqlGnQoAEOHDigVJaIiIiIiIiIiIiIqKLROFn+Ovg0WSIiIiIiIiIiIqqoZAUF5R0CVSAaPeCTiIiIiIiIiIiIiOi/hMlyIiIiIiIiIiIiInrnMVlORERERERERERERO88JsuJiIiIiIiIiIiI6J2n02S5gYGBLjdPRERERERERERERKQVxrrcuEwm0+XmiYiIiIiIiIiIiDRWUMD8JRV7q2T58+fPkZeXp5IUr1atGgDg5MmTsLW1fZs/QURERERERERERESkcxoly8+fP4+ZM2fi8ePHSstlMhkMDAwQHh4OALC3t3/7CImIiIiIiIiIiIiIdEyjZPncuXNRp04drF69GpaWltqOiYiIiIiIiIiIiIioTGmULH/y5AnWr1+PmjVrajseIiIiIiIiIiIiIqIyZ6jJhxo1aoTr169rOxYiIiIiIiIiIiIionKh0ZXljRs3xpw5c3D69Gm4uLjAxMREaf3YsWO1EhwRERERERERERGRrshksvIOgSoQjZLlFy5cQEBAAJKTk5GcnKy0zsDAQCuBERERERERERERERGVFY2S5Zs3b9Z2HERERERERERERERE5UajZDkAhIWFYcOGDYiLi0N+fj7c3NwwaNAgNGnSRJvxvTWJVIqlIRtx9tIVCAQCDOzdHR/27q62bFTcPSxetR5x8Ylwda6BiaOGw8fTHYD8loxft+/G4RN/I0csQeN6tfHVyM9ha2NdltXRqtiYGKwIDkb8/ftwdnbG2HHj4OXlVWr5/fv2Yc+ePcjOzkbr1q0RNGoUTE1NAQBSqRSrVq7EhQsXIBAI0K9fP/Tt16+sqvLWpFIpgletwoULFyEQCNC/X1/069tXbdmY2FisWBGM+/HxcHZ2xpdjx6htt9+3b8fDR48wacIEXYevE1KpFCtWrcH5i5cgFAjQv29v9O/bR23ZmNhYLAtejfvx9+Hi7Iwvx4yGt5cnACA/Px+/btqC43+dhFgiQeOGDTAmaATs7OzKsjpawf1EPfYlynjeUS82NgYrVyxDfPx9ODu7YMzYL+Hp5V1q+QP792LPnl3Iyc5Gq9ZtMDJojGI/SUpKwtqQVbh96xYEQgFat26LT4d+DoFAUFbV0YrY2BgEr1hR2CbOGDP2y5cfO/v3Ye+e3cjOzkar1q0RFDRa0SZFcnOlGP/lOASNGo06derqugpaw/5VlVQqxYrVITh38RKEAiH69+mFAX17qy0bExuHZStX4158PFycnTF+TBC8PT1Vyp05fwHzfvgJJw7t123wOpYQF4EtIfPxMD4GVWu6Y0jQt3Dx8H/l5zatmgtb+0roOTBIsSw9NQVb1y5A+O3LsLS2RWD/4WjZvqcuw9cqA4EAzl9Ngl2bdiiQSvB0+zY83fm72rK2rdui+hdBEFSqjOyYaCQuX4zs6CgInJxQZ8c+tZ+JGDcKmbdv6rAGusGxiTKpVIqVq1Yp1eFlfWzwihWKPnbc2LGl9rGPHj3CRD3tYyXSXPz46y6cunILQoEJBge2x+DA9i/9zM2IWMxavQUHls1SLJPJZNhy+BR2nziH9KwctGtUB5OH9oe5qVDXVdAZQ4EJWl3ei7vj5yLl7BW1Zazr+SFg5RxYB3gjIywGd8bMQvq/oYr11T4MhPecr2BatRKeHz+P20HfITdZVFZV0AqOTYjeXRo94PPEiRP44IMPIJPJ0LdvX/Tt2xcGBgb4/PPP8ddff2k7xrey+tetiIyJw5K53+HrkZ/j1+17cPrCPyrlcsRiTPl+IerU8sXaxQsQ4OuNqXMXIkcsBgD8cewkDp/4GzMmjMWKBbORJBLhx+CQsq6O1ojFYsycORMBtWph2fLl8PP3x+xZsyAurG9J58+fx9atWzF23DgsWLAAERER2Lhxo2L9hvXrER0djQU//IAxY8Zg69atOH/uXFlV562t37AB0dEx+GHBfIwdMxpbt27DufPnVcqJxWJ8N3MWAgJqYcWypfD388PM2bNV2u3v06execvWsgpfJ9Zt+AXRMTH4cf48jB0dhC3btuPs+Qsq5XLEYsyY9T1q1/LHyqVL4O/nh+9mf684dnbs2oPTZ89h+rRvsHzxT8jIyMTCRUvKujpawf1EFfsSVTzvqBKLczB75gzUCqiNpctWwtfPH7NnfwexOEdt+Qvnz2Hb1s0YO3Y8/rfgR0RGROCXjesByL+ULpg/FxKJBAt/WoRvpnyLK1f+wZbNv5Zhjd6eWCzGrJnfoVZAAJYuWwE/P3/Mnj2z1GPnwvnz2LZ1C8aO/RLzF/xQ2CYblMpIpVIsXPgD4uPjy6IKWsX+VdXajb8iKjoWP/1vLsaNGoktv+/A2fMXVcrliMWYPnsuAmr5Y+XSRfD39cWM2fMUfUmRzMxMrApZX1bh64xEnIPl876El199zPh5Czx962L5/8ZDUkp/UuTPfb/i3F/KCWGZTIZVCydClPwUk75fiw8/n4Sdvy7Gv/+c1GUVtKrGqLGw8PFF1NdjkbDkZ1QbOgx2bd9TKWfq6gb37+bgydZNCBv2CXJiouG5cBEMhUJInz3DzT6BSq/kv44jKzwMWaF3yqFWb4djE1XyPjYaPyxYoKhDaX3szJkzUSsgAMuXLYO/nx9mqeljT58+jS1btpRV+DqxfNsBhMclYPX0sZjy2QCs33sUJy/fKLV8TMIjTFm2UWVe432nLmLdnqMY/WEPrJ/9FZ6LUjEj+Dddh68zhkIB6m9ZDKuA0i9oMDI3Q+ODayE6fw3nm/aF6NINND4QAiNzMwCATePaqLP2f4ieF4wLrT6EiZ016m5YUFZV0BqOTYjeXRoly5ctW4ZJkyZh8eLFGDJkCIYOHYqlS5di0qRJWLFihbZj1FiOWIzDJ05h3PBP4e3hhjbNm+Cjvj2w78gxlbKnzsuvnh01dDBca1bHuOGfwszMTJHg+Of6DbRv3Rz1Avzh7lITH/XpiX9v3y3rKmnN2TNnIBQKMWz4cDg7O2PkyJEwMzPDuVIGfgcOHECv3r3RtGlTePv4YNy4cThx/DjEYjHEYjGOHTuGkUFB8PT0RIuWLdF/wAD88ccfZVwrzYjFYvx57DiCRo6Al6cnWrZogf79++PgH4dUyp45exZCoQDDhw2Ds7MzgkaOgJmZOc4Wtlt+fj5WBK/EkqXLULVq1bKuitbkiMU4evwERo34Al6eHmjVojkG9O+Lg4cOq5Q9c/YcBAIBvhj2GZyda2LUiOEwMzfDuXPyxHp+QT5GfjEMdQIC4OLsjN49uyM0LKysq/TWuJ+ox75EGc876p09ewYCoQCfD/sCNZ2dMWLkKJiZmZWabDh4YB969uqDJk2bwdvbB2PGjcdfJ45BLBbjwYNEREaE46uvJ8HFxRUBAbUxePCnOH367zKu1duRt4kQw4bJj50RI4NgbmaGc+fOqi1/4MB+9OrVG02aNoW3tw/GjvsSJ04cV3wRS0iIx4QJX+HJ48dlWQ2tYP+qSn4e/gujRwwrPA83wwf9+uCA2vPweQgEAoz4fChcatbE6BHDYGZmpvID99qNv6FqVaeyqoLOXL1wDCZCIfp/+hWq1nDHh59PgqmZOa5dPKG2fE52Jlb/OBlH9/0Ke0fl+sfHhiM28ha++Ho+nN19UbdRG3TpPRTH9m8qi6q8NUNTU1QK7InEFUuQHR2F1HNn8OT3Lajcp79KWZvGTZFzLw7Jx45C8ughHqxdDYGDI0xd3YCCAuSlpChewqrVYdemHe7N/x6y/PxyqNnb4dhEWVEdgkaOhGdhHzugf3+1dZD3sUJFH1uy7eR9bDCWLF2q532sBAf+voSJn/SDr1tNvNe4LoZ074idx9XvI3tPXsCw2UvgYGOlsm7HsbMYFNgenVs0hEeNqpgdNBjnb4Ti/qOnuq6G1ln6eaDFhZ0w93B+abmqH3RDQY4E4VN+RGZEHMIm/A/5GVmo2r8LAMB19GA82n0UD7ccQMadSNwc+g0qd20LM9caZVENreDYhOjdplGyPDExEe+9p3rFwnvvvYd79+69dVDaEnsvHvl5+Qjw9VEsq+3ng7CoGBQUFCiVDYuMRm0/H8UDSg0MDFDbzxuhkdEAAGsrK1y6dgPPk1MgkUhx8twFeLq7llldtC0iIgL+tWop1dff3x8R4eEqZfPz8xEdFYWAgADFMl8/P+Tm5uLevXuIi4tDXl4e/Pz8FOtr1aqFyMhIlXauiIri91eK319t/BEREajlX7Ld/BAeEQEAyMnJwb1797B0yWL4+fmWXSW0LC7uXmGbFNchwN8fEZFRKm0SHhGJgFr+Sm1Sy88PYYVtMuTjj9CqRXMAgCg1FUePnUCd2rXLqCbaw/1EPfYlynjeUS8yIhz+/gEl9pNaiIhQ/eEsPz8f0dFRCAgo7id8fYv2kzjY2dljztz5KlM5ZWdl6bYSWqaun/Dz90dERCnHzkvaBADu3LmDOnXq4mc9vHOH/auquHv31ZyH/RARFa16Ho6MRIC/n/J52N8X4RGRijK37tzFrTt38fEHqklUfRMXdQeevvWU6uvhWw9xkbfVlk96+gi5uRJ89/M2OFaprrTu+dMHsLK2QyWn4gRODVcvxMeGIy8vV3eV0BIzDy8YGBkh827x1d+Zd27Bwr8WUNg+RfLS02Dm5g7LgDqAgQEcuwUiLzMTkocPVbZbY+QoJB06CHGC/t2lAnBsUtKb1EHex/qrtN2Lfez9e/ewdMkSpe3pm6iEh8jLz0cdbzfFsno+7giNiVf7/3rxZhhmBQ3GR11VcyAPnyUhwMNF8d7RzgZ2Vpa4E31fJ7Hrkn2bJkg+fRkXWn340nJ2Tesi5eJ1pWUpl/6FbbN6AADbJnWRcu6aYp34wRPkJDyCXVP9mR6OY5N3j6xAxtcbvv7LNEqWe3h44OxZ1Sufzpw5g+rVq6v5RPlIFqXCxtoKJibFU7Pb2dpCKs1FekamSllHe+Uv3na2NnielAIA+PTDvjAyMkL/z0ej68ChuB0agZkTv9R9JXQkJSUFDvb2SstsbW2RlJSkUjYrKwtSqRQODg6KZUZGRrC2tkZSUhJSUlJgY2MDExMTpW1JpVJkpKfrrhJakpIigo2NtVL8doXxp2dkqJR1cFBuN7sX2s3S0hKLF/0Mdzc36LMUkQg21q/ZJiKRyr4kb5NkpWWbtmzDh4M+QWhYGEYO+1x3wesI9xP12Jco43lHvZSUFKX/dwCwtbV76X5ir2Y/SU5KgqWlJRo2bKRYV1BQgEN/HEDdevV1VwEdEKWkKNUR0KxNisoHBnbHiBEjVeYw1wfsX1WlpKSonIdt7d6sTZ4XnoelublYGrwK40aNgFDP5vVXJ02UBFv7SkrLrG3sIUp+prZ8TTdvfDl9ORwrV1NZZ23rgOzsDEgkxVO4iJKeID8/DznZmSrlKxoTBwfkpaVBlpenWJYrSoGhUAhjaxulsimn/kLqpQvwXRmChn+dRY1R4xA361vkZyrvT5YBdWBRqzYeb9WPq+vV4dhE2cvqoNqfqDs3KfexixYtgpue97HJqemwsbKAiXHxeM3exgqS3FykZar++P7zxC/Qvon6RK+DjRWeidIU73PEEqRlZSE1o+L3ISUlhPyO8EkLUJCjfsqiIkKnShA/Uu5zpU+TYVZdfveOadXKkJRYL3mWDNPq+nN3E8cmRO82jZLl48aNw8KFCzFp0iRs3rwZmzdvxsSJE/Hjjz9i3Lhx2o5RY2KJRKlzAwBBYQJDmqt8tYhETVkTYxPkFpZ78uw5TAUCLJgxGcvmz0IlRwcsXLFGh9Hrltr6mhTXt2TZovXqykskEhirWQdA7fYqGrFEAhPj14v/TdpNn5VWT0DzNunQvh2Cly5C/Xp1MfW7WcjKztZB5LrD/UQ99iXKeN5R7832E7FivWp5qUr5XzauR2xsDIZ8MlR7AZcBbR47+o79qyr1fYn6NlFX9sU22bp9Jzw9PNCogX79oFQaqUSs5lwhQF6eav/wKu5eAbC1q4Tf1/8IiTgHzx4n4MQf8vlk819IQFdUhqamKCjRLxZI5f/vBgLlNjK2toGJvQPil/yM8FHDkXzsKFynzICxrfKPto49eiH17GnkJj3XbfA6xLGJMolEopQUBtjHiiVSxfisSFEbSXPf7Njv2KwBfj1wAvcePoFEmoslW+TPRsjL078pjF6XkbkZCiQl+h6JFIZCQeF605eu1wccmxC924xfXUTVe++9h3Xr1mHbtm34/fffIRQK4ebmhm3btqFOnTrajlFjAoFApYMqOvmZCpWfTi0wUS2bm5cLoVAImUyG+UtXYdTQQWjRuCEAYM7k8fjgi3EIi4yGv0/pT1avKHZs344dO3Yo3vv4+KjWN1de35JK+3JWVL6goAB5atYBgFAPrnATCEyQm6c+/pL7iYlA9aRXWrvpM4Gak7vi//R1jh01bVK9mvyKrm8mfo2PP/0MFy5cwvudOmg7dJ3hfiLHvuTleN6R27njd+zc8bvivbeP7+vvJ4VXvqovr7wf/LJxPQ7s34spU6fD1bViX62zY8d27NyxXfHe543a5OXHjr5j/6pKfV9SynlYTdmiNrl3Px5H/jyOtcHLdBuwDh3evQFH9xY/bNHNK0DNuUIKgeDNzxMmAiFGTvoRIYumYNzg1rC2tkfnPp9g5y+LYWpm8dax65pMKoWhiXLyybCwvygQS5SW1wgajZx7sXi+fw8AIP7nHxCw6Xc4dg3Ek98LH9RoZATblq1xb/73ug9eizg2eTmBQIDcEj/+lNbHvqw/+S8RmJioJMWL2sj0DRO6w/t0xqNnSfjwmwUwNjJE3w4t4e1SAxZm+rF/aKJALFFJfBsKBcjPll/wkF/a+pyXP4i5IuHYhOjdplGyHACaN2+O5s2bazMWratkb4e09Azk5efD2MgIAJAiSoVQIIClhblSWUcHO6SkpiotSxGlwcHeFqlp6XiWlAwPt+K5yCpXcoSNtRWePE+q8EkLAOgWGIjWbdoo3u/atQsikUipjEgkgn2JWxYBwMraGgKBACKRCDVr1gQgn98vPT0d9vb2kMlkSEtLQ35+PowK21kkEkEoFMLCouJ/0XB0cEBaWvprxe/o4IAUlXZLVdtu+szBwQFp6cptkiISQSgUwLJEmzg42Ku0SUqqCPaF00v8c+UqPN3d4egov6VTIBCgqpMT0vTk1tUi3E/k2Je8HM87cl27BaJV6+L9ZPeunRCJUpTKiEQp6vcTqxf3E/kDpor2E7sXyq9ZvRJHDv+BiZOnoGWr1jqqifZ06xaI1q9ok9TSjh1Fm6SoPXb0HftXVY5qzsMiUara87CjmvOwSJQKB3s7nL94CekZGfjkiyAAUMyz2qP/QHw1ZhQ6vNe2DGrzdtp17o/GLTsp3v+57zekpSpP9ZaemgwbO0eNtu/mVQs/rDmENFESLK1tEXbzH1ha28LUzPzVHy5n0ufPYWxjAxgZAYUP4jSxd0C+WKwyvYq5ty+e7dlVvEAmQ3ZsDAROxdMiWNYKgIGxMdKvXSmT+LWFY5OXc3BweO06ODg4vHbb6bNK9jZIy8hSGq8lp6ZDKDCBlbnZG23LzFSIBeM/R2a2PBFsaW6G94O+RdVK/602e5H40VMInZT7XKGTI8RP5FOviB+qWV/FEZLH+nPHCscmRO+2156GZdq0acjMzFT8+2WvisLT3RVGxkYIK3xYGgDcCY+Ar5cHDA2Vq+7v44W7EVGQyeST1MtkMtwNj4S/txesrCwhMDFBfGLxA3BS09ORnpGBqlUql01l3pKVlRWqVaumePn5+iIsPFypvmFhYfDxVX3ghKGhIby8vREaGqpYFh4eDmNjY7i5ucHd3R3GxsZKD80JDQ2Fl5eXSjtXREXxFz2AAwDuhobBW038vr6+CA9TbrfQsDD4+fy3HtThoWiT4oeD3Q1T3yZ+vj4IC48osS+Fw6/wAYdrN2zEiVOnFOWzs7Px4OEjONfUn6ehA9xPirAveTmed+SsrKxRrVp1xcvXzw/hYWFKdQ0PC4OPj+rDwQwNDeHl5Y2w0LuKZeHhYYX7iTsAYNvWzTh65BC+mfot2rZVfdhWRVTy2JG3ScljJxS+L20TdceOe5nVQVfYv6rycHNTPQ+X0iZ+Pj4IC49UbpPwcPj6+KBXj0BsXLMSa5YvwZrlSzBh3BgAwJrlS9C8aZOyq9BbsLCyQeWqzoqXu09txEbcUqpvTMRNuHu/+cPDszLSsPDbz5GZkQobO0cYGRnj9vVz8KnV6NUfrgByYqIgy8+HpX8txTLL2nWRHREOyJQfvJWblARTV1elZaY1nSF5/Fjx3sKvFrKjIiCTvvmUNuWJY5OXU9fHllYHeR8bptJ2vj4++C/xcakBYyMj3H3hIZw3I+Pg7+78xv+vy7cdwKGzl2FpbgZLczOExsYjMztH6eGh/zWiy7dg10x5ai+75g2QevkWACD1yi3YtWyoWGdawwlmNatCVLheH3BsQvRu048zvIZMhUJ0ea8tFq9ej/DoWJz75yp27D+E/j26ApA/XE1SOJdWuxZNkZmVjRXrf8P9hAdYsf435EgkeK9VMxgbGaFLh7ZY9csW3AoNR1x8Iv63eCX8vb3g66mfX1JbtWqFrMxMhISEICE+HiEhIRCLxWhTeFWGRCJBSkrxFW/dAwOxZ/duXLx4EVGRkVgZHIwuXbrA1NQUpqam6NCxI4KDgxEVGYmLFy9i75496NW7dznV7s2YmpqiY4cOWBG8EpFRUbh48RL27N2LXr16ApA/6KZoPsNWrVohMysLa0LWIj4hAWtC1ha2W8W/qvFNmJoK0alDeyxbuQqRUdG4cOkf7N67H3169gAgf4hJUZu0btUSmVlZWL12PeITErB67XqIxRK0ad0KANAzMBC79+zDlavXcD8+AQt/XoxqVauicaOGpf79ioj7iXrsS5TxvKNeq1atkZWVibUhq5GQEI+1IashFosVVwJKJBKIXthPunXvgb17duHSxQuIiorEqpXL0blLV5iamiIxIQHbf9+K/gM+RC3/AIhSUhQvfdKqVavCNllT2CZrVNrkxWMnsHt37NmzG5cuXixskxXoXHjs6Dv2r6pMTYXo1P49LFu5RnEe3rXvAPr07A5AfrdX8Xm4BbKysrBq7QbEJyRi1doNEIslaNu6JaytrFC9WlXFy7HwAWTVq1WF+RtePVlRNGzeETlZGdix8Wc8SozDjo0/QyoWo1HL9wHI5zRPE6k+yFEdCysbiMXZ2L1pGZ4/eYBzJ/bhwqmD6Nz7U11WQWsKJBIk/XkELhO+gbmvH2xbtUGVDz/G093yKUmM7e1hIJBPA/D80AFU6t4L9u93gbB6DVQfMQqCKk5I/vOIYntmbu7IuX+/PKqiVRybKCvqY4ODgwv72IvYs3cvevfqBUB9HxsSEoL4hASVtvuvMBUKENimCRZs3InQ2HicvnobWw6fwsAu7QAASanpEL/mj0aOdtZYt+dPhMbGIzwuATNXbUa/jq1gY6kfdx68LmEVRxiayvuTJ3v+hImtNfwXT4elnwf8F0+HkYUZHu86CgCID/kd1Qf1Qs3P+sOqtg/q/fIjnh0+jZz7D8qzCm+EY5N3j6xAxtcbvv7LDGQy2RvX8OrVq6hXr57KQwykUinOnj2Ljh07ahTMk4gbGn3uZcQSCRav3oCzly7DwtwcA/v0wICe3QAAbXsNxNQvg9C1QzsAQHhUDBatXo/4Bw/h4eKMCaOHw9td/ouwRCrFhq07cOrcJUikUjSqWxvjR3wGWxtrrcdcxMm3PmLj4nS2/cjISASvWIHExES4urlh3Nix8PD0BACcOHECSxYvxpGjRxXld+7cif379iE3NxctW7bE6DFjFHPLisVirAwOxoULF2BhYYF+/fqhd58+Wo/Zw90d92JjtL5dsViM4JWrcL4w/v79+qJP4SC4S7dATPj6K7zfSX4LcGRkJJYHr0RiYiLcXF0xbtxYeHp4qGzz58WLAQCTJkzQerwvcvPwRHxM5KsLviGxWILlq1bh/IVLsLAwx4C+fdC3t3xQ/X5gT0z6arxizvGIyCgsX7kKCYkP4ObqivFjRynapKCgADt378WhI0eRlp6GBvXr48vRQXBwcNB6zADg4umjk30E0N/9xM3Dk31JCR7u7jo55wD6e95x8q2P6Nh4nWwbACIjI7AqeDkSExPg6uqGMePGw8NDvp/8deI4li75GYeOHFeU37VzOw7s34vc3Fy0aNkKo0aPg0AgwK6d2/HbrxvV/o0XP68NXh4uiIm9p9VtvigyMhIrg5fLjx1XN4wdN07RJidOHMfSJYtx+MifivI7d+7Agf37CtukJUaPHqs4dl4U2K0LFvywEHXq1NV6zJ4ebjwPl+Dm4YmE6PBXF3xD8vPwGpy7eAkW5ub4oF9v9C38kt6pe29M+mocOncsPg8vW7UGCYkP4O7qgvFjRsHTQ/WHtVu372DSt9/hxKH9Wo/3Rc5efjgbmqWz7d+Lvosta+bj8cN7qOHihcEjv4Wzu/wKvgunDuLX4NlYt/dflc/99N0X8KnVED0HBimWPXl4H5vX/A/3Y0LhWLk6+g4Zh7qNtJ8YbFPLAtfaan8KS0OhEM4TvoFdm3bIz8rCk+1b8awwWd7ozCXcWzBXkRB37NYDVQZ+DEGlSsiOiUbi8iXIjo5SbMvrx8XIjo7Gw3WrtR5nSY3OXOLYpAQPd3fExcZqfbtAUR+7UqkORX1s127dMOHrr9HphT52RXCwoo8dO26c2j52UWEfO1GHfay7hwfSrx/TybbFEil+2LgTp67chKW5GQZ3b4+Pu8rvVmv88ZeYOXIQerRtqvSZP85cxro9R3Fw+WzFsvyCAizdsg9Hz1+DoaEBurZqjHEf9VRM76Jt1g0747CJ7q/0D8yNxKUOQ5By9ori/a1hU/Fgk/wBpjaNa6P2yjmw9PVA+p1I3B0zC+k3i8+FNT7pA+9ZX8LE3gZJJy7gdtB3yE1J1VmsHJsocyscT9Lr6z9ed+ek/6rdy/TvIq7XpVGy3M/PDxcuXFCZgyksLAwDBw7E7du3NQpGV4kLfaXrZLk+0lWyXJ/pKlmur3SZLNdXuk6W6yNdJsv1la6T5fpI18lyfaSrZLk+01WyXJ/pOlmuj3SVLNdXuk6W6yNdJsv1lS6T5fqqrJLl+kRXyXJ9xmT5m2Oy/M39l5Plr/2Az23btuH777+HgYEBZDIZWrZsqbZcixYttBYcEREREREREREREVFZeO1k+ccffwwvLy8UFBTg008/xfLly2FjY6NYb2BgADMzM3h7e+skUCIiIiIiIiIiIiIiXXntZDkANG7cGABw8uRJVKtWDQYGBjoJioiIiIiIiIiIiIioLL1RsryIvb09fvvtN8TExCA/P1+xXCqVIiwsDEdfeFgKERERERERERERUUVUICso7xCoAjHU5EMzZszA2rVrkZOTg4MHDyI3NxcxMTE4fPgwAgMDtR0jEREREREREREREZFOaXRl+dmzZ7Fs2TK0aNEC0dHRGDp0KAICAvDDDz8gOjpa2zESEREREREREREREemURleWSyQSuLq6AgC8vLxw9+5dAMCHH36Ia9euaS04IiIiIiIiIiIiIqKyoFGy3MPDAxcvXgQgT5Zfv34dAJCRkQGJRKK96IiIiIiIiIiIiIiIyoBG07CMHTsW48ePR0FBAXr16oXAwEAEBQUhMjISrVu31naMREREREREREREREQ6pVGyvEOHDjh69CgKCgpQtWpVbNu2DQcOHECDBg0wZMgQbcdIREREREREREREpHWyAll5h0AViEbJ8jVr1iAwMBAuLi4AAF9fX/j6+mo1MCIiIiIiIiIiIiKisqLRnOWnT59G586d0a9fP2zcuBGPHz/WdlxERERERERERERERGVGo2T59u3bcfr0afTu3Rt///03OnXqhI8++gibN29GUlKStmMkIiIiIiIiIiIiItIpjZLlAFC5cmUMGTIEmzdvxtmzZ9GuXTssWbIEbdu21WZ8REREREREREREREQ6p9Gc5UUSEhJw7NgxHD9+HOHh4WjWrBkCAwO1FRsRERERERERERERUZnQKFkeHByM48ePIyYmBg0bNkS/fv3QuXNn2NnZaTs+IiIiIiIiIiIiIp2QFcjKOwSqQDRKlp87dw79+vVD165dUblyZW3HRERERERERERERERUpjRKlu/YsQMAcP/+fZw8eRIFBQVwc3ODp6enVoMjIiIiIiIiIiIiIioLGiXLMzIyMHXqVJw8eRI2NjbIz89HVlYWGjdujJUrV8LKykrbcRIRERERERERERER6YyhJh+aO3cunjx5giNHjuDy5cu4du0a/vjjD2RnZ2PBggXajpGIiIiIiIiIiIiISKc0SpafOnUKs2fPhru7u2KZp6cnZs6ciZMnT2otOCIiIiIiIiIiIiKisqDRNCxCoRCGhqp5dgMDA+Tn5791UERERERERERERES6JpPJyjsEqkA0urK8ffv2mDNnDhISEhTL7t+/j3nz5qFt27ZaC46IiIiIiIiIiIiIqCxodGX55MmTMWbMGHTu3BnW1tYAgPT0dLRu3RrfffedVgMkIiIiIiIiIiIiItI1jZLl1tbW2Lx5MyIiIhAXFwehUAg3NzelOcyJiIiIiIiIiIiIiPSFRsnyIg4ODrCxsVHM7fPo0SMAQLVq1d4+MiIiIiIiIiIiIiKiMqJRsvz8+fOYOXMmHj9+rLRcJpPBwMAA4eHhWgmOiIiIiIiIiIiIiKgsaJQsnzt3LurUqYPVq1fD0tJS2zERERERERERERER6VxBQUF5h0AViEbJ8idPnmD9+vWoWbOmtuMhIiIiIiIiIiIiIipzhpp8qFGjRrh+/bq2YyEiIiIiIiIiIiIiKhcaXVneuHFjzJkzB6dPn4aLiwtMTEyU1o8dO1YrwRERERERERERERERlQWNkuUXLlxAQEAAkpOTkZycrLTOwMBAK4EREREREREREREREZUVjZLlmzdv1nYcRERERERERERERETlRqNkOQAkJiZi27ZtiI+Px+zZs3H27Fm4ubmhYcOG2oyPiIiIiIiIiIiISCdkBbLyDoEqEI0e8Hn16lX07NkTDx8+xLlz5yCRSBAXF4dPP/0Ux48f13aMREREREREREREREQ6pVGy/KeffsLEiROxfPlyGBvLL07/5ptvMGnSJCxfvlyrARIRERERERERERER6ZpGyfKoqCi0bdtWZXmHDh2QkJDw1kEREREREREREREREZUljZLl1atXx507d1SWnz59GtWrV3/roIiIiIiIiIiIiIiIypKBTCZ741ns//rrL0yZMgUffPABtm7dii+++AIPHjzA4cOH8eOPP6Jbt266iJWIiIiIiIiIiIhIa7p/EVbeIeidQ+v8yzsEnTHW5EP//PMPtm7dio0bN8LLywsnT56Em5sbtm7dirp162ocTNLdSxp/9r/IMaA5HkapXsH/LqvuXZv7SQmOAc2RceVweYdRYVg1CcRhE5/yDqNCCcyNxL3YmPIOo0Jx8/BEfExkeYdRobh4+iAm9l55h1GheHq4IeX2ufIOo0Kxr9MamZf/KO8wKhTLpj2QEB1e3mFUKM5efngUebu8w6hQqvnUQVxsbHmHUWG4e3gg7d+/yjuMCsWmQUckBPUt7zAqFOc1exEa87i8w6hQanlW5bi+BDcPT37/KyEwl99z3pRMVlDeIVAFolGy/ODBgxg6dCh+/PFHbcdDRERERERERERERFTmNEqWDx06FHPmzMHQoUNRrVo1CIVCpfXVqlXTSnBERERERERERERERGVBo2T58uXLAQDnzhXfmmxgYACZTAYDAwOEh/NWVCIiIiIiIiIiIiLSHxoly0+ePKntOIiIiIiIiIiIiIjo/+zdd3xN9x/H8deVJUZChBAzISSIJPaIIkYbs1JVM9RW1N479qiRBKExatUWq7WpWXsnIcPWUhIiyJDc3x+pW9cNpT/JSZzP8/HI4yHnnPC+180Zn/M9n69QzH8qlhcsWPBj5xBCCCGEEEIIIYQQQgghFPOfiuVCCCGEEEIIIYQQQgiR2WmTtUpHEBlIFqUDCCGEEEIIIYQQQgghhBBKk2K5EEIIIYQQQgghhBBCCNWTYrkQQgghhBBCCCGEEEII1ZNiuRBCCCGEEEIIIYQQQgjVk2K5EEIIIYQQQgghhBBCCNUzVjqAEEIIIYQQQgghhBBCKEGbrFU6gshAZGS5EEIIIYQQQgghhBBCCNWTYrkQQgghhBBCCCGEEEII1fvgYnlQUBAJCQkGy58/f87y5cs/SighhBBCCCGEEEIIIYQQIj29V8/yqKgo4uLiABg+fDgODg7kzp1bb5uQkBBmzpyJt7f3x08phBBCCCGEEEIIIYQQQqSh9yqWnzx5kn79+qHRaNBqtbRo0UJvvVab0gi/adOmHz+hEEIIIYQQQgghhBBCCJHG3qtYXrNmTfbv309ycjL16tVj3bp1WFlZ6dZrNBrMzc0NRpsLIYQQQgghhBBCCCFERpWsTVY6gshA3qtYXqdOHbZu3YqtrS3NmzfHzs6OHDlypHU2IYQQQgghhBBCCCGEECJdvFexPDk5mSNHjlCtWjWCgoJo167dW0eR29raftSAQgghhBBCCCGEEEIIIURae69ieYcOHRg1ahQajQbAoGc5pPQt12g0hISEfNyEQgghhBBCCCGEEEIIIUQae69ieZ8+fejQoQNPnz6lbt26rF+/Xq9nuRBCCCGEEEIIIYQQQgiRmb1XsRzAwsICCwsL9u3bh62trW6UuRBCCCGEEEIIIYQQQgiR2b13sfyVYcOGvXehfPny5R8cSAghhBBCCCGEEEIIIdKDNlmrdASRgXxwsbxGjRoEBATw2WefUb58eUxMTAgODmbr1q00b96cfPnypUVOIYQQQgghhBBCCCGEECLNfHCx/OjRowwYMABvb2+95ZUqVWLdunX4+Ph8tHBCCCGEEEIIIYQQQgghRHrI8qE/cOnSJdzd3Q2WOzs7c+XKlY8SSgghhBBCCCGEEEIIIYRITx9cLC9TpgyLFi0iPj5etyw2Npa5c+dSsWLFjxpOCCGEEEIIIYQQQgghhEgPH9yGxcfHh65du1KjRg2KFi2KVqvlxo0b2NnZMW/evLTIKIQQQgghhBBCCCGEEEKkqQ8ulhcvXpydO3dy+PBhrl+/jrm5OcWLF6dq1appkU8IIYQQQgghhBBCCCHShDY5WekIIgP54GI5QFxcHO7u7tStW5fQ0FCOHDmCVqulWrVqHzufEEIIIYQQQgghhBBCCJHmPrhn+d69e/nss884c+YMN2/epG3btmzevJnvvvuOlStXpkVGIYQQQgghhBBCCCGEECJNfXCxfM6cOXz//fdUr16d9evXU6BAAXbs2MGsWbNYsmRJWmQUQgghhBBCCCGEEEIIIdLUBxfLb926haenJwD79u2jfv36ADg4OBAVFfVx0wkhhBBCCCGEEEIIIYQQ6eCDe5bb2tpy4sQJbGxsuH79Oh4eHgBs27aNYsWKfex8/7f4hARm/biCg7+fxszUlNbNvqB1U893/syFkGtM9P2R9Qtm6JZptVpWBf1C0O4DPHkai1MJO/p3bodd4YJp/RI+uoSEBOYGBHLo2O+YmZrSsnlTWjZvmuq2YRGRzJ6/iOs3blGsSGH69+pGyRLFdet/O3qcxctX8/BRFGWcSjGwT0/y58ubXi/lo5HPiaH4hESm/bSR/acvYmZiQvuGdWjXsHaq2x45H8z89b9w+/5DCubLQ88WntQqXxZIeU9+2rGfTfuO8yT2GaXtizDYuzn2BfOn46v5uLKYmuB+YhOX+04g6tDJVLexcHWi7LzxWJQtydPgcC71GkvM2Su69bbfNKLk+H5kLZCXv3Yf4WKP0SQ+ik6vl/DRJCQk4D9/PkePHsPU1JQWX3nxlZdXqtuGR0Tg5+fPjZs3KVKkCN/37oWDg4PBdj+vWcPde/cYNGBAWsdPEwkJCfjND+DIseOYmZrSwutLWng1T3Xb8IgI5vov4MbNGxQtUoTve31HSYcSACQlJbFs+Up2791HXHw8lSqUp1ePbuTOnTs9X85HExERjr+fHzdv3qBIkSL06v19qv//rwQFbWbTxg08f/4c95o16dHjO7Jmzaq3TWJiAn2/70OPnt9RrpxLWr+Ejyo+IZGZgas4eOIMZqamtGnagDZNPn/nz1wICcPHfzEb503VW16/Qx9in7/QW7ZvuT/ZzPXfr4wsPiGRacs3s093zKlFe8/aqW57+Hww8zfs1B1zvvvqC2qVLwO8OuYcYOP+4zyJfU5p+8IMaf9lpjzmJCQk4LdgIYePHcfM1IwWzZvxtdeXqW4bHhHJ3HkLuH7zJkWLFKFvrx6ULPHPvmTpilXs3rufuPg4KlUoT+/u3cidO1f6vZiPJCEhgTkBgRw6fgIzU1O++bIpLZs3SXXbsIjrzFrw2jnsd10p9fc5bJ2mX6f6M8P69eZzj1pplj8tJCQkMG/+fI4ePYqpqSlfffXVO4/D/n5+uuNwn96933ocvnfvHgMz6XE4PiGR6UvXcuDkecxMTWjXqC5tG9d758+cDw1n3ILlBM310S3TarX8uPEXth44xov4eKo4OzH425bktsiZ1i/h4zM2wap1V7K5VUObmEDMni083bvVYLN8A3zIWrKswfLYo/uIWjEPjI3J1bQN2SrVJIupGXFhV4heE0jS40fp8So+usiIMBb6z+LmzUgKFylGj14DKO5Q6q3bbwtaz5ZNa3n+/Bk13OvQpcf3mGXNyv49v+I/Z5rB9hqNho3bD6TlS/io5Lw+dXLtJ4T6fPDI8u+//55Ro0bRqVMnateujbOzM9OmTWPRokUMHjw4LTL+X+YtX0toxA18xw9lYDdvlqzbwoHjp966fcTN24ya6U+yVn8m3KDdB/h56076d27H4unjKJAvLwMnziIuPj6tX8JHF7B0BVfDIvhh4jj69uzK8p/X89vR4wbbvYiLY/j4yTiXdiJgznTKOJVi+PgpvIiLA+BySCgTZ8zh6y+bEDBnOiYmJkycPju9X85HIZ8TQ3PXbCPk+m0Chn/HsI5f8ePmXew9ecFgu7Bb9xg8dylNP6vM6kkD8apTjaG+P3Ht5l0ANu4/zspfDjLYuznLffpjm9eK72f8SFx8Qnq/pI8ii5kpbitnkbNsybduY5TNnEpbFxF95DRHqngRffwclbYsxCibOQCWlZwpt2gSYRP9Oer+DSa5LXBZPCW9XsJHFbh4MWFh4UydMpnevb5j1arVHD5yxGC7uLg4Ro8ZS9myZfCbO4fSTk6MGTeOuL/3J68cOHiQFStXpVf8NPHj4qWEhYczffJEen/Xg5Wr13DoyFGD7V7ExTFqrA/OZUozb85sSjs5MXqcj24fu3b9Rg4eOszI4UPwnTWDp09jmfZD5tzHxsXFMXbMaMqULcucuX44OZVm3LgxBv//rxw9coTVq1bSu/f3TJ4ylauhoSxdslhvm4SEBKZNm8rNmzfT4yV8dP4r1hMaeQP/sYMY1KUti9dvY//x02/dPvzmHUb8sIBkrVZv+YNH0cQ+f8EG/ylsX/SD7ss8q1lav4SPau6a7QRfv03AsB4M6+DFj5v3vP2Y4/sTTT+rxM8TB/BVnaoM8VvOtVv3ANh44Dgrfv2Nwe2bs2J8P2zzWtFnZiAvMuExZ9GSZVwLi2DGpAn06dmdlT+v5dCRYwbbvYiLY+S4CZQtU5p5c36gtKMjo8ZN1O1L1mzYxMFDhxk1bDB+P6TsS6bOypz7koClK7gaHsmsiWPp16MLP615+znsMJ/JlCvtxMLZ0yjjVJLhPv+cw278aZHeVyuvZtjky0uNKhXT+yX931KOw2FMnTKFXr16sWrVqrceh8eMGUOZsmXxnTuX0k5OjE3lOHzw4MFMPw+V76rNhETeYv6o7xnS6RsCN/3KvhNn37p9+K27DJsTiDZZf/+6ed8Rth44hk+vjiwaO4C/op8waVHmPEfJ/VUHTIuW4P7ssUT9vAjLRi0xL1/NYLuHAdO5M6ST7uuvBVPQJiYS+9tOACwbt8LctQqPlszmz5kj0GQxwrrHkPR+OR9FXNwLJo4dilMZZ2bOWYSjU1kmjRtGXNyLVLc/fvQ31q5eRo/eAxg/eTbXrgazfGkAADU+82Dxio26r0XL1lHAtiCNmn6Vni/p/ybn9Ybk2k89tMla+frAr0/ZBxfLGzZsyKFDh9i0aRMBASkHh6+//po9e/ZQo0YN3XZnzpwhIUHZC5MXcfFs23eIvp3aUMq+GLWqVKDtlw3Z+OveVLcP2n2A7iMmYWVpabDulwNHaN30C2pUdKWIbX4Gd/MmJjaWi6Fhaf0yPqoXcXH8snsfvbt9S8kS9tSsVoVvvmpG0PZfDbY9ePgoZqam9OjkTdHChejV9VuymWfltyMpFyXrNm+lXu3PaOLZgCKFCtKnWyceRUfz5ElMer+s/4t8Tgy9iItny8HfGdi+OY7FClGnYjnaN/Jg3R7Dk6Wdx89SqbQDrT7/jMI2eWlZ352KpUuw5+8ix/bDJ2nXsDY13cpQtEA+hndswZPYZ5y/dj29X9b/LYdTcaofXUe24kXeuV2Blg1JfhFPyNDpxIZGEjxgEklPn1GgxRcAFPuuHfc2/MrdlVt4eukq5zsOIZ9nLcyLFUqPl/HRxMXFsXPXbnp074ZDiRLUqF6dFi1asHXbdoNtfzt0CDMzU7p07kyRIkXo0b0b5ubZOHT4MJAy8tHPfx6z58ylQIEC6f1SPpoXcXH8unsPPbt1xaFEcdyrV+PrFl5s3b7DYNvfDh3G1NSUrp2/pUiRwvTs1gXzbOYcPpxSWE9KTqJ7186UK1uWokWK8GXTxlwJDk7vl/RRHDr0G6ZmZnTu3IUiRYrQrXsPspmbc/jwoVS337IliGbNvqRylSqULFmK3n2+Z8+e3bqLsFu3bjJgQD/+/OOP9HwZH82LuHi27jtM/29bUcq+KLWrlKddsy/YsHN/qttv3vMb3UdNwSqXhcG6G3f/wDq3JQVt8pInt6XuS6PRpPXL+GhexMcT9NsJBrVrhlOxQnhUdMa7UR3W7TW8yfTr8XNUKl2C1g1qUtjGmpb1alDRqTh7TqQcc7YdPk17z1p85laaogXyMrzDVzyJfc6FsBvp/Kr+Pyn7kr18163z3/uSqrT8qjlbUt2XHMHU1JRunTpStHBhvuvWGXNzc91NuuSkJHp06Uy5smUoWqTw3/uSkPR+Sf+3F3Fx7Nizjz5dv6Vk8ZRz2FZezdi8Y6fBtgcOH0s5h/22PUULF6J3l2/JZm6uK6xb5c6t+4qPT2DT9l8Y3LsHObJnT++X9X+Ji4tj165d9OjenRJ/H4e/btGCbdu2GWybchw20x2Hu3fvjrm5OYf1jsP+zJ4zJ5Mfh+PZeuAYAzu0wNGuCHUqudKucT3W70r9eLNp72G6jP0BK0vD/eux81eoX60C5Us7ULywLd5N6nPq8tW0fgkfncbUjOw16hK9bjGJtyN5cf4EMbuDyFnb8Cna5OexJMc8Tvl6GoNls7bE7A4i4VYEADmq1eHJltXEhwXz8o87PFq5ALNiDhjny3yfmaOHDmBmakaHzj0pVKQonbr1xjxbNo4dPpjq9ju2bKRxsxZUrFwdh5KO9Og9gH17fiU+Lg4zMzNyW+XRff12YA9arZb233ZL19f0/5DzekNy7SeEen1wsRzAysoKJycn3ff29vZYW1vrbdO1a1fu37///6X7P4XfuEXSyyScS/3zOFA5RweuhEWSnJxssP3vZy8yqk8XWjZuYLCud4dWNPjstbvvGg1arZZnz1O/85xRRVy/wcuXLynj+M/jZc6lHQm5Fm7wngRfDaNsaUfdBbdGo6GskyPBodcAuHApmJrVq+i2L5Dfhp8XL8AylZPNjEw+J4au3brHy6RkXByK6Za5lrLjSsRNg/eksXslerdsZPB3vGoJ0K91UzyrV/hnhQa0Woh9kfqI0ozM6rPKPDp4gqPu37xzu9xVXIg6dkZvWdTxs+Sq6gpArsouRB3+ZwRp3J0/eXHrHrmrZK42EpGRkbx8+ZLSrx0PypQpzdWrVw0+J6GhoZQpXUZvf1K6tBMhoaEAvHjxguvXrzNn9iycnBzT70V8ZJGR1/9+T/55DWVLlyb06jWD9yQk9Cply5TWe0/KODkR/Pd70r5Na9yrp+xPoh8/5tddeyjn7JxOr+TjSu3/36l0aUJDDQt2SUlJhIVdo2zZf16ro6MTiYmJXL8eCcClS5coV86FmZl0pH3YzdskJSXhXLKEbpmLYwmuhF1P/bhz7hKje3eiVaP6Butu3LlH4QI2aZo3rV279YfhMadkMS5H3DJ4P5q4V6RPasecF38fc1o1wbN6ed1yjSallcKbbWoyusi/z9f09yVOhF4LM9yXXL1K2dJO+vuS0o6EhKYU9dq3aYV79arAa/uSsoZtFjK6iOs3efkyiTKO/4zuSzmHNXxPgq9eS+UcthRX/j6Hfd3S1WspX86ZCq7l0vYFpIFXx2EnveNwmXcch0u/cRwurXccvnH9OnNmz9b7+zKbsFt3eZmURLmS9rplro7FuRJ+I9X967ELwYzt6U2bhnUM1lnmyM7Rc5d5EPWYuIQEdh07TclihdM0f1owKVQMjZEx8RH/FPrjI0IwLeaQspN8i+zV6mCUPScxuzenLNBoeLh0LnEhhk/9ZMma7aPnTmvXQoNxLOOs9zvh6FSWq6GGAxOSkpIIDwulTNl/ztVLOpbmZWIiN65H6G379GkMmzespl3HbpiYmKbti/iI5LzekFz7CaFeH9yz/H1ptcoPyX8Y/RhLixyYmPzzMq1yWZKQkMiTp7HkfqOoO3VYXwB27D9s8He5OOk/drNt728kJSVTzvHt/VYzoqiox1haWGBiYqJbljtXLhISEoh5+pRcr42WfhQVTbEi+ieEuXNbcv3mbWJjn/E0NpakpCSGjJlAxPWbOJUqQd+eXcmbJ0+6vZ6PQT4nhh4+iSFXzuyYGP/znuSxyEl84kuexD4nt0UO3XK7gvpFmog7f3LqShhfeaQU+VxL2eutDzp4gqTkJFxL2qXhK0gbtxb+/F7bmeXPy9PgcL1lCfcfkbNMyucga4F8xN97oLc+/sEjsmaynrpRUdFYWr7f/iQqKpqiRfVHZeTOlYsbf7fQyJEjB7N+mJk+wdNQVHT0e+9jo6KjKVYktffklt6y5StXs/LnNeTMkYPZMwz7YWYG0VFRFClaVG9Zrly5uXnzhsG2z549IyEhAavXjiVGRkZYWFjw8OFDABo1apymedPao+gnWOZ847hjaUFCYiJPnj4jt6V+P9xpQ3oDsOOA4UjrG3f+IC4+ge/GTufWvfuUtCtMv46tKGKbefYnDx//n8ec4HDdMcetlP6xJei3EyQlJ2e6Y05UVJTBviRX7g/dv+rvS35a9TMrf177974k8z3+/Sg6GkuLnG/sX1PO1wz3r48pVkR/xF7uXLm4fkv/Pbn/11/sO3QEv2mT0jZ8GomKisLS0lL/c/LW43AURQ32w7l0raxy5MjBDz/8kD7B09DD6CdYvrE/sbK0ID4xkSexzwz6jc8c2B2A7b8ZtvPp/FVDBs4IoHGvkRhlyUKeXBYs9hmUti8gDRhZ5iY5NgaSXuqWJcU8JoupGVmy50xZlwqLz5sTs2872vi/B7hotcSHXtTbJqdHI5KePiHhbuZriRYd/YjCRYrpLbPMZcWtm4ZPvz5/FktCQgK5rV4/NzEmp4Uljx7+pbftrh1bsLKyprp77bSInWbkvN6QXPsJoV7/aWR5ZhEfn4CJsYneslcnTokvX6b2I+/lyrUI/H9aQ5tmnuTJZJMjxcXH612cA7oDYmKi/nsSHx+Pqcmb758JiYmJup6P/ouWUK/2Z0waPYzExJeM9JmS6qiNjEw+J4bi4hP1LjIA3ecm4R3vyeOnsQzxXYaLQzHdBJ+vuxx+kzmrt9K+YR2sU2kn8KkwymZO8hv9cZPjE8hiZvr3+qzvXJ9ZxMXHG/7u6PYniXrL4+Pj9U6+X2375naZ3dteJ/z396SuR2385/yAm6sLw0aP5dnz52mQPG19yP9//N9zPHzKn5e4+ARM33Ysfvlhr/HmvT+JiX1Gx68aM21IL8xMTenj8wPPMtHTO3EJiZgYG+kte59jTvTTZwz2+wkXh2LU/nuCz9ddirjJ7NXb8G5YO9Mdc+JS+Z0xfcu+JLVtU/t9qVenNv6zZ+LmWo7ho8dlun1JquelbzmHTf09MTbY7pc9+ylZojilS2WuQQ2vxMfHp3K+pu7jcFyC4f7V9O/3KCHxw87r//jrEVlNTfhhcA8CxvQjX57cTFyY+fq5a0zN0L6xL331veaN87hXzEqWxSh3Hp4d2fPWv9fcpRIW9ZvxOGiVXiE+s0j5ndA/9zYxMeFlomEr2X/OTQy3T3xte61Wy97dO2jYJPVJMTMyOa//79Ry7SeEmnzSxXJTUxODi85Xxc+spv9tx3T5ajgDJsykqls5urRq/n9nTG+mpiYGFwqvDmpmb+ysTU1NSUh88/1LxMzMDCOjlI9OwwZ1aeBRC8eSJRgxsC+RN24RfNXwEdeMTD4nhsxMjA1uFLz63GQ1Tf2k+tGTp/SYsgCtVsu07zuSJYv+7uVi2A16z1hIdRdHenz1RdoEzyCS4+INTn6ymJmS9DyleJX0tvUvMlebgFR/d/7eZ2Q1059c0MTU8AQ6MTFlf/IpMU3lQuGffazZG9uavtd7UtDWlpIODgwZ2J+EhHiOpjKZXUazdu0avvL6UvcFhhdab/v/NzVN/cLsU/q8mJqaGBRtdJ+TDzzuzB7Zj+UzxlK5XGnKONgz7vuuJCQkcuS04WPyGZWpiTGJL5P0lv1zzEn9/Xj05Ck9pgagTdYyvY/3W445P1LDxZEeXp+nTfA0ZGpquH9IeNu+JJVtU9+XFKCUQwmGDuhHfEICR45l/H3J60xNUjkvfes5bGr74pdkfWO7347+Tv3an6VB2vRhamqayvla6sfh9/2cZHamJob711c33d78/38XrVbLuPnLadOoLjXLO+NSqjhT+nbm5OWrXA7PXPPuaBMT0LxxU+XV99qE+FR/Jlv5asRdPkvy89hU15u7VMa6yyCeHvyFZ0dTn+cpo9mwdiVtvvpC9wXoFbpTvk/E1Cyrwc+a/H0sSm17s9e2Dw+7yqOHf+H+mcfHjp/m5Lz+v1PLtZ8QapJmbVgygrxWuXkSE8vLpCSMjVJGLD2KfoKZqSk5sn94X7Wzl0MYMmUOlVzKMr5/D4MLs8zAOo8VT2JiSEpKwujv9yQq+vHf70l2g22jox/rLYuKfkye3LmxtLDA2NiYIoUK6tZZWuTE0iInfz18lOav42OSz4mhvLktefz0mf578iQGM1MTcv49q/frHkQ9pseUBQAsHPGd3iPzAKdDwun/QyBVnUsx+bv2mfI9+RBx9+5jll9/Hgez/NbE/Zny+F3c3VTW21gT/4f+Y5wZnXWePDx5or8/iY6OxszMjOwG+5M8REVH6y2Ljn6MlZVVuuVND3ny5EllHxuNmZnhPjZPHiuD9yTqcTRWVrkB+P3kKUrY22NtnfLIr6mpKQXy5+dJTMafRLlhw0bUrPlPAWrD+nVER0fpbfM4OjrV//+cOS0wNTUlOjqKwoVTWoElJSURExPzyXxe8lrl4snTN447j2MwMzUl5wced0xNTPRG25qZmlAgnzV/RUW/46cylnypHHMePnn69zHHsGjxIOoJPaamTDK/aETPVI85/WYtoWrZkkzq2S5THnOsU9mXREc/TnVfYp3KviQ6+jF53rUvsclPTMzTdHglH0/KOezT9zuHtbIiKpVzWKvcuXXfP/jrITdv36FGlYppnj2t5MmThydPnrzXcThPnjxEG3xOUt8PZ2b5rHLx5M1z2MdvP4d9m+iYWO4/isahyD/XOjZ5cpMrZ3b++CuKsiUyT2unpMdRZMlhAVmywN9PABtZ5CY5IZ7kF89S/ZmsZdx4sn1tquuyVaxBnm/7EntoN4/XL02z3B/b5w2bUqNmbd33mzf8zOM3z00eR+m1Wnnl1bnJ4+goChVOaWeUlPSSpzFP9LY/d+Ykpcu6kCNnToO/I6OT8/r/Ti3Xfp86rTZzdUgQaSvzXT18AAe7IhgZG3Hl2j+TblwMvYZTCbsPvnCKvHWHoVPnUtXNmQkDv8PYOHPeZyhhZ4exsbFukk6Ay8EhlHIoYfCelC7lwJXQq7r+81qtlsshV3FydMDIyIiSxe2JuH5Dt/2TJzE8iXlK/nx50+W1fCzyOTFUqmhBjI2ycDn8n/6D569dp4xdYYP35EVcPH1mLCJLFg2LRvYib25LvfXht/9g4KzFVC/nxJTe3hi/8aj9pyj6xAVyV3XTW5a7Wnken0gZ6fn45AVy1/hn0tOshfJjXrgA0Scyz0hQSJnc2djYWDeZD8DlK8GUdHAw+Jw4OjoSEhyitz+5EhyMU6nMO+lPaorr3pN/JtG6HJz6e+LkWIrgkFC99yQ4OASnvydgXrR4CXv279dt//z5c+7cvUeRwvp9eDOinDlzYmtrq/tydHIy+P8PDr6CYynDSeSyZMmCg0NJgq9c0S0LCQnB2NgYOzt7g+0zo5LFCmNkZMSVa5G6ZRdCw3AqXuyDjjtarZYWvYfr9TJ/ERfPnT8fUDQT9cEsWcQWY6MsXAr/p5/0W4858fH0nvkjGo2GRSN6Gh5z7vzBgNlLqV7Okam92xu0d8ksiv99vqa3L3nL/tWpVCmCQ/TP166EhOBY6u99yZJl7Nl/QLf98+cvuHPvbqbYl7yuhH0xjI2N9J5gvBQcSimH4qmcw5bkSui1N85hQyld6p+5ZUKuhZHPOg82eTPXeevrUjsOX7lyBYe3HoeD39gPB+s+J5+KkkULYWxkxOWwf0Z/X7gaQWn7oh+0f7XIkQ1TE2Ou3/1Tt+xxTCxPnj6jYD7rd/xkxpN4+zrapJeY2f3z+Tcr4UTCjXBIZZ6xLNlzYpI3P/ERoQbrzEo5k+fbvjw9+CvRawPTNPfHljOnBQVsC+m+SjmWITTkit7vRGjwJUo6ljb42SxZslDCwZGQ4Eu6ZVdDgjE2NqaYXXHdsrCrwTg6Zb4JlEHO6/8farn2E0JNPulieVYzMzxr12DGwp8ICY/k0Ikz/Lx1J183qg/Ao+jHxMcb9iRLzfSAZeTLY0Wfjq15EvOUR9GPP+jnM4qsWc343KMWs+cvIvRaOEeOn2Td5m14NW0IpIyAfNWT7bMa1Yh99ox5Py7lxq3bzPtxKXFxcdR2rw7A182bsGnbrxw8coybt+8wbe48itsVw7Fk5ur7KJ8TQ1nNTGlUsxKTl27gSuQtDp6+xIpfDtLq85SRog8fxxCXkPKalmzbx50HjxjXrbVu3cPHMcQ+T3msbPLS9djkyUX/tk15/PSZbv2rn/9UmNlYkyVryqOHf27ciUkuC0rPGkkOp+KUnjUSo+zm/LH+VwBuLvyZgm2bUfjbFuR0LoXr0uk82HGQFzfuKPkSPljWrFmpV7cufv7zuHrtGseOHWfjpk00a9YUSJlM7NX+xN3dndhnzwhYuIibt24RsHARcXFxfPZZTSVfwkeXNasZ9et6MHfefK5eC+Po8d/ZsCmI5k2bACkTIr16T2q61yD22TMWLArk5q1bLFgUSFxcPJ/VdAegaaNGbNi4mZOnTnPj5i2mzZyFbYECVKpY4a3/fkbl7u7Os2exLFoYwK1bN1m0MIC4uDhqfpayT4mPjycq6p/RXY0aN2bjxg0cP3aMa9euMn+eH59/8QVZsxqOMs6MspqZ0bB2dab/uILg8Ov8dvIcq7fu5ptGdYGUp5vi3uO4odFoqF7emcB1Wzh7JZTI23cZ7xdIXqvcVHcrl9Yv46MxNzOlsXtFpixLOeYcOHOZFb/+RusGKfuHlGNGyuPeS7bu586DR4zv1kq37uHjGJ7qjjkbscmTiwFt3jzmZK4+qlmzmlHfow5z5wXo9iXrN2+hedOUyW1fP1+r6V6dZ8+eMX/RYm7eus38RYuJi4unVs0aADRt5Mn6TUGc+HtfMvWH2Sn7kgrlFXt9/0VWMzM+96jNrPk/EhoWzpHfT7IuaCtfNWkE6L8ntWpUJfbZM/wDU85h/QOXEhcfT233arq/7/rN2xTNZDcM3vTqOOzv7//3cfgYGzdt4stmzYDUj8MLFy7k5q1bLFy48O/jcOZtQ5OarGamNPysClMXryE44iYHT11g5fa9tPKsA8DDx0/e6xzU2MiIxrWqMnfVJs6GhBFx+x5j5i2jrIMdTvZF/vXnMxJtYgLPfj9I7jY9MC1aAnOXyljUb8rT/dsByGKRC81rvbhNChYhOSGepIf39f+iLFnI492b+GtXiNm1mSwWuXRfGGW+AULV3Gvx7FksSxb5c/vWDZYs8icuLk43+jw+Pp7oqH+emP6iUTO2bFzLieOHCbsWysL5s6j3eWPMXjs3uXXzOoWLFH3zn8oU5Lz+w6jx2k8INUmzo5qdnZ3BpA9K+L5ja2YsWk6fsdPIns2czt98Se2qKY9bNu3SjxG9OtPI49079UfRj7l0NWV2Y6/uA/XWvc/PZzQ9O3dkzoJFDBg5juzZstGhTUs+q14VgBbeXRnStxdf1KtD9mzZmDRmOLPnLWL7rr3YFyvClLEjMP/7hKBWjWo8jY1l4dIVPH78BBfnMkwcNRSNRqPky/tP5HNiaECbZkxZtoEek+eTI1tWunt9jkellOLLF33GMbZrK5p8Vpn9py4Sn5BIx3Fz9X6+sXslen/TiIthN1K+7zdBb/2rn/9U1LtzlAudh3Fn+WZePn3GqS+74zxvPEW6tCTm0lVONe1G0t/FnMe/n+fyd2MoOfZ7TKwsebjnKBd7jFb4Ffw33bp2wX/efIYOG0727Nlp364t7jVSCjRt2rVnQP9+NKhfn+zZsuEzbiy+/vP4dedO7IoVY4LP+E+m+Pm67l064zt/PoOHjyR79mx4t22Ne42Um4yt2ndgUL++NKhfl+zZsjFh7Gh8583nl527sCtWjInjx+j2sU0bNyQuLg7feQt4EvOE8m5u+IwZmSlbSmTLlp2x43yY5+/Lzp2/UqyYHeN9Juj+/w8d+o05s2ex45edANSqVZv79+/j7+9LYmIi1WvUoFOnLkq+hI+ub4eWTP9xJb3HzSR7NnO6fNOU2lVSboQ07jaQUd99S6M6Nf717+nV7muMjYwYO/dHYp+/oEJZR2aN6KubWySz6N+mKVOWbaT7lAByZMtKj+YN8KjkDMDn3/swtus3NK1ZiX2nU445Hcb76v18Y/eK9GnZkAt/H3Ma9Z+ot/7Vz2cmPbp0wnd+AINGjE45X2vbiprVU4q937T/lkH9+vB5vb/3JWNGMnd+AL/s2o19saJMGjf6n31Jo4bExcXjO38hT2KeUMHNFZ/RmXNf8l3nDsye/yP9R44jR7ZsdGz9DZ9VrwLAVx26MbTvd3xRN+UcdvLoYcye/+Pf57BFmTrmn3NYgOjHj8mZI8fb/qlMo2vXrvjPm8ewYcPInj077dq1o8bfx+G27doxoH9/6v99HB4/bhx+/v6647CPj88neRzu3/4rpi5eQ88Jc8iRzZxuLRpRp7IrAA17jmBMj3Y0rlXt3X8J0L99CwLWbWOM/zLiEhKp4uzI+F4dMuW1zuP1S8ndpjv5+o8nOe45T7at5cX5EwAUmr6ERz/58ex4yhMoRjlzoX1hOAGwadESGOfJi3GevBSavkRv3f1Zo4m/dsXgZzKybNmyM3LsFALmzWLPzm0ULVacUeOnkTVrSrueo4f24z9nGpt2HATAvVZdHtz/kwD/WSQmJlCtei28O3XX+zufPI4me47M14LlFTmvf39qvfYTQi00Wm0qz169ISgo6L3/wi+//PI/h3l4OXNNNJTWrMtW4+61S/++oYoULOksn5M3WJetxtOTO5SOkWHkrNyIHSaf1iPF/69GiVe5HhGudIwMxa54CW6GX/33DVWkaIlShEdkrknL0lqJ4nZEXTysdIwMxapcTWJPbFM6RoaSo0oTboWFKB0jQyni4MS9qxeVjpGh2JYqR2RExL9vqBL2xYvz5GzmmBgyvViWr8etHl5Kx8hQigRs4kr4H0rHyFDKlCgg5/VvsCteQq7/3tAoUa5zPlTdVieVjpDp7Fvz6Qx+fNN7jSz39fX9941IeRz4/ymWCyGEEEIIIYQQQgghhBBKeK9i+f7XJhgTQgghhBBCCCGEEEKIT0Fy8r823RAq8p96lkdFRXH9+nWSk5OBlNmPExISCA4Oplu3bh81oBBCCCGEEEIIIYQQQgiR1j64WL5u3Tp8fHx4+fIlGo2GVy3PNRoN5cqVk2K5EEIIIYQQQgghhBBCiEwny4f+QEBAAD169ODixYvkyZOHAwcOsH37dpycnKhfv35aZBRCCCGEEEIIIYQQQggh0tQHF8sfPHjAl19+iampKWXKlOH8+fOUKFGCESNGsH79+rTIKIQQQgghhBBCCCGEEEKkqQ8ulltZWREVFQWAvb09ISEhANjY2HD//v2Pm04IIYQQQgghhBBCCCGESAcf3LPc09OToUOHMmnSJGrWrMmQIUMoU6YMBw4coEiRImmRUQghhBBCCCGEEEIIIT46bXKy0hFEBvLBxfJBgwaRM2dOoqOjqVu3Ll999RVjx44lV65cTJkyJS0yCiGEEEIIIYQQQgghhBBp6oOL5efPn6d79+6YmJgA0L9/f/r3709CQgKHDh366AGFEEIIIYQQQgghhBBCiLT2wT3Lvb29efr0qcHy8PBwBgwY8FFCCSGEEEIIIYQQQgghhBDp6b1Glq9evRofHx80Gg1arZYaNWqkul316tU/ajghhBBCCCGEEEIIIYQQIj28V7G8TZs2ODg4kJycTIcOHfD19cXS0lK3XqPRYG5uTsmSJdMsqBBCCCGEEEIIIYQQQgiRVt67Z3mlSpUA2LdvH7a2tmg0GmJjY0lKStIrnAshhBBCCCGEEEIIIURmoE3WKh1BZCAfPMFnwYIF+emnnwgMDOThw4cAWFlZ0bp1a3r37v3RAwohhBBCCCGEEEIIIYQQae2Di+Xz5s1j5cqV9O3bFzc3N5KTkzl79iz+/v6YmprSrVu3tMgphBBCCCGEEEIIIYQQQqSZDy6Wr1u3jkmTJuHh4aFb5uTkhI2NDZMmTZJiuRBCCCGEEEIIIYQQQohMJ8uH/kBsbCzFihUzWG5nZ0dUVNTHyCSEEEIIIYQQQgghhBBCpKsPLpa7urqyZMkSkpOTdcuSkpJYvHgxzs7OHzWcEEIIIYQQQgghhBBCCJEePrgNy4gRI2jbti3Hjh2jTJkyAFy5coWEhAQCAwM/ekAhhBBCCCGEEEIIIYRIC1pt8r9vJFTjg0eWBwYGsmnTJr799lvy5MmDra0t3bp1Y926dcyfPz8tMgohhBBCCCGEEEIIIYQQaeq9RpafO3eOmzdvAhAUFESZMmXImTMnrq6uum3WrFnDkSNH0iSkEEIIIYQQQgghhBBCCJGW3qtYbm5ujp+fH1qtFq1WS2BgIFmy/DMoXaPRkC1bNgYNGpRmQYUQQgghhBBCCCGEEEKItPJexXJHR0f27dsHQPv27fH398fS0jJNgwkhhBBCCCGEEEIIIYQQ6eWDJ/hcsWJFWuQQQgghhBBCCCGEEEIIIRTzwcVyIYQQQgghhBBCCCGE+BRok7VKRxAZSJZ/30QIIYQQQgghhBBCCCGE+LRJsVwIIYQQQgghhBBCCCGE6kmxXAghhBBCCCGEEEIIIYTqSbFcCCGEEEIIIYQQQgghhOpJsVwIIYQQQgghhBBCCCGE6hkrHUAIIYQQQgghhBBCCCGUoE1OVjqCyEBkZLkQQgghhBBCCCGEEEIIxWi1Wjp16sSmTZveud3t27fp2LEjrq6uNGzYkCNHjuitP3bsGI0bN8bFxQVvb29u3779QTmkWC6EEEIIIYQQQgghhBBCEcnJyUycOJGjR4++czutVkuvXr2wtrZm48aNNGvWjN69e3Pv3j0A7t27R69evfDy8mLDhg1YWVnx3XffodVq3zuLFMuFEEIIIYQQQgghhBBCpLv79+/ToUMH9u/fj4WFxTu3/f3337l9+zY+Pj4UL16c7t274+rqysaNGwFYv349ZcuWpVOnTjg4ODBlyhTu3r3LyZMn3zuPFMuFEEIIIYQQQgghhBBCpLsrV65QoEABNm7cSM6cOd+57YULFyhdujTZsmXTLatQoQLnz5/Xra9YsaJunbm5OWXKlNGtfx8ywacQQgghhBBCCCGEEEKI95KQkEBCQoLeMlNTU0xNTT/47/Lw8MDDw+O9tv3rr7/Ily+f3rI8efLw559/vtf695GhiuXWZaspHSHDKVjSWekIGY58TgzlrNxI6QgZSqPEq0pHyHDsipdQOkKGU7REKaUjZDglitspHSHDsSpXU+kIGU6OKk2UjpDhFHFwUjpChmNbqpzSETIc++LFlY6QoViWr6d0hAynSMC7JzRTozIlCigdIcOR83pDcv0n/l9HttVSOkKm4+fnh7+/v96y3r1706dPH4Nt4+LiuH//fqp/T968efVGif+bFy9eGBTkTU1NdYX7f1v/PjJUsVwIIYQQQgghhBBCCCFExtW9e3e+/fZbvWVvG1V+4cIFvL29U103b9486tV7/xvoZmZmPH78WG9ZQkICWbNm1a1/szCekJDwr73QXyfFciGEEEIIIYQQQgghhBDv5UNarlSpUoWrVz/OEyA2NjaEh4frLXv48KGu9YqNjQ0PHz40WO/k9P5PgsoEn0IIIYQQQgghhBBCCCEyNBcXF65cuUJcXJxu2ZkzZ3BxcdGtP3PmjG7dixcvCA4O1q1/H1IsF0IIIYQQQgghhBBCCJHhREVF8ezZMwAqV65MgQIFGD58OGFhYSxatIiLFy/SokULAL766ivOnj3LokWLCAsLY/jw4RQqVIgqVaq8978nxXIhhBBCCCGEEEIIIYQQGU6LFi1YsmQJAEZGRsyfP5+//voLLy8vtm7dyrx587C1tQWgUKFC+Pn5sXHjRlq0aMHjx4+ZN28eGo3mvf89jVar1abJKxFCCCGEEEIIIYQQQgghMgkZWS6EEEIIIYQQQgghhBBC9aRYLoQQQgghhBBCCCGEEEL1pFguhBBCCCGEEEIIIYQQQvWkWC6EEEIIIYQQQgghhBBC9aRYLoQQQgghxCckKipK6QhCCCGEEEJkSlIs/1tYWBh79uzh+fPn3L59G61Wq3SkDCM+Pp6LFy/y9OlTpaNkKFFRUar+nJw6dSrVr9OnT3PhwgXu3bundMR05e3tTUxMjMHyqKgovLy8FEiUMUREROj2HYcPH2b8+PGsX79e4VTKkc+JEP/d06dPWbVqFRMnTiQqKooDBw5w69YtpWMpxsnJKdWi+N27d6lbt64CiZQl+9cUQUFB7/0l1GvVqlXEx8frLdu7dy+dO3emSZMmfP/991y8eFGhdBlLbGwswcHBJCQkEBsbq3QcRSUlJXHw4EGWLVtGTEwMFy5cUHWNICgoiISEBIPlz58/Z/ny5QokEkJ8LMZKB1DakydP6Nu3LydPngRg165dTJo0idu3b7No0SIKFiyocML0Fx4ezogRIxg2bBglSpTgm2++4fr165ibm7NgwQKqVq2qdMR0d//+faZOnUq3bt2wt7enc+fOnDlzhvz587NgwQIcHR2VjpjuRo4cyZ07d0hOTsbS0hKtVktMTAwajQaNRoNWq6VcuXL4+fmRL18+peOmiUOHDukuJE6dOkVAQADZsmXT2+bmzZvcvXtXiXiKW7t2LT4+PixdupQcOXLQs2dPqlatyp49e7h37x59+/ZVOmK6kM/Ju8XExLBkyRIuXbrEy5cvDW5CqvViY+vWrSxbtoxbt26xefNmli9fTt68eenWrZvS0RRx7do1OnToQIECBXR/3r17Nzt37mThwoVUrlxZ6YjpIigoiE2bNgGg1Wrp1asXJiYmets8ePCAvHnzKhEv3cn+1ZCvr6/e93/88QempqYULlwYExMTbt68SXx8PI6Ojnz55ZfKhExn06dPp3fv3nqfjZ9++omff/6Z+/fvY29vT7du3fj8888VTJm+Jk6cyBdffIGZmRmQsm8ZPXo033zzDXXr1iUkJIT27dvzww8/UK9ePYXTKiM+Pp4JEybo9rm7du1i2rRpvHjxglmzZmFpaalwwvT1xx9/0LlzZx4/fsyTJ0+oW7cugYGBnDt3jsWLF1OqVCmlI6aLqKgo4uLiABg+fDgODg7kzp1bb5uQkBBmzpyJt7e3EhGFEB+B6ovlEydOxNzcnN9//51atWoBMHnyZAYPHszEiRNZsGCBwgnT3/jx4ylcuDB2dnZs2LCBp0+fcuTIETZu3Mi0adPYvHmz0hHT3bhx43j+/Dm5cuVi06ZNXLt2jTVr1rB161YmTJjAqlWrlI6Y7po3b87BgweZOnUqdnZ2ANy+fZsRI0bg4eFBs2bNGDduHBMnTjS4cPtU2NnZERgYiFarRavVcvbsWb2ihUajIVu2bEyaNEnBlMoJDAxk2rRpVK5cmQkTJuDk5ERgYCCnTp2if//+qimWy+fk3YYMGcKlS5do0qQJOXLkUDpOhrB69Wrmz59Pjx49mDFjBgBly5Zl8uTJJCQk0Lt3b4UTpr+JEyfSunVrvv/+e9zc3ACYMmUKVlZWTJ8+nQ0bNiicMH3Ur1+fO3fuAHDy5ElcXV3Jnj273jbZsmWjfv36SsRLd7J/NbR//37dnxcsWMClS5eYPHkyuXLlAlJGyY4ZMwZra2uFEqa/pUuX0rlzZ12xfMmSJSxYsIDvvvsOe3t7QkJCGDVqFE+ePKFly5YKp00fb96YXrp0KUOHDqVdu3a6ZU5OTsyePVu1xfIZM2YQHh7O5s2badWqFQB9+vRh+PDhTJw4UXd8VgsfHx8qVKjAuHHjqFixIgCzZs1i5MiRTJw4kRUrViicMH2cPHmSfv366QaHtWjRQm/9q9+tpk2bKhFPCPGxaFWuSpUq2mvXrmm1Wq3W1dVVe+vWLa1Wq9WGhYVpK1SooGQ0xZQrV073PrRu3Vo7btw4rVar1d65c0dbrlw5JaMpxtXVVRsZGanVarXaTp06aYcNG6bVarXaW7duqfY9qVKlijYkJMRgeUhIiLZKlSparVarDQ8P11asWDG9oyli2LBh2qdPnyodI0NxdnbW3rt3T6vVarV16tTRBgQEaLXalN8bV1dXJaMpRj4nhpydnbUXLlxQOkaG8sUXX2gPHDig1Wr1z00OHjyo/eyzzxRMphxXV1ftzZs3dX9+9Z7cunVL6+LiomAy5WzatEkbFxendIwMQ/avhipUqKANDw83WB4REaF1c3NTIJEySpUqpX348KHue09PT21QUJDeNtu3b9fWrVs3vaMpxtHRUe89+eyzz7RXr17V20bN+1etVqutWbOm9uLFi1qtVv+4c/nyZW3lypWVjKaIihUr6q6HX38/rl+/rqrz+tjYWO3du3e1t2/f1pYqVUp78eJF7Z07d3Rfd+/e1UZFRSkdUwjxf1L9yHLAoF8bpDxeY2yszrcnZ86cPHz4EGNjY86fP0/37t2BlMeJ8uTJo3A6ZZiZmREfH8+TJ084ceIEP/zwAwB37txR3SN4r4uOjk51WVJSku57jUaTnpEUM2XKFOLi4li3bh0REREkJSVhb2+Pp6enwaN5amFvb8+2bduwsrLi3r171KtXj8TERJYsWaLK1kWQ8jkB+Ouvv1JtOWJra6tELEXZ2NiQJYtMofK6e/fuUbx4cYPlhQsX5vHjx+kfKAOwsrLi+vXrFClSRG/52bNnVXtu0rx5c27evMnly5dJTEw0WK+GFhuvz4/Sp08fYmJiUu1bDurcv+bMmZPg4GCD/cmZM2ewsrJSKFX6e9Ui8JW4uDhKly6tt42zszOPHj1K72iK0Wq1bN68mdKlS1OsWDE+++wzjh07RsmSJXXb7N27l6JFiyqYUlnPnj3D3NzcYHlycrLetY5aZM2alUePHumeKH7l+vXrqnoysE6dOmzduhVbW1uaN2+OnZ2dql6/EGqhzmrwaxo3bsykSZPw8fFBo9Hw/Plzfv/9d8aOHUvDhg2VjqcILy8vevbsiampKYUKFcLd3Z2ff/6Z6dOnq6Ztwpvq1atHv379yJo1K5aWltSuXZtffvmFyZMn07x5c6XjKaJFixYMHTqU/v37U7ZsWbRaLVeuXGHu3Lk0b96c6OhoZsyYoZo+steuXaNLly4YGRlRtmxZkpKS2LNnD35+fqxYsYISJUooHTHdDRs2jL59+/LkyRPatGlD8eLF8fHxYc+ePQQEBCgdTxFHjx5l9OjR/PHHH0DKxeqrxzg1Gg0hISEKJ0x/Q4YMYdy4cXz//fcULVrUoP+yGgtcLi4uBAUF0adPH90yrVbLkiVLKFeunILJlNO1a1dGjRpFjx490Gq1/P7772zevJmffvqJ/v37Kx1PEYGBgcycORNLS0uDViwajUYVxXIPDw+9fSjot5dQ+/61e/fujBw5khMnTuDk5IRWq+XSpUv8+uuvupu3aqDVapk3bx6Ojo4UK1aMKlWqsG3bNgYMGKDb5ueff1ZNz2WAdu3acezYMVasWMH9+/fRaDRkyZIFLy8vLCws+Pbbbzl16tQn20rxfXh4eDB79mymTZumW3b79m0mTpyoa9+qJq1atWLMmDEMGTIESCmSnzx5ktmzZ/P1118rnC79JCcnc+TIEapVq0ZQUBDt2rV768AoNZ7DCvGp0GjfHNamMgkJCcyaNYtVq1aRmJioO1H4+uuvGTZsGFmzZlU6oiL27NnD3bt3ady4MdbW1vz2228kJydTp04dpaMp4uXLl6xcuZK7d+/yzTffUKJECYKCgoiNjaVt27aqGT39Oq1WS0BAAD///DMPHjwAIF++fLRr147OnTtz7Ngx1q5dy5gxYz7ZCT5f5+3tTcGCBZkwYYLuqZSXL18yatQoHjx4wJIlSxROmP5Onz5NmTJlSEhI0D2B8fDhQywtLQ0Komrx+eef4+TkRM+ePVMdhaLGSaVTe8pA7QWua9eu0a1bN/LkyUNoaCjVqlXjxo0bxMXF8eOPP+Lk5KR0REXs37+fxYsX657esbOzo2PHjqod3FC9enU6d+5M586dlY6imA+ZuFON+1eAw4cPs2HDBiIiIgBwcHCgbdu2up7DarBs2TIiIiJ0X0+ePEGj0fD7779jaWnJF198wcOHD1m0aBHly5dXOm66i42NJTIyksjISN1NNl9fX+rUqYOzs7Oy4RT09OlTRowYwb59+0hOTsbCwoKnT5/i7u7OjBkzdPMAqMmKFStYvHgxf/75JwB58uShY8eOdO7cWTVPCfr5+TFv3rx3Xv+r+RxWiE+F6ovlr8TFxXH79m2SkpIoUqSI3mzpQoh3i46OxtjYmJw5cyodRTEuLi5s3rwZe3t7veURERG0aNGCc+fOKZRMOVWqVGH58uWqGqn1b1xcXNi+fTuFCxdWOkqG8W/FLrUWuOLj49m6dSuRkZG6wnDTpk0NRhCrxf3797GxsVE6RoZSoUIFgoKCZH8ixAd69OgRkZGRVKpUCYD169dTo0YNGQUqUnX79m0iIiJ4+fIldnZ2qbZJU5vnz5+TlJSk2mu/mJgYnj59St26dVm/fv1b21qp9RxWiE+B6tuwPH78mLFjx+Lg4EDv3r0BqFWrFuXLl8fHx0eVB4DTp08zceJEIiMjU+2BqcY7pBEREcyaNYvIyEgSEhIM1u/bt0+BVMpTe6/U1+XNm5dbt24ZFMtv3bql2uKWg4MDFy5ckGL5aypWrMiZM2ekuPWaVxcSR48eJSIiguTkZOzs7Khevbpqn0CAlLky1PRY87+pXbs25cuXp2HDhnh6eqqq3/LbNGnShNWrVzNkyBBVPuEG4OTkxJEjR8iTJw+Ojo7vfB/UeP4KsHXrVpYtW8atW7fYvHkzK1aswNramm7duikdTTF58uTRm+tA9rUiNadOndL9+dW5fFRUFNHR0ZiYmJA3b15V3WDx9/dPdblGo8HExIR8+fJRs2ZNVcwjYmFhgYWFBfv27cPW1la1x2AhPmWqH1net29fHj16xPjx43V3iUNCQpg8eTK2trZ6PcrU4vPPP8fBwYGWLVum2oZGLT2oX/fll1+SNWtWmjVrlup7osa+5f/WK1VtNxACAwNZtmwZffv21fUUvnDhAr6+vnz99deq7Pffq1cv9u/fT548eShUqBCmpqZ665cvX65QMuUEBASwcOFCatWqlWp/7lc3bdXkzz//5LvvvuP69evY2dmRlJTEzZs3sbW1ZenSpaoZTfyq9/L7UNv+FeDGjRvs3r2bnTt3cu3aNSpWrEijRo1o0KCBaifaHjRoEDt37iR37twUKlTIYH+ihn3syZMnKV++PMbGxpw4ceKdv0NqPH9dvXo18+fPp0ePHsyYMYPt27dz9uxZJk+eTPv27VV5zBEpXi8E/5tXI/DVpkGDBty5c4fk5GQsLS3RarXExMToJozVarWUK1cOPz8/VbScHDhwIL/88gv58+fXzVcVEhLCvXv3cHV15enTp/z5558EBgbi6uqqdNx00b59+/c+d1PDMVmIT4nqi+UVK1Zk7dq1Bo9ThYWF0bZtW06ePKlQMuW4ubmxadMmg5mu1czV1ZWNGzfKY3evkV6p+rRaLf7+/qxcuZInT54AYG1tTceOHenUqZNq+vi97m0jUF5R40V6+/bt37pOo9Go8kS6Z8+evHz5UnfzDVJaOw0ePJhs2bKpZnKxzZs36/5869YtfvrpJ1q3bo2zszMmJiYEBwezcuVKOnTowHfffadgUuXduXOHPXv2sHfvXq5cuUKVKlVYuHCh0rHSnexjxb/x9PRk6NCh1K5dGzc3N7Zu3UrhwoX57bffGDNmDL/99pvSEdNFUFDQe2+rlicjmzRpQnh4OKA/Ke6b1Nx3ecGCBRw8eJCpU6fqrotv377NiBEj8PDwoFmzZowbNw5AFecqAwcOJFu2bIwbNw4jIyMgZbLLSZMm8fz5c6ZMmUJAQAAHDx5kzZo1CqdNHwEBAQQEBPDZZ59Rvnx53fna1q1bad68ud5NFDkmC5G5qL4NS9asWfnzzz8NiqBRUVG6SfrUpkmTJuzYsUN26K/57LPPOHPmjBTLXxMfH0+DBg2UjpFhaDQa+vTpQ58+fXj06BFmZmapTuCoJq/vQ2JjY0lKSlLtCNBXVqxYoXSEDOf3339n7dq1ep+N3LlzM2jQINq2batgsvT1+hNKXl5eTJo0CU9PT92yunXr4uTkxJw5c1RfLDczM8PMzIzs2bOj0Wh48eKF0pEUIedp+v7t6Qw1PpFx7969VM9dCxcuzOPHj9M/kEK2bdvGsWPHsLCweGdrPI1Go5pi+caNGxkwYAB37txh7dq1mJmZKR0pw/npp59YtmyZ3gCywoULM3LkSDp27Mi3335L3759adWqlYIp08/+/fvZtGmTrlAOkCVLFtq1a4eXlxdTpkyhUaNGBAQEKJgyfR09epQBAwbg7e2tt7xSpUqsW7cOHx8fhZIJIf5f6qwGv8bLy4sRI0bQv39/ypQpA0BoaChz586lWbNmCqdTRpcuXWjRogWbNm2iYMGCBhceahz5OGzYMJo3b862bdtSfU+mTJmiUDLlSK9UGan0Pn766ScCAwN5+PAhAFZWVrRu3VrVRZ7g4GAWL16sN3Fj27ZtVdkiAMDS0lL3NMbrYmJiVNuz/Pr165QsWdJgeeHChf91QtRP1d27d9mzZw+7du3i4sWLODs74+npycSJE1Xx+PvbvNmPevny5eTNm1eV/aj79Omj9/3Lly+5ffs2mzZtUmUrNEiZVDooKEjvvdFqtSxZskTXMk4NFi9ezIQJEzhw4ACbNm0iV65cSkdSnKmpKbNmzaJly5bMmTOHoUOHKh0pQ4qOjk51WVJSku57tVwHWVtbc/r0aYOnz8+cOaP7nXr48KGqBgtdunSJ8ePHGyx3dnZm7NixCiQSQnwsqi+W9+3bF61Wy9SpU3UjLHLnzk379u1VeaEBKT0wraysqFevXqr9udVo9OjRZMmSBWtra9WcEP2b2NhYNmzYwPbt21XbK/V9H7lU00il182bN4+VK1fSt29f3NzcSE5O5uzZs/j7+2NqaqrKfeyePXvo378/DRo0wMvLi6SkJM6fP0+nTp2YM2cO9erVUzpiumvUqBGjRo1i3LhxODs7Ayn9/n18fGjYsKHC6ZRRoUIFJk+ezOTJk3U922/fvs3EiROpWbOmwumU8WpkvaenJzNnztRNDKtmb/ajBihbtiyTJ08mISFBdTcl3zZ/jIuLC0uWLFHlJI6jRo2iW7duHDx4kISEBMaPH8+NGzeIi4vjxx9/VDpeuho1ahRhYWFMnTqVqVOnKh0nQzA1NeWHH35QZdvR99GiRQuGDh1K//79dT26r1y5wty5c2nevDnR0dHMmDFDNYMd+vTpw8iRIzlz5gzOzs6692PHjh2MGTOG69evM3ToUBo1aqR01HRTpkwZFi1axPjx43VPZ8TGxjJ37lwqVqyocDohxP9D9T3LXxcVFYWJiQk5c+ZUOoqiXFxc2LRpk7QceY2Liws///wzpUuXVjpKhiG9Uv+b7du34+HhQbZs2ZSOkuZq1arF2LFj8fDw0Fu+d+9eJk2axIEDBxRKppzGjRvTokULOnbsqLd82bJlbN68mS1btigTTEEJCQmMGTOGrVu36vqmGhkZ8fXXXzN06FBV3rR98OAB33//PRcuXNCbVKxq1arMnj1blaMiIyMjsbe3VzpGhiL9qN/PzZs3adKkCRcvXlQ6iiLi4+PZtm0bERERuqeZmjZt+s52JJ+q+/fvExwcTJ06dZSOIjIBrVZLQEAAP//8Mw8ePAAgX758tGvXjs6dO3Ps2DHWrl3LmDFjVPOE0+nTp/n555+5du0aRkZGlChRgnbt2uHq6srFixc5f/48bdu21WvV8imLiIiga9euxMTEULRoUbRaLTdu3MDOzo558+aRP39+pSMKIf4jVRbLg4KCaNiwIaampv/aRkGNo0E7depEq1atpB/1a1q0aMGgQYOoWrWq0lFEJle+fHm2bNlC4cKFlY6S5ipUqMD69esNClwRERF4eXlx4cIFhZIpx8XFha1bt1K0aFG95Wov5kBK25UbN25gampKkSJFVHFD6d+EhYUREREBgIODg+pvYu/du5fAwEC9Fkbt2rVT5bkapOxPtm/fTuHChfWK5ZGRkTRv3lx1+9hTp04ZLHv27BkrVqzg8ePHbNy4UYFUyho+fDgjR440aIvw5MkTRo8erYpJCcW/8/b2xt/fHwsLC73lUVFRdOnShU2bNimULOOIjo7G2NhY9YPqhKGEhAQOHz7M9evXMTc3p3jx4lIzEOIToMo2LL6+vtSqVQtTU9N3niSqtXWCu7s7I0aMYPfu3RQuXNjgzrAaRwy3bt2aIUOG4OXlRaFChQwmf1XL5+T1i67hw4e/c1s19nF/H2q6P+nm5saSJUvw8fEhS5YsACQlJamuV+rrihcvzqFDh2jfvr3e8t9++01VbSVOnTqFm5sbxsbGBgWu+Ph4rly5ovu+UqVK6R0vQ3j58iUWFha63xWtVsv169cJCQlRZXuaNWvWMG3aNNq1a0e3bt10bZ3Gjx9PYmKiKltsSD9qfW/uVwFMTExwdnZm4sSJCiRSxrlz57h58yaQMkCoTJkyBsXyyMhIjhw5okQ8xaV2UwVSrvtMTEzImzcvtra26Zwq/R06dEh3g/7UqVMEBAQY3KS+efOmaufJeCUkJISwsDCSk5OBlH1sQkICwcHBqfaq/pS9ePGCtWvXEh4ertez/dX78euvvyqYTjlxcXG4u7tTt25dQkNDOXLkCFqtlmrVqikdTQjxf1BlsXz//v26P0+bNo1y5crJDOCvOXDgAE5OTty/f5/79+/rrVNrv+558+ZhbGzM1q1bDdap9aaKEP9m+PDhtG3blmPHjukmUL5y5QoJCQkEBgYqnE4Zffr0oU+fPly4cAEXFxcAzp8/z65du5g+fbrC6dJP+/btOXr0KHny5Em1wPWKRqMhJCQkHZNlDHv37mX06NG6uVRelzdvXlUWywMDAxk7dqze8bZevXo4ODgQEBCgymK59KPWFxoaqnSEDMHc3Bw/Pz+0Wi1arZbAwEDdDWtI2a9my5aNQYMGKZhSOSNHjuTOnTskJyfrtbnSaDRoNBq0Wi3lypXDz8/vk26tYWdnR2BgoO5zcvbsWb35h159TiZNmqRgSmX5+/vj7++PtbU1jx49wsbGhocPH5KUlET9+vWVjpfuRo0axfHjx6lWrRo7d+7E09OTmzdvcunSJVUOpoOU87VBgwYxf/58ChYsSNu2bcmfPz/z5s1j4MCBtGvXTumIQoj/SJVtWF5XpUoVli9fTqlSpZSOIkSmcv/+fd3Ec+L9vf6ovBpER0ezbds2IiMjMTMzw87OjiZNmqiyV+orx48fZ/Xq1UREROjek44dO6pyJKhInaenJ5UqVaJjx460bt2aRYsW8fjxYyZMmMB3332Hl5eX0hHTnZubG5s3b6ZYsWJ6y2/cuEHTpk1V28IoPj6erVu36rWmUWs/akgZ9Xn06FEiIiIwMTGhePHiVKlSRelYimnfvj3+/v5YWloqHSXDWLBgAQcPHmTq1KnY2dkBKRMojxgxAg8PD5o1a8a4ceOA95/IPbN7W7setatZsya9e/fmm2++wcPDg59++glLS0v69++Pk5OT6m44VapUiblz51K9enWaNm3K5MmTKVu2LFOnTuWPP/5g7ty5SkdMd40bN8bLy4tOnToxc+ZMDh48yPbt2zlw4AATJkzQG6QphMhcVDmy/HUODg5cuHBBiuVvCA4OZvHixXoXX23btlXNbN+pefDgAatWrdJNkGRvb8/XX39tcOGuFrVr16Z8+fI0bNgQT09PrKyslI4kMqDcuXPz2WefUbBgQZKTk7Gzs1NtEQdg4sSJeHt74+fnp3SUDKNu3bps3LjRYNLK+/fv8+WXX3L8+HFlgino9u3bLFy4kCJFilC2bFn++usv6tWrR5YsWZg+fboqi+VOTk4EBQXRr18/veWbN2+mRIkSyoTKAMzMzFQ5qj41V69epXfv3jx69IhixYrpJlorVqwYfn5+FCpUSOmI6W7FihWpLk9ISCAkJET3hJOa/PTTTyxbtkxXKAcoXLgwI0eOpGPHjnz77bf07duXVq1aKZgyfU2ZMoW4uDjWrVund53j6elJ7ty5lY6nmOjoaGrWrAmkHIPOnTtH06ZN6d+/P99//73qiuXx8fG6614HBwcuX75M2bJl+eabb1Q7gvrWrVt4enoCsG/fPr744gsg5f2JiopSMpoQ4v+k+mK5paUlY8aMwdfXl0KFCmFqaqq3fvny5QolU86ePXvo378/DRo0wMvLi6SkJM6fP0+nTp2YM2cO9erVUzpiujt9+jRdu3alVKlSuLq6kpSUxKlTp1i5ciVLliyhQoUKSkdMd7/++iu7d+9m48aNTJkyhYoVK9KoUSMaNGggI5gEkDJh47Bhwzhw4AAWFhYkJSXx7NkzKlWqxLx581Q5SdLWrVvp2LGj0jEUt3PnTn777TcA7t69i4+Pj0E7tLt37xrMmaEWFhYWvHjxAkh5VD40NJR69ephb2/PnTt3FE6njMGDB9OxY0dOnDih18IoNDSUgIAAhdMp4/Tp00ycOJHIyEgSExMN1quthdHYsWNxcXFh/PjxupuyMTExjBgxgtGjR7N06VKFE6a/c+fOMW7cOMLDw3U9l18xMjLi8uXLCiVTVnR0dKrLXu/DrKbWk9euXaNLly4YGRlRtmxZkpKS2LNnD35+fqxYsUK1NyRtbGy4ffs2tra2FC9enODgYJo2bUqOHDlUWQgtXrw4x44do0WLFjg4OHDmzBlatWrF06dPiY+PVzqeImxtbTlx4gQ2NjZcv34dDw8PALZt26baAXVCfCpU34bF398fSHls8/Hjx2g0Gr3RbWrsv9W4cWNatGhhUNBZtmwZmzdvZsuWLcoEU1CLFi2oVq0aAwcO1Fs+c+ZMTp8+zZo1axRKljHcuXOHPXv2sHfvXq5cuUKVKlVYuHCh0rEyJDW1YRkyZAgRERHMmDEDe3t7AMLDwxk2bBglS5Zk8uTJCidMf/Pnz+fcuXN07NgRW1tbgwKxGiYVA4iKimLGjBlAyshgT09PsmbNqrdNtmzZaNasmSrb0wwfPpybN2/i4+PD9evXmT59OnPmzGHXrl26LzWKiIhg3bp1em2d2rRpQ4ECBZSOpojPP/8cBwcHWrZsafD7A6juacBy5cqxZcsWvRHDkPK58fLy4sKFCwolU46Xlxf58+endevW9O3bl+nTp3P//n38/f0ZPXq0Kuc/mDlzJlu3bqV///6ULVsWrVbLlStXmDt3Lg0aNKBnz54MHz4cY2Nj3XXip87b25uCBQsyYcIEjI1TxtK9fPmSUaNG8eDBA5YsWaJwQmUEBASwYsUKJk+eTO7cuenYsSO9e/fm2LFjxMbGqu76b9++ffTt25cxY8ZQs2ZNGjVqROXKlbl69Squrq7Mnj1b6Yjp7pdffmHIkCEkJSVRq1YtAgICmDZtGmvWrMHf358aNWooHVEI8R+pfmR5z5498fX1Zf369bo7xDY2NrRt25Zu3bopnE4Zt2/fpk6dOgbL69Spw6xZsxRIpLywsDBmzpxpsLxFixZvfcRVTczMzDAzMyN79uxoNBrdiEg1OXXqFG5ubrqLjFcSEhI4dOiQ7omMGjVqYG5urkTEdLd//36WLl2qK5QDlChRgjFjxtC1a1cFkynnVf/Tw4cPA/+MXNNqtaqazNLKyoopU6YAULBgQTp37qya34v3MXLkSCZNmsTly5dp1qwZu3btokWLFmTLlk13k0GNihcvzvDhw3n69CkmJiapFojV5MGDBwQEBBgUh9XKxcWF48ePG7wfZ8+excnJSaFUygoLC2PGjBkUL16cMmXKYGJiQtu2bcmTJw8//vijKovlAwcOJHv27MyePZsHDx4AkC9fPtq1a0fnzp05duwYxsbGjBkzRuGk6efChQuMGzdO7xzW2NiYrl270qJFCwWTKatHjx7kz58fc3NzypUrx/Dhw1mzZg25cuVS5YCPunXr8uuvv5KcnEyBAgVYvXo1W7ZsoXz58u+crP1T1rBhQ6pWrcr9+/d1x5mvv/6azp07Y21trdvuzJkzODs7G3QxEEJkXKovlk+bNo1du3YxaNAgypYtS3JyMpcuXcLX15eEhARVjiwvXrw4hw4dMjjo/fbbbxQsWFChVMoqWLAgFy9eNHic6sKFC3oHQjW5e/cue/bsYdeuXVy8eBFnZ2c8PT2ZOHEi+fLlUzpeuvP29ubo0aMGvdvDwsIYMGCAbvI5tYxSgpSbKFmyZDFYrtFo9B51/tQdPXqUSpUqYWpqyr59+5SOkyG8fnOpSpUq72wFUKlSpXRMljEcPHiQIUOG6HrFzpw5k3HjxmFmZoaJiYnC6ZSRmJjIwoULWbNmDY8ePQIgf/78dOzYkQ4dOiicThlNmjRhx44dqjxXfeX1Y2rRokWZPHkyJ0+epFy5cmTJkoVr166xfft21fbTNTc317Wzsre35+rVq9SqVYty5cpx/fp1hdMpQ6PR0LNnT3r27El0dDTGxsZ6beFq1qyp61OtFnnz5uXWrVt6gxsgpR+zmueZAfjyyy91f/76669TnSOiW7duqrn+ef3JWEdHRxwdHQ22KV++PFu2bFHFU7SQMgDk9eu/N3+PALp27aqq90SIT4Hqi+WbN29m3rx5eo+qOjo6UrBgQQYNGqTKC5A+ffrQp08fLly4oNcXdNeuXUyfPl3hdMro0qULY8eOJTIyUtcS4MKFC6xYsYIBAwYonE4ZdevWxdHRkYYNGzJz5kxV3khZvXo1Pj4+aDQatFrtWx+1q169ejonyxg8PDwYP348M2fOpEiRIgDcuHGDiRMnUqtWLYXTpZ/evXvz66+/kj9/fry9vdmwYYOqJ8wCaN++PUePHiVPnjzvHI2kptH2rxs/fjxr167V+5zkyJFDwUTKmzBhAocPH2bQoEGULl2a5ORkLl68iK+vL48ePVLlsbhLly60aNGCTZs2UbBgQYMey2qYd+fEiRN637u5ufHo0SMOHDigW+bi4qLa3txVq1blhx9+YNSoUbi5ubFs2TJatmzJ/v37sbCwUDqeYm7evMnly5dT7fX/enFULVq1asWoUaPo27ev3nWOr6+vTCD8Hk6dOqXant2pUXmX31TJeyJE5qP6Yrm5uXmqo7QsLCxUNbHL6+rUqcOPP/7I6tWr+fnnn3V9QVevXq3K3rGQ0vMRYOXKlSxdulT3nkyaNEk3A7ba/PLLL6neOVeTNm3a4ODgQHJyMh06dMDX11dvclONRoO5uTklS5ZUMKVyBg8eTK9evfj88891F+UxMTHUrFmT0aNHK5wu/VhYWDBv3jzKly/P3bt32bFjx1sLn2q5SA8NDU31zyJFlSpV2L59Oz169JBHdv+2Y8cOFi5cSMWKFXXLXg1uGDBggCqL5YMGDcLKyop69eqptiXNf2mFt2jRIlq1aqWKYvHIkSMZPHgwu3fvplWrVmzYsIGqVatiZGTEuHHjlI6niMDAQGbOnImlpaXBqGmNRqOa4/DrOnfuzIsXL5g5cyZPnjwBwNramo4dO9KpUyeF0wkhhBDpT/UTfG7fvp158+YxZMgQ3SPhoaGhuiJo48aNdduqZeK118XGxpKUlKRXABTq5e/vr+st/G/tRNTwVEb9+vVZuXIlNjY2DB8+nJEjR6p+9GdqQkND9SbkU9tNln379uHn58fTp0+5e/cu+fPnf2t7GrW0abl37957b6vGY2/r1q05d+4cWbJkwcrKymAiWLV8Tl5Xq1Yt5s6di6urq97yixcv0rNnT44ePapMMAW5uLiwadMmihcvrnSUTEVtLQJep9VqCQ8Px8LCAhsbG6XjKKJ69ep07tyZzp07Kx0lQ3r06BFmZmZyPvsB3Nzc2Lp1qyr3KamR98OQvCdCZD6qH1k+aNAgIGWiz9cnWgMICQlh9uzZqpt4DeCnn34iMDCQhw8fAim9uFq3bq2KAujb7N27l8DAQCIjI0lKSsLOzo527dqpagTKiRMn8Pb2xtzc3ODR59ep5amMhw8fEhYWho2NDUFBQQwePFjpSIpLrQhqYWGhV+B6tY1aiqB169albt26QMqI4c2bN6u+DYuHh0eq+4lXx9/X16np2PtKy5YtadmyZarr1LJ/Bf39ibe3N0OHDmXkyJE4OztjZGTEtWvX8PHxoU+fPgqmVE6FChWIiIiQYvkHUtM4oc8//5xGjRrRsGFDSpQogUajwcHBQelYioqPj6dBgwZKx1BcUFDQe2+rpmsdIYQQAqRYrsrRWf9m3rx5rFy5kr59++Lm5kZycjJnz57F398fU1NTunXrpnTEdLdmzRqmTZtGu3bt6Natm+49GT9+PImJiarp5/f6487/5dHnT03jxo3p0qWLrnj1tp7loJ6C36si6KubjIDen1//Xi3vyeuyZcvGH3/8ofpi+evH3oMHD7JixQqGDx+Os7MzpqamXLlyhalTp761YPyp8/PzS7UortFoMDExYdOmTXh6etK6dWsF0qWf12+qvCpwduvWzWDZ+PHjadWqlTIhFeTu7s6IESPYvXs3hQsX1k3k+IqaBziIFJ06dWL37t0sWrQIOzs7PD09adSoEUWLFlU6mmKaNGnC6tWrGTJkiKpuPr7J19f3vbZTa2saIYQQ6qb6YrkaJyX8N+vWrWPSpEl4eHjoljk5OWFjY8OkSZNUWSwPDAxk7NixeieL9erVw8HBgYCAANUUy2UUir4JEybQtm1bYmJi8Pb2xs/PT/Uti7JmzUpgYKBuMsu5c+fqzRCvdkZGRqlOKKY2rx97f/zxR+bOnaubUBpSRuD7+PjQs2fPT74gnJp27drh7+9Pu3btcHV1RavVcvnyZVasWMFXX31Fvnz5WLBgAbGxsXTt2lXpuGlGBjS824EDB3BycuL+/fvcv39fb52ai4DiH9988w3ffPMNT548Yd++fbrCub29PY0aNVJlK5LY2Fg2bNjA9u3bKVSokMHcVWqYGBdg//79H/wz27dvx8PDg2zZsqVBIvGpkOOPEOJToPpiuTAUGxtLsWLFDJbb2dkRFRWV/oEygEePHhn0SYWU/mN//PFH+gdSiIxCMeTo6AikXFyVL18eY2N171YtLS3ZsmUL5cuX548//uDChQtv7XupxpuVtWvX5ttvv6VOnToULFjQYPJGNY4EffbsGS9fvjRYHhsbq9obC0FBQUyYMIFGjRrpltWtW5dSpUoREBBAUFAQTk5OjBo16pMulr/PPiIhIYGQkBBV7k/kCS/xviwtLfHy8qJcuXL8+uuvLF26VDcPjdoUK1aMHj16KB0jUxozZgwuLi5SLBfvpKZWV+/Lzs7O4MacECJjU3dVR6TKzc2NJUuW4OPjo5uELikpiSVLllCuXDmF0ynDycmJoKAg+vXrp7d88+bNlChRQplQCpBRKG+3efNmNm/e/F7bTpkyJY3TKGfMmDH4+flx7NgxIOWpjLdNZqmWGyqvu3r1KmXKlOHBgwc8ePBAb51aR+I0bdqUIUOG0K9fPxwdHdFqtVy6dAlfX19VttYAuHXrlu5G3OscHByIjIwEUgo+jx49Su9oinnV+iw8PJzk5GS9dUZGRly+fFmhZMq6ffs2q1ev5ubNm4wbN45Dhw5hZ2dHhQoVlI4mMojg4GB27drFnj17uHv3LjVr1mTixInUqVNH6WiKUONN6Y9FrUXQ2NhYbt26RYkSJUhISDAYBDJt2jSsra0VSpf+/vrrL16+fGnweXg1F9G+ffvIlSuXAsnSx3950nrTpk1pE0YIkWakWC4MDB8+nLZt23Ls2DHKlCkDwJUrV0hISCAwMFDhdMoYPHgwHTt25MSJE7pWAefPnyc0NJSAgACF02VsahmFYmlpyapVqyhVqhSurq6YmpoSEhLC8ePHqV+//ltHV39qXp/M0sPDg40bN6q+P/frZCSooeHDh5M9e3amTJmie3rJ2tqatm3bqnb0n6urK35+fkyePFm373z+/Dnz5s3T3bT+7bffVNV3eOLEiRQsWJBBgwbRt29fpk+fzv379/H392f06NFKx1PEqVOn6NatGzVr1uTw4cPEx8cTGRnJuHHjmDVrlkxiKPDw8ODBgwdUrVqVrl27qup85HXDhw9n5MiR5MiRg+HDh79z2095QIP4MPHx8UyYMEFX6Ny1axfTpk3jxYsXzJo1S9d6US372iNHjjBmzBiDp6rfnIvoU2+/KE9aC6EOUiwXBooXL86vv/7Ktm3biIyMxMzMjBo1atCkSROyZ8+udDxFuLm5sWnTJtavX09ERARmZmZUqlSJ2bNnU6BAAaXjZWhqGYVy+/ZtOnXqRP/+/fWWL126lBMnTqjy4uu/PImgBjISVJ+xsTEDBgxgwIABumL5p36h9W8mTJhAjx49qFmzJsWKFUOr1XLz5k0KFCiAn58fR44cYfLkycydO1fpqOkmLCyMGTNmULx4ccqUKYOJiQlt27YlT548/PjjjzRs2FDpiOluxowZDBw4kHbt2uHm5gbAkCFDyJcvH76+vqop4LwyceJEvL29KVKkyDu3+/rrr1VTMO7WrRuff/653LQW4j+YMWMG4eHhbN68WfekW58+fRg+fDgTJ05kxowZCidMXxMmTKBcuXIsWLBANfvQ1Mj1jRDqIMVyYcDLy4spU6bg7e2tdJQM47vvvmPgwIEMGzZM6Sgigzp27BiDBg0yWF67dm3mzJmT/oFEhiQjQVN38+ZNLl++nGqPcjWOyilcuDBbt27l+PHjXLt2DSMjIxwcHKhWrRoajQZLS0t+++03Vd1UMDc3x8jICAB7e3uuXr1KrVq1KFeuHNevX1c4nTKuXbtGrVq1DJbXrVuXWbNmKZBIWVu3bqVDhw7/ut2IESPSIU3G0KpVKx48eMDs2bOJiIggKSkJOzs7vv76a+zs7JSOl25eH7DQr18/bGxsFEwjMovdu3czb948SpUqpVtWqlQpJkyYQKdOnRRMpow///yTwMBAChcurHSUDCUqKorr16/rWsRptVoSEhIIDg6mW7duCqcTQvxXUiwXBh48eKC7IBUpzp49q/qJG8W7FStWjE2bNjFw4EDdMq1Wy4oVK1LtPSzUSUaCGgoMDGTmzJlYWloaPL2k5kdYjYyMcHd3x93d3WCdmorkr1StWpUffviBUaNG4ebmxrJly2jZsiX79+/HwsJC6XiKKFiwIJcuXTIoXBw8eFCVE5527NgRHx8fOnbsiK2tLWZmZnrrX/XTVZPTp0/TtWtXXYu4pKQkTp8+zapVq1iyZIkqn2iqXbs25cuXp2HDhnh6eqpyfyrez7NnzzA3NzdYnpycTFJSkgKJlFWxYkXOnDkjxfLXrFu3Dh8fH16+fIlGo9E9Ua3RaChXrpwUy4XIxKT6Jwx8+eWXdOnShaZNm1KwYEGDiw01Fi7atGlD//79adWqVaoXYJUqVVIomcgoRo4cSffu3dm9e7duBMrly5dJTk5m0aJFCqcTGYWMBDW0ZMkSBg8eTOfOnZWOIjKwkSNHMnjwYHbv3k2rVq3YsGEDVatWxcjIiHHjxikdTxH9+vVj2LBhXLp0iaSkJIKCgrhz5w47duxg+vTpSsdLd6/6yB4+fFi37FXx4vV+umoydepU2rVrp3cjH2DmzJnMmDGDNWvWKJRMOb/++iu7d+9m48aNTJkyhYoVK9KoUSMaNGig60EtBKT0/J89ezbTpk3TLbt9+zYTJ05M9VzuU1epUiXGjx/PwYMHKVq0KCYmJnrr1Th5bkBAAD169KBbt254eHiwfv16nj17xpAhQ6hfv77S8YQQ/weNVi0NhcV78/DweOs6jUbDvn370jFNxvCukcFqvQB7X25ubmzdulUVoxAePXrEL7/8QmRkJPHx8djb2+Ph4YG9vb3S0UQG0ahRI3r16kXDhg31fjdWrFjB6tWr+fXXX5WOmO4qVKhAUFCQKvYR4uPRarWEh4djYWGh11Jh+/bteHh4fPKTSr8SGhrKkiVL9FpsdOzYUTcZuZoMGTIEV1dX3N3dU31CUo2j7V1cXNiyZQvFihXTW37jxg2aNWvGhQsXlAmWQdy5c4c9e/awd+9erly5QpUqVVi4cKHSsdLdqVOncHNzM3iKNiEhgUOHDlGvXj0gpRg6btw4rK2tlYiZ7p4+fcqIESPYt28fycnJWFhYEBMTQ82aNZkxYwa5cuVSOmK6at++/VvXaTQali9fno5pMoayZcuyc+dOChUqRPfu3fnyyy/x9PTk9OnTjBw5kl27dikdUQjxH8nIcmFAJq0wFBoaqnQEkcGdOXOGfv36MWPGDD7//HO8vLzYs2cPc+bMYcaMGXh6eiodUWQAMhLUUJMmTVi9ejVDhgxBo9EoHUdkEhqNBgcHB4PlY8aMwcXFRTXFckdHR719R1RUlGonc7SwsGDBggW6llaNGjWicuXKqt6vFCxYkIsXLxoUyy9cuKCague7mJmZYWZmRvbs2dFoNLx48ULpSIrw9vbm6NGjBi1pwsLCGDBgABcvXgTA399fiXiKyZkzJ35+fty+fZuIiAhevnyJnZ0dxYsXVzqaIlasWKF0hAzHysqKqKgoChUqhL29PSEhIXh6emJjY8P9+/eVjieE+D9IsVwAKSMK3peaW45ERUURHx/Pmw9kqLEP5vuOQqlRo0aq/f4+NZMnT6Zhw4a4uLiwePFizMzM2L9/Pzt27MDX11eK5QKA+vXrU7hwYZYsWYKDgwP79u3Dzs6OVatWqXIkKEBsbCwbNmxg+/btFCpUyOCxXjWOVBL/nZoemLx//z5Tp06lW7du2Nvb07lzZ86cOUP+/PlZsGCB6ubLGDVqFCNHjuTUqVPs3LlT13rE09OTRo0a4erqqmxABXTp0oWxY8cSGRlJuXLlgJRC+YoVKxgwYIDC6ZRx9+5d9uzZw65du7h48SLOzs54enoyceJE8uXLp3S8dLN69Wp8fHx0rYpq1KiR6nbVq1dP52QZS0REBPny5aN27docPnyYlStXUrp0ab7++muloykiODiYxYsXExkZqXuaqW3btlSuXFnpaIrw9PRk6NChTJo0iZo1azJkyBDKlCnDgQMHKFKkiNLxhBD/B2nDIgDDNiOvTpzMzc0xMTEhJiYGIyMjLCwsOH78uEIplXP8+HGGDBnCw4cPAXT9L9XcB9PJySnVUShXrlyhdevWulEoalGuXDl27tyJra0tXl5eVKlShaFDh3L37l0aNmyo+kedRYqgoCAaNmyIqamp3vLnz5+zYcMGvL29FUqmnH8bqabGHpjiv1NT66+ePXvy/Plzpk6dysGDB5k9ezY//vgjW7duJTQ0lFWrVikdUVGxsbEEBgaydOlSEhISsLW1pWXLlnTs2NFg7plP2aZNm1i5ciURERGYmZnpWvWo9Sa+o6Mjjo6ONGzYkEaNGqmyPc8rp06dIjk5mQ4dOuDn56fXs12j0WBubk7JkiUNzlnUYu3atfj4+LB06VJy5MhBy5YtqVq1KqGhoXz99df07dtX6Yjpas+ePfTv358GDRrg5uZGUlIS58+fZ+/evcyZM0c3UEpNEhMTWbhwIU5OTtStW5fZs2ezdu1acuXKxZQpU3Bzc1M6ohDiP5KR5QLQbzOyYcMGNmzYwKRJk3SPmd25c4dRo0bh7u6uVERFjR8/nipVqtClSxdy5sypdBzFyCiUt7O2tiY8PJznz58THBzMsGHDADh27BgFChRQOJ1QUlRUFHFxcQAMHz4cBwcHgzYJoaGhzJw5U5XF8teL4bGxsSQlJckka0K8h99//51NmzZRoEAB9u7dS926dXFxccHKyorGjRsreUJL9gAAILpJREFUHU8Rz54948CBA+zcuZMjR45gY2PDt99+S8OGDfnrr7+YOXMmJ0+eZPHixUpHTTdeXl54eXkpHSPD+OWXX2QuGVKedFu5ciU2NjY0b96catWqkSNHDqVjZSiBgYFMmzaNypUrM2HCBJycnAgMDOTUqVP0799fdcXyuXPnMmjQIDp27Ki3fNmyZfj5+amyWH7+/Hm6d++ueyqyf//+9O/fX/ektRAi85JiuTDwww8/sHTpUr1+bIUKFWLEiBG0a9eOLl26KJhOGffu3ePHH39UxUi1d2nTpg0ODg66USi+vr5vHYWiNh07dqRXr15kyZIFZ2dnKleuTEBAAP7+/kyZMkXpeEJBJ0+epF+/frq+uS1atAD0n1ABaNq0qWIZlfbTTz8RGBioe3rHysqK1q1by6hyId7BzMyM+Ph4njx5wokTJ/jhhx+AlAEOarzh1LNnT44dO4aFhQWenp4sX75c13oEoGTJksTExDBy5EgFU6a/48ePc+nSJRITEw3aFKllH+vv70/nzp0xNzfnl19+eee2anlPHj58SFhYGDY2NgQFBTF48GClI2U49+/fp0KFCgAcOHCAb775BoD8+fPz7NkzJaMp4vbt29SpU8dgeZ06dZg1a5YCiZT3tn7/4eHhev3+hRCZjxTLhQGNRsP9+/cNWrPcuHFDVY+tvq5KlSqcOXNG9cVyGYXydt7e3lSqVIm7d+/qnsCoWrUqtWvXVl3fWKHviy++YP/+/SQnJ1OvXj3Wr1+vd1L96iaTWiflmzdvHitXrqRv3764ubmRnJzM2bNn8ff3x9TUlG7duikdUYgMqV69evTr14+sWbNiaWlJ7dq1+eWXX5g8eTLNmzdXOl66s7a2ZuHChVSpUuWtk3pWrFiR9evXp3My5UydOpXly5fj6OhI9uzZ9dapaeLTEydO4O3tjbm5OSdOnHjrdmp6Txo3bkyXLl10r/ltT4sCqmw3CWBvb8+2bduwsrLi3r171KtXj8TERJYsWaLKc/vixYtz6NAh2rdvr7f8t99+U1U7I3nSWgh1kJ7lwoC/vz8rVqzg22+/xdHREa1Wy6VLl1i+fDl9+vShQ4cOSkdMF6/30b1//z5btmyhQYMGFClShCxZsuhtq5ZRKG5ubvj5+eHu7v7WnuVCiP8mMTHRYHJLNahVqxZjx47Fw8NDb/nevXuZNGkSBw4cUCiZyIzU1LP85cuXrFy5krt37/LNN99QokQJgoKCiI2NpW3btqoq/InUVapUidGjR6v6ySXxdqGhocTExODt7W3Qs/x1ap288fjx4/Tr148nT57Qpk0bxowZg4+PD7t37yYgIICyZcsqHTFdHThwgD59+vDFF1/oJqU/f/48u3btYvr06TRs2FDhhOlH+v0L8emTYrlI1dq1a1m/fj0REREAODg40K5dO1WdbL951/xtNBoNy5cvT+M0GcPo0aNZv379e12Aq3UUihDv8vDhQxYuXEh4eDhJSUlASjuWxMREIiIiOHXqlMIJ01+FChVYv369QQ/ZiIgIvLy8ZHJcAaRcmLq5uWFsrP9Q5Ku+oK96pfbu3Ztx48ZhbW2tRMwMQ60334S+qlWrsmbNGooVK6Z0FEUFBQW997ZffvllmuXIqE6ePEn58uUN9q8CkpOTefr0qa4Y+vDhQywtLVW7fz1+/DirV682mDD49ZZXanL37l1sbW3RaDQy744QnxgplgvxHu7du0f+/PkNRpQnJSURGhpKmTJlFEqW/mQUihD/Xbdu3bh16xYNGjRgyZIlfPvtt9y6dYs9e/YwbNgwVU7w2aVLF/Lnz4+Pj49uH5uUlMTo0aO5ffs2K1asUDihyAje9jTTlStXaN26tSr7gsrNN/Fv/Pz8uHHjBhMmTCBbtmxKx1HMm08uvY1Go2Hfvn1pnCbjGT58+Htvq6Z5eP5tH1qpUqV0SiIyMpl3R4hPk9w+Fqk6c+YMP/30Ezdv3iQgIIBt27ZRsGBBGjVqpHQ0RdStWzfVi/Q7d+7Qpk0bVY18fNWjb/ny5TIKRYgPdOrUKZYsWYKbmxtHjx6ldu3aVKhQgUWLFnHo0CFVFsuHDx9O27ZtOXbsmO7G45UrV0hISCAwMFDhdEJJ0hf03UaMGPHOm29CnDx5knPnzrFz507y5MljMBpWLYXh/fv3f/DPbN++HQ8PD1XcZLC0tGTVqlWUKlUKV1dXTE1NCQkJ4fjx49SvX1+18xO97SljU1NT8ubNq4rfn+HDhzNy5Ehy5MjxrzdV1HQj5RWZd0eIT5dUuYSB3bt3M3z4cFq2bMnBgwd5+fIlxsbGDBs2TNezTQ3Wr19PQEAAkDJS66uvvjIYWR4TE0Px4sWViKe4zZs3s3nz5vfaVo0nT0KkRqvVYmNjA0CJEiUIDg6mQoUKeHp6snjxYoXTKaN48eKMGDGCx48fExkZiZmZGQcOHMDX11eVE2iJf7Rp0wYHBwddX1BfX9+39gVVI7n5Jv6Nl5cXXl5eSsfIlMaMGYOLi4sqiuW3b9+mU6dO9O/fX2/50qVLOXHihGrP40NDQ/W+T0pK4tatW0yYMIEmTZoolEpkJOvWrWPSpEl6T684OTlhY2PDpEmTpFguRCYmxXJhwN/fn3HjxtGkSRPWrFkDQKdOncibNy++vr6qKZZ/+eWXmJiYkJyczIgRI/j222/JmTOnbv2ri/SqVasqmFI5MgpFiA9XunRptmzZQs+ePXVtJdq3b8+dO3eUjqaYFStWMHv2bEaPHs24ceMAyJIlC4MGDWLYsGG0bNlS2YBCMfXr12flypXY2NjQvHlzqlWrJseW18jNN/FvmjdvrvvzkydPyJkzJxqNRiZ/fQ9q6lR67NgxBg0aZLC8du3azJkzJ/0DZVBGRkbY2dkxbNgwunXrpvf79al6/UaJl5cXrq6uBk+ovJo7RI1iY2NTnRPCzs6OqKio9A8khPhopFguDNy8eRNXV1eD5eXKleP+/fvpH0ghJiYmukl+ChUqJC1H3iCjUIT4cIMGDaJ79+6Ym5vTrFkzAgMDadKkCffu3VPVBMqvW7p0KT/88AN16tTRLRs6dCgVK1ZkypQpUixXsYcPHxIWFoaNjQ1BQUEMHjxY6UgZitx8E/9Gq9USEBDAsmXLePr0Kbt27WLu3Llky5aNUaNGYWpqqnREkQEUK1aMTZs2MXDgQN0yrVbLihUr5AmvVDx69IiYmBilY6Q7b2/vVNuShoeHM2DAAFXOHeLq6sqSJUsM5t1ZvHgxzs7OCqcTQvw/pPInDJQoUYLDhw8bjCDfvHkzJUqUUCiVsipVqsS+ffsICwvTTaIFKXfSg4ODVdlXV0ahCPHhZs6cSceOHSlXrhy5c+dm48aN7N27l1y5cuHp6al0PEVER0dTpEgRg+V2dna6yZKEOjVu3JguXbroRsG+rWc5QEhISHrFyjAGDhxIjx495OabeKt58+axY8cOpk6dqhvc0Lx5c8aMGcP06dMZNWqUwglFRjBy5Ei6d+/O7t27KVWqFACXL18mOTmZRYsWKZxOOan16H727BnHjh3jiy++UCBR+pO5Q95txIgRMu+OEJ8ojVZNz5iJ93L69Gl69OhB9erV2b9/P82aNePGjRtcvnyZgIAAqlWrpnTEdOfj48OGDRsoXbo0Fy9exM3NjVu3bvHw4UNat27NmDFjlI6Y7po3b467u7vBKJQJEyZw5coV1q5dq2A6ITKmdevWcfToUU6cOIGRkRE1atSgZs2auLu7kzt3bqXjKaJLly7kyJGDKVOmYG5uDkB8fDyjR4/mr7/+YunSpQonFEoKDQ0lJiYGb29v/Pz89HqWv65y5crpnCxjiI2NJS4uDmtra+7fv6938+3NeVaE+tStW5epU6dSqVIl3Nzc2Lp1K4ULF+b06dP07duXo0ePKh0xw3r9/VKDR48e8csvvxAZGUl8fDz29vZ4eHhgb2+vdDTFpFYsNzExwdnZmWbNmqnmyYxTp07p5g558zj8+twhank/Xjd8+HD69OnDvn37iIiIwMzMDDs7Oz777DOmTp2Kr6+v0hGFEP+RFMtFqh4+fMiqVas4f/48WbJkoXTp0rRu3RpbW1uloymiatWq+Pj40KBBA7744gv8/Px0PevMzc2ZMGGC0hHT3enTp+nevTvW1tapjkJR64RrQrwPrVZLcHAwx48f5+jRo5w6dQonJyfWr1+vdLR0d+vWLTp16kR0dLSu7+OtW7ewtrZm/vz52NnZKRtQZAgnT56Udmhvcf36dSIiIjAxMcHe3l41xT3x71xdXdmyZQtFixbVK/5eu3aNb775hnPnzikdMcNSU7H8zJkz9OvXjxkzZmBvb4+Xlxfx8fG8ePGCGTNmqPbJN6Hv7t272Nraqn7Og3PnznHz5k0gpVg+cuRIg/lUIiMjWblyJWfPnlUiohDiI5ArDmEgMTGRNWvWsH79et0j8JGRkVhbW9OhQweF0ykjNjaWsmXLAlCyZEkuXryIg4MD3bt3p3PnzgqnU0bFihXZvXu33iiUNm3aqH4UihD/JikpiStXrnD27FkuXLjAtWvXMDU1xcLCQuloiihSpAi//PILhw8f5saNGxgbG1OsWDHc3d0xMjJSOp7IIDZv3szmzZvfa1u1zJnxxx9/MGTIEE6dOoWlpSVarZanT5/i4eHBpEmTyJUrl9IRhcKqVq3K4sWL8fHx0S2LjY1l1qxZVKlSRcFkIiOZPHkyDRs2xMXFhcWLF2NmZsb+/fvZsWMHvr6+qi6W7927l8DAQCIjI0lKSsLOzo527drp5rVSEysrK3766SfCw8NTbUv666+/Kpgu/Zibm+Pn54dWq0Wr1RIYGKj3JJdGoyFbtmyptisVQmQeUiwXBiZMmMDhw4cZNGgQpUuXJjk5mYsXL+Lr68ujR48YMGCA0hHTXeHChQkODsbW1hYHBwcuXrzIV199pbswVaPXR6F8/vnneHl5sWfPHubMmSOjUIR4i/bt23P58mUsLCxwcXGhQoUKdO/endKlS6u6ZYKpqSl169ZVOobIwCwtLVm1ahWlSpXC1dUVU1NTQkJCOH78OPXr1zcY1aUGo0aNwsjIiH379lGwYEEAbty4wYgRIxgzZow8/i0YN24cvXv3pkaNGsTHx/Pdd99x7949bG1tWbBggdLxFHHq1Cnc3NwMnlJJSEjg0KFD1KtXD0iZI+FVa7BPXVhYGH5+fpibm7N//34aNGiAqakplStXZty4cUrHU8yaNWuYNm0a7dq1o1u3biQnJ3P27FnGjx9PYmIiX3/9tdIR09WoUaM4fvw41apVY+fOnXh6enLz5k0uXbpE7969lY6XbhwdHdm3bx+Qcl7v7+//1hZxQojMS4rlwsCOHTtYuHAhFStW1C1zdHSkYMGCDBgwQJXF8k6dOjFo0CDdyAsvLy+MjY05d+4cFSpUUDqeImQUihAfztjYGI1GQ+7cucmXLx82NjbY2NioulAuxPu4ffs2nTp10k1S+MrSpUs5ceKEakaTv+7UqVNs2rRJVygHKFasGGPGjKFVq1YKJhMZhYWFBRs2bOD48eNERkby8uVL7OzscHd3V+1xx9vbm6NHj2JlZaW3PCwsjAEDBnDx4kUA/P39lYinCGtra8LDw3n+/DnBwcEMGzYMgGPHjlGgQAGF0yknMDCQsWPH6o0ir1evHg4ODgQEBKiuWH7o0CHmzp1L9erVCQsLo2PHjpQtW5apU6cSFhamdDxFrFixQukIQog0IsVyYSBHjhyp9gTNmTOnanuFfv311xQrVozs2bOTL18+Zs2axZYtW3B2dlbVnfTXySgUIT7c0qVLefnyJVeuXOHUqVNs2bKF8ePHkzNnTipWrKjKgp8Q7+PYsWOpPtJcu3Zt5syZk/6BMoDixYtz7do1SpQoobf89u3begV0oV6NGzfG39+fatWqUa1aNaXjKGb16tX4+Pig0WjQarXUqFEj1e2qV6+ezskyho4dO9KrVy+yZMmCs7MzlStXJiAgAH9/f1Wflzx69AhXV1eD5W5ubvzxxx/pH0hh8fHxurllHBwcuHz5MmXLluWbb76hXbt2yoYTQoiPTJ2VT2Hg3r17uj97e3szdOhQRo4cibOzM0ZGRly7dg0fHx/69OmjYErlJCYmcuLECdasWcOjR48AyJ8/Px06dCBv3rwKp1OGjEIR4r8xNjbGxcWF7NmzY25ujqmpKQcOHOD3339XOpoQGVaxYsXYtGkTAwcO1C3TarWsWLECR0dHBZOlr6CgIN2fq1atysiRIwkODtadr129epVly5bx7bffKhdSZBhZsmQhMTFR6RiKa9OmDQ4ODiQnJ9OhQwd8fX312iZoNBrMzc1VOzm9t7c3lSpV4u7du7i7uwMp+5fatWurav/6JicnJ4KCgujXr5/e8s2bNxvcpFSD4sWLc+zYMVq0aIGDgwNnzpyhVatWPH36lPj4eKXjCSHER6XRarVapUMI5Tk6Oupmtn79I/HmMo1GQ0hISPoHVNiYMWM4fPgwffv2Nejj7uXlpcrWNMuXL2fGjBlkyZKFkiVLsn79er1RKE2aNFE6ohAZzqpVqzh58iSnT5/m+fPnVKpUiRo1auDu7k7x4sWVjidEhnX69Gm6d++OtbU1pUqVAuDy5cskJyezaNEi1RS5PDw83ms7jUaj66kq1GvixIls2rSJOnXqULBgQUxNTfXWq+XpyPr167Ny5UpsbGwYPnw4I0eOVOU8B+LDnDt3jo4dO1K6dGlcXFwAOH/+PCEhISxcuJCqVasqnDB97du3j759+zJmzBhq1qxJo0aNqFy5MlevXsXV1ZXZs2crHVEIIT4aKZYLAO7evfve26rx0d4KFSoY9HEHOHr0KAMGDODEiRMKJVNWSEiIbhRK1qxZOX/+PFmzZlX1KBQh3qVZs2a4u7vj7u5OhQoVDAoXQoi3e/ToEb/88guRkZHEx8djb2+Ph4cH9vb2SkfL0LZv346HhwfZsmVTOopIZ+3bt3/rOo1Gw/Lly9MxjXLc3Nzw8/PD3d0dJyenVHuWC5GaiIgI1q9fT2RkJGZmZtjZ2dGmTRvy58+vdDRF3L59m+TkZIoWLUpoaChbtmwhd+7ctG/fXjUT4goh1EGK5UK8h1q1ajF37lyDvnUXL16kZ8+eHD16VJlgQgghhAqcOXOGfv36MWPGDOzt7fHy8iI+Pp4XL14wY8YMmVT6HcqXL8+WLVsoXLiw0lFEBrVo0SJatWqFhYWF0lHSxOjRo1m/fr3uidl3UeMTtCJ1T58+5ccffyQ0NJS4uDi0Wq3eZ0gtN5teCQgIoFGjRnIsEUKogvQsF+ItpI+7EEIIkTFMnjyZhg0b4uLiwuLFizEzM2P//v3s2LEDX19fKZa/g4yLEf8mICAAT0/PT7ZYPmHCBNq2bUtMTAze3t74+fnp9SwXIjVDhgzhypUreHp6kjNnTqXjKO7gwYP4+vri5OREo0aN8PT0lHmqhBCfLBlZLsRbSB93IYQQImMoV64cO3fuxNbWFi8vL6pUqcLQoUO5e/cuDRs25MKFC0pHzLDc3NzYunWrjAYUb6Wmz8jJkycpX748xsYyZky8m6urK8uXL6dcuXJKR8kwHjx4wK5du9i9ezfnzp3D2dmZhg0b4unpibW1tdLxhBDio5GzBCHeQibGEkIIITIGa2trwsPDef78OcHBwQwbNgyAY8eOycg2IcR727x5M5s3b36vbadMmZLGaURGljdvXoyMjJSOkaHky5eP9u3b0759e6Kioli/fj2zZ89m6tSpXLlyRel4Qgjx0UixXIi3UONEpkIIIURG1LFjR3r16kWWLFlwdnamcuXKBAQE4O/vLwUtIcR7s7S0ZNWqVZQqVQpXV1dMTU0JCQnh+PHj1K9fnxw5cigdUSjo9Tacbdu2ZdSoUQwZMoRChQoZFM5tbW3TO16GcOvWLd3o8pCQEKpWrUqjRo2UjiWEEB+VFMuFEEIIIUSG5u3tTaVKlbh79y7u7u4AVK1aldq1a+Po6KhwOiFEZnH79m06depE//799ZYvXbqUEydOyM03lfPw8DBoufntt9/qTez5aqJPtbXh9Pf3Z/fu3YSHh1OhQgW++uorPv/8c3Lnzq10NCGE+OikWC6EEEIIITI8JycnnJycdN+7uroqF0YIkSkdO3aMQYMGGSyvXbs2c+bMSf9AIkORNpxvd/jwYb766is8PT3Jly+f0nGEECJNSbFcCCGEEEKITObUqVO4ubkZTFSYkJDAoUOHqFevHgA1atTA3NxciYhCZDjFihVj06ZNDBw4ULdMq9WyYsUKeUpFSBvOd1i7di0AN27cYN++fSQnJ2NnZ0eJEiUUTiaEEB+fRvvq+SIhhBBCCCFEpuDk5MTRo0exsrLSW37lyhVat27NxYsXFUomMoqJEyfi7e1NkSJF3rnd5MmT6dmzpyraKZw+fZru3btjbW1NqVKlALh8+TLJycksWrSIkiVLKpxQiIzp6dOnDBs2jH379mFpaUlSUhLPnj2jUqVKzJs3j5w5cyodUQghPhoplgshhBBCCJEJrF69Gh8fHzQaja5vbmqqV6/O4sWL0zmdyGgqV67Mxo0bKVy4sNJRMpRHjx7xyy+/EBkZSXx8PPb29nh4eGBvb690NCEyrCFDhhAREcGMGTN0vyvh4eEMGzaMkiVLMnnyZIUTCiHExyPFciGEEEIIITKJU6dOkZycTIcOHfDz88PS0lK3TqPRYG5uTsmSJTE1NVUwpcgI5s+fz7lz5+jYsSO2traYmZnprbe1tVUomXLOnDlDv379dAU/Ly8v4uPjefHiBTNmzMDT01PpiEJkSBUrVmTp0qU4OzvrLb948SJdu3blxIkTCiUTQoiPT3qWCyGEEEIIkQnUr1+flStXYmNjQ/PmzalWrRo5cuRQOpbIoHx9fYGUifleef2phJCQEKWiKWby5Mk0bNgQFxcXFi9ejJmZGfv372fHjh34+vpKsVyItzAzMyNLliwGyzUaDUlJSQokEkKItCPFciGEEEIIITKBhw8fEhYWho2NDUFBQQwePFjpSCIDa9q0Ka6urri7u2NkZKR0nAwhLCwMPz8/zM3N2b9/Pw0aNMDU1JTKlSszbtw4peMJkWF5eHgwfvx4Zs6cqZsH4caNG0ycOJFatWopnE4IIT4uKZYLIYQQQgiRCTRu3JguXbroepXXqFHjrduqcdSw0GdhYcGCBQvw9fWlQYMGNGrUiMqVK7+1170aWFtbEx4ezvPnzwkODmbYsGEAHDt2jAIFCiicToiMa/DgwfTq1YvPP/8cCwsLAGJiYqhZsyajR49WOJ0QQnxc0rNcCCGEEEKITCI0NJSYmBi8vb0Nepa/rnLlyumcTGREWq2WU6dOsXPnTnbv3g2Ap6cnjRo1wtXVVdlwCli+fDkzZswgS5YslCxZkvXr1xMQEIC/vz9TpkyhSZMmSkcUIkMLDQ0lMjISMzMz7OzsZGJcIcQnSYrlQgghhBBCZDInT56kfPnyGBvLg6Li/cTGxhIYGMjSpUtJSEjA1taWli1b0rFjR4PJPz9lISEh3L17F3d3d7Jmzcr58+fJmjUrjo6OSkcTIsP766+/ePnyJW+WkdQ4YbAQ4tMlxXIhhBBCCCEymeHDh7/3tlOmTEnDJCIje/bsGQcOHGDnzp0cOXIEGxsbPD09adiwIX/99RczZ87EysqKxYsXKx1VCJGBHTlyhDFjxvDHH3/oLVfzhMFCiE+XDEURQoj/tXd/oT3vDxzHXxOTEje7sVlsZXNjo2xcKP+iKGsXbtniQsONiAtXmuhwt4RJ1OQGLTcoF1pkEkuarJgpM0m5cbeL2e/ulH7Or05tPr/v9nhcvt83z7tvvb6fPh8AKDGLFy/OzZs3U19fn9WrV6e8vDxDQ0N59uxZtm3bloULFxadSME6OjrS39+fRYsWZceOHenp6UlDQ8Pf93V1dfnx40dOnjxZYCVQCjo7O9PQ0JBLly75fQFmPGM5AACUmNHR0ezbty9Hjhz55fz69et5/vy5p8lJRUVFuru7s27dun/8qOfatWtz+/btP1wGlJqvX7/m6tWrqa6uLjoFYNp5DQsAAJSYNWvWpLe3NzU1Nb+cf/z4Ma2trXn9+nVBZQDMNPv378+uXbvS2tpadArAtPNkOQAAlJjly5ent7c3R48e/ftscnIyN27c8KFCAKZUU1NTTp06lb6+vixbtizz5s375f7w4cMFlQFMPU+WAwBAiXn58mUOHDiQioqK1NfXJ0nevHmTnz9/5sqVK6mrqyu4EICZYs+ePf94V1ZWlp6enj9YAzC9jOUAAFCCvn//nvv372dkZCTj4+Opra3Nli1bUltbW3QaAACUpDlFBwAAAP/OwMBAWltbs2LFinR0dOTx48fp7u5OS0tLHjx4UHQeADPM6Oho/vrrrxw8eDDfvn3LnTt3MjAwUHQWwJQzlgMAQIk5c+ZMdu7cmcbGxty6dSvz58/P06dP09nZma6urqLzAJhBXrx4kZaWloyNjeXJkycZHx/PyMhI2tra8vDhw6LzAKaUsRwAAErM+/fv09bWlgULFuTRo0fZvn17ysvL09zcnC9fvhSdB8AMcv78+Rw9ejRdXV2ZO3dukuT48eM5duyYP2iBGcdYDgAAJaaioiLDw8MZHh7O27dvs3nz5iRJf39/lixZUnAdADPJu3fvsnHjxv8637p1az59+lRAEcD0mVt0AAAA8O+0t7fn0KFDmTNnTlatWpXm5uZcvnw5Fy5cyNmzZ4vOA2AGqaqqyuDgYKqrq3857+vrS1VVVUFVANPDWA4AACVm7969aWpqytjYWDZs2JAkWb9+fTZt2pSVK1cWXAfATHLkyJGcOHEig4ODmZiYyN27d/P58+fcu3cv586dKzoPYEqVTU5OThYdAQAAAMD/n9OnT2f37t25du1aPnz4kImJidTU1KS9vT2NjY1F5wFMKWM5AAAAAL/V3Nyc3t7eLF26tOgUgGlnLAcAAADgty5evJhXr16lvb09lZWVmT9//i/3lZWVBZUBTD1jOQAAAAC/9btvYZSVlWVycjJlZWUZGhoqoApgehjLAQAAAPitsbGx/3lfVVX1h0oApp+xHAAAAACAWW9O0QEAAAAAAFA0YzkAAAAAALOesRwAAAAAgFnPWA4AAAAAwKxnLAcAAAAAYNYzlgMAAAAAMOsZywEAAAAAmPWM5QAAAAAAzHr/AR8js1pIMaVRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2477,6 +2477,1116 @@ "source": [ "Price has a moderate positive correlation with sqft living (0.70), grade (0.67), sqft above (0.61). This means that as the values of these features increase, the price of the house also tends to increase." ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4.STATISTICAL ANALYSIS.\n", + "\n", + "Statistical analysis plays a crucial role in understanding relationships within datasets, identifying patterns, and gaining insights. In this regression modeling project aimed at predicting property values, several key steps in statistical analysis are essential:\n", + "\n", + "\n", + "1. Descriptive Statistics\n", + "2. Correlation matrix\n", + "3. Distribution Analysis\n", + "4. Inferential Statistics using Hypothesis Testing and Analysis of Variance\n", + "5. MultiColinierity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### **a.) Descriptive Statistics**\n", + "\n", + "Initial insights into the central tendency, dispersion, and shape of the data distribution.\n", + "
Understanding the characteristics of the data." + ] + }, + { + "cell_type": "code", + "execution_count": 239, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontconditiongradesqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15house_agerenovation_agetotal_sqft
count2.114200e+04211422.114200e+0421142.00000021142.00000021142.0000002.114200e+0421142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.0000002.114200e+04
mean4.581107e+092014-10-29 08:57:27.7722068485.405060e+053.3711572.1160962080.9425311.508757e+041.4936150.0067163.4098485.6583101789.104437291.8380951971.02435968.2597201987.30247812739.32220252.9756410.9556811.924945e+04
min1.000102e+062014-05-02 00:00:007.800000e+041.0000000.500000370.0000005.200000e+021.0000000.0000001.0000001.000000370.0000000.0000001900.0000000.000000399.000000651.0000009.0000000.0000002.013000e+03
25%2.123049e+092014-07-22 00:00:003.220000e+053.0000001.7500001430.0000005.043000e+031.0000000.0000003.0000005.0000001200.0000000.0000001952.0000000.0000001490.0000005100.00000027.0000000.0000008.820000e+03
50%3.904940e+092014-10-16 00:00:004.500000e+053.0000002.2500001910.0000007.620000e+031.5000000.0000003.0000005.0000001560.0000000.0000001975.0000000.0000001840.0000007626.00000049.0000000.0000001.159350e+04
75%7.309100e+092015-02-18 00:00:006.450000e+054.0000002.5000002550.0000001.069575e+042.0000000.0000004.0000006.0000002210.000000560.0000001997.0000000.0000002360.00000010087.00000072.0000000.0000001.546000e+04
max9.900000e+092015-05-27 00:00:007.700000e+0611.0000008.00000013540.0000001.651359e+063.5000001.0000005.00000011.0000009410.0000004820.0000002015.0000002015.0000006210.000000871200.000000124.00000090.0000001.653959e+06
std2.876357e+09NaN3.680831e+050.9022130.768545918.5638164.121013e+040.5392520.0816800.6504221.174272828.413341442.50436429.322166362.774103685.67165527169.85997129.3221665.8246594.156724e+04
\n", + "
" + ], + "text/plain": [ + " id date price \\\n", + "count 2.114200e+04 21142 2.114200e+04 \n", + "mean 4.581107e+09 2014-10-29 08:57:27.772206848 5.405060e+05 \n", + "min 1.000102e+06 2014-05-02 00:00:00 7.800000e+04 \n", + "25% 2.123049e+09 2014-07-22 00:00:00 3.220000e+05 \n", + "50% 3.904940e+09 2014-10-16 00:00:00 4.500000e+05 \n", + "75% 7.309100e+09 2015-02-18 00:00:00 6.450000e+05 \n", + "max 9.900000e+09 2015-05-27 00:00:00 7.700000e+06 \n", + "std 2.876357e+09 NaN 3.680831e+05 \n", + "\n", + " bedrooms bathrooms sqft_living sqft_lot floors \\\n", + "count 21142.000000 21142.000000 21142.000000 2.114200e+04 21142.000000 \n", + "mean 3.371157 2.116096 2080.942531 1.508757e+04 1.493615 \n", + "min 1.000000 0.500000 370.000000 5.200000e+02 1.000000 \n", + "25% 3.000000 1.750000 1430.000000 5.043000e+03 1.000000 \n", + "50% 3.000000 2.250000 1910.000000 7.620000e+03 1.500000 \n", + "75% 4.000000 2.500000 2550.000000 1.069575e+04 2.000000 \n", + "max 11.000000 8.000000 13540.000000 1.651359e+06 3.500000 \n", + "std 0.902213 0.768545 918.563816 4.121013e+04 0.539252 \n", + "\n", + " waterfront condition grade sqft_above sqft_basement \\\n", + "count 21142.000000 21142.000000 21142.000000 21142.000000 21142.000000 \n", + "mean 0.006716 3.409848 5.658310 1789.104437 291.838095 \n", + "min 0.000000 1.000000 1.000000 370.000000 0.000000 \n", + "25% 0.000000 3.000000 5.000000 1200.000000 0.000000 \n", + "50% 0.000000 3.000000 5.000000 1560.000000 0.000000 \n", + "75% 0.000000 4.000000 6.000000 2210.000000 560.000000 \n", + "max 1.000000 5.000000 11.000000 9410.000000 4820.000000 \n", + "std 0.081680 0.650422 1.174272 828.413341 442.504364 \n", + "\n", + " yr_built yr_renovated sqft_living15 sqft_lot15 house_age \\\n", + "count 21142.000000 21142.000000 21142.000000 21142.000000 21142.000000 \n", + "mean 1971.024359 68.259720 1987.302478 12739.322202 52.975641 \n", + "min 1900.000000 0.000000 399.000000 651.000000 9.000000 \n", + "25% 1952.000000 0.000000 1490.000000 5100.000000 27.000000 \n", + "50% 1975.000000 0.000000 1840.000000 7626.000000 49.000000 \n", + "75% 1997.000000 0.000000 2360.000000 10087.000000 72.000000 \n", + "max 2015.000000 2015.000000 6210.000000 871200.000000 124.000000 \n", + "std 29.322166 362.774103 685.671655 27169.859971 29.322166 \n", + "\n", + " renovation_age total_sqft \n", + "count 21142.000000 2.114200e+04 \n", + "mean 0.955681 1.924945e+04 \n", + "min 0.000000 2.013000e+03 \n", + "25% 0.000000 8.820000e+03 \n", + "50% 0.000000 1.159350e+04 \n", + "75% 0.000000 1.546000e+04 \n", + "max 90.000000 1.653959e+06 \n", + "std 5.824659 4.156724e+04 " + ] + }, + "execution_count": 239, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "housing_data.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Price Distribution:**\n", + "\n", + "The price of houses in the dataset varies widely, ranging from $78,000 to $7,700,000, with an average price of $540,506. The standard deviation of $368,083.1 indicates a significant dispersion around the mean, suggesting a diverse range of housing prices.\n", + "\n", + "**Bedrooms and Bathrooms:** \n", + "\n", + "The average number of bedrooms is approximately 3.37, while the average number of bathrooms is about 2.12. The standard deviations for both variables are relatively small, indicating less variability compared to other features.\n", + "\n", + "**Square Footage:**\n", + "\n", + " The average square footage of living space is around 2,080, with a standard deviation of 918.56. Similarly, the average lot size is approximately 15,087 square feet, with a larger standard deviation of 41,210.13, suggesting more variability in lot sizes compared to living space.\n", + "\n", + "**Floors:**\n", + "\n", + "On average, houses have 1.49 floors, with a standard deviation of 0.54. This indicates some variability in the number of floors, although most houses seem to have either one or two floors.\n", + "\n", + "**Waterfront Property:**\n", + "\n", + " Only a small percentage (0.7%) of the houses are waterfront properties, based on the average value. This feature is likely represented as a binary variable (0 for no waterfront, 1 for waterfront), with most houses being non-waterfront properties.\n", + "\n", + "**Condition and Grade:**\n", + "\n", + "The average condition of houses is approximately 3.41, with a standard deviation of 0.65, suggesting some variability in the condition ratings. Similarly, the average grade is around 5.66, with a standard deviation of 1.17, indicating variations in the overall quality of houses.\n", + "\n", + "**Year Built and Year Renovated:**\n", + "\n", + "The houses in the dataset span a wide range of construction years, from 1900 to 2015, with an average year of construction around 1971. The standard deviation of 29.32 indicates some variability in the construction years. Additionally, the average year of renovation is approximately 68.26, with a standard deviation of 443.5, suggesting that most houses have not been renovated." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### **b.) Correlation Analysis with House Prices**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Correlation analysis was performed to examine the relationship between various features and the target variable, 'price'. \n", + "
Here are the correlation coefficients between each feature and the price:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 240, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "price 1.000000\n", + "bedrooms 0.316573\n", + "bathrooms 0.525899\n", + "sqft_living 0.702340\n", + "sqft_lot 0.087940\n", + "floors 0.256372\n", + "waterfront 0.265970\n", + "condition 0.035264\n", + "grade 0.667751\n", + "sqft_above 0.605167\n", + "sqft_basement 0.325003\n", + "yr_built 0.054471\n", + "yr_renovated 0.116721\n", + "sqft_living15 0.586441\n", + "sqft_lot15 0.083196\n", + "house_age -0.054471\n", + "renovation_age 0.082356\n", + "total_sqft 0.118225\n", + "dtype: float64" + ] + }, + "execution_count": 240, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "drop_var = ['id', 'price_range', 'date']\n", + "\n", + "correlation = housing_data.drop(drop_var, axis=1).corrwith(housing_data['price'])\n", + "correlation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These correlation coefficients indicate the strength and direction of the linear relationship between each feature and the price of the houses.\n", + "
Features with higher positive correlation coefficients, such as 'sqft_living', 'grade', 'bathrooms', and 'sqft_above', have a stronger positive linear relationship with the price, indicating that as these feature values increase, the price tends to increase as well. Conversely, features with low or negative correlation coefficients, such as 'condition', 'yr_built', 'sqft_lot', and 'house_age', have weaker or negative linear relationships with the price.\n", + "
However, it's imperative to underscore that correlation does not imply causation. There could be an underlying third factor driving changes in both features, underscoring the need for thorough investigation beyond correlation analysis." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### **c.) Distribution Analysis**\n", + "\n", + "Distribution analysis involves understanding the distribution of data, such as whether it follows a normal distribution and skewed distribution" + ] + }, + { + "cell_type": "code", + "execution_count": 241, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontcondition...sqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15house_agerenovation_agetotal_sqftprice_range
071293005202014-10-1312.3099871.3862940.6931477.0741178.6395880.6931470.01.386294...7.0741170.00000019550.0000007.2011718.639588690.0000008.988571100K-300K
164141001922014-12-0913.1956161.3862941.1786557.8520508.8877911.0986120.01.386294...7.6829435.99396119517.5968947.4330758.941153733.5263619.424080300K-600K
256315004002015-02-2512.1007181.0986120.6931476.6476889.2104400.6931470.01.386294...6.6476880.00000019330.0000007.9087558.995041910.0000009.353661100K-300K
324872008752014-12-0913.3113311.6094381.3862947.5812108.5173930.6931470.01.791759...6.9574976.81454319650.0000007.2159758.517393590.0000009.096163600K-1M
419544005102015-02-1813.1421681.3862941.0986127.4271448.9972710.6931470.01.386294...7.4271440.00000019870.0000007.4960978.923191370.0000009.344959300K-600K
\n", + "

5 rows × 21 columns

\n", + "
" + ], + "text/plain": [ + " id date price bedrooms bathrooms sqft_living \\\n", + "0 7129300520 2014-10-13 12.309987 1.386294 0.693147 7.074117 \n", + "1 6414100192 2014-12-09 13.195616 1.386294 1.178655 7.852050 \n", + "2 5631500400 2015-02-25 12.100718 1.098612 0.693147 6.647688 \n", + "3 2487200875 2014-12-09 13.311331 1.609438 1.386294 7.581210 \n", + "4 1954400510 2015-02-18 13.142168 1.386294 1.098612 7.427144 \n", + "\n", + " sqft_lot floors waterfront condition ... sqft_above sqft_basement \\\n", + "0 8.639588 0.693147 0.0 1.386294 ... 7.074117 0.000000 \n", + "1 8.887791 1.098612 0.0 1.386294 ... 7.682943 5.993961 \n", + "2 9.210440 0.693147 0.0 1.386294 ... 6.647688 0.000000 \n", + "3 8.517393 0.693147 0.0 1.791759 ... 6.957497 6.814543 \n", + "4 8.997271 0.693147 0.0 1.386294 ... 7.427144 0.000000 \n", + "\n", + " yr_built yr_renovated sqft_living15 sqft_lot15 house_age \\\n", + "0 1955 0.000000 7.201171 8.639588 69 \n", + "1 1951 7.596894 7.433075 8.941153 73 \n", + "2 1933 0.000000 7.908755 8.995041 91 \n", + "3 1965 0.000000 7.215975 8.517393 59 \n", + "4 1987 0.000000 7.496097 8.923191 37 \n", + "\n", + " renovation_age total_sqft price_range \n", + "0 0.000000 8.988571 100K-300K \n", + "1 3.526361 9.424080 300K-600K \n", + "2 0.000000 9.353661 100K-300K \n", + "3 0.000000 9.096163 600K-1M \n", + "4 0.000000 9.344959 300K-600K \n", + "\n", + "[5 rows x 21 columns]" + ] + }, + "execution_count": 241, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from scipy.stats import skew\n", + "\n", + "# Select numerical variables only\n", + "numerical_data = housing_data.select_dtypes(include=['number'])\n", + "\n", + "# Compute skewness for each numerical variable\n", + "skewness = numerical_data.apply(lambda x: skew(x.dropna()))\n", + "\n", + "# Select variables with skewness above a certain threshold (e.g., 0.5)\n", + "skewed_variables = skewness[abs(skewness) > 0.5].index\n", + "\n", + "# Log transformation for skewed variables\n", + "df_log = housing_data.copy() # Create a copy of the original DataFrame to preserve the original data\n", + "df_log[skewed_variables] = housing_data[skewed_variables].apply(lambda x: np.log1p(x))\n", + "\n", + "# Check the distributions before and after transformation if needed\n", + "# For example, you can use histograms or density plots to visualize the distributions\n", + "\n", + "# Print the first few rows of the transformed data to verify\n", + "df_log.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 242, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAArmCAYAAACgTmnUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdf4/8Nds303vpGCo0lkCSDlAyqkHgqffiJ54p9gOVMrpqZwRDymHUYrlBBU8G+KJR7vzEPEnemIDSzABRBSkBVI3Pdm+O78/tkAgIbvJ9ryej0cekJ3PzHxmdplh3vv+vD+CKIoiiIiIiIiIiIiIAkgS7A4QEREREREREVHnw6AUEREREREREREFHINSREREREREREQUcAxKERERERERERFRwDEoRUREREREREREAcegFBERERERERERBRyDUkREREREREREFHAMShERERERERERUcAxKEVERERERERERAHHoBRRCJg0aRIeffTRVpc/+uijmDRpUgB7REREoaRPnz544YUXgt0NIiJyauv/76G6baJQIwt2B4gIWLNmDaKjo4PdDSIiClHvvvsuunTpEuxuEBEREfkUg1JEIaB///7B7gIREYWwIUOGBLsLRERERD7H4XtEIeD8FN26ujrk5eVhxIgRuOKKK7By5UrY7fYg95CIiHxh0qRJePbZZ/Hkk0/iiiuuwMiRI7FgwQLU1tYCcAzXnjlzJp544gkMHToU1157LWw220XD9yoqKvCXv/wFo0ePRk5ODv7whz/g+++/dy+32+1Yv349rr76agwcOBC/+c1v8NZbbwX6cImIIprFYsHf/vY3XHHFFRg+fDj+8pe/oLq62r38u+++wx/+8AdotVqMGDHiouUAcOTIEdx5553IycnBxIkT8d577120nz59+mDNmjXIzc3F4MGDsWbNGgDAyZMnMX/+fIwZMwZDhgzBbbfdhoKCgmbrNjQ0ID8/H1dddRUGDRqEadOmYcuWLc3aTJo0CWvWrMGTTz6JkSNHIicnBw899BCampqwfv16XHnllRg2bBjmzZuHmpoa93qHDh3CzJkzMWzYMOTk5OCOO+5AYWFhR08rdTLMlCIKIXa7Hffccw/Onj2Lv/zlL4iPj8c//vEPHDx4EKmpqcHuHhER+cA///lPZGdnIz8/H9XV1Vi9ejVOnTqFTZs2AXA8xCiVSqxduxZ6vR5SqbTZ+k1NTZgxYwZsNhseeeQRpKWl4bXXXsNdd92F7du3o1u3bli8eDG2bduG2bNnIycnB99++y2efPJJ1NfXY86cOcE4bCKiiPPBBx9Aq9XiqaeeQnV1NVatWoVjx47hX//6F/bv348777wTo0aNwnPPPYe6ujo8//zzuP3227FlyxaoVCqUl5fjD3/4A7p164aVK1eisbERq1atQlVV1UX7evnll/HQQw+he/fuyMzMxLFjx3DzzTejW7duePzxxyGXy7FhwwbMnDkTr732GkaMGAGj0Yhbb70VVVVVmD9/PjIzM7F7924sXLgQOp0O9957r3v7r732GsaMGYNnn30Whw4dwurVq/HDDz8gNTUVy5Ytw5kzZ7B8+XIkJyfjiSeeQGNjI+655x6MGjUKL7zwAsxmM1566SXcfffd+PTTTxETExPIt4LCGINSRCHks88+w4EDB/DKK6/gyiuvBACMHj2aRc6JiCKIRCLB66+/7v4Pe2JiIubMmYPPP/8cAGC1WrF06dJWa0ht374dZ8+exfbt29GvXz8AwNChQ3HDDTfg22+/hSiK+Ne//oU///nPmDVrFgBg7NixEAQB69atw6233oqEhIQAHCkRUWRLSEjAq6++Co1G4/59zpw5+Oyzz7Bu3Tp0794d69atc3+5oNVqMXXqVGzduhW///3v8cYbb8Bms2H9+vVITEwEAHTv3h0333zzRfsaPnw47rzzTvfvDzzwABQKBTZs2OCuTTthwgRMmzYNK1aswJYtW7Bt2zb8/PPP2LRpE3JycgAA48aNg9VqxYsvvohbbrkF8fHxAIDo6Gg8++yzkMlk+NWvfoXt27ejvLwcmzdvdt+vPv/8c+zfvx8AcOzYMdTU1OD222/H0KFDAQA9evTAu+++i6amJgalyGMcvkcUQr777jvI5XKMGzfO/ZpGo8H48eOD2CsiIvKlSZMmNfvP+qRJkyCTyfDtt98CAOLj4y9Z1LygoABZWVnugBQAqNVqfPjhh7jpppuwb98+iKKISZMmwWq1un8mTZoEk8l00dAOIiJqn/Hjx7sDUkDz63lRURHGjx8PURTd1+GuXbuiZ8+e+PLLLwE4rudDhgxxB6QAR+AqIyPjon2df80HgG+++QYTJ05sNlmSTCbD1KlTcejQITQ1NeGbb75BZmamOyDl8tvf/hYmkwlFRUXu1wYPHgyZ7FzOSnJyMrp3797sfhUfH4+GhgYAQO/evZGYmIh7770XixYtwkcffYTk5GQ88sgjnJiDvMJMKaIQUldXh/j4eAiC0Oz1lJSUIPWIiIh8LS0trdnvEokECQkJqKurAwBERUVdcv3a2lokJSVdcjkATJ06tcXl5eXlXvSWiIhac+H/0V3X8/r6etjtdrzyyit45ZVXLlpPqVQCcPzfPysrq83tAmgW/HKtm5ycfFG75ORkiKKIxsZG1NXVtbgt13r19fXu11qaCfzCfZ4vKioKb7/9Nl566SV88MEHePfdd6FSqXD99dfj8ccfh0KhaHVdovMxKEUUQhISElBTUwObzdashojrAYOIiMLf+UViAcBms6GmpgaJiYkoKytrc/2YmBicOXPmotf379+PuLg4xMbGAgDefPPNFgNcLX0DT0RE3rvw/+iu63l0dDQEQcAdd9zR4hcEarUagOP//jqdrs3ttiQuLq7FdSsrK93bjouLw6lTpy7ZpiN69OiBlStXwmaz4cCBA/jPf/6Dd955B5dddhnuueeeDm2bOg8O3yMKIaNHj4bVasXu3bvdr5nNZneKLxERhb/PPvsMZrPZ/fvHH38Mq9WK0aNHe7T+8OHDUVxcjKNHj7pfM5lMmDdvHrZs2YLhw4cDcAS/Bg0a5P6prq7G888/zy86iIh85Msvv4TVanX//uGHH8JqteLKK69E//79cfz48WbX4d69e+OFF17A119/DQAYNWoUvv/++2YZrMeOHUNxcXGb+77iiivwv//9D42Nje7XbDYb3n//fQwaNAgKhQJXXHEFzp4922x2VgB47733IJfLMXjw4HYf+65duzBq1ChUVlZCKpUiJycHixcvRmxsLEpKStq9Xep8mClFFEJGjx6NsWPH4vHHH0dVVRUyMzOxYcMGVFdXX3KoBhERhY/S0lLcd999uP3221FaWopnnnkG48aNw8iRI7F9+/Y218/NzcVbb72F++67D/Pnz0dCQgI2bNgAi8WCW2+9FV27dsVvf/tb/PWvf8XZs2cxcOBAnDhxAs8++yyysrLQrVs3/x8kEVEnUFlZiXnz5uG2227DyZMn8cwzz2DMmDEYPXq0e7KJhx56CL/97W9hs9nw2muvoaioCPfffz8AYObMmdiyZQvuvvtuzJs3DzabDc8++yzkcnmb+547dy4+++wz3H777Zg1axbkcjk2btyI4uJi/OMf/wDguF/885//xJw5czB//nxkZWXhk08+wdatWzF37lx3Zm17DB06FHa7HXPmzMGsWbMQFRWFDz74AA0NDbjmmmvavV3qfBiUIgoxa9aswapVq/D3v/8dJpMJ1157LW6++WZ8/PHHwe4aERH5wNSpUxEbG4sHHngAGo0G//d//4cHH3zQ4/Wjo6OxceNGrFixAsuWLYPdbseQIUOwYcMGdO3aFQCQn5+PdevWYdOmTSgrK0NSUhKuvfZaPPDAA82GhxMRUfvdeuutaGhowJw5c6BQKHDdddfhkUcegSAIGDt2LF599VWsWbMG8+fPh1wux4ABA/D6669jyJAhABzD59555x0sX74cjz76KKKionDPPfdg586dbe67d+/e+Oc//4lnnnkGeXl5EAQBgwcPxoYNG9wZs2q1Gm+99RZWr16N559/Ho2NjejRoweWL1+O6dOnd+jYU1NT8Y9//APPP/88Fi5cCIPB4M4EGzVqVIe2TZ2LIIqiGOxOEBEREXUGkyZNwogRI/DUU08FuytEREREQceaUkREREREREREFHAMShERERERERERUcBx+B4REREREREREQUcM6WIiIiIiIiIiCjgGJQiIiIiIiIiIqKAY1CKiIiIiIiIiIgCjkEpIiIiIiIKG2azGdOmTcPXX3/tfq24uBh33HEHhgwZgmuvvRZffPFFs3W++uorTJs2DVqtFrfffjuKi4ubLX/jjTcwbtw45OTk4LHHHoPBYHAvM5lMeOyxxzB8+HCMHTsWr732mn8PkIioE2FQioiIiIiIwoLJZMKf//xnHD161P2aKIqYM2cOkpOTsXXrVlx//fWYO3cuSkpKAAAlJSWYM2cOcnNzsWXLFiQmJuL++++Ha76nDz/8EGvWrMHSpUvx5ptvoqioCCtXrnRvf8WKFTh06BDefPNNPPHEE1izZg127doV2AMnIopQsmB3IJxVVTXAm7kLBQFISorxer1wEenHB0T+MUb68QGRf4zeHJ+rLfmWN+c+Uj+HvsLz1Daeo7bxHLXt/HMEhO694dixY3jooYdw4eTh+/btQ3FxMTZt2gSNRoOePXti79692Lp1K+bNm4fNmzdj4MCBuOuuuwAA+fn5GDNmDL755huMHDkSGzZswMyZMzFx4kQAwJIlS3D33XfjkUcegSiK2Lx5M1555RUMGDAAAwYMwNGjR/H2229j8uTJXvU/1D+DkfxvJZKPDeDxhbtwOT5/PTswKNUBooh2fWjau164iPTjAyL/GCP9+IDIP8ZIP75Q5s255/vkGZ6ntvEctY3nqG2hfn5cQaQHH3wQQ4YMcb9eVFSE/v37Q6PRuF8bNmwYCgsL3cuHDx/uXqZWqzFgwAAUFhZi+PDhOHjwIObOnetePmTIEFgsFhw5cgSiKMJqtSInJ6fZtl9++WXY7XZIJJ4PPAmXz2C49LM9IvnYAB5fuIv042sNg1JERERERBTybr311hZfr6ysRGpqarPXkpKSUFZW1uby+vp6mEymZstlMhni4+NRVlYGiUSChIQEKBQK9/Lk5GSYTCbU1tYiMTHR4/4LgsdNg8LVv1DvZ3tE8rEBPL5wFy7H56/+MShFRERERERhy2AwNAsaAYBCoYDZbG5zudFodP/e0nJRFFtcBsC9fU+F6rDIC4VLP9sjko8N4PGFu0g/vtYwKEVERERERGFLqVSitra22Wtmsxkqlcq9/MIAktlsRmxsLJRKpfv3C5er1WrYbLYWlwFwb99T4VIvJtT72R6RfGwAjy/chcvxsaYUERERERHRBdLS0nDs2LFmr+l0OveQvLS0NOh0uouW9+vXD/Hx8VAqldDpdOjZsycAwGq1ora2FikpKRBFETU1NbBarZDJHI9OlZWVUKlUiI2N9aqf4VIvJlz62R6RfGwAjy/cRfrxtcbzynxEREREREQhRqvV4ocffnAPxQOAgoICaLVa9/KCggL3MoPBgMOHD0Or1UIikWDQoEHNlhcWFkImk6Fv377o168fZDKZu2i6a9uDBg3yqsg5ERG1jFdSIiIiIiIKWyNGjEB6ejry8vJw9OhRrF+/HgcOHMD06dMBADfeeCP279+P9evX4+jRo8jLy0NWVhZGjhwJwFFA/dVXX8Xu3btx4MABLF68GDfffDPUajXUajVuuOEGLF68GAcOHMDu3bvx2muv4fbbbw/mIRMRRQwO3yMiIiIiorAllUrx4osvYuHChcjNzUV2djbWrl2LjIwMAEBWVhZeeOEFPPnkk1i7di1ycnKwdu1aCM6ppKZOnYqzZ89i0aJFMJvNuOaaa/DII4+4t5+Xl4fFixdj5syZiI6Oxrx583DNNdcE5ViJiCKNIIqdcdSib+h03hUiEwQgOTnG6/XCRaQfHxD5xxjpxwdE/jF6c3yutuRb3pz7SP0c+grPU9t4jtrGc9S2888RwHuDv4T6ZzCS/61E8rEBPL5wFy7H569nBw7fIyIiIiIiIiKigGNQioiIiIiIiIiIAo5BKSIiIiIiIiIiCjgGpYiIiIiIiIiIKOAYlCIiIgoDoihCr9eD85MQEVE4s9vtqKioQEVFBex2e7C7Q0RBJgt2B4j8beyVo1BWWtpmuy7p6fjis30B6BERkfcMBgPWfFSEuVdrodFogt0dIiKidtHpdFj3cREAYPavtUhNTQ1yj4gomBiUoohXVlqKBW/uabPdipnjA9AbIqL2kytVwe4CERFRh0XFJQa7C0QUIjh8j4iIiIiIiIiIAo5BKSIiIiIiIiIiCjgGpYiIiIiIiIiIKOAYlCIiIiIiIiIiooBjUIqIiIiIiIiIiAIuLIJSZrMZ06ZNw9dff+1+rbCwELfccgtycnLwm9/8Bps3b262zldffYVp06ZBq9Xi9ttvR3FxcbPlb7zxBsaNG4ecnBw89thjMBgMATkWIiIiIiIiIiIKg6CUyWTCn//8Zxw9etT9WmVlJf74xz9ixIgR2L59O+bPn49ly5bh008/BQCUlJRgzpw5yM3NxZYtW5CYmIj7778foigCAD788EOsWbMGS5cuxZtvvomioiKsXLkyGIdHRERERERERNQphXRQ6tixY7j55ptx+vTpZq/v3r0bycnJ+POf/4xu3bph6tSpuOGGG/Df//4XALB582YMHDgQd911F3r37o38/HycPXsW33zzDQBgw4YNmDlzJiZOnIjBgwdjyZIl2Lp1K7OlQsDYK0ehV+9sj37GXjkq2N0loiBqKYu2uLgYd9xxB4YMGYJrr70WX3zxRbN1mEVLRERERBQ6ZMHuwKV88803GDlyJB588EEMGTLE/fq4cePQr1+/i9o3NjYCAIqKijB8+HD362q1GgMGDEBhYSGGDx+OgwcPYu7cue7lQ4YMgcViwZEjR5CTk+O/A6I2lZWWYsGbezxqu2LmeD/3hohClclkwkMPPdQsi1YURcyZMweXX345tm7dit27d2Pu3LnYuXMnMjIy3Fm08+bNw7hx47B27Vrcf//9eO+99yAIgjuLduXKlUhKSkJeXh5WrlyJRYsWBfFIiYiIiIgiV0gHpW699dYWX8/KykJWVpb796qqKrz//vuYN28eAMfwvtTU1GbrJCUloaysDPX19TCZTM2Wy2QyxMfHo6yszKv+CYJXzd3tvV0vXATj+Hy9r7a2x/cw/EX6MXpzfOF6Do4dO4aHHnrIPSTbZd++fSguLsamTZug0WjQs2dP7N27F1u3bsW8efOaZdECQH5+PsaMGeP+AuT8LFoAWLJkCe6++2488sgjUKvVAT9OwBFoMxgMQds/EREREZE/hXRQyhNGoxHz5s1DcnIyfve73wEADAYDFApFs3YKhQJmsxlGo9H9e0vLvZGUFNOuPrd3vXDRkeMTJAI0GqXHbZOT296Xp9v0dHsA38NIEOnHGMnH11oWbVFREfr37w+NRuN+bdiwYSgsLHQvD7csWoPBgDUfFWHu1dqg7J+IiIiIyJ/COijV1NSE+++/HydPnsQ///lP9zfJSqXyogCT2WxGbGwslEql+/cLl3v7TXRVVQMu+KL+kgTB8aDo7Xq+MmbcKJSVlrbZrkt6Or78fJ/X2/fF8Yl2EXq9yeO2Ol2Dz7bpyfaC/R76WyQcX5ufcwEQBAFpaV3a9TkPdd68h6624aa1LNpLZcm2tdyXWbS+JlMoYTDooVIxW4qIiIiIIkvYBqUaGxtxzz334PTp03jzzTfRrVs397K0tDTodLpm7XU6Hfr164f4+HgolUrodDr07NkTAGC1WlFbW4uUlBSv+iCKaNeDe3vX6yhP6zWtmDm+Q/0L5PH5ej+ebi9Y72GghPPxefI512iUWHzTqLA9Rk+E83vYXpfKkm1ruS+zaL0ZOunJkGGr2YR1/zuMeyf1d78WrkMvvRXpw219geeobTxHbeM5IiKiYAnLoJTdbsfcuXNx5swZvPXWW+7gkotWq0VBQYH7d4PBgMOHD2Pu3LmQSCQYNGgQCgoKMHLkSABAYWEhZDIZ+vbtG9DjICIi31EqlaitrW32mtlshkqlci8PRBatN9lnbbXV66VQqRWQRGmQlBQDtVqB5OQYqNVqd60poRM8RYZjRl+g8Ry1jeeobTxHREQUaGEZlNqyZQu+/vprvPTSS4iNjUVlZSUAQC6XIz4+HjfeeCNeffVVrF+/HhMnTsTatWuRlZXlDkLdeuutWLRoES6//HKkpqZi8eLFuPnmm1lIlogojKWlpeHYsWPNXtPpdO4heYHKovVm6GRbbfV6PYwGMwSJDVVVDTAYzM5hxg144f8VYd412mY1tCJNJAwp9jeeo7bxHLXt/HMEMDhFRESBE5ZBqQ8//BB2ux2zZ89u9vqIESPw1ltvISsrCy+88AKefPJJrF27Fjk5OVi7dq372+SpU6fi7NmzWLRoEcxmM6655ho88sgjwTgUIiLyEa1Wi/Xr18NoNLqzowoKCjBs2DD38kBk0XozdLKttucvc/3d9adcqeo0wzQ7y3F2BM9R23iO2sbzQ0REgRY2QamffvrJ/fdXX321zfbjx4/H+PHjW10+a9YszJo1yyd9IyKi4BsxYgTS09ORl5eH+++/H//73/9w4MAB5OfnAwCzaImIiIiIQowk2B0gIiLyBalUihdffBGVlZXIzc3Fe++9h7Vr1yIjIwMA3Fm0W7duxfTp01FbW3tRFu3s2bOxaNEi3HXXXRg8eDCzaImIiIiI/ChsMqWIiIgudH4WLQBkZ2dj48aNrbZnFi0RERERUehgphQREREREREREQUcg1JEREQhThRFGAwGFiEmIiIioojCoBQREVGIs5pNePWzH2GzWoLdFSIiIiIin2FQioiIKAzIFapgd4GIiIiIyKdY6JyIiCgMmGyAyWwPdjeIiIiIiHyGmVJEREQhThSBz8uBD0+ZUdFoDnZ3iIiIiIh8gkEpIiKiEFdjBhosgE0Evj9dFezuEBERERH5BINSREREIa5Ef+7vv1Qbg9cRIiIiIiIfYlCKiIgohImi2CwodbzaFLzOEBERERH5EINSREREIazODDRZz/3OTCkiIiIiihQMShEREYWwBrMIAIhTOH6vNlhRo7cEsUdERERERL7BoBQREVEIs9gdf6qlQJTM8fdjVfrWVyAiIiIiChOyYHeAKJDMNjtOVulR0WiGyWpHvFqG7AQNkqMVwe4aEVGLLHZHppRcAsQrHEP5jukMQe4VEREREVHHMShFnYLVLuJQaT0Kz9S7H/Bc9p+pR9/UKECmDFLviIhaZ3VmSskEQOm8a5+uNSJeGrw+ERERERH5AoNSFPEkiVn494Ey1BgcNVjiVDJ0S9RAJZegvMGEk9UGHKloQvRv5sNstUMh46hWIgodruF7coljCB8AVOnNiI8JXp+IiIiIiHyBQSmKaJ/8XInY/1uMGoMFarkEo7IT0DNZA0EQ3G3O1hnx/45UAl0HI3/3UTwxuU8Qe0xE1Jwru1MmAVTOu3ZVkwU9Y3gLJyIiIqLwxv/RUkQSRRFvflOMtV+chCBXIitOhQm9k6CWXzzeJTNOhav7JGPnD+XY8UM5ftM3BaO6JQah19RZjL1yFMpKSz1q2yU9HV98ts/PPaJQ1nKmlAW8hRMRERFRuOP/aCniWGx25H90FP/9oRwAYDz4IX7zx3sgOS876kJZ8WqYDv0/qAZPxlO7j+HdO4ZDyWF85CdlpaVY8OYej9qumDnez72hUHd+TSmVMyhVY7DCLoqtr0REREREFAb41E0RpdZgwbytB/HfH8ohEYBHJvWE4cuNlwxIuRi+3YqUaAXO1hnx/uHyAPSWiKhtrkwpmQRQSACp83JmsDIoRUREREThjUEpihjHKpsw8+3vUVBchyiFFM/830DcnJPp+QYsRtx2RVcAwNvfnWEWAhGFBFdNKbkEEAQgUeNIcjZYeI0iIiIiovDGoBRFhI9/rsRd73yPkjojMuNU+MctQzCmu/d1oa4f2AUxShlO1xjw+S9VfugpEZF3XMP35M4MqSS1HABgcC0gIiIiIgpTDEpRWKs3WrD4gyN49L8/wmCxY8Rl8Xjz9znolRLVru1pFFLkatMBAFuLPCtETUTkT+cP3wOYKUVEREREkYOFziksiaIIeY8R+N0bBdA1mSEAuO2KLNw3tjtkkrbrR7WkUd+EXr2zIYnrgrgZK/HVcR16DxoI0djQrJ0gEZCW1oUzohGR39nsIlylo+TOoFScwvFnk9kanE4REREREfkIg1IUVkRRxOkaAwqK6xB9zTzomszITlBj0eQ+GJwR27Ft2+3uGdG2HyiDrsmMqUveQf8uMc3aaTRKLL5pVIf2RUTkCYPF5v67K1MqQe24dRsZkyIiIiKiMMegFIUFg8WGo5VNOFLeiDrnk5hoNuCPV/bBzBFdoZJLfbq/nska6JrMOKbTXxSUIiIKFL1z7J6Ac+PtE1WO6x1n3yMiIiKicMeaUhSy7KKI4hoDPvqpEm8XnMXXp2pRZ7RCLhEwJDMWdW//GbPHdPN5QAoAeiZpAADlDSbozbaLlruG+rX1M/ZKZlQRUfs1Oa8/rpn3RFFElNTxGoNSRETNlZaWYvbs2Rg6dCgmTZqEN954w73s8OHDuOmmm6DVanHjjTfi0KFDzdbdsWMHrrrqKmi1WsyZMwfV1dXuZaIoYtWqVRg1ahRGjBiBFStWwG7nZBNERL7ATCnyiNVmR3mjCXKJBIkaOWRS/8UzTVY7jpQ34nBZAxrPCwilRivQJzUaPZI1UEgl+J+p0W99iFLKkBylgK7JjDN1BlyeEt1s+flD/S5lxczx/uoiEXUC5welAMBqMeHzn84C0MBoY1CKiOh8DzzwADIyMrBt2zYcO3YMDz/8MDIzMzFmzBjMmjUL1113HZ566im88847mD17Nj766CNoNBocOHAACxcuxJIlS9C3b18sX74ceXl5WLduHQDg9ddfx44dO7BmzRpYrVY88sgjSEpKwt133x3kIyYiCn8MSlGrRFHE7p912FZUgu/P1MH1/KOQCujfJQZX90nF5H4piFXJfbK/U9V6qMfOxD8LzsJqd+xMKZOgd3IU+qRGITFK4ZP9eCorXuUIStUYLwpKEREFgitTU3be/A1RSse10GRzFEInIiKgrq4OhYWFWLZsGbp164Zu3bph3Lhx2Lt3L+rq6qBUKrFgwQIIgoCFCxfis88+w65du5Cbm4uNGzdiypQpuOGGGwAAK1aswMSJE1FcXIyuXbtiw4YNmD9/PoYPHw4AePjhh/H8888zKEVE5AMcvkcXadQ3ofeQIcj580t4bMeP+K7YEZASrWaIdhvMNhGFZ+ux8pNj+PXfP8Nfdx7BwZJ6iKL3D0eiKOLb0zV4cPsh3PT6d1ANvApWu4hEjRzjeybi1mGZGN09IeABKQDoGq8CAJypM8LejmMjIuqoJmehc9l5d2v5eX9vbGF4MRFRZ6RSqaBWq7Ft2zZYLBYcP34c+/fvR79+/VBUVIRhw4ZBEBwRfkEQMHToUBQWFgIAioqK3AEnAEhPT0dGRgaKiopQXl6O0tJSXHHFFe7lw4YNw9mzZ1FRURHQYyQiikTMlKKLSGNSkXXPWjSabJAKAgZnxODy1CjEKB0flzqjFWdqDfipognVemDXjxXY9WMF+neJwR/H98DI9BjI2xje12C0YteRCmw/UIqjlU3u180nv8cN1/4GGbFK938cgiU1RgmFVIDJaoeu0YzUGGVQ+0NEnYsoiqhpNABoHoiSCI7MKasI1ButSA9S/4iIQolSqcSiRYuwbNkybNiwATabDbm5ubjpppvw8ccfo1evXs3aJyUl4ejRowCAiooKpKamXrS8rKwMlZWVANBseXJyMgCgrKzsovWIiMg7DEpRMwaLDam/W4ZGkw2xKhl+0zcF8ermw/Pi1XLEq+UY0CUGzzxyJ25dtA4fHqnA4bIGPPhuEZI0cky6PAUjs+NxeWo0EtRyWO0iKhpNOFLeiK9OVOPTY1UwWR0FIlUyCaYNSMMtQzPx65G3IXPG9cE49ItIBAEZcSqcrDbgbJ2RQSkiCiiDwYCPD58FIGk2fA8AFBLAanMEpYiIyOGXX37BxIkTceedd+Lo0aNYtmwZRo8eDYPBAIWieda9QqGA2WwGABiNxlaXG41G9+/nLwPgXt9TQf6+tU2u/vm7n+dvXxACc14CdWzBwuMLb+FyfP7qH4NS5GYXRXz8sw6y2BTEqWSYNiANGkXrM9sJggBb5Qk8MbkP5l3ZHf8+WIZtB0pRXm/C5sISbC4sueT+eiRpcMPgdFzbLxVxat/UpfK19FglTlYbUN5gCnZXiKgTsgsyAPZmmVIAoJACehvQYGJQiogIAPbu3YstW7Zgz549UKlUGDRoEMrLy/HSSy+ha9euFwWQzGYzVCpHqQalUtnicrVa3SwApVQq3X8HALVa7VUfk5Ji2nVsgebvftpseqjVCue+opGcHLjzEi7vQXvx+MJbpB9faxiUIreis/UorTfBbjbgmiE9LhmQulCiRoG7R12GP0/phx3fncaeY1U4VNqAk9V6d9HyKIUUPZI0GNo1HhN6JWFAl5igD9FrS1qM4z8r5Q0miKIY8v0loshicc44LrsgKOUKUtWbWFOKiAgADh06hOzsbHegCQD69++Pl19+GcOHD4dOp2vWXqfTuYfepaWltbg8JSUFaWlpAIDKykpkZWW5/w4AKSkpXvWxqqoBoVymVBAcD8X+7mdVVSMMBrP771Kpxn87cwrUsQULjy+8hcvxufrpawxKEQCgzmDB92fqAADVu9chfvwz7dqOXCrBuJ5JGNsjCYCjJoreYsM110zAmbPFOAPgMwDPtbJ+Y1Nju/brL0lRcsgkAsw2ETUGCxI1gS+4TkSdl9X5P5OLMqVcQSkO3yMiAuCo+XTq1CmYzWZ3dtPx48eRlZUFrVaLV155xf0FoyiK2L9/P+69914AgFarRUFBAXJzcwEApaWlKC0thVarRVpaGjIyMlBQUOAOShUUFCAjI8PrelKiiJB+4HTxdz/P33agz0m4vAftxeMLb5F+fK1hUIoAAHtP1sAmAplxKpw+/KnPtisIAqIUMpSfLcaCN/e02f6vNw712b59QSIISI1RoKTOhLJ6E4NSRBRQ7kypFmpKAQxKERG5TJo0CStXrsTjjz+O++67DydOnMDLL7+MBx98EJMnT8bq1auxfPly3HLLLdi0aRMMBgOmTJkCAJgxYwZuu+02DBkyBIMGDcLy5csxYcIEdO3a1b181apV6NKlCwBg9erVuOuuu4J2rEREkeTSU6SFCLPZjGnTpuHrr792v1ZcXIw77rgDQ4YMwbXXXosvvvii2TpfffUVpk2bBq1Wi9tvvx3FxcXNlr/xxhsYN24ccnJy8Nhjj8FgMATkWEJRab0RxbVGCAIwpntCsLsTcro4C5yzrhQRBZq1leF7Cg7fIyJqJiYmBm+88QYqKysxffp05Ofn47777sPvfvc7REdHY926de5sqKKiIqxfvx4ajWPYWE5ODpYuXYq1a9dixowZiIuLQ35+vnvbd999N6699lrMnTsXf/rTn3D99dfjjjvuCNKREhFFlpDPlDKZTHjooYfcU7YCjiFhc+bMweWXX46tW7di9+7dmDt3Lnbu3ImMjAyUlJRgzpw5mDdvHsaNG4e1a9fi/vvvx3vvvQdBEPDhhx9izZo1WLlyJZKSkpCXl4eVK1di0aJFQTzS4BBFEd+edgzb65saHbIFx4MpzRmUqmjwboYVIqKOsjlTuKUXZErJnSX/WOiciOicXr164fXXX29x2eDBg7F9+/ZW183NzXUP37uQVCpFXl4e8vLyfNJPIiI6J6QzpY4dO4abb74Zp0+fbvb6vn37UFxcjKVLl6Jnz56YPXs2hgwZgq1btwIANm/ejIEDB+Kuu+5C7969kZ+fj7Nnz+Kbb74BAGzYsAEzZ87ExIkTMXjwYCxZsgRbt27tlNlSJfUmlDeYIBUE5GTFBrs7ISk5yjFkr95khcmVtkBEFADOeSIg4fA9IiIiIopAIR2U+uabbzBy5Ei8++67zV4vKipC//793Sm3ADBs2DAUFha6lw8fPty9TK1WY8CAASgsLITNZsPBgwebLR8yZAgsFguOHDni3wMKQQdL6gEAfVKjEKUI+cS5oFDJpYhROtISdE3MliKiwLE5q122FpRq4PA9IiIiIgpjIR2FuPXWW1t8vbKy8qLZLpKSklBWVtbm8vr6ephMpmbLZTIZ4uPj3et7ShDabtNSe2/X85cavQXFtUYAwMD09k/teOFxBfL4ArWv5CgFGkwGVDWZ0dvLdUPl/fZEqH1G/cF9bEL4HKc3/fTmPQyX4+/MXJlS0gtelzNTioiIiIgiQEgHpVpjMBjcU726KBQKmM3mNpcbjUb3762t76mkpPYFctq7XkcJEgEajdL9+97TtQCAnilRSE+Kbtb2/HZtbTM5ufnxtHR8F+77Ujqy79badXTf6QkanKg2oOa8B0BPtulpH0NNsD6jvuDp+y0IwXtvvPlMtvczFM7vIZ3T6vA9Z5SqnjWliIiIiCiMhWVQSqlUora2ttlrZrMZKpXKvfzCAJPZbEZsbCyUSqX79wuXq9Vqr/pRVdUA58gKjwiC40HR2/V8RbSL0OsdM8hZbHb8VNoAAOibEuV+3eXC3y+1TZ3OsZ1LHd/5+25Le/bdVruO7jvWOVamvM7YZtv29DFUBPsz6gttvd+CAKjVSohi8N4bbz6T3n6GvHkPXW0pdNnaqCnVaLLBZhchvbABEREREVEYCMugVFpaGo4dO9bsNZ1O5x6Sl5aWBp1Od9Hyfv36IT4+HkqlEjqdDj179gQAWK1W1NbWIiUlxat+iCLa9eDe3vV86RedHha7iFiVDOmxnmVstOaiAFQAjy9Q+0lxFjuvM1phsnpXwyXY73V7hMJn1F/cxxVGxxiu1xnquLYKnYsAGk1WzpxKRERERGEppAudt0ar1eKHH35wD8UDgIKCAmi1WvfygoIC9zKDwYDDhw9Dq9VCIpFg0KBBzZYXFhZCJpOhb9++gTuIIDtS3ggA6JcWDYGFZdqkkksR7Rwvo2tgsXMiCozWMqUkAiBzvsa6UkREREQUrsIyKDVixAikp6cjLy8PR48exfr163HgwAFMnz4dAHDjjTdi//79WL9+PY4ePYq8vDxkZWVh5MiRABwF1F999VXs3r0bBw4cwOLFi3HzzTd7PXwvXFXrzahsMkMQgN4pUcHuTthI0DgyEXRNng27IiLqKHeh8xa+O3DVlaozWgLXISIiIiIiHwrLoJRUKsWLL76IyspK5Obm4r333sPatWuRkZEBAMjKysILL7yArVu3Yvr06aitrcXatWvdGUFTp07F7NmzsWjRItx1110YPHgwHnnkkWAeUkD9otMDAC6LV0Mtv3BOJ2pNosYxhK+qkZlSROR/oii2OnwPABTOSFUdM6WIiIiIKEyFTU2pn376qdnv2dnZ2LhxY6vtx48fj/Hjx7e6fNasWZg1a5bP+hcuRFHEscomAEAvZkl5JdGZKVXVyEwpolBWWlqKxYsX49tvv0V8fDxuv/123HHHHQCAw4cP44knnsDPP/+MXr16YcmSJRg4cKB73R07duC5555DZWUlxo4di2XLliExMTEox2G1nysK1mJQSiIAEFFnYKYUEREREYWnsMyUovYrqzeh0WyDXCrgsnhVsLsTVlzD96qamClFFMoeeOABaDQabNu2DY899hiee+45fPTRR9Dr9Zg1axaGDx+Obdu2IScnB7Nnz4Ze78gePXDgABYuXIi5c+fi3XffRX19PfLy8oJ2HBbbuaBUSzmtruF7jSZmShERERFReGJQqpM5XuV4+OqeqIFMyrffG3FqOQQAJqsd0ujgZE4Q0aXV1dWhsLAQ9913H7p164arrroK48aNw969e7Fz504olUosWLAAPXv2xMKFCxEVFYVdu3YBADZu3IgpU6bghhtuQN++fbFixQrs2bMHxcXFQTkWs83u/ntLmVJy54ssdE5ERERE4YpRiU5FwMlqAwCge5ImyH0JPzKJgDi1Y8SrPPmyIPeGiFqiUqmgVquxbds2WCwWHD9+HPv370e/fv1QVFSEYcOGuesLCoKAoUOHorCwEABQVFSE4cOHu7eVnp6OjIwMFBUVBeNQ3JlSAoCWJkl1ZUo1MFOKiIiIiMIUg1KdiLRLL+gtjqF7mXEcutceCWrHED55cnaQe0JELVEqlVi0aBHeffddaLVaTJkyBVdeeSVuuukmVFZWIjU1tVn7pKQklJWVAQAqKiouuTzQXJlSLWVJAecypTh8j4iIiIjCVdgUOqeOU3S/AgCQnaCGtLWnHLqkRI0CJ6oNzJQiCmG//PILJk6ciDvvvBNHjx7FsmXLMHr0aBgMBigUimZtFQoFzGZHnTij0XjJ5Z5qKauptTaXausqdH7h5dq1zvmZUp7sMxx5cp46O56jtvEctY3niIiIgoVBqU5CFEXIeziCUr4cuteob0Kv3ueyhgSJAPG8GaPc7ZoafbbPYHIP30vMDHJPiKgle/fuxZYtW7Bnzx6oVCoMGjQI5eXleOmll9C1a9eLAkxmsxkqlSNzVKlUtrhcrVZ71YekpBiftNXUOWoAyiSAWq10/l0EpFLIZXJEiRIAVhhtQHKy5/sMR96c086K56htPEdt4zkiIqJAY1Cqkzhc3ghpTDJkEgFZPhy6J9rtWPDmHvfvGo0Ser3ponZ/vXGoz/YZTPHO4XuyhEyIouiuTUNEoeHQoUPIzs52B5oAoH///nj55ZcxfPhw6HS6Zu11Op17yF5aWlqLy1NSUrzqQ1VVA8SLY/PNCILj4e9SbSurHMF8QQQMBsd11WI2QZDKYJXaAZtzRtBGI3S6Bq/6GC48OU+dHc9R23iO2nb+OQIYnCIiosBhTalO4pOfHQ9aXRPUnHWvA+JUjjiuVB0Do9XeRmsiCrTU1FScOnWqWcbT8ePHkZWVBa1Wi++//x6i86lUFEXs378fWq0WAKDValFQUOBer7S0FKWlpe7lnhJFz37aamu2tTx8z7Wuu6aU0erxPsPxx5tz2ll/eI54jnx9joiIiAKF0YlOQBRF/O9oJQCge6J3w1CoOZlUglhnYKrWYAlyb4joQpMmTYJcLsfjjz+OEydO4JNPPsHLL7+M2267DZMnT0Z9fT2WL1+OY8eOYfny5TAYDJgyZQoAYMaMGfjPf/6DzZs348iRI1iwYAEmTJiArl27BuVYLM5C59JWEjJdNaXqWeiciIiIiMIUg1KdwC86PYprjRCtZnRNYFCqoxI0jkLIdQY+CBKFmpiYGLzxxhuorKzE9OnTkZ+fj/vuuw+/+93vEB0djXXr1qGgoAC5ubkoKirC+vXrodE46uzl5ORg6dKlWLt2LWbMmIG4uDjk5+cH7Vhay5RycWVKNZlssDO1gYiIiIjCEGtKdQKfH68CAFjO/ACFtFeQexP+EjQKnKrWM1OKKET16tULr7/+eovLBg8ejO3bt7e6bm5uLnJzc/3VNa+4MqVaC0opnF8riXAEpmJUvKUTERERUXhhplQn8PkvzqDUqe+D3JPIkBDlKC5cZ2RQKpQcq2zCF8erIIlPD3ZXiHzC0kamlFQiQOEc21dv4vWIiIiIiMIPv1aNcNV6Mw6VOmZSsZwuDG5nIoRr+F4th++FhDqDBSs+Pob/95OjblrcLSvw2S9V+FX3RMhae5onCgPmNjKlACBGKUOV3oJGow2IC1DHiIiIiIh8hJlSEe7L49UQAfRNjYbYVBPs7kSEhChHUKrBaIXNzjouwWS22vHwf37A//upEgKAXslREEU7fqpowkdHKiGyzg6FMVdNqdYKnQNAtNJR7ZyZUkREREQUjhiUinBfHK8GAIztkRjknkSOKIUUdosRIoBGznoVVKv/9wsKz9YjSiHF67cOwTszh6Hx/ZWQSgScqTPix/LGYHeRqN3cNaUu0SbaOQVfg8kWgB4REREREfkWg1IRzGy1Y99JR3bU2J5JQe5N5BAEAdbacgBAvZFBqWA5VFqPbQdKIQB4clo/DEiPBQBYzxzCiMviAQBfn6pl4JDCVls1pQDH8D0AaOS1iIiIiIjCEINSEez7M3XQW2xIilKgX1p0sLsTUax1ZQCABgY8gkIURTzzv+MAgKkD0vCr7s0zAQd0iUZajAJWu4iDzppqROHG4tXwPV6LiIiIiCj8MCgVwT4/7ph1b2z3REgEFnz2JWutIyjFTKng+Px4NQ6W1kMtl+D+sd0uWi4IAnKyHFWfj5Q3wmjh0CYKL6IoQm8yAWgrU8o1fI/XIiIiIiIKPwxKRShRFPG5s57UuJ6sJ+Vr1joO3wumfxacAQDcNCQDKdHKFttkxamQpJHDahdxmLWlKMwYDAZ8d8Ixo+SlglLRCsfwvQZei4iIiIgoDDEoFaGOV+lRUmeEQipgRHZCsLsTcVyZUsxOCLyfKhpRUFwHqUTAzTmZrbYTBAGDMhx1pn6uaOJMfBR+pI6AEzOliIiIiChSMSgVoVyz7g2/LB5quTTIvYk85w/fY7AjsN7dfxYAcNXlyUiLaTlLyqVbohoyiYAGkxUVjeZAdI/IZ+yi5zWlWNCfiIiIiMIRg1IR6vNfnPWkenDWPX+w1lc4/rSLMFjsQe5N56E327D7Z8eQppuGZLTZXi6VoHuSBgBwtLLJr30j8jW7M959qRu1a/gehxITERERUThiUCoC1eotOFhaDwAY14P1pPzCZkW0gsNmAu1/R3UwWOzoGq/CYOfQvLb0To4CABzX6WG3M6uNwofNFZTi8D0iIqJ2s9vtqKioQHl5Oex2fplMFGoYlIpAX52shl0EeqdEoUusKtjdiVgxKmYoBNqOw44C89f2T4Pg4YyS6XFKqOUSmGx2lDaY/Nk9Ip+yexCUcg3fY6FzIiKilul0Ory8uwir//MtdDpdsLtDRBdgUCoCfeYcuscsKf+KZVAqoCoaTCg4XQvAEZTylEQQ0DVeDQA4Va33R9eI/MKzTCnn7HvMlCIiImpVVFwiouP5bEQUimTB7gD5ltlqx76TNQCAK3tGdj2pRn0TevXObrtdU6Nf9s+HwcD631EdRACDM2KREeddBmB2oho/VzbhVI0Bo7txCB+FB1em1KUKnUcpHN8tmax2mK12KGT8romIiIiIwgeDUhFm/5laNJltSIpSoF+XmGB3x69Eux0L3tzTZru/3jjUL/tnplRgfXLUkW7968uTvV43K04FqSCg0WRDtd6CqCgOa6XQ58nwPYnt3KySDSYrkmQKP/eKiIiIiMh3GJSKMJ/9Ug3AMXRP4mHNHWofV1CKtVzab+yVo1BWWtpmO0Edi/jbXwAECSb29j4oJZNKkBmvwukaA4prDeiaEtkBW4oMNtERlbpUUEoqESCXABa7MygVxaAUEREREYUPBqUiiCiK+NxVTyrCh+6FAtfwPb3FBqvNDpmUw2a8VVZa6lG224/ljfjieDX6d4lBejuL92fFOYJSZ+uM7VqfKNDcw/faaKeQCrDYRQbIiYiIiCjs8Ck6ghytbEJZgwlKmQQjLosPdncinlImgcJZ7KWedaX86nSNAQAwoVf7g62uOlTl9SZYbZwOmEKfJ8P3ALivQ6xvR0REREThhkGpCOKadW9kdgJU8ra+W6eOEgSBQ/gCwGYXUeLMbvpV9/bPmhKvlkEjl8Imwr09olDmyex7ACB3NuB1iIiIiIjCDYNSEeTz4+fqSVFgxKjkAJgp5U+l9UZY7SLsTTW4PCWq3dsRBAEZcUoAQHG13lfdI/IbzzOlHH/Wmyz+7RARERERkY8xKBUhKhtNOFzWAAAYy3pSAROr5Ax8/lZc68hqspw+AKGDxfsznUP4imsYlKLQ11amlCiKMBgMkMExHLWipgGiszg6EREREVE4YFAqQriypAamxyCZsy8FDIfv+V+xs56Upbiow9ty1ZWqqDdBUGg6vD0if3IXOm8lKGU1m/DqZz9CCkfDL49VwGAwBKh3REREREQdx6BUhHDNuncls6QCKkbFTCl/qjdaUWe0QgBgOXOow9uLVsoQp5JBBCDL6Nfh7RH5iyiKHg3fkytUUDjv5DaBtQSJiIiIKLwwKBUBDBYbvj1dCwAY14NBqUCKUToeAhvNNg6b8YMztY6sj7QYJWD2TQaIawifLLO/T7ZH5A9W+7nrSduFzh1/mm28BhERERFReAnroFRpaSlmz56NoUOHYtKkSXjjjTfcyw4fPoybbroJWq0WN954Iw4dap5lsWPHDlx11VXQarWYM2cOqqurA9x73/nmVA1MVjsyYpXomcwhSYEUpXBkStnsIoxWe5B7E3lOO4fudU1Q+2ybriF88swBPtsmka9ZzgswtZX/5ApKWXgJIiIiIqIwE9ZBqQceeAAajQbbtm3DY489hueeew4fffQR9Ho9Zs2aheHDh2Pbtm3IycnB7Nmzodc7ihsfOHAACxcuxNy5c/Huu++ivr4eeXl5Aelz/4GD0LNXNnr1vvTP2CtHebzNz5xD98b1TOpwIWjyjlQiQCN3ZktxBj6fstpFlNSbAABd41U+2256rGMGPmliJioaTD7bLpEvmW3nIkyeZkqZGBgnIiIiojAjC3YH2quurg6FhYVYtmwZunXrhm7dumHcuHHYu3cv6urqoFQqsWDBAgiCgIULF+Kzzz7Drl27kJubi40bN2LKlCm44YYbAAArVqzAxIkTUVxcjK5du/q13yUlJVjw5p42262YOd6j7dlFEV84i5yPYz2poIhWSqG32NBgsiElOti9iRxl9UbY7CKiFFIkauQ+265KLkVqjBIVDSYUnKnFlH5pPts2ka+4MqUEAG1916BgphQRERERhamwzZRSqVRQq9XYtm0bLBYLjh8/jv3796Nfv34oKirCsGHD3FlDgiBg6NChKCwsBAAUFRVh+PDh7m2lp6cjIyMDRUUdn90r0H4obUC13oIohRRDs+KC3Z1OKUbpiO0yU8q3SuocWUyZcSqfZwBmOYcDFhTX+XS7RL7iqinVVpYUwOF7RERERBS+wjYopVQqsWjRIrz77rvQarWYMmUKrrzyStx0002orKxEampqs/ZJSUkoKysDAFRUVFxyeThxDd37VfdEyKVh+3aGtWgGpfyipN4IAEiPU/p821kJjtpr+4trfb5tIl9wZUp5G5TihAtEREREFE7CdvgeAPzyyy+YOHEi7rzzThw9ehTLli3D6NGjYTAYoFAomrVVKBQwm80AAKPReMnlnvI2ecPVXhAAT54bPNn+58cdQanxvZK87o+veXt84ailcxztmoHPZPN4nVB1/nsYTGarHbpGx7/HjFhHPalGfRN69c5uc93GpsZLLhcEICNeBdFuR3GtERWNJsfsfiHMm/fDm/cw2O8ztc6VKeXJW+QKSokADBY7ovzWKyKi0GY2m5Gfn48dO3ZALpdj+vTpePDBByEIAg4fPownnngCP//8M3r16oUlS5Zg4MCB7nV37NiB5557DpWVlRg7diyWLVuGxMREAI6A/+rVq7FlyxbY7XZMnz4dDz/8MCQSfiFMRNRRYRuU2rt3L7Zs2YI9e/ZApVJh0KBBKC8vx0svvYSuXbteFGAym81QqRwPt0qlssXlarV3M3wlJcW0q+9qddsPwIJEQHLypbd/ukqPX3R6SCUCrht2GeLaqLsjSARoNJ49fHvarqW2rR1fIPYdqHbnt02KtQKoQZPFdtH6nryPoai9n21vtfaZLKtshAggXi1HaoLjEVu027F48742t/nQlAEevY823UnIUnvgaK0JA7one933jvDm32J7P0OBeg/JP6x2x1g8TzKlpAIgQIQIAY1mGwL7aSYiCh1/+9vf8PXXX+PVV19FU1MTHnzwQWRkZOC3v/0tZs2aheuuuw5PPfUU3nnnHcyePRsfffQRNBqNexKkJUuWoG/fvli+fDny8vKwbt06AMDrr7+OHTt2YM2aNbBarXjkkUeQlJSEu+++O8hHTEQU/sI2KHXo0CFkZ2e7A00A0L9/f7z88ssYPnw4dDpds/Y6nc49ZC8tLa3F5SkpKV71oaqqwauMIFdWgsFganM90S5Cp2u4ZJv/FJwFAAzJjIVFb4ROb2xzm3q9Z7ONedru/LaC4AhItXZ8/tx3oNq5jvH8tnI4Hh7rDZaL1vfkfQwlguAIZnj72W6v1j6TJyod2U5dYpTNlvvifXS9h9bSHyFL7YFPD5dhbNdYL3veMd78W/T2M+TNe+hqS6HHXVPKg7aC4MiWMtuBBg4jJqJOqra2Flu3bsXrr7+OwYMHAwDuuusuFBUVQSaTdWgSpA0bNmD+/PnumrQPP/wwnn/+eQaliIh8IGxzTlNTU3Hq1KlmGU/Hjx9HVlYWtFotvv/+e3dtDVEUsX//fmi1WgCAVqtFQUGBe73S0lKUlpa6l3tKFL3/ca3ni+276kld2TPJ4337k7fHF45aOjZXoXOzTYS5hSnZ2/M5CeZPIPvcmpI6R4A1ww/1pFz7tZz9EQBQUFwblHPsbZ/99R5SaPKmphQAyAVH+9aGERMRRbqCggJER0djxIgR7tdmzZqF/Pz8Dk2CVF5ejtLSUlxxxRXu5cOGDcPZs2dRUVERmIMjIopgYRuUmjRpEuRyOR5//HGcOHECn3zyCV5++WXcdtttmDx5Murr67F8+XIcO3YMy5cvh8FgwJQpUwAAM2bMwH/+8x9s3rwZR44cwYIFCzBhwgR07do1yEfluQajFfvPOGYOG9cjKci96dzkUgmUMsc/JRY77zijxYZqvQUAkB6raqN1+1nLfoZEAIprjShvuHTW0tgrR6FX7+w2f8ZeOcpv/aXOxeaqKeVpUMp5N2emFBF1VsXFxcjMzMS///1vTJ48Gb/+9a+xdu1a2O32Dk2CVFlZCQDNlicnOwZKh+MkSUREocYvw/f27duHkSNH+nwa9/PFxMTgjTfewPLlyzF9+nQkJibivvvuw+9+9zsIgoB169bhiSeewL/+9S/06dMH69evh0bjmHErJycHS5cuxd///nfU1dVhzJgxWLZsmd/66g97T1bDZhfRPVGDrgne1cIi34tWSmGy2tFgtiGRVYY7pLTeESBKUMuhUUj9tyOzAX1So/FjeSP2n6nFlH5prTYtKy3Fgjf3tLnJFTPH+7KHEScQ94ZIYbF7mSklYaYUEYWuQFz/9Xo9Tp06hU2bNiE/Px+VlZVYtGgR1Gp1hyZBMhqN7t/PXwbA75MkBVqgJrw5f/uCEJj9nX9sof4+tEeoTFbkLzy+0OCv/vklKPWnP/0JcrkckydPxrRp0zBkyBB/7Aa9evXC66+/3uKywYMHY/v27a2um5ubi9zcXL/0KxBcQ/fG9WSWVCiIVshQ1WRhppQPuIbupfth6N6FhnWNx4/ljSgorrtkUIp8I1D3hkjgTU0pAJA7/5PQwKAUEYWgQFz/ZTIZGhsbsXr1amRmZgIASkpK8M477yA7O7vdkyCdH4BSKpXuvwMI2CRJgebvftpseqjVCue+ov0+KZDNpodK5dhfYqL/9xdM4fIZay8eX2TyS1Dqyy+/xJdffoldu3Zh1qxZiI6OxpQpUzB16lT079/fH7vsVKw2O746UQMAuLJnYpB7Q8C5ulIMSnVcSb2znpQfh+65DOsah43fncH+4lq/74t4b/CG1duaUq5MKTOvQUQUegJx/U9JSYFSqXQHpACge/fuKC0txYgRI9o9CVJamuNLq8rKSmRlZbn/7tqnNwI1kUx7BWrCm6qqRhgMZvffpVKN/3bm3IfRaIZKpUB1tf/3FwyBnqwo0Hh8ocFfkyT5JSglk8kwfvx4jB8/HlarFV999RU++eQT3HrrrUhLS8N1112H3NxcZGRk+GP3Ea/wbD0aTFbEq+UYmB7YWcOoZdFKxzAzDp3pGL3ZhlqD46E6Pdb/mVJDMuPcdaXK6o3oEoBAWGfGe4PnXJlSnmZJy5wNeQ0iolAUiOu/VquFyWTCiRMn0L17dwCOSZAyMzOh1WrxyiuvQBRFCIIA1yRI9957r3vdgoIC9yiK8ydBSktLQ0ZGBgoKCtxBqYKCAmRkZFxUh6ot4TLJiL/7ef62A3FOWpoIJlLx+MJbpB9fa/xa6NxsNmPPnj14//338cEHHyAhIQGTJk3CyZMnMXXqVGzcuNGfu49YrqF7Y3skQurp1+jkV9HMlPIJV5ZUUpQcKrkf60k5RStl6N/FEe3/5nSt3/dHDrw3tM1id8zk6W2mFIfvEVEo8+f1v0ePHpgwYQLy8vJw5MgRfP7551i/fj1mzJjR4UmQZsyYgVWrVuHrr7/G119/jdWrV+P222/3yTkhIurs/JIptXv3buzatQuffvop5HI5fvOb32Dt2rXNplp9++238cwzz+APf/iDP7oQsURRxOfHWU8q1LiCUpz5qmNc9aQCMXTPZUR2Ag6VNuCbUzX47cAuAdtvZ8R7g+dsXhc6d/zZaGZQiohCT6Cu/6tWrcKyZcswY8YMqNVq/P73v8dtt93W4UmQ7r77blRVVWHu3LmQSqWYPn067rjjjnb3k4iIzvFLUOovf/kLrrrqKjzzzDMYM2YMpNKLMx4GDhyIO++80x+7j2inagw4U2uEXCpgZHZ8sLtDTjHO4XsGix1WuwgZM9japbTOMfNeRlwAg1KXxeO1fafx7ela2EURklCf9iKM8d7gOYu3NaUEV6YUA+NEFHoCdf2PiYnBihUrWlzWkUmQpFIp8vLykJeX16H+ERHRxfwSlPrqq6/Q2NiI+vp6901n586duOKKK9wFAbVaLbRarT92H9G+OF4NABiaFYcohV/ePmoHpUwCmUSA1S6iyWRFnFoe7C6FnUaTFfUmKwQAXWL8X0/KZXBGLFQyCar1Fvyia0LvlOiA7buz4b3Bc97WlHJnSnH4HhGFIF7/iYioNX6pKbV//35cffXV+O9//+t+bcOGDbj22mtRUFDgj112Gl8cd9WT4tC9UCIIAoudd5Br6F5KtAIKmV/L3TUjl0owtGscAGDfyZqA7bcz4r3Bc14P3xNcs+/x+kNEoYfXfyIiao1fnvyefvpp3HvvvZg/f777tU2bNuGee+7Bk08+6Y9ddgoNRisKz9YDcBQ5p9DCulIdU1If+KF7Lr/q5vj39OWJ6oDvuzPhvcFzFldQysP2rkwpXn+IKBTx+k9ERK3xS1Dq5MmTmDx58kWvT5kyBceOHfPHLjuFfadqYLOL6JaoRla8OtjdoQtwBr72E0UxKEXOXcY4g7yFZ+rQYOT75y+8N3jO6nWhc0d7V107IqJQwus/ERG1xi9BqR49euCDDz646PVPPvkEl112mT922Sl86Ry6N6Y7h+6FIlexcw6f8V690Yomsw0SAUiLUQR8/1nxanRP0sAmAntP+i5bymoX8d7BMjz07x9w64YCPPzvH/DpUZ3Pth9uAnVvMJvNWLJkCa644gr86le/wjPPPANRdARqDh8+jJtuuglarRY33ngjDh061GzdHTt24KqrroJWq8WcOXNQXR2c7Dmrs9C5p3X3Zee1a2RglYhCDJ8NiIioNX6plP3AAw/g/vvvx5dffokBAwYAAH766Sd89913eOGFF/yxy4hns4v48oSj3s24ns2H7o29chTKSkvb3EZjU6Nf+kYO0QpmSrWXa+hearQSMmng6kmdb1yPRJyo0uOL49W4pm9qh7d3TNeEJ3Yewc+VTe7XjlY2Yc8vVYi6Zn6nnKUxUPeGv/3tb/j666/x6quvoqmpCQ8++CAyMjLw29/+FrNmzcJ1112Hp556Cu+88w5mz56Njz76CBqNBgcOHMDChQuxZMkS9O3bF8uXL0deXh7WrVvns755yttMKYngCExZRccQvngNJ1sgotDBZwMiImqNX4JSV155JbZv346tW7fi+PHjkMlk6Nu3L5YsWYKuXbv6Y5cR73BZA2oNFkQrpdBmxDZbVlZaigVv7mlzG3+9cai/ukdgTamOKHUN3YsL3Kx7FxrbIwkbvj2Dz49XwWy1d6jY+v4ztXjo3z+g0WRDrEqGGUMz0Sc1GoVn6/DPgrNAjyvw2bEqTOydBMHTVJgIEIh7Q21tLbZu3YrXX38dgwcPBgDcddddKCoqgkwmg1KpxIIFCyAIAhYuXIjPPvsMu3btQm5uLjZu3IgpU6bghhtuAACsWLECEydORHFxccDvXVa7HYB36cxyCWC18RpERKGHzwZERNQavwSlAKB379549NFH/bX5Tsc1696o7MSgZZLQpblm32sy22AXRUg6UbChI0RRREm9KygV+HpSLoMzYpESrUBloxl7T9ZgfK/2DZM9WtmIP209BKPVjiGZsXj6t/2RqHEMSRzXMwkjshMw593v8UuVHikxCgxKj21ji5HF3/eGgoICREdHY8SIEe7XZs2aBQD461//imHDhrkDgYIgYOjQoSgsLERubi6Kiorwxz/+0b1eeno6MjIyUFRUFISglHeZUoAjKGWwgXXRiCgk8dmAiIha4pegVH19PV577TUcPHgQVqvVXcvDZcOGDf7YbUTbd6oWAPCr7gnB7Qi1SqOQQhAAUQT0Zps7c4ourdZghcFih1QQkBodvEwpqUTA1X1S8M+Cs/h/RyraFZQSVNF4+N8/wGi144rL4vHMDQOgkkubtRmZnQDDV29DM24mCorr0Cs5CuoL2kSqQNwbiouLkZmZiX//+994+eWXYbFYkJubi/vuuw+VlZXo1atXs/ZJSUk4evQoAKCiogKpqakXLS8rK+twv7xlcdWU8mId1wx89SaL7ztERNQBfDYgIqLW+OWpecGCBTh48CCuu+46REdH+2MXEa9R34RevbMBAIJCg7g7XoIgkeDPf5iMB5tqmrdlraiQIBEERCukaDDZ0GCyMijlIdese11ilZAGucbSNX1T8c+Cs/jslyoYLDavgkV2u4ioq+ehpN6ErHgV8qf1uygg5WI6/DG6Tr4HVU0WfFdch3E9EltsF2kCcW/Q6/U4deoUNm3ahPz8fFRWVmLRokVQq9UwGAxQKJoX0lcoFDCbzQAAo9F4yeWe8iRJ0tWmtbY2sfVMqdbWkQl2ABJUNxg8LpAe6to6T8Rz5Ameo7b5+xzx2YCIiFrjl6fmr776Chs3bnTX8yDviXa7u07UyWo9PvpJhziVDH988d8XtWWtqNARrZShwWRDo4kz8Hnq3NC94GVJufRPi0ZWvApnao34f0cqcP2gdI/X3XeqBvLM/tDIpVh1/QDEqS9RaFoUMbpbAnb8UIGfKxoxLCsOGkXkZ0sF4t4gk8nQ2NiI1atXIzMzEwBQUlKCd955B9nZ2RcFmMxmM1Qqx7BRpVLZ4nK1Wu1VH5KSYjrcViJz3J6VCinU6nO3aplEBKRSyGXNP18yiQiVXACMgCiTIjnZ8z6EA2/OaWfFc9Q2nqO2+esc8dmAiIha45egVFpaGiQS1j3ylbO1jof2zCDW2yHPOLKjTJyBz2MCSuscM++lxwb/8y0IAnIHp+Pvn53Au9+X4LcDu3hUiPxIeSN+KHNkLC69tg96Jke1uU56rAqp0QpUNJpxpKIRQ7PiOtz/UBeIe0NKSgqUSqU7IAUA3bt3R2lpKUaMGAGdTtesvU6ncw/ZS0tLa3F5SkqKV32oqmrABSNTLiIIjoe/1trqDY7gmM1qg8FwLshtMZsgSGWwSu3N2lvMJkhEBQAJyqr10OkavOpzqGrrPBHPkSd4jtp2/jkCfB+c4rMBERG1xi93hwULFmDx4sX47LPPcOrUKZSUlDT7Ie+EQhFo8kyMs9g5g1KekSZdBpPNDrlUQEq0ou0VAuD6QV2gkklwtLIJ+8/Utdm+vMGEL09UAwAM32zB+F7JHu9rQBfHf/qPlDfCbo/8J6VA3Bu0Wi1MJhNOnDjhfu348ePIzMyEVqvF999/765lIooi9u/fD61W6163oKDAvV5paSlKS0vdyz0lip79XKrtpWpKtfZQLXM2bjDZPO5DOPx4c0476w/PEc+Rr8+Rr/HZgIiIWuOXTKl58+YBODfjkSvTQBRFCIKAH3/80R+7jUhNJitqDVYIYFAqHLjqSDVw+J5HZFkDAABdYpQhM1thrEqOqQPSsLWoFP/Yd/qSGUxNJis++qkSdhHonqjG/v3vAfi7x/vqnqTBvlM1aDLbUFxrQHaixgdHELoCcW/o0aMHJkyYgLy8PCxevBiVlZVYv3497rvvPkyePBmrV6/G8uXLccstt2DTpk0wGAyYMmUKAGDGjBm47bbbMGTIEAwaNAjLly/HhAkTgjJdeftm33Os02jm9YeIQgufDYiIqDV+CUp9/PHH/thsp3TWmSWVHKWAUsa051DnCkoxU8oz8kxHUCozPrQCrrddkYX/HirDd6dr8b9jVS22MVvt2HWkEgaLHYkaOcb3SsJ+ePf1slQioGdyFA6VNuB4lT7ig1KBujesWrUKy5Ytw4wZM6BWq/H73/8et912GwRBwLp16/DEE0/gX//6F/r06YP169dDo3Gc95ycHCxduhR///vfUVdXhzFjxmDZsmUB6fOFLHbH8DxvrvpyZwCL1x8iCjV8NiAiotb4JSjlquVx9OhRnDx5EmPGjEFVVRWysrI8qs9C57jqSTFLKjxEO4tVN5ptuHC6Y2rObLVDlt4HQOjVS8uMU+MPV3TFa/tO45n//QJB3Txbymy14//9VIlqvQVquQRX90mBXNq+oHH3RA0OlTbgdI0BNrsY9BkI/SlQ94aYmBisWLGixWWDBw/G9u3bW103NzcXubm5PutLe9mcmVLenBa58yPIiRaIKNTw2YCIiFrjl9Sburo63HHHHbj++uvxpz/9CVVVVVi+fDmmTZuGs2fP+mOXEUkURZQ4i0CHWiYJtcyVKWWzizBa7W207twOltZDkCuhlkuQcKmZ6oLkzhFdkRWvQnmDCdFTF6DB6Mg+qWw04b8/lKO03gS5RMDkfqmIVbU/vp8Wo4BGLoXZJuJsndFX3Q9JvDd4zlVTqj3D9xqYKUVEIYbXfyIiao1fglJ/+9vfoFarsW/fPiiVjmnen3zySXTp0gV/+9vf/LHLiFRntEJvsUEqAGkhUgSaLk0qEaCRs9i5J745VQPAkSUVit+SquRSvHDjICRFKSBLvgzvfl+Cfxacxb8PlrszpKYOSENyVMf+bQqCgG6JagDAiSq9L7oesnhv8Jy7ppQX67gzpVhTiohCDK//RETUGr8EpT7//HP8+c9/RmxsrPu1xMRE5OXl4dtvv/XHLiNSiTNrIi1GCVk7hwZR4MWoHEEpFju/tG9O1wIIvaF758uKV+PlmwbDUnwQIoAmsw0CgF7JGtwwqIvPZgzMdgalztYZI3rYJ+8NnmtXoXN3TSkOHyai0MLrPxERtcYvNaUAwGQyXfRadXU1ZDK/7TLilDU4zmF6bOg+tNPFohUylMPsHu5FF2swWnG4rAFA6NdL65akQeP7KzDr5d2w2OyIUsigcdYO85UuMUpIBUfQq85oRXwIDmf0Fd4bPGPtQE0pi12EyWqHSu7bzykRUUfw+k9ERC3xS/rNtGnTsHz5chw9ehSCIECv12Pfvn3461//imuvvdYfu4xI5c6gVFqMMsg9IW/EqDgDX1sKimthFwFbTYm7Dleoi1fLkRKt9HlACgBkUgnSYh3/zs/URm5dKd4bPGe1eT98TyoArhgW60oRUSjh9Z+IiFrjl6DUggULoNVqkZubC71ej+uvvx533303Ro8ejQULFvhjlxFHEpXgnkHJV0OEKDBcQRY+FLbONXTPcvaH4HYkhGTGOYbwlURwsXPeGzzXnuF7gnAuW6qemZpEFEJ4/Sciotb4JUVBoVDg0UcfxQMPPIDi4mLYbDZ07doVUVFR/thdRFJm9AEAJGrkUMhYTyqcRCtdhc5ZU6o1XzuLnFvPMCjlkhmnwrcASuqNsNtFSLyJRoQJ3hs8Z7Y5Zu/09mOgkAow20VmahJRSOH1n4iIWuOXoFRLBQsPHz7s/vsVV1zhj91GFFdQKpVD98JOjJLD9y6ltN6I0zUGSATAWvJjsLsTMpKj5FBKJTDZ7KjSm5ESHXn/9nlv8JzNVVPKy/VcmVLM1CSiUMLrPxERtcYvQanbbrutxdcVCgVSUlLw8ccf+2O3EUWZ0RcAkBbDoXvhJtpZc8hiFyEoo32+/bFXjkJZaWmb7bqkp+OLz/b5fP8d9eXxagDAoPRYfGrWB7k3oUMQBKTGKFBca0R5Q2QGpXhv8Fx7hu8BjkwpQOTwPSIKKbz+ExFRa/wSlDpy5Eiz3202G06fPo1ly5bhuuuu88cuI4rNLkKR1gsAkBaBD6aRTiaVQC2XwGCxQxKT7PPtl5WWYsGbe9pst2LmeJ/v2xe+POEISo3pkYhPg9uVkJMWo3QGpUwYmB4T7O74HO8NnmtvUMqVKcVMTSIKJbz+ExFRawJSrEgqlaJ79+549NFH8fzzzwdil2FN12SGIJNDJZMgVhUeM5NRc64hfP4ISoUzo8WGb51Fzsd0TwxuZ0KQa7iua+bNSMd7Q+vcQSkv13NkSrHQORGFNl7/iYjIJaARj6qqKtTX1wdyl2HJ9UCaFqOEIEResePOIFopQ0WjudMGpVobYijrOhgxUx+BvbEK144ZgMamxiD0LnSlRisgAGgy29Bosrpncox0vDc0Z7OLcMak4O0tgDWliCic8PpPRER+eeLJy8u76LWmpiZ89dVXmDx5sj92GVEqnEGpVNaTClvnMqVSgtyT4GhtiOGXx6txuLwR/XtkY9ybe/DXG4cGoXehSy6VIDFKjqomCyoazREXlOK9wTOuLCmgvTWlgAZmShFRCOH1n4iIWhOwJ574+Hj85S9/wfXXXx+oXYYlURRR3mAG4MiUovAUrXQUO5dEJwW5J6FDFEWcrjUAAC5LUAW5N6ErLVrpCEo1mNAjSRPs7vgd7w0Xs9rt7r97O3yPmVJEFC54/SciIsBPQan8/Hx/bLZTaDTboLfYINqsSIliplS46uyZUi2pNVjRaLJBIgAZcQxKtSY5WgGUO2rLRRreGzxjsXUgU8q5AgudE1Eo4fWfiIha45eg1Jo1azxuO3fuXH90IWxVNjoeRC2VpyCT9ghyb6i9XMOupJ20plRLip1ZUumxKsilAZljISwlO4PRuiYzRFFso3V44b3BM+cP3/O6ppQjSZOFzokopPD6T0RErfFLUOrUqVPYtWsX4uPjMXDgQCgUChw5cgSnT5/GkCFDIJM5dtvRIt5msxn5+fnYsWMH5HI5pk+fjgcffBCCIODw4cN44okn8PPPP6NXr15YsmQJBg4c6F53x44deO6551BZWYmxY8di2bJlSEwM/mxgVc7sCHPFLwAmBrcz1G6u4XuCUoMGoxUxnEURp2tcQ/fUQe5JaEtQyyEVHNkykRZYCNS9IdxZbY7he+0J3TJTiohCEa//RETUGr88KSsUClx33XVYsmQJ5HK5+/Wnn34adXV1ePLJJ32yn7/97W/4+uuv8eqrr6KpqQkPPvggMjIy8Nvf/hazZs3Cddddh6eeegrvvPMOZs+ejY8++ggajQYHDhzAwoULsWTJEvTt2xfLly9HXl4e1q1b55N+dcS5oNSJIPeEOkIulUAlk8BotaOk3og+quhgdymojBYbyuodBfxZT+rSJBIBiRoFKpvMETeEL1D3hnDnypTydugecF6mFINSRBRCeP0nIqLW+GUMzc6dO3HPPfc0u+kAwM0334ydO3f6ZB+1tbXYunUrli1bhsGDB2P06NG46667UFRUhJ07d0KpVGLBggXo2bMnFi5ciKioKOzatQsAsHHjRkyZMgU33HAD+vbtixUrVmDPnj0oLi72Sd86oqrJAgAwlx8Pck+oo1x1pUrrjEHuSfCdrDZABJAcJUesSt5m+84uKdoxhM91PYgUgbg3RAJXTan2JAycy5SywWaPrOGfRBS+eP0nIqLW+CUolZaWhs8///yi1z/88EN07drVJ/soKChAdHQ0RowY4X5t1qxZyM/PR1FREYYNG+ZOARYEAUOHDkVhYSEAoKioCMOHD3evl56ejoyMDBQVFfmkb+2ldxY5BwCL7lRQ+0Id5xrCV9pgCnJPgu94lR4A0L0TzCbnCynn1ZWKJIG4N0QC1+x77blBuzKlAA7hI6LQwes/ERG1xi/D9x566CE88MAD+PTTT9G3b18AwMGDB3H48GG8/PLLPtlHcXExMjMz8e9//xsvv/wyLBYLcnNzcd9996GyshK9evVq1j4pKQlHjx4FAFRUVCA1NfWi5WVlZT7pW3u5hu7FqWQ4bWF2TbhjppSDwWJDifMc9GBQyiNJERqUCsS9IRJ0ZPieVBCglktgsNhRb7QiTs3MRCIKPl7/iYioNX4JSl199dXYtm0btm3bhl9++QUqlQojRozAs88+i5SUFJ/sQ6/X49SpU9i0aRPy8/NRWVmJRYsWQa1Ww2AwQKFQNGuvUChgNjse8IxG4yWXe8rboRWu9oIAtDSpVpXesX/X7Fvhpq3jiwTevOfRzuLmpfXGdg3D8YWOfEZ95WS13jl0TxESQ/fcxyb49jgv2n4HJKhlEACYrHYImjivtunNexjoz2Ug7g2RwDV8rz1BKQCIVcpgsJhRb7QA4MQCRBR8vP4TEVFr/DYlWJ8+fZCXl4e6ujpER0dDIpH4dEYNmUyGxsZGrF69GpmZmQCAkpISvPPOO8jOzr4owGQ2m6FSOQosK5XKFper1d795z0pKaZdfVerlS2+Xmt0DN3r4pydTKNpuV1LPG3r63YttW3t+AKx70C186RtUqyjHlBFkwXJye37rLREkAge9VOQCO3eb3s/2+fv29XHUzWVAIA+6TEt9jtY77cgeH5+fH3OPdlevEaOGr0FsqTL2vU+dvQ99Bd/3xsigWv4XnvPSoxKivJGFjsnotDC6z8REbXEL0EpURTx8ssv44033kBDQwM+/PBDPP/889BoNHj88ccvylJqj5SUFCiVSndACgC6d++O0tJSjBgxAjqdrll7nU7nHrKXlpbW4nJvv6mpqmrwKiPIdd81GEwtrlde7xjiFCt3VBLR6z2vReRpW1+3O7+tIDgCUq0dnz/3Hah2rmP0pK0CjpNwqqoJlZX1PvuPl2gXPToe0S5Cp2vwatuC4AhmePvZbmnfer0JBosNZ2oMAICsGGWL/Q70++16D0XR8/Pj63PuyfbiVTLU6C2QJGR59T568x662gZKIO4NkaCjmVIxCsetvd7AoBQRhQZe/4mIqDV+KXS+du1avPfee3jqqafcN5n/+7//w5dffokVK1b4ZB9arRYmkwknTpxwv3b8+HFkZmZCq9Xi+++/h+h8IhNFEfv374dWq3WvW1BQ4F6vtLQUpaWl7uWeEkXvf1zrXchsc9T/AMJ3+N6lji9SeHNssc6aUk1mG2oN1nZ9Xlr7DHnT3/Z+Rn3RxxNVjqF7KVEKxKr8lpjpFXf/gnjOPZGocVwHpEld/foeBlIg7g2RoCM1pQC4/63VGRmUIqLQwOs/ERG1xi9Bqe3bt2Pp0qWYOHGiOztkzJgxePrpp/HBBx/4ZB89evTAhAkTkJeXhyNHjuDzzz/H+vXrMWPGDEyePBn19fVYvnw5jh07huXLl8NgMGDKlCkAgBkzZuA///kPNm/ejCNHjmDBggWYMGFCUGf/qHYWNI5SSKE6f/okClsyqQT2pmoAwNlaQ5B7Exy/6DrXrHuN+ib06p3d5k9jU2Ob20rQOOpvSRMjZ1aiQNwbIoHV1v7he6IoQi11BLUcNaWIiIKP138iImqNX1IXqqqqLprdDgBiY2Oh1+t9tp9Vq1Zh2bJlmDFjBtRqNX7/+9/jtttugyAIWLduHZ544gn861//Qp8+fbB+/XpoNI4H45ycHCxduhR///vfUVdXhzFjxmDZsmU+61d76JocDw9JUcEvBE2+Y6uvhCQqEWdqjRiQHhvs7gRUncGCsgYTBAA9kztHUEq027HgzT1ttvvrjUPbbJPoCkolZMBqFyFrb9pMCAnUvSHcdSRTymo24aiuCYAMFbUNEEWRNVuIKOh4/Sciotb4JSg1atQovPrqq1i6dKn7tcbGRjzzzDMYOXKkz/YTExPTasrv4MGDsX379lbXzc3NRW5urs/60lFVzkypJE14Dt2jltnrK4D0PjhbZwx2VwLu58omAEBmnArRytAYuhdOYlUyyCQCrDIFztQY0C0Css0CdW8Idx2tKaWSO/69FZyqhsFgcH8hQ0QULLz+ExFRa/wyfG/x4sU4fPgwxowZA5PJhPvvvx/jx4/H2bNn8fjjj/tjl2HPHZQK03pS1DJ7XTkA4ExnG74nCDjqDEpdnhoV5M6EJ0EQkKB2ZEv9UtUU5N74Bu8NnnHNvtfeG7RzrgxY/XOLJyLyGq//RETUGr+kL8TGxmLLli3Yu3cvjh8/DqvViu7du2Ps2LGQSPif5AvZ7CJqDI7he+Fa5JxaZquvAACc6WSZUrKug9FktkEplSA7kVka7RWvkaOyyYxT1ZER1OS9wTOuTKn2jrpTOE+l2RbBs04QUVjh9Z+IiFrjl6DUtGnTsGbNGowePRqjR4/2xy4iSp3RArsIyKUCopUsch5J7M6gVGcrdK4aeDUAR5ZUJNRCCpZ4teMSfbI6Mupt8N7gmY7Ovqdw3kbMdh91iIiog3j9JyKi1vjlqwmJRAKLhbP+eKpG7zhXCWo5C9JGGFdQqrLRDJO1czwhnqk1QNZ1EACgX1p0kHsT3uKdw/ciJSjFe4NnLLaODd9jphQRhRpe/4mIqDV+yZSaMGEC7rzzTkycOBGZmZlQKJoPSZs7d64/dhu2ap1D91wPoBQ5RGMDohRSNJltKKkzonsEFKtuy+bCEgiCBFnxKsTxM90hcSrH+TtVbYiIWdR4b/CMrYOZUnJ3UAoQRQamiCj4eP0nIqLW+CUo9dNPP2HAgAGoqKhARUVFs2Xh/lDlD+5MKQ0f4CNRVrwaP1U0orjWEPFBqQajFf8+UAYAGNglJsi9CX+xKhlEuw16iyPbLjVGGewudQjvDZ7xVU0pOwCj1Q5ONUBEwcbrPxERtcZnQanf//73eOmllxAbG4u33noLAGA0GqFSqXy1i4hVY7ACgHumLYoslyU4glKnayK/rtTWohLoLTZYq04jK75rsLsT9qQSAfb6Ckjj03GyWh+WQSneG7zX0dn3pAIgABABNJhsSPJVx4iIvMDrPxERecJnNaUKCgouGiv+q1/9CsXFxb7aRUSy2UXUGZkpFckuS1ADAE7XREZdoNYYLTZs+r4EAGAq2slvPn3EVuM4pyfDdAY+3hu858qUau/wPUE4ly1Vb7T6qFdERN7h9Z+IiDzh1zlYWcuibfVGK0TnzHtRCs68F4lcQalTYRpU8NTWolJUNZmREauE+di+YHcnYthrSwEApyKk2DnAe0NbOhqUAs7NwFdvYlCKiEJHoK7/s2bNwqOPPur+/fDhw7jpppug1Wpx44034tChQ83a79ixA1dddRW0Wi3mzJmD6urqZn1etWoVRo0ahREjRmDFihWw2zvH5DVERIHg16AUta3GwJn3Il12oqOOVCQP3zNYbNjwreObz7tHZQN2W5B7FDlsta5MqcgJStGldXT4HnCu2HmDkf8Wiahzef/997Fnzx7373q9HrNmzcLw4cOxbds25OTkYPbs2dDrHffVAwcOYOHChZg7dy7effdd1NfXIy8vz73+66+/jh07dmDNmjX4+9//jv/+9794/fXXA35cRESRikGpIKvRmwFw5r1Ilu3MlNI1mdFkjsyshX8WnEG13oLMOBWu7Z8a7O5EFJszU4pBqc7DJ5lSzrt7HTOliKgTqa2txYoVKzBo0CD3azt37oRSqcSCBQvQs2dPLFy4EFFRUdi1axcAYOPGjZgyZQpuuOEG9O3bFytWrMCePXvcwww3bNiA+fPnY/jw4Rg1ahQefvhhvP3220E5PiKiSOTT2fc++OADREdHu3+32+346KOPkJiY2KzdDTfc4MvdhjV3kXPWk4pY0UoZEjVyVOstOF1jQL+0yJqVTtdowpvfOP7jdv/YbpBJGev2JdfwvYpGR1AzSuGXSVP9ivcG71hsjkypjiTPuoNSBgaliCh4An39f/rpp3H99dc3m+GvqKgIw4YNc49IEAQBQ4cORWFhIXJzc1FUVIQ//vGP7vbp6enIyMhAUVERFAoFSktLccUVV7iXDxs2DGfPnkVFRQVSU/lFHBFRR/ns6SYjIwOvvfZas9eSkpKwcePGZq8JgsAHj/PU6M8N36PIlZ2gdgSlqv0blLLa7Gg0B3a4zotfnITBYsfA9Bhc3ScloPvuDERTU1gHNXlv8J7F3vFMKaWzplStwXLphkREfhLo6//evXvx3Xff4b///S8WL17sfr2yshK9evW6qB9Hjx4FgBaDS0lJSSgrK0NlZSUANFuenJwMACgrK/M6KBXqlTpc/fN3P8/fviAEZn/nH1uovw/tEaj3Llh4fKHBX/3zWVDqk08+8dWmOg07Z97rNC5L0OD7s/V+qytltdlRVNKAgyX17gfa2N8/i38WnMHvcjIh7cjT7SV8f6YO//2hHADwwPgerIvmJ9mJGlTr63CyWh92QSneG7xntXW8ppQrKFXDTCkiCpJAXv9NJhOeeOIJLFq0CCqVqtkyg8EAhULR7DWFQgGz2VFCw2g0trrcaDS6fz9/GQD3+t5ISgqPe7i/+2mz6aFWK5z7ikZysv/3p1I59peY6P/9BVO4fMbai8cXmcJvHEgEqXPNvCfhzHuRLjvRUVfKH3WBLDY7dv1YibIGEwDHTI52O4CYZDz76XHs/kmHldf3R1KU4tIb8pLZakf+bse3jNcP6gJtZpxPt0/ndEtU4/szdTgZ4TM4koMvakopnRGtWiMzpYgo8q1ZswYDBw7EuHHjLlqmVCovCiCZzWZ38Kq15Wq1ulkASqlUuv8OAGq12ut+VlU1IJQnoBUEx0Oxv/tZVdUIg8Hs/rtUqvHfzpz7MBrNUKkUqK72//6CIVDvXbDw+EKDq5++xqBUELlm3ovXcOa9SNc9yXHzO17l26CUXRTx0U86lDWYIJcKGNcjET2SNLDZRaxZtQxpV9+Dg6X1uOudQqydPghZ8d7/B6o16746hRNVeiSo5Zg3rrvPtksX6+acwfEUi513ChbX7Hs+Gb7HTCkiinzvv/8+dDodcnJyAJwLHH344YeYNm0adDpds/Y6nc499C4tLa3F5SkpKUhLSwPgGAKYlZXl/jsApKR4X7JAFBHSD5wu/u7n+dsOxDk5fx/h8h60F48vvEX68bWGQakgYj2pzqNnchQAR6aU1Wb3WTHwQ6UNOFtnhEwiYEq/VKTFOL7Fk0kFmA9/gg1vvIj52w7iTK0R9/3rANbfokV6bPO09rFXjkJZaan7d0EiQLS3fDXskp6OLz7bh+/P1OGtbx3FzR+7ujfi+Bn2q2xnUIoz8HUOPsmU4vA9IupE3nrrLVit5653q1atAgA8/PDD+Pbbb/HKK69AFEUIggBRFLF//37ce++9AACtVouCggLk5uYCAEpLS1FaWgqtVou0tDRkZGSgoKDAHZQqKChARkYGi5wTEfkIg1JB5CpAy3pSka9LjBIauRR6iw2naw3okRTV4W3WGiz47nQtAGB0twR3QOp8XRPU+MctQzD73SKcqjHg/s0HsP53WqREn2tbVlqKBW/ucf+u0Sih15ta3OeKmeNR1WTGwvd/hAhg2oA0TOid3OFjoUvr5hz+ebrGAJtd9FuNMAoNPqkp5Zp9z2iFXRQhYTYuEUWwzMzMZr9HRTn+n5WdnY2kpCSsXr0ay5cvxy233IJNmzbBYDBgypQpAIAZM2bgtttuw5AhQzBo0CAsX74cEyZMQNeuXd3LV61ahS5dugAAVq9ejbvuuiuAR0dEFNk4d3sQuTKl4pllEvEEQUDPZEe2yy8632S7fHu6FjYRyIxToU9q60GupCgFXrxpMDLjVDhTa8T9mw+gWu99cU4AgESGvB0/orLRjO5JGjwyqVfb61CHdYlRQSEVYLGJKK03Brs7YWXWrFl49NFH3b8fPnwYN910E7RaLW688UYcOnSoWfsdO3bgqquuglarxZw5c1BdXR3oLvtk9j1XmUKbXUSDkdlSRNR5RUdHY926de5sqKKiIqxfvx4ajeP/ZTk5OVi6dCnWrl2LGTNmIC4uDvn5+e717777blx77bWYO3cu/vSnP+H666/HHXfcEaSjISKKPAxKBYldFFFvZFCqM+nhHML3i66pw9uqaDDhZLUBAhxZUm3VJEuNUeLFmwYjNVqBk9UGzN1yEHVeThUviiI0E/+I78/UIUohxYrr+kPDAv0BIZUIyHTWAyuuZbFzT73//vvYs+dcFqBer8esWbMwfPhwbNu2DTk5OZg9ezb0ekeg+MCBA1i4cCHmzp2Ld999F/X19cjLywt4v30xfE8qAHLnHd71BQgRUWfx1FNP4amnnnL/PnjwYGzfvh0HDhzA5s2b0b9//2btc3Nz8emnn+L777/HmjVrkJCQ4F4mlUqRl5eHb7/9Fvv27cPDDz/MWrBERD7EoFSQNJpssImOh45oJR/sO4OePgxKFRTXAQB6p0R5PPwzI06Fl27WIilKgaOVTZi/7RAaTZ5lUIiiiM+PV0PZ+1eQSgQ8fV1/dEuKvJlLQtllrqBUDYNSnqitrcWKFSswaNAg92s7d+6EUqnEggUL0LNnTyxcuBBRUVHYtWsXAGDjxo2YMmUKbrjhBvTt2xcrVqzAnj17UFxcHNC+W2wdL3QOAEqpYwM1XgagiYiIiIgChUGpIKlzZknFquSs9dFJ9PTRDHySuC44U+cYwpWTFefVupclqLF2+iDEqWQ4XNaAP207BEEVfcl1LDY7Pj5ahZ8qmiDa7Xhi8uUY2S3hkuuQ72W5M6U4fM8TTz/9NK6//nr06nVuiGlRURGGDRvm/oZbEAQMHToUhYWF7uXDhw93t09PT0dGRgaKiooC2nera/heB7ejchU7b+9wXSIiIiIiP2NQKkjqnDMixatZa76zcGVKFdcYYLDY2r0d5YBfAwAuS1AhVuX956dnchTWTB+EaKUUB0rqEXPjMpytaznQUd5gwn8OluNElR6CADR9/CKm9Etrd9+p/S5LcMyayEyptu3duxffffcd7r///mavV1ZWXjRbUlJSEsrKygAAFRUVl1weKL7OlKrm8D0iIiIiClGMiASJq55PnIr1pDqLRI0cSVEKVDWZ8XNFI7SZ3mU5AYDBYoOizzgAQP+0mHb3pW9aDF65ZQgW/OcHFCMZOw9XICNWiW5JGiTGWFBdb8SpGoM7WKWWS3DV5cnY8NLX7d4ndUwWa0p5xGQy4YknnsCiRYugUqmaLTMYDFAoFM1eUygUMJsdmURGo/GSyz3lSfKrq01LbduqKdXa9i98XSk7N3wvXBNyL3WeyIHnqG08R23jOSIiomBhUCpI6pyzIcUxU6rTEAQB/dOi8fnxavxQ1tCuoNSHP1ZAooxCjFKGrHhV2ytcQq/kKGz4w1CMnr0Y6kHXoKTehJJ600XtLk+JwojseKjlrH0WTJclOIJSZ+uMsNpFyDqaRhOh1qxZg4EDB2LcuHEXLVMqlRcFmMxmszt41dpytVrtVR+SkjwPGLfU1iY6glJqlRxqZfOEZplEBKRSyGXyNl+PNgCADUYRSE5ufxA7FHhzTjsrnqO28Ry1jeeIiIgCjRGRIGGmVOfUv0sMPj9ejcNlDV6vK4oiNheWOLcT7ZOZX6KVMhi+fAszb78Dv+iaUN5ggtkuQimVICVKgd4pUYhpxxBB8r3UGCUUUgFmm4iyeqM7c4qae//996HT6ZCTkwMA7iDThx9+iGnTpkGn0zVrr9Pp3EP20tLSWlyekpLiVR+qqhrgjCu1ShAcD38ttTVbHcP3zCYLDPbmyyxmEwSpDFapvc3XJaLj325JVRN0Ou+vOaHgUueJHHiO2sZz1LbzzxHA4BQREQUOnzaDwGqzo9HsqCnEmlKdS/8ujv/k/Vje6PW6B0sb8HNlE0SrGZenRPm0X7EqmbtoukajhF5/ccYUBZdEEJAZr8aJKj2Kaw0MSrXirbfegtV6blbJVatWAQAefvhhfPvtt3jllVcgiiIEQYAoiti/fz/uvfdeAIBWq0VBQQFyc3MBAKWlpSgtLYVWq/WqD6IIjx98W2rbVk2p1rZ94euq82pKhfuDuDfntLPiOWobz1HbeH6IiCjQWOg8CFxD95RSCZQyvgWdiasO1OkaAxqM1jZaN7fFmSVlPrYPKg6l65Quc9WVquEMfK3JzMxEdna2+ycqKgpRUVHIzs7G5MmTUV9fj+XLl+PYsWNYvnw5DAYDpkyZAgCYMWMG/vOf/2Dz5s04cuQIFixYgAkTJqBr164B678oim3WlPKUK8mxqomz7xERERFRaGJEJAjOryfliyFYFD7iNXJkxDnq1xwu93w4TbXejN0/VwIATD/s9kvfKPSx2HnHREdHY926de5sqKKiIqxfvx4ajQYAkJOTg6VLl2Lt2rWYMWMG4uLikJ+fH9A+2kTAlajQ0Ru02lnoXMegFBERERGFKI4dCwJ3PSk160l1Rv3TYlBSZ8Sh0nqMzE7waJ33DpbBYhPRv0sMvqw84eceUqi6LMER0DzDoJTHnnrqqWa/Dx48GNu3b2+1fW5urnv4XjBYbefVhOpwppRjA01mG5rMVkQpeMsnIiIiotDCTKkgcGdKsYB0pzS0q6N207enaz1qb7OL2HagFAAwXZvur25RGHBlSp2uYVAqUrmG7gEdD0rJJQI0csdtvrKR2VJEREREFHoYlAoCZkp1biMuiwcAHCiph9Fia7P9lyeqUVpvQpxKhqv7eDcLGEWWyxIcQamSOiOsdlajjUQW+7lMKV8M7k7SOL78qGzk5AVEREREFHoYlAqCWldQiplSndJlCWqkRitgsYkoPFvXZntXgfPrBnZhgfNOLjVGCYVUgNUuoqyexc4jkStTSi4R4IuSg0kax5cfzJQiIiIiolDEoFSACcpomJ0PHQxKdU6CIGCEs5bUN6dqL9n2TK0Be0/WQABwI4fudXoSQUAmi51HNIuzppSso2P3nM5lSjEoRUREREShh0GpAJPEOwIL0QopZFKe/s5qRHY8AGDfqZpLttu0/ywAYFS3BHc9IercurqCUjXMlIpEVueXFjJpx4NSoigiTuH4O4fvEREREVEoYlQkwKRxXQCwnlRnNzo7EVKJgKOVTfhF19Rim1q9Bf8+WAYA+P3wrEB2j0JYV2ZKRTRXTSlfZEpZzSYcOVMJgEEpIiIiIgpNDEoFmCtTikP3Ord4jRxjuicCAHYeLm+xzeaiEpisdvRJjXYXRye6LEEFwDG0kyLP+TWlfEHtLEPHGmREREREFIoiIig1a9YsPProo+7fDx8+jJtuuglarRY33ngjDh061Kz9jh07cNVVV0Gr1WLOnDmorq4OWF8lzJQip6kD0gAAH/xYAdsFM6lV6814+7szAIDbr8iC4IuKxxQRXMM4T9cwKBWJfF1TSiV1XFuqmiw+2R4RERERkS+FfVDq/fffx549e9y/6/V6zJo1C8OHD8e2bduQk5OD2bNnQ6/XAwAOHDiAhQsXYu7cuXj33XdRX1+PvLy8gPX33PA9Zkp1dmO7JyJOJUNloxkfHqlotuzFL06iyWxD39Ro/PrylCD1kELRZQmOoFRJnRHWC4KZFP5c76kvakoB54JSOr0FdpGfFyIiIiIKLWEdlKqtrcWKFSswaNAg92s7d+6EUqnEggUL0LNnTyxcuBBRUVHYtWsXAGDjxo2YMmUKbrjhBvTt2xcrVqzAnj17UFxc7Pf+2uwiJHGO7Jg4FTOlOjuFTIJbhzlqRT2/5zgajFYAwJ5jVXjPWUvq4Uk9IfVRxgRFhtQYJRRSAVa7yCFZEciVKeWr4XtK513eZhdRa2C2FBERERGFlrBO13n66adx/fXXo6LiXJZJUVERhg0b5h7uJAgChg4disLCQuTm5qKoqAh//OMf3e3T09ORkZGBoqIidO3a1a/9Las3QpDKIRWAaKXUr/ui8PCH4VnYebgcp2oMeGD7IYztkYhX952GCOBGbTq0mXHt3najvgm9eme33a6psd37oMCTCAIy49U4UaXHmVoDZ2WMMK6aUjIffWUkEQClFDDZgMoGMxI1Ct9smIiIiIjIB8I2KLV371589913+O9//4vFixe7X6+srESvXr2atU1KSsLRo0cBABUVFUhNTb1oeVlZmdd98LbMz2lnYeJYlRySCKwR5DokQQAidZRIe962S62jlEvw18mXY+7mgzhQUo8DJfUAgCt7JuGRX/dq1/5cRLsdC97c02a7v9449KK+Xuo9DPePrrv/Qvgcy4X97OoMShXXGjFaaLmtJ8cWLsffmVhcw/d8mCGpdgalyhqM6JMW7bPtEhERERF1VFgGpUwmE5544gksWrQIKpWq2TKDwQCFovk3wQqFAmazGQBgNBovudwbSUkxXrXX/aQDACRGK6DRKNts70kbb9v6ul1LbdXqltcNxL4D1c7TtoJEQHLypT8nVyXH4OPsJDz70c+oajRhUr803Dw8C0pZy9l0gkTw+3G39h56cjyudqH+fguCZ8cCBOacX2rfF/azT0YsPvulCjqjrdVj8Pb6RKHB6hq+56OaUgCgkQmoNYsoqzf5bJtERERERL4QlkGpNWvWYODAgRg3btxFy5RK5UUBJrPZ7A5etbZcrfZ+CExVVYNXGUGHi2sAADEKKfT6th8OPGnjbVtftzu/rSA4ghkGg6nF8+LPfQeqnesYPd2maBeh0zW02U4J4NGJPdy/N9Tq0dpaol3023G39R56ejz+6KM3bS/VznWMDY2NiItP9Gh7jU2NQfs31tI5T3IO//25tO6iZYLgCEh5cn1ytaXQcW74ng8zpZx3etYgIyIiIqJQE5ZBqffffx86nQ45OTkA4A4yffjhh5g2bRp0Ol2z9jqdzj1kLy0trcXlKSnez3Amit4NUzvlnMI9ThWWp71NrnMRqUP3gPYdWzidD0/ew3A6npa4j9HD4Y1A8yGOgdaob0LPXs1rg8ky+yPmujzs2f8Dei6YCgDokp6OLz7b527j7fWJQoOr0Lkvg1JKwQpAirO1ep9tk4iIiIjIF8IyOvLWW2/BarW6f1+1ahUA4OGHH8a3336LV155BaIoQhAEiKKI/fv349577wUAaLVaFBQUIDc3FwBQWlqK0tJSaLVav/f7dLUzKKXmzHvU3NgrR6GstNSjtixM3rm0FDxrNFnxzv4SyBPS8fAbn0IiCFgxc3yQeki+5K+aUgBQ3uD9MHUiIiIiIn8Ky6BUZmZms9+joqIAANnZ2UhKSsLq1auxfPly3HLLLdi0aRMMBgOmTJkCAJgxYwZuu+02DBkyBIMGDcLy5csxYcIEv8+8Z7WLKG9wDNeJ1Ewpar+y0tKwyNqh0BClkEIqADYRaDTZEMtrSsSwnF9TyuabbaqljkBXeSODUkREREQUWnw06XToiI6Oxrp169zZUEVFRVi/fj00Gg0AICcnB0uXLsXatWsxY8YMxMXFIT8/3+/9kkkE3JyTAWPhDqjkLRewJiLyhCAIiFE5Mi7rjZYg94Z8yeqPmlLOW06V3gKz1e6z7RIRERERdVREfL3+1FNPNft98ODB2L59e6vtc3Nz3cP3AumRX/fCuvv+Bdx3f8D3TUSRJU4lQ63BgjqjFVnB7gz5jMXu+5pSCgncmXUVjSZkxXs/sQcRERERkT9EXKYUEVFn4BqyV2+0ttGSwolr9j25D4NSggBoZI7tldV7PtslEREREZG/MShFRBSGXEGpOgOH70USV1BKJvVdUAoANHLH9k7r6iFyWkYiIiIiChEMShERhSHXLJ7MlIosVj8M3wPOZUq9V3QaBoPBp9smIiIiImovBqWIiMKQK1OqwWSFnZkvEcMfw/eAc5lSRjsn2iAiIiKi0MGgFBFRGIpWSCEVALsINJpswe4O+YjF5q9MKcefTRbOvkdEREREoYNBKSKiMCQIAmLcxc5ZVypSWOx+qinlHL7XZGFWHRERNWe321FRUYGKigrY7fzygogCSxbsDhARUfvEqeSoNVhZVyqCWJ2ZUqLNClF0zJznCwrREbjUW+wsdE5ERM3odDqs+7gIALAwKRpSqSbIPSKizoSZUkREYco9Ax+DUhHDVVPqm2NlsNp8976qnV9B2UR+XoiI6GJRcYmIiksMdjeIqBNiUIqIKEy5g1IGDt+LFO6aUjLfJjJLBUDprHFe3mj26baJiIiIiNqLw/eIyGON+ib06p3ddrumxgD0huLUcgDg8L0I4sqU8nGdcwCARgqYbEB5A4NSRERERBQaGJQiIo+JdjsWvLmnzXZ/vXFoAHpDrkypBpMVEJj4GgkszgKzfglKyYAaM1DBTCkiIiIiChF8iiEiClPRCimkAmAXAUl0UrC7Qz7gzpSC74uRu+pKlTFTioiIiIhCBINSRERhShAExDizpSRxaUHuDfmCq6aUv4bvAcyUIiIiIqLQwaAUEVEYi1M56kpJGZSKCFa7/2pKuTKlyhtNvt84EREREVE7MChFRBTGYt2ZUl2C3BPyBXemlB+2rXEGpSo4fI+IiIiIQgSDUkREYcwdlIplplQk8Ofse2rn8L1qgxUmq933OyAiIiIi8hKDUkREYSxOzeF7kcSfNaUUEkDq3G55A4fwEREREVHwMShFRBTGzmVKpcJm9/2MbRRYrppSfohJQRAAjdyx5bJ6ox/2QERERETkHQaliIjCWLRCCrlEgCCVQW+2Bbs71EGuYXVSf0SlAGhkzqAUM6WIiCjIRJFfphERg1JERGFNEARMvDwZTXteQ4wza4rClyso5Y/hewAQxUwpIiIKAfUmO7Yd1WP9t+XB7goRBRmDUkREYS47QQ3zj/8Ldjeog2x20T18z++ZUvXMlCIiouD5ptQEsw34z5GaYHeFiIKMQSkiIqIQcP6MeH4LSsk5fI+IiIJLb7Gh0nDunlfVZA5ib4go2BiUIiIiCgEm67maYP7LlHL8WVpnYC0PIooo5eXlmD9/PkaMGIFx48YhPz8fJpMjAF9cXIw77rgDQ4YMwbXXXosvvvii2bpfffUVpk2bBq1Wi9tvvx3FxcXNlr/xxhsYN24ccnJy8Nhjj8FgMATsuCLRpyfqm/1+TNcUpJ4QUShgUIqIiCgEuDKl5BIBgp8zpUrqTWjS6/2zEyKiABNFEfPnz4fBYMDbb7+NZ599Fv/73//w3HPPQRRFzJkzB8nJydi6dSuuv/56zJ07FyUlJQCAkpISzJkzB7m5udiyZQsSExNx//33uwP3H374IdasWYOlS5fizTffRFFREVauXBnMww1735xpbPb7sUoGpYg6MwaliIiIQoDRGZRSyvx3a1bLBAgA7CJQa7D6bT9ERIF0/PhxFBYWIj8/H71798bw4cMxf/587NixA/v27UNxcTGWLl2Knj17Yvbs2RgyZAi2bt0KANi8eTMGDhyIu+66C71790Z+fj7Onj2Lb775BgCwYcMGzJw5ExMnTsTgwYOxZMkSbN26ldlSHaDTO+4/yWrH/e4oM6WIOjUGpYiIiEKAK1NK4ceglFQQkOgcw1feyBoeRBQZUlJS8I9//APJycnNXm9sbERRURH69+8PjUbjfn3YsGEoLCwEABQVFWH48OHuZWq1GgMGDEBhYSFsNhsOHjzYbPmQIUNgsVhw5MgR/x5UBNM1WQAA6VFSAMyUIursGJQiIiIKAa6glNJfBaWcktSOh4CKBgaliCgyxMbGYty4ce7f7XY7Nm7ciFGjRqGyshKpqanN2iclJaGsrAwALrm8vr4eJpOp2XKZTIb4+Hj3+uQdo8WGBrPjfpce7bgfnahqcs8+S0SdD4NSREQUUfxZ7NafzAEYvgcAqc5MqVLOwEdEEWrlypU4fPgwHnzwQRgMBigUimbLFQoFzGZHYP5Sy41Go/v31tb3hiCE7o+rf/7uZ5Xecd6kApCokkAtk8BsE3G21hCwY4zUHx5feP+Ey/H5g8w/myUiIgo8V7Hb2NhYvP3226irq8Njjz0GiUSCBQsWYM6cObj88suxdetW7N69G3PnzsXOnTuRkZHhLnY7b948jBs3DmvXrsX999+P9957D4K/7sLnMQUoKJUW7QxK1TMoRUSRZ+XKlXjzzTfx7LPP4vLLL4dSqURtbW2zNmazGSqVCgCgVCovCjCZzWbExsZCqVS6f79wuVqt9rpvSUkxXq8TCDabHmr1ucCbP/t5rN5xLqMUEmg0SqTH2XG8ygijRIrkZP/s12bTQ6VyHF9iYrTf9hMKQvUz5is8vsjEoBQREUUMV7HbL7/80l1bZP78+Xj66adx5ZVXori4GJs2bYJGo0HPnj2xd+9ebN26FfPmzWtW7BYA8vPzMWbMGHzzzTcYOXKk3/tustoAADJBhOjHUQxdouUAHDPwERFFkmXLluGdd97BypUr8Zvf/AYAkJaWhmPHjjVrp9Pp3EPy0tLSoNPpLlrer18/xMfHQ6lUQqfToWfPngAAq9WK2tpapKSkeN2/qqoGv17f26uqqhEGg9mdBeHPfh47WwsAUEkBg8GMGLnji5gTpbXom6D0yz6rqhphNJqhUilQXd0IqVTT9kphRhAcAY1Q/Yx1FI8vNLj66WscvkdERBHDX8VuA8E1+15FnR42m8Vv+0mLcnwfxaAUEUWSNWvWYNOmTXjmmWcwdepU9+tarRY//PCDeygeABQUFECr1bqXFxQUuJcZDAYcPnwYWq0WEokEgwYNara8sLAQMpkMffv29bqPohi6P67++bufFc6h42qZIwIWr3Lck6qaLAE7xkj94fGF90+4HJ8/MChFREQRw1/FbgPBNXxPHqDhe2UNZthYWJaIIsAvv/yCF198EX/84x8xbNgwVFZWun9GjBiB9PR05OXl4ejRo1i/fj0OHDiA6dOnAwBuvPFG7N+/H+vXr8fRo0eRl5eHrKwsd4bsrbfeildffRW7d+/GgQMHsHjxYtx8883tGr5HQIVz5leNM0MqXuUodl6t5+QbRJ0Vh+8REVHEchW73bJlC9544412F7v1hiflp84vaOlitjmCUtIWlnmyfU9fT9bIIAFgtYvQNZnQJVbVdoeDpKXzRM3xHLWN56ht4X6OPv74Y9hsNrz00kt46aWXmi376aef8OKLL2LhwoXIzc1FdnY21q5di4yMDABAVlYWXnjhBTz55JNYu3YtcnJysHbtWnctwalTp+Ls2bNYtGgRzGYzrrnmGjzyyCMBP8ZIcVGmlNqZKaX3X4YwEYU2BqWIiCgi+bLYrTe8GWt/flupwlHrSSGXQq1SAlIp5DJ5s/Yyidih12UKBaKjZIhWSFBvtqNeFDAwDAq+dtbCn97gOWobz1HbwvUczZo1C7NmzWp1eXZ2NjZu3Njq8vHjx2P8+PHt3j55rrLREZTSOINSCa5MqSZmShF1VgxKERFRxPF1sVtveFKksqWCltV1esdfbHYYjCYIUhmsUnuz9SzmDr5uMOGZ94qhksajHsDh09W4PM4/hWV9IVwKfwYTz1HbeI7adv45AsI3OEWhzzV8Ty1vnilVzUwpok6LQSkiIooo5xe7nTx5svt1rVaL9evXw2g0urOjCgoKMGzYMPfylordzp0716v9e1MI8vy2/5+9+46Pqkr/OP6ZSTKTRg1JpIkKIiAwhKqLLEUsCIoGG7qWtYAKsu6uopFdVBBRwLIKCihW/Ckq2AtrWXUVhTWYICJIEyIkkEL6JJNk7u+PSQZCKJlkWibf98u8yNxzy3PuxHtmnnvOuTVzSoWZD5YdbZvGLI+wWImpviG9J7+sSXxJ9+XkmqFC5+j4dI6OT+dHfKnKaZBzWE+pmonONaeUSPOlic5FRCRk+HKyW19zJ6X8MKdLTPUd6j35ZcdZU0RExDsO2CuoMsBsgsjDh++VVuBUVlSkWWqySal9+/Yxbdo0Bg8ezLBhw5g7dy7l5a7Me0ZGBtdffz39+vXjggsu4Jtvvqm17Zo1axg3bhw2m41rr72WjIyMQFRBRES87NDJbs8666xaP2FhYTz99NNkZ2eTnJzMe++9d8TJbleuXMmll15Kfn5+rclufa3Mn0mp6n7SGfl23x9MREQEyK8eotfCEoa5um1tVd1TqsppUFhWGbDYRCRwmuTwPcMwmDZtGi1btuTVV1+loKCAe++9F7PZzPTp05kyZQrdu3dn5cqVfPbZZ0ydOpWPPvqIDh06sHfvXqZMmcLtt9/OsGHDWLRoEbfddhvvvfee3754iIiIb/h6sltf8mdPqdjqnlK7D9gxDEPtn4iI+NwBu2uIXsvq3lEAEWEmWkaGU1hWSV6pg9ZREUfbXERCVJNMSu3YsYO0tDS+/fZb2rVrB8C0adN45JFH+OMf/0hGRgavv/460dHRdO3ale+++46VK1dy++238+abb9K7d29uuOEGAObOncvQoUNZt26d34ZoiIiIHO7wOaV8KSYcTECJo4rc0graxVh8f1AREWnWDlT3lGplDau1vG10hCspVVLBKXGBiExEAqlJDt+Lj4/nueeecyekahQXF5Oenk6vXr2Ijo52Lx8wYABpaWkApKenM3DgQHdZVFQUp59+urtcREQkEMorqwAI80OvpTCzifYtXYmoXbklPj+eiIhIvr06KRVZu19E22hXe5Rb4rvJzp2Gweaccn7N8f2wdafTyf79+9m/fz9Op/P4G4g0c00yKdWyZUuGDRvmfu10Olm+fDlnnHEG2dnZ7sd714iLiyMrKwvguOWeMJk8/6nZLhSFev2gYXWr799FMNB72LQdfp1pSn974t/hewAdW7i+BGzdX+ifA4qISLN2MCl1eE+p6qSUj57AZxgG6zIdrNldyrz/7vXJMQ6Vk5PDks/TWfJ5Ojk5OT4/nkhT1ySH7x1u/vz5bNq0ibfeeosXX3wRi6X2MASLxYLD4brI2e32Y5Z7Ii6uRYPijYqy1mu96Oj6refJut5e70jrHq1+/ji2v9ar77oms4l27Y7/d2Iym4Kq3sf6Gw32c95cj33431pDr08SOP4cvgfQqZWF/+2BDD2BT0RE/KBm+F5LaxhUVriXx8W45pHKK6044naN9dn2AnYWuCZR31tUQU5xOe1i6/85rCFiWrX16f5FQkmTT0rNnz+fl156iccff5zu3btjtVrJz8+vtY7D4SAyMhIAq9VaJwHlcDho2bKlx8fOzS3CkyeX1vRKsNvL67VdaWl5vfdd33W9vd6h65pMrmTG0erny2P7a72aOtZ3n4bTICenqF7rBUO9j/ce+vLY/tqnp++hN4/dkPXqu27N35rJ5EpI1ef6VLOuBIdaPaX88FTsTtXD95SUEhERf3D3lLKGUXjIg/Zqekod8FFPqa931f4sviGziFGn+jYpJSL11ySH79WYPXs2L7zwAvPnz+e8884DIDExsU43yZycHPeQvaOVx8fHe3x8w/D8p2a7UBTq9YOG1a2+fxfBQO9h03b4daYp/e2J/4fvdWrl+kC+W0kpERHxgwPVSamWh80p1Tra1VPqgI96SmXku27utYlyDRtM31Pgk+OISMM02aTUwoULef3113nssccYO3ase7nNZuPnn3+mrOzgh+zU1FRsNpu7PDU11V1mt9vZtGmTu1xERCQQyir8N9E5uIbvAWQVluOo1ESsIiLiW0ebU6pNVEStcm8qcVSSXerqltU9ztXu/bRXcymKBJMmmZTavn07Tz/9NDfffDMDBgwgOzvb/TN48GDat29PSkoKW7duZenSpWzYsIFLL70UgAkTJrB+/XqWLl3K1q1bSUlJoVOnTgwZMiTAtRIRkebM33NKtY0KJ9wMVQZk5Jf656AiItJs1ZpT6hA1SakDPkhK/ZbnetpeZJiJzq1cx/llX7G7zRWRwGuSSanPP/+cqqoqnnnmGc4666xaP2FhYTz99NNkZ2eTnJzMe++9x6JFi+jQoQMAnTp14qmnnmLlypVceuml5Ofns2jRIkx6DJWIiASQP4fvGYZBWVkZLSJcB9uSme/7g4qISLPlNAwKjtJTqmb4ni96Sv2W67rp0tJqooXFTJvIMCqdBlv2F3v9WCLSME1yovNJkyYxadKko5Z36dKF5cuXH7V8+PDhDB8+3BehiYiIeMwwjFpJKV9P91VZUc6yr3+hZXgkB8phZ/WdZBEREV8oLq+kqrpxa3WUnlLF5VVUVDmJ8GKX4R3VSalWVjMmk4lOrSwcKLOzp8BO3w6eP+hKRLyvSfaUEhERCSUVVYY7EeWvic4jLJFUP4CPnXma7FxERHynZuhejCWsTtKpRWS4u+3zdm+p3/Kqe0pZXMdMiHElwLIK6/8UZBHxLSWlREREAuzQuS38NacUQEvXZ3P1lBIREZ+qSTa1ru4VdSizyUSrKN88gW9nbgkALa3VSalY13EyC3UzRiRYKCklIiISYOWVrifvmU3gzxkOa5JSvxeUadJXERHxmZpkU5voukkpOJis8uZk545KJ3sKXMmnVhZX61rTUypTPaVEgoaSUiIiIgFWVp0QsoaZ/frgDWsYWMzgNGBXnp7AJyIivnGsnlJwMFmV78WeUllF5TgNsIaZiAyvnZTKUk8pkaChpJSIiEiA1fRSsoT7t1k2mVxPJALYXj3EQURExNtqekC1OVpSKsr7T+CrGaKXEBvhvuFzcPheOYbh68eKiEh9KCklIiISYDVJKaufk1IAraonf92WrZ5SIiLiG3nu4XuWI5b7YvheTW+omt5RAPExrofPl1c6vT6puog0jJJSIiIiAeZOSvnr0XuHqJlnY3tOsd+PLSIizUNeiQOAuJhjzynl3Z5SrnmjDk1KWcLMxMVYapWLSGApKSUiIhJgNROdB6KnVKy5EoDN+4ooLVVvKRER8b68UldSqu1RekrVzCnlzafv1fSUqukdVaNDS2utchEJLCWlREREAixQc0oBtKz+fpBbWsmB6i8NIiIi3pQbgKfvZRXV7SkFcELLSEA9pUSChZJSIiIiAVbicPWUiorwf7McYYaam8ibMvP9fnwREQl9NT2g4o7TU8qbT99zD9+LrZ2Ual/dUypTPaVEgoKSUiIiIgFWVOYaQtfSGn6cNX2jVfV3hB15+oAuIiLeVek0KKjuAdX2KHNKtYlyNUTemlOqymmw7zg9pbLUU0okKCgpJSIiEmCF1UmpFoFKSlV/Xt+Rpw/oIiLiXfmlDgzAbIJWkUcZvlfdU6qgrIIqp9HoY+aUOKhyGoSZTbSNqt22qqeUSHBRUkpERCTACstrklJhATm+ekqJiIiv1Mwn1ToqgjDzkZ8y2yYqArMJnAZemd+wZhLzxFhLnWO6e0oV6UaMSDBQUkpERCTAispcH9gD1VOqdXVSandBOWUVVQGJQUREQlPNk/fiYo48nxTg6tFUPd9Udknjk1I180nVJKAOVdNTqrCskhJHZaOPJSKNo6SUiIhIgBWUBbanVGSY68dpwC/7igMSg4iIhKa8kur5pI7y5L0a8bGupFROsTeSUq6eUjUJqEPFWMJpGRlevZ56S4kEWmBuyYo0E8WlJXQ7tcvx1yvRl0CR5qwowHNKmUzQ1gp7SyF9TwFJnVoFJA4REQk9NT2l2h7lyXs12sV4r6dU1jF6SgGc0MJKYVklWYVldGsX0+jjiUjDKSkl4kOG08n0l7467nr/nNDfD9GISLByzykVGZieUgBx1UmpDXsLAxaDiIiEnlx3T6ljJ6XiY129mnKKG9976Vg9pVzLI/k1u0Q9pUSCgIbviYiIBFign74Hrp5S4EpKGUbjn3wkIiICh84pdezhe+6eUl4YvnfcnlLVyaosPYFPJOCUlBIREQmwmonOIwwHgcoHtbaAJcxEQVkluw7YAxOEiIiEnHoP36uZU6qRw/cMwzikp9SRk1I1y/cWqKeUSKApKSUiIhJAZRVVOKpcmag3vttCVWVFQOIwm6B7nOtD+vqM/IDEICIioSevtHr43nF6SnlrovMCeyVllU4AElscbfhedU+pIvWUEgk0JaVEREQCqGboXpgJoiKP/OHZX2yJrqTUp5v3A667zaWlpTidTkpLSzWsT0REPJZbUr+eUvExrjawsROdZ1YnmtpGR2ANP/LX3ZphfZpTSiTwlJQSEREJoJpJzmOt4ZhMpoDGMvRE1xOI1u8pJKe4HLvdzsJP0zlwII+Fn6Zjt2tYn4hIKNpbXMl720pZ/O0er+7XXlHl7il1tEnHa8RV95Q6UOqg0tnwmyA1iaajDd07NJbcEgfl1b2qRCQwlJQSEREJoKLqnlItrYF78l6N9rERtLGacBqwelMmABHWyFr/iohIaPl2dxFfZ5RTUmHwwrpMPt2c7bV918ztFGsNo2XksYfvtYmKIMwETsOVmGqorOM8eQ+gdVQEMRZXu7unQDdcRAJJSSkREZEAKqye5DyQT9471Imxrt5aH2zaT5VTd49FREKZ0zBY9sN+DKCFxXX9f/Dfv1Jg9878hnsLXAmiDsfotVQjzGwizgtP4Ms8zpP3AEwmEye2iQJgd56SUiKBpKSUiIhIANXMKRUbBD2lAE5sYSbcBNtyy/jw56xAhyMiIj6UvqeQfSUVhJvhvJOiOLltJCWOKr7cluOV/buTUq3q19vWG0mp+vSUAg4mpfTEWZGAUlJKREQkgIqq55RqGRkcPaUiw02c1sr1+/M/7KPEod5SIiKh6qNN+wDo3CKciDAT5/eMA+CzLd5JSu3xMCmVEOtKJO0ravgE5PXpKQXQpU00oKSUSKApKSUiIhJABdU9pVoESU8pgK4toUWEiQNlVXyyo5RX07PZV1JJWUVVoEMTEREvcVQ6+exX1/xRJ7dy3RgZdWobAP63+wD5XhjC58nwPYDO7t5LpQ06ntMw3Nt2bh11zHVrekrtauCxRMQ7lJQSEREJoCJ3Uio4ekoBhJngj50sdIuLpLzK4JUfs/n8NzvjXkhj4ZdbayWnDMOgtLQUw2j4k5JERMT/fsjIp7i8iriocBKiXV8LT2wTSfeEGKoM+HJr43tLeTp876S2rkTRb3kNSxTtLSjDXuHEEmZyJ7iO5sS2Gr4nEgyUlBIREQmgmonOrWYnwZTXiYkw8eiYkxjU3srwk1sSFW6iosrgpdRMrl/+A7v352MYBna7nYWfpmO360O9iEhTsmZnHgADO8ZgMpncy8/uHg/A19tzG32MvYWeJqVcQ+p+a+Dk49tzStz7CTebjrluTU+qvNIK9w0iEfE/JaVEREQCyF7hmrMpdXsmVZXeedpRQ9QkmA5NjFnDzZza1kLK8E6MPzWau/6QgMUM2/PK+dP/beCXva4vNBHW+n3ZEBGR4GAYBt/scF3DB3WMrVV21iltAfjf7nzKKxs+r2BhWQXF5a6ete3rOXyvJim1r6icUofnQ8a3VSeluraLOe66sdZw2lVPrL4733s3VqqcBhmFlWzKcfDzfg0NFDkeJaVEREQCKLlve/54cms6t7IENI7KinJe+m57ncRYTbKq0uHgl527GX4CxISDvQqmrNpM+t4i93oaxici0jTsPmBnT0EZ4WYT/drXTuB0j48hPtZCWaWTH3/Pb/AxMgtcE463iYog2lK/eRNbRUXQNjoCaNhcT9uyXdt0q0dSCg59Ap93kkeGYTD36z18s6ec9OwK7v00g9SMfK/sWyRUKSklIiISQENPacvs87thCTv2MAN/iLDUfXx2paOcZV//QlVlBRGWSGIjYPgJEBdpothRxd/f/5VdBRWUlWkYn4hIU/Ft9dC9/p1aERVR+yuhyWTiDye3rV7vQIOPUTMvVMfWnvWm7eIewud5oqhm+F7X+PolpU6Ocx1ry74Sj491JK+t38N3GcWYTdAm0kyl0+DOd392z60lInUpKSUiIhJArp5IpUE1n9ThIiy1v1BYw2B4xwj+cGILKpwG3/5exsqNuYRbrHV6TKkHlYhI8KmZxHxo9VC9ww2tTkp9syO3wdfvnzILATj9hBYebeee7DzXs6SUo9Lp7vFU355SfTu0BCBtT4FHxzqSrMIyFv13JwBJCRZGd4nktHaRFJdXsXTNb43ev0ioUlJKREQkgOx2O4s//ymg80kdS0V5GRWVdSeAdZQWEluaxUnRrrJnf9jHmj1l5BYWu3tMGYZBXl4uT/374GslqEREAiunuJy0Pa6E0ahT2x1xncFdWmMNN/N7fhlb9hc36Djp1ceoSfzUV0MnO9+ZV0qV4XqabUJs/YbEJ3VqBcDm/cUNmsPqUMu+342jyqB3QhSntgkn3GzilkGJAHz8y352ephkqy+n08n+/fvZt28fTmfD5wATCRQlpURERAIsGCcKP9LE54ezWK30axeOLT4cswl2FVRyw8ptbCk08Wt2KTkFxTzz2U+Yw1xziehJfSIigffF1lwMoHf7FpxwlAnIYyzh7gnPV2/O9vgYpY4qtma7klm2jq082rZrnKuX06asIo9uYqzb5RpqePoJLWo9TfBY2reMJLGFlSqn4e7Z1RAZB+y8vzELgGuT4t3H794uihHd4nAasMRHvaVycnJY/Fk6j777P3JycnxyDBFfUlJKRERE6nDPJVV17B5cJhOc1iacBWNOooXFREF5FRv2O7j5rU1csOxH3t8Txoc7y5n58a+8vv53SowIP9VARKRpq+kBs3//fq/2gPliqyvJdHb3+GOud26PBAD+vXk/Tg97uP6cVUiVAYktrCS2qDtf4bHYOrbEGm4mq6icrdn1n+vp6+25AAzrGufR8fp1rB7C93vDh/At/W4XVQb84eQ2nJ4QXavslqEnYQI+/zWHzfuKGnyMY4lp1ZbY1kceiikS7JptUqq8vJx7772XgQMHctZZZ/H8888HOiQREQkCah8OOnwuqWPplRDN2G4x3D64HSdEm4mpftKS04CSCoOvfivkmbVZfLS9lBvf+JnX1+8hM6+Q0tKDwxk0vE9EglUg2oacnByWfJ7Oks/TvdYDZltOCakZBZg4+tC9GkNPbkuMJYz9xQ6PnyBXM3TP5uHQPYDIiDCGdGkDHEw0Hc+BUgcb9rqO+ceuniVnaobwrW9gUmpbTgmrf9kPwK1DT6pT3rVdDOf1dCX4nvn2twYdQySUhQc6gECZN28eGzdu5KWXXmLv3r3cfffddOjQgfPPPz/QoYmISACpfWg4s8nEqJNbkHWgiKv6d+C5/26jgjDKzRF0adeaDVnFbNhnZ1uunUf/s50nzSbO7NKKnu1bERNuEBVu5stfMrhj9Ol0iW9VPXwwNtDVEhEJWNsQ08q7vV9eXLsbgFHd29Gh1bFvPFjDzZzfM4GV6ZksXbOLgZ1b12tYnGEY7mSSraPnSSmA4V3j+Hp7Ll9vz+WmM7scd/1vduThNOC0hNijDkk8mpoE2PrfC9iZW+p+Il99GIbBU1/vwMCV5OuR2IL9++sOUZ90Zhc+3ZLNmp0H+GpbDsO7HTshKNKcNMukVGlpKW+++SbPPvssp59+Oqeffjpbt27l1Vdf1ZcOEZFmTO1Dw9TMP+V0uv6tKHcN/bNYIrEArSxmzj8xjNx9B+jYMZJdhRX8XhZBvsPg6535fL0zv9b+vn1lAye1sdI6rIJn/vwHIqo7dtccJyrK9WQmu91OZGQkZWVlREVFub8sHWm9Q8tFRDwRKm3D9pwSPt3iGrr358En1mubPw85kQ9+3kfankK+3ZnHWaccf2jcmp0H+GVfMdZw83GHCB7N0FPaYgJ+2VfMb3ml7snPj6TSafDGj3sBz3tJAXRq7Zr36cttubz0vwzuP/+0em/7Zloma3YeICLMxC1H6CVVo3ObKP40sBMvrcvgoU+3YuvYitZR3hvOXmUYVDoN9TSWJqlZJqU2b95MZWUlSUlJ7mUDBgxg8eLFOJ1OzOZmO6pRRKRZU/vQMDXzT0VYInnp2z1ERMbUGvpX6SjnpW+3uJaHwaltIuhpsXLGSW1Jz64k2+4k/fc8HBWVVBhhFFQY/HagHICRj69h9GnxnHNaPEalg1e+285JJ8SxM8/Oz1lFRISZMZxOeiTE0DWhFQktrJiclaz5dS/n9u6MJdzMpz/t4uIBJ9PCGk6Xdq2Ii7VgPkIC62hJq5p1jpQAO3wdJb9EQk8g2obySicrf85lY7aDmAgTvx0op207g3Bzw64vuSUO/vbOzzgNGHZKW05LrF8v1MQWVi7v14FXfvid2at/5enL+tK1Xcwx466Z0Puyfh2Ii6nfU/AOFxdj4YyT2vDdbwe47+MtLLvSRnjYkc/zqz/8zub9xbSwhpNs69Cg410/uDNfbsvlk1/2k9y3fb2eGPjplmz+9dV2AG7/4ynH7WF185ld+Hp7LjtzS5n61k/8K7l3g89PWUUVqb8X8J+tOfzvt1z2FlUApazaVEjvDvv5Y9c4RnSLIz7Ws/m8RAKhWSalsrOzadOmDRbLwYtAu3btKC8vJz8/n7ZtNUmciEhzpPah4WqSUBGWI38APnx5paOcf6/fTLg1mknDuvNqZSFVla47vCVl5WSUmNjriKTA4eSDn/fxwc/73NumZu93/15e5Zr8N3VvCal7a0+Im/qf39y/r/lw28FYzCbiYy3Et7CC08meA8WcHBdLYusY2kZbCDdDQVklewvK2J1XQrGjCkdFFa2iIrA7KjilXQvaxFiJMBlYLeHVibEqNmbkMPDkBCKtFsJNgLOKKKuFiDAzEeFmIsPNWKt/IsPDiAgzUVbhpKSiipLySvJL7JiAmKhILGFmIsJMhJtNGFUVxEZFEhFuJsLsWl6T+DKZYL/DID+/BMNwva5hotaLI/2K0zCocrp+Kp2u8282mTCbTYSZwGRy7cVsMoHrP1y/Vu/dvezoX5SPdef+mPf0j3PD/1jFxiGlJuBAFRw4UIIBx3yiZGNiMo4T8LGO27jzcPQVWkSG07FV1LF3IMcViLbhh935PL/+4FPvvv9gJ9bwXZyWEEvPxFhOS4glPtZCjCWcKEsYR/o/0FHlJK+0gp8zC3kzLZN8ewWdWkfyj/O6exTLDWecyNpdB/g1u4SbXk/j4j7t6dexFXExEYSbTYSZXdey3/JKWfHjXrbsLyYy3Mw1gzo16hzce86pXPXyejZlFXHLGxuY0K89HVpGYjaZcBoGB0or+HJbDh9ucrUJfxt5Cu0amOQ5vX1LzjqlLd/syOO2Nzdw9YCO9O3YilhLGDEW11dmR5UTe0UVv+fb+XJbLt/syANcw/auTDp+MswabuahsT2Z8tYGtuwv5vIXf+Ci3ifQt0NL2kZHEBkehjXcjIHr2mwYB/8tdlSyr6icfUXl/Ph7Aet/L6C8su7k98UOJ9//doDvfzvA/M+30euEFvTv1IpObaJIiLXQNtpCmNlEmMmEyYT735pjOp2uXleu3w2qDKr/NXBUOXFUGpRXVJJXUEhFlUGLFrFYwsMIN5sIDzMTYTYREWYiIsxMuNn1r6stMxPWwISq0+kkP/8ArXOiMZmsmEyBu0Hoq55oJhMUGiYOHCg9bhvlDWFmEx1bRQbNTbRmmZSy2+21GhXA/drhcNR7P2bz8T/YHMpkghYtWmCNMB93uxYtWmAJr9//cPVd19vrHb6uyQSWMDNVR6ifr4/tr/Vq6hgs59zb6x3rPfT1sf21T0/fQ28e29P1PN2n2XzwC2l9rk9B0g4FFW+0D56ce7MZzGYTZmclYVS6y51UYTKZCDtsO28s9+W+PV0eaQnHZHby4tc/E2GxuMuizFWc1jqcvpFhnN3vJBZ8uo38Cten5hhLGIM6t2BXVg4tIyDMDKXlFdiNCEoqwWGYcBomMJmprKzCaTKBOYJWURHsK3ZQVgVgorC8isLymknWw/klp4xfcso4MhNh4eEUVxhgCmdrrh1y684ZAmbe26THcUtweejCHgw9+dhJk0OvSVJXIL47DOrSiluHJPKfLfsprTJRUhVGeZXBjtxSduSWuhMxnji1XRQpwzti2AtqXcLy8w9QZXdNEp6bm0tYWEmdOB8a3YkHv/qdbbnlvPNTFu/8lHXU47RvaeGOM9vXOc6Rjpeff4CwsCN/IIkApg9rz6PfZrE9t5R5n28/4nqx1nDGnNqKMxLN5OZm1ymvOV6F00J+vgXzUZIjfz8zAbOzkvWZpbyRlskbaZlHrWPNccf3bMNVfePIyzt47T9W/dqY4dExXXjk6z38Xlhx3HN5NBFhZhJjIxjUMZZTWzjZvDeHSKuFfh1bs8seztqMYn7NLWfXATu7DhypvfIWtXlN1dheCUwf3c2jbXz13cFkNMOBpx9//DEPPvgg3377rXvZ9u3bueCCC1i7di2tW7cOXHAiIhIwah9ERORwahtERHynWd4PSUxM5MCBA1RWHrwrnZ2dTWRkJC1bNuwJESIi0vSpfRARkcOpbRAR8Z1mmZTq2bMn4eHhpKWluZelpqbSp08fTWIrItKMqX0QEZHDqW0QEfGdZnkVjYqK4uKLL+b+++9nw4YNfPbZZzz//PNce+21gQ5NREQCSO2DiIgcTm2DiIjvNMs5pcA1YeH999/Pv//9b2JjY7nxxhu5/vrrAx2WiIgEmNoHERE5nNoGERHfaLZJKRERERERERERCZxmOXxPREREREREREQCS0kpERERERERERHxOyWlRERERERERETE75SUEhERERERERERv1NSysvKy8u59957GThwIGeddRbPP//8UdfdtGkTl112GTabjQkTJrBx40Y/RtowntTvyy+/ZPz48SQlJXHhhRfy+eef+zHShvOkjjV+//13kpKSWLt2rR8ibBxP6rdlyxYmTpxI3759ufDCC/n+++/9GGnDeVLHTz/9lDFjxpCUlMTEiRP5+eef/Rhp4zgcDsaNG3fMv7umeJ0JdQ25xjQ3+/btY9q0aQwePJhhw4Yxd+5cysvLAx1W0Jo0aRL33HNPoMMISg6HgwceeIBBgwbxhz/8gcceeww946e2zMxMJk+eTP/+/Rk1ahQvvvhioEMSP2tO19xQvF6G+nUuVK9RR/ocn5GRwfXXX0+/fv244IIL+OabbwIYof8oKeVl8+bNY+PGjbz00kvcd999LFy4kE8++aTOeqWlpUyaNImBAweyatUqkpKSmDx5MqWlpQGIuv7qW7/NmzczdepUJkyYwDvvvMOVV17JX/7yFzZv3hyAqD1T3zoe6v777w/6965GfetXVFTEDTfcQLdu3Xj//fc555xzmDp1Krm5uQGI2jP1rePWrVv5+9//zuTJk3n33Xfp2bMnkydPxm63ByBqz5SXl/O3v/2NrVu3HnWdpnqdCXUNucY0J4ZhMG3aNOx2O6+++iqPP/44//nPf3jiiScCHVpQ+vDDD/nqq68CHUbQevDBB1mzZg3Lli3j0Ucf5Y033mDFihWBDiuo3HHHHURHR7Nq1SruvfdennjiCT799NNAhyV+0pyuuaF6vQz161woXqOO9DneMAymTJlCu3btWLlyJePHj2fq1Kns3bs3gJH6iSFeU1JSYvTp08f4/vvv3csWLVpk/OlPf6qz7ptvvmmMGjXKcDqdhmEYhtPpNM455xxj5cqVfovXU57Ub/78+caNN95Ya9kNN9xgPPbYYz6PszE8qWONd99917jyyiuN7t2719ouGHlSv5deeskYPXq0UVlZ6V6WnJxsfPnll36JtaE8qeMLL7xgXHLJJe7XRUVFRvfu3Y0NGzb4JdaG2rp1q3HRRRcZF1544TH/7pridSbUNeQa09xs27bN6N69u5Gdne1e9v777xtnnXVWAKMKTgcOHDD++Mc/GhMmTDDuvvvuQIcTdA4cOGD06tXLWLt2rXvZkiVLjHvuuSeAUQWX/Px8o3v37saWLVvcy6ZOnWo88MADAYxK/Km5XHND9XoZ6te5ULxGHe1z/Jo1a4x+/foZJSUl7nWvu+4648knnwxUqH6jnlJetHnzZiorK0lKSnIvGzBgAOnp6TidzlrrpqenM2DAAEwmEwAmk4n+/fuTlpbmz5A94kn9LrnkEu688846+ygqKvJ5nI3hSR0BDhw4wPz585k1a5Y/w2wwT+q3bt06zj77bMLCwtzLVq5cyfDhw/0Wb0N4UsfWrVuzbds2UlNTcTqdrFq1itjYWE488UR/h+2RdevWMWTIkOPeBWuK15lQ5+k1pjmKj4/nueeeo127drWWFxcXByii4PXII48wfvx4unXrFuhQglJqaiqxsbEMHjzYvWzSpEnMnTs3gFEFl8jISKKioli1ahUVFRXs2LGD9evX07Nnz0CHJn7SXK65oXq9DPXrXCheo472OT49PZ1evXoRHR3tXjZgwIBm8bldSSkvys7Opk2bNlgsFveydu3aUV5eTn5+fp11ExISai2Li4sjKyvLH6E2iCf169q1Kz169HC/3rp1K9999x1nnnmmv8JtEE/qCPDwww9zySWXcOqpp/oxyobzpH4ZGRm0bduWf/7znwwdOpTLL7+c1NRUP0fsOU/qeMEFFzBixAiuuuoqevfuzbx583jyySdp1aqVn6P2zFVXXcW9995LVFTUMddriteZUOfpNaY5atmyJcOGDXO/djqdLF++nDPOOCOAUQWf7777jh9++IHbbrst0KEErYyMDDp27Mg777zD+eefz9lnn82iRYuUAD6E1Wpl5syZrFixApvNxpgxY/jjH//IZZddFujQxE+awzU3lK+XoX6dC8Vr1NE+xzfnz+1KSnmR3W6v9UUDcL92OBz1Wvfw9YKJJ/U7VF5eHrfffjv9+/fn7LPP9mmMjeVJHdesWUNqamqTauA8qV9paSlLly4lPj6eZ599lkGDBnHjjTeSmZnpt3gbwpM6HjhwgOzsbGbOnMkbb7zB+PHjSUlJaRLzZtVHU7zOhLqGXkebs/nz57Np0yb++te/BjqUoFFeXs59993HzJkziYyMDHQ4Qau0tJRdu3bx+uuvM3fuXO6++25eeeWVkJkk11u2b9/OyJEjWbFiBXPnzuWTTz7hvffeC3RYEiChds0N9etlc7jONZdrVHP+3B4e6ABCidVqrfNHU/P68Ivg0dYN5oulJ/WrkZOTw5///GcMw+DJJ5/EbA7uPGh961hWVsbMmTO57777gvo9O5wn72FYWBg9e/Zk2rRpAPTq1Ytvv/2Wd999l1tuucU/ATeAJ3VcsGAB3bt35+qrrwZg9uzZjBkzhpUrVzJp0iT/BOxDTfE6E+oach1tzubPn89LL73E448/Tvfu3QMdTtBYuHAhvXv3rtW7QeoKDw+nuLiYRx99lI4dOwKwd+9eXnvtNW644YYARxccvvvuO9566y2++uorIiMj6dOnD/v27eOZZ57hoosuCnR44meheM0N9etlqF/nmtM1ymq11uk131w+tysp5UWJiYkcOHCAyspKwsNdpzY7O5vIyEhatmxZZ92cnJxay3Jycup02QsmntQPXI+XvfbaawF4+eWXadu2rV/jbYj61nHDhg1kZGS4EzY1br75Zi6++OKgnWPKk/cwPj6eU045pdayk046Keh7SnlSx59//plrrrnG/dpsNtOjR4+QecpFU7zOhDpPr6PN2ezZs3nttdeYP38+5513XqDDCSoffvghOTk57rnJahKbq1ev5scffwxkaEElPj4eq9Xq/qIGcPLJJwd9O+ZPGzdupEuXLrW+9PTq1YvFixcHMCoJhFC95ob69TLUr3PN6RqVmJjItm3bai1rLp/bg7vbShPTs2dPwsPDa01GlpqaSp8+fer0ELLZbPz4448YhgG4HgG5fv16bDabP0P2iCf1Ky0t5aabbsJsNrN8+XISExP9HG3D1LeOffv25d///jfvvPOO+wdcj2T9y1/+4ueo68+T97Bfv35s2bKl1rIdO3bUavSCkSd1TEhIYPv27bWW7dy5k06dOvkjVJ9riteZUOfJ32dztnDhQl5//XUee+wxxo4dG+hwgs4rr7zC+++/725/Ro0axahRo9xtkbjYbDbKy8vZuXOne1lTaMf8KSEhgV27dtXqwbljx46QaQelfkL5mhvq18tQv841p2uUzWbj559/pqyszL0sNTW1WXxu1ydgL4qKiuLiiy/m/vvvZ8OGDXz22Wc8//zz7t5C2dnZ7j+y888/n8LCQubMmcO2bduYM2cOdrudMWPGBLIKx+RJ/ZYsWcLu3bt55JFH3GXZ2dlB//S9+tYxMjKSLl261PoBV4Y7Li4ukFU4Jk/ewyuvvJItW7bw1FNPsWvXLv71r3+RkZHB+PHjA1mF4/KkjpdffjlvvPEG77zzDrt27WLBggXs3buXSy65JJBVaJSmfp0Jdcf7+xTX3BFPP/00N998MwMGDHC3H9nZ2YEOLWh07NixVvsTExNDTEyMuy0Sl1NOOYURI0aQkpLC5s2b+e9//8vSpUuZOHFioEMLGqNGjSIiIoJ//OMf7Ny5ky+++ILFixfX6kUsoS3Ur7mhfr0M9etcc7pGDR48mPbt25OSksLWrVtZunQpGzZs4NJLLw10aL5niFeVlpYa06dPN/r162ecddZZxgsvvOAu6969u7Fy5Ur36/T0dOPiiy82+vTpY1x66aXGzz//HICIPVPf+p133nlG9+7d6/zcfffdAYq8/jx5Dw/VvXt34/vvv/dTlA3nSf1++OEH45JLLjF69+5tjB8/3li3bl0AIvacJ3V84403jPPPP9/o16+fMXHiRGPjxo0BiLjhDv+7C4XrTKg71t+nGMaSJUuO2H5079490KEFrbvvvrtJtK+BUFhYaNx1111Gv379jDPPPNN46qmnDKfTGeiwgsrWrVuN66+/3ujfv78xevRo44UXXtA5akaa2zU3FK+XoX6dC+Vr1OGf43/77Tfj6quvNnr37m2MHTvW+PbbbwMYnf+YDKN6XIeIiIiIiIiIiIifaPieiIiIiIiIiIj4nZJSIiIiIiIiIiLid0pKiYiIiIiIiIiI3ykpJSIiIiIiIiIifqeklIiIiIiIiIiI+J2SUiIiIiIiIiIi4ndKSomIBBmHw8G4ceNYu3atx9u+9957XHPNNXWWv/jiiwwbNoykpCTuvfde7Ha7N0IVEZEg0ZC2Y926dYwfPx6bzcbll1/O5s2bfRihiIhIXUpKiYgEkfLycv72t7+xdetWj7f9/vvvmTlzZp3lq1evZuHChcyaNYuXXnqJ9PR05s+f741wRUQkCDSk7cjIyODmm2/mnHPO4d133+W0007jtttuw+Fw+DBSERGR2pSUEhEJEtu2bePyyy9n9+7dHm+7cOFCbr75Zjp37lyn7OWXX+a6665j5MiR9O3blwceeICVK1eqt5SISAhoaNuxfPly+vbty9SpUznppJO49957MZvN7Nixw0eRioiI1KWklIhIkFi3bh1DhgxhxYoVdcp++OEHkpOT6du3LxdeeCGrV6+uVf7tt9+ybNkyzj333FrLq6qq+Omnnxg4cKB7Wb9+/aioqNAwDRGRENDQtmPdunW12oyoqCg+++wzevTo4Ze4RUREAMIDHYCIiLhcddVVR1yenZ3N5MmT+etf/8qwYcNIS0vjnnvuIS4uzp1seu211wDqzCVSWFhIeXk5CQkJ7mXh4eG0bt2arKwsH9VERET8paFtR0ZGBpGRkUybNo0ffviBbt26MXPmTLp16+bnGoiISHOmnlIiIkHu1Vdf5Q9/+AN/+tOf6NKlC+PHj+eKK67gpZdeOu62ZWVlAFgsllrLLRaL5g0REQlhx2s7SktLWbBgAYMGDeLZZ5+lffv2XH/99ZSUlAQ4chERaU7UU0pEJMjt2LGD//znPyQlJbmXVVRUcPLJJx93W6vVClAnAeVwOIiKivJuoCIiEjSO13aEhYUxatQo9xNbZ8+ezYgRI/jiiy+48MILAxKziIg0P0pKiYgEucrKSi688EJuueWWWsvDw49/CW/dujVWq5WcnBy6du3q3l9+fj7x8fE+iVdERALveG1HfHx8rZsbFouFjh07kpmZ6dc4RUSkedPwPRGRIHfyySeza9cuunTp4v75/PPPef/994+7rdlspk+fPqSmprqXpaWlER4erslsRURC2PHajn79+rFlyxb3+g6Hg4yMDDp16hSokEVEpBlSUkpEJMhdddVVbNy4kccff5zffvuN999/n8cee4wOHTrUe/tly5bx2WefsWHDBu6//34uv/xyDd8TEQlhx2s7rrvuOlavXs3//d//8dtvvzFr1iysVisjRowIbOAiItKsaPieiEiQ69ixI4sXL2bBggUsW7aMxMRE7rnnHi666KJ6bT927Fj27NnDzJkzcTgcnHvuudx1110+jlpERALpeG2HzWbjiSeeYMGCBcydO5fevXvz3HPPER0dHeDIRUSkOTEZhmEEOggREREREREREWleNHxPRERERERERET8TkkpERERERERERHxOyWlRERERERERETE75SUEhERERERERERv1NSSkRERERERERE/E5JKRERERERERER8TslpURERERERERExO+UlBIREREREREREb9TUkpERERERERERPxOSSkREREREREREfE7JaVERERERERERMTvlJQSERERERERERG/U1JKRERERERERET8TkkpERERERERERHxOyWlRERERERERETE75SUEhERERERERERv1NSSsSLDMMIdAgiItJEqM0QEZHG8Gc7ojZLfEVJKWn2Ro0axT333NOofRQWFjJ9+nR++OEH97JrrrmGa665prHhiYhICPjwww8ZOXIkvXv3ZubMmWzdupWJEyd6vJ9D26zff/+d0047jVWrVtV7+9NOO42nnnrK4+OKiEhg+aIdqa/PP/+cu+++2+NjidRHeKADEAkFv/zyC++++y4TJkwIdCgiIhKEZs2axUknncTDDz9MYmIi77//Pj/++GOj9pmQkMCKFSs48cQT673NihUrOOGEExp1XBER8T9ftCP19eKLL/rlONI8KSklIiIi4mP5+fkMHTqUIUOGeG2fFouFfv36ebSNp+uLiEhw8EU7IhIMNHxPBKioqODBBx9k0KBBDBw4kLvvvpu8vDx3+ZtvvklycjL9+vWjb9++jB8/no8//hiAtWvXcu211wJw7bXX1hqyZxgGzz77LCNGjKBv375cccUVbNiwwV3+1FNPcc4557Bw4UIGDx7MWWedRUFBAVVVVbz66qtceOGF9O3blxEjRrBgwQLKy8trxf3tt99y1VVXMWDAAIYMGcLf//53MjMz3eWrVq2iT58+/PDDD0yYMIE+ffpw3nnn8cUXX7Bjxw6uu+46bDYb55xzDh9++KF7O6fTyeOPP86oUaPo3bs3o0aN4tFHH6WiosK7J15EpAnYuHEj1113HQMGDCApKYnrr7+etLQ0d/knn3zivl5fcskl/Pjjj/Tq1YtVq1axdu1aTjvtNAAWLVrEaaedxj333MPChQuBxg2nO3T4XlZWFj179mT58uW11snLy+P000933+U+9Hg1sX333XfccMMN2Gw2hg4dyvz586mqqnLvo7i4mJkzZ3LmmWeSlJTEX//6V1588UV3vURE5NiCtR0BKCoqYu7cuYwePZo+ffowbtw43nrrLXf5Nddcw7p161i3bh2nnXYaa9eubfCxRI5ESSkR4OOPP+bnn3/m4Ycf5u677+bLL7/k5ptvdieHZs6cyejRo1myZAkLFizAYrFw5513kpWVxemnn87MmTMBmDlzJvfdd597v6mpqXz66af885//ZP78+ezfv59bb72VyspK9zp79+7lq6++4vHHHyclJYVWrVoxc+ZMd+PwzDPPcPXVV7N8+XJuu+029ySD77zzDjfccAPt27fnscceIyUlhR9//JErrriC3Nxc9/4rKyv5+9//zpVXXskzzzxDVFQUd955J7fccgsjRoxg8eLFJCQkcPfdd5OVlQXAs88+y2uvvcaUKVN4/vnnmThxIsuWLeOZZ57xx9shIhI0iouLuemmm2jTpg1PPfUUjz/+OHa7nRtvvJGioiI+//xz/vKXv9C9e3cWLlzIOeecw6233orT6QTg9NNPZ8WKFQBceumlrFixgttvv51LL70UcA2nu+yyyxod5wknnMDgwYNr3WAA1xcdwzAYO3bsUbe98847GTBgAIsXL2bcuHE899xzvPnmm+7y2267jY8//pjbb7+dxx9/nJKSEh599NFGxywi0hwEcztSVlbGVVddxfvvv89NN93E008/zYABA5gxYwaLFy8G4L777qNXr1706tWLFStWcPrpp3vhrIgcpOF7IkCbNm1YtmwZ0dHR7tdTpkzh66+/JiMjgxtvvJHbbrvNvX7Hjh1JTk4mNTWVsWPH0q1bNwC6devm/h1cQyuWLl1K69atAdeE6P/4xz/Ytm0bPXr0AFxJo7vvvpuBAwcCsG3bNt566y3+/ve/M2nSJACGDh1KQkIC06dP5+uvv2bYsGEsWLCAs846q9YXg/79+3PBBRewbNkypk+fDrh6Pd1yyy3uxqqwsJC//vWvXHfddfz5z38GoEWLFkyYMIGNGzdywgknsG7dOnr37u2eI2vw4MFERUXRokUL7554EZEgt23bNg4cOMC1115L//79ATjllFNYsWIFJSUlLFq0iN69e7uvxX/84x8xmUw88cQTAMTGxrqHzJ1wwgm1fgfvDqcbP3489957L3v37qVDhw6Aa2LcP/zhD8THxx91u8suu4wpU6YAcOaZZ/LZZ5/x5ZdfcuWVV/Ldd9+xdu1annrqKc4991x3HceNG8f27du9FruISKgK5nZk1apV/Prrr7z++uskJSUBMGzYMCorK3n66ae58sor6datG7GxsY0+lsjRqKeUCDB8+HB3QgpcT6UIDw/nf//7H/fccw933nknhYWFpKWl8e677/Lqq68C4HA4jrnfbt26uRNSAJ06dQJc3WQP1bNnT/fv69atA6hzV3vs2LGEhYWxdu1adu7cSXZ2NuPGjau1zoknnkhSUpJ7HzVqGhmAuLg4AGw2m3vZoUkzgCFDhriHBj733HNs27aNP/3pT4wfP/6Y9RURCTWnnnoqbdu25ZZbbmHmzJl8+umntGvXjrvuuotWrVrx888/c/bZZ9fa5qKLLgpIrOeeey5Wq5WPPvoIgMzMTFJTU4977T60jQDXF53S0lIAvv/+eyIiIhg9erS73Gw2c8EFF3g5ehGR0BTM7ci6devo2LFjnXbgoosuory8nPT0dL/EIc2bklIiUOcOstlspk2bNhQWFrJ7926uv/56Bg0axJ/+9CeWLVvmHn5XM5TuaA5NdNXsF3B3x60RExPj/r2goOCIMYWHh9OmTRuKiorIz88HoF27dnWO2a5duzpJr5q7G4eKioo6atw33XQTM2fOpKysjAULFjB27FjGjRvH999/f9RtRERCUUxMDK+++irDhw/n448/ZurUqZx55pnMnDnTPfdg27Zta22TmJgYiFCJjY1l9OjR7iF8H330EVFRUbUSSkcSGRlZ67XZbHa3bwcOHKB169bu9qtGzQ0OERE5tmBuRwoKCo7Yk7bmO0bNDWsRX9LwPRFwJ3lqVFVVceDAAdq0acOkSZOIiIjgrbfeomfPnoSHh7Nt2zbeffddn8TSqlUrALKzs+nYsaN7eUVFhTummp5NOTk5dbbPzs6mTZs2jYrBbDZz9dVXc/XVV5Obm8tXX33F4sWLuf322/n222+xWCyN2r+ISFNyyimnuCf/3rBhA++++y6vvfYaCQkJmM3mOtfiw9sUf7rooouYNGkSu3bt4sMPP+S888475k2I40lMTOTAgQM4nc5aialD5y4UEZFjC9Z2pFWrVuzatavO8uzsbIBGf6cQqQ/1lBLB9RS7QycfX716NZWVlfTs2ZOdO3dy6aWX0qdPH8LDXXncr7/+GjjY4yksLMxrsQwePBigzmS1H374IVVVVQwYMICTTz6Z+Ph4Pvjgg1rrZGRkkJaW5h6v3lBXXnklDz74IOC6G56cnMzVV19NYWEhxcXFjdq3iEhT8sknn3DGGWeQnZ1NWFgYSUlJ3H///bRs2ZK8vDySkpL497//Xavn7H/+85/j7vfwnkfectZZZ9GuXTtefvllfv7550YPux48eDCVlZV88cUX7mWGYfDZZ581NlQRkWYhmNuRQYMGsWfPHn788cday9977z0iIiLo27ev144lcjTqKSWC627A7bffzjXXXMNvv/3GY489xtChQxkzZgwLFizg1Vdf5YQTTqBly5b897//5eWXXwbAbrcDuCcA//LLL2nVqpV7EvOG6NatG5dccglPPvkkdrudQYMG8csvv7Bw4UKGDBnCsGHDMJvN/O1vfyMlJYW///3vXHTRRRw4cICFCxfSqlUr9wTmDTVo0CCef/552rVrR1JSEvv27eOFF15g8ODBdboXi4iEsv79++N0OpkyZQqTJk0iJiaGjz/+mKKiIs4991wuuOACrr/+eqZMmcIVV1zB7t27+de//nXc/bZs2RKADz74AJvNRufOnb0Sb1hYGGPHjmX58uUkJiYyZMiQRu1v0KBBDB06lBkzZpCTk0OHDh1466232LJlCyaTySsxi4iEsmBuR5KTk/m///s/pkyZwrRp0+jUqRNffPEFK1euZOrUqe5jtGzZkh9//JHvvvuOXr16uUd2iHiDUp4iwFVXXUVcXBxTpkzhX//6FxdeeCELFy7EZDLx9NNPk5iYyD333MMdd9xBeno6zzzzDKeccgo//PAD4JrAcNy4cbz66qvceeedjY5nzpw5TJkyhffff59Jkybx6quvcu211/Lss8+671QkJyfz5JNPsnPnTqZMmcLDDz9MUlISb7311jGfslQff/nLX7jllltYuXIlN910Ew8//DBnnXUWTz75ZKPrJiLSlCQkJPDcc8/RokULZsyYweTJk/n555956qmnOOOMMxg4cCDLli1j//79TJ06lddff5277777uPs999xz6dOnD/fccw/Lli3zaszjx4+nqqqKcePGeeXu9uOPP86oUaN49NFH+ctf/oLFYmHixIl15k0UEZG6grkdiYqK4pVXXmHkyJH861//4tZbbyU1NZU5c+Zw++23u9e7+uqriYiI4Oabb3aPGBHxFpNxvJmaRURERKTefv/9d84++2zmzp1LcnJyoMNplD179pCWlsbZZ59da0L0adOmkZGRwdtvvx3A6EREQlMotSMix6PheyIiIiIBZBgGVVVVx10vLCzM70PmzGYz99xzD2effTaXXnopYWFh/Pe//+Xf//43c+fO9WssIiJyZMHcjogcj5JSIiIiIgH09ttvk5KSctz1Xn755UbPEeWp9u3b8+yzz7Jo0SLuuOMOKisr6dq1KwsWLGDcuHF+jUVERI4smNsRkePR8D0RERGRADpw4AC///77cdc7+eSTiY2N9UNEIiLSlKgdkaZMSSkREREREREREfE7PX1PRERERERERET8TkkpERERERERERHxOyWlRERERERERETE75SUEhERERERERERvwsPdABNWW5uEZom/iCTCeLiWui8HIfOU/3pXNVPQ89TzXbiXYe/D6H4d6w6NQ2qU9MQbHUKhbbB4XCQnJzMP//5T4YMGQJAWloaDz/8MFu2bCEhIYGbbrqJyy67zL3NmjVreOihh8jIyMBmszFnzhw6d+7sLn/xxRdZtmwZxcXFjBkzhn/+859ERUV5FFdD2+lg+dto6nQ+vU/n1LuC/Xz6qn1QUqoRDIOg/GMJNJ2X+tF5qj+dq/rReQoOR3sfQvH9UZ2aBtWpaQjFOgVCeXk5f//739m6dat7WXZ2NjfffDMTJ07k4Ycf5ueffyYlJYX4+HhGjBjB3r17mTJlCrfffjvDhg1j0aJF3Hbbbbz33nuYTCZWr17NwoULmT9/PnFxcaSkpDB//nxmzpzpUWwNfY/1t+FdOp/ep3PqXc3tfGr4noiIiIiINHnbtm3j8ssvZ/fu3bWWf/bZZ7Rr146//e1vnHTSSYwdO5aLL76Y999/H4A333yT3r17c8MNN3Dqqacyd+5c9uzZw7p16wB4+eWXue666xg5ciR9+/blgQceYOXKldjtdr/XUUQk1CgpJSIiIiIiTd66desYMmQIK1asqLV82LBhzJ07t876xcXFAKSnpzNw4ED38qioKE4//XTS0tKoqqrip59+qlXer18/Kioq2Lx5s49qIiLSfGj4noiIiIiINHlXXXXVEZd36tSJTp06uV/n5uby4YcfcvvttwOu4X0JCQm1tomLiyMrK4vCwkLKy8trlYeHh9O6dWuysrJ8UAsRkeZFSSkREREREWkWysrKuP3222nXrh1XXHEFAHa7HYvFUms9i8WCw+GgrKzM/fpI5Z4wmTyLtWZ9T7eTI9P59D6dU+8K9vPpq7iUlBIRERERkZBXUlLCbbfdxm+//cb//d//uZ+eZ7Va6ySYHA4HLVu2xGq1ul8fXu7p0/ca+tSqpv40xGCj8+l9Oqfe1dzOp5JSIiIiIiIS0oqLi7npppvYvXs3L730EieddJK7LDExkZycnFrr5+Tk0LNnT1q3bo3VaiUnJ4euXbsCUFlZSX5+PvHx8R7F4Olj3oP98fBNjc6n9+mcelewn8+a+LxNSSkREREREQlZTqeTqVOn8vvvv/PKK6+4k0s1bDYbqamp7td2u51NmzYxdepUzGYzffr0ITU1lSFDhgCQlpZGeHg4PXr08CiOhj7mvbk9Ht7XdD69T+fUu5rb+dTT90REREREJGS99dZbrF27lgcffJCWLVuSnZ1NdnY2+fn5AEyYMIH169ezdOlStm7dSkpKCp06dXInoa666iqWLVvGZ599xoYNG7j//vu5/PLLPR6+JyIidamnlIiIiIiIhKzVq1fjdDqZPHlyreWDBw/mlVdeoVOnTjz11FM89NBDLFq0iKSkJBYtWoSpelbfsWPHsmfPHmbOnInD4eDcc8/lrrvuCkRVRERCjpJSIiIiIiISUrZs2eL+fdmyZcddf/jw4QwfPvyo5ZMmTWLSpEleiU1ERA7S8D0REREREREREfE79ZSSoON0Ot1PQGnXrh1ms3KnIiKeMAyDvLw8ANq2besegiIiIiIiEkz0bV+CTk5ODks+T2fJ5+l1Hs8rIiLHl5eXx+IvNrD4iw3u5JSIiDQ9hmFgNKfHcIlIs6OeUhKUYlq1DXQIIiJNWnSL1oEOQURERETkmNRTSkRERERERERE/E5JKRERERERERER8TslpURERERERERExO+UlBIREREREREREb9TUkpERERERERERPxOSSkREREREREREfE7JaVERERERERERMTvlJQSERERERERERG/C+qk1Keffsppp51W62fatGkAbNq0icsuuwybzcaECRPYuHFjrW0/+OADRo8ejc1mY8qUKeTl5bnLDMNgwYIFnHHGGQwePJh58+bhdDr9WjcRERFfMwyDAwfyMAwj0KGIiIiIiNQR1Empbdu2MXLkSL755hv3z4MPPkhpaSmTJk1i4MCBrFq1iqSkJCZPnkxpaSkAGzZsYMaMGUydOpUVK1ZQWFhISkqKe78vvPACH3zwAQsXLuTJJ5/k/fff54UXXghUNUVERHzCXlzA4n//WOvGjIiIiIhIsAjqpNT27dvp3r078fHx7p+WLVvy0UcfYbVamT59Ol27dmXGjBnExMTwySefALB8+XLGjBnDxRdfTI8ePZg3bx5fffUVGRkZALz88stMmzaNgQMHcsYZZ3DnnXfy6quvBrKqIiIiPhEZ0yLQIYiIiIiIHFHQJ6VOOumkOsvT09MZMGAAJpMJAJPJRP/+/UlLS3OXDxw40L1++/bt6dChA+np6ezbt4/MzEwGDRrkLh8wYAB79uxh//79Pq2PiIiIiIiIiIi4hAc6gKMxDIOdO3fyzTffsGTJEqqqqjj//POZNm0a2dnZdOvWrdb6cXFxbN26FYD9+/eTkJBQpzwrK4vs7GyAWuXt2rUDICsrq852x1KdE5NqNeejsefl0O1NptA7z946T82BzlX9NPQ86byKiIiIiEggBW1Sau/evdjtdiwWC0888QS///47Dz74IGVlZe7lh7JYLDgcDgDKysqOWl5WVuZ+fWgZ4N6+vuLiNCTiSBp7XqqqSomKslTvK5Z27ULzPOvvp/50rupH50lERERERJqSoE1KdezYkbVr19KqVStMJhM9e/bE6XRy1113MXjw4DoJJIfDQWRkJABWq/WI5VFRUbUSUFar1f07QFRUlEcx5uYWoQcaHWQyub4UN/a85OYWY7c73L+HhUV7KcLg4K3z1BzoXNVPQ89TzXYiIiIiIiKBELRJKYDWrVvXet21a1fKy8uJj48nJyenVllOTo576F1iYuIRy+Pj40lMTAQgOzubTp06uX8HiI+P9yg+w0BflI+gsefl0G1D+RyHct28TeeqfnSe5EgMw+DAAdfT99q2beuej1FEREREJNCCdqLz//73vwwZMgS73e5e9ssvv9C6dWsGDBjAjz/+iFH97cswDNavX4/NZgPAZrORmprq3i4zM5PMzExsNhuJiYl06NChVnlqaiodOnTwaD4pERGRpqC8tIi5X/zGRS9v5K43f2BrRpa7/RQRERERCaSgTUolJSVhtVr5xz/+wY4dO/jqq6+YN28eN910E+effz6FhYXMmTOHbdu2MWfOHOx2O2PGjAFg4sSJvPvuu7z55pts3ryZ6dOnM2LECDp37uwuX7BgAWvXrmXt2rU8+uijXHvttYGsroiIiE/kVVn4qciKw2niqww7N67cwt59OcffUERERETEx4J2+F5sbCzLli3joYceYsKECcTExHDllVdy0003YTKZWLJkCffddx9vvPEGp512GkuXLiU62jX3UFJSErNmzeLJJ5+koKCAoUOHMnv2bPe+b7zxRnJzc5k6dSphYWFceumlXH/99QGqqYiIiG8YBvxa0RoDOCHKoMBhwl5l4sMteUw6wbMh6yIiIiIi3ha0SSmAU089lRdeeOGIZX379uXtt98+6rbJyckkJycfsSwsLIyUlBRSUlK8EqeIiEgwyndAuRFGuAkGxTn5vczCjzlVvLkxh2v/0I3IiLBAhygiIiIizVjQDt8TERGRxsmyuyY1T4gyEWaGE2NNxESYyC+r4uNN+wIcnYiIiIg0d0pKiYiIhKiapNQJ0a7m3mwycWJ0FQCfbMwgNzdXk56LiIiISMAoKSUiIhKCShxOCipMgMEJ0Sb38hOiXEmotKwyFn22gby8vABFKCIiIiLNnZJSIiIiISjb7uoR1cJUgTXsYFKqZQRYTVU4MVFkjg1UeCIiIiIiSkqJiIiEooIyJwCx5spay00maGsuA2BPcWWd7URERERE/EVJKRERkRBUUO5KSkWbK+qUtQ0rByBLSSkRERERCSAlpUREREJQQblr+F6MqW7iqZXZAUCRw6Coej0REQk+hmHogRQiEtKUlBIREQkxjkonxQ7Xl5gYc92kVITJICbc9fuWHLs/QxMRERERcVNSSkREJMRkFJRjABFmgwicR1ynjdU1+fmW7FI/RiYiIiIicpCSUiIiIiFmV75rzqiWEa6JzY+kbXVSarN6SomIiIhIgCgpJSIiEmJqklItIo4+D0mbyJqeUnbNVyIiIiIiAaGklIiISIjJKKhJSh19nVYWE2YTFJZXsaegzE+RiYiIiIgcpKSUiIhIiNlfUgFATPjRe0CFmUy0jnR9DNi8r9gvcYmISP3pyXsi0hwoKSUiIhJisquTUpFhx16vTfUKW7OVlBIRERER/1NSSkREJISUVzopKKsCIPq4SSnXx4Bfs0t8HZaIiIiISB1KSomIiISQ7GLXfFJhJog4TivvTkrtV08pEREREfE/JaVERERCyL4iV1IqOsKEyXTsdVtbXV2p9hc7OFDq8HVoIiJ+4XA4GDduHGvXrnUvy8jI4Prrr6dfv35ccMEFfPPNN7W2WbNmDePGjcNms3HttdeSkZFRq/zFF19k2LBhJCUlce+992K32/1SFxGRUKeklIiISIgwDINtmbkARIcfv4mPCDPRoYUF0BA+EQkN5eXl/O1vf2Pr1q3uZYZhMGXKFNq1a8fKlSsZP348U6dOZe/evQDs3buXKVOmkJyczFtvvUXbtm257bbb3JOMr169moULFzJr1ixeeukl0tPTmT9/fkDqJyISapSUEhGRkJKZmcnkyZPp378/o0aN4sUXX3SXbdq0icsuuwybzcaECRPYuHFjrW0/+OADRo8ejc1mY8qUKeTl5fk5+sbJy8vjow2uu/tWs7Ne25zSNhLQED4Rafq2bdvG5Zdfzu7du2st//7778nIyGDWrFl07dqVyZMn069fP1auXAnAm2++Se/evbnhhhs49dRTmTt3Lnv27GHdunUAvPzyy1x33XWMHDmSvn378sADD7By5Ur1lhIR8QIlpUREJKTccccdREdHs2rVKu69916eeOIJPv30U0pLS5k0aRIDBw5k1apVJCUlMXnyZEpLSwHYsGEDM2bMYOrUqaxYsYLCwkJSUlICXBvPVZitAESFH2fsHq7eAx2iXMkrJaVEpKlbt24dQ4YMYcWKFbWWp6en06tXL6Kjo93LBgwYQFpamrt84MCB7rKoqChOP/100tLSqKqq4qeffqpV3q9fPyoqKti8ebNvKyQi0gyEBzoAERERbykoKCAtLY3Zs2dz0kkncdJJJzFs2DC+++47CgoKsFqtTJ8+HZPJxIwZM/j666/55JNPSE5OZvny5YwZM4aLL74YgHnz5jFy5EgyMjLo3LlzYCvmgZIKV5IpKuz4SSl7cQG78yuASDZnFfo4MhER37rqqquOuDw7O5uEhIRay+Li4sjKyjpueWFhIeXl5bXKw8PDad26tXt7ERFpOPWUEhGRkBEZGUlUVBSrVq2ioqKCHTt2sH79enr27El6ejoDBgzAVD37t8lkon///ke9U96+fXs6dOhAenp6IKrSYKWVrjlQoup52ymhVSwAuwvKKa+s35A/EZGmxG63Y7FYai2zWCw4HI7jlpeVlblfH237+jKZPP9p6Hb60fnUOW2aP8F+Pn1BPaVERCRkWK1WZs6cyezZs3n55ZepqqoiOTmZyy67jM8//5xu3brVWj8uLs49Ge7+/fuPeSe9vg5vsA/9gOFrJhOUVveUio6oObBrucHBfw9dFhUO1jAT5VUGO3NL6HlCi3od59B/Q4Hq1DSoTr4XLHF4k9VqJT8/v9Yyh8NBZGSku/zwBJPD4aBly5ZYrVb368PLo6KiPIojLu7419dDGYaB0+kkLq4FZrP6EniLp++DHJ/OqXc1t/OppJSIiISU7du3M3LkSP785z+zdetWZs+ezZlnnnncO+VlZWVeuRN+tA8S/viAUVZRiqPK9Xub2AjCnQaR1ggioyJwVjgxR7j+rb3MQlx0BXuLKthrr2RYu/rHGYofmlSnpkF1Ek8kJiaybdu2WstycnLcNyISExPJycmpU96zZ09at26N1WolJyeHrl27AlBZWUl+fj7x8fEexZGbW0T1A/3qyaBNmxhyc4swmZSUaiyTyfX/mefvgxyNzql3Bfv5rInP25SUEhGRkPHdd9/x1ltv8dVXXxEZGUmfPn3Yt28fzzzzDJ07dz7ine7j3Sn39E744R8k/PkBY9ueAgDCTAZV5RVUVjkoK6+gzF6Bs9KBudKMs7LuspYW2Auk7sjl7JPbHPc4wf6hqSFUp6ZBdfJfPKHEZrOxdOlSysrK3Nf81NRUBgwY4C5PTU11r2+329m0aRNTp07FbDbTp08fUlNTGTJkCABpaWmEh4fTo0cPj+IwDBr0HgfD30Uoaej7IEenc+pdze18KuUuIiIhY+PGjXTp0sX9pQOgV69e7N2796h3wo93p9zTO+E1HyQO/Tnacm//HCitBMBiBqgeg3NYDEda1iYyDHA9ga++x/JXnfz5ozo1jR/VyT/xhJLBgwfTvn17UlJS2Lp1K0uXLmXDhg1ceumlAEyYMIH169ezdOlStm7dSkpKCp06dXInoa666iqWLVvGZ599xoYNG7j//vu5/PLLPb5pISIidSkpJSIiISMhIYFdu3bV6vG0Y8cOOnXqhM1m48cff8So/sZlGAbr16/HZrMBde+UZ2ZmkpmZ6S5vCgrKXWP3rGGebdcm0vVxYGt2Cc5Q/EYqIs1aWFgYTz/9NNnZ2SQnJ/Pee++xaNEiOnToAECnTp146qmnWLlyJZdeein5+fksWrSImgdjjB07lsmTJzNz5kxuuOEG+vbty1133RXIKomIhAwN3xMRkZAxatQo5s+fzz/+8Q9uvfVWdu7cyeLFi/nrX//K+eefz6OPPsqcOXO48soref3117Hb7YwZMwaAiRMncs0119CvXz/69OnDnDlzGDFiBJ07dw5wreov3+7qKWX18JZTS6uZCLOJEkcVewvK6NRad/9FpGnbsmVLrdddunRh+fLlR11/+PDhDB8+/KjlkyZNYtKkSV6LT0REXNRTSkREQkaLFi148cUXyc7O5tJLL2Xu3LnceuutXHHFFcTGxrJkyRJSU1NJTk4mPT2dpUuXEh0dDUBSUhKzZs1i0aJFTJw4kVatWjF37twA18gz+WXVSakwz3o7mU0mTmrjesLUr9klXo9LRERERORI1FNKRERCSrdu3XjhhReOWNa3b1/efvvto26bnJxMcnKyr0LzuYKyhvWUAjilbSRbc8v4dX8xo05t5+XIRERERETqUk8pERGREJFf5ppTyuLhnFLgSkqBa7JzERERERF/UFJKREQkRDSmp1TXmqSUhu+JiIiIiJ8oKSUiIhIi8u01T9/z/Al6J7dxJaX2FZWTb6/walwiIiIiIkeipJSIiEiIKCivmejc821jLGF0bOVKTG3N1hA+EREREfE9JaVERERCgGEY5NtdSSmLh627YRgcOJDHSa0jAEj7bT+5ubkYhuc9rkRERERE6ktJKRERkRBQVF5JVXUOydOeUvbiAl5as52cAwUAfLIpk8VfbCAvL8/LUYqIiIiIHKSklIiISAg4UOqaByrCDGEmz7ePim1FfMtoAEqc4US3aO3F6ERERERE6lJSSkREpIkzDIPfsnIAsDYkI1WtVaTrY0FBuVND90REgoBhGLoei0hIU1JKRESkicvLy+ON/20HPJ9P6lAtLGbCzVDphJIKfQkSEREREd9SUkpERCQEGBGuoXcNefJeDbPJRPvYcMDVW0pERERExJeUlBIREQkBZZWunk2N6SllGAaJka5kVEFZlTfCEhERERE5KiWlREREQoCj+tF7lkbMKWUvLiAraz8A+eopJSIiIiI+pqSUiIhICHAnpRrZsh862bmIiIiIiC8pKSUiIhICHE5XUirC3PCeUgDRpkoAihx6Ap+IiIiI+JaSUiIiIiHAUT0FlKURE50DRJpcO6p0Qp69spFRiYiIiIgcnZJSIiIiIaDcS8P3zCaIdj2Aj72FjkZGJSIiIiJydE0mKTVp0iTuuece9+tNmzZx2WWXYbPZmDBhAhs3bqy1/gcffMDo0aOx2WxMmTKFvLw8d5lhGCxYsIAzzjiDwYMHM2/ePJxOzZ0hIiJNV82cUo0dvgcQG+Haxx4lpURERETEh5pEUurDDz/kq6++cr8uLS1l0qRJDBw4kFWrVpGUlMTkyZMpLS0FYMOGDcyYMYOpU6eyYsUKCgsLSUlJcW//wgsv8MEHH7Bw4UKefPJJ3n//fV544QW/10tERMQbDMM45Ol7jd9fbLgrKaWeUiIiIiLiS0GflMrPz2fevHn06dPHveyjjz7CarUyffp0unbtyowZM4iJieGTTz4BYPny5YwZM4aLL76YHj16MG/ePL766isyMjIAePnll5k2bRoDBw7kjDPO4M477+TVV18NSP1EREQaq7zSoHqecyK80LLHRLj+3VNU3vidiYiIiIgcRdAnpR555BHGjx9Pt27d3MvS09MZMGAAJpPrTq7JZKJ///6kpaW5ywcOHOhev3379nTo0IH09HT27dtHZmYmgwYNcpcPGDCAPXv2sH//fv9USkRExIuKqmc5N2EQ3vjRexq+JyIiIiJ+ER7oAI7lu+++44cffuD999/n/vvvdy/Pzs6ulaQCiIuLY+vWrQDs37+fhISEOuVZWVlkZ2cD1Cpv164dAFlZWXW2OxaTFz74h5Ka89HY83Lo9iZT6J1nb52n5kDnqn4aep50XkNHUbkrKWUxu27UGI3cX01SKrPQgdMwMOuPRURERER8IGiTUuXl5dx3333MnDmTyMjIWmV2ux2LxVJrmcViweFw3dEtKys7anlZWZn79aFlgHv7+oqLa+HR+s1FY89LVVUpUVGW6n3F0q5daJ5n/f3Un85V/eg8NV81SSlvDN0D19P3TLie6Jdd7CCxhdU7OxYREREROUTQJqUWLlxI7969GTZsWJ0yq9VaJ4HkcDjcyaujlUdFRdVKQFmtVvfvAFFRUR7FmJtbhNHY29EhxGRyfSlu7HnJzS3Gbne4fw8Li/ZShMHBW+epOdC5qp+Gnqea7aTpK3Yc7CnlDWaTiRiLiWKHQcYBu5JSIiIiIuITQZuU+vDDD8nJySEpKQk4mDhavXo148aNIycnp9b6OTk57qF3iYmJRyyPj48nMTERcA0B7NSpk/t3gPj4eI9iNAz0RfkIGnteDt02lM9xKNfN23Su6kfnqfnydk8pgNgIM8WOKvYWlHlvpyIiIiIihwjaic5feeUV3n//fd555x3eeecdRo0axahRo3jnnXew2Wz8+OOPGNXfvgzDYP369dhsNgBsNhupqanufWVmZpKZmYnNZiMxMZEOHTrUKk9NTaVDhw4ezSclIiISLGomOo8wey8rGVvd7WpPoZJSIiIiIuIbQdtTqmPHjrVex8TEANClSxfi4uJ49NFHmTNnDldeeSWvv/46drudMWPGADBx4kSuueYa+vXrR58+fZgzZw4jRoygc+fO7vIFCxZwwgknAPDoo49yww03+LF2IiIi3lNc7t3hewCxluon8OXbvbdTEREREZFDBG1S6lhiY2NZsmQJ9913H2+88QannXYaS5cuJTraNfdQUlISs2bN4sknn6SgoIChQ4cye/Zs9/Y33ngjubm5TJ06lbCwMC699FKuv/76ANVGRESkcdxP3wvz3j5jq8cC7i0o995ORUTEI4ZhuEeHiIiEoiaTlHr44Ydrve7bty9vv/32UddPTk4mOTn5iGVhYWGkpKSQkpLi1RhFREQC4eDwPe/t0z18r0A9pURERETEN4J2TikRERGpH18M34upznDllVZQVlHlvR2LiIiIiFRTUkpERKSJ88VE5xFmg+hw17xSv2teKRERERHxASWlREREmrgiH/SUKispJAzXfn/dk+O9HYuIiIiIVFNSSkREpImrGb7nzTmlAFpUz5yeWeTw7o5FRERERFBSSkREpEmrdBqUVDgB7/aUAtzD9/YVKyklIuJvevKeiDQHSkqJiIg0YcVlle7fvd1TKibC9W9mUYV3dywiIvWixJSIhLrwQAcgnnM6neTkuOb3aNeuHWazcosiIs1VYbkrKRVuBrPJu/uu6SmVpZ5SIiIiIuIDymY0QTk5OSz5PJ0ln6e7k1MiItI8FZa5ejFZw7yckQJiapJSRRW6Uy8iIiIiXqeeUk1UTKu2gQ5BRESCQEH18D2LD5JS0dWfEsoqneTbK2gTbfH6MURERESk+VJPKRERkSasyIdJqTCziajq3lJ7Csq8vn8RERERad6UlBIREWnCaobv+SIpBRBb/Ui/vUpKiYiIiIiXKSklIiLShPly+B5AbIR6SolI05eZmcnkyZPp378/o0aN4sUXX3SXbdq0icsuuwybzcaECRPYuHFjrW0/+OADRo8ejc1mY8qUKeTl5fk5ehGR0KWklIiISBNWM3zPFxOdA8RU95RSUkpEmrI77riD6OhoVq1axb333ssTTzzBp59+SmlpKZMmTWLgwIGsWrWKpKQkJk+eTGlpKQAbNmxgxowZTJ06lRUrVlBYWEhKSopfYjYMQw+ZEJGQp6SUiIhIE3Zw+J5v9h97SFLKMAxyc3PJzc3VFyURaTIKCgpIS0vj1ltv5aSTTmL06NEMGzaM7777jo8++gir1cr06dPp2rUrM2bMICYmhk8++QSA5cuXM2bMGC6++GJ69OjBvHnz+Oqrr8jIyAhwrUREQoOSUiIiIk2Ye/ie2bfD9/YWlJGXl8fiLzbwzOcbyM3N9cnxRES8LTIykqioKFatWkVFRQU7duxg/fr19OzZk/T0dAYMGIDJ5LrWmUwm+vfvT1paGgDp6ekMHDjQva/27dvToUMH0tPTA1EVEZGQEx7oAERERKTh3E/fC/fR8L3qpNS+wjKqnAbRLVr75DgiIr5itVqZOXMms2fP5uWXX6aqqork5GQuu+wyPv/8c7p161Zr/bi4OLZu3QrA/v37SUhIqFOelZXlcRwmDy/TNeubTJ5vK3Udej7FO3ROvSvYz6ev4lJSSkREpAkrPHROKacPDlBWhAkzVYaJ7JIKHxxARMT3tm/fzsiRI/nzn//M1q1bmT17NmeeeSZ2ux2LxVJrXYvFgsPhAKCsrOyY5Z6Ii2vh0fpVVVVUVFQQF9eCiIgIj48nR+bp+yDHp3PqXc3tfCopJSIi0oQV1MwpZfZNUspkgugwg5IqE5lFnn8JExEJtO+++4633nqLr776isjISPr06cO+fft45pln6Ny5c50Ek8PhIDIyEnD1sjpSeVRUlMdx5OYW4cl0fE5nFS1aWMnJKSQiwnL8DeSYTCbXl31P3wc5Op1T7wr281kTn7cpKSUiItJEGYZBUXn18L0wE1T65jhRZiclVWayitVTSkSano0bN9KlSxd3ogmgV69eLF68mIEDB5KTk1Nr/ZycHPeQvcTExCOWx8fHexyHYeDRF82adT3dTo5N59P7dE69q7mdT010LiIi0kSVVTqpqHJ9arGE+W4Cgqgw1zGy1FNKRJqghIQEdu3aVavH044dO+jUqRM2m40ff/zR/URRwzBYv349NpsNAJvNRmpqqnu7zMxMMjMz3eUiItI4SkqJiIg0UQV2V8+lMJPrx1eizK5xgVnFSkqJSNMzatQoIiIi+Mc//sHOnTv54osvWLx4Mddccw3nn38+hYWFzJkzh23btjFnzhzsdjtjxowBYOLEibz77ru8+eabbN68menTpzNixAg6d+4c4FqJiIQGJaVERESaqJqhe2ajivKycp8dJ9rdU0rD90Sk6WnRogUvvvgi2dnZXHrppcydO5dbb72VK664gtjYWJYsWUJqairJycmkp6ezdOlSoqOjAUhKSmLWrFksWrSIiRMn0qpVK+bOnRvgGomIhA7NKSUiItJE1Tx5z+LjW0zu4XvFDkjURwcRaXq6devGCy+8cMSyvn378vbbbx912+TkZJKTk30VmohIs6aeUiIiIk1UTVIq3OTb2TBrhu8VlFW557ASEREREWksJaVERESaqJrhexE+TkpFmCHWEgZASYXTp8cSERERkeZDSSkREQkpDoeDBx54gEGDBvGHP/yBxx57zP1UpU2bNnHZZZdhs9mYMGECGzdurLXtBx98wOjRo7HZbEyZMoW8vLxAVKHeisv901MKoH2LCNcxHUpKiYiIiIh3KCklIiIh5cEHH2TNmjUsW7aMRx99lDfeeIMVK1ZQWlrKpEmTGDhwIKtWrSIpKYnJkydTWloKwIYNG5gxYwZTp05lxYoVFBYWkpKSEuDaHJs/k1IntLC4junQ8D0RERER8Q7NVioiIiEjPz+flStX8sILL9C3b18AbrjhBtLT0wkPD8dqtTJ9+nRMJhMzZszg66+/5pNPPiE5OZnly5czZswYLr74YgDmzZvHyJEjycjICNpHfxeVVwG+H74H0D7WlZQq0vA9EREREfES9ZQSEZGQkZqaSmxsLIMHD3YvmzRpEnPnziU9PZ0BAwZgMpkAMJlM9O/fn7S0NADS09MZOHCge7v27dvToUMH0tPT/VoHT7h7Spl9nyhq31LD90RERETEu9RTSkREQkZGRgYdO3bknXfeYfHixVRUVJCcnMytt95KdnY23bp1q7V+XFwcW7duBWD//v0kJCTUKc/KyvIohuqcV53Xhy/3hkOH75lMYFQf59B/MdVv2fHKOriH7zl9WqdAUZ2aBtXJ94IlDhERaR6UlBIRkZBRWlrKrl27eP3115k7dy7Z2dnMnDmTqKgo7HY7Foul1voWiwWHwwFAWVnZMcvrKy6uhUfLG6O8utNSVISZyKgInBVOzBG1/420RtQpO9KyY5VhVNHrxDbALkoqDCzWCJ/VKdBUp6ZBdRIREQkNSkqJiEjICA8Pp7i4mEcffZSOHTsCsHfvXl577TW6dOlSJ8HkcDiIjIwEwGq1HrE8KirKoxhyc4swDpniyWRyfdk8fLk35BWXu36pqqTMXoGz0oG50lzr37LyijplR1p2zPXLKghzOIgwm6hwGuQVlR+xrk2ZL9+nQFGdmoZgq1NNPCIiIv6gpJSIiISM+Ph4rFarOyEFcPLJJ5OZmcngwYPJycmptX5OTo57yF5iYuIRy+Pj4z2KwTA44hfLoy1vjEOH79Xs+/B/Meq37HhlZpOJxNgIfi90UFTdRcsXdQo01alpUJ1ERERCgyY6FxGRkGGz2SgvL2fnzp3uZTt27KBjx47YbDZ+/PFHjOpvfYZhsH79emw2m3vb1NRU93aZmZlkZma6y4NRTVLK10/fMwyDAwfyaBflmmxGk52LiIiIiDcoKSUiIiHjlFNOYcSIEaSkpLB582b++9//snTpUiZOnMj5559PYWEhc+bMYdu2bcyZMwe73c6YMWMAmDhxIu+++y5vvvkmmzdvZvr06YwYMYLOnTsHuFZHZhhGrZ5SvlReWsRLa7aTl18AQJGSUiIiIiLiBT5JSn3//ffuO9EiIiL14a22Y8GCBZx44olMnDiRu+++m6uvvpprrrmG2NhYlixZQmpqKsnJyaSnp7N06VKio6MBSEpKYtasWSxatIiJEyfSqlUr5s6d2+h4fMVe4aSq+nT5OikFEBXbilZRNU/gUxsvIt6j7w4iIs2XT+aU+stf/kJERATnn38+48aNo1+/fr44jIiIhBBvtR0tWrRg3rx5Ryzr27cvb7/99lG3TU5OJjk5uUHH9bei6l5SZhOE+emYMRGuL41FFeopJSLeo+8OIiLNl0+SUt9++y3ffvstn3zyCZMmTSI2NpYxY8YwduxYevXq5YtDiohIE6e2wzM1Q/diLWGYTP45Zkz1p4ZihxPDMPx2XBEJbbr+i4g0Xz5JSoWHhzN8+HCGDx9OZWUla9as4YsvvuCqq64iMTGRCy+8kOTkZDp06OCLw4uISBOktsMzNUmpGIv/poeMrv7UUOmEA6WVtI3x26FFJITp+i8i0nz59JOsw+Hgq6++4sMPP+Tjjz+mTZs2jBo1it9++42xY8eyfPlyXx5eRESaILUd9VNU5kpKRZoNvz1GPswEUdVjBX8vKPPPQUWk2dD1X0Sk+fFJT6nPPvuMTz75hC+//JKIiAjOO+88Fi1axMCBA93rvPrqqzz22GP86U9/8kUIIiLSxKjt8ExWXj4ABSV2yiPK8FenpZgIE/Yqg9/zy+mrTgsi4gW6/h+ZYRiaAF5EQp5PklJ33303o0eP5rHHHmPo0KGEhdWdgrV37978+c9/9sXhRUSkCVLb4ZkSh2uycWuET5ryo4oJhxzg93z1lBIR79D1X0Sk+fLJJ9k1a9ZQXFxMYWGhu1H56KOPGDRoEPHx8QDYbDZsNpsvDi8iIk2Q2g7PFDuqAIgwG+DHh+HFRJgAgwwlpUTES3T9FxFpvnwyp9T69es555xzeP/9993LXn75ZS644AJSU1N9cUgREWni1HZ4prS6p1SE/+Y5ByAm3PXIvd+yS8jNzdXQEhFpNF3/j05D+EQk1Pnko+wjjzzCLbfcwrRp09zLXn/9dW666SYeeughXxxSRESaOLUdnjnYU8q/x3X1lIIduXae+XwDeXl5/g1AREKOrv8iIs2XTz7K/vbbb5x//vl1lo8ZM4Zt27b54pAiItLEqe3wTEl1Uqq645LfxFQP/C93moiIbuXfg4tISNL1X0Sk+fJJUuqUU07h448/rrP8iy++4MQTT6z3fnbt2sWNN95IUlISI0aM4LnnnnOXZWRkcP3119OvXz8uuOACvvnmm1rbrlmzhnHjxmGz2bj22mvJyMioVf7iiy8ybNgwkpKSuPfee7Hb7R7WUkREvMlbbUdzUVIRmOF7ljCTax4roLjCj5NZiUjI0vX/yGqG7mn4noiEMp9MdH7HHXdw22238e2333L66acDsGXLFn744Qeeeuqpeu3D6XQyadIk+vTpw9tvv82uXbv429/+RmJiIuPGjWPKlCl0796dlStX8tlnnzF16lQ++ugjOnTowN69e5kyZQq33347w4YNY9GiRdx222289957mEwmVq9ezcKFC5k/fz5xcXGkpKQwf/58Zs6c6YvTISIi9eCNtqM5qTXRuZ/FhEO+A4odSkqJSOPp+n90T3z6K9cP6hzoMEREfMYn91f/+Mc/8vbbb9OrVy927NjB7t276dGjBx9++CHDhw+v1z5ycnLo2bMn999/PyeddBLDhw/nzDPPJDU1le+//56MjAxmzZpF165dmTx5Mv369WPlypUAvPnmm/Tu3ZsbbriBU089lblz57Jnzx7WrVsHuCZOvO666xg5ciR9+/blgQceYOXKleotJSISQN5oO5qTQE10DhATXt1TyqG79yLSeLr+H4PJz2O0RUT8zCc9pQBOPfVU7rnnngZvn5CQwBNPPAG4uq6uX7+e//3vf9x3332kp6fTq1cvoqOj3esPGDCAtLQ0ANLT0xk4cKC7LCoqitNPP520tDQGDhzITz/9xNSpU93l/fr1o6Kigs2bN5OUlNTgmEVEpHEa23Y0B4ZhkJeXR2FZBeBKSvk7NRRd/elBw/dExFt0/RcRaZ58kpQqLCzk+eef56effqKysrLOOOiXX37Zo/2NGjWKvXv3MnLkSM477zweeughEhISaq0TFxdHVlYWANnZ2UctLywspLy8vFZ5eHg4rVu3dm9fX4G6cXHocU2m4LmBUhNHY+MJ1vp5i7fOU3Ogc1U/DT1PwXZevd12hKq8vDwWf7GBonIzYCLCDA4/x1Az2XmJhu+JiBfo+i8i0nz5JCk1ffp0fvrpJy688EJiY2Mbvb8nn3ySnJwc7r//fubOnYvdbsdisdRax2Kx4HC4PpYfq7ysrMz9+mjb11dcXAtPq+IVVVWlREVZqmOIpV0738bhdDrJzs4GID4+HrP52GNFGnte/F2/QAnU309TpHNVP039PHm77QhlkbGtqKIYgAiT/5NS0Rq+JyJepOu/iEjz5ZOk1Jo1a1i+fDl9+/b1yv769OkDQHl5OXfeeScTJkyoM/+Tw+EgMjISAKvVWifB5HA4aNmyJVar1f368PKoqCiP4srNLSIQD8PIzS3Gbne4fw8Liz7OFo2zf/9+Fn+WDsAto211eqHVMJlcX4obe178XT9/89Z5ag50ruqnoeepZrtg4e22I5Q5qg6+0eGBmFMqzPVvSYUTp/7nFJFG0vVfRKT58klSKjEx8bi9aY4nJyeHtLQ0Ro8e7V7WrVs3KioqiI+PZ8eOHXXWr0mWJCYmkpOTU6e8Z8+etG7dGqvVSk5ODl27dgWgsrKS/Px84uPjPYrRMAjIF+VDj+mPGAwDYlq1rffxGhuTv+sXKKFcN2/Tuaqfpn6evNF2NBcVrgfvEW4CcwCGYUaFgwmoMuCAvRLPWk8Rkdp0/T86p9OJ06mh0iISunxy9Z8+fTr3338/X3/9Nbt27WLv3r21furj999/Z+rUqezbt8+9bOPGjbRt25YBAwbw888/u4fiAaSmpmKz2QCw2Wykpqa6y+x2O5s2bcJms2E2m+nTp0+t8rS0NMLDw+nRo0djqy4iIg3kjbajuXA4XdnHQPSSAlciLDrClQ3LKqoITBAiEjJ0/RcRab580lPq9ttvB2DSpEkAmKpn0zUMA5PJxC+//HLcffTp04fTTz+de++9l5SUFPbs2cP8+fO55ZZbGDx4MO3btyclJYXbbruN//znP2zYsIG5c+cCMGHCBJYtW8bSpUsZOXIkixYtolOnTgwZMgSAq666ipkzZ9K9e3cSEhK4//77ufzyyz0eviciIt7jjbajuaioHr4XEcCOBbEWEyUVBlnF/p7RSkRCja7/IiLNl0+SUp9//nmj9xEWFsbTTz/N7NmzueKKK4iKiuKaa67h2muvxWQy8fTTTzNjxgySk5Pp0qULixYtokOHDgB06tSJp556ioceeohFixaRlJTEokWL3A3c2LFj2bNnDzNnzsThcHDuuedy1113NTpmERFpOG+0Hc1FTU+piECM3asW4+4ppaSUiDSOrv8iIs2XT5JSHTt2BGDr1q389ttvDB06lNzcXDp16uRODNVHYmIiCxcuPGJZly5dWL58+VG3HT58OMOHDz9q+aRJk9x3Y0REJPC81XY0BzVzSgW2p5QZqCKrWMP3RKRxdP0XEWm+fJKUKigo4C9/+Qvr1q0DYPXq1cyZM4eMjAyWLl3qbnhERERqqO2oP0cwDN9TTykR8RJd/0VEmi+ffJx98MEHiYqK4vvvv8dqtQLw0EMPccIJJ/Dggw/64pAiItLEqe2ov4ogGL4Xa6lOSqmnlIg0kq7/IiLNl0+SUv/973/529/+RsuWLd3L2rZtS0pKCv/73/98cUgREWni1HbUXzD0lIqxuA6eU1KBo1KPKxeRhtP1X0Sk+fLZx9ny8vI6y/Ly8ggP98mIQRERCQFqO+onGJ6+FxkGYSYwgKyiuu+biIgndP0XEWmefPJxdty4ccyZM4etW7diMpkoLS3l+++/55///CcXXHCBLw4pIiJNnNqO+quo7pgUyKSUyWSqnuwc9hTYAxeIiDR5uv6LiDRfPvk4O336dGw2G8nJyZSWljJ+/HhuvPFGzjzzTKZPn+6LQ4qISBOntqP+Dg7fC+xTqWKqJzvfW1AW0DhEpGnzx/Xf4XDwwAMPMGjQIP7whz/w2GOPYRiua+mmTZu47LLLsNlsTJgwgY0bN9ba9oMPPmD06NHYbDamTJlCXl6eV2ISEREfPX3PYrFwzz33cMcdd5CRkUFVVRWdO3cmJibGF4cTEZEQoLaj/g5OdB7YOFw9parYk6+klIg0nD+u/w8++CBr165l2bJllJSU8Ne//pUOHTpw0UUXMWnSJC688EIefvhhXnvtNSZPnsynn35KdHQ0GzZsYMaMGTzwwAP06NGDOXPmkJKSwpIlS7wWm4hIc+aTpNSRJiTctGmT+/dBgwb54rAiItKEqe2ov5qeUuFBkZSCvYVKSolIw/n6+p+fn8/KlSt54YUX6Nu3LwA33HAD6enphIeHY7VamT59OiaTiRkzZvD111/zySefkJyczPLlyxkzZgwXX3wxAPPmzWPkyJFkZGTQuXPnRsUlIiI+Skpdc801R1xusViIj4/n888/98VhRUSkCVPbUX8He0oFdvhebHVXLQ3fE5HG8PX1PzU1ldjYWAYPHuxeNmnSJAD++c9/MmDAAEwm1/XUZDLRv39/0tLSSE5OJj09nZtvvtm9Xfv27enQoQPp6elKSomIeIFPklKbN2+u9bqqqordu3czbYVFUgABAABJREFUe/ZsLrzwQl8cUkREmji1HfVjGAYVVa7fLQHvKeX6ErdHSSkRaQRfX/8zMjLo2LEj77zzDosXL6aiooLk5GRuvfVWsrOz6datW6314+Li2Lp1KwD79+8nISGhTnlWVlaj4xIRER8lpQ4XFhbGySefzD333MOkSZO45JJL/HFYERFpwtR2HJm90olR/Xu4GdwvAiC6eqLzwrJKisoqaRGpR7eLSON5+/pfWlrKrl27eP3115k7dy7Z2dnMnDmTqKgo7HY7Foul1voWiwWHwwFAWVnZMcs9YfKwc2vN+iaT59tKXYeeT/EOnVPvCvbz6au4/PrpMTc3l8LCQn8eUkREmji1HbWVOJwAmDAIMxHQpFRlaSERQAVh7C0o47TI2MAFIyIhx1vX//DwcIqLi3n00Ufp2LEjAHv37uW1116jS5cudRJMDoeDyMhIAKxW6xHLo6KiPI4jLq6FR+tXVFS4t4uOjvb4eHJknr4Pcnw6p97V3M6nT5JSKSkpdZaVlJSwZs0azj//fF8cUkREmji1HfVT4nCN3Yswu+Y+CWBOCoDocCiohD2FZZyWqKSUiHjO19f/+Ph4rFarOyEFcPLJJ5OZmcngwYPJycmptX5OTo57yF5iYuIRy+Pj4z2OIze3CMODi3ZlZYV7u9LSKo+PJ7WZTK4v+56+D3J0OqfeFeznsyY+b/NbT6nWrVtz9913M378eH8dUkREmji1HXWVVrh6SoUHSdfuKLNBAbAn3x7oUEQkhHjz+m+z2SgvL2fnzp2cfPLJAOzYsYOOHTtis9l49tlnMQzDleg3DNavX88tt9zi3jY1NZXk5GQAMjMzyczMxGazeRyHYeDRF82adT3dTo5N59P7dE69q7mdT58kpebOneuL3YqISAhT21E/7qRUgCc5rxEd5opHT+ATkYby9fX/lFNOYcSIEaSkpHD//feTnZ3N0qVLufXWWzn//PN59NFHmTNnDldeeSWvv/46drudMWPGADBx4kSuueYa+vXrR58+fZgzZw4jRozQk/dERLzEJ0mphQsX1nvdqVOn+iIEERFpYtR21E9pxcHhe8EgKsx1K09P4BORhvLH9X/BggXMnj2biRMnEhUVxdVXX80111yDyWRiyZIl3HfffbzxxhucdtppLF261D2HU1JSErNmzeLJJ5+koKCAoUOHMnv27AbFICIidfkkKbVr1y4++eQTWrduTe/evbFYLGzevJndu3fTr18/wsNdhzUF67TyIiLid2o76qfUEWzD99RTSkQaxx/X/xYtWjBv3rwjlvXt25e33377qNsmJye7h++JiIh3+SQpZbFYuPDCC3nggQeIiIhwL3/kkUcoKCjgoYce8sVhRUSkCVPbUT8He0oFx2QDNT2l9haW4TQMzM08aSgintP1X0Sk+fJJ5/+PPvqIm266qVajAnD55Zfz0Ucf+eKQIiLSxKntqJ9gm1Mq0mxgNkFFlUFOseP4G4iIHEbXfxGR5ssnH2kTExP573//W2f56tWrNSmgiIgckdqO+qlJSkUESYckswkSYlxfJDWET0QaQtd/EZHmyyfD9/7+979zxx138OWXX9KjRw8AfvrpJzZt2sTixYt9cUgREWni1HbUT4nDNXwvWHpKAZzQwkJWcQV7Csro16lVoMMRkSZG138RkebLJx9pzznnHFatWkX37t3Zvn07e/bsYfDgwaxevZrBgwf74pAiItLEqe2on2AbvgdwQqx6SolIw+n6f2SGYQDBMX+giIiv+KSnFMBpp51GSkoKBQUFxMbGYjabm/0Tk0RE5NjUdhxfzdP3gmX4nmEYtA539d76vcAe4GhEpKnS9f/IDMOoTk6JiIQmn9xnNQyDZ555hiFDhnDmmWeyd+9e7rrrLmbOnInDoUlQRUSkLrUd9VPz9L3wIHn6XnlpEZt/zwFgd25xgKMRkaZI138RkebLJ0mpRYsW8d577/Hwww9jsVgAuOSSS/j222+ZN2+eLw4pIiJNnNqO+nFPdB5Ew/dax0YDkFWkL48i4jld/0VEmi+ffKR9++23mTVrFiNHjnR3ux06dCiPPPIIH3/8sS8OKSIiTZzajvpxzykVRKNaYqrHEuaWVlJe6QxwNCLS1Oj6f3Qavicioc4nSanc3FwSEhLqLG/ZsiWlpaW+OKSIiDRxajvqpzQIn75nMbviMYDMQk12LiKe0fVfRKT58slH2jPOOINly5bVWlZcXMxjjz3GkCFDfHFIERFp4tR2HJ9hGEE5fM9kMhFbHZCewCcintL1X0Sk+fLJR9r777+fTZs2MXToUMrLy7ntttsYPnw4e/bs4R//+IcvDikiIk2c2o7js1c43Q8HD6bhewAxFtdHij1KSomIh3T9FxFpvsJ9sdOWLVvy1ltv8d1337Fjxw4qKys5+eSTOeusszCbg+jWroiIBA21HcdXXF4JgAkIC7KkVGz1vFLqKSUintL1X0Sk+fJJUmrcuHEsXLiQM888kzPPPNMXhxARkRCjtuP4Sqrnk4oIA1OwJaUsGr4nIg2j67+ISPPlk1sPZrOZiooKX+xaRERClNqO4ytxuHpKRZiDLCOFhu+JSMPp+i8i0nz5pKfUiBEj+POf/8zIkSPp2LEjFoulVvnUqVN9cVgREWnCfNF2TJo0ibZt2/Lwww8DsGnTJu677z5+/fVXunXrxgMPPEDv3r3d63/wwQc88cQTZGdnc9ZZZzF79mzatm3buIp5UUl5dU+pIExKafieiDSUvjuIiDRfPklKbdmyhdNPP539+/ezf//+WmWmYBtvICIiQcHbbceHH37IV199xSWXXAJAaWkpkyZN4sILL+Thhx/mtddeY/LkyXz66adER0ezYcMGZsyYwQMPPECPHj2YM2cOKSkpLFmyxCv18wZ3T6lgm1CKg8P3isorKSyroGVkRIAjEpGmQt8dRESaL68lpa6++mqeeeYZWrZsySuvvAJAWVkZkZGR3jqEiIiEGF+1Hfn5+cybN48+ffq4l3300UdYrVamT5+OyWRixowZfP3113zyySckJyezfPlyxowZw8UXXwzAvHnzGDlyJBkZGXTu3LlR8XhLcfWcUuFBOO9vuNlEm8hwDpRVsregTEkpETkmfXcQERHw4pxSqampdcaC/+EPfyAjI8NbhxARkRDjq7bjkUceYfz48XTr1s29LD09nQEDBrjvuptMJvr3709aWpq7fODAge7127dvT4cOHUhPT29ULN7knug8CIfvGYZBuyhXXL/n2wMcjYgEO313EBER8NFE5zUMw/Dl7kVEJAQ1tu347rvv+OGHH7jttttqLc/OziYhIaHWsri4OLKysgDYv3//McuDQUm5a/ieJQiH79mLCygudSWjtmUdCHA0ItIU6buDiEjz45M5pURERAKhvLyc++67j5kzZ9YZAmK32+tMnmuxWHA4HIBr2Mixyuvr8OlPal57Y1qUgz2lDu7TADAd/P3wf49U1tj1ObROh5S1jLKQWe4kq8jhlfr6kzffp2ChOjUNwVanYIlDRESaByWlREQkZCxcuJDevXszbNiwOmVWq7VOgsnhcLiTV0crj4qK8iiGuLgWHi33RFX1sL0oaziRkRbMERE4K5xEWiOIjHL9XrPsWGXeWB/AarXUKmtdGQb5DvLKnbRr1/j6BoI33qdgozo1DaFYJxERkePxalLq448/JjY21v3a6XTy6aef1nmcds0ksiIiIt5sOz788ENycnJISkoCcCeZVq9ezbhx48jJyam1fk5OjnvIXmJi4hHL4+PjPapPbm4Rh45AMZlcXzYPX94QOQVlrl+cTsrKHJgrzTgrHZSVV1Bmr8BZeXDZscoau75R5SAqwkp5ee0yi+HqabY7z05OTlHjKutn3nyfgoXq1DQEW51q4vEHfXcQERGvJaU6dOjA888/X2tZXFwcy5cvr7XMZDKpYREREcD7bccrr7xCZWWl+/WCBQsAuPPOO/nf//7Hs88+i2EYmEwmDMNg/fr13HLLLQDYbDZSU1NJTk4GIDMzk8zMTGw2m0d1MgyO+MXyaMs9UeJw1a1monP3/g7Z9+H/HqmssevXKj/kdXT1XFf7iyuochqYm+A4IG+8T8FGdWoaQrFOx6LvDiIiAl5MSn3xxRfe2pWIiDQT3m47OnbsWOt1TEwMAF26dCEuLo5HH32UOXPmcOWVV/L6669jt9sZM2YMABMnTuSaa66hX79+9OnThzlz5jBixAg6d+7s1Rgbo6S8ek6psAAHchRR4a7ppiqcBtnFDhJbWAMdkogEKX13EBER8PHT90RERIJFbGwsS5YscfeGSk9PZ+nSpURHRwOQlJTErFmzWLRoERMnTqRVq1bMnTs3wFHXVtNTKjxIeyCZTCZiLK7Yfs+3BzgaEREREQl2muhcRERC1sMPP1zrdd++fXn77bePun5ycrJ7+F4wKrRXAGBUOCAiwMEcRQuLmWJHFbvyShnQuXWgwxERERGRIKaeUiIiIk1EafVT78LNwdlTCqCV1fXRYmeeekqJiIiIyLEpKSUiItIEGIZBaUX1nFJB3Hq3rE5K/ZZbGuBIRESaNsMwmtXk9yLSPAXxx1rYt28f06ZNY/DgwQwbNoy5c+dSXl4OQEZGBtdffz39+vXjggsu4Jtvvqm17Zo1axg3bhw2m41rr72WjIyMWuUvvvgiw4YNIykpiXvvvRe7XXd0RUQkeJVVOnFWfzkJ5qTUwZ5SSkqJiIiIyLEF7cdawzCYNm0adrudV199lccff5z//Oc/PPHEExiGwZQpU2jXrh0rV65k/PjxTJ06lb179wKwd+9epkyZQnJyMm+99RZt27bltttuw6i+1bB69WoWLlzIrFmzeOmll0hPT2f+/PmBrK6IiMgxlZRXVv9mEBa8o/doYXF9tNhXVE6poyrA0YiIiIhIMAvapNSOHTtIS0tj7ty5nHrqqQwcOJBp06bxwQcf8P3335ORkcGsWbPo2rUrkydPpl+/fqxcuRKAN998k969e3PDDTdw6qmnMnfuXPbs2cO6desAePnll7nuuusYOXIkffv25YEHHmDlypXqLSUiIkGruDrBE24yMAXp0/cAnPZCInDF+pt6S4mIiIjIMQRtUio+Pp7nnnuOdu3a1VpeXFxMeno6vXr1cj/GG2DAgAGkpaUBkJ6ezsCBA91lUVFRnH766aSlpVFVVcVPP/1Uq7xfv35UVFSwefNm31ZKRESkgUpqklIBjqM+YquDVFJKRKRxDMOg0qmJpUQkdAVtUqply5YMGzbM/drpdLJ8+XLOOOMMsrOzSUhIqLV+XFwcWVlZAMcsLywspLy8vFZ5eHg4rVu3dm8vvuF0Otm/fz/79+/H6XQGOhwRkSalZvheuCn4v5zEhLuu8Ts12bmISKN88msBf16xicoqfXYWkdDUFG64AjB//nw2bdrEW2+9xYsvvojFYqlVbrFYcDgcANjt9qOWl5WVuV8fbfv6CtToiUOPazL5Po76Hq9m+dHKc3NzWPJ5OgC3jLbVSRx6erym6njnSQ7Suaqfhp4nndempeSQ4XvBLjbM9eVph5JSIiINVuU02F9cAUBeaQUJLawBjkhExPuaRFJq/vz5vPTSSzz++ON0794dq9VKfn5+rXUcDgeRkZEAWK3WOgkmh8NBy5YtsVqt7teHl0dFRXkUV1xcCw9r4h1VVaVERVmqY4ilXTvfxuHp8Y52XqqqSml3wgnH3Y+/6xcogfr7aYp0rupH5ym0lThcPaXCmkBSqkV1T6lf9xcHOBIRkaar4pDeURrCJyKhKuiTUrNnz+a1115j/vz5nHfeeQAkJiaybdu2Wuvl5OS4e94kJiaSk5NTp7xnz560bt0aq9VKTk4OXbt2BaCyspL8/Hzi4+M9ii03twgjAO1Dbm4xdrvD/XtYWPRxtvDP8Uwm15fio52X+u7H3/Xzt+OdJzlI56p+GnqearaTpqGkvOn0lGpR3VMqq6icfHsFraMiAhyRiEjTU155MClVpaSUiISooJ1TCmDhwoW8/vrrPPbYY4wdO9a93Gaz8fPPP7uH4gGkpqZis9nc5ampqe4yu93Opk2bsNlsmM1m+vTpU6s8LS2N8PBwevTo4VF8hhG4H3/HUN/jHW8dT/YT6HPs6/MZ6Biayo/OlW/PkzQdTWn4XoQZ2rdwJaJSt+8lNzcXQ39wIiIecVQdvG6qp5SIhKqgTUpt376dp59+mptvvpkBAwaQnZ3t/hk8eDDt27cnJSWFrVv/n707D2+i2v8H/s7SpGlL6V6pRVD2paSFCipFhAsoi8utiPdyZRG1XAG5/lTUgrJ+AVlcrhYVlFVQkMUF9IriggsIWmwLIlD20hbadF/SpEnO7480A6H7mjR5v56nD82cmek5k2Em88k5n5OKNWvWICUlBWPHjgUAPPjggzhy5AjWrFmD1NRUxMfHIzw8HAMGDAAAjB8/HmvXrsW+ffuQkpKC+fPnY9y4cfUevkdERNRSiltRonMA6BRgvad+cOgc3v0uBbm5uQ6uERFR62KwG77HROdE5Jqcdvjet99+C7PZjHfeeQfvvPOOXdnJkyfx9ttvY86cOYiNjUWHDh2watUqhIWFAQDCw8Px1ltvYcmSJVi1ahWioqKwatUqyCqy+o4ePRrp6emYO3cujEYjRowYgVmzZrV4G4mIiOqqNfWUAoBbAjzx84VClAgVvNrwSx8iovoymphTiohcn9MGpeLi4hAXF1dteYcOHbB58+ZqywcPHozBgwc3eP9UdxaLBTqdDjIZEBDg7ejqEBG5JFui89YSlOoUYJ18JK+M3+4TETWE3fA9c+u49hMR1ZfTDt+j1kOn02H1t8l4d18ysrOzHV0dIiKX1Np6SnUOtAalCg0WfsNPRE4lLi4OL774ovT6+PHjeOihh6DVavHggw/i2LFjduvv2bMHw4YNg1arxfTp01tsODJ7ShGRO2BQipqEd9sAeLcNcHQ1iIhcVkkryykVoFEiQKOEAJCrNzu6OkREAIAvvvgC+/fvl16XlpYiLi4O0dHR2LVrF6KiojB16lSUlpYCAFJSUjBnzhzMmDED27ZtQ2FhIeLj41ukrgYTc0oRketjUIqIiKgVKG5lPaVkMhm6B1tzSeXo+TBFRI6Xn5+P5cuXIyIiQlr25ZdfQq1W4/nnn0enTp0wZ84ceHt746uvvgIAbN68GSNHjsQDDzyA7t27Y/ny5di/fz/S0tKavb4G09WAPntKEZGrYlCKiIioFWhtw/cASEEpHXtKEZETWLZsGe6//3507txZWpacnIx+/fpJEyLJZDL07dsXSUlJUnl0dLS0frt27RAWFobk5ORmry9zShGRO3DaROdERER0VWsbvgcA3YO9AAA5DEoRkYMdPHgQv//+O3bv3o358+dLy7Ozs+2CVAAQGBiI1NRUAEBWVhZCQkIqlV++fLnedaiIe9VZuflqL1OzEPXenuzZjh+PY9PhMW1azn48m6teDEoRERE5OSEEiltRUEoIgby8XAQrLJABKC0X0JWUIzDQ0TUjIndkMBgwb948zJ07F56ennZler0eKpXKbplKpYLRaAQAlJWV1VheH4GBbeq1vofn1b/r5e2JoKD6bU9Vq+/7QLXjMW1a7nY8GZQiIiJycmUmC2wjN1pDUMpQWoSNB85AmA3wVfmjwAic0OnR7SZH14yI3FFCQgJ69+6NQYMGVSpTq9WVAkxGo1EKXlVXrtFo6l2PnJwiiHpcwnML9NLveQWl0OmK6v036SqZzPqwX9/3garHY9q0nP142urX1BiUIiIicnK2oXtyGaBwcF3qSuPTFsJcBv9yOQqMFpzMLnV0lYjITX3xxRfQ6XSIiooCACnItHfvXowZMwY6nc5ufZ1OJw3ZCw0NrbI8ODi43vUQAvV60Lx29r1ys8UpH1Jbo/q+D1Q7HtOm5W7Hk4nOiYiInFyxwZqTyctD7rR5BqoToLZW+ES2vpY1iYiaxwcffIDdu3fj008/xaeffoqhQ4di6NCh+PTTT6HVavHHH39AVDwBCiFw5MgRaLVaAIBWq0ViYqK0r8zMTGRmZkrlzcl4TU4pJjonIlfFnlJEREROrtho7Snl5dFa+kld5V8RlDqVo4fJIqCUt7KoGhG1ejfeeKPda29vbwBAhw4dEBgYiFdffRWLFy/GP/7xD2zduhV6vR4jR44EAPzzn//EhAkTEBkZiYiICCxevBh33XUX2rdv3+z1vranlMnCoBQRuSb2lCIiInJytiTnXqrWd9tu4wF4yAGDSeCMrsTR1SEisuPj44PVq1cjMTERsbGxSE5Oxpo1a+DlZZ09NCoqCgsXLsSqVavwz3/+E23btsXSpUtbpG7Ga3pHMShFRK6KPaWIiIicnG34nreHAih3cGXqSSaTIVCjwOUSM/7MLES3EB9HV4mI3Nwrr7xi97pPnz745JNPql0/NjYWsbGxzV2tSuyG7zEoRUQuqvV95UpERORmbD2lvFthTykACNRYhx0ezeTMUUREdWU3fO+aABURkStpnZ9uiYiI3EixsaKnlKr15ZQCgCAva72PZRY6uCZERK2HkTmliMgNMChFRETk5EpsPaU8WudtO1Bjrff5XD0uZGRJs1wREVH1mFOKiNxB6/x0S0RE5EZsPaW8WmlPKU+lHO3aqAAAS3f/htzcXAfXiIjI+V2bU8rMoBQRuSgGpYiIiJycLaeU3GRAa+1k1D1YAwAokXs7uCZERK0Dh+8RkTtgUIqIiMjJ5RaVAgCSL1yGwVDm4NrUnxACN3lbH6jyjDIH14aIqHXg8D0icgdKR1eAiIiIalZabv223EujAUpbX7JwfXEBzheWA/BErgHMKUVEVAecfY+I3AF7ShERETm5koqcUh7y1hvMCfHzgRwC5UKGzCKjo6tDROT0rs0pxZ5SROSqGJQiIiJyciVG64OJshWPfJPLZPCz5jrHX9l6x1aGiKgVYE4pInIHDEoRERE5udJyW08pB1ekkfzV1oeqkwxKERHVijmliMgdtPKPt0RERK7P1lOq1QelpJ5SpY6tCBFRK2C4dviemUEpInJNrfzjLRERkWszmiwor/iGXNnK79oBFT2lzuaWoayi9xcREVXNfvgeE50TkWtq5R9viYiIXFux0ST97tGKc0oBgEYBqGQWmAVwMqvY0dUhInJaQggO3yMit8CgFBERkRMrNlh7FCnlgKyVB6VkMsDPw/pt/5+XixxcGyIi52W8briemUEpInJRDEq5MYvFgqysLGRlZcHCLsFERE6p2GDtKeUhb+URqQptldb7zdEMBqWIiKpz7dA9gD2liMh1MSjlxnQ6HVZ/m4zV3yZDp9M5ujpERFQFW1BKpXCNoJSv0trz62QWg1JERNW5Nsk5wKAUEbkupaMrQI7l3TbA0VUgIqIalBitQZzWPvOejW9FT6m0/DIUG0zwUfOjCBHR9Sr1lOLse0TkolzkIy4REZFrkobvuUhPKZUcCPH2AMBk50RE1ak8fI+pNojINTEoRURE5MSKpZ5SrhGUAoDOgZ4AgBNXGJQiIqqKgTmliMhNMChFRETkxFwtp5QQAuFe1oerv64wrxQRUVWYU4qI3AUTORARETkpIQR0BdbeREoX+RrJUFqEMxlKAJ44nlng6OoQETkl5pQiInfhIh9xiYiIXE9ubi4Sz2cDAOQWs4Nr03RC/HwAAJcKjCg1uk67iIiaSuWeUswpRUSuiUEpIiIiJ2ZRqAAAStcYvQcA8FTIoFHKIACcYrJzIqJKbD2lbCO3zRy+R0QuikEpIiIiJ1ZeMWTDlRKdA0CAxvoR5ASDUkREldiCUsqKqBRzShGRq2JQioiIyImVVzyIuEpOKRt/TwUABqWIiKpiG75n+0KCQSkiclUu9hGXiIjItZRXpFzycLE7doCmIih1uQg5OTkQgg9cREQ2kTe2xc0BGtzsbx3CzeF7ROSqXOwjLhERkWux9ZRyueF7ntaPIOdyS7Hy05+Rm5vr4BoRETmPm/w12PTP3rglwBqU4ux7ROSqGJQiIiKXcuXKFcycORP9+/fHoEGDsHTpUhgMBgBAWloaJk+ejMjISIwaNQo///yz3bYHDhzAmDFjoNVqMXHiRKSlpTmiCXaMUk4pB1ekiWmUMvh7KmERgFHl6+jqEBE5JbnMNnyPs+8RkWtysY+4RETkzoQQmDlzJvR6PbZs2YLXX38d33//Pd544w0IITB9+nQEBQVh586duP/++zFjxgxkZGQAADIyMjB9+nTExsZix44dCAgIwLRp0xw6rMxkEbB9Oe5qOaVkMhk6B3oCAPKNrtULjIioqdg6yZoFOMyZiFyS0tEVIKovi8UCnU4HAAgKCoJc7mJPakTUYGfPnkVSUhJ++eUXBAUFAQBmzpyJZcuW4c4770RaWhq2bt0KLy8vdOrUCQcPHsTOnTvx1FNPYfv27ejduzemTJkCAFi6dCkGDhyIw4cPY8CAAQ5pT6nRLP3uIQfgYl+Udw3S4Lf0YuQZHV0TIiLndO3IbZNFwEPBID4RuRY+zVOro9PpsPrbZKz+NlkKThERAUBwcDDef/99KSBlU1xcjOTkZPTs2RNeXl7S8n79+iEpKQkAkJycjOjoaKlMo9GgV69eUrkjlJRbo1AKmZCGcLgKIQTae1mDbrkG12obEVFTkePq9ZEz8BGRK2JPKXI6ZouAwSygruGbIO+2AS1YIyJqLXx9fTFo0CDptcViwebNm3HbbbchOzsbISEhdusHBgbi8uXLAFBruSPYekopXTBmoy8uwG9XDAA0KDHLkKc3IdDRlSIicjLXfh9hMgvAw3F1ISJqDgxKkdNZdegyvj5diqE3eTq6KkTUyq1YsQLHjx/Hjh07sGHDBqhUKrtylUoFo9E6dkyv19dYXlfXd2iyvW5IR6dSk7WnlIfcur0AANnV32ta1pzr49o2NWL/bdu2hW+hEYXlwInsUnRpX/9j1FQa8z45K7apdXC2NjlLPcjao1Quu9o7ysyeUkTkghiUIqeSUVCGb84UQAD4K6fc0dUholZsxYoV2LhxI15//XV07doVarUa+fn5dusYjUZ4eloD4Gq1ulIAymg0wte3fjPDBQa2qdfymsjV1iCZSimDp8YDlnILPNUe0u9yj+qX1VTWFOtbj5mq0fsP8jKhsEDgXJEJQUH1P0ZNrSHvk7Njm1oHV2wTNZ5MJoMM1kA+Z+AjIlfUKoJSRqMRsbGxePnll6Vks2lpaXj55ZeRlJSEsLAwzJ49GzExMdI2Bw4cwJIlS5CWlgatVovFixejffurX8Fu2LABa9euRXFxMUaOHImXX34ZGo2mxdtG9rYeSYftS6CMEjMyi4y4bjQNEVGtFi1ahI8++ggrVqzA3XffDQAIDQ3F6dOn7dbT6XTSkL3Q0NBKeep0Oh169OhRr7+dk1OEaydIksmsD5vXL6+LyzklAAAFBMr05bCYjCgzlEu/y03yapfVVNbY9YXZCI2HGgZD4/ffVmEGIEfihQLodEX1O0BNqDHvk7Nim1oHZ2uTrT7keBaLBUIIa+9SwZxSROSanD7RucFgwDPPPIPU1FRpWWOn9d67dy8SEhKwcOFCbNy4EcnJyVixYoVD2kdXlRrN+OyoNXeLpiKByv9O5TuwRkTUGiUkJGDr1q147bXXMHr0aGm5VqvFn3/+ibKyMmlZYmIitFqtVJ6YmCiV6fV6HD9+XCqvKyEq/1S3vLafkoqcUh6yq/vBdfusbllzrm9X3sj9B6qtL07p9NAbzQ06Tk3109D3yZl/2KbW8eNsbSLnYpvogkEpInJFTh2UOn36NMaNG4eLFy/aLf/111+RlpaGhQsXolOnTpg6dSoiIyOxc+dOALCb1rtLly5YunQp0tPTcfjwYQDApk2bMGnSJAwZMgR9+vTBggULsHPnTuj1+hZvI111KqsYpeVmBGqU6BtqHbJyJLPEwbUiotbkzJkzePvtt/HEE0+gX79+yM7Oln769++Pdu3aIT4+HqmpqVizZg1SUlIwduxYAMCDDz6II0eOYM2aNUhNTUV8fDzCw8OlHrqOUGK05ZRy3QcRbyXgKbeg3CKQnF7o6OoQETkdeUWeL5PZde8FROS+nDoodfjwYQwYMADbtm2zW96Yab3NZjOOHj1qVx4ZGYny8nKcOHGieRtENUrVWQNQtwSo4e9pPTUvFRiZ1JGI6uzbb7+F2WzGO++8g5iYGLsfhUKBt99+G9nZ2YiNjcXnn3+OVatWISwsDAAQHh6Ot956Czt37sTYsWORn5+PVatWQebArL8l5RWz7zn13bpxZDIgwMPazsMX8x1bGSIiJyQFpfiZmIhckFPnlBo/fnyVyxszrXdhYSEMBoNduVKphJ+fn0On/SbgdLY1KHWzvydkJj3kMqDcIpBZWIZwP+b7IqLaxcXFIS4urtryDh06YPPmzdWWDx48GIMHD26OqjVIqfHq7HuuLNDDggwD8NvFPAA3O7o6REROxTp8TzDRORG5JKcOSlWntmm7ayq35RJpjmm/W8q1f1cma3g96rqf2ta7firjhu7ntM4WlFLjoq4Mvio58g0WnM8tRXt/TZ334+ycbepnZ8ZjVTcNPU48rs5P6inl4u+Vv9IEQI2TWcUo0BvRVqOqdRsiIndhuwWwpxQRuaJWGZRqzLTearVaen19eX1n33PUzCRmcyk0FR/YAwN9GjyFdl33U9t615Zb16n/fiwWgbM5pQCAyI7+yC7Rw9/LiHyDBVllZrt1m6r9jsaZbeqOx6pueJxcj7v0lJIZCuGt0KDELMePf6Xj3r7sLUVETevKlStYvHgxfv31V6jVaowaNQrPPPMM1Gp1o2f1bm7MKUVErqxVBqUaM623n58f1Go1dDodOnXqBAAwmUzIz89HcHBwverhqKl7c3KKodcbpd8VCq9atmjcfmpbz1Zu63VR3XGpaT/p+XoUG0zwUMjgLUzQ643wVljLjqXl2U0T3lTtdxRnm/rZmfFY1U1DjxOn/XZ+RQZrTymVCyc6twnxUuJckQVJmSW419GVISKXIoTAzJkz4evriy1btqCgoACzZ8+GXC7H888/j+nTp6Nr167YuXMn9u3bhxkzZuDLL79EWFiYNKv3U089hUGDBmHVqlWYNm0aPv/88xbLOWj7M+wpRUSuqFUGpbRaLdasWYOysjKpd1RiYiL69esnlVc1rfeMGTMgl8sRERGBxMREaUalpKQkKJVKdO/evV71cNS0udf+zcbUoa77qW29a6cyrmlfNe0n1ZZPKsALioo7r6/a2jXgfE5ppW3rUm9n15rr3tJ4rOqGx8n1FBmtQSlX7ykFAMEaGc4VAUmXOesqETWts2fPIikpCb/88guCgoIAADNnzsSyZctw5513Ii0tDVu3boWXlxc6deqEgwcPYufOnXjqqafsZvUGgKVLl2LgwIHShEwtQV7x2ZiT/xCRK2qVH3MbO633+PHjsXbtWuzbtw8pKSmYP38+xo0bV+/he9R0bPmkugR7S8t8VRVBqVw9BJ+0icgNXe0p5eCKtIBgT+tD18V8A3TFBgfXhohcSXBwMN5//30pIGVTXFzcqFm9Wwpn3yMiV9Yqe0rZpvWeM2cOYmNj0aFDhyqn9V6yZAlWrVqFqKgou2m9R48ejfT0dMydOxdGoxEjRozArFmzHNkkt3euIp/UzYHXBqVkkMuAIoMJOaXlCPJm4lsich8WIVBc0VNKpXBwZVqASiGDv6cceWUW/JaWj5E9Qh1dJSJyEb6+vhg0aJD02mKxYPPmzbjtttsaNat3fTV0QhIpKCUsnKSkETiBTtPjMW1azn48m6terSYodfLkSbvXjZ3Wu7Zpw6llXczTAwA6+GsAWBP7KuQyBHt54EpJOS7l6RmUIiK3UmIww/aluDsM3wOAG7wVyCuz4PAFBqWIqPmsWLECx48fx44dO7Bhw4YGz+pdX/XN4+hZ0YNUoVAAMMPL27PVTvDjTJhPs+nxmDYtdzuerSYoRa5LCIELuRVBqQAvwFwslYX6WINSGYVliERbR1WRiKjFFZSVAwAUMuuPO2jno8RfOeU4eD4PFiGkPCpERE1lxYoV2LhxI15//XV07dq1UbN611d9JyQpKan4TCysX9jm5pfaTf5D9cMJdJoej2nTcvbj2VyTJDEoRQ6XXWxEabkZChkQ7ueJvBz7oBSuABkFZQ6sIRFRyyssMwEA1O4SkQIQ7KWARilHTokRJ64Uo+cN7vVNIRE1r0WLFuGjjz7CihUrcPfddwNo3Kze9VXfCUls68phvQ+YzMIpH1RbG04M0/R4TJuWux1PNxkQQM7sQp41n9SNfhp4KOxPyVAfDwAMShGR+yms6CmlcqOglFwGRARbh8n8dCbHwbUhIleSkJCArVu34rXXXsPo0aOl5VqtFn/++SfKyq5+1kxMTIRWq5XKq5rV21beEmRSonNLi/1NIqKWwqAUOZxt6N5N/pVnP7QFpTILGZQiIvdi6ynlTkEpfXEBSosKAAD7U7McXBsichVnzpzB22+/jSeeeAL9+vVDdna29NPYWb1bAmffIyJXxqAUOdwFKcm5V6Uy9pQiIndV4IbD9wCgvb91FtbUnDJkFRkcXBsicgXffvstzGYz3nnnHcTExNj92Gb1zs7ORmxsLD7//PMqZ/XeuXMnxo4di/z8fLtZvVuC7S+ZzAxKEZHrYU4pcrjzudbhex0Cqu8pdaXIAJNFQCl3r4czInJf7jh8DwA8lTIEeymQXWrGvlPZGN8v3NFVIqJWrrZZtxs7q3dzs036wJ5SROSK2FOqFdqcnI3/ndUjr8w1xpVfrCEoFaBRwkMhg1mA35gTkVtxx+F7Njf5Wr8z23dSV8uaRESuz/adrJlBKSJyQQxKtTLFBhN2HMtFvsGC7y7qcS6vdQ9rKzaYkFFoDTbdEuBdqVwuk6Gdr3VKXg7hIyJ3cnX4noMr4gDtfZWQATiaWYjLzClIRG6OOaWIyJUxKNXK/HgmB+UVNySjGdic1Lq/RT6dXQIACPFRwc/Lo8p1wmxBqXo+mFgsFmRlZSErKwsWzlZCRK1Mod49h+8BgJeHHL1DrXkGvz6R7eDaEBE5lm34ntHMz7NE5HoYlGplvjlp/XB+g7f1rfsrWw8hWu+3JqeyiwEAXUN8ql2nXVs1gPr3lNLpdFj9bTJWf5sMna7hwTsGt4jIEaThe0r3C0oJITDgBusXFbuS03ntJSK3Zvtuoqyc10Iicj0MSrUiRWUm/Ho+DwCgDVFBDqDAYEZ6Kx7WdjLLGpTqVkNQ6sa21lxTDWmnd9sAeLcNaFjlKjRVcIuIqD4K3XT2PQDQFxfg/KVMKCCQXmjE/r8uObpKREQOo6h4YiszmR1bESKiZsCgVCuSnFEAk0Ug3FeFAE8F/D2tb9/RzEIH16zhTmVZh+/V1FOqvZ91+N6lfH2L1KkqTRHcIiKqjwI3nX3Ppo1vW4R7W3sC/+9UnoNrQ0TkOLbZp8vKGZQiItfDoFQrckZnnaWuU4A1SBOosb59xzKKmvXvWoSQ8lg1JZPZgjM51qBUt5DKSc5twv2sPaXS8hwXlCIiaklCCLeefc+mo4/13vPT+ULoijkDKxG5J9ttQM/he0TkghiUakXO6KwBnA5+KgBAkJd1Sqbm7CklhMCynzKw82Qpfs0wIF9varJ9n8stRblZwFulkJKZV8UWlCooM6GwoucAEZEr05dbpFmW3HH4no2/GvBTmmGyCGz9I8PR1SEicgippxSH7xGRC2JQqhW5GpSyJv4OqugpdSq7BAZT83xz8v3pHPx8oQgCwLkCE1b83HQPBSkZ1mBatxAfyGTVP3R5qRQI9LYG4i7lt978WUREdWUbuuchl8GNY1IAgJs11mOxMzkDJcam+2KEiKi1YE8pInJlDEq1EiaLwPlc6/A9W1DKSymDt0oOs0U0y9C2snIzXv3utPVv+iogA5B0uVRKTt5YP53JBQDc3tG/1nWdIa8UEVFLyS0xAgD8NMoag/buIFhlRrivCsUGMz47etnR1SEianHMKUVEroxBqVbiUr4eRrOAp1KOUB/rNNkymQw3trH2ILqYV9rkf/PA+TxkFRsR6KVE/3ZqtPe1Dhf86Eh6o/etL7fgt4vWxLV3dg6sdX0prxSDUkTkBnQl1t5B/hqlg2viDATuudl6D/gwMR0mM3sKEJF7UUhBKV7/iMj1MCjVSpytGLp3S5A35Nd8ax7e1hqUutAMPaX2n9YBAAZ1aAOlXIbuAdZg2N6/spBbamzUvv/ILIHRLBDu54mbA7xqXb+9FJRquuF7FosFWVlZyMrKgsXCmzwROY+cimusv6fCwTVxPENpES6kZ0ItF7hSZMAniecgRNNPvkFE5KyUFU9szClFRK6IQalW4nRFUKpToH0Ax9ZTqqmDUiaLwC9nK4bXtW8DAAjUKNAl0BMmi8DeE9mN2v+Bi9YZA+/sFFinoSnhtuF7TdhOnU6H1d8mY/W3ydDpdE22XyKixrIN32NPKSufNm1xSxtrIOqdXy9Bl5Pj4BoREbUcRcVnZeaUIiJXxKBUK3Euxzo875Ygb7vlN1b0lLqY27TD95LTC1BQZkJbTyV6BGuk5X+7pS0A4Is/rzR434UGC/aftyY5H9Y1uE7btPdvnuF73m0D4N02oEn3SUTUWDkMSlVycxsBDzlQVC7Dz+ebb9ZZIiJnw5xSROTKGJRqJWw9oTr4a+yWX80p1bTBmv2nrd9Cx3QKlMaxA8CdHa1D+U5mFeN0dkmD9p2SbYRFADG3BCAizLdO29zkr4EMQG5pOfL1nH2JiFxbTilzSl1PJQc6+Vo/tmxOzobZwiF8ROQe5LD2kCozWWDh8GUicjEMSrUCQlydXe+m64JSYb7WoFRBmQn5FQ8xTfH3bPmk7upkn4S8racSMbdYexZtT8qo974vl5iRVmSGXAZMH3RznbfzVimltp/Ja7q8UkREzojD96rWua0cHnLgYr4B355q3DByIiJnJ4SAEFd7SgGA0cQhfETkWhiUagWyi40oM1mgkAE3tvW0K/NUynFDGzUA4EITzcB3WleCjEID1Eo5BnT0r1T+z343AgA+O3YZl+oxnK603IzDmQYAwKiufuh83VDE2nQP9QEAnMkx1Gs7IqLWRkp0zqCUHQ+5DN0DrV/GvHfwAntLEZFbUFyTflXPIXxE5GIYlGoFbEPzwtp6Qqmo/JbZehA1VbJz29C9/jf5QeNReeanvuF+uK2DP8wWgbd+PFfnh4L1R7JRUi7g7SHD5KiQeterW4g1KHU6lz2liMi12XJKBTAoVUn3QBV8VHKcz9Vj5+9nORMfEbkFVUVkqow9pYjIxTAo1QpcrOgBdZO/V5XlHQKsyy/kNk1Q6scz1qDUXZ2Dql3n3zEdIQPwXaoOz++9gOQsIy4VmVBsqPrbm98v5uPLU/kAgP7t1NB41P/Uk3pKMShFRC6s1GiWZljyY1CqEg+FDKM7WXvavnXgEjKucPZUInJ9nkrrZ2f2lCIiV8OgVCtwsSKH0vX5pGxsyy82wfC907oS/HWlGAoZENOp+lnpet3QBv83ujs0HnKc0JXheE45frpkwN/XpuCnM/ZTdRcbTFi09yQAoLOfEjd4V+59VRe2nlKXi8thNPObcSJyTbkVQ/c8lXJolLxNX08IgTsCjfD2kKHMLMPWo8wtRUSuTQgBz4ovdMvK2VOKiFwLP+22Ald7SlUdlOoQ0HTD9z5JzgQA3Nk5CAFeqhrXHdE9BB9O7IdH+wajk58S3h4yFBrM+H+f/IlNh9Ok9VZ+dxoZhQaEeCsRGVLzPmvi6+kh5dTKLeMNmYhck23oXqC3CjKZrJa13Y++uAAf/ngMvf2tH2G2H9XhxJUiB9eKiKh5qdlTiohcFMcFtAIXq5l5z8a2/FK+HmaLgELesIeYUqMZXxy/AgB4UNuuTtuE+2kwtlcgyvSlMAsBi9obO5Kz8dZP55CqK4GHXIYvjmdBLgOeiwnDHxdzat9pDXq3a4P0gjJcKTE3uMcVEZEzy6mYSdVXJUNeXi6YMqkyT28f+HvJ0L6NEmlFJsz98iQ2PRIFzyryIBIRuQKN0np9Y04pInI17Cnl5EwWgfSCmofv3dDGEyqFDOVmgczChudb2vL7JZQYzWjv54lbb/Kr9/YKmQyzhnbAfwbfDAD46q8s7P7TGuSaMehm9AqpOidWfQy6JRAAcKnI1Oh9ERE5I1tPqfziUmz46TjK9MyjVxWZTIZb26nhp5bjXG4p5nxxgrPxEZFLEkJAraxIdM6eUkTkYhiUcnKX8vUwWQQ8lXKEtFFXuY5CLkO4ny2vVMOG8P2VrcfaXy8AAOLu6Ah5I4aMTLi1PVY/3Af39grFoFsCsPrhPphwa/sG7+9aA28JgFIOFBoFCg38poiIXI+uIijl7amCxsfXwbVxbpayQnTTlEIOgR/P5OCVfanI1uk4Ix8RuRxPW08p5pQiIhfD4XtO7myONZ/UzYFeNQaKOgR44WxOKS7k6XHHzfX7G7llZiz8/hLMArinRwju6RHSmCoDAPqG+6FvuF+j93M9H7USfW7wxpGMEvaWIiKXlFHRO9bHg/mk6iLMvw3u8FHgQHoZPj16GYdPXsB7/4hCcFAgcnNzAQABAQHMz0VErZpnRU8p5pQiIlfDnlJO7lxOCQDglsCah751sM3Al1u/GfgKDRZ8d6EMhQYzeoT64IW/dW5YRVvQ7e2ts/CdLzTx23AicjmX8q09Xn3UvEXX1U1tPTBrUDjkMiDDqMbyny4hS5eDd79LwbvfpUjBKSKi1sqWM09fboYQgp+Bichl8BOvkzsn9ZTyrnE9W76p+szAV2ay4Of0MpRbgG5Bnnj7oT7wUTt/57lBHXyhlAMFBoHDl4odXR0ioiZ1Kd/aU6qNirfouhJCINLfjP9E+0EGgf3nCvHGLxnQ+LSFVxs/R1ePiKhRLBYLVIqrOaVW/3zWwTUiImo6/MTr5GzD92rrKdUxwFp+vh49pTYn61BgEPBUyPDS4PBWEZACgDZqBbr4ewAAth7N4TdFROQyispMyNdbZ9/z8eAtuq70xQXYeOAMjp85B22bMshlwL4z+TiWbXR01YiIGk0I6+d1ANCXWwAORyYiF8JPvE7MZBG4kHs1p1RNbgmylmcXG5FXWvuH8NxSI748mQcA6N9OhQCv1hGQsuke4AGFDDiVU4bvT+c4ujpERE3iUoG1t6u/pxIeCj501IfGpy00Pr5oa8pHd2/rffBothEZxcw/SESt34ls6+iAMhNzShGRa2FQyoml5+thNAuolXKEtfWscV1vlRLt/azrnMouqXXfW36/BINZIMBTjjAfRZPUtyV5KmXoHmDtLfX692eY9JGIXIJt6F47X5WDa9K6dQv2xs0+1hmqDl4qQ3ZJuYNrRETUOEqZbfgeZ98jItfCoJQTk/JJBdQ8855N1xBrAvDUWoJSJUYTdiRlAgB6B3m02hmJegZ5IMRbictFBrx/8IKjq0NE1Gi2JOdhbTwcXJPWr7e/gJ8KMJgFlu5Pg8nMBzkiar1snWfZU4qIXA2DUk7sVEU3XdvQvNp0CbYmQz+VVXPy729P6lBabkZYG49W2UvKRimXYeqtoQCAzb9fwtGMQgfXiIiocWxBKfaUajyFDOgfooSHHDiepUfCT+cdXSUiogYRQkAhvyanFBGRC2FQyomlVARZItr51mn9rsHWnlK2YFZ1Pj92GQAwvLNfq+0lZXNb+zYY1TMEFgHM/d8J5JdyiAYRtV5pFcP3wtqoHVwT1+DtIcNtN1qHtm9JvIQfUnUOrhERUcNIPaWYsoKIXAyDUk7KbBE4llkEAIgIq1tQytZT6nyuHgZT1d+inM8pRXJGIeQy4G+31G2/zu7ZIZ3QzleNS/llePqTY3VK9E5E5GyEELiYx+F7Ta29rwdiewYAAOb97wRSa+lNTETkjK4GpdhTiohcC4NSTupcTilKjGZ4eSjQKci7TtuEtlGjracSZovA2Zyq80rt/tPaS+qOmwMQ6OUaDz2+nh54MzYCbT2V+PNyER5c9zte2ZeK/53Kg05vhskiHF1FIqJaZRYakFNihEIugy9KIXjpahJCCAwNLEGgWqC03IJpHyfhz/OZEDzARNSKMKcUEbkqBqWcVEpGAQCgV7s2UMrrNsROJpOhV7s2AIDfL+ZXKjeZLdjz5xUAwH29b2iaijqJjoFeWPVQH3QN9kaRwYSdyZlIOHQF35wvw/aTpXhh74UG55wqM1mQXmRCRrEJOs7gRETNJCndet3vHOCJDd/8hjJ9mYNr5Br0xQX4YP8x3BbqAV8PgXyDBdM/O4Uz6VmOrhoRUZ3ZHgeYU4qIXA2DUk7Klk+qTx2H7tnc0dE6ROGXc7mVyn45l4fc0nL4azwQc0tA4yvpZLqF+GDTI32x7L6emHhrOPqGecOz4mulY1l6TPkoCXP2/FWpF1m5RSC7pBz668bop+Xp8cq+VIz/OBU/XjJgf5oBj35yBu/8fA7lVcziZLFYkJWVhaysLFgs/MBARPVjC0r1DvWCp3cbB9fGtXh6+0ClkOH2YAu8lECJSYb4r88ju9jg6KoREdWJEtbenTklRo4CICKXonR0BagyixD4raKnU72DUjcHAN+fQVJ6IYoNJvior77Fnx3NBACM6hkKD4VrxiMVchmGdgnC0C5ByMrKwubf01BSboFeqLDvTAG+PpmNr09mI7SNGgpYkF1SjnILsOPkGQBnoFbK4afxgEohkxIOA9ZkuQoZUGgUWHcoDX9dKcarD/SyO446nQ6rv00GAEz9mxYhISF2dbNYLNDpdJDJgICAug3JJCL3kXTJ+mVE71Av/Jrh4Mq4KI0SGHiDEj9dNuN8ngGPfZSExaN71Dl3IxGRo3grBYK8PaArKUdGQZk0BLm1T1pEROSakYlW7khaAbKKjWijVqJfe796bdveX4Ob/DUwWwQOXzOE73R2CX46mwsZgAciXGvoXm28PeR4+o52+GBCX9zZKRBKuQxXigzIKLIGpICr4/QNJguuFBmQll8GuQy4vaM/lg5vj3s7aTC6kxfi7wyDp1KOg+fz8NIXJyp9U+XdNgDebavuhWYLWr27LxnZ2dnN2WQiamXyS8txLrcUANAzxMvBtXFtPh4yDO+owQ3eCmQWGvD41iQs/eYU0vJKodPpkJOTw3xTROR0ZDIZBnVsC8Cae5bXKSJyFewp5YS+OG7N+zS8WzDUyvrHDe+4OQAX89Kx72Q2hnYJAgCs/fUiAOBvXYPRMdA9H3i6hfjg1Qd6obCsHOdySpGTm4cfT2dDo5Rhcv/2aOMfhDy9Efml5Sg2mNEt1Ad+Gg9kZWUh5ZJ1OGRMB1/cGByI//fpMXyXqsPir0/h5bu7Ql7Hb6mqC1g1lK33FQAEBQVBLmecmag1OnjBeo25OcALbT15a25uCmMRbiw6D5mmAzINSuxKuYxdKZcRoAb8VRY8GNkefW+5Ae18PeGlUkAIgdzcXAQEBLBXAhE5hMViwZ03+eCTP3W4kF8GQ7kJnioPXpOIqNVz20++BoMBCxYswNdffw1PT09MmTIFU6ZMcXS1oC8347tT1iDDqJ4htaxdtVE9Q7D1SDq+OZmNcZFh0JvM+PaUtWfOY7fd1GR1ba18PT2gvbEtsjwMSEqzBnFkMhm8VAp4qTS4sa2mxu0HdPTHktE98OLu49jz5xWUmy2Ye3e3Jq1jXYNNtQ0ZJKL6a+n7gxACW49Yx+sNvMkbeXm5nHmvBfh4e+G2GzQosCig0wsczTIg1wDkGuRY/lM68FO6dT21AoEaJYqLixF9czC6tfNHRx9rQvobQoL4QEjkJpzh2eHX8zkI8PJAbmk5JmxJwtp/RsHPS9WidSAiampuG5Ravnw5jh07ho0bNyIjIwMvvPACwsLCcM899zisThaLBf/d9xdKy80Ib+tZ73xSNj1C2+D+iBvw2dHLeGH3cZQazRAA7usdis7BzGXUFO7qEoQFI7tj3lcnsfdENs7mlOLRyAAIIZrkAaU+waam7n1F5O5a+v6QklGI45eL4CGXISf7MjZcLITBUAZerVuGryiBShgQ4GdEmXcIcvUCJpMJF4ssMAkZig1mFBvMADywNzUfe1PzAQByCNzir0KvG9ogqkMQ/JUm3OCtRBu1AnK5nL2qiFyMMzw7WExmPB4dihU/XsLFfAOmbU/Bu+O08NV4tMjfZx4rImoObhmUKi0txfbt2/Hee++hV69e6NWrF1JTU7FlyxaHBqW+O3YBO4/nAJDh0ajARl3wZwy6GQfP5SKr2AgAuK2jP14c1qWJakoAcHePEPh7eeDF3X8hNbsEs78pgY+HDKHeCgSeykO02RPBPmr4e3lICdGFELAAKDdboFDUvH8Gm4haniPuD3v+tA7Zjgn3hJ+PEnoFUKYvq2Urakoan7bwNJfBq40SNyiKkHn+LLSdesJYXoaCEiP0JhPKLB7oHh6ECwXlOJpthMEMnM4rx+m8XHz219UZbxUyAW8l0K+9HyJvCkS3EB+EeBjh5aFgoIqolXKWZweLxYLBHXxwKFyNQ5lGpOpK8fQnR7FsTA8E+9bc05+IyFm5ZVDqxIkTMJlMiIqKkpb169cP7777LiwWS4vn5SnQl+OTlEysPpAGQIaObZW4rX3jpgP303hg66Ro/JFegKIyE/7WNchlZ9xzpP4d/LFzSjRWH7iAPccuo7hcoDjfhIRDV4BDV6T1VAoZTBYBW170j08cQRu1EiFtVAj2USPEx/pvW40HlHIZykqKcTa/HHKZDL9cKERAoQKAgMFkkX7KTBbk5hfiZG45PBUyJGeWoJuHHje0UUNVkYuMOaeI6scR94fObRUIUAuYCy6jTBHU5Pun+vP09gEAeMiBYD9fCHMZ8rKzUJJrQaDZgJHtg1FiMCDPpEKhWQ6zyYSMUkBvEjALGQrLge/PFuD7swUVexTwUgDdQ33QMagNNDIzgvx84K1SwqgvhUJmnT3Wv60vvFQKWAwl8FEp0D40ED5qDyjk9Qtk2XJgyWRAYKBPEx8dIvfjLM8OFosFaw6ch58KuONGNX66VIajmcWY9GES4u7ogL91DUYbT2uvqWsToTMYTkTOzC2DUtnZ2fD394dKdXUMdlBQEAwGA/Lz8xEQ0Dw9VM7llCIpvQDFBhOKDSZcKTbirK4Ep7JLYK6IVoT7KBAd2rix4dcGImJuZiCiufl7qfDisC4Y36MN3vj5AnL0FqhVHkgrNCGv1AizAIzmygliigwmFBlMOKMrrXH/BzMyANQ+P/yBjDQAaQCAQG8V2vmqoZJZkJlbCIUMiAgPhK+PF2QyGeQyQC6TVfwAMgB6fSlkMsDHyxtyubVMVlFm+x0QKC2x1tfHxxtyuRwyWNeRyawfgEpKSiAD0MbHB3K5DJDJ7NaRwbrTa1/bPivZXgshUFJcBJkMCL8xBMXFBsgqVrh2X9bf6qY+n8fqumr99tmwD4QClc+d6/MNyWRAP5kC7jmFQdNyxP1hWGc/ZOQVorTI0uT7pqal8WkLYS6DTCaDtwfg4ymHMJch8/xZ9OnUE6byMpQKNcrlSrRVmPDblXLkGwTKLHKUmoEjGSU4klFSsbe6zMKaCgDw8pDDR6WAXAYIWK8Btp63EIBcDihkMijk1ms6LBYUlpVbr6GB5+GpVEIhzNB4yKGwXdsrrqdyGeDp6Ylyo/U66+vjhTZqpfXHUwlPD4Xd1cv2u7UeAkVFxRAQ8Pbxka5ztnvHtddsCwBhESgqLoIA4O3tA5lMJj04265rFiFQXFwML29vADIICFgsAsUlJfDy8q64JppRUlKGNj4+FW2WQVnxr1wuk4J8V+9dla+bopoX115zhahylev2Vf36oqItAtZ7YsWNssp9tskoRlGR3vre2le12lnWqq0frDspLi5Gu0A/3HZzAJT1DGySPUc9O1RFVvH/wkchMChMhd+yTMguKcfib05j8Ten0dZTCW+VAl4qBQrLTLgl0MuaN9VDAY1KAU+lHJ5KBVRKufT/xPb/Ri6TwSKs/w/NFgGLEDBZBEoMJqTll+FiXinKzQId/DXoGOiFQG8VlHI5lArr/0HFNf/n6tWmarap6bPT1WuRqLRutfuTAW3aFEn/1+zLqt6opuZUX+8GbFTDdg2pQ01b1fQeVVuHGtraVqdHQaG+8sWrAX+ntr/VEhyR1tN2PspkgG+OHoWFlc/RpqSQyaC90ReeHrUM3WkhbhmU0uv1djcVANJro9FY5/3I5ZU/5FTHbBGYsTMFpcbKDx0aDwU6+qkwKMwDutxcyIxG5OfnQaGo+r9efn4ezPpC6ffr18vJycWHvxwHAIwf2BOBgVXfKGvbT13Xu7Y8JycHCkVJlcelOf6eM+zHpqykAO2UpWjXBrg/IgCBgQGwCIFSo0BpuRmFBfn45sQVKOTAP267GQXlHsgtMSFHX47cUjNy9CaUGs0wW4BSgwEZhQYIAfh7eQAKJWQAVAo5VAqZ9Ucph8VowJlcPYwWGTyUSuQZBIxma4+q87n6ipqpAQH8dLEYQHGVdbdXUPsqAIDcWspz6rif2mQ10X5cm0qZit1P3Fqvmwu/OK2sKe4P198bbMe5unuGQiGDuawYwqiHTGmGMBkhNxuB8hIIk1FaVlNZS68PkxHmMjlg1DtFfRqyflO2yctTBZSXQG4ywldphqXciOzz53F7h66wmIwol6tQYjCj0GiB3mT9okIo1TBZALmHChaLBeXlJkChgFkAZpkSZiGDWVz9T1pqquEDhy06de1Habm1t8T5XAMAQy1n7bX3hqJa1nUmdQnsubsrePmeLhjWNbjOW/DeUJkjnh2s68ugVsphVsmBii/trLFNGWQyGdQeAiM6qnGhyIKLRRaUlguYBVBoMKPQYAYAHLtcl89+9ZNTWo4j6YVNvl8iajmDOwdi4aj6TdbVXPcHtwxKqdXqSjcQ22tPT8867ycgoH5D7A7PGV6v9at3CwYOrK08ugn2U5+/1xT7aem/19L1Bsb8rS77ISJHaYr7Q3X3huqWBwa2wbIuHepRSyIiakmOenYIDGyD+R3a1WsbIqLWxi3HdYWGhiIvLw8mk0lalp2dDU9PT/j6NmzGOyIiav14fyAiouvx3kBE1HzcMijVo0cPKJVKJCUlScsSExMRERHB/EtERG6M9wciIroe7w1ERM3HLa+iGo0GDzzwAObPn4+UlBTs27cP69atw8SJEx1dNSIiciDeH4iI6Hq8NxARNR+ZqG5KDxen1+sxf/58fP311/Dx8cFjjz2GyZMnO7paRETkYLw/EBHR9XhvICJqHm4blCIiIiIiIiIiIsdxy+F7RERERERERETkWAxKERERERERERFRi2NQioiIiIiIiIiIWhyDUtRoV65cwcyZM9G/f38MGjQIS5cuhcFgcHS1nF5cXBxefPFFR1fDKRmNRixYsAC33nor7rjjDrz22mtg+ruqZWZmYurUqejbty+GDh2KDRs2OLpKdA2DwYDZs2cjOjoaMTExWLdunaOrVElN1/D/+7//Q7du3ex+Nm/eLG27Z88eDBs2DFqtFtOnT0dubq5UJoTAypUrcdttt6F///5Yvnw5LBZLi7Xrm2++qVT3mTNnAgCOHz+Ohx56CFqtFg8++CCOHTtmt60ztmvXrl2V2tOtWzd0794dAPDkk09WKvv++++l7Tds2IBBgwYhKioKs2fPhl6vl8occZ4ajUaMGTMGhw4dkpalpaVh8uTJiIyMxKhRo/Dzzz/bbXPgwAGMGTMGWq0WEydORFpaml25o9tYVZuSkpLwj3/8A1FRUbj77ruxfft2u23uu+++Su/bqVOnANR+ruXl5eGpp55CVFQUhg4dis8++6zJ20TNqz7nZW3XLbKqzzGt7bpJ9qq6xl2P52nd1eV4us05KogawWKxiHHjxonHH39cnDp1Svz2229i+PDh4pVXXnF01Zzanj17RNeuXcULL7zg6Ko4pZdfflmMGDFCJCcniwMHDogBAwaIjz76yNHVckrjxo0TTz/9tDh37pz45ptvhFarFV9//bWjq0UVFi5cKO69915x7Ngx8fXXX4uoqCjxv//9z9HVktR2DZ88ebJYvXq1yMrKkn5KS0uFEEIkJyeLPn36iE8++UT89ddf4pFHHhFxcXHSvteuXSsGDx4sfvvtN3Hw4EERExMj3n///RZr29tvvy2mTp1qV/eCggJRUlIiBg4cKF555RVx+vRpsWjRInHHHXeIkpISp26XXq+3a0tGRoYYPny4WLx4sRBCiOHDh4vPPvvMbh2DwSCEEOKrr74S/fr1E999951ITk4Wo0aNEgsWLJD23dLnaVlZmZg+fbro2rWr+PXXX4UQ1nPx3nvvFc8++6w4ffq0ePfdd4VWqxXp6elCCCHS09NFZGSkWLt2rTh16pT4z3/+I8aMGSMsFotTtLGqNmVlZYno6Gjx6quvinPnzok9e/aIiIgI8f333wshhDCZTCIiIkIcPnzY7n0rLy8XQtR+rk2dOlVMmjRJnDx5Unz88ceid+/eIjk5ucnaRM2vrudlbdctuqo+/9drum6SvaqucdfjeVp3dTmeQrjPOcqgFDXK6dOnRdeuXUV2dra0bPfu3SImJsaBtXJueXl54s477xQPPvggg1JVyMvLEz179hSHDh2Slq1evVq8+OKLDqyVc8rPzxddu3YVJ0+elJbNmDHD7kGMHKekpERERETYfdhYtWqVeOSRRxxYK3u1XcMHDRokfvrppyq3nTVrlt01LCMjQ3Tr1k1cvHhRCCHE4MGDxc6dO6XyTz/9VAwZMqQ5mlGlZ599Vrz66quVlm/fvl0MHTpUCmZYLBYxfPhwqa7O3i6bd999VwwbNkwYDAZhMBhEjx49xNmzZ6tcd/z48eLNN9+UXv/222+iT58+orS0tMXP09TUVHHfffeJe++91+7D+IEDB0RkZKTdw8ukSZOker/xxht2dSotLRVRUVHS9o5sY3Vt+vDDD8U999xjt+7LL78snnnmGSGEEOfPnxfdu3cXZWVlVe63pnPtwoULomvXriItLU0qnz17Nj9XtCL1OS9ru26RVX2OaW3XTbqqumvc9Xie1k1dj6c7naMcvkeNEhwcjPfffx9BQUF2y4uLix1UI+e3bNky3H///ejcubOjq+KUEhMT4ePjg/79+0vL4uLisHTpUgfWyjl5enpCo9Fg165dKC8vx9mzZ3HkyBH06NHD0VUjACdOnIDJZEJUVJS0rF+/fkhOTm7RYWw1qekaXlxcjCtXrqBjx45VbpucnIzo6Gjpdbt27RAWFobk5GRcuXIFmZmZuPXWW6Xyfv36IT09HVlZWc3SluudOXOmyronJyejX79+kMlkAACZTIa+ffsiKSlJKnfmdgFAfn4+3nvvPTz77LNQqVQ4e/YsZDIZ2rdvX2lds9mMo0eP2rUpMjIS5eXlOHHiRIufp4cPH8aAAQOwbds2u+XJycno2bMnvLy87OpR3fui0WjQq1cvJCUlObyN1bXJNhz2erbPSKdPn0a7du2gVqsrrVPbuZacnIx27dohPDzcrvyPP/5odHuoZdTnvKztukVW9TmmNV03yV5117jr8Tytm7oeT3c6RxmUokbx9fXFoEGDpNcWiwWbN2/Gbbfd5sBaOa+DBw/i999/x7Rp0xxdFaeVlpaGG2+8EZ9++inuuece/O1vf8OqVauc5iHemajVasydOxfbtm2DVqvFyJEjceedd+Khhx5ydNUIQHZ2Nvz9/aFSqaRlQUFBMBgMyM/Pd1zFrlHTNfzMmTOQyWR49913ceedd+K+++7DJ598Iq2blZWFkJAQu/0FBgbi8uXLyM7OBgC7clvg6/Lly83ZJADWXDznzp3Dzz//jLvvvhvDhg3DypUrYTQakZ2dXW29Aedul81HH32EkJAQ3HPPPQCsH1x9fHzw/PPPIyYmBmPHjsX+/fsBAIWFhTAYDHZ1ViqV8PPzk9rUkufp+PHjMXv2bGg0Grvltb0vNZU7uo3VtSk8PByRkZHS65ycHHzxxRe4/fbbAVgDpx4eHpg6dSoGDhyIRx55BCkpKVJ7gerPteqOx5UrVxrdHmoZ9Tkva/v/QVb1OaY1XTfJXnXXuOvxPK2buh5PdzpHGZSiJrVixQocP34c/+///T9HV8XpGAwGzJs3D3PnzoWnp6ejq+O0SktLceHCBWzduhVLly7FCy+8gA8++IAJvKtx5swZDBkyBNu2bcPSpUvx1Vdf4fPPP3d0tQiAXq+3+2AMQHptNBodUaVaXXsNt31Dd8stt2DNmjV46KGH8PLLL+Obb74BAJSVlVXZPqPRiLKyMun1tWVAy7Q9IyNDOv5vvPEGXnjhBezevRvLly+v9n2x1cuZ2wVYA27bt2/HI488Ii07e/YsysrKEBMTg/fffx+DBw/Gk08+iaNHj1ZZZ9tro9HoNOdpbe9LTeWtoY1lZWV46qmnEBQUhIcffhgAcO7cORQUFOChhx7CmjVr0KlTJ0yaNAmZmZm1nmu1HS9yfvU5L/l+1019jmlN101qGJ6nTcudzlGloytArmPFihXYuHEjXn/9dXTt2tXR1XE6CQkJ6N27t12vBKpMqVSiuLgYr776Km688UYA1gfMjz76CFOmTHFw7ZzLwYMHsWPHDuzfvx+enp6IiIjAlStX8M477+C+++5zdPXcnlqtrvRBzPbaGQPT11/Du3TpgiFDhsDPzw8A0L17d5w/fx4fffQRhg8fXm37NBqN3UOAbWiSbd3avhlsCjfeeCMOHTqEtm3bQiaToUePHrBYLJg1axb69+9fZb1t74kztwsAjh49iitXrmD06NHSsmnTpmHChAlo27YtAOt79eeff+Ljjz+WviSqrk1ms9kpzlO1Wl2pJ0Nd3hdfX99K78W15c7QxpKSEkybNg3nz5/Hhx9+KJ0rixYtQllZGXx8fAAA8+fPx5EjR/DZZ5/hjjvukOpZ1blW3fFwxmsLVa0+9wi+33VTn2Na03UzIiKiZSrsYnieNi13OkfZU4qaxKJFi7B+/XqsWLECd999t6Or45S++OIL7Nu3D1FRUYiKisLu3buxe/duu3HvZM1xo1arpYAUANx8883IzMx0YK2c07Fjx9ChQwe7m33Pnj2RkZHhwFqRTWhoKPLy8mAymaRl2dnZ8PT0hK+vrwNrVllV13CZTCYFpGxuueUWaXhQaGgodDqdXblOp0NwcDBCQ0MBXB2CdO3vwcHBzdUMO35+flJeCwDo1KkTDAYDgoODq6y3bciBs7frp59+QnR0tPQhFQDkcrnda+Dqe+Xn5we1Wm3XJpPJhPz8fKlNznCeVnfc6/K+OHMbi4uL8dhjjyE1NRUbN260y3OmVCqlgBQAqWfilStXaj3Xajoe1DrU57ys7f8HWdXnmNZ03aSG4XnatNzpHGVQihotISEBW7duxWuvvWb3zS3Z++CDD7B79258+umn+PTTTzF06FAMHToUn376qaOr5lS0Wi0MBgPOnTsnLTt79qxdkIqsQkJCcOHCBbtvpc6ePWuX+JYcp0ePHlAqlXYJPhMTExEREQG53Hluv9Vdw//73/9i8uTJduueOHECt9xyCwDr/9XExESpLDMzE5mZmdBqtQgNDUVYWJhdeWJiIsLCwlrkw+lPP/2EAQMGQK/XS8v++usv+Pn5ScmghRAArMPhjhw5Aq1W6/TtAoCUlBT07dvXbtmLL76I+Ph4u2W290oulyMiIsKuzklJSVAqlejevbvTnKdarRZ//vmnNGzNVo/q3he9Xo/jx49Dq9U6bRstFgtmzJiBS5cu4YMPPkCXLl3syidMmICEhAS79U+ePIlbbrml1nMtMjIS6enpdrlaEhMT7XJYkXOrz3mp1WprvG6RVX2OaU3XTWoYnqdNy63OUcdN/Eeu4PTp06JHjx7i9ddfF1lZWXY/VLMXXniBUzdXIy4uTjz88MPir7/+Ej/++KO47bbbxMaNGx1dLadTWFgoBg4cKGbNmiXOnj0rvv32W9G/f3/x0UcfObpqVOHll18Wo0ePFsnJyeKbb74Rffv2FXv37nV0tSQ1XcOTk5NFz549xfvvvy8uXLggtmzZInr37i2OHDkihBDiyJEjolevXuLjjz8Wf/31l3jkkUfE1KlTpX2vXr1axMTEiF9//VX8+uuvIiYmRqxbt65F2lVUVCQGDRoknnnmGXHmzBnxww8/iJiYGLFmzRpRVFQkbrvtNrFo0SKRmpoqFi1aJAYOHChKSkqcvl1CCDFkyBCxZ88eu2V79+4VvXr1Ep988ok4f/68eOutt0SfPn1EWlqaEEKIPXv2iL59+4pvvvlGJCcni9GjR4tFixZJ2zvqPL12KmyTySRGjRolnn76aXHq1CmxevVqERkZKdLT04UQQqSlpYmIiAixevVqcerUKfGf//xH3HvvvdLU487SxmvbtG3bNtG9e3fx/fff2/3fysvLE0IIsW7dOtGvXz+xb98+cebMGTFv3jxxxx13iKKiIiFE7efalClTxCOPPCL++usv8fHHH4uIiAiRnJzc5G2i5lPTeZmVlSX0er0QQtR63aKr6npMa7tuUtWuvcYJwfO0sWo6nu50jjIoRY2yevVq0bVr1yp/qGYMSlWvsLBQzJo1S0RGRorbb79dvPXWW9KDB9lLTU0VkydPFn379hXDhg0T69ev57FyIqWlpeL5558XkZGRIiYmRqxfv97RVbJT2zX8m2++Effee6+IiIgQ99xzT6WH+J07d4rBgweLyMhIMX36dJGbmyuVmUwmsWTJEhEdHS0GDBggVqxY0aLn5qlTp8TkyZNFZGSkGDhwoN11JDk5WTzwwAMiIiJCjB07Vvz555+tpl0RERHixx9/rLT8448/FiNGjBC9e/cWf//738Xhw4ftylevXi1uv/120a9fPxEfHy/KysqkMkedp9d/GD9//rz417/+JXr37i1Gjx4tfvnlF7v1f/jhBzFixAjRp08fMWnSJHHx4kW7cmdo47VtmjJlSpX/tx555BEhhBAWi0W888474q677hK9e/cW//rXv8TJkyelfdV2rul0OjF16lQREREhhg4dKnbv3t0sbaLmU9N52bVrV7Fz507pdW3XLbKqzzGt7bpJlV1/3eZ52ji1HU93OUdlQlT0ryMiIiIiIiIiImohzpPUgoiIiIiIiIiI3AaDUkRERERERERE1OIYlCIiIiIiIiIiohbHoBQREREREREREbU4BqWIiIiIiIiIiKjFMShFREREREREREQtjkEpIiIiIiIiIiJqcQxKERERERERERG5GKPRiDFjxuDQoUN13ubw4cO4//77odVqMW7cOJw4caIZa8igFBERERERERGRSzEYDHjmmWeQmppa523S0tLwxBNPYPjw4fjss8/QrVs3TJs2DUajsdnqyaAUEREREREREZGLOH36NMaNG4eLFy/Wa7vNmzejT58+mDFjBjp27IjZs2dDLpfj7NmzzVRTBqWIiIiIiIiIiFzG4cOHMWDAAGzbtq1S2e+//47Y2Fj06dMH9957L/bu3Wu33YgRI6TXGo0G+/btQ/fu3Zutrspm2zMREREREREREbWo8ePHV7k8OzsbU6dOxf/7f/8PgwYNQlJSEl588UUEBgYiOjoaaWlp8PT0xMyZM/H777+jc+fOmDt3Ljp37txsdWVPKSIiIiIiIiIiF7dlyxbccccdeOSRR9ChQwfcf//9ePjhh7Fx40YAQGlpKVauXIlbb70V7733Htq1a4fJkyejpKSk2erEnlJERERERERERC7u7Nmz+P777xEVFSUtKy8vx8033wwAUCgUGDp0KCZMmAAAWLRoEe666y589913uPfee5ulTgxKERERERERERG5OJPJhHvvvRf//ve/7ZYrldbQUHBwsBSgAgCVSoUbb7wRmZmZzVYnDt8jIiIiIiIiInJxN998My5cuIAOHTpIP99++y12794NAIiMjMTJkyel9Y1GI9LS0hAeHt5sdWJQioiIiIiIiIjIxY0fPx7Hjh3D66+/jvPnz2P37t147bXXEBYWBgCYNGkS9u7diw8//BDnz5/HwoULoVarcddddzVbnWRCCNFseyciIiIiIiIiIofo1q0bNm3ahAEDBgAADhw4gJUrV+LUqVMIDQ3Fo48+ikceeURaf9++fVi5ciXS09PRu3dvLFy4EF26dGm2+jEoRURERERERERELY7D94iIiIiIiIiIqMUxKEVERERERERERC2OQSkiIiIiIiIiImpxDEoREREREREREVGLY1CKiIiIiIiIiIhaHINSRERERERERETU4hiUIiIiIiIiIiKiFsegFBERERERERERtTgGpYiIiIiIiIiIqMUxKEVERERERERERC2OQSkiIiIiIiIiImpxDEoREREREREREVGLY1CKiIiIiIiIiIhaHINSRERERERERETU4hiUIiIiIiIiIiKiFsegFBERERERERERtTgGpYiIiIhamBDC0VVoNFdoAxGRu+A1m5wVg1JETejy5cv417/+hYiICNx+++3o1q0bLl265OhqERGRE0lNTcU///nPJtvfr7/+irvvvhu9e/fG448/3mT7rU5hYSGef/55/P77783+t4iIqHYvvvgihg4dKr2eMGECJkyYIL3evn07li1bJr3etWsXn1PIaSgdXQEiV7Jx40YkJSVhxYoVuHDhAt544w1HV4mIiJzMV199hT/++KPJ9rd8+XJYLBasWbMGgYGBTbbf6vz111/47LPP8OCDDzb73yIiovqbN2+e3et33nkH/fv3l17fdddd2LZtG0JCQlq6akSVMChF1ITy8/MREhKCUaNGYdeuXY6uDhERuYH8/HzceuutuOOOOxxdFSIicgKdO3eusTwgIAABAQEtVBuimnH4HlETGTp0KHbt2oWMjAx069YNCQkJldb55ZdfMH78ePTr1w8DBgzAs88+i8zMTLt1zp8/j5kzZ2LgwIGIjIzEhAkTkJiYKJVfunQJ3bp1w/r163HPPfdAq9Vi586dKCsrw/z583HnnXeid+/euOeee7B27dpmbzcRkSv7+9//jieffNJu2bBhw3DXXXfZLZs2bRoee+wxlJWV4dVXX8WIESPQu3dv9O3bF48++ij++usvAMBbb70l3R+6deuGt956CwCknk7Dhw9H7969cffdd+ODDz6w+xsTJkzAc889h5kzZyIyMhKPPvoounXrhvT0dHz66afo1q0bDh06hLfeegvDhw9HQkIC+vfvj5iYGBQUFMBsNmPLli2499570adPH9x1111YuXIlDAaD9DdefPFFTJ48GTt37pSGBN5///348ccfAQCHDh3CxIkTAQATJ060Gx5CROTOhBDYsGEDRo4ciT59+mD48OFYu3atlMuptueAXbt2oWfPnkhOTsbDDz+MiIgIDBkypNLn+YKCAsTHx6N///649dZbsWLFClgsFrt1rh2+N3ToUKSnp+OTTz6RhuxVNXyvqepHVF8MShE1kYSEBAwePBjBwcHYtm0bxo4da1f+6aefYsqUKWjXrh1ee+01xMfH448//sDDDz+MnJwcAMDp06cRGxuLS5cu4aWXXsLKlSshk8kwadIkHD582G5/b731Fp544gksX74cAwcOxJIlS/Djjz/ihRdewNq1a/G3v/0Ny5cvx86dO1vsGBARuZrBgwfj8OHDMJvNAKxfDKSlpSEzMxNpaWkAgPLychw8eBB33XUXnn/+eezcuRNxcXFYt24d4uPjkZqaimeffRZCCDz00EPS/WHbtm146KGHAADz58/Hm2++ifvuuw/vvvsu7rnnHixZsgSrVq2yq8///vc/eHt745133sGUKVOwbds2BAcHY/Dgwdi2bRt69eoFAMjIyMD+/fvx+uuvIz4+Hm3btsXcuXOxdOlSDBs2DO+88w7+9a9/YfPmzZg2bZpdAtxjx45h7dq1mDlzJlatWgWFQoGnnnoKBQUF6NWrF+bOnQsAmDt3bqUhIkRE7mr58uVYvnw5hg4dinfffRdjx47FypUrsWbNmjo9BwDWLyiefvppjBo1CmvWrEHfvn2xfPly/PTTT1L5448/jv379+OFF17AK6+8giNHjuDLL7+stl4JCQl294mqhuw1Vf2IGoLD94iaSM+ePREQEACVSoXIyEicPXtWKrNYLFi5ciViYmLw6quvSsv79u2LUaNGYe3atXj++eeRkJAAlUqFTZs2wcfHB4B1zPeYMWOwfPly7NixQ9p25MiRdvk8Dh8+jIEDB2L06NEAgAEDBsDLy6tF8osQEbmqu+66C++88w5SUlIQFRWFgwcPomPHjtDpdPjtt9/Qvn17JCYmorS0FDExMfjhhx/w0ksvYdSoUQCA/v37o7i4GK+88gp0Oh1uuOEG3HDDDQCAyMhIAMC5c+fw8ccf45lnnkFcXBwAICYmBjKZDKtXr8b48ePh7+8PAPDw8MCCBQugUqmkOqpUKgQEBEj7AwCTyYQXXngB0dHRAKxfeuzYsQPPPvus9DcGDhyIkJAQPP/88/jxxx8xePBgAEBRURF27dqFm266CQDg5eWFRx55REqobhsW0rlz51qHiBARuYPCwkJs2rQJjzzyCGbNmgUAuOOOO5CdnY3ffvsNJ06cqPU5ALD2tpo2bZr0hUW/fv3wzTff4IcffsCgQYPw448/IiUlBe+99x7uvPNOAMDtt99ul+T8ej179qzyPmFT1+eUutSPqCHYU4qoBZw7dw7Z2dkYM2aM3fKbbroJUVFRUi+ow4cPY8iQIVJACgCUSiVGjx6NY8eOoaSkRFreo0cPu30NGDAAH3/8MZ544gls3rwZaWlpmD59eqUhJkREVHd9+vSBv78/Dhw4AMA6092AAQOg1Wrx22+/AQB+/PFHdOnSBTfffDPWrl2LUaNG4cqVK/j111+xdetWfP/99wAAo9FY5d/49ddfIYTA0KFDYTKZpJ+hQ4fCYDDYDeG+5ZZb7AJSNbn2PmG7z9i+uLAZPXo0FAoFDh06JC0LCAiQAlIApCCaXq+v098lInI3SUlJMJlMGDFihN3yl156CfHx8XV6DrCJioqSfrcFk0pLSwEAv//+Ozw8POwCQF5eXtKXCg1R1+eUutSPqCEYlCJqAfn5+QCAoKCgSmVBQUEoKioCYB0jXt06QggUFxdLy7y8vOzWmTNnDp5++mlcunQJixYtwrBhw/CPf/wDJ06caMKWEBG5F7lcjjvvvBMHDx4EcDUo1b9/f+mD+k8//YQhQ4ZIv48cORJ33nknpk2bhs8//1wKIl07RO5atnvE6NGj0atXL+nH9k30lStXpHW9vb3rXPdr1y0oKAAABAcH262jVCrh7+8v3YcAQKPR2K0jk8kAoFLOEiIisrJdx6tKHl7X5wAbT09Pu9dyuVy6fxQUFMDPz0+6Lttcf22vj6asH1FDcPgeUQvw8/MDAOh0ukpl2dnZ0rCMtm3bVrsOAPj7+yMrK6vKv6FSqfDkk0/iySefREZGBr7//nu8/fbbePbZZ/HFF180UUuIiNyPLVdUSkoKdDod+vfvj7CwMLz++uv4448/cOrUKcyfPx8XL17E9OnTMWzYMKxevRrt27eHTCbDli1basy34evrCwDYuHFjlUGnsLCwRrehbdu2AKz3kxtvvFFaXl5ejry8POk+RERE9We7jufm5uKWW26RlmdkZODkyZMAan8OqAt/f3/k5eXBbDZDoVBIy22BpYao63MKUXNhTymiFnDzzTcjODgYe/bssVuelpaGpKQk9O3bFwBw66234vvvv7frEWU2m/HFF18gIiKi2iEbZWVluPvuu7Fu3ToA1geYf/3rXxg9ejQyMjKaqVVERO4hJiYGQgisXr1aup5HRETAy8sLK1asgL+/P6KionDs2DEYDAbExcXhpptukr7JtgWkbN8ky+X2H79seZ/y8vIQEREh/eTm5uK///1vox42bPr37w8Alb6k+OKLL2A2m9GvX7867+vaByEiIrIO9fbw8JCGa9usW7cOb775Zp2eA+ri9ttvh8lkwr59+6RlRqMRv/zyS43bXX/fuVZdn1OImgt7ShG1ALlcjmeeeQbx8fF49tlncd999yEvLw8JCQlo27YtHn30UQDAjBkz8OOPP2LixImIi4uDh4eHlB/q/fffr3b/np6e6NWrFxISEuDh4YFu3brh3Llz+OSTT3D33Xe3VDOJiFySr68voqKisG/fPjz88MMArMPeoqOj8eOPP+L++++HXC5Hr169oFQqsWLFCkyZMgVGoxG7du3CDz/8AABSzg3bN+p79uyBVqtFt27dcN999+Hll19Geno6evfujXPnzuH1119HeHg4Onbs2Og2dO7cGX//+9/x5ptvQq/X49Zbb8Vff/2FhIQEDBgwoF4Jatu0aQMA+OGHH9C2bVt079690fUjImrNAgICMHHiRGzYsAEqlQr9+/dHcnIyPvroIzz//PNo06ZNrc8BdXH77bcjJiYGL730EnJycnDjjTdi06ZNyM3NrXFyI19fXxw/fhyHDx9Gnz597Mrq+pxC1FwYlCJqIbGxsfD29sbq1asxffp0+Pj4YNCgQXjmmWekceBdunTBhx9+KE3FKpPJ0KdPH2zatEn6Jr06CxcuxBtvvIF169YhOzsbgYGBGDt2LP7zn/+0RPOIiFza4MGD8dtvv2HAgAHSsgEDBuDHH3+UJpTo0KEDXn31VSQkJODJJ59E27ZtERkZiQ8++AATJkzA77//jm7dumHEiBH47LPP8OKLL2Ls2LGYP38+li5ditWrV2Pr1q24fPkyAgMDMWrUKDz99NNN1jNp8eLF6NChA3bu3In33nsPISEhmDhxIqZNm1bjt+jX69KlC8aMGSMNS7z+23UiInc0a9YsBAYGYuvWrXj//fcRHh6Ol19+Gf/4xz8AoNbngLpKSEjAypUr8eabb8JgMGDUqFEYN24cvv3222q3mTJlCpYsWYLHHnsM69evr1Rel+cUouYiE8xKRkRERERERERELYw5pYiIiIiIiIiIqMUxKEVERERERERERC2OQSkiIiIiIiIiImpxDEoREREREREREVGLY1CKiIiIiIiIiIhaHINSRERERERERETU4hiUIiIiIiIiIiKiFsegFBERERERERERtTiloyvQmuXkFEGIuq8vkwGBgW3qvV1rwfa1Xq7cNoDtq207alq8N9hj+1o3tq/14r3B+fD+0Hg8JlXjcakaj0vVnO3+wKBUIwiBBp3cDd2utWD7Wi9XbhvA9lHL4L2hamxf68b2tV6u3LbWhveHpsNjUjUel6rxuFTNWY4Lh+8REREREREREVGLY1CKiIiIiIhaDaPRiDFjxuDQoUOVyoqKijBo0CDs2rXLbvmePXswbNgwaLVaTJ8+Hbm5uVKZEAIrV67Ebbfdhv79+2P58uWwWCxSeV5eHp566ilERUVh6NCh+Oyzz5qvcUREboZBKSIiIiIiahUMBgOeeeYZpKamVlm+YsUKZGVl2S1LSUnBnDlzMGPGDGzbtg2FhYWIj4+XytevX489e/YgISEBb775Jnbv3o3169dL5fHx8SgqKsK2bdvw5JNP4qWXXkJKSkrzNJCIyM0wpxQRERERETm906dP49lnn4WoJgnK77//jl9//RXBwcF2yzdv3oyRI0figQceAAAsX74cQ4YMQVpaGtq3b49NmzZh5syZiI6OBgA899xz+O9//4vHHnsMFy9exPfff49vv/0W4eHh6Nq1K5KSkvDhhx+iT58+zdpeIiJ3wJ5SRERERETk9A4fPowBAwZg27ZtlcqMRiNefvllzJ07FyqVyq4sOTlZCjgBQLt27RAWFobk5GRcuXIFmZmZuPXWW6Xyfv36IT09HVlZWUhOTka7du0QHh5uV/7HH380QwuJiNwPe0oREREREZHTGz9+fLVl7777Lnr27ImYmJhKZVlZWQgJCbFbFhgYiMuXLyM7OxsA7MqDgoIAQCqvatsrV67Uu/4yWcPWr+92rozHpGo8LlXjcalaQ49Lcx1HBqWIiIiIiKjVOn36NLZu3YrPP/+8yvKysrJKvadUKhWMRiPKysqk19eWAdbeV3q9vtpt6yswsE29t2nMdq6Mx6RqPC5V43GpmrMcFwaliIiIiIioVRJC4KWXXsLMmTOlHk7XU6vVlYJIRqMRGo3GLgClVqul3wFAo9FUu62np2e965qTU4Rq0mFVSSazPjTWdztXxmNSNR6XqvG4VK2hx8W2XVNjUIqIiIiIiFqljIwM/PHHHzh58iSWLVsGANDr9Zg3bx6+/PJLvP/++wgNDYVOp7PbTqfTITg4GKGhoQCA7OxsKW+UbUifrby6betLCDTowbih27kyHpOq8bhUjcelas5yXBiUIiIiIiKiVik0NBRff/213bIJEyZgwoQJuO+++wAAWq0WiYmJiI2NBQBkZmYiMzMTWq0WoaGhCAsLQ2JiohSUSkxMRFhYGEJCQhAZGYn09HRcvnwZN9xwg1QeGRnZco0kInJhDEoREREREVGrpFQq0aFDh0rLAgMDpV5Q//znPzFhwgRERkYiIiICixcvxl133YX27dtL5StXrpSCTq+++iqmTJkCAGjfvj1iYmIwa9YszJkzB0ePHsWePXuwefPmFmwlEZHrYlCKiIjIgY6k5eP7H89j6oBweKt4WyYiampRUVFYuHAh3nzzTRQUFGDgwIFYtGiRVP7YY48hJycHM2bMgEKhwNixYzF58mSpfPny5ZgzZw7GjRuH4OBgLFmyBH369HFAS4iqZjAYcPDgMeTnl9gNx+rTJ1LKlUbkrPjpt4U9MHYc0i/rqi0P8vfHpnUbWq5CRETkUJt/T8ePZ3LQK9gLd3cPqX0DIiLCyZMnqy377rvvKi2LjY2Vhu9dT6FQID4+HvHx8VWWBwYG4t13321YRYlaQEpKEtbvPQj/djdLy65cSEUcgFtvHeC4ihHVAYNSLSxLl4cHZv232vJPV/ynBWtDRESOppTLAADFBpODa0JEREStVbubuyKkY09HV4Oo3uSOrgAREZE781IpAAAlRrODa0JERERE1LIYlCIiInIgjYc1KKVnUIqIiIiI3AyDUkRERA7kXdFTqrScQSkiIiIici8MShERETmQpiIopWdQioiIiIjcDINSREREDuRVMXyvlMP3iIiIiMjNMChFRETkQBqV9VbMoBQRERERuRunCEoZjUaMGTMGhw4dkpalpaVh8uTJiIyMxKhRo/Dzzz/bbXPgwAGMGTMGWq0WEydORFpaml35hg0bMGjQIERFRWH27NnQ6/VSmcFgwOzZsxEdHY2YmBisW7eueRtIRERUDamnFIfvEREREZGbcXhQymAw4JlnnkFqaqq0TAiB6dOnIygoCDt37sT999+PGTNmICMjAwCQkZGB6dOnIzY2Fjt27EBAQACmTZsGIQQAYO/evUhISMDChQuxceNGJCcnY8WKFdL+ly9fjmPHjmHjxo2YN28eEhIS8NVXX7Vsw4mIiHA1KMXZ94iIiIjI3Tg0KHX69GmMGzcOFy9etFv+66+/Ii0tDQsXLkSnTp0wdepUREZGYufOnQCA7du3o3fv3pgyZQq6dOmCpUuXIj09HYcPHwYAbNq0CZMmTcKQIUPQp08fLFiwADt37oRer0dpaSm2b9+OOXPmoFevXhg+fDgef/xxbNmypcXbT0RE5MXZ94iIiIjITTk0KHX48GEMGDAA27Zts1uenJyMnj17wsvLS1rWr18/JCUlSeXR0dFSmUajQa9evZCUlASz2YyjR4/alUdGRqK8vBwnTpzAiRMnYDKZEBUVZbfv5ORkWCyWZmopERFR1bw4+x4RERERuSmlI//4+PHjq1yenZ2NkJAQu2WBgYG4fPlyreWFhYUwGAx25UqlEn5+frh8+TLkcjn8/f2hUqmk8qCgIBgMBuTn5yMgIKCpmkdERFQrTcXwvRIO3yMiIiIiN+PQoFR19Hq9XdAIAFQqFYxGY63lZWVl0uuqyoUQVZYBkPZfVzJZvVaX1pfJgIr0V02yX2dxbftckSu3z5XbBrB9tW1HjiX1lDKaIYSAjG8MEREREbkJpwxKqdVq5Ofn2y0zGo3w9PSUyq8PIBmNRvj6+kKtVkuvry/XaDQwm81VlgGQ9l9XgYFt6rW+jUajrrbMQ6lAUFDD9ussGnpcWgtXbp8rtw1g+8g52XpKmQVgNAuolQxKEREREZF7cMqgVGhoKE6fPm23TKfTSUPyQkNDodPpKpX36NEDfn5+UKvV0Ol06NSpEwDAZDIhPz8fwcHBEEIgLy8PJpMJSqW1+dnZ2fD09ISvr2+96pmTU1Rjj6fr2b781usN1W5XbjJDpyuqVz2chUxmfSiu73FpLVy5fa7cNoDtq207cixbUAqw9pZSKx0+MS4RERERUYtwyk++Wq0Wf/75pzQUDwASExOh1Wql8sTERKlMr9fj+PHj0Gq1kMvliIiIsCtPSkqCUqlE9+7d0aNHDyiVSilpum3fERERkMvrdziEqP+Pbbum3q+z/LT2+rtz+1y5bWxfzduRYynkMikwxRn4iIiIiMidOGVQqn///mjXrh3i4+ORmpqKNWvWICUlBWPHjgUAPPjggzhy5AjWrFmD1NRUxMfHIzw8HAMGDABgTaC+du1a7Nu3DykpKZg/fz7GjRsHjUYDjUaDBx54APPnz0dKSgr27duHdevWYeLEiY5sMhERuTFvdUVQisnOiYiIiMiNOOXwPYVCgbfffhtz5sxBbGwsOnTogFWrViEsLAwAEB4ejrfeegtLlizBqlWrEBUVhVWrVknJYUePHo309HTMnTsXRqMRI0aMwKxZs6T9x8fHY/78+Zg0aRJ8fHzw1FNPYcSIEQ5pKxERkZdKCcDInlJERERE5FacJih18uRJu9cdOnTA5s2bq11/8ODBGDx4cLXlcXFxiIuLq7JMo9Fg2bJlWLZsWcMqS0RE1ISunYGPiIiIiMhdOOXwPSIiInfirbZ+R8SeUkRERETkThiUIiIicjCppxSDUkRERETkRhiUIiIicjAfW08pDt8jIiIiIjfCoBQREZGDWROdMyhFRERERO6FQSkiIiIH81Zbh+8xpxQRERERuRMGpYiIiBzM1lOKOaWIiIiIyJ0wKEVERORg3hWJzjl8j4iIiIjcCYNSREREDualZk8pIiIiInI/DEoRERE5mE9FTqkS9pQiIiIiIjfCoBQREZGDMacUEREREbkjBqWIiIgcTKW03o6NJuHgmhARERERtRwGpYiIiBzMQyEDAJgsFgfXhIiIiIio5TAoRURE5GBKufV2bLKwpxQRERERuQ8GpYiIiBxMKfWUYlCKiKg2RqMRY8aMwaFDh6RlSUlJ+Mc//oGoqCjcfffd2L59u902Bw4cwJgxY6DVajFx4kSkpaXZlW/YsAGDBg1CVFQUZs+eDb1eL5UZDAbMnj0b0dHRiImJwbp165q3gUREboRBKSIiIgfzUFhvx2YGpYiIamQwGPDMM88gNTVVWpadnY0nnngC/fv3xyeffIKZM2di0aJF+OGHHwAAGRkZmD59OmJjY7Fjxw4EBARg2rRpEMJ6zd27dy8SEhKwcOFCbNy4EcnJyVixYoW0/+XLl+PYsWPYuHEj5s2bh4SEBHz11Vct2m4iIlfFoBQREZGDKeUVPaXMzClFRFSd06dPY9y4cbh48aLd8n379iEoKAjPPPMMOnbsiNGjR+OBBx7A7t27AQDbt29H7969MWXKFHTp0gVLly5Feno6Dh8+DADYtGkTJk2ahCFDhqBPnz5YsGABdu7cCb1ej9LSUmzfvh1z5sxBr169MHz4cDz++OPYsmVLi7efiMgVMShFRETkYLaeUhy+R0RUvcOHD2PAgAHYtm2b3fJBgwZh6dKlldYvLi4GACQnJyM6OlpartFo0KtXLyQlJcFsNuPo0aN25ZGRkSgvL8eJEydw4sQJmEwmREVFSeX9+vVDcnIyLJycgoio0ZSOrgAREZG7Y04pIqLajR8/vsrl4eHhCA8Pl17n5OTgiy++wFNPPQXAOrwvJCTEbpvAwEBcvnwZhYWFMBgMduVKpRJ+fn64fPky5HI5/P39oVKppPKgoCAYDAbk5+cjICCgKZtIROR2GJQiIiJyMM6+R0TUNMrKyvDUU08hKCgIDz/8MABAr9fbBZUAQKVSwWg0oqysTHpdVbkQosoywJpwvT5ksnqtLq1f3+1cGY9J1a49LkLYL3fnY8XzpWoNPS7NdRwZlCIiInIwD1tPKTODUkREDVVSUoJp06bh/Pnz+PDDD6HRaAAAarW6UgDJaDTC19cXarVaen19uUajgdlsrrIMADw9PetVv8DANvVav7HbuTIeE3tt23oDyIFGo5aWeXp6wM/PG0FBPFY8X6rmLMeFQSkiInJacXFxCAgIwCuvvAIAOH78OObNm4dTp06hc+fOWLBgAXr37i2tv2fPHrzxxhvIzs5GTEwMFi1aJA2tEELg1VdfxY4dO2CxWDB27Fg899xzkFf0UsrLy8PcuXPx888/w9/fH//5z39w//33t0g7lVJOKeYnISJqiOLiYjz++OO4ePEiNm7ciI4dO0ploaGh0Ol0duvrdDr06NEDfn5+UKvV0Ol06NSpEwDAZDIhPz8fwcHBEEIgLy8PJpMJSqX10Sk7Oxuenp7w9fWtVx1zcorserHURiazPjTWdztXxmNStYKCEgCAXm+QjktZWTny80ug0xU5sGaOxfOlag09LrbtmhoTnRMRkVP64osvsH//ful1aWkp4uLiEB0djV27diEqKgpTp05FaWkpACAlJQVz5szBjBkzsG3bNhQWFiI+Pl7afv369dizZw8SEhLw5ptvYvfu3Vi/fr1UHh8fj6KiImzbtg1PPvkkXnrpJaSkpLRIWz3kzClFRNRQFosFM2bMwKVLl/DBBx+gS5cuduVarRaJiYnSa71ej+PHj0Or1UIulyMiIsKuPCkpCUqlEt27d0ePHj2gVCqRlJQklScmJiIiIkL6UqOuhKj/T0O3c+UfHpOaj0tjzzlX++FxaNrj0hwYlCIiIqeTn5+P5cuXIyIiQlr25ZdfQq1W4/nnn0enTp0wZ84ceHt746uvvgIAbN68GSNHjsQDDzyA7t27Y/ny5di/fz/S0tIAWKf8njlzJqKjo3Hbbbfhueeek6b0vnjxIr7//nv83//9H7p27YqHHnoI9913Hz788MMWaa+tp5RFAJbmuuMTEbmoHTt24NChQ/i///s/+Pr6Ijs7G9nZ2cjPzwcAPPjggzhy5AjWrFmD1NRUxMfHIzw8HAMGDABgTaC+du1a7Nu3DykpKZg/fz7GjRsHjUYDjUaDBx54APPnz0dKSgr27duHdevWYeLEiQ5sMRGR6+DwPSIicjrLli3D/fffj6ysLGlZcnIy+vXrB1lFlkWZTIa+ffsiKSkJsbGxSE5OxhNPPCGt365dO4SFhSE5ORkqlQqZmZm49dZbpfJ+/fohPT0dWVlZSE5ORrt27exmb+rXrx9Wr17dAq29OvseYM0rpVIyIycRUV3t3bsXFosFU6dOtVvev39/fPDBBwgPD8dbb72FJUuWYNWqVYiKisKqVauk+8no0aORnp6OuXPnwmg0YsSIEZg1a5a0n/j4eMyfPx+TJk2Cj48PnnrqKYwYMaJF20hE5KoYlCIiIqdy8OBB/P7779i9ezfmz58vLc/Ozkbnzp3t1g0MDERqaioAICsrq9opv7OzswHArjwoKAgApPKqtr1y5UqTtasmSvk1QSmLgKqGdYmICDh58qT0+9q1a2tdf/DgwRg8eHC15XFxcYiLi6uyTKPRYNmyZVi2bFn9K0pERDViUIqIiJyGwWDAvHnzMHfu3EqzGtU0pTdgnQa8PlN+Xzuld237ro+GTK+rvCYviVlYIJMp6v13nZWrT8fM9rVurtw+Z5vym4iIqCoMShERkdNISEhA7969MWjQoEpl1U3pbQteVVeu0WjsAlDXT/+t0Whq3Xd9NGRWEnFNHilfP28E+ahrWLt1cpZph5sL29e6uXL7XLltRETU+jEoRURETuOLL76ATqdDVFQUgKuBo71792LMmDFVTultG3ZX3ZTfwcHBCA0NBWAdAmjLG2Ub0mcrr27b+mro9LoKGWAWQFZ2EVBW/x5azsrVp2Nm+1o3V26fs035TUREVBUGpYiIyGl88MEHMJlM0uuVK1cCAJ577jn89ttveO+99yCEgEwmgxACR44cwb///W8AV6f8jo2NBQBkZmYiMzMTWq0WoaGhCAsLQ2JiohSUSkxMRFhYGEJCQhAZGYn09HRcvnwZN9xwg1QeGRlZ7zY0dMpcpUIOs8mCcrNwuYdjoHmnEnYGbF/r5srtc+W2ERFR68egFBEROY0bb7zR7rW3tzcAoEOHDggMDMSrr76KxYsX4x//+Ae2bt0KvV6PkSNHAgD++c9/YsKECYiMjERERAQWL16Mu+66C+3bt5fKV65cKQWdXn31VUyZMgUA0L59e8TExGDWrFmYM2cOjh49ij179mDz5s0t1XQo5TIYAJgtfHokIiIiIvfAoBQREbUKPj4+WL16NebNm4ePP/4Y3bp1w5o1a+Dl5QUAiIqKwsKFC/Hmm2+ioKAAAwcOxKJFi6TtH3vsMeTk5GDGjBlQKBQYO3YsJk+eLJUvX74cc+bMwbhx4xAcHIwlS5agT58+LdY+2wx8JgaliIiIiMhNMChFRERO65VXXrF73adPH3zyySfVrh8bGysN37ueQqFAfHw84uPjqywPDAzEu+++2/DKNtLVoJTFYXUgIiIiImpJ8tpXISIiouamVLCnFBERERG5FwaliIiInIBSbr0lm8wMShERERGRe2BQioiIyAkomFOKiIiIiNwMg1JEREROgDmliIiIiMjdMChFRETkBJhTioiIiIjcDYNSREREToA5pYiIiIjI3TAoRURE5ASUzClFRERERG6GQSkiIiInwKAUEREREbkbBqWIiIicwNWcUkx0TkRERETugUEpIiIiJyD1lGJOKSIiIiJyEwxKEREROQEp0TmH7xERERGRm2BQioiIyAkwpxQRERERuRsGpYiIiJzA1ZxSDEoRERERkXtgUIqIiMgJKKScUkx0TkRERETugUEpIiIiJ8Dhe0RERETkbpw6KJWZmYmpU6eib9++GDp0KDZs2CCVHT9+HA899BC0Wi0efPBBHDt2zG7bPXv2YNiwYdBqtZg+fTpyc3OlMiEEVq5cidtuuw39+/fH8uXLYeEU3ERE5EAMShERERGRu3HqoNTTTz8NLy8v7Nq1C7Nnz8Ybb7yBb775BqWlpYiLi0N0dDR27dqFqKgoTJ06FaWlpQCAlJQUzJkzBzNmzMC2bdtQWFiI+Ph4ab/r16/Hnj17kJCQgDfffBO7d+/G+vXrHdVMIiIizr5HRERERG7HaYNSBQUFSEpKwpNPPomOHTti2LBhGDRoEA4ePIgvv/wSarUazz//PDp16oQ5c+bA29sbX331FQBg8+bNGDlyJB544AF0794dy5cvx/79+5GWlgYA2LRpE2bOnIno6GjcdttteO6557BlyxZHNpeIiNyclOjczKAUEREREbkHpaMrUB1PT09oNBrs2rULzz77LNLS0nDkyBE8/fTTSE5ORr9+/SCTWT/Ay2Qy9O3bF0lJSYiNjUVycjKeeOIJaV/t2rVDWFgYkpOToVKpkJmZiVtvvVUq79evH9LT05GVlYWQkJAWbyu1Hg+MHYf0y7pqy4P8/bFp3YaWqxARuQzb8D0ze0oRERERkZtw2qCUWq3G3LlzsWjRImzatAlmsxmxsbF46KGH8O2336Jz58526wcGBiI1NRUAqgwuBQYG4vLly8jOzgYAu/KgoCAAwOXLl+sVlKqIidV7fZkMEDU8c9R3v87i2va5IpkMyNLl4e/P/7fa9+/TFf9ple13h/fu2n9dTUPb56rHo7W6mlOKOQ6JiIiIyD04bVAKAM6cOYMhQ4bg0UcfRWpqKhYtWoTbb78der0eKpXKbl2VSgWj0QgAKCsrq7a8rKxMen1tGQBp+7oKDGxT7zYBgEajrrbMQ6lAUFDD9ussGnpcWgtXfv9c/b1j+8iZMdE5EREREbkbpw1KHTx4EDt27MD+/fvh6emJiIgIXLlyBe+88w7at29fKYBkNBrh6ekJwNrLqqpyjUZjF4BSq9XS7wCg0WjqVcecnKIaezxdz9YrQa83VLtduckMna6oXvVwFjKZ9aG4vseltXDl988d3ju2r/rtyDkoFUx0TkRERETuxWmDUseOHUOHDh2kQBMA9OzZE++++y6io6Oh09nn9dHpdNLQu9DQ0CrLg4ODERoaCgDIzs5GeHi49DsABAcH16uOQtQ8DK+m7RpT7uwaelxaC1d+/9zhvWP7yFmxpxQRERERuRunnX0vJCQEFy5csOvxdPbsWYSHh0Or1eKPP/6AqHj6EkLgyJEj0Gq1AACtVovExERpu8zMTGRmZkKr1SI0NBRhYWF25YmJiQgLC2OScyIichgpKGVmTikiIiIicg9OG5QaOnQoPDw88NJLL+HcuXP47rvv8O6772LChAm45557UFhYiMWLF+P06dNYvHgx9Ho9Ro4cCQD45z//ic8++wzbt2/HiRMn8Pzzz+Ouu+5C+/btpfKVK1fi0KFDOHToEF599VVMnDjRkc0lIiI3x9n3iIiIiMjdOO3wvTZt2mDDhg1YvHgxxo4di4CAADz55JN4+OGHIZPJsHr1asybNw8ff/wxunXrhjVr1sDLywsAEBUVhYULF+LNN99EQUEBBg4ciEWLFkn7fuyxx5CTk4MZM2ZAoVBg7NixmDx5soNaSkREBCgVHL5HRERERO7FaYNSANC5c2esX7++yrI+ffrgk08+qXbb2NhYxMbGVlmmUCgQHx+P+Pj4JqknERFRYynlTHRORFQXRqMRsbGxePnllzFgwAAAQFpaGl5++WUkJSUhLCwMs2fPRkxMjLTNgQMHsGTJEqSlpUGr1WLx4sXSKAoA2LBhA9auXYvi4mKMHDkSL7/8sjQJksFgwIIFC/D111/D09MTU6ZMwZQpU1q20URELspph+8RERG5k6s5pRiUIiKqjsFgwDPPPIPU1FRpmRAC06dPR1BQEHbu3In7778fM2bMQEZGBgAgIyMD06dPR2xsLHbs2IGAgABMmzZNyk+7d+9eJCQkYOHChdi4cSOSk5OxYsUKaf/Lly/HsWPHsHHjRsybNw8JCQn46quvWrbhREQuikEpIiIiJ3B1+B4TnRMRVeX06dMYN24cLl68aLf8119/RVpaGhYuXIhOnTph6tSpiIyMxM6dOwEA27dvR+/evTFlyhR06dIFS5cuRXp6Og4fPgwA2LRpEyZNmoQhQ4agT58+WLBgAXbu3Am9Xo/S0lJs374dc+bMQa9evTB8+HA8/vjj2LJlS4u3n4jIFTEoRURE5ASknlIcvkdEVKXDhw9jwIAB2LZtm93y5ORk9OzZU8ovCwD9+vVDUlKSVB4dHS2VaTQa9OrVC0lJSTCbzTh69KhdeWRkJMrLy3HixAmcOHECJpMJUVFRdvtOTk6GhV8iEBE1mlPnlCIiInIXzClFRFSz8ePHV7k8OzsbISEhdssCAwNx+fLlWssLCwthMBjsypVKJfz8/HD58mXI5XL4+/tDpVJJ5UFBQTAYDMjPz0dAQECd6y+T1XlVu/Xru50r4zGp2rXHRQj75e58rHi+VK2hx6W5jiODUkRERE6AOaWIiBpGr9fbBY0AQKVSwWg01lpeVlYmva6qXAhRZRkAaf91FRjYpl7rN3Y7V8ZjYq9tW28AOdBo1NIyT08P+Pl5IyiIx4rnS9Wc5bgwKEVEROQEruaUYlCKiKg+1Go18vPz7ZYZjUZ4enpK5dcHkIxGI3x9faFWq6XX15drNBqYzeYqywBI+6+rnJwiu14stZHJrA+N9d3OlfGYVK2goAQAoNcbpONSVlaO/PwS6HRFDqyZY/F8qVpDj4ttu6bGoBQREZETuJpTijlKiIjqIzQ0FKdPn7ZbptPppCF5oaGh0Ol0lcp79OgBPz8/qNVq6HQ6dOrUCQBgMpmQn5+P4OBgCCGQl5cHk8kEpdL66JSdnQ1PT0/4+vrWq55CoEEPxg3dzpXxmNizHYvrjwmPkxWPQ9Wc5bgw0TkREZETYKJzIqKG0Wq1+PPPP6WheACQmJgIrVYrlScmJkpler0ex48fh1arhVwuR0REhF15UlISlEolunfvjh49ekCpVEpJ0237joiIgFzORykiosbilZSIiMgJKJhTioioQfr374927dohPj4eqampWLNmDVJSUjB27FgAwIMPPogjR45gzZo1SE1NRXx8PMLDwzFgwAAA1gTqa9euxb59+5CSkoL58+dj3Lhx0Gg00Gg0eOCBBzB//nykpKRg3759WLduHSZOnOjIJhMRuQwO3yMiInICnH2PiKhhFAoF3n77bcyZMwexsbHo0KEDVq1ahbCwMABAeHg43nrrLSxZsgSrVq1CVFQUVq1aBVnFVFKjR49Geno65s6dC6PRiBEjRmDWrFnS/uPj4zF//nxMmjQJPj4+eOqppzBixAiHtJWIyNUwKEVEROQEOHyPiKjuTp48afe6Q4cO2Lx5c7XrDx48GIMHD662PC4uDnFxcVWWaTQaLFu2DMuWLWtYZYmIqFocvkdEROQErs6+x0TnREREROQeGJQiIiJyAraeUmb2lCIiIiIiN8GgFBERkRPg8D0iIiIicjcMShERETkBpaIi0Tln3yMiIiIiN8GgFBERkROw9ZQS4BA+IiIiInIPDEoRERE5AVtQCuAQPiIiIiJyDwxKEREROQH7oBRn4CMiIiIi18egFBERkROw5ZQCmFeKiIiIiNwDg1JEREROQHG1oxSH7xERERGRW2BQioiIyAnIZDJpCB+DUkRERETkDhiUIiIichJXg1LMKUVEREREro9BKSIiIiehrBjDx5xSREREROQOGJQiIiJyEkq59bbM4XtERERE5A4YlCIiInISiorhe2YGpYiIiIjIDTAoRURE5CRsOaXMgkEpIiIiInJ9DEoREZFTuXDhAh577DFERUXhrrvuwvvvvy+VpaWlYfLkyYiMjMSoUaPw888/22174MABjBkzBlqtFhMnTkRaWppd+YYNGzBo0CBERUVh9uzZ0Ov1UpnBYMDs2bMRHR2NmJgYrFu3rnkbWgVbTynmlCIiIiIid8CgFBEROQ2LxYK4uDj4+/vjk08+wYIFC/DOO+9g9+7dEEJg+vTpCAoKws6dO3H//fdjxowZyMjIAABkZGRg+vTpiI2NxY4dOxAQEIBp06ZBVPQ62rt3LxISErBw4UJs3LgRycnJWLFihfS3ly9fjmPHjmHjxo2YN28eEhIS8NVXX7Vo+5UcvkdEREREbkTp6AoQERHZ6HQ69OjRA/Pnz4ePjw86duyI22+/HYmJiQgKCkJaWhq2bt0KLy8vdOrUCQcPHsTOnTvx1FNPYfv27ejduzemTJkCAFi6dCkGDhyIw4cPY8CAAdi0aRMmTZqEIUOGAAAWLFiAxx57DLNmzYIQAtu3b8d7772HXr16oVevXkhNTcWWLVtwzz33tFj7pZ5SDEoRERERkRtgTykiInIaISEheOONN+Dj4wMhBBITE/Hbb7+hf//+SE5ORs+ePeHl5SWt369fPyQlJQEAkpOTER0dLZVpNBr06tULSUlJMJvNOHr0qF15ZGQkysvLceLECZw4cQImkwlRUVF2+05OTobFYmn+hldgTykiIiIicicMShERkVMaOnQoxo8fj6ioKNx9993Izs5GSEiI3TqBgYG4fPkyANRYXlhYCIPBYFeuVCrh5+eHy5cvIzs7G/7+/lCpVFJ5UFAQDAYD8vPzm6+R11GypxQRERERuREO3yMiIqf05ptvQqfTYf78+Vi6dCn0er1d0AgAVCoVjEYjANRYXlZWJr2uqlwIUWUZAGn/dSWT1Wt1aX2Z7OrwPbMQ9d6Ps7q2fa6I7WvdXLl9DW2bKx4LIiJyXgxKERGRU4qIiABgnRXvueeew4MPPmg3Wx5gDRh5enoCANRqdaUAktFohK+vL9RqtfT6+nKNRgOz2VxlGQBp/3UVGNimXutfu51Gbb0te/uoERTUsP04q4Yel9aC7WvdXLl9rtw2IiJq/RiUIiIip6HT6ZCUlIRhw4ZJyzp37ozy8nIEBwfj7Nmzlda3DckLDQ2FTqerVN6jRw/4+flBrVZDp9OhU6dOAACTyYT8/HwEBwdDCIG8vDyYTCYoldZbY3Z2Njw9PeHr61uvNuTkFEHUY/SdTGZ9aMzJKYLFbM1flZtfCp2uqF5/11ld2776HJfWgu1r3Vy5fQ1tm207IiKilsCcUkRE5DQuXbqEGTNm4MqVK9KyY8eOISAgAP369cOff/4pDcUDgMTERGi1WgCAVqtFYmKiVKbX63H8+HFotVrI5XJERETYlSclJUGpVKJ79+7o0aMHlEqllDTdtu+IiAjI5fW7VQpR/x/bdtfmlGrIfpz1p6HHpbX8sH2t+8eV29eYaxIREVFLYFCKiIicRkREBHr16oXZs2fj9OnT2L9/P1asWIF///vf6N+/P9q1a4f4+HikpqZizZo1SElJwdixYwEADz74II4cOYI1a9YgNTUV8fHxCA8Px4ABAwAA48ePx9q1a7Fv3z6kpKRg/vz5GDduHDQaDTQaDR544AHMnz8fKSkp2LdvH9atW4eJEye2aPttOaVMZj4VEhEREZHra1BQ6tdff4Xg1yhERHSNprg3KBQKvP3229BoNHj44YcxZ84cTJgwARMnTpTKsrOzERsbi88//xyrVq1CWFgYACA8PBxvvfUWdu7cibFjxyI/Px+rVq2CrCJr7+jRozF16lTMnTsXU6ZMQZ8+fTBr1izpb8fHx6NXr16YNGkSFixYgKeeegojRoxoVHvqS1nRK8vM2feIyIXw2YGIiKrToJxS//nPf+Dh4YF77rkHY8aMQWRkZBNXi4iIWpumujeEhoYiISGhyrIOHTpg8+bN1W47ePBgDB48uNryuLg4xMXFVVmm0WiwbNkyLFu2rH4VbkKKa4bvERG5Cj47EBFRdRoUlPrll1/wyy+/4KuvvkJcXBx8fHwwcuRIjB49Gj179mzqOhIRUSvAe0PjKSp6dbGnFBG5Et4fiIioOg0KSimVSunbaJPJhAMHDuC7777D+PHjERoainvvvRexsbHSkAoiInJ9vDc0nlJREZTiMBciciG8PxARUXUalejcaDRi//79+OKLL/C///0P/v7+GDp0KM6fP4/Ro0fXOMSCiIhcE+8NDcdE50Tkynh/ICKi6zWop9S+ffvw1Vdf4YcffoCHhwfuvvturFq1CtHR0dI6W7ZswWuvvYZHHnmkySpLRETOi/eGxlPK2VOKiFwP7w9ERFSdBgWlXnjhBQwbNgyvvfYaBg4cCIVCUWmd3r1749FHH210BYmIqHXgvaHxlOwpRUQuiPcHIiKqToOCUgcOHEBxcTEKCwulm8qXX36JW2+9FcHBwQAArVYLrVbbdDUlIiKnxntD40lBKfaUIiIX0lL3h8zMTMyfPx+//fYb/Pz8MHHiREyePBkAcPz4ccybNw+nTp1C586dsWDBAvTu3Vvads+ePXjjjTeQnZ2NmJgYLFq0CAEBAQAAIQReffVV7NixAxaLBWPHjsVzzz0HubxRmVCIiAgNzCl15MgRDB8+HLt375aWbdq0CaNGjUJiYmKTVY6IiFoP3hsajzmliMgVtdT94emnn4aXlxd27dqF2bNn44033sA333yD0tJSxMXFITo6Grt27UJUVBSmTp2K0tJSAEBKSgrmzJmDGTNmYNu2bSgsLER8fLy03/Xr12PPnj1ISEjAm2++id27d2P9+vVNVm8iInfWoKDUsmXL8O9//xszZ86Ulm3duhWPP/44lixZ0mSVIyKi1oP3hsZTyCpySlkYlCIi19ES94eCggIkJSXhySefRMeOHTFs2DAMGjQIBw8exJdffgm1Wo3nn38enTp1wpw5c+Dt7f3/2bvv+KbK/Q/gn4w2TRfdhbbILiCUUoqAAiJeByAKFvS65YKCsrwqgoXLFpHlYqgoIIg/QcAFKihex1WmhRawAmUXupLukSZNcn5/pDk0tIWmTTM/79erL5oz0uc5J5znnG+e5/tg9+7dAIDNmzdj6NChGDlyJLp06YKlS5fi119/RWZmJgBTAG3q1Kno3bs3+vXrh2nTpuHTTz+1SbmJiDxdo4JSFy5cwJAhQ2otHzp0KM6cOdPkQpnpdDrMnz8ft9xyC2677Ta8+eabEKqHNKSnp+Ohhx5CfHw8Ro0ahRMnTljsu2vXLtx1112Ij4/HpEmTUFBQIK4TBAHLly9Hv3790KdPHyxduhRGo9Fm5SYi8kT2ahvcmVzGROdE5H7s0T74+PhAqVTiiy++QFVVFc6dO4cjR46ga9euSEtLQ2JiIiTVgX+JRIJevXohNTUVAJCWlmaRdL1Vq1aIiopCWloacnNzkZ2djVtuuUVcn5iYiCtXriAvL88mZSci8mSNCkq1b98e33//fa3l//3vf3HTTTc1uVBmr732Gvbt24d169ZhxYoV+Pzzz7F161Z2wSUickL2ahvcmbmnlN7AL0qIyH3Yo31QKBSYM2cOtm7divj4eAwdOhS33347HnroIahUKkRERFhsHxoaipycHABAXl5evetVKhUAWKwPCwsDAHF/IiJqvEYlOv/3v/+NiRMn4o8//kC3bt0AAKdOncKff/6JlStX2qRgRUVF2LFjBzZs2IAePXoAAMaOHYu0tDTI5XKxC65EIsGsWbPw22+/Yffu3UhKSrLoggsAS5cuxeDBg5GZmYnWrVtbdMEFgGnTpuGdd97BuHHjbFJ2IiJPZI+2wd2xpxQRuSN7tQ9nz57F4MGD8a9//QsZGRlYuHAhbr31Vmg0Gnh7e1ts6+3tDZ1OBwCorKysd31lZaX4uuY6AOL+DVX9vYPV21u7nzvjMalbzeNS8xZCIvHsY8XPS90ae1ya6zg2Kih1++2348svv8SOHTtw7tw5yOVydOnSBfPnz0fr1q1tUrCUlBT4+/ujT58+4rLx48cDAGbPnl1vF9ykpCSkpaXh2WefFfer2QXX29v7ul1wr/2WhIiIGsYebYO7u9pTikEpInIf9mgf9u/fj+3bt+PXX3+Fj48P4uLikJubi/feew+tW7euFUDS6XTw8fEBYOplVdd6pVJpEYBSKBTi7wCgVCqtKmNoaECj6tbY/dwZj4mlFi38AORDqVSIy3x8vBAU5IewMB4rfl7q5izHpVFBKQDo1KkTXn31VVuWxUJmZiaio6Px1Vdf4f3330dVVRWSkpLw/PPPQ6VSoWPHjhbbh4aGIiMjA0DTuuBaE5Rqyrcd1/sS3FUjue4eiXbn8+dJ584dOdO3Hc3dNrg7ucw0qp49pYjI3TR3+3DixAm0adNGDDQBwM0334z3338fvXv3hlqtttherVaL9/2RkZF1rg8PD0dkZCQAQKVSISYmRvwdAMLDw60qY35+6XXvIa8lkZgeGq3dz53xmNStuLgcAKDRaMXjUllZhaKicqjVpQ4smWPx81K3xh4X83621qigVElJCdavX4/jx49Dr9eLycfNNm3a1OSCVVRU4OLFi9iyZQsWL14MlUqFOXPmQKlUOk0X3MaekJoR7Gt5yWUuH812lohrc3Hn8+fu5471a172aBvcnUzKnlJE5H7s0T5ERETg4sWL0Ol04r39uXPnEBMTg/j4eHz44YcQBAESiQSCIODIkSN47rnnAADx8fFISUlBUlISACA7OxvZ2dmIj49HZGQkoqKikJKSIgalUlJSEBUVZfUIC0G4/hebtt7PnfGYWDIfi2uPCY+TCY9D3ZzluDQqKDV9+nQcP34c999/P/z9/W1dJgCAXC5HWVkZVqxYgejoaABAVlYWPvvsM7Rp08YpuuA2JrIIWEawr1WlN7hsNNvdI9HufP484dyxfvXvZyv2aBvcnXn4HntKEZE7sUf7cOedd2LZsmX4z3/+g+effx7nz5/H+++/jxdffBFDhgzBihUrsGjRIjzyyCPYsmULNBoNhg4dCgB49NFH8eSTT6Jnz56Ii4vDokWLcMcdd4hDCx999FEsX74cLVu2BACsWLECY8eObZZ6EBF5mkYFpfbt24fNmzeLCcibQ3h4OBQKhRiQAoB27dohOzsbffr0cYouuE35tqMp652ds0Rcm4s7nz9POHesX/OxR9vg7syJztlTiojciT3ah4CAAHz88cdYtGgRRo8ejZCQEDz//PP45z//CYlEgg8++ABz587F559/js6dO2Pt2rXw9fUFACQkJGDBggV49913UVxcjP79+2PhwoXie48bNw75+fmYPHkyZDIZRo8ejTFjxjRbXYiIPEmjglKRkZGQSqW2LouF+Ph4aLVanD9/Hu3atQNg6oIbHR3tNF1wiYjoKnu0De5Ozp5SROSG7NU+dOzYERs2bKhzXY8ePfDll1/Wu29SUpL47HAtmUyG5ORkJCcn26ScRER0VaNah+nTp2PevHn47bffcPHiRWRlZVn82EL79u1xxx13IDk5GSdPnsT//vc/rF27Fo8++iiGDBmCkpISLFq0CGfOnMGiRYtqdcH9+uuvsW3bNpw8eRLTp0+vswvuwYMHcfDgQaxYsQJPPfWUTcpNROSp7NE2uDuxp5SRQSkich9sH4iIqD6N6ik1ZcoUAMD48eMBAJLqb3bNPZf+/vtvmxRu+fLlWLhwIR599FEolUo8/vjjePLJJ9kFl4jICdmrbXBn5pxSDEoRkTth+0BERPVpVFDqp59+snU56hQQEIClS5fWuY5dcImInIu92gZ3Zu4pZWBQiojcCNsHIiKqT6OG70VHRyM6OhoVFRVIT09HcHAwjEYjoqKiLBKTExGR52Db0HRiTykmOiciN8L2gYiI6tOonlLFxcV44YUXcOjQIQDAnj17sGjRImRmZmLt2rVsXIiIPBDbhqaTSZnonIjcD9sHIiKqT6N6Sr322mtQKpU4cOAAFAoFAOD1119Hy5Yt8dprr9m0gERE5BrYNjSdmOjcYHRwSYiIbIftAxER1adRQan//e9/eOmllxAYGCguCwkJQXJyMg4fPmyzwhERketg29B05uF77ClFRO6E7QMREdWnUUEpANBqtbWWFRQUQC5v1IhAIiJyA2wbmoaJzonIXbF9ICKiujQqKDV8+HAsWrQIGRkZkEgkqKiowIEDBzB79mwMGzbM1mUkIiIXwLah6cRE5wxKEZEbYftARET1adRXE9OnT8ebb76JpKQkVFVVYcSIEZDJZHjooYcwffp0W5eRiIhcANuGppPLTN8VsacUEbkTtg9ERFSfRgWlvL298eqrr+Lf//43MjMzYTAY0Lp1a/j5+dm6fERE5CLYNjSdnD2liMgNsX0gIqL6NCooVVdCwvT0dPH3W265pfElIiIil8S2oelkzClFRG6I7QMREdWnUUGpJ598ss7l3t7eCA8Px08//dSkQhERketh29B07ClFRO6I7QMREdWnUUGpkydPWrw2GAy4dOkSFi5ciPvvv98mBSMiItfCtqHpZFL2lCIi98P2gYiI6tOo2feuJZPJ0K5dO7z66qt45513bPGWRETk4tg2WE8uY08pInJ/bB+IiMjMJkEps/z8fJSUlNjyLYmIyMWxbWg4GYfvEZEHYftARESNGr6XnJxca1l5eTn27duHIUOGNLlQRETketg2NJ28RqJzQRAgqQ5SERG5MrYPRERUn0YFpeoSFBSEGTNmYMSIEbZ6SyIicnFsG6wjqxGEMgiAnDEpInJTbB+IiAhoZFBq8eLFti4HERG5OLYNTWfuKQWYekvJpYxKEZHrY/tARET1aVRQatWqVQ3edvLkyY35E0RE5GLYNjRdzZ5SeqMRCtumfiQicgi2D0REVJ9GBaUuXryI3bt3IygoCN27d4e3tzdOnjyJS5cuoWfPnpDLTW/LXBhERJ6DbUPT1ewZZWCycyJyE2wfiIioPo0KSnl7e+P+++/H/Pnz4eXlJS5fsmQJiouL8frrr9usgERE5BrYNjSdjEEpInJDbB+IiKg+jRoX8N133+GZZ56xaFQA4OGHH8Z3331nk4IREZFrYdvQdBKJBOa0UnoGpYjITbB9ICKi+jQqKBUZGYn//e9/tZbv2bMHrVu3bnKhiIjI9bBtsA25zNQ0s6cUEbkLtg9ERFSfRg3fe/nll/Hvf/8bv/zyC7p06QIAOH78ONLT0/H+++/btIBEROQa2DbYhjnZOXtKEZG7YPtARET1aVRPqbvvvhtffPEFYmNjcfbsWVy5cgV9+vTBnj170KdPH1uXkYiIXADbBtuQyxiUIiL3wvaBiIjq06ieUgDQuXNnJCcno7i4GP7+/pBKpZwxg4jIw7FtaDr2lCIid8T2gYiI6tKonlKCIOC9995D3759ceuttyIrKwuvvPIK5syZA51OZ+syEhGRC2DbYBvmGfiYU4qI3AXbByIiqk+jglKrV6/GN998gzfeeAPe3t4AgAcffBB//PEHli5datMCEhGRa2DbYBtyBqWIyM2wfSAiovo0Kij15ZdfYsGCBRg8eLDY7bZ///5YsmQJvv/+e5sWkIiIXAPbBtsw95Ti8D0ichdsH4iIqD6NCkrl5+cjIiKi1vLAwEBUVFQ0uVBEROR62DbYBntKEZG7YftARET1aVRQql+/fli3bp3FsrKyMrz55pvo27evTQpGRESuhW2DbVztKWV0cEmIiGyD7QMREdWnUUGpefPmIT09Hf3794dWq8XEiRMxaNAgXLlyBf/5z39sXUYiInIBbBtsgz2liMjdsH0gIqL6yBuzU2BgILZv3479+/fj3Llz0Ov1aNeuHQYMGACptFFxLiIicnFsG2yDOaWIyN3Yq33Q6XRYvHgxdu3aBS8vL4wePRovvvgiJBIJ0tPTMXfuXJw+fRodO3bE/Pnz0b17d3HfXbt24e2334ZKpcKAAQOwcOFChISEADDNHrhixQps374dRqMRo0ePxrRp09i2ERHZQKOCUsOHD8eqVatw66234tZbb7V1mYiIyAWxbWi8S5cuISPjIgBAW6kBAJw9dw6BZZlWvU9ISChiYlrbvHxERE1hr/bhtddew8GDB7Fu3TqUl5fjxRdfRFRUFB544AGMHz8e999/P9544w189tlnmDBhAn788Uf4+vri2LFjmDVrFubPn48uXbpg0aJFSE5OxgcffAAA2LBhA3bt2oVVq1ZBr9fjlVdeQWhoKMaNG9dsdSEi8hSNCkpJpVJUVVXZuixEROTC2DY0zuXLmbit/y3QVCf7jXzsDfi07o6582aj4vQ+q97LR+mLfX8cZmCKiJyKPdqHoqIi7NixAxs2bECPHj0AAGPHjkVaWhrkcjkUCgWmT58OiUSCWbNm4bfffsPu3buRlJSEzZs3Y+jQoRg5ciQAYOnSpRg8eDAyMzPRunVrbNq0CVOnTkXv3r0BANOmTcM777zDoBQRkQ00Kih1xx134F//+hcGDx6M6OhoeHt7W6yfPHmyTQpHRESuw1ZtQ25uLhYtWoQDBw5AoVBg2LBheOmll6BQKJCZmYnZs2cjNTUVUVFRmDlzJgYMGCDuu2/fPrz++uvIzMxEfHw8Fi1ahNatrwZoPv74Y6xbtw5lZWUYOnQoZs+eDaVSCQDQarWYP38+fvjhB/j4+GDs2LEYO3asDY7M9eXn50NTUYHRLy5GREw7HCj0QX4VcM/TLyHKZ2qD3yfv8nlsfysZBQX5DEoRkVOxx7NDSkoK/P390adPH3HZ+PHjAQCzZ89GYmIiJBLT8GiJRIJevXohNTUVSUlJSEtLw7PPPivu16pVK0RFRSEtLQ3e3t7Izs7GLbfcIq5PTEzElStXkJeXV+esgkRE1HCNCkqdOnUK3bp1Q15eHvLy8izWmS/2RETkWWzRNgiCgKlTpyIwMBCffvopiouLMXPmTEilUkyfPh2TJk1CbGwsduzYgb1792Ly5Mn47rvvEBUVhaysLEyaNAlTpkzBwIEDsXr1akycOBHffPMNJBIJ9uzZg1WrVmHZsmUIDQ1FcnIyli1bhjlz5gAwfTN+4sQJbNy4EVlZWZgxYwaioqIwZMgQmx+rukTEtENUh5vhk54HFFeiRUQ0osL97PK3iYiakz2eHTIzMxEdHY2vvvoK77//PqqqqpCUlITnn38eKpUKHTt2tNg+NDQUGRkZAFBncCk0NBQ5OTlQqVQAYLE+LCwMAJCTk2NVUMraqpq35+PVVTwmdat5XATBcrknHyt+XurW2OPSXMexwUGpxx9/HO+99x4CAwPxySefAAAqKyvh4+PTPCUjIiKnZ+u24dy5c0hNTcUff/wh3vRPnToVS5Yswe23347MzExs2bIFvr6+6NChA/bv348dO3ZgypQp2LZtG7p37y72blq8eDH69++PQ4cOoW/fvti0aROefvppDB48GAAwf/58jBs3Dq+88goEQcC2bdvw4Ycfolu3bujWrRsyMjLw6aef2i0oZVad5xxGgYnOich12fvZoaKiAhcvXsSWLVuwePFiqFQqzJkzB0qlEhqNplbvLG9vb+h0OrFc9a2vrKwUX9dcB0Dcv6FCQwOsrldT9nNnPCaWWrTwA5APpVIhLvPx8UJQkB/Cwnis+Hmpm7MclwYHpVJSUmqNBb/tttvw9ddfWwyNICIiz2HrtiE8PBwfffSRGJAyKysrQ1paGm6++Wb4+vqKyxMTE5GamgoASEtLE/N9AIBSqUS3bt2QmpqK3r174/jx4xZDRHr27ImqqiqcPHkSgiBAr9cjISHB4r3ff/99GI1Gu86wJK3+GooxKSJyZfZ+dpDL5SgrK8OKFSsQHR0NAMjKysJnn32GNm3a1Aog6XQ6MUCmUCjqXK9UKi0CUAqFQvwdgDj8u6Hy80uturZLJKaHRmv3c2c8JnUrLi4HAGg0WvG4VFZWoaioHGp1qQNL5lj8vNStscfFvJ+tNWr4npnAM0tERNdoStsQGBiIgQMHiq+NRiM2b96Mfv36QaVS1Tu8AsB115eUlECr1Vqsl8vlCAoKQk5ODqRSKYKDgy2+CQ8LC4NWq0VRUZE4Lbg9sKcUEbmr5nx2CA8Ph0KhEANSANCuXTtkZ2ejT58+UKvVFtur1WqxTYiMjKxzfXh4OCIjIwGY2piYmBjxd/PftIYgNO4Lh8bu5854TCyZj8W1x4THyYTHoW7Oclzs99UvERGRlZYtW4b09HS8+OKLNxx+cb31dQ2/qLm+vn0B64dnmPM3WPNj2tG8v+kXYxNuEhpThub8ccYysX6snyfUr0nXJBcTHx8PrVaL8+fPi8vOnTuH6OhoxMfH4+jRo2JQTBAEHDlyBPHx8eK+KSkp4n7Z2dnIzs5GfHw8IiMjERUVZbE+JSUFUVFRTHJORGQDTeopRURE1FyWLVuGjRs34q233kJsbCwUCgWKioostmnI8IvAwMBaQy5qrlcqlTAYDHWuA2B1/hNruzUHBZmSmfsovOHrq4C3lwwAIJfL4OuruN6uFnx8TEG04GDnzB/hLHkLmgvr59rcuX7uXLea2rdvjzvuuAPJycmYN28eVCoV1q5di+effx5DhgzBihUrsGjRIjzyyCPYsmULNBoNhg4dCgB49NFH8eSTT6Jnz56Ii4vDokWLcMcdd4jDDB999FEsX74cLVu2BACsWLHCLrOzEhF5AquCUt9//z38/f3F10ajET/++GOtYQ0jR460SeGIiMj5NUfbsHDhQnz22WdYtmwZ7r33XgCm4RVnzpyx2K4hwy+6du2KoKAgKBQKqNVqdOjQAQCg1+tRVFSE8PBwCIKAwsJC6PV6yOWmplGlUsHHxweBgYENLjdgfc6QoiJTHohKrQ4VFVoYDUbTa50eFRXaBr9PZaUpiFZY6Fz5IyQS987nwPq5NneuX2PrZt7PFuz97LB8+XIsXLgQjz76KJRKJR5//HE8+eSTkEgk+OCDDzB37lx8/vnn6Ny5M9auXSvmKExISMCCBQvw7rvvori4GP3798fChQvF9x03bhzy8/MxefJkyGQyjB49GmPGjLFJmYmIPF2Dg1JRUVFYv369xbLQ0FBs3rzZYplEImFQiojIQzRH27Bq1Sps2bIFb775psXMd/Hx8Vi7dq3F7E0pKSlITEwU19ccXqHRaJCeno7JkydDKpUiLi4OKSkp6Nu3LwAgNTUVcrkcXbp0AWDKMWVOim5+77i4OKuTnFs7Pl/ctvpfc06ppuReccaHa2fJW9BcWD/X5s71c1TdHPHsEBAQgKVLl9a5rkePHvjyyy/r3TcpKQlJSUl1rpPJZEhOTkZycrJNyklERFc1OCj13//+tznLQURELsjWbcPZs2exZs0ajB8/HomJiWIyWQDo06cPWrVqheTkZEycOBE///wzjh07hsWLFwMARo0ahXXr1mHt2rUYPHgwVq9ejZiYGDEI9dhjj2HOnDmIjY1FREQE5s2bh4cfflicPWnkyJGYN28eXn/9deTl5WH9+vXie9vT1ZxSbvqETEQegc8ORETUEMwpRURETuOnn36CwWDAe++9h/fee89i3alTp7BmzRrMmjULSUlJaNOmDVavXo2oqCgAQExMDFauXInXX38dq1evRkJCAlavXi0Gee677z5cuXIFc+bMgU6nwz333INXXnlFfH9zHpKnn34a/v7+mDJlCu655x77Vb7a1dn37P6niYiIiIjsikEpIiJyGuPHj8f48ePrXd+mTZtaQz9qGjRoEAYNGtSo91cqlViyZAmWLFnS8AI3Ayl7ShERERE1mVarxf79J1BUVG4xjLlHj57iJDjkeAxKERERORGJmFPKseUgIiIicmXHjqViw579CG7VTlyWezED4wHccktfxxWMLFiXvdWBxo8fj1dffVV8nZ6ejoceegjx8fEYNWoUTpw4YbH9rl27cNdddyE+Ph6TJk1CQUGBuE4QBCxfvhz9+vVDnz59sHTpUhiNRrvVhYiIqD7sKUVERERkG63axeKmLvHiT2SbTo4uEl3DJYJS3377LX799VfxdUVFBcaPH4/evXvjiy++QEJCAiZMmICKigoAwLFjxzBr1ixMnjwZW7duRUlJicVsGRs2bMCuXbuwatUqvPvuu9i5cyc2bNhg93oRERFdSyYGpRxcECIiIiKiZub0QamioiIsXboUcXFx4rLvvvsOCoUC06dPR4cOHTBr1iz4+flh9+7dAIDNmzdj6NChGDlyJLp06YKlS5fi119/RWZmJgBg06ZNmDp1Knr37o1+/fph2rRp+PTTTx1SPyIiopqk1S2zgVEpIiIiInJzTh+UWrJkCUaMGIGOHTuKy9LS0pCYmCjOqCSRSNCrVy+kpqaK63v37i1u36pVK0RFRSEtLQ25ubnIzs7GLbfcIq5PTEzElStXkJeX16x1+epYNsojujfr3yAiItfG4XtERERE5CmcOii1f/9+/Pnnn5g4caLFcpVKhYiICItloaGhyMnJAQDk5eXVu16lUgGAxfqwsDAAEPdvDkZBwJs/n0Nx+7uQnlPabH+HiIhcm5TD94iIiIjIQzjt7HtarRZz587FnDlz4OPjY7FOo9HA29vbYpm3tzd0Oh0AoLKyst71lZWV4uua6wCI+zeUeYakhpBJJBh7a2us+u0C9l0oRLi/N8L9656G0pr3dSbmcrtq+W+kZv2u14HBFevvSefOHTW2fu56PFydjMP3iIiIiMhDOG1QatWqVejevTsGDhxYa51CoagVQNLpdGLwqr71SqXSIgClUCjE3wFAqVRaVcbQ0ACrtn956M346KufUBnSAecLK9EmIrDWNl5yGcLCrHtfZ2PtcXE1SmXdwUTA9c+fu5871o9cAYfvEREREZGncNqg1Lfffgu1Wo2EhAQAVwNHe/bswfDhw6FWqy22V6vV4pC8yMjIOteHh4cjMjISgGkIYExMjPg7AISHh1tVxvz80uv2mLmWRAIoVX+ZglLqcvRpra21TZXeALXaNYf3SSSmh2Jrj4urMPcq0Wi09dbPVc+fJ5w71q/+/ci5cPY9IiIiIvIUThuU+uSTT6DX68XXy5cvBwBMmzYNhw8fxocffghBECCRSCAIAo4cOYLnnnsOABAfH4+UlBQkJSUBALKzs5GdnY34+HhERkYiKioKKSkpYlAqJSUFUVFRtfJQ3YggXH8YV10UxZmQSICSSj2KNVVoofSq831dWWOOiyu5Ud1cue6ecO5YP3J25gA4e0oRERERkbtz2qBUdHS0xWs/Pz8AQJs2bRAaGooVK1Zg0aJFeOSRR7BlyxZoNBoMHToUAPDoo4/iySefRM+ePREXF4dFixbhjjvuQOvWrcX1y5cvR8uWLQEAK1aswNixY+1SL6mxCi0DFMgu0eJycWWdQSkiIvJcMqkpKsWcUkRERETk7pw2KHU9/v7++OCDDzB37lx8/vnn6Ny5M9auXQtfX18AQEJCAhYsWIB3330XxcXF6N+/PxYuXCjuP27cOOTn52Py5MmQyWQYPXo0xowZY7fyxwQpTUGpIg26teTQGSIiuoqz7xERERGRp3CZoNQbb7xh8bpHjx748ssv690+KSlJHL53LZlMhuTkZCQnJ9u0jA0V3UKBwwDySnXiEEQiIiKgZk4pRqWIiIiIyL1JHV0ATxSs9IIEQKXeCE2V0dHFISIiJyJlTikiIiIi8hAMSjmAXCZFoI+pk1pBhc7BpSEiImciFXNKObggRERERETNjEEpBwnx8wYAFFRUObgkRETkTKQcvkdEREREHoJBKQcJ8TXNupdfzp5SRER0lYzD94iIiIjIQzAo5SDmoFQhe0oREVEN5uF7Rg7fIyIiIiI3x6CUg4T4mobvFWqqYOS830REVM08fM/AnlJERERE5OYYlHKQAIUMXjIJjAJQVMneUkREZMLZ94iIiIjIUzAo5SASiQRBStMQvmKN3sGlISIiZyEzD98TAIGBKSIiIiJyYwxKOVCgQg4AKKlkUIqIiEzMw/cAgDEpIiIiInJnDEo5UKAPg1JERGRJejUmxbxSREREROTWGJRyoEClOSjFnFJERGQiq9FTivNgEBEREZE7Y1DKgQIVppxSJVr2lCIiIpMaMSkmOyciIiIit8aglAOZh++VaQ0w8OtwIiKCaSIM8xA+tg1ERER0PX/nlmL5UR1+USlx5HKxo4tDZDUGpRxI6SWFV/WTRyl7SxERUTVzsnPGpIiIiOh6Nh26jLMlAor1MqRkFqOyyuDoIhFZhUEpB5JIJAhgsnMiIrqGTAxKMSpFREREddMbBRy4WAAAkMJ0z3C5qNKRRSKyGoNSDtbCh8nOiYjIkrS6dTayqxQRERHV43hWCcq0BvjJgfZ+pufJzCKNg0tFZB0GpRws0MeU7LyYPaWIiKiaefiegTEpIiKrjR8/Hq+++qr4Oj09HQ899BDi4+MxatQonDhxwmL7Xbt24a677kJ8fDwmTZqEgoICcZ0gCFi+fDn69euHPn36YOnSpTAajXarC9H17Dtv+qzeHCJFpML0PHm5qJI9rcmlMCjlYAFisnMGpYiIyETK4XtERI3y7bff4tdffxVfV1RUYPz48ejduze++OILJCQkYMKECaioqAAAHDt2DLNmzcLkyZOxdetWlJSUIDk5Wdx/w4YN2LVrF1atWoV3330XO3fuxIYNG+xeL6K6/FEdlOoeIkWItxFeMgkq9Uaoy3QOLhlRwzEo5WD+3jIAphn4yHkVVujw29l8VLa4ydFFISIPIOPwPSIiqxUVFWHp0qWIi4sTl3333XdQKBSYPn06OnTogFmzZsHPzw+7d+8GAGzevBlDhw7FyJEj0aVLFyxduhS//vorMjMzAQCbNm3C1KlT0bt3b/Tr1w/Tpk3Dp59+6pD6EdWk1RtxRlUOAOgcJIVUArQKVAAAVAxKkQthUMrB/BXsKeXszqjKMWr9n3jpy79Q0DUJ5/MrHF0kInJznH2PiMh6S5YswYgRI9CxY0dxWVpaGhITEyGpvq5KJBL06tULqamp4vrevXuL27dq1QpRUVFIS0tDbm4usrOzccstt4jrExMTceXKFeTl5dmnUkT1yCzSQAAQoJAj0Nu0LEhpSg1TxHzF5EIYlHIwf4Wpp5TOIECn5/h0Z7R2/0WUavXwq+7VduBCIfQGnisiaj5Xc0oxKkVE1BD79+/Hn3/+iYkTJ1osV6lUiIiIsFgWGhqKnJwcAEBeXl6961UqFQBYrA8LCwMAcX8iR7lYYPqivG2IUgy6moNSxRp2eCDXIXd0ATydl0wKhVwKrd6IMh0vHs7mjLocP2eoIQHw/sM9MGbdryhDII5nlyIhpoWji0dEbkpqurdkTikiogbQarWYO3cu5syZAx8fH4t1Go0G3t7eFsu8vb2h05mGN1VWVta7vrKyUnxdcx0AcX9rVMcNrN7e2v3cGY/JVRfEoJQvJBLT5zHYt7qnlKYK8DMdJ08+VjU/LzVvqXhcLP+1dj9bY1DKCfh7y0xBKeaVcjqfpVwGANwZG4auLQMQcPkAijrcg3P5FQxKEVGzkVVHpQwcv0dEdEOrVq1C9+7dMXDgwFrrFApFrQCSTqcTg1f1rVcqlRYBKIVCIf4OAEql0upyhoYGWL1PU/ZzZzwmQE65aYhe19ZBaKGoApCPlsF+AIBynQGyYC8EBfkhLMxzj1WLFn4A8qFUKsRlPj48LmbO8v+IQSkn4K+QI7+iinmlnIwgCNh3vhAAkNSjFQDAp+AsJB2AgurzZc4JRkRkS8wpRUTUcN9++y3UajUSEhIAXA0c7dmzB8OHD4darbbYXq1Wi0PyIiMj61wfHh6OyMhIAKYhgDExMeLvABAeHm51OfPzS2FNB1iJxPTQaO1+7ozH5KpT2SUAgAiFDMXFpoTngl4PH7kUlXojCiqMKCoqh1pd6shiOpT5uGg0WvHzUllZ5fHHpbH/j8z72RqfqJ2AOa8Ue0o5l7P5FVCX66CQSxEfbeoVJTVoERGgQG6pFpcKNbi5pXNEl4nIvXD4HhFRw33yySfQ669+ubt8+XIAwLRp03D48GF8+OGHEAQBEokEgiDgyJEjeO655wAA8fHxSElJQVJSEgAgOzsb2dnZiI+PR2RkJKKiopCSkiIGpVJSUhAVFVUrD1VDCAIaFUhp7H7uzNOPiSAIuFigAQC0CfaFusi83JRXKqdUi3KjlMdJsPy35nJPPi5mznIcGJRyApyBzzkdumjqJZUQ3QIK+dU5AW4K9mFQioialXn4HoNSREQ3Fh0dbfHaz880hKlNmzYIDQ3FihUrsGjRIjzyyCPYsmULNBoNhg4dCgB49NFH8eSTT6Jnz56Ii4vDokWLcMcdd6B169bi+uXLl6Nly5YAgBUrVmDs2LF2rB1RbaoyHSqqDJBJJYgJ8kHNvn5BSrkpKGWQOax8RNZgUMoJiEEpHXtKOZNDF4sAAH3aBFksvylIicOXipFVrIXBKIgPj0REtiLOvseJPomImsTf3x8ffPAB5s6di88//xydO3fG2rVr4evrCwBISEjAggUL8O6776K4uBj9+/fHwoULxf3HjRuH/Px8TJ48GTKZDKNHj8aYMWMcVBsiE3OS85gWPpDLpBbrWlTPwMegFLkKBqWcgL+3efieHr4OLguZ6A1GHLlcBADo2ybYYl2wr5c4Y2JBhQ7h/oo63oGIqPE4fI+IqPHeeOMNi9c9evTAl19+We/2SUlJ4vC9a8lkMiQnJyM5OdmmZSRqisvFppkhWwfXTrjfwsf0iK8xSmutI3JG/KQ6AXNPqQqdAYKEp8QZnFVXQFNlRIBCjo7hfhbrJBIJwv1Ns7GoyqyfDpiI6EauJjpnUIqIiIgs5ZaYglItA2p/OW5+tmRQilwFP6lOQOklhVQCCACM3n433J6a38k802wMnSP9xYfDmsL9GJQiouYj5pTi8D0iIiK6Rk6pFgDQKtCn1jpzUKpKkEJn4Jdb5PwYlHICEokE/t6mi4dBEejg0hAAnMwtAwB0ifCvcz17ShFRczIP3zOwpxQRERFdI6fEFJRqGVi7p5S3TAIvmelGolDL+whyfgxKOQk/hSmvlJFBKadwKu9GQSlTA1CkqUIVMxETkY1x+B4RERHVJ6d6+F5kHcP3anZ4KNDatVhEjcKglJMIUJh7SgU4uCSkNwo4rSoHAHSJrDso5estg5+3DAIAdTl7SxGRbYnD9xiTIiIiohoMRgG51aM1WtYxfA8A/Ks7PBRU8kaCnB+DUk7Cnz2lnMbFggpo9Ub4esnqnNHCLKw6rxSDUkRka+Lse4xKERERUQ355ToYjAJkkqvPI9fyq+7wwOF75AoYlHISfswp5TTMQ/c6R/jVmeTcLMTXCwBQWFFll3IRkecwX3uYU4qIiIhqMic5jwhQiD2rr+XvXd1TikEpcgEMSjkJ8/A9I4fvOdyZ6qF7ncLrHrpnFsygFBE1k6s5pRxcECIiInIq5nxSLevIJ2VmnoGPw/fIFTAo5STMic4NPoEQ+M24Q10s1AAA2ob6Xnc7MSilqeI5IyKbklW3zhy+R0RERDXlVveUiqwnnxRwNTUMh++RK2BQykmYu1hC5o2SSr1jC+PhLhRUAADahtSfTwoAWvh4QSIBqgwCynUGexSNiDwEZ98jIiKiumSXmIJSrQJv3FOqUMt7CXJ+DEo5CblMCqWX6XSYxwmT/VUZjLhSZOop1Sb4+j2lZFIJWvhwCB8R2d7VnFIOLggRERE5lYYM3/PzkgEQoBeAAk7KRE6OQSknYk52br7QkP1dLqqEQQB8vWQI9697NouaQmoM4SMishUph+8RERFRHXJrJDqvj1QqgUJiuofILWNQipwbg1JOxDz219wlk+zvYvXQvTYhSkiuM/OeWbDSFJQqYE8pIpvT6XQYPnw4Dh48KC7LzMzEmDFj0LNnTwwbNgy///67xT779u3D8OHDER8fj6eeegqZmZkW6z/++GMMHDgQCQkJmDlzJjQajbhOq9Vi5syZ6N27NwYMGID169c3bwWvQ8bZ94iIiKgOquogU4R//UEpAPCRGk3bcxQOOTkGpZyIeexvDoNSDnNBDEpdf+ieGWfgI2oeWq0WL730EjIyMsRlgiBg0qRJCAsLw44dOzBixAhMnjwZWVlZAICsrCxMmjQJSUlJ2L59O0JCQjBx4kRxIoI9e/Zg1apVWLBgATZu3Ii0tDQsW7ZMfP+lS5fixIkT2LhxI+bOnYtVq1Zh9+7d9q14Nc6+R0RERNfS6Y3iCI0bBaUU1UGpPPaUIifHoJQTMfeUyinl8D1HuWCeee8GSc7Ngqp7ShVzBj4imzlz5gwefvhhXLp0yWL5gQMHkJmZiQULFqBDhw6YMGECevbsiR07dgAAtm3bhu7du2Ps2LHo1KkTFi9ejCtXruDQoUMAgE2bNuHpp5/G4MGD0aNHD8yfPx87duyARqNBRUUFtm3bhlmzZqFbt264++678cwzz+DTTz+1e/0BU7d7gMlJiYiI6Cp1dX4ob5kELZTy624r9pQqY4cHcm4MSjkRf2/2lHK0S+LMew3rKRXoI4cEQJVRQAVn4COyiUOHDqFv377YunWrxfK0tDTcfPPN8PW9+v8zMTERqamp4vrevXuL65RKJbp164bU1FQYDAYcP37cYn3Pnj1RVVWFkydP4uTJk9Dr9UhISLB477S0NBiNxmaqaf2qY1LMKUVEREQic4ApzF9xw1QjCgalyEVcP7xKdhVQPXwvm4nOHUIQBFwoaNjMe2YyqQQBPnKUVOpRVKlvzuIReYzHHnuszuUqlQoREREWy0JDQ5GTk3PD9SUlJdBqtRbr5XI5goKCkJOTA6lUiuDgYHh7X53gICwsDFqtFkVFRQgJCbFV9RpExtn3iIiI6Bp5Yj6pG0/I5FOd6JzD98jZMSjlRMzD9woqqqDVG6GQsyObPRVUVKFUq4cEQOvghg3fA0xD+Eoq9SjmDHxEzUqj0VgEjQDA29sbOp3uhusrKyvF13WtFwShznUAxPdvqAbMkVD39jX2u5pTqnFRKWvL0JzMZXGmMtkS6+fa3Ll+ja2bOx4LIndh7vUUfoN8UgB7SpHrYFDKiSjkUsBQBci8kFuqxU1WBEao6S4WmobuRbXwsSogGKSU41IhUMSgFFGzUigUKCoqslim0+ng4+Mjrr82gKTT6RAYGAiFQiG+vna9UqmEwWCocx0A8f0bKjQ0wKrtg4L8TH9H4Q1fX1M5ffWmYJQAiMtuxMfHFEQLDvZDWJh1ZbAHa4+Lq2H9XJs718+d60bkafJKTfcm4Q3pKWVOdF7KnlLk3Jw6KJWbm4tFixbhwIEDUCgUGDZsGF566SUoFApkZmZi9uzZSE1NRVRUFGbOnIkBAwaI++7btw+vv/46MjMzER8fj0WLFqF169bi+o8//hjr1q1DWVkZhg4ditmzZ0OpdGwQSCKRQKYtgcE3FNkllQxK2Zk4dK+BSc7NWviYkp0XaTh8j6g5RUZG4syZMxbL1Gq1OCQvMjISarW61vquXbsiKCgICoUCarUaHTp0AADo9XoUFRUhPDwcgiCgsLAQer0ecrmpaVSpVPDx8UFgYKBV5czPL4U1HZyKisoBAJVaHSoqTN9mVmlNQW6DQRCX3Uhlpemms7CwHGp1qRUlbl4Siemh2Nrj4ipYP9fmzvVrbN3M+xGR8zH3errRzHvA1Z5SFVUGlGn14kzvRM7GaceHCYKAqVOnQqPR4NNPP8Vbb72Fn3/+GW+//XazTwvuSFJtCQAgl8nO7e6ilUnOzWrOwEdEzSc+Ph5//fWXOBQPAFJSUhAfHy+uT0lJEddpNBqkp6cjPj4eUqkUcXFxFutTU1Mhl8vRpUsXdO3aFXK5XEyabn7vuLg4SKXWNZWCYP2Pacer7yEVc0o17im5MWVozh9nLBPrx/p5Qv2adE0iIqeTJw7fu3FPKbkEUJqyw0DFvFLkxJw2KHXu3DmkpqZi8eLF6NSpE3r37o2pU6di165dzTotuKPJKk1BKSY7t7+LYk8pa4NSpm8dynQGCFJ+A0HUXPr06YNWrVohOTkZGRkZWLt2LY4dO4bRo0cDAEaNGoUjR45g7dq1yMjIQHJyMmJiYtC3b18ApgTq69atw969e3Hs2DHMmzcPDz/8MJRKJZRKJUaOHIl58+bh2LFj2Lt3L9avX4+nnnrKIXUVZ9/j0yERERFVMyctjwxo2ND+IIWkej92eCDn5bRBqfDwcHz00UcICwuzWF5WVtas04I7mrmnVHYpLxz2dqG6p1QbK4dN+njJxBxUeqV9Z+gi8iQymQxr1qyBSqVCUlISvvnmG6xevRpRUVEAgJiYGKxcuRI7duzA6NGjUVRUhNWrV4tTJt93332YMGEC5syZg7Fjx6JHjx545ZVXxPdPTk5Gt27d8PTTT2P+/PmYMmUK7rnnHsfUtToqZTQyKEVERESAIAhQW5HoHABaVHeoYrJzcmZO260jMDAQAwcOFF8bjUZs3rwZ/fr1a9Zpwa3R2NlMJJL6u0bLtKY8ILkllS43+4krz2Cj1RuRVWzqndYu1LfOOlzv/AUpTcnpDcoQl6y/K5+7hmD9rr+fMzt16pTF6zZt2mDz5s31bj9o0CAMGjSo3vXjx4/H+PHj61ynVCqxZMkSLFmypHGFtSFzUMogmG5CJa5wsoiIiKjZFGv00BlMDyENGb4HmHtKCRy+R07NaYNS11q2bBnS09Oxfft2fPzxx802Lbg1GpsEUqmsP7LtrS8DAOSVVznl7EkN4YrJMU/llEIAEOgjR+xNIdd9AKzr/IUFKJBbqoXgH+qy5w1wzXNnDdaPXIVcevUapDcK8JIxKEVEROTJzEPwgpVe8JI1bMBTkLfp/iGXo3DIiblEUGrZsmXYuHEj3nrrLcTGxjbrtODWaMxsJgCg0Wjr3U+oKAIAZBVpkKcqEZPdugJXnsHm6FkVAOCmYCXy88vq3OZ658/fy9QwVCmCnGrWq4Zy5XPXEKzf9fcj51M7KOXAwhAREZHDmXs7NbSXFHA1pxR7SpEzc/qg1MKFC/HZZ59h2bJluPfeewE077Tg1mjsDCXX20eqLYNMYnoIUZfpGjxe2Jm44swtYj6pEN8blr2u9S18TP+V9MoQl6t7Ta547qzB+pGrkEgkkEkkMAgC9MwrRURE5PHMPaUiGpjkHACCqjdlTilyZk6b6BwAVq1ahS1btuDNN9/EfffdJy5vzmnBHU0CQQxEZZfw4mEv5pn32lqZ5NwsSOkFADAogzlbFhHZhLx6yJ7ewGsKERGRp1OJSc6t6CnlbZ59jz2lyHk5bU+ps2fPYs2aNRg/fjwSExOhUqnEdTWnBZ84cSJ+/vlnHDt2DIsXLwZgmhZ83bp1WLt2LQYPHozVq1fXmhZ8zpw5iI2NRUREhMW04M6gVaACOaVa5JRUokdUoKOLY5WRox/GlRx1vevDgoOxaf3H9itQA9XsKdUYAT5ySCWAUWZKeN4q0MeWxSMiDySXSqAF2FOKiIiIkFdqHr5nTU8pU1CqoFwHvcEIeQNzURHZk9MGpX766ScYDAa89957eO+99yzWnTp1CmvWrMGsWbOQlJSENm3a1Dkt+Ouvv47Vq1cjISGh1rTgV65cwZw5c6DT6XDPPfdYTAvuaJGBPsCVEuS4YE+pPHUhRr7yTr3rv1r2gh1L0zCCIFztKdXIoJRUIkGgjxxFGj0uFFQwKEVETWbOK6U3Gh1cEiIiInI08/C9SCuCUv5epvsJvVGAulyHlnxGISfktEGp603bDTTvtOCO1irQPHyv8gZbki2oy3WoqDJAJgFighp/oQ5SelUHpTS4ta3tykdEnulqUIo9pYiIiDydmOg8oOHD96QSCcL8vJFTqkVeGYNS5JzYf88JmS8WOZy60y7MQ/eig5QNnl61Lua8Uher34+IqCmYU4qIiIjMruaUsm4iLHNidCY7J2fFoJQTall94XDF4Xuu6EL10L02jUxybtZCaep4yKAUEdmCXGpqog3sKUVEROTRKqsMKK7UAwAirEh0XnN7JjsnZ8WglBMy5yPi8D37MAeRGptPyizIx9RTyhzkIiJqCg7fIyJquNzcXEydOhV9+vTBwIEDsXjxYmi1pi94MzMzMWbMGPTs2RPDhg3D77//brHvvn37MHz4cMTHx+Opp55CZmamxfqPP/4YAwcOREJCAmbOnAmNhvd6ZF/qclNASSGXIkBhXQYec88qFUfhkJNiUMoJtazOKVWuM6BMq3dwadyfOcl5m5Cm9pQyBaXU5TqeNyJqMiY6JyJqGEEQMHXqVGg0Gnz66ad466238PPPP+Ptt9+GIAiYNGkSwsLCsGPHDowYMQKTJ09GVlYWACArKwuTJk1CUlIStm/fjpCQEEycOBGCYPpCYM+ePVi1ahUWLFiAjRs3Ii0tDcuWLXNkdckDmZOcR/h7i5N3NVS42FOKQSlyTgxKOSGllwwtfEwRcPaWan4XbNRTSiGXQqorAwBcLOQ3aETUNDL2lCIiapBz584hNTUVixcvRqdOndC7d29MnToVu3btwoEDB5CZmYkFCxagQ4cOmDBhAnr27IkdO3YAALZt24bu3btj7Nix6NSpExYvXowrV67g0KFDAIBNmzbh6aefxuDBg9GjRw/Mnz8fO3bsYG8psitVaXWScyvzSQFAhLmnFIfvkZNiUMpJRbUwDeHLKmZQqjlVVhnEhPJtmhiUAgCZphAA80oRUdMx0TkRUcOEh4fjo48+QlhYmMXysrIypKWl4eabb4av79X7vMTERKSmpgIA0tLS0Lt3b3GdUqlEt27dkJqaCoPBgOPHj1us79mzJ6qqqnDy5MnmrRRRDXliknPr8kkBV2frY08pclbWDUglu4luocTfuWW4XMSgVHMy92hq4SMXZ89rCllFAapatBZ7XxERNRZzShERNUxgYCAGDhwovjYajdi8eTP69esHlUqFiIgIi+1DQ0ORk5MDANddX1JSAq1Wa7FeLpcjKChI3N8aVo66Ere3dj935qnHxNzLKSJAUWfdax4XQbBcHhlQs6eUYPXwP1d2vePiQYehlsb+P2quY8aglJOKCTL1lLpcxK7BzclWSc7NZJqC6vfleSOipjHPvsegFBGRdZYtW4b09HRs374dH3/8Mby9LXuXeHt7Q6czPeRrNJp611dWVoqv69vfGqGhAVbv05T93JmnHZOC6ny1naJaICysdt1btPADkA+l8urwPh8fLwQF+aFr21BIJIBWb4RUqUBoI4YAuqrrHZe6jqOncZb/RwxKOSkxKMXhe83KHDyydVCKPaWIqKnYU4qIyHrLli3Dxo0b8dZbbyE2NhYKhQJFRUUW2+h0Ovj4mO61FQpFrQCTTqdDYGAgFAqF+Pra9Uql9RPk5OeXWvTWuBGJxPTQaO1+7sxTj8kldTkAwF8KqNWltdYXF5vWazRa8bhUVlahqKgcpUUVCPX1hrpch/QL+eja0jkCEfZwveNS13H0FI39f2Tez9YYlHJSMUGmho49pZqXOXjU1Jn3zOQVpqBUZpEGBqMgJiomIrLW1ZxSnH2PiKghFi5ciM8++wzLli3DvffeCwCIjIzEmTNnLLZTq9XikLzIyEio1epa67t27YqgoCAoFAqo1Wp06NABAKDX61FUVITw8HCryycIaFQgpbH7uTNPOyY5JaZ8UJH+ijrrbV527TrzcWoZqIC6XIfsEi26RHpOUOpGx8XTOctxYKJzJxVdneg8u0TLb8mb0dWglG16Skm1pVDIpagyCJw5kYiahD2liIgabtWqVdiyZQvefPNN3HfffeLy+Ph4/PXXX+JQPABISUlBfHy8uD4lJUVcp9FokJ6ejvj4eEilUsTFxVmsT01NhVwuR5cuXexQKyLTxEyFmioApuBSY7SszitlnuCJyJkwKOWkIgIU8JZJYDAKyGFwo1kYBQGXCm07fE8CATcFm3pdcQgfETUFg1JERA1z9uxZrFmzBs8++ywSExOhUqnEnz59+qBVq1ZITk5GRkYG1q5di2PHjmH06NEAgFGjRuHIkSNYu3YtMjIykJycjJiYGPTt2xcA8Nhjj2HdunXYu3cvjh07hnnz5uHhhx9u1PA9osbIrQ4k+XrJEKBo3ECnyABTh4fcEs8JSv10WoUXf9fiN7US5/L5XObMGJRyUlKJBFHVvaWucAa+ZpFbqkWl3gi59OqxtoU2YlCKQy+JqPEYlCIiapiffvoJBoMB7733HgYMGGDxI5PJsGbNGqhUKiQlJeGbb77B6tWrERUVBQCIiYnBypUrsWPHDowePRpFRUVYvXq1OEPZfffdhwkTJmDOnDkYO3YsevTogVdeecWR1SUPY+7dFBmoaPTMeeYeVrmlnvFcuf9CAf7z7UlUGoDCKhl+Oq0Wg3vkfJhTyonFBClxoUCDy8Ua9EWwo4vjds5WJwxsG+IrPvzZgnko4EX2lCKiJjDPvmdgUIqI6LrGjx+P8ePH17u+TZs22Lx5c73rBw0ahEGDBjX6/Ymak7l3k3kIXmN40vA9vcGI1/acht4oIDFciuxSHbIq5dh3vhAj4yIdXTyqA4NSTuxqsnPPiGjb2zm1KWjUPtQ2Q/fM2jIoRUQ2cDXROYNSREREniqnundTY/NJ1dw3xwOG7/1yJh95ZTqE+Hrh6S4SfHuqFKoqL6jLdTibXwFvRxfQzrRaLY4dS7VYJpEAd9450DEFqgODUk6sdZBpSFlmIYeBNYez+aaeUh3C/Gz6vuaZ/Dh8j4iagsP3iIiIKEfsKdX4dCOR1T2l1OU66PRGeMvdN4vP1qNXAABJPVrBS5oLH5mAuFYBOHK5BKfzytHdfatep2PHUrF21/8Q2aaTuCz3YgaCgvzQqVN3B5bsKg87Ja7FPAzsPHvcNIvm6inVJtj0foWaKhRXz5RBRGQtmRiUMjq4JEREROQo5iF3TekpFaT0gqI6EJVX5r69pc6oy5F6pQQyqQSj4luJyzuF+wMAsooroTXaLm2Lq4hs0wk3dYkXf2oGqJwBg1JOrF11UOpKkQZVBj6U2JLBKIjBvvY27inl6y1DhL+pY+hF9nIjokZiTykiIiIyJ+iObEJOKYlEIu7vzgm/f8lQAwD6twtBmP/V4xXoI0eEvzcEADk6TxvA5/wYlHJi4f7e8POWwSAAlxjcsKms4kpo9UYo5FJE23DmPTNzXqkLnH6UiBrJHJQyCoCRgSkiIiKPYxQE5JQ0PacUALSq3j+r2H3zFf92Nh8AMKhDaK115pQt2QxKOR0GpZyYRCIRh/Bd4BA+mzqXf3XmPZkNZ94za1c9JNCct4qIyFpy2dUmmr2liIiIPE9eqRY6gwC5VILIJuSUAmpMouWmQam8Ui3+zi2DBED/9iG11rcLNdW/2CBDWRXvq5wJg1JOrl110uzz7HFjU2fUpmCRrfNJmcVGmMYtn84ra5b3JyL3J6sRL2dQioiIyPOYZ2GPauEj9qBuLDEo5aYjcP53ztRLqnurQIT61e4N5ectR7DSC4AEp4uYGseZMCjl5Nqyp1SzOJVnCkp1rg4e2Vrn6mR6p1XlEAQ+TBKR9SQSCfNKERERebDMIlMAKSao6elGYqpTlpjf0938ca4AADCwQ+1eUmbmtC1/FzIo5UwYlHJy5mFgFwrc8+LhKKdySwE0X1CqfZgv5FIJSir1bp1MkIial5wz8BEREXmsy9UBpNbVvZyaIibY9B6ZRRq3+9JcbxRw5HIxAODWtsH1bhddHdw7WWh0u2PgyhiUcnI1e0oZ+R/HJkoqq5BVYgoUNVdQyksmFQOKpziEj4gaSV49hk9v4PWfiIjI05iH78XYIihV3UuoTGtAcaW+ye/nTNJzSlGuM6CFj1xMo1KXVoEKSCAgXwtccdPcWq6IQSknFx2khEIuhVZvFC9K1DTmIFFUCx8E+Mib7e9czSvFZOdE1DgcvkdEROS5Mm3YU8rHS4YIf1OupctuNoTv0MVCAEDvm4IgldSfe8tLJkWQ3BSQO1i9Dzkeg1JOTi6ViNNXsseNbZzMNR3HLs3US8osNtx03k6reN6IqHHkUlMzzaAUERGRZxEEQQwe2SKnlOl9rg7hcyeHLhUBAPrcFHTDbUPFoFRR8xWIrMKglAswB0/MwRRqGnNwr0tk8walzEMD/+Z5I6JGYk8pIiIiz5RfUQVNlRFSiWmEhy20Fmfgc58ROJoqA45nlQAAbrmp/nxSZqFeVQCAPy8VwcD7K6fAoJQL6BxR3eOGPaVswhzcu954Y1voGhkAqQTILdVCVcZk50RkPTEoZWCicyIiIk9yudDUm6lloA+8ZLZ5bDf3uHKnnlJHMouhNwqIClQ0qEdZoMwApQwo1erxd/XkV+RYDEq5gM6RAQCAk3llnCWgiYo1VbhYfYHvVn1cm4uvt0wcemmO3hMRWcPHy9RMV+oZlCIiIvIklwrN+aRs00sKAFpXz8Bnfm93YM4N1adNMCTXySdlJpUAsUGm+6tDHMLnFBiUcgEdw/wgkwBFmirklekcXZxajIKAPy8V4fOjWSgP74ZyrfPO5nCsOjjUJliJIF+vZv97PaICq/8uo/BEZD0fLxkAU9d0IiIi8hxn1KbJksxfcttCh1DTe51Vl7vNzO7moFTfNjceumfWJVhqsS85FoNSLkAhl6Jd9QXE2fJK/Z1bijGfHsXz245h6U9nUNzhbvzfkSz8cb7AKYebpFUHpeKjA+3y9+Jamf7O8Wz2lCIi6ynFoJTzXU+JiIio+WRUT5bU0YZBqZhg08zulW4ys7uqTItz+RWQwDTzXkN1DTb1qDqWVcIv/pwAg1IuwpyUOz3HeYIb+y8UYPyWNPydWwZfLxkGdQyFV2kWACA9pww7/8qD1smGnKRdKQYAxEe1sMvfi6vuKXUytxRVThikIyLnpqwevscbJiIiIs8hCAIyVKaeUp3CbReUkkslaB/qCwA44wYzhJuH33WJ9EeQsuGjYMJ9JGgZoIDeKODI5eJmKh01FINSLqJndc+eo07ynyb1cjFe/uovVOqN6Nc2GF+MuwUrRnZD+F+fY0iXcPjIpVCX67DnZJ7T9JjS6Y1IzzENo7NXT6nWQT4IUnpBZxA4Cx8RWc3cU6qSQSkiIiKPoS7XobhSD6kE4ogZWzH3vDIHvVxZY4buAYBEIhH3OcQhfA7HoJSLSIgJAgCcyCl1eO+jnJJKzNiZjiqDgEEdQvHmyG4I9fMW17cOVmLYzRHwlkmQW6rDH+ed4z/6ybwy6AwCgpVeuKk6yV9zk0gkSIgx9co6fMk5jgMRuY6rPaWcI7hPREREzc8cMGoT7AuF3LaP7J2qZyA356xyVYIg4NClIgDWB6UAoE+bIADA4er3IMeRO7oA1DCtg3wQ6ueN/HId/sopQa/qIJW9GQUB83afQkFFFTqF+2HBsC51TlEa6ueNuzuH47v0PJxWlaNVoAKx1RdARzlwoQAA0Kt1iwbNzGAr/doE4ecMNQ5eKMS4fm3s9nfJ0sjRD+NKjrre9WHBwdi0/mP7FYioAWomOhcEwa7XLiIiInKMM9VBqY42HLpn1slNekqdVVcgv1wHH7lUnFzKGrdU56DKUJVDXaZFmL/CxiWkhmJQykVIJBIkRLfA3tMqHL1c7LCg1PbULKRkFsNHLsWS+2+Gr7es3m2jWvigV+sWSMksxr4LhYhqYbvpTBtjX3WPrdvahtj17/Zta4rcH8suRZlWD38F/9s5Qp66ECNfeafe9V8te8GOpSFqGGX1t6NGAagyCPCWMyhFRETk7jLUts8nZWYevneluBLlOj38vF3z2eRA9bC7hJgW8G5Eb7JgX290jfTH37ll+P1cAUb2aGXrIlIDcfieCzEPAzuS6Zi8UpmFGqz87TwAYMrt7dG6AUPgekYHIjLAG1UGAb+dLYCjJh4trNCJ+aRubWd9986miG6hROsgHxiMAlIcdO6IyDXJZVJ4yUyBKCY7JyIi8gzm55bYcNuPNAny9UKEvyn1yt85rpvztrH5pGoa2CEUAPC/cwU2KRM1DoNSLqT3Taag1NErxSjX6e36t42CgAV7TqFSb0Tv1i0wumfDIslSiQS3dwiFTCLBleJKVEbGNXNJ67b/QiEEmL5tCHdA10zzxXL/BV7wiMg6Srl5CB/zShEREbk7VZkWlwo1kACNGpbWEGJnh8tFzfL+za1Mq0dKZhGApnU4uL06KHXwYiEnlXEgBqVcSLsQX9wUrESVQRCHotnLliNXkHqlBL5eMsy+tzOkVuQ1CVJ6iQG18nZ3ILuksplKWb/fq6Pft7Wz79A9swHVF7yfM9TQGx3VX4yIXJGPmOycN0tERETuzjwqJjbCHwE+zTO0rpcYlHLNURy/nc1HlUFAuxBftG/C7ISx4X6IDFBAqzfiz+ogl7vT6Y0o1MtQ4URfdjIo5UIkEgnu6GgKbvySUX/CZlu7VKjBmt8vAACmDmrXqNxQ3VsFIDJAAUHujdf2nIYg2C8wU6bV47ez+QCAwdXHz9763hSEFj5yFFRUIYUzPBCRFZQ1kp0TERGRezMHisyBo+Zgzk98IrsUOgfP7N4Y/z1teha+MzasSe8jkUgwsL2p08Le0/Z7vnaEcp0e/z2txsbDl3GoNBAfpVU4ukgiBqVczB0dTf/x/jhfYJcLiFEQ8NqeU9Dqjeh9UxCSGpkAzjSMLwQwVOHQpSJ8eSzbxiWt339Pq6HVG9E2RImbWwbY7e/WJJdJ8Y/YcADAnpN5DikDEbkmc1Cq0om+0SIiIqLmYR5S15xBqTYhSoT4ekGrN+Kv6vxVrqJcpxdTovyjiUEpABjSNQIA8N/TKrf9ArDUIMWOtByczTcFopRSA3q39HJwqa5iUMrFdGsVgHB/b5TrDPj9XH6z/71tR7Nw9EoJlF5SzL4ntknTkQcpveB38XcAwDu/nkdWsX2G8X2bngsAGHZzpEOnU7+niyko9d8Mtdte8IjI9pQcvkdEROQR1GVaXCgw5ZNKaMaglEQiEXtLudqwtR9PqqAzCLgpWCnOJNgUPaICERPkA02VEb+ccb/eUiqNgD9LA6DVGxHi64UH41ri9hYluC3G/nmW68OglIuRSiQY3i0SAPB5alaz/q0L+RVY9T/TbHtTb2/fqGF711JmHUHP6EBUVBmw8IfTMDbzML5z+eU4crkYEgBDq6PgjpIQ0wLRLXxQrjNg54kch5aFiFyHj3n4ngt2ryciIqKGMw8h69oyAC2UzduT5da2pgThP55S2TW1SlMIgoBt1c/AI+Na2qTDgUQiwbCupufrXSdym/x+zkRVpsW7x3XQCVKE+HpheLdIhFXPvOhMGJRyQaPioyCTACmZxchQNc80npVVBry6Kx2VeiNuuSkISfGNG7Z3LQmAOfd2hkIuxZ+XirD58GWbvG991h+4BAAY1DEULQObHlRrCqlEgsd7xwAAPv3zMhOe24kgCCiprILByxd6Ax/qyfWYe0pV6NhTioiIyJ19Vz3Cwx5fpg/uFAZvmQTn8ytwOq+82f+eLRzPLsVpVTkUcinu797SZu87rFsEpBLg0KUinM5rnudreyvSVGHS9uPIrzQN1xvaNQIKuXOGf5yzVHRdkQEKDO5kGj+7qRmCOoIg4LUfTuOsugIhvl5YMKyLVbPt3UjrYCVevKM9AGD17+dx8GLzzCR4qVCDH0+pAADj+t3ULH/DWvd3i0SQ0gtZJVrs/tu9IvHOJLNQg/UHLmH81jTc/u4fuHPVfuQmjseGQ5fx2ZEr+DlDjXP5FTAwMEguINjX9E2pulzHzywREZGbupBfgb9zyyCTXE370ZwCfOS4vXqG8O9c5Llk85+mZ9+7O4cjyIY9yaJbKMX8vx8fyrTZ+zpKuU6PF744gfP5FWjhDdziXwZfb5mji1UvBqVc1JO3tIYEwO6/85B2xbZTeb73xwXsOamCTCrBovu6IszP9l38knq0wvBukTAKwIxv0nEq17YRaUEQsOynMzAKwID2IegS6ZgE59fy8ZLhiereUu/+eh7FmioHl8h9CIKAgxcL8cIXx5G0/jDe++MCjl4uRuU1Q57KtAacUVfgp9NqfHbkClIyi9gDhZxasNILCrkUBqMAdbnO0cUhIiKiZvDlcdNEUP3ahiDE1z5DrIZUD1vb/Xee0+euTL1cjJ8z1JBKII4+saV/9W0NANh7SoWzatfoOVYXrd6IaV/9hfScUrTwkWNqnBeUMuceLeKxQSmtVouZM2eid+/eGDBgANavX+/oIlnl5pYBeCDO1GVxyU9nUGmDi4ggCHjvjwvYcNAUHZ55Vyf0vimoye9bF4lEglfv6oReMS1QrjNg8o7jSLfhzA9fHsvGgYuFUMileOH29jZ7X1t4LDEa7UJ9UaipwvKfz7rMGG5nZTAK+OFkHp745Agmbz+OfecLIQHQr20wZt7dCVvHJOKPfw9AqwNv48ne0Rh2cwR6RAXA10sGTZURRy6X4LMjV1Da8W5cKtQ4ujrkBJytfZBIJGgVaEpGmV2idWhZiIg8lbO1DeResoorxVxJo3vaJm1KQ/RvF4yoQAUKKqrEXkjOSG8w4q1fzwEAHuje0iYJzq/VKdwfd3QMhQDgtR9Ou2Tv9MoqA2Z8k44/M4vh6yXDO6Pi0MrP+UM+ckcXwFGWLl2KEydOYOPGjcjKysKMGTMQFRWFIUOGOLpoDTZ5QDv8kqFGhqocc78/hcX3d230MDtNlQGv/5iB3X/nAQCm3t5ODHo1F4VcihUju2HitmP4O7cMz32ehtn3dsbdnZvWXXXf+QIs//ksAGDigLZoG+pri+LajJdMill3d8L4rWnY/XcebgpW4tlb2zi6WBg5+mFcyal/xomw4GBsWv+x/Qp0A1UGI75Lz8Wmw5fFYJKPXIoHurfEo4nRiAlSittKJKZ8Zj5eMkS3kCG6hQ96tw7ChYIK/JVTitxSHSpb9sDo9YdxZ2wYnrqlNW5u6Ry968j+nLF9aBmowIUCDXJKKoHoQIeVg4jIUzlj2+CJtFot9u8/gaKictT8XrdHj55QKJxnNjFrCIKAlb+dQ5VBwC03BaF/uxC7/W25TIrJt7fHzF1/Y9OhTNzfLdLheXjr8vav55CeUwo/bxkm9G/bbH9n2p0dcfhSEU5kl2L9gUt49jbHP6M1VFFFFV7dlY6UzGIo5FK8+WA3dGsZgMMuMBrRI4NSFRUV2LZtGz788EN069YN3bp1Q0ZGBj799FOXaliCfL2w5IGbMWXHcfw3Q43pX6dj7pDOCPBp+Gk1CgJ+OZOPd345i6wSLWQS03/G0T2jmrHkV/kr5FjzUA+8ujMdBy8WYeauv/Hf02pMGtjWIqjQEIIg4MvjOXjz57OoMgj4R2wYHukV3Uwlb5r46BZ45c6OWPLTGazddxGFFVX496D28LZz8jmd3oiCCh0MgoCsMgF3TF4Ob5kU3jIJZFKJxYwWXy17wa5lq8+Fggp8+1cuvk3PharMNJSphY8c/0yIxsMJUQ2eqUQmlaBDmB86hPkhp0SLPb/tgy60A346rcZPp9WmBP89WqF/+xAovZx3DDbZlrO2D60CTDeIOaVaGAXBpnn+iMj9ZBZqkJ5bCi+fQvSPCYRCznasKZy1bfBEx46lYsOe/Qhu1U5clnsxA+MB3HJLX8cVrAk+2n8Je0+bhqW9MKi9TWaUs8ZdsWHYEhWIY1kleOGLE1j7z/hmn/mvoYyCgI/2X8TWo6ZeZPOGdG6W1DJmkQEKvDS4AxbuOY21+y9CIZfiyVti7H5OrHXgQgFe+yEDuaVa+HrJ8FZSN/SKCXJ0sRrMI4NSJ0+ehF6vR0JCgrgsMTER77//PoxGI6RS5+/iZpbYOgjzh3bB3O9P4tez+Ri1/jAeTYzGP2LD0TrIp87/QHqDEWfU5dh3vhDfpefiYnUvkwh/b7x2X1ckxLSwax38FXK8/WB3fHTgEjYcvIS9p1X4OUOF/u1DcVfnMCREt0BkgKLei0Gxpgr7LhTg86NZOJFtGgJ4R8dQvGbjBO22NrpnFEq1eqz5/QK2pWbhf2fz8XjvGNzZKQwRAU3/pkerN0JVpkVuqeknr1SLvDId8syvy7QoqKiR06rnGGxLzRZfyiQS+Ctk8FfI4a+Qobx1P+z6KwcR/gpE+CsQHuANP+/mvYQIgoCCiir8nVuKlMxiHL5UhFM1ZsQI8/PGE71j8GCPVk1K3tcyUIEWf3+Fdz/8P3xyOBN7/s7D4UtFOHypCD5yKfq3D0GvmBbo3ioQncL94CVznWsEWcdZ24cQPy94yyTQGQQcyypBz2j7XqeJyPkVVVRh72kVvkvPxfHsqykRFgzrjKHVeWOocZy1bXBnVQYj8st1yC/XQV1ehfwKHfLLdMi4pIc6pDsqfEIhl0qg9JJBaOWFM8VGRBZqEOrn1ez3p7ZypViD93435fIFgJcHd0TnCH+7l0MikWDhsC54ZksqzuVX4KlPj+KlOzpgQPsQyKSOeZYyCgKOXi7GR/sv4s9MU/7k5/u3xR3Vk301pwe6t0ROSSU+3H8JK/93HocvFeGZW29Cj6hApwpOlev0OHihEDvSsnHoUhEA4KZgJZbcfzM6htt+eGNzco3/sTamUqkQHBwMb++rUdawsDBotVoUFRUhJMR+XSZt4e7O4Yhu4YPZ353EpUIN1vx+AWt+v4BAHzlaBiig9JJBIZeiXGeAuvrirq8xRtbPW4aHE6Iwps9NDsvKL5dJ8Vz/thjcMQyrfz+P/RcK8dvZfPx2Nh+AaVhW62AlgpRekEtNvXjKdQbkllQiq0aOFW+ZBBMHtMOjidFOHZAy+1ffmxAb7o/XfjiNnFItVvx8Fit+PosQXy+0CfFFTAsf+Cnk8PWSwksmhQAA1adOLwiorDKgssqISr0BFToDCiuqUFChQ0FFFcobmLxbJpVAIZNCoymHXKFElcH0BwyCgOJKPYor9aYN2/TH/N2nLfb185Yh3N8bYX6mAJWfQgZfLxl8veWQyySQSUzvL5VIxPMmkUhgNArQGwUYjAL0RqP4u84goLSyCsWVeuSX63CpUFOrHjIJcGu7ENx3cyRu7xBq095lHcP8MH9oFzzXvy22p2Zj72kVsoorxd5T5r8fEaBAy0AfhPp6w89bBl9vGZTeMvjIpZBJJJBIAGn1vxKJBFJU/ysxnb6r3c0FCEL1MkDMLyYuq9EvveYywWKZ6VWfTuHoEeZcQ1VdkbO2D1KJBLfcFIQ/zhfi8KViFJRXIcTPC1JJ9f8rAMUaOfx7DsUvmTpkCFkOKWd9/P19UFZW6ehiNBtnrF9D0xXeaDMJAD9/BcrKtDd4z4b9wYaUqyHv1NBMHzfK2yiRAL6+CpSXXz9fm62OZ0PKZFZUXARNRcV1/5bOIKBQK+ByqQEXSozi35dKgPYtZOjROgi3tXWt+1pn5Ii2oUJnwLr953FFnY8qXRWkMN1XSSVAy8hIeHvJIZOa7q+kElM7YL7vMP8O1LwPAQCJmNJAIql5b2H+q5b3JUDte5PrLat5f1L9ble3qXHPUvNvaHQGlGr1KNPqUVKpR6GmCgXluqv3n3XyBipq5qL1R1paFd5MOwwAUHpJEepnuj8N9fNGCx8v+HhJoZBL4SOXwUsmEe/TbnSMjIK5PrXv2a69X7v2Xs18n1bzGGiqDFCV63BWXY4MlSmZtlQCTBzQDg8n2GekSl2iWvhg5ag4TN1xHFnFlZj29V8IVnqhW6sAtAxQVH9JLYeXzHTQbnzMTPU2osbvNY6Zseay6m30RgF5ZTrklFTinLoChdUTQnnJTLmIH+jevKllanr21jbwV8ix+n/nceBiIQ5cLESIrxc6R/gjzM8bIX6mZwCZRAKp1HSPb/7drL7PTc31Db3fBwCt3oAijR5FmipkFmksZhKXSSV4uGcUxt9mKrercb0S24BGo7FoVACIr3W6hs9sJJU2/CYFMN/4+ELhJa13Pz9fXzTmy5buUQHYNrY39p5S4Ye/VUjNKoHBKFgEbMx8vGTwU0gR17IFBnQIwZ2xoTb5RsEW9evayh+rHorDhQINfvg7DwcvFeK8ugIGwZTgt64kv/4KOdqGKDGoYyhGxrVCiF/zdDdtrvM3sGMIvm5zC75LV2HvaRX+yi6FziAgQ3W1sbK+rBL4K+TwlksR4e+NcD9vRAR4I6xGL6cIfwXC/bzRQimHVCrBw088gSGTXxcDRpVVBpTrDCjTGlCuNeDvo/vRvfdtUJfpoCrXokJnmsVBXV4FdXnzzCIokUgQoJAjOsgH8VGBSIgJRGLrYKvPsbXnLjrIBy/c0Q5TB7XFqbxy7L9QiL+zS5GeV4rSSgNKtQaUqsqRAeeZmWPz4UzsmXgrfKwYaugCcVu7s0X7YG3bIJfLEBAQgDLVFRRc51rcEkC3Ft64WOmN3DIdcsuuLY8/2jzwAr48rwfOX2h4AYjIDUjhp5BCl3ce5Sd/Q/nJ36EuL8JxX1/868dfEOzX8HQGbBtqc8Szw/HsEnxxPM+8p+VKVV6t7d2Nv0IOmQQI8AYCvCQI9JYg0BuoLC5AVqkWPv4toBeAKqMUZRot5AoFKgVvVN+eVj+863FGXX9g19ECFHJ0aiHBfW1luMk7F6mpuY1+r3PnzqAoqxgS4epnrCT3Es75lcHLinvD2Yky/HDJGwfzjKjQC0i9UtLoMjVVqK8cvcKluCtGhhD9ZaSmWp+IvSnH5WYZMLePAj9dNiJVbYTOIFj0QnU0pZcMoT5AfKgUt7aUIUxZiDN/F9ba7ty5MyjJLUCe99Xnp5K8S5DJYhsVz2gOEsEDp/76/vvv8dprr+GPP/4Ql509exbDhg3DwYMHERQU5LjCERGRw7B9ICKia7FtICJqPh45ADoyMhKFhYXQ6692C1WpVPDx8UFgIGc1IiLyVGwfiIjoWmwbiIiaj0cGpbp27Qq5XI7U1FRxWUpKCuLi4piokIjIg7F9ICKia7FtICJqPh55FVUqlRg5ciTmzZuHY8eOYe/evVi/fj2eeuopRxeNiIgciO0DERFdi20DEVHz8cicUoApYeG8efPwww8/wN/fH+PGjcOYMWMcXSwiInIwtg9ERHQttg1ERM3DY4NSRERERERERETkOB45fI+IiIiIiIiIiByLQSkiIiIiIiIiIrI7BqWIiIiIiIiIiMjuGJRqJjqdDsOHD8fBgwfr3SY9PR0PPfQQ4uPjMWrUKJw4ccKOJWyahtTv+eefR+fOnS1+fv75ZzuW0jq5ubmYOnUq+vTpg4EDB2Lx4sXQarV1buuK586a+rnauQOAixcvYty4cUhISMAdd9yBjz76qN5tXfH8WVM/Vzx/7k6r1WLmzJno3bs3BgwYgPXr19e7rSt+Pq2p3y+//IIRI0YgISEB999/P3766Sc7lrRxrKmf2eXLl5GQkHDddtJZWFO/U6dO4dFHH0WPHj1w//3348CBA3YsaeNYU78ff/wRQ4cORUJCAh599FH89ddfdixp47n7faenash59STW3Mt6EmvuET3R+PHj8eqrrzq6GE7jxx9/rPWcMHXqVMcWSiCbq6ysFCZNmiTExsYKBw4cqHOb8vJyoX///sIbb7whnDlzRli4cKFw2223CeXl5XYurfUaUj9BEIS7775b+Prrr4W8vDzxR6vV2rGkDWc0GoWHH35YeOaZZ4TTp08Lhw8fFu6++27hjTfeqLWtK547a+onCK517gRBEAwGg3DPPfcIL7/8snD+/Hnhl19+EXr16iV88803tbZ1xfNnTf0EwfXOnydYsGCBcP/99wsnTpwQfvjhByEhIUH4/vvva23nip9PQWh4/f7++2+hW7duwsaNG4ULFy4ImzdvFrp16yb8/fffDih1wzW0fjWNGzfuhu2ks2ho/UpKSoTbbrtN+M9//iNcuHBBeOedd4TExERBrVY7oNQN19D6nT59WoiLixO+/PJL4eLFi8L8+fOF/v37CxUVFQ4odcO5+32np2ro/bansPZe1lNYe4/oaXbt2iXExsYKM2bMcHRRnMaaNWuECRMmWDwnFBcXO7RMDErZWEZGhvDAAw8I999//3UbkW3btgl33nmnYDQaBUEwXWjvvvtuYceOHfYsrtUaWj+tVit07dpVOHfunJ1L2DhnzpwRYmNjBZVKJS7buXOnMGDAgFrbuuK5s6Z+rnbuBEEQcnNzhRdeeEEoLS0Vl02aNEmYO3durW1d8fxZUz9XPH/urry8XIiLi7O4Xq5evVp44oknam3rip9Pa+q3bNkyYdy4cRbLxo4dK7z55pvNXs7GsqZ+Zl9//bXwyCOPuMTDpDX127hxo3DXXXcJer1eXJaUlCT88ssvdilrY1hTvw0bNggPPvig+Lq0tFSIjY0Vjh07ZpeyNoa733d6qoaeV09izb2sJ7HmHtHTFBYWCrfffrswatQoBqVqePnll4UVK1Y4uhgWOHzPxg4dOoS+ffti69at190uLS0NiYmJkEgkAACJRIJevXohNTXVDqVsvIbW79y5c5BIJGjdurWdStY04eHh+OijjxAWFmaxvKysrNa2rnjurKmfq507AIiIiMDbb78Nf39/CIKAlJQUHD58GH369Km1rSueP2vq54rnz92dPHkSer0eCQkJ4rLExESkpaXBaDRabOuKn09r6vfggw9i2rRptd6jtLS02cvZWNbUDwAKCwuxbNkyLFiwwJ7FbDRr6nfo0CH84x//gEwmE5ft2LEDgwYNslt5rWVN/YKCgnDmzBmkpKTAaDTiiy++gL+/P2666SZ7F7vB3P2+01M19Lx6EmvuZT2JNfeInmbJkiUYMWIEOnbs6OiiOJWzZ8+ibdu2ji6GBbmjC+BuHnvssQZtp1Kpav0HCQ0NRUZGRnMUy2YaWr9z587B398f06dPx6FDh9CyZUtMmTLFaW9cAwMDMXDgQPG10WjE5s2b0a9fv1rbuuK5s6Z+rnburnXnnXciKysLgwcPxr333ltrvSuev5puVD9XP3/uSKVSITg4GN7e3uKysLAwaLVaFBUVISQkxGJbV/t8WlO/Dh06WOybkZGB/fv345FHHrFbea1lTf0A4I033sCDDz6ITp062buojWJN/TIzM9GjRw/Mnj0b//3vfxEdHY0ZM2YgMTHREUVvEGvqN2zYMPz3v//FY489BplMBqlUig8++AAtWrRwRNEbxN3vOz1VQ8+rJ7HmXtZT3ege0ZPs378ff/75J3bu3Il58+Y5ujhOQxAEnD9/Hr///js++OADGAwGDBkyBFOnTrVoJ+2NPaUcRKPR1Drx3t7e0Ol0DiqRbZ07dw6VlZUYMGAAPvroIwwaNAjPP/88jh8/7uiiNciyZcuQnp6OF198sdY6dzh316ufq5+7d999F++//z7+/vtvLF68uNZ6Vz9/N6qfq58/d1TfZw5Arc+dK34+ralfTQUFBZgyZQp69eqFf/zjH81axqawpn779u1DSkoKJk6caLfyNZU19auoqMDatWsRHh6ODz/8ELfccgvGjRuH7Oxsu5XXWtbUr7CwECqVCnPmzMHnn3+OESNGIDk5Gfn5+XYrb3NxxWsL0fVc717WU93oHtFTaLVazJ07F3PmzIGPj4+ji+NUsrKyxPbg7bffxowZM7Bz504sXbrUoeViTykHUSgUtW4EdDqd2/zHmThxIp588knx28UuXbrgr7/+wueff464uDgHl+76li1bho0bN+Ktt95CbGxsrfWufu5uVD9XPncAxDJqtVpMmzYN06dPt7gRd/Xzd6P6ufr5c0f1feYA1PrcueLn05r6manVavzrX/+CIAh49913IZU673dkDa1fZWUl5syZg7lz5zr1+bqWNedPJpOha9eu4iw9N998M/744w98/fXXeO655+xTYCtZU7/ly5cjNjYWjz/+OABg4cKFGDp0KHbs2IHx48fbp8DNxBWvLUT1udG9rKe60T2ip1i1ahW6d+9u0bOOTKKjo3Hw4EG0aNECEokEXbt2hdFoxCuvvILk5GSL4fn25Lx3gW4uMjISarXaYplarUZERISDSmRbUqm0Vnf39u3bIzc310ElapiFCxdiw4YNWLZsWb3dXl353DWkfq547tRqNfbu3WuxrGPHjqiqqqqVa8AVz5819XPF8+fuIiMjUVhYCL1eLy5TqVTw8fFBYGBgrW1d7fNpTf0A05Tejz/+OHQ6HTZt2lRr+JuzaWj9jh07hszMTEydOhUJCQliDqNnn30Wc+bMsXu5G8qa8xceHo727dtbLGvbtq1T95Sypn5//fUXunTpIr6WSqXo0qULsrKy7Fbe5uKK1xaiujTkXtaTWHOP6Cm+/fZb7N27V2yLd+7ciZ07d1rkFvRkQUFBYn5BwJRaQavVori42GFlYlDKQeLj43H06FEIggDANL7zyJEjiI+Pd3DJbOPVV19FcnKyxbKTJ0/Wupl1JqtWrcKWLVvw5ptv4r777qt3O1c9dw2tnyueu8uXL2Py5MkWgZcTJ04gJCSk1gOvK54/a+rniufP3XXt2hVyudwioXBKSgri4uJq9RByxc+nNfWrqKjAM888A6lUis2bNyMyMtLOpbVeQ+vXo0cP/PDDD/jqq6/EHwB47bXX8MILL9i51A1nzfnr2bMnTp06ZbHs3LlziI6OtkdRG8Wa+kVERODs2bMWy86fP4+YmBh7FLVZueK1hehaDb2X9STW3CN6ik8++QqLbjsAAQAASURBVAQ7d+4U2+I777wTd955p9gue7L//e9/6Nu3LzQajbjs77//RlBQkEM/LwxK2ZFKpUJlZSUAYMiQISgpKcGiRYtw5swZLFq0CBqNBkOHDnVwKRuvZv3uvPNO8WJw8eJFrFq1CikpKXjiiSccXMq6nT17FmvWrMGzzz6LxMREqFQq8Qdw/XNnTf1c7dwBpu7K3bp1w8yZM3HmzBn8+uuvWLZsmTicxNXPnzX1c8Xz5+6USiVGjhyJefPm4dixY9i7dy/Wr1+Pp556CoDrfz6tqd8HH3yAS5cuYcmSJeI6lUrl1LPvNbR+Pj4+aNOmjcUPYOqhEhoa6sgqXJc15++RRx7BqVOnsHLlSly8eBHvvPMOMjMzMWLECEdW4bqsqd/DDz+Mzz//XLx+Ll++HFlZWXjwwQcdWYVGc/VrC1FNN7qX9VQ3ukf0RNHR0RZtsZ+fH/z8/MR22ZMlJCRAoVDgP//5D86dO4dff/0VS5cuxTPPPOPYggnUbGJjY4UDBw5YvN6xY4f4Oi0tTRg5cqQQFxcnjB49Wvjrr78cUcxGu1H9Pv/8c+Gee+4RunfvLjz44IPCoUOHHFHMBvnggw+E2NjYOn8EwfXPnbX1c6VzZ5aTkyNMmjRJ6NWrl9C/f3/hvffeE4xGoyAIrn/+BMG6+rni+XN3FRUVwvTp04WePXsKAwYMEDZs2CCuc4fPZ0Prd++999Z5HZoxY4aDSt4w1py/mq5tJ52VNfX7888/hQcffFDo3r27MGLECJe4vlhTv88//1wYMmSI0LNnT+HRRx8VTpw44YASN46733d6Kle5jjS3G93LerLr3SOSIMyYMcPp7zPs6fTp08KYMWOEnj17Cv379xdWrlzp8M+LRBCq+/ESERERERERERHZCYfvERERERERERGR3TEoRUREREREREREdsegFBERERERERER2R2DUkREREREREREZHcMShERERERERERkd0xKEVERERERERERHbHoBQREREREREREdkdg1JERERERERERGR3DEoREREREREREZHdMShFRERERERERER2x6AUERERERERERHZHYNSRERERERERERkdwxKERERERERERGR3TEoRUREREREREREdsegFBERERERERER2R2DUkREREREREREZHcMShERERERERERkd0xKEVERERERERERHbHoBQREREREREREdkdg1JERERERERERGR3DEoREREREREREZHdMShFRERERERERER2x6AUERERERERERHZHYNSRERERERERERkdwxKERERERERERGR3TEoRUREREREREREdsegFBERERERERER2R2DUkREREREREREZHcMShERERERERERkd0xKEVERERERERERHbHoBQREREREREREdkdg1JERERERERERGR3DEoREREREREREZHdMShFRERERERERER2x6AUERERERERERHZHYNSRERERHYiCIKji0BERM2E13jb4bH0HAxKEbmwgwcPonPnzjh48KCji0JERNf49ttvMXjwYHTv3h1z5sxBRkYGHn300Wb5WytXrkTnzp2b5b2JiKg2W13jn3zySTz55JPNUELXpNPp8Prrr2Pnzp2OLgrZCYNSRERERM1gwYIFiIiIwLp16zB27Fjs3r0bR48edXSxiIjIBniNbx55eXnYuHEj9Hq9o4tCdiJ3dAGIiIiI3FFRURH69++Pvn37OrooRERkY7zGE9kGe0oR2VBVVRWWL1+O22+/HT169MC4cePw1VdfoXPnzrh8+TJeffVVPP3005g7dy569eqFYcOGwWAwoKCgAPPnzxe7APfp0weTJk3C5cuXLd5/y5YtuPfee9GjRw888cQTyMrKqlWGrKwsvPTSS+jTpw/i4+Px9NNPIz093V6HgIjILZw4cQJPP/00EhMTkZCQgDFjxiA1NVVcv3v3btx///3o0aMHHnzwQRw9ehQ333wzvvjiC3FoNQCsXr0anTt3xquvvopVq1YBADp37oyVK1c2uCwGgwFr167F8OHD0aNHD/Ts2ROPPPIIDhw4UGvbvXv34t5770VcXBweeugh7N+/32J9Xl4ekpOTMWjQIPTo0QOjR4/GTz/9JK4fO3YskpKSar3vxIkT8cADD4iv//zzTzzxxBOIj49Hnz59MGPGDBQUFDS4TkREjuRM13iz1atX47bbbkNCQgImTpyIzMxMi/V79+7FY489hoSEBHTv3h1DhgzBp59+arHNxo0bMWTIEMTFxWHgwIGYN28eysrKxPVGoxFr167F3Xffje7du+Pee+/FJ598YvEeTz75JObMmYM1a9Zg4MCBiI+Px7PPPgu1Wo0dO3bg7rvvFo/Ztc8qe/fuRVJSEuLi4tC/f3+89tprqKioENevXLkSd999N3755Rfcf//9Yhm++uorAMDly5fxj3/8AwCQnJyMO++80+rjSK6HQSkiG5ozZw42btyIJ554AqtXr0ZYWBhmz55tsc2ff/6J7OxsrF69Gi+//DKkUikmTJiAP/74A9OmTcO6deswefJk7N+/H3PnzhX327x5M+bOnYtBgwZhzZo1iI+Pr/XeBQUFeOSRR/DXX39h9uzZWLFiBYxGIx5//HGcPXvWLseAiMjVlZWV4ZlnnkFwcDBWrlyJt956CxqNBuPGjUNpaSl++uknvPDCC4iNjcWqVatw99134/nnn4fRaAQAdOvWDVu3bgUAjB49Glu3bsWUKVMwevRoAMDWrVvx0EMPNbg8y5cvx5o1a/DPf/4TH330ERYuXIiioiK88MIL0Gg0FtvOmjULTz31FFauXAk/Pz88++yzOH78OABArVZj9OjR+PPPP/Hiiy9i5cqViI6OxqRJk/DNN98AAB544AH89ddfuHjxovieJSUl+O233zBixAgAwOHDhzFmzBj4+Pjg7bffxsyZM3Ho0CE89dRTqKysbORRJyKyD2e7xgNASkoKvv32W8yZMwevvfYaTp48iaeeekoMKP3yyy+YNGkSunXrhjVr1mDlypVo3bo1FixYgLS0NADArl27sGzZMjz++ONYt24dJk2ahK+//hoLFy4U/868efPw7rvv4oEHHsD777+PIUOG4PXXX8fq1astyrNr1y7s378fixYtwqxZs7B//3488cQT2LRpE2bMmCH+3QULFoj77Ny5E5MmTUL79u2xevVqTJ48Gd988w0mTpxokbRcpVJhwYIFeOqpp7B27VrExMRgxowZOHv2LCIiIsTg3vPPPy/+Tm5OICKbuHjxotC5c2dh/fr1FsvHjh0rxMbGCpmZmcKMGTOE2NhYITs7W1yfk5MjPPnkk8Lhw4ct9lu4cKHQvXt3QRAEwWg0Crfeeqvw73//22KbOXPmCLGxscKBAwcEQRCEN998U4iLixMuX74sbqPVaoV//OMfwpQpU2xaXyIid3X06FEhNjZWSElJEZddvHhRWLp0qZCdnS08+OCDQlJSksU+a9asEWJjY4UdO3aIy2JjY4V3331XfP3uu+8KsbGxVpfnpZdeEj7++GOLZXv27BFiY2OFo0ePWrz3999/L25TWVkp9O/fX7z+L126VOjWrZtFGyEIgvD0008L/fv3FwwGg1BeXi707NlTWLVqlbh+27ZtQpcuXYScnBxBEAThn//8pzB8+HBBr9eL25w7d07o2rWrsHnzZqvrR0RkT852jX/iiSeE7t27WzwfpKenC7GxscInn3wiCIIgfPjhh8KMGTMs9issLBRiY2OFDz74QBAEQZg9e7Zw7733CgaDQdzm66+/FjZt2iQIguk63blzZ3F7s7feekuIi4sTCgoKxPLExcUJRUVF4jbjxo0TYmNjhUuXLonLFixYICQmJgqCYHpWuf3224Vx48ZZvPe+ffuE2NhY4eeff7Y4Rvv27RO3uXLlihAbGyusW7dOEARByMzMrHWsyb2xpxSRjRw8eBCCIGDIkCEWy4cPH27xOigoCC1bthRfR0ZGYtOmTUhMTMTly5fxxx9/4JNPPsGRI0eg0+kAAOfOnUN+fj4GDx5s8V5Dhw61eL1//3507doVkZGR0Ov10Ov1kEqluP3227Fv3z5bVpeIyG116tQJISEheO655zBnzhz8+OOPCAsLwyuvvIIWLVrgr7/+EocXmNUc2mZrK1aswNNPP42CggL8+eef2LFjh9izydxOAICXlxfuuece8bVCocDtt9+Ow4cPAwAOHTqEhIQEREdH1yq7SqXCuXPn4Ovri7vuugvfffeduP7bb7/FrbfeisjISGg0GqSlpWHQoEEQBEFsa1q3bo0OHTrgjz/+aLbjQERkC852jQeAXr16WTwfdO3aFa1btxav38888wzeeOMNlJeX48SJE/juu+/wwQcfALjaDvTr1w/nz59HUlISVq1ahePHj+P+++8XZ/Y7cOAABEHAnXfeKV679Xo97rzzTmi1WqSkpIh/v0OHDmjRooX4OiwsDMHBwWjdurW4LCgoCKWlpQBMzyo5OTm13vuWW26Bv79/rbahZ8+e4u/metcc5keehYnOiWzEnEsjNDTUYvm1r/38/Grt+8033+DNN99EdnY2goKC0LVrV/j4+Ijri4uLAQDBwcEW+4WHh1u8LioqwsWLF9GtW7c6y6jRaKBUKhtYIyIiz+Tn54dPP/0U7733Hr7//nts3boVPj4+GDFiBCZMmAAACAkJsdgnMjKy2cpz/PhxzJ8/H8ePH4dSqUTHjh0RFRUFABZDIoKDgyGVWn7fGBoaipKSEgCmtqTmA4VZWFgYAIjbjRgxAt988w1OnjyJsLAwHDx4EK+//rq4jdFoxIcffogPP/yw1nspFAob1JiIqPk42zUeuHodrqnm9bugoABz587F3r17IZFI0KZNG/Tu3RvA1XZg2LBhMBqN+L//+z9xiF90dDSmTZuGYcOGoaioCABw33331VmG3Nxc8Xd/f/9a6319festv/m958+fj/nz59dan5eXZ/G65vOIud2q2Z6RZ2FQishGzI2VWq0WHxYA3DDx659//okZM2bgySefxLhx48T3Wbp0qfiNhTkYlZ+fb7GvuQEwCwgIQJ8+fTB9+vQ6/5a3t3fDK0RE5MHat2+PZcuWwWAw4NixY/j666/x2WefISIiAlKpFGq12mL7a6/HtmLOfdK5c2d8++23aN++PaRSKX799Vfs2bPHYtvS0lIIggCJRCIuU6vV4sNVixYtoFKpav0N8zJzW3PrrbciPDwc33//PcLDw6FQKMQeWH5+fpBIJBgzZkydDzb84oOIXIGzXOPNzF9A16RSqZCQkAAAmDZtGs6dO4ePP/4YCQkJ8Pb2hkajweeff26xz/DhwzF8+HCUlpbi999/x4cffohXXnkFiYmJCAwMBGBKhl7Xl+Q1n1+sZX7v6dOno0+fPrXW1+x1RXQtDt8jspHExETIZDL8+OOPFst/+OGH6+539OhRGI1GTJkyRQxIGQwGcbid0WhE27Zt0apVK+zevdti359//tnidZ8+fXD+/Hm0a9cOcXFx4s/XX3+N7du3QyaTNbWaRERub/fu3ejXrx9UKhVkMhkSEhIwb948BAYGoqCgAAkJCfjhhx8svtW99npcl2t7MTXEuXPnUFRUhKeeegodO3YU3+O3334DADHxLmDqDVtzRr7y8nL88ssv4nTlt9xyC44ePYorV65Y/I1vvvkG4eHhaNOmDQBAJpPh/vvvx88//4zdu3fjrrvuEr8h9/f3x80334xz585ZtDOdOnXCypUrcfDgQavrSERkT850jTdLSUkRh8IBQFpaGq5cuYJ+/fqJ6++55x707dtX/JL52nbg3//+NyZNmgTA9EX10KFDMXHiROj1euTl5Yk9qwoLCy2u3wUFBXjnnXeaFHhr3749QkNDcfnyZYv3joyMxIoVK6yaCZzPK56HPaWIbKR169YYNWoU3nzzTVRVVaFLly748ccfxUasvoaqR48eAIAFCxZg1KhRKC4uxqeffoqTJ08CMI2v9vf3x7Rp0/Dyyy/jP//5D4YMGYLU1FR89tlnFu81ZswYfP311xgzZgzGjh2L4OBgfPfdd/j888+RnJzcjLUnInIfvXr1gtFoxKRJkzB+/Hj4+fnh+++/R2lpKe655x4MGzYMY8aMwaRJk/DPf/4Tly5dwjvvvHPD9zV/k7xr1y7Ex8fXOZTuWu3atYO/vz/ef/99yOVyyOVy7NmzB9u3bwcAi9n3vLy8MHPmTLz00kvw9/fH2rVrUVlZiYkTJwIA/vWvf+Gbb77BmDFjMHnyZAQFBeGrr77CgQMH8Prrr1u0UyNGjMD69eshlUprDdN76aWXMH78eLz88st44IEHYDAYsH79eqSlpYl/i4jIWTnTNd7MaDRi/PjxeO6551BYWIgVK1YgNjZWzGXVo0cP7Ny5E926dUPLli1x5MgRrF27FhKJRGwH+vXrh7lz52LJkiW4/fbbUVJSglWrVqFt27bo0qULvLy88MADD2D27Nm4cuUKunfvjvPnz+Ott95CTEwM2rZta/3BrCaTyfDiiy9izpw5kMlkGDx4MEpKSrBmzRrk5ubWm1qkLgEBAQBMuXI7dOiA+Pj4RpeLXAN7ShHZ0OzZs/HII49g/fr1mDhxInJycvD8888DqH8cdt++fTFnzhwcPXoUzz77LN544w1ERUWJU6Cah/ANHz4cb731FlJTU/H888/j559/tpiGFTANIdyyZQuio6Mxb948PPfcczh27BgWLVqEMWPGNF/FiYjcSEREBD766CMEBARg1qxZmDBhAv766y+sXLkS/fr1Q+/evbFu3Trk5eVh8uTJ2LJlC2bMmHHD973nnnsQFxeHV199FevWrWtQWQICArBmzRoIgoAXXngB06dPR1ZWFjZv3gw/Pz/8+eef4rYhISF4+eWX8dZbb2Hq1KmQyWTYvHkz2rdvD8CUh/Czzz5Dt27d8Nprr+GFF15AdnY21qxZg1GjRln83S5duiA2NhahoaG49dZbLdYNGDAA69atQ05ODqZOnYrp06dDJpNhw4YNFslriYickTNd483uuusu9O7dG6+88goWLFiAPn36YOPGjWKevjfeeAPx8fFYuHAhJk2ahJ9++gnz58/HgAEDxHbgkUcewX/+8x/89ttvYhL3Dh06YP369fDy8gIALF68GP/617+wZcsWPPPMM3j//fcxbNgwrF+/vsk9lB566CGsWLECR44cwXPPPYd58+YhJiYGn3zyiVUBOn9/f/zrX//C3r178eyzz6KqqqpJ5SLnJxGYUYzIJoqKivDbb79h4MCBFgnJlyxZgi+++IJDGoiI3Njly5fxj3/8A4sXL0ZSUpKji0NERDbEazxR8+HwPSIbUSqVWLRoEbp27Yqnn34avr6+SE1NxebNm8WZPIiIiADTLEMGg+GG28lkMovE5URE5Px4jSdqOAaliGxEoVDg448/xttvv41XX30VGo0GN910E2bMmIHHH3/c0cUjIiIn8uWXXzYo19+mTZvEROVEROQaeI0najgO3yMiIiKys8LCQly+fPmG25kTnRMRkevgNZ6o4RiUIiIiIiIiIiIiu+Pse0REREREREREZHcMShERERERERERkd0xKEVERERERERERHbHoBQREREREREREdmd3NEFcGX5+aVw5jTxEgkQGhrg9OVsLNbPdblz3QDXqZ+5nGRb+fmlAFzjM2BrrvLZtyVPrDPAertzvdk2NB9rPzee8HkDPKOenlBHgPV0N9fWs7naBwalmkAQ4BIfQlcpZ2Oxfq7LnesGuH/9qG41z7mnfgY8sd6eWGeA9SayRmM/N57yefOEenpCHQHW0900dz05fI+IiIiIiIiIiOyOQSkiIiIiIiIiIrI7BqWIiMgl6XQ6DB8+HAcPHhSXpaam4pFHHkFCQgLuvfdebNu2zWKfffv2Yfjw4YiPj8dTTz2FzMxMi/Uff/wxBg4ciISEBMycORMajcYudSEiIiIi8kQMShERkcvRarV46aWXkJGRIS5TqVR49tln0adPH3z55ZeYOnUqFi5ciF9++QUAkJWVhUmTJiEpKQnbt29HSEgIJk6cCKF6kPyePXuwatUqLFiwABs3bkRaWhqWLVvmiOoREREREXkEBqWIiMilnDlzBg8//DAuXbpksXzv3r0ICwvDSy+9hLZt2+K+++7DyJEjsXPnTgDAtm3b0L17d4wdOxadOnXC4sWLceXKFRw6dAgAsGnTJjz99NMYPHgwevTogfnz52PHjh3sLUVERERE1EwYlCIiIpdy6NAh9O3bF1u3brVYPnDgQCxevLjW9mVlZQCAtLQ09O7dW1yuVCrRrVs3pKamwmAw4Pjx4xbre/bsiaqqKpw8ebKZakJERERE5Nnkji4AERGRNR577LE6l8fExCAmJkZ8nZ+fj2+//RZTpkwBYBreFxERYbFPaGgocnJyUFJSAq1Wa7FeLpcjKCgIOTk5zVALIiIiIiJiUIqIiNxOZWUlpkyZgrCwMPzzn/8EAGg0Gnh7e1ts5+3tDZ1Oh8rKSvF1XeutIZHU/bsnMNfXk+rtiXUGWG93rrc7142IiJwPg1JERORWysvLMXHiRFy4cAH/93//B6VSCQBQKBS1Akw6nQ6BgYFQKBTi62vXm/dvqNDQgDp/9ySeWG9PrDPAehMREVHTMChFRERuo6ysDM888wwuXbqEjRs3om3btuK6yMhIqNVqi+3VajW6du2KoKAgKBQKqNVqdOjQAQCg1+tRVFSE8PBwq8qQn18KwPTQmp9fiurJ/TyCROJ59fbEOgOstzvX21xHIiIie2BQioiI3ILRaMTkyZNx+fJlfPLJJ2JwySw+Ph4pKSnia41Gg/T0dEyePBlSqRRxcXFISUlB3759AQCpqamQy+Xo0qWLVeWo+aAqCHDbB9fr8cR6e2KdAdabiIiImoaz7xHdgNFoRF5eHvLy8mA0Gh1dHCKqx/bt23Hw4EG89tprCAwMhEqlgkqlQlFREQBg1KhROHLkCNauXYuMjAwkJycjJiZGDEI99thjWLduHfbu3Ytjx45h3rx5ePjhh60evucqjEYjcnKykZOTzWsbEZETMhqNuHLlCrKzs3idJiK3xZ5SRDegVqvxwU9pAIAJ/4ivNXsXETmHPXv2wGg0YsKECRbL+/Tpg08++QQxMTFYuXIlXn/9daxevRoJCQlYvXo1JNVZfe+77z5cuXIFc+bMgU6nwz333INXXnnFEVWxi7y8XLz/41EAwHN3J6Bly1YOLhEREdWUm5uDDb+dQGVlFZ67OwGtWkU5ukhERDbHoBRRA/i1CHF0EYioDqdOnRJ/X7du3Q23HzRoEAYNGlTv+vHjx2P8+PE2KZsr8A8Oc3QRiIjoOgJCIuCl0Tq6GEREzYbD94iIiIiIiIiIyO4YlCIiIiIiIiIiIrtjUIqIiIiIiIiIiOyOQSkiIiIiIiIiIrI7BqWIiIiIiIiIiMjuOPseERGRmzIajcjLywUAREREQirld1FERERE5Dx4d0pEROSm8vJy8f6PR/H+j0fF4BQRERERkbNgTykiIiI35h8c5ugiEBERERHViT2liIiIiIiIiIjI7hiUIiIiIiIiIiIiu2NQioiIiIiIiIiI7I5BKSIiIiIiIiIisjsGpYiIiIiIiIiIyO4YlCIiIiIiIpeh0+kwfPhwHDx4UFyWmpqKRx55BAkJCbj33nuxbds2i3327duH4cOHIz4+Hk899RQyMzMt1n/88ccYOHAgEhISMHPmTGg0GnGdVqvFzJkz0bt3bwwYMADr169v3goSEXkQBqWIiIiIiMglaLVavPTSS8jIyBCXqVQqPPvss+jTpw++/PJLTJ06FQsXLsQvv/wCAMjKysKkSZOQlJSE7du3IyQkBBMnToQgCACAPXv2YNWqVViwYAE2btyItLQ0LFu2THz/pUuX4sSJE9i4cSPmzp2LVatWYffu3XatNxGRu2JQioiIyM0JRiPy8nKRk5MNo9Ho6OIQETXKmTNn8PDDD+PSpUsWy/fu3YuwsDC89NJLaNu2Le677z6MHDkSO3fuBABs27YN3bt3x9ixY9GpUycsXrwYV65cwaFDhwAAmzZtwtNPP43BgwejR48emD9/Pnbs2AGNRoOKigps27YNs2bNQrdu3XD33XfjmWeewaeffmr3+hMRuSMGpYiIiNxcWXEBNu8/i/d/PIq8vFxHF4eIqFEOHTqEvn37YuvWrRbLBw4ciMWLF9favqysDACQlpaG3r17i8uVSiW6deuG1NRUGAwGHD9+3GJ9z549UVVVhZMnT+LkyZPQ6/VISEgQ1ycmJiItLY1BfiIiG5A7ugBERETU/PyCQuDn5+foYhARNdpjjz1W5/KYmBjExMSIr/Pz8/Htt99iypQpAEzD+yIiIiz2CQ0NRU5ODkpKSqDVai3Wy+VyBAUFIScnB1KpFMHBwfD29hbXh4WFQavVoqioCCEhIQ0uv0TS4E0tt5eYfrd2f1dhrpe71g/wjDoCrKe7ubaezVVfBqWIiIg8hEYvoFCjR0tHF4SIqJlUVlZiypQpCAsLwz//+U8AgEajsQgqAYC3tzd0Oh0qKyvF13WtFwShznWAKeG6NUJDA6zaXqv1B5AHHx8FQkL8ERZm3f6uxtrj44o8oY4A6+lumrueDEoRERF5AK0B+PW8Ft+dv4Cn+xjwQHvvG+9ERORCysvLMXHiRFy4cAH/93//B6VSCQBQKBS1Akg6nQ6BgYFQKBTi62vXK5VKGAyGOtcBgI+Pj1Xly88vRXVu9QYpLDQNP6ys1KKgoAwKRalVf89VSCSmh15rj48r8YQ6Aqynu7m2nubXtubUOaWys7MxYcIE9OrVC3feeSc+/vhjcV16ejoeeughxMfHY9SoUThx4oTFvrt27cJdd92F+Ph4TJo0CQUFBeI6QRCwfPly9OvXD3369MHSpUs5JpyIiNzaxXIJdEZAbxSw7sAlfHH0sjjzFBGRqysrK8O4ceOQkZGBjRs3om3btuK6yMhIqNVqi+3VajXCw8MRFBQEhUJhsV6v16OoqAjh4eGIjIxEYWEh9Hq9uF6lUsHHxweBgYFWlVEQrP8x7di4fV3pp7HHx5V+PKGOrKf7/Vxbz+bg1EGpf//73/D19cUXX3yBmTNn4u2338aPP/6IiooKjB8/Hr1798YXX3yBhIQETJgwARUVFQCAY8eOYdasWZg8eTK2bt2KkpISJCcni++7YcMG7Nq1C6tWrcK7776LnTt3YsOGDY6qJhERUbMyCMDFMlMigABpFQBg58lCsd0kInJlRqMRkydPxuXLl/HJJ5+gU6dOFuvj4+ORkpIivtZoNEhPT0d8fDykUini4uIs1qempkIul6NLly7o2rUr5HI5UlNTxfUpKSmIi4uDVOrUj1JERC7Baa+kxcXFSE1NxfPPP4+2bdvirrvuwsCBA7F//3589913UCgUmD59Ojp06IBZs2bBz88Pu3fvBgBs3rwZQ4cOxciRI9GlSxcsXboUv/76KzIzMwGYpn2dOnUqevfujX79+mHatGmc1pWIiNxWrlYOrVEChdSIhDBT018k+EDPTsJE5Aa2b9+OgwcP4rXXXkNgYCBUKhVUKhWKiooAAKNGjcKRI0ewdu1aZGRkIDk5GTExMf/P3p3HR1Xd/x9/3ZnJLNkIWQgEEBUXZAthcy9qrRWX6jcurW1dqi1U5WtXrUjrAqUoLu3XQlVa64Y/tYrailtdWls31CBBRJRNiNkXss5kJjNzf39MZiCQQBIymcnk/Xw85pHMPffOPWcI98z9zDmfw7HHHguEEqg/+OCDvP7666xfv55bb72Viy++GJfLhcvl4vzzz+fWW29l/fr1vP766/z1r3/lsssui2GLRUQSR9wGpZxOJy6Xi2effZa2tja2bdvG2rVrOeaYYyguLmbatGkY7enfDcNg6tSpkW8w9l72dcSIEeTl5VFcXExlZSXl5eXMmDEjUj5t2jRKS0upqqrq1zaKiIj0h1qfFYCRTj9pSZDmsBHEoNob44qJiPSBV199lWAwyNy5cznppJMij/Dqe6NGjeKPf/wjq1at4sILL6S+vp7ly5dH7iXOPvts5s6dy80338yVV17J5MmTuf766yOvP3/+fCZMmMDll1/Obbfdxv/+7/9yxhlnxKStIiKJJm4TnTscDm6++WYWLVrEo48+SiAQoLCwkIsuuog33niDI444osP+WVlZbN68GYCqqqoul32trq4G6FCenZ0NQEVFxT7HiYiIDHSN/tB3UENsAQzDypihLjZUNFHlMTjiAMeKiMSjzz//PPL7gw8+eMD9Z82axaxZs7osnzNnDnPmzOm0zOVycccdd3DHHXf0vKIiIrJfcRuUAti6dSunnnoqP/jBD9i8eTOLFi3i+OOP3++yrhBaCrYny772dlnX9i9X4la4fvFez97qr/bt+fqG0X/vZyL/+yVy22DgtC/e6yd9I2iaNLUHpdJtofl6o4c62VDRRK1XfwQiIiIiEjtxG5R67733eOaZZ3jrrbdwOp1MmjSJyspK7rvvPkaPHt3p0qzhZVm7WvbV5XJ1CEDtvQRseNnY7orGcojRMFDq2VvRbl8g4MblsrefK5Xs7P59PxP53y+R2waJ3z4ZGJp8JkEMrIZJsjW0bEp2Suia5g4YtAWjtJSKiIiIiMgBxG1QasOGDYwZMyYSaAIYP348999/P9OnT+90Wdfw1Lv9Lfuam5sLhJZyHTVqVOR3gJycnB7Vsba2KWrLIvYFwwjdFMd7PXurv9pXW9uMx+OL/G61JkfvZHtI5H+/RG4bDJz2hespiW1Xa+iPMD1p9+g4Z5IVhyWIN2ihwRvHf6QiIiIiktDiNtH5sGHD2LFjR4cRT9u2bWPUqFHk5+fz8ccfY7bf7Zmmydq1a8nPzwf2Xfa1vLyc8vJy8vPzyc3NJS8vr0N5UVEReXl5Pc4nZZrx/xgo9Yz39sXq3zyR//0SuW0DqX2S+HZ5Q1P2hiR1/AdPa5/K1+DVEnwiIiIiEhtxG5Q67bTTSEpK4te//jXbt2/nzTff5P777+fSSy/lzDPPpLGxkcWLF7NlyxYWL16Mx+Nh9uzZAFxyySX8/e9/5+mnn2bTpk3ccMMNnHLKKYwePTpSftddd7FmzRrWrFnD3XffrWVdRUQkIdW3j4RK75hqMRKUqtdIKRERERGJkbidvpeWlsbDDz/M4sWLufDCC8nMzOTqq6/m29/+NoZh8MADD3DLLbfwt7/9jaOPPpoVK1aQnByaVlVQUMDChQu59957aWho4MQTT2TRokWR177qqquora1l3rx5WK1WLrzwQq644ooYtVRERCR6GttHQqXvPVLKqpFSIiIiIhJbcRuUAjjiiCN46KGHOi2bPHkyzz33XJfHFhYWUlhY2GmZ1Wpl/vz5zJ8/v0/qKSIiEo+8/iCtgdDvyVYgsLssPTJ9z8TUXE4RERERiYG4nb4nIiIiB6fG7QfAapgk7dXjp9iCGJj4glDr8cegdiIiIiIy2CkoJSIikqCqWtoAcFmCkZX3wqwGpLSPly5p8CEiIiIi0t8UlBIREUlQVS2hEVAua+fT85Lbg1IVTW39VSURERERkQgFpURERBJU9QGCUim20PbyZgWlRERERKT/KSglIiKSoMLT95yWzlfYi4yUUlBKRERERGJAQSkREZEEdaCRUsnt28s1fU9EREREYkBBKRERkQS1Z6LzzqTsMVLKNDsPXImIiIiIRIuCUiIiIgkoEDSpde9/pJSrPSjV6jepc2u0lIiIiIj0LwWlRERkQPL5fJxzzjmsWbMmsq2kpIQrrriCKVOmcNZZZ/H22293OObdd9/lnHPOIT8/n8suu4ySkpIO5Q8//DAnn3wyBQUF3HTTTXg8nn5pSzRUN3sJmGAATkvnQSmrsTuv1Ff1A7etIiIiIjIwKSglIiIDjtfr5ec//zmbN2+ObDNNk2uvvZbs7GxWrVrFeeedx7x58ygrKwOgrKyMa6+9lsLCQp555hkyMzO55pprItPWXn31VZYtW8bChQt55JFHKC4u5s4774xJ+/pCZZMXgOQkA8Poer9Ue+ijwFf1rf1RLRERERGRCAWlRERkQNmyZQsXX3wxO3fu7LD9/fffp6SkhIULFzJ27Fjmzp3LlClTWLVqFQBPP/00EydO5Morr+TII49kyZIllJaW8sEHHwDw6KOPcvnll3PqqacyefJkbrvtNlatWjVgR0tVN/uA3VP0upKaFIpYaaSUiIiIiPQ3BaVERGRA+eCDDzj22GN56qmnOmwvLi5m/PjxJCcnR7ZNmzaNdevWRcqnT58eKXO5XEyYMIF169YRCAT45JNPOpRPmTKFtrY2Nm3aFN0GRUmdOxSUclr3M0yK3UGp0gaNlBIRERGR/nWA709FRETiy3e/+91Ot1dXVzNs2LAO27KysqioqDhgeWNjI16vt0O5zWYjIyMjcnx37TlVbn/T5qIpGAxSUr0LAId1//sm20LTF3fWNmKaQSyW3n9fFW5vrNodC4OxzaB2J3K7E7ltIiISfxSUEhGRhODxeLDb7R222e12fD7fActbW1sjz7s6vruystI6/b0/lZWVsWZ7NWDFYTVxOe0YdjumJYBht5Oc7Ihscza1Aklsr/Xg97eQl5d30OePVbtjaTC2GdRuEREROTgKSomISEJwOBzU19d32Obz+XA6nZHyvQNMPp+P9PR0HA5H5Pne5S6Xq0f1qK1tAkI3rbW1TZidL3wXVXV1zfhIAoJYgwE8rT4sQStBX+in2+2NbLP4fUASnoBBVU0TdntTr89rGLFtdywMxjaD2p3I7Q63UUREpD8oKCUiIgkhNzeXLVu2dNhWU1MTmZKXm5tLTU3NPuXHHHMMGRkZOBwOampqGDt2LAB+v5/6+npycnJ6VI89b1RNk5jcuJomtPpDJ7Zb918Bh8XEgkkQg5oWPyP7oL6xancsDcY2g9otIiIiB0eJzkVEJCHk5+fz6aefRqbiARQVFZGfnx8pLyoqipR5PB42btxIfn4+FouFSZMmdShft24dNpuNcePG9V8j+lBrIPTTcYCe3jDA2f4VVVVLW3QrJSIiIiKyBwWlREQkIcycOZMRI0Ywf/58Nm/ezIoVK1i/fj0XXnghABdccAFr165lxYoVbN68mfnz5zNq1CiOPfZYIJRA/cEHH+T1119n/fr13HrrrVx88cU9nr4XL7ztI6UOlOgcILl9n+oWfxRrJCIiIiLSkYJSIiKSEKxWK3/605+orq6msLCQf/zjHyxfvjySuHvUqFH88Y9/ZNWqVVx44YXU19ezfPlyjPalps4++2zmzp3LzTffzJVXXsnkyZO5/vrrY9mkXmv1B2mPSWHvRk/vap/iV6mRUiIiIiLSj5RTSkREBqzPP/+8w/MxY8awcuXKLvefNWsWs2bN6rJ8zpw5zJkzp8/qFyv17XP3LJjYDDhQ6htX+6cBjZQSERERkf6kkVIiIiIJpqE9KGW3mLQPBNuv8PQ95ZQSERERkf6koJSIiEiCqW8NjXhyWLq3PJjLFtqvSiOlRERERKQfKSglIiKSYOr3GCnVHa49Ep0Htc69iIiIiPQTBaVEREQSTDgo1d2RUk4rGIA/aFLb4otizUREREREdlNQSkREJMGEp+91d6SUxdid7Ly80RutaomIiIiIdKCglIiISIJp6OFIKYCUpFBG9PKG1qjUSURERERkbwpKiYiIJJhGb89ySgEkh4NSjQpKiYiIiEj/UFBKREQkwTR5gwAkGT0fKVXRpOl7IiIiItI/FJQSERFJMM2+XoyUsmmklIgMDD6fj3POOYc1a9ZEtpWUlHDFFVcwZcoUzjrrLN5+++0Ox7z77rucc8455Ofnc9lll1FSUtKh/OGHH+bkk0+moKCAm266CY/HEynzer3cdNNNTJ8+nZNOOom//vWv0W2giMggoqCUiIhIgjmYkVLlDRopJSLxy+v18vOf/5zNmzdHtpmmybXXXkt2djarVq3ivPPOY968eZSVlQFQVlbGtddeS2FhIc888wyZmZlcc801mGboGvnqq6+ybNkyFi5cyCOPPEJxcTF33nln5PWXLl3Khg0beOSRR7jllltYtmwZr7zySv82XEQkQSkoJSIikkD8gSAef3tQqjeJzhtbIzdqIiLxZMuWLVx88cXs3Lmzw/b333+fkpISFi5cyNixY5k7dy5Tpkxh1apVADz99NNMnDiRK6+8kiOPPJIlS5ZQWlrKBx98AMCjjz7K5ZdfzqmnnsrkyZO57bbbWLVqFR6PB7fbzdNPP82CBQuYMGEC3/jGN/jhD3/I448/3u/tFxFJRApKiYiIJJBGrz/ye3ucqVvC0/da/UEaPP4D7C0i0v8++OADjj32WJ566qkO24uLixk/fjzJycmRbdOmTWPdunWR8unTp0fKXC4XEyZMYN26dQQCAT755JMO5VOmTKGtrY1NmzaxadMm/H4/BQUFHV67uLiYYDAYpZaKiAwetlhXQERERPpOY3tAKckCRg+CUlaLwVCnlV2tAcqbWslITopSDUVEeue73/1up9urq6sZNmxYh21ZWVlUVFQcsLyxsRGv19uh3GazkZGRQUVFBRaLhaFDh2K32yPl2dnZeL1e6uvryczM7KvmiYgMSgpKiYiIJJCG1jYA7NYeRKTaDUtNCgWlGlo5Jjetr6smIhIVHo+nQ9AIwG634/P5Dlje2toaed5ZuWmanZYBkdfvrp58UdBhfyP0e0+PHyjC7UrU9sHgaCOonYlm73ZGq70KSomIiCSQxtbQSCm7tefHDkux8XkNlDcq2bmIDBwOh4P6+voO23w+H06nM1K+dwDJ5/ORnp6Ow+GIPN+73OVyEQgEOi0DIq/fXVlZPQv2e72pQBVOp4PMzFSysxP7y4Kevj8D0WBoI6idiSba7VRQSkREJIGEg1IOSy9GSqWEpuyVN7b2aZ1ERKIpNzeXLVu2dNhWU1MTmZKXm5tLTU3NPuXHHHMMGRkZOBwOampqGDt2LAB+v5/6+npycnIwTZNdu3bh9/ux2UK3TtXV1TidTtLT03tUz9raJnqyjsSuXc0AtLZ6qatrxuFo6tH5BgrDCN309vT9GUgGQxtB7Uw0e7cz/LyvKdG5iIhIAtk9fa/nx+akhG64KjRSSkQGkPz8fD799NPIVDyAoqIi8vPzI+VFRUWRMo/Hw8aNG8nPz8disTBp0qQO5evWrcNmszFu3DiOOeYYbDZbJGl6+LUnTZqExdKzWynT7PkjdGDvjh1Ij96+PwPpMRjaqHYm3mPvdkaDglIiIiIJpCEyfa/nI6Vy20dKlWmklIgMIDNnzmTEiBHMnz+fzZs3s2LFCtavX8+FF14IwAUXXMDatWtZsWIFmzdvZv78+YwaNYpjjz0WCCVQf/DBB3n99ddZv349t956KxdffDEulwuXy8X555/Prbfeyvr163n99df561//ymWXXRbLJouIJAxN3xMREUkgjR6NlBKRwcVqtfKnP/2JBQsWUFhYyJgxY1i+fDl5eXkAjBo1ij/+8Y/87ne/Y/ny5RQUFLB8+XKM9qy9Z599NqWlpdx88834fD7OOOMMrr/++sjrz58/n1tvvZXLL7+c1NRU/vd//5czzjgjJm0VEUk0CkqJiIgkkEii84PIKdXk9dPs9ZPq0McEEYlPn3/+eYfnY8aMYeXKlV3uP2vWLGbNmtVl+Zw5c5gzZ06nZS6XizvuuIM77rijd5UVEZEuafqeiIhIAggGg1RUlFPd2AL0bqSUK8nCEKdGS4mIiIhI/1BQSkREJAFUVVVy/2sf8+UuDwBmW++CSiPSQ0ucK6+UiIiIiESbglIiIiIJInVoNn4zNEQqqZc9/PB0BwAVCkqJiIiISJQpKCUiIpJAvP4AAPZe9vDhkVLlmr4nIiIiIlGmoJSIiEiCCJomvoAJaKSUiIiIiMQ/LasjIiKSINqCu39PsgCBnr9GXiSnlJdgMEhVVSUAw4blYrHouywRERER6Tv6dCkiIpIg2tpHSVkNE4vRu9cIT9+raGyNJE+//7WPI8EpEREREZG+opFSIiIiCcLXPlLKZpi9fo3w9L06dxtef5DUodl9UTURERERkX1opJSIiEiCaAu255Pq5SgpgHSnjeSk0Ap+1W5/X1RLRERERKRTCkqJiIgkiLb2HFIHM1LKMAxGDAmNlqpqbuuLaomIiIiIdEpBKRERkQQRTnRus/Q+KAW780pVtWiklIiIiIhEj4JSIiIiCSI8fe9gRkoBDE9rHynVopFSIiIiIhI9CkqJiIgkiPBIqYPJKQW7R0pVa6SUiIiIiESRVt8TERFJEG2B3o+UMoNBqqoqARieZgegsqWNXEff1U9EREREZE8KSomIiCSIg8kp1dxQx8r3PCQnl3FqwTFA+0ipTH1UEBEREZHo0CdNERGRBBHOKdXb6XspGZmkpKQwLCX08aDO4ydoWrEYBzkfUERERESkE8opJSIikiAiI6UOMtH5EKcVu9UgaIK77eBeS0RERESkKwpKiYiIJIhITqleTN8LM4NBaqqryEkOjZZqUVBKRERERKIkroNSPp+P2267jRkzZnDCCSdwzz33YJqhD8cbN27koosuIj8/nwsuuIANGzZ0OHb16tWcfvrp5Ofnc+2111JXVxcpM02Tu+66i+OOO46ZM2eydOlSgsFgv7ZNRESkr+0eKdX71wjlltqKPxAAYFeLtw9qJiIiIiKyr7gOSv32t7/l3Xff5cEHH+Tuu+/mb3/7G0899RRut5s5c+Ywffp0nn32WQoKCpg7dy5utxuA9evXs2DBAubNm8dTTz1FY2Mj8+fPj7zuQw89xOrVq1m2bBn33nsvL7zwAg899FCsmikiItIndueUOrjRTSkZmWSkugDwBA66WiIiIiIinYrboFR9fT2rVq1i0aJFTJ48meOPP54rr7yS4uJiXnrpJRwOBzfccANjx45lwYIFpKSk8MorrwCwcuVKZs+ezfnnn8+4ceNYunQpb731FiUlJQA8+uijXHfddUyfPp3jjjuOX/7ylzz++OOxbK6IiPSR8vJy5s6dy9SpUznttNN4+OGHI2UHM8p2IGhrDyAdbE4pgFRHaPqex3/QLyUiIiIi0qm4DUoVFRWRmprKzJkzI9vmzJnDkiVLKC4uZtq0aRjtqwEZhsHUqVNZt24dAMXFxUyfPj1y3IgRI8jLy6O4uJjKykrKy8uZMWNGpHzatGmUlpZSVVXVP40TEZGo+elPf0pycjLPPvssN910E3/4wx947bXXDnqUbbwLBE387bEoWx/07mntQSl3QCvviYiIiEh02GJdga6UlJQwcuRInn/+ee6//37a2tooLCzk6quvprq6miOOOKLD/llZWWzevBmAqqoqhg0btk95RUUF1dXVAB3Ks7OzAaioqNjnuP2J9xWyw/WL93r2Vn+1b8/XN4z+ez8T+d8vkdsGA6d98V6/3mhoaGDdunUsWrSIQw89lEMPPZSTTz6Z9957j4aGhsgoW8MwWLBgAf/5z3945ZVXKCws7DDKFmDp0qWceuqplJSUMHr06Ng2rBs8/t25EftmpJS1/XUP+qVERERERDoVt0Ept9vNjh07ePLJJ1myZAnV1dXcfPPNuFwuPB4Pdru9w/52ux2fzwdAa2trl+Wtra2R53uWAZHjuysrK63H7YqFgVLP3op2+wIBNy6Xvf1cqWRn9+/7mcj/foncNkj89sUjp9OJy+Xi2Wef5Re/+AUlJSWsXbuWn/70p/sdZVtYWEhxcTE/+tGPIq+15yjbgRCUcvtCQSmrEXocrPBIKU+AyCIjIiIiIiJ9KW6DUjabjebmZu6++25GjhwJQFlZGU888QRjxozZJ4Dk8/lwOp0AOByOTstdLleHAJTD4Yj8DuByuXpUx9raJuL5c7phhG6K472evdVf7autbcbj8UV+t1qTo3eydsFgkNraGjIzU7FYnBhG3M607RX9bcaHcD0TicPh4Oabb2bRokU8+uijBAIBCgsLueiii3jjjTd6Pcq2J/YeXdlf3O0jpex9MXcPSLZbMTAxMfD4uzdSdKCMEuxLg7HNoHYncrsTuW0iIhJ/4jYolZOTg8PhiASkAA477DDKy8uZOXMmNTU1HfavqamJ3Ezk5uZ2Wp6Tk0Nubi4A1dXVjBo1KvJ7+Jw9YZrE9Q1n2ECpZ29Fu317vnZ/vZfV1TU88EYxTqedK046hpyc7k8rHUj0tynRsHXrVk499VR+8IMfsHnzZhYtWsTxxx9/UKNse2LPQF9/Bv2sztAXLQ6bFZfTjmG3Y1oCnf5MTnYccJ/UFCcuK7gD4LdYyczs/kjRRAt2dsdgbDOo3SIiInJw4jYolZ+fj9frZfv27Rx22GEAbNu2jZEjR5Kfn8+f//xnTNPEMAxM02Tt2rX8+Mc/jhxbVFREYWEhEFqJqby8nPz8fHJzc8nLy6OoqCgSlCoqKiIvL69H+aREoi1lSGZk2qCIdM97773HM888w1tvvYXT6WTSpElUVlZy3333MXr06F6Psu2J2tomoP9Hy1XWtgBgsxh4Wn1YglaCvs5/ut3ebu3jtARxB6zsammjrq4Zu71pv3UYKKME+9JgbDOo3Ync7kQcRSsiIvErbucEHX744ZxyyinMnz+fTZs28d///pcVK1ZwySWXcOaZZ9LY2MjixYvZsmULixcvxuPxMHv2bAAuueQS/v73v/P000+zadMmbrjhBk455ZRITpBLLrmEu+66izVr1rBmzRruvvtuLrvsslg2V0RE+sCGDRsYM2ZMJNAEMH78eMrKyrocRdudUbY9secIufDv/fFo9gUAsPdFQql2LmtoSmBLm9ntevR3u+PhMRjbrHYn9kNERKS/xG1QCuCuu+7ikEMO4ZJLLuFXv/oV3/ve97j00ktJTU3lgQceiIyGKi4uZsWKFSQnh3L9FBQUsHDhQpYvX84ll1zCkCFDWLJkSeR1r7rqKs466yzmzZvHT37yE8477zyuuOKKGLVSRET6yrBhw9ixY0eHEU/btm1j1KhR5Ofn8/HHHxNO2h0eZZufnw/sHmUbtuco24HA3da3OaUAXJbQe9XSprtUEREREel7cTt9DyAtLY2lS5d2WjZ58mSee+65Lo8tLCyMTN/bm9VqZf78+cyfP79P6ikiIvHhtNNO48477+TXv/41V199Ndu3b+f+++/nZz/7GWeeeSZ33303ixcv5jvf+Q5PPvnkPqNsL730UqZMmcKkSZNYvHhxh1G28a4lHJSy9mFQqn2klFtBKRERERGJgrgeKSUiItITaWlpPPzww1RXV3PhhReyZMkSrr76ar797W8f9CjbeOf29X1QKrk9KNWsoJSIiIiIREFcj5QSERHpqSOOOIKHHnqo07KDGWUb78LT95KsBgT75jWTrWb7a5sEggpMiYiIiEjf0kgpERGRBBCNnFJOi4mBSRCo9fj77HVFREREREBBKRERkYQQjZxShgHJ7WOqK5vb+ux1RURERERAQSkREZGE4PYFgL4dKQWQbA39rFBQSkRERET6mIJSIiIiCWD3SCmjT1832RbKJVXRpKCUiIiIiPQtBaVEREQSwO5E5308Uio8fa9FOaVEJL6Vl5czd+5cpk6dymmnncbDDz8cKdu4cSMXXXQR+fn5XHDBBWzYsKHDsatXr+b0008nPz+fa6+9lrq6ukiZaZrcddddHHfcccycOZOlS5cSDPbRihIiIoOcglIiIiIJwB2FnFKwewU+Td8TkXj305/+lOTkZJ599lluuukm/vCHP/Daa6/hdruZM2cO06dP59lnn6WgoIC5c+fidrsBWL9+PQsWLGDevHk89dRTNDY2Mn/+/MjrPvTQQ6xevZply5Zx77338sILL3S5yquIiPSMglIiIiIDnGmae6y+19fT90I/lehcROJZQ0MD69at4+qrr+bQQw/l9NNP5+STT+a9997jpZdewuFwcMMNNzB27FgWLFhASkoKr7zyCgArV65k9uzZnH/++YwbN46lS5fy1ltvUVJSAsCjjz7Kddddx/Tp0znuuOP45S9/yeOPPx7L5oqIJAwFpURERAY4T1uQYGhAU9+PlGoPStW3BvC0Bfr0tUVE+orT6cTlcvHss8/S1tbGtm3bWLt2LccccwzFxcVMmzYNwwgF7Q3DYOrUqaxbtw6A4uJipk+fHnmtESNGkJeXR3FxMZWVlZSXlzNjxoxI+bRp0ygtLaWqqqpf2ygikohssa6AiIiIHJxmbyjfkwHYLH07UirJAnYL+IJQ2tDKEdkpffr6IiJ9weFwcPPNN7No0SIeffRRAoEAhYWFXHTRRbzxxhscccQRHfbPyspi8+bNAFRVVTFs2LB9yisqKqiurgboUJ6dnQ1ARUXFPsftj9HDy3NkfyP0e0+PHyjC7UrU9sHgaCOonYlm73ZGq71RCUq9//77HHvssZFvI0RERNQ3RE+zLxSUSrIQlfc3JcnA5zUprVdQSkR6rr+u/1u3buXUU0/lBz/4AZs3b2bRokUcf/zxeDwe7HZ7h33tdjs+nw+A1tbWLstbW1sjz/csAyLHd1dWVlqP9vd6U4EqnE4HmZmpZGf37PiBpqfvz0A0GNoIameiiXY7oxKU+slPfkJSUhJnnnkm55xzDlOmTInGaUREZABR3xA9Ld7QtLoka3Ru+FKSDHZ5TcoaW6Py+iKS2Prj+v/ee+/xzDPP8NZbb+F0Opk0aRKVlZXcd999jB49ep8Aks/nw+l0AqFRVp2Vu1yuDgEoh8MR+R3A5XL1qI61tU2YZvf337WrGYDWVi91dc04HE09Ot9AYRihm96evj8DyWBoI6idiWbvdoaf97WoBKXeeecd3nnnHV555RXmzJlDamoqs2fP5uyzz2b8+PHROKWIiMQ59Q3Rs+dIqWhItYeCXaX1nuicQEQSWn9c/zds2MCYMWMigSaA8ePHc//99zN9+nRqamo67F9TUxOZepebm9tpeU5ODrm5uQBUV1czatSoyO8AOTk5PaqjadKjG9jIvmbPjx2I1MbEoXYmlmi3MypBKZvNxqxZs5g1axZ+v593332XN998k+9+97vk5uZy7rnnUlhYSF5eXjROLyIicUh9Q/Q0h0dKRSkolZLUHpRq0EgpEem5/rj+Dxs2jB07duDz+SKjm7Zt28aoUaPIz8/nz3/+M6ZpYhgGpmmydu1afvzjHwOQn59PUVERhYWFAJSXl1NeXk5+fj65ubnk5eVRVFQUCUoVFRWRl5fXo3xSIiLSuaiuvufz+Xjrrbd48cUXefnllxk6dCinnXYaX375JWeffTYrV66M5ulFRCQOqW/oe+FE50l9nOQ8LLU9KFWmoJSIHIRoXv9PO+00kpKS+PWvf8327dt58803uf/++7n00ks588wzaWxsZPHixWzZsoXFixfj8XiYPXs2AJdccgl///vfefrpp9m0aRM33HADp5xyCqNHj46U33XXXaxZs4Y1a9Zw9913c9lll/XJeyIiMthFZaTU66+/ziuvvMK///1vkpKS+OY3v8ny5cs7LLX6+OOPc8899/D9738/GlUQEZE4o74henYHpaLz+nuOlAqPNBAR6a7+uP6npaXx8MMPs3jxYi688EIyMzO5+uqr+fa3v41hGDzwwAPccsst/O1vf+Poo49mxYoVJCcnA1BQUMDChQu59957aWho4MQTT2TRokWR177qqquora1l3rx5WK1WLrzwQq644oqDek9ERCQkKkGpX/3qV5x++uncc889nHjiiVit1n32mThxIj/4wQ+icXoREYlD6huip8UX3UTnyUkGBuD1B6l1t5GdYj/gMSIiYf11/T/iiCN46KGHOi2bPHkyzz33XJfHFhYWRqbv7c1qtTJ//nzmz59/UPUTEZF9RSUo9e6779Lc3ExjY2Ok03nppZeYMWNGJCFgfn4++fn50Ti9iIjEIfUN0RPtkVJWwyA72Ua1209pvUdBKRHpEV3/RUSkK1H5+Lp27Vq+8Y1v8MILL0S2Pfroo5x11lkUFRVF45QiIhLn1DdET3N4pFSUckoBDE9LAqCsUXmlRKRndP0XEZGuRCUodccdd/DjH/+Y6667LrLtySef5Ic//CG/+93vonFKERGJc+oboqclPFJq3xkxfSY3JRSUKq1XUEpEekbXfxER6UpUglJffvklZ5555j7bZ8+ezZYtW6JxShERiXPqG6In2qvvAQxPbQ9KaQU+EekhXf9FRKQrUQlKHX744bz88sv7bH/zzTc55JBDonFKERGJc+oboieS6DxKOaUAclNDaSjLFJQSkR7S9V9ERLoSlUTnP/3pT7nmmmt45513mDBhAgCff/45H330EX/84x+jcUoREYlz6huiRyOlRCSe6fovIiJdicp3ql/72td47rnnGD9+PNu2bWPnzp2MGzeOF198kVmzZkXjlCIiEufUN0RPs7d9pFQ0c0q1B6Wqmrz4/MHonUhEEo6u/yIi0pWojJQCOPLII7nxxhuj9fIiIjIAqW+IjmZf9EdKZTitOG0WWv1BKpq8HDLUFbVziUji0fVfREQ6E5WgVGNjI3/961/55JNP8Pv9mKbZofzRRx+NxmlFRCSOqW+IDq8/SFsg9F5GM6eUYRjkDXGyrdZNaYNHQSkR6TZd/0VEpCtRCUrdcMMNfPLJJ5x77rmkpqZG4xQiIjLAqG+IjnA+KQBbFINSACPDQal65ZUSke7T9V9ERLoSlaDUu+++y8qVK5k8eXI0Xl5ERAYg9Q3REV55z2WzYDGiN30PYGRGaHSUVuATkZ7Q9V9ERLoSle9Uc3NzsVii/HWtiIgMKOoboiM8UirFHv33Nm+IE9AKfCLSM7r+i4hIV6I2fe/WW2/luuuuY8yYMSQlJXUoz8vLi8ZpRUQkjqlviI5wUCo5igmlzGCQqqpKUoIpAHxV74nauUQk8ej6LyIiXYlKUOp///d/AZgzZw4QSo4KYJomhmHw2WefReO0IiISx9Q3REdz+/S9aAalmhvqWPmeh4A9GUihtKE18u8mInIguv6LiEhXohKUeuONN6LxsiIiMoCpb4iOjiOlglE7T0pGJk5XMkadlxZfgDp3G1kp9qidT0QSh67/IiLSlah8rTpy5EhGjhyJ2+1m48aNDB06lGAwSF5eHiNHjozGKUVEJM6pb4iOcKLz/sgpZbUYZCeHvs/SFD4R6S5d/0VEpCtRGSnV0NDAT37yEz744AMAXn31VRYvXkxJSQkrVqxQ5yMiMgipb4iO/sgptae89CSq3X527vKQP3JIv5xTRAY2Xf9FRKQrUfkE+9vf/haXy8X777+Pw+EA4He/+x3Dhw/nt7/9bTROKSIicU59Q3REVt9LsvbL+fLSQlP2NFJKRLpL138REelKVIJS//3vf/n5z39Oenp6ZFtmZibz58/nww8/jMYpRUQkzqlviI4Wb3ui836YvmcGg6TRCsDOXQpKiUj36PovIiJdicr0PQCv17vPtrq6Omy2qJ1SRETinPqGvtfs2z19r6E1yudqqKOkMQAMYVt1U3RPJiIJRdd/ERHpTFS+Vj3nnHNYvHgxmzdvxjAM3G4377//Pr/5zW8466yzonFKERGJc+oboiM8Uiqln3JKZQ5JBaCs0Ut5eRkVFeUEg9Fb9U9EBj5d/0VEpCtR+Wrihhtu4J577qGwsJC2tjbOO+88rFYrF110ETfccEM0TikiInFOfUN07DlSqj+EFt8zaQ0YPLimBH9TLT/+RgHDh4/ol/OLyMCj67+IiHQlKkEpu93OjTfeyE9/+lNKSkoIBAKMHj2alJSUaJxOREQGAPUN0RFJdN4POaUArAa4LCaeoEHQmUGqzeiX84rIwKXrv4iIdCUqQanOEhZu3Lgx8vuMGTOicVoREYlj/dU3+Hw+lixZwurVq0lKSuLCCy/kZz/7GYZhsHHjRm655Ra++OILjjjiCG677TYmTpwYOXb16tX84Q9/oLq6mpNOOolFixaRmZnZJ/WKluZwovN+GikFkGwN4glaaGxtax85JSLSNd0biIhIV6LyUfLSSy/tdLvdbicnJ4c33ngjGqcVEZE41l99w29/+1vWrFnDgw8+SEtLCz/72c/Iy8vjW9/6FnPmzOHcc8/l9ttv54knnmDu3Lm89tprJCcns379ehYsWMBtt93GuHHjWLx4MfPnz+eBBx7ok3pFS3ikVH8GpVJsJrVt0NDqZ3hqv51WRAYo3RuIiEhXohKU2rRpU4fngUCAnTt3smjRIs4999xonFJEROJcf/QN9fX1rFq1ioceeojJkycDcOWVV1JcXIzNZsPhcHDDDTdgGAYLFizgP//5D6+88gqFhYWsXLmS2bNnc/755wOwdOlSTj31VEpKShg9enSf1K+v+YMmrf5QkvHkJGu/nTfZGjpnY6sfFJQSkQPQvYGIiHSlX75WtVqtHHbYYdx444383//9X3+cUkRE4lw0+oaioiJSU1OZOXNmZNucOXNYsmQJxcXFTJs2DcMI5UAyDIOpU6eybt06AIqLi5k+fXrkuBEjRpCXl0dxcXGf1C0aWtpHSUH/5ZQCSGkPSjW0tvXbOUUkcejeQEREwvrvEyxQW1tLY2Njf55SRETiXF/2DSUlJYwcOZLnn3+eM888k69//essX76cYDBIdXU1w4YN67B/VlYWFRUVAFRVVe23PN4Eg0G2l5YD4LBZsFn6L+F4yh4jpUzT7Lfzikhi0b2BiIhEZfre/Pnz99nW0tLCu+++y5lnnhmNU4qISJzrj77B7XazY8cOnnzySZYsWUJ1dTU333wzLpcLj8eD3W7vsL/dbsfn8wHQ2tq63/LuMozOf+9r1dWVPPKfjUAyyTYjqufam8tqAiZtAfAGQu0MPyC67Y43g7HNoHYncruj0TbdG4iISFf6bc2cjIwMfvWrX3Heeef11ylFRCTO9XXfYLPZaG5u5u6772bkyJEAlJWV8cQTTzBmzJh9Akw+nw+n0wmAw+HotNzlcvWoDllZaZ3+3td8viZSs7JhlxtXEvh8zTidSSQnO3A57Rh2O6Yl0OnPg93HYQmQbDNw+8FnWMnMTCU7u3/aHa8GY5tB7Zbe072BiIhAlIJSS5YsicbLiojIANYffUNOTg4OhyMSkAI47LDDKC8vZ+bMmdTU1HTYv6amJjJlLzc3t9PynJycHtWhtrYJCN201tY2Ea3ZbXV1zTR7Qjmdmlpauffva0jNGYk9eSieVh+WoJWgr/Ofbrf3oPdJtibh9hvUNvuoq2vGbm/CMKLf7ngzGNsMancitzvcxr6kewMREelKVIJSy5Yt6/a+8+bNi0YVREQkzvRH35Cfn4/X62X79u0cdthhAGzbto2RI0eSn5/Pn//8Z0zTxDAMTNNk7dq1/PjHP44cW1RURGFhIQDl5eWUl5eTn5/fozrseaNqmkTtxtU0oS0Q+t2RZCN5SGZ0TtSFFJtJjdeg2Wfu085otjteDcY2g9ot3aN7AxER6UpUglI7duzglVdeISMjg4kTJ2K329m0aRM7d+5kypQp2Gyh0xqJPCFfREQ66I++4fDDD+eUU05h/vz53HrrrVRXV7NixQquvvpqzjzzTO6++24WL17Md77zHZ588kk8Hg+zZ88G4JJLLuHSSy9lypQpTJo0icWLF3PKKacwevToPml/NLQFQ3fFtn5dtiQkpf0TRKNPd+Yisn+6NxARka5EJShlt9s599xzue2220hKSopsv+OOO2hoaOB3v/tdNE4rIiJxrL/6hrvuuotFixZxySWX4HK5+N73vsell16KYRg88MAD3HLLLfztb3/j6KOPZsWKFSQnJwNQUFDAwoULuffee2loaODEE09k0aJFfVKnaGkLLYJHktH/gaFUW+icCkqJyIHo3kBERLoSlaDUSy+9xKpVqzp0OgAXX3wx//M//6OOR0RkEOqvviEtLY2lS5d2WjZ58mSee+65Lo8tLCyMTN8bCGI5Uiq1/Z+x2WcSCCowJSJd072BiIh0JSofY3Nzc/nvf/+7z/ZXX301rqdBiIhI9Khv6HvhnFK2GMx4cVnBZjEIAuXNbf1fAREZMPrr+u/z+bjtttuYMWMGJ5xwAvfccw9me/KvjRs3ctFFF5Gfn88FF1zAhg0bOhy7evVqTj/9dPLz87n22mupq6uLlJmmyV133cVxxx3HzJkzWbp0KcFgsM/qLSIymEVlpNQvfvELfvrTn/Lvf/+bcePGAfDJJ5+wceNG7r///micUkRE4pz6hr4XHimVFIORUoYBGa4kalp8lDT4mN7/VRCRAaK/rv+//e1vWbNmDQ8++CAtLS387Gc/Iy8vj29961vMmTOHc889l9tvv50nnniCuXPn8tprr5GcnMz69etZsGABt912G+PGjWPx4sXMnz+fBx54AICHHnqI1atXs2zZMvx+P9dffz1ZWVlcddVVfVZ3EZHBKiofY7/xjW/w7LPPctRRR7F161ZKS0uZOXMmr776KjNnzozGKUVEJM6pb+h74ZxSsZi+BzA0OTQVZ2eDLzYVEJEBoT+u//X19axatYpFixYxefJkjj/+eK688kqKi4t56aWXcDgc3HDDDYwdO5YFCxaQkpLCK6+8AsDKlSuZPXs2559/PuPGjWPp0qW89dZblJSUAPDoo49y3XXXMX36dI477jh++ctf8vjjj/dJvUVEBruojJQCOProo5k/fz4NDQ2kpqZisVi0ooaIyCCnvqFvRUZKxSDROUCGK/QxokRBKRE5gGhf/4uKikhNTe0Q5JozZw4Av/nNb5g2bVrkfIZhMHXqVNatW0dhYSHFxcX86Ec/ihw3YsQI8vLyKC4uxm63U15ezowZMyLl06ZNo7S0lKqqKoYNG9ZnbRARGYyi8t2qaZrcd999HHvssRx//PGUlZVx/fXXc/PNN+Pz9e6D65w5c7jxxhsjzzUvXERkYIlG3zDYRXJKxWqklCs0UkpBKRHZn/64/peUlDBy5Eief/55zjzzTL7+9a+zfPlygsEg1dXV+wSPsrKyqKioAOg0uBQur66uBuhQnp2dDRA5XkREei8qH2OXL1/OP/7xD26//XbsdjsA//M//8M777zT5YpI+/Piiy/y1ltvRZ673W7mzJnD9OnTefbZZykoKGDu3Lm43W6AyLzwefPm8dRTT9HY2Mj8+fMjx+85L/zee+/lhRde4KGHHjrIVouIyP70dd8gsV19D0I5pQC+avRpBT4R6VJ/XP/dbjc7duzgySefZMmSJfzqV7/iscce4+GHH8bj8UTOG2a32yMBsdbW1i7LW1tbI8/3LAN6HFAzjJ4/Qgf27tiB9Ojt+zOQHoOhjWpn4j32bmc0RGX63nPPPcftt9/OjBkzCA+TPfHEE7njjjv4yU9+wq9//etuv1Z9fT1Lly5l0qRJkW17zgs3DIMFCxbwn//8h1deeYXCwsIO88IBli5dyqmnnkpJSQmjR4/uMC8c4Je//CX/93//p2SFIiJR1Jd9g4SEc0olGUAMYkJpThtWA3wBk6/qPRyaldz/lRCRuNcf13+bzUZzczN33303I0eOBKCsrIwnnniCMWPG7BNA8vl8OJ1OABwOR6flLperQwDK4XBEfgdwuVw9qmNWVlqP9vd6U4EqnE4HmZmpZGf37PiBpqfvz0A0GNoIameiiXY7oxKUqq2t7XR+dXp6emQ0U3fdcccdnHfeeVRVVUW2FRcXa164iMgA05d9g0DQNDsmOg/0fx0shsEQh0Fdq8kX1S0KSolIp/rj+p+Tk4PD4YgEpAAOO+wwysvLmTlzJjU1NR32r6mpidQpNze30/KcnBxyc3MBqK6uZtSoUZHfw+fsidraJswefIGwa1czAK2tXurqmnE4mnp0voHCMEI3vT19fwaSwdBGUDsTzd7tDD/va1EZ8H/cccfx4IMPdtjW3NzMPffcw7HHHtvt13nvvff46KOPuOaaazps17xwEZGBp6/6Bglp9e/OhZgUo+l7ABmO0Mk3VzfHrhIiEtf64/qfn5+P1+tl+/btkW3btm1j5MiR5Ofn8/HHH2O23z2apsnatWvJz8+PHFtUVBQ5rry8nPLycvLz88nNzSUvL69DeVFREXl5eT3+Mts0e/4IHdi7YwfSo7fvz0B6DIY2qp2J99i7ndEQlZFSt956K/PmzePEE0/E6/VyzTXXUFZWRl5eHvfdd1+3XsPr9XLLLbdw8803R4bWhsXTvPB4tucc0ETUX+3b8/WjOZd273PuPYc3kehvMz70d/36om+Q3Vp8oaCUgYkFYjF7D4ChjtAf0hdVLTGqgYjEu/64/h9++OGccsopzJ8/n1tvvZXq6mpWrFjB1VdfzZlnnsndd9/N4sWL+c53vsOTTz6Jx+Nh9uzZAFxyySVceumlTJkyhUmTJrF48WJOOeUURo8eHSm/6667GD58OAB33303V155ZZ/UW0RksItKUCo9PZ1nnnmG9957j23btuH3+znssMM46aSTsFi693XusmXLmDhxIieffPI+ZV3N+473eeGxMlDq2VvRbl8g4Mblsrefq3/m8wcCbpzO0DkTOYeA/jYHl77oG2Q3d/vcPVt74DpWQakMZ+jf7guNlBKRLvTX9f+uu+5i0aJFXHLJJbhcLr73ve9x6aWXYhgGDzzwALfccgt/+9vfOProo1mxYgXJyaEpxwUFBSxcuJB7772XhoYGTjzxRBYtWhR53auuuora2lrmzZuH1Wrlwgsv5IorruizeouIDGZRCUqdc845LFu2jOOPP57jjz++V6/x4osvUlNTQ0FBAbA7cPTqq69yzjnnDMh54f0t0ee69lf7amub8Xh8kd+t1ujnTKmtbaa11YfTaaeurn/O2Z/0txkfojUvvCt90TfIbuGRUklGbP/IhjgMDKC62ccut4/smNZGROJRf13/09LSulzNb/LkyTz33HNdHltYWEhhYWGnZVarlfnz53dYzVtERPpGVIJSFouFtra2g3qNxx57DL/fH3l+1113AaGV8j788EP+/Oc/Y5omhmEQnhf+4x//GNg9LzzcsXQ1LzwclDrYeeHxbqDUs7ei3b49X7u/3svO5vAmokRuGyR++3qqL/oG2S0yUsoS2z+yJIvB8LQkypva+KK6hSMPyYppfUQk/uj6LyIiXYlKUOqUU07hBz/4AaeeeiojR47cJ7/TvHnzDvgae66cAZCSkgLAmDFjyMrK0rxwEZEBpi/6Btlt9/Q9E4htArPDhzoob2pjU2UzZ8e0JiISj3T9FxGRrkQlKPX5558zYcIEqqqqqKqq6lBm9EFm3dTUVM0LFxEZYKLdNww2LXvklIq1IzMdvLOzmQ3liblcuYgcHF3/RUSkK30WlPre977HfffdR3p6Oo899hgQWgVv75Xzeuv222/v8FzzwkVE4l+0+4bBzO0LAJBkif1IqaOzQwuFfFreGNN6iEj80PVfRES6o8+WuygqKtpnrvgJJ5xASUlJX51CREQGGPUN0dPSYfpebB2R5cBqQFWzj/IGT6yrIyJxQNd/ERHpjqiuwW0qw6+IiOxFfUPf8MTR9D2nzcLY7FDux3U762NbGRGJW7r+i4jI3qIalBIREZHoCI+USoqDkVIAE0ekA/BxSX1sKyIiIiIiA4aCUiIiIgNQZPU9S7wEpdIA+HjnrhjXREREREQGij5dfe/ll18mNTU18jwYDPLaa6+RmZnZYb/zzz+/L08rIiJxTH1DdLT44mf6HsDkvNBIqeKvGvD6g9it+t5LZLDT9V9ERA6kz4JSeXl5/PWvf+2wLSsri5UrV3bYZhiGOh4RkUFCfUP0tLS1r74XJ9P3DhnqIjvFTk2Lj0/KGikYmU5VVWWkfNiwXCwWBapEBgtd/0VEpDv6LCj15ptv9tVLiYhIglDfED2RkVIxnr5nBoOR4NPUUUP45+fVFJXUMzLJw/2vfUzq0Gyad9Xw428UMHz4iJjWVUT6j67/IiLSHfrKUkREZAByx0mi8+aGOla+t5X7X/uYozJCcwmLShoASB2aTXrmMFKHZseyiiIiIiISpxSUEhERGWBM09yd6DwOckqlZGSSOjSbSbkuAD4pb8TrD8a4ViIiIiIS7xSUEhERGWDcbQGC7QOkkuJk9T0zGMTmqSMnJYm2gMln1a2xrpKIiIiIxLk+XX1PREREoq/ZG0pybhA/3y6FpvF5SCYTsFJU1oIj1pUSERERkbgWL59lRUREpJuavH4AkqxgxMH0vbCUjEwOywkt/15U5o5xbUREREQk3ikoJSIiMsC0tAel7JY4iki1G5Fqw2JASaOPlrb4mFooIiIiIvFJQSkREZEBJjJSKg57cYfNYFy2E4DylkCMayMiIiIi8SwOP86KiIjI/oRzSiVZ42+kFMD0kSkAlDVrBT4RERER6ZqCUiIiIgNMcxyPlAI4blQoKFXZEsTnV2BKRERERDoXpx9nRUREpCu7p+/F50ipQzIcjE63EwR27vLEujoiIiIiEqcUlBIRERlgwtP37NYYV2Q/TjgktArftlqtwiciIiIinVNQSkREZICJ5+l7ZjBIVVUlx6R6AfiqvpW2oFbhExEREZF92WJdAREREemZ5jievtdcX8dj2xoI+jwkW0fjDkC5Ep6LiIiISCfi8DtWERER2Z9mX3tQKk6n76VkZJKSkcmI5NAIqa+aAzGukYiIiIjEIwWlREREBpim1vacUnE4UmpPI1yhoFR5c5BWrcInIiIiIntRUEpERGSAiYyUivNefEgSpNqt+E1YW6aE5yIiIiLSUZx/nBUREZG9tYRzSlnje6SUYcBhWckA/PvLxhjXRkRERETijYJSIiKSsObMmcONN94Yeb5x40Yuuugi8vPzueCCC9iwYUOH/VevXs3pp59Ofn4+1157LXV1df1d5W5piuPV9/Z2ZE4KAB+WtlDvaQMgGAxSUVFORUU5waCm9YmIiIgMVgPg46yIiEjPvfjii7z11luR5263mzlz5jB9+nSeffZZCgoKmDt3Lm53aFrZ+vXrWbBgAfPmzeOpp56isbGR+fPnx6r6XfIHTTxtoUBOvOeUAshKsZPhMPAH4Z+bqgCoqqrk/tc+5v7XPqaqqjLGNRQRERGRWFFQSkREEk59fT1Lly5l0qRJkW0vvfQSDoeDG264gbFjx7JgwQJSUlJ45ZVXAFi5ciWzZ8/m/PPPZ9y4cSxdupS33nqLkpKSWDWjU83to6Qgflff29thQ0IV/fsnFZhmKPl56tBsUodmx7JaIiIiIhJjCkqJiEjCueOOOzjvvPM44ogjItuKi4uZNm0ahhEaXWQYBlOnTmXdunWR8unTp0f2HzFiBHl5eRQXF/dr3Q8kHJSyWw0sRvyPlAIYk27FbjX4orqFT8qbYl0dEREREYkTCkqJiEhCee+99/joo4+45pprOmyvrq5m2LBhHbZlZWVRUVEBQFVV1X7Lu8swQo89f+/LR4svAECqfeB04Q6rwdcOTQPg6XWl7BlLi8Z71N+PRGmH2q1279lGERGR/mCLdQVERET6itfr5ZZbbuHmm2/G6XR2KPN4PNjt9g7b7HY7Pp8PgNbW1v2Wd1dWVlqnv/cVS4MXgDSnDZfLjt9jx7DbMS0BDLud5GQHLmfHbXv/jOo+Pg9OZ8d92jx2vjduBK9vbeSNL2q45oRcXK7Qe52ZmUp2dt+/T/0tGv/WA4HaLSIiIgdDQSkREUkYy5YtY+LEiZx88sn7lDkcjn0CTD6fLxK86qrc5XL1qA61taHpaVlZadTWNtGeQqnPlFWFXt9pNfB4fHhafViCVoK+0E+327vPtr1/RnMfhwVaW30d9/H4yLEFyR+ZTnFpIw++8xVOM/Re19U1Y7cP3Cl9hhG9f+t4pnYnbrvDbRQREekPCkqJiEjCePHFF6mpqaGgoAAgEmR69dVXOeecc6ipqemwf01NTWTKXm5ubqflOTk5ParDnjeqpkmf37g2teeUSkmyAMG+ffEoMYNBKisrKTwqleLSRl7e3MCZh9px2YyovEexkCjt6Cm1W0RERA7GwElIISIicgCPPfYYL7zwAs8//zzPP/88p512GqeddhrPP/88+fn5fPzxx5HV30zTZO3ateTn5wOQn59PUVFR5LXKy8spLy+PlMeLJm8op1Ry0sDpwpsb6lj53lbWbPiCcdlOfAGTz+r8Bz5QRKQX5syZw4033hh5vnHjRi666CLy8/O54IIL2LBhQ4f9V69ezemnn05+fj7XXnstdXV1kTLTNLnrrrs47rjjmDlzJkuXLiUYHBhfCIiIDAQD5xOtiIjIAYwcOZIxY8ZEHikpKaSkpDBmzBjOPPNMGhsbWbx4MVu2bGHx4sV4PB5mz54NwCWXXMLf//53nn76aTZt2sQNN9zAKaecwujRo2Pcqo6aWtsAsAa8kQDbQJCSkUlaZjbfnZwJwNb6AB7/wKm/iAwML774Im+99VbkudvtZs6cOUyfPp1nn32WgoIC5s6di9vtBmD9+vUsWLCAefPm8dRTT9HY2Mj8+fMjxz/00EOsXr2aZcuWce+99/LCCy/w0EMP9Xu7REQSlYJSIiIyKKSmpvLAAw9QVFREYWEhxcXFrFixguTkZAAKCgpYuHAhy5cv55JLLmHIkCEsWbIkxrXeV9WuRgC2VdRGbqoGkinDkzkmx0nQhM9qNVpKRPpOfX09S5cuZdKkSZFtL730Eg6HgxtuuIGxY8eyYMECUlJSeOWVVwBYuXIls2fP5vzzz2fcuHEsXbqUt956i5KSEgAeffRRrrvuOqZPn85xxx3HL3/5Sx5//PGYtE9EJBEpp5SIiCSs22+/vcPzyZMn89xzz3W5f2FhIYWFhdGu1kFxt4WmjbicjhjXpHcMw+C7k7L4zZulbG0IUN3SxvBYV0pEEsIdd9zBeeedR1VVVWRbcXEx06ZNwzAMIHQNmjp1KuvWrYt8QfGjH/0osv+IESPIy8ujuLgYu91OeXk5M2bMiJRPmzaN0tJSqqqqIjkJRUSk9zRSSkREZABp8YWCUjYjxhU5CPnDXeS4DIImPPFJ3YEPEBE5gPfee4+PPvqIa665psP26urqfYJHWVlZVFRUAHQaXAqXV1dXA3Qoz87OBogc3xOG0fNH6MDeHTuQHr19fwbSYzC0Ue1MvMfe7YwGjZQSEREZQFraQonOkywDNx+TYRhMzknijZ0+3tjWyJe1bg7NSo51tURkgPJ6vdxyyy3cfPPNOJ3ODmUejwe73d5hm91uj6zO2tra2mV5a2tr5PmeZbB7ddeeyMpK69H+Xm8qUIXT6SAzM5Xs7J4dP9D09P0ZiAZDG0HtTDTRbqeCUiIiIgPI7pFSAzcoBZDtspCXaqGsOcj9737J7eeOj3WVRGSAWrZsGRMnTuTkk0/ep8zhcOwTQPL5fJHgVVflLperQwDK4XBEfgdwuVw9rmdtbRM9WZ9i165mAFpbvdTVNeNwNPX4nAOBYYRuenv6/gwkg6GNoHYmmr3bGX7e1xSUEhERGUBa2nNKJQ3woBTApGwb5c0+3viiho0VTYwfPji+cRSRvvXiiy9SU1NDQUEBsDtw9Oqrr3LOOedQU1PTYf+amprIlLzc3NxOy3NycsjNzQVCUwBHjRoV+R0gJyenx/U0TXp0AxvZ1+z5sQOR2pg41M7EEu12KqeUiIjIAOIOj5RKgB48w2HhlMNCgaj73v4ytpURkQHrscce44UXXuD555/n+eef57TTTuO0007j+eefJz8/n48//hiz/Y7KNE3Wrl1Lfn4+APn5+RQVFUVeq7y8nPLycvLz88nNzSUvL69DeVFREXl5eUpyLiLSRzRSSkREZIAwTXNAj5Qyg0GqqipDv5smhmHw3clZ/GdHM+/v2MWn5Y1MGJEe41qKyEAzcuTIDs9TUlIAGDNmDFlZWdx9990sXryY73znOzz55JN4PB5mz54NwCWXXMKll17KlClTmDRpEosXL+aUU05h9OjRkfK77rqL4cND64TefffdXHnllf3YOhGRxKaglIiIyADh9QfxB0PBqIGYU6q5oY6V73kw2zyk5owk2eXC4q5j1qGpvLmtib+u2cnd50+MdTVFJIGkpqbywAMPcMstt/C3v/2No48+mhUrVpCcHFpcoaCggIULF3LvvffS0NDAiSeeyKJFiyLHX3XVVdTW1jJv3jysVisXXnghV1xxRYxaIyKSeBSUEhGCwWAkn0J2djYWSwLMCxJJQM2+QOR3W5SW5Y22lIxMgj4PsDtI5cwZCZj8Z2sdW6pbOCInJbaVFJEB7fbbb+/wfPLkyTz33HNd7l9YWEhhYWGnZVarlfnz5zN//vw+raOIiITozlNEqKmp4YE3inngjeJ9kn2KSPxo9voBSLKEVkBJBCkZmYwaPpzRaVYAHv5gZ4xrJCIiIiL9RUEpEQEgZUgmKUMyY10NEdmPPYNSieaYzNDg7dc+r6ZklyfGtRERERGR/pCAH2tFREQSUyQoZU2QYVJ7yLDDpGwbQRMe/bCEYDBIRUU5FRXlBIPBWFdPRERERKJAQSkREZEBoskbyillT8Deu7mhDltLaPrwyxsr2fZVGfe/9jH3v/ZxZMU+EREREUksSnQuIiIyQOyevpd4I6UA8jLT2FZt0OAzeXNbE6lDs2NdJRERERGJogT8rlVERCQx7Z6+F+OKRIlhwBEZoca9tLke0zRjXCMRkdhoavXz0Noaat2BA+8sIjKAKSglIiIyQCT6SCmAMUOsuGwGpY1tVLmVS0pEBqePSup59rN6PipvjXVVRESiSkEpERGRAaKxNRSUsifoSCkIBdxOPSwdgC31GiEgIoPToZnJAFS3BAhq1KiIJDAFpURERAaISFAqgUdKmcEgx2aH2lnaHMTdppsxERl8Ds10keawEDBhV6uugyKSuBSUEhERGSAavYk/Uqq5oY5/f/IlQ4xWTGB7o0ZLicjgYxgG43NcANS0aiqziCQuBaVEREQGiN3T9xJ3pBRASkYmY1JDv+9oDCjhuYgMSuNznABUe3QNFJHEpaCUiIjIANHU2gYk9vS9sOEOPxbDpMlnsqXOG+vqiIj0u3BQqsYTVHBeRBKWglIiIiIDxGBIdB5ms8BwZ+gm7N9fNsW4NiIi/W9sphMD8Aag1qOpzCKSmBSUEhERGQCCpkmTd3BM3wsbmRwKSv3nyyb8QY0SEJHBJclq4LSFrvf17V9KiIgkmrgOSlVWVnLdddcxc+ZMTj75ZJYsWYLXGxrCX1JSwhVXXMGUKVM466yzePvttzsc++6773LOOeeQn5/PZZddRklJSYfyhx9+mJNPPpmCggJuuukmPB5Pv7VLRESkp9y+AOG4TFJc9959J8cZGhVW3xrgo527Yl0dEZF+50pqD0pppJSIJKi4/VhrmibXXXcdHo+Hxx9/nN///vf861//4g9/+AOmaXLttdeSnZ3NqlWrOO+885g3bx5lZWUAlJWVce2111JYWMgzzzxDZmYm11xzTWQu9quvvsqyZctYuHAhjzzyCMXFxdx5552xbK6IiMh+7Znk3DYIckoBWAw4JC00V/Hlz6piXBsRkf7nioyUUlBKRBJT3Aaltm3bxrp161iyZAlHHnkk06dP57rrrmP16tW8//77lJSUsHDhQsaOHcvcuXOZMmUKq1atAuDpp59m4sSJXHnllRx55JEsWbKE0tJSPvjgAwAeffRRLr/8ck499VQmT57MbbfdxqpVqzRaSkRE4lZje5LzVHvcdt1RMSY9FJT61+YaPG26KRORwcVpC13zG7y6/olIYorbT7Y5OTn85S9/ITs7u8P25uZmiouLGT9+PMnJyZHt06ZNY926dQAUFxczffr0SJnL5WLChAmsW7eOQCDAJ5980qF8ypQptLW1sWnTpug2SkREpJfCI6VSB0OW8z1kOQ2GpybhaQvyny21sa6OiEi/ioyU8iinlIgkJlusK9CV9PR0Tj755MjzYDDIypUrOe6446iurmbYsGEd9s/KyqKiogJgv+WNjY14vd4O5TabjYyMjMjx3WXE+eyJcP3ivZ49FQwGqampwTAgMzMl6u3b8/UNo3/ezz3P0x/n7O82JurfZthAaV+810862h2Uitvvk6LCMAy+NiaVv326i39+Xs03jxl24INERBKEU9P3RCTBxW1Qam933nknGzdu5JlnnuHhhx/Gbrd3KLfb7fh8PgA8Hk+X5a2trZHnXR3fXVlZaT1tRkwMlHp2V2VlJQ+//RkAv8hMJTc3N6rnCwTcuFyhv5esrFSys6P/fgYCbpzO0DkzM6N/zli0MXSuxPrb3Fuit0/6V2P7yntpDiswuG5OvnZoGn/7dBfvbq+jsbWNdGdSrKskItIvnEkKSolIYhsQQak777yTRx55hN///vccddRROBwO6uvrO+zj8/lwOp0AOByOfQJMPp+P9PR0HA5H5Pne5S6Xq0f1qq1twozjFaoNI3RTHO/17Kna2masjtTIKI9ot6+2thmPx7f73NbkAxzRN+dsbfXhdNqpq4v+Ofu7jYn6txk2UNoXrqcMDE3tI6VS7BYGW1BqTIaDsdnJbK1x8+/NtXxr0vBYV0lEpF+42nNKKSglIokq7oNSixYt4oknnuDOO+/km9/8JgC5ubls2bKlw341NTWRKXm5ubnU1NTsU37MMceQkZGBw+GgpqaGsWPHAuD3+6mvrycnJ6dHdTNN4vqGM2yg1LO7wm3Z82c027fna/fXe7nnefrjnLFoY3+fKxYSvX3Sv3YnOreC2Rbj2vS/b44bxp/e/pIX1pcwM8dk2LBcLJbBNZVRRAYfTd8TkUQX15/mli1bxpNPPsk999zD2WefHdmen5/Pp59+GpmKB1BUVER+fn6kvKioKFLm8XjYuHEj+fn5WCwWJk2a1KF83bp12Gw2xo0b1w+tEhER6blwTqm0QZZTKuwbR4e+OFpX4eYPr6yjqqoyxjUSEYm+cKLzRm8Af1DfdIlI4onbT7Zbt27lT3/6Ez/60Y+YNm0a1dXVkcfMmTMZMWIE8+fPZ/PmzaxYsYL169dz4YUXAnDBBRewdu1aVqxYwebNm5k/fz6jRo3i2GOPBeC73/0uDz74IK+//jrr16/n1ltv5eKLL+7x9D0REZH+MlhX3wsbleHiqCwHYLDLOiTW1RER6ReO9qCUCTR4Bt8oWRFJfHE7fe+NN94gEAhw3333cd9993Uo+/zzz/nTn/7EggULKCwsZMyYMSxfvpy8vDwARo0axR//+Ed+97vfsXz5cgoKCli+fDlGexKis88+m9LSUm6++WZ8Ph9nnHEG119/fb+3UUREpLvCic5T7RbqY1uVfmUGg5FRUVOz4Ita2NGoaSwiMjhYDAOHFbwBqHP7yEqxH/ggEZEBJG6DUnPmzGHOnDldlo8ZM4aVK1d2WT5r1ixmzZrV69cXERGJJ02DdKRUc0MdK9/zMGykj51fbgPyqG2FiqY2hivfuYgMAk6rgTdgUtfSBj1LgSsiEvfidvqeiIiI7BZOdJ7mGFxBKYCUjEzSM4cxNGMIOaFFdHl9W2NsKyUi0k+c7cMIat2+/e8oIjIAKSglIiIS54LBIPXuUFDK21SHOYiXdRydEmr761sbCSjpr4gMAg5rKAVJnVs5pUQk8SgoJSIiEudKy8vx+IMAvPTRJtxud4xrFDu5LhO7FWo9ft7/clesqyMiEnXhoNQuBaVEJAEpKCUiIhLnGr2hgJQBpA8ZGtvKxJjVgEPTQh9fHnl/G8FgMMY1EhGJrvCs7fA0bhGRRKKglIiISJxr9IZWm3MmWWhfSHZQy7M2YWDycbmb9zftjHV1RESiyt4+UqqhfcELEZFEoqCUiIgklMrKSq677jpmzpzJySefzJIlS/B6vQCUlJRwxRVXMGXKFM466yzefvvtDse+++67nHPOOeTn53PZZZdRUlISiybsIxKUsg2+JOedSbaajHCF8kmt2lgX49qIiERXeKRUg0cjpUQk8SgoJSIiCcM0Ta677jo8Hg+PP/44v//97/nXv/7FH/7wB0zT5NprryU7O5tVq1Zx3nnnMW/ePMrKygAoKyvj2muvpbCwkGeeeYbMzEyuueaauEgq3tC6e6SUhIxNC/27/HdHM59WNMW4NiIi0WO3hEdKKSglIolHn25FuqHWE+CDci/3vFOG16/8JSLxatu2baxbt44lS5Zw5JFHMn36dK677jpWr17N+++/T0lJCQsXLmTs2LHMnTuXKVOmsGrVKgCefvppJk6cyJVXXsmRRx7JkiVLKC0t5YMPPohxq/YcKaVuO2yIHcakWzCBu97cQjAOgociItGwe6SUpu+JSOLRp1uRA9ha18o/v2xla72fN7Y18q/NNbGukoh0IScnh7/85S9kZ2d32N7c3ExxcTHjx48nOTk5sn3atGmsW7cOgOLiYqZPnx4pc7lcTJgwIVIeS7tzSmn63p7yc5Jw2Qw2lDfxRFFprKsjIhIVu3NKtcXF6F0Rkb6koJTIAXxY2tzh+X+21saoJiJyIOnp6Zx88smR58FgkJUrV3LcccdRXV3NsGHDOuyflZVFRUUFwAHLY0kjpTrnshlcURAKQP7xv9spLm2IcY1EJFaimU/w4Ycf5uSTT6agoICbbroJj8fTb+0CsLd/H9EWMGnViH0RSTD6dCtyAOsr3ACMSQ99Inh3ex1tAX0gEBkI7rzzTjZu3MjPfvYzPB4Pdru9Q7ndbsfn8wEcsLy7DIPICnnh3w/2sefqe9LRWUcN4YyjswkETX7+3CcUfbED0wz22XvfnQf037ni6aF2J+5joIlmPsFXX32VZcuWsXDhQh555BGKi4u58847+7V9NgPC30ko2bmIJBpbrCsgEs98/iCfVYe+DRufZafB56O+NcDarxo4dszQGNdORPbnzjvv5JFHHuH3v/89Rx11FA6Hg/r6+g77+Hw+nE4nAA6HY58AlM/nIz09vUfnzcpK6/T3g+EOxaRIT3HgCtox7HZMS6DTn8nJDlzOGO7j8+B09s+5XC47WVlp3HBqMh9ur2KXF37+0pc8cXkq+Ucd2ifvfXf11b/1QKN2SzwI5xN85513ItO3r7vuOu644w6+9rWvUVJSwpNPPklycjJjx47lvffeY9WqVfzv//5vh3yCAEuWLOHEE0/kgw8+4Nhjj+XRRx/l8ssv59RTTwXgtttu46qrruL666/H5XL1S/sMwyDdYaXOE6DB42d4z7olEZG4pqCUyH5sqGjEFzBxWg2GOAxmjkrln1saeHtbnYJSInFs0aJFPPHEE9x5551885vfBCA3N5ctW7Z02K+mpiYyZS83N5eampp9yo855pgenbu2NrQSXFZWGrW1TfRF+o/a5lCwzBIM4mn1YQlaCfo6/+l2e2O6j8MCra2+fjmX1ZpEXV1oivXXRrv4d2mAhlY/1zz1GXed5WHs6DwsluiOLjOMvv23HijU7sRtd7iNA0m08glOnz6dTz75hHnz5kXKp0yZQltbG5s2baKgoCC6DdtDmj0UlKrXCnwikmA0D0BkP4p2NgAwLMWCYRhMyg19oPm8qnl/h4lIDC1btownn3ySe+65h7PPPjuyPT8/n08//ZTW1tbItqKiIvLz8yPlRUVFkTKPx8PGjRsj5d1lmkRuVsO/H+xjd04pJTrfW/g9ctoMZo8fhsMSpLQlyDXPfcFH64opLy8nEAj22b9FZ4896zGYHmp34j4GmmjlE2xsbMTr9XYot9lsZGRk9Hu+wTRH6LZN0/dEJNEoKCWyHxsrQyMeclyhG8HRQxwAbK91x6xOItK1rVu38qc//Ykf/ehHTJs2jerq6shj5syZjBgxgvnz57N582ZWrFjB+vXrufDCCwG44IILWLt2LStWrGDz5s3Mnz+fUaNGceyxx8a0TaZpKqdUF8xgkKqqSqqqKjFNkzSHjZkZrSQZJrv8Nm5+q4b7/vkxVVWVsa6qiPSjvsonGP4Soy/yDcJB5PcyIM0R+iza2OqPec4x5WpTG9XOwdvOaND0PZH92LkrlE9qSPu3U6OH2DGAek8bu9w+hibb93O0iPS3N954g0AgwH333cd9993Xoezzzz/nT3/6EwsWLKCwsJAxY8awfPly8vLyABg1ahR//OMf+d3vfsfy5cspKChg+fLlGNHqgbupxRcgvNiS02ahIaa1iS/NDXWsfM+D2eYhNWckQ7IgzRZkRnaQ96st1AQcVFtTYl1NEelHfZlP0OFwRJ7vXd6bfFI9nRbp9aYCVTidDrKtNqAFv8VCdvbAml7ZXQNt2mhvDIY2gtqZaKLdTgWlRLrgD5qUNoS+IUuzh25KnTYLI4Y4KWtoZVutm2kKSonElTlz5jBnzpwuy8eMGcPKlSu7LJ81axazZs2KRtV6rb59qobVAJtVI6X2lpKRSdDXcXn2TAcclepjU7ODdVV+at1+hseofiLSf/o6n2BGRgYOh4OamhrGjh0LgN/vp76+npycnB7Xr6e5yHbtCqWLaG31Ym+//pfVtVBT09Tjc8czwxg8udoSuY2gdiaavdsZft7X9OlWpAvlDa0EgiYOq4HLtnukxOFZobxS2zSFT0T6QTh/iEPppHrkMFcbGXaTtiCsLK6NdXVEJMqikU/QYrEwadKkDuXr1q3DZrMxbty4Htex1/m9zFCicwj1CbHOORatPGaxroPaqHaqnQduZzQoKCXShfDUvbx0e4fpO+GglPJKiUh/2BUJSsV2GuFAYxgwYUho3uMb2xpZs+lLgsFgjGslItEQzXyC3/3ud3nwwQd5/fXXWb9+PbfeeisXX3xxr6bvHYxwTqkGj79fzysiEm2avifShZ317UGpNDuw+0bm8KxQfpJttS2xqJaIDDK1LaFcJk6bglI9NdQBwx1+Krw2Fr22jb9kOBg+fESsqyUifSya+QTPPvtsSktLufnmm/H5fJxxxhlcf/31/d7GyOp7rVp9T0QSi4JSIl0oCY+USkuCoDey/TCNlBKRflTdrKDUwTgqxUuF10qlz8b2XV6GK7mUSMKJdj7BA71+f0jfY/qeiEgi0fQ9kS6U7DF9b0/hoFSdu00fDEQk6mraR0q59DVSr6TaTPJcoSQIT22oi3FtRER6J719+l69pu+JSIJRUEqkCzt3hUZCjdwrKOVKspKdEtr2VUPrPseJiPSlmvaRUi7llOq1I9JDQal3dzZrlKuIDEjpzlBQqsnrpy2g/HgikjgUlBLphM8fpKIpNGUvlFOqo9EZTgC+2uXZp0wOLBgMUllZSVVVlRIPixzA7pFSCkr1VnoSjEy1YAIPrdkZ6+qIiPRYqt1C+LuJeo3UF5EEoqCUSCdKG1oJmpBit5Lh3Hcd9lEZoRVXvmqITlDKNM3IIxHV1NRw998/5P7Xi6mpqYl1dUTiWnVzKECunFIHZ3xWaP7jq5uq+KpeXyiIyMBiMQwykkNflNa5FZQSkcShoJRIJ8JT90ZnuCKrr+xp9NBQUKqkvu+n79W5fVz53Fae3OTmyU8aqGyfupNoUjMySRmSGetqiMS1oGlS237zoZFSByfTaWF6XjJBMzRaqqKinIqKco3WFJEBIzM5CYBd7sT8bCgig5OCUiKd2Nk+Le+Q9uDT3kYOid70vWeLy6lqCSWx9PhN/v7Zrj4/h4gMDPWeNgJBEwNwKtH5Qfv2xFAg/MVPK/n9K+u4/7WPqaqqjHGtRES6Z6grFJTSSCkRSSQKSol0oqR9asfoLoJSu0dK9W1Qyh80eW59OQBj0kPTBl/f2kBrW6BPzyMiA0M4yfkQpxVLJ6M2pWfG5biYcUgGARN2BtJJHZod6yqJiHTb0MhIKQWlRCRxKCgl0omSA4yUGjUktL3O3Ybb13cBo3e21VLV7CPdYWXmCAepdgvNviCvfV7dZ+cQkYGjuj3J+VDXvrntpHeuOu4QALbVB2jyaeqeiAwcQ9tzSu1SonMRSSAKSol04kDT99KcNoa0z6Xpy4S54eDT6WOHYLMYHJ0d+vDxz00KSokMRrXtI6WGau5en5k2OoNpeckEgXVV/lhXR0Sk25RTSkQSkYJSIntpbQtQ1X4jODqj86AU7J7C15dBqQ3lTQBMHZECwKj00IeP9WWN+IOJuRKfiHStuiW08l5WsoJSfemqqTkYQFlLkI9KW2JdHRGRblFOKRFJRApKiewlnCdqiNPGkPbOvzOjMvp2Bb5dbh+lDa0YwFHZoUTqQ11WkpMsuNsCbKlu7pPziMjAURMZKaXpewfLDAapqqqkoqIch3cXRw4NvafLP6iixacRUyIS/5RTSkQSkYJSInsJT93rKsl52OiM9hX4+mikVHiU1KGZyaTYQzdLFsNg/LBQPT4ubeyT84jIwFHTnlMqUyOlDlpzQx0r39vKyo9KeOw/Gzjc5SMlyaDG7Wf5f7+MdfVERA4oklNK0/dEJIEoKCWylwPlkwoLj5Tqu6BUKOg0cURah+0ThiUDsO6rhj45j4gMHOWNoel7OQpK9YmUjEzSM4eRPCQTmwVm5Ibe16fXlfGxrrEiEufCOaU0fU9EEomCUiJ7Ca+8t798UtD30/fCI6X2DkpNbB8pta60AdNUXimRwcI0zUjQe3ha11OJpfeGuQxOzgu9t7e+tJGdpaUEg1qRT0TiU3j6Xqs/iKet71Z/FhGJJQWlRPYSzil1oJFS4el7VU1evP6Du4kJmiafVoSDUukdyo7MdpJkNahzt1Ha0DcBMBGJfw2tflp8oZuOYSkKSkVDc0MdZkM5dvyUNbVxwz8+o6qqMtbVEhHpVHKSFYctdPumvFIikigUlBLZS3dzSmW4kkixWzGBsoMMFn1Z56bFF8Bps3B4dkqHMrvVwpE5qQBsbA9ciUjiCwehs1PsOG3qrqMlY+hQJg4J3dxtc9vZVueNcY1ERDpnGAYZrnCyc+WVEpHEoE+5Into9voj8/QPNH3PMIw9pvAdXF6pDWWhYNP44WnYLMY+5eNzQ0GpTxWUEhk0StuvK6PaR2VK9Ax3BBjhMjGB/3u/En9QU6VFJD6F80rVtGiklIgkBgWlRPYQDi5lJieR6jhwYuG+WoFvQ0XnSc7Dxg8Pbf9MQSmRQSM8UmrkEAWl+sOEjCB2C2zb5eXxj76KdXVERDqVm+YAoKJRKR1EJDEoKCWyh5113csnFbZ7Bb6D+2AQTnI+Ya98UmET2oNVm6qaCegbfJFBobQ+HJTq3vVIDo7TClOGhUYg/Pm9Heyoc8e4RiIi+8pr/6KiTEEpEUkQCkqJ7GFnN5Och4Wn1RzM9D23L8DWmhYAJnUxUmrM0GSSk6x42oJs142SyKBQ2hC6rozU9L1+MyYVJmRZ8fqD3PLip/gDWt1KROJLePTsweYzFRGJFwpKieyhJJzk/AD5pMLCydB3HkSg6LPKJoImDEu1k5Pq6HQfq8VgXHteqY3lmsInMhh8Va/pe/2tpXEXaZ4qbAZ8WuXhz//5PNZVEhHpYER6qE8ob9SiDCKSGBSUEtlDSQ9HSh2eFVopr6zRS4vP36tzhqfuTcrrfOpeWDiv1MZKBaVEEl1bIEhlU+iGw+5rpKqqEtPU1N3+kJ2ZwXGHDQXgkY9rKC5tiHGNRER2y9NIKRFJMApKibQLmibba0Mjng7JTO7WMRmuJLJT7ACRY3tqQ3koyfmE4Z1P3QuLBKWU7Fwk4ZXUezABp83gyf9+wmP/2YDbram7/WXcsFRGp1oImPDz5zawvaY51lUSEQF2j5Rq8vppau3dF6IiIvFEQSmRdmUNrbT4AiRZDQ7t5kgpgLHZoQDWluqWHp/TNE0+CY+U6iLJedj44aHpe5urW/D5gz0+l4gMHJ9XhYIgh2U4SMvMJnlIZoxrNLgYhsExzkbSLG00egNc8/T6Xl3jRUT6WrLdylBXaFEGJTsXkUSgoJRIu83tNxyHZ6Vgs3b/v8bY7NAUvq29GClV2eSltsWH1SCSM6oreelOhjht+IMmm6v79lv7rxq8VLQEcLcp2CUSDzZVhv6Pj83sPM+cRJ/NAsflWkizG9S4/Vz1xDpe2qhplCISeyPap/CVawqfiCQABaVE2oUDPUfmpPTouHBQaktNz79FD+eTOjInFWeSdb/7GobBhPbV+T6t6Lug1DPrypj7j+38a2cr/9ji4d/bG/vstUWkd76oUlAqHjis8PVD7EzKdeFuC3DLy59z5coPeeXjLZSXl1FRUU4wqGC+iPSvvPYpfBopJSKJQEEpkXbhkVI9DUodER4p1YupHZ+E80mN2H8+qbDxuX2b7PyljZXc8cYWAJJtBibw+3fLKCqp75PXF5GeM02TTe1BqcOHauW9WHNYDRaeNpLL8rOwYLKhqpXfvFnGD57dym2r11NRWRHrKorIIJM3JPSFhZKdi0giUFBKpN0X7UGlo3L2P41ub4dnJWMAuzxt1Ll9PTo2PFJqYneDUu3Jzj8tP/jRTM1eP7//9zYA/md8Juce4WJ0mhV/EBa9+gVtgcT59j8YDFJVVUVVVZVGNUjcK21opdkbym83eog91tURwGYxuGhiJmcd7mSMy4cFk9pWk48aXFzzwg4eX7OD1rZArKspIoPEyPbpezt3eWJcExGRg6eglAw4Td4AH5Z7eXmbhx89tYn1ZX0ToAl/29TTkVLOJCuj2xOjh/PAdIfbF+DT9pX0powc0q1jJuWlYwBf1nmoaelZAGxvD76/k3pPG4dmuriiIAeLYXBcnoOhLiulDa08tz5xvv2vqanhgTeKeeCNYmpqamJdHZH9Ck/dOyI7hSSrEePaiBkMUlVVSVVVJck2mJDm47QRQSbnpZFkga8a21jw3AbOuv89fv/PT9i6o0TT+kQkqsa1j5zfUN5EUHnuRGSAU1BKBpTaFh83/nMnW+r91HuDrC9r5odPrOPvn5Qf1Ot+0Z5PaliqnSHtK5r0xKS80Mp5H3/V0O1jPv6qgUDQJG+Ik1EZ3VvtL8OVxNHDQiO5Pty5q8f1DKtu9vLUx6UA/HTWWGyW0I2vzWJwyaRsAB58fweeBPrmP2VIJilawUwGgPAIyqOG9WzUpkRHc0MdK9/bymP/2YDbHVrQwmmFY8cM5dTMZo6wN+M0AjR6g/y/T3Zx2aqtzP/HJ5RVJE5gX0Tiy1HDUklOstLk9bO1FzlNoyUYDFJeXhZ5KDgvIt2hoJQMGEHTZP4LG/my3ovTanDSSAdnjsskaMIdb2zhs4PIs1RUEgomhYNLPTV1VGikU0+CUh+0B5VmHpLRo3PNHBPa/8Md9T06bk8rP/qKtoBJfl46Jxw2tEPZN4/MYFSGkzp3G8+tP7hgn4j03Dvb6wA4Kh2qqrTaWzxIycgkuZOgts0C44a5mD0qQEFmkGRLEJ9pYUOTk+te3MmaL3v/5YGISFdsFoNJeaHRUh9/FT8L1FRWVnD/ax/z+Ecl3P/ax1Qq556IdIOCUjJgPL++nI9LG3HaDL4+xsnodBu3nnkYs47Ioi1gctPqz3qd0+PDHe0BojFDD7Bn58JBqU8rmrpdhw/ag0ozehqUOiRUxw921vfqZrXe3cazxaFg0w+OOwTD6Dg9yGYxuGLmaAAe+/ArvH59yyXSX8oaWtlW68ZiQPHnWzqMzpH4ZTFgZLLJ17LcTMgI4rBCSaOPeas+4fq/f8pX9cr7IiJ9K5z6obi0+1+I9tSBRj7tWR4uSxuaTXpWLmlDs6NWLxFJLLZYV0AGvmAwGMnTk52djcXS97HOqiYv9/5nOwCXT8mhsSU0VNkwDG458yi+83ARX9W38tCanVx90mE9em23L8D69ukyPR21FDZyiJNhqXaqmn18Ut7IjEP2H9yqbfGxpX24dU+DUvkj00myGlQ2edmxy8Ohmck9Ov6Jj0tp9QcZNyyVEw7tvJ5njc/lz+/tpLLJyz82VHDRlLwenUNEeuftbaFRUsfkuBg61EmTvjoaUCwGHJZqcmRmEs1+gzdLfPx7Sy3vbq/jO1NH8p2pI8lJdcS6miKSAMJBqXWlDZimuc+XjF0JBoOREUy5ucOxWCy4fQHKG1upd/vYWVGNN2AyZMgQGhoaeP2TL3GlpNHa0sTXJzUxNGP3Z8faXXW8/slOgsBxR9VjANsbAqTjxvQEafQGGN6DuonI4KSglBy0cBJpgLlfz2fYsGF9fo4739xCiy/AxBFpnH30UJ5Yu3v+fLoziV+cdgS/+sdGHv3wK2Yfk8uhWd0P1PQmt9PeDMOgYNQQXt1UzdqShgMGpd74ohqAY3JTGZrcs9W1nElWpo4awpod9bz+eTU/PH5Mt49t9vr5W3suqR8cO7rLDwlJVguXzRjNnW9u4dEPSjh/0nCSrH1zd+z1B3l3ZxNf1HpxmEEl6BTZw9vbagGYkZeMxxM/eUKkZ3zNuwi4PZwxZiQflrqpbbPx6Idf8f+KSvnG0dmcdoiDo7OckRtCEZGemjgijSSrQVWzj49K6jv97Ll3ACqIwZpNO/jLfzfT5LeQMaSU8pYAVc2dLZ5T2f7TBU1+wMW6dyv32B4WWgnw07V7LCRTGfr9jZLtpDlKGD3UxSEZTrLtAUYNsTM63c6UsaOwWS1UVlZgGJCZeeRBvR8iMnApKCV9IpoJpN/cXMO/t9RitRgs+MZRWM19b9ROPSKLEw/L5J3tddzxxmb+dNHkbn8r8/6O3uV22tuMQzJ4dVM1b2yuYc4JY/Z7/hc2hDr0s8bn9upcZ43PZc2OelZ/WslVnUzB68oz68po9gY4NNPFKUfuf1j1tybm8tc1O6lo8vLyxiq+NWl4r+oaZpomz31SwbL/bKfJ649s//KlL7npmy4m9zKfl0iiKG9s5YOd9QDMHJXKW5sVlBrIUjIyGTFiOEbLRr5qClAaSKWuzcrLn1Xz8meQYg1y/oQ6Lpo5lpFDeveFiIgMXs4kK+dPGsHT68r4/b+38dj3p2K17P48aJom67eWsPxfm2jwW3GmfsW2Xb72tAyhQNKO1t1Ti+0WsAbbcCTZsBIgEAiAGcSa5MDhcuH3+chyWkiy7/4y1d/mY5c3iNnmIxjwY5pBSHJhJDlp8vjwBKDJ62djRRMbKzrmfrUaO8lLS8LX6ibdFuTnrVBwyHCsCtSLDDoKSklca2r1c+cbWwC4fMYojshJoapq3xs1wzD45Wlj+eiRej4qaeCVTVXMPubAAZ/WtgCvfFYFwEmHH1xg7etH5XDXm1vZXutmfVkj+e3Dqve2ubqZTVXN2CwGZ47r3aiyU4/MZukbWyhtaOXj0gamjso44DG1LT4e+bAEgCtmHoLlAIEsZ5KV708fxf+9tY0H1+zkjHE5OJOsvaqvzx9k4auf8+qm0AixnGQbdhtUNvvZWuflx38r5tYzj+aMXr4fIong8Y++IhA0mXFIBqOH9GwEpcQvw4Ax2akc43Jx9NAk3ijxsaaijZaAhcfX1/H4+jomDHNx3uSRfGPcMFId+mgmIt0z5/gxvPJZFZurW/jVPzZy0uGZVLf42FjRxKflTezytAHtQW9PKwAuG6QnGWQ4DI4fYWd4ioXP6toYljuC0i2fYiS5MNs87T99GElJ5I3JpXTLp7S0tGC2eDFsDoaPGkP5l9s4LHskZlvrHscFyRsznNItn9LY3AL2FCYdkkOFO8jaKj8tQRv1bh9+E0oa24AkKn1w9aotJCdtZ8YhGXxtbBYnjc0ks4ezCURkYBq0n3y8Xi+33XYb//znP3E6nVx55ZVceeWVsa6W7OX//rONmhYfhwx1ceVx+5+mNirDxZXHHsJ973zJXW9uZcrIIYxId+73mFc3VVHvaWNEuoMTD886qLqmOmycfnQOqz+t5O+fVHQZlHpmXSjJ+Mljs8hITurVuVxJVk4/Koe/b6jg6Y/LuxWUWvbf7TR7A4wblsqZx3Qv+FM4eQT/r+gryhp6l68LQlMGr//HRj7aWY/VYnDtSYdyxhg7z35aRX2TlwqvhXd3NrPgxU1UNnn5/vRRyj0gMRWL/qG2xcfzn4SmWIQWGmiN6vmk/zU31PF2uQd7m4dvjBhJeVMbO90WdgXsfFrl4dPXt3DXv7YyKdfFlOHJzDpmFEcOS8Nm0fVQJB7E471DRnIS133tUBa/toW3ttby1tbaDuVWA9LtBumGF2fQzeF5OTSXbiF96EjMNg/bd7Swze8lLXtkt86XmpEdCVilZ+XStKtmv/sPGRraf+PWLzH9XiZmjyRvzCi+2vwpdc0eWvwmweRsmoI26n3Q5AtE2mEA47IdTB+ZwnFH5jFhRDop9kF76yqS0Abt/+ylS5eyYcMGHnnkEcrKyvjVr35FXl4eZ555ZqyrJu2eXV/O39tv0haccSQO24GH8146YxRvba1lY0UTC1Z/xn0X53d5XCBo8sTaUH6li6bk9ckH//MnDWf1p5X88/NqrjzukH1yVG2saOK59aGg1LcLDi55+EVT8vjHhgpe/6KaC3aOYPp+ph+++UU1qz8NTRm84etHdBjevT/JdivXn3YEN/xjI498+BVfG5vFhBHdn2ZX2+Ljp89uYFNVM8lJVpaeN55jxwylujo0Os1hM7hx5kj+32fNPLm2lHv/s52yhlZ+cdoRA/pGLJTDoZLa2maysqKT/F+ip7/7h6Bpctsrn+P1Bxk/PI0Zh2RoGe0ElZKRSdDnwWKBkS4/o4e4SBuWx9rPt1PiseIO2Cgqc1NU5ubBtTXYrQajh9g5LMPBoUPtjB89jJEZLkakO3H1cuSqiPROPNw77JkjKrza3aHBak7KaOZLj52sNBeZacnkJvnYUVmH1V3DkKyRmG1ejKRU8kaMoLSlLvJ64SBTtO19HsOA7MxMsto8GEkmZlsj/iQf5vDhfFFaTW0whWYzic9qvHxW4+Wx4joMIG+Ik0ynQbbLyrAUGzmpdo4eOYwRQ5zkpjl6PaJfRGJrUAal3G43Tz/9NH/+85+ZMGECEyZMYPPmzTz++OMKSsWJlzZWsrR92t7cE8Z0ayQQhBJ0/+6ccXz/sbV8Ut7Ez5/bwJ3nTSDZvm8n9ae3v2RrjZvkJCvnHWS+pLDJeekUjBrCx181cPNLm1jx7Xxs7QnCGzxt/PafX2ACZx4zjGmju9emrhydm0ph/ghWFZez5PXN/OU7+Z0mTf/4qwZufvlzAC6ZOpJJPczddOqR2Zx6ZDb/2lzDT57dwIrv5HN4VsoBj1v7VT2/eXETVc0+hrqS+L8LJnJMbto++1ktBr84dSwj0h384d/beKa4nJ27PNx85tHkpvVulaq2QJDi0kbe3V5H0VcNfLXLjactgN1qsK3pK4493MuJh2dyWGZyVEZl1dTU8PDbn9Ha6ota8n+Jjlj0D08WfcV7X+7CbjWYWzCE8vIyamqqMbUIwKCQ6rAxNqWNIzJsNHjc1AWc7Gqzsstr0how2VrnZWudN7Rz0e5RCekOK8PTnQxNTsJlBMhwWhnitDJ6WCZZKXaGJtvJTE5iqCtJN2oiByle7h0qKyu4/7WPSRuaTfmXX2DYHJh+L0OyRzI5yUNLSx3DMsdQ9uUXZGaPxLRHL+drX0vPzGbosBEkeeowkgzcrc1UBVw0+G24/VDnNSltaKW0Ye8jqyK/DXFYyElJYlRmKrlpDlLwkpOSRFayjSNHDSc7VYErkXg0KINSmzZtwu/3U1BQENk2bdo07r//foLBoEY17IdpmtS2+Nha62ZbrZttNS18XtHA1joPbQF45vPPyUjexpihLsZmp3B4dgpHZKcwNjv5gENuTdNke52bRz4o4aWNoQ5m9jHDuOq4Q3pUx5FDXNx9/gR+9uynfLCznu888hFzTziUWUdkkeqwUdPs5bGPQqsgQWgUVrqzd9Po9mYYBrfNPprvPlrEJ+VN/PDJYr47bSSetgCPfvgVO3d5GOK08ZNZh/fJ+a496TDe2lLLzl0ernpiHb887QiOHTMUiwEVTV6eLS7nsQ9LCJhw/KFDua6X573lzKOobPKysaKJKx7/mLknHMq5E3P3ed+CpklxaSNPryvjtc9D+aPGDHVxz/9M5JCh+0/k+91poxiR7uQ3L23ig531fPvhj7i4II9vTRx+wFURg6ZJRaOXj3bW8/b2OtZ8uQt3W2Cf/dqCJmu+ambNV83c+5/tDE9zcMJhmZxwWCYzDsnoNHjZU4GgSbMvgC01A3tSG4GgAgsDSSz6h60VuwCTgpwknnvz3UhejtSc7k2nkMRgGJBuC5KRbBL0NeE2PHja2vCn5WK6hlJaXUdLG3iCFgJYaPQGaKzuLBl+7T5bkpOspNoNUuwWkm0Wku0WUpJCj1SHlSEOKxlOG2OGZ5OZ4mCIy4bdaiHJasFuNbBaDAJBk1Z/EK8/iC8Q+lneGqS0qoGK6lqCJuRkZuJIspJkNUiyWkiyGtitFqwGNOyqIcliMGJ4Ls4k2wHzGorEk1jfO5jtI7ABUjOyIlPnwv1FWGpGdrem1Q0ELqvJoc7QKKqWlhaGHH4IO3buhNQcPD4/rSThaQvS4gcfNvwmNHiDNHi9bAkH8jv4CoBUh5WsZDtpSSZDnTbSHFayh6SRbLcS8LbgslkYnp1JqtNGcpKVFLutwzUtyWLBZjWwWULbujv7QES6NiiDUtXV1QwdOhT7HqtHZGdn4/V6qa+vJzMzOt8q/OuLat7bUoEJOJ0uMIzIN+GmCSahm+vdz83IdsxQmUn4efvv7eWmuXvfYNCk1evFxCQ5JRmvz48FA8MAi2G0P9j93GJgIfx76Gf48ur1B/G0BWn2+qls8lLZ5O30Zj+sLWhS3eyjutnHRyUdv8rISbWTnWInK8VOit2KzRKqS5PXT72njfLG0OuHXXnsaOaeeGivRrJMHZXBsgsnMX/1Z5Q3ern1ldBIIYfN0r7qSMgPjh3d58m1R6Q7WXTWOH794iY+rWhiwYubImXD0xz8vnAi2Sl9k7gxzWnjvosn85NVn1BS38pPnt2A1WJgtxp42na384yjc1hwxlG9nhKXYrfxf/8zkV+9sJG1XzXwh7e2sey/2xmT6SIr2Y7FYtDgaWNHnSfy92EA35o4nJ+fOrbbwZ5Tj8zmse9PZeGrn7OhvImH1pTw0JoSctMcHDLURZrDhjPJgs1i0NoWxN0WoLbFx5d17g7tBchMTuL4Q4dy3KGZDLW08spnlXj8Jodlp7Ohto21JfWhwN36cp5dX47VgJxUByOGOMlOsWO3GtisltANlcXAHwjSFjTxB4L4AiZtgSCt/iAtXj/N3gAtvtDPvf9/PPP559itX5DqsJHqsJFit0Z+T7VbsdssGLT/vzM6/tzzOhA09/hJ6P9+IBjE09qKaUL+IVl8e+qoXv37ym6x6B+unJoNfg+5w3IpDe7CYncR9EV/OoXEt9ShmST7PFjsMGJ0BsN9Ze1/G24CNhctHi+NnjZ8fj9GylCSUoZQW1eHpy2ILwht2GgzLQQxcLcFcLcBB1zQ8WCnjZZ1Y59tQCjXTeimzsBhs5JktWAhiM0CSe03e8lOO3arFVt7cCt8Yxj+3Wax0NlHhPC10+1uCT2B0IceE5KTk9n7INM0cbvdkefJycmYJrg97n1GLBqGgdOZhMVI6vA6XY1sDG8Olwb3Olfo8+Ce9Q794vHsvga4XK596rxfexyfOzSNy2cewhBX33z5NljF6t4hrLmhjpXvtWC2538asv8FlBNOakY2ubnD8TfVhqb7JfkwkqyR/FYjDhnNjs0babW4cHt9NHj8tAZMgo40/FYnTe5WWoMGJgbN3gDN3r372L2HX1XRXRYDrIaBrf0eymYJzQKwGgZWS+g6F3oOjiQrBIORe7HwfZiBucc2MNrv26wWo/0zYuQygdH+e/j+aM/tFsMgOXn3LACP2w2YGB3qa2C2X5EMDJJTUjq8Vuh6GOosUlJCMyPcLaHn4euYYRikpKRg7PHKkUuUaRII+mhtbQMgOTmlW/dye563O8eF9w9fe8P7dvd8B8sAXMl2PG4fe17992xHf9Wlu/asm8WA/5l6GEd3MoslFgZlUMrj8XToVIDIc5/P1+3XsVh2f9g4kEDQZOmbW2mNBESa9rt/3+nbZLkWi0G608awFBuHDHEweoiDoVYfn5XXYbeYfOPoXAxXGqWNPnbW+9jZ4GXnLi91rQE8bUFK6lspqe+6ThkuG1OGp3DBxEyOzHKyq27fb3rq63cR8DQCUFtbi9Xa0um/Q54DHvjWYbzw+S7e3tFIaWPo4mi3WjhsqJ1LJmdTkJdCbW31ftu85/nq63dhtR744nLMEPjz+YezamMdX+4KBdqmjEjhm0cMId1wU1vr3u/x4XO2Be3U14eCPl1JA+6ZPYZnN9bx1peNtPhCf2NpDgvjh7k486ghHDcqFU9THV3d5na3jb/9+gje2JrCy1/Us7PBR2VT6BFmsRjkpNqZOTKFc8cN5dChjk7PW1+/i7aWRgJe3z7nSwfu+MZIPipt4aXN9Wyq8tDiC/BZZXOX74HVYiHDZWFMhoNpealMzUvm8ExH5Jv42loPyYFmkg04NW8IF04aTqs/l08r3Xxc3sLashaqWvw0+wJsrm5hc6ejDw7MYjG6XDnLFzCpc7dR527r1WsfyJrSFs6fPAJXD0Z7xVE/GTf6on/Y8wvz7vQT9iQrSd4GvE02gq1NmH4/pt/T6U9vU23c7+O3BAgErXFTn/7YZ+82R7s+Fpuf1ICHtGQXpt+HYW0kJzONquYajGQXpt+DYXMRbPPQ0urD1+YnaUguKZnZ1FZVErTaafMHCFiSaAsE8Rt2fEETb9AgaEmiLWjs9wJhwcQwA6EbKNOPzWrFMIP4g6EPvUHDgmG1EQwECWIJBdKNrkeSeAMm3sCeAX0TCEKTv1v/53qm676kZ/v0le70N/v/zLBfX7kZPyKtR1/AqW/YVyzuHQCsVgu+pjr8rU24HA6C1iABTwPexhr8rU1Y/D6Cfm+Hn/1V1tfnabOaeJtcvXpNX1Mthq+JFJsPl+klJ9URKrP5GZY3moqdFRhWB36/j0ZPG21+E+uQLOxpmeyqq8PnD+IPmlgcyfiDoS/ZDZsDb5sf07C2DwqwYBrGXiGefQWAQHCPJ7uHFADBzg7pYz29XuzvGrS/su5eJ3t7Pe3v46Ihnuqyrxr3Fu65qGC/+4T7g/C1K1r9g2EOwqQVL7/8Mr/97W955513Itu2bt3KWWedxZo1a8jIyIhd5UREJGbUP4iIyN7UN4iIRM+gTJ6Um5vLrl278Pt3fwNXXV2N0+kkPb1nSaBFRCRxqH8QEZG9qW8QEYmeQRmUOuaYY7DZbKxbty6yraioiEmTJinJuYjIIKb+QURE9qa+QUQkegblVdTlcnH++edz6623sn79el5//XX++te/ctlll8W6aiIiEkPqH0REZG/qG0REomdQ5pSCUMLCW2+9lX/+85+kpqZy1VVXccUVV8S6WiIiEmPqH0REZG/qG0REomPQBqVERERERERERCR2BuX0PRERERERERERiS0FpUREREREREREpN8pKCUiIiIiIiIiIv1OQakEVFlZyXXXXcfMmTM5+eSTWbJkCV6vN9bVioo5c+Zw4403xroafcrn83HbbbcxY8YMTjjhBO655x4SKfVbeXk5c+fOZerUqZx22mk8/PDDsa5Sn/D5fJxzzjmsWbMmsq2kpIQrrriCKVOmcNZZZ/H222/HsIbSX7xeLzfddBPTp0/npJNO4q9//Wusq9Qr++tLDvS3/e6773LOOeeQn5/PZZddRklJSYfyhx9+mJNPPpmCggJuuukmPB5Pv7Wru/buXzZu3MhFF11Efn4+F1xwARs2bOiw/+rVqzn99NPJz8/n2muvpa6uLlJmmiZ33XUXxx13HDNnzmTp0qUEg8F+a8uB7K/fSeR2768/SuR2S/xLhH6kN5+LBkrfMVj6xx07dnDVVVdRUFDAKaecwl/+8pdIWSK1c0+J3Pe/9tprHH300R0e1113HRAH7TQloQSDQfPiiy82f/jDH5pffPGF+eGHH5rf+MY3zNtvvz3WVetzq1evNo866ijzV7/6Vayr0qd+85vfmGeccYZZXFxsvvvuu+axxx5rPvHEE7GuVp+5+OKLzZ/+9Kfm9u3bzddee83Mz883//nPf8a6WgeltbXVvPbaa82jjjrKfP/9903TDP1fPPfcc81f/OIX5pYtW8z777/fzM/PN0tLS2NcW4m2hQsXmueee665YcMG85///KdZUFBgvvzyy7GuVo/sry850N92aWmpOWXKFPPBBx80v/jiC/MnP/mJec4555jBYNA0TdN85ZVXzGnTpplvvvmmWVxcbJ511lnmbbfdFsvm7mPv/qWlpcU88cQTzdtvv93csmWLuWjRIvOEE04wW1paTNM0zeLiYnPy5Mnmc889Z3722Wfm97//fXPOnDmR13vwwQfNWbNmmR9++KH53nvvmSeddJL5l7/8JSZt60xX/U6it7ur/ijR2y3xb6D3I735XDRQ+o7B0j8GAgHzjDPOMH/xi1+Y27dvN//973+bU6dONf/xj38kVDv3lOh9/5/+9Cdz7ty5ZlVVVeTR0NAQF+1UUCrBbNmyxTzqqKPM6urqyLYXXnjBPOmkk2JYq763a9cu82tf+5p5wQUXJFRQateuXeb48ePNNWvWRLY98MAD5o033hjDWvWd+vp686ijjjI///zzyLZ58+bFRUfUW5s3bza/9a1vmeeee26HD1/vvvuuOWXKlMgF3TRN8/LLLzfvvffeWFVV+kFLS4s5adKkyN+BaZrm8uXLze9///sxrFXP7a8vOdDf9h/+8IcO7XW73WZBQUHkPfnud7/b4f/Bhx9+aE6ePNl0u93Rbla3dNa/PP300+Zpp50W+UAdDAbNb3zjG+aqVatM0zTN66+/vkNfVFZWZh599NHmzp07TdM0zVmzZkX2NU3TfP75581TTz21v5q0X/vrdxK53fvrjxK53RL/Bno/0tvPRQOl7xgs/WNlZaX5k5/8xGxqaopsu/baa81bbrklodoZNhj6/l/84hfm3Xffvc/2eGinpu8lmJycHP7yl7+QnZ3dYXtzc3OMahQdd9xxB+eddx5HHHFErKvSp4qKikhNTWXmzJmRbXPmzGHJkiUxrFXfcTqduFwunn32Wdra2ti2bRtr167lmGOOiXXVeu2DDz7g2GOP5amnnuqwvbi4mPHjx5OcnBzZNm3aNNatW9fPNZT+tGnTJvx+PwUFBZFt06ZNo7i4eEBN39lfX3Kgv+3i4mKmT58eKXO5XEyYMIF169YRCAT45JNPOpRPmTKFtrY2Nm3aFN1GdVNn/UtxcTHTpk3DMAwADMNg6tSpXbZ5xIgR5OXlUVxcTGVlJeXl5cyYMSNSPm3aNEpLS6mqquqfRu3H/vqdRG73/vqjRG63xL+B3o/09nPRQOk7Bkv/OGzYMP7whz+Qmvr/2bvv+KbK/Q/gn5OkGW1pSycdyJQNpYAgAjJEZSlYQYV7FQUFZXhFBKkIMgQERK8KCiiKilcQQb0CguK6/pShxZYlUGZLB226R0aTnN8faSKhLTRtdj/v16sv6Hlyzvk+p+15cr55RiBEUURycjJ+//139O7d26fqadEY2v5z586hZcuW1bZ7Qj2ZlPIxQUFBGDBggPV7k8mELVu24NZbb3VjVI514MAB/PHHH5g2bZq7Q3G4jIwMxMbG4ssvv8SwYcNwxx13YN26dV7xJqQuFAoFFi5ciG3btiE+Ph7Dhw/H7bffjnHjxrk7tHqbMGECXnjhBahUKpvteXl5iIyMtNkWFhaGnJwcV4ZHLpaXl4emTZtCLpdbt4WHh0On06GoqMh9gdnpem3JjX63r1deUlICnU5nUy6TyRASEuIRfxu1tS83qnNubm6t5Xl5eQBgU255mPGEOl+v3fHlel+vPfLlepPn8/Z2pL7vi7yl7WiM7eOQIUMwYcIEJCQk4O677/a5ejaGtl8URVy4cAH/93//h7vvvhtDhw7Fq6++Cr1e7xH1lNWrVuQ1Vq9ejZMnT+Lzzz93dygOodPp8NJLL2HhwoVQKpXuDsfhKioqcOnSJWzduhUrVqxAXl4eFi5cCJVKhUmTJrk7PIc4d+4cBg8ejMceewxpaWlYunQp+vbti3vvvdfdoTmURqOxeUMJAHK5HHq93k0RkSvU9nMH4NU/+6vbks2bN1/3d/t6v/tardb6fW37u8v12pcb/T1rtVq76uxJvxPXa3d8ud5A7e2Rr9ebPJuvtiM3+rvy1rajMbSPb775JtRqNRYtWoQVK1b41M+ysbT9WVlZ1vr8+9//xuXLl/Hyyy9Dq9V6RD2ZlPJhq1evxocffojXX38d7dq1c3c4DrF27Vp06dLF5hMKXyKTyVBWVoY1a9YgNjYWgPkm8umnn/pEUurAgQP4/PPP8fPPP0OpVKJr1664cuUK3nnnHZ9LSikUimqfaOr1ep9MptLfFApFtUbY8r23/uyvbUtu9Ltd2zUICgqCQqGwfn9t+bWfqrva9dqX2up0ozqrVCqbN2fX1t/ddQau3+60aNHCZ+t9vfaoefPmPltv8ny+2I4AN35f5I1tR2NpH7t27QrAnMB57rnncP/991dbLc9b69lY2v7Y2FgcOnQIwcHBEAQBHTt2hMlkwpw5c9C7d2+315PD93zU0qVL8cEHH2D16tW4++673R2Ow+zevRv79+9HQkICEhIS8PXXX+Prr7+2GXfvzSIiIqBQKKwPBgDQqlUrZGdnuzEqxzl+/DhatGhh86aqU6dOyMrKcmNUzhEVFQW1Wm2zTa1WV+v+Sr4lKioKhYWFMBgM1m15eXlQKpUICgpyY2T1U1NbcqPf7drKIyIiEBISAoVCYVNuMBhQVFSEiIgIJ9fm+q7XvjSkzlFRUQBg7eJ+9f/dXWdLDLW1O75c7+u1R75cb/J8vtaOWPha2+Hr7aNarcb+/ftttrVt2xaVlZWIiIjwmXo2prY/JCTEOm8UALRp0wY6na5BP09H1ZNJKR+0du1abN26Fa+99hpGjhzp7nAc6uOPP8bXX3+NL7/8El9++SWGDBmCIUOG4Msvv3R3aA4RHx8PnU6HCxcuWLedP3/e5mHBm0VGRuLSpUs22fbz588jLi7OjVE5R3x8PE6cOGHt1gqYJxSOj493Y1TkbB07doRMJrOZ0D45ORldu3aFROJdTW5tbcmNfrfj4+ORnJxsLdNoNDh58iTi4+MhkUjQtWtXm/KUlBTIZDJ06NDBBbWq3fXal/j4ePz5558QRRGAeW6GI0eO1Frn7OxsZGdnIz4+HlFRUYiJibEpT05ORkxMjEckqa/X7vhyva/XHvlyvcnz+VI7cjVfajsaQ/t4+fJlzJgxA1euXLFuO378OEJDQ9GzZ0+fqWdjaft/+eUX9OnTx6aH219//YWQkBD07NnT/fW0a60+8nhnz54VO3bsKL7++utibm6uzZcvev75522WqPQFU6ZMER988EHxr7/+Ev/3v/+Jt956q/jhhx+6OyyHKCkpEfv16yfOmTNHPH/+vPj999+LvXv3Fj/99FN3h+YQVy99bDAYxBEjRojPPPOMeObMGXHDhg1i9+7dxczMTDdHSc62YMECceTIkWJqaqr43XffiT169BD37dvn7rDscr225Ea/2xkZGWLXrl3FDRs2iGfOnBH/9a9/iffcc491qeFdu3aJPXr0EL/77jsxNTVVHDlypLh06VJ3VrdGV7cvpaWl4q233iouXbpUTEtLE5cuXSr269fPuhz2kSNHxM6dO4ufffaZ+Ndff4n//Oc/xalTp1qPtWHDBrF///7iwYMHxYMHD4r9+/cX33//fbfUqya1tTu+XO/rtUe+XG/yDr7Qjoiife+LvKXtaCzto8FgEBMTE8VJkyaJaWlp4k8//STedttt4ubNm32qntfy1ba/tLRUHDBggPjss8+K586dE3/66Sexf//+4saNGz2inkxK+ZgNGzaI7dq1q/HLF/liUqqkpEScM2eO2L17d7Fv377iW2+9Zb2J+4K0tDTx0UcfFXv06CEOHTpU/OCDD3ymfle/+RJFUbx48aL4j3/8Q+zSpYs4cuRI8ddff3VjdOQqFRUV4ty5c8Xu3buL/fv3Fz/44AN3h2S3G7UlN/rd/umnn8S77rpL7Natmzhx4kQxPT292vH79u0r9uzZU0xKShK1Wq3L6lZX17Yvqamp4pgxY8SuXbuKY8eOFU+cOGHz+h07dogDBw4Uu3fvLk6fPl0sKCiwlhkMBnH58uVir169xD59+oirV6/2qPve9dodX6739dojX643eT5faEdE0f73Rd7QdjSm9jEnJ0ecPn262KNHD7Ffv37iO++8Y72X+VI9r+bLbf+ZM2fERx99VOzevbvYr18/j2rrBVGs6qdFRERERERERETkIt47MJmIiIiIiIiIiLwWk1JERERERERERORyTEoREREREREREZHLMSlFREREREREREQux6QUERERERERERG5HJNSRERERERERETkckxKERERERERERGRyzEpRURERERERERELsekFBERERERERERuRyTUkRERERERERE5HJMShERERERERERkcsxKUVERERERERERC7HpBQREREREREREbkck1JERERERERERORyTEoREREREREREZHLMSlFREREREREREQux6QUERERERERERG5HJNSRERERERERETkckxKERERERERERGRyzEpRURERERERERELsekFBERERERERERuRyTUkRERERERERE5HJMShERERERERERkcsxKUVERERERERERC7HpBQREREREREREbkck1JERERERERERORyTEoREREREREREZHLMSlFREREREREREQux6QUERERERERERG5HJNSRERERERERETkckxKERERERERERGRyzEpRURERERERERELsekFBERERERERERuRyTUkRERERERERE5HJMShERERERERERkcsxKUXUSImi6O4QiIjIg7GdICJyLN5XiapjUorIg8ybNw9Dhgxp8HEuX76M9u3bY+fOnQCAt956C+3bt7eWJycnY8qUKQ0+DxER+aa0tDSMHz/eIcc6dOgQ2rdvj0OHDjnkeERE3mD37t0YPHgwunTpgoULF9b7vjpkyBDMmzcPQPX3+HXRvn17vPXWW3af1x5lZWUYMmRIjXE999xzaN++fbWvvXv3OjUm8h4ydwdARI4XGRmJbdu24aabbqqxfPv27Th37pyLoyIiIm+xd+9e/Pnnn+4Og4jIay1ZsgQtW7bEK6+8gqioKHz99dcNvq/e6D1+TbZt24ZmzZo16LzXU1xcjGnTpiEzM7PG8lOnTmHUqFF4+OGHbba3bNnSaTGRd2FSisgHyeVydO/e3d1hEBERERE1SkVFRejXrx/69OnjsGPW5z2+M58Jvv/+eyxbtgzl5eU1lut0Oly4cAETJ07kswnVisP3iOy0cuVKdOvWDaWlpTbb3377bfTs2ROrVq3CnXfeibVr16J3797o378/iouL7TrHtm3bMGjQIHTr1g0TJ07EyZMnrWXXDsWzuLpr7vW69s6bNw9ffPEFMjMz7e7+S0Tk7Zx5D583bx4mTpyIl156CT169MCIESNgNBphMpmwceNG3HnnnejSpQvuvvtufPzxxzb7Pvzww5g/fz42btyIQYMGoWvXrnjooYdw9OhRm9cdO3YMkydPRp8+fdCjRw88+eSTSEtLA2B+89+zZ0+sXLnSZh+DwYBbb70VL7/8MgBAq9VizZo1uOuuu9ClSxf06NEDjz32GP766y8A5nZm7dq1AGzblrrUAwC2bt2Ku+++G926dcM///lPZGVl1en6ERF5iuPHj2PixIno2bMnEhIS8OijjyIlJcVavnfvXtxzzz3o1q0b7rvvPvz555/o1KkTdu7caR2yDADr1q1D+/btMW/evBrvq/a6+j1+Tk4OOnbsiC1btti8pqCgAJ07d8bmzZurnc8S24EDBzBp0iTEx8ejX79+WL16NYxGo/UYZWVlWLhwIfr27YuEhATMmjULmzdvtnkGKSkpwYwZM3DLLbfgvffeqzHeM2fOwGAwoGPHjvWqLzUOTEoR2Wns2LHQ6XTVxkF/9dVXGDFiBFQqFbKysvDzzz/j9ddfR1JSEoKDg+t8/JycHKxduxbPPPMMXnvtNRQXF+Phhx922Jv6adOmYeDAgYiIiLAmv4iIGgtn38P/+OMPZGdnY926dZg9ezakUikWLVqEN998E/feey/Wr1+PYcOGYfny5Vi3bp3Nvvv27cP333+PF198Ea+99hrUajVmzpxpfVA4ePCgdT6S5cuX4+WXX0Z2djYeeughnDt3DgqFAnfffTe++eYbm8l0f/31VxQWFmL06NEAgLlz52LHjh2YMmUK3n//fSQlJSEtLQ2zZ8+GKIoYN24cxo4dC8D8Icm4ceMAoE712LJlC1566SUMHDgQb7/9NuLj47FgwYI6Xz8iIncrKyvD448/jqZNm+Ktt97C66+/Do1Gg8mTJ6O0tBTff/89/vWvf6Fdu3ZYu3Yt7rzzTjz11FMwmUwAgM6dO2Pbtm0AzG3Otm3bMHPmzBrvqw3RrFkz9O7dG7t377bZvnfvXoiiiJEjR9a673PPPYeePXti/fr1GDVqFN577z1s377dWj5t2jR88803mDlzJl5//XWUl5djzZo1NsdQKpXYvXs3Vq5ciaZNm9Z4nlOnTgEwTx3Sv39/dOnSBRMmTEBqamp9q00+iMP3iOzUpk0bJCQk4KuvvrI2KEeOHMHFixfxyiuv4P/+7/9gMBjw/PPPo1evXnYf32g0Yt26dejWrRsAID4+HkOHDsXHH3+M559/vsHx33TTTQgNDeUQPyJqlJx9DzcYDFiyZIl1/o4LFy7gs88+w7PPPmtdYKJ///4QBAEbNmzAhAkTrG/mDQYDNm3ahMDAQABAeXk5nn/+efz111/o0qUL1qxZgxYtWmDjxo2QSqXWY915551488038cYbb2D06NHYsWMHkpOTrfHv3r0brVu3RteuXaHX61FeXo4XX3wRI0aMAAD07t0bZWVleOWVV6BWq9GsWTNr/JZ2oi71CAkJwdtvv40RI0bghRdesL6mrKwMW7dutftaEhG5w9mzZ1FYWIhHHnkEPXr0AAC0bt0a27ZtQ3l5OdatW2e9JwPA7bffDkEQ8O9//xsAEBgYaL13NmvWzOb/gGOH040ePRovvPACsrKyEBMTA8B8z7/tttsQERFR637jxo3D9OnTAQB9+/bF/v378dNPP+Ghhx7CgQMHcOjQIbz11lu46667rHUcNWqUzZy0crkcrVu3vm58lh64Go0Ga9asQVFRETZu3IhHHnkE27ZtQ4cOHRpUf/IN7ClFVA/3338//vjjD+uEfl988QVatWqFhIQE62vq2021efPm1oQUAERERKB79+74/fffGxY0EREBcO49PCQkxGZC2YMHD0IURQwZMgQGg8H6NWTIEOh0OiQnJ1tf27ZtW2tCCgCioqIAmN/MV1RU4NixYxg+fLg1IQUAQUFBGDx4MA4fPgzAnGCKiYmxfnKu0+mwf/9+ay8puVyOTZs2YcSIEbhy5QoOHjyIrVu34scffwQA6PX6GutVl3qcP38e+fn5GDx4sM2+w4cPr9e1JCJyh5tvvhmhoaF48sknsXDhQnz33XcIDw/HnDlzEBwcjBMnTuCOO+6w2efee+91S6x33XUXFAoF9uzZAwDIzs5GcnKy9Z5fm6vbO8CcMKuoqABgvt/7+flh6NCh1nKJRGL9IMMe//znP/Hee+9h1apV6NOnD+6++2588MEHUKlUWL9+vd3HI9/EpBRRPViGeHz11VfQ6XT45ptvkJiYaPOagICAeh07PDy82rawsDCUlJTU63hERGTLmffwa/crKioCAIwcORKdO3e2fll6aV25csX6WpVKZbOvRGJ+m2YymVBaWgpRFGtsI8LDw61zZAmCgHvuuQd79+6F0WjEjz/+iIqKCtxzzz3W1//yyy8YPnw4br/9dkybNg3//e9/IZfLAcBm2J+99bDMvXXtMI7rfVpPRORpAgIC8Mknn2DgwIH45ptvMGPGDPTt2xcLFy5EQUEBACA0NNRmH8uHCK4WGBiIoUOHWj+I2LNnD1QqlU1CqSZKpdLme4lEYr3/FxYWIiQkxNoGWYSFhdkdX+vWrTFgwACbbUFBQejRo4d1aB8Rh+8R1UNAQACGDRuGb775Bu3atUNFRcUNP5Goq5om1M3Ly7M2foIgADAP87N8Wl7bihdERFSdM+/h1woKCgIAfPjhhzUmuizDLW6kSZMmEAQBarW6WlleXh5CQkKs348ePRobNmzAoUOHsGfPHtxyyy2IjY0FAKSnp2P69OkYOnQoNmzYgObNm0MQBHzyySf45ZdfGlQPy4cn+fn5NmWWhBYRkbdo3bq1dfLvo0eP4quvvsKnn36KyMhISCSSavdid97n7r33XkyZMgWXLl3C7t27cffdd1f7kMMeUVFRKCwshMlksklMXXtvr4s9e/YgKCgI/fv3t9mu0+mqJfao8WJPKaJ6Gjt2LM6cOYMPP/wQt912m8M+Iblw4QLS09Ot32dnZ+PPP/+0LidrGdqRk5Njfc3Vwz/q4tpPPoiIGhtn3cOvZZnXqbCwEF27drV+FRQU4I033qjzg4y/vz+6dOmCb775xmaFpNLSUvz000/o2bOndVubNm3QuXNn7N69Gz///LPNsJLjx49Dp9NhypQpuOmmm6wfdFgSUpZPyq9tJ+pSj5YtWyI6OrraJPKWoYFERN5g7969uPXWW5GXlwepVIqEhAQsWrQIQUFBKCgoQEJCAr799lubnqV1uc856/13//79ER4ejo8++ggnTpxo8IcsvXv3hsFgwA8//GDdJooi9u/fb/extm7dipdeeslmaPiVK1dw5MgR67MNEXtKEdVTz5490apVKxw+fBivv/66w46rUCjw1FNPYdasWTAajXjjjTcQEhKCiRMnAgAGDhyIFStWYOHChZg8ebJ1lSd7hpoEBQVBrVbj559/RseOHREZGemw+ImIvIGz7uHXat++Pe69914sWLAAmZmZ6NKlCy5cuIDXX38dcXFxaNmyZZ2PNXv2bEyePBlTpkzBhAkTUFlZiY0bN0Kv11snrLUYPXo0Vq5cCZlMhmHDhlm3d+7cGTKZDKtXr8akSZOg1+uxc+dO/PTTTwBgnVPE0jNq165diI+Pr1M9BEHAc889h9mzZ+PFF1/EsGHDkJKSgk8//bRhF5GIyIV69OgBk8mE6dOnY8qUKQgICMA333yD0tJS3HXXXRgxYgQeffRRTJ8+HQ8++CDS09Pxxhtv3PC4195Xmzdv7pB4pVIpRo4ciS1btiAqKqrByZ5bbrkF/fr1w/z586FWqxETE4PPP/8cp0+ftn6QUVfTpk3DY489hmnTpuGRRx5BcXEx1q5di5CQEEyaNKlBcZLvYHcJogYYNGgQgoODbzhu2x6dOnXCuHHjsGjRIsydOxc33XQT/vOf/1i7uLZq1QorV67E5cuXMWXKFHz00UdYunSpXYmlxMRExMbGYvr06fjyyy8dFjsRkTdxxj28JitWrMBjjz2GrVu34vHHH8f69esxYsQIvP/++zaTlt9I37598cEHH0Cr1eLZZ5/FggULEBUVhc8++wzt2rWzee2oUaMgCAIGDx6MJk2aWLe3aNECa9aswZUrV/DUU09h4cKFAICPP/4YgiDgjz/+AGCePLdr166YN28eNm3aVOd6jBo1Cq+//jpSUlLw1FNP4ccff8SSJUsadP2IiFwpMjIS7733Hpo0aYL58+dj6tSpOHHiBN566y3ceuut6NWrFzZt2oTc3FzMmDEDW7durdMK2TXdVx1l9OjRMBqNGDVqlEN6ZL3++usYMmQI1qxZg3/961+Qy+UYP348/P397TrOrbfeivfffx8VFRWYNWsWlixZgs6dO+OTTz6xaZuocRPE2ma0JKLrEkURI0eORP/+/a1LXxMRkXfgPZyIiBzl8uXLuOOOO7BixYpqC2d4m8zMTKSkpOCOO+6wmRD96aefRkZGBr744gs3Rke+iMP3iOxUVlaGzZs349ixY8jIyMDDDz983deLomgz/0dtpFKp3V1iiYjIPryHExGRu3ly2yKRSDBv3jzccccdGDt2LKRSKX755Rd8++23WLFihUtjocaBSSkiOymVSmzduhUmkwnLly+/4Xjww4cP45FHHrnhcX3hkxUiIk/HezgREbnbF198gaSkpBu+7qOPPnL5hODR0dF49913sW7dOjzzzDMwGAxo06YNXn31VYwaNcqlsVDjwOF7RE5WVlaGCxcu3PB1cXFxaNq0qQsiIiKiuuI9nIiIHK2wsBCXL1++4etatWplXXmbyFcxKUVERERERERERC7H1feIiIiIiIiIiMjlmJQiIiIiIiIiIiKXY1KKiIiIiIiIiIhcjkkpIiIiIiIiIiJyOZm7A/Bm+fmlsGeaeEEAwsKa2L2fJ/H2Onh7/ID318Hb4we8vw6W+AsKShEa2sTd4ficxtg2OAOvS3W8JtXxmlTX0Gti2Z8czxt+T739b4rxuxfjdy9nx++s9oFJqQYQRdTrh13f/TyJt9fB2+MHvL8O3h4/4P118ObYPVljbhucgdelOl6T6nhNquM18Tze9DPxplhrwvjdi/G7l7fFz+F7RERERERERETkckxKERERERERERGRyzEpRURERERERERELsekFBERERERERERuRyTUkRERERERERE5HJMShERERERERERkcsxKUVERERERERERC7HpBQREREREREREbkck1JERERERERERORyTEoREREREREREZHLMSlFREREREREREQux6QUERGRG32ekoXbV/2Iy0Uad4dCRETkMEajERcvXrB+GY1Gd4dERB5I5u4AiIh8xaSpjyO/oKjW8rDQELy/4T3XBUReITWzBOkFFfj2VB4e63OTu8MhIiJyiIyMdKzf9wdCIqJRlJeNJ+8GWrZs5e6wiMjDMClFROQg+QVFGDnr1VrLd7/+nAujIW/RsVkgvvkrF8eyStwdChERkUOFREQjtFmcu8MgIg/G4XtERERu1C0mCABwLLsUoii6ORoiIiIiItdhUoqIiMiN2kcGQi6ToEhTictFWneHQ0RERETkMhy+R0RE5EZ+UgnahStxPKcCuw8dw20x8nofKzQ0DHFxzR0YHRERERGR8zApRUREHuXKlStYtmwZDh48CIVCgREjRuDZZ5+FQqFARkYGFixYgJSUFMTExOCFF15A//79rfv+9ttvWL58OTIyMhAfH49ly5ahefO/kzSbN2/Gpk2bUFZWhuHDh2PBggVQqVQAAJ1Oh8WLF+Pbb7+FUqnEpEmTMGnSJKfX9/LlDBzesw3+Pe7Bvz/egYXfvVPvYylV/vjt19+ZmCIiIiIir8CkFBEReQxRFPH0008jKCgIn3zyCYqLi/HCCy9AIpFg7ty5mD59Otq1a4cdO3Zg//79mDFjBvbs2YOYmBhkZWVh+vTpmDlzJgYMGIB169Zh2rRp+O9//wtBELBv3z6sXbsWq1evRlhYGJKSkrB69WosXLgQALBq1SocP34cH374IbKysvD8888jJiYGw4YNc2qd8/PzUZ5xEv497sFNfYbhoWED63Wc3MsX8PnrSSgoyGdSioiIiIi8ApNSRETkMc6fP4+UlBT8+uuvCA8PBwA8/fTTWLlyJW6//XZkZGRg69at8Pf3R5s2bXDgwAHs2LEDM2fOxPbt29GlSxdr76YVK1agX79+OHz4MPr06YOPPvoIEydOxODBgwEAixcvxuTJkzFnzhyIoojt27fj3XffRefOndG5c2ekpaXhk08+cXpSCgCMZQUAAJNUgZg2XC6biIiIiBoHTnROREQeIyIiAu+99541IWVRVlaG1NRUdOrUCf7+/tbtPXv2REpKCgAgNTUVvXr1spapVCp07twZKSkpMBqNOHbsmE159+7dUVlZiVOnTuHUqVMwGAxISEiwOXZqaipMJpOTavs3k6YEAKA1OP9cRERERESegkkpIiLyGEFBQRgwYID1e5PJhC1btuDWW29FXl4eIiMjbV4fFhaGnJwcALhueUlJCXQ6nU25TCZDSEgIcnJykJeXh6ZNm0Iu/3uS8fDwcOh0OhQVFTmhpraMVUkpncEEkyg6/XxERERERJ6Aw/eIiMhjrV69GidPnsTnn3+OzZs32ySNAEAul0Ov1wMANBpNreVardb6fU3loijWWAbAevy6EgS7Xg5BAEyaUuv3eoMJSj+pfQdpYAyeyFIHX6iLo/CaVMdrUl1DrwmvJRERuRKTUkRE5JFWr16NDz/8EK+//jratWsHhUJRrdeSXq+HUqkEACgUimoJJL1ej6CgICgUCuv315arVCoYjcYaywBYj19XYWFN7Hp9SEgAIJrgJ4ioFAVAJoO/v/zGO15DqTTv07RpAMLD7YvBk9l7PRsDXpPqeE2q4zUhIiJv4BVJKb1ej8TERCxYsAB9+vQBAKSkpOCVV17B6dOnERkZiccffxzjxo2z7tOQZcGJiMi9li5dik8//RSrV6/G3XffDQCIiorC2bNnbV6nVqutQ/KioqKgVqurlXfs2BEhISFQKBRQq9Vo06YNAMBgMKCoqAgREREQRRGFhYUwGAyQycxNY15eHpRKJYKCguyKPT+/FPaMwCsqKgcA+ElEVBoFFJVqoBTsH8Kn1ZqTaIWF5VCrS2/was8nCOaHanuvpy/jNamO16S6hl4Ty/7erKZnh4yMDCxYsAApKSmIiYnBCy+8gP79+1v34bOD6xiNRmRkpFu/b978Jkil0lq3E5Fv8/g5pXQ6HZ599lmkpaVZt+Xl5eGJJ55A79698cUXX+Dpp5/G0qVL8dNPPwGAdVnwxMREfP755wgNDcW0adMgVrXMlmXBlyxZgg8//BCpqalYvXq1O6pHRETXWLt2LbZu3YrXXnsNI0eOtG6Pj4/HiRMnrEPxACA5ORnx8fHW8uTkZGuZRqPByZMnER8fD4lEgq5du9qUp6SkQCaToUOHDujYsSNkMpl10nTLsbt27QqJxL6mUhTt/wIAeVUiyhGTndcnBk/88qW68JrwmnjTNfFmNT07iKKI6dOnIzw8HDt27MDo0aMxY8YMZGVlAeCzg6tlZKRj/b4/sPVIJtbv+8OaiKptOxH5No9OSp09exYPPPAA0tNtb0j79+9HeHg4nn32WbRs2RIjR47EmDFj8PXXXwOAzbLgN998M1asWIHMzEwcPnwYAGyWBe/WrRsWL16MHTt2QKPRuLyORET0t3PnzuHtt9/GE088gZ49eyIvL8/61bt3b0RHRyMpKQlpaWnYuHEjjh49irFjxwIA7r//fhw5cgQbN25EWloakpKSEBcXZ/2UfMKECdi0aRP279+Po0ePYtGiRXjggQegUqmgUqkwZswYLFq0CEePHsX+/fvx/vvv45FHHnFZ3eUS88OPtpIr8BER1Udtzw4HDx5ERkYGlixZgjZt2mDq1Kno3r07duzYAYDPDu4QEhGN0GZxCImIrtN2IvJdHj187/Dhw+jTpw9mzZqF7t27W7cPGDAAHTt2rPb6srIyANdfFrxXr144duwYZsyYYS2/elnwq5cDJyJypDNnTmH0uLG1loeFhuD9De+5MCLP8/3338NoNOKdd97BO++8Y1N2+vRpvP3225g/fz4SExPRokULrFu3DjExMQCAuLg4vPXWW1i+fDnWrVuHhIQErFu3DkLVrL0jR45EZmYmFi5cCL1ej7vuugtz5syxHj8pKQmLFi3CxIkTERgYiJkzZ+Kuu+5yWd2tSSkH9JQiImqMant2SE1NRadOneDv72/d1rNnT2vvWD47EBG5j0cnpSZMmFDj9ri4OMTFxVm/z8/Px+7duzFz5kwADVsWnIjIWQwmYOSsV2st3/36cy6MxjNNmTIFU6ZMqbW8RYsW2LJlS63lAwcOxMCBA+t1fJVKhZUrV2LlypV1D9iB/KqG7+kqjW45PxGRt6vt2eF6zwY3KuezAxGRc3l0UqoutFotZs6cifDwcDz44IMAGrYsuD3qs+x3ffbzJN5eB2+PH/D+Onh7/IBz6+CK6+ILPwNfxJ5SRETOcb1ngxuVu/PZwR0c+R7h2mMIwt9f9myvzzm94VrXhPG7F+Ov2/EdzauTUuXl5Zg2bRouXryI//znP9YVMBqyLLg96rsyibevaAJ4fx28PX7A++vg7fED1esg85PC319R6+sFAdctl/lJER7uuusSGur9PwNfwqQUEZFzKBQKFBUV2WzT6/VQKpXWck9+dnAHR8RaUhIIlUoOf38FNCo5QkMDER7exO7t7orfnRi/ezF+1/LapFRZWRkef/xxpKen48MPP0TLli2tZQ1ZFtwe9i616wvLFnt7Hbw9fsD76+Dt8QO118FQaURFha7W/UQR1y03VBqhVpc6MtQaWeIvKChlYsqD/D3ROYfvERE5UlRUFM6ePWuzTa1WW4fkeeqzgzs48n1aQUEZNBo9Kip00Gj0KCgoQ1BQqd3b3RW/OzB+92L8dTu+o3llUspkMmHGjBm4fPkyPv74Y2sDYVHbsuAzZsywWRbcsiLT1cuC26O+y+b6wnK73l4Hb48f8P46eHv8gHPq4Mpr4u3X39fILXNKsacUEZFDxcfHY+PGjdBqtdbeUcnJyejZs6e13JOfHdzBEbFeu7/lmPZur++5veVa14Txuxfjdy2JuwOoj88//xyHDh3Cyy+/jKCgIOty4ZZuuQ1ZFpyIiMgd/Dh8j4jIKXr37o3o6GgkJSUhLS0NGzduxNGjRzF2rHlFXD47EBG5j1f2lNq3bx9MJhOmTp1qs7137974+OOPG7wsOBERkavJqz4m0hlMMIkiJN46yyYRkYeRSqV4++23MX/+fCQmJqJFixZYt24dYmJiAIDPDkREbuQ1SanTp09b/79p06Ybvr4hy4ITERG5mp/wdz9rncEElZ/UjdEQEXm3q58dAKBFixbYsmVLra/nswMRkXt45fA9IiIiXyMRALnU/Kk855UiIiJfVag1Ir1M5MIeRATAi3pKERER+Tq5VAK90Qg9k1JEROSDijSVWPhTLnLKRSSrM9GlKYeqEzV27ClFRETkIfyk5ma50uRFS6YQERHVgUkUkfT1SeSUGyABYBKBYwUiskor3R0aEbkRk1JEREQewq9q+F6lkT2liIjIt5xS6/BHRjEUUgFDYgU0D1FCBLDlWLG7QyMiN2JSioiIyENYe0oZ2VOKiIh8yy8ZFQCA25r7I1guoE+LphAA/J6twakrpe4NjojchkkpIiIiD8GeUkRE5IsMRiN+Sy8HAHRUlcNkEtHU3w+xAebyb/7KdWN0ROROTEoRERF5CPaUIiIiX3QhtxgVRkApBQ6nHkdZmblnVPNA84cx+07lwSiy7SNqjLj6HhERkYfwk7CnFBER+Z58gxwA0CYiEMFlEdbtzVRAE7kE+eV6HM/VuSs8InIj9pQiIiLyEOwpRUREvqjI5AcAiA5S2myXCAL6xqkAAL9ernB5XETkfkxKEREReQjLnFJ69pQiIiIfoTOYUG4yD9CJaqKoVt4nxh8A8GeOBiKH8BE1Ohy+R0QON2nq48gvKKq1PKZZONavXe+6gIi8hLWnlIlvyomIyDfkluoACFBJTPCXS6uVd4xQwN9PiiKtEUV6AWGuD5GI3IhJKSJyuPyCIoyc9Wqt5fvWPu/CaIi8h5yr7xERkY/JKTXPFRXiZ6yx3E8ioHeLEPx0Nh85FUAbVwZHRG7H4XtEREQegnNKERGRr7liSUrJak5KAUC/VqEAgGwN2z+ixoZJKSIiIg/hx55SRETkQ0RRhLpMDwAIltXetvVrbU5KFeoAbWXtySsi8j1MShEREXkI9pQiIiJfUm4wz5MoQESAtPakVESgAs2DzDPLZJXoXBUeEXkAJqWIiIg8hJ+EPaWIiMh3FJs7SSFQYkBVE1errpFKAEBmsdbJURGRJ2FSioiIyEOwpxQREfmSkqqkVIDEcMPXdo0wJ6WymJQialSYlCIiIvIQljmljKIIk8jEFBERebdivbktC6xDUqpThAICgBKtAeWVbAOJGgsmpYiIyGPp9XqMGjUKhw4dAgDMmzcP7du3r/b1yCOPWPfp1atXtfLy8nIAgE6nwwsvvIBevXqhf//+eP/9923Ol5GRgUcffRTdu3fHiBEj8H//93+uqyz+7ikFsLcUERF5v+JK8791SUr5+0nQVGH+fx47SxE1GjJ3B0BERFQTnU6H2bNnIy0tzbpt/vz5mD17tvX7zMxMPPzww9ak1JUrV1BaWor9+/dDqVRaX+fv7w8AWLVqFY4fP44PP/wQWVlZeP755xETE4Nhw4ZBFEVMnz4d7dq1w44dO7B//37MmDEDe/bsQUxMjEvqLJUIkAiASTTPK6WQ8bMjIiLyTjqDCWU2SSm/G+4TqQIKdECuhh/MEDUWTEoREZHHOXv2LGbPng3xmiFsTZo0QZMmTazfz5s3D8OGDcPQoUMBAOfOnUNERASaN29e7ZgVFRXYvn073n33XXTu3BmdO3dGWloaPvnkEwwbNgwHDx5ERkYGtm7dCn9/f7Rp0wYHDhzAjh07MHPmTOdW+Cp+Ugl0BhP0nOyciIi8WEaJOSOl8pNAIalbmxapFHAKInI1qPYegIh8Ez+CJSIij3P48GH06dMH27Ztq/U1Bw4cwO+//45nn33Wuu3s2bNo1apVja8/deoUDAYDEhISrNt69uyJ1NRUmEwmpKamolOnTtZeVZbylJSUhlfIDpZ5pTh8j4iIvNnlUvOQvRDVjXtIWYQpAZlEgM4EpFcltYjIt7GnFBEReZwJEybc8DUbN27Efffdh+joaOu2c+fOQaPR4OGHH8aFCxfQsWNHvPDCC2jVqhXy8vLQtGlTyOVy6+vDw8Oh0+lQVFSEvLw8REZG2pwjLCwMOTk5jqtYHcilEgBGVLKnFBERebGsUnNSKUTlB5TXbR+JIKBZkByXi7Q4lqvDQCfGR0SegUkpIiLyOhkZGTh48CDmz59vs/38+fMoLi7Gs88+i8DAQLz77rt49NFHsXv3bmg0GpuEFADr93q9vtZyvV5vV2yCYF9drK+v+lcmaXhPKXtj8ESWOvhCXRyF16Q6XpPqGnpNeC3JUbLKLD2lZLUmpUwmIzIzLwMAMjMvw2QCYoOVVUkpznZO1BgwKUVERF5n37596NixI9q2bWuzfdOmTaisrERAQAAA4NVXX8XAgQPx448/QqFQVEswWb5XKpVQKBQoKiqqVn71hOl1ERbW5MYvukpIiDlWpUIOf38FlHIZAD0kMin8/RV1Po5SaU6oNW0agPBw+2LwZPZez8aA16Q6XpPqeE3I3bKqhu8FK/1Q20C8kvxcfHqpDHGtBKSfPoaQ6JaIjY0CAJxU62AwmiCTcsYZIl/GpBQREXmdX375BXfccUe17XK53Ka3k0KhQFxcHK5cuYIePXqgsLAQBoMBMpm5+cvLy4NSqURQUBCioqJw9uxZm+Op1epqQ/puJD+/FPbMzVpUZP74WKvTo6JCBynMO5dpzN/XlVZrTrAVFpZDrS6tewAeShDMD9X2Xk9fxmtSHa9JdQ29Jpb9iRrCaBKRU7X0XrDKD+rrvDYoLAqhzeJQlJcNAAj194NcAmgNIk7klCI+NtgFERORuzDtTEREXkUURRw7dgw9evSotn3o0KHYuXOndVtFRQUuXbqE1q1bo2PHjpDJZDYTlycnJ6Nr166QSCSIj4/HiRMnoNVqbcrj4+PtjM/+L/OO5n/8qj4RbsicUvWJwRO/fKkuvCa8Jt50TYgaKqdUi0qT+WEzUCG1a19BEBCpMv//8KUih8dGRJ6FSSkiIvIqmZmZKC8vrzZ0TxAEDBo0CG+99RYOHTqEtLQ0zJ07F82aNcPAgQOhUqkwZswYLFq0CEePHsX+/fvx/vvv45FHHgEA9O7dG9HR0UhKSkJaWho2btyIo0ePYuzYsS6tH1ffIyIib5deqAEABPiZJy+3V4TSvM/v6YUOjYuIPA+H7xERkVfJz88HAAQHB1crmzNnDmQyGWbPno2ysjLceuut2LhxI6RS86e0SUlJWLRoESZOnIjAwEDMnDkTd911FwBAKpXi7bffxvz585GYmIgWLVpg3bp1iImJcV3l4JieUkRERO50qcCclGriV7/9LT2ljmaXokJvhL/cvt5WROQ9mJQiIiKPdvr0aZvv4+Pjq22zUCgUmDdvHubNm1djuUqlwsqVK7Fy5coay1u0aIEtW7Y0LOAGsqy+ZzCxpxQREXmnSwUVAOqflAr0ExDpL0FuhRF/ZhajX6tQB0ZHRJ6Ew/eIiIg8iKxq+J6Bw/eIiMhLZRSZe0oF+tk/dM+ia6R59dvDlziEj8iXMSlFROREpToDNJVGd4dBXkQmMTfN7ClFRETe6nKRedGQgAaMy7EkpX5PL3JARETkqTh8j4jICUTRvIzxwYtFEAHEBishKALdHRZ5AT8O3yMiIi9mMInIKTEnpQLrOXwPALpEKgAAaXnlKKjQI9Rf7ojwiMjDsKcUEZETHMsuxYGqhBQAZBZrobptAkSutU03IJVYVt/jROdEROR9ckq0MIqAnwRQNmB+8mCFFDdHBAAA/mBvKSKfxaQUEZGDaSuNOHK5GADQq3kwxnSNgkQA5C2645y6ws3Rkafzk7KnFBERea/MYnMvqcgAGQSh/nNKAcAtN4UAAA7XkJQyGo24ePGC9cto5HQJRN6ISSkiIgdLySxBpVFEWIAfuscGISJQgYS4YADAn5nF7C1F18XV94iIyJtZklJRDZlQqoolKXUko6haWUZGOtbv+wNbj2Ri/b4/kJGR3uDzEZHreUVSSq/XY9SoUTh06JB1W0ZGBh599FF0794dI0aMwP/93//Z7PPbb79h1KhRiI+PxyOPPIKMjAyb8s2bN2PAgAFISEjACy+8AI1G45K6EJFv0xtMOJlTBgC4pXmI9RPCLs2aQKzUoUhjQG6Z3p0hkoezTnTO1feIiMgLZVatvOeIpFT32GBIBCCjSIsrpbpq5SER0QhtFoeQiOgGn4uI3MPjk1I6nQ7PPvss0tLSrNtEUcT06dMRHh6OHTt2YPTo0ZgxYwaysrIAAFlZWZg+fToSExPx+eefIzQ0FNOmTbP2Tti3bx/Wrl2LJUuW4MMPP0RqaipWr17tlvoRkW+5WFABoygiRCVDXIjSul0uk6Dy0hEAwOncMneFR15AZh2+xzmliIjI+ziyp1SgQoYOUU0AAMk19JYiIu/n0Umps2fP4oEHHkB6um1XzIMHDyIjIwNLlixBmzZtMHXqVHTv3h07duwAAGzfvh1dunTBpEmTcPPNN2PFihXIzMzE4cOHAQAfffQRJk6ciMGDB6Nbt25YvHgxduzYwd5SRNRgZ6vmjGobHlBtHgVd2gEAwHl1BQycxJpqweF7RETkzTKLGp6UMpmMyMy8jIsXL6BtkHnbkYxiR4RHRB7Go5NShw8fRp8+fbBt2zab7ampqejUqRP8/f2t23r27ImUlBRrea9evaxlKpUKnTt3RkpKCoxGI44dO2ZT3r17d1RWVuLUqVPOrRAR+TSjnz+yqj4dbBMeUL38ylkEyKWoNInIrqELOhHwd1LKJAImJqaIiMiLiKKIy8VVw/cC65+UKsnPxacHz2LrkUxcquqg8Ad7ShH5pIb3qXSiCRMm1Lg9Ly8PkZGRNtvCwsKQk5Nzw/KSkhLodDqbcplMhpCQEOv+RET1oQ1tAxFAZKAcQcqab69xIUqczi1HZpEWzUNUrg2QvIJM+vfnRQaTCLmkYSsXERERuUqJ1oAynXkVvEh/aYOOFRQWhdBmcWhhEnEsXURmsRY5JVo0C1LeeGci8hoenZSqjUajgVwut9kml8uh1+tvWK7Vaq3f17Z/Xdm7wqnl9Q1cGdWtvL0O3h4/4P118Pb4gdrroAtuAQBoEVp7sik22JyUulzVtb22YzuTL/wMfJlUAAQAIqqSUu4OiIiIqI6yS8zvb0L9/aCQOWZQjhQmxPkLSC8H9v15Fv/s3xFSacMSXkTkObwyKaVQKFBUVGSzTa/XQ6lUWsuvTTDp9XoEBQVBoVBYv7+2XKWyr9dCWFgTOyNv2H6exNvr4O3xA55dB5mfFP7+iuu+xpPjr6ur61BpNEEXHAcAaBsVVGP9BQFoGx2MH9LyUaiphEkqRaDi79uwzE+K8HDXXZfQUO//GfgiQRAgkwioNIlVk53zjTcREXmHrBLz9AQxwY7rzVSSn4vKcjmAptiRkomBLQLQsmUrhx2fiNzLK5NSUVFROHv2rM02tVptHZIXFRUFtVpdrbxjx44ICQmBQqGAWq1GmzZtAAAGgwFFRUWIiIiwK478/FKIdkz3IQjmh1h79/Mk3l4Hb48f8I46GCqNqKioec4kS+8cT47/Rmr6GRzJKIIolUMpkyBAihrrL4qAWGlAeIAc6nI9zmYXo11koLXcUGmEWl3qsvgLCkqZmPJQMqk5KVVp9NI/EiIiapRyqnpKNWvi2CF2zZookV0KFINTHxD5Go+e6Lw28fHxOHHihHUoHgAkJycjPj7eWp6cnGwt02g0OHnyJOLj4yGRSNC1a1eb8pSUFMhkMnTo0MGuOETR/q/67udJX95eB2+P3xvqcKO/G0+Pvz4/g4MXCwEAsSHKaqvuXSu26tPDnBomO3d1/OSZuAIfERF5o+yqnlLRQdfvMW+vED8jBAAVBiCv3ODQYxORe3llUqp3796Ijo5GUlIS0tLSsHHjRhw9ehRjx44FANx///04cuQINm7ciLS0NCQlJSEuLg59+vQBYJ5AfdOmTdi/fz+OHj2KRYsW4YEHHrB7+B4RkcWhS0UAgLg6dFePbGKeJSi31L557KjxkEnMzTOTUkRE5E2yq1Yhjnbg8D0AkAlARKD5/dMJNVcwJvIlXpmUkkqlePvtt5GXl4fExET897//xbp16xATEwMAiIuLw1tvvYUdO3Zg7NixKCoqwrp166y9F0aOHImpU6di4cKFmDRpErp164Y5c+a4s0pE5MU0lUacumIedleXORQiA82fHhZqKqE3mpwaG3knmbSqpxR/P4iIHCI7OxtTp05Fjx49MGTIEGzevNladvLkSYwbNw7x8fG4//77cfz4cZt9d+3ahaFDhyI+Ph7Tp09HQUGBi6P3HpaJzh3dU8p8TPN7rON5NS8WQ0TeyWvmlDp9+rTN9y1atMCWLVtqff3AgQMxcODAWsunTJmCKVOmOCw+Imq8jmeXwCgCUl2pzcTltfGXSxEol6JMb0Remd46nI/IgsP3iIgc65lnnkFMTAx27tyJs2fP4rnnnkNsbCz69euHKVOm4J577sErr7yCTz/9FFOnTsV3330Hf39/HD16FPPnz8fixYvRoUMHLFu2DElJSdiwYYO7q+SRLFMTNAtSAmUlDj12TLACqVnAyTz2lCLyJV7ZU4qIyJOkXDa/6ZKXZtV5n8gm5k8Q88r4xoqqY1KKiMhxiouLkZKSgqeeegotW7bE0KFDMWDAABw4cAB79uyBQqHA3Llz0aZNG8yfPx8BAQHYu3cvAGDLli0YPnw4xowZgw4dOmDVqlX4+eefkZGR4eZaeZ4ynQElWvN8T87oKRXVRAEBQF6FEZnFGocfn4jcg0kpIqIGSsksBmBfUsoyLwLnlaKayKRVc0px9T0iogZTKpVQqVTYuXMnKisrcf78eRw5cgQdO3ZEamoqevbsaZ3mQxAE9OjRAykpKQCA1NRU9OrVy3qs6OhoxMTEIDU11R1V8Wg5VZOcBytlCJA7fkCOn1SCplW5ruSMYocfn4jcw2uG7xEReSKDScSx7KqeUiV29JSqmlcqlz2lqAaWnlKV7ClFRNRgCoUCCxcuxNKlS/HRRx/BaDQiMTER48aNw/fff4+2bdvavD4sLAxpaWkAgNzcXERGRlYrz8nJsTuOGyzO6xEsMdYn1pxS81xPzYKUEATn1DdCCRTogCMZRYjvZNsb6+pzesO1rgnjdy/GX7fjOxqTUkREDXA2rwyaShMCFVLINPl13i8swA8AoKk0QVNphMpP6qwQyQv5VSWljCZOdE5E5Ajnzp3D4MGD8dhjjyEtLQ1Lly5F3759odFoIJfLbV4rl8uh15t7Mmu12uuW2yMsrEn9K+Bi9Ym15Iz5fVCL8ACEhzdBSUkgVCo5/P0VUCr9IFH4Nfj/ccF+OF1ciT8zSzC7fyvr8TUqOUJDA61xe9O1rgnjdy/G71pMShERNcCJHPOqe52bNYE9s0v4SSUIUspQojUgv1yPuBCVcwIkr2TtKcXhe0REDXbgwAF8/vnn+Pnnn6FUKtG1a1dcuXIF77zzDpo3b14twaTX66FUmhchUSgUNZarVPa32/n5pRA9/LYuCOYH2vrEejbbPKQuTCmDWl2KgoIyaDR6VFTooNVWQiJWNvj/gYIBUgHIKtbidEaR9fgajR4FBWUIDi6td/yeoCHX3xMwfvdydvyW4zsak1JERA1wsiop1cnOpBQAhPn7oURrQEFFJZNSZEMm5UTnRESOcvz4cbRo0cKaaAKATp06Yf369ejVqxfUarXN69VqtXXIXlRUVI3lERERdschivCaB936xJpbtfJeRKDcaXWVSQS0CvHD2UI9Tqptp0C4+pzedK1rwvjdi/G7Fic6JyJqgJM5ZQCATlH2f2oQGmAeDpBfzsnOyZZMUjXROZNSREQNFhkZiUuXLtn0eDp//jzi4uIQHx+PP//8E2LVE5woijhy5Aji4+MBAPHx8UhOTrbul52djezsbGs5/S23zHx9JdoSXLx4AZmZl2FyQjvWMdw8l9TJPM7LSeQLmJQiIqonjd6I8/nlAMw9pewV5m+eV6qgotKhcfkSvV6PUaNG4dChQ9ZtL7/8Mtq3b2/ztWXLFmv5rl27MHToUMTHx2P69OkoKCiwlomiiFdffRW33norevfujVWrVsF01bxNhYWFmDlzJhISEjBkyBB89dVXrqnoNSzD9wxGzilFRNRQQ4YMgZ+fH1588UVcuHABP/zwA9avX4+HH34Yw4YNQ0lJCZYtW4azZ89i2bJl0Gg0GD58OABg/Pjx+Oqrr7B9+3acOnUKc+fOxaBBg9C8eXM318rz5FUt3vK/Y2nYeiQTn/zvGMrKSh1+nk5VSam/1ExKEfkCDt8jIqqn07llMIlAeIAckU0UN97hGmFVPaUKNZUw3uCTxElTH0d+QVHtxwoNwfsb3rM7Bk+m0+kwe/Zs6wpIFufOncPs2bNx3333WbcFBgYCAI4ePYr58+dj8eLF6NChA5YtW4akpCRs2LABAPDBBx9g165dWLt2LQwGA+bMmYOwsDBMnjwZAJCUlAStVott27YhNTUVL774Ilq1aoVu3bq5qNZmHL5HROQ4TZo0webNm7Fs2TKMHTsWoaGheOqpp/Dggw9CEARs2LABL730Ej777DO0b98eGzduhL+/PwAgISEBS5YswZtvvoni4mL069cPS5cudXONPI8oitbhe5FhYQhtFoeivGynnKtDuAICgKwyA7ShXrpMGhFZMSlF5KMaYxLD1U5cNZ9UfQTIpVBIJdAZTSjSXL+3VH5BEUbOerXW8t2vP1evGDzV2bNnMXv2bOtwiqudO3cOkydPrnE+jy1btmD48OEYM2YMAGDVqlUYPHgwMjIy0Lx5c3z00Ud4+umn0atXLwDAc889hzfeeAOTJ09Geno6fvzxR3z//feIi4tDu3btkJKSgv/85z+uT0pJmJQiInKktm3b4oMPPqixrFu3bvjiiy9q3TcxMRGJiYnOCs3rGY1GnDx7AfqqxTnkEue2XYFyCdpGBCAtrxxqLRDj1LMRkbMxKUXkoxpbEsMd/p7kPLBe+wuCgNAAP2SX6DiE7xqHDx9Gnz59MGvWLHTv3t26vaysDFeuXEHLli1r3C81NRVPPPGE9fvo6GjExMQgNTUVcrkc2dnZuOWWW6zlPXv2RGZmJnJzc5Gamoro6GjExcXZlFt6WbmSTFo1pxRX3yMiIg+XkZGO9d8fAxAGmWiAplzr9HN2jw2uSkqxnSTydkxKERHV019XqiY5r2dPKQAIUZmTUjfqKdXYTJgwocbt586dgyAIWL9+Pf73v/8hJCQEjz32mHUoX25urnXFJIuwsDDk5OQgLy8PAGzKw8PDAcBaXtO+V65csSt2wc6RBNbXX7VfQ3tK2RuDJ7LUwRfq4ii8JtXxmlTX0GvCa0n1IQsKBzQilFLXJIkS4oKxPSULaufnv4jIyZiUIiKqh2JNJdILNQCAjvVYec+iqco82Xkhe0rVyfnz5yEIAlq3bo1//vOf+P3337FgwQIEBgbizjvvhFarhVwut9lHLpdDr9dDq9Vav7+6DDBPqK7RaGrd1x5hYfb9PoSEBAAAlAo5/P3Nc5M1qTS/qTeKonXbjSiV5tibNg1AeHj9fyc9jb3XszHgNamO16Q6XhNyJa3B/K9ScM0CHQmxQQCAYj2gM3BRECJvxqQUEVE9HLtcDACIDVYipCqxVB8hVSvwFWoqUb9BgI3LmDFjMHjwYISEhAAAOnTogIsXL+LTTz/FnXfeCYVCUS2JpNfroVKpbBJQCoXC+n8AUKlUte6rVCrtijE/vxQ1TIVVq6Ii8wqOWp0eFRXmSWINenOSstJosm67Ea3WHHthYTnUasevduRqgmB+qLb3evoyXpPqeE2qa+g1sexPZA9N1XBzhWB0yfnCAxWIDpQhu8yAK6U6voci8mJMShER1UPq5SIADRu6B/zdU6pUa0CAIG1oWD5PEARrQsqidevWOHjwIAAgKioKarXaplytViMiIgJRUVEAgLy8POu8UZYhfZby2va1hyjCrgdB62uv2sey+l5lPeeU8qWHc3uvZ2PAa1Idr0l1vCbkSpqqnlIKiet6LXUMVyC7zIDsEi1utn8RZCLyEBJ3B0BE5I2OViWlOkY17LM5lZ8ECqkEIgCDKqTBcfm6N954A48++qjNtlOnTqF169YAgPj4eCQnJ1vLsrOzkZ2djfj4eERFRSEmJsamPDk5GTExMYiMjET37t2RmZmJnJwcm/KrJ1p3FZmkaqJzk1jjCoRERESeRFPVQcpVPaUAoFO4OROVU1K3HsVE5JmYlCIiqoejVcP3GtpTShAE6xA+gyq0wXH5usGDB+P333/Hpk2bkJ6ejv/85z/48ssvMWnSJADA+PHj8dVXX2H79u04deoU5s6di0GDBqF58+bW8ldffRWHDh3CoUOHsGbNGjzyyCMAgObNm6N///6YM2cOTp06he3bt2PXrl34xz/+4fJ6WiY6B4B6znVORETkMtaeUi6aUwoAOlQlpfLK9fVeGISI3I/D94iI7KQu1yO7WAsBQIcG9pQCgKYqGa6U6lDJpNQNdevWDW+88QbefPNNvPHGG4iNjcWaNWuQkJAAAEhISMCSJUvw5ptvori4GP369cPSpUut+0+ePBn5+fmYMWMGpFIpxo4da9PzatWqVZg/fz4eeOABREREYPny5ejWrZurq2mTlDKYREglXA6LiIg8l7WnlMQIoP5zbdoj0l8KldR87gJ2liLyWkxKERHZ6WSOeRLpVmH+CJA3/DZqmSjdoApr8LF80enTp22+Hzp0KIYOHVrr6xMTE5GYmFhjmVQqRVJSEpKSkmosDwsLw/r16+sfrINIJAIEmKeZMphMULBjMxEReSitwYTKqg5Srlp9DzD3Ng9XAhnlgFrLnlJE3orvcomI7HQy25yUaujQPQtrUkoZ4pDjkW+wTHZuqOdk50RERK5QUNVNyk8iQCa4ts0KV5rbSrXWpaclIgdiTymiBpg09XHkFxTVWh4WGoL3N7znuoDIJSw9pRyVlApSmm/FBlUITKIIicChWmQewldpFDlPBhEReTRLUipA4fxVhE0mIzIzLwMAMjMvI1RhbiPzdUAl20sir8SkFFED5BcUYeSsV2st3/36cy6MhlxBFEWcuGJJSjV8PikAaKKUQRAAUSJDbqkOzYKUDjkueTfLPFJGvskmIiIPVqA1J6X85VLAyYvvleTn4tNLZYhrJSD99DEEN2sJpSwIWoMJ5wv1aOfc0xORE3D4HhGRHbJLdCjWGOAnFdAuwjFJKYkgIEhh/owgvVDjkGOS95NJzE00e0oREZEny7f0lHLAPJt1ERQWhdBmcQgKjYAgAM2CzKvw/aXmbOdE3ohJKSIiO1iG7nVoFgS5zHG30GCV+Y1cRhGTUmRmWYGPSSkiIvJk1uF7cucP36uJJSl1kkkpIq/EpBQRkR2OV01y3i0u2KHHDVKaJztnTymyYFKKiIi8Qb6bk1LRTczTHpxS6zjkncgLMSlFRGSHkzklAIDuzUMcetxgJYfvka2/k1KuW16biIjIXu7uKRUa4AeZAGgMItLyyt0SAxHVH5NSRER1ZDCJ+OtKGQAg4aYQhx47WMWeUmSLE50TEZE3KNAYAAD+LppT6loSQUBY1Roxf14udksMRFR/TEoREdXROXU5tAYTAhVStA53zCTnFpaeUpnFWg7XIgCATFrVU8rI3wciIvJMBqMJRVpzj1539ZQCgAiluc1kUorI+7gnnU1E5KEmTX0c+QVFNRe2ugWI6otOzZpAUtWLxVEC5FLAZIARMmQXa9G8qcqhxyfvwzmliIjI06nL9RABCABUfu7r73B1TylRZLtJ5E2YlCIiukp+QRFGznq1xrItX30DAOgS3cTh5xUEATJNEQwB4Ugv0jApRUxKERGRx8sr0wMAVDLzexl3aaoA/CQCCjWVOJdXjhCOByLyGvxzJSKqo8rAZgCAzs2CnHJ8mbYIAOeVIjOZxNxEMylFRESeKq9MBwBQuW/kHgBAKghoFyYHABy+UODeYIjILkxKERHVgd5ggkEVCsA5PaWAv5NSGUxKETjROREReb78ikoAgMLNSSkA6BiuAAAcvpDv5kiIyB5MShER1UFeuR4QBEQHKRAWIHfKOf7uKVXhlOOTd+HwPSIi8nQF5ebhe0oPSEp1sial2FOKyJswKUVEVAeW7unOGroHAFJtIQD2lCIza1LKaHJzJERERDXLrzAnpRRS980nZXFzqBxSiYCsYi2yi7XuDoeI6ohJKSKiOsgtNb/pctbQPeDvnlLZJTroDExENHYyKXtKERGRZysoNw/f84SeUkqZBB2jAgEARy4XuzkaIqorrr5HRF5l0tTHkV9QVGt5WGgI3t/wnkPPKYoicqt6SjkzKSWp1CBALkW53ojMYg1ahwU47Vzk+Th8j4iIPF2BtaeUmwOpkhAXjOPZpfjzcjFGdIpydzhEVAdenZTKzs7GokWL8PvvvyMkJASPPPIIHn30UQDAyZMn8dJLL+HMmTNo27YtFi9ejC5dulj33bVrF/79738jLy8P/fv3x9KlSxEaGuqmmhBRXeUXFGHkrFdrLd/9+nMOP2e53ghNpQkwGdE+MtDhx7cQANzUVIW/rpQhvYBJqcaOE50TEZGns0x07gk9pQCgR1wwPv79MntKEXkRrx6+98wzz8Df3x87d+7ECy+8gH//+9/47rvvUFFRgSlTpqBXr17YuXMnEhISMHXqVFRUmCcPPnr0KObPn48ZM2Zg27ZtKCkpQVJSkptrQ0SeKqfU3EvKr0INpZ9z33Xd1FQFAEjnvFKNHntKERGRp7NMdO4pPaXiY4MgCOb3Ueqq2IjIs3ltUqq4uBgpKSl46qmn0LJlSwwdOhQDBgzAgQMHsGfPHigUCsydOxdt2rTB/PnzERAQgL179wIAtmzZguHDh2PMmDHo0KEDVq1ahZ9//hkZGRlurhUReaKcEnNSSl6a5fRzxYWYk1KZnKCz0ZNJzE00k1JEROSJKvRGaKvmwPSUnlJBSj90qFqUJoW9pYi8gtcmpZRKJVQqFXbu3InKykqcP38eR44cQceOHZGamoqePXtCEMyfMguCgB49eiAlJQUAkJqail69elmPFR0djZiYGKSmprqjKkTk4bItSamSTKefKzZYCQDILGZPqcZOxuF7RETkwQquWnnP0mZ5gt4tmwIAUjKZlCLyBl6blFIoFFi4cCG2bduG+Ph4DB8+HLfffjvGjRuHvLw8REZG2rw+LCwMOTk5AIDc3NzrlhMRWWgqjSjSmOdLULiwp9TlIvaUauysq+8ZmZQiIiLPk181PC5E6VmPlL1bhQHgCnxE3sKrJzo/d+4cBg8ejMceewxpaWlYunQp+vbtC41GA7lcbvNauVwOvd5849RqtdctryvBzg8ELK+3dz9P4u11cEf8jj6XI+vgjp+jK34Gjjy2ZeheU5UfJAYtBMG5dYgLUVadVwujKNr1yWNd4/H2v+PGQmqdU8rk5kiIiIiqs0xyHqyQAjC4N5ir3NLK3FPqbF45SrSVCFL6uTkiIroer01KHThwAJ9//jl+/vlnKJVKdO3aFVeuXME777yD5s2bV0sw6fV6KJXmhz2FQlFjuUqlsiuGsLD6LQ1f3/08ibfXwVHxy/yk8PdXXLc8PLz+5xr70D+Qm19YY1lkWFN8vvUTt8V2PVefWxRFlGgNUMgkNpOE1/dn4Ox6XXt8dUYJAKB5qD+Krjn2tXW4UWyCgBvG3qFFGOQyCfQGEyplMjQL9a/TsetT79BQ7/479nXW4Xui+e9IYBaRiIg8iGWS82ClZyWlwvz9EBMoQ1aZAd/9mYYxvdtDKvWQSa+IqBqnJKUOHjyIPn36OPUN9PHjx9GiRQtrogkAOnXqhPXr16NXr15Qq9U2r1er1dYhe1FRUTWWR0RE2BVDfn4pRDtGVQiC+SHW3v08ibfXwdHxGyqNqKjQXbdcrS6t9/GzctQYOetVm22CAKhUCmxfPvO6x3Z2bNdjOfeZ3DIcuVyCUp35jUqovx/6Vo3zr+/PwNn1uvb4F/PLAAARAX5QVx27tt+jG8Umirhh7AUFZYgJUuBigQbHLqihMjWt07Htqbcl/oKCUocmplxx729Mru4lZzCJ8JPyuhKRb2L74Z0sc0qFKDxr+N6lS5cAbQkAf/zn90voGa1Cy5at3B0WEdXCKXeQf/3rXxgwYABefvll6+TijhYZGYlLly7Z9Hg6f/484uLiEB8fjz///BNi1dOiKIo4cuQI4uPjAQDx8fFITk627pednY3s7GxreV2Jov1f9d3Pk768vQ6OjN9Zvye1HV9nMCG7WIujl4tQEncbVu4/i0XfnMbib07j3z+dx46ULJzILq3zHDROu84ADl0qxM/nClCqM1iHiRVUVGL3yVwUxd4Kk0n0+GtepjOgSGOAgL8nIL/e75EjiCIQG/z3vFLOqrfl9Y7kjHu/Xq/HqFGjcOjQIeu2lJQUPPTQQ0hISMDdd9+N7du32+xz7733on379jZfZ86cAQCIoohXX30Vt956K3r37o1Vq1bBdNXwuMLCQsycORMJCQkYMmQIvvrqK4fUoz6uTkpxsnMi8mWueHYgxzIajbiYkw8AkOjLYXJzO2UyGZGZeRkXL15Aeno6YkLMPc3LJAFujYuIbswpPaV+/fVX/Prrr9i7dy+mTJmCwMBADB8+HCNHjkSnTp0cco4hQ4Zg9erVePHFF/HUU0/hwoULWL9+PWbNmoVhw4ZhzZo1WLZsGR566CFs3boVGo0Gw4cPBwCMHz8eDz/8MLp3746uXbti2bJlGDRoEJo3b+6Q2IgcRYR5EsmLBRqkF2qgLr9q2GlsL2xPqXni7RCVHypv6o8ynQGBCteP0q2I7IKjWeZeOz3igtAtJghGk4jkjGKcvFKGkmY98cr+s3j+jrYe/amoZbLxiEA5FDLXfQpomVfK2yY7d/S9X6fTYfbs2UhLS7Nuy8vLwxNPPIHx48fjlVdewYkTJ5CUlISIiAgMGjTI/Cb54kVs2bIFLVu2tO7XtKm5x9kHH3yAXbt2Ye3atTAYDJgzZw7CwsIwefJkAEBSUhK0Wi22bduG1NRUvPjii2jVqhW6devWsItTD4IgQCqYh+8ZmJQiIh/mimcHcqyMjHSkpOcDUOLUpSy0iwpCuBvjKcnPxaeXyhDXSsCViyehDG4OIACFOkBr4NyMRJ7MKU+rMpkMAwcOxMCBA2EwGPDbb7/hhx9+wIQJExAVFYV77rkHiYmJiImJqfc5mjRpgs2bN2PZsmUYO3YsQkND8dRTT+HBBx+EIAjYsGEDXnrpJXz22Wdo3749Nm7cCH9/c8Y8ISEBS5YswZtvvoni4mL069cPS5cudVT1iRrMYDTh+zNqqLs8gJ1HbVeFDJRLEd5Egbzjv+Kh+0ZD5SeFSRRRWFGJiwUVOJpVYl4tLqYHPvszG/GxTZAQGwyJi5bqPasuR3HL2wEAvW8KQXxsEADATwr0ax2KsAA5fjmXjx2p2Wiq8sPUfi1dEld9XC7SAPh7RTxXianqlZVVrHHpeRvKkff+s2fPYvbs2RCv6c61f/9+hIeH49lnnwUAtGzZEocOHcLXX3+NQYMG4fLly6isrES3bt2gUFSfg+ujjz7C008/jV69egEAnnvuObzxxhuYPHky0tPT8eOPP+L7779HXFwc2rVrh5SUFPznP/9xS1IKME92bjSKTEoRkU9zxbMDOZ5JpgSMQFCgv7tDAQAEhUUhtFkctKVq6EwiAuRSlOuNSCvQo4O7gyOiWjm1C4Ver8cvv/yCb7/9Fj/99BOaNm2KIUOG4OLFixg5ciRmz56Nf/7zn/U+ftu2bfHBBx/UWNatWzd88cUXte6bmJiIxMTEep+byBlEUcS+U3lY+8sFXCnVAYHNIBGA5iEqtAhVoXmICv5y84TXy15/F99c+qXaMYIgQBHSAnlNOwJRN+PI5RJkFetwR7tw+Mv/nuTxzJlTGD1ubK2xhIWG4P0N79kd/6s/nAUkMjQPUaJbTPX5ijpEBeLEjztQ0GIw3juYjsgmCtzXLdqu87iCSRSRWWzuqWTpueQqluF7lvN7G0fc+w8fPow+ffpg1qxZ6N69u3X7gAED0LFjx2qvLyszz/119uxZREdH15iQunLlCrKzs3HLLbdYt/Xs2ROZmZnIzc1FamoqoqOjERcXZ1O+YcMGey+Bw8gkEuiNRialiKhRcPazAzmW1mj+Vy54Xk8kQQCigxQ4q67ASbUO97g7ICKqlVOSUvv378fevXvx008/wc/PD3fffTfWrVtn/WQaAD755BO89tprbFiIqpy+UobVP5xFapZ5tbdQfz9Unv4Fo++7Hyq/6iuGGEyoNgn61VZPHYXEZdvwy/kC5JTqsPvkFYzsFGVNTN1o/92vP2d3HX45X4DkjGLAZED/1qG1Ds0LVJ/EfQ9OxKaD6Vi5Pw0RgXL0bx1m9/mcKbtYB71RhFImQUSg3KXnjq1KgnlbUsqR9/4JEybUuD0uLs4maZSfn4/du3dj5syZAIBz587Bz88PU6dOxfHjx9GqVSvMnTsX3bp1Q15eHgBYF70AgPBw82CDnJwc5OXl2ZQBQFhYGK5cuWLHVQDsHZFqfX0N+8mkAlCJOs8TV98YPJGlDr5QF0fhNamO16S6hl4Td1xLPjt4J09OSgFAsyAlzqor8Je69oViiMj9nJKUev755zF06FC89tpr6NevX41LcHbp0gWPPfaYM05P5FVEUcSnRzLx5v8uwGgyJ0Ee63MTJvSMxYMT1kDl90C9j90mPABhAXLsOZmLIo0Be07m4t6uUZBLHT8/kkkUsfaXCwCAwOwUBCpaX/f1T/ZrYU6WnbiCpK//wvoH49G5Wd1XgtMbTMgo0iC/vBJ6owmBCimig5RwVH/4HqbIAAEAAElEQVSS8wUVAICWof6QuPgdumVS9RKtASXaSgQp/Vx6/vpy9b1fq9Vi5syZCA8Px4MPPggAuHDhAoqLizFu3Dg8/fTT+OyzzzBx4kTs2bMHWq05ySeX/51ktPxfr9dDo9HYlFnKr15Qoy7Cwuxb0TAkxDwJq1Ihh7+/bQ8vv6q5zGRyWbWyaymV5tibNg1AeLjjVlV0N3uvZ2PAa1Idr0l13nRN+OzgfbQGEyyfl3hqUio6yNxunsnXo9Jogp8T3v8SUcM5JSn122+/oaysDCUlJdZGZc+ePbjlllsQEREBwLwCnr2r3RH5mhJtJZbsPYOfz5lXLxl8czhmD26DqCbXf/i0R4jKD6M6R+Lr47ko1FTip7R83Nne8VNR/nq+ABfyKxAglyIw6w8A1x8eKwgCXrzzZuSX6XHwUiFm7TyOt8Z2RfvIwOvuZ5QH4rcLBTh1pQzVO48Uw6/LgziaVYJuMUH1rotJFHEx35yUahXm2vmkAEDlJ0VYgBz55XpkFmu9Jinlynt/eXk5pk2bhosXL+I///kPVCrzz2np0qXQarUIDDT/Hi1atAhHjhzBV199hdtuuw2AOQFlGd5nSTipVCooFIpqCSi9Xg+l0r7hm/n5pXatbFhUVA4A0Or0qKiw/TTX8lhWXqFDhbL6Q9rVtFpz7IWF5VCrS+segIcSBPNDtb3X05fxmlTHa1JdQ6+JZX9X4rOD9ynWmhNRUokAqcM+EnSsYKUMcgmgN4k4daUMnaICkJGRbi1v3vymGhOgRORaTkkXHzlyBHfeeSe+/vpr67aPPvoII0aMQHJysjNOSeR1soq1eOw/Kfj5XD78pAKev6MtVt7T0aEJKYsgpR/ubB8OqQBcKtTgWLbjH1g/Sb4MALivWzQkxrr1LJFJJXjl3o7oEBmIQk0lpm5LxS9VCbprZZdo8cr+NFzpPhEncswJqWClDJ2iApEQG4TWYf6QCgIqA6PwxNYUbDp4qdok2XWVXaKD1mCCQiZBTJBr55OysPSWyvSiFfhcde8vKyvD5MmTkZaWhg8//NBmlT2ZTGZNSAHm5Gfr1q1x5coVREVFAYB1GN/V/4+IiEBUVBTUarXNudRqtfWBqK5E0f4v847VjyWtWqDA3jml6hODJ375Ul14TXhNvOmauBqfHbxPkc48dk/lJ/HY4bOCICCs6m1cSmYxMjLSsX7fH9h6JBPr9/1hk6AiIvdxSlJq5cqVePLJJ/H0009bt23duhWPP/44li9f7oxTEnmVSwUVeHxrCtILNWjWRIH3x3fH2O4xtc7B5AiRTRTo26opAOCP9CJIQhw3ufipK6VIziiGVAAeTLBvZZwAuQxvj+uGhLhglOuNePbLE3juyxP4/kweUjOLsefkFcz970nct+l37EjNBiRSRAcpMKJTJMZ1j0a/1qHodVMI7mgXjgk9Y6DKOwWTCKz/9RKWf5cGYz0miD6Ta540u1WoymWrFl7LmpTyonmlXHHvN5lMmDFjBi5fvoyPP/4YN998s035ww8/jLVr19q8/vTp02jdujWioqIQExNj84CTnJyMmJgYREZGonv37sjMzEROTo5N+dUTrbuarJ5JKSIib8JnB+9TXDWhlH8N8556kjCFuR09WjVna0hENEKbxSEkwvMW2SFqrJySlLp48SKGDRtWbfvw4cNx9uxZZ5ySyGtkFWsxbftR5JXp0TrMH5vGd0eHKNd0k+8QGYjmIUoYRcD/tn+gvj2JrvVJciYAYGj7CDSrR8+iJkoZ3rq/K/7ZKw4SAfj5XD7mff0XHt+aipe+OY0f09QwmkTcclMIwk7swKjOUYgNVlZL4in9pGh67lvMG9oWEgH48lgOln93BiY76mmUqXC+auieq34uNfk7KaVxWwz2csW9//PPP8ehQ4fw8ssvIygoCHl5ecjLy0NRUREAYMiQIdi8eTO+//57nD9/HkuWLEFpaSnuu+8+AMD48ePx6quv4tChQzh06BDWrFmDRx55BADQvHlz9O/fH3PmzMGpU6ewfft27Nq1C//4xz8cEnt9MClFRI0Bnx28T7HOPHyvpsV4PEl41dvS1MwSh73vJSLHcsqcUq1bt8Y333yDqVOn2mz/4YcfcNNNNznjlEReoUxnwDM7jyO3TI+WoSq880A3hPq7bmU3QRAwoHUoPkvJBiJb46y6AjdHBDTomFdKdfjutHkI1D96xd3g1bVTyCT418DWGNk5Cl8fz0FyRjFKtZWICFSgS3QQRnaOxM0RgRj9WeYNj3V/fAyClH54cfdf+O/xK1DIpJgzpE2deqJVRHaCSQQiAuUuX3XvanEh5jmSvGn4nivu/fv27YPJZKp2jt69e+Pjjz/Go48+Cp1Oh5dffhlqtRrx8fH44IMPrEP6Jk+ejPz8fMyYMQNSqRRjx47Fo48+aj3OqlWrMH/+fDzwwAOIiIjA8uXL0a1bN4fEXh/W4Xt2rr5HRORN+Ozgff4evicFKt0czHWEKAA/CVCoqUR2mcHd4RBRDZySlHrmmWcwbdo0/Prrr+jcuTMA4PTp0/jjjz/w1ltvOeOURB7PaBLxwq6/cKGgApGBcqwb69qElEWAQoaEuGD8nl6EQ5cK0SJU1aDV+D77MxNGk4geccHo6ICeRW3DAzBrUJsGH+fO9hGoNJqw6JvT2J6SBYVMgqdvb3XdxJSm0ojyZvEAgE5R159w3dm8cfies+79p0+ftv5/06ZN132tIAh48skn8eSTT9ZYLpVKkZSUhKSkpBrLw8LCsH79+nrH6miyqr/N+gxDJSLyFq54dtDr9VixYgV27doFPz8/jB07FrNmzYIgCDh58iReeuklnDlzBm3btsXixYvRpUsX6767du3Cv//9b+Tl5aF///5YunQpQkNDHRKXt7JMdK7y8+wV7aSCgLahcvyl1uFUvu7GOxCRyznlLnL77bfjiy++QKdOnXD+/Hmkp6ejQ4cO2L17NwYOHOiMUxJ5vA8PZ+DAxUIoZBKsGdMZkU6Y0LyuukY3gbEkF5pKE/68XFzv41Tojdh5NBsAMKFn/XtJOcuITlFIutM859CWPy5j42+Xrvv6LX9chkkeiECFFK3DG9aDrKFiQ8xJqZwSLQxGz1xq+Vq89zseh+8RUWPgivbj5Zdfxm+//YZNmzZhzZo1+Oyzz7Bt2zZUVFRgypQp6NWrF3bu3ImEhARMnToVFRXmofxHjx7F/PnzMWPGDGzbtg0lJSW1frDRmBRVzSmlknv28D0AaB9m/hD4VH7dFuIhItdySk8pALj55psxb948Zx2eyCucOXMKo8eNhT6wGdSdxwKCBKpTe/H8jH8DAMJCQ/D+hvdcHpdUIkBz+HMEDp2G49mlaB8ZiBCVn93H2XUiB2U6I5qHKDGgTd0/MTz110ncO3ZsreUNuS6Wa361oGbxKGk5EO8dTMfXX3+JXa88U22/zGINPv49AwDQ+6YQazLAXcIC5FDIJNAZTMgp9Z5P9njvd6y/k1LekZgkIqovZ7YfRUVF2LFjBz744APrkOxJkyYhNTUVMpkMCoUCc+fOhSAImD9/Pv73v/9h7969SExMxJYtWzB8+HCMGTMGgHmY9+DBg5GRkYHmzZs7JV5vYDN8z8N1CFMAKMUptQ632begLhG5gFOSUiUlJXj//fdx7NgxGAyGapPKffTRR844LZHHMZiAu/+1GjtTswGtAW3D/TG47+PW8t2vP+e+2C4fR/MQJTKKtDh0qQh3d7CvlTaJIrYeMc/v9FCPOEjsWDmw0ihi5KxXay1vyHUxmFDjsVMyS/B7ehGuRPTA+wfT8Wif5taYy3QGzPriBDSVJviVZqF1mPvfZEoEATFBSlwoqPCaIXy89zsee0oRUWPg7PYjOTkZgYGB6N27t3XblClTAAALFixAz549rcP7BUFAjx49kJKSgsTERKSmpuKJJ56w7hcdHY2YmBikpqY26qTU1cP3PH1JlnZVPaWyywzQhbr3Q0ciqs4pSam5c+fi2LFjuOeee6yTyxI1Vn9eLkax1gB/Pylua+VZ8w/c2rIpLqdmI71Qg8xirXUeo7r45VwBMoq0aKKQYVTnKCdG6RjdY4NgNJlw5HIJ3vn1In69UIDRXZvBaBLx4eEMZBZrEREohyT5Gwh33VrjMa7uhSXzk8JQabQtP5eGkQ6MOTbEu5JSvPc7npRJKSJqBJzdfmRkZCA2NhZffvkl1q9fj8rKSiQmJuKpp55CXl4e2rZta/P6sLAwpKWlAQByc3MRGRlZrTwnJ8fhcXqT4qt6Snl6UqqJXIrWYf44n18BtRaIdndARGTDKUmp3377DVu2bHHrikVEnkASFImjWSUAgH6tm0Ih86zJIENUfugUFYgTOWU4eLEQ93VrVuceT58euQwAuK9bM/h7wXwCANAjLhjn/vcF9O3vxNGsEuvPBgAiA+V4bUwXzN1fXuv+V/fC8vdXoKLCdljdyamjHBqvdbJzL1mBj/d+x7P0lOJE50Tky5zdflRUVODSpUvYunUrVqxYgby8PCxcuBAqlQoajQZyue3CM3K5HHq9ef4hrVZ73XJ72NGp3G0sMV4vVm2lERqDuV3y95OiwAVx1VVN8QsCEB8bhPP5FcjXiTbbPe1nUpfr78kYv3s5O35nHdcpSamoqChIJJ718E3kDqpb7odJBJqHKNEy1N/d4dSoR1ww0vLKUVBRibS8crSPvPEnlKdzy5CcUQypAIzrHuOCKB1DEAQE5J7AxyuS8N9jOTh0qQgqPwm6xgTh4VviECB32jR79RIbogJgnu/KG/De73gyaVVPKSOTUkTku5zdfshkMpSVlWHNmjWIjY0FAGRlZeHTTz9FixYtqiWY9Ho9lErzB0MKhaLGcpVKZXccYWENX6XYVa4Xa0aBeRJ4iQAEN1FCrfSDROEHf38FlG7+v0plXkhIUbVdo5IjNDQQAzrI8cXRHBTqBZvt4eGe+TPxpt+VmjB+9/K2+J02fG/RokV4+umn0aJFC/j52U6gHBPjPQ+xRPWVWaSFX/OuEATzMDlPpfSTIiEuGIcuFeH39CK0CvOHXHr9N4bvH0wHANzRLgLNguo+5M9TRAcpMbVfS0zt5+5Irs/bekrx3u94sqqHNA7fIyJf5uz2IyIiAgqFwpqQAoBWrVohOzsbvXv3hlqttnm9Wq22DtmLioqqsTwiwv4Zs/PzSyF6+O1cEMwPtDXFajQakZGRjjP55p7iSgmg0eih1VZCIlaiokLn9v9rNObYdDrz9vJyDY4ePQVV02YAgHyNiKJSDTQaPQoKyhAUVOrS63sj17v+3oDxu5ez47cc39GckpSaOXMmgL8nELRMHCiKIgRBwF9//eWM0xJ5DFEU8Xt6EQCgU1T9VrZzpc7NmuCvnDKU6AxIzihG3+sk0U5kl+CHNDUEAI/depPrgmyErEmpYi284fMO3vsdjxOdE1Fj4Oz2Iz4+HjqdDhcuXECrVq0AAOfPn0dsbCzi4+Px7rvvWs8liiKOHDmCJ5980rpvcnIyEhMTAQDZ2dnIzs5GfHy83XGIIrzmQbemWNPT07F+3x+o8DcneGSCsYY93csSs+XfkvxcfHqpDHGtBChEPXSCHFdKdAiAZ/88PDm2umD87uVt8TslKfX9998747BEXuNSoQZ55XqIlTp0v+pTOU8llQi4rVVT7D2Vh+PZpWgdVvNQQ5Mo4o3/XQAAjOgchbbhAa4Ms9GxJKVKdQYESBVujubGeO93PE50TkSNgbPbj9atW2PQoEFISkrCokWLkJeXh40bN+Kpp57CsGHDsGbNGixbtgwPPfQQtm7dCo1Gg+HDhwMAxo8fj4cffhjdu3dH165dsWzZMgwaNKjRrrwXEhENnRAC5BZALnhH2xQUFoXQZnEIyziNLAOQVazFzd7X0Z/IZzll8HZsbCxiY2NRUVGBkydPomnTpjCZTIiJibHpNkvki0RRRMpl8wTaur9+8ppJwJs3VeHmCHOS6cc0NYyy6q31Z39m4c/LxVDIJJh6WwtXh9joKP2kCA8wT65qUAa5OZob473f8f6e6Nzk5kiIiJzHFe3Hq6++iptuugnjx4/H888/j3/84x94+OGHERgYiA0bNlh7Q6WmpmLjxo3w9zd/QJeQkIAlS5Zg3bp1GD9+PIKDg7FixQqHxOStNFWrDysk3pGUsmgqNc8NllXiHdMiEDUWTukpVVxcjH/96184fPgwAGDfvn1YtmwZMjIysHHjRj6ckE/LKdUhr1wPqSBAd/J7AE+4O6Q6u7VFCHJKdCjVGaBrNwLleoN18u+Uy8V463/nAQBP394a0V44l5Q3ig1WQl2uh1ER4u5Qboj3fsfj8D0iagxc0X40adIEq1atqrGsW7du+OKLL2rdNzEx0Tp8jwCN3pyUkntpUkpdXgm90UuXVyPyQU7pKfXyyy9DpVLh4MGDUCjMQ06WL1+OZs2a4eWXX3bGKYk8xtEs84SJN0cGQNSWuTka+yj9pLirQzj8JAL0QXF47JMU/Pd4Dt4/mI4ZO45BbxTRr1UoxnWPdneojUZsiDn55w09pXjvdzwmpYioMWD74V0sPaW8ZfiehUJiQoDU3PM4j52liDyGU5JSv/zyC5599lkEBf39EBUaGoqkpCT8/vvvzjglkUco0lQivVADAOga7Q1TU1cX6i/H8E6RkOjLcKGgAkv3ncE7v16EzmDC7W3C8Mo9Ha0TkJLzxQWbl5w2KoLdHMmN8d7veExKEVFjwPbDu2gqzYkdb+spBQBNZeaEWp7W+2In8lVOGb4HADqdrtq2goICyGROOyWR2x3LMs8l1aKpyuNX3LueqCYKRBz7FCOnL0VyehECFTIMvjkMIzs3sz4kk2vEBHtPTymA935Hk0nNnx2JImAyiZDw74+IfBTbD+9h7Skl8b75DkP9DLis80Oext2REJGFU3pKjRo1CsuWLUNaWhoEQUBFRQUOHjyIBQsWYMSIEc44JZHbVeiNSMsrBwB0i/GOBML1SCs1eKpfS7w3vjv+ndgFo7tGMyHlBpaklDf0lOK93/GkV/3NsbcUEfkqth/epcJLJzoHgKZ+5thLKoFirdHN0RAR4KSk1Ny5cxEfH4/ExERUVFRg9OjRmDx5Mvr27Yu5c+c645REbncqtwxGEYgMlCOqidzd4ZCPsCal5IEwiZ795o/3fseTXpUHZlKKiHwV2w/vYTSJqDSa2yNvm1MKAOQSINTfPJrhhLp67zwicj2n9IeVy+WYN28ennnmGWRkZMBoNKJ58+YICAhwxumI3M4kijh9xTypeedmTTjnEjlMeIAcMokAA6So0BsRqPDcYQy89zueIAjmn79JZFKKiHwW2w/vYelcJECEzEvf7sYEK1FQUYljuZztnMgTOOXppqYJCU+ePGn9/y233OKM0xK5TWaxFmV6IxRSCVqG+bs7HPIhUomA6CAFMoq0KNUZPDopxXu/c/ydlPK+uTuIiOqC7Yf30FU1RXLBBG/9DDY2WInj2aX4M0cLURT5YTKRmznl6ebhhx+ucbtcLkdERAS+//57Z5yWyG0svaTaRvhz3iVyuOggpTkppTUg2oOnK+O93zks9xQje0oRkY9i++E9LD2l5IL3flASE6SARADyNUacy69A23D2yCNyJ6ckpU6dOmXzvdFoRHp6OpYuXYp77rnHGackcpsKvREXC81LeHSIDLRr3zNnTmH0uLG1l59Lw8gGReedrnddGuM1scwrVarz7Ak5ee93Dstk5xy+R0S+iu2H99D5QFJKJpUgQglc0QC/nS9gUorIzVwyDkQqlaJVq1aYN28epkyZgvvuu88VpyVyibS8cohVE5yHBtg3wbnBBIyc9Wqt5SenjmpoeF7petelMV6Tv5NSBjdHYh/e+x1DVjXbucHIpBQRNQ5sPzyXLySlACDaX8AVjYhfLxTgkd7N3R0OUaPmlNX3apOfn4+SkhJXnpLIqUSYV90DgPZ29pIiqquYoKqklNa7klIWvPc3jIw9pYiokWL74Xm01pX3vDspFaUy/5uaWYwyL/vQj8jXOKWnVFJSUrVt5eXl+O233zBs2DBnnJLILfRNYlCiNcBPIqBNOCc4J+ew9JTy9DdNvPc7h0xi/vyIc0oRka9i++E9LHNKKQQjXNy/waEC/QTENpEis9SAgxcLMbR9hLtDImq0XLaMU0hICJ5//nmMHj3aVackcjpNeHsAQKswf/hJvbdhJs8WXZWUKtcbYTKJkHjRZPq89zcce0oRUWPE9sMz2Q7f8+73vgnNlMgsLcOvFwqYlCJyI6ckpVasWOGMwxJ5lEqjCZqwmwEAbSM4QSI5T5i/H2AyQJTIUKY3Ikjpss8T7MJ7v3NwonMi8nVsP7yHL6y+Z9GjmQq70srw24UCmEQREsF7PvQj8iVOebJZu3ZtnV87Y8YMZ4RA5HS/XSiAKFPC30+K6CCFu8MhHyYIAmS6EhhUoSjVGTw2KeXoe79er0diYiIWLFiAPn36AAAyMjKwYMECpKSkICYmBi+88AL69+9v3ee3337D8uXLkZGRgfj4eCxbtgzNm/89genmzZuxadMmlJWVYfjw4ViwYAFUKvPEEjqdDosXL8a3334LpVKJSZMmYdKkSXWuk7P83VPK+x8AiIhqwmcH72HtKSXx/japQ7gC/n5SFFRU4nRuGTpGNbEpNxqNyMhIt37fvPlNkEqlrg6TyOc55cnm0qVL2Lt3L0JCQtClSxfI5XKcOnUK6enp6N69O2Qy82kFZqPJi+39KxcA0Cbcn5+skNNJtVVJKa0BCHZ3NDVz5L1fp9Nh9uzZSEtLs24TRRHTp09Hu3btsGPHDuzfvx8zZszAnj17EBMTg6ysLEyfPh0zZ87EgAEDsG7dOkybNg3//e9/IQgC9u3bh7Vr12L16tUICwtDUlISVq9ejYULFwIAVq1ahePHj+PDDz9EVlYWnn/+ecTExLh9PhNrUoqr7xGRj+Kzg3eoNIqorMpF+UJPKT+JgN4tQvDT2Xz872x+taRURkY61u/7AyER0SjKy8aTdwMtW7ZyU7REvsspSSm5XI577rkHixcvhp+fn3X7ypUrUVxcjOXLlzvjtEQuU6Yz4JfzBQCAtuEcukfOJ9WZVx8q9eDJzh117z979ixmz54NUbRNwhw8eBAZGRnYunUr/P390aZNGxw4cAA7duzAzJkzsX37dnTp0sXau2nFihXo168fDh8+jD59+uCjjz7CxIkTMXjwYADA4sWLMXnyZMyZMweiKGL79u1499130blzZ3Tu3BlpaWn45JNPPCYpxYnOichX8dnBOxRXdZOSCIAMvtEmDWobjp/O5uOns/mY2q9ltfKQiGiENotzfWBEjYhTZqfbs2cPHn/8cZtGBQAeeOAB7Nmzx2Hn0ev1WLx4MW655RbcdttteO2116wPMSdPnsS4ceMQHx+P+++/H8ePH7fZd9euXRg6dCji4+Mxffp0FBQUOCwu8n0/pqmhM5gg0xQgLMDvxjsQNZDMC5JSjrr3W5JI27Zts9mempqKTp06wd//75Uue/bsiZSUFGt5r169rGUqlQqdO3dGSkoKjEYjjh07ZlPevXt3VFZW4tSpUzh16hQMBgMSEhJsjp2amgqTm4fNyaScU4qIfJurnh2oYYp15vZQ5SeFt3daM5mMyMy8jJv8SiEVgLPqcqQXatwdFlGj5JSkVFRUFH755Zdq2/ft22czt0dDvfzyy/jtt9+wadMmrFmzBp999hm2bduGiooKTJkyBb169cLOnTuRkJCAqVOnoqKiAgBw9OhRzJ8/HzNmzMC2bdtQUlJS41K0RLWxDN1TqU+zKzm5hKWnVJkHJ6Ucde+fMGECXnjhBetcTxZ5eXmIjIy02RYWFoacnJwblpeUlECn09mUy2QyhISEICcnB3l5eWjatCnkcrm1PDw8HDqdDkVFRXWOHQAEwf4v8441H68+E53XJwZP/PKluvCa8Jp40zVxNVc9O1DDFFXNcq7y8+5V9wCgJD8Xnx48i93HcxAs0QEwf+hMRK7nlOF7s2fPxjPPPIOffvoJHTp0AAAcO3YMJ0+exPr16x1yjqKiIuzYsQMffPABunXrBgCYNGkSUlNTIZPJoFAoMHfuXAiCgPnz5+N///sf9u7di8TERGzZsgXDhw/HmDFjAJjnERk8eDAyMjLY8NENqct0+COjCACgUp9xbzDUaFiH71mWvfFAzr73azQam6QRYB7yodfrb1iu1Wqt39dULopijWUArMevq7CwJjd+0VVCQsxDgJUKOfz9qy+a4K+siksQaiy3UFa9rmnTAISH2xeDJ7P3ejYGvCbV8ZpU503XxBXPDtRwfyelpIDnfkZWZ0FhUQhtFocWJRkoyBfxY5oaE3vzWZDI1ZySlLrzzjuxc+dO7Ny5E+fOnYNSqUTv3r3x+uuvIyIiwiHnSE5ORmBgIHr37m3dNmXKFADAggUL0LNnT1h6sAiCgB49eiAlJQWJiYlITU3FE088Yd0vOjoaMTExSE1NZVKKbujb03kwiUDX6CbIP1js7nCokbAM36uoNMJgNEEm9bxPKZ1971coFNV6Len1eiiVSmv5tQkkvV6PoKAgKBQK6/fXlqtUKhiNxhrLAFiPX1f5+aUQ7RhpV1RUDgDQ6vSoqNBVKzcZzA8B2kpjjeUWWq053sLCcqjVpXZE7JkEwfxQbe/19GW8JtXxmlTX0Gti2d+VXPHsQA139fA9X0hKWcT4Ayn5wImcUuSUaNEsyL52n4gaxmnrirdv3x5JSUkoLi5GYGAgJBIJHDnMKSMjA7Gxsfjyyy+xfv16VFZWIjExEU899RTy8vLQtm1bm9eHhYVZV3HKzc297hCQurK3Old3p/ZW3l4HR8RvGbo3rGMkPvnCAUHZyZXX3hnnuvpn4I4HiDNnTmH0uLG1lqedS6u1zMKZdajtmgsGLfwkAipNIsr0RoSoqiel6vrzcubfsTPv/VFRUTh79qzNNrVabb2fR0VFQa1WVyvv2LEjQkJCoFAooFar0aZNGwCAwWBAUVERIiIiIIoiCgsLYTAYrKs85eXlQalUIigoyK44RdG+3wvra2vZpz4TnfvSw7m917Mx4DWpjtekOm+7Js5+dqCGs+kp5UPTLyllAjqEy/GXWoefzubjoR6x7g6JqFFxSlJKFEWsX78emzdvRmlpKfbt24c33ngD/v7+ePHFF6sNkaiPiooKXLp0CVu3bsWKFSuQl5eHhQsXQqVS3XCIh1arvW55XdX3UyRv6k5dG2+vQ33jP5dXhr+ulEEqEfDgba2wzU963eE0ggCnlTvz2AAg85PWewiQ7AbXBQBUKvfU2ygC4+a/VWv5kkfurPO5r62DM6+5n58UQf5+yC/TQ4/qw7jq8/MKDXXs37Gz7/3x8fHYuHEjtFqttfdScnIyevbsaS1PTk62vl6j0eDkyZOYMWMGJBIJunbtiuTkZPTp0wcAkJKSAplMZh0qIpPJkJKSYp0MPTk5GV27doVE4t5eaZY5pSqN3r/8NhFRTVzx7EANZ1l9TyX3vN7aDdUnRoW/1Dr8mKZmUorIxZySlFq3bh12796NV155BbNmzQIA3HfffVi4cCFWrVqFF198scHnkMlkKCsrw5o1axAba75xZGVl4dNPP0WLFi1qHIZxoyEe106qeyP2dov2hS7m3l6Hhsa/9beLAIA+LUIArR6GGwynEUU4vFwQzMkQZxz7aoZKY72HAF3vulg+9NRodLX+DK4Xm7PrXZdzW34G19bBmdfcUGlEoJ8U+QDUxRpEqmR13vdalr+DgoJShyamnH3v7927N6Kjo5GUlIRp06bhxx9/xNGjR7FixQoAwP33349NmzZh48aNGDx4MNatW4e4uDhrEmrChAlYuHAh2rVrh8jISCxatAgPPPCA9d4/ZswYLFq0CMuXL0dubi7ef/9967HdybL6nj09pYiIvIkrnh2o4WyG7/mY3jEqbD5ahJTMYhRU6BHqz0Qokas4JSn1xRdf4JVXXsEtt9xi7Xbbr18/rFy5Ev/6178c0rBERERAoVBYE1IA0KpVK2RnZ6N37941DuG40RAPe8es17dbtLd1p66Jt9ehvvHvP23+vbmrfaTb6u/K89Z2rklTH0d+QVGt+505l4aRNzimt//+XP2vM45dk0CF+U1gaS0r8Nkbj6Pjd/a9XyqV4u2338b8+fORmJiIFi1aYN26dYiJiQEAxMXF4a233sLy5cuxbt06JCQkYN26ddZYRo4ciczMTCxcuBB6vR533XUX5syZYz1+UlISFi1ahIkTJyIwMBAzZ87EXXfd1aCYHcHP0lOKSSki8lGueHaghrt6+F7tH7F5p4gAGTo1a4KTOaXYf1qNBxJi3B0SUaPhlKRUfn5+tTmbACAoKAgVFRUOOUd8fDx0Oh0uXLiAVq1aAQDOnz+P2NhYxMfH491334UoihAEAaIo4siRI3jyySet+yYnJyMxMREAkJ2djezsbMTHxzskNvJN59TluFBQAT+pgNvbhLk7HLfKLyjCyFmv1lp+cuooF0bTeDRRmm/ZpTrPXIHPGff+06dP23zfokULbNmypdbXDxw4EAMHDqy1fMqUKdZFMa6lUqmwcuVKrFy5sl6xOousavgge0oRka9yxbMDNVyR1tJTSuJTSSmTyYjMzMvoHRmMkznANyevMClF5EJOGRB86623YtOmTTbbysrK8Nprr1mHUTRU69atMWjQICQlJeHUqVP45ZdfsHHjRowfPx7Dhg1DSUkJli1bhrNnz2LZsmXQaDQYPnw4AGD8+PH46quvsH37dpw6dQpz587FoEGDuPIeXdf+03kAgFtbNLUmB4hcqYnC/HtXpvXMJW9cce9vjCzD9zinFBH5KrYfnq/SaEJ5pbkd8vex4Xsl+bn49OBZ5BUWAxBxPKcUl4t8aCZ3Ig/nlKTUokWLcPLkSfTr1w86nQ7Tpk3DwIEDkZmZ6dDut6+++ipuuukmjB8/Hs8//zz+8Y9/4OGHH0ZgYCA2bNhg7Q2VmpqKjRs3wt/fHwCQkJCAJUuWYN26dRg/fjyCg4M9Yt4Q8lyiKGL/GXNSamh7Lk1M7mFJStU2fM/dXHXvb2wsq+8Z2FOKiHwU2w/PV1BRCQAQAChkvjfReVBYFGLimiNSZW5zv6labZuInM8p3T2CgoLw+eef48CBAzh//jwMBgNatWqF/v37O3QVoyZNmmDVqlU1lnXr1g1ffPFFrfsmJiZah+8R3cg5dQUuFmgg59A9ciNLUkprMKHSaIKf1LPeFLrq3t/YWJJSJhEwiSIkXCKdiHwM2w/PV1BhXiRKIYV13i9fdFOAgFyNiL1/5WJoM77nJ3IFpySlRo0ahbVr16Jv377o27evM05B5FLfVfWS6tsyFIEKDt0j95DLJFBIJdAZTSjVGTxuZRje+51DdlXy0WAUIZf57sMAETVObD88X0G5uaeU0rdG7lUTGwAcKxSQXqjBuUL9jXcgogZzykcPEokElZWVzjg0kcuJomidT+qO9uFujoYauyZKywp8njfZOe/9ziG9KgfFIXxE5IvYfni+/Kt6SvkymURArxgVAOB/6Zxkn8gVnNLlY9CgQXjssccwePBgxMbGQi63/TR/xowZzjgtkVOcVZcjvdA8dG9Aa3bjJfcKVMigLq9EqQdOds57v3MIggA/iYBKkwiDyQTAx58IiKjRYfvh+QrKzUkpX+8pBQC3N/fHrxkV+PVyBe6I5odBRM7mlKTU6dOn0blzZ+Tm5iI313aSOF8eg0y+ydJL6rZWHLpH7ufJk53z3u88Mqk5KVVp5JtjIvI9bD88n2Wic1/vKQUA3aKUCPX3Q0FFJXI0AjhOgsi5HPaE/Y9//APvvPMOgoKC8PHHHwMAtFotlEqlo05B5HLmVffUAICh7bjqHrmfJSlV5iFJKd77XYMr8BGRr2H74V3yyy3D93w/SSiTCBjeMQqfJF/GpVIRXdwdEJGPc9icUsnJydXGgt92223IyMhw1CmIXO5MnnnonkImQf82oe4OhwhNlFU9pTxk+B7v/a4hq1p9ikkpIvIVbD+8i2X1vcYwfA8A7ukSBQDIrgA0lZ43jyeRL3HqGquiyDfP5N2uHroXIOfQPXK/QIVlonPPSErVhPd+x5NVfTJtMJrcHAkRkfOw/fBc+RWNY/U9izbhAWjbVA4RQFpeubvDIfJpTk1KEXkz89A9c1JqaDuOJifPYBm+pzeK0BmYoGgsOHyPiIjcqaC8cay+d7UhLQMAAGdyy5kwJXIiJqWIanEmtxyXi7TmoXtcdY88hJ9UApWf+dbtyb2lyLGYlCIiIncxGE0orpo2oLH0lAKA25r7QyIAhZpKFOrdHQ2R73LoeKRvvvkGgYGB1u9NJhO+++47hIbazsUzZswYR56WyCm+q+ol1b91KPzljagFJo8XqJBBU6lHqdaA8AD5jXdwMt77nU8mNSciufoeEfkSth/eoVBjHronEQB5I+rSEOAnQaw/kFEOXCxl+0vkLA5LSsXExOD999+32RYWFoYtW7bYbBMEgQ0LeTxRFK3zSXHVPfI0TRQy5JXpPaKnFO/9ruHHnlJE5GPYfniPgnJzUipIIYHg44vvmUxGZGZeBgBkZl7GTQHmpNTlckDHeR2JnMJhSakffvjBUYcicrszueXILDYP3evXmqvukWexzCtV5gFJKd77XcM6fI9viInIR7D98B7qqpX3ghVSAL69El1Jfi4+vVSGuFYC0k8fQ3CzlghUBKNMZ8ThTA3at3F3hES+pxF1wCSqux/PqgEAfVs2hcqPQ/fIszRRev4KfORY1tX32FOKiIhczDLJeUgjmeU8KCwKoc3iEBQaAUEA2kWYJzz/8SJX4SNyBq5xT43epKmPI7+gyGZbbrcJgH84UvZ+ikl7cvD+hvfcExxRDQKrekqVan3700r6Gyc6JyIid8m3JKVUjbM/Q7uIQBy5XILjeTpkFWsRE6x0d0hEPoVJKWr08guKMHLWq9bvizWV+CwlG4IA3Dt+Eva/NdeN0RFVZxm+V6ozQBRFCL4+wQNBJjE/CDApRURErqauSko1VUqBRrgKXROlDBFKIE8L7D5xBU/c1sLdIRH5lMaZ7ia6josFGgBATJASChn/RMjzWJJSBpMIrYFzDDUG1uF7nFOKiIhcLL9qovPGMnyvJi2bmNvhr0/kwCTyAyIiR+ITN9E1LhZUAABahqrcHAlRzaQSAf5Vc515wmTn5HxcfY+IiNwlv1wHAAhRNt6kVKw/4O8nILtEh+SMIneHQ+RTmJQiukq53oDcMnO/5BZMSpEHa6I095Yq0TIp1RhIq5JSlUYmpYiIGmrKlCmYN2+e9fuTJ09i3LhxiI+Px/3334/jx4/bvH7Xrl0YOnQo4uPjMX36dBQUFLg6ZLfKrzD3lGqqbLyPjlKJgH5x/gCA/x6/4uZoiHxL472zENXgUtXQvchAOQLknHKNPFcThaWnFCc7bwz8pJxTiojIEXbv3o2ff/7Z+n1FRQWmTJmCXr16YefOnUhISMDUqVNRUWHuOX/06FHMnz8fM2bMwLZt21BSUoKkpCR3he8W1onOG3FPKQAY3LJqFb40NXuqEzkQk1JEV7HMJ9Uy1N/NkRBd39WTnZPv+3v1Pc4pRURUX0VFRVi1ahW6du1q3bZnzx4oFArMnTsXbdq0wfz58xEQEIC9e/cCALZs2YLhw4djzJgx6NChA1atWoWff/4ZGRkZ7qqGS2kqjSjXmz8Aa+xJqbZN5Wgd5g+dwYRvT+W6Oxwin8GuIERVdAYTskq0ADifFLnHmTOnMHrc2JrLzqVh5FXfBzIp1ajIOKcUEVGDrVy5EqNHj0Zu7t8JhdTUVPTs2dO6kq0gCOjRowdSUlKQmJiI1NRUPPHEE9bXR0dHIyYmBqmpqWjevLnL6+Bqll5SSpkEKlnjXu1XEATc06UZ3vj5PP57/AoS42PcHRKRT2BSiqhKeqEGogg0VfkhWOXn7nCoETKYgJGzXq2x7OTUUTbfW+aUaozdx3fu3Fnj0AlBEHDq1Ck89dRT+OGHH2zK1q9fj8GDBwMANm/ejE2bNqGsrAzDhw/HggULoFKZE9E6nQ6LFy/Gt99+C6VSiUmTJmHSpEnOr9QN/L36HpNSRET1ceDAAfzxxx/4+uuvsWjRIuv2vLw8tG3b1ua1YWFhSEtLAwDk5uYiMjKyWnlOTo7dMQhekNOxxGj5N7/CnJQKC5BDIvH8Clwbv6OPPaJTJNb+cgEnckpxPr8cbcIDHH6Oq//1NozfvZwdv7OOy6QUURWuukfexDKnVKnWCLGRLU08YsQIDBgwwPq9wWDAxIkTMWjQIADAuXPnsHr1avTt29f6muDgYADAvn37sHbtWqxevRphYWFISkrC6tWrsXDhQgDAqlWrcPz4cXz44YfIysrC888/j5iYGAwbNsx1FayBTMI5pYiI6kun0+Gll17CwoULoVQqbco0Gg3kcrnNNrlcDr3enIzRarXXLbdHWFgTu/dxF0us+uwyAECzEBVCQwOhUsnh76+AUukHicLP4/6vUikAAAoHH1+jkiM0NBCtW4RhSIdIfHfyCvafK0CfDs2cev29FeN3L2+Ln0kpIgAGowkZRVVD98Js55OyZ0gVkasEyGUQABhFEZrKxjXPkFKptHmo2LBhA0RRxHPPPQe9Xo/Lly+ja9euiIiIqLbvRx99hIkTJ1p7TS1evBiTJ0/GnDlzIIoitm/fjnfffRedO3dG586dkZaWhk8++cQDklJ/D98TRdE6zISIiG5s7dq16NKli80HGhYKhaJagkmv11vbmdrKLT1s7ZGfXwpP/xxJEMwPtJZYL2QXAwCC5VIUFJRBo9GjokIHrbYSErHS4/6v0egAADqdY4+v0ehRUFCGoKBSDGsXju9OXsGO5MuY3CsWMqnjpmm+9vp7G8bvXs6O33J8R2NSighAZrEWRpOIQIUUYf62Q/fsGVJF5CpSiQB/uRTlemOjnleqqKgI7777Ll5++WXI5XKcOnUKgiDUOM+H0WjEsWPHMGPGDOu27t274//Zu/P4mO79j+OvyTKTTYRsRJTa1RIRRYur3Ja2dLmq+6324uptqf660Kpb2qpqi25ocanuqupWiy63um9og9CiYo9IZBPZM8nM+f0RmUojJCSzJO/n45EHc77nnPl8z8ycM+cz36WkpIRdu3ZhGAalpaXExsY6yuPi4li4cCF2ux0vL9fNDeLr/UcSymY3HN35RETkzNatW0dGRobj/F6eZPrss88YPnw4GRkZFdbPyMhwdNmLjIw8Zfmpfvg4E8PAY250y2MtH1MqNNDsEbGXx1jbsdrtNg4fPoxhQJTJoEmAL1kFJXy/L4uB7cJq98nwrPfKqSh+1/K0+DX7nghl40kBnNfEXy0QxGOUz8DXEMeVKrd8+XIiIiIcLZn27dtHUFAQkydPpn///owcOdIx9XdOTg7FxcUVxgbx8fEhJCSE1NRU0tPTadKkSYVuGmFhYRQXF5Odne3Uev2Z90njeJSoC5+ISI28+eabrFmzhtWrV7N69WoGDx7M4MGDWb16NTExMWzZssXRFd4wDDZv3kxMTAwAMTExxMfHO/aVkpJCSkqKo7y+yziRlAoLNJ9hzfotJzON5Rv28O7mZJZ8Hk//FmUt6T7dqVn4RM6VWkpJg2eAo+veeSEaT0o8R5DFG3Ib7gx85d3txo4d61i2b98+ioqK6N+/P+PGjePzzz/nrrvuYsWKFYSFlf2SWdXYIIZhnLIMqNHYITXNazvWP812XiYT3iYTNsOo1rhS9SG37umDjdYFHZPKdEwqO9djUh+PZYsWLSo8DgwsG5y6VatWhIaGMnfuXGbOnMlNN93Eu+++S2FhIVdccQUAN998M7fddhs9evSgW7duzJw5k0suuaRBzLwHkJlfAkBooC9gc20wLhYcGknTZtEAXNgygDWJuXy3L4sCq40As7eLoxPxXEpKSYNXGhBGvtWGj5eJ5o39zryBiJsIPjEDX25xw/ySuH37do4ePcqwYX+M7Hb33Xdz2223OQY279SpE7/99hvvvfce9913H1A5wVQ+NojNZjtlGVBpYNzTqWlf+5CQspsjP0vZ4LFV8fU2YSs18PH1OeV6fn5lCbQmTQIJC/OsAS5Px9MG63QGHZPKdEwq0zGpnqCgIBYtWsT06dN577336NixI4sXLyYgoGyM0djYWJ544gleeukljh8/Tr9+/ZgxY4aLo3aejJO670GRa4NxE3a7DUv+UZoF+pCaX8o3ielc0aVuBjwXaQiUlJIGryikNQBRjf0cgwmLeIKgE933cosaZkup7777jl69ejkSUABeXl4VHgO0adOGPXv2EBISgsViISMjg7Zt2wJlM/dlZ2cTHh6OYRgcO3aM0tJSfHzKjm16ejp+fn4EBwdXO66aDi6ZnZ0PQFFx2eCxVSk/P+UVFON/is73RUVlNw7HjuWTkZFb/QDclKcPNloXdEwq0zGp7FyPSV0NZOtOnn766QqPu3fvzgcffFDl+iNGjGDEiBF1HZZbyjy5+16hi4NxEzmZabx7MI+QkLakAh8lHFJSSuQcKCklDV5Rk/MBOK+JWkmJZzl5TKlAF8fiCtu2baNnz54Vlj388MOYTCZmzZrlWLZr1y46dOiAl5cX3bp1Iz4+nj59+gCwdetWfHx86NSpE1A2xtTWrVvp1asXAPHx8XTr1q1Gg5zXdHBJx7pn2KZsdh8bJbYz77w+3Zx72mCdzqBjUpmOSWU6JnKubHaDYwV/tJTKV1LKITg0kujoZuzKTmVLahG5RaU08tOttcjZ0EDn0qBlF5RQElT2y0ZLjSclHubkpFRDvO9ITEykXbt2FZYNHjzYMZjtwYMHmT9/PvHx8fz9738H4JZbbmHp0qWsX7+ebdu28dhjj3HDDTfg7++Pv78/1157LY899hjbtm1j/fr1vPrqq4waNcoV1aukfAa+EpvdxZGIiEhDkF1Ygs0oG/IwJy2Z5OTD2DXZhkPTADPBvmAz4Os9GWfeQEROSelcadB+PJAFJhNNA3wdXaFEPEWgxRsTZV+G7L4Nr61URkZGpW51Q4YMYfr06bzyyiscOXKE9u3bs2TJEqKjywYmHTZsGMnJyUybNg2r1cqQIUOYNGmSY/spU6bw2GOPcfvttxMUFMQ999zDkCFDnFqvqvh6lSeldEMgIiJ1r7zrno/JxsqtRzj0+3ZCmrcmzMVxuZPoQBM7sg3+93s6V3VVFz6Rs6G7cGnQftiXBcB5TdRKSjyPl8lEoMWbvGIbNkv9Hv/jVLZt23bK5ddffz3XX399lduNGzeOcePGnbLM39+fZ555hmeeeaZWYqxNvt5ljZtL9Cu1iIg4QeaJrnsBvt40bRZNdnqKiyNyP9FBsCMbfj54jGMFVpoEmM+4jYhUpO570mCV2g02HDwGqOueeK7yLnylluoPxC2eSd33RETEmTLyypJSFm8XB+LGGvmaaBPii82ALxPVhU/kbCgpJQ3WztRccopKMZUWEdFIv2qIZypPStmUlKr3fE60lCpV9z0REXGC8u57/kpKVclut9E1uASANQlJ2Gw2F0ck4nmUlJIGa+OJVlKW44fxMplcHI3I2QlSUqrBcIwpZVdLKRERqXsZ+WopdSY5mWkcOnQQgN/Si0jYvd/FEYl4nnqRlBo3bhwPP/yw4/GOHTu4/vrriYmJ4brrruPXX3+tsP7atWu59NJLiYmJYfz48WRlZTk7ZHEDmw5lA2A5fsi1gYicg0Ynvimq+17990f3PbWUEhGRupeZX9YCyM9bP96eTnhoKBFBZsDEhuQCV4cj4nE8Pim1bt06vvnmG8fjgoICxo0bR69evfjvf/9LbGwsd955JwUFZSeIbdu2MXXqVCZMmMCKFSvIyclhypQprgpfXKTAamP7kRwALMeTXByNyNlr5KeWUg2FY6BzjSklIiJOUD7QuZ9aSp1R27CyWZB/SFJSSqSmPDoplZ2dzbPPPku3bt0cyz7++GMsFguTJ0+mbdu2TJ06lcDAQD799FMA3nrrLa644gquvfZaOnXqxLPPPss333xDUpISEw3J5sPHKbUbRAVb8C4+7upwRM7aH2NKNcKmWdnqNR8vtZQSERHnKR9TSkmpMzs/1B8w2J1l5effEjlwYL/GlxKpJh9XB3AunnnmGa655hrS0tIcyxISEoiLi8N0Yowgk8lEz5492bp1KyNGjCAhIYF//vOfjvWbN29OVFQUCQkJtGzZ0ul1aChG3zmWzKzsKstDm4bw6qIlTotn04nxpC5s1YSfnfasIrUvwOyNlwnsXt7kFpUSEuDr6pCkjpjLBzpX8lFERJzAkZTy6DtG5wg0+xDiXUK2zczLG1OJLEnlX0OhdevzXR2aiNvz2FPMTz/9xC+//MKaNWt47LHHHMvT09Np165dhXVDQ0NJTEwEIC0tjYiIiErlqampNY6hpmNjl6/vyWNqn20dMrOyGXbfnCrL1z3/YJ0dl9HjxpJRnhAzgY+PN0c63wgBYXy7ahmH9ybWzRPXEWe+f+riuU5+Dxkeem/tTnXwMpno26oJCT99SUjAgGq9ZvXhXNQQ+TjGlFL3PRERqVuFVhv51rKWPmopVT2RPkVk28ykWn3pGNHc1eGIeAyPTEoVFxczffp0pk2bhp+fX4WywsJCzGZzhWVmsxmrtSzTX1RUdNrymggNbVTjbc5lO3dS0zr4+HoTEGA5bXlYWN0cl+zcXK6fOs/xOL+4lCXfl82Mcf2Y8cz+ac1pYzOZqLL8dGV1XV7Xz3261+RMr+eZ9g3g7++e9a7Jc/+5Dq56vS9sa+Hwqh8JD/93lfs+laZNPf9c1JD8MaaUh2ZzRUTEY5SPJ2X2NuGjH7GqJcKniN3FjcjIt5JXooMmUl0emZSaP38+Xbt2ZcCAAZXKLBZLpQST1Wp1JK+qKvf3969xHJmZuTVqJWEylSVzarqdOznbOpSW2CgoKD5teUZGbi1EePrnNpkgKbvs/2GBvhilpRgGp43tdOXnsu3ZlptMZcmQun7uHb/9xsWXDD1lWeLeRIae5b7LW+cUFhZX+R5yt2P+57Ly1+DPdXDGc1elJp+h8s9xVlauElMexLd8TCm7WkqJiEjdOppb9p2jqZ83JpOuO9VhNhk09bWRWeLD4XxXRyPiOTwyKbVu3ToyMjKIjY0FcCSZPvvsM4YPH05GRkaF9TMyMhxd9iIjI09ZHh4eXuM4DOPsuu6c7XbupC7q4IxjYhhw6FjZrBhRjf3OsLZ7ctZ7p9ROlV0uZ985/Kz3Wx6/J38G3LUONY3H3eKX0/uj+55eOBERqVvpeWX3V6EB3oCSUtUVaS4ls8SHpDxdq0WqyyNn33vzzTdZs2YNq1evZvXq1QwePJjBgwezevVqYmJi2LJlC8aJuy3DMNi8eTMxMTEAxMTEEB8f79hXSkoKKSkpjnKp3wzDICmrEIDoxjVvHSci4irl3fdKNaaUiIjUMUdLKX8NKFUTEeZSvEyQUwJJOSWuDkfEI3hkUqpFixa0atXK8RcYGEhgYCCtWrXi8ssvJycnh5kzZ7Jnzx5mzpxJYWEhV1xxBQA333wzH374IStXrmTXrl1MnjyZSy65RDPvNRDZhaXkFZfibYLIRuYzbyAi4ibKu+/ZDLBrBj4REalDaSeSUqFKStWIrxdEh5T1xvjukPrwiVSHRyalTicoKIhFixYRHx/PiBEjSEhIYPHixQQEBAAQGxvLE088wYIFC7j55ptp3Lgxs2bNcnHU4izJx4sAaBbsh493vXv7i0g95nvSOatESSkREalDaSe67zXV1Hs11j48CICvD+ZTquu1yBl55JhSf/b0009XeNy9e3c++OCDKtcfMWIEI0aMqOuwxA2VJ6U8dTwpEWm4vL1MeJnAbkCJzY7FR4l1ERGpGye3lDqe4+JgPEyrJv5YvOBYkZ0f9mUysF2Yq0MScWv1Iiklrjf6zrFkZmVXWb57byLDnBfOKdntBik5ZUmpaCWlRMQD+Xp5UWyza7BzERGpU2l5J5JSAT7sc3Esnsbby8R5jSDxOKzenqqklMgZKCkltSIzK7vKmdoAdpzDbG21JS3PSonNwM/Hi9BAX1eHIyJSYz7eJoptUGrXYOciIlI3Sm12MvNPdN/TmFJn5fwgE4nHDX7cn8XR3GIiG1lcHZKI21Lbf2kwyrvutWwagMlkcnE0IiI15+tddu5SSykREakr6XnF2I2yFj+NLbpdPBuBPnbaNirrcv/m9zux2WyuDknEbeksIw1GeVLqvKYBLo5EROTslA92XmJTSykREakbKSe+M4cHmvHSD7lnJSczDXKPAvDhzmMcPHTQxRGJuC8lpaTOFJfaycq3Yi11/c2TtdTuGLCxpZJSIuKhfL1OtJTSbD4iIlJHjp5ISkWoy9k5adU0ELO3iSLDmy2pRa4OR8RtaUwpqXVHjhfx86Fsx1SyAIGX3UNGnpWwILNLYkrJLcYAgi0+NPb3paCg2CVxiIici/KWUqXqviciInWkvKVURJCSUufC2wQdI4LYnpLL2sRcrrvI1RGJuCe1lJJaYzfKBvNbtyPNkZAynxj/xLdFZ1b/msqejHyXxJacXQhAVIhm3RMRz+Vz4pxqVfc9ERGpI6k55S2lXPNjcn3StXkjTMCv6cX8fjTP1eGIuCUlpaRWGCYv1v+ewW+pZSfbCyKDuKVnFLf3bsmNsVGUHErAMOCrxEz2uiAxlXy8rGVUdGMlpUTEc/l6qaWUiIjUrVS1lKo1QRYfogPL/v9W/GHXBiPippSUknNmsxtkt72Mg8cK8TaZuLRDGP3aNCXQUtY7NNjPh/wvF9M5MgiAb/dmkV1Y4rz4fAMdz9c8WBdXEfFcjtn37GopJSIidSNVY0rVqvaNy67dn/+e7miFJiJ/UFJKztnCHw5QGNYRLxNc1imM80NPNZC4wcXnN6F5sIVSu8EXuzOwG875pb+4cUugbAYRP19vpzyniEhdcCSl1FJKRETqSEpO2bAXES4aC7a+aWIx0SXcgs1usGLLEVeHI+J2NNC5OIy+cyyZWdlVloc2DWHZ4iUVln2xO53XNiUB8Je2obQM8a9yey+TicHtw3g/IYWsghJ2pObRtXmjWon9dIobnwdAC40nJVIvfP7550yYMKHCsqFDh/LSSy+xY8cOpk+fzu7du2nXrh2PP/44Xbt2day3du1aXnjhBdLT0+nfvz8zZsygadOmABiGwdy5c3n//fex2+2MHDmSBx98EC8v9/n9pnygc3eY1VREROofwzA4emLYi4hGFoqzXBxQPXF1+0b8ll7MB9tSGN3nPBr56TZcpJw+DeKQmZXNsPvmVFm+7vkHKzw+cryIGZ/tBiDwSDztL/rbGZ8jwOzNhec15vt9x4hPyqZtWAD+ddh6yTAMR0upFhpPSqRe2LNnD4MGDWLGjBmOZRaLhYKCAsaNG8dVV13F008/zfLly7nzzjv5/PPPCQgIYNu2bUydOpXHH3+cTp06MXPmTKZMmcKiRYsAWLZsGWvXrmX+/PmUlpYyadIkQkNDGTNmjKuqWom5PCmlgc5FRKQOZBeWYLXZMQFhgWaSlZSqFT2a+dEmNIB9mQW8uyWZf17UytUhibgN9/n5VzxKqd1g2se7yLfa6B4VTPChH6u9bceIIEIDfbHaDBKSc+owStibUYDdHIi3l0n94kXqib1799KhQwfCw8Mdf8HBwXz88cdYLBYmT55M27ZtmTp1KoGBgXz66acAvPXWW1xxxRVce+21dOrUiWeffZZvvvmGpKSy1p5vvPEGEydOpFevXvTt25cHH3yQt99+25VVrcTsU56UUvc9ERGpfUdzy2bQbhpodrTOlXNjt9tIOZLMNe3KepQsjz9MblGpi6MScR8608hZeW3jIRKO5BBo9uaJKztiovo3SF4mExe2DAFgx9E8Cqy2OooSfjpQ9vNOVLAFHy9TnT2PiDjP3r17ad26daXlCQkJxMXFYTKVfdZNJhM9e/Zk69atjvJevXo51m/evDlRUVEkJCRw9OhRUlJSuPDCCx3lcXFxJCcnk5aWVqf1qQnziTGl1H1PRETqQlreia57Gk+q1uRkprF8wx4OHs0i0KuU3GIb725JdnVYIm5DSSmpsS2HjvGfHw8CMPmv7WjRuOpxpKoSHeJHeJAZm91g25G6ay3144FjJ56v5jGKiPsxDIP9+/fz/fffM3ToUC699FLmzJmD1WolPT2diIiICuuHhoaSmpoKQFpaWpXl6enpABXKw8LCABzbuwN13xMRkbqUlluWlArytnHgwH6Skw9jt6t17rkKDo0ktHlLuoT6ArA8Ppm8YrWWEgGNKSU1lG8t5d53t2IzYGincK7oHHHmjU7BZDLRM7oxn+1KZ1daHqFevrUcKRRYbWw9fByAlhrkXKReOHLkCIWFhZjNZl544QUOHz7Mk08+SVFRkWP5ycxmM1ZrWVeEoqKiKsuLioocj08uAxzbV5epho0yHetXY7s/uu+dPilV0xjcUXkd6kNdaouOSWU6JpWd6zHRsWzYyltKpaRn8u7mYg79vp2Q5q0Jc3Fc9UV0IBwp8uFwbinvbk5mrMaWElFSSmpmzhd7OZRVQLNGFh76a3tHN5mz0TLEj8Z+PhwvKqUgvHMtRlnm50PZlNoNvIuOE+zXstb3LyLO16JFCzZu3Ejjxo0xmUx07twZu93OpEmT6N27d6UEktVqxc+vLCltsVhOWe7v718hAWWxWBz/B/D3r1lLy9DQms0qGhISCICfxUxAwOnHvjO8yyaGKLEZ+PubK5yD/fzK6tCkSSBhYXU/s6mz1PR4NgQ6JpXpmFSmYyJnI+3EmFIhQYE0bRZNdnqKiyOqX0wmEyM7N+aFTZm8HX+YG2KjCPar/R/nRTyJklJSbYWh7Vnz21G8TDBjWKdznsrUZDLRtXkjfth/jPxmMdgNA69a/HmufDwpS/YBTKZutbZfEXGtkJCQCo/btm1LcXEx4eHhZGRkVCjLyMhwdMmLjIw8ZXl4eDiRkZEApKenEx0d7fg/QHh4eI3iy8zMxahBT4fs7HwAioqtFBQUn3Zd20ktpI7nFjlaTgEUFZXdSBw7lk9GRm4NInZPJlPZTXVNj2d9pmNSmY5JZed6TMq3l4apvKWUX91Njt3g9Y32p+2+APZmFDB//a/c0jUEm82GyWTC29uLnJwgAgOb4uWlF0EaBo0pJdWSU1RK9vmDAZgwqB2x0Y1rZb/twwMxe5uw+Tfhp/3HamWfUDbuzE/7y5JSftkHa22/IuJa3333HX369KGwsNCxbOfOnYSEhBAXF8eWLVswTtyFGYbB5s2biYmJASAmJob4+HjHdikpKaSkpBATE0NkZCRRUVEVyuPj44mKiqo0DtWZGEbN/8o2PPO+vb1MlM/ZcLoufGcTgzv+1ae66JjomHjSMZGGq3xMKX81Xagz3iYT/7q4NQAf/X6c134+zNz3/sdzH3zL8vhk5v73B5KSDrk2SBEnUlJKzshuN/gqMQPDx0L3qGAm/rV9re3b19uLjhFBALy7ufZmoTh0rJAjOcX4epsw52h2C5H6IjY2FovFwr///W/27dvHN998w7PPPsvYsWO5/PLLycnJYebMmezZs4eZM2dSWFjIFVdcAcDNN9/Mhx9+yMqVK9m1axeTJ0/mkksuoWXLlo7yOXPmsHHjRjZu3MjcuXMZNWqUK6tbiclk+mOwc83AJyIitcgwDI4qKVWn7HYbycmHaeWTw3mBYMOLg9YggpuGExwaSdNm0TSJiHJ1mCJOpdONnNEvScdJy7NiKi1m5rBO+HjXbi7zgmaN2H7kOBsOHmN/ZgHnhwac8z5/OjHrXo8WjUm2l5zz/kTEPQQFBbF06VKeeuoprrvuOgIDA7npppsYO3YsJpOJRYsWMX36dN577z06duzI4sWLCQgoO6fExsbyxBNP8NJLL3H8+HH69evHjBkzHPseM2YMmZmZTJgwAW9vb0aOHMkdd9zhoppWzeztRVGpXTPwiYhIrTpeVEphSdm1JUA9x+pETmYayw/mEX2+Cb/s/eB7PjuO5tLY34tzvwMS8UxKSslp7c3IJ+FIDgAh+76keePLav05gv188Du2n6KmbVmxJZmHLz33lljl40ld1LoJ75/z3kTEnbRv355ly5adsqx79+588MEHVW47YsQIRowYccoyb29vpkyZwpQpU2olzrpi9jFBMVht6mMjIiK1JzWnbCbapv7eeHvpGlNXyltERaelkF5s41ipN/utgXTx149N0jApKVWPjL5zLJlZ2VWWhzYN4dVFS6q9v/S8Yr7ZU5bc6d68ERkbEs81xCoFpiZQ1LQtn+xIY8KA8wmynP1bs8Bq45dD2QBcdH5TJaVEpF7xVfc9ERGpA0dyyrruRTbyBaynX1nOmckE7QKK+TkngJRSf1rbClwdkohLKClVj2RmZTPsvjlVlq97/sFq7yvfWsr/dmVgMwxahvhxYasQPqmNIKtgzjlM66b+HMgq5JOdaVzf4+z7Uv+4PwurrSzutrXQFVBExJ04xpRS9z0REalF5S2lmgWZwVBSyhlCfO20DPEjKbuIfQVmurg6IBEX0EDnUklRiY1PdqRTUGIjxN+Hwe3D8DKZ6vQ5TcDImLJE1MqtRzDOYeqXr/eUTfl+SbswTHUct4iIs5l9lJQSEZHad+R4WVKqrKWUOEuv80IASLX6kJWvZKA0PEpKSQX51lLW7UjjWGEJAb7eDO0U7rgBqmvDukTi7+vF/swCNh8+flb7sJba+X5fWZfDQe3DajM8ERG3YPYuS7ZbSzXeh4iI1J7U8u57QepM40xhgWYifIoAE78knd09kIgnU1JKHEoCwvno16NkFZTg7+vFsC4RBPs575eSIIsPV3SOBOD9rUfOah+bDh0j32ojLNBMl+aNajM8ERG3oO57IiI1d/ToUSZOnEjv3r0ZMGAAs2bNori4LAmTlJTEHXfcQY8ePbjyyiv5/vvvK2z7448/Mnz4cGJiYhg1ahRJSUmuqEKdstlsHMwom9zIqyj7nHotSM21MecBBgePFZJRqOu7NCxKgwslNjvvbk4mvesNUGwj2M+HKzpHEOxX8e2xe/curh45Eh9fb0pLbBXL9iYyrBZiGdmjOf/dlsJXezJJzysmPMhSo+0/3pEGwKUdw+u8y6GIiCuo+56ISM0YhsHEiRMJDg7m7bff5vjx4zzyyCN4eXkxefJkxo8fT4cOHVi1ahXr169nwoQJfPzxx0RFRXHkyBHGjx/PPffcw4ABA1iwYAF33303H330Ub0aJiIp6RCHjxcDXnwdv5Ow0AhCm7s6qoYj0MtGc0spKcW+bEsrdXU4Ik6lpFQDlpFXzPrdGazYkszh7CLw8qZVE3/+0rYpfr7eldYvtcOw++YQEGChoKC4QtmOO4efUyy7d+/imutHAmC+4DqswS244dF5BB/eAFRv5sC84lK+3ZsJwJUXRJxTPCIi7sqs2fdERGpk3759bN26lR9++IGwsLLhHSZOnMgzzzzDX/7yF5KSknj33XcJCAigbdu2/PTTT6xatYp77rmHlStX0rVrV0aPHg3ArFmz6NevH5s2baJPnz6urFatyi+xU3qiE01EaAi6wjhfG38rqcW+HMm3k5hVTKtWro5IxDmUlKoHDMNg25EcjrcawIfbU8kpKqXEZsfby4Svtxe+3l6YvU0c73Q1kz78jQKrjeTjRSSfGMwQoGmAL/btH3PZraNd8qtPecILYH9mAet3Z1DSui9DRozA19urWjMHfpmYQXGpndZN/ekUEVTXIYuIuMQfLaXUtUJEpDrCw8NZsmSJIyFVLi8vj4SEBC644AICAv6YsTkuLo6tW7cCkJCQQK9evRxl/v7+dOnSha1bt9arpFRGQVnrHIuPFz4msOoS43QB3gbtwgNJTM9n5Y4cLo11dUQizqGklIfbcvg4L36zj99Sc6F5LPl5f8zYYLMZWG024ERXu5DWfL0n01FuAjpFBnFV12YMuyCSm2+d6xbNkFs19SfY4kNOcSm70/Pp0qx6Y0N9tD0VgCsviHSLeoiI1IXygc5L1H1PRKRagoODGTBggOOx3W7nrbfeom/fvqSnpxMRUbGFfWhoKKmpZd8rz1ReX6Tnl90vNLJU7i0hzhPbIpg96flsTi1iR2ouF1TzPkjEkykp5UFG3zmWzKxsAAxM5LbsS15ULzCZMNlKsB7czJChV9LE3xezjxc2u0GJzY7VZmAttfPLJ8v515134efjTbNgC21DAwkJcL8pX71MJrpFNeKH/cfYlpxTrVZPv6XmknAkBx8vE1d1iXRClCIirqHueyIi52b27Nns2LGD999/n9deew2z2Vyh3Gw2Y7WW/dBbWFh42vKacOffTNNOtJRqZCm7PXTnWE+nPG5PjT8kwJfWjb3Yf9zOkg0Hef5vXV0dUo14+vFX/NXbf21TUsqDZGZlM+y+OdjsBl8mZpCSVQhAh/BALjwvhAVv3ku7W6+vcvsd6Tu5LibKWeGekw7hgWw5nEOe1cauo3lnXP/dzckADOkUTlgNB0cXEfEkGuhcROTszZ49m9dff53nn3+eDh06YLFYyM7OrrCO1WrFz88PAIvFUikBZbVaCQ4OrvFzh4a6b6uX7NKyu82mjfwgHywWXwICLPj5+eLlQf/39y+7D/Dk+LuF+XAwx8p3e7NILbbTtUVj4MQMiQcPOl6zVq1a4e3tni3b3Pm9Xh2K37mUlPIwdsNg/e4MDh0rxMsEA9uF0i4s0NVh1Tofby9io4P5Yf8xtiQfp7FX1S26DmcX8vnv6QDc1LOFs0IUEXEJR0spm4HdMDTTqIhINc2YMYPly5cze/Zshg4dCkBkZCR79uypsF5GRoajy15kZCQZGRmVyjt37lzj58/MzMVw07GaDmaW/dgdcKKLeHFxCQUFxRQVleBleM7/CwuLPT7+YIsX/VsG8O2hAmZ/spO513YB4MCB/bzy6S+EhDcnOz2Fuy7vRevW57vmDVMFk6ksIeLO7/XTUfzV239t86r1PUqdMYAf9x/j0LFCvE0mLu8UUS8TUuU6RgTRyOJDYYmd3JZ9q1xv3rf7sdkN+rZqQudIz8oKi4jUlMXnj0u3uvCJiFTP/Pnzeffdd3nuuecYNmyYY3lMTAy//fYbRUV/TAAUHx9PTEyMozw+Pt5RVlhYyI4dOxzlNWEY7vt3NL9i9z1PvCGHP+L29Piv6xSMCfhmTya7juY5XqeQ8OY0bRZNSHhzl79nqvorr4en/in+M++/tikp5UEKIrqw80RXtsEdQmkR4ufiiOqWt5eJ/m2aAJDfrAcJyccrrbPp4DG+TMzAywT3XtLG2SGKiDhd2cyqZb9kFykpJSJyRnv37uXll1/mn//8J3FxcaSnpzv+evfuTfPmzZkyZQqJiYksXryYbdu2MXLkSACuu+46Nm/ezOLFi0lMTGTKlClER0fXq5n37IZBWnlSyk8dadxBi2BfhnQKB2DxjwfPsLaIZ/PYpNTRo0eZOHEivXv3ZsCAAcyaNYvi4rLmmklJSdxxxx306NGDK6+8ku+//77Ctj/++CPDhw8nJiaGUaNGkZSU5Ioq1Ehieh7HWw8E4MLzGtO6acAZtqgfokP8aR8eCCYTkz7cwaFjhY6yw9mFTF23C4C/dW9er1uNiYiczO9Ea6liJaVERM7oiy++wGaz8corr9C/f/8Kf97e3rz88sukp6czYsQIPvroIxYsWEBUVNk4rNHR0cybN49Vq1YxcuRIsrOzWbBgQb2a6Tktt5gSe9nM3EGafc9tjO3bCm8TfLs3k/ikbFeHI1JnPDIVbhgGEydOJDg4mLfffpvjx4/zyCOP4OXlxeTJkxk/fjwdOnRg1apVrF+/ngkTJvDxxx8TFRXFkSNHGD9+PPfccw8DBgxgwYIF3H333Xz00Udue3EptRs89snv4OVDyxA/YqJqPrCiJ7u4dRMOHNjPMSIYu3wro/ueh6+3iaUbDpFdWELnyCDuHahWUiLScPj5eJNbbKOoxObqUERE3N64ceMYN25cleWtWrXirbfeqrJ84MCBDBw4sC5CcwvJx8u6Lgb4oHEK3Ujr0ACu7d6cVQkpvPjNPh7rF+LqkETqhEcmpfbt28fWrVv54YcfCAsLA2DixIk888wz/OUvfyEpKYl3332XgIAA2rZty08//cSqVau45557WLlyJV27dmX06NEAzJo1i379+rFp0ya3bYa7PP4wu9PzMZUWMbBdC7dNntUVs48XTXd9SOCQe9mXWcDcr/Y6ys5r4s+ca7rg76tfdUSk4fDzLWsppe57IiJyrg5nl/VECKx6XiFxkXEXt+LTnWnsPJrHD0lmV4cjUic8svteeHg4S5YscSSkyuXl5ZGQkMAFF1xAQMAf3dvi4uLYunUrAAkJCfTq1ctR5u/vT5cuXRzl7ubI8SJHP+LGB79vsMkX75JC3rqtJ/dd0oae0Y3p0SKYu/q15p1RcUQ0srg6PBERpyof7LyoREkpERE5N+UtpYI8srlC/WO32zh8+DAHDuwnJy2Z23qVzS7+zm/HsdnraKRpERfyyFNPcHAwAwYMcDy22+289dZb9O3bl/T0dMcUruVCQ0NJTU0FOGN5TdS0wVL5+qfbbvS4sWRkZQNgAFmdrqY4pDXm44dJ3vAh/H10jeM8VQznur3JVHej71fF7OPFrb2iubVX9Fnvw5Xx1xZPbyhXn14Dd6tDdd8b1TkXiXvzO/EDhcaUEhGRc3U4uywpFeirLwbu4HjGUZbvOkb0+Say01P4x6U9+W+QmbQ8K4k5JsKjXB2hSO3yyKTUn82ePZsdO3bw/vvv89prr2E2V2zaaDabsVqtQNk0rqcrr4nQ0EZnFe/ptsvOzeX6qfMASDyay8e/puJtMnHT0H7MW20jIKDqVkEmE6ct9/H1Jiys6uf28fU+4/79/cvKy/+t7nOfa/mZYj+dU9Xr5PjPJba6rnd9fW6o/B5y1nPXZr2d+Tmoi89I06Zn95kS13O0lCrVmFIiInJukk5MJBRYL+4M64fg0EiaNiv7Id7i7cX4Aecz/ZPf2ZVtEGMtdXF0IrXL4089s2fP5vXXX+f555+nQ4cOWCwWsrOzK6xjtVrx8/MDwGKxVEpAWa1WgoNrPnh4ZmZujVpJmExlCanTbVdaYqOgoBib3eC7xAwAYlo0wmIyMAwoKCiucv9nKi8tsZGRkXva8jPtv7CwGH9/C4WFxRXqcK6xnWvsp3NyvcoTayfHfy6x1XW9T1VeXgdXPHdtbFveOufP7yFnPPe5lpeXnep95KznrkpNPiPl56KsrFwlpjyUn7rviYhILTAMwzG7dSONKeW2Lu8cwVsb95OYZeXnQ8fpHuTqiERqj0eOKVVuxowZLFu2jNmzZzN06FAAIiMjycjIqLBeRkaGo8teVeXh4eE1fn7DqPnfmbYrt/NoHrnFpfj7etG9Fmfbq85zn2n7k/91prM53n+O05Xx1xZPjh3q12vgbnU4m3OReKby7nsa6FxERM5Fep6VghIbXiYIUlLKbXmZTPwjJgSAxPR8sor0JU7qD49NSs2fP593332X5557jmHDhjmWx8TE8Ntvv1FUVORYFh8fT0xMjKM8Pj7eUVZYWMiOHTsc5e7AWmpny+HjAMS1bIyvt8e+TCIiUgfKW0oVq/ueiIicg4PHCgCIDPTBS4NNuh273UZyctmg5wGF6ZwXWLZ8a5aBXb8uSj3hkd339u7dy8svv8y4ceOIi4sjPT3dUda7d2+aN2/OlClTuPvuu/nqq6/Ytm0bs2bNAuC6665j6dKlLF68mEGDBrFgwQKio6Pp06ePU2IfedOtHEnNqLJ8995EIo7kUFRqp7GfDx0j1DZTREQq0ux7IiJSGw5klXXdiwryAWo+xq7UrZzMNJYfzCP6fBOHft9O68jzSSkM4lixwbeHCmhzvqsjFDl3HpmU+uKLL7DZbLzyyiu88sorFcp+//13Xn75ZaZOncqIESNo1aoVCxYsICqqbJqC6Oho5s2bx1NPPcWCBQuIjY1lwYIFmJz0y0Ba5jGG3TenyvKd/3cr21PKxoXp3SpEv1iIiEglfr7lLaXsGIbhtGuYiIjULwezylpKRTXyhVIlpdxR+aDn2ekpeHkZxEY3ZtOhbN7+NZvrLyol0OyRt/QiDh75Dh43bhzjxo2rsrxVq1a89dZbVZYPHDiQgQMH1kVo58yv2xBsdoPIRmZaNfF3dTgiIm7n6NGjzJw5kw0bNmCxWLjyyiu5//77sVgsPPnkk7z55psV1n/00Uf5+9//DsDatWt54YUXSE9Pp3///syYMYOmTZsCZYO9zp07l/fffx+73c7IkSN58MEH8fJyvy7Ufj5lY0oZgNVmYPFRUkpERGru4IlBzls08iH9mIuDkWrp2rwRvx3JJrvIzqsbkrjnL2ouJZ7NI5NS9VW+tRRzx/4AxLUMqfVfvnfv3sU114+sunxvIsOqLBURcT3DMJg4cSLBwcG8/fbbHD9+nEceeQQvLy8eeugh9u7dywMPPMDf/vY3xzZBQWXdoLdt28bUqVN5/PHH6dSpEzNnzmTKlCksWrQIgGXLlrF27Vrmz59PaWkpkyZNIjQ0lDFjxrikrqfj7WXC18tEid2gqMTm6M4nIiJSE4dOaimlpJRn8PYy0T3UxE9HDZZvPsy13ZrRUo0ZxIMpKeVGEpJzMHn7EtnIQlSwpdb3X2rntF0Hd9w5vNafU0SkNu3bt4+tW7fyww8/EBYWBsDEiRN55plnHEmpMWPGnHJG1bfeeosrrriCa6+9FoBnn32WQYMGkZSURMuWLXnjjTeYOHEivXr1AuDBBx/kxRdfdMukFIDF14uSYlvZGISuDkZERDxOUYmNlJxioGxMqQQXxyPV19wfYiL9SDhaxAvf7GPutV1cHZLIWdNPq24i31rKrqN5QNmMexofRESksvDwcJYsWeJISJXLy8sjLy+Po0eP0rp161Num5CQ4Eg4ATRv3pyoqCgSEhI4evQoKSkpXHjhhY7yuLg4kpOTSUtLq5O6nKvyLnzFpRrsXEREau7gsUIMINjPh2CLbgs9iWHYuaJZEd4m+HZvJj/uq3oiLRF3p7OPm0hIzsFmQOnRPXXSSkpEpD4IDg5mwIABjsd2u5233nqLvn37snfvXkwmEwsXLuQvf/kLV199NR988IFj3bS0NCIiIirsLzQ0lNTUVMcsrieXlye+UlNT67JKZ83PMQOfzcWRiIiIJ9qbkQ9A29AA/SDuYXIy0/gqYS/nNyp7/Oz63ZTa9COVeCZ133MDJ7eSKtq6DtO1g10ckWcZfedYMrOyqyzXWFki9dfs2bPZsWMH77//Pr/99hsmk4k2bdrw97//nZ9//plHH32UoKAgLrvsMoqKijCbzRW2N5vNWK1WioqKHI9PLgOwWms2G1FNv9c71q/hdv7mspZSBadIStWHe4vyOtSHutQWHZPKdEwqO9djomPZcOxJL0tKtQsPcnEkcjaCQyPp2CaaQ/GHSc4tZfnmZG67sKWrwxKpMSWl3EB5K6nIRhayU353dTgeJzMrW2NliTRAs2fP5vXXX+f555+nQ4cOtG/fnkGDBhESEgJAp06dOHDgAMuXL+eyyy7DYrFUSjBZrVb8/f0rJKAsFovj/wD+/jUbPDQ0tFGN1g8JCQTAz2ImIKD6LWVDAs2Qnk+xHQICLPj5ldWhSZNAwsJqFoM7q+nxbAh0TCrTMalMx0TOZM+JllLtwgKAYtcGI2fF4uNF16YmNmcYLPzhABed35R2YYGuDkukRpSUcrE/jyWllJSIyJnNmDGD5cuXM3v2bIYOHQqAyWRyJKTKtWnThg0bNgAQGRlJRkbFMRcyMjIIDw8nMjISgPT0dKKjox3/B045aPrpZGbmYhjVXz87u+ymoKjYSkFB9W8KzCdaMxzPL9uuqKgsiXbsWD4ZGbnVD8BNmUxlN9U1PZ71mY5JZTomlZ3rMSnfXuq/8pZSgaU5JCenY1fvL4/UOggMHz+2pBbx6LpdvHpLD/x9vV0dlki1aUwpFzu5lZTGkhIRObP58+fz7rvv8txzzzFs2B+dc1988UXuuOOOCuvu2rWLNm3aABATE0N8fLyjLCUlhZSUFGJiYoiMjCQqKqpCeXx8PFFRUZXGoToTw6j5X9mGNTsOAafpvnc2MbjjX32qi46JjoknHROp/44XlpCeX/Zjxqb96bz97Xby8jz/B42GyGQycVdcU5r4+7InI58Zn+3GMAxsNhsHDux3/NlsGoNS3JNaSrmQZtwTEamZvXv38vLLLzNu3Dji4uIcrZkABg0axOLFi1m6dCmXXXYZ33//PatXr+aNN94A4Oabb+a2226jR48edOvWjZkzZ3LJJZfQsmVLR/mcOXNo1qwZAHPnzmX06NHOr2Q1BZYnpaz6kikiIjVT3nUvwAcio1qSn+mek3pI9TTx8+aZqy/grpXb+Pz3dEIDzYxobWLR/+IJCW9OdnoK/xoKrVuf7+pQRSpRUsqF1EpKRKRmvvjiC2w2G6+88gqvvPJKhbLff/+dF198kZdeeokXX3yRFi1aMHfuXGJjYwGIjY3liSee4KWXXuL48eP069ePGTNmOLYfM2YMmZmZTJgwAW9vb0aOHFmp5ZU7CTgpKWVX0wYREamB8q57jc1nWFE8Rmx0Y6Ze1p4nPtvNu5uTyc0JonFYM5o2i3Z1aCKnpaSUi+QXn9RKKlqtpEREqmPcuHGMGzeuyvJLL72USy+9tMryESNGMGLEiFOWeXt7M2XKFKZMmXLOcTqDv683JsAACk/RhU9ERKQqu9PL7kMa+7o4EKlVV3YO52h6Oos2H2PdnjzaNoJBzfTDlbg3JaVcZOuRk1pJNVYrKRERqRkvk4kAszf5Vpu68ImISI38llo2flQTi34Y93R2u43k5MMAJCcfJvH3FGJDm7Ml02BvLvjsy6JLgBJT4r6UlHKBvJNaSfXSWFIiInKWypNS+VYb6oEhIiLVUWC1sT+zAIAm+m3c4+VkprH8YB7R55s49Pt2Qpq3pleHlhRt3s7O4mB+T8snLxBG2pSYEvek2fdcYGtyDnYDmgdbiGrs5+pwRETEQwX4arBzERGpmV1pudgNaOrvjb+PfhyvD4JDI2naLJrgpuGOZVG+RXQPKsLLBMn58MyPGeruL25JSSknKzU34ve0P2bcExEROVvlM/DlKyklIiLV9FtKWde9dk3Uxra+i7TYGNopHG8TJKQVMX7lNnKKSlwdlkgF6r7nZMebxWE3IKqxhebBaiVVXbt37+Ka60eeumxvIsOcHI+IiDsItJyUlNKP3SIiUg07Ust+IG/X1ExxfrGLo5G6Fh3iz4BmJn7OMLE9JZd/vbeNedd1IzRQSUlxD0pKOdHh7ELywzoBEBcd4tpgPEypHYbdN+eUZTvuHO7kaERE3EOA+aTuexoXREREqmFHag5Q1lLqt3wXByNO0cRsZ0JnE4t2e5GYns8/393Ky9d3p5kaSYgbUPc9J1q64RCYvGnR2I9mwbp7EBGRcxNkLvttKbeo1MWRiIiIJ0jNKeJITjFeJmir7nsNRk5mGl9v20ufMAM/k42k7CLGvpvAwawCV4cmoqSUsxiGwWc70wCNJSUiIrUjxN8XgNziUjSpjoiInMnmw8cB6BTZiABf3Qo2JMGhkZzXsiWXRHkR4QdHc4sZ885mfjty3NWhSQOnM5GTmEwm7rukLU0Ofk1kI7WSEhGRc+fv64WvlwkDKLBpUCkRETm9Xw5lA9BLP5I3WCXH04guOkBjMxwvtvPPFQn8d1sKhqFft8Q1lJRyoutjo2iU8ZurwxARkXrCZDLR+ERrqXybLukiInJ68UnZAMS1DHFpHOJaoaFhXBsTTTN/gxI7zPo8kQfej+d4QdnA9zabjQMH9jv+bDbN8it1R99gRUREPFhj/7JxpfJLdUkXEZGqHTleNp6Utwl6tFBLqYbO7OPFBV5ptCQTE/DdoQKue/Vn1v12lEOHDrLws194d3MyCz/7haSkQ64OV+oxzb4nIiLiwRr7lbWUylNLKREROY1NB48B0KaJmbQjh0hOPozd7uKgxKVMJugUaiGmWQRf707jeLGdxz79nY6hZiKDmtG0WbSrQ5QGQEkpERERDxZS3lJKSSkRETmNb/ZmAmDLy+LdzaUc+n07Ic1bE+biuMT1mgf78dfmBjbDxOdHTPyeaeV3YG9hGh0CNdaU1C0lpURERDxYeUspdd8TEZGqFFhtf7SUCm9E02bRZKenuDgqcSd5WWnk5eXx15bt+PlAJhneTUk+XkTyccj9MZ37AsLpEBHkWN9ms1Xo1tey5Xn4+Hi7InTxcEpKiYiIeLDyMaWshgkvv6AzrC0iIg3RhgNZWG0GkYHeBPuqz56cWnBoJC2iW1J8LJUinwLSfCNITM/nl5Qibn1zM5d2COOfF7eiTWggSUmHWPjZL4SENyc7PYV/DYXzzz/f1VUQD6SklIiIiAfz9fYi0OxNvtWGb7i+DIqISGVf7ynrundhlD+m0gIXRyOeIMDb4JJ2obQ2F5Bv8uPHw4Ws353BF7sz6N8ygAFNCwgO1bhTcu7U1l9ERMTDRQSZAbC06OTiSERExN3kFZfyVWIGAH1bBLg4GvE0wWYT9/UJ451RPekd5Y8BfJdUwFNbDTamWikssbk6RPFwSkqJiIh4uMhgCwCW6AtcHImIiLibz39Pp6jUTqsm/nRoanZ1OOKh2ocHMemiMAZHmTiviR+YTBwp9uW9LUfYm2NgMzQgupwdJaVEREQ8XLNGJ5JSUZ2w60uhiIic5MPtqQBc060ZJpPJxdGIp7HbbSQnH+bAgf0kJx+msS8M7RRBnH8WjbxtWG0GWzMNHvnyKLuO5ro6XPFAGlNKRETEw4UGmPHGAP9GpOZrAFuR+uDw4SSysjKrtW6O1c5XSSUkpJeQkm/H4mOiWYAXl7YL4Y6/XICXEhEN1o7UXH5LzcXby8SwLpHkpCW7OiTxMDmZaSw/mEf0+SYO/b6dkOatCQNCvEvo07iQgsYt+fngMfZllzDqrS2M7pfNbT2bE+CrVINUj94pIiIiHs7Ly0RjXxtZJT4kZtu43NUBicg5OXw4iYv7XUhR4RkGpDZ50ShuOCEDRuFl9nMstloNcq02En/JxM9nF7f061zHEYu7WrrhEABDO4XTNMBMjovjEc8UHBpJ02bRZKenVFhuMkGXZo1oUppNtuHPD4cLWPL9ft6PP8w/+rTkupgoLD7qnCWnp6SUiIhIPdDU105WCfyWWerqUETkHGVlZVJUWMDI+2YREX3qWTVL7LAlx490a9nX+cY+Nlr7lxDia8PXbOb3wxns3PEr0X/5mzNDFzfy+9E8vt2biZcJhkR7Obpf2dWgVmqZn4+J/+sZyg292/D8N/s4kFnA81/v442NB7mxZzRXdWtOWKDGM5NTU1JKRESkHmhmKWVPgZmEjFJyi0pp5KdLvIini4g+n6i2lScwyC4s4X+70jluLcXby0TfViF0jgxyjBcUEGDBYt/C93NfJOSB65wdtrgBu2Hw3Nd7AbgoOoA1PyYQEt68QvcrkdpSPu5UdDQ8GgezvznOwdLGZBbaePmHgyz68SA9m/tzZbdoBrQNo7G/r6tDFjeib6wiIiL1QLCPHWv6AQhvzfrd6fyte3NXhyQideBwdiFf7M7AajMINHszpFO4WiBIJR9tT2Xz4eP4+Xhxc5fGfPV781N2vxKpDSePO3X0wA5aNo3morbRbEj4jaRiC3mGHz8fKeTnI4l4mRJp39TMxW0j6HVeE7pHBePn6+3qKogLKSklIiJSD5hMkP/rV5gH/YN1vx1VUkqknjEMg19Tc9l4IBsDiAgyc1nHcALMupmTivZm5PPCN/sA+Fe/1kQGlrg4ImkIysedKsrNwGqAj7cXUb5FRAd5E9yiGfE793C0xJdCw8LvmVZ+zzzMsk2H8fEy0SbEl7ZNzLRpYuaiTufRNrwRPl6aoKGhaLBJqeLiYh5//HH+97//4efnx+jRoxk9erSrwxIRERfz5OtD/o6vCR38DxKO5PDD/iz6nd/U1SGJSC0otdn5Yf8xdqfnA9AhPJD+bZrirZs2p/GUa0N6XjH3r/6NfKuNC8Is9G1qJTk5WeNIiUs1DTTT1pJP++BAmp53PrsPJuPtZWJfvjdZhTZ2Z1nZnWUFYMEvWZi9TTQP9iPUYhAZ6ENEoA9toyJoGmghxN+Xxv4+NPLzwewFyYeTHM/TsuV5eHsrUe9pGmxS6tlnn+XXX3/l9ddf58iRIzz00ENERUVx+eWas0hEpCHz5OuDLS+TS1ua+d8hK7O/2EPc7XFqEi/i4VJzivl2bybHi0oxAX1ahdC1eSPH+FHiHJ5wbdiTkc99//2V1NxiIgN9CCtMYuXWEo0jJW4l2M+HptY08vLyuKR1OxJ378Zoeh40CiclK4e8EhPFNoODxwo5ePKG27Ir7csEeGHH7O2FyV5CeGASjQMsBJu9iDiRzAoL8CGmXUtahATg6/3HTIA2m42kpEOOxy1bnoePj74zuUKDTEoVFBSwcuVK/vOf/9ClSxe6dOlCYmIib7/9tltdWERExLnqw/Xh6rYWtmZB8vEiJn+0g2evvkCJKREPZG7WjvjjfqSmHQUgwNebS9qF0iLEz8WRNTzufm3IKSpheXwyr/+cRInNoHmQD2PalfLbsUiNIyVuKzg0ktDmLTmekYqXpZTWrZuwL3cPucV5NIlux/79+/AOaY5v43BS09IpLDUw+fpTVGrDhjc2AwzAhheFNgBfDuYBecWVn+z7dLxMENnIQovGfrRo7E+AUci2PQeJCG1C6fGj3DPUoE2bNs49CAI00KTUrl27KC0tJTY21rEsLi6OhQsXYrfb8fLyOs3WIiJSX9WH64O/j4nHr+jE/33wKz8dOMatb27mH31a0v/8UEICNNuNiDsqtdlJySnm4LECth3J4X+/5dH89hdIPXFv1TEikN7nhSjB7CLucG0wDIMSm0FxqZ3jRSUcOlZI0rFCtiQf54d9WRSVlvXPC/UuJq6pic82/arWUeKRGodGcl7LlpRmn0hWtWrCvpw9eFkCad3hPPZt/5ncvDyiWrXjQOIOAiLOI7JlWw4m7sDm60+TyGiSDh2g2OSHyb8R2fmFFNlMlNghJaeYlJxifkk6fuLZQvjtiAFE8MtHyTRvnEVUE398S4to6udNY4sX0ZHhNPLzJdDiTaDZhwCzN2ZvL3y8TPh4m8r+9fLC26vs/2fbrdpuGJTaDErsdkpsBqV2A7vdwFpaSnLyEUymsu947Vq3wt9Sv77PNcikVHp6Ok2aNMFs/mOmkrCwMIqLi8nOzqZp0+qNweHlBYZR/ec1mSAgwB+Lr1eV2zUKCsLsc+oL2+nKnFVu8fXC7O2F7U91cGVsNdnWZKJS/M567toqL6+DpxzzPzOZ/ngvedrnoLzsVO8jZz13VQICAqjud+LyHh/q+VFZbVwfanpt8PHxplGjRuSlJ5NlPvvLcm56Mo0aNeLAgX20bevN5AsD+c/2IrIKSpj71T7mfrUPfx9obPaikRm8TOV/Jsf/TYDJZMKoSQWqcK77MZnA7OuDtaS0RsezLmJxl32YTODr40NJqc3lsZy0Jwyq3s+fn6I6z3imsP5c7OPrTWmJ7Y+ySs955mf9Yw1T2RY1PDSVVzdVqsif17HZoaAUimwGuVYDW4UVvAj0sdGUfDqFmQn2KaIgNZOC6gRjgnyzmbwT5wRvb+9qXx9A14ZTccW9Q8rxYh79eBepxwux2soSUlUNC+Xj7UXnJmb+El5KUkoWwX6NyLGYKck7Rn5mKiX5x/EqsVbr/wVZqVjzsinFt8bbusP/FX/DiD/A4k+AxZdgizdehVn4FzchqDgDL8OfKK/G2EtS8DL7ExURyOHERPLz8whp3opjx/OI7dSWEksjDqTnsveYlWKTmaKySwhpeVbS8qwVP2C78qr3oT3BBHh7gbep7IuV6cSyP/5v4kQRdgNK7WUJKFu1rztp+JjA4uuFvzf4eJvw9Trx5w0+vj6UlvzxPcHgj/NO+f+9THBrn/MZ3KFmaeu6uj6YjNr5RuJRVq9ezYsvvshXX33lWJaUlMSll17KN998Q7NmzVwYnYiIuIquDyIi8me6NoiI1B3374dQBywWC1ZrxQxo+WM/P/XTFxFpqHR9EBGRP9O1QUSk7jTIpFRkZCTHjh2jtLTUsSw9PR0/Pz+Cg4NdGJmIiLiSrg8iIvJnujaIiNSdBpmU6ty5Mz4+PmzdutWxLD4+nm7dunnEILYiIlI3dH0QEZE/07VBRKTuNMizqL+/P9deey2PPfYY27ZtY/369bz66quMGjXK1aGJiIgL6fogIiJ/pmuDiEjdaZADnQMUFhby2GOP8b///Y+goCDGjBnDHXfc4eqwRETExXR9EBGRP9O1QUSkbjTYpJSIiIiIiIiIiLhOg+y+JyIiIiIiIiIirqWklIiIiIiIiIiIOJ2SUiIiIiIiIiIi4nRKSp0jq9XK8OHD2bhxo2PZr7/+yo033khsbCw33HBDheljAX788UeGDx9OTEwMo0aNIikpqUL5a6+9xoABA4iNjeWRRx6hsLDQ7eqwatUqLr/8cmJjY7n++uuJj493WR3OJv5yCQkJdO7cmcOHDzuWGYbBnDlz6Nu3L7179+bZZ5/FbrfXWfxnW4dNmzZxzTXXEBMTww033MCuXbtcVoeziX/58uX89a9/pWfPnowZM6bC58CZ8R89epSJEyfSu3dvBgwYwKxZsyguLgYgKSmJO+64gx49enDllVfy/fffV9jWHT7L5xK/O32OG6ri4mIeeeQRevXqRf/+/Xn11VddHZJTfP7553Ts2LHC38SJEwHYsWMH119/PTExMVx33XX8+uuvFbZdu3Ytl156KTExMYwfP56srCxXVKHWnOr86Qnnnrp0qmPy5JNPVnrPvPXWW47y070vXHFdry2efo0S9+CJ55n68N4/ePAgY8aMITY2lksuuYQlS5Y4yjylDgDjxo3j4Ycfdjw+l+u0M8/HdfVdw1l1sFqtPP7441x44YVcfPHFPPfcc5QPB+4J8deIIWetqKjIGD9+vNGhQwdjw4YNhmEYRkZGhhEXF2f8+9//Nvbs2WMsW7bM6NGjh5GcnGwYhmEkJycbPXr0MJYuXWrs3r3buPfee43hw4cbdrvdMAzD+PTTT424uDjjyy+/NBISEowrr7zSePzxx92qDt98843RvXt348MPPzQOHDhgPP/880bPnj2N1NRUp9fhbOIvZ7VajeHDhxsdOnQwkpKSHMuXLl1qDBw40Pj555+Nn376yejfv7+xZMmSOon/bOtw6NAho3v37sa8efOM/fv3G//+97+NQYMGGcXFxU6vw9nE/+233xqxsbHGl19+aezbt8+YMGGCcdVVVzn26az47Xa7ccMNNxhjx441du/ebfz888/GZZddZjz99NOG3W43rrrqKuOBBx4w9uzZYyxcuNCIiYlxq8/yucTvTp/jhuyJJ54wrrrqKuPXX381/ve//xmxsbHGJ5984uqw6tzLL79s3HnnnUZaWprj7/jx40Z+fr7Rr18/4+mnnzb27NljzJgxw7j44ouN/Px8wzAMIyEhwejevbvxwQcfGDt37jT+/ve/G+PGjXNxbc7eqc6fnnDuqUunOiaGYRh33HGHsWjRogrvmYKCAsMwzvy+cPZ1vbZ4+jVK3IMnnmfqw3vfZrMZQ4YMMR544AFj//79xtdff2307NnT+OijjzymDoZhGGvXrjU6dOhgPPTQQ4ZhGOd8nXbm+biuvms4qw6PPvqoMWTIECMhIcH48ccfjT59+hjLly/3mPhrQkmps5SYmGhcffXVxlVXXVXhJL9kyRLjr3/9q1FaWupYd8yYMcacOXMMwzCMF154wfj73//uKCsoKDBiY2Md299yyy3GSy+95Cj/+eefje7duzu+eLlDHf7v//7PmDZtWoV9DRkyxFixYoVT63C28Zd7+eWXjZtuuqlSUmrgwIHGqlWrHI9Xr15tDBo0qFZjP9c6PPXUU5XeR3/961+NnTt3OrUOZxv/jBkzjHvuucdRtmvXLqNDhw5GZmamU+Pfs2eP0aFDByM9Pd2xbM2aNUb//v2NH3/80ejRo4fjBG8YhnH77bc73tvu8Fk+l/jd5XPckOXn5xvdunWrcOO9YMGCCu+r+uqBBx4w5s6dW2n5ypUrjcGDBzu+eNvtduOyyy5znA8mTZrk+GJsGIZx5MgRo2PHjsahQ4ecE3gtqur86QnnnrpS1TExDMMYMGCA8d13351yuzO9L5x5Xa9Nnn6NEtfz1PNMfXjvHz161Lj33nuN3Nxcx7Lx48cb06dP95g6HDt2zPjLX/5iXHfddY5z7Llep515Pq6r7xrOqMOxY8eMCy64wNi4caNj2aJFi4yHH37YI+KvKXXfO0ubNm2iT58+rFixosLypKQkunTpgre3t2NZx44dHV2XEhIS6NWrl6PM39+fLl26sHXrVmw2G9u3b69Q3qNHD0pKSip0zXJ1HcaOHcs//vGPSvvLzc11ah3ONn6A/fv38/bbb1doigplTYVTUlK48MILHcvi4uJITk4mLS2tVuM/lzps2rSJIUOGOMr8/f1Zv349nTp1cmodzjb+kJAQfv75Z/bu3UtpaSmrV6+mRYsWNG7c2Knxh4eHs2TJEsLCwiosz8vLIyEhgQsuuICAgIAKcbjTZ/lc4neXz3FDtmvXLkpLS4mNjXUsi4uLIyEhwfXNqOvY3r17ad26daXlCQkJxMXFYTKZADCZTPTs2bPKz13z5s2JiooiISHBGWHXqqrOn55w7qkrVR2TvLw8jh49esr3DJz+feHs63pt8vRrlLiep55n6sN7PyIighdeeIGgoCAMwyA+Pp6ff/6Z3r17e0wdnnnmGa655hratWvnWHYu12lnn4/r4ruGs+oQHx9PUFAQvXv3diwbN24cs2bN8oj4a8rHZc/s4W655ZZTLg8LC6t0QkhNTeXYsWMApKenExERUaE8NDSU1NRUcnJyKC4urlDu4+NDSEgIqamptVyDs69Dly5dKpR9++23HDhwgL59+zq1Dmcbv2EYTJs2jXvuuYfQ0NAK66WnpwNUiL/8gpiamlrptTtXZ1uHpKQk/Pz8mDhxIr/88gvt2rVj2rRptGvXzql1ONv4b7vtNn766SeuvPJKvL298ff35+2338bb29up8QcHBzNgwADHY7vdzltvvUXfvn1P+1kF9/gsn0v87vI5bsjS09Np0qQJZrPZsSwsLIzi4mKys7Np2rSpC6OrO4ZhsH//fr7//nsWLVqEzWbj8ssvZ+LEiaSnp1f48gtl79vExEQA0tLSTvu+9iRVnT894dxTV6o6Jnv37sVkMrFw4UK+/fZbQkJC+Mc//sHf/vY34PTvC2df12uTp1+jxPU89TxT3977gwcP5siRIwwaNIihQ4fy1FNPuX0dfvrpJ3755RfWrFnDY4895lh+LtdpZ56P6+q7hrPqkJSURIsWLVi9ejULFy6kpKSEESNGcNddd3lE/DWlllK1bMiQIWzbto333nuP0tJSvvvuO7744gtKSkoAKCwsrHADAmA2m7FarRQVFTken6rcWc5Uh5MdOnSIKVOmcNVVV9GlSxe3qMOZ4n///fcpKSnhhhtuqLTtqeIv/787vQYFBQXMmTOHCy+8kP/85z80b96cO+64g/z8fLeow5niT0tLo7i4mDlz5vDuu+9y4YUXMmnSJIqLi10a/+zZs9mxYwf33XffaT+r4J6f5ZrEfzJ3/Bw3BFW9RuDc842zHTlyxFH3F154gYceeog1a9bw7LPPnvF9W1RUVO/fl5547qlr+/btw2Qy0aZNGxYvXsz111/Po48+yueffw6c/n3hDtfE2uLp1yhxH572/vH09/5LL73EwoUL2blzJ7NmzXL7OhQXFzN9+nSmTZuGn59fhbJzuU4783xcV981nFWHgoICDh48yLvvvsusWbN46KGHePPNN3nttdc8Iv6aUkupWtahQwdmzJjBk08+yfTp0+ncuTM333yzY7YLi8VS6QW3Wq0EBwdjsVgcj/9c7u/v75wKcOY6lNu/fz//+Mc/aNmyJU8++SSAW9ThdPGnp6fz/PPP89prrzmaPJ7s5A/ln+viTq+Bt7c3gwcP5rbbbgNgxowZXHLJJXz55Ze0atXK5XU4U/zTp09nyJAhXHXVVQDMnTuXSy65hC+++ILo6GiXxD979mxef/11nn/+eTp06IDFYiE7O7vCOlar1XFxdrfPck3jL+eun+OGoKr3EFDpdapPWrRowcaNG2ncuDEmk4nOnTtjt9uZNGkSvXv3PuUxOdPnrj69Lz3t3OMM1157LYMGDSIkJASATp06ceDAAZYvX85ll1122veFu1zXz5WnX6PEvXjS+6c+vPe7desGlCV7HnzwQa677rpKs+W5Ux3mz59P165dK7RWK1dVbNW5TjvzfFxX3zWcVQcfHx/y8vKYO3cuLVq0AMoSbcuXL6dVq1ZuH39NqaVUHbjuuuv45Zdf+Oabb/jvf/+LyWRy3GhHRkaSkZFRYf2MjAzCw8MJCQnBYrFUKC8tLSU7O5vw8HC3qQNAYmIif//732nWrBlLlixxfAjcpQ5Vxf/9999z7NgxbrzxRmJjYxk+fDgAw4cPZ+HChURGRgJ/dOM7+f/u9BqEh4dz/vnnO9Y1m820aNGClJQUt6nD6eL/7bff6NSpk2PdwMBAWrVqRXJyskvinzFjBsuWLWP27NkMHToUqPqzWt6s1Z0+y2cTP7j/57i+i4yM5NixY5SWljqWpaen4+fnR3BwsAsjq3shISEVfhho27YtxcXFhIeHn/Xnrr7wpHOPs5hMJkdCqlybNm04evQocPpj4i7XxHPh6dcocT+e8v7x5Pd+RkYG69evr7CsXbt2lJSUnNO1zhl1WLduHevXryc2NpbY2FjWrFnDmjVriI2NPafj7+zzcV1813BWHcLDw7FYLI6EFMD555/vuNdz9/hrSkmpWrZhwwbuu+8+vL29iYiIwDAMvvvuO/r06QNATEwM8fHxjvULCwvZsWMHMTExeHl50a1btwrlW7duxcfHp8INvKvrkJaWxujRo2nVqhVLly4lKCjIsa071OF08V922WV8+umnrF69mtWrV7N48WIAFi9ezE033URkZCRRUVEV4o+PjycqKsqpfWzP9Br06NGD33//3bG+1WolKSmJ6Ohot6jDmeKPiIhg7969FeI/fPiwS+KfP38+7777Ls899xzDhg1zLI+JieG3335zNHMtjyMmJsZR7g6f5bON390/xw1B586d8fHxqTAJQ3x8PN26dcPLq/5ensvPBSf/Srxz505CQkKIi4tjy5YtGIYBlI0JsXnz5io/dykpKaSkpDjK6wNPOfc404svvsgdd9xRYdmuXbto06YNcPr3hTtcE8+Fp1+jxD15wvvH09/7hw8fZsKECY7kOcCvv/5K06ZNiYuLc+s6vPnmm6xZs8ZxvzR48GAGDx7M6tWriYmJOevrtDPPx3X1XcNZdYiJiaG4uJj9+/c7lu3bt48WLVp4zGtQI06f768eOnmK1dTUVCMmJsZ4++23jUOHDhnTp083BgwYYOTl5RmGYRhJSUlGt27djEWLFhm7d+827r33XuOqq65yTOm4du1ao2fPnsbnn39uJCQkGMOGDTNmzJjhVnW4//77jYsvvtjYt2+fkZaW5vgrL3dFHWoS/8mSkpKMDh06GElJSY5lixYtMvr3729s2LDB2LBhg9G/f3/j1VdfrdP4a1qHrVu3Gl26dDHefvttY//+/cbUqVONv/zlL46pZV1Rh5rEv2jRIqN3797Gl19+aezdu9eYPHmyMXjwYKOoqMip8e/Zs8fo3Lmz8fzzz1d4L6elpRmlpaXGlVdeafzf//2fsXv3bmPRokVGjx49jOTkZMMw3OOzfC7xu+PnuCF69NFHjWHDhhkJCQnG559/bvTs2dP47LPPXB1WncrNzTUGDBhg3H///cbevXuNr7/+2ujfv7+xePFiIzc31+jbt68xY8YMIzEx0ZgxY4bRr18/x7lt8+bNRpcuXYz33nvP2Llzp/H3v//duPPOO11co3N38vnTE849znDyMUlISDAuuOACY8mSJcbBgweNt99+2+jatauxefNmwzDO/L5w1XX9XHn6NUrciyedZ+rDe7+0tNQYMWKEMXr0aCMxMdH4+uuvjYsvvth47bXXPKYO5R566CHjoYceMgzDOOfrtLPOx3X5XcNZdRg3bpxx4403Gjt37jS+/fZbo2/fvsbrr7/uMfHXhJJSteDkk7xhGMZXX31lXH755UZMTIwxatQoY8+ePRXW//rrr40hQ4YY3bt3N26//Xbj0KFDFcoXLVpkXHTRRUZcXJwxZcoUx426O9TBbrcb3bt3Nzp06FDp76WXXnJZHWr6GpQ7VVKqtLTUeOqpp4xevXoZffr0MWbPnu24CLhTHT7//HNj6NChRteuXY2bbrrJ2L17t0vrUJP4S0tLjUWLFhmDBw82evbsaYwZM6bC58BZ8S9atOiU7+UOHToYhmEYBw4cMG699Vaja9euxrBhw4wffvihwvau/iyfbfzu+jluiAoKCozJkycbPXr0MPr3728sW7bM1SE5xe7du4077rjD6NGjh9GvXz9j3rx5js94QkKCce211xrdunUzRo4cafz2228Vtl21apUxcOBAo0ePHsb48eONrKwsV1ShVv35/Onu5x5n+PMx+fzzz42rrrrK6Natm3H55ZdXSt6e7n3hquv6ufL0a5S4F086z9SX935qaqoxfvx4o2fPnka/fv2MV155xXHu8ZQ6GEbFpJRhnNt12pnn47r6ruGsOuTk5BiTJk0yevToYVx00UUeF39NmAzjRLsvERERERERERERJ6m/g1aIiIiIiIiIiIjbUlJKREREREREREScTkkpERERERERERFxOiWlRERERERERETE6ZSUEhERERERERERp1NSSkREREREREREnE5JKRERERERERERcTolpURERERERERExOmUlBIREREREREREadTUkpERERERERERJxOSSkREREREREREXE6JaVERERERERERMTplJQSERERERERERGnU1JKREREREREREScTkkpERERERERERFxOiWlRERERERERETE6ZSUEhERERERERERp1NSSkREREREREREnE5JKRERERERERERcTolpURERERERERExOmUlBIREREREREREadTUkpERERERERERJxOSSkREREREREREXE6JaVERERERERERMTplJQSERERERERERGnU1JKREREREREREScTkkpERERERERERFxOiWlRERERERERETE6ZSUEhERERERERERp1NSSkREREREREREnE5JKRERERERERERcTolpURERERERERExOmUlBIREREREREREadTUkpERERERERERJxOSSkREREREREREXE6JaVEnMQwjHr5XCIiIiIi4jz6ri/1iZJSInVg3bp1DBo0iK5duzJt2jQSExO5+eaba7yfwYMH8/DDD9domy+++IKHHnqoyvI333yTwYMHV1p+8OBBOnbsWOlv+PDhNY5bRMSTnc25V0RExBn+/F1/48aNdOzYkY0bN7owKpGz5+PqAETqoyeeeILWrVvz9NNPExkZyZo1a9iyZYtTnvu1116rsmzdunWOmP5s586dju39/f0dy/38/Go9RhERERERqbk/f9fv0qULK1asoF27dq4JSOQcKSklUgeys7Pp168fffr0cXUoAGRmZvLiiy+yYsUKQkJCTrnOzp07adasGRdddJFzgxMRERERkbMSFBREjx49XB2GyFlT9z2RP/n111+5/fbbiYuLIzY2ljvuuIOtW7c6yj/99FOuuuoqunfvzt/+9je2bNnCBRdcwH//+19H81mABQsW0LFjRx5++GHmz58PQMeOHZk3b95Zx5abm8usWbO49NJL6datG8OHD+f99993lN92221s2rSJTZs2VWjGu3DhQr7//nvmzZvHoEGDTrnvXbt20blz57OOTUSkPikpKeHZZ5+lX79+9OjRg9GjR3Pw4EFH+Q8//MAtt9xCXFwcffr04YEHHiAlJcVRPm/ePMf14GR/vg6sXbuWq6++mu7du9O3b18efPBBjh49WmGblStXMmzYMLp27coll1zCvHnzsNlsNa7Tzz//zJgxY7jwwgvp2rUrgwcPZt68edjtdsc6aWlp3HffffTu3ZsLL7yQadOm8fzzz1fq9l1bMYmIOMvgwYN56qmnuP322+nevTtTp04lOzubadOmcfHFF9OtWzduuOEGfvrppwrbdezYkbfffpupU6fSu3dvYmNjuffee8nIyKiw3scff8yIESOIjY2lX79+TJs2jePHjwOwefNmOnbsyFdffVVhm507d9KxY0c+//xzAA4fPszkyZPp378/Xbp04aKLLmLy5MkcO3YMOPV3/VN139u+fTtjxoyhT58+9OzZk3/9618kJiY6ysu3+emnnxg9ejQxMTH069eP2bNn1/hcbrPZWLx4McOHD6d79+706NGDm266iQ0bNlRY7+uvv2bEiBF0796doUOHsnbtWi677LIK18TqvB5S/ygpJXKSvLw8xo4dS5MmTZg3bx7PP/88hYWFjBkzhtzcXL744gvuvfdeOnTowPz587nsssu46667HF/oy5vPAowcOZIVK1Zwzz33MHLkSABWrFjB9ddff1axFRUVccstt7BmzRrGjh3Lyy+/TFxcHFOnTmXhwoUATJ8+nQsuuIALLriAFStW0KVLFwBuuukmPvvsM4YMGVLl/nfu3El+fj433XQT3bp1o1+/fsyZM4eSkpKzildExJN9/PHHJCYm8vTTTzN9+nR+/fVX7rvvPgBWr17N6NGjad68Oc899xxTpkxhy5Yt3HjjjWRmZlb7OeLj45k8eTJDhgzhP//5D1OmTGHDhg088MADjnUWLVrEo48+ykUXXcTChQu59dZb+c9//sOjjz5ao/rs2rWLO+64g5CQEJ5//nleeeUVevXqxfz58/nkk08AsFqt3H777WzevJlHHnmEWbNmsWvXLl599dUK+6qtmEREnO3tt9+mW7duvPzyy4wcOZLbb7+dL774gvvuu4/58+fTrFkzxo4dWykR8vzzz2O323nuueeYPHkyX331FU899ZSj/OWXX+b++++nR48evPTSS4wfP57PPvuM2267jaKiInr27Ml5553HunXrKux37dq1hISEMHDgQAoLCxk1ahR79+5l+vTpLF26lFGjRrFu3Tqef/55oOrv+ifbsGGDYyzbp556iieffJKUlBRuuukm9u7dW2HdBx98kLi4OBYuXMjw4cNZsmQJK1eurNExnTNnDi+//DI33ngjS5YsYcaMGWRnZ3PvvfdSWFjoiOnuu++mefPmzJs3j1tvvZXp06dX+DGnuLi42q+H1C/qvidykj179nDs2DFGjRpFz549AWjTpg0rVqwgPz+fBQsW0LVrV+bOnQvAX/7yF0wmEy+88AJQsflss2bNKvwfOKemtf/973/ZvXs37777LrGxsQAMGDCA0tJSXn75ZW666SbatWtHUFBQpedq27btafedlZXF0aNHsdlsTJo0iaioKH766Sf+85//kJKS4qiviEhDERkZycsvv4yvry9QNhnEK6+8Ql5eHnPmzKF///4Vzo09e/bkyiuvZOnSpUyePLlazxEfH4+fnx/jxo3DbDYDEBISwvbt2zEMg7y8PMcX/X//+98A9O/fn5CQEP7973/zj3/8g/bt21fruXbt2sXFF1/M7Nmz8fIq+02yX79+fPnll2zcuJFhw4bx0UcfsW/fPlatWkXXrl0B6Nu3L5deeqljP7m5ubUWk4iIs0VFRfHggw8C8N5777Fr1y7ee+89YmJigLLv9rfddhtz5sxh1apVju06dOjArFmzHI+3bdvGp59+CsDx48d55ZVXuOGGG5g2bVqFbW699VZWrVrFrbfeytVXX82rr75KUVERfn5+GIbBxx9/zOWXX47ZbHYMpfHMM8/QsmVLoOwcnJCQwKZNmwCq/K5/srlz59KqVSsWL16Mt7c3UHaevuyyy3jppZd48cUXHetef/31jB8/HoCLLrqI9evX8/XXX3PTTTdV+5iWt7C97bbbHMssFgv33HMPv//+Oz169GDevHm0b9+e+fPnYzKZAAgNDeX+++93bPPhhx9W+/WQ+kUtpURO0r59e5o2bcq//vUvpk2bxueff05YWBiTJk2icePG/Pbbb/z1r3+tsM3VV1/tlNg2bdpEixYtHAmpk5+/uLiYhISEs953QEAAr776KitWrODaa6+ld+/e3HvvvYwfP561a9dW+lVFRKS+6969uyMhBRAdHQ3Ajh07SE9PrzQz6XnnnUdsbKzjxqE6LrzwQgoLCxk+fDhz587ll19+oX///kyYMAGTycSWLVsoKipi8ODBlJaWOv7Ku9L98MMP1X6ua6+9lv/85z+UlJSwa9cuPvvsM1566SVsNpujReyGDRto2bKlIyEFZT+2nNztuzZjEhFxtpOHqvjpp58IDw+nS5cujnOZzWZj0KBB/Prrr46ud1A5AdSsWTNHK6CtW7ditVorXRd69epFixYtHNeFq6++moKCAkcXvs2bN3PkyBGuueYaR2zvvPMOLVq04MCBA3zzzTcsXbqUffv2YbVaq1W/goICtm/fzhVXXOFISAEEBwczaNCgSteoP99XNGvWjIKCgmo9V7m5c+dy++23k5WVxS+//MKqVav46KOPgLIWuFarlS1btjBkyBBHQgrg8ssvx8fnjzYyNXk9pH5RSymRkwQGBvL222/zyiuv8Mknn7BixQr8/Py45ppruPPOOwFo2rRphW1ONZNdXTh+/Djh4eGVloeFhQGQk5Nz1vv28/OjX79+lZZfcsklvPDCC+zateuMra1EROqTgICACo/LWxeVf8kvP/eeLCwsjB07dlT7OWJjY1m8eDGvvfYay5YtY/HixYSFhfGvf/2L2267jezsbADGjRt3yu3T0tKq/VxFRUXMmDGDDz/8kNLSUqKjo4mNjcXHxwfDMAA4duwYoaGhlbY9eVltxiQi4mwnn9uzs7NJT08/ZRc4gPT0dBo3bgxQYWZqKLsmlJ87y5MlVV0XcnNzAWjVqhWxsbGsW7eOK664gnXr1nHeeec5emcALFu2jIULF5KdnU1YWBhdu3bF39/fsY8zyc3NxTCMM8ZS7s+zbJ9cr+ravn07jz/+ONu3b8ff35927doRFRUFgGEYZGdnY7PZKl1fvL29K0zAVJPXQ+oXJaVE/qRNmzaOQf62bdvGhx9+yPLly4mIiMDLy6vSoIblX9DrWuPGjSsMslsuPT0dgCZNmpz1vg8cOMCGDRu48sorCQ4OdiwvKioCKifiREQaqvIv0H++FkDZ+bj8XFz+a7DNZnMksvLz8yttM2DAAAYMGEBhYSEbNmzgjTfe4MknnyQmJsZxPp4zZw6tW7eutO2pbjqqMnPmTD777DNeeOEFLr74YseN2ckzrkZGRnLgwIFK2548TlZtxiQi4kqNGjWidevWzJkz55Tl5S1kz6Q8UZKRkUGbNm0qlKWnpzu64kFZa6lZs2aRm5vLp59+6hj7CWDNmjU8/fTTTJo0iREjRji+f997771s37692nUymUxVXqOqmoX7bJWPx9uxY0fWrVtHmzZt8PLy4ptvvuGzzz4Dyn7Y8PX1rRST3W6vcB9VW6+HeB513xM5yaeffkrfvn1JT0/H29ub2NhYHnvsMYKDg8nKyiI2Npb//e9/FX5B+PMsGqdS/gv7ubjwwgtJTk5my5YtFZZ/9NFH+Pr60r1797N+rvT0dKZPn+7oG1/u448/JigoqMpfLEREGhqz2Ux4eDhr166tsDwpKYmtW7c6fvEuH/MjNTXVsU58fHyFbZ555hmuu+46DMPA39+fQYMG8dBDDwFw5MgRYmJi8PX15ejRo3Tr1s3x5+Pjw3PPPcfhw4erHXd8fDx9+vTh0ksvdSSkfv31V7KyshyTdfTu3ZvDhw+zc+dOx3ZFRUV89913jse1GZOIiCv17t2blJQUQkNDK5zPfvjhB5YsWVKh+9vpxMTEYDabK10XfvnlF44cOVKhJdSVV16JYRi8+OKLZGZmVhgGJD4+nuDgYMaOHetISOXn5xMfH19hltTTfdcPCAiga9eufPLJJxVm0cvNzeXrr78mLi6uWnWqrn379pGdnc2oUaNo166dI7Zvv/0WKEs8eXt707NnT7744osK23755ZeUlpY6HtfW6yGeRy2lRE7Ss2dP7HY748ePZ9y4cQQGBvLJJ5+Qm5vLkCFDuPLKK7njjjsYP348N954I4cOHaowWGBVyn9ZXrt2LTExMRV+MamuESNG8M477zB+/HgmTpxIdHQ0X375JatWrWLChAmO5wgODmbLli389NNPXHDBBdVq5hoXF8dFF13E008/TVFREe3atePrr7/mzTff5OGHH67QekpEpCEzmUzcf//9TJkyhQceeICrr76aY8eOMX/+fBo3bsw//vEPAAYOHMisWbOYNm0aY8aMISUlhQULFhAYGOjYV9++fVm2bBkPP/wwV199NSUlJSxZsoSQkBD69u1LSEgIY8eO5cUXXyQvL48+ffpw9OhRXnzxRUwmE506dap23N27d+eTTz5h+fLltG3bll27dvHKK69gMpkc46IMHz6cxYsXM378eO69916Cg4NZtmwZmZmZjq4YTZo0qbWYRERcacSIEbz11lv84x//4F//+hfNmzfnxx9/5D//+Q9///vfK4wreDohISGMGzeOBQsW4Ovry6BBgzh8+DAvvvgi7dq1429/+1uFdQcOHMg777xDbGwsrVq1cpR1796d5cuX8/TTTzNo0CDS0tJYunQpGRkZFb7P//m7/p898MADjBkzhnHjxnHLLbdQUlLC4sWLsVqtjkHNa8v5559PUFAQCxcuxMfHBx8fHz777DPef/99AMf1ZeLEidx2221MnDiRkSNHcuTIEcc9VHnL4tp6PcTzKCklcpKIiAiWLFnCiy++yNSpUyksLKR9+/bMmzePvn37ArB06VJmz57NhAkTOO+883jooYccMxBVZciQIXz44Yc8/PDDjBw5kscee6zGsfn7+/Pmm28yd+5cx81AmzZtmDlzJiNHjnSsd+utt/Lrr7/yz3/+k1mzZnHVVVedcd9eXl7Mnz+f+fPn89prr5Gens55553HjBkzuP7662scq4hIfTZixAgCAwNZtGgR48ePJygoiAEDBnD//fc7xv47//zzeeaZZ3jllVcYN24cbdu2ZcaMGcyYMcOxn4EDBzJnzhxeffVVx+DmcXFxvPHGG44uFv/3f/9HeHg477zzDkuWLKFx48ZcdNFF3H///TRq1KjaMT/88MOUlJTwwgsvYLVaiY6O5q677mLPnj18+eWX2Gw2fHx8WLp0KTNnzuSxxx7Dx8eHq6++mpCQEPbv3+/YV23FJCLiSgEBAbz99tvMnTuX2bNnk5ubS4sWLXjggQcYPXp0jfZ1zz33EBYWxltvvcWKFSsICQnh8ssv5//+7/8qjVF4zTXXsH79+krf0f/2t79x+PBhVq1axTvvvENkZCQDBw7klltu4dFHH2Xv3r20bdu20nf9iIiICvu56KKLWLZsGS+99BL3338/ZrOZXr168cwzz9T67KiNGjXi5Zdf5tlnn+Xee+8lMDCQzp0789Zbb/HPf/6TX375hcGDB9OrVy/mzZvHiy++yN13302LFi149NFHue+++xw/1tTm6yGexWTUdCQzEang8OHD/PWvf2XWrFmMGDHC1eGIiIiclcTERPbt21dphqSRI0fSrFkz5s+f78LoRETEU33xxRc0a9aswpAgiYmJDB8+nJdffrnS7ObSsKillIiTGYZRoY93Vby9vSvcFIiIiPzZyeNxVMXLy6ta4w0WFBRw7733csstt3DZZZdhs9n4+OOP+fXXX3nwwQdrI1wREfEAtX2/8v333/Pxxx/z4IMPcv7553P06FFeeeUV2rRpQ//+/WsjZPFgSkqJONkHH3zAlClTzrjeG2+8QZ8+fZwQkYiIeKrqTETxt7/9jaeffvqM68XExPDCCy+wdOlSVq9ejWEYXHDBBSxZssTRhV1EROq/2r5feeihh/Dz8+OVV14hLS2NkJAQBgwYwAMPPIDFYqmNkMWDqfueiJMdO3asWrMTlQ8cKCIiUpXqTBPepEkTTaUtIiLVpvsVcSYlpURERERERERExOnOPMCAiIiIiIiIi1mtVh5//HEuvPBCLr74Yp577jnKf1/fsWMH119/PTExMVx33XX8+uuvFbZdu3Ytl156KTExMYwfP56srCxHmWEYzJkzh759+9K7d2+effZZ7Ha7o/zYsWPcc889xMbGMnjwYD788EPnVFhEpAFQUkpERERERNzek08+yY8//sjSpUuZO3cu7733HitWrKCgoIBx48bRq1cv/vvf/xIbG8udd95JQUEBANu2bWPq1KlMmDCBFStWkJOTU2G8nGXLlrF27Vrmz5/PSy+9xJo1a1i2bJmjfMqUKeTm5rJixQruuusu/v3vf7Nt2zan119EpD5S9z0REREREXFr2dnZ9OvXj2XLltG7d28AFi9ezP79+4mLi+OVV15h/fr1mEwmDMNg6NCh/Otf/2LEiBFMnjwZLy8vx4D/KSkpDBo0iM8//5yWLVtyySWXMHHiREaMGAHAhx9+yIsvvsiXX37JoUOHuOyyy/jiiy8cY7NNnToVm81WrQkERETk9NRSSkRERERE3Fp8fDxBQUGOhBTAuHHjmDVrFgkJCcTFxTmmpjeZTPTs2ZOtW7cCkJCQQK9evRzbNW/enKioKBISEjh69CgpKSlceOGFjvK4uDiSk5NJS0sjISGB5s2bV5gsIC4uji1bttRxjUVEGgYfVwfgyTIzc6lJOzOTCUJDG9V4u/pC9Vf9VX/3qn95TFK73Ok1/jN3fB/WlKfXwdPjB8+vg6fHD3VbB3e9NiQlJdGiRQtWr17NwoULKSkpYcSIEdx1112kp6fTrl27CuuHhoaSmJgIQFpaGhEREZXKU1NTSU9PB6hQHhYWBuAoP9W2R48erXEddO9QPaq36t0QeGK96+r6oKTUOTAMzuoNdLbb1Reqv+qv+rs6CqlLnvAae0KMZ+LpdfD0+MHz6+Dp8UP9qEN1FRQUcPDgQd59911mzZpFeno606ZNw9/fn8LCQsxmc4X1zWYzVqsVgKKioirLi4qKHI9PLoOygdXPtG8RETk3SkqJiIiIiIhb8/HxIS8vj7lz59KiRQsAjhw5wvLly2nVqlWlJJHVasXPzw8Ai8VyynJ/f/8KCSiLxeL4P4C/v3+V25bvuybOtoWBO7ZccwbVu2FRvRsuJaVERERERMSthYeHY7FYHAkpgPPPP5+UlBR69+5NRkZGhfUzMjIc3e4iIyNPWR4eHk5kZCQA6enpjnGjyrv0lZdXtW1Nqfte9ajeqndD4In1rqvuexroXERERERE3FpMTAzFxcXs37/fsWzfvn20aNGCmJgYtmzZQvmk4oZhsHnzZmJiYhzbxsfHO7ZLSUkhJSWFmJgYIiMjiYqKqlAeHx9PVFQUERER9OjRg+TkZFJTUyuU9+jRo8Z1KO9uWZO/s93O0/9U74b1p3p7zl9dUFJKRERERETcWps2bbjkkkuYMmUKu3bt4rvvvmPx4sXcfPPNXH755eTk5DBz5kz27NnDzJkzKSws5IorrgDg5ptv5sMPP2TlypXs2rWLyZMnc8kll9CyZUtH+Zw5c9i4cSMbN25k7ty5jBo1CoCWLVvSv39/Jk2axK5du1i5ciVr167l1ltvddmxEBGpT9R9T0RERERE3N6cOXOYMWMGN998M/7+/tx6663cdtttmEwmFi1axPTp03nvvffo2LEjixcvJiAgAIDY2FieeOIJXnrpJY4fP06/fv2YMWOGY79jxowhMzOTCRMm4O3tzciRI7njjjsc5c8++yxTp07lhhtuIDw8nKeeeoru3bs7u/oiIvWSyTDqqhFW/ZeRUfN+4WFhjWq8XX2h+qv+qr971b88Jqld7vQa/5k7vg9rytPr4Onxg+fXwdPjh7qtg64NdUf3DtWjeqveDYEn1ruurg/qviciIiIiIiIiIk6npJSIiIiIiIiIiDidklIiIiIiIiIiIuJ0SkqJiIiIiIiIiIjTKSklIiIiIiLiZqyldleHICJS55SUEhERERERcSM7UnMZNP9HFny1x9WhiIjUKR9XB9DQGIaBYRiAydWhiIhIAzH6zrFkZmUD4OPrTWmJzVEW2jSEVxctcVFkIiJyKnsz8ikutfPLgSxu7Bbp6nBEROqMklIiIiL1XGZWNsPumwNAQICFgoJiR9m65x90VVgiIlIFs3dZh5ZideETkXpO3fdERERERETciNlHSSkRaRiUlBIREREREXEjfySlbGdYU0TEs3lEUspqtTJ8+HA2btzoWLZ161ZuuukmYmNjGTp0KCtXrqywzY8//sjw4cOJiYlh1KhRJCUlVSh/7bXXGDBgALGxsTzyyCMUFhY6pS5w8rhSIiIiIiIiFVnKu++VqKWUiNRvbp+UKi4u5v777ycxMdGxLD09nX/+85/07t2bDz74gIkTJzJjxgy+/vprAI4cOcL48eMZMWIE77//Pk2bNuXuu+92JII+++wz5s+fzxNPPMHrr79OQkICs2fPdkX1REREREREKlD3PRFpKNw6KbVnzx5uuOEGDh06VGH5+vXrCQsL4/7776d169YMGzaMa6+9ljVr1gCwcuVKunbtyujRo2nfvj2zZs0iOTmZTZs2AfDGG29w++23M2jQILp3787jjz/OqlWrnNpaSkRERERE5FTKW0pZlZQSkXrOrZNSmzZtok+fPqxYsaLC8gEDBjBr1qxK6+fl5QGQkJBAr169HMv9/f3p0qULW7duxWazsX379grlPXr0oKSkhF27dtVRTURERERERKpHY0qJSEPh4+oATueWW2455fLo6Giio6MdjzMzM1m3bh333HMPUNa9LyIiosI2oaGhpKamkpOTQ3FxcYVyHx8fQkJCSE1NrVF8JlONVnes/+d/G4qGWu9yqn/Ffxsad6y/O8UiIiIifzD7lF2k1X1PROo7t05KVUdRURH33HMPYWFh3HjjjQAUFhZiNpsrrGc2m7FarRQVFTken6q8JkJDG9U4XsMwCA1thMlkwtRA7wjP5rjVJ6q/6i8iIiJyOmZvjSklIg2DRyel8vPzufvuuzlw4ADvvPMO/v7+AFgslkoJJqvVSnBwMBaLxfH4z+Xl21dXZmYuNZlEz2SCpk2DyMzMBRpeUspkKrshr+lxqy9Uf9Xf3epfHpOIiIi4l/KklM1uUGo38G5g9w0i0nB4bFIqLy+PsWPHcujQIV5//XVat27tKIuMjCQjI6PC+hkZGXTu3JmQkBAsFgsZGRm0bdsWgNLSUrKzswkPD69RDIbBWd1cussNqauc7XGrL1R/1b8h119ERETOzOLzx9C/1lI7/r7eLoxGRKTuuPVA51Wx2+1MmDCBw4cP8+abb9K+ffsK5TExMcTHxzseFxYWsmPHDmJiYvDy8qJbt24Vyrdu3YqPjw+dOnVyWh1EROTcWK1Whg8fzsaNGx3Ltm7dyk033URsbCxDhw5l5cqVFbb58ccfGT58ODExMYwaNYqkpKQK5a+99hoDBgwgNjaWRx55RLOyioiIS/h6V0xKiYjUVx6ZlHr//ffZuHEjTz75JMHBwaSnp5Oenk52djYA1113HZs3b2bx4sUkJiYyZcoUoqOj6dOnD1A2gPrSpUtZv34927Zt47HHHuOGG26ocfc9ERFxjeLiYu6//34SExMdy9LT0/nnP/9J7969+eCDD5g4cSIzZszg66+/BuDIkSOMHz+eESNG8P7779O0aVPuvvtujBNN1z777DPmz5/PE088weuvv05CQgKzZ892RfVERKSB8/Yy4eNV1mXPalNSSkTqL4/svvfZZ59ht9u58847Kyzv3bs3b775JtHR0cybN4+nnnqKBQsWEBsby4IFCxxjOA0bNozk5GSmTZuG1WplyJAhTJo0yRVVERGRGtqzZw8PPPCAI5lUbv369YSFhXH//fcD0Lp1azZu3MiaNWu45JJLWLlyJV27dmX06NEAzJo1i379+rFp0yb69OnDG2+8we23386gQYMAePzxxxkzZgyTJk3SjxYiIuJ0Fh8vSq02JaVEpF7zmKTU77//7vj/0qVLz7j+wIEDGThwYJXl48aNY9y4cbUSm4iIOE95Eum+++6jR48ejuUDBgygc+fOldbPy8sDICEhgV69ejmW+/v706VLF7Zu3UqvXr3Yvn07EyZMcJT36NGDkpISdu3aRWxsbN1VqBaMvnMsmVnZVZbv3pvIMOeFIyIitcDs7UU+Ns3AJyL1msckpURERKCsC/apREdHEx0d7XicmZnJunXruOeee4Cy7n0REREVtgkNDSU1NZWcnByKi4srlPv4+BASEkJqamqN4nPFBEmZWdkMu29OleU77hwO/BGbyVRxwH1PmtTp5Dp4Ik+PHzy/Dp4eP9RtHTz5uNQ3Zp8T3feUlBKRekxJKRERqXeKioq45557CAsL48YbbwTKJr0wm80V1jObzVitVoqKihyPT1VeE6Ghjc4h8rPj4+tNQIClynKTiQrl/v5//N/H15uwMOfHfK5ccZxrk6fHD55fB0+PH+pHHaRq5hODnRer+56I1GNKSomISL2Sn5/P3XffzYEDB3jnnXcc40FZLJZKCSar1UpwcDAWi8Xx+M/lNR1PKjMzlz8Nd1XnSktsFBQUV1luGFBQUIzJVJaQKiwsdsRYWmIjIyPXSZGeO5Op7EbcFce5Nnh6/OD5dfD0+KFu61C+b3E9s09ZUkotpUSkPlNSSkRE6o28vDzGjh3LoUOHeP3112ndurWjLDIykoyMjArrZ2Rk0LlzZ0JCQrBYLGRkZNC2bVsASktLyc7OJjw8vEYxGAZue6NbHtef43PXeE/HnY9zdXh6/OD5dfD0+KF+1EGqZvFWUkpE6j8vVwcgIiJSG+x2OxMmTODw4cO8+eabtG/fvkJ5TEwM8fHxjseFhYXs2LGDmJgYvLy86NatW4XyrVu34uPjQ6dOnZxWBxERkXLlLaXUfU9E6jMlpUREpF54//332bhxI08++STBwcGkp6eTnp5OdnY2ANdddx2bN29m8eLFJCYmMmXKFKKjo+nTpw9QNoD60qVLWb9+Pdu2beOxxx7jhhtuqHH3PRERkdpQnpQqsak5nIjUX+q+JyIi9cJnn32G3W7nzjvvrLC8d+/evPnmm0RHRzNv3jyeeuopFixYQGxsLAsWLMB0YqqpYcOGkZyczLRp07BarQwZMoRJkya5oioiIiKO7nvF6r4nIvWYklIiIuKxfv/9d8f/ly5desb1Bw4cyMCBA6ssHzduHOPGjauV2ERERM6FBjoXkYZA3fdERERERETcjNlbY0qJSP2npJSIiIiIiIibUUspEWkIlJQSERERERFxM+UtpZSUEpH6TEkpERERERERN2PxUfc9Ean/lJQSERERERFxM2afstlhS5SUEpF6TEkpERERERERN+MY6Fzd90SkHlNSSkRERERExM1YNNC5iDQASkqJiIiIiIi4Gd/ygc5thosjERGpO0pKiYiIiIiIuBnHQOdqKSUi9ZiSUiIiIiIiIm7G7GgppaSUiNRfPq4OQERERKQujL5zLJlZ2acsC20awquLljg3IBGRGtCYUiLSECgpJSIiIvVSZlY2w+6bc8qydc8/6ORoRORcff7550yYMKHCsqFDh/LSSy+xY8cOpk+fzu7du2nXrh2PP/44Xbt2day3du1aXnjhBdLT0+nfvz8zZsygadOmABiGwdy5c3n//fex2+2MHDmSBx98EC+vsqTQsWPHmDZtGt9//z1NmjTh3nvv5Zprrqnz+pp91FJKROo/dd8TERERERG3t2fPHgYNGsT333/v+HvyyScpKChg3Lhx9OrVi//+97/ExsZy5513UlBQAMC2bduYOnUqEyZMYMWKFeTk5DBlyhTHfpctW8batWuZP38+L730EmvWrGHZsmWO8ilTppCbm8uKFSu46667+Pe//822bdvqvL6O7ntqKSUi9ZiSUi5gGAaGoVk0RERERESqa+/evXTo0IHw8HDHX3BwMB9//DEWi4XJkyfTtm1bpk6dSmBgIJ9++ikAb731FldccQXXXnstnTp14tlnn+Wbb74hKSkJgDfeeIOJEyfSq1cv+vbty4MPPsjbb78NwKFDh/jqq6948skn6dChA9dffz1XX30177zzTp3X1zHQuVpKiUg9pqSUiIiIiIi4vb1799K6detKyxMSEoiLi8NkMgFgMpno2bMnW7dudZT36tXLsX7z5s2JiooiISGBo0ePkpKSwoUXXugoj4uLIzk5mbS0NBISEmjevDnR0dEVyrds2VI3lTyJWkqJSEOgMaVERERERMStGYbB/v37+f7771m0aBE2m43LL7+ciRMnkp6eTrt27SqsHxoaSmJiIgBpaWlERERUKk9NTSU9PR2gQnlYWBiAo/xU2x49erTGdTiRM6s2i0/ZBtZSe4239WTldW1IdQbVW/V2f3UVq5JSIiIiIiLi1o4cOUJhYSFms5kXXniBw4cP8+STT1JUVORYfjKz2YzVagWgqKioyvKioiLH45PLAKxW6xn3XROhoY1qtH6OcSIpZTcIC6vZtvVBTY9XfaF6NywNtd4nU1JKRERERETcWosWLdi4cSONGzfGZDLRuXNn7HY7kyZNonfv3pWSRFarFT8/PwAsFsspy/39/SskoCwWi+P/AP7+/lVuW77vmsjMzKUmw8oW5JUlzIpLbGRk5Nb4+TyVyVR2o17T4+XpVG/V292Vx1zblJQSERERERG3FxISUuFx27ZtKS4uJjw8nIyMjAplGRkZjm53kZGRpywPDw8nMjISgPT0dMe4UeVd+srLq9q2pgyDGt18mr1OjCllM7DbDceYWQ1FTY9XfaF6NywNtd4n00DnIiIiIiLi1r777jv69OlDYWGhY9nOnTsJCQlxDDxePru1YRhs3ryZmJgYAGJiYoiPj3dsl5KSQkpKCjExMURGRhIVFVWhPD4+nqioKCIiIujRowfJycmkpqZWKO/Ro0cd1xjMPn/cqpXYGvhdq4jUW0pKiYiIiIiIW4uNjcVisfDvf/+bffv28c033/Dss88yduxYLr/8cnJycpg5cyZ79uxh5syZFBYWcsUVVwBw88038+GHH7Jy5Up27drF5MmTueSSS2jZsqWjfM6cOWzcuJGNGzcyd+5cRo0aBUDLli3p378/kyZNYteuXaxcuZK1a9dy66231nmdLSclpaw2zcAnIvWTuu+5gNHQ2+eJiIiIiNRAUFAQS5cu5amnnuK6664jMDCQm266ibFjx2IymVi0aBHTp0/nvffeo2PHjixevJiAgACgLKH1xBNP8NJLL3H8+HH69evHjBkzHPseM2YMmZmZTJgwAW9vb0aOHMkdd9zhKH/22WeZOnUqN9xwA+Hh4Tz11FN07969zuvs4/VHd73iUjtBljp/ShERp1NSSkRERERE3F779u1ZtmzZKcu6d+/OBx98UOW2I0aMYMSIEacs8/b2ZsqUKUyZMuWU5aGhoSxcuLDmAZ8jk8mEr7eJEpuBza4ftUWkflL3PRERERERETfkdWJwc5t6WohIPaWklIiIiIiIiBsq78KnllIiUl8pKSUiIiIiIuKGvJSUEpF6TkkpERERERERN1TeUko5KRGpr5SUEhERERERcUPeaiklIvWcklIiIiIiIiJuSEkpEanvPCIpZbVaGT58OBs3bnQsS0pK4o477qBHjx5ceeWVfP/99xW2+fHHHxk+fDgxMTGMGjWKpKSkCuWvvfYaAwYMIDY2lkceeYTCwkKn1EVERERERKQ6fLzKbtc0+56I1Fdun5QqLi7m/vvvJzEx0bHMMAzGjx9PWFgYq1at4pprrmHChAkcOXIEgCNHjjB+/HhGjBjB+++/T9OmTbn77rsxTpzMP/vsM+bPn88TTzzB66+/TkJCArNnz3ZJ/URERERERE7lRE5KLaVEpN5y66TUnj17uOGGGzh06FCF5Rs2bCApKYknnniCtm3bcuedd9KjRw9WrVoFwMqVK+natSujR4+mffv2zJo1i+TkZDZt2gTAG2+8we23386gQYPo3r07jz/+OKtWrVJrKRERqZdM/sEcyCrAarO7OhQREamB8pZSdrWUEpF6yq2TUps2baJPnz6sWLGiwvKEhAQuuOACAgICHMvi4uLYunWro7xXr16OMn9/f7p06cLWrVux2Wxs3769QnmPHj0oKSlh165ddVshERERJzIMg+/3ZdH4xqf5/PcMPtyeSnaB1dVhiYhINZ0YUopStZQSkXrKx9UBnM4tt9xyyuXp6elERERUWBYaGkpqauoZy3NyciguLq5Q7uPjQ0hIiGN7ERGR+iAxPZ+dR/MA8PUykV1YyvvxhxnZozlmb7f+XUpERDhpTCklpUSknnLrpFRVCgsLMZvNFZaZzWasVusZy4uKihyPq9q+ukym/2fvzuObqtL/gX9ukjZJN0pXaIuA7EtJS5FFQIRBBcHBKei4y6BTRkFH5+sGjCwygICKPwUVVBTFEURcQcF1HEdEsNiy1ELZS2npmq7Zc39/pAkttNDsye3n/XpVyT25955zC/fkPjnnOc7V2/7+C//fXrTXdtux/c3/394EYvsDqS7keQ1GC3adrAIA6LI/xZ1ZD+Kzg+dQazDj4NlaDO7Swc81JCKiy7Gvvsfpe0QkVUEZlFIqldBqtc22GY1GqFQqR/mFASaj0YioqCgolUrH6wvL1Wq1U/WIjY10sua2qRSxsZEQBAFyudzp/aXAlesmJWw/20/kC/mldTBZRMSFh+Lowa8RFvoQrrqiA74rqMD+4hr07xQBVUj77IeIiIKFPSjFlIBEJFVBGZRKTEzE0aNHm20rLy93TMlLTExEeXn5ReX9+vVDdHQ0lEolysvL0aNHDwCA2WyGVqtFfHy8U/WoqKiFM19aCAIQExOBiopaAO0vKCUItgdyZ6+bVLD9bH+gtd9ep2BlNBqRmZmJp59+GsOGDQMAFBYW4umnn0ZOTg6SkpIwd+5cjBo1yrHPrl27sHTpUhQWFkKj0WDJkiXo0qWLo/ztt9/Gm2++ibq6OkycOBFPP/20019YBAJRFHG41DZtb2DnSBwVbU8zV8aG4UBxHcrqDMgvrUNaMkdLEREFMkdQKlA+PBAReVhQJpTQaDQ4dOiQYyoeAGRnZ0Oj0TjKs7OzHWU6nQ55eXnQaDSQyWRITU1tVp6TkwOFQoG+ffs6VQ9RdP7H1f2k8sP2+78ObD/bf2GdgpHBYMA//vEPFBQUOLaJoohZs2YhLi4OW7duxZQpUzB79mycPXsWAHD27FnMmjULmZmZ+PDDDxETE4MHH3wQYuOF2LlzJ1avXo1nnnkGGzZsQG5uLlauXOmX9rnrbI0BdQYLQuQCusecD6oJgoBBjdP2jpY1+Kt6RETURudHSgVxp01EdAlBGZQaOnQoOnfujDlz5qCgoADr1q3D/v37MW3aNADA1KlTsW/fPqxbtw4FBQWYM2cOUlJSHN+k33HHHXjzzTfxzTffYP/+/Vi4cCFuvfXWoPw2nIiovTl69ChuvfVWnD59utn23bt3o7CwEM888wx69OiBmTNnIi0tDVu3bgUAbNmyBQMHDsSMGTPQq1cvLFu2DEVFRdizZw8A4J133sG9996LsWPHYtCgQVi0aBG2bt0KnU7n8za6q6CsHgDQIy4cigsSmveMj4BMAKp0JlTWcyU+IqJAxqAUEUldUAal5HI5XnnlFZSVlSEzMxOfffYZ1qxZg6SkJABASkoKXn75ZWzduhXTpk2DVqvFmjVrIDRm9Z00aRJmzpyJ+fPnY8aMGRg0aBAef/xxfzaJiIjaaM+ePRg2bBg2b97cbHtubi769++PsLAwx7aMjAzk5OQ4yocMGeIoU6vVGDBgAHJycmCxWHDgwIFm5WlpaTCZTMjPz/dugzxMFEWc0doCaT1iwy4qV4XI0SXa9iXM0XKOliIiCmQKJjonIokLmpxShw8fbva6a9eu2LhxY6vvHzNmDMaMGdNqeVZWFrKysjxWPyIi8o077rijxe1lZWWO3IJ2sbGxKCkpuWx5TU0NDAZDs3KFQoHo6GjH/m3l71UNKxtM0JmsUMgEJEYqm5XZ69YzPgynqnQ4UdmACPi/zs7w5EqW/mh3IK7E6axgb0Ow1x/wbhuC+bpIkX2klJkjpYhIooImKEVERHQpOp0OoaGhzbaFhoY6Vlu9VLk9R+Gl9m8rfySPV4TIERZmC0D93pgrqktMGCIjbKvSCgIc5QDQq7NtFb4avRkR4R0RFxd8Ce/bcp2bXpeWyvzZ7mBeZMAu2NsQ7PUHpNEGujQ5R0oRkcQxKEVERJKgVCqh1WqbbTMajVCpVI7yCwNMRqMRUVFRUCqVjtcXljubb9AfKyyaTRY0NBgAACfKbKvudYoIdWwTRaChwQBBANRqJawmMxIilDhXa0B9eDLKy2t9W2E3OLOSZdPr0lKZP9odiCtxOivY2xDs9Qe824ZgX5lVauQCc0oRkbQxKEVERJKQmJiIo0ePNttWXl7umJKXmJiI8vLyi8r79euH6OhoKJVKlJeXo0ePHgAAs9kMrVaL+Ph4p+rhz5UNzRYrSmpso75SolUXlTddBTIlWoVztQYYoq8IygdzT1xnf7Y72FfABIK/DcFef0AabaBLY6JzIpK6oEx0TkREdCGNRoNDhw45puIBQHZ2NjQajaM8OzvbUabT6ZCXlweNRgOZTIbU1NRm5Tk5OVAoFOjbt6/vGuGm8nojLCKgDpGhg+rS3zuldLAFrQxRXZirhIgoQCnkjUEp3qaJSKIYlCIiIkkYOnQoOnfujDlz5qCgoADr1q3D/v37MW3aNADA1KlTsW/fPqxbtw4FBQWYM2cOUlJSMGzYMAC2BOpvvvkmvvnmG+zfvx8LFy7Erbfe6vT0PX8qrbNNP0yIUDpWnG1NXEQolAoZRIUSeSXBM32PiKg9kXH6HhFJHINSREQkCXK5HK+88grKysqQmZmJzz77DGvWrEFSUhIAICUlBS+//DK2bt2KadOmQavVYs2aNY7gzaRJkzBz5kzMnz8fM2bMwKBBg/D444/7s0lOK6215U9KiGw5uXdTMkFAp8b35RZVe7VeRETkGgUTnRORxDGnFBERBa3Dhw83e921a1ds3Lix1fePGTMGY8aMabU8KysLWVlZHqufr50fKRV6mXfadIpS4lSVDjlFNbj7Km/WjIiIXCFjTikikjiOlCIiIpKAeoMZ9UYLBADxbQ1KNRkpxW/hiYgCj32kFHP/EZFUMShFREQkAfZRUh3DQhAib1v3HhceCsFiQrXejJOVDd6sHhERuUAus93P+cUBEUkVg1JEREQSUObk1D3ANi0kpK4EAJBTVOOVehERkevs3zFw+h4RSRWDUkRERBJQ2WALSsWGtz0oBQChtWcBAPuZ7JyIKOAoGkdKWRiTIiKJYlCKiIhIAirqTQBcCErVnQMAHCqp9XidiIjIPTKBic6JSNoYlCIiIgpyFoUKDSYLAFtOKWeENAalTlXqUGcwe7xuRETkOoXcFpSyMihFRBLFoJQfiKIIkckKiYjIQ8xhcQCAKKUCoW1Mcm4nN+vQOUoJEUD+uTov1I6IiFwlb1x9z8JnByKSKAaliIiIgpwpLB4AEBPu3Cgpu/6dIgFwCh8RUaCRc/oeEUmcwt8VICIiau9mzLwfFZXaVstjY6Kxfu0brZabwm0jpZzNJ2U3oFMkvj1SjjwGpYiIAopjpBSDUkQkUQxKERER+VlFpRaTHn2u1fLtqx675P6mxul7sU7mk7LjSCnPu1SgMalTHF5b/ZpvK0REQYnT94hI6hiU8jF7PimhcSguERGRO8xWEWZ1DACgY5hrI6X6JkZAAHCu1oCKeqPLI67ovEsFGneuftLHtSGiYGUPSlmtfq4IEZGXMKeUH9gDU0x2TkRE7irS6gCZHAqZgEil3KVjhIcq0C02DAA4hY+IKIDYg1JmPjcQkUQxKOUnr+866e8qEBGRBJyoaAAARKtD3BqFyyl8RESBR8GcUkQkcQxK+Qun7xERkQecqLQHpdybkT+gMSjFkVJERIHj/PQ9BqWISJoYlCIiIgpixxtHSnV0Mcm5Xf8mQSlOLyciCgxMdE5EUsegFBERURBrOn3PHb3iwhEiF1CtN6OoWu+JqhERkZvknL5HRBLHoBQREVGQslhFnGycvtfRzaBUqEKGXvERADiFj4gCW1ZWFp566inH67y8PNxyyy3QaDSYOnUqDh482Oz927Ztw/jx46HRaDBr1ixUVlY6ykRRxHPPPYfhw4dj6NChWLFiBaxNlrqrqqrCQw89hPT0dIwbNw6ffvqp9xvYhFxgUIqIpI1BKSIioiBVXKOHwWwFrGZEqtzLKQUA/RPtQak6t49FROQN27dvxw8//OB43dDQgKysLAwZMgQfffQR0tPTMXPmTDQ02AL2+/fvx7x58zB79mxs3rwZNTU1mDNnjmP/t956C9u2bcPq1avx0ksv4fPPP8dbb73lKJ8zZw5qa2uxefNmPPDAA/jnP/+J/fv3+6y9nL5HRFLHoBQREVGQso+SUui0kHlgAQ17Xqnfz3GkFBEFHq1WixUrViA1NdWx7YsvvoBSqcQTTzyBHj16YN68eQgPD8eOHTsAABs3bsTEiRNx8803o2/fvlixYgV++OEHFBYWAgDeeecdPPzwwxgyZAiGDx+Oxx57DO+99x4A4PTp0/j+++/xr3/9C71798Ytt9yCP/7xj/j3v//tszYr5PZE5z47JRGRTzEoRUREFKROV+kAAAp9lUeO168xKJV/ro5TRYgo4CxfvhxTpkxBz549Hdtyc3ORkZEBoTEwLwgCBg8ejJycHEf5kCFDHO/v3LkzkpKSkJubi3PnzqG4uBhXXXWVozwjIwNFRUUoLS1Fbm4uOnfujJSUlGblv/32m5dbep79CwczR0oRkUS5P9afiIiI/OJ8UErrkeN1jwmDSiFDg8mCU1UNuDI23CPHpcAxY+b9qKjUtloeGxON9Wvf8F2FiNro559/xq+//orPP/8cCxcudGwvKytrFqQCgNjYWBQUFAAASktLkZCQcFF5SUkJysrKAKBZeVxcHAA4ylva99y5cy61wdkBrYIAKGS2MQRWq+j0/sHK3s720l47ttu/9fC1YGy3t+rKoBQREVGQ8nRQSi4T0DcxAjlFNfi9pI5BKQmqqNRi0qPPtVq+fdVjPqwNUdsYDAYsWLAA8+fPh0qlalam0+kQGhrabFtoaCiMRiMAQK/Xt1qu1+sdr5uWAYDRaLzssZ0VGxvp9D7yYluOP5lchrg45/cPZq5cLylgu9uX9truphiUIiIiClKOoJTOM9P3AFteqZyiGuSV1GLSgESPHZeIyFWrV6/GwIEDMXr06IvKlErlRUEio9HoCF61Vq5Wq5sFoJRKpePPAKBWqy97bGdVVNTCmVl4ggDIG0dK6Y1mlJe3j3x/gmB7UHf2egU7tpvtDnT2Onsag1JERERBSG+y4FytAQAg11d77Lj9E5nsnIgCy/bt21FeXo709HQA5wNHO3fuxOTJk1FeXt7s/eXl5Y5pd4mJiS2Wx8fHIzHRFngvKytz5I2yT+mzl7e2rytEEU4/fCrsq+9ZxaB5cPUUV66XFLDd7Ut7bXdTTHROREQUhM5obdNOIpUKyMw6jx3Xnuz8SFk9zBYu90RE/vfuu+/i888/xyeffIJPPvkE48aNw7hx4/DJJ59Ao9Hgt99+g9j4VCeKIvbt2weNRgMA0Gg0yM7OdhyruLgYxcXF0Gg0SExMRFJSUrPy7OxsJCUlISEhAWlpaSgqKkJJSUmz8rS0NN80HICsSVCKiEiKOFKKiIgoCJ3W2gJRXTqqofXgcbtEqxChlKPOYMGxigb0SYjw4NGJiJyXnJzc7HV4uC3fXdeuXREbG4vnn38eS5YswW233YZNmzZBp9Nh4sSJAIDbb78dd999N9LS0pCamoolS5bg2muvRZcuXRzlzz33HDp16gQAeP755zFjxgwAQJcuXTBq1Cg8/vjjmDdvHg4cOIBt27Zh48aNvmq6Y6QUY1JEJFUMShEREQWh05UNAIArPByUEgQB/RIjsfe0FnkltQxKEVFAi4iIwNq1a7FgwQJ88MEH6NOnD9atW4ewsDAAQHp6Op555hm89NJLqK6uxsiRI7F48WLH/vfddx8qKiowe/ZsyOVyTJs2DdOnT3eUr1ixAvPmzcOtt96K+Ph4LF26FIMGDfJZ+2QCR0oRkbQxKEVERBSEChtHSl0RrcZ+Dx+7fydbUOr3c7X4Ezp7+OhERO559tlnm70eNGgQPv7441bfn5mZiczMzBbL5HI55syZgzlz5rRYHhsbi9dee831yrpJIW8MSrX3pDNEJFkMShEREQUh+8p7V3RUe/zY/RNto6PySuowY+b9qKjUtvre2JhorF/7hsfrQEREgJw5pYhI4hiUIiIiCkL2oFQXbwSlGpOdHy2vR0JVLSY/+lyr792+6jGPn5+IiGzknL5HRBIX1KvvFRcXY+bMmRg8eDDGjRuHt99+21GWl5eHW265BRqNBlOnTsXBgweb7btt2zaMHz8eGo0Gs2bNQmVlpY9rT0RE5Jo6gxmVDSYA3hkplRipRExYCCxWEaZw15Y+JyIi98kdic4ZlCIiaQrqoNQjjzyCsLAwfPTRR5g7dy5efPFFfP3112hoaEBWVhaGDBmCjz76COnp6Zg5cyYaGmxJYffv34958+Zh9uzZ2Lx5M2pqalqdR05ERBRo7PmkYsJCEKH0/KBnQRAwoHG0lDGik8ePT0REbWMPSpk5UoqIJCpog1LV1dXIycnBAw88gG7dumH8+PEYPXo0fv75Z3zxxRdQKpV44okn0KNHD8ybNw/h4eHYsWMHAGDjxo2YOHEibr75ZvTt2xcrVqzADz/8gMLCQj+3ioiI6PJOV3ovn5RdalIUAAaliIj8SeEYKeXnihAReUnQBqVUKhXUajU++ugjmEwmHD9+HPv27UO/fv2Qm5uLjIwMCI1zsAVBwODBg5GTkwMAyM3NxZAhQxzH6ty5M5KSkpCbm+uPphARETnldONIqS7RXgxKdbYFpUyRDEoREfkLE50TkdQFbVBKqVRi/vz52Lx5MzQaDSZOnIhrrrkGt9xyC8rKypCQkNDs/bGxsSgpKQEAlJaWXrKciIgokHlz5T27/p0iIRMAizIK9Uaz185DREStY1CKiKQuqFffO3bsGMaOHYu//OUvKCgowOLFizFixAjodDqEhoY2e29oaCiMRiMAQK/XX7K8rRoHYjn9/qb/d/YYwezC9rc3bH/z/7c3gdj+QKoLOafQB0GpsFA5esSFo6CsHqW1RnSP9fxHhhkz70dFpbbV8tiYaKxf+4bHz0tEFCwcQSkmOiciiQraoNTPP/+MDz/8ED/88ANUKhVSU1Nx7tw5vPrqq+jSpctFASaj0QiVSgXANsqqpXK12rkP97GxkU7X22q1IjY2EmFhSsTFRTqmGLYnrlw3KWH72X7yruLiYixcuBB79+5FdHQ07rnnHkyfPh2AbWXWBQsW4MiRI+jZsycWLVqEgQMHOvbdtm0bXnzxRZSVlWHUqFFYvHgxYmJi/NSSlomi2GSkVJhXzzUoKaoxKGVA91jPn6uiUotJjz7Xavn2VY95/JxERMGEI6WISOqCNih18OBBdO3a1RFoAoD+/fvjtddew5AhQ1BeXt7s/eXl5Y4pe4mJiS2Wx8c7t+x1RUUtnPnSQhCAjh3DUVFRi4YGA8rLa9tVUEoQbA/kzl43qWD72f5Aa7+9TlLzyCOPICkpCR999BGOHj2Kxx57DMnJyRg5ciSysrJw00034dlnn8X777+PmTNn4uuvv0ZYWJhjZdZFixahb9++WLJkCebMmYO1a9f6u0nNVOvMqDXYptOlRKsu8273DEqKwtbcYpTUGrx6HiIiapnckeg8QD48EBF5WNDmlEpISMCpU6eajXg6fvw4UlJSoNFo8Ntvv0FsvHmLooh9+/ZBo9EAADQaDbKzsx37FRcXo7i42FHeVqLo/I99P1f3D/af9tputp/tD9T2S017WJn1TLVtlFRCRChUIXKvnis9pQMAoKzeCJPF6tVzERHRxRQy2+OaVWRgioikKWiDUuPGjUNISAj++c9/4sSJE/juu+/w2muv4e6778aECRNQU1ODJUuW4OjRo1iyZAl0Oh0mTpwIALj99tvx6aefYsuWLcjPz8cTTzyBa6+9Fl26dPFzq4iIyB3tYWXWM1o9ACC5g3dHSQFA5ygV5IYaiCJQWutc3kUiInKfvMmsCiun8BGRBAVtUCoyMhJvv/02ysrKMG3aNCxbtgwPPPAA/vznPyMiIgJr165FdnY2MjMzkZubi3Xr1iEszJYPIz09Hc888wzWrFmD22+/HR06dMCyZcv83CIiInJXIKzMal/EwpkfZ45b1DhSKiVa7fSCGa0l3L9U3UJrzgIAimv0Hm2zs+2+cD9PHN/Vertzbmfq78t6OXtd/NkGT10Hf9chkNtAgUMuP/8LsTAmRUQSFLQ5pQCgZ8+eeOutt1osGzRoED7++ONW983MzERmZqa3qkZERH7i75VZXcnTpQiRIyxMecnyuDjbccv1FgBAr6QOjm2X218Q0KxcrT7/56bHbom6oRg69EVpvanFc1xu/0txpt0Xast1vtTx3al3W1yubf7K5+bONb9QsOekC/b6A9JoA11a05FSTHZORFIU1EEpIiKipgJhZVZXktmbTRY0NLSeTNxssqC8vBYAcOxcDQAgJlTm2Ha5/UURaGgwQBBsASmdzuCoY9Njt0RRVQh0BUqqdaip1UEhbz7I+nL7X4oz7bYThLYvGmAyWXCuqh5anQnR6hBEKs9/7HGn3m3RWtvsz5eXqv+MrPtRXqlt9dhxMdFYv+4Nj9arafnlroszv4NAFOz1B7zbBvuxKTDYE50DzClFRNLklaDU7t27MWzYMLSnleWIiOjSfNE3BMLKrN5KIm8/ZlGTnFLOnqdpwv2WtrdErtciPFSOeqMFJbUGpERfHKTz5nNSa8e+3HU+XlGPiv6Z2LTvrGNbp0glxvaKRURjcMofz3cXLnrQkvJKLSY9+lyrx9i+6jG/XPOW3hfMz8jBXn8geNrAZwPXNQ1KmTlSiogkyCtBqb///e8ICQnBhAkTMHnyZKSlpXnjNEREFER80Tc0XZnVPhWv6cqsr7/+OkRRhCAIsK/M+re//Q3A+ZVZ7VO7XV2Z1Zv0JgtK62yjuXyR6BwAhMZzHSmrxxmtvsWgVKD59bQWj3x8EMaoFAgCEKVUoEZvRkmtAZ8cKMGN/RIufxAvEiEgp6gavxVW42SVDtU6E0wWK0wWEZFKBbTdxiCnqAbxEaFIiAhFiDxoU4ASAeCzgTuaxKQ4fY+IJMkrQamffvoJP/30E3bs2IGsrCxERERg4sSJmDRpEvr37++NUxIRUYDzRd8wbtw4rFy5Ev/85z/xwAMP4MSJE3jttdfw6KOPYsKECXj++eexZMkS3Hbbbdi0adNFK7PefffdSEtLQ2pqKpYsWYJrrw2slVmLa2zTrsJD5YhWh/jsvCnR54NSgS6vpBb/98khGMxWhGpPI3PccEQqFajVm/HV4TJUNpjw9ZFyhMl8d/3sDGYrDpytQdGge3H/+7mtv7GTBntPawHYplLFh4fiyrgw9IwLhzpE7pvKEnkQnw1cJwgC5DIBFqvI6XtEJEleCUopFAqMGTMGY8aMgdlsxq5du/Ddd9/hjjvuQGJiIm666SZkZmYiKSnJG6cnIqIA5Iu+wb4y65IlSzBt2jTExMQ4VmYVBAFr167FggUL8MEHH6BPnz4trsz60ksvobq6GiNHjsTixYs91XyPOKO1rbyX1EHl02kw9lFZVToT6gxmx/S3QHOyogF//+ggGkwWDLkiGkW/rEHkxFEAgEiVApP6J+Cj/SWo0Zth6j7Gp3U7WlaPXSerYDBbgZBwdFApkNElGn0SIhAbHoIQuQwhchmqdSaseed9JAwag3O1BtQbbaPjSuuM+OWUFldEq2EM9+9ILyJn8dnAPXIBsIAjpYhImrz6qdJoNOLHH3/EV199hf/85z/o2LEjxo0bh5MnT2LSpEn4v//7P9x1113erAIREQUYb/cNUl6ZtajaNlLJ11PoVCFyxEeEoqzOiDNaPfomRvj0/G1RUqPHrA/3Q6szoV9iBJ6b0h93fGBp9h5ViBzjesXi80Ol0MX3x/6zNRiUFOXS+WbMvB8Vl0hGfuRYASbBlph414kq/H6uDgAQrQ7BuZ2vIkypR75oRX5LbTlWgNunTQUA1BrMOF2lQ0FZPcrqjDhVpQNSb8M/Pj6Iv43sht4Jgfe7IGoNnw1cI5cJgEWEhSOliEiCvBKU+uabb7Bjxw785z//QUhICG644QasWbMGQ4YMcbznvffewwsvvMCOh4ionWDf4D77SKkUH+WTauqKjmqU1RlxsrIh4IJSVQ1GzP7wAErrjOgWo8ZLmakID235I06nKBX6JITjcGk9XvzPcbx5u8alUWcVl0lGnjdzMqyiiP8UVOBYRQMAYHBKFNJTOuCF1/Zh8mvbLrmvXaRSgQGdIjGgUySqGkzIPVuDgtJa/Hi8ErtOVOKuq7rgryO6Qqlg3ikKXLz/u0fWeI+yWP1cESIiL/BKUOrJJ5/E+PHj8cILL2DkyJGQyy/OfzBw4ED85S9/8cbpiYgoALFvcJ99pFRytO+DUlfGhiG7sBpF1XoYzFaPBEGM4fHYc0qLKp0JAoAIpRwp0Wokd1A1W3HqUuoMZvz9o4M4VaVDYqQSL09NRXTYpfNFZXTpgCPFWhworsGPxytxTY9Yt9vSkl0nqnCsogGCAPyhVxy6x4a5dbyOYSG4tmcsqr9+Fam3/gPfHinHhj2F+O/RCiyY2AcDOkV6qOZEnsX7v3sUMntQiiOliEh6vBKU2rVrF+rq6lBTU+PodL744gtcddVVjqW1NRpNQK1oRERE3sW+wX1FjYnGUzr4fgW8aHUIOqpDUKUz4VRlg1vTxopr9Fj6VQHKU29H+dmaZmWHSuoQHiqHJjkKonDppN41ehP+8fEh/H6uDh3VIVg9LRWdoi4fsAsPVSC8JBd1yUOw8dczXglKhfYe6Ziy54mAVFMKvRbP3tQf3xeU49lvCnCisgF/3ZSDJ//QE1NSO3vsPESewvu/e+xBek7fIyIp8spY73379uG6667D559/7tj2zjvv4MYbb0R2drY3TklERAGOfYN7rKKIomrb9D1/jJQC4AisHG+cjuaKn45X4vYN2dh9qgqwWtAjNgwju3fEqCs7ol9iBNQhMtQbLdh1ogrn0u/F+/uKoDdZLjrOkdI6/HVTLnLP1iBSqcBLUweiW0zbAz/hJbmQywT8dqYaeSW1LrenJZUNRqiH3QoAuOqKDh4NSDU1tlccNk8fgmt7xsJkEfGvrwrw6v9OQOSDKwUY3v/dc376Hv9tE5H0eCUotXz5cvztb3/Dww8/7Ni2adMm3H///Vi6dKk3TklERAGOfYN7yuuMMFpEyAWgU6TSL3XoEWcLrpzR6lFnMDu9/xd55/B/nxxEvdGCQUlRSMjdiHG949C/UyT6JUZi1JUxuG1wMq7u3hHhoXJYQyPwwvfHMGndL1j2dQE+PVCMT/YX46H3f8PdG3/D8YoGxIWHYt2fNeib6NzUNbmpHjf0tY3QeO/XM063pTUWq4j/HK2AIA9Bl2gVNC4mUm+raHUIlv+xP7JGdAUArP+lEM9/f4yBKQoovP+7xz5Sysp/10QkQV4JSp08eRITJky4aPvEiRNx9OhRb5ySiIgCHPsG95xpHCWVGKWCQu6fpNbR6hB0jlJCBJDfODWtrb49UoZFOw7DIgKT+idg7a2DoDBUX/Q+hUzAgE6R+HN6Ejoc/xado5So0Zvx0f5i/OurAvzrqwJ8nnsWFquIa3vG4t27B6NnfLhL7bkjI8VRt5IavUvHuNChklpU1Jtg1dfhmh6xLiVRd5ZMEPDXq7tiznW9IADY/NtZrP7xhNfPS9RWvP+7R954G+FIKSKSIq98qr3yyivx5ZdfXrT9u+++wxVXXOGNUxIRUYBj3+Ce8/mk/DN1z65f48p7+aV1bX5A2n2yEv/cng+rCNyc2gkLJvS5bGBNLhMQXnoIH983FC9NHYjbBydjWNdojLoyBveN6o537krHyikDEBce6nJb+iREYMgV0bCIwKZ9Z10+jp3OZMG+M7ZAm/7XjxAWeumcWJ6WOagznrquFwDgnb1nsDXX/TYReQLv/+6RM9E5EUmYVxKdP/LII3jwwQfx008/YcCAAQCAw4cP49dff8XLL7/sjVMSEVGAY9/gnjONK++lRPs+yXlT3WLCoA6pgs5kxeHSy4+W2n+2Bo9/mgezVcT43nF4anwvp0YPyWUCRnSLwYhuMQAAQQDi4iJRXl4LT8xkuSsjBb+e1uKTA8W4f8QViFC6/tHo19NamCwi4sJDcfToL+5XzgWZgzpD22DCqz+dxMpvj6JbTBgyukT7pS5Edrz/u4eJzolIyrwyUuqaa67Bxx9/jP79++P48eM4ffo0+vbti+3bt2PMmDHeOCUREQU49g3uKdI2Jjn380gpuUxAWnIHAEB2YTWs8tZHKhWU1eGRjw5Cb7ZieLeOeObGvo6Hq0AxontHdI8JQ73Rgs8Olrh8nIp6I/JL623H7BYNwH8Pjz++9QzUZfmwiMCDG3dh8u13Y8ot0zDllmk4cqzAb/Wi9ov3f/cw0TkRSZlXRkoBQK9evfDUU0956/BERBSE2De4rsgxUsq/QSkA6J8YgbySWlTrzajtMqLF9xSU1WH2hwdQazAjpPYsTn7wCqZtap4c/cixAkxyox4zZt6Pikptq+VtOb5MEHDb4CQs++YoNv92Fn9OT3Y6cCaKIn4+WQUAuDI2DJ2i/Ps7qqzU4s93jccnB0qgRQRCxz+EG/rGQxAE5M2c7Ne6UfvF+7/rFPZE51Y/V4SIyAu8EpSqqanB+vXrceDAAZjN5otWgHnnnXe8cVoiIgpg7BvcY88pldzBv9P3AEAmEzC8W0fszC9DfScNPsw5i2lpSY7y/x6rwMIvD6PWYIaivgy3jxsK5fXDLzqOuwGSikotJj36XKvlbT3+jf0T8cr/TuJstR4/HKvAuF5xTtXjZKUOxTUGyAUBw7pGO7Wvt4TIZfhD7zh8vL8EhVo9jpY3oJeLCeGJ3MX7v3tkjUEpM6fvEZEEeSUo9cQTT+DAgQO46aabEBER4Y1TEBFRkGHf4DqrLARVOhMAIMnD0/eOHMnHlFumtV7eymijKzqqkdGlA7ILq7H826PYc1qLgZ0ise9MNX46UQkA0CRF4dynr0E5PsOjdfY0VYgcUzWdsf6XQryffcapoJTZKmL3KdsoqUFJkW7lpPK0mLBQDE7pgF8Lq/HziaqAGGVH7RPv/+6Rc/oeEUmYVz457dq1Cxs3bsSgQYO8cXgiIgpC7BtcZ1FGAgAilQpEqjzbdZutcHm0UXpyFA7v/hYNKUPwfUE5vi8oBwAIAO7ISMEDo7rh1o+MHq2vt9ySloR39p5BTlEN8kpq0b9TZJv2O1hcgzqDBWEhcmiSo7xcS+dpkqJwvKIBlQ0m/Hpa6+/qUDvF+7975I7pewxKEZH0eCXReWJiImQyrxyaiIiCFPsG11mUtmCHp0dJuUsQBEQV7sI7dw3GHRnJuL5PPO4bfgU2Tx+CR669EkpF8Py+4yKUuL5vPADg39ln2rRPg9GC387UAACGdo1GiDzw2iuTCRjZvSMAIL+0HvKYFD/XiNoj3v/dY7+1cPU9IpIir03fW7hwIR5++GF07doVISEhzcqTkpJa2ZOIiKSKfYPrzI1Bqc5RSj/XpGV9EiLQJyH4p+TcMTgFX+SV4uvDZbh/eFd0iw275Pv3ntbCbBURHxGKnnGXfq8/dYpSoUdsGI5VNEA1JNPf1aF2iPd/93D6HhFJmVeCUg899BAAICsrC4Dtm1TAtjqNIAj4/fffvXFaIiIKYOwbXBeoI6Wkpk9iBMb0iMUPxyrwyk8nseKP/Vt9ryEqGWfL6gEAI7p1dPx9DlRXdY3GicoGhCT1xdlqPf8ukU/x/u8ee6JzjpQiIinySlDq22+/9cZhiYgoiLFvcJ1F1RiUimIgwdseGNUNPx6vwPcF5dh3RovBKdEXvUdvskDb/Q8AgL6JEUiMDMwRbE1FKhXomxiBvJI67D2txR8HJgZ8II2kg/d/9ygEe04pP1eEiMgLvDK5Ozk5GcnJyWhoaEBeXh46duwIq9WKpKQkJCcne+OUREQU4Ng3uM6s7ACAI6V8oUdcOP44sBMAYNGXh1FnMDcrF0UR//rqCCzqaISHyjHsimg/1NI16ckdIJqNKK0zoqTG4O/qUDvC+7977InOOX2PiKTIK0Gp6upqTJ8+HVOmTMHf//53VFRUYMmSJZg8eTKKioq8cUoiIgpw7BtcZ199j0Ep3/j7mCuRFKXE2RoD5n+RD73JAgCwiiLW/O8kduaXAVYLru0Zi9AgSuYeFiqHseBnAMD+4ho/14baE97/3WOfvmfm9D0ikiCvfJL617/+BbVajd27d0OptA1pX7p0KTp16oR//etf3jhl0BFFESI7FiJqR9g3uMZgtkJU2IJRnTl9zycilAo8c2NfhMgF/Hi8Eve9n4P1u09j1pb92LCnEADQ4dR/gzJIaMj7DgBwukqPqgaTn2tD7QXv/+6RO6bv8dmBiKTHK0GpH3/8Ef/4xz8QFRXl2BYTE4M5c+Zg79693jhl0GFQiojaG/YNrrFPH+uoDkFYqNzPtWk/NMkd8PLUVEQqFThSVo9XfzqJXwurESoX8PQNvRF+7oC/q+gSa20ZusWoAQAHOFqKfIT3f/dw+h4RSZnXxpwbDBfnKqisrIRC4ZXc6kREFATYNzivRm8LSnUOwlE5wS6jSzTevzcDD43ujnG94pB1dVe8d0+GI+dUsBqUZAsMFJTVo8Fo8XNtqL3wxP3/1KlTuO+++5Ceno5rr70Wb7zxhqOssLAQ06dPR1paGm688Ub873//a7bvrl27MHnyZGg0Gtxzzz0oLCxsVv72229j9OjRSE9Px9y5c6HT6ZrVfe7cuRgyZAhGjRqF9evXt7nOniBvfGLj6ntEJEVeCUpNnjwZS5YsQUFBAQRBQENDA3bv3o2nn34aN954ozdOSUREAY59g2tqG0dKceU9/0iMVOKeoV2w/I/98dcRXdEtJszfVXJbYqQSCRGhsIrAoZJaf1eH2gFP3P+tViuysrLQsWNHfPzxx1i0aBFeffVVfP755xBFEbNmzUJcXBy2bt2KKVOmYPbs2Th79iwA4OzZs5g1axYyMzPx4YcfIiYmBg8++KBj1sLOnTuxevVqPPPMM9iwYQNyc3OxcuVKx7lXrFiBgwcPYsOGDViwYAFWr16NHTt2eP5CtcI+fY8jpYhIirwSlHriiSeg0WiQmZmJhoYGTJkyBffddx9GjBiBJ554whunJCKiAMe+wTX26XvBmL+IApd9tFT+uTo+6JLXeeL+X15ejn79+mHhwoXo1q0bxowZgxEjRiA7Oxu7d+9GYWEhnnnmGfTo0QMzZ85EWloatm7dCgDYsmULBg4ciBkzZqBXr15YtmwZioqKsGfPHgDAO++8g3vvvRdjx47FoEGDsGjRImzduhU6nQ4NDQ3YsmUL5s2bhwEDBuC6667D/fffj/fee89r1+tCMk7fIyIJ88p8idDQUDz11FN45JFHUFhYCIvFgi5duiA8PNwbpyMioiDAvsE1jpFSHZR+rglJSdcYNcJC5GgwWXCysgE94vjvkLzHE/f/hIQEvPjiiwBsuVn37duHvXv3YsGCBcjNzUX//v0RFnZ+JGNGRgZycnIAALm5uRgyZIijTK1WY8CAAcjJycGQIUNw4MABzJ4921GelpYGk8mE/Px8iKIIs9mM9PT0Zsd+7bXXYLVaIZN5fwVORWNQijEpIpIirwSlWkpYmJeX5/jzVVdd5Y3TEhFRAGPf4JpavS3nD0dKkSfJBAF9EsLxW1ENDpfWMyhFXuXp+/+4ceNw9uxZjB07FjfccAOWLl2KhISEZu+JjY1FSUkJAKCsrKzV8pqaGhgMhmblCoUC0dHRKCkpgUwmQ8eOHREaGuooj4uLg8FggFarRUxMTJvr3TgLz+n32xOdm61Wp48RjOxtbA9tbYrt9m89fC0Y2+2tunolKHX33Xe3uD00NBTx8fH49ttvvXFaIiIKYOwbnCeKInNKkdf0SYjAb0U1KKrWo0ZvRpSKCw6Qd3j6/v/SSy+hvLwcCxcuxLJly6DT6ZoFjezHNhqNAHDJcr1e73jdUrkoii2WAXAcv61iYyOder9dRJhtpKxKHYq4ONeOEYxcvV7Bju1uX9pru5vyyqeP/Pz8Zq8tFgtOnz6NxYsX46abbvLGKYmIKMCxb3Ce3myFuXG+Rqd2GJQ6ciQfU26ZdtF2RYgcZpMFR44VYJIf6uVvrV0XR3kbr0ukSoHkDioUVetxuLQOV10R7bE6EjXl6ft/amoqANuqeI899himTp3abLU8wBYwUqls902lUnlRAMloNCIqKgpKpdLx+sJytVoNi8XSYhkAx/HbqqKiFs4soCcItgdWk8EEAKitM6C8XPqLE9jb7ez1CnZsN9sd6Ox19jSffCUml8vRvXt3PPXUU8jKysKf/vQnX5w2oImi6Fjxg4ioPWLfcHn2JOcyYx2UCu/nLQk0Zisw6dHnLtoeFqZEQ4MBeTMn+6FW/tfadbFz5rr0TYxAUbUeR0rrkdGlgyeqR3RZrtz/y8vLkZOTg/Hjxzu29ezZEyaTCfHx8Th+/PhF77dPyUtMTER5eflF5f369UN0dDSUSiXKy8vRo0cPAIDZbIZWq0V8fDxEUURVVRXMZjMUCtujU1lZGVQqFaKiopxqtyjCpYdPmWP6nhg0D6+e4Or1CnZsd/vSXtvdlE8/4VZUVKCmpsaXpyQiogDHvqF1NXpbUEpu4PUh7+jaUQ2VQoYGkwWFVbrL70DkQc7c/8+cOYPZs2fj3Llzjm0HDx5ETEwMMjIycOjQIcdUPADIzs6GRqMBAGg0GmRnZzvKdDod8vLyoNFoIJPJkJqa2qw8JycHCoUCffv2Rb9+/aBQKBxJ0+3HTk1N9UmSc+B8onOuvkdEUuSVkVJz5sy5aFt9fT127dqFCRMmeOOUREQU4Ng3OK/OYEtyrtAzKEXeIZcJ6B0fjv3FtThcWu/v6pBEeeL+n5qaigEDBmDu3LmYM2cOioqKsHLlSvztb3/D0KFD0blzZ8yZMwcPPvggvv/+e+zfvx/Lli0DAEydOhVvvvkm1q1bh7Fjx2LNmjVISUnBsGHDAAB33HEH5s+fj969eyMhIQELFy7ErbfeCrVaDQC4+eabsXDhQixduhSlpaVYv36949i+IBcYlCIi6fJZRsvo6Gg8+eSTmDJliq9OSUREAY59w6XZk5xzpBR5U68EW1CqUKtDgqL95S4j/3D2/i+Xy/HKK69g8eLF+POf/wy1Wo27774b99xzDwRBwCuvvIJ58+YhMzMTXbt2xZo1a5CUlAQASElJwcsvv4ylS5dizZo1SE9Px5o1ayA0BnsmTZqEoqIizJ8/H0ajEddffz0ef/xxx7nnzJmDhQsX4t5770VERAQeeughXH/99Z6/KK213T5Sqr3P8SEiSfJKUMpX3xwYjUYsW7YM27ZtQ0hICKZNm4ZHH30UgiAgLy8PCxYswJEjR9CzZ08sWrQIAwcOdOy7bds2vPjiiygrK8OoUaOwePFip5Z0JSIi5/jyW2WpqOX0PfKBmLBQxIaFoKLBBF1MT39XhyTIU/f/xMRErF69usWyrl27YuPGja3uO2bMGIwZM6bV8qysLGRlZbVYplarsXz5cixfvty5CnuIvElOKSIiqfFKUKq1zqIls2fPdvk8//rXv/DLL7/gzTffRH19PR599FEkJSXhj3/8I7KysnDTTTfh2Wefxfvvv4+ZM2fi66+/RlhYGPbv34958+Zh0aJF6Nu3L5YsWYI5c+Zg7dq1LtelrURRhNVqbffJzIio/fFV3yAl9pFSCgalyMt6xoej4pQWuri+/q4KSRDv/+6RM6cUEUmYV4JSp06dwo4dOxAdHY2BAwciNDQU+fn5OH36NNLS0hwrV9iHzLpCq9Vi69ateOuttzBo0CAAwIwZM5CbmwuFQgGlUoknnngCgiBg3rx5+O9//4sdO3YgMzMTGzduxMSJE3HzzTcDAFasWIGxY8eisLAQXbp0cbv9RER0MV/0DVIiiqJj9T2OlCJv6xEXhj2ntDBGJeGMVoeUaLW/q0QSwvu/exiUIiIp80pQKjQ0FDfddBMWLVqEkJAQx/bly5ejuroaS5cudfsc2dnZiIiIwNChQx3b7ENun376aWRkZDg6NkEQMHjwYOTk5CAzMxO5ubn461//6tivc+fOSEpKQm5urteDUqIoQuQwKSJqh3zRN0hJg8kCiwgIAOTGOn9XhyQuPFSBpA4qFFXrseP3Utw/oqu/q0QSwvu/e7j6HhFJmVfWMf3iiy9w//33N+t0AODWW2/FF1984ZFzFBYWIjk5GZ988gkmTJiAP/zhD1izZg2sVivKysqQkJDQ7P2xsbEoKSkBAJSWll6yvK0EwfkfW0DK9uPK/sH+4+p1k8oP2+//OrD9F9fJV3zRNwC2fIOLFi3CVVddhauvvhovvPCC48uAvLw83HLLLdBoNJg6dSoOHjzYbN9t27Zh/Pjx0Gg0mDVrFiorKz1WL2fZV94LV8ohiFa/1YPaj57xYQCAL38v5Rdo5FG+uv9LlWP1Pf67JCIJ8spIqcTERPz444+48sorm23fuXOnx0YiNTQ04NSpU9i0aROWLVuGsrIyzJ8/H2q1GjqdDqGhoc3eHxoaCqPRCADQ6/WXLG+r2NhIp+ttMpnw7r5ihIUpERcX6Riu3J64ct2khO1n+9srX/QNQHDmG2yJPcl5pLL99RPkH91iwvBfyzmcrgLyztVhQKf2e78iz/LV/V+qOH2PiKTMK590/+///g+PPPII/vOf/6BvX1vCzAMHDiAvLw+vvfaaR86hUChQV1eH559/HsnJyQCAs2fP4v3330fXrl0vCjAZjUaoVLZljpVKZYvlarVz+RMqKmqdSlguCEBUlAo6vRGCIEN5eW27CkoJgu2B3NnrJhVsP9sfaO2318lXfNE3SCnfoD3JeaRSAU7eI18IlcugqjoOXVwf7Py9lEEp8hhf3P+ljKvvEZGUeSUict111+Gjjz7CRx99hGPHjkGlUmHo0KFYtWoV4uPjPXKO+Ph4KJVKR0AKALp3747i4mIMHToU5eXlzd5fXl7umLKXmJjYYrmzdRNFuPRwKYq2h0FX9w927bXddmw/299e2++LviFY8w22JFiCUkeO5GPKLdNaLz9WgEk+rA+5R11xBLq4Pvj2SBkeufZKyHw9z5ckyRf3fynjSCkikjKvDdPp06cP5syZg+rqakREREAmk8GTK2poNBoYDAacOHEC3bt3BwAcP34cycnJ0Gg0eP311yGKIgRBgCiK2LdvH/72t7859s3OzkZmZiYAoLi4GMXFxdBoNB6rHxERXczbfUPTfIOvvfYaTCYTMjMz8cADD6CsrAw9e/Zs9v7Y2FgUFBQA8Gy+QU+wT9+LUMk9dtymuc08FRw1W4FJjz7XannezMmeOVGjpm3w1LF8yRu/A09Sak8jQilHaZ0R+8/WID2lw0Xv8eTvwB+Cvf6Ad9vgrevi7fu/lDHRORFJmVeCUqIo4rXXXsPbb7+N2tpa7Ny5E//v//0/hIWF4Z///OdF+ZxcceWVV+Laa6/FnDlzsHDhQpSVlWHdunV44IEHMGHCBDz//PNYsmQJbrvtNmzatAk6nQ4TJ04EANx+++24++67kZaWhtTUVCxZsgTXXnst57QTEXmRL/qGYM03qAiRIyxM2WxbvcmW3Dw+KgwnQuSIi2v9uC3t35QgoFm5Wq1stexy+3qy3J191WqlW/srLnNNL8fZa36hpr8DZ/f15jUPUQA3DOiMrfvO4MdTWlyXltLqe4M9R16w1x8Injb44v4vZUx0TkRS5pWg1Jo1a7B9+3Y8++yzePTRRwEAf/rTnzB//nysWLEC//znPz1ynueeew6LFy/G7bffDrVajTvvvBN33303BEHA2rVrsWDBAnzwwQfo06cP1q1bh7Aw26oy6enpeOaZZ/DSSy+huroaI0eOxOLFiz1SJyIiapkv+oZgzDcIAGaTBQ0NBsdrqyiiRm8CAITACrPJgvLy2jbvfyFRBBoaDBAEWzBEpzM46mgvu9y+3ih3Zd8L2+DquS93TS+nrdf8QvaBIU1/B23d1xPll9vXbLLgmm7R2LrvDLbnnsWsEVc4pg41bUOg5chzRrDXH/BuG7yRb9BXzwZSxel7RCRlXglKffzxx3j22Wdx1VVXOYbljhw5EsuXL8ff//53j3U8kZGRWLFiRYtlgwYNwscff9zqvpmZmY7pe0RE5H2+6BuCOd9gUw1GC0QRkAlAWKjccVx3NQ1EBStPteHIkXz8cVrrubBiY6Kxfu0b7p2kBcHwOxh6RTQ6qBSoaDAhu1CLq67o2OL7gj1HXrDXHwieNvjq2UCqmOiciKTMK0GpioqKi/JyAEBUVBQaGhq8cUoiIgpwvugbpJJv0JFPSqlgomkvuVwurO2rHvNhbQKLQi7Dtb3i8OmBEnxzuLzVoBRRW/HZwD0cKUVEUibzxkGHDx+ON998s9m2uro6vPDCCxg2bJg3TklERAHOF31D03yD+fn5+PHHH7Fu3TrcfvvtmDBhAmpqarBkyRIcPXoUS5YsuSjf4KeffootW7YgPz8fTzzxhN/yDTZdeY/IH67rYxsh+F1BOUdnkNv4bOAeReMTG/8tEpEUeSUotXDhQuTl5WHkyJEwGAx48MEHMWbMGBQVFXF4LhFRO+WrvuG5557DFVdcgdtvvx1PPvmkI99gREQE1q5d6xgNlZub22K+wTVr1uD2229Hhw4dsGzZMo/Vyxnng1Jyv5yfKKNLNDqqQ6DVmfDr6Sp/V4eCHJ8N3KOQ2R7ZOFKKiKTIK1/BRkVF4cMPP8TPP/+M48ePw2w2o3v37hg1ahRkMq/EwYKOKIoQgyEJABGRh/iqb5BCvsFagwUAEKniSCnyD4VMwLjecdiaW4yvD5dheLcYf1eJghifDdzD6XtEJGVe+bQ7efJkrF69GiNGjMCIESO8cQoiIgoy7BvarmlOKSJ/ua5PPLbmFuP7ggo8Nd6KEDmDB+Qa3v/d4whK8QttIpIgr3y6kMlkMJlM3jg0EREFKfYNbcecUhQI0pI7IDY8FLUGM345xSl85Dre/90jFzhSioikyyufdq+99lr85S9/wdixY5GcnIzQ0NBm5bNnz/bGaYmIKICxb2gbi1VEvbFx+h6DUuRHcpmA8b3jsPm3s/j6cBlGXRnr7ypRkOL93z2cvkdEUuaVT7uHDx/GgAEDUFpaitLS0mZlApe2JiJql9g3tE290TZKSi4ToA7hdCnyr+v6xGPzb2fxw9EKGMxWKBX8O0nO4/3fPYrGoBRX3yMiKfJYUOrOO+/Eq6++iqioKLz77rsAAL1eD5VK5alTEBFRkGHf4LxavX2UlJwPa+R3qUlRSIgIRWmdET+fqMS1veL8XSUKErz/ew5HShGRlHns667s7OyL5opfffXVKCws9NQpiIgoyLBvcB7zSVEgkQkCxveJBwB8fbjMz7WhYML7v+cw0TkRSZlXx2CLvHFehNeEiNo73gcvjUEpCjTXNwalfjxeAb3J4ufaUDDj/d818sZBsxwpRURSxMQAREREAaRWbwtKRTAoRQGif6dIdI5SQmey4ueTXIWPyNc4fY+IpIxBKR8TRRE6k9Xf1SAiogDlGCmlYlCKAoMgCBjbmEvqu4JyP9eGqP1RMChFRBLm0U+8X375JSIiIhyvrVYrvv76a8TExDR738033+zJ0waVl78/jo/yKjG6a6S/q0JE5BPsG5zD6XsUiMb1isO/s4vw47EKGM38co3ahvd/zzifU8r2BTcXwSAiKfHYJ96kpCSsX7++2bbY2Fhs3Lix2TZBENp1x7P6P8cBAD+eqvVzTYiIvI99g3PMFqtjNG2kUu7n2hCdl5oUhbjwUJTXG7HntBY3d+rg7ypRgOP933PsQSnAFphSMCZFRBLisaDUd99956lDSVq0OgRanW0lEotVRIif60NE5E3sG5xTZ7QlkQ6RC1AqOMOeAodMEHBtz1h8mFuM746U4eahXf1dJQpwvP97TrOglFV0TOcjIpICfuL1sf6dz0/bO1xa58eaEBFRoLEnOY9UKjg9gwLOuN62vFI/HKuA2cIpfES+IheaB6WIiKSECSt8rGk3svuUFpouMa2+l4iI2hfmk6JAlp4SDblFj2qdClffMhOKytMXvSc2Jhrr177hh9oRSZdCxqAUEUkXP/X6WNNvFvcWVmOmH+tCRESBhUEpCmQKmQBlxTE0JAxAp7H3YtgVF+eV2r7qMT/UjEjaZAxKEZGEcfqeD4miCHOTjqSqMbcUERERcH76XoSKSc4pMKkqjgIAjpXVQRT5cEzkCzJBgD0uZbZy6iwRSQuDUj5mspz/AGe28MMcERGdV2uwJTrnSCkKVMqaQoTKBdQbLThXa/R3dYjaDXuyczNHShGRxDAo5WNNv93g8FsiImqK0/co0AmiFVd0VAMATlQ2+Lk2RO2HPdm5hSMUiUhiGJTysaajo0wMShERUSOjxQqD2fbFBYNSFMi6x4YBAE5WNnAKH5GP2EdKceFLIpIaBqV8rOmQWw6/JSIiu7rGfFJKhQyhCnbPFLhSOqgQIhdQZ7CgvJ5T+Ih8QeEISvH5gYikhV/F+pipydcbzClFRER256fuXZzk/MiRfEy5ZVqr+x45VoBJXqsZUXMKuQxdY8NxtLQOpyp1iI9Q+rtKRJInZ1CKiCSKQSkfaz5SiuNviYjI5lJJzs1WYNKjz7W6b97MyV6rF1FLroxrDEpV6TDkimh/V4dI8jhSioikivMDfKzp6ChO3yMiIjsmOadg0i0uHAKAygYT6hr/7hKR9zhW32MeNyKSGH7y9bGm0/esou3bDnsnQ0RE7VdtY06pCBW7ZvKftk4VVYfIkRipREmtAaeqdBjQKdJ3lSRqhzh9j4ikip98fezC0VFmBqWIiAgcKUWBwZmpol1j1LagVCWDUkTeJhcYlCIiaeL0PR8zXbCOK/NKERGRCAalKPhc0VENACiu0cNo5ucZIm/iSCkikioGpXzsopFSXIGPiKjdE+VKmBr7g5ZW3yMKRNHqEHRQKWAVgTPVen9Xh9qBc+fO4eGHH8bQoUMxevRoLFu2DAaDAQBQWFiI6dOnIy0tDTfeeCP+97//Ndt3165dmDx5MjQaDe655x4UFhY2K3/77bcxevRopKenY+7cudDpdI4yg8GAuXPnYsiQIRg1ahTWr1/v/cZegEEpIpIqBqV8yGIVcWFuQhM7FiKids+sjAIAqENkUMjZNVPw6No4WupUZYOfa0JSJ4oiHn74Yeh0Orz33ntYtWoVvv/+e7z44osQRRGzZs1CXFwctm7diilTpmD27Nk4e/YsAODs2bOYNWsWMjMz8eGHHyImJgYPPvggxMYP5jt37sTq1avxzDPPYMOGDcjNzcXKlSsd516xYgUOHjyIDRs2YMGCBVi9ejV27Njh0/YrmOiciCSKcwR8qKXV9swWDncnImrvLCpbUIpT9yjYXBGjxv7iWhRq9bDyYZm86Pjx48jJycFPP/2EuLg4AMDDDz+M5cuX45prrkFhYSE2bdqEsLAw9OjRAz///DO2bt2Khx56CFu2bMHAgQMxY8YMAMCyZcswcuRI7NmzB8OGDcM777yDe++9F2PHjgUALFq0CPfddx8ef/xxiKKILVu24PXXX8eAAQMwYMAAFBQU4L333sOECRO83u7Tp0+joOAUDHrbyK1jx48hsva0U8eIiYlFSkoXb1SPiMht/PTrQ03zRwmw5RBpKVBFRETti0XJoBQFp8RIJZRyGQxmK8rqjP6uDklYfHw83njjDUdAyq6urg65ubno378/wsLCHNszMjKQk5MDAMjNzcWQIUMcZWq1GgMGDEBOTg6GDBmCAwcOYPbs2Y7ytLQ0mEwm5OfnQxRFmM1mpKenNzv2a6+9BqvVCpnMe6Nbz5wpxNUjr4KuoQGJdy6HKmUAnp7/T+gKfnbqOCp1GHb9tJeBKSIKSPz060NN80cpZAJMVpE5pYiIyDF9L1LFbpmCi0wQkBytwvGKBhRW6S6/A5GLoqKiMHr0aMdrq9WKjRs3Yvjw4SgrK0NCQkKz98fGxqKkpAQALlleU1MDg8HQrFyhUCA6OholJSWQyWTo2LEjQkNDHeVxcXEwGAzQarWIiYlpcxsEJxfcrqysgK6hAbc8ugxHw/ui0gRMmP4PdFZZ2nyM0jMn8OGqOaisrECXLsERlLJfJ2evV7Bju/1bD18LxnZ7q6789OtDTUdFyWWAycqRUkREdH6kVARHSlEQ6mIPSmn1CL3824k8YuXKlcjLy8OHH36It99+u1nQCABCQ0NhNNpG7+l0ulbL9Xq943VL5aIotlgGwHH8toqNjXTq/dHR4QCALj37oLg2ApVVOiR06Y6endp+HJXKVteOHcMRF+fc+f3N2eslFWx3+9Je290UP/36kD0AJRNs3ywCIkxW5pQiImrvzk/f48p7FHxSom3JzsvrjUhUqP1cG2oPVq5ciQ0bNmDVqlXo3bs3lEoltFpts/cYjUaoVCoAgFKpvCiAZDQaERUVBaVS6Xh9YblarYbFYmmxDIDj+G1VUVF70aJHl6LV1gMA9AYjxMbnCL3BhIYGQ5uPodfb6lpVVY/y8tq2n9yPBMH2oO7s9Qp2bDfbHejsdfY0SSzxk5WVhaeeesrxOi8vD7fccgs0Gg2mTp2KgwcPNnv/tm3bMH78eGg0GsyaNQuVlZU+qaepMam5gPND3zh9j4iofRNFkTmlKKiFhcoRGxYCADB0uMLPtSGpW7x4Md566y2sXLkSN9xwAwAgMTER5eXlzd5XXl7umJLXWnl8fDyio6OhVCqblZvNZmi1WsTHxyMxMRFVVVUwm82O8rKyMqhUKkRFRTlVd1F0/se24/lnB3cWFHDl/P76Cbb6st1sd3tptzcEfVBq+/bt+OGHHxyvGxoakJWVhSFDhuCjjz5Ceno6Zs6ciYYG21LF+/fvx7x58zB79mxs3rwZNTU1mDNnjk/qen6klAC50HwbERG1T1U6E0S57YGe0/coWNlHSxmiu/q5JiRlDmO9HAAAc31JREFUq1evxqZNm/DCCy9g0qRJju0ajQaHDh1yTMUDgOzsbGg0Gkd5dna2o0yn0yEvLw8ajQYymQypqanNynNycqBQKNC3b1/069cPCoXCkTTdfuzU1FSvJjm/kKwxKuWth0IiIn8J6qCUVqvFihUrkJqa6tj2xRdfQKlU4oknnkCPHj0wb948hIeHY8eOHQCAjRs3YuLEibj55pvRt29frFixAj/88AMKCwu9Xt+m0/eExo7FPnqKiIjap7PVtoeo8FA55LIgynZJ1ESXaNs0JkN0V7dGchC15tixY3jllVfw17/+FRkZGSgrK3P8DB06FJ07d8acOXNQUFCAdevWYf/+/Zg2bRoAYOrUqdi3bx/WrVuHgoICzJkzBykpKRg2bBgA4I477sCbb76Jb775Bvv378fChQtx6623Qq1WQ61W4+abb8bChQuxf/9+fPPNN1i/fj3uuecen7Zf5oGRUkREgSiog1LLly/HlClT0LNnT8e23NxcZGRkOII+giBg8ODBrS4J27lzZyQlJSE3N9fr9bVYzgel7BeeI6WIiLwnGKZ324NSHCVFwSwxUokQuQBriBr55+r8XR2SoG+//RYWiwWvvvoqRo0a1exHLpfjlVdeQVlZGTIzM/HZZ59hzZo1SEpKAgCkpKTg5ZdfxtatWzFt2jRotVqsWbPG8bwwadIkzJw5E/Pnz8eMGTMwaNAgPP74445zz5kzBwMGDMC9996LRYsW4aGHHsL111/v0/bb68pHByKSmqD9BPzzzz/j119/xeeff46FCxc6tpeVlTULUgG2JV8LCgoAAKWlpZdcMtabmk7fkzV+3cGgFBGRd9ind//pT38CcH5690033YRnn30W77//PmbOnImvv/4aYWFhjundixYtQt++fbFkyRLMmTMHa9eu9Wo97UEpJjmnYCaTCUjuoMLJSh1+PlmJ/k6sDkbUFllZWcjKymq1vGvXrti4cWOr5WPGjMGYMWNcOr5arcby5cuxfPnytlfYwzhSioikKiiDUgaDAQsWLMD8+fMvWvXiUku+AoBer79kuTMEJ2dZmEWrY7/zI6WsTh8nWNnb2V7aeyG2v/n/25tAbH8g1cXTLje9WxAEzJs3D//973+xY8cOZGZmNpveDQArVqzA2LFjUVhYiC5dunitrmdrbEGpKFVQdslEDinRapys1GHXiSrcN5y5pYg8SWBOKSKSqKD8BLx69WoMHDgQo0ePvqistSVfL7ckrFrt/BLGzi6HGF5tW75VIROgUNjCUupwFeLi2te3id5YRjKYsP1sP3mffXp3aWmpY9ulpndnZmYiNzcXf/3rXx3vbzq925tBqVq9bUWnKFWI185B5Av2vFKHimtQZzD7fErqjJn3o6JS22JZbEw01q99w6f1IfIkjpQiIqkKyqDU9u3bUV5ejvT0dABwBJl27tyJyZMnu7wkrLMqKmqd+raioqr+/IvGaXuV2gaUl9c6fe5gJAi2B3Jnr5tUsP1sf6C1314nqfH39G5nR6BNH9YFu7//Et2HZTq3owuajtgLlL+HzvLlqENvnENqv4OmbYhQKmCtPgd0SETmQ3OhrjrebL+4mGisX+e9wFBFpRaTHn2uxbLtqx676O9OMI8W9WYbgvm6SBlX3yMiqQrKoNS7774Ls9nseP3cc7YPII899hj27t2L119/HaIoQhAEiKKIffv24W9/+xuA80vCZmbaPvwXFxejuLjYsWSsM0TRuY7BbGm6+p59m7XddS7OXjepYfvZ/vbcfm8LhOndzgb6RsVFIqZkD6Ii7mj1PYIAhIUpPVauVitbLfP2uT21r1qt9Oq5FSHyS45kVoTI3bouTX8Hzu7rr2tuL7fXvaU2mIp/h7JDIrqMuxNj+zYP8n684hGvjg6/1O+kpd+nFILyUmgDtY392YEjpYhIaoIyKJWcnNzsdXh4OABbgsPY2Fg8//zzWLJkCW677TZs2rQJOp0OEydOBADcfvvtuPvuu5GWlobU1FQsWbIE1157rVenZtjZk5oLAOQCE50TEXlaIEzvdmU0nNlkQUODodVyUYRHyu0BBZ3O4Kijp47tSrkr+17YBm+dO+/QIVx97Q2tlhccK8ANLpzb/mDZ9HfgbN18fc0vLNfpDBf9PbIzFeVD2fdanKyov+g4ZpPFq6PDL/XvqOm5A3HkqrO82QapjqINdo6RUn6uBxGRpwVlUOpSIiIisHbtWixYsAAffPAB+vTpg3Xr1iEsLAwAkJ6ejmeeeQYvvfQSqqurMXLkSCxevNgndTNbbYnOZYLg+FBqsrBrISLylECY3h3Io+GaBqKCla/aYLai1algALBy5mSXjiv134G55AgEADV6M2r1ZkRekMDfn+2+8NyB/G+1raTQBmob+yJJHClFRFIjiaDUs88+2+z1oEGD8PHHH7f6/szMTMf0PV8yNZm+Z09WyJFSRESeEyjTu4naLZMeCZFKnKs1oKhaj76qCH/XiEgS7It08NGBiKRGEkGpYGEPQMkEwTEE12yx+rNKRESSEqzTu4mkJLmDCudqDThTrUffRAaliDzB/oW2yJFSRCQxssu/hTzF3MJIKRO/7iAi8gn79G77aKjc3NwWp3evWbMGt99+Ozp06IBly5b5udZEwScl2pan7Wy1nlONiDyEI6WISKo4UsqH7DmlhKar77FnISLymmCZ3k0kJfERoQiRCzCYraioNyI+ovXV/IiobThSioikikEpH2p5+h47FiIiIpIOmSAgKUqFU1U6nNHqAyIodeRIPqbcMs3xWhEih9lkcbyOjYnG+rVv+KNqRG3CkVJEJFUMSvnQ+aBU00TnzClFRERE0pISbQtKFVXrkZ7Swd/VuWg1xbAwJRoaDI7X21c95o9qEbWZ/dmBU2KJSGqYU8qH7KOiBOH8hedIKSIiIpKa5A62vFLnag0wcVEXIredn77n33oQEXkag1I+1OL0PY7BJSIiIomJUikQoZTDKgIlNYbL70BEl+SYvufnehAReRqDUj5kn6onQ5PV9/jtIREREUmMIAhIaRwtdaZa7+faAEJYB5zR6nBGq4PRzM9eFHyY6JyIpIo5pXyoaU4prr5HREREUpYcrUZ+aT2KtP4LStUZzNhzSosOty7Dl7+XAQAEAP2TopDWORJhoXK/1Y3IGQKY6JyIpIlBKR8yOXJKCZA3RqVMzClFREREEpQUZVt1r0pnQr3R7PPzVzYY8WVeGRoaV9mLVitgsQK1BjMOna3BsdI6XN83HomR/l8dkOhyOFKKiKSK0/d8yNLiSCkOISciIiLpUYXIERceCgAo8vEUvlq9GdsOlaLBZEFHdQhqP1uKW9KScNvgJPxxYCLiIkKhN1ux/dA5FFbpfFo3IlfY89FypBQRSQ2DUj5kzx/FROdERETUHqRE2/JK+XIKn8Uq4tuCchjMVsSFh2DygARYKs84yhMjlbh1SBd07aiGRQS+PlIOY0Qnn9WPyBX2L7StHClFRBLD6Xs+1DSnlH0IrpnT94iIiEiikjuokFNUg6JqPaJ9dM7fzlSjrM6IULmA8X3ioQq5OG9UiFyGP/SOw1eHy3BGq0dl78koqzMgPqLlqXwzZt6Pikptq+eMjYnG+rVveKoJRBfhSCkikioGpXyoWaJzxzZO3yMiIiJpSoxUQiEToDNZEREW6/Xz1ehNyD1bAwAY3SMWkcrWP+rKZQKu6x2HTw+eQyXCMHfb73j1lkFQyC+eSFBRqcWkR59r9VjbVz3mfuWJLkFgTikikihO3/Mhc5NE5zKuvkdEREQSJ5cJ6NyY8NzQ4Qqvn2/3SS2som2EVvcY9WXfr5DLML53HASzETlFNVjzv5NeryORKzhSioikikEpH7KPimo6fY+r7xEREZGUJTfmlfJ2UMoYkYhTVToIAEZ06wjBPrTkMjqoQxB97GsAwMZfz+CHo+VerCWRa7j6HhFJFYNSPtQ8pxQTnRMREZH0JXewBaWMkUkwmL2XtqA2eRgAoFd8ODqGhTi1r7rqGO7ISAYALN55BGV1Bo/Xj8gdAkdKEZFEMSjlQxZ7UApNp+8xpxQRERFJV0d1CMJC5BDlIcgtqvbKOQ6V1MLQsRsEAOkpUS4dY/bo7uibEIFqvRkLvjzMVc4ooDhGSoF/L4lIWhiU8iH7qChBOJ+skNP3iIiISMoEQXBM4fvllNYr59i4txAA0DM+HFEq50ZJ2YXIZVg8qS+UChn2ntbi39lFnqwikVuYU4qIpIpBKR+yJzrn9D0iIiJqT+xT+PacqvL4sc9W6/FdgS0P1KDOkW4dq1tMGP4xtgcAYM2PJ3C4tM7t+hF5gj1DGkfwEZHUMCjlQyZHovMm0/csnL5HRERE0mYPSh0urYO2weTRY2/+rQhWEVBqTyMmPNTt4/0ptRPG9IiF2Srin9t/h95k8UAtidxj/0KbMSkikhoGpXyII6WIiIioPQoLlUNRXwYRwJ7TnhstpTNZ8NnBEgBAeMlvHjmmIAj45/W9ERceipOVOrz4w3GPHJfIHfYvtDlSioikhkEpH2q++l7zbURERERSpqy25X36xYNT+Hb8Xoo6gwUp0Sootac8dtzosBAsnNAHALA1txj66O4eOzaRK2SNDw8WPjsQkcQwKOVD5xOdn5++Z+L0PSIiImoHlNWnAdiSnYseGO0hiiI+zDkLAJiqSXLk3PGUYd064o6MZACAtsd41BnMHj4DUdspGJQiIoliUMqHmo6UEsDpe0RERNR+hNaeRahcwLlaA05V6dw+3oHiWhwpq4dSIcPkAYkeqOHFZo3qjt7x4bCGqPHV4TJ+mUh+Y0/9YRHhkaAuEVGgUPi7Au2JucVE5yJEUYQgePr7PSIiIqLAIbOakZ7SAb+c0uLHYxXoFhPm1vHso6Su6xOPaHWIJ6p4kVCFDM/dPAA3v/IfVNSH4YejFfhD7zinPrfNmHk/Kiq1rZbHxkRj/do3PFBbkjK57PzfOasIyPnoQEQSwaCUDzVPdG7bJsL2jYeCHQsRERFJ3JiecfjllBb/OVqBu6/q4vJxqhqM+OZIGQBgWlqSp6rXos5RKnQ8sh1VA2/BiUod9p2pRkaX6DbvX1GpxaRHn2u1fPuqxzxQS5K6pkEpi1Vs9pqIKJhx+p4POXJKQXQMwQUAM4eCExERUTswpkcsAGD/2RqU1xlcPs6nB0pgsojo3ykSAzpFeqp6rVLWFmNk9xgAwL4zNThYXOP1cxI11XRklIXT94hIQhiU8qHzQanz0/eabiciIiKSsoRIJQZ2tgWRfjhW4dIxzBYrtjRO3Zum6eyxul1O38QIDE6JAgD8fFKL3KIa5vYhn2m6UBKTnRORlHD6ng9ZmiY6bxqUsrBjISIiovZhbM84HCyuxTeHyzBV4/zUu+8KylFaZ0RMWAhu6JvgkTodOZKPKbdMa738WAEmARic0gFWEcgpqsGe01rU6M0Y0S3aI3Uguhy5TIDVIjIoRUSSwqCUD9lXbLHllLJ922EVzydAJyIiIpK68X3i8fKPJ5BdWI1ztQYkRiqd2n/TviIAwFRNZ4QqPDPo32zFJfM+5c2cDMA2WuWqK6KhUsiw+5QW+aV1OFdrgCzSu3mtiABALggwQeT0PSKSFAalfMjsGCllGyalkAkwWkRO3yMiIqJ2I6mDCukpHfDbmWrs+L0U9w5tW8LzGTPvR7FRhfKBtwJWCz5bPR/bVzU4yu2jmXwhNSkKHcNC8J+jFajSmYAB0/Dglv24ObUThnbt2OJqgKJoG+FitIiQCbaV/WRcfZmcYE9uznS0RCQlDEr5iFUUYY89yQTbBxN7UMrE6XtERETUjtzYLwG/nanGF3nncM9VKRDaEJypqNSiw6SnUF7RgF6JUbh29jPNyu2jmXwlJVqNaZrO2FtYjfySGuw9rcXe01oAQExYCMJD5QCAc2n34t29Z2C0WNH0e0i5AHQMC4U+ZRjOaHVIiVb7tP4UfM4HpfjsQETSwUTnPtI0b5TQZKQUwETnRERE1L78oXc8QuUCjlc0YP/Ztq1kZwmNwPFK28goe7J0f1OFyDH6yhgk5GzA9KFdcGVsGACgssGEQq0ehVo9LKoO0JubB6QAwCIC5fVG1KUMw7T1e7H06yOo0Zv80AoKFvLGZwhO3yMiKeFIKR9pGniyr5yhkMsAWBy5poiIiIjag0iVAhP6JeCzg+ewad9ZaJI7XHafuqQMiCLQOUqJuPBQH9Sy7RSGWswa3R2zRndHncGMM1odDGbb57un/jkPY+58GKFyGUIVMoTIBIgiUGc041ytEd/890cgqT8+3l+Cz/YeQceCLxFad85x7NiYaKxf+4a/mhaQjEYjMjMz8fTTT2PYsGEAgMLCQjz99NPIyclBUlIS5s6di1GjRjn22bVrF5YuXYrCwkJoNBosWbIEXbqcnzr69ttv480330RdXR0mTpyIp59+Gmq1bfSawWDAokWL8NVXX0GlUmHGjBmYMWOGbxsNQN44nIAjpYhISjhSykdC5ALCQ+XoGBZyPijFkVJERETUTt02OBkA8H1BGUpq9Jd8b3GNHvUJAwEA6SmXD2D5U4RSgb6JkdAkd4AmuQNC60oQExaKCKUCoXIZBEGATCYgShWCXvHhqPtqNSYPSECUSgGLMgpVg27DoL8sxqRHn8OkR59DRaXW300KKAaDAf/4xz9QUFDg2CaKImbNmoW4uDhs3boVU6ZMwezZs3H27FkAwNmzZzFr1ixkZmbiww8/RExMDB588EGIjSOOdu7cidWrV+OZZ57Bhg0bkJubi5UrVzqOv2LFChw8eBAbNmzAggULsHr1auzYscO3DQen7xGRNDEo5SMhchnW367Be38ZDJkgOHJKAeBIKSIiImp3esVHYMgV0bCIwDt7z1zyvWt3nQJkciRFKZHcQeWjGvpO5ygV/jSoE7pEq2CxivgqvwxF1ZcO1LVHR48exa233orTp0832757924UFhbimWeeQY8ePTBz5kykpaVh69atAIAtW7Zg4MCBmDFjBnr16oVly5ahqKgIe/bsAQC88847uPfeezF27FgMGjQIixYtwtatW6HT6dDQ0IAtW7Zg3rx5GDBgAK677jrcf//9eO+993zefntifCun7xGRhARtUOrcuXN4+OGHMXToUIwePRrLli2DwWAAYBu+O336dKSlpeHGG2/E//73v2b77tq1C5MnT4ZGo8E999yDwsJCn9S5e2wYujXmGgCAeqMZAJjonIiIiNql+4dfAQD4KPcsjlfUt/ieX09rsf2QbTrbkCuifVU1nwuVy3Bdn3h0i1HDKgLfHC5DZYPR39UKKHv27MGwYcOwefPmZttzc3PRv39/hIWd/5ydkZGBnJwcR/mQIUMcZWq1GgMGDEBOTg4sFgsOHDjQrDwtLQ0mkwn5+fnIz8+H2WxGenp6s2Pn5ubCavXtF8sKjpQiIgkKyqCUKIp4+OGHodPp8N5772HVqlX4/vvv8eKLL7o9fNeX7B2L3mzx+bmJiIiI/C2jSzSu7RkLiwis/O7YRQ/bdQYzln59BAAQVrIfiZFKf1TTZ+QyAWN7xSExUgmjRcQ3h8thlYX4u1oB44477sDcuXMduZ7sysrKkJCQ0GxbbGwsSkpKLlteU1MDg8HQrFyhUCA6OholJSUoKytDx44dERp6Po9ZXFwcDAYDtFqtU/UXBOd/bDva/idzM9G5K+f310+w1ZftZrvbS7u9ISgTnR8/fhw5OTn46aefEBcXBwB4+OGHsXz5clxzzTUoLCzEpk2bEBYWhh49euDnn3/G1q1b8dBDDzUbvgsAy5Ytw8iRIx3fvPiSfQUNeyJMIiJy37lz57BkyRLs3r0bSqUSN954I/7xj39AqVS6nQiXiDzv4WuuxM8nq/DraS3+3w/H8ei1V0IQBBjMVjz26SEUavVIiAiFrHAXgMn+rq7XKWQCru8Th4/2l6Bab4ax+1h/Vyng6XS6ZkEjAAgNDYXRaLxsuV6vd7xuqVwUxRbLADiO31axsc6tGhkdHQ4AUClDERamhDJUDgCQyeUIC2tbgFalstW1Y8dwxMUFxqqVbeXs9ZIKtrt9aa/tbioog1Lx8fF44403HAEpu7q6OreG73o7KCWKYrMRWfZkhXoTg1JERJ5gH0kbFRWF9957D9XV1Zg7dy5kMhmeeOIJzJo1C71798bWrVvxzTffYPbs2fjiiy+QlJTkGEn70EMPYfTo0VizZg0efPBBfPbZZxC89dUQEaFLRzUWTOiDudt+x/v7inCysgEZXaKx7VAJTlbqEB4qxws3D8QT37SfqWyqEDnG9YrFtkOl0MX3xbdHyvCH3vH+rlbAUiqVF41aMhqNUKlUjvILA0hGoxFRUVFQKpWO1xeWq9VqWCyWFssAOI7fVhUVtXBmkJNWa5vSqjcY0dBggNg4klBvMKOhwdCmY+j1trpWVdWjvLzWqfr6iyDYHtSdvV7Bju1muwOdvc6eFpRBqaioKIwePdrx2mq1YuPGjRg+fLhbw3d9zT59z8Dpe0REHiGVkbRE7c11feJRUW/E//vhOH4+WYWfT1YBADqqQ7Dspn7okxjh5xr6XqcoFTTJUcgpqsHyb44iIyUa0WGcyteSxMREHD16tNm28vJyx2f+xMRElJeXX1Ter18/REdHQ6lUory8HD169AAAmM1maLVaxMfHQxRFVFVVwWw2Q6GwPTqVlZVBpVIhKirKqXqKIpx6+HS8t/H/7q6+FywPvnbOXi+pYLvbl/ba7qaCMqfUhVauXIm8vDw8+uijbg3fdZa7czDtHYvBYvX73FDOm2X72f722X6p8dZIWiLyvtsGJ2Pz9CG4JS0JE/slIOvqrvjovquQ0SXa31Xzm8EpHaBoqECVzoTV/zvh7+oELI1Gg0OHDjmm4gFAdnY2NBqNozw7O9tRptPpkJeXB41GA5lMhtTU1GblOTk5UCgU6Nu3L/r16weFQtGsL8jOzkZqaipkMt8+Sskb+21Xc0oREQWioBwp1dTKlSuxYcMGrFq1Cr1793Zr+K6znB26ZrFYoNfrERYWCqtVhCrUtvqePDQk6OZ4u6O9z5tl+9l+8p5AGEkbyMG+psHRYH2madqGYCS134Gzbbjc761rjBpPju/pWsWcrIOnfwfe+Dsplwmo+eEthE18DJ/uL8ZP761CaEMZIAAKhRxmswVxHaOxft0bHjtnMP7bGjp0KDp37ow5c+bgwQcfxPfff4/9+/dj2bJlAICpU6fizTffxLp16zB27FisWbMGKSkpjlGwd9xxB+bPn4/evXsjISEBCxcuxK233upIqH7zzTdj4cKFWLp0KUpLS7F+/XrHsX3J3ZFSRESBKKiDUosXL8b777+PlStX4oYbbgDg3vBdZzk7/9NqtSA8PAQNDUZYrVaIjcvIVlbrgmaOtzsEIfjmzXoS28/2B1r77XWSMvtI2g8//BBvv/22T0bSunJNFSGXTlorCPBouVqtbLXM2+f21L5qtdJv5/ZEedPfgS/P7Ylj2+veUhsutb8iRO7Wl3Du/DtpqcyT/w4u1TZ3/32bSo+jd2IEjpyrQ8jov2BaRgqa5rn7eMUj7erLzZbI5XK88sormDdvHjIzM9G1a1esWbMGSUlJAICUlBS8/PLLWLp0KdasWYP09HSsWbPGcR0nTZqEoqIizJ8/H0ajEddffz0ef/xxx/HnzJmDhQsX4t5770VERAQeeughXH/99b5vp8CgFBFJT9AGpVavXo1NmzbhhRdewIQJExzbNRoN1q1bB71e7xgdlZ2djYyMDEd5S8N3Z8+e7XQdXJ4X3sjesehMloB5SPWF9j5vlu1n+9tz+33JXyNpXQk8mk2WSyatFUV4pNweUNDpDI46eurYrpS7su+FbfDluT1Rbo8lNP0d+LJunji2Tme46O9RW/Y3myxufQnnzr+TpmXe+HdwqbZ54t93RnIUjpfVo7hajwOFVegVH+5og7vX9ULB8oXF4cOHm73u2rUrNm7c2Or7x4wZgzFjxrRanpWVhaysrBbL1Go1li9fjuXLl7tWWQ9xjJTiBwkikpCgzCl17NgxvPLKK/jrX/+KjIwMlJWVOX6aDt8tKCjAunXrsH//fkybNg2Abfjuvn37sG7dOhQUFGDOnDnNhu/6kqLxg6nBzNX3iIg8afHixXjrrbcuGknb0kjZy42kjY93bsUre+DRmR9fafoAHqyCvQ3BXn/AvTa48u/D0/9OvPU78Ga9I5QKaJJtAfI9p7QwNn52bNoWT/5QYOL0PSKSoqAMSn377bewWCx49dVXMWrUqGY/9uG7ZWVlyMzMxGeffdbi8N2tW7di2rRp0Gq1zYbvepsoihAbe3tHonMGpYiIPKbpSNpJkyY5truTCJeIyN8GdY5EhFKOeqMFh0rq/F0d8gPH9D3GpIhIQoJy+t6lhtcC7g/f9RVFY1BKb2JQiojIE+wjabOyshwjae3cTYRLRORPCrkMQ7pE4z9HK7C/qAYZ3WIAAEeO5GPKLdNa3Cc2Jhrr13ouCTr5F0dKEZEUBWVQSirOj5Sy+LkmRETS0HQk7auvvtqs7PDhw24lwiUi8rcecWHIKaqBVmfCvtNaaDpHwGwFJj36XIvv377qMR/XkLyJQSkikiIGpfzIPgRXz+l7REQeIZWRtERELZEJAoZ06YBvjpTjt8Iq9I5T+7tK5EMMShGRFDEo5UcK5pQiIiIiCnqXmkJ35FgBJrVY4ppuMWrEhYeivN6InKIaDx6ZAp28ceCuldnoiUhCGJTyI3ljmnm9idP3iIiIiILVpabQ5c2c7NFzCYKAIVd0wI7fy/B7SS2EsA4ePT4FLlnjF9pmjpQiIgkJytX3pIIjpYiIiIjIWSkdVEjqoIJFBFQDr/d3dchHFI2pPzhSioikhEEpP5IzKEVEREREThIEAcOujAUAhPYZhXqD2c81Il/gSCkikiJO3/MjJjonIiKi9uJSeZcAIDYmGuvXvuHDGgW3Lh3VSIxU4lwtkHO2BiO7x/i7SuRl9lkWVj46EJGEMCjlR+en7zGnFBEREUnbpfIuAcD2VY/5sDbBTxAEZHTpgC/ySpF/rg5pSVEIV/KjvZTJGr/QtnD6HhFJCKfv+dH5ROdWiOxciIiIiMgJSVFKmEsKYBVto6VI2uypPyycvkdEEsKglB/ZkxWKAEwWdi5ERERE1HaCIECfsx0AkH+ujrmlJM7+hTaDUkQkJQxK+ZAois1GRNm/7QCY7JyIiIiInGcuOYJOkUrbaKkijpaSMnmTL7S5Ah8RSQWDUj724teHHX8WIMIel9IzrxQRERERuSCjSwcAQH5pHeo4Wkqymn6hzdFSRCQVDEr5miA0e6lS2H4FHClFRERERK7oHKV0jJbK5WgpyWJQioikiEEpPwttDErpTQxKEREREZHz7CvxARwtJWUyQYA9LMUV+IhIKhiU8jOlY6QUp+8RERERkWuSOqjQOYqjpaTu/Ap8fq4IEZGHMCjlZyqFHACg5/Q9IiIiInLD4BSOlpK680EpjpQiImlQ+LsC7ZkoilAqbB0Lg1JERETUnh05ko8pt0xrvfxYASb5sD7ByD5aqrjGwNFSEmVfgY/T94hIKhiU8iOr1dpk+h6DUkRERNR+ma3ApEefa7U8b+ZkH9YmeA1O6YDteaXIL61DfGiEv6tDHiZvnOfCkVJEJBWcvudHoiiivM4IANCbmFOKiIiIiNzTNLdUbdIQf1eHPMw+fc/KoBQRSQSDUn5m/7aDI6WIiIiIyBPsuaUaEgagpEbv59qQJ8kap++ZOX2PiCSCQSk/UzR+28GgFBERERF5gn20FGRy7D2t9Xd1yIPszw5mC4NSRCQNDEr5kSiKjmSFnL5HRERERJ4yrlccok7+iOv6xPu7KuRBqhDbyt38QpuIpIJBKT+Tc6QUEREREXlYWKgcESW/OYIYJA2qxkWSdPxCm4gkgkEpP7MPwdUzKEVERERERJegCrE9vvHZgYikgkEpP7NP3+NIKSIiIiIiuhSVwjbyjak/iEgqGJTyM/vqexd2LKIoQuSqGkRERERE1EjNkVJEJDEMSvmZsjEqVdlg8nNNiIiIiIgokClD7COlGJQiImlgUMrPIpS2juVstc7PNSEiIiIiokBmT3SuN3P6HhFJA4NSfhausOWUOlttgJXT9YiIiIiIqBWO6XscKUVEEsGglA/Z8kQ13xYeKoNMAAwWKyrqjf6pGBERERERBTx7onOzVYTZwsAUEQU/BqX8TCYISIxUAgCKtHo/14aIiIiIiAJViFyAzDbRgsnOiUgSGJTyM1EUkRTVGJSqZlCKiIiIiIhaJgiCY7QUp/ARkRQwKOVnVqsVnSNDAQBFTHZORERERESXoAphsnMikg4GpQJAkdYWjOJIKSIiIiIiuhTHCnwcKUVEEsCglJ+JoogIpW0IbtOcUlarFVYrOxoiIiIiIjpPFdI4fY8jpYhIAhiUCgDhIbZshU1HStlW6rP9EBERERERAedHSuk4UoqIJIBBqQAQprD9v7zeiJIaW2BKFEWs++mE488MThERERER0fmRUgxKEVHwY1AqACgEID0pEgDw7+wiAECdwYxKnaldTOFj0I2IiIiIqG3sic51Rk7fI6Lg126DUgaDAXPnzsWQIUMwatQorF+/3q/16ai0/So+OVCMzw6W4LZ3c/DpoXLc++8c7CvU+rVuRETtSaD1D0RE5H+B1DfEqEMAACW1Blj5xS4RBTmFvyvgLytWrMDBgwexYcMGnD17Fk8++SSSkpIwYcIEv9QnIUyGnrFqHK3QYfHOI47th0vr8dDWg5h7XS9MGpAIQRD8Uj8iovYi0PoHIiLyv0DqGxKjlFApZNCbrSiuMSC5g8rndSAi8pR2GZRqaGjAli1b8Prrr2PAgAEYMGAACgoK8N577/ntocNqtaJ7BwX0plAoQ+RQQETvWCVySnQorDFi0c4j+PxQCf44IBHX9IxDpCrEL/UkIpKyQOwfiIjIvwKtb5AJAq7oqMaRsnqcrGzweFDKKooorTVABBCtDoG6MYcVEZE3tMugVH5+PsxmM9LT0x3bMjIy8Nprr8FqtUIm88+sxhiVHCO7hCFEoYDFKsJiMWNEShg6lMuRV6bDvjM12HemBoqvjyItOQr9O0UhPiIUkUoFIpRyRCgViFQqoFTIoDdZUW80wyqKCFXIESIXECKTQS4TYBVFiABC5TJEqWz7yGW+G4GlN1kak7obcLpKB4PZgmh1CFKTotA5SgUZR4MRkZ8Eav9ARET+E4h9Q7fYMFtQqkKH9GQLwkJdCxyZrSLK6ww4WdmAA2drcaC4BodKalGjNwMABACdO6hwZWxY4084usWooQ6VI0QmgyAAZosIk9UKo0WEyWy94M8iTBYrjGbbtvLKStTU1cNkBSyiiNZmH6pUIdDrTbY6CIBSLkAlF6BUAPEdohAfFwcr7LlpbYE0UQSsEKGQyRAqFxCqkCFUfv4Hgq09MkFw/Nn2RwEWUYTVKsIqirCIaPJnEVZHXS8sA+wNsDdDIROgkMsQIhMQIrfVQy4TIKDJ880Fjzr2l4IAlJlEaLX1EEVAEASEyGztsB8rVG77sy+f3Yi8rV0GpcrKytCxY0eEhoY6tsXFxcFgMECr1SImJqZNx5HJ0OqNtLX3h8oFmBUyR2JvQRAu+rNcBsggQiHIIAgC0jup0DdOiZPVJtSbgMJqA/JL65FfWt/2k19GiFyAIAiNN2rbTVEmCLY/w/Zne6yoaZtFERDR/GZs/7P9fSLOdzhWEdBfYvnaUIUMkaFyyGW2c8tlQuOfz5+/rVy5VXtzeqQAQK6Qw2KxNL9Yl62T16rkc3KFHBazf5Ny+i31ggDI5c7//tuqT0IEHv9DD6f+Dkvp75aneKJ/cLZvAICwsDCEKlp/qImMiPBIuSDYvpCwhMgcdfTUsV0pd2Xfpm3w9bk9US4ItjJlk9+BL+vmiWMrQ2QX/T3y1bk90W5f/zvwxrHb+u8gLCwMzsZL2DdczF/PDgqFHJGRkagrK0JlaPPHtjAR6KgKh0kU8PnBEoTKRMgFEfZYhdj4H7NJhV6zXsein2ug2LvbVtb4BbVZBGqMIqwt1KmDSgGZAJisQI3ejJyiGuQU1bS98m4zXKKssvGn/TofUGt85hGaP/s0/XcstPD6/PuEFrZd8PqCc1tF298v+0AHq3j+77X9PMIFf7afy/HnC8plMttzcNMAneN9uPDPTj4XCgDEy9/bLlV84b6XO/2lypv+c5PLBVgsFz9LA63fKwSheZmzdQNsz/s3D4zDLUN7tuHdrZ/LUwSxHS579sknn+D//b//h++//96xrbCwEOPHj8cPP/yATp06+bF2RETkL+wfiIjoQuwbiIi8p13OQ1AqlTAajc222V+rVEwUSETUXrF/ICKiC7FvICLynnYZlEpMTERVVRXMZrNjW1lZGVQqFaKiovxYMyIi8if2D0REdCH2DURE3tMug1L9+vWDQqFATk6OY1t2djZSU1OZxJaIqB1j/0BERBdi30BE5D3t8i6qVqtx8803Y+HChdi/fz+++eYbrF+/Hvfcc4+/q0ZERH7E/oGIiC7EvoGIyHvaZaJzANDpdFi4cCG++uorRERE4L777sP06dP9XS0iIvIz9g9ERHQh9g1ERN7RboNSRERERERERETkP+1y+h4REREREREREfkXg1JERERERERERORzDEoREREREREREZHPMSjlIwaDAXPnzsWQIUMwatQorF+/3t9VuqRz587h4YcfxtChQzF69GgsW7YMBoMBAFBYWIjp06cjLS0NN954I/73v/8123fXrl2YPHkyNBoN7rnnHhQWFjYrf/vttzF69Gikp6dj7ty50Ol0jrLLXafLndsbsrKy8NRTTzle5+Xl4ZZbboFGo8HUqVNx8ODBZu/ftm0bxo8fD41Gg1mzZqGystJRJooinnvuOQwfPhxDhw7FihUrYLVaHeVVVVV46KGHkJ6ejnHjxuHTTz9tduzLndtTjEYjFi1ahKuuugpXX301XnjhBdjTz7WH9gNAcXExZs6cicGDB2PcuHF4++2321wPqVwDCm7u3McDjbP34UDhzr00ELhzH/Q3o9GIyZMn45dffnFsc/fzi6+11IacnBzcdtttSE9Pxw033IAtW7Y02yfQ2kCuCbbnBldJqZ9yVbD2b64K9n7RVcHcn/qESD7xzDPPiDfddJN48OBB8auvvhLT09PFL7/80t/VapHVahVvvfVW8f777xePHDki7t27V7zuuuvEZ599VrRareJNN90k/t///Z949OhR8bXXXhM1Go1YVFQkiqIoFhUViWlpaeKbb74pHjlyRPz73/8uTp48WbRaraIoiuKOHTvEjIwM8bvvvhNzc3PFG2+8UVy0aJHj3Je6Tpc7tzds27ZN7N27t/jkk0+KoiiK9fX14siRI8Vnn31WPHr0qLh48WLx6quvFuvr60VRFMXc3Fxx0KBB4scffyz+/vvv4l133SVmZWU5jvfmm2+KY8aMEffu3Sv+/PPP4qhRo8Q33njDUT5z5kzx3nvvFQ8fPix+8MEH4sCBA8Xc3Nw2nduTnn76afH6668Xc3NzxV27donDhg0T33///XbTflEUxVtvvVV85JFHxBMnTohff/21qNFoxK+++qpdXQMKXu7cxwONs/fhQOLqvTRQuHof9De9Xi/OmjVL7N27t7h7925RFC//GeJyn18CoQ2lpaXikCFDxOeff148ceKEuG3bNjE1NVX8/vvvA7IN5Lpgem5wlZT6KVcFc//mqmDvF10VrP2przAo5QP19fViamqq40OFKIrimjVrxLvuusuPtWrd0aNHxd69e4tlZWWObZ9//rk4atQocdeuXWJaWlqzfyj33nuv+NJLL4miKIovvvhis3Y1NDSI6enpjrbfcccdjveKoiju3btXHDRokNjQ0HDZ63S5c3taVVWVeM0114hTp051dBZbtmwRx40b5/iAZ7Vaxeuuu07cunWrKIqi+PjjjzveK4qiePbsWbFPnz7i6dOnRVEUxTFjxjjeK4qi+Mknn4hjx44VRVEUT506Jfbu3VssLCx0lM+dO7fN5/Zku/v37y/+8ssvjm1r164Vn3rqqXbRflEURa1WK/bu3Vs8fPiwY9vs2bPFRYsWtZtrQMHNnft4IHHlPhwo3LmXBgJ37oP+VFBQIP7xj38Ub7rppmYBHXc/v/hSa23497//LU6YMKHZe59++mnxH//4hyiKgdUGcl2wPTe4Sir9lKuCuX9zVbD3i64K1v7Ulzh9zwfy8/NhNpuRnp7u2JaRkYHc3Nxm03YCRXx8PN544w3ExcU1215XV4fc3Fz0798fYWFhju0ZGRnIyckBAOTm5mLIkCGOMrVajQEDBiAnJwcWiwUHDhxoVp6WlgaTyYT8/PzLXqfLndvTli9fjilTpqBnz56Obbm5ucjIyIAgCAAAQRAwePDgVtvfuXNnJCUlITc3F+fOnUNxcTGuuuqqZvUvKipCaWkpcnNz0blzZ6SkpDQr/+2339p0bk/Jzs5GREQEhg4d6tiWlZWFZcuWtYv2A4BKpYJarcZHH30Ek8mE48ePY9++fejXr1+7uQYU3Ny5jwcSV+7DgcKde2kgcOc+6E979uzBsGHDsHnz5mbb3fn84muttcE+velCdXV1AAKrDeS6YHtucJVU+ilXBXP/5qpg7xddFaz9qS8xKOUDZWVl6NixI0JDQx3b4uLiYDAYoNVq/VexVkRFRWH06NGO11arFRs3bsTw4cNRVlaGhISEZu+PjY1FSUkJAFyyvKamBgaDoVm5QqFAdHQ0SkpKLnudLnduT/r555/x66+/4sEHH2y2/XJ1KC0tbbW8rKwMAJqV2ztie3lL+547d65N5/aUwsJCJCcn45NPPsGECRPwhz/8AWvWrIHVam0X7QcApVKJ+fPnY/PmzdBoNJg4cSKuueYa3HLLLe3mGlBwc+c+HihcvQ8HCnfupYHAnfugP91xxx2YO3cu1Gp1s+3ufH7xtdbakJKSgrS0NMfriooKbN++HSNGjAAQWG0g1wXbc4OrpNBPuSrY+zdXBXu/6Kpg7U99SeHvCrQHOp2uWccCwPHaaDT6o0pOWblyJfLy8vDhhx/i7bffbrEt9na01laj0Qi9Xu943VK5KIqXvE6XOrYnGQwGLFiwAPPnz4dKpWpWdrk66PV6p9rvTPt81f6GhgacOnUKmzZtwrJly1BWVob58+dDrVa3i/bbHTt2DGPHjsVf/vIXFBQUYPHixRgxYkS7ugYkHc7cxwOBO/fhQOHOvTRQuHofDERSu7/q9Xo89NBDiIuLw5///GcAwdcGalmwPze4Ktj6KVdJoX9zlRT6RVdJqT/1BgalfECpVF70F8v++sKbUaBZuXIlNmzYgFWrVqF3795QKpUXfUtjNBod7WitrVFRUVAqlY7XF5ar1WpYLJZLXqfLndtTVq9ejYEDBzb79sautfZdrv1qtbrZB4oLr4VarXb52J5uv0KhQF1dHZ5//nkkJycDAM6ePYv3338fXbt2lXz7Ads3WB9++CF++OEHqFQqpKam4ty5c3j11VfRpUuXdnENSDqcvY8HAnfuw4HCnXtpIHDnPhiI3Pn8Emjq6+vx4IMP4uTJk/j3v//tGFEVTG2g1gXzc4OrgrGfcpUU+jdXBXu/6Cqp9afewOl7PpCYmIiqqiqYzWbHtrKyMqhUqoD+oLB48WK89dZbWLlyJW644QYAtraUl5c3e195eblj2GFr5fHx8YiOjoZSqWxWbjabodVqER8ff9nrdLlze8r27dvxzTffID09Henp6fj888/x+eefIz093a32JyYmOtrUtH0AHOWt7XupY3u6/fHx8VAqlY7OAgC6d++O4uLidtF+ADh48CC6du3arEPo378/zp49226uAUmDK/fxQODOfThQuHMvDQTu3AcDkTv37kBSV1eH++67DwUFBdiwYQO6devmKAuWNtClBetzg6uCtZ9ylRT6N1cFe7/oKqn1p97AoJQP9OvXDwqFolnCsuzsbKSmpkImC8xfwerVq7Fp0ya88MILmDRpkmO7RqPBoUOHHNOQAFtbNBqNozw7O9tRptPpkJeXB41GA5lMhtTU1GblOTk5UCgU6Nu372Wv0+XO7SnvvvsuPv/8c3zyySf45JNPMG7cOIwbNw6ffPIJNBoNfvvtN4iiCAAQRRH79u1rtf3FxcUoLi6GRqNBYmIikpKSmpVnZ2cjKSkJCQkJSEtLQ1FRUbM5xNnZ2Y78EZc7t6doNBoYDAacOHHCse348eNITk5uF+0HbDmfTp061eybi+PHjyMlJaXdXAMKfq7exwOBO/fhQOHOvTQQuHMfDETufH4JFFarFbNnz8aZM2fw7rvvolevXs3Kg6ENdHnB+NzgqmDup1wlhf7NVcHeL7pKav2pV/hsnb927umnnxYnTZok5ubmil9//bU4ePBgcefOnf6uVouOHj0q9uvXT1y1apVYWlra7MdsNos33nij+Mgjj4hHjhwR165dK6alpYlFRUWiKIpiYWGhmJqaKq5du1Y8cuSI+Pe//1286aabHMtcbtu2TRw8eLD49ddfi7m5ueKkSZPExYsXO859qet0uXN7y5NPPulYqrW2tlYcPny4uHjxYrGgoEBcvHixOHLkSMeStfv27RMHDBggfvDBB+Lvv/8u3nXXXeLMmTMdx1q7dq04atQocffu3eLu3bvFUaNGievXr3eUz5gxQ7zrrrvE33//Xfzggw/E1NRUMTc3t03n9qSsrCzxz3/+s/j777+L//3vf8Xhw4eLGzZsaDftr6mpEUeOHCk+/vjj4vHjx8Vvv/1WHDp0qPj++++3m2tAwc2d+3ggcuY+HEhcvZcGAnfug4Gid+/e4u7du0VRvPxniMt9fvGXpm3YvHmz2LdvX/H7779v9m+6qqpKFMXAbQM5L5ieG1wltX7KVcHav7kqmPtFV0mhP/U2BqV8pKGhQXziiSfEtLQ0cdSoUeJbb73l7yq1au3atWLv3r1b/BFFUTx58qR45513igMHDhQnTZok/vTTT832/89//iNef/314qBBg8R7771XPH369EXHHzFihJiRkSHOmTNH1Ov1jrLLXafLndsbmnYWoiiKubm54s033yympqaK06ZNEw8dOtTs/Vu3bhXHjBkjpqWlibNmzRIrKysdZWazWVy6dKk4ZMgQcdiwYeLKlSubfVgsLy8XZ86cKaamporjxo0TP//882bHvty5PaWmpkZ8/PHHxbS0NHHEiBHiyy+/7Khne2i/KIpiQUGBOH36dHHw4MHi+PHjxbfeeqvdXQMKXu7exwONs/fhQOHOvTQQuHMfDARNAzqi6P7nF39o2oYZM2a0+G/6rrvucrw/ENtAzgum5wZXSa2fclWw9m+uCvZ+0VXB3p96myCKjWPFiIiIiIiIiIiIfERaE5OJiIiIiIiIiCgoMChFREREREREREQ+x6AUERERERERERH5HINSRERERERERETkcwxKERERERERERGRzzEoRUREREREREREPsegFBERERERERER+RyDUkRERERERERE5HMMShERERERERERkc8xKEVERERERERERD7HoBQREREREREREfkcg1JERERERERERORzDEoREREREREREZHPMShFREREREREREQ+x6AUERERERERERH5HINSRERERERERETkcwxKERERERERERGRzzEoRUREREREREREPsegFBERERERERER+RyDUkRERERERERE5HMMShERERERERERkc8xKEVERERERERERD7HoBQREREREREREfkcg1JERERERERERORzDEoREREREREREZHPMShFREREREREREQ+x6AUERERERERERH5HINSRERERERERETkcwxKERERERERERGRzzEoRUREREREREREPsegFBERERERERER+RyDUkRERERERERE5HMMShERERERERERkc8xKEVERERERERERD7HoBTRJYii6JN9Ao0U2kBERERERESBjUEpolZ8++23ePLJJ53aZ8uWLVi+fLlT+/zyyy/o06cPfvnlF6f28wSz2YynnnoK6enpGDx4MHbv3u1SG4iIiIiIiIicxaAUUSvefvttFBcXO7XPq6++Cq1W650KecGPP/6Ijz/+GNOnT8fatWuRmpoadG0gIiIiIiKi4KTwdwWIyH/swafMzEx06dLFv5UhIiIiIiKidkUQmTyG6CJ333039uzZ43j9zjvvoHv37li1ahV27dqFqqoq9O7dGw888AD+8Ic/AADGjRuHoqIixz7ffvstUlJSsHfvXrz22mvYv38/dDodEhIS8Kc//QmzZs2CTCbDL7/8gnvuuQfvvPMOhg0b1uY6btiwAe+//z6KiooQHR2NP/zhD3jssccQEREBADAYDHjuueewfft26HQ6XHfddUhLS8OiRYtw+PBhPPXUU/j4448dxxs6dCiKiopabAMRERERERGRp3H6HlELFixYgP79+6N///7YvHkzUlJSMG3aNPz666949NFH8fLLLyM5ORmzZs3CZ599BgBYvXo14uPjMWbMGGzevBkJCQnIz8/H9OnTER0djVWrVuHVV1/FkCFDsHr1anz55Zcu12/btm1YuXIl7rzzTrz55puYNWsWPv30UyxevNjxnsceewxbtmxBVlYWXnzxRWi1Wrz44ouO8gcffBAPPPCAo+4LFixosQ1ERERERERE3sDpe0Qt6Nmzp2PEUVpaGlauXInKykrs3LkTycnJAIAxY8Zg+vTpWLFiBSZPnoz+/fsjNDQUMTExSEtLAwDk5+fj6quvxsqVKyGT2WLAI0eOxHfffYdffvkFkyZNcql+e/bsQUpKCu68807IZDIMHToUYWFhqK6uBgAcOXIEX331FebPn48777wTADBq1ChMmjTJ8Z4rrrgCV1xxBQCgX79+jhFRF7aBiIiIiIiIyBs4UoqoDfbs2YP09HRHQMruj3/8I8rKynD8+PEW97v55pvx+uuvw2QyIT8/Hzt37sRLL70Ei8UCk8nkcn2GDx+OEydOIDMzE6tXr8aBAwdw00034e677wYA/PrrrwDgmFoIAHK5HJMnT3b5nERERERERESexJFSRG1QXV3dYiLwuLg4AEBNTU2L++n1eixevBiffvopzGYzUlJSkJ6eDoVCAXfSud14442wWq3497//jVdeecUxnfCxxx7DjTfe6BgNFRMT02y/xMREl89JRERERERE5EkMShG1QYcOHVBWVnbRdvu2jh07trjfkiVLsHPnTrz44ou4+uqrERYWBgAYMWKE23WaPHkyJk+ejNraWvzvf//D66+/jscffxwZGRmO+pSXlyMpKcmxT1VVldvnJSIiIiIiIvIETt8jaoU9BxQAXHXVVfjtt9+arUwHAJ999hni4+PRtWvXi/YBgOzsbAwbNgzjx493BKQOHjyIyspKWK1Wl+v2yCOPYNasWQCAyMhITJw4EQ8++CDMZjNKS0sxfPhwCIKAHTt2NNvv+++/v+yxL2wDERERERERkTdwpBRRK6KiovDbb7/h559/xvTp0/HZZ59h+vTpmD17NqKjo/HJJ59g9+7dWLp0qSOQExUVhby8POzZsweDBg3CoEGD8OWXX+L9999Hjx49kJ+fj1dffRWCIECn07lct+HDh2PBggVYvnw5rrnmGtTU1GD16tXo1q0b+vbti5CQENx2221YtWoVzGYz+vfvj88++wy//fZbm9rdtA0qlcrlehIRERERERG1hkEpolbceeedOHjwIP76179i2bJleP/99/H888/jX//6F0wmE/r27YtXXnmlWTLxGTNmYOnSpbjvvvvw1ltv4amnnoLJZMKLL74Io9GIlJQUPPDAAzh69Ci+++47WCwWl+p22223wWQyYdOmTfj3v/8NlUqFESNG4PHHH0dISAgAYP78+YiLi8O7776LmpoajBkzBnfccQfee++9Sx77wjYMGTLEpToSERERERERXYogupNtmYiCyssvv4zVq1fj8OHD/q4KERERERERtXMcKUUUQCwWy2VX5RMEAXK53Ec1IiIiIiIiIvIOBqWIAsh11113UTL1Cw0dOhTvvvuuj2pERERERERE5B2cvkcUQA4fPgyj0XjJ94SHh+PKK6/0UY2IiIiIiIiIvINBKSIiIiIiIiIi8jmZvytARERERERERETtD4NSRERERERERETkcwxKERERERERERGRzzEoRUREREREREREPsegFBERERERERER+ZzC3xUIZhUVtXBm7UJBAGJjI53ej1rG6+l5vKaeFejX014/IiIiIiIif2BQyg2iCJceNF3dj1rG6+l5vKaexetJRERERER0MU7fIyIiIiIiIiIin2NQioiIiIiIiIiIfI5BKSIiIiIiIiIi8jkGpYiIiIiIiIiIyOcYlCIiIiIiIiIiIp9jUIqIiIiIiIiIiHyOQSkiIiIiIiIiIvI5BqWIiIiIiIiIiMjnGJQiIiIiIiIiIiKfY1CKiIiIiIiIiIh8jkEpIiIiIvr/7d15lNxlnS/+d3U6vYQQIOuQwDAsI2toQgIZBGQZdRIMP7hh8cKI2x0JQmS4jhMMKLIYkUX0XglLVK4oXmEgOC4gXBAvV1lEgumAmWhCBDImSDcYAqSTTnfq90fSDZ0ApqGrKk29Xuf0CfX9fqueTz1Vx3Pq7ed5vgAAZdcvQqn29vZMmTIlv/rVr7qPLVu2LB/96EdzwAEH5Jhjjskvf/nLHs958MEHM2XKlDQ1NeXDH/5wli1b1uP8t7/97Rx++OEZN25czjvvvLS1tZXlvRSLxe4/AAAAgGq11YdSa9euzac//eksXry4+1ixWMxZZ52V4cOHZ+7cuTnuuOMyffr0LF++PEmyfPnynHXWWZk6dWpuu+22DB06NGeeeWZ3EHT33Xfn6quvzsUXX5wbb7wxzc3NueKKK8r2nq77xdKyjQUAAACwNdqqQ6klS5bk5JNPzjPPPNPj+MMPP5xly5bl4osvzu67755p06blgAMOyNy5c5Mkt956a/bbb798/OMfz9/+7d/m0ksvzR//+Mc88sgjSZLvfOc7+chHPpKjjjoq+++/fy666KLMnTu3bN1SKRTKMw4AAADAVmqrDqUeeeSRTJw4MbfcckuP483Nzdlnn30yaNCg7mPjx4/P/Pnzu89PmDCh+1xjY2P23XffzJ8/P52dnXn88cd7nD/ggAOybt26LFq0qLRvCAAAAIAkSW2lC3gzp5566useb2lpyciRI3scGzZsWJ599tm/eH7VqlVZu3Ztj/O1tbXZfvvtu58PAAAAQGlt1aHUG2lra0tdXV2PY3V1dWlvb/+L59esWdP9+I2ev6V6uwqv6/pC4dU/3rrXzid9w5z2ra19PrfWugAAgOrQL0Op+vr6rFy5ssex9vb2NDQ0dJ/fNGBqb2/PkCFDUl9f3/140/ONjY29qmPYsG17WfmGTdobG+szfPi2KfhF2CfeyufAmzOnfct8AgAAbK5fhlKjRo3KkiVLehxrbW3tXpI3atSotLa2bnZ+7733zvbbb5/6+vq0trZm9913T5J0dHRk5cqVGTFiRK/qeP75l7Lxhn5bpFBIhg4dnLa2tWltfUko9TYVCht+7Pf2c+CNmdO+tbXPZ1d9AAAAldAvQ6mmpqbMmTMna9as6e6OmjdvXsaPH999ft68ed3Xt7W1ZeHChZk+fXpqamoyduzYzJs3LxMnTkySzJ8/P7W1tdlrr716VUexmLf0Q/OtPo/XZz77njntW+YTAABgc1v13ffeyMEHH5wdd9wxM2fOzOLFizNnzpwsWLAgJ554YpLkhBNOyGOPPZY5c+Zk8eLFmTlzZnbaaafuEOrUU0/Nt771rdx7771ZsGBBLrzwwpx88sm9Xr73VhWLxRT9QgUAAACqWL8MpQYMGJBrrrkmLS0tmTp1an70ox9l9uzZGT16dJJkp512yte//vXMnTs3J554YlauXJnZs2d3L5f7wAc+kGnTpuWCCy7Ixz/+8ey///7513/910q+JQAAAICqUihq2XnLWlt7v6fUsGGDc8kPmjPt0F1TU9MvM8GtRqGQDB++ba8/B96YOe1bW/t8dtUHAABQCVIRAAAAAMpOKAUAAABA2QmlAAAAACg7oRQAAAAAZSeUKjP7ygMAAAAIpQAAAACoAKEUAAAAAGUnlAIAAACg7IRSAAAAAJSdUKoCisWiDc8BAACAqiaUAgAAAKDshFIAAAAAlJ1QCgAAAICyE0oBAAAAUHZCKQAAAADKTigFAAAAQNkJpQAAAAAoO6EUAAAAAGUnlCqzYrGYYrFY6TIAAAAAKkooBQAAAEDZCaUAAAAAKDuhFAAAAABlJ5QCAAAAoOyEUgAAAACUnVAKAAAAgLITSgEAAABQdkKpCigWiykWi5UuAwAAAKBihFIAAAAAlJ1QCgAAAICyE0oBAAAAUHZCKQAAAADKTigFAAAAQNkJpQAAAAAoO6FUmRWLxUqXAAAAAFBxQikAAAAAyk4oBQAAAEDZCaUAAAAAKDuhFAAAAABlJ5QCAAAAoOyEUgAAAACUnVAKAAAAgLITSgEAAABQdkIpAAAAAMpOKAUAAABA2QmlAAAAACg7oRQAAAAAZSeUAgAAAKDshFIAAAAAlF2/DqVWrFiRadOm5cADD8zRRx+db3/7293nFi5cmJNOOilNTU054YQT8sQTT/R47k9+8pO8973vTVNTU84666y88MILZa4eAAAAoHr161DqnHPOyaBBg3L77bfnvPPOy9e+9rXcc889Wb16dU4//fRMmDAht99+e8aNG5dp06Zl9erVSZIFCxbk/PPPz/Tp03PLLbdk1apVmTlzZoXfDQAAAED16Leh1Isvvpj58+fnk5/8ZP7mb/4m733ve3P44YfnoYceyp133pn6+vrMmDEju+++e84///xss802ueuuu5IkN910UyZPnpzjjz8+e+21Vy6//PLcf//9WbZsWYXfFQAAAEB16LehVENDQxobG3P77bdn3bp1Wbp0aR577LHsvffeaW5uzvjx41MoFJIkhUIhBx54YObPn58kaW5uzoQJE7pfa8cdd8zo0aPT3NxcibcCAAAAUHX6bShVX1+fCy64ILfcckuampoyefLkvOc978lJJ52UlpaWjBw5ssf1w4YNy7PPPpskee655970PAAAAAClVVvpAt6OJ598MkcddVQ+9rGPZfHixbnkkktyyCGHpK2tLXV1dT2uraurS3t7e5JkzZo1b3p+S21sxHpL1xcKvX8+PXXNn3nsO+a0b23t87m11gUAAFSHfhtKPfTQQ7ntttty//33p6GhIWPHjs2f/vSnXHvttdl55503C5ja29vT0NCQZEOX1eudb2xs7FUNw4Zt2+u6Ozo6MmhQXYYP3za1tf12+rcqb+Vz4M2Z075lPgEAADbXb1ORJ554Irvsskt30JQk++yzT6677rpMmDAhra2tPa5vbW3tXrI3atSo1z0/YsSIXtXw/PMvpVjc8usLhWS77RqzenV7WltfEkq9TYXChh/7vf0ceGPmtG9t7fPZVR8AAEAl9Ns9pUaOHJmnn366R8fT0qVLs9NOO6WpqSm/+c1vUtz4K7BYLOaxxx5LU1NTkqSpqSnz5s3rft6KFSuyYsWK7vNbqljs/d/bea6/15/PStfwTvszp9U1nwAAAJXSb0Opo48+OgMHDsznPve5/OEPf8h9992X6667LqeddlomTZqUVatWZdasWVmyZElmzZqVtra2TJ48OUlyyimn5Ic//GFuvfXWLFq0KDNmzMiRRx6ZnXfeucLvCgAAAKA69NtQatttt823v/3ttLS05MQTT8yll16aT37yk/ngBz+YwYMH5/rrr8+8efMyderUNDc3Z86cORk0aFCSZNy4cbn44osze/bsnHLKKdluu+1y6aWXVvgdAQAAAFSPQrFoAcdb1dra+z2ltt++MZf8oDlnHLabPaXepkIhGT58215/Drwxc9q3tvb57KoPAACgEvptpxQAAAAA/ZdQCgAAAICyE0oBAAAAUHZCKQAAAADKTigFAAAAQNkJpQAAAAAoO6EUAAAAAGUnlAIAAACg7IRSZVYsFrN+/foUi8VKlwIAAABQMUIpAAAAAMpOKAUAAABA2QmlAAAAACg7oRQAAAAAZSeUAgAAAKDshFIAAAAAlJ1QCgAAAICyE0oBAAAAUHZCKQAAAADKTigFAAAAQNkJpQAAAAAoO6EUAAAAAGUnlAIAAACg7IRSAAAAAJSdUAoAAACAshNKAQAAAFB2QikAAAAAyk4oVWbFYrHSJQAAAABUnFAKAAAAgLITSgEAAABQdkIpAAAAAMpOKAUAAABA2QmlAAAAACg7oVQFFItFd+EDAAAAqppQqswEUgAAAABCKQAAAAAqQCgFAAAAQNkJpQAAAAAoO6EUAAAAAGUnlAIAAACg7IRSAAAAAJSdUAoAAACAshNKAQAAAFB2QikAAAAAyk4oBQAAAEDZlSSUevjhh1MsFkvx0gAAAAC8A9SW4kX/+Z//OQMHDsykSZMyZcqUHHDAAaUYBgAAAIB+qiSh1AMPPJAHHnggd911V04//fQMHjw4kydPzgc+8IHss88+pRgSAAAAgH6kJKFUbW1tjjjiiBxxxBHp6OjIgw8+mPvuuy+nnnpqRo0alWOPPTZTp07N6NGjSzE8AAAAAFu5km503t7envvvvz933HFHfvrTn2aHHXbI0Ucfnaeeeiof+MAHctNNN73t17/oooty0EEH5d3vfneuuuqq7r2sFi5cmJNOOilNTU054YQT8sQTT/R47k9+8pO8973vTVNTU84666y88MILb6uWLWWvLQAAAIAShVL33ntvPvOZz+Td7353Pve5z6WxsTGzZ8/Oz3/+85x77rm58sor85nPfCZf/epX39Y4X/ziF/Pggw/mW9/6Vr7yla/k3/7t33LLLbdk9erVOf300zNhwoTcfvvtGTduXKZNm5bVq1cnSRYsWJDzzz8/06dPzy233JJVq1Zl5syZffHWAQAAANgCJVm+d+655+a9731vrrrqqhx66KEZMGDAZtfst99++djHPvaWx1i5cmXmzp2b//W//lf233//JMnHP/7xNDc3p7a2NvX19ZkxY0YKhULOP//8/L//9/9y1113ZerUqbnpppsyefLkHH/88UmSyy+/PEcddVSWLVuWnXfe+S3XBAAAAMCWKUko9eCDD+bll1/OqlWrugOpO++8MwcddFBGjBiRJGlqakpTU9NbHmPevHkZPHhwDj744O5jp59+epLk85//fMaPH59CoZAkKRQKOfDAAzN//vxMnTo1zc3N+cQnPtH9vB133DGjR49Oc3OzUAoAAACgDEqyfO+xxx7L+973vvz4xz/uPvad73wnxxxzTObNm9cnYyxbtixjxozJv//7v2fSpEn5+7//+8yePTvr169PS0tLRo4c2eP6YcOG5dlnn02SPPfcc296HgAAAIDSKkmn1GWXXZYzzjiju3MpSW6++eZcf/31+dKXvpS5c+e+7TFWr16dp59+OjfffHMuvfTStLS05IILLkhjY2Pa2tpSV1fX4/q6urq0t7cnSdasWfOm57fUxkast3R9odD759NT1/yZx75jTvvW1j6fW2tdAABAdShJKPXUU09l0qRJmx2fPHlyrrnmmj4Zo7a2Ni+//HK+8pWvZMyYMUmS5cuX5/vf/3522WWXzQKm9vb2NDQ0JEnq6+tf93xjY2Ovahg2bNte171mzZoMGlSX4cO33SwY4615K58Db86c9i3zCQAAsLmShFK77bZbfvrTn2batGk9jt93333567/+6z4ZY8SIEamvr+8OpJJk1113zYoVK3LwwQentbW1x/Wtra3dS/ZGjRr1uue79rvaUs8//1KKxS2/vlBIttlmYFavbk9r60tCqbepUNjwY7+3nwNvzJz2ra19PrvqAwAAqISShFLnnHNOzjzzzDzwwAPZd999kyS/+93v8uijj+brX/96n4zR1NSUtWvX5g9/+EN23XXXJMnSpUszZsyYNDU15Rvf+EaKxWIKhUKKxWIee+yxnHHGGd3PnTdvXqZOnZokWbFiRVasWNHrjdeLxbzlH5pv57n0ZC77njntW+YTAABgcyXZ6Pw973lPfvCDH2SfffbJ0qVL88wzz2SvvfbKHXfckSOOOKJPxthtt91y5JFHZubMmVm0aFF+8YtfZM6cOTnllFMyadKkrFq1KrNmzcqSJUsya9astLW1ZfLkyUmSU045JT/84Q9z6623ZtGiRZkxY0aOPPJId94DAAAAKJNCsdh////7l156KZdccknuueeeNDY25tRTT81ZZ52VQqGQBQsW5Atf+EKefPLJ7Lnnnrnooouyzz77dD/39ttvz//8n/8zL774Yg499NBccskl2WGHHXo1fmtr75fvDR48MJf8oDlnvmcPy/fepkIhGT58215/Drwxc9q3tvb57KoPAACgEkoSSq1atSo33HBDHn/88XR0dGTTIb7zne/09ZAVIZSqrK39B39/ZE771tY+n0IpAACgkkqyp9SMGTPy+OOP59hjj83gwYNLMQQAAAAA/VhJQqkHH3wwN910U/bff/9SvHy/VywWN+seAwAAAKgmJdnofNSoUampKclLAwAAAPAOULLlexdeeGHOPvvs7LLLLhk4cGCP86NHjy7FsAAAAAD0EyUJpT71qU8lSU4//fQkSaFQSLJh2VqhUMh//Md/lGJYAAAAAPqJkoRSP/vZz0rxsgAAAAC8Q5Rk46cxY8ZkzJgxWb16dRYuXJgddtgh69evz+jRozNmzJhSDAkAAABAP1KSTqkXX3wx//zP/5xHHnkkSXL33Xdn1qxZWbZsWebMmSOYAgAAAKhyJemU+uIXv5jGxsY8/PDDqa+vT5J86Utfyl/91V/li1/8YimGBAAAAKAfKUko9Ytf/CKf/vSnM2TIkO5jQ4cOzcyZM/PrX/+6FEP2K8ViMcVisdJlAAAAAFRMSUKpJFm7du1mx1544YXU1pZkxWC/IZACAAAAKFEoNWXKlMyaNSuLFy9OoVDI6tWr8/DDD+fzn/98jjnmmFIMCQAAAEA/UpK2pRkzZuSqq67K1KlTs27duhx33HEZMGBATjrppMyYMaMUQwIAAADQj5QklKqrq8tnP/vZnHPOOVm2bFk6Ozuz8847Z5tttinFcAAAAAD0MyUJpV5vM/OFCxd2//dBBx1UimEBAAAA6CdKEkqddtppr3u8rq4uI0aMyM9+9rNSDAsAAABAP1GSUGrRokU9Hnd2duaZZ57JJZdckmOPPbYUQwIAAADQj5Tk7nubGjBgQHbdddd89rOfzf/4H/+jHEMCAAAAsBUrSyjV5fnnn8+qVavKOSQAAAAAW6GSLN+bOXPmZsdeeeWVPPjgg5k0aVIphuw3isVipUsAAAAAqLiShFKvZ/vtt8+5556b4447rlxDbpWeen51fvtcW15p70xDQ6WrAQAAAKiMkoRSl156aSle9h1hzi+fzuPPrcl9S57PSQduU+lyAAAAACqiJKHU1VdfvcXXTp8+vRQlbLVeWdvZ418AAACAalSSUOrpp5/OXXfdle233z777bdf6urqsmjRojzzzDM54IADUlu7YdhCoVCK4bdqHeuLPf4FAAAAqEYlCaXq6upy7LHH5qKLLsrAgQO7j1922WV58cUX86UvfakUw/YLnevXJ0nWCaUAAACAKlZTihe9884780//9E89AqkkOfnkk3PnnXeWYsh+o3NjGNUplAIAAACqWElCqVGjRuUXv/jFZsfvvvvu7LzzzqUYst/oWra3rlMoBQAAAFSvkizf+5d/+Zecc845+b//9/9mr732SpI8/vjjWbhwYa677rpSDNlvvLqn1PoKVwIAAABQOSXplHrf+96X22+/Pe9617vy5JNP5o9//GMOPvjg3H333Tn44INLMWS/0WmjcwAAAIDSdEolyZ577pmZM2fmxRdfzODBg1NTU1OVd9vbVHcoZfkeAAAAUMVK0ilVLBZz7bXXZuLEiTnkkEOyfPny/Ou//msuuOCCtLe3l2LIfqN7TymdUgAAAEAVK0koNXv27PzoRz/Kl7/85dTV1SVJ/st/+S954IEHcvnll5diyH7D8j0AAACAEoVSP/jBD3LxxRfnqKOO6l6yd+ihh+ayyy7LT3/601IM2W90hVGdQikAAACgipUklHr++eczcuTIzY4PGTIkq1evLsWQ/UZXGLXOnlIAAABAFStJKPV3f/d3+da3vtXj2Msvv5yrrroqEydOLMWQ/UZH9/K99RWuBAAAAKByShJKXXjhhVm4cGEOPfTQrF27NmeeeWaOOOKI/PGPf8znPve5UgzZb9hTCgAAACCpLcWLDhkyJLfddlseeuihLF26NB0dHdl1111z2GGHpaamJDlYv9EhlAIAAAAoTSg1ZcqUXH311TnkkENyyCGHlGKIfsueUgAAAAAlWr5XU1OTdevWleKl+z3L9wAAAABK1Cl15JFH5mMf+1iOOuqojBkzJnV1dT3OT58+vRTD9gvdy/c6bXQOAAAAVK+ShFK/+93vsu++++a5557Lc8891+NcoVAoxZD9hk4pAAAAgD4Mpf7xH/8x1157bYYMGZLvfve7SZI1a9akoaGhr4Z4R+jeU0ooBQAAAFSxPttTat68eZvtI/Xud787y5Yt66sh+r1isdjdIdUplAIAAACqWEk2Ou9SLApeXuu1N9xz9z0AAACgmpU0lKKn13ZH2VMKAAAAqGZCqTISSgEAAABs0Kd33/vpT3+awYMHdz9ev3597rnnngwdOrTHdccff3xfDttvCKUAAAAANuizUGr06NG54YYbehwbNmxYbrrpph7HCoWCUCpJR+f6ClYCAAAAUFl9Fkrdd999ffVSvXb66adn6NCh+fKXv5wkWbhwYb7whS/k97//ffbYY49cdNFF2W+//bqv/8lPfpKvfe1raWlpyWGHHZZLLrlks26uUuh4zcbvncVkfbGYmkKh5OMCAAAAbG36/Z5Sd9xxR+6///7ux6tXr87pp5+eCRMm5Pbbb8+4ceMybdq0rF69OkmyYMGCnH/++Zk+fXpuueWWrFq1KjNnzixLrZt2R3W4Ax8AAABQpfp1KLVy5cpcfvnlGTt2bPexO++8M/X19ZkxY0Z23333nH/++dlmm21y1113JUluuummTJ48Occff3z22muvXH755bn//vuzbNmyktfbuck+UvaVAgAAAKpVvw6lLrvsshx33HHZY489uo81Nzdn/PjxKWxcFlcoFHLggQdm/vz53ecnTJjQff2OO+6Y0aNHp7m5ueT1btoYtc6+UgAAAECV6reh1EMPPZRHH300Z555Zo/jLS0tGTlyZI9jw4YNy7PPPpskee655970fCnplAIAAADYoM82Oi+ntWvX5gtf+EIuuOCCNDQ09DjX1taWurq6Hsfq6urS3t6eJFmzZs2bnu+N3u5R3lncNJRa3+vX4FVdc2cO+4457Vtb+3xurXUBAADVoV+GUldffXX222+/HH744Zudq6+v3yxgam9v7w6v3uh8Y2Njr+sYNmzbXl3/7Nqey/WGbLdNhg8b1Otx6am3nwN/mTntW+YTAABgc/0ylLrjjjvS2tqacePGJUl3yHT33XdnypQpaW1t7XF9a2tr95K9UaNGve75ESNG9LqO559/KcVerMB74c+v9Hj8XOtLGVTs7PW4bFAobPix39vPgTdmTvvW1j6fXfUBAABUQr8Mpb773e+mo6Oj+/GVV16ZJPnMZz6TX//61/nGN76RYrGYQqGQYrGYxx57LGeccUaSpKmpKfPmzcvUqVOTJCtWrMiKFSvS1NTU6zqKxfTqh+ame0it6yxulT9U+5vefg78Zea0b5lPAACAzfXLUGrMmDE9Hm+zzTZJkl122SXDhg3LV77ylcyaNSv/9b/+19x8881pa2vL5MmTkySnnHJKTjvttBxwwAEZO3ZsZs2alSOPPDI777xzyevu2ORue+vWu/seAAAAUJ367d333sjgwYNz/fXXd3dDNTc3Z86cORk0aMPeTePGjcvFF1+c2bNn55RTTsl2222XSy+9tCy1bbbReafWCQAAAKA6FYpFi0reqtbW3u0T86unX8j0257ofnz9B/fPgTtt3/eFVYlCIRk+fNtefw68MXPat7b2+eyqDwAAoBLecZ1SW7OOTVbr6ZQCAAAAqpVQqow6N93ofL1QCgAAAKhOQqky2jSU0ikFAAAAVCuhVBltFkq5+x4AAABQpYRSZbRpCKVTCgAAAKhWQqky2nxPKZ1SAAAAQHUSSpVRR9GeUgAAAACJUKqs3H0PAAAAYAOhVBl1brJar0MoBQAAAFQpoVQZbXb3vU1TKgAAAIAqIZQqo81CKZ1SAAAAQJUSSpXRpiGUjc4BAACAaiWUKqOO9T2X661bb/keAAAAUJ2EUmW0+Z5SOqUAAACA6iSUKqPOYs8Qap09pQAAAIAqJZQqo01vtufuewAAAEC1EkqV0abL93RKAQAAANVKKFVGXRudF7ofC6UAAACA6iSUKqOuTqkBG2fd8j0AAACgWgmlyqjrbnsDCht6pXRKAQAAANVKKFVGXSFU7cZZX9cplAIAAACqk1CqjDqLm3ZKWb4HAAAAVCehVBltuqeUTikAAACgWgmlyqg7lNp4+z17SgEAAADVSihVRq92Sm1cvufuewAAAECVEkqV0at7Sm14rFMKAAAAqFZCqTLq6pSq3bjRuT2lAAAAgGollCqjjk02Onf3PQAAAKBaCaXKqDuU0ikFAAAAVDmhVBl1btYpJZQCAAAAqpNQqow6N+uUsnwPAAAAqE5CqTLatFOqU6cUAAAAUKWEUmXUWezqlNrw2J5SAAAAQLUSSpXRqxuddz22fA8AAACoTkKpMuro7Fq+5+57AAAAQHUTSpVR1/K9mmz4txj7SgEAAADVSShVRl0BVO3GTqnEHfgAAACA6iSUKqPOTfaUSl7dZwoAAACgmgilyujVUOrVVKrDvlIAAABAFRJKlVH3nlKFDX+JO/ABAAAA1UkoVUZdnVKFwqv7Sq2zfA8AAACoQkKpMuoOpVLsDqUs3wMAAACqkVCqjDq6Q6lXA6p1lu8BAAAAVUgoVUavLt8rpKagUwoAAACoXkKpMikWi+nKn1670bk9pQAAAIBqJJQqk9c2RBWS13RKWb4HAAAAVB+hVJl0vqYjqvCaTqkOnVIAAABAFRJKlclrQ6maxJ5SAAAAQFWrrXQB1WLggEIG1Q1I5/r1qSls6JZK3H0PAAAAqE79tlPqT3/6U84+++wcfPDBOfzww3PppZdm7dq1SZJly5blox/9aA444IAcc8wx+eUvf9njuQ8++GCmTJmSpqamfPjDH86yZctKXu/AATX55gfH5pi9tk+hUMiAruV7OqUAAACAKtQvQ6lisZizzz47bW1t+d73vpevfvWr+fnPf56vfe1rKRaLOeusszJ8+PDMnTs3xx13XKZPn57ly5cnSZYvX56zzjorU6dOzW233ZahQ4fmzDPPTLFY+nBot2GDsl3Dhua0wsZWKXffAwAAAKpRv1y+t3Tp0syfPz8PPPBAhg8fniQ5++yzc9lll+U973lPli1blptvvjmDBg3K7rvvnoceeihz587Npz71qdx6663Zb7/98vGPfzxJcumll+bQQw/NI488kokTJ5btPby60bnlewAAAED16ZedUiNGjMg3v/nN7kCqy8svv5zm5ubss88+GTRoUPfx8ePHZ/78+UmS5ubmTJgwoftcY2Nj9t133+7z5WKjcwAAAKCa9ctOqSFDhuTwww/vfrx+/frcdNNN+bu/+7u0tLRk5MiRPa4fNmxYnn322ST5i+d7o2uz8t5eXyi8tlOq2OvXYYPXzid9w5z2ra19PrfWugAAgOrQL0OpTV1xxRVZuHBhbrvttnz7299OXV1dj/N1dXVpb29PkrS1tb3p+d4YNmzbXl3f0dGRJGlorM/AgWs2/Pegugwf3rvXoafefg78Zea0b5lPAACAzfX7UOqKK67IjTfemK9+9at517velfr6+qxcubLHNe3t7WloaEiS1NfXbxZAtbe3Z8iQIb0e+/nnX0pv9kfv7NwQSq1pW5vixg3O//xiW1pbX+r12Gzo8hg2bNtefw68MXPat7b2+eyqDwAAoBL6dSh1ySWX5Pvf/36uuOKK/MM//EOSZNSoUVmyZEmP61pbW7uX7I0aNSqtra2bnd977717PX6xmF790Oy6tlh8dTOvjs7iVvljtT/p7efAX2ZO+5b5BAAA2Fy/3Og8Sa6++urcfPPNueqqq/KBD3yg+3hTU1N++9vfZs2aNd3H5s2bl6ampu7z8+bN6z7X1taWhQsXdp8vl66Nzte5+x4AAABQhfplKPXkk0/mmmuuySc+8YmMHz8+LS0t3X8HH3xwdtxxx8ycOTOLFy/OnDlzsmDBgpx44olJkhNOOCGPPfZY5syZk8WLF2fmzJnZaaedMnHixLK+h+6Nzt19DwAAAKhC/TKU+tnPfpbOzs5ce+21Oeyww3r8DRgwINdcc01aWloyderU/OhHP8rs2bMzevToJMlOO+2Ur3/965k7d25OPPHErFy5MrNnz06hzLeh6gql1q0XSgEAAADVp1As2unkrWpt7f1G59f9cnFeXPlyFr2Y/EdLW/5x/E4558jdSlfkO1ihkAwfvm2vPwfemDntW1v7fHbVBwAAUAn9slPqnaB7+Z49pQAAAIAqJJSqkK6Nzjss3wMAAACqkFCqQrr3lOrUKQUAAABUH6FUhby6fE+nFAAAAFB9hFIV0nWvv3WdQikAAACg+gilyqhYLHbfgatr4nVKAQAAANVIKFUhXRud21MKAAAAqEZCqQqxpxQAAABQzYRSFdIdSumUAgAAAKqQUKpCupbv6ZQCAAAAqpFQqkK6OqXcfQ8AAACoRkKpCtmYSemUAgAAAKqSUKpCXu2UsqcUAAAAUH2EUhWiUwoAAACoZkKpCnH3PQAAAKCaCaUqpNAVSumUAgAAAKqQUKpCajamUu6+BwAAAFQjoVSF1OiUAgAAAKqYUKpC3H0PAAAAqGZCqQpx9z0AAACgmgmlKuS1y/eKRcEUAAAAUF2EUhVSeM1/d+qWAgAAAKqMUKpCal6TSq0TSgEAAABVRihVIa8NpTo6hVIAAABAdRFKVchrl++tW+8OfAAAAEB1EUpV0ICN7VI6pQAAAIBqI5SqkGKxmNqNs69TCgAAAKg2QqkK6trfXKcUAAAAUG2EUhXUtdm5u+8BAAAA1UYoVSHFYjE1hQ2pVKdOKQAAAKDKCKUqZEMoteG/O+wpBQAAAFQZoVQFDdjYKbV6XWeFKwEAAAAoL6FUBTUO3DD9z7+yrsKVAAAAAJSXUKqCGms3TH/Ly2srXAkAAABAeQmlKqhx4Ibley0vt1e4EgAAAIDyEkpV0KDuTimhFAAAAFBdhFJlVCwWkxS7HzfUbuiUan3F8j0AAACgugilKqh+wIZ/dUoBAAAA1UYoVUFdG523vtK+sYsKAAAAoDoIpSqocePyvbUd6/PS2o4KVwMAAABQPkKpCqopJEM2ruGzhA8AAACoJkKpClq/fn2GbTMwSdIqlAIAAACqiFCqwoYPqkuSPPfyWvtKAQAAAFVDKFVhXZ1Sz720JuvXr69wNQAAAADlIZSqoPXr12eHhg0fwX+ubBNKAQAAAFVDKFVhz7zwSpLkjoUteegPL1jCBwAAAFQFoVSF7TioJv/wrqEpJpl55+/z7Ko1lS4JAAAAoOSEUhVWLBYzuKYjQxsGpL2zmM/f+bt0rNctBQAAALyzVW0otXbt2px33nmZMGFCDjvssNxwww0VqaNYLGZAITlox/rU1iTNy1flml/8oSK1AAAAAJRLbaULqJTLL788TzzxRG688cYsX7485557bkaPHp1JkyaVvZZ169Zl0IBCDhxZl0eebc93H/3P7LJDQ/6/sTumUCiUvR4AAACAUqvKUGr16tW59dZb841vfCP77rtv9t133yxevDjf+973KhJKddlp29qsWlfMoufX5Yv3LMmzL63NqeN3yrYNAytWEwAAAEApVGUotWjRonR0dGTcuHHdx8aPH5/rrrsu69evT01NaVY1FovF/KWb6+21/YB0dCZLVq7LNx9elht//Z8ZPaQhw7epy9Bt6lJfW5O6AYU01NZkSMPADGmszXYNA7Pdxv+ur63JgEIhA2oKqd34l0Iha9Z1ZnV7Z9rWdeaVjf8+2fpKlrS8koEDCvnrHQZl7OghGTpoYLZtqE3jwAGpSSFJMTWFQgqFZEBNTTa8XKHnv4mOLgAAAKBXqjKUamlpyQ477JC6urruY8OHD8/atWuzcuXKDB06dItep6YmfzFk6nl9IfUDatI+sCZ5TYhTLBa7Q51isZCDxgzMjtvWZsnKzrzUvj7Pr16X51evS1pe2fLBeunBp1bm5t8sf8vPLySp2ZBOdQdWb3bt63ntVBZfM7Fdr9U1xmtfuqZQyPrefAhb6O1kbIU3fIf9Q6HQu+91l2L69wb9JfgaJSndd3RTe43cNlcev08G1Gz590+WDAAAVFJVhlJtbW09Aqkk3Y/b29u3+HWGDt2212Off8KwXj8HAAAA4J2mKu++V19fv1n41PW4oaGhEiUBAAAAVJWqDKVGjRqVP//5z+no6Og+1tLSkoaGhgwZMqSClQEAAABUh6oMpfbee+/U1tZm/vz53cfmzZuXsWPHlmyTcwAAAABeVZUJTGNjY44//vhceOGFWbBgQe69997ccMMN+fCHP1zp0gAAAACqQqFYLMNtobZCbW1tufDCC/N//s//yeDBg/Pf/tt/y0c/+tFKlwUAAABQFao2lAIAAACgcqpy+R4AAAAAlSWUAgAAAKDshFIAAAAAlJ1Qqo+tXbs25513XiZMmJDDDjssN9xwwxteu3Dhwpx00klpamrKCSeckCeeeKKMlfYPvZnPT37yk9lzzz17/P385z8vY7X9R3t7e6ZMmZJf/epXb3iN72fvbMmc+o4CAAC8qrbSBbzTXH755XniiSdy4403Zvny5Tn33HMzevToTJo0qcd1q1evzumnn55jjz02X/7yl/P9738/06ZNyz333JNBgwZVqPqtz5bOZ5I8+eSTueKKK3LIIYd0H9tuu+3KWW6/sHbt2vzLv/xLFi9e/IbX+H72zpbMaeI7CgAA8Fo6pfrQ6tWrc+utt+b888/Pvvvum/e97335p3/6p3zve9/b7No777wz9fX1mTFjRnbfffecf/752WabbXLXXXdVoPKtU2/ms729Pf/5n/+ZsWPHZsSIEd1/dXV1Fah867VkyZKcfPLJeeaZZ970Ot/PLbelc+o7CgAA0JNQqg8tWrQoHR0dGTduXPex8ePHp7m5OevXr+9xbXNzc8aPH59CoZAkKRQKOfDAAzN//vxylrxV6818Ll26NIVCITvvvHO5y+xXHnnkkUycODG33HLLm17n+7nltnROfUcBAAB6snyvD7W0tGSHHXbo0fkwfPjwrF27NitXrszQoUN7XLvHHnv0eP6wYcP+4vKfatKb+Vy6dGkGDx6cGTNm5JFHHslf/dVf5VOf+lSOOOKISpS+1Tr11FO36Drfzy23pXPqOwoAANCTTqk+1NbWttlSnK7H7e3tW3TtptdVs97M59KlS7NmzZocdthh+eY3v5kjjjgin/zkJ/P444+Xrd53Et/Pvuc7CgAA0JNOqT5UX1+/2Y/2rscNDQ1bdO2m11Wz3sznmWeemdNOO6170+i99torv/3tb/Nv//ZvGTt2bHkKfgfx/ex7vqMAAAA96ZTqQ6NGjcqf//zndHR0dB9raWlJQ0NDhgwZstm1ra2tPY61trZm5MiRZam1P+jNfNbU1Gx2F7Pddtstf/rTn8pS6zuN72ff8x0FAADoSSjVh/bee+/U1tb22Ax63rx5GTt2bGpqek51U1NTfvOb36RYLCZJisViHnvssTQ1NZWz5K1ab+bzs5/9bGbOnNnj2KJFi7LbbruVo9R3HN/Pvuc7CgAA0JNQqg81Njbm+OOPz4UXXpgFCxbk3nvvzQ033JAPf/jDSTZ0+axZsyZJMmnSpKxatSqzZs3KkiVLMmvWrLS1tWXy5MmVfAtbld7M59FHH50f//jH+fd///c8/fTTufrqqzNv3rx86EMfquRb6Fd8P/ue7ygAAMAbE0r1sZkzZ2bffffNRz7ykVx00UX51Kc+lfe///1JksMOOyx33nlnkmTw4MG5/vrrM2/evEydOjXNzc2ZM2dOBg0aVMnytzpbOp/vf//784UvfCHXXnttpkyZkvvuuy/f/OY3s9NOO1Wy/H7F97Pv+Y4CAAC8sUKxa30OAAAAAJSJTikAAAAAyk4oBQAAAEDZCaUAAAAAKDuhFAAAAABlJ5QCAAAAoOyEUgAAAACUnVAKoB9pb2/PlClT8qtf/WqLn/PII4/kuOOOS1NTU04++eQsWrSohBUCAABsGaEUQD+xdu3afPrTn87ixYu3+DnLli3LJz7xibzvfe/LD3/4w+y5554588wz097eXsJKAQAA/jKhFEA/sGTJkpx88sl55plnevW8m266Kfvvv3+mT5+ev/mbv8l5552XmpqaLF26tESVAgAAbBmhFEA/8Mgjj2TixIm55ZZbNjv36KOPZurUqdl///1z7LHH5u677+7xvPe///3djxsbG3Pvvfdmr732KkvdAAAAb6S20gUA8Jedeuqpr3u8paUl06ZNy3//7/89hx9+eObPn5/PfvazGTZsWCZMmJBly5aloaEhZ599dh599NHsscceueCCC7LHHnuU+R0AAAD0pFMKoB/73ve+l3e/+9350Ic+lF122SXHHXdcPvjBD+bGG29MkqxevTpXXnllDjrooHzjG9/IjjvumI9+9KN55ZVXKlw5AABQ7XRKAfRjS5cuzc9//vOMGzeu+9i6deuy6667JkkGDBiQo48+OqeddlqS5JJLLsmRRx6Z++67L8cee2xFagYAAEiEUgD9WkdHR4499ticccYZPY7X1m74n/cRI0Z0B1RJUldXlzFjxmTFihVlrRMAAGBTlu8B9GO77rprnn766eyyyy7dfz/72c/y4x//OElywAEH5He/+1339e3t7Vm2bFl22mmnSpUMAACQRCgF0K+deuqpeeKJJ/LVr341Tz31VH784x/nqquuyujRo5MkH/nIR3L33Xfnf//v/52nnnoqF198cerr63PkkUdWtnAAAKDqFYrFYrHSRQCw5fbcc8985zvfycSJE5MkDz74YK688sr8/ve/z6hRo/Kxj30sH/rQh7qvv/fee3PllVfmj3/8Y/bbb79cfPHF+du//dtKlQ8AAJBEKAUAAABABVi+BwAAAEDZCaUAAAAAKDuhFAAAAABlJ5QCAAAAoOyEUgAAAACUnVAKAAAAgLITSgEAAABQdkIpAAAAAMpOKAUAAABA2QmlAAAAACg7oRQAAAAAZSeUAgAAAKDs/n9aDq6WWL5RkAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Selecting numerical columns\n", + "numerical_columns = housing_data.select_dtypes(include=[np.number]).columns\n", + "\n", + "# Calculate the number of rows and columns for subplots\n", + "num_cols = len(numerical_columns)\n", + "num_rows = (num_cols + 2) // 3 # Calculate the number of rows needed, rounding up\n", + "\n", + "# Plot histograms for numerical variables\n", + "plt.figure(figsize=(12, num_rows * 4)) # Adjust the height based on the number of rows\n", + "for i, col in enumerate(numerical_columns, 1):\n", + " plt.subplot(num_rows, 3, i)\n", + " sns.histplot(housing_data[col], kde=True, edgecolor='black')\n", + " plt.title(col)\n", + " plt.xlabel('')\n", + " plt.ylabel('Frequency')\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Conclusion**\n", + "\n", + "In conclusion, the log transformation has effectively addressed skewness in the distribution of numerical variables within the dataset. Prior to transformation, variables such as house price, bedrooms, bathrooms, and various square footage measurements exhibited skewed distributions with long tails. However, after applying the log transformation, these distributions appear to be more symmetric and closer to a normal distribution. This transformation has enhanced the suitability of the data for statistical analysis by reducing skewness and improving the interpretability of the variables. It's important to acknowledge that while the log transformation has provided valuable improvements, it alters the scale and interpretation of the variables, necessitating careful consideration in subsequent analyses. Overall, the transformed variables are now better suited for further statistical modeling and analysis in the context of predicting property values and understanding real estate market trends." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### **d.) Inferential Statistics.**\n", + "\n", + "*We used one-way ANOVA approach*" + ] + }, + { + "cell_type": "code", + "execution_count": 243, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1. \u001b[1mbedrooms\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "2. \u001b[1mbathrooms\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "3. \u001b[1msqft_living\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "4. \u001b[1msqft_lot\u001b[0m: Fail to reject the null hypothesis. There is no statistically significant relationship.\n", + "5. \u001b[1mfloors\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "6. \u001b[1mwaterfront\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "7. \u001b[1mcondition\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "8. \u001b[1mgrade\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "9. \u001b[1msqft_above\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "10. \u001b[1msqft_basement\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "11. \u001b[1myr_built\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "12. \u001b[1myr_renovated\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "13. \u001b[1msqft_living15\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "14. \u001b[1msqft_lot15\u001b[0m: Fail to reject the null hypothesis. There is no statistically significant relationship.\n", + "15. \u001b[1mhouse_age\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "16. \u001b[1mrenovation_age\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "17. \u001b[1mtotal_sqft\u001b[0m: Fail to reject the null hypothesis. There is no statistically significant relationship.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bedroomsbathroomssqft_livingsqft_lotfloorswaterfrontconditiongradesqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15house_agerenovation_agetotal_sqft
F-statistic1.841471e+003.7286677.7025890.7327131.662592e+001.787176e+001.0511117.293065.0981141.750817e+001.236748e+001.0467165.2099780.7098411.236748e+001.171737e+000.775778
P-value1.765957e-1390.0000000.0000001.0000001.808184e-951.258742e-1250.0262890.000000.0000001.406487e-1162.417229e-170.0379430.0000001.0000002.417229e-172.430304e-101.000000
\n", + "
" + ], + "text/plain": [ + " bedrooms bathrooms sqft_living sqft_lot floors \\\n", + "F-statistic 1.841471e+00 3.728667 7.702589 0.732713 1.662592e+00 \n", + "P-value 1.765957e-139 0.000000 0.000000 1.000000 1.808184e-95 \n", + "\n", + " waterfront condition grade sqft_above sqft_basement \\\n", + "F-statistic 1.787176e+00 1.051111 7.29306 5.098114 1.750817e+00 \n", + "P-value 1.258742e-125 0.026289 0.00000 0.000000 1.406487e-116 \n", + "\n", + " yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", + "F-statistic 1.236748e+00 1.046716 5.209978 0.709841 \n", + "P-value 2.417229e-17 0.037943 0.000000 1.000000 \n", + "\n", + " house_age renovation_age total_sqft \n", + "F-statistic 1.236748e+00 1.171737e+00 0.775778 \n", + "P-value 2.417229e-17 2.430304e-10 1.000000 " + ] + }, + "execution_count": 243, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "from scipy.stats import f_oneway\n", + "\n", + "# List of features of interest\n", + "features_of_interest = ['bedrooms', 'bathrooms', 'sqft_living',\n", + " 'sqft_lot', 'floors', 'waterfront', 'condition', \n", + " 'grade', 'sqft_above', 'sqft_basement', 'yr_built', \n", + " 'yr_renovated', 'sqft_living15', 'sqft_lot15', \n", + " 'house_age', 'renovation_age', 'total_sqft']\n", + "\n", + "# Create an empty DataFrame to store ANOVA results\n", + "anova_results = pd.DataFrame(index=['F-statistic', 'P-value'])\n", + "\n", + "# Perform ANOVA for each feature\n", + "significant_features = []\n", + "\n", + "for i, column in enumerate(features_of_interest, 1):\n", + " groups = [housing_data[column][housing_data['price'] == category]\n", + " for category in housing_data['price'].unique()]\n", + "\n", + " # Perform ANOVA\n", + " f_statistic, p_value = f_oneway(*groups)\n", + "\n", + " # Store results in the DataFrame\n", + " anova_results[column] = [f_statistic, p_value]\n", + "\n", + " # Print interpretation\n", + " if p_value < 0.05:\n", + " significant_features.append(column)\n", + " print(f\"{i}. \\033[1m{column}\\033[0m: Reject the null hypothesis. There is a statistically significant relationship.\")\n", + " else:\n", + " print(f\"{i}. \\033[1m{column}\\033[0m: Fail to reject the null hypothesis. There is no statistically significant relationship.\")\n", + "\n", + "# Display ANOVA results\n", + "anova_results\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Conclusion**\n", + "\n", + "The features listed under \"Reject the Null Hypothesis\" have a statistically significant relationship with housing prices.\n", + "\n", + "These features are important predictors of housing prices in the given dataset.\n", + "\n", + "On the other hand, features listed under \"Fail to Reject the Null Hypothesis\" do not show a statistically significant relationship with housing prices based on the ANOVA test." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### **e.) Multicollinearity.**\n", + "\n", + "**Assessing Multicollinearity with Variance Inflation Factor (VIF)**\n", + "
In this analysis, we utilize the Variance Inflation Factor (VIF) to investigate multicollinearity among predictor variables in our regression model. Multicollinearity occurs when predictor variables are highly correlated with each other, which can lead to unreliable coefficient estimates. By computing the VIF for each predictor variable, we identify potential multicollinearity issues among property characteristics. \n", + "
High VIF values indicate a strong correlation between a predictor variable and the other variables in the model. Hence, it's crucial to examine the VIF values to ensure the reliability of our regression analysis and to address any multicollinearity detected.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 244, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\ADMIN\\anaconda3\\Lib\\site-packages\\statsmodels\\stats\\outliers_influence.py:198: RuntimeWarning: divide by zero encountered in scalar divide\n", + " vif = 1. / (1. - r_squared_i)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\u001b[1mVariance Inflation Factor (VIF):\u001b[0m\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FeatureVIF
0bedrooms1.688154
1bathrooms3.366371
2sqft_livinginf
3sqft_lotinf
4floors1.934470
5waterfront1.028593
6condition1.218261
7grade3.235515
8sqft_aboveinf
9sqft_basementinf
10yr_built94.556823
11yr_renovated4.226966
12sqft_living152.763013
13sqft_lot152.130997
14house_age7.743224
15renovation_age4.109794
16total_sqftinf
\n", + "
" + ], + "text/plain": [ + " Feature VIF\n", + "0 bedrooms 1.688154\n", + "1 bathrooms 3.366371\n", + "2 sqft_living inf\n", + "3 sqft_lot inf\n", + "4 floors 1.934470\n", + "5 waterfront 1.028593\n", + "6 condition 1.218261\n", + "7 grade 3.235515\n", + "8 sqft_above inf\n", + "9 sqft_basement inf\n", + "10 yr_built 94.556823\n", + "11 yr_renovated 4.226966\n", + "12 sqft_living15 2.763013\n", + "13 sqft_lot15 2.130997\n", + "14 house_age 7.743224\n", + "15 renovation_age 4.109794\n", + "16 total_sqft inf" + ] + }, + "execution_count": 244, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from statsmodels.stats.outliers_influence import variance_inflation_factor\n", + "\n", + "# Compute Variance Inflation Factor (VIF) to detect multicollinearity\n", + "\n", + "X = housing_data[['bedrooms', 'bathrooms', 'sqft_living','sqft_lot', 'floors', 'waterfront', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15', 'sqft_lot15', 'house_age', 'renovation_age', 'total_sqft']]\n", + "# Calculate the correlation matrix\n", + "correlation_matrix = X.corr()\n", + "\n", + "# Calculate VIF for each feature\n", + "vif_data = pd.DataFrame()\n", + "vif_data[\"Feature\"] = X.columns\n", + "vif_data[\"VIF\"] = [variance_inflation_factor(X.values, i) for i in range(len(X.columns))]\n", + "\n", + "# Print VIF for each feature\n", + "print(\"\\n\\033[1mVariance Inflation Factor (VIF):\\033[0m\")\n", + "vif_data\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Variance Inflation Factor (VIF) Analysis**\n", + "
The Variance Inflation Factor (VIF) was calculated to assess multicollinearity among the features in the dataset. A VIF value greater than 5 is typically considered indicative of multicollinearity. The results revealed that most features exhibited low levels of multicollinearity, with VIF values below 5. \n", + "
However, 'yr_built' displayed a remarkably high VIF of 94.56, indicating strong multicollinearity with other features. Additionally, 'sqft_living', 'sqft_lot', 'sqft_above', 'sqft_basement', and 'total_sqft' exhibited infinite VIF values, suggesting perfect multicollinearity. \n", + "
Addressing multicollinearity in this case may require further investigation, such as feature selection, dimensionality reduction techniques or applying regularization methods to mitigate multicollinearity effects and improve model performance. \n", + "
Overall, understanding the VIF values can help refine the regression model and ensure the reliability of the coefficient estimates.\n" + ] } ], "metadata": { From 59b7d1065f06a834422f4407f993012225463605 Mon Sep 17 00:00:00 2001 From: Winfred kinya Date: Tue, 30 Apr 2024 22:56:53 +0300 Subject: [PATCH 12/27] Modelling --- student.ipynb | 2074 ++++++++++++++++++++++++++++++++++++++----------- 1 file changed, 1631 insertions(+), 443 deletions(-) diff --git a/student.ipynb b/student.ipynb index 29134053..41fdf478 100644 --- a/student.ipynb +++ b/student.ipynb @@ -219,7 +219,7 @@ }, { "cell_type": "code", - "execution_count": 209, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -258,7 +258,7 @@ }, { "cell_type": "code", - "execution_count": 210, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -497,7 +497,7 @@ "[5 rows x 21 columns]" ] }, - "execution_count": 210, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -521,7 +521,7 @@ }, { "cell_type": "code", - "execution_count": 211, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -684,7 +684,7 @@ "20 * `sqft_lot15` The square footage of the land lots of the nea..." ] }, - "execution_count": 211, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -715,7 +715,7 @@ }, { "cell_type": "code", - "execution_count": 212, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -746,7 +746,7 @@ }, { "cell_type": "code", - "execution_count": 213, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -805,7 +805,7 @@ }, { "cell_type": "code", - "execution_count": 214, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -850,133 +850,133 @@ " \n", " \n", " \n", - " 16132\n", - " 3298400470\n", - " 2/4/2015\n", - " 437400.0\n", - " 3\n", + " 3102\n", + " 5151600195\n", + " 5/4/2015\n", + " 283200.0\n", + " 4\n", " 1.75\n", - " 2150\n", - " 8925\n", + " 1830\n", + " 12540\n", " 1.0\n", - " NO\n", + " NaN\n", " Good\n", - " 7 Average\n", - " 2150\n", - " 0.0\n", - " 1960\n", - " 0.0\n", - " 1100\n", - " 7875\n", + " 8 Good\n", + " 1130\n", + " 700.0\n", + " 1958\n", + " NaN\n", + " 2020\n", + " 12540\n", " \n", " \n", - " 14888\n", - " 1842300050\n", - " 7/2/2014\n", - " 600000.0\n", - " 5\n", - " 2.00\n", - " 2190\n", - " 9072\n", + " 18253\n", + " 2558160220\n", + " 12/10/2014\n", + " 385000.0\n", + " 4\n", + " 2.50\n", + " 2030\n", + " 11375\n", " 1.0\n", - " NaN\n", - " Very Good\n", + " NO\n", + " Average\n", " 7 Average\n", - " 1110\n", - " ?\n", - " 1965\n", + " 1330\n", + " 700.0\n", + " 1969\n", " 0.0\n", - " 1660\n", - " 8327\n", + " 1500\n", + " 9160\n", " \n", " \n", - " 4485\n", - " 2397101270\n", - " 1/26/2015\n", - " 716000.0\n", + " 17466\n", + " 1525079056\n", + " 5/2/2014\n", + " 284000.0\n", " 3\n", - " 2.00\n", - " 1420\n", - " 3600\n", - " 1.5\n", - " NO\n", - " Good\n", + " 1.75\n", + " 1800\n", + " 23103\n", + " 1.0\n", + " NaN\n", + " Average\n", " 7 Average\n", - " 1420\n", + " 1800\n", " 0.0\n", - " 1904\n", + " 1968\n", " 0.0\n", - " 1250\n", - " 3600\n", + " 1410\n", + " 18163\n", " \n", " \n", - " 9132\n", - " 1523059100\n", - " 9/2/2014\n", - " 320000.0\n", - " 5\n", - " 1.00\n", - " 1740\n", - " 27350\n", - " 1.0\n", + " 16157\n", + " 8081900101\n", + " 5/28/2014\n", + " 960000.0\n", + " 4\n", + " 2.25\n", + " 2410\n", + " 4560\n", + " 2.0\n", " NO\n", - " Good\n", - " 5 Fair\n", - " 1740\n", - " 0.0\n", - " 1958\n", + " Very Good\n", + " 9 Better\n", + " 1800\n", + " 610.0\n", + " 1929\n", " 0.0\n", - " 2760\n", - " 10749\n", + " 2150\n", + " 5100\n", " \n", " \n", - " 16234\n", - " 7922900460\n", - " 12/5/2014\n", - " 660000.0\n", + " 3439\n", + " 6300500475\n", + " 9/2/2014\n", + " 412000.0\n", " 3\n", - " 1.75\n", - " 2030\n", - " 9032\n", - " 2.0\n", + " 2.50\n", + " 1553\n", + " 1991\n", + " 3.0\n", " NO\n", - " Good\n", - " 7 Average\n", - " 2030\n", - " ?\n", - " 1963\n", + " Average\n", + " 8 Good\n", + " 1553\n", + " 0.0\n", + " 2014\n", " 0.0\n", - " 2350\n", - " 8937\n", + " 1509\n", + " 2431\n", " \n", " \n", "\n", "" ], "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "16132 3298400470 2/4/2015 437400.0 3 1.75 2150 \n", - "14888 1842300050 7/2/2014 600000.0 5 2.00 2190 \n", - "4485 2397101270 1/26/2015 716000.0 3 2.00 1420 \n", - "9132 1523059100 9/2/2014 320000.0 5 1.00 1740 \n", - "16234 7922900460 12/5/2014 660000.0 3 1.75 2030 \n", + " id date price bedrooms bathrooms sqft_living \\\n", + "3102 5151600195 5/4/2015 283200.0 4 1.75 1830 \n", + "18253 2558160220 12/10/2014 385000.0 4 2.50 2030 \n", + "17466 1525079056 5/2/2014 284000.0 3 1.75 1800 \n", + "16157 8081900101 5/28/2014 960000.0 4 2.25 2410 \n", + "3439 6300500475 9/2/2014 412000.0 3 2.50 1553 \n", "\n", " sqft_lot floors waterfront condition grade sqft_above \\\n", - "16132 8925 1.0 NO Good 7 Average 2150 \n", - "14888 9072 1.0 NaN Very Good 7 Average 1110 \n", - "4485 3600 1.5 NO Good 7 Average 1420 \n", - "9132 27350 1.0 NO Good 5 Fair 1740 \n", - "16234 9032 2.0 NO Good 7 Average 2030 \n", + "3102 12540 1.0 NaN Good 8 Good 1130 \n", + "18253 11375 1.0 NO Average 7 Average 1330 \n", + "17466 23103 1.0 NaN Average 7 Average 1800 \n", + "16157 4560 2.0 NO Very Good 9 Better 1800 \n", + "3439 1991 3.0 NO Average 8 Good 1553 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", - "16132 0.0 1960 0.0 1100 7875 \n", - "14888 ? 1965 0.0 1660 8327 \n", - "4485 0.0 1904 0.0 1250 3600 \n", - "9132 0.0 1958 0.0 2760 10749 \n", - "16234 ? 1963 0.0 2350 8937 " + "3102 700.0 1958 NaN 2020 12540 \n", + "18253 700.0 1969 0.0 1500 9160 \n", + "17466 0.0 1968 0.0 1410 18163 \n", + "16157 610.0 1929 0.0 2150 5100 \n", + "3439 0.0 2014 0.0 1509 2431 " ] }, - "execution_count": 214, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -997,7 +997,7 @@ }, { "cell_type": "code", - "execution_count": 215, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -1026,7 +1026,7 @@ }, { "cell_type": "code", - "execution_count": 216, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -1050,7 +1050,7 @@ }, { "cell_type": "code", - "execution_count": 217, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -1093,7 +1093,7 @@ }, { "cell_type": "code", - "execution_count": 218, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -1115,7 +1115,7 @@ }, { "cell_type": "code", - "execution_count": 219, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -1128,7 +1128,7 @@ }, { "cell_type": "code", - "execution_count": 220, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -1138,7 +1138,7 @@ }, { "cell_type": "code", - "execution_count": 221, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -1158,7 +1158,7 @@ }, { "cell_type": "code", - "execution_count": 222, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -1177,7 +1177,7 @@ }, { "cell_type": "code", - "execution_count": 223, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -1188,7 +1188,7 @@ }, { "cell_type": "code", - "execution_count": 224, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -1263,133 +1263,133 @@ " \n", " \n", " \n", - " 9602\n", - " 2917200085\n", - " 2015-04-08\n", - " 350000.0\n", - " 2\n", - " 1.0\n", - " 1160\n", - " 5395\n", - " 1.0\n", - " 0\n", - " 3.0\n", - " 5.0\n", - " 860\n", - " 300.0\n", - " 1940\n", - " 0.0\n", - " 1664\n", - " 5363\n", - " \n", - " \n", - " 11877\n", - " 2025049114\n", - " 2014-05-29\n", - " 402000.0\n", - " 2\n", - " 1.0\n", - " 710\n", - " 1173\n", + " 8401\n", + " 2324800110\n", + " 2014-06-12\n", + " 699000.0\n", + " 4\n", + " 2.5\n", + " 3280\n", + " 27441\n", " 2.0\n", " 0\n", - " 4.0\n", - " 5.0\n", - " 710\n", + " 3.0\n", + " 7.0\n", + " 3280\n", " 0.0\n", - " 1943\n", + " 1996\n", " 0.0\n", - " 1370\n", - " 1173\n", + " 3200\n", + " 26960\n", " \n", " \n", - " 14592\n", - " 968000120\n", - " 2014-11-12\n", - " 395000.0\n", - " 3\n", + " 295\n", + " 9510920070\n", + " 2014-07-10\n", + " 879000.0\n", + " 4\n", + " 2.5\n", + " 3360\n", + " 22111\n", " 2.0\n", - " 1470\n", - " 10125\n", - " 1.0\n", " 0\n", - " 4.0\n", - " 5.0\n", - " 1470\n", + " 3.0\n", + " 8.0\n", + " 3360\n", " 0.0\n", - " 1962\n", + " 1994\n", " 0.0\n", - " 1440\n", - " 10125\n", + " 3150\n", + " 11374\n", " \n", " \n", - " 1990\n", - " 8562890370\n", + " 3958\n", + " 4113800300\n", " 2015-04-14\n", - " 399950.0\n", + " 600000.0\n", " 4\n", " 2.5\n", - " 3110\n", - " 5868\n", + " 2420\n", + " 7744\n", " 2.0\n", " 0\n", " 3.0\n", - " 6.0\n", - " 3110\n", + " 7.0\n", + " 2420\n", " 0.0\n", - " 2001\n", + " 1994\n", " 0.0\n", - " 2950\n", - " 5924\n", + " 2820\n", + " 11129\n", " \n", " \n", - " 17687\n", - " 3575302562\n", - " 2014-11-13\n", - " 356000.0\n", - " 3\n", - " 1.5\n", - " 1140\n", - " 7500\n", + " 7966\n", + " 3122069029\n", + " 2014-06-19\n", + " 120000.0\n", + " 2\n", + " 1.0\n", + " 990\n", + " 39964\n", + " 1.0\n", + " 0\n", + " 2.0\n", + " 2.0\n", + " 990\n", + " 0.0\n", + " 1945\n", + " 0.0\n", + " 1560\n", + " 8990\n", + " \n", + " \n", + " 6996\n", + " 2767601100\n", + " 2014-10-27\n", + " 513000.0\n", + " 4\n", + " 2.0\n", + " 2090\n", + " 4000\n", " 1.0\n", " 0\n", " 3.0\n", " 5.0\n", - " 1140\n", - " 0.0\n", - " 1976\n", + " 1480\n", + " 610.0\n", + " 1951\n", " 0.0\n", - " 1380\n", - " 7500\n", + " 1510\n", + " 5000\n", " \n", " \n", "\n", "" ], "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "9602 2917200085 2015-04-08 350000.0 2 1.0 1160 \n", - "11877 2025049114 2014-05-29 402000.0 2 1.0 710 \n", - "14592 968000120 2014-11-12 395000.0 3 2.0 1470 \n", - "1990 8562890370 2015-04-14 399950.0 4 2.5 3110 \n", - "17687 3575302562 2014-11-13 356000.0 3 1.5 1140 \n", + " id date price bedrooms bathrooms sqft_living \\\n", + "8401 2324800110 2014-06-12 699000.0 4 2.5 3280 \n", + "295 9510920070 2014-07-10 879000.0 4 2.5 3360 \n", + "3958 4113800300 2015-04-14 600000.0 4 2.5 2420 \n", + "7966 3122069029 2014-06-19 120000.0 2 1.0 990 \n", + "6996 2767601100 2014-10-27 513000.0 4 2.0 2090 \n", "\n", - " sqft_lot floors waterfront condition grade sqft_above \\\n", - "9602 5395 1.0 0 3.0 5.0 860 \n", - "11877 1173 2.0 0 4.0 5.0 710 \n", - "14592 10125 1.0 0 4.0 5.0 1470 \n", - "1990 5868 2.0 0 3.0 6.0 3110 \n", - "17687 7500 1.0 0 3.0 5.0 1140 \n", + " sqft_lot floors waterfront condition grade sqft_above \\\n", + "8401 27441 2.0 0 3.0 7.0 3280 \n", + "295 22111 2.0 0 3.0 8.0 3360 \n", + "3958 7744 2.0 0 3.0 7.0 2420 \n", + "7966 39964 1.0 0 2.0 2.0 990 \n", + "6996 4000 1.0 0 3.0 5.0 1480 \n", "\n", - " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", - "9602 300.0 1940 0.0 1664 5363 \n", - "11877 0.0 1943 0.0 1370 1173 \n", - "14592 0.0 1962 0.0 1440 10125 \n", - "1990 0.0 2001 0.0 2950 5924 \n", - "17687 0.0 1976 0.0 1380 7500 " + " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", + "8401 0.0 1996 0.0 3200 26960 \n", + "295 0.0 1994 0.0 3150 11374 \n", + "3958 0.0 1994 0.0 2820 11129 \n", + "7966 0.0 1945 0.0 1560 8990 \n", + "6996 610.0 1951 0.0 1510 5000 " ] }, - "execution_count": 224, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -1420,7 +1420,7 @@ }, { "cell_type": "code", - "execution_count": 225, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -1493,7 +1493,7 @@ "4 37 0.0 11440.0" ] }, - "execution_count": 225, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -1538,7 +1538,7 @@ }, { "cell_type": "code", - "execution_count": 226, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -1586,119 +1586,119 @@ " \n", " \n", " \n", - " 3529\n", - " 2221000100\n", - " 2014-05-07\n", - " 310000.0\n", + " 5606\n", + " 4024101434\n", + " 2014-08-08\n", + " 318000.0\n", " 3\n", - " 1.75\n", - " 1840\n", - " 10723\n", + " 1.00\n", + " 1010\n", + " 7200\n", " 1.0\n", " 0\n", - " 4.0\n", " 5.0\n", - " 1220\n", - " 620.0\n", - " 1974\n", + " 4.0\n", + " 1010\n", + " 0.0\n", + " 1948\n", " 0.0\n", " 1590\n", - " 9820\n", - " 50\n", + " 7663\n", + " 76\n", " 0.0\n", - " 14403.0\n", + " 9220.0\n", " \n", " \n", - " 20241\n", - " 8924100372\n", - " 2015-04-23\n", - " 1300000.0\n", - " 4\n", - " 3.50\n", - " 3590\n", - " 5334\n", + " 18192\n", + " 9471200065\n", + " 2014-10-15\n", + " 1860000.0\n", + " 5\n", + " 3.25\n", + " 5570\n", + " 9600\n", " 2.0\n", " 0\n", - " 3.0\n", + " 5.0\n", " 7.0\n", - " 3140\n", - " 450.0\n", - " 2006\n", + " 3860\n", + " 1710.0\n", + " 1952\n", " 0.0\n", - " 2100\n", - " 6250\n", - " 18\n", + " 3170\n", + " 10400\n", + " 72\n", " 0.0\n", - " 12514.0\n", + " 20740.0\n", " \n", " \n", - " 19223\n", - " 3832080610\n", - " 2015-04-06\n", - " 270000.0\n", + " 12922\n", + " 3222049044\n", + " 2014-06-12\n", + " 835000.0\n", " 3\n", - " 2.50\n", - " 1780\n", - " 5015\n", + " 3.00\n", + " 2790\n", + " 12523\n", " 2.0\n", - " 0\n", - " 3.0\n", - " 5.0\n", - " 1780\n", - " 0.0\n", - " 2010\n", + " 1\n", + " 4.0\n", + " 6.0\n", + " 1600\n", + " 1190.0\n", + " 1977\n", " 0.0\n", - " 2010\n", - " 5250\n", - " 14\n", + " 2990\n", + " 11476\n", + " 47\n", " 0.0\n", - " 8575.0\n", + " 18103.0\n", " \n", " \n", - " 18603\n", - " 9297300750\n", - " 2014-11-05\n", - " 355000.0\n", - " 2\n", - " 1.75\n", - " 1760\n", - " 4600\n", + " 8840\n", + " 2817900180\n", + " 2015-04-11\n", + " 380000.0\n", + " 3\n", + " 3.25\n", + " 2090\n", + " 51212\n", " 1.0\n", " 0\n", - " 4.0\n", - " 5.0\n", - " 850\n", - " 910.0\n", - " 1926\n", + " 3.0\n", + " 6.0\n", + " 1510\n", + " 580.0\n", + " 1989\n", " 0.0\n", - " 1150\n", - " 4800\n", - " 98\n", + " 2690\n", + " 40820\n", + " 35\n", " 0.0\n", - " 8120.0\n", + " 55392.0\n", " \n", " \n", - " 4980\n", - " 9547201155\n", - " 2014-10-16\n", - " 567500.0\n", - " 3\n", - " 1.00\n", - " 1440\n", - " 3060\n", - " 1.5\n", + " 4657\n", + " 9547205225\n", + " 2014-08-14\n", + " 540000.0\n", + " 4\n", + " 1.75\n", + " 1630\n", + " 6120\n", + " 1.0\n", " 0\n", - " 4.0\n", " 5.0\n", - " 1440\n", - " 0.0\n", - " 1910\n", + " 5.0\n", + " 980\n", + " 650.0\n", + " 1918\n", " 0.0\n", - " 1440\n", - " 3570\n", - " 114\n", + " 1630\n", + " 4080\n", + " 106\n", " 0.0\n", - " 5940.0\n", + " 9380.0\n", " \n", " \n", "\n", @@ -1706,35 +1706,35 @@ ], "text/plain": [ " id date price bedrooms bathrooms sqft_living \\\n", - "3529 2221000100 2014-05-07 310000.0 3 1.75 1840 \n", - "20241 8924100372 2015-04-23 1300000.0 4 3.50 3590 \n", - "19223 3832080610 2015-04-06 270000.0 3 2.50 1780 \n", - "18603 9297300750 2014-11-05 355000.0 2 1.75 1760 \n", - "4980 9547201155 2014-10-16 567500.0 3 1.00 1440 \n", + "5606 4024101434 2014-08-08 318000.0 3 1.00 1010 \n", + "18192 9471200065 2014-10-15 1860000.0 5 3.25 5570 \n", + "12922 3222049044 2014-06-12 835000.0 3 3.00 2790 \n", + "8840 2817900180 2015-04-11 380000.0 3 3.25 2090 \n", + "4657 9547205225 2014-08-14 540000.0 4 1.75 1630 \n", "\n", " sqft_lot floors waterfront condition grade sqft_above \\\n", - "3529 10723 1.0 0 4.0 5.0 1220 \n", - "20241 5334 2.0 0 3.0 7.0 3140 \n", - "19223 5015 2.0 0 3.0 5.0 1780 \n", - "18603 4600 1.0 0 4.0 5.0 850 \n", - "4980 3060 1.5 0 4.0 5.0 1440 \n", + "5606 7200 1.0 0 5.0 4.0 1010 \n", + "18192 9600 2.0 0 5.0 7.0 3860 \n", + "12922 12523 2.0 1 4.0 6.0 1600 \n", + "8840 51212 1.0 0 3.0 6.0 1510 \n", + "4657 6120 1.0 0 5.0 5.0 980 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", - "3529 620.0 1974 0.0 1590 9820 \n", - "20241 450.0 2006 0.0 2100 6250 \n", - "19223 0.0 2010 0.0 2010 5250 \n", - "18603 910.0 1926 0.0 1150 4800 \n", - "4980 0.0 1910 0.0 1440 3570 \n", + "5606 0.0 1948 0.0 1590 7663 \n", + "18192 1710.0 1952 0.0 3170 10400 \n", + "12922 1190.0 1977 0.0 2990 11476 \n", + "8840 580.0 1989 0.0 2690 40820 \n", + "4657 650.0 1918 0.0 1630 4080 \n", "\n", " house_age renovation_age total_sqft \n", - "3529 50 0.0 14403.0 \n", - "20241 18 0.0 12514.0 \n", - "19223 14 0.0 8575.0 \n", - "18603 98 0.0 8120.0 \n", - "4980 114 0.0 5940.0 " + "5606 76 0.0 9220.0 \n", + "18192 72 0.0 20740.0 \n", + "12922 47 0.0 18103.0 \n", + "8840 35 0.0 55392.0 \n", + "4657 106 0.0 9380.0 " ] }, - "execution_count": 226, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -1745,7 +1745,7 @@ }, { "cell_type": "code", - "execution_count": 227, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -1816,12 +1816,28 @@ }, { "cell_type": "code", - "execution_count": 228, + "execution_count": 20, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJQCAYAAACTlwc0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACdHElEQVR4nOzde5zMZf/H8ffM7PngfCh0q1TEspQcct5UjpWlUtJNhUjyo8TtUJHknByTJCTKKR1Epcg5hEUHoXJmsQ57nN2Z3x/bjB17mh07O7Ozr+fjsY/a+c535nPtjr3mPdfha7BarVYBAAAAAIB8Z/R0AQAAAAAA+CpCNwAAAAAAbkLoBgAAAADATQjdAAAAAAC4CaEbAAAAAAA3IXQDAAAAAOAmhG4AAAAAANyE0A0AAAAAgJsQugHAzaxWq6dLyJPCVi8AAIA3I3QD8Fnbtm1T1apVM31Vr15dderUUatWrTRs2DDt378/y/OnTp2qqlWravLkyS7XsHHjRj3zzDN5Omfw4MGqWrWqPvvssxxvy2+XLl3Sm2++qZUrV+Zaj7f43//+p6pVqyoiIkLnzp3zaC358Xpx1rFjx1S1alU1bdrU7c/ljOPHj+v5559X3bp1FRkZqSeeeCLH+0dFRalq1aratm1bjvez/UwHDx6cn+V6LVt7s/qKiIhQ48aN1atXL3377bd5etzly5eratWqevnll91UOQAgJ36eLgAA3C0kJET33Xef/Xur1ar4+Hj9+eef+uyzz7R8+XINHDhQzz77bL4+74kTJ/Tss8+qfPny+fq47jJmzBgtX75cb775pqdLcUpCQoJWr16twMBAJScna9myZerZs6enyyqSBg0apB07dqhixYqqWbOmbrnlFk+XVKjddNNNql27tsNtZrNZp06d0o8//qgff/xRPXr0IEQDQCFB6Abg80qWLKkJEyZkeeyLL77QiBEjNG7cOJUtW1YPPfSQ/ViXLl3Upk0blSxZ0qXntVgsLp03YMAA9ejRQ+XKlXPpfFdlN63cU/XkZvXq1UpISNBzzz2nefPmacmSJerRo4cMBoOnS3O78uXL6+uvv5a/v7+nS5Ek7dmzR5I0f/58VapUycPVFH5169bV22+/neWxDRs26Pnnn9ecOXPUunVr1ahRI9fHu//++xUZGanw8PD8LhUA4ASmlwMo0tq3b6833nhDkjR+/HglJSXZj5UqVUpVqlRRqVKlCrSmcuXKqUqVKl7zBtnb6rFZvny5JKlt27Zq2LChjh07pp9++snDVRUMf39/ValSRf/5z388XYqk9FFYSbrhhhs8XInva9q0qaKiomS1Wp2eZh4eHq4qVap43QdnAFBUELoBFHkPPfSQIiIidObMGX333Xf227Nbo7t+/Xo9++yzatKkiSIiItS8eXO9+uqrOnTokMO5tintp0+fVtWqVRUVFSXp6nrcPn36aPXq1WrRooVq1qyp9u3b6/Lly7muof7kk0/Upk0b1axZU1FRURo/frwuXbrkcJ/c1nDa1ommpqbav1+xYoUkadiwYapatao91GZXT1pamj7++GN17NhRtWvXVu3atdWxY0ctXLjQ/rg2tvX1o0eP1uHDh9WvXz/Vr19ftWrVUnR0tJYtW5Zlndn5+++/tWPHDlWuXFnVq1e3z1D45JNPsrx/xp/5mTNnNGTIEDVu3Fg1a9ZU27ZtNXfuXKWlpWU678iRIxoxYoQefPBB1a5dW7Vq1VLLli31xhtv6PTp0znWuGbNGlWtWlWdO3fO8vjp06d15513qmXLlvZZBocOHdLAgQN1//33KyIiQg0aNFDPnj21fv36LNtz7Zru06dPa8SIEWrdurVq1aqlevXq6emnn9aqVatyrPVaFy5c0Pjx4/Xggw8qIiJC9erV07PPPpupjq5du6pq1ar272vUqKGqVavq2LFjeXo+V/z5558aNGiQ/d9h48aN9corr+jPP//MdF/bGvK///4707Hs/p3v3r1bL7zwgqKiouyP369fP+3evTvLev766y8NHjxYTZs2VUREhJo2baqhQ4fq+PHj+dLejGwftpw/f95+W1RUlOrWras//vhD0dHRioiIUIsWLbRjx44c/x5s27ZNffr0UePGjVWnTh21b99eM2fOVEJCwnW1MTk5WdOnT1eHDh101113qU6dOurQoYNmzZqlxMTEfPxpAID3I3QDgGQPxFu2bMnxfitXrlSvXr20bds2ValSRVFRUQoODtbKlSvVqVMn/fHHH5LSQ2zLli0lScHBwWrfvr39e5vff/9dL7/8ssqWLasGDRqoTJkyuY4mz507V6+//rqCgoLUokULpaSkaM6cOercubPi4uJcbH36iP9NN90kSapdu7bat2+f4yhqcnKynnnmGY0cOVJHjhxR/fr11aBBAx0+fFijRo1Sjx49lJKSkum8P//8U48++qh27NihOnXqqHr16tq/f7/+97//ae7cuU7XawvpDz/8sKT06bNhYWFav369Tp06le15Z8+eVadOnfTdd9/pzjvvVJ06dXT48GGNHTtWb731lsN9d+zYoQ4dOmjJkiUKDQ1V06ZNVadOHcXGxmrRokXq3Lmzrly5ku1zRUVFqVSpUvrll1+yDHuff/65LBaLOnToIIPBoEOHDunRRx/Vl19+qeLFiysqKko333yz1q9fr549e+b6wcS5c+fUqVMnLVmyRH5+fmrevLnuvPNO7dixQ6+88oqmTp2a4/k2R48e1SOPPKI5c+YoMTHRHli3bNminj176p133rHf995771X79u3t37dr107t27dXSEiIU8/lqnXr1ik6Olqff/65SpYsqfvuu0+lSpXSqlWr1LFjR/3www/X9fhbt27VU089pXXr1unGG29UVFSUypYtqzVr1qhLly7atGmTw/23bNmiDh06aMWKFfbfXfHixbV06VJFR0dr375911XPtQ4ePChJuvHGGx1uN5vN6tmzpy5duqRmzZrJYDCoWrVq2T7OnDlz9N///lc//PCDKleurEaNGunChQt655139Nxzzzn8G85LG61Wq3r37q13331X586dU/369VW/fn0dPXpUkydPVs+ePblKAoAihTXdACDp1ltvlZQ+spmTadOmyWQyaeXKlbrtttskpb/BfOuttzR//nzNnTtXb7/9th544AFVr15d3333nYoVK5blmvJjx46pS5cuGjFihCTn1oAfPnxYI0aMUJcuXSRJiYmJ6tevnzZs2KBJkyZp5MiReWq3zYQJEzR48GAdPXpUnTp10qOPPprj/SdPnqytW7cqMjJSs2bNsk/BP3funHr16qXNmzdr0qRJmXad3rx5s9q0aaPRo0fbg9mCBQv05ptvas6cOerevXuua7LT0tK0cuVKGY1GRUdHS0r/YKNt27ZasmSJPv30U/Xr1y/Lc/fu3at69eppypQp9prXrVun3r17a/HixXrppZdUrFgxSdIbb7yhxMREvfPOO2rdurX9Mc6ePavHH39cx48f17p16xz2AcjI399fDz30kObNm6eVK1fqpZdecjhua0OHDh0kSR988IHi4+M1cuRIPf744/b7ffvtt+rbt6+mT5+ujh07ZvtzWbx4sc6cOaNevXppwIABDm1+8sknNWfOHPXo0UNBQUHZPobVatVLL72kU6dO6fHHH9fw4cPt68b37t2rHj16aObMmapVq5aioqLUu3dvSel7I0jS2LFj5efn/FuLWbNm5bgr/u+//57ptrNnz2rgwIFKSUnR22+/bf/5SdLSpUs1bNgwDRw4UKtXr3Z5E8OZM2fKbDbrgw8+UOPGje23z5s3T2PGjNGsWbPUqFEjSemzAvr376/k5ORMr5UlS5ZoxIgR6t+/v77++msFBAS4VE9GK1eu1IYNG2QymRyeS5KSkpJUqlQpLV68WAEBAbJYLDIasx5fiYmJ0cSJExUaGqrZs2fr7rvvlpT+N6Vnz57avn27Pv74Y3Xv3j3Pbdy5c6c2bdqkevXqae7cufbX0Pnz5/XYY49p+/bt2r59u+rXr3/dPw8AKAwI3QAgqXjx4pLS30Dn5OzZs/Lz83NYG2kwGPT888+rcuXKDlNtnfHUU0/Z/z+7N8cZ1atXzx64pfSwOWbMGDVv3lyff/65Bg8e7PZRxuTkZH3yyScyGo2aOHGiw5r30qVLa/LkyXrwwQe1aNEivfjiiwoNDbUf9/Pz02uvveZQ4+OPP65x48bp3LlzOnfunMqUKZPj82/cuFGnT59Wo0aNHEb6bKO8n332mfr06ZNt+Bs6dKhDzVFRUapUqZKOHTumI0eOKDIyUvHx8YqIiFDNmjUzBZuyZcuqZcuW+uijj3KdRt2pUyfNmzdPq1atUr9+/ewfKOzdu1eHDh3SvffeqwoVKkhKf21Jsn9vc//992vEiBEqU6ZMjiEqu/Nr1aqlN998U/7+/rl+sLNjxw7t379flStX1ogRIxx+hrVq1dLgwYM1ePBgzZkzxz475Hps3rw5z+csWbJECQkJio6OdgjcUvrPe+fOnVq+fLk++eQT9e/f36W6svtZPvnkk5LksDv7Z599pri4OHXt2jXTa+Xxxx/XDz/8oB9++EHffvut2rZt69Tz79ixI9NU8MTERB08eFB///23DAaDBg0apJtvvjnTuY899pg93Of0N2XJkiWyWCx6/vnn7YFbSv+bMnjwYPXv39/+c8hrG8+cOSMp/d9Kxs3+SpUqpVGjRunkyZP2mTUAUBQwvRwAdHUjqNxGWevWraukpCRFR0dr2rRp2rt3rywWi0qXLq2nnnpK99xzj9PPGRQUlOdLK2WcymtTpkwZ1axZU0lJSfZdpN0pJiZGSUlJql69epZvnG+66SbVrFlTycnJ2rt3r8OxypUrq0SJEg63BQQE2HeId2atp22a9bWjvrVq1dIdd9yhM2fOaN26dVmeGxwcnOUHI7YPUWzrWENDQzVmzJhMU85Pnz6tH3/8Ub/99pskZTmFPqPbb79dtWrV0rFjx7Rjxw777bZrodtG6iXZXzv9+/fXm2++qQ0bNtg39uvSpYsefPDBHEOU7fzRo0frf//7n7799lv79PdHHnlEbdu2zfUDme3bt0uS7rvvviw/tGjVqpVMJpP27NmTa9udMX/+fP3+++/ZfvXt2zfTOT///LMk6cEHH8zyMdu0aePQFlfUrVtXUvqa9QkTJmj79u0ym80KCAhQt27d1KxZM/t9bdcaz27UtkmTJg73c8bRo0f1xRdfOHxt2rRJFotF7dq10/z589WtW7csz81pOnlGtp9PVh+e1KhRQ99++60GDRrkULuzbaxTp478/f311VdfqWfPnvrss8/syz4aNmyo6OjoTB9oAIAvY6QbACT7emjbiHd2Ro8erT59+mj//v2aOnWqpk6dqhIlSqhp06bq2LGjGjRo4PRzhoeH5/nyVhUrVszydtuIb26be+UH2yhWdrVIUqVKlbR79277fW1sU7evZQt4uY3EXrhwwR6o58+fr8WLFzsct/0eFy9erAceeCDT+dn9zG3Pf+060127dunTTz/V/v379c8//9hDsO0xnFmX2qlTJ+3du1crV67UPffco5SUFH311VcKDw/X/fffb79f9+7d9ccff+iLL77QggULtGDBAgUEBKh+/fr2tdImkynb52nbtq327dunefPmadmyZVq2bJn8/PxUp04dtW7dWh07dsxxarl09Xeb3WW/goODVapUKZ09e1bnz5/3yG7lub3+bLXbRmld8corr+jYsWPatGmT3n//fb3//vsKCQlR48aN9fDDDzvsz3Dy5ElJyvIDgoxy2mvgWh06dMj2kmG5ye1vmE12o/lZyWsbb7zxRo0bN07Dhw/X+vXr7Rvw3X777br//vvVuXNnl6f+A0BhROgGAMk+cpnb9PAbbrhBy5Yt088//6x169Zp8+bN+uOPP7Rq1SqtWrVKzzzzjF599VWnntOZ6eTXCgwMzPG4M9dtzmqX7rxwJmjanuPaNazXew3tVatW2WclZLeLtJQ+bfmff/7JtBlcXp7/jTfe0KJFi2Q0GlWtWjW1bt1aVapUUWRkpDZt2qRZs2Y59Tht27bVmDFj9M033+i1117Thg0bFBcXp8cff9whBPv7+2vChAnq3bu31q5dq82bN+uXX37RTz/9pJ9++klLlizRRx99lOO64FdffVVPPfWUvv32W/3000/atWuXfv75Z/38889asGCBPvnkkxyvO+/M79b2wUh+rE92RW415rW+rP49hIeHa+7cuYqJidF3332nLVu2aN++fVq7dq3Wrl2rBx98UO+++67D+S1atFBYWFi2z2PbA8LdnP27cu0VBnLiShvbtGmjJk2a6Pvvv9eGDRu0bds2HTx4UAcPHtS8efP04Ycfqnbt2k7XAACFGaEbACT9+OOPktJ3Y86NwWBQvXr1VK9ePUnpm4ctW7ZMkydP1ocffqiuXbu6berktSPHNrZL9thGvG1vvLMaOb728mJ5ZZuKndOlkI4ePSpJua7PzivbZczmzJljn9J6rV69eunHH3/U4sWL7dNj82r79u1atGiRbrzxRs2ZMydTYFq7dq3TjxUWFqYHH3xQK1eu1ObNm/XNN99Iyjw93qZKlSrq3bu3evfurcTERP3444964403tGvXLq1evdq+Y3t2KlasqG7duqlbt24ym83asmWLRo0apSNHjuiTTz5Rnz59sj3X9rvNbq36lStXdP78eZlMpkzLBApKuXLldOTIER0/fly33357puO2117p0qXtt9k+bMkqYF++fDnb56pZs6Zq1qyp//u//9Ply5e1evVqjR49WmvWrNGOHTtUt25dlStXTn/99Zeefvppp/5+eIuyZcvq+PHjOnXqVJbLXBYvXqxy5copKirK5TaGh4frkUce0SOPPCJJ2r9/vyZNmqSNGzfqnXfe0bx58/KpNQDg3VjTDaDI+/rrr3X48GHdcMMNat68ebb3+/PPP9W+fXs999xzDreXLl1aPXv2VNWqVWW1Wu1TvK93VDcrP/30U6bbTpw4oZiYGIWGhqpGjRqSZF+7e+7cuUz3z27dt7P1RkREKDg4WAcOHLAHnIz++ecfHThwQCEhIapZs6ZTj+mM/fv367ffflPp0qVzfONve4O/fPlyl9cd20bRH3jggUyBOy0tTVu3bpXk3MiwlD7FXJJWr16t9evX20fMMz5m165d1bhxY/sUdil9Onfr1q3tO6TnNEW5f//+ql+/vsOHIf7+/mratKl9w77cpjjb1oV///33WY6ErlmzRlarVXXr1nVppkZ+sNW4Zs2aLI+vXr1akuwfiklX/z1kvK61zbUzJi5cuKDo6OhM+yeEh4frscces+9mbvtZ2uq59hrmNuPGjdMjjzyiTz/9NMd2FbS77rpLUtZ1Hzp0SK+99pqmTJkiKe9t/OCDD9SiRQv73gU2NWrU0CuvvCLp6pR1ACgKCN0AirQ1a9Zo+PDhkqRhw4blOCX15ptv1pkzZ7Rx40b7aKXNvn37dOjQIYWEhNhDmm0qeEJCglOXA3PGypUr9e2339q/v3LligYNGqS0tDR16dLF/py2zZRsu1HbnDp1SuPHj8/ysW1tz2nkT0oPgo899pgsFosGDhzoEGTOnz+vAQMGyGKxOLWGOC9sG6i1bt06x7XN9913n4oXL64LFy5k+j05yzYFe8uWLQ6buyUmJmr48OH26yQnJyc79Xj33HOPKleurFWrVunSpUsOG6hJkslkUnh4uM6ePatJkyY5jMjGxcVpw4YNktI3i8tO2bJlFRcXp3Hjxjl82JCUlGR/zeT2IUi9evVUvXp1/f333xo1apR9Kr+U/hofN26cJMdd9wvaY489ppCQEK1YsUIrVqxwOLZs2TJ9/vnnCgkJcdjZ3PbvYf78+Q4flMybNy/TNbRLliyptLQ0/fHHH5lGYo8dO6Zdu3bJaDQqIiJCUvru3SEhIVq4cKG++uorh/uvW7dO8+fP12+//ZavH0Dlhy5dushgMGjGjBk6cOCA/XbbZesk2T/syWsbK1eurBMnTmjmzJkOa+utVqtWrVolyfG1nJiYqEOHDunQoUPuaSwAeBjTywH4vAsXLjhcfsdisejy5cv6/fffdfr0aZlMJg0fPtxhU6us+Pn5adSoUerXr59eeukl1ahRQ5UqVdKFCxe0c+dOpaWl6X//+5/Cw8MlpV8ep1ixYrp06ZI6d+6s//znP1lerzsvIiMj1bdvX9WpU0dly5bVzz//rAsXLqhevXp68cUX7ff7z3/+owceeEBr167V448/roYNG0pK3134tttu0x133KE//vjD4bFtlx+aMWOGfvnll0wbRmU0YMAAHThwQD///LNatmxpH1Xcvn274uPjVb9+/UyXPLoeKSkp+vLLLyUp18suBQQEqHXr1lq8eLEWL16c7XW0c9K6dWtNmzZNf/zxh1q2bKnatWsrJSVFv/zyiy5fvqzbb79dBw8eVGxsrNOP2bFjR02aNEkmkynLKeKDBw/Wzp079dFHH+m7777TnXfeqZSUFO3atUtXrlxRmzZt7L/HrPTp00c//PCDvvnmG+3cudMeCvfu3atz586pbt26uU5NNxgMmjRpkv773/9q8eLF+vHHHxUZGam4uDjt2LFDaWlp6tGjR5ab1BWU8uXLa+zYsRowYIAGDx6sefPm6ZZbbtGRI0f022+/KTg4WOPGjXPYaO3pp5/WN998ozVr1qhVq1aqWrWqDh48qCNHjujhhx/W559/7vAcb7zxhrp27aoxY8bo008/VZUqVXTlyhXt3LlTycnJ6tGjh/3fS8Z6BgwYoOnTp+vWW2/VyZMn7YH+f//7n+68884C+xk5o06dOnrppZf0zjvv6NFHH1XdunUVGhqq3bt369y5c2rUqJG6d+8uKe9tvO+++3T//ffr22+/1f3336+77rpLoaGh+uOPP/TXX3+pTJkyDtet37t3r55++mlJWV+bHQAKO0I3AJ+XkJCgL774wv69wWBQcHCwKlWqpJYtW6pLly6qUqWKU4/1wAMP6IMPPtC8efMUExOj33//XcWKFVPTpk313//+1yEUGY1GTZgwQWPHjrVPxb548eJ1tWXgwIHavXu3Fi9erH379tnX7z7zzDOZRuknTJig2bNn64svvtCWLVtUpkwZdenSRX379rW/mc7oiSee0G+//Wbf+KhKlSrZhu6goCDNnTtXixYt0qpVq7R161aZTCbdfvvtio6O1qOPPpqv04+/++47Xbx4URUrVrRPi81Jhw4dtHjxYu3cuVMHDx5UcHBwnp4vLCxMn376qaZMmaKtW7dq/fr1Cg0NVfXq1dW5c2c1aNBA9957rzZu3Ciz2ezUBna2ayE3bdpUZcuWzXT8P//5jxYvXqxZs2Zp27Zt+vHHHxUUFGT/mdqmqGenZMmSWrRokWbOnKmffvpJGzdulL+/v26++WY988wzevrpp53aXOyWW27RihUr9P777+v777/XunXrVKxYMTVp0kRPP/20GjVqlOtjuNsDDzygpUuX6v3339e2bdt06NAhlS1bVp06ddIzzzyT6d9zzZo1tXDhQk2dOlW//PKLzpw5o4iICI0YMUJmszlT6K5du7YWLVqk999/X7t27dK6desUGhqqu+66S507d1arVq0y1bNs2TLNmTNHW7du1Y8//qjSpUurRYsW6t69e7aX2vK03r17q3r16vroo48UExOjxMREVapUSU899ZSee+45h3/DeWmj7cObefPm6euvv9auXbuUlpamG264QV27dlWvXr2y/DcAAL7KYHV2QRoAAHDZm2++qQULFmjmzJlZXhsZAAD4JtZ0AwDgJrZN0bZv366lS5fqpptuynGzPgAA4HuYXg4AgJsMHTpU3333nT18v/zyyx7b9RsAAHgGPT8AAG5i2835hhtu0IgRIzKtBQYAAL6PNd0AAAAAALgJI90AAAAAALgJoRsAAAAAADchdAMAAAAA4CaEbgAAAAAA3ITQDQAAAACAmxC6AQAAAABwE0I3AAAAAABuQugGAAAAAMBNCN0AAAAAALgJoRsAAAAAADchdAMAAAAA4CaEbgAAAAAA3ITQDQAAAACAmxC6AQAAAABwE0I3AAAAAABuQugGAAAAAMBNCN2AC6xWq6dLAAAAblAY+vjCUCOAqwjd8DmDBw9WVFRUtsejoqI0ePDgbL/Pzffff69XX331umr0Bb///rseeeQRRUREqE2bNlneZ+rUqapatWq2j9G1a1d17drVXSW6RdWqVTN91apVS23bttX7778vi8WS4/nLly9X1apVdezYsQKqGAA8q2vXrg5/M6tVq6Y6deooOjpa8+fPV2pqqkfqOnbsmKpWrarly5dLki5duqRBgwZpx44d1/W4gwcPztRP1KhRQ40bN9Yrr7yikydP2u/rSj+4c+dO9ezZ87pqtPnqq6/UokULRUREaMSIEVneJ7caq1atqqlTp+ZLPQVh27ZtmX4/1apV01133aXOnTtr3bp1uT5Gbu81gWv5eboAwNOmTZumsLAwp+8/b9489xVTiEyfPl0nTpzQ9OnTVapUKU+XU6A6deqkRx991P59YmKi1q5dqwkTJujSpUsaOHBgtuc2b95cS5YsUbly5QqiVADwCtWrV9drr70mSUpLS9PFixe1YcMGjRkzRjt27NA777wjo7Fgx4LKlSunJUuW6D//+Y8k6ddff9Xnn3+ujh07Xvdjly1bVtOmTbN/n5qaqiNHjmjChAn65Zdf9OWXXyooKMilx/7ss8906NCh665RkkaOHKmbb75Zb7/9tsqXL58vj1lYjBgxQjVq1JCUPnPg4sWLmjt3rvr06aP33ntPzZo1y/bcPn366Omnny6oUuEDCN0o8qpXr+7pEgqlCxcu6I477sixU/JVN9xwg2rXru1wW8OGDXX48GF9/PHH6tevn/z9/bM8t1SpUkXuQwoACAsLy/R3MyoqSrfeeqtGjx6tL7/8Ug899FCB1hQQEJCpJnc+dt26deXv769XX31V33//vdq2beuW586LuLg4NWrUSPXr1/d0KQXutttuy/J31Lx5c82fPz/H9ze2D2oAZzG9HEXetdPLbR1/rVq11KBBA7388ss6ffq0pPQpVtu3b9f27dtVtWpVbdu2TZJ05swZDRkyRM2aNVOtWrXUqVMnff/99w7Pc+XKFY0YMUINGzZUnTp19H//93+aN2+ew/Trrl276uWXX1a/fv1Uu3Ztde/eXVL6FLhBgwapcePGqlGjhho2bKhBgwbpwoULDu2YNm2a3nrrLdWvX1916tTRwIEDFR8fr9mzZ6tp06a6++679eKLLzqcl5Xc2lO1alVt375dP//8s8PUvPzw9ddfKzo6WnXq1FGjRo00YsQIXbx40X48qyld104RlKSPPvpIrVq1Us2aNdWkSRO9/vrrunLliv24xWLR7Nmzdf/99ysiIkIPPvigFixYcF21R0REKD4+3l5v1apVNW3aNEVHR6tWrVqaNm1altPL169fr86dO6t27dpq3LixRowYoUuXLtmPnzhxQgMGDFC9evUUGRmp//73vzpw4IDDc+f0ugUAb/XUU0+pfPnyWrx4scPtn332mdq2bauIiAg1b95cU6dOVVpamv344MGD1a1bNy1btkwPPvigIiIi9PDDD2vDhg32+1gsFk2ePFlRUVGKiIhQVFSUJk6cKLPZLMmx79i2bZt95PLpp59W165d9fHHH6tq1ao6cuSIQ22ff/657rzzTodp4s6qWbOmJOn48eNZHk9OTtb06dPt/dcDDzyg2bNn25cuDR48WCtWrNDx48dz7X9jYmL07LPPqn79+rrrrrv0/PPP6+DBg5KuTrGW0meu5eeyp9zaIGW9tO/a/jEpKUmvv/66mjZtqoiICLVq1UoffPCBwzlxcXEaMWKE7r33XtWsWVOPPfaYtmzZ4nLtYWFhuuWWW3TixAlJV39OixcvVosWLXTXXXdp06ZNmd6LWK1WzZs3T61bt1atWrV0//3364MPPnBYe79jxw499dRTioyMVL169fTqq6/q/Pnz9uO5vV5RuDHSDZ/lyhqxnTt3atCgQerTp4/uuecenTp1SuPHj9fAgQO1cOFCvfbaa3rllVckSa+99ppuu+02xcbGqlOnTgoMDNT//d//qWTJklq+fLleeOEFjRs3zv7JfZ8+ffTrr7/q//7v/1ShQgUtWrRIEydOzFTD6tWr9dBDD2nmzJmyWCxKTEzU008/rZIlS+q1115TeHi4fvnlF02bNk1BQUEaOXKk/dy5c+eqUaNGmjx5svbt26eJEydq//79KleunEaNGqVjx45p9OjRKlOmjH2a37Wcac+SJUv0xhtv2H8OuX3im93vwmq1ymAw2L+fMWOG3n33XT355JP6v//7Px09elRTpkzR7t279emnnzo9Fe/LL7/U+PHj9eqrr6pq1ao6fPiwxo4dq8TERI0dO1aS9Prrr2v58uXq1auX6tSpo59//llvvfWWLl26pBdeeMGp57nWkSNHFBoaqtKlS9tvmzVrlgYOHKhbbrlFFStWVExMjMM5P/zwg3r37q377rtP77zzjuLi4jRu3DgdP35cH3zwgc6fP6/OnTsrODhYw4cPV3BwsD766CN16dJFS5cuVZUqVXJ93QKAtzIajWrYsKG++uorpaamys/PT++9954mT56sp556SkOGDNGvv/6qqVOn6uTJk3rrrbfs5+7bt09nzpxRv379FBYWpilTpujFF1/Uhg0bVLx4cb3//vv65JNP9Oqrr+qmm27Snj17NHnyZPn7+6tfv34OddSoUUMjRozQyJEjNWLECNWvX1/lypXT2LFj9fnnn6t///72+65cuVINGzbUjTfemOf22gJ8Vv2m1WrV888/r927d6tv376qVq2atm3bpnfeeUdHjx7VqFGj1KdPH50/f14HDhzQtGnTsu1/t27dqueee07169fXW2+9peTkZL333nvq3LmzPv30U9WoUUNLlizR448/bl8yldOyJ6vV6tT7Kmfa4Ky33npLGzdu1KuvvqoyZcpow4YNGjdunEqUKKGOHTsqOTlZ//3vfxUbG6v/+7//U7ly5bRs2TI999xzmjNnjho2bOj0c9mkpKTo2LFjqlWrlsPt06ZN07Bhw5SUlKQ6deroiy++cDg+btw4ffTRR+revbsaNWqkmJgYTZgwQampqerVq5d+/vlnde/eXQ0aNNA777yjixcvasqUKXr66ae1dOlSBQUF5en1isKH0A2fdPz4cfs6nbzYuXOngoKC1LNnTwUEBEiSSpQooZiYGFmtVt1222329d+2KUkzZ87U+fPntWbNGlWsWFGS1KxZM3Xr1k3jxo1Tu3bttG3bNm3btk1Tp07VAw88IElq2rSp2rVrl2ldlr+/v9544w378//666+64YYbNHbsWN10002SpAYNGmjPnj3avn27w7lhYWGaPHmy/Pz8dO+992rFihU6ffq0PvvsM4WHh0uSfvrpJ+3atSvbn8GHH36Ya3tq166d6eeQk5x+F/Xq1ZMkXbx4UTNnztRjjz3msJnLHXfcoS5dumjZsmXq0qVLrs8lSdu3b1elSpXUpUsXGY1G1atXTyEhIfYR6CNHjujTTz/VgAED7JvRNG7cWAaDQe+9956efPJJlSxZMtvHt1gs9jcfVqtVsbGx+uKLL7Ru3To999xzDh8k1K1b1z5jQVKm0D116lTdeeedmjZtmv28gIAATZkyRbGxsVqwYIHi4uL0ySef2H8fTZs2VZs2bTRlyhS9++67ub5uM9YDAN6mTJkyMpvNiouLU2BgoGbMmKHHH39cw4YNk5T+97lEiRIaNmyYunfvrttvv12SdPnyZS1fvtwePENCQvTUU09p69atevDBB7V9+3ZFRETY12jXq1dPwcHB9v4wo7CwMN12222S0qcd2/7//vvv16pVq/TSSy/JYDDo1KlT2rp1q8aPH59ruzKG1CtXrigmJkZjxoxRpUqV1Lx580z337BhgzZv3qxJkybZp543atRIQUFB9oB2++23q1SpUrlOjZ84caIqV66s2bNny2Qy2X+O999/v959911NmTLFfn5WS6au9fPPPzv1vsrZNjhj+/btatSokf1x6tevr5CQEPsH259//rl+++03ffrpp4qMjJSU3j927dpVEyZM0LJly3J8/Ix9eWpqqo4fP64ZM2bo/Pnzmd5vPPnkk2rVqlWWj3Pp0iXNnz9fTz31lH1g5t5779XZs2f1888/q1evXpo4caJuueUWvffee/bfR2RkpNq2bWt/f5OX1ysKH0I3fFLZsmU1c+bMLI/17t072/PuueceTZ48We3atdODDz6oZs2aqXHjxjmu69m+fbvq1KljD0Q2Dz30kIYMGaLDhw9r69at8vf3V8uWLe3HjUaj2rRpk2nHz1tvvdUenCTpzjvv1KJFi2SxWPTXX3/p77//1p9//qnDhw9n+tS5Vq1a8vO7+s+6TJkyCgkJcfiDXaJECf3xxx/X1R7bmxFnLV26NMvbM4627969WykpKWrXrp3DferWrauKFStq+/btTofuBg0aaMmSJYqOjlbLli3VrFkztW/f3h4+t27dKqvVqqioKIefYVRUlGbOnKmdO3c6/K6uNWPGDM2YMcPhtqCgID3++ON68cUXHW6/8847s32cpKQkHThwQC+++KJDMG7Tpo19R/gtW7bozjvvVPny5e21Go1GNW3aVKtWrZLk2usWALyFbQquwWDQL7/8oqSkpCz/PkvSpk2b7KGtVKlSDiO9N9xwg6T0zS2l9JA2ceJEPfnkk4qKilLz5s311FNP5am2Tp066csvv9SOHTt0zz33aOXKlQoNDdX999+f43nZffgfGRmpkSNHZjlza/v27fLz88sU7h566CFNmTJF27dvdyqwJiQkKCYmRn379rUHPEkqVqyYWrRoofXr1+f6GNeqUaOGfYbbtTp16pTvbZDSf3+LFy/WqVOn1KxZMzVr1sxhJtqWLVtUtmxZ1ahRw+G10qJFC40bN04XL15U8eLFs338bt26ZbqtdOnSGjZsmJo2bepwe059+e7du5WammofVLGxfWiUmJioPXv26Nlnn3WYMXDTTTepSpUq2rRpk7p06ZIvr1d4L0I3fFJAQIB93VRWx7JTp04dzZ49W/PmzdOHH36o2bNnq0yZMnr++eezvVzGxYsX7SPQGZUpU0ZS+iegFy5cUIkSJTLtzJpxGrJNaGhopts+/PBDzZo1S3FxcSpTpowiIiIUHBysy5cvO9wvq13YQ0JCsm2vq+3Jq+x+FxnbahuFtj3Ptc99bVtz0qZNG1ksFi1atEgzZszQ1KlTVbFiRb388stq06aN4uLiJCnbTWxyWwv92GOP6bHHHpOU/iYxNDRUlSpVynLztJx+/hcvXpTVas3ydWATFxenv//+O9sRhsTERJdetwDgLU6fPq2goCCVKFHC/vc5u0tinTlzxv7/wcHBDsdsH17a1g4/99xzCg0N1bJlyzRhwgSNHz9et99+u4YNG6YGDRo4VVuDBg1UqVIlrVy50h6627Rpo8DAwBzPu/bD/4CAAN1www05hsCLFy+qZMmSDkHZ9liSnO4HL1++LKvVmi/9qU1oaGi2fXlG+dUGSRo6dKhuuOEGrVq1SqNGjdKoUaNUp04dvf7666pWrZri4uJ09uzZbPvHs2fP5vjzfuONN+znmkwmFS9eXBUqVMhydlhOfbntNZvdJqmXLl2SxWLR+++/r/fffz/TcdtrKT9er/BehG7gGk2aNFGTJk2UmJiorVu3av78+XrzzTcVGRmZaY2PJBUvXlxnz57NdLvttpIlS6p8+fK6cOGCLBaLQ/A+d+5crvV88cUXevvtt/XKK68oOjra/kf9pZdeyjRVOT840x53sHWMsbGxuvXWWzM9t+2DAIPB4LCZjpT+qf612rVrp3bt2uny5cvauHGj3n//fb3yyiu6++67VaxYMUnpm61l9SFHhQoVcqy1XLlyTr35yE1YWJgMBoPDRipS+iY0W7duVWRkpMLDw1WvXj0NGjQoy8ewfYiU19ctAHiD1NRUbdu2TXfddZdMJpP97/OECRN08803Z7p/VkEyO0ajUV26dFGXLl107tw5rV+/XrNmzdKLL76oTZs2OfUYBoNBHTp00IIFC/TEE0/oyJEj9r1BcpLTh//ZKV68uC5cuKC0tDSH0Gr7oMHZ/jc8PFwGg0GxsbGZjp09e1YlSpTIU115kZc25NaXBwQEqHfv3urdu7dOnDihH374QTNmzNDAgQP11VdfKTw8XDfffLMmTJiQZS2VKlXKsdZbbrklX/py22v2/PnzDu9fTpw4oX/++UcREREyGAzq1q1blh/22z48yu31mtOgEbwfu5cDGYwdO1YdO3aU1WpVcHCwWrRooVdffVWS7DtZXjtafc899+iXX37JtBPpqlWrVLZsWVWuXFn16tVTamqq1q1bZz9utVr13Xff5VrTzp07VaxYMT333HP2wB0fH6+dO3c67ASaX5xpjztERkYqICBAX375pcPtO3bs0IkTJ3TXXXdJSv+0/cKFC0pOTrbfZ+fOnQ7n9O/f3z4FLTw8XK1bt1afPn2UmpqqM2fOqG7dupLSL3tWs2ZN+9f58+c1ZcoU+6fW7hYaGqo777xTP/zwg8PtGzZsUM+ePXXmzBnVq1dPR44csb85sH19/vnnWrp0qUwmk1OvWwDwRkuWLNHZs2f1xBNPSErvC/z9/XX69GmHv3l+fn6aNGlSnnbY7ty5s958801J6TPLoqOj1aVLF126dMnhahY2147O2kRHR+vSpUsaO3asqlSpYl8/nN9s7xW++eYbh9ttS4nuvvtuSZnfh1wrJCREERERWr16tUOwvXz5sn788Uf747iDs20ICwvTqVOnHO6TsS9PSkrSgw8+qLlz50pK/zC8S5cuatu2rb1fq1evnk6ePKnSpUs7vFY2bdqkOXPmZPv7zG+1atWSv79/pr587ty5GjBggEJCQlS9enUdPnzYoc7bb79dU6dOtV8JJ6+vVxQujHQDGTRo0EAffvihBg8erIceekhms1lz5sxRiRIl7FN7ihUrpl9++UVbtmxR9erV1b17d61atUrdunVT3759VaJECa1cuVJbt27VW2+9JaPRqHvuuUeNGjXS0KFDFRsbqwoVKmjp0qX6/fffc93kqlatWvrkk0/09ttvq0WLFjpz5ow++OADxcbG5jhtylXOtMcdSpQooZ49e2r69Ony9/dXixYtdOzYMU2ZMkW33XabOnToICl9rdaCBQs0dOhQderUSX/88Yc+/PBDh861QYMGeu211zR27Fg1bdpUly5d0rRp03TzzTerWrVq8vf310MPPaThw4fr+PHjioiI0JEjRzR58mRVqlQpy9EVd+nXr5969+6tAQMG6JFHHlFsbKwmTZqkli1b6o477lC3bt30+eefq1u3bnrmmWdUsmRJff311/r00081ZMgQe3tze90CgCdduXJFu3fvlpQ+/fvChQvauHGjlixZooceesi+HrZkyZJ67rnnNGXKFF25ckX169fX6dOnNWXKFBkMBlWrVs3p57znnns0d+5clSlTRnXq1NHp06f14Ycfql69eipVqlSmkVXb/ic//vijihcvbn+uChUq6N5779XGjRv18ssv58NPI2tNmzZV/fr1NWzYMJ0+fVrVqlXT9u3b9f7776tDhw72/VSKFSum2NhYrV+/XnfeeWeWu44PHDhQzz77rHr27Kknn3xSZrNZs2fPVkpKistX6MjPNrRo0ULvvfee3nvvPUVGRmrdunXaunWr/XGCgoJUo0YNTZs2Tf7+/vZLt61YsUIPPvigpPQPQxYuXKju3bvr+eef14033qjNmzfr/fff11NPPZXlki93KFWqlJ5++mnNmzdPAQEBqlevnvbs2aNPPvlEgwYNktFotG/cOnDgQD300ENKS0vT3LlztWfPHvXp00dS7q9XFG6EbiCDZs2aacKECZo7d6769u0rg8Ggu+++W/Pnz7dPx+rSpYv27dunHj16aMyYMWrfvr0++eQTTZw4UW+++abMZrOqVaumGTNm6L777rM/9uTJk/X2229r4sSJSk1N1X333acnnnhCK1euzLGmDh066NixY1q2bJkWLVqk8uXLq1mzZnryySc1fPhwHTp0SFWqVMm3n0HZsmWdao87vPjiiypTpowWLlyoJUuWqESJEmrVqpX69+9vX0/VqFEjvfrqq1qwYIHWrFlj75Q7d+5sf5zOnTvLbDZr8eLFWrRokYKCgtSwYUO98sor9k54zJgxeu+99+ybtJQuXVpt2rRR//79C+zTcSn9jcesWbM0bdo0vfDCCypVqpTat29v35DNdv3aiRMn6vXXX1dycrJuvvlmjR492r55jTOvWwDwpAMHDujxxx+XdHUvjDvuuEOvv/66Hn30UYf79u/fX2XLltWiRYs0Z84cFS9eXA0bNtSAAQPytJPzSy+9pICAAC1btkzTp09XeHi4oqKiNHDgwCzvf/vtt6tdu3b6+OOP9dNPPznMvGrevLm2bNmihx9+2IXWO8d2BY13331X8+bN0/nz51WpUiUNGDDA4SoY0dHRWr9+vV544QX169cvy/XvDRs21Icffqh3331XAwYMUEBAgOrWrauxY8c6vZGZO9vQq1cvnT9/Xh988IHMZrOaN2+u0aNHO2x2O3LkSL3zzjuaO3euzp49q9KlS6tTp0566aWXJKWP6H/88ceaOHGixo8fr8uXL6tixYoaOHCgnnnmGbe1MSuvvPKKSpcurcWLF2vOnDmqVKmShg8fbn9v0rhxY33wwQeaNm2a+vXrJ39/f9WoUUMffvihfef4vL5eUbgYrBmv2g7ALY4fP67du3frvvvuc9ixtF+/fjp69KhWrFjhweoAAEBOnnvuOQUGBmr69OmeLgVAIcRIN1AAjEajBg8erPvuu0+dOnWSyWTSTz/9pLVr12rMmDGeLg8AAGRh+vTpOnLkiDZu3KhFixZ5uhwAhRQj3UAB2bp1q6ZPn65ff/1VqampqlKlirp3757putQAAMA7dOzYUf/884969+5d4FOWAfgOQjcAAAAAAG7CJcMAAAAAAHATQjcAAAAAAG5C6AYAAAAAwE3YvTwLFotFqampMhqNMhgMni4HAFCEWK1WWSwW+fn5yWjks/Hc0GcDADzF2T6b0J2F1NRUxcTEeLoMAEARVrNmTQUEBHi6DK9Hnw0A8LTc+mxCdxZsn1LUrFlTJpMpT+empaUpJibGpXO9Ce3wHr7QBol2eBtfaIcvtEHK3A7b94xyO4c+2zfa4QttkGiHN/GFNki0w9u42mcTurNgm55mMplcflFcz7nehHZ4D19og0Q7vI0vtMMX2iBlbgdTpZ1Dn32VL7TDF9og0Q5v4gttkGiHt8lrn83H6AAAAAAAuAmhGwAAAAAANyF0AwAAAADgJoRuAAAAAADchNANAAAAAICbELoBAAAAAHATQjcAAAAAAG5C6AYAAAAAwE0I3QAAAAAAuAmhGwAAAAAANyF0AwAAAADgJoRuAAAAAADchNANAAAAAICbELoBAAAAAHATQjcAAAAAAG5C6AYAAAAAwE0I3QAAAAAAuAmhGwAAAAAANyF0AwAAAADgJoRuL9V1+DpPlwAAAHKxYM8CLdizwNNlAAC8mJ+nC0DWEpNTPV0CAADIhTnN7OkSAABejpFuAAAAAADchNANAAAAAICbELoBAAAAAHATQjcAAAAAAG5C6AYAAAAAwE0I3QAAAAAAuAmhGwAAAAAANyF0AwAAAADgJoRuAAAAAADchNANAAAAAICbELoBAAAAAHATQjcAAAAAAG5C6AYAAAAAwE0I3QAAAAAAuAmhGwAAAAAANyF0AwAAAADgJl4RulNSUtSuXTtt27bNftvRo0fVrVs31a5dW23atNHGjRsdztm8ebPatWunyMhIPf300zp69KjD8Xnz5qlJkyaqU6eO/ve//ykxMbFA2gIAgC+jzwYAIG88HrqTk5M1YMAAHTx40H6b1WrVCy+8oDJlymjZsmV6+OGH1bdvX504cUKSdOLECb3wwguKjo7W0qVLVapUKfXp00dWq1WStGbNGk2bNk0jR47URx99pD179mj8+PEeaZ+zOg1aq06D1nq6DAAAskWfnW5xzGJPlwAAKEQ8Grr//PNPPfbYY/rnn38cbt+6dauOHj2qkSNHqkqVKurVq5dq166tZcuWSZI+++wzRURE6JlnntHtt9+uMWPG6Pjx49q+fbskaf78+frvf/+rFi1aqFatWnrjjTe0bNkyr/7kPCEpVQlJqZ4uAwCALNFnX2W2mD1dAgCgEPFo6N6+fbvq16+vJUuWONy+Z88eVa9eXSEhIfbb7r77bu3evdt+vG7duvZjwcHBqlGjhnbv3q20tDTFxMQ4HK9du7bMZrN+++039zboOgUHmtR1+DpPlwEAQCb02Vf5Gf0Y7QYAOM3Pk0/+5JNPZnn72bNnVa5cOYfbSpcurVOnTuV6/NKlS0pOTnY47ufnpxIlStjPd1ZaWlqe7p/xnLyea7WmfyUkpSotLU1Wq2vPn19cbYe38YV2+EIbJNrhbXyhHb7QBilzO7y1PfTZV1mtVpkt5n/7a6vLz59fvP214wxfaINEO7yJL7RBoh3extU+26OhOzuJiYkKCAhwuC0gIEApKSm5Hk9KSrJ/n935zoqJiclr6S6dazQaFR9/RZY0PxkNRu3bt0/x8fHau3evLBaL/T6jFhzT8K6V7LcVhOv5GXgTX2iHL7RBoh3exhfa4QttkApvO4pinx17PlZmi1n79u3T6dOnJcneZxuNRm28sFGNSzYu0P5aKryvoYx8oQ0S7fAmvtAGiXZ4m7y2wytDd2BgoOLi4hxuS0lJUVBQkP34tZ1xSkqKihUrpsDAQPv31x4PDg7OUx01a9aUyWTK0zm2qXJ5PTc09KSCA00yGAyKiIhQaOhp1apVy+E+BtPZTLe5i6vt8Da+0A5faINEO7yNL7TDF9ogZW6H7fvCoij22b/u/1WpllRFRERoR+oOSXLon2NiYlSrZsH015Jv/FvwhTZItMOb+EIbJNrhbVzts70ydJcvX15//vmnw22xsbH26Wfly5dXbGxspuN33nmnSpQoocDAQMXGxqpKlSqSpNTUVMXFxals2bJ5qsNkMrn8osjruQbD1S+TyWT/77X3KegX6fX8DLyJL7TDF9og0Q5v4wvt8IU2SIW3HUWzzzbIYDD8218b7I+R8bgnfpeF9TWUkS+0QaId3sQX2iDRDm+T13Z4/JJhWYmMjNT+/fvt084kaefOnYqMjLQf37lzp/1YYmKiDhw4oMjISBmNRtWsWdPh+O7du+Xn56dq1aoVXCMAACgC6LMBAMiZV4buevXq6cYbb9SQIUN08OBBzZ49W3v37lWnTp0kSR07dtSuXbs0e/ZsHTx4UEOGDFGlSpVUv359SembvXzwwQf67rvvtHfvXr3++ut67LHH8jxVDQAA5Iw+GwCAnHll6DaZTJoxY4bOnj2r6OhorVq1StOnT1eFChUkSZUqVdLUqVO1bNkyderUSXFxcZo+fbp9ilfbtm3Vq1cvjRgxQs8884xq1aqlV155xZNNAgDAJ9FnAwCQM69Z0/377787fF+5cmUtXLgw2/s3a9ZMzZo1y/Z4z5491bNnz3yrDwAApKPPBgDAeV450g0AAAAAgC8gdAMAAAAA4CaEbgAAAAAA3ITQDQAAAACAmxC6AQAAAABwE0K3lwkKNKnHqPWeLgMAAOTAz+inpfuXeroMAEAhQOj2QokpqZ4uAQAA5MJsMXu6BABAIUDoBgAAAADATfw8XQAAAEBhZU4zyyqrp8sAAHgxRroBAABcYLFatPTXpfpk3ydKNCd6uhwAgJcidHupoECTug5f5+kyAABANk5cPqELSRcUb47XzJ9nerocAICXInR7scRkNlQDAMBbHb5w2P7/p+NPe7ASAIA3I3QDAAC44NCFQ/b/P5dwzoOVAAC8GaEbAAAgj+KS4nQ+8bz9+9jEWA9WAwDwZoRuAACAPLKNcgf7BUtipBsAkD1CNwAAQB7Z1nPXLFdTkpSYmugw8g0AgA2hGwAAII9iE9Knk1cuUVnFA4tLkg6dP5TTKQCAIorQDQAAkEcpqSmSpEBToEqHlJYk/Xn+T0+WBADwUoRuAACAPLBYLUq1pl/WM8AUoNLB6aE7427mAADYELoBAADyICUtxf7//kb/q6Gb6eUAgCwQugEAAPLAFrpNBpNMRpPDSLfVavVkaQAAL0ToBgAAyANb6PY3+UuSigelb6SWYE7QlZQrHqsLAOCdCN0AAAB5YAvdAaYASZKf0c/+/+cSuV43AMARoRsAACAPbKE70BRovy3EP0TS1UuJAQBgQ+gGAADIg2unl0tSqH+oJOl84nmP1AQA8F6EbgAAgDy4dnq5dHWk+1wC08sBAI4I3QAAAHmQVei2jXSzphsAcC1CNwAAQB6Y08ySpADj1dAd7B8siZFuAEBmhG4AAIA8YKQbAJAXhG4AAIA8yHJNdwBrugEAWSN0AwAA5EGKJfvdyxnpBgBci9ANAACQBzntXn4h8YKsVqtH6gIAeCdCNwAAQB5kFbqD/YJlkEFp1jQlpiZ6qjQAgBfy83QByF2nQWsVFGjydBkAAEAZdi/PELpNRpOKBxVXXFKcEswJnioNAOCFGOkuBBKSUpWYlOrpMgAAgKTktGRJjqFbkkoHl5YkxZvjC7wmAID3InQDAADkQVbTyyWpdEh66E5IYaQbAHAVoRsAACAPsppeLl0d6U5IJXQDAK4idAMAADjJarVmO9JdJqSMJEa6AQCOCN0AAABOSk5LllXplwTLbno5a7oBABkRugEAAJwUn3I1UPsb/R2O2aeXs3s5ACADQrcXCwo0qceo9Z4uAwAA/MsWqP2N/jIYDPbb/Yx+2n9mv8N9AACQCN1eLzGFS4UBAOAtbFPHr51anvE2QjcAICNCNwAAgJNsgTqr0B3kFyTp33XfVmuB1gUA8F6EbgAAACc5E7otVouSUpMKtC4AgPcidAMAADjJtpFaVqHbz+gnoyH9rdWl5EsFWhcAwHsRugEAAJyU05pug8GgQFOgJOlyyuUCrQsA4L0I3V6AHcoBACgcthzdIinr0C1dnWLOSDcAwIbQ7QXYoRwAgMLBtlab0A0AcBahGwAAwEkpaSmSJH+Tf5bHA/3Sp5dfSblSYDUBALwboRsAAMBJttCd7Ui3iZFuAIAjQjcAAICTcgvdtpHuy8lspAYASEfoBgAAcJI5zSxJCjCyphsA4BxCNwAAgJOcHekmdAMAbAjdAAAATkqx5LyRmm1NNxupAQBsCN0AAABOSrOkSZL8jH5ZHmekGwBwLUI3AACAk9Ks6aHbaMj6LZRtTfflFDZSAwCkI3QDAAA4iZFuAEBeEboBAACcZBvpNhlMWR63renmkmEAABtCNwAAgJMsFoskyWjMeXp5clqyklOTC6wuAID3InQDAAA4KdWaKknyM2Q9vTzjpcRY1w0AkAjdAAAATrNY/x3pzmYjNYPBoEBT+rpuppgDACRCNwAAgFMsVos9dJuMWa/plq5OMWczNQCAROgGAABwijnNbP//7DZSk67uYM70cgCAROgGAABwitmSIXTnMNLN9HIAQEaEbgAAACekpKXY/9+ZkW6mlwMAJEI3AACAU2zTy40GowwGQ7b3s1+rm+nlAAARugEAAJxim16e0yi3xEg3AMARoRsAAMAJtpHunNZzSxk2UmNNNwBAhG4AAACn2NZ05zrSbWL3cgDAVYRuAAAAJ9inl+cy0s11ugEAGRG6AQAAnGCfXu7sSDfTywEAInQDAAA4xenp5f+u6b6ScsXtNQEAvB+hGwAAwAnOTi+3jXQTugEAkpeH7pMnT6pXr1666667FBUVpXnz5tmPHThwQI8++qgiIyPVsWNH7du3z+HcL7/8Ui1btlRkZKReeOEFnT9/voCrBwCgaCgq/bWzu5cHmAIkSfHmeFmsFrfXBQDwbl4duvv376+QkBAtX75c//vf//TOO+/o22+/VUJCgnr27Km6detq+fLlqlOnjnr16qWEhARJ0t69ezV06FD17dtXS5Ys0aVLlzRkyBAPtwYAAN9UVPrrvF6n22K1KMGc4Pa6AADezWtD98WLF7V792717t1bN998s1q2bKkmTZpoy5Yt+vrrrxUYGKhBgwapSpUqGjp0qEJDQ/XNN99IkhYuXKjWrVvrkUceUbVq1TRu3DitX79eR48e9XCrAADwLUWpv3Z2TbfJYJKf0U8SU8wBAF4cuoOCghQcHKzly5fLbDbr8OHD2rVrl+68807t2bNHd999twwGgyTJYDDorrvu0u7duyVJe/bsUd26de2PdeONN6pChQras2ePJ5oCAIDPKkr9daolVZJkNOb89slgMCg8IFwSoRsAIPl5uoDsBAYGasSIERo1apTmz5+vtLQ0RUdH69FHH9X333+v2267zeH+pUuX1sGDByVJZ86cUbly5TIdP3XqVJ5qSEtLy3PdtnPycq7V6viV3XFXa3KFK+3wRr7QDl9og0Q7vI0vtMMX2iBlbkdha4839NdSwfTZSeYkSekj2dZ/O2ar1SpZZf/edltoQKguJF3QxcSLbv+dFtbXTka+0AaJdngTX2iDRDu8jat9tteGbkk6dOiQWrRooe7du+vgwYMaNWqUGjZsqMTERAUEBDjcNyAgQCkp6dO+kpKScjzurJiYGJdrd/Zco9GohPgEJSQkyZJmkiwBme6TkJAoS5pJRoNRe/fulcVScJuyXM/PwJv4Qjt8oQ0S7fA2vtAOX2iDVLjb4en+WiqYPvufM/9IklJTUhUbGytJik+Ol7/RXwH+V9thTjPLlJo+BT3m9xgp758huKQwv4ZsfKENEu3wJr7QBol2eJu8tsNrQ/eWLVu0dOlSrV+/XkFBQapZs6ZOnz6tmTNn6qabbsrUIaekpCgoKEhS+qfuWR0PDg7OUw01a9aUyZTzuq1rpaWlKSYmJk/nhoSeV1KqScGBJgUHZf6VhJiNCg40yWAwqFatWnmqx1WutMMb+UI7fKENEu3wNr7QDl9og5S5HbbvCwtv6K+lgumz9+zZIx2VQoJDVKZMGUlSqDlU/kZ/+Zmu9t+pllSVSy6nvxP+VrlK5VS7Su081ZVXvvBvwRfaINEOb+ILbZBoh7dxtc/22tC9b98+Va5c2d4xS1L16tU1a9Ys1a1b1/4Js01sbKx9ilr58uWzPF62bNk81WAymVx+UeTlXIPB8Sun4wX9Ir2en4E38YV2+EIbJNrhbXyhHb7QBqnwtsMb+mupYPrsVGv6mm4/o5/DOnUZZP/edltYQJik9MuGFdTvtbC+hjLyhTZItMOb+EIbJNrhbfLaDq/dSK1cuXL6+++/HT4BP3z4sCpVqqTIyEj98ssvDuupdu3apcjISElSZGSkdu7caT/v5MmTOnnypP04AADIH0Wpv7Zdp9toyP3tky10s5EaAMBrQ3dUVJT8/f01bNgwHTlyROvWrdOsWbPUtWtXtWrVSpcuXdLo0aP1559/avTo0UpMTFTr1q0lSU888YQ+//xzffbZZ/rtt980aNAgNW/eXDfddJOHWwUAgG8pSv21/TrdxtxHN8ID2b0cAJDOa0N3eHi45s2bp7Nnz6pTp04aM2aMevfurccff1xhYWF67733tHPnTkVHR2vPnj2aPXu2QkJCJEl16tTRyJEjNX36dD3xxBMqXry4xowZ4+EWAQDge4pSf20b6c7tOt3S1ZHuyymX3VoTAMD7ee2abkm67bbb9OGHH2Z5rFatWlqxYkW250ZHRys6OtpdpQEAgH8Vlf46JS19Cr0zI91MLwcA2HjtSDcAAIA3SbWkb6TmzEh3eADTywEA6QjdAAAATmCkGwDgCkI3AACAE+wbqeVhTTehGwBA6AYAAHBCXjZSY/dyAIANoRsAAMAJrkwvv5zM7uUAUNQRugEAAJzgyvTyxNRE+wZsAICiidANAADgBPv08jyMdEtSfEq822oCAHg/QjcAAIAT8jLS7Wf0U5BfkCTpcgpTzAGgKCN0AwAAOCEva7oldjAHAKQjdAMAADjBtjbbaHDu7VN4ADuYAwAI3QAAAE6xjXT7Gf2cuj8j3QAAidANAADglLxcp1sidAMA0hG6PazHqPWeLgEAADgh3py+C7nR6NzbJ0I3AEAidHtcYgrX7gQAoDCwren2M+RtevnlZHYvB4CijNANAADgBIvVIsn5jdQY6QYASIRuAACAXFmsFnvodvaSYeGB7F4OACB0AwAA5Mq2iZrERmoAgLwhdAMAAOTCbMkQup0c6bav6U5hTTcAFGWEbgAAgFww0g0AcBWhGwAAIBcpaSmS0jdRMxgMTp0THsCabgAAoRsAACBXtunlzo5yS4x0AwDSEboBAAByYZte7ux6bonQDQBIR+gGAADIhW16eV5Gum2XDEtJS1FyarJb6gIAeD9CNwAAQC7s08vzMNId4h8ig9LXfzPaDQBFF6G7EOo6fJ2nSwAAoEixTy/Pw0j3x3s/lr/JXxKhGwCKMkJ3IZSYnOrpEgAAKFJc2UjNnGZWgClAEqEbAIoyQjcAAEAu7Gu68zC9XJI9dF9OuZzvNQEACgdCNwAAQC5SLemzzPIaugNNgZIY6QaAoozQDQAAkAtXdi+XxPRyAAChGwAAIDeEbgCAqwjdAAAAubBNLzca8/bWienlAABCNwAAQC5sI91+Br88ncdINwCA0A0AAJAL23W6XR3pvpzM7uUAUFQRuguhoECTug5f5+kyAAAoMly5TrckBfkHSWKkGwCKMkJ3IZWYnL62rNOgteo0aK2HqwEAwLfZRrqv55Jhi2MW53tdAADvl7eFSfCooECTeoxa73BbQlKqh6oBAKDoyMvu5X5GPy3dv1TS1TXdl1Mu20fLAQBFCyPdhUxiCiEbAICCZtu93NmRblvAto10x6fEu6cwAIDXI3QDAADkwtXrdAf6cckwACjqCN0AAAC5sIfuPK7pznjJMKvVmu91AQC8H6EbAAAgF/bp5Xkd6f53enmaNY013QBQRBG6C6msNlUDAADu4epIt5/RT0aD0eExAABFC6G7EGNTNQAACoar1+k2GAz2KebJqcn5XhcAwPsRugEAAHJhu063bdQ6L2xTzJPTCN0AUBQRugEAAHKR10uGZWTbwZzp5QBQNBG6AQAAcmEL3Yx0AwDyitANAACQC1d3L5cyhG7WdANAkUToBgAAyIVtIzWXRrqZXg4ARRqhGwAAIBdMLwcAuIrQDQAAkIvrmV4e4MclwwCgKCN0AwAA5OJ6RrqDTEGSmF4OAEUVoRsAACAX9tBtzPtbJ/tIN9PLAaBIInQDAADk4nqml9tGupleDgBFE6EbAAAgF9czvdw20s30cgAomgjdAAAAuWD3cgCAqwjdAAAAuciP0J2Sykg3ABRFhG4AAIBcXM+a7kC/f0O3JUVplrR8rQsA4P0I3QAAALnIj5FuSYo3x+dbTQCAwoHQDQAAkAOr1XpdodtkNMnP6CdJupx8OV9rAwB4P0I3AABADtKsV6eEuxK6pauj3VdSruRLTQCAwoPQDQAAkAPbKLeUPmrtCtu67sspjHQDQFFD6AYAAMhBxtDNSDcAIK8I3QAAADkgdAMArgehGwAAIAe20G2QwfXQ7UfoBoCiitANAACQg+vZudzGNtLN7uUAUPQQugEAAHKQL6GbkW4AKLII3QAAADmwhW6TwbWdy6UMI93sXg4ARQ6hGwAAIAf2kW6j62+bAvwCJDHSDQBFEaEbAAAgB/kxvTzIFCSJ0A0ARRGhGwAAIAf5EboZ6QaAosul3mPr1q2yWq35XQsAAIDXyc813YRuACh6/Fw56aWXXpK/v79atWqldu3aqXbt2vlcFgAAgHfgkmEAgOvhUujetGmTNm3apG+++UY9e/ZUWFiYWrdurbZt26p69er5XSMAAIDH5Pclw6xWqwwGQ77UBgDwfi6Fbj8/PzVr1kzNmjVTamqqNm/erHXr1unJJ59U+fLl1b59e0VHR6tChQr5XS8AAECBys+RbrPFrOS0ZAX5BeVLbQAA73ddG6mlpKRo/fr1+uqrr7R69WqVLFlSUVFR+uuvv9S2bVstXLgwv+oEAADwiHzZSM0UIIPSR7dZ1w0ARYtLvcd3332nl19+Wffee6+GDRum4OBgTZ8+XT/88INeffVVTZgwQS+//LImT558XcWlpKTojTfe0D333KN7771XkyZNsm/gduDAAT366KOKjIxUx44dtW/fPodzv/zyS7Vs2VKRkZF64YUXdP78+euqBQAAZM3X+2tzmlnS9W2kZjAYFGBiB3MAKIpcCt2vvvqqTCaTJk2apI0bN+r1119X3bp1He4TERGh7t27X1dxb775pjZv3qwPPvhAEydO1KeffqolS5YoISFBPXv2VN26dbV8+XLVqVNHvXr1UkJCgiRp7969Gjp0qPr27aslS5bo0qVLGjJkyHXVAgAAsubr/bV9pNt4fVdazbiuGwBQdLi0pnvz5s26cuWKLl26JJMp/VPfr7/+Wvfcc4/Kli0rSYqMjFRkZKTLhcXFxWnZsmX68MMPVatWLUnSM888oz179sjPz0+BgYEaNGiQDAaDhg4dqg0bNuibb75RdHS0Fi5cqNatW+uRRx6RJI0bN04tWrTQ0aNHddNNN7lcEwAAcFQU+uv8uGSYJPtINzuYA0DR4lLo3rVrl1544QV169ZN/fr1kyTNnz9fr732mmbNmqW77777ugvbuXOnwsLCVK9ePfttPXv2lCQNHz5cd999t33nT4PBoLvuuku7d+9WdHS09uzZox49etjPu/HGG1WhQgXt2bMnT514Wlpanuu2nePsubbLnVutV7+yuk9Ox4IDTXpq2Dp99EazPNebnby2w1v5Qjt8oQ0S7fA2vtAOX2iDlLkdha093tBfS+7ts1NSUySlr+m2XtMZW61WyapMt2d1LMiUvnnapaRL+fp7LqyvnYx8oQ0S7fAmvtAGiXZ4G1f7bJdC99ixY/X888/bO1VJWrx4sd577z299dZbWrZsmSsP6+Do0aOqWLGiVq5cqVmzZslsNis6Olq9e/fW2bNnddtttzncv3Tp0jp48KAk6cyZMypXrlym46dOncpTDTExMS7X78y5RqNRCfEJMhgMSkhIlCXNJFkCMt3PmWOJiUbt3btXFovF5Zqzcj0/A2/iC+3whTZItMPb+EI7fKENkvva4e5RY2/oryX39tl/nflLkmROMSs2NtbhWHxyvPyN/grwz9xHZzr2bxf92+HfVOZSGZfrzY4v/FvwhTZItMOb+EIbJNrhbfLaDpdC919//aVWrVplur1169aaMWOGKw+ZSUJCgv7++28tXrxYY8aM0dmzZzVixAgFBwcrMTFRAQGOnVtAQIBSUtI/iU5KSsrxuLNq1qxpnz7vrLS0NMXExDh9bkho+oYxIWajggNNCg7K/Ctx5pjBYLBP68sPeW2Ht/KFdvhCGyTa4W18oR2+0AYpczts3+eXVq1aqXr16mrbtq1at26t8uXL59tjS97RX0vu7bN/2/ebdFQKDgpWmTKOYTnUHCp/o7/8TJn76GuPhceFS/FS8XLFVbtW7TzVmh/t8Ga+0AaJdngTX2iDRDu8jat9tkuh+9Zbb9Xq1avVq1cvh9vXrVun//znP648ZObC/Px05coVTZw4URUrVpQknThxQp988okqV66cqUNOSUlRUFD6tK3AwMAsjwcHB+epBpPJ5PKLwtlz/51xJ4Ph6ldW93HmmDtewNfzM/AmvtAOX2iDRDu8jS+0wxfaILmvHT/99JPWrFmj1atXa8KECapdu7batGmjVq1aqVSpUtf9+N7QX0vu7bMt/w5Rmwwm+1R5G4PBIBmU6fasjtmuzR1vjqfPzoYvtEGiHd7EF9og0Q5vk9d2uBS6+/fvrz59+mjTpk2qUaOGJOn333/Xjh07NHXqVFceMpOyZcsqMDDQ3oFL0i233KKTJ0+qXr16maZ3xcbG2qeolS9fPsvjtk3eAAAoKkqVKqUnnnhCTzzxhM6dO6e1a9dq/fr1mjBhgurUqaN27dqpVatWLgVdqWj01/lxnW5JCjSxezkAFEUu9R5NmzbVihUrVL16dR0+fFj//POPqlWrpq+++krNmuXPZl6RkZFKTk7WkSNH7LcdPnxYFStWVGRkpH755Rf7xiRWq1W7du2y75YeGRmpnTt32s87efKkTp48eV27qQMAUNidPXtWZ8+e1alTp2SxWBQaGqpPP/1UzZs319q1a116zKLQX3PJMADA9XBppFuSbr/9dg0ePDg/a3Fw6623qnnz5hoyZIhef/11nT17VrNnz1bv3r3VqlUrTZw4UaNHj1bnzp21ePFiJSYmqnXr1pKkJ554Ql27dlXt2rVVs2ZNjR49Ws2bN/eqy48AAFAQfv31V33zzTf65ptvdPz4cd17773q3r27WrZsqdDQUEnSjBkzNHz4cD3wwAN5fvyi0F/n10i37ZJhhG4AKFpcCt2XLl3S3LlzFRMTo9TU1EyXyZg/f36+FDdhwgSNGjVKTzzxhIKDg9WlSxd17dpVBoNB7733nl577TV9+umnqlq1qmbPnq2QkBBJUp06dTRy5Ei9++67unjxoho1aqRRo0blS00AABQm0dHRqlu3rrp166ZWrVqpZMmSme5z99136+jRoy4/h6/31/l1nW7bmm5CNwAULS6F7kGDBikmJkbt27dXWFhYftdkFx4ernHjxmV5rFatWlqxYkW250ZHRys6OtpdpQEAUCi8/fbbatOmjfz9/R1uT0lJ0YYNG9SyZUvVr19f9evXd/k5fL2/zu+R7sspl6+7JgBA4eFS6N68ebMWLlyYr5eoAgAA+W/w4MFq0qRJpp3KDx48qAEDBmjv3r0eqqzwyK/QzUg3ABRNLoXu8uXLX/dmIgAAwD0WLVqkkSNHymAwyGq1qlGjRlne79577y3gygons8UsKR9HupMZ6QaAosTl6eWvv/66+vXrp8qVK2easlahQoV8KQ4AAOTdk08+qdtvv10Wi0X//e9/9e6776p48eL24waDQcHBwbrjjjs8WGXhkd9ruhPMCbJYLdcd4gEAhYNLofvFF1+UJPXs2VNSeuctpV8KxGAw6Ndff82n8gAAgCvuueceSdL333+vChUq2Ptq5F1+r+m2yqr4lHiFB4Zfd20AAO/nUuj+/vvv87sOAACQT4YMGaKhQ4cqLCxM06ZNy/G+Y8aMKaCqCi/7SLfx+ka6/Yx+MhlMSrOm6UrKFUI3ABQRLn1kW7FiRVWsWFEJCQk6cOCASpYsKYvFogoVKqhixYr5XSMAAIDH5NdItyQF+gVKYgdzAChKXBrpvnjxol566SVt375dkrRmzRqNHj1aR48e1ezZswneAAB4UMbRa0ayr1++hm5ToBLMCexgDgBFiEu9x5tvvqng4GBt3bpVgYHpn9i+9dZbuuGGG/Tmm2/ma4EAAMB18fHxmjBhgg4fPiyLxaJBgwapdu3aevLJJ3X8+HFPl1co5GfoZgdzACh6XOo9fvrpJw0YMEDFihWz31aqVCkNGTJEP//8c74VBwAArs/rr7+u9evXy2Aw6IsvvtDatWv11ltvqUyZMnrjjTc8XV6hkF+7l0vpI90S1+oGgKLEpenlkpScnJzptvPnz8vPz+WHLHJ6jFrv6RIAAD5u/fr1mj9/vm655RaNHz9eLVq0UJs2bVS9enV16NDB0+UVCqzpBgBcD5d6j3bt2mn06NE6ePCgDAaDEhIStHXrVg0fPlxt2rTJ7xp9VmJKqqdLAAD4OKvVKn9/fyUlJWnLli1q1qyZpPT9WUJCQjxcXeHgjunljHQDQNHh0rD0oEGDNGnSJEVHR8tsNuvhhx+WyWTSo48+qkGDBuV3jQAAwEUNGjTQ8OHDFRISIqPRqJYtW2rLli0aNWqUoqKiPF1eoWAP3cb8G+mOT4m/7scCABQOLoXugIAADR48WP3799fRo0eVlpamm266SaGhofldHwAAuA5vvfWWpkyZohMnTmj69OkKCwvT77//rmbNmumll17ydHmFgjvWdDO9HACKDpdCd1abpR04cMD+//fcc4/rFQEAgHwTHh6uYcOGOdzWrVs3zxRTSOX3JcMkppcDQFHiUuju2rVrlrcHBASobNmy+v7776+rKAAAkD/MZrNWrlypmJgYpaamymq1OhznOt6545JhAIDr4VLo/u233xy+T0tL0z///KNRo0apffv2+VIYAAC4fkOHDtXatWvVpEkThYWFebqcQskdu5cz0g0ARUe+XN/LZDLplltu0eDBg9WzZ08uQQIAgJf49ttvNX36dDVq1MjTpRRarOkGAFyP6//INoNz587p0qVL+fmQAADgOoSHh6t8+fKeLqNQy9fp5X7p08vZvRwAig6XRrqHDBmS6bb4+Hht3rxZrVq1uu6iAABA/ujdu7dGjx6tYcOGqXLlyvLzy5dJbkVKvl4yjJFuAChy8q3nLVGihF599VU9/PDD+fWQAADgOr3//vs6c+aM2rVrl+XxX3/9tYArKnzcMb08JS1FyanJ9jXeAADf5VLoZqdTAAAKh7ffftvTJRR6+b17uUEGWWXVlZQrhG4AKAJcCt3Tpk1z+r59+/Z15SkAAEA+qFevniTpypUr+ueff3TbbbcpJSWFnczzID9Dt8FgUIh/iOLN8bqSckWlQ0pf92MCALybS6H777//1jfffKMSJUooIiJCAQEB+u233/TPP/+odu3a9vViBoMhX4sFAAB5k5KSopEjR2r58uWSpDVr1mjs2LFKTEzUpEmTVLx4cQ9X6N0sVossVouk/AndkhQeGK54czzrugGgiHApdAcEBKh9+/Z644035O/vb7997Nixunjxot566618KxAAALhu3Lhx+vPPP7VixQp17txZkvTiiy9qyJAhevPNNzV+/HgPV+jdbKPcUv6s6ZaksID0WQZcqxsAigaXPrL9+uuv9dxzzzkEbkl67LHH9PXXX+dLYQAA4PqtXbtWQ4cOVdWqVe23Va1aVaNGjdKGDRs8WFnhkDF059tId0C4JEI3ABQVLvUe5cuX108//ZTp9jVr1uimm2667qIAAED+iI+PV3BwcKbbLRaL0tLSPFBR4eKO0M1INwAULS5NLx84cKD69++vH3/8UdWqVZMkxcTE6MCBA5o1a1a+FggAAFwXFRWlSZMmady4cfbbjh49qjfffFPNmjXzYGWFA6EbAHC9XOo97r//fi1fvlx33HGHDh06pOPHj6tevXpas2aNfZdUAADgeSNGjJCfn5/q16+vxMREdezYUffff7+KFSum4cOHe7o8r5dx5/L82iDWFrovJ7ORGgAUBS6NdEvp68GGDBmiixcvKiwsTEZj/nVGAAAgf8TFxalDhw6qUaOGqlatqr///ltNmjTRrbfe6unSCoX8vFyYTXgga7oBoChxKXRbrVbNmjVL8+bN0+XLl7VmzRpNmTJFISEhGjZsmAICAvK7TgAAkAdbtmzRmDFjdPDgQVmtVvvtBoNBX3zxhQYPHqy6det6sMLCwZxmlpS/ods+0s0lwwCgSHCpB5k+fbpWrVqlt99+2x6wO3TooE2bNjmsGQMAAAVv48aNeu6551StWjUtWLBAW7du1f79+7Vt2zbNmzdPt956q7p3765ffvnF06V6PbeMdLN7OQAUKS71ICtWrNDIkSPVokUL+5TyRo0aaezYsVq9enW+FggAAPJm+vTp6tatm8aNG6e6deuqRIkSMplMKl68uOrXr69x48apc+fOmjlzpqdL9Xq20J1f1+iW2EgNAIoal0L3uXPnVK5cuUy3FytWTAkJCdddFAAAcN1vv/2mDh065HifRx99VAcOHCigigov1nQDAK6XSz1IgwYN9MEHHzjcduXKFU2aNEn169fPl8IAAIBrkpKSVLx48RzvU7JkSZ0/f76AKiq83DnSze7lAFA0uBS6X3/9dR04cECNGjVScnKy+vTpo2bNmun48eMaNmxYftcIAADywGq1ymjMuYs3GAwOG6wha/aR7lx+nnnB9HIAKFpc2r28WLFiWrp0qbZs2aLDhw8rNTVVt9xyixo3bpyvnRIAAHDN6tWrFRYWlu3xy5cZZXWGO6aXZwzdFqslXx8bAOB9XArd7dq107Rp09SwYUM1bNgwv2sCAADXoUKFCpo7d26u97vxxhsLoJrCzZ2h2yqrEswJ9u8BAL7JpdBtNBplNpvzuxYAAJAP1q1b5+kSfIY71nQHmgLlb/SX2WLWlZQrhG4A8HEuhe7mzZure/fuatGihSpWrGi/VrdN375986U4AAAAT3LHSLfBYFBYQJguJF1gXTcAFAEuhe7ff/9dNWrU0JkzZ3TmzBmHY7brdqNgBQWa1GPUeiWlpGnBqChPlwMAgE/I79DtZ/TT0v1LZVX6JnbsYA4Avs/p0N2lSxfNnDlTxYoV04IFCySlX5IkKCjIbcUhbxJTUpWUnObpMgAA8BnuGOk2W8zyN/pLYgdzACgKnO5Bdu7cmWkd97333qujR4/me1FwXVCgSV2Hs5YPAID84I413VL6um5J+vbQt/n6uAAA73NdH9tyfU/vlJic6ukSAADwCe4Y6ZakAL/0/XASzAn5+rgAAO/DhSEBAACyYbakz/IzGvP3LZNtpDs5LTlfHxcA4H0I3QAAANlw20i3KX2kOyUtJV8fFwDgffK0e/nq1asVFnb1WpIWi0XffvutSpUq5XC/Rx55JF+KAwAA8CR3r+lmpBsAfJ/TobtChQqaO3euw22lS5fWwoULHW4zGAyEbgAA4BPcPdKdnEroBgBf53ToXreOHbEBAEDRkmZJvxQn08sBAK5iTTcAAEA23D69nJFuAPB5hG4AAIBsuH16OWu6AcDnEboBAACyYQ/d+X3JMD82UgOAooLQDQAAkA0uGQYAuF6EbgAAgGy4a023LXSnWlJlTjPn62MDALwLoRsAACAb7h7plqQrKVfy9bEBAN6F0A0AAJANsyV9FDq/R7qNBqP8jf6SpMspl/P1sQEA3oXQDQAAkA13baQmXd1MjZFuAPBthG4AAIBs2NZb5/dIt3T1Wt2EbgDwbYRuAACAbNiml+f3mm7paui+lHwp3x8bAOA9CN0AAADZcNfu5ZIU5BckSbqYdDHfHxsA4D0I3QAAANlw55ruIP/00B2XFJfvjw0A8B6EbgAAgGy4c6Q72C9YEqEbAHwdoRsAACAbto3U3LGmm9ANAEUDoRsAACAbBbKmO5k13QDgywjdAAAA2XDn7uWMdANA0UDoBgAAyIZ9pNvohpFuNlIDgCKB0A0AAJAN1nQDAK4XoRsAACAbBbF7eYI5Qcmpyfn++AAA70DoBgAAyIb9Ot1uGOkOMAXIIIMkNlMDAF9G6AYAAMiGbSM1d6zpNhgMCvZnijkA+DpCNwAAQDbcOdItsa4bAIoCQjcAAEA2bBupuWNNt0ToBoCigNANAACQhTRLmqyySnLfSDeXDQMA30foBgAAyIJtPbfknjXdEiPdAFAUFJrQ3bNnTw0ePNj+/YEDB/Too48qMjJSHTt21L59+xzu/+WXX6ply5aKjIzUCy+8oPPnzxd0yQAAFDm+1F/b1nNLrOkGALiuUITur776SuvXr7d/n5CQoJ49e6pu3bpavny56tSpo169eikhIUGStHfvXg0dOlR9+/bVkiVLdOnSJQ0ZMsRT5QMAUCT4Wn+dMXS7a023bXr5hcQLbnl8AIDneX3ojouL07hx41SzZk37bV9//bUCAwM1aNAgValSRUOHDlVoaKi++eYbSdLChQvVunVrPfLII6pWrZrGjRun9evX6+jRo55qBgAAPs0X++uMm6gZDAa3PIdtpJvrdAOA7/LzdAG5GTt2rB5++GGdOXPGftuePXt099132ztAg8Ggu+66S7t371Z0dLT27NmjHj162O9/4403qkKFCtqzZ49uuukmp587LS0tz/XaznHmXKvV8f9tX1ndLy/HrFbXas8oL+3wZr7QDl9og0Q7vI0vtMMX2iBlbkdhbY8n+2vJPX12sjlZkuRn9JM1q05YSr/dqiyPO3MsyHR1pNvV331hf+1IvtEGiXZ4E19og0Q7vI2rfbZXh+4tW7Zox44d+uKLL/T666/bbz979qxuu+02h/uWLl1aBw8elCSdOXNG5cqVy3T81KlTeXr+mJgY1wp34lyj0aiE+AT7G5GEhERZ0kySJSDTffN6LDE5VXv37pXFYnG5fpvr+Rl4E19ohy+0QaId3sYX2uELbZAKdzs83V9L7umzTyedliQZZVTs2Vgpi8Hu+OR4+Rv9FeCfuY925liSOUmSdPbyWe3evdvlNkiF+zVk4wttkGiHN/GFNki0w9vktR1eG7qTk5P12muvacSIEQoKCnI4lpiYqIAAxw4sICBAKSkpkqSkpKQcjzurZs2aMpnytoYrLS1NMTExTp0bEnp1s5gQs1HBgSYFB2X+leT1mMGUplq1auWp7mvlpR3ezBfa4QttkGiHt/GFdvhCG6TM7bB9X1h4Q38tuafPPnzhsLRfCvALUJmyZbJ8jFBzqPyN/vIzZe6jnTkWlBIknZASLAmKjIx0aRq7L/xb8IU2SLTDm/hCGyTa4W1c7bO9NnRPmzZNERERatKkSaZjgYGBmTrklJQUe2ef3fHg4OA81WAymVx+UThzbsZ+1WC4+pXV/fJyzGBQvr2Yr+dn4E18oR2+0AaJdngbX2iHL7RBKrzt8Ib+WnJPn21R+owxf5N/tmHYYDBIBmV53JljIf4hkqSUtBSlWFMU4hfiUhtyakdh4gttkGiHN/GFNki0w9vktR1eG7q/+uorxcbGqk6dOpJk75TXrFmjdu3aKTY21uH+sbGx9ilq5cuXz/J42bJlC6ByAACKDl/ur227l/sb/d32HH5GPwWaApWclqy4pDh7CAcA+A6v3b18wYIF+uKLL7Ry5UqtXLlSUVFRioqK0sqVKxUZGalffvnFvjGJ1WrVrl27FBkZKUmKjIzUzp077Y918uRJnTx50n4cAADkD1/ur82W9N3L/YzuG6MwGAwqEVRCEpcNAwBf5bUj3RUrVnT4PjQ0VJJUuXJllS5dWhMnTtTo0aPVuXNnLV68WImJiWrdurUk6YknnlDXrl1Vu3Zt1axZU6NHj1bz5s3zvBMqAADImS/31/aRbpP7RrolqWRwSZ2OP60LSYRuAPBFXjvSnZOwsDC999572rlzp/2SI7Nnz1ZISPqUrDp16mjkyJGaPn26nnjiCRUvXlxjxozxcNUAABQthb2/toVud450S1KZkPRN2mITYnO5JwCgMPLake5rvf322w7f16pVSytWrMj2/tHR0YqOjnZ3WV6t06C1kqSl4x7wcCUAgKLCl/prc5r7p5dLUung0pII3QDgqwpN6EbeJSSleroEAAAKrYIe6T6XcM6tzwMA8IxCOb0cAADA3Wwbqblz93JJKh3CSDcA+DJCNwAAQBYKfKQ7kZFuAPBFhG4AAIAs2NZ0u3v3ctuabqaXA4BvInQDAABkwX7JsAKcXm67pjkAwHcQugEAALJgW9NdUNPLk9OSFW+Od+tzAQAKHqEbAAAgCwW1pjvIL0gBpgBJbKYGAL6I0A0AAJCFggrdkhTqHyqJ0A0AvojQ7YOCAk3qMWq9p8sAAKBQs6/pduNGan5GPy3dv1Qh/iGS2EwNAHwRodtHJaakeroEAAAKNdvu5e4e6TZbzAoNSB/p5rJhAOB7CN0+LjjQpK7D13m6DAAACh3bRmru3r1cksICwiQxvRwAfBGhuwhITGbUGwCAvPLEmm6mlwOA7yF0AwAAZME2vdyda7ptbNPLGekGAN9D6AYAAMiCR0a6WdMNAD6H0A0AAJAFLhkGAMgPhG4AAIAs2C8ZVgAbqdmml8clxdmfFwDgGwjdAAAAWbDtXl4QI93BfsEyGtLflrGZGgD4FkI3AABAFuwj3QWwkZrBYFCIf4gk6WzCWbc/HwCg4BC6AQAAsmDbvbwgRrolKTwgXJJ0Jv5MgTwfAKBgELoBAACyYJteXhBruqWr67oJ3QDgWwjdAAAAWSjI3cslKSwgTBKhGwB8DaEbAAAgCwW5plu6GrrPxrOmGwB8CaG7CAgKNKnr8HWeLgMAgEKloEe6iwcWlySdjj9dIM8HACgYhO4iIjGZa34CAJAXBb2RGiPdAOCbCN0AAABZsE8vL6CN1DLuXm61WgvkOQEA7kfoBgAAyIJt9/KCGum27V6enJasS8mXCuQ5AQDuR+gGAADIQkFvpOZn9FOwX7AkdjAHAF9C6AYAAMhCQa/plq6u62YzNQDwHYRuAACALBT0mm6JzdQAwBcRugEAALJQ0JcMk66u62Z6OQD4DkI3AABAFmwbqRXUmm7JcQdzAIBvIHQDAABkgZFuAEB+IHQDAABcI82SJovVIskzG6kRugHAdxC6i5iuw9d5ugQAALyebZRbKuCN1PzTQ/exS8e0YM+CAnteAID7ELqLmMTk1NzvBABAEWdbzy15ZqQ7OS1ZCSkJBfa8AAD3IXQDAABcI+NId0GG7kC/QIX4h0iS4s3xBfa8AAD3IXQDAABcwxa6jQajTEZTgT53udBykqT4FEI3APgCQjcAAMA1zGn/Xi6sANdz29hC9xXzlQJ/bgBA/iN0FxFBgSb1GLXe02UAAFAoeOJyYbbnSzCnr+VmpBsAfAOhuwhJTGETNQAAnGHbSK2gQ7ckhfqnX6v7Sgoj3QDgCwjdHsKoMwAA3ss20m22mPVJzCcF+ty2HczZSA0AfAOh20MYdQYAwHvZ1nQbDUb7/xcUW+hmpBsAfAOhGwAA4Bq2kW6ToWB3Lpek8IBwSYx0A4CvIHQDAABcw7am22go+LdKtpHuBHOCw/XCAQCFE6EbAADgGhmv013QQvxD7M8bmxBb4M8PAMhfhG4AAIBreDJ0GwwG+w7mZ+LPFPjzAwDyF6EbAADgGrbN0zyxpluSQgMI3QDgKwjdAAAA1/DkSLckRroBwIcQugEAAK5h30jN6Jm3SrbN1M7Gn/XI8wMA8g+hGwAA4BreMtJ9Ov60R54fAJB/CN0AAADX8PSabka6AcB3ELoBAACu4S0j3azpBoDCj9ANAABwDfuabg+FbttI95n4M7JYLR6pAQCQPwjdAAAA17CNdHtqenmIf4ik9PB/IfGCR2oAAOQPQjcAAMA1PD293GQ02YM3m6kBQOFG6AYAALiGbSM1T4VuyXGKOQCg8CJ0AwAAXCMlLUWS5Gf081gNttB96sopj9UAALh+hG4AAIBrJKclS0qf5u0pYf7pofv0FaaXA0BhRugGAAC4hm2k21MbqUlXR7pZ0w0AhRuhGwAA4BrJqekj3d4wvZyRbgAo3AjdAAAA17BNL/eG0M1GagBQuBG6AQAArmGfXu7JNd0ZQneaJc1jdQAArg+hGwAA4Br23csNnhvpDvEPkclgUpo1TecTz3usDgDA9SF0F2GdBq1Vp0FrPV0GAABeJyk1SZJnR7qNBqPKhJSRJC3cs9BjdQAArg+huwhLSEpVQlKqp8sAAMDreMP0ckkqH1ZeknQh6YJH6wAAuI7QDQAAcA1vmF4uSeVD00P3lZQrHq0DAOA6QjcAAMA1bJcM85aR7ssplz1aBwDAdYTuIqrHqPWeLgEAAK/lDZcMkxjpBgBfQOguohJTWMsNAEB27Gu6DYx0AwCuD6EbAADgGrbp5Z4e6b4h7AZJ0uVkQjcAFFaEbgAAgAysVqt9ermn13TfGHajJCneHG8ffQcAFC6EbgAAgAzMFrP9/z09vbxEUAn7aPvpK6c9WgsAwDWEbgAAgAwyjih7enq5wWBQ8cDikqQTl094tBYAgGu8OnSfPn1a/fr1U7169dSkSRONGTNGycnp072OHj2qbt26qXbt2mrTpo02btzocO7mzZvVrl07RUZG6umnn9bRo0c90YQssXM4AMCX+Fp/nZSaZP9/o8Hzb5WKBRaTJJ28ctLDlQAAXOH5niQbVqtV/fr1U2Jioj7++GNNnjxZP/zwg9555x1ZrVa98MILKlOmjJYtW6aHH35Yffv21YkT6Z8AnzhxQi+88IKio6O1dOlSlSpVSn369JHVavVwq9KxczgAwFf4Yn9tG+n2M/rJYDB4tBYpQ+i+TOgGgMLIs3OmcnD48GHt3r1bmzZtUpkyZSRJ/fr109ixY9W0aVMdPXpUixcvVkhIiKpUqaItW7Zo2bJlevHFF/XZZ58pIiJCzzzzjCRpzJgxatSokbZv36769et7slkAAPgUX+yv7aHb4B1vk2yhm+nlAFA4eUdvkoWyZctqzpw59g7c5sqVK9qzZ4+qV6+ukJAQ++133323du/eLUnas2eP6tataz8WHBysGjVqaPfu3XnqxNPS0vJct+2cnM7N6gN8q/XqlzuPWa3ptWW8PatanWlHYeAL7fCFNki0w9v4Qjt8oQ1S5nYUtvZ4Q38t5W+fnZCcICl953Kr1SpZle3oe07HXT1mP/5vbcUCro50+2qf7QttkGiHN/GFNki0w9u42md7beguVqyYmjRpYv/eYrFo4cKFatCggc6ePaty5co53L906dI6deqUJOV63FkxMTEuVp/9uUajUQnxCZmmqyUkJMqSZpIsAZnOyc9jicmp2rdvnxLiE5SQkCSr1aq9e/fKYrHkqR2FjS+0wxfaINEOb+ML7fCFNkiFtx3e0F9L+dtnH7pySJJksBp05swZ+Rv9FeCfuZ+VpPjk+GyPu3rMdtxqtWrfvn2yJKb30f9c+Mf+gYUz7SiMfKENEu3wJr7QBol2eJu8tsNrQ/e1xo8frwMHDmjp0qWaN2+eAgIcO6mAgAClpKRPB0tMTMzxuLNq1qwpkylvlwpJS0tTTExMjueGhJ7PfJvZqOBAk4KDMv9K8vOYwZSmiIgIhYTGKik1vb5atWq51I7CwBfa4QttkGiHt/GFdvhCG6TM7bB9X1h5or+W8rfPTj2RKv0uBfoHqly5cvI3+svPlPVbplBzaLbHXT1mOy5JERER2m7eLh2X4sxxiqgVkWlHdV/4t+ALbZBohzfxhTZItMPbuNpnF4rQPX78eH300UeaPHmy7rjjDgUGBiouLs7hPikpKQoKCpIkBQYGZuqwU1JSVKxYsTw9r8lkcvlFkdO5We3JYjBc/XLnseAgk55/a6PD7Tm18Xp+Bt7EF9rhC22QaIe38YV2+EIbJN9oh6f6ayl/++xUa/qGp/aN1AzKdkO1nI67esx23M/opxW/rVBoQKhMBpPSrGmKTYxVxWIVnWpHYeQLbZBohzfxhTZItMPb5LUdXrt7uc2oUaP04Ycfavz48XrwwQclSeXLl1dsbKzD/WJjY+1T1LI7XrZs2YIp2suxezoAIL/5Un+dnJZ+uTOT0fNvDM0WswwGA5cNA4BCzKtD97Rp07R48WJNmjRJbdu2td8eGRmp/fv3Kynp6nU0d+7cqcjISPvxnTt32o8lJibqwIED9uMAACD/+Fp/nfGSYd6CHcwBoPDy2tB96NAhzZgxQz169NDdd9+ts2fP2r/q1aunG2+8UUOGDNHBgwc1e/Zs7d27V506dZIkdezYUbt27dLs2bN18OBBDRkyRJUqVeJyYQAA5DNf7K+TU9NHur3lkmGSFB4YLolrdQNAYeS1ofv7779XWlqaZs6cqcaNGzt8mUwmzZgxQ2fPnlV0dLRWrVql6dOnq0KFCpKkSpUqaerUqVq2bJk6deqkuLg4TZ8+Pdt1UwAAwDW+2F/bppd71Uh3ANPLAaCw8p7e5Bo9e/ZUz549sz1euXJlLVy4MNvjzZo1U7NmzdxRGgAA+Jcv9te26eXesKbbhunlAFB4ee1INwAAgCfYp5d70Uh38aDikqRjl455uBIAQF4RugEAADLwxunlJYJKSJLOxJ9RUmpSzncGAHgVQjcAAEAG3ji9PMgvyD7FnNFuAChcCN0AAAAZeOPu5ZJUqVglSYRuAChsCN2QJHUdvs7TJQAA4BW88TrdknRTsZskSf9c/MfDlQAA8oLQDUlSYnKqp0sAAMAreOOabkn6T/H/SJKOXjzq4UoAAHlB6AYAAMjANr3cm9Z0S0wvB4DCitANAACQgddOLy+ePr386CVGugGgMCF0AwAAZOCt08tta7pPXzltH40HAHg/QjcAAEAG3njJMCn9Wt0BpgBZZdXxy8c9XQ4AwEmEbgAAgAy89ZJhBoNBJYJKSGIzNQAoTAjdAAAAGXjr9HJJKhFYQhLrugGgMCF0AwAAZOCtG6lJUvGg4pIY6QaAwoTQDUlSUKBJXYev83QZAAB4nLdeMkySSgeXliRtO77Nw5UAAJxF6C7iggNN6jFqvSQpMTnVw9UAAOB53jjS7Wf009L9S1UquJQk6XzieQ9XBABwFqEbSkwhbAMAYOOta7rNFrM9dCeYE3Ql5YqHKwIAOIPQDQAA8C+r1eqVI902gX6BCvEPkST9FfeXZ4sBADiF0A0AAPAvW+CWJJPB+9Z0S1LJoJKSCN0AUFgQugEAAP5lm1oueedIt0ToBoDChtANAADwL9tIt9FglNHgnW+TSganh+4jF454uBIAgDO8szcBAADwANvlwgJMATIYDB6uJmslgkpIYqQbAAoLQjcAAMC/bNPLA02BHq4ke7bp5ccuHZM5zezhagAAuSF0AwAA/Ms2vTzQz3tDd6h/qPyN/kqzpunYpWOeLgcAkAtCNwAAwL8yTi/3VgaDwT7afSSOdd0A4O0I3QAAAP+yjXR7c+iWpBLBJSSxmRoAFAaEbmTLaOTlAQAoWmxruoP8gjxcSc5KBZWSxEg3ABQGpCpk6bHB32vI+395ugwAAApUYZheLkmlgtND96Hzh/Tp/k/5oBwAvBh/oWEXFGhS1+HrJEkJSalKSGJHVABA0VJYppeXDS0rKf2yYbbReQCAdyJ0w0FicqqnSwAAwGMKwyXDJKlYQDH5G/1ltpgVlxTn6XIAADkgdMNBUKBJPUat93QZAAB4RFJqkiTvvmSYlL6DeemQ0pKkc4nnPFwNACAnhG5kkpjCaDcAoGi6knJFkhQeEO7hSnJXJriMJOlcAqEbALwZoRsAAOBfl5MvS5LCAsI8XEnuyoT8G7oZ6QYAr0boBgAA+NfllPTQHR7o/SPdtunl5xPPe7gSAEBOCN0AAAD/so10F4rp5f+OdMclxcls4YojAOCtCN0AAAD/sq/pLgQj3aH+oQryC5JVVp1MOunpcgAA2SB0AwAA/Ms+vbwQjHQbDAb7ZmrHE457uBoAQHYI3QAAAP+yTy8vBCPdklQmND10H0046uFKAADZIXQDAAD8qzBdMkySbgi7QZJ0JP6IhysBAGSH0A0AACDJarUWqt3Lpauh+5+Ef5RqSfVwNQCArBC6AQAAJCWYE2SxWiQVjut0S1KpoFIKMAUoxZKiwxcOe7ocAEAWCN0AAAC6uomav9FfgaZAD1fjHIPBoPKh5SVJ+8/u93A1AICsELoBAADkeLkwg8Hg4WqcZwvdB84e8HAlAICsELoBAAB0defywjK13KZ8GKEbALwZoRsAAECF6xrdGd0Qmr6Z2uG4w0owJ3i4GgDAtQjdBazHqPWeLgEAAGQh4zW6l+5f6uFqnBcaEKqS/iVlsVr069lfPV0OAOAahO4ClpjC5TwAAPBGGUe6zRazh6vJm1vDbpUkbT++3cOVAACuRehGrroOX+fpEgAAcDvbRmqFbU23JN1V6i5J0g9//eDhSgAA1yJ0I1eJyY6j850GrVWnQWvt3xPKAQC+IOP08sKmVolaMhqMOnzhsP6K+8t+++KYxfb/X7BngRbsWeCB6gCgaCN0I88SklKVkHQ1iF8bygEAKIwK60ZqkhTiF6JK4ZUkST/+9aP99ozT5M1pZpnTCte0eQDwBYRu5Coo0MRoNgDA5xXmkW5JuqP0HZKkz/Z/5uFKAAAZEbrhFEazAQC+rjCv6ZakKiWrSJJOx5/WqSunPFwNAMCG0A0AAKDCPb1cSr90WIXwCpKkj3Z/5OFqAAA2hG44hSnmAABfV9inl0vSPRXukSQt+3WZ/rn4j4erAQBIhG7kAVPMAQC+zDa9vLCOdEtSxfCKurn4zbJYLZq+fbqnywEAiNANAAAgq9V6dXp5IR7plqR7b7pXkvT9ke+17dg2Wa1WD1cEAEUboRsAABR5CeYEWawWSYV3IzWbMiFlVL9ifUnS1uNb9fLal/XNn98owZzg4coAoGjy83QBAAAAnmYb5fY3+ivQFOjhaq5fg0oN1OKWFhq7cazW/71e6/9eL0kqGVRSRqNRT9V6Sn5G3gYCQEHgry0AACjy7Ou5A8NlMBg8XE3+6FS9k45cOCKT0aQdJ3boj3N/6ELSBU3bPk0/HPlBI1uMVOUSlT1dJgD4PEJ3Aek0aK2CAk2eLsOteoxK/xT9wuVkSdLScQ/Yj3Udvk4LRkV5pC4AAHJj27k8LCBMS/cv9XA1+eeGsBvUNbKrJGnG9hk6fOGwdp7cqf1n9+up5U/p0eqPql+Dfg7nLI5ZrM41O3uiXADwSazpLiAJSalKTPLt3b8TU1KVmJKqhKT0L4dj7HwOAPBi8eZ4Sek7l5stZg9Xk3dGY+5v6YL8glS9bHUt7rRYN4TeoMTURC3Zv0S/nv3V4X6Fsf0A4M0I3chWcJCfeo3emOv9ggJN9lFuAAAKo+plqyuyfKQ63NnB06XkmZ/RT5subHL6vj/9/ZM6Ve+kG8NuVHJasnp/1Vv7zuxzc5UAUHQRupGjxBTnRqidvR8AAN6oVHApffDwB3qk2iOeLsUlKakpTt/XbDEr0C9Qnap3UoXwCrqSckUvfPWCdp/a7b4CAaAII3TjuuR1hLvToLXqNGitm6oBAABZyWqdeoApQI9UfUR1K9RVvDleL379onae2Gk/vjhmcUGWCAA+i9CN65LXEe6s1nsDAAD3ym6dtr/JX++0ekf1K9ZXYmqi+q3up7/i/srxHABA3hC6AQAAirAgvyBNenCSGt3USMlpyVr1+yp9/tvnni4LAHwGobsA+OImY8G5bJ5mO277yk7X4eucug0AgILgS5cLk9I3TsupTbbjX/z+hercUEfVy1SXVVaN2jBKG/7eoFRL+uy0BXsWaMGeBQ7nMv0cAJxD6C4AvrrJWG7tsl1CLKf7ZXUpMS4vBgDwFF+cUp1bm8wWs8wWsyxWi+675T7Vq1BPkvTLqV/0/JfP6/CFwzKnmWVOM2c6DwCQO0I3nObuS4N1GrRWTw3/3v69bcSbkW8AAPImtxHu7BgMBjW8qaHG3T9OAcYA7T61W52Xdtb3R77X4QuHFZsQq5S0FIfHzjgKzug3AGTm5+kCULi4c9Q+ISlVVqtVBoMh/bn+HfFm5BsAgLy7npHoqFui9ETNJ/T3xb/1418/6vdzv+v3c7/rm0PfSJICTYEKDwzXwfMHlWhOVIXwCrJarYx+A0AWGOmGx1zPqDmj3wAAuFeJoBKa8MAEPVXzKUWUjVCJwBIyKP2D8eS0ZMUmxOrrg1/rh79+0McxH6v9J+31098/6dilY/bHYOQbABjphgddz6h5dqPfXYev04JRUS4/LgAAcFQ+rLyaVm4qSepWp5viU+L10e6PdD7xvMqEltHXB7/WmfgzOnXllE5dOaUOizuo+c3N9exdz2Y78r04ZrE61+xckM0AAI8hdMMrZDXqfe0a8k6D1kqSlo57INvHYSo6AADuYzQYtebPNSodUlrFg4qra2RXBZmCZLVadTr+tHb+f3v3HhVlgfcB/Dv3GRnlJpqgB3AtYllgURM17UWkjVpRa9/NIm+beTnq4XgrlMpo2aIgjXWtWHUpTTIPu8TG6WyaRw+vegyDFY03IW6yEBxCA5HbDHN5/+CdieEmjAzPzPD9nDOHea7ze2YYvvzmuUx9IapvV+PcjXM4d+McJrlMgt6ox/0e9+M+9X2QS+RQSBXo1HX2XbeYB2ASkXNi0012YaC93j3Ht3cOf+/2mtfysPN37vdeIBEREQHo/1xxmUQGf3d/THOdhvnT5mPvub0o/6kcP7b9iIOXD/a7nqzvshA+NRyR/pGY6z0XF5ouIAQhti6fiGjUOe1HihqNBgkJCZg9ezYWLFiAjIwMoUsa03rute75Hd9DuSL63eYxwjjglc8H2/M90Hnhg50vznPJiYhGHjPbvpiufN77CuhDuSK6VCzFlforiJ4RjX+t/BcW+S3CIr9FmOExA64KV8glcvN54Q1tDfi89HNs+3IbVuWsQsXtChiMhn7X29+54f19d/hQphERjTan3dOdkpKC4uJiHD16FHV1dYiPj4e3tzeio6OFLm3M6rnXeqD7QP9Ndn/z9NzDbbryuUopxfqkvCEdZt57HtP6TOP724Pe33pH4zxyHnJHRM6MmW1/THuze+/V7jk8UBNumsdD5YGZU2ZCZ9AhZHIIVoWuwolvT8BoNKJT14lbHbfwXeN3KLlZgrKfylCGMjyX/RyeDX4WEX4RcFe5w2g04mb7TXz/0/f48MqH+P7W9yioK0CrthUikQhKqRIFdQXQ6DR4/P7HcZ/6PiikCtS11EEiluCHlh+gkCogl8jxecnneC7kOfO3pNgKM5uIenPKpru9vR1ZWVk4fPgwgoKCEBQUhLKyMmRmZjLAHcRAh5v33Es+UGPdodVZ9Z3iRhgtlhnq+eGjcR550se1yErlIXdE5HyY2Y5toAul9WzIu/SW84hEIqhkKkyVTYWnyhPzps5D8Y/F+KbuG1Q2V+KN828g+UIyXGQuMBgNaOtqG/DxtXotLtZcBAAU1Bf0mf7p/1ruIU/LT4NCooD3eG/4ufnBz80P01ynwUPlAbVcDYlIYm7KlVIlJo6bCFeFq0WjrtFpUNtSi5qWGvzQ8gM6dB0wGA0YJxsHF6kLLtRcwO88f4cJygkYLx8PtVwNtVwNhVQxhGeUiJyRUzbdJSUl0Ol0CAsLM4+bNWsW0tPTYTAY+AmkgzM15HdrrE3zmV7vwfZImxv5Hg27UiHBf790GkqFBCq55Vulv3WZ1tGp1ff7OKZl7lZH0x0NgO4Lxq169Sw+SvyvPuezr0/K6/M4A11orr/HE+oq73zvEVFvzGznNZS94kB3czt36lxMEU/BlMlTkPVdFhraGnBHewdA98Xb3JRumOMzB51dnfAc5wl3pTvatG3Q6DVo07bhx/Yf0dTRhLauNugMOmj1WuiNeoggQqeuE0YYzY+n0WtQ1VyFquaqIW2HTCyD5zhPSMVSdHR14KeOnyzW15+8L/v+fyITy6CSqSAWidGl74KL3AUSkQQSsQRikRhSsRQtmhZ4qjyhkCqglCpxq/0WZnjMgFKq7HMzwog2bRvautrQqm013zc9llwih0zy/z/FMvN9EUQQi8QQiUQQQQSR6P+He9w3GoxoaGjA1atXIRaLIRZ130yvR3/L9V5v7/t6ox56gx46g858MxgNkIgl5vqk4u7/t3qu0/SBh+m0hN7DPcf1ZDAYcKPpBm5V3TJPN8IIo9Fovm/Sc9xg03vq/Zi96+u5Hb2H+9uunno+ds/t6Pn3sL+aev9eDmWe/thi3QaDAf+59R/Ufl/b5+96f8v1Xv9Q6h7qcjKxDI/4PgJXpeuQ1jkSnLLpbmxshLu7O+RyuXncxIkTodFo0NzcDA8Pj0GXN71YWq0WEolkWI+t1+v7LDteJYVeZ4BSIYZS3v9TPth0W0y7+7J6GPRyTBgnAXr9MRBiWwabPtjzO14lwVuf1MLNtQlqlQTb9100T/NyU+D5xLNQyCWQSrrX0996ZRJAKvl5me37LkKtkpiXNY0zzdNzmlLx8zpNjy+TdP9+AMC2/V8jbcdc80+pBJBJup9vrVYLtUqCXWmX4D5ebvE7JZV0r2/zW/+DtB1zEf+XbyyWM+ke3z1u05sXAADpCQssauiPqZ74v3yD23c0UMglEIlFFrWa9Fxv72k96fV6HPisAe8/ePf31WDrGYnlrF0/0L0dIpHI4vXo+RwM9bGHU8O91DuQ/rbD3vV+Hnpvgy2eJ2trG47euWEa7u8fGmdkb5ktg8xyHpEeUpEU0gH+ZRpsurXThrusAQYopUpIIYVcJB+Vx7RmvTAM/PyKIe6+IrrMFX8I+QO0ei1aNC0Qi8XwUHb/DsgkMou95mqpGlKx1Nyo9dSp64RULIVKpkKXvgtikRiduk6IIEJTZxPuaO+gRdOCpo4mtGha0KHv6G7OezRcXfou81XWm9ubzetWiBVwkbtALVNjvHw8AjwDUN1SDa1OC61eizZNG9RKNdq72tHU2QSt/ue81Xb9fL+lo6Xf56u1s9Vi+IfbP/Q736ioF+6hR8wNoQsYITeELmCE/EfoArpd//E6toVvG/Zy1ma2yOiEqZ6Tk4M///nPOHfunHlcTU0NoqKikJeXh/vuu2/Q5bVaLb799ltbl0lERDSg4OBgi0bUWTGziYjI0d0ts51yT7dCoeizF880rFQq77q8VCpFcHAwxGKxzS+2QURE1JPRaITBYIBU6pQR3Qczm4iIHNVQM9spE33y5MloamqCTqczPwGNjY1QKpWYMGHCXZcXi8VjYu8CERGR0JjZRETk7Jzy6iSBgYGQSqUoKioyjyssLDR/Ek5ERET2gZlNRETOzinTTKVSYfny5UhMTMS1a9dw5swZZGRkYPXq1UKXRkRERD0ws4mIyNk55YXUAKCjowOJiYk4ffo01Go11q1bh7Vr1wpdFhEREfXCzCYiImfmtE03ERERERERkdCc8vByIiIiIiIiInvAppuIiIiIiIjIRth0ExEREREREdkIm+4RpNFokJCQgNmzZ2PBggXIyMgQuqR7otVqsWTJEuTn5wtdyrA1NDQgLi4Oc+bMwcKFC5GcnAyNRiN0WcNWXV2NdevWISwsDBEREThy5IjQJd2zDRs2YPfu3UKXYZWvvvoKAQEBFre4uDihyxoWrVaL119/HQ899BDmz5+P/fv3w9Eu7ZGdnd3ndQgICMCDDz4odGnDVl9fj40bN2LmzJmIjIzERx99JHRJY4YzZbYj5zXAzLZXzGvhMbPtx73mtdQ2ZY1NKSkpKC4uxtGjR1FXV4f4+Hh4e3sjOjpa6NKGTaPRYOfOnSgrKxO6lGEzGo2Ii4vDhAkTkJmZidu3byMhIQFisRjx8fFClzdkBoMBGzZsQHBwMD777DNUV1djx44dmDx5MmJiYoQuzypffPEF8vLy8OSTTwpdilXKy8uxaNEiJCUlmccpFAoBKxq+P/3pT8jPz8ff/vY3tLW1Yfv27fD29sYzzzwjdGlD9sQTT2DhwoXmYZ1OhzVr1iAiIkK4oqy0bds2eHt7Izs7G+Xl5di1axd8fHzw6KOPCl2a03OWzHbkvAaY2faKeW0fmNn2417zmk33CGlvb0dWVhYOHz6MoKAgBAUFoaysDJmZmQ4X4OXl5di5c6fDfZJmUllZiaKiIly8eBETJ04EAMTFxeHtt992qAC/efMmAgMDkZiYCLVaDT8/P8ybNw+FhYUOGeDNzc1ISUlBcHCw0KVYraKiAg888AC8vLyELsUqzc3N+Mc//oEPP/wQISEhAIDnn38eV69edagAVyqVUCqV5uG//vWvMBqN2LVrl4BVDd/t27dRVFSEpKQk+Pn5wc/PDwsXLsSlS5fYdNuYs2S2o+c1wMy2R8xr+8DMth8jkdc8vHyElJSUQKfTISwszDxu1qxZuHr1KgwGg4CVDd/ly5cRHh6OkydPCl2KVby8vHDkyBFzeJu0trYKVJF1Jk2ahLS0NKjVahiNRhQWFuKbb77BnDlzhC7NKm+//TaWLVuGGTNmCF2K1SoqKuDn5yd0GVYrLCyEWq22+B3asGEDkpOTBazq3jQ3N+Pw4cPYuXMn5HK50OUMi1KphEqlQnZ2Nrq6ulBZWYl///vfCAwMFLo0p+csme3oeQ0ws+0R89o+MLPtx0jkNZvuEdLY2Ah3d3eLX6CJEydCo9GgublZuMKsEBsbi4SEBKhUKqFLscqECRMsDmMxGAw4fvw45s6dK2BV9yYyMhKxsbEICwvDY489JnQ5w3bp0iUUFBRg8+bNQpdiNaPRiKqqKly4cAGPPfYYoqKi8M4770Cr1Qpd2pDV1NTAx8cHOTk5iI6OxuLFi/Hee+85VJPR24kTJzBp0iSH2jtpolAosHfvXpw8eRKhoaF4/PHH8cgjj+D3v/+90KU5PWfJbEfPa4CZbW+Y1/aDmW0/RiKv2XSPkI6Ojj6f2JiGHe1N7mxSU1Px3XffYfv27UKXYrUDBw4gPT0d169fd7hPODUaDV577TXs3bvX4vAiR1NXV2d+n6elpSE+Ph65ublISUkRurQha29vR3V1NT799FMkJycjPj4eH3/8scNevMtoNCIrKwsrV64UuhSrVVRUYNGiRTh58iSSk5Px5Zdf4vPPPxe6LKfHzLZfzGzhMK/tCzPbvtxrXvOc7hGiUCj6BLVp2JH/cDm61NRUHD16FO+++y4eeOABocuxmum8Ko1Gg127duGll15ymMNyDh48iF/96lcWezIckY+PD/Lz8+Hq6gqRSITAwEAYDAa8+OKL2LNnDyQSidAl3pVUKkVrayv27dsHHx8fAN3/nJw4cQLPP/+8wNUN37fffouGhgb89re/FboUq1y6dAl///vfkZeXB6VSieDgYDQ0NOCDDz7A0qVLhS7PqTGz7RMzW1jMa/vCzLYfI5HXbLpHyOTJk9HU1ASdTgeptPtpbWxshFKpxIQJEwSubmxKSkrCiRMnkJqa6nCHdwHdF2UpKipCVFSUedyMGTPQ1dWF1tZWeHh4CFjd0H3xxRe4efOm+dxJ0z+2p06dwpUrV4Qsbdjc3Nwshn/xi19Ao9Hg9u3bDvF6eHl5QaFQmMMbAPz9/VFfXy9gVdY7f/48Zs+eDVdXV6FLsUpxcTF8fX0tmrxf/vKXSE9PF7CqsYGZbX+Y2cJjXtsXZrb9GIm85uHlIyQwMBBSqRRFRUXmcYWFhQgODoZYzKd5tB08eBCffvop9u/f75CfqAFAbW0ttm7dioaGBvO44uJieHh4OExgAMDHH3+M3Nxc5OTkICcnB5GRkYiMjEROTo7QpQ3L+fPnER4ejo6ODvO469evw83NzWFej9DQUGg0GlRVVZnHVVZWWgS6I7l27RpmzpwpdBlWmzRpEqqrqy32uFZWVmLq1KkCVjU2MLPtCzPbPjCv7Qsz236MRF4zWUaISqXC8uXLkZiYiGvXruHMmTPIyMjA6tWrhS5tzKmoqMD777+P9evXY9asWWhsbDTfHElwcDCCgoKQkJCA8vJy5OXlITU1FZs2bRK6tGHx8fGBr6+v+ebi4gIXFxf4+voKXdqwhIWFQaFQ4JVXXkFlZSXy8vKQkpKCF154QejShmz69OmIiIjAnj17UFJSgvPnz+PQoUN49tlnhS7NKmVlZQ59dd3IyEjIZDK88sorqKqqwtmzZ5Geno5Vq1YJXZrTY2bbD2a2/WBe2xdmtv0YibwWGR35yx3tTEdHBxITE3H69Gmo1WqsW7cOa9euFbqsexIQEIBjx44hPDxc6FKG7NChQ9i3b1+/00pLS0e5mnvT0NCApKQkXLp0CSqVCitXrsTGjRshEomELs1qu3fvBgC89dZbAlcyfGVlZXjzzTdRVFQEFxcXPPPMM9iyZYtDvR537txBUlISvvrqK6hUKsTGxjrcNpiEhITgvffec+jzD8vLy/HGG2/g2rVr8PDwwHPPPYc1a9Y45OvhaJwtsx0xrwFmtj1jXguPmW0/7jWv2XQTERERERER2QgPLyciIiIiIiKyETbdRERERERERDbCppuIiIiIiIjIRth0ExEREREREdkIm24iIiIiIiIiG2HTTURERERERGQjbLqJiIiIiIiIbIRNNxER0QjQarVYsmQJ8vPzh7zM5cuXsWzZMoSGhuLpp59GSUmJDSskIiIiIfKaTTcRDSgyMhIBAQHmW1BQEKKjo/HRRx/1O39tbS0CAgJQW1s7uoUSCUyj0WDHjh0oKysb8jI1NTVYv349Hn30Ufzzn/9EQEAANm/eDK1Wa8NKicgZMa+JhkaovJZaUywRjR0JCQl44oknAAA6nQ5ff/01Xn75Zbi5uWH58uUW806ZMgUXLlyAh4eHAJUSCaO8vBw7d+6E0Wgc1nLHjx9HSEgItm7dCqD7vRYTE4PKyko8+OCDtiiViJwY85pocELmNfd0E9Ggxo8fDy8vL3h5eWHKlCl48sknMW/ePJw+fbrPvBKJBF5eXpBIJAJUSiSMy5cvIzw8HCdPnuwzraCgAE899RRCQkIQExODU6dOWSz3m9/8xjysUqlw5swZNtxEZBXmNdHghMxrNt1ENGxSqRQymQyrVq1CUlISFi9ejIiICJSWllocrnbr1i1s27YNM2fOxMMPP4z9+/ebP12sr6/Hpk2bEBoaisjISBw8eBB6vV7IzSKySmxsLBISEqBSqSzGNzY2YuPGjXjqqaeQm5uLF154Abt370ZBQQGA7sPVlEol4uLiMH/+fKxevRrl5eVCbAIROSnmNdHPhMxrNt1ENGRdXV04ffo0Ll68iMWLFwMAsrOzkZqaioMHD8LFxcVi/i1btqCxsRHHjx9HWloasrOzkZmZCaPRiK1bt8LT0xOfffYZkpOTkZubi/T0dCE2i8gmMjMzMX/+fKxcuRK+vr5YtmwZVqxYgaNHjwIA2tvb8c477+Chhx7C4cOHMWXKFKxduxZtbW0CV05Ejo55TTR0o5HXPKebiAb12muvISkpCQDQ2dkJpVKJNWvWYOnSpcjKykJERARmzpwJABYXZCkpKcGVK1dw5swZTJs2DQCQmJiI9vZ2fP3116irq0NWVhbEYjGmT5+O+Ph47NmzB1u2bBn9jSSygcrKSpw7dw5hYWHmcV1dXfD39wfQfXhnZGQkVq1aBQBISkpCREQEzp49i5iYGEFqJiLHxbwmss5o5DWbbiIaVFxcnPk8FoVC0eccMB8fn36Xq6qqgpubmznAASAqKgpA9wUpmpubMWvWLPM0g8GAzs5ONDU1wd3d3RabQjSqdDodYmJisGnTJovxUml39Hp5eZkDHQDkcjl8fHxQX18/qnUSkXNgXhNZZzTymk03EQ3K09MTvr6+A05XKBT9jpfJZAMuo9PpMH36dLz//vt9po0fP374RRLZIX9/f1y5csXi/ZORkQGtVotNmzbh17/+NUpLS83TtFotampqMHXqVCHKJSIHx7wmss5o5DXP6SYim/D19UVzc7PFp4DHjh3D5s2b4e/vj7q6Onh4eMDX1xe+vr6ora3FgQMHIBKJBKyaaOTExsaiuLgY7777Lm7cuIHc3Fzs378f3t7eAIA1a9bg1KlT+OSTT3Djxg388Y9/hEKhQEREhLCFE9GYwrymsW408ppNNxHZxP3334+5c+fi5ZdfRmlpKfLz83Ho0CE8/PDDWLBgAXx8fPDiiy+itLQUBQUFePXVV6FSqfj1JeQ0fHx8kJ6ejvPnz2PJkiVIS0vD7t27sXTpUgBAaGgo0tLScOzYMcTExKCiogJHjhzBuHHjBK6ciMYS5jWNdaOR1zy8nIhsJjU1Fa+//jpWrFgBtVqNFStWIDY2FiKRCB988AGSkpLw9NNPY9y4cYiOjkZ8fLzQJRPdk56HnwHA/PnzkZ2dPeD8UVFR5nMniYiEwrymsWa081pkNH0JHxERERERERGNKB5eTkRERERERGQjbLqJiIiIiIiIbIRNNxEREREREZGNsOkmIiIiIiIishE23UREREREREQ2wqabiIiIiIiIyEbYdBMRERERERHZCJtuIiIiIiIiIhth001ERERERERkI2y6iYiIiIiIiGyETTcRERERERGRjfwf8KWkIKhg8MAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJRCAYAAABYy9SRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWIUlEQVR4nOzdd3iT5dvG8TOjm9GW6Yu4mCplyEYEqVZEBJThKgiioAz3AgVEEQFFVEBAUeQnQ5TtAAVFQQRZIhQUBVRkyIZSupvk/aMkNJ1J2zRJ+/14cEjz5EmuOy29c+Yej8Fms9kEAAAAAACKndHbBQAAAAAAUFoRugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AHmaz2bxdglv8rV4AAABfRugGUGpt2rRJ9erVy/HnmmuuUZMmTXTrrbdq5MiR+v3333M9f8qUKapXr57eeuutQtewfv169e/f361zhg0bpnr16mnhwoX53lbczp07p1dffVXLli0rsB5f8cILL6hevXqKiorSmTNnvFpLcfy8uOrQoUOqV6+e2rVr5/HncsXhw4f1yCOPqFmzZmrUqJHuvffefO8fHR2tevXqadOmTfnez/6aDhs2rDjL9Vn29mb/U79+fTVo0EBt27bVI488om+//datx12yZInq1aunZ555xkOVAwDyY/Z2AQDgaaGhobrpppscX9tsNiUmJmrfvn367LPPtHjxYj399NN68MEHi/V5jxw5ogcffFDVqlUr1sf1lHHjxmnJkiV69dVXvV2KS5KSkrRy5UoFBwcrJSVFS5YsKfbvIVzz7LPPatu2bapRo4aioqJ05ZVXerskv1azZk01btzY6bb09HQdPXpU33//vb7//nsNHDhQTz/9tHcKBAC4hdANoNSLiIjQxIkTcz321VdfacSIEXr99ddVtWpVdenSxXEsNjZWt912myIiIgr1vFartVDnPfXUUxowYICqVq1aqPMLK69p5d6qpyArV65UUlKShg4dqunTp+vTTz9V//79ZTAYvF2ax1WrVk0rVqxQQECAt0uRJO3cuVOS9PHHH+vSSy/1cjX+r1mzZho/fnyux9atW6dHHnlEM2fOVKdOnXTNNdcU+HgxMTFq1KiRypcvX9ylAgBcwPRyAGVa586dNWbMGEnS66+/rpSUFMexyMhI1apVS5GRkSVaU9WqVVWrVi2feYPsa/XYLV68WJLUrVs3tW7dWgcOHNDGjRu9XFXJCAgIUK1atXTZZZd5uxRJmaOwklS9enUvV1L6tWvXTjfddJNsNptWr17t0jnly5dXrVq1fO6DMwAoKwjdAMq822+/XVFRUTp+/LjTWsm81uj+8MMPevDBB3XDDTeoQYMG6tChg4YPH679+/c7nWuf0n7s2DHVq1dP0dHRki6uxx08eLBWrlypDh06qGHDhurSpYsSExMLXEP9ySefqFOnToqKitJNN92kN954Q+fOnXO6T0FrOO1rRbN+vXTpUknSiBEjVK9ePS1ZskRS3mu6MzIyNGfOHHXv3l2NGzdW48aN1aNHD82dO1cZGRlO97Wvrx87dqz++usvPfbYY2rZsqUaNmyo7t27OwK0qw4cOKBt27bpiiuu0GWXXaY77rhDkrRgwYJc75/1NT927JiGDx+u66+/XlFRUercubM++ugjWSyWHOf9/fffGjVqlDp27KjGjRurYcOGuvnmmzV69GgdO3Ys3xq/+eYb1atXT/fcc0+ux48dO6arr75aHTt2dNy2f/9+PfXUU4qJiVGDBg3UunVrPfzww1q/fn2u7cm+pvvo0aMaMWKEOnXqpIYNG6pFixbq27evvvzyy3xrze706dOaMGGCOnbsqAYNGqhFixZ68MEHtXbtWqf79enTx+nn6Nprr1W9evV06NAht56vMPbu3atnn31Wbdu2dax3fvbZZ7Vv374c97WvIT9w4ECOY/Z/51OmTHG6ffv27Ro8eLCio6Mdj//YY485RvWz+/vvv/X88887fi+0a9dOL774og4fPlw8Dc6iZs2akqRTp045bouOjlazZs30559/qnv37o7fTb/88ku+vw9+/vlnDR48WNdff72aNGmiLl266L333lNycnKR2piamqqpU6fqzjvv1HXXXacmTZrozjvv1Hvvvef04SYAlAWEbgCQHIG4oJHSb7/9VoMGDdKmTZtUq1YtRUdHKzg4WEuWLFGvXr0cb/jr1aunm2++WZIUEhKiLl26OL62+/PPP/XMM8+oUqVKatmypapVq6awsLB8n3/WrFkaPXq0QkJC1KFDB6WmpuqDDz7QPffco7Nnzxay9VKXLl0cb+QbN26sLl265DuKmpqaqgceeECvvvqq/v77b7Vs2VKtWrXSX3/9pTFjxmjAgAFKS0vLcd7evXvVs2dPbd26VU2aNNE111yj3bt364UXXtCsWbNcrtce0rt27Sopc/ps+fLl9d133+n48eN5nnfixAn16tVLq1evdmyo99dff2n8+PF67bXXnO67detW3Xnnnfr0009Vrlw5tWvXTk2aNNHJkyf1ySef6J577tH58+fzfK7o6GhFRkZq+/btuYa95cuXy2q1qnv37pKkf//9V71799ZXX32lihUrKjo6WpdffrnjQ57sG9xld+bMGfXt21cLFy6U2WzWjTfeqPr162vLli16+umnNW3atHzPt/v333/VrVs3zZo1S8nJyY7AunHjRg0cOFBvv/22475t2rRxWpJx++23q0uXLgoNDXXpuQrr22+/Vffu3fX5558rMjJSN910kyIjI/X555+rR48e+v7774v0+L/++qv69eun77//Xpdccomio6NVpUoVffPNN7rvvvv0888/O91//fr1uvPOO7Vs2TKFh4erQ4cOqlixohYtWqTu3btr165dRaonu71790qSLrnkEqfb09PTNXDgQMXHx6t9+/YyGAyqX79+no8zc+ZMRzuvuOIKXX/99Tpz5owmTZqU49+wO2202Wx65plnNGXKFJ06dUotW7ZUixYtdPDgQU2aNEmPPPJIsb4eAODrWNMNAJKuuuoqSZkjOfkZP368jEajli1bptq1a0vKfIP52muv6eOPP9ZHH32ksWPH6pZbbtE111yjb7/9VhUqVMh1TfnBgwd133336aWXXpLk2hrwv/76SyNHjlTv3r0lScnJyXrssce0bt06TZo0Sa+88opb7babOHGihg0bpoMHD6pnz57q1atXvvefNGmSNm/erKioKL333nuqVKmSpMyRt4cfflgbNmzQpEmTcuw6vXHjRnXs2FHjxo1zfMAwZ84cvfrqq5o5c6YeeOCBAtdkWywWLVu2TEajUXfeeackKTg4WLfddps+/fRTLVy4UEOGDMn13J07d6pZs2aaMmWKY9nAmjVrNGjQIC1YsECPP/64KlSoIEl6+eWXlZycrClTpuiWW25xPMaJEyd099136/Dhw1qzZo0j+GcXEBCgrl27avbs2fr888/16KOPOh1funSpjEajY5R+xowZOn36tF555RXdfffdjvutXr1aQ4cO1bvvvuu4b27mz5+vf/75Rw8//LCeeuoppzbfd999mjlzph566CEFBgbm+Rg2m01PPPGEjh8/rrvuuksjR4503H/nzp0aMGCApk+froYNGyo6OlqDBg2SJH3xxReSpAkTJshsdv2txYwZM/LdFf+PP/7IcduJEyf0zDPPKD09Xa+99pp69OjhOLZo0SKNGDFCTz/9tFauXFnoTQzfeustpaSk6MMPP1Tbtm0dt8+ePVvjxo3TjBkz1KpVK0mZswKeeuoppaWladKkSercubPj/p9++qlGjRqlJ554QitWrMj3tXfVsmXLtG7dOplMJnXq1MnpWEpKiiIjI/XJJ58oKChIVqtVRmPu4ytxcXGaNGmSwsLC9P7776tp06aSMjcofPjhh7V582bNnz9f/fr1c7uN27Zt06pVq9SiRQvNmjXLsffA6dOnddddd2njxo3aunWrmjVrVuTXAwD8AaEbACRH0CroslMnTpyQ2Wx2hExJMhgMeuSRR3T55ZfnO6qUm379+jn+nteb46xatGjhCNxS5ij6uHHjdOONN2r58uUaNmyYx0cZU1NTtWDBAhmNRk2aNMnptahUqZImTZqkjh07av78+Xr00UedRu/NZrNefvllp9vuvvtuvf766zp9+rROnjypKlWq5Pv869ev17Fjx3T99dfr//7v/xy39+jRwxG6H3nkEZlMplzPHzlypNM6/ejoaF166aU6dOiQ/vrrLzVu3FiJiYlq0KCBoqKinAK3JFWpUkU333yz/ve//xU4jbpnz56aPXu2li9f7hS6d+zYob/++ks33HCDIxieOHFCUs510TExMRo1apQqV66cb4jK6/yGDRvq1VdfVWBgYK5T6LPaunWrdu/ercsuu0wvvfSSU4Bu2LChnn/+eQ0fPlwffPCBY3ZIUWzYsMHtcz799FMlJyfrjjvucArckhyzKJYuXapPPvlETzzxRKHqsr+W2UeS77vvPkkXP6STMoN+fHy8YmNjncKolPmzvWbNGv3www9avXp1juN52bp1a46p4MnJydq7d68OHDggg8Gg5557TldccUWOc++9914FBQVJyv93yqeffiqr1apHHnnEEbilzKs9PPvss3r66acds0bcbaP9vEqVKjlt9hcZGakxY8bov//+U40aNVx6LQCgNGB6OQDo4kZQBY2yNm/eXCkpKbrzzjs1depU7dy5U1arVZUqVVLv3r3dGrkJDg7W5Zdf7ladWafy2lWuXFlRUVFKSUkp9mmsuYmLi1NKSoquueaaXKegX3bZZYqKilJqamqO9a+XX355jt3gAwMDHbe5stbTPrU8e+Bq1KiRateurf/++y/H2mO7kJAQpzXIdvYNpuzrWMPCwjRu3LgcU86PHz+utWvXas+ePZKU6xT6rOrUqaOGDRvq4MGD2rZtm+N2+3p5+9RyKfNnS5Ief/xxvfrqq1q3bp3j9YiNjVXHjh3zDVEtWrSQJL366qsaPny4Vq9e7Zj+fscdd+i2225TSEhIvvVu3rxZknTzzTfnOmJ96623ymQyaceOHQW23RUff/yx/vjjjzz/DB06NMc5W7ZskaQco7x2t912m1NbCsP+vbjvvvs0ceJEbd68Wenp6QoMDFS/fv2c1tLbrzXeunXrXB/Lft+Crkme1cGDB/XFF184/fnpp59ktVp1++236+OPP3b6wC6runXruvQc9tcntw9PGjZsqNWrV+u5555zqt3VNjZp0kQBAQFauXKl+vfvr4ULF+ro0aOOx+jevXuODzQAoDRjpBsAJMd66IoVK+Z7v1dffVVDhw5VXFycpkyZoilTpig8PFzt27dXz549HcHHFYXZDTyv0SH7G9j81jMXF/tz5DdSdemll2rHjh056rHPKMjOHvAKmmJ/5swZrVmzRlJmYMu+cVp8fLykzM3mcgsT5cuXz/WDFfvzZ79s2i+//KKFCxfqt99+07///qukpCRJFz+cyesya1n17NlTO3fu1PLly9W0aVOlpaVp5cqVqlixotM6/wceeED79+/XsmXLNGfOHM2ZM0eBgYFq1aqVOnfurC5duuQ5ei9lhs3du3fro48+0pIlS7RkyRKZzWZdd911uvXWW9WzZ0/HCGhe7N+vvC77FRoaqsjISJ04cUKnT5/2ym7lBf382Wu3j1YXxrPPPqvDhw/rxx9/1MyZMzVz5kyFhobqhhtuUNeuXZ2+b//9958k5foBQVb20OmKO++8M89LhhUkr39j2dlfn6yzRfLibhsvueQSvf766xo1apR++ukn/fTTT5IyP4SKiYnRvffey07qAMoUQjcASI6Ry9xGQbOqXr26Fi1apG3btunbb7/Vhg0b9Mcff2j58uVavny5BgwYkOeO4dm5Mp08u7xCkz38ubKetqApxgWxP1d+swLs98m+hrWo19D+/PPPHbMSfv311zzvt379eh06dChHeHTn+V9++WXNnz9fJpNJ9evX16233qratWurUaNG+vHHHzVjxgyXHqdz584aN26cvv76a40cOVJr1qxxTNXN+voEBARowoQJGjRokFatWqUff/xR27dv17p167Ru3TotXLhQH330Ub7rgp999ln16dNH33zzjX788Udt27ZNmzdv1ubNmzVv3jzNnz9f4eHheZ7vyocIeX1vS0pBP3/u1pfbv4dy5crpgw8+0O+//65Vq1bpp59+0q5du/TNN9/om2++0W233ea4qoH9/A4dOqhcuXJ5Po99DwhPc/X3SvYrDOSnMG287bbb1K5dO61Zs0Zr167Vzz//rL1792rv3r363//+p9mzZ6thw4Yu1wAA/ozQDQDKvAyYlLkbsyuaNm3qWAd56tQpLV68WG+99ZY+/PBD9enTp9AbOBUkr5Fs+yV77CPe9jfeuY0c20eDC8s+QpXfeuaDBw9Kypz6Xpzs07Kzb3CV1cCBA7V27Vp99tlnThuKucO+idQll1yiDz/8ULVq1XI6/vXXX7v8WOXKlVPHjh21bNkybdy4UatWrZLkPLU8qyuuuEIDBw7UwIEDlZycrB9++EEvv/yytm7d6tK64OrVq6tv377q27ev0tPTtXHjRo0ZM0b79+/XZ599poEDB+Z5bkHf28TERJ0+fVomkynf8O5JVatW1d9//61Dhw7lGmTttWffd0HKPWDn9+/h6quv1tVXX63HH39cCQkJWrlypcaOHasVK1aob9++aty4sapWrap//vlH999/v8u/P3xBlSpVdPjwYR09elRXXnlljuMLFixQtWrV1KFDh0K3sVy5curatatjs8Hdu3dr0qRJWr9+vd555x19+OGHxdYeAPBlrOkGUOatWLFCf/31l6pXr64bb7wxz/v99ddf6tKlix566CGn2ytVqqSBAweqXr16slqtjus3F3VUNzc//vhjjtsOHz6sXbt2qXz58rr66qslybGZWtbr+Nr98ssvuT62q/U2aNBAISEh+u233xzhOqt///1Xu3fvVmhoqBo0aODSY7pi9+7d2rNnjypVqpTn2lJJjh2+Fy9e7BgVd5d9FP2WW27JEbgtFovjklGujAxLmVPMpcyftXXr1qlu3bpOr43VatX999+vtm3bOq1rDwkJUadOnRyhxT7NNzdPP/20WrVq5XTN5ICAALVr186x+V5+50sX1zJ/9913uY6Efv3117JarWrWrFmhZmoUB3uN33zzTa7HV6xYIUlOSz3s/x5Onz6d4/7ZZ0ycO3dO3bt3z7F/Qvny5XXXXXc5Puyxv5b2evLaR+DNN99U9+7d892l3RvsHxquW7cux7H9+/frpZdecly73N02fvTRR+rQoUOOy9xde+21evbZZyW5N90eAPwdoRtAmWWz2bRy5UqNHDlSkjRixIh8p6RefvnlOnnypNavX59jpHPXrl3av3+/wsLCHDsb26eCJyUluXQ5MFcsW7ZMq1evdnx97tw5Pfvss7JYLE7Tle27qNt3o7b777//cr18mXRxOm5CQkK+NYSEhOiuu+6S1WrV008/7RRk7JcWslqt6tGjR4Ebd7nDvoFap06d8l3bfNNNN6lChQo6efKk02vlDvvGbhs3bnRsriZlbrQ2cuRIx3WSU1NTXXq85s2b64orrtDy5cuVkJCQYxM4o9Go8uXL68SJE5o0aZLTiOzZs2cdwSi/6biVKlXSmTNn9PrrrzttcpaSkuJ4HQqaztuiRQtdc801OnDggMaMGeP0ocWuXbv0+uuvS5LTDvol7a677lJoaKiWLl2aI9QtXrxYy5cvV2hoqONyctLFfw8ff/yx0wclH3zwgX777Tenx6hQoYKsVqv+/PNPzZ492+nYoUOH9Msvv8hoNDo+NLn77rsVGhqquXPn6quvvnK6//fff6+PPvpIu3fvLtYPoIpDbGysDAaDpk2b5lheI2XOZrBfetD+YY+7baxZs6aOHDmi6dOnO62tt9ls+vzzzyU5/ywmJydr//792r9/v2caCwBexvRyAKXemTNnnNZZW61WnTt3Tnv27NGJEydkMpk0cuRIxcTE5Ps4JpNJr7zyih599FE9/vjjuvbaa3XppZfqzJkz2rZtmywWi0aOHOlY8xgZGakKFSro3Llzuueee3TZZZflGXhd1ahRIw0dOlRNmjRRlSpVtHnzZp09e1YtWrRwujb1ZZddpltuuUWrVq3S3Xff7RgZ3rRpk+rWratatWrleINrv/zQtGnTtH37dnXr1s1pw6isnnrqKf3222/asmWLbr75Zseo4ubNm5WYmKhWrVq5vLbdFWlpafryyy8lqcDp1UFBQbr11lv12Wef6ZNPPnHsZu2OTp06aerUqfrzzz918803q3HjxkpLS9P27duVkJCgOnXqaO/evTp58qTLj9m9e3dNmjTJcf3u7J5//nlt3bpV//vf//Ttt9/q6quvVlpamn755RedP39eXbp0yXejvsGDB+v777/X119/rW3btjkC0M6dO3Xq1Cm1aNFCt99+e741GgwGTZo0SX379tWCBQv0ww8/qFGjRjp79qy2bt0qi8WigQMH5riMWkmqVq2aJkyYoKeeekrPP/+8PvroI1155ZX6+++/tWfPHoWEhOiNN95w2mjt/vvv18qVK/XNN9/o1ltvVb169fTnn3/qn3/+Ubdu3bR8+XKn53j55ZfVu3dvjRs3Tp999plq1aql8+fPa9u2bUpNTdUjjzyimjVr5qjnqaee0rvvvqurrrpK//33n+NqAsOHD3fMQvEVjRs31lNPPaU333xTPXr0UPPmzRUSEqIdO3bo1KlTateune6//35J7rfxpptuUkxMjFavXq2YmBhdd911CgsLc7zmVapUcbqE3s6dOx3Pldu12QHA3xG6AZR6SUlJ+uKLLxxfGwwGhYSE6NJLL9Utt9yi2NjYHFOI8xITE6MPP/xQs2fPVlxcnP744w9VqFBB7dq10wMPPKCWLVs67ms0GjVx4kRNmDDBMRW7qOupn376af36669asGCBdu3apRo1auiBBx5Q//79c4zST5w4Ue+//74+//xzbdy4UZUrV1bv3r01dOjQXEcq7733Xu3Zs0ffffed1q1bp1q1auUZuoODgzVr1izNnz9fn3/+uX7++WeZTCbVqVNH3bt3V69evYp1+vG3336r+Ph41ahRQ9ddd12B97/jjjv02WefafPmzdq/f3+Bu3ZnV65cOX322WeaPHmyNm7cqHXr1jkuzdarVy+1atVKbdq00fr165Wenu50LeK82Kfztm/f3uk64XaXXXaZFixYoBkzZmjTpk364YcfFBwcrDp16qhHjx45RsezCw8P17x58zR9+nT9+OOPWr9+vQICAnTllVfqoYceUu/evV2q88orr9TSpUs1c+ZMfffdd1qzZo0qVKigG264Qffff7+uv/76Ah/D02655RYtWrRIM2fO1KZNm7R//35VqVJFPXv2VP/+/XP8e46KitK8efM0ZcoUbd++XcePH1eDBg00evRoJScn5wjdjRo10vz58zVz5kz98ssvWrNmjcLCwtS0aVPdc8896tixY456Fi9erA8++EA///yzfvjhB1WqVEk33nij+vfv7/R7wZcMHDhQV199tT766CPFxcUpOTlZNWvW1P3336/+/fs7/Rt2p432D29mz56tFStW6JdffpHFYtEll1yi+++/X4888ojTmnsAKO0MNlcXpAEAgEJ79dVXNWfOHL333nv57h0AAABKF9Z0AwDgIfZN0TZv3qxFixapZs2aateunZerAgAAJYnp5QAAeMiLL76ob7/91hG+n3nmGa/t+g0AALyDnh8AAA9p2LChAgICVL16dY0aNUq33nqrt0sCAAAljDXdAAAAAAB4CCPdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdgBtsNpu3SwAAAB7iD/28P9QIwBmhG6XGsGHDFB0dnefxPn36qE+fPnl+XZBt27bp4YcfLlKNpcHRo0fVu3dvRUVFqXXr1kpOTs5xnyVLlqhevXo6dOhQro8xZcoU1atXz9OlFqthw4apXr16Tn+uvfZatW3bVs8++6z++++/Ah+jXr16mjJlSglUCwC+oU+fPk6/N+vXr68mTZqoe/fumjNnjiwWi1fqOnTokOrVq6clS5ZIks6dO6fnn39eW7duLdLjutNXFPS+JTf79u3TvffeW6Qa7TZt2qSOHTuqQYMGevDBB3O9j7vvrfxBdHR0ju9RVFSUYmJi9Oabbyo1NTXf8zdt2qR69epp06ZNJVQxSgOztwsAvOWll15y6/4LFy7Uvn37PFSN//jf//6n7du364033lC1atUUEhLi7ZJKTJUqVTR16lTH1xkZGfr77781ceJEbd++XV9++aWCg4PzPP/TTz9V9erVS6JUAPAZ11xzjaPPtVgsio+P19q1a/Xaa69p27Zteuutt2QwGEq0pqpVq+rTTz/VZZddJkn6/ffftWzZMnXv3r3Ij13UviI/K1eu1Pbt24tcoyRNmDBBVqtV77//vipVqlQsj+kv2rdvr8GDBzu+Tk1N1aZNmzRt2jQdPnxYkyZNyvPca6+9Vp9++qlq165dEqWilCB0o8zil2XhnD17VlWrVtVtt93m7VJKXGBgoBo3bux0W7NmzRQQEKDnn39e3333nTp37pzn+dnPBYCyoFy5cjl+/0VHR+vKK6/UuHHjFB0dra5du5ZoTbn9PvfkY7vTV5SUs2fPqnnz5mrTpo23SylxkZGROb5HLVu21NGjR7VkyRINGzZMVatWzfXc3H6egYIwvRxlVvYpURs2bNDdd9+tJk2aqHnz5ho8eLD++usvSZnTq5YuXarDhw87TUdLSEjQuHHjdPPNNysqKkq33367Fi1a5PQ86enpmjhxotq1a6eGDRvqwQcf1LJly5ymXw8bNkx9+/bVSy+9pGbNmunOO+9URkaGTp8+rZdfflkdOnRQgwYN1KJFCw0ZMsRp2nafPn00atQoTZ8+XTfccIMaNWqkAQMG6OTJk1q8eLFiYmLUpEkT9evXL8/p3nYFtSc6OlpLlizRkSNHin2qdFxcnB588EG1bNlS1113nR555BHt3bvXcTyv6VzZv4+7d+9W37591bRpU0e7d+zY4XTO1q1b1bt3bzVq1EgtWrTQ888/r9OnTxe69qioKEnS4cOHJeX9/cz+mp06dUovvPCC2rRpoyZNmig2Nlbbtm1zHLePQMTExKhBgwbq2LGj5syZ4/TcBw8e1KBBg9SyZUs1atRId999t9auXVvotgBASenTp4+qVq2qBQsWON2+cOFCde7cWQ0aNNCNN96oKVOmKCMjw3F82LBh6tevnxYvXuyYHt21a1en331Wq1XvvPOOoqOj1aBBA0VHR2vSpElKT0+X5Dy9fNOmTbr//vslSffff7/69OmjefPmqV69evr777+davvqq69Uv379AvvT3GTvK7KzWCyaN2+eunTpooYNG+rGG2/UxIkTHdOdp0yZ4hhBL6gP/ueff/TYY4/p+uuvV+PGjdWnTx9H/2Jv++HDhx3vR4pzqvSKFSvUvXt3NWnSRNdff71GjRql+Ph4x/G8lphlb9OKFSvUtWtXNWzYUK1atdIzzzyj48ePO51T0M+Kuxo0aCCbzeZYBhAdHa3XXntNffv21XXXXadRo0bl+n5k165deuihh9S0aVO1atVKTz75pNNSgrNnz2rUqFFq06aNoqKidNddd2njxo1Oz53f+1D4P0I3Sp2MjIxc/+S38Yg9uFx77bWaPn26Xn31Vf31118aOHCgrFarBg8erPbt26tKlSr69NNPdeONNyolJUX33XefPv/8c/Xv31/Tpk1T06ZN9eKLL2rGjBmOxx41apT+97//qXfv3nr33XdVuXJljRw5MkcNW7du1YEDBzRlyhQNGTJEJpNJDz/8sH766Sc9/fTT+vDDDzV48GBt2LBBo0aNcjr3q6++0oYNGzR27FgNHz5cGzZsUO/evTVnzhw9//zzevHFF7Vjxw698soreb4GrrRn6tSpTq9Dr1698v1eWK3WXL8XVqvV6X4///yz7r33XlmtVo0dO1avvvqq/vvvP91zzz3av39/vs+R1fnz5/XQQw8pIiJCkydP1ltvvaXk5GQ9+OCDSkhIkCRt2bJF/fr1U3BwsN5++2298MIL2rx5s+6//36lpKS4/FxZ2d+U2acpSjm/n2az88SipKQk3XPPPdqwYYOefvppTZ06VWFhYXrooYccbR49erQmT56srl27asaMGbr11lv12muv6d1335WU+fo+/PDDSkpK0uuvv65p06YpPDxcgwcP1oEDBwrVFgAoKSaTSa1bt9bOnTsdQem9997TyJEj1bp1a82YMUOxsbGaOXNmjn5v165d+vDDD/XYY4/p3Xffldls1mOPPeYIdzNnztS8efM0ZMgQzZo1S/fee68++OADp/7Z7tprr3U8/qhRo/TSSy+pS5cuCgoK0vLly53uu3TpUrVo0UKXXnqp2+3Nra/IatSoUXrttdcUHR2t6dOnKzY2VnPnztXgwYNls9nUq1cv9ezZU5Ly7YP37dun7t276+DBgxoxYoQmTpwog8Ggvn37avPmzY6p9VWqVFH79u316aef6tprr823dlffW02bNk1PPvmkGjVqpMmTJ2vIkCH65ptv1KdPH7f62G3btumZZ57RLbfcopkzZ2r48OH6+eef9fTTTzvu4+rPijvs36OaNWs6brN/ADNlyhR169Ytxzl79uzRvffeq+TkZI0fP16vvPKKfvvtN/Xv31/p6elKTU1V37599d133+nJJ5/U1KlTVb16dT300EOO4F3Q+1D4P6aXo1Q5fPhwvh1HixYtcr19586dSklJ0cMPP6xq1apJki655BJ99913SkpK0mWXXabIyEinKWPz58/Xn3/+qfnz56tp06aSpBtuuEEZGRmaNm2a7rnnHp07d05Lly7V888/rwceeMBxn5MnT2r9+vVONWRkZOjll1/W5ZdfLkk6duyYQkJC9Pzzz6tZs2aSMqc+HTp0KMeoQHp6uqZOnaqKFStKklavXq3169fr22+/dXQcv//+e443D1ktWbKkwPZcc801OV6H/MTExBR4H0l68803VbNmTX3wwQcymUySpLZt2yomJkZTpkzR22+/7dLj7Nu3T6dPn1afPn0cbbjqqqu0YMECnT9/XuXLl9ebb76pK6+8Uu+9957juRo1aqTOnTtr8eLFio2Nzfc5sn6Cfv78ecXFxWncuHGqUaOG2rdv73S/rN/P7JYuXaqDBw9q2bJlql+/vqTM6Yd33HGHtmzZIqPRqM8++0xPPfWUBg4c6HhNDAaD3nvvPd13333KyMjQ/v379cgjjzieu2HDhpo6dWqBG8EAgC+oXLmy0tPTdfbsWQUFBWn69Om6++67NWLECEmZv/fCw8M1YsQIPfDAA6pTp46kzJlZS5YscQTY0NBQ9e7dWz///LM6duyozZs369prr1WPHj0kZfb/ISEhKleuXI4aypUr51hyVrt2bcffY2Ji9Pnnn+vxxx+XwWDQ8ePHtWHDBr322msFtsvVvsJu3759WrRokZ544gkNGjRIknT99deratWqeu6557Ru3Tq1b9/esS9Ifn3w1KlTFRAQoI8//ljly5eXJN144426/fbb9cYbb2jhwoVq3LixAgMDc51mnZ2r763i4+M1ffp09erVy2nfnLp16yo2NlZLlizRfffdl+9z2W3btk1BQUEaMGCAgoKCJEnh4eGKi4uTzWbT+fPnXf5ZyY3NZnP6Hp06dUrr1q3TggUL1KlTJ0VGRjqOVa1aVcOGDZPRmDlWmX1WwLRp01SxYkXNmjXLUWv16tX1xBNP6I8//tBvv/2mPXv26LPPPlOjRo0kSe3atVOfPn00ceJELV68uMD3obn93MK/ELpRqlSpUkXTp0/P9Vh+G6c1atRIQUFB6tmzp2677Ta1b99ezZo1U8OGDfM8Z/PmzapRo4Yj3Nl17dpVixYt0o4dO3T8+HHZbDbdeuutTve5/fbbc4Tu4OBgp0+/q1Wrpo8//liSdOTIER04cED79+/XL7/84pgeZ1erVi1H4La/DpGRkU6f1IaHhztGewvbntzeKORn+vTpqlKlSo7bP/vsM3322WeSMkd84+LiHKP7dhUqVFCHDh3cmipdp04dRUZGatCgQerUqZPat2+v1q1b67nnnpMkJScna8eOHXrwwQedOtyaNWuqVq1a+umnn/IN3Xm98WjUqJFeeeUVp03lsn8/s9u6dasuvfRSR+CWpKCgIK1cuVKS9Mknn8hmsyk6OtrpjYF9BGTbtm266aabVLt2bY0cOVIbNmxQu3bt1LZtWw0fPtzFVwwAfIPBYND27duVnJyc6+89Sfrpp58cQSoyMtLpd6w9jNqvqNGyZUu9+eabuu+++xQTE6N27dqpd+/ebtXUs2dPffnll9q6dauaN2+u5cuXKzg4WB07dsz3PHf6CrvNmzdLkrp06eJ0e+fOnTV8+HBt2rTJ5T548+bN6tChgyNwS5LZbFbnzp317rvvKjExUWFhYS49luT6e6tff/1VaWlpOdrQrFkz1ahRQ5s2bXI5dDdv3lxvvfWWunTpok6dOjn6N/tr4M7PSm6WLVumZcuWOd1mNpsVExOj0aNHO91eq1YtR+DOzbZt29S+fXtH4JYyPwBfs2aNJOnDDz9UlSpVdO211zrV2qFDB73++uuKj48v1PtQ+BdCN0qVwMBAx5qp7PLrYC699FLNnTtX77//vj777DPNnj1bFSpU0H333afHH38811+28fHxqly5co7b7bedO3fOsU44+66guZ1XqVKlHLu3fv7555o0aZL+++8/hYeHq379+rnueJrbJ6Du7iruSnvcVbdu3Vyn4P3www+OvyckJMhms+X53Pl9UJBdWFiY5s2bp+nTp2vFihVasGCBQkJC1LVrV7344os6d+6crFarZs6cqZkzZ+Y4P2uHmZvsbzwCAwNVvXp1pw887HL7fmZ19uzZfHeLPXv2rCTludnOsWPHZDAYNGvWLE2fPl2rV6/W0qVLFRAQoJtvvlmjR49WeHh4vu0BAG87duyYgoODFR4e7vi9Z5/dk13W9bzZ+zj771v7VNyHHnpIYWFhWrx4sSZMmKDx48erbt26euGFF9S6dWuXamvVqpUuvfRSLVu2TM2bN9eyZcvUqVOnAvtXd/oKO/u0+OwfVJvNZkVERLjVF+bXn9tHid0J3a6+t7K3oTj68yZNmuj999/X7Nmz9eGHH2rGjBmqUqWKBgwYoL59+7r1s5KbDh06aMiQIZIyf3ZCQkJUo0aNXN9j5daerFzpz0+cOJHnbIETJ06odu3abr8PhX8hdAMX2KflpqWladu2bfr00081Y8YM1atXL9eduitWrJjrutkTJ05IkiIiIhzXHz116pQuueQSx31OnTpVYD1bt27V888/r969e+vBBx90fIr/+uuvO222VVxcaY8nlC9fXgaDQSdPnsz1ue3BMfsbKrvsn9hfddVVeuONN2SxWLRz504tX75cn3zyiS699FLdd999MhgM6tevX65htqA3Uvm98XBX+fLlc92IZ/v27SpXrpwqVKggKfMSbbm9Ofq///s/SZkzIkaPHq2XXnpJe/bs0ddff62ZM2eqYsWKevnll4ulVgDwBIvFos2bN+u6666TyWRy/N6bOHGirrjiihz3Lyj8ZGU0GhUbG6vY2FidOnVKa9eu1YwZM/Too49qw4YNLj2GwWDQnXfeqY8//lixsbHat29fvnuj2BWmr7AH8hMnTjh9WJ2enq4zZ8641QdXrFgxzz5V8lx/bm/DyZMnVatWrRzPbZ99Z+/PLRaLY4ZbYmJijse74YYbdMMNNyg5OVk///yzPv74Y7322mtq3LhxkX9WwsPDi7U/z20z1rVr16p+/foqX768rrjiCk2cODHX8+3fb3ffh8K/8LEJIGn27NmKjo5WWlqaAgMD1bp1a40ZM0aSHLtPZv+UsXnz5jp8+HCOAPz5558rICBADRs2VNOmTWUymbRq1Sqn+2T/Ojfbt2+X1WrVY4895gjcFovF8WahuDfWcKU9nhAaGqoGDRpoxYoVjg8ppMwR8B9++MEx3d0+mp91N9D4+Hinjda+/vprtWrVSidOnJDJZFKTJk00evRoVahQQUePHlW5cuV0zTXX6K+//lJUVJTjT506dTR16tRi3b21IM2aNdPBgwf1xx9/OG5LS0vTo48+qs8++0zNmzeXJJ05c8ap1rNnz+rtt9/W2bNntX37drVp00Y7d+6UwWDQ1VdfrSeffFJ169bV0aNHS6wtAFAYCxYs0PHjx3XvvfdKypx+HRAQoGPHjjn93gsICNCbb77p1o7h99xzj1599VVJmTOPunfvrtjYWCUkJOj8+fM57p91eVNWPXr0cFzZ44orrsixBKu42NdFf/HFF063f/XVV7JYLI7ndWXEs3nz5vr++++dRpYtFou++uorRUVFKTAwsBgrv6hRo0YKDAzM0YatW7fqyJEjuu666yTl3p//8ssvTudMmDBBPXv2lM1mU0hIiDp06KDnn3/ecV5x/qwUVbNmzfTjjz8qLS3Ncdsff/yhgQMHKi4uTi1atNB///2nSpUqOdW6ceNGx142rrwPhX9jpBtQ5hSyiRMnasiQIerdu7dMJpMWLFigwMBAdejQQVLmGuOTJ09q7dq1uvrqq9W9e3fNnz9fQ4cO1WOPPaaaNWtqzZo1Wrx4sYYOHaoKFSqoQoUK6tGjh+MyJfXr19fq1av1/fffS8q/87SH3FdeeUU9evTQuXPnNHfuXO3Zs0eSin1jDVfa4ylPP/20HnzwQT300EPq3bu30tPT9f777ystLU1Dhw6VlHkpkUsuuURTp05V+fLlZTQa9f777zuNTl933XWyWq0aMmSIBg4cqLCwMK1cuVIJCQm65ZZbJMmxMdnTTz+trl27ymKxaNasWdqxY4dj85qS0L17d82ZM0eDBg3S448/rsjISM2bN08pKSnq06ePLrvsMnXt2lUjR47U4cOH1aBBA/3999966623dOmll+qKK65QRkaGgoOD9dxzz+nRRx9V5cqVtWHDBv3++++Oy98AgLedP39ev/76q6TMD4zPnDmj9evX69NPP1XXrl0dv58jIiL00EMP6Z133tH58+fVsmVLHTt2TO+8844MBoPTHhgFad68uWbNmqXKlSurSZMmOnbsmD766CO1aNFCkZGRSkpKcrq/ff3zDz/8oIoVKzqe65JLLlGbNm20fv16Pfnkk8XwauSudu3auvPOOzV16lSlpKSoZcuW+v333zV16lS1bNlSN9xwgyQ5+uIvv/xSjRo1ctq7xW7o0KFat26d7r//fg0cOFCBgYGaO3euDh48qA8++MBjbQgPD9fAgQMdG7nddNNNOnTokN555x3Vrl1b3bt3lyS1b99e48aN08iRIzVgwAAdPXrUcQUPu9atW+ujjz7SsGHD1LVrV6Wnp+uDDz5QeHi4WrVqpfDw8GL7WSmqwYMH6+6773ZMfU9LS9M777yja6+9Vu3atVNGRobmzp2rBx54QI888oguueQSbdiwQTNnzlTv3r0VEBDg0vtQ+DdCNyCpfv36mjFjht5991099dRTslgsatCggWbNmqWrrrpKUmZIWrt2rYYMGaLHHntMAwcO1Jw5c/Tmm29q8uTJOn/+vK666iqNHTvWcUkPSRo5cqRCQ0M1a9YsnT9/Xq1bt9agQYP07rvvKjQ0NM+aWrZsqVGjRumjjz7S119/rcqVK6tly5aaOnWqhgwZ4ti4o7iEhIS41B5PsHeukydP1lNPPaXAwEA1a9ZMEyZMcGyEYjKZNHnyZL322mt66qmnVLlyZfXt21d//fWX4xIfVatW1QcffKB33nlHL774opKTk1WnTh1NmTJFrVq1kpS5u+mHH36oqVOn6rHHHlNAQICuvfZaffTRRy7tyF5cypUrp7lz5+r111/X2LFjlZGRoUaNGmnOnDmOzYHGjRun9957TwsWLNDRo0dVqVIl3XbbbXriiSdkMplkMpk0a9Ysvfnmmxo7dqzOnTunK664Qq+88orjzQ0AeNtvv/2mu+++W1Lmh82VKlXSlVdeqfHjx+fYdOuJJ55QlSpVNH/+fH3wwQeqWLGiWrduraeeesppY7CCPP744woMDNTixYv17rvvqnz58oqOjna65FRWderU0e2336558+bpxx9/1Jdffuk41qFDB23YsEF33HGH+413w9ixY3X55Zdr8eLF+vDDD1W1alX16dNHQ4YMcXxIf8stt2j58uUaNmyYevbsmWPTL3tb5s+fr0mTJumFF16QwWBQw4YN9fHHHzuuhuIp9g+A586dq4ULFyo8PFy33nqrnnjiCceH5FdeeaUmTJig6dOna+DAgapVq5bGjBnjGNmVMnf3njhxombNmqWhQ4fKYDCoadOm+vjjjx3LzorrZ6WorrnmGsf7pyeffFJhYWFq3769nnnmGQUGBiowMFDz5s3Tm2++qTfeeEMJCQmqUaOGnn76afXv31+Sa+9D4d8MtvwuXgygSM6ePat169bphhtucFpDNWHCBC1ZsqREpzMDAAD3DRgwQCaTKddrfAOAKxjpBjwoJCREY8eO1dVXX62+ffsqNDRUv/zyi+bMmaNHHnnE2+UBAIA8vPvuu/r777+1bt06zZ0719vlAPBjjHQDHvb777/r7bff1q+//qrk5GRddtlluueeexQbG5vvJaUAAID39OjRQwcOHNAjjzyihx56yNvlAPBjhG4AAAAAADyES4YBAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BAuGZaF1WpVRkaGjEYju0oDALzCZrPJarXKbDbLaOSz8bzQZwMAvM3VPpvQnUVGRobi4uK8XQYAAIqKilJgYKC3y/BZ9NkAAF9RUJ9N6M7C/ulEVFSUTCaTW+daLBbFxcUV6lxfQjt8C+3wLbTDt5TWdti/ZpQ7f/TZtMPX0A7fQjt8S2loR25tcLXPJnRnYZ+eZjKZCv3DUJRzfQnt8C20w7fQDt9SWtvBlOn80WdfRDt8C+3wLbTDt5SGduTWhoL6bD5GBwAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXT7mD4j13i7BAAA4IIFcQu8XQIAwA8Qun1McmqGt0sAAAAuSLeme7sEAIAfIHQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAP8WroPn36tGJiYrRp0ybHbTt27FCvXr3UpEkTRUdHa+HChU7nLF26VDExMWrcuLG6d++u7du3O45ZLBZNmDBBbdq0UZMmTTRo0CAdP368xNoDAEBpRZ8NAEDheC10b9u2TXfffbf+/fdfx23x8fEaOHCg7rjjDm3ZskVjx47VuHHjtHPnTknSpk2bNGbMGI0fP15btmxR165dNWjQICUnJ0uSpk+frp9++kmLFy/Wjz/+qODgYI0YMcIr7XNHn5FrvF0CAAB5os/OtCBugbdLAAD4Ia+E7qVLl+qZZ57Rk08+6XT7qlWrFB4ertjYWJnNZrVu3VpdunTRvHnzJEkLFy5U586d1bRpUwUEBKhfv36KiIjQihUrHMcHDBigSy65ROXKldOLL76odevW6eDBgyXeRnckp2Z4uwQAAHJFn31RujXd2yUAAPyQV0J327ZttXr1at12221Ot+/du1d169Z1uq127dras2ePJGnfvn15Hk9ISNDRo0edjleuXFkVK1bUH3/84aGWFI/gIBOj3QAAn0SffZHZaNacHXM0Z8ccb5cCAPAjZm88aZUqVXK9PTExUSEhIU63BQcHKykpqcDjiYmJkqTQ0NAcx+3HXGWxWNy6f9ZzCnOuzZY52m2xWGSzFe4xiktR2uFLaIdvoR2+hXb4luzt8LX20GdfZLPZlJaR5jjXZrPRZxcD2uFbaIdvoR2+I7c2uNoer4TuvISEhCghIcHptpSUFIWFhTmOp6Sk5DgeERHh6Njta8VyO99VcXFx7pZe6HONRqOSEpOUkmbRrl27lJiYqJ07d8pqtTrdJ+vXJaEor4EvoR2+hXb4FtrhW/ytHWWtzzYajTp5+qQS0xJls9m0a9cunTh+wqnPNhozJxDSZxcO7fAttMO30A7fUZg2+FTorlu3rn766Sen2/bt26c6depIkurUqaO9e/fmON6uXTtVrFhR1apVc5rOduLECZ09ezbH9LaCREVFyWQyuXWOxWJRXFxcoc4NDTsto9miBg0aKCzsmBo2bOh0vO9La/W/l9u79ZiFVZR2+BLa4Vtoh2+hHb4lezvsX/u6sthn/777d4WlZ34o0KBBA+2w7VDDqIt99ry4zPXssY1j3aqnsErrvwF/RTt8C+3wLaWhHbm1wdU+26dCd0xMjN544w3Nnj1bsbGx2rZtm7744gtNmzZNktSzZ08NGTJEnTp1UtOmTTVv3jydOnVKMTExkqTu3btr+vTpioqKUkREhF577TW1aNFCl112mVt1mEymQv8wFOZcgyHzj8lkcvw/q5S0jBL/4SzKa+BLaIdvoR2+hXb4Fn9rR1nssw0GgwwGg+Ncg8HgdH6GNcNxrCT5289OXmiHb6EdvoV2+I7CtMGnQndERIRmzZqlsWPHavLkyYqMjNSIESPUqlUrSVLr1q310ksvafTo0Tp27Jhq166tmTNnKjw8XJI0ZMgQZWRkKDY2VomJiWrZsqXefvtt7zUIAIBSij4bAADXeD10Z9+lNCoqSgsW5H0dzG7duqlbt265HgsICNAzzzyjZ555plhrBAAA9NkAABSGVy4ZBgAAAABAWUDoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQun1EcJBJA8as9XYZAACgAGajWYt2L/J2GQAAP0Ho9iHJaRneLgEAALgg3Zru7RIAAH6C0A0AAAAAgIcQugEAAAAA8BBCNwAAgJtOJZ3SugPrdD7tvLdLAQD4OEK3jwkOMqnPyDXeLgMAAORjzd9rtP3odo1aM8rbpQAAfByh2wclp7KhGgAAvio1I1WHEg5Jko4lHvNyNQAAX0foBgAAcMOB+AOy2qySpFPJp7xcDQDA1xG6AQAA3PD32b8dfz+TfEYZVmaoAQDyRugGAABwkdVm1YGzBxxfW2wWHTp3yIsVAQB8HaEbAADARcfOH1OKJUXBpmBVDasqSdp3ep+XqwIA+DJCNwAAgIsOnjsoSboi/ApVDc0M3ftP7/dmSQAAH2f2dgEAAAD+IjE9UZJUKbSSAowBkqT9ZwjdAIC8EboBAABclG5JlyQFmgIVGRIpiZFuAED+mF4OAADgojRrmiQpwBSgyqGVJWVOOU/NSPVmWQAAH0boBgAAcFHWke6wgDAFm4NltVn1z9l/vFsYAMBnEboBAABc5AjdxkAZDAbHFPOs1+4GACArQjcAAICL7NPLA02BkqRygeUkSaeSTnmtJgCAbyN0AwAAuCjr9HJJCg0IlSSdSiZ0AwByR+gGAABwUZrFeaTbHrpPJ5/2Wk0AAN9G6AYAAHCB1WaVxWaRdDF0hwWESWJ6OQAgb4RuAAAAF9hHuSWmlwMAXEfoBgAAcIE9dBsNRpmMJkmMdAMACkboBgAAcEH29dzSxZHuMylnZLVZvVIXAMC3EboBAABc4AjdxouhOyQgRAYZZLVZlZKR4q3SAAA+jNANAADgAnvoDjAFOG4zGoyKCImQJCWlJ3mlLgCAbyN0AwAAuCD7NbrtIkMiJRG6AQC5I3QDAAC4ILeRbkmqFFJJEqEbAJA7QjcAAIALclvTLUmVQjNDd3J6conXBADwfYRuHzdgzFpvlwAAACSlWXPuXi5lGenOYKQbAJATodvHJadleLsEAACgfKaXhzK9HACQN0I3AACAC3K7TrfEmm4AQP4I3QAAAC6w714eYHQe6Wb3cgBAfgjdAAAALshzpNu+kVoGG6kBAHIidAMAALggrzXdlUMrS5JSMlJksVpKvC4AgG8jdAMAALggr5HuCkEVZDRkvqVitBsAkJ3Z2wUgp+Agk3o+t0rBQSZvlwIAAC7I7TrdZqNZS35bolBzqM6nn2ddNwAgB0a6fVRSSoaSU7hcGAAAviKv6eXp1nSFBIRIYqQbAJAToRsAAMAF9t3Ls08vl6Rgc7AkKS0jrURrAgD4PkI3AABAAWw2m9KsuY90S1KQOUiSlGpJLdG6AAC+j9ANAABQgDRLmqw2qyTnNd12wabMkW5CNwAgO0I3AABAAbJukJbvSHcGoRsA4Izdy72IHcoBAPAPi39bLClzt3L75cGysq/pZqQbAJAdI91exA7lAAD4h8T0RElSgDHnKLfESDcAIG+EbgAAgAI4rtGdy87lEmu6AQB5I3QDAAAUwH65sNzWc0vsXg4AyBuhGwAAoAD2MJ3bzuVSljXdTC8HAGRD6AYAACiAfXp5QSPd9vsBAGBH6AYAACiAfXq5K2u67dfzBgBAInQDAAAUKN2aGbrNxtyvtmof6Zak82nnS6QmAIB/IHQDAAAUwGK1SMo7dJuNZsexc6nnSqwuAIDvI3QDAAAUwGLLDN1GQ95vnYJMmaPdjHQDALIidAMAABTAPtJtMpjyvI99vTcj3QCArAjdAAAABXBppPvCum5CNwAgK0I3AABAARwj3ca8R7qZXg4AyA2hGwAAoAD2ke78ppfbQzcj3QCArAjdAAAABXCE7vxGui9ML09ITSiRmgAA/oHQDQAAUAD79HJXdi9npBsAkBWhGwAAoAAuTS+3j3SnMdINALiI0A0AAFAAq9UqybU13UwvBwBkRegGAAAoQIYtQ5JkNDK9HADgHkI3AABAAVwa6WZ6OQAgF4RuAACAAriypjvQFCiJ6eUAAGeEbgAAgAJkWF2YXm6+OL3cZrOVSF0AAN9H6AYAACiA1Vbw9PJgU7CkzFHx5IzkEqkLAOD7CN0AAAAFsF+n22TMO3SbjWbHdbyZYg4AsCN0AwAAFMCVNd0Gg+Hium42UwMAXEDoBgAAKIAroVu6uJna+bTzHq8JAOAfCN0AAAAFsE8vt08fz4v9Wt2EbgCAnU+G7t27dys2NlbNmjVT27Zt9eqrryotLU2StGPHDvXq1UtNmjRRdHS0Fi5c6HTu0qVLFRMTo8aNG6t79+7avn27N5oAAECZUBb6bJvNdnGkO5813RKXDQMA5ORzodtqterhhx9Wx44dtXnzZi1atEjr16/XzJkzFR8fr4EDB+qOO+7Qli1bNHbsWI0bN047d+6UJG3atEljxozR+PHjtWXLFnXt2lWDBg1ScjI7iAIAUNzKSp9tD9xSwSPdTC8HAGTnc6E7Pj5eJ06ckNVqdVzj0mg0KiQkRKtWrVJ4eLhiY2NlNpvVunVrdenSRfPmzZMkLVy4UJ07d1bTpk0VEBCgfv36KSIiQitWrPBmkwAAKJXKSp+dZklz/L2gNd1MLwcAZOdzoTsiIkL9+vXThAkTFBUVpfbt2+uKK65Qv379tHfvXtWtW9fp/rVr19aePXskSfv27cv3OAAAKD5lpc9Ot6Q7/u7q9HJCNwDAzuztArKzWq0KDg7WyJEj1bNnTx04cEBDhw7V5MmTlZiYqJCQEKf7BwcHKykpSZIKPO4qi8VS8J3yOMedc222i3/yO2azFa6mwihMO3wR7fAttMO30A7fkr0d/tSestJnp6SnSJIMF/6TTY6R/axsNpsjdJ9LPefx76U//szkhnb4FtrhW2iH78itDa62x+dC9+rVq/XNN9/o66+/liTVqVNHQ4YM0dixY9WlSxclJDhvTJKSkqKwsDBJUkhIiFJSUnIcj4iIcKuGuLi4Qtfv6rlGo1GJiedltZgla2CO40lJybJaTJI1UMmpGdq5c6esVmuh63JXUV4DX0I7fAvt8C20w7f4YzvKSp99Jv2MpMz13MePH1eAMUCBATn77sTURKUmpUqSDh07pF9//bXQtbnDH392ckM7fAvt8C20w3cUpg0+F7r/++8/x66ndmazWQEBAapbt65++uknp2P79u1TnTp1JGV29nv37s1xvF27dm7VEBUVJZMp/+lj2VksFsXFxbl1bljYfwoJMikkOOe3ITTd6DhmMFnUsGFDt+oprMK0wxfRDt9CO3wL7fAt2dth/9oflJU++9/4f6WdktloVtWqVRVgDJDZlLPvDksP0ynjKSleMoeZ1bhxY7fqcldp/Tfgr2iHb6EdvqU0tCO3NrjaZ/tc6G7btq3efPNNzZgxQwMGDNCRI0c0ffp0denSRTExMXrjjTc0e/ZsxcbGatu2bfriiy80bdo0SVLPnj01ZMgQderUSU2bNtW8efN06tQpxcTEuFWDyWQq9A+DO+caDBf/5HfMYFCJ/3AW5TXwJbTDt9AO30I7fIs/tqOs9NkWXbxGt8FgkAzK/H82BoNBQebMjdQS0xNL7Pvpjz87uaEdvoV2+Bba4TsK0wafC921a9fWe++9p7ffflsffPCBypcvr65du2rIkCEKDAzUrFmzNHbsWE2ePFmRkZEaMWKEWrVqJUlq3bq1XnrpJY0ePVrHjh1T7dq1NXPmTIWHh3u3UQAAlEJlpc+2b6RW0CZqEruXAwBy8rnQLUlt2rRRmzZtcj0WFRWlBQsW5Hlut27d1K1bN0+VBgAAsigLfXa69ULoLuByYRK7lwMAcvK5S4YBAAD4Evt1uhnpBgAUBqEbAAAgH47p5W6MdCelJynDmuHRugAA/oHQDQAAkA/H9HIXRrrtoVuSEtMSPVYTAMB/ELoBAADy4Zhe7sJIt8loYoo5AMAJoRsAACAf9mnirox0S1K5wHKSCN0AgEyEbgAAgHy4M9ItEboBAM4I3QAAAPlwZyM16WLoTkhL8FhNAAD/QegGAADIhzsbqUmMdAMAnBG6AQAA8uHuSHf5oPKSCN0AgEyEbgAAgHw41nQz0g0AKARCNwAAQD7su5cbDa69bSJ0AwCyInQDAADkwz7SbTaaXbo/oRsAkBWhGwAAIB/2jdQY6QYAFAahGwAAIB+OjdTcXNOdkMolwwAAhG4AAIB82Ue6zQamlwMA3Efo9pIBY9Z6uwQAAOCCvaf2SpKMRqaXAwDcR+j2kuS0DG+XAAAAXGDfvdzl63QHcp1uAMBFhG4AAIB8WKwWSVynGwBQOIRuAACAfFhsF0K3iyPd9tCdakl1bMIGACi7CN0AAAD5cDd0hwWGOf7OaDcAgNANAACQD3enl5uNZoUGhEoidAMACN0AAAD5cnekW8pyre40rtUNAGUdoRsAACAf7o50S2ymBgC4iNANAACQj6KMdBO6AQCEbgAAgHww0g0AKApCNwAAQD6KtKY7lTXdAFDWEbr9SJ+Ra7xdAgAAZU5hRrqPnT8miZFuAACh268kp2Z4uwQAAMocq80qSTIaXH/bZDaaJRG6AQCEbgAAgHzZR7rtQdoVQaYgSYRuAAChGwAAIF+FWdMdaA6UROgGABC6AQAA8pRhzZBNNknuTS9npBsAYEfoBgAAyEOG9eJ+Ku5MLw80MdINAMhE6AYAAMhDmiXN8Xe3RrrNjHQDADIRugEAAPJQ6NB9YXp5QhrX6QaAso7QDQAAkAf79HKTwSSDweDyeVmnl9tsNo/UBgDwD4RuPxIcZFKfkWu8XQYAAGWGfaTbZHR953JJCgsIk5QZ2lMtqcVeFwDAfxC6/UxyakbBdwIAAMUi3ZIuyb3LhUkXR7ol1nUDQFlH6PYDwUEmDRizNsftjHoDAOBZ6dYLodvFkW6z0axFuxfJYDA4gvenuz71WH0AAN9H6PYTyWk5R7gZ9QYAwLMKM9JtD+r2zdSS0pOKvzAAgN8gdAMAAOShsGu6pYtTzFMzWNMNAGUZoRsAACAPjunlbq7pli5eqzvrZccAAGUPoRsAACAPhd1ITbo4vZzdywGgbCN0AwAA5ME+0m00uv+WyTG9nNANAGWa2dsFwD3BQSb1fG6VgoPc/8QdAAC4xz413Gxw/y1TsDk48zEymF4OAGUZodsPJaVkyGazyWAweLsUAABKtQxr5pVCCrORmj10M9INAGUb08sBAADyYF/TbTQwvRwAUDiEbgAAgDw41nQXInQ7di9nejkAlGmEbgAAgDw4ppezezkAoJAI3QAAAHmwh+7C7F5uD91cpxsAyjZCNwAAQB4cobsI08sZ6QaAso3QDQAAkIdimV6eQegGgLKM0A0AAJCH4hjpTrOkyWazFWtdAAD/QegGAADIQ5FC94WRbptsSs5ILta6AAD+g9ANAACQh6KEbrPRLIMMkqSE1IRirQsA4D8I3QAAAHkoyppug8HgmGJ+Pu18sdYFAPAfhG4AAIA8FGWkW7o4xTwhjZFuACirCN0AAAB5KMp1uiUx0g0AIHQDAADkpbhGugndAFB2EboBAADyUJQ13RKhGwBA6AYAAMhTkUe6mV4OAGUeoRsAACAPxbaRGpcMA4Ayi9ANAACQB0a6AQBFRegGAADIA2u6AQBFRegGAADIQ1FHugPNgZK4TjcAlGWEbgAAgDwUNXQHm4IlMdINAGUZoRsAACAPjtBtLNpIN6EbAMouQjcAAEAeirqmm5FuAAChGwAAIA9FXtNtYqQbAMo6QjcAAEAeiuuSYUnpSY7HAgCULYRuAACAPBQ5dF+4ZJgkJaYlFktNAAD/QugGAADIQ1HXdJuMJpmNZklcNgwAyiq3Q/emTZs8UQcAAIDPKepIt3RxtJt13QBQNrndgzz22GO6+eab9e677+rIkSOeqAkAAMAnFPWSYRKbqQFAWed2D7J+/Xo9++yz2rVrlzp27Kj+/fvryy+/VFpamifqAwAA8JqiTi+XLm6mRugGgLLJ7dAdEBCgjh07avr06Vq7dq1uvvlmzZo1S23bttXLL7+sPXv2eKJOAACAEsf0cgBAURW6Bzl16pS++OILLVu2TPv27VPLli0VFBSkfv36acaMGcVZIwAAgFcUR+i2Ty9PSGUjNQAoi9zuQb766isNHDhQ7du31+LFi3Xbbbfphx9+0JQpUzRs2DC99dZbev/994tU1NmzZ/Xcc8+pZcuWat68uQYPHqzjx49Lknbs2KFevXqpSZMmio6O1sKFC53OXbp0qWJiYtS4cWN1795d27dvL1ItAAAgb6W5z7barLLarJKKONLN9HIAKNPc7kFefvll1ahRQwsWLNDnn3+ufv36KTIy0nH8yiuvVL9+/YpU1KOPPqqkpCStXr1a33//vUwmk0aOHKn4+HgNHDhQd9xxh7Zs2aKxY8dq3Lhx2rlzp6TMndXHjBmj8ePHa8uWLeratasGDRqk5OTkItUDAAByV5r7bPsot1TENd1MLweAMs3s7gnr16/XwYMHVa1aNUnSr7/+qvLly6tWrVqSpOrVq+uxxx4rdEG7du3Sjh07tGHDBpUrV06SNGbMGJ04cUKrVq1SeHi4YmNjJUmtW7dWly5dNG/ePDVs2FALFy5U586d1bRpU0lSv3799Omnn2rFihXq0aNHoWsCAAA5lfY+O2voLpbp5VynGwDKJLd7kO+++0533HGH/vnnH0nS9u3b1atXL61du7ZYCtq5c6dq166tzz77TDExMWrbtq0mTJigKlWqaO/evapbt67T/WvXru3YvG3fvn35HgcAAMWntPfZxRW6GekGgLLN7ZHuqVOnatq0aWrQoIEk6YEHHlDt2rX1xhtvqH379kUuKD4+Xn/88YcaNGigpUuXKiUlRc8995yef/55Va5cWSEhIU73Dw4OVlJSkiQpMTEx3+OuslgsbtdtP8fVc2025z/5Hc/rWHCQSb1HrNH/Xi76627nbjt8Fe3wLbTDt9AO35K9HcXZnoMHD6pmzZrF9njZlfY+OzU91fF3gwyy2Wyy2WySTZn/zyavY8HmYEnS3lN7i/X7W1r/Dfgr2uFbaIdvKQ3tyK0NrrbH7dD933//6YYbbnC6rW3btnryySfdfahcBQZmTsF68cUXFRQUpHLlyumJJ57QXXfdpe7duyslJcXp/ikpKQoLC5MkhYSE5Ho8IiLCrRri4uIKXb8r5xqNRiUlJikpKUVWi0myBua4T1JSskvHklMztHPnTlmt1kLXnJuivAa+hHb4FtrhW2iHb/FEOzp16qQmTZqoZ8+e6tixo4KDg4v18Ut7n30m7YykzMB96tQpSVJiaqICjAEKDMjZP+d1LC0pTZKUkJxAn50P2uFbaIdvoR2+ozBtcDt016hRQz/++KNT8N64caP+7//+z+0nz03t2rVltVqVnp6uoKDM6Vj2zunqq6/W/Pnzne6/b98+1alTR5JUp04d7d27N8fxdu3auVVDVFSUTCb3NkyxWCyKi4tz+dzQsNNKyTApJMikkOCc34bQdKNLxwwmixo2bOhWrflxtx2+inb4FtrhW2iHb8neDvvXxWHt2rVavny5PvzwQ40ZM0adOnVS9+7d1aRJk2J5/NLeZx9JOCLFSSajSZUrV5YkhaWHKcAYILMpZ/+c17GUwBTpP8lmtNFn54J2+Bba4Vtoh+/IrQ2u9tluh+6BAwdqyJAhuuWWW1SjRg0dOXJEq1ev1oQJE9yvPBdt2rRRzZo19cILL2jcuHFKTU3VW2+9pZtvvlm33367Jk+erNmzZys2Nlbbtm3TF198oWnTpkmSevbsqSFDhqhTp05q2rSp5s2bp1OnTikmJsatGkwmU6F/GFw912Bw/pPf8YLO9cQPblFeA19CO3wL7fAttMO3eKIdlSpVUv/+/dW/f3/99ttv+uqrrzRs2DAZjUb16NFD3bt3d7oCibtKe59t1cXLhRkudMgGg0EyyPF1Vnkds08vT7Ok0Wfng3b4FtrhW2iH7yhMG9zeFaRLly6aOXOmAgICtHv3bgUHB2vWrFnq2LGjuw+Vq4CAAM2ZM0cmk0kdO3ZUx44dVb16db322muKiIjQrFmz9PXXX6tly5YaMWKERowYoVatWknK3Bn1pZde0ujRo9WiRQt99dVXmjlzpsLDw4ulNgAA/FFGRoaOHDmiI0eO6NSpUwoJCdGOHTt0yy23aOnSpYV+3NLeZ9s3UivKJmrSxet0p1pSc10LDgAo3dwe6Zakli1bqmXLlsVdi0O1atX01ltv5XosKipKCxYsyPPcbt26qVu3bp4qDQAAv/Hrr79q+fLlWrlypQwGg7p06aK5c+eqfv36kqTVq1frxRdf1J133lno5yjNfbY9dBflGt3Sxd3LrTarUi2pjpFvAEDZ4HboPnbsmKZPn65//vknx0YgH3/8cbEVBgAAiiY2NlZt27bVyy+/rOjoaAUEBDgdv/rqqxUdHe2l6nxfcY1026/TLWVeNozQDQBli9uhe/jw4Tp58qQ6dOiQo/MGAAC+Y86cObruuuty3L5u3Tq1a9dOl156qcaPH++FyvxDcYVug8GgQFOg0ixpOp92XpVDKxdHeQAAP+F26I6Li9M333xTpI1XAACA5z300EP65ZdfnG47f/68Hn/8cW3fvt1LVfmP4grdUuYUc3voBgCULW6H7vLlyzuuywkAAHzLgQMH1LlzZ1ksFtlsNl199dU57pPb6DdyKq413dLFKeaEbgAoe9wO3YMHD9bw4cM1YMAAxzUr7YrrWt0AAKBwLr/8ci1cuFDnzp3TwIEDNXPmTKfjQUFBqlu3rpeq8y+OkW5j0Ue67aE7ITWhyI8FAPAvbofuESNGSMrc8VTKXKdks9lkMBj0+++/F291AADAbfbR7S+//FI1a9b0cjX+q7inl0uMdANAWeR26P7uu+88UQcAACgmo0eP1ujRozVt2rQ87zNu3LgSrMg/FWfoZno5AJRdbvciNWrUUI0aNRQfH6/du3erSpUqCg4OVo0aNTxRHwAAcJPNZvN2CaVCca7pDjJnjnQnpDG9HADKGrdHuk+dOqUhQ4Zo165dCggI0KJFi9SzZ0/NmjVLTZo08USNAADADS+//LIkRrOLipFuAEBxcLsXee2111S3bl1t2bJFZrNZtWrV0sCBA/X66697oj4AAFBIJ0+e1GuvvSZJ2rp1q9q0aaPbb79d+/fv93Jl/sEToZuN1ACg7HG7F/n55581fPhwhYSEyGAwSMq8Dui+ffuKvTgAAFB4L7/8svbv3y+bzaaxY8fqtttuU4cOHfTKK694uzS/UKzTy9lIDQDKLLenlwcEBCglJUUhISGONWOJiYkKCwsr9uIAAEDhxcXFacWKFTpx4oT27NmjWbNmqXz58mrZsqW3S/MLnrhkWGJ6YpEfCwDgX9zuRaKjo/Xss8/qn3/+kcFg0KlTp/Tyyy+rffv2nqivVBowZq23SwAAlAHJyckKDg7Wxo0bVbduXUVERCglJUVms9ufuZdJTC8HABQHt3uRp59+WqGhobr11lt17tw5tW3bVsnJyXrmmWc8UV+plJyW4e0SAABlQMOGDTV69Gi9//77iomJ0cmTJ/XCCy+oRYsW3i7NLzC9HABQHNz+qDssLEyTJ0/W6dOndejQIVWvXl1Vq1b1RG0AAKAIxo4dq0mTJqlZs2Z6+OGH9dtvvyktLU2vvvqqt0vzC8U60m2+MNLNJcMAoMxxO3Rv2bLF6esDBw7owIEDkqTmzZsXT1UAAKDIqlatqvHjxzu+btSokWbMmOHFivxLcYZu+0h3YlqirDZrsTwmAMA/uB26+/Tpk+M2o9GoSy65RN99912xFAUAAIouMTFR8+fP1z///COr1ep0jGt4F8wTa7ptsikpPUnlAssV+TEBAP7B7dC9Z88ep69Pnz6td999VzVq1Ci2ogAAQNENHz5c27dvV8uWLRUQEODtcvxOcYZuk8Eko8Eoq82q82nnCd0AUIYUefvSyMhIPfvss+rYsaP69+9fHDUBAIBisGnTJi1atEg1a9b0dil+qTg3UjMYDAoyBSk5I5nN1ACgjCmWBUXx8fFKTU0tjocCAADFJCgoSNWqVfN2GX6rOEe6JS4bBgBlldsj3cOHD3f6Oj09Xdu2bVObNm2KrSgAAFB09913n8aPH6+hQ4cqMjLS2+X4HUfoNhZv6GakGwDKliJPLw8KClKfPn109913F0c9AACgmHz22Wc6cuSIPvnkkxzHfv/9dy9U5F+Ke6Sba3UDQNnkduhmt1MAAPxD1suFwX3FuaZb4lrdAFBWuR26p06d6tL9hg4d6nYxAACg+LRo0UJS5t4rBw8e1DXXXKOMjAwFBgZ6uTL/4Kk13Yx0A0DZ4nbo3rt3r1atWqX69evryiuv1NGjR/XLL7/ommuuUVhYmKTMHToBAIB3JSYmatSoUfrqq68UHBysJUuW6IEHHtBHH32kq666ytvl+TxPTS9nIzUAKFvcDt1Go1HDhw/X/fff77ht+fLl+v777/X2228XZ20AAKAIXn/9dSUlJWnlypW66667VLNmTXXo0EFjx47Vhx9+6O3yfB4j3QCA4uB2L7J27VrFxsY63Xb77bdr48aNxVYUAAAouu+//17jx4/XlVdeKYPBoICAAA0bNkxxcXHeLs0vFPuabkI3AJRJbofuyMhIbdmyxem2H3/8UdWrVy+2ogAAQNFZrVbH+m2bzZbjNuSP3csBAMXB7enlDz/8sAYOHKiOHTvq//7v/3Tw4EF9//33mjJliifqAwAAhdSqVSu98sorGjVqlGO/lbffftuxwRryx3W6AQDFwe1epFevXpoxY4ZMJpN+++03hYeHa8GCBWrbtq0n6gMAAIU0fPhw/fXXX2revLkSEhLUpEkTbdmyRc8//7y3S/MLHttIjUuGAUCZ4vZItyS1adNGbdq00enTpxUZGVncNQEAgGIQHByswYMHKy4uTrVq1VKVKlXUpEkTmUzFs0a5tPPUdboZ6QaAssXt0J2enq6pU6dq7ty5slgs+uKLL/TEE09o+vTpqlq1qidqBAAAbvrggw80depUpaamOtZzh4WF6amnnsqxISpyx+7lAIDi4HYvMnXqVP3888965513FBAQoEqVKql69eoaO3asJ+oDAABuWrhwoWbMmKEXX3xR69at065du7R27Vo988wzeuedd/TNN994u0S/4Knp5SkZKY7HBgCUfm6PdH/xxRf65JNPVK1aNRkMBoWGhmrcuHGKiYnxRH0AAMBN8+fPz9E3V6tWTffee68qVqyoOXPmqGPHjl6s0D94aqRbyhztDg8OL5bHBQD4Nrd7kaSkJMc6bvt0teDg4GLb2RMAABTNP//8ow4dOuR67Oabb9Zff/1VwhX5p+Je0200GBUaECpJSkhlMzUAKCvcTsqNGzfW1KlTJclx+ZE5c+YoKiqqeCsDAACFYjAYZDbnPpktMDBQKSkpJVyRfyruS4ZJUrnAcpJY1w0AZYnb08tfeOEF9evXT0uXLlViYqJuu+02JSYm6qOPPvJEfQAAAF6Rbk2XVHwj3VJm6D6eeJzQDQBliNuhu3Llyvrqq6/0ww8/6PDhw6pevbpuvPFGlStXzhP1AQAAN2VkZGjZsmV5HrdYLCVXjB8r7jXd0sWRbq7VDQBlh9uh+/bbb9fnn3+uTp06eaIeAABQRJUrV9bkyZPzPF6pUqUSrMZ/eTJ0M9INAGWH26FbkpKTkxnZBgDAR61Zs8bbJZQKngjd5QPLS2IjNQAoS9wO3S1btlSvXr3Url07Va1a1enY0KFDi60wAAAAb7HZbMW+e7nESDcAlEVuh+5Dhw6pZs2a+vvvv/X33387brfvZA4AAODvLLaL696LdaQ7KHOkm9ANAGWHy6H7wQcf1Icffqg5c+ZIklJSUhQcHOyxwgAAALzFPsotsaYbAFA0Lvci27dvd/q6Xbt2xV4M3BccZNKAMWvVZyTr9wAAKC6eCN1mo1l/nvxTEqEbAMqSQvciNputOOtAESSnZcgmG8EbAIBikjV0m4zFt6bbbMqcZLjv9L5ie0wAgG8rdOhmDbfvSU7NKPhOAACgQFlDt0HF954nyBQkSUrNSC22xwQA+LbiW6QEAABQSmS9XFhxDjQEmS+EbguhGwDKCpc3UsvIyNCyZcscX6enpzt9LUl33HFHMZUFAADgPZ64RreUZaSb0A0AZYbLobty5cqaPHmy4+uIiAinrw0GA6EbAACUCp64Rrd0MXSnWdJks9lYrgcAZYDLoXvNGjbpAgAAZYPHRrovTC+32qxKyUhRSEBIsT4+AMD3sKYbAAAgG0+F7gBjgGNjNi4bBgBlA6EbAAAgG0+FboPB4BjtJnQDQNlA6AYAAMjGU2u6pYvruhPSEor9sQEAvofQDQAAkI1jpNtY/G+VAk2BkhjpBoCygtANAACQjaeml0tSsDlYkpSQykg3AJQFhG4AAIBsPBm6GekGgLKF0A0AAJCNJ9d020e6Cd0AUDYQugEAALJhpBsAUFwI3QAAANmkW9IlSSaj53YvJ3QDQNlA6AYAAMjGkyPd9ut0c8kwACgbCN0AAADZpFsvjHR78jrd7F4OAGUCoRsAACCbErlkGCPdAFAmELoBAACycazp9sBId0hAiCTpbMrZYn9sAIDvIXQDAABk47hkmAc2UgsxE7oBoCwhdAMAAGRjX9Ptienl9pHuc6nnHOEeAFB6EboBAACysVgtkjy7plvKDN4AgNKN0A0AAJCNJ3cvNxqMjuDNFHMAKP0I3QAAANk4di83euatEqEbAMoOQjcAAEA2nty9XGIzNQAoSwjdAAAA2XjyOt0SoRsAyhJCNwAAQDaeXNMtScEBTC8HgLKC0A0AAJCNp9d0M9INAGUHoRsAACAb1nQDAIoLoRsAACAbT6/pZno5AJQdhG4AAIBs2EgNAFBcCN0AAADZODZSM3p2enl8SrxHHh8A4Dt8NnRbLBb16dNHw4YNc9y2Y8cO9erVS02aNFF0dLQWLlzodM7SpUsVExOjxo0bq3v37tq+fXtJlw0AQJlTGvts+0g3u5cDAIrKZ0P31KlTtXXrVsfX8fHxGjhwoO644w5t2bJFY8eO1bhx47Rz505J0qZNmzRmzBiNHz9eW7ZsUdeuXTVo0CAlJyd7qwkAAJQJpbHPtm+k5unp5YnpiY7nAgCUTj4Zujdu3KhVq1bplltucdy2atUqhYeHKzY2VmazWa1bt1aXLl00b948SdLChQvVuXNnNW3aVAEBAerXr58iIiK0YsUKbzUDAIBSr7T22Z4e6Q4yBTkeOz6VKeYAUJr5XOg+deqUXnzxRb355psKCQlx3L53717VrVvX6b61a9fWnj17JEn79u3L9zgAAChepbnPtq/p9tRIt8FgUMXgipKYYg4ApZ3Z2wVkZbVa9eyzz+qBBx5Q/fr1nY4lJiY6deiSFBwcrKSkJJeOu8NisRT6HFfOtdku/t/+J7f7uHvMZitc7Vm50w5fRjt8C+3wLbTDt2Rvh7+0p7T32RmWi7uX27J0uDabTbLJ6bbCHLPZbKoYVFGnk0/rVOIpXVnxSo+0wx/QDt9CO3wL7fAdubXB1fb4VOh+7733FBgYqD59+uQ4FhISooSEBKfbUlJSFBYW5jiekpKS43hERITbdcTFxbl9jqvnGo1GJSUmyWAwKCkpWVaLSbIG5rhfYY4lp2Zo586dslqtha7friivgS+hHb6FdvgW2uFb/K0dpb3PPp98XpKUEJ+gk+knHbcnpiYqwBigwICc/bM7x9It6QqwBEiSdvyxQ+bjhX9L5m8/O3mhHb6FdvgW2uE7CtMGnwrdy5cv1/Hjx9WsWTNJcnTI3377rZ577jn99NNPTvfft2+f6tSpI0mqU6eO9u7dm+N4u3bt3K4jKipKJpN7a7gsFovi4uJcOjc07HTm/9ONCgkyKSQ457ehMMcMJosaNmzoVt3ZudMOX0Y7fAvt8C20w7dkb4f9a19X2vts0x8mKVWKjIhU5fKVHbeHpYcpwBggsyln/+zOsQxrhv7P+n/6M+FPhVcPV+OrG7vVBlfb4Q9oh2+hHb6FdviO3Nrgap/tU6H766+/dvrafumR8ePH68yZM3rjjTc0e/ZsxcbGatu2bfriiy80bdo0SVLPnj01ZMgQderUSU2bNtW8efN06tQpxcTEuF2HyWQq9A+DK+caDBf/b/+T233cPWYwqNh+iIvyGvgS2uFbaIdvoR2+xd/aUdr7bMdGakaTDFk6XIPBIBnkdFthjhkMBkWEZI7sn0s7V6Tvvb/97OSFdvgW2uFbaIfvKEwbfCp05yciIkKzZs3S2LFjNXnyZEVGRmrEiBFq1aqVJKl169Z66aWXNHr0aB07dky1a9fWzJkzFR4e7t3CAQAoY0pDn501dHtKeHC4JDZSA4DSzqdD9/jx452+joqK0oIFC/K8f7du3dStWzdPlwUAALIpbX22p3cvl+TYvfx08mmPPQcAwPt87pJhAAAA3ubp63RLUuXQzLXihG4AKN0I3QAAANmkWzw/0m0P3aeSTnnsOQAA3kfoLqX6jFzj7RIAAPBLNptNFlvmtVc9uaa7UkglSdLJpJMF3BMA4M8I3aVUcmqGt0sAAMAv2aeWS54d6a4Umhm6E9ISlJqR6rHnAQB4F6EbAAAgi6yh25NrussHlnc8Puu6AaD0InQDAABkYd+5XPLsSLfBYFBoQKgkppgDQGlG6AYAAMjCvoma5NnQLUlhAWGSpFPJbKYGAKUVoRsAACAL+/Rys9Esg8Hg0ecKC8wM3Yx0A0DpRegGAADIwj693Gw0e/y57NPLuWwYAJRehG4AAIAs7CPdAcYAjz8Xa7oBoPQjdAMAAGSRdXq5p9mnl7OmGwBKL8/3JigxwUEm9XxulYKDPHd5EwAASjvHSLfJcyPdZqNZi3Yvcmykxkg3AJRejHSXMkkpGUpOyVBwkEl9Rq7xdjkAAPgd++7lnh7pTremq3xgeUnSv/H/evS5AADeQ+guxZJTM7xdAgAAfscb08uT0pNks9k8/nwAgJJH6AYAAMjCG7uXW21WxafGe/z5AAAlj9ANAACQRUnuXm42mhVkCpLEZcMAoLQidAMAAGRhX9PtyY3UsrJvpsYO5gBQOhG6AQAAsijJNd0S1+oGgNKO0A0AAJCFfU13SUwvl6SQgBBJTC8HgNKK0A0AAJBFSY90c61uACjdCN0AAABZeCt0H088XiLPBwAoWYRuAACALEo8dF+4VveJpBMl8nwAgJJF6AYAAMiixHcvD2SkGwBKM0I3AABAFiU90l0uoJwk6UTiCdlsthJ5TgBAySF0AwAAZFHSu5fbLxmWbk3X2ZSzJfKcAICSQ+guxYKDTOozco23ywAAwK/Yp5eX1Ei3yWhyBO9jicdK5DkBACWH0F3KJadmeLsEAAD8in16eUmt6Zacp5gDAEoXQjcAAEAWJb2mW7q4mRoj3QBQ+hC6AQAAsnCMdJfQmm5JKhfISDcAlFaEbgAAgCzsG6mV5Ei3PXRz2TAAKH0I3QAAAFl4Y3q5fU03oRsASh9CNwAAQBb23ctLdCM1+/TyJKaXA0BpQ+gGAADIwqsbqZ1nIzUAKG0I3QAAAFnY13R7YyO1xPREJaUnldjzAgA8j9ANAACQhTdGugNNgQo0BUpiXTcAlDaEbgAAgCwclwwrwTXdEpupAUBpReguI/qMXOPtEgAA8AveGOmWLk4x/+KPL0r0eQEAnkXoLiOSUzO8XQIAAH7Bvnt5SYdu+2ZqZ1POlujzAgA8i9ANAACQhbdHuhPTEkv0eQEAnkXoBgAAyMIbu5dLF0P3+fTzJfq8AADPInQDAABk4bWN1OyhO43QDQClCaG7lAsOMmnAmLXeLgMAAL/hrTXdFYMrSiJ0A0BpQ+guA5LT2EQNAABXOUa6S3h6efnA8pKkpPQkRw0AAP9H6C5hjDoDAODb7IF37T8l22eHmENkNGS+NTuZdLJEnxsA4DmE7hLGqDMAAL7NvpGa1WYt0ec1GAyOdd3HE4+X6HMDADyH0A0AAJCFfaTbaCz5t0mEbgAofQjdAAAAWdg3UjMZTCX+3IRuACh9CN0AAABZOEa6DSX/Nsm+mRqhGwBKD0I3AADABTabzbGmm5FuAEBxIHQDAABcYLFZHH/35kj3icQTJf7cAADPIHQDAABckPX62CYjI90AgKIjdAMAAFyQNXR7Y6Q7a+i22Wwl/vwAgOJH6AYAALjAvnO55N013enWdJ1NOVvizw8AKH6EbgAAgAvsI90mg0kGg6HEn99kNCnEHCKJKeYAUFoQugEAAC6w71xuNpq9VoNjM7UkNlMDgNKA0A0AAHCBfaQ7wBTgtRrCAsMkSUfPH/VaDQCA4kPoBgAAuMC+ptsXRrqZXg4ApQOhGwAA4ALHSLfReyPdXDYMAEoXQjcAAMAFPrGmOyhzpPvY+WNeqwEAUHwI3QAAABekWdIkSYGmQK/VYB/pPpZI6AaA0oDQDQAAcIE9dAeZg7xWgyN0nz8mm83mtToAAMWD0A0AAHBBakaqJCnI5P3QnWpJVXxqvNfqAAAUD0I3AADABamWzNDtzenlZqNZEcERkljXDQClAaEbAADgAl+YXi5J1cpVk8S6bgAoDQjdAAAAF9inl3tzpFuSqoVlhm4uGwYA/o/QDQAAcIFjpNuLa7olqWpYVUlMLweA0oDQXUb1GbnG2yUAAOBzfGFNt3RxevnGgxs1Z8ccr9YCACgaQncZlZya4e0SAADwOY7dy728prt6ueqSpHNp55RuSfdqLQCAoiF0AwAAXGCfXu7tkW779PLzaee9WgcAoOgI3QAAABf4yppu+0ZqiWmJstlsXq0FAFA0hO4yaMCYtd4uAQAAn2Rf0+3t6eX2kW6LzaKUjBSv1gIAKBpCdxmUnMZ6bgAAcuMrlwwLMAUoNCBUElPMAcDfEboBAAAu8JU13ZJUPrC8JCkhLcHLlQAAioLQDQAAcIF9enmwOdjLlUgVgypKInQDgL8jdAMAAFzgUyPdQZkj3UwvBwD/RugGAAC4wFfWdEsXR7rPpZ7zciUAgKLwydC9Z88ePfDAA2rRooWuv/56Pffcczp9+rQkaceOHerVq5eaNGmi6OhoLVy40OncpUuXKiYmRo0bN1b37t21fft2bzQhV+waDgAoTUpjf22fXv7zoZ+9XIlUIaiCJEa6AcDf+VzoTklJ0UMPPaQmTZpo/fr1+vLLL3X27Fm98MILio+P18CBA3XHHXdoy5YtGjt2rMaNG6edO3dKkjZt2qQxY8Zo/Pjx2rJli7p27apBgwYpOTnZy63KxK7hAIDSorT21/bp5QabwcuVXAzdjHQDgH/zudB95MgR1a9fX0OGDFFgYKAiIiJ09913a8uWLVq1apXCw8MVGxsrs9ms1q1bq0uXLpo3b54kaeHChercubOaNm2qgIAA9evXTxEREVqxYoWXWwUAQOlSWvtre+g2GU1eruRi6E61pCoxLdHL1QAACsvnQvdVV12lDz74QCbTxc7um2++0bXXXqu9e/eqbt26TvevXbu29uzZI0nat29fvscBAEDxKK39tX1Nt9lo9nIlUpA5SEGmIEnSf+f/83I1AIDC8n6Pkg+bzaa3335b33//vebOnauPP/5YISEhTvcJDg5WUlKSJCkxMTHf466yWCxu12o/J79zbbacX9v/5Hbf4jxms12szX48t1pdaYc/oB2+hXb4FtrhW7K3wx/b463+Wir+Ptu+pttkMMmWS0drs9kkmzx6zGazyWKxyGazqXxgeaUmp+pw/GFdWfFKl9vhT2iHb6EdvoV2+I7c2uBqe3w2dJ8/f17Dhw/X7t27NXfuXNWrV08hISFKSHC+VmVKSorCwsIkSSEhIUpJSclxPCIiwq3njouLK3TdeZ1rNBqVlJgkg+HiGrGkpGRZLSbJmnOH1OI+lpyaoV27dmXeJzFJKWkW7dy5U1ar1a12+Bva4Vtoh2+hHb7FX9vhzf5aKv4+Ozktc115/Ol4mVJyTjFPTE1UgDFAgQE5++DiOpZuSddvv/2mkydOKlCZt237Y5vKnS7ncjv8Ee3wLbTDt9AO31GYNvhk6P733381YMAA/d///Z8WLVqkyMhISVLdunX1008/Od133759qlOnjiSpTp062rt3b47j7dq1c+v5o6KinKbLucJisSguLi7fc0PDTjt/nW5USJBJIcE5vw3FfSwkVHpl7jEFB5kUGhYqo9mihg0bFqod/oB2+Bba4Vtoh2/J3g771/7A2/21VPx9dsYvmZueVq1SVeEh4TnODUsPU4AxQGZTzj64OI/tMexR5SqVVSmhko4kH5GxolGNGzd2uR3+hHb4FtrhW2iH78itDa722T4XuuPj49W3b1+1atVKY8eOldF4cdl5TEyM3njjDc2ePVuxsbHatm2bvvjiC02bNk2S1LNnTw0ZMkSdOnVS06ZNNW/ePJ06dUoxMTFu1WAymQr9w5DfuQZDzq/tf3K7b3EfS07NkGRTSLBZBoPybWNRXgNfQjt8C+3wLbTDt/hbO3yhv5aKt8/OsGbIYsucKmg2mZ1mp9kZDAbJII8fy7BlyGAwODZTO5p4NM92+tvPTl5oh2+hHb6FdviOwrTB50L3kiVLdOTIEa1cuVJff/2107Ht27dr1qxZGjt2rCZPnqzIyEiNGDFCrVq1kiS1bt1aL730kkaPHq1jx46pdu3amjlzpsLDw73QEgAASq/S2F/bdy6XMtd0+4LygeUlSf8lsJEaAPgrnwvdDzzwgB544IE8j0dFRWnBggV5Hu/WrZu6devmidIAAMAFpbG/zhq6fWH3ckkqH3QhdLN7OQD4LZ+7ZBgAAIA32C8XZjQYc50G7g32ke7TyaeVkpFSwL0BAL6I0A0AAKCLlwvzlVFuSQoyBSnAGCCJKeYA4K8I3QAAALo4vdxX1nNLctpM7XDCYS9XAwAoDEI3AACALk4v96WRbkmqGFxRknQw/qCXKwEAFAahGwAAQFlGuo2+M9ItSRWDLoTuc4RuAPBHhG4AAABdXNPtS9PLpYuh+9C5Q16uBABQGIRuAAAA+fD08iCmlwOAPyN0l3F9Rq7xdgkAAPgEn51efmFN9+GEw8qwZni5GgCAuwjdZVxyKp03AABSlkuGGXxrpDssIExBpiBZbVYdPX/U2+UAANxE6AYAANDF6eW+NtJtMBhUo0INSUwxBwB/ROgGAADQxenlvramW5JqVqgpiR3MAcAfEboBAADku7uXS1LNihdCNyPdAOB3CN0AAADy3Y3UpIsj3Vw2DAD8D6EbAABAvnvJMCnLSDfTywHA7xC6AQAAlGWk2xenl18Y6T587rAsVouXqwEAuIPQXcYFB5m4VjcAAMpyyTAfHOmuGlZVJoNJ6dZ0LhsGAH6G0A2u1Q0AgHx7TbfJaFJ4cLgk6UD8Ae8WAwBwC6G7jAoOMmnAmLXeLgMAAJ/huE63j00vNxvNWrR7kSqFVJIk/XP2H+8WBABwC6G7DEtOY4QbAAA7X55enm5NV2RIpCTp7zN/e7kaAIA7CN0AAADy7enlkhyhm+nlAOBfCN0AAAC6GLrNBt8b6ZYuhm6mlwOAfyF0AwAASErJSJHkuyPdESERkqTTyacVnxLv5WoAAK4idAMAACjLSLcPrumWpEBToMoFlpPEaDcA+BNCNwAAgLKs6fax3cuzigxmijkA+BtCNwAAgLJcMsxHp5dLrOsGAH9E6AYAAJBvXzLMzr6um9ANAP6D0A0AACDfv2SYJEUEE7oBwN8QupGD0ciPBQCg7LFPL/fVS4ZJF6eXH044rNSMVPpsAPAD/KZGDmPmHPJ2CQAAlKgMa4YsNosk3x7pDg0IVYWgCrLarJq+bbrWnFjj7ZIAAAUgdCOHpJQMb5cAAECJsk8tl3x793KDwaBaEbUkScfPH3eMzgMAfBehGwoOMqnnc6vU87lV3i4FAACvyBq6fXkjNbPRLKvNKkk6nXLay9UAAFxB6IakzNFtRrgBAGWVfcQ4wBggg8Hg5WryZ99M7XQyoRsA/AGhGw4hQSY9PHa9z7/ZAACguCWlJ0mSQgJCvFxJwaqGVZVE6AYAf0HohpPkNEa7AQBlT0JagiSpfGB5L1dSsEqhlSRl1pxhpd8GAF9H6AYAAGXe+bTzkqTyQb4fukMDQhUaECpJOpdxzsvVAAAKQugGAABlXkKq/4x0S1Ll0MqSpHPphG4A8HWEbgAAUObZp5eXCyzn5UpcUzmE0A0A/oLQDQAAyjz79HJ/Cd32dd2EbgDwfYRuAABQ5jmml/vBmm6J6eUA4E8I3QAAoMzzp93LJalKaBUZZFCKNUUnEk94uxwAQD4I3QAAoMzzt5HuAFOAIkIiJEm/nfzNy9UAAPJD6AYAAGWev63plqSqoVUlSb+dIHQDgC8jdAMAgDLP36aXS1K1sGqSCN0A4OsI3QAAoMzzt+nlklQlrIqkzOnlVpvVy9UAAPJC6AYAAGWefXq5P410R4ZEyiijzqed18H4g94uBwCQB0I3AAAo8xzTy/1opNtkMCk8MFyStPvEbu8WAwDIE6EbAACUaakZqUqzpEnyr43UJCkyMFKStPs4oRsAfBWhu4QMGLPW2yUAAIBc2Ee5jQajVv650svVuCciMPOyYXHH47xcCQAgL4TuEpKcluHtEgAAQC7s67nDAsKUYfOv/rpSYCVJ0u8nfteppFNergYAkBtCN/LUZ+SaIh0HAMAf+OPO5Xah5lBdU/ka2WTT2gN5z6pbELegBKsCAGRF6EaeklNzftqfNWjndhwAAH9jn17ub+u57dpf0V6S9MM/Pzhum7NjjubsmOP4Ot2aXtJlAQAuIHQjT8FBphyj2QRtAEBp4xjp9qPLhWV14+U3SpJ+PvSzY6p8uiVd6RaCNgD4AkI38kXIBgCUdv54ubCsrgi/QpEhkbLarFr/73pvlwMAyIbQDQAAyjT76LC/jnRLUu3I2pKk1ftXe7kSAEB2hG4AAFCm2aeX++uabkm6uvLVkqS1B9bq9xO/e7kaAEBWhG7kKzjIpJ7PrVLP51Z5uxQAADzC36eXS1Ll0MqO4D1l8xQvVwMAyIrQjQIlpWQoKYW13QCA0snfN1Kzu77m9TIZTNp8eLP+jf/X2+UAAC4gdAMAgDLNsabbj0e6JalicEVFVYuSJK36a5UOnjvo5YoAAJJk9nYBAAAA3pT1Ot32UW9/1apGKxkNRv3y3y/6au9XSslIUfMazXU25axsNpsMBoO3SwSAMoeRbgAAUKbZR7r9eSM1uyBzkKbeNlV1IuvIarNq9V+r9dqPr+l/O/6nbgu66du/vvV2iQBQ5jDSDQAAyrTSsqbbLtAUqJuvvFkNqjRQlXJVtPXIVv169FcdSTiiYd8OU6fanfTCDS8oJCDE26UCQJlA6Pawns+tUnCQydtleJS9jSGBZqWkWTRnTLTTMUla9Pot3ioPAIB82Ue6fzzwo8ICw7xcTfEwGAy6pPwl6n9dfw1sOlCzfpmlFEuKPtr+kVbuW6m4Y3HqfnV33d/4fsc5C+IW6J6oe7xYNQCUTkwv97CklAwll/Kdv+1tTE7LUHJqRo5j7HwOAPBVGdYMpVvTJUlmY+kdiwgwBWhw88G669q7FGAM0KGEQ1r420IlpiU67mN/HQAAxYvQjRxCgsx6eOz6Au8XHGTSgDFrS6AiAAA8w2w065Fmj2hw88EKMgd5uxy3BZoCteT3JQXez2w0a9HuRbq0wqXqWrerAk2B+u/8fxq6YqhjpB8A4BmEbuQqOc210WlX7wcAgK/q36S/+jfp7+0yCs3VEWr7/aqVq6bu9bsryBSkuONxGvzVYJ1LPefJEgGgTCN0o1AKM8LdZ+QaD1QCAADys2j3ohy3VQ2rqh5X91DFoIr67cRvGvzVYCWnJ0uS5uyYozk75pR0mQBQahG6USiFGeHOvt4bAAB4Xl4j4VXCqmjG7TMUHhyuPSf3aMmeJTqReELplnSlW1jfDQDFpfTuGAKvYJ03AAD+wWw0a8fRHepxdQ8t2LVAJ5NO6oHlD+jGy29UZEikt8sDgFKDkW4PKo3h05VQnZyW4fiTl9ymmjP9HADgLblNwfZ39s3T8pNuTVd4cLjuaXCPwoPDdfT8US3Zs0R/n/nbcZ8FcQtynJfbbQCA3BG6Pai0bjJWHO3Kbao5088BAN5SWi+X5Wq7woPDddc1d6lx9cZKs6Rp5f6Vmrhhos6lnsv1MUrr6wUAnkDohktCPDxtPOtjZx3xZvQbAADXuTK6nZeQgBDNuH2GGlZtKElasGuB7lhwh9YdWKeNBzfqYPxBvb/1fc3fOd9xjn3Em5FvAMgba7rhMk+O3Gd97Kwj3ox+AwDgnqKMQpuNZrW9rK0uq3iZfj/5u/af2a/tR7fr0ZWPOt2nQlAF/XP2H6VkpOimxJsY+QaAfDDSjRJXlBFzRr4BAPC8yypepvk95uuOenfomirXqEb5Ggoxh0iSMqwZOp18Wsv/WK5v9n+jTvM6ac7OOZq7c67T9b4Z/QaATIx0o8QVZcQ8r5HvPiPXaM6Y6EI/LgAAcGYymlQrspYuD79cfRr1kSTN3DpTyRnJOpNyRuHB4fpm/zc6kXhCp5NP6+2f39aMrTPU4+oe6tOoT56j3wviFuieqHtKsikA4FWEbnhd9pHv4CCTej63SsFBJsdtBYXq3MK40chEDgAAisui3YtkMpoUHhyuiJAI9WnUR1XDqspitSjueJwOxB/QvtP7NC9unhbsWqBLK1yqAFOALq94uSJCImQ2mhUWEKbkjOQcj02fDaA0I3TD63Ib+U5KyZDNZpPBYMi8TyFGuMfMOaSFbzQsvkIBACjD8hq5NhlNalC1gcbfPF4bDm7Q+PXj9d/5/3Qg/oAmbpiY6zlf7f1KbWq20e11b9fPB3/WiRMn1FD02QBKp1L3seKpU6c0ePBgNWvWTC1bttTYsWOVkcFmXN5k3/k86zW+7aPZvUd+l++5BV0X3Cab0/Gez61Sz+dWScoM7nnJa214fmvGWU8OAMWLPtu3ZN35PK+/53fu3J1z9W/8v7rr2ru0+K7Fan1pa7W/vL2uirhKYQFhCjGHyGTInMX2z9l/ND9uvu5bfJ8+/+NzHU06muvjztkxR3N2zHG6zWaz5btenLXkAHxNqRvpfuKJJ1StWjX9+OOPOnnypAYNGqTZs2froYce8nZpZZp9NDvrqLZ9NDskOPPHMK+AnfUce1iXpEWv3+I4bj83v6Dt9JhZRs6zjpbbb89tBD37aHtJrSNnyh2A0oo+2/dkHc3O6+9S7kE83ZLumKV2efjlalOzjQwy6M2Ob2rWL7NkNpplNpqVnJGs/xL+0+4Tu7Xv9D79E/+P/tE/emrVU7rz6jvV6tJWCjYHK8OaoaPnj+pk0km9/fPb+vPUn4o7FqeUjBQFGAO08LeFujLiSiWnJ+v2urcrIiRCweZgHTp3SPtO71OQKUhB5iAFmgL1+Z7PFdswViajSZ5Enw0gN6UqdB84cECbN2/WunXrFBISopo1a2rw4MF644036MD9RF6brGUN5HkFa/u5IUEmPTx2vWNqekFssuVYQ+7KpcpK6nJmTJMHUBrRZ/u/vKabZw3k2e9jMBgUGhCqWpG1VCuyls6lnNPaA2v15+k/9dPBn/TTwZ9kNpoVZApSqiVVGdbc+9o0a5oOxB/QgfgDkqRNhzc5HV+wO+do9+TNkxVkCtJlFS/TFeFX6IrwK1SjQg1FBEcoLDBMBhlkMBhkNBgVGhCqyqGVVT6wvNP7icS0RB08d1D/xv+rIwlHlGZJk81mU1hgmHYe3anUxFTdXeluVQiuoHKB5Rx/gkxBLr8vAVD6lKrQvXfvXoWHh6tatWqO22rVqqUjR47o3LlzqlChgherQ1FlDeQhBUw7z3rf/EakswZ5+6h79qnwZxJS893UzR7YQwLNSkmz5Ppc9nMKqsV+vn00/9NxNzl9yDBgzFqdSUiVdHGkP7825na7t3Z659N/AFnRZ5du9rBd0NT0CsEVdNOVN+mKgCsUWTlSX+39SglpCY6wHWAMUOXQyrrh8huUkJqgSiGVFBYYpnRLus6knNHZlLM6nXxap5NPKyUjRRarRWnWNAUYA5RmSVNyRrKsNqvj+VItqdp7eq/2nt7rUjuCTEGqFFpJUmbgjk+NL/Ccn77+KcdtZqNZweZgmQwmpVvTFRYQJpPRJJPB5Ph/QmqCKoVWUpA5SMHmYJ1KOqVakbUUbA52/AkxhyjYHCybbEpMS9T5tPNKTL/w/7TEzNfMFKBAU6ACjJn////27j+o6frxA/hzP2MChSa6/KTnpYSnoiEgKaSgIZ2ChpCeJqZX+QNPkgLlNDM1Uc4UP+qlFnbcFel1FGpkIlcqGjpE8Ud28jE/X0Klkx8TFBAGe+/7B58tEDQ2GO9tPB93u9vev/Z8b8Bzr/feG0qZ0jRNguaDChKJpNVBhpbXDYIBd+/exeXLlyGVStvMN15/dFuPuy6RSGAwGNAkNLW66A16SCVSKKQKKGQKKKSKVutI0HyQwniwwjjdyDi/5TItCYKA4nvFqPhvBaRSKQwwAGj+eILxulHLaY+b39Kj9/e4LC0zt9yvltMe9eh9G/ej8v8qTa+lHs3T3nrtLdfeMu3pyHodzWAkCAJKKktw+z+327wm7O7svRS9EDQ4CE5ypw5tsys41KC7trYWKpWq1TTj7bq6un8scOOTpNPpIJOZd/qRXq9vs66rSg59kwCnp6RwUrZ9qG1zngxKqRxOTjLgf38InrSemFnlsubH+PH74YT4HWfhopIhbtuvqH7QgKeUMjg9JYe721OI2/araRuP3l/L7SpkEihkgOv/1jFuz7gN43y5DKZ5Rsb7NE5XyJp/RlZsP4cd778MAKbrchlM8xUyCZyekiJ+x1n0dlWafq6al2meF7MlFzvefxmrdp03rddSy+kt76+9ZVsyLrtq13kAQEOjvk3WR5dtb16r50Wvx87Mu/hs2D//bj1pO12xnqXbB5r3QyKRtPo9X5J0BgCwd3Vgh+/bnAydyfs47e2HrWvvcWi5Hx/8+3yXP07m6OzPFfB3fxhvt/eCxpHYWmcroPh7vkQPuUQOeTsvk2xpngIKqOQqyCGH9JGv6bF0m1bJKgBKifKJ+/Evl39hwDMDEDMmxjRQNn7+WyFTQKVQoVHf+l3zpxVPY8gzQyCXtpNF0JtOJZdJZahvrIdEIsED3QOU1ZahuqEa1fXVeKB7gPqmeuj0zb0oGAQYYIBOr0NDUwNgALS1WtN2naROcHNyg0qhwjPKZ+DxrAf+rPoTjUIjanW1qGuog6vKFXWNdaiqr0KDvsG0blNTE5rQfDDhgf5Bu499TUNNq9t3qu+0u1y3+Eu8u+5SxWIH6CLFYgfoIiViB2im9dUianiUWeu01x0d7WyJwYFaPScnBx9++CE0mr9PMSoqKsL06dNRUFAAV1fXJ66v0+lw9epVa8ckIiL6R15eXlAqlWLHsBp2NhEROYp/6myHeqfbw8MDVVVVqKioQN++fQEAN2/ehFqt/sfyBgC5XA4vLy9IpVJ+7oaIiERhMBggCALkcoeq6DbY2UREZO862tkO9U43AMydOxdqtRobNmzAvXv3sHTpUoSGhmL58uViRyMiIqIW2NlERNQTONygu6KiAhs2bIBGo4FUKsXrr7+O+Ph4u/ncIhERUU/BziYiop7A4QbdRERERERERLaC/8OHiIiIiIiIyEo46CYiIiIiIiKyEg66iYiIiIiIiKyEg24iIiIiIiIiK+GguwtUVlYiJiYGvr6+8Pf3x6ZNm9DU1CR2LItptVqEhIRAo9GIHcUi169fx8KFCzF27FgEBARg5cqV0Gq1Yscy29mzZ/HGG29gzJgxCAgIwMaNG1FfXy92LIvo9XpER0cjMTFR7CgWO3r0KIYPHw5vb2/TJSEhQexYZquqqsLKlSvh7+8PPz8/xMTEoKysTOxYZjly5Eir58Hb2xsjR47EyJEjxY5mlmvXruHNN9+Er68vAgMD8cknn0Cn04kdy+Gxs20LO9v22Htns69th6P0NdD5zuaguwusWLECvXr1wunTp5GRkYGzZ88iLS1N7FgWuXDhAmbPno2SkhKxo1ikvr4e77zzDry9vXHmzBlkZWWhqqoKq1evFjuaWbRaLRYvXow5c+agoKAAmZmZyM/Px+effy52NIvs3r0bBQUFYsfolKtXr2LGjBkoLCw0XbZu3Sp2LLMtX74cdXV1yMnJwYkTJyCTybB27VqxY5ll+vTprZ6HY8eOwc3NDZs2bRI7WocJgoDFixcjNDQU+fn5yMjIwJkzZ/DFF1+IHc3hsbNtBzvbNtl7Z7OvbYcj9DXQNZ3NQXcn/fnnn8jPz0dCQgJUKhUGDhyImJgYpKenix3NbJmZmYiPj0dcXJzYUSxWWlqKYcOGYdmyZVAqlejduzdmz56N8+fPix3NLH369EFeXh5mzpwJiUSCqqoqNDQ0oE+fPmJHM9vZs2dx/PhxTJkyRewonXL16lW7PDLb0m+//YbLly9jy5YtePrpp+Hi4oKNGzciPj5e7GgWMxgMSEhIQFBQEGbMmCF2nA6rrq5GeXk5BEGA8T93SqVSqFQqkZM5Nna2bWFn2x5H6Gz2tW2y174GuqazOejupBs3bsDNzQ39+/c3TRsyZAhKS0tx//59EZOZLzAwEDk5OZg6darYUSz2wgsvIDU1FTKZzDQtOzsbI0aMEDGVZVxcXAAAEydORHh4ONzd3TFz5kyRU5mnsrISa9aswbZt2+x6MCEIAq5du4aTJ08iODgYEyZMwNq1a1FdXS12NLNcuXIFQ4cOxbfffouQkBAEBgYiOTkZ7u7uYkez2OHDh/HHH3/Y3WmQvXv3xoIFC5CcnAwvLy9MnDgRgwcPxoIFC8SO5tDY2baFnW1bHKGz2de2y177Guiazuagu5Nqa2vb/GEy3q6rqxMjksXc3d0hl8vFjtFlDAYDUlJScOLECaxZs0bsOBY7fvw4cnNzIZVKERsbK3acDhMEAQkJCVi4cCGGDRsmdpxO0Wq1GD58OEJDQ3H06FEcPHgQxcXFdvcZserqahQVFaG4uBiZmZk4dOgQ7t69i1WrVokdzSKCIGDPnj1YsmSJ6QWvvRAEAU5OTli7di0uXbqErKws3Lx5Ezt37hQ7mkNjZ9sudra4HKWz2de2yZ77Guiazuagu5N69eqFhw8ftppmvO3s7CxGJAJQU1OD2NhY/PDDD/j666/h6ekpdiSLOTk5oX///khISMDp06ft5mjtvn37oFQqER0dLXaUTuvbty/S09MRFRUFlUqFAQMGICEhAbm5uaipqRE7XocplUoAwJo1a+Di4oK+fftixYoVOHXqFGpra0VOZz6NRoOysjJERUWJHcVsOTk5yM7Oxty5c6FUKuHh4YFly5bhwIEDYkdzaOxs28TOFp+jdDb72jbZc18DXdPZHHR3koeHB6qqqlBRUWGadvPmTajVari6uoqYrOcqKSlBZGQkampqkJGRYZflffHiRbz22mutvhVRp9NBoVDYzSlfhw8fRn5+Pnx9feHr64usrCxkZWXB19dX7Ghmu379Oj799FPT53iA5udDKpWaitEeDB06FIIgoLGx0TRNEAQAaLVv9iI7OxshISHo1auX2FHM9tdff7X51lO5XA6FQiFSop6BnW172Nm2wVE6m31tm+y5r4Gu6WwOujtp8ODB8PHxQVJSEmpqanDr1i189tlndnskx95VV1fjrbfewpgxY7B//367/BITAPD09ER9fT22bdsGnU6HO3fuIDk5GVFRUXZTGseOHcPFixdRUFCAgoIChIWFISwszC6/EdXNzQ3p6elITU1FU1MTSktLsXXrVkRERNjN8wEA48ePx8CBA7F69WrU1tZCq9UiJSUFr776ql2e7nXhwgX4+fmJHcMigYGBKC8vx969e6HX63Hr1i3s2bMH4eHhYkdzaOxs28LOth2O0tnsa9tkz30NdE1nc9DdBXbu3ImmpiZMnjwZs2bNwiuvvIKYmBixY/VI33//PUpLS/HTTz/Bx8en1f8FtCfOzs5ITU3FjRs3EBAQgOjoaIwfP97u/o2Ko1Cr1di3bx9+/vlnjB07FpGRkfDy8sJHH30kdjSzKBQKfPXVV5DJZAgNDUVoaCjUajWSkpLEjmaR27dvo1+/fmLHsMjQoUOxb98+/PLLL/D398f8+fMxadIku/4manvBzrYd7Gzqauxr22TPfQ10TWdLDPZ4jgIRERERERGRHeA73URERERERERWwkE3ERERERERkZVw0E1ERERERERkJRx0ExEREREREVkJB91EREREREREVsJBNxEREREREZGVcNBNREREREREZCUcdBMREXWSVqtFSEgINBpNh9fJzs5GWFgYXnrpJYSEhCAjI8OKCYmIiAgQp7Pl5oYkop5h0qRJKC8vh1ze/GfCYDDAxcUF4eHhSEhIgFTa+phdaWkppk2bhh9//BEDBgwQIzKRKC5cuIDExESUlJR0eJ1z584hMTERO3bswIQJE6DRaPDuu+/ixRdfxKhRo6yYlogcETubqGPE6my+001Ej7V+/XoUFhaisLAQly5dwv79+3Ho0CHs3r27zbIDBgxAYWEhy5t6lMzMTMTHxyMuLq7NvLy8PERFRcHX1xfTpk3DkSNHTPPS0tIwf/58TJw4ERKJBC+//DK+++47DBo0qDvjE5EDYWcTPZmYnc1BNxF1mKenJ/z8/PD7778jOjoaiYmJCA4ORlBQEIqKiuDp6Ynbt28DAG7duoUlS5bAx8cH48aNw8cffwydTgcAKCkpwZIlS+Dv74/g4GCkpKSY5hHZk8DAQOTk5GDq1Kmtpl+/fh1Lly7FokWLoNFosHHjRiQlJeH06dMAgCtXrsDNzQ2LFi2Cv78/ZsyYgZKSEri5uYmwF0TkiNjZRK2J2dkcdBNRhzQ2NkKj0eDcuXMICAgA0HxU8ODBgzhy5AicnZ1NyzY1NeHtt9+Gu7s7cnNzkZWVhUuXLmHXrl2oq6vDggUL4OHhgdzcXHzzzTfIy8vDrl27xNo1Iou5u7ubTuds6eDBg5g8eTKmTJkCmUyGMWPGYNasWUhPTwcAVFdXY//+/Vi6dCl+/fVXLFu2DHFxcbh8+XJ37wIROSB2NlFbYnY2P9NNRI+1fv16JCUlmW6r1WosXLgQ8+bNw/HjxzFhwgT0798fAHD//n3TchcvXsSdO3ewevVqqFQqODs7Y/fu3RAEASdPnoROp8P7778PiUSC5557Du+99x5iY2PxwQcfdPs+ElnDnTt3cO7cOfj6+pqm6fV606loSqUSkZGR8Pb2BgBMmTIF48aNQ3Z2NkaPHi1KZiKyb+xsIst0R2dz0E1Ej7Vu3TrMnDnzsfP79evX7vTy8nL07t0bKpXKNO35558H0Pztj1qtFn5+fqZ5BoMBjY2NqKysxLPPPttF6YnEo1arERERgQ0bNpimlZWVwWAwAACGDBnS5vRMvV5vmk9EZC52NpFluqOzeXo5EVlMIpG0O12tVuPevXt4+PChaVpBQQHS0tKgVqsxaNAgFBQUmC6nTp1CVlYW+vTp013RiawqKioKWVlZOHPmDARBQHFxMebNm4cvv/wSADBnzhwcOHAAeXl5EAQB2dnZ0Gg0CAsLEzk5ETkqdjZR+7qjsznoJqIuN2rUKAwePBjJycl4+PAhKioqsHnzZmi1WgQHB6O2thapqanQ6XS4f/8+Vq1ahbi4uMe+ICCyN6NHj8b27duxfft2+Pn5Yd68eZg0aZLpdMzIyEisW7cOmzdvho+PD3bt2oWUlBSMGDFC5ORE1NOws6mn647O5unlRNTlFAoF9u7di6SkJAQFBUEulyM8PByxsbGQy+VIS0vDli1bkJqaCkEQ4O/vjz179ogdm6hTioqKWt0OCgpCUFDQY5ePiIhARESElVMRET0ZO5t6ou7ubImBHyAjIiIiIiIisgqeXk5ERERERERkJRx0ExEREREREVkJB91EREREREREVsJBNxEREREREZGVcNBNREREREREZCUcdBMRERERERFZCQfdRERERERERFbCQTcRERERERGRlXDQTURERERERGQlHHQTERERERERWQkH3URERERERERWwkE3ERERERERkZX8P7TtnW1/OhGNAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1876,12 +1892,12 @@ }, { "cell_type": "code", - "execution_count": 229, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAJQCAYAAABGqhOlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7GklEQVR4nOzdd5hU1eE/4A9dlAiILUqiQV2wAGIBiRXsiolBTYxGo2iwG0Uj9hI1ROxdiS2xoFGJMWriFwtqjIodG7FgJyKKoghS5/cHvx1ZWMrC6i6X930eHnbuvXPmzLllzp3P3HMblEqlUgAAAAAAAIDFWsO6rgAAAAAAAACw6AR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AABYLJRKpbquQo0sbvWF+sT+AwAAsHAEfwAAzNNTTz2V9u3bz/FvnXXWSZcuXbLDDjvk5JNPziuvvFLt8y+99NK0b98+F1544ULX4d///nf69OlTo+ccf/zxad++fW6//fZ5TqttX3zxRc4666zcdddd863P4ubzzz/P7373u3Tr1i0dO3bMNttsk2nTps11+Z49e1a77XTq1ClbbbVVjjnmmLz88svfer2PPfbYtG/fPkOGDPnWX6toPvjgg2rXYfv27bPBBhtkhx12yFlnnZWxY8fWyuu9/fbbOfDAA/Pee+9VmV65Lb377ru18jrUD//5z3/Svn377LPPPgu0fOVxdEH+ffDBB0lq5zMIAAAWJ43rugIAACwell566Wy99dblx6VSKV999VXefPPN3H777RkyZEiOOeaYHHDAAbX6uqNHj84BBxyQlVZaqVbL/bYMGDAgQ4YMyVlnnVXXVal1f/jDH3L33XenTZs26dGjR1q1apXGjed/SvHjH/84bdq0KT+ePHlyPvjgg9xzzz355z//mUsuuSTbbLPNt1l1asEuu+xS/rty/3/99ddz44035t57781f//rX/OAHP1ik1zjwwAPLgQ3MTUVFRdq3bz/PZZZeeunvqDYAAFC/CP4AAFggrVu3znnnnVftvH/84x859dRTM3DgwKywwgr5yU9+Up639957Z6eddkrr1q0X6nVnzJixUM/r169ffvOb32TFFVdcqOcvrLkNUVhX9alNL774YpLkwgsvTLdu3Rb4eQcffHC1y99///058sgjc9JJJ2WzzTbLUkstVWt1pfZVt//PmDEjAwYMyF/+8peceeaZGTRo0CK9hiE+WRDbbbddjjjiiLquBgAA1EuG+gQAYJHtsssuOeOMM5Ik5557br7++uvyvOWWWy5rrLFGlltuue+0TiuuuGLWWGONfO973/tOX3du6lt9FsbUqVOTJCuvvHKtlLf99tunc+fO+fzzz/PMM8/USpl8txo2bJjf/va3ady4cR599NFMnjy5rqsEAACwRBP8AQBQK37yk59kvfXWy8cff5wHHnigPH1u91d65JFHcsABB2TzzTfPeuutl6222ir9+/fPW2+9VeW5lcOLjhkzJu3bt0/Pnj2TfHPvsUMPPTT//Oc/06NHj3Ts2DG77LJLvvzyy/neU2/w4MHZaaed0rFjx/Ts2TPnnntuvvjiiyrLDBkyJO3bt8+xxx5bbRmV95KqvM9d+/bt87e//S1JcvLJJ1e5r9zc6jN9+vTcfPPN2W233bL++utn/fXXz2677ZabbrppjvvnVd5v8eyzz86oUaNy5JFHplu3bunUqVN69+6dO++8s9p6zs3XX3+dK6+8Mrvssks6deqUDTbYIHvttVfuvvvuKstV1v3DDz9MMvNqm/bt2+epp56q0etVpzJE/Oqrr+aY98477+T444/PFltskfXWWy9bbLFFTjrppHI9qlv+d7/7XTbbbLOsv/76+dWvfjXXQLFyu7zvvvtyyimnpEuXLtl4441zzjnnlJf53//+l9NPPz09e/bMeuutl0022SSHHXZYXnjhhWrLXJh1ec455+TNN9/MYYcdlq5du2aDDTbIr3/967z00ktJkmeeeSb77LNPunTpki222CLHH398xo0bV6WsGTNm5MYbb8zPf/7zdO3aNZ07d87OO++c8847L5999ln1DV+LWrRokRYtWqRUKmXixIlV5o0fPz6XXnppevfunQ033DDrrbdeNttssxx55JEZMWLEHO0x+zY2+7CfkydPzmWXXZZtt922fNw466yzMmHChCrLWb8Lbtq0abn99tvz61//Ot26dcu6666brl27Zp999sm99947x/I9e/bMRhttlClTpuTSSy/Ndtttl/XWWy9bbrllzjrrrGrrNGXKlAwaNCg77bRTOnfunG222SaDBg3K9OnTF7n+i6Lyc6hr167p2LFjtt9++5x77rn5/PPPq12+JttM5XFz+PDhOeKII9KpU6dssskmueGGG5LM/Ew79dRTs+OOO6ZTp07p2rVr9t133zmOvwAAUFOG+gQAoNb07NkzL7/8cp544on06tVrrsvdddddOf7449O4ceNstNFGWXbZZfPGG2/krrvuyv/93//ltttuK9/DaZtttskDDzyQ5s2bZ5tttpnjysH//ve/eeSRR7LuuutmzTXXzLRp0+Z7Vd11112XUaNGZd11102PHj3y3HPP5ZprrsnDDz+cW265Ja1atVqo97/LLrvkhRdeyPvvv5/1118/P/jBD/LDH/5wrstPnjw5ffv2zZNPPpllllkm3bp1S4MGDfLUU0/lzDPPzIMPPpirr746TZs2rfK8N998M3vssUeaNWuWLl265PPPP8/zzz+fE088MePHj0+fPn3mW9fPPvss++67b15//fW0atUqm2++eb7++usMHz48zz77bB5//PH88Y9/TIMGDdKlS5dMmzYtDz74YCZOnJitt946Sy+9dJZffvmFaqdKM2bMyGuvvZZGjRqlU6dOVeY98cQTOfTQQzNx4sRUVFRk/fXXz9tvv5077rgjDzzwQK699tqst9565eVffvnl9OnTJ+PHj0/79u2zwQYb5OWXX85+++2XVVddda51uPjii/O///0vm266aUaPHp011lgjSTJixIgccMAB+eKLL7LaaqulZ8+eGTNmTB544IE89NBDOf300/OLX/yiXM7CrstXXnklt956a1q2bJmuXbvmjTfeyJNPPpl99903J554Yk477bSsscYa2XTTTfP000/nb3/7W15//fXceeedadCgQZLklFNOyR133JFWrVqlS5cuadSoUV588cX86U9/yoMPPpi77rorzZo1W6R1NS8ffPBBxo8fn9VXX73KkL6ffvpp9txzz7z33ntp27ZtNtlkk0ydOjWvvPJK7r///jz00EMZPHhwOnbsmOWXXz677LLLHNvY7Pdp++1vf5t33303G2+8cX70ox/l6aefzo033pgRI0Zk8ODBadSoUZXlrd95K5VKOeKII/LQQw+lZcuW6dy5c5o1a5Y333wzw4cPz/Dhw/Ppp59m3333rfK8GTNm5KCDDsrw4cPTpUuXrLHGGnnyySdz44035tlnn83tt99evv/n1KlT85vf/CZPPvlkWrVqlS222CLjxo3LBRdcUF4fdeHCCy/MVVddlUaNGmXDDTdM69at88ILL+Saa67JP//5z/z5z3+ucs/Kmm4zlU455ZSMGzcum2++ed588820b98+n376aXbfffd8/PHHqaioyFZbbZXx48fn6aefzlNPPZV3333XUKYAACy8EgAAzMOTTz5ZqqioKPXo0WO+y953332lioqK0i9/+cvytEsuuaRUUVFRuuCCC8rTtt5669I666xTeuONN8rTZsyYUTrrrLNKFRUVpf79+5env//++6WKiorS5ptvXuW1KqdXVFSUzjjjjPL06dOnl0qlUql///6lioqK0l//+tfyvMppFRUVpZtuuqk8feLEiaUDDzywVFFRUTrllFPK0++8885SRUVF6Zhjjqn2/VaWNXXq1DleY9bXndv0AQMGlCoqKkp77LFH6dNPPy1P/+STT0q77bZbqaKiojRgwIDy9Mp1UVFRUTrqqKNKX331VXneX/7yl1JFRUWpe/fupRkzZlRb31kdfvjhpYqKitLBBx9cmjBhQnn6O++8U9p6661LFRUVpb/85S9VntOjR49SRUVF6Z133plv+bMu/+STT1aZ/vXXX5def/310lFHHTXHeyyVSqVx48aVunbtWlp77bVL9913X5V5t956a6mioqK09dZblyZPnlwqlWau85/85CelioqK0tVXX11edsqUKaXjjz++3GZ33nlneV7ldtm+ffvSiy++WJ4+ffr00tdff13afPPNSxUVFaXLL7+8SnsOGzas1LFjx9I666xTeuWVV8rTF2VdHn300aUpU6aUSqVSafLkyeXlK1+/0scff1zaaKONShUVFaURI0aUSqVS6cMPPyxVVFSUtttuu9KXX35ZXnbSpEmln//853O875qadT+b1YwZM0oTJkwoDR8+vLTrrruW2rdvX3rggQeqLHPmmWeWKioqSr///e+rtOHXX39dOuSQQ0oVFRWlk046qcpz5raNVU7v3r176bXXXitPf+edd0qdO3cuVVRUlJ566qnydOt3wdx///2lioqK0u67717lOFAqlUpXX311qaKiorTttttWmV65LjbddNPSyJEjy9M/+OCDUteuXUsVFRWlhx9+uDz92muvLbfd+PHjy9OHDRtWWnfddUsVFRWlX/3qVwtU38rj6CWXXLLA77G6z6AHH3ywVFFRUdpkk01KL730Unn65MmTSyeddFKpoqKi9LOf/ay8bSzMNlNZ1/XXX7/03nvvlUqlmfvNjBkzSpdddlmpoqKidP7551ep64svvlhad911S506dSpNmjRpgd8jAADMylCfAADUmpYtWybJfIefGzt2bBo3bpwVV1yxPK1BgwY5+OCDc8opp2S33Xar0ev+6le/Kv/dsOH8u7hdu3bN3nvvXX7cvHnzDBgwIE2aNMnf//73OYYr/DZMnjw5gwcPTsOGDXP++edXuZKxTZs2ufDCC9OoUaPccsstcwyD2bhx45x22mlVrob6xS9+kaZNm+bTTz/Np59+Os/X/vDDD/N///d/+d73vpdzzz03yyyzTHneaqutlj/84Q9JkmuuuaY23mr23Xff8rCo7du3T6dOndKrV6/cd9996dWrV4477rgqy99+++35/PPPs9dee2XHHXesMu8Xv/hFevTokffffz9Dhw5Nkjz33HMZOXJk1llnnfTt27e8bJMmTXL66aenTZs2c61b586dq1xt2LBhw/zzn//MmDFj0rVr1xx66KHlK6+SZMstt0zfvn0zbdq0XH/99UkWbV02aNAgJ598cpo0aZIkadq0abbffvskyfe///0cdNBB5WVXWGGFdOnSJUny3nvvJUk++eSTJEnr1q3TokWL8rJLLbVUTj755Jx11lnp3LnzXN9/Tcy6Djt06JANNtggv/rVr/Lqq6/mtNNOKw/LW6lly5bZfPPNc+SRR1Zpw2bNmqV3795JMsdQnvPTt2/fdOjQofx4tdVWK7/uf//73zmWt37nberUqenZs2eOPfbYKseBJPnlL3+ZZO7rqG/fvmnfvn358aqrrloeivn1118vT7/11luTJL///e+z7LLLlqdvueWW2XPPPReq3pdddlmV7XHWfxtttNF8n1853OZxxx1X5crhpk2b5vTTT8/qq6+eV155JU8++WSS1HibmVWPHj3KVw42aNAgDRo0yNixY5Mkq6yySpVlO3XqlLPOOit/+MMfMmPGjJo1CgAA/H+G+gQAoNZMnTo1Sap8KVqdjTbaKP/+97/Tu3fv7LrrruV7uLVp06ZKiLcgllpqqfzoRz+q0XN22WWXOaYtv/zy6dixY5577rm8+OKL6d69e43KrKmXXnopX3/9ddZbb70qw8lV+sEPfpCOHTvmhRdeyIgRI6rUZ7XVVptjONKmTZumdevWGTNmTCZNmjTP13766aeTJD/+8Y+rhAmVunbtmhVWWCEfffRR3nvvvXkOV7ogfvzjH1cJ36ZMmZJPPvkkr7zySu65555MnDgxF1xwQZo3b54k5XsHduvWrdryNt988zz88MN56qmnsvPOO5ffzxZbbDHHss2aNctmm22Wv//979WWNWtwUWn48OFJkh122KHa5+y000659NJLy8styrr84Q9/OMfwtZWP11prrTmGrqwcxnby5MnlZVq1apXnn38+v/zlL7PTTjtl8803z+qrr56OHTumY8eO1b6HhTH7fjNp0qR8+OGH+e9//5uzzjorn376aQ4//PDy/OqGKhw/fnxef/31/Pvf/04yc1uoiQ022GCOad///veTZI57dCbW7/zsvPPO2XnnnatM+/rrrzNq1Kg8//zzSWbe23D69Olz1HX99defo7zKH3NUHoPGjBmTd999NyuuuGKVwLbS1ltvnRtvvLHG9a4cCro6sw8PO7tp06blueeeS8OGDbPtttvOMb9x48bZbrvtMmjQoDz11FPp3r17jbeZWVX3vjfeeOMMHjw4Z599dkaMGJEePXqke/fuadGiRXbdddd51h8AAOZH8AcAQK35/PPPk3xz5d/cnH322Tn00EPzyiuv5NJLL82ll15avvfTbrvtlk022WSBX/N73/vefIPG2c3tnm+VAcKYMWNqVN7C+Pjjj+dZlyRp27ZtXnjhhfKylWa9amZWlffUmt+VIgv62mPHjs3HH3+8yMHfwQcfXG2I9+mnn+awww7LQw89lHPOOSenn356kuR///tfklQJkarz0UcfJfnm/cx6Bems2rZtO9cyqruf4/zap7K8yquxFmVdVrevVG7P85pXqXnz5rn44otz7LHH5rnnnstzzz2XZGYYtfXWW2fPPfescTA+N+edd16101955ZUceOCBufTSS9OuXbvstNNO5Xnvv/9+brnlljz77LN55513Mn78+Crvo1Qq1agO1d2/szKQqm67t37nb8KECbntttvy2GOP5a233srYsWNTKpWq1KW69VTdcWj2Y1DlsXSllVaq9rXntW/Oy3bbbbfQ98D7/PPPM3Xq1DmuoqyuXpVX5tV0m5lVdet55513zssvv5wbbrghd955Z+688840btw4Xbp0yY477pjddtstSy21VM3fHAAARPAHAEAtGjlyZJLqr7KZ1corr5w777wzTz/9dB566KH85z//yeuvv5677747d999d/r06ZP+/fsv0GsuyNCes2vWrNk851cOyzcv06dPr/HrzmpBAo/K12jatGmV6TUNOhfG3F67NrVp0yYnn3xydttttwwZMiSnnnpqGjZsWH7tHj16zPWL+SRZc801k8y/PWa/UmlW1T13fuumMtSo3E4WZV1WBiWLYpNNNskDDzyQYcOG5ZFHHsmTTz6Z999/PzfccENuvvnmXHjhhdVe2VRb1l133fzmN7/JOeeckzvuuKMc/N1zzz3p379/pk2blh/84Afp3r172rVrl/XWWy+lUimHHXZYjV+rpvu79Ttvb7zxRn7961/n008/TevWrcvD8LZv3z7dunXLVlttNdfnLshxaH7L1Eb71NTCrM+abjOzmts2279///zqV7/K0KFD89hjj+W5557L008/naeffjo33nhjBg8enNatW8+3rgAAMDvBHwAAtWbYsGFJZg7tOD8NGjRI165d07Vr1yQzr/668847c+GFF+b666/PPvvsM8f9j2rL7FflVPrwww+TfHPlX+UXttVdSVTdsII1UXl1WuVrVuf9999PMnMY0tq0IK9deV+v2n7t2a211lpJZg5tOG7cuCy//PJZccUV884772TfffddoG2p8mqi0aNHVzt/but7bubXPpXrpXL40rpcl5WWWmqp7LDDDuWhCN96661cddVVufvuuzNw4MBvNfhLvglhK6/W/Oqrr3LqqaemVCrl8ssvzzbbbFNl+cr7M9YF6/cbv//97/Ppp5/mwAMPTL9+/aqE5JVXZy6K2t43a0OrVq3SpEmTjB8/PhMmTKj2xwU13QZmX35Brbrqqtlvv/2y3377ZerUqXniiSdy5pln5u23387gwYNz6KGH1qg8AABIkpr/PBoAAKpx3333ZdSoUVl55ZXneZXIm2++mV122SUHHnhglelt2rRJ37590759+5RKpfIQcd/G1W2PPfbYHNNGjx6dl156Kcsss0zWXXfdJN/cK+rTTz+dY/kXX3yx2rIXtL7rrbdemjdvnldffbX8pfGs3nvvvbz66qtZeumla/U+bUmy4YYbpkGDBnn88cczYcKEOeY/+eSTGTduXNq2bfutha+V3nnnnSQzg43KYRk33njjJMkjjzxS7XMGDhyYXXfdNX/961+TpHxPtQcffHCOKzGnT59evp/cgqp8/X/961/Vzv/nP/+ZJOXQui7X5d13351tt902V1xxRZXpa6yxRk499dQk34Rx36Z33303yTeh+RtvvJGvvvoqFRUVc4R+ScrrpKZDfdYG6/cbL7zwQpKZw/HOfmXs448/Xv57fsMHz82KK66YNddcM59++mmeffbZOeZX/ljku9SkSZN06dIlM2bMqDaAnjZtWh544IEk39xntKbbzPwcddRR6datW5UgsUmTJtliiy3K97mtHMoYAABqSvAHAMAiu//++3PKKackSU4++eR5Dg+5+uqr5+OPP86///3vOb5Effnll/PWW29l6aWXLl9BVDks58SJExf6y+fZ3XXXXVW+8J0wYUKOO+64TJ8+PXvvvXf5NTt06JAkeeaZZ/LKK6+Ul//oo49y7rnnVlt25Xv/8ssv51mH5s2b5+c//3lmzJiRY445JuPGjSvPGzduXPr165cZM2Z8K/d6qrw/2IQJE/K73/0uX331VXne+++/n5NPPjlJyl9Af1smTJiQs88+O0my0047lYf9+8UvfpGll146N910U+69994qz3nooYfyl7/8JSNHjiyHLJ06dcqGG26Yt99+OwMHDixvJzNmzMg555xTvnpxQe24445ZccUVM3z48Fx55ZVVwqlHH30011xzTRo1apRf/vKXSep2Xa611lp577338pe//CWjRo2qMu/uu+9OMrN9Kk2dOjVvvfVW3nrrrUydOrVW6jBq1KgMGjQoSbLLLrskSZZbbrkkydtvv12lXqVSKYMHDy6HtpMnT65SVuW+N7/9Z1FYv9+oXE8PPvhglelPP/10zjzzzPLjKVOmLPR72G+//ZIkp5xySpX7pz7zzDO5/vrrF7rcRfHrX/86ycwfEcx6bJ86dWrOOOOMvPfee+nQoUM23HDDJDXfZuZnhRVWyOeff56BAwdWaduvv/66/Nk0a4g8bty4vPXWW3O9chIAAGZlqE8AABbIZ599lmOPPbb8eMaMGfnyyy/z3//+N2PGjEmjRo1yyimnzHfIucaNG+fMM8/MkUcemd/+9rdZd91107Zt23z22Wd59tlnM3369Jx44on53ve+l2TmF9PLLrtsvvjii+y555754Q9/mPPOO2+R3kvnzp1z+OGHp0uXLllhhRXy9NNP57PPPkvXrl1zxBFHlJf74Q9/mO222y7/93//l1/84hflK8ueeuqprLnmmqmoqMjrr79epezVV189SXLFFVfk+eefz09/+tNqr3hKkn79+uXVV1/N008/nW222aZ8tcjw4cPz1VdfpVu3blXavDb9/ve/zzvvvJOHHnooW2+9dTbaaKNMmjQpw4cPz5QpU9KrV6/yl+OL6qqrrsrtt99eflwqlfLFF1/kueeey4QJE7L66qtXeZ8rrbRSzjnnnPTr1y/9+vXL5Zdfnnbt2uV///tfXn755STJiSeemLXXXrv8nAEDBmTffffNDTfckGHDhqVDhw4ZOXJk3n333XTu3HmuV2hWp3nz5rn44ovTt2/fXHTRRbnrrrvSoUOHjBkzJs8//3waNWqUk046qUrgUlfrcu21186+++6bv/zlL9lll12ywQYbpHXr1nn33XczcuTILL300jnhhBPKy48ZM6Z8D74HH3wwbdu2XeDXmr3+M2bMyMcff5znn38+06ZNyzbbbJNdd901ycx9p2fPnnnooYey6667pmvXrmnWrFleffXVjB49OmuuuWbefPPNfPLJJ1XKXG211TJq1KjyseF3v/tdfvCDHyxk61TP+v3G/vvvnwEDBqR///657bbbssIKK+S9997La6+9llatWmWFFVbI2LFjM3bs2Hneb3Nedt999zz55JO55557ssMOO6R79+6ZOHFihg8fnk6dOuX5559fqHIXxTbbbJM+ffrkuuuuyx577JENN9wwrVu3zosvvpiPPvooq666ai688MLycM8Ls83My6GHHpqHH344//rXv/Lss89mvfXWS5KMGDEin376aTbaaKP89Kc/LS9/880357LLLkvXrl1z44031n6DAABQKII/AAAWyMSJE/OPf/yj/LhBgwZp3rx52rZtm2222SZ777131lhjjQUqa7vttsu1116bG264IS+99FL++9//Ztlll80WW2yRX//61+WALZl5n73zzjsv55xzTnmovUW999QxxxyTF154Ibfeemtefvnl8n2W+vTpM8fViuedd14GDRqUf/zjH3niiSey/PLLZ++9987hhx+e/ffff46yf/nLX2bkyJF58MEH8+ijj2aNNdaYa/C31FJL5brrrsstt9ySu+++O08++WQaNWqUtdZaK717984ee+xR/uK5trVp0ya33XZbbrjhhvzzn//Mo48+mubNm6dLly7Zc889y+FBbfjPf/5T5XGjRo3yve99L2uttVZ69uyZvfbaa45QYbvttsudd96Za665Jk8++WSGDRuWNm3apEePHtl///3LQ/BVWm211XL77bfniiuuyMMPP5yHH344a665Zq644oq88sorNQr+kmSDDTbI3/72twwaNCiPPfZYHnzwwbRu3To77bRT9t9//zm+4K/LdXnCCSekXbt2+dvf/paXX345U6dOzfLLL5/ddtstBx98cH74wx/WyuvMuv8nM4cmbNWqVX784x+nV69e2WWXXaoMdXvhhRfm2muvzb333pvhw4enUaNGWX311fPLX/4yv/71r7P77rvn9ddfz8svv1wOPk488cR89dVXGTFiRP7zn/9k1KhRtR78JdZvpf322y/LL798brjhhvK6WGWVVbLPPvvkN7/5Tf70pz/lxhtvzMMPP5wf/ehHC/UaDRo0yHnnnZeNN944t956ax5//PG0bNkyffr0Se/evbPjjjsudP0XRf/+/bPRRhvlpptuyssvv5zJkyenbdu2OeSQQ7L//vunZcuWVZav6TYzL61bt84tt9ySK6+8Mo899lj+/e9/p0mTJll99dXTp0+f7LvvvvO8ch4AAOalQakubqoAAABAnfjss8+yySab5IknnigP9UhxWL8AALBkc48/AACAJcijjz6a73//+2ndunVdV4VvgfULAABLNsEfAADAEmL8+PEZOHBgTjnllCrDclIM1i8AAGCoTwAAgCXIV199lWWWWaauq8G3xPoFAIAlm+APAAAAAAAACsBQnwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAA9VipVKrrKgAAALCYEPwB1dpnn33Svn37Kv822mij7Lvvvhk+fHitvEb79u1z6aWX1kpZAAD1QW32oT766KP07ds3H374YXlaz549c/zxx9d2tQEACuP444+foz82679//etf+lRAoTWu6woA9dc666yT0047LUkyffr0fPbZZxk8eHAOOOCADBkyJGuttVYd1xAAoP6prT7Uf/7znzzyyCPfZlUBAApphRVWyGWXXVbtvNVXX/27rQzAd0zwB8xVixYtsv7661eZ9uMf/zjdu3fPkCFD0r9//7qpGABAPaYPBQBQt5o2bTpHfwxgSWGoT6BGmjdvnmbNmqVBgwblaQ888EB69+6djh07ZtNNN81ZZ52ViRMnVnne8OHD84tf/CKdO3fO9ttvn//85z9V5n/wwQdp3759rr/++uywww7p3Llz7rzzziTJSy+9lAMOOCDdunXLBhtskIMPPjhvvPFGled//PHHOeGEE7LlllumU6dO2X333fPggw9WWaZ9+/YZPHhwjj/++Gy44Ybp2rVrzjrrrHz99dc555xzsskmm6Rbt2456aSTMnny5PLzHn/88fz85z9Ply5dsvHGG+eQQw7JW2+9VSvtCQAsGWbvQ02fPj2DBg1Kr1690qlTp6y//vrZc8898+STTyZJhgwZkhNOOCFJsvXWW1cZimrq1KkZOHBgNt1006y//vrp06dP3n333fL8448/Pr/+9a9z2mmnZYMNNshOO+2U6dOnZ/Lkybn88suzww47pGPHjtluu+0yaNCgzJgxo0pd77vvvvTu3TtdunTJpptumlNPPTXjx48vz7/00kuzww47ZOjQoenVq1c6duyYn/70p3n++efzwgsvZI899kinTp3Sq1evPPHEE+Xnff311zn99NOzxRZbZL311ssOO+yQa6+9tvYbGwCghr788ssMGDAg22yzTTp27JhevXrljjvuqLLM9OnTc/PNN2eXXXZJp06dstVWW+W8886r8h3S3PphvlsCvkuu+APmqlQqZdq0aeW/P//88/z5z3/OlClTsttuuyVJ/vGPf+TYY4/NLrvskqOOOioffvhhLrzwwrz55pu5/vrr06BBg7zyyivp06dPNtlkk1xyySX54IMP0q9fv2pf89JLL81JJ52UFi1apHPnznnyySdz4IEHplu3bvnDH/6QyZMn5+qrr86ee+6Zv/71r1ljjTXyySefZPfdd0+zZs1y9NFHp3Xr1hkyZEgOO+ywDBw4MD/5yU/K5Z977rnp1atXLrvssjz88MP585//nH//+9/p0KFDzjvvvLzwwgu59NJL86Mf/SgHHnhg3n///Rx66KHZbbfd0q9fv3zxxRe54IIL0rdv3wwdOjQNG/r9BABQ1YL0oc4777wMHjw4xxxzTNq3b58xY8bk8ssvz29/+9sMGzYsW221VQ455JBceeWVueyyy9K+ffty+ffdd18222yz/PGPf8wnn3ySAQMG5Oijj86QIUPKyzzzzDNp1qxZLr/88kycODENGzbMwQcfnBdeeCGHH354OnTokKeeeioXXXRR3n///Zx55plJkiuuuCKXXHJJ9tprrxx99NF5//33c/HFF+eFF17IX//61yy11FJJZt5/8I9//GOOPvroLL300jnzzDNz5JFHpkmTJjn44IPz/e9/vzx/2LBhWWqppfKHP/wh//73v9O/f/8sv/zyefTRRzNw4MC0atWq3C4AALWlsj82q0aNGlX5MXsy88dJe+21Vz799NMceeSRWXXVVfPAAw/kpJNOyieffJKDDz44SXLqqafm73//e37zm99ko402yquvvprLL788r732Wq655ppyubP3w0aPHu27JeA7JfgD5urpp5/OuuuuO8f0fv36ZY011kipVMp5552XzTffPOedd155/uqrr5799tsvjzzySLbaaqtcffXVadOmTa688so0adIkSdK6descffTRc5S94447Vvni54gjjshqq62WQYMGpVGjRkmSzTbbLNtuu20uueSSXHzxxbn++uszbty43H///Vl11VWTJFtuuWX222+/DBw4ML169Sp3otZcc838/ve/T5J07do1t99+e6ZOnZrzzjsvjRs3zmabbZb7778/zz33XJJkxIgR+frrr3PQQQdlpZVWSpKsvPLKefDBBzNx4sS0aNFikdsZACiW+fWhkpmjFRx99NHZZ599yvObNWuWI444Iv/973+z/vrr54c//GGSZO21107btm3Ly6200kq54ooryv2qd999N1deeWUmTJhQ7ptMmzYtv//977PyyisnSR555JH85z//yQUXXJCdd945SbLppptmqaWWysUXX5x99903K664Yq688sr8/Oc/z6mnnlp+vYqKiuy999658847s/feeydJJk2alNNOOy1bbLFFkuTNN9/M+eefn7PPPju77757kmTixIk58sgj8/bbb2fttdfO8OHDs+mmm5Zfv1u3bll66aXTpk2bRW1yAIAqPvzww2r7Y8ccc0z69u1bZdqQIUPy+uuv59Zbb02XLl2SJJtvvnmmTZuWK664InvuuWc++eST3HHHHVWev+mmm2bFFVfMcccdl0cffTRbbrllkjn7Yffee6/vloDvlOAPmKt11103Z5xxRpKZv1b/4osv8uijj+bCCy/MxIkT85Of/CQfffRRDjrooCq/otp4443TokWLPP7449lqq63y7LPPpkePHuUvp5Jku+22Kwd5s1p77bXLf0+cODEvvfRSDj/88CrLLrvssunRo0ceeeSRJDOHEe3SpUs59Kv0k5/8JCeccEJGjRqVNddcM0nKHbhk5q+8WrdunXXXXTeNG39zOGzVqlW+/PLLJEnnzp3TrFmz7L777tlhhx2yxRZbpFu3bunUqVPNGxQAWCLMrw919NFH5/zzz0+SjBs3LqNGjcq7776bhx9+OEkyZcqUeZbfqVOnKv2qylDwiy++KH9x1KpVq/KXTcnM/lLjxo2zww47VCnrJz/5SS6++OIMHz48bdu2zZQpU9KrV68qy2y00UZZddVVM3z48HLwlyQbbLBB+e/ll18+ycy+U6VWrVqV65XMDPpuvfXWfPTRR9lyyy2z5ZZb5rDDDpvnewUAWBgrrLBCrrzyyjmmz9o/qjR8+PCsuuqqVb4zSmb2k+644468+OKL+fDDD5Ok/AOmSjvvvHNOOOGEPPXUU+Xgb/Z+mO+WgO+a4A+Yq2WWWSYdO3asMm2zzTbLxIkTc80112TTTTdNkpxxxhnlL7dm9fHHHydJxo8fn9atW1eZ17hx4zmmJcnSSy9d/vvLL79MqVQqf5E0q+WXX74czo0fPz4/+MEPql0m+ebLpiTV/opq1tecXdu2bXPTTTdl0KBBueOOO/KXv/wlyy67bPbaa68cddRRcwwPAQAwvz7Uvvvum9GjR+eMM87ISy+9lObNm2fNNdfMKquskmRmWDgvs/ddKkc2mPVefcsss0yVZSr7Y7P/8GqFFVZIMrPfVXkfv/n1vSpV169q3rz5XOt90kknZeWVV87dd9+dM888M2eeeWa6dOmS008/PR06dJjr8wAAaqpp06Zz9MfmZvz48eU+0axm/V6psp80+3KV32/N2k+avR/muyXguyb4A2psvfXWy+23315+fNxxx6Vr165zLNeyZcskM3/p9Mknn1SZVyqVyp2mufne976XBg0azPHcJBk7dmz5V+QtW7bM2LFjq10mSbUBY0106tQpl112WaZMmZJnn302t912W6666qp06NAhO+644yKVDQAsOSr7UG+99VaOOOKItG/fPvfee2/atWuXhg0b5pFHHsn999//rbx2y5Yt89lnn2X69OlVwr/KH2q1bt263Hf75JNP0q5duyrPHzt2bLU/tKqJpk2b5pBDDskhhxyS0aNH5+GHH84VV1yRY445Jvfee+8ilQ0AsLBatmyZd999d47ps36vVBnsjR07tsqIU1OnTs1nn3023++efLcEfJfcORSosREjRqRRo0Zp165d2rRpkw8++CAdO3Ys/1tppZVy/vnn59VXX02SdO/ePY8++mgmTZpULuOxxx7L1KlT5/k6Sy+9dNZbb73885//zPTp08vTv/zyywwbNiwbbrhhkplDiz7//PPlYRcq3X333VlhhRWy2mqrLfR7veGGG9KjR49MmTIlTZs2Tffu3XPmmWcmSUaPHr3Q5QIAS57KPlSzZs3y+eefZ999982aa65ZvmLv0UcfTfLNlXuV02tD165dM23atPzrX/+qMv3uu+9Okmy44Ybp3LlzmjZtmnvuuafKMs8880xGjx5dZWjPmvr666+z/fbb57rrrkuSrLLKKtl7772z884761MBAHVq4403zocffpjnn3++yvS77747TZo0SadOnco/eJ/9x0r33ntvpk+fXv6Oqjq+WwK+a674A+ZqwoQJeeGFF8qPp0yZkoceeih33nlnfvGLX2T55ZfP0UcfnVNPPTWNGjVKjx498sUXX+SKK67ImDFjyjdRPuyww/LAAw/kgAMOyIEHHphx48bloosuqnJvmrk55phjcsABB6Rv377Za6+9MnXq1AwaNChTpkwp3xNm//33z91335399tsvhx9+eFq1apW77rorTz75ZP7whz8s0pdmm2yySc4777wcdthh+dWvfpVGjRrl1ltvTdOmTdOjR4+FLhcAKK759aHatWuXFi1a5Kqrrkrjxo3TuHHj3H///bnjjjuSpPxjqWWXXTZJMnTo0GyxxRZZY401FrpOlfeSOfnkkzNmzJh06NAhw4cPz5/+9Kf87Gc/K98PuW/fvrn88svTpEmT9OjRIx988EEuvvjirLnmmvnZz3620K+/1FJLZd11181ll12WJk2apH379nn77bfzt7/9Ldtvv/1ClwsAsKh69+6dW265JYcddliOPPLItG3bttx3O/zww7Pssstm2WWXzc9+9rNccsklmTRpUjbeeOO89tprueyyy9KtW7dsvvnmcy3fd0vAd03wB8zVq6++ml/84hflx82aNcsPf/jDHH300TnggAOSJHvssUeWWWaZXHPNNbntttuy9NJLZ4MNNsh5551XHg5q9dVXz0033ZQ//vGPOfroo9OmTZv0798/f/zjH+dbh+7du+f666/PJZdckn79+qVp06bZaKONcs4552SttdZKMnN89cGDB+f888/PWWedlalTp6ZDhw654oorsvXWWy9SG3To0CFXXXVVLr/88vTr1y/Tp0/Peuutl+uuu26OIbAAAJL596GaNGmSK664IgMHDsxvf/vbLLPMMll77bVz00035Te/+U2eeeaZ9OzZM926dcuPf/zjnH/++XniiScyaNCgha5TgwYNcvXVV+eSSy7JDTfckHHjxqVt27bp169f9t9///JyRxxxRJZffvncdNNNue2229KqVavssMMOOeqoo+Z5X+QF8fvf/z4XXXRRrrvuuowdOzZt2rTJ7rvvnt/+9reLVC4AwKJo3rx5brzxxpx//vm5+OKLM2HChLRr1y5nn312dt999/JyZ599dlZbbbXceeed+dOf/pQVV1wx++67bw499NB5/ujcd0vAd61BaX53jgcAAAAAAADqPff4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACiAxguy0IwZMzJt2rQ0bNgwDRo0+LbrBABQ75RKpcyYMSONGzdOw4Y1++2UvhQAsKTTlwIAWHg16UstUPA3bdq0vPTSS7VSOQCAxVnHjh3TtGnTGj1HXwoAYCZ9KQCAhbcgfakFCv4q08OOHTumUaNGc11u+vTpeemll+a7HPOmHWuPtqwd2rF2aMfaoy1rh3asmcr2qukv1JMF70sVjW2setqletqletpl7rRN9bRL9bTL3H1XbbM49KVsJ4sH66n+s44WD9ZT/WcdLR7qY19qgYK/ymEUGjVqtEAVX9DlmDftWHu0Ze3QjrVDO9YebVk7tGPNLMzwUjXtSxXNkvq+50e7VE+7VE+7zJ22qZ52qZ52mbvvqm0Wh76U7WTxYD3Vf9bR4sF6qv+so8VDfepL1fxnVgAAAAAAAEC9I/gDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAATSu6wrUR2PGjMn48eMXqYyWLVtmpZVWqqUaAQBQH9RGP3H69On54IMPsvTSS6dRo0a1VLOFp98KAN/47LPP8vrrr9eLz2iqV9/6Usxp+vTp+eyzz+q6GgBLLMHfbEaOHJlDDz0sM2ZMX6RymjRtlptu/IsvUQAACmLMmDH51T77ZuqUyXVdlVql3woAM40ZMyZ/POecTJs6ta6rAou9xk2aZJ111skqq6xS11UBWOII/mbz/vvvZ8aM6fl61Q0yvWXbhSqj4dfjk1GPZPz48b5AAQAoiPHjx2fqlMmZ1G7LzFiqZZ3WpeGkz9P87Ucz6UdbZEbzVgtfjn4rAJSNHz8+06ZOrRef9cxdbfWD+PY0/Hp8mv//PqbgD+C7J/ibi1LTFpmxzPJ1XQ0AAOqZGUu1rDf9xBnNW9WbugBAUdSnz3rmTj8IAKrXsK4rAAAAAAAAACw6wR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKoJDB3+eff17XVVhkEyZMqOsqAABLsCL0p2BR2AcAAABYEPUtzylc8Dd69Oj07t07o0ePruuqLLTRo0fn9NNPX6zfAwCw+CpCfwoWhX0AYMk0duzYJEmDKV/VcU0AgMVFfcxzChf8TZgwITNmzKh3CWtNTJgwIaVSabF+DwDA4qsI/SlYFPYBgCXTpEmTkiQNpk+t45oAAIuL+pjnFC74AwAAAAAAgCWR4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAjeu6ApW22mqrOaYNGzbsO69HESxqW95111256KKLyo+POuqo7LrrrjWqw6hRo3LggQdmxowZadiwYa655pq0a9dugZ8/bty49OvXL59++mnatGmTCy64IMstt1yN6jBp0qRceeWVGTlyZDp06JBDDjkkzZs3X+DnT58+PSNGjMi4ceOy3HLLpVOnTmnUqFGN6gDAt8ux+huTJk3K1VdfnQ8++CBt27bNQQcdVKPPPaB21cb5TW2dI/Xv3z9PPfVU+XG3bt1yzjnn1Licvn375vXXXy8/rqioyKBBg2pUxvDhw3PccceVHw8cODBdu3atcV1GjBiRI488svz4kksuSadOnWpUxqKes1QaPXp0+vbtm0mTJqV58+YZNGhQVllllRqVMWHChAwYMCCjR4/OKquskhNOOCEtWrSocV0qz6PGjBmTlVZaaaHOo5JkypQp+fvf/16uz09/+tM0bdr0Oy+jNsupL2qr71Jb5UyZMiV/+9vfMmLEiLz55pv52c9+tli3LwAA9ST4q+6EtnK68K9mFrUtq3v+RRddlIsuumiB18XsZcyYMSN9+vRJsmBfVPTu3Tvjxo0rP/7yyy/Tu3fvLLfcchkyZMgC1eGkk07K448/Xn78+uuv5+67786mm26as88+e77Pf/TRR3PFFVfko48+Kk9beeWVc+ihh2aLLbZYoDoA8O1yrP7G7J97zzzzTO66664F/twDaldtnN/U1jlSdeU89dRTtVLO66+/vsjvqTIEXNS6VIaA39U5S6Vtt902U6dOLT+eMGFC9tprrzRp0iRDhw5doDIOPvjgjBw5svz47bffTq9evdKhQ4dcddVVC1yX2c+j3nnnnRqfRyXJVVddldtvvz3Tp0+vMm2PPfbIwQcf/J2VUZvl1Be11XeprXJmb9/HH388gwYNWmzbFwCAmep8qM+5ndAu6Hy+sahtOfv82X+luiDrYtZlmjRpkj59+qRJkyYLXMasJ6vrrLNOzj///KyzzjpJZv56tXfv3vOtQ+WXn02aNMmee+6ZE044IXvuuWeaNGmSxx9/PCeddNI8n//oo4/mtNNOS7t27XL55Zfnvvvuy+WXX5527drltNNOy6OPPjrfOgDw7XKs/sasn3t77bVXbrrppvKXzgvyuQfUrto4v6mtc6T6VM7sy3Tv3r1W6rLhhhsuUl0W5pyl0qyh33LLLZcTTjihfHXd1KlTs+222863jMrQr0GDBtluu+1yzTXXZLvttkuDBg0ycuTIBQ5fZj2PWnvttXPQQQdl7bXXTrLg51HJzCDo1ltvzbLLLptjjz02d955Z4499tgsu+yyufXWWxcoiKyNMmqznPqitvoutVXOrO3br1+/nHbaaenXr99i274AAHyjToO/2U+ohg0bVv43r+WY06K25V133VX++6STTsqwYcNyyy23ZNiwYVW+MJx1udmNGjWq/Pctt9ySoUOHZt99983QoUNzyy23VLvcrMaNG1c+Wb3nnntyxRVXZMMNN8wVV1yRe+65Z45lqjNp0qTyl5/33ntvfvOb32T55ZfPb37zm9x7773lL0EnTZpU7fOnT5+eK664It27d89ZZ52VddddN0svvXTWXXfdnHXWWenevXuuvPLKKr84BeC75Vj9jdk/9/r27Zu2bdumb9++C/S5B9SuWfvazZo1q9Inb9asWbXLzauMlVdeOQ8++GDOP//8PPjgg1l55ZUXqIxk5vCelXbdddcqdZl1GP9Zl6tO3759y39vueWWVcrZcsstq11udsOHDy//fckll2TYsGEZMGBAhg0blksuuaTa5aozYsSI8t+DBg3Kgw8+mL322isPPvhglSFHZ11udot6zlJp9OjR5dBvyJAhGTJkSLbffvvy38nM8G/06NFzLWPChAnl0O+f//xnTjzxxKy55po58cQT889//rMc/k2YMGGedZn9POqyyy5LRUVFLrvssgU+j0pmDvl4++23p3Xr1rn99tvTq1evtGnTJr169aoyfcqUKd9qGbVZTn1RW32X2ipn9vbdeeeds+yyy2bnnXdeLNsXAICq6sVQn8mcw6kMGzZskQK/d999d6Ge97///W+hX7O26vDee+8t0usuTFvOek+/2X+Zuu2225aHCbvooovmer+/Aw88MMnMX83OfrXgKquskiZNmmTq1Kk58MAD89BDD83x/H79+iWZeaXf7PezaNGiRdZee+289tpr6devX2644YZq63D11VcnSfbYY480bdq0yglP06ZNs/vuu2fw4MG5+uqrc9RRR83x/BEjRuSjjz7KKaeckoYNq+biDRs2zN57753DDjssI0aMSJcuXaqtAwDfLsfqb8z+uTerBfncm5+F7ctUmj59ej744IMsvfTShbj34qK2R31WH95bfdpeaqM97r///jke1/T85tZbb63Sn7311lsXuIxZ7+k3+/5/1FFHlX/QN+ty1Zn1nn5nnHFGlXlnnHFGuT6zLje7We/pN/t9+GZ9fNxxx81zmM1Z7+lXUVFRpW0qKiqqLDe3chb1nKVSZdC53HLLzXEPvcpp48aNS9++fcvh2+wGDBiQZOb51lJLLVVl3lJLLZVtttkmQ4cOzYABA+Y5bPPs51GztsuCnkclyd///vdMnz49BxxwQBo3rvpVQePGjdOnT5+cf/75+fvf/5499tjjWyujNsupL2qr71Jb5czevrNuM4tj+wL113vvvVfn/Trmrj71v6medbR4WNQ859tQb4K/2lYf7mdTH+pQU3O7Cf0KK6yQsWPHzvO5M2bMSJLss88+1c7fc889c+ONN5aXm92nn36aJDnggAOqnb///vvnuOOOKy9XnQ8++CBJstNOO1U7f6eddsrgwYPLy82u8lewP/rRj6qdXzl9fr+WBeDb41j9jUX93JufxbEvw8KxrvkuzD68Z6WNNtoozzzzzAKXs/3221c7vWfPnvMM65JFP2epVHkl9UEHHVTt/D59+uS8886b5xXXlVcD/vznP692/h577JGhQ4fO86rBpHbOo2atz9zWU+X0edWnNsqozXLqi9rqu9RWOUVrX6D+qvyRCwDfrcIGfyeddFJWW221Gj/vySefzHXXXVendXj77bfr7INxbh37+YV+ycxfGM6YMSM33nhj9t133znm33rrreXlqtOmTZt8+eWXufbaa+e4V0eSXH/99eXl5qZt27Z55plnct9991U73NB9991XXq46lb/Wffvtt7PuuuvOMf/tt9+ushwA3z3H6m8s6ufe/CxsX6bS9OnT8/rrr6eioqIQv0589913CxuQLeq6rg31aXsp8rquS0888US102sS+iUzr5484YQT5pg+v9AvWfRzlkrNmzfPhAkTcvXVV1cbRFaeUzZv3nyuZayyyip5++2389e//jUnnnjiHPNvv/328nLzUhvnUbO+zhNPPJFevXrNMb9y/c2rPrVRRm2WU1/UVt+ltsopWvsC9dcJJ5ww1x8rUPfqU/+b6llHi4e6zHPmpt4Ef1tttVWV4VgW9b5+q622WpXhXhZUbQ5ztLB1WNR7Ei1MWx511FHl4T6HDh1aZbjPoUOHVllubq655pr06dOnfC+LWU8SZr0HxjXXXFPt8y+44IL07t07r776aiZMmFBluM8JEybktddeKy83NwcddFDuuuuu3H777dlvv/2qHBCnTJmSO+64o7xcdTp16pSVV145N998c84666wqJ/wzZszIzTffnO9///tzDFEEwHfHsfobs3/uzTrc54J87s3PwvZlKk2fPj0TJ050krIYWNR1XRuKtr1sv/32VYb7nNtVavOy55575uabb67yeEF169atPIznRRddVKUfP+sw/926dZtnORUVFeVhPE877bQqw32edtppVZabm4EDB5aH+xwxYkSV4/Os9+MbOHDgPOtyySWXlIf7fP3117PGGmuU58061Ois9w2c3aKes1QaNGhQ9tprr/K982YNWma9n96s9x6c3QknnJBevXpl6NCh6devX5XhPr/++us88MAD5eXmZfbzqFnDxgU9j0qSn/70p7nqqqty7bXXZocddqgyxOa0adNy3XXXpVGjRvnpT3/6rZZRm+XUF7XVd6mtcmZv3wYNGpTnLY7tC9RfP/zhD+u8j8ncFa3/XUTW0eJhUfOcb0OdBn+z33tubgHVvO7zwEyL2pa77rpr+QuAs88+O2effXa1w3vO7f5+SdKuXbvy33vttVeaNGmSPffcM7feemv5BHr25WY1670wevXqlbXXXjv7779/rr/++vLJanX30JhV8+bNs+mmm+bxxx/PzjvvnN69e2f11VfPoEGDMmTIkEydOjWbbrrpXH9526hRoxx66KE57bTTcvLJJ2fvvffOj370o7z99tu5+eab88QTT+SMM85woAWoQ47V35j9c2/33XfPTjvtlPvuuy933HHHfD/3gNo1a5988uTJC3V+M2sZH330Ubbeeusal5Ek55xzTrmcu+66q3xPv+qWm5dBgwaVy3nkkUfm+p7mFXB17dq1/HdlcFfd8J6zLledWcOMyqucO3XqlGOOOWauy81uUc9ZKs16P8DevXtnueWWS58+fXLdddeVQ7/q7iM4qxYtWqRDhw4ZOXJkdtxxx2yzzTbZY489cvvtt+eBBx5IqVRKhw4d5rj/+exmP4/q0KFDNttss/zpT3/KyJEjqywzL02bNs0ee+yRW2+9NXvssUf69OmT7t2754knnsh1112Xzz77LHvuuecc95St7TJqs5z6orb6LrVVzuztu99+++V73/te7rnnntxwww2LXfsCAFBVnV/xN3tgVd18FsyituXsz5899FuQdTFrGVOnTs2NN95YozKGDBmS3r17Z9y4cXnttdfKvwxOZp6sDhkyZL51OPvss3PSSSfl8ccfz2233VZl3qabbjrfYZu22GKLnHHGGbniiity2GGHlad///vfzxlnnJEttthivnUA4NvlWP2NWT/3Bg8enMGDB5fnLcjnHlC7auP8prbOkepTObOXMXvot7B1mfWKwYWpy8Kcs1SqHCll6tSpGTduXM4777zyvCZNmlQZOWVurrrqqhx88MEZOXJkhg4dWuU5HTp0yFVXXbVAdZn1PGrkyJHlwC9Z8POoJDn44IOTzBxm9Pzzzy9Pb9SoUfbcc8/y/G+7jNosp76orb5LbZUza/teeOGF5emLa/sCAPCNOg/+krmfSAr9am5R23LYsGG56667qgz/c9RRR83zSr/qyhg1alQOPPDAzJgxIw0bNsw111wz31/NVhoyZEjGjRuXfv365dNPP02bNm1ywQUX1OheTWeffXYmTZqUK6+8MiNHjkyHDh1yyCGHLPAVD1tssUU23XTTjBgxojx0T6dOnZaIq0cAFheO1d+o/Ny7+uqr88EHH6Rt27Y56KCDXOkHdaQ2zm9q6xxp2LBh6d+/f3nYz2Tm8J7zu9KvunL69u1bZUjNioqKeV7pV10Zw4cPr/LjvoEDB873Sr/qyhkxYkT56sFk5vCeNRnieVHPWSoNHTo0o0ePTt++fTNp0qQ0b948gwYNqtG90a666qpMmDAhAwYMKA8/esIJJ8z3Sr/ZzXoeNWbMmKy00ko1Po9KZgZCffr0yd///vdyfX7605/W6Oqv2iijNsupL2qr71Jb5VS279/+9rfyMLw/+9nPFtv2BQBgpnoR/CVCvtq0qG2566671ijoq067du3y0EMPLfTzl1tuudxwww2LVIfmzZvnt7/9bV544YWsv/76NT4JatSoUbp06bJIdQDg2+VY/Y3mzZvP8168wHerNs5vhg0blunTpy90f7ZSTUO+ualJyDc3Xbt2rZW26dSpUx588MFFaptFPWeptMoqq+See+5ZpDJatGhRK1doL7fccrn22msXeZupHApyUdRGGbVZTn1RW32X2iqnadOm2X333bPmmmsu0jYDAED90XD+iwAAAAAAAAD1neAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAIUL/lq0aJGGDRumRYsWdV2VhdaiRYs0aNBgsX4PAMDiqwj9KVgU9gGAJVPz5s2TJKVGTeq4JgDA4qI+5jmN67oCtW2VVVbJkCFD0qpVq7quykJbZZVVcvrpp2eVVVap66oAAEugIvSnYFHYBwCWTCussEKSpNR0mTquCQCwuKiPeU7hrvhLUogT9PqUDgMAS54i9KdgUdgHAAAAWBD1Lc8pZPAHAAAAAAAASxrBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAAqgcV1XoL5qMGVCGn71yUI9t+HX42u5NgAA1Bf1oa/XcNLnVf5f6HLqwXsBgPrG52P9Vlv9IL499iGAuiX4m80PfvCDNGzYKEt9+Fzy4XMLXU6Tps3SsmXLWqwZAAB1qWXLlmnStFky6pG6rkpZ87cfXeQy9FsBYKaWLVumcZMmaV6PPuuZu9roB/HtadykiT4mQB0R/M2mQ4cOGTz4lowfv2i/TGnZsmVWWmmlWqoVAAB1baWVVspNN/5lkfuJ06dPz+uvv56Kioo0atSolmq38PRbAWCmlVZaKcf3759VV121XnxGU7361pdiTtOnT8+HH36ojwlQRwR/1VhppZV8MAEAMIfa6CdOnz49EydO9GUVANRDrVu39hldz+lL1X+V6wiAutGwrisAAAAAAAAALDrBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAAqg8YIsVCqVkiTTp0+f53KV8+e3HPOmHWuPtqwd2rF2aMfaoy1rh3asmcp2quwX1cSC9qWKxjZWPe1SPe1SPe0yd9qmetqletpl7r6rtlkc+lK2k8WD9VT/WUeLB+up/rOOFg/1sS/VoLQAS02ZMiUvvfTSotcMAGAx17FjxzRt2rRGz9GXAgCYSV8KAGDhLUhfaoGCvxkzZmTatGlp2LBhGjRoUGsVBABYXJRKpcyYMSONGzdOw4Y1Gy1dXwoAWNLpSwEALLya9KUWKPgDAAAAAAAA6rea/cQKAAAAAAAAqJcEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAqi14G/y5Mk58cQTs9FGG2WzzTbLddddV1tFL1GGDh2a9u3bV/l35JFH1nW1FhtTpkxJr1698tRTT5Wnvf/++9lvv/2y/vrrZ6eddsq///3vOqzh4qO6tjzrrLPm2D5vuummOqxl/TVmzJgceeSR6dq1azbffPMMGDAgkydPTmKbrKl5taVtcsG9++67OeCAA9KlS5dstdVWueaaa8rzbJN8W6r7LFmSzet4tqSb1zGKmfr27Zvjjz++rqtRLzhnmrspU6bkjDPOyMYbb5wf//jHueCCC1Iqleq6WnVqyJAhc2wv7du3T4cOHeq6anXuf//7Xw466KBssMEG6dmzZ2644Ya6rtJ3akH6Ka+++mr22GOPdO7cObvttltefvnl77CGJAu2ng455JA59vGHH374O6zlkqkmfVv7Ut2pyXqyL9WNmpwL2ZfqTk3WU33YlxrXVkEDBw7Myy+/nD//+c8ZPXp0+vfvn1VWWSU77LBDbb3EEuHNN99Mjx49cuaZZ5anNWvWrA5rtPiYPHlyjjnmmLzxxhvlaaVSKYcddlgqKipy55135oEHHsjhhx+e++67L6usskod1rZ+q64tk+Stt97KMccck5/97GflaS1atPiuq1fvlUqlHHnkkVl22WVz8803Z/z48TnxxBPTsGHDHHfccbbJGphXW/bv3982uYBmzJiRvn37pmPHjvnb3/6Wd999N/369ctKK62UXr162Sb5Vszts2RJNb/j2ZJsXseoXXbZpa6rVy/ce++9eeSRR6p83i3JnDPN3VlnnZWnnnoq1157bb766qscffTRWWWVVbLnnnvWddXqzE477ZTNN9+8/HjatGn59a9/na222qruKlVPHHXUUVlllVUyZMiQvPnmmzn22GOz6qqrZtttt63rqn3rFqSfMnHixPTt2ze77LJL/vjHP2bw4ME56KCDMnTo0Cy99NLfYW2XXAvan3zrrbdy7rnnpnv37uVpLVu2/Lart0SrSd/WvlR3anoOYl/67tXkXMi+VHdqes5aH/alWrnib+LEibn99ttz0kknZd111822226bAw88MDfffHNtFL9Eeeutt1JRUZEVVlih/G/ZZZet62rVe2+++WZ+/vOf57333qsy/cknn8z777+f3//+91ljjTVy0EEHZf3118+dd95ZRzWt/+bWlsnM7XOdddapsn02b968DmpZv40aNSovvPBCBgwYkLXWWisbbbRRjjzyyNxzzz22yRqaV1smtskF9cknn2TttdfO6aefntVXXz1bbrllunfvnmeffdY2ybdiXp8lS6r5Hc+WZPM6RpF8/vnnGThwYDp27FjXVak3nDNV7/PPP8+dd96ZM888M506dUr37t3Tp0+fvPjii3VdtTq11FJLVdlW7r777pRKpRx77LF1XbU6NX78+Lzwwgs55JBDsvrqq2ebbbbJ5ptvnieeeKKuq/atW9B+yn333ZdmzZrluOOOyxprrJGTTjopyyyzTP71r399RzVdsi3oepoyZUo++OCDdOzYscq+3rRp0++opkummvRt7Ut1pybryb5UN2pyLmRfqjs1WU/1ZV+qleBv5MiRmTZtWrp06VKetuGGG+bFF1/MjBkzauMllhhvvfVWVl999bquxmJn+PDh6datW2677bYq01988cWss846VX71sOGGG+aFF174jmu4+JhbW06YMCFjxoyxfS6AFVZYIddcc02WX375KtMnTJhgm6yhebWlbXLBrbjiirnooovSokWLlEqlPPvss3n66afTtWtX2yTfirl9lizJ5nU8W9LN6xhFcs455+SnP/1p1lxzzbquSr3hnKl6zz77bFq0aFFl3+nbt28GDBhQh7WqXz7//PP86U9/yjHHHLPEf5G51FJLpXnz5hkyZEimTp2aUaNG5bnnnsvaa69d11X71i1oP+XFF1/MhhtumAYNGiRJGjRokA022EA/+TuyoOtp1KhRadCgQX7wgx98RzUjqVnf1r5Ud2qynuxLdaMm50L2pbpTk/VUX/alWhnqc+zYsWndunWVjvPyyy+fyZMn5/PPP89yyy1XGy9TeKVSKW+//Xb+/e9/5+qrr8706dOzww475Mgjj1ziT0rmZ6+99qp2+tixY7PiiitWmdamTZt89NFH30W1Fktza8u33norDRo0yFVXXZVHH300rVq1yv7772/IqWosu+yyVYYTmjFjRm666aZssskmtskamldb2iYXTs+ePTN69Oj06NEj22+/ff7whz/YJql1c/ssWZLN63jGN2Y/Ri3pnnjiiTzzzDP5xz/+kdNPP72uq1MvOGeau/fffz+rrrpq7rrrrlx11VWZOnVqevfunUMOOSQNG9bKb34Xe4MHD86KK67oliSZOTzuqaeemjPPPDN/+ctfMn369PTu3Tt77LFHXVftW7eg/ZSxY8fO8aOLNm3aGMb8O7Kg62nUqFFp0aJFjjvuuAwfPjwrr7xyjjjiiGy55Zbfcg2XbDXp29qX6k5N1pN9qe7N71zIvlQ/zG891Zd9qVZ6/5MmTZrjJKvy8ZQpU2rjJZYIo0ePLrflRRddlP79++cf//hHBg4cWNdVW2zNbdu0XdZc5a8V2rVrl0GDBmWPPfbIKaeckqFDh9Z11eq9c889N6+++mqOPvpo2+QimrUtbZML55JLLslVV12V1157LQMGDLBNQh2Z9XjGN2Y/Ri3JJk+enNNOOy2nnnpqllpqqbquTr3hnGnuJk6cmHfffTe33nprBgwYkP79++fGG2/MDTfcUNdVqxdKpVJuv/32/OpXv6rrqtQbb731Vnr06JHbbrstAwYMyL/+9a/cfffddV2tekM/efEwatSofP3119lss81yzTXXZMstt8whhxySl156qa6rtkSZV9/WvlR/zGs92Zfq3vzOhexL9cP81lN92Zdq5Yq/Zs2azbGBVT52krrgVl111Tz11FNp2bJlGjRokLXXXjszZszI7373u5xwwglp1KhRXVdxsdOsWbN8/vnnVaZNmTLFdrkQdt111/To0SOtWrVKknTo0CHvvPNOBg8evETc/H1hnXvuufnzn/+cCy+8MBUVFbbJRTB7W6611lq2yYVQeY+oyZMn59hjj81uu+2WSZMmVVnGNgnfrtmPZ3xj9mPUcccdt8RexXXZZZdlvfXWq/IrbZwzzUvjxo0zYcKEnH/++Vl11VWTzAxKBw8enD59+tRx7ereSy+9lDFjxmTnnXeu66rUC0888UTuuOOOPPLII1lqqaXSsWPHjBkzJldeeWV+8pOf1HX16oW5fdeln1y/HHroodlnn33SsmXLJDPPC1955ZX89a9/dX/c78j8+rb2pfphfuvJvlT35ncuZF+qH+a3nurLvlQrV/yttNJK+eyzzzJt2rTytLFjx2appZZyk/UaatWqVXmc3iRZY401Mnny5IwfP74Oa7X4WmmllfLJJ59UmfbJJ5/MMawd89egQYNywFKpXbt2GTNmTN1UaDFw5pln5vrrr8+5555bvvTbNrlwqmtL2+SC++STT/LAAw9Umbbmmmtm6tSpWWGFFWyT8B2q7ni2pJvXMWpJvgfivffemwceeCBdunRJly5d8o9//CP/+Mc/qtxXfUnlnKl6K6ywQpo1a1YO/ZLkRz/6Uf73v//VYa3qj8ceeywbbbRR+UuYJd3LL7+c1VZbrcqXheuss05Gjx5dh7WqX5y7LR4aNmw4x37tvPC7syB9W/tS3VuQ9WRfqhs1OReyL9Wdmqyn+rIv1Urwt/baa6dx48ZVbiT57LPPpmPHju4lUAOPPfZYunXrVuXKi9deey2tWrVyn8SF1Llz57zyyiv5+uuvy9OeffbZdO7cuQ5rtXi6+OKLs99++1WZNnLkyLRr165uKlTPXXbZZbn11ltzwQUXVPlVsW2y5ubWlrbJBffBBx/k8MMPr9LJePnll7Pccstlww03tE3Cd2Rux7Ml3byOUUtyH/jGG2/MP/7xj9x1112566670rNnz/Ts2TN33XVXXVetTjlnmrvOnTtn8uTJefvtt8vTRo0aVSUIXJKNGDEiG2ywQV1Xo95YccUV8+6771a5cmDUqFFp27ZtHdaqfuncuXOef/75lEqlJDOHi33uuef0k+uZ448/PieccEKVac4LvxsL2re1L9WtBV1P9qW6UZNzIftS3anJeqov+1KtpHLNmzfPrrvumtNPPz0jRozIAw88kOuuuy777rtvbRS/xOjSpUuaNWuWk08+OaNGjcojjzySgQMH5sADD6zrqi22unbtmu9///s54YQT8sYbb2TQoEEZMWJEdt9997qu2mKnR48eefrpp3Pttdfmvffeyy233JK77rrLsEHVeOutt3LFFVfkN7/5TTbccMOMHTu2/M82WTPzakvb5ILr2LFj1l133Zx44ol5880388gjj+Tcc8/NwQcfbJuE78i8jmdLunkdo5Zkq666alZbbbXyv2WWWSbLLLNMVltttbquWp1yzjR37dq1y1ZbbZUTTjghI0eOzGOPPZZBgwbll7/8ZV1XrV544403suaaa9Z1NeqNnj17pkmTJjn55JPz9ttv56GHHspVV12VffbZp66rVqfGjh1b/kHcDjvskC+++CJnn3123nzzzZx99tmZNGlSdtxxxzquJbOup549e5Z/KPPuu+/msssuy7PPPut+nt+y+fVt7Uv1Q03Wk32pbszvXMi+VD/UZD3Vm32pVEsmTpxYOu6440rrr79+abPNNitdf/31tVX0EuX1118v7bfffqX111+/tOmmm5YuvfTS0owZM+q6WouVioqK0pNPPll+/M4775T23nvv0nrrrVfaeeedS48//ngd1m7xMntbDh06tLTLLruUOnbsWNphhx1K999/fx3Wrv66+uqrSxUVFdX+K5VskzUxv7a0TS64jz76qHTYYYeVNthgg9Kmm25auvLKK8ufL7ZJvk2zf5YsqeZ3PFvSzesYxUz9+/cv9e/fv66rUS84Z5q7L774ovS73/2utP7665e6d++ubWbRsWPH0qOPPlrX1ahX3njjjdJ+++1X2mCDDUrbbLNN6frrr1/itpfZ+ykVFRWlO++8s/z4xRdfLO26666ljh07lnbffffSK6+8UhfVXOLNbz399a9/LW233Xal9dZbr/Szn/2sNHz48Lqo5hJlfn1b+1L9UNP1ZF+qG/M6F7Iv1R81WU/1YV9qUCr9/2tDAQAAAAAAgMWWG/ABAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8wWKiffv2OeaYY+aYPmTIkPTs2fNbec2ePXtmyJAh30rZC+LBBx/MFltskc6dO+exxx6rMu+DDz5I+/bty//WXnvtbLbZZjn33HMzbdq0hX7N448/Pscff/yiVh0AqCf0ob6dPtQTTzyRt956K8m325YAwOJJH+yxOebP2gf7f+3dfVTO9/8H8KfR3Ew3FLH45hquGeueVEqrtrOdJM7IUdZEbRpGnBK5L2zlnM0pCgtzMzWJsE2Ik/ub2ThZZHVdUgpr3QjFVdf1/v3hd33WtZKKr5u+z8c519H1fn8+7/fr/eqfl+t99f7UfYWGhgJ48fETUevR7kUHQERN99NPP2Hs2LFwdHR80aE8F7GxsXB2dsa0adNgbGzc4DUpKSno2bMn1Go1rl27hrlz58LQ0BCff/75c46WiIiIXlasoep72hoqICAAW7ZsQd++fZ9l6ERERNSKsAarLy4uDjY2NjptHTp0eB7hEdH/EP7FH9ErxMzMDJGRkVCpVC86lOfi7t27sLOzg5mZ2WOLoK5du6Jbt27o0aMHHB0dMWHCBOzfv/85R0pEREQvM9ZQ9bGGIiIiov821mD1GRoaolu3bjovfX395xwpEbV23PgjeoWEhITg9u3b2LBhQ4P92qObbty4IbXFxcXB398fwKPjFPz9/ZGQkIAhQ4Zg2LBhSEtLQ3p6Otzc3DB48GCsXLlSZ8zc3FyMHj0aFhYWCAwMRHFxsdR38+ZNBAcHw8rKCu7u7li9ejXUarU01/jx4zFt2jTY2dlh79699eJ9+PAhVq5cCVdXV1hbWyM4OBg3b94E8Oh4g6KiIkRERDTrCIiOHTvqvK+srERYWBhsbW3h7OyMqKgoPHjwQOo/f/48Ro8eDUtLS8ycORPV1dU6uZs6dSomTJgAe3t7nDt3rtGYAeDWrVuYOXMm7O3tMXToUCxbtkwqcJub/9OnT2PUqFGwsLCAh4cHkpOTm5wHIiIi+gdrqCf7dw2Vl5eHwMBA2NjYwMLCAn5+ftLRntpxP/30U8TFxQEAhBCIi4vD0KFDMXjwYERHR0tjaY9S9/b2hqOjI/Lz83Hnzh0sXLgQTk5OsLOzQ1hYGO7cuSPdo1AoEBgYCFtbW7i4uGD16tXQaDTS72bOnDmIioqCjY0N3N3dceLECWzbtg1OTk5wcHDAli1bpLF++eUXfPjhh7CwsICnpycyMjKanBciIiJqOdZgLafRaJCYmAgPDw9YWlrC398fV69elfobq6XOnj0Ld3d3LF68GHZ2dli/fj2Ki4sxefJk2NjYwNHREVFRUaipqXnqOIno5cSNP6JXiKmpKWbMmIG1a9eisLCwRWNcuHABhYWF2LlzJ0aMGIElS5Zgy5YtSEhIwNy5c5GYmIjLly9L1yclJSEoKAipqamora1FeHg4gEcf7kyfPh3GxsbYvXs3vvrqK+zbtw9r167Vmatfv37YsWMHnJ2d68WyePFiHDp0CNHR0UhOTkZtbS2mTp0KjUaDnTt3okePHoiIiMDOnTubtLabN28iJSUF3t7eUtv8+fNx9+5dJCUlIT4+HpcuXUJkZCQAoKysDFOmTIGTkxPS0tLQr18/pKen64x5+PBheHl5YfPmzbC0tGw0ZpVKhYkTJ6K6uhpbt27FqlWrkJmZiZiYmGbnX61WIyQkBB999BH279+PmTNnYunSpcjLy2tSLoiIiOgfrKEa9+8aSqPRIDg4GGZmZtizZw+Sk5OhVqulD9a048bFxWHy5MkAgOLiYly7dg3JycmIjIzEpk2bcOzYMWmOPXv2ICQkBOvWrUOfPn0wffp0XLlyBWvXrsWmTZugUCik5yyXlZXBz88P3bt3R0pKChYvXoxt27bV28zT19fHnj17YGlpiZCQEJw4cQJbt26Fv78/oqOjUVZWhtLSUsyZMwdTpkxBeno6xowZg9mzZ6OioqJJuSEiIqKWYw3WcmvWrMHGjRsRERGB3bt3w8zMDEFBQaiqqgKARmspACgqKoJKpcKuXbvg5eWFqKgodOrUCWlpaVizZg0OHDiAHTt2PHWcRPSSEkT0SpDL5eLMmTOitrZWjBw5UkyZMkUIIURqaqpwc3MTQghRWFgo5HK5KCwslO6LjY0Vn3zyiXTtwIEDxf3794UQQuTl5Qm5XC5OnTolXe/o6Cj27dsnhBDCzc1NfP3111Kfdvy8vDxx6tQp4eDgINRqtdR/+PBhYW9vL8319ttvi+rq6gbXU1FRIQYMGCCOHz8utZWXlwsrKytx7Ngxaf7U1NQG79fGYmVlJaytrYWlpaWQy+Xigw8+EKWlpUIIIa5fvy4GDBggKisrpftycnKktm3bton3339faDQaqX/MmDEiPDxcyp2Tk1OTY87IyBBWVlaioqJC6j969KgYOHCguHfvXrPyX15eLuRyudixY4fUd/r0aZ2xiYiI6MlYQ+lqSg11//598d1330nrFUKIpKQk4eHhUS+v2pgHDRqkc/2oUaPEunXrhBBChIeHCx8fH6nvypUrQi6XC6VSKbVpc6pQKMTmzZuFq6urqKmpkfq3b98uhg0bJoR49LtxdnaWarjMzEwhl8tFQUGBEEKI6upqIZfLxe+//y6ys7OFXC4XJ0+eFEIIodFoxPHjx0VVVVWD+SEiIqJngzVYwzmxsLAQ1tbW0kubi7r3azQaYW9vL5KTk6U+lUolXF1dRVJS0hNrqTNnzkjr1ho5cqSYO3euUKlUQgghsrOzdfJORK1Luxe98UhEzdO2bVssWbIEfn5+LTqmyNjYGJ06dQIAtG/fHgDQq1cvqb9Dhw46Z69bWlpKP/fq1QtGRkZQKpW4ffs2KioqYGdnJ/VrNBo8ePAA5eXl0lyPO9M8Pz8fGo0GVlZWUpuRkRFkMhkUCgVcXFyatJ7169fD1NQUGo0Gf//9NxISEuDn54e9e/dCoVBAo9Fg+PDhOvdoNBpcv34deXl5GDBgANq0aSP1WVhY6Bz3aWZm1uSYVSoV+vTpA0NDQ6nf1tYWtbW1KCgokHLSlPwbGRnB19cXCxYsQHx8PNzc3DBmzBidsYmIiKjpWEPpaqyG6tSpE3x9fZGWloY//vgDSqUSly9fhomJSZPyAwD6+vo6+ahbUymVShgYGEAmk0ltffv2haGhIZRKJRQKBQYNGoR27f7576qNjQ1KSkpQWVkJ4FFOtTWcNlfaObTvVSoVrK2t8d5772HSpEmQyWTw8PCAj49PvaNNiYiI6L+DNZiuZcuW6Yzx2mv1D+QrLS1FRUWFznV6enp49913oVAoYGBg0GgtpX1mYN08BQUFISIiAocOHcLw4cPh6emJgQMHNilmInr1cOOP6BVka2uLMWPGYPny5QgKCpLa625gadXW1uq8r/sBSmP3abVt21bnvUajgZ6eHmpra/HWW28hPj6+3j3aAkNbkDXkcX1qtVp6fktTvPnmm1IhI5PJYG5uDhcXF5w8eRJqtRr6+vpITU2td5+pqSmAR0c91KWnp6ez8Vc3zifF3FC/9qx47b/Nyf+SJUswYcIEZGRkICMjAz/++CPi4+Ph6ura4PVERETUONZQ/2ishrK3t8fYsWPRpUsXuLu7w8vLC0qlEhs3bnzseP9eL6BbZ9WN+/XXX3/sGtRqdYNr1K6tsZqqoQ/O2rRpg3Xr1iErKwuHDx/GoUOHsH37dmzfvh3vvPPOY9dDREREzw5rsH+YmprC3Ny80WueNNeTaqmGxtE+azkjIwOZmZmYMWMGPvvsM8yaNavJsRPRq4PP+CN6RYWGhqKqqkrnAcl6enoAgPv370ttdR+Q3BJ//vmn9HN+fj4qKyshk8kgk8lQXFyMrl27wtzcHObm5rhx4wZiY2MbLcC0evfujXbt2uHixYtSW3l5Oa5fv67zjaXm0n7ApFarIZPJcPfuXbRp00aK8cGDB4iJiYFKpUL//v2l5+lpXblypcUxy2Qy5Ofn6zwz5uLFi2jXrh3+85//NGsdJSUlWLp0KczNzfHFF18gNTUVDg4OOHLkSLPGISIiIl2soRpWt4Y6d+4c/vrrL2zZsgVBQUFwcnJCcXFxvS9MtZRMJkNlZSWUSqXUlpeXh3v37kk5ys7ORk1NjdR/4cIFdO3aFUZGRs2aS6FQIDo6GpaWlpg1axZ+/vln9OzZE8ePH38mayEiIqKmYQ3WdPr6+jAxMdGZq6amBtnZ2dJaGqulGvLtt9+itLQUvr6+WLduHUJCQnDw4MFnGjcRvTy48Uf0iurSpQtCQ0NRVFQktZmYmKBnz57YsGEDCgsLsWvXLmRmZj7VPJs2bcLBgweRk5ODefPmwc3NDebm5nB2doaZmRnCwsJw9epVnD9/HgsXLkTHjh0b/Mb3v73xxhvw8fFBVFQUzp49i5ycHISFhaFHjx4YNmxYk+MrKytDSUkJSkpKkJubi8jISHTp0gUODg7o27cvXFxcEBoaiqysLGRnZ2PevHmoqqqCgYEBRowYgerqaixfvhxKpRKJiYn47bffWhzzsGHD0Lt3b8yZMwdXr17FmTNnEBUVBS8vLxgYGDR5TQBgaGiIQ4cOYcWKFSgoKMCvv/6KnJwcHsNARET0lFhDPdJYDWVkZISqqipkZGTgxo0bSElJwQ8//KBzjFanTp2Qm5uLu3fvNjs3ffv2xfDhwxEeHo6srCxkZWUhPDwcQ4YMgVwux8iRI6FSqbBo0SIoFApkZGQgLi4Ovr6+Tfpgri4DAwMkJSUhPj4ehYWFyMzMRFFREWsqIiKi54w1WPMEBAQgNjYWR44cgUKhwMKFC/Hw4UN4eno+sZZqiFKpRGRkJHJycpCbm4ujR4+yHiJqxbjxR/QKGzt2LGxsbKT3r732GpYvX46srCx4enoiPT0dwcHBTzXHpEmTsGrVKowbNw7GxsZYsWIFgEdHJyQkJECj0WDcuHH48ssv4erqigULFjR57PDwcDg5OWHGjBnw9fVF+/bt8f333z/2yIKG+Pj4wNnZGc7Ozhg/fjxqamqwceNGdO7cGQAQExODXr16ISAgQHq2yzfffAPg0eZaYmIiLl26hFGjRuHUqVMYNWpUi2Nu27atdGTEuHHjMHv2bHh4eCAyMrLJ69F6/fXXER8fj5ycHHh7eyMkJARjx46Fj49Ps8ciIiIiXayhGq+hbGxsMG3aNCxduhTe3t7YtWsXFi1ahNLSUty+fRsA4O/vj5iYGMTFxTUvMf8vOjoavXv3RkBAAAIDA9G/f3+sWbMGANC5c2ckJiaioKAAo0ePRlRUFCZOnIjp06c3e55u3bohLi4OBw4cwIgRIxAZGYnZs2fD2dm5RXETERFRy7EGa7rJkyfDx8cHCxcuxMcff4xbt25h69at6Nq1K4DGa6mGLFmyBCYmJvD398e4cePQvXt3zJ8//5nHTUQvhzbiWZ3XQkREREREREREREREREQvDP/ij4iIiIiIiIiIiIiIiKgV4MYfERERERERERERERERUSvAjT8iIiIiIiIiIiIiIiKiVoAbf0REREREREREREREREStADf+iIiIiIiIiIiIiIiIiFoBbvwRERERERERERERERERtQLc+CMiIiIiIiIiIiIiIiJqBbjxR0RERERERERERERERNQKcOOPiIiIiIiIiIiIiIiIqBXgxh8RERERERERERERERFRK8CNPyIiIiIiIiIiIiIiIqJW4P8AIgK16N9e0b0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAJRCAYAAACN9sAAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0YklEQVR4nOzdZ5RV1cEG4JcqYIldE0sSy2ABBKRYEEHFjomKnwWxdyxBJWqs0RgbdqPGGDUmsRJ7ib0lKogNNVGxo0YUsSFNmPv9cM3VkWGYgdEZDs+zFmtxT9l3333K7HPfe/ZpViqVSgEAAAAAAADmac0buwIAAAAAAADA3BP8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwBgnlAqlRq7CvUyr9UXmhLHDwAAwJwR/AEAUKsRI0akffv2M/1bY4010qVLl2y++eY5/vjj89///rfG9S+88MK0b98+55577hzX4V//+lf22muveq1z9NFHp3379rnxxhtrndbQPv/88/zud7/LLbfcMtv6zGs+/fTTDB06ND179kzHjh2zySabZPr06bNcfqONNqpx3+nUqVP69OmTI444Ii+++OL3Xu8itH1jqmkbtm/fPp07d84mm2ySY489Nm+//XaDvNe4ceNy5JFH5sknn6w2fdCgQWnfvn0ef/zxBnkfmo6q/am2c0mVm266aZb743f/3XTTTUm++Ru28847f98fBQAAmoSWjV0BAADmDe3atcvGG29cfl0qlfLll1/mtddeyw033JB//OMfOeKII7L33ns36Pu+//772XvvvbPMMss0aLnfl9NOOy033XRTfve73zV2VRrcqaeemttuuy1LLLFE+vbtm0UXXTQtW87+kmK99dbLEkssUX49bdq0vPvuu7njjjty991354ILLsgmm2zyfVadBrDJJpukbdu2Sb4+/qdMmZI333wzw4cPz5133pmrr746nTp1mqv3GDp0aEaMGJHtttuuIapMQS2xxBJZb731al1mxRVX/IFqAwAATYvgDwCAOllsscUybNiwGufdeeedOe6443LmmWdm6aWXTv/+/cvzBg4cmC233DKLLbbYHL1vZWXlHK13+OGHZ999983SSy89R+vPqVkNUdhY9WlIo0ePTpKce+656dmzZ53XO+CAA2pc/v7778/BBx+c4447Lr169UqbNm0arK40vGOOOSbLL7/8TNOvvvrqnHrqqfnNb36TO+64Y67ewxCf1MXKK688y79HAAAwvzPUJwAAc22rrbbKKaeckiQ588wzM2XKlPK8xRdfPCuvvHIWX3zxH7ROSy+9dFZeeeUsvPDCP+j7zkpTq8+c+Oqrr5Ikyy67bIOUt8kmm6RLly755JNPMmrUqAYpkx/eoEGDsuyyy2bMmDF58803G7s6AAAA8zXBHwAADWLrrbdOx44d8+GHH+b+++8vT5/VM/4efvjh7L333tlggw3SoUOH9O3bN8ccc0xef/31autWDS86bty4tG/fPhtttFGS5N1330379u1z0EEH5e67707fvn3TqVOn9O/fP19++eVsn+t27bXXZosttkjHjh2z8cYb56yzzsrnn39ebZmq50kdeeSRNZZR9Sypb7+++eabkyTHHXdctedMzao+06dPz1//+tdst9126dy5czp37pztt98+f/vb32Z65lXVs6pOPfXUvPHGGzn00EPTs2fPdOrUKdttt13+8Y9/1FjPWZk8eXL+8Ic/pH///unUqVO6du2aXXbZJbfddlu15arq/t577yVJNt1007Rv3z4jRoyo1/vVpCpE/PLLL2ea9+abb+aoo44q7yO9e/fOscceW67Hd7311lv59a9/nV69eqVz584ZOHDgLOtYtV/eddddOf7449OlS5d079692l1E7733Xk444YRstNFG6dChQ9ZZZ50MHjw4zz33XI1lzsm2POOMM/Lqq6/mwAMPTPfu3dOlS5cMGjSofHflqFGjsttuu6VLly7ZYIMNctRRR+Xjjz+e6b1vueWW7LrrrllvvfXSqVOn9OvXLyeffHI++OCDGuvakJo1a1Yeive723HKlCm58sors9NOO6VHjx5Zc801s84662TffffNv/71r/JyVcfzyJEjkyR77rlnjftYZWVlrr766vL5Zv31189RRx2VcePGVVuu6ti96qqrcu6555bb9tvH8oQJE3LGGWdks802S4cOHdKjR4/svffeeeSRR2b5WW+99dbssssu6dq1a/l8c8kll2Ty5MnVlqv6PIceemjef//9HHnkkVlnnXXSuXPn7LDDDuX3GDNmTA444IB069Yt6667bgYPHpyxY8fO9L51OV/OjSeeeCKHHnpoevfunQ4dOqRLly75xS9+kUsuuSTTpk2rtmzV+eC///1vbrnllmy33XZZa6210rNnzxx66KEZM2ZMje9x9913Z6eddkrXrl2zzjrr5Pjjj88nn3zSIPWfU2PGjMnQoUPTq1evdOjQIb169crQoUPz2muv1bh8Xc+Zyez3walTp+aiiy7Ktttum65du6ZLly7Zdttt88c//rHaj2cAAKC+DPUJAECD2WijjfLCCy/kiSeeyNZbbz3L5e6///4ccsghadGiRbp165ZFFlkkY8aMyU033ZR77rknN9xwQ1ZZZZW0b98+m2yySe6///60bds2m2yyyUx3Dr766qs58sgjs/rqq2eVVVZJqVTKggsuWGs9r7jiirzxxhtZc80107dv3zzzzDO5/PLL89BDD+Waa67JoosuOkefv3///nnuuecyduzYdO7cOSussEKtz5maOnVq9tlnn4wcOTLt2rVLz54906xZs4wYMSKnnHJKHnjggfzxj39M69atq603ZsyYDBgwIG3atEmXLl3y6aef5tlnn81vfvObfPbZZ9lrr71mW9dPPvkkgwYNypgxY7Loootmgw02yJQpUzJy5Mg8/fTT+fe//53TTz89zZo1S5cuXTJ9+vQ88MADmTRpUjbeeOO0a9cuSy655By1U5XKysq8+OKLad68eTp27Fht3r/+9a8cfPDBmTx5cioqKtK5c+e89dZbGT58eO6///78+c9/TocOHcrLv/jii9lrr73y2WefpaKiIl27di1Pq2l4yirnn39+3n///fTq1SvvvfdeVllllSTJ888/n7322isTJ07MT3/602y00UYZN25c7r///jz44IM56aSTsuOOO5bLmdNt+dJLL+Xaa6/Noosump49e2bMmDEZOXJkdt999xxzzDE56aST8vOf/zzrr79+nnrqqdxyyy15+eWXc8stt6RZs2ZJvhlqs127dll77bXTtm3bvPTSS/n73/+ee++9N7feemu1Zyw2tIkTJ+b111/PwgsvnJVXXrlam1SFmEsvvXS6du2aZs2a5ZVXXsmjjz6axx57LBdddFE22WSTtGvXLv3798/jjz+ejz/+OOuuu26WXHLJmfaxU089NW+++WY6d+6cXr165Zlnnsktt9ySkSNH5vbbb89CCy1Ubflrr702Y8eOzXrrrZcvvvgiP//5z5Mk77zzTgYOHJgPP/wwyyyzTDbaaKN88skneeKJJ/Kvf/0rBx54YH71q1+Vy6msrMzQoUNzxx13pHXr1unRo0fatm2bp556Kuedd17uueeeXHnllTMNafz+++9nwIABqayszNprr52xY8dm9OjROfDAA/Pb3/42v//977P44ounZ8+eeemll3L//ffn+eefz7333pt27dolqfv5ck5deeWVOf3009OqVat07do1nTt3zgcffJDRo0fn5ZdfzksvvZSLLrpopvX+8Ic/5L777kv79u3Tu3fvjB49Ovfcc0/+/e9/55ZbbskKK6xQXvb888/PxRdfnFatWqVnz55p2bJlbrvttjzzzDNzXO+5df/992fIkCGZNm1a2rdvn7XXXjtvvvlmbrvtttx7770577zz0rdv3/Ly9TlnfltN+2CpVMqRRx6Ze++9N8sss0x69uyZysrKPP300znnnHPyxBNP5KqrrvqBWwQAgMIoAQBALZ588slSRUVFqW/fvrNd9u677y5VVFSUdt555/K0Cy64oFRRUVE655xzytM23njj0hprrFEaM2ZMeVplZWXpd7/7XamioqL0m9/8pjx97NixpYqKitIGG2xQ7b2qpldUVJROOumk8vQZM2aUSqVS6aijjipVVFSUbrjhhvK8qmkVFRWlv/71r+XpkyZNKu2zzz6lioqK0vHHH1+e/o9//KNUUVFROuKII2r8vFVlfVtN7zur6b///e9LFRUVpe233740fvz48vTx48eXtt9++1JFRUXptNNOK0+v2hYVFRWlQw45pDRx4sTyvKuvvrpUUVFRWmeddUqVlZU11vfbBg8eXKqoqCjtv//+1cp56623ShtvvHGpoqKidPXVV1dbp2/fvqWKiorSW2+9Ndvyv738k08+WW36lClTSq+++mrp0EMPLVVUVJR+//vfV5v/8ccfl7p3715affXVS3fccUe1edddd12poqKitPHGG5emTp1aKpW+3ubbbLNNqaKionTxxReXl502bVrp6KOPLrfZt9u+ar9cbbXVSs8++2x5+owZM0pTpkwpbbDBBqWKiorShRdeWK09H3744VLHjh1La6yxRumll14qT5+bbTlkyJDStGnTSqVSqTR16tTSdtttV5533nnnldf56KOPSt27dy9VVFSU6zx16tTSWmutVerRo0dp3Lhx5WW/+uqr0sEHH1yqqKgo/eEPf5jFFqqbqrqMHTu22vRJkyaVRo8eXRo0aFCpoqKi9Je//KXa/CuuuKJUUVFRGjx4cOmrr74qT58+fXrppJNOKlVUVJT22GOPauvsuuuupYqKitK///3vGqevtdZapZEjR5anf/zxx6U+ffrMtH2rjt2KiorSnXfeWZ4+Y8aMUmVlZWnbbbctVVRUlI477rjyflQqlUrPP/98qUePHqWKiorSAw88UJ7+l7/8pbzfvf322+XpX3zxRWm//fYrVVRUlA4++ODy9G+fn3bdddfyMVZZWVk66KCDyvOOPvrocttMnDixtOmmm5YqKiqq7ff1OV/W17hx40prrrlmqUePHqU333yz2rynnnqqtMYaa5QqKipK//vf/8rTq85lq622WunWW28tT58yZUppp512KlVUVJROP/308vTnn3++1L59+1KPHj1K//3vf8vT33nnnfI5oqKioto+MitV23XXXXet82esOtZ22mmn8rQPP/ywtNZaa5Xat29fGj58eLXlb7zxxlL79u1LXbp0KX3wwQfl6fU9Z9a2Dz711FPlz1F17JdKX+/PVWU99dRTdf6MAADwbYb6BACgwSyyyCJJMtvh2z766KO0bNmy2l1IzZo1ywEHHJDjjz8+2267bb3ed4899ij/v3nz2Xdxe/TokV133bX8um3btjnttNPSqlWr3HrrrZk0aVK93n9OTJ06Ndddd12aN2+ec845p1pbLLHEEjnnnHPSvHnzXHPNNTMNn9iyZcv89re/rXZn44477pjWrVtnwoQJGT9+fK3v/d577+W+++7LQgstlLPOOqtaOT/96U9z6qmnJkkuv/zyhvio2W233crDorZv3z6dOnXK1ltvnX/+85/Zeuutc9RRR1Vbfvjw4fnss8+y0047Zauttqo2b8cdd0yfPn0yduzY3HfffUmSZ555Ji+//HJWX331HHjggeVlW7VqlZNOOqnWOxOrhuSs0rx589x9990ZN25cunfvnoMPPrjaHTwbbrhh9t1330yfPj1XXnllkrnbls2aNctxxx2XVq1aJUlat26dzTffPEmyzDLLZPDgweVll1xyyay99tpJkrfffjtJ8sUXX2Ty5Mlp27ZttTtVW7ZsmSOOOCInnXRSNtxww1l+/vrYeOONq23Hzp07Z8CAARkxYkT23Xff7LbbbtWWb9WqVTbccMMcfvjhadnym8FmWrRoUb5b8t13361XHf7v//4v3bt3L79efPHFy+eLV155Zabll1lmmWy55Zbl182bN8+oUaPy0ksvZcUVV8yJJ55Y7S7MTp06lffHb+//f/nLX5Ikv/vd76rdxbvQQgtl2LBhWXjhhXPvvfeWt8u3HXXUUeVjrFmzZuV9unXr1jnmmGPKbbPgggtmgw02SJJq5TT0+fLbxo8fn379+uWggw7Kz372s2rzunXrllVXXTVJzdtpo402yjbbbFN+vcACC5S366uvvlqefv3116dUKuXAAw/MaqutVp6+wgor5De/+c0c1XvkyJHV9sXv/vvvf/9b6/rXX399Jk+enF/84hfZfvvtq80bMGBAfvnLX+bLL7/Mtddem2Tuzpk17YMffvhhkq/PD1XHfvL1/nzKKafktNNOy3LLLVfPVgEAgK8Z6hMAgAbz1VdfJclMQ519V/fu3fPYY49l2223zYABA8rPlVpiiSWqBXJ10aZNm/z0pz+t1zr9+/efadqSSy6Zjh075plnnsmLL76YHj161KvM+nrhhRcyZcqUdOjQocbhQFdcccV07Ngxzz//fEaPHp111123PO+nP/3pTEMKtm7dOosttljGjRs32+dDPfXUU0mS9ddfPwsvvPBM83v27JmllloqH3zwQd55551ahyuti/XWW69aaDFt2rSMHz8+L730Uu64445MmTIlZ599dtq0aZMk5ee6ffszf1vv3r3z8MMPZ8SIEdlqq63Kn6d3794zLbvAAgukd+/e5WctfldFRcVM06qeM7fFFlvUuM6WW26Ziy66qLzc3GzLFVdccabha6ter7rqqtUCs+SbcL3quWtLLLFEVlpppbzxxhv55S9/mW233Ta9e/dO+/bt87Of/WymMGdubLLJJmnbtm359dSpU/PBBx/kv//9by6//PJMnDgxJ5xwQjl833XXXWc6nidPnpwxY8aUn3H33efHzc63Q9oqP/7xj5N8HYJ+V23bd5NNNpmpfZNk8803z3HHHZfnn38+06ZNy8cff5x33303iy22WNZZZ52Zll944YWzwQYb5K677srIkSOrnY9at26dNdZYo9ryVdt3ueWWK2/PKlWvp06dWp7WkOfL71pjjTVmev5qZWVlxo4dmxdeeCGfffZZkm/O7d9W07ZYeumlk6TaOajq+KwpgN5www3TqlWrGsuvzRJLLJH11ltvlvN/9KMf1bp+VZ1qO8Zvvvnm8r4yN+fMmvbBLl26pFWrVrn77rvz+eefZ4sttsgGG2yQZZdddpbnPQAAqCvBHwAADebTTz9NMvsvXX/3u9/l4IMPzgsvvJALL7wwF154YRZddNFsuOGGGTBgQL1Ct5q+hJ2dWd1JURUgVN2N8X2qeo/a7upYfvnl8/zzz89Un++GBVWqQozKysq5fu/lllsuH330UT788MO5Dv4OOOCA9OzZc6bpH3/8cQYPHpz7778/Z555Zk444YQkyf/+978kycEHH1xruR988EGSbz7PMsssU+NytT3jr6Z9dXbtU/Xssqo7K+dmW9b0/lXB+XfD3W/P+7bzzjsvhx56aF5//fUMGzYsw4YNy9JLL52+fftmp512mil4mlPHHHNMjW05duzY7L333rn22muzwgorZO+99y7PGz9+fK699tqMGDEib731VsaPH59SqVT+HKVSqV51qGnfb9GiRZJkxowZM82rbfvOar9o165dFl988Xz00UeZMGFCnbdv8vXded+28MILz3QXcn23b0OeL2syY8aM3HPPPbnzzjvz2muv5b333pvpRxw1baea2rZqW3z7HFTVfssuu+xMy7dq1SrLLrtsxo4dW686r7zyyhk2bFi91vm22W3T727PuTln1tROP/7xj8vnvH//+9/597//neTrsL9fv37ZeeedyyEqAADUl+APAIAG8/LLLydJ2rdvX+tyyy67bIYPH56nn346999/fx5//PG88sorufXWW3Prrbdm3333zZFHHlmn96zL0J7ftcACC9Q4verL7ZruAvqumkKG+qh6r9rujqxa5ttDEc5unfqYk/duSEsssUSOP/74bLfddhk+fHiOO+64NG/evNy2ffv2zUILLTTL9VdZZZUks2+P2rZnTevObttUza8aom9utmVd9rXZad++fe6666488cQTefDBB/Pvf/87b731Vq6//vrccMMNOf744zNw4MC5fp9ZWWGFFXLkkUfmkEMOyQ033FAO/kaMGJEDDjggkyZNyo9//OOstdZaWXnllbPGGmtkueWWy4ABA+r9XvU93mvbvrX59vZq7O3bkOfL75o0aVJ23333jB49Ou3atUuHDh2y3nrrpaKiImuvvXZOPvnk8t1u31XX89DslqsKC39IdT3G63Pure86W265ZXr37p0HH3wwjzzySJ588smMGTMmY8aMyV/+8pdcddVV6dSpU90+EAAAfIvgDwCABvPwww8nSa1DsH3b2muvXX5m2ccff5x//OMfOffcc/PnP/85gwYNmuUdXHNrVnf0vffee0m+ufOvKmSo6Q66qiHw5lTV3Ry1PeOs6i6Y2p5RN6+993dVPUNs6tSpmTBhQpZccsksvfTSeeutt7LbbrvVaV+qupOoavt9V33v4Jxd+1S1TdXwpU2hPVu0aJFevXqlV69eSZL3338/V199da688soMGzYs//d//1ftWWINrSqErbpbs1Qq5dhjj82kSZNy4oknZpdddqm2/H/+85/vrS6zM7vt9eWXX2bChAlp0aJFFl100fKwlY19vHwf58srrrgio0ePznrrrZcLL7xwpqD9888/n+t6L7PMMnnzzTfz3nvvlfeTKqVSaaa7JH8ISy+9dN588828++67M9Up+WZbf9/H+EILLZRtttmm/KzEl156Keecc07+9a9/5fzzz8+f//znOpcFAABV6v/zaAAAqMFdd92VN954I8suu2z69Okzy+XeeOON9O/fP/vss0+16UsssUT222+/tG/fPpWVlRk3blyShru77dsee+yxmaa99957efHFF7Pwwgtn9dVXT/L1kH/J11+yf9czzzxTY9l1rW+HDh3Stm3b/Oc//6lxmLt33nknL730UvkunIa09tprp1mzZvn3v/+diRMnzjT/ySefzIQJE7L88svnJz/5SYO+93e9+eabSb5+VuOiiy6a5OtnmiUpPwfuu84+++xst912ufHGG5N88yzABx98cKY7MWfMmFHj9q5N1fv/85//rHH+XXfdlSTlIRYbc1uOHDkyW2yxRXmY1Co/+clPcvTRR2eRRRbJpEmTanz+XUN66623knwTmo8fPz5jx47NIossMlPolyT/+te/ksx+WNrvQ9X2feCBBzJ9+vSZ5v/zn/9MZWVlunXrlubNm+cnP/lJlltuuXzyySflZ7592xdffFH+PFVlN5T6ni/r69lnn02SDBw4cKbQb9y4cXn99deTzN12qgrv77vvvpnmjRo1Kl9++eUclz2nqrbTPffcU+P87x7jDX3OvPLKK9O3b9/ccsst1aavueaaGTp0aJJvhjIGAID6EvwBADBXSqVS7r777hx//PFJkuOOO67W4SF/+tOfZvz48fnXv/41U7Dy4osv5vXXX8+CCy6YlVZaKck3w3JOmjSpwUKCW265pdqX0J9//nmGDh2aGTNmZODAgeX6r7baakm+/nL6pZdeKi//v//9b5bPl6pad3ZBS9u2bfN///d/qayszBFHHJEJEyaU502YMCGHH354Kisrs/3226dt27Zz9kFnYYUVVsjGG2+ciRMnZujQoZk0aVJ53tixY3PcccclSXbdddcGfd/v+uyzz3Lqqacm+XrYu6phEXfccce0a9cuf/vb33LnnXdWW+ehhx7KlVdemZdeeqkconXs2DHdunXLm2++mTPPPLO8n1RWVmbYsGF5++2361WvLbbYIksvvXRGjhyZSy65pNrQkI8++mguv/zytGjRIjvvvHOSxt2Wq666at55553ccsstefrpp6vNe/jhh/P5559n+eWXz+KLL16e/vrrr+f111/P5MmTG6QO48aNy7nnnpsk6d+/f5Kvn23XqlWrfP755zMNFXnvvffm4osvTpJMmzat2ryq4/37DCp79OiRNdZYI2+//XZOOeWU8vPskq/PQWeeeWaS6vv/7rvvnuTr89u3w90vv/wyQ4cOzcSJE9O3b99anwE3J+p7vky+Dppff/31OrVh1X7x0EMPVdvP33///Rx88MHlYHTq1Klz/BkGDhyYVq1a5bLLLsuoUaPK0z/66KOcdNJJc1zu3Pi///u/tGvXLjfffPNM4ds//vGP3HrrrWnXrl223XbbJA1/zlxhhRXy/vvv55JLLql2x2OpVMptt92WJNWG+Zw8eXL5uAUAgNkx1CcAAHXyySefVHuOVGVlZT7//PO8/PLL+eijj9KiRYscf/zx6devX63ltGjRIieffHIOOeSQHHbYYVlzzTWz/PLL55NPPsnTTz+dGTNm5Pjjjy/ffbL44otnkUUWyeeff56ddtopK6644ixDt7paa621cvDBB6dLly5ZaqmlMnLkyHz66afp0aNHBg8eXF5uxRVXzKabbpp77703O+64Y/nOshEjRqSioiIrr7zyTF/E/uxnP0uSXHzxxXn22Wfzi1/8IptsskmN9Tj88MPzn//8J0899VQ22WST8t0lI0eOzJdffpl11llnjp/dNTsnn3xy3nrrrTz44IPZaKON0q1bt0yePDkjR47MtGnT0r9//+yxxx4N8l6XXnpp+e685Osvtz/77LOMHDkyU6dOzc9//vPyXS7J10MDnnHGGTn88MNz+OGH5w9/+ENWWmml/O9//8uLL76YJDnmmGPKd2YmyWmnnZZBgwblqquuysMPP5zVVlstr7zySt5666107tw5zz33XJ3r27Zt25x//vnZb7/9ct555+WWW27JaqutlnHjxuXZZ59NixYtcuyxx1b7Yr6xtuViiy2WoUOH5rTTTsvAgQPTuXPnLL300hk3blyee+65tGzZcqa7AbfccsskydVXX52ePXvW+b1OO+20asFl1TCNo0aNyowZM9KlS5fynWlt2rTJTjvtlL/+9a/Zfffd07179yyyyCIZM2ZM3nzzzfIddF988UWmTJmSNm3aJPn6+Hnsscdyyimn5M4778yee+6ZLl26zG0zVdOsWbOcc8452X333XPdddfl4YcfzlprrZVPP/20/Fn222+/bLrppuV1Bg0alGeffTZ33313ttpqq3Tv3j1t27bNqFGj8sknn2S11VbL73//+watZ1L/82WS7LHHHnnvvfdy2mmnZbvttqu1/F133TV33313hg8fnmeeeSarrrpqJkyYkGeffTalUik///nP8+abb2b8+PFz/BlWXnnlHHvssfntb3+b3XbbLd27d8+CCy6YJ598MosttliWXHLJuSp/Tnz7HHPUUUflyiuvLH/Wl19+OW3bts1ZZ51VLchtyHPmxhtvnH79+uW+++5Lv3790rVr1yy44IJ59dVX89Zbb2WppZbKIYccUl5+9OjR2W233ZIkr7zySoO2BQAAxSP4AwCgTiZNmpTbb7+9/LpZs2Zp27Ztll9++Wy66aYZOHBgVl555TqV1a9fv/z5z3/OVVddlRdeeCGvvPJKFllkkfTu3Tt77rlntTCiefPmGTZsWM4444zyUIpz+3y9I444Is8991yuu+66vPjii1luueWy5557Zq+99prpbsVhw4blsssuy2233ZYnnngiSy65ZHbdddccfPDBNd7dsfPOO+fll1/OAw88kEcffTQrr7zyLIO/Nm3a5Iorrsg111yT2267LU8++WRatGiRVVddNdttt1122GGH8nMGG9oSSyyR66+/PldddVXuvvvuPProo2nbtm26dOmSnXbaqRwONYTHH3+82usWLVpk4YUXzhprrJGNNtooAwcOzIILLlhtmU033TT/+Mc/cvnll+fJJ5/Mww8/nCWWWCJ9+vTJXnvtNVNgteKKK+bGG2/MJZdckgcffDAPPfRQVllllVx00UV59dVX6xX8JUnXrl1z880357LLLstjjz2WBx54IIsttli23HLL7LnnntVCv6Rxt+Uee+yRpZdeOtdee21efvnlvPDCC1lsscWy1VZbZd99960WkM6N+++/v9rrVq1aZeGFF063bt2y2WabzfQcwWOOOSY///nPc/3112f06NFp3bp1lltuuRxwwAHZe++98+tf/zoPPfRQHnnkkWy22WZJkoMOOijvvfdennzyyTz22GNZf/31Gzz4S5Kf//znufnmm/OnP/0pDzzwQB588MEsssgi2WCDDbLbbrtl/fXXr7Z88+bNc+6556Z379658cYby0P9/vSnP80+++yTQYMGle9WbGj1OV/W11prrZVrrrkmF154Yf7zn//k0UcfzTLLLJN+/fplr732ygcffJBDDjkkDz30UHbcccc5fp+dd945P/3pT3PZZZeVw/sNNtggxxxzTAYNGjTH5c6NTTfdNMOHD8+f/vSnjBgxIq+//nqWWmqpDBgwIHvttddMf88a8pxZFT5fddVVueuuu/LMM89kxowZ+fGPf5zddtstBxxwQPn5ggAAUF/NSt8ezwMAAIDC69KlS66++up07NixsavC96B///4ZPHhwNt9888auCgAA8APzjD8AAID5yKhRo1JZWZmf//znjV0Vvgfvvvtu3njjjQa70xMAAJi3CP4AAADmE9OnT89vfvObHH300dWeC0dxHHXUUdlnn33y05/+tLGrAgAANAJDfQIAAMxHvvzyy5meqUhx2L4AADB/E/wBAAAAAABAARjqEwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAACgCSuVSo1dBQAAAOYRLRu7AkDTNGjQoIwcObLatIUXXjhrrLFGDj744PTo0WOu36N9+/Y5+OCDc8ghh8x1WQAATUFD9qE++OCDnHjiiTn++OOz/PLLJ0k22mij9OjRI6effnqD1hsAoCiOPvro3HzzzbOcf+aZZ2b48OFJkr/+9a8/VLUAfjCCP2CW1lhjjZx44olJkhkzZuSTTz7Jtddem7333js33XRTVl111UauIQBA09NQfajHH388Dz/8cI4//vjvs7oAAIWz1FJL5aKLLqpx3oorrlgO/gCKSPAHzNJCCy2Uzp07V5u23nrrZd11181NN92Uo446qnEqBgDQhOlDAQA0rtatW8/UHwOYX3jGH1Avbdu2zQILLJBmzZqVp91///3Zbrvt0rFjx6y//vr53e9+l0mTJlVbb+TIkdlxxx2z1lprZbPNNsvjjz9ebf67776b9u3b58orr8wWW2yRHj165KabbkqSvPDCC9l7773Ts2fPdO3aNQcccEDGjBlTbf0PP/wwxxxzTDbccMN06tQpAwYMyAMPPFBtmfbt2+faa6/N0UcfnbXXXjs9evTI7373u0yZMiVnnHFG1llnnfTs2TPHHntspk6dWl7v8ccfz4477pguXbqke/fuOeigg/LGG280SHsCAPOH7/ahZsyYkcsuuyxbb711OnXqlM6dO2ennXbKE088kSS56aabcswxxyRJNt544xx99NHlsr766quceeaZWX/99dO5c+fstddeefvtt8vzjz766Oy+++458cQT061bt2y77baZPn16pk6dmj/84Q/ZfPPN07Fjx2y66aa57LLLUllZWa2ud911V7bbbrt06dIl66+/fk444YR89tln5fkXXnhhNt9889x///3Zeuut07Fjx/ziF7/Is88+m+eeey477LBDOnXqlK233rr8eZJk6tSp+e1vf5vevXunQ4cO2XzzzXPFFVc0fGMDANRTQ/aT+vXrl4suuig9e/bMJptskk8++SQvvfRSdt9996y99trp0qVL9thjjzz//PM/9McE5hPu+ANmqVQqZfr06eX/f/rpp7n66qszbdq0bL/99kmS22+/PUceeWT69++fX/3qV3nvvfdy7rnn5rXXXsuVV16ZZs2a5aWXXspee+2Vnj175vzzz8/777+fww8/vMb3PPfcc3PCCSdkkUUWSYcOHfLkk09mn332Sffu3XPqqadm2rRp+eMf/5iddtopN9xwQ1ZeeeWMHz8+AwYMSKtWrTJkyJAstthiuemmmzJ48OCceeaZ2WabbcrlDxs2LFtttVUuuuiiPPjgg7n66qvzr3/9K6uttlrOOuusjBo1Kpdeeml+/vOfZ5999snYsWNz4IEHZvvtt8+QIUPy2Wef5dxzz81+++2Xe++9N82b+/0EAFBdXfpQw4YNyzXXXJMjjzwy7du3zwcffJA//OEPOeyww/Lwww+nT58+OfDAA3PJJZfkoosuSvv27cvl33XXXenVq1dOP/30fPTRRznttNMyZMiQ8o+mkmTUqFFp1qxZLrzwwnz55Zdp0aJF9t133zz33HMZPHhwVl999YwYMSLnnXdexo4dm1NOOSVJcvHFF+f888/PLrvskiFDhmTs2LE5//zz89xzz+WGG25ImzZtknz9/MGq923btm1OOeWUHHrooWnVqlUOPPDALLbYYjnnnHMyZMiQPPzww2nTpk1OPfXU/Otf/8pRRx2VJZdcMo8++mjOOOOMLLrootluu+1+qM0DAMwnqvpj39aiRYtqP2ZPvu6vHXDAAQ3WT3r//fdz33335Zxzzsknn3ySVq1aZZ999knPnj1zwQUX5Kuvvsoll1ySvffeOw899FAWXnjh778xgPmK4A+YpaeeeiprrrnmTNMPP/zwrLzyyimVShk2bFg22GCDDBs2rDz/Zz/7WfbYY4888sgj6dOnT/74xz9m8cUXzyWXXJLWrVsnSRZddNEMGTJkprI33XTTDBgwoPz6sMMOyworrJDLL788LVq0SJL06tUr/fr1y4UXXpjzzjsvV155ZSZMmJC77747K6ywQpJkww03zB577JEzzzwzW2+9dTmgW3nllXPyyScnSbp3757hw4fnq6++yrBhw9KyZctssMEGefDBB/PMM88kSUaPHp0pU6Zk//33zzLLLJMk+fGPf5wHHnggkyZNykILLTTX7QwAFMvs+lDJ16MVDBkyJIMGDSrPb9OmTQ455JC88sor6dKlS1ZcccUkyeqrr57ll1++vNwyyyyTiy++OK1atUqSvP3227n00kszceLEct9k+vTp+e1vf5uf/vSnSZJHHnkkjz/+eM4666zyj6LWX3/9tGnTJueff3523333LLXUUrnkkkuyww47lJ9RmCQVFRUZOHBgbrrppuyyyy5JksmTJ+fEE09M7969kySvv/56zj777Jx66qnlvtyMGTNy6KGH5s0338zqq6+ekSNHZr311stWW22VJOnZs2fatWuXxRZbbG6bHACgmvfee6/G/thhhx2Wgw46qNq0Rx99tEH7SdOnT89RRx2V9dZbL0ny3HPPZcKECRk0aFDWXnvtJMlKK62U6667LhMnThT8AQ1O8AfM0pprrpnf/va3Sb7+9dPnn3+eRx99NOeee24mTZqUbbbZJh988EH233//ar+i6t69exZaaKH8+9//Tp8+ffL000+nT58+5dAv+Trgqwryvq2ioqL8/0mTJuWFF17I4MGDqy27yCKLpG/fvnnkkUeSfD2MaJcuXcqhX5VtttkmxxxzTN54442sssoqSZIuXbqU57ds2TKLLbZYOnTokJYtvzkdLrroovniiy+SJGuttVYWWGCBDBgwIFtuuWU23HDDdOvWLZ06dap/gwIA84XZ9aGGDBmSs88+O0kyYcKEvP3223nzzTfz4IMPJvl6KM/adOrUqRz6JSn3gT7//PNy8NemTZtycJh83V9q0aJFttxyy2plbbPNNjn//PMzYsSILL/88pk2bVr69+9fbZlu3bplueWWy4gRI8pfaCVJ165dy/9fcsklk6Tas3QWXXTRcr2Sr4O+6667LuPGjUvfvn2z4YYbZvDgwbV+VgCAOVEV1H1X1Y+6v+376Cd9+/utVVddNYsvvngOPPDAbLHFFtlwww2z7rrr5te//vXcfkyAGgn+gFlacMEF07Fjx2rTevXqlUmTJuXyyy/P+uuvnyT57W9/W/5y69s+/PDDJMlnn32WxRdfvNq8qtDtu6q+NEqSL774IqVSqdq0by9XFc599tln1X4F/92yqr5sSlLjHXpt27adaVqV5ZdfPn/7299y2WWX5YYbbshVV12VRRZZJLvssksOO+wwQ30CADOZXR9qt912y/vvv5/f/va3eeGFF9KmTZusssoqWW655ZJ8HRbWpl27dtVeV/VHvv0MmiWWWKLaMFafffZZFltssWo/dkq+/lIs+brfVfV8mtn1varU1K+qGuKqJscee2yWXXbZ3HbbbeW+Y5cuXXLCCSdkjTXWmOV6AAD11bp165n6Y7PyffSTvr3cggsumL///e+55JJLctddd+W6665L27Zts8022+TYY4/NAgssUK/PBjA7gj+g3lZfffXceOON5de//vWv06NHj5mW+9GPfpTk6197jx8/vtq8UqlU7eHHNVl44YXTrFmzmdZNko8++qj8K/If/ehHs1wmyVwPH9WpU6dcdNFFmTZtWp5++ulcf/31ufTSS9O+ffuZfg0GADArVX2o119/PYccckjat2+fO+64IyuvvHKaN2+eRx55JPfcc8/38t4/+tGP8sknn2T69OnVvtSq+qHWYostVu67jR8/vjwkaZWPPvpoptEV6qt169Y58MADc+CBB+b999/PQw89lIsvvjhHHHFE7r777rkqGwBgTv0Q/aSVVlopZ511VmbMmJHRo0fn1ltvzbXXXpvll18+++23XwN/ImB+51YVoN6effbZtGjRIiuttFKWWGKJvPvuu+nYsWP537LLLpuzzz47//nPf5Ik6667bh599NFMnjy5XMZjjz0222Gs2rVrlw4dOuSuu+7KjBkzytO/+OKLPPzww+Vx0bt3755nn302Y8eOrbb+bbfdlqWWWqr8bJs5cdVVV2WjjTbKtGnT0rp166y77rrlhzr/73//m+NyAYD5T1UfaoEFFsinn36a3XbbLauuumr5jr1HH300yTd37jXkyAI9evTIjBkzctddd1WbfttttyVJ1l577ay11lpp3bp1br/99mrLjBo1Ku+//361oT3ra8qUKdlss81yxRVXJEl+8pOfZODAgdlqq63ywQcfzHG5AABz6/vuJ/3zn//MOuusk48++igtWrRIly5dctJJJ2WRRRbRDwK+F+74A2Zp4sSJee6558qvv/rqqzzwwAO5/fbbs+OOO2bJJZfMkCFDcsIJJ6RFixbp27dvPv/881x88cUZN25c+SHKgwcPzv3335+99947++yzTz755JOce+651Z5NMytHHHFEeb1dd901X331VS677LJMmzYtBx98cJJkzz33zG233ZY999wzBx98cBZbbLHccsstefLJJ/P73/9+rr40W2eddTJs2LAMHjw4u+66a1q0aJHrrrsurVu3Tt++fee4XACguGbXh1pppZWy0EIL5dJLL03Lli3TsmXL3HPPPRk+fHiSlH8stcgiiyRJ7rvvvvTu3XumX5fXR+/evdOzZ8+ceOKJ+fDDD7PGGmtk5MiR+dOf/pRtt922/Dzk/fbbLxdddFFatWqVjTfeOO+++27OP//8rLLKKtluu+3m+P3btGmTNddcs1x2+/bt8+abb+bmm2/OZpttNsflAgDMre+7n9S1a9dUVlZm8ODB2W+//bLgggvm7rvvzhdffJFNN930h/qYwHxE8AfM0n/+85/suOOO5dcLLLBAVlxxxQwZMiR77713kmSHHXbIggsumMsvvzzXX3992rVrl65du2bYsGHlYQ5+9rOf5W9/+1tOP/30DBkyJEsssUSOOuqonH766bOtw7rrrpsrr7wyF1xwQQ4//PC0bt063bp1yxlnnJFVV101yddjrl977bU5++yzc+qpp+arr77Kaqutlosvvjgbb7zxXLXBaqutlksvvTR/+MMfcvjhh2fGjBnp0KFDrrjiiqy00kpzVTYAUEyz60O1atUqF198cc4888wcdthhWXDBBbP66qvnb3/7W/bdd9+MGjUqG220UXr27Jn11lsvZ599dp544olcdtllc1ynZs2a5Y9//GMuuOCCXH311ZkwYUKWX375DBkyJHvuuWd5uUMOOSRLLrlk/va3v+XGG2/Moosums033zy/+tWvan0ucl2cfPLJOe+883LFFVfko48+yhJLLJEBAwbksMMOm6tyAQDmxvfdT1p66aVz+eWX5/zzz8+xxx6byZMnZ9VVV82FF16YddZZ54f4iMB8pllpdk+OBwAAAAAAAJo8z/gDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABRAy7osVFlZmenTp6d58+Zp1qzZ910nAIAmp1QqpbKyMi1btkzz5vX77ZS+FAAwv9OXAgCYc/XpS9Up+Js+fXpeeOGFBqkcAMC8rGPHjmndunW91tGXAgD4mr4UAMCcq0tfqk7BX1V62LFjx7Ro0WKWy82YMSMvvPDCbJejdtqx4WjLhqEdG4Z2bDjasmFox/qpaq/6/kI9qXtfqmjsYzXTLjXTLjXTLrOmbWqmXWqmXWbth2qbeaEvZT+ZN9hOTZ9tNG+wnZo+22je0BT7UnUK/qqGUWjRokWdKl7X5aiddmw42rJhaMeGoR0bjrZsGNqxfuZkeKn69qWKZn793LOjXWqmXWqmXWZN29RMu9RMu8zaD9U280Jfyn4yb7Cdmj7baN5gOzV9ttG8oSn1per/MysAAAAAAACgyRH8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoABaNnYFmpJSqZQpU6Y0WHlt2rRJs2bNGqw8AAAaR0P2E2fMmJGpU6dm8uTJadGiRYOUObf0WwGY35VKpUyePLnJ/Y1mZk2xL0V1VduoVCo1dlUA5kuCv2+ZMmVKtthiiwYr7+67707btm0brDwAABpHQ/cTmxr9VgDmd1OmTMnWW2/d2NWAQrnjjjuy0EILNXY1AOY7hvr8loa82w8AAAAAAAB+SO74m4WJHXdIqVWbeq/XrHJ6Fnru2u+hRgAANAUTO++cUvNG7EbP+CoLP39dkuSLtXZKWrSao2L0WwGgZo3+t55Za6B+EN8ffUyAxqcXMwul5i3mqPNg5GoAgGIrNW/ZdL5katFqjuui3woANWtSf+uZtbnoB/H90ccEaHyG+gQAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABFC74K5VKKZVKjV2NuVKEzwAAzLv0RZjfOQYAAACoi6Z4/Vio4K9UKuWQQw7JIYcc0uQauq5KpVIOO+ywXHTRRfPsZwAA5l1F6E/B3HAMAMyfqp3znf8BgDpoqnlOy8auQEOaMmVKXnzxxfL/27Zt28g1qr8pU6bkpZdeKv9/oYUWauQaAQDzkyL0p2BuOAYA5k9Tp0795kXl9CStG60uAMC8oanmOYW64w8AAAAAAADmV4I/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAATSr469OnT/kfc2du27IhtsXcljFgwID06dMnAwYMmOM6nHzyyTniiCNy8sknz9H6jz/+eHbcccc8/vjjc1wHAL5fztXfOOmkk9KnT5+cdNJJjV0VIA3Tp954441zxBFHZOONN270ujRUOQ1Vl4Zom4aqy6abbpo+ffpk0003neMyDj744PTp0ycHH3zwXNVlxx13zBFHHJEdd9xxrsr585//nI022ih//vOfG7WMhiynqWiovktDlXPFFVdk6NChueKKK+aqHAAAmoYmE/x990JL+Dfn5rYt991331pf18U//vGPWl/Pzosvvpjx48cnScaPH58XX3yx3nUYN25cHnnkkSTJI488knHjxtVr/SlTpuScc87JuHHjcs4552TKlCn1rgMA3y/n6m+MGzcuDz/8cJLk4YcfrvffPaBhNcT1TUNdIzWlck499dRaX9fVhRdeWOvrupjba5Yqjz76aKZNm5YkmTZtWh599NF6l/HOO++Ur3lefPHFvPPOO3NUl4a4jkqSTz/9NH//+99TWVmZv//97/n0008bpYyGLKepaKi+S0OV8+mnn+baa69NZWVlrr322nm+fQEAaELBH03HmDFjan1dF3N7IX7IIYfU+rouvvtL2fqW8fe//z0ff/xxkuTjjz/ONddcU+86APD9cq7+xtz+3QP4Idx33321vq6rhgjtGiI8TJITTjih1td1ccABB9T6uq4a4joqSY4//vhUVlYmSSorK+foMzVEGQ1ZTlPRUH2XhiqnaO0LAEDSsrErkMz6l6J9+vQp/3K9vubk124NfZdAY9RhbtuyIbbFTjvtNMvp11133WzXP+uss1IqlapNK5VKOeusszJ06NA61eGf//xnPvroo2rTPvzww/zzn//M5ptvPtv133333VxzzTXlepRKpVxzzTXZdNNNs/zyy9epDgB8v5yrvzG3f/dmZW77JTNmzMjUqVMzefLktGjRYq7KamxFv5u0KXy+prK/NERbNESfuqGukZpSObMaknPjjTfOAw88UOe6zOq8tvnmm+ef//xnncqY22uWKoceeugsp19wwQV1KuPaa6/NpEmTqk2bNGlSrr322uy88851rktDXEclyahRo/LCCy9UmzZ69OiMGjUq3bp1+8HKaMhymoqG6rs0VDlFa1+g6ZkyZco8fx1QZE2l/82s2UZNX1O4lq5Jowd/ffv2ne38hx56qE5lffsiZ9ttt52reqU0+0VmUYkGq8N3L9pmZ3ZD7czuovy1116rdf3XXnstq6yySq3LfPHFF/nggw9qnPfBBx/kiy++yMILLzzL9adNm5Y777yzxnl33nlnDjvssLRu3brWOsyYMSNnnXVWjfPOOuus9OvXr9YTZalUyvnnnz/L6WeeeWaaNWtWax0A+H45V39jbv/ufVeD9qeKqp59tCbLtp6t+vbHk9nfqXXAAQfk0ksvrXWZY445ZrbzTzvttNnW5dZbb53t/F/84hezLeeqq66a7fw99tij1mXGjRuXGTNm1DhvxowZGTduXJZZZpnZ1uXjjz+e5cX1lClT8vHHH2eJJZaotYy5vWapMnny5IwePbrGeaNHj87kyZPTtm3bWsuYPn16/vjHP9Y4749//GN22GGHtGw5+8v2hriOSr6+42tWz0c/+eSTc8stt6R589oHDmqIMhqynKaiofouDVVO0doXaEK+1X8aMGBAI1YE4Ic1J9eP35dG78XNrjGaUmMV3T777DNX85Nkt912m6v5s/sCoy5fcNxxxx21fqlwxx131Lr+O++8k6eeemqmMmbMmJGnnnpqjp+3AUDDca7+xtz+3QMa1ssvvzxX85PkiSeemKv5Vc4999y5ml+lLsHf7Oy4445zNb8hy5nba5Yqs7rbr67zk+Tqq6+eq/lVGuI6KklGjBiRzz//vMZ5n3/+eUaMGPGDlNGQ5TQVDdV3aahyita+AAB8o9Hv+GvWrFmt4V59fq3/7WVvvvnmtGnTpl51+fTTT78ZSmVObxKYyzpMmTKl/IvrH/pOhcsvv7zWcO/yyy+fbRlXX311+vfvX+v82hxzzDG13uE5u18/J8nWW2+dCy64oMYvQVu2bJmtt9661vVXXHHFdO/ePc8880y1Mlq0aJG11147K6644mzrAMD3y7n6G3P7d++75rY/9W0zZszI6NGj06lTp3l+WJJv99FSlLtJG3BbN4Smsr/MbX98tdVWqzXcW2211WZbxrrrrltruLfuuuvWqS5DhgypNdwbMmRIncrZY489ag33Zne3X5Jcf/31tYZy119/fZ3qcv3112f77befq3Lm9pqlygUXXJAtttii1vmzs9tuu9X6fnUNIRviOipJevbsmUUWWaTGQOhHP/pRevbs+YOU0ZDlNBUN1XdpqHKK1r5AE/Kt/tPw4cOz4IILNmJlqE1T6X8za7ZR09eYeU5tGj34e+ihh2odorKuw3x+V5s2bWY7rMp3NfR4rHNSh7nx8MMP19qWs3v2xuyG8Zzd/CRZeOGFs+yyy9Y4dM6Pf/zj2Q6Z07p162y11VY1DlPTv3//Og1P06JFiwwdOjSnn376TPN+/etfz/Yk2axZsxx22GHZfffda5zelA5ggPmVc/U35vbvXm3mti8zY8aMLLDAAmnbtq2LlCbuh+631qQo+8ull15aa598dsN8Jl/fnVVbGXW9e+sXv/hFrcFfXYb5TBom+FtmmWXSokWLGn+k0KJFizoN85kkSyyxRNq0aVPjtVubNm1mO8xnMvfXLFXatm2bTp061TjcZ+fOnet0TLVs2TL7779/jcN9HnjggXUa5jNpmOuoJGnevHlOOOGEHHnkkTPNO/HEE+s09GNDlNGQ5TQVDdV3aahyita+QNPUFPqYzFpR+t9FZhsxp5pET25WgVR9HjbP1+a2LRtiW1x33XU1Tr/22mvrtP7QoUNnulhp1qxZjjjiiDrXYfPNN89SSy1VbdrSSy+dTTfdtE7rL7/88tlll13K9WjWrFl22WWXLLfccnWuAwDfL+fqb8zt3z2gYTVEn7qhrpGaUjkPPPBAvabPyj//+c96Ta/J3F6zVJnVXX3nnXdencvYeeed065du2rT2rVrV+fhT6s0xHVUknTr1i0dO3asNq1Tp07p2rXrD1pGQ5bTVDRU36Whyila+wIA8LUmEfzRtKy66qq1vq6LQw45pNbXs3PhhRfW+rouLrroorkqY+DAgeVfDC+55JLZZZdd6l0HAL5fztXfmNu/ewA/hH79+tX6uq6+O9xnbcN/zsrcXrNUOfnkk2t9XRffvRO0LneG1qQhrqOS5JRTTinf8dW8efM5+kwNUUZDltNUNFTfpaHKKVr7AgDQhIK/7/5S1N1+c25u2/JPf/pTra/rYm4vxDt06JAll1wyydcXMR06dKh3HZZZZplsuOGGSZINN9ywzsMHVWnTpk0OP/zwLLPMMhkyZEijP/cGgJk5V39jmWWWKQ8N2KdPn3r/3QMaVkNc3zTUNVJTKufYY4+t9XVdNURo1xDhYZL07t27PJRm69at07t373qXseKKK5aveTp06DDHz6ptiOuoJFl00UUzcODANG/ePAMHDsyiiy7aKGU0ZDlNRUP1XRqqnEUXXTQ777xzmjdvnp133nmeb18AAJrAM/6+TdjXcOa2LRtiW8xtGcOHD5/rOpxwwgl57rnn0rlz5zlaf7311st666031/UA4PvjXP2Nk046qbGrAHxLQ/SpH3jggbnqzzZkXRqqnIaqS0O0TUPV5d57753rMr575/acuv766xtkn9l7772z9957N3oZDVlOU9FQfZeGKmevvfZK165d53qfAQCgaWgyd/wBAAAAAAAAc07wBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABRAy8auQENq06ZNOnToUP7/vKjqM0ycOHGe/QwAwLyrCP0pmBuOAYD50wILLPDNi+aF+roMAPieNNU8p1A9mWbNmuXCCy8s/39e1KxZs5x33nl57rnn5tnPAADMu4rQn4K54RgAmD9VO+c7/wMAddBU85xCBX9JMS7OmzVrVojPAQDMm/RDmN85BgAAAKiLppjneMYfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACqBlY1egqWpWOSOlGV/NwXrTv4faAADQVDSrnJ5SY1bg233UOeivVtFvBYCaNfrfematgfpBfH/0MQEan+BvFhZ64cbGrgIAAE3QQs9d29hVKFv4+esauwoAUDhN6W89s6YfBAA1M9Tnt7Rp06axqwAAAAAAAABzxB1/39KmTZvcfffdDVoeAADzvobsJ86YMSOjR49Op06d0qJFiwYpc27ptwIwv2vTpk3uuOOOJvc3mpk1xb4U1VVtI31MgMYh+PuWZs2apW3bto1dDQAAmpiG7CfOmDEjCyywQNq2bevLKgBoIqr+1vsb3fTpSzV9VduoWbNmjV0VgPmSoT4BAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABRAy7osVCqVkiQzZsyodbmq+bNbjtppx4ajLRuGdmwY2rHhaMuGoR3rp6qdqvpF9VHXvlTR2Mdqpl1qpl1qpl1mTdvUTLvUTLvM2g/VNvNCX8p+Mm+wnZo+22jeYDs1fbbRvKEp9qWaleqw1LRp0/LCCy/Mfc0AAOZxHTt2TOvWreu1jr4UAMDX9KUAAOZcXfpSdQr+KisrM3369DRv3jzNmjVrsAoCAMwrSqVSKisr07JlyzRvXr/R0vWlAID5nb4UAMCcq09fqk7BHwAAAAAAANC01e8nVgAAAAAAAECTJPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKIAGC/4+/vjjHHTQQenWrVt69uyZU089NdOnT2+o4ucbd911V9ZYY4106dKl/G/o0KGNXa15xoQJE9KvX7+MGDGiPO3555/PDjvskC5dumSjjTbKjTfe2Ig1nHfU1JYnnnhiOnToUG3/vP766xuxlk3Xyy+/nD333DM9evTI+uuvn1//+teZMGFCEvtkfdXWlvbJunviiSeyww47pGvXrll//fVzyimnZMqUKUnsk3x/avpbMj+r7Xw2v6vtHEUyY8aMDBo0KEcffXRjV6VJcM00a59++ml+/etfp2fPnunevXsOOuigfPjhh41drUZ12223VdtXunTpkg4dOqRDhw6NXbVG99JLL2XgwIHp1q1bevXqld/97neZNm1aY1frB1OXfsojjzyS/v37p3Pnztliiy3y0EMP/YA1JKnbdtpnn33SsWPHasf5o48++gPWcv5Un76tY6lx1GcbOY4aT32uhRxLjac+26lJHE+lBrLrrruWjjjiiNKkSZNK77zzTmmrrbYq/elPf2qo4ucbp59+eunoo49u7GrMk0aNGlXaZJNNShUVFaUnn3yyVCqVSp9++mmpR48epb/97W+lr776qvT444+XunTpUnr++ecbubZNW01tWSqVSttuu23ppptuasSazRsmT55cWn/99Uvnn39+aerUqaUJEyaU9t1339L+++9vn6yn2tqyVLJP1tXHH39c6tixY+kf//hHacaMGaVx48aVtt5669L5559vn+R7M6u/JfOr2Z3P5me1naP42nnnnVdabbXVSkcddVRjV6VJcM00a7vuumtp8ODBpc8++6z0xRdflA4++ODSfvvt19jValI++OCD0vrrr1+65ZZbGrsqjWrGjBml9ddfv/SXv/ylNGPGjNL//ve/0mabbVa66KKLGrtqP4i69FPefPPNUseOHUv33Xdf6auvvirdeeedpU6dOpU++OCDH7i286+69id79uxZGjFixA9YM+rTt3UsNY76Xn84jhpHfa6FHEuNp77XrE3heGqQO/7efvvtjBw5MkOHDk3btm2zwgor5KCDDsrf//73hih+vvLCCy/45eEcuPnmm3PkkUdmyJAh1abfe++9WXTRRTNw4MC0bNky6667bvr372/frMWs2nLatGl59dVX7Z918P7772e11VbL4MGD07p16yy22GLZcccd89RTT9kn66m2trRP1t3iiy+exx9/PNttt12aNWuWTz/9NFOnTs3iiy9un+R7Mau/JfOz2s5n87vazlF8/cvSe++9N5tuumljV6XJcM1UsxdffDHPP/98Tj/99CyyyCJZaKGFcsopp+TII49s7Ko1GaVSKUOHDk2fPn3yi1/8orGr06g+++yzfPTRR6msrEypVEqSNG/ePG3btm3kmn3/6tpPufnmm9OtW7dssskmadmyZbbccst0797dCCM/kLpup7Fjx+azzz7LGmus8QPVjKR+fVvHUuOozzZyHDWe+lwLOZYaT322U1M5nhok+BszZkwWXXTRLLPMMuVpK6+8ct5///18/vnnDfEW84XKysq89NJLefjhh9O3b9/07t07xx9/fD777LPGrlqT16tXr9x3333Zcsstq00fM2ZMKioqqk1bZZVV8vLLL/+Q1ZunzKotX3755UyfPj0XXHBB1ltvvWy22Wa57LLLUllZ2Ug1bbpWWmmlXH755WnRokV52j333JM111zTPllPtbWlfbJ+FlpooSTJhhtumP79+2eppZbKdtttZ5/kezGrvyXzs9rOZ8z6HDW/+/jjj3Psscfm7LPPni++jK8L10yzNnr06Kyyyiq54YYb0q9fv/Tq1StnnHFGllpqqcauWpNx66235rXXXjNsbpLFFlsse+yxR84444x07NgxG264YX72s59ljz32aOyqfe/q2k957bXX9JMbUV230wsvvJAFF1wwQ4YMyTrrrJOtt946w4cP/4FqOf+qT9/WsdQ46rONHEeNq67XQo6lxlXX7dRUjqcGCf6+/PLLmS5Eq15PmjSpId5ivjBhwoSsscYa2WyzzXLXXXfluuuuy1tvveV5FXWw1FJLpWXLljNNr2nfbNOmjf2yFrNqyy+++CI9evTIoEGD8sgjj+Sss87KX//611xxxRWNUMt5R6lUyrnnnpuHHnooxx57rH1yLny3Le2Tc+bee+/No48+mubNm+fQQw+1T/K9mNXfEr723fMZ3/juOWp+VllZmaFDh2bPPffMaqut1tjVaTJcM83aZ599lldeeSVvvfVWbr755txyyy0ZN25cjjrqqMauWpNQWVmZSy65JAcccED5i5v5WWVlZdq0aZPjjz8+zz33XO644468/vrrueCCCxq7at+7uvZT9JMbV12307Rp09K5c+cMGTIkjz32WI4++uiceuqpufvuu3+AWpLMvm/rWGp8s9tGjqOmYXbXQo6lpmF226mpHE8NEvy1a9cukydPrjat6vWCCy7YEG8xX1hyySXz97//PQMGDEjbtm3zk5/8JEOHDs2jjz6aiRMnNnb15klt27ad6SGbU6ZMsV/OgfXXXz9XX311evTokVatWqVTp07Zfffdc9dddzV21ZqsiRMn5tBDD83tt9+ev/3tb2nfvr19cg7V1Jb2yTnTpk2bLLPMMhk6dGgee+wx+yT8wGo6n/GN756j5ue7uP74xz+mdevWGTRoUGNXpUlxzTRrrVu3TpIce+yxWWihhbLkkkvmV7/6VR555JF8+eWXjVy7xjdixIh8+OGHGTBgQGNXpUm47777cs8992SXXXZJ69ats+qqq2bw4MG59tprG7tqTYZ+8rzhl7/8ZS6//PKsscYaadWqVXr16pVf/vKXAosfSF36to6lxlWXbeQ4ahpmdy3kWGoaZredmsrx1CDB36qrrppPP/0048ePL097/fXXs+yyy2bhhRduiLeYL7z88ssZNmxYeXz95OuEuHnz5uWLOOqnoqIiY8aMqTbttddey6qrrtpINZp33X///bnuuuuqTZs2bVratGnTSDVq2t55551sv/32mThxYoYPH17uWNkn629WbWmfrLtnnnkmm2++eaZNm1aeNm3atLRq1SqrrLKKfRJ+ILM6n83vajtHzc/DW956660ZOXJkunXrlm7duuWOO+7IHXfckW7dujV21RqVa6ZZW2WVVVJZWZmvvvqqPK1qCPRvt9f86p577km/fv3Srl27xq5Kk/C///2v2nk3SVq2bJlWrVo1Uo2aHtdu84bhw4fP9GXqtGnTssACCzRSjeYfde3bOpYaT123keOo8dTnWsix1Hjqs52ayvHUIMHfz372s6y99tr5/e9/n4kTJ2bs2LG5+OKL/ZKunhZddNH8/e9/z+WXX57p06fn/fffz1lnnZVtt912vr+InVP9+vXL+PHjc9VVV+Wrr77Kk08+mdtvvz3bb799Y1dtnlMqlXLaaafliSeeSKlUyrPPPpurr746O+64Y2NXrcn57LPPsvvuu6dr167585//XO1Br/bJ+qmtLe2Tdde+fftMmTIlZ599dqZNm5b33nsvZ5xxRgYMGJDNNtvMPgk/gNrOZ/O72s5R83Mf+J///GeeeeaZjBo1KqNGjcrWW2+drbfeOqNGjWrsqjUq10yztt5662WFFVbIb37zm3z55ZeZMGFCzj333GyyySaGtkzy9NNPp3v37o1djSajV69e+eijj3LppZdmxowZGTt2bC655JL079+/savWZGyzzTYZOXJk7rrrrkyfPj133XVXRo4cmV/84heNXTW+ZeLEiTnllFPyn//8J5WVlXn44Ydzxx13uC78ntWnb+tYahz12UaOo8ZTn2shx1Ljqc92airHU7NSA/30b/z48Tn55JMzYsSING/ePL/85S9z5JFHVnuAKLM3cuTInHPOOXn11VezwAILZKuttsrQoUP9wqIe2rdvn6uvvjo9e/ZM8vUDNU899dS8+uqrWXzxxXPQQQfV+OBNZvbdtrzuuuty5ZVXZty4cVlyySWz5557ZuDAgY1cy6bnyiuvzOmnn562bdumWbNm1eY9++yz9sl6mF1b2ifr7rXXXsvvf//7vPDCC1l44YXTv3//DB48OK1bt7ZP8r367t+S+dXszmfzu9rOUXzt6KOPTpKcfvrpjVyTxueaadbGjRuX008/PU899VSmTp2ajTbaKMcee2wWWWSRxq5ao+vSpUvOO++8bLjhho1dlSbj8ccfz3nnnZc33ngjCy+8cLbZZpv57tz73X5Kly5d8tvf/jbbbLNNkuSxxx7LsGHD8s4772S55ZbL0KFD7UONoLbtVCqVcskll2T48OH5+OOPs8IKK+Tggw/O5ptv3si1LrbZ9W0dS42vPtvIcdS4arsWciw1HXXdTk3leGqw4A8AAAAAAABoPA0y1CcAAAAAAADQuAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAABQL1988UUmTJjQ2NUAAADgOwR/MI9o37599ttvv5RKpWrTb7rppmy00Ubfy3tutNFGuemmm76Xsuvirrvuyrrrrpu11147Dz30ULV57777btq3b5/OnTunS5cuWWuttbLOOuvkyCOPzOeffz7H73n00Ufn6KOPntuqAwBNhD7U99OH6tevX8aMGZPk+21LAGDepA/20Ezz27dvn06dOqVLly7V/h177LFJGr/+QHEI/mAe8sgjj+Tyyy9v7Gr8YG688cZstdVWefrpp9O3b98al7njjjvy7LPP5vnnn88dd9yRt99+O6eeeuoPXFMAoCnTh5rZ3PahPvnkk4aqLgBQUPpgM/vTn/6UZ599tto/32MBDU3wB/OQQYMG5fzzz88zzzxT4/yqX3C/++675WkXXnhhBg0alOTrX1XtsssuOeOMM9KjR4+ss846+etf/5obbrghffv2zdprr50TTjihWpkvvfRStttuu/To0SN777133nrrrfK8d955JwcccEB69uyZvn375txzz820adPK77Xddttlr732Srdu3XL77bfPVN9PPvkkxx9/fHr16pWePXtm//33L5c/YMCAPPnkk7nuuuuyySab1Kl9llxyyWyzzTZ58cUXy9PGjx+fI488Muuvv3569eqVE044IRMnTizPf+CBB7LVVlulc+fO2X///at9iXXhhRdmr732yvbbb58ePXrkqaeeqrXOSfLKK69k3333TY8ePdK7d++cdNJJ+eKLL+ao/e+5555stdVWWXvttbPFFlvk4osvrlM7AADV6UPVrqY+1DPPPJPddtstvXr1SseOHbPddtvlueeeS5JsttlmSZJ99903f/rTn5Ik06dPz7Bhw9KnT5907do1xx13XKZPn57k6xEVDj300GyxxRZZZ5118s477+S9997Lr371q6y77rpZf/31c8QRR+TDDz8sv/+oUaMycODAdOvWLRtttFHOO++8chtdeOGFOeyww3LUUUela9eu6d27d+6+++784Q9/yHrrrZcePXpU6zddc8012WSTTdKtW7f0798/N954Y53aBQCYO/pgc27KlCk588wzs+GGG6Z79+4ZNGhQRo8eXZ5fW19qxIgR2XDDDXPEEUekW7duueyyyzJmzJgMHDgw3bt3T9++fXPUUUdV+34MKBbBH8xD+vXrlx133DGHH354Pv300zkq4+mnn84yyyyTJ598MoceemhOO+20jBgxInfddVeuuuqqDB8+PE899VR5+fvvvz+nnXZaHnvssSy//PLZf//9M3369EyaNCl77LFHVl111Tz66KO55ppr8vjjj+fCCy8sr/vSSy+lf//+efzxx9OvX7+Z6nLooYfmnXfeyc0335xHHnkkK620UvbYY49MnDgxw4cPT7du3bL//vvn/vvvr9Nn++ijj3Lfffdl0003TZJUVlbmoIMOSvPmzXPPPffk9ttvz4cffljuFL7xxhs57LDDsv/++2fUqFHZYYcd8thjj1Ur84knnsiRRx6Zhx56KF26dKm1zp988kl22223rLLKKnn00Ufzj/9v795jqq7/OI4/PcA5xzpyS0BAYCplbuCCdMplMhrTSqKpzTZYA2ls9Ee2QIG5RBje5ryALaIkCJtLLf8oUYzKaZoMJ801tXKJi5sSIjOg4MCB3x+OM4/6gwP9Lslej42N8/2e7/dzOf+89nl/z+ccOcL169fJyckZ9/z39fWxfv168vPzaWhoYNeuXezbt88h5ImIiIhzlKFGd3+G6uvr44033mDZsmV899131NfXExwczI4dO4C7DyfB3SfWMzIyAGhvb8fd3Z1vvvmGw4cPU11dzYkTJ+xtnDlzhpKSEmpra/H39yc9PR0XFxdqa2upqakBIDMzk8HBQRobG1mzZg1Lly7l3LlzVFZWcvLkSXv7I32Ij4+noaGBpKQksrOz6enp4fTp02zdupWSkhJaW1tpbm5m27ZtfPjhh1y4cIGcnByKioociowiIiLy36EMNnEFBQWcPXuW/fv38/3335OQkEBaWhptbW0MDAyMmqUAbt68yezZs6mrqyM5OZnCwkKioqI4f/48R44c4cqVK3oYSmQSU+FP5BGTm5uLt7c3eXl5D+yT7ozHHnuM1NRUDAYDsbGx2Gw2Xn/9daZOnUp4eDi+vr60trba35+ens7cuXMxmUzk5eXR0tLCjz/+yKlTp7BarWRlZWEymfD39+ett97iwIED9mvd3Nx4+eWXMRqNmM1mh340Nzdz/vx5Nm7ciI+PD2azmXXr1jE4OMjp06edHk9SUhILFiwgIiKC2NhYmpqaSExMBODSpUtcvnyZTZs2YbFY8PLyIjc3l2PHjtHV1cXx48cJCwsjKSkJV1dXEhISHtiKISgoiKioKB5//HFu3Lgxap+//fZb3NzcWLduHWazGR8fHzZu3MjJkyfp6OgY9/ybzWY+//xz6urqmDNnDg0NDcyfP398H7iIiIgAylD3Gy1Dubm5cejQIZKTk7FarbS2tuLp6Ul7e/u/vZ/FYiEjIwNXV1dCQ0N5+umnaWpqsp9/5plneOqpp3B3d+fChQs0NzdTWFjItGnTcHd3p7CwkJ9//plLly5x9OhR5s6dS2pqKkajkZCQELKzs/nss88YGhoCIDQ0lOeff54pU6YQExODzWYjMzMTNzc3++8GtbW14eLiwvDwMAcPHqShoYGoqCguXryIr6+v03MlIiIiE6cM5igzM5MFCxbY/x727cD+/n6qq6vJzs4mJCQEo9FIamoqs2fPprq6eswsNeKVV17Bzc0Ni8WCyWTizJkznDhxAoPBwBdffMGaNWvG81GIyCPE9f/dAREZH6PRSHFxMStWrKCiogIvL69xXe/p6cmUKVMAMBju1v7d3d3t5w0Gg31BBWDmzJn2/6dOnWpf9GltbeX27dssXLjQfn54eJiBgQE6OzsB8PHxsbdxv1u3bgF3C2sjXFxc8Pf3dwhsY/nyyy/tfezp6WHv3r2sXr2a48eP09LSgs1mIy4uzuEao9FIc3Mz7e3tBAQEOJwLDg522O7z3kWhsfo8PDxMQEAALi4u9vMjfRsZk7Pzbzab+fTTTyktLbU/wb5s2TLeeecdPDw8nJ4fERERuUsZytFoGcrPz4/6+noyMjL4888/CQ0NxdXVddTFOg8PD/v8wN2FM5vNZn99b6bq7OzEy8sLi8ViP2axWPD09KS1tZXOzk6H8cHd+ezr67PPkaenp/3cyFyNZKSR10NDQwQEBPDJJ59QXl5OZmYmNpuNlStXsn79ekwmk9PzJSIiIhOjDOaorKyMRYsWjfqeO3fuMDAw4DCWkbG1tLQQEBAwapaaPn064Ji/iouLeffdd9mzZw9ZWVlERkZSUFDAk08+6XTfReTRocKfyCMoODiYoqIicnJyWLlypf34SMFpYGDAfuzeIhbgsCDjjHu3QRrZzjIwMJDBwUGCg4MdtnDq6emhs7MTb2/vMdsKDAwE7u6vPhIybDYbbW1t+Pj4jKuPIywWC2vXrqWqqoqGhgZmzJiB2Wymvr7ePjdWq5Xm5mZCQkKYMWMGp06dcrjHzZs3HRaB7h3DWH12c3Ojra0Nm81mb2/kSXcfHx8aGxudnv+enh5+//13du3aBcBPP/1EVlYWZWVl5ObmTmB2RERERBnq4e7PUIGBgRQVFXHw4EHCwsIAqKio4Pr16xO6PzyYqbq6uujp6bEvWHV3d9PV1YWPjw+BgYHU1tY6XN/U1ITRaLQX95z9PDo7O7HZbLz33nsMDQ3xww8/sHbtWmbNmkVKSsqExyMiIiLOUwYbn+nTp2MymWhubmbOnDn2401NTTz33HNjZqmRh7VGxjM0NMSVK1d488032bBhAzdu3GDbtm3k5eVx5MiR/2jfReSfQVt9ijyiXnzxRVatWsWhQ4fsx5544gk8PDw4duwYw8PDXL582SHQTERFRQWNjY389ddfbNmyhXnz5hEWFkZ8fDy9vb2Ul5djtVr5448/yM3N5e2333YqlPn6+hIXF8fmzZvp6Oigr6+PnTt3YrPZHthu01n9/f1UVVVhNpsJDw9n/vz5hISEsH37dnp7e+nr62Pr1q2kpaVhs9lISkri6tWrHD58mMHBQc6ePcvXX3894T6PfLNw586d9PX10dHRwZYtW1i8eLE9IDqrt7eXjIwMjh49yvDwML6+vhgMhnE/GSciIiKOlKEedH+G6u7uxmAw2Le4unjxIvv378dqtdqvMRqNdHd3T6i98PBwQkND2bRpE93d3XR3d1NQUEBwcDCRkZEsX76ca9euUVVVhdVqpampid27d/PSSy9hNBrH1VZbWxvp6enU1dVhMBjw8/MDUKYSERH5H1MGc57BYGDVqlXs3r2b3377DavVSlVVFb/++ivLly8fM0s97H6bN2+muLiY/v5+vL29MZlMykMik5gKfyKPsA0bNjBv3jz7a6PRSFFRETU1NURGRrJ9+3ZWr179t9pISEggMzOTJUuWcOfOHUpLSzEYDFgsFj7++GPq6+tZsmQJCQkJGAwG3n//fafvvWPHDoKCglixYgXR0dH88ssvVFVVOWzdNJbExEQiIiKIiIggOjqac+fOUVZWRlBQEK6urnzwwQfcunWLpUuX2n+/prKyEpPJRFBQEGVlZRw4cIBnn32W0tLSh/54s7N9njZtGpWVlVy9epW4uDgSExMJDAykpKTE6fGM8PPzY+/evezbt4/IyEgSExNZvHgxaWlp476XiIiIOFKGGj1DxcTEkJycTEpKCgsXLqSwsJDXXnuN27dv27e5evXVV8nOzmbPnj3jnRp7RhscHGTZsmXEx8czMDBAZWUlrq6uzJw5k/Lycr766iuio6NJTk4mJiaG/Pz8cbcVHh5Ofn4+BQUFREREkJKSQnJyMi+88MK47yUiIiJ/jzKY83JycoiNjSUtLY1FixZRU1PDRx99xKxZs8bMUg9TXFzMtWvXiI2NJTo6mu7uboqKiv7j/RaRf4YpwxP5VVURERERERERERERERER+UfRN/5EREREREREREREREREJgEV/kREREREREREREREREQmARX+RERERERERERERERERCYBFf5EREREREREREREREREJgEV/kREREREREREREREREQmARX+RERERERERERERERERCYBFf5EREREREREREREREREJgEV/kREREREREREREREREQmARX+RERERERERERERERERCYBFf5EREREREREREREREREJgEV/kREREREREREREREREQmARX+RERERERERERERERERCaBfwFt1qcbniE8LQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1929,7 +1945,7 @@ }, { "cell_type": "code", - "execution_count": 230, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -1942,7 +1958,7 @@ }, { "cell_type": "code", - "execution_count": 231, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -1951,13 +1967,13 @@ "Text(0.5, 0, 'Number of Bedrooms')" ] }, - "execution_count": 231, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAHFCAYAAACNXuEaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlmUlEQVR4nO3deVxVBf7/8bdsiuIGOhhYCJkLCqgUiuCC1mTmqA9Dcxn7uo2mOKZMuaSTK5lrjCmYD0tnrEFT+Pqw/evyVRuXabQYnTEbFTMUdTDcCBS49/z+8Mf5egUd0OJc4PV8PHjEPefcez+cvNwX9xwuNQzDMAQAAKo1F6sHAAAA1iMIAAAAQQAAAAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAq3PDhw9WyZUuHj8cff1wvvPCCvvzyy5/kPlq2bKm33nrrJ7ktANWDm9UDANVRcHCwZs+eLUmy2Wy6fPmyUlJSNHr0aKWlpemxxx6zeEIA1Q1BAFjAy8tL7dq1c1jWuXNnRUZGKi0tTdOmTbNmMADVFocMACfh6empmjVrqkaNGuayHTt2aMCAAQoJCVFUVJQWLFigvLw8h+t9+eWXev755xUWFqann35a+/fvd1h/9uxZtWzZUuvWrVOvXr0UFham1NRUSdLRo0c1evRodezYUR06dNCLL76oEydOOFz/3//+t2bMmKFu3bopNDRUsbGx2rlzp8M2LVu2VEpKiqZPn67w8HBFRERowYIFunHjhhYtWqROnTqpY8eOmjlzpm7evGleb9++fRo0aJDat2+vJ554QuPHj9epU6d+kv0JoHwIAsAChmGoqKhIRUVFKiwsVHZ2tpYtW6aCggI999xzkqQPP/xQcXFxCgoK0qpVqzRx4kRt27ZNEyZMUPEfKf3nP/+pUaNGqW7dulqxYoVeeOEFxcfHl3qfb731ln7zm99o8eLFioqK0sGDBzVkyBBJ0uuvv64FCxbo/PnzGjx4sPmkfOnSJcXGxurQoUOaMmWK3nrrLfn7+ysuLk7btm1zuP0lS5bIw8NDK1euVP/+/bVhwwb1799f58+f19KlSzV8+HBt2bJFGzZskCRlZmZqwoQJatu2rZKTk5WQkKDTp09r7NixstvtP8t+B3B3HDIALPC3v/1Nbdq0KbE8Pj5ejz76qAzD0NKlS9WlSxctXbrUXN+sWTONGDFCe/bsUffu3fX222/Lx8dHycnJcnd3lyQ1bNhQU6ZMKXHbzzzzjBkbkvTb3/5WAQEBWrNmjVxdXSVJ0dHReuqpp7RixQr94Q9/0Lp165STk6PPP/9c/v7+kqRu3bppxIgRWrx4sfr06SMXl1s/VzRv3lzz5s2TJEVERGjz5s0qLCzU0qVL5ebmpujoaH3++ef66quvJElHjhzRjRs3NG7cOPn6+kqSmjRpop07dyovL09eXl4PvJ8BlB1BAFigTZs2mjt3rqRbrxZcu3ZNe/fu1Ztvvqm8vDz17dtXFy5c0Lhx41RUVGRe74knnpCXl5f27dun7t276/Dhw4qJiTFjQJJ++ctfmk/wt2vdurX5eV5eno4ePaqJEyc6bFuvXj3FxMRoz549km4djmjfvr0ZA8X69u2rGTNmKCMjQ82bN5cktW/f3lzv6uqqhg0bqk2bNnJz+79vMw0aNND169clSWFhYapZs6ZiY2PVq1cvde3aVR07dlRoaGj5dyiAB0YQABaoU6eOQkJCHJZFR0crLy9Pa9euVVRUlCRp7ty5Zjjc7t///rck6erVq2rYsKHDOjc3txLLJKl27drm59evX5dhGGrUqFGJ7Ro1amQ+aV+9elUPP/xwqdtI0rVr18xlpf1Ef/t93qlp06Z67733tGbNGm3ZskV/+tOfVK9ePQ0dOlSTJ092OJcCwM+PIACcSNu2bbV582bz8tSpUxUREVFiu/r160u69RP3pUuXHNYZhqGrV6/e837q1q2rGjVqlLiuJGVnZ6tBgwbm/WRnZ5e6jaRSw6M8QkNDtXLlShUUFOjw4cPatGmTVq9erVatWumZZ555oNsGUD6cVAg4kSNHjsjV1VVBQUHy8fHR2bNnFRISYn74+vpq2bJlOnbsmCQpMjJSe/fuVX5+vnkbX3zxhQoLC+95P7Vr11bbtm316aefymazmcuvX7+u3bt3Kzw8XNKtQxRff/21zp0753D9bdu2qXHjxgoICLjvr3X9+vWKiYlRQUGBPDw8FBkZqfnz50uSsrKy7vt2AdwfXiEALJCbm6v09HTzckFBgXbt2qXU1FQ9//zzatSokaZMmaLXXntNrq6uiomJ0bVr15SUlKSLFy+aJyTGxcVpx44dGj16tMaMGaOcnBwlJiY6nFNwN7/73e80evRojR07VkOHDlVhYaHWrFmjgoICxcXFSZJGjhypbdu2acSIEZo4caIaNGigrVu36uDBg3r99dfNEwrvR6dOnbR06VLFxcXp17/+tVxdXbVx40Z5eHgoJibmvm8XwP0hCAALHDt2TM8//7x5uWbNmnrkkUc0ZcoUjR49WpI0cOBA1alTR2vXrtWmTZtUu3ZtdejQQUuXLjWP6zdr1kzvvfee3njjDU2ZMkU+Pj6aNm2a3njjjf84Q2RkpNatW6cVK1YoPj5eHh4eevzxx7Vo0SLznRIbN26slJQULVu2TAsWLFBhYaFatWqlpKQk9ezZ84H2QatWrbR69WqtWrVK8fHxstlsatu2rd59910FBQU90G0DKL8aRvEvNAMAgGqLcwgAAABBAAAACAIAACCCAAAAiCAAAAAiCAAAgMr4PgR2u11FRUVycXHh/cUBAKgkDMOQ3W6Xm5vbf3wjsTIFQVFRkY4ePfqTDAcAACpWSEiIPDw87rlNmYKguCpCQkJK/bOq1Y3NZtPRo0fZHz8z9nPFYD9XDPZzxWA/OyreH2V5m/EyBUHxYQJXV1d28G3YHxWD/Vwx2M8Vg/1cMdjPjspyuJ+TCgEAAEEAAAAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAACS3KweABXn4sWLunr1qtVjlJnNZtPly5etHgMAqgWCoJo4fvy4JkyIk91us3qUcnFzd1dwcLD8/PysHgUAqjSCoJrIzMyU3W7TDf8OstVvavU4ZeJy46o8M/bo6tWrBAEA/MwIgmrG8PCSvU4jq8cAADgZTioEAAAEAQAAIAgAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCO5bbm6u1SPASV25csXqEQCg3AiC+5CVlaU5c+YoKyvL6lHgZLKysjRgwAD+bQCodAiC+5CbmyvDMHiVACXk5ubKbrfzbwNApUMQAAAAggAAABAEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAAARBAAAQJKblXfevXv3Est2795d4XMA1VVlfAxu3bpViYmJ5uXJkyerf//+ls1TFhkZGRozZozsdrtcXFy0du1aBQUFWT3WPeXk5Cg+Pl4//PCDfHx8tHz5cnl7e1s91j3l5+crOTlZx48fV6tWrTR+/Hh5enpaPdY92Ww2HTlyRDk5OfL29lZoaKhcXV0tmcWyICjtG1Hxcmf/hgRUBZXxMVjazImJiUpMTKw0M9vtdo0aNUqS88bXgAEDlJOTY16+fv26BgwYIG9vb6WlpVk42d3NnDlT+/btMy//61//0rZt2xQVFaWEhAQLJ7u7vXv3KikpSRcuXDCXNWnSRBMmTFDXrl0rfB5LDhnc7RtRWdcDeDCV8TF450x+fn73XO8Mbp/J3d1dTz/9tNzd3Utd7yxuj4Hg4GAtW7ZMwcHBkm69ajBgwAArxytVcQy4u7tr8ODBmjFjhgYPHix3d3ft27dPM2fOtHrEEvbu3avZs2crKChIq1at0ieffKJVq1YpKChIs2fP1t69eyt8pgp/heDOB8DthXz7Omf+KQWozO58DO7cuVPp6elq166devbs6bCdszwGt27dan4+c+ZMPfXUU+bl7du3mz8Bbt261WkOH2RkZJif//nPf5avr6/S09M1depUXbx4UUOHDjW3c5bDBzk5OWYMfPTRR/Ly8pIkhYeHKzc3V3369DG3cZbDB/n5+WYMfPzxx3J1dVV6erqefPJJjRo1Ss8++6z27dun/Px8pzl8YLPZlJSUpMjISC1YsEAuLrd+Nm/Tpo0WLFigWbNmKTk5WVFRURV6+MDScwju/Gaze/dupyzmu/n+++8tO9ZTXufPn7d6hPtWmfbzmTNnrB6hXHbv3i2bzeZw2Rkfg7efM3B7DBRfLg6CxMREpwmCMWPGSLr1yoCfn5/Dfvbz85O7u7sKCws1ZswY7dq1y6oxHcTHx0u69cpAcQwU8/LyUuvWrfXNN98oPj5e69evt2DCkt5++21J0sCBA+Xh4eGwnz08PBQbG6uUlBS9/fbbmjx5skVTOjpy5IguXLig3//+92YMFHNxcdGwYcMUFxenI0eOqH379hU2l6VBUNktXLjQ6hGqBfYzit15mKBY48aNlZ2dXcHT3JvdbpckDR8+vNT1gwcP1oYNG8ztnMEPP/wgSRo9enSp60eOHKmpU6ea2zmDs2fPSpJ69+5d6vrevXsrJSXF3M4ZFL8KExgYWOr64uW3n8dREQiCBzBjxoy7/g91NgcPHtS7775r9Rj3pTLt5zNnzjjtCUxVQVZWVqnLnS0GpFs/6dntdm3YsEEvvPBCifUbN240t3MWPj4+un79ut555x2Fh4eXWL9u3TpzO2fRtGlTHTp0SJ988onGjh1bYv0nn3xibucsig+3nD59Wm3atCmx/vTp0w7bVRTLf+3wbucQVAaPPPKIWrRoYfUYZVLZXsq+XWXaz5VN9+7dtXPnTofLzmjy5MnmYYPt27eXOIfg9u2cxdq1azVq1CgVFhYqKytLvr6+5rqsrCwVFhaa2zmL5cuXa8CAATp27Jhyc3MdDhvk5ubqm2++MbdzFuPGjdPWrVu1efNmjRgxwuHwYkFBgbZs2WJu5yxCQ0PVpEkTvf/++w7nEEi3Xll6//339dBDDyk0NLRC56rwILjzGOXdvgE5y8lMQFVz52Pw9hMJ79zOWfTv398MgoSEBCUkJJR6mMBZzh+Q5HCi4NChQ+Xu7q4uXbpo+vTpZgzcuZ3VvL295e3trZycHPXp00etW7fWyJEjtW7dOjMGirdxFp6enoqKitK+ffv07LPPasCAAWrWrJnWrFmjtLQ0FRYWKioqymlOKJQkV1dXTZgwQbNnz9asWbM0bNgwBQYG6vTp03r//fd14MABzZ07t8LPnbLktar/9I3Gmb4RAVVRZXwM3jnTnTHg7DMXFhZq165dDjHgjDOnpaWZT/jffPONpk6d6hADzvg+BAkJCYqKilJhYaE2bdqkRYsWadOmTWYMOONhvK5du2ru3LnKyMhQXFycevfurbi4OJ0+fVpz58615H0ILDtkcLezmZ3xAQJURZXxMbh79+5K906Fu3fvrnTvVJiWllbp3qkwISGh0r1TYdeuXRUVFcU7FUrO/Y0HqA6Kf+2w+H0IKsOvd/bv39+pA6A0QUFB2r59e6Xaz97e3k7zq4Vl5enpqZdeeqlS7WdXV9cK/dXCe3Ge01sBAIBlCAIAAEAQAAAAggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIILgvnh5ealGjRry8vKyehQ4GS8vL7m4uPBvA0Cl42b1AJWRn5+f5syZIz8/P6tHgZPx8/NTWlqaGjRoYPUoAFAuvEJwn/gJEHdDDACojAgCAABAEAAAAIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgyc3qAVCxahTkyuXHS1aPUSYuN65aPQIAVBsEQTXx8MMPy8XFVbXOfSWd+8rqccrMzd1d9evXt3oMAKjyCIJqolWrVkpJ+bOuXq08P3XbbDadO3dOvr6+Vo8CAFUeQVCN+Pr6VqonV5vNpry8PKvHAIBqgZMKAQAAQQAAAAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAACIIAACACAIAACCCAAAAiCAAAAAiCAAAgAgCAAAgggAAAIggAAAAIggAAIAIAgAAIIIAAACIIAAAAJLcyrKRYRiSJJvN9rMOU1kU7wf2x8+L/Vwx2M8Vg/1cMdjPjor3Q/Hz+L3UMMqwVUFBgY4ePfrgkwEAgAoXEhIiDw+Pe25TpiCw2+0qKiqSi4uLatSo8ZMNCAAAfj6GYchut8vNzU0uLvc+S6BMQQAAAKo2TioEAAAEAQAAIAgAAIAIAgAAIIIAAACIIAAAACIIAACACIJyuXjxoiZNmqSIiAh16dJFCxcu1M2bN60eq0obO3aspk+fbvUYVVZBQYHmzp2rJ554Qp07d9by5cvL9BanKJ/z589r3Lhx6tChg3r06KH169dbPVKVUlBQoD59+uivf/2ruSwzM1MjRoxQu3bt1Lt3b/3lL3+xcMLKgSAoI8MwNGnSJOXn5+v999/Xm2++qf/93/9VYmKi1aNVWR9//LH27Nlj9RhV2oIFC7R//3698847WrZsmT744ANt2rTJ6rGqnMmTJ6t27dpKS0vTq6++qsTERG3fvt3qsaqEmzdvKj4+XidOnDCXGYahuLg4NWrUSKmpqerXr58mTpyorKwsCyd1fgRBGWVkZCg9PV0LFy7UY489pscff1yTJk3SRx99ZPVoVdKVK1e0ePFihYSEWD1KlXXlyhWlpqZq/vz5Cg0NVWRkpEaNGqW///3vVo9WpVy9elXp6ekaP368mjVrpieffFJdunTRgQMHrB6t0jt58qQGDRqk77//3mH5wYMHlZmZqXnz5unRRx/VuHHj1K5dO6Wmplo0aeVAEJRR48aNtXbtWjVq1MhheW5urkUTVW2LFi1Sv3791Lx5c6tHqbIOHz4sLy8vRUREmMvGjh2rhQsXWjhV1VOrVi15enoqLS1NhYWFysjI0FdffaXWrVtbPVql9+WXX6pjx44lXtX6+9//ruDgYNWuXdtcFh4ervT09AqesHIhCMqoXr166tKli3nZbrfrvffeU6dOnSycqmo6cOCADh06pAkTJlg9SpWWmZkpf39/bd26Vb169VLPnj21atUq2e12q0erUmrWrKnXXntNmzZtUlhYmJ555hl17dpVAwcOtHq0Sm/o0KF69dVX5enp6bA8Oztbv/jFLxyW+fj46MKFCxU5XqXjZvUAldWSJUt07NgxbdmyxepRqpSbN29q9uzZeu2111SrVi2rx6nS8vLydObMGW3cuFELFy5Udna2XnvtNXl6emrUqFFWj1elnDp1SjExMRo5cqROnDih+fPnKzIyUn379rV6tCopPz+/xJ/69fDwUEFBgUUTVQ4EwX1YsmSJ/vjHP+rNN99UixYtrB6nSlm5cqXatm3r8GoMfh5ubm7Kzc3VsmXL5O/vL0nKyspSSkoKQfATOnDggLZs2aI9e/aoVq1aCgkJ0cWLF5WcnEwQ/Exq1qypK1euOCwrKCjgh4z/gCAop/nz5yslJUVLlizR008/bfU4Vc7HH3+sS5cuqX379pJkFv3nn3+ur7/+2srRqpzGjRurZs2aZgxIUmBgoM6fP2/hVFXPP/7xDwUEBDg8GQUHB2v16tUWTlW1+fr66uTJkw7LLl26VOIwAhwRBOWwcuVKbdy4UcuXL1evXr2sHqdK2rBhg4qKiszLS5culSS9/PLLVo1UZYWFhenmzZs6ffq0AgMDJd36bZrbAwEP7he/+IXOnDmjgoIC82XsjIwMNW3a1OLJqq6wsDCtWbNGN27cMEPs8OHDCg8Pt3gy58ZJhWV06tQpJSUl6Te/+Y3Cw8OVnZ1tfuCn4+/vr4CAAPOjTp06qlOnjgICAqwercoJCgpS9+7dNWPGDB0/flxffPGF1qxZoyFDhlg9WpXSo0cPubu7a9asWTp9+rR27dql1atXa/jw4VaPVmVFRETooYce0owZM3TixAmtWbNGR44cUWxsrNWjOTVeISijnTt3ymazKTk5WcnJyQ7rvv32W4umAh7M0qVLNX/+fA0ZMkSenp4aNmwYT1Q/sbp162r9+vVKSEhQbGysvL29NX78eD3//PNWj1Zlubq6KikpSTNnztSAAQMUEBCgVatWyc/Pz+rRnFoNg/cpBQCg2uOQAQAAIAgAAABBAAAARBAAAAARBAAAQAQBAAAQQQAAAEQQAGrZsqV+97vflVielpamHj16/Cz32aNHD6Wlpf0st10WO3fuVNeuXRUWFqYvvvjCYd3Zs2fVsmVL86N169aKjo7WkiVLHN5WurymT5+u6dOnP+joAH4mvFMhIOmjjz5SbGysIiMjrR6lQqxYsULR0dGKi4uTj49Pqdts3rxZDz30kGw2m06fPq3p06erfv36Gjt2bAVPC6Ai8AoBoFt/Q2HevHnV5u+lX79+XeHh4fL397/rn4T19vZW48aN1aRJE0VGRmrYsGH69NNPK3hSABWFIAAkTZ48WRcvXtQ777xT6vril9HPnj1rLnvrrbfM9/1PS0vT8OHDlZycrCeeeEJRUVHaunWrPvvsM8XExOjxxx/XkiVLHG7zxIkT6t+/v0JCQjR69GhlZWWZ686fP68XX3xRYWFh6tGjh1auXCmbzWbe1+DBgxUXF6fw8HBt27atxLw3b97UkiVL1K1bN7Vr104vvvii+WeNe/TooXPnzunVV18t1yERT09Ph8vXrl3TK6+8og4dOig6Olrz58/XjRs3zPWHDh1S//79FRoaqpdeekn5+fkO+27ChAkaNmyYIiIi9OWXX95zZkm6cOGCXnrpJUVERKhjx45asGCBGXDl3f8HDhxQv379FBISop49e2rjxo1l3g9AVUUQALr199MnTZqk1atXKzMz875u4+uvv1ZmZqa2bNmiZ599VnPmzNGf/vQnJScna/r06Vq7dq2OHTtmbp+SkqIxY8YoNTVVRUVFmjZtmiTJMAxNnDhRPj4++u///m8tXLhQH374oVavXu1wX82bN9cHH3yg6OjoErPMnj1b27dv16JFi7Rx40YVFRVpwoQJstvt2rJli5o0aaJXX31VW7ZsKdPXdv78eW3evFl9+/Y1l82cOVPXr19XSkqKkpKSdPToUc2bN0+SlJOTo3Hjxqlz587aunWrmjdvrs8++8zhNnfu3Kk+ffroj3/8o0JDQ+85c0FBgf7rv/5L+fn52rBhgxITE7V7924tXry43PvfZrNp8uTJ6tWrlz799FO99NJLmjt3rk6ePFmmfQFUWQZQzbVo0cI4ePCgUVRUZPzqV78yxo0bZxiGYaSmphoxMTGGYRhGZmam0aJFCyMzM9O83ooVK4xf//rX5rbBwcHGjz/+aBiGYZw8edJo0aKFsX//fnP7yMhI48MPPzQMwzBiYmKMN954w1xXfPsnT5409u/fb3Tq1Mmw2Wzm+p07dxoRERHmfbVs2dLIz88v9eu5cuWK0apVK+OLL74wl12+fNkICwsz9u7da95/ampqqdcvniUsLMxo166dERoaarRo0cJ46qmnjB9++MEwDMM4c+aM0apVK+PatWvm9Y4fP24ue++994wnn3zSsNvt5vrnnnvOmDZtmrnvOnfuXOaZd+zYYYSFhRlXrlwx1+/Zs8cIDg42cnNzy7X/L1++bLRo0cL44IMPzHUHDhxwuG2gOuKkQuD/c3V11Zw5czR06FDt2LGj3Nf38fFR7dq1JUk1a9aUJDVt2tRcX6tWLYdzFEJDQ83PmzZtqgYNGigjI0MXL17UlStXFB4ebq632+26ceOGLl++bN7X3Y79f/fdd7Lb7QoLCzOXNWjQQIGBgTp16pS6dOlSpq9nzZo18vX1ld1u16VLl5ScnKyhQ4dq27ZtOnXqlOx2u7p27epwHbvdrjNnzujkyZNq1aqVatSoYa4LCQlxOGzg7+9f5pkLCgrUrFkz1a9f31zfoUMHFRUV6fvvvzf3SVn2f4MGDTRkyBDNmjVLSUlJiomJ0XPPPedw20B1RBAAt+nQoYOee+45JSQkaMyYMeby25/Yit35K3hubiUfTqVdr5irq6vDZbvdLnd3dxUVFSkoKEhJSUklrlO3bl1J//eEV5q7rbPZbLLb7Xe93p38/PzMJ9TAwEAFBASoS5cu2rdvn2w2m+rWravU1NQS1/P19ZV069DH7dzd3R2C4PY5/9PMpa0vPqei+L/l2f9z5szRsGHDtGPHDu3YsUObNm1SUlKSunXrVur2QHXAOQTAHV5++WXl5eU5nGDo7u4uSfrxxx/NZbefYHg//vWvf5mff/fdd7p27ZoCAwMVGBiorKwseXt7KyAgQAEBATp79qxWrFhxz8Ao9vDDD8vNzU3p6enmssuXL+vMmTMKDAy873mLn+BtNpsCAwN1/fp11ahRw5zxxo0bWrx4sQoKCvTYY4+Zx+uLffPNN/c9c2BgoL777jtduXLFXJ+eni43Nzc98sgj5fo6srOzNXfuXAUEBGj8+PFKTU1Vp06dtGvXrnLdDlDVEATAHRo2bKiXX35Z586dM5c1atRIDz30kN555x1lZmYqLS1Nu3fvfqD7Wbdunf7nf/5Hx48f14wZMxQTE6OAgABFR0fL399fr7zyir799lsdOnRIv//97+Xp6VniVYXS1KlTRwMHDtT8+fP117/+VcePH9crr7yiJk2aKCoqqszz5eTkKDs7W9nZ2Tpx4oTmzZunhg0bqlOnTnr00UfVpUsXvfzyyzpy5Ij++c9/asaMGcrLy1O9evX07LPPKj8/XwkJCcrIyNDatWt1+PDh+545KipKDz/8sKZOnapvv/1WBw8e1Pz589WnTx/Vq1evzF+TJNWvX1/bt2/X66+/ru+//15/+9vfdPz4cQUHB5frdoCqhiAAShEbG6v27dubl11cXJSQkKAjR46od+/e+uyzz/Tiiy8+0H2MHDlSiYmJGjRokHx8fPT6669LunUoITk5WXa7XYMGDdJvf/tbdevWTbNmzSrzbU+bNk2dO3fWpEmTNGTIENWsWVPr16+Xh4dHmW9j4MCBio6OVnR0tAYPHqzCwkK9++678vLykiQtXrxYTZs21YgRIzRy5EgFBgZq+fLlkm496a5du1ZHjx5Vv379tH//fvXr1+++Z3Z1dTUPoQwaNEjx8fHq2bOn+VsN5eHh4aGkpCQdP35cffv21eTJkxUbG6uBAweW+7aAqqSGceeBPgAAUO3wCgEAACAIAAAAQQAAAEQQAAAAEQQAAEAEAQAAEEEAAABEEAAAABEEAABABAEAABBBAAAARBAAAABJ/w+IQ3JGeFNfFAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAHBCAYAAAAWz6MMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAhuklEQVR4nO3deXSV9Z348XcWskhUQAIoix4EoyNBww6mBihL1UCrYLFYFUXFEZUB2VygYwUFAZGliJURHBdcUuwAIhYQohYRRJGlU2vLdICKkAACgcYkN3f+4Jf7M4IhoORJwvt1DufkPs9dPvmS3PvOfW5yo8LhcBhJknRaiw56AEmSFDyDQJIkGQSSJMkgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCKQKd9NNN5GSklLqX5s2bbj55ptZu3btD3IbKSkpzJgx4we5Lkmnh9igB5BOR//yL//Cr371KwBCoRD79u1j/vz5DBw4kAULFtC8efOAJ5R0ujEIpAAkJSVx+eWXl9rWqVMnOnbsyIIFCxg1alQwg0k6bXnIQKokEhMTiY+PJyoqKrJt+fLlXHfddaSmpnLFFVcwbtw4Dh8+XOpya9eupV+/flx22WX07NmT1atXl9q/Y8cOUlJSmDt3LldddRXt2rVjwYIFAGzatImBAwfSvn17WrVqxV133cXnn39e6vK7d+/mgQceICMjg5YtW9K3b19WrFhR6jwpKSnMnz+f0aNH07p1a9q1a8e4cePIz89n4sSJdOjQgfbt2/PQQw/x9ddfRy63evVq+vXrR1paGm3btuXuu+9m69atP8h6SjoxBoEUgHA4TFFREUVFRRQWFpKTk8OTTz5JQUEBffr0AWDRokUMHjyYpk2b8pvf/IZ77rmHhQsXcvfdd1PyJqVbtmzhtttuIykpiWnTpnHLLbcwbNiwY97m1KlTGThwIOPGjaNDhw6sWbOGX/ziFxQXFzN+/HjGjRvHzp07ueGGG/jb3/4GQG5uLn379mXt2rUMHTqUGTNm0LBhQwYPHszChQtLXf/kyZOJi4tj5syZ/PSnP+WFF17gZz/7GTt37mTSpEnccMMNZGVl8cILLwCwfft2/vVf/5VLL72Up59+mnHjxrF161buvPNOiouLT9XSS/oOHjKQArBu3TouvfTSo7YPGzaMCy+8kHA4zOTJk/nRj37E5MmTI/svuOACBgwYQHZ2Np07d+aZZ56hTp06PP3008TFxQFQq1Ythg4detR19+jRg759+0ZODxkyhMaNGzNnzhxiYmIASE9Pp3v37syYMYOnnnqKuXPnsnfvXt566y0aN24MQEZGBgMGDOCJJ54gMzOT6OgjP1dceOGF/PrXvwagbdu2ZGVlUVhYyOTJk4mNjeVHP/oR77zzDh9//DEAGzduJD8/n0GDBlG/fn0Azj33XFasWMHhw4dJSkr63ussqfwMAikAl156KY888ghw5NmCAwcO8O677zJ16lQOHz5M7969+fLLLxk0aBBFRUWRy7Vt25akpCT++Mc/0rlzZ9avX0/nzp0jMQBHHvhLHuC/6aKLLop8fPjwYTZt2sTgwYNLnfess86iS5cuZGdnA0cOR6SlpUVioETv3r154IEH2Lp1K82aNQMgLS0tsj82NpbatWvTokULYmP//91MrVq1OHjwIACXXXYZ8fHx9O3bl6uvvpqMjAzatGlDy5YtT3xBJX1vBoEUgJo1a5KamlpqW3p6OocPH2bOnDlcccUVADzyyCORcPim3bt3A7B//37q1KlTal/Jg/G31a1bN/LxwYMHCYfDpbZ983wlD9r79++nUaNG33ldBw4ciGw71k/0iYmJR20r0ahRI1588UV++9vf8tprrzFv3jzOOuss+vfvz5AhQyLPPEiqGAaBVIlccsklvP7665HTI0eOpF27dked7+yzzwaO/MSdm5tbal84HGb//v1l3s6ZZ55JVFTUUZcFyMnJoVatWpHb+a7zAMcMjxPRsmVLZs6cSUFBAevXr+fVV19l9uzZpKSkcPXVV3+v65Z0YkxwqRL55JNPiImJoWnTppxzzjns2LGD1NTUyL8GDRowZcoU/vSnPwHQsWNH3n33Xf75z39GruO9996jsLCwzNs544wzaNGiBUuWLCEUCkW2Hzx4kFWrVtG6dWvgyCGKTz75hO3bt5e6/MKFC0lOTub8888/6c913rx5dO3alYKCAuLi4ujYsSOPPvooADt37jzp65V0cnyGQApAXl4eGzZsiJwuLCxkxYoVLFq0iH79+lG3bl2GDh3K2LFjiYmJoUuXLhw4cIBZs2axa9euyAsSBw8ezPLlyxk4cCC33347+/btY+rUqdSoUeO4M9x///2Ry/3yl7+ksLCQ3/72txQUFHDPPfcAcOutt7Jw4UJuvfVW7rnnHmrXrs3vf/971qxZw2OPPfa9ntbv0KEDkydPZvDgwfzyl78kJiaGV155hbi4OLp06XLS1yvp5BgEUgD+9Kc/0a9fv8jp+Ph4mjRpwtChQxk4cCAA119/PTVr1mTOnDm8+uqrnHHGGbRq1YrJkydHXuR3wQUX8OKLLzJhwgSGDh3KOeecw6hRo5gwYcJxZ+jYsSNz585l+vTpDBs2jLi4ONq0acPEiRMjfykxOTmZ+fPnM2XKFMaPH09hYSEXX3wxs2bN4sc//vH3WoOLL76Y2bNn85vf/IZhw4YRCoVo0aIFzz33HE2bNv1e1y3pxEWFS36hWZIknbZ8DYEkSTIIJEmSQSBJkjAIJEkSBoEkScIgkCRJlPPvEBQXF1NUVER0dHSp92qXJEmVVzgcpri4mNjY2OP+IbFyBUFRURGbNm36QYaTJEkVKzU1tdS7oh5LuYKgpCpSU1OP+baqp5tQKMSmTZtcj1PMda4YrnPFcJ0rhutcWsl6lOfPjJcrCEoOE8TExLjA3+B6VAzXuWK4zhXDda4YrnNp5Tnc74sKJUmSQSBJkgwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmIDXoAnXrhcJj8/PygxzhhoVCIr7/+mnA4HPQoklTtGQSngfz8fK666qqgxzhpixcvJikpKegxJKla85DBaaAqPjsgSapYPkNwmslLvZ5wjYSgxziuqOIikjbMD3oMSTptGASnmXB0DMTUCHqM4/JVA5JUsTxkIEmSDAJJkmQQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCE5KOBwmHA4HPYYqIb82JFVVBsEJCofDDBkyhJkzZ3rHr1LC4TD33nsv9957r18bkqqc2KAHqGry8/PZsmVL5OOkpKSAJ1JlkZ+fz+bNmyMfJyYmBjyRJJWfzxBIkiSDQJIkGQSSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiQBsUEP0Llz58jHq1atCmwO6XT14x//OPJxVfkerIr3G1Vxnfv27Utubi5169YlKysr6HHK5de//jXZ2dlkZGTwyCOPBD1OuaxevZpp06YxZMgQOnXqFNgcgT5D8M1v6mOdlnRqVcXvwTvuuKPM05XR7373uzJPV0abN28mNzcXgNzcXDZv3hzwRMe3a9cusrOzAcjOzmbXrl0BT3R8+fn5PPnkk+zatYsnn3yS/Pz8wGbxkIGkKuXzzz8v83RlNGPGjDJPV0b33ntvmacro3vuuafU6aow80svvcSePXsA2LNnDy+//HJgswR2yOC7fhLp3LlzlXk6LT8/n5iYmKDHOK4gi/OH4DqfGlXxe7AqznzDDTd85/ZXXnmlgqcpn0mTJhEOh0ttC4fDTJo0iREjRgQ0VdmWLl1KTk5OqW27d+9m6dKl/OQnPwloqrLt2LGDl19+ObLW4XCYl19+mR49etCoUaMKnyeQIOjSpctx969cubKCpjkx3/wm6du3b4CTnKTw8c9SKVTxdf72nWllc7xDA5XxAfavf/3rcfc3a9asgqYpn4MHD/Lll18ec9+XX37JwYMHOfPMMyt4qrIVFBTw5ptvHnPfm2++yZAhQ4iLi6vgqcoWCoWYNGnSMfdNmjSJ7t27V7ofKsLhMNOmTfvO7U888QRRUVEVOlMghwyOd2dZ2e9MJVW822+//XvtD8LNN9/8vfYH4fHHH/9e+4OwePFiQqHQMfeFQiEWL15cwRMd37Zt21i3bt1Rc4dCIdatW8e2bdsqfKZAniGIiooq80G/oqvoRHxztqysLGrWrBngNOXz1Vdf8Ytf/OLIicq7tKVVwXXOz8/n2muvBSr313BVNWfOnDIf9OfMmVOB05TPf/7nf9KrV68y91c2DzzwQJnP0D7wwAMVOE35ZGZmMn369GNGQWxsLJmZmQFMVbYmTZrQtm1bPv7441Jzx8TE0Lp1a5o0aVLhMwUSBCtXrizzKcvKerjg2xISEkhMTAx6jOOqase2v62qrHNVsmrVqjK/Byvb4QLguIcDKtvhAoAzzzyTBg0aHPOwwbnnnlvpDhcAxMXFcc011xzzsEGvXr0q3eECOPIgOmLECCZMmHDUvpEjR1a6wwVw5IeGIUOGcMsttxxzexA/VAT2WwbfdYdTGe+IpOqoKn4PVsWZv+uFg/Pnz6/gScpvxIgRRz0gRUVFcf/99wc00fH95Cc/ITk5udS2evXq0aNHj4AmOr5GjRrRv3//yFpHRUXRv39/GjZsGMg8/tqhpCqlefPmZZ6ujKrir/BVxV+VnDlzZqnTVWHmG2+8kXPOOQeAunXr0r9//8BmCTQIvl31lbnypeqoKn4PPvvss2Weroz69OlT5unKqEWLFtStWxc48kDVokWLgCc6vvr165ORkQFARkYG9evXD3ii40tISGDYsGHUr1+foUOHkpCQENgsgf/p4qpwByRVZytWrGDDhg1cfvnlQY9SblXxfqMqrnNV+XPF3zR27Ngqt86dOnUK9E8Wl/CQgSRJMggkSZJBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZKA2KAHqGoSEhJo0aIFeXl5JCQkBD2OKpGSr42SjyWpKjEITlBUVBRPPfUUGzZsICoqKuhxVIlERUUxY8aMyMeSVJUYBCchKirKO3wdk18XkqoqX0MgSZIMAkmSZBBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkoDYoAdQxYoqDhEOFQY9xnFFFRcFPYIknVYMgtNM0qbXgx5BklQJecjgNJCQkBD0CJKkSs5nCE4DCQkJvPXWW0GPccJCoRAbN240aCSpAhgEp4GoqCgSExODHuOEhUIh4uPjiYqKCnoUSar2PGQgSZIMAkmSZBBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJiC3PmcLhMAChUOiUDlNVlKyD63Fquc4Vw3WuGK5zxXCdSytZh5LH8bJEhctxroKCAjZt2vT9J5MkSRUuNTWVuLi4Ms9TriAoLi6mqKiI6OhooqKifrABJUnSqRMOhykuLiY2Npbo6LJfJVCuIJAkSdWbLyqUJEkGgSRJMggkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEJyQP//5z9x66620a9eOK664gpEjR7J3796gx6q2QqEQN910E6NHjw56lGrrq6++YuTIkbRv3562bdty9913s3v37qDHqna2bNnCjTfeSJs2bUhPT2fcuHEUFBQEPVa1sXfvXrp3786HH34Y2fbpp59y/fXXk5aWRteuXXn99dcDnLBqMAjKKT8/n9tvv520tDTef/99Fi9ezFdffcWDDz4Y9GjV1syZM/noo4+CHqNau/feezl8+DDLli1j5cqVxMTEMGbMmKDHqlaKi4sZNGgQPXv2ZO3atWRlZfH+++/z7LPPBj1atbB+/Xr69evHtm3bItv279/PnXfeyc9+9jPWrVvH+PHjefzxx9m4cWOAk1Z+BkE5ffHFF1x88cUMHjyYuLg4ateuTb9+/Vi3bl3Qo1VLH3zwAX/4wx/o0aNH0KNUW5s3b+bTTz9lwoQJnHXWWSQlJfHoo48yfPjwoEerVvbv309OTg7FxcWRN5iJjo4mMTEx4MmqvjfeeIPhw4czdOjQUtv/8Ic/UKtWLW688UZiY2Pp2LEjvXr14qWXXgpo0qrBICinpk2bMmfOHGJiYiLb3n77bS699NIAp6qe9uzZw0MPPcSUKVO80zyFNm7cSLNmzXjttdfo3r076enpTJw4keTk5KBHq1Zq167NgAEDmDhxIqmpqWRkZHDBBRcwYMCAoEer8tLT01m2bBlXX311qe2ff/45F110UaltzZo1489//nNFjlflGAQnIRwOM3XqVFauXMlDDz0U9DjVSnFxMSNGjODWW2/l4osvDnqcam3//v189tln/P3vf+eNN97g97//Pbt27WLUqFFBj1atFBcXk5CQwJgxY9iwYQOLFy/mb3/7G9OnTw96tCovOTmZ2NjYo7YfOnToqB8mEhISOHz4cEWNViUZBCcoLy+P++67j0WLFvHiiy+SkpIS9EjVyjPPPENcXBw33XRT0KNUeyVvhfrQQw+RlJRE3bp1+bd/+zeys7M5dOhQwNNVH8uWLePtt9+mf//+xMXF0bx5cwYPHsz8+fODHq3aSkxMJD8/v9S2/Px8atasGdBEVcPRaaXvtG3bNu644w7OO+88srKyqFOnTtAjVTv/9V//xe7du2nTpg1A5Jt6+fLlvsDwB9asWTOKi4spLCwkPj4eOPLTLIBvgvrD2blz51G/URAbG0uNGjUCmqj6u+iii/jjH/9Yattf//pXmjdvHtBEVYPPEJTT/v37ueWWW2jVqhX/8R//YQycIkuXLuXjjz/mo48+4qOPPiIzM5PMzExj4BTo1KkTjRs35sEHH+TQoUPs3buXqVOn0q1bN5KSkoIer9pIT08nJyeH2bNnEwqF2L59O08//TS9evUKerRqq3v37uTm5jJv3jwKCwtZs2YNixYtok+fPkGPVqkZBOW0YMECvvjiC9566y1at25NWlpa5J9UFdWoUYMXXniBmJgYevbsSc+ePWnQoAGPPfZY0KNVK82aNeOZZ57hnXfeoX379tx888107dr1qFfG64dTu3ZtnnvuOZYuXUr79u15+OGHefjhh+nQoUPQo1VqUWGfG5Qk6bTnMwSSJMkgkCRJBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAomUlBTuvPPOo/5c74IFC+jatespuc2uXbuyYMGCU3Ld5bFkyRI6duxI69atWblyZal9O3bsICUlhcsvv5y0tDQuu+wyOnTowPDhwzlw4MBJ3+bo0aMZPXr09x1d0iliEEhAdnY2c+bMCXqMCvP6669zzTXXsH79erp06XLM8yxevJhPPvmETz/9lMWLF/O///u/jB8/voInlVRRDAIJuOmmm5g2bRoff/zxMfeX/NS8Y8eOyLYZM2ZE3pVxwYIF9O/fn4kTJ9KuXTs6dOjACy+8wGuvvUaXLl1o3bo1Y8eOLXWdW7Zs4brrrqNdu3YMHDiQv//975F927Zt46677qJ9+/Z06dKFqVOnRt4gZ8GCBVx33XXcdttttGnThkWLFh017759+xgzZgzp6em0b9+eQYMGRa6/b9++rFmzhldeeYVu3bqVa33q1q1L79692bx5c2Rbbm4uw4cP54orriA9PZ2xY8eSl5cX2b9ixQquueYaLr/8cgYNGsS+fftKrd1tt91Gnz59aNeuHevWrStzZoDPPvuMO+64g3bt2nHllVfy7//+7xw8ePCk1v/tt9/mmmuuoXXr1lx11VXMmjWrXOsgVWcGgcSRN0Pp168fw4YN46uvvjqp61i/fj3169dnzZo13HfffTz++ON8+OGHLFmyhHnz5pGVlcW6desi51++fDmPP/447733Ho0aNWLQoEEUFRVx+PBhBgwYQPPmzXn33Xd5+eWXWb16NTNmzIhcdsuWLfTq1YvVq1fTvXv3o2a577772LZtG2+88QbZ2dk0bdqUAQMGkJeXR1ZWFm3atGHQoEEsX768XJ9bTk4Oy5Yto0ePHsCRd0W8++67iY6O5u2332bRokXs3r078qC7detWhgwZwqBBg/joo4+4/vrree+990pd5wcffMDw4cNZuXIlaWlpZc68b98+br75Zpo1a8a7777L7373O/7nf/6HkSNHnvD65+fnM2LECMaOHcv69euZMmUKzz77LBs3biz/f7ZUDRkE0v8zatQo6tSpw+jRo0/q7X/POOMMbrnlFqKjo0lPTycUCjFw4EASExNJTU2lXr16/OMf/4ic/7bbbiMlJYX4+HhGjx7Njh072LhxI6tWraKgoIBhw4YRHx/Pueeey5AhQ3jppZcil61RowY//elPiYuLIyEhodQc27dvZ+3atYwZM4bk5GQSEhIYPnw4RUVFZGdnl/vz6d27N23atCEtLY309HS2bdtGZmYmAJs3b2bLli386le/Iikpidq1azNq1CjefPNN9u3bx5IlS2jRogW9e/cmNjaWbt26HXVoonHjxnTs2JGaNWuyc+fOMmdesWIFNWrUYPjw4SQkJJCcnMyYMWN45513yMnJOeH1T0hIICsriw8++IALL7yQ9evX07JlyxP7D5eqmdigB5Aqi7i4OJ566imuvfZannvuOWrXrn1Cl69VqxZRUVEAREcfae2zzjorsj86Opri4uLI6UaNGkU+TkxMpFatWuzatYt//OMf7N27l7Zt20b2h8NhCgsL2bNnDwDJycmR2/i23Nxc4MgDbomYmBjOPffcUkFyPAsXLozMmJeXx/Tp0/n5z3/OkiVL2LFjB6FQiIyMjFKXiYuLY/v27ezatYvzzjuv1L4mTZqUOmxQr169cs8cDoc577zziImJiewvma3kcyrv+ickJDB//nxmzZrF/fffT15eHj179uThhx/m7LPPLvf6SNWNQSB9Q5MmTXj00UcZOXIk1113XWR7yQNRYWFhZNs3H9yAyINRee3evTvyccnT4g0bNqSoqIgmTZqwdOnSUvv37NlDnTp1jntbDRs2BI68DqF58+YAhEIhvvjiC5KTk09oxhJJSUncd999PP/886xfv54GDRqQkJDAhx9+GFmbgoICtm/fzvnnn0+DBg1YtWpVqev48ssviY+Pj5z+5udwvJlr1KjBF198QSgUitzetm3bgCNxtHXr1nKvf15eHrt372bKlCkA/Pd//zfDhg1j9uzZjBo16iRWR6oePGQgfcvVV19Nnz59ePXVVyPbzjnnHM4++2zefPNNwuEwW7ZsKfWAfTKee+45tm7dyj//+U/Gjx/PJZdcQosWLejSpQuHDh1izpw5FBQUcODAAUaNGsXQoUPL9aBXr149MjIyGDduHDk5OeTn5zN58mRCodB3/kbB8Xz99dc8//zzJCQkkJqaSsuWLTn//POZMGEChw4dIj8/n8cee4wBAwYQCoXo3bs3f/nLX3jttdcoKiri/fffZ9myZSc9c8kzEZMnTyY/P5+cnBzGjx9Phw4dIjFRXocOHeKOO+5g0aJFhMNh6tWrR3R09Ak/IyRVNwaBdAwPPvggl1xySeR0XFwcjz76KG+99RatWrViwoQJ/PznP/9et9GtWzfuuusurrzySvbv38+sWbOIjo4mKSmJefPm8eGHH3LllVfSrVs3oqOjefrpp8t93U888QSNGzfm2muvpVOnTnz22Wc8//zz1KpVq9zXkZmZSVpaGmlpaXTq1InVq1cze/ZsGjduTGxsLM888wy5ubn06NEj8hqDuXPnEh8fT+PGjZk9ezYvvfQSrVu3ZtasWcd88WN5Zz7zzDOZO3cuf/nLX8jIyCAzM5OGDRsybdq0cn8+JerXr8/06dN59tlnadWqFZmZmXTo0IEBAwac8HVJ1UlU+GRePSVJkqoVnyGQJEkGgSRJMggkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkSQL+D7X5xamrxROAAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1989,7 +2005,7 @@ }, { "cell_type": "code", - "execution_count": 232, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -2006,7 +2022,7 @@ "Name: count, dtype: int64" ] }, - "execution_count": 232, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -2026,7 +2042,7 @@ }, { "cell_type": "code", - "execution_count": 233, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -2075,124 +2091,124 @@ " \n", " \n", " \n", - " 19150\n", - " 1073100065\n", - " 2015-02-17\n", - " 348125.0\n", + " 4614\n", + " 2114700115\n", + " 2015-04-07\n", + " 291700.0\n", " 3\n", - " 1.0\n", - " 1400\n", - " 8451\n", + " 2.50\n", + " 1970\n", + " 4120\n", " 1.5\n", " 0\n", " 3.0\n", " ...\n", - " 1400\n", - " 0.0\n", - " 1953\n", + " 1230\n", + " 740.0\n", + " 1927\n", " 0.0\n", - " 1590\n", - " 8433\n", - " 71\n", + " 1470\n", + " 4080\n", + " 97\n", " 0.0\n", - " 11251.0\n", - " 300K-600K\n", + " 8060.0\n", + " 100K-300K\n", " \n", " \n", - " 3012\n", - " 16000015\n", - " 2015-04-17\n", - " 219950.0\n", - " 3\n", - " 1.5\n", - " 1070\n", - " 6601\n", + " 1011\n", + " 865100055\n", + " 2014-06-12\n", + " 900000.0\n", + " 4\n", + " 2.25\n", + " 2460\n", + " 44431\n", " 1.0\n", " 0\n", - " 3.0\n", + " 4.0\n", " ...\n", - " 1070\n", + " 2460\n", " 0.0\n", - " 1985\n", + " 1957\n", " 0.0\n", - " 1030\n", - " 6614\n", - " 39\n", + " 2830\n", + " 44431\n", + " 67\n", " 0.0\n", - " 8741.0\n", - " 100K-300K\n", + " 49351.0\n", + " 600K-1M\n", " \n", " \n", - " 14615\n", - " 7211400760\n", - " 2014-05-28\n", - " 277000.0\n", + " 7116\n", + " 8563020380\n", + " 2014-05-20\n", + " 519900.0\n", " 4\n", - " 1.0\n", - " 1450\n", - " 6250\n", + " 2.00\n", + " 1820\n", + " 9350\n", " 1.0\n", " 0\n", - " 3.0\n", + " 4.0\n", " ...\n", - " 990\n", - " 460.0\n", - " 1964\n", + " 1820\n", " 0.0\n", - " 1440\n", - " 4000\n", - " 60\n", + " 1967\n", " 0.0\n", - " 9150.0\n", - " 100K-300K\n", + " 2260\n", + " 9299\n", + " 57\n", + " 0.0\n", + " 12990.0\n", + " 300K-600K\n", " \n", " \n", - " 15714\n", - " 2450000275\n", - " 2014-07-16\n", - " 595000.0\n", - " 4\n", - " 1.5\n", - " 1350\n", - " 8113\n", + " 4142\n", + " 461002551\n", + " 2014-10-04\n", + " 330600.0\n", + " 1\n", + " 1.00\n", + " 580\n", + " 1799\n", " 1.0\n", " 0\n", - " 4.0\n", + " 3.0\n", " ...\n", - " 1350\n", + " 580\n", " 0.0\n", - " 1959\n", - " 0.0\n", - " 1930\n", - " 8113\n", - " 65\n", - " 0.0\n", - " 10813.0\n", + " 1908\n", + " 2005.0\n", + " 1260\n", + " 4000\n", + " 116\n", + " 19.0\n", + " 2959.0\n", " 300K-600K\n", " \n", " \n", - " 3091\n", - " 9264950940\n", - " 2014-08-05\n", - " 348000.0\n", - " 3\n", - " 2.5\n", - " 2060\n", - " 7458\n", + " 20907\n", + " 7852070210\n", + " 2014-05-27\n", + " 1150000.0\n", + " 4\n", + " 3.00\n", + " 5940\n", + " 11533\n", " 2.0\n", " 0\n", " 3.0\n", " ...\n", - " 2060\n", - " 0.0\n", - " 1989\n", + " 4950\n", + " 990.0\n", + " 2004\n", " 0.0\n", - " 2480\n", - " 7743\n", - " 35\n", + " 4240\n", + " 12813\n", + " 20\n", " 0.0\n", - " 11578.0\n", - " 300K-600K\n", + " 23413.0\n", + " 1M-2M\n", " \n", " \n", "\n", @@ -2200,38 +2216,38 @@ "" ], "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "19150 1073100065 2015-02-17 348125.0 3 1.0 1400 \n", - "3012 16000015 2015-04-17 219950.0 3 1.5 1070 \n", - "14615 7211400760 2014-05-28 277000.0 4 1.0 1450 \n", - "15714 2450000275 2014-07-16 595000.0 4 1.5 1350 \n", - "3091 9264950940 2014-08-05 348000.0 3 2.5 2060 \n", + " id date price bedrooms bathrooms sqft_living \\\n", + "4614 2114700115 2015-04-07 291700.0 3 2.50 1970 \n", + "1011 865100055 2014-06-12 900000.0 4 2.25 2460 \n", + "7116 8563020380 2014-05-20 519900.0 4 2.00 1820 \n", + "4142 461002551 2014-10-04 330600.0 1 1.00 580 \n", + "20907 7852070210 2014-05-27 1150000.0 4 3.00 5940 \n", "\n", " sqft_lot floors waterfront condition ... sqft_above \\\n", - "19150 8451 1.5 0 3.0 ... 1400 \n", - "3012 6601 1.0 0 3.0 ... 1070 \n", - "14615 6250 1.0 0 3.0 ... 990 \n", - "15714 8113 1.0 0 4.0 ... 1350 \n", - "3091 7458 2.0 0 3.0 ... 2060 \n", + "4614 4120 1.5 0 3.0 ... 1230 \n", + "1011 44431 1.0 0 4.0 ... 2460 \n", + "7116 9350 1.0 0 4.0 ... 1820 \n", + "4142 1799 1.0 0 3.0 ... 580 \n", + "20907 11533 2.0 0 3.0 ... 4950 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", - "19150 0.0 1953 0.0 1590 8433 \n", - "3012 0.0 1985 0.0 1030 6614 \n", - "14615 460.0 1964 0.0 1440 4000 \n", - "15714 0.0 1959 0.0 1930 8113 \n", - "3091 0.0 1989 0.0 2480 7743 \n", + "4614 740.0 1927 0.0 1470 4080 \n", + "1011 0.0 1957 0.0 2830 44431 \n", + "7116 0.0 1967 0.0 2260 9299 \n", + "4142 0.0 1908 2005.0 1260 4000 \n", + "20907 990.0 2004 0.0 4240 12813 \n", "\n", " house_age renovation_age total_sqft price_range \n", - "19150 71 0.0 11251.0 300K-600K \n", - "3012 39 0.0 8741.0 100K-300K \n", - "14615 60 0.0 9150.0 100K-300K \n", - "15714 65 0.0 10813.0 300K-600K \n", - "3091 35 0.0 11578.0 300K-600K \n", + "4614 97 0.0 8060.0 100K-300K \n", + "1011 67 0.0 49351.0 600K-1M \n", + "7116 57 0.0 12990.0 300K-600K \n", + "4142 116 19.0 2959.0 300K-600K \n", + "20907 20 0.0 23413.0 1M-2M \n", "\n", "[5 rows x 21 columns]" ] }, - "execution_count": 233, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -2242,12 +2258,29 @@ }, { "cell_type": "code", - "execution_count": 234, + "execution_count": 26, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:641: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", + " grouped_vals = vals.groupby(grouper)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "KeyboardInterrupt\n", + "\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAJOCAYAAABIu73jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLa0lEQVR4nOzdd3gUVd/G8XvTE0JJgdC79BZAUFoAeehNiihdwCBV6YTeIfQSOkhHkCIoXQRRUDqEJkiVCAQIJNLSM+8fPNnXCGriQ3ZJ8v1cl5fsnNnZ3+zJJnPvnDljMgzDEAAAAAAgWdlYuwAAAAAASAsIXwAAAABgAYQvAAAAALAAwhcAAAAAWADhCwAAAAAsgPAFAAAAABZA+AIAAAAACyB8AQAAAIAFEL4AIJlwD/uUhz4DACQnO2sXAACvi8GDB+vLL7/823UqVKigVatW/e06jx490rhx49SyZUu9+eabSXr9o0ePat++fX+73ubNm/XFF1/ol19+UWxsrHLmzKnatWurc+fOcnV1TfTrvc7mzJmjgICAv2wfOHCgOnfu/Epfc968eXJwcFCXLl1e6Xb/rd9++03vvPOOJk6cqGbNmr3Sbbdr105Hjx5NsMze3l6enp6qUaOGPv30U2XMmNEqtb3sdf7M3t5eGTNmlLe3t/r166d8+fIlWw0A8CoRvgDgv7p3767333/f/HjevHm6cOFCghCQmHDz888/a+vWrWrevPkrrzEgIEALFixQp06d1K1bN9nb2+vcuXNasmSJfvjhB33++eeyt7d/5a9rLevXr3/p8uzZs7/y15o1a5Z69uz5yrf7uipWrJhGjhxpfhwdHa3z589r+vTp+vnnn/X555/LZDK99LlZsmTR+vXrlTt3bovU2q1bN1WvXt38ODw8XOfPnzd/Fnbt2iVHR0eL1AIA/wvCFwD8V+7cuRMcTLq7u8vBwUFlypSxXlF/EBUVpcWLF6tz587q06ePeXmlSpWUP39+9ejRQ3v37lW9evWsWOWr9bq896mRq6vrC+/vm2++qadPn2r27NkKDAz8y/ff0p+L3Llzv/B6b7/9ttKlS6dRo0bp8OHD8vHxsVg9APBvcc0XACTRoUOH1Lp1a5UrV04VK1ZUv379dOfOHUnSkSNH1L59e0lS+/bt1a5dO0lSbGysFi1apIYNG6pUqVIqU6aM3n//fR0+fDjRr/vkyRNFREQoLi7uhTYfHx/16dNHuXLlMi8LCwvToEGDVKFCBVWoUEETJkzQ7NmzVbNmTfM6NWvW1ODBgxNsa/PmzSpcuLB+++0387K9e/eqdevW8vb2VokSJVS3bl2tWbPG3H7kyBEVLlxY69atU40aNVS2bFkdOnRIknT8+HG1bdtWpUuXVoUKFTRo0CA9fPgw0fv9T/6uP+LduHFDvXv3VuXKlVWmTBm1a9dOJ06cMLcXLlxY0vMzi/H/Tsx+S9LVq1f10UcfqWzZsqpUqZJmzJghPz8/c99LUlxcnBYtWqT//Oc/KlGihOrUqfOPw1fj3b17V127dlWpUqXk4+Oj2bNnKzY2VpLk7++vUqVK6fHjxwmeM2/ePJUrV07h4eGJeo0/KlGihCTp9u3bkp4PUezfv7969+6tMmXK6MMPP9Rvv/2mwoULa/PmzebnXbt2TT179lSFChX05ptvqmvXrrp69aq5PTIyUpMnT5aPj49KlCihRo0aaceOHUmu748yZMjwwrJjx46pc+fOevPNN1WiRAnVrFlTc+bMMX9u4mvfuXOnevfuLW9vb1WoUEHDhg3Ts2fPzNuJjo7W1KlTVa1aNZUqVUqdO3fWli1bXvhsJPfPN4DUhfAFAEmwZcsWderUSdmyZdP06dPl5+enU6dOqVWrVnrw4IGKFy+uESNGSJJGjBhhHtY1depUzZs3T61atdKSJUs0duxYhYWF6ZNPPkn0AbK7u7tKly6tpUuXatCgQdq7d6/5IM/e3l4ff/yx+cA5Li5OXbp00ffff68BAwZowoQJOn36tFavXp3kff7uu+/Uo0cPFS9eXPPmzdOcOXOUK1cujRkzRoGBgQnWDQgI0KBBgzRixAh5e3vr2LFj6tixo5ycnDRz5kwNGTJER48eVfv27RUREfGPrx0TE/PCf38Mn//UH5J05coVNWvWTL/99puGDRumqVOnymQyqUOHDubrnuKHN7Zo0cL878Ts98OHD9W2bVvduXNHEydO1LBhw7Rr1y5t27YtwX6MGjVKs2fPVuPGjbVgwQLVrVtXEyZM0Ny5c//xPZgzZ448PDw0d+5cNW/eXAsWLJC/v7+53sjISO3atSvBc7Zu3ar69evL2dn5H7f/Z9evX5ekBEF+586dSpcunebPn//Sa+Lu3r2rVq1a6caNGxo1apSmTJmikJAQdejQQWFhYTIMQz169NC6dev04Ycfav78+fL29lafPn20ZcuWf6wpLi4uwc/AkydPdOjQIU2bNk05cuRQ+fLlJUkXL15Ux44dlSlTJs2YMUPz589X+fLlFRAQoJ07dybY5siRI5UjRw7NmzdPnTt31saNGzV//nxz+4gRI7RixQq1bdtWc+fOlaenp4YPH55gG//rzzeANMgAALzUoEGDjBo1apgfx8bGGpUrVzY6deqUYL1ff/3VKF68uOHv728YhmEcPnzYKFSokHH48GHzOn379jWWL1+e4Hm7d+82ChUqZJw6deqlr/cyd+7cMdq1a2cUKlTIKFSokFG4cGGjYcOGxqxZs4ywsDDzevv27TMKFSpk7N+/37zs8ePHRoUKFRK8Ro0aNYxBgwYleI1NmzYZhQoVMoKCggzDMIzFixe/sE5oaKhRqFAhY+HChQn2ee7cuQnWa9WqldGwYUMjJibGvOzatWtG0aJFjdWrV//lfs6ePdu8j3/+b/jw4YZhJL4/PvnkE6NixYrG48ePzetER0cbderUMZo3b25eVqhQIWP27Nnmx4nZ75kzZxolS5Y0goODzev89ttvRvHixY22bdua97dw4cLm58SbMWOGUbJkSePhw4cvfQ+CgoKMQoUKGb6+vgmWjx8/3ihevLgRGhpqGMbz97hNmzbm9hMnThiFChUyTp48+dLtGoZhtG3b1mjTpo0RHR1t/i8kJMTYsWOHUaFCBaNVq1ZGXFyced3SpUsbkZGRL9S2adMmwzAMY9KkSUapUqWMe/fumde5c+eOUb16deO7774zDh48aBQqVMjYvn17gjr69+9vVK5c2YiOjv7b9+Bl/5UpU8bo0aOHcfPmTfP6X375pdGlSxcjNjbWvCw2NtYoV66c+ecmfpv9+/dP8Frt2rUzGjZsaBjG85+hwoULG5999lmCdTp16pTgs/Fvf74BpF1c8wUAiXT9+nXdv39f/fr1S7A8d+7c8vb2fmH2uD+aNm2apOdnSq5du6Zff/1V+/fvl/T8Wq7Eypo1q1auXKkrV67o+++/15EjR3Ts2DHNnTtXX3zxhVavXq28efPq+PHjsre3V7Vq1czPdXV1Vc2aNXXkyJGk7Lb5TMfTp091/fp13bx5U2fPnn1p7UWLFjX/Ozw8XIGBgercubMMw1BMTIyk52dUChQooEOHDqlNmzZ/+9obN258YZmHh4ekxPfH0aNHVaNGjQSTpdjZ2alBgwaaO3eunj59qnTp0v2r/T58+LC8vb3l5eVlfl6OHDnk7e1tfnz48GEZhqGaNWua3wPp+ZDP+fPn68SJE6pVq9Zfvgd/voavdu3aWrFihQIDA+Xj46PmzZtr+PDhunXrlnLkyKEvv/xS+fLlS1DDyxw7dkzFixdPsMzGxkaVKlXSmDFjEky2kT9/fjk4OPzltk6cOKEyZcooc+bM5mVZs2Y1/4zHn2308fF54T346quvdPny5QQ/O3/Ws2dPVa9eXYZh6NixY5o5c6YaNGigUaNGyc7u/w9lmjZtqqZNmyoyMlLXr1/Xr7/+qp9//lmxsbGKjo5OsM0/X0OWNWtW3bp1S9LzYbSGYahu3boJ1mnYsKEOHjwo6dX8fANIewhfAJBIYWFhkiRPT88X2jw9PXXhwoW/fO7Zs2c1evRonT17Vs7OzipYsKB5xj7jX9xbqmDBgipYsKA6deqk6Ohobd68WWPGjNH06dM1e/Zs/f7778qUKZNsbBKOLs+SJUuSX+vhw4caOXKk9u7dK5PJpDx58piHef25dhcXF/O/Hz16pLi4OC1evFiLFy9+YbuJmZ2uZMmSf9mW2P74/fff/3IdwzD05MmTl4avxOz3w4cPXwgw8dsOCQlJUGeDBg1euh937979y32UlCDQSM+Hn8bvlyTVr19fEyZM0NatW9W5c2ft3LlTvr6+f7tNSSpevLhGjx4tSTKZTHJ0dFS2bNleOqPny96fPwoLC1POnDn/tt0wDJUtW/al7ffu3fvb8JUjRw7zz0KpUqXk5uYmPz8/2dramvdBkiIiIjR27Fht3bpVMTExypkzp7y9vWVnZ/fCz+qfh2Ta2Ngk6Ffp/4N+vD8+fhU/3wDSHsIXACRSpkyZJMl8UP1H9+/fl5ub20uf9+TJE3Xp0kWFCxfW9u3blT9/ftnY2OjAgQPavXt3ol9/xYoVmj9/vvbv35/gwNHe3l6tWrXSgQMHdOXKFUmSm5ubQkNDFRsbK1tbW/O68UHgj+Inb4j3x0kHJKl///66du2ali9fLm9vbzk4OCg8PFxffPHF39abLl06mUwmdezY8aXB499cj/RHie2PjBkz/uU6kv6y3xKz31mzZn3ptuOvN5P+f1KIFStWvDTE/NO0+fEhK17868UHgXTp0qlu3brauXOnChUqpGfPnqlJkyZ/u8345/1duE2K9OnTv3SSiZ9++kk5c+ZU+vTp5eLiopUrV770+Xny5EnS6zVr1ky7d+/WunXr9J///EdVqlSRJI0fP167d+/WzJkzValSJfOXAW+//XaSth9/JjMkJCRB//xxH5P75xtA6sSEGwCQSPny5VPmzJlfmEwhKChIp0+fNn+r/8ewIz2fBS4sLEzt27dXwYIFzWejvv/+e0l66eyFL1OwYEGFhoa+dJa82NhYBQUFqVChQpKeTz8fExOjvXv3mteJjo7WDz/8kOB5rq6uCg4OTrDsj7MAxj+uXbu2KlasaB56lpjaXV1dVaxYMV27dk0lS5Y0//fGG29ozpw5SR7++GeJ7Y8333xT+/fv15MnT8zrxMbGavv27SpZsqR5n/58ljAx+/3mm2/q9OnT5iAnPT+Lc/r0afPj+LNloaGhCd6Hhw8fatasWS8NxH/03XffJXi8fft2OTs7q3Tp0uZlLVq00C+//KIVK1aoUqVKCYZBWkL58uUVGBiYIJw8ePBAXbp00YEDB1ShQgU9e/ZMhmEkeA9++eUXzZ07N8FQxMQaPny4HB0dNW7cOPOQwhMnTqhixYqqVauWOXidO3dODx8+TPTnTJLKlSsnW1tbffPNNwmW79mzx/zv5P75BpA6ceYLABLJxsZGffv2lZ+fn/r166fGjRsrNDRUAQEBypgxoz788ENJz88CSM8PmjNmzKh8+fLJ1dVVCxYskJ2dnezs7LR7927z9UyJne2wcuXKatiwoaZPn65Lly6pTp06cnd3V3BwsNatW6fg4GDNnDlT0vNv+n18fDRs2DCFhIQoZ86cWr16tW7fvp3gm/waNWpo4cKFWrhwoUqXLq19+/a9MP19qVKl9PXXX6t48eLKmjWrTp48qUWLFslkMv1j7X379pWvr6/5/YqNjdVnn32mwMBAde/ePVH7/VcS2x89e/bU999/r/bt28vX11f29vZavXq1goKCtGTJEvP2MmTIoJMnT+rYsWMqX758ova7ffv2WrNmjTp37qwePXpIej7Ne3R0tPmaqcKFC6tx48bm67JKlCih69eva8aMGcqZM6fy5s37t/u5Z88eeXl5qVKlSjp48KDWr1+vTz75JMHwwHLlyilfvnw6evSoZsyY8T+9r/9Gx44dtWXLFnXp0kVdu3aVvb295s+fr6xZs6pRo0ZKnz693nzzTXXv3l3du3dXgQIFdObMGc2ePVtVq1Y1D6VMipw5c6pz586aN2+eVqxYoS5duqhUqVLauXOnPv/8cxUoUEAXL17U/PnzE/Wz+ke5cuVS8+bNNX36dEVHR6tIkSL65ptvzNewxQf1xP58nz59Wu7u7ha7KTWA1xfhCwCSoFmzZkqXLp0WLlyoHj16yNXVVVWrVlXfvn3N1+a88cYbatiwodasWaMffvhB27Zt07x58zR58mR98sknSpcunYoWLarVq1fro48+0vHjxxPce+vvTJkyRRUqVNBXX31lvi+Ru7u7KleurIkTJyaYHnz27NmaNm2a5syZo8jISDVo0EB169bVmTNnzOt07dpVDx8+1NKlSxUdHa3q1atr/Pjx6tatm3mdSZMmaezYsRo7dqwkKW/evBo9erS++uorHT9+/G/rrVKlipYuXaqAgAD17t1b9vb2Kl68uJYtW/ZKbtKb2P5Yu3ateSp6k8mkUqVKaeXKleazUpL08ccfa968efroo4+0Y8eORO13hgwZtHLlSo0fP14DBw5UunTp1Lp1azk7Oye4/m3ixIlauHChOSR7eHiofv36+vTTT184U/pnQ4cO1fbt27V8+XJlzpxZQ4YMMd9L7o+qV6+uhw8f/u3kHcklW7ZsWrt2raZMmaLBgwfLwcFBFStW1IwZM5QxY0ZJ0qJFizRr1iwtXLhQDx48kJeXlz788ENzaP03fH19tWXLFs2bN0+NGzfW4MGDFR0drZkzZyoqKko5c+ZUt27ddOXKFe3bt++FIbZ/Z/jw4XJxcdFnn32mJ0+e6O2331a3bt00d+5cc98m9ue7VatWevfddzVp0qR/va8AUgeT8W+u9AYApEiDBw/W0aNHtW/fPmuXkioEBgYqLCxMPj4+5mUxMTGqXr26GjRoID8/P4vUYRiGGjRooCpVqmjIkCEWec3ULCwsTN9//72qVq2a4JpAf39/bd68mSGFAP41znwBAPAv3b59W3369FGPHj1UoUIFhYeHa/369Xr8+LHee++9ZH/9J0+eaPny5Tp79qyCgoLUrl27ZH/NtMDZ2Vnjx49X0aJF1aFDB7m4uJhvUt61a1drlwcgBSN8AQDwL9WrV09hYWFau3atli5dKnt7e5UuXVqrV69WgQIFkv31nZyctG7dOsXFxWnChAkJhp3i33N0dNTy5cs1c+ZMDR48WOHh4cqdO7cGDRrEvbsA/E8YdggAAAAAFsBU8wAAAABgAYQvAAAAALAAwhcAAAAAWADhCwAAAAAsgPAFAAAAABbAVPP/gwcPHou5IgEAAIC0y2SSPDzSJ2pdwtf/wDBE+AIAAACQKAw7BAAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAXYWbsAAAAAAEljY2OSjY3J2mWkanFxhuLijFe6TcIXAAAAkILY2JiUKZOLbG0ZxJacYmPjFBb27JUGMKuGr2+++UY9e/ZMsKxOnTqaPXu2Lly4oJEjR+qXX35RwYIFNXr0aJUoUcK83rZt2zRz5kzdv39fVapU0dixY+Xu7i5JMgxD06ZN08aNGxUXF6cWLVqof//+srF5/gMaGhqqESNG6ODBg3Jzc9Mnn3yiJk2aWG7HAQAAgH/JxsYkW1sbDZ2yRteD7lq7nFQpXy4vjR/QRjY2ptQTvq5cuaIaNWpo7Nix5mWOjo569uyZfH191ahRI02aNEmff/65unbtqm+++UYuLi46c+aMhg4dqtGjR6tIkSIaP368/Pz8tHDhQknSsmXLtG3bNgUEBCgmJkYDBgyQh4eHOnfuLEny8/NTRESE1q9fr8DAQA0bNkz58uVTqVKlrPI+AAAAAEl1PeiuLl69Ze0ykARWPVd59epVFSpUSJkzZzb/lyFDBu3YsUOOjo4aOHCgChQooKFDhypdunTatWuXJGn16tWqV6+emjZtqiJFimjy5Mk6cOCAgoKCJEkrV65U7969Vb58eb311lvq37+/1qxZI0m6efOm9u/fr3HjxqlQoUJq2bKlGjdurLVr11rtfQAAAACQ+lk9fOXNm/eF5YGBgSpXrpxMpucXEZpMJpUtW1anT582t5cvX968frZs2ZQ9e3YFBgbq7t27unPnjt58801ze7ly5XTr1i3du3dPgYGBypYtm3LmzJmg/dSpU8mzkwAAAAAgKw47NAxD169f18GDB7Vw4ULFxsaqbt266t27t+7fv6+CBQsmWN/Dw0OXL1+WJN27d09ZsmR5oT04OFj379+XpATtnp6ekmRuf9lz795N+nhZExPMAAAAAKnaPx3zJyUTWC183b59W+Hh4XJwcNDMmTP122+/ady4cYqIiDAv/yMHBwdFRUVJkiIiIv6yPSIiwvz4j22SFBUV9Y/bTgoPj/RJfg4AAACAlMHNLd0r3Z7VwleOHDl05MgRZcyYUSaTSUWLFlVcXJwGDBigChUqvBCGoqKi5OTkJOn5pBwva3d2dk4QtBwdHc3/liRnZ+e/fG78tpPiwYPHMl7t1P8AAADA37K1tXnloQAvFxr6VLGxcX+7jsmU+JMyVp3tMFOmTAkeFyhQQJGRkcqcObNCQkIStIWEhJiHC3p5eb20PXPmzPLy8pIk3b9/33xdV/xQxPj2v3puUhmGCF8AAABAKvYqj/etNuHGDz/8oIoVKyo8PNy87Oeff1amTJnME2AY/91TwzB08uRJlS5dWpJUunRpnThxwvy8O3fu6M6dOypdurS8vLyUPXv2BO0nTpxQ9uzZlSVLFpUpU0a3bt1ScHBwgvYyZcok8x4DAAAASMusFr68vb3l6OioYcOG6dq1azpw4IAmT56sLl26qG7dunr06JHGjx+vK1euaPz48QoPD1e9evUkSR988IG2bt2qDRs26OLFixo4cKCqV6+uXLlymdunTp2qI0eO6MiRI5o2bZrat28vScqVK5eqVKmiAQMG6OLFi9qwYYO2bdumNm3aWOutAAAAAJAGWG3Yoaurq5YuXaoJEyaoefPmSpcund5//3116dJFJpNJCxcu1MiRI/XFF1+ocOHCWrRokVxcXCQ9D25jxozR7Nmz9fvvv6ty5coJbtTcuXNnPXjwQD179pStra1atGihjh07mtsnT56soUOH6r333lPmzJk1YcIEbrAMAAAAIFmZDIOrlv6tkBAm3AAAAIBl2dk9n3Cjde/punj1lrXLSZWKFMihtbP7KjT0qWJi/nnCDU/PxE24YdWbLAMAAABAWkH4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAW8NuHL19dXgwcPNj++cOGCWrZsqdKlS6t58+Y6d+5cgvW3bdumWrVqqXTp0urRo4cePnxobjMMQ1OnTtVbb72lChUqaPLkyYqLizO3h4aGqlevXvL29lbNmjW1devW5N9BAAAAAGnaaxG+tm/frgMHDpgfP3v2TL6+vipfvrw2b94sb29vde3aVc+ePZMknTlzRkOHDlXPnj21fv16PXr0SH5+fubnL1u2TNu2bVNAQIBmz56tr7/+WsuWLTO3+/n56fHjx1q/fr26deumYcOG6cyZM5bbYQAAAABpjtXDV1hYmCZPnqySJUual+3YsUOOjo4aOHCgChQooKFDhypdunTatWuXJGn16tWqV6+emjZtqiJFimjy5Mk6cOCAgoKCJEkrV65U7969Vb58eb311lvq37+/1qxZI0m6efOm9u/fr3HjxqlQoUJq2bKlGjdurLVr11p+5wEAAACkGVYPX/7+/mrSpIkKFixoXhYYGKhy5crJZDJJkkwmk8qWLavTp0+b28uXL29eP1u2bMqePbsCAwN19+5d3blzR2+++aa5vVy5crp165bu3bunwMBAZcuWTTlz5kzQfurUqWTeUwAAAABpmZ01X/ynn37S8ePH9fXXX2vUqFHm5ffv308QxiTJw8NDly9fliTdu3dPWbJkeaE9ODhY9+/fl6QE7Z6enpJkbn/Zc+/evZvk+v+bDQEAAACkUv90zJ+UTGC18BUZGamRI0dqxIgRcnJyStAWHh4uBweHBMscHBwUFRUlSYqIiPjL9oiICPPjP7ZJUlRU1D9uOyk8PNIn+TkAAAAAUgY3t3SvdHtWC18BAQEqUaKEqlat+kKbo6PjC2EoKirKHNL+qt3Z2TlB0HJ0dDT/W5KcnZ3/cdtJ8eDBYxlGkp8GAAAA/Gu2tjavPBTg5UJDnyo2Nu5v1zGZEn9Sxmrha/v27QoJCZG3t7ek/w9Iu3fvVsOGDRUSEpJg/ZCQEPNwQS8vr5e2Z86cWV5eXpKeD12Mv64rfihifPtfPTepDEOELwAAACAVe5XH+1abcGPVqlX6+uuvtWXLFm3ZskU1a9ZUzZo1tWXLFpUuXVqnTp2S8d89NQxDJ0+eVOnSpSVJpUuX1okTJ8zbunPnju7cuaPSpUvLy8tL2bNnT9B+4sQJZc+eXVmyZFGZMmV069YtBQcHJ2gvU6aMZXYcAAAAQJpktTNfOXLkSPA4Xbrnp07z5MkjDw8PTZs2TePHj9f777+vdevWKTw8XPXq1ZMkffDBB2rXrp3KlCmjkiVLavz48apevbpy5cplbp86daqyZs0qSZo2bZo6deokScqVK5eqVKmiAQMGaOjQoTp79qy2bdum1atXW2rXAQAAAKRBVp3t8K+4urpq4cKFGjlypL744gsVLlxYixYtkouLiyTJ29tbY8aM0ezZs/X777+rcuXKGjt2rPn5nTt31oMHD9SzZ0/Z2tqqRYsW6tixo7l98uTJGjp0qN577z1lzpxZEyZMUKlSpSy9mwAAAADSEJNhcNXSvxUSwoQbAAAAsCw7u+cTbrTuPV0Xr96ydjmpUpECObR2dl+Fhj5VTMw/T7jh6Zm4CTesfpNlAAAAAEgLCF8AAAAAYAGELwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAWQPgCAAAAAAsgfAEAAACABRC+AAAAAMACCF8AAAAAYAGELwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAWQPgCAAAAAAsgfAEAAACABRC+AAAAAMACCF8AAAAAYAGELwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAWQPgCAAAAAAsgfAEAAACABRC+AAAAAMACCF8AAAAAYAGELwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAWQPgCAAAAAAsgfAEAAACABRC+AAAAAMACCF8AAAAAYAGELwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAWQPgCAAAAAAsgfAEAAACABRC+AAAAAMACCF8AAAAAYAGELwAAAACwAMIXAAAAAFjAvwpfsbGx+u6777R8+XI9evRIgYGBevz48auuDQAAAABSDbukPuHOnTvq3LmzwsLC9Pvvv+udd97RkiVLdOrUKS1dulSFCxdOjjoBAAAAIEVL8pmvMWPGqFy5cvrhhx/k4OAgSZo+fboqVaqkcePGvfICAQAAACA1SHL4On78uDp16iRbW1vzMnt7e3Xv3l3nzp17pcUBAAAAQGqR5PDl5OSkBw8evLD8+vXrcnV1fSVFAQAAAEBqk+Tw9f7772vEiBH67rvvJD0PXZs2bdLw4cPVokWLV10fAAAAAKQKSZ5wo0ePHsqQIYNGjRql8PBw+fr6ysPDQx07dlTnzp2To0YAAAAASPGSHL4kqV27dmrXrp2ePXum2NhYpU+f/lXXBQAAAACpSpLDV0BAwEuXm0wm2dvbK0uWLKpatao8PDz+5+IAAAAAILVIcvi6fv26duzYoaxZs6pEiRIyDEM///yzbt++rTJlyujx48caN26clixZojJlyiRDyQAAAACQ8vyrYYctWrTQqFGjzNPNx8XFafz48Xr27JkmTpyoBQsWaNKkSVq3bt0rLRYAAAAAUqokz3a4b9++F+7zZWNjo7Zt22rXrl2SpAYNGujixYuvrkoAAAAASOGSHL48PT11/PjxF5afOHFCmTJlkiSFhIRwzy8AAAAA+IMkDzvs1auXhg4dqhMnTqhkyZIyDEPnz5/X9u3bNWLECF2/fl2DBg1SgwYNkqNeAAAAAEiRkhy+GjdurOzZs+vzzz/XunXrZGtrq4IFC2rlypUqU6aMzpw5o7Zt26pNmzbJUS8AAAAApEj/asKN8uXLq3z58i9tK1WqlEqVKvU/FQUAAAAAqU2Sw1d4eLjWr1+vK1euKDY21rw8KipKFy5c0M6dO19pgQAAAEg+NjYm2diYrF1GqhUXZyguzrB2GXhNJDl8DRs2TD/99JPefvtt7dq1S/Xq1dOvv/6qs2fPqmfPnslRIwAAAJKBjY1JmTK5yNY2yXOwIZFiY+MUFvaMAAZJ/yJ8ff/995o1a5YqVaqky5cvq2PHjipRooQmTZqky5cvJ0eNAAAASAY2NibZ2tpo0Nz1unb7vrXLSXXyZ88s/x6tZGNjInxB0r8IX5GRkcqbN68k6Y033tC5c+dUokQJtWrVSm3btn3V9QEAACCZXbt9Xz/fuG3tMoBUL8nnmAsUKKAff/xR0vPwdeLECUnS48ePFRkZ+WqrAwAAAIBUIslnvnr27KlPPvlEcXFxatKkiRo0aKCPP/5Yly5dUpUqVZKjRgAAAABI8ZIcvt555x3t3LlTcXFxypYtm9auXautW7eqbNmyat++fXLUCAAAAAApXpKHHfr5+cnNzU158uSRJBUpUkSDBg1Sq1atNHDgwFdeIAAAAACkBok683Xq1Cn9+uuvkqQtW7aoePHicnV1TbDOtWvXdPDgwVdfIQAAAACkAokKX87OzpozZ44Mw5BhGFqyZIlsbP7/pJnJZJKLi4v69++fbIUCAAAAQEqWqPBVpEgRffvtt5Kkdu3aKSAgQBkzZkzWwgAAAAAgNUnyhBurVq2SJB06dEhXr15VXFyc8uXLp0qVKsne3v6VFwgAAAAAqUGSw9fdu3fVrVs3Xb9+Xfny5VNsbKx+/fVXZc+eXcuWLZOXl1dy1AkAAAAAKVqSZzscNWqUPDw89N1332nz5s3aunWr9u/fr+zZs2v8+PHJUSMAAAAApHhJDl+HDx/WgAEDElzz5ebmpv79++vQoUOvtDgAAAAASC2SHL4yZsyo33///YXljx49SvI1X7/++qs6d+4sb29vVa9eXUuWLDG3BQUFqWPHjipTpozq16//wjT2P/74oxo2bKjSpUurffv2CgoKStC+fPlyVa1aVd7e3hoyZIjCw8PNbZGRkRoyZIjKly+vKlWq6LPPPktS3QAAAACQVEkOXw0aNNCwYcP0008/6cmTJ3ry5IkOHTqk4cOHq379+oneTlxcnHx9feXm5qYvv/xSo0eP1vz58/X111/LMAz16NFDnp6e2rRpk5o0aaKePXvq9u3bkqTbt2+rR48eatasmTZu3Ch3d3d1795dhmFIknbv3q2AgACNGTNGK1asUGBgoKZMmWJ+7cmTJ+vcuXNasWKFRo4cqYCAAO3atSupbwUAAAAAJFqSJ9z45JNP9ODBA3Xu3Nl83y87Ozu1bNlSAwcOTPR2QkJCVLRoUY0aNUqurq7Kmzev3n77bZ04cUKenp4KCgrSunXr5OLiogIFCuinn37Spk2b1KtXL23YsEElSpRQp06dJEkTJ05U5cqVdfToUVWsWFErV65Uhw4dVKNGDUnS6NGj1blzZw0YMECGYWjDhg1avHixihcvruLFi+vy5ctas2aN6tatm9S3AwAAAAASJcnhy8HBQZMmTdKQIUN048YNOTg4KHfu3HJxcUnSdrJkyaKZM2dKkgzD0MmTJ3Xs2DGNHDlSgYGBKlasWIJtlitXTqdPn5YkBQYGqnz58uY2Z2dnFS9eXKdPn1b58uV19uxZ9ezZ09xepkwZRUdH6+LFizIMQzExMfL29k6w7QULFiguLi7BzaP/icmUpF0GACDVsrExycQfxmRlGIbi4gxrl4F/iY9HyvVPfZeUvk1y+JKke/fuac2aNbp69apiY2OVP39+tWzZUnnz5v03m1PNmjV1+/Zt1ahRQ3Xq1NGECROUJUuWBOt4eHgoODhYknT//v2/bH/06JEiIyMTtNvZ2SlTpkwKDg6WjY2N3Nzc5ODgYG739PRUZGSkwsLC5O7unui6PTzS/5vdBQAg1YmNi5NtEr7ARNLxHqdcbm7prF0C/qVX3XdJDl/Hjx/XRx99pMKFC6tMmTKKjY3VsWPHtHr1an322WcqV65ckouYPXu2QkJCNGrUKE2cOFHh4eEJwpH0/IxbVFSUJP1te0REhPnxy9oNw3hpmyTz9hPrwYPHMvgCCgCQxtna2sjNLZ38lm/UteAQa5eTKuXP6qmJHVsoNPSpYmPjXtl24/sOyYt+S7kS03cmU+JPyiQ5fE2aNElt27ZVv379EiyfOnWqpkyZonXr1iV1kypZsqSk57MQ9u/fX82bN08wO6H0PBg5OTlJkhwdHV8ISlFRUcqQIYMcHR3Nj//c7uzsrNjY2Je2STJvP7EMQ4QvAAD+61pwiC7+dsfaZaR6HHukTPRbyvUq+y7J564vX76s5s2bv7C8RYsW+vnnnxO9nZCQEO3duzfBsoIFCyo6OlqZM2dWSEjIC+vHDyX08vJ6aXvmzJmVKVMmOTo6JmiPiYlRWFiYMmfOLC8vL4WGhiomJsbcfv/+fTk5OSlDhgyJrh8AAAAAkiLJ4StHjhw6c+bMC8sDAwPl6emZ6O389ttv6tmzp+7evWtedu7cObm7u6tcuXI6f/68eQihJJ04cUKlS5eWJJUuXVonTpwwt4WHh+vChQsqXbq0bGxsVLJkyQTtp0+flp2dnYoUKaKiRYvKzs7OPHlH/LZLliyZpMk2AAAAACApkjzssEuXLho5cqSuXbumUqVKSXoevFatWqW+ffsmejslS5ZU8eLFNWTIEPn5+enWrVuaMmWKPv74Y1WoUEHZsmWTn5+funfvrv379+vMmTOaOHGiJKl58+ZaunSpFi1apBo1amju3LnKmTOnKlasKElq3bq1RowYoUKFCilLliwaNWqU3nvvPTk7O0uSmjZtqlGjRmnChAm6d++ePvvsM/O2AQAAACA5JDl8NWvWTJK0evVqLVu2TI6OjsqXL5/Gjx+vevXqJXo7tra2mjdvnsaOHatWrVrJ2dlZ7dq1U/v27WUymTRv3jwNHTpUzZo1U548eTR37lxlz55dkpQzZ07NmTNHEyZM0Ny5c+Xt7a25c+eap7ht0KCBbt26pREjRigqKkq1a9fWgAEDzK/t5+enUaNGqUOHDnJ1dVWvXr1Uu3btpL4VAAAAAJBoJsPg8r9/KySE2Q4BALCzez7zWqtJC5hwI5kUyZlN6wd/rNDQp4qJeXWz5sX3XcuhAfr5xu1Xtl08VzRvdm0Y3zPZ+q117+m6ePXWK9su/l+RAjm0dnbfRPWdySR5eiZutsNEXeRUvXp1hYaGJlh27dq1BJNWAAAAAAD+WqLCV3BwsOLiEia+Fi1a6M4dvt0CAAAAgMT419P7MVoRAAAAABKPudUBAAAAwAIIXwAAAABgAYmean7p0qVycXExP46OjtbKlSuVMWPGBOv17Nnz1VUHAAAAAKlEosLXm2++qbNnzyZY5u3trYsXLyZYFn+fLQAAAABAQokKX6tWrUruOgAAAAAgVeOaLwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAW8K/C1+PHj7VmzRqNGzdODx8+1P79+3Xz5s1XXRsAAAAApBpJDl+//PKLateurU2bNmndunV6+vSp9uzZoyZNmujo0aPJUSMAAAAApHhJDl/jxo3TBx98oM2bN8ve3l6SNHHiRLVu3VqTJ09+5QUCAAAAQGqQ5PB19uxZNW3a9IXl77//vq5cufIqagIAAACAVCfJ4cvd3V3Xr19/YfnJkyfl4eHxSooCAAAAgNTGLqlP+OijjzRs2DB9/PHHMgxDhw8f1pdffqkVK1aoT58+yVEjAAAAAKR4SQ5f77//vrJkyaKlS5fKyclJkydPVr58+TR27FjVr18/OWoEAAAAgBQvyeFryZIlatiwodasWZMc9QAAAABAqpTka74WLFig6Ojo5KgFAAAAAFKtJIevhg0bav78+bpx44aioqKSoyYAAAAASHWSPOzw+++/1+3bt/Xll1++tP3nn3/+n4sCAAAAgNQmyeFr0qRJyVEHAAAAAKRqSQ5fFSpU+Mu2e/fu/U/FAAAAAEBqleTwde3aNU2dOlVXrlxRbGysJMkwDEVFRenhw4e6cOHCKy8SAAAAAFK6JE+4MXz4cD18+FCdO3dWSEiIOnXqpLp16+rJkycaP358ctQIAAAAACleks98nT17VuvXr1fRokW1ZcsW5c+fX23atFG+fPm0ceNGvfvuu8lRJwAAAACkaEk+82VnZ6f06dNLkvLnz2+e3bBSpUq6dOnSq60OAAAAAFKJJIcvb29vLV26VBERESpRooT27dsnwzB07tw5OTo6JkeNAAAAAJDiJXnYoZ+fn7p166ZcuXLp/fff18qVK1WhQgU9e/ZM3bt3T44aAQAAACDFS3L4KliwoPbs2aOIiAg5Oztr06ZNOnr0qDJlyqQyZcokQ4kAAAAAkPIlOXzdvn3b/O/Q0FBJUqFChcxt2bNnf0WlAQAAAEDqkeTwVbNmTZlMpr9sj5+AAwAAAADw/5Icvr799tsEj2NjY3Xz5k3NmTOHa74AAAAA4C8kOXzlyJHjhWW5c+dWhgwZNGDAAPn4+LySwgAAaY+NjUk2Nn89ugL/u7g4Q3FxhrXLAIA0Kcnh66+YTCbdvXv3VW0OAJDG2NiYlCmTi2xtk3wXFCRBbGycwsKeEcAAwAqSHL4CAgJeWPb06VPt2rVLlStXfiVFAQDSHhsbk2xtbTR2w5f69X6ItctJlfJk9tTwlu/KxsZE+AIAK0hy+Dpy5EiCxyaTSfb29mrSpIk+/PDDV1YYACBt+vV+iC7fCbZ2GQAAvHJJDl+rVq1KjjoAAAAAIFVLcvjasmVLotdt2rRpUjcPAAAAAKlSksPXpk2bFBgYKJPJpDx58sjBwUE3btzQ06dPlS1bNvN6JpOJ8AUAAAAA/5Xk8FW2bFk5OzvL399fbm5ukqRnz55pxIgRyp49u/r27fvKiwQAAACAlC7J8/muXbtWAwcONAcvSXJxcVH37t21evXqV1ocAAAAAKQWSQ5frq6uunDhwgvLjx8/Lnd391dSFAAAAACkNkkedti1a1cNGzZMR48eVdGiRWUYhs6ePaudO3dq8uTJyVEjAAAAAKR4SQ5f77//vrJly6aNGzdq7dq1cnJyUsGCBfXFF1+oSJEiyVEjAAAAAKR4SQ5fkuTj4yMfH59XXQsAAAAApFqJvubr9u3bWrx4sR49eiRJioyM1IQJE9SoUSO1b99e3333XXLVCAAAAAApXqLC1/nz59WoUSNt2rRJT58+lSQNGjRIa9euVfXq1VWlShUNGjRI+/btS9ZiAQAAACClStSww5kzZ6phw4YaPXq0JCkoKEi7du1S69at1a9fP0mSu7u7Fi5cqJo1ayZftQAAAACQQiXqzNepU6fUrl078+MDBw7IZDKpfv365mXlypXTpUuXXn2FAAAAAJAKJCp8xcTEyNHR0fz4xx9/VPr06VW2bFnzsujoaNnb27/6CgEAAAAgFUhU+CpatKgOHTokSXr48KEOHTqk6tWry8bm/5/+9ddfM9U8AAAAAPyFRF3z1bNnT/Xo0UMHDx7UpUuXZGNjo65du0qSLl26pM2bN2v16tUKCAhI1mIBAAAAIKVK1JmvypUra/Xq1cqZM6dq1aqljRs3qkCBApKkLVu26KefftK0adNUo0aNZC0WAAAAAFKqRN9kuUSJEipRosQLywcNGvRKCwIAAACA1CjRN1kGAAAAAPx7hC8AAAAAsADCFwAAAABYAOELAAAAACwgURNuJGUK+Z49e/7rYgAAAAAgtUpU+Dpy5EiiNmYymf6nYgAAAAAgtUpU+Fq1alVy1wEAAAAAqVqi7/P1Rz///LMuX76suLg4SZJhGIqKitKFCxc0evToV1ogAAAAAKQGSQ5fAQEBCggIkKenpx48eCAvLy+FhIQoNjZW//nPf5KjRgAAAABI8ZI82+H69es1evRoHTx4UNmyZdOqVav0448/qlKlSsqdO3dy1AgAAAAAKV6Sw1doaKiqVq0qSSpatKhOnTqlDBkyqE+fPtqxY8crLxAAAAAAUoMkhy8vLy8FBQVJkgoUKKALFy5IklxdXfXw4cNXWx0AAAAApBJJvuarZcuW6tu3ryZMmKBatWqpY8eOypIli3788UcVKVIkOWoEAAAAgBQvyeHr448/VtasWeXs7KxSpUrJz89P69atU6ZMmTRx4sTkqBEAAAAAUrwkh68tW7aofv36cnBwkPT8TFjLli317Nkzbdy4Ufny5XvlRQIAAABASpeo8PXw4UNFRERIkvz8/PTGG2/Izc0twToXL17U1KlT1b59+1dfJQAAAACkcIkKX0ePHtWnn34qk8kkSWrRooWk5zdX/qPGjRu/4vIAAAAAIHVIVPiqW7eu9u3bp7i4ONWqVUsbNmyQu7u7ud1kMsnZ2fmFs2H/5O7duxo/frwOHz4sR0dH1a9fX3379pWjo6OCgoI0fPhwnT59WtmzZ9eQIUNUpUoV83N//PFHTZgwQUFBQSpdurTGjx+vXLlymduXL1+upUuX6smTJ6pXr56GDx8uZ2dnSVJkZKRGjx6tPXv2yMnJSZ06dVKnTp2SVDsAAAAAJEWip5rPnj27cubMqYsXL6pkyZJyd3fX48eP9fvvvytDhgxJDl6GYah3794KDw/XmjVrNGPGDO3fv18zZ86UYRjq0aOHPD09tWnTJjVp0kQ9e/bU7du3JUm3b99Wjx491KxZM23cuFHu7u7q3r27+Uzc7t27FRAQoDFjxmjFihUKDAzUlClTzK89efJknTt3TitWrNDIkSMVEBCgXbt2Jal+AAAAAEiKJE+4ER0drSlTpmjt2rWKiYl5vhE7OzVq1EijR482T8TxT65du6bTp0/r0KFD8vT0lCT17t1b/v7+qlatmoKCgrRu3Tq5uLioQIEC+umnn7Rp0yb16tVLGzZsUIkSJcxnqyZOnKjKlSvr6NGjqlixolauXKkOHTqoRo0akqTRo0erc+fOGjBggAzD0IYNG7R48WIVL15cxYsX1+XLl7VmzRrVrVs3qW8HAAAAACRKkm+y7O/vr/3792v+/Pk6fvy4jh49qrlz5+r48eOaMWNGoreTOXNmLVmyxBy84j158kSBgYEqVqyYXFxczMvLlSun06dPS5ICAwNVvnx5c5uzs7OKFy+u06dPKzY2VmfPnk3QXqZMGUVHR+vixYu6ePGiYmJi5O3tnWDbgYGBiouLS+rbAQAAAACJkuQzX9u2bdOsWbNUsWJF8zIfHx85Ojqqf//+GjRoUKK2kyFDBlWtWtX8OC4uTqtXr9Zbb72l+/fvK0uWLAnW9/DwUHBwsCT9bfujR48UGRmZoN3Ozk6ZMmVScHCwbGxs5ObmluAMnaenpyIjIxUWFpbgWrZ/8t/5RwAASHH4G5Zy0XcpE/2Wcv1T3yWlb5McvgzDkIeHxwvL3d3d9fTp06RuzmzKlCm6cOGCNm7cqOXLl78wfNHBwUFRUVGSpPDw8L9sj58S/6/aDcN4aZsk8/YTy8MjfZLWBwDgdeDmls7aJeBfou9SJvot5XrVfZfk8PXWW29p6tSpmjp1qlxdXSVJjx490vTp0xOcDUuKKVOmaMWKFZoxY4YKFSokR0dHhYWFJVgnKipKTk5OkiRHR8cXglJUVJQyZMggR0dH8+M/tzs7Oys2NvalbZLM20+sBw8e60+z7QMA/iVbWxsOUCwkNPSpYmNf3VB7+s5y6LuUiX5LuRLTdyZT4k/KJCp8HTt2TN7e3rKzs9OQIUPUvn17Va1aVfny5ZMkXb9+Xbly5dL8+fMT9aJ/NHbsWH3++eeaMmWK6tSpI0ny8vLSlStXEqwXEhJiHkro5eWlkJCQF9qLFi2qTJkyydHRUSEhISpQoIAkKSYmRmFhYcqcObMMw1BoaKhiYmJkZ/d89+/fvy8nJydlyJAhSbUbhghfAIAUib9fKRd9lzLRbynXq+y7RIWv9u3b6+DBg/Lw8JCXl5e2bdum77//XteuXZOjo6Py5cunypUry8YmafN3BAQEaN26dZo+fXqCmQZLly6tRYsWKSIiwnw26sSJEypXrpy5/cSJE+b1w8PDdeHCBfXs2VM2NjYqWbKkTpw4YT4Td/r0adnZ2alIkSLPd9rOTqdPnzZPynHixAmVLFkyyfUDAAAAQGIlKnwZf4p79vb2euedd/TOO+/86xe+evWq5s2bJ19fX5UrV0737983t1WoUEHZsmWTn5+funfvrv379+vMmTOaOHGiJKl58+ZaunSpFi1apBo1amju3LnKmTOnOWy1bt1aI0aMUKFChZQlSxaNGjVK7733nvkmy02bNtWoUaM0YcIE3bt3T5999pl52wAAAACQHBJ9zZfpFU/R8u233yo2Nlbz589/YbjipUuXNG/ePA0dOlTNmjVTnjx5NHfuXGXPnl2SlDNnTs2ZM0cTJkzQ3Llz5e3trblz55prbNCggW7duqURI0YoKipKtWvX1oABA8zb9/Pz06hRo9ShQwe5urqqV69eql279ivdPwAAAAD4o0SHr+bNmydqWN63336bqO35+vrK19f3L9vz5Mmj1atX/2W7j4+PfHx8/tX2nZ2d5e/vL39//0TVCgAAAAD/q0SHrw8//FDp0zO1OgAAAAD8G4kKXyaTSQ0aNHjp/b0AAAAAAP8sUdP7/XnCDQAAAABA0iQqfL377rvmmxcDAAAAAJIuUcMOmYYdAAAAAP433FUYAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsIBE3ecLAFIaGxuTbGxM1i4j1YqLMxQXZ1i7DAAAUhTCF4BUx8bGpExuLrK14eR+comNi1NY6DMCGAAASUD4ApDq2NiYZGtjo5k7v9JvDx9Yu5xUJ6e7hz6t11g2NibCFwAASUD4ApBq/fbwga7fu2vtMgAAACQx4QYAAAAAWAThCwAAAAAsgPAFAAAAABZA+AIAAAAACyB8AQAAAIAFEL4AAAAAwAIIXwAAAABgAYQvAAAAALAAwhcAAAAAWADhCwAAAAAsgPAFAAAAABZA+AIAAAAACyB8AQAAAIAFEL4AAAAAwAIIXwAAAABgAYQvAAAAALAAwhcAAAAAWADhCwAAAAAsgPAFAAAAABZA+AIAAAAACyB8AQAAAIAFEL4AAAAAwAIIXwAAAABgAYQvAAAAALAAwhcAAAAAWADhCwAAAAAsgPAFAAAAABZA+AIAAAAACyB8AQAAAIAFEL4AAAAAwAIIXwAAAABgAYQvAAAAALAAwhcAAAAAWADhCwAAAAAsgPAFAAAAABZgZ+0CgNeZjY1JNjYma5eRasXFGYqLM6xdBgAAgEUQvoC/YGNjUiY3F9nacII4ucTGxSks9BkBDAAApAmEL+Av2NiYZGtjo+U/7FTw7w+tXU6qkzWjuzpWrScbGxPhCwAApAmEL+AfBP/+UEEP71m7DAAAAKRwjKcCAAAAAAsgfAEAAACABRC+AAAAAMACCF8AAAAAYAGELwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAWQPgCAAAAAAsgfAEAAACABRC+AAAAAMACCF8AAAAAYAGELwAAAACwAMIXAAAAAFgA4QsAAAAALIDwBQAAAAAWYGftAtICGxuTbGxM1i4jVYuLMxQXZ1i7DAAAAOAvEb6SmY2NSW5uLrKx4SRjcoqLi1No6DMCGAAAAF5bhK9k9vysl422nf5GD548tHY5qZKHq7salvmPbGxMhC8AAAC8tghfFvLgyUPdfRRi7TIAAAAAWMlrMRYuKipKDRs21JEjR8zLgoKC1LFjR5UpU0b169fXwYMHEzznxx9/VMOGDVW6dGm1b99eQUFBCdqXL1+uqlWrytvbW0OGDFF4eLi5LTIyUkOGDFH58uVVpUoVffbZZ8m7gwAAAADSPKuHr8jISPXt21eXL182LzMMQz169JCnp6c2bdqkJk2aqGfPnrp9+7Yk6fbt2+rRo4eaNWumjRs3yt3dXd27d5dhPB9ytnv3bgUEBGjMmDFasWKFAgMDNWXKFPP2J0+erHPnzmnFihUaOXKkAgICtGvXLsvuOAAAAIA0xarh68qVK3rvvfd08+bNBMsPHz6soKAgjRkzRgUKFFDXrl1VpkwZbdq0SZK0YcMGlShRQp06ddIbb7yhiRMn6tatWzp69KgkaeXKlerQoYNq1KihUqVKafTo0dq0aZPCw8P17NkzbdiwQUOHDlXx4sX1n//8R126dNGaNWssvv8AAAAA0g6rhq+jR4+qYsWKWr9+fYLlgYGBKlasmFxcXMzLypUrp9OnT5vby5cvb25zdnZW8eLFdfr0acXGxurs2bMJ2suUKaPo6GhdvHhRFy9eVExMjLy9vRNsOzAwUHFxccm0pwAAAADSOqtOuNG6deuXLr9//76yZMmSYJmHh4eCg4P/sf3Ro0eKjIxM0G5nZ6dMmTIpODhYNjY2cnNzk4ODg7nd09NTkZGRCgsLk7u7e6LrN3HrrtcOfZIy0W8pF32XctF3KRd9lzLRbynXP/VdUvr2tZztMDw8PEE4kiQHBwdFRUX9Y3tERIT58cvaDcN4aZsk8/YTy8MjfZLWR/Jyc0tn7RLwL9BvKRd9l3LRdykXfZcy0W8p16vuu9cyfDk6OiosLCzBsqioKDk5OZnb/xyUoqKilCFDBjk6Opof/7nd2dlZsbGxL22TZN5+Yj148FjGP9xWytbWhg+chYSGPlVs7KsbOkrfWcar7jeJvrMUPnMpF32XctF3KRP9lnIlpu9MpsSflHktw5eXl5euXLmSYFlISIh5KKGXl5dCQkJeaC9atKgyZcokR0dHhYSEqECBApKkmJgYhYWFKXPmzDIMQ6GhoYqJiZGd3fPdv3//vpycnJQhQ4Yk1WkY+sfwBcuiP1Im+i3lou9SLvou5aLvUib6LeV6lX1n9anmX6Z06dI6f/68eQihJJ04cUKlS5c2t584ccLcFh4ergsXLqh06dKysbFRyZIlE7SfPn1adnZ2KlKkiIoWLSo7Ozvz5B3x2y5ZsqRsbF7LtwMAAABAKvBapo0KFSooW7Zs8vPz0+XLl7Vo0SKdOXNGLVq0kCQ1b95cJ0+e1KJFi3T58mX5+fkpZ86cqlixoqTnE3ksXbpUe/fu1ZkzZzRq1Ci99957cnZ2lrOzs5o2bapRo0bpzJkz2rt3rz777DO1b9/emrsMAAAAIJV7LYcd2traat68eRo6dKiaNWumPHnyaO7cucqePbskKWfOnJozZ44mTJiguXPnytvbW3PnzpXpv1ONNGjQQLdu3dKIESMUFRWl2rVra8CAAebt+/n5adSoUerQoYNcXV3Vq1cv1a5d2yr7CgAAACBteG3C16VLlxI8zpMnj1avXv2X6/v4+MjHx+cv2319feXr6/vSNmdnZ/n7+8vf3//fFQsAAAAASfRaDjsEAAAAgNSG8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALIHwBAAAAgAUQvgAAAADAAghfAAAAAGABhC8AAAAAsADCFwAAAABYAOELAAAAACyA8AUAAAAAFkD4AgAAAAALSLPhKzIyUkOGDFH58uVVpUoVffbZZ9YuCQAAAEAqZmftAqxl8uTJOnfunFasWKHbt29r0KBByp49u+rWrWvt0gAAAACkQmkyfD179kwbNmzQ4sWLVbx4cRUvXlyXL1/WmjVrCF8AAAAAkkWaHHZ48eJFxcTEyNvb27ysXLlyCgwMVFxcnBUrAwAAAJBapckzX/fv35ebm5scHBzMyzw9PRUZGamwsDC5u7snajs2NpJhJO41vTJklr1tmny7k517Ojfzv22S4euEXO5Z5GBH371qXhn+/3OWHP0mSfmzeMnRzj55Np6G5XBP3r57I1tWOdnTb8khl6eH+d/J0XdFc2WVswN9lxzyeiVz3+XJJmdH+u5Vy5vV0/zv5Oi3IgVyyNnJ4Z9XRJLlyZHZ/O9/6juTKfHbNRlGYuND6rFlyxbNmjVL+/fvNy8LCgpSrVq1dODAAWXNmtWK1QEAAABIjdLksENHR0dFRUUlWBb/2MnJyRolAQAAAEjl0mT48vLyUmhoqGJiYszL7t+/LycnJ2XIkMGKlQEAAABIrdJk+CpatKjs7Ox0+vRp87ITJ06oZMmSskmui08AAAAApGlpMmk4OzuradOmGjVqlM6cOaO9e/fqs88+U/v27a1dGgAAAIBUKk1OuCFJ4eHhGjVqlPbs2SNXV1d17txZHTt2tHZZAAAAAFKpNBu+AAAAAMCS0uSwQwAAAACwNMIXAAAAAFgA4QsAAAAALIDwBQAAgFQjfjoDpjVIuVJz3xG+8EotWLBA+/fvt3YZQJp17tw5a5cAAFYVfx9Xk8mUqg/iU6OLFy9KSt19R/jCKxEXF6dff/1Vc+bMkbu7u7XLwf9ozZo15l+ASDmWLFmiESNGWLsM/IMvvvhCly9ftnYZ+AfLli3TgQMHrF0Gkuizzz7TBx98oEWLFklK3Qfxqc28efPUtGlTrV+/XlLq7TvCF14JGxsbeXh4yNXVVc+ePbN2OfiXDMPQqVOnNHbsWGXMmNHa5SCJHj16JBcXF0lSdHS0lavBy3z//fcaMWKE+vXrp+vXr1u7HPyFU6dOyd/fX/369dNPP/1k7XKQBPFfAE+fPl2zZ8+WlHoP4lMbBwcHSdKUKVO0fPlySamz7whfeCUMwzB/aJ48eWLlavBvmUwmubm5ycXFRZGRkdYuB0lkGIYiIiIkSXZ2dlauBi9TqlQp5cmTR7/88ou6deumq1evWrskvIS3t7eqVKmiJ0+eqGfPnpwBS0H+85//6L333lO1atW0ZMkSTZw4UVLqPIhPbWrVqqXq1aurYsWK+vzzz7Vw4UJJqa/vCF/4n5w8eVIxMTEymUyKjIyUi4uL+aAvNjZWUuq+aDI1cnZ2lmEYCg8Pp+9SgD+e4XJyclJcXJyk53+s8HqJjY1VpkyZ9Mknn6hJkyZKnz69OnTooCtXrli7NPxB/N+uzp07q0WLFqpUqZJ69Oihb7/91sqV4e/E/+5Lly6dcufOrdjYWE2fPl1ffvmlJk2aJCn1HcSnFvF9lzdvXuXOnVt37txRp06dtHnz5lQ5fJTwhX/tyJEjGjt2rBYuXKioqCilT59ejo6Ounv3riIiImRrayvp/w8C4z9ceP3cuHHD/O/4vrO3t5fJZKLfXmPr1q3T1q1b9fTpU0lS5syZX3rGMiYmxtKl4U9iY2PNvxPz5cunkJAQ9e7dWzVr1lSHDh04A/aaiIuLS9BPd+7ckY+PjwYNGqRPPvlE+/bts3KF+LNbt25Jen75Q/zfqy5duujZs2c6deqUJkyYoHXr1snf319S6jqIT+kePnwo6XnfxX+ROGjQIGXMmFH3799X27ZttW7dOi1ZskRS6uk7whf+tWLFiuntt9/W8ePHtWzZMhmGITc3Ny1atEgNGzbUkCFDtHjxYp04cUJhYWEcAL6mdu7cqSFDhuibb76RJHl6esre3l5hYWGSnv9S/KP4b4VhfcePH9fChQu1f/9+GYahdOnSKSQkRLt379b+/fv1+++/S2IIojX9+OOPevTokfmAXpKKFi2qypUra/Lkyfr4449VsWJFApiVffPNN7p8+XKC33dZs2ZV+/btNXfuXFWoUEHdunVT7969CWCvkYULF6pNmzZasGCBIiIiEnxZ2LNnTz169EhvvPGGJkyYoFWrVhHAXiOLFi1S79699cUXX0iS7O3tzW21a9dWZGSk6tSpo7Zt22r16tWpKoDxFxlJFh0drYiICKVPn149e/bU4sWL9d133ykmJkbR0dHKly+fypYtqyNHjmjv3r2KioqSYRhyd3dXw4YN1adPnxcO6GE9xYsXl4uLizZv3iw7OztVqVJFdnZ2mjFjhhwdHeXj46NcuXKpRIkSypw5c4KDSFjX1KlTNXLkSM2ZM8c8VPT333/XjBkz9Ntvv8nT01Ourq4qXbq0ypUrJxcXF9WuXZvPn4WsXLlSEyZMUP78+TVw4EDlyZNH+fLlkyS1adNG169f17Fjx+Tv76+ePXuqY8eOWr58uQoUKGDlytOWDRs2aPjw4XJ2dtbgwYNVpEgRlS5dWpJUrVo11atXTz/99JN69OihJ0+eqHfv3goICFD16tWtW3gad+/ePe3bt0/BwcGaOXOmLly4oJIlS6p58+Zyd3dX/vz5FRQUpKNHj6ply5aSpKFDhyo8PFyjRo1iaLYVXblyRatXr9a9e/d0/PhxHTx4UPXr19fbb7+tjBkzqly5clq8eLFKly6tTp06SZLWrl2riIgI9ezZM8X3nclI6fERFjV37lydOnVKQUFBatSokerUqaP8+fMrICBAx48f15kzZ9S/f3+1a9dOz549k2EYunr1qk6fPq3Lly+rbdu2Kly4sLV3A/8VFRUlBwcH3bp1S+PGjVNUVJQaNWqkWbNmKWfOnPLw8NCZM2d0+/ZtpU+fXu7u7sqWLZuaNm2qpk2bWrv8NOmHH35QXFycoqOjVatWLUnSuHHjdPz4cZUsWVLnz5/X1KlTFR4ersDAQJ09e1bXrl3TmTNn5Orqqq+++krZsmWz8l6kflFRUVq7dq1Wrlyp27dvq3LlynJxcVHlypX1/vvvS3oezr7//nvzN7o9evTQ999/r6+++soc0pB8DMNQbGys9uzZo6VLl+r8+fMqV66cPDw8lDVrVg0aNEi2trbas2eP5s+fr1WrVsnV1VVTp07VkiVLtGjRIlWrVs3au5EmnTp1St7e3vrpp5/01VdfKSgoSOnTp5ebm5sOHTqkESNGqGrVqjp37pz69++vefPmqUiRItqyZYumTp2qrVu3yt3dPcUfxKdkW7Zs0ddffy0nJyc9ePBAOXLkUFBQkIYPH66SJUvqm2++0cqVK+Xv7y9XV1etWbNGO3bs0KpVq5QxY8YU3XeELyTa8uXLtWDBAn366acKDw/X7t27lT59ejVq1EiNGjXSggULtGjRItWsWVPTpk174fl/vOYB1rVs2TL98ssvun//vpo1a6Y6deooLCxMQ4cO1bNnz3Tp0iVNnTpVVatW1b179/Ts2TOdPn1aJ0+e1NWrVzVy5EgVKlTI2ruR5vj7+2vr1q3KkiWL7ty5o+LFi6t///4qVqyY/P39tWzZMmXMmFFfffWVvLy8zM+Ljo5WcHCwHBwcEixH8goNDdXevXu1ceNGOTk5qUmTJvL391fFihXVuHFj1apVSx06dFC5cuXUu3dvRUdHa/DgwerVq5fy5s1r7fLTjNjYWH333Xdas2aNwsLC9PHHH2vevHlydHRU48aN1aZNG40ePVoRERHmmfMCAgJUr149zlJawdixY3XmzBktW7ZMrq6uOnDggHbu3Kk7d+7o448/1qVLl7Rx40bly5dP1apVU2hoqNKlS6c2bdooKipKUVFRcnV1tfZupEm3b9/W06dP9cYbb0iSNm3apAMHDih9+vSqXLmyzp8/r82bN6tBgwbKly+fHjx4oNKlS8vHx0chISGys7NTpkyZrLsTrwDhC4k2duxYZciQQZ988okk6dq1a9qwYYOOHz+uFi1aqFWrVpo3b56OHDmit99+W507d5a9vb1iYmK45uQ1Mm/ePK1cuVItW7bUo0eP9O2336patWpq3769smXLphEjRmj37t3q3bu3unfv/sLzIyMj5ejoaIXK07ZLly6pV69emjp1qvLnz6/Y2Fj16tVLsbGxat++verUqaN58+Zp+fLlGjdunCpXrqx06dJJej6JAEMNLePAgQOqXLmy+Xfew4cPtWfPHi1btkzNmzfXBx98oKlTp+rixYvKkCGDqlSpotOnT2vo0KHy9PS0cvVpx5YtW/Tzzz/LyclJZcuWlY+Pj/bt26eAgAAVLlxYEydO1KJFi3T48GHduXNHjRo10tmzZzV48GDlyZPH2uWnWRMnTtTGjRu1atUqFStWzLz8wIED2rRpk548eaLJkyfr8ePH+uabb7R06VJFRUUpQ4YM2r17t5ycnKxYfdo2Y8YM7d+/X8HBwSpatKhGjhyp/Pnza/369dq7d6+yZs0qPz8/nTt3Tt9884327dunW7duqVixYtq8ebO1y3+l+GuMfxSfz2/fvq1ffvnFvDx//vzq0KGDqlatqi+//FI7d+6Ur6+vvL29deTIEQUEBCg2Npbg9RqJiYnRxYsX1b9/f/Xr10+jR4/WlClT9PDhQ82YMUNXr17V+PHjVbt2bZ07d0579+5N8Fzp/2+CCMt6+vSpnjx5oixZssjV1VUZM2bUwoULlSNHDq1cuVLffvutunfvrkaNGmn69On69ttvzffcI3glv/jfk3379tXEiRPNM3e5u7urbt266tixo9auXatNmzZp9OjRmjp1qpycnLR06VLt3LlThw4dsmb5acqMGTM0Y8YMPX78WD///LMmTZqktWvXqmbNmurevbvOnDmjYcOGydfXV/PmzVPt2rX15Zdfav/+/dq6dau1y0+zZs+erZUrV2rLli3m4BX/ufPx8VH79u3l4OCggQMHSpJ8fX21ceNG1a1bVy4uLnrw4IHVak/rNmzYoI0bN8rPz08rV65UcHCw5s2bJ0lq1aqV6tatqxs3bmjSpEnKnz+/hg4dqoCAAL355pt69uyZ7t69a+U9eLX4i4x/FD+utk2bNvr111+1e/duc1vWrFnVsmVLlSxZUlu3btWDBw/UpUsXFShQQL/88osePXpkrbLxEnFxcbp+/bquXbtmXvb222+re/fucnZ21tKlSxUcHKwRI0YoLi5OmzZt0o4dOyT9/4x5KXmcdUoUf3CRN29e5cqVS4cPHzYvc3Z21pgxY5Q1a1YtW7ZMN2/e1PDhw/X2229r0qRJ+uGHH1L8rFApRfwsoAULFtSaNWs0btw483ufKVMm1a9fX127dtXKlSs1e/Zs5cqVS3PmzNHo0aP1wQcfqESJEtYsP8345ZdftHPnTk2dOlUTJkyQv7+/atWqpS1btujRo0eqXLmy+vTpo8DAQPXr109OTk7q06ePpk2bpr59+6pBgwbW3oU0KTQ0VNeuXVP9+vXNQwbj4uL05ZdfatGiRfrqq69UqlQpffrpp3JwcNCYMWN08eJF5cqVS8OHD9eGDRuUI0cOK+9F2nX37l01btxYb7/9tooUKaIuXbooY8aM+vHHHxUWFqbmzZurXbt2un79umbNmqWbN2+qaNGimjt3rj7//PNUN1ye8IW/dPDgQW3ZskWnTp3S3bt3VaFCBRUvXlw7duzQ8ePHzetly5ZNrVu31o0bN7Rv3z65urqqT58+Gj9+vNzc3Ky4B/gzBwcHNW/eXJcuXdKFCxfMy0uVKqUPP/xQkZGRWrNmjTw9PTVs2DDz0I34+0jBsqKjoxUeHi5JSp8+vfLnz6+vv/7aHJ4Nw5CTk5PGjRun8PBw8/UoI0eOVJMmTVS8eHHCsoXEfznh4OCgRo0a6ZtvvtGAAQPMASxjxoyqX7++PvroI23dulUzZsyQJNWoUUNDhw7l2iELiY6OlslkMr/fbm5u8vHx0fnz53Xz5k05OzurWrVq+uSTT3TlyhX17dtX0vPfkfFfLMLy3Nzc1LBhQ4WGhuqnn35SdHS02rZtqw0bNmjLli1avny5WrZsqdy5c6tnz55Knz69hg4dql9++UUuLi5c42Vljx8/1v79+xUVFaWIiAgtWrRIe/bsUY8ePdSpUydNmjRJ77zzjlq3bq3bt29r5syZCgoKUoYMGVLlcSThCy81depUDRo0SMuXL9fw4cM1YMAAnTp1Sn379lVoaKg+//xzHTt2zLx+vnz5VK5cOR07dkyxsbFKly6d3N3drbgHiHf+/HkdPnxYDx48UExMjKpWrapnz55p+/btunPnjnm90qVLq2PHjvrqq6/0008/KWfOnJo6daoGDhxovnYIljN37lx169ZN7777rgICAnTz5k0NGzZMISEhmjhxooKDg833O3F2dtaUKVN0/vx5c6geNGiQcufObeW9SFvu37+vyMhItWrVSitWrNCBAwc0aNCgFwKYr6+v1qxZYx52w9Bsy8mcObNu3rypn376SdLzM5YFCxZUhgwZzCM1HBwcVK1aNfXq1UsnT56Un5+fJIbvWkv856dWrVoqW7aspk6dqpkzZypXrlyaP3++Nm7cqClTpihjxowaPHiwSpQooebNm6tgwYKErtdEmzZt5OLioipVqqhOnTrKkCGD1q5dq71796pRo0Y6f/68Vq1apXr16qlmzZqKiopK1deW8xsfL7h48aJ27NihOXPmqGzZsjp37px27typ7t27a+rUqZo4caKGDh2qVatW6d69e2rQoIH5HkMeHh7MaPgamTJlirZt2yaTySQnJye99dZb6tq1q/r06aPBgwfLwcFBLVq0MA/HqFKlikqVKqXDhw/r7bffVtasWa28B2nT8uXLtWrVqgQzi546dUqtWrXSmjVr1LhxYw0dOlQDBw4037ohLi5O6dOn52DDiuLPmmTLlk05cuTQ0qVL1aVLFw0aNEj+/v4ymUzKmDGjateuLTs7O5UvX97aJacpcXFxypIli6ZNm6YsWbLIMAzZ2trKwcFBkZGRevjwoaTnB/sODg6qVauWHB0dmXnSykwmk3nSoJ49eyo4OFhLly5V7969zVOOFyhQQK1bt9aiRYv05MkT+fj46M0335SLi4u1y4eknDlzaubMmTpx4oS2b9+umjVrKleuXJKk9u3bKzg4WPv27VPHjh3Vpk0bNW7cWOnTp7dy1cmH8IUXODg4yMXFxTzzVokSJZQzZ05lyJBB3bt314IFCzR58mTNmzdPs2fP1uLFi+Xm5qZz585pzZo1Vq4e8Q4fPqytW7dq1qxZKlSokA4cOGCelGHGjBkaM2aMRo0apfDwcDVo0EAlS5aU9PwPXYYMGaxcfdoWFBSkDz74wHw/KB8fH23YsEELFy5UVFSUvvrqK3Xo0EGTJ09W5cqVVapUKX333XeKioriYMOKXF1d5evrKwcHB8XFxalUqVJasmTJCwHMzc1N7777LmdSLCz+/a5du7ZsbW3NQ3Lj4uJka2tr/uLQZDJpzpw55muaYX02Njbm29X07dtXz549U/Xq1RMMq86aNauePn2qsLAwubq68rvwNWJjY6PcuXMrd+7cCg4OTnDZg62trd58800dPnxYjx8/Vvr06VN18JIYdoiXsLe31927d3X27FnzskyZMqlDhw765JNP5Ofnp5s3b2rkyJGaNWuWfHx8VLNmTa1fv557P71GDMNQtmzZVKJECaVPn14NGzZUly5dVKxYMXXt2lW5c+fWpEmTdOnSJU2YMEHdunVTv379dPbsWdWoUcPa5adJcXFxkqRbt269dGZRHx8frVq1SsePH9eqVatUtGhR7dmzR35+fjpw4IBmzZrFdOUWEBwc/NLlcXFx5tlAbWxsZBiGOYAdPHhQPXv2NA+hInglv/gZJ//MxsYmwUF7/DWt8WeNZ86cqYULFyaYyhyWs3PnTl29evWF5fGfHQcHB40ePVrFihXTjRs3FBMTo8jISO3fv1/p0qXjy0MrOnDggCIjI19YHj9bclRUlLJmzaqgoCB9+eWX5r95J0+elKenZ9qZTdkADMN4+PBhgscLFy40qlevbhw7dizB8vv37xtjx441evXqZTx+/NiSJSKJjh07ZpQoUcL4+eefEyy/cuWK4efnZ7Rq1coIDg42fvvtN2PHjh3Gp59+avj7+xuXLl2yUsWI98MPPxgNGzY0du3alWD57du3jXHjxhldu3Y1goODjZiYGCMiIsK4c+eO8ejRIytVm7bMmTPHGDBggGEYhhEXF2deHhMTYxiGYYSGhho3btx44XknTpwwatasaQQHB1um0DRu4cKFxqJFi174OxXfTw8ePDACAwMNwzCMR48eGRUrVjT27NljzJkzxyhZsqRx9uxZi9cMw/j222+NwoULG7169TKuX79uXh4VFWUYhmHcvHnTaNu2rXHs2DHjwYMHRtu2bY1ixYoZrVu3NipXrmycP3/eSpXjyy+/NAoXLmyMGDHCiIiIMC+Pjo42DON533366afGsWPHjEGDBhnvvfeeUa1aNaNr167GW2+99cKxSmrGV2/Qnj17NGfOHN28edO8rF69eqpcubKmT5+u06dPS3r+rZOnp6eqVq2qU6dOKTQ01EoV469ERUVJev4NfPny5VW/fn1Nnjw5Qd8WKFBArVq1kru7u9atW6ccOXKoXr16mjFjhgYOHMjZSyv46quvNGvWLK1fv14XL15UmTJlVKJECe3evfsvZxbdv3+/bG1t5ejoqKxZs6b6YRqvi1OnTpm/nY3/1jZ+ONStW7fUqlUrnTt37oXnlS1bVjt27Eh1Uya/jq5evarp06dr1qxZ+vrrr81ntuKHF966dUvvvvuuLl68KOn5hCeenp4aPXq0lixZorVr1zL1v5VkzpxZ9vb22rNnj/z9/fXrr79Kej4iJygoSG3atFGePHlUvnx5ZciQQRMmTNCoUaPUqVMnrVu3jrOVVhT/u239+vUaOXKk+XjEzs7O3Hf29vYqX768hg0bpgEDBqhly5aqU6eO1q9fryJFilizfIsifEFxcXFat26d1q9fr+vXr0uScuXKpWbNmilHjhyaNGmSjhw5Yh6mUbJkSbm5uTH9+Gtm2bJlGjBggHr06KH169crLi5OzZo1k4ODgxYtWqRbt26Z1y1durQqVKigHTt2vHSIACxn+vTp8vf3188//6wvvvhCBw4ckKurq1q2bKmHDx9q/fr1L51Z9OjRo1asOu0x/nC/tPh7esVfIxR/QN+iRQtVqFBB9evXf+k2UvPsXa+TAgUK6L333lNMTIzGjx+vL774QhEREbKxsVFwcLCaNGkiHx8ftWzZ0jxb6Ntvvy0bGxutW7eO4GVFJUuW1IgRI+Tj46Pjx49ryJAhCgoKUnR0tGbPnq233npLY8eOlfT8oD5Xrlxq2bKl3nnnHeXMmdPK1adtb7/9tj799FNVr15de/fu1aeffqqYmBhFR0dr3Lhxqly5svz9/WUYhlxdXVW+fHn17NlT7777bpqbmZfwlYbFH0zEXyPy1Vdfac2aNbpx44ak59/Utm7dWoUKFdInn3yitWvXav/+/VqyZIl+//13Zc6c2Vql408CAgK0ePFilS9fXra2ttq6dasuX76sihUrqm7dugoKClJAQIA5XEtSxYoV5ejoqN9//92KladdhmEoKChI+/fv14wZM7RgwQItW7ZMXbt2lfT88zdw4EDdv39fK1eu1Pbt283Pi59ZFJYT/+VTpkyZEpxhlp73yTfffKP//Oc/GjNmDPdWs6L4YOzr66sOHTqoTp068vf314oVKxQREaHAwEA1b95cI0eOlMlkMvdV06ZNtW7dujT17fvrJDY21nxMUrBgQeXJk0cLFy7U48eP1a9fP92+fVv9+/fX5MmT+Xy9ZuI/c9LzLwednZ21YMECXb16Vb169VJUVJQGDBig8ePHJ/jMpWXMdpiGxX8ALl26pPLly+vjjz/WsGHDJElt27ZV3rx55e3trVy5cqlo0aL67LPPlD59esXFxWn+/Pkc/L0mHj16pB9++EHDhg1T/fr11bx5czVu3FgXL15U9uzZ1bRpU7m5uenzzz+Xn5+f+vXrJzc3N3399deKi4uTs7OztXchTTKZTHJ2dtazZ8/MZx9dXFw0Y8YMXb9+XVmyZFGTJk00depUBQQEMLOolezYsUOZM2fWm2++Ken5pAx3796V9P+TaphMJrVo0ULp0qXjwMKKjP9OHS89v6daVFSU3nrrLTVo0EDdu3eXjY2N3n//fdWpUyfBc0wmk4oXL26tstO006dPq0yZMgluUePt7a21a9fq888/15YtW9SoUSMNHjxYkydPNq8T32+wnkuXLqlw4cIJ+q5OnTrauHGjNm7cqIULF6pDhw7y8/PTtGnTmGToD3gnoCxZsihr1qyqVKmShg8frn379mn16tXmM2Cenp764IMPtGHDBq1Zs0arVq1iXPVrJDIyUvfv31emTJkkPT8gjIqK0oIFC9S4cWO9//77Klq0qAYMGKDChQvL19dXffr00a5duzR58mSuFbIiwzBkGIb5mrwuXbrozJkzSpcunR48eKB27drp9OnTGjVqFDOLWsGzZ880c+ZMzZ8/XydPnpQkOTk5KSwsTL/88ot+++0387e+rq6uHAxaybp163T48OEE73/69OnVsmVLTZ8+Xbly5VJAQICmTZumzz//PMFQa/rMehYuXKj3339fffr00YEDB8z3WZOksWPH6u7du/rhhx+0ceNGPXjwQAMHDlRQUJAk+s3aFi5cqCZNmmj48OG6evWqnjx5Ym4bNWqUnj17prCwMC1ZskQnTpxQnz59zDMeQjIZfxzIjjTp3r17iouLM99Q9/vvv9eoUaNUs2ZNtW/f3jwWN/4mh3j9jBo1St7e3mrSpIlmz56t7777TgMHDlRkZKRWrlyp69eva9u2bXJxcdH169fl6OgoR0dHzl6+BtatW6eZM2dq6NCh+vHHH/Xpp5/Ky8tLT5480apVq7Rp0ybNnz9fb7zxhrVLTZPu3r2rXr16ydXVVf3799fu3bu1cOFC5cmTR3fv3lXRokWVN29eFS5cWJUqVVJsbKyKFi1q7bLTjB07dqhv376SpJ49eypv3rxq2LChuX3ZsmW6ceOGRo8erc2bN2vIkCHq37+/2rZtKycnJ2uVDUlz587VnDlzZGdnp3fffVe//vqr+vXrpxIlSsjW1lbLli1TUFCQRowYoadPn6p58+ays7PTggULuL7Lis6cOaPt27drxYoVkqS6devKxcVFH330kfLly6fw8HBNmTJFGTJk0KeffqpffvnF3LZkyRLZ2THojiPpNOZlWTv+zFdcXJzi4uJUrVo1jRo1Svv27dOaNWvM1wkRvF4/8decDB48WE2aNJEk9e7dW4sWLdJbb70lHx8fzZo1S1myZNHq1atlGIby5s2r7NmzE7xeE7Vq1VK9evU0f/58HTlyxHyvIVdXV9WuXVuSzMPcYBk///yzrl69qmvXrsnLy0vz5s3TkydPtHTpUt2/f19lypSRv7+/Bg0apKJFi+rcuXNasmSJGjdurI8//pjrKC0of/78qlatmiTp119/1ZYtW+Tr66ugoCBFRUWpSpUqunr1qi5duqRmzZpp/Pjxmjp1qtavX2/lytOuy5cv6/r166pUqZImTZpkvj9e1apV1bFjR02ePFmHDx9Wy5YtdeDAAW3btk3p0qXTxo0b0859oF5T/v7+WrhwoRo1aiRfX1/lzp1bDg4O5hvHL168WMHBweratat5AqlChQpp4cKFCg4OVkhIiLV34bXAma80Yu3atapSpcoLM8rExMTIzs7OfFYrLi7OfEHkDz/8oN69e6tNmzb65JNPZG9vb6Xq8Wd/Nd49KioqwR+n+P7s1q2bcuXKpaFDh1qyTPzBjRs3lDdv3pe2nT9/XsuWLdO2bdu0YMECVa9eXdLz/mvZsqW6d++ud955x3LFpmGTJ0/W9u3b5ezsrJCQEHXu3FkdOnRQZGSkunXrptOnT6ts2bJau3at+TnR0dF69OiRTp8+rTfeeCPNzdxlDWfOnFH+/Pnl6uqqK1euaPTo0QoKCtL8+fM1a9YshYaGqnjx4vrkk0+0atUq/fjjj1qxYoXs7e319ddfq2jRoipYsKC1dyPNmTFjhr799luFh4fLxcVFtWvXVtasWTV8+HCtWrVKrq6uWr16tQ4dOqTmzZvLMAydP39eY8aMkZeXF9d6WdHEiRO1bt06bdy4UW+88YYuX76sTZs2ac+ePZo0aZIiIyO1fPlyhYaGqmHDhoqJidG9e/fUv39/OTk5vXB8kqZZ7pZisJaffvrJKFKkiHH//v0Ey+NvNnnr1i1j8ODBRlhYmLkt/uahhw4deukNQ2EdO3bseOnNreP7Ml5ISEiCx/369TOmT59uxMXFJbgxLCxjwYIFRocOHQzDSHhj3vgbhz569Mj4/PPPjcGDBxvFixc3li1bZmzfvt2YMmWKUbFiRePWrVvWKDvN+fHHH43KlSsbx48fN27evGns3r3bqFmzpjFgwADj2rVrxuPHj40PP/zQqFGjBjfhtZLY2Fjj/v37RsWKFY3FixcbT58+NQzj+c3jmzRpYnzwwQeGYRjG/v37jV69ehkVKlQw5s6da7z77rvGd999Z83S07x169YZVatWNQIDA41jx44ZX3zxhVGmTBlj48aNRkBAgFG4cGHjxx9/NAzj+U3J3333XaNp06YJlvP3yzomTJhgvPnmmwlufG0YhnHnzh1jzJgx5t+JERERxs6dOw0fHx+jatWqRrFixV54DrjJcprg4eEhJycnhYeHJ5gaOf7eNB988IFcXFyUMWPGF55bqVIl5cmTx9Il4yV27NihIUOGvHCvoPgbvN69e1eLFy/WkydPtHv3btWvX1/+/v4aPHiwvvvuOzVu3JhpXq3kypUr5utL/nhj3vgbhzZv3ly2trbq27ev/Pz8tG7dOq1YsUKnTp3SsmXLlD17dmuWn2aEhIQoS5YsKleunHLlyqXatWtrypQp+u233zR79mw9fPhQM2fOlIeHh2bOnKlTp05Zu+Q0xzAMeXp6KlOmTJo5c6bWrFmjqKgoFShQQNOmTdOjR4/03nvvycfHR7Nnz1afPn104sQJXbhwQdu3bzd//mB5V69eVc2aNVWqVCmVL19e77zzjsqUKaMrV67I19dXH330kT788EN98803Klu2rFauXKmuXbuqZs2aypYtmyQm2rCG4OBgHTx4UPXr1zeP3oiOjtahQ4d09epVFStWTM2aNVPv3r118uRJ1a1bV1u3blXHjh1VqlQp+uwlCF9pQPxwwujoaPN1WyaTSY8ePVKdOnXk4+NjnmI+Hh+W10+6dOnMp+7jZw2Ki4szh+jmzZvr8ePHcnV1VbVq1VSyZEndvXtXtra2+vzzz1WgQAEr70HaEz8T3h+vl3zZjXkrVqyoli1bKnPmzGrTpo3Wr1+vNWvWaNGiRUzeYAHGf0ff58mTRxERETp9+rS5rWzZsho8eLDu3LmjBQsWKEOGDOZrwPz9/XXmzBkrVZ02xX9+MmXKpIoVK2ratGlatGiROYDNmjVL4eHhatq0qQzD0Pvvv69Ro0YpICBAH3/8MdcuW0H85+v+/fsJrvlxd3dXnjx5dOjQIUlSt27d1LVrV/Xq1Ut79uwxX/c6Z86cvxyyjeTn7u6u1q1b68GDBzpy5Iik5zPzTpo0ScOHD9fkyZP1yy+/qH79+ho6dKi+//57ZcyYUe3bt9fy5cv5Av8l+C2USv3xZrqS5OzsbL5mK/6AMEOGDJo2bZpGjx5N2EoBbGxszDeijD8AsbGx0cOHD1WvXj298847+vTTTyVJOXPmlL+/v6ZPn66xY8cyU56V/PFAMf7GvMYfLrM9deqU6tSpozFjxpiXGYahDBkyyM7OTunSpbNswWlU/O8/Ly8veXh4aNeuXQoNDTW3lypVSv3799e+ffu0cuVKZc6cWbNmzZKTkxM3m7cw47+3Znj06JEmTZqkuXPnKiAgIEEAmzlzpiSpWbNmMgxDuXLlUq1atZQ/f37rFp9GxX++GjZsqKCgIN29e9d8HJI9e3bz70QXFxd17dpV3bp1U+/evbV3717Z2NgkuI8ULM/BwUF16tSRg4ODvvzyS/n7+ytjxoxauHChVqxYoQkTJuiHH34wf+nRp08fHTlyRHZ2di+M1MFzzPeYCu3du1dLly7Vhx9+qNq1a8vd3V2GYSgoKEi5cuV64YZ48cMwCGCvn4cPH8rd3V3S8/6xtbWVvb29TCaT+cJjOzs7+fn56f333zf34R9vC0C/Wt62bdsUFRWld99913wz5cePH5v7Jb7vGjZsqAYNGiToI/rLcpYvX67r16/rzp07ateunSpUqKDevXurW7duypQpkzp27CgnJycZhqHy5curT58+WrZsmerXry8vLy8tXbqUA0MLM5lMypIli+rXr6+oqCi98847mjp1qvr37y9J8vX1VYECBTRjxgx17txZbdq0STA5CqznnXfeUYkSJeTh4WH+PWdra2v+eyY9D2AVKlRQjhw5lC9fPmuWiz/w9PRUjx495Ovrq0ePHmno0KHm4fC5cuVSz549deLECTVt2lRPnz4137oIL0f4SoWyZMkiLy8vbd68WXZ2dqpSpYrs7e01f/58rVy5UpUrVzbPyJU9e3aGYbymvvzyS/3444/q3LmzihQpIk9PT8XGxurevXvKlSuX+Y9X+vTp9cEHH5hv2GsymRL0KQfzlhUZGakvv/xS0dHRsre3V6NGjZQxY0ZFRETo+++/V/bs2ZU5c2a5ublJon+sZd68eVq5cqXee+89PXz4UFOmTFHRokX16aefavr06fL19VVsbKxatWolT09PSc/PjLm6uppvB0Dwsg4nJyf5+vrKwcFBsbGx5vt6/TGA5c+fX8uWLaOPXjNeXl4JHj979kxPnz41fwk8Y8YMLVy4UIcOHeJ2KK+Z/Pnza9y4cRo2bJi8vb0TtNnZ2enBgwcqWbKkihcvznHlPyB8pTKGYahUqVLq1q2bFi1apDVr1ujhw4dKly6d0qVLp5iYGK1cuVJBQUFKnz69smfPrkyZMqlNmzbmewrh9WBnZ6erV6/qiy++UNu2bZUhQwZFRkZq6dKlcnZ2VrVq1ZQrVy5lyZJFDg4OHMS/JhwdHTV58mRNmDBBX3zxhZydneXg4KDLly9r2rRpunLlinLnzq08efIob968qlatmmxsbFSpUiVrl55mxMTE6MyZM+rXr59atmwp6fmIgW3btmngwIGaOHGiFi1apEGDBik0NFRVqlRRyZIldezYMfP1s9yg17rip6yOP2sSH8AGDx6siIgI9e7dm+uEXmN//KLQ1tZWTk5OmjNnjlauXKkNGzYQvF5Tb731lrZs2SJXV1eFhYUpU6ZMkp7fizL+S0Z+N/4z7vOVSsQPn7l9+7bat2+vsmXLKjQ0VDNmzFBISIhOnjypefPmqWrVqgoJCdHt27d1/fp1/fDDD7p9+7ZGjx7NdUGvoW+++UYLFy5UsWLF9NZbb2no0KEqUaKE7t27p7CwMD1+/Fh58uRRkSJF5OHhoffee0+FChWydtlp0okTJ2QYhlxcXFSsWDE9fvxYo0aNUmRkpGxsbHTp0iUtWLBAV65c0a+//qrvv/9e9+/f1/Xr15UxY0bt3LnTPMQUyevp06dq0aKFmjVrpo8++si8/MSJE1q3bp0ePHigiRMn6tatW1qxYoVOnjyp9OnT6/Hjx+bPI14f8YcxJpNJmzdv1qRJk7Rr1y4+T6+x+PC1Zs0abdy4Ud7e3tqwYYM+//xzlShRwtrl4R/cuXNHLVq0UK5cuZQuXTqdO3dOK1asUJEiRaxdWopA+EoF/jh85vr167p586aKFCkiX19fpUuXTv7+/tq5c6f69u0rX1/fF54fGRnJRZGviY0bNyokJERhYWFq166dcuTIoYMHDyogIEAeHh4KDAzU0qVL9cYbb+jnn3/WtWvXdPHiRf30008KCwvTkiVLuKjcCqZMmaKtW7fKzc1Nv/76q9577z198MEHypYtm0aMGKF9+/bJy8tLW7duTXCTyejoaAUGBip79uxMJ28B169fl7Ozs7y8vLR27Vpt2bJFkyZNSjAT6LFjx7Rq1Sq5ublp5MiRevr0qcLCwvT7778ra9as5iGIeL38MYA9efLEPDQUr7fAwEC1atVK9vb2Wr9+PV9spBBRUVHat2+fjh8/Li8vL9WqVYtr9JKA8JWCxcXFyTAMffzxx6pdu3aC4TPbt29XSEiIhgwZIi8vL40ZM0YRERFq0aKFatWqJen50Bs7O0aevi5mzJih9evXq1KlSrpx44b5fjXt2rXTmTNnNG7cOF2+fFkBAQHmPowXGxurZ8+eKX369FaqPu0KDAxU7969NW3aNBUpUkQXL17U7Nmz5eLiovbt26t8+fIaO3asfvzxRw0cOFC1a9eWyWQy358NljF16lQdOHBAoaGhKlmypCpVqqSDBw8qf/78at++vfk+QtLze+rNmDFDAQEBKly4sBWrRlLEn02J/z9ef+Hh4Zo2bZpat27NF4dIM7giLgU7e/asbG1t9dtvv+n33383L69Vq5batm2rbNmyacqUKXr06JH69u2rdOnSaePGjdqxY4ckEbxeI7///ruOHDlinh5+8+bNeu+99/TDDz9o0qRJKlKkiMaPH6/ChQvryJEjunjxovm5MTExsrW1JXhZyaNHj+Ti4qJSpUrJ1dVV5cuX15AhQ+Tq6qqlS5fq5MmTGjp0qMqUKaN169Zpx44d5vuzwTK2bdumLVu2aPTo0Ro4cKBatmypdu3aqXHjxgoMDNSGDRsUFBRkXr9+/fpKnz69du7cacWqkVTxgYvglXI4Oztr8ODBBC+kKYSvFGrOnDlq1aqVbty4oSZNmmjXrl26evWqub1cuXJq2bKlXF1dtWzZMuXMmVNdunSRJO3Zs0dPnz61Vun/196dR0VZt38cfw+7LDIs40FMyaUk08TMo6SGYaXZpiUuuCQdo5KtNAql5TE1Nbcks0VNNDtmaJl5PDUirrhVoqIZLqmp2BEtU1AGYeb3h4f7ZPo8j/0enQH9vP5h+M5931z3QQ9z3d/v97rkCmw2GwcPHjR6QcHFil09e/bk8OHDvPfee9x+++2MGDGCHTt2sGjRInbv3g0oiXa1xo0bY7PZWLdunTEWGRnJCy+8QGBgIJ999hmnTp3izTffJDg4mOzsbFauXOnCiG8+xcXFNG/enDZt2vD4448TExPDnj17aNy4MY0bN2bv3r3Mnz+fffv2ARdnUIKCgqhXr56LIxe58elvmNxs9C++FhozZgyLFy/GbDZTXFzMww8/zLZt21i8ePEly2fatWtHSUkJ06ZNY+/evUYZ5aCgIDVvrWHq1avH/fffT15eHm3btjU2ij/11FPY7XaWLl3KkiVLGDBgADabjSlTpuDt7c1tt912yR4icY7qBqHu7u5YLBbatWuH1WolIiLCKFzTtGlThg4dymuvvcaiRYsYPnw4o0aNYsqUKbRq1cqV4d80/roM7dy5c8Zyz4EDB3L27FnKysoICQnBZrMRFhZGamoqrVu3pry8nMLCQjIzM119CyIicoPRzFctM2HCBJYtW8Z3331H9+7dWb58OREREXTp0oXt27fzxRdfUFxcbBz/9+UzkZGRl/XZENf47bffOHjwoPF9TEwMBw4cIC8vj/PnzxvjcXFxtG/fnjlz5lBaWsqDDz5IRkYGAwcOVOLlAh999BHp6en069ePnJwcfv/9dxITE9mzZ89ly9datGjBsGHDWLRoEcXFxYSEhDB27FgV13CS6uVnMTEx7Nixg6VLl7JhwwaCgoKYNWsW06dPp3fv3pSUlODl5UVKSgrnz58nODiYBQsWaCmUiIhcc5r5qkUmTpzIggULyMnJISwsDIvFwpo1awCIj4/HZrNhtVo5e/Ys/fv3p2nTpsbyGSVcNcvkyZNZs2YNv/32G23atOG+++5j0KBBHDhwgOzsbHx9fenSpQu+vr4ApKamsnTpUqxWK08++SRdunRx7Q3cpGbPnk12djYvvPAC/v7+fPvttyxbtoyRI0cyfvx4UlNTsdvt9O7d2yi5GxYWRnh4uNH7RM0nnS8yMpLU1FTmzp1LaGgorVq1on79+tSvX58mTZpw7Ngxjhw5wiuvvEK3bt20H09ERK4bJV+1RHl5OQEBASxZssSovhUXF8eiRYv45ptveOyxx0hISKBu3bqsXr2a5ORkoqKiOH/+vJbP1DArVqzgyy+/ZMqUKfj5+ZGbm4vVaqWwsJCJEydSVlbGzJkzOXPmDN27d8dsNhtP46sbGopr7NmzhyFDhjB48GAAtm/fzrJly0hJSWHatGlkZWXxxhtvcOrUKe69917uueceVqxYgc1mUxEAF+vTpw8lJSV8/fXXl/TC8/f3x2w2s3HjRlWAFRGR605/ZWoJHx8fnnvuOdzd3Y1+Jr6+vrRs2ZKffvqJxx57DLi4RygqKooff/yR/Px8QkJCtHymhikrK6N169ZER0cDF5/Kr1u3jtmzZ5OWlsb06dOpW7cuy5YtY+3atURFRVFcXMyxY8fUCNuFKioqOHHiBGFhYcZYVFQUwcHBeHp68sorr/Duu+8ydepUPv/8c6ZPn05gYCA2m42srCyCgoJcGL0EBwfz/PPPc+bMGebNm0eTJk2Ii4vDbrdz6tQpQkJClHyJiMh1pz5ftZzVauWll15i4cKF3HXXXa4OR65CdnY2c+fOZe3atcZYVVUVmzdv5v3336dZs2a89dZb5Ofns379egoKCrBYLCQnJ6t7vAscP34cDw8PLBYLy5cvZ8KECcyYMYOoqCjjmIMHD5Kdnc3x48cZP348ISEhnD59mrNnz+Lv76/EqwY5ffo0n376KR9++CHNmjXDx8eHQ4cOkZ2dzR133OHq8ERE5Aan5OsGMGrUKGw2GyNHjiQ0NFQNJmugnTt3EhERQWBgIKWlpQwePJioqChef/1143dVWVmJ1Wpl4cKF9OnTx5jNrKiowM3NTU/kXWDatGls2rSJ4uJiOnfuzP3338+aNWsoLS0lJSXlkpnI77//nsmTJ5OSkkKnTp1cGLVcjZ9//pnCwkKjR1vDhg1dHZKIiNwEtPP7BhATE8OJEyfYtGkTFy5cUOJVg9jtdk6ePEliYiJLliyhtLQUPz8/+vXrx/79+5k1a5ZxrIeHB926deOWW25h1apVxriXl5cSLxeYN28eixcvJj09nbS0NA4dOsSff/5Jz549uXDhArNnz76k2XW7du3w8fHBarW6MGq5WpGRkcTFxfHII48o8RIREadR8nUD6NatG3feeSfjxo2jsLDQ1eHIXzgcDkJDQzGbzUydOpWFCxdiMpno0aMHbdq0YcOGDXz44YfY7XbgYt+oDh06cOTIEc6dO+fi6G9ue/fupXfv3rRr1464uDhuvfVWCgoK8Pb2JiwsDG9vb7KysigoKDDOCQoKMvrsiYiIiPydHqfXctVLDDMyMjh58qTRnFdqhuqS1WazmQYNGjBlyhTKy8tJSUlh6NChzJkzh40bN3L48GFGjx7NuXPn2LVrF4GBgZrtchGHw0FVVRW//vor/v7+wMU9efn5+fj4+LB161bKyspo1KgRHTt2JDExkXvuuYfKykq2bdtGcnKyi+9AREREaip9uqvlTCYTdrsdNzc3Jk+e7Opw5G8cDgdHjhzhzJkzvPfee+zcuZOkpCRMJhPJyck8++yzrFmzhnnz5tGxY0fCw8M5ceIEn3zyiRoou4jJZMLDw4O0tDR2794NwO7du7n99tv517/+hcPhYN++fYwYMYKYmBiysrLIy8vDz8+PjIwMmjZt6uI7EBERkZpKBTdErrPy8nJmz55Nr169aNCgAcuXL+fll18mOTnZSMQA8vLyqFu3LuHh4YSHh7s4avm78vJyo1EywMcff0xBQQEffPCBC6MSERGR2kQzXyLXmY+PD4mJiXh5eVFVVcWjjz4KwMsvvwzAM888g6+vL7Gxsa4MU/6N6pnlvyZeAJ6enpw8eVK9oUREROSq6RODiBNULyE0mUw4HA4jAcvIyKCiooJhw4Zd9uFeagY3t4t1iU6cOMHJkydp0aIFACUlJYSGhir5EhERkaumTwwiTuTm5obD4TASsIqKCiZMmMCQIUOUfNVg1Xv3nn76aZo1a0ZAQAD79+9n7ty5+r2JiIjIVdOeLxEXqP5vZzKZKC0tNarqSc1lt9vZunUrhYWFBAYG0qFDBxo1auTqsERERKQWUfIl4iLVbQKqv4qIiIjIjU3Jl4iIiIiIiBO4uToAERERERGRm4GSLxERERERESdQ8iUiIiIiIuIESr5EREREREScQMmXiIiIiIiIEyj5EhERERERcQIlXyIiIiIiIk7g4eoARERErkZsbCzHjh0zvvfw8KBhw4b069ePIUOGXPGco0eP0rVrV1atWsUtt9xyzWLZsmULgwcPvmTM09OTevXq0atXL1JSUq7ZzxIRkRuHki8REak1Ro0aRY8ePQCorKxk8+bNZGZmYjab6dmz52XH169fnw0bNhAcHHxd4tmwYYPx+vz586xatYqJEyfSsGHDK8YjIiI3Ny07FBGRWiMgIACLxYLFYqF+/fr06tWL6OhorFbrFY93d3fHYrHg7u5+XeKpjsVisdCoUSMSEhKIjo5m5cqV1+XniYhI7abkS0REajUPDw88PT0BGDRoEGPGjKFr16506dKFoqIimjdvztGjRwE4deoUL774InfffTcdO3Zk6tSpOBwOAI4fP87zzz9P69atiY2NZcaMGVRVVf3jeLy8vC5J9nJycujevTstW7akffv2jB492rhuRkYG48eP58UXX6R169bExMSwdOlS49zy8nIyMzNp27YtnTt3JicnhxYtWhj3c61iFhER59CyQxERqZUuXLjA6tWryc/P5+233zbGv/zyS+bMmYOXlxd+fn6XnJOUlIS7uzsLFiygrKyMl156iXr16jFgwACSk5OJjIzkq6++oqSkhDfeeAOTyURSUtJVxVNVVUVubi75+fm88847AGzdupWxY8cyadIkWrRowa5du0hPTyc6OpqHHnoIgM8++4y0tDRGjBjB/PnzefPNN+natSsBAQGMHTuWgoIC5syZQ2VlJZmZmUZy5XA4/ueYRUTEuUyO6kd+IiIiNVhsbCwlJSV4eFx8blheXo6Pjw/x8fGkp6cDF2e+QkNDmTZtGnBpwY3S0lKeeOIJcnNzadiwIQC5ubmcO3cOi8XC8OHDyc/Px83t4qKQvLw8Ro4cyZYtWy6Lpbrghq+vrzFms9kIDw8nISGBAQMGALBr1y4OHTrEo48+ahzXt29f7rvvPpKSksjIyGDfvn0sWbIEgNLSUtq2bcvChQtp3rw57du3Z9asWURHRwOwfv16hg4dyqpVqzhy5Mg/illERFxPM18iIlJrpKamGjNG3t7eV9zP1aBBgyuee/DgQcxms5F4ATzwwAMALFiwgNOnT9O2bVvjPbvdTnl5OX/88QdBQUFXvGb1EsEDBw4YM1bViRdAy5Yt8fHxISsri/3791NUVMThw4fp1KmTccytt95qvPb39wcuFhP55ZdfuHDhAq1atTLeb9OmjfH6wIED/6+YRUTEdZR8iYhIrRESEkJERMR/PMbb2/uK49X7wq6ksrKSJk2aMHPmzMveCwgI+LfnVccSERGB2WxmwIABhIWFkZCQAFycqUpKSqJnz5507tyZpKQkRo8e/V/jcjgcxgzf38f/15hFRMR1VHBDRERuChEREZw+fZrjx48bY/Pnz2fYsGE0btyY4uJigoODiYiIICIigqNHj5KVlYXJZLqq6999993Ex8fz7rvvGv3IcnJyeOqpp3jrrbeIi4ujadOm/Prrr1zNiv9GjRrh6enJrl27jLG/vr4WMYuIiHMp+RIRkZvCbbfdRocOHcjMzKSoqIgtW7bw8ccf07FjRzp16kSDBg1IT0+nqKiIH374gddff506der8ozL1aWlp+Pr6MmHCBADMZjMFBQUUFRWxb98+MjIyKCkpoaKi4r9ey8/PjyeffJJx48axY8cOtm/fzrhx4wAwmUzXLGYREXEeJV8iInLTmDRpEnXq1KFv376MGDGCvn37Eh8fj7u7Ox988AF2u50+ffqQkpJCTEwMr7322j+6ft26dRk+fDhWq5WNGzeSnJxMSEgIffv2JSEhAW9vb/r378+ePXuu6nqvvvoqzZs3Z8iQIaSkpBiFOzw9Pa9ZzCIi4jyqdigiIlJD5ebmEh0dbZTM37lzJ/Hx8RQUFPzHPWwiIlIzqeCGiIhIDTVjxgxWr15NYmIiZWVlTJo0idjYWCVeIiK1lGa+REREaqj9+/czZswYdu7ciZeXF7GxsYwaNUrVDEVEaiklXyIiIiIiIk6gghsiIiIiIiJOoORLRERERETECZR8iYiIiIiIOIGSLxERERERESdQ8iUiIiIiIuIESr5EREREREScQMmXiIiIiIiIEyj5EhERERERcYL/A8jl4PvmK64IAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAH8CAYAAAAXNqRbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAexElEQVR4nO3df6zWdfn48es+HJ3nMIjhcbCKRTseokV6jufQqZazPDQTBbLIWrXl3Cx3Jokm6werKQXZTxvWKVZr5CJzsUgthKypsUYcTJ2tZQEl0ljOcwhRDpRH3p8/HHw7X6x4w33ep+P1eGxn7n7tdbgvtovDnt7n3NSKoigCAAAgiYaxHgAAAKBKIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqJx1B+/bti7e//e2xbdu2f3vngQceiAULFkR7e3tcfPHFcd99953s0wEAANTFSUXQb3/723jve98bTzzxxL+98/jjj8eSJUvi2muvjQcffDCWLFkSS5cujSeffPKkhwUAADhVpSNow4YNccMNN8R11133X+91dXXFvHnzorGxMebPnx9z586NO+6446SHBQAAOFWlI+gtb3lL3HvvvTF//vz/eG/nzp0xa9asEWdnn312PPbYY2WfEgAAoG4ay37CWWeddUL3Dh48GE1NTSPOzjjjjBgaGir7lAAAAHVTOoJOVFNTUxw+fHjE2eHDh2PixImlfp19+56JoqjnZDBSrRYxdeoku8aos2tUxa5RFbtGVY7uWr2MWgTNmjUrfv/7348427lzZ8yZM6fUr1MUEUeO1HMyGKlWe+G/R46EL+CMKrtGVewaVbFrVKWhzv+wz6j9O0ELFy6M/v7+2LhxYwwPD8fGjRujv78/Fi1aNFpPCQAA8F/VNYI6OjrirrvuioiI1tbW+MY3vhFr1qyJuXPnRl9fX9x6663x6le/up5PCQAAUEqtKP63X7wcHHzGt8Mxqmq1iJaWSTEw4PuZGV12jarYNapi16hKQ0PEmWfW72eCRu3b4QAAAP4XiSAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACCV0hE0ODgYvb290dXVFd3d3bFy5coYHh5+0bvf+9734sILL4zzzjsvFixYEJs3bz7lgQEAAE5F6QhaunRpNDc3x5YtW2L9+vWxdevWWLt27XH3HnjggVizZk185zvfiYceeiiuueaaWLp0afz1r3+tx9wAAAAnpVQE7d69O/r7+2PZsmXR1NQUM2bMiN7e3li3bt1xd//85z9HURTHPiZMmBCnnXZaNDY21m14AACAskoVyY4dO2LKlCkxbdq0Y2etra2xd+/eOHDgQEyePPnY+SWXXBI//vGPY/78+TFhwoSo1WrxpS99KaZPn16/6QEAAEoqFUEHDx6MpqamEWdHHw8NDY2IoOeeey5mz54dK1eujNmzZ8fdd98dy5cvj9bW1njNa15zws9Zq73wAaPl6H7ZM0abXaMqdo2q2DWqUu8dKxVBzc3NcejQoRFnRx9PnDhxxPlnP/vZOO+88+Kcc86JiIh3v/vd8dOf/jQ2bNgQn/jEJ074OadOnVRmRDhpZ55p16iGXaMqdo2q2DXGm1IR1NbWFvv374+BgYFoaWmJiIhdu3bF9OnTY9Kkkcu/d+/emDNnzsgna2yM0047rdSA+/Y9E0eOlPoUKKVWe+GL9+DgM1EUYz0NL2V2jarYNapi16hKQ0N9XxwpFUEzZ86Mzs7OWLVqVaxYsSL+/ve/R19fXyxevPi4uxdeeGF8//vfj7e97W3x2te+Nn7+85/Htm3b4vrrry81YFGEP1RUwq5RFbtGVewaVbFrjLZ671fpt2pbvXp1rFixInp6eqKhoSHe+c53Rm9vb0REdHR0xE033RQLFy6Ma665JiZMmBBLliyJp59+Ol71qlfFN77xjXjta19b398BAABACbWi+N/u9sFB3w7H6KrVIlpaJsXAgJfyGV12jarYNapi16hKQ0N9f/as9D+WCgAAMJ6JIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApFI6ggYHB6O3tze6urqiu7s7Vq5cGcPDwy96t7+/P97znvdER0dHXHDBBbFmzZpTHhgAAOBUlI6gpUuXRnNzc2zZsiXWr18fW7dujbVr1x53b9euXfHhD3843v/+98dDDz0Ua9asie9+97uxadOmeswNAABwUkpF0O7du6O/vz+WLVsWTU1NMWPGjOjt7Y1169Ydd/cHP/hB9PT0xGWXXRa1Wi1mz54dP/zhD6Ozs7NuwwMAAJTVWObyjh07YsqUKTFt2rRjZ62trbF37944cOBATJ48+dj5o48+Gm9+85vj+uuvj1//+tcxderUuOKKK+K9731vqQFrtRc+YLQc3S97xmiza1TFrlEVu0ZV6r1jpSLo4MGD0dTUNOLs6OOhoaEREfT000/HbbfdFrfcckt88YtfjIcffjg+8pGPxMte9rJ4xzveccLPOXXqpDIjwkk780y7RjXsGlWxa1TFrjHelIqg5ubmOHTo0Iizo48nTpw44vz000+Pnp6eeOtb3xoREXPnzo1FixbFPffcUyqC9u17Jo4cKTMllFOrvfDFe3DwmSiKsZ6GlzK7RlXsGlWxa1SloaG+L46UiqC2trbYv39/DAwMREtLS0S88AYI06dPj0mTRg7V2toa//znP0ecPf/881GU/BNSFOEPFZWwa1TFrlEVu0ZV7Bqjrd77VeqNEWbOnBmdnZ2xatWqePbZZ2PPnj3R19cXixcvPu7u+973vvjlL38Zd955ZxRFEdu3b4+77747Fi1aVLfhAQAAyir9FtmrV6+O4eHh6OnpicsvvzzOP//86O3tjYiIjo6OuOuuuyIi4k1velP09fXFbbfdFp2dnfHJT34yPv7xj0dPT099fwcAAAAl1Iqy359WscFBPxPE6KrVIlpaJsXAgO9nZnTZNapi16iKXaMqDQ31fQOO0q8EAQAAjGciCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASKV0BA0ODkZvb290dXVFd3d3rFy5MoaHh//j5/zpT3+Kc889N7Zt23bSgwIAANRD6QhaunRpNDc3x5YtW2L9+vWxdevWWLt27b+9f+jQofjYxz4Whw8fPpU5AQAA6qJUBO3evTv6+/tj2bJl0dTUFDNmzIje3t5Yt27dv/2cm266KebNm3fKgwIAANRDY5nLO3bsiClTpsS0adOOnbW2tsbevXvjwIEDMXny5BH3f/KTn8Tu3btj5cqV0dfXd1ID1movfMBoObpf9ozRZteoil2jKnaNqtR7x0pF0MGDB6OpqWnE2dHHQ0NDIyJo165dccstt8Ttt98eEyZMOOkBp06ddNKfC2WceaZdoxp2jarYNapi1xhvSkVQc3NzHDp0aMTZ0ccTJ048dvaPf/wjrrvuuvjUpz4VL3/5y09pwH37nokjR07pl4D/qFZ74Yv34OAzURRjPQ0vZXaNqtg1qmLXqEpDQ31fHCkVQW1tbbF///4YGBiIlpaWiHjhFZ/p06fHpEn/b6jf/e538fjjj8fy5ctj+fLlx86vvvrqWLRoUdx4440n/JxFEf5QUQm7RlXsGlWxa1TFrjHa6r1fpSJo5syZ0dnZGatWrYoVK1bE3//+9+jr64vFixePuNfV1RWPPvroiLPXvOY18a1vfSu6u7tPfWoAAICTVPotslevXh3Dw8PR09MTl19+eZx//vnR29sbEREdHR1x11131X1IAACAeqkVxf/2i5eDg34miNFVq0W0tEyKgQHfz8zosmtUxa5RFbtGVRoa6vsGHKVfCQIAABjPRBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIpHUGDg4PR29sbXV1d0d3dHStXrozh4eEXvXv77bfHRRddFB0dHXHRRRfFunXrTnlgAACAU1E6gpYuXRrNzc2xZcuWWL9+fWzdujXWrl173L1f/OIX8dWvfjW+8IUvxEMPPRQ333xzfO1rX4vNmzfXY24AAICTUiqCdu/eHf39/bFs2bJoamqKGTNmRG9v74u+wvPkk0/GVVddFe3t7VGr1aKjoyO6u7tj+/btdRseAACgrMYyl3fs2BFTpkyJadOmHTtrbW2NvXv3xoEDB2Ly5MnHzj/wgQ+M+NzBwcHYvn17fPKTnyw1YK32wgeMlqP7Zc8YbXaNqtg1qmLXqEq9d6xUBB08eDCamppGnB19PDQ0NCKC/tVTTz0VH/nIR2LOnDlx6aWXlhpw6tRJpe7DyTrzTLtGNewaVbFrVMWuMd6UiqDm5uY4dOjQiLOjjydOnPiin/PII4/EtddeG11dXfH5z38+GhtLPWXs2/dMHDlS6lOglFrthS/eg4PPRFGM9TS8lNk1qmLXqIpdoyoNDfV9caRUkbS1tcX+/ftjYGAgWlpaIiJi165dMX369Jg06fih1q9fH5/73Ofiox/9aFx55ZUnNWBRhD9UVMKuURW7RlXsGlWxa4y2eu9XqTdGmDlzZnR2dsaqVavi2WefjT179kRfX18sXrz4uLubN2+OG2+8MW699daTDiAAAIB6K/0W2atXr47h4eHo6emJyy+/PM4///zo7e2NiIiOjo646667IiLi61//ejz//PPx0Y9+NDo6Oo59fOYzn6nv7wAAAKCEWlH8b794OTjoZ4IYXbVaREvLpBgY8P3MjC67RlXsGlWxa1SloaG+b8BR+pUgAACA8UwEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqZSOoMHBwejt7Y2urq7o7u6OlStXxvDw8IvefeCBB2LBggXR3t4eF198cdx3332nPDAAAMCpKB1BS5cujebm5tiyZUusX78+tm7dGmvXrj3u3uOPPx5LliyJa6+9Nh588MFYsmRJLF26NJ588sl6zA0AAHBSSkXQ7t27o7+/P5YtWxZNTU0xY8aM6O3tjXXr1h13d8OGDdHV1RXz5s2LxsbGmD9/fsydOzfuuOOOug0PAABQVmOZyzt27IgpU6bEtGnTjp21trbG3r1748CBAzF58uRj5zt37oxZs2aN+Pyzzz47HnvssVID1moRDX5yiVFUq73w34aGiKIY21l4abNrVMWuURW7RlWO7lq9lIqggwcPRlNT04izo4+HhoZGRNCL3T3jjDNiaGio1IBTp04qdR9Oll2jKnaNqtg1qmLXGG9KvcbS3Nwchw4dGnF29PHEiRNHnDc1NcXhw4dHnB0+fPi4ewAAAFUqFUFtbW2xf//+GBgYOHa2a9eumD59ekyaNPL/AMyaNSt27Ngx4mznzp3R1tZ2CuMCAACcmlIRNHPmzOjs7IxVq1bFs88+G3v27Im+vr5YvHjxcXcXLlwY/f39sXHjxhgeHo6NGzdGf39/LFq0qG7DAwAAlFUrinI/xjYwMBArVqyIbdu2RUNDQ7zzne+MG264ISZMmBAdHR1x0003xcKFCyMiYsuWLfHlL385nnjiiXjFK14Ry5YtiwsuuGBUfiMAAAAnonQEAQAAjGfefBoAAEhFBAEAAKmIIAAAIBURBAAApDKmETQ4OBi9vb3R1dUV3d3dsXLlyhgeHn7Ruw888EAsWLAg2tvb4+KLL4777ruv4mkZz8rs2u233x4XXXRRdHR0xEUXXRTr1q2reFrGszK7dtSf/vSnOPfcc2Pbtm0VTclLQZld6+/vj/e85z3R0dERF1xwQaxZs6biaRnPyuza9773vbjwwgvjvPPOiwULFsTmzZsrnpaXgn379sXb3/72//j34im3QTGGPvjBDxYf+9jHiqGhoeKJJ54oLrnkkuLb3/72cff+8pe/FK9//euLe++9t3juueeKn/3sZ8U555xT/O1vfxuDqRmPTnTX7r333qKrq6t4+OGHiyNHjhQPPfRQ0dXVVWzatGkMpmY8OtFdO2poaKi49NJLi1mzZhW/+c1vKpyU8e5Ed23nzp3FueeeW/z4xz8ujhw5UvzhD38o3vCGNxT33HPPGEzNeHSiu3b//fcXb3rTm4pdu3YVRVEUmzZtKmbPnl3s2bOn6pEZxx588MFi3rx5//HvxXq0wZi9ErR79+7o7++PZcuWRVNTU8yYMSN6e3tf9P+6b9iwIbq6umLevHnR2NgY8+fPj7lz58Ydd9wxBpMz3pTZtSeffDKuuuqqaG9vj1qtFh0dHdHd3R3bt28fg8kZb8rs2lE33XRTzJs3r8IpeSkos2s/+MEPoqenJy677LKo1Woxe/bs+OEPfxidnZ1jMDnjTZld+/Of/xxFURz7mDBhQpx22mnR2Ng4BpMzHm3YsCFuuOGGuO666/7rvVNtgzGLoB07dsSUKVNi2rRpx85aW1tj7969ceDAgRF3d+7cGbNmzRpxdvbZZ8djjz1WyayMb2V27QMf+EB8+MMfPvZ4cHAwtm/fHnPmzKlsXsavMrsWEfGTn/wkdu/eHddcc02VY/ISUGbXHn300XjlK18Z119/fXR3d8fFF18c/f39cdZZZ1U9NuNQmV275JJLoqWlJebPnx+ve93r4tprr42bb745pk+fXvXYjFNvectb4t5774358+f/x3v1aIMxi6CDBw9GU1PTiLOjj4eGhv7r3TPOOOO4e/Biyuzav3rqqafiqquuijlz5sSll146qjPy0lBm13bt2hW33HJLfOUrX4kJEyZUNiMvDWV27emnn47bbrstFi5cGL/+9a9jxYoV8YUvfCE2bdpU2byMX2V27bnnnovZs2fHj370o3jkkUdixYoVsXz58vjjH/9Y2byMb2edddYJvXJYjzYYswhqbm6OQ4cOjTg7+njixIkjzpuamuLw4cMjzg4fPnzcPXgxZXbtqEceeSQWL14cr371q+Ob3/yml/I5ISe6a//4xz/iuuuui0996lPx8pe/vNIZeWko83Xt9NNPj56ennjrW98ajY2NMXfu3Fi0aFHcc889lc3L+FVm1z772c9GW1tbnHPOOXH66afHu9/97mhvb48NGzZUNi851KMNxiyC2traYv/+/TEwMHDsbNeuXTF9+vSYNGnSiLuzZs2KHTt2jDjbuXNntLW1VTIr41uZXYuIWL9+fVxxxRXxoQ99KL7yla/E6aefXuW4jGMnumu/+93v4vHHH4/ly5dHV1dXdHV1RUTE1VdfHTfeeGPVYzMOlfm61traGv/85z9HnD3//PNRFEUlszK+ldm1vXv3HrdrjY2Ncdppp1UyK3nUow3GLIJmzpwZnZ2dsWrVqnj22Wdjz5490dfXF4sXLz7u7sKFC6O/vz82btwYw8PDsXHjxujv749FixaNweSMN2V2bfPmzXHjjTfGrbfeGldeeeUYTMt4dqK71tXVFY8++mg8+OCDxz4iIr71rW+JIE5Ima9r73vf++KXv/xl3HnnnVEURWzfvj3uvvtuf4dyQsrs2oUXXhjf//734/e//30cOXIkNm3aFNu2bfuvP98BZdWlDerwTnYn7amnniqWLFlSvOENbyje+MY3FjfffHMxPDxcFEVRtLe3F3feeeexu7/61a+KhQsXFu3t7cUll1xS3H///WM1NuPQie7apZdeWsyePbtob28f8fHpT396LMdnHCnzde1feYtsyiqza/fff3/xrne9q+jo6Ch6enqK22+/fazGZhw60V177rnnitWrVxdve9vbivPOO6+47LLLil/96ldjOTrj2P//92K926BWFF4PBwAA8hizb4cDAAAYCyIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACCV/wOOcKF2/5Ob0wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2292,12 +2325,12 @@ }, { "cell_type": "code", - "execution_count": 235, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwcAAAIhCAYAAAAb2sbQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADtNUlEQVR4nOzdd3gU5drA4d/MtvSEJIQSkB5aAClSpYqKqHhE+SyIekRRARsqgiKigogiNkBQQY+do3IQVGxYQKRYsFFEIPQS0vu2eb8/NllZEiCBhM2E576uVbZNnpl3dmaeeZumlFIIIYQQQgghznh6sAMQQgghhBBCVA+SHAghhBBCCCEASQ6EEEIIIYQQxSQ5EEIIIYQQQgCSHAghhBBCCCGKSXIghBBCCCGEACQ5EEIIIYQQQhST5EAIIYQQQggBSHIgqgmZi+/UyTYUp4PsZ0IIUbNJcnAGGzFiBC1btgx4tGrVik6dOjF06FA++uijCi9zwIABTJgwoULfWbFiBQ888ID/+bp162jZsiXr1q2r8N8/VSNGjGDEiBHH/cyLL75Iy5YtT/lvncy2KktOTg7jx4/np59+OuVlBUtJmR/5SE5O5rzzzuOpp56isLCwUv5OZZWdWQwYMKDU77tbt27cdtttbNmypcLL+/vvv7nmmmsCXmvZsiUvvvhiZYUsjrJ3715atmzJ4sWLj/mZxYsX07JlS/bu3Vvm+xMmTGDAgAFVFWKVOHrfbdmyJe3ateP888/nmWeewel0Hvf7wTyPCGF21mAHIIKrTZs2PPLII/7nXq+XgwcP8vrrrzN+/HhiYmLo27dvlcbw+uuvBzxv27YtixYtonnz5lX6d0/WsGHD6N27d7DD8Nu8eTMfffQRV1xxRbBDOWWTJ0+mbdu2ABQWFrJlyxZeeOEFDh8+zNNPPx3k6Mypb9++jB49GgCPx0NqaioLFy7khhtu4NNPPyUuLq7cy/rss8/YsGFDVYUqRIAj910Ap9PJunXrmDt3Lvv27WPWrFnH/G51P48IUZ1JcnCGi4iI4Oyzzy71ep8+fejRoweLFy+u8uSgvDFVF3Xr1qVu3brBDqNGat68eUDZ9+jRg9zcXF566SUeeeQRIiIighecScXGxpb6PbVr146BAwfy2WefMXz48OAEJsQJlLXvduvWjYMHD7J48WImTJhAQkJCmd+t7ucRIaozaVYkyuRwOLDb7Wia5n/NMAxefvllzj//fJKTk7nwwgt58803j7ucvXv3Mn78eM4991zatm1Ljx49GD9+PJmZmYCvGc/69etZv369vwq4rOrgP/74g5EjR9KtWzc6derEbbfdxt9//+1/v+Q7a9as4aabbqJDhw706tWLp59+Gq/X6//c6tWr+b//+z86duzIOeecw+2338727dsDYlZK8corr9CvXz/at2/PVVddxe+//+5//+imKSNGjGDChAnMmzePnj170rlzZ0aPHs2+fftOuJ3dbjdTp07lnHPOoUuXLjzwwANkZGQEfOann37iuuuuo0OHDnTt2jXgM+vWreP6668H4Prrr2fEiBGMHTuWIUOGBCzjhhtuIDk5maKiIv9r06ZN48ILL/Q//+qrrxg6dCjt2rWjV69eTJ06lYKCgoDlbN26lVtvvZVOnTrRqVMnxowZw549eypcDhURFRVV6rWsrCwmT55Mz549adeuHf/3f//HmjVrAj7jdDqZPn06vXr1omPHjkycOLFUU4QJEyZwww038Mgjj9CpUycGDx6M1+vF6XQyZ84cBg0aRLt27bjgggt4+eWXMQwj4PuffvopQ4cOpWPHjvTq1YvJkyeTnZ3tf//FF19k0KBBfPnll1xyySW0a9eOyy67jA0bNvDrr78ybNgw2rdvzyWXXBIQf1FREVOmTKFPnz4kJyczaNAgFixYcFLbryzR0dGlXisqKuKZZ57hggsuIDk5mU6dOvHvf/+bzZs3+9dl9uzZQOmmRHl5eTz00EN07dqVjh07cuedd5KWluZ/f8SIEdx3333ceeednH322fz73/8GIDc3l+nTpzNw4EDatWvHJZdcwgcffBAQl9fr5e233+bSSy+lffv29OvXj5kzZwaU5YQJExg5ciSLFi1i4MCBtG/fnquvvpqUlBS++eYbLr30Ujp06MCwYcP86wOQkZHBvffeS69evfxls2TJkgpvzxMd58DXTOaFF15gxowZ9OzZk/bt2zNy5Eh27twZsKwvvviCIUOG0L59ey6//PKTav5VHqtXr+baa6+lc+fOdOvWjXvvvZcDBw743z9WE7yjy/7jjz/2x9u9e3fuu+8+Dh06FPCd999/n4svvpjk5GT69evHiy++eNLHA4Dk5GSUUv54BwwYwBNPPMENN9xA+/bteeihh8o8j/z666/cdNNNdOrUie7duzNu3LiAWMtzXBHiTCDJwRlOKYXH4/E/nE4nO3bsYOLEieTn53PZZZf5PztlyhReeOEFhgwZwrx58xg0aBBPPPEEc+bMKXPZhYWFXH/99Wzfvp1HHnmEBQsWcP311/PJJ5/w7LPPAvDII4/Qpk0b2rRpw6JFi/xNSo60du1afzvnJ554gqlTp3LgwAGuvvrqUhf29913H507d2bevHlccsklvPrqq7z//vsA7Nmzh9GjR5OcnMxLL73EtGnTSElJYdSoUQEXfT///DNffvklDz/8ME8//TSpqancfvvteDyeY27HFStWsHjxYiZNmsSjjz7K5s2bGTFixAnbyi9fvpyNGzfy5JNP8sADD/Dtt99yyy23+E+cP/74IzfeeCMhISE899xzPPjgg6xfv57rr7+eoqIi2rZty+TJkwFfk5xHHnmEvn37snXrVtLT0wHfRfKGDRtwu938+uuv/r+9cuVK+vfvD8CyZcsYM2YMTZs2Zc6cOYwdO5alS5cyevRofwfUlJQUrr76atLT05kxYwbTpk1jz549XHPNNf6/VZ5yOB7DMPz7YmFhIb/88gtvvPEG//rXv/y1Bk6nkxtuuIEVK1Zwzz33MHv2bOrWrcvNN98ccCK///77+e9//8utt97Kc889R3Z2dqkmbOBLvg4cOMCcOXO499570XWd2267jVdffZVhw4b59/XnnnsuoAne3LlzGTduHGeffTYvvPACY8aM4fPPP2fEiBEBSdjBgwd58sknue2223j++efJycnhzjvvZNy4cQwbNow5c+aglOKee+7xf++JJ55g5cqVPPDAAyxYsMDf9+LDDz884TY82pG/cZfLxf79+5k2bRrx8fFcdNFF/s+NHz+eDz/8kFGjRrFw4UImTpzI33//zb333otSimHDhnHllVcCsGjRIoYNG+b/7htvvIHb7eb555/n3nvv5euvv+axxx4LiGP58uWEh4fz0ksvcfPNN1NUVMS1117LsmXLuPnmm5k7dy6dO3fmoYceYt68ef7vTZ482Z9AvPTSSwwfPpy33norYN8E2LBhA2+99RYTJkxg+vTpbN++nVGjRjF9+nRuvfVWZs2axYEDB7jvvvv837n//vvZvn07jz76KK+88gpt2rThgQceYO3ateXevuU5zh25nXbs2MH06dOZOnUqf/75Z0B/q6+//po777yTli1bMmfOHC666CLuv//+csdy5O/nyMfRnciXLFnCTTfdRL169Zg1axYTJ05kw4YNXHXVVaV+y8fz888/M378eC644AJeeeUVJk6cyNq1a7n33nv9n5k/fz4PP/wwPXr0YN68eQwfPpxXXnmFhx9+uNx/52gpKSkANGzY0P/a22+/Tbt27Zg7d65/Pz3Spk2buO6663A6nTz11FM8+uij/Pnnn4wcOdJ/7ivPcUWIM4ISZ6zrrrtOJSUllXq0bNlSXXrppWr58uX+z+7YsUO1bNlSzZ8/P2AZzz77rGrXrp3KyMhQSinVv39/9cADDyillNq0aZO65ppr1O7duwO+c+utt6oLL7wwII7rrrvO/3zt2rUqKSlJrV27Viml1JVXXqkGDx6sPB6P/zPZ2dmqa9eu6s477wz4zrPPPhvwtwYMGKBuvfVWpZRSH3/8sUpKSlIHDx70v//bb7+pWbNmqdzcXH8s7du3V5mZmf7P/Pe//1VJSUlq8+bNSimlXnjhBZWUlBQQf9u2bQPWc+PGjSopKUm98847pTd8sf79+6uePXuq/Px8/2tffvmlSkpKUl9//bVSSqmrrrpKXXLJJQHrvmPHDtW6dWv11ltvlbm9Dh06pFq2bKmWLVumlFLqhx9+UGeffba68MIL1QsvvKCUUmr37t3+7xiGofr06aNGjhwZEN8PP/ygkpKS1DfffKOUUmrcuHGqZ8+e/m2llFKZmZmqc+fO6sknnyx3OZSl5HtlPQYMGBBQZosWLVJJSUnq119/9b9mGIYaPny4Gjp0qFJKqa1bt5ba/l6vVw0ePDig7B544AGVlJSkDhw44H/t22+/VUlJSerjjz8OiHHOnDkqKSlJbd26VWVlZank5GT18MMPB3zmxx9/VElJSf6yKdlXvvvuO/9n5s+fr5KSktT777/vf+2zzz5TSUlJatOmTUoppS688EI1adKkgGXPnj3bXxbl1b9//2P+xpcuXer/nNPpVDfddJP65JNPAr6/cOFClZSUpFJTUwPW50hJSUlq2LBhAa/dd9996pxzzvE/v+6661SHDh2U0+n0v/b222+rpKQk9csvvwR898EHH1Tt2rVTmZmZ6u+//1ZJSUmljjtLlixRSUlJ6ttvv1VK/VOO27Zt839m8uTJKikpSf3www/+1xYsWKCSkpJUdna2Ukqp5ORk9dJLL/nf93q96sknn1Q///zzsTZpKeU9zvXv31/1798/4Lf84osvqqSkJP/xc+jQoaW2Zcn+8uGHHx4zhg8//PCYv5+SR//+/f3r2KtXL3XTTTcFLGPXrl2qbdu2asaMGUqpsstaKV95lxxH5s+frzp27BhQrt9++6168cUXlWEYKicnR7Vv315Nnjw5YBklx9StW7cec5369++vxo8fr9xut/9x8OBB9d///lclJyeru+++O+CzAwcODPj+0cfFO+64Q/Xq1UsVFRX5P/PLL7+o/v37q02bNpXruCJqPqfTqS6++GL/flMe69atU0OGDFHt27dXw4YN818rmJn0OTjDtW3blkcffRSA1NRUnnvuOdxuN8899xxNmzb1f27t2rUopRgwYEDAHfQBAwbw0ksv8fPPPzNw4MCAZbdu3Zp33nkHwzDYuXMnu3btYtu2bezYseO4d+GPVFBQwB9//MHYsWOxWCz+16Oioujfvz/fffddwOc7duwY8Lxu3br+pjEdOnTA4XBw5ZVXMmjQIPr06UO3bt1o3759wHeaN29OTEyM/3mDBg0AXxOIY+nUqVPAXaw2bdrQsGFDfvzxx1Kjuxypb9++hIWF+Z8PGDAAq9XKjz/+SPfu3fntt98YOXKk/+4v+O6WNWvWjNWrV5fZXjwhIYE2bdrwww8/+JurdOrUifr167N+/XrAV2sQFRVF586d2bFjBwcPHuTWW28NKJdzzjmHiIgIVq9eTb9+/Vi7di1du3YlJCTE/7mIiAi6dOnCDz/8EBDD8crheB599FF/7ZHL5WLPnj28/PLLXHnllSxatIj69euzZs0aateuTdu2bQPi7d+/P0899RTZ2dn+kZuOHKFF13UuvPBCtm3bFvA3Y2JiAvqQrF+/HqvVyqBBgwI+N2TIEJ5//nnWr19PgwYNcLlcXHLJJQGf6dKlC4mJiaxfvz6gbDp16uT/d3x8PODbH4+MAXwjT4GvXfV7773HwYMH6du3L3379mXMmDEn3H5l6d+/v/+7SikyMjJYvnw59913H4WFhfzf//0fdrvd32zp0KFDpKSksHPnTr755hvAVxbH07lz54DnDRo08K9LiaZNm2K32/3P169fT2JiYql9ZciQIXzwwQf89ttv/qZ5F198ccBnLr74YiZOnMi6dev8faKio6Np1qyZ/zMn2s5RUVF069aNF198kU2bNtG7d2/69u0bcCe/PCpynGvXrl3AcaxkvyssLCQ0NJSNGzdy1113BXznoosu4plnnilXLC+99BK1a9cu9fqcOXPYunUr4Lvrfvjw4YC7+wBnnXUWHTt29B8jyuOcc87h2Wef5ZJLLuHCCy+kb9++nHvuuf4y2bBhA0VFRWWeN8DXtKlFixbHXP6SJUtKNfOyWq2cf/75AbV44CuH4/n555/p27cvDofD/1rHjh35+uuvAXj55ZdPeFwpqzmeqDmcTif33ntvQJPlE9mzZw+33HILt9xyC5dccgkLFixg9OjRfPbZZwHHO7OR5OAMFx4eTrt27fzPO3TowJAhQ7jppptYvHgxsbGxgK8tJpQ+SZc4uo1piddee4158+aRlZVFfHw8ycnJhIaGHvdC+0i5ubkopfwn+iPFx8eXWk5ISEjAc13X/VXqDRo04K233uLll1/mgw8+4I033iAqKoprr72Wu+++29+/4siL9ZJlAKXamx+pTp06pV6Li4sLaH9elqNP5LquU6tWLXJycsjJycEwDF555RVeeeWVUt898iR3tL59+/qHol2zZg3nn38+9erV46OPPsLlcrFq1Sp69+6N1Wr1l+2jjz7qTxSPlJqaCvj2gU8//ZRPP/201GdK9pMSxyuH42nSpEnA/ti5c2e6du3KwIEDWbhwIZMmTSIrK4vDhw+X2QQN4PDhw/7tXqtWrYD3yrpwCg8PD3ienZ1NrVq1Ai7ijvxubm6uf/nl3S/L6kgdGhpaZvwADz30EHXr1mXp0qU8/vjjPP7443Ts2JEpU6bQqlWrY36vLDExMQHbFKBfv36kpqby9NNPc8UVV2CxWFi1ahVPPPEEO3bsIDw8nFatWvl/Cycqu7J+M0d/p6ztXFZ5lGzTnJwc/3Y++nNWq5VatWoFbOdjdVY/OrYjPfvss8ybN4/ly5fz+eefo+s6PXv25LHHHiMxMfGY3ztaeY9zR5f5kceW7OxslFKl9tljdbgtS1JSkv9mxpGOvNlR8ns/1r67adOmcv+9jh078vLLL/P666/z2muv8fLLLxMfH89tt93GiBEj/H9r1KhRZX6/5NhyLEcmtpqmERoaSmJiYqnjCxy/nMG33scbmas8xxVJDmqubdu2+ZtQVsRbb71F+/btGTt2LAAPPvggl156KTt27Kjwsbo6keRABIiPj2fy5MncddddTJs2zX/HqqRT6H/+859SJ3mA+vXrl3pt2bJlPPnkk9x///0MHTrUfwF511138ccff5QrnsjISDRNC+jcWOLw4cMBJ73yaN++PbNnz8blcvHzzz+zaNEi5s2bR6tWrQLaX1fUkR0PS6SlpXHWWWcd93slJ88SXq+XzMxM4uLiCA8PR9M0brzxxjKTsuNdXPbr14+5c+eyceNGNm7cyEMPPUT9+vVxOp389NNPrFu3zp8IlJTt+PHj6dq1a6lllZwQIyMj6dmzp78z6ZGs1qo7lNSvX5/Y2Fh/x83IyEgaN27MzJkzy/x8gwYN/BdYaWlpAfvm0du7LNHR0WRmZuL1egMShJILmVq1avm3SVpaWkANG/j2yyNrkU6G3W7n9ttv5/bbb2f//v188803zJ07l3vvvZdPPvnklJZdIjk5mR9++IHMzEwKCgoYM2YMAwcOZP78+TRs2BBN03j77bdZtWpVpfy9o0VHR7Nr165Srx8+fBgg4OL/8OHDARfrbrebzMzMUhfSFRUZGcn999/P/fffz44dO1ixYgVz587l0Ucf5eWXXy7XMirjOAe+C3hd10sd68qzz1ZEyTHzWMfUkm1acrPkyN9Bfn5+qe/07t2b3r17U1hYyNq1a3njjTeYOnUqHTp08B9bZs6cSePGjUt9t6wE5ehYj05sT1ZkZGSpwR4AvvvuO1q3bl2u44qoudavX0+3bt245557So1y9dNPP/HEE0+wbds2GjVqxNixY/2Deaxfv56hQ4f6PxsaGspXX311OkOvEtIhWZQyaNAgevfuzccff+yvYu7SpQvguwhu166d/5GRkcHzzz9f5gns559/Jioqiptvvtl/wszPz+fnn38OuAtfcvesLGFhYSQnJ7N8+fKA0S1yc3P59ttvSzVnOJ7XX3+d/v3743K5sNvt9OjRg8cffxyA/fv3l3s5Zfn5558DEoQ///yTvXv30qNHj+N+b/Xq1QFV2J9//jkej4du3boRERFBmzZt2LFjR8A2b9GiBS+++KJ/FI6j73CDr/lCbGwsc+fOxeFwkJycTEJCAk2bNmX27Nk4nU769OkD+Jp7xMXFsXfv3oC/U6dOHZ555hn/ncSuXbuybds2Wrdu7f9McnIyr7/+Ol9++eUpbb/j2bt3LxkZGf6Li65du3LgwAHi4uIC4l29ejWvvvoqFouF7t27A75x+Y9U0kzmeLp27YrH4yn13aVLlwK+2owOHTpgt9v5+OOPAz7z008/sX///oBmRBVVVFTEhRdeyMKFCwFfcjR8+HAuvvjiU95Pj/THH38QHR1NrVq1+PPPP3E6nYwaNYqzzjrLf2FYkhiU3E073m+1os455xz27dtXat6EpUuXYrPZaN++vT9ZPToh+uSTT/B6vRX6/R9t37599O3b11/OTZs25ZZbbqFnz54V2s7lPc6diMPhoGPHjnzxxRcBdy9Lmr1UliZNmlC7du1S++6ePXv49ddf/ftuSU3MwYMH/Z/5+eefA74zY8YMrrjiCpRShIaG0r9/f3+zrP3799OhQwdsNhuHDh0K+K1arVZmzZp1zEnbqkKXLl1YvXp1QBO5TZs2MWrUKDZu3Fiu44qoua699loefPDBUjfdDh8+zK233srQoUP9gydMmDDB33R1z549hISEcOedd9KzZ0+uv/76Uk1XzUhqDkSZHnzwQYYMGcLUqVP53//+R8uWLRkyZAgPP/ww+/btIzk5mZSUFJ599lkaNGhQ5l2h9u3b8+677/Lkk0/Sv39/UlNTWbBgAWlpaQHVs1FRUWzYsIE1a9bQpk2bUsu59957GTlyJKNGjeLaa6/F7Xbz8ssv43K5KtQOu3v37sycOZMxY8Zw3XXXYbFYeO+997Db7f5Re05WYWEhN998M7fffjv5+fk8++yzJCUllWqTfrTDhw9zxx13MGLECHbu3MmsWbPo1auXP6kYN24co0aN4t5772XIkCF4vV4WLlzIb7/95p8cKDIyEoBvv/2W6OhoWrVqha7r9OnThyVLlnDuuef67+x369aNd999ly5duvjvIFosFu655x4mT56MxWKhf//+5OTkMHfuXA4dOuSvZh89ejRXX301t956K9dccw0Oh4NFixbx1Vdf8cILL5zS9iuxbds2f3MppRT79+9nzpw5OBwOrrvuOgCGDh3KW2+9xb///W9uu+026tWrxw8//MArr7zCddddh81mo1GjRlx11VU8++yzeDweWrduzUcffcRff/11whhK+qJMmjSJQ4cO0apVK9avX88rr7zC5Zdf7p9UadSoUcyZMwebzUb//v3Zu3cvzz//PM2bN+fyyy8/6W0QEhJC27ZtmT17NjabjZYtW5KSksL//ve/gKFnN23ahN1uP+EkTxkZGQGjVBUWFrJkyRLWrFnDuHHjsFgstG3bFqvVytNPP81NN92Ey+Vi8eLFfPvttwD+/iIld4I//vhjOnTocEo1JEOHDuWdd95hzJgx3HnnnTRo0ICvv/6aDz/8kLFjxxIVFUVUVBSXX345L7zwAoWFhZxzzjls3ryZ2bNn061bt1OajDAxMZG6desydepU8vLyOOuss/jzzz/57rvvuPXWW/2f+/XXX4mNjT1mLWB5j3PlMW7cOG644QbGjh3LVVddRUpKSsDITZVB13XGjRvHxIkT/ceVzMxMZs+eTXR0tL9msG/fvkyfPp3JkyczcuRI/4heR9Ycd+/enddee40JEyYwZMgQ3G43r776KjExMXTv3p2YmBhuvvlmnn/+efLy8ujWrRuHDh3i+eefR9O009rsYvTo0Vx11VXceuut/tHennvuOdq3b0+vXr3weDwnPK6IM8/bb79Nz549/eefRo0asXnzZv7zn//QpUsXCgoKmDlzJmPHjuXWW2/ljTfe4MYbb+Tzzz8vs5WFWUhyIMrUtGlTRowYwcKFC3n33Xe57rrrmD59OvPnz/d3lIyLi2Pw4MHcfffdZd5Vufzyy9m7dy8ffvgh77zzDnXq1KFv375ce+21PPzww2zfvp1mzZoxfPhw/vzzT2655RamT59eqo1tjx49eO2113jhhRcYN24cdrudLl26MGPGjON2Zjtaq1atmDdvHnPmzGHcuHF4vV6Sk5NZuHBhqaYhFdWlSxe6d+/OQw89BPg63I0fP/6EHZKuvfZacnNzGTNmDHa7nUsvvZT777/ff+f23HPPZcGCBcyePZs777wTm81G27Ztee211/xVny1atOCSSy7xNwEpuSPYt29flixZQrdu3fx/ryQ56NevX0Acw4YNIzw8nFdffZVFixYRFhZGp06dmDlzpv8CsFWrVrz99ts8++yzjB8/HqUUSUlJzJkzh/POO++Utl+JI4e/1HWdmJgYzj77bJ5++ml/AhoWFsbbb7/NM888w9NPP01ubi6JiYnce++93HTTTf7vP/LII8THx/PWW2+RnZ1N7969ue2223juueeOG4OmacyfP58XXniB119/nYyMDBo0aMC4ceMCmlTdcccd/uUvWrSImJgYBg0axN13333C9s/l2Q7PPfccCxcu5PDhw8TFxXHllVcGdFYdO3YsiYmJJ5xr5LvvvgvouB8WFkaTJk145JFHuPbaawHfCe+ZZ55h9uzZ3H777URHR3P22Wfz5ptvMmLECH766SdatmzJBRdcwEcffcSECRO48sormTJlykmvY2hoKG+++SbPPPOM/+KxadOmTJs2LWAoymnTptGoUSM+/PBDXnnlFRISErj++usZPXr0KddkzJ49m1mzZvH888+TmZlJvXr1GDt2bEAb+auuuorLL7+cJ598ssxllPc4Vx5dunThlVdeYdasWYwdO5YGDRrwxBNPcNttt53Seh5t6NChhIeHM3/+fMaMGUNERAS9e/dm3Lhx/v4dTZo0YcaMGbz00kuMGjWKZs2a+fu/lOjbty8zZ85k4cKFjB07Fk3T6Ny5M2+88Yb/5sPdd99N7dq1eeedd3j11VeJjo6mR48ejBs3zn9j43Ro06aNf3+7++67iYiIoG/fvtx3333Y7Xbsdnu5jivizLJjxw6++eabgIET3G43TZo0AXw31wYMGMCIESMAePzxx+nXrx9ff/01l156aVBirgyaqmjvCyFEgJKDwoku0oSoTHv27GHKlCmVOjmaKG3NmjUsX7681LwNQoiaqWXLlrzxxht069aN0aNHEx0dXSpBt1qtJCYmMmDAAK6++uqAGwrDhg3j/PPPP2ZHfDOQPgdCCGFC8+bNo1evXsEOo0YzDINXX31VtrMQZ6gmTZqwa9cuGjVq5H+sWLGCZcuWAXD22WcHNFctGYLb7B3YJTkQQggTGj58eJkjR4nKU9I+/8i+HkKIM8e1117Ln3/+ybPPPsvOnTtZtmwZs2bN8o+Cd8MNN/D555/zzjvvsHPnTh577DEcDkepprtmI82KhBBCCCGEILBZEcAPP/zAzJkz2bp1K3Xq1OHf//63v4MywFdffcXMmTP9g7U89thjFeoPWR1JciCEEEIIIYQApFmREEIIIYQQopgkB0IIIYQQQghAkgMhhBBCCCFEMUkOhBBCCCHEGSnHcAY7hGrH9B2S09NzMfcaVB+aBnFxkbJNTUrKz/ykDM1PytDcpPwqX8k2rc6mFnxLkfJU6jJDNCuTwvpV6jJPF2uwAzhVSiE/4Eom29TcpPzMT8rQ/KQMzU3K78xSpDw48VbuQk28/5g+ORBCCCGEEOKkKQ3QKnmhlb2800f6HAghhBBCCCEASQ6EEEIIIYQQxSQ5EEIIIYQQQgDS50AIIYQQQpzJTNx5uCpIzYEQQgghhBACkORACCGEEEIIUUySAyGEEEIIIQQgfQ6EEEIIIcSZTOY5CCA1B0IIIYQQQghAkgMhhBBCCCFEMWlWJIQQQgghzlwylGkASQ6EEKIaUCjyNBd27CgUZm6veixFLoXTrQhzaNisNW/9hBCiJghqcnDgwAGmTJnCjz/+SExMDNdffz033nhjMEMSQojTSqH41XqI1bY9pFgzcWCjTmgYPV0N6eyph14DkoQDGV5WbXbxy3Y3TrciMkyje5Kd3m3sRIZK61YhhKhOgpoc3H333dSvX5/Fixezbds27rvvPhITEzn//PODGZYQQpwWCsUX9h0scfyFB4M4FYoDKxsth9kUmsZBZx6XuFqgmThB2HXYyytf5rPnsEFcpEaoQyMzT7Ho+yI27/Vw88AwosMlQRBCiOoiaEfk7Oxsfv31V26//XYaN27MwIED6d27N2vWrAlWSEIIcVrt1nP4xL6NUGWlhTeWOBVKPGG0MGKJMhx85tjONktmsMM8aYahWLymkP3pXlo3sFC3loWYcJ2G8RZa1LPw+04PX//hDHaYQogznaqih0kFLTkICQkhNDSUxYsX43a72bFjB7/88gutW7cOVkhCCHFabbAeJEd3UscIL/VebRVGAW5+sR4IQmSVIyXVy9b9HhrEW9D1wNoPu00jNlJj3VY3eUVGkCIUQghxtKA1K3I4HEyePJnHH3+cN954A6/Xy9ChQxk2bFiFlqOZt7a92inZlrJNzUnKz3wOWHIJURb0MgpN0yAcG/ssuaYt04w8A6cbIkPKvg8VE6aTmu0lO18RGXqag6si8js0Nym/ymeObSmToB0pqH0Otm/fTv/+/fn3v//N33//zeOPP06PHj0YMmRIuZcRFxdZhRGemWSbmpuUn3nUJgILaYThCHg9LMz3XEMnngjiw81ZpgkZRYSEuLA7bFgtpU+UTsNLRLiFugkRxMfWrMHz5HdoblJ+ZxgTNwGqCkE7Gq9Zs4YPPviA7777jpCQENq1a8ehQ4d46aWXKpQcpKfnoqRQK4Wm+Q6Isk3NScrPfBpbo3CGuMk08nEUH47DwhwUFDhx4SXf4qR5UTRp7twgR3py4kMNokMMUvYXkRhnCXhPKcXOg146NLZi8RaQlmbeu2xHkt+huUn5Vb6SbSrMI2jJwZ9//kmjRo0ICQnxv9amTRvmzZtXoeUohfyAK5lsU3OT8jOPZHcCbay1+c2WylneSCKxA5CHi516Nm08tWnvqmPam1rhITr9k+28/0MRBzK9JETr6LqG26PYm+4lzKHRv50D0GrcPiu/Q3OT8hNnsqAlBwkJCezatQuXy4Xd7jsh7tixgwYNGgQrJCGEOK1CsHJDUQfe4082WtPYp+X6ahB06OSpy9VFyUQUJwxmdV4HBx4vrPjDyV/7vGia705ivVo6l3ULIfksW7BDFEIIcYSgJQcDBgzg6aefZtKkSdx+++2kpKQwb9487rnnnmCFJIQQp12cCuX2wi6kWLLYbckm2hFKZKGVZp7YGjEBmkXXGNwlhO6t7Gze46HIpYgK12jT0Ea4w/zrJ4SoAZR0SD5S0JKDyMhIXn/9daZNm8aVV15JbGwst99+O1dddVWwQhJCiKDQ0WjmrUVzoxbxRJLmzTVtU6JjiY3Q6dXa3LUgQghxJgjq8BDNmzfntddeC2YIQgghhBBCiGIyZ70QQgghhBACCHLNgRBCCB+lFHm4sRtOlFKYub2qEEKYTmW35TTxIVySAyGECCKlFL+qNFYb+0khG0e2jTreUHpq9eisJZQ5e7IQQghRVSQ5EEKIIFFK8YWxmyXGdjyaIo4QHJqFjSqdTSqDg1o+l+hN0CRBEEIIcZpIciCEEEGym1w+MXYSio26hKFpEKbbCdMspBqFfKZ20UqPpQUxwQ5VCCFqLqUVD2damcx7U0c6JAshRJBsMA6Tg5M6hJZ6r7YWSgEefjFSgxCZEEKIM5UkB0IIEST7VT4OrMdsNhSGlb0q7zRHJYQQ4kwmyYEQQgRJqGbFg3HM910YhEnrTyGEEKeRJAdCCBEkyVocGuBU3lLvuZQXDwbt9fjTH5gQQpxJVBU9TEpuSQkhRJC00+Joo8Xym0rjLBVJJDYA8pSbneTQRoulg1Y7yFEKIYSoSosXL2bixImlXtc0jS1btpz2eCQ5EEKIIAnRrNxgacN73r/YqDLYRx4Otw0w6KQlcLUliQjNFuwwhRBCVKHBgwfTu3dv/3OPx8MNN9xAv379ghKPJAdCCBFEcVoIt1vak0I2u8klOjyMSK9OM2JkAjQhhDgdgjyUaUhICCEhIf7n8+fPRynFfffdV8kxlY8kB0IIEWS6ptGMGJprMcSHRJKWl4sycXtVIYQQJycrK4tXXnmFqVOnYrfbgxKDJAdCCCGEEOLMVYUdiPPyAoejttvtx73of/fdd0lISGDQoEFVE1A5SHIghBBCCCFEFejTpw/5+fn+52PHjuWOO+4o87NKKd5//31uvvnm0xVemSQ5EEIIIcQJKQX5BWB4ISICdBkMXYgTWrlyZcDz49Ua/PHHHxw6dIiLL764qsM6LkkOhBBCCHFcGzdrfL9GY+s2HUNB/bqKXt0NunVRWCzBjk6I6isiIqLcn121ahVdunQhOjq6CiM6MUkOhBBCCHFMq9dqvPeBhYJCiItV2C2wbYfG1m0Wdu8xGHa5IQmCMLdqMmnZ77//TqdOnYIdhsyQLIQQQoiyHU6D/y2zgKZo2UIRHwe1YqBZE0XteMXXK3X+3CRD7gpRGf7++2+aN28e7DAkORBCCCFE2X7/UyctHRLrlX4vJhq8Bqz/WZIDYXZaFT0qJi0tjaioqFNblUogzYqEEEIIUabDab6Ox8fqfBwZrtizT5IDYXLVqFlRdSA1B0IIIYQok8MByjj2+263Rljo6YtHCFH1JDkQQgghRJlatlDYHXDEMO1+Xq9vaNPOZ1eDW65CiEojyYEQQgghypTUXNGhncGuPRpZ2b65DgAKCuHvbRpNGik6dzxO1YIQwnSkz4EQQgghymS1woirDOw2+PUPnf0HfP0PbDZo3Upx9ZVeYmsFO0ohTlE16XNQXUhyIIQQQohjioyEkdcb7N5rkLJTwzCgbh1frYJVriKEqHHkZy2EEEKI49I0aNQQGjWU26uiJjq5oUdPvExzkj4HQgghhBBCCEBqDoQQQgghxJlM+hwEkJoDIYQQQgghBCDJgRBCCCGEEKKYNCsSQgghhBBnLmlWFEBqDoQQQgghhBCA1BwIIYQQQogzmgxleiSpORBCCCGEEEIAUnMghBBCCCHOZNLnIIDUHAghhBBCCCEASQ6EEEIIIYQQxaRZkRBCCCGEOHNJs6IAUnMghBBCCCGEAKTmQAghhBBCnNFkKNMjSc2BEEIIIYQQApCaAyGEEEIIcSaTPgcBpOZACCGEEEIIAQSx5mDx4sVMnDix1OuaprFly5YgRCSEEEIIIcSZLWjJweDBg+ndu7f/ucfj4YYbbqBfv37BCkkIIYQQQogzWtCSg5CQEEJCQvzP58+fj1KK++67L1ghCSGEEEKIM430OQhQLfocZGVl8corr3Dvvfdit9uDHY4QQgghhBBnpGoxWtG7775LQkICgwYNqvB3NfMOI1vtlGxL2abmJOVnflKG5idlaG5SfpVPtqX5BD05UErx/vvvc/PNN5/U9+PiIis5IiHb1Nyk/MxPytD8pAzNTcrvDKM036NSmTcrCnpy8Mcff3Do0CEuvvjik/p+enouStqJVQpN8x0QZZuak5Sf+UkZmp+UoblJ+VW+km0qzCPoycGqVavo0qUL0dHRJ/V9pZAfcCWTbWpuUn7mJ2VoflKG5iblJ85kQe+Q/Pvvv9OpU6dghyGEEEIIIcQZL+jJwd9//03z5s2DHYYQQgghhDgTqSp6mFTQk4O0tDSioqKCHYYQQgghhBBnvKD3Ofj999+DHYIQQgghhDhjaVT+6ELmHa0o6DUHQgghhBBCiOoh6DUHQghRHm7DoMDjxW7RCbVYgh2OOAlFTnA6ISwUbLZgRyOEEMVM3kegsklyIISo1vI8Hn5Iy2JNWjZZLjc2XaNjrSh6165Fg7CQYIcnyuHAIVi1Hn75w5ccREZC907QuytERgQ7OiGEEEeS5EAIUW3leTws3LGPXzJzibBaiLJacBoGnx1M5/esXEY2bUDzyLBghymOY9deeOUd2LMf4mIgNAQys2DRUtj8N9x8DUTLmBRCCFFtSJ8DIUS19V1qJj9n5NI0PJSzwkKIsduoE+KgdWQYqU4XH+w5hMcwgh2mOAbDgMWfwv6D0Lo51E2AmGhoWB9aNIbfN8HXq4MdpRDijCdDmQaQ5EAIUS0Veb2sScsi2mYhxBJ4qNI1jYahIezIL2BrbkGQIhQnkrIbtqZAg3qgH3W2sdshNgbWbYA8KUIhhKg2JDkQQlRLOW4vOW4P0bayWz+GWS14lCLD5T7NkYnySs/y9TGICC/7/egoyMmDrOzTGpYQQhxFq6KHOUlyIISoluy6hlXXcBll1816le9129G3pEW1YbeBpoHHU/b7LjdYLTJykRBCVCdyVhVCVEvRNiutoiI47HKhVOkE4bDTRazNRpJ0SK62mjeG2nFwKK30e0pBahq0aAIJcac9NCGECCT9DfwkORBCVEuaptEvoRYxNis78otwFXc8NpQitchFtttDn4Ra1LLLbefqKiIcBvSCggI4mOrroAzgdsPOvb75Dvr38tUuCCGEqB5kKFMhRLWVFBnODU0SWbznEDvzCzGU74ZMLbuVIYkJXFQvPtghihM471xfs6IV38Nf232JgKZBvQS4bBAktwx2hEIIIY4kyYEQolrrEBNJUmQYm7LzyXK7ceg6LaPCqe2wBzs0UQ4WCww+D7p39s1rUFQEUVHQpgWES4swIUR1UBVNgUzctEiSAyFEtRdqsdA5VmbKMrPYGOh1TrCjEEIIcSKSHAghhBBCiDNYVQw9at7OVNIhWQghhBBCiCByuVw8+uijnHPOOfTs2ZNZs2aVOVLf6SA1B0IIU3B7FAVOhd2mEWo37x2ZY1FKkVcA9hBVfEKoeesohBDVUjXoczB16lTWrVvHggULyM/P55577qF+/fpcffXVlRzYiUlyIISo1vKKDH7Y7GbNXy6y8g1sFo2OTa30buOgQbwl2OGdMqUUv25RrP5FkbJX4XDkUyfOoGdHjc5tNHRdkgQhhKjJsrKy+PDDD3nttddo3749ADfddBO//fabJAdCCHGkvCKDhV8W8MsONxEhOlFhGk634rMNLn7f6WHk+WE0r2few5hSii9WGyz5SuHxQlwMOOyw8W/Fpm2Kg/00Lumno8lEAEIIUWP9/PPPRERE0LVrV/9ro0aNClo80udACFFtffeni5+3e2hax8pZtS3EhOvUibHQuoGF1GyDD34oxOM173hxuw/AJ98pQkOhRWONuBiN+Fo6LRppREXCZ98rtu0OdpRCCCFOVl5eXsDD5XKV+syePXtITExkyZIlDBo0iPPOO485c+ZglMwceZqZ95abEKJGK3Ip1vzlIjpcI+SoPga6ptEw3sKOg1627vfQpqE5Z0nesNkgJw9aNyv9Xu1aGpszFL9sMmjRyPzNp4QQotqqwj4Hffr0IT8/3//y2LFjueOOOwI+WlBQwK5du3jvvfeYPn06hw8fZvLkyYSGhnLTTTdVcmAnJsmBEKJayik0yMlXRIeX3aQmzKHhMSAj17w1B/tTweHgmM2GwkJh76HTHJQQQpxxqm4o05UrVwa8areXnsDTarWSl5fHM888Q2JiIgD79+/n3XffleRACCFK2K0aVgu4PGW/7zUUKLCZ+CgWGgKeY6wfgMsNYY7TF48QQojKFRERccLP1K5dG4fD4U8MAJo0acKBAweqMrRjkj4HQohqKTpMo1UDG4ezvWWO9Xw4xyA2QiOpvnmzg+QWGhrgdJVeP5db4fFA+5bSGVkIIaqUqqJHOXXo0AGn00lKSor/tR07dgQkC6eTJAdCiGpJ0zT6JduJCdfZcciLy+M70hpKkZrlJTtf0SfZTq0I8x7G2rXQaNNcY9tuyM1X/iQor0Dx9y5o1VSjQytJDoQQoiZr2rQp/fr1Y+LEiWzZsoVVq1bx8ssvc8011wQlHvPechNC1HhJiVZuGBDG4rVF7Ez1YhigUNQK1xnS1cFFnUKCHeIpCXFo3PAvnfc+Ndi4TbHvEDjsXgA6tdG4erBORJgkB0IIUdPNnDmTxx9/nGuuuYbQ0FCGDx/OiBEjghKLJAdCiGqtQxMbSYlWNu3xkJVn4LBptGxgpXaUeWsMjhQXo3H71Tope2H3AUV0tIPIUEWzhsgEaEIIcYaIjIzkqaeeCnYYgCQHQggTCLVrdG5mzuFKy0PXNZqdBc0bacTH20lLc1JGNwshhBBVoQqHMjWjmnHrTQghhBBCCHHKpOZACCGEEEKcwapungMzkuRACGEKBS6D9HwPEQ6dWmFy6BJCCFFJpFlRADnDCiGqtUO5Hl5fl8WKbXnkOr1YdY3ODUIZ3jmGc84KDXZ4QgghRI0iyYEQoto6lOvhzsUH2ZRaRIgVwm06LgO+2pbPr/uKePiC2pyXdOLZJ4UQQghRPtIhWQhRbc1fncHGQ4XUj7RSP8pOdKiV2uFWmsRYySzy8tzKdIrcRrDDFEIIIWoMSQ6EENVSVqGHb3cUEGbTCbEFHqp0XSchwsrebDdfbc0PUoRCCCFqBFVFD5OS5EAIUS3tz/aQ5/QS6Sj7MBVm0/EasCfLfZojE0IIIWou6XMghKiWwu06Fl3D7S379ovX8DUnCrHKPQ4hhBCnyrxDj1Y2OasKIaqlhjFWWtZ2kFVkoIzS/QoyCg0iHTr9mocFITohhBCiZpLkQAhRLem6zrWdogm36+zJ8eLy+BIEwzBIy/eQ7zI4r3kETeLsQY5UCCGEqUmfgwDSrEgIUW1d0CqC7CKDl9dkcCDXg1F8sA2361zaOpIJA+ODG6AQQghRw0hyIISo1oadHcXApDA+3ZTHwRwvYQ6N/s3DaVXHEezQhBBCiBpHkgMhRLVXK8zK8C4xwQ5DCCFETVQVzYBM3KxI+hwIIYQQQgghAKk5EEIIIYQQZzSNyh/K1LxDo0pyIIQwhbRcD9sPeEiIttCkji3Y4VQ6pRR5Xg92txulFGY+sZypvIYiv0gRGl566F0hhDCLoCYHLpeL6dOn8/HHH2Oz2bjyyiu555570DQ5KQohfDbucTJxYQG//aHjdupouosGjfIYM9TO9f3Cgx3eKVNK8WteNquz00kpysdxwEYd7PSMiqVzZAy6HA+rvSKX4octbtZsdpGeYxAe7qJFXcW5bWw0rSv34ISo9qTPQYCgHrWmTp3KunXrWLBgAfn5+dxzzz3Ur1+fq6++OphhCSGqiY17nFzxYCGZh23oFoXFbmB4NXb+beOh5z0czsnl3iGRwQ7zpCml+CIjlSVp+/EoRZzNjkO3sDE3h035ORx01eWSuLpyw6Qac7oVb3xdyNotbkLsGjHhvrL65jcXv+1wc+PAUNo1rnk1XUKImitoHZKzsrL48MMPefzxx2nfvj09evTgpptu4rfffgtWSEKIambcvAIyD1sJifASFmXgCIHQcEVYlBeXU2fO216y8r3BDvOk7XYW8knGQUItFlqERRBnsxNvd9AiNJwoi5XPMg6xrTA/2GGK41j7l5u1W9w0rG2hcR0LtSJ06tay0LqhhbxCxfvfOylwmvgWohDijBO05ODnn38mIiKCrl27+l8bNWoU06dPD1ZIQohqZPdhN5s36+hWA+tRN151HUJCDQpyLTy/LC84AVaCDblZ5Hg81LGVnrOhtt1BgdfLL7lZpz8wUS6GofhhsxuHTSM8JLB2R9M0GiZY2JfuZdNuT5AiFEKUi8yQHCBozYr27NlDYmIiS5YsYd68ebjdboYOHcrtt9+Orpc/Z5Ha9spTsi1lm5pTTSu/P/a4cbt0bPayO3da7eAs0Ni2X5l2nQ+4igjR9X/6FZSshwaagnCLhX2uQtOuX01X6Ia0HC/R4do/3cePKEOH1fckI9eQMjSJmnYcrQ5kW5pP0JKDgoICdu3axXvvvcf06dM5fPgwkydPJjQ0lJtuuqncy4mLM2974+pKtqm51ZTya5qoo+vZGIaGXsbJxWso0BS1omzEx5tznWvnhmFx5RMWFlhzEBbqe655ncRHhpl2/Wq6SJciMtyJ26MICws8nYaF2lFKYbVBfFwY8fFhQYpSnIyachwV4mQELTmwWq3k5eXxzDPPkJiYCMD+/ft59913K5QcpKfnokxcdVOdaJrvgCjb1JxqWvklxXuJre0hdb8Vm8Pg6ArFonwNi1Ux7FydtLTc4AR5ihorB06nm0ytAIduAc2XGBQUOnF5DfKdLpprIaZdvzNB60TF8p9cRId4fR3HNV9iUFDoIiPHIMSiqBvpIi3NvH1jziQ17ThaHZRsU2EeQUsOateujcPh8CcGAE2aNOHAgQMVWo5SyA+4ksk2NbeaUn4Wi4XhF1t44XVFYZ5OSLgXi0XDMMBZqGF4NJI7eOjdKsq065scHkWbsEh+y8/hLEcokRYLAHkeDzuLCmkTFkn7iGjTrt+ZoGcrOxu2e9i630ujBAshNg2lFOnZBgezDC7oZKdeLV3K0GRqynFUlJPSfI/KXqZJBa1DcocOHXA6naSkpPhf27FjR0CyIIQ4s00YGsXwoQp7iEFRroW8LJ3CHN9hq017N+89ZO67USG6hRvqNaJrZAzpHhdbCvP4MyeLVLeLTpEx3FivEREWGSe/OmtY28K/B4bSOMHCrlSDzXs9/LHTTZFbcWEnO0N7hMhQtEIIUwnaWadp06b069ePiRMnMmXKFA4fPszLL7/M7bffHqyQhBDV0NM3RjP6IjezPspnb6oiIkzj2n52LuoUFezQKkWczc7tiU1JKcpnt7OQ6KhQIp3QLCRcJkAziZYNrNx/RThb9npIyzGoHRdOnQgndWIswQ5NCCEqLKi3pGbOnMnjjz/ONddcQ2hoKMOHD2fEiBHBDEkIUQ01qWPjxVExwQ6jyuiaRrPQCJqHRRAfH0lamrR3NhuHTaNDExuaBvHxoaSleaQMhRCmFNTkIDIykqeeeiqYIQghhBBCiDNZVcxLYOKbA9KYVQghhBBCnME0/pmkpDKXaU5B65AshKhcBU5FVq6Bx2vi2xXHUeD2sifbRWahzDZrVkVOyM4BtzvYkQghhDgWqTkQwuR2HfLy/R9uftvhwWJzEWrz0LONjZ5tbYQ5zHvnosShfDev/5TJij+LyM0HqwU6t7AyvEs059QPD3Z4ohwOHIRVa3V++RWcLo3ISEX3Lore3RWR5h5wSghRE0izogBScyCEiW3Z42Hu0iK+3ODGUBDm0EjNNHh7hZPXPy+iwGnioxO+xODODw/y1tdFZGaDww5eA776ycv9i9JZsSMn2CGKE9i1B+Ys0PnkCw2XWyM0FDKzNBb9T+fl/+hkSxEKIUS1IsmBECblcis++M5Feq6idUOdOrV0YqMsNKpjoXEdnR//8rD6T3O335i/Np2N2xT160D9BI3oCI3atTSaNIDMbHjuq2yKPDLzbHVlGLB4mc7+Axqtk6BuHYiJhoaJ0KIp/L5R4+uVchoSQojqRI7KQpjUlj1edqYanFVbKzXJUqhDIzwEftjoxu0xZ+1BVpGHbze6CAtThNgD10/XIaE27D2o+GpHXpAiFCeSsgu2btdokOgrsyPZ7RBbC9b9rJGXH5z4hBBClCbJgRAmlZ6jMIzSF84losI1MvMUuYXmTA7257rJy4fIsLLXL8yh4TVgT5a5a0dqsvRMDacTIo7RNSQ6GnJyISv79MYlhBABVBU9TEqSAyFMym4FpcA4xkxLbg9YdbBbzdkpOdymY7H41qMs3uLWRCEmXb8zgd0GmgaeY5ShywVWK9hspzcuIYQQxybJgRAm1aKBhVoRGmnZpZMDpRRp2YrkJlYiQs158dwwykbLs3SyckAZpd/PyFFEhkO/phGnPzhRLs2bKGrHKw4dLv2eUpCaCi2aKhLiT39sQgjxD62KHuYkyYEQJpUQo9Mr2UZGjuJwloFh+JIEl1ux/YAiPkqnT3vz3pLVdZ1ru0QRHgZ7Dilcbt/6GQakZSry8+G8s+00iXEEOVJxLBERMKC3oqAADh7ylR345jnYuRvCwqF/b4Vm3nOoEELUODLPgRAmdml3OwDf/+Fmyx6D0BAXLpdBg9o6V/Zx0LSeJcgRnpoLmkeRfbGXl7/J5UDqP02owsPg0h52JvSrHeQIxYmc11fh8RisWKnz17bi+2ka1KuruGywIrm1iRvmCiFqBpnnIIAkB0KYmN2mcUVvB+cm2/h7n5eQ0FCsFNGqoeWYHZXNZljbWgxsGsmnf+dwMNtDmEOnf9MIWsWHBDs0UQ4WCwy+QNH9HC+bt2oUFUFUFLRpqQgPC3Z0QgghjibJgRA1QJ1aOnVjdeLjQ0lL83CMPsqmVSvUyvD2scEOQ5yC2FrQq1sN2zGFEKIGkuRACCGEEEKcuaRZUQDpkCyEEEIIIYQApOZAiBrj7/1uthwqoG6Eh+iwmvfTTsvzsP2wm4RInSbxMkKRGRU5FU4XhIWCTeanEEJUG1Ux9Kh5j3E17wpCiDPMK1/k8fJyJ/sPglK52O2Ks1vpPP3vCFrUM+9QpiU2Hihi4tvZ/ParBXehBc2iaNAsizFDQri+R3SwwxPlcOCwYtXPBr9sUjhdisgIje7tNXp31okMN+8JVAghaiJJDoQwsanv5zJvsQu3S8NiU+gWRVGRxtpfFJftyuajKdGmThA2HijiikdzydwTim43sDi8GB6Nnb+H8lCKh8M5mdx7Ya1ghymOY9d+xSsfeNlzUBEXA6EhkJmjWPSZYvMOxc1XWIiOlARBCBFkJu4jUNmkz4EQJnUw082rH7vwuCEsQhEaCqEhGuHhCkeoQUa6zn0L84Id5ikZ91o2mXschMS6CavlwRGmCI0yCKvtwpVvYc57XrLyvcEOUxyDYSgWf+llf6qidVOoG68RE6XRsK5Gi0bw+1bF1+vKmP5aCCFE0EhyIIRJPbu0kKICDUeoQj/ql2y1amg6/LrFS1qOJzgBnqLd6W42/2lDd3ix2gJv6eg6hER7KEi38fyX2UGKUJxIyl7YukvRoC7oemDtgN2mERsN6/5Q5BXILTshxJntyy+/pGXLlgGPO++8MyixSLMiIUxqx0EPKF8iUBaLTeF26fy520O/ZPP91H/f78RdpGMLKbtmwGpXOBVsO2jO5OdMkJ7t64AcEVb2PhodCanpiqxciJAJ0YQQwVINhjLdtm0b/fv35/HHH/e/5nAEZ/AN810xCCEACHNogMIwKFVzAGAYoGmK2AhzVhDGhulomsLr1bCVcZQ1ilujhDqkvXp1ZbeBpoHHo8pMYl1usFrBJmciIcQZbvv27SQlJVG7du1ghyLNioQwq2HnhqBbweks/Z5hgNelk5CgaN/YfvqDqwRdGzmIS3Tjybf4E4EjOfN0LCEG150rt5yrq+ZnadSO1TiUXvo9pRSpadDiLI0EmfxaCBFUWhU9IC8vL+DhcrnKjGD79u00bty4alavgiQ5EMKkLukSSvNGCsOtUVj4z510r0dRWAA2u8FNg0KCG+QpsFotDB9kw+IwKMy04S1uPWQYUJijYzittO7gok+L8OAGKo4pIkxjQDeNgkI4mKYwDF8NkNuj2LkfwsKgfzcdTZPaHyFEzdSnTx86d+7sf8yfP7/UZ5RSpKSk8P3333PhhRcycOBAZs6cecxEoqqdVGVuTk4ODocDh8PBli1b+P7772nbti09evSo7PiEEMfx3wlR/N+TOWzbqVGYR/GNCh1HqMGIQXbuGBwR5AhPzYTBtUjPTWPRUoOiTBtKaWiA7vDS5pxC3rs7LtghihM4r5uOxwMr1hr8tRM0FJoG9WprXDZAJ7m53KMSQgRZFfY5WLlyZcDLdnvp2vz9+/dTWFiI3W7nueeeY+/evUydOpWioiImTZpUyYGdmKaUqtDm+Oqrr7jvvvuYO3cuiYmJDB06lLp167J//37uvfderrvuuqqKtUxpablUbA3EsWgaxMdHyjY1oaXrC/nvqiLcykL9GIN7LgvnrNrmnd/gaClpTmYtz2VvmkFEKFx7bhgXJZs78SlLTf4NZmT75jUockJUBLRpphEeWvNqDGpyGZ4JpPwqX8k2rc4mrf8dp7dyh1V2WHSmdm1f7s9nZWURHR3tr0n9/PPPuf/++9mwYQMWi6VSYzuRCtccPPfcc9x555307NmTmTNnUq9ePT7++GO++eYbHn/88dOeHAghYEjXUC7rFlpjT2pN4h28OCI4ozaIyhEbrdGrY81LBoQQojLExMQEPG/WrBlOp5Ps7GxiY09vx6wK1+fu3r2biy66CIAVK1Zw/vnnA9CiRQsyMjIqNzohhBBCCCFqsFWrVtGtWzcKCwv9r23evJmYmJjTnhjASdQc1K9fn3Xr1lGnTh1SUlIYMGAAAMuWLas2vayFEEIIIYQolyDPc9CxY0ccDgeTJk1izJgx7Nmzh6eeeoqbb765koMqnwonB3feeSfjx4/H6/XSr18/2rVrx4wZM3jvvfeYPXt2VcQohCiHP7a5KfqrkCYJbuJiak5/gxJpeW62p3pIiNRpUrvmNTHyehU7dsPhDC+x0arUjMJCiKrndCmycgxcboXtGBNMipron6FHK3eZ5RMREcGCBQt44oknuOKKKwgPD+fqq68OWnJQ4Q7JABkZGRw6dIjWrVsDsGPHDqKiooiPj6/0AE+kJravDhbpiGVOM94q5LVP3GRma6DAYlW0aKgz+14H7ZqZP0nYuL+Iie9n8Nt2A7fbt582qKMx5oJwru8RE+zwTpnXq5g5T+OjLw0OZSo0TSMuCi7urzFhDNjtcoFiJnIcNae0TMX3Pxus/wMUViyah67t4dzOOrHR8hs8FabokLzuj6rpkNytXaUu83Q5qeQgMzOT3bt3lzn+6jnnnFMpgZWXHIArj5zUzOee5wt49wsPhlcDzXdhqYqPb2FhimVPh5o6Qdi4v4grnk0jM1tD1xUWCxgKvG4Nu0Nx92Vh3Hu+eWfQ8noVtz4AX641UApC7BqaBoVO33CfvTvq/Oc5sFjk4sQs5DhqPofSFC//12DbbkVsNMTWspGe4SYzB1o20bhlmE7tWPkNnixTJAdrqyg56G7O5KDCzYrefPNNZsyYgcfjKfWepmls3ry5UgITQhzfnkNuFn3lwTDAagNd811YKgVeAwoKNMbMdLLyJfMmB+PeySAzWyMkRGE94mhl2BUFBRpzPilgZM9IYsLNuY5Lv4Cv1xtYdYiO8I0PYbFohIcocgoMvv/V4K0PdW74vyAHKkQNpZRi6Te+xKBlE7BZNcLCdEJsGgmxir9SFJ+uNLjhX6d3KEkhgqnCoxXNnTuX0aNH89tvv7Fly5aAhyQGQpw+U1514/FoWCwaRzdPtxT/sv/eY3Ag3X36g6sEuzOcbN5loOuBiQGArkOIQ1FQqPH8ipzgBFgJFi0Dlxciw0rflYwK0/F6FYs/C0JgQpwhDqXBn1sV9WuD9agaOqtVo04c/LpZcThDqoHEmaPCyYGu6wwaNAiHo+Z1CBTCTHYeMnx9DI7xK9Z0MLwaP20y50nt930u3G6wHaNSwGoDFGxLLV2LaRZ7DyosGsfsfGyxaOxLNWf5CWEGaVmQVwBRx2j1Eh3pez8j+7SGJURQVTg5GD16NE8//TT79u2riniEEOUUWjwDu3GMa0cFoEFtkzbJjw2zoGm+JlJlMYpfDzVniyIAQkM0jOM0TDcMCLGfxoCEOMPYbWC1gvsYFawuN1gtx75JIWoIVUUPk6pwn4PGjRvz3HPPMXDgwDLfl6ZFQpwe11xg48dNLjxehf2oIfcMBXghKlrRva05ry67NrITVwtS0zQMm0I/6laG0+Ubmem6nhHBCbAS9D4H/tql4XIr7LbAMnR7FEr5RksRQlSNxomQmKBxME3ROLH0+4fSoFF9jbPqnv7YhAiWCicHkydP5txzz+Xyyy8nJCSkKmISQpTD8AscPPWWiwOpGi6P7+6WpfhOu9er0C1w3YXmvd1ltVoZ3juMF5YWUFgIISH4RisyfImB4YHk5jp9WoQHO9STdusIWLZC50CmQWQIOGy+pkSFTkVukaJ2tMat1ykqf/xtIQSA3aZxXg+NNz9S7D2oqJ/ge93jVew/5BtpZ0APDavMeVDDBXeeg+qmwslBRkYG48aNo2HDhlURjxCiAj5+OoRL7i/i4GHwuKGk9b3FCv/qY+WRkaFBje9UTbgolvQ8L4tWOSkq9NXSamjoFkWbphrvja4d7BBPSZ14jZemKe6aorEvTZFXBOBF1yExTmPmgxpNGpn3BCOEGfTsqOFy63y2UrF1p8Lh8OJ0QkKcxuC+Gl3byW+wxgvyDMnVTYXnOZg6dSrR0dHccccdVRVThchY0pVHxuc2rzc/LeKdrzy4vRbqxykevtFGi7PMW2twtJTDTmZ9mc3eDC8RITrXdg/jouTqPW52Rbhcivc/hrW/aISE2GjbwsW1l8sEaGYkx1Hzys5VbN6hsNpC8XoKadNMIzJcfoOnyhTzHPzwZ9XMc9AzuVKXebpUODl44IEH+PTTT4mNjaVBgwZYLIFj/77xxhuVGuCJyAG48shJzdyk/MxPytD8pAzNTcqv8klyYD4VblbUsGFDbr311qqIRQghhBBCCBFEFU4Oxo4d6/93Xl4eXq+X6OjoSg1KCCGEEEKI00L6HASocHIA8J///IdXX32VtLQ0AGJjY7nmmmsCEgchxOm16jcX2UW5nN3YRWKCOYcvPZ7dh1z8ul1xVm2Ns1vUvPVzuw3W/2EQHe2kVSMDq1WGMDUbrxfyCyA01MRXBUKIM16Fk4M5c+bw1ltvcdddd9GxY0cMw+CXX35h9uzZ2O12Ro0aVe5lffnll6USigsvvJAXXnihomEJcca645kCFn8O7jwrKBdYFPF185n/sI3eHcx/Eb3qDyd3znSx/9A/N2Iiwoq48TIrk28IC2pslcHtNhg52cN366CoQAMKsId66dFJ5/WpFsJCJUmo7oqc8MM6jTXrddIzNMLDPbRoqnNud0XTJpIoCFH9yVCmR6pwcvDf//6XadOmMWDAAP9rrVu3pk6dOkybNq1CycG2bdvo378/jz/+uP81h8NR0ZCEOGNdOTGflSut4NFBN3zHIo9G2h47w+728P5zLlMnCKv+cHLVBBeeo/qJ5RVqzH7Xy8H0POaOM+8kaG63Qb8bXfz9txUM0KwKNIUzz8J3K6HP9W7WvGPDZpMEobpyOuGNd3XW/qgTEgIxUQoUfLNS57c/4cZrvbRrKwmCEMI8KnzGycvLo3HjxqVeb9KkCRkZGRVa1vbt20lKSqJ27dr+R1RUVEVDEuKM9NdOFyu/t4JXB7sXbKDZALsCmxejwMqox93BDvOU3Dbd6UsMlELXNf+jpA5h8ZeKg5muoMZ4Kma94WXbNivoYA83sDkUdgfYwwyUVbF7l4WHX/QGO0xxHGt/0lj7o07DBorGZylqxUDdOhqtWyry8uH9JToFhcGOUghxXKqKHiZV4eSgY8eOLFy4EMP451ae1+tl4cKFtG/fvkLL2r59e5mJhhDixO6c5Qa3Dlavb6y4I+kaaIr0g1Z27DfnxfOfO12kZWigQNcDD1W6pgMKQ8H4OeZcP4BFn3pRXg2rvfQQena7AgOWfVu5w+uJymMY8MM6HYcdwo9q4aZp0LCBYt8BjU1bzNu8QAhx5qlws6KJEycyfPhwfvjhB9q2bQvAxo0bcblcvPrqq+VejlKKlJQUvv/+e+bPn4/X62XQoEHceeed2O3lbwZx9DWROHkl21K2qTnsT/U1X0A/RoHpCrwa3/xs0CzxtIZWKVb/4S2+8eKbF/louq5jGIod+5Rp99mMLA10dcwiRIecHM2061fTFRZBWrpGdJT6Zw/V/vm/o3gewoxMDU0z8W3EM4icByufbEvzqXBy0KxZM5YvX86yZcvYsWMHDoeDXr16cemllxIeHl7u5ezfv5/CwkLsdjvPPfcce/fuZerUqRQVFTFp0qRyLycurnpPrGFGsk3NITSkuK2CUmhHXF2WHIgVgAYtm4YRH1/+32Z10aIhQC6gldmty1s8Q1FkuKXaT7BzLA6Hi4IcDe2os6d2RCFabdV/AqEzVWSkIjLSi9ulCAsLLMOwUDtKKaxWiI+zEB8v/UbMRM6DZxgZyjTASQ1lWqtWLfr06UNiYiKGYdCkSZMKJQYAiYmJrFu3jujoaDRNo3Xr1hiGwf3338/EiRNLzbx8LOnpMothZdE03wFRtqk5XHUBzPjLVzugjrjbpRS+/3gtWCPd9E42SEvLDWqsJ6N3WzcOGzjd4FVGcVOiIxTvo/++VDfl+gGc3Vrjm1TweAwsFl8hapqGUgqvF1A6bZtj2vU7E7RO0ln+pe6rPSge8CQs1E5BoYuMDAhxaNRNKKJ45G9Rzcl5sPKVbFNhHhVODnJycpgwYQLffPMNUVFReL1e8vPzOeecc5gzZw6RkeXfAWJiYgKeN2vWDKfTSXZ2NrGxseVahlLID7iSyTY1h3uvDeWFt/IpTLcDBljUP9mB2wIWg8HnKdOWpc1mY1AfJx+tUKA0DHwJgqEMSrKhuBjF//UNMe06Tr1TZ8DPXpx5VpTdi24FiwYeNxguC7ZwL1PGWEy7fmeCnt0MNvymsXW7RqOGihCHr9lsejocTNW4YIBBvbpyTDUbOQ+KM1mF6zmnTp3KoUOH+OSTT1i3bh0//fQTy5Yto6CggOnTp5d7OatWraJbt24UFv4zjMPmzZuJiYkpd2IgxJnui7k2QuNcvotllwXl1MFlAatB1+4eXp1ovuZER3rl/gjO7VzcrEhpGMY//Q9ioxWfPx8SzPBOWYtGFl6YZCE0yoPh0fEUWHDm6RgeHUekhyfHaXRJLl8tqgiOhonw7+sMGjdU7NqjsXmrxh+boMipceF5BkOHGNLmWghhKppSFcuNu3TpwmuvvUa7du0CXv/999+55ZZbWLduXbmWk5eXx+DBgznnnHMYM2YMe/bsYdKkSVx//fXccsst5Y4nLU2q/iqLpvnaNss2NZ8Zbxby3mcGbo9GnTjF03fZ6NTSvPMbHO3Xv1089LKTg+kQ6oAbL7Vy8+DQYIdVaQoKDZ54xcsPGwxsNgsdWhpMGW2VCdBMxOmELVs10jI0aseHUqd2PnUSgh2VqCg5D1a+km1anU1auQmnt3JHhnNYdKb2aVOpyzxdKtysyOFwlBpWEHztZL3e8o/HHRERwYIFC3jiiSe44oorCA8P5+qrr+bmm2+uaEhCnPEeGBHKhOtr7knt7BZ2Pnm65iQ7RwsL1Zl6py4XJibmcECHdgpNU8TH66SlSbMUIcTplZ2dTWRkJJpWeqCLiqhwcjBgwAAeffRRZs6cyVlnnQXAzp07mTp1Kn379q3Qslq0aMFrr71W0RCEEEIIIYQ44ymlmDdvHq+//jq5ubl8/vnnPP/884SFhTFp0qQKTQ9QosJ11vfffz8Oh4MLL7yQbt260a1bNy666CKio6N5+OGHKxyAEEIIIYQQQWPiGZLnzJnD0qVLefLJJ/2JwOWXX87q1at56qmnTmqZFa45yMrK4s0332TLli3+eQ6aNGlC06ZNTyoAIUTlWLXBRXZhLmc3d5NY2xbscCrdL9sKWP6LizYNbVzew9wdrcvi9XrZcdjL4aIiYm1edL3mdUTOylPk5iviojTCQqWXrhBCnKr//e9/PPnkk5xzzjn+pkS9evVixowZ3HXXXRWaO6xEhZODa665hvnz55OcnEyrVq0q/AeFEJXrjlkFLF7pwl2kg3KCxSC+Fsy/P5TeZ5u/nf6rX+Ty8Ps5eA2KhzBV3PpKJt2b21n6oPl7fHq9XmZ+msdH6ws5lG2g6WnERehc3DmECZdEYreZP0n49W8vb37h5Me/Pbg9BuEhOn2TbYy82EH92tLpWggRbMWTlFT6Mqteeno6CQmlz4VRUVEUFBSc1DIrfFSOj48nPT39pP6YEKJyXflQHou+8ODOK87zNQUenbRUC8MeLmTVr67gBniKXv0ilwffy8Hr1YqraFXx/3XWbnPTY8Kh4AZ4irxeL7cuyGTu53nszfBi0cGiaRzI9LJgRQE3vZxRoYEeqqMf/vAwbl4+n//qxO01cNg0cgoMFq0uYuwLBew5VLkjhAghxJmke/fuLFiwIOC1vLw8Zs2aRbdu3U5qmRWuOWjTpg2jR4+mXbt2JCYmluroUJG5DoQQJ++vXW5WbvCCVweHFzTffAAKBYaBUWRh1FOFbH7HvLUHDy7KBnTfsC96yTTQgOGb8G17qoc/dxaQ3DgsmGGetKUbivj6DydWi0Z0mG/9LLpOeAjkFCi+3+zirdUF3NCneg8DeCwej2LW+0Wk5XppEm9BLy7D6DBwuRVbD7p5aYmTJ26tOcPSCiFMqCr6CJymPgdTpkxh7Nix9OrVC6fTyejRo9m3bx+JiYm89NJLJ7XMCicHAEOGDDmpPyaEqDx3Puf0zYRs8yUGAXQNdEV6lsaOfW6aJpqvD8KnP+X7mxH5E4MSuuZPEK57MYdfnzFncrBoTQEuA+LLCD8qTONwjmLx+kLTJgerfvOScthDQqTuTwxK2G0akQ6N1ZtdHMpwUCdWmhcJIURF1a1blw8++IA1a9awY8cOPB4PTZo04dxzzy1z6oHyqHByIDUDQlQP+9MNQC994VxCU+DV+PpHrymTgyXrnIDmqzUoaxV1X1Oj9DzzNkvZm+bFAqUunEtYdNiXYd5mRbsPGbi9ivCQsvtNRITqZOYZ7D6kqBN7moMTQoga4u233yY6Oprhw4cDMGbMGPbt28c111xzUss7qZqD77//ni1btuB0Ojl6guWxY8eeVCBCiIqxl/x6jTLurIOvSlODerXNOSpM/VpHNCMqi+FLGiwW895xDrVrHC+1MQwIsZmz/ABCHb6mbh6vwmopvR5uj8KiQ5jj9McmhBA1wbPPPsuHH37IY4895n+tW7duzJ07l4yMDMaMGVPhZVY4OXjqqad47bXXaNWqFREREQHvncpsbEKIirnmPDtPveEGQys9tIBSYFiwhnm5uJc5r7zuv8zB3K8KAO3YCRBwbY+Q0xtYJerdxsFf+z24PAq7NXD93B6FAs5tZd4+I33OtjBnmYX0XIM6MYG1B0opMvMNWifaaN3YvAmeEKIGMHGfgw8//JDnnnuOLl26+F+7/vrradmyJffff//pSQ7ef/99nnnmGQYPHlzhPyaEqDz3DQ/hxcVFFOZYAQP04gtor2/EIiwGg3uYrzlRifDwMBrF5bIr3ftPJ+SSvgZQPPKc4okRtYIZ5im5dUAEy34s5ECWQWQIOGy+pkSFLkVukaJ2pM6t50WceEHVVN04ncFd7Ly7qpDUHC/xEb6+B26v4lC2lxCbxjX9HcdsViWEEKeHeYcyLSwsLHWzHqBWrVrk5uae1DIrfLvGYrHQtm3bk/pjQojK9cWscEKjPL6Ou24LyqmDxwI2Rdd2Oq9OMGdH3RI/Pl2HuAj9n+N2cVMpNA00xWcTzd1QvU60lZdujqVRvIVClyI9T3Ewy0OBU5FYy8IL/46hSYJ5aw4A7rnKwRU9QtDQ2Jnm66C8L8NLdKiFMZeEcVkf8yawQggRbL1792batGns37/f/9qhQ4eYMWMG55577kktU1NHdxo4gdmzZ5OSksITTzyBwxH85gppablUbA3EsWgaxMdHyjY1oRlvFPLeN27cXo060fD0mBA6tao5F13/W5PP/W/lUuDyYtE1Lu0QwtzR5k4MjuRye3l/fSFrtzkJCbHRtp7GtT3CasQEaCW27zP46kc3eYVQO0bjoh5WasfUvOZEchw1Nym/yleyTauzSV9vwemt3MEtHBadqQOqfrLgjIwMRo8ezW+//UZ0dDQA2dnZdO/enaeffpr4+PgKL7NcycGAAQP8/QmUUuzfvx+bzUZ8fHypYZJWrFhR4SBOhfyAK48cFM1Nys/8pAzNT8rQ3KT8Kp8kB6fHli1b2LlzJ1arlcaNG9O8efOTXla5+hzccccdJ/0HhBBCCCGEEJVj//791KtXD03T/M2JoqKiaN++fcBnAOrXr1/h5ZcrObj88sv9/549ezYjR44kNDRwRsu8vDxmz55d4QCEEEIIIYQQ5TNgwABWr15NXFxcQOueIyml0DSNzZs3V3j55UoOduzYQXp6OgBz5syhVatW/nZNJbZu3cp7773HhAkTKhyEEFWtoNDDj1sMHA6Nzi00bLaTmuKjWvvXPVns3J/LbcO83HpFTLDDqXST52ax6Cto2dBg6fM1p79BibQ0F3dNVThsXp6e4CUuztwdkctyKN0gPUuRWEcnOkJGKDIbw1AczgCPB+rEg9UqZShqCJMNZbpixQpiY33nwaVLlxIeHl6pyy/XFVJqaio33nij/3lZE52FhoZyww03VFpgQlSGgkIPI54oZP1GA1eR70QWGq44r4uFeeNCakSSkNA3DwrtYESCgoenKx6e6aRX90L+92xMsMM7ZT1vSGdbvoJaRVDPy1qXRsI1bshwkPp5TLDDO2VpaS7aDLRAkQM8vv3x42VeCPGw8j0PrUw8z0GJr9Z5mP2WYtMmDa9HwxHipWsXgwdHWUhqVHM6XddkS78y+PAzxd+7FUpBnTiNwX11brwC7HZJEoQ4nRITE/3/vu2225g9ezZt2rSptOWX68qoe/fubNmyBfBVZXzwwQf+jEWI6qqg0EPPsfkc2KujNB3N4kvjC3J0ln2jSDlQwNfPRQU5ylOTcG4BFIUcMRGa8v3baWX16nAuvyfL1AlCzxvS2aY5oWGRb+4Glw4WBXXzIdpJwiBF6mfmnecgLc1Fm75WXxmiQCu+1eS2gNtCnys0Nn3nIj7evAnC/75x8+B0jdwcC44QhdWmKCzU+GqFlT83eXljJrRpJglCdTb/HYMFHxg43RAVDroFdh8wmPuuweZtOjMe0CVBECZn3nkOdF3H7XZX6jIrfNv066+/PuZ7qampJCQknFJAQlSWCfOd7N+no1kVdvsR9Xt2hcupsXErvPS/Qm6/PPTYC6nGJr2QBUURvjkONHXEsU35qjM9OqvXmnPdSmzLN3yJQZ4NjOKR0TyA0wKRbkgs4Nm3Ne4ZHhPMME/aOZfpvhoDTfmSHj8FXg2K7HQYbLBvfdBCPCUul+KJ2ZCXqxNf26BkcLvwcIXbrTh4wMKU2V7++6wkB9XVlu2KNz4yQIPGif9c7MREamTnKr79SfHRV4phgyU5ECZmsmZFR+rXrx///ve/6d+/P4mJidjtgTeTymrtcyIVTg527NjBzJkz2bZtG16vF/B1enC5XGRkZLBp06YKByFEVfjiRw8YOrbQ0r9Qq03hKbTw2mcu0yYHL//X4UsMUKWnMyw5T7stPLUgi/EjY05vcJXgqgmZEFcEbv2fxMBPgwIrRLiY/lYY9wwPSoinLD/L4juB6Aal7jJZFLh13HnmvXB+/ysPqYcsRET9kxiUsNnA4VD89rtGyj6DJok1b86DmuCTrxU5+YrG9Utf/EdHamTmKj79VjFscBCCE0Lw119/0bZtW1JTU0lNTQ14r6yOyuVR4eTg4Ycfxuv1MnLkSJ544gnGjx/Pvn37eOedd5g2bdpJBSFEVcjN56i7sf/QdUBXZGSf1pAql6H7LiyPde2oKVAaryzRGT/ydAZWOVb9rkFTr6+JTVm8xTMnO0w8GHnJOujHOIBrCgwL4D2dUVWabbvB8EJoSNnvh4Qq8vN0NqVIclBd7Tmo0DTQj7GPhjpgzyET/waFMLk333yz0pdZ4eTgjz/+YNGiRbRu3ZolS5bQtGlThg8fTpMmTfjggw8Chj0VIpgsFoXb0Dlm3Z7SMHd/5OL1MihdcwC+mWcUJNSu3IldTpcwhyJHaaAf68JDBfzPlDT+qf0piwJfAZtTWIhvN/R6wVJGjufxgK4rosJOf2yifMJCKN5Hy+bxKELtktgJcbp99NFHfPnll9hsNgYOHMjFF19cacuu8C/aarUSGemb6a5p06b+8VN79uzJX3/9VWmBCXGqWjby7d5GGTddvR4ARbc25j2phUS4i/sZlHHiNoofFi+rF8ac3sAqyefPaJBjB4eXMi+eHV5w6UQc58Kl2nN4i2t4ylg/QwEa2M1ZawAwdKCF0FCD3NzSZWQoKCjQqFPXoGcH8zadqul6dtKwWBQFBaX3Ua9X4XRD7y4m/g0KAf/0OajsRxX5z3/+w4MPPkhRURGFhYU88MADzJo1q9KWX+Ero44dO7JgwQKKiopITk7m66+/RinFn3/+icPhqLTAhDhVk0aEYA0x8BRZ8Hh8rxkGeNzgdVpwRBg8frM5+xsA7P4iEqze4oOQ9s8NZgOg+I57iCt4AZ6iZk1jIC3E1+cg3PPPSD4ocHjAbsDhMHYsNe9oRffd7vGVoUf3XS0bJbVBCrwWsHm54lJPcIM8Bc0a6PTtbeBxQ3a2hlG8j3o8kJWuY7PC8KFgscjFZXU18FyNts10DqYrsvMUqngfLShS7D4A9eI1rhgk5SdEZRo1atRx5w177733mDZtGq+++irz5s1j1qxZvP3226iybjSdhAonBxMnTuT777/nnXfe4bLLLiM9PZ2uXbsybtw4rr322koJSojK0LejncduceCI8GC4dVwFFjyFOoZXJzzaw4IJITRMMHW7IkYNLwhMELzFQxZpCkLcpK6MCHaIpyR1eS3YFQVFVgh3Q6TL99CAfRHc1t8W7BBPyfhb7bTq4AS7r/M8XktxB2wL2D00aF7ES9PMO4wpwPMTbAzo56v9SE/TOZyqk5WhExJmcONwg7FXm7sMa7oQh8ZTE3TOaaeTXwAp+xUp+wzSMhVNG2hMvdtCs0aSHAiz06roUXGffPIJ33333XE/s2fPHnr06OF/PmDAAAoLC0t1SD5ZmjqJNEMpRVFREaGhoRQUFLB+/XpiYmI4++yzKyWoikhLyy2zRl5UnKZBfHxkjdum2bkepvzHya9/e9F16NPByoPD7TViArQSDc7LxVVo8yUIuuLS84pY8FhMsMOqNEPuymDtDsDuG+LT5tbZ90lMsMOqNFu2uBh4vY6ryNe8xuow+PpNb42YAK3EL1u8/He5QU6eom6Cxg1DLDSqZ95mfcdSU4+jhqFYuwF++kPh8UBSE1+tQoijZiUGNbX8gqlkm1Znk77citNbuf27HBadqecnVeg7WVlZXHbZZdSuXZvmzZvz5JNPlvm5Vq1asXr1auLi4vyvdezYkaVLl9KwYcNTihtOokMy+IZGCg0Nxe128+OPP2IYBi1atDjlYISoCtGRVp4dW3MSgbLsXRF51EntGMPDmNTS52v2pIutWtnZu/7oC5Oa1Q6/UysLnVrVrHU6k+i6Rs/O0LNzzUoGhPCrBsngjBkzuOyyyyqtBuBkleuKyTAMFi5cyKeffgrAZZddxpAhQ7j22mtJSUkBIDY2loULF9KqVauqi1YIIYQQQgiTyMvLC3hut9tLTVQGsGbNGn766SeWLVvGlClTTrjc5cuXExHxT9NhwzD48ssviY0NvJn2r3/9q8Ixlys5mDVrFh9//DHXXnstYWFhvP/++7zzzjs0aNCAN954A8MweOyxx3juueeYN29ehYMQQgghhBCipunTpw/5+fn+52PHjuWOO+4I+IzT6eSRRx5h8uTJhIScuOa/fv36LFy4MOC1uLg43nrrrYDXNE2ruuRg6dKlPP3003Tr1g2A8847j/79+zNt2jRq164NwN133y0dkkW1lZfvZeUfXkJscG47C3Z7zWve0HdUJnvTM7nlEo0HbowJdjiV7tX383nzU0X7JI0XJ4YHO5xKV1TkYslKg8hIGNjJhcNRc/oblMjKU+TmK+KiNMJCpXmKEKKaqIqhR4uXt3LlyoCXy6o1mD17NsnJyfTu3btci/76669PObzjKVdykJaWRuPGjf3P69WrR0hIiD8xAKhVq1apqhMhgi0v38u/puWwMS8Hb4gL0LC95qB7QiTvToisEUlCwuAMiHSDTUEIPPMlPPPxYdrEWfl2vnmH+SwxbFw+363XwevrcL15Myz6uAh7mIe9X5p7NCbwJQX97yhi+2Ev6AaQD0qjYS0rK54NISba/EnCr1u9vPmJhx9/A7cbwsOgbzeNkf+yUj++5nVKFkKIEkc2/TmWTz75hLS0NDp27AiAy+Ubhvzzzz9nw4YNVRpfWcrd58BqDfyopmnouhzURfWVl++l0/jDZEXnQATg8u2v7ugCVhUW0muChx9nxQc3yFOUMCQDYt3/TKSl8PVqDfWyKceg362Zpk4Qho3L57u1VvAWH2s0AAUeC65cnYR++aR+a95ahKIiF62uL6DA6wUL/8xVoSv2ZLtpd5OXv9+GkBDzJgg//O5h0gteUg9rREYqHHbIydVYtAw2bHbz/HgbDevIuUQIEUwnP/To8ZdZPm+++SYezz9z2sycOROA++67r5JjKp9yD+Fy8OBBnE5nwGuHDh3CYvHdeU1PT6/cyIQ4RaNn55MVlQMuHd1zxK7usWLY3eyyZfLkO2FMuDYseEGegtsez/TVGGgKvIBWfIGl8CUKVsWmDPNOoAXw3TrdlxjoKvA4qxQYGjit/PfTfP5vsDkThNtnun2JQck8FQBovknQNIVTM7j6ERdLZpgzOfB4FLPe8JKWptHkLIVeXFEXHa1wuWDr3xovve/mibEygaYQ4syVmJgY8Dw83HdOa9SoUTDCKX9ycOWVVwY8V0px3XXXoWma/3nJv4WoDlbuzoUYFZgYlHBaIdLJm2tyTZscLP7JgCjlu9tc6ren+S6g7V4eeD6LGXfFBCHCUzP+2XxfUyIofQNGw5cwKJ2xT2r83+DTHV3l+HKDqzi500qvY/GcFeu2uoMSW2VY9auXlF0aCQkG+lGzINvtEBmpWP0THMowqBMrtQdCiCCpwj4HZlSu5GDFihVVHYcQla7I5gZP2RccuqZhGDo5hnkvvLCWHHmOkZQrBZrGO18bzLjrtEVVaZZ+U1zNqx/jCKtR3AzHvDclXF7AopWR3BVTCq+JZ2LafVAV9zEoe/0iwiEzS2P3QUkOhBCixLEmPzsWr9fLqlWr2LlzJ0OHDiUlJYWmTZsSGXlyk8+VKzk4urpDCDPQvDpYjnNhpSmsmPiCpGTVipOAUopfigkz58VlbLRBRirF/SjK+IA66v8mpKFQ2rFWkOJyNW/yE+rwrYLHA9YyzjZuD1gsEBZi3nUUQohgOnDgACNHjiQrK4vs7GzOO+88Xn31VTZs2MCCBQto2bJlhZdp4isjIY6vkS0MdIVRxtWjoRmARofa5mxSBKA5Lb4L47LurJckDB6NP96NK/2+CXz4lAa619e8pqwEoPiaulED7+kOrdI0iLXiu/g/RhmiqB1p3hG1+nSyEBOjSM8offGvDF+tQZOzFK0by6lICCFOxmOPPUbnzp1ZtWqVf5jUWbNm0bNnT6ZOnXpSy5QjsqixJv9fFFqeAyJcGLpvGBhDKQyLF8JdWHJCmDXKvENhHvqklm8EJk0DzSi+mARQvpFvFJBb7m5F1U69euFgM4qbD2mBNQUGvqTB4uHHd81bhnPucfj6G5TUcB3ZhMiqwKsz/RbzdtatG6czuC8UFUFqGhjFeZzbDfsOQIgDrhlsQdel5kAIEUSqih6nwU8//cRNN93kHyAIwGazMXr0aP7888+TWma5koPVq1f7x1wVwiwGd7fzQM8ELDkhEOLBiHBCpAvsXmxZ4cy9sg5N65v34hlgaDsbOHVA8yUEuvL9qg0g10bqJ+asNSiR+l0Y2ItHZDI034W0UdzUxubhibuNEy6jOuvezsH4YaHgsfjKzqrA4vX926tz20UhDOlj3uQA4J7hdq64yJfj7dyjkbJTY98+jegoGDNC47K+5v4NCiFqAq2KHlUvJCSkzBFDU1JSyjXHQlk0pU7c261jx44sX76cunXrct555/HBBx9Qq1b1GDs9LS0XE/fXq1Y0DeLjI2vcNs3I8nLvK/n8sd+FrkGv5iHMuDm0RkyAViJhcCaEen0X0R6dns11lsysHr/RynDH9HwWLdd8tQUaxNdSbPrIvE3CjpaV7eLmJ138ttOLRddIStR54yF7jZgArcT2fQZfrfOSV6CoHatxUU8LtWNqXuV1TT2Onimk/CpfyTatziZ9tg2np3JvNjmsOlMHNa/UZZZlzpw5fPLJJ4wfP5577rmH559/nsOHD/Pss88ybNgw7rqr4iOSlCs56Nu3L3369KFTp05MnDiRSZMmHTMb+de//lXhIE6F/IArjxwUzU3Kz/ykDM1PytDcpPwqnymSg+VVlBxcVPXJAfgmUVuwYAEHDx4EIC4ujhtvvJGRI0ee1ITF5arPnTx5Mi+++CI//PADmqbx6quvlvnHNE077cmBEEIIIYQQZ6oRI0YwYsQICgoK8Hq9Jz2EaYlyJQfnnXce5513HgADBgzggw8+IDY29pT+sBBCCCGEEOLkeTwe3n//ffr27Uv9+vV5/vnn+eKLL2jTpg0PPfQQMTExFV5mhesavv76a2JjY1m9ejVvvPEGr7/+Ot999x1ut4knkxI1Xmqqm6dedTHnbRf5+TVzX216fhpa2z3c+FDpjkk1wS2TsqnfN5euw7KDHUqVyM93M2uBmydm59fYffTvHYoVqxQHUmtmew2XW7En1UtqlifYoVQJpRR5hYqcPIVh1MwyFMJsnnzySebOnUtOTg5fffUVr7zyCpdddhkHDhzg8ccfP6lllqvPwZEOHTrE7bffTkpKCk2aNMHr9bJr1y7q16/Pa6+9Rp06dU4qkFGjRhEbG1vhWeGkXWDlqYltLVNT3XS9WlGQWzyiDwCKuHgvP32gEx5uC2Z4lSKhXy6+oYr+WT90RaS1kO1fxAcxssqRNDiLrFwHuC2+kYo0wOYB5SF1dfVux1oe+fluOl4GWfmGr8M1gKaIDNFZswgSEsy/j778huKFVy2kpWkoQ0O3KM5qqHhmipdzu5t/GNOsfIPXvi7gy80FZBZ5sFt02iQ4uKp7OP3a1YxO5Ru3G3y/wcvWXQpDQf3aGr3O1umWrGOxmL8MS9TE82CwmaLPwadV1OdgcNX3OejZsydz587l7LPP5t577yU/P5958+bx999/c/XVV/Pzzz9XeJkVrjmYMmUKcXFxfPvttyxevJiPPvqIb775hvr16zNt2rQKBwDwySef8N13353Ud4U4ltRUN8mXQkGO5Z+LLgA00tOsJF0YtNAqTUL/ksTgSL7hPnNdYTS7IC0YYVWapMFZZGWFQKENvLpvNCYFFNnA4yDh3Pxgh3hK8vPdNB2oyMojcB9VGrmFiuQhhulrEWa8qHjkSSuphzQMA9AUXg+kpGhcPcrKilXmvgLLKTC4+z9ZvLY+i0P5bhy6Dhqs3p3Hg/9LY/GaomCHeMpW/+pl3vtu1v9pYLFAiB227TF47SMP73/pxes1dxkKYWaFhYXExcXh8XhYuXIl/fv3B8AwDKxlTU1fDhVODtauXcv9999PdHS0/7VatWpx3333sXr16goHkJWVxVNPPUW7du0q/F0hjueCmw0wfCdqSioOSh4K3E6dK+90BjXGU9HvpnRQJYnB0XfufM9zPaGnNabKlpXjAJcVrF6wGr5ytCjfc0MHj5UHZpq3mdHloxVKFe+QZQ6RrTFgRBADPEUFBYrZr1rxesFqA7tdw2bTsDs0LFZwOeHeyeYeUvg/3xTyy4EC6oTaaBBpJybEQkK4ncZRDgo9BnO/ySY9x7zzcRzOVPzvay9oGi0b68THaNSK0mjWQKd2LY2vfzT4c7skB8LszDvPQadOnXj66aeZPHkyhYWFDBw4kC1btvDYY4/RvXv3k1pmhZOD6OhosrNLn4xzcnKw2Spe/T1jxgwuu+wymjc/PcM9iTPH/oPFu3dZv8/i11auN291+KYUO8c/APlqEC67y5x9EPpcn+1rSqQpX730kTQNdC94Lby21LyTaP3614mm0dRI2W/eC68nntdwFmnoFkrNgmyx+JqIHTyk8dOv5lxHj1fx+aZ8bLpGmD3wdKprGnXD7RwudLP8F/PehPh9q0FaliKxdun3YiI1vIZi/Z/e0x+YEJXJxDMkT506FbfbzcaNG5k+fTpxcXEsX76cuLg4HnnkkZNaZoXPqhdffDGTJk1iypQp/rv9v/32G4899hiDBw+u0LLWrFnDTz/9xLJly5gyZUpFQwFKXzOIk1eyLWvMNlWa78d5rOTAAAzNvOur6fgaxR5vBTTWbLCZch23pOi+MtQNylxHXQMvoExchiXJnXass4jvdbOu31/bfbUiVmvZK2DRwevV+OEnOKfj6Y2tMmTkKTIKPYRb9X/2UO2f/zuK2+LvzfCYtgwPZyksFo7ZryAqXGPvIWXa9TtajTsPVgOyLatWvXr1eOmllwJeu+eee05pmRVODu666y7S09MZOXIkJX2ZLRYLw4YNY/z48eVejtPp5JFHHmHy5MmEhIRUNAy/uLjq3cnFjGrONs08/tvF12XVvaPUsZWvvb3F6jHlOlr1XDxwVH+RI5T0FjR1GaZzopoDNGXa9asVXQQYGIYvETiawpfYnZUYQny8+Tru2kO9OGwWPF6FzRbYPMpmtWAoA02H2OgQ05Zh7bhCrFYnYWFlXy7oFi9xtSzEx5c9MapZ1ZzzoKjpZs+efdz3x44dW+FlVjg5sNvtPPnkkzz44IPs3LkTu93OWWedRVhYWIWWM3v2bJKTk+ndu3dFQwiQni4jClQWTfMdEGvKNrWFGLgLLWXXHhRX+dWKUaSl5QYhukrg8YJ+vKZ8vkI8+E2sKdfxsxcNBt7mAZfN14To6NtPhg66ArymXD+AyFBfx+Nj7qNAiA3Trt/I4Yqly614PArdHriChqEwvBAaCpecX0Ramjmb3nSs5+DLbbnUcujomq+plM1qwe3xklngwaHrdGls3jKsH2f4RgZL9xIRGliGXq8iI0sxqIeJj6NHqWnnweqgZJuKqrFu3bqA516vl71795KTk8OFF57cyCsn3Vg3KiqK9u3bn+zX+eSTT0hLS6NjR19dssvlAuDzzz9nw4YN5V6OUsgPuJLVlG161w0wc37xVVfJxdeR66UpFk7XTLuuqSujSOhXUPzsGFeWeEy7fu3bR4Ml35cAeHWwGL6zjFK+xMDQIMRF6spI067ji5Phxokl+2jx/49sn6IpJo8x7z7arZNG8yaKrds0XC6F1erre+D1KrweX63B4PO9WK3mXcere4Tz894idue4qBtuI8SqYyiDjAIPmU4PA5pGcnYTq2nXr8VZGh1a6qz/w6B+bYiOAE3TKChS7D6gaFxPo3Nr3bTrdyw15Twoyqkq+gicpv3nzTffLPP1J554Au0k23RVuENyZXnzzTdZtmwZS5YsYcmSJQwYMIABAwawZMmSYIUkapjxN9s5v4+B/xca8EM1GD3CoFcnc48h36Zp4RHPjuoFpXtJ/TYqCFFVntRV4RDi8o1Q5LWAWwdPcfONEBeX9TP3MJ+D+9sYfklJn4Pig3hJEWoGl56rcfNV5t5HP3nHS5MmCg0NjxtcTt9QphaLom9vLy89be4rsK4tbUwcXIt6ETYO5rvZke1ke6YTl6E4r1kkj14VVaoztplYLRojBls5t6NOTr5ic4piS4rBgcOK1k11bvqXldho866fEDXViBEjWLx48Ul9N2jDfCQmJgY8Dw8PB6BRo0bBCEfUUG8/Yydlt5sr7vJy6LAOKJo3hk/na4SHm6+N89G+XRgHQEKfHLAWXzQrRd2YIn7/n/knQANIXRlO12HZ7DxkK+5/oACD1FU1o43zs5PsTBzl5vKxsHO/L0lIjFd8/LJeIyZAi47WWPeZwbIvvMx/3UJePiQkKCbeadCxXc24qBzUyUHPVrX5fIOT3Wle4mo56HwWtGts/vIDiAzXGPkvK7sPKlL2KQwD6sZrJDXSsNagCdDEma5m7cvfffcdDofjpL5b4eTg448/5txzzyUmJuak/qAQp1uTs2z88r9gR1G1UldGHTWzZ824cC6x/v3oE3/IxBISbKz+b82enfXSCzQuveDI8f5r1ok4KkxnWK/QGluGmqbRqJ5Go3rBjkQIcaQBAwaUaj6Un59PdnY2DzzwwEkts8LJwaOPPsqiRYsqPTl48sknK3V5QgghhBBCnJCJ+xzccccdAc81TcNms5GcnHzSrXEqnBx069aNjz/+mNtuuw273fzNMoQQQgghhDCjyy+/HIDCwkJ27dqFYRicddZZREScfAuCCicH6enpzJ07l3nz5hEbG1uqPdOKFStOOhghqsrOnV6emg/hYfDQHRATYznxl0ymdu/DYKTTuZXB8lfLmM7U5MY8ksPS1dCojuL7t2teM6PcXC+zXoXwsDxuG+4lIqLm7aNZOYrcPIiLgbCwmtWsCMDrhfwCCA2rQe2JhBDVmtvt5umnn+add97B6/WilMJqtXLppZfy6KOPntSNfE2pirWK/N//jt94uySDOV1qWrvOYKqJbWV37vTS7RIryqnjG5zLV3doC/ey8VtvjUgSEgZmQ6wLIly+UW88FshyQKaX1JXmTxJaX5JNeo7dN6RpyfWkFzAUqd+HBzO0SpGb6yV5oE5h/hHDmCpwhCjWLTWoX9/8++ivGxVvfqDx46/gdmuEhyv69oCRVyvq1zV/klDkhB9+gjU/QXomhIfbaNHEzbnnQFMZY8NUauJ5MNhKtml1Nmnpdpyeyi1wh1Vj6pBmlbrMskydOpXvvvuOyZMn07FjRwzDYMOGDUydOpWBAweeVL+DCicHR8rOziYyMhJN0056LNVTJT/gylPTDoo7d3rpeoH92DPs2gxSNxllv2cSCRdkQYN8sBvg0nzralWgG5DjgH26qROE1pdkk55rAwvFeV1xgqAVz13hUb7hTk0qN9dLs176P/uof9bnkrk5FNt/MIiMNG+C8MNPikkzNFLTNCIjwGGHgkLfI6mZ4vnHFA3rmzdBcLrgP+/D2p8hxAEx0WCx2Ni7301sDNz4f9CudbCjFOVV086D1YEkB1Wre/fuPP/883Tr1i3g9bVr13Lffffx/fffV3iZFZ7nQCnFSy+9RLdu3ejRowf79u3j/vvvZ/Lkyf6JzISoDvpeYfnnoks76gHgttD1Ym9wgqsE7S87DPUKwWZAvgU8Vt9cAE4rFFkhygmx5r2oBEjPLk4MDFVcljoo3fdcAywaDz+bE+QoT94Fw7XA5FXT/pkJWvP9p8dlQZuO5pR5PIpZ8zXS0jWanAUJ8RAdBfXqQMP6sHW7xkv/MW9iALD2F19i0LA+NG4ItaKhboJG6xaQlw/vf+xLhIQQ1dnRFwmV9ah6Sini4uJKvR4bG0t+fv5JLbPCZ505c+awdOlSnnzySX87pssvv5zVq1fz1FNPnVQQQlSFwtziC+Nj/j4VO7eZdxzygy4bODxQaAHtqJ+y0n2zCEcX0fP/DgcnwFM08N/ZxTUGitKHquIEQYf5i4M2Xcsp255yVI1BGVJTT1MwVWDVOkjZrZFQG/SjitBuh8hwWP0jHEoz5y1aw/A1J3LYff2ZjqRp0DAR9h2ETVuDE58Qoubr3r07M2fOJC8vz/9aTk4Os2bNKlWbUF4VTg7+97//8dhjj9G/f39/U6JevXoxY8YMli9fflJBCFEljtWcCI5o223iu5Y2o3g9jvEz9mhgM9h2wJwXz7//bfmnm0iZitc7SE0aK0XJuh1rHRSYeT6A3fvB7S594VwiIhzyCzR27z29cVWWgiJIS4eoY7SYsNt8RZieeVrDEkJUlKqix2nw4IMPkpKSQu/evRk6dChDhw6lb9++7N+/n4cffviklnlSoxUlJCSUej0qKoqCgoKTCkKIquGbbbbGKpktWBmlaw7At+pKA2XOplM2u4Fb6cXrUdYnDEA7bQfgKlGybsfaTTWKaxXMuR+HhvjyHo8HrGWcbdwesFggLPT0x1YZbFbferndZb+vlK92wWbeCkohRDVXp04dPv74Y1auXMmOHTtwOBw0adKEXr16oR9dZVtOFf5W9+7dWbBgQcBreXl5p1R9IUSVsBV3Ni7r4rH4NUuoiTsk52q+Pga2MtZBGb7Xc22kfh9/+mOrBJ+/AHhL2uCXsY7FF9YW6zGuzEzA4eCIBOAoxa9ZTDydTJ9uEBOtSM8o/Z4yIDMbmpylaN3i9MdWGRx26JQM6VllF2FmNkRFQMuq75MohDiD2Ww2zjvvPG655Rauv/56evfufdKJAZxEzcGUKVMYO3YsvXr1wul0Mnr0aPbv30/9+vV56aWXTjoQISrblZd5+OCD4n4HJTdfA07gipee9OBr2G4+qd/GkHCFG+KLAC+4teIaBANCveDWIdNxosVUW8nJUWDk+2o/dM13C5bi9SsZscgNB1ZFBTnSkzdrisGYCZbi0YmOHKlI+UcsGn+rgVn30boJGoMHwLtLIDUN4mN9fQ/cbjh02De6zzX/Uui6OWtGAHqeAxs2wt8p0CgRQkJ8HQTTM+FgKlzQD+rXCXaUQojjMtkMyQMGDCj3KKEnM/9YhZODunXr8sEHH7BmzRp27NiBx+OhSZMmnHvuuaeUpQhR2eZOt/D7ZidbN9op3fxEMWiwk39dZM72+CXqeuBgWgjEOCHMi7/5idMCB8JI/dLck4Wlfh9OQu8C37WxfkQbHAW4YdgAT3ADPEXDLrGw/FsvH39m8ScDvlX0/btPT4N7bjVnYlDinlEKlxuWf6Oxc88/eV1cLcWNVykuu9C8iQH4Rin691Xw/jLYudfXT95mVYSGwIX94fJB5u4WI4Sofu64446A50oppkyZwp133lnmyEUVddLzHKSkpLB9+3ZsNhtNmzalYcOGpxzMyZCxiCtPTR3f+dffvVx2k4XCAl/yGhvnZe0yo0ZMgFYioW8WRCvfJGhuHbvTzd4V5p3f4GjnDs9m6277ER3JvaSuOvmp4aub/fu9DL5B52DxwFJxteDLt2vGBGgltu9SfLVSIy8fascpLjoPasfWnKtmpwu2bIO0DKgdH0qduELq1Jyf4Bmjpp4Hg8kU8xwsSamaeQ7+1aRSl3k8HTt2ZOnSpZVyPV7h26YHDhxg/Pjx/Pjjj0RHR6OUIjc3lwEDBjBt2jRiYmJOOSghKtPZ7S3s+gn+abeuYdZmGseS+l1MjT6pff+2uWtATqR+fQu/fnn0hUnN2kebNdJoNqLkWc1JCko47NChTUkZWklLO+4ItUIIUW1VuB3QpEmTsFgsrFixgnXr1rF+/XqWL19OZmYmkydProoYhRBCCCGEqBomHsq0KlS45uDHH39k8eLFJCYm+l9r3LgxkydP5uqrr67U4IQQQgghhBCnT4WTg2bNmv1/e3ceH1V1Pn78c+5s2UhCSCZAWBVRUMQFEBSwoK3Wte57rdYvVkuptbYutXXB5avUpdZK609b168raq12c18quKNVZN+3DAkEEpLMcu/5/XFnJglkQoCZTM7wvF+vIWRuMnnOnDsz57lnY+HChQwZMqTN/atWrWqTMAizRCLQHIaiIoNT3Q6MP2YLC5d5QWvOP9Hm7rvNXeEmlYqhdeBrhPp6Qityb3mU4F6boDAPmpoJLe6Z7XDSbtOmKL+aAXkFW/jN1Bilpbm3OP6iZQ4r12qG76PoE8y9BSxsW7M1rMkvNHiJZCFEt/fSSy9td5/jOLz22muUlZW1uf973/veTj9+pyYktw5iwYIFPP3005x33nmMGDECj8fDggULeOSRR7jooou4/PLLdzqI3ZGL46u70uYt8P5sxexPFFu3KkpLfYwYFuGIsU5OTKYbf8wWFq4rctf898ZPlKgFMTj/6K05kSQED4qA12o7jFsD9Q2EFpRmKar0Ce63GXr7IGCDpd2yRSzY4iX0SV62w9ttmzZFGXaswlFOy0BPB5SjmP007LWX+UnCg/9nc99fFDWb3HH4lgUD+mru+rVi/Cjzk4TmiOaDeVFmz4tRu8WhsMDPPn0cxh/gY68+uTV3JNfl8tytbDFiQvKLGZqQfEpmJiRPnjy5Uz+nlNqlpUw7lRxkOojdIS/gXbepDv7fYxbz5iuKi6GoENA+1qyPMqi/5n8udOjXN9tR7rrxx2xh4foiKIgvd2krtwFtxZfDbPQQ+sLshknwkCh4OpjcucXsBCG432bob4HfceeTO8ptQCsNjgUbfYQ+MjdB2LQpyr7f0eCDtlslJxJZxYJ/K3r2NDdBuOOPDvc+BHZ8p2elNDq+u7ffp3j0Ls1RR5jbgA5HNY++FmbOvCh5ASgtVHi8flZXhykrVvzgO3mMGGz2ksl7EkkO0s+I5OCFDCUHp3bdakXp1Kl3rDfffDPTcYgseO0ti6+/UewzBPw+t1lSUKAo7gELFiteetXix5c4xq7RvXBdIRTG3KTAaZUE2IDX3SgsuL8m9LWZDZPgXtXQZj3jbbsOgB6GL/fZ2wM+G2KKZPkc3OJ5HSiNEhzSZOwwo8NPJ54Y4G72lhRPZH1w8Imw/P2ujy0dGhsd7n8k/pLzxLeqiNejrSES1fx8umLuP7MY5G6a802MOfOi9A9aFOap+Puohx4BiyXrNM+9G2bvvh4KAoa+kQqxR8jE69Pc1/wuXc6YP38+S5cuJRKJbHdsV8Y2ia63eQt8/LmivNxNDFrzeKCqL8xfqFi5GgZmZwuL3WfhvjaddnoHYsq9Gm1mXuDq2Xpc4bZvQvENwxQEB1YbOQchuPcm2McbbzRvUz6lWpK8ivxshJcWtVs0+PQ2iUGcBpSmMWLuB8xtD0A4CpbSWNtcZfAohQ2sr4FPvnAYNdK8XjzH0XzwdZSAHwrz2pZPKUX/ICxb5zBvhc2oodJ7IIQww06/W/32t7/loYceolevXgQCgTbHlFKSHBhi4yaob4C+fdo/3qMI1q6D2o2Kgf0N7Vv1ancYSrviu9GanBwkG1s7aDwWGzqvojgPrGjL9hTbiSdAXkPPT+jc+WeZW74FSwA03hRD3zxKY6P4z2cwamSXhpYWjWGo2eJQXNB++fxehQZqt8gEZSG6tUwsPWruW/fOJwfPPPMMt956K6eddlom4hFdxO8Hr9ddpSgvsP3xaMydNOgzd6hz8sprSvG2pflaj1VvRyzWZZGklU3H9ZMYEGxyHZoceycUxjt1HL19zwG4eZ8CykrMfCJ8XvB6FNEUY5W11jiO+3NCCGGKne7H7dGjByNGjMhELKIL9amEwQM01RvaP14dgt6Vmr0Hm/mhDUAssYJPO2VQ8VVvUvYsGCBid3CwpeEc+qZ7TwRL5TsHNrurEnl0+1vNenCH49R3eWhpo9obTrQtg8/RH10AllLE2imDo92JyXk+OPtEM8sY8CkOGeKhtl7T3toemxo0xQWKffuZ3EUphNjT7HRycPXVV3PzzTfz0UcfsXr1atauXdvmJsxgWXDUkZqAH1asdHsKwF2ne+16aG6GoyZqCswdzg1N8cal32nVg6DdYRo+xz1W35DVEHdH6MtAq7yndZ9oq0aKbe5whiee6AkNXrdx3DpB0PE6VECTRegLc0/SG3+MWz6l23b+KOIJrOLiU7IUXBqMPdhiyEC37iIxNyEAd+WimO2OjDvuKPD5zJtvkHD4/j769LRYtEYTjrrl01pTu8Vh/UbN2GFe+vYyt3xCiD3PTnd2Njc38/XXX/P9738f1aqbWGuNUopvvvkmrQGKzBl5gOb8Mxz+9k/F0mUKrSHgh6IiOP1khyOPMLjXAAgtLCA43AadSBDiBxyg2QMNUULLDB2Pn7CxFsp6tWpYtqozRxP63J+NqNIm9GEewcM19Ii5k4/jk6xxFDRasDKa7RB3y2UX+njlrSgfz6dliVYAFDiK/for/vdak8f2wat/Vnzn+5rlayDmkEzyPEoxYQzMvMXshnP/Cg8XHZPHc++GWV7t4GgHny9KvheOGeXjlCMCbT4rhRDdkMw5aKNT+xy0Nn78eI4//njOPPNM8vK2X1+8q3dJlrWId1/DVpi3QFHfAH0qC+jbeyulJdmOKn36jdxCxCl09wPQgA3nf6chJzZASwgeGAZ/fOiCo6FhE6GFwewGlUbBIZugdz54HDcxaIDQ5+b2GGxr6dIoR/8AGprd7/N98NbjubEBWsLfXrf505OKhq0QLIdrp8LBw81ODFoLRzXzV9rUbHGo6FVAZY8IlT1zp3x7CtnnIP2M2Ofg+eWZ2efg9EFpfcyustPJwZgxY5g1axb9+3eP9S3lBZw+8qZoNqk/80kdmk/q0GxSf+lnRnKwIkPJwcC0PmZX2enLGhdffDF/+tOfCIfDmYhHCCGEEEKIrqMzdDPUTs85+M9//sPcuXN56aWXKC8vx+NpuwrDG2+8kbbghBBCCCGEyHUrVqzg5ptv5rPPPqOkpITzzz+fSy65JCux7HRycOqpp3LqqadmIhaRRV99Y/Pxl3D46DD77Z3taNIvOLQWmosAh9EjGnn11V7ZDintKoZsAl8TNG4ktLxr5/50heCBdeAEIBomtKA02+GkXUODzf2PQmF+AxefZVNYmHvLXzaHIRyGgnzD91BJwbZh61bIzzf4kqEQoss5jsOUKVMYMWIEL774IitWrODKK6+ksrKSE088scvj2enk4JRTDF5XT2znz8/Y3Hinh+am+Ce1juELKH54foybrzK/cRIcWguxSvBWQnz+6seLehDcSzN6WCgnkoTggTGwveDp5U7WzS8geKCGpk2EFvXMdni7LbjfZvCUgIqXxVdAcH8Nyib0lfnnaEODzYHHKhq2qviu1w7Tf68oyHOY86Kmd2/zy7huPbz3gcVncy3CYehRDGNHO0wY59Cjew9F7pTmMHwwx2L2R4raWkVhkc0+e3kYP85hL5P3ihFCdImamhqGDRvGjTfeSFFREYMGDWLcuHF8+umnWUkOdnpC8gUXXNDhsmyPPfbYbge1M2TS0K67/1Gbm+9IJAW07Bgcr97TTo4x83ZzV9sIDq0FXdlqZk2rZSLREFOElhi6e3Bc8EAHot6WtfJbsxyImp0guIlBqVuHWrecnyq+8pS2CX1t7jna0GCz10TlbubWZqfr+P+VZum7mqIicxOEFasU/+8RD6tWK3qVafICUL8VtmxRHHiAwyUX2pQYvHBYOAyP/p+HOR9b5AWgtETj8fhYvTZKWU/4wXk2I/aXDylTyITk9DNiQvKzGZqQfObOT0jWWvPZZ59x+eWXc8MNN3DcccelNa7O2Omeg8MOO6zN97FYjFWrVvHOO+9w2WWXpS0wkXm33t2q+hPtq0QbRcOsv3m554YoeXmGNkyiQfC3Tgi2SWq9EBwEoeVdG1a6BPdeA/5+8Xakbru8gAM4FuSbmxgAYJW45XK0+wmT3KtCg6VAe+g7ehNrPy7NYpC77vgfQLJQbS66JJIfxYTT4fN/dnloaeE48MJfLdauhWH7aqz4OVpaCpEKzZdfWbz5tuaUk8zdrG/OxxZzPlb0r9IUFrq1WVCg6FEES5bBcy962HuvmNkbSgohdllDQ9vNVv1+P35/6j2IJk+ezNq1a5k0aRLHHHNMpsNr104nB1OnTm33/hdeeIF///vf/PCHP9ztoETm/fkZGzvqcxsg2154bbVZ2GXXWvzlni4OLl28ndh4yOsFDO09KOwNkXgZt61DCzdBiCqCg1cTWmbeHITgvnXg6+n2GGzbW6lUPGGAWJO5l52/WdLBORpP1NdUd1k4abdsuWLhYot+/VoSgwS/H8p6aj78xOLbRzkUFWYnxt3hOPDBh4qAX1FY2Paqo1LQvz8sWw7z5itGHSyXoYXovjKxUaH7mBMnTmTr1q3Je6dOncpPfvKTlL913333UVNTw4033sjtt9/O9ddfn4HYOrbTyUEqo0eP5qabbkrXw4kMe+O9+Cd1R68HDfMWdkk4maGg7VCNbQ+20+g0ibYABVYHjQ5tQb6h8yp88dZiyiqM9yQ45g4rSjL4NOxI7SZ32E2qhn9JMYQ2KOrqUv9Md9bYBDW1iuLi9l+Dfp+b29bWJrpkhRB7mnfffbfN9x31GgCMGDECgHA4zFVXXcUvf/nLHf5Ouu10crB27drt7tu6dSsPP/xwl++OLHZdz9JOfFApyM/prvBcaJFpt4cgZftYgxMFtt/NvPuLAR28ISZ7FFJlDyLb/D5QShOLxTvpthGJgter8XXt517a+LxuuaLR9o9rDY6jcnJlJiFySib2JYg/XlFR0Q5/tKamhrlz53L00Ucn7xsyZAjRaJSGhgbKysrSHFzHdjo5mDx58nYTkrXW9OnTh9tuuy1tgYnMuuUqzbMvkvrFEG9vXX+FAxg658AmPrSovcZj/D67y6NKHx3FfQm3U4kO7iRXj01oXveeCJbKT88J87v/K3DnFjjtDS0iXo1hzEx+oCAPGptJfYriNkBNNWQvTUUFVIegqm/bY1pDKAQjD9AEy7MT3+4KBOCQkQ5/f81DZVBvd4puqoPiHpp99zF3ToUQIvNWr17N1KlTeeedd6isrATgq6++oqysrMsTA9iF5GDbTc6UUvh8PsrLyztcxUh0L6WlHobsbbN4sWe7RXwSDZXiUoejxxuaGABEt4KncJury60Kq4FoNWDmsJvQV36C+9tgW24yAC1zDcAdbuSLkcbRg13qV78q5Xf/Z4P2xKsuniBoHW9Iu0lDaJ6ZiQHAvTdqplwDyfMx/t+WfE9z3eXmDkcpKoLJEx2ee9FifTUEK8Cy3Cvtq9cqCgo0k450jB7dd/hhDp9/YbFoCQzsD3kB94JZ7UZYH1J8Z7JN3z7ZjlII0Z2NGDGC/fffn+uuu45rr72WNWvWMGPGDH70ox9lJZ6dXsq0u5HlxnZdc7PNYSd4WLfW2u7KZUGRzdx/O5SWGpwc4K5GhN8bX+az1TKRWkFzE6GVZvf3B/deA3lVYHtIlktp9+aLEfrS7PoDCB6wzaz5ROPZ0eCtI/RlaXYCS5PLfmUz6+/trKaF5tvjNU/+3uw6tG341+sWb7xjsXGTik8V0fTpDSefYDP6EPPfwBcsUjz3gsXylQpHK3w+L/l5UQ4b5XDKSQ55gWxHKDpLljJNPyOWMn1mJeFompcy9SluOWtAp3++urqa6dOnM3v2bPLz8zn//PO59NJLs3LhvVPJQXtDidp9MKV4/fXX0xJYZ8kLePe9/G+bG+/ysKVeUVCguPT7UX78fbMbJK0FB9SCJ+gOTwFwHEYP35ATG6AlBA+IgPLFe0lsaKoltCiY7bDSJrhvHXhLaFn2M0roK7MTu9bWr7c58RLF6nWApags0/zz0dzYAC1h4yb4ZoFFczMUF2uG76cpLMh2VOkTDsP8hYqaWkVFeT6Vwa1U5s5LcI8hyUH6SXJgnk4lBy+++GLKY42Njfz5z39mzZo1HHzwwTz11FNpDXBH5AWcPvKmaDapP/NJHZpP6tBsUn/pZ0ZysCpDyUH/tD5mV+nUYORTTjml3fvfeOMNfv/739PY2Mgtt9zC6aefntbghBBCCCGEEF1nl2YqrlmzhltuuYV33nmHU089lauuuorS0tI0hyaEEEIIIUSGZXApUxPtVHIQi8V4+OGHmTlzJgMHDuTJJ5/k4IMPzlRsogu9/rbDa+/CURObOGZStqNJv+CQeoj4Ac1+g6K8+2737uLcFRUDNoMvAk1NhNaUZDuctAsO2AyeArAbCa3MvfJ9/XWMk74PlrWZvz7qMHy4matMdaR6o0PtRk1VpUVJD4OXKEohEoHQBnC0k5zilEscR7OhFmIxqKwAb2d2oTdMOAJ1mzWRCDm5P4XjQMNWd9WwwgKz9wEVmdPp1Yo+/PBDbr75Zqqrq5k6dSrf//73sazd25l0xYoV3HzzzXz22WeUlJRw/vnnc8kll+zUY8i4wN1z9U0Of3nSizvRs2UNxYlHRHn+L+bvPBscUg9WacvSl4C7MZhmvz6bcyJJCO6rwWO1VKGDW42NdYRWmN+IDg7YCr4ScFqt6KMcUDahJea/+L/+Osak7wXalg8Nlub+28KceYb5ScLrc2Lc/0KYeaEwttYELIsxg/K47sIAQweZ/z5Ttxn+8oTFa29bbKpT+P2K4UNtzjrN4VvjzT9HAV7+t2bWP2DRMnc14cpyOG4y/OAM8PvNb2HWbIT3P1R89Blo/HhUhDGHwPjDNGU9sx3d7otG4cNPFB98pFhXrfBYsO8+mgnjNPsNzew5asScg6czNOfgbDPnHHQqObjqqqt49dVXqaqq4oorrkhu0NCe0aNHd+oPO47Dd7/7XUaMGMHUqVNZsWIFV155JTfeeCMnnnhipwsgycGu+/EvHZ57ycd2SyjG15Hff3iMt14y900/OKQePKWt7mnV8MJdLz+00ORd0CA4DHcVpjZr48dpYKvZCUJwwFbwloJjAfElWgG0FV+yNUZoqbkbTH39dYxJJ+W1LEGrE8lPy74cb73czP77m5sgvPimzXWPbaFeRwkoD16liDgOURx6BwI89ssihg8xd1WmLfUw7WoPn31h4fNBj0KN1opNde4+D1dNjXHqSWZ/SP3pcc3Dz7hX1YuL3KvO9Q3uasKTxsEd15mdIFSH4MHHFYuXKcpKoaynj9qNUTZthn2HaP7nAk2FwYvbxWLw9CyLt99XeL3QsxRiNtRuhKJCOPcMh7GjMneOGpEcPJWh5OAcM5ODTn3ivPLKK4C7g9tVV12V8ueUUnzzzTed+sM1NTUMGzaMG2+8kaKiIgYNGsS4ceP49NNPdyo5ELuu3cQAkv2MX8/zUl8fpUcPQ6/sqVZLX7Y9EP+iCO6tjL36HOxXB8XxS1rtFUEBBaUpDhrCWxJPDJz4UrTxutNOvEHtIThoE6HlZiZAk05p/RpUrU7XxKZoikmn+AgtNLMOIxHNbU9vpUHHKPf5seLvLYV4iNqa9eEwN/7Zx7O3mbum6aP/Z/HZFxaV5ZqCQrcKfT6LkmKbVWsVDzzs4cjxMXp1/SanaTF/seaxF9z/D+rXcn9pMWyuh7fnwF//DWeckJ34dpfW8PK/FIuXK/bdB3weKChQ5AXcTfsWLFb8/XW48CwzX4MAc/+reOcDRe9KKG7VRi8vg5Wr4cW/Wew7xKZnadZCFN1Mp5KD+fPnp/0PB4NB7r33XsDdTfKzzz7j448/5oYbbkj73xLbu/omB9jR1TrFd860mP2ProgoA6zWOyO3Jz4cB0N7D3qUpi5agoJg1WYj5yAEB2wGbwXuEJttCmq5uyOjFXjKMLYO7Q5eg6r1z8S6Ipq0e+41m1A4QpHlTSYGCT6PImBbfLG2mWWr8xjcz7yLELEY/OtNC58XCgrbHrMs6B3UrF2n+MdrivMNbVy++jpsaYBBVdsfK+kBmzbD3980Nzmo3gBfzVf0rQTvNi9HrxcqgzD3K8VxR5vbe/DhJ+7FhuJtLt4rBf36wsLF8OXXiiOPMPMcTY9M9HyZ25vWLfqqJ0+ezNq1a5k0aRLHHHPMTv2uTKbZNW/+x2LHJ65mzTqFUia/YXRURncoh7HnkEoxnKg1C8gvNLOM/uJ4mz9Fgmep5Dh9I8uXsIP8FWXu+9ziNTYOmnxv+w3/PMvDVsfmm2UOe/U3LznYWAcbNykKC3W7VRjwu19XrzH3fXTVevdtxJMijy3Ig9XrzD1Haze5E3T7BLeZmhYf6VdaDMtXwqY6CJZnL85dpTWsXqsoLm6/jrzxKYcbN2buHDX13NiTdYvk4L777qOmpoYbb7yR22+/neuvv77Tv9urV/cex9Zd9eq5lRXLd/RTioBfUV5e1AURZULjDo67b4TdfSxkSrphxyOGNKCjlJcbOKPO3ggEUjecHR0/ps2tQ5o6dXHJ1PJVlCmUqgel8LSzfI9jazxK0b9vAeXlgSxEuHv8fodAIEos5g4las3n8+A4DkopysoClJd3i4/bndarZxNYse3Kl+Bohx5FFuXlhe0e7+4qgw5FhVG8PkV+Xss5WpDvZnZbt2oKCzWVQR/l5eYlsABlPWOEajQFBe2/2fh9DuXlHsrLzZ37s9tkKdM2usW71YgRIwAIh8NcddVV/PKXv8Tv93fqd2trZULyrvjLvQ4jj0ys05b6suU102LU1NR3VVjppT2tJnam+hnMLV/MhoA39RtQfOWiDUvzjSzjCZMaeeXtArd3QLcztCjxrROmpsbQYUWWJ14+tj9NE/cpc8/RYw9z+N0rFnXhCKX+tutCOlrTYEfplx9g/8FhamoiWYpy9xw8wsNrb1v0LLFJLODn83mIRm021UEgAKMObqamxswPqoMP0LzwD6irsyncpv0fi0FjM4w92Db2HC0pgl5liqXLFYMHAMpNDBqbIqBh2QoY0F9TVBChpibb0e6a/Ycpvn7BolfP7XuA6uvdIXB9KsMZK59SciHXNFlLg2tqanj99dfb3DdkyBCi0SgNDQ2dfhyt5bYrtz59LAqKHDocz2Bpfni+lfVYd/VGc2NLWdorH0BjXdbj3NVbaJHHXbY05YsDsJ2sx7mrtz//uQSUHW8gx+cYQHyugXbPXeUQWubNeqy7ejvooLBbUYnhYbpV3SV6RSqbsx7nrt726m9x5JACYmg2R2M42i1gzNbURWP4sDjvW/lYlsp6rLt6O/tUh7JSzcrViuZw/BR1HHfIUZ1i7CiHg0borMe5q7ejj4D994H1NVC3xV0nX2vY2gQr10KfCjjt+OzHuas3nw+OmuCWa9VasOPTe2IxWLnGfR1OnqDxeLIf667eRh+iGdBfs3AxNDa69zmOO1Rq5Wo4eKRmr0GZjUGYJWvJwerVq5k6dSrV1dXJ+7766ivKysooKzN0WQfD/PcdG5/fhmSrRLtf0KAc5r5p5iTIhNDKAERbt54T5Yxraia02vCrGVs20eaqc+vVWh1NaIHZgz1DSxywEr0CLSv4JBIDYrXZCy4N/v2cFwLxBAG2ydU1eCLM+0+36ODdZb+7KsDkwe7QxNpolA2RCHV2hDzLww+OKGLq2WbvNDVmlObaK236VGrWVyuWrlAsWaaIRBRHTXS46bqWHgUT5eUp7rweRh8EWxth2Sr3VrMR9hoAt/wC9h5o9vvM4aM1Z52iyc/TLFwKX813WLQUCgs055yqGWP4Xq8VveDi8x2G7qNZsw7mL3Rv9Q0w8QjNuac7Rp+jIv06vQlautm2zZlnnklpaSnXXnsta9as4brrrmPKlClceOGFnX4c2edg993zgMNdf/QQjSk8Hs2px9ncf0fuvFME+9VDfknLrChHs1/f3NgALSE41AZPvBGpgcZNhFaWZjOktAoO2Ay+MlqWoY0SWmx2g6S1Z5+LMfVXPnDiff6Wzf23RnNiA7SEz76xefa1GFsaoXcZXHiCj4F9c+d9Zks9/OsNxcpVil69Ahw6sokR+2c7qvRxHM2cz+CTL9wRjUP3gqPHu8lDrti8Bb5ZBF5vAbbdyPCh0MPUKXftiEbdpVlDIXdE496DNf36Zn7CsBH7HDy5OjP7HJzXb8c/2A1lLTkAqK6uZvr06cyePZv8/HzOP/98Lr30UtROnKmSHKRP4gUsz6mZpP7MJ3VoPqlDs0n9pZ8kB+bJ6mWpyspK7r///myGIIQQQggh9miyz0FrudNnLYQQQgghxM7aZkpi2h7TULkz4FPsliee0Zz+fYfb7m7KdigZEezXQHBgmODAJoIDOr8alkkq+m9G9ailok9dtkPJiGC/JoJ7RQn2z81zdOXKCGNPjrDfxE2sXGnmsp47UrcFVq1xV0zJRU1NmnkLNctWmr2YgxBiz5bVOQfpIOMCd88ZFzq8M9sHlnZTRce9DRpg89Hr5naJJQT7NYC/FHR8hRsgsRoTsc2EVpo/2yy4DxDzgU7k+ho8DkRrCa0syWZoaREc0Ii7wHqiDuOXeGyH0ELzz9GVKyOMOtWCHmHIizcqm73Q4OeFezXjj+jcni/d2dyv4PFnLT7+HKJRRWGB5sgjND88T9O3d7aj233VGzS3/F7zzhzY2qjweGDwAM0PTodzTpZrcCaROQfpZ8ScgyfWZGbOwflVaX3MriLvWnuw4850eGeOF7zaTQ50/KsXlq/2sN8YsxtewX4N4OvZqtGcoEB7wGvgrsHbCA6xIOp3y5hckVaB7QFPubvKj8HcxKCobeID7veWh+C+WQstLVaujDDqTAcqG6Ag6m6I5ij3/8FGTv2FY3wvwgcfw5W/tvjXm4poTBHww5Z6xTMvWky9xmLVmmxHuHs2bNSc9WPNS/9SbGkAr9c9R+ctUFz/W7j34Y42IxFCiO5HkoM92CdzveAhvktJ/KqsTuxGCxs3K2prDb504iuhZelL1XLhOdmBoAgONjcBCvavA7vV8qVWqxu4DWhfr6zEljYFhe45qbY5DxM7X1uW0cOMRp2ioCwMtgVhr/s1+X8FPcOM+l62o9x1sRjc/QeLmlrF4IEQLIeSEujTG/pXwcLFipl/Mftj6Lb7YckKRY8iTVmporBAUVKs6FWmiUXhwSdh9XqD30eF2BPoDN0MZfa7sthlZ1zotCQG282ojycIHs2Yb5t8isRj76j9rwyekx/o2ZLUtdM54u6QbBGsquvy0NIh2L8pntSleIdNJAiF+V0aV1oFbLe3LtbOSRqz3GP55o5ff28OLFupCJaz3SZLfj/0KIT/fAjVG7IT3+6KRDRvfqDxWJq8QNs6tCxFcTE0bIVHnjO4lSCE2OOY3PITu+HjLzypG11JivoGg0+RDpOC+FejP7M7kfygIN/QeRX5AXa4FJwm8zv4ZJLf3mY+zDYcBXnmnqQrVyui0fiUkXYUFblj9Feu7tq40mXNerfx708xLcTnVWhg+aouDUsIsdNUhm5mMrjlJ3ZHQV5nfkpjWeY2TMxu+O+EVEOaE+9LUUPHrMfsTvyQ4ZVsd9AzAu6xzjwN3VR+npu7xVJ0fkSj4PFAgaGdP0VF4LEUttN+I8Bx3CGb+Z16vxVCiO5BkoM91EuPOW7DJFVmqwBHcckFBrdMOuodSNy3w96T7iya+lAiYVAOoRUFXRJNuvUtjrWaD5OCAiIdPA/dXbPP/dreeZi4r9HXdfGk2cTDNaUlmtra7Y9pBzZthsEDNcOGdn1s6VBRphi2jyYcjicC22hsAp8Pjp9s7hVEIfYIMuegDUkO9lBDh8YTA6XjjZDEWZz4XoEDt/zK4A81u6GlgdWqeC0vWA2Rui4PK11Ciy13SdbE/IJEQqBpqVOvuQ3nuXPz3RZkonzb0oDWhJaYO2/ke5M0NPnicw8ckgW1NOTZ0OzloH2yGuJu6R2E476taY5AqAac+DkajcCadZAXgHNOdbabj2CS/zlbUZiv2VgHkfhSiI6jqW/QNDYphg/VfHtCdmMUQoidYfBbsthd33wQcyc9OqrVaj7xFYtiivdfMbjXAAitCICO0bL8ZeujGnQjodWGjsdPiG1wEwTYvhHtjRFalI2g0ie0AMButb2BipcxfkeD2btpPXinn+KIFxp84IsnBHkx8DnQ4CNQ7+ffT5q9z8HPfqQ57QQHBSxfCcuWu4lBSbHmx5c4nPzdbEe4e044WvHLy6Ckh7tE64ZazYYasB3FwQdoHr5T4fEYfJFFCLHHkU3QBNOu1jz9kjfZsBx1UJS/P5s7eaO730EJqHiZtA32lpzYAC0hOMQBfPFlPx2IbCS0sjTbYaVNsH8TFLUaHmXbhBbmzjn6/n8inDpNgTdxaV3xwu/JiQ3QEpYsh9ffVjQ0QkU5fPcoTYXhK+22tmGj5rHnNUtWQs9SH0cfHmXS4blzju4pZBO09DNiE7RH12ZmE7QL+6b1MbuKJAciSd4UzSb1Zz6pQ/NJHZpN6i/9JDkwj7mDdYUQQgghhNhtmRj6Z+5wQunzFEIIIYQQQgCSHHTahhpYtRoihi4ZvyPBvk1U9LVRvlC2Q8mIYO9NBPtFCPZrJthnU7bDyYiKqi2ogk1U9KnJdigZEexbT3BgjGBVfbZDyYjVqzUTT9AceMQWVq/OzfEMzc2webO7v0Eusm3YvAW2bs3N+hMiZ8lSpm3IsKIdeOMdxTPPe/j6GwvHgV5lmmOOtrnofIeiHJjPGqyywZvvbvGpAJ1PxUDAjhDKgV09g703QSAIgd4td3pKCA60IbKB0Lqe2QsuTYKDLFBe8JW7dwQKCA7WEK0ltLo4u8GlQbBfI/hLIL+Xe456CwjupcGOEVph8Ltv3OrVmkO+5Y2vHOYB4ODxDlg2Lz8ZY+xYc7umE9atU7z3gcVnn1mEw4oexZqxYxwmHGHTo3sPRe6U5jB88DHM/kRRuxEKCyPsM1gxfoxmr0HZjk4IIXaO9Bx04OlZFtff5GP2RxZKaQJ+zbr1ioce8fKza7w0NGQ7wt0T7OeAL989CxLtj8S+aB4/wQFmnx5uYtC7ZZWiNjzgr+zymNItOMjrJgawzdUKBb5ygv22ZC+4NAj2a4RAqTujDVptXqfA6yM4yJOt0NJi9WrNIRN8EPaBY5GsQFtB1MtJ5/iM70VYsVLxhz95efXvHiIRRX6+ZtMm96LLgw972bw52xHunnAEHntW8cTzyt27Ib4b8lv/gT/8RfHfedmNTwghdpbZrb8MWl8Nf3rYQzjs7uDZqxeUlEK/fprycs1Hn1r83/OGP33evNTzZRRgeZk4sakrI0qvQIX7Nb6nW5sbAIrgQHOvygaralotz0rb8iXakz7D14r0l3R83OMh2NfcYUaHHu0B2+tuWmfR9gZgezlkkrkJkOPACy96WLtWMWw/Te/emtJS6N9Ps8/emi//a/Hm2+aWD2DOJzDnU+jfFwb1h54l0DuoGLYPNGyF5/6maDT4bVSIPYIMK2rD8NZt5rz6L4vaWkWfPnq7C89FRWBZ8I9/e5I7fpomWGXveCK9gvnLTR47FW90dFhOX1cEkhn++FCpRGLQWjJBUG4SYaBgVX1Lj0FH8swdGqbDVuoPkERHQszcxvOy5YqFiy36VentdkH2+6GsDD78yKJha3bi212OAx98rAj4obCg7TGloH+Vu+HbvIXZiU8IIXaFJAcprFnnNkq8KWZlFBZoNmxQxn6o4enk5krK3IZJh9R2/zGQavMlJa+hjWdvUSerx+A61Kql16A9Srs/Y6jajYpwmJTzs0qKNVvqFXV1ZpaxsQlqNkJxinkTfp+b39Vu7NKwhBA7bdvhBem6mUmSgxTyAhqtQafoGYjFFD6fJi/QtXGlT2f7uwzuF9tT7KiKtKlLw9jZDqBr7LDxb+5r0O9zr6DHYu0fj0TcCzA+n5ll9Pnc+FOtvqS127vgM7iDUgix55HkIIUjxmry8mBLO8OZHQe2NigOG63xd/ICfLejt3aiUQlETZ7Qqtt82e6QAjB0XBiADndwjORFi9DKvC4JJ+3sps61i+3mjIeSMR7H7R1o7zRM3Ocxs+EMMGRvh4oKTXVo+wRIawhtUOyzt0OwIgvBpUHAD4eMgNo62t1Nd1Od26uw795dHZkQYqfInIM2JDlIYdwYzaGHONTWKjZtaulBaG6GlSsVvcodzj7d3CuboVX5nUoOQmvzuySejLBbLSelW31t/f+oufs6hJbHX76J+QWty5Voi+kUl2wNEFrdA5wdzI3RmtAKc4e+nXl6DKz40CGHloTAwb3P0owZbWrPjzucaPK3bBobYf16lZyjFY3C8hWKggKYNMnu1NSS7urw0Zo+FbBoGYTj+brWmtqNsH4DjD0U+vbu+DGEEKI7keQgBcuCW38T48iJDuGwYvkKxbJliupqRb8qza+viXHQCIPTQmC/gZtTZ7cO4Ji9xmBotR9otWvdtuW0txJaa+h4/ITIWvdr6+GNyYaWQ2i5wT0jQGiZTbuz/hXupdpmswdz33+HoqwyDB6bZCU68a9eh/zSCK88bXDLGThqksMpJ9soS7NgoWL+AsXSZYpeZZoLzotxwHCz30f7V8FF52gG9YMVq+GbRfDfbzTNYThmEpx6vDY6+RFC7HmU1u11hpqjpqa+3e7cdHEc+OK/ivdnK6IxGNhfc8xROic2QEsIVjWBr6TlinOsmdDq3Mkb3f0OKmi1PiREanJiA7SE4CANqtUYt8h6QmsMX8a0lWBVPQTKWu6wI4RW5E6La84czUnf97r7GwAoh5efsHNiA7SEjZvgm28smpuhuASGD3O2W+HHZOEIzF/kTlCuKC+gsryRSkOHS+3JlILy8h4Zb1vsSRLPaXd2/Z/XE46mt8IDPsUtF5vZbSjJgUiSN0WzSf2ZT+rQfFKHZpP6Sz8jkoOHM5Qc/NDM5CDFQp1CCCGEEELsCTLRS2tuz2/ujB0RQgghhBBC7BbpOeik+Qth82bYf1jqDX1MFuwfwc0V69iw2tzVX1IJ9t4MvgJ32alYM6H1JdkOKe0q+tWDFYVIM6F13bsLd1cEhzZBzAtOjNByg1fRSmHzZptb7oH8QCNX/dimuDj3XofVG6C2Fqr6QEnuvQSFEKbKxNKjBg9Lk+RgB+66z+Lxpz1s2GChgYBfc9hoh3vviNG7MtvR7b5g/xh488HrTy6JWTFQgxMltDLb0e2+YO/N7mTk/IqWHj5fD4IDtDspOQeShOBeCrQXvL0ABXmFBPd2ILKJ0Crzk4TgwCYIFEGsGBwL0ASH2GDZhBZmO7rdt3mzzfAjfEQbffHywR//n4Unz+bDf0YZMMD8JOH1d+H+/2cxb4HCthWBgGbMoZrrfuYwdK9sRyeEEKI1GVbUgZ9d7eGu3/tYt95ylxy3oCmsePs9D8d8z8f66mxHuHuC/W3wFrizhRJr5SvAUuDxExxg9ukR7L3ZTQq2bVspwKsgz/ylRIJ7eUD7aLWxgfvFscBbRrB/O7v4GSQ4sAm8xRDxxpf4jJcv5oWon+DQrIa32zZvttnnUD/RBl98p+T45SutsJu8jJrkZ/Nmc/dTAXjxVfjJ1R4+mWthOwqvF5qaFK+/bXHuFA/z5mc7QiGEEK2Z3frLoC+/gudf8uI4UFAA+QF3N8zCfPD7oDpkcc0Nhne8ePJakgJo275UgMfLXXdF2v1VI/jL21n7vxULgv3NnTAUrKoH3dFVZQV+w5dr9ReBbbm7CFu03FR847CYj70PbspykLvuyJO9bqKDjifm8VvidWl7GfVtc99nIhG47R4PDQ2K8jIo6QGFBdCzFHqWwPpqxY0z5GNICCGqq6uZNm0aY8aMYcKECdx+++2EEzsrdjF5V07hdzO9RGOQn+deSG/N53O/vv+BRczQDWiD/WMkd+bZtn3cqhfhjt8ZPLbb04mGv8eX+TgyJa90xz/jWAT7mNl7EBzU5CYGiYZzawo3QXAs6pvMXSx/7aoO3oLjhzbXmDus6LmXIVSjKCpye15b8/ncCy5f/FexbEV24hNCCKBlzkG6b53981ozbdo0mpqaePLJJ7nnnnt46623uPfee9NRup0myUEKq9e49brtB1qC5YGmZkX1hi4NK31UoG2vQSqpnoBcYW7HAZ0LXkHA0MazP5Acg9+uZE+Xweeojic/KYuQ6MYz0+JlFo7tXmRpT14ehCOKeTkwd0QIIXbV0qVLmTt3Lrfffjv77LMPo0aNYtq0abzyyitZicfgT9XMygu4X50UjWet3R6FEmPne3YypZVdYLqxzjQaNdiGDg2L7WCsvd7uPwYyu/G/IwX5bgelnaIqY7Z7/aHY2PdRIURuUBm6dU5FRQUPPfQQ5eXlbe5vaGjYjTLtOkkOUvjudxwsBdHo9sccBxwbBg9yjF3WdNLk5o7bVIleBaexiyLKgM60GZ2MR5E5doQdv/loQqvMHBp2zdQYeGxAtV+XOv5PzNDkB/DkOYBu/zyM36d85p6kpx7vkJ+nqW/n883R0NgIlUHN4aO7PjYhhEjK4LCihoaGNrdIZPvPrOLiYiZMmJD83nEcnnjiCcaOHZuBwu6YJAcpXHKhQ59Kh2gUmiMtPQgxGxqb3UnJUy81dMIB8MwjfrdXYJtFbto0whxNaJW/iyNLI3trxwmCBiKmjguD0HLFDrMbZe45euWV+eCJx996/KYmXmwFPpvQEnMn7P7vb6JgxXsPHFqqM1E+SzP1EnOTn70Hw5FHaGIx2FzvXlgBiMWgrg58XjjvdAePudMqhBCiQxMnTuTQQw9N3v70pz/t8HdmzJjBvHnz+NnPftYFEW5PkoMUvF545rEoA/o5aBuamqChEcJhKMjTXPHjKGeeavJwBrj6J1vdrKf1yIZkj4Fm0qSt2QsuDUKrfBCLpr7qHGsktM7wfQ4iG0k5NMWyCS01+xwNLQQCEbcBrZW7nKmOd9f6YqCy0+WaLhee7eFbRzWD5ZDshnbiXy2HQ0aH+fUvzG45/+42h8kT3aygdhNsqIG6zZCXp/nBuQ5TLzH7HBVCiI68++67fPrpp8nbpZde2uHPz5gxg0cffZQZM2YwdGh21utWWps9qLympj6jw+JjMXjuRcVfX/UQjcKQwQ4/+4mTExugJQT7R8BT6A4O1hrsZkKrzG6QtBbsvdld1jSx7JRjQ2RjTmyAlhAcDFg+3DXygWhubICWEBzUBP4CwHLb0E6U0KLcubaxcqXNd87ysrHWLVNxicObs2I5sQFawmdfwrMvWmxpgN6VcOHZDgP7ZTuq9FMKyst7ZPyzSWSG1F/6JZ7T7uz6B0OEo+mt8IBPccuU4E79zvTp03nqqaeYMWMGxx9/fFrj2RmSHIgkeVM0m9Sf+aQOzSd1aDapv/QzIjn4U4aSg0s7nxzcf//9zJw5k7vuuotjjz02rbHsLHMH6wohhBBCCGG4JUuW8MADDzBlyhQOPfRQNmxomQ9ZUVHR5fFIciCEEEIIIfZgmVhSuvOP+cYbb2DbNjNnzmTmzJltji1YsCDdge2QJAedNHsObNgI48dCWVm2o0m/YG8HPIBdz4bqbEeTfsHejeDxAg7YDqH1hm4M1oGKPhHw1EHUJrTe4FWmUui3n0OkHrAg1NHOwoYKheCyn4Pf18h9d0AWLhYJsccLR6BusyYScXfxFqIrTJkyhSlTpmQ7jKSsJgfV1dXceuutzJkzh0AgwHHHHceVV15JIBDIZlhtXD7Nyyv/8NIcX01QWbDXAM2Tj4TZa3B2Y0uHYJUDvjzIJ7lSUcUgwI4SWmn+gMtg70bw9wR/XstKTB4I9ncgWpcTSUKwvwfwgSe+n4FPE+yvwa4ntNb8JCHYL36OaiBenOAgQNuEVuxgozQDhEJwwFgf2Cq5I/T+b3jB4/Dmy1EOOCDLAQqxB6jZCO9/qPjoM9BE8SjFmENg/GGasp7Zjk5kXOvlstP5mIbK2uU3rTXTpk2jqamJJ598knvuuYe33nqLe++9N1shbefk0/w8/9eWxABAO7BkmeLI7+SxdFn2YkuHYD/HbTQnzoLEiawAj4/gQLNXSgn2bgRfGcmuvdblUxb4ze8CCvb3Adte3oovhekpJtjX3DXyIX6OevPcb1r30CpAeQgONLvzMxSCA0b7IOqJL9Ea/4TSQMzD5ON9hEJZDlKIHFcdgpl/Ubz4qqKpSVGQBw1bFbNeUfzxUcWG2mxHKETXylpysHTpUubOncvtt9/OPvvsw6hRo5g2bRqvvPJKtkJq4813YPYn8adHgWW13FDufgcXTTH8qqyv1dX01rt9J763PBxwgLm7s+Irbbt/w7a7mSsIVpk7PCXYO4I7Fgy2H9sY/97TvVeI2CFPXuphm/Ekb/9R5p6jhx7pAccDxDcktOI3hbussONh5HizEyAhujOt4eV/KRYvV+y7D/TtDWU9FVV9YN8hsGCx4u+vZ2I8uhDdV9ZaRhUVFTz00EOUl5e3ub+hoXtsanTL7f5kI9na5n0hkSAsWGzRzi7YRghWOW0TgdZa3R+qN3nQpbV9QrAtj8Hl8xXG/9Nh6zmeRJgnOMDZ8XwuBRs2mJukhxs7eAuOH7LD5iawQnR31Rvgq/mKvpXg3aaz3OuFyiDM/Up6D/YIOs03g2XtklRxcTETJkxIfu84Dk888QRjx47dqcdRGUroN9SodhOD1hwHli+HfffNTAwZ5e1ko9iyUMrQcd2pkp/Wx7TK2DmUeZ1pNCrw+Qwto6dziz0oy9DyQbKAHValyefonidRV1JnZqjdBA1boU8w/mps1dusNJQWw/KVsKkOguWpH0ekJq8F83Sb/uoZM2Ywb948nn/++Z36vV69MjNsIhCIARqtUycIChg2LJ+ysm7zNO6Exs79mNbdfvOS1KIdH44nCOaWr5M9AjpGebmB8yvsLS2jpjpk8jka7sTPmFy+PVemPptEelUGHYoKo3h9ivy8lg/7gny3R3LrVk1hoaYy6KO8XHrxcld2lzLtbrpFq3bGjBk8+uij3HPPPQwdOnSnfre2NjO7GB41yctfHveidXyeYCtO/O8V9wDHaaKmJv1/P+NsB6wdXJnVQHOEmppYV0WVZvGJrO31HuiW/9TU1HddSGmX38Ext5Ab1viMLONN12tuuIMdv7/GItTU7CAR7K48PvcNxWH73gMHQINl+jm6Z1HKTQwy9dkk0qukCHqVKZYuVwweACg3MWhsioCGZStgQH9NUUHEzM/6biDxmhDmyHpyMH36dJ566ilmzJjBMcccs9O/rzUZeQOe/psYTz/rpSnsDh9KDDFyWo0lu/TiiLFv/qHVFsHBrVrNif+2XtHHhtB6y9gyuleei9sOL2pdPg3Ym9DazOVMQ6twlywFUmc/UWPr77LLLG74X8ddWSoVB0KrlbFlnHpplPsfCICjWq46WMQTAwWW5vhjzK3DPVmmPptEevl8cNQEePxZWLUW+la698disHY9oGDyBI3HI/WZ02Qp0zay2kd2//338/TTT3P33Xdz/PHHZzOU7fj98PxTzRTELz6j40mCdrPg00+OcdWV5q6SAhAsDMc/wdh+VR8HsJuzFls6hNb4wY60fYEmyqkBu4HQWjMTg6TollbfbDsTyia0ytD5InGhFTH3hdfem6wD/nyzz9HfXA2D9w6DFb8CgXIThXhiEOwd5i9/zHKQQuS4w0drzjpFk5+nWbgUvprvsGgpFBZozjlVM+bgbEcoRNdSWmcnF16yZAknnngiU6ZM4bzzzmtzrGIntgatqcls120kAnf/zuKvr/iIxmDgAIcZt0VzYgO0hGAfB/ICJC+nR8OEVufO2Ep3v4PSlivQTgxiW3JiA7SEYH9FcocwNMQaCK0zdxWfbQX7O+AJuJm5Bpzc2KQv4auv4DuneYlF3OzV8mpefzEmG6AZSCl3HlOmP5tE+m3eAt8sAq+3ANtuZPhQ6FGU7ajMl3hNdGfXz6whHEnvCzbgV9xymZmz2LOWHDz44IPcdddd7R5bsGBBpx9H3oDTRz7UzCb1Zz6pQ/NJHZpN6i/9jEgOHshQcnC5mclB1uYcTJkyhSlTpmTrzwshhBBCCCG2kfUJyUIIIYQQQmSPLGXamiQHnTR/IWyug/2HQ1EOjkEM9o6BR4FTx4b1nVpc3ijBysb4bsgO2Dah6tyZb5BQ0bsZPDbEooTW5+34FwwTHBhNTpYPrTR4Z+sU6urghjshP9DItVdASUm2IxJCCLEnkuRgB+76nYfHn/awocZdLjEQgMNG2dx7Z4zeldmObvcFq2zw5UFBS2OrYiAQswmtNns1JognBf6ebhkTG1b4NMEBDoTrciJJCA7ygPa6ZQQIaHeZ2uYthNaZnyQE+0ehIA/yrWQdBvfVEHUILc1ycGlQVwfDxnmwoyq5ftyfH/dieTRz/mUzaFA2oxNCiD2ALGXaRu4sSZMBP7vaw12/97KuWqEBy4KmJnj7PQ/HnOxnfXW2I9w9wSoH/HktZ0HiRPYAfg/BAWb3IAQrG8FXBo7lLg+ZXOlTQcwDgZ7ZDnG3BQd53cSg9U59WoGtwF9CsI/ZS30G+0ehMOB+o+OraSkABX6L4BCz38Lq6mDoKA+2rUDplnNUaRytGHO0h7q67MYohBBiz2L2J2sGffkVPP+SF8eBgnzIz3N7DQoLwe+D6pDiml8b3vHiC7hngAZQ7pICqPgGTIDHItjH1N2RgUBpS1Jgtbol2tG2RbCfuS+BYO9m0J62G7slbsTLnVecrfDSIz/gJgUqnhSoVhtVaAVeCA42dHdkYPxxlru7YuI1mJQ4bxWHTDI7SRdCCGEWc1tGGfa7B7xEo25SYG3zLPniy8e/P8dDzNC2c7DKbmmUKNX2oGrVoPYZPCzFsdz2VqqzXAMYPHY9LzH5RW0/7ymRIDjKTSIMFBwQbVV37ZyjKp4geAJdHVrahEI7nrDWUN8FgQghhBBxkhyksHpNfChRiot2lscdYlS9oUvDSh9PoGUYQyrtJQ6mSVW+VI1Ok6j4GPyOiqCV20NkIo8HN/FJVYnxglsG12Gnzj+TyyeEEAbQGboZSpKDFPLi7SknxZxcrd0ehZLuva9HBzp51uZyuyQnyraDBA/AjnRJJGmn7fjXVMd1269GMjl2IYTIFSpDNzNJcpDCd4+xsRRE2xnO7DjubfBAbe6yptGwO7cg1bmbuD/c1EUBZYClk0tfbidxX8qr0gawI6SswOQ8BE1orZk9B5deAPHuq/YTABXvNYmGuzawNErVM9n2hzIehhBCCJEkHzspXHKhQ59KTTQGzc0tPQixGDQ2uZOSp15q7kTI0Dpvq+RAb3MVNt4gs+M/Z6pYQ8tE1kQy4NA2MYhuyk5saRBaSTy50W27MHX8H6VBGTopBpg+3QcxWk2w3qanQAOOJrTc3Hkjt/zKTr7cthNfnOnSH5hbh0IIYQQZVtSGJAcpeL3wzOMRBlRptOPOL2jYCuGIu3rRFZfHOPM0g2seINLkNr6gJUmw4t/Y2j1usNBaHxBp6R1o3YNgaXAaCK03fJ+D8OZWDUvdKjEAlE1ouZ210NIhtNhxz0WV6EGAlgJrCJvbawBwyffh8DGxlkS99c2BEfvZTL8uqyEKIYTYwxh8WTjz9tkbZr8V4bkXFX99xUM0CkP20vzsJ3ZObIDm9gpECfaNgS8/eaWSWDOhNRa5cHqEVjsEKze6y5omGpXahsiWnNgAzd0JOUxwgIrvAB3vBQrX58QGaAChRY67clEg0DJBPhIltMzC6NWm4l56EpYvj/Ht0zxsrnfLV1igeesl2QBNCCFE1zO/9ZdhXi+cc4bmnDNyt2s/tNZNEpSC8vIe1NREzZ7juQ03Cdh2Uq75iUFroZUapSLx+qtH69xIDBJCK31s0/WTrVAyYtAgWPSp3eo1WJ9Tr0EhhBDmkORACCGEEELsuTIxR8DgCzy5dflNCCGEEEIIscuk56CTHnsSVq2Cc8+CwYOzHU36Bfs4bqrobGbD+tzLGYPBJrC8gLsObSiUn+2Q0q6idwyoA60Jrc+9l/b/XKZ59Q3oVwUfvWXu+tGpRCLwzntQXBLjkJHgM386xXbqtkD9FuhVBgW5NbJPCGG83Ptc2VW514JIs3Hf8rFkSWInWsXv/qDxBzTPPBbmiMOzHd3uC1Y54A9AvkouqVgxSEM0Smh1tqPbfcFgE+SVQEHbtf6D/TWEN+dEkhDs6wO8LZN1lSbYF9D1Zi9FGzf0YE1dowc8GnywPATB/YAIhJYa3G8bF4nAGef5+PhTD7EYgMbjzePAETaznoyau5dKK3O/VDz+tIePP7GIRhWFhZojJ9j88EKbvr2zHZ0QQojWcu8ScRoNPTDAkiVe0PGnKT5DMBJWnHJWgP98kMXg0iBY5bgrwCSXiKRlqUi/n+AAs0+PYLAJCkrBaudqgEdBfmlXh5R2waoAbo6vWq2tHF8LU/Ug2MfsifRDD9bUNVvgiy+zmyijF8iD4N5mX+mJRGD0+ACzP/QQi5JcxtSOwuefexg9PkDE0A2uEz74UHHltT7+9Zq74lsgoNmyBZ553svUK32syoGLEEIIw8k+B22Y3frLoD88CHWbEmt76pa1xyHZADv3IjN3nk3yB+INSbbf7VsDXg/Bvu1tL2yIQEnHxxUEqzqzRW33FOwTa5W40rYOE0me6pGt8NKirtECD203ryP+fwsIwNW/Mvcd+MZbvKxb777oLI+bx3qslp2Tazcqpv3c3N6fWAzuvs9LzQbF4EGaYBBKSqBPH+jfT7NwocXM/2du+YQQIhdJcpDCjLvjDf/2di+NN8CaGhVbt3ZxYGkSrHJaDUPZ5mAyQVBmD3z2dOKqstfgholViNtjoNqvw3ibOdjbzN6Dicdpt4cgVds/niD85VlzE7wX/hqPvZ13Yit+37/fMLd8732gWLbcIlihk+VJ8PuhRw/Nf+ZYVIeyE58QQojtSXKQQnOY9htdCfEOhTmfdGFQ6eT1da7La9tP9Fxj8qiURK9Bh2VQoMxsXM5fEP/Pjs5Tg+uwviHea9DBzzQ1mVvAlassolEoTDFvoqgItm5VrFxtbhmFEDlAhhW1keMtv11ntR5ek4qCvQZ0RTQZ0NkdlmQnpu5vh1Vkd0UUaWd1Oqcxt2Hp8ez49WVyfp6fp1FKxydaby8aBY8HCvLlfUYIIboLgz92MmvYfnbHvQYoUNrcZU1jMVA7+EBWYPRsyM60NxyDGyW6uYNjxM9fbeyKRf96jpa5BaloQJs5bApg2DB3IkV7M3sS9+29l7nzfiaOdygthdqa7Y9pBzbVKQYPchi2b5eHJoQQragM3cwkyUEKLz8XA+Lj8lt3D7VKDCYfGc1afLsrtNZqW6Zt/69w18tfa/ApEm7oxM9sznwcGRJa12qy/LZ1qBJ3mNtwHjlSQZT25/2A++4Vg9Aic9+A77o9iic+4drRLQmBo937LAtuvcHcBL13JRx3jE1zGEIhcOIFjEZgzVpFXgDOOSNmdO+IEELkGnlLTqGwEO67OwwqniCoVhM/lWbvvW2eftzcK3oAhMO4CVD8+0TjMp4YuMfNFVrvg2gHjePmRkLVhu9zoOvZbjWt5FeH0FpzE1iA0GINkZY9OLDiNwVE4eTJZr8GDxgOd97a7M6LjycEtu3+3+OFX18bZsL4LAe5m3421ea079koC5avUCxbplizFkpKND/+UYyTTzC4904IkRtkzkEbSmuzB5XX1NRndFj81q1w4RSLOR/60BqKizUP/SGSExugJbgbofnjCZCGSITQmtzJG4PBJndZ08REEtuByJac2AAtIdjHAhVfYUtpcBqMHU7UnjGTNMvXeN2yacC2CS0xt8dgWw0NcM1vvHz4sYXXYzFi/xh33xHLiQ3QEpYsg9ff9NCwFSoq4Lvftqkoz3ZU6acUlJf3yPhnk8gMqb/0Szyn3dn192winOZO2oAfbvlZz/Q+aBeR5EAkyZui2aT+zCd1aD6pQ7NJ/aWfJAfmyZ1Li0IIIYQQQuysTAwDMji5zJ2xI0IIIYQQQojdIj0HnbShVtMchspy8PtzZ6xzwsaNUL0Bhg6xjd40OJXmZs1X88Hvg+H7gtebe3UohBBCiF0hbYLWcrAZmF5vvA/P/BW+nm/hONCrTHPMZLjoTE1Rofkn07z58L93e/n4U0UkbOHz2xww3MdPL48yIQcmXTc3a6Zdr3jrI83WiNvHV1pgceK34NbrtCQJQgghhBCtSHLQgaf/qvndgxYNWxUlxZqAX7NuveKhxxRffu1wz01mJwhz/wsXX+ZjQ8jC69P4fZpYTDHnI4t5833MuC3G8d8xd9Bcc7PmmHNh4doYGvAot65qG20e+zssWenj+YfMLZ8QQggh0kDmHLQhcw5SWL9B86fHLMJhGDzQoVcZlJQo+lVBebnDR58p/u/FbEe5e2681UcoZFHaU9OzJxQWQc9SRa9emvp6i1vv8Lprrhvqjt8rFqy1sZSi0Ochz2uR57Uo8nkAxQdfxXjqBYNfvUIIIYQQaSbJQQqvvg61tYo+vTVKte0dKCpUWAr+8abCccxsXM6bD19/o8jL0/h8bY95PFBYqFm7zuLlv5vbM/K3NzVaQ553+9M8z6uw0TzyXBYCE0IIIYTopiQ5SGHNerdRnGpMemERbKhRNDR2ZVTp8/U3ikhEkZfX/vG8PLBtzYKF5p4iGxs0lmq//iylUEB1TdfGJIQQQgjRnZnb8suwvIC7WXCqPeJiUfD5IM/fxYGlSY8id8PgWKz94+5wIkVBgZk9IwA+C3QHg/407sbQQgghhNiD6QzdDCXJQQpHjNHk5Wm2bNn+mONotm6Fww7Vxi5rOvlITa9yh8YUPR8NDVBU5HDqSU7XBpZGB+3nQaNx2knwYrZGARNGmVl/QgghhEgXlaGbmSQ5SGHcIXDoQZraWotNdTrZg9Ac1qxcZdGrF5x9srlpod8PZ53m4LEUGzeSnHhs25rNde73R09y6FeV1TB3yy8ucyjwemiM2URtt64crYnYmmbHoTjP4heXm1uHQgghhMgtkUiEE044gQ8//DBrMUhykIJlKW69RnPkBIdwWLF8ucWy5VBdbdGvr8Ovr9QctL+5WSHAlVNtzjsnRl5As3EjbNigqKkFywPfOdrhrtsMXqoIGHWQYsY1imK/h4jj0BC1aYo5xByH8gIPj8xQ9K40uw6FEEIIsZu6ybCicDjMlVdeyaJFi3arOLtL9jnoQK+eivuma76Yp3n/Y0U0CgOrHI75Fkbvb5Dg8cAtv7b54fdtHvs/D9UbFL2DPk4+oYmRB2Q7uvQ4/QTFsd+Ce/+fl8+/UlgWTByruexC2QBNCCGEEN3D4sWL+fnPf55yrmtXkuRgByxLcfABcHCysZx7DcrBA+GGa22UgvLyfGpq3MnYuaKoSHH9z6BtGp979SiEEEIIM3300Uccdthh/OxnP+Oggw7KaiySHAghhBBCCJEBDQ0Nbb73+/3421kq8dxzz+2qkHZIkgMhhBBCCLHnysTSo/HHmzhxIlu3bk3ePXXqVH7yk5+k+Y+llyQHnRQMAhYU94TF32Q7mvQLBh13erqzmQ0bcm+eejBot4wk0hAKebIaTyZUBB2wtoCjCVXnXh3+/FcOL7wEe+8Nr7+ce+WLRDTvfADFxVEOGaHx+XJv6FtzM4TDUFDAdjuzCyFELnr33XfbfN9er0F30y2Sg0gkwqmnnsqvf/1rDjvssGyH00awygd4If5BtmULBPtpiDUTWp/V0NIi2NsBXz7k4zaeNVT0B6IxQuvMXq0I4kmBrwD8rdcc1gSrNEQbcyJJcM9RDyTebzQE++GWLweShIPGOaxdkw+OW4dffhZ/DXqihFaYf45GIpozLvLw8ZeJTQmjeDweDhwGs/5iU1RkfpKwbp3ivQ8sPvvcIhxW9OihGXuYw4TDbXr0yHZ0QgiRuffZoqKijD12pmS95dBdlm1qT7AqQLv5k1bgySfYu8tDSqtgbw2BfPDQ8rpQuGeF30uwr9mX9oJBG/yFoOKnebLbMF5IX2H2gkuTYFUAlKftKzmRB3kLCFaau4kdxBODVQVgW+7rLrlEnALbR3BAt7i+scsiEc3ob3uY/Wnr3co1tg2ffwWjv+MhEjF7dYAVKxV/+JOXV//hIRJR5OdrNtUpnnnOw4N/9rJ5c7YjFELs8brJUqbdRVaTg8WLF3PmmWeycuXKbIbRrmAQ2jw97W145w10aUxp589LnSwrwGe5w41M5StoaVCitq8/pQj2MbdxGax0QKlWZdrmJLVwnwODrV2V79YhbP8a1AocL7feae45euMdinUhQLkro1mWwuNxvwLUboJp12b9Gs4ucxx44SUPa9cqhu2n6d1bU1oK/ftp9hmi+fK/Fm++bX7vnRBC5JKsfuoklm165plnshlG+/ytGv7bNqCTjROL667rqoDSK9jb2XEvmgJ8eV0RTmaodhKCbVnmJgd487dJDFpr+d7U3oMTznZIliPla1Dxu9+bm6S/8Gr8LbidczSRIPz7HXOHFS1brli42KJfP421zaeN3w9lZfDhxxYNW9v/fSGE6BoqQzczZbVllI5lm1TGnvsUjZJtPPRnuP32TMWQQZ4Oeg1as1QGn+MuoGm/nKrlmLHlSwbeQQEUYFlGlvGjjyx2WDYAZWb5AOq3ArolEWhPU5O55+jGTYpwGHqkGHJbWqwJbVBs3qzoUWRwH3wriboytc72dFJ/6SfP5c5bsGBBVv++wZdNXb16ZWo2W9T9kqpxGVdR6aG83MChG7qZTmUHGsrLTZ0xGO34cLz45pdvBycpmvLy4i6IJ70K8+vZGungB3T8H6WNrUOvt5FoTG/34dn6e8ujjC1fsEKTl+fg99PujuThsKaoCHpX+ikvz60WROY+m0RXkPrbw2RwKVMTGZ8c1NbWZ2Y3X8cHKsXT0+rvzfvSpqamPgMBZFgsvkoRpG5XaiDSRE1NuKuiSi+d16aHoO2x+H1am1l/ALbqYN5L/CR1YMN6ZWQZ//mCw4Sj4hWVsgdIEShopqamoyyi+xo2xOKzr8C2dbL3QCl3h3LHcetw7wHmnqPlvaCk2Mey5Yqqvm3fqLWG5SsVI0c4eDwxamqyFGSaKeU2LDP22SQySuov/RLPqTCH8cmB1mTkBXzJD6I89Gj86Uk8vqJtJqijxr55hEIWwf64KxWl4rg/Z2oZiW11VyRSrRqXresSdzlTrc2cEBlapwlWEZ851M5JqgFsY+tv330tsGJuoo52JyC3eQ26l3pWfWPuOfrb6TbfPs2D7cSTAQUepZKJgWXBrb+y0drMq+qFhTDpSJvnZnlZt14RDLpzD6JRWL1GUVAAk77lLkdrah2mkqnPJtE1pP7EnszcZTAy7LbbgGhT2zvbvFHECK2NYbRwE9hs3/Wlce8PN23/OwYJVXvAjtGmgMk2Vo7scxBrhDbzjVslBloTWrODoVXdXGhlzE0QADdBiH9VgNJccKHZ5+gB+ynu/I2NN3GZRru9CAAeD/z6Zw4TxpmZGCQcNcnhlJNtlNIsWKiYv0CxdJmiV5nmgnNjHDBcWmBCCNGdGN9zkEmhEFx3XRMPPeJtWdVGO2BHcmIDtFDIAsLuajb+/JarstFmQusTGx6YLbQuRjAYblnWFAAHIk3mJwYQ3+SsmWBfC6xWuy7myAZoAKGVUY4+KcyXX+S11KG3mdBSyIVz9IKzFKccb3PNLRYffmbhtRQjhtncPd3JiQ3QPB447libsYfZfDPforkZioth+DCHQgOnawkhcpDMOWhDkoMduO02uO22GGB4L0EH3EZkGKXcybk1NeGc6k51k4Bt502Ynxi0FlrroFRzvP7q0dr8RnNrr79sAWbOK+iMoiLF/f+rUcpuVYfmJwatlfWEI8aZuayuECLX5db77e7qNslBtpdtEkIIIYQQYk/XbZIDIYQQQgghsiKHRkzsrtwae5BBZ5wN48bDK3/PdiSZMeNuOOJb8KOphi5bugPLl8PlP4VfXAt1ddmOJjNqa2HFCofm5mxHIoQQQghTSc/BDgT7BkBZyeFoF/8PoOHKK5u45qqshpYW4yfBwoV5yTRx4SL40//Lo0ePKEu+sbMbXBosXw6HTfKjlQaPe1ng0WcUPgu+/iRKaWlWw0uLD+YonnrWw9z/WmhiFBX4OepbNhd/36ZXr2xHJ4QQQgiTSM9BB4J9892FxlvPU4kv4nP3Pfn872+zFVl6HDIOFi7Ka3sWKPdW3+Cjai9ftkJLi+XLYcwkP9qr3fnHidUIPJqo0gw92N/xAxjgH/+yuOY3Pt7+j4WjIS8ANZvg8ac9TPuFj9rabEcohBBCCJNIcpDCMcfT8eR1BXffld9V4WTE6lV5HZYxGvGwdm3XxZNuRx7jA68T380GkplPcjlMhzETzV21qKEB7pvpZUsDDB4AFb2gZ6miXx/oUwn//Vrx8KPmlk8IIYToEjpDN0NJcpDC55/l73hlKwvWrOmScNJu/CR2XD4Fh44z9+p6UyRRwHYKGn/RLl9p7kvgX69ZrAtBZdAd+dZaXj4EAvD62x4aG7MTnxBCCCHMY27LKNM6s+Stgj/MzHgkGbFoSeca/bZt8ClidZS2xyvYMndt41VrFY7jDiVqT2EhbKmHdTmwYZ8QQgiROSpDNzPJhOTdoeHww7MdxK7xBTSRzqxqY/JuaJ0J3eDi5ceTAsdxp8ZsKxZ1d6ctLOzauIQQQgijyA7JbRh8WTizlKdzK/WccFyGA8mQl56K7vjE1XDc8QYvbZrcYba9gmpA4TH4FTBhgkNhAWzctP0x7bi9BgcMd+hd2fWxCSGEEMJMBjeNMuuzOZGOG88aAnnRLosn3UaN6sQPaXjkwYyHkjGnnxQBR8V79hKVGb88oAAbZt4dyVp8u2v4vpqJRzjUN7h7HDiOe38kAqvWQHExnHum+cvRCiGEEKLrSHKQQlUVHPPtptQXnbXDqiWxrg4rreZ+1Jy6K82Bv//V7N20HvgdDB3kgB1PEJRuGQZoK46dHOV7J2c5yN3066tjfPfbDrYDy1fC4mWaNeuhohx+8dMYR443uF9TCCGEEF1O5hx04PFHYM2aJg47wkskkljzX3Pllc05sQFa374QWt3MqWfD++/nJe/v17+Zz2ZnMbA0ev8Nm7lf2Jx8lo+msDvMqKzEZs7bsZzYAK2oCO6YHuPrbxTvvmeBClDWs5ljvu1QWpLt6IQQQggDyJyDNiQ52IGqKli9PAaY3UvQkReeBmhGKSgv70FNTbPR85C3ddBIWDHf3CFgnbH/MM0Bw23Kyz3U1Dg5VX9CCCGE6DqSHAghhBBCiD2YucuOZoLMORBCCCGEEEIA0nPQaVsb3XXji4rcteNzTUMD1NWB1yvjUYQQQgixB5E5B21IcrADixcr3vuPh6/nWdg2BCs0h4+zGTfWwd+5TYa7tVWr4M9/8fPOex6aGhX5+Zoxo/1ccEGU/YcbfGYLIYQQQoidJslBBz6fa/HYE17qNivKe2ny8jQrVysWPeFjyRKb88+LGZ0gLFsGV/w8j6WLLfILNQUFmkhE8crfvXz6mYfbbg0zepST7TCFEEIIIUQXkTkHKTQ0wPOzPDQ1wX77OlRUaHr2hMGDNP2qHD6YY/HJp2Y/fff/wc+SxRb9Bmj69IbSEujTRzFooKZ6veLue3zJjbWEEEIIIXKSztDNUGa3bjPoq68t1q23GDBAo7aZxJ6Yd/DBHMvYJSNXrYIPP/JQUqzx+9oe83qhvEKzeLGHOR/KKSKEEEIIsaeQll8KtRvdjMCbYuBVcQlUV1tEIl0YVBotX2HR2Kgo6tH+8aIiCIdhxQo5RYQQQgiRy1SGbmaSll8Kfh9oTcqegWgE/D6dMnno7goK3N6PaIq93aIxUAry8g3tGhFCCCGEEDtNkoMU9tnHobBQs3nz9sccx13289BDHGOXNR15oEP//g4ba9s/XlsDvXppJk6wuzYwIYQQQoiuJHMO2pDkIIWBAzSjRzmsXWuxcWNLD0JzMyxabNG3r2bcWHNn63q9cPZZMXw+xZo1ili8ByEW01RXQySiOPGEGL3KshunEEIIIYToOoYOisk8peCM02N4PPDRJxbV1QqlNB4P7DXY4azTY/TpY3BaCJx+Woz6enjiSR+rVyu0Bo8FhUVw1llRfjI1mu0QhRBCCCFEF5LkoAMF+XDeOTEmf0uxaLHCthXl5Zr99s2NDdAsC354cYwTTojxz396qalR9OkT4PBxTQwalO3ohBBCCCG6gOyQ3IYkBzugFPTtq+nb1+Ba3oHKIFz4/RhKQXl5HjU1qSdiCyGEEEKI3CXJgRBCCCGE2IOZu+xoJsiEZCGEEEIIIQQgPQdCCCGEEGJPJnMO2pCeAyGEEEIIIQQgyYEQQgghhBAiTpIDIYQQQgghBCBzDoQQQgghxJ5M5hy0IT0HQgghhBBCCEB6DoQQQgghxB5N9jloTZIDIYQQQgix55JhRW3IsCIhhBBCCCEEIMmBEEIIIYQQIk6SAyGEEEIIIQQgcw6EEEIIIcSeTOYctGF8cqBkgnnaJJ5LeU7NJPVnPqlD80kdmk3qL/1MeC7z8sx4zK6itNYG5zZCCCGEEEKIdJE5B0IIIYQQQghAkgMhhBBCCCFEnCQHQgghhBBCCECSAyGEEEIIIUScJAdCCCGEEEIIQJIDIYQQQgghRJwkB0IIIYQQQghAkgMhhBBCCCFEnCQHQgghhBBCCECSAwFUV1czbdo0xowZw4QJE7j99tsJh8PZDkvsoilTpnDNNddkOwyxkyKRCDfddBOjR4/m8MMP5+6770Y2sDfHunXruPTSSznkkEOYPHkyjzzySLZDEp0UiUQ44YQT+PDDD5P3rVq1ih/84AccdNBBHHfccbz//vtZjFCIriXJwR5Oa820adNoamriySef5J577uGtt97i3nvvzXZoYhe8+uqrvPPOO9kOQ+yCW265hQ8++ICHH36Yu+66i2effZZnnnkm22GJTrriiisoKCjghRde4LrrruPee+/ltddey3ZYYgfC4TBXXnklixYtSt6ntebHP/4x5eXlzJo1i5NPPpmpU6eydu3aLEYqRNeR5GAPt3TpUubOncvtt9/OPvvsw6hRo5g2bRqvvPJKtkMTO6muro4777yTESNGZDsUsZPq6uqYNWsW06dP58ADD2TcuHFcfPHFfPHFF9kOTXTC5s2bmTt3LpdddhmDBg3i6KOPZsKECcyePTvboYkOLF68mDPPPJOVK1e2uX/OnDmsWrWKm2++mb333ptLL72Ugw46iFmzZmUpUiG6liQHe7iKigoeeughysvL29zf0NCQpYjErrrjjjs4+eSTGTJkSLZDETvp008/paioiDFjxiTvmzJlCrfffnsWoxKdlZeXR35+Pi+88ALRaJSlS5fy2WefMWzYsGyHJjrw0Ucfcdhhh23XQ/fFF18wfPhwCgoKkvcdeuihzJ07t4sjFCI7JDnYwxUXFzNhwoTk947j8MQTTzB27NgsRiV21uzZs/nkk0+4/PLLsx2K2AWrVq2iqqqKl156iWOPPZajjjqKP/zhDziOk+3QRCcEAgF+85vf8MwzzzBy5Ei++93vMnHiRM4444xshyY6cO6553LdddeRn5/f5v4NGzYQDAbb3NerVy/Wr1/fleEJkTXebAcgupcZM2Ywb948nn/++WyHIjopHA5zww038Jvf/Ia8vLxshyN2QWNjIytWrODpp5/m9ttvZ8OGDfzmN78hPz+fiy++ONvhiU5YsmQJkyZN4qKLLmLRokVMnz6dcePGcdJJJ2U7NLGTmpqa8Pv9be7z+/1EIpEsRSRE15LkQCTNmDGDRx99lHvuuYehQ4dmOxzRSffffz8HHHBAmx4gYRav10tDQwN33XUXVVVVAKxdu5annnpKkgMDzJ49m+eff5533nmHvLw8RowYQXV1NTNnzpTkwECBQIC6uro290UiEbn4IvYYkhwIAKZPn85TTz3FjBkzOOaYY7IdjtgJr776KjU1NRx88MEAyatb//rXv/j888+zGZropIqKCgKBQDIxABg8eDDr1q3LYlSis7766isGDhzYpvE4fPhw/vjHP2YxKrGrKisrWbx4cZv7ampqthtqJESukuRAcP/99/P0009z9913c+yxx2Y7HLGTHn/8cWKxWPL73/72twBcddVV2QpJ7KSRI0cSDodZtmwZgwcPBtyVxFonC6L7CgaDrFixgkgkkhyOsnTpUvr165flyMSuGDlyJA8++CDNzc3JhO/TTz/l0EMPzXJkQnQNmZC8h1uyZAkPPPAA//M//8Ohhx7Khg0bkjdhhqqqKgYOHJi8FRYWUlhYyMCBA7Mdmuikvfbai29961tce+21zJ8/n/fee48HH3yQc845J9uhiU6YPHkyPp+P66+/nmXLlvHmm2/yxz/+kQsuuCDboYldMGbMGPr06cO1117LokWLePDBB/nyyy85/fTTsx2aEF1Ceg72cG+88Qa2bTNz5kxmzpzZ5tiCBQuyFJUQe57f/va3TJ8+nXPOOYf8/HzOO+88aVwaokePHjzyyCPceuutnH766ZSVlXHZZZdx1llnZTs0sQs8Hg8PPPAAv/rVrzj11FMZOHAgf/jDH+jbt2+2QxOiSyittc52EEIIIYQQQojsk2FFQgghhBBCCECSAyGEEEIIIUScJAdCCCGEEEIIQJIDIYQQQgghRJwkB0IIIYQQQghAkgMhhBBCCCFEnCQHQgghhBBCCECSAyGEEEIIIUScJAdCiG5j33335ec///l297/wwgtMnjw5I39z8uTJvPDCCxl57M544403mDhxIiNHjuS9995rc2z16tXsu+++yduwYcMYP348M2bMIBaL7fLfvOaaa7jmmmt2N3QhhBA5yJvtAIQQorVXXnmF008/nXHjxmU7lC5x3333MX78eH784x/Tq1evdn/mueeeo0+fPti2zbJly7jmmmsoKSlhypQpXRytEEKIXCc9B0KIbqWqqoqbb76ZSCSS7VC6RH19PYceeihVVVXk5eW1+zNlZWVUVFTQu3dvxo0bx3nnncc//vGPLo5UCCHEnkCSAyFEt3LFFVdQXV3Nww8/3O7xxFCb1atXJ+/7/e9/zwUXXAC4Q5AuuOACZs6cyejRozniiCN46aWX+Oc//8mkSZMYNWoUM2bMaPOYixYt4nvf+x4jRozghz/8IWvXrk0eW7duHT/60Y8YOXIkkydP5v7778e27eTfOvvss/nxj3/MoYceyssvv7xdvOFwmBkzZnDkkUdy0EEH8aMf/Yh169YB7pCmNWvWcN111+3UsKn8/Pw232/ZsoVf/OIXHHLIIYwfP57p06fT3NycPP7JJ5/wve99jwMPPJCf/vSnNDU1tXnuLr/8cs477zzGjBnDRx991GHMAOvXr+enP/0pY8aM4bDDDuOWW25JJnM7+/zPnj2bk08+mREjRnDUUUfx9NNPd/p5EEIIkX6SHAghupXKykqmTZvGH//4R1atWrVLj/H555+zatUqnn/+eY4//nhuvPFGHnvsMWbOnMk111zDQw89xLx585I//9RTT3HJJZcwa9YsYrEYV199NQBaa6ZOnUqvXr148cUXuf322/nb3/7GH//4xzZ/a8iQITz77LOMHz9+u1huuOEGXnvtNe644w6efvppYrEYl19+OY7j8Pzzz9O7d2+uu+46nn/++U6Vbd26dTz33HOcdNJJyft+9atfUV9fz1NPPcUDDzzAf//7X26++WYANm7cyKWXXsrhhx/OSy+9xJAhQ/jnP//Z5jHfeOMNTjjhBB599FEOPPDADmOORCJceOGFNDU18fjjj3Pvvffy9ttvc+edd+7082/bNldccQXHHnss//jHP/jpT3/KTTfdxOLFizv1XAghhMgALYQQ3cTQoUP1nDlzdCwW0yeeeKK+9NJLtdZaz5o1S0+aNElrrfWqVav00KFD9apVq5K/d9999+nzzz8/+bPDhw/XW7du1VprvXjxYj106FD9wQcfJH9+3Lhx+m9/+5vWWutJkybp//3f/00eSzz+4sWL9QcffKDHjh2rbdtOHn/jjTf0mDFjkn9r33331U1NTe2Wp66uTu+33376vffeS963adMmPXLkSP3uu+8m//6sWbPa/f1ELCNHjtQHHXSQPvDAA/XQoUP1t7/9bV1bW6u11nrFihV6v/3201u2bEn+3vz585P3PfHEE/roo4/WjuMkj5922mn66quvTj53hx9+eKdjfv311/XIkSN1XV1d8vg777yjhw8frhsaGnbq+d+0aZMeOnSofvbZZ5PHZs+e3eaxhRBCdC2ZkCyE6HY8Hg833ngj5557Lq+//vpO/36vXr0oKCgAIBAIANCvX7/k8by8vDZzGg488MDk//v160dpaSlLly6lurqauro6Dj300ORxx3Fobm5m06ZNyb+Vaq7A8uXLcRyHkSNHJu8rLS1l8ODBLFmyhAkTJnSqPA8++CCVlZU4jkNNTQ0zZ87k3HPP5eWXX2bJkiU4jsPEiRPb/I7jOKxYsYLFixez3377oZRKHhsxYkSboUVVVVWdjjkSiTBo0CBKSkqSxw855BBisRgrV65MPiedef5LS0s555xzuP7663nggQeYNGkSp512WpvHFkII0bUkORBCdEuHHHIIp512GrfeeiuXXHJJ8v7WjdyEbZf19Hq3f2tr7/cSPB5Pm+8dx8Hn8xGLxdhrr7144IEHtvudHj16AC2N3/akOmbbNo7jpPy9bfXt2zfZuB48eDADBw5kwoQJ/Oc//8G2bXr06MGsWbO2+73KykrAHR7Vms/na5MctI5zRzG3dzwxByPxdWee/xtvvJHzzjuP119/nddff51nnnmGBx54gCOPPLLdnxdCCJFZMudACNFtXXXVVTQ2NraZnOzz+QDYunVr8r7Wk5N3xcKFC5P/X758OVu2bGHw4MEMHjyYtWvXUlZWxsCBAxk4cCCrV6/mvvvu6zDZSOjfvz9er5e5c+cm79u0aRMrVqxg8ODBuxxvorFv2zaDBw+mvr4epVQyxubmZu68804ikQj77LNPcnx/wjfffLPLMQ8ePJjly5dTV1eXPD537ly8Xi8DBgzYqXJs2LCBm266iYEDB3LZZZcxa9Ysxo4dy5tvvrlTjyOEECJ9JDkQQnRbPXv25KqrrmLNmjXJ+8rLy+nTpw8PP/wwq1at4oUXXuDtt9/erb/zl7/8hX//+9/Mnz+fa6+9lkmTJjFw4EDGjx9PVVUVv/jFL1iwYAGffPIJv/71r8nPz9+ut6E9hYWFnHHGGUyfPp0PP/yQ+fPn84tf/ILevXtzxBFHdDq+jRs3smHDBjZs2MCiRYu4+eab6dmzJ2PHjmXvvfdmwoQJXHXVVXz55Zd8/fXXXHvttTQ2NlJcXMzxxx9PU1MTt956K0uXLuWhhx7i008/3eWYjzjiCPr3788vf/lLFixYwJw5c5g+fTonnHACxcXFnS4TQElJCa+99hq33XYbK1eu5OOPP2b+/PkMHz58px5HCCFE+khyIITo1k4//XQOPvjg5PeWZXHrrbfy5Zdfctxxx/HPf/6TH/3oR7v1Ny666CLuvfdezjzzTHr16sVtt90GuMONZs6cieM4nHnmmfzkJz/hyCOP5Prrr+/0Y1999dUcfvjhTJs2jXPOOYdAIMAjjzyC3+/v9GOcccYZjB8/nvHjx3P22WcTjUb585//TFFREQB33nkn/fr14wc/+AEXXXQRgwcP5u677wbcBvhDDz3Ef//7X04++WQ++OADTj755F2O2ePxJIdZnXnmmVx55ZUcddRRydWRdobf7+eBBx5g/vz5nHTSSVxxxRWcfvrpnHHGGTv9WEIIIdJD6W0HowohhBBCCCH2SNJzIIQQQgghhAAkORBCCCGEEELESXIghBBCCCGEACQ5EEIIIYQQQsRJciCEEEIIIYQAJDkQQgghhBBCxElyIIQQQgghhAAkORBCCCGEEELESXIghBBCCCGEACQ5EEIIIYQQQsRJciCEEEIIIYQA4P8Dh3lY7VCbGnQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwMAAAIdCAYAAABhiaF8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADluUlEQVR4nOzdd3gUZdfA4d/MtvRCCqEpIIQOUgTpRUFEBQuKiij2AnYR1A/k9bUjUgWx+yI2bKAgihWVJgoKCCJILwnpPVvm+f7YZCEkgSQk2Uxy7utaMVtmz8wzOzNnnqYppRRCCCGEEEKIOkf3dwBCCCGEEEII/5BkQAghhBBCiDpKkgEhhBBCCCHqKEkGhBBCCCGEqKMkGRBCCCGEEKKOkmRACCGEEEKIOkqSASGEEEIIIeooSQaEEEIIIYSooyQZEH4lc96dPtmGorrIviaEELWPJAN10JgxY2jVqlWRR+vWrenatStXXnkly5YtK/cyJ02axKBBg8r1mZ07d3LNNdcUea5Vq1bMmTOn3N9/uubMmUOrVq1O+p5169bRqlUr1q1bd1rfVZFtVZr58+fz+uuvV8qy/OXEfbFt27b06tWLBx54gIMHD1bKd1RW2ZnFpEmTim3XLl26MGrUKL7++utyLy8jI4OJEyeyYcMG33NjxoxhzJgxlRm2OMGgQYOYNGlSqa8fOHCAVq1a8cknn5T4uhn3+08++aTYvtumTRvOOeccbrrpJn777bdTLkP2TSHKx+rvAIR/tG3blscff9z3t8fj4ciRI7z11ls88MADhIaG0q9fvyqN4csvv2Tjxo1Fnvvggw+Ii4ur0u+tqHbt2vHBBx/QokULf4fiM3PmTMaPH+/vME7byJEjufLKKwFwuVwcPHiQ+fPnM3bsWJYtW4bdbvdzhOYTExPD3LlzATAMg/T0dL744gvuueceXn/9dXr37l3mZW3bto3PPvuMyy+/vKrCFaKIuXPnEhMTA3j336SkJF566SVuuOEGPvroI1q3bl3qZ48/twkhTk2SgToqJCSEs88+u9jz/fv3p2fPnnz88cdVngyUpKSYaorStpk4fXFxcUW27TnnnENcXBw33HADq1evZsCAAX6Lzazsdnux/XXAgAFs3LiRDz74oFzJgBDVrU2bNjRu3LjIc23btmXw4MG8++67PPHEE6V+tibdsBHCDKSZkCjCbrdjs9mKPb948WIuuugi2rdvz4ABA5gzZw5ut7vU5eTl5TF9+nSGDBlC+/bt6dKlCzfeeCPbtm0DvM1yCu9aHt806MRmQomJiTzyyCP079+fjh07MnLkSL799tsi39WqVSsWLVrEY489Rvfu3encuTP33HMPSUlJvvfs37+fO++8kx49etCpUydGjRrFjz/+WCzuH374geHDh9OhQwcuuOACPvvsM99rJ1a5z5kzh0GDBvH9998zdOhQOnXqxJVXXsmaNWtOtZkBby3IgAED6NixIzfccAN//fVXkdcPHTrEAw88QPfu3enUqVOx9xQ2a5o7dy6tWrXi7bffpk2bNqSmpvre8/LLL9OqVSt++ukn33M//vgjrVq1Yv/+/QDs2LGD22+/nS5dutClSxfGjRvne61QWloaU6ZMoVevXnTo0IGrrrqq2HqWpRzKIyIiAgBN03zPGYbBK6+8wuDBg2nfvj0XXHABCxcuLPbZ999/nwsuuICOHTty3XXXcejQoSKvf/LJJ7Rt25bFixfTp08f+vXrxz///APA8uXLufzyy+ncuTO9e/dmypQppKenF/n85s2bufnmm+nRowddunThjjvu8H0eju0ra9asYcyYMXTs2JEBAwawePFiEhMTGT9+PJ07d6Z///689dZbRZa9cOFChg4dSocOHejbty9Tp04lKyurQtvwRJqmERYWVmSbgvf3ffnll3P22WfTsWNHRowYwfLly33rcv311wNw/fXXF2l+oZTi1Vdf9e3Ho0aNYvPmzb7X58yZw+DBg5k7dy49evTg/PPPJzU1FY/Hw6JFi7jkkkt82+aFF14gPz+/SFy//PIL1157LV27dqVHjx48+OCDHD582Pf6J598QocOHfjtt9+44oorfL/b7777jn///ZcbbriBTp06MXjw4CLNHw3DYNasWQwaNIj27dszaNAgXnzxRVwuV7m256mOc+BtsjV27Fg+/vhjLrjgAtq3b8/w4cOLHX+2b9/OjTfeSOfOnRk4cCBLly4tVyxlVdZj6onNNU9sSpmSksJDDz1E79696dChAyNGjChyvIRTH8PKq3HjxkRGRvp+z6X9jk9sJuRyuXjppZc4//zz6dixIxdddBEff/xxkWV/8803XH755XTo0IHevXvz5JNPkpOTU+FYhTATSQbqKKUUbrfb98jPz2fv3r383//9H9nZ2YwYMcL33gULFjB58mR69uzJyy+/zOjRo3n11VeZMmVKqct/+OGH+eijj7jtttt44403mDRpEjt27OD+++9HKcWVV17JyJEjAe9FcWETkeMlJSUxcuRI1q9fz/3338+cOXNo1KgR48aNK3ainDFjBoZh8OKLL/Lwww/zww8/8PTTTwPeE//tt99OTk4Ozz//PPPmzSMiIoK77rqLvXv3FlnOlClTGDt2LPPnzyc2NpZJkyaxffv2UtczJSWFiRMncu211zJr1iwCAwO59dZb2bJly0m3/5EjR5gzZw733XcfL774Iunp6Vx//fWkpKT4lnv11VezdetWJk+ezPTp0zEMg9GjR7Nr1y7fdgNvE5sPPviAgQMHYhgGa9eu9X1P4f//+uuvvud++uknWrZsSZMmTdi9ezdXX301ycnJPPvsszz11FPs37+fa665huTkZADy8/O54YYb+Pbbb7n//vuZO3cucXFx3HLLLcUSgpOVw8kYhuHbF51OJ7t372b69Ok0b96cnj17+t43depUZs+ezfDhw3n55ZcZOnQoTz/9NC+99JLvPe+88w6PP/44ffv2Zd68eXTq1InJkycX+06Px8PLL7/Mk08+yX333UeLFi2YN28e999/P506dWL27NmMGzeOr776ijFjxpCXl+fbptdccw2GYfDUU0/x5JNPcvjwYa6++mpf2RR64IEHGDRoEC+//DJNmzbl8ccf5/rrryc+Pp7Zs2fTrl07nnnmGf78808Ali1bxnPPPcfo0aN5/fXXGTduHEuWLOHJJ5885TYsSeE2dblcpKamsnDhQnbs2FGkr86iRYuYMmUK5513HgsWLGDatGnYbDYmTJjAoUOHaNeune+3PmXKlCJNMH777TdWrlzJ5MmTee6550hISOCOO+4ocqPg0KFDrFy5khdffJH77ruPyMhIpkyZwtNPP82gQYOYP38+o0eP5p133uGuu+7ydVJesmQJN910E/Xr1+fFF1/kkUceYePGjYwaNcq3bxau4wMPPMDVV1/NvHnzcDgcPPTQQ9xxxx0MGDCAWbNmERMTw8SJEzly5AgAr776KosWLWLcuHG88cYbXHPNNbz22mu8/PLL5dq+pzrOFdqyZQuvv/4699xzDy+99BJWq5V77rnHl2QmJCRw3XXXkZ6ezrRp07j33nt54YUXSEhIKFMcx/9+jn8YhlHkfeU5pp7KhAkT2LlzJ//5z3945ZVXaNu2LRMnTvTdLCnLMay8UlNTSU1N5YwzzvA9V9Lv+EQTJ07klVdeYeTIkSxYsID+/fvz6KOP+pKXzz//nHHjxtG8eXNeeuklxo8fz9KlS4vsj0LUakrUOdddd52Kj48v9mjVqpW65JJL1Jdfful7b0ZGhurUqZOaMmVKkWV8+OGHKj4+Xu3YsUMppdTEiRPVwIEDlVJK5efnq5tuukktW7asyGfeeOMNFR8frxISEpRSSs2ePVvFx8cXeU98fLyaPXu2Ukqp559/XrVr107t27evyHtuuOEG1bt3b+XxeHyfueaaa4q8Z9KkSerss89WSimVmJio4uPj1ZIlS4qs19NPP63+/vvvIrH8+OOPvvfs2bNHxcfHq7ffflsppdTatWtVfHy8Wrt2bZHPfPrpp77P5Obmqt69e6u77767hC2vfNsqPj5ebdy40fdcYmKi6tixo5o+fbpSSqkXX3xRdejQQR04cMD3nvz8fHXeeecVWfbx20sppS644AI1efJk3/s7dOigLrvsMjVq1CjfewYPHqxeeOEFpZRSDzzwgOrZs6fKzMz0vZ6amqq6du2qnn32WaWUUh988IGKj49XmzZt8r3HMAw1evRodfnllxeJ5WTlUJqS9sX4+HjVvn17tWbNGt/7/v33X9WqVSu1YMGCIp+fMWOG6tChg0pJSVGGYaiePXsW2/5TpkwpUnYff/yxio+PVx9++KHvPWlpaap9+/bqscceK/LZX3/9VcXHx6tFixYppZQaOXKkGjp0qHK73b73pKenq+7du6t7771XKXVsX5k2bZrvPRs3blTx8fFqwoQJvudSUlJUfHy8evPNN5VSSk2ePFkNGTLEt28rpdSSJUvUW2+9ddJteKLCfaykx+OPP15k+c8884x6/vnni3x+y5YtKj4+Xn3++edF1qdw+ynlPY507NhRpaam+p4rPC5s27ZNKXXsN/LLL7/43vPPP/+o+Ph4NW/evCLf+dlnn6n4+Hj1ww8/KI/Ho3r37q3Gjh1b5D179+5V7dq188VbWI7vvvuu7z1ffPGFio+PVzNnzvQ9t3nzZhUfH69WrlyplFLqpptuKrbshQsXFvktn0pZj3OFZbF3717fe9avX6/i4+PVihUrlFJKPfvss6pTp04qKSnJ955Nmzap+Ph4NXHixFJj2L9/f6nlfPyjsNzKc0w9/riiVPHjdfv27YuUocfjUc8++6z69ddflVJlP4adqLBM9+7dq1wul3K5XCorK0tt3bpVjR07VrVt21Zt3769yHuP/x0r5d03r7vuOqWUUjt27ChyHC907733qkmTJinDMFS/fv3UzTffXOT11atXq/j4ePX999+XGqsQtYX0Gaij2rVrx3/+8x/Ae1dq1qxZuFwuZsyYwVlnneV738aNG8nNzWXQoEFF7vYVjobzyy+/0LJlyyLLttvtvhFuEhMT2bt3L//++y/ff/89QJmr4tevX0/nzp1p0qRJkeeHDx/OI488wr///uu7C3Ri2+i4uDhyc3MBiI6OpkWLFkyePJnVq1fTr18/+vTpwyOPPFLsO7t16+b7/8LvzcjIKDVGi8XCRRdd5Ps7ICCAfv36ldgE6XgNGzYsEnNMTAxnn302q1ev5oEHHmDNmjW0adOG+vXr+7a7ruv069fvpHfwBgwYwDfffAN479rqus4NN9zAY489Rm5urq88Bg4cCHjvcvfo0YOAgADf94SEhNCtWzdWr14NwJo1a4iJiaFdu3ZF9oGBAwfy/PPPk56eTnh4OHDycjiZq666iquuugrw3uU8evQoixcv5pZbbuGll16if//+rF27FqVUifvi/Pnz+e2332jWrBnJycmcd955RZZ/4YUX8v777xf73vj4eN//b9q0CafTySWXXFLkPd26daNRo0asW7eOSy+9lM2bNzNu3DgsFovvPWFhYQwcOLBYuXfu3Nn3/9HR0QB06tTJ91xkZCQAmZmZAJx77rl88MEHXH755QwZMoQBAwZwySWXFGvWUxYxMTHMnz/f93dWVhYbNmzglVdeISsrixdeeAHAN1pNZmYme/bsYc+ePb4an1P9Vlu0aOFrzgX42ngXrk+h47fz+vXrAYpt54suuohHHnmEdevW0bhxY44ePcoDDzxQ5D1nnHEGnTt3LjY6Tknb+fh9sTDGwt9yjx49mD59Otdeey2DBw+mX79+XHfddSdd1xOV5zhXr169InezCwdJKPxt/Pbbb5x99tlERUX53tOpUycaNmxYpljGjx9fYr+arVu3FqnJKc8x9VR69OjBnDlz2L59O/3796dfv35MnDjR93pFj2GFBg8eXOy5Ro0aMW3atGIjvx2/f52ocASsE5c3c+ZMAHbt2sWRI0e4/fbbixxXzjnnHEJCQvjll1+kz5Ko9SQZqKOCg4Pp0KEDAB06dKBz586MGDGCm266iU8//ZR69eoB3rbiALfddluJy0lMTCzx+Z9++omnn36af//9l+DgYFq1akVwcDBQ9rHK09PTi3Ugg2Mn++Mv0gMDA4u8R9d13/domsYbb7zB/PnzWblyJZ9++ik2m43zzz+fqVOnFrmYCQoKKrKMU8Vbr169Yn0soqKiirUxL20dTvxcYXvotLQ09u7dS7t27Ur8fG5ubrF1Bm8H8DfffJP9+/ezdu1aunTpQp8+fXC5XPz+++/s2rWLyMhI34VSWloay5cv97UPP3HdCt9z9OjRUmM5evSoLxk4WTmcTGxsrG9/LDRw4EAuuugiXnjhBfr37+/bF49Pvo6XkJDgi7nw30KFo5Kc6PiLr8IyK6lsoqOjyczMJDMzE6XUSd9zvJCQkGLvK6ncCg0bNgzDMHj33XeZO3cus2bNolGjRjz44IOlrndp7HZ7sW3as2dPrFYrM2fO5MYbb6Rdu3bs27ePKVOmsHbtWqxWK82bN/ddbJ2q7I7/vcCx38yJzVOO316F2/nEMrFarURGRpKZmekr69K284ntzkvazgEBAaXGfcsttxAcHMzHH3/Mc889x7PPPkt8fDyPPvpokWZpp1LW49yJZV6Y3BVup9KOdaXttydq1KhRsbIGirV5L88x9VRmzJjByy+/zJdffsmKFSvQdZ1evXoxdepUmjRpUuFjWKH58+f71t9msxEZGUn9+vVLfO/xv+MTFe5Lpb2n8PX//Oc/vhtkxyvtHCdql5SUFEaNGsWTTz5Jjx49yvSZr776ijlz5nDgwAFiYmK4/fbbfc2fzUaSAQF4D5RTpkzh7rvv5qmnnmL69OmA944nwAsvvEDTpk2Lfa6kk/W+ffsYN26crw1y4R2xRYsWFenIeirh4eEldj49evQocOyualnUr1+fqVOn8vjjj7N9+3ZWrFjBq6++Snh4eIkngLJKS0tDKVXkzm1SUtJJT05Q8kn36NGjvovY0NBQunfvzsMPP1zi50sbarNbt26EhISwZs0a1q5dy8CBA4mKiqJFixasX7+erVu3MmDAAN9FW2hoKL169eLGG28stiyr1ep7T9OmTX13kk9U0sVFZbBYLMTHx/PDDz8Ax/bFt99+23fBdbyGDRv6tuvxbcrh2An/ZAoTmqSkpCK1Y+AtmyZNmhAaGoqmaaXul8cnlhV18cUXc/HFF5OZmcnPP//Mq6++yoQJE+jWrVupF0Pl0aZNGwD27t1LmzZtuO2227DZbHz44Ye0bdsWq9XKzp07q6wDa+F2Pnr0aJF9p7BfQ2RkpG87lrady/PbL4mu64wePZrRo0eTnJzMjz/+yMsvv8zdd9/N6tWryzSUbWUd58B7LCtpXcuy35ZHeY6pHo+nyHtOTCxCQ0OZMGECEyZM4N9//+Xbb79l3rx5/Oc//+G1116r8DGsUHx8fKUcWwqPGykpKUWGrf73339JSUnx7Y8PP/ww3bt3L/b5wtdF7fXbb78xadIk9u3bV+bPrF27lkmTJjFz5kz69evHunXruPXWW4mPj6djx45VGG3VkA7EwmfIkCH07duXL774wlcN36lTJ2w2GwkJCXTo0MH3sNlsTJ8+nQMHDhRbzpYtW8jPz+f2228vUjVeeIIsvGNWeEFamnPOOYeNGzcWG9lm6dKlxMTEcOaZZ5ZpvTZu3EivXr34888/0TSNNm3acP/99xMfH+/rUFhRLperyIk/Ly+PVatWnfLu4t69e4t0Xj58+DAbN2703ZHo3r07u3fvplmzZkW2+9KlS1m8eLGvicqJ29Bms9G7d2++++47tm7d6lveueeey08//cSvv/7qayJU+D07d+6kTZs2vu9o3749b731FitXrvS95/Dhw0RFRRWJZc2aNbz22mtFmstUJpfLxdatW33lfM455wDeToTHx5GWlsbMmTNJS0ujadOmNGjQgBUrVhRZVmHTjZPp1KkTdrudzz//vMjzGzZs4NChQ3Tp0oWgoCDat2/P8uXLi1wsZWZm8sMPP9C1a9fTWuf77rvPN29EaGgoF154IXfddRcej6fS7lAWzu1x5plnkpqayu7duxk5ciQdO3b0JYCrVq0Cjt25rswyLrzgOnE7L1u2DI/HQ9euXWnWrBkxMTHF3rN//342bdpEly5dTiuGq6++2tcpOyoqissvv5zRo0eTmZlZ5pGbynqcK4tzzz2XjRs3FukwvHPnzmLHvtNV1mNqSEhIsWPj77//7vv/gwcP0r9/f9/vrHnz5tx666306tXL97myHsOqWuFvsrD5ZKEZM2bw3//+l+bNmxMVFcWBAweKxBkXF8f06dNPa/QjUfN9+umnPPTQQ9x///3FXlu9ejUjR46kW7duXHTRRUVukLz11ltcf/319O/fH03TOPfcc/n444+LHAvMRGoGRBGPPvoow4cP58knn+TTTz8lMjKSW265hVmzZpGVlUWPHj18fQw0TStx4pd27dphtVqZNm0aN910E06nk08++cR3h7fwDlPhHZsvvviCTp06FWvHeuONN7J06VJuvPFGxo8fT2RkJJ999hlr167l6aefPmUyUaht27YEBATw8MMPc/fddxMdHc3q1avZtm2bb8jE0/Hoo49y3333ERUVxeuvv05OTg533nnnST/jcDi46667uP/++/F4PMyaNYuIiAhuuOEGAMaOHcuSJUsYO3YsN910E5GRkSxfvpwPP/ywSF+HsLAwNm7cyK+//kq3bt3QNM03UkZQUJCv6UCPHj145513fMlCobvuuourr76a22+/nWuuuQaHw8EHH3zAN998w+zZswG4/PLLeeedd7jxxhu54447aNCgAatXr+bVV1/luuuuK3Eo2vI6cuQImzZt8v2dkZHBokWLOHDggK9GIj4+nuHDhzN58mQOHjxI+/bt2b17NzNmzKBx48Y0bdoUTdN46KGHePDBB/m///s/hg4dyqZNm3jvvfdOGUNERAS33XYbc+fOxWazcd5553HgwAFmzZpFixYtfBNuPfjgg9x8883ccsstXHfddbhcLl555RWcTudpTwB37rnn8vjjj/Pcc8/Rr18/MjIymDt3Lk2bNvX91vbt20dKSsop57xwOp1Ftqnb7ebXX3/l9ddfp0+fPr7mG40aNWLRokXExcURFhbGzz//zNtvvw0ca9MeGhoKeIfeDQ8PP+mET6fSokULLrvsMubOnUteXh49evRg27ZtvuFH+/bti67rPPDAAzzyyCPcf//9XHrppaSmpjJ37lzCw8NLrMkqj3POOYc33niD6OhoOnfuTEJCAm+++Sbdu3f31c7t3LkTp9NJ27ZtS1xGWY9zZVE4kdbNN9/M3XffjcfjYebMmZXy2zpeWY+pAwYMYNmyZXTs2JFmzZrx6aefFrl50ahRI+Li4njyySfJysrijDPOYMuWLfz444/cfvvtQNmPYVWtdevWDB06lBdeeIG8vDzatWvHzz//zMqVK5k5cyYWi4X777+fKVOmYLFYGDhwIBkZGcybN4+EhIRSmzmJ2qFPnz5ccsklWK3WIgnB9u3bufPOO5k2bRrnnXcef/zxB3fddReRkZH07duXP//8kx49enDbbbfxxx9/EBcXx913333S/is1mSQDoojmzZszZswY3njjDd555x3Gjh3LfffdR0xMDO+++y6vvfYa4eHh9OzZ0zdT8YnOPPNMpk+fzty5c7nzzjsJDw/n7LPPZuHChYwZM4YNGzbQqlUrhgwZwpIlS5g0aRIjR45k6tSpRZYTExPDe++9x/Tp03nqqadwuVy0bt2aefPmFesgejIOh4M33njDt5yMjAyaNm3KE088USkzqk6dOpWnn36alJQUunTpwnvvvXfKWotWrVpx0UUXMXXqVDIzM+nZsyePPvqo70Kkfv36vP/++0yfPp2pU6eSn59P06ZNeeqpp4q0SbzjjjuYN28et956K8uXL6dhw4a+OxVdunTx3ent3r07mqbRvXv3Iu2rW7duzaJFi5gxYwYPP/wwSini4+N56aWXfNs4KCiIRYsWMX36dKZNm0ZmZqavHftNN9102tsP4KOPPuKjjz4CvO2pg4ODiY+PZ+bMmVx44YW+9z3zzDMsWLCA999/nyNHjhAVFcWwYcO47777fHcaL774YnRdZ968eSxZsoT4+HieeOKJYp1RS1KYLL7zzjssXryYiIgIhg4dyn333edr39yzZ0/efPNNZs+ezQMPPIDdbqdbt24899xzxTrTl9fVV1+Ny+Xi/fff59133yUgIICePXsyYcIE34XhvHnz+PTTT/n7779PuqyjR48yatQo3982m41GjRpx/fXXM27cON/z8+bN46mnnmLSpEnY7XZatGjB/Pnzefrpp9mwYQNjxoyhZcuWXHzxxb4mMF988cVpredTTz3FmWeeyccff8zrr79ObGwsY8aMYdy4cb4L0ssvv5zg4GAWLFjAuHHjCAkJoW/fvjzwwANlbktfmnvvvRe73c7HH3/MSy+9RGhoKIMGDeLBBx/0vec///kPBw8e5LvvvitxGWU9zpVFZGQk7733nq8cgoODueWWW0rsy3M6ynpMfeSRR3C73UybNg2r1cqwYcN8CXahuXPn8uKLLzJr1ixSU1Np0KAB48eP9/UvK+sxrDpMmzaNuXPnsnDhQlJTU2nWrBkzZ85k6NChAFx55ZUEBwfz2muv8cEHHxAUFESXLl144YUXit2kErVLaceS999/n/POO48hQ4YA0KVLF6666ioWLVpE3759SU9P5/XXX2fOnDl06NCB7777jvvvv5933nmnyCARZqGp8tRlCiF8CidOO9VFmRCVbciQIXz99df+DqNWczqdXH755aed+AghzKFVq1b873//o0ePHtx6662sXbsWh8Phe93j8XDGGWewZMkSOnfuzPXXX1+kNuG2226jRYsWpfaTqcmkZkAIIUzkww8/LPPwj6LiXnrppXKNLCSEqD3i4uK47LLLeOKJJ3zPJSYm+voCnXXWWTidziKf8Xg8pp2kTjoQCyGEiXTr1s032peoOsOGDSsybr4Qou4YOXIkX3zxBT///DOGYbBnzx6uu+463njjDQCuueYa3nvvPVavXo1hGHz11VesW7eOiy++2M+RV4w0ExJCCCGEEHXa8c2EwDtgwuzZs9m7dy+BgYFcfPHFvn5i4B2J6I033uDAgQM0atSIe++9t8TJ8sxAkgEhhBBCCCHqKGkmJIQQQgghRB0lyYAQQgghhBB1lCQDQgghhBBC1FGSDAghhBBCiDolw8j3dwg1hmk7ECcnZ2LOyGseTYOoqFDZpiYl5Wd+UobmJ2VoblJ+la9wm9ZkT+b8QJ5yV+oyAzQr/xc0oFKXWdVMO+mYUsgPtpLJNjU3KT/zkzI0PylDc5Pyq1vylJt8PJW7UBPuP6ZNBoQQQgghhKgwpQFaJS+0spdX9aTPgBBCCCGEEHWUJANCCCGEEELUUZIMCCGEEEIIUUdJnwEhhBBCCFH3mLCzb1WQmgEhhBBCCCHqKEkGhBBCCCGEqKMkGRBCCCGEEKKOkj4DQgghhBCi7pF5BgCpGRBCCCGEEKLOkmRACCGEEEKIOkqaCQkhhBBCiLpHhhYFJBkQQgi/UiiyNCd27CgUZmxveip5TkW+SxHk0LBZa9/6CSGEmUkyIIQQfqBQbLIm8IttP7utqTiwUT8wiF7OJnR1N0CvBUnB4RQPP21z8vsuF/kuRWiQxrnxdvq2tRMaKK1UhRCiJvBLMrB161aefvpp/v77bwICAhg6dCgPP/wwdrvdH+EIIUS1Uii+tv/LZ46/cWMQpQJxYGWr5Sh/BSZxJD+Li50t0UycEOw96uHVldnsP2oQFaoR6NBIzVJ88HMe2w64ueX8IMKDJSEQQgh/q/YjsWEY3H777VxwwQWsX7+ejz76iJ9//plXX321ukMRQgi/2KdnsMy+k0BlpaWnHlEqkGiCaGnUI8xwsMKxi52WVH+HWWGGofhkTS6Hkj20aWwhLtJCRLBOk2gLLRtY+HOPm+825/s7TCFEXaeq6GEy1Z4MpKenc/ToUQzDQCnvFtN1ncDAwOoORQgh/GKj9QgZej71jeBir8WoIHJw8bv1sB8iqxy7Ez3sOOSmcbQFXS9au2G3adQL1Vi3w0VWnuGnCIUQQhSq9mZCkZGRjB07lueee47nn38ej8fDeeedx9ixY8u1HM28tec1TuG2lG1qTlJ+5nPYkkmAsqCXUGiaBsHYOGjJNG2ZpmQZ5LsgNKDk+00RQTqJ6R7SsxWhteQ+kPwOzU3Kr/KZY1vKpGPgh2TAMAwCAgKYPHkyI0eOZO/evYwfP57Zs2dz3333lXk5UVGhVRdkHSXb1Nyk/MwjhhAsJBGEo8jzQUHevzV0ogkhOticZRqbkkdAgBO7w4bVUvzEmG94CAm2EBcbQnS92jWOhfwOzU3Kr44xYZOeqlDtR+GVK1fy1VdfsWLFCgBatmzJuHHjeOqpp8qVDCQnZ6KkECuFpnkPgLJNzUnKz3yaWsPID3CRamTjKDgMBwU5yMnJx4mHbEs+LfLCSXJl+jnSiokONAgPMNh9KI9GUZYiryml2HPEQ6emViyeHJKSzHcXrSTyOzQ3Kb/KV7hNRc1X7cnA4cOHcTqdRYOwWrHZbOVajlLID7aSyTY1Nyk/82jviqWtNYY/bImc4QklFO9Ialk42aOn09YdQ0dnfdPetAoO0BnY3s7i1XkcTvUQG66j6xout+JAsocgh8bADg5Aq3X7rPwOzU3KT9RF1d6BuE+fPhw9epSXX34Zj8fD/v37mT9/Ppdcckl1hyKEEH4RgJUb8jrR3dWAZD2P7ZZktpBAop5DF3ccY3M7EYK5h1o+r5ODy3oEoGnw90EP2w+4+TfBQ1SozpgBgbQ/o3w3gIQQQlSNaq8ZaNGiBQsWLGDmzJm89tprhIaGMnz4cMaNG1fdoQghhN9EqUDuzO3Gbksa+yzphDsCCc21cpa7Xq2YcMyiawzrFsC5re1s2+8mz6kIC9Zo28RGsMP86yeEqAWUdCAGP0061qtXL3r16uWPrxZCiBpDR+MsTyQtjEiiCSXJk2napkGlqRei07uNuWs5hBCiNpPpH4UQQgghhKijJBkQQgghhBCijqpdAzwLIYTJKKXIwoXdyC+Yld187U2FEMK0KrttpgkP4ZIMCCGEHyil2KSS+MU4xG7ScaTbqO8JpJfWgK5abImzEwshhBCVTZIBIYSoZkopvjb28ZmxC7emiCIAh2Zhq0rmL5XCES2bi/VmaJIQCCGEqGKSDAghRDXbRybLjD0EYiOOIDQNgnQ7QZqFRCOXFWovrfV6tCTC36EKIUTtpbSC4UUrk/lu4kgHYiGEqGYbjaNkkE99Aou9FqMFkoOb341EP0QmhBCirpFkQAghqtkhlY0Da6nNgIKwckBlVXNUQggh6iJJBoQQopoFalbcGKW+7sQgSFpxCiGEqAaSDAghRDVrr0WhAfnKU+w1p/LgxqCjHl39gQkhRF2iquhhMpIMCCFENeugRdFWq8dO0shUzoL5BSBLufiHNFprkXTSYvwcpRBCiLpA6qGFEKKaBWhWbrC05X3P32xVKRwkC4fLBhh00WK52hJPiGbzd5hCCCGq0NKlS3n88ceLPOdyuQDYsmVLtcUhyYAQQvhBlBbAnZaO7CadfWQSHhxEqEfnLCJkwjEhhKgOfh5adPjw4QwfPtz3d0JCAldccQUTJkyo5JhOTpIBIYTwE13TOIsIWmgRRAeEkpSViTJhe1MhhBCnRynFhAkTGDBgACNGjKjW75ZkQAghhBBC1D1V2OE3K6vo8NB2ux273V7q+5csWcLOnTuZN29e1QR0EpIMCCGEEEIIUYn69etHdna27+/x48dz9913l/hewzCYP38+d9xxByEhIdUVoo8kA0IIIYQolVKQnQOGB0JCQJdxCIU4pVWrVhX5+2S1AuvWrSMxMZGRI0dWdVglkmRACCGEECXauk3j5zUaO3bqGAoaxil6n2vQo5vCYvF3dELUXOW5w//VV18xePBggoKCqjCi0kkyIIQQQohiflmr8f5HFnJyIaqewm6Bnf9q7NhpYd9+gysvMyQhEOZWQyYJ++2337j++uv99v2SDAghhBCiiKNJ8OnnFtAUrVoeez4yQpGWDt+t0mnTStGpQw24khLC5A4cOEBsbKzfvl+SASGEEEIU8ecWnaRkaB1f/LWIcEg4Cut/0yQZECanUZ55Acq+zPLZuHFjJcdQPpIMCCGEEKKIo0nejsKldRYODVbsPyiT4wmTqyHNhPxNxgQQQgghRBEOByij9NddLo2gwOqLRwhRdSQZEEIIIUQRrVoq7A44bph0H4/HO9Ro17PllqoQtYEkA0IIIYQoIr6FolMHg737NdLSvXMNAOTkwj87NZqdqeja+SRVB0II05A+A0IIIYQowmqFMaMM7DbYtFnn0GFv/wGbDdq0Vlw90kO9SH9HKcRpkj4DgCQDQgghhChBaCjcfL3BvgMGu/doGAbE1ffWGljl6kGIWkN+zkIIIYQokabBmU3gzCZy+1TURjVjaFF/kz4DQgghhBBC1FFSMyCEEEIIIeoe6TMASM2AEEIIIYQQdZYkA0IIIYQQQtRR0kxICCGEEELUPdJMCJCaASGEEEIIIeosqRkQQgghhBB1kAwtClIzIIQQQgghRJ0lNQNCCCGEEKLukT4DgNQMCCGEEEIIUWdJMiCEEEIIIUQdJc2EhBBCCCFE3SPNhACpGRBCCCGEEKLOkpoBIYQQQghRB8nQoiA1A0IIIYQQQtRZUjMghBBCCCHqHukzAEjNgBBCCCGEEHWWJANCCCGEEELUUdXeTGjp0qU8/vjjRZ5zuVwAbNmypbrDEUIIIYQQos6q9mRg+PDhDB8+3Pd3QkICV1xxBRMmTKjuUIQQQgghRF0lfQYAPzcTUkoxYcIEBgwYwIgRI/wZihBCCCGEEHWOX0cTWrJkCTt37mTevHnl/qxmvmFca6zCbSnb1Jyk/MxPytD8pAzNTcqv8sm2NA+/JQOGYTB//nzuuOMOQkJCyv35qKjQKoiqbpNtam5SfuYnZWh+UobmJuVXxyjN+6hU5suC/JYMrFu3jsTEREaOHFmhzycnZ6KknVel0DTvAVC2qTlJ+ZmflKH5SRmam5Rf5SvcpqLm81sy8NVXXzF48GCCgoIq9HmlkB9sJZNtam5SfuYnZWh+UobmJuUn6iK/dSD+7bffOOecc/z19UIIIYQQQtR5fqsZOHDgALGxsf76eiGEEEIIUZfJ0KKAH5OBjRs3+uurhRBCCCGEEPh5aFEhhBBCCCH8Q6PyR/8x32hCfp10TAghhBBCCOE/UjMghKjRXIZBjtuD3aITaLH4OxxRAXn5kJ8PQYFgs/k7GiGEKCB9BgBJBoQQNVSW283qpDTWJKWT5nRh0zU6R4bRNyaSxkEB/g5PlMHhBPhpPfy+2ZsMhIbCuV2gb3cILf9ck0IIIaqAJANCiBony+3mjX8P8ntqJiFWC2FWC/mGwYojyfyZlsnNzRvTIrRic5SI6rH3ALz6Luw/BFEREBgAqWnwwVLY9g/ccg2Eh/k7SiGEENJnQAhR4/yYmMpvKZk0Dw7kjKAAIuw26gc4aBMaRGK+k4/2J+A2DH+HKUphGPDJcjh0BNq0gLhYiAiHJg2hZVP48y/47hd/RymEqPNUFT1MRpIBIUSNkufxsCYpjXCbhQBL0UOUrmk0CQzg3+wcdmTm+ClCcSq798GO3dC4AegnnGXsdqgXAes2QpYUoRBC+J0kA0KIGiXD5SHD5SbcVnIrxiCrBbdSpDhd1RyZKKvkNG8fgZDgkl8PD4OMLEhLr9awhBDiBFoVPcxFkgEhRI1i1zWsuobTKLmu1aO8z9tOvOUsagy7DTQN3O6SX3e6wGqRkYWEEKImkLOpEKJGCbdZaR0WwlGnE6WKJwRH853Us9mIlw7ENVaLphATBQlJxV9TChKToGUziI2q9tCEEKKoOt5fACQZEELUMJqmMSA2kgiblX+z83AWdBQ2lCIxz0m6y02/2Egi7XJbuaYKCYZBvSEnB44kejsUA7hcsOeAd76Bgb29tQdCCCH8S4YWFULUOPGhwdzQrBGf7E9gT3YuhvLecIm0WxneKJYLG0T7O0RxCuf18TYT+vZn+HuX98Jf06BBLIwYCu1b+TtCIYQQIMmAEKKG6hQRSnxoEH+lZ5PmcuHQdVqFBRPjsPs7NFEGFgsMOw/O7eqdVyAvD8LCoG1LCJYWXkKImqAqmvaYsKmQJANCiBor0GKhaz2ZmcrM6kVA73P8HYUQQojSSDIghBBCCCHqoKoYCtR8naGkA7EQQgghhBB1lCQDQogazeVWpGcb5DpN2BCzDJRSZGYrMrJUiUOpCiGEqCKVPaxoBfogpKWl8fDDD9OjRw/OOecc7rrrLhITE0971cpDmgkJIWqkrDyD1dtcrPnbSVq2gc2i0bm5lb5tHTSOtvg7vNOmlGLTdsUvvyt2H1A4HNnUjzLo1Vmja1sNXTdfVbMQQojyufvuuwkPD2flypXous4jjzzC5MmTWbBgQbXFIMmAEKLGycozeGNlDr//6yIkQCcsSCPfpVix0cmfe9zcPDiIFg3Me/hSSvH1LwaffaNweyAqAhx22PqP4q+diiMDNC4eoKPJQPxCCFFrbdmyhT/++IPVq1cTEhICwH//+1+OHj1arXGY92wqhKi1ftzi5Lddbs6KsxJgP3ZBHBOu+OeQh49W5/LQpSFYLea8WN53GJb9qAgMhLhoDQ0ICtIJcmgkpipW/Kxo3RxanunvSIUQQlREVlZWkb/tdjt2e9Ghsf/8809atGjBhx9+yHvvvUdubi59+/Zl4sSJ1Rmq9BkQQtQseU7Fmr+dhAdrRRIBAF3TaBJt4d8jHnYccvspwtO3cZtBRhbUjyr+WkykRk4u/P6XUf2BCSFEXVKFfQb69etH165dfY+Smv2kp6fz999/s2fPHj799FM+++wzEhISqj0ZkJoBIUSNkpFrkJGtCA8u+a5/kEPDbUBKpnk72x5KBIeDUpsBBQXCgYRqDkoIIeqcqhtadNWqVUWePbFW4PjnHnvsMRwOByEhIdx3331cddVVZGdnExwcXMmxlUySASFEjWK3algt4Czlxr/HUKDAZuKjV2AAuE9SseF0QZCj+uIRQghRuQr7AJxMixYtMAwDl8uFw+E96BuGt1a4OkeXk2ZCQogaJTxIo3VjG0fTPSUeDI9mGNQL0YhvaN5soH1Lbz+B/BKGS3W6FG43dGxlzv4QQghhGn4eWrRXr140adKERx99lOzsbFJSUpgxYwbnn39+mZKJyiLJgBCiRtE0jQHt7UQE6/yb4MHp9h5ZDaVITPOQnq3o195OZIh5D18dWmq0baGxcx9kZh+bXyArR/HPXmjdXKNTa0kGhBCiNrPZbCxcuBCLxcIFF1zABRdcQFxcHE8//XS1xmHeW2tCiForvpGVGwYF8cnaPPYkejAMUCgig3WGd3dwYZcAf4d4WgIcGjdcqvP+coOtOxUHE8Bh9wDQpa3G1cN0QoIkGRBCiNqufv36zJgxw68xSDIghKiROjWzEd/Iyl/73aRlGThsGq0aW4kJM2+NwPGiIjTuvFpn9wHYd1gRHu4gNFBxVhNkwjEhhBDVRpIBIUSNFWjX6HqWzd9hVBld1zjrDGhxpkZ0tJ2kpHyqsc+YEELUbeVs41/mZZpM7bjFJoQQQgghhCg3qRkQQgghhBB1UNXNM2AmkgwIIWq0HKdBcrabEIdOZJAcsoQQQlQSaSYESDIghKihEjLdvLUujW93ZpGZ78Gqa3RtHMjorhGcc0agv8MTQgghagVJBoQQNU5Cppt7PjnCX4l5BFgh2KbjNOCbndlsOpjH5CExnBdffROyCCGEELWVdCAWQtQ4C35JYWtCLg1DrTQMsxMeaCUm2EqzCCupeR5mrkomz2X4O0whhBDC9CQZEELUKGm5bn74N4cgm06AreghStd1YkOsHEh38c2ObD9FKIQQolZQVfQwGUkGhBA1yqF0N1n5HkIdJR+egmw6HgP2p7mqOTIhhBCi9pE+A0KIGiXYrmPRNVyekm+veAxv86AAq9zLEEIIcbrMNxRoZZOzqRCiRmkSYaVVjIO0PANlFO8XkJJrEOrQGdAiyA/RCSGEELWLJANCiBpF13Wu7RJOsF1nf4YHp9ubEBiGQVK2m2ynwXktQmgWZfdzpEIIIUxN+gwA0kxICFEDDWkdQnqewStrUjic6cYoOLgG23UuaRPKpPOj/RugEEIIUUtIMiCEqJGuPDuM8+ODWP5XFkcyPAQ5NAa2CKZ1fYe/QxNCCCFqDUkGhBA1VmSQldHdIvwdhhBCiNqoKpr1mLCZkPQZEEIIIYQQoo6SmgEhhBBCCFEHaVT+0KLmG6pUkgEhRI2WlOlm12E3seEWmtW3+TucSqeUIsvjxu5yoZTCjCeSus5jKLLzFIHBxYfCFUKImk6SASFEjbR1fz6PvJHDH5t1XPk6mu6k8ZlZjLvczvUDgv0d3mlTSrEpK51f0pPZnZeN47CN+tjpFVaPrqER6JokBTVdnlOxeruLNducJGcYBAc7aRmn6NPWRvM4Ob0KUeNJnwHAT8lAWloaTz/9ND/++COGYXDOOecwdepUYmNj/RGOEKKG2bo/nysezSX1qA3dorDYDQyPxp5/bDw2y83RjEweHB7q7zArTCnF1ymJfJZ0CLdSRNnsOHQLWzMz+Cs7gyPOOC6OikOThKDGyncp/vddLmu3uwiwa0QEe8vq+z+c/PGvi7HnB9Khae2ryRJC1D5+6UB89913k5OTw8qVK/n++++xWCxMnjzZH6EIIWqgB17OIfWolYAQD0FhBo4ACAxWBIV5cObrvLTIQ1q2x99hVti+/FyWpRwh0GKhZVAIUTY70XYHLQODCbNYWZGSwM7cbH+HKU5i7d8u1m530STGQtP6FiJDdOIiLbRpYiErV7H453xy8k14i1AIUedUe83Ali1b+OOPP1i9ejUhISEA/Pe//+Xo0aPVHYoQogbad9TFtm06utXAesKNVV2HgECDnEwLsz7P4vGrw/0T5GnamJlGhttNm6CQYq/F2B1sy87k98w0WpbwuvA/w1Cs3ubCYdMIDihae6NpGk1iLew+4uGvfW66tZTaASFqLGkmBPghGfjzzz9p0aIFH374Ie+99x65ubn07duXiRMnlms5UnteeQq3pWxTc6pt5bd5vwuXU8dmL7kzptUO+TkaOw8p067zYWceAbp+rF9A4XpooCkItlg46Mw17frVdrkuSMrwEB6sHevufVwZOqzeP1IyDSlDk6htx9GaQLaleVR7MpCens7ff/9N+/bt+fTTT8nLy+Phhx9m4sSJLFiwoMzLiYoyb3vhmkq2qbnVlvJr3khH19MxDA29hJOJx1CgKSLDbERHm3OdYzKDsDizCQoqOptyUKD3b82TT3RokGnXr7YLdSpCg/NxuRVBQUVPo0GBdpRSWG0QHRVEdHSQn6IUFVFbjqNClEe1JwN2ux2Axx57DIfDQUhICPfddx9XXXUV2dnZBAeXbZSQ5ORMlAmrYmoiTfMeAGWbmlNtK7/4aA/1YtwkHrJicxjoJ/RsysvWsFgVV/bRSUrK9E+Qp6mpcpCf7yJVy8GhW0DzJgI5ufk4PQbZ+U5aaAGmXb+6oE0jxZcbnIQHeLwdvTVvIpCT6yQlwyDAoogLdZKUZN6+LXVJbTuO1gSF21TUfNWeDLRo0QLDMHC5XDgc3rtghuFtDqDK8QtUCvnBVjLZpuZWW8rPYrEw+iILs99S5GbpBAR7sFg0DAPyczUMt0b7Tm76tg4z7fq2Dw6jbVAof2RncIYjkFCLBYAst5s9ebm0DQqlY0i4adevLujV2s7GXW52HPJwZqyFAJuGUorkdIMjaQZDuthpEKlLGZpMbTmOijJSmvdR2cs0mWofTahXr140adKERx99lOzsbFJSUpgxYwbnn3++r0OxEKJum3R5GKMvV9gDDPIyLWSl6eRmeA9XbTu6eP8xc99tCtAt3NDgTLqHRpDsdrI9N4stGWkkupx0CY1gbIMzCbHIOPU1WZMYCzeeH0jTWAt7Ew22HXCzeY+LPJfigi52Lu8ZIEPDCiFMQVPluR1fSRISEnj22Wf59ddfyc/PZ9CgQTz22GOEhYWVeRlJSVKVV1k0DaKjQ2WbmlRtLr/dCS5eXJLNgURFSJDGtQPsXNil9rTBNpRid142+/JzCQ8LJDQfzgoIlgnHTCTfpdh+wE1ShkFMVDD1Q/KpH2Hxd1iinGrzcdRfCrdpTfZ/f/xOvlG5M4c7dJ0nO3Wp1GVWNb/ceqpfvz4zZszwx1cLIUykWX0bc26L8HcYVUbXNM4KDKFFUIhciJiUw6bRqZmt4MInkKQkt5ShEMJUpB5aCCGEEELUPTLPACDJgBBCCCGEqJM0jk0SUpnLNJdq70AshKhcOfmKtEwDt8eEtyPKIMflYX+6k9Rct79DERWUlw/pGeBy+TsSIYQQJ5KaASFMam+Ch583u/jjXzcWm5NAm5tebW30amcjyGG+OxMnSsh28daGVL7dkkdmNlgt0LWlldHdwjmnYdnmIxH+dfgI/LRW5/dNkO/UCA1VnNtN0fdcRWjN7lcohKgLpJkQIDUDQpjS9v1u5i3NY+VGF4aCIIdGYqrBom/zeeurPHLyTXg0Ok5Ctot7Pj7CO9/lkZoODjt4DPhmg4cJHyTz7b8Z/g5RnMLe/fDS6zrLvtZwujQCAyE1TeODT3VeeVsnXYpQCCFqBEkGhDAZp0vx0Y9OkjMVbZro1I/UqRdm4cz6FprW1/n1bze/bDF3e4wFa5PZulPRsD40jNUID9GIidRo1hhS02HmN+nkuWVm15rKMOCTz3UOHdZoEw9x9SEiHJo0gpbN4c+tGt+tktOPEELUBHI0FsJktu/3sCfR4IwYrdikRoEOjeAAWL3VhcttztqBtDw3P2x1EhSkCLAXXT9dh9gYOHBE8c2/WX6KUJzK7r2wY5dG40beMjue3Q71ImHdbxpZ2f6JTwghxDGSDAhhMskZCsMofqFcKCxYIzVLkZlrzmTgUKaLrGwIDSp5/YIcGh4D9qeZu/ajNktO1cjPh5BSunaEh0NGJqSlV29cQghRhKqih8lIMiCEyditoJR39tqSuNxg1cFuNWcn4mCbjsXiXY+SeApaBwWYdP3qArvNO/uou5QydDrBagWbrXrjEkIIUZwkA0KYTMvGFiJDNJLSiycDSimS0hXtm1kJCTTnxXKTMButztBJywBVwizxKRmK0GAY0Dyk+oMTZdKimSImWpFwtPhrSkFiIrRsroiNrv7YhBDiGK2KHuYiyYAQJhMbodO7vY2UDMXRNAPD8CYFTpdi12FFdJhOv47mveWq6zrXdgsjOAj2JyicLu/6GQYkpSqys+G8s+00i3D4OVJRmpAQGNRXkZMDRxK8ZQfeeQb27IOgYBjYV6GZ75wphBC1jswzIIQJXXKuHYCfN7vYvt8gMMCJ02nQOEZnZD8HzRtY/Bzh6RnSIoz0izy88n0mhxOPNYkKDoJLetqZNCDGzxGKUzmvv8LtNvh2lc7fOwvul2nQIE4xYpiifRsTNqwVQtQuMs8AIMmAEKZkt2lc0ddBn/Y2/jnoISAwECt5tG5iKbVjsdlc2S6S85uHsvyfDI6kuwly6AxsHkLr6AB/hybKwGKBYUMU557jYdsOjbw8CAuDtq0UwUH+jk4IIUQhSQaEMLH6kTpx9XSiowNJSnJTSp9i04oMtDK6Yz1/hyFOQ71I6N2jlu2YQghRi0gyIIQQQggh6h5pJgRIB2IhhBBCCCHqLKkZEMLk/jnkYntCDnEhbsKDat9POinLza6jLmJDdZpFywhCZpSXr8h3QlAg2GR+CCFEjVEVQ4Ga7xhX+64chKgjXv06i1e+zOfQEVAqE7tdcXZrnWk3htCygXmHFi209XAejyxK549NFly5FjSLovFZaYwbHsD1PcP9HZ4og8NHFT/9ZvD7X4p8pyI0ROPcjhp9u+qEBpvvhCmEELWRJANCmNCTizN5+RMnLqeGxabQLYq8PI21vytG7E1nydRwUycEWw/nccV/MkndH4huN7A4PBhujT1/BvLYbjdHM1J58IJIf4cpTmLvIcWrH3nYf0QRFQGBAZCaofhghWLbv4pbrrAQHioJgRDCz0zYxr+ySZ8BIUzmSKqL175w4nZBUIgiMBACAzSCgxWOQIOUZJ2H3sjyd5in5YE300nd7yCgnougSDeOIEVgmEFQjBNntoWX3veQlu3xd5iiFIah+GSlh0OJijbNIS5aIyJMo0mcRssz4c8diu/WlTC9tBBCiGonyYAQJjNjaS55ORqOQIV+wi/YatXQdNi03UNShts/AZ6mfckutm2xoTs8WG1Fb9noOgSEu8lJtjFrZbqfIhSnsvsA7NiraBwHul707r/dplEvHNZtVmTlyC05IYTwN0kGhDCZf4+4QXkv/EtisSlcTp0t+8yZDPx5KB9Xno4toOQ7x1a7AgU7j5hz/eqC5HRvh+GQoJL30fBQyMhSpGVWc2BCCHE8VUWPcli+fDlt27alc+fOvseECRNOe9XKQ/oMCGEyQQ4NUBgGxWoGAAwDNE1RL8ScuX69IB1NU3g8GrYSjqpGQY4Q6JD25jWV3QaaBm63KjFpdbrAagWbnIGEEHXc5s2bGTFiBM8884zfYjDn1YIQddiVfQLQrZCfX/w1wwCPUyc2VtGxqb36g6sE3c90ENXIhTvb4rvwP15+lo4lwOC6PkHVH5wokxZnaMTU00hILv6aUorEJGh5hkasTC4thPArrYoekJWVVeThdDpLjGDz5s20b9++itavbCQZEMJkLu4WSIszFYZLIzf32J1yj1uRmwM2u8FNQwP8G+RpsFotjB5qw+IwyE214SloDWQYkJuhY+RbadPJSb+Wwf4NVJQqJEhjUA+NnFw4kqQwDG8Nj8ut2HMIgoJgYA8dTZPaHSFE7dSvXz+6du3qeyxYsKDYewzDYOvWrfzwww8MHDiQfv36MXnyZNLTq7dPXLkraZOSkoiOjsbpdPLRRx8RGRnJhRdeWBWxCSFK8eGkMK56NoOdezRysyi4EaHjCDQYM9TO3cNC/Bzh6Zk0LJLkzCQ+WGqQl2pDKQ0N0B0e2p6Ty/v3Rfk7RHEK5/XQcbvh27UGf+8BDYWmQYMYjRGDdNq3kHtRQgg/q0Ab/zItE1i1alWRp+324rX1KSkptG3blgsuuIDZs2eTmprKxIkTmTBhAq+88kolB1Y6TSlV5s2wePFinnrqKTZt2sRTTz3F8uXL0TSNa6+9lrvuuqsq4ywmKSmTskcuTkbTIDo6VLapCS1dn8uHP+XhUhYaRhjcPyKYM2LMO7/AiXYn5fPil5kcSDIICYRr+wRxYXtzJzolqc2/wZR077wCefkQFgJtz9IIDqx9NQK1uQzrAim/yle4TWuy/1v/J/meyh3m2GHRebJ7xwp//s8//+Sqq65iw4YNhIRUz/muXDUD77zzDi+99BIej4dPPvmEV199lZiYGMaMGVPtyYAQAoZ3D2REj8BaexJrFu1gzhiHv8MQp6FeuEbvzrXv4l8IIU7X9u3b+eKLL3jwwQd9zSadTie6rpdYk1BVypUMHD58mN69e/P7779jtVrp0qULABkZGVUSnBBCCCGEELVRREQEixYtIjw8nBtvvJHExESmTZvGZZddVq3JQLkabYaHh7N3716++uorunfvDsDatWuJiYmpkuCEEEIIIYSoEn6eZyAuLo4FCxbw7bff0r17d6644go6dOjAlClTKmX1yqpcNQM33ngjl1xyCQALFy7kt99+4/bbb+fxxx+vkuCEEKe2eaeLvL9zaRbrIiqi9vQXKJSU5WJXopvYUJ1mMbWvyZDHo/h3HxxN8VAvXBWbsVcIUfXynYq0DAOnS2ErZUJHURsdGwq0cpdZdt27d+f999+v5BjKp1zJwLXXXkvfvn2xWq00aNCAlJQUFi1a5PfxUYWoi557J5c3l7lITddA5WGxKlo2yWfugw46nGX+pGDroTweWZzCH7sMXC5vZ7TG9TXGDQnm+p4R/g7vtHk8ihde1liyUpGQqtC0LKLC4KKBMGkc2O1yQSJEVUtKVfz8m8H6zaDIwaIZdO8Ifbrq1AuX36CoG8o1mhB4+w0cPHiQEz92zjnnVGpgp1IbO0v6i4yiYD73z8rhva/dGB4NNIWmaaiCARGCghSfTws0dUKw9VAeV8xIIjVdQ9cVFgsYCjwuDbtDcd+IIB4cbN4Zqzwexe0TYeVaA6UgwK6haZCb7x1+s29nnbdngsUiFyNmIcdR80lIUrzyocHOfYp64VAv0kZyiovUDGjVTOPWK3Vi6slvsKJMMZrQ2s1VM5rQuR0qdZlVrVw1A/Pnz2fWrFnFntc0jW3btlVaUEKI0u1PcPHBN24MA6w20DXvhaRS4DEgJ0dj3Av5rJpv3mTggXdTSE3XCAhQWI87Shl2RU6OxkvLcri5VygRweZcx6Vfw3frDaw6hId4u25ZLBrBAYqMHIOfNxm887HODVf5OVAhaimlFEu/9yYCrZqBzaoRFKQTYNOIraf4e7di+SqDGy61+DtUIapcuToQv/XWW7z00kts27aN7du3+x6SCAhRfaa+5sLt1rBYNE5sXm4p+EX/s9/gcLKr+oOrBPtS8tm210DXiyYCALoOAQ5FTq7GrG/NO4rZB5+D0wOhQcXvOoYF6Xg8ik9W+CEwIeqIhCTYskPRMAasJ9TAWa0a9aNg0zbF0RSp5hG1X7mSAavVyoABA2QKeSH8aE+CAerYhf+JNB0Mj8aGv8x5EvvzoBOXC2yl3PS32gAFOxPd1RpXZTpwRGHRKLWzsMWicTDRnOUnhBkkpUFWDoSV0oolPNT7ekp6tYYlhF+UKxkYPXo0M2bMICsrq6riEUKcQmDB0MNGKdeKCkCDGJM2qa8XZEHTvE2eSmIUPB9ozhZCAAQGaBgnaVhuGBBQfUNMC1Hn2G1gtYKrlApUpwusltJvSohaws9Di9YU5UoGmjdvzptvvsk555xDmzZtijyEENXjmiE2NB3cnuJHHEMBHggLUZzbzpxXk93PtBMVCW6X5rvwP16+EyxWxXW9qmea9qrQ9xzQ0HC6ipehy61QyjuaiRCiajRtBI1iNY4klfx6QhKc0UDjjLjqjUsIfyhXB+Jnn32Wm266iV69emGxSKcaIfxh9BAHz7/j5HCihtPtvXtlKbiT7vEodAtcd4F5b2dZrVZG9w1i9tIccnMhIADvaEKGNxEw3NC+hU6/lsH+DrXCbh8Dn3+rczjVIDQAHDZv06DcfEVmniImXOP26xSVP/61EALAbtM4r6fGwiWKA0cUDWO9z7s9ikMJ3pFwBvXUsMqcA7Wc/+cZqAnKlQxkZmby4IMPVlUsQogy+mJaABdPyOPIUXC7oLD1vMUKl/az8vjNgX6N73RNurAeyVkePvgpn7xcb62rhoZuUbRtrvH+Xeae9bx+tMb8pxT3TtU4mKTIygPwoOvQKErjhUc1mp1pvhOKEGbSq7OG06WzYpVixx6Fw+EhPx9iozSG9dfo3kF+g7VeVTTrMWEzoXLNMzBp0iTOO+88Bg8eXJUxlYmM5Vx5ZHxs81q4PI93v3Hj8lhoGKWYPNZGyzPMWytwot1H83lxZToHUjyEBOhce24QF7av2eNWl4fTqVj8Baz9XSMgwEa7lk6uvUwmHDMjOY6aV3qmYtu/CqstEI87l7ZnaYQGy2/wdJlinoHVW6pmnoFe5pqMt1zJwH333cfXX3/NWWedRURERJFRhf73v/9VSYClkQNu5ZGTmLlJ+ZmflKH5SRmam5Rf5ZNkwDzK1UyoRYsWtGjRoqpiEUIIIYQQQlSjciUD48eP9/1/cnIy4eHhWE+cFUgIIYQQQoiaTvoMAOVMBlwuF9OmTWPx4sXk5eVht9sZPnw4kydPxm435zCGQpjdT384Sc/L5OymThrF1r7f4b4EJ5t2Kc6I0Ti7Ze1bP5fLYP1mg/DwfFqfaWC1ypCiZuPxQHYOBAaa8CpACFHnlSsZmDdvHuvWrWPmzJk0btyYffv2MWPGDGbOnMnDDz9cVTEKIUpw9/QcPvkKXFlWUE6wKKLjslkw2UbfTua/aP5pcz73vODkUMKxGy0hQXmMHWFlyg1Bfo2tMrhcBjdPcfPjOsjL0YAc7IEeenbReetJC0GBkhTUdHn5sHqdxpr1OskpGsHBblo21+lzrqJ5M0kMhKj5ZGhRKGcH4vPPP58333yTJk2a+J7bt28fo0eP5qeffirzly5fvpyHHnoIh8NRZNnTpk0r8zKkk0/lkY5T5jPykWxWrbKCWwfd8B57DA2Uhh7kZvFMi6kTgp825zNqkhO3QdEqV83798ghGvMeMO+kYy6XwYCxTv75xwoGaFYFGii3hgY0aephzbs2bDZJCGqq/Hx4+z2dtb/qBARARJjCYrFx4KCbevVg7LUeOrSTA6pZyHmw8pmiA/EvW6umA3HvdpW6zKpWrjNNeno6DRo0KPJcgwYNyMvLK9eXbt68mREjRrBx40bfozyJgBB12d97nKz62QoeHewesIFmA+wKbB6MHCu3/dfl7zBPyx3P5BckAgpd13yPwszgk5WKI6lOv8Z4Ol78n4edO62ggz3YwOZQ2B1gDzJQVsW+vRYmz/H4O0xxEms3aKz9VadJY0XTMxSRERBXX6NNK0VWNiz+TCcn199RCiFOSlXRw2TKlQy0atWK999/v8hz77//PvHx8eX60s2bN9O+vbmGXRKiprjnRRe4dLB6vLdejqdroCmSj1j595A5L5a37HGSlKKBAl0veojSNR1QGAoefsmc6wfwwXIPyqNhtRe/I2W3KzDg8x8q926VqDyGAavX6TjsEHxCizVNgyaNFQcPa/y13XzNBYQQdU+5+gzcd9993HTTTSxdupQmTZqwb98+du7cyeuvv17mZRiGwdatWwkMDOS1117D4/HQv39/HnroIcLDw8u8nBOvgUTFFW5L2abmcChRee886KUUmK7Ao/H9bwZnNarW0CrFL5s9BTdWvPMOn0jXdQxD8e9BZdp9NiVNA12VWoTokJGhmXb9arvcPEhK1ggPU8f2UO3Yv46Cef9SUjU0zYS3CesgOQ9WPtmW5lGuZKBbt2589tlnfPHFFyQlJTF48GBmzpxJo0Zlv+JISUmhbdu2XHDBBcyePZvU1FQmTpzIhAkTeOWVV8q8nKiomt0OzYxkm5pDYEBB2wOl0I67miw88CoADVo1DyI6Orja4ztdLZsAZAJaid2wPAUNekODLTW+PWppHA4nORlakYkbgWN/K7Daan5727oqNFQRGurB5VQEBRUtw6BAO0oprFaIjrIQHS39PsxEzoN1jAwtCpQzGQBo2rQpAwYM4MCBA8TGxhbrQ3Aq0dHRLFq0yPd3YGAgEyZM4KqrriIrK4uQkLJ1CkxOlk4+lUXTvAdA2abmMGoIPPe39+6/Ou5ullJ4/+OxYA110be9QVJSpl9jrYi+7Vw4bJDvAo8yCpoGHadgH73xEt2U6wdwdhuN7xPB7TawWLyFqGkaSik8HkDptGuBadevLmgTr/PlSt1bO1AwIElQoJ2cXCcpKRDg0IiLzSMpyd+RirKQ82DlK9ymouYrVzJw9OhR7rjjDv7++2/Cw8NJTU2ladOmvPHGG8TFxZVpGdu3b+eLL77gwQcf9N0Fczqd6LperrkKlEJ+sJVMtqk5PHhtILPfySY32Q4YYFHHsgGXBSwGw85Tpi1Lm83G0H75LPlWgdIw8CYEhjIozH6iIhRX9Q8w7To+eY/OoN885GdZUXYPuhUsGrhdYDgt2II9TB1nMe361QW9ehhs/ENjxy6NM5soAhyglCI5GY4kagwZZNAgTo6pZiPnQVEXlav+8rnnnqNp06asW7eOX375hXXr1tGmTRueeeaZMi8jIiKCRYsW8dprr+F2uzl06BDTpk3jsssuk4nLhCijr+fZCIxyei+OnRZUvg5OC1gNup/r5rVHzNc86HivTgihT9eCZkJKwzCO9R+oF674alaAP8M7bS3PtDD7/ywEhrkx3DruHAv5WTqGW8cR6ubZBzS6tbf4O0xxEk0awY3XGTRtoti7X2PbDo3Nf0FevsYF5xlcPtyQNtNCCFMo1zwDffr0YcWKFUWa8mRmZnLeeeexfv36Mn/p+vXrefHFF9mxYwcOh4OLLrqICRMmFJl34FRkLODKI+Mrm9dzC3N5f4WBy61RP0ox7V4bXVrVnqR60z9OHnslnyPJEOiAsZdYuWVYoL/DqjQ5uQZPv+ph9UYDm81Cp1YGU++yyoRjJpKfD9t3aCSlaMREB1I/Jpv6sf6OSpSXnAcrnynmGVj1V9XMM9CvbaUus6qVq5mQYRgldniz2Wzl+tLu3bsXG6JUCFF+E8cEMun62nsSO7ulnWXTak9yc6KgQJ0n79HlQsTEHA7o1EGhaYroaJ2kJGlmIoSoPikpKdSrV++0llGu2089evRg6tSp5OTkAJCdnc3UqVPp3r37aQUhhBBCCCGEODW3282MGTPo2rUrgwYNYv/+/VxxxRUkJiZWaHnlSgYmTJjAn3/+Sffu3enTpw89evRg586dTJo0qUJfLoQQQgghhF+YdAbiOXPmsHbtWmbNmoXNZiMqKoq4uDieeuqpCi2vXM2EPB4Py5Yt49dffyUlJYVGjRrRoUMHLBbp6CaEv/y00Ul6biZnt3DRKKZ8TfbM4PedOXz5u5O2TWxc1tPcHaNL4vF4+Peoh6N5edSzedD12nc8TctSZGYrosI0ggKlV60QQpyOzz//nPfee4/69eujaRpBQUE888wzDB48uELLK1cyMGrUKL7++mt69uxZoS8TQlSeu1/M4ZNVTlx5Oqh8sBhER8KCCYH0Pdv87exf+zqTyYsz8BgUDCmquP3VVM5tYWfpo+bvoenxeHhheRZL1ueSkG6g6UlEhehc1DWASReHYreZPynY9I+HhV/n8+s/blxug+AAnf7tbdx8kYOGMdJJWgjhbwWThFT6MqtWTk6Or59A4ThAAQEB6HrFjqvl+lRERAQJCQkV+iIhROUZ+VgWH3ztxpVVkM9rCtw6SYkWrpycy0+bnP4N8DS99nUmj76fgcejFVS5qoJ/ddbudNFzkrmPQx6Ph9tfT2XeV1kcSPFg0cGiaRxO9fD6tznc9EoKHo/H32GeltWb3TzwcjZfbcrH5TFw2DQycgw++CWP8bNz2J9QuSN4CCFEXXH22Wczd+5c4NjM9QsXLqRDhw4VWl65agZatmzJVVddxdlnn01sbNE7c+WZa0AIUXF/73WxaqMHPDo4PKB5x+NXKDAMjDwLtz2fy7Z3zVs78OgH6YDuHZZFL5xmGTC8E6ztSnSzZU8O7ZsG+TPMClu6MY/vNudjtWiEB3nXz6LrBAdARo7i521O3vklhxv61exh+UrjditeXJxHUqaHZtEW9IIyDA8Cp0ux44iL+Z/l8/TttWeYWCGECVVFG/9q6DPw2GOPccMNN/Dpp5+SnZ3NsGHDyM7O5s0336zQ8sqVDAQFBTFkyJAKfZEQonLcMzPfO9OwzZsIFKFroCuS0zT+PeiieSPz9SFYviHb1yzIlwgU0jVfQnDdnAw2TTdnMvDBmhycBkSXEH5YkMbRDMUn63NNmwz89IeH3UfdxIbqvkSgkN2mEerQ+GWbk4QUB/XrSXMhIYQojyZNmrBs2TJ++OEHDh48SFxcHAMGDCgyD1h5lCsZkLv/QvjfoWQD0ItfKBfSFHg0vvvVY8pk4LN1+YDmrRUoaRV1b9Oh5CzzNjM5kOTBAsUulAtZdDiYYt5mQvsSDFweRXBAyf0eQgJ1UrMM9iUo6p/e8NhCCFHnOJ1OXn75ZUaOHMmFF17I22+/zWuvvcY999xToX4D5Z50bMWKFezbtw+3213ktfHjx5f7y4UQ5Wcv/NUaJdw5B28VpQYNYsw5akvDyOOaBZXE8CYJFot57ygH2jVOlsoYBgTYzFl+AIEOb9M1t0dhtRRfD5dbYdEhqOyTzgshhCjwzDPPsGnTJkaNGgVAu3btePbZZ3E6nTz88MPlXl65zqaPP/44jz32GD/88APr1q3zPdavX1/uLxZCVMw159lBV2CUlAgoMHSsDoOLepvzSmvCCAe+jMYovfHltT0Dqi2myta3rQMNcLqLr5/LrVBAn9bm7fPR72wLEUEWkjOLpzxKKVKzDZrFWmnT1LwJnRCiFjDpPANff/01r7/+Og0bNgSgW7duvPzyyyxdurRCyytXzcCXX37JRx99xFlnnVWhLxNCnL6HRgcw55M8cjOsgOFNDHQNPN4RhbAYDOtpvuZBhYKDgzgzKpO9yZ5jnYb14xIDDdAUT4+J9GeYp+X2QSF8/msuh9MMQgPAYfM2Dcp1KjLzFDGhOrefV7G2nzVBXJTOsG523vspl8QMD9Eh3r4DLo8iId1DgE3jmoGOUptJCSFE9TDn0KL5+fkEBRXtdBYSElKs1U5Zleu2TGhoKM2aNavQFwkhKs/XLwYTGOb2drR1WVD5OrgtYFN076Dz2iRzdqwt9Ou0+kSF6MeO0wUVBWgaaIoVj5i7oXn9cCvzb6nHmdEWcp2K5CzFkTQ3OfmKRpEWZt8YQbNY89YMANw/ysEVPQPQ0NiT5O1QfDDFQ3ighXEXBzGin3kTViGE8Kdu3brxzDPP4HR6hxHPz8/n+eefp0uXLhVanqYKZysog+nTpxMeHs4tt9xSoS+rTElJmZQ9cnEymgbR0aGyTU3ouf/l8v73LlwejfrhMG1cAF1a156LrE/XZDPhnUxynB4susYlnQKYd5e5E4HjOV0eFq/PZe3OfAICbLRroHFtz6BaMeFYoV0HDb751UVWLsREaFzY00pMRO1rHiTHUXOT8qt8hdu0Jvu/77aT76ncwSgcFp0nB7Wu1GWeaP/+/dxyyy0cPHiQyMhIUlNTadasGS+//DKNGjUq9/LKlAwMGjQITdNwu90kJCQQGhpKWFhYkfd8++235f7y0yE/2MojB0Fzk/IzPylD85MyNDcpv8onyUDV8ng8/PbbbyQlJREXF0fHjh2xWsvV+t+nTJ+6++67K7RwIYQQQgghxOk7cuQIcXFxHDp0CIDGjRvTuHFjABITEwF8nYrLo0zJwGWXXQbA66+/zs0331zs9ZkzZ5b7i4UQQgghhBBlM2zYMH7//Xdfi53jKaXQNI1t27aVe7mnTAZSUlLYtWsXAHPmzKFTp04c37IoMzOTt99+m/vuu6/cXy5EVcvJdfPrdgOHQ6NrSw2brWJVaDXZpfensedQJndc6eH2KyL8HU6lmzIvjQ++gVZNDJbOqj39BQolJTm590mFw+Zh2iQPUVHm7jhckoRkg+Q0RaP6OuEhMoKQ2RiG4mgKuN1QPxqsVilDUUtUxVCgVdjMbNmyZQAsXbqU4ODgSlvuKfsMZGVlMXjwYFJTU0t83W63M2rUKB577LFKC6ospF1f5amNbSVzct2MeTqX9VsNnHneE1dgsOK8bhZefiCgViQFsf2zINcOhqVgtB0FNg+9z83l0xkR/g7vtPW6IZmd2Qoi88Du8c6rkOaAFAeJX0X4O7zTlpTkpO35Fsizgrtgf7R6IMDNqvfdtDbxPAOFvlnnZu47ir/+0vC4NRwBiu7dDB69zUL8mbWnkzTUzuMowNJvDD5eofhnn0IpqB+lMay/ztgrwG6vPUlBbS0/fzJFn4Fvq6jPwHlV22dg0KBBLF26lJCQyhmC+pRXRCEhIaxZswaAoUOHsmLFikr5YiGqSk6um17jszl8QEdpOprFe2TPydD5/HvF7sM5fDcz7BRLqdli++RAXoD3AlkHKJiELN/KL78Ec9n9aaZOCHrdkMxOLR+a5HnnTnDqYFEQlw3h+cQOVSSuMO88A0lJTtr2t3rLEOVN5ABcFnBZ6HeFxl8/OomONm9C8On3Lh59RiMzw4IjQGG1KXJzNb751sqWvzz87wVoe1btSghqmwXvGrz+kUG+C8KCQbfAvsMG894z2LZT57mJeq1KCERdZM55BgByc3OrLxk4XmmJQEpKCvXq1b7qe2FOkxbkc+igjmZV2O3H3eKxK5z5Glt3wPxPc7nzskD/BXka/m92GuSFeOcY0NRxxzLlrSFw6/yy1pzrVmhntuFNBLJsYBQMQ+kG8i0Q6oJGOcxYpHH/6Ah/hllh54zQIc/hLT/L8bchFXg0yLPTaZjBQZNO7u50Kp6eC1mZOtExBnpBEQYHK1wuxZHDFqbO9fDhDEkGaqrtuxT/W2KABk0bHbu4iQjVSM9U/LBBseQbxZXDJBkQJmayZkKFevTowZVXXkm/fv2IjY0t8tr48ePLvbxyJQN//vknzz//PAkJCRiGt1rF5XKRkpLCli1byv3lQlSFr391g6FjCyz+i7TaFO5cC2+ucJo2GXjlQ4c3EUAVnzaw8LzssvD862k8fHNE9QZXCUZNSoWoPHDpxxIBHw1yrBDi5Jl3grh/tF9CPG3ZaQVNu3SDYneRLApcOq4s814oL/7GTWKChZCwY4lAIZsNHA7FH39q7D5o0KxR7ZtzoDZY9p0iI1vRtGHxi/3wUI3UTMXyHxRXDvNDcELUcQcOHKBJkybs3r2b3bt3+54/sVNxWZUrGXjiiSdo0qQJLVu2ZP/+/fTu3Zv//e9/PPjggxX6ciGqQmY2J9xtPUbXAV2Rkl6tIVUuQ/deSJZ2ragpUBqvfqbzcPHBv2q8n/7UoLnH22SmJJ6CmYkdJm7YW7gOeikHbk15+4Lgqc6oKs3OfWB4IDCg5NcDAhXZWTp/7ZZkoKbaf0ShaaCXso8GOmB/gol/g0KY2MKFCyt1eeU6Cv/zzz8888wzjB49Go/Hw4033siMGTP4/PPPKzUoIU6HxVLQfr40SsPc/YcLTsCl9XkquDMQG1O5naKqS5DDm8ygl3ahoYr8Y0oaBbU7pVBQegHXfEEB3t3QU0ou43aDrivCgqo3LlF2QQGcdB91uxWB0l9AiGo3d+5c7rzzThYtWlRpyyxXMhAWFkZAQABNmjThn3/+AeDss8/m4MGDlRaQEKer1Zne3doo4ULE4wZQ9Ghr3ruRASGugn4CJZyIjYKHxcMvb0RUb2CV5KvpGmTYweGhxCt+hwecOiEnu5iu6RyeghqcEtbPUIDmHUHJpC4/30JgoEFmZvEyMhTk5GjUjzPo1cm8TaFqu15dNCwWRU5O8X3U41Hku6BvNxP/BoWAY30GKvtRRZ5//nneffddbDYbs2fP5pVXXqmU5Zbriqh58+a89957OBwOgoKC2LZtG7t27apwGyUhqsL/jQnAGmDgzrPgdnufMwxwu8CTb8ERYvDfW8zZXwBg39eh3iEoFd47d4U3kA2AgjvqAU7/BXiazmoeAUkB3j4Dwe5jI+2gwOEGuwFHg/h3qXlHE3roTre3DN269+rYKKztUeCxgM3DFZe4/RvkaTirsU7/vgZuF6SnaxR0McPthrRkHZsVRl8OFoucO2qq8/totDtL50iyIj1LoQr20Zw8xb7D0CBa44qhUn5CVKcvvviCt99+m9mzZzN79uxKa5lTrmTg3nvvZebMmezbt4+bb76Zq666iiuuuMI3Q7EQNUH/znaeuNWBI8SN4dJx5lhw5+oYHp3gcDevTwqgSayp2wlx2+icogmBp2BIIU1BgIvEVZUz3Ji/JH4ZCXvDvGPwB7sg1Ol9aMDBEO4YaPN3iKfl4dvttO6UD3ZvZ3c8loIO0xawu2ncIo/5T5l3WFGAWZNsDBrgrd1ITtI5mqiTlqITEGQwdrTB+KvNXYa1XYBD4/lJOud00MnOgd2HFLsPGiSlKpo31njyPgtnnSnJgDA7rYoe5efxeBgzZgyTJk0q9T2ZmZm0bNkSgK5du5KQkFCh7zpRua6IunTpwqpVq7DZbIwaNYo2bdqQmZlJ7969KyUYISrLLRcHcGV/K1PfzmfTPx50Hfp1svLo6MBaMeHYk/dE8OQ90Pi8TJy5Nl8b+0vOy+P1JyL8HV6lSPwikuH3Ktb+C9i9Q27aXDoHl0X4O7RKsepDG9u353P+9S6ced7mMlaHwXcLPbViwrHAAI23nrbz+3YPH37pISNLERerccNwC2c2MG8zvbqkYazGa0/rrN0IGzYr3G6Ib+atNQhwSCIgRGWaO3cuGzZsoFGjRqW+Rz9ueDartfKuZcq9JIfDAUBiYiKHDh2iQ4cOlRaMEJUpPNTKjPHmv/A/mQPfhp4wc2Ypw7eY1NJZtXv+ktat7RxYf+Lsp7WrHX2X1ha6tK5d61SX6LpGr67Qq6tc/ItaqgYMRrFmzRq+/vprhgwZctL3qSqaHrtMV0pZWVk89dRTbNmyhQsuuIBhw4Zx1VVXkZWVRWBgIAsWLKB79+5VEqAQQgghhBBmkpWVVeRvu92O3V681jc5OZnHHnuMefPm8dZbb510mW63m88++8z3t8vlKvI3wKWXXlruWMuUDPznP/9h7969jBo1ipUrV/LJJ59wxRVXcM899/DWW28xZ86cSh/zVAghhBBCCDPq168f2dnZvr/Hjx/P3XffXeQ9hmEwYcIEbrzxRlq3bn3KZUZHRzN79mzf35GRkUX+1jSt6pKBX375hS+++IJ69epxwQUX0LdvX+655x6Cg4O59dZbT5nJCOEvWdkeVm32EGCDPh0s2O21r7lC/9tSOZCcyq0Xa0wcG+HvcCrda4uzWbhc0TFeY84jwf4Op9Ll5Tn5bJVBaCic38WJw2H+/gInSstSZGYrosI0ggKluYkQooaoiqFAC5a3atWqIk+XVCuwYMEC7HY7Y8aMKdOiv/vuu9MOryRlSgZyc3OpV8/bdjcmJobAwECCg70nZbvdjmGYd3IcUTtlZXu49KkMtmZl4AlwAhq2Nx2cGxvKe5NCa0VSEDssBUJdYFMQANNXwvQvjtI2ysoPC8w77GahKx/I5sf1Oni8HaS3bYMPvsjDHuTmwEpzj5YE3iRg4N157DrqAd0AskFpNIm08u2MACLCzZ8UbNrhYeEyN7/+AS4XBAdB/x4aN19qpWG0dCIWQtReISGnPk8tWbKExMREunXrBkBeXh4A33zzDRs2bKjS+I5XpqPxifMI2GxFh4Srqg4NQlREVraHLg8f5U+O4gnJ985GbIArPIefchPpPSnV3yGettjhKVDP5R1lh4LJqzQg0MNfGU4G3G7udbzygWx+XGsFl/W42aQVuC04M+3EDsg+6edrurw8J62vz2FXigssxrG7U7pif7qLDjdlk5dn3rkiAFb/6eaB59189YOGyw0OO2RkanzwOYx/xsX+BLmJJITwN/8OLbpixQp+//13NmzYwIYNG7j44ou5+OKLqzURgDImA0opDh8+zKFDhzh06BCGYRT5W5IBUZPcNTebtLAMcOroOXZ0t9X7yHaAR2OvLZVn383xd5gVdsd/U701ApoCD6B0QD82AZlV8VeKeSesAvhxnQ4e3TuBmkV5/9Xx/qs0yLfy4XLzJgR3vuAix1MwT4RRePLQvf+vIB+Dqx83bzLgdite/J+HpCSNZmcoYqMhPBwaxCmaNFLs+Edj/mKXv8MUQghBOZoJDRo0yPe3Usr3t1JKZiAWNcqqfZkQodDdJeze+VYIzWfhmkwmXRtU/cFVgk82GBCmvBf+xX57mreWwO5h4qw0nrs3wg8Rnp6HZ2R7mwZB8RssGgUJgc74ZzWuGlbd0VWOlRudBcmcVnwdC+aMWLfDvBfLP23ysHuvRmysgX7CLMN2O4SGKn7ZAAkpBvXrSXMhIYSfVGGfgYp49tlnKy+OcihTMvDtt99WdRxCVJo8mwvcJV9g6JqGYehkGOa90MJaeKQpJQlXCjSNd78zeO7eaouq0iz9vuBOuV7KEVXDmwhVcJbHmsDpASxaCclcAaXwmLjGdd8RVdBHoOT1CwmG1DSNfUckGRBCiIpwOp38+OOPHDx4kFGjRrF3794yjUhUkjIlAyebDU2Imkbz6N6mJaW+QWEtWwu5mqlw1Qou+ospeCoiyJwXk/XCDVIS8a5nSdeS6oR/TUhDobTSVpCCcjVvshPo8K6C2w0lTZLpcoPFAkEB5l1HIYTwl3379nHTTTfhcrnIyMigf//+XHHFFcydO5eBAweWe3kmviISomRn2oJAVxglXC0amgFodIoxZxMhAC3f4utsWkxhguDW2PxeVLXHVhk+fl4D3eNtLlPSBX/BNfSZjT3VHVqlaVzPivdiv5QyRBETat4Rr/p1sRARoUhOKX6xrwxvrUCzMxRtmsopSAghyuupp57i8ssv54cffsBqtdKsWTOefPLJInMOlIcciUWtM+WqMLQsB4Q4MXTviCWGUhgWDwQ7sWQE8OJt5h2aMmFZJDh170W/ZhRcPAIosHj/IbNMlX41UoMGwWAzCpoDaUVrAgy8SYLFza/vmbcMX7rf25ndV4N1fJMgqwKPzjO3OvwTXCWIi9IZ1h/y8iAxCYyCvM3lgoOHIcAB1wyzoOtSMyCE8CNVRY8qtmnTJm655RY0TfP12x0xYgT79++v0PLKlAz8+OOPFVq4EP4w7Fw7E3vFYskIgAA3Rkg+hDrB7sGWFsy8kfVp3tC8F8sAl3ewQb4OaN4EoHC0HQPItJG4zJy1AoUSfwwCe8GISYbmvXAuHHXH5ubp+8w9LOW5HRw8fGUguC3esrMqsHi8/+/RuePCAIb3M28yAHD/aDtXXOjN6fbs19i9R+PgQY3wMBg3RmNEf3P/BoUQtYF/hxatqNDQUJKSkoo8d/ToUcLDwyu0PE2VYVzQc845h19//ZUhQ4bw9ddfV+iLKltSUiYm7l9Xo2gaREeH1rptmpLm4cFXs9l8yImuQe8WATx3S2CtmHCsUOywVAj0eC+a3Tq9Wuh89oL5JxwrdPcz2XzwpeatDdAgOlLx1xLzNvE6UVq6k1uedfLHHg8WXSO+kc7/HrPXignHCu06aPDNOg9ZOYqYehoX9rIQE1H7KqVr63G0rpDyq3yF27Qm+78VO8l3V+7NJYdV58mhLSp1mSeaNWsWP/74Iw8++CD33nsvb7zxBtOmTaNz58488MAD5V5emZKBXr16cdFFF/Hee+9xxx13lPie8ePHl/vLT4f8YCuPHATNTcrP/KQMzU/K0Nyk/CqfKZKBL6soGbiwapMBl8vFiy++yPvvv09ubi4Oh4ORI0cyceJE7Pby30wqUz3t5MmTWbx4MUop1q1bV+x1mWdACCGEEEKIqmez2Zg4cSITJ04kJSWFyMjI07oWL1MycOGFF3LhhRdy5ZVXsnDhwgp/mRBCCCGEEKLisrOzWbx4MWPHjiUlJYXbb7+devXq8cQTT1C/fv1yL69cDTcXL15MdnY2y5cv59VXX2XJkiVkZGSU+0uFqC6JiS6ef83JS4ucZGebeKKxk2g+OAmt3X7GPpbs71CqxK3/l07D/pl0vzLd36FUiexsFy++7uLpudm1dh/951/Ftz8pDifWzvYXTpdif6KHxDS3v0OpEkopsnIVGVkKw6idZSiEmfz3v//l008/BWDq1Kk0bNiQ8PBwpk6dWqHllanPQKG9e/cyduxYXC4XDRs25NChQxiGwdtvv03Lli0rFEBFSbu+ylMb20omJrrofrUiJ7NgxB0AFFHRHjZ8pBMcbPNneJUidkAm3qGEjq0fuiLUmsuur6P9GFnliB+WRlqmA1wW70hCGmBzg3KT+EvNbodaFtnZLjqPgLRsw9tBGkBThAborPkAYmPNv4++8j/F7NcsJCVpKENDtyjOaKKYPtVDn3PN37w0Ldvgze9yWLkth9Q8N3aLTttYB6PODWZAh9rRCXzrLoOfN3rYsVdhKGgYo9H7bJ0e7XUsFvOXYaHaeB70N1P0GVheRX0GhlVtn4FBgwbxySefoGkaPXv25PvvvyciIoI+ffrw66+/lnt55aoZeOaZZxg6dCirVq3iww8/ZNWqVYwYMYJnn3223F8M4PF4GDNmDJMmTarQ54UoSWKii/aXQE6G5dhFFgAayUlW4i/wW2iVJnZgYSJwPO/wm5nOIM4aklTSx0wjflgaaWkBkGsDj+4dLUkBeTZwO4jtk+3vEE9LdraL5ucr0rIouo8qjcxcRfvhhulrCZ6bo3j8WSuJCRqGAWgKjxt279a4+jYr3/5k7iuujByD+95O4831aSRku3DoOmjwy74sHv00iU/W5Pk7xNP2yyYPLy92sX6LgcUCAXbYud/gzSVuFq/04PGYuwyFMKvs7GwiIiJYs2YNTZo0oX79+kXmHCivciUDf/zxB/fffz+67v2Yruvce++9/PHHHxX68rlz57Jhw4YKfVaI0gy5xQDDe2KmsGKg8KHAla8z8p58v8Z4OgbclAyqMBE48Yfv/TvTHVitMVW2tAwHOK1g9YDV8JajRXn/NnRwW5n4gnmbDV12l0Kpgh2yxCGqNQaN8WOApyknRzH3NSseD1htYLdr2GwadoeGxQrOfHhwirmH+H37+1x+P5xD/UAbjUPtRARYiA220zTMQa7bYN736SRnmHc+jKOpik+/84Cm0aqpTnSERmSYxlmNdWIiNb771WDLLkkGhNmZc56Bli1bMm/ePN566y0GDhxIVlYWzz//PO3atavQ8sqVDFgsFrKysoo8l5WVRWBg+S881qxZw9dff82QIUPK/VkhTubQkYLduqTfY8Fzq9abt3r7r912Tn7A8dYQjLjXnH0I+l2f7m0apClvPfPxNA10D3gsvLnUvJNWbfr7VNNUauw+ZN4LradnaeTnaegWis0ybLF4m3wdSdDYsMmc6+j2KL76KxubrhFkL3oa1TWNuGA7R3NdfPm7eW86/LnDIClN0Sim+GsRoRoeQ7F+i6f6AxOiMpl0BuKpU6eyZs0aQkJCGD9+PH/99Rfr1q1jypQpFVpeuc6mAwcO5MEHH2Ty5Mk0btyY/fv38+STTzJw4MByfWlycjKPPfaYL6upCBnNtPIUbstas02V5v0xlpYMGIChmXd9NR1vo9aTrYDGmo02U67j9t26twx1gxLXUdfAAygTl2FhMqeVdtbwPm/W9ft7l7fWw2oteQUsOng8Gqs3wDmdqze2ypCSpUjJdRNs1Y/todqxfx0FbekPpLhNW4ZH0xQWC6X2CwgL1jiQoEy7fieqdefBGkC2ZdVp0aJFkdE9u3fvzueff17h5ZUrGXjwwQe5++67GTZsmK9dUv/+/XnooYfKvAzDMJgwYQI33ngjrVu3Ll+0x4mKqtmdUsyo9mzT1JO/XHAdVtM7NpWubO3lLVa3KdfRqmfihhP6exynsHefqcswmVPVDKAp065fZHgeYGAY3gv/Eym8idwZjQKIjjZfR1t7oAeHzYLbo7DZijZ3slktGMpA06FeeIBpyzAmKherNZ+goJIvE3SLh6hIC9HRIdUcWdWqPedBUZvNnTu31NcqMglwuZKBiIgIFi5cyP79+0lOTqZRo0bExJRQh3gSCxYswG63M2bM6TWITU6WHv+VRdO8B8Dask1tAQauXEvJtQMFVXiREYqkpEw/RFcJ3B7QTzbSjLcQj3xfz5TruGKOwfl3uMFp8zYJOvH2kqGDrgCPKdcPIDTQ21G41H0UCLBh2vW7ebRi6ZdW3G6Fbi+6goahMDwQGAgXD84jKcmcTWk6N3CwcmcmkQ4dXfM2fbJZLbjcHlJz3Dh0nW5NzVuGDaMM78hdyR5CAouWocejSElTDO1p4uPoCWrbebAmKNymovKdOAFwWloau3btYujQoRVaXoUa3TZp0oQmTZpU6AuXLFlCYmIi3bp1AyAvzzviwjfffFOuzsRKIT/YSlZbtum9N8ALCwqusgovto5fL03xxjOaadc1cVUYsQNyCv4q5UoSt2nXr2PHcLBkey/4PTpYDO9ZRSlvImBoEOAkcVWoaddxzhQY+0jhPlrw7/HtTTTFlHHm3Ud7dNFo0UyxY6eG06mwWr19BzwehcftrRUYNtiD1Wredby6ZzC/HchjX4aTuGAbAVYdQxmk5LhJzXczqHkoZzezmnb9Wp6h0amVzvrNBg1jIDwENE0jJ0+x77CiaQONrm10065faWrLeVCUUVW08a+G/aekCYCXLFlSLEkoq3J1IK4MK1as4Pfff2fDhg1s2LCBiy++mIsvvlhGFRKV5uFb7AzuZ+D7RRb5YRrcNcagdxdzj+HetnnucX+d0GtJ95D4Q5gfoqo8iT8FQ4DTO4KQxwIuHdwFzTECnIwYYO5hN4cNtDH64sI+AwVZQGERagaX9NG4ZZS599Fl73po1kyhoeF2gTPfO7SoxaLo39fD/GnmvuLq3srGI8MiaRBi40i2i3/T89mVmo/TUJx3Vij/GRVWrPO0mVgtGmOGWenTWScjW7Ftt2L7boPDRxVtmuvcdKmVeuHmXT8hapsRI0bw7bffVuiz5h2OQ4iTWDTdzu59Lq6410PCUR1QtGgKyxdoBAebr43yiX54IwqA2H4ZYC24SFaKuIg8/vzU/BOOASSuCqb7lensSbAV9B9QgEHiT7WjjfKM/7PzyG0uLhsPew55k4JG0YovXtFrxYRj4eEa61YYfP61hwVvWcjKhthYxSP3GHTuUDsuIod2cdCrdQxfbcxnX5KHqEgHXc+ADk3NX34AocEaN19qZd8Rxe6DCsOAuGiN+DM1rLVowjFR19WOfXn9+vUEBQVV6LPlmoF42bJlDB48GLvd/xdTMktg5ZGZF81Nys/8pAzNT8rQ3KT8Kp8pZiD+Yhf57sotcIdV48mLz6rUZZ5o0KBBRSYYc7lcJCUlceedd3L33XeXe3nlqhn4z3/+I/MCCCGEEEII8zNpn4ETL/h1Xeess86iffv2FVpeuZKBDh06sHz5ckaMGFGhLxNCCCGEEEJU3GWXXQZ45+06ePAgMTExNGjQoMLLK1cykJaWxsSJE5k8eTLR0dFFqigq2mlBiKq0Z4+H5xdAcBA8djdERFhO/SGTiel7FIxkurY2+PK18g31awbjHs9g6S9wZn3Fz4vC/R1OpcvM9PDiaxAclMUdoz2EhNS+fTQtQ5GZBVEREBRUO9rnHs/jgewcCAyS9iVCiKqXlZXFxIkT+e6771BKoWkaPXv2ZObMmYSFlX8AkXIlA9ddd125v0AIf9izx0OPi62ofDveQbMUb/9PYQv2sPUHT61ICmLPT4d6TmjhBE3xm8tC7IgUSPWQuMr8SUGbi9NJzrCDbgUNdhyC2H45YCgSfw72d3inLTPTQ/vzdXKzLQX91xTPz7HgCFCsW2rQsKH599FNWxULP9L4dZOGy6URHKzo3xNuvlrRMM78SUFePqzeAGs2QHIqBAfn07IZ9DkHmp/p7+iEEKdk0mZC06dPJzs7my+++ILGjRuzd+9enn76aaZNm8Z///vfci+vXB2Ij5eSkkK9evUq8tFKIZ18Kk9t6zi1Z4+H7kPspc9gazNI/Muo3qAqWeyQNGicDXYDnJp3Xa0KdAMyHHBQN3VC0ObidJIzbWCh4GCtCmaOLpg7wq28w4+aVGamh7N668f2Ud+syoVzYyh2rTYIDTVvQrB6g+L/ntNITNIIDQGHHXJyvY/4sxSznlA0aWjehCDfCW8vhrW/QYADIsLBYrFx4JCLehEw9iro0MbfUYqyqm3nwZrAFB2Il1ZRB+LhVduBeMCAAXz88cdERUX5njt69CjDhw9nzZo15V5eueYZcLvdzJgxg65duzJo0CD279/PFVdcwdGjR8v9xUJUlf5XWI5dZGknPABcFrpf5PFPcJWg44ij0CAXbAZkW8Bt9Y7Fn2+FPCuE5UM9815EAiSnFyQChiooSx2U7v1bAywak2dk+DnKihsyWiuarGrasZmWNe9/eo6o9mlgKo3brXhxgUZSskazMyA2GsLDoEF9aNIQduzSmP+2eRMBgLW/exOBJg2haROIDIe4WI02LSErGxZ/4U18hBA12YkXCZX1qFq5ubmEhhZNtMLCwjCMit3oLNfZZs6cOaxdu5ZZs2Zhs9mIiooiLi6OJ598skJfLkRVyM0suBAu9feo2LPTvOOAH3HawOGGXAtoJ/yEle6dpTc8j15XmTNJP//G9IIaAUXxQ1RBQqDDgk/MO03Krt0n1AiUIDGxmoKpAj+tg937NGJjQD+hCO12CA2GX36FhCRz3oI1DG/zIIfd2x/peJoGTRrBwSPw1w7/xCeEqN06derErFmzKGzco5Ri1qxZdOjQoULLK9fZ9PPPP+e9996jfv36aJpGUFAQzzzzDIMHD67QlwtRJUprHgTeBEGd4j01nc0oSHRKyeXdGtgMdv5rzovlP/+xgB0o9QaHtw8ImonLsHDi4dLWQYGZJ8LZdwhcruIXyoVCgiE1XWPfAUV9E86Rl5MHSckQVkoLCLvNW4TJqdUalhCivEzaZ+Chhx5izJgxLF26lEaNGnHw4EE0TePNN9+s0PLKdbWQk5Pj6ydQmI0EBASgn3jrRwi/KrzSqqUKZ+NVRvGaAShIeDRQ5mwKZbMbuJR+LHErxgC0ajngVpnCdSttN9UoqDUw534cGODNc9xusJZwlnG5wWKBoMDqj60y2Kze9XK5Sn5dKW/tgc28FZBCiBosPj6er776im+++YaUlBQaNWpE//79CQkJqdDyynUVf/bZZzN37lwA37CiCxcurHC1hBBVwlZwS7mki8WC5yyBJu5AnKl5+wjYSlgHZXifz7SR+LMJb7kCX80GPIVt6EtYx4ILaYu1lCsxE3A4OO6C/wQFz1n8P9F7hfXrARHhiuSU4q8pA1LTodkZijYtqz+2yuCwQ5f2kJxWchGmpkNYCLSq2j6EQog6LCIigpEjR3Lbbbdx0UUXVTgRgHLWDDz22GPccMMNfPrpp2RnZzNs2DCys7MrXC0hRFUYOcLNRx8V9BsovLla5IStmP+sG2/DdPNJ/CGC2CtcEJ0HeMClFdQQGBDoAZcOqQ5/h1lh7duHgZHtrd3QNe8tVgrWr7BpjQsO/1T+sZRrihenGoybZCkYPej4kYSUb0Shh283MOs+GherMWwQvPcZJCZBdD1v3wGXCxKOekffueZSha6bs+YDoNc5sHEr/LMbzmwEAQHeGvPkVDiSCEMGQMP6/o5SCHFSJmsmNGjQoCJzfJWkIvN+lSsZaNKkCcuWLeOHH37g4MGDxMXFMWDAgNPKRoSobPOesfDntnx2bLVTvDmJYuiwfC690Jzt6QvFueFIUgBE5EOQB19zknwLHA4icaW5J+dK/DmY2L453mth/bg2NQpwwZWD3P4N8DRdebGFL3/w8MUKi+/i37uK3v/v18vg/tvNmQgUuv82hdMFX36vsWf/sTwuKlIxdpRixAXmTQTAO4rQjaNg8eew54C3X7vNqggMgAsGwmVDzd2tRQhR89x9992A98bDE088weOPP14pyy33PAOGYfDnn3+SkJBAo0aNaN++faUEUl4yFnDlqa3jK2/608OImyzk5nhbw9WL8rD2c6NWTDhWKLZ/GoQr0BS4dOz5Lg58a975BU7UZ3Q6O/bZjzWdVx4Sf6o9Nx8OHfIw7AadIwUDP0VFwspFtWPCsUK79iq+WaWRlQ0xUYoLz4OYerXnKjnfCdt3QlIKxEQHUj8ql/q15ydYZ9TW86A/mWKegc92V808A5c2q9RllqR79+6sX7++UpZVrtuje/fu5fbbb+fAgQNERESQmppK27Zteemll4iNja2UgISoLGd3tLB3Axxrd65h1mYXpUn8MaJWn8R+XmTuGo5TadjQwqaVJ16I1K599KwzNc4aU/hX7UkCCjns0KltYRlaSUo66YixQghR45SrA/F///tfzj33XDZs2MDPP//MunXraNGiBU888URVxSeEEEIIIUTlU1X0MJly1Qxs3ryZefPmYbd7h7kICQlhypQpDBgwoCpiE0IIIYQQQlShciUDjRo1Yt++fbRo0cL33JEjR4iIiKjsuEQ1cTohLx9CQkyYypZBnwsy2LHbCkpx3SUeXnzRvCPQlCYmPg1sOZCZSeLe2jd8SWzzVAgOgNw8EndG+jucSpea6uKxaRAQlMGU8W4iImrf4PT/7DbYd0jRtqVGg9jaNy+Nx6PIzlcEBpt4yGIhRI332Wef+f7f5XIV+bvQpZdeWu7llqkDceGXbdmyhW+//Zabb76ZRo0akZiYyBtvvMH555/PhAkTyv3lp6M2to+uTukZ8PMajTUbNLKzNSIibHRo46T3uUat6PzW54IMdhwO8Y65by3YUVw6uOG687NrRVIQe7YTrHrRZtgKyMwi8e8IP0VVeWJbp0OcDRwe0JV33Zw6ZFhJ3BDg7/BOW2qqizZDNQzNONZg0wDN0FjzPjRvbv6k4JV3Pcx+UyMp1duOXtfhjIaK6ZM1+nQzf1KQ51Ss/svFmr/cJGcYBAfZadnAoE97G80b1K6+H7Vdbe575S+m6ED8aRV1IL6sajoQDxo06KSva5pWoaFFy5QMVNWXnw75wVZcahq8+j+dv7ZrhIVBSDCgbBw84qJpE8WtNxg0bujvKCuuzwUZ7DgSAkEFw096NO8Fs14wPGWOhcQ/zH0hEtvFBZaTdMbMMHdCENs6HZroYDe8/b8NzXvBrCkwdEixkbjevAlBaqqLVkMU2KDoVMSFiavG319rREaaNyF47mWDma+Bp2AmZU1TqILZs+02jbenK87rbd4L5nyX4u2V+az9y0WAAyKCNSxWOwcS8qkXpjF2SAAdmpl7COO6RJKBymeKZOCTKkoGLq/60YQqU5mOVN99911VxyGq0crvdbZu02jZAuw272VIUJBGWCj8vVPjs2U6424xTDtG9o7DwRDs9iYBxnEX/R7A6p2YK7adInGrOS9EYpsnQFTUcc+cWDUAhJp8+M04C9g84NbwrZ+Bd/WsBkS4iG2Ra9pmQ71GUpAI4J1czacgcbVB50tgz8/VH1tlyMkxmPtWwU/OUjBVREE5ehQ4XYoH/6uxaYUfgzxNa7e5WfuXiyaxOsEBWsFx1EKoQ2fXYcXiVfmc1dBCkMOkB1Ih6oSq+H2a7zdf7tsWGzZs4ODBg5xYoVCRNkqi+qVnwK8bNaKjvYnA8SwWaNQQtu/Q2HcAzmzinxhPm473t2iUcPffrXnvNpszD/CKrHfcHycedAom6NIg9swEU/YhiD0rFVpaCy6ST1g/TTuW1MUE+iO8SpGcocCmTkgECihAU+Q4zXdCKfT0PMh3ga4p9BPuKlg0DQ9wJAk2/GHQrZP5aukMQ7F6qwuHHYIDiq6fpmk0iYXdhw3+2uuhW7zUDggharZyHaUef/xxPvroI2JjY4tMh6xpmiQDJpGSCplZ0LBBya+HhsChw5CconFmE5PWlVqVt1lJiQpmezVzMuD77Z3iYjHMpP0iwgJAdx2bHqKYgoTHatL9E8q2/+nmXb+/dwEorKU0ZbNoCg8av/wO3TpVa2iVIicfkjIMwoJKXj+7VUMByRnSoViIGq0qhgI14aG7XMnA8uXL+eCDD/w267A4fXY7/H97dx4fVXU+fvxz7iyZLJAQkssSdtncRdkUBLGireKGWrpZ99rWpV/94q6t359Lta1abWu1pe62dW/d970I4l5QRBAMEGCykEDWmbn3/P64M9kTAsxkcpLn/XoNSWbC5Dlz7tw5zz2b3++tIhTKaPt4NOZN8guYO1S58cpqh+JtSfM1H2vejlis2yJJKofO6yfRK2lyHZocexdkxzttXN22ZwC8PE8B+blmvhABP/h9imgHY4211riu93tCCNHT7VT/bL9+/Rg/fnyqYhHdYMggGD1Cs6W0/ce3hGHwIM0eo838kAYgllhhp50yqPiqNB32HBgg4nTyYFNDOfxFz5641ZEj96v3Vg3y6fa3cvXhDa/Z3u2hJY1qb3hQawYfoz89FSyliLVTBld7E4lDAfjesWaWMSOgOHCsj/Ltus2QWYCt1Zr+WYoJw0zughRC9BU7lQz87Gc/46qrrmLlypWUlJS0uAkzWBZ8a7YmIwjfFHs9AeCtk12yGerr4VuzNFnmDseGunhjMug26yHQ3rCLgOs9tr06rSHujvBnGc3ynOZ9nM0aJY65wxMeemgAVPu9xnDzhEDH61ABdRbhT809SK89D698Srfs3FHEE1bFmSemKbgkmD7JYuxIr+4iMS8BAG9loZjjjXQ7+lsQCJg3XyDhkL0DDBlg8dVGTUPUK5/WmvJtLpsrNNP39DN0oLnlE0L0HTvVidnQ0MDzzz/Ps88+23if1hqlFF988UXSgxOpsf8+mh+d4vLMi4qv1yq0howg5OTAyce7zJ5hcK8AEF6Vhb2XAzqREMQfcIF6H1RHCa81dDx9QkU55A9s1pBsVmeuJvxxMB1RJU14aQj7EA39Yt5k4fikaFwFtRYUR9Md4m752WkBnn0jyrKVNC2ZCoACVzFxuOKmK0weqwfP3aM48seadRsh5tKY1PmU4tCp8OfrzW4oDy/0ccZRIR57u4F1W1xc7RIIRMn0w1GTA5w4I6PF3DohRA8kcwaALu4zkHDIIYdwwQUXMHPmTCyr5Ym8qKgo6cF1RtYC3n3VNfD5l4rt1TBkUBZDB9eQl5vuqJJn2P7biLjZ3nr8GnDgR0dW94oNxxLs/RogGB+K4Gqo3kp4lZ3eoJLIHrsVBmeCz/USgWoIf2xuj0BrX38d5YjTobre+zkzAG882Ds2HEt45lWHux9WVNeAXQBXnA+T9jI7EWiuIapZWexQts2lcGAWg/pFGDSg95Svr5B9BpLPiH0GHl+Xmn0GTh6V1OdMtZ1KBqZNm8bSpUtTGU+XyRs2eeQkaDapP/NJHZpP6tBsUn/JZ0Yy8E2KkoGRSX3OVNupyxfz58/ngQceSFUsQgghhBBCdA+dopthdmrOwGeffca9997L7bffTm5ubovxkK+99lrSgxNCCCGEEEKkzk4lAyeffDInn3xyqmIRabD8C4dln8EhUxqYuEe6o0k+e3w51OcALlP2reW55wamO6SkKxy7FQJ1UFtBeF33zt3pDvZ+leBmQLSB8Jd56Q4n6aqrHf54P2RnVnPmAofs7N63HGV9AzQ0QFam4XuYdMBxoKYGMjMNvCQohEir9957j1tvvZU1a9aQmZnJt7/9bS655BJCoVC3xbBTcwZ6EhnXt3vuecTh2t/4qK+LjxTTEMjQnPWjGP9vofmNEXt8OcQGeeluogNLAzHNlD3DvSIpsPeLgeMHxwIUKBcCGuq2Ev5qQLrD2232xCrw5TbbcRlvRRrlEF5u/jFaXe2w37e9ibWNZdSarBAseUozeLD5Zdy0Gd5ZbPHRJxYNDdCvP0yf4nLowS79evZQ4i6pb4DFSyzee19RXq7IzgkwbkyEmQe7jDF5r5Y+SOYMJJ8RcwYeS9GcgVO6NmegoqKCww47jGuvvZYTTjiBsrIyzjrrLObOncuFF16Y1Lg6s1M9A6eeemqHS6XJXAJz/PF+h/93c/zyXLNNbKMRxV33BCgtj/HnX5u7GoY9vhz0IGi8Ahl/oysFAVi2chBg6O68cfZ+LkSDTWvV461NT0RBYAD2OLMTAi8RyPNmNWnddJxaCrQfe2+H8Apzj9Hqaocxs5RXZ+gWY0xr6xX7HQ1fv+2Qk2NuQvDNesVf7/OxfoNiYL4mMxO2VsIjT/j44kvF2ac55Bq8sFdDAzzwdx9LllmEMiAv16vHN95RfLrcx+k/dNh3b2lVCtGjpXlp0fz8fBYvXkxOTg5aayorK2loaCA/Pz/JQXVupz5Np02bxtSpUxtv48aNY82aNUyePDlV8YkUuOHWZjlg/KJy45Gg4Yln/NTXd7bLbQ8Xtb3NqRrfkYoWOzv5wR7V/WEli73HRoj64g1k7dVd4gbgWpBpbiIAgJXrlceNZwEqXoduYpMuH0OnVKYzwt1yzOnQeEwq1XSINvYQKA492dw16l0Xnvy3RUkJ7DlBM3gQ5OXB8CIYt4fms+UWr79pbjIHsGSZxZJliuFFmlEjNQPyYPAgxZ7joboaHnvKR21duqMUQqRLdXV1i1skEmn393JycgCYPXs2xx57LIWFhcyfP787Q925noHzzz+/zX3z58/nN7/5TdICEql1zyMOTjTgNSRbfxY325zrZ1dY3HtbNweXLP4uNKL8foztHcge7PUAQNs6tPA2V4sq7NEbCK81bw6BPaESAgPiQ4Ja1aVqSghideZeVv5iTSfHaLyzYOOWbgsn6dauU6xabTFsmKbVljQEg5A/QLP0A4u533LJyU5PjLvDdWHxUkVGUJGd3fIyoFIwfDisXQefr1RMniS9A0L0XKm46OI956xZs6ipqWm89/zzz+eCCy7o8H+9/PLLVFVVsXDhQi688EIWLVqUgtjat1PJQHv23ntvli9fnoxYRDd47Z34J3Nnx7+Gz1d1SzipoaDF+Kc2D7bTyDSJjnfnWJ00MrQFmYbOiwjEW4cdVmH8Srpr9pVlIDWfQz1A+VZvGE1HDf3c/hAuVVRWdvw7PVltHZSVK/r3b/89GAx4uWx5efx8I4Toc95+++0WPweDwU5/PxQKEQqFuOSSSzjllFOoqqoiN7d7doLdqWSgpKSkxc/RaJTnnnuOIUOGJDUokToD8rrwwaQgs/ds8tqO3tAC014PQIftYQ1uFOi+1QiSJwZ0ctJs7DHoKFsQ6RYMgFKaWCzeCddKJAp+vybQ+WdjjxXwe+WKRtt/XGtwXdUrV04SoldJ4ZyBxPCfznz00UdceeWVPP30043JQiQSIRAIkNmNDbGdSgYOP/zwFhOItdbk5uZy/fXXJz0wkRrXL9Q8+hQdH/zx9tXV/+MChk5edIgPFWqvsRi/z+ApEego3lu3nUp08Sal+hzCn/fsVRw68ovvN3D737O8ycJue0OFiFdjA2YmO5AVgtp6Oj5E8Rqcpho7RlNYCFvCUDS05WNaQzgM+++jsQvSE9/uysiAA/d3ef4VH4Ns3eYQ3VoJ/ftpJoxz0xKfEMIMEyZMoL6+nltuuYX//d//pbS0lJtvvpmTTz55hz0JybRTHzetNxbz+XwMHDiQgFz+MEZeno+xezisXu1rOb82kR0r6J/ncsRMQxMBgGgN+LJbXT1uVlgNRLcAZg6jCS8PYu/teEuKJtoaibkC4A0fCsRIwijAtLjqqjxu/7sD2hevunhCoBOTh70kIfy5mYkAwO+v1fzkcmg8HuPfNuV3mit/bu7wkpwcOHyWy2NPWWzeAnYhWJZ3JX1DiSIrSzNntmv0aL1Dprl8/KnFV2tg5HAIZXgXyMorYHNYceThDkOl01wI0Yns7GwWLVrEjTfeyIwZM+jXrx/HHnss5513XrfGIfsM9EH19Q7T5vnYVGK1uTKZlePwycsueXkGJwPEVwsK+uPLbjbbaEArqK8jXGx2AmvvsRFCReD4aCyX0t4tECP8mdn1B2Dv02qWe6Kx7GrwVxL+LC89gSXJz65yeOL5VitdAaCZO1Pz8B/MrkPHgZdetXjtLYuKrSo+1UMzZDAcP89hyoHmn8C//Erx2JMW64oVrlYEAn4yQ1GmTXY58TiXUEa6IxRdJfsMJJ8R+ww8UkxDNMn7DAQU1y8YkdTnTLUuJQOthwe1eRKlePXVV5Ma2I7IG3b3Pf2yw7W3+Ni2XZGVpTj3x1HO+7HZDZDm7BHl4LO94SYArsuUvUp7xYZjCfY+EVCBeC+IA3XlhL+y0x1W0tgTKsGfS9MynFHCy81O5JrbvNnh2LMVGzYBlmJQvubF+3vHhmMJFVvhiy8t6uuhf3/NXhM12Vnpjip5Ghpg5SpFWbmisCCTQXYNg3rPW7DPkGQg+SQZMEeXkoGnnnqq3fs/+eQTHnnkEfbaay+efPLJpAfXGXnDJo+cBM0m9Wc+qUPzSR2aTeov+cxIBtanKBkYntTnTLUuDSo+8cQT29x3zz338MQTT/D973+fK664IumBCSGEEEIIIVJrp2cYbtu2jcsuu4wPPviA3/72t3znO99JRVxCCCGEEEKkTgqXFjXJTu3a88knn3D88cezZcsWnnzySUkEeoFX33S59P9cHn6sLt2hpIQ9djv2iAbsEfXMmrU93eGkROGIKlRuOYVDq9IdSkrYI6qwR0exR/TO8q1YEWPMgTHyRlWxYoWhu2LvwJYKl89XO1RtN/BTsgsiEVi/AcKlvXMpUdfVbCnVbNykicV6Zx02RKCyShOJpDuS1HBd2LYdqmuQYVCijS6vJrRo0SJuv/12FixYwKWXXtqt65+2R8b17Z7L/s/l3of9eBMzm9Y0nDUjyuP3mr+zqz12O1h5TUtRAt5GXJqJQ6p4++2ePY6xK+wJGnxWUxW6eNVYW0n4m+7ZtTCV7BE1EMgFt9mKO8oF5RBeY/6bf8WKGHNOyGhZPjRYmj/e2MB3TzFzadjmXl0S449PNvB5uAFHazIsi6mjQlx5WgbjR5l/nqmsgnsfsnjlTYutlYpgULHXeIcFJ7kcNtP8YxTg6Zc1T7wAX631GpGDCuDow+H0UyAYNHht2LiyCnh3qeL9j0ATxKciTD0QZk7T5A9Id3S7LxqFpR8oFr+v2LRF4bNgwjjNoQdrJo5P7TFqxJyBf6ZozsD3zJoz0KVk4Kc//SlvvfUWP/rRjzjyyCPb/Z0pU6Z0+Y++99573HrrraxZs4bMzEy+/e1vc8kllxAKdX3dcEkGdt15l7o89q8AbZY0jK/jvvdeMd74l7kneXvsdvDlNbunWUMLb7368CqTdx0De0+8VZJarE0fp4EasxMCe0QN+PPAtYD4kqkA2oovoRoj/LW5V2FXrIgx57hQ05KwOpHsNO2L8cbT9ey9t7kJwVOvO1z5wDa26ygZyodfKSKuSxSXwRkZPHBpDnuNNXfVpG3b4cLLfHz0qUUgAP2yNVortlZ6+ywsPD/G/OPM/pC6+0HN3x7xrpr3z/H2ithe7a3uO+dguPlKsxOCLWH4y4OK1WsV+XmQPyBAeUWUrVUwYazmnFM1hQYvPheLwT+fsHjzXYXfDwPyIOZAeQXkZMMPTnGZPjl1x6gRycA/UpQMfL8XJgMTJ07s/EmU4osvvujSH6yoqOCwww7j2muv5YQTTqCsrIyzzjqLuXPncuGFF3YtaiQZ2B32eB9t1zZvTrPmwyj9+pl55c4eZ3mfWp2JmXt12R5WCf0HdF6FLoS/MLN8APYYP7g+wG1aGha8VgjK21jNLSO8zsyExx6vwPF3ugMx/hjhVWbWYSSimXH+djY3NDAwEMBqtjR11NFsdSIcUpTDozeau8boH+62+OsDPgYVaLKyvWoMBHw0NDisL1EMHKB55N4YA/PTHemuWblac9Yl3pXlIa2WSq3a7t2uPB9OmWdmMqA1LHpI8e77igljIeCDrKwgtbURojH4cjUcfqjmtAVmvgcBPvhYcfd9FoMKoX+zNrnWULzBSwguv8hhQF5q/r4kA+bo0mWnlStXJu0P5ufns3jxYnJyctBaU1lZSUNDA/n5hp4xDXPZ/7nAjq7GKY78rsV7L3RHRClgNd95uD3x4TUY2jvQL6/zRABAgV1URXijeY1le0QV+Avxhsy0Kqjl7T6MVuDLx9g6dDp5D6rmv2PmHILHXnEIN0TIsfwtEgGAgE+R4Vh8WlLP2g0hRg8z76JDLAYvvW4R8ENWdsvHLAsG25qSTYoXXlH8yNDG5HOvwrZqGFXU9rHcfrC1Cp5/HU6Z1/2xJcOWUli+UjF0EPhbvR39fhhkwyfLFUcfYW7vwNIPvB3O+7dqjysFw4bCqtXw2QrF7BlmHqPJkYpk1rwEOS190Dk5OQDMnj2bLVu2MHnyZObPn79Tz2HyNvbp9Pp/LHZ8oGo2blIoZfIJorMyekMzjD2GVAfDg5qzgMxsM8sY7B9v43eQ0FmqcZy9keVL2EG+ijL3PLd6o4OLJtPffkM/ZPmocR2+WOsyZrh5yUBFJVRsVWRn63arMCM+pW7DRnPPo+s3e6cRXwd5a1YINmwy9xgt3+pNph1it5paFh+5l9cf1hXD1kqwC9IX567SGjaUKPr3b7+O/PEpgxUVqTtGTT02+qK0Dkh9+eWXqaqqYuHChVx44YUsWrSoy/934MCe3fXUUw0cUMM363b0W4qMoKKgIKcbIkqF2h087p34enr3ZYd09Y6XLtOAjlJQYOAMOKcCyOi4oezq+GPa3DqkrksXj0wtX2G+QqntoBS+1r07gOtofEoxfGgWBQUZaYhw9wSDLhkZUWIxCARaJjOBgA/XdVFKkZ+fQUGBmfM+Bg6oAyvWpnwJrnbpl2NRUJDd7uM93SDbJSc7ij+gyAw1HaNZmV4mV1Ojyc7WDLIDFBSYl7AC5A+IES7TZGW1f7IJBlwKCnwUFJg7d2e3ydKiQJqTgVAoRCgU4pJLLuGUU06hqqqK3NyuDWsoL5c5A7vi3t+77D87EP+p48uSl18Yo6zM0KU4ta/ZRMyOfgdzyxdzIMPf8QknvrJQ6deZRpZx3pxann0zy7v6r9sZKpT40W2grMzQYUKWL14+2p8zEF9gyMT6A/j2NJfbn7WobIiQFwy0eMzVmmonyrDMDPYe3UBZmZlrOU7a18crb1oMyHUapygFAj6iUYetlZCRAZMn1VNWZuYH1aR9NE++AJWVDtmt2vuxGNTWw/RJjrHHaG4ODMxXfL1OMXoEoLxEoLYuAhrWfgMjhmtysiKUlaU72l2z956KFU9aDBzQtodn+3ZvSNuQQQ0pK59ScuHWFN2e7n700Ud8+9vfJtJsMd9IJEIgECAzM7PLz6O13HblNmSIRVaOS6fjEyzNWT+y0h7rrt6or20qS3vlA6itTHucu3oLf+XzlhHt8M0BOG7a49zV2z335IJy4g3i+BwBiM8V0N6xq1zCa/1pj3VXbwcc0OBVVGK4l25Wd4lej0H1aY9zV29jhlvMHptFDE1VNIarvQLGHE1lNEYAix8elollqbTHuqu37813yc/TFG9Q1DfED1HX9YYQVSqmT3Y5YF+d9jh39XbEDNh7HGwug8pt3jr1WkNNHRSXwJBCOOmY9Me5q7dAAL51qFeu9SXgxKfnxGJQvNF7Hx5+qMbnS3+su3qbcqBmxHDNqtVQW+vd57re0KfiDTBpf82YUamNQZih25OBCRMmUF9fzy233EIkEmHjxo3cfPPNnHzyyWnfu6Cv+O9bDoGgA42tEO19QYNy+eR1MyctJoSLMyDavLWcKGdcXT3hDYZfrdi2lRZXlZuvnupqwl+aPVgzvMYFK3HVP34FPXG5XLkQK09fcEnw8mN+yIgnBNAqN9fgi/D5f8wcXpJw+8IMDh/tDTUsj0YpjUSodCKELB+nz8jh/O8FdvAMPdvUyZorLnYYMkizeYvi628Ua9YqIhHFt2a5/N+Vzg4XNevJQiHFb66GKQdATS2sXe/dyipgzAi4/hLYY6TZ55lDpmgWnKjJDGlWfQ3LV7p89TVkZ2m+P18zdVK6I9w9hQPhzB+5jB+n2bgJVq7ybturYdYMzQ9Odo0+RkXydHnTsWRavXo1N954I//973/p168fxx57LOedd95OJQOytOjuu+1Ol1vu8hGNKXw+zfyjHf54c+85M9jDtkNmbtMsJlczcWjv2HAswR7vgC/eaNRA7VbCxXnpDCmp7BFVEMinadOxKOHVZjdAmnv0sRjnXxWIL6MKWA5/vCHaKzYcS/joC4dHX4mxrRYG58Np8wKMHNp7zjPbtsNLrymK1ysGDszgoP3r2HfvdEeVPK6rWfIRfPCpN0Jx/Bg4YqaXLPQWVdvgi6/A78/CcWrZazz0M3XKXDuiUfhytSIc9kYo7jFaM2xo6if4GrG06MMbUrO06A+HJfU5Uy0tyUAySDKQPIk3rLymZpL6M5/UofmkDs0m9Zd8kgyYo/dcfhJCCCGEEKLLZJ8BkGRACCGEEEL0Ra2mFCbtOQ3TewZuil3y0COak3/scuOtdekOJSXsYdXYIxuwR9Zhj6hOdzgpUTi8CtWvnMIhlekOJSXsYXXYY6LYw3vnMVpcHGH68REmztpKcbGZy2zuSOU2WL/RW9GkN6qr03y+SrO22OzFF4QQfZPMGeijTjnN5a33AmBpLyV0vduoEQ7vv2peF1dr9rBqCOaBjq9AAyRWSyJWRbjY/Nlh9jggFgCdyOk1+FyIlhMuzk1naElhj6jFW+A8UYfxSziOS3iV+cdocXGEyfMt6NcAoXgjst4P1UGe/L1m5gzzV1f7ZDk8+KjFso8hGlVkZ2lmz9Cc9UPN0MHpjm73bSnVXP8HzVtLoKZW4fPB6BGa00+G7x8v19pMInMGks+IOQMPbUzNnIEfFSX1OVNNzlZ90NHfdXlriR/82ksGdPyrH9Zt8DFxqtkNLXtYNQQGNGskJyjQPvAbuCtvK/ZYC6JBr4yNK8QqcHzgK/BW4TGYlwjktEx0wPvZ8mFPSFtoSVFcHGHyd10YVA1ZUW8DMld539u1zL/ENb6XYPEyuPgai5deV0RjiowgbNuueOQpi/Mvt1i/Md0R7p7SCs2C8zT/ekmxrRr8fu8Y/fxLxdW/g9//rbPNQIQQoueQZKAP+uATP/iI7woSv+qqE7u9QkWVorzc4EsjgVyalqJUTReWGzsIFPZocxMee3glOM2WE7Wa3cBrMAcGpiW2pMnK9o5J1eo4TOwsbVlGDxuafKKC/AZwLGjwe18bv1cwoIHJJ6Q7yl0Xi8Gtf7IoK1eMHgl2AeTmwpDBMLwIVq1W/Plesz9+bvwjrPlG0S9Hk5+nyM5S5PZXDMzXxKLwl4dhw2aDz6NC9AU6RTfDmH02FjvtlNPcpkSgzYz3eELg00yda/KhEY+9s/a+MnjufMaApiSunc4PbwdiC7uosttDSwZ7eF08ievgjJpICLK7vmN5j5PheL1xsXYO0pjlPZZp7vjzd5bA2mKFXUCbTY2CQeiXDf9ZCltK0xPf7opENK8v1vgsTSijZR1alqJ/f6iugfseM7BVIIToc0xu8YldsOxTX8eNrEaK7dUGHxqdJgHxr0Z/Rnch2UFBpqHzIjIz2OHSbJrU75iTSkGn1XyWVlwFIXMP0uINimg0PuWjHTk53hj74g3dG1eybNzsNfY72icz4FdoYN36bg1LCLHTVIpuZjG4xSd2RVaoK7+lsSxzGyJmN/R3QkdDkhPnoaihY85jThd+yfBKdjrp+QDvsa68DD1UZsjL1WIddG5Eo+DzQZahnTs5OeCzFI7b/oe+63pDMDO7dL4VQoj0kmSgj/nXA67XEOkoc1WAqzj7VINbIp1d/U/ct8PekZ4s2vFDiQRBuYS/yeqWaJJtaP9Ys/ksHVBApJPXoaerD3hf2zsOE/fVBrovniSbdYgmL1dTXt72Me3C1ioYPVKz5/jujy0ZCvMVe47TNDTEG/6t1NZBIADHHG7eFUIh+hSZMwBIMtDnjB8fTwSUjjc6Ekdt4mcFLlx/lcEfYk51U4OqWfGa3qAaIpXdHlayhFdb3hKpifkBiQRA01SnfnMbyp98kum1GBPla00DWhNeY+68jxPmaKgLxOcOuDQW1NIQcqDezwHj0hribhlsw9FzNfURCJeBGz9GoxHYuAlCGfD9+W6b+QQmOed7iuxMTUUlROJLE7quZnu1prZOsdd4zdxD0xujEEJ0hcGnYrGrvlgc8yYpuqrZajvxFYViinefNbhXAAh/kwE6RtNylM0f1aBrCW8wdDx9QqzUSwigbaPZHyP8VTqCSp7wlwBOs+0FVLyM8Tuqzd696i+/CdI/4ofqAATiCUAoBgEXqgNkbA/y8sNm7zNw0U81J81zUcC6Yli7zksEcvtrzjvb5fjvpDvC3TPvCMWlP4Pcft6SqaXlmtIycFzFpH00f/uNwucz+KKKEKLPkE3H+rALL9P881/+xobk5AOiPP9o78kPvf0GckHFy6QdcLb1ig3HEuyxLhCIL8PpQqSCcHFeusNKGnt4HeQ0G+7kOIRX9Z5j9N3/RJh/oQJ/4tK54sk/0Cs2HEtYsw5efVNRXQuFBfCdb2kKDV/5trnSCs0Dj2vWFMOAvABHHBJlziG95xjtK2TTseQzYtOx+0tSs+nYaUOT+pypJsmAkJOg4aT+zCd1aD6pQ7NJ/SWfJAPmMHfQrRBCCCGEELssFUP5zBseKH2ZQgghhBBC9FGSDOxAaRms3wARQ5ds3xF7aB2FQx1UIJzuUFLCHrwVe1gEe1g99pCt6Q4nJQqLtqGytlI4pCzdoaSEPXQ79sgYdtH2dIeSEhs2aGbN0+w3YxsbNvTO8Qn19VBV5e0v0Bs5DlRtg5qa3ll/QvRasrQoIMOEOvTaW4pHHvex4gsL14WB+ZqjjnA440cuOb1g/qld5IA/09tCUwE6k8KRgBMh3At2zbQHb4UMGzIGN93py8Ue6UCklPCmAekLLknsURYoPwQKvDsysrBHa4iWE97QP73BJYE9rBaCuZA50DtG/VnYYzQ4McLfGHi2bWXDBs2Bh/njK3v5AJg00wXL4emHY0yfbl5Xc2ubNineWWzx0UcWDQ2Kfv0106e6HDrDoV/PHkrcJfUNsHgZvPeBorwCsrMjjButmDlVM2ZUuqMTQoiukZ6BdvzzCYur/y/Ae+9bKKXJCGo2bVYsus/PRZf7qa5Od4S7xx7mQiDTq/1EeyOxD5kviD3C7MPCSwQGN60i1IIPgoO6PaZks0f5vUQAWl2NUBAowB62LX3BJYE9rBYy8rwZaNBsszgF/gD2KF+6QkuKDRs0Bx4agIYAuBaNFegoiPo57vsB43sJvilW/OluP8897yMSUWRmarZu9S6y/OVvfqqq0h3h7mmIwAOPKh56XHl7J8R3G37jP/CnexX//Ty98QkhRFeZ3epLgc1b4O6/+Who8HbIHDgQcvNg2DBNQYHm/Q8t/v644S+bP9Tx/BYFWH5mzarrzoiSK6PQ+xrfQ63FDQCFPdLcq652UVmz5VJpWb5E+zFg+NqNwdzOH/f5sIeaO2zooCN84Pi9TeIsWt4AHD8HzjE34XFdePIpHyUlij0nagYP1uTlwfBhmnF7aD77r8Xrb5pbPoAlH8CSD2H4UBg1HAbkwmBbsec4qK6Bx55R1Bp8GhWiT5BhQoAkA20895JFebliyBDd5sJyTg5YFrzwsq9xR03T2EXOjie6K1i5zuSxUPFGRqflDHRHIKkRjA99SiQCzTUmBMpLGgxkF21v6hHoTMjcoV66wer4AyPRURAzt7G8dp1i1WqLYUW6zS7DwSDk58PS9y2qa9IT3+5yXVi8TJERhOyslo8pBcOLvA3WPl+VnviEEGJnSDLQysZNXiPE38FsiuwsTWmpMvZDDF8XNzNS5jZEOqXafGMg1eJLh/yGNpb9OV2sHoPrUKumXoH2KO39jqHKKxQNDXQ4vyq3v2bbdkVlpZllrK2Dsgro38G8h2DAy+fKK7o1LCHETms9fCBZN7NIMtBKKEOjNegOrvzHYopAQBPK6N64kqer/VcG9nP1NTuqIm3q0i1OugPoHjts7Jv7HgwGvCvksVj7j0ci3gWXQMDMMgYCXvwdrY6ktdd7EDC4A1II0XdIMtDKjOmaUAi2tTMc2XWhploxbYom2MUL7D2OrulCIxKImjwBVbf40uYhBWDoOC8A3dDJYzRelAgXh7olnKRz6rrWDnbqUx5Kyvhc7+p/e4dh4j6fmQ1lgLF7uBQWaraE2yY8WkO4VDFuDxe7MA3BJUFGEA7cF8oraXe32q2VXq/BhD26OzIhxE6ROQOAJANtHDxVc9CBLuXliq1bm3oI6uuhuFgxsMDleyebe+UyvD6zS8lAuCSzW+JJCafZck+62dfm30fN3VchvC7+tk3MD2herkTbS3dwSdYA4Q39wN3B3BatCX9j7lC2754cAys+FMilKQFw8e6zNFOnmNqz4w0POvwwh9pa2LxZNc6xikZh3TeKrCyYM8fp0tSQnuqQKZohhfDVWmiI5+daa8orYHMpTD8Ihg7u/DmEEKInkGSgFcuCG34ZY/Ysl4YGxbpvFGvXKrZsUQwr0lxzeYwD9jUw7Wtm4siqjrNXF3DNXvMvvCEINNslrnU5nRrCJYaOp0+IlHhfmw9PbGxYuYTXGdzzAYTXOrQ7S1/hXYqtN3sw9h9vVuQPagCfQ2MluvGvfpfMvAjP/tPgljLwrTkuJx7voCzNl6sUK79UfL1WMTBfc+oPY+yzl9nn0eFFcMb3NaOGwTcb4Iuv4L9faOob4Kg5MP8YbXSyI4ToO5TW7XVy9nxlZdvb7Z5NFteFT/+rePc9RTQGI4drjvqW7hUbjiXYRXUQyG26ohyrJ7yh9+SH3n4DhTRbrxEiZb1iw7EEe5QG1WzMWmQz4Y2GLyvajF20HTLym+5wIoS/6T0trCVLNMf92O/tLwCgXJ5+yOkVG44lVGyFL76wqK+H/rmw155umxV4TNYQgZVfeROKCwuyGFRQyyBDhz/1ZUpBQUG/lLct+pLEa9qTXX3PZhqiya3wjIDi+jPN6haUZEDISdBwUn/mkzo0n9Sh2aT+ks+IZOBvKUoGzjIrGehgAU0hhBBCCCF6s1T0wprXs9t7xoQIIYQQQgghdor0DOzAylVQVQV779nxBjoms4dH8HLCSko3mLs6S0fswVUQyPKWhYrVE96cm+6Qkq5w2HawohCpJ7ypZ3fJ7gp7fB3E/ODGCK8zeJWrDlRVOVx/G2Rm1LLwPIf+/Xvf+3BLKZSXQ9EQyO19b0EhhKlSsRSogcPMJBnowC13WDz4Tx+lpRYayAhqpk1x+f3NMQYPSnd0u88eHgN/JviDjUtUFo7U4EYJF6c7ut1nD67yJg9nFjb12AX6YY/Q3iTiXpAU2GMUaD/4BwIKQtnYe7gQ2Up4vflJgT2yDjJyINYfXAvQ2GMdsBzCq9Id3e6rqnLYa0aAaG0gXj64668WvpDD0hejjBhhflLw6tvwx79afP6lwnEUGRmaqQdprrzIZfyYdEcnhBACZJhQuy66zMctfwiwabPlLfltQV2D4s13fBx1QoDNW9Id4e6xhzvgz/Jm9yTWqleApcAXxB5h9mFhD67ykoDWbSkF+BWEzF/qwx7jAx2g2cYC3hfXAn8+9vB2ds0ziD2yDvz9IeKPL7kZL1/MD9Eg9vi0hrfbqqocxh0UJFodiO9EHL88pRVOnZ/Jc4JUVZm7nwnAU8/BBZf5+OATC8dV+P1QV6d49U2LH/zEx+cr0x2hEEIIkGSgjc+Ww+P/8uO6kJUFmRnebpPZmRAMwJawxeW/MrxDxRdqSgKgZXtSAT4/t9wSafe/GiFY0M7a+81YYA83b4JPgl20HXRnV40VBA1fPjWYA47l7dJr0XRT8Y26YgH2mFSX5iB33ezj/V5ig44n4vFb4n3p+Jk819zzTCQCN97mo7paUZAPuf0gOwsG5MGAXNi8RXHtb+XjRwghegI5G7dy+5/9RGOQGfIulDcXCHhf311sETN0g1d7eIzGnXBat4eb9RLcfLvBY7N9XWjo+wKpjyNVQnk7/h3Xwh5iZu+AParOSwQSDeXmFF5C4FpsrzN3sfqS9Z2ceuMPVZWZO0zosachXKbIyfF6VpsLBLwLLJ/+V7H2m/TEJ4QQQNOcgWTfdsLKlSs544wzmDp1KjNmzODSSy+loqJ7N9aUZKCVDRu9emz9AZZg+aCuXrGltFvDSh6V0bJXoCMdvQC9hbkdA3QteAUZhjaWgxmNY+jb1diTZfAxquPJTodFSHTTmWn1WgvX8S6qtCcUgoaI4vNeMPdDCCF2VX19PWeffTaTJk3i3Xff5dlnn6WyspIrr7yyW+Mw+NM0NUIZ3le3g8ay1l6PQa6x8zO7mLLKris9WFcaiRocQ4d6xXYwVl63+cZAZjf2dyQr0+uAdDqoypjjXW/ob+x5VAjRO6gU3bqmpKSEiRMnct555xEMBhkwYAALFixg2bJlySleF0ky0Mp3jnSxFESjbR9zXXAdGD3KNXaZ0TmH13fehkr0Gri13RRRCnSljeimPIrUcSLs+GSjCa83c6jX5efHwOcAqv261PF/YoYmO4Av5AK6/eMwfp8KmHuQzj/GJTOk2V7d9jFXQ20tDLI1h0zp/tiEEKJRCocJVVdXt7hFIm0/s8aMGcOiRYvw+ZqGhb700kvsvffeKShsxyQZaOXs01yGDHKJRqE+0tRDEHOgtt6bRHz+uYZOGAAeuS/oXfVvtQhNi0aXqwmvD3ZzZEnk1HSeEGggYuo4LwivU+wwm1HmHqMXX5wJvnj8zcdfauLFVhBwCK8xd4LtTb+MghXvHXBpqs5E+SzN+Webm+zsMRpmz9DEYlC13buQAhCLQWUlBPzww5NdfOZOixBCiE7NmjWLgw46qPF29913d/r7Wmtuu+023njjDa666qpuitJj7qdpivj98MgDUX5wRoCNJRZ1saYO/ayQ5vxzY3x3vsnDE+CyC2q4+Q/ZTUuLQlOPgNbMmVMDmJsMhNcHsIdHwR9oewFdA7FawpsM32cgUgHBfLx8vtXxaDmE15h9jIZXgT0hAlG/N3+geXECMVDVgJk9HwCnfc/Hc6/V8+Zroab5EYmEwHI5cEoD11xidkv59htdfnYJvLPEonwr3nxwBVlZmh+crDn/bLOPUSGE6Mzbb7/d4udgsON2VXV1NVdccQUrVqzgoYceYsKECakOrwWltZmDw8vKtqd0WHssBo89pfj3cz6iURg72uWiC9xeseFYgj08Ar54UqA1OPWE15vdAGnOHlzlLTOaWBbKdSBS0Ss2HEuwRwNWAG+NeiDaOzYcS7BH1UEwC7C8xM6NEv6q93RoFhc7HLnAT0W5V6b+uS6vPxHrFRuOJXz0GTz6lMW2ahg8CE77nsvIYemOKvmUgoKCfin/bBKpIfWXfInXtCe7+i9hGqLJrfCMgOL6n9hd/v3i4mLOOecchg4dyi233EJ+fn5S4+kKSQaEnAQNJ/VnPqlD80kdmk3qL/mMSAbuTlEycG7XkoGqqipOOOEEpk+fzg033ICVppUcZZiQEEIIIYQQ3ezJJ5+kpKSEF154gRdffLHFYx9//HG3xSHJgBBCCCGE6INSscRz15/zjDPO4IwzzkhBDDun9wy+TZH3lsDTz0M3bwbXbezBLoVDXZTPzN1qd8QeXItdFMEuqscebPByqZ0oHBJBhSopHGTu6jOdGTbRxS5ysYebu9RmZ8JhmP8jOOLYWsLhdEcjRN/UEIHKKk07qz8K0etJz0AHfn6hn2df8FMfPzEoC8aM0Dx8XwNjRqc3tmSwi1wIhLwFWeIrCRWOApwo4WLzB0zag2shOACCoaaVknx4DcpoJeHNhu7O24w93AcEwBdfVSegsYdrcLYTLjF3NagEe1j8GNU0Lm5ljwK0Q/ibHWxMZoBwGPaZHgBHNa4otPdrfvC5vP50lH32SXOAQvQBZRXw7lLF+x+BJopPKaYeCDOnafIHpDs6kXLNl69O5nMaJi09AytXruSMM85g6tSpzJgxg0svvZSKHnTp/fiTgjz+76ZEAEC7sGatYvaRIb5em77YksEe5nqN5ETtJw5cBfgC2CPNXsnEHlwLgXwau+qal09Z8SU5zWYPDwCBVvfGdz709cceavblLXuYC/6Q90PzHlcFKB/2SLOvY4TDsM+UAER9oBvX9Y0vfevj8GMC0ksgRIptCcOf71U89Zyirk6RFYLqGsUTzyruul9RWp7uCIXoHt2eDNTX13P22WczadIk3n33XZ599lkqKyu58soruzuUdr3+Frz3QfxlUWBZTTcUNDTAGT8x/KproNnV8ua7Zyd+tnzss4/BQzICeS33T2i9O7gCu8jcEXL24AiQSNhaj02M/+zr2Ss47JAv1PGwy3hSt/dkc4/Rg2b7wPXhLb6PdyaOn2PQGlwf+880O+ERoifTGp5+SbF6nWLCOBg6GPIHKIqGwISx8OVqxfOvpmI8uRA9T7e3iEpKSpg4cSLnnXcewWCQAQMGsGDBApYtW9bdobTr+l8HGxvFVqvzQCIh+HK1Zey4QrvIbdnwb67Z/eHtra86m8RqmwC05jO4fIHs+DedtpbjSYN57BHujudfKSgtNTcpb6jt5NQbf8hpMDdhFaKn21IKy1cqhg4Cf6vOcL8fBtnwyXLpHegTdJJvBur2S09jxoxh0aJFLe576aWX2HvvvXfqeVSKEvbSMtVuItCc68K6ddDNG8Qlh7+LjWDLQilDx2V3lOw0f0yrlB1DqdeVRqKCQMDQMvq6thiDsgwtHzQWsNOqNPkY7XsSdSV1ZobyrVBdA0Ps+LuxWW+y0pDXH9YVw9ZKsAvSF6fJ5L1gjrT2Q2ut+f3vf88bb7zBQw89tFP/d+DA1AyDyMiIARqtO04IFLDnnpnk55vYjd/FFXW07vGbhXQs2vnD8YTA3PJ18Yq/jlFQYOD8CGdb0yioTpl8jDZ04XdMLl/flarPJpFcg2yXnOwo/oAiM9T0YZ+V6fU41tRosrM1g+wABQXSS9d7pXdp0Z4iba3Z6upqrrjiClasWMFDDz3EhJ28zF5enppdAr81x8+9D/rROj6vrxk3/vf69wPXraOsLPl/P+UcF6wdXHnVQH2EsrJYd0WVZPGJp+31Duimb8rKTF5ONbOTx7xClm4MGFnG/7ta86ub2fH5NBahrGwHiV9P5Qt4JxSXtr0DLoAGy/RjtG9RyksEUvXZJJIrNwcG5iu+XqcYPQJQXiJQWxcBDWu/gRHDNTlZETM/63uAxHtC9HxpSQaKi4s555xzGDp0KI8//jj5+Tt/9VJrUnLCve6XMf75qJ+6Bm84UGLIkNtsLNi5Z0aMPdmHN1jYo5u1khPfNl9xx4HwZsvYMnpXlvu3HC7UvHwacLaitZnLi4bX4y0hCnSc7USNrb+f/cziVze53spPHXEhvEEZW8bzz43yxzszwFVNVxks4omAAktzzFHm1mFflqrPJpFcgQB861B48FFYXwJDB3n3x2JQshlQcPihGp9P6rNXk6VFgTRMIK6qquK0007jwAMP5G9/+9suJQKpFAzC4/+oJyt+cRkdTwq0l+WefHyMhRebu4oJgJ3dEP/Eou2qOy7g1KcttmQIbwyCE2n5hkyUUwNONeESMxOBRtFtzX5oPXPJIbze0PkeceFvYt4br72TqgvBTLOP0V9eBqP3aAArfsUB5SUG8UTAHtzAvXelOUgherlDpmgWnKjJDGlWfQ3LV7p89TVkZ2m+P18zdVK6IxSieyituzfnvffee7npppvIzMxEtZpd8vHHH3f5ecrKUtsVG4nArbdb/PvZANEYjBzh8tsbo71iw7EEe4gLoQwaL5dHGwhv6D1jI739BvKarjC7MYht6xUbjiXYwxWNO3KhIVZNeJO5q+y0Zg93wZfhZeIacHvHpngJy5fDkSf5iUW8c6Hl17z6VEw2HDOQUt48pFR/Nonkq9oGX3wFfn8WjlPLXuOhX066ozJf4j3Rk1395zIaIsl9w2YEFdf/zKxZ592eDCSLnHCTRz7EzCb1Zz6pQ/NJHZpN6i/5jEgG7kxRMvBzs5KB3nMZWAghhBBCCLFTTFwbUwghhBBCiN0kS4uCJAM7tHIVVFXC3ntBTi8cQ2gPjoFPgVtJ6eYuLe5uFHtQbXy3YRcch/CW3jNfIKFwcD34HIhFCW8O7fg/GMYeGW2c3B4uNnjn6A5UVsKvfgOZGbVc8T+Qm5vuiIQQQvQlkgx04JbbfTz4Tx+lZd7yhRkZMG2yw+9/E2PwoHRHt/vsIgcCIchqalwVjgRiDuENZq+WBPEkIDjAK2Niw4iAxh7hQkNlr0gK7FE+0H6vjAAZ2ls2tn4b4U3mJwX28ChkhSDTaqxDe4KGqEv46zQHlwSVlbDnwT6cqGocsHnPg34sn2bJSw6jRqUzOiGE6ANkaVFA5gy066LLfNzyBz+btig0YFlQVwdvvuPjqOODbN6S7gh3j13kQjDUVPuJA9cHBH3YI8zuIbAH1UIgH1zLW66xceVNBTEfZAxId4i7zR7l9xKB5jvjaQWOgmAu9hCzl960h0chO8P7QcdXu1IACoIW9lizT12VlTB+sg/HUaB00zGqNK5WTD3CR2VlemMUQgjRN5j9iZoCny2Hx//lx3UhKxMyQ16vQHY2BAOwJay4/BrDO1QCGV7NawDlTflHxTc8AnwW9hBTdx8GMvKakgCr2S3RbnYs7GHmHvr24HrQvpYbqSVuxMsd6p+u8JIjM8NLAlQ8CWhchji+Nbgf7NGG7j4MzDza8nYzTLwHGyWOW8WBc8xOyoUQQpjB3BZRitx+p59o1EsCrFavTiC+fPu7S3zEDG0r20VOUyOk1T4PjWu5WzQNPTGRa3ntq46Obg1g8NjzUGLyimo7TymRELjKSxoMZI+INqu7do5RFU8IfBndHVrShMM7nmBWvb0bAhFCCNHnSTLQyoaN8aFBHVyUs3zekKEtpd0aVvL4MpqGJXSkvUTBNB2Vr6NGpklUfAx9Z0XQyusBMpHPh5fodFSJ8YJbBtdhl44/k8snhBAG0Cm6GUaSgVZC8faT28EcWq29HoPcnr2PRie6eJT25nZIryjbDhI6ACfSLZEknXbiXzt6XLf8aiSTYxdCiN5CpehmFkkGWvnOUQ6Wgmg7w5Fd17uNHqnNXWY02uDNDejoWE3c31DXTQGlgKUbl6JsI3Ffh1edDeBE6LACG+cRaMIlZvYMnHsqxLun2m/wq3ivSLShewNLoo56Hlv+UsrDEEIIIeTjprWzT3MZMkgTjUF9fVMPQSwGtXXeJOLzzzV34mJ4k79ZMqBbXWWNN8Cc+O+ZKlbdNPE00fh3aZkIRLemJ7YkCBcTT2Z0yy5JHf9HaVCGTmoBrrsuADGaTYhu1ROgAVcTXmfuvI/rr3Ia325txBdPOvd0c+tQCCGMIMOEAEkG2vD74ZEHI4wo0mjXmx9QXQMNEW91of/5eYzvnmRgTTcXqfMaW9CUFFjxHxztPW6wcEkAiDRd/W/eQ2BpcKsJbzZ8n4GGqmYNSd0sEQCUQ3idk7bQkiG82vWORZXoIYCmAmtoMLdXAODsH8MhU2NNiXnzmwv7TnS47sq0hiiEEKKPMPjyb+qM2wPeeyPCY08p/v2sj2gUxo7RXHSB0ys2HPOu+kexh8YgkNl4JZJYPeGNFr3hsAhvcLEHVXjLjCYakdqByLZeseGYt9NwA/YIFd9hOd7L07C9V2w4BhD+yvVWFsrIaJrQHokSXmth9GpQcf96GNatizH3JB9V273yZWdp3viXbDgmhBCi+5jf6ksRvx++f4rm+6f03q76cImXFCgFBQX9KCuLmj0nsxWv0d96Eq35iUBz4WKNUpF4/W1H696RCCSEiwO06tpJVygpMWoUfPWh0+w9uL1XvQeFEEL0fJIMCCGEEEKIvicVY/wNvKDTuy6zCSGEEEIIIbpMegZ24IGHYf16+MECGD063dEknz3E9VJCt4rSzb0vN7TtOrD8gLcubDicme6Qkq5wcAyoBK0Jb+59b+lzfqZ57jUYVgTvv2He+s07EonAW+9A/9wYB+4PAfOnQ7RRuQ22b4OB+ZDVu0bqCSGM1/s+V3ZW72s5JMnBhwVYsyax06vi9j9pghmaRx5oYMYh6Y5u99lFLgQzIFM1LnFYOEpDNEp4Q7qj2322XQehXMhquda+PVxDQ1WvSArsoQHA3zS5VmnsoYDebvbSsHHjJ2kqa33g0xCAdWGwJwIRCH9tYD9sK5EInPLDAMs+9BGLAWh8/hD77evwxMNRc/cyaeaTzxQP/tPHsg8solFFdrZm9qEOZ53mMHRwuqMTQggBMkyoXeP3y2DNGj/o+MsTn9EXaVCcuCCD/yxOY3BJYBe53gotjUs20rR0YzCIPcLsw8K26yArD6x2sn2fgsy87g4p6eyiDLxcXjVb2zi+NqXqhz3E7Inv4ydpKustCMSXvU2U0Q+EwN7D7Cs5kQhMmZnBe0t9xKI0LivqROHjj31MmZlBxNANpBMWL1VcfEWAl17xVmTLyNBs2waPPO7n/IsDrO8FFx2EEIaTfQYASQba+NNfoHJrYq1N3bT2NzQ2uH5whpk7uzYKZsQbjrTdPVsDfh/20Pa27zVERm7njyuwi7qyBWzPZA+JNUtUaVmHiaRO9UtXeElRWWuBj5abxRH/3gIy4LKrDDzjxl17vZ9Nm703neXz8laf1bQzcXmF4sL/Nbd3JxaDW+/wU1aqGD1KY9uQmwtDhsDwYZpVqyz+/FdzyyeEEL2JJAOt/PbWeEO/vd1B4w2uulpFTU03B5YkdpHbbFhJqwcbEwJl9sBlXxeuGvsNbohY2Xg9Aqr9Ooy3ke3BZvYOzDpaez0AHbX14wnBvY+am9A9+e947O2cga34fS+/Zm753lmsWLvOwi7UjeVJCAahXz/Nf5ZYbAmnJz4hhBBNJBlopb6B9htZCfEOgyUfdGNQyeQPdK0Lq/UneG9j8iiTRK9Ap2VQoMxsTK78Mv7Njo5Tg+twe3W8V6CT36mrM7eAxestolHI7mDeQ04O1NQoijeYW0YhRC8gw4QASQbasJoPl+mIgjEjuiOaFOjqjkay81HPt8MqcrojiqSzupzDmNuQ9Pl2/P4yOR/PDGmU0vGJ0W1Fo+DzQVamnGeEECLdDP64SY09Jzqd9wqgQGlzlxmNxUDt4ANYgdGzF7vSvnANboTo+k4eI378amNXFHrpMZrmBnREA9rMYVAAe+7pTYRob2ZO4r49xpg7b2fWTJe8PCgva/uYdmFrpWL0KJc9J3R7aEII0YxK0c0skgy08vRjMSA+rr55d0+zRODw2dG0xbe7wiVWyzK1/l7hrVdfYvCh0VDdhd+pSn0cKRLe1Gxye+s6VIk7zG0o77+/gijtz9sB76wVg/BX5p1wE275dRRffIK0q5sSAFd791kW3PArcxPywYPg6KMc6hsgHAY3XsBoBDaWKEIZ8P1TYkb3fgghRG8hp+JWsrPhjlsbQMUTAtVsoqbS7LGHwz8fNPeKHQANDXgJT/znRGMyngh4j5srvDkA0U4aw/W1hLcYvs+A3k6b1a4av7qES8xNWAHCqzVEmvbAwIrfFBCF4w83+z24z17wmxvqvXns8QTAcbzvfX645ooGDp2Z5iB300XnO5x0goOyYN03irVrFRtLIDdXc95PYxw/z+DeOSFE7yBzBgBQWps5OLysbHtKh7XX1MBpP7FYsjSA1tC/v2bRnyK9YsOxBG/jsWA84dEQiRDe2HvyQ9uu85YZTUwEcVyIbOsVG44l2EMsUPEVsJQGt9rY4UHtmTpHs26j3yubBhyH8BpzewRaq66Gy3/pZ+kyC7/PYt+9Y9x6c6xXbDiWsGYtvPq6j+oaKCyE78x1KCxId1TJpxQUFPRL+WeTSA2pv+RLvKY92dW3baUhyZ2wGUG4/qIByX3SFJNkQMhJ0HBSf+aTOjSf1KHZpP6ST5IBc/SeS4hCCCGEEEJ0VSqG9RiYTPaeMSFCCCGEEEKInSI9AztQWq6pb4BBBRAM9p6xygkVFbClFMaPdYzelLcj9fWa5SshGIC9JoDf3/vqUAghhBC7QtoEIMlAh157Fx75N6xYaeG6MDBfc9ThcMZ3NTnZ5h88n6+Em271s+xDRaTBIhB02GevAL/4eZRDe8Ek6fp6zYVXK954X1MT8frs8rIsjj0MbrhSS1IghBBCCIEkA+365781t//ForpGkdtfkxHUbNqsWPSA4rMVLrf9n9kJwSf/hTN/FqA0bOEPaIIBTSymWPK+xecrA/z2xhjHHGngoLe4+nrNUT+AVSUxNOBTXl2V1zo88DysKQ7w+CJzyyeEEEKIJJA5A4DMGWhjc6nm7gcsGhpg9EiXgfmQm6sYVgQFBS7vf6T4+1PpjnL3XHtDgHDYIm+AZsAAyM6BAXmKgQM127db3HCz31vz3FA3/0HxZYmDpRTZAR8hv0XIb5ET8AGKxctj/ONJA9+tQgghhBBJJslAK8+9CuXliiGDNUq1vPqfk62wFLzwusJ1zWxMfr4SVnyhCIU0gUDLx3w+yM7WlGyyePp5c3s+nnldozWE/G0P75Bf4aC577E0BCaEEEII0cNIMtDKxs1eI7ijMeXZOVBapqiu7c6okmfFF4pIRBEKtf94KASOo/lylbmHRkW1xlLt15+lFArYUta9MQkhhBBC9ETmtvhSJJThbcbb0V5ssSgEAhAKdnNgSdIvx9uQNxZr/3FveJAiK8vMng+AgAW6k0F7Gm/jZSGEEEL0YTpFN8NIMtDKjKmaUEizbVvbx1xXU1MD0w7Sxi4zevhszcACl9oOejaqqyEnx2X+cW73BpZEB0z0odG47SR0MUejgEMnm1l/QgghhEgWlaKbWSQZaOXgA+GgAzTl5RZbK3VjD0F9g6Z4vcXAgfC94w1M++KCQVhwkovPUlRU0DhR2HE0VZXez0fMcRlWlNYwd8slP3PJ8vuojTlEHa+uXK2JOJp616V/yOKSn5tbh0IIIYQQySLJQCuWpbjhcs3sQ10aGhTr1lmsXQdbtlgMG+pyzcWaA/Y2L+tr7uLzHX74/RihDE1FBZSWKsrKwfLBkUe43HKjwUsJAZMPUPz2ckX/oI+I61IddaiLucRcl4IsH/f9VjF4kNl1KIQQQojd1IOGCVVUVDB37lyWLl26y8XZVbLPQDsGDlDccZ3m08817y5TRKMwssjlqMMwen+BBJ8Prr/G4awfOzzwdx9bShWD7QDHz6tj/33SHV1ynDxP8e3D4Pd/9fPxcoVlwazpmp+dJhuOCSGEEKLn+PDDD7n88sspLi5Oy9+XZKADlqWYtA9Mamwc974G5OiR8KsrHJSCgoJMysq8ydO9RU6O4uqLoGWa3vvqUQghhBBmeuqpp7jjjju45JJLuOiii9ISgwwTEkIIIYQQIomqq6tb3CKRSLu/N3PmTF555RWOPvrobo6wifQMCCGEEEKIvicVS4HGn2/WrFnU1NQ03n3++edzwQUXtPn1wsLCJAew8yQZ2AHbBizoPwBWf5HuaJLPtl2vf8itorS093UU2bbTNDJIQzjsS2s8qVBou2BtA1cT3tL76vB/r3J58l+wxx7w6tO9r3yRiOatxdC/f5QD99UEAr1vKFt9PTQ0QFYWbXY+F0KI3ujtt99u8XOwB29wJMlAB+yiAOCH+AfXtm1gD9MQqye8Oa2hJYU92IVAJmTiNZY1FA4HojHCm8xeTQjiSUAgC4LN1/zV2EUaorW9IinwjlEfJM4vGuxheOXrBUnBAQe7lGzMBNerw88+ir8HfVHC35h/jEYimlPO8LHss8QmgFF8Ph/77QlP3OuQk2N+UrBpk+KdxRYffWzR0KDo108zfZrLoYc49OuX7uiEECJ159mcnJyUPXeypbXFkM5llDpjF2XQbp6kFfgysQd3e0hJZQ/WkJEJPpreBwrvaAj6sYeafenOth0IZoOKH96N3YDxQgay0xdckthFGaB8Ld/BibzHn4U9yNxN4yCeCKzPAsfy3neNS7YpcALYI8y+jhGJaKbM9fHeh813A9c4Dny8HKYc6SMSMXs2/zfFij/d7ee5F3xEIorMTM3WSsUjj/n4yz1+qqrSHaEQos/rQUuLplPakoEPP/yQBQsWpG0ZpY7YNrR4WdrbUM6f0a0xJV0w1HEyrICA5Q0fMlUgq6kBiWpbf0phDzG3MWkPckGpZmVqdZBaeK+BwUrWZ3p1CG3fg1qB6+eG35h7jF57s2JTGFDeymWWpfD5vK8A5VvhwivM7d1xXXjyXz5KShR7TtQMHqzJy4PhwzTjxmo++6/F62+a3zsnhBC9QVo+bZ566ikWLlyYtiWUOhVs1tBv3WBubIxYXHlldwWUXPZgd8e9YgoIhLojnNRQ7SQArVnmJgP4M1slAs01/Wxq78C877k0lqPD96Di9j+Ym5Q/+Vz81NvOMZpICF5+y9xhQmvXKVatthg2TGO1+pQJBiE/H5Yus6iuaf//CyFE91Apuu2aL7/8kmnTpu3y/99VaWkRzZw5k2OPPRa/37/LCYFK2edkB42QVhbdA7/+dapiSCFfJ70CzVkqha9xN9C0X07V9Jix5WsMvJMCKMCyjCzj++9b7LBsAMrM8gFsrwF0U8O/PXV15h6jFVsVDQ3Qr4Mhs3n9NeFSRVWVol+OgX3q7UjUlal11tdJ/SWfvJbmSEsykIxllAYOTNXss6j3paPGZFzhIB8FBQYOxdD1dCkb0FBQYOoMv2jnD8eLb375dnCQoiko6N8N8SRXduZ2atpfjtmj4/8obWwd+v21RGO6zYdl858tnzK2fHahJhRyCQZpd8fvhgZNTg4MHhSkoKB3tRhS99kkuoPUXx+TwqVFTWLsWIny8u2p2S3XDYDq4GVp9vc+/8yhrGx7CgJIsVh8FSHouB2pgUgdZWUN3RVVculQix6Alo/F79PazPoDcFQn81biB6kLpZuVkWV88UmXQ78Vr6gOe3gUGVn1lJV1ljX0XHuOtfhoOTiObuwdUMrbAdx1vTrcY4S5x2jBQMjtH2DtOkXR0JYnaq1hXbFi/31dfL4YZWVpCjLJlPIakin7bBIpJfWXfInXVPR8xiYDWpOSN+zZp0dZdH/8ZUk8v6Jlpqejxp4swmELezjeSkIdcb3fM7WMxGq8FYNUs8Zk87rEW15UazMnMIY3aewi4jN+2jlINYBjbP1NmGCBFfMSc7Q3YbjFe9C7lLP+C3OP0d9d5zD3JB+OG2/8K/Ap1ZgIWBbccJWD1mZeNc/OhjmzHR57ws+mzQrb9uYORKOwYaMiKwvmHOYtD2tqHXYkVZ9NontI/Ym+yNzlKlLkxhuBaF3LO1ucGGKES2IYraEOHNp2ZWm8+xvq2v4fg4S3+MCJ0aKAjW2qXrLPQKwWWswPbpYIaE144w6GSvVw4eKYlxAAXkIQ/6oApTn1NLOP0X0mKn7zSwd/4nKM9noJAHw+uOYil0MPNjMRSPjWHJcTj3dQSvPlKsXKLxVfr1UMzNec+oMY++wlLS4hhOgJjO0ZSKVwGK68so5F9/mbVp3RLjiRXrHhWDhsAQ3eajPBzKarrtF6wpsTGw6YLbwphm03NC0zCoALkTrzEwGIbypWjz3UAqvZroa9ZMMxgHBxlCOOa+CzT0NNdeivJ/w19IZj9NQFihOPcbj8eoulH1n4LcW+ezrcep3bKzYc8/ng6G87TJ/m8MVKi/p66N8f9trTJdvA6VZCiF5I5gwAoLQ2s0OsrEzG9SWLUt5kWnlNzST1Zz6pQ/NJHZpN6i/5Eq9pT3b1r6tpSPLUs4wgXH+FObsPQ2+4vCaEEEIIIYTYJTJMSAghhBBC9E3SEyQ9Aztyyvfg4Jnw7PPpjiQ1fnsrzDgMfnq+ocuI7sC6dfDzX8AlV0BlZbqjSY3ycvjmG5f6+nRHIoQQQgjTSM9AB+yhGaCsxlVozjwH0HDxxXVcvjCtoSXFzDmwalWoMR1c9RXc/dcQ/fpFWfOFk97gkmDdOpg2J4hWGnxe2n//I4qABSs+iJKXl9bwkmLxEsU/HvXxyX8tNDFysoJ86zCHM3/sMHBguqMTQgghhAmkZ6Ad9tBMb6Hv5gt6xBfZufW2TG76XboiS44DD4ZVX4Va1r7ybturAxSNCaQrtKRYtw6mzgmi/drbTyGxWoBPE1Wa8ZOCnT+BAV54yeLyXwZ48z8WroZQBpRthQf/6ePCSwKUl6c7QiGEEEKYQJKBVo46ho535sV77NZbMrsrnJTYsD7UaRmjER8lJd0XT7LNPioAfje+eww0ZjqNy1O6TJ1l7vKi1dVwx5/9bKuG0SOgcCAMyFMMGwJDBsF/Vyj+dr+55RNCCCG6hU7RzTCSDLTy8UeZnScDABZs3Ngt4STdzDnsuHwKDjrY3KvndZFEAdspaPxNuq7Y3EP/pVcsNoVhkO2NZGsulAkZGfDqmz5qa9MTnxBCCCHMYW6LKFW6stePgj/9OeWRpMRXa7rWyHccgw8Nq7O0PF7BlrmbOq0vUbiuNzSoPdnZsG07bOoFG+QJIYQQqaNSdDOLTCDeFRoOOSTdQeyaQIYm0pVVZ0zedaUroRtcvMx4EuC63tSW1mJRb/fX7OzujUsIIYQwiuxADEjPQBvK17WVdOYdneJAUuRf/4ju+EDVcPQxBi81mpgb0G5BNaDwGXzkH3qoS3YWVGxt+5h2vV6BffZyGTyo+2MTQgghhFkMbhKlxkdLIp03ljVkhKLdFk+yTZ7chV/ScN9fUh5Kypx8XARcFe+pS1RmPP1XgAN/vjXJ+493o70maGbNcNle7e0x4Lre/ZEIrN8I/fvDD75r/vKwQgghhEg9SQZaKSqCo+bWdXxRWbusXxPr7rCS6pP36zvuGnPh+X+bvXvVnbfD+FEuOPGEQOmmYXyO4tuHRznh+DQHuZuuuSzGd+a6OC6sK4bVazUbN0NhAVzyixizZxrYTymEEEKIbidzBtrx4H2wcWMd02b4iUQSa+5rLr64vldsODZ0KIQ31DP/e/Duu6HG+4cNr+ej99IYWBK9+5rDJ586HL8gQF2DN2woP9dhyZuxXrHhWE4O3HxdjBVfKN5+xwKVQf6Aeo6a65KXm+7ohBBCCAPInAFAkoEOFRXBhnUxwOxegM48+U+AepSCgoJ+lJXVGz1vuLUD9odvVpo7pKsr9t5Ts89eDgUFPsrK3F5Vf0IIIYRIPUkGhBBCCCFEH2TeMqCpIHMGhBBCCCGE6KOkZ2AHamq9ddtzcry123ub6mqorAS/X8aXCCGEEKIPkTkDgCQDHVq9WvHOf3ys+NzCccAu1BxysMPB012CXdvEt0dbvx7uuTfIW+/4qKtVZGZqpk4JcuqpUfbey8AjWQghhBBC7DRJBtrx8ScWDzzkp7JKUTBQEwppijcovnoowJo1Dj/6YczohGDtWvif/w3x9WqLzGxNVpYmElE8+7yfDz/yceMNDUyZ7KY7TCGEEEIIkWIyZ6CV6mp4/AkfdXUwcYJLYaFmwAAYPUozrMhl8RKLDz40+2X745+CrFltMWyEZshgyMuFIUMUo0ZqtmxW3HpboHEjKyGEEEKIXkmn6GYYs1u1KbB8hcWmzRYjRmhUq0nmiXkDi5dYxi7huH49LH3fR25/TTDQ8jG/HwoKNatX+1iyVA4NIYQQQojeTlp8rZRXeBmAv4MBVP1zYcsWi0ikG4NKonXfWNTWKnL6tf94Tg40NMA338ihIYQQQojeTKXoZhZp8bUSDIDWdHjlPxqBYEB3mCz0dFlZXu9GtIO91KIxUApCmYZ2fQghhBBCiC6TZKCVceNcsrM1VVVtH3NdbxnOgw50jV1mdP/9XIYPd6kob//x8jIYOFAz61CnewMTQgghhOhOMmcAkGSgjZEjNFMmu5SUWFRUNPUQ1NfDV6sthg7VHDzd3Nm1fj98b0GMQECxcaMiFu8hiMU0W7ZAJKI4dl6MgfnpjVMIIYQQQqSeoYNdUkcpOOXkGD4fvP+BxZYtCqU0Ph+MGe2y4OQYQ4YYmPY1c/JJMbZvh4ceDrBhg0Jr8FmQnQMLFkS54PxoukMUQgghhBDdQJKBdmRlwg+/H+PwwxRfrVY4jqKgQDNxQu/YcMyy4KwzY8ybF+PFF/2UlSmGDMngkIPrGDUq3dEJIYQQQnQD2YEYkGSgQ0rB0KGaoUMNrNUuGmTDaT+OoRQUFIQoK+t44rQQQgghhOh9JBkQQgghhBB9kHnLgKaCTCAWQgghhBCij5KeASGEEEII0ffInAFAegaEEEIIIYTosyQZEEIIIYQQoo+SZEAIIYQQQog+SuYMCCGEEEKIvkfmDADSMyCEEEIIIUSfJT0DQgghhBCiD5J9BkCSASGEEEII0RfJMCFAhgkJIYQQQgjRZ0kyIIQQQgghRB8lyYAQQgghhBB9lMwZEEIIIYQQfY/MGQAMTgaUTABPmsRrKa+pmaT+zCd1aD6pQ7NJ/SWfCa9lKGTGc6aa0lobmMMIIYQQQgghdpfMGRBCCCGEEKKPkmRACCGEEEKIPkqSASGEEEIIIfooSQaEEEIIIYTooyQZEEIIIYQQoo+SZEAIIYQQQog+SpIBIYQQQggh+ihJBoQQQgghhOijJBkQQgghhBCij5JkoA9buXIlZ5xxBlOnTmXGjBlceumlVFRUpDsssQscx+HUU0/l8ssvT3coYidVVlZy6aWXMm3aNKZMmcLPf/5zwuFwusMSXbRixQp++MMfMnnyZGbOnMn1119PJBJJd1iiCyoqKpg7dy5Lly5tvO/TTz/llFNOYdKkSRx++OE89thjaYxQiO4hyUAfVV9fz9lnn82kSZN49913efbZZ6msrOTKK69Md2hiF/zxj3/kgw8+SHcYYhdccMEF1NbW8sorr/DGG2/g8/m45ppr0h2W6ALXdTn33HM56qijeP/993n88cd59913+etf/5ru0MQOfPjhhyxYsIDi4uLG+6qqqvjJT37CCSecwLJly7jhhhv49a9/zWeffZbGSIVIPUkG+qiSkhImTpzIeeedRzAYZMCAASxYsIBly5alOzSxk9577z1efvlljjzyyHSHInbS8uXL+fTTT7npppvo378/OTk5XHfddSxcuDDdoYkuqKqqorS0FNd10VoDYFkWmZmZaY5MdOapp55i4cKFXHTRRS3uf/nll8nLy+OHP/whfr+fgw8+mGOPPZaHH344TZEK0T0kGeijxowZw6JFi/D5fI33vfTSS+y9995pjErsrPLycq666ipuueUWaYAY6LPPPmPs2LE8+uijzJ07l5kzZ3LzzTdTWFiY7tBEFwwYMIDTTz+dm2++mX333ZfZs2czatQoTj/99HSHJjoxc+ZMXnnlFY4++ugW93/11VeMHz++xX1jx45l5cqV3RmeEN1OkgGB1prbbruNN954g6uuuird4Ygucl2XSy65hDPOOIOJEyemOxyxC6qqqvjyyy9Zt24dTz31FP/617/YsmULl112WbpDE13gui6hUIhrrrmGTz75hGeffZY1a9Zwxx13pDs00YnCwkL8fn+b+2tqatpcVAmFQtTW1nZXaEKkhSQDfVx1dTUXXnghzzzzDA899BATJkxId0iii+6++26CwSCnnnpqukMRuygYDAJw1VVXkZOTQ0FBAf/zP//DW2+9RU1NTZqjEzvyyiuv8NJLL/GDH/yAYDDIuHHjOO+88/jHP/6R7tDELsjMzKS+vr7FffX19WRnZ6cpIiG6R9vUWPQZxcXFnHPOOQwdOpTHH3+c/Pz8dIckdsK///1vwuEwkydPBmj8EHv11VdlMrEhxo4di+u6RKNRMjIyAO9qM9A4Bl30XJs2bWqzcpDf7ycQCKQpIrE7xo8fz3/+858W961evZpx48alKSIhuof0DPRRVVVVnHbaaRx44IH87W9/k0TAQC+++CIfffQRH3zwAR988AHz5s1j3rx5kggY5JBDDmH48OFceeWV1NTUUFFRwW233cYRRxxBTk5OusMTOzBz5kxKS0u56667cByH9evX8+c//5ljjz023aGJXTB37lzKysq47777iEajLFmyhGeeeYaTTjop3aEJkVKSDPRRTz75JCUlJbzwwgscdNBBTJo0qfEmhOgegUCABx98EJ/Px1FHHcVRRx3F4MGDufHGG9MdmuiCsWPHcvfdd/P6668zbdo0fvzjH3P44Ye3WaVGmGHAgAHcc889vPjii0ybNo2rr76aq6++munTp6c7NCFSSmnpixZCCCGEEKJPkp4BIYQQQggh+ihJBoQQQgghhOijJBkQQgghhBCij5JkQAghhBBCiD5KkgEhhBBCCCH6KEkGhBBCCCGE6KMkGRBCCCGEEKKPkmRACCGEEEKIPkqSASFE2k2YMIGf/OQntN4D8cknn+Twww9Pyd88/PDDefLJJ1Py3F3x/PPPc/DBB3PQQQfxxhtvtHhsw4YNTJgwgQMOOIBJkyax//77M336dBYuXMi2bdt2+W9efvnlXH755bsbuhBCiF5EkgEhRI/w1ltvsWjRonSH0W0ee+wxjjnmGD788EPmzJnT7u88++yzfPzxx3z66ac8++yzfPPNN9xwww3dHKkQQojeTJIBIUSPcOqpp3L77bfz0Ucftft44mr5hg0bGu/7wx/+wKmnngp4vQg/+MEPuPnmm5k6dSrTp0/nwQcf5NFHH2XOnDkcdNBB/PKXv2zxnCtWrGD+/PlMnTqVs846i3Xr1jU+VlxczE9/+lOmTZvGnDlzuO2224hEIo1/a/78+Zx55plMnjyZZ555pk28W7du5ZprrmHmzJlMmzaNc889t/H5Tz75ZJYsWcI///lPjjjiiC69PgUFBRx33HEsX7688b6ysjIWLlzIjBkzmDlzJr/85S+prq5ufPy1117jmGOO4YADDuDcc89l69atLV67M888k5NOOompU6eybNmyTmMG+PLLLznnnHOYOnUqs2bN4tprr2X79u279Pq/9NJLHHPMMRx00EF85zvf4c477+zS6yCEECK5JBkQQvQIc+fOZcGCBVx88cVUVlbu0nN8+OGHDBo0iCVLlnDhhRfy61//mqVLl/L8889z33338fjjj7Ns2bLG33/11Vf59a9/zTvvvMOwYcM499xzicVi1NbWcvrppzNu3Djefvtt/v73v7N48WL+8Ic/NP7fFStWcOyxx7J48WLmzp3bJpYLL7yQ4uJinnrqKd566y3GjBnD6aefTnV1NY8//jiTJ0/m3HPP5dVXX+1S2UpLS3nllVc48sgjAXBdl5///OdYlsVLL73EM888Qzgcbmxwf/311/ziF7/g3HPP5YMPPuCUU07hnXfeafGc7733HgsXLuSNN95g0qRJnca8detWfvzjHzN27FjefvttnnjiCdauXcull166069/fX09l1xyCb/85S/58MMPueWWW/jrX//KZ5991vXKFkIIkRSSDAgheozLLruM/Px8Lr/88jbzB7oiKyuL0047DcuymDlzJo7jcNZZZ5GZmcm+++6Lbdts3Lix8ffPPPNMJkyYQEZGBpdffjkbNmzgs88+48033yQSiXDxxReTkZHBkCFD+MUvfsHDDz/c+H8DgQDHH388wWCQUCjUIo7169fz/vvvc80111BYWEgoFGLhwoXEYjHeeuutLpfnuOOOY/LkyUyaNImZM2dSXFzMvHnzAFi+fDkrVqzgV7/6FTk5OQwYMIDLLruM5557jq1bt/L888+zzz77cNxxx+H3+zniiCPaDEcaPnw4Bx98MNnZ2WzatKnTmF977TUCgQALFy4kFApRWFjINddcw+uvv05paelOv/6hUIjHH3+c9957jz322IMPP/yQ/fbbb+cqXAghxG7zpzsAIYRICAaD/P73v+fEE0/knnvuYcCAATv1//Py8lBKAWBZ3rWO/v37Nz5uWRau6zb+PGzYsMbvMzMzycvLY8uWLWzcuJGKigqmTJnS+LjWmmg0Snl5OQCFhYWNf6O1srIywGtsJ/h8PoYMGdIiGdmRp59+ujHG6upq7rjjDr773e/y/PPPs2HDBhzHYfbs2S3+TzAYZP369WzZsoWhQ4e2eGzEiBEthgrZtt3lmLXWDB06FJ/P1/h4IrZEmbr6+odCIf7xj39w55138r//+79UV1dz1FFHcfXVV5Obm9vl10cIIcTuk2RACNGjjBgxguuuu45LL72U+fPnN96faIRGo9HG+5o3bIHGhmhXhcPhxu8TQ2GKioqIxWKMGDGCF198scXj5eXl5Ofn7/BvFRUVAd68g3HjxgHgOA4lJSUUFhbuVIwJOTk5XHjhhdx///18+OGHDB48mFAoxNKlSxtfm0gkwvr16xk5ciSDBw/mzTffbPEcmzdvJiMjo/Hn5mXYUcyBQICSkhIcx2n8e8XFxYCXGH399dddfv2rq6sJh8PccsstAHzxxRdcfPHF3HXXXVx22WW78OoIIYTYVTJMSAjR4xx99NGcdNJJPPLII433DRw4kNzcXJ577jm01qxYsaJFY31X3HPPPXz99dfU1dVxww03sOeee7LPPvswZ84campqWLRoEZFIhG3btnHZZZdx0UUXdanBa9s2s2fP5vrrr6e0tJT6+np+97vf4ThOhysH7UhDQwP3338/oVCIfffdl/3224+RI0dy0003UVNTQ319PTfeeCOnn346juNw3HHHsWrVKh599FFisRjvvvsur7zyyi7HnOiB+N3vfkd9fT2lpaXccMMNTJ8+vTGR6KqamhrOOeccnnnmGbTW2LaNZVk73RMkhBBi90kyIIToka688kr23HPPxp+DwSDXXXcdL7zwAgceeCA33XQT3/3ud3frbxxxxBH89Kc/ZdasWVRVVXHnnXdiWRY5OTncd999LF26lFmzZnHEEUdgWRZ//vOfu/zcv/nNbxg+fDgnnngihxxyCF9++SX3338/eXl5XX6OefPmMWnSJCZNmsQhhxzC4sWLueuuuxg+fDh+v5+7776bsrIyjjzyyMY5Bffeey8ZGRkMHz6cu+66i4cffpiDDjqIO++8s92Jzl2NuV+/ftx7772sWrWK2bNnM2/ePIqKirj99tu7XJ6EQYMGcccdd/DXv/6VAw88kHnz5jF9+nROP/30nX4uIYQQu0fpXZmlJ4QQQgghhDCe9AwIIYQQQgjRR0kyIIQQQgghRB8lyYAQQgghhBB9lCQDQgghhBBC9FGSDAghhBBCCNFHSTIghBBCCCFEHyXJgBBCCCGEEH2UJANCCCGEEEL0UZIMCCGEEEII0UdJMiCEEEIIIUQfJcmAEEIIIYQQfdT/B/TOw/BZGSxHAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2335,12 +2368,12 @@ }, { "cell_type": "code", - "execution_count": 236, + "execution_count": 28, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAAIhCAYAAAAl/6meAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8x0lEQVR4nOydd5gb5fX9z6hrtb26rdva64oLNrapxktvBkwJhBoghNDyCwSIgS+EHhw7JASCAwGSQEIvdmgOYYEQAgaMC8Y2rPt6be+uthd1ze+PmXc06jPSqKx0P8/jB1bSSrPSaGbOe+49l+N5ngdBEARBEARBEASRMXSZ3gCCIAiCIAiCIIh8h4QZQRAEQRAEQRBEhiFhRhAEQRAEQRAEkWFImBEEQRAEQRAEQWQYEmYEQRAEQRAEQRAZhoQZQRAEQRAEQRBEhiFhRhAEQRAEQRAEkWFImBEEQRAEQRAEQWQYEmYEQRAEQRAEQRAZhoQZQRBECrj55psxadIkPPPMM5nelLSyb98+TJo0Ca+//nrE+19//XVMmjQJ+/btS/OWJc4vf/lLTJo0KejftGnTcNRRR+GWW27BgQMH4j7HpEmT8Ic//CGl2xnvvU+GX/7yl2hoaIh6f0NDA375y19q/rqpxu/349hjj8WkSZOwefPmTG8OQRB5jiHTG0AQBJFr9PX14d///jfq6+vx0ksv4Uc/+hE4jsv0ZhFJUFVVhccee0z62ev1YteuXVi+fDnWr1+Pt956CxaLJervv/TSSxg2bFg6NpVQwaeffgq73Y7x48fjxRdfxP3335/pTSIIIo8hx4wgCEJj3nrrLQDAHXfcgd27d+Pzzz/P8BYRyWIymTBr1izp39y5c3Heeedh6dKlaG5uxgcffBDz92fNmkXCLAt5/fXXMXv2bJx99tl4++230d/fn+lNIggijyFhRhAEoTGvvfYaDj/8cCxYsABjxozBiy++KN13xRVXYMmSJWG/c+2112Lx4sXSz1999RUuvvhizJw5E/PmzcNtt92Gzs5O6f7XX38dU6dOxSuvvIIjjzwS8+bNw/bt2+Hz+fDkk0/i9NNPx4wZMzBr1ixccMEFYeLwo48+wpIlSzBjxgycdNJJeOutt3DCCScEldt1d3fjrrvuwhFHHIFDDjkE559/Pj777DMt3yoAwO7du3HjjTfiyCOPxKxZs3DJJZdg3bp10v1r167FpEmTsHbt2qDfu+SSS3DJJZdIP2/evBmXXXYZ5syZg9mzZ+Pyyy/Hhg0bgn4n3vuqlkMOOQQA0NLSAkAo+bvssstw991349BDD8Wpp54Kn88XVsrY1taG2267DYcffjhmz56Niy++GOvXr5fu9/v9ePLJJ3HCCSdg+vTpOOmkk/Dcc88p2qbW1lb85Cc/wYwZM7Bw4UI8+uij8Pl8AICHH34YM2bMQF9fX9Dv/PGPf8ScOXPgcDgSfi/k+Hw+/P3vf8cZZ5yBGTNm4Nhjj8Xy5cvhcrmkx4R+fkD4Z+33+/HII4+goaEB06dPR0NDA1asWAGPxyP9jsvlwrJly7Bw4UJMnz4dZ5xxBt55552429jT04N///vfWLRoEU4//XQ4HA6sWrUq7HH9/f246667pM/q5z//Of7yl79g0qRJQY/797//jSVLluCQQw7BkUceifvvvx+Dg4Oq3jeCIPIbEmYEQRAa0tTUhG+++QZnnXUWAOCss87CBx98ALvdDgBYvHgxvv32W+zZs0f6nd7eXvznP//BmWeeCQD48ssvcfnll8NiseB3v/sdbr/9dnzxxRe49NJL4XQ6pd/z+Xx45pln8MADD2Dp0qWoq6vD8uXL8cc//hE/+MEP8Oc//xn33Xcfuru78bOf/Uy66P78889x7bXXYvjw4fjDH/6Aiy66CHfffXdQr5TL5cJll12GDz74AD//+c/x2GOPYdiwYbjqqqsUiTO/3w+v1xv2z+/3Bz1u+/btWLJkCfbt24c777wTy5cvB8dxuOyyy/DFF18oft/7+/tx1VVXoaysDH/4wx/wyCOPwOFw4Morr5REiNL3VQ27du0CAIwePVq67auvvsKBAwfw+OOP4+abb4Zerw/6nYGBAVx44YVYu3YtbrnlFjz22GMwm8244oorsHv3bgDAr371Kzz66KNYvHgxVq5ciZNPPhkPPvggHn/88bjb9Ic//AEVFRV4/PHHcc4552DlypV4+OGHAQDnnnsuXC4X3nvvvaDfWbVqFU499VRYrdaYzx3pM/V6vWGPu+uuu/DQQw/h+OOPxxNPPIGLLroIzz//PK699lrwPB/3b2A89dRTeOGFF3DdddfhmWeewYUXXoinn34aTzzxBACA53lcd911ePHFF/GjH/0ITzzxhCSe3nzzzZjP/c9//hM+nw9nnHEGRowYgQULFuCll14Ke9y1116Ld999FzfccAMeeeQRDAwMYMWKFWHPdd1112H8+PF4/PHHcf3112P16tWq/16CIPIcniAIgtCMhx56iJ83bx7vcrl4nuf5/fv385MnT+afeOIJnud5fmBggJ81axb/2GOPSb/zyiuv8JMnT+YPHjzI8zzP/+AHP+BPP/103uv1So/ZuXMnP2XKFP7555/neZ7nX3vtNb6+vp5/8803g17/pptu4v/yl78E3bZmzRq+vr6eX79+Pc/zPP/DH/6QX7x4Me/3+6XHvPXWW3x9fT3/6KOP8jzP8y+99BJfX1/Pb9iwQXqM3+/nL7roIn7JkiVR//7m5ma+vr4+7r/m5mae53n+Zz/7GT9//ny+r69Peg6Px8OfdNJJ/DnnnMPzPM9//vnnfH19Pf/5558HvdbFF1/MX3zxxTzP8/z69ev5+vp6ft26ddL9e/bs4ZctW8YfOHBA8fsaidtuu41ftGgR7/F4pH9dXV38f/7zH76hoYFvaGjgHQ6H9Nj6+nrpNRny9/a5557jJ02axG/ZskW6f3BwkD/xxBP5l19+md+5cyc/adIk/k9/+lPQczzyyCP8IYccwnd2dsZ876+++uqg2x944AF+2rRpfFdXl/Q+XHTRRdL969at4+vr6/mvv/465nsQ7zO97bbbeJ7n+aamJr6+vj5s+998802+vr6e/+ijj3ieD/78GKGf9RVXXMH/6Ec/CnrMc889J+33//3vf/n6+nr+7bffDnrML37xC/7II4/kPR5P1L/p7LPP5n/yk59IP69atSpsH/rf//7H19fX82vWrJFu8/l8/CmnnMLX19fzPC98L4455hj+yiuvDHp+9rsffvhh1G0gCIKQQ44ZQRCERng8HqxevRrHH388nE4nent7YbPZMGfOHLz88svw+/0oKCjA8ccfH1Rq9fbbb+Pwww9HTU0NHA4HNm7ciIULF4LnecmRqK2tRV1dHT799NOg15wyZUrQzytWrMBll12Gzs5OfPXVV3jttdewevVqAIDb7Ybb7cb69etx4oknBgWSnHzyyTAYAnlQn332GaqqqjBt2jRpG3w+HxYtWoTNmzejp6cn5ntx/fXX49VXXw37d/311wc97osvvsCiRYtQWFgo3WYwGHDaaadh8+bNGBgYUPTeT5w4EeXl5bjmmmtw11134f3330dlZSVuueUWDBs2TPX7GkpLSwumTZsm/Zs/fz6uuuoqyZmSB3+UlpbG7Cdbt24dRo0aFfTZWa1WrFmzBueddx4+//xz8DyPhoaGIFeqoaEBLpcrqMwzEqecckrQzyeeeCI8Hg82btwIADjnnHPw1VdfSeWXb7zxBsaNG4fZs2fHfN6qqqqIn+mrr76Kqqoq6XHM6TzttNOCfv+0006DXq8PK0mNxfz58/Hpp5/ihz/8If785z9j+/btuPjiiyV3+bPPPgPHcVi4cGHYe9Xe3o6mpqaIz7tt2zZ8++23OPHEE9Hb24ve3l4sWLAABQUFQa7Z559/DqPRiOOPP166TafT4dRTT5V+3rlzJw4ePBj2eR122GEoLCyMu28RBEEwKJWRIAhCIz766CN0dHRIF6uhfPLJJ1i4cCHOPPNMrF69Gtu2bUNlZSXWrl2LBx98EIBQ1uj3+/HUU0/hqaeeCnsOs9kc9HNBQUHQz9988w3uuecefPPNN7BarZgwYQJGjBgBQCj76u7uhs/nQ0VFRdDv6fV6lJaWSj93d3ejvb0d06ZNi/i3tre3o6SkJOp7MXLkSKn/Sk7ohXJPTw8qKyvDHldZWQme5xWHMdhsNvz973/HE088gXfffRcvvfQSLBYLzjzzTNx5552q39dQqqqqpPI5QAgDGTZsWMT3wGazxXyu7u7usPc/9H4gXNgwWltb426rnPLycgCQxPSpp56KBx98EKtWrcKVV16Jd999F1dffXXM5wSEvznSZ8ruY7DXCd0Og8GAsrKysP62WFx11VWw2Wx47bXXsHz5cvzmN7/BxIkTceedd2LBggXo7u4Gz/M49NBDI/5+W1tb2OIFAOn7uXTpUixdujTovnfffRe33347SkpK0NXVhdLSUuh0wevY8s+PfV733HMP7rnnnojbQBAEoQQSZgRBEBrx2muvoba2Fg888EDQ7TzP4/rrr8eLL76IhQsX4vDDD0dVVRXeffddVFVVwWw248QTTwQgXNRzHIfLL7884oV5rB4g1mc1adIkvP322xg/fjx0Oh0+/vhjrFmzBoBwQWk0GqWeN4bf75cuMAGgqKgIY8eOxfLlyyO+1qhRoxS9J/EoKSkJ2xZAEH4AUFZWJvXjhfanDQwMBImg8ePH4ze/+Q18Ph82bdqEVatW4YUXXsDo0aNxwQUXJPy+ArFFiVqKiooiznH7+uuvUVJSguLiYgDAX//614gijwntaIS6mez9ZWLCZrPh5JNPxrvvvov6+noMDg5KDpQWMLHa3t6OkSNHSrd7PB50dXWhrKxMuo2FkjBCwzJ0Oh0uuugiXHTRRejo6MDHH3+MlStX4oYbbsCnn36KoqIiFBQU4G9/+1vEbRkzZkzYbW63G//85z9x4okn4uKLLw66b9++fbj99tvxxhtv4PLLL0dNTQ26urrg9/uDxFlHR4f0/+zzuvXWWzFv3ryo7wdBEEQ8qJSRIAhCA9rb2/HJJ5/gtNNOw/z584P+LViwACeffDI+/vhjtLa2Qq/X44wzzsCHH36I9957D8cff7zkfBUWFmLq1KnYuXMnDjnkEOnfxIkT8Yc//CFmGdjOnTvR3d2NSy+9FBMmTJAuJP/zn/8AEISNXq/HoYceGhbv3tjYGBTiMG/ePBw4cAAVFRVB2/Hpp5/iz3/+c1igRaIcdthh+PDDD4OcMZ/Ph7fffhuHHHIITCaTVOZ48OBB6TE9PT3YsWOH9PN7772HBQsWoL29HXq9HrNnz8avfvUrFBcXY//+/Um9r1ozd+5cNDc3B7mHLpcLN9xwA1599VXMnTsXANDV1RW0rZ2dnfj9738fJKAj8dFHHwX9/Pbbb8NqtWLmzJnSbeeeey6+//57/PWvf8URRxyBmpoazf4+Jk7efvvtsO3w+XyYM2cOAGFfl3+mAMLKNC+44AJptlhFRQWWLFmCiy66CL29vejv78e8efMwODgInueD3qvvv/8ejz/+eMRgksbGRnR3d+OCCy4I+66ec845GDt2rFTOOG/ePHi9XjQ2Nkq/z/M8/v3vf0s/jx8/HhUVFdi3b1/QNtTU1GDFihXYsmVLom8lQRB5BjlmBEEQGvDmm2/C6/VGLT8766yz8Morr+Dll1/GDTfcgDPPPBPPPPMMdDpdWGndTTfdhKuvvho333wzFi9eLKUvbty4Eddee23UbRg3bhwKCwuxcuVKGAwGGAwGrFmzRirbYqmMN954Iy655BLceOONOPfcc7F//378/ve/BwCp72zJkiV4/vnn8aMf/QjXXHMNhg8fjv/973946qmncPHFF8NoNCb9ngFCL9p//vMfXHrppbj66qthNBrx/PPPo7m5GX/+858BAJMmTcLw4cPx+OOPo7CwEBzH4U9/+lOQy3XooYfC7/fjuuuuw9VXXw2bzYZ3330XfX19khuZ6PuqNUuWLMFzzz2Hn/70p7jxxhtRVlaGv/3tb/B4PPjhD3+I2tpaLF68GP/3f/+HlpYWTJ8+Hbt27cIjjzyCUaNGYezYsTGf/1//+hdqampwxBFH4L///S9eeukl/OxnPwvq45szZw7GjRuHL774Ao888oimf9+ECRNw9tln49FHH4XD4cBhhx2GrVu34rHHHsP8+fNx9NFHAwAWLVqExsZGPPTQQ2hoaMBXX30VlqR42GGH4ZlnnkFlZSVmz56N1tZWPPvss5g3bx7Ky8uxcOFCHHbYYbj22mtx7bXXoq6uDps2bcKjjz6Ko48+WirjlPPaa6+hoqICCxYsiLj9ixcvxqOPPoq1a9di/vz5OPLII3HHHXfAbrdjxIgRePXVV/Hdd99J3xW9Xo+f//znuOuuu6DX67Fo0SL09vbij3/8I1pbW6VyYLfbjS1btmDYsGE0044giMhkLHaEIAgihzj55JP50047Ler9fr+fb2ho4I8++mgpFfD000/njzzyyKCUQMb//vc//oc//CE/Y8YMfs6cOfyll17Kf/nll9L9LJWRpRsyPv/8c37JkiX8jBkz+MMPP5y/4oor+K+++oqfPXs2//DDD0uPe//99/nTTz+dnzZtGn/iiSfyb7/9Nl9fX88/88wz0mPsdju/dOlS/vDDD+enT5/On3TSSfxTTz3F+3y+qH8nSwZ87bXXIt4fabu3bNnCX3XVVfysWbP42bNn85dddlnQ38rzPL9x40b+Bz/4AT99+nT+2GOP5Z999ln+//7v/4JS/TZu3MhfccUV/Lx58/hDDjmEX7JkCf+vf/1L1fsaCZbKqIRoj5WnMvI8zx88eJC/6aab+Llz5/KHHnoof8UVV/Bbt26V7vd4PPxjjz3GH3fccfy0adP4Y445hr/77rulZMVIsPf+5Zdf5i+77DJ++vTp/KJFi/i//vWvER//0EMP8YcddpiUIJrI38VYtGiRlMrI8zzv9Xr5P/7xj9L2L1q0iP/tb3/LO53OoMf85je/4Y844gh+xowZ/JVXXiklRLJURo/Hwz/66KP88ccfz0+fPp0//PDD+TvuuCMomXJgYIB/8MEH+WOOOYafNm0a39DQwK9YsSLotRgHDx7kp0yZwt9zzz1R/5bm5mZ+0qRJ/P/7f/+P53me7+7u5n/5y1/yc+fO5WfNmsXffPPN/D333MPPnj076Pfefvtt/uyzz+anT5/Oz5s3j7/mmmv4bdu2BT1v6H5AEAQhh+N5GrBBEASRT3zwwQcYNmxYULBHU1MTTj/9dPzxj3/Ecccdl8GtI9IBz/M47bTTcNRRR+H222/P9OZkLS0tLdiwYQOOO+64oOTNG2+8Ec3NzXjjjTcyuHUEQeQaVMpIEASRZ/z3v//FO++8g1/84hcYN24cWltb8cQTT2D8+PE46qijMr15RArp7+/HX/7yF3zzzTdobm7GJZdckulNymp0Oh1++ctf4rjjjsO5554LvV6PTz75BP/617/w0EMPZXrzCILIMcgxIwiCyDOcTid+//vfY82aNWhra0NpaSmOPvpo3HzzzRGj64ncwev14thjj4Xf78fSpUtxxhlnZHqTsp7PP/8cjz/+OLZu3Qqv14u6ujr86Ec/wumnn57pTSMIIscgYUYQBEEQBEEQBJFhKC6fIAiCIAiCIAgiw5AwIwiCIAiCIAiCyDAkzAiCIAiCIAiCIDIMCTOCIAiCIAiCIIgMQ8KMIAiCIAiCIAgiw9AcsxTS0dEHyrzMHjgOqKgoos8lD6DPOj+gzzl/oM86P6DPOX/It8+a/b3xIGGWQngeebGzDTXoc8kf6LPOD+hzzh/os84P6HPOH+izDoZKGQmCIAiCIAiCIDIMCTOCIAiCIAiCIIgMQ8KMIAiCIAiCIAgiw5AwIwiCIAiCIAiCyDAkzAiCIAiCIAiCIDIMCTOCIAiCIAiCIIgMQ8KMIAiCIAiCIAgiw5AwIwiCIAiCIAiCyDAkzAiCIAiCIAiCIDIMCTOCIAiCIAiCIIgMQ8KMIAiCIAiCIAgiw5AwIwiCIAiCIAiCyDAkzAiCIAiCIAiCIDKMIdMbQBAEQRAEQcTH5+exoaUH9n43KgtNmDWyBHodl+nNIghCI0iYEQRBEARBZDmNTXasaNyOtn63dFt1oQk3N0xAw8TKDG4ZQRBaQaWMBEEQBEEQWUxjkx23rd4SJMoAoK3fjdtWb0Fjkz1DW0YQhJaQMCMIgiAIgshSfH4eKxq3x3zMbz/cAZ+fT9MWEQSRKkiYEQRBEARBZCkbWnrCnLJQWvtc2NDSk6YtIggiVVCPWQ5DTcIEQRAEMbSxxxFlah9HEET2QsIsR6EmYYIgCIIY+lQWmjR9HEEQ2QuVMuYg1CRMEARBELnBrJElqI4jumqKzJg1siRNW0QQRKogYZZjUJMwQRAEQeQOeh2HmxsmxHzMTYvqqFWBIHIAEmY5BjUJEwRBEERu0TCxEg8vnhrmnNUUmfHw4qnUokAQOQL1mOUY1CRMEARBELlHw8RKLKyrwLGPfQqnx48LDx2Bny0kp4wgcglyzHIMahImCIIgiNxEr+PAi50II0qsJMoIIscgYZZjUJMwQRAEQeQuXp9f+C/1ihNEzkHCLMegJmGCIAiCyE18fh4+UY8xgUYQRO5AwiwHoSZhgiAIgsg9PDIxRo4ZQeQeFP6Ro7Am4YueW4cd9kH8+PDRuHLBGHLKCIIgCGKIIhdjHhJmBJFzkGOWw+h1HEaVWAEAlTYTiTKCIAiCGMK45Y6Zj4QZQeQaJMxynGKLYIr2OL0Z3hKCIAiCIJLBIxNjXj/1mBFErkHCLMcpthgBAL0kzAiCIAhiSCPvMfNRKSNB5BwkzHKcEqvgmPU6PRneEoIgCIIgkiHYMSNhRhC5BgmzHKfEwoQZOWYEQRAEMZTxUI8ZQeQ0JMxyHFbK2OMgx4wgCIIghjKeoFRG6jEjiFyDhFmOQ+EfBEEQBJEbeLzkmBFELkPCLMcpofAPgiAIgsgJ5C4Z9ZgRRO5BwizHkYd/8DwdxAmCIAhiqELhHwSR25Awy3FYj5nbx8PppXp0giAIghiqBIV/UI8ZQeQcJMxyHKtRB4OOA0ABIARBEAQxlAlyzKjHjCByDhJmOQ7HcVIACPWZEQRBEMTQRd5j5qFSRoLIOUiY5QEUAEIQBEEQQx+PlxwzgshlSJjlAfIAEIIgCIIghibBqYzUY0YQuYYh0xtApB4WANJNjpkm+Pw8NrT0wN7vRmWhCbNGlkAv9vERBEEQRKqgVEaCyG1ImOUBUo8ZhX8kTWOTHSsat6Ot3y3dVl1ows0NE9AwsTKDW0YQBEHkOsGpjCTMiOyGFrLVQ8IsD6DwD21obLLjttVbwm5v63fjttVb8PDiqSTOCIIgiJQhd8x8JMyILIYWshODeszygFIrhX8ki8/PY0Xj9piP+e2HO+hESRAEQaSMIMfMRz1mRHbCFrLlogwILGQ3NtkztGXZDwmzPIA5Zj0U/pEwG1p6wg4wobT2ubChpSdNW0QQBEHkG26ZY0Zx+UQ2QgvZyUHCLA9g4R895JgljD2OKFP7OIIgCIJQizyJkeLyiWxE6UL2+n20kB0JEmZ5QKDHjByzRKksNGn6OIIgCIJQC6UyEtmO4oXsAVrIjgQJszyglAZMJ82skSWojiO6aorMmDWyJE1bRBAEQeQbbh/NMSOyG8UL2TZayI4ECbM8oFgcMN3j8IDnaYUtEfQ6Djc3TIj5mJsW1VEMLEEQBJEyvBSXT2Q5SheyZ4+ihexIkDDLA1gpo9vHw+WlFbZEaZhYiYcXT4XVGPy1qSkyU1Q+QRAEkXLk4R9eH0+LrUTWQQvZyUHCLA8oMOqlLwAFgCRHw8RKHF8fEGCXz6vFqqvmkSgjCIIgUo48Lp8HQPkfRDbCFrLNBlrIVgsNmM4DOI5DicWAzkEPep0e1BSZM71JQxr5imWBSU+rPgRBEERaCC1f9Pr8MOj0GdoagohOw8RKvFBTiA0tvQCAR86ahsPHldM1UxzIMcsTSigARDPk5aCtfa4MbglBEASRT7hD2hGoz4zIZjoHA2ngk4cVkShTAAmzPEEaMu2gyPxkcXpImBEEQRDpJ3SoNAkzIpvpkEXiOz2+DG7J0IGEWZ4gCTNyzJLG5Q0cXEiYEQRBEOlCnsoIkDAjsheHx4cBty/oZyI+JMzyhGIrlTJqhVNWStJGwowgCIJIE25feI8ZQWQjoYOmHR7aV5VAwixPKBEds14nlTImi1yY9Ti9ZM8TBEEQacFDjhkxRJCXMQJUyqgUEmZ5Agv/6HGQY5YsobPgqJyRIAiCSAfhqYwkzIjsxD5AjlkikDDLEwI9ZuSYJQtb9WHZQiTMCIIgiHRAqYzEUIEcs8QgYZYnFEuljOSYJQtzzIYXC/PgSJgRBEEQ6SA8lZFcCCI7CXfMSJgpgYRZnlBC4R+awYTZ6LICACTMCIIgiPRAqYzEUCHMMfPSIoISSJjlCRT+oQ1ePy+dCMeUWwGQMCMIgiDSg1sUZnqxlp56zIhshTlmbKg0OWbKIGGWJxSz8A9yzJJCPsNsdJkgzNr6SZgRBEEQqccjCjGrSQ+AHDMie2GO2Qix7YN6zJRBwixPYD1mLq+fvhxJIE9krC0jx4wgCIJIDzwfqNiwGgVh5qEeMyJLYY7ZyFLhWolSGZVBwixPsJn0kp1MfWaJ4xQPLGaDDjVFFP5BEARBpAePrGyRCTMqZSSyEZ+fR7dDaJ2pFYWZ00umgBJImOUJHMfJ+sxImCUKc8wsMmHW7/JhwE3vKUEQBJE65O5YgZFKGYnspWvQDT8P6LhAgjU5ZsogYZZH0Cyz5GErPmaDDjaTAYVm4eTY1ueO9WsEQRAEkRTBjplw+UbCjMhGOgaE68yyAhNsYj8ktdEog4RZHkEBIMnjEld8LOJqZaCc0ZmxbSIIgiByH48skdGoZ8KMXAgi+2D9ZZU2k3S9RKmMyiBhlkdIpYwOcswShZUymg3CV4f6zAiCIIh0wBwzg14Hg5iXTz1mRDbCEhkrbEZJmDmplFERJMzyiGIaMp008lJGAKguJGFGEARBpB7mmJn0Ohh0wjnIQ6WMRBYid8xY2S05ZsogYZZHlEg9ZiTMEkUe/gGQY0YQBEGkB+aYGfUcjOSYEVlMwDEzwWoQHTMvOWZKIGGWR1D4R/IE4vKDe8wo/IMgCIJIJSyV0aDjYBDH31CPGZGNBPeYkWOmBhJmeQQL/6BSxsRxUo8ZQRAEkQGYY2Yy6CRh5qNSRiILkTtm1GOmDhJmeURgjhk5ZoniEnvM2AqQXJjxPJ0gCYIgiNTAesyMukCPGcXlE9lIcI8ZpTKqgYRZHlFCjlnSRHPMBj0+9LvooEMQBEGkBibMDHqOUhmJrIXn+eAeM9nMPa+PXLN4kDDLI4qtYo8ZxeUnTCD8Q1gBshj1khPZ2k/ljARBEERqcLNSRn2glNFDPWZEljHg9kmL2BU2k3S9BAAOKmeMCwmzPKKYUhmTJnSOGQBUU58ZQRAEkWKY22DUc4FSRnLMiCyDuWU2kx5Wox5GPQfR4JVGDhHRIWGWR7BSRpfXDyfV+iYEe9/kwowCQAiCIIhUE3HANPWYEVmGXVbGCAAcx0kBIOSYxYeEWR5hM+mlVYs+F7lmiSCVMhoD1jwJM4IgCCLVuKUB0/K4fBJmRHbRESLMAFAAiApImOURHMdJkfk9DhJmiRAa/gGQMCMIgiBSj0cUYUIqI80xI7ITeSIjgyVZU7VWfDImzF5//XVMmjQp7N/kyZMBAFu2bMF5552HmTNn4pxzzsHmzZuDfv+tt97C8ccfj5kzZ+K6665DZ2endB/P81i+fDkWLFiAefPmYdmyZfDLDl5dXV244YYbMHv2bDQ0NGDVqlVBzx3vtYcyNGQ6OVhcfiRh1kbCjCAIgkgRwT1mlMpIJIfPz2NdczfWbG3DuuZuzWbidUQQZlaaZaaYjAmzU089Ff/973+lfx999BHGjBmDSy+9FIODg7j66qsxd+5cvP7665g9ezZ+8pOfYHBwEACwadMm3HHHHbj++uvx0ksvobe3F0uXLpWe+9lnn8Vbb72Fxx57DI8++ij++c9/4tlnn5XuX7p0Kfr6+vDSSy/hpz/9Ke68805s2rQJAOK+9lCnxEqR+ckQSGUkx4wgCIJIHyyV0ajXwaCnOWZE4jQ22bH4qbW45uVNuPOdbbjm5U1Y/NRaNDbZk37uSKWMLJmRShnjkzFhZrFYUFVVJf1bvXo1eJ7HL37xC7zzzjswm8249dZbUVdXhzvuuAM2mw3vvfceAOD555/HKaecgrPOOguTJ0/GsmXL8PHHH6O5uRkA8Le//Q033ngj5s6diwULFuAXv/gF/v73vwMA9u7diw8//BD3338/6uvrcd5552Hx4sX4xz/+AQBxX3uoU0xDppOCrfaYDZF7zGjINEEQBJEKPBEcMw85ZoRKGpvsuG31FrT1u4Nub+t347bVW5IWZ5FKGdksMwelMsYlK3rMuru78dRTT+Hmm2+GyWTCxo0bMWfOHHCccODhOA6HHnooNmzYAADYuHEj5s6dK/3+8OHDMWLECGzcuBGtra04cOAADjvsMOn+OXPmoKWlBW1tbdi4cSOGDx+OUaNGBd2/fv166bljvfZQp0QSZuSYJUIg/CPw1akqNEv30SgCgiAIIhV4ZY6ZUU89ZoR6fH4eKxq3x3zMbz/ckVRZY8eAsPBfYTNKt1Eqo3IMmd4AAHjhhRdQXV2Nk08+GQDQ3t6OCRMmBD2moqICTU1NAIC2tjZUV1eH3X/w4EG0t7cDQND9lZWVACDdH+l3W1tbFb22GkRtl1UUi6WMPU5vVm5fKmF/bzJ/N+sxsxh10vNYjDqUWY3ocnjQ3u9CWYExxjMQ6UCLz5rIfuhzzh/osw4MkzbJ4vJ9fj6n3hP6nFPLhpaeMKcslNY+Fza09GDu6NKEXoM5ZlWFZulzZI6Zy+sL+4zz5bNW+ndmXJjxPI9XXnkFV111lXSbw+GAyWQKepzJZILbLXzYTqcz6v1Op1P6WX4fALjd7rjPHe9+NVRUFKn+nVQzotwGAHADqKzMvu1LB8l8Lm5xFWlYZVHQ+zey3IquFg8cnC5v39dsJBu/g4T20OecP+TzZ20wCZdsxYVmlBUXAAA4gz4nzzn5/DmnEte+XmWP0yV2LePx+dHtEByzibVlqBArisqKLAAAndEQ9rz0WQeTcWH2zTffoLW1Faeddpp0m9lsDhNCbrcbFosl5v1WqzVIhJnNZun/AcBqtSb83Ox+NXR09CHbWo4M4opba5cDdntfhrcmvXCccABI5nNxuAXHzNnvhN0eKGesEJ3IppZuzKwqSHpbieTQ4rMmsh/6nPMH+qyB3n4hYMrj9sAxKPy/w+nJqXM5fc6pxayw9NXs9ye0X7EQNL2Og8/hgt0pXE9zYn9kR0/g2jPfPmv298Yj48Lsk08+wdy5c1FSUiLdVlNTA7s9uPnQbrdLJYjR7q+qqkJNTQ0AoSSR9ZGx8kZ2f7TfVfLaauB5ZN3OJg//yLZtSxfJfC5sBofJoAt6jhpxVehgrytv39dsJBu/g4T20OecP+TzZ80GTAfNMfP5c/L9yOfPOZXMGlmC6kJTzHLGmiIzZo0sSej9t4vPW1FgBAdOeg42YmjQ7Qt7Xvqsg8l4+MemTZtw6KGHBt02c+ZMrF+/Xkq443keX3/9NWbOnCndv27dOunxBw4cwIEDBzBz5kzU1NRgxIgRQfevW7cOI0aMQHV1NWbNmoWWlhYcPHgw6P5Zs2Ypeu2hTmCOGYVUqMXP81JcsTwuH6DIfIIgCCK1eORx+SyVkeLyCRXodRxubpgQ8zE3LaqDXpdY45c9QlQ+IJtj5qXwj3hkXJg1NTWFhW2cfPLJ6O3txQMPPIDt27fjgQcegMPhwCmnnAIAuPDCC7Fq1Sq88sor2LZtG2699VYce+yxqK2tle5fvnw51q5di7Vr12LFihW49NJLAQC1tbU46qijcMstt2Dbtm145ZVX8NZbb+Giiy5S9NpDnWKLGP7hoLh8tbhlBxR5XD4AVLMh0/0kzAiCIAjtCYrLZ3PMKC6fUEnDxEo8ePrksNtrisx4ePFUNEysTPi5I80wAwJJ1k6aYxaXjJcy2u12FBcXB91WWFiIP/3pT7j77rvx8ssvY9KkSXjyySdRUCD07syePRv33nsvHn30UfT09ODII4/EfffdJ/3+lVdeiY6ODlx//fXQ6/U499xzcfnll0v3L1u2DHfccQfOP/98VFVV4cEHH8SMGTMUvfZQp8RKcfmJIp9YbybHjCAIgkgjkRwzGjBNJEKVzRz08zF15Vi2eFrCThkj0gwzIOCYUVx+fDIuzDZt2hTx9hkzZuCNN96I+ntLlizBkiVLIt6n1+uxdOlSLF26NOL9FRUVWLlyZdTnjvfaQ5kS0TFzev1wef1hAoOIjlOMyjfqubCDFxNmbeKQaS5f8l8JgiCItCA5ZjpOJszoQpdQz5d7u4N+LjQbkhZlQHzHzEGOWVzoqjzPsJn0EMefoM9J5YxqYLXRkcRsdaEJHAC3j0cXlYkSBEEQGsP6yUwGcsyI5PhybxcAYFJ1IQAhlEMLOqI5ZmL7h5Mcs7iQMMszOI5DkeiadVM5oypckjDTh91n0OukFaI2KmckCIIgNIY5ZgYd9ZgRiePw+PDNASGyfmFdhXSbFkRzzALhH+SYxYOEWR5SIovMJ5TDhFloIiOjqlA4EL23tQ3rmrvho5VMgiAIQiMolZHQgvX7euD18xhebMaEKhsAYNCtjZMVrceMShmVk/EeMyL9CMmMDvQ6gh0zn5/HhpYe2PvdqCw0YdbIEk1qjnMFliYUqZSxscmOnR2DAIC/r2vB39e1oLrQhJsbJiSVcEQQBEEQQMAxM+l1MOoDc8wIQg2sv+yw0aUoMLFQjuQFE8/zMXrMKPxDKSTM8pBIyYyNTXasaNweNHSQhEUwkmNmDC5lbGyy47bVW8Ie39bvxm2rtyQdP0sQBEEQzDEz6DkYdGIpIzlmhEoCwqwMBeL1zKAGwqzP5ZVmvUYtZSTHLC5UypiHBIZMC6WMTFiEToJnwqKxyZ72bcxGXBHCP3x+Hisat8f8vd9+uIPKGgmCIIikCJpjRuEfRAJ0Ozz4vq0fADB3dCmszDHTIPyjY0C4piwyG8Iqi6yyOWY8T/tsLEiY5SEsMr/H6SVhoQLWtCo/4Gxo6QkTtKG09rmwoaUnpdtGEARB5DZSKiPNMSMSZF1zN3gA4ysKUGkzaeqY2QeE4LPQ/jIg4Jj5+IDzS0SGhFkeUiwL/yBhoZxI4R/2OO+d2scRBEEQRCQCc8x0MIg9Zj4/Tw4EoRh5fxkASZi5vP6kF+DtUn+ZMew++XUTBYDEhoRZHlIsOma9Ti8JCxWw+Rtyx6yyMHxlKBJKH0cQBEEQkQjuMQsEc1FFC6GUL/YI88sOG10GAFIpI5C8YGKljKH9ZYAwUojts2wmLBEZEmZ5SJFZ+CLu7BhEx6AywUXCInL4x6yRJaiO897UFJkxa2RJSreNIAiCyG3kqYws/AOgyHxCGQd7nWjudkLHAXNqhWsSk56DaL4mLczYAn4kYQYEyhnJMYsNCbM8o7HJjt9+tAMAsKtjEI98tDPu75CwEHCJPWZyS16v43Bzw4SYv3fTojoaO0AQBEEkhTz8g8XlAzRkmlDGF2IZ49RhRSg0Cy0tHMcFAkCSjLJnC/2ResyA4AAQIjokzPIIlr7YHTK/LB4kLAScEVIZAaBhYiUeXjw1zDmrKTJTVD5BEASRNDzPy0oZdUGljF4/lYYR0fH5eaxr7saqbw4CCLhlDNZnlmwyoz3KDDMGzTJTBs0xyxOUpC/qOEBeEVFTZMZNi+pIWIgEwj/0Yfc1TKzEwroKLG/cjlc3HsDskcV44vyZJGgJgiCIpPH5ebDTs0nPgeOEEjQfT8mMRHQizahd9U0rpg4rlq7trBolM7Lh0tEcM1ZtRKWMsSHHLE9Qkr7o54Gx5VYAwCVzR2HVVfNIlMmI5pgx9DoOR9dVABBGEZAoIwiCILRA3kdm1AvnIIOehkwT0Yk2o7bb4QmaUVtgSl6Y+fw8WnudAICDfa6IgTTSkGkK/4gJCbM8QWmqYqFJMFFriswkLEJwecLnmIUytrwAANDc7aCkLIIgCEITWH8ZABjFc7M0y4x6zIgQ1MyotSZZytjYZMcZT63FoFiieN+a77H4qbWS8GNYkugxY+WYa7a2YV1zd05fX1EpY56gNFWxSJxxRisa4TilVMbowmxYsRlmgw4urx8Hep0YVWpN1+YRBEEQOYpbFF8cIC2aMmHmoR4zIgQ1M2qTccyYKxdKW78bt63eEtRnn2gqY6RyzOpCE25umJCTVV3kmOUJSmPdR5ZYAFANcCQCpYzhPWYMHcdhdJkgxnZ3DqZluwiCIIjcxitLZOQ4UZixUkZyzIgQ1MyoTdQxU+PKAYmFf0Qrx2TCL9SVywVImOUJSmPdC0w0ZyIaLg8L/4j9tRlTJpQz7u50pHybCIIgiNyHJTKy/jJAVsqYw2VdRGIorZKqLDRJqYxqHTM1rhygPi5frfDLFUiY5RFKYt1Z4qCLShnDYHPMzDFKGYFAgMoecswIgiAIDXBLjhkJMyI+SqukZo0skc0xUyfM1LhyQCDRWqljplb45QrUY5ZnsFj3DS09sPe7UVlowqyRJVLNOuufIscsnHipjIwxYgAICTOCIAhCC7ySYxYI5QoIM1pIJYJhVVKR+r8YbEYtc7IGVZYyqnHlAPWOmVrhlyuQY5aH6HUc5tSW4qQp1ZhTWxqUvijFmdIAwDBizTGTwxwzKmUkCIIgtIAFfBhl52uDnlIZieiwKinWosKQV0kBiYdyqHHlAHmPmbLXUSv8cgUSZkQQ5JhFx6kgLh8ARos9Zl0OD3ocnpRvF0EQBJHbRC5lFP7fQ6WMRBQaJlZiwZhSAMApU6qx8vwZYTNqpR4zt7oFeaXZBWzxX+0cM7XCL1cgYUYEEXDMSJiF4lIQlw8IwxpriswAgD1d5JoRBEEQyREp/MNIjhmhgL1dwuDnEydXhVVJAUi4xwwAjp1QgRJLeFdUqCsHBILTlL6OWuGXK1CPGREEK9OjOWbB8DwvCbNYcfmMMWVWtPa5sLtzEDNGFKd68wiCIIgcJlaPmY96zIgo+Hkezd3CAjFLjA4l0VRGAPhmfy96nF4UGHX49eKp6HV4w7ILGIks/LNyzNA5ZjVFZty0qC4n55iRMCOCoFLGyLh9PNiaZLy4fAAYW16AL/Z2UwAIQRAEkTSUykgkQmufCy6vHwYdh+HinNpQJMdMZfgHALz/XTsAYOGEShw+tjzmYxOZYwYI4mxubQmOe/wzAMApU6pw98mTc84pY1ApIxEEhX9EhkXlA8qEGUtmpAAQgiAIIlk8sgHTDNZjRsKMiAZbHK4ttUpCPpREHTOfn8e/vxcGPJ84uSru46VURq96ASifVVZsMeasKANImBEhkGMWGVbGqOcAg16JY8aSGckxIwiCIJKDiS+jTuaYUY8ZEYc94uLw6DJr1McUJJjKuKGlBx0DbhRbDJg/pizu4xN1zIDg2br9CTh7QwkSZkQQalNz8gXmICrpLwMCjllLjxNeH72XBEEQROK4vZEcM5pjRsRmrxhANqY8ujBjpYxq55ixMsZjJ1QEldhGfR2Vc8zkyIXZgMur+veHEiTMiCBYmZ7L64efp1U4htJERkZ1oQlWow4+P4993c5UbhpBEASR47BI/Eg9Zh5yzIgo7OkSqnaiBX8AQIGsUopXeN3n9fP4QCxjPGFS/DJGIPF5aUCgxxJQLyCHGiTMiCDYFwegPjM5rCY63gwzBsdxGCv1mVE5I0EQBJE4EXvM9NRjRsRGSSkjc8z8fLAzFYuv9nah2+FBqdWIuaPjlzECgVJGp8evWAAy3HLHjIQZkU/IhUciDZq5iuSYKSxlBAIHQhJmBEEQRDJEmmOWLamMPj+Pdc3dWLO1Deuau4OCGojM4fT4cLDPBSB2KaP8ukapm8XKGI+rr4waKhL+OsK+y0O5AGS4fHJhltuljBSXTwTBcRwsBh2cXj8FgMhwSjPMlK9lMMeMhkwTBEHkBz4/jw0tPbD3u6POc0qEyKmMme8xa2yyh82Yqi404eaGCTk5Y2ooweaXFVsMKLUaoz5Orwtc9w16fIjlf/n8PL7a24V/bROFmYrPOLQiizl1SnDlkWNGwowIw2rUi8KMShkZLo+6UkZAJszIMSMIgsh5UilSPJFSGXWZTWVsbLLjttVbwm5v63fjttVb8PDiqSTOMoi8jJHjYi8OFJjE6z539Ou+SPv3r977TvH+rddxMOk5uH08HF4fyhBdLIYSVMroym1hRqWMRBgs4MJFjpmEU2X4BwBZj5lDdT01QRAEMXRgIkV+0QoEREpjkz2p5/d4IwyYzmCPmc/PY0Xj9piP+e2HO6isMYNIiYwx+ssY1jizzLTavxOdlSt3zAY9vpwOpyNhRoSRzKyJXCVQyqjceh9VagEHoM/lReegJ0VbRhAEQWSSdIiUQCpjeCljJlIZN7T0hF2kh9La58KGlp40bRERipTIWB49kZFRYIqemKjl/s2qjtS2yrhDxg7lcjIjCTMijGQiTXOVQPiH8q+MxajH8BILgMABkiAIgsgt0iFSWI+ZSeaYMZGWiR4ze5y/V+3jCO1RksjIkK77IggeLffvRK8v3SFhIbncZ0bCjAiDiQ8aMh0gkR4zABhbzpIZKQCEIAgiF0mHSGHCzBAx/CO2U5GK1MTKQpOmjyO0hed5WSmjAscsRimjlvt3oqWModejuZzMSOEfRBjkmIWTSCojIPSZ/W9XFwWAEARB5CjpECmR4/Lj95ilKpBk1sgSVBeaYjopNUVmzBpZkvBrEInT5fCgz+UFB6GtIh7WGKWMWu7fViNb+E/OMaNSRiKvYAEXNGA6gFTKaFTeYwYEmm61mGVGs2IIgiCyDyZSYpGsSAmUMip3zFIZSKLXcbi5YULMx9y0qE6TUQGEevaKVTrDi82KrlsKxOu+SIJHy/3bnGgpY0iPWS4nM5IwI8IITGfP3R1fLa4EHbMxUmR+cqWMjU12LH5qLa55eRPufGcbrnl5ExY/tTbppC+CIAgiOdIhUphjZghKZWRx+eGLqOkIJGmYWImHTp8SdntNkZmi8jMM62sfraCMEYhdKaXl/m1NMFzO5Q3eT3O5lJGEGRGGNcHUnFzGmXCPmXBQ3N/jVD3pnpHqGGaCIAgiORomVuLhxVOlUi05tx5Xp8EcMzEuX6fMMUtXamJtqTVsu567eDaJsgzDFoPHlMcP/gACqYyDUeaYsf3bECK+1IpwqZQxScesn0oZiXxCcswo/EMi0VLG8gIjCs168ACau9S7ZjQrhiAIYmjQMLESR44rBwCcOrUaU2oKAQA77MmXsrtFx8wUaY5ZhLj8dKUmbj7YCwCYPaoEI8QUYi3+XiI5WPCHFo4Zo2FiJSptwlDonxwxBivPn4FVV81TJcITn2MWvF2UykjkFWxFgxyzAImGf3AcJ/WZvfnNAdW9YTQrhiAIYujAVvLnjS7DzxaOBwD8c/NB2PtdST0vK1eMNMcskmOWrtTEzQf6AADThxehvsoGAPi+vT+p5ySSR5phpiAqH5A5ZnGu+/rE3q4TJ1djTm2p6vLchOeYhYV/UCkjkUdYDOl3zLI92IKt1qiZYwYIZYhs9fCl9ftV94bRrBiCIIihQ79LuGAsNBtw6KgSzBhRDLePxz/WtST1vBF7zHTR55ilI5AEAL6VhFkx6qsFh/C7NhJmmcTr57Gv2wlAeSljrDlm0vP6/JJTVWxJLNQ90dRv1mPGFiZyOfyD4vKJMNId/pGqOF8tSWTANOsNC4X1himpy6ZZMQRBEEOHPqcgzIosenAchx/Nr8XP3/gWr27Yj1mjiuFw+1FZaMKskSWq3Aa3ylRGFtgQ6RzESDaQpM/pxS4xcXj68CKwrfi+bSDh5ySS50CPE14/D7NBh+ois6LfiTXHjNHrCrhUReYkhZnKhX+2/5dZjWjrd1MpI5FfpLOUcagEW7B6aLNBWY+ZVr1h6Vr1JAiCIJKnT7x4ZReuR44rx/BiMxxeP25+c0vCqbreSHPMYvSYAYHABrM++FJPq9TELQcFt2xEiQVlBSaplHFXx0DCYVdE8gQSGa3QccqEd6w5ZoxeB3OD9QkLenZ96UqwlLHCJlwPUSojkVdYEmzOVMtQCrYIhH8o+8po1RtGs2IIgiCGDv0hwuzD7R040BveX6Z28ZGlMhoUpjIyGiZWYvaoYunnq48YozqwIRos+GP6sCIAguArsRjg44GdHeSaZQopkVFhfxkgc8xiOFHMMSu2GBPeNtYqoz4uX9iusgLhtckxI/KKdDlmQynYgh0UlIZ/aNkbxlY9baZgt45mxRAEQWQPLq9fSk8sNBs0XXxkjoHJEN5j5okwxyzod2WOmkmv02whTwr+GCEIP47jAn1mrdRnlimkRMZyZYmMgELHzOkBAJQk2F8GBBa3VfeYiftwmZWEGZGHpCv8YygFWzilHjNlpYxa94Y1TKzEUePLpZ+HFZs1W/UkCIIgkoeVMeo4IeVOy8VH5ooZdYHLNhaEEMsxA4JnQCUytiUSPM8Hgj9ExwwAJonC7Pt2cswyhdpERiCwIB/TMXMyxyxxYZZo+AdbmCgrEEsZXVTKSOQRiQ4AVMtQCrZwqYzLT0VvWLOYsgQIZaZUvkgQBJE9SMEfZgN0HKfp4mMglVFeyij2mMURZvJ+r+ZubYRZS48TXQ4PDLqASwYA9dVCnxklM2aOZEoZYwmmHmfypYzWBOfkssWFciplJPIRizGxGmC1DKVgCyZSlQozrXvDeJ7H3q7A0M4ehyfuyZggCIJIH32yqHxA28XHQCpjpLj89Asz5pbVVxcGnReZY9bU3g8/T+eodDPg9sI+IAj9MWpKGcXrPrePl2bmhdLrEEoZk3HMLAku/LN9uJw5ZiTMiHwi0S+OWpIRL+mce+b1+cFK9JWGfwCB3rBQ8ZlIb1iXw4N+lw8cAA4AD0GcEQRBENlBaCKjlouPEQdMs1LGeD1mMmHW3u/WpH98s5jIeMjwoqDbR5cVwGzQweHxa1Y2SSiH9ZeVFxilBQIlFMh62KMtymtRypjowj/bh0tFx4wGTBN5hdxqTvWKFxMvzEZnxBIvjU12LH5qLa55eVPC0cNqkFvuSuPyGQ0TK7H6x/NxwaEjAAAzRhQn1BvGTnDDi80oEZtfuwZJmBEEQWQL/eKFa6F44apV5YTPz0uLg/Ies0QcM0CbPrNvDwiJjNNChJlBx2FCpVDOSH1m6cXn5/GReB1UXmBUtWBt1Ouk/SnaLDMtUhkTDZcLOGbCa7t9fNCCQy5BwowIwyoTSemYRdIwsRKnTKkKum3l+TOiirJ0zz1jwoxD8HBPpeh1HBaMEYI7HB5fQr1he1jKUlmBFBfbOZj5UBSCIAhCINQxA7SpnJCnLhoN6nvMWBlkqbioty/Jcka3149tYg/Z9GHFYfdTn1n6YQvWz6xtBgBstw+qXrBmrpkjSpkgS2XUIvzDpXLh3yUbMM2IFVQylCFhRoQhrxdPdTkjI3QK/NYIUbuZmnsmj8rnFA5rDGVYsRkAcKDXGeeRkWHlCbVlVmnFKJ2OWTpLRwmCIIYiAWEWXFnBKifqKoWen6sPH62qckIuvCKmMkYZMM1gi4sTxNffm6Rj1tTeD4+PR4nFgFGllrD7pWRGEmZpQasFayaaojpmoiOcVFy+rOrIpbCc0evnpWsOi1EvuW79OVrOmPi7S+QsOo6D2aCDy+uHw+NHWRpek618sNfdfKAXJ0wKdtHURA/PqS3VbNvYoG2lwR+RGF4snLz6XT70Ob0oUnlgk+aSlFklQdaZph6zxiY7VjRuD3rvqwtNuLlhAsX1EwRBiPSHhH/I0es4jCyxYod9EJWFZlWVE3LHLDiVkZUyRr/AlV/U1lXa8FVzT9IBINL8suHFERcr66vEWWYkzFKO0gXrhXUVcfe5eMmMvRqkMsr79JWWM8r3f4tBB5vJAIfHnbMBIOSYERGxiCLE6U3Pjs++YLNHCU3QLPFJTqbmnrFyTotRXX+ZnAKTXlplSsQ1Y4mMo4Mcs9SXMmaidJQgCGIoEqmUUQ4rAVMb3MQGRBt0HHRcJGEW3TGT9+Gw3i/56JVEYMEfof1ljIlVNug4oHPQIyUEEqlBy1l5bMh0tBLBHg1SGdnCP6BcmMlbaox6nVRySaWMRF5hTVNkPoN9weaPEfy5bW39YUlTmZp7pnaGWTRGlAiu2YFel6rf8/M89okn0tFlVlmPWWods0yVjhIEQQxF+pzCeSyeMGPOg1I8ERIZgUCPmZ9H1H6dIGFWJQqzJEsZWfDH9CjCzGLUY7Q4Q4tcs9Si5YJ1QYxgDj/PSwsPyZQyAupnmbFrMIOOg17HwSYKs4EcLWUkYUZERPripKnHjAmzydWFKDIb4PL6sd0enOiUqblnTq+6GWbRYOWMah2ztj4XXF4/DDoOw4staesx03IljiAIItdhpYzRStVLxBIwtcKM9ZAZ9cHnIHlZY7Q+M3b+Mug4SSzZB9wJuw3dgx7JcZs2LLIwAwLljNRnllq0XLC2xihlHHD5wNZgi5IoZQQCFVlKHTN3yOK4TVz4GHCRY0bkEYFZZulxzNjKh82slw7234SUM2o9tFkprEHVojIqP5REA0BYIuOoUgv0Og5l4oDFVJcyZqp0lCAIYigSOmA6lBKrWMroVFvKyByzEGEmO9d5ovSZsTJIs0GHYotRcjsS6TPz+Xm8+c0BAEKfsc0U3TmhAJD0oOWCtVQiGOG6r9cl7LNmgy7pRerAwr9CxyxkuHohOWZEPmKJ0wSqNSwFqMCol+rWWbmEnIaJlWiYWBF2eyJDm5UilTKqGC4diRHFiZUy7pVF5QOBOR6pLmXMVOkoQRDEUCR+j1lijplHtCqMIYuOBplQi+aYuUIqPphrpjYyn8WxP/7f3QCEPuNYcewsMp9mmaUWLResJccsgpuqRSIjw6JyllmoY1YgCTNyzIg8Ip3hHzzPS2UVNpNeqlvfHCEABAg0Ls8cIcxPGVdekNDQZqWw98CS5CrRMCbMetQ5ZvJERgAyxyy1wixTpaMEQRBDkT5n7FJGKfxDpWPmjdJjJv8xWgBI6EVtrXgeUROZn0gIVL3omO3tcuSss5EtNEysxCVzR4XdrnbBOuCYRRBmjuQTGRlqHTO2D5tYKaPo1JIwI/KKdIZ/CIMGhf8vMBmkgZV7uhzSQEPG/h4nmtoHoOeAqw4fDUBYpdS6fDF0+4DkhdmIksRKGeWJjEDAMRv0+FLaA5ip0lGCIIihBi8LR4jmmJUkGP4RrZSR47i4yYyhZWCjSoXziNIAkERDoMoLTKgSF/a2k2uWcphIWTShAvefOhkrz5+hesE6lmPWo8FwaYZaxyw0gM1GjhmRj1ilHrPU7/jsy8WJr1taYJSGVm45GOyafbKjAwAwY2QJJlcLzpp9wB2UPKU1WswxAwLhHz1Or6oVxFDHzGbSwyQulXaleJZZw8RKPLx4qnQgZKSydJQgCGKo4fL6JXEUVZhZEyxljBL+AcSfZRZ6UTuaCTOFpYzJhEDViymQb246gHXN3ZTgmyJ4nsdnuzsBAIsPGYaTplRjTm2p6kXTghgDpgMzzJIXZrFCRiIRurggCTNXbjqxJMyIiFhUWs3JwMoYC0x6aVglCwAJLWf8ZKcgzI6pq0CJ1SC5WK196vq21KDFHDNAaAhnJ2ylfWYen18qfRwjCjOOCwSApLrPDBDE2WnTaqSfzzpkWEpLRwmCIIYazC3Tc4GFzVDYRa3L61e16BktLh8IJDNG6zGLVsqodJZZoiFQjU12rG8R+sTf2tKGa17eFLMnTWt8fh7rmruxZmtbzovCPV0OHOh1wajnMKe2NOHnYXPMIgmmQI9Z8qWMFpUVWaGljAU5XsqYvPQlchKWQJiO8A+5MGNMH16MNdva8a3MMet3ebGuWViVO3p8OThOiI/f1TmI/b1O6YSjNU6N5pgBwPBiM/ravTjY65SGfcaipccJHy+sZFXYAv1e5QVGtPa50jJkGghe4S0w6al8kSAIQoY8kZHjIh8fC4zCsdPn59Hj9Cpe7IvtmOkA+KKXMoYKM9Ex6xhwY8DtjZmsCCQWAsV60kJhPWmprrZobLJjReP2IKevutCEmxsm5OSC4ue7uwAIfeHWJBaQJccsRiljtP5JNVjFfdGlMMOAlfKyfbjQTAOmiTxEistPYYkgY8AjnNAKjHJhJkbm7+8FLw7O/Hx3F7x+HmPKrBhTLiQUDhf7tg6q7NtSQ2iqVTKwcsb9PcocM1bGWFtmDTrZp2vINKNHVjKZrtckCIIYKsQL/gCEaodAn5ny4yiLwg9NZQRkpYxRUxmD3YYiiwGlYknlvq745021IVCJ9qRpRSJBJUMdJswOH1uW1PPEcsz6NCxlVOuYSYsLoaWMORoqQ8KMiIjaGuBkiOSY1VcVwqjn0OP0okUs5fuP2F92dF0gLl8SOioj6NXglMI/kitlBIDhJcL2KhWSof1ljHQlMzK65cJsgOaWEQRByOkXh91G6y9jFCcQAOLxRnfMWHlj/B6zwPmrVkWfmdoQqGR60pIl06IwE7i8fqxr7gYALEhSmBWIC/KRnCgt4/KtCYZ/hKYy9pNjRuQT6Qz/kEflM0wGnTSgcvOBPnj9PD7dJTS3HhNBmKXWMdO2lBFQnswYmsjIKLcyxyw9IqlHdhFBjhlBEEQw8YZLM1iPTo8aYeaP0WMWJ5XRLQUnBH53dJlw3lQaAMJCoEwhrx8pBCrRnjQtyKQozBQbWnrg9PpRaTMpao+IRawF+V4plVG7uHy1c8wkYWbO7fCPhKRvX18fVq9ejV27duHaa6/Fxo0bUVdXh9GjR2u9fUSGYO5QWkoZJccseHecNqwImw/0YfOBXlQXmdDr9KLEYsAh4vwyQCZ0VM4GUwMTp5YkB0wDASGpNPwjumMmHBzT5ZgFlzKSY0YQBCEnXlQ+Q3LMVCTqxu8xixGXH2FhkUXmq5ll1jCxEo8XmbG324kfza/F/DFlmDWyJKzfOJGeNK3IpCjMFKyMccHYsqi9jUoJzDELv+7rSUEpo9JwOZbKyEoZWdtLroZ/qL7S/P7773HiiSfitddew4svvoiBgQH861//wplnnokvvvgiFdtIZAC1cyaSIVIpIyAEgADAtwf78J/tglt25PhyaYUQUC90EkFLx2yEtL3KhCSbNTMm1DFLYymjx+cPOgB2Ozw5VQpCEASRLFKPWTxhZk3AMYvgejHipTJGKmVkC31KZ5kBQiQ7c6NOnzYsahy72p40LcmkKMwUWvWXAbHnmGmaymhQV5EVmixqE79jg26flEGQS6i+0rz//vtx4YUX4vXXX4fRKHxADz30EH74wx9i2bJlmm8gkRkyEZcfOiuLBYBsbe3DO1taAQBHjS8PegxzzNr6XfD6UrOtzggntkQZJm5v56An7kFp0O2TToShiZOB8I/Ur/yxCwh2CvbzgYQmgiAIQk0pYwLhH6LoMsScYxYn/EP2u4HIfOXCrMfplc6FsYSX2p40LcmkKEyGRKP92/td2G4fAAdg3pjkhVmBLPzDLxM8PM9L+6smqYxMAKpMZWSljIXidvJQHiAylFAtzL755hucddZZYbdfcMEF2L49dtMlMXRQ25yZDFIpY0jM6/dt/eAA+PyBQcqPfLQzKFWp3GaCSc/BzyNubXmiSHPMNHDMii0GSYAejOPysZNmqdUYVtddzkoZUzxgGggEfxRbDNJFRecACTOCIAiGVMpoib2Al1CPGZtjFiOV0RNlYVJyG2Sl+Cz8o3PQg36FfTpsVmiZ1Rg35p/1pEUSScUWA47QwN2JRCZFYaI0Ntmx+Km1uOblTbjznW2q5r19JrplU4YVSUmbycCuwXgErnsg/r9bXBzQdsB0YqmMZoMOzDzOxWRG1Vea5eXl2LVrV9jtX3/9NSoqKiL8BjEUsUqOWRpKGVlcvswxa2yy47Z/bkXoulF7SOStjuMwTGV5oFq0jMtns9cAYH+c7Y3WXwYgaMB0qq181l9WajWiXJyl1kF9ZgRBEBL9anvMVAgzdlFsinAOYi5aVMcspD8HEFy9MhaZr9A1YwuJrOojHg0TK7H6x/Ox8vwZuP/UyXj0nOmoKRR6xV/ZsF/Rc8hR6ioxURgqvSIFlWSaZKP9tSxjBIRrHPa+yZMZ2b6q58IrmxLBojJcLjSVkeO4wJBpV+71mamWvj/+8Y9x55134pprrgHP8/j888/xxhtv4C9/+QtuuummVGwjkQHSGf4R2mOmNPJ2YV0F9DoOw4rM2NvlSJkwY+WcWggzQDixbbcPxE2SjJbICEA6qfr8PPpcXk2SkqLBhFmJ1QiTnsOuDgoAIQiCkKNkjhkQEGY9KqodWBQ+C/qQo7SUMfT8VVtmRZfDg71dDkyuKYq7DcwxqylSJswAwcGaU1sq/fyTI8fi3jXf49m1ezG2vACDbh8qC00RQ0TkqB0YPX9MadCi7iNnTcPh48qzyilTe50T+rvrmrvx353CCKH5o0s12SZB8Ogx4PYFVUv1SsEfxqQDRgD1c8xCUxkBQSD2ubw56ZipFmYXXHABqqur8fTTT8NisWDZsmUYN24c7r//fpx66qmp2EYiA6Qz/GMgpMdMTeTtnNpSaTZYqgJApFLGOOUbShmhcPZaLMfMZNCh0KxHv8uHzkFPSoVZt3hQLrUapXLOdKVBEgRBDAWUpjKyUkZVc8ykVMZYcfmxSxlD3bbaUgs27e/Fvm5lC5qtfcLj1AizUE6dWoOVn+5GW78bN735rXR7LJHFXKVQmKsUyQUL/ZvqqwuzSpQB6q9zGJFE6p3vbIv6/qnFahSEmdwx63EG2hm0QO04JtZjJl9csJn1QF9uJjMm9C4fc8wxmDFjBiorhZ1g/fr1mDZtmqYbRmQWefgHz/OarJJEYzAkLl9t5G2qI/OdGpYyAoFSkHiOWXMMYQYIyYz9Lge6Bj0YWx7xIZogOWYWg5SG1EE9ZgRBEBKKSxmt6sM/ArPIYjhmcVMZwx0zANirsJQxEccslI93dEQUI3KRdVx9QFwk6iq1hPxN6VhgVksi0f6JiFS1FJj0wACiOmZaoHaOWWiPGRAYMp2Lwkz1lebWrVtx3HHH4ZlnnpFu+8UvfoGTTz4ZTU1Nmm4ckTnYikZoE2gqCC1lVBt5K0Xm96XYMdNImI0QHb79PYk7ZkCgnLErxWWF3bJSxvI0pkESBEEMFfrEXpdUDJhmicMRHbMEesyAQACI0sj8QI+ZRdHjQ1EqsuS9Y4kOjA51zLJRmKm9zknk/UsEdp0zGCTM2DWARo6Z2Crj9vGKtje0xwwIXC/mYimj6ivNe++9FyeccAJ+/vOfS7e9//77aGhowL333qvpxhGZwyKLhk91ZD47ANjEVRS1kbeSMEuBY+bz81IZiUWDuHxAPnst+vZ2OzzSiZudQEMJROan1r3qkZUykjAjCIIIhud51QOmXV6/4lIuJXH5nmjCLEqPNHPMlIZ/JOuYKRVZ6/cFRFaiA6P39YQ6ZtkXqa72OidRkaoWKTI/QvhHvH1bKRZZQqgS0RzJMWaR+bkY/pGQY3bZZZdJM8wAQKfT4dJLL8XmzZs13Tgic+h1nDTM0qlw1kSiDIQ4Zmojb1kpY2ufS/PBx3K3UB43nAxse+0Dbqn+X47Pz+Nf29oACK6YMcLJGEjfkGl5KWM6B1sTBEEMBZxev3TuiRf+YTPppahvpX1m7hgDpo3SgOkoPWa+aD1mgcj8Vd8ciJl06PPzaO8XHbMEhZlikTUQeFyiA6OHgmOm9jonUZGqFlZmOBixlFEbYRac/hj/OxAoxw3s/6yUcTALP9tkUX2lOXz4cHz22Wdht3/99ddSzxmRG6idNZEo7Ispj8uPNgclUuRtVaEZeh0Hr58POqhrgUsmSrXqMZOHaBwMKb9kM01+07gDgDCnLNpMk3QNmY4Yl6/x+0wQBDFUYYmMeh0Xt+Sd4zipV0epMGNlisaEUhkj90h/sbcbrHX8/n81xZyfZR9ww8cLf1+FTZlYCkWxyJI9f6IDo1mPGROt2SjMAOE655Qp1WG3l1gMYdc5iYpUtbDrsEF34LqP7aclGvWYcRwXCJhT0CMmzeKTVS3ZzML/9+egY6Za/l5zzTW44447sH79ekyfPh0AsG3bNqxevRp333235htIZA52IE/lQc3P85LwC52P0TCxEgvrKrChpQf2fnfUWF29jkNNkRn7e5w42OtMqjk5FKm2Wc9Bp1EACptltqtzEAd6nVIPmdrG3nQNmZb3mFXIXjPVoTAEQRBDgV5ZGaOSY2KJ1YAuh0dKu4sHGx5tiJjKGLvHzB0h/EPtuYYFVVUXmhJON2QiK1Y5Xk2RGbNHBUQWc5UibSsjdGC0x+eXFjzHlhegqX0ga4UZELi+WjJjGFr73Ph0VycWjC0LC/FQ+v6FilS1RArm6NU4lZG9jsPjh8Pjg80Qe5+K5PraqMcswJlnnoknnngC/f39eOGFF/DKK6+gt7cXTz/9NJYsWZKKbSQyhDRkOoWljPJIVpbKKIfNQTlpSjXm1JZGPSmw8sB4Q5vVwvrrtIrKZwwvCU6STKSxVz5kOpXIe8zYa3p8gZ4KgiCIfKZf6sFRdp5Q65hJA6ZjpTJGEWZOb3B/TiLnGi0SGdWW7jEaJlbi+qPHhj022sDoA70u+HlBiLJyTbn7k218e7APAHDSlGr8aH4tAODTXZ2SGGck+v6ppSCCMGPXAMUahX8AspARBY5ZpFTGghxOZUzoXT766KNx9NFHa70tRJaRjlJG9qWU97QlgpAU1SMlR2lFtKjhZAkNAElkponkmKWwlNHr56UynRKrAWaDDjZxAGXnQGrnpxEEQQwF2CJVvERGhtoh07FTGWPH5YfOgErkXKOFMAMCLQpqhkUDQKUt+HXPmF6DO06ojyhCWsTgj5ElFlhNbOxP+i7efX4+bpUPo7XPhfZ+N/QcMKWmCGaDDhU2EzoG3PiquRuHh8zBOWJsGcwGXVhSdk2RGTctqtNmjpkpkmOmbVw+IBsy7fYBBbG/N5FSGSXHLAcXiBUdRZYuXYo77rgDhYWFWLp0aczHPvTQQ5psGJF5WA2wK4UHtUHZcOlkyuJGMMdM42RGrWeYMQLCTDjhJdLYWyYJs9Q5Zn1OD9jpnh2UK2wmDLgd6HS4MRYFKXttgiCIoYDSREZGiYXNMlN2UakklTHegGl2DkvkXBMQZolF5cthLQrr93Xj/72xGS4vj0fOmo76msKov7O7cxCAsIDr8/NwevxRxQ4L/hhVaoU1QvR7Kok0/DmW6GRu2fhKm7QQfuyECry28QA+bLKHCbPGJjtcXj+GF5vxfyfVo3PAE1f8qYU5ZoPu8FLGEo1LGUNfJxqRwm+YMKPwD41xu9245557cNhhh+GII47Ab3/7W/C8cADasmULzjvvPMycORPnnHNOWOLjW2+9heOPPx4zZ87Eddddh87OTuk+nuexfPlyLFiwAPPmzcOyZcvglx20urq6cMMNN2D27NloaGjAqlWrgp473mvnC5Y0OGYD4peqIMlSQTZbRWvHzCnNMNO4lJENxRYds0Qae8utwv/3OL1RE7mSpccRuOBgFwBSZD4NmSYIgggMl1Z44VqscpZZrFRGaY5ZBMfMz/NSGSQTZomcawIzzLTp39brOMwdXYb6KkGM7YkT2c+E2bzRpQCAHfaBqI9l8f+jSi2B6Pc0XLyzvr1QN5L17UUKVfn2QC8AYPrwIum2RRMEAffx9o6wlMw3vzkIADjzkGE4bHRZ3BaPRIjlmGkVlw8EZuXG+2z8fOSRRTZxW3IxLl/Ruyx3werq6nDaaadh+PDhSb/4/fffj7Vr1+Lpp5/GwMAAfv7zn2PEiBFYvHgxrr76apxxxhn49a9/jRdeeAE/+clP8P7776OgoACbNm3CHXfcgXvuuQeTJ0/GAw88gKVLl+JPf/oTAODZZ5/FW2+9hcceewxerxe33HILKioqcOWVVwIQHECn04mXXnoJGzduxJ133olx48ZhxowZGBwcjPna+YQlDeEfkRIZE2GEKMy07jFLfSmjcMJLpLG32GqAjgP8vBDQUVmoXegJIxD8EThUBHrbKJmRIAhCtWNmZY6ZwlLGBFMZ5eNYWBlYIucarUoZQxlbXoBvDvRhd8dgzMftEYdgH1dfic92d2FPlwMenz/iKJkW0TEbWWKVwlVSPYtVad/ewrqKIBG1+YDgmE0fVizdNqe2BEVmAzoHPdi0v1cKQ9nTOYj1+3qg44DTpw1LwV8hUGAM7v3y+vxSH5dWqYyAvJQx9uJEpH0YCMy9pfAPACtXroTXm/wb0d3djddeew333XcfZsyYgcMPPxxXXHEFNm7ciHfeeQdmsxm33nor6urqcMcdd8Bms+G9994DADz//PM45ZRTcNZZZ2Hy5MlYtmwZPv74YzQ3NwMA/va3v+HGG2/E3LlzsWDBAvziF7/A3//+dwDA3r178eGHH+L+++9HfX09zjvvPCxevBj/+Mc/ACDua+cTgfCP1PeYhSYyqmWYbJYZc13l+Pw8vtrbjVUbWvDV3ujzWkJhtemaC7MSQZi197vg9fkTauzVcRxKrakdMs1ObOx1gIBj1kGzzAiCINDnFM4TSoWZWsfME6vHLEYpY9AcTkNic0KBwFiXRGeYRWNchbDYvaszujDz+nk0i8Js3pgy2Ex6+Py8JNZCYcOlR5VaAmV5KXbMEhn+7PPz2NoqCLOpMsfMoNfhmDqhhPFDmcu2enMrAODwseWaC2Q5oamM8pCvQg1LGZn7Fa+U0RVNmJmZMMs9x0z11ebpp5+OJ554Art374bbnfiK+bp161BYWIh58+ZJt1199dV46KGHsHHjRsyZM0fqOeI4Doceeig2bNgAANi4cSPmzp0r/d7w4cMxYsQIbNy4Ea2trThw4AAOO+ww6f45c+agpaUFbW1t2LhxI4YPH45Ro0YF3b9+/XrpuWO9dj4RKTZVa0KHSydKTZEZOk74EoeKFDYb7JqXN+FnL26IOa8lFHZQsGg0XJpRUWCE2aCDnwdaxcGdxVFO6tHSp4DUD5mWHDPZSlmF9JrkmBEEQagtZQz0mCk7brNyxEgOUUzHTBR0ei7wOEDdnFCnxyedB7QWBGPKBWG2O4Yw29/jhNfPw2LQoabIjLpKGwBgZ4RyRp7nJcdsVKlVKpdLdfhHIn17OzsG4PD4UWDUY1x5cDXWIvH9/7DJDp7n4fX58fYWQZgtPiR1bhkgm2Mmuoxs8aDQrA/ah5LFalSWyhhtH7ZRKmOA//znP9i/fz/eeOONiPdv3bpV0fM0Nzdj5MiRePPNN7Fy5Up4PB4sWbIEP/3pT9He3o4JE4JXdCoqKtDU1AQAaGtrQ3V1ddj9Bw8eRHt7OwAE3c8GX7P7I/1ua6uw08d7bTUM9RFPUviH15+yv4WJvgKTIanXMBl0qCo0obXPjYN9Tqk+vvH72PNali2eiob66ElGgUQrvabvAccJs9f2djlwsNeFkSUW/Ol/uwEA584ajuPrq2AfcKPSZsLsUdEbewOzzNwp+YwCUfmBz6fcFnDpsnUfZ9uVrdtHaAN9zvlDNn/WfUFzzOI/PlDK6FX0eK9sjlPo45lY8/r5sPtinb+Oq6/EsRMq8IdPduL5L1swudqGv158aNi5pn1AEBNWow4l1uTO06GMFx2zPZ2D8PM89Dou7HPe0yWItjHlBdDrONRVFmDT/l5stw/gpJBt6Rhww+n1Q8cBI0rMUr/UoMeX0v1GTd8e2w4W/DF1WGHYfLoFY8tgMehwsM+F79r60drvQseAG+UFRhxTV57Sv0Xqy3ML7xnbt0ssRk1fV56YGet53VH2/ULRMXN5/fD5/RGDcbINpe+famH261//Wu2vRGRwcBB79uzBiy++iIceegjt7e246667YLVa4XA4YDIF7+gmk0ly6JxOZ9T7nU6n9LP8PkAIG4n33PHuV0NFRVH8B2UxFSXCDBDodaisTNHfYhR2wfIiS9KvUVtuQ2ufG/08h8rKIvj8PB75+Iuoj+cAPPLxTpyzYGxU4aM3CSKktNCs+XswptKGvV0O9PqB77rd2NDSC5NBh1tOnYqaYmXpV8PKCoC93XBxqfmM3OKRZFi5TXr+scOEmvdety91+4VGDPXvIKEM+pzzh2z8rF1i+fyIqkJFx8QxTuFis1/hMZS5YdWVhaissAXdVyqeK/QGfdhzdYpmgsUUfh/j/Plj8fyXLWjtd6O6qigsHfm7bqGiY0SpFVVVxZGeImHKygthMujg9vrh0hswuiLgHLHPuf3bNgBA/fBiVFYWYeaYcryx6SCae91hf9Oufo+0rcNrSlBjF8oavTxSeq46obwQw9d8j4M9TkRqkuAADCux4IRZo6RrjR1duwAAh9VVRty2hinVeOebg3htcyua2voBAEvmjMLwmuQGSMdjhLhvunx+YbvsgjAu1/gaqEzcbwfdvpjf6S5xH7aaDEGvXyILPLMUWVFaoEwcDwVUCbNt27ahoqIC48ePTyraHAAMBgP6+/uxYsUKjBw5EgCwf/9+vPDCCxgzZkyYEHK73bBYhA/SbDZHvN9qtQaJMLPZLP0/AFit1qi/G++52f1q6OjoQ4R2pyGD3yOslHT2OWG396XkNdrF1TA970/6NapE9+i7fd1YMKIIX+3tlgY4R4KHMOD5/Q37MFdMewqlo0cssfD5NH8PKizCis+7G1uwp1M4gSyZMQx6twd2u7ISF5u40ravvT8ln9GBDqFcxAReen6DT9gv2npSt18kC8cJJ/ah/h0kYkOfc/6QzZ91h9iDxbu9io6Jfqfw+K4Bt6LHs5L6/l4H7HxwL5nTIVyv9DvCn+tgu/CzUcdFfZ1yvVAm1jXowdbdHagOKVf8fl8XAKDKZkrJ8X50qRXb7QP4ensbCviKsM/522bh9YfbjLDb+zBMdBu37u8J255vd3cAAEYUmWG398Ejvjd9Dk/Kz1U/Xzget0aozgGEa42fLxyPrs5+6bavdglJ4nUl5ojbViK2kry5Yb902xvr9qG+zBqzyidZXIPCNVO/S9iXm8U+OKsh+j6UEGK11KDbF/M73Wpn+zDCXp/NdNt7oAfekuRHOaQatm/HQ5Ew27lzJ376059i7969AIRkxuXLl2Py5MkJb2BVVRXMZrMkygBg3LhxOHDgAObNmwe7Pbj/x263SyWINTU1Ee+vqqpCTU0NAKEkkfWRsfJGdn+034313KHlj0rgeWTdCUQNrDnT6fGn7O+QesyM+qRfgwWAHOhxgufV1X1He22W5mTS6zR9Dxqb7Hj/O2E/+7CpQ7p9QoVN1euwWWadg9H/hmRgcfmlFoP0/Cymv2MgNa+pJUP9O0gogz7n/CEbP+s+1odjUnYeY+EfTq8fTo8/ZrgUz/OSY2bQcWHPL/WY+fiw+1yeQKpwtO0yG/QYU16AnR2D+K6tH1Uh6b4sObim0JyS931seQG22wews2MQR46vkG5nnzNbtBxTZgXPB8ofW3qcGHT7pF54AGhmiYylFvB88KysVO8zi8S+veWN29Eecu3xs4XjsGhipbQNg24fdoqLntOGFYVtW2OTHS983RL2Gh2DHty6ekvUnnMtsBqC3zPWzlBsNmr6HspTGWN9p2Ndg9lMeri8fvS7vFl3TEgGRUWZv/vd71BTU4MXX3wRL7/8MoYNG4bbb789qReeOXMmXC4Xdu3aJd22c+dOjBw5EjNnzsT69euldD2e5/H1119j5syZ0u+uW7dO+r0DBw7gwIEDmDlzJmpqajBixIig+9etW4cRI0aguroas2bNQktLCw4ePBh0/6xZs6TnjvXa+YTSORPJoFVcPhAeQZ/IvJZQAuEf2s0xY/NOIjWt3v9+k6JQEkZZilMZA3H5slRGW+CiIh3zYQiCILIZteEfNpMerK0oXgCIRzafLHJcfqDHLBR2/jLF6b+ZWCWUR37fFh6oIUXlazTDLJSx5ULLRLQAEHb7WDEgo6zAJPVW7wyJ2WczzEaKbRjpuIaR0zCxEn86X7hW1HPAoaOE0s/Q+apbW/vg54Xh06FjbpRG7ytNllYLuxbz+nl4fH70OcNH5miB0vAPaR+OsHghDZnOsQAQRcLsf//7H+666y7MnDkThxxyCB544AFs3boV/f398X85CuPHj8exxx6LpUuXYtu2bfjkk0/w5JNP4sILL8TJJ5+M3t5ePPDAA9i+fTseeOABOBwOnHLKKQCACy+8EKtWrcIrr7yCbdu24dZbb8Wxxx6L2tpa6f7ly5dj7dq1WLt2LVasWIFLL70UAFBbW4ujjjoKt9xyC7Zt24ZXXnkFb731Fi666CIAiPva+UTAMUulMNMmLh8IH9rM5rXEInReSyhazzHT+qBbluJUxkhx+QVGvfR+dAxQMiNBELmJz89jXXM31mxtw7rmyGNWeJ5XPceM4zgUKYzM98hi8GPH5UcQZj5l569J1cKg56b28Gu61t7UzDBjSJH5HeHx992DHvQ4veAAjC6zSrePF5MZQwdNt/SwREZhkTYdydKhMKFdVWjGpfNGAwDe29oWNI9Lml82PLxnL5HofS2RL0IPun3ScOliDaPygcD1ZbzPJjBcPZIwE7apPx+F2cDAAEpLS6Wfa2pqYDKZ0N3dndSLL1++HKNHj8aFF16I2267DRdddBEuueQSFBYW4k9/+hPWrVuHJUuWYOPGjXjyySelAc+zZ8/Gvffei8cffxwXXnghSkpKgoZgX3nllTj11FNx/fXX42c/+xnOPPNMXH755dL9y5Ytg81mw/nnn4+VK1fiwQcfxIwZMwAg7mvnE5Y0zDHTKi4fkDtmTvBiwpPaeS2hOL3C9lk0EmZaH3SlVMYURdd3OwKJTAyO41BRkFqnjiAIIpPIx6zc+c62qGNWBj0+ME2kVJgByiPzgxyzWHH5vnBh5o7hNsiprxKE2fft0R0zrWeYMZgTtqdrMGwGKXPLhhebgwRDnSjmQoXZPhaVLzlm8naM9NS6sfmeZQVGLBhThqpCE3qcXnyyM9CysPlALwBg+vDwfqNEove1xKDjJCHv8PgCpYwaDpcGALNB7I/vcsScLcv24UjXYOy6ccAVe3FjqKHoKMLzfFjYh06nS3pHLyoqwrJlyyLeN2PGjKiR/ACwZMkSLFmyJOJ9er0eS5cuxdKlSyPeX1FRgZUrV0Z97nivnS9Y0lLKGIjLT5ZhojBzePzocXpRajXiiLFlKDDqpJkcjEqbCbccNyFunXbAMdOmlFHrg25ZCgWSn+eli4bSkDKGsgIT9ve60EmOGUEQOQYrNw+FjVmR9/iw/jL5Ba0ShAtdh9THGw02XFrHIeIiIotajzVgOt52TawWHKjmLgcG3T7pgpfneRzsE8ROqhyz0WVWcBBGB3QOeoJaC5gwGx0y5yswyyxQytjv8kql9yNDHDMewnuhZUtCNNg5scJmgl7H4bSpNfjLF8345+ZWHFcvZBlsEaPyp0UQZlq0YCSL1Sj0bg16fNI1gJaOWWOTHQ9/IFQO7bIP4JqXN6G60ISbG8KvyVy++KWMuTbLTNFRhOO4MGGWbCojkf3IV5tSxaAo+mwaHDDNBh0qbMLBipUzvr2lFYMeP0YUm/HH8w6RAkLuPGmiouZZ9rdr5ZhpfdBlA6ZT0e/V7/JKK8HyHjPhdUVB6CDHjCCI3EFtuXm/SzjuCjPMlF8XBWaZKXPMIrllgMJSxjg9ZuUFJlTaTOABbJe5UH0uLxziOTBVwsxi1GOEmKgX2me2Wwz+GBsizCawUsaOwLayMsZSqxGFonPJFpeBwLVGqukSz4ms//v0aUIg3We7O9HW5xL+9buh44ApNeHCTIsWjGQpYIvyslLGEo2EGVv06A5ZkGCLHqGOtMsTo5TRnJtDphVdbfI8j3POOQfHHXec9M/hcOCSSy4Juu24445L9fYSaSQdjbNaljIC8j4zF/w8jxfWCclGF84ZhXljyjBnTDkAYHeEevZIuFgpo1EbYab1Qddq1EmroZ0alzOyA2eBUR92UVAuCmByzAiCyCXUlpv3qQz+YBRLpYzKHLNI/WXC7WL4R4RSRjU90oEAkECfGQutKLUaU+o2MeG1KyTMgw2XZgEhDNaX1t7vRo8ohFrE4A/WXwYAOo6TFlXT1WfG+q7ZOXJMeQFmjSyGnwfe2dKKzaJbVldpC0qUZGjRgpEs8sHcbP9Uu39HIpEee3eMPslA+EceljLK+7eI/EEel58qBjUWZsOKLNh8oA8He534365O7OlywGbS44zpwqrVBLHJeWdHeC19JLQO/2AH3UhlMgw1B12O41BeYMSBXhe6Bj1SGpUWsBNeaBkjAOoxIwgiJ1Fbbq42+INRojT8gzlmERIZAbljFn6eVtpjBgD11YX4bHcXmmR9ZqnuL2OMLS/Ap7s6wxyzPSGJjIxCswHDi8040OvCzo5BzB5VIvWXjQyZZ2U16oWKEnfqrmPksHMiqyoBgDOmDcOGll6s3nwQk8VrkOpCE3x+PuK5vkGM3l/RuD1okaCmyIybFtWlLCqfUSCNGfBL1wFa9JipWfSYU1sKQFkqY645ZoqOJGeffXaqt4PIQphj5vT6IvYZagFb6dAilREARpQIJ5D9PU58slMY4Hj2jOFSek+9WDoQGrMbDafGwgzQ/qBbVmDCgV6X5iIpUlS+/DUB7V06giCITKK23Lw/QWFWrDT8wx/bMYtZyihWfCg5f9Uzx0yWzHiwL7WJjIxxFcKCotwxc3v9UnnimPLw8LW6ShsO9Lqwwz4gCLMe5pgFL05aTXp0OTxpc8xYEBdrMwCA4yZV4uEPmtDc7ZRmrX26qwuLn1obsa8KEK4TFtZVYENLD+z9blQWmjBrZElKnTIGc/IG3F5p4UGLUsZEeuxjO2ZiKaMrD4UZkZ+w0gU/D7h9vJSioxVenx9ucTVQK8esWjyB/Pv7dnQMeKAD8IPZI6T762uE1apdHYOKxKY0x0yj8A+GlgfdVCUz9jijCzOpx4xKGQmCyCFYuXmslX15ubk0XFq1MBMds7jhH/F6zGLNMRNuUybMhHPj9vYBycmRHLMUzTBjMEdM7pg1dzvg54FCs16q0JAzvsKG/+7slJIZpUTG0lDHTJyXla5SxgiO2do93dK1jpxIYTJy9DpOco7SCbse6xhwJ5Q4Go1EeuzdMWbxBRyz3Cpl1M4GIHIOeU15KmaZye1nLVIZG5vs+PP/9gAAOgaEg6PRoMOW1sAK4JgKG/Q6DgNun3TSiQX7u80a9ZjJYQfdk6ZUY05tacIrYakaMh2Iyo9Qysh6zKiUkSCIHEJtj0+v1GOmbvFOeVx+bMdMr48el6/GMasts8Js0MHp9aNZ7Nc62JvaREYGE2Zt/W7pIls+WDrSAmpdpRiZL7psUo9ZSDl/gRRilh5h1hnSY5bpgdGJwBwz1mNoNug06TFMpMc+VtWSzSxsU17OMSPyE4OOk04GqSgDYCtYZoNOKsdIFCnpJ6Re3+X1ByX9mAw6jBEHVSopZ0yVY6YlqRoyHegxi+SYkTAjCCI3YeXmoeelEoshzN1IuJRR7N2N32PGhJn6VMZYw3lD0eu4sACQtjSVMpZYjZLDxIK5WCLjmLLIfdOByPwBeHx+qewy1DGzSEOmU99j5vXz0ufJ/p5MD4xOBOaYsfdUq0TGRIJNYjtmwnYNkjAj8olUBoBIiYxJrsSoXZEaLyY6KRFmqegx0xqprDADpYx9Lq904JTj8/NY19yNNVvbsK45MDwy2u0EQRDZxKGjSiSxM0UMbDhj+rCwkrNESxlZ+Ef8VMbYpYxs8ZQJODlqw6uYMGMBIOnqMQNkyYyiU8Ycs0j9ZezxOk4Qtt8c6IWfDx6Zw2DuTzpKGbvFc7COC3y+mR4YnQgBx0xwTLUcLs0WPUKds5oic8SSTneMOWYFOVrKmJAMXr16Nf7yl79g7969eOONN/C3v/0NVVVVuPrqq7XePiLDWI069LmEABCt0SqRUemK1Pp9PTi5uhjjK23A93bsipPMyPO85qmMqaBM6jFLTSljJMesyGKAXsfB5+fROeiWhnsDgnsZGmxSXWjCSZOrsWZbW9jt0ZqfCYIgMsWXe7sBCCVziw8Zhq0fbA+LcwcST2Vk4R89cWZBeiTXK1r4R/QeM7fK8xfrM/u+vR8+Py8dq+XH91QxrqIAX+/rwW7xPd4TZYYZw2zQobbUij1dDny8vQOAkMgYWvYohZilQZixCpJSq1FyfbJhYLRa2HvG2j20iMqXw3rsz376CxzodeHnx47DD2aPitjOEesarJAJsxwL/1B9tfmPf/wDy5Ytw5IlS+DxCDvh9OnT8fTTT+Oxxx7TfAOJzJLKMgCWyJisMFO8IiXWfit1zFwyJ0irOWapQAr/0HjYM7tgiFTGoBNj+kNfl5WUhgrltn43nvtqX8TbIw2VJAiCyCRr93QBAOaPKZM5Sf1hj0u0lJE5Kk6vP+hcEwpzzAwKShl5PlicOWOUgUVC7ph1DLiFEBAOqLSlXjTIA0B4no8alS+HlTP+Z4cgzEITGQGZY5aGcrfOCImM2TAwWi3sPevReLi0HL2OQ1Wh4MSOLLFG7bFnoSkxUxnzvZTxueeew/3334+LL74YOnGl5swzz8SyZcvwyiuvaL6BRGZhwxlT6ZglG5WveEVKPLkwYcaSGaMhP1mah0CPWTrj8gFZn5kYtKKkpDQa2db8TBBE/sLzPL4Qhdm8MWWSAGjrd4eFdfSJq/WFKi9ebWY92LVoX4wAECkuP8qFq7wPLjT/Q3LMFC4sTqiygYMwuHmrGJpVVWhOS0T7OFkpY1ufCwNuH/RceM+YHBYAEi2REQgs/KajxyzSDLNsGBitltDF8uIUCDMgcO3HFjciwQJsIvaYmQMDpmNdyw01VAuz/fv3o66uLuz22tpadHd3a7FNRBZhTaFjNqBRKaPSFanZo4QVqdFlVhgUJDOy1UaDjks6nCSVsJNA96Abfg0PTmy1LFIpo/x1O8RVQiUlpdHItuZngiDyl+ZuJw70umDUczh0VIk00BgAttuDS+ATLWXUcZz0O7ECQJhjEM31MshKHL0hfWbSDCiFjpnNZECtGLbx352CC5WO/jIAGFMuvO6+Lge2HugFAIwstUbtrQMCjhljZEm4Y2ZJYyojE2ZlIfH+avuqMo3VGCrMtOsxkyMJsxiOV6xyXHbt6OMR03UeaqgWZjNnzsSbb74ZdBvP83jmmWcwY8YMrbaLyBIsKazPlnrMjMmtxqhdkTLodRitIJlxKPSXAYELAh8PfLKjQxPnief5gGMWZbWMxQGzeOBkm5ezqfmZIIj8hZUxzhhRLF2kThBFwPb2YGGWaCkjEKhGiBUA4o0Tl896zIDwPrPAOUz54icrZ/zvzk4AqZ9hxqgpMqPAqIePBxq3tQGIXcYIAHUVwcLM4fGGnf8K0hj+wc6FoQEkgCDOVv94PlaePwP3nzoZK8+fgVVXzcs6UQaEB7KlzDEzxy9FZLP4Ii1MWI16sG9FLkXmq77ivPPOO/Haa6/hnHPOgdvtxj333IMTTjgBH374IW6//fZUbCORQawpXG1iB8pkSxkB9StSSvrMnB7lM2AyRWOTHec886X08y9WbcHip9Ym3bM14PZJJ7iojpk1uMcs2eblbGp+Jggif/lC1l/GmBCSWAgAfp6XCTP157ESBQEgSnvMgPBZZkyYmQzKKz5YAAjryU6XY8ZxnOSa/evbVgDRo/IZoe7lY5/sDjv/pTf8I7zHTI5Ws0tTjTXkmiwVPWaAPLwjlmMcvRxXx3GBZMYYzzHUUP1u19fXY82aNfjnP/+JHTt2wOfz4bjjjsPixYths9niPwExpGCiJJtLGRks6WdDSw/s/W5UFpowa2RJxIPf+AobADt22qMnM0ozzDQYrJgKWNBGKCxQI5kSCRaVH2uwJHPMOsQTOCspTaScMduanwmCyE+8fl5KZJwnF2aiY7ZDds4YdPvADJqiBMq9ihVE5rvjpDLqdRx0HODnAa8/+DydiGNWXx18HVdTlPpERsa4igJsbe2XYtpjOWaNTXYsfWtr2O2h5z9LOh2zKKWMQ41QxyyRfVsJzDFTUsoYrZTXZtJjwO0Lc918fl7RtWA2kpAMNpvNWLJkCXQ6Hdra2rBu3Tq0tbVh3LhxWm8fkWEkxyyL4/LlsBWpeIyvjO+YZXMpo9LZbQvrKhI6GMWKymcE5qcJJyNWUhpJLMYj25qfCYLIT7490IsBtw/FFgMmi/PLAGCi6CRttw/Az/PQcZzUX2bScwmdJ6TI/BjhH944c8wAwTVz+/iwUka1PWZA4O9k9LmE8sB0HJ9DhRhz0EJRc/4rSOOAaXYurIjimA0VQh2zVId/xHK7WPhHtO+XzWwA+t1BqZvRRvYMldE8qo8k69atw9FHH40vvvgCbW1tWLJkCe666y6cccYZePfdd1OxjUQGSWX4B4vL16KUUS3jxdr0WMmMTIxaslCYKZ3dlmigRqyofEaFlAYZ2I6GiZU4rj78wFdTZMYlc0cNmeZngiDyky/2dAMADhsdXGpWW2aFSc/B4fFjf4/g6CQ6XJqhpMeMpTLGCqCKNssskcXFbw/0Qv5KKz8NLw9MFaNDShcjxd8D6s5/qWzHCEUqZbTllmOWqlJGlqoYs8csTviNLWTIdKyRPUNlNI/qK86HHnoIp556KmbOnImXX34ZZrMZn376Ke677z48+uijqdhGIoOkMvxD61JGNdSWWmDQcRj0RE9mlEoZs1CYKZ7dlmCgRryofCBQrsHi8hlsCOvl82qDmpxvXDgeq388H7cfLwS1FJn1Wdv8TBBEfrJWFpMvx6DjMK4iOAAk0URGhhLHzB0j/EDaNrHMMXqPmbJzWGOTHbf9cytClyrTcVHb2GTHbz4IdsEuff7riK+p5vxnNQl/e6rnmPE8HyhljHHeHAqEh3+k5u8plOaQxSjljbMPB4SZT7GTmu2jeVRfcX7//fe47LLLYLVa0djYiBNPPBEmkwnz5s3D/v37U7GNRAYJrDalwjHLnDCTJzPuiFLO6BDFaJ/Lh3XN3Vn1ZVY8uy3BQI14UflAoMes2+GR3pvdnYPY2TEIvY7DpYfVhjU563UcjhWFWJ/Ll1XvKUEQ+U2/y4vNYlT7/DGlYfdLASBin5kU/JGgo8CciJipjP7YqYxA8JBpBs/zqoRZJi9qmcvRETKLM5ogVHP+C1T9pFaY9ToDiZDRwj+GCukqZSw0szlmMXrMfLEXyNmQ6X6XL+WVROlCtTCrrKzE9u3bsX37dmzZsgWLFi0CAPzvf//D8OHDNd9AIrMEwj9Sl8qYbFx+orByxkgBII1Ndvz2wx0AhJ6Ca17elLZyDiUond2WaKBGvKh8QBBtHABe9viPxPfnsNGlUS9WSq1GqZG9fSD6HDmCIIh0sq65Bz5eGFQcaSbWxMrIjlmipYzMiYg1xyxeKiMQEGYeWfiHR+aeKan6yNRFbSKCUM35z2pIT49Zlygqi8wGxQ5ltmLSc2DrAHoude0mTFRF6zFTsrggL2VMdSVRulC991x++eW47rrrcM455+CQQw7BvHnzsHLlStxzzz247rrrUrGNRAZJ5WoTK2XMRI8ZEAgA2RXimLHVu76QVZxsqlFWO7tNLazHLJZjZtBx0v2stv7D7cJQ0kUxyhM5jkO1GMEca8A3QRBEOvD5eaxr7sarG1oAAPNGl0Z8HHPMWEw7O0ckW8rYGyMuP5DKGKuUUewxk4kx+cDdWL/LyNRFbSKCUM35j7k/qXbMOsRz4FBPZASEczR734otRnBcaoJf5GWIkXDL9udo+zCruBp0+1JeSZQuVB9NLr30UsydOxf79+/HUUcdBQBYsGABjj32WEyePFnzDSQySyCVMbdKGYHIs8xSnXaoJWx2W2j6UE2RGTctqkuqd6tHTGWM1WMGCE3OXQ4POgc8OGh2YsvBPnAAFtZVxPy9miIz9nU7s0KYDeVYXYIgkiNSgtsH39sxf2x52DGUReY3dzng9PjQ70yux0xR+EecAdNA5FJGl/h7XJzfZWTqojZRQaj0/MfmmHn9PDw+f8x0y2QIJDIOfWEGCH1m/S5fwmW6SiiUxeXzPB8mAN2y686YqYwQxJ2SkT1DYTRPQu/41KlTMXXqVOnnWbNmabU9RJbBSiBSMmA648IsOJmR4zhVq3dKYvlTDZvd9uqG/Vj+4Q5U2oxYddW8pIVFtzO+YwYAZQUmAIPodLixc7sgcGeNLEaFLfbJu7pQcMza+jJbUjDUY3UJgkicaLMge5zeiLMgK2wmlBcY0TnowY6OwaRLGUsUhH9IpYy6+KWM8jlm8tAEJY5Hpi5qkxGESmaXWmVBFg6PL2XCrEtyzLLbjVGCz89LyZx6Dikbl8BSGX1+oWQxdGaqfHEhWippoayUUcnInqEwmkf1Hjp58mRMmTIl6j8it0iVY8bzvJTEk6lSRnky40HRuRmKNcp6HScliLl92hxApbh8a+wLjgpZMuOHYonnsQoETU0WlDLmQqwuQRCJkWjYxQSpz6xflsqY2DmMlTI6PP4gd0COJ86AaSCKY6YyVTjV5fHRSLZfms0uDQ2aYhj1Oun9SWWfGQsuKR/ijlljkx2Ln1qLVvG8uKvTkbL+eqtRD7ZmEGnItFs27iHa4kJgFprw+w0TK3Hq1Oqwxw2l0Tyql3n+9re/Bf3s8/mwd+9ePPvss/h//+//abVdRJbA4vK1rs92ef1g55BMOWYGvQ5jyq3YYReSBIcXW4ZsjTI7wfc5tRkGGphjFqeUUVwd3G4fwIZ9Qg9ArP4yRqaF2VAqWSUIQnsSrY6YUGXDF3u7sd0+mHQqY6HZAB0H+Hmg1+VFpSH8vOLxKxgwHaHHLF7MeCRSWR4fjXS4HFajHn0uLxwpjMzvHGAzzLLr2kAN0RxktliptbDRcRwKzQb0Ob0YcHlRGfLeuRXM4StgASKya9QmMZznh3NGYmpN0ZBrUVB9NJk3b17YbYcffjjGjh2Lhx56CCeffLImG0ZkB5YUDZiWN3tajZkRZgAwrtwmCDP7AI4cV46ZI4ph0uukhutIZGONMiuJ4SGIs9IkVu14nlcUlw8EVgf//V07eABTagoxvNgS9zVY+EdbhoTZUCtZJQhCWxKtjpA7ZkwGJdpjpuM4FJkN6HF60ev0hF2YAup6zDwyx8zpFc6xaoZLA8rKA7Um1YLQatShzwU4vKkTZl1D3DHL1GJlERNmEUSzknEPAcdMuGbZbh9AU/sADDoOV8wfHbdPPhvRrKuvvLwcO3fu1OrpiCwhMMdM2wOa1F9m1EOXosQfJYytECKRP9nZganDirC7czCmKAOys0bZoNfBZtJjwO1Dj9OTlDBzev3SATFeKSN7HVbqunBC7NAPRqYds6FYskoQhHYkWh0xkc0yax+QFpgS7TEDhACQHqdXClwKhfWYxXLMjNKAaVmPmYI0x2iw8sB0IheELp0OZr9fM0HIrmNSOWSaJRMP1RlmmVqsLLQYgJ7ATEA5LgX7MOtTY8Luva1tAICjxpcPSVEGJCDM3nzzzbDbBgYG8Oqrr1IISA4iD/+IlJqTKJkO/gAE2/6V9cJQ9PX7enHNy5uk+06dWo2v9nanrZxDC0osBlGYRU/4UgIrYzTqORTEcDMbm+x47D+7gm57Zf1+jKuwxX2PasTwjy6HBy6vX/WqbrIM1ZJVgiC0IdGwi3EVNug4ISCELWAlM4BXisyPEgCScCqjgjKwbEOv4zB3dCkqK4tgt/eB12iWNbvOcKawx6xziDtmmVqsLJSlKoaipBxXmoXm9sHP81gjCrOTp4T3mQ0VVB9NHn300aCfOY6D0WjEIYccQj1mOQhbafLxwkFfSeyuEgY8gnjIlDCLVkvNOKauAnedNGlIxagXW4zY3+uKeoKXEysiXorKjzG/JNr71zHoUVSLXmI1wGzQweX1o73fhVGl4cNcU0muxOoSBJEYifY2mQ06jC6zYnenQ6oUSMYxK5aSGeM4ZjFTGQOR8Awl/Tn5giWF81gZQ90xy9RiZZHYx87C4OQwxyxWgI28lHFDSw8O9rlgM+lx1Hhl1TvZiOqjSWNjYyq2g8hSWPgHoG3U7GAGh0srqaV+5KOdOHZC5ZDqL2Jlh9FKYhjxIuK74wyX1qIWneM41BSZsbfLgda+9AuzXInVJQgicVhv031rvkO/K3DRHq86YkJlIXZ3OqSfE+0xA4QFNSD6LDPJMTOoc8yYaEyklDHXYLPMBlMkzBwen9SHX24bmo5ZphYrC8WFiQFXDMcsVimjKZAc/s63glt2XH3lkF6QSGjL29ra8Mgjj+D666/HT3/6U/zmN7/B7t27Nd40Ihsw6nXSxamWASCZLGVcv095LfVQgiUoxpqJoyQinv1+tP4yNbXosWARyZnqM2MXZVZj8GFwKMXqEgSRHA0TK3HyZKHs6ejx5Vh5/gysumpezO8/6zNjJNVjFq+U0a/AMZN6zMgxi0RBinrlGcwtMxt0Mcv/s5lMjUsokoZMR3DMVJQyAsCabUO/jBFIQJh99dVXOOmkk7B27VqMGjUKo0aNwpdffokzzzwT69atS8U2EhmGXbhqeVAbkIV/pBv7QG4GP8QriVHqdLGTTLSofK1q0VMVAOLz8/hqbzdWbWjBV3u7w+YQyWmYWIn54gw4ADh9ak3cizKCIHKLPV2C+7VoYmXEWVihTJAJM4OOw+YDvTGPM7GQFtSihn+o6TELLJ4OxR6zVGFJcfhH50Cgv0yrPvxMwBYrQ+fKpXKxUuoxi+GYxdqH9ToOzFBzev2otBlx6KhSzbcznahe5vn1r3+Niy++GDfffHPQ7cuXL8dvfvMbvPjii5ptHJEdWAx69Lt8qhpnY/UwAZl1zCJFEkd83BALfmAJRL2OyCuvSp2u71qFGSDRShm1qkVPhTCLV6YZCfljCy0GKl8kiDxjT+cgAGBMeYGix7fLjlleP49rXt4U9zgTjfjhHwrmmOkiOGY+EmYMtgDsiDLEO1mGen+ZnHSPSwj0mEWIy4+TysjO9/Ig7UG3Hx/v6BjSi6uqv7FNTU0455xzwm4/99xzsXXrVk02isguJMdM4QwQNjn+mpc34c53tuGalzeFTY4P9JhpNrFBMbNHlYStCIUyFIMf4jlmip2uAeGiI1opI6tFj4WS90/rWWZKyjQjIReGSoJTCILIHQbdPumYMaYsfq9rY5Mdv/4gvPIg3nEmGoUWQTTs7BjEuuZwhz/gmCkYMB0hlVHNgOlcxZLyUkbhvFE2RBMZQ2HjEk6aUq3IQU4GqccsQiljLMcs2vl+0ONL6HuYTaj+xo4cORKbNm0Ku33jxo2orBy6CpWIjppEI6UXxwMZdMwyVUudapjDFU1cKHW62IVBNMdMq/dPS8dMaZlm6EWP2+tHh6y0NVoDPkEQucneLsEtK7Ma4849SvQ4E43GJjt+95Ew/3Vnx2DERczkSxmHZs+TlkjhH6kqZRQds4occMzSjdRjFqmU0Rd5cUHr72G2oVqYXXXVVbj77rvxu9/9Do2NjWhsbMQjjzyCe+65Bz/60Y9SsY1EhrEYmDCLXQag5ssymOG4/EzUUqcayTGL0qug1OliJfLReswAbd4/LYVZooEkbf3Br91Hwowg8gqWrji2PL5bplXwERBYxOwOOV7LFzF5nldXyugPL2WkVMbAdUaq4vKlHrMhmsiYSWI5ZixZ1ByyD2v5PcxGVNeRLVmyBADw/PPP49lnn4XZbMa4cePwwAMP4JRTTtF8A4nMo7SUUc2XJZNx+Yx011KnmhJLbMdMaUT8s5/vBRDdMWMk+/5Vi0Ome5xeOD0+yZlNhEQDSUJFITlmBJFfsP6y0Qr6y7QKPlK6iHnkuHIwqWWMcVyV5pj5wksZY82AyhcCVT+p6jFjpYzkmKmlSBJmygdMZ2oYdrpIqMFnyZIlkkAjch+lBzU1X5ZMpjLKYbXUuUC8HjMg4HTd+dZWKYaZMbmmEIsmVOB3H+0AEL3HTE4y71+xxQCLQQen14+2fjdGK+jviEaigSRMmJVYDOhxetHrImFGEPlEwDGLL8y0Cj5Suoi5rrlb+jl2j1m4Y0Y9ZgEKUjxgOlDKSI6ZWgKpjNF7zEL34UwNw04XioTZm2++qfgJzzrrrAQ3hchWlMblq/myZDKVMVdh/REDbh+8Pr/UEB5Kw8RKDCs2o7nbiSsX1GJEiRUPvf89trX24+0trVLPVXOXA1NqilLmIHIch2pxyHRbnyspYZbocEwmzCZWF+Krvd3oc3rA8/yQjjwmCEI5e8QeMyXBH1oN4VW6iCkPRjIp6DHz+CguPxLsGiZVwqxrkMXlD00hkEmYY9YfI5Ux1PXN1DDsdKFImD366KNhtx08eBBVVVXQ6wMX1hzHkTDLQViPWby4/FkjS1BpM8WcE8a+LJlMZcxViswGcAB4CK5ZRYyxAKz04uQpNRhbXoCOATf++N/duPe976XSmbve/Q6PfbIroQhopdSIwizZPjOlZZqhIvNgryjMKm34am833D4eLq8/qbJKgiCGBn6ex94u5Y5ZoseZUJQuYrIqCPba0TBGcMyiuQ35iJoAs0RgjlmupDKmk0KzuKDs8oYtikr7cMgis1bfw2xF0VVxY2Nj2G2zZ8/G888/j9raWs03isguLApXm/Q6DocML8KH2zuiPoZ9WQY95JhpjV7HochiQK/Ti94Ywszl9UulpCxFqrZUWC0OzTBijeipCkTRMgCkYWIlHj5jCn75z61Bf0dNkRk3LaqLuP3sdcdVFEDPAT5e6DMjYUYQuU9rnwsurx8GHYfhJRZFv8PKwUPnJcY6zoSidMV/UnUhAEF4xXLxpR6zCKWMocEJ+UhBCnvMvD6/1D5AqYzqYY6Zj0fYomi0VEZAm+9htkJ2BREXK5sBEmc4Y/egB2v3dAMI9OwwQr8smYzLz2WKRWHWE2XINBBY3TPqORSa9fD5eTwi9pVF47cf7sDCugrNV6CkWWb92swymzGyJEiUzR5ZjCfOnxl1u5kwG1ZsRpHFiG6HB70ur7RdBJGr+Px8zgQfJcpuMfijtswqlQMqIdngI6Ur/kxnxUtWjJTK6KIB0xLsGsaRgrj8LvFcq+eAYgV92UQwBSa9VOnT7w4OAYu3uJBrAW4M2ouIuCh1zJ77ah8GPT5Mri7Esz+chbvf/Q7/+q4dx9SVY9niaUFflkExGjWTqYy5SInFiH1wxgwA6RRLTcsLTOA4Dhv2dStO09Q6KEVLxwwQ+uLk9Lt9MQ/SB/ucAIBhRRYUWwyCMKMh00SO09hkD1tpri40pbRsORvZIwZ/KOkvCyXZ4CglK/47OwYAIK5olIRZhFRGKmUErKbU9ZixqPzSAhN01JusGo7jYDPr0e/yod/lRaWs0kfJPpxLAW4M+sYScZEcsxgHta5BN17Z0AIA+PERY2DQ63B0XQUAYa6W/OLYz/NSSQE5ZtoSSGaMLi46pEZlobY7k9GzqRJmI4rN0s88H3nI5IDbKw21rCkyS+8dzTIjchk2Pyt0MUY+PytfYI6Zkv6yVNAwsRKrfzwfy8+cKt32j0sPlcSxxyscu+KJq0AqY6CqxU3hHxLyqh9/lPOBz89jXXM31mxtw7rmbsXDiTsG2UIn9ZclCssaCI3Mz9d9OGHHjFLL8geWiBMa/iEvhfnPDjscHj+m1BTi6PHlAIAJlTYAwHb7QFBT56Dsy5fpuPxcgyUzxprHxRwz1oOWyejZGnGWWZtGwmxvtyDM5o8tw6pvDsLp9aNjwI3KwvDSRCYGi8wGFJj0KBJje2mWGZGrKJ2flYqy5Wxkj7iQM0bBcOlUoddxWDihUgrO2t3pwIwRwnHcIwqtWDPMgNgDpqnHLCDMAOE6JnRBOBkHuStkoZNQT6FZj9a+8Mj8WD1muYwiYdbQ0BAmxBwOBy655JKgVEYA+OCDD7TbOiIriJRoFOlABgALxpRJ+8qYcqFuf8Dtw8E+F4YXC83VTJjpufxbCUk1Jcwxi9ljFnwiyWT0LHPMtBgyDQQcs/EVNowss6K504HmbmdEYcYSGYeJ7hpzzHJJmFEfESFH6fysVJQtZyN7MuyYyZlQaYN9wI0d9gHMGFEMAPCIpYnRRp8w2IwzeSkjq3AxG+kcazbopD4mh8cXJMyYgxyK0uCrzsFAawCRGNEcs3wNsFEkzG644YZUbweRxYSGf0Q7kAHAs180Y/KwIjRMrIRRr8O4igI0tQ+gqX0gTJgVmAzkvGpMiUWBYxZyIslk9GyhWY8Cox6DHkG8J3uB1Cw6ZrVlVoytsAnCrMuB2aPCRSVzzJg4LGbvXY4MmaY+IiKUTJYtZxsDbi/axb9zTFnmhVldpQ2f7+nCDvuAdJvkGCgO/5CVMooiLd7v5gM6joPFqIPD4w9aYNbCQe4YoBlmyVIoCuX+kHNvvvZJKhJmZ599dqq3g8hi5OEfag9kdZU2NLUPYHv7AI4Re84GKCo/ZSjqMWMnElmTbaaiZ4Uh0ybs7hSGTCcjzHielxyz2lILxlbY8EmTXRJroRwMEWZFOdRjluwqMJGbZLJsOdtgwR/lBUbpu59J6iqFY992mTBjDpgxxnBpIEoqo1d0zPLsojYaVqM+TJhp4SB3OajHLFls5ig9Znlajpv5oxGR9VgNgfAPtQeyiZU2vIfgkw1LZCRhpj2sxyxmKqPomFWEnEgyFT1bU2TG7s7kh0y397vh9Pqh54CRJRaMqRAudPZFEWZhjpnUYza0Uxmpj4iIRibLlrONPV1CGeOYLChjBIAJVWJPdnugJ5tdmLI5ZdHQR5hjlq/BCdEQKn88QT3uWjjIndJCJwmzRCk0C9eCA+6QHrM83Yfz668lEoI5Zk6vX/WBrE52smGwAyNF5WtPsaIes+g18Sx69qQp1ZhTW5qWC/fqQm1mmTFnbHiJBQa9DmMrbOLtzoiPDy9lzI0eMzWLJ0R+wcqWY5GqsuVsY7fomI3NYPCHnHHlBeAgLKqx5FyPFH4QxzHTB8fle31+sHazfLuojQZbCJaHmGnhIFOPWfJIPWauyD1m+VbKmF9/LZEQ8vAPtQeyiWIy496uQelLJg2XpkRGzVGUyjiYXSt8WkXm75XKGIULrbFiaVC0yPzWXnGGWUj4R98Q7zGjPiIiFg0TK1EvLpjJqSky51WJ614x+CMb+ssA4TxbK85T2yEuZDIHzBjHMQstZWTDpQHqMWNYDOEhZsxBjkU8Bzk0TItQD1uk75c5ZjzP520qY379tURCBOaY+VUfyKoKTSixGODjgd0dwokwEP5Bwkxr4qUyenx+SbRlywqfVsKM9ZeNFi9uRpUJK9CDHp908mTwPC+5SqE9ZkPdMaM+IiIWPQ4PdojH4qPGlwEADqstwaqr5uWNKAPkjll2CDNACAABgB3iYGlWymVQ2GPGHDa2CAqQY8awipU/gzJhlqyD7Od5dJFjljSF5nDHzOvnwSpz863HLKG/dvXq1ViyZAnmzp2L5uZmPPDAA3jyySe13jYiS2BzzLx+HjzP48Zjxsd8vPxAxnGcdLJpsvcDoFLGVMJSGZ1ef9DJmcEEil7HSQ5RpqkuYrPMknNwpERG0TGzGPWSGxbaZ9bt8MDl9YNDoJSyWEGi5VBAi1VgInf5eHsHfH4eE6tsOGVKDQDAyyMvyhcZPj8vHS8yOcMslAksAER0zDx+ZcmKUly++Hgm6Ex6jpKPRQKljMHlciz4qjDkekSJg9zr9Eolo2XkmCUMuxaUh3/Ir1/IMYvDP/7xDyxbtgxLliyBxyNc5E2fPh1PP/00HnvsMc03kMg88uGMDo8fu8USkNDzeLQD2USpz0z4vUAqY3YIg1zCZtZLn0ukEItAPbwRuiw5YWteylgWuNBiIi00mZElMlbYTNJFDQv/6HN6IpY+DhWoj4iIxfvftwMAjq+vCvR3ajTgfahwsM8Jl9cPo56TxrhkA2wRk4VlMQdMbSqjM097c2LBWjIGPeELlg0TK3HatBrp5/EVBYocZHY+LbYYpPMIoR5bhPAPd1A5bn6dq1RfGT/33HO4//77ceyxx2LFihUAgDPPPBOlpaW46667cP3112u+kURm0XGQhjO+s6UVf/1iLwDggdMmo6zAFDfBL3CyCXbMqJRRe3Qch2KLEd0OD3ocXlSFDFbuzMKZK0yY9bm8GHT7Etov/DyPlh6hZ2y0TJiNKrPii73dYQEgrb3BwR9AoMfMxwsrd6y8YijCVoF/9e42OEIuREaWWLBoQkWGtozIJN0OD77c0wUAOK6+UrqYbOt3SUmA+QCLyq8ttWbVAgU7V+7sGISf5xUPmA4VZoE0OzrHMgqM4T1mcuTl7j1Or6L9InA+JbcsGVj4R7+slFGeyJgvxyWGaom/f/9+1NXVhd1eW1uL7u5uLbaJyCIam+w4889fgPkHyz/cAY9fmLlyXH2VogQ/yTGzsx4zYVWEShlTQ6xZZh2D2TdzpdBskPaFRFfu2/pccHn90Os4DJOtgNeWCv/P+s8YzDFjpY6AcAJgK3NDPQAEEMTZ1JpCAMA5M4Zj2eIpsBp0aOlxorHJnuGtIzLBx9vt8PHCMXlMeQGqxJJXj49Hd4wk11yDVX1kU38ZIAhFk56Dy+tHS7czkMoYzzGTUhmDe8zMeeY0xEKax+qOLMzsslTgjgF3WMljKD4/j6+ahUUOg04Hn3/oVllkmkhx+VIiYx46kar/4pkzZ+LNN98Muo3neTzzzDOYMWOGVttFZAFsSG2k6O0d9kF8uL1D0fOMr7CBg3Cw6xx0BxwzSmVMCazPLNIss84BUZjZsscxAwJ9ZomWM7IyxpElFmn1GAiUNYb2mIVG5QNCP2RRjvSZMfZ0CU7hGdNrsGhiFS4+bBQA4PFPduGLPV1Ys7UN65q76aIiT/j3d4IgP2FSFQChN4kt0sQbsZBLsONFNvWXAUIZ8riKQDmjR3EqY0iPmY8cs1CscRwz+0Dw/s8qMCLR2GTH4qfW4unPmwEIn9Xip9bSgleCFJrCB0zna1Q+kIAwu/POO/Haa6/hnHPOgdvtxj333IMTTjgBH330EW6//fZUbCORAZQOqVVyQVdg0mOk6Fxsbx8IxOWTY5YSSqxiumCEFXBWrhE6XDrTSH1mCc4yYz1k8jJGILjHTN43FkmYAbkzZBoA+l1e6WKDDdH94ZxRKDDp0dztxHWvfoM739mGa17eRBcVeUC3w4Mv97Iyxirp9nzsM8tWxwwIBIDssA/AozKVUYrLz+OL2mhIpYwRQrF4nke7uDBRJJ4DogmzaAvWbf1u3LZ6Cx1HE0DqMXN5pfO0tLiQh66v6m9tfX091qxZgwsuuACXXnopxo8fjyuvvBJr1qzBlClTUrGNRAbQekjtBFlTM6UyphYpMj+SY5al0b41hdo4ZkyIMUaWCAsC/S4fehyB9+Og2GM2LFSYsVlmGXbMfH4e65q7k3K02MVnVaFJ6pf7Ym+39P2TQxcVuc9HTUIZY32VLWgBQ0pFTXLAuxq02L+TgfWYjSnLLscMkEXmyxyz+KmMUUoZSZhJSPNYIxz/Btw+KTBlxohiAJGFmZYL1kQA1mPm4wPBNa487pNMqLvdbDbjvPPO03pbiCxC6yG1Eypt+Gh7B7a3D0hzRMgxSw2B2PdIPWbCbdkW7ZtsMmNzhERGQDgZVxea0Nbvxt5uB0rFv7u1zxn0uoxsmGXW2GTHisbtQQsj1YUm3NwwQdWcqV0dwa6A0ouKhXUVWRWIQCSHz89jQ0sPXlq/HwDQUB+8D7HRCulyzLTavxPB5+fx2a5OyUkeVZq9wmy7fQAlVuF4pTSV0ceLg3nJMQujwCT2mEUoZWTXMYVmPeoqbfh0VydaQsrfAXUL1nNqS5Pf6DzBatRBxwF+XnDNrEZ93g6XBhIQZpMnT46akGI0GlFVVYVTTjkFP/vZz2A0ZtfFH6EcrYfUBgJA5KWMQzf1LpthpYxyh4jBeswqsswxqy5K7uJQKmWMcKFVW2ZFW78b+7odmDGiGF4/L12Y1YREZRdnWJixMplQmKMVb66OnNABunRRkX9EEkGvrN+PcRU2aT8KOGap7zHTcv9O5LVD34sf/m1dWgShGlh1SXOXA5NrigAgbhS7QdaD5vXzkttgycOL2mjE6jFrHxDOO5U2E0aWCN+HSI6Z1gvWhADHcbCZDOhzedHv9qES8ll8+bcPq/6Lf/WrX6GiogK/+tWv8Oabb+KNN97Afffdh+rqalx11VW45ZZb8PHHH+N3v/tdCjaXSBdaD6mdUCWkw+3sGMSAmHhHjllqCIR/RO8xK7dl16JJMo6Zzx+Iyg91zABZn5noqtn7XfDzwipzaDql5DZmIJVR6zKZPVIfjfD300VFfhGtF6Zj0BNUtpquHrNMloENpb6gqkITii0G+HigqV0YMRNXmMkcNa+fh8uXvxe10ZBKGSPMMWP9ZZWFZowsEY6XkYSZ1gvWRABpyLR47g2UMuZf9Ybqb+3TTz+NBx98ED/4wQ8wadIkTJ48Geeeey4efPBBvP322zj55JNx7733YtWqVanYXiJNaD2kdmSJBWaDDi6vX+p9oh6z1FAcpcfM6+fR48i+OWYAUGUTVym7Hap7Tg72OeHx8TDqubDSRCB8yDQTf9VF5rAh24Eh0+kXZlr3de4KCTigi4r8QY0IktzqFPeYab1/K2Wo9QVxHIe6CuE7y8qRjXHOs/IkWq+Ppx6zCMSaY9YhVlBU2kxSUNn+HmdQYBSg/YI1EYAFgPSLFVX5HGCj+i+22+0YNmxY2O2VlZVobW0FAFRVVWFgYCD5rSMyChtSG3ogqikyqy450es4qXaeQXH5qYH1JYT2mHU7POAhDAwvtWaPY9bYZMcNr38DAHD5eNUpgcwJG1USeVjsqDImzIQV0GjBH4C8xyz9qYxaOloen1/qkWDCjC4q8gc1IqhaFrwTeiGqJZlybDMlCJOBnSuZVlTaYwYAHr+feswiYDVG7zFjjlmVzYRhRWboOEEYdIRE6Gu9YE0ECI3Mz+eRD6q/tUceeSTuvfdetLS0SLe1tLTggQcewIIFC+Dz+fDaa6+hvr5e0w0lMkPDxEqs/vF8rDx/Bu4/dTJWnj8Dq66al1BNPosBZpBjlhqkVMaQHjPWX1ZqNWbNiYOVGLUnUWK0tyt6GSMQGDK9L8Qxi+SuZbLHTEtHq7nbAR8vfMfYEGG6qMgf1Igg1mPm8PiD5ghpTaYc26FYwjuhKngRM14pI8dx0vdWcMyEz9FMpYwSsXrMWM9xZaEJBr1OWrSLVM7IFqxDWzESWbAmAsgj8wH5gOn8Ox+p/tbef//9MBqNOO6447BgwQLMnz8fxx9/PMxmM+677z58/PHHeOGFF3DbbbelYnuJDKDXcZhTW4qTplRjTm1pwhdurM8MEL5sBjpppAS5YyZfAc+2qHytSoxYiWJoVD6DJa/1Or3ocXgUCbO+DPSYaeloseCPMeUFQWFNWrrgRPaiRgRZjXppdlMqyxkz5dgOxRLeugp1wgwInmXm8grHTCplDGCVxeWHOsP2/kD4BwCMKI3eZwYIx9FZYqz+6dNqklqwJgRYZD4rZXTncTmu6li80tJSPPvss9i1axe+//576PV6TJgwAWPHjgUAHHHEEfjss8+iJjcS+ctEWSmjQafDuuZuzBpZQiv0GsPEhdvHw+n1SyckKfgjS6LytUoJZKWMo8ssEe+3GgXXqF1MZjwoCrNhxRFKGc3RZ8ClGuZoRUqtYyh1tHaLvSnjysPFasPESiysq8BTn+3G0583Y2KlDc9dcih9D3MIJoJifb/kIqi6yIQ+lxdtfS6MDxEFWqHl/q0Gte9FNhBa9h+vlBEQhJkLTJgJF7dUyhiAnQd9PODx8TDJQiXaRcesSizrHVliwVcAWrojCzNASJgGgLMOGYaZWbTvDFWihX/kY4BNQn+x1+tFQUEBDjnkEEydOhVGoxG7du3CO++8A4vFQqKMiMiB3sBBbtDjU91LRCijwKiXVk9Z2AcQaHAut2XHyrBWJUaSYxZjWOyo0kCfWSzHjCVaZmrAdMPESty8qC7sdotRpzIqXxBmY8oLIt6v13E4dFQpAMAPnkRZjqG2bDWQzJjacj7m2IaGWaTSsR2KJbxFFkPQ8UmdY+aX9efk30VtNFiPGQBpliogzH1j5xhW9j2yRFjka+kJn2UGCOdVJvRDRTSRGIXmyD1m+bi4oNox+/e//43/+7//Q3d3d9h9VVVVOPXUU7XYLiLHaGyy494134fdno75NfkGx3EothjQOehBj9OLYULFRdY5ZlqUGHnlUfkxhsXWllqwfl8PmrscOCguEAwrCnfYWPhHv8sLnz8zgoXNoRtfUYBFEyvw9OfN0AE4YmyZ4udgwmxcFGEmvI6wH3RHmHc3FGCDk137emH2+8l9D6FhYiV+fcYU/PKfW4Nuryky46ZFdUHHW9Zn1priZEa2XTVFJuzrEV5rxVlTceS41A41Z4IwdI5ZpPciWxhfYZUWkXZ3DuDIceUx3yPWGkCpjJEx6HUw6jl4fDycHh8gHv8G3D44xfeLlTIGhFlkx4y5ZSOKzZKgIJJDcszcwY5ZPs7iU71HrVixAieccAIuv/xyXHjhhXjyySfR3d2N++67D9dee20qtpEY4ijtJVpYl9qTcz5RYjWic9ATlC7IesyyZbi0FiVGB3qc8Pl5mA066eIyEswxa7IPSGWKsXrMeAjirCQD6ZXbWoXZRXNrS3H1EWPx9rdtONjnwic7O3HCpKq4v8/zvCTMxsYQZqWSMBN6EYdSpUOkYcHVhaasGxacaSZVC329Bh1w10mTUC1+n0KPs6z3qz0NwgwAumWO9JiygrQc9xsmVuLwMWU45g+fAgAeOWsaDo8jdjJFY5MdG1v6pJ//8J/deOnr/TH37+AeMxJmkSgw6tHj8wbNMmPBU4VmvTTrbGScHrPt7YIwk/fNE8lhM7NFUXLMVP/Fzc3NuOqqqzB+/HhMnz4d7e3tWLhwIe6++248++yzqdhGYogzFOOKhzqRkhk7B7JruLQWJUZ7xTLGUaWWsJlkckaLZY5fN3cDEE7QhebwVFCjXieVvGQiAAQAvmsThNmk6kLoOA6nTK0GALyzpVXR77f2ueDw+KHXcRhVGrnvDgjsIz4/n9I0Pq0ZSsOCM80OcWV/fIUNp0ytiRrelK5SRkAY5cAuvgBhYSBdsMHLALAgi0XZbau3BJXbAfH3bybMPL5AKWM+9ufEggkv+XtrHxAWI9gsTSDgmLX3uwV3LYQmOxNmVMaoFYUhjpmbesyUU1xcDIdDuBgaN24ctm3bBgAYP3489u3bp+3WETnBUIwrHuqwXim5Y9aRZamMQPSUwOpCk6LyVhb8EauMEQg4ZpJbVmyO6hCxAJBMRObzPB8QZjXCauypU2oAAJ/t7kLXYPzvyJ5O9p5YYiafWox6qUwknRfHyTDUhgVnmh12wTmN1wfD3OZUD5kGgvtegfTue+wi26jngmZ/ZQvJ7N8sIIQcs+iwRTe52GKOWYXsHFRiMUildQd6w78TzDGbSP1lmsEcswFX8IDpfNyHVf/FCxcuxD333IPt27dj/vz5WLVqFb799lu89NJLqK6uTsU2EkOcoRhXPNRhJXnydEHWY5YtpYwMNivvifMOgVlMyvr9kumKStKUC7Ng5yhSGSOjOIMBIC09TvS7fDDqOYyvEMoQx1YUYEpNIXx+Hv/a1h73OXYpKGNksHLG0IvlbIXcd3Xs7BAuIBULs77UC7OuDAozVsJWYMzOGZrJ7N8Gndhj5ufzOmo8FiyZcVBWIcBCsapkoVgcx0UNAPH5ecmJJsdMOwI9ZsHCjBwzBdxxxx0YM2YMNm/ejOOPPx4zZ87Eueeei7///e80u4yISKbm1+QzJdIFtyAu/DyPbuaYZUkpoxy9jsPc0WUYUyaIiUirlKH4/Dw2H+gFIPx9sVwSm8kQFHoSW5gxUZt+scLcsgmVtqAktlOmCq7ZO1vb4j6Hkv4yhtRnlqEUSrWQ+64O5pgxkR8NdnzucXojlm5pSdegJ+bPqYQNF7ZkqTBLZv+W95g5SZhFJNKQaeaYVYakFUt9ZiGR+S09Tji9fpgNurgLgoRyWCljv9hCICWLGvNvH1b9F3/00Ue49dZbcdZZZ4HjOCxfvhxffvklPv/8czQ0NKRiG4khzlCMKx7qhIqLHocHPlG3lGUg0EIp8ZquGY1Ndix+ai22iEEZf1/XEnf0Qq3MNfP7owu5TA6ZZsEfLLSBcdLkKug5YMvBPkl4RWOPCmHGEiCHimNG7rtyvD6/tK/Ec8yKzAaprLU9xaI21CELddBSCbsgt2bpxV4y+7eBlTL6Ao5ZPgYnxKJAvPh3Rgj/CH1PmWO2vzf4XLS9XThGj69IT2hNvmALjctniwvkmMXnnnvuQVdXV9BthYWFMBqz92KPyDzReolSOb8mn2GOGeuT6hBXpUsshph9R5kmXkwxkFj4Q2OTHd+1DUg///Pb1qhCLpM9ZttEx2xyTbAwKy8wYcHYcgDAM5/vxZqtbVjX3B1RXO4Se8zGxnFJgOBkxqEAue/Kae52wuvnUWDURxymLofjuLT1mYXua+lcFAgIs+x0zJLZv5lj5vP7A/05WXyszwQWQ3j4RwcL/ygM/o5I56IQx+x71l9GZYyaIg//4HkeLnElOR8XF1T/xfPnz8dbb70Ft5tKRQh1sF6ilefPwP2nTsbK82dg1VXzSJSlgEAqo3DR05llw6WjIa1SRhFmiTTHMyHHynsY0YQcm2WWbmHG8zy+Ex2zydXhMcxjxGTJd7e24c53tkUc0N7n9Eo9E2NiDNxmDLUeM3LflSMlMlYWxEwsZUizzFLcZ8ZKF1mZXXodM+EYkK3CLJn9O5DKyMsGTGfn35kpmFMaVMo4EK2UMfIiIUXlpwbmmPl5wOn1w+UVPiPqMVNAR0cH/vjHP2LWrFk46qijcNxxxwX9I4hY6HUc5tSW4qQp1VGjm4nkYamMrJQxEPyR3c524GToiHi/0ub49fuE5vhEhFxJhsI/2vrd6HJ4oOfCS88am+z4x9ctEX9HLi5Z6VpVoUnR4FP2tw6lIdMNEyvxwzkjw24vMOrJfZcRiMqP75wC8llmqV10ZUKMldpmoscsW4UZkHh1iTRgWpbKmI9uQyxYKSPbD3iel/b3qrBSRlZW7wDPB84PLCqfEhm1xWLQQazGRb/Lm9cBNqoHTJ9//vk4//zzU7EtBEFoRHGI69OZhVH5kRhRHCgfiTT0WHFzvLgKun6f8pSzObWlAGSOWZp7zFh/2diKgqBwAjUD2tUEfwCBktehUsrIYGmcJ0+pwvByG579dDeGFZtIlMnY0aGsv4wRmGWWWsesRxJmVnzX1p/eUkZ3dveYMRomVmJhXQU2tPTA3u9GZaEp4mBwOYHwD39eR43HwiKFfwjvz4DbJ71XoY7Z8GIzOPGxXQ4PygtM6Hd5pWoOSmTUFo7jYDMb0Ov0YsDly+t9WLUwO/vss6X/7+npQVFRETiOizoTiCCI9COlMjqFeu0Oabh0dguz4cUWcBBKGToHPagI2V7FzfHi7zGBFg+54CuWeszSK1a+b4tcxqgmQlutMCu1Zi6BMlG6Bz34326hz/mK+aMxsbYcf/l0N3Z2OGAfcIddYOUrO8WV/boKhcIsTT1mzDEbJzp5mQj/yNZURjmsukQpTJi5fTy8YgUA9ZgFUxCSysjcskKzPmyfMOp1qCky42CfCy3dTpQXmCQXurrQJJWBE9phM+kFYeb2wk09ZsrheR5PPPEE5s+fj8MPPxwtLS245ZZbcNddd1HfGUFkCazHzOfnMeD2yRyz7D6ZmAw66QIxUgCI0ub42aOE5nilF+lywVdszUyP2TZpsHRR0O1qIrR3s+CPHHbM3v++HT4/j8nVhRhfaUOZzSSFpXy5tyvOb+cHLq8fzd3CvjC+UmkpY3p7zMaJgtHh8ac8op/h8Gb3HLNkYHPM5DO68jFqPBYW1mMmvkd2FvxhixyOE9pntp3ml6UUm0k49/a7fYFk0TxcXFD9Fz/++ONYvXo1fv3rX8NkEi5mzj77bHz66adYtmyZ5htIEIR6LEa9VALQ4/RIwizbhktHIlYAiNrm+Nmj1KecMccs3T1m21r7AIQ7ZmoitAOOmbL5OoFUxqHTY/buFmGW2ylTq6Xb5o0pAwB8sac7E5uUdezuHISfF0qalS5OVBelp8eMLQKMKrFILk+6FgacQ8gxUwuLyx9wB77L+XhRG4tojlm0Y6xUWi/2PDex4I9KCv5IBdKQaZdXCv/Ix1JG1X/xG2+8gXvvvReLFi2SyhePPPJIPPzww3j33Xc130CCIBJD3mfWKZUyZrdjBsgj8yMHgDRMrMStDXVht0dqjk8k5azIEjxqIB10DrqlcsX66uDVWKUu4dSaIrSILsk4hYEP8rh8eYN7trKv24FvDvRCxwEnTqqSbp83phQA8MWeriHxd6SanR2sjLFAcZsBc8w6Btzw+vxxHp0Yfp6XesrKCoxpH9cwOER6zBKBidwBl0/6mcK1ggkdMG2PMlyaITlmYmT+dorKTykssKrH6ZXmrubj4kJCqYzV1dVhtxcXF2NwMPbgU4Ig0oeUzOjwDJnwDwAYEWV+jBw2c6a21BJ39ILalDMmaAc9vpRdoIbynVjGOLrMKpVzMJSIy58fOx77e53w8cKqo1KXJLTkNdt5d6vgls0bXYZK2dyhmSOKYdJzaOt3Y09XZEGfT+ywC+fi8SqS48oKjDDoOPBQ3puplj7ZBVeJxYiygvQKs6GQypgoxhDHLB+dhniEhn+w/Tw0kZERSGYUwqiolDG1MMdMntSaj/ux6vCPBQsW4Omnn8a9994r3dbf34/f/va3mD9/vqYbRxBE4hRLs8y8Ulx+tveYAdHnx8jZIToCM0YU46Qp4QtFoahJOSuSxcz3ubwoS4OY3RZjfhkQEJcrGrdHDAI50OuUwh6qbCb4eUjRw7GwGPWwGHRwev3odngURexnCp7n8d7W8DJGQPg7Zo4swZd7u/HFnm7FPXa5SiAqX/kFpI7jUF1owv5eF1r7XBgmlnFpCQv6sJn0MBl0Uo9jugJAnGyOmSn3hBnrMWMLLPl4QRuPApPYhxdSyhgaMsUIVG84sb/XiQG3DwYdh7EKZkQS6rGZhe8lW0gGKPxDEb/61a+wZcsWHHnkkXC5XLj22muxcOFCtLS04M4771T1XO+//z4mTZoU9O/GG28EAGzZsgXnnXceZs6ciXPOOQebN28O+t233noLxx9/PGbOnInrrrsOnZ2d0n08z2P58uVYsGAB5s2bh2XLlsHvD6x8d3V14YYbbsDs2bPR0NCAVatWBT13vNcmiKEAu+jZ1+OQUrrSITKSha1SRhsyDQDb29VFgQPKZ+jpdZy0cteTpnJG5pixEItIRBrQftvxgpP2+4934cnP9gIAdnc5wgZPxyLbh0z7/DzWNXfjmc/3Ym+XA2Y9h2MnhDuj80aXAqAAEECWyKgw+IPBgndS1WcmL2MEgDImzNI0yyzgmOXexZ5UyujO38G88WBOKes17GDhH4Wxwz/a+lzYclA4Ro+rKJBmxhHawqpF2EKyUc9Bl4eJ76qXR4cNG4ZXX30Vn332GXbu3Amv14tx48bhqKOOgk6nbmfdvn07Fi1ahPvuu0+6zWw2Y3BwEFdffTXOOOMM/PrXv8YLL7yAn/zkJ3j//fdRUFCATZs24Y477sA999yDyZMn44EHHsDSpUvxpz/9CQDw7LPP4q233sJjjz0Gr9eLW265BRUVFbjyyisBAEuXLoXT6cRLL72EjRs34s4778S4ceMwY8b/b+++45uq9/+Bv5K0SboLTVtoCwXLdrRlo6JSvTJUnDiuol63gtyrV0XAC16G/EBB5YoDrw9xCwpWlohY5AuOyuYiAqWMltJNd5OmTc7vj+ScNh1Zze7r+Xj4kGae5GScd97jc5nN+ybyF2LG7LR5PaNwlcIvfkUVf6UsrmlAo8GI4Ha+BMWMmSOlWo6IUgehTm/w2AAQMTAb0EHGTNR6hHZHwZS48LQ9Cy5HhQSjqKYBlR4edmKPrJyytllCmQy/na1o87hGJnfDyt1nsDe/Ek1GQTpQ7Wrq9QacrzYdcNo7Kl8kHqC6a2S+GICJAVk3D/8oIAVmQYGYMTO93sU+uq6YabAlpFUpY6lYythBxqxbSDBCguXQNhqxK7ccAPvL3Cm8Vcasq/644PCj/te//oXffvsNo0ePxr333osHHngAV111lcNBGQDk5uZiwIABiI2Nlf6LjIzEli1boFKp8MILLyAlJQVz5sxBWFgYtm7dCgD49NNPMXHiRNxyyy0YNGgQli5dip07dyI/Px8A8PHHH2PGjBkYPnw4Ro8ejeeeew6fffYZACAvLw87duzAwoULMWDAAEyZMgWTJ0/G559/DgA275vIX4g9ZmJg5g/9ZYCp3FIdJIcAoLC67QGivsmIPHMfUYqdQy4cJQ0A8cAi0zW6Jpwz99MNtBGYtWQwCli2I9fqZZbvyIXBaH0YhrSWmY9lzLJyyjBzw9E2pZsNTUbM3HC0TUZwYFw4ItVBqG0w4M+iGk9uqk85bf7RIiZMiWgHS5fdPTJfLFkUs/nRHi5lFA/IA7HHrPVURn/4Ec7TWg7/EATB5lRGmUwmVXDsPmWqyurnph8DqW3GrKu+hh1+1PX19Zg2bRrGjh2LBQsWYN++fU7feW5uLvr06dPm9EOHDmHYsGHSNCmZTIahQ4fi4MGD0vnDhw+XLt+zZ08kJCTg0KFDKC4uRmFhIUaMGCGdP2zYMBQUFKCkpASHDh1Cz549kZSUZHH+gQMH7LpvIn8hDnYQhyHE+EF/GWB6zyVYmcyYV6GFwSggTKlAfET7JSidFSFNtHT/AeOJUlO2rGekyqFFSx1ZeNoaT0/Gs4fBKGBZ1kmrl2kddLbMJv7ehcsZpcEfTvxoIY7ML6lxTymj+BoTM2XR0vAPz2RrpYxZQPaYWZYydtWDWmvEEtaGJiOqdU1oMK+VZW1YkljBUWP+kY4ZM/dpPfyjq76GHS5lXLZsGfR6PXbv3o0ffvgBTz31FEJCQjBx4kRMmjQJl156qV23IwgCTp8+jd27d+O9996DwWDAhAkTMGPGDJSWlqJfP8spZDExMcjJyQEAlJSUtJkMGRMTg6KiIpSWlgKAxfkajankRTy/vesWFxcDgM37dkQXLI31aeL+6Cr7JSrU9PYWv3y6hyn95rEnRqtxqrwe56t0bbZZLGNM0YRB3kG5Wmf3tRjU1uia2tyGwSjgwLkqlNXpoQlTIj2p/SEi9jAYBfxw3PSZFR+hglEQ7L4teyfnldXprT4PYvaiStfoM68PR4LO8XGR0naPSo7Gjpwy/H62Eo+MSfbAlvoecVR+P02Yw/tT/KGjtK7BLa+FyhY9ZjJZ8zCiSq311yjgms9vsbcoVCn3mde6q4h9T+K4fFWQfz5Gd35Ph7YIyM+Zf/SLUAVZDdR7Rln++JfixPuK2td6X0vj8s2fE0o/fQ13xN7H4tQILqVSiYyMDGRkZECv12P16tV49913sXr1avz555923cb58+eh1WqhVCrxxhtv4Ny5c1i4cCF0Op10euv71OtNX9Q6na7D83U6nfR3y/MAQK/X27xtW+c7IiYmwuHrkPt1lf3SK67O4u/EmDBoNP7x2Pv1iMSu3Auo0BvbbHNhfQEA4JJe0TYfj7P7Oi7aVL5iUCgs7mPrkUL8e+NRFLYYTNIzSo15Nw3BhEt6OnQfrW/rYEE1bvlgj923lZJg32dSSoL15ynB3IekE2Q+8/poOFdt1+V0MtPBqLifx6cl4f9tP4n/FVYjNDIEoUrfnTLpLnnm8t/UPt0d3p/960xZgbK6Rre8FrTmGVyJmnBoNBHoXWXa1uoGg93315nPb635R6qEuEhoHOy/83XREabMjjhxMDxE6TPvZ2e443taEATIZIAgAJXmJG18lLrD52nrkUJsMS9oL3r4y0NOfd5Tx8R9nVhp+jwQ6yBCVcF+/Rp2llPfWgaDAdnZ2di2bRu2b98Og8GAm266CTfccIPdt5GYmIjs7GxERUVBJpNh8ODBMBqNeP755zFy5Mg2gZBer4dabfrgUalU7Z4fEhJiEYSpVCrp3wAQEhLS4XVt3bZ4viPKy2vAtU59h0xm+gDoKvtFprcsTQuVA2Vl/tF7E2NuAs4prG6zzf/LqwQAJIYFd/h4Oruvg81XKrxQJ91H1okyvLDhaJvLFlbp8MSn+7F08hBkDLA+aEPkitu6KCIYceFKq5ml+AgVLoro+HkCAKX5sRZdqPeZ14fKaN/6cWrBdDlxP4cLAuLDlSiu1WPJpj8wpk/3TmU0/dGxQlNQG6dWOLw/VQbT0WpRtQ4lpdUun4hWVGEqs1QKRpSV1UBu7ocqr9Xb3NbOvqcFQYDWXOanrdWhTPDMGoWe0qCz/ByQm59jf+Pu7+nQYAXq9Ab8kWfqGeuuDmr3eXLl5z21r/W+btJavoYVEPzyNdwR8fHa4nBg9uKLL2LHjh0wGo247rrrsHjxYlx++eVQKBQoKSmxfQMtREdHW/ydkpKChoYGxMbGoqzMsrG7rKxMKkGMj49v9/zY2FjEx8cDMJUkin1kYnmjeH5H17V22+0tqm2LIKBLBAD+pqvsl0i1Zb9St1Cl3zzuhMjm9WNab3NuWXMpo63H4+y+Fp+7al0TBMFUcviajZ6nZTtycVVKjM0gwFW3JZeZFp6e2c7Bg+jZcSmQy2RWnwOxbLNK1+gzr4+0xCi7gs60xCgAzfs5K6dcWuLgo9/P4aPfzyEuXIl/ZvSzOZ0yEFTrGqWBBn27hzq8P2NClZDLTK/R8rpGuxcqt5dYyhgdEgxBaFFGq21Ek8G+Ml5n39O6RqP0S3xIkMJnXuuuopBZ9uMoFXK/fozu+p5WmwMzcYCUJrzt96IrP+/JNnFfh7YqKfX317CzHO6s0+v1WLRoEX7++WcsXrwYo0aNwtatW/HII49g3Lhxdt/Orl27MGrUKGi1zc39f/75J6Kjo6VhHIJ5jwiCgP379yM1NRUAkJqaajF0pLCwEIWFhUhNTUV8fDwSEhIszt+3bx8SEhIQFxeHtLQ0FBQUoKioyOL8tLQ06bat3TeRvxAPuEX+MvwDgDT8o/VaZtpGg7TwtDPDDewV0aLHDHDdoA1X35a48HRcq6li8REqu0blA80Hx740/EMhNwWd1jw7LsXioEic4qhrssyEiEsH2Luumz87ZR780SNC5dRi4UEKubTYbqkbRuaLTf3iwJlo8/tMANy+NIU4+AMA1IG4jlmrFeW76uAEW8QBIPnmSbjt/fjgys9osl/rz6yu+hp2+JN7+fLlAEzBTGZmJrZu3Yra2lqkpKRg9uzZdt9Oeno6VCoVXnrpJUybNg35+flYunQpHnnkEUyYMAHLli3DokWLcPfdd+PLL7+EVqvFxIkTAQD33HMPpk6dirS0NFx66aVYtGgRrrnmGvTq1Us6/7XXXkOPHj0AmAaWPPTQQwCAXr164corr8Tzzz+POXPm4H//+x82bdqETz/9FABs3jeRv2idMfOXcfmA5SSsal2j9FjEhXO7hwa7dbHsSJXlVMYyOxfctedyrrwtwBScXZ0Sg4MFVSir1UMTrkRaov3le81TGX1rHTMx6Fy07QSqWxy0x0eo8Oy4FIug094pjlcH+C/cLQfjOCs2XIXSWj1KahowON61/R0VWsvALEghR6Q6CNW6JlRoGx0e7+8IsfdKFSQPyEVrW6/b11XXgLJFHJmfZy6r1bSzuLSrP6PJPuGtMmYMzOxQUFCAzMxMfPvtt8jPz0dkZCRqa2uxfPlyhwOX8PBwfPDBB3jllVdw++23IywsDHfffTceeeQRyGQyvPfee5g3bx7Wrl2LgQMHYtWqVdICz+np6Zg/fz5WrFiBqqoqXHHFFRaLVD/88MMoLy/H9OnToVAocMcdd+DBBx+Uzl+6dCnmzJmDO++8E7GxsXjllVdw2WWXSdtl7b6J/IUySC4tjgkA3cP8J2OmDlYgJkyJ8jo9Cqp0UmAmjgLvzIGnPSKlcfmmgKCjdW5as+dyrrwtUeuFpx0hlTJqG83N8b5z0JrRX4O8C/VYufsMLkuIxFNX9mk36Dxwzv5fuJ19nnydwSjg19OmZQJCg+UwGO2f8NlSXLgSRwEUu3hkvq7RIE2I7dYiAIsOCTYHZnr0hfu+ZwN5DTOgbWCmCsBFtF1B3P+15umV7WXM3PEZTbapguRQyACDuXyxq/64YFdgtm7dOmRmZmLv3r2Ii4tDRkYGrr/+eowYMQKpqano37+/U3fev39/fPjhh+2ed9lll+Gbb77p8Lq33XYbbrvttnbPUygUmDVrFmbNmtXu+TExMXj33Xc7vG1b903kL6LUwdA2mkqSYvwoYwaYsmbldXoUVOqkX+5dkRGwhxiYiWvXONrzZI0rb8sVxOxFk1FAnd7gVAmcO4nP09CkqA6DKruXDgjQX7izcsqwLOuk9Fz9cKIMh85nO9VbJ47ML3FxKaOYLVMqZAhtERxFhwQjr0Lr9oytNCo/AMsYASC41UGsKsh3fmDxJaGtAvPYdgIzX/uM7ipkMhnCVEHSD6LKLpoxs+tRz5kzByUlJViyZAl27tyJefPmYcyYMQgK8q0vcCKyFGGebqhUyPBHUY3Fgry+rnmR6eY+M2nwhxv7y4CWC0ybviDs6Xm64eI4HCyowvd/lmBffmWHz7Uz/VPupA5WQG3+AvSlPjNRcY0pQLC2mLi9QyoC8Rdusbeu9UGks7114nN5qKDK6uvYUS37y1pmZaVS2nr3Bs1ij5m6i2TMuupBrS2t+wvb+0zwtc/orqRlOWNXLWW061G/8sorSEpKwqxZszBmzBjMmjULP/74IxoaXN8cTESukZVThjPmyVN6g4An1h7G5Pez/WYIQmI7A0A8VcoYZS6dbGgySuVXGf01mP2XttUBYjP56ux8PLH2MF7acszmc53RX4OxF3Vvc7ojQztcqXmRad/qMwNMo9sBoEdkx4FZelJUmwEorQXiL9z29tbZG1xl5ZThk73nAJjW1XPlZ0Zlq/4yUTfz3xVu/lGgXs9SRmq7/zv6UccVg5XIcWEtKja6amBmV8pLLBu8cOECvvvuO2zZsgXTp0+HWq2G0WhEdnY2kpOTERzsPz0sRIFM/BW9NfFXdH/4YkmUMmam4LJS2yiVrF2kcW/GLFSpgFwGGAWgRtcIlblBXDz46dMtBI+MSYYmXInimgbM++44Wh/72nquxUzgo6N7I7l7qMNDO1wpOiQYxTUNPp0x6xHR8VqS4i/ctpYOCLRfuB2ZHmert87dnxnia6tbqwEf4sAPT5UyhigDM2BpPZWxq/bn2NJyJHuEKshqBrWzg5XIcWEt9k9XfQ079Ki7d++Oe++9F5999hl27NiBadOmYfDgwViwYAHGjh2LxYsXu2s7ichOrv4V3VsSoy1LGU+Z+8sSIlUIU7q3jFoukyFCJa7v1XzAmH3WNFwhY4AG4wfHIS0xCit3nbZ6W+091yU1DThVXg8ZgLuGJmL84DgM6xXttS/86JDmASC+RNtokJ5/axkzoONfuOPClX7xQ4QzXDU9zhOfGa1H5YvEvys8VMoYEqC/wrfOmKkD9HF2lrpFJtGe0mZxsJK3P6O7ipbf7V21HNfpR92jRw888sgjWL9+PbZu3Yr77rsPu3btcuW2EZETAmUNlsSoEABAYXUDDEZBKmO8yM1ljKLIVmuZGQUB2WcrAQCj+nQD4Pxz/Zs5wBvSI0IqI/QmsXTT1zJmxdWmbFmYUmHXUJKM/hpseHQU3plyqXSguvKOy7welBmMAvblV9rsP3SUq6bHeeIzo/WofFE3aZFpN69j1hTopYytFpjuoge1toQqm58XVy+gTp0XrmrRY9ZFM2Yu+dm5T58+mD59OqZPn+6KmyOiTgiUNVhiw5UIVsjQaBBQUtvQPPjDQ4FZhDoYgA7V5smMOSV1qNQ2IjRYgUt7RgJw/rnOPmMKzEabAzxvi5YOjn0rMCuqMWVLrQ3+aE0hl2F4725IjFLjbIUWpXUN6OPmYTHWtJ6YCJiyeM5MTGzNVdPjPPGZYauU0d09Zlq9OWMWoIFZMBeYtkvL/R8bgMOA/B0zZp3ImBGRbwqUNVjkMhl6RprLGSt1LQIzzxxkt15kWsxyDesVJY2mdua5NmXezIFZsm8FZr62yHSROWNmq4yxPeJrp7Dae0OqXD0xsTVXTY/zxGdGpa+UMgZqjxmnMtqlZU+ZJszxzxVyrzBOZWRgRhRoxF/RrfGXCXXiAJBzldrmiYwxni1lFEfmi4FZyyyXM8/18ZJaVOmaEKZU4JKeEa7ebKdEiT1mOt/KmNkzKr8j8eZgTpzq6Gme6vXM6K/Bc+NS2pzuyPQ4T3xmiBmxbh2VMuqaIAju63uVArMAXcesdSkje8za1/J50TYafL7XuqsJUzEw65qPmiiABdIaLGJgdvB8NWoamqCQAcndPZMxi2jRY6ZtNOCQub9mVIsslzPP9W/mMsbhvaIR5CM19M0ZM98KzIrsmMjYkZ5SYOadjJknez1jzL0yfbqFYOGkQXj3zsvw7SMj7S6V9MRnhjQuv3UpY0jz0hTaRqPTt2+LrjHQe8w4ldGWrJwyvLnzlPT3VwfP+9USMl1BeMtSxi76Gu6aj5oowAXKGiyJ0aYBID+fugAA6NUtxGO/orXMmO0/V4VGg4AeESr07hZicbmOnmsAmDo8qc1z/ZuP9ZcBzeuY+Wxg1plSxhrvBGae7PXMMZf5piZFOT09ztrrePyg2E5/Zkg9ZiGWtx8SLJfe0xVa95Uz1gf6AtPsMbNKLCtuvVajq8qKyTVaZsy6ajmue2dOE5HXBMIaLAnmjJl4UOepwR8AEGmeVFjd0ITfzWWMo/p0g0zW9vlr/VzvPl2OrX+W4khRjcXl6vRNOHy+GoBvBWbRas9MxnNUSWdKGSO8W8royV7Pk6WmwKx/J98frV/HueV1+DA7H7+crkCNrknKIjuqyWCUSoLFpRlEMpmsxTp6TXBXhbVYyhgasKWM7DHriL1lxVenxPjV92Mgajn8g1MZiSjgiGuw+CuxlFHk0cBM1VzKeKKkFoD1YR0tn+v0pCj8cLwMB85V4XhJLQbGhQMA9udXockoIDFKjaTokA5vy9PEHrNKbSMEQWg3+PQ0QRCkoMqZwEzMmBXXNMAoCJB74DEZjIIU1HQPDUakOkgKSNrjql7Pk6Wm12e/2M6/P1q+jg1GATtPluNUeT0+3XcOT17Rx6nbFLMUMjT/4NGSFJjVuy9jKy0wHagZM65j1iFXLsRO7tWyB/TMhXoM79311o5jYEZEPqt1YAaYDhY98UEtZgdOldehsLoBMgAjekfbdd24CBWu7a/BtuOl+HJ/AeZNGAjAN8sYgeY+nyajgDq9wa41w9ytQtsIvUGADEBcuOOBWVy4EnIZ0GgQcKFOD40Tt+GI9sbi2+KKXs/ahiacN/fR9XPxDxcKuQyPX9EHMzccxRd7z2FwXBgamgSHs+/i4I+okOB2r9PNA6W0Yv9a4JYych2zjgTKEjKBLiunDP9ve47092s7cvHxnnyXLC3iT/jOJSKf9XteJVoexq365azHmrXFHjNx3Lqji0HfPTQRAPD9sRJcMI8C/83HxuSL1MEKqSfFVyYzihMZu4cpnTrIDFLIEWsOxtw9Mr+jsfiiqHZKAAfEhrnkYENcRiIuXOmWxcrH9YtBYqQa2iYjnt/wJ17acgxPrD3s0PuweVR++wG/mLF151pm9QE/lZHDPzoSKEvIBDLxM7SiVda8K/YA8p1LRD5J/KBuPczYUx/U4a3WOxqRHO3Q9S9NiMTFPSLQaBCw/lAhzlfpkFehhUIGDLcz8+ZJvraWmbSGmRNljCLxukVuHABiT/+KKkiOlXdcioWTBmHBpIGQy4ATpXXYl1/Z6fs/aQ7M+seGd/q22rPjZDkK2unTc+R92NGofFG3UNMBceuDMlfSST1mAZoxYyljhwJpCZlA5KmlRfwF37lE5HO8/UGdlVOGv3/zh8Vp3x4ucjgYvGtoAgDTWObP950DAPSJCfXJPhdfG5nfmYmMoh4eWMvMnv6Vklo9FHIZxg+Ow4TB8bj1sp4AgHd2n+n02l05peLC667vv3TV+7B5VH77B8fSWmYsZXRay1JGuQxdri/HmkBaQiYQHTjnuaVF/AEDMyLyOZ5cA6o1MVNXXmd5/xXaRoczddcNiEWEKggX6hux5sB5AEBuWb1Prp0jltu58+DYEcXVzk9kFEkj891YyuhM/8rDo3tDFSTHofPV+Oj3fHz/Zwn25Vc69UODNJHRBYM/WnPV+1AsZewoYxbtgVJGbYAP/2g5LV8VJPeJAT6+JFCWkAlEZXXsAWzJ+x3eRESteKtZ29VjlXeduoCahralgWIZmC8dEPhaxqy4xvmJjCJPZMyc6V+JDVdhdHI37Mwtx8rdZ6TT48KVDjW6C4IglTK6YiJja656H4oBV0c9ZtFuLmU0GAU0NIkLTAfm79EymQxBchmajAL7yzoQCEvIBCJNGHsAW+K7l4h8jreatV2ZqfN2Oaajoj1QTuaI5lLGtpM57SVe1509Zs70r2TllGFnbnmbyznaP1lY3YA6vQFBchn6dHP98guueh/aXcropsEzuiaD9O9AzZgBQLA5bcbFpTsmLgfh7ELs5HrpSewBbInvXiLyOd5q1nZlps6b5ZjOkAIzK+tueZI4lbEzwz96RopTGd2XMXO0f8WVAbvYX9Y3JrTNuHRXcNX70NbwD/G1566MmdhfJkNgBy1BctNjC+THSIGHPYCW+O4lIp/jrQ9qV2bq/G3tnJaLTHtbo8EoPS+dKmWMMGXMahsMqG2npNRVMvpr8MK1KW1Ob69/xZUBe26Z+/rLANe9D22NyxcDtpqGJjQZjE5sqXUtF5cO5N4rcTKjKihws4IUmNgD2Iw9ZkTkk8QP6taL9sZHqPDsuBS3fFCLGQJrB872Zur8be0cX+oxK6ltgABAqZChW6jza3OFKhWIUgehSteEouoG9It131ee2NeTognF30b27rB/xZUBu5gxc/XC0i254n3YnDFr/7UeoQ6CDIAAoFLXZHfPib3q9abATB2g/WWiIHMpIxeXJn/EHkATBmZE5LM8/UEtZghmbjja4WXszdS5MsjzhCipx8z7pYxiGWN8hAryTmY4ekSqUaWrRWG1zi0DMkR78ioBANf002D84LgOL+fKgP1kWS0A92XMROL7cF9eBaavPwJBAFbdlYqEKNv9f4IgtOgxaz/IVshliAoJRqW2EZX1jS4PzMSJjKHKwM4kNWfMGJiRfxJ7ALsyvnuJyKd5ulnbVSUV/lY3H632nYxZkQtG5YvEPjN3DgARBAH78k2lhyNsLB7uqr4tXaMBeRVaAO7NmIkUchlG9umOXtGmISPnKrV2Xa+2wSD1y0V30GMGNJczuuP1p2sUJzJ2kcCMUxmJ/BYzZkRErbgqU+eNckxntewxEwTBq704UsasExMZRWJw586R+WcvaFFWp4dSIcMlPSOtXtZVWdnTF+phFEzBToyLM0zWJHcLQV6FFmcuaDEyuZvNy4tljKHBCquZHHeuZSZmzNQB3nslDoBhKSOR/2JgRkTUDleVVPhL3byYzWgyCqhvNCBM6b2vBzFj1pmJjCJPLDK9N78SAHBZQqRdZWQdBewA8K/xA+wK2KX+stgwjwbRyd1DsevUBeRV1Nt1eVtljCJ3rmVWLw3/COyAhaWMRP6PgRkRkZv5Q9282pzRaGgyolLb6NXArGWPWWdJpYxuDMz2mQOz4TbKGFtqHbCv+vUM8ip00DfZN5XwpDkw6++BMsaWks3rpZ29YF8poxhodTQqXyRmzNyxjp6ui/WYMWNG5L/47iUiIgAtJzN6dwBIUY2p7LBHZOcDs3hpkWn3lDIaBQF7zf1lwx0Mvlv2T956WQIAYNvxUruum1PWnDHzpD7dQwEAZ+3OmJkygtb6y4DmwM09pYymYFcd8D1mpkM6NQMzIr/Fdy8REQFosci0lweANJcydr7HTMyYldXq0eiGNbJOldWjUtsIdZAcQ3pEOH071w0wlS8ePFeFEhuDSgRBaM6YeTgwS+5uypgVVTdImShrxCDf3lJGdwz/0HaBUkaDUZAeZ0V9o10LlBOR7wncTykiInJIlNp1i0wbjAL25Vfi+z9LsC+/0u4DxdqGJtSZ151yRSljt5BgqILkENBcIulKYn9ZWlIUgjsxDa9HpBqpCZEQAGw/YT1rVl7fiEptI+QyoK85g+Up0SHBiFQHQQCkqZDWOFrK6M7hH4E6lTErpwyT38/GSXMWVfw7K6fMy1tGRI5iYEZERABct8i0eGD4xNrDeGnLMTyx9rDdB4riWPtIdZBLeoJkMpk0RMQdfWZ7zeuXOVrG2J7rB8UCAH6wUc54stS0flnvbiEeL8+TyWTNfWZ2BGaOljJWumH4hzaAx+Vn5ZRh5oajbYbIlNTqMXPDUQZnRH6GgRkREQFwTSljZw8Ui124hplI7FUrdPHIfINRwP5zYn9Z5xcKzxgQC7kMOFJYg4KqjoMeaSKjhwd/iHqLfWYXbPeZiRkwWxmzbiGeKGUMrMDMYBSwLOuk1css35HLskYiP8LAjIiIADSvZValc274hysOFIvFwR8uDczEASCuzZidKK1FTUMTwpQKDIx3vr9MpAlTYqg587b9ePsBrMEoIPtsBQAgRKnwykF3H4cyZvb1mLVeR8+VArXH7GBBVZsfQForrmnAwYIqD20REXVWYH1KERGR0zpbyuiKA8UiF47KFzWPzHcsY2arT04sY0xPipJGlXfW9QNN5YzbjpW0OU8sEc0+a7rfjUeKvdJLlOxAxqyy3r5Sxpbr6NU22B4q4ghpgekAy5iV2XivOXo5IvI+rmNGREQAOh+YueJAUZrIGNn5iYwicbqjI4tMZ+WUtVkAOi5ciX9m9JMWgN7n5Jh8a8b11+D/bc/BidI6fLo3H4PjI5CWGIWdueWYueFom8uLJaJLJg+xa2FqVxAnM+ZVaCEIgtUFru0tZVQHKxASLIe20bSOXoTadYcnYo9ZaIAFZppwpUsvR0Tex8CMiIgAAFFqscfMuVJGVxwoipMTXVvKqLK4bVvEPrnWxCBo8U2DEalUYE+eqaRwaFLn+8tE+89VIUgug94g4M2dpwEAsWHB0Busl/ct35GLq1NioHBR5s6apKgQyGVAnd6Asjo9YsPb31e6RoMUFHWzUcoImII3bWMDKrSN6GUul3QFXYD2mKUlRiEuXGk1Sx0foUJaouten0TkXixlJCIiAJ3PmIkHitbYOlB0TymjucesWgejjf4le/rk5mz6E9PWHZGCpee+/cMl5YRiQNg6CCuta7TZ9+fJXiJlkBwJUabn9OyFjvvMxNdRkFyGMDsmbLprLbN6vVjKGFiHPAq5DP/M6Gf1Ms+OS/FIsE5ErhFYn1JEROS0zg5g6OyBolEQpMWVxSyXK8SFKyGXAXqDgAs2xrHb0yfXet6GK0aT2xMQ2uLJXqI+Yp9ZRft9ZgajgF9PXwAAhCoVbZ6z9kSpTcHb7txyh9a+syVQpzICQEZ/DZZMHtLmB5H4CJVHy1uJyDVYykhERAAsBzDUNxoQpnT8KyKjvwbPXHMRXv/pVJvzLu/TzeqB4oU6PZqMAuQyQNNBeZwzghRyaMJMJV9F1TpowjrO6nUmuOlMOaE9AaEtnuwl6i1OZmwnY9a6P69a14TJ72db9Oe1d50D56oBAN/8rwjf/K+oTU+fs3RNgdljJsror8HVKTE4WFCFslo9NOFKpCVGMVNG5IeYMSMiIgBAsEKOYPPB3K7ccqczFpHmwQ39NGFYOGkQnrn6IgBAdl4l8qyMWBfLGDVhSpdNORQ1lzNa7zPrTHDTmXLCzma7PN1LlNxBxsyZdezE64gBlD3XcUTzVMbAPeRRyGUY1isa4wfHYVivaAZlRH4qcD+liIjIbuIo9kZzMPavLcedHsV+rLgWADAy2XSg+NfhSbiib3cYjAJW7jrV4Qh6d0xkFNm7yLQ9fXLWOBtgdTbb5eleomRzxuxMi4yZM+vYuXuR5CaDEY3mnr1ALGUkosDCwIyIqItzJsthzZ/mwGxQfLh02vSr+kIGICunHE+sPYyXthzDE2sPS8GfwShgb34lAECpkLl84eQedmbM7OmTs8bZAMuegDBKHeQzvURixqywSocGc6bLmXXs7L3OgXPOZSLFqZAAAzMi8n3sMSMi6sLszVjY2ztlMAo4UWIKzAbHRUin51Vo0V6oJQZ/UeogafLg3vwqmz1JjpIWmbZjZH5Gfw36xoTidLllmZ5c1nbwR0udKScUA8L2xvSLZl8/wGd6iWJCgxGuUqC2wYD8Si36acKcWsfO7uvUOZeJFMsYFXIZghUs7yMi38aMGRFRF+ZMlsOaMxfqoWsyIjRYgd7mhYjtCf5aj4N3VX+RSMyY2SplBIDyOj3OmIOyV24YhIWTBuHdOy/DohsGW71eZ8sJ7Zmw5yu9RDKZDMndTFmzvAum58qZdezsvo6VgS3WNE9klFtdCJuIyBcwY0ZE1IU5k+WwRuwvGxgXBrn5QLgzEwddtXCyuGC1rVJGAPjpZBkEABf3iMBfBsVZnCeXyywmDgKmwOnZcSkuye7504S95O4h+KOoBmfNA12cWfDY3uukO7mIdyCPyieiwMPAjIioC3Mmy2HNn8U1AIBB8c1ljJ2ZOChm64b1inb6NoDmqYw1DU349n+FSIoO6TDg+fGEKUt37YC2gZYnAicxK+brxIzZWXPGzJ5yzNZZRWeu4wixx4yBGRH5AwZmRERdmDNZDmuOl7Qd/NHZiYOuWDj5t7MVkAEQACzclgMA7a6TVVGvx37zEJJxHWTA/CVwcrfk7m0nM2b01+DGIfHYdLTY4rLWsopiCedrWSdR6uJMJDNmRORPGJgREXVh9mQsHh7d2+7BH+0FZvYEf9Z0NrATp062JvaxtZxquPNkOQwCMCguHEnRIZ2630DXci0zQRAgk8lgFAQcLjQtFP3XYYkYEh9hV1ZRzESOfXM3Go0CFkwaiL8MjOt0JlLXoseMiMjX8ZOKiKiL62johLjIc9aJMjQZjB2uPybKq9BC22hESLBcKnMDOjeCvrMLJzu6TtaP5mEjGe2UMZKlXtEhkAGobTDgQn0jAGCveRHxMKUCj1/ex6EhJQq5DN1CgwGYgj5XlIfWS4tLM2NGRL6PGTMiImq3dypaHYwHPj+A385W4C/v/IraBoN0+fbKAMX+sgGx4W0OqsXgr/XgjJZj8tvT2UmHjkyd7KcJw568Sml7yTpVkBw9o9Q4X6XD2Yp6xIQpse5QIQBg4uA4hCodD4Yi1cEoqdWjWtvxa8IR7DEjIn/CwIyIiAC03zs1YVAsvj1SbBGUAe2XAR5rZ2HpljoanLEzt9xtkw4dmTp5vkoHg1FA/9gwqUyPrEvuFmIKzC5o0Ss6BDtPmjKOt6cmOHV7kWrTYUmVrtEl2yeWMoaylJGI/AADMyIiapfBKODXMxVWL9NynP0xc8ZscIuJjK21F/y5c9KhI1MnP9lzTtoesk9y91D8eqYCZy7Uo7xOD4MApCZEol9smFO3JwZm1VayqI7QspSRiPwIAzMiImqXI2WA6UlROF5SB6DjjJk17pp0aM/gkbhwJWp1Tfj1zAUAwLh+DMzs1bubaRmCPWcrUVprWiPuttSeTt9elNrUY+aqwKxez1JGIvIfzO0TEVG7HCkDzLugRX2jAaoguU+VAdozeKReb8BzG45CnGcyY/3/kGUeAkIdy8opw6pf8gAAOWV1qNQ1QYbmoTHOcHkpYxOnMhKR/+AnFRERtcuRMsA/S5oHf3TmwNwdOpo6qTBvZq2+/f45BmcdE5cgqNRaBlACgDmbjzn93EWYA7MaF5cyMmNGRP6ApYxERNQuRxafXvF/pwAAg50oY/SE1n1s3UODMfe74yir6/ixteyfo2b2LkHgzHMX5fIeM5YyEpH/YMaMiIjaZU8ZoDjO3tZERl8g9rGNHxwHuVxmNSgDmvvnyJIjvYeOipR6zFxTyqjVM2NGRP6DgRkREXWoozJAAHg+wzTO3igIOF5iCsysTWT0JY70z5Eldz53zT1mri5l5OEOEfk+ljISEZFVrcsAvzxQgCOFNTh8vhp3piciv0KLOr1p8EefGN8Z/GGNI/1zZMmdz52rpzJKgZkTi10TEXkaf0IiIiKbWpYBvnhdfwDA98dKcaKkVipjHBAb5nODPzoi9s9ZI/bPkSV3PneRIWKPmaumMpp7zIIYmBGR72NgRkREDhkYF47rB8YCAN7efRo/nTRN4OseqoRBnDnv4xzpnyNL7nzuIlSmwExvEKBrNNi4tG317DEjIj/CwIyIiBz2+BV9IAfw8+kKbD9hCsx25pZj8vvZfjNmvqP+ufgIFZZMHoKM/lxouiPueu7ClAppGQNXlDOylJGI/Al7zIiIyGEny+pgbOd0cQ0wfwlsWvfPacKVSEuMYqbMDu547mQyGSLVwajQNqJa14S4CJXTtyUIzVk3Dv8gIn/AwIyIiBziznWsvEHsnyPHueO5i1QHoULbiKpO9pk1GgQYzJW1LGUkIn/An5CIiMgh7lzHiijSRZMZ61v0qKkZmBGRH2BgRkREDuEaYOROUS6azCiWMSoVMr+ZFkpEXRsDMyIicgjXACN3EiczdjZjpm00j8pntoyI/AQDMyIicgjXACN3ilS7KjAzZcxYxkhE/oKBGREROYRrgJE7Rbmox0zLiYxE5Gf4aUVERA7jGmDkLs0Zs871mDUHZsyYEZF/4Lh8IiJyCtcAI3eINA//qGKPGRF1MQzMiIjIaVwDjFzNVePymTEjIn/DUkYiIiLyGZHmqYw1nS1l1LPHjIj8Cz+tiIiIyGeIPWadL2VkxoyI/AsDMyIiIvIZ4lTGOr0BTQaj07ejbWKPGRH5FwZmRERE5DPC1c3t7zUNzmfNdFzHjIj8DAMzIiIi8hlBchnCVaZgqjPljPXsMSMiP8NPKyIiIvIp4gCQzkxmFHvMQpXMmBGRf2BgRkRERD5FHJlf04nATGdex4yljETkLxiYERERkU9pnszo/Mj85qmMPNQhIv/ATysiIiLyKa5YZFoKzIKYMSMi/8DAjIiIiHxKVIjYY9aZjJl5XD57zIjITzAwIyIiIp8iljK6JGPGHjMi8hMMzIiIiMinRLhwKiN7zIjIX/jMp9Vjjz2GF198Ufr76NGjmDJlClJTU3H77bfjyJEjFpfftGkTrrvuOqSmpmLatGm4cOGCdJ4gCHjttdcwevRojBw5EkuXLoXRaJTOr6iowNNPP4309HRkZGTg22+/tbhtW/dNRERE7hPlyh4zZsyIyE/4RGC2efNm7Ny5U/q7vr4ejz32GIYPH47169cjPT0djz/+OOrr6wEAhw8fxpw5czB9+nSsWbMG1dXVmDVrlnT9Dz/8EJs2bcJbb72FFStWYOPGjfjwww+l82fNmoWamhqsWbMGTz75JF566SUcPnzYrvsmIiIi92ouZXSux0wQBGlcPgMzIvIXXg/MKisrsXTpUlx66aXSaVu2bIFKpcILL7yAlJQUzJkzB2FhYdi6dSsA4NNPP8XEiRNxyy23YNCgQVi6dCl27tyJ/Px8AMDHH3+MGTNmYPjw4Rg9ejSee+45fPbZZwCAvLw87NixAwsXLsSAAQMwZcoUTJ48GZ9//rld901ERETuFRkijst3LmPW0GSEYP43AzMi8hdeD8yWLFmCm2++Gf369ZNOO3ToEIYNGwaZTAYAkMlkGDp0KA4ePCidP3z4cOnyPXv2REJCAg4dOoTi4mIUFhZixIgR0vnDhg1DQUEBSkpKcOjQIfTs2RNJSUkW5x84cMCu+yYiIiL36uy4fLGMEQDU7DEjIj8R5M07//XXX7F3715s3LgRL7/8snR6aWmpRaAGADExMcjJyQEAlJSUIC4urs35RUVFKC0tBQCL8zUaDQBI57d33eLiYrvu2xHm2I58hLg/uF8CH/d118D9HLiizRmzGl0jAKHFj6X2XV8MzFRBcijkfIH4C76nu46utq/tfZxeC8waGhowb948zJ07F2q12uI8rVYLpVJpcZpSqYRerwcA6HS6Ds/X6XTS3y3PAwC9Xm/ztm2d74iYmAiHr0Pux/3SdXBfdw3cz4EnPCoUAGAQAHVECCLMGTR793W5OdEWrgqCRsPXh7/he7rr4L625LXA7K233sIll1yCsWPHtjlPpVK1CYT0er0UwHV0fkhIiEUQplKppH8DQEhIiNO33Tp4tEd5eQ0EwfblyDNkMtMHAPdL4OO+7hq4nwObKkiOhiYjThdUIjFa7dC+LiytNt2GQoaysho3bym5Ct/TXUdX29fi47XFa4HZ5s2bUVZWhvT0dADNwdP333+PG2+8EWVlZRaXLysrk0oQ4+Pj2z0/NjYW8fHxAEwliWIfmVjeKJ7f0XWt3Xbr8kd7CAK6xIvN33C/dB3c110D93NgilQHobRWjyptIxKiTD+O2ruv6/WmUkZ1sIKvDT/E93TXwX1tyWsdsZ988gk2btyIzMxMZGZmIiMjAxkZGcjMzERqaioOHDgAwbynBEHA/v37kZqaCgBITU3Fvn37pNsqLCxEYWEhUlNTER8fj4SEBIvz9+3bh4SEBMTFxSEtLQ0FBQUoKiqyOD8tLU26bWv3TURERO4njsx3ZjJjvZ6j8onI/3gtMEtMTERycrL0X1hYGMLCwpCcnIwJEyaguroaixYtwsmTJ7Fo0SJotVpMnDgRAHDPPffg22+/xVdffYVjx47hhRdewDXXXINevXpJ57/22mvIzs5GdnY2li1bhvvvvx8A0KtXL1x55ZV4/vnncezYMXz11VfYtGkT7r33XgCwed9ERETkfp2ZzKgTF5dWMjAjIv/h1amMHQkPD8d7772HefPmYe3atRg4cCBWrVqF0FBTM3B6ejrmz5+PFStWoKqqCldccQUWLFggXf/hhx9GeXk5pk+fDoVCgTvuuAMPPvigdP7SpUsxZ84c3HnnnYiNjcUrr7yCyy67zK77JiIiIveL6sQi0+JUxpAgjsonIv8hEwRWdrpLWVnXaGj0FzIZoNFEcL90AdzXXQP3c2Cbv/U4Nv5RjKeu7IOHRvd2aF9/sb8Ay3fk4vqBsVh042D3byy5BN/TXUdX29fi47WFPyURERGRz+lMKaPWPPyDPWZE5E8YmBEREZHPiQpxQSkje8yIyI8wMCMiIiKfEyn1mDmRMRMDs2Ae5hCR/+AnFhEREfkcsZTRmXH5zYEZM2ZE5D8YmBEREZHPiezUVEbTOmZqBmZE5EcYmBEREZHPEQOzmk5kzEJZykhEfoSfWERERORzxMDM0VJGg1FASU0DAKCwWgeDsQvM4iaigMDAjIiIiHxOlLnHrKHJCJ05A2ZLVk4ZJr+fjROldQCAD37Lx+T3s5GVU+a27SQichUGZkRERORzwpQKKGSmf9c02M6aZeWUYeaGoyip1VucXlKrx8wNRxmcEZHPY2BGREREPkcmkyFCnMyotR6YGYwClmWdtHqZ5TtyWdZIRD6NgRkRERH5JHsnMx4sqGqTKWutuKYBBwuqXLZtRESuxsCMiIiIfJIUmNkoZSyzEZQ5ejkiIm9gYEZEREQ+SQrMbJQyasKVdt2evZcjIvIGBmZERETkkyLNPWbVNkbmpyVGIc5G0BUfoUJaYpTLto2IyNUYmBEREZFPipLWMrPeY6aQy/DPjH5WL/PsuBQo5DKXbRsRkasxMCMiIiKf1Dz8w/a4/Iz+GiyZPATqIMtDm/gIFZZMHoKM/hq3bCMRkasEeXsDiIiIiNoTYWcpoyijvwafaMJwpKgGd6UnYFx/DdISo5gpIyK/wMCMiIiIfFKUnePyWzpXpQMA3HRJDwyMC3fLdhERuQNLGYmIiMgnOVLKaLpcIyq1piCuV3SI27aLiMgdGJgRERGRT7J3KqMov0ILANCEKRGqVLhtu4iI3IGBGREREfmkSDunMoryKk2BWe9uzJYRkf9hYEZEREQ+Sewxq20woMlgtHn5vAumwKwXAzMi8kMMzIiIiMgnRaiaZ5TZU86Yb86YJTMwIyI/xMCMiIiIfFKQQo4wc69YldZ2OWOeuceMgz+IyB8xMCMiIiKfJfaZVdbrrV5OEAQpMOvdnYEZEfkfBmZERETks8TJjJU2MmYX6htRpzdABiAxioEZEfkfBmZERETks6TJjPXWAzNxVH7PSBVUQTy8ISL/w08uIiIi8llRdpYyiqPyOZGRiPwVAzMiIiLyWRFiYGajlJGDP4jI3zEwIyIiIp8Vbh6ZfyCvAnvzKmEwCu1eLl8a/BHqsW0jInKlINsXISIiIvK8rJwyfHOoEACw80QZdp4oQ1y4Ev/M6IeM/hqLy0oTGZkxIyI/xYwZERER+ZysnDLM3HAUtXqDxekltXrM3HAUWTll0mlGQZAWl+7NHjMi8lMMzIiIiMinGIwClmWdtHqZ5TtypbLGkpoGNDQZoZDL0DNK7YlNJCJyOQZmRERE5FMOFlShpNb6FMbimgYcLKgCAClblhilRpBc5vbtIyJyBwZmRERE5FPKbARlrS8nDf5gGSMR+TEGZkRERORTNOFKhy53loEZEQUABmZERETkU9ISoxBnIziLj1AhLTEKQHPGjGuYEZE/Y2BGREREPkUhl+GfGf2sXubZcSlQmPvJ8pgxI6IAwMCMiIiIfE5Gfw2WTB7SJnMWpQ7CkslDpHXMmowCCqp0ABiYEZF/4wLTRERE5JMy+mtwdUoMDhZU4av/FeHHP0swNCnKYnHpomodmowCVEFyxEWovLi1RESdw8CMiIiIfJZCLsPw3tFIio/Ej3+W4JczFdA2GhASrADQXMaYFK2GXMZR+UTkv1jKSERERD7v4oRIJEap0dBkxO5TF6TTOfiDiAIFAzMiIiLyeTKZDH8ZGAsA2H68VDq9efBHqFe2i4jIVRiYERERkV+4zhyY/Xz6Aur1BgBAXqUYmKm9tl1ERK7AwIyIiIj8wsC4MCRFi+WM5QCYMSOiwMHAjIiIiPyCTCbDdQNMWbMfT5RB32REUbVpVH4vjsonIj/HwIyIiIj8hhiY/Xz6Ak6W1cEoAGFKBWJCg728ZUREncPAjIiIiPzGgLgw9DKXM36+7xwA00RGGUflE5GfY2BGREREfkMmk+Fac9Zs2zHTdMZwlQIGo+DNzSIi6jQGZkRERORXokKCAABiKLY3vwqT389GVk6Z9zaKiKiTGJgRERGR38jKKcObO0+3Ob2kVo+ZG44yOCMiv8XAjIiIiPyCwShgWdZJq5dZviOXZY1E5JcYmBEREZFfOHCuCiW1equXKa5pwMGCKg9tERGR6zAwIyIiIr9QVmc9KJMuZyN4IyLyRQzMiIiIyC9owpT2XS7cvssREfkSBmZERETkF9KTohBnI+iKj1AhLTHKQ1tEROQ6DMyIiIjILyjkMvwzo5/Vyzw7LgUKORebJiL/w8CMiIiI/EZGfw2WTB7SJnMWH6HCkslDkNFf46UtIyLqnCBvbwARERGRIzL6a3B1SgwOFlShrFYPTbgSaYlRzJQRkV9jYEZERER+RyGXYVivaG9vBhGRy7CUkYiIiIiIyMsYmBEREREREXkZAzMiIiIiIiIvY2BGRERERETkZQzMiIiIiIiIvIyBGRERERERkZcxMCMiIiIiIvIyBmZERERERERexsCMiIiIiIjIyxiYEREREREReRkDMyIiIiIiIi9jYEZERERERORlDMyIiIiIiIi8LMjbGxDIZDJvbwG1JO4P7pfAx33dNXA/dx3c110D93PX0dX2tb2PUyYIguDeTSEiIiIiIiJrWMpIRERERETkZQzMiIiIiIiIvIyBGRERERERkZcxMCMiIiIiIvIyBmZERERERERexsCMiIiIiIjIyxiYEREREREReRkDMyIiIiIiIi9jYEZERERERORlDMwoIBUXF2PGjBkYOXIkxo4di8WLF6OhoQEAkJ+fjwcffBBpaWmYNGkSdu/e7eWtJVd47LHH8OKLL0p/Hz16FFOmTEFqaipuv/12HDlyxItbR52l1+vx73//GyNGjMDll1+O5cuXQxAEANzXgaawsBCPP/44hg4dioyMDKxevVo6j/va/+n1etx4443Izs6WTrP1vfzLL7/gxhtvRGpqKu6//37k5+d7erPJCe3t64MHD+Luu+9Geno6xo8fj6+++sriOl19XzMwo4AjCAJmzJgBrVaLzz77DK+//jp27NiBN954A4IgYNq0adBoNFi3bh1uvvlmTJ8+HefPn/f2ZlMnbN68GTt37pT+rq+vx2OPPYbhw4dj/fr1SE9Px+OPP476+novbiV1xsKFC/HLL7/ggw8+wLJly7B27VqsWbOG+zoA/eMf/0BoaCjWr1+P2bNn44033sAPP/zAfR0AGhoa8OyzzyInJ0c6zdb38vnz5zFt2jTcdttt+Prrr9G9e3c89dRT0g8z5Jva29elpaV49NFHMXLkSHzzzTeYMWMGFixYgJ9++gkA9zUAQCAKMCdPnhQGDBgglJaWSqdt3LhRuPLKK4VffvlFSEtLE+rq6qTzHnjgAWHFihXe2FRygYqKCuGqq64Sbr/9dmHmzJmCIAjCV199JWRkZAhGo1EQBEEwGo3CX/7yF2HdunXe3FRyUkVFhTBkyBAhOztbOu29994TXnzxRe7rAFNZWSkMGDBAOH78uHTa9OnThX//+9/c134uJydHmDx5snDTTTcJAwYMEH777TdBEASb38tvvPGGcN9990nn1dfXC+np6dL1yfd0tK8///xzYcKECRaX/de//iU8++yzgiBwXwuCIDBjRgEnNjYW//3vf6HRaCxOr62txaFDhzBkyBCEhoZKpw8bNgwHDx708FaSqyxZsgQ333wz+vXrJ5126NAhDBs2DDKZDAAgk8kwdOhQ7mc/tW/fPoSHh2PkyJHSaY899hgWL17MfR1g1Go1QkJCsH79ejQ2NuLUqVPYv38/Bg8ezH3t537//XeMGjUKa9assTjd1vfyoUOHMHz4cOm8kJAQXHzxxdzvPqyjfS22lrRWW1sLgPsaYCkjBaDIyEiMHTtW+ttoNOLTTz/F6NGjUVpairi4OIvLx8TEoKioyNObSS7w66+/Yu/evXjqqacsTud+Diz5+flITExEZmYmJkyYgGuvvRYrV66E0Wjkvg4wKpUKc+fOxZo1a5CamoqJEyfiqquuwpQpU7iv/dxf//pXzJ49GyEhIRan29qv3O/+p6N9nZSUhLS0NOnv8vJybN68GWPGjAHAfQ0AQd7eACJ3e/XVV3H06FF8/fXXWL16NZRKpcX5SqUSer3eS1tHzmpoaMC8efMwd+5cqNVqi/O0Wi33cwCpr6/H2bNn8eWXX2Lx4sUoLS3F3LlzERISwn0dgHJzczFu3Dj87W9/Q05ODhYsWIAxY8ZwXwcoW/uV+z0w6XQ6PP3009BoNLjrrrsAcF8DDMwowL366qv46KOP8Prrr2PAgAFQqVSorKy0uIxer29zYE++76233sIll1xikR0VqVSqNh/k3M/+KygoCLW1tVi2bBkSExMBmJrEv/jiCyQnJ3NfB5Bff/0VX3/9NXbu3Am1Wo1LL70UxcXFeOedd9CrVy/u6wBk63u5o8/zyMhIT20iuVhdXR2eeuopnDlzBp9//rmUWeO+ZikjBbAFCxbgww8/xKuvvorx48cDAOLj41FWVmZxubKysjapc/J9mzdvxvbt25Geno709HRs3LgRGzduRHp6OvdzgImNjYVKpZKCMgDo27cvCgsLua8DzJEjR5CcnGwRbA0ZMgTnz5/nvg5QtvZrR+fHxsZ6bBvJdWpra/Hwww8jJycHH330Efr06SOdx33NwIwC1FtvvYUvv/wSy5cvxw033CCdnpqaij/++AM6nU46bd++fUhNTfXGZlInfPLJJ9i4cSMyMzORmZmJjIwMZGRkIDMzE6mpqThw4IA0YlcQBOzfv5/72U+lpqaioaEBp0+flk47deoUEhMTua8DTFxcHM6ePWvxq/mpU6eQlJTEfR2gbH0vp6amYt++fdJ5Wq0WR48e5X73Q0ajEdOnT8e5c+fwySefoH///hbnc18zMKMAlJubi7fffhuPPvoohg0bhtLSUum/kSNHomfPnpg1axZycnKwatUqHD58GHfccYe3N5sclJiYiOTkZOm/sLAwhIWFITk5GRMmTEB1dTUWLVqEkydPYtGiRdBqtZg4caK3N5uccNFFF+Gaa67BrFmzcOzYMezatQurVq3CPffcw30dYDIyMhAcHIyXXnoJp0+fRlZWFt59911MnTqV+zpA2fpevv3227F//36sWrUKOTk5mDVrFpKSkjBq1Cgvbzk56uuvv0Z2djYWLlyIyMhI6dhMLGXlvmZgRgHoxx9/hMFgwDvvvIMrr7zS4j+FQoG3334bpaWluO2227BhwwasXLkSCQkJ3t5scqHw8HC899572LdvH2677TYcOnQIq1atshjHTP7ltddeQ+/evXHPPfdg5syZuPfeezF16lTu6wATERGB1atXo7S0FHfccQcWL16MJ598EnfddRf3dYCy9b2clJSE//znP1i3bh3uuOMOVFZWYuXKldKyCeQ/vv/+exiNRjz++OMWx2ZPP/00AO5rAJAJQldaTpuIiIiIiMj3MGNGRERERETkZQzMiIiIiIiIvIyBGRERERERkZcxMCMiIiIiIvIyBmZERERERERexsCMiIiIiIjIyxiYEREREREReRkDMyIiIiIiIi9jYEZERF6RkZGB9evXtzl9/fr1yMjI8MIW2Zafn4+BAwfi+eef98j95eTkYOrUqcjJycHFF1+Mjz/+uM1l9u7di0GDBmHXrl0e2SYAWLt2LV5//XWP3R8RUVfAwIyIiMhOW7ZsQe/evbF9+3bU1dW5/f7mz5+PadOmoX///pg6dSr+85//4MKFC9L5RqMRCxcuxKRJkzB27Fi3b4/otttuw7Zt23D69GmP3ScRUaBjYEZERGSnTZs24b777kNwcDC+//57t97Xnj17UFpaitGjRwMApk+fDrVabZGp+vLLL1FQUIDZs2e7dVtaCwoKwq233or333/fo/dLRBTIGJgREZFPKyoqwt///neMHDkSo0aNwsKFC6HX6wG0X/YoZpYA4Pz583jooYeQnp6OMWPGYMGCBWhsbAQACIKAlStX4sorr8Tw4cPxxBNP4Pz58x1ux8mTJ3HixAmMGjUKY8eOxTfffNPmMqtXr8bYsWMxdOhQLFy4EFOnTpXKNfV6PRYuXIhRo0Zh1KhReO6551BZWdnh/X3xxRe47rrrpL/Dw8Px4osv4uuvv8axY8dQXV2NN998E//85z+h0WgAmAK1jIwMpKenY+rUqTh+/Lh0/eLiYsyYMQMjRozAJZdcgltvvRX79u0DAJw7dw4DBw7EypUrMWLECMyfPx/V1dV4+umnMXz4cIwYMQLPPfccamtrpdu79tprsXnzZlRXV3f4GIiIyH4MzIiIyGfp9Xo88MAD0Gq1+OSTT/DGG2/gp59+wtKlS+26/oIFCxAaGorMzEysXLkS33//PdauXQsA+PTTT7Fx40YsW7YMa9asQUxMDB566CEpcGtt06ZNSExMxKBBg3Dttddiz549KCgokM7fsGEDVqxYgdmzZ2PNmjU4d+4c9uzZI52/fPlyHDlyBO+//z4+/vhj1NbW4u9//3u79yUIAn7++WdcccUVFqffcMMNGDlyJF577TW8/fbb6Nu3L+666y4AQFZWFt566y3861//wjfffINhw4bh/vvvR1VVFQDgueeeg8FgwJdffonMzEzEx8fj5Zdftrj9/fv3Y926dbj//vuxYsUKlJaW4osvvsDHH3+MY8eO4e2335Yum5KSgqioKIvHSEREzgvy9gYQEVHXNW/ePCxYsMDitKamJsTGxgIAdu3aheLiYqxduxZRUVEAgLlz5+LJJ5/EM888Y/P2CwoKcPHFFyMhIQHJyclYtWoVIiMjAQD//e9/MW/ePIwaNQqAqZ/ryiuvxK5du9odPrJlyxbp9KuvvhpKpRKZmZmYNm0aAODzzz/HAw88gIkTJwIAlixZgquvvhoAoNVq8emnn2LdunUYOHAgAGDp0qUYNWoUjh8/Lp0mOnfuHCorK3HRRRe12Y65c+fi5ptvxp49e/DVV19BJpNJj+fxxx/HuHHjAAD/+Mc/8H//93/YsGED7rvvPlx33XUYP348evToAQC499578dhjj1nc9gMPPIDevXtLz11YWBiSkpIQEhKCN998s8229OvXD0ePHsW1115rfUcQEZFNDMyIiMhrZsyYgeuvv97itG3btuGLL74AAOTm5qJPnz5SUAYAQ4cORVNTE/Ly8mze/iOPPILZs2fjhx9+wFVXXYVJkyZhyJAhqKurQ1FREZ555hnI5c3FIzqdDmfOnGlzO4cPH8bZs2el0sKwsDBcfvnl+Pbbb6XA7Pjx4xaBTlRUFPr27QvANM2xsbERd999t8XtGo1GnDlzpk1gVlFRAQDo1q1bm21JSUmRtmPAgAHS6bm5uXj11VexfPly6bSGhgacOXMGMpkM99xzD7Zs2YL9+/fj9OnTOHLkCIxGo8VtJyYmSv++//778dRTT2HMmDEYM2YMxo8fj5tuusni8tHR0SgvL2+zjURE5DgGZkRE5DUxMTFITk5uc5pIpVK1uY7BYJD+L2aLWmpqapL+PXnyZIwZMwbbt2/HTz/9hBkzZuDRRx/Fww8/DAB48803peBJ1DIIFG3evBkA8NBDD0mnGY1GCIKAffv2YdiwYVAoFBAEweJ64t/iNn/++ecIDQ3t8PG21jpwEqnV6janGQwGzJ49G2PGjLE4PTw8HEajEQ899BCqq6sxadIkZGRkoLGxEdOnT7e4bMvne8yYMdi5cyd+/PFH/PTTT5g7dy52796N1157zWL7Wga2RETkPH6aEhGRz+rbty/OnDljMSTj4MGDCAoKQu/evREcHGwxtl4QBJw7d076+/XXX0d5eTnuuecevPfee/jHP/6Bbdu2ITIyEjExMSgtLUVycjKSk5PRs2dPvPrqq21GwBuNRnz33Xe4+eabkZmZKf33zTffIDw8HJmZmQBMZX1//PGHdL3a2lqcPXsWANCrVy8oFApUVlZK9xceHo7Fixe3m3ESh3lYGw7S3nNVVFQk3X5ycjLeffddHDx4ECdPnsSePXuwevVqPPHEE7jmmmtQUlIiPWftWb16Nf744w/ceuutePPNN7F48WJs27bN4jIVFRXSthIRUecwMCMiIp91xRVXoFevXnjhhRdw/Phx/Pbbb1iwYAFuvPFGREZG4pJLLkFlZSU++eQT5OfnY/HixdKwCwA4deoU5s+fj2PHjiEnJwc7d+7EkCFDAAAPPvgg3njjDWRlZeHMmTN46aWXsH///jZ9XXv37kVxcTGmTp2KAQMGSP8NHjwYkydPxnfffYeGhgZMnToVH3/8MbZt24bc3FzMnj0b9fX1kMlkCA8Px5QpU/Dyyy8jOzsbJ0+exAsvvICzZ88iKSmpzePu2bMnunXrZjFV0Za//e1v+Oijj5CZmYm8vDy8+uqr+O6775CSkoLIyEjI5XJs3rwZBQUF2Lp1qzS5Upxw2VpRURHmz5+PgwcP4syZM/j++++l50504sQJXHzxxXZvIxERdYyBGRER+SyFQiFNArzzzjvx7LPP4tprr8X8+fMBAH369MHMmTPxzjvv4JZbboEgCBg/frx0/ZdffhkajQZTp07FnXfeibi4OMyZMwcA8PDDD+OOO+7A3Llzccstt+D8+fP44IMP2pQybtq0CQMHDsSll17aZvvuuece1NTUYPv27bjhhhvw0EMPYd68eZgyZQoSExORmJiI4OBgAMCLL76IMWPGYMaMGbjzzjsRFBSEVatWQaFQtLldmUyGK664Qhpnb49JkybhmWeewYoVK3DjjTfi119/xTvvvIM+ffqgR48eePnll/H+++/jxhtvxKpVq/DSSy8hKCgIR48ebff2/v73v2Po0KF48skncfPNN6O+vh6vvvqqdP6pU6dQV1eHkSNH2r2NRETUMZnQUQ0DERER2e33339Hr1690LNnTwCmXrfRo0dj5cqV0uRHR2RnZ2POnDnYvn27qzfVJd566y0UFhZi0aJF3t4UIqKAwIwZERGRC2zfvh0zZszA0aNHcfbsWSxevBjh4eFIS0tz6vZGjRoFjUaDn3/+2bUb6gKNjY349ttvLYahEBFR5zAwIyIicoEZM2agb9+++Nvf/oabb74Zp06dwn//+992J0va6+WXX8Y777zjwq10jXXr1mH8+PFISUnx9qYQEQUMljISERERERF5GTNmREREREREXsbAjIiIiIiIyMsYmBEREREREXkZAzMiIiIiIiIvY2BGRERERETkZQzMiIiIiIiIvIyBGRERERERkZcxMCMiIiIiIvKy/w+bR1+4MC1UVQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAIdCAYAAABSsr51AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0AklEQVR4nOy9eZxT9fX//7rZM5PZhxlg2GdBZBGKgFiVAlJaF0C02rpU2mo/LrW1bri11brVVqvFBT/Sxe+nv1aLWgUr7uOugFpwBRn2YZ3J7JOZ7Pf3x73vm5vkJrk3uVkmOc/Ho4/KZLtJbu69r/d5ndfheJ7nQRAEQRAEQRAEQWQcQ7Y3gCAIgiAIgiAIolAhQUYQBEEQBEEQBJElSJARBEEQBEEQBEFkCRJkBEEQBEEQBEEQWYIEGUEQBEEQBEEQRJYgQUYQBEEQBEEQBJElSJARBEEQBEEQBEFkCRJkBEEQBEEQBEEQWYIEGUEQBEEQBEEQRJYgQUYQBKEjN9xwAyZOnIjHH38825uSUQ4cOICJEyfi3//+t+LtmzZtwsSJE7Fp06YMb1ny/Pvf/8bEiRPD/jdp0iTMmjULP/7xj/HJJ58kfI6LLroIF110Udq3dcGCBbjxxht1f172GRw4cEDx9oceeggTJ07U/XUzwTPPPIOJEyfikksuyfamEARR4JiyvQEEQRD5Qn9/P1599VU0NTVh7dq1uPTSS8FxXLY3i0iRhx9+GMOGDQMABINBOJ1OPPLII7j44ovxzDPP4Jhjjon52N/85jeZ2kxCI88++yyamprw/vvvo7W1FaNHj872JhEEUaBQhYwgCEInXnzxRQQCAdx6661obW3Fe++9l+1NInRg0qRJmD59OqZPn45vfOMb+Pa3v41HHnkEgUAA//znP+M+tqGhAQ0NDRnaUkIte/bswX//+19cd911KCkpwdq1a7O9SQRBFDAkyAiCIHTi2WefxZw5czBnzhyMHz8eTz31lHTbj3/8YyxbtizqMVdffTVOP/106d8ff/wxLrzwQhx33HGYPXs2Vq5cic7OTun2f//73zj22GPx9NNP46STTsIpp5yClpYWBAIBPP744zjjjDMwbdo0TJ8+Hd///vfx4Ycfhr3eW2+9heXLl2PatGlYvHgx/vOf/2DRokV46KGHpPt0d3fj17/+NU488URMnToV5557btTz6EFbWxtuuukmzJs3D9OmTcM555yDN954I+w+EydODNs2INom19nZieuuuw7f/OY3MXXqVCxduhTPP/982GMOHTqEa665BrNnz8Zxxx2Hiy++GF999VXS2z5q1ChUVFTg0KFDAGJ/L5GWRZ/Ph0ceeQSnnnoqpk2bhtNPPx3PPvts2HO//vrrWL58OaZOnYpvfvObuPPOOzEwMJBwm3w+H+68807MmjULs2bNCtt33nrrLUycODFqkWDr1q2YOHEiNm/enPRnEcnnn3+On/zkJ5gzZw6+8Y1v4LLLLkNLS4t0eyz7auRn9eWXX+Liiy/GzJkzMWPGDKxYsQKffvpp2GMS/V5i8eyzz6KkpARz587Fd77zHTz77LPwer1R98ul3wtBEPkLCTKCIAgd2LVrFz799FOcddZZAIDly5fjzTffxNGjRwEAS5cuxbZt27B7927pMS6XC2+++SaWLl0KAPjoo4+wYsUK2Gw2PPjgg7j55puxefNm/PCHP4Tb7ZYeFwgE8Nhjj+HOO+/E1VdfjYaGBtx333145JFHcN555+HPf/4zfvvb36Krqwu/+MUvpIv5jRs34oorrsCIESPw0EMP4YILLsBvfvMbHD58WHpuj8eDiy++GG+88QZ++ctf4uGHH8bw4cNxySWXqLrIDAaD8Pv9Uf8LBoNh93M6nTjnnHOwefNm/PKXv8RDDz2Euro6XHnllVi/fr2mz/7666/Hzp07cfvtt+Pxxx/Hsccei5UrV0oX/J2dnfj+97+PL7/8Er/61a9w//33IxgM4oILLsCuXbs0vRajq6sLXV1dGDNmjPQ3pe8lkpUrV+Lxxx/HOeecg//93//FvHnzcPPNN0sC8oUXXsCVV16JCRMm4JFHHsHPfvYzrF+/HldccQV4no+7TS+99BK++OIL/O53v8MNN9yAt956C1dccQUA4OSTT0ZtbS3WrVsX9pjnnnsOo0ePxqxZs+I+t9rvdePGjfjBD36AYDCIu+66C3feeScOHz6M73//+5o+6/7+flxyySWoqKjAqlWr8MADD2BwcBA/+clP0NfXB0D97yWSQCCAdevW4bTTToPFYsHy5cvR0dGB119/Peq9pPv3QhAEAVAPGUEQhC4888wzKC0txamnngoAWLZsGR588EE8/fTT+NnPfoZFixahqKgIGzZswM9+9jMAwGuvvQaPx4MzzzwTAHD//fdj/Pjx+N///V8YjUYAwHHHHSdVUS644ALp9S677DJ861vfkv7d1taGX/7yl2EVBpvNhquuugpff/01ZsyYgYceeggNDQ14+OGHpd62qqoqXHPNNdJj1q1bh+3bt2Pt2rU47rjjAACnnHIKLrroItx3331R1ZxIbrnlFtxyyy0JP6+//e1v6OzsxEsvvST17sybNw8rVqzA73//e5xxxhkwGNStGW7evBlXXHGF9NnPmTMH5eXl0mf4//7f/0N3dzeefPJJ1NXVSe/ptNNOw5/+9CesWrUq7vMzMQIIF+D79u3DH/7wBxgMBpx33nlh9438XuS0tLTgxRdfxC233IIf/vCHAIC5c+fi0KFD2LRpE5YuXYr77rsPJ598Mu677z7pcePGjcOKFSvw9ttvx3xuACgtLcWf//xnOBwOAEBFRQWuvPJKvPfeezjppJOwbNky/P3vf4fL5UJxcTG8Xi9eeuklXHzxxQl7HRctWhT3dsb999+P0aNH489//rP0+Z900klSVenBBx9U9Tw7d+5EZ2cnLrroIsycORMAMGHCBDz11FPo7+9HSUmJpt+LnHfeeQdtbW04++yzAQDTp09HQ0MDnnzySZx22mnS/TLxeyEIggBIkBEEQaSM3+/H+vXrceqpp8Lj8cDj8cBms2HOnDl4+umncfnll6OoqAiLFi0KE2QvvvgiZs+ejREjRmBwcBCffvopfvKTn4DneUkAjB49GvX19Xj//ffDLjCbmprCtuH+++8HIFSD9u3bhz179qC5uRmAYGXzer3YsmULrrzyyrCL78WLF8NkCp0KPvzwQwwbNgyTJ0+WtgEA5s+fj9///vfo6elBWVlZzM/iZz/7maJo+PLLL8MCLjZv3owZM2ZEBSksWbIEN910E3bv3q2692rOnDl46KGHsH37dsybNw+nnHIKVq5cGfaeJk2ahNraWuk9GQwGnHLKKaqqcUpipK6uDn/4wx+iEgYjvxc5H3/8seLzMZGya9cuHDlyBP/zP/8T9tnPmjULDocD77//flxBNm/ePEmMAULyotlsxgcffICTTjoJZ599Nh5//HG89tprWLZsGV5//XX09vYqWmkjWb16tRRsImft2rVS/9XAwAA+//xzXHnllZJAAgShOH/+fLz99tsJX4fR2NiIyspKXH755fjud7+LefPmYe7cubjhhhsAQPPvRc6zzz6LsWPHYvz48ejt7QUAfPe738VDDz2EXbt2ob6+PmO/F4IgCIAEGUEQRMq89dZbcDqd+Pe//60Y+/7mm2/i1FNPxbJly6QV9ZqaGnzwwQf47W9/CwDo7e1FMBjEmjVrsGbNmqjnsFqtYf+uqqoK+/fnn3+O22+/HZ9//jlsNhsaGhqkahDP8+ju7kYgEIh6nMlkQkVFhfTv7u5utLe3Y/LkyYrvtb29Pe4FZl1dHaZOnRr198geqJ6eHowaNSrqftXV1QAgXSir4YEHHsBjjz2Gl156CS+//DIMBgNOPPFE3HbbbRg9ejS6u7uxb9++mO9pcHAQdrs95vPLxYjZbEZFRQVqa2sV7xv5+crp7u6Oex92++23347bb7896va2traYzw2EPjuGwWBAeXm59FmOHTsWs2bNwvPPP49ly5bh+eefxwknnCDtJ/FoampS/L7eeust6b/7+vrA83zUdrBtY1ZDNRQXF+Mf//gHVq9ejQ0bNuCpp56C3W7HkiVLcMstt2j+vTA6Ozvx1ltvwefzKdo0//Wvf+Hmm2/O2O+FIAgCIEFGEASRMs888wzq6upwzz33RN3285//HE899RROPfVUnHDCCaitrcVLL72E2tpamEwmLF68GIBwAcpxHFasWBEW8sGIJxhYv83EiRPxn//8B/X19TAYDHj77bfxyiuvABBEgNlsRkdHR9hjg8Egurq6pH+XlJRg3LhxYZY5OUoX5clQVlYGp9MZ9ff29nYACLvoDQQCYfeJFHclJSW4/vrrcf3112P37t1444038Oijj+L222/Hn//8Z5SUlGD27NlSdSUSi8USd1tjiRGtlJaWAhBEwfDhw6W/7969G52dndKF+w033IDZs2dHPT7RhX2kiA0EAujq6goTFWeffTZuuukm7NmzB++//77iPpssJSUl4Dgu5vdaXl4OAFLFKbL/jFkpGRMmTMAf/vAHBAIBfPbZZ1i3bh2efPJJjBo1Cueff35Sv5d169bB5/Ph4Ycflr4PxiOPPILnn38e11xzTc79XgiCyG8o1IMgCCIFnE4n3n33XZx++ulSwqL8f6eddpo058hgMOCMM87AG2+8gZdffhkLFy6ULGYOhwPHHnssdu/ejalTp0r/a2xsxMMPPxx3oPLu3bvR3d2NH/7wh2hsbJR6r9555x0AwkWk0WjEN77xjajggubm5jCr1ezZs3H48GFUVVWFbceHH34Y1heUKrNmzcKWLVvQ2toa9vf169dj2LBhGDt2rPS5HDlyJOw+//3vf6X/PnjwIObNm4eXX34ZgHARf+mll+LEE0+UHjd79mzs2bMH48ePD3tP69evx9NPP63be0oE64WK/A4eeOAB3HHHHZgwYQKqqqpw4MCBsO0cPnw47r///oSpkB988EHYd/nKK6/A7/djzpw50t8WL16MoqIi/PrXv4bNZsO3v/1t3d5fUVERpkyZgg0bNoSJ6L6+Prz11lvS+2f7vDwco6enJyz04+WXX8YJJ5yA9vZ2GI1GzJgxA7fddhtKS0tx5MiRpH8v//73vzF9+nQsWrQo6rf6gx/8AD09PXjppZdy7vdCEER+QxUygiCIFHjuuefg9/sVV+kB4KyzzsI///lPrF27Ftdeey2WLVuGv/zlLzAajVi9enXYfa+55hr89Kc/xbXXXoslS5YgEAjgr3/9Kz799FNcfvnlMbdh/PjxcDgceOyxx2AymWAymfDKK6/gmWeeASBY8gChWnfRRRfh5z//Oc455xwcOnQIf/rTnwCEqhbLly/H//f//X/40Y9+hMsuuwwjRozABx98gDVr1uDCCy+E2WxO+TMDgB/96EdYv349fvSjH+FnP/sZKioq8Pzzz2Pjxo24++67JVH5rW99Cy+++CKmTZuG8ePH47nnnsO+ffuk56mrq8Pw4cNx5513or+/H2PGjMEXX3yBt99+G//zP/8DAFixYgXWrVuHFStW4Mc//jEqKiqwYcMGrF27FjfddJMu70cNxxxzDL7zne/gvvvug9vtxuTJk/Hee+/htddew4MPPgij0Yhf/vKX+PWvfw2j0Yj58+ejt7cXjz76KI4ePRrTFsdwOp246qqrcNFFF2Hv3r344x//iG9+85uYO3eudB+73Y7TTz8d//rXv3DuuefCZrPp+h6vvfZa/OQnP8Ell1yCCy+8ED6fD48//ji8Xq/UOzlx4kSMGDECDz/8MEpKSmAwGPD444+HVbW+8Y1vIBgM4sorr8RPf/pTFBcX46WXXkJfX58kIrX+Xj777DPs2LEjZujMwoULUVZWhqeeegpnnXWWrr+X/fv3o7OzE9OnT9ftsyYIIo/gCYIgiKT57ne/y59++ulx7/Od73yHnzt3Lu/xeHie5/mlS5fyJ5xwAu/z+aLu+8EHH/Dnn38+P23aNH7mzJn8D3/4Q/6jjz6Sbn/22Wf5pqYmvrW1NexxGzdu5JcvX85PmzaNnzt3Lv/jH/+Y//jjj/kZM2bw9957r3S/1157jT/jjDP4yZMn89/+9rf5F198kW9qauL/+te/SvdxOp38TTfdxM+dO5efMmUKv3jxYn7NmjV8IBCI+R5bW1v5pqYm/tlnn1W8fePGjXxTUxO/ceNG6W/79+/nf/GLX/DHH388f9xxx/HnnXce//rrr4c9rr29nf/5z3/OT58+nT/++OP5X//61/zatWv5pqYm6T5tbW38jTfeyJ900kn85MmT+VNPPZVfvXp12Pbu27eP//nPf87PmjWLnzZtGr9kyRL+6aefjvl+4n3WWu574YUX8hdeeKH0b4/Hw99///38Kaecwk+dOpVfsmQJ/9JLL4U95sUXX+TPOussfsqUKfzs2bP5yy67jN++fXvc158/fz5/55138rfeeis/ffp0fvbs2fxtt93Gu1yuqPs2NzfzTU1N/H//+9+k3xdj1apVYd8FzwvfNduHjz/+eP6yyy7jd+zYEXafTz/9lD/vvPP4KVOm8N/61rf4v/3tb/yvfvWrsM/q008/5X/84x/zs2fP5qdOncovX76cf/XVV8OeJ9HvRc6vf/1rftKkSXx7e3vM9/vrX/+ab2pq4r/66iue5/X7vaxcuTLqcyIIgmBwPJ9gsAlBEASRF7zxxhsYPnx4WKWlpaUFZ5xxBh599FEsXLgwi1tHZIrbbrsNn3zyCV544YVsb0pOQ78XgiAyBVkWCYIgCoT33nsPGzZswHXXXYfx48fjyJEjWL16NSZMmICTTjop25tHpJn/+7//w+7du/Gvf/1L1zCPfIV+LwRBZAoSZARBEAXCypUrYbPZsHr1arS1taG8vBwnn3wyrr322pgx4UT+8PHHH+Pdd9/FRRddpGr2WKFDvxeCIDIFWRYJgiAIgiAIgiCyBMXeEwRBEARBEARBZAkSZARBEARBEARBEFmCBBlBEARBEARBEESWIEFGEARBEARBEASRJUiQEQRBEARBEARBZAmKvU8DHR19oOzK3IHjgKqqEvpeCgD6rgsD+p4LB/quCwf6rguDQvue2ftNBAmyNMDzKIidbKhB30vhQN91YUDfc+FA33XhQN91YUDfczhkWSQIgiAIgiAIgsgSJMgIgiAIgiAIgiCyBAkygiAIgiAIgiCILEGCjCAIgiAIgiAIIkuQICMIgiAIgiAIgsgSJMgIgiAIgiAIgiCyBAkygiAIgiAIgiCILEGCjCAIgiAIgiAIIkuQICMIgiAIgiAIgsgSJMgIgiAIgiAIgiCyBAkygiAIgiAIgiCILEGCjCAIgiAIgiAIIkuQICMIgiAIgiAIgsgSpmxvAEEQBEEQBBGbQJDH1oM9cPZ7Ue2wYHpdGYwGLtubRRCETpAgIwiCIAiCyFGaW5y4v3kn2vq90t9qHBZcu6ABCxqrs7hlBEHoBVkWCYIgCIIgcpDmFidWrv8qTIwBQFu/FyvXf4XmFmeWtowgCD0hQUYQBEEQBJFjBII87m/eGfc+f3xzFwJBPkNbRBBEuiBBRhAEQRAEkWNsPdgTVRmL5GifB1sP9mRoiwiCSBfUQ5aHUPMvQRAEQQxtnAnEmNb7EQSRu5AgyzOo+ZcgCIIghj7VDouu9yMIInchy2IeQc2/BEEQBJEfTK8rQ00CsVVbYsX0urIMbRFBEOmCBFmeQM2/BEEQBJE/GA0crl3QEPc+18yvp5YEgsgDSJDlCdT8SxAEQRD5xYLGaty75NioSlltiRX3LjmWWhEIIk8gQZYnUPMvQRAEQeQfCxqrsf7SOagrswEAvj2xGusumU1ijCDyCBJkeQI1/xIEQRBEfmI0cLAYhUu2aoeVbIoEkWeQIMsTqPmXIAiCIPIXXzAIAPAHqBecIPINEmR5AjX/EgRBEET+4vWLgozCuQgi7yBBlkdQ8y9BEARB5CdMiPnFShlBEPkDDYbOMxY0VmNefRV+/uzn2Ly/G8unDccNCxupMkYQBEEQQxifaFX0kWWRIPIOqpDlIUYDhwnVxQCAEpuZxBhBEARBDHG8AbIsEkS+QoIsTym1CcXPXrcvy1tCEARBEESq+EmQEUTeQoIsTymTBJk/y1tCEARBEEQqBII8mFORCTOCIPIHEmR5SqnNDADoIUFGEARBEEMan0yEUYWMIPIPEmR5SpldrJANkmWRIAiCIIYychFGgowg8g8SZHkKVcgIgiAIIj8Iq5CRZZEg8g4SZHlKGYV6EARBEERe4A1QhYwg8hkSZHkKS1kc9AXh9dNqGkEQBEEMVaiHjCDyGxJkeYrDagIbP9brIdsiQRAEQQxV/FQhI4i8hgRZnmLgOJRYhSpZDwV7EARBEMSQxRvWQ0aCjCDyDRJkeUyZXQj2oFlkBEEQBDF08YWlLFIbAkHkGyTI8phSCvYgCIIgiCGPPFnRRxUygsg7SJDlMUyQUfQ9QRAEQQxdvBTqQRB5DQmyPKbMRpZFgiAIghjq+CjUgyDyGlO2N4BIH1KFjEI9dCEQ5LH1YA+c/V5UOyyYXlcGI4uyJAiCIIg0ES7IqIeMIPINEmR5DFXI9KO5xYn7m3eird8r/a3GYcG1CxqwoLE6i1tGEARB5Ds+SlkkhhC0gK0dEmR5DIV66ENzixMr138V9fe2fi9Wrv8K9y45lkQZQRAEkTZ8QeohI4YGtICdHNRDlsew2HsK9UieQJDH/c07497nj2/uQoBOkARBEESaiOwh43k65xC5B1vAlosxILSA3dzizNKW5T4kyPIY6iFLna0He6IOLJEc7fNg68GeDG0RQRAEUWjILYsAaBGQyDloATs1SJDlMWWSZZEqZMniTCDGtN6PIAiCILQSOXuMbItErqF2AXvLAVrAVoIEWR5TSqEeKVPtsOh6P4IgCILQSmSFjAQZkWuoXsB20QK2EiTI8pgyu1AhG/AFog7mhDqm15WhJoHYqi2xYnpdWYa2iCAIgig0oipklLRI5BiqF7CLaQFbCRJkeYzDagILGaVgj+QwGjhcu6Ah7n2umV9Pca4EQRBE2oiukNEiK5FbqF3AnjGKFrCVIEGWxxg4jqLvdWBBYzXuXXIsHBZj2N9rS6wUeU8QBEGkHS/1kBE5Di1gpwYJsjxHEmSDVCFLhQWN1fjBzDrp32dOrsW6S2aTGCMIgiDSTmRFLNLCSBC5AFvALjLTArZWaDB0nlNmN6O1202WRR2QnwCNBo5WeQiCIIiMQCmLxFBhQWM13m5px4Zt7QCAW7/diDMmD6drpgRQhSzPIcuifnj8oRXKo32eLG4JQRAEUUh4qYeMGEJ0DISuOSdUFZMYUwEJsjyHRd9ThSx13P6A9N9t/STICIIgiMzgp9h7YgjR4QoJskFfIM49CQYJsjynjCpkukEVMoIgCCIbUOw9MZSQzxob9FE1Vw0kyPKckGWRKmSpIhdk/Z4AXF76TAmCIIj0E21ZJEFG5Ca+QBDdg6EigJsqZKogQZbnlDHLIqUspow7YpWHqmQEQRBEJogUYJFzyQgiV+gcCHdkyds9iNiQIMtzSu1ChayHLIsp44k4qLSRICMIgiAyQPRgaKqQEbmJ3K4IkGVRLSTI8hwW6kGWxdRxi5ZFlhVEFTKCIAgiE9BgaGKo0BElyKhCpgYSZHkOhXroB+shG1FqBUCCjCAIgsgMlLJIDBUiK2TUQ6YOEmR5ThlVyHSDCbIxFUUASJARBEEQmSE6ZZFsYERuElkhc/tpX1UDCbI8h6UsurwBOoCnCFvlGVtpB0CCjCAIgsgMLGXRKHrmqUJG5CpMkLFh0GRZVAcJsjzHYTVJPU80HDo1QhUyQZC19Xnj3Z0gCIIgdIEJMLvFGPZvgsg1mCAbKbZ3UKiHOkiQ5TlGA4cSmkWmC+4IQXa0zwOep5MiQRAEkV5YyqLdLAoycrwQOQrrIasrF66VqIdMHSTICgAK9kgdnuelCtloUZAN+ALo99CBhiAIgkgvLGVREmRUISNyFFYhGy0JMlo8UAMJsgKARd+TZTF5PLKm1HK7WRK51EdGEARBpBtWESsiQUbkMDzPSxWyUeU2ANRDphYSZAUAC/boGaQKWbLIU4KsJiNqSsTo+34SZARBEER68UkVMuGyzR8gQUbkHn0ev7Sv1pWRINMCCbICoJR6yFKGVchMBg4mA4faEppFRhAEQWQGlrJoowoZkcOw6lipzSS5syj2Xh0kyAqAcjubRUYVsmRhgsxqEn4yJMgIgiCITMDzvCTAiqSURbrIJXIP1j9WVWSRqrkU6qEOEmQFgGRZpApZ0rADCgkygiAIIpPIq2GsQhY5KJogcgFWIatyWKR9lWLv1UGCrABgZWOyLCYPq5CxAwwJMoIgCCITeGUR9xTqQeQyHS7BiVVVZJYSQamHTB0kyAoACvVIHbdfuULWRoKMIAiCSCPyapgU6kGCjMhBnP1Chay62AqbKbSv0ty8xJAgKwDKqEKWMlKFTMGySMOhCYIgiHTBLmaNHGAxGsL+RhC5RMeAaFksDlXIAAr2UAMJsgKgzE6DoVMlUpANc1ilv1NvHkEQBJEu2FBok9EAk5EDQBUyIjdhPWTVDgvMRg7i7kq2RRWQICsAaDB06rBJ81aTUfx/AyrE9ErqIyMIgiDShU+shpmNHEwGsiwSuYs8ZZHjOAr20AAJsgKA9ZC5vAGyOSSJR+whs5lDPxnqIyMIgiDSDeshsxgNMBk48W90Lidyjw5ZhQyATJBRhSwRJMgKgBKrCWLVGL0eqpIlgztiDhlASYsEQRBE+vGJM8dMBg5m0QMWoAoZkWN4/UEpq6CqSBBkNItMPSTICgCjgUOJWCXrHSRBlgyRg6EBEmQEQRBE+mEVMrOsQkaWRSLXYIEeZiMnObNYsIebLIsJIUFWIISGQ1OwRzK4pVCPUGoQCTKCIAgi3TB7omBZpB4yIjdhkfesfwwIXTORZTExJMgKBAr2SA1WbpdXyGpIkBEEQRBphgkyk5ELpSwGSJARuUVk/xgQ6rsf9JMgS4Qp2xtAZAZWIaPo++SIZ1ls6ydBRhAEQaQHZcsiWcCI5AgEeWw92ANnvxfVDgum15XBaOASPzABUuR9cUiQkWVRPRmvkK1fvx4zZswI+9+UKVMwZcoUAMCnn36K733ve5gxYwYWLFiAp59+Ouzxzz33HBYtWoTp06dj+fLl2LJli3RbIBDAvffeixNPPBEzZszA5Zdfjra2Nun2jo4OXHHFFTj++OMxZ84c3HXXXfD7QxWjRK89lCmTBBlVyJJBmkNmjrYsttFwaIIgCCJNhCyLHPWQESnR3OLEkjWbcNnaz3Drhu24bO1nWLJmE5pbnCk/txR5HybIxAoZWRYTknFBtmTJEmzZskX638svv4zy8nLcdddd6OnpwU9/+lMsW7YMH330Ee666y7cc889+OyzzwAAmzZtwh133IHf/e53+Oijj7BkyRJcfvnlGBwcBACsXr0a77//Pp599lm8++67sNlsuPXWW6XXvvrqq1FUVIR3330XzzzzDD788EM88cQTAJDwtYc6ZWRZTInQHDKZZdFhAQdhaGfXIFUeCYIgCP3xyQZDG8UeMh9ZFgmNNLc4sXL9V2gTe70Ybf1erFz/VcqizKkgyGxUIVNNVnvIeJ7H9ddfj29961tYunQpXn31VZSXl+OCCy6AyWTC3LlzceaZZ+If//gHAODpp5/G6aefjpkzZ8JsNmPFihWoqKjAhg0bpNsvvfRSjBgxAg6HA7fccgveeecdtLa2Yt++fdi8eTOuv/562O12jB49GldccYX03Ilee6gjWRZJOCSFNIdMJshMRoN04KE+MoIgCCIdsNh7syz2nipkhBYCQR73N++Me58/vrkrpXEKShUyds1EFbLEZLWHbN26ddi5cyceffRRAEBLSwuamprC7tPQ0IBnnnkGALBz506cffbZUbdv374dfX19OHLkSNjjq6urUVZWhq+//hoAUF5ejtraWun2+vp6HDp0CL29vQlfWwtc6lZc3Smzhypkubh96YS931TetyfALIuGsOepKbHC6fKird+DY4eXpLCVhB7o8V0TuQ99z4UDfdeywdAmg0yQBfPuM6HvOn1sPdgTVRmL5GifB1sP9uD4MeVJvQYTZMMcFuk7LLIIFTKPPxj1/RbK96z2fWZNkAWDQaxevRqXXXYZHA4HAMDlcsFut4fdz2azYWBgIOHtLpcLAFBUVBR1O7st8rHs3+zx8V5bC1VVuXdhPqpG+IzdQR7V1bm3fZkgle8lII7WHlZZHPb5jakqxldH+uAKcgX7ueYiufgbJPSHvufCoZC/a6u9AwDgsFtQVVEMAOC5/D3nFPJ3nS48B3rV3c9gSHq/6hJbYupHlkvPUVUmXFfzxujnpe85nKwJsk2bNqGtrQ3nnHOO9De73Y6+vr6w+7ndbhQXF0u3u93uqNsrKiokMcX6ySIfz/N81G3s38XFxQlfWwsdHX3ItYwHTiwXO3vdcDr7Etw7v+A44YefyvfSL1o9vYPesM+vwiqs/uw63FNwn2suosd3TeQ+9D0XDvRdA129wrVK0B+Aq1+4BvJ4A3l3zqHvOn1YVaZyWoPBpParIM+jTWzdMPn90nMEfYJI6+oLXXsW2vfM3m8isibIXnnlFSxatCisotXU1IT3338/7H47d+5EY2MjAKCxsREtLS1Rt59yyikoKytDbW0tdu7cKVkP29vb0d3djaamJgSDQXR3d8PpdKK6uhoAsGvXLgwfPhwlJSUJX1sLPI+c28lKrWwwtD/nti1TpPK9sDlkFqMh7Dnks8gK9XPNRXLxN0joD33PhUMhf9deMeXXbORg5EI9ZPn6eRTyd50upteVocZhiWtbrC2xYnpdWVKffc+AX+o/q7CbpeewSoOhg1HPS99zOFkL9fjkk08wa9assL8tWrQITqcTTzzxBHw+HzZu3IgXXnhB6hs755xz8MILL2Djxo3w+Xx44okn0NHRgUWLFgEAli9fjtWrV6O1tRX9/f24++67MXv2bIwZMwbjxo3DzJkzcffdd6O/vx+tra149NFHpQpdotce6rBQjx4K9UgKpdh7IBR9T6EeBEEQRDrwK8whY1H4BKEGo4HDtQsa4t7nmvn1Sc8jYwmL5XYzzMaQtGCx924K9UhI1ipkBw4cQE1NTdjfKioq8Ne//hV33XUXVq1ahcrKStx666044YQTAABz587Fb37zG9x22204evQoGhoasGbNGpSXlwMArrzySvj9flxwwQVwuVyYM2cOHnzwQen5V61ahd/+9rdYuHAhDAYDli1bhiuuuELVaw91WOy9yxuAPxCEyZjVgM0hh9JgaECIvgcgleoJgiAIQk9YyqLJwEkXu6mk4RGFyYLGaty75Fjc/MJXkE9NqC2x4pr59VjQWJ30c4cSFs1hf7fLKmREfLImyOQDneVMnToVTz31VMzHLV26FEuXLlW8zWw247rrrsN1112neHt1dTVWrVoV87kTvfZQpsQW+qr7PH5UFFni3JuIxK0Qew/IhkP3exHkeRgKJTaIIAiCyAhev5iyKKuQUew9kQyTh5eEibHJwx34yw9mJF0ZY7AKWXVx+LWlnc0h81OFLBFUJikQjAYOJbI+MkI9PM+HLIsRgqzaYYWBE06Ona74kbIEQRAEoRV/MNRDZqI5ZEQKfLS/K+zfFqMhZTEGKM8gA4RRQQDNIVMDCbICQhoOTYJME74Aj2BEgyrDZOCkFSHqIyMIgiD0xqfQQ+anHjIiCT7a3w0AmCiOQhrQyUoYq0LG+u7dZFlMCAmyAoKCPZKDVceA6B4yAKgtsQEAjiYYukgQBEEQWvEGWIUsJMgCvBA1ThBq4XleEmTz6qsA6Fe5ilUhY5ZFqpAlhgRZAVFmF5otqUKmDY/ofTZwgmUkkhqH8Lm+vdOJT1q7qdmaIAiC0A1fQGZZNIQu2/wBOtcQ6tnXOYj2fi8sRg5zxlUAAAa8+gil2D1koZRFnhYQ4pK1UA8i85SxCpk7vEIWCPLYerAHzn4vqh0WTK8r08VTnC+4ZQmLXERoR3OLEx/uFTzZG75qw4av2lDjsODaBQ0pJRYRBEEQBBDqFzMbDWGLgv4gD4rnItSyWayOTasrQ4W4QJ/uCplNbPMI8IL11mKia8tYkCArIEpt0RWy5hYn7m/eGTYskARFOG4p0CO8f6y5xYmV67+Kun9bvxcr13+Fe5ccS58hQRAEkRLSYGgDJ1kWARb2YYzxKIIIhwV6zB5TDrtF2G8GvELlKnKxWSvOmJbFUEXX7Q/AotD2QQjQJ1NARPaQMUERObmdCYrmFmfGtzEXUZpBFgjyuL95Z9zH/fHNXWRfJAiCIFLCJ6uQGQ3hFTKCUEMgyOOT1h4AwKwx5SgSe7t4hPfJJ4PbF4BLtD5GWhZNsr5HmkUWHxJkBYS8h4wEhXrYhHm5INt6sCdKyEZytM+DrQd70rptBEEQRH7jl/WQcRwniTLqISPU8nVbP/o8fhRbjDimtkSKoweAgRRti6w6ZjUZUGyJrthSsIc6SJAVEGWy2HsSFOqRZpCZQwcap8pERbX3IwiCIAglvLLYewA0HJrQDEtXnDm6HCYDBwPHSXbCVIM95P1jStZHmyzYg4gNCbIColQW6kGCQj1uBctitUNdK7Xa+xEEQRCEEvKURYAEGaGdzfuE/rFZY8qlv+lVueqIkbAY+To0iyw+JMgKCIdFEGRHej3oGFAntEhQhGLvbTJBNr2uDDUJPpvaEium15WlddsIgiCI/MYXo0Lmo+HQhAo8/iA+PdQLIFyQFcmCPVIhVqAHg107DfqpQhYPEmQFQnOLEze+ICQCdg368MBbuxM+hgSFgMcXXSEzGjhcu6Ah7uOumV9P4wMIgiCIlIiskDFhRhUyQg2fH+qFxx9EVbEFE6qKpL/rVblSWyGjUI/4kCArAFiaYseAL/GdZZCgEAhZFsObVRc0VuPeJcdGVcpqS6wUeU8QBEHogpSyaKAeMkI9QrJiN5767wEAwMxRpWE9XixpUa9Qj6pis+Lt1EOmDppDlueoSVM0cID8uF5bYsU18+tJUIiEQj2i1y8WNFZjXn0Vnti0H499sA9jKmxYu2IWCVmCIAhCF1iFzMIsi0aWskgVB0IZpRmzH+7tRnOLU7q2Y7PIUu8hExb7E1fISJDFgypkeY6aNMUgDxw3shQAcNqkGqy7ZDaJMRmsh8waY6Ch0cBhYdMwAICz3wfSYgRBEIResB4yE4V6ECqINWO2z+MPmzErVchS6CELBHns7xoAAHQN+BRHJdko1EMVJMjyHLUpiSyBsbzITNWdCNwKPWSRjCq3wWjgMOALoJ2SKQmCIAidCPWQMcsi9ZARymiZMZtqhay5xYklazahtdsNAHjkvb1YsmaTJPgYUqhHEq/DbJevbGvDJ63deT0blyyLeY7alEQ2NDrVie35iNIcskhMRgNGldmwr2sQezsHUFNizdTmEQRBEHlMyLIYUSGjwdBEBFpmzKZSIWNVuEja+r1Yuf6rsD76ZEM9lGyXNQ4Lrl3QkJcuLqqQ5Tlq49nHVdoBkMdXCbdC7L0SYyuF9KK9nYNp3yaCIAgi/+F5XmZZFM5BLG3RH6QFVCIcLTNm7UmGemipwgGQBlBrCfWIZbtkgi+yCpcPkCDLc9TGsxeLM8ooljQaj8JgaCWYqN3XOZD2bSIIgiDynwAPsDqY2UA9ZER81Lqiqh0WFFmSsxJqqcIBsh4ylXPItAq+fIEEWQGgJp6dYkljI1kWVVbI9nWRICMIgiBSRz782SKeg4xsDhlZFokI1LqipteVhSpkGi2LWqpwQEiQqV3w1yr48gXqISsQWDz71oM9cPZ7Ue2wYHpdmRTgERoQSIIsklCoR+weMgAYWyFUyMiySBAEQeiBXJBRhYxIBHNFKfV3MdiM2WR7u7RU4QDArjHUQ6vgyxeoQlZAGA0cZo4ux+JJNZg5ujwsTTFUUibLYiQs9l5pDpkcViE72udJKUaWIAiCIIBQ5D0A6ZwdEmR0viaiYa6oEmt4zUXuigKSHwytpQoHaF/w1yr48gUSZASA1GJJ8x23yh6ycrsZFWJa5X6yLRIEQRApIk9Y5LhwQeYjyyIRgwWN1ThzSi0A4ISx5Xjs3GlRM2al2HuNC8hqswnYAoLWBX+tgi9fIEFGAEg+lrQQcEs9ZPEti4A82INsiwRBEERqMNHFZpDJ/5ssi0Q8WruE65CT66ujXFFA8hUyQBB87HpHTmQVDgi5i9Qu+GsVfPkC9ZARAEChHnFQm7IIAGMqi7DlYC/2UtIiQRAEkSI+0ZZokl18Ug8ZoYZ9oiAbqyCcgOQrZIDQmsH65e8+YxKCQT4qm0B6nSQW/JntMnIOWW2JFdfMr8/LOWQkyAgAMo8v9ZBFwUSqGkE2jmaREQRBEDrh8wuiyyI7/4QGQ9P5mlDGHwjiYI8bQChwLJIiSShpF2Rv7GgHAEyvK8WiicPi3jeZOWRAKIxu4cPvw+ULYtaYcjx09tS8q4wxyLJIAADsoh3P4w8iyNOqmxwp9t6swbJIPWQEQRBEirAKmVleITNShYyIz8EeNwJBHjaTATUlVsX7MKGUjGXx1e2CIFs0sSbhfUOhHtoXEIwGDqxV0mYy5K0YA0iQESLyBMFkfjT5jBbLIquQ7e8aJGFLEARBpATrITMZ5RUy6iEj4sPsiqMr7DBwyiKmSLQs+gJ82HiFRBzsGcSXR/pg4ICFTYmtg/LQOF7jdRHP89I1mCvP06tJkBEAwsUGJS2G8Ad56aSnRpCNKLXBbOTg8QdxpNeT7s0jCIIg8hivlLKoYFkkQUbEYD/rH6soinkfu8z1o+W67/WvnQCAb4wuR1Vx4uh55i7iEVrgVos/yIPt5STIiIKA4zhpFcPtz++dXgse2WdhUyHIjAYOo8vZgGiyLRIEQRDJ45dSFqNDPbRUNYjCYp94/REr0AMQ0jrZfqVlduqr29sAIGHvGEMu/LQ6sOQCbsDr1/TYoQYJMkKCou+jkR881FTIAHmwBwkygiAIInmY6GI2RSAkzgJUISNiwCyLY2IEejCKNF737escwI52F4wGDgsa1CUdGg0cLOI+q3XB3ytbdMj3ChmlLBISdrMBXYOAhyyLEvL+MS6GDzuSsTSLjCAIgtABybJoklfIcqOHLBDksfVgD5z93piR50R2kCyLlbEti4CwEN/j9qsO9njtayHMY/aYcpQXmVVvj81shDfg17zg7/WTICMKECtVyKKQEhZVVseAUIWMkhYJgiAKg3SJEya6zLIKmZSyGMieIGtucUbNiKpxWHDtgoa8nBE1lOj3+NHhEr6XWJH3DLWzyNj+/dxnhwGoC/OQYzMZ0AvtGQXyUUwefxC+QDBsSHo+QYKMkLCnMJMiX2HldbV2RSC0IkWzyAiCIPKfdIoTybKo0EPmD2Zn8bS5xYmV67+K+ntbvxcr13+Fe5ccS6IsizC7YmWRGQ5r/Mt8ZlmMVyFT2r//9/19KLGZVX/PyV5feiNCQFzeAMrt+SnI8vNdEUkRCvWgChnD41M/g4zBVqQ6XF70ufO7CZUgCKKQYeJEfrEKhMRJc4szpef3ilUwecqiMYspi4Egj/ubd8a9zx/f3EX9bVlkfxcL9IhvVwQSV8hi7d/tLm37tzSLTOP1pTciuEZL+MhQgwQZIUEVsmiSqZA5rCZUi1GwZFskCILITzIhTliFLDxl0SDelnnRs/VgT9TFeSRH+zzYerAnQ1tERML61xPZFQF5qEf0dZ+e+zebdevWeH0ZGZPvyuOkRRJkhIQ9yR9MPpNMDxkAjKNgD4IgiLwmE+IkFHsfnbKYjQqZM8H71Xo/Qn/YdUeihEUgdN2nZFnUc/+2JWtZjKiQuTz5e31KgoyQYKEeWudE5DPylEUtjKXoe4IgiLwmE+LEq1ghU9dDFgjy+KS1G69sa8Mnrd262AirHYkHAWu5H6E/WiyLRZbYQknP/TvZsUoeX3QPWb5CoR6EhF0UHWRZDMHEqdWkvocMoFlkBEEQ+U4mxIkvyZTFdAWNTK8rQ43DErdyUltixfS6sqRfg0ieIM+HIu9VVcjEUA9vtFDSc/9O1oEVVSEjyyJRCNiSbLrMZ9hnwfzPatFzFlk6VjkJgiCI1GDiJB6pihOfn1XIZIIswRyydAaNGA0crl3QEPc+18yvp3lkWaK93wu3PwijgUNdmS3h/eP1kOm5f9tMyTmwonvI8rdgQIKMkGArGFQhC+FJItQDCFXIWrsHU/L5N7c4sWTNJly29jPcumE7Llv7GZas2ZRychdBEASRGpkQJ1KFTNGyGH1uyUTQyILGaty75FgYI95WjcNCkfdZZp/oyqkrs8GkYl4Xsywq9ZDpuX/bkry+jK6Q5e/1KQkyQkKKJSVBJuFOsoestsQKq8kAf5DHoR53Uq+d7jhlgiAIIjWYOCm2RNvaL/vmWN3mkCkJMl8gutqQqRTEmaPKwByTbNvuWzqZxFiW2afBrgjIertiCB22f1sjxF1tiVWT+E42xTuqQuYhyyJRALA+KbIshgilLGrrITNwnJRwlEwfGc16IQiCGBosaKzGWdNGAABOHF+BkydUAgA+Pdib8nOHBJm6lMVMpSB+eaQPADC63IbjRpYCAFqcrpSek0gdqX9MRaAHEL9CxljQWI1jhzsAAOdOH4nHzp2GdZfM1iS+k51DRpZFoiAhy2I0rFqotUIGhFaoXt2uvfeLZr0QBEEMHdjA2ikjSnHN/HoYOODDvV34+mh/Ss/rU4i9j9dDlqkUxC8PC4Js8ohSNNUIF+s72lJ7r0TqMMuimsh7IHGFjNEnxs2fUl+FmaPLNdtw2eggzaEefhoMTRQgtizE3ud6YIUnyVCP5hYnPtzbBQB4ZXu75t4vmvVCEAQxdOgTrVQlVhNGlduxaOIwAMATm/en9LySIDNEWxaVzpeZCBoBgC+OCNW/qSNK0DSMBFmuIFkWK9UJMhbqEa9CBgC9bh8AoNSeXDh7srH3kWMf8jllkWLvCYlMV8jSFcurJ6E5ZOoti6z3KxLW+6XGd02zXgiCIIYOckEGACtmj8Er29vx+g4nTvryCEwGA6odFkyvK9NUXZAsiyal2Pvoi1sWxKB0DmKkGjTC83xYhYz1F+1odyHI8zBwlLCYDbz+IA6LPetjK9RZFu1x5pDJ6XEL+3epLTnZkGyoB7sGq7Cb0dbvRT9VyIhCwJ7BCtlQCazQGuqhV+9XplY5CYIgiNTpFwWZQxRkDcOKMalWqBzd9vKOpFNyfeLwZ6UKWawEXxbEYDenFsQQi9ZuN3rcfliMHJqGFWNcpR0WIweXN5B0iBWROq3dg+ABFFuMqCwyq3qMVCGLI3Q8/qAkjEqt6p43kmR7yFiFrKpYuB5yeUiQEQWA5PH1p3eHH0qBFSz23qZSkOnV+0WzXgiCIIYOfWIFocQmXHg2tzixTaF/TOuio9YeMsaCxmp8d1KN9O+zjxuhOYghFl8cFuyKE2scMBsNMBkNqK8uBkC2xWyyTxbowamsUtotiStXfaJd0cABxVZtAWeMlCtkosDMZ8siCTJCwpakx1crQymwwqOxQqZn7xdb5Sy1hlsE9FrlJAiCIPRBblnUc9GRWRYtirH38R/vibhdrwU8ZlecMqJU+hvrI/uaBFnW2C8GeqiNvAfkg6GDCPLK+xOzK5ZYTUnbUZMdq+SVWRYBCvUgCgS2gpHuOWRDKbCC2TeZWE2E3r1fCxqrsfy44dK/zQZOt1VOgiAIQh/6ZYJMz0VHJrrkQ36lHrJg/MVTeUIdi0PXgy+OMEFWIv1NSlpsp+j7bKE10AMICSUgdrtKryjIyuzJ2RWB5Bf8QxUy0bJIgowoBOQe31grJXowlAIrtFbI0tH7daA75Mn3BfmoyfUEQRBE9nD7AvCKwqnEZtJ10THeYOh4lkUgXJAd6NZHkHn8QcmWOFkmyCbWCJZFqpBlj32dwnc8RmWgByBc27A9K1bSopSwmGSgBxAKjdNcIRP3/0qZZZFP4/VpNiFBRkjIV0oih/HpyVAKrHBr7CFLR+/XvoiVzc6B7FcOCYIgCAFWHTNwggVMz0VHViGzhFXIxB6yRJZF2Xn8SK9Hl/P612398Ad5VNjNGFlqk/7eMKwYHID2fi+do7LE/i7tlkWO46Th0LFmkaWasAgANlNyC/5sUaFSrJAFee3BIEMFEmSEhLwKlE7bYiqiJdNzy6Q5ZBpi71nvV6ToTKb3i+d5tIqCjC2Qdg34VD+eIAiCSC9saG6J1QSO43RddGQpiyaFlEUeyrPIGB6Zm4IHcLAn9SoZC/SYMqIkLDii2GLCaFEIULBH5uke9EnCSe1QaIY9wSyyXnf4SIdkCFvw12BbZH2QpTYT2E8gX22LJMgICQPHSaIs3cEeTLSURCT21DgsMUVLc4sTS9ZswmVrP0s6QlgrWi2LjAWN1Vh/6RxcedI4AEBdmS2p3q/2fi/c/iCMBg4TxBSrThJkBEEQOUNfROS9nk4J5ZTF0OPi2RYjK2KtOvSRKQV6MEIDoqmPLJMEgjxe2dYGQAi/kO8rakhUIWMpi2W2VHrIQtukJWmRJV1bTQZpO12e/ExaJEFGhBGapp7+FYgFjdW4ePbosL/d9p2JMcVYNuaWsUqh1az9p2I0cDiloQoA0OP2JZVwxRqx68psqHFYAQBdZAchCILIGSKHQgP6OSVCKYvKgswXp6eY2b3KxTCG1u7UZ4SxCpm8f4zRRH1kGYctVN/35i4AQNegT/NCdaIKmR6WRfmCvxbLoVe2KF5sEV6fKmREQWBL4geTCpGVOKW5LdmaWxbkealRW20PWSQjRI99vycgzanRAvOEj6mwS3M4Mlkhy7RFlCAIYqjRLx7bHREXrMwpMXtMOYDkZoGFUhZDIkxeAYlfIRMuXBuqhZCHVCtknQNeHOr1gAMweXi0IJsoJS2SIMsEei1UFyWYEcYsi6UppCwCoesobRUycUHCZEAxq5Dl6Syy5OUukZckOysiWdhMCavJAI8/KMXpytESITxzdLlu2ya3e1g19JDJsZuNKLeb0T3ow+FeN0psDk2PZ4EeYyrs0qpopnrImlucuL95Z9hnX+Ow4NoFDRS7TxAEIaJUIWMYDRzGVxVh8/5ulNpMmp0SSimLRgMHDkJfmBrLYn11MT5u7cH+FJMWvxDtiuOqiiR7phwWfb+vcxCDvkBY3xChL2oXqufVVyXc5+yi0Ik146tXsiymJhnsZiN63H5NgowtiodVyDxUISMKgNAsssxUyNgBYMYoobn5S9EOISdbc8vkjadae8jkjCgVrIaHe7XbRfbLBBmbw5GJBKtsWUQJgiCGGiFBpixAWO9Nz6D2lX0lyyIgm0UWx7LIBFmD2H98IMUKGTs/T1GojgFAdbEFVcUW8AB20jyytKLnrLuiBK0qvTpYFgH5gr92y6LFGKqQxbJWDnVIkBFh2DLYQwaEvMDHjy6HkRMu+Nv6PGH3ydbcMhZ5bzZySfV/MZht8XCvJ8E9o5ELMjaHI90VsmxZRAmCIIYi/RGhHpGwC1lWaVBLIMiDJdubDRGCTMUsMjbDqWGYIMiO9qUWff/F4eiB0JE0DaM+skyg50K11EOWMPY+RctiErPI5KEexeKCRz9VyIhCwJ7AS6w3Az7hh15ZZJZSBCNti9maW+ZOMmExkpAg01Yh8wd5HOwRHjOmokjqIesaTK8g03PljSAIIt+JZ1kEgFK78PcejX3EcrEl7yEDAJMo0GIJMp7nJfFVW2KFw2oEj+QHRAd5Hl+K5+bJCgmLjCbqI8sIei5USymLMcS6NBg6hdh7QL7gr25RwC9bkJBXyPK1h4wEGRGGfHhfJmArMsUWo7Tq9sWhcNtiOoYtqyGZGWRKMMvioR5tguxwjxuBIA+ryYBhDgsq7cyymF5Bli2LKEEQxFCkzx2aQ6YEsyz2ahRk8gTFKMsiq5DFGA4dCPJgWs1qMmB0uTCbKplgj0CQx4tfHoXLG4DZwGFcZVHM+7Jgj68p+j6t6LlQLaVrK1TIAkFeqkixhYVk0brg7/WHt41QyiJRUNiTKCmnAvthFVmMmDJcWHVTCvZY0FiNs6eNiPp7MsOW1ZLsDLJIRpQJFbIjGi2LcruigeOkCln3gFfTpHutZMsiShAEMRTp8wiLZCUxemzKkrQsygVZZIWMhXz4g8qLp/JFVYtRJsg0VshYrPpvX9khbFOQx/K/bI7ZR8wsi7ucrrh2SiI19FyoLorTm9Unm/mVaoVM61gluSCz0BwyotCwJdF0mQoDkiAzSXNNth3pUzyQt7uEisxxIwXhVmozJTVsWS3SDLKULYvJhXrsk0XeA5AEWYDXvtKqhWxZRAmCIIYifZ74FbLSJEM9WOS90cDBwEVaFuP3kHkD4dWF0RXaBVky4U6jK+ywm4XU5H2dA6pfi9DOgsZq/OKU8VF/17pQHa9Cxq41ii1GmDQOnI5Eur5U6cDyyBJGDRxHoR5EYcHseRnrIZNVyMZXFaHYYoTbH8RuZ7jdwe0LYNO+LgDA/3xzLADhQJHOFTjJsphidC/rIetx+zV5n+UVMkCYPcOaw9MZ7JEtiyhBEMRQpD9RD5l43B7wBeIOco7EKyUsRh9r2cVxLMtiKJ2OA8dxmi2LyYY7GTgOjcOojyxTsGugqSNKcOdpx+Cxc6dpXqguijMYWuofSzFhEZDNuVV5fenxhyeMFlsp9p4oIDIf6hHqITNwHI4V43QjbYub93fD4w9ieIkVx48ul7bzaJ/25EK16BXq4bCapIOZlqTFSEEGABV2Nhw6vf1bCxqrce+SY6MOwum0iBIEQQxF+mIMhmaU2ExgkkqLu4GJLbNCZcKYoEIWOn8JF9usQrZfpSBLJdyJ2RZf2daOT1q7KZE3jXy4V1io/s6kWiyeVIOZo8s1L5ayOWRK1316JSwCcsuiukUJb8Q1mINCPYhCQmtJORX8wVAKFFuhYcEekfPI3t3VAQA4pb4KHMdheJLJhVpgcau2FAUZAAwvEW2LGoI9WiVBFmqgzlT0PSCIsh/NGS39+5T6yrRaRAmCIIYaPM8nTFk0cJws+l79xSSrkJkULrBDlkXlc7VUIRPPX2PECllbv1dVhSLZcKfmFide2d4OAHh/TycuW/sZlqzZlLHZlYEgj09au/HKtra8F4Murx+fiiFoJ46vSPp5iuLE3utZIdO64O+JmMEn9ZDlaahH6p8wkVdkMtRjQLbKwbzBk1mwx+FQhSzI83h3dycA4OT6SgBCX9aejgFNAkcreoV6AMDIMht2tLtUV8jcvgCOiNU/diIFIBsOnX5BBoRWfgHhooJsigRBECE8/qBUpYolyADhgrbH7UePhrElPvF5IxMWgcQ9ZJHnrzK7CQ6rEf2eAA70uKVh0bFIJtyJ9ZxFwnrO0u2uaG5x4v7mnWGVvRqHBdcuaMjLhcSP9/cgEOQxqtyGUbLrBK3YLbGFUu+gPkOhAflgaG2hHmwfppRFoqDIZOw9W42xGDnJD88qZHs6BiRf/raj/ehweVFsMeIbo8oByGZ7pdOy6NNPkGmt6B3oFu5XajOhTBY1K80iS7NlkSGfm5OJqhxBEMRQglXHjFxoQVMJKdhDk2UxFGoQCZtD5ovVQyY+1iqeW7X2kWkNd0q250wvkgkgGeps3CssVJ8wNvnqGJCgQubRT5BZTclZFi2SIMvvChkJMiIMWwZ7yFyyhEVGVbEFI0ut4AF8JfaRvSPaFU8YVyH9MCVBloEKWaqhHkAoafGISkG2X5awyMnStSozNBya0S17nXT3rREEQQw1mCBzWE1hx+pISpOIvpcsiwoVslDsfaIestBjWT+ymuHQWsOdUuk5S5Vsi8FssVEMOjthXGVKzxOvt6tX1x4ybQ6syH242Eqx90QBobXpMhXkCYtyJo8QbItfioJM3j/G0CpwkkHPHrKRooA8pNKyuE8h0APIvGWxJ0yQUYWMIAhCDrN1x5pBxiizax8Ozapf8S2L6nrIAEgVMrXBHizcyRZR+VMKd0q250wPsikGs0Vr1yAOdLthMnA4fkxqI2jkc8j4iBmnbAGhTEfL4qBfpWUxooeMWRbdMptwPqH5SrOzsxNPPPEE7rrrLvT39+PNN99Mx3YRWcKW0R6yUMKiHGZb/OJwHw73utHS7oKBA04cH1oFGqFR4CRDZEpVKrDtVV8hUxZklVm0LLq8gYwNDCcIghgK9CeYQcZIZji0T0pZVIq9FwVZDMuiR0mQJTGLbEFjtTT786ypw2PGqifTc6YX2RSD2YKlKx5XVyoJlWRhQikQ5KMssKEKmZ49ZKlZFoHwDIJ8QZMg+/LLL/Gd73wHL7/8Mp555hl0dXXhF7/4BZ599tl0bR+RYbQ2XaaCS3yNoghL4GQWfX+4V6qOHTeyFOX2UMl8RJkgcNr7PZLPXm8ky6IOFbIRZUJFr3PAp+qzVUpYBEI9ZJmqVnVHWCMzZZUkCIIYCvR6hGOiI4EgYxe0WnrIfFIPmVKFTJxDFmswtML5S+ssMgarPi1sGhYzVl1rz5meZFMMZgu9+seA0HUfED2LrGdQP8ui1pYYlrLI9mGz0SDN5FPqdxvqaLrSvOeee3DjjTfiqaeegslkwujRo/HII4/gL3/5S7q2j8gwmQ31EH7okZbFiTUOGDhBdDyxqRUA8M0J4R7pyiIzLEYOQR442p+eKhkTTnqEepRYTdLqjpqkRalCFpGcVGkXTiiZCNjgeV6yLLIF2k5X/qwwEgRBpEqfW12FTAr1GNQgyEQ7ojlu7H38HjK53ZFVyNRG3wPCeeCoeM6qFVsFlNDac6Yn2RSDqZBsRL8vEMTHrd0AgLkp9o8BwnfHrnMixZKug6GTnEMm34dZNbC/0AXZjh07sHTpUgCQmldPPvlkHD16VP8tI7JCJkM9YlkWP9jbBYO4f7WLAuDJTw6GpSQZZLPIjqTJthgK9UhdkHEcFwoiSWBb7HX7pErU6KgeMuGk3ufxS6un6WLQF4RXtC+w7eigPjKCIAiJ/gQzyBgsLTc5y2LsHrJY5wEpZVG2oFhmM0nbyZJ8E9HvCUhVEzZPMxas50xJHJkNHKaJ1ke9yaYYTJbmFieWrNmEy9Z+hls3bNc0r+3Tg70Y9AVRWWRGY0388QVqiZW0qK9lUVtLjJLtNp+DPTRdaVZWVmL37t1hf9u9ezeqq/NvvkOhIvf4RjZ36o1LIdSDRddGrvp1DPiiomtZsMehNCUtKqVUpQLb3kSCjNlJhjksUdXDEptJOqmku0rWI144WIwc6soEQUYVMoIgiBDylMV4sAqZtlCP2LH37G+xqipKoR4cx0mLa/tV9pEd6RPOV2U2k6rE4QWN1Vh/6Rw8du403HnaMVj9vamYPNwBX5DHXzfuV/WactRWkZgYjByirRRAkm1Sjehn/WMnjKuQFq9TxW5h1auQWOJ5XhZ7r0fKojYHVuQcMiAkHPMx+l6T5D3//PPxP//zP7jsssvg9/uxYcMGrF69Guedd166to/IMKwaxENYndAj8j0WAxGx92qja+fVV8FoSH+FTM9QD0AW1Z9ge2MlLAJCZbDCbobT5UXXgA81CVYsU4H1j5XZzVKYCCUtEgRBhOhTOaepTOoh06tCFr+HLFZK8OhyG7460qe6j+yoOOuzVsO5xmjgMHN0ufTvq07hcNnaz/Dsp4cwbWQJOHCodlgwva4sbtVK66DnBY3VKDIb0CsGrdyyqBFnThmeU5Uxrdc5kY/derAHr25vAwDMHluu23YpVcgGfAFJAOuRssj2RY8/qMqe6QkoWBat+TscWtMn/MMf/hBGoxH/7//9PwSDQaxatQrnnnsuVqxYkabNIzKNTSY+3L5MCTLhNbRE184cXS5FyasdtqwVj0+/UA8gFESSaHZarIRFRkWRIMg6B9NbrWL9Y+V2MyqLWdw+VcgIgiAY/VmqkCVOWVSOzJeCPdRWyMQFRLYAmgwzR5ejaVgxdrS78KsNX0t/jyeuWBUpElZFUqp69bn9khgDgPFVRTklxgDt1zkMJXH68Dt7YTebdKn+hUYehT4/tq9ajJwuTiF5eIiathilChlrcSn4lEUAOPPMM/Hvf/8bW7duxSOPPIKzzjoLBgONM8sXjAZOSrFROysiWVjKYrH4I9UaXTtcpQUwWdzi+7fq0EMGyC2L8StkbOVydLmyIAtF36fZsig2n5fZTFQhIwiCUCA0hyz+4iWroLm8AdXJwGp6yGLNIWMVssgLaSn6Po0VskiaW5zY0e6K+nssi16yg54P9IS/p0z0wmslmYj+WBZHp0udxVENRRZhP5GnLPbKEhbjDT1Xi9VkAHsWNYJKmkOmIMjysUKm6Upz48aNmDdvHrZt2wYAeOGFF7B48WJ89tlnadk4IjtonRWRLJEVMq3RtSNVWgCTJRR7r7dlUW2FrEjx9kwNhw63LFKFjCAIIpI+laEeJVaTdDHaqzKQQKqQKVR5jAlSFpUuZoGQ80J1hUwUZIkCPWKRjLjaciC5Qc+RQSUDab6GSQat1znJilOtSBUymdDp0TFhERB6GKVZt97E343UNqKQsujyFLgg+8Mf/oCbb74Z06dPBwBcffXVWLlyJe6+++50bBuRJWwKpet0EBl7rzW6llXIjvR5Uj4YKeHROdSDCUinyys9dyQ8z0uCbGwMy2KmhkOzg3G5vIfMRRUygiAIhtqURaOBQwkbDq0y+t4XTNxDFjnIlxHr/DVKdF6093tVneNTrZBpsegxnCrDoyKrTQciRGYm5qlqRet1TjKfXzIwQSYXsXomLDLYAveAT0WFTCllUbxe7C90y+LevXvxve99L+xvy5cvx86d8dU7MbRgPVPuNFsWI2PvtUbXDnNYYTRwCAR51QdwLeg5hwwQYo/ZZ8tOcnICQR5vtjgx4AuAQ0hwRlJhz4x9sFtuWaQeMoIgiCj6xJX6RD1kgHw4tLpjd7zB0KyvLHaoh7IgK7ebUSJGh6/dcjDh/KujoqMj1vkoEclY9KqLkxv0fDCiQpaLlkWt1znJfH7JwBbG5RUyPRMWGSz6Xs1gZ0VBZlWO588HNF1pVlVVRdkTv/jiC4q9zzPsGof3JYtS7H2sOSZK0bVGAyet2iUKykgGPeeQAeIsshjBHmwmycoXBDswD+Dsv36k6A1n9sH095CFLItVYoWsx+1X3f9AEASRz/A8r9qyCMiGQ6sM9gj1kMUbDB2rhyw6oQ4QzjXs3P7wu3vjzr8KBHmpOpNshUyrRQ8AZoxKbtAz6yFjn1euXrQvaKzG+d+oi/q7w2qMus5J5vNLhlCFTN5Dpq9lEZA5sFR8Nyxl0WZSsCzm6HebCpo+5QsuuAA//elPcd5556Gurg6HDh3C2rVr8bOf/Sxd20dkAZvG4X3JEhl7z1jQWI159VXYerAHzn5v3HjckaVWHOpx43CfG9NRFnV7svA8L1th1C9pckSpFXs6BsL6yLSmSVVIARvprVZ1y1IWy+xmGDggyANdgz4Mc6Qvbp8gCGIoMOgLxXeXqLhoZdHhaodDx01ZNMRPWVQaDK31XNM54IU/yMPAAdVJHvOZRS+e7S5SXLEqktK2MpQGPbMesnGVRWhpd6W9Dz4lxE0/pb4SpVYT/vNVGyZUFkUlJibz+SVDUZyURT0FmVKvWiy8CosKoVCPArcsXnzxxbjhhhuwZcsW/O1vf8Nnn32Gm2++Geeff366to/IArZMhXpEpCzKYXNMFk+qwczR5TGja1kU7+EefYM9vAEe7DSnV+w9EB3skUzDbsZSFsWDsSDGOJTbqY+MIAiCwapjRgOn6jxRKgkybaEekVUuADAZE80hCxdkyZxrmLW+utgSNXBZLVoteowFjdX41eKmqPvGGvTs9QfRJm5v47BiAOHVnlzji8N9AIAFjcNw2UnjAQCfH+6Lar9I9vPTitJgaLafluloWWQL/mq+G0+cHrJ8DPXQLHuXL1+O5cuXp2NbiBxBaR6F3vA8r2hZ1MqINEXfe2T9c3oKMhbscUhMhkxmJglLWewa9IHneV3iaJWQ5pCJFxFVxRZ0DvjQQX1kBEEQYXZFNcdhdmHLjq2JYJZFU9zYe3WCLJlzjR4zyIBQK0LkHK2qYgtuWKg8hwwARpWHv+43x1Xg/rOmKIqPQ71u8BB6lOrE1oBM95Cxwc2JnD3+QBBft/UDACaPKEFtiRVTRpTgi8N9eGenE8uPGxl2//kNVagutkSJtdoSK66ZX6/LHLIihd4uvVMWAXmFTH3svWLKYqFaFm+77TbcdtttuOmmm2Le55577tFto4jsEgr1SF+FzBvgpZW41ARZeoZDs+qgkVM+GSaLlAwpbm8yDbvMsujxBzHgC0gHKL2Rx94DmavMEQRBDAX62Qwyq7pzWCjUQ2PKosJFfSJBFhmIkMy5Ro8ZZAx5K8JtL32NI30e3HhqA77VEFtM7O0UesJYeFePxx+zEsQCPUaV2zOyqByJ0uDmWIOvdzpd8PiDKLGapDEE8xuq8cXhPrzZ0hElyLYe7IXT5YXNxOGeM4+FyxOIK/iSIV6FLC0pi2p6yOKGehSoZZHn9Y8UJ3KXTBzM5D8mfQSZvpbFUKCHfv1jADBSXLk7JIZ6JNOwazcbpaSidIkjty8gCfJySZBR0iJBEASDVcjUJCwCQKl4LNXDssj6ynwxQpYie6CTOdekOoMsEtaKMG1kKQBgf2f8WWj7OgcAALPHlAMAdjsHEIxxPcoi7+vKbBkLJmPEGtwca/A1sytOHl4Cg1hZ/ZYo2j5q7Y7qMVz3+WEAwOJjanHShKqErRzJwHrIBmTzwdLTQybsy2quL70KSaEFXyG7/fbbAQD19fX4wQ9+gOLi4pRetLu7G3fffTfefvttBINBzJo1C7fddhtqamrw6aef4s4778TOnTtRUVGByy+/PCxq/7nnnsOjjz6K9vZ2TJgwAb/61a8wY8YMAEAgEMB9992HdevWYXBwECeccAJuv/121NTUAAA6Ojrwq1/9Cps3b4bRaMSSJUuwcuVKmEzCx5DotQuFTIR6sB+T3WyQDkjJMKIsVHEK8nxKzyVH7xlkjOGyWWS+QDDpht2KIgsGe9zoHPBJc2X0hK3gGg2c5NlmlbkO6iEjCIKQBJnaC9ZkQz1MiqEe8XvIIu1eyZxr9KyQyRlXVQQA2CMKrljsEwXbSROq8HFrNwZ8ARzp9UgLm3IO9GSnQqa2N29efZUkoL44IgqyESXSfcZU2FFfXYRdzgG8t7sTpx1bC0CYc/f6DkHQLZk6PB1vAYDyQnyvZFnUs4dMQ6iHwnDzImkOWSCtLRvZQNPV5uOPPw6bLTUvMQBcddVVGBgYwGuvvYY333wTRqMRv/rVr9DT04Of/vSnWLZsGT766CPcdddduOeee6So/U2bNuGOO+7A7373O3z00UdYsmQJLr/8cgwOCj/a1atX4/3338ezzz6Ld999FzabDbfeeqv0uldffTWKiorw7rvv4plnnsGHH36IJ554AgASvnYhkYlQj1gJi1qpdVhh4AQLpNJcrkCQx8f7u7Fu60F8vD/+vBU5bAab3oKsqsgMq8mAIC+c7JJt2E33cGgp8t4W6o2oogoZQRCEhNqh0IxQD5nW2PvUe8iSOdccSXEGWSzGVwqCbG8CQcZubxhWhHHiY3Y5XYr3ZRWyUeW2kP0uA1WUZAY3f3m4F4BQIZMzX7RvvimrqL2yvQ0efxDjq4owdUT4/fWECZ2BtKcsqp9DJu3DCimLgWAoCTtf0HS1efLJJ2PNmjVoa2tL+gW/+OILfPrpp/jd736H0tJSOBwO3HHHHbjuuuvw6quvory8HBdccAFMJhPmzp2LM888E//4xz8AAE8//TROP/10zJw5E2azGStWrEBFRQU2bNgg3X7ppZdixIgRcDgcuOWWW/DOO++gtbUV+/btw+bNm3H99dfDbrdj9OjRuOKKK6TnTvTahYTdpL6knCyRQ6GTxWQ0SBHsR3qVZ3tdtvYz/OKprXHnrUQiWRZ1jLwHhFlkzP7BGqYbqouhtMYTK00KSP9w6Mj+MQCoLKYeMoIgCIZmy2KSFTKLUoVM/FsggWVRXl3QMucTSGOFTBRXezoGYrbEePxBydo/rrIIE6riCzKph6zMrskWlypae/P63H6pN25KhMCaL37+H+7tkrZ93edHAABLpwxPazUoMo7e4w9KbQv6piym1kMmb3HJN9uiJtn7ySef4MUXX8Sf/vSnqNu2bdum6jk+++wzNDQ0YO3atXjyyScxODiIk08+GStXrkRLSwuamsJjThsaGvDMM88AAHbu3Imzzz476vbt27ejr68PR44cCXt8dXU1ysrK8PXXXwMAysvLUVtbK91eX1+PQ4cOobe3N+Fra2GoV1DZ6pLbH0zbe2GrMEUWY8qvMaLUiqN9HhzudWOq6E1v3hF/3srvlxyLBU2xm4mllRmzQffPYESZDfu6BnG41w2OA/68cR94ACeNr8CFs0bD6fKiutiCGaNiN+xWFoeSFtPxHbGVsQq7WXr+quJQhSxX93G2Xbm6fYQ+0PdcOOTyd90vRm+X2Eyqtq/MHgr1UHN/KdTDGH0eYoLMH+SjbgsEealyZos4hy1sqsa3Gqrw5CcH8ODbe1BdbMb6S2dHnWu8/qC04Dei1Kbr5z+20g4DJ1xQdwx4pUVV+Xd9oHsQPAQRW1lkRsOwYryyvR27OlxR2xLkeRwUh0KPqrBJ4mfQF0j7fqOlN4/jgK+OCnbFujKbdB5nNNUUo67MhoM9bny4txOjyu3YdrQfJgOH0yfXpPW9FMsqZBwH9HuE797AAQ5b6tdpjCLJgRX/uwnbh02hfdjICW0ULm8gI9+vHqjdRk2C7Pe//30y2xJGT08Pvv76a0yZMgXPPfcc3G43brjhBqxcuRLV1dWw28P7YWw2GwYGhLK1y+WKebvLJayaFBUVRd3Obot8LPs3e3y819ZCVVX6ysqZYFiF8BkGOQ7V1el5L8ZDwkGprMiS8muMG+bA1oO96A0A1dUlCAR5PPD25pj35wA88PZunH3CuJiCx3JYiKQtsZt1/wzG15Rg494udPt5dAc5vLJNqDivPH0ypo5SN9yxrkro4xwMIi3fkd/UCQAYVmaTnn+CRxCpXW5/2vYLvRjqv0FCHfQ9Fw65+F37RG/D8MpiVcdEo10QHi5vAGUVxYpWRDm8+PzVCs9f5RQDMQyGqNvkoVkja0sVWwN+eEoDHnx7D5wuH4pK7SiJqILs6xCum6wmA+pHV+henRlTWYS9HQPo8gOTIt9bVQk2HhTOwfU1DgwbVooZ46uBd/dib5c76v0e7hmEN8DDZOAwZXw1vhZFjyfAp/1ctajSgRGv7MCRHjeUan0cgOFlNiyaPgpGA4e9nwkVr2+Mq1TcttOPG4nH39mN9V+2wSBenyw6tgaNY6rS+C5C+6bHH0RFpQOdYvGpzG5GzbBS3V6nSry+HPD64/6m5XbTkcPD9+ESmxkubwDmImvOX4toQbUg6+/vh8PhQENDAywWdSsCSrDH3nLLLbBarXA4HLj66qtx7rnnYvny5XC7w21nbrdbChGx2+2Kt1dUVEhiivWTRT6e5/mo29i/i4uLYbfb0dfXF/O1tdDR0YehHEzpE+0UPS4PnM6+BPdOjiMdwsHWwiHl16i0CSsuOw/1wOnsw8f7u3G4J3YMPg/gcI8br209gOPF9KZI2ruEk5GB53X/DMrMwkH23a+P4sMdbQjywCn1VRhhM6h+LRsn7GCHOl1p+Y4OtgvPaTdw0vMbvMJ+0dnvQVt7r24BKnrCccLJfKj/Bon40PdcOOTyd90mVmUM/oCq47C8h3nvwS5ppmQs2KymwX531PO7+oVz3KDHH3Vbt8xW3tc9gIEYC48s5GPT10ejgqO27e8GINgVO8TztZ6MLrdhb8cAtu7pQFN5qELGvuvP93UAAEaVWOF09mGYRXgPu9r7ceRoT9g4ms9ahW0dXmpFd5cLHpdgtXQpfDbp4JfzJuAGBUcOIFxv/HLeBHR1Cp/hpl1Cy0RjpU1x28y8sPD5/q4O6W8f7urA2g/2xHX1pIpX1o/Vergb+9qFayCHxajrZxgQK28D3kDc37R8Vl9vxD5sMwn/feBoL4Zb9e3zTwdsv06EKkH2+eef48c//jH6+/tRW1uLNWvWoLGxMakNa2hoQDAYhM/ng9Uq/AiDQWFHmDRpEv75z3+G3X/nzp3SazU2NqKlpSXq9lNOOQVlZWWora3Fzp07Jethe3s7uru70dTUhGAwiO7ubjidTlRXCzv1rl27MHz4cJSUlKCpqQnvv/9+zNfWAs8j504cWmB9U25/MG3vg01ZL7IYU36N4SWh6Hue1+bpjvXaLC7Xakp9++Q0tzjxz08OAgC2HOiV/j6jrlTT61TYmX3Ql5bvqFtsOi+zm6XnZ31rAV444Se6mMgmQ/03SKiDvufCIRe/a3kPmZptM3AcSqwm9Hn86B7wo9we/xgqpSwauKjnD4V6RJ+nWe+PycDBwEU/ltFU40Bbfye+PurCcSPDBRnrca4tsablcx9fWYR3d3WKfWTht/F8aAbZ2Moi8LyQUGw3GzDoC2J/lxvjq0JuqANdof4xng/vgw8G05/EN1/szbvxha/C3ku53YSbFjVhfmO1uP/y+FKKvI8+5ze3OPHIu3ujnr970I8b1n8Vs6dcD0wGTpr3NuANSIKo1GbW9fuXvhtvIO5vWpoFa+BgjNiHWfR9vyeQc8eEVFAlLe+55x4sW7YM69evx4knnog//vGPSb/giSeeiNGjR+Pmm2+Gy+VCZ2cnHnjgAZx66qk444wz4HQ68cQTT8Dn82Hjxo144YUXpL6xc845By+88AI2btwIn8+HJ554Ah0dHVi0aBEAYPny5Vi9ejVaW1vR39+Pu+++G7Nnz8aYMWMwbtw4zJw5E3fffTf6+/vR2tqKRx99FOeccw4AYNGiRXFfu5DIRENsKGUx9dCMkWKU/KHe5Gd7RRIK9dBv9YXNKlGaQfOnd/aoChthVKQ5ZbFblrLIMBkN0r/TFSZCEAQxVAgNhlbf/REaDp34GOoVUxZNGlMW1Y5taRwmOIB2tEdXwI7qPIMskrGV8aPv2QyycZWC+8nAcZggWvUjgz0OiJXKunLhWoAFRwT50GeYbubVV4F5FqfXCRa/qSNKwwTU4V4POgd8MBo4NA0Ld1+pjc9XmxStFY7jZLPIAmlJWATUh3pEjm2QE+p3y6/h0KquNrdv344bbrgBjY2NuPbaa/H5558n/YJmsxl///vfYTQasXjxYixevBjDhw/H3XffjYqKCvz1r3/Fyy+/jDlz5uDWW2/FrbfeihNOOAEAMHfuXPzmN7/BbbfdhtmzZ+PFF1/EmjVrUF5eDgC48sorMW/ePFxwwQWYN28ePB4PHnzwQem1V61aBb/fj4ULF+Lcc8/FySefjCuuuAIAEr52IWHLwFBFSZCZU/+xs0jeI71u8DwvzVuJh9JsLzken76x93ofbEOx9+kRRmx1rNwe3ldAw6EJgigEAkEen7R245VtbfikVXlkSqhCpn5hMZS0mPhi0h9nMDQTaX4FwaE0UFeJpmEOAEBLe3Ry4ZE+YYFT74RFhhR93xEtyHielyLvmXADgPpq5aTFA2LCYp04n4wlBgKZib4HBIHNQ+gZW7lQcFZ9sKcTTlfoXPmFGHffNKxYus5iJBOfrzfyxfj0CTJ1c26VEhYZxeICCHNa5QuqP2mzWbgwq6qqgsfjSelFa2tr8cADDyjeNnXqVDz11FMxH7t06VIsXbo05jZed911uO666xRvr66uxqpVq2I+d6LXLhTsGRgMzVIWU429B0LDlgd9QfQM+lFeZMa1CxoUUxYZSrO95DDLR+RBM1m0HGxnji5P+HzMLtg96EMgyMd9L8mgFHsPCNH3ezqBThoOTRBEntLc4sT9zTvDjtk1DguuXdAQVvGQ5pBpuGhlx1Q1giw0h0xpMHScClkcISenqUYQZLucLviDvPScgKxCpvMMMgazHDpdXvR7/GGjA9r6vRj0BWE0cBglGwJdXy1WyCJEXGgGmVBNMxo4WE0GePxBDPoDKId+se2xYOfEMruQCDllRAm+ONyHl746iotmjQYAfMkGQg+P7ifSGp+fDuSzyNhoBj0j74FQxavD5cXH+7sxvU45TVqqkCkIMrad+RZ7n9Tyfz5NxiaikXrI0lghc+loWbSaDFIk+2FxVW9+Q5VilazCblblw1Zr+VCL3gdbVrkK8upn2mihR7xYiKyQsd61DqqQEQSRhzBreeQCGhuZwqzlPM9LFTItlsUyTZbFUC9YJPEti+ocHqPKhb4sjz+I1q7w0DN5D1k6cFhNqBbP25EDotm/R5XZwuya9TEsi2xe2ajykHizZWCeqhx2TmTulTOnDAcAvPDlUWnWGusfmzIiOrVQj1aLVAnNIgtK1wB6VsiaW5y49vkvAQgunHizYeNVeR2SICtAyyJRWEgVMn8g5tDGVNGzhwwARoqreCxd8cO9XWjr96LIbMADZ03GseIAxp+eOEZVU6xbZ8ui3gdbk4FLaz9Xj0IPGQBU0XBogiDyFC3W8gFfAEwLaeshE46hPQkqZDwfmsOkZNtigsynMBjaG8fuJcfAcWioFqpkO9rC+8hCPWS2qMfpxbiq0IBoOczGOK4yfIxRvdh3daB7UDpH97n90mdZVxYaXcSuLTJlWWTnRCbIvj1xGKwmA/Z0DODLI33wB4LYLn7Gk0dEV8j0aLVIlfAKmSjI7PpUyNhCR0fEtUPkQgeDuZSUqrzMWZVvlkVVV5uDg4NYuHCh9L++vr6wfy9cuDDd20lkkEw0xLI5KXpYFoGQbfGwuKr3pJhkuGzaCJxcX4WTG4cBCCU3JULvUI90HGxZP5fe4sgXCEoVzCjLIvWQEQSRp2ixlveJF6wm0R6nFqmHbDD+cVte+TIbop+fzTCLF+qh5vzVVBMd7NHv8UvngNo0WRYBYFyFIKCiK2ShhEU5VUVmlNlMCPLAPvE+LNCjssgctsCbiV54OZ1ShUw4RzqsJmnx94UvjmKn0wWPPwiH1YgxFfaoxxsNHK5d0BD3NRK1WqRKqEIWsiyWalhsiEUyPfTxFhVYyqIrQ9XPTKHqk7777rvTvR1EDiHvmxr0BXSrEsnR07IIACNYhazXjZ1OFzbu64KBA86bUQcAaGBeeYUGYiUky6JOPWTsYJtKX1skFUViP5fO4oitNhq46JVftvpHKYsEQeQbWqzlrLem1GbS1MahtofMK6t8ae4hU1khAyCl/e2QBXscEatjZTZTWECG3oyPUSHb1xWesMjgOA711cX474Ee7OpwYWKtQwr0YP1jDLbdA5myLIo9ZJXFoYXXM6fU4qVtbXh521GwXWR0uU2IalfYZRaI8fmR/Yu1JVZcM78+bZH3jCKzQoVMB8tiMj30oZTF6A9K6iHz5JdlUdUnfdZZZ6V7O4gcwmTgYDZy8AV4wRagU8lajt6WxRGyCtmTnxwAIMwGGSk2BDfVChaB3c7oNCkl3Dr3kAH6H2zTlbTIAj1KrKYogcjCRDpcVCEjCCK/0GItl88g00KZypRFn8ydYlZMWRSOzYEgD54Pn7WlpQeaBXvILYtHRadJTZr6xxjMkhhZIQtF3hdFPUYSZOK5PBToEW6tLMpAOJmcrogeMgCYObocFXYTugb9ePbTwwCAbUddWLJmU1RADGNBYzXm1Vdh68EeOPu9qHZYYgZf6I2d2Tx1FmTJ9NCH9uHoa8Ria36GeuibZ0nkDTaTEb6AP23BHlLKog6x90Co8fjTgz1So+cPvlEn3c4qZJ0DPnQP+qLCKiJhTdF6ziED9D3YMnHUmcD6opVYkfdAqIeMKmQEQeQbzFoebzWfWcvf39MJQFv/GKB+DhmLvDdwUDw/yIM+AkFeEmhAqLqQKGUREAQOB+GY7nR5UV1swVExHCtdM8gYrEJ2sMcNrz8Iq9mAfo8fR/uEz39sZbS1LxR9L4i2g92hodBy1M670ovOiB4yAHhrZwe6BqOFN+ubihUwZjRwqtKW9UZpDpkeKYvJ9NCrsizmmSCjUA9CEXmwRzrQs0LW3OLEna/uACDY7fxB4WQlr+IUW02SrTHSHqFEOgZDM9jBdvGkGswcXZ70yle6hkP3xIi8B+R9a960Bb4QBEFkAy19PH1JDIUG1Id6eKXIe+VzkEnWVxZpW9RSIbObQz1NLWIfGbMspithkVFdbEGxxYggD+wXK117ROtkZZFZ+qzkRCYtRg6FZjBxMejPTg9Ztgc9JwOrkPV7/FIFuNSe+qJ5Mj30HlWhHvllWSRBRiiSzoZYnud1E2QsuSeyYuMP8lj5wraw5J4J4oF8d0di2yKrDOrVQ5YO0mZZjBF5L39Nb4DPu9UpgiCIBY3VmKKQgldbYg2raCRrWQwNho5/3GbpiUr9Y0B4hSwVQQbIbYvCuTE0gyx9CYuA0BM2LmJA9C5RFEYGejAmiBWyI30e9Hv8CXvIMmVZjKyQ5cKgZ60wESvfbj1CPZIJLAnNIYve/x1ihSxT/YGZggQZoUg6Z3gM+oJgp49UUha1rkCxA/luZ3YrZHohWRZ1FmSxIu8BQaiz70ypjywQ5PFJazde2daGT1q7pc8+1t8JgiByiUCQx35xJtdxI4V5UTNHl2HdJbPD7GXSDDKbtnNYuVj16fcEFAM5GD7xNqWERQBhFsXI6Pt41QUlGsVgD6lCluYZZHKk6PvOcEEWGejBKLWZpWrL1239aBPFY11ZuHi0iS6fTFgWeZ4PVcjEUI9cGPSsFSZij/QKIrfYYgybA5cKrIc+slIWudDBiBdMU5Snsfeape/atWvx97//HW1tbXjuuefwu9/9Dvfccw+Ki4vTsX1ElpBWl9JQ7meR9wYutdAMtStQWw704Ds1pagXD/y7OxMLMrfKwZrZpNKeHstid5weMkCwSrq8AXQO+DC2MvT35hZnVGBJjcOCxcfU4JXtbVF/j9XUTBAEkS22H+1Dr9sPh9WIH84ejWuf/xKdA74oa3l/EkOhAcAhW+jqc/ukhbVIElXIDBwHIwcE+OgKmTdOIIISMStkGRBk4yMqZLtFy6JSoAdjQnUx2vq9eGdXB3gILRby3i1ANocsA1UUlzcghbBUiOfNXBj0rBXWqsK+f637diJYD/0lT27FF0f6cNGsUbjypPGKbRuhClnsUI8BXwCBIJ+RwJNMoOlq84knnsBf/vIXXHTRRQgEAiguLkZbWxvuueeedG0fkSVsaUwokkfea4kLjkT1CpRYyRnPLIsqkhZDFbLctSxWpCmCnvU2KPWQAeF9ZAxmHY0UyG39Xvz94wOKf1caBkkQBJFNNu3rBgAcP7ocx4hCZX/ngHROYLAeMq2WRZOBg0O8oIzXR+ZL0EMGQKpexLYsqju/suj7fV0DGPQFpAvydM4gY0QmLSayLAKhPrJ3dnUAEOyKkdcS0kytDAgy5hYpthildo9cGPSsFSZie3RMWIzEaOCkfr9hDktMMRW/hyy0XZn4fjOFJkH25JNP4tFHH8W5554Lg8GAsrIyrFq1Cm+++Wa6to/IEun0XzPfb1GK/VmqV6BECwFLdGJJi/HQ6sHPBkwYubyBqIuFVIhnWRReVxBqHaIQVGMdjUWuNTUTBFHYbNrXBQCYM7YCwxwWlNpMCPChCg6jL8kKGRAK9ogXfZ+oQgbIZpEFIgRZnOqCEtXFFlTYzQjywEf7u+EP8jBwwLDi9Fdv2Hl5X9cg/IGgtGAay7IIhJIWWf9YpF0RkAuy9Id6KCUs5sKgZ61EzpwrTcPII0AIWQME224s4i0qWIyctO/nUy+7pqvNrq4ujB8/HgCkhLWqqir4/fmVdEKkN9SDebrlqxzJoHYFasYoYQWqyGLESHHFL1GwBxOirFKYizisRumgpKdtMV7sPQBUiSfpTnFVUI11NBa51tRMEEThMuAN4LNDvQAEQcZxHBqqhWrMzghnRbKWRUA+iyz2wmBIkMWpkMUYDh0vMlwJjuPQVCO8z3fFqlN1sUW3/qF4jCyzwWzk4PEH8d8DPUL8vcmA4SWxA0Xqq8NbZCIDPYCQ/S4TFRR2/o20n2rtm8o2kYvksRZlU0VNSqI3ToWM47jQc3jzR39o+rUdc8wx+Ne//gUAUnl4w4YNaGxs1H/LiKySzlAPl04Ji8msQE0QD+Txou/9gSDYgmMuV8g4jkOFGEm74aujuoVldMeJvQdCq4BsVTDVpuRcamomCKJw2XKgB/4gj5GlVmnQcCjwIlyQ9Ymr+44kLlrLVFXIElsWjZIgUw710HL+ahwm2DPf2y3MV6uNI4j0xGTgMFoUVG+2CGJwTIU9buWIVdUYgWAw6tyXUcuiQoWMsaCxGusvnYPHzp2GO087Bo+dOy0qICZXsEdck6XDsgjIBFmc6pY0Sy/GPlych8Eemj7tlStXYsWKFVi3bh0GBgZw6aWXYuvWrfjzn/+cru0jskR6Qz30m0HGVqAiwyRqS6y4Zn591EFvfGUR3tvdGTdpUf6e1Vo+skFzi1MaOrn6/X0A9AnL6IkTew/I0x2FzzvVpuRcamomCKJwYXbF2WJ1DAhVY3Y6+8Pum5plUXhMPOt8KGUxsWXRF2FZlAIRNFS4WIWM9VxnImGRMb6qCLs7BvD2TqGneGxFbLsiAHy4t0sKNAGAJ/97CG/scIad+zJqWRQ/s6oYFs9sDXrWSmSFTGkOnB6wvst4gixR0rVge/TkVYVM05Fk8uTJ+M9//oMXXngBkyZNwvDhw3H77bdj5MiR6do+IkukM9SDpSymEnkvhyX3bD3YA2e/F9UOC6bXlSmusEnR93Esi0yQcRC8yrkIC9GIhIVlJGuH8Ad5qVm9LMZAyKqIChmzjiZjW8y1pmaCIAoXef8Yg1XIdkYs4jHLYjJzmkKzyOJUyMTzkDlOlcscI9TDnUSFrEmskDGGZyDQg8GCPdg5JF7CotpznyTIMtBj1CUK64o09VxliqgKmc4piwyHbAB1LFRXyBS+30CQV3U9mGto/rSrq6txySWXgOd5vPPOO3A6nSTI8pBQqIf+q0t6WRblqF2BCg2Hjl0h88gi71NJgUwXauevzauv0nwQ6nP7pBlxsVbHKiMqZMw6qnSSTESuNTUTBFGYtPV5sLtjAByA48eUS3+fUFUMDkKSXueAF5VFFgT50MJVMpZFFpYQV5CJNkQ1FbJIy6LWHjJASDU0GwB2yvf6gxmLFB8fIcDGVSkLMi3nPnsGY+9ZymJlBkJQ0kl0hSxNlkUNFbJYs/RYBkHkc8QavzMUxuxoapBpbm7GySefDABYvXo1rrrqKlx00UVYu3ZtWjaOyB62NPqvJctiiimLyRCWtBgjLp6J0FztH1M7fy2ZsIyewZANxxTjRFwphXqEPr8FjdU457gRUfetLbHiouNHDZmmZoIgCpPN+4Xq2DG1jjC7dpHFKPWT7RT7yAa8AWnhKn2hHmpi72OkLCZRIRNmeoWO+Wu3HsKSNZsyMpoksiI24PUr9kNrOfdlMtSDuUWqFHrIhhKRIWZpS1lUUyFLsA8XKVTI4o3fGQpjdjRdca5evRpXX301gsEg/v73v+Ohhx7CP/7xD6xZsyZd20dkiXSGekix9ymmLCaD3SxLWuxUti1K3uUsCEY1qJ6/loSFMBToEfu7YY3LA75AmKX1iDi75swptWHNyz+fNwHrL52D+5YeK933XxfPJDFGEETOwOaPye2KjPqIpEXWP2Yxckkt3LFQD7YApgRLWYxnmzcZlC2LiS5mI2EXspHPk6kLWTaDjHH3azsVxaCWc19RBkM9YqUsDjUMHCcJWSB9KYtaesgSh3oIvyG11dNcHrOj6Uiyf/9+nHvuudi+fTvcbje++c1vYsqUKXA6c1t1EtpJZ6iHS4q9z47gYUmLsYI9mOfcHwzqllyoJ6rnryURltHjjh95DwjfG7tIYCuD/R6/1H9x4fGjsHhSDWaOLpfsLkYDh1PqqySh36HzMGuCIIhk4XkemxX6xxhSH5lYIUt2KDSDWcF6VFTI4kXPx4q9Z7b7WHYvOdm+kG1uceLWDduj/q4kBrWc+9iCqjfAR30+eqM0h2yoIp9Flu6URTU9ZLEWFSIti+l0DmUKTYLMbrejo6MDzc3NmDlzJkwmE7Zv346KiugDGDG0YRfO6Qn10L+HTAsTqliwR7Qga25x4sb/CL1QHS4fLlv7WcZsG2pRO38tmbAMqUIWJ12J47ioPrIP9nTCF+AxtsIe1Q8gf1yNmNzVJlbTCIIgss1OpwudAz7YTAZMG1kadXuDGHgRWSFLxq4IqAz1CGjoIQtExN6LYk5NhSybF7JaxaCWc59cWKTjOkb+3EwUxEpZHErIr8vSlbLIesgGvAEEeWWxLFV5Y/WQWcPnkKXTOZQpNAmys88+G8uWLcOaNWtw0UUX4YsvvsCKFSvw/e9/P13bR2SJdEbGZl+QsVlk4ZZFZtvojrCR5Jr/OJn5a2phFpryOJZFINRH1iH2kb0pfjbzG6vjBqGwKOWjJMgIgsgygSCPT1q78X8fHQAATK8rVbRINVaHwqACQT40FDrJCoKWOWTxgjnMxgQVMhWCLJsXslrFoJZzn8XIgbk902lbZAmLZiOXNdePnsiFbNosi+LnxCP2d+NWaVlk15PpdA5lCk2f9lVXXYVZs2bBZrNh+vTpOHz4MH7729/i29/+drq2j8gSUuy9P/dj77UyXqFCls7kwnTA5q/d+3qLZJcAYs9fUwuz0MQaCs0IDYf2wu0L4P09wjDR+QleN5cE2VCNxiUIInWU0ti+ONyH5hZn1PGzrtwGm8kAtz+I1u5BqUKWrGWR9ej2efwxkwxZymKscCXhtvg9ZLFmOMnJ5oVsMmJQ7exRjuNgMxvh8gaki/Z0wGaQVRZZcjKVWSus986cZH+kGqwmA0wGDv4gD5cnINkP5Uix9zFTFsNDPdSM38n1MTuajyYnnHCC9N8jRozAiBHRyWrE0MeWxgpZOmLvtRCZtFheZNa0UpcrAx4XNFbjmBoHlv55MzgOePScqZgxqjwlUcEsi/F6yICQIOsa8GHTvi4M+oKoLbFiUq0j7uMky2J/dgXZUI7GJQgiNWLNsur3BhTnOBo4DvXVxfjySB92trvQ5xHOYclaFktkVrA+tx/lCr1HXn9yKYs8z8OrorrGyOaFbLJiUO3s0SKLIMjSMb6HkU/9Y0BoMd5qMuC/B3rSslDJcRwcNhO6B3zo9/pRg+iZd4mCaaQeMnFxxGjg8PNTJij2IzJyfcyOpqPJMcccE3MFYNu2bbpsEJEbhOaQ6b+y5Mpi7D0gJi2W2XCox41dHS7MLCofsv5jdhLgeeCY2pKUDzbMspjIqiDvIdvfIlQaE9kVgdyokKVrqDZBELlPsm6IhmGCIGtxumASj3PJCjKTQbC3ubwB9Lh9ioKMzRaLn7IYPYfMIwviUlPhUDNHMl0XsqmIQTWzR+0ZSFpkfdSVQzxhERDOjVsP9gIA+j0BXLb2s7QtVDqsgiBzeaK/G/miQkxBJvaQ9cuqn2wfNXCAvGicqnMoU2g6mvzf//1f2L87Ozvx97//HUuXLtV1o4jsIw/14Hle11L8gJSymPnYe8aEqiIc6nFjT8cAZo4uH7L+Y5vZCKvJAI8/iB63L2kLDSMUe5+gQib2kB3t8+CTVsHfP7+xKuHzZ1uQDTVrKkEQ+pKsG6JB7CPb1e7CyDJhLlkqx9symwkubyBmH1myKYteWcBHrECESNTaAPUm3WKQXccMpFWQ5UeFLNMLlUKVeFAK5ZDjlVV8Y1V52YK+3I768rY2AELS84njK4dcO4Kmo8ns2bOj/jZz5kysWLEC5557rm4bRWQftrIU4IUTg8WkoyDzZdeyCAiC7L3dnVIfmZDKZIhr0cxV/3GZzYS2fi96Bv1IdfPUxN4DoQGYG/d2we0PosJuxnEjE794rSO7KYtD0ZpKEIR+JOuGYNH3LU6XFOZRYk3+HFZmN+NQryemIPOqSFlkF5k+2QUsq5AZufhiLhK1NkC9SacYZNcY6UxZZIJsKM8gy8ZCZUmcWWQeWXZB7JTF8Mf3DPqkXvbTjq2VZgcOJVIuUZSWluLo0aN6bAuRQ8iHA7r9AVVedDX4g7x0wsiuIBN+rJ8e7MEr29rQ1u9O2C+Xq/7jUpsZbf1e9MaZaaOWbsmyGF+QMcHGkpBOqa9U9dmwClmP2w+3L5Dx4dtD1ZpKEIQ+JOuGYBd4h3rcUoUs2ZRFIPEsMmkwdNyUxehQj0QDdeOhxgaYDuRi0GMwwBoM6iIG2fklrRUyMdSjqnjoVsiysVDpEPd/pVlkrH/MwCHmPuCwhMfev7GjHf4gj6ZhxUNSjAEaBdnzzz8f9m+fz4c33ngDkyZN0nObiBzAZDTAaOAQCPIY9AVRatPneQdk5elsRsR2iL7vHe2usCbQpmHF6B70ZdS2kSossatnMHaEshqCPC+Junix980tTtz7ekvY397e1YETFdLJInFYjVIl8kifB+NizCxLF0PVmkoQhD4k27dUbjdLj/vikNBnk2wPGRCa8dQTo0LGRBZLUlQiXg+Z1TS0ItiNBg7HjylHdXUJnM4+xBhPpYmiNIaTMToHmWVx6J4zsrFQ6YhXIZMlLMZql2EtL74AD68/KNkVvzOpRrdtzDSajiarVq0K+7fRaER9fT1+85vf6LpRRG5gNxvQ7wnoWu5nfl+zkYubHpVOmluceOidPYq37Wh34Z4zJ6HCbh4y/uNEJ3Y58aLe+z1+qRE2Vg9ZLJ9596Bflc+c4zjUllixt3MQbVkQZPkQjUsQRPKk0rdUX12Mtn6v5AzQo0LWO6hcIWNVArOaUI9AdA9ZvDCQQoE5fdJqWRQrZBVDuIcsGwuV7LejFOrBEkbjhdLIHVY7nS5sOdgLDsDiYwpEkDU3N6drO4gcxGYyioJMv9WlbCcsqvFKP/jWbqy7ZHZOizA5ZQmsL4xEUe/MrlhsMSqKZb185kyQZSPYI5uJYgRB5Aasb+nuV3eELWQlckM0DivGh3u7pH+nUiFjx+2YoR7i6lisOUxAqEcszLLoix8XXkjYFIIf9Ib1kFUN4QpZNhYqJcuiUqhHgsh7QDiXs9mA//7sMABg5phyabTOUETzL/aLL77AbbfdhksvvRQ333wzPv7443RsF5EDsNUlPSNjQwmL2RFkWrzSQwVWzYp1YgdCla3I984SlJpbnOhhCYsxVn31+uxqHNmdRcYuxhwRDfm1JVaKvCeIAmFBYzUumjUKADBlRAkeO3ca1l0yO+7vv2FYeG9KSimLduZsUF5I8wc0VMjkgiwwNC2L6SDdlkV/kJfOm5VDuIeMLVTGQ++FSinUQ6FC5hZDPRL1QbJgj1dEu+J3h3B1DNAoyN577z2cf/756O7uxsSJE9Hf348f/ehHeP3119O1fUQWYatLbr/+gqwoS5H3+RjqIFXIYlhf1Fa22DyVWHZFvT67dEXfB4I8Pt7fjXVbD+Lj/d0IBGM3ISxorMYZk2ulf58wriLhxRhBEPlFa5cbADB3XAVmji5PeMHZWB0++H630xX3OBOPUKhHrJTF5GLvUwn1yDfSPYese9AHHkL4RKIgrFyHLVTWRNgS07VQGeohU4q9D/WQxSIQ5MHWKtz+IMwGYEHT0D5/a+4hu/fee/Hd735X+ttLL72ERx99FKeeeqruG0dkF5tJ++pSvB4lAHBlOfI+H0Md2IkgVoVMbWXrc7FRPZYg0+uzS4cgS2THVEIuHK1iiA1BEIXDvi5h7MnYCnW9rHs6XWH/XvnCtqQH55YmOG77VPSCmaTY+9A5Wo3dq1CwW9IryFj/WLndnBfnj0yOPigR9/9+BTtpoh4ypfO9wWDA5v3dQ3pRVdMvds+ePVi8eHHY3xYvXoy9e/fquU1EjiA1xKqskDW3OLFkzSZctvYz3LphOy5b+xmWrNmE5handB+WspgtQca80vEYaqEOieKT1Va2jor3i2VZ1OuzYx7vtj59qpBq7JhKyAWhHiMDCIIYWuztHAQAVeFCzS1O3Pyf7VF/T3SciUWJeA480uvGJ63RFX1W9TLHSVlUir1n1QW1Q6HzmXS0XcjpkmaQDe3qmBw2+mDxpBpVVeNkccQJ9QjZbqP34Vjne48/mNTvMJfQ9IstLy/Hjh07wv62fft2DBs2TNeNInIDmwb/tdqL4mz3kGXDK51uEvWQqa1s8WLOcKyh0Hp9dnpWyNTaMZVsRUfkgkxhFgpBEPlL96AP3aLNe0ylPe59UznOKNHc4sRN/9kGQAiFUFq8ZJUuk8YeMjdVyCTSbVlk43OGcuR9tmA9ZPFCPSIti3r/DnMNTb/Y733ve7j88svx1FNP4b333sM///lPXHnllTjnnHPStX1EFlEbGavlR5LtlEUg817pdFOaoIdMbWXLJp7AY1kWAX0+OybI+jz+lNOvkg0a8QeCYZXDPhUjAwiCyB/2dQp2xdoSq3ThHgs9w6DY4mXHQPjxOnLxUl3KIou9j7YsUg+ZXJClJ9SDJSxW5lGFLFOEKmTR515PjFCPfAxlk6Oph+zSSy+Fx+PB//7v/8LpdKKurg4XXnghfvSjH6Vr+4gsIoV6JDiYafmRhEI9spsAlUmvdLqRV8iCPA9DxCBFtVHvbLBirAoZI9XPzmE1odhihMsbEGaRVSU/iyzZoJF2lxfyNTQ1M9wIgsgf9nUJdsWxFfGrY4B+gUZaRodoSVkMKIR6UIUsE5ZFqpAlC+shUxwMHaOHLB9D2eRoEmQcx+Gqq67CVVddla7tIXIIVjFJdDDT8iPJtmVRDvNKD3VYzxcPodKjVOFila3fbNguWVoYI0qtOGVCJf7134NhzxePVD+7mhIr9nQM4GiKgizZoJEjvYJdscxmQo/bD48/CK8/SKvKBFEgsAqZmv4xvQKNtCxeJpuySKEeIdJvWaQKWbKwlMUBbyBqITlWymI+hrLJUSXInn/++YT3WbZsWYqbQuQaag9mWn4koZTF7MTe5yNmowFFZiMGfAH0xhBkgCDKnh1Zgs37e3D2tBGYPbYcd726A4d7Pfjrpv043CtEQB/t8wiRsmmsFtY6REGW4iyyZAdasv61+upibDnQAx5CH1m1aWgeyAmC0MY+MdBjbIL+MUC/wblaFi99KqK/TWLghy9APWRK2NM8GFqqkBXTeUMrJbKF5AFvIGymX6xFhWwMsM4kqq6KV61aJf33kSNHMHz48LDbOY4jQZaH2KSUxfiWRS0/kn9tOQQg+5bFfKPUZsKAL4Aetw+jEfsCo2tQsObNa6zC3HGV8AZ4/GrDdqz5cL90n1Xv7MFT/z2YVJSzWvQK9lBrx4wUl0dE8Tm81IoSmwm9bj963T5U04mVIAqCvWKFbKyKClmyx5lItCxeSimL8SyLrIcsKOshUyHkCgW7yraLZOl0UYUsWawmYdQMyxaQC7JYKYt6/Q5zFVW/2ObmZul/xcXFYf9ubm7GG2+8ke7tJLJA6GAWf3XJaOBw0oSquPdhPxIWe58LlsV8glXFEvVCdbjCPe+xZtwkG+WsFj2TFpkdM/IgHC9ohL3u8BKrFIpCwR4EURj4A0Ec6BEWZdT0kAH6BBqpDVg6bmSpVCUwx7m4VB4MrRyIUIjI55CxFGE96aQesqThOA4Oq/D9RA6HjpWyCORfKJsczb4xjhuaypPQjtpQD18giA/2dAIAHFYj+mVzJWpLrLhmfr30IxnIgZTFfCRR0iIgNH6zmOeqIrPQYP7mrrjPyxrM9V5xqikRDqZtOg2H/lZDFYwcwPa8MRU2rF0xK+Z2M0FWW2KV4ndjjQ0giHwiEOTzIswoFQ70uBEI8rCbDdJcRDWkGmikdoUfHCeFDpnjpiyKc8gC0T1kNhJkUqgHDyHsxKbjdQfP85SymCIOiwk9g/6oWWSeBEmh+RTKJocaeYiYqA31WP/FERzp86C62IJnfzwLj72/B0/+9xCOrXXgr+fPCPuRuHIkZTHfKLPFn0UGCIOjgzzAASgvsmhqMNc7/ETPChkgCDuv7KKkw+VDvGMzm0FWW2qTxCwJMiLfaW5x4v7mnWG/+xqHJa325FyE9Y+NqSiKSqVNRKqBRmyFP973IHelxBVkihUysiwybKbQdcagL6CrIOvz+KXPvYIqZEnBnFKRs8jUBNPkSyibHPrFEjFRM8PD6w/ib5taAQArZo9GkcWIhU3CoHCnyxu1YpFLKYv5RJk9cYWM+d3L7GaYDFxWI2RrS2wA9BNkrd3CBdbwEis4ThD+3XE+izZZhayUiVkaDk3kMWz+VeQiTLrtyblIKGFRnV1RbxY0VmP9pXOw+ntTYRVt4w+cNUUSxV7ZXLFYtnIgviCjUA/hop19DgMxFpYDQR6ftHbjlW1t+KS1W/VQYXY+dViN9FknSTGzLEZWyGL0kOU7VCEjYhIK9Yg+kDHby4tfHsXRPg+GFZuxbNoIAEJyHSCc6HsGfWGpfwOUspgWylRUeTokv7vwfWQzQpZZFl3eAPo9/rCG3mRoFWcKNQwrhsHA4VCPG63dbsWVy0FfQOq1C+8hiy3gCGIoo2X+1VC3/ahhX5cY6FGR/MiNVDEaOBw/pgJNNSX4/HAv9nQMoKnGASA8NTHe98EEmS+gEOpRYBezsbCbjfD4g4oLy6lUjDsHqX8sVRzidaCWHrJ8RtVV0IIFC6Tesb6+PixcuDDqPhTskX/YTcqhHkoHsUF/EO/v6cSCxmo4rCaMLLXiUK8HO50uqazM8zxZFtMEq/L0xBEVnRERvdmMkC22mKR+w7Z+T8qCbH+X0KA/usKOAARBdqB7ENNGlkbd96g4g6zYYoTDasrLHjLqEyLkZNOenIvs1RB5n24ahhXh88O92NXhkv7mkw2Fjte3z+yMShUy6iETKDIb0D2ofB2j1MvHKsaJAiIoYTF1pApZxFiCQl1UUHUVRIOgCxMpZVEWex/rINbvCYQdxBqGOQRB1h4SZN4AL9kByLKoL5JlMY6oYCeQKvEEku0I2doSK/o9wnDoCVXFKT0XsyyOKbcDRgM+3N2B/WLVLBJ5oAeAvOshoz4hIpJs2pNzkX0aIu/TTYPoKNnZLhdkwnkyUYUgbg9ZgV3MxsKmMItMj4oxJSymTrFYIeuPaBeQZulRhSyas846K93bQeQgVnN4qIeWg1hDdRHe2dWBFmfoJDMgK0vbKWVRV6QKWbweMoUTSKwG88h0zHRQ47Bil3NAl6RFZlkcXWGDQTzIH+hWFmRH+kIzyICQIOvLgx6yVFd9ifwkm/bkXKN7wCctXKmNvE8nzOK/S3au9IlzxUwJFsOkOWQyyyL1kIVTZInuhdejYswSFiuoQpY0zBkTVSEr0EUFauQhYhIZ6qHlINYwTPDCy08y7EdnEwcCEvqhrodM2WKRrQhZvZIWA0EeB3pEQVZuh8km7K+t3W7F+0dWyEokMTu0BRn1CRGxyKY9Oddg/WPDS6y6pu4lCxNkh3o9cHn9KLaY4POzodDaK2Q0GDocmzk0i4yhR8WYLXBWUYUsaZhTKjLUQ03KYj5SWO+W0ATzoAeCPPyBoKaDWINs1S8oDmQcoP6xtFGmpofMFd5DJodFyC6eVIOZo8szcsHO5v+09aVmkzra54EvwMNs5DC81IZx1YINKVaFLFKQlUkVsqEd6qFlwYQoLJg9OR7ptCfnEnulhMXs2xUBoNxuRrV4TN7tFLaNVcjiJSwCgMkQOkczQj1kdJ4FQjNP5YJMj4pxF1vgLKYKWbJIgiwi1KNQUxYL690SmpDbCgd9QU0HsdEVdliMHAZ9QRzqESoVFHmfPlgPWb8nELZaKodZLHJlRU+vChmzK9aV2WA0cBgjXmj1uv2K0fdHxFCP4WL0fr6EelCfEBGPBY3VOGFsedTfa0usBWVl3ZdDgR6MenERaafoKGE9ZKZkKmQFaveKhd0cPU+VVYzjkahi3OFilsXcOJ8ORYqtoesWOYWaslhY75bQhNnIgS3Quf0BTK8rS+iXZgcxk4GTghpaxGZlF0Xepw1muwNix7eHUhZzY0VPL0G2vztkVwSE/WuYeLJVqpLFC/XgeXUzaHIR6hMi4uEP8vi6TTgWnzShAgAwvrII6y6ZXTBiDAhVyHIh0IMR2UfmlaUsxoP1kMlj790FaveKhZJlUY+KcciymBvn06GIwxqjQlagiwqa3+3atWtx5plnYs6cOTh06BB+/vOfw+VyJX4gMeTgOE52MAuC4wBHguqW/CBWPyw8PYosi+nDZOCkg5tSL1SQ56UKWa6kQtU6RMtivz4VstGyBn0mzlojBBnP8wqCTDih+oN8WKLoUEOPVV8if9lyoBtdgz6U2Uy4eNYYAMJFaiHYFOXsE48XuRDowWiIEGR+lSmL5ogKGc/zVCGLoMgcHeoBhAKtmGWdobZi3JVj59OhCJtD1h8j9r7QUhY1vdsnnngCf/nLX3DRRRchEAiguLgYbW1tuOeee9K1fUSWka8u/efLo2jtdsNqMkied4bSQayRxfk6mSAThAJZFtNDvFlkvW6/1GeQK3NTasWUQzYcOlmkyHu5IBP/+0BXeLBHj9sviS7Ww2Y3h0JmhrJtkfqEiHi8/rUTAPCtxmqMKBPsuu0ub1j/Ub7jCwRxUDxe5EoPGRCqkO10DoDneanixXrEYsFuD/LCopsvwIN9m4V2MRsLybIYcdEPCKLsRyeMkf5dZjOpqhi7fQEMiBU3SllMnlCoh3KFjCV9FwqavGNPPvkkHn30UdTX1+O+++5DWVkZVq1aRbH4eUogyIMTD+8f7u3EPz8+AAC47Jvj8INv1CVM5WuIEGTSUOgcSLbKR8psJhzqUZ5FxuwVpTZTwuSuTGE3G1FqM6HX7ceRPg8akhwOzeaNsaqY8N/CBWdkhYxVxyqLzJKlh+M4lFpN6Br0odftkypnQxG26nvHy19HrTqW2kw4cVxFlraMyCb+II/mFkGQLWoahqpiCwyccIzvGvCi2jF093ktHOx2I8AL56BhOWTdnVBVBA5A96APnQM+zZZFQKiqeWXWRbIsCtgVLIty2HxOQDh3+gJBGA3xr1E6xPOp1WSgBeYUKFaIvQ+r8ubItUqm0PRuu7q6MH78eACQei2qqqrg9w/dVWVCmeYWJ5as2QSneLB65N296Br0Y5jDgvNmjFSVytcgWhZbuwaFFSWyLKYVlrTYq1AhYyedXKmOMWqYbTHJPjJ/kMdBMTRGXiEbFcOyyAI9IkVXPg2HXtBYjW81VEn/versKahxWNDr9uPprYeyvHVENvhvaze6RbvizDHlMBk4yeVwtIBCXkL9Y3ZwXO5Uim1mo1TV3+l0SRZEtYOhgXDLNYfEYq5QSCTInK7wc8/h3vjnokCQx4d7OgEIwr6ACsy645BSFgNSGrc/KKvyFtiigqZ3e8wxx+Bf//oXAEgHsw0bNqCxsVH/LSOyBhsuqxSh3d7vxbu7O1U9T1WxBZVFZvAAdnUMkCBLMyxpUamHTGkodC6QarDHkV43AkEeVpNBsiACIXHG+ssYkf1jDGk4dB4IMgDYJ1o1T504DHPHVeKyb44DAPxt0368u6sDr2xrwyet3QVlVytkXt/RDgCY31gtXcSz30u7DoPZhwqsf2xMDvWPMSZUCRbKXU5XyLKYMPZeLsiCYf1juSQ4s0nkPNVIIlNnD/Yoj0sBQgvV976xCwDQNejDkjWbpOozoY1imSuGXR96ZH3cVCGLw8qVK/HHP/4R3//+9zEwMIBLL70Uv/3tb3H99dena/uIDKN2uKzaCznJG9/eL3muqcSfHkrjVMg6crQBubYktQrZflnkvUF2AcIqZD1uf9jnEUuQleRRhYzneakSMF7skznt2FrUOCzo8wRwzfNf4tYN23HZ2s/oYqIA8Ad5vNnSAQA4tWmY9PdhOoXqDCVybQaZHHmwhzegbjC03JniC/AFO1A3HnZL/ApZuzifk40/OdjtVrxfrIXqtn4vVq7/io6jSWAxctKiAusj9xRwlVfTr3by5Mn4z3/+g4ULF+J73/sejj/+eKxbtw7HHXdcuraPyDB6D5dtHBZqVpZ6yCj2Pi2wtCjFHjLxpFOVI5H3jJoS0TaVpCBrjbHiXWQxoqqYRd+HTrBH+4T/Hl5qC7u/JGZTCBfRg0CQxyet3SlVsDoHfOjz+GHgQuEmb+/qUPxd08VE/vNJhF2RwRI5j6Y4mF0LeuzfqRCaQZaDgkx2rmQVskSDoTmOC5tF5iFBFoXSHDI5rEJ2XF0pAEgWeDl6L1QTAhzHyYZDC98P64MsxCqv5ivj2tpaXHrppenYFiIH0Hu4rLxCxoQYWRbTQ6ldTFmMY1nMtUSoVC2Lrd3RgR6M0eU2dLi8aO0axLHDS8JeJ8qyaGWWReUZbpmgucWJ+5t3hgmnGocF1y5o0DQnilUBRpbZYDUZVF9MzKuvogTGPCIQ5LH1YA+e2LQfAPCthqowi5tUnc5QhUyv/TsZAkEeWw50Y6ezHwAwptyW4BGZp16c27nb6YLXL/SAJhoMDQi2RX+Qhz8YhCdQmGEI8YjXQ+b2BdAnLsIdN7IU7+3uVBRkWhaqZ44uT32jCwiH1YQet18SZIW8qKBJkB1zzDGKitVkMqGyshLz58/HjTfeCJst9w52hDr0Hi7LKmQt7S7pv4spZTEthCpkCqEeOWpZrEnRNrVfYQYZY1S5HVsP9oYFe7BQj+ExLItK1cVMwOwwkbAKlpq5OIxIWxZdTBQeSuLn7V2dOLHFKe1H7LfXngFBpuf+ncxrR34Wv3z+S1yXASGohVEVdliMHNz+IPaKxzWzigUSk5ED/ELKoscvXNQW4sVsLJggG1CIvXe6QmmJE2sdAJR7yPReqCZChCpkwrm3UBMWAY2WxRtvvBHHHHMMHnvsMbz44ot4/PHHMXXqVFx88cW47bbbsGvXLtx3333p2lYiA+g9XHZ8ZREMnHChyy6eqUKWHsrsrIcsWlR0uHI/1IMlt2pBaQYZg/3tgHifQJCXLj5zKdRDbzvMXmbLqhAEGV1MFBaxel26B31h9tRhol042f5NtWTT7hXrs2jPQauuycBhvFgl2360D4C6i1I2i8wf5OH1C58hCbIQTJC5/dGhHuyYV11sQV2ZcL442O2OOhfpvVBNhGDBHv2e8ApZIQ421/SO165di0cffRTz5s3DhAkTcPLJJ+Ohhx5Cc3Mz5s+fjwcffBAvv/xyuraVyAB6D5e1mY2SnYydFEmQpQepQjYYu0KWaz1kTBgN+oJY9/kRTX0l/kAQh0V7iZJlMRR9L9ynw+VFgBf28aqIweZS7H0Wesj07tvc2yEGelQJ758uJgoHLeInVJ32JrUYoha992+1DMW+n/pqYRFlj/gbTpSyCCCih4wqZJHE6yFjFbLqYgtGlFrBQRBu7HzJ0HuhmggRORya9ZAV4mBzTe/46NGjqKysDPtbWVkZDh8+DACorKyE262cUEMMHdhw2cgDUG2JNSlrCbMqMihlMT2E5pCFiwqeF4a/ArlXIftgbxfYJcddr7VoSv472CMMebWZDIpDXqXh0GJl9ohYCahxWKIWFEqssauL6UbvClakZZEuJgoHLeKHpSx6/MG0WnWzVaHNlhBMBZa0yDRiopRFQCbIAtRDpgSrkPkCPPyB8CoZS1gc5rDAbDRIC4SRfWR6L1QTIRwRw6ELuYdM0zueMWMG7rjjDng8woWNx+PBvffei+nTp4PnefzrX/9CfX19WjaUyCwLGqux/tI5eOzcabjztGPw2LnTsO6S2Ul57lmwB4NSFtMDq/IM+AJSShcgHOhYjHIuDYZmdqLI9Wm1yX9SoEeF8pBXViHrGvSh3+OPGegBhKqL2Qj10LOCNeANSMKTJcnRxUThoEX8WE0GVIg253TaFrNVoR2KVt3Ic2WilEUgFA3uD/Lw+ArX7hULuSMnchaZZFkUFyfqxEU8pT4ytlBdYg2/fkl2oZoQiNlDVoD7sKZ3fPvtt2Pr1q2YOXMmTj75ZMycORNbtmzBbbfdhk2bNuGBBx7AypUr07WtRIYxGjjMHF2OxZNqMHN0edIXbJEVMrIspocSm0mqNslXvFn/WLHFCFuOBKroYSeSAj0U7IqAsPLGBOiB7sG4giybc8j0rGDt7xKqYxV2M8rtIfGtd9WbyE20ih9WWW5PoyjJVoV2KFp1IwWZugqZrIdMXIizFeDFbCzMRoN07TIQYVt0uoRzQrVoYa8rEwVZjFlkCxqr8e2JwrHypPGVKS1UEwLFlvAeMnnsfaGhqVRRV1eH9evXY8uWLTh69ChGjhyJ4447DhzHYfjw4fjwww9hMBTeh0jEpyFCkO1o60fF2ApakdcZA8eh1CZEyPYM+qSTTChhMXeqY3ok/7XGSVhkjCq3o3PAh9ZuN470CifZ2pLoFFgp1MPjR5Dnw4ZMpxtWwVJKoWOorWDtYXbFqug5SwsaqzGvvgrPfXYI976xC5VFZqy7ZDb9DvMIJn7i/bbk4qemxIod7S4cTWPSop77txa0fha5QI3DghKrSYpiN6lNWQRLWSzci9l42M0G9HsCUX1kbCGCLUxIwR4K0feMXWJ/37cnDaNUWh1wWMMrZCx8hXrIVODxeFBXV4fp06ejpqYG+/fvx2uvvQar1UpijFBk+9F+yE8rv/j3F6r7hAhtKCUtduZg/5gediIpYTFGhQwI9ZElrJCJNpQgrxyPnG4WNFbjju8eE/V3s5HTGHkvfCbjKpU/E6OBwwnjhD5gty9IYizP0GpPlWaRpTlpkVVoI/tC0lmhHYpWXY7j0FAdWkxRl7JIg6ETURRjFpk81AOQVchiCDKe59HS7gIANFY70rKthQarkEmDoQt4UUHTO3722Wcxd+5czJ8/HwsXLsTChQvxne98B7fffnu6to8Y4jS3OHHjC9uS7hMitFGqkLTY4RIrZMW5I8j0sBOprZABgr2RCbLhpdGCzGY2Shcx2bAtAsCIMmG7ymwmXDtf6MX1BXhMFodaq4ElLLJADyVY+MuALyBdwA0lAkEeH+/vxrqtB/HxfvWpnIUCEz+R7UdK4kdKWkyzIGPbNW1EaF+++dTGtNu9hqJVd7ysun2oZzDh/h0SZMGQ3asAqwvxsMUSZFIPmSjIWA9Zd3QPGSAEQ7m8AZgMHMbGWPQitCFVyCIsi4W4qKDJsvjYY4/h6quvRnFxMT766CNcfPHF+MMf/oBvfvOb6do+Ygijtk9oXn1VTq1SDmWUkhZDFbLcsSymaify+oNSeEU8Qcb6yxJVyAChSubxe9Hr9mFkWeaH228/2g8AmDqyFN//Rh2ad7Rjy8FevLKtDT+cPVrVc0QmLCrhsBph5IAALwj3mhifRy6iNOS3xmHBtTk25DfbfHN8JViS/fUL6lFfXYzpdWVRx9lM9JDJ6ZYdl0aUWTNy3GdW3W+v/hC9bj9uWdSIM6cMz8lzTnOLE6993S79+5//PYTXdzjj7t/KFbLc6BXOFUIVstAClNsXkKyhw4rFUA/xuN/e74XHH4wSBaw6Nr6qSFV/H5EYFurRL1oWPWRZVEd7ezsuvvhizJ07F/v378fkyZNx99134+mnn07X9hFDmKEYOzzUkSpksrRAJsiqcsiymKqd6GCPG0FeONFWxRGaTKzt6RiQeuliCbLSLAZ7AMD2NkGQTawRrDDfPbYWALBh21FVc6L8QV4KOoknyDiOk6ytPVlIlUyWWEN+qdoezb7OAQQhLDJ8b/rImKFMTIyns4dMTresct89mLnfmdHAwS8mzaYSUJVO2P7d5wmv4iTav43ihasvIBdkuff+sok0i0xmR2d2RavJIFVpyu1mFJmN4AEc7o22Le4UBVlDRPgKkTxS7L2HLIua3nFVVRV8Ph9GjBiBPXv2AABGjhyJjo6OtGwcMbQZirHDQ53QhbasQiZZFnOnQgakZifa3xU/8p4xSrSgsM/DZjJIEfeRyIM9ssHXoiA7RhRkpzYNg8XIYZdzADvEC4F4HOpxwx/kYTUZFG2Zcth+0q0wRDwXGYpDfrPJrg5hf6mvLor7+6jNoGWR5/mw/a0rg/sez/OSXY1dnOcSqezfZpllkSpkyihZFiW7YrFF+o1wHCeLvo8WZFL/2DASZHoRGXsvBdNQhSw+06ZNw69//Wu43W6MGzcOTz75JJ577jmUl5enafOIocxQjB0e6ij1kOViqAeDzbtjVpErTxqnqq9EmkFWHt9aWGozhwmw2hJrzAtUFuyRjQqZxx/EbrH/65haQZCV2Ew4ub4KALDhq6MJn2OP+PixFfaEKZHlkiDLjvjUClXbtbHbKewLkTHqkQwrEY4JLm9AuiBKFy5vAL5ASFBkcjHA4w9Kfcz2HBy7ksr+HRoMzRd0dSEebNROmCBzhScsMuJF3+90CotmkcnRRPJEhXoECrfKq+lXe9NNN6GzsxMulwvXX3897r//fvzqV7/C1VdfnabNI4Yy2Zo/U8go9ZB15GDsvRyjgZNWHIssxoR2okCQx5YD3QCEyOdEVRF5j1ksuyIAlCokVGaKXU4XAkEeZTZT2DZ+d1INAOCV7e3wJ3if+8T+sfEKkfeRMEHWM0QqZFRt18Yup7CSPyHBvlBsMUkr1O196f3sIgVY90Dm9j23rHfIloPVo1T2b5MxNIeMUhaVsSn0kLVHJCwyRpYpD4d2+wKSM6ORLIu6USzF3gcQKPA+SE2/2o8++ggPPfQQampqcPzxx2Pjxo346KOPcOaZZ6Zr+4ghzFCMHR7qlCn1kIknnqocSlmMZGSCuGFGc4sTS9Zswju7OgEAL29rTzhCYZQsoMNkiC3gSrNYIWP9Y8fUOsIqeCeOr0SZzYQOlxcf7++K+xws0GNsnP4xBttPhoplkart2mCzkhJVyIDM9ZF1RQiwTFoW2UBgq8mQk+ebVPbvsFCPQOEGIsRDKfbeKe7v1Y7wRTo2i+xQxLloT+cAgrywmJXL59KhhsMScrAM+gIFPRha0zu+/fbbw2aNmUwm2O0U/UnEZijGDg9lyuzhomLAG5AGLeaiZZEhDeRUsIkwkgl1aG5x4t3dndK/P9jbFVPAlUg9ZJkXKV8fZYEe4RH3ZqMBiyYOAwD8/aMDeGVbGz5pVY56Z4JsvApBVj7Eesio2q6eQV9AuphMVCEDMtdHFlUhy+C+xy7EbTl6kZfK/q2UsliIF7PxkEI9lCyLEeIqVg9ZS5sY6DGsOG5fJqENi8kAszijo9/jD9luC3BRQVPs/dSpU7FhwwYsXbo0XdtD5CEsdnjrwR44+72odlgUI5iJ1Cm1hVvRWP+YzWSQfPS5CDsJHlJItgLUN71/q6FK+jcTcJEwARe5IJArFbJImIVx8/5ubN7fDSA66p3nedlQaA2WxSwlSmqFVduVvk8GVdsFWC9iZZEZFSoWYWrEPrK2dFfIxGOS1WSAxx/MsGVRuBDP1WNgKvs3E2S+QFC6mCXLYjhKoR7tETPIGKyH7FCPGzzPS+KrxckGQpNdUW+KLSZ0D/rgki0gUw9ZArq7u7Fy5UpMmzYNCxYskIZDL1y4MF3bR+QJRgOHmaPLsXhSTc7GDucDrELGLrQ7xFXAXBoKrYS8kVop4l1t0/uWA0LTezKpZaX27AgyfyCIne3hCYuM5hYnHnlvb9RjIquCHQM+9Hn8MHDx57Ix2H4yVCpkgLCw87OTx0X93WoyULVdhtQ/pvLCcZhYIUv3LDImwNiCQSYti6x3iF2Y5yLJuknMSj1kBVhdiAezLA54lVMW5YwotYGD0NPUIws9YsdoCvTQH2kWmbxCVoCLCpoqZBdeeGG6toMgCB1goR4efxBuX0CavRVvVlcuMKJUEGQDvgC6B31RK/uqm95FAbrlgPrUspmjywEApVbhM+rLsCDb0zkAb4BHscUoVQoBbYPVWaDHyDKbqtXxoRbqwWCiYdaYMpxyTC3uf3UHTAbglPqqBI8sHJggq1dhVwRkPWQZsiyOq7Tj67Z+9Lp9CAT5jCzODUiR97kryIDk3CRyy2Iooa7wLmbjwSyL8nCXUMpieA+Z1WTAMIcFbf1eHOwZRHmRGTzPS5H3TSTIdEeaReYNyPbh3P6tpgNNguyss86S/ruzsxOVlZW6bxBBEMlTbDHCyAEBXqiS5XLkvRyryYAa6STojhJkqpvexdVOdrJNhFzolUiDoTMrUtj8saYaR1hcvZYobBZ5r8auCAxNQeYPBPHq9nYAwIXHj8YZx4/Bmnd2o9ftx/ajfZgyojTLW5gb7NYQ6AFkroesazC8QhbkhcWP8gwsFrlzeAZZJMxNohaTMRR7Tz1kytgjYu/dvoA0bzKyQgYAdeV26Vw0eUQpnC4vetyCA2F8FQkyvQnNIgsUdJVX0zv2+/144IEHMHPmTCxYsACtra04++yz0d7enq7tIwhCAxzHSX1kvW5fzg6FViLe/Be1Te8zRglN70onWSXkQo/NcOvN8GDo7UeV7YpaorBZoIdaQcYqqUNlDhkAbNrXja5BHyrsZswZVwGjgcPx4oXr5n3dWd22XGK3ysh7RqiHLDOx99XFFmnmX6Yss4NDpEKWDCbFwdCFdzEbD7spXJCxBTuryQCHNXqfqItI/WXVsbEVRfTZpgFJkHn8spTFwmtr0bRnPfTQQ9i4cSP+9Kc/wWw2o6qqCsOHD8edd96Zru0jCEIjUh/ZoB8dQ6RCBgAjy8W4YYVgD60jFGaM0p5axgRZvyeQcLaZnnwdI9BDSxR2SJCpS71lFbIBX2hFMtd5aZswHPvbxwyTLkJnjy0HAGxOMBKgUOhz+yVhpbZCxixb3YO+tO4LLPa+osiMCrEqlqk+MtZDls+CLBDkKdQjBqEKmfD5sMWuYQ6LYmLiyIjFwZ3toYRFQn+KxQWaflmFrBBTFjW94xdeeAGrVq3CSSedBI7jUFRUhHvuuQcbN25M1/YRBKGRsAqZNBQ69wVZvAoZIPRX3HX6MVF/V2p6T2YGHktZBCDZWdJNkOclQTYxokKmJQpbS8IiADisgrUVGBq2RZfXj7d2dgAAvntsrfT3OWMrAACfHeoNS1ArVHZ3CBeOtSVWqS8jEWU2k3QB357GpEVWDSu3m6UKbeYE2dCxLGrFJI4i8gV4ePyheWtECCbEWS9hrKHQjLqI4dBSwiIJsrTgkFfICnhRQdM7HhgYkPrGWBKazWYLm01GEER2kYb+uv2yodBDyLIongSVYEOPi80G3HHaRDx27jSsu2S2YgKZ1tQyk9EgpXFlKthjf9cgBn1BWE2GqIHOakTlVSePh8cflAIZ1AoyjuNQJkXf574ge6ulAx5/EGMq7DhWVkkcVW7DiFIrfAEeWw/2ZHELcwMp0KNa3X4ACPsC+42kM/peLshYhYwsi6nDesg8/gACYmG/EKsL8QiFeoRbFquLrYr3j7QsShUyirxPC8WyUI+Q7Tb/fquJ0BTqMX36dDz88MP45S9/KZV5//73v2Pq1Klp2TiCILRTKl5o9w76pFCPihxPWQSiT4JKsAvOptoSfGdSbcz7MbSmlpXYTBjwBTLWR8YGQjcNK5asR3KYqLy/eWdYj4+BE0IRPj3UA5dX2NYSq1F1VQQAyuxmdA74hkT0PbMrfndSTZjFiOM4zB5TgXVfHMHmfd2YO66wg6Z2OQXr6gSNwQM1JVa0drvR1peePjKvPwiXGDleUWRGORu7kKFZZIVgWXTJIt0LsboQD3tE7L1TXHiIZQuvE+3zR/s8GPAGsEe0hFOFLD2EQj0Ku4dMkyC7+eabsWLFCjz33HNwuVw47bTT4HK58Le//S1d20cQhEZYhUxIWRx6lsWjfR74A0GYFFZ5tUZ6A9pSy0ptJhzt82QsaXF7DLuiHCVR6fYHcPW/v8TTWw9L9+vzBLBkzaawgdHxYH1kuRrsEQgKVa/dHS4ptOM7k2qi7jd7bLkoyKiPbFeH9goZANRIs8jSUyFjot9o4FBiNaHcLhyPMm9ZzENBJh4n5YKMUhbDYd+72x9EkOdDkfcxLItVRWZpgPnGvZ0IBHk4rEbUlihX1IjUKLaE+re9lLKojjFjxuDFF1/EjTfeiF/+8pe44oor8OKLL2LChAmaXnTDhg049thjMWPGDOl/119/PQDg008/xfe+9z3MmDEDCxYswNNPPx322Oeeew6LFi3C9OnTsXz5cmzZskW6LRAI4N5778WJJ56IGTNm4PLLL0dbW5t0e0dHB6644gocf/zxmDNnDu666y74/aGLkUSvTRBDAdaf0d7vkU7SVUNAkFUVW2A1GRDkgSMxIrhZBUBtYIFWWLBHpiyLsfrHIokcrO7xK4eORA6Mjock3HOwQtbc4sSSNZtw2drP8Ps3doEHYDZw2CFah+QcP6YcALCj3YWugfQmBeY6u5P8fbBgj3TNIuuS2RU5jsu8ZVE8DtrysodMqCSw6o/ZyIWNzyCAIktIiHv8QWmeYawKGcdx0gIh611trC5WDAAhUoclXfa4fSHbbQEuKmh6x3fccQf27duH0047DZdccgnOOOMMOBzxLySU+Pzzz7F06VJs2bJF+t8f/vAH9PT04Kc//SmWLVuGjz76CHfddRfuuecefPbZZwCATZs24Y477sDvfvc7fPTRR1iyZAkuv/xyDA4KPSerV6/G+++/j2effRbvvvsubDYbbr31Vul1r776ahQVFeHdd9/FM888gw8//BBPPPEEACR8bYIYKrCURTabymzkFKN9cw2O46LSrSIJ9cikR5CxOO7eDAgyXhboEZmwGA+1A6MTJUWGKmS5JciaW5xYuf6rqBh2X5BXFJuVRRbJSvTR/u5MbWbO0TngRdegDxyA8Sp7CRm1aY6+Z9ZEZlXMvGUxjytkkmVROGaRXTEa+Wcy4A1IKYvxxqMwQfbe7k4AQMMw7de6hDpYhaxTdjwoxD5ITe+4o6MD5513HpYvX44nn3wSfX19Sb3o559/jilTpkT9/dVXX0V5eTkuuOACmEwmzJ07F2eeeSb+8Y9/AACefvppnH766Zg5cybMZjNWrFiBiooKbNiwQbr90ksvxYgRI+BwOHDLLbfgnXfeQWtrK/bt24fNmzfj+uuvh91ux+jRo3HFFVdIz53otQliqMBSFvd1CQsVlUXK0b65SLxgj36PX6qcqZ2xpBVpFlkGBNnhXg963X6YDJymnh8tA6PjkYuCLFmxOUuskhXyPDK2WFFXboNNo/CoSfNwaLaPVYj7XIVoWcxYhUy0QRXltSATRGchXsgmwsBxsImibNAXCFkWHbEtiKyPjCXuUuR9+mALxl0yQVaICwuaesgefPBB9PX14YUXXsBzzz2He++9F4sXL8Y555yDWbNmqXqOYDCIL7/8Ena7HX/+858RCAQwb948XHfddWhpaUFTU1PY/RsaGvDMM88AAHbu3Imzzz476vbt27ejr68PR44cCXt8dXU1ysrK8PXXXwMAysvLUVsbCgKor6/HoUOH0Nvbm/C1tTBErn0LBvZ9FMr3wlafWVpRVZF5yLx3JsgO9Xqitpk1Vg9zWFAeI6Qk1e+a2T37PP6o5wgEeWw50AOny4vqYgtmjIodDpKIQJDHhq+EoIoRpVaYjJzqbWYXE2ruF+85mSDrdUe/12yhRWwurimVtnvO2Ar885OD2LSvCwA/ZBYg9GR3R8iuqPXt15aGesjS8dF1u9kMMgs4DmFzyBK9nh7Hb5auZ7cYc2Zf1wuzmLLo8oi2TJNhyL7HdJ6riyxGuP1B9Lh9ksiqKbHEfK2RZeFirbG6aMh+rrlG5PcsWRbFBRqLkYMhyXNrLqJ2v9EkyACgpKQE559/Ps4//3x8+OGHuOWWW7B+/Xps27ZN1eM7Oztx7LHHYvHixVi1ahW6urqwcuVKXH/99Rg2bBjs9vDBpjabDQMDwonG5XLFvN3lElYHi4qKom5nt0U+lv2bPT7ea2uhqqpE82OI9FMo38tYb/hw1+EVRaiuHhrvvamuHNhyCM5Bf9Q2H90thDZMGlmW8P0k+10PFytVXiDsNV7+4jBuf+ErHJYlQI4os+E3Zx6L70wZoek1Ip+rtduNZX/5SPVz1Y9UJ8jqR5bH/ZxG1Qi3uQJ8zuwfngO9qu7n5oTVU/Y9n1pih3ndlzjS54GLM2JcAcZTH+wXLmamjq7Q/H0eYxEEktPlRXlFsWKgTip4IFyRsGPRBINwAdY96ENVlUOVgE7l+O0VK6rDqx05s6/rRWW5YHtmM7bsVtOQf4/pOFcX20xCqqxofrCZDRg7slxx33v5i8P426bWsL/d9OJ23L5ksubjPREb9j2PFo/nzPfw/7d359FN1fn/+J9ZmqV7S6GFCqhtWVzZFzek2OHzUUQGUfzIMOL8xg10VGRRYUZcUJgZFRmVYQBBvzjOETeWUUEtKAcpUBBQEWgrSynQNt3TNm2W+/sjubdJtyRN0twkz8c5c86Y3CY3eSchr7xfizZKFfKv4a7wOiCrr6/Hl19+ic8++wxHjx7FzTffjBdffNHjv09JSXFJA9Tr9Zg/fz7uvvtuTJ06FSaTa+2IyWRCTEyMdGx71yclJUnBlFhP1vrvBUFoc5343zExMdDr9W1SMJ3v2xsVFXUQOi/foG6kUNjf+JGyLoLJ9Qt7rFoBg6Fr6cXdLdHR6vbXsro253zktL24ul+8tsPH4+taq6z2LzVl1Y3SfeSeNGDBlmNtjr1QY8LDGw/hr5OvQPYA910N/XVbl8dFoVesptOdpNQ4LS6Pi+p03dWOhkblNY2yeX1obTb3BwHQCfbjnNf56t7xOHSuBqtzT+LK3vE+72KGmp/PVQMA0qLVXq+nYBOgUipgtQk4cbbS793kShzdH3UKAQZDHQRHel2TxYZzF2qg13ScSuiPz2+j45f35oYm2bzW/aWx3vU7kVoROp/3rQXy32qtY17uz2ftNWEpMRpUVBjbHNfRZ3RpbZPXn/fUvtbr3NyqGZNGGbqv4faIj9cdrwKyp556Crm5uUhLS8Ndd92FN954A8nJyaisrPT4No4fP45t27bhqaeekn6ZaG5uhlKpxDXXXIN3333X5fjCwkJkZWUBALKyslBQUNDm+ptuugkJCQlITU1FYWGhlHpYXl6O6upqDBgwADabDdXV1TAYDEhJsb+ZioqKkJaWhri4OAwYMAB79uzp8L69IQiIiC/+oSZS1kWsIRMlR2tC5nH3cZpF1vqcC6UZS9FuH09X19q5qYcg2FML/+6mpunVnUW4KaOH2y/+/rotpcI+MHphO18aRHPHZ0CpUHT6HIivk5pGs2xeH0PSEzwKNoekJwBwXecejgL9Dw6dB3AeANArVuPxGIBQJggCfhVb3veI8Xo9lQoFesZocLGuCaW1TVJNmb+0NPWwfxbp1EpoVAo0WwVUNpjRx4PaLl8+v8U5ZLoolWxe6/7S+rNCo1KG/GMMxL/V4nDos47a6p4xbf9d9OfnPbknrnN0lGsoolGH/mu4K7zKS1Cr1VizZg2++OIL/OEPf0BNTQ3+8pe/IDs72+PbSExMxPvvv4+1a9fCYrHg/Pnz+Nvf/obf/va3mDhxIgwGAzZs2ACz2Yy8vDxs3bpVqhubNm0atm7diry8PJjNZmzYsAEVFRXIyckBAEydOhWrVq1CcXExjEYjXn75ZYwaNQr9+vXDpZdeiuHDh+Pll1+G0WhEcXEx3n77bUybNg0AkJOT0+l9E4UKnVop1RUAQHInnaTkpk+8PSCrNVnatJ7/NcAdFgGntveOGgN/NdDw922JA6N7tWrbnBqnxfLJV4TsHDKV0h5sdmbu+Iw2X4ZyCwz46kR5m2O9GQMQysqMzTA2WaFSKtA/We/+D9rRKy5ws8ha2t7b318KhaJbm8q0dFkMv0YBrQfKa8PwMfqD2Oim2NHBt0dM2x8d/PkZTZ7TOH6gEUViQw/Ayx2y5cuXAwDy8/Oxbt06fPvtt8jKypJmiHkiLS0Nq1evxmuvvYZVq1ZBq9Xitttuw/z586HVavHOO+9g6dKlWLlyJZKTk7F48WKMGTMGADB27Fg899xzWLJkCUpLS5GZmYk1a9YgMTERADBnzhxYLBbMmDED9fX1GD16NFasWCHd98qVK/HCCy9gwoQJUCqVmDJlCmbPng0ASEpK6vS+iUKFQqFAgi5Kav7Qo4MGGHIUrVEhOToKlQ1mnK8xYaDO3mq4sqEZlQ2Olt4B6rAIAHFOu0YApPbI7nhynD9vC2h/YPSQdM9T9MQvxA1m+zBOucx9EYPNZV8VuAwOTo3TYu74jDbBpqedGceF8a/aYofFfkl6RHWx/ksM7ksD0Ppe3CFLcvosSoq274QGeji0TRBgcjQ4Cs+2967rHYkDdT0hdtg8W9XSHKo1f39Gk+diNGo0S009IvM17HFAZrPZ8OWXX2L9+vUoKCiAxWLB6tWrceONN3p9p6NGjcJ//vOfdq+7+uqrO7wOAO644w7ccccd7V4XFRWFefPmYd68ee1en5KSgpUrV3Z42+7umyhUxOvUUkCWHAJDoZ2lJ+hQ2WBGSU0jBjrmczm39A7kl6qEVjtkHQ0Obc2T4/x5WyJxYHRXxGpVUCkAq2AfyNlZC+julp2VArPVhsX/PY5+iXo8+5usDoNNb37V7upzJWdWm4BvC+07gEl6NayOejBviTtkgWh939L2vuW13V2zyEzmlrrE8AzIWu2QyeSHFbkRh4IbHd0o25tBFojPaPJMjFYl/TgTqa9hjx71u+++i5ycHPztb39DTk4Odu3ahdjY2DZt4olIHhL0Lb9EJ8eEzg4Z4FpHJipy1I9leDGvqyvEGrJGsw1mq02qaeqMc01TZ/x5W/6gUCik14mcZpGJxMBgcFoshvdN7DDIiORftXMLDJi8Zh8+OXoRAHDoXC0mr9nXpRTNQM0iswkCahxt753HVXRXyqKYrqhAeH7Rc05PByCbnW65iW7VOKa9oEpun9GRRBwODUTua9ijR/3KK69g3Lhx2L59Ox588EEpRZCI5Cle2/KPT3FVY5tBunKW3m5AJtaPBS5dEQBitS3/KNSaLB7VNN14eTIA4GBxNbb/UoaDxdXtPt9drY8KJDkHZKWOwMBdx79I/VU7t8CAhVuOtdkd7GrdnPj8nCgzdvga7oraRgvEm0rUtby/xIAs0CmLYkCmi1JCGYaDpJiy6JnWu6PtpSzK8TM6UsQ6fWeJ1JRFjx71n//8Z+zbtw/jxo3D66+/jtLS0ogcvEkUCnILDNh3plr673mbj3X5V/NgSE+wNyVod4cswPOlVEqFtEsmNhXJzkrB0tsGtTlW/Adky0+luO1feXj4w6NY/PlxPPzh0Q6f7+ysFEy+KrXN5d404/An8QtyjYwae4haAjJdp8dF4q/antbNeRpU5RYY8GpuEQDgTFVjp69hb4nBfpxW7TLfTKwnC3TKYktDj/BLVwQAlYopi57QtVr/lHaaegD+aZhE3nPeIYvU17BHNWQzZszAjBkzsHfvXmzcuBE5OTmwWq3Yu3cvbr/9dqhU4flBRxRqxF/NWxN/NQ+Ff1DSE+1fwM87AjKXlt7dMPA3TqdGXZMFtU0tQYrYUj1Oq8L8CZnoFavF1b3j8bv/dxCnKhtRUe86P6uz57vS8QV06jVpGHZJotfNOPxJzjtkF2vtAVlafOc7ZOKv2u7GAITTr9r+rJsL9GeGuAOW1Kq5UFK3pSyGb0MPoG0NWaSme7kT7cEOmcjXhknkvRinlNJIDci8etRjx47FW2+9hS+++AKzZs3CsmXLcOONN2LZsmWBOj8i8pC/fzUPFjFl8XyNCVabgNK6JtQ3W6FWKtAvqWstvb0RL80ia/mimHe6CgBw/eU98L+DU6WaplpHgXhHWj/fzRYb8s9WAwDuvLYPJg7u1Wl9VKB1Z+txb4k7ZGkeDCmOtF+1/VU31x2fGWJAltBqPmJ3pyxGSkAWqV9m3XEeeaBTK10CgPaIDZOC/RkdKZzXgymLXkhPT8f8+fPx3XffYe7cudi/f7+/z4uIvBQuM1R6xmqhVipgsQkoNzZJ6Yr9k7ve0tsb4iyyWqc5aPvO2AOyMf2TpMsOl9Sgot675/vo+VqYLDYkR0chs2fgd/vcEXfIakzySlk0ma3SF3V3NWSi7KwUbHlgNFLj7EHZn266DJv/OCqowZjVJritLewKf9XNdcdnRnWD/fZb75CJDT4C/WOAKYxnkAEMyDzlHJCnxGpYdiMzzvXbkbrL69UcstY0Gg2mTZsmDVcmouAJl25zKqUCveO1KK42oaTG1NLQI8AdFkXScGhHkFLdYMbxUiMAYHT/ROm4rjzfeWJgd2mSLBoMyHWHTNwd00cppfXwhEqpwGU9YlBa14wEXVRQf9W212UVugQ8vWI1eCo70+cgUayb6yyY8qRurjs+M8TB40n61imLGsf1gX3tNUhNPcJzh6z1j1QMyNrnHJD1bKflPQUXUxa7uENGRPITTt3mnBt7FBq6r34MsNeQAS07ZPvPVkEAkJkSgxSnWV1deb73OVIfRzvttAWTNAtKZgHZRSldUef1L9m9HTVnF2pNbo4MHH93QGzNX93guuMzQ0pZ1LdOWWx5n1mstjZ/5y9iDVnrGqJw0aaGLELTvdxx3SGTz8xFsovRsqlHZD5qojAUTt3mxMYeLjtkAW55L4p31LqITT3EdMXWQZS3z3dVQzOOl9l32kbJJCAT63pqZBaQedryvj1pjq6MFwIw4NgT3VXLmZ2Vgpdubdv905u6ue74zKjqIGUxXhcFMZQIZMqsyantfThSs8uiR7TqlufJahNkX0sdaVhDxoCMKGyE0wwVsbFHcVUjTld2T8t7UbzU9t4MQRCkhh5jLk10Oc7b51scRZDVMwYpMkmZEVMWZReQOTosprrpsNgesStjaZB2yLqzlvMSR5ObOK0KL906CP+8+xqv6ua64zOjpoOURZVSIaWjBrKxR/g39WDKoju5BQYs+u9xl/8OpVEwkSCWO2QMyIjCSbh0mxMDsgNnq9FsFaBVK9EnofN5VP4ipizWmCw4XdmIMmMzNCpFu7sEHT3fsVpVm+dbrB8be6k8dscA5xoyeTX1uFhnD6Y86bDYWu94xw5ZbXB2yLqzlrOw3L7jOjg1rsvd4Dp6DQPAqH6JPn9miMFWYqsdMqB7ZpE1NEdW2/tI/TLbETF9uLLVa8xf6cPkH9wh87GpBxHJTzjMUBGDL7G26fIe0d3WBCPBqamHmK44JD2hw6YAzs/3F8fKsPmni4jTqDAuo4d0jCAIsqsfA4AERx1Pg9mKZotNNt2tfEpZFHfI6ppgE4Rub57SnbWcBeX2dF5fO3a2/syobjTj7zuLcLC4GsVVjejrw7gJMWUxUd9OQKaPwmk0BrSGUeqy6KbNeahSKRVQABAT8OTyHpYDT9OHx2X0CKl/H8NRrIZdFiPzUROFuVCfoSI29RBldlO6IuDU1KOpJSAb42ZXS3y+52VnIEGnxoW6ZuwuqpCuL6pogKG+GVq1EtfKqIYvVquGWIJSY5JP2qKnQ6Hb0zNWC5UCsNgEt2MJ/MW5vb3NJrQbfDjzVy2n2PAmyw8jFJw/M6YPS8d1lyXBKgBr9p7p8m0KgiDVh7VOWQRaGn10S8piGH/Jc64j4w5Zi3AZBRMJnGs8xRmkkYY7ZEQkO3E6NeK0KtQ5Bi9r1EpYbUK3BJbxWvuXxMr6Zlx01CF5uquli1JhyjW98e7+YvznhxLc7Ej3EuvQhvdNkNUXJqVCgQR9FCobzKhuNKOnDLqPCYLg0mXRW2qlAj1jtbhY14QLtU0Bf0zttbd3xx+1nIIgoNCxQ5aVEuvTbbXn4esvxfenqvDFL2UY2S8RGpXS6932RrMNTRZ7ymDrph7OlwVyh0zsshiuKYsAEKVUwmy1f1ZqIzTdqz3hMgom3OUWGPC3b1p2MjfsL8bnx0r9MiIklPCdS0Syk1tgkL5IAcDHRy50WxF2vL6lhqzR7P0Q52nX9oZKARwsrkGBo8ZHjumKopZOi/KoI6sxWaQv8b26kLIItLS+vxjgxh4dtbcXtTdDrVesxiWdtasM9c2oMVmgUgCX9vB/B9LBqXG4qnccAOCF7Sex+PPjePjDo169D6sa7c+LVq2Erp0fIqQaxgDWkIV7Uw/AdYcsUtO92hNOo2DClfgZaqgPzIiQUMJ3LhHJivgBbWmVstBdH9Ct5xWN6pfoVR1SWrwO47N6AgD+c6gEJrMVPzhSYtylPgaD3GaRiR0Wk6OjurybmOpo7HExgI09PKlP0amVeGva1Xjp1kF4fcqViNOqUGZsxpe/lPl8/2L9WL/k6IDsuuYWGPDThbo2l3vzPhQDrUR9VLvz5BK7M2UxTGvIANfGHlp1+D5Ob4XTKJhw1F0jQkIFAzIiko1gf0DnFhhw73sHXS77/nSV10HgPcP6AAC+OFaK9fvOosliQ6JOjX6JXW+OECgJ+sCnjXlD7LDYlYYeou4YDu1JfUqZsRkqpQITB/fCDRk9MGtUPwDAv74/DbOPw5DFdMVA1Ff6631Y3UHLe1H3pCyKO2Th+3XHOSDTqEKrXjiQwmkUTDj64Rxr/JyF7ycUEYWcYBZhd5R+VmuyeL0zd02feKQn6GC2Ae/sKwYAVJssuGPtftmlYIgBmVyaevjSYVGUJu6QBXA4dFfqU+4e2gc9YjQ4X9uEld/9iu2/lOFgcXWXfmAo8GNDj9b89T4UUxbba3kPOI9dCGSXxfCvIXMOyHTcIXMRLqNgwlHrNMUOj4uQGj829SAi2QhWEba/2yPvLKxASU3b3Rkx3UtOXwTkNouspcNi1+fOifPLApmy2JX6FF2UCjdenozPfryI/xw6D+A8AHtdmbcF7IHcIfPX+7DKKWWxPeLOWVUg55A5dsg6GlsRDtROjTxYQ9ZWOIyCCUcpMazxc8Z3LhHJRrCKsP25MxfstEtvdccuhTdaOiz6krIoDocOXMpiV+pTcgsM+OzHi22O87Y+0my14VRlA4DA7JD5633oLmXR+bUnCIF5P4hzyFrXhoYTl5RFBmTtCvVRMOFo6CWs8XPGdy4RyUawirD9uTMXarNvxKYeNTIJyMSUxa7MIBOJf1vfbEWdKTA7f97Wp/gzUD9d2QCrTUCsVuVTamdH/PU+rHakLLbX8h5oCcgsNgH1zdYunKl7kVRDplIqXIIzIjljjZ+r8P2EIqKQE6wPaH/uzIXa7Bux7b1sdshqfW/qoY9SIcHRcl5sEhII2VkpeOnWQW0ub68+xZ+BujQQOiWm3e6FvvLX+1BMRUzoYIdMF6WSAqVAvP4sNgHNVkG6r3Alpiy2N1qASM5Y49eCNWREJCviB3TrYbupcVrMHZ8RkA9ocUegsy/Mnu7MhdrsG3GXQg47ZBabIBV6+5KyCNjTFmtMRlyobUJWT/8PThaJuz+JOjWeys5Az1htu/Up/gzUpfqxAD6ujt6HPWM1mOdhvZsYZHWUsgjYX3+N5iZUNZhxiZ+7kIrpikBkNPXQcCg0hSDW+NkxICMi2enuD2hxR2DhlmMdHuPpzpw/g7vuIAVkAUrt84bB2ASbYP+CmexhwXdH0uK1OF5mDPhw6PziagDAdZcn438Gp3Z4nD8D9QIpIPN//Zgz5/fh01uPobrRgpf+dxCG9Uv06O89Dcgu1DYFZBaZmK6oUoR3O3gxIAvEPDqi7iDW+EUyvnuJSJa6uwjbX6kToZYXn+CoIatvtqLZ4ttsLF+JXRF7xWm9Gsbdnt7dMBwaAPLP2lMMR7j5MuHP+kgxZTEQHRZbE9+Hg3rFAQCKaxo9/lsxyOqoyyIQ2FlkjY6W97ooVUBSO+VC2iFjQEYUsrhDRkTk4K+duWCkXXZVrFYNlQKwCvZZZD1j/d8kwlP+6LAoSpOGQwcuIKtvtuDYxVoAwAg3u0b+2oWtbjCj3PGaykiJ9u6EfdA/WY+8M1U4XelZQGa22mBssu9QdTSHDHDqtBiA1vctDT3CN10RAKIcqYrcISMKXQzIiIic+Ct1IlTy4pUKBRL0UahsMKOm0RLcgMyRXuhLh0VRy3DowKUsHi6phVUA+iTopB25znQUqAPA4zdd5lGgLu6OpSfoEKPpvn/C+yXZg78zjnb77og1iSoFEK/r+DzFgCwgKYvN4d9hEWDKIlE4YEBGRBQgoZIXn6CzB2TB7rQotrz3Ryv33vGBHw598Gw1AGCkF2vcOlD/5Oh5HDpX63FAUiB2WAxw/Vhr/ZPtDTfOVHm2QyY+ngR9VKfpp4Gcg9doiYwdMrWKTT2IQh3fvUREEU6cRRbsgMyvKYuO2zDUNwesNk5s6DG8n3cNWpzrI6cPTQcAfHWi3KPhyIXlRgDdUz/m7NJk+w5ZSY0JFqv759Ndy3tRUiADMkcNWdgHZNwhIwp5fPcSEUW4BKnTokx2yDxI/3MnUR8lfUEVb9ef6kwWnCizB0fuGnp05rrLkhEdpcKF2ib8dKHO7fGFBnvKYHfvkPWK1UAfpYTVJuBcjfs0UE86LAKBbephipAaMrGBZHWjGQeLqz0aLk5E8sKAjIgowiX4cZfCahNwsLga238p8/rLoT9TFhUKRUvaYgDqyA6dq4FNAPon6X2qu9NFqXBTZg8AwI4T5Z0ea7UJKDIEfgZZexQKhVd1ZFJA1klDD8CphiwATT0aHDVkujCuIcstMCC3oAIA8EupEQ9/eBST1+xDboEhyGdGRN4I308pIiLySEsdj2+zyHILDJi8Zh8e/vAoFn9+3Ksvh/XNFtQ6ZqH5I2URaGnsEYhOi2K6orvuip74zcCeAICvT5R3GsCeq25Ek8UGnVqJ9ATfdxG91T/JUUfmQadFMcDqrOW98/WBSVm0B2TRmvDcIcstMGDhlmMwtUrJLTM2Y+GWYwzKiEIIAzIiogjnjy/F4pfD1t0DPf1yKO6OxWpViNX6p9+UGNgFYjj0QbF+zA9NW8ZcmoQ4rRqG+mYcLqnp8Dixw+LlKTFB6dbZ0tjD/Q6ZJzPIgJYdtEDMwTOFcQ2Z1Sbg1dzCTo95bWcR0xeJQgQDMiKiCJfgaEte08WAzB9fDkulhh7+2/kJ1HDoqoZmFJTbg6Phfb1r6NGeKJUS47PsaYtfdZC2aLUJ+K7QnpqWpFMH5Yu22NjDkx2yGg9ryMQ5eID/d8kaHDtkOnX4BWSHS2ra/PjRWmldU6cBPhHJBwMyIqII5+sOmT++HIpBkz/qx0TScGgvm3q4q4M7dM7+ODJSopEcrfHLuf5mYC8AwDcnDbC0uj8xFfTzX8oAAHtOVwWlTqi/WEPmQet7T3fIxDl4zn/jLy2DocPvq47BzfvN2+OIKLg4h4yIKMKJX5q7ukPmjy+HUst7PwyFFqXFe5+ymFtgaDO4uVesBk9lZ0qDm/Md88d86a7Y2vB+iUjSR6Gq0YwPDhajV6wOKbEaVDWY8cy2X9ocL6aCLp98hUcDpf2hnyNlsbrRPrOus2BLqiFz09QDsL/+AjEHzxTGNWQpsZ79EODpcUQUXAzIiIgiXEvb+6419fDHl0N/dlgUiSmLpXVNsAlCpwOKgZY6uNbE4OeV2wcjSR+FXYX2nalhl/ierihSKxUY2CsGeWeqsfK709Ll7krFXttZhHEZPbqlpkwfpUKvWA3KjM04U9mAxPSOH7+nbe8BRx1ZBVDt506L4hwyXRjWkA1JT5DWoiOpcVoM6WSNiEg+wm8fn4iIvCIOhu5qYwXxy2Fn3H05LHXsYvkzIOsZq4VSAZitAirrO9/F86QObtG2X/Dwh0dhqLcHDn/PLfJb2mBugQF5Z6rbXO6uVKy764T6J7tPW7QJQksNmQc7ZIEaDt0QximLKqUCT2VndnrM3PEZQWn+QkTeC79PKSIi8opzY4WuDIf2x5fDQKQsqpUKaUaYu9b3ntTBtQ6Oyuv9017ck2CwM91ZJ+RJY4/qBjOsjueqyFDvtgFJvKOpTH5xtV8HG4f7YOjsrBQsn3xFmx9DUuO03ZrKSkS+Y8oiEVGEUyoUiNfZ65dqGi1dGnScnZWC5/93IJ774kSb6walxnb65dAmCCgLQJdFAOgdr0VpXRMu1JpwdZ/4Do/zJajxNW3Qk2CwM91ZJyTOIjvbQev73AID/vp1gfTfj338U5savNbHbz9u7yy5q7ACuworOj3eG41h3PZelJ2VgnEZPXC4pAYGYzNSYjUYkp7AnTGiEMMdMiIiklrff3Wi/c6CnhDTDZP0UXjp1kFY8j8DoARwvNQoze1qT1WDGc1WAQrAbeqjt9Kc6sg640tQ42vaoC/BYHfXCUmzyNrZIRNr8Cpa1YJ1NItOPL6+2erR8d5qDPMdMpFKqcDwvomYOLgXhvdNZDBGFIIYkBERRbjcAgNKauw1XO/sK8bDHx7tUlv146VGAMC16fGYOLgXbrsyDVOv7Q0AeOPbX5F/tqrdVvJiumJKrAZqlX//Weod71nKoid1cJ3xJajyJRjs7johsYasuLrRpT2/t7PoumOwcTi3vSei8MJPKSKiCCbuUphbffHtyi7FL6V1AIDBqXHSZX8c2x8alRK/lBrxyKYfsfjz4y4Bn9Um4Ptf7QOPYzUqvw88TosTA7LOW997UgfXGV+CKk+CwdYxV7DqhFLjtNCqlbDYBJyvaXlOvZ1F5+nxP5zr+s6jGJCFY5dFIgovrCEjIopQnu5SeFofJe6QDUqNlS47cr4Wzda2nRvFgC9Bp5ba7Z+qbMTkNfv8Uj8k8jRlEbDX4wzrm4BDxa5BgFLRebdDX9MGxWCwvZb7oqWT7C33g10npFQo0C9Jj4LyepypbEA/R02Zt7PoPD7eTXfMzog1ZNEMyIhI5hiQERFFKG92NYa7GYJc32zBWUcr9MGOgMyTgK/17DN/DzwWZ5G52yEDALPVhoKyegDAU+MzkKSP6nQ4s8gfaYNix7zWQ6lT47SYOz5DVh3z+idF2wOyqkbc6LjM21l0Hh8f07WdR7PVJu22hnsNGRGFPgZkREQRyttdjc6cKDNCgD2ASIq2f4n2pXugvwYei230jU1WGJssiNV2/M/egbPVqGuyoEeMBncN6eNy30qlIuDBUqh0zGtp7NHSadHbQcWeHj+0i8O3G5wahbCGjIjkjgEZEVGE8nZXozNiuuJgp3RFXxpdeLoz544+SoV4rQq1TVZ8fOQCruod12GQk3vSXi83PrNtINhdwZLYMU/OpIDMaTi0SqnAkzdfjme2He/w75x3Ej1J0/Rl51GsH1MrFX5vFENE5G8MyIiIIpS3uxqdEQOygb1aAjJf52P5Y+BxboEBDY5aojd3nwKAdudcWaw27Cq0B2QTBvRs97ZCIVjqDv2TxOHQrrPIlEp74KNQAIJTzV1HO4mBTNM0ifVjGqYrEpH8MSAjIopQ/tylaNkha+mw6EnA1xlfAzqxg2Rr7dWpHTxXgxqTBUn6KAzpYppcpBB3yCobzKgzWRDnmGH38eHzAICZIy7BdZcle7STKO48Tlm3Hxdrm/DEuMtwz7BLfN55bLQ4OiyquTtGRPLHTyoioggm7lK013Y9LU6LMf2TcLC4ut35YaKGZitOO3ZLnDss+tJK3tfOhd7OuRLTFW/O6gG1zGq25CZGo0ZPx+vlTJV93c9WNWL/2WooANx5bR+vBhWrlAqkxtpr/XrH6/ySBirWkLGhBxGFAu6QERFFuNb1URq1Aq98VYCLdU3433/mocHc0iChvXS/k46GHr1iNejRqiteR2lpzu3u2+Nr50JvOkgOSU/ATse8tQlZ7acrkqv+SXqUG5txprIRV/WOxydHLgAArrssGX0SdF7fXrxjl62z14Q3xJRFBmREFAoYkBERUZv6qJ8vGvHu/mKXYAxoP93vlzJx/lgc2tNRQ4xviyoC1rnQmw6Sh0tqUNVoRoJOjeF9ma7oif7J0cgvrsGZqgY0WWzY9vNFAMDUa3t36fbi9VEAgFo/BWRiUw89a8iIKAQwICMiIhdWm4AvjpV2eoxzW/rjpXUAXNMVW2uvIUYgOxd600Hy6xPlAIBxmT3Ykc9D4kDo05WN+OZkOWpMFqTGaXH9Zcldur0Exw5Zrcnsl/OTAjK2vCeiEMCAjIiIXHg7MPqXdlreeypQnQs9aSjSK1YDs9WGL4+XAQBultHwZbkTA7KfL9TidIW9juy316R1OZj2d8piS0DGHTIikj/+dERERC68SfdrNFul9ueDenkfkAWKJw1FjM1WPPbxTzA22b+8L/uqALmOWjLqWG6BAS/tOAnAnsJ6yrH+KdFd74oZr/N3yqK9hkzHgIyIQgADMiIicuFNut/JMiNsApASo0GKo1OeXHTUQVLsoih24hOJ9XEMyjomjhKoqG+bWviSDwFtvNa+Q1bn55TFaAZkRBQCmLJIREQuvBkY/ZFj9lRn9WPB1LpOLTk6Cs99eQLlnTw25/o4auHpKIGuPHfx+kClLPJ3ZyKSP35SERGRC0/S/cS29GKHxa7Uj3UXsU5t4uBeUCoVnQZjQEt9HLnyprbQW/5PWXQMhuYOGRGFAAZkRETURmcDox+6rr/Ulr6lw2L7Le/lxpv6OHIVyOfO/10WOYeMiEIHUxaJiKhdrdP9vjpRjm+LKvD9qSr8f2P6ocliwylHhz0575A586Y+jlwF8rkTuyw2mm1ottigUfv2e7FJqiHj785EJH8MyIiIqEPObemH901A3pkq/HihFrt/rUSiPgo2AegRo0FPmTX06Ig39XHkKpDPXaxWDQUAAUBtkwUpat8CYqYsElEo4U9HRETkkZRYLe4Zlg4AeHv3KWz/xT6/q3e8FlabEMxT85g39XHkKpDPnVKhQJxO7LToex1ZQzNTFokodDAgIyIij/1+5CXQqZUoqmjAh44Oiz9dqMPkNftCpl18R/VxqXFaLJ98hVQfR20F8rmL92MdmcnCtvdEFDqYskhERB7LL66ByWJrc7k4wytUAprW9XEpsRoMSU/gzpgHAvXc2TstmvzS+r4lZZG/OxOR/DEgIyIijwRyDlUwONfHkXcC8dz5c4eMXRaJKJTwpyMiIvJIIOdQEbW0vvfDDlmzOBiaARkRyR8DMiIi8ghneFEgicOhfU1ZFARBSlnUaxiQEZH8MSAjIiKPcIYXBZK/uiw2WWwQe37qWUNGRCGAn1REROQRcQ5VZzjDi7oqwU81ZCZzS9MZnZo7ZEQkfwzIiIjII5zhRYEkNvXwNWWxwZGuqFUr+VokopDAgIyIiDzGGV4UKGINma9NPaT6MTb0IKIQwbb3RETkFc7wokDwX8qiGJDxN2ciCg0MyIiIyGuc4UX+5r8dMnsNmY47ZEQUIvjzEREREQWdc5dFmyC4ObpjDUxZJKIQw4CMiIiIgi5eaw/IBADGpq7vkokpi9FMWSSiEMFPKyIiIgo6jVop1X35krYoNvVgyiIRhQoGZERERCQLYh2ZL63vxRoypiwSUahgQEZERESyEO+HTouN7LJIRCGGn1ZEREQkC1JA1uh7yiJ3yIgoVDAgIyIiIlmQWt/70NSDKYtEFGoYkBEREZEs+DdlkQEZEYUGBmREREQkCwlSQObDDlmz2GWRX3GIKDTw04qIiIhkwT9dFsU5ZNwhI6LQwICMiIiIZKGlqYcPKYsW1pARUWhhQEZERESyIAZkdT409TBxMDQRhRgGZERERCQLYkDmS8piQzPnkBFRaAnqp5XVasXMmTPx9NNPS5cdOXIEd911F4YOHYrs7Gxs2rTJ5W8+/fRT5OTkYMiQIZg6dSp++OEHl9tbvnw5rrvuOgwdOhSPPPIIysrKpOsrKiowe/ZsjBgxAqNHj8bSpUthsVg8vm8iIiIKHKntvQ8BmbhDFq3hDhkRhYagBmRvvvkm8vPzpf+uqanBgw8+iClTpuDAgQNYunQpXnnlFRw9ehQAsG/fPrz44otYtmwZDhw4gMmTJ+ORRx5BY2MjAGDVqlXYs2cPPv74Y+zevRs6nQ6LFy+Wbv+JJ55AdHQ0du/ejY8++gh79+7Fhg0bPLpvIiIiCqwEp7b3giB06TbEOWRMWSSiUBG0gGzv3r3YsWMHfvOb30iX7dixA4mJiZgxYwbUajXGjh2L22+/He+//z4AYNOmTbjtttswfPhwREVFYdasWUhKSsLnn38uXf/AAw+gd+/eiI2NxaJFi/Ddd9+huLgYZ86cwf79+zF//nzo9Xr07dsXs2fPlm7b3X0TERFRYIk7ZGarAJOjOYe3WuaQMWWRiEKDOhh3WlFRgUWLFuHtt9+WdqgAoKCgAAMGDHA5NjMzEx999BEAoLCwEHfeeWeb648fP466ujpcvHjR5e9TUlKQkJCAEydOAAASExORmpoqXZ+RkYHz58+jtrbW7X17Q6Hw+k8ogMT14LqEP651ZOA6h69ojRJqpQIWm4BakxkxWvsul6drbRNaArnoKBVfIyGE7+vIEGnr7Onj7PaAzGazYf78+bj//vsxaNAgl+vq6+uh1+tdLtPpdGhoaHB7fX19PQAgOjq6zfXida3/Vvxv8e87u29v9OgR5/XfUOBxXSIH1zoycJ3DU2J0FAzGZqj0WmmNPV3reqfujH17J0LPOrKQw/d1ZOA6u+r2gGz16tXQaDSYOXNmm+v0ej3q6upcLjOZTIiJiZGuN5lMba5PSkqSgimxnqz13wuC0OY68b9jYmLc3rc3Kirq0MXUdwoAhcL+xue6hD+udWTgOoe3WI0KBgBnLtSgl0bh1VpX1DcDABQAjDX1qI+Un+HDAN/XkSHS1ll8vO50e0C2efNmlJWVYcSIEQAgBVhff/01FixYgD179rgcX1hYiKysLABAVlYWCgoK2lx/0003ISEhAampqSgsLJRSD8vLy1FdXY0BAwbAZrOhuroaBoMBKSkpAICioiKkpaUhLi4OAwYM6PS+vSEIiIgXWajhukQOrnVk4DqHJ3sdWSNqTBZpfT1da7HlvS5KCUDB10cI4vs6MnCdXXV7xeuXX36JQ4cOIT8/H/n5+Zg0aRImTZqE/Px85OTkwGAwYMOGDTCbzcjLy8PWrVulurFp06Zh69atyMvLg9lsxoYNG1BRUYGcnBwAwNSpU7Fq1SoUFxfDaDTi5ZdfxqhRo9CvXz9ceumlGD58OF5++WUYjUYUFxfj7bffxrRp0wDA7X0TERFR4ImzyGobzV7/bUtDD6YqElHoCEpTj44kJSXhnXfewdKlS7Fy5UokJydj8eLFGDNmDABg7NixeO6557BkyRKUlpYiMzMTa9asQWJiIgBgzpw5sFgsmDFjBurr6zF69GisWLFCuv2VK1fihRdewIQJE6BUKjFlyhTMnj3bo/smIiKiwGtpfe/9LDKx5T0DMiIKJQqhq4M+qEMGQ2TkxYYKhQJISYnjukQArnVk4DqHt9d2FuGDQyX4/ci++NO4y7xa631nqvDoRz8iMyUGH9w3PPAnS37D93VkiLR1Fh+vOxzSQURERLIR59ghq2vyPmXRxBlkRBSC+IlFREREsuFLymKDWWzqwZRFIgodDMiIiIhINuxdFoEaH2rIohmQEVEIYUBGREREsuFLl0WT2bntPRFRaOAnFhEREcmGTymLzWx7T0ShhwEZERERyYaYssi290QUKRiQERERkWyIXRYbzFZYrDav/lbqsqhhQEZEoYMBGREREclGnFYt/X9vdsmsNgHF1Y0AgEpjE6y2CBhyRERhgQEZERERyYZKqZCCMk8DstwCAyav2Ye9p6sAAJ/9VIrJa/Yht8AQsPMkIvIXBmREREQkK2KnxRqT+06LuQUGLNxyDGXGZpfLy4zNWLjlGIMyIpI9BmREREQkK/Eedlq02gS8mlvY6TGv7Sxi+iIRyRoDMiIiIpKVBA+HQx8uqWmzM9ZaaV0TDpfU+O3ciIj8jQEZERERyYrYabHOTUBmcBOMeXscEVEwMCAjIiIiWWlJWey8hiwlVuPR7Xl6HBFRMDAgIyIiIllJkJp6dL5DNiQ9Ab3cBFupcVoMSU/w27kREfkbAzIiIiKSlXhHDZm7HTKVUoGnsjM7PWbu+AyolAq/nRsRkb8xICMiIiJZkVIWG93PIcvOSsHyyVcgRqNyuTw1Tovlk69AdlZKQM6RiMhf1ME+ASIiIiJn8R6mLIqys1LwzYky7DhhwMSBPfHba3tjSHoCd8aIKCQwICMiIiJZEVMW65o8C8gAoLjaBAC4ZWBPDO+bGIjTIiIKCKYsEhERkay07JB1XkMmEgQBZ6saAQB9k/QBOy8iokBgQEZERESykuA0h8xmE9weX9VoRn2zFQoAlyQyICOi0MKAjIiIiGQlzpGyaBM8S1ssduyOpcVroVXzqw0RhRZ+ahEREZGsaNVK6ByBVU2D+7TFM2K6InfHiCgEMSAjIiIi2RHryKobm90eK+6Q9WP9GBGFIAZkREREJDtip8WaRvc7ZGzoQUShjAEZERERyY60Q+ZBymJxtT0g658UHdBzIiIKBAZkREREJDstKYudB2Q2trwnohDHgIyIiIhkJ0FMWWzovIas3NiMJosNKqUCfeK13XFqRER+xYCMiIiIZMfTlEWxoUd6gg5qFb/WEFHo4ScXERERyU6chymLZ6saALDlPRGFLgZkREREJDtxWhUA4PjFWuSfrYbVJrR73NkqEwC2vCei0MWAjIiIiGQlt8CAf+45AwD4qaQWD394FJPX7ENugaHNsdIOGQMyIgpRDMiIiIhINnILDFi45RhqTBaXy8uMzVi45ViboExsec8dMiIKVQzIiIiISBasNgGv5hZ2esxrO4uk9EWLTcC5aqYsElFoY0BGREREsnC4pAZlxs7b3JfWNeFwSQ0A4GKtCRabAI1KgdQ4trwnotDEgIyIiIhkweAmGGt9nJiueEmiHkqFImDnRUQUSAzIiIiISBZSYjVeHXe2kvVjRBT6GJARERGRLAxJT0AvN0FZapwWQ9ITALChBxGFBwZkREREJAsqpQJPZWd2eszc8RlQKe3piWeqGJARUehjQEZERESykZ2VguWTr2izUxarVWH55CuQnZUiXVbsCMg4g4yIQpk62CdARERE5Cw7KwXjMnrgcEkNvvm1Epvyz+GSBJ1LMGa22nCh1tHyPpEBGRGFLu6QERERkeyolAqM6JeIhf8zCEoFcLysHuccNWMAUFJtgk0AoqNU6BHjWTMQIiI5YkBGREREspUSq8XwvokAgNyTBunys9Ut6YoKtrwnohDGgIyIiIhk7ZaB9lTFr0+WS5edZUMPIgoTDMiIiIhI1rKzUqBUAL+UGqW0RTb0IKJwwYCMiIiIZC0pWiOlLX7jSFs8W9UAAOjPgIyIQhwDMiIiIpK9Wwb2BAB840hbFFMW+7LDIhGFOAZkREREJHvjM3tA5UhbLDTUo8zYDIA1ZEQU+hiQERERkew5py1u2HcWAJCgUyNBHxXEsyIi8h0DMiIiIgoJExxpizuO29MWk6OjYLUJwTwlIiKfMSAjIiKikBCltM8bE0OwU5WNmLxmH3ILDB3/ERGRzDEgIyIiItnLLTDghe0n21xeZmzGwi3HGJQRUchiQEZERESyZrUJeDW3sNNjXttZxPRFIgpJDMiIiIhI1n44VyN1VexIaV0TDpfUdNMZERH5DwMyIiIikjVDfefBmHScm6CNiEiOGJARERGRrKXEaDw7Ltaz44iI5IQBGREREcna0EsS0MtNsJUap8WQ9IRuOiMiIv9hQEZERESyplIq8FR2ZqfHzB2fAZWjLT4RUShhQEZERESyl52VguWTr2izU5Yap8XyyVcgOyslSGdGROQbdbBPgIiIiMgT2VkpGJfRA4dLamAwNiMlVoMh6QncGSOikMaAjIiIiEKGSqnA8L6JwT4NIiK/YcoiERERERFRkDAgIyIiIiIiChIGZEREREREREHCgIyIiIiIiChIGJAREREREREFCQMyIiIiIiKiIGFARkREREREFCQMyIiIiIiIiIKEARkREREREVGQMCAjIiIiIiIKEgZkREREREREQcKAjIiIiIiIKEgYkBEREREREQWJOtgnEI4UimCfATkT14PrEv641pGB6xw5uNaRg2sdGSJtnT19nApBEITAngoRERERERG1hymLREREREREQcKAjIiIiIiIKEgYkBEREREREQUJAzIiIiIiIqIgYUBGREREREQUJAzIiIiIiIiIgoQBGRERERERUZAwICMiIiIiIgoSBmRERERERERBwoCMwsrx48dx//33Y9SoUbj++uuxYMECVFZWAgCOHDmCu+66C0OHDkV2djY2bdoU5LMlX1mtVsycORNPP/20dBnXObxUV1djwYIFGD16NEaOHInZs2ejrKwMANc63Pz888+YMWMGRowYgRtuuAEvvfQSmpubAXCtw0FlZSVycnKwb98+6TJ36/rpp58iJycHQ4YMwdSpU/HDDz9092lTF7S31tu3b8cdd9yBYcOGITs7G2+++SZsNpt0fcSvtUAUJhobG4Xrr79eeOONN4SmpiahsrJSeOCBB4SHHnpIqK6uFkaNGiVs3LhRMJvNwvfffy8MHTpUOHLkSLBPm3ywYsUKYdCgQcLChQsFQRC4zmHod7/7nTBnzhyhpqZGqKurEx599FHhwQcf5FqHGavVKlx//fXCu+++K1itVuHChQvCxIkThTfffJNrHQby8/OFW265RRgwYICQl5cnCIL7z+u8vDxh6NChQn5+vtDc3CysX79eGD16tNDQ0BDMh0JutLfWP/74o3DNNdcIubm5gtVqFQoLC4Xx48cL69atEwSBay0IgsAdMgob58+fx6BBgzBnzhxoNBokJSVh+vTpOHDgAHbs2IHExETMmDEDarUaY8eOxe233473338/2KdNXbR3717s2LEDv/nNb6TLuM7h5aeffsKRI0ewbNkyxMfHIzY2Fi+++CLmzZvHtQ4zNTU1KC8vh81mgyAIAAClUgm9Xs+1DnGffvop5s2bhyeffNLlcnfrumnTJtx2220YPnw4oqKiMGvWLCQlJeHzzz8PxsMgD3S01iUlJbjnnnswfvx4KJVKZGRkICcnBwcOHADAtQaYskhh5PLLL8fatWuhUqmky7Zv344rr7wSBQUFGDBggMvxmZmZOH78eHefJvlBRUUFFi1ahFdffRV6vV66nOscXo4ePYrMzEx8+OGHyMnJwQ033IDly5ejZ8+eXOswk5SUhFmzZmH58uW4+uqrMW7cOFx66aWYNWsW1zrE3XDDDfjqq69w6623ulzubl0LCwu57iGmo7WeOHEinnnmGem/TSYTdu3ahSuvvBIA1xpgQEZhShAEvP7669i5cycWLVqE+vp6ly/uAKDT6dDQ0BCkM6SustlsmD9/Pu6//34MGjTI5Tquc3ipqanBiRMncPr0aXz66af47LPPUFpaioULF3Ktw4zNZoNOp8Of//xnHD58GNu2bUNRURFWrlzJtQ5xPXv2hFqtbnO5u3XluoeejtbamdFoxJw5c6DT6TBr1iwAXGuAARmFIaPRiD/96U/YunUrNm7ciIEDB0Kv18NkMrkcZzKZEBMTE6SzpK5avXo1NBoNZs6c2eY6rnN40Wg0AIBFixYhNjYWKSkpeOKJJ/Dtt99CEASudRj56quvsH37dtx7773QaDTIysrCnDlz8MEHH/B9HabcrSvXPfz8+uuvuOeee2CxWPDee+8hNjYWANcaYEBGYebs2bO48847YTQa8dFHH2HgwIEAgAEDBqCgoMDl2MLCQmRlZQXjNMkHmzdvxv79+zFixAiMGDEC27Ztw7Zt2zBixAiuc5jJzMyEzWaD2WyWLhO7cg0ePJhrHUYuXLggdVQUqdVqREVF8X0dptyta1ZWFtc9jHz77be46667cOONN2LdunVISEiQruNaMyCjMFJTU4P77rsPw4YNw7p165CcnCxdl5OTA4PBgA0bNsBsNiMvLw9bt27FnXfeGcQzpq748ssvcejQIeTn5yM/Px+TJk3CpEmTkJ+fz3UOM9dddx369u2LZ599FvX19aisrMTrr7+OW265BZMmTeJah5EbbrgB5eXl+Oc//wmr1Yri4mKsWrUKt99+O9/XYcrduk6bNg1bt25FXl4ezGYzNmzYgIqKCuTk5AT5zMlbhw8fxpw5c/DMM89g4cKFbdIaudaAQhDbGRGFuPXr12PZsmXQ6/VQKBQu1/3www/48ccfsXTpUpw8eRLJycmYPXs2pk6dGqSzJX8RZ5AtW7YMALjOYaa0tBTLli3DgQMH0NTUhOzsbCxatAjx8fFc6zDz/fffY8WKFfj1118RFxeHyZMnS11zudbhYeDAgXjvvfcwevRoAO4/rzdv3oxVq1ahtLQUmZmZWLx4Ma699tpgnT55wXmtH374YezatatNndjw4cOxdu1aAFxrBmRERERERERBwpRFIiIiIiKiIGFARkREREREFCQMyIiIiIiIiIKEARkREREREVGQMCAjIiIiIiIKEgZkREREREREQcKAjIiIiIiIKEgYkBEREREREQUJAzIiIupW2dnZ+OSTT9pc/sknnyA7OzsIZ+ReQUEBBg0ahEceeaRb7u/IkSN48MEHcebMGQwbNgxvvvlmm2N27tyJq666CocOHeqWcwKArVu34qWXXuq2+yMiigQMyIiIiNzYuHEjpk6dij179uDUqVMBva/m5mYsXLgQCxcuRP/+/fHCCy/g7bffdgm8ysrK8Mwzz+Cpp57CsGHDAno+zm6//XYcO3YMe/fu7bb7JCIKdwzIiIhIlk6cOIEHHngAo0aNwk033YQlS5agrq4OQPu7aTNnzsQ//vEPAPYdrRkzZmDkyJEYP348Fi5cCKPRCMAe8LzxxhuYMGECRo0ahQceeABnzpzp8Dzq6uqwZcsWzJgxAzk5OVi/fr3L9VarFStWrMD111+P6667Ds899xzuueceaRfQaDTihRdewLhx4zB27Fg8+eSTMBgMHd7fpk2bcMkllyAjIwMAMGnSJPz2t7/FvHnzYDQaIQgCFi5ciJEjR+L++++HIAh47733MHHiRIwYMQL33nsvfvrpJ+n2ioqK8NBDD+Hmm2/GNddcg1tvvRU7d+4EAJw7dw4DBw7EsmXLMHLkSDz//PMoLS3FH//4R+l5f/TRR1FWVibd3u9+9zu8+uqrnS8eERF5jAEZERF1u+effx4jRoxw+d/zzz8vXV9VVYXf//73yMzMxHfffYePP/4Yp06dwoIFCzy+/bFjx2L//v34+OOPcezYMWzatAkA8Prrr2PXrl3YsGEDdu/ejWuvvRZ/+MMf0NTU1O5tffzxxxgwYACuvPJKzJw5E5s3b0ZlZaV0/bp167Blyxa8++672LVrF+Lj4/HDDz9I1z/77LM4c+YMPvnkE3z99deIjY3Fo48+CkEQ2r2/f//735g0aZLLZYsXL4Zer8df//pXbNy4ESUlJXjllVek49evX4833ngDe/fuxdSpU3H//fdLQd9jjz2GAQMG4KuvvkJ+fj5uuOEGLFmyxOX26+vrsWfPHjz55JN47bXXkJaWhj179uDzzz9HQ0MD/vWvf0nHZmdno6ioCD/++KNHa0FERJ1jQEZERN3uueeeQ35+vsv/nnvuOen6b775BlFRUZg3bx50Oh169uyJP//5z8jNzUV5ebnb29dqtdi9eze+/PJLKJVKbN68WdpN+s9//oO5c+eib9++0Gq1mDNnDsxmM3bt2tXmdgRBwAcffID77rsPADBkyBAMHDgQ//73v6VjPvroIzz44IPIzMyERqPBE088gZ49ewIAKioqsH37dixatAg9evRATEwMnn32Wfz444/4+eef29yfwWBAYWFhmzREvV6PFStWYMuWLfjHP/6BlStXIjY2FgDw/vvv46GHHsKgQYMQFRWFadOmISMjA1u2bAEArF69Go899hgEQUBJSQni4+NRWlrqcvtTpkyBRqNBfHw8tFotDh48iP/+97+or6/H2rVrsXjxYulYnU6HQYMGMW2RiMhP1ME+ASIiotYqKirQp08fqFQq6bJLLrkEAFBSUuL271esWIF//OMfeP311zF37lwMGzYMS5YsQXJyMhoaGvD4449DqWz5TdJsNrd7u9999x1Onz6NJUuWSDt4JpMJxcXFeOCBB6DVanHhwgWkp6dLf6NSqdCnTx+Xc7377rtdblelUuHcuXO46qqrXC4/f/48ACA1NbXNuWRlZSEnJwcAMGjQIOnykpISLF++HH//+9+lyywWi3Tbx48fx+zZs1FeXo6MjAwkJye32Z3r1auX9P8XL16M1atXY926dXj66acxaNAgLF68GCNGjJCOSUtLw8WLF9ucIxEReY8BGRERyU56ejrOnz8Pq9UqBWVnz54FAPTs2ROnT59Gc3Ozy99UVVUBAGw2G44dO4bHHnsMzz77LC5cuIBXXnkFTz/9NDZt2gStVot33nkHQ4YMkf72119/bTcIev/99zF9+nTMnj1busxsNmPq1Kn47LPPMH36dPTp00cKpAD7rtqFCxcAtARWX3zxhbRrBgCFhYXo27dvm/sTg0Sbzdbu8+IcoIrS0tLwpz/9Cbfddpt02dmzZ5GYmIjS0lI8/vjjePPNN6Wau+3bt2PHjh0ut6FQKKT/f+zYMUyfPh2PPfYYKisr8dZbb+HRRx9FXl6edIzVanUJaImIqOv4aUpERLIzbtw4AMDf//53mEwmlJeXY+nSpRgzZgzS09ORkZEBg8GAvLw8CIKAzZs3o6ioCIA9qHnppZewYsUKNDU1ITk5GVqtFklJSVAqlZg2bRpeffVVXLx4ETabDZ9++ikmTZrUprHH2bNn8d133+H//u//kJaWJv2vb9++uOOOO7B+/XoIgoDp06fjnXfewalTp9Dc3Iy33npLaoKRmpqKm2++GUuXLkVVVRXMZjNWrVqFadOmoba2ts3jFnfWWqcUdubuu+/GqlWrpMe/e/du3HbbbThw4ADq6+thtVqh1+sB2APBt956CwDaBLSif/7zn3jxxRdhNBoRHx8PvV6PpKQkl2PKysqkcyUiIt8wICMiItmJi4vD+vXrcfLkSYwbNw6TJk1Ceno63njjDQDA1VdfjUceeQRPP/00Ro0ahby8PEycOFH6+xUrVqCoqAg33HADrrvuOtTV1eHFF18EACxcuBDXXnst7r33XowYMQIbNmzAypUrccUVV7icw/vvv4+BAwdi8ODBbc5v+vTpOHXqFHJzc3HfffchOzsb99xzD26++WZUV1cjLS0NUVFRAIC//vWviI+Px5QpUzBmzBh8++23WLt2rcuOmSg5ORlXXHEFDh486PFzNWvWLEyZMgWzZ8/G0KFDsXTpUvzlL3/BhAkTcPnll2PBggWYP38+hg8fjscffxx33nknoqKicPLkyXZv74UXXoDNZsOECRMwcuRIHDlyRHreAaCpqQk///wzbrzxRo/PkYiIOqYQOmrzRERERG4dOXIE6enpSElJAWBPWRwzZgxee+01XH/99V7f3saNG7Fr1y6sXbvW36fqF9u2bcN7772HDz/8MNinQkQUFrhDRkRE5IOtW7diwYIFqKurg8VikeaUOdeoeePuu+/GmTNnUFhY6Mez9J/33nsPc+fODfZpEBGFDQZkREREPnjiiSeQkpKCnJwcjBo1Cjt37sS6desQExPTpdvTaDRYvnw5li9f7ucz9d3mzZtx5ZVXYsyYMcE+FSKisMGURSIiIiIioiDhDhkREREREVGQMCAjIiIiIiIKEgZkREREREREQcKAjIiIiIiIKEgYkBEREREREQUJAzIiIiIiIqIgYUBGREREREQUJAzIiIiIiIiIguT/B8IXCigIYXTBAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2378,12 +2411,30 @@ }, { "cell_type": "code", - "execution_count": 237, + "execution_count": 51, "metadata": {}, "outputs": [ + { + "ename": "AttributeError", + "evalue": "Rectangle.set() got an unexpected keyword argument 'legend'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[51], line 5\u001b[0m\n\u001b[0;32m 2\u001b[0m fig, axes \u001b[38;5;241m=\u001b[39m plt\u001b[38;5;241m.\u001b[39msubplots(nrows\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m, ncols\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m, figsize\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m14\u001b[39m, \u001b[38;5;241m6\u001b[39m), sharey\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m 4\u001b[0m \u001b[38;5;66;03m# Bar plot for condition vs. price\u001b[39;00m\n\u001b[1;32m----> 5\u001b[0m sns\u001b[38;5;241m.\u001b[39mbarplot(x\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcondition\u001b[39m\u001b[38;5;124m'\u001b[39m, y\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mprice\u001b[39m\u001b[38;5;124m'\u001b[39m, data\u001b[38;5;241m=\u001b[39mhousing_data, ax\u001b[38;5;241m=\u001b[39maxes[\u001b[38;5;241m0\u001b[39m], hue\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcondition\u001b[39m\u001b[38;5;124m\"\u001b[39m, palette\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mviridis\u001b[39m\u001b[38;5;124m'\u001b[39m, legend\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m 6\u001b[0m axes[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mset_title(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCondition vs. Price\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 7\u001b[0m axes[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mset_xlabel(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCondition\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:2763\u001b[0m, in \u001b[0;36mbarplot\u001b[1;34m(data, x, y, hue, order, hue_order, estimator, errorbar, n_boot, units, seed, orient, color, palette, saturation, width, errcolor, errwidth, capsize, dodge, ci, ax, **kwargs)\u001b[0m\n\u001b[0;32m 2760\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ax \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 2761\u001b[0m ax \u001b[38;5;241m=\u001b[39m plt\u001b[38;5;241m.\u001b[39mgca()\n\u001b[1;32m-> 2763\u001b[0m plotter\u001b[38;5;241m.\u001b[39mplot(ax, kwargs)\n\u001b[0;32m 2764\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ax\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:1586\u001b[0m, in \u001b[0;36m_BarPlotter.plot\u001b[1;34m(self, ax, bar_kws)\u001b[0m\n\u001b[0;32m 1584\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mplot\u001b[39m(\u001b[38;5;28mself\u001b[39m, ax, bar_kws):\n\u001b[0;32m 1585\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Make the plot.\"\"\"\u001b[39;00m\n\u001b[1;32m-> 1586\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdraw_bars(ax, bar_kws)\n\u001b[0;32m 1587\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mannotate_axes(ax)\n\u001b[0;32m 1588\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39morient \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mh\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:1569\u001b[0m, in \u001b[0;36m_BarPlotter.draw_bars\u001b[1;34m(self, ax, kws)\u001b[0m\n\u001b[0;32m 1565\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m j, hue_level \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhue_names):\n\u001b[0;32m 1566\u001b[0m \n\u001b[0;32m 1567\u001b[0m \u001b[38;5;66;03m# Draw the bars\u001b[39;00m\n\u001b[0;32m 1568\u001b[0m offpos \u001b[38;5;241m=\u001b[39m barpos \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhue_offsets[j]\n\u001b[1;32m-> 1569\u001b[0m barfunc(offpos, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstatistic[:, j], \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnested_width,\n\u001b[0;32m 1570\u001b[0m color\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcolors[j], align\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcenter\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 1571\u001b[0m label\u001b[38;5;241m=\u001b[39mhue_level, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkws)\n\u001b[0;32m 1573\u001b[0m \u001b[38;5;66;03m# Draw the confidence intervals\u001b[39;00m\n\u001b[0;32m 1574\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfint\u001b[38;5;241m.\u001b[39msize:\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\__init__.py:1465\u001b[0m, in \u001b[0;36m_preprocess_data..inner\u001b[1;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1462\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[0;32m 1463\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minner\u001b[39m(ax, \u001b[38;5;241m*\u001b[39margs, data\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 1464\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m-> 1465\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(ax, \u001b[38;5;241m*\u001b[39m\u001b[38;5;28mmap\u001b[39m(sanitize_sequence, args), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 1467\u001b[0m bound \u001b[38;5;241m=\u001b[39m new_sig\u001b[38;5;241m.\u001b[39mbind(ax, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 1468\u001b[0m auto_label \u001b[38;5;241m=\u001b[39m (bound\u001b[38;5;241m.\u001b[39marguments\u001b[38;5;241m.\u001b[39mget(label_namer)\n\u001b[0;32m 1469\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m bound\u001b[38;5;241m.\u001b[39mkwargs\u001b[38;5;241m.\u001b[39mget(label_namer))\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\axes\\_axes.py:2528\u001b[0m, in \u001b[0;36mAxes.bar\u001b[1;34m(self, x, height, width, bottom, align, **kwargs)\u001b[0m\n\u001b[0;32m 2519\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m l, b, w, h, c, e, lw, htch, lbl \u001b[38;5;129;01min\u001b[39;00m args:\n\u001b[0;32m 2520\u001b[0m r \u001b[38;5;241m=\u001b[39m mpatches\u001b[38;5;241m.\u001b[39mRectangle(\n\u001b[0;32m 2521\u001b[0m xy\u001b[38;5;241m=\u001b[39m(l, b), width\u001b[38;5;241m=\u001b[39mw, height\u001b[38;5;241m=\u001b[39mh,\n\u001b[0;32m 2522\u001b[0m facecolor\u001b[38;5;241m=\u001b[39mc,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 2526\u001b[0m hatch\u001b[38;5;241m=\u001b[39mhtch,\n\u001b[0;32m 2527\u001b[0m )\n\u001b[1;32m-> 2528\u001b[0m r\u001b[38;5;241m.\u001b[39m_internal_update(kwargs)\n\u001b[0;32m 2529\u001b[0m r\u001b[38;5;241m.\u001b[39mget_path()\u001b[38;5;241m.\u001b[39m_interpolation_steps \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m100\u001b[39m\n\u001b[0;32m 2530\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m orientation \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvertical\u001b[39m\u001b[38;5;124m'\u001b[39m:\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\artist.py:1219\u001b[0m, in \u001b[0;36mArtist._internal_update\u001b[1;34m(self, kwargs)\u001b[0m\n\u001b[0;32m 1212\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_internal_update\u001b[39m(\u001b[38;5;28mself\u001b[39m, kwargs):\n\u001b[0;32m 1213\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1214\u001b[0m \u001b[38;5;124;03m Update artist properties without prenormalizing them, but generating\u001b[39;00m\n\u001b[0;32m 1215\u001b[0m \u001b[38;5;124;03m errors as if calling `set`.\u001b[39;00m\n\u001b[0;32m 1216\u001b[0m \n\u001b[0;32m 1217\u001b[0m \u001b[38;5;124;03m The lack of prenormalization is to maintain backcompatibility.\u001b[39;00m\n\u001b[0;32m 1218\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m-> 1219\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_update_props(\n\u001b[0;32m 1220\u001b[0m kwargs, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{cls.__name__}\u001b[39;00m\u001b[38;5;124m.set() got an unexpected keyword argument \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1221\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{prop_name!r}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\artist.py:1193\u001b[0m, in \u001b[0;36mArtist._update_props\u001b[1;34m(self, props, errfmt)\u001b[0m\n\u001b[0;32m 1191\u001b[0m func \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mset_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[0;32m 1192\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mcallable\u001b[39m(func):\n\u001b[1;32m-> 1193\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\n\u001b[0;32m 1194\u001b[0m errfmt\u001b[38;5;241m.\u001b[39mformat(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mtype\u001b[39m(\u001b[38;5;28mself\u001b[39m), prop_name\u001b[38;5;241m=\u001b[39mk))\n\u001b[0;32m 1195\u001b[0m ret\u001b[38;5;241m.\u001b[39mappend(func(v))\n\u001b[0;32m 1196\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ret:\n", + "\u001b[1;31mAttributeError\u001b[0m: Rectangle.set() got an unexpected keyword argument 'legend'" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABW4AAAJOCAYAAAAnP56mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABY4ElEQVR4nO3deZyVZd0/8M/MsIMKorigD5oLqSzihhsupD99NNOszHJPw1zCSs3dNFNTXHjU1AoNUzPXLHPBzDIz0zLX1GIxxA2BACVggDnn9wcP8zACKjBw7pnzfr9e85J7Off5Xve5POeaz9znumvK5XI5AAAAAAAURm2lCwAAAAAAoCnBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFqKByuVzpEgAAAIACEtwCrc6LL76YU089Nbvttlv69euXPfbYI+ecc04mTJiwUusYPHhwTj/99Mbl3r175+qrr06SzJkzJxdddFHuu+++xu2nn356Bg8evFJrXNEOO+yw9O7du8lPnz59sttuu+X888/P9OnTP/Txb7zxRnr37p177rlnJVUMALDyjB07NhdccEH22muv9O/fP1tvvXUOPvjg/OxnP8u8efNW6HO3tLHn4MGDFxlX9u3bN3vuuWcuv/zy1NfXf+jjn3rqqfTu3TtPPfXUSqoYYPm1qXQBAM3p1ltvzUUXXZSBAwfm5JNPTo8ePTJ+/PjccMMNefjhh3PTTTflk5/8ZEVqu/3227P22msnSd59993cdNNNufjiixu3H3/88Tn88MMrUtuKtPnmm+c73/lO4/LcuXPz97//PVdccUVeeeWV3HbbbampqVnsY3v06JHbb789//Vf/7WyygUAWCkeeOCBnHHGGdloo41y1FFHZcMNN8zs2bPz2GOP5aKLLsrjjz+ea6+9donjpGq066675vjjj29crq+vz1NPPZVrr702b775Zq644oolPnaLLbbI7bffno033nhllArQLAS3QKvxzDPP5MILL8whhxySs846q3H9wIEDs8cee+SAAw7ImWeeWbGrN7fccssP3d5aw8kuXbos0vZtt902//nPf3LVVVfl+eefX+K5adeu3UeeNwCAlmbs2LE544wzMmjQoAwfPjxt2vzfr+a77rprBg4cmKFDh+bBBx/MPvvsU8FKi2X11VdfZGw4cODAvPPOO7nnnnty+umnp0ePHot97OLGpABFZ6oEoNW44YYbssoqq+Rb3/rWIttWX331nH766fnUpz6VmTNnJkkaGhpy6623Zr/99ku/fv2y22675bLLLmvyNavTTz89Rx55ZO6+++7stdde6dOnT/bff//84Q9/aHL8V199NUcddVQGDBiQ3XffPb/61a8WqWHBVAlvvPFGPvWpTyVJzjjjjMavqH3w62rNWd/Crr/++vTp02eRaQpGjhyZLbbYIlOmTEmpVMqVV16ZwYMHp0+fPhk8eHAuv/zyzJ07d4nHXVp9+vRJkrz11ltJ5k+rcMopp2To0KHZcsstc9RRRy12qoRx48blxBNPzHbbbZdtt902xx57bMaOHdu4vb6+Ppdeeml23XXX9OnTJ/vtt18eeOCBZqsbAGB5jRgxIrW1tTn//PObhLYL7LXXXjnggAOarOvdu3euueaaHHjggenXr1+uueaaJMlf/vKXHH300dl2220bx21XX311SqVS42OnT5+eM844o3H8NGzYsCbbF3jkkUdy4IEHpm/fvtlpp53yve99r3HsvDjnnHNOdtpppzQ0NDRZf+GFF2bgwIGZO3duZs+enfPOOy+77LJL+vTpk7333js33HDD0pyuj9SnT5+Uy+W8/fbbSeZPq3DRRRfliCOOSL9+/XLWWWctdqqE5557Ll/5yley1VZbZfvtt8+3vvWtTJw4sXH7tGnTcu6552bHHXdM3759c9BBB+XJJ59s1toBPowrboFWoVwu549//GMGDx6cjh07LnafD16tcO655+aXv/xlvvrVr2abbbbJyy+/nB/84Ad55ZVXMmLEiMavpb300kt59913M3To0HTp0iX/8z//k69//ev5wx/+kNVWWy0TJ07MoYcemg022CDDhg3LjBkzctlll2XKlCmLraNHjx655pprcuKJJ+a4447L//t//2+x+zVXfR+03377Zfjw4Xn44YfzhS98oXH9/fffn5133jndu3fPD3/4w9x222057bTTsv766+f555/PlVdembZt22bo0KEf/YJ8DK+99lqSZP31129c9+CDD+Yzn/lMrrvuusX+MjFx4sR88YtfzFprrZXzzjsvnTp1ytVXX50jjjgiv/71r7PaaqvlhBNOyN/+9rcMHTo0G220UX7zm9/km9/8ZubMmbPIL0AAAJXw29/+Nttvv326d+++xH0uueSSRdZdf/31Ofnkk7PhhhumZ8+eefXVV3PkkUdm7733zpVXXplyuZz77rsv11xzTT7xiU9k3333TalUyjHHHJM333wzp512Wrp27ZoRI0bkxRdfbHJ16n333ZdTTjkl++23X77xjW/kzTffzJVXXpkxY8bkJz/5yWKnbNh///1zxx135KmnnsqOO+6YJCmVSnnwwQez7777pm3btrngggvyxz/+MaeddlrWWGON/OEPf8ill16arl275nOf+1wznM3FjytvvfXWHHXUUfnqV7+azp07Z86cOU0e8/LLL+fQQw9N//79c+mll6ahoSGXX355jj766Nx7771paGjIEUcckcmTJ+eb3/xmevTokbvvvjvHHHNMRowYkR122KFZagf4MK0quJ0zZ04OPPDAnHPOORk4cODHeszTTz+dCy+8MP/617/Su3fvfPe7363Y/JfAsps6dWrq6+uz3nrrfaz9x4wZk7vuuisnn3xyhgwZkiTZaaed0qNHj3z729/OH/7wh+y6665Jkvfffz/33HNP41QGnTp1yqGHHpo///nP2WuvvTJy5Mg0NDTkRz/6UVZfffUkyYYbbpiDDjposc/drl27bLbZZknmT4+w+eabr9D6Pqhnz57Zdttt8+tf/7oxuH399dfzwgsv5Morr0wy/72xT58+jYPp7bbbLh07dswqq6zysc7vwsrlcpOba0yfPj1PP/10rrvuugwYMKDxytskadu2bc4///y0a9cuyfybky1s5MiRmTNnTn7yk59kzTXXTJJ88pOfzJe+9KU8//zzadOmTR5//PFceeWVjUH9oEGDMmvWrFx22WX59Kc/vdirWgAAVpbp06dn+vTp2WCDDRbZ9sEbktXU1KSurq5xeZtttslRRx3VuHzvvfdmxx13zLBhw1JbO/8LtTvttFMeffTRPPXUU9l3333zhz/8IS+88EJ+/OMfZ5dddkmS7LDDDk2+6VUul3PZZZdl0KBBueyyyxrXb7DBBjnyyCPz2GOPZbfddluk3q233jo9e/bMr3/968bg9qmnnsqkSZOy//77J5k/rtxpp52y7777Jpk/tUGnTp0+NLRekg+OK6dMmZI//OEP+fnPf5599tmncSyeJOuuu25OOeWUxuUP3pTs+uuvT9euXXPjjTemffv2SeZfYHHyySdn9OjRefHFF/Pqq6/mjjvuSP/+/ZMku+yySw477LBcdtllufvuu5e6foCl1WqmSqivr8+3vvWtjB49+mM/ZsKECfnqV7+aPffcM7/85S/Tu3fvHH/88Yv8JQ4ovgUD2g9+TWtJnn766SRpHEAusO+++6aurq7JwG711VdvMv/sghuMzZo1K8n8uXW33HLLJgPF/v37Z911112GljR/fYvzmc98Jn/5y18yadKkJPOvtu3SpUvjAH7gwIF54okn8uUvfzkjRozImDFjcuihhzYOwJfGX/7yl2yxxRaNPzvuuGO+9a1vpU+fPrn88subXL3xiU98ojG0XZwF53pBaLugvb/73e+y66675sknn0xNTU123XXXzJs3r/Fn8ODBmTRp0lJ9RgAArAiL+1ZRkowfP77JmGmLLbbInnvu2WSfBX/8X+CAAw7Ij3/848ydOzevvvpqRo0alauuuioNDQ2NU1z99a9/Tdu2bTNo0KDGx3Xq1KnxIoBk/lRU77zzTgYPHtxkDLXtttumS5cueeKJJxZbc01NTT7zmc/kkUceafw9+v77788GG2zQGHYOHDgwd9xxR7761a/mlltuyYQJE3LCCScsNgj+KPfee2+T87PLLrvkvPPOy6c+9akmN8Nd3Ln6oGeeeSa77LJLY2ibJAMGDMijjz6azTbbLE8++WTWXHPNbLHFFo3no6GhIbvvvnteeumlRaYdA1gRWsVlR2PGjMnJJ5+ccrm8VI+75ZZb0q9fv5x44olJkjPPPDP77bdfxo0b56pbaGFWW221dO7cuXG+1MWZOXNm5s6dm9VWW61xoLVwAJgkbdq0Sbdu3fL+++83rvvg1AsLgsYFg+7p06cv9krfDx57aTRnfYuz995754ILLsiDDz6Yww8/PPfff3/22muvdOjQIUlyzDHHpHPnzrn77rtz2WWXZdiwYdlkk01y9tlnZ/vtt1+qtmyxxRY5//zzG2tr37591llnnXTp0mWRfTt37vyhx5o2bdqHXlU9bdq0lMvlbLXVVovd/u67737kIB4AYEXq1q1bOnXqlDfffLPJ+nXWWSd33XVX4/IPfvCD/POf/2yyT6dOnZosz549OxdccEF++ctfZt68eVlvvfUyYMCAtGnTpvH34+nTp6dr166LTHWw8Dhz2rRpSZLzzz+/cdy2sHfffXeJ7dl///1z3XXX5fHHH8+gQYPy8MMP54gjjmjcftZZZ2XttdfOr371q1xwwQW54IILMmDAgJx33nlL/Xv37rvvnhNOOCHJ/HFlx44d07Nnz8Yx7MI+eK4+aNq0aR961e+0adMyadKkbLHFFovdPmnSpMVOSwbQnFpFcPv0009n4MCB+eY3v7nIXSL/+te/5qKLLsqYMWPSq1evnHjiiY1fHX766adz4IEHNu7bsWPHPPLIIyuzdKAZ7bzzznnqqadSX1/f5C/nC9xxxx255JJLctdddzUOsiZNmpSePXs27jN37txMnTo13bp1+9jP261bt0yePHmR9QsGwMuiOetbnFVWWSWDBw/Ogw8+mO233z6jR4/OOeec07i9trY2hxxySA455JBMmTIljz32WK6//vp8/etfzxNPPPGhV8V+UOfOndO3b9/lqnfhuv/9738vsv7JJ5/Meuutl1VWWSWdOnXKT3/608U+vlevXs1SBwDA8hg8eHB+97vfZcaMGY1/zG7Xrl2TMVPXrl0/8jgXXnhhRo0aleHDh2fHHXdsDCsXnn+1W7dumTp1ahoaGppMu7DwWHXVVVdNknz729/Odtttt8jzfFhAueGGG6Zfv3558MEHU1tbm/feey+f+cxnGre3a9cuxx13XI477ri89dZb+d3vfpdrr702J598cu6///6PbOPCunbtusLHlY899lg222yzrLLKKtlggw2aTB2xsI87RRvA8mgVUyV8+ctfzplnnrnIVWeTJk3KsccemwMPPDD33XdfjjnmmJx++un561//mmT+VAkdOnTI0KFDs+OOO+bwww/PmDFjKtEEoBl85StfybRp0zJ8+PBFtk2aNCk33nhjNt5442yxxRaNA9IPDhbvv//+NDQ0ZOutt/7Yz7v99tvn2WefbXIH2jFjxmTChAlLfMzCg+bFac76lmT//ffPc889l9tuuy3rrrtuk0H6wQcfnO9973tJku7du+fAAw/MIYcckvfeey8zZsxY7udeVttss02ef/75JoPsKVOm5Jhjjsljjz2W7bbbLjNnzky5XE7fvn0bf/75z3/mBz/4wSLzxgEAVMKQIUMyb968nH322Yudqm/27NkfOpZc4JlnnsnAgQOzxx57NIa2L730Uv797383fvtqhx12yLx585pcpDRnzpwm0x984hOfSPfu3fPGG280GUOttdZaufzyy/Pyyy9/aB37779/Hn/88dx///3ZaqutGm8SNnv27Oy111658cYbk8yfd/aQQw7Jvvvu+6HflFsZttlmmzzxxBNNzv/LL7+cIUOG5O9//3u22267vP322+nevXuTc/LEE09kxIgRHzmeB2gOreKK2yW59dZbs+OOO+bQQw9NMv9Kq1deeSU33XRTttlmm8ycOTOXXXZZTjzxxBx77LH56U9/miOPPDKjRo36yK/rAsWz5ZZb5qSTTsrw4cMzduzYHHDAAenWrVtGjx6dG264IfX19Y2h7sYbb5zPfvazueqqqzJr1qxsu+22eeWVV3LNNddk4MCBTeYA+yhHHHFE7rrrrhx99NH5+te/noaGhlx55ZVp27btEh+z4CZfTz75ZDbaaKPGOcAWaM76lmTQoEHp2rVrbr/99hxzzDFNvj637bbb5sYbb8waa6yRAQMGZOLEifnJT36S7bbbrnEu3zFjxmTOnDmLvbnainLkkUfm3nvvzTHHHJNjjz02bdu2zXXXXZe11147++23X1ZZZZVsu+22Of7443P88cdno402ygsvvJCrrroqgwYNajIPMQBApfTu3TvDhg3LGWeckQMPPDCf//zn07t378ybNy/PPvts7rrrrkyePDnHHHPMhx5nwZWut912WzbaaKO8+uqrue6661JTU9N4v4MddtghO++8c84+++xMmTIlPXv2zE9/+tP8+9//bpwqoK6uLt/85jdz7rnnpq6uLrvvvnvee++9XHvttZk4ceISpwtYYJ999sn3v//9PPDAA03mmu3QoUO22GKLXHPNNWnbtm169+6d1157Lb/4xS+a3ET35ZdfTrt27bLxxhsv6yldascff3y++MUv5thjj83hhx+e2bNnZ/jw4enXr1922mmnzJs3L7fcckuOOuqofO1rX8s666yTP/3pT/nxj3+cQw899EPH+gDNpVUHt+PGjcvvfve7DBgwoHHd3Llzs+GGGyaZ/+E0ePDgHHbYYUmSCy64ILvttlseffTR7LfffhWpGVg+xx13XDbffPPceuutueiiizJ9+vSss8462W233RoHXAtceOGF6dWrV+6+++78+Mc/To8ePXL44Yfn+OOPb7wr78fRrVu33Hbbbbnwwgtz+umnp3PnzjnmmGPywAMPLPExXbp0yVFHHZXbb789jz322GJv+NBc9S1JmzZtsu++++bmm29u8nW2JDnppJPSrl273H333fnBD37QOLXCySef3LjP+eefnzfffDOPPvroctfyca2zzjr52c9+lmHDhuX0009Pu3btMnDgwFx55ZWNX+H70Y9+lP/5n//JD3/4w0yZMiVrrbVWjjrqqMb50AAAimCvvfZKnz59ctttt+Wuu+7Km2++mXK5nPXXXz/77LNPDj744GywwQYfeozTTz89c+fOzfDhwzNnzpyst956Oe644zJmzJg8+uijjdMjXHPNNbnsssty1VVXpb6+Pvvss08OOuig/Pa3v2081he+8IV07tw5I0aMyO23355OnTplq622ymWXXdZ4Be2SrL766tl5553zxBNPZO+9926y7bvf/W6GDx+eG2+8MZMmTUr37t3z+c9/PieddFLjPieeeGJ69uyZm2++eelP5DLafPPNc/PNN+fyyy/PN77xjXTp0iW77rprTjnllLRr1y7t2rXLrbfemssvvzzDhg3L+++/n549e+bkk0/OV77ylZVWJ1DdaspLe0evguvdu3d++tOfZuDAgTn++OOz2mqr5Wtf+1qTfdq0aZOePXtm8ODBOfjggzNkyJDGbV/4whey5557NlkHAAAAALAytYo5bpdkww03zPjx49OrV6/Gn9/+9re57777ksz/WvU//vGPxv3nzJmTCRMmmGQcAAAAAKioVh3cfvnLX85LL72UK6+8Mv/6179y33335Yorrsi6666bZP68lKNGjcrPfvaz/Otf/8p3v/vdtG/fPrvttltlCwcAAAAAqlqrniohSf70pz/lsssuyz//+c/GeQ4X3KwsSR555JFcdtllefPNN9OnT59897vfzSabbFKp8gEAAAAAWl9wCwAAAADQ0rXqqRIAAAAAAFoiwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMG0qXcDymjLl/VTz7dVqapLu3Vep+vPAfPoDC9MfWEBfYGH6w3wLzsPyWNnnsNpeO+1t3bS3daum9lZTWxPtbe20d+U+78fR4oPbcjlV0Zk+ivPAwvQHFqY/sIC+wML0h+VXqXNYba+d9rZu2tu6VVN7q6mtifa2dtpbHKZKAAAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAKCqjBw5InvuuWdGjhxR6VKWSHALAAAAAFSN+vr6PPTQAymVShk16oHU19dXuqTFEtwCAAAAAFVj3ry5KZdLSZJSqZR58+ZWuKLFE9wCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFU5jgdsiQITn99NMrXQYAAAAAQMUVIri9//7789hjj1W6DAAAAACAQqh4cDtt2rRceuml6du3b6VLAQAAAAAohDaVLuCSSy7J/vvvn3fffbfSpQAAAAAAFEJFg9snn3wyf/3rX3PfffflvPPOW6Zj1NQ0b00tzYL2V/t5YD79gYXpDyygL7Aw/WG+5mj/yj6H1fbaaW/rpr2tWzW1t5rammhva1dN7f1gG2tqVl67l+Z5Khbc1tfX5zvf+U7OPffcdOjQYZmP0737Ks1YVcvlPLAw/YGF6Q8soC+wMP1h+VXqHFbba6e9rZv2tm7V1N5qamuiva1dNbS3Q4em6Wn37qukS5cuFapmySoW3F5zzTXp06dPBg0atFzHmTLl/ZTLzVRUC1RTM79zVft5YD79gYXpDyygL7Aw/WG+Bedheazsc1htr532tm7a27pVU3urqa2J9rZ21dTe//xnRpPlKVPez+zZK6fRSzMOrVhwe//992fy5MkZMGBAkmTOnDlJklGjRuXZZ5/92Mcpl9PqO9PH4TywMP2BhekPLKAvsDD9YflV6hxW22unva2b9rZu1dTeampror2tXTW094PtK2qbKxbc3nzzzZk3b17j8mWXXZYkOeWUUypVEgAAAABAIVQsuO3Zs2eT5c6dOydJevXqVYlyAAAAAAAKo7bSBQAAAAAA0FTFrrj9oO9///uVLgEAAAAAoBBccQsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAomDaVLgAAAAAA4INqa2tSW1vT7Mdt06Z2keUPrmsOpVI5pVJ5mR8vuAUAAAAACqW2tibdunVMbW1dsx+7bdumYWrXrp3TpUvnZn+eUqkhU6fOWubwVnALAAAAABTK/Ktt6zJlwoWZO3t8sx77PzMbmixPHHtSZnRq3oC4bYde6b7+WamtrRHcAgAAAACty9zZ4zN39uhmPmay8K2/5s4el7kFvBNYAUsCAAAAAKhuglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAAqmosHt+PHjc/TRR2fAgAHZbbfdMmLEiEqWAwAAAABQCG0q9cSlUilDhgxJ375984tf/CLjx4/Pt771ray11lrZb7/9KlUWAAAAAEDFVeyK28mTJ2ezzTbLeeedlw022CC77rprdthhhzzzzDOVKgkAAAAAoBAqFtz26NEjw4cPT5cuXVIul/PMM8/kL3/5S7bbbrtKlQQAAAAAUAgVmyphYYMHD85bb72V3XffPXvttddSPbamZgUV1UIsaH+1nwfm0x9YmP7AAvoCC9Mf5muO9q/sc1htr532tm7a27pVU3urqa2J9rZ21dbelWnhc7o057emXC6Xm7+cpfPiiy9m8uTJOe+887Lnnnvm7LPPrnRJAAAAAECFvTN6SObOHt2sx/zPzOSEM/9vIoIfXFRK507N+hRp22GTrL3Jj5brGIW44rZv375Jkvr6+pxyyin59re/nXbt2n2sx06Z8n4qHz1XTk1N0r37KlV/HphPf2Bh+gML6AssTH+Yb8F5WB4r+xxW22unva2b9rZu1dTeampror2tXdHaW1dXm27dOle6jOU2dep/0tBQalxemnFoxYLbyZMn57nnnssee+zRuG7jjTfO3LlzM2PGjKy++uof6zjlcgrRmSrNeWBh+gML0x9YQF9gYfrD8qvUOay21057Wzftbd2qqb3V1NZEe1u7amvvyrCs57NiNyd74403cuKJJ2bixImN61566aWsvvrqHzu0BQAAAABojSoW3Pbt2zdbbLFFzjzzzIwZMyaPPfZYhg0blq997WuVKgkAAAAAoBAqFtzW1dXl2muvTceOHfPFL34xZ511Vg477LAcfvjhlSoJAAAAAKAQKnpzsrXWWivXXHNNJUsAAAAAACicil1xCwAAAADA4gluAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAFA12rRJamrKSZLa2nLatKlwQUsguAUAAAAAqkb7dskeg+aHtp/aef5yERU0TwYAAAAAWDEOObCcQw6sdBUfzhW3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAglnu4Hb69OkplUopl8vNUQ8AAAAAQNVbpuC2XC7nuuuuy8CBA7PDDjvkzTffzKmnnppzzz03c+bMae4aAQAAAACqyjIFtz/4wQ/yq1/9Kt///vfTrl27JMlnP/vZPPHEE7n00kubtUAAAAAAgGqzTMHtL37xi3z3u9/N7rvvnpqamiTJTjvtlEsuuSQPPvhgsxYIAAAAAFBtlim4nTJlSnr06LHI+lVXXTUzZ85c7qIAAAAAAKrZMgW322+/fW644YYm62bMmJErrrgiAwcObJbCAAAAAACq1TIFt+edd15efvnl7LTTTqmvr8/xxx+fXXbZJW+++WbOPvvs5q4RAAAAAKCqtFmWB6299tq566678uSTT2bcuHGZN29eNtxww+y8886prV2mLBgAAAAAgP+1TMFtktx6661ZbbXVcsghhyRJTjjhhLz55pv50pe+1GzFAQAAAABUo2W6PPbKK6/Mddddl06dOjWuGzhwYK699tr84Ac/aLbiAAAAAACq0TIFt3fffXeGDx+ewYMHN647/PDDc9lll+X2229vtuIAAAAAAKrRMgW3s2bNSpcuXRZZ361bt7z//vvLXRQAAAAAQDVbpuB20KBBufDCC/PWW281rps4cWIuueSS7Lzzzs1WHAAAAABANVqm4Pbcc8/N3Llz86lPfSrbb799tt9+++y2224plUr5zne+09w1AgAAAABUlTbL8qDVV189P//5z/Pqq6/mX//6V9q0aZMNNtggG2+8cXPXBwAAAABQdT52cPvWW29lnXXWSU1NTeMUCauuumr69evXZJ8kWXfddZu5TAAAAACA6vGxg9vBgwfniSeeSPfu3TN48ODU1NQssk+5XE5NTU1eeeWVZi0SAAAAAKCafOzg9re//W1WX331JMmvfvWrdO7ceYUVBQAAAABQzT52cNuzZ8/Gf3/ta1/LNddck80333yFFAUAAAAAUM1ql+lBtbWZO3duc9cCAAAAAFTAyJEjsueee2bkyBGVLoX/9bGvuF3YbrvtlqOOOiq77757evbsmXbt2jXZfuKJJzZLcQAAAADAilVfX5+HHnog5XIpo0Y9kIMPPizt27evdFlVb5mC23/84x/ZYost8u677+bdd99tsm1xNy0DAAAAAIpp3ry5KZdLSZJSqZR58+YKbgtgqYLbX/7yl/nNb36TNdZYI5/61Kfy6U9/ekXVBQAAAABQtT72HLc33XRTzjzzzMyePTuzZs3KGWeckSuuuGJF1gYAAAAAUJU+9hW3P//5z3PhhRfmgAMOSJI8/PDDOeOMM/LNb37T9AgAAAAAAM3oY19xO2HChOywww6Ny4MHD86sWbMWmeMWAAAAAIDl87GD23nz5qVNm/+7QLdNmzZp37595syZs0IKAwAAAACoVh87uAUAAAAAYOX42HPcJsmDDz6YLl26NC6XSqX85je/yeqrr95kvwXz4AIAAAAAsPQ+dnC77rrr5sYbb2yyrnv37rnllluarKupqRHcAgAAAAAsh48d3D766KMrsg4AAAAAAP6XOW4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwbSpdAAAAAADw0Wpra1JbW9Psx23TpnaR5Q+uaw6lUjmlUrnZj9taCW4BAAAAoOBqa2vSrVvH1NbWNfux27ZtGqZ27do5Xbp0bvbnKZUaMnXqLOHtxyS4BQAAAICCm3+1bV3+MuaCvD9rfLMee/bMhibLf/j719OhU/MGxKt07JVtNz4ntbU1gtuPSXALAAAAAC3E+7PGZ/rMfzbrMetnJUnbxuX3Zo1NfbM+A8vCzckAAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFExFg9uJEydm6NCh2W677TJo0KBcfPHFqa+vr2RJAAAAAAAV16ZST1wulzN06NCsuuqqufXWWzN9+vSceeaZqa2tzWmnnVapsgAAAAAAKq5iV9yOGzcuzz33XC6++OJssskm2WabbTJ06ND8+te/rlRJAAAAAACFULHgds0118yIESOyxhprNFk/Y8aMClUEAAAAAFAMFQtuV1111QwaNKhxuVQq5ZZbbsn2229fqZIAAAAAAAqhYnPcftCwYcPy8ssv56677lqqx9XUrKCCWogF7a/288B8+gML0x9YQF9gYfrDfM3R/pV9DqvttdPe1k17W7dqam81tTXR3tasti6pqSmnXK5JTW05tXUr9vmq4ZwubOH2Lk3bCxHcDhs2LDfddFOuvPLKbLrppkv12O7dV1lBVbUszgML0x9YmP7AAvoCC9Mfll+lzmG1vXba27ppb+tWTe2tprYm2tsatW2X9NuhlBf+XJt+25fStt2Ke65u3TqvuIMX0PK0t+LB7QUXXJDbbrstw4YNy1577bXUj58y5f2UyyugsBaipmb+G0i1nwfm0x9YmP7AAvoCC9Mf5ltwHpbHyj6H1fbaaW/rpr2tWzW1t5rammhvpdXV1a7Q0HPQp0sZ9OnSCjv+AlOn/icNDR/9PCu6vSvLB9u7NOPQiga311xzTX7+85/niiuuyN57771MxyiXU4j/eSrNeWBh+gML0x9YQF9gYfrD8qvUOay21057Wzftbd2qqb3V1NZEe1l+1XY+l7W9FQtux44dm2uvvTZDhgzJ1ltvnUmTJjVuW3PNNStVFgAAAABAxVUsuP3tb3+bhoaGXHfddbnuuuuabPvHP/5RoaoAAAAAACqvYsHtkCFDMmTIkEo9PQAAAABAYdVWugAAAAAAAJoS3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAHzAyJEjsueee2bkyBGVLoUqJbgFAAAAgIXU19fnoYceSKlUyqhRD6S+vr7SJVGFBLcAAAAAsJB58+amXC4lSUqlUubNm1vhiqhGglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAF06bSBQAAAADAsqitrUltbU2zH7dNm9pFlj+4rjmUSuWUSuVmPy6tg+AWAAAAgBantrYmXbt1TF1tXbMfu23bpmFq166d06VL52Z/noZSQ6ZNnSW8ZbEEtwAAAAC0OLW1Namrrcs9r/4ok2a+1azHnjNrXpPlnzz//bTr2Lwx2pqd1s2BnxyS2toawS2LJbgFAAAAoMWaNPOtvDPj9WY95rzZpSbL7/7njbRpcKsoVi49DgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAABgITV1SWoWLPzvMqxkglsAAAAAWEhd29r03G6VpCbpud0qqWsrQmPla1PpAgAAAACgaDbae/VstPfqlS6DKubPBQAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAPCRRo4ckT333DMjR46odClQFQS3AAAAAHyo+vr6PPTQAymVShk16oHU19dXuiRo9dpUugAAAAAAmkdtbU1qa2ua/bj19Q0pl0tJklKplKQhbdo0//WApVI5pVK52Y8LLZHgFgAAAKAVqK2tSddunVJX2/yBatu2TcPUrl07p0uXzs3+PA2lUqZNnSm8hQhuAQAAAFqF2tqa1NXW5n+euS1vvP9usx573uy5TZbP+eP1adOhbbM+x3qr9MhJW38ptbU1gltIQYLbOXPm5MADD8w555yTgQMHVrocAAAAgBbrjfffzWvT32zWY5bq5zVZHv/eW6mtL0SsBK1WxW9OVl9fn29961sZPXp0pUsBAAAAYDFqamuTBVPn1vzvMrBCVfT/sjFjxuSggw7K66+/XskyAAAAAPgQNW1r075/j6Qmad+/R2raCm5hRavo/2VPP/10Bg4cmNtvv72SZQAAAADwETrtsn66fX3rdNpl/UqXAlWhopORfPnLX67k0wMAAAAAFFKLn0W6puaj92nNFrS/2s8D8+kPLEx/YAF9gYXpD/M1R/tX9jmsttdOe1s37W3dqqm91dTWla3azqn2tm4Lt3dp2t7ig9vu3VepdAmF4DywMP2BhekPLKAvsDD9YflV6hxW22unva2b9rZu1dTeamrrytCtW+dKl7BSaW/rtjztbfHB7ZQp76dcrnQVlVNTM/8DotrPA/PpDyxMf2ABfYGF6Q/zLTgPy2Nln8Nqe+20t3XT3tatmtpbtLbW1dW2ilBs6tT/pKGh9JH7aW/LVO3tXZpxaIsPbsvlFOLNsdKcBxamP7Aw/YEF9AUWpj8sv0qdw2p77bS3ddPe1q2a2ltNbV1Zqu18am/rtqztrW3eMgAAAAAAWF6CWwAAAACAginMVAn/+Mc/Kl0CAAAAAEAhuOIWAAAAAKBgBLcAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMIJbAAAAAICCEdwCAAAALIORI0dkzz33zMiRIypdCtAKtal0AQAAAAArSm1tTWpra5r9uPX19Rk16oGUSqWMGvVADj30iLRv377Zn6dUKqdUKjf7cYHiE9wCAAAArVJtbU26duuUutrm/8LxjBnllEqlJEmpVEqXLu3SpUvnZn+ehlIp06bOFN5CFRLcAgAAAK1SbW1N6mprc/Zv78xrUyc167HLc+clNUnKSWpqMuS+G1PTtnljlg27rZnvfeoLqa2tEdxCFRLcAgAAAK3aa1Mn5R+T327243bYeJ20G/N25my8dv45vXmDYQDBLQAAAMAymL3lhpm95YaVLgNopZp/khcAAAAAAJaL4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAgAAAAAUjOAWAKCKjBw5InvuuWdGjhxR6VIAAIAPIbgFAKgS9fX1eeihB1IqlTJq1AOpr6+vdEkAAMAStKl0AQAARVZbW5Pa2ppKl9Es6usbUi6XkiSlUilJQ9q0aR1/xy+VyimVypUuAwAAmo3gFgBgCWpra9KtW8fU1tZVupRm0bZt02Cza9fO6dKlc4WqaV6lUkOmTp0lvAUAoNUQ3AIALMH8q23rMmXChZk7e3yly1lu/5nZ0GR54tiTMqNTyw+l23bole7rn5Xa2hrBLQAArYbgFgDgI8ydPT5zZ4+udBnLrTwvqampSblck9racsrzxmXu7EpXBQAALE7rmNQMAICP1L5dssegpLa2nE/tPH8ZAAAoJlfcAgBUkUMOLOeQAytdBQAA8FFccQsAAAAAUDCuuAX4X/NvQlRT6TKazU9+8uM8+OD9+e//3jdHHfXVSpfTLEqlshsPAQA0gxU59l3R41BjQqBaCG4BMn/g2rVrp9TVtY4vIsyePTsPPnh/SqVSHnzw/hx//NfSoUOHSpe13BoaSpk2baaBOgDAcliRY9+VMQ41JgSqheAWIPMHr3V1tTnz3rszbvLkSpez3Mrz5qVUnj+QLZXLOWLkDalp07Lf8j+xxhq56IDPpba2xiB9KY0cOSKjRj2QvfbaJ0cccUylywEAKmxFjn1X9DjUmBCoJi37t3iAZjZu8uS8+s7blS6jWXTquU46vPlWZvdcJ/+YPKnS5bQ4rWXqjPr6+owa9UBKpVJGjXoghx56RNq3b1/pspqFr0kCwPJZUWNf41CA5iG4BWilZm6yUWZuslGly2iRamtr0rVbx9TV1lW6lOU2Y0Y5pVIpSVIqldKlS7t06dK5wlU1j4ZSQ6ZNnSW8BYCCMQ4FaB6CWwD4gNramtTV1uWml36ad2ZOrHQ5y6VhTkNSk6Sc1NTW5Krnrkldu5YfSK/daa0c0edwX5MEAABaLcEtACzBOzMn5o3336h0Gctt9W26599/nZJuW6+et+vfTuorXREAAAAfRXALAK3c2nuuk7X3XKfSZQAAALAUaitdAAAAAAAATQluAQAAAAAKRnDbwo0cOSJ77rlnRo4cUelSAAAAAIBmIrhtwerr6/PQQw+kVCpl1KgHUl/vbjMAAAAA0BoIbluwefPmplwuJUlKpVLmzZtb4YoAAAAAgOYguAUAAAAAKBjBLQAAAKxA7k0CwLJoU+kCAAAAoNJqa2tSW1vT7Metr6/PqFH/d2+SQw89Iu3bt2/25ymVyimVys1+XAAqR3ALAABAVautrUnXrp1SV9f8X0qdPbuuyXLXrp3SoUOHZn+ehoZSpk2bKbwFaEUEtwAAAFS12tqa1NXV5txbfpF/TZzc7Mfv+F8b5z/jR6fjf22cIT+4udmPv8Faa+S7h342tbU1gluAVkRwC63IyJEjMmrUA9lrr31yxBHHVLocAABoUf41cXL+8eY7zX/g1dZN+q2bGUkmrojjA9AquTkZtBL19fV56KH/mzurvr6+0iUBAAAAsIwEt9BKzJs3N+VyKUlSKpUyb97cClcEAAAAwLKquqkSVtSdQiuhTZvaRZY/uK6lckdUAAAAAKpZVQW3tbU16bpax9S1qfvonVuAtm2bBptdu3ZOly6dK1RN82qY15Bp02cJbwEAAACoSlUX3Na1qcsFRw/L+H9MqHQ5y60hDUn7/1v++t6npS4tP5Tu1Xv9nHPDqSvljqiuwC4+V18DAAAA1aiqgtsFxv9jQkY/P7bSZSy/unLabP1/i+Neei1paB0h5MpQW1uTrl07pa6u5YebSeu9AruhoZRp02YKbwEAWpGRI0dk1KgHstde++SII46pdDkAUEhVGdxC8r9XYNfV5vtX35PX35xc6XKWW8O8OU2WTz5vZOratKtQNc3jv3qukdO/fuBKufoaAICmVtS30+rr6zNq1AMplUoZNeqBHHroEWnfvv1HP3Ap+eYWAC2d4Jaq9/qbkzPmtXcqXcZyK5fmNVkeN/7d1NT6XxwAgKW3Ir+dNnt20+ndunbtlA4dOjT78/jmFgAtnVQHWouamg9fBgCAj2nBt9Mu/OEvMv6t5v922iprb5zpb43OKmtvnKEX39zsx++17ho569jP+uYWAC2a4BZaiZqautR06Jny7DdT06Fnampa/o3qAACorPFvTc7o8Svg22l16ybrr5upSaauiOMDQCsguIVWpLbLxkmXjStdBgBUrRU1J+jCVuSNVc0JWjlu1gUAfJDgtiUrJ+Xy/G/El8vzlwEAqIza2pp0Xa1j6tqs2G+9dOvWeYUdu2FeQ6ZNn1WI8LaIQaabdQEAK5PgtiUr1aQ8sS5Zq2H+f0vmNAUAqJTa2prUtanLBUcPy/h/TKh0OUutV+/1c84NpxZiTtD6+vo89NADKZfnB5kHH3zYCgkyl8aKvFnXjBnllEqlJEmpVEqXLu3SpUvzB/Ru1gUALYvgtoUrvd42eb1tpcsAAOB/jf/HhIx+fmyly2jR5s2bm3L5/4LMefPmFiK4raurzbDL7sqEN5r3Zl0NDXOaLJ92xo2pq2vXrM+x/npr5NRTPl+IYB4A+HgEtwAAAB/ThDcmZ+zYt5v1mOVyQ5Pl1157141mAQDBLQAAsGxW1JyvbdrULrL8wXXNoShzvtbU1KWuzbppmPdW6tqsK7QFAJIIbgEAgGUwf87Xjqmra/6QsW3bpmFq166dV9Ccrw2ZNq0YN2Nr2+4TadvuE5UuAwAoEMEtAACw1ObP+VqXS88YmQnj3mnWYzeU5jZZ/vZRV6autnnv67D+J9bOty8+0pyvAEBhCW4BAIBlNmHcOxn76hvNesxyTUPS/f+WXxv9VmrKpg8AAKpL808UBQAAsDzKNcmCi2DL/7sMAFBlBLcAAECh1KQ2dbO7JeWkbna31Pi1BQCoQqZKAAAACqfNf9ZOm/+sXekyAAAqxp+uAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACkZwCwAAAABQMBUNbuvr63PmmWdmm222yc4775wbb7yxkuUAAAAAABRCm0o++aWXXpqXXnopN910U956662cdtppWXfddbP33ntXsiwAAAAAgIqqWHA7c+bM3Hnnnfnxj3+cLbbYIltssUVGjx6dW2+9VXALAAAAAFS1ik2V8Oqrr2bevHkZMGBA47qtt946zz//fEqlUqXKAgAAAACouIoFt5MmTUq3bt3Srl27xnVrrLFG6uvrM23atEqVBQAAAABQcRWbKmHWrFlNQtskjctz5sz52MeprU3K5aV77k36b5QOnTos3YNYadbfpGfjv2tXwp8WNt5g7XRo33bFPxFLbb11ujf+e2X0hSTZbO2107Gt/lBEG3Rf+f1h/S7rpV1tu4/ekZVurU49Gv+9MvpDu46bpKbW2KGo2rZfv/HfH7c/1NQs//MuaRzaUseayzoG22iz9dOhY8t7r+y5wVqN/16q9n6iZY4de/Zcts/RTXq1zPauv/aytbf3emunQ7uW195ePZatvS1x7LusY8JPrrFOOrZpWW1Nkl5d12j899K09xOrrZv2dS3wvbnLsrV3nS690ra2/QqoaMVao9Pajf9emvau1mmT1LXAsWmXDks/Zkta7lh8SWPUpRmH1pTLSxt7No8HH3ww3/ve9/LEE080rhs7dmz22WefPPXUU+natWslygIAAAAAqLiKTZWw1lprZerUqZk3b17jukmTJqVDhw5ZddVVK1UWAAAAAEDFVSy43WyzzdKmTZs899xzjeueeeaZ9O3bN7Ur6zuwAAAAAAAFVLGEtGPHjjnggANy3nnn5YUXXsgjjzySG2+8MYcffnilSgIAAAAAKISKzXGbzL9B2XnnnZeHH344Xbp0ydFHH50jjzyyUuUAAAAAABRCRYNbAAAAAAAWZTJZAAAAAICCEdwCAAAAABSM4BYAAAAAoGAEty3InDlz8ulPfzpPPfXUEvd5+eWX84UvfCH9+/fP5z73ubz00ksrsUJWtIkTJ2bo0KHZbrvtMmjQoFx88cWpr69f7L76Qus3fvz4HH300RkwYEB22223jBgxYon76g/VZciQITn99NOXuP1Pf/pTPv3pT6d///45/PDDM2HChJVYHSvDb37zm/Tu3bvJz9ChQxe7r/5QTNUy7qu2sU21fnZXy+dSNb33zpkzJ+eff3623Xbb7LjjjrniiiuypNvntPS23nPPPYu8rr17984nP/nJxe7f0tubJG+//XaOPfbYbLXVVhk8eHBGjhy5xH1bQ3unTJmSoUOHZptttsmee+6Ze+65Z4n7tuT35sWNLSZMmJAjjzwyW265ZfbZZ5/88Y9//NBj/PrXv84ee+yR/v3754QTTsi///3vFV32clnSeGr8+PHp16/fRz6+CO0V3LYQ9fX1+da3vpXRo0cvcZ+ZM2dmyJAh2WabbXLPPfdkwIABOfbYYzNz5syVWCkrSrlcztChQzNr1qzceuutufLKK/O73/0uw4cPX2RffaH1K5VKGTJkSLp165Zf/OIXOf/883PdddflvvvuW2Rf/aG63H///XnssceWuP2tt97KCSeckAMPPDB33XVXVl999Rx//PFL/GWLlmnMmDHZfffd88c//rHx53vf+94i++kPxVQt475qG9tU62d3NX0uVdN77/e+97386U9/yg033JDLL788d9xxR26//fZF9msNbV0QZi34+f3vf59evXrl8MMPX2Tf1tDeJPnGN76RTp065Z577smZZ56Z4cOH5ze/+c0i+7WG9pbL5Zxwwgl555138tOf/jRnnnlmvv/97+fhhx9eZN+W/N68uLHFgravscYaufvuu7P//vvnxBNPzFtvvbXYY7zwwgs566yzcuKJJ+b222/Pe++9lzPOOGNlNWGpLWk8teAPE0v6Q/EChWlvmcIbPXp0+TOf+Ux5v/32K2+66ablP//5z4vd78477ywPHjy4XCqVyuVyuVwqlcp77rln+e67716Z5bKCjBkzprzpppuWJ02a1LjuvvvuK++8886L7KsvtH4TJ04sn3TSSeX333+/cd0JJ5xQ/s53vrPIvvpD9Zg6dWp5l112KX/uc58rn3baaYvdZ/jw4eVDDz20cXnmzJnlAQMGLPGzhZbp5JNPLl9++eUfuZ/+UDzVNO6rtrFNNX52V9vnUrW8906dOrW8+eabl5966qnGdT/84Q/Lp59++iL7tvS2Ls71119f3mOPPcr19fWLbGsN7Z02bVp50003Lf/jH/9oXHfiiSeWzz///EX2bQ3tfeGFF8qbbrpp+fXXX29c98Mf/rB80EEHLbJvS31vXtLY4k9/+lN5yy23LP/nP/9p3PeII44oX3XVVYs9zqmnntrkvfytt94q9+7du8m5K4oltfk3v/lNefvtt29c/2GK0l5X3LYATz/9dAYOHLjYv2Au7Pnnn8/WW2+dmpqaJElNTU222mqrPPfccyuhSla0NddcMyNGjMgaa6zRZP2MGTMW2VdfaP169OiR4cOHp0uXLimXy3nmmWfyl7/8Jdttt90i++oP1eOSSy7J/vvvn4033niJ+zz//PPZZpttGpc7duyYLbbYQn9oZcaOHZsNNtjgI/fTH4qnmsZ91Ta2qcbP7mr7XKqW995nnnkmXbp0adJ3hwwZkosvvniRfVt6Wz9o2rRp+fGPf5yTTz457dq1W2R7a2hvhw4d0rFjx9xzzz2ZO3duxo0bl7/97W/ZbLPNFtm3NbR3woQJWX311bP++us3ruvdu3deeumlzJ07t8m+LfW9eUlji+effz6bb755OnXq1Lhu6623XmJ7Pvh6r7POOll33XXz/PPPr5C6l8eS2vz73/8+J510Us4666yPPEZR2ttmpT4by+TLX/7yx9pv0qRJiwyKunfv/qFfs6PlWHXVVTNo0KDG5VKplFtuuSXbb7/9IvvqC9Vl8ODBeeutt7L77rtnr732WmS7/lAdnnzyyfz1r3/Nfffdl/POO2+J+02aNCk9evRosq579+555513VnCFrCzlcjmvvfZa/vjHP+aHP/xhGhoasvfee2fo0KGL/JKpPxRPNY37qnlsUw2f3dX2uVRN770TJkxIz549c++99+b666/P3Llzc+CBB+a4445LbW3Ta8Naels/6LbbbkuPHj2y9957L3Z7a2hv+/btc+655+aCCy7IT3/60zQ0NOTAAw/MF77whUX2bQ3tXWONNfL+++9n1qxZ6dixY5LknXfeybx58/L+++9n9dVXb9y3pb43L2lssbSv37vvvttiXu8ltXnB9DUfdg+BBYrSXlfctiKzZs1aZFDQrl27zJkzp0IVsSINGzYsL7/8cr75zW8usk1fqC5XXXVVrr/++rzyyiuLvdJBf2j96uvr853vfCfnnntuOnTo8KH76g+t31tvvdX4Og8fPjynnXZa7rvvvlx66aWL7Ks/tFyt8bWrprFNa//srsbPpWp67505c2bGjx+fn//857n44otz2mmn5eabb17sDaxaelsXVi6Xc+edd+bQQw9d4j6tpb1jx47N7rvvnttvvz0XX3xxHnroofzqV79aZL/W0N7+/funR48eueCCCxr79k9+8pMkWeSK29bQ3oUtbXtmz57dqtr/UYrSXlfctiLt27dfpAPNmTPnIwdLtDzDhg3LTTfdlCuvvDKbbrrpItv1herSt2/fJPN/STrllFPy7W9/u8kHjP7Q+l1zzTXp06dPkyvXlmRJ/WHVVVddUeWxkvXs2TNPPfVUVltttdTU1GSzzTZLqVTKqaeemjPOOCN1dXWN++oPLVdre2+vtrFNa//srsbPpWp6723Tpk1mzJiRyy+/PD179kwyP7i+7bbb8pWvfKXJvi29rQt78cUXM3HixOy7775L3Kc1tPfJJ5/MXXfdlcceeywdOnRI3759M3HixFx33XX5zGc+02Tf1tDe9u3bZ/jw4fnGN76RrbfeOt27d88xxxyTiy++OF26dFlk35b83vxB7du3z7Rp05qs+7D2LKn9C65Ubm2K0l7BbSuy1lprZfLkyU3WTZ48eZFLu2nZLrjggtx2220ZNmzYYr9al+gL1WDy5Ml57rnnssceezSu23jjjTN37tzMmDGjyVd69IfW7/7778/kyZMzYMCAJGkcYIwaNSrPPvtsk32X1B8WN28ZLVfXrl2bLG+00Uapr6/P9OnTP9b7g/5QfK3pvb1axjbV9NldrZ9L1fLeu+aaa6Z9+/aNoW2SbLjhhnn77bcX2belt3Vhjz/+eLbZZpusttpqS9ynNbT3pZdeSq9evZqEd5tvvnmuv/76RfZtDe1Nkn79+uXRRx/NpEmT0q1btzzxxBPp1q1bOnfu3GS/lv7e/EFrrbVWxowZ02Tdh7VnSe1fc801V1iNlVSU9poqoRXp379/nn322ZTL5STzv8rxt7/9Lf37969wZTSXa665Jj//+c9zxRVXfOhfevWF1u+NN97IiSeemIkTJzaue+mll7L66qs3+cUg0R+qwc0335z77rsv9957b+69994MHjw4gwcPzr333rvIvv37988zzzzTuDxr1qy8/PLL+kMr8vjjj2fgwIGZNWtW47pXXnklXbt2Xez7g/7QMrWW9/ZqGttU02d3NX4uVdN7b//+/VNfX5/XXnutcd24ceOaBLkL79uS27qwF154IVtttdWH7tMa2tujR4+MHz++yZWG48aNy3rrrbfIvq2hvdOmTcuXvvSlTJ06NWuuuWbatGmT3//+94u9cWRLf2/+oP79++fvf/97Zs+e3bjumWeeWWJ7Pvh6v/3223n77bdbbPs/SlHaK7ht4SZNmtT4P9nee++d9957LxdeeGHGjBmTCy+8MLNmzcp///d/V7hKmsPYsWNz7bXX5qtf/Wq23nrrTJo0qfEn0ReqTd++fbPFFlvkzDPPzJgxY/LYY49l2LBh+drXvpZEf6g2PXv2TK9evRp/OnfunM6dO6dXr15paGjIpEmTGgffn/vc5/K3v/0tP/rRjzJ69OicccYZWW+99TJw4MAKt4LmMmDAgLRv3z5nn312xo0bl8ceeyyXXnppjjnmGP2hhWtt7+3VNrapps/uavxcqqb33k984hPZbbfdcsYZZ+TVV1/N448/nh/96Ef50pe+1OraurDRo0cvcmOq1tjewYMHp23btjn77LPz2muv5dFHH83111+fww47rFW2t2vXrpk5c2aGDRuWCRMm5M4778zdd9+dY445Jknrem/+oO222y7rrLNOzjjjjIwePTo/+tGP8sILL+Tzn/98kvnflpg0aVIaGhqSJF/60pfyy1/+MnfeeWdeffXVfPvb385uu+2W9ddfv5LNaDaFbW+ZFmXTTTct//nPf26yfPfddzcuP//88+UDDjig3Ldv3/LnP//58t///vdKlMkK8MMf/rC86aabLvanXNYXqtE777xTPuGEE8pbbbVVeaeddipfd9115VKpVC6X9Ydqd9ppp5VPO+20crlcLk+YMGGRz47f//735f/3//5fuV+/fuUjjjii/Prrr1eqVFaQf/7zn+UjjzyyvOWWW5Z32mmn8tVXX10ulUr6QwvT2sd91Ti2qdbP7mr5XKqm99733nuvfOqpp5a33HLL8g477NCq27pA3759y3/4wx+arGut7R09enT5yCOPLG+11VblPfbYo/yTn/ykVb++Y8eOLR966KHl/v37l/fdd9/yo48+2rittb03f/D1+9e//lU+5JBDyn369Cnvu+++5SeeeKJx25///OfypptuWp4wYULjurvvvru86667lrfccsvyCSecUP73v/+9UutfFh9sc7n8f21b3LqitbemXP7fa7wBAAAAACgEUyUAAAAAABSM4BYAAAAAoGAEtwAAAAAABSO4BQAAAAAoGMEtAAAAAEDBCG4BAAAAAApGcAsAAAAAUDCCWwAAAACAghHcAqxk06dPz/e///0MHjw4/fv3z3//939n5MiRKZVKK+T5Bg8enHvuuSdJcthhh+Xqq69OksyZMyd33HFH434LbwMAoHrNnDkzw4cPz957751+/fpl4MCBGTp0aEaPHt1sz3HPPfdk8ODBzXY8gNaoTaULAKgmU6dOzRe/+MX06NEjF154YdZbb728+OKLueCCCzJhwoScc845K/T5r7766rRt2zZJcv/99+f666/PQQcdtMg2AACq03/+8598+ctfzsyZM3P66afnk5/8ZKZOnZpbb701Bx98cO69996sv/76lS4ToCoIbgFWossvvzzt2rXLDTfckPbt2ydJ1l9//XTo0CHHH398Dj300Gy44YYr7Pm7du3a+O9yubzEbQAAVKcf/OAHmTJlSh544IGsuuqqSZKePXvm4osvzttvv52RI0eu8IsNAJjPVAkAK8mcOXNy//3355BDDmkMbRfYfffdM3LkyPTs2TPTp0/POeeckx133DFbb711Tj311EyfPj1J8tRTT2Xw4MH52c9+lkGDBmXLLbfMqaeemjlz5jQe6+c//3l22223bLXVVrn22mubPM+C6RCeeuqpnHHGGXnzzTfTu3fvvPHGG4tMlXDPPffkv//7v9OvX78ceOCB+ctf/tK4bfDgwbn11ltz0EEHpW/fvtl///3z0ksvrYjTBgDASlIqlfKLX/wiRx11VGNou7BLL700p556au65554cfPDBOeGEE7L11lvnV7/6VWbMmJEzzjgjO+ywQ/r06ZO99947jzzySONjJ06cmGOOOSZbbrllPvvZz+b1119vcux//vOfOeyww9KvX7/stddeufXWW1d4ewGKTnALsJK8/vrrmTlzZvr27bvItpqammy//fZp165dTjzxxLzyyiu5/vrr85Of/CRjx47N6aef3rjvu+++m1GjRmXEiBG5+uqr8/DDD+fee+9Nkjz++OO58MIL841vfCO33357Xnzxxbz55puLPN+AAQNy5plnZu21184f//jHrLPOOk2233PPPbngggty7LHH5t57782OO+6YIUOGZOLEiY37XH311RkyZEh+9atfZZVVVsn3vve9ZjpTAABUwuuvv55///vf2WabbRa7vUePHunQoUOS5Nlnn83GG2+cO+64IzvvvHMuvPDCvPbaa7nxxhvz61//Ottss03OOuusxgsMTjrppJRKpdx555356le/mptuuqnxuLNnz85Xv/rVxhD4tNNOy7XXXts4xgWoVqZKAFhJ3nvvvSTJKqusssR9Xn311Tz99NN56KGHGqdMGDZsWPbZZ5+MGzcuSTJ37tycffbZ2WSTTdK7d+8MGjQoL774Yg466KDceeed2W+//XLAAQckSS666KLsuuuuizxPu3btssoqq6Suri5rrrnmIttvvvnmHHbYYY3HOeWUU/KXv/wlt9xyS04++eQkyWc/+9nsscceSZKjjjoqJ5100rKdGAAACmHq1KlJktVWW61x3Z/+9KeccMIJjcvrrrtujj766NTU1OS4445rDHK33XbbHHXUUdl0002TJF/5yldy5513ZsqUKZkxY0aeffbZ/O53v8u6666bTTbZJC+99FIeeuihJMl9992X7t275xvf+EaSZIMNNsibb76Zn/70p43jUYBqJLgFWEkWzCG7YNqDxRk3blxWXXXVJvPcbrTRRllttdUybty4xtC3V69ejdu7dOmSefPmJUnGjh2bgw8+uHFbt27dlunmEWPHjm0yQE+SLbfcMmPHjm1c3mCDDZrUMHfu3KV+HgAAimPB9AgLLjhI5n9Ta8GVrw8//HBuu+22JEn37t0bQ9skOeCAA/LII4/kjjvuyLhx4/L3v/89SdLQ0JAxY8aka9euWXfddRv379u3b2NwO27cuLz66qsZMGBA4/aGhobU1dWtmIYCtBCCW4CV5L/+67+yyiqr5O9//3v69eu3yPbjjjsun/vc5xb72IaGhjQ0NDQut2vXrsn2hW809sGbjrVt23apa/3gHLwLaiiVSst1XAAAiqtXr17p2rVrnn322cbxaseOHRsvGujevXvjvh8cL37729/Os88+m/333z9f+tKXsuaaa+aLX/xi4/YPG6POmzcvO+ywQ84999xmbxNAS2aOW4CVpE2bNtlnn31y6623NrmZWJI8+uijefTRR7PBBhvkvffea5wWIUnGjBmTGTNmNLkKd0k22WSTvPjii43LM2bMyPjx4xe7b01NzRKPs+GGG+b5559vsu7555//WDUAANAytWnTJp/73Ody0003ZcaMGYtsX/h+BwubMWNGfv3rX+fKK6/M0KFDs+eeezZ+y6xcLmfTTTfN9OnTm4xLX3nllcZ/b7jhhnnttdey3nrrpVevXunVq1eee+653Hzzzc3cQoCWRXALsBJ9/etfz4wZM3L00Ufn6aefzuuvv54777wzp59+eg4//PBsvPHG2WWXXXLaaaflhRdeyAsvvJDTTjst2267beN8YR/m0EMPzYMPPpg77rgjY8eOzbnnnpvZs2cvdt+OHTtm+vTp+de//tU41cICRx55ZG655Zbce++9ee2113LZZZfl1Vdfzec///lmOQ8AABTT17/+9ay55po5+OCD89BDD2XChAl54YUXcs455+Sqq67K1ltvvchj2rVrl44dO+bhhx/OG2+8kccffzzf/e53kyRz5szJRhttlB122CFnnnlmXn311TzyyCO55ZZbGh//mc98JrNnz865556bsWPH5rHHHsuFF17Y5ApfgGpkqgSAlWjNNdfMbbfdlquvvjqnnHJKpk2blv/6r//K0KFD86UvfSlJcskll+R73/tejjzyyNTV1eVTn/pUzjjjjI91/G222SYXX3xxhg8fnn//+9/53Oc+l80222yx+26//fbp1atX9ttvv/zsZz9rsm2fffbJ5MmTc9VVV2XSpEnZbLPNcuONN2ajjTZavhMAAEChdezYMTfffHNuuummXHvttRk/fnzatWuXfv365eqrr84ee+yRe+65p8lj2rVrl2HDhuWSSy7JzTffnPXWWy/HHXdchg8fnldeeSUbbbRRrrzyypxzzjk5+OCDs+666+awww5rPE6XLl3y4x//OBdddFEOOOCAdO3aNYccckiOPfbYSpwCgMKoKX9wohkAAAAAACrKVAkAAAAAAAUjuAUAAAAAKBjBLQAAAABAwQhuAQAAAAAKRnALAAAAAFAwglsAAAAAgIIR3AIAAAAAFIzgFgAAAACgYAS3AAAAAAAFI7gFAAAAACgYwS0AAAAAQMEIbgEAAAAACub/A7/UaeDefSCHAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHcAAAH8CAYAAABb4EOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjYElEQVR4nO3df4zX9X3A8dfBabwjMIJnIN3IaM6jdEW9k6O3LiW0Ho0TBepK7bYuWbPEtrlIBSvZWrJF6WB2W+dybdnIloaaUmtGitVVcXZRSzrG4cTY/dACTnQhM3IUUQ5aTz77g0D7HWj5wnHf9+t4PJKL/X74HN8339d9P993n3y5a6qqqgoAAAAAUhrX6AUAAAAAcPbEHQAAAIDExB0AAACAxMQdAAAAgMTEHQAAAIDExB0AAACAxMQdAAAAgMTEHQAAAIDExB0AAACAxM467hw4cCA+9KEPxfbt29/ynCeeeCIWLVoUnZ2dcd1118Vjjz12tncHAAAAwGmcVdz5t3/7t/jYxz4WL7744lue88ILL8SyZcvi1ltvjSeffDKWLVsWy5cvj5dffvmsFwsAAABArbrjzubNm+P222+PFStW/MLzuru7Y8GCBdHc3BwLFy6MuXPnxn333XfWiwUAAACgVt1x5/3vf388+uijsXDhwrc9b/fu3TFz5syaY5dffnk8++yz9d4lAAAAAG+hud5PuOyyy87ovMOHD0dLS0vNsUsuuSSGhobqvUsAAAAA3kLdcedMtbS0xNGjR2uOHT16NCZMmFDX73PgwGtRVSO5MurV1BQxZcpEs2gwcyiHWZTDLMpwYg6Uw3Oi8VyfymAO5TCLMphDOUZ6/3Te4s7MmTPjP/7jP2qO7d69O2bPnl3X71NVEceOjeTKqFdT0/H/HjsWLgANZA7lMItymEUZxp31z97kfLF/ajzXpzKYQznMogzmUI6R3j+dt+3Y4sWLY2BgIB566KEYHh6Ohx56KAYGBmLJkiXn6y4BAAAALjgjGne6urrigQceiIiI9vb2+OpXvxrr16+PuXPnxrp16+LLX/5yvPOd7xzJuwQAAAC4oJ3TP8t67rnnam7v3Lmz5va8efNi3rx553IXAAAAALwN/0oeAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAILG6487g4GD09fVFd3d39PT0xJo1a2J4ePi0537961+Pa665Jq6++upYtGhRPPLII+e8YAAAAAB+pu64s3z58mhtbY2tW7fGpk2bYtu2bbFhw4ZTznviiSdi/fr18fd///fx1FNPxS233BLLly+P//mf/xmJdQMAAAAQdcadvXv3xsDAQKxcuTJaWlpi+vTp0dfXFxs3bjzl3Oeffz6qqjr5MX78+Ljooouiubl5xBYPAAAAcKGrq7Ts2rUrJk+eHFOnTj15rL29Pfbt2xeHDh2KSZMmnTx+/fXXx7e//e1YuHBhjB8/PpqamuIv/uIvYtq0aSO3egAAAIALXF1x5/Dhw9HS0lJz7MTtoaGhmrjzxhtvxKxZs2LNmjUxa9asePDBB2PVqlXR3t4e73rXu874Ppuajn/QOCcef3NoLHMoh1mUwyzK4PEvj/1T47k+lcEcymEWZTCHcoz0DOqKO62trXHkyJGaYyduT5gwoeb4F77whbj66qvjyiuvjIiIj3zkI/GP//iPsXnz5vijP/qjM77PKVMm1rNEzqNLLzWLEphDOcyiHGYBteyfyuH6VAZzKIdZlMEcxp664k5HR0ccPHgw9u/fH21tbRERsWfPnpg2bVpMnFj7xbFv376YPXt27Z01N8dFF11U1wIPHHgtjh2r61MYYU1Nx5/8g4OvRVU1ejUXLnMoh1mUwyzKMG6cmFAa+6fGc30qgzmUwyzKYA7lGOn9U11xZ8aMGTFnzpxYu3ZtrF69On784x/HunXrYunSpaece80118Q3vvGN+OAHPxjvfve745/+6Z9i+/btcdttt9W1wKoKX3SFMIsymEM5zKIcZtFYHvvyeE6UwyzKYA7lMIsymEPjjfTjX/ePrurv74/Vq1dHb29vjBs3Lj784Q9HX19fRER0dXXFnXfeGYsXL45bbrklxo8fH8uWLYtXX301fvVXfzW++tWvxrvf/e6R/RMAAAAAXMCaqqrsXjc46G3FjdbUFNHWNjH27/fWvUYyh3KYRTnMogzjxvm3+6Wxf2o816cymEM5zKIM5lCOkd4/jRux3wkAAACAUSfuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACRWd9wZHByMvr6+6O7ujp6enlizZk0MDw+f9tyBgYH46Ec/Gl1dXTF//vxYv379OS8YAAAAgJ+pO+4sX748WltbY+vWrbFp06bYtm1bbNiw4ZTz9uzZE5/85Cfjd3/3d+Opp56K9evXx9e+9rXYsmXLSKwbAAAAgKgz7uzduzcGBgZi5cqV0dLSEtOnT4++vr7YuHHjKed+85vfjN7e3rjxxhujqakpZs2aFd/61rdizpw5I7Z4AAAAgAtdcz0n79q1KyZPnhxTp049eay9vT327dsXhw4dikmTJp08/swzz8Rv/MZvxG233RY/+MEPYsqUKfGJT3wiPvaxj9W1wKam4x80zonH3xwayxzKYRblMIsyePzLY//UeK5PZTCHcphFGcyhHCM9g7rizuHDh6OlpaXm2InbQ0NDNXHn1VdfjXvuuSfuvvvu+PM///PYuXNnfOpTn4pf+qVfit/8zd884/ucMmViPUvkPLr0UrMogTmUwyzKYRZQy/6pHK5PZTCHcphFGcxh7Kkr7rS2tsaRI0dqjp24PWHChJrjF198cfT29sYHPvCBiIiYO3duLFmyJB5++OG64s6BA6/FsWP1rJKR1tR0/Mk/OPhaVFWjV3PhModymEU5zKIM48aJCaWxf2o816cymEM5zKIM5lCOkd4/1RV3Ojo64uDBg7F///5oa2uLiOPfOHnatGkxcWLtotrb2+OnP/1pzbE333wzqjq/gqoqfNEVwizKYA7lMItymEVjeezL4zlRDrMogzmUwyzKYA6NN9KPf13fUHnGjBkxZ86cWLt2bbz++uvx0ksvxbp162Lp0qWnnPvbv/3b8c///M/xne98J6qqih07dsSDDz4YS5YsGbHFAwAAAFzo6v5R6P39/TE8PBy9vb1x0003xbx586Kvry8iIrq6uuKBBx6IiIj3ve99sW7durjnnntizpw58bnPfS7+8A//MHp7e0f2TwAAAABwAavrn2VFRLS1tUV/f/9pf23nzp01t+fPnx/z588/u5UBAAAA8AvV/c4dAAAAAMoh7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACRWd9wZHByMvr6+6O7ujp6enlizZk0MDw+/7ef86Ec/iquuuiq2b99+1gsFAAAA4FR1x53ly5dHa2trbN26NTZt2hTbtm2LDRs2vOX5R44cic9+9rNx9OjRc1knAAAAAKdRV9zZu3dvDAwMxMqVK6OlpSWmT58efX19sXHjxrf8nDvvvDMWLFhwzgsFAAAA4FTN9Zy8a9eumDx5ckydOvXksfb29ti3b18cOnQoJk2aVHP+/fffH3v37o01a9bEunXrzmqBTU3HP2icE4+/OTSWOZTDLMphFmXw+JfH/qnxXJ/KYA7lMIsymEM5RnoGdcWdw4cPR0tLS82xE7eHhoZq4s6ePXvi7rvvjnvvvTfGjx9/1gucMmXiWX8uI+vSS82iBOZQDrMoh1lALfuncrg+lcEcymEWZTCHsaeuuNPa2hpHjhypOXbi9oQJE04e+8lPfhIrVqyIz3/+8/GOd7zjnBZ44MBrcezYOf0WnKOmpuNP/sHB16KqGr2aC5c5lMMsymEWZRg3Tkwojf1T47k+lcEcymEWZTCHcoz0/qmuuNPR0REHDx6M/fv3R1tbW0Qcf4fOtGnTYuLEny3qhz/8YbzwwguxatWqWLVq1cnjn/70p2PJkiVxxx13nPF9VlX4oiuEWZTBHMphFuUwi8by2JfHc6IcZlEGcyiHWZTBHBpvpB//uuLOjBkzYs6cObF27dpYvXp1/PjHP45169bF0qVLa87r7u6OZ555pubYu971rvjbv/3b6OnpOfdVAwAAABARZ/Gj0Pv7+2N4eDh6e3vjpptuinnz5kVfX19ERHR1dcUDDzww4osEAAAA4PTqeudORERbW1v09/ef9td27tz5lp/33HPP1XtXAAAAAPwCdb9zBwAAAIByiDsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAidUddwYHB6Ovry+6u7ujp6cn1qxZE8PDw6c99957741rr702urq64tprr42NGzee84IBAAAA+Jm6487y5cujtbU1tm7dGps2bYpt27bFhg0bTjnve9/7XvzVX/1VfPGLX4ynnnoq7rrrrvjrv/7reOSRR0Zi3QAAAABEnXFn7969MTAwECtXroyWlpaYPn169PX1nfYdOS+//HLcfPPN0dnZGU1NTdHV1RU9PT2xY8eOEVs8AAAAwIWuuZ6Td+3aFZMnT46pU6eePNbe3h779u2LQ4cOxaRJk04e//jHP17zuYODg7Fjx4743Oc+V9cCm5qOf9A4Jx5/c2gscyiHWZTDLMrg8S+P/VPjuT6VwRzKYRZlMIdyjPQM6oo7hw8fjpaWlppjJ24PDQ3VxJ2f98orr8SnPvWpmD17dtxwww11LXDKlIl1nc/5c+mlZlECcyiHWZTDLKCW/VM5XJ/KYA7lMIsymMPYU1fcaW1tjSNHjtQcO3F7woQJp/2cp59+Om699dbo7u6OP/uzP4vm5rruMg4ceC2OHavrUxhhTU3Hn/yDg69FVTV6NRcucyiHWZTDLMowbpyYUBr7p8ZzfSqDOZTDLMpgDuUY6f1TXaWlo6MjDh48GPv374+2traIiNizZ09MmzYtJk48dVGbNm2KP/3TP43PfOYz8Qd/8AdntcCqCl90hTCLMphDOcyiHGbRWB778nhOlMMsymAO5TCLMphD443041/XN1SeMWNGzJkzJ9auXRuvv/56vPTSS7Fu3bpYunTpKec+8sgjcccdd8SXv/zlsw47AAAAALy9un8Uen9/fwwPD0dvb2/cdNNNMW/evOjr64uIiK6urnjggQciIuIrX/lKvPnmm/GZz3wmurq6Tn78yZ/8ycj+CQAAAAAuYPV9A5yIaGtri/7+/tP+2s6dO0/+7wcffPDsVwUAAADAGan7nTsAAAAAlEPcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASKzuuDM4OBh9fX3R3d0dPT09sWbNmhgeHj7tuU888UQsWrQoOjs747rrrovHHnvsnBcMAAAAwM/UHXeWL18era2tsXXr1ti0aVNs27YtNmzYcMp5L7zwQixbtixuvfXWePLJJ2PZsmWxfPnyePnll0di3QAAAABEnXFn7969MTAwECtXroyWlpaYPn169PX1xcaNG085d/PmzdHd3R0LFiyI5ubmWLhwYcydOzfuu+++EVs8AAAAwIWuuZ6Td+3aFZMnT46pU6eePNbe3h779u2LQ4cOxaRJk04e3717d8ycObPm8y+//PJ49tln61pgU1PEON8ZqKGamo7/d9y4iKpq7FouZOZQDrMoh1mU4cQcKIf9U+O5PpXBHMphFmUwh3KM9P6prrhz+PDhaGlpqTl24vbQ0FBN3DnduZdcckkMDQ3VtcApUybWdT7nj1mUwRzKYRblMAuo5TlRDrMogzmUwyzKYA5jT11/p9Pa2hpHjhypOXbi9oQJE2qOt7S0xNGjR2uOHT169JTzAAAAADh7dcWdjo6OOHjwYOzfv//ksT179sS0adNi4sTa8jdz5szYtWtXzbHdu3dHR0fHOSwXAAAAgJ9XV9yZMWNGzJkzJ9auXRuvv/56vPTSS7Fu3bpYunTpKecuXrw4BgYG4qGHHorh4eF46KGHYmBgIJYsWTJiiwcAAAC40DVVVX3fRmn//v2xevXq2L59e4wbNy4+/OEPx+233x7jx4+Prq6uuPPOO2Px4sUREbF169b4y7/8y3jxxRfjl3/5l2PlypUxf/788/IHAQAAALgQ1R13AAAAACiHH5IJAAAAkJi4AwAAAJCYuAMAAACQmLgDAAAAkFhD487g4GD09fVFd3d39PT0xJo1a2J4ePi05z7xxBOxaNGi6OzsjOuuuy4ee+yxUV7t2FbPLO6999649tpro6urK6699trYuHHjKK927KpnDif86Ec/iquuuiq2b98+Squ8MNQzi4GBgfjoRz8aXV1dMX/+/Fi/fv0or3Zsq2cWX//61+Oaa66Jq6++OhYtWhSPPPLIKK927Dtw4EB86EMfettrjtfs88v+qQz2TuWwfyqH/VMZ7J3KMyr7p6qBfu/3fq/67Gc/Ww0NDVUvvvhidf3111d/93d/d8p5//3f/11dccUV1aOPPlq98cYb1Xe/+93qyiuvrP73f/+3Aasem850Fo8++mjV3d1d7dy5szp27Fj11FNPVd3d3dWWLVsasOqx50zncMLQ0FB1ww03VDNnzqz+9V//dRRXOvad6Sx2795dXXXVVdW3v/3t6tixY9V//dd/Ve9973urhx9+uAGrHpvOdBaPP/549b73va/as2dPVVVVtWXLlmrWrFnVSy+9NNpLHrOefPLJasGCBW97zfGaff7ZP5XB3qkc9k/lsH8qg71TWUZr/9Swd+7s3bs3BgYGYuXKldHS0hLTp0+Pvr6+0/5NxubNm6O7uzsWLFgQzc3NsXDhwpg7d27cd999DVj52FPPLF5++eW4+eabo7OzM5qamqKrqyt6enpix44dDVj52FLPHE648847Y8GCBaO4ygtDPbP45je/Gb29vXHjjTdGU1NTzJo1K771rW/FnDlzGrDysaeeWTz//PNRVdXJj/Hjx8dFF10Uzc3NDVj52LN58+a4/fbbY8WKFb/wPK/Z54/9Uxnsncph/1QO+6cy2DuVZTT3Tw2LO7t27YrJkyfH1KlTTx5rb2+Pffv2xaFDh2rO3b17d8ycObPm2OWXXx7PPvvsqKx1rKtnFh//+Mfjk5/85Mnbg4ODsWPHjpg9e/aorXesqmcOERH3339/7N27N2655ZbRXOYFoZ5ZPPPMM/Erv/Ircdttt0VPT09cd911MTAwEJdddtloL3tMqmcW119/fbS1tcXChQvjPe95T9x6661x1113xbRp00Z72WPS+9///nj00Udj4cKFb3ue1+zzy/6pDPZO5bB/Kof9UxnsncoymvunhsWdw4cPR0tLS82xE7eHhoZ+4bmXXHLJKedxduqZxc975ZVX4uabb47Zs2fHDTfccF7XeCGoZw579uyJu+++O770pS/F+PHjR22NF4p6ZvHqq6/GPffcE4sXL44f/OAHsXr16vjiF78YW7ZsGbX1jmX1zOKNN96IWbNmxT/8wz/E008/HatXr45Vq1bFc889N2rrHcsuu+yyM/qbPK/Z55f9Uxnsncph/1QO+6cy2DuVZTT3Tw2LO62trXHkyJGaYyduT5gwoeZ4S0tLHD16tObY0aNHTzmPs1PPLE54+umnY+nSpfHOd74z/uZv/sZb90bAmc7hJz/5SaxYsSI+//nPxzve8Y5RXeOFop7nxMUXXxy9vb3xgQ98IJqbm2Pu3LmxZMmSePjhh0dtvWNZPbP4whe+EB0dHXHllVfGxRdfHB/5yEeis7MzNm/ePGrrxWv2+Wb/VAZ7p3LYP5XD/qkM9k45jcRrdsPiTkdHRxw8eDD2799/8tiePXti2rRpMXHixJpzZ86cGbt27ao5tnv37ujo6BiVtY519cwiImLTpk3xiU98In7/938/vvSlL8XFF188mssds850Dj/84Q/jhRdeiFWrVkV3d3d0d3dHRMSnP/3puOOOO0Z72WNSPc+J9vb2+OlPf1pz7M0334yqqkZlrWNdPbPYt2/fKbNobm6Oiy66aFTWynFes88v+6cy2DuVw/6pHPZPZbB3ymlEXrPP9Ts/n4vf+Z3fqVasWFG99tprJ7+Ld39//ynn7d69u7riiiuq7373uye/c/QVV1xRPf/88w1Y9dh0prPYsmVL9Z73vKf6/ve/34BVjn1nOof/z097GHlnOot/+Zd/qX7t136tuv/++6tjx45VAwMDVWdnZ/W9732vAasem850FnfffXfV09NT/fu//3v15ptvVg8//HB1xRVXVP/5n//ZgFWPbW93zfGaff7ZP5XB3qkc9k/lsH8qg71Tmc73/qmhceeVV16pli1bVr33ve+tfv3Xf7266667quHh4aqqqqqzs7P6zne+c/Lc73//+9XixYurzs7O6vrrr68ef/zxRi17TDrTWdxwww3VrFmzqs7OzpqPP/7jP27k8seMep4TP8/mZOTVM4vHH3+8+q3f+q2qq6ur6u3tre69995GLXtMOtNZvPHGG1V/f3/1wQ9+sLr66qurG2+80f+ZOk/+/zXHa/bosn8qg71TOeyfymH/VAZ7pzKd7/1TU1V57xsAAABAVg37njsAAAAAnDtxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgsf8De6fiXWDI/iIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2440,12 +2491,12 @@ }, { "cell_type": "code", - "execution_count": 238, + "execution_count": 31, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABcsAAAaWCAYAAABibOViAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXhT1xsH8G/aNKk7UlpKlSruUFyGS7EBQ7fhjA0YP2BjsGEzYOiQwRiD4TCGu0txKRVKCxW81CXSNL8/UlJCAmNd0jbr9/M8eR5y77m377kkJ+e+99xzBUqlUgkiIiIiIiIiIiIiojLMpKQDICIiIiIiIiIiIiIqaUyWExEREREREREREVGZx2Q5EREREREREREREZV5TJYTERERERERERERUZnHZDkRERERERERERERlXlMlhMRERERERERERFRmcdkORERERERERERERGVeUyWExEREREREREREVGZx2Q5EREREUGpVJZ0CAbxX60XERERERHpH5PlRERERP/A7du38fnnn6NFixaoXr062rRpg+nTpyMxMbGkQ0NYWBj8/PwQFhb2ztvIZDLMnTsXe/bsUS+bMmUKWrVqZYgQtUyZMgV+fn5o1qzZGxPbP/74I/z8/DBw4MB/tO+YmBj069fvb8vt3LkTfn5+SEpK+kf7JyIiIiKi/xYmy4mIiIje0caNG/H+++/jxYsXmDhxIlavXo3hw4fj0qVL6NWrF6Kioko6xH/s2bNn+O2335CXl6deNnr0aCxdurTYYjAxMcHTp09x7do1nev3799fpP0ePHgQ169f/9tyLVq0wJYtW1C+fPki/R0iIiIiIvpvEJZ0AERERETG4OrVq5gzZw4GDBiAL774Qr28QYMGaNOmDbp3745p06Zh586dJRilfri7uxfr33NxcYFSqcSBAwdQp04djXU3btzA06dPUbVqVYP9fUdHRzg6Ohps/0REREREZBw4spyIiIjoHaxZswY2NjaYMGGC1jpHR0dMmTIFrVu3Rk5ODgBAoVBg48aN6NKlC6pXr44WLVrgxx9/hFQqVW83ZcoUDB48GDNmzEDt2rXRsWNHKBQK+Pn5YenSpQgNDUX16tXVo7wfPXqECRMmoH79+qhRowYGDx6MiIiIt8Z99OhR9O/fH7Vq1UJwcDDat2+PjRs3AgCSkpLQunVrAMDUqVPVU6+8Pg3Lu9ZlyJAh2LFjB9577z0EBwejW7duOH369Dsd3/bt2+Pw4cNaU7Hs378fjRs3hr29vcZyiUSC+fPno127dggODkbt2rUxdOhQREZGAgCWLFmiPm5+fn5YsmSJ+t+vH9tXp2F5/Pgx6tSpozHli1QqRceOHdGpUyeNOhMRERER0X8LR5YTERER/Q2lUomzZ8+iVatWsLCw0FmmY8eOGu+/+uor7N69Gx9//DHq1q2LiIgILFu2DJGRkfjll18gEAgAAFeuXIFYLMayZcuQk5MDU1NTAMCKFSswceJEeHp6wtXVFSkpKXj//fdhYWGB6dOnw8LCAr/99hsGDBiA7du3w9vbWyumkydPYsyYMRg0aBDGjRsHiUSCP/74A9988w2Cg4MREBCApUuXYuzYsRg1ahTatWuns27vWpfw8HA8e/YMn3zyCaytrbFo0SKMGzcOp0+fhp2d3VuPcceOHbF27Vpcu3ZNPbo8Pz8fBw8exIQJE7Bjxw6N8pMnT8aVK1cwYcIEuLu7Iz4+HosWLcLEiROxb98+9O7dG0+ePMH27duxZcsWVKxYUb3t68f29u3b6nUuLi6YMmUKvvzyS+zYsQM9e/bE/PnzkZCQgO3bt0MsFr+1HkREREREZLyYLCciIiL6G6mpqZBKpXBzc3un8vfu3cP27dsxceJEDB8+HADQpEkTlC9fHpMnT8bp06fRvHlzAEBeXh6++eYbjWQuANStWxdDhw5Vv1+4cCHS0tKwadMmuLq6AgCaNWuGjh07YtGiRVi8eLHOOHr06KExbUytWrXQoEEDhIWFoUaNGggICACgmnolMDDwX9UlMzMTO3fuVE/jYmlpiQ8++AAXL17Ee++999ZjVq1aNVSuXFljKpYrV64gLS0Nbdq00UiWy2QyZGdn48svv1RfpKhfvz6ysrLw7bffIjk5GRUrVlQf05o1a7712L6aLAeA3r174/Dhw/j+++9hb2+P9evX4/PPP4e/v/9b60BERERERMaN07AQERER/Y2Xo70VCsU7lb906RIAoFOnThrLO3XqBFNTU4SFhamX2dvbayXKAaiT2C9duHABAQEBqFChAvLy8pCXlwcTExM0a9YM58+f1xnHRx99hG+//RbZ2dkIDw/H/v37sXLlSgCqhLO+6+Lo6Kgx3/nLeuXm5r7T3+rYsaPGVCz79u1DixYtYG1trVFOJBJhzZo16NixI54+fYqLFy9i8+bNOHHixDvV7fVjq8vs2bORn5+PsWPHon79+hg2bNg71YGIiIiIiIwXR5YTERER/Q07OztYWVnh0aNHbyyTk5MDuVwOOzs7pKenAwDKlSunUUYoFMLBwQGZmZnqZVZWVjr3Z2lpqfE+LS0N8fHxCAoK0lleV0I6JSUFM2bMwNGjRyEQCFClShXUrVsXALTmBn+Tf1KX16eoeTk9S35+/jv9rY4dO2LlypW4du0aatasicOHD2PmzJk6y545cwZz585FXFwcrKys4O/vrz5mf1e314+tLhUqVECjRo1w6NAhtGjRQl0XIiIiIiL672KynIiIiOgdhISEICwsDFKpVOe81Vu3bsV3332H7du3q+fnfv78uXrKFACQy+VITU2Fg4PDP/77NjY2qF+/PiZPnqxzvUgk0lo2adIkxMXFYd26dahVqxZEIhFyc3OxdevWd/67hqjLm/j7+8PT0xMHDx6ERCKBVCpFixYttMolJCRgzJgxaNOmDVauXInKlStDIBBg48aNOHPmjF5iOXv2LA4dOoSAgAAsWbIEbdu2ReXKlfWybyIiIiIiKp04DQsRERHROxg2bBjS0tLw008/aa17/vw51q5dCx8fHwQFBaF+/foAVNOIvGrfvn1QKBTqObn/ifr16+P+/fvw9PREtWrV1K/du3dj+/bt6qliXnX16lW0a9cODRo0UCfTT58+DaBwtLeu7V7/u/quy9u8nIpl//79aNu2rc4LE+Hh4ZBKpRg+fDjc3d3Vo75fJspfjiw3MSlaVzczMxNffvklGjdujA0bNsDW1hbTpk1759H4RERERERknDiynIiIiOgd1KxZE+PHj8dPP/2E2NhYdO/eHQ4ODoiJicGaNWsglUrViXQfHx/06NEDixcvRm5uLurVq4fIyEgsXboUDRo0QNOmTf/x3x8yZAh2796NIUOGYNiwYXBwcMD+/fuxdetWTJ06Vec21atXx549exAUFISKFSvi2rVrWLVqFQQCgXraFhsbGwCqOdG9vb1Ro0YNjX0Yoi5v07FjRyxbtgy7d+/G8uXLdZYJCgqCUCjEDz/8gGHDhkEmk2Hnzp04efIkANWUOABga2sLANi7dy9q1KjxziPD586di9TUVKxfvx7W1taYPn06xowZgw0bNmDgwIH/vpJERERERFQqMVlORERE9I5GjRqFwMBAbNy4EXPnzkV6ejpcXFzQokULjBw5Ei4uLuqyc+bMQZUqVbBjxw6sXr0a5cuXx6BBgzB69OgijXiuUKECNm/ejPnz52PmzJmQSqXw8PDAnDlz0KtXL53bfPvtt5g1axZmzZoFAPDw8MDXX3+Nv/76C1euXAEAWFtbY+jQodiyZQtOnTqFc+fOae1H33V5Gx8fH1StWhXPnz9H48aNdZapUqUK5s+fj6VLl2LUqFGws7NDzZo18fvvv2PgwIG4cuUK/Pz80K5dO+zevRtTpkxBr1693jj/+atOnTqFnTt34vPPP1c/rLRNmzZo164d5s+fj2bNmqFKlSr6rDIREREREZUSAiXvJyUiIiIiIiIiIiKiMo5zlhMRERERERERERFRmcdkORERERERERERERGVeUyWExEREREREREREZFByWQydO7cGWFhYW8sExERgd69e6NGjRro2bMnwsPDNdbv3bsXbdq0QY0aNTBmzBikpKToNUYmy4mIiIiIiIiIiIjIYKRSKSZMmICYmJg3lsnJycHw4cNRt25d7Ny5E7Vq1cKIESOQk5MDALh16xa++OILjB07Flu2bEFGRgamTp2q1ziZLCciIiIiIiIiIiIig7h37x769OmDhISEt5bbv38/xGIxJk+eDG9vb3zxxRewsrLCwYMHAQAbNmxAhw4d0L17d/j7++P777/HqVOnkJiYqLdYmSwnIiIiIiIiIiIiIoO4dOkSGjRogC1btry13M2bN1GnTh0IBAIAgEAgQO3atXHjxg31+rp166rLu7i4oFKlSrh586beYhXqbU9ERERERERERERE9J8mk8kgk8k0lolEIohEIp3l+/fv/077ff78OXx8fDSWOTk5qaduefbsGcqXL6+1/smTJ+8a+t9ispyIiIiIiIiIiIjKpH1mfiUdgtGJWzAWS5cu1Vg2duxYjBs37l/tNzc3VyvhLhKJ1Il5iUTy1vX6UKqS5fxwauokj4bkyLqSDqNUMW87BFnLJpd0GKWK9ZjvkTSuT0mHUWq4LdmKp5FXSzqMUqVCQB3knNtR0mGUKpZNeiLn9NaSDqNUsWzWBwkxkSUdRqni7huAJ59/UNJhlCoVf9iAlNkjSjqMUsXxy5WQHP61pMMoVczbDUXS3fCSDqNUcasajOd3wko6jFKjXFADpM4bXdJhlCoOU5fjSdT1kg6jVKnoXwuRsQ9LOoxSJcDblZ+T11T0r4Xk8AslHUap4hzcqKRDoDJgxIgRGDp0qMayN40q/yfEYrFW4lsmk8Hc3Pyt6y0sLP71336pVCXLiYiIiIiIiIiIiKj0etuUK/9GhQoVkJycrLEsOTlZPfXKm9aXK1dObzHwAZ9EREREREREREREVKJq1KiB69evQ6lUAgCUSiWuXbuGGjVqqNdfvVo4m8Djx4/x+PFj9Xp9YLKciIiIiIiIiIiIiIrd8+fPIZFIAADt27dHRkYG5syZg3v37mHOnDnIzc1Fhw4dAAD9+vXD7t27sW3bNkRFRWHy5Mlo0aIFKleurLd4mCwnIiIiIiIiIiIiomIXEhKC/fv3AwCsra2xcuVKXL16FaGhobh58yZWrVoFS0tLAECtWrXwzTffYNmyZejXrx/s7Owwb948vcbDOcuJiIiIiIiIiIioTBKYCUo6hDIlOjr6re+rV6+OXbt2vXH70NBQhIaGGiQ2gCPLiYiIiIiIiIiIiIiYLCciIiIiIiIiIiIiYrKciIiIiIiIiIiIiMo8JsuJiIiIiIiIiIiIqMxjspyIiIiIiIiIiIiIyjxhSQdAREREREREREREVBJMhIKSDoFKEY4sJyIiIiIiIiIiIqIyj8lyIiIiIiIiIiIiIirzmCwnIiIiIiIiIiIiojKPyXIiIiIiIiIiIiIiKvOYLCciIiIiIiIiIiKiMk9Y0gEQERERERERERERlQSBGccSUyF+GoiIiIiIiIiIiIiozGOynIiIiIiIiIiIiIjKPCbLiYiIiIiIiIiIiKjMY7KciIiIiIiIiIiIiMo8JsuJiIiIiIiIiIiIqMwTlnQARERERERERERERCXBRCgo6RCoFOHIciIiIiIiIiIiIiIq85gsJyIiIiIiIiIiIqIyj8lyIiIiIiIiIiIiIirzmCwnIiIiIiIiIiIiojKPyXIiIiIiIiIiIiIiKvOE/2bjmJgYPHjwAE2aNMGLFy/g5uYGgYBPkCUiIiIiIiIiIqLST2DGXCYVKlKyPD09HePHj8elS5cAAIcOHcKcOXOQmJiIVatWwdXVVa9BEhEREREREREREREZUpGmYZk9ezYsLCxw8eJFiMViAMDcuXNRsWJFzJ49W68BEhEREREREREREREZWpGS5WfOnMGECRNga2urXubo6IipU6fi8uXLeguOiIiIiIiIiIiIiKg4FPkBn1KpVGtZSkoKhMJ/NQ06EREREREREREREVGxK1KyvHPnzpgzZw5iYmIgEAiQk5ODixcvYvr06ejYsaO+YyQiIiIiIiIiIiIiMqgiDQOfPHkyFixYgNDQUMjlcnTv3h0mJibo3bs3Jk+erO8Y9cJEZIaQsJ0IHz8LKacv6SxjWzMAwcu+hm1wVWRG3MPtMTOQce2Oen2lvp1Q9etPYe5SDs8Pn8WtkdMhf5FaXFXQG6k8D3O3HsKxG9EQmwkxqHUDDG7dQGfZfZfDsWL/WTxNy4S/WwV83rMNqnlUAgAolUr8evQitp29jvTsXAS5u2BK73bwdnEuzurohTRPge9O3sKxe48gFppiYG0fDKzto7PshD1hOHX/icayhV0aoJlnReTK8/Dj6XCciH2EfCXQxqcSJjQNhqXICO+4EJrBoc+HsKjRAEq5DJnH9yDr+F6tYuU+mQGxb5DW8uwLJ5D6x88AAOsWHWHTuisE5hbIvX4BadvWQimXGbwK+iaVybBw5TqcvnAJIrEI73frhPe7d9JZ9m7cA8z/eQ3i4hPh6e6GiSOHwc/HC4Dqu7N59z7s2n8EWVnZaNqwLsZ/PASWFubFWR29kMrlmPf7Xzh29Q7MRWYY+F4IBrVvqrPsmZtRWLrzCBKfvYBbOUeM7tEWLWoFqNcfuXIbS3ccxrPUDNT0rYLpg3ugkrNDcVVFb6RyOeZt3Itj1yJgLhJiYLsQDGrXRGfZM7eisXTXUSQ+T4GbswNGd2+NFjVVx6TWx9N1bvPN0FB0aVzLYPEbgkwmw5KfV+LM+QsQi8To1aMbeod211n2XmwcFi37Gffj41HF3R3jx4xEVR/t9vjU2XOY/e0POLL3T8MGbyhCM9j2GAzzavWglMuRfWofck4f0F20ohtsQ4fCzM0TeclPkbl7PWSxkTB1cEa5aT/p3ObF8lmQ3482YAX0zFQIqw79YOZfG5DLIbl4GJKwo7qLlqsEy44DIKzoDkXqc+Qc2oy8+Lta5Sw7fQBlZhpyT2v/dhkDVX/tMI7dLOivtar/lv7aHaw48Ep/LbS1ur+myM/Hkj2n8VfYbeTK5AgJ9MKUXm3hZGtVnNXRC5lMhkUrVuPM+YsQi0To3aMb+vToqrNsTGwcflq+CvcfxMPDvTI+HTMCVX281eu7vj8Q2dk5Gtvs3boBFhYWBq2DvkllMixYvR6nLlyBWGSG97t1RL9uHd66zc3IaMxevArbfp6vXqZUKrFx1z7sPnwc6ZlZCPDxwqcfDYRnZVdDV0H/TIWwfO99mPnVBPLkkIQdhfTSMZ1FrXqOgKhqDY1lWduWQ34vHDAxgUWzrhAF1wdMTSG7HYbcE38CynzD10HPpDIZflq5VtWHFYnwfvfO6Nu9s86yd+PuY8HyXxAXnwgPdzdMHPWRRh923ebt2HfkBHIlUtSrWQ2fjhgGeztbnfsq7eJiY/DzkoWIj78Pd3cPjBz7GXx8q76x/F9/bsefO7YgJycHTZq2wPCR4yA2V/XfL54/g29nz9Ao36hJM/zvi5mGrIJe8XOiSdW+/o6TF69ALBKhX7f26Nf179rXu5i9eDW2/fyDeplSqcTGP/fjz8MnCtpXT3z24QfG2b7+h5kIBSUdApUiRRpZLhKJMGXKFFy+fBl79uzBrl27cPnyZcycORPm5qUv2WMiFqHWhgWwCX7zD5+ppQXq/bUKqWev4GyDUKReuI56u1fC1FLVYbarVw3VV81BzOylOBfSF2YOtqixZl5xVUGvFuw6joiEJ1j9SX9M6/seVh44iyPXo7TKXbuXiJkb92NEhxDs/OIj1PB0xZjlW5AjVSU5t529jvXHwjClV1v88fkQuDrZY8zyLciVyYu7Sv/aorN3EPEsDStCm2BKy+pYHRaNozGPdJaNS8nErHa1cejD99SvhpXLAQB+PB2OyKdpWNa9MX7u0Rh3nqZiwZnw4qyK3th3/wBm7l54vuQbpG79Bbbte8GipvZJevIvP+LRtI/Vr+RV30MplyPrzCEAgEWNBrDt0Bupm1fh+ZJvIPLwhV33D4q7Onrx87o/EB0bh4WzvsCEEUOxbstOnDwfplUuVyLB5Fnfo3qgP1bPn4Mgf1/8b/YPyJVIAAB/HT6OdZt3YPgHfbHs25l4/iIV3yxYWtzV0YuFWw8g4sFDrJr8IaZ+0BWr/jqOI1dua5W7m/gYE5dtRLeQOtg8cxx6Nq+Hz5f/geiExwCAG/fiMW3lFgx8LwSbZoyFSCjElJWbi7s6erFw2yFExD/EqolDMbV/F6zacwJHrmq3A3eTnmDiz5vQLaQ2Nn81WnVMVmxBdKLqmBz5cbLGa8h7IXBxslcn043JqrXrcDcmFj/MmYVxo0Zgw6YtOH32vFa5XIkEX8ycheCgQCz7aT4C/f3x5czZ6u/OS1lZWVi+8pfiCt8gbDr1g5mbJ1JWzkPGrnWwbhsKcbV6WuUE5hZwGD4FeU8fInn+VEjDL8N+8KcwsbKFIu0Fnn0zRuOVe/08ZAmxkMffK4FaFZ1lm14wdamCzA0LkH3wD1g066xKnL9GIDaHzYBPoXj+GOmrvoE86jqse4+CwNJGo5x5o3Ywr6X7wp2xWPDncUQkPMbqcf0wrU87rDx47s39tT/2Y0SHJtg5raC/9vNWdX9t7ZGLOHQtAj8M64YNEwchPTsX037fU9zV0YuVv67H3ZhY/Dj7a4wfNRy/b9qKU+cuaJXLlUgw7es5qBYYgJ9/+gGBAX6Y9vVcdVvy/MULZGfn4PfVy7Bt/S/qV2k8j/k7y3/bjKh797Ho6ymYMHwwft26CyfO6x4YBACx8YmY/sNSKPOVGst3Hz6BzX8dwKcfDcQvP3wNl/LlMGnWj5DomHqztLNoFQrTiu7I+mMRcg5thkVIR5j56b7IbOrsguy/fkXa4inql/y+6ntm3rQLRNUaIHv/BmRtXgphFT9YtOlZnFXRm5/XbUT0vTgsnDUdn40YhnWbd+DkuYta5XIlEvzvm+9QPcgfqxbMQ7B/VUyZ9Z36u7Pn0DHsO3ICX04YiyXzZiI5NRXfL11Z3NXRC4kkF7O+morA4GqYv2gF/AOCMHvmVEgkuTrLnz97Gps3/oZRYydg1rz5uBsVgd/WFtY9MSEe9Ro0wq8btqtfY8ZPKq7q6AU/J5qWrd+CqNgHWPz1/zBx+CCs3bobJy68+Rl9sfGJ+PLHpch/7YLan4dPYNNfB/HZhx9gzfcz4VK+HCbOXmCU7StRWVGkZHlaWhrGjx+PX375Bb6+vvD390eHDh3w2WefITMzU98x/ivWAd5ofG4rLL3d31rOpU9H5OdKEfm/75EVFYeICXOgyMyGS6/2AACP0R/g0fYDeLhhNzJvR+PGkMko36E5LDzciqMaepMjlWHXhZuY3LMNAipXROsafhjSpiE2n7qqVTY5IwvD2zdB5/rBcHN2wIgOIUjPkSD2cTIA4K+w2xjUugGaV/OFRwUnfPH+e0jLzsWN2KTirta/kivPw5934jGpWTUElLdHK+9KGFTHB1tvxWmVleUp8CgjB0EVHOBsZa5+iYSmAAAzEwEmt1DtJ6C8PboGuuPGoxfFXaV/TSASw6pRa6RvXwd50n1Ibl1G5rG/YN2svVZZZU428jPTVa+sDNh16YfMY39Bnqg6ftYtOiDr5H5I7lyDPCEWqZtXwbJhSwjMRMVdrX8lVyLB3qMn8MmHg+Dn7YlmDeuhX4/O2LnvsFbZ42cvQiwyw+gh/eFR2RWffDgIFhbmOHlOlVjfue8Q+nbrhDbNGsPT3Q3Txo/EhSvXkfBQ9wWa0ipXKsOfp69gcv/OCKjiilZ1gjC4Q1NsOabdqT5w8Sbq+Xujf9vGcK/ghL6tG6GevxeOXFYl1n8/eAYdG9ZErxYN4OFSDpP7d0ZyWiZSM7OLu1r/Sq5Uhj/PXsXk9zshoEoltKodiMHvhWDLce2LKgfCbqGevxf6t24E9/JO6NuyAer5eeLIFVVi3dnORv2SyvKw6fhFfDWoO2wsjSuZkyuR4MDhoxg9/EP4+ngjpHFD9OnZA7v37tMqe+r0WYhEIgwfNgRVKlfG6OEfwsLCAqfPntMot2rtb3BxqVhcVdA7gZkYlg1aIHP3BuQ9fABp+BVkn9wLqybttMpa1GkKpVSKjJ2/QvHiKbIO74Qi+SmElT0BpbKw/c1Mh6ljeZhXq4f0zSuAfEUJ1KyIzEQQ12yCnMNboXiSCHn0DeReOAzzei20ioqqN4JSJkXOgY3IT32O3NN7kJ/yDEKXKgUFzGHdczjMG7eHIj2leOuhR6r+2i1M7vVKf611A2w+raO/lpmt6q/VC4absz1GtG+i0V9TKPIxKbQ16vi4w9vFGf1b1DW6vhqgakv2Hz6GMcOHoaqPF0IaNUDfnt2xe6/2HRknz5yDWCTCiGGDUKWyG8Z8PAyWFuY4VXCRLiExCU6ODqhUsSIcHRzUL4HAuEaV5Uqk2HPsFMZ/+AH8vD3QvGFd9O/eCTsO6L4r489DxzFy6iw46Bjduf/4GbzftQOa1K0F90oumDRiMDKysnA7MsbQ1dAvMxHENRoj9+g2KJ4mQn73JiQXj0Bcp7l2WVMhTOydkPc4HsrsDPULijwAgHmdZsg9uRt5cRFQPE1EzqFNENdqCpiJi7lS/06uRIJ9R45j3EeDUdXbE80a1Ue/0C7Ytf+QVtnjZy9ALBJh1JAP4FHZFeM+GgwLCwt1wvTi1eto1bQRagYHwqtKZfTr0RXXbhnnwKCzp09CJBZjyIcjUdm9Cj4cMQYWFpY4d+aUzvJ7d+9Al249Ua9BI/hW9ceocRNw9MhBSAsSxEmJCXCv4gkHR0f1y9raujir9K/wc6JJ1b6exvhh/eHn5YHmDepgQPeOb25fD5/AiGlz4Ghnp7Vu/4mz6Ne1PZrUrQn3ShXx+fBByMjKwq0oI2tficqQIiXLZ8yYgRcvXqBDh8JbUFasWIHk5GTMnj1bb8Hpg2Oz+nhxMgznQvq+tZxDgxpIOa95ApJy4RrsG9YEANjXr4GUM1fU6yRJT5Cb8AgODTRv2yvt7j58hjyFAjW9CpP8tbzccDv+EfJfG2HSrnYAPm6vmjpAIpNjw4lLcLSxVE+zMqFHK3SqWzj9hgACKAFkSYzrCund5Azk5StRw8VRvaxmJSeEP0lFvlLzmMSnZQECwNXOUue+prSsgZqVnAAAjzJycDD6Ieq4Gd+0NGauVQBTU0hfuYVfFhsFURVf4C0nkpYNWsDE0hqZR/5ULRAIIHL3gTQ2onA/D2IgMBWq/oYRufcgAYo8BYL9C+9QqR7gh4iYe8jP1xw9EBEdg+oBfuqTboFAgGr+fgiPVnWIHj15hgDfwlvBnR0dYG9rgztG1mGKTnyMPEU+avgUXoys5euB8LhErWPSpUltfNLrPa19ZOWqTjCuRN9HqzqF7YlrOUfs/2EyHGyMa5qA6MQnqmPiXVm9rJZvFYTfT9I+Jo1r4pPQtlr7yMrVbkN//usY6vt7oWGgt9a60i7u/gPk5eUhMMBfvSw4MABRd2O0jklkdDSCAwM0vjtBgf6IjCpsi27eDsfN2+Ho36dX8VTAAISV3AETU8hemTpEfv8uzNy9tdpYkXcApHeuAq/8Hr1Y/BVkUTe19mvTsS9ywk5A8fyx4YI3AGEFN8DUFHmJsepleYn3IKzkCUDzeJhV8YPs7k2N45Gxdh7ksaqTcFN7Z0Bohoxf5iA/7XmxxG8I6v6a5yv9NW833I5/rN1fq+WPj99rDOBlf+2yRn9tZMcQtK7hBwB4kZmNnedvoq7v2weRlEYv25Igfz/1suBAf0TqbEvuarclAf6IiFJ95+ITkuBWqVLxBW8gL/sm1fx81cuqB1RFREys1jEBgLDrt/DlJx+jbxftwQ9jhryPds0aFy4QCKBUKpGVk6NVtjQzLV/QniQVDnrJS4qFsJIHXm9PTB0rAEogPzVZaz8CS2sIxBbIe/RAvUzx7CEEpkIIXYzr+xN7P76gD1v43akW4IeIu7r7sNVe78MGVMWdgj6srY0NLly5jucvUiCVynDszDn4eHkUW130KToqAgGBwRp19Q8MRnRUhFZZhUKBezHRCAqurl7m5x+IPLkc9++rfrsSEx6gkqtxDaR7FT8nmnS2r/6+uBMTp7N9vXjtFr4c9xH6dNYe+DB28Pto16xR4YKC9jU7R/ddDERU8oo0kfK5c+ewZcsWeHsXnrQHBATgq6++woABA/QWnD4krNz0TuXEFcshM0LzlmXZ0xewCVI1juYu5SF99ExjvfTZC5i7GtfItuT0LNhbWcKsYCQ0ADjZWkEqz0Nadi4cbbSTwGHRDzBy6WYoocS8wV1hKVaNCK79SjIIAHaevwFFfj5qeRtXJyE5WwJ7CxHMTAuvHTlZiiFV5CM9VwYHy8LRI/dTsmAtMsNXh6/hSlIyKtpYYEQDfzTxqKCxz68OX8O+qERUsrXEx/X9YGxMbR2Qn50JKApHJioy0yEQiWBiZY38LN13kNi07Yask/uhlKmSfSYWVhCIRFCkvzK3f34+8rMzYWrvBMB4ksMvUtJgZ2sDM7PCZtPB3g4ymRwZmVkac/C9SE2Dh7vm98DB3g73ExLV/05OKTwmuRIJMrKykVbK7sz5O8lpmbC3toSZsPCYONpaq9qTrBw42haOpvGqVF5j29iHT3EpMha9WtRHZk4uMrJzoVDkY/T8X3E38TGCvSpj2sCuKO+gPTqjNEtO13VMXm1jC5P/Xi46jklUHHo115yK4/GLNBwIu4V1Uz42bPAGkpKSAjtbW5iZmamX2TvYQyaTISMzE/avjMBJSUlFlSqaSQgHe3s8iE8AAMjkcvy0dDnGjRqucYyNjYmtPfJzXmtjs9IhMBNBYGkNZXZhW2DqVB7yxDjY9hwGcVBtKFKSkbl3I+QPNNtPMw9fmFXxQdrGZcVWD30RWNtBmZOlMRo+Pyuj4HhYqdYVMLF3Rt6j+7Ds+AFEVasjP+0Fco5uR16SKlmheJaErC3Gdwxel5yho79m8w79tWVbVP21QYX9tZeW7zuDlQfPwdbSHL99ZnzTob1ISdVqSxzsdbclL1JS4eGu2U91cChsSxKSkiCRSjFh6ldIfPgQPl6eGP3xMFR2Na4E+otU7b6Jo70tZDI50jOztEaQz5vyKQDVKPLX1QjQ7K/uPXoKCkU+qge8eRrL0sjE2la7PcnOVLUnFlZQ5r7SnjhXhFKaC6uugyF0r4r8jFTkntmLvLgIKHNzoFTkwcTGHvkvVM8qMrFVPUdFYGE8o4UB3Z8T1XdHdx/Ws7KOPmy86m6UwX1DMXXOD+g1bDRMTUzg6GCP5d/PKp6K6Flqygu4V/HQWGZv74CE+PtaZbOzsyCTyeDoVDgIytTUFDa2dniR/BxKpRIPk5Jw49pl7NjyBxT5CjRp2hz9Phiq0WaVZvycaEpOTYOdrfVr7avdG9vXb6eMBwDs09m+araje162r/6+WmWJqHQo0shyc3NzPHnyRGt5SkoKhEZ68mpqaYF8qeYDB/OlMpgUnGiYWpq/db2xyJXL1VOGvPTyvTwvT+c2Pi7lsOl/QzG6UzNM37APt+4/1Cpz68FDzN91HENaN4CzrXF1ICVyhUaiHID6vUyhedX4QWomJHkKNHQvj6XdGqFJlQr4bE8YIp5qPuh1SB0frOvdFC42Fvhk90WtEeqlnUAkgjJPc+75l+8FQt0dPrFvEEztnZB1vvDWNIFIrLFt4b7y3rif0koqlWp1dkUFnSeZXLN+EqkMIh1l5QXlWoU0xIYdu/Eg8SGkMhmWrt0AAMiT6/4OllYSmVyjAwkAooLfAHnem6eASM3MxqRlG1HDxx0tagUgR6JqW7//Yy86NqqJReMHQZ6Xh08Wrdc5cqM0k8jkGskt4JVj8pb/39TMbExasVl1TGr6a6z78+xVBHq4oppX5TdsXbpJdH53VO/lWt8d7bJmZmbqchs3b4WPtzfq1jauB5y+TmAmAl7/zX1DGysQmcOqZWfkZ6Yh9ZcfIIuLhMPH/4OJnaNGOcsGrSC5fQX5Gcb34HGBmQhKxWvH4+V7U802RiASw7xxeyiz0pG5aQnkCTGw6T9encT6r8iV5enor71sX9/SX5s8BKM7NsX0jdr9tc71g/HH54PR0M8DI5dt0XkXS2mm+h3W/Dy8fP96+yqVyrTbEmHh73BC0kNkZmVhQN+emPXlFIhFInz+5UzkGNkoP4lUpnXh0Ez4sn0tep/izt1YLF33B/p17wgnB/t/E2Kx092eFPzWvHasTJ0qQGAmgjwuEllblkIeewfWvUfBtKI7oMyHPPoGLFp0g8DGHhCbw6JVKJQKBWCq+d0s7XT/Duvuw+rq75oJC3+Hnzx7DnORCPO+/ByL5s5AOWcnfLdkhQGjNxxVXTXP5V/tc7xe9uV6XeWfP3sKqVQCoZkIk6Z+haEfjcSpE8fw2xrjmaebnxNNUqlM3Z6+ZPY3v8Pv4s7dWCz9bTP6d+tgdO0rUVlSpMx2aGgopk2bhs8++wxBQarb5qOiorBo0SJ069ZNrwEWl3yJVCvxbSIWQZGjmiJA8ab1ucbVqRYLhZC9lsR6+d5cpDt56WRrBSdbK/i7VcCt+w+x7ex1VPcsfHLzzbgkjPl5K0ICvTC6UzPDBW8gIqEJ5K8lxV++NzfT7Ax/VN8P79fwgq256rNQtZwdIp+lYWd4PAIrFJ6oezmprjTP61AX7dccwrWHL1DXiKZjUcrl2gmbgvf5Mt0n1xY1G0IScQPKnMI5ppV5Mo1tC/clRL7cuE7SRSLtzrOs4ETUXCzWKvt6p1Imz4O4oNzgPj3w+MkzDP5kMoSmpuj6Xmv4elaBZcEDhY2F2EyodTIuK+g8vqk9eZGeiVHzf0W+UokfRveHiYkJTAsuTvVoVhedG6uSoHOG90WbT+fiVlwiavoYz5Q9YjOh1oUC9TERv+GYZGRh1IJ1yM9X4oeR78PERPPi3dGrd9CreX3DBFwMRCKRju+O6r1Y67ujXVYul0MsFuP+g3jsP3gYq5YuMmzAxUCZJ9dK2qCgnVS+3sbmKyB/GI+swzsBAFmP4iGuWg0WdUKQffwvVRkTE4iDaiN9k3GdiL6kzJND8FpSXJ0kl2sOVEB+PhRPEpF7WvWAytyniTDzCoCoWkNIzmnPXW2sxGa6+mtvb181+msPHmn119zLqfopswd2Rrvpy3DsZjS6Nayuc1+lkap90PzNefle/FofXddvtjyv8Hf426+nQ5GXBwsL1e/utEmf4v2hI3Dh0hW0bmE8D4YVicy0kjbyggtv5kUc0BMeHYNJs+ajYa0a+Oj90H8dY3HT3Z4UfGdea08kZw9AeuUElAUPdFQ8ewjTiu4Q1wxBzsE/kHNkK6y6fQj7sXOhlEmQe+6gajoXmeZDp0s73b/Db+jDmun4Hc5T/Q4rlUrM/Wk5Rg0ZgMb16gAAvv58PPp8PA4R0TEI9Cvdo2S3bdmIHVs2qt/7+gVA/tpn4mWf43UikUi9Xlf58hUq4vctf8La2gYCgQBe3j7Iz1fipx/nYujHo2BqBBdY+DnRpGpftX9HAMBcVNT29R4mzp6PhrWq46P3e/zrGEm/BGbG9dwSMqwiJcvHjx8PpVKJb7/9FmlpaQAABwcHDBw4EMOHD9dnfMVG8ugpxBU1k5niis6QPFFNvSJ5qGN9BWdIHxvXfJjl7W2Qlp2DPEU+hAUJquSMbJibCWFjofnQuPD4RzA1MUFA5cKpZrxdnNUPjAKAy3fjMW7FNjQK8MS3Q7vBxMT4Gpjy1hZIy5UhLz8fwoIkVXK2BGKhKWxeS26ZCATqRPlLno42iE3JhFyRj9P3n6BB5XKwLtjOydIcduYipOW+drJfyinSU2BiZQOYmAAFI3tNbe2RL5NCmat77krzgBrIOLBNY1l+dhaUMhlMbeyR97Tg4ZUmJjCxskF+unGNfnR2ckR6RibyFAoICzq8KWlpEItEsLbSvB2+nKMDUlLTNZalpKWpRw9YmJvj68njkZWdA4EAsLK0RNfBI+FSvlyx1EVfyjnYIi0rR+OYvEjPhLnITOdDKJ+lpmP492sAAKsnf6yepsXe2hJCU1N4uBTW397aEnbWFniakq61n9KsnL2uY5KlOiYWuo5JBobPXwsAWP35MI1pWgDgSUo64h4/1xptbkycnZyQnpEBhUKhPllMTU2DWCyCtZXVa2UdkZKq2TakpqbBydEBZ89fQEZmJgZ9PBIA1HcddOn1Pj4dMwqtW+p4eFsplZ+eChPL19pYGzsoZVIoJZptrCIjDYrnmg//zXv+BKb2hSPLzar4qp4zEWNcD896SZmZBoGlNSAwAZSq42FibQulXKZOYr2Un5UOxQvNuxsVL57950aWl7ez/gf9tccwNRFo9tcqOiP2iaq/dir8HvzdKqCCvQ0AVSLe1ckeadnGNeBD9Tus2ZakpKYW/A7rakvSNJalpKbB0UH1ORGZmQGvjIoUiUSoWKE8klOM66Hs5RwdtPsmqek6+ybv4lp4JP43dwHq1QjGzAmjtC7eGoP8zHTt9sRKd3sCKLXbmBdPYOrsolqbk4WsTYsgMLdUXeQUCGDZsjsUaf+Fz4nuPqyzkwNSCs7vX0pJTYeToz3S0jPwLPkFvD0LBzGUL+cMO1sbPHmeXOqToO07dkFI0xbq9zu3bULqa32OtNQUODg6aW1rY2MLkUiE1NQUuFVWTRenUCiQmZGuLm9jozktR2V3d8hkMmRlZcLOzl6/lTEAfk40qY5Hlmaf/l+2r5Pn/YR6NYLx9WcjjbJ9JSpLivQNNTU1xcSJE3Hx4kWcP38ely9fxoULFzB69GijnYYlNewmHBpq3tbt0Kg20sJUD9BKu3QTDk3qqNeZu1WERWUXpIZpP2CrNPNzqwChqSluPSi8Nfd6bCKCqrhoJbp3nb+FRbtPaiyLSHgCr4KLBjGPnmP8qu0ICfLGD8N6wMwIrpjrUtXZFkITAW4/Kews3XicgqDy9jB57UFrM45cw9dHr2ssi36eDg8HawgEqvVnHzxVr3ucmYO0XBk8HY1rahp50gNAoYDIo7AzI/Lyhzw+VuOhai+ZWNlAWK4ipHHRmiuUSsgS7kHkXZjoE3lWBRSqkZLGxNezCkyFpoiILpwn+HZENPx9vbQ6O4F+vgiPvgtlwbFSKpUIj7yLID8fAMDP6/7AgeOnYW1lCStLS0TGxCI7O0fj4aHGwK+yC4SmJrgdm6hedj0mHoEerlrHJFcqw5gF62BiIsAvUz5GeYfCEwqhqSkCPCrhbmLhQwlTM7ORlpmDSk7GlQDzq1xRdUziktTLrt97yzFZ9BtMBAL88vmHKG9v+/rucPt+Iio62sHFyd7QoRuMt6cnhEKhxkM6w+9EoKqvr9YxCfDzQ0RktMZ3505kJPz9/NCtSyesXbEMKxYvxIrFCzFh3BgAwIrFC9GogXGNvJc/igfyFTBz91EvM/P0gzwxTquNlSfc03qYnLC8CxQphReuzdy9kZf0QD2Vi7HJe5IIKBQQunmqlwkr+xQ8WE/zeOQ9jFM9wO8Vps4VkG9kyau/o7O/Fpeku7924SYW/XVKY1lE4hN4VVQlcBbsOo69lwovpGRLpEh4ngLPCtoJodLsZVvy8iGdABAeEQU/Xx8dbUlV3Il6vS2JQqB/VSiVSnzw8WgcPHpcXT5XIsHDR49R2c0VxsTX0x2mQlPcuVv43KVbkXcR4OP5jxMxcfFJmDJvIRrUqo5vJo012nM6xVNVe2Lq+mp74o28x/F4vT2x7DQQlh015+83reCmviBn2WUwhJ4BqouYeXKYeQchPzsD+cna05GWZj5eHtp92Mgo+Pt66+7DRr3eh41GYFVf2NhYQ2RmhvjEwnYpLSMDGZmZcKmg+RyW0sjGxhYulVzVL7+AIERH3NGoa2REOPz8ArS2NTExgY+vHyLv3FYvi4q8A6FQCE9Pb1y/ehkD+3aHVFJ410FcbCxsbG2NIlEO8HPyusL2tfDh47eiiti+JiThf98uQsNa1TBrovHmzIjKknf+lv/555+QyWTqf798nT59GseOHdNYZizEFZxhYq66pejJjoMws7dF4IIvYB3gjcAFX8DUygKPt6lu6Y1fuQmuA7qh8tBesKnmh5q/fo9n+04i90HS2/5EqWMhMkOX+tUwe/NBhMc/wvGbd7H+2CX0b6F6oFxyRhYkMtXJdq+Qmrh8Nx4bT1xG/LMULN93GuHxjzGgpars7M0HUMHeFpNCWyMtOwfJGVka2xsLCzMhOge4Y97xm7jzNBUnYh/j92v30K+mFwDVKHNJwa3QzT0rYn9UIvZGJiAxLQurwqJx43EK3q/hBaGJCUKDPbDsQiSuP3qByGdpmHrgCpp7VYS3k3YSrDRTymXIvnQKDn0/hpm7N8yr14NN6y7IPLUfAGBiY6cxIsvMpTKUMhkUL55p7SvrzGHYtO4K8+r1YObuDYc+HyHr/DEoX7+1vpQzF4vRvmUzzF+xFpExsThz8TI2796HXp3bA1A96EZa8FyDFo3rIys7B4vXrMeDxCQsXrMeuVIpWjZpCABwcnTAui07EBkTi+h7cZi9cDm6tW8DWxvjuqhiIRahc5PamPP7n7hzPwknrkXg90Nn0L9tYwCqh12+bA/W7D2JpOcp+ObDXup1yemZyCyY6mrgeyHYdPQCjly+jbhHzzBz7Q74ubsg2Mu4HhhsIRahc6NamLPhL9UxuR6B3w+fQ//Wqv97jWOy/xSSnqfim2E91etePSYAEPvwGbxcjOuOg9eZm4vRtlVLLFq2AtF3Y3DuwkVs27UbPbp2BqAaGfpyLtCmIY2RnZ2N5avWID4hEctXrYFEIkXzpk1ga2MD10ou6pezk2pktWslF6ObwghyGXKvnIFtz6EQunlBHFQHVs06IvvsIQAFbWzBtCw5F45B6OIO67ahMHWqAOt2PWHqWB65186pd2dW0Q15T7WfJ2I08uSQ3roAyw4DYOpSBWZVa8C8YTtILqmSmQIrW/XxkF47DWEFV1g06wwTh3KwaN4FpvblIA0PK8ka6J2qvxaM2VsOITz+cWF/rXldAK/115oU9NdOvuyvnVH11wr6dn2b1ca6Y2E4cycW9x4/x7T1e1DZ2QEhgd4lVr+iMDcXo12rFvhp+UpE3b2HsxfCsG3XXwjt2gmAZlvSrEkjZGdnY9nqtXiQkIhlq9dCIpGgeUhjCAQCNKxbB7/9sQU3bofjQXwCvl2wGOWcndCgTu2SrOI/Zi4Wo0OLEPy4Yh0iY+JwOuwqNv11AL07twOg2Tf5Oz+s+BXlnZ0wbmh/pGdk4kVq2j/avtTIk0N2OwxW7fup2hPfGjCv3wbSyycAaLYn8pjbEAXXhyi4AUwcysG8SQcI3bwhvXoSAKDMzYZF864wcXaB0N0Xlu36QnLhEF5Pupd2qj5scyz4+Rd1H3bLn3vRq0sHAK/3YRsgKzsHS375DQ8SkrDkl99UfdiQhhCamqJ96+ZY/usG3LwTibj4RMxZsAyBVX3h7+NVklUsksYhzZCdnYU1K5chMeEB1qxcBqlEgibNWgBQzcudmpKiLt+hczf8uWMrLp4/i5i7UVi57Ce0bd8JYnNz+AcEQSQSYemiH/EwKQFXL4fht7Ur0KPn+yVUu3+OnxNNqva1CX5Y+Rsi771sXw+id6e2AP5Z+/r9inUo7+SIcUP6GXf7SlSGCJTKd3vyYKtWrbBjxw44ODigVatWb96hQIBjx44VKZh9Zn5/X+hf6CSPxoXWA5Fy+pL6/c0PpyBp/S4AgF29aqi27GtY+3sj43Y0wsfMQMaNSPX2boN6oOqMT2DmaIfkI+dwa+R0yFPSDBqv5Mg6ve83VybHnM0HcfRGNKwtxBjSpgE+aKkalVdj7Dx880En9RyWp27HYMmeU0h4ngofF2dM7tUWNb3ckJyRhdbTlujc/6vb65t52yHIWjZZ7/vNledh3olbOB77CNYiMwyq7YP+tVQnkXUW78aMNrXQNVA1sm9XeDzWX4vBk8xceDnaYGKzYNR2VY22l+UpsOxCJA5EJ0EiV6Cljws+b1ZNPS2LIViP+R5J4/rofb8CMxHs+34Mi5oNoMzNQeaxv5B1UpUsd1uyFSkbliEnTDWSzaJ2I9iHDsHjL0fo3JdN226wbtEJAqEZcm+GIXXrGoONgHRbshVPI68aZN8SqRTzV6zF6QuXYGVpife7d0afrqoOZLPu/TF13Ah0aK2aCiLi7j3MX7EW8UkP4V3FHRNHfYiqXh4AAIUiH8t+3YAjp85CYGKCds1DMHJwP/UtfvpWIaAOcs7tMMi+c6UyzP19N45dvQNrC3MMbt8UA9o1AQDUGjYNXw/ria4hddBj2gI8eJKstX2XJrXVCfSdpy7jl70nkJqZjTp+npg+uAcqONoZJG7LJj2Rc3qrQfadK5Vh7sY9OHYtAtYWYgx+LwQD2qguINT6eDq+HtIDXZvURo/pi3Qfk0a18M0w1Tyxczb8hcwcCb4drv/v+Ossm/VBQkzk3xcsAolEisXLV+DM+QuwsrREn57dEdqtKwCgbefumPTpOLzXpjUAICr6LhYtX4GExCR4eVTB+DGj4OOtfXJ189ZtTJo2HUf2/mmQmAHA3TcATz7/4O8LFoWZCHahQyGuVg9KSQ6yT+5DTkGyvOIPG5C+ZSVyr5xRFfXwhW23QRBWcEXes0fI2P075PcLR+o7fPg55I/ikXXAMJ/pV1X8YQNSZutu6/8VoRmsOg6AyL8WlJJc5F48AuklVX/S8cuVyPprHWS3LqiKunnD8r2+MC1XCYrkx8g5vBV5CTFau7QZOAF58XeRe3qv/uN9heOXKyE5/Kve95srk2POlkOF/bXWDfBBwYCFGuO+xTcDOhb218LvafbXerZBzYKLjfn5Svx69CK2nb2O1KwcNPL3xLS+7VDezkbvMb9k3m4oku7qf1ogiUSKn35ehTPnL8LK0hJ9Q7uhZzfVhbfWXXri8/Fj0L6N6jwl6m4MFi5biYSkh/DyqIJPRw+Hb0FbIpPJsOb3P3Di9FlkZ+egZvVgjB81HOXLGe75Mm5Vg/H8jv4v6kikUvy4ch1OXbwCK0tL9O/WAX26qC7kh4QOwrSxH6NjK8152PcfP4O1W3Zh+8oFAFRJn24ffqJz/7q214dyQQ2QOm+03vcLABCawbJ9P4j8akIplUASdkSdLHeYuhzZe9dDdvsiAEBUozHMG7aFia0jFM8fI/fYduQlFozUNxPD8r33YeZbDZBJIbl6CtKLhw0Tc0FsT6Ku/33BIpBIpVjw8xqcvhCm6sP26ILeXTsCAJp3ex9TPhmJDq1bAAAi797D/J9/UfdhJ4z+CFW9VCP1pTIZ1mzcguNnLkAqk6FujWoYP3wo7O0MMzCoon8tRMYa7mLw3ehIrFi6EEmJCaji4YVR4z6Dl7fqztpjRw5iycLv8ef+wrtQdmz9A3/9uQNyuQyNmjTDiNHj1fOZJ8Tfx5qVyxEdHQELC0u816Ez+vYfBIFAv9OUBni78nPymor+tZAcfkHv+5VIpfhh1fqC9tUC/bt1QN/O7wEAmvQcgmljPkSn19rHfcfPYO3WP7FjxXwAqva160ef6ty/ru31xTm4kUH2+192wrdGSYdgdFrGGNdMG//EOyfLX3X58mVUr15d58Mv/g1DJ8uNjaGS5cbMUMlyY2aoZLmxMmSy3FgZMllurAyZLDdWhkyWGyuDJsuNlMGS5UbMUMlyY2aoZLkxM1Sy3FgZNFlupAyZLDdWhk6WGyNDJsuNlaGS5caMyfJ/jsnyf+6/nCwv0mRJY8eOxfr16+Hnx+Q2ERERERERERERGScToX7vAiHjVqQHfPr6+uLmzf/uFQQiIiIiIiIiIiIiKluKNLLczs4OX331FRYvXgw3Nzf1PF0vrV+/Xi/BEREREREREREREREVhyIlywMCAhAQEAClUom0tDQIBALY29vrOTQiIiIiIiIiIiIiouJRpGT5qFGjsHjxYmzbtg0pKSkAgAoVKmDAgAEYPny4XgMkIiIiIiIiIiIiIjK0IiXLv/vuOxw6dAiTJk1CcHAw8vPzcfv2bSxevBgymQxjx47Vd5xERERERERERERERAZTpGT5rl27sGzZMtSvX1+9zN/fH66urpg0aRKT5URERERERERERFTqCUwFJR0ClSImRdnIwsICZmZmWsttbW0hEPADRkRERERERERERETGpUjJ8smTJ2PatGk4ceIE0tLSkJWVhStXrmD69OkYPHgwHj16pH4REREREREREREREZV2RZqGZdKkSQBUD/p8OZJcqVQCACIjI7Fw4UIolUoIBAJERkbqKVQiIiIiIiIiIiIiIsMoUrL82LFj+o6DiIiIiIiIiIiIiKjEFClZ7urqqu84iIiIiIiIiIiIiIhKTJGS5URERERERERERETGzsRUUNIhUClSpAd8EhERERERERERERH9lzBZTkRERERERERERERlHpPlRERERERERERERFTmMVlORERERERERERERGUek+VEREREREREREREVOYJSzoAIiIiIiIiIiIiopIgMBGUdAhUinBkORERERERERERERGVeUyWExEREREREREREVGZx2Q5EREREREREREREZV5TJYTERERERERERERUZnHZDkRERERERERERERlXnCkg6AiIiIiIiIiIiIqCQITDmWmArx00BEREREREREREREZR6T5URERERERERERERU5jFZTkRERERERERERERlHpPlRERERERERERERFTmMVlORERERERERERERGWesKQDICIiIiIiIiIiIioJJqaCkg6BShGOLCciIiIiIiIiIiKiMo/JciIiIiIiIiIiIiIq85gsJyIiIiIiIiIiIqIyj8lyIiIiIiIiIiIiIirzmCwnIiIiIiIiIiIiojJPWNIBEBEREREREREREZUEgYmgpEOgUoQjy4mIiIiIiIiIiIiozBMolUplSQdBREREREREREREVNzCGjUo6RCMToMLYSUdgsGUqmlYJEfWlXQIpYp52yHYZ+ZX0mGUKp3k0chaNrmkwyhVrMd8j9R5o0s6jFLDYepyJMRElnQYpYq7bwAyrh0p6TBKFdvabREXG1vSYZQqXt7eeHDvbkmHUap4+FSFZO/PJR1GqWLeeRSyV39Z0mGUKlYfz4bk2PqSDqNUMW89CGk3TpZ0GKWKfc0WbGNf4eFTFZIdC0s6jFLFvOdn7MO+xt03ABciM0o6jFKlUYAtYuPiSjqMUsXbywsP794u6TBKFdeq1Uo6BCKjxmlYiIiIiIiIiIiIiKjMY7KciIiIiIiIiIiIiMq8UjUNCxEREREREREREVFxMTEVlHQIVIpwZDkRERERERERERERlXlMlhMRERERERERERFRmcdkORERERERERERERGVeUyWExEREREREREREVGZx2Q5EREREREREREREZV5wpIOgIiIiIiIiIiIiKgkCEwFJR0ClSIcWU5EREREREREREREZR6T5URERERERERERERU5jFZTkRERERERERERERlnl6S5VKpFLdu3UJmZqY+dkdEREREREREREREVKyKlCy/d+8e+vTpg2vXriEjIwPdu3dHnz590KxZM1y8eFHfMRIRERERERERERERGZSwKBt9/fXXqFy5Mjw9PbF9+3ZkZmbi7Nmz2LFjB7777jvs2rVL33ESERERERERERER6ZXAhLNUU6EifRpu3bqFTz/9FA4ODjh69Cjatm0LZ2dndO7cGXFxcfqOkYiIiIiIiIiIiIjIoIqULLexsUFycjIeP36MGzduoEWLFgCAyMhIODk56TM+IiIiIiIiIiIiIiKDK9I0LKGhoRg1ahREIhHc3NwQEhKCTZs24fvvv8f48eP1HSMRERERERERERERkUEVKVk+YcIEVKtWDQ8fPkTnzp1hamqKSpUqYcGCBWjZsqW+YyQiIiIiIiIiIiIiMqgiJcsBoG3bthrvmzdv/q+DISIiIiIiIiIiIiIqCUVKll+5cgWzZ89GXFwc5HK51vrIyMh/HRgRERERERERERGRIQlMBCUdApUiRUqWf/HFF/D19cWECRNgbm6u75iIiIiIiIiIiIiIiIpVkZLlz549w4oVK+Dp6anveIiIiIiIiIiIiIiIip1JUTbq0qUL9u3bp+9YiIiIiIiIiIiIiIhKRJFGln/00Ufo1asXdu7cCVdXVwgEmnP7rF+/Xi/BEREREREREREREREVhyIlyydNmgRHR0e0adOGc5YTERERERERERERkdErUrI8OjoaO3fuhLe3t77jISIiIiIiIiIiIioWJqaCvy9EZUaR5iyvU6cOYmNj9R0LEREREREREREREVGJKNLI8pCQEEybNg2HDx9G5cqVYWpqqrF+7NixegmOiIiIiIiIiIiIiKg4FClZfuLECQQEBODp06d4+vSpxrrXH/ZJRERERERERERERFTaFSlZ/vvvv+s7DiIiIiIiIiIiIiKiElOkZDkAREREYM2aNYiLi4NCoYCnpycGDBiA+vXr6zM+IiIiIiIiIiIiIiKDK9IDPo8cOYI+ffpAqVQiNDQUoaGhEAgEGDZsGI4eParvGImIiIiIiIiIiIj0TmAi4Osfvv7LijSyfNGiRZg0aRKGDBmisXzdunVYsmQJ2rRpo4/YiIiIiIiIiIiIiIiKRZGS5YmJiWjZsqXW8pYtW2LBggX/Oih9ksrzMHfrIRy7EQ2xmRCDWjfA4NYNdJbddzkcK/afxdO0TPi7VcDnPdugmkclAIBSqcSvRy9i29nrSM/ORZC7C6b0bgdvF+firI5emYjMEBK2E+HjZyHl9CWdZWxrBiB42dewDa6KzIh7uD1mBjKu3VGvr9S3E6p+/SnMXcrh+eGzuDVyOuQvUourCnojzVPgu5O3cOzeI4iFphhY2wcDa/voLDthTxhO3X+isWxhlwZo5lkRufI8/Hg6HCdiHyFfCbTxqYQJTYNhKSryjEclx1QIy/feh5lfTSBPDknYUUgvHdNZ1KrnCIiq1tBYlrVtOeT3wgETE1g06wpRcH3A1BSy22HIPfEnoMw3fB30TCaTYcnPK3Hm/AWIRWL06tENvUO76yx7LzYOi5b9jPvx8aji7o7xY0aiqo/qM6VQKPDr7xtx+OhxSKQS1KtTG2NHDIeDg33xVUZPpDI5vv91K45fugGxyAwfdGqNDzq3fus2N6JiMePn9di96Gv1MqVSidU79mP3iQvIlUrRoFoAJg/tDQdbG0NXQe9kMhmWLV+Oc+fOQSQSoWfPnugZGqqz7L3YWCxdsgQP4uPh7u6OcWPHwtfXV73+5MmT+G39eqSmpqJ27doY/8knsLOzK66q6I1MJsPS5Stw9vx5iEUi9AztgV6hPXSWvRcbi8VLl+NB/ANUcXfHJ2PGwNdX9d1RKpXYun0H9h04gMyMTFSt6ovRI0egirt7cVZHL6TyPMzdeQLHbsWo+ict6mBwizo6y+67GoUVhy+q+ieu5fF59+ao5l4RAFBj4k86t5ndrx261A00VPh6J81T4Nuj13As5iHMhaYYWLcqBtbze+s2j9Kz0XvdISzqEYK67uUBAHJFPpafDce+iHjk5eejS5AHxjWrBqFJkW6mLFFSeR7mbj6IYzeiVJ+RNg0xuE1DnWX3XQrHiv1n8DQ1Q9WH7d0W1TxctcqtPnAWCc9TMWtQF0OHbxBSmRw/rN2EE2HXIBaZYUDndhjQpe1bt7kRdQ9fL/sVu5bM0Vh+7OJV/Lz5TzxPSUN1P29MGz4QLuWcDBm+QbB91SaV52HuX2dx7E6c6rsTUgODm9Z46zYPUzPQc9FWLBnUAfW8Cr87G87dwrozN5AtkaNdNW9M6dIEFiIzQ1dB79iH1S0+Lhq//TwPSfH34OruhcEjp8LDJ+Bvt1u7bDYcHMujR7/h6mVyuQyb1i7ExdOHIBSaoVmbruj5wWgIBMY1+jL23j0sWboU8Q8ewN3dHWPHjdPom77uz127sGPHDuTk5KBp06YYOWoUzM3NAag+d8uXLdPoE4f27FlcVdELmUyGRSt+wenzFyEWidCnR1f06dFVZ9mY2DgsXL4K9x8kwMO9Mj4bMxxVfbzV60+du4A16/9A8osUBAX4YeK4UahYvlxxVYWI/oEinTl4e3vj9OnTWstPnToFV1ftjnlJWrDrOCISnmD1J/0xre97WHngLI5cj9Iqd+1eImZu3I8RHUKw84uPUMPTFWOWb0GOVAYA2Hb2OtYfC8OUXm3xx+dD4OpkjzHLtyBXJi/uKumFiViEWhsWwCa46hvLmFpaoN5fq5B69grONghF6oXrqLd7JUwtLQAAdvWqofqqOYiZvRTnQvrCzMEWNdbMK64q6NWis3cQ8SwNK0KbYErL6lgdFo2jMY90lo1LycSsdrVx6MP31K+GlVU/cj+eDkfk0zQs694YP/dojDtPU7HgTHhxVkVvLFqFwrSiO7L+WIScQ5thEdIRZn61dJY1dXZB9l+/Im3xFPVLfl/1PTNv2gWiag2QvX8DsjYvhbCKHyzaGFcn6aVVa9fhbkwsfpgzC+NGjcCGTVtw+ux5rXK5Egm+mDkLwUGBWPbTfAT6++PLmbORK5EAADZv34mTp8/gyymfY8n8H5CZmYVvFyws7uroxeKNuxAZl4Cfv/wE/xvWF7/sPIBjYdffWP5ewkP876dfoMxXaizfdewcdp+4gG/GDMaqGZ8hOTUds1f9YejwDeKXNWsQExODb+fNw5gxY7Bx40acOXtWq5xEIsFXX32FoOBgLF60CIEBAZgxcyYkBZ+T6Oho/LRoEQYMGICFCxYgKyur1F2Qfler1/yKu/di8N3c2Rg7ehQ2/rEJZ86e0yonkUgwfcbXCA4KxNKffkJgQACmz/xafUz2HTiIHTt3YfTIEViyaCEqVqiAL78qPGbGZMGeM4hIfIrVo3phWs9WWHk4DEduxmiVuxb3EDO3HsGIdg2wc/Ig1PBwwZjVf6r7J8dmfKzxGtKyDio52KBFkLfWvkqzn07dQsTTVKzs0xxT2tTGqgsROBqd9NZt5h65hly5QmPZinN3sPfOA8x4ry6W9WqGSwnPsODETUOGbjALdh5DRMJjrB4/ANPeb4+V+8/gyLVIrXLX7iVg5oa9qj7s9OGo4eWGMcu2IEci0yh34PId/LxPu/9uTJZs2I7I2Hgsmz4Bkz/sj1927MWxi1ffWP5ewkNMXbASSqXmb86t6FhMX/wL+ndqi/XffgGRUIgvF602dPgGwfZV24IDFxHx8DlWf9gF07o2xcrjV3Dkduxbt5mz+wxyZXkay46Gx2HFsSuY3r05Vn/UBbcSn2LhwYuGDN1g2IfVJpXkYsGs8agaWBMz5/8OH//qWDD7U0gluW/dbv/O9Th9ZLfW8o2/zMedm5cwacYSjJwwC6eO/ImTh3cZKnyDeNk3DQ4KwqLFixEQGIiZM2a8sR04e/YsNm7ciLHjxmHevHmIiorC2rVr1evX/PILYmJiMO/bb9V94rNnzhRXdfRixa+/IzomFvNnz8T4UR9j/aZtOHXugla5XIkEU7+ei2qBAVjx0/cICvDD1K/nqb874ZFRmP3DT+jdvQtW/PQ9zMzMMPt74/zuEJUFRUqWjxs3Dt999x0mTZqE33//Hb///jsmTpyI77//HuPGjdN3jEWWI5Vh14WbmNyzDQIqV0TrGn4Y0qYhNp/S7lQnZ2RhePsm6Fw/GG7ODhjRIQTpORLEPk4GAPwVdhuDWjdA82q+8KjghC/efw9p2bm4Efv2E7nSyDrAG43PbYWl99tHirj06Yj8XCki//c9sqLiEDFhDhSZ2XDp1R4A4DH6AzzafgAPN+xG5u1o3BgyGeU7NIeFh1txVENvcuV5+PNOPCY1q4aA8vZo5V0Jg+r4YOutOK2ysjwFHmXkIKiCA5ytzNUvkdAUAGBmIsDkFqr9BJS3R9dAd9x49KK4q/TvmYkgrtEYuUe3QfE0EfK7NyG5eATiOs21y5oKYWLvhLzH8VBmZ6hfUKhOOMzrNEPuyd3Ii4uA4mkicg5tgrhWU8BMXMyV+ndyJRIcOHwUo4d/CF8fb4Q0bog+PXtg9959WmVPnT4LkUiE4cOGoErlyhg9/ENYWFjgdMHJa75CgZEffYjqwUGo4l4Z3bt2xp0I7QRIaZcrkWL3iQuYOLgn/D0ro2W9GhjYuQ22Hjqls/zOo2fx4YwFcLKz1Vp37sYdtG1UG3UCfeFTuRIGdmmDy+HRhq6C3kkkEhw6dAgjR4yAj48PmjRujN69emHPnj1aZU+dPg2xWIyPPvwQ7u7uGDFiBCwsLHCm4CRiz549aNq0Kdq0bg1PT098PmkSLl+5gidPnmjtqzSTSCQ4ePgwRg0fDl8fHzRp3Ai9e/XEX3v3apU9dfoMRCIRPv5wGNzdK2Pk8I9hYWmB02dUFxuOHD2GnqE90LB+fbi5umLcmNHIyMzEnUjj+v7kSOXYFRaOyd2bI8CtPFpX88GQlnWw+dwNrbLJmdkY3rYBOtcJgJuTHUa0a6DqnzxNAQA421qpXxJ5HjaduYEZfdrCxsJ42thcWR7+vB2Hz1vWREAFB7TydcXgen7Ycv3eG7fZHxGPHLnmgAWlUomtN+5hbNNqaOLlgoAKDpjWtja234xFzmtJsNIuRyrDrvM3MLl3OwS4u6B1TX8MadsIm09d0SqbnJGN4R1C0LlBNVUftmNTpGfnIvbJcwBAniIfszcdwIwNe+Hm7FDcVdGbXIkUfx0/hwlD+sDfyx0t6tfCwC7tsP3QSZ3ldx45jY+nfwdHHb85G/ccRvuQBght2wxVKlXExKHv40VaBtIysgxcC/1i+6otRybHriuRmNy5MQJcy6F1kCeGNK2JzRffPHhl3427yJZqD4DaeP42BjSuhub+VRDsVh7TuzfD7qvRRjdYin1Y3cLOHoFIJEbfIeNRqbIn+n84ERYWVrh0Tvcz2HJzsrD0u/9h387f4OhcQWNdVmY6zhzdjaGjp8GrahACa9THe90GIO6ucQ2aOn3qFMRiMT786COdfdPX7d69G926d0eDBg1Q1c8P48aNw5HDhyGRSNR94hEjR8LHxweNmzRBr969dfaJS6tciQT7Dx/D2OFDUdXHC00bNUDfnt3w594DWmVPnjkHsUiEkcMGoUplN4z5eCgsLcxx6qwqsb51119o06IZunRoB3c3V4wbPgwvUlORnp5R3NUiondQpGR5y5YtsXr1akilUmzatAk7d+6EUqnEH3/8gY4dO+o7xiK7+/AZ8hQK1PQqTN7W8nLD7fhHyH9tVGO72gH4uH0TAIBEJseGE5fgaGOpnmZlQo9W6FQ3SF1eAAGUALIkUsNXRM8cm9XHi5NhOBfS963lHBrUQMp5zQsLKReuwb5hTQCAff0aSDlTeNImSXqC3IRHcGjw9tscS5u7yRnIy1eihoujelnNSk4If5KK/NdGIsWnZQECwNXOUue+prSsgZqVVLfwPsrIwcHoh6jjZnxT9ZiWdwNMTZGXVHjBIC8pFsJKHgA0byU0dawAKIH81GSt/QgsrSEQWyDv0QP1MsWzhxCYCiF0Ma7beuPuP0BeXh4CA/zVy4IDAxB1Nwb5+ZpTykRGRyM4MEB926VAIEBQoD8io1TJ34H930dIY9Wt9KlpaThw6AiqBwcXU030527CQ+QpFKhe1Uu9rKa/F+7ci9c6JgBw/mYEZowaiH4dtafxsrO2wrnrd/AsJQ0SmQyHz1+Bn0dlg8ZvCHFxccjLy0NAQOEtvEFBQYiOjtY6JlFRUQgKDNT4nAQGBiIyKkq9PviVz0W5cuVQrlw5REVp3x1VmsXG3df67gQFBiIq+q72dycqGkFBmsckKCBAfUw+/nAoWrVsoS4vEAigVCqRk51j8Hro091Hz5GXn4+aBVO9AUAtz0q4Hf9Eu39Soyo+blMfACCR52HDqetwtLaEdwVHvG75oQuo7+uOhlWNq329+zwNeQolargW/l7WdHVG+JMXWr/DAJCWK8Wi07fwRVvNaWtSc6TIluWhmkvhVBq+zvbIy1ci4kmK4SpgAHeTdPRhvSvj9oM39GE7hAAo6MMeD4OjjRW8K6ruesuRyhDz8Bk2fD4ENbyMa0DDq2Lik1S/OX6Fd03U8PfBnZj7On9zLtwIx1ejh6BfJ+2pwa5F3EXLBoV3y1Uq74w/l86Fva21YYI3ELav2u4+fqFqXwumqgKAWh4VcTvxmdZ3BwDSciRYePAipndvprFckZ+PO0nPUNuzsJ2uXrkC5AoF7j4xroEw7MPqFht9G74BNTXq6uNfHbHRt3WWf/70EeRyGWbO/x3lKmjeTR8TeQMWltbwDy78Xerccwg+HPeV4SpgAFFRUQgMCtLqm0bpuGimUCgQc/euRl/VPyAAcrkc9+/f/0d94tIqtuC7E+RfOC1ctUB/RN69p1WHiOgYBAf6axy74AB/RETdBQDcvB2Bpo0LpwN2qVgBm9b8DDsdF3SJqOQVeSLlRo0aoVGjRsjKyoJCoSiVc6gmp2fB3soSZgWjfgHAydYKUnke0rJz4WijnfAMi36AkUs3Qwkl5g3uCkuxCABQ21szabPz/A0o8vNRy9v4TjoSVm56p3LiiuWQGaE5qkv29AVsglRzlpm7lIf00TON9dJnL2DuWhHGJDlbAnsLEcxMC68dOVmKIVXkIz1XBgfLwtF591OyYC0yw1eHr+FKUjIq2lhgRAN/NPHQHF3w1eFr2BeViEq2lvi4/tvnXC2NTKxtoczJAvILb2/Pz86EwEwEgYUVlLmFI69MnCtCKc2FVdfBELpXRX5GKnLP7EVeXASUuTlQKvJgYmOP/Beq0bAmtqpRbQIL4zohTUlJgZ2tLczMCueptHewh0wmQ0ZmJuxfaQNTUlJRpYpmssrB3h4P4hM0lv22cRM2bNoCG2trLPzB+KYwepGaDjsbK5gJC39KHO1sIZXLkZ6VrTXf+I8TVfM67jmlfQvzRz07YMIPK9BpzJcwNTGBk70t1n4z0bAVMICUlBTY2dlpfk7s3/Q5SUGVKlU0tre3t0d8fLxqfWoqnBw1E6IO9vZITta+MFWapaRqf3cc3nRMUlO05se1t3dQH5PgoCCNdQcOHUa+QoGgQOOZmxtQjRa3t7LQ7J/YWEGap0BaTi4crXX0T+4mYOSqXar+Sf/26v7JS49TM3DgWjR+G9fH4PHrm67fYUcrc0jztH+HAWDBiZvoHOQBb2fNvqethQhCEwGeZeXCy1l18vk0U5XoS8vVnJKktEvOyIK9taX2Z0Seh7TsHDjaWGltExZ1HyOXbFJ9RoZ0h6W56jNia2mO3yYNLrbYDSU5LR12Ntbv/Jvzw+ejAQB7T2pONZGZnYOM7BwoFPn4ZM4ixMQnIcjXE5M/7IfyjsY18p7tq7bkzBzYW5prfnesLQvaVwkcrS00yv+47zy61vKDz2sXIDMlMkjzFCj/yvmi0NQEdhbmeJqebdhK6Bn7sLqlpSbD1d1LY5mdvROSEnRP2ePuWRWffal72oxnTx7CuXwlnDuxD3u2/wpFnhwhrbqgS+9hMDGiZ2b8Xd/0VdnZ2ZDJZHByKrxAbWpqCltbWyQnJ0MgELyxT5yZkQE7e3uD1UNfUlLS3rmNfZGSCg93zZyRg4Md7scnIisrG5kFebPJX81C7P14BPj5YPyoj1HOyfielfFfJTCi7yoZXpE/Db/99huaNm2KevXqoWHDhmjSpAmWLl2qz9j+tVy5XD09xksv38vzdN+O6+NSDpv+NxSjOzXD9A37cOv+Q60ytx48xPxdxzGkdQM4G9kIlH/C1NIC+VLNk8t8qQwmBSfoppbmb11vLCRyhcYJOgD1e5lC84rxg9RMSPIUaOheHku7NUKTKhXw2Z4wRDzVfKjpkDo+WNe7KVxsLPDJ7os6R8aVZgIzEZSK174jioJbToWa19hMnSpAYCaCPC4SWVuWQh57B9a9R8G0ojugzIc8+gYsWnSDwMYeEJvDolUolAoFYKr53SztJFKpRkcJAEQF7+WvTQWgq6yZmZlWuTYtW2Dpwh9Rq2Z1TJ0+E9k5xjV6SyKTQ2Sm+Xl4mcSQyf/ZlAePn7+AuUiEBZ+PwMqvxqOCkz1mrdyot1iLi1Qq1UjkAFB/Fl7//5f+zefk79YbizfVA3jXYyKETEedo6KiseqXNejVMxSORpbgypXlvaV/otC1CXxcnLDps34Y/V4jTN98BLfiH2us3xV2B4GVy6N6FRfDBG1AuXIFzF77TRCpf4c1j0dY/FPceJiMjxtqJ/CEJiZo5euGpWdu42lmDjKlciw8dRNCEwHkRjKK7aVcmY4+rNnffEYqlcOmKcMwunNzTP99j84+rDGTSGVavzkv3/+T35ycgrtC56/bgvZNG2D+5DGQy+WY+N0yoxnt+BLbV2258re0r6+1JxfvJeF6/BMMb6X9cGVJwdRNZjr2JXvDd7C0Yh9WN5lUAjMzzfNWoZkZ8uT//OKqVJKLp48TcOLQTnw07iv0HTIeR/dtwaG/jOv5O/+k7ymVStXrdZWXSqUQvmP7VFqpvg9v6tdr/u5IpVL190pdVqg6Fi/nLV+6ai3atGiGOdOnQC7PwxffzDO63x2isqJII8uXLVuGDRs2YPz48ahVqxby8/Nx7do1LF26VDXH2fDhf7+TYiAWCrU6My/fm7/hKeZOtlZwsrWCv1sF3Lr/ENvOXkd1z8LbrG7GJWHMz1sREuiF0Z2a6dzHf0W+RKqV+DYRi6DIUTX2ijetz337Q1FKG5HQBPLXkuIv35ubaXaQP6rvh/dreMG2YLRW1XJ2iHyWhp3h8QisUHgy4eWkGtE2r0NdtF9zCNcevkBdI5qORZknh8D0tebBtOA781oHUnL2AKRXTkBZ8DAcxbOHMK3oDnHNEOQc/AM5R7bCqtuHsB87F0qZBLnnDqqmc5EZ1wOjRCKRVsfu5QmmWCz+27JyuVyrnGslVVLrfxM+Rb8hH+Ls+Qt4r4327eKllchMqJWgeHkh0vwfXDRTKpWYsfx3fDKgO5rWrgYAmDv+Q3Qd9xXC7z1AsI+H3mI2NJFIpHUx9uVnwfwffk50nZzo+hyVdiIz3fUEdHx3dJbN0zp2EZFR+HLGTNSrWweDPhhggKgNS2ymnWz52/6JjRWcbKzg71oet+KfYNv5WxqJ8SO3YtC7UXXDBW1AYqGJVhLr5cVq81cuPknkCsw5fBVT2tTW+n1+aXKrmpiy9yI6rNwHCzNTfNQwEOGPU2AlKvLNlCVCbKajDyv/uz6sNZxsreFfuaKqD3vmmkYf1tiJzcy0fnNevv8nvznCggsx3Vo2Qcdmqukkvhn3IToM/xzhMfc1pnkp7di+ahPrSGar21ezV9uTPMz68zSmdW2qsfylN13AlOUpdJYvzdiHVdmz7Vfs3fGr+r2XbxDkr53X5MnlEInN//G+TUxNkZuTjZETZsO5vOrYvHj+BMcP7kCH7h/8u8ANaMvmzdiyZYv6vZ+f3zv3Pd90weVl+fz8fOS9qX0y/+fHuCSIRGZaSfHCNlb0WlmR1sVHeZ7qWJgW/O50bNca7VqpngE2beJ49Bz4ISKi7yL4lSmSiKh0KNIv/datWzFnzhy0atVKvSwgIAAVKlTAnDlzSk2yvLy9DdKyc5CnyFd3jJMzsmFuJoSNhWYDHR7/CKYmJgioXDiFiLeLs/oBnwBw+W48xq3YhkYBnvh2aDeYmGjO3fxfI3n0FOKKmglecUVnSJ6opl6RPNSxvoIzpI+fF1uM+lDe2gJpuTLk5edDWHDrTXK2BGKhKWzEmiekJgKBOlH+kqejDWJTMiFX5OP0/SdoULkcrAu2c7I0h525yOhu/87PTIfA0hoQmABKVcLCxMoWSrlMnRQvpNRalv/iCUydVR1FZU4WsjYtgsDcEso8OSAQwLJldyjSjGu+R2cnJ6RnZEChUMC0YARkamoaxGIRrK2sXivriJRUzbsNUlPT4FQwOuvipcvw8fKCs7PqtjuRSASXChWRkZFZDDXRn3KO9kjPzEaeQgFhwTF5kZYBscgMNpYWf7N1odSMLDx9kYqq7oVJnYpODrC3scLj5ylGlSx3cnJCenr6a5+TVIjFYli99jlxcnJCqtbnJBWOBVOvOP/NemPhpOO7k5KaqvO7o/OYpKVqjGy8ees2vvr6G9SpVQtTJ39uVLc3v1Te1hpp2bma/ZPMgv6JueYJaXjCE1X/xK28epl3BUf1Az4B4ElqJuKepqBlsObt5MZC1+/wi2wJzIWmsDEv/B2+8yQFSenZ+PwvzWk1xu08g85BHviibR04WpljVd8WSM+VQSQ0AZTAkjO3UclWe9qS0qy8nQ3Ssl7vw2bp7sM+eARTEwEC3AsvnnhXdEbsE+OasunvqH5zsv71b46djTWEpqao8sq0gXY21rC1scLTFykAjCdZzvZVW3lbK6TlSF5rX3O02tfwxGdISsnAxD8OaWw/Zt1+dKnthy+6NoVYaIrkrBx4llcdozxFPtJzJShnq/vZRaUV+7AqLduHon5IG/X7fTt/Q3qq5vlIetoL2Dv88wFO9g7OMBOJ1YlyAHBxrYKU5KdFD7gYdOzUCU2bFQ4A3LZt2zv3PW1sbSESiZCamorKlVXTjygUCmRkZMDR0RFKpfKd+8SllbOTo442Ng1ike7vTmpqmsaylNQ0ODk4wM7WFkKhEO5uhec6drY2sLO1wfNk4zonJioritQDysrKgoeHh9ZyT09PpKSUngco+blVgNDUFLceFN6Gej02EUFVXLQS3bvO38Ki3Sc1lkUkPIFXQTI45tFzjF+1HSFB3vhhWA+t24X/i1LDbsKhYS2NZQ6NaiMt7CYAIO3STTg0Kbxt0dytIiwquyC1YL2xqOpsC6GJALefFHYMbjxOQVB5e5gIND8nM45cw9dHr2ssi36eDg8HawgEqvVnHxR2ih5n5iAtVwZPR+OarkfxNBFQKGDq6qleJqzsjbzH8QA0p5Sx7DQQlh01R0yYVnCDomCOcssugyH0DIBSkgPkyWHmHYT87AzkJz8xeD30ydvTE0KhUP2AIwAIvxOBqr6+WieTAX5+iIiMhrJg+h2lUok7kZHw91PNX79q7TocOX5CXT4nJxdJjx7CvbJxPQPBr4obhKamCI95oF52IzoWgV5V/tEJtq21JURmQsQ9LPxMpGVkIT0zG5XKG9c8fl5eXgWfk8KHcN65cwe+Oj4n/v7+iIyI0PicREREqD8n/v7+uHPnjrr88+fP8Tw5Gf7+xjX6xNvLU/uYRLzhu+Pvh4jIKM3vTkSkus4PHsRj5jezUK9OHXwx9X8QCo1rdN9Lfq7lIDQx0ZhK5fr9RwiqXEG7f3LpDhbtO6uxLCLpGbxemV/3dsITVLS3gYuDcT4kqmp5ewhNBbj9qLAPeeNhMgIrOmj8DgdVdMSfH3bApkHt1C8AmN6uLkY1Vs23/OX+MFx48AR2FiJYmAlx9v5jOFqK1XOYGwu/ygV92Puv92Er6ejD3tDuwyYW9mH/K6p6VC74zbmvXnYz+h4CvT3+0W+O0NQU/l7uiIlPUi9Ly8hCekYWXMoZ1zFj+6rNz8VJ1b4mFvbHr8c/QZBrOY3vTnDl8tgzsR+2juutfgHAjNDmGN2mHkxMBAhyK4/rDwr7JrcSnkJoYoKqFY2rb8I+rIq1jR0quFRWv3z8quNe9G2NusZE3oS33z9/YKm3XzDkMimePCyc2/tR0gON5HlpZGNjg0qVKqlfAf7+iIiM1Oqb+unoe5qYmMC3alWNvmpkZCSEQiE8PT3VfeJXHw76pj5xaeVT8N15+ZBOAAiPiISfr49WHQL9fHEnSvO7Ex4ZjQB/X5iamqKqtxdi7z9Ql09Pz0B6RiYqli9XLHUhon+mSK1UrVq1sHbtWo35lRQKBdauXYvq1UvPLcAWIjN0qV8NszcfRHj8Ixy/eRfrj11C/xb1AKhG6EhkqltleoXUxOW78dh44jLin6Vg+b7TCI9/jAEtVWVnbz6ACva2mBTaGmnZOUjOyNLY/r9CXMEZJgWjLp7sOAgze1sELvgC1gHeCFzwBUytLPB42wEAQPzKTXAd0A2Vh/aCTTU/1Pz1ezzbdxK5D5Le9idKHQszIToHuGPe8Zu48zQVJ2If4/dr99CvpmqEXnK2BJKCWzCbe1bE/qhE7I1MQGJaFlaFRePG4xS8X8MLQhMThAZ7YNmFSFx/9AKRz9Iw9cAVNPeqCG8n4zpJR54cstthsGrfD6YuVWDmWwPm9dtAelnVORZY2QLCglvvYm5DFFwfouAGMHEoB/MmHSB084b06kkAgDI3GxbNu8LE2QVCd19YtusLyYVDeD3pXtqZm4vRtlVLLFq2AtF3Y3DuwkVs27UbPbp2BqAayfVy7r6mIY2RnZ2N5avWID4hEctXrYFEIkXzpk0AAF07dcC2nX8i7PIVPIhPwLfzF6KSiwvq1aldYvUrCnOxCJ2a1ce8NZtxJzYeJy/fxIa9x/B+hxYAgOS0DEhkf39XhdDUFF2aN8SijbtwLfIe7iU+wvRlvyHY1xOBXu5/u31pYm5ujjatW2Pp0qWIvnsX58+fx46dO9G9WzcAqgcnvfychISEICs7GytXrkR8QgJWrlwJiUSCZgUjfDp16oRjx4/j0KFDuH//Pn6cPx/169dHxYrG9RBl1TFphcXLlquOyYUL2L5zF7p37QpA9TCxwmPSBFnZ2VixajXiExKwYtVqSCUSNG8aAgBYtHQZnMs5Y/jHHyI9PQMpKaka2xsLC5EZutQLxOwdxxGe8ATHb9/D+pNX0b+p6gJ1ckY2JAW3/fZqWA2X7yVh4+nriH+eiuUHLyA88QkGNCu8mH3vSbJG8tzYWJgJ0TnIA3OPXMWdxyk4EfMQv1+ORr/aqgeKJ2dLIJErYG5mCncHa40XoBqZ7milGm1tZy7GsjPhuPc8HVcSnuG7Y9cxtIG/1sXv0s5CZIYuDaph9qYDCH/wCMdvRGP90TD0L+iXJqe/2oethcvRD7Dx+CVVH3bvKYQ/eIQBreqVZBX0zlwsQsfmjfDd6o2IuPcApy7fwMY9h9G3g+pO1xdp6e/0mwMA/Tu3xdYDJ3DswlXcT3qMWT+vg69HZQQZ0Z1MANtXXSxEZuhS2w+z/zyN8KRnOB5xH+vP3ET/xqpp3pIzcyCR58HcTAh3JzuNF6Aame5U8BDQPg2C8NuZmzgecR/hSc8we/dphNYLgMUbpkIqrdiH1a1e41bIyc7EH2vm42FiHP5YMx9SaS7qN2kLQDWneVrqu92h4+LqgRp1Q/DL4q+RcP8ubl+/gH07f0Or9j0NWQW9CwkJQXZWFlauXImE+HitvqlUKtUYHNm5Uyfs2L4d58+fx93oaCxbuhTt27eHubk5zM3N0bpNGyxduhR3o6Nx/vx57NyxA926dy+h2v1z5uZivNeqORYuX4Wou/dw9sIlbN21B6FdOwLQ/O40a9IIWdnZWLb6VzxISMSy1b9CIpGgRUhjAEDvHl2wc88BnDx7HvGJSfhu0TJ4e3rAv6pvidWPiN5MoFT+8ycPxsbGYsCAAbC0tERQwZPT79y5A5lMhl9++aXIo94kR9YVabu3yZXJMWfzQRy9EQ1rCzGGtGmAD1rWBwDUGDsP33zQCd0aqhL8p27HYMmeU0h4ngofF2dM7tUWNb3ckJyRhdbTlujc/6vb65t52yHYZ+ZnkH2/1EkejQutByLl9CX1+5sfTkHS+l0AALt61VBt2dew9vdGxu1ohI+ZgYwbhVeH3Qb1QNUZn8DM0Q7JR87h1sjpkKekGTTerGWT9b7fXHke5p24heOxj2AtMsOg2j7oX0t1G26dxbsxo00tdA1UJe12hcdj/bUYPMnMhZejDSY2C0ZtV9VIJFmeAssuROJAdBIkcgVa+rjg82bV1NOyGIL1mO+ROm+0/ncsNINl+34Q+dWEUiqBJOyIOlnuMHU5sveuh+z2RQCAqEZjmDdsCxNbRyieP0buse3IS7yn2o+ZGJbvvQ8z32qATArJ1VOQXjys/3gLOExdjoSYyL8vWAQSiRSLl6/AmfMXYGVpiT49uyO0m+qEtG3n7pj06Tj1fI1R0XexaPkKJCQmwcujCsaPGQUfb9UFmPz8fGzdsQt79h9EekY66tSqiXGjRsLZyTDJLnffAGRcO2KQfUukMny7ZjOOX7oBa0sLfNC5Dfp3bAkAqNdvLL4a+QG6NG+osc2eUxexevt+/LXkG/UyqUyOn7fuwZEL1yCVyVC/mj8+H9IbDrY2BonbtnZbxMXGGmTfEokES5ctw7lz52BlZYWePXuiR8GJQYeOHTHhs8/Qtq3qRCw6OhpLli5FYmIiPD08MHbcOPh4F04BcOTIEfy+YQMyMzNRu3ZtjP/kE9jaGubim5e3Nx7cu/v3BYtAIpFgyfKfcfbceVhZWaJXaChCu6suILzXqQsmfjoe7dqqbo2Oir6LJcuWISExCZ4eHvhk7Gj4eHsjJSUV/QYO0rn/V7fXJw+fqpDs/Vnv+wUK+ic7juPorXuwNhdhSMs6+KCZKtlQY+JP+KZvW3Srr+pjnYqIw5L95wv7J92ao6ZnJfW+Zm8/hsxcKb4b2NEgsb7KvPMoZK/+Uu/7zZXnYd6RazgWkwRrsRkG1fPDgDpVAQC1f9yGme3roWuwh9Z2tX/chlV9mqOuu2qamhxZHuYdvYZTsY9gaSZE31o+GNrAsHdjWH08G5Jj6/W+31yZHHM2HcDRG1GwNhdjSNtG+KBVQR929Bx8M7AzujWqAaCgD7v7JBKep8DHpRwm926Hmt7aIz2nr98DAJg1qIve432VeetBSLtxUu/7lUhl+O6XjTgRdh3WlhYY0KUt+nVSffcb9B2B6aMGo3OLxhrb7D15Hr9s34s/l87VWP7nsTNYt+sAUtIzUDvQD1OHf4AKToZ7mKV9zRYGaWONun3dsVDv+wUKvju7z+DonThV+9q0Jj5oojpfqzFtBb7p2QLd6mi3CzWmrcAvH3VBPa/CqRLWnLqODWdvQa5QoHWQF6Z1DYHYQHOWm/f8jH3Y17j7BuBCZIZB9g0AcXfv4LcV8/Ao6QEqV/HB4FFTUcVLdf595tgerFnyDdb9eVlru3lfjIB/cB306Fc4/WxOdhY2rP4B1y6ehEhsjtYde6Frn48g0PPF2kYBtoiNi9PrPl8VHR2NpUuWIDExER6enhg3diy8fXwAqPqlCxcswP4DB9Tlt27dij937YJcLkeTJk0weswYiESqaUslEgmWLV2q0Sfu3qOH3mP29vLCw7u39b5fQPXd+ennVTh9PgxWlpboG9oVvbqpLjS16tILk8ePQfs2qnOfyLsxWLhsFRKSHsLLwx2fjR4OX+/CKfL2HjqCjVt3Ii0tHTWqBWHi2JEo52yYO1Vcq1YzyH7/y253blnSIRidantP/H0hI1WkZDmgmm9qz549iIuLg1gshqenJ7p06fKv5p8yRLLcmBVHstzYGCpZbswMliw3UoZMlhsrQybLjZUhk+XGypDJcmNlyGS5sTJUstyYGSpZbswMlSw3ZoZKlhsrQybLjZUhk+XGytDJcmNk6GS5MTJkstxYMVn+zzFZ/s/9l5PlRbosHhoainnz5mHQIN0jEIiIiIiIiIiIiIiIjEmR5ix/9uyZ+mnARERERERERERERETGrkgjy7t3746PPvoIXbt2haurK8RisdZ6IiIiIiIiIiIiIiJjUaRk+f79+2FiYoK9e/dqrRMIBEyWExEREREREREREZFRKVKy/Pjx4/qOg4iIiIiIiIiIiIioxLxzsvzy5cvvvNN69eoVKRgiIiIiIiIiIiKi4mJiKijpEKgUeedk+cCBAzXeCwQCKJVKWFhYwMzMDBkZGTA1NYWtrS0uXLig90CJiIiIiIiIiIiIiAzlnZPlUVFR6n9v374d27dvx5w5c+Dt7Q0ASEpKwpdffomQkBD9R0lEREREREREREREZEAmRdlo/vz5mDlzpjpRDgBubm6YNm0aVq1apbfgiIiIiIiIiIiIiIiKQ5GS5QKBAE+fPtVa/uDBA4jF4n8dFBERERERERERERFRcXrnaVhe1b9/f0yePBlDhw6Fv78/lEolbt++jfXr12PcuHH6jpGIiIiIiIiIiIiIyKCKlCwfO3YsypUrh23btmHlypUAAF9fX3z11Vfo2rWrXgMkIiIiIiIiIiIiMgSBiaCkQ6BSpEjJcgDo27cv+vbtq89YiIiIiIiIiIiIiIhKRJHmLAeAq1ev4pNPPkG3bt3w+PFjrFq1Cvv27dNnbERERERERERERERExaJIyfLDhw9j+PDhcHV1xf3795GXlwehUIgpU6bgjz/+0HeMREREREREREREREQGVaRk+dKlSzFz5kz873//g6mpKQBg2LBhmDt3Ln799Ve9BkhEREREREREREREZGhFSpbHx8ejZs2aWsurV6+Op0+f/tuYiIiIiIiIiIiIiIiKVZEe8Onj44MzZ86gf//+Gst37doFHx8fvQRGREREREREREREZEgCkyI/0pH+g4qULJ86dSpGjhyJixcvQi6XY8WKFXjw4AHCw8OxYsUKfcdIRERERERERERERGRQRbp0UrduXRw8eBDe3t6oV68enjx5gtq1a+PAgQNo1KiRvmMkIiIiIiIiIiIiIjKoIo0sl8vl2Lx5M7Zt24bk5GQAQFxcHJydnTF48GC9BkhEREREREREREREZGhFSpbPmjULZ86cwaRJkxAYGIj8/HzcunULixcvxosXLzBhwgR9x0lEREREREREREREZDBFSpbv27cPK1euRN26ddXL/P394erqigkTJjBZTkRERERERERERERGpUjJcmtrawiF2pva2NjoXE5ERERERERERERU2ghMBCUdApUi7/yAz0ePHqlfgwYNwv/+9z+cPn0aqampyMjIwJUrV/Dll19i3LhxhoyXiIiIiIiIiIiIiEjv3nkYeKtWrSAQqK60KJVKAMDw4cO1ln399dd4//339R0nEREREREREREREZHBvHOy/NixY4aMg4iIiIiIiIiIiIioxLxzstzV1dWQcRARERERERERERERlZh3nrOciIiIiIiIiIiIiOi/6p1HlhMRERERERERERH9lwhMBCUdApUiHFlORERERERERERERGUek+VEREREREREREREVOYxWU5EREREREREREREZR6T5URERERERERERERU5jFZTkRERERERERERERlnrCkAyAiIiIiIiIiIiIqCQITQUmHQKUIR5YTERERERERERERUZknUCqVypIOgoiIiIiIiIiIiKi43e3XvqRDMDpVNx0s6RAMplRNw5K1bHJJh1CqWI/5nsfkNdZjvsc+M7+SDqNU6SSPRtyQziUdRqnhtW4vnkZeLekwSpUKAXWQvfKLkg6jVLEaMQePom+VdBilSiW/6rgSnVrSYZQqdf0c8OTzD0o6jFKl4g8b8OizfiUdRqlSaeEm5J7cVNJhlCoWLfoha8XUkg6jVLEeOQ9Jd8NLOoxSw61qMNJ/HF/SYZQqdpMWsQ/7mgoBdfDjzvySDqNUmRRqgvux90o6jFLF09sHyeEXSjqMUsU5uFFJh0Bk1DgNCxERERERERERERGVeUyWExEREREREREREVGZV6qmYSEiIiIiIiIiIiIqLgITjiWmQvw0EBEREREREREREVGZx2Q5EREREREREREREZV5TJYTERERERERERERUZnHZDkRERERERERERERlXlMlhMRERERERERERFRmScs6QCIiIiIiIiIiIiISoKJqaCkQ6BShCPLiYiIiIiIiIiIiKjM01uyPCUlBUqlUl+7IyIiIiIiIiIiIiIqNkVKlj99+hSfffYZIiMjIZVK8cEHH6BJkyZo1aoVoqKi9B0jEREREREREREREZFBFSlZPnPmTKSkpMDe3h47d+7E3bt3sXnzZrRq1QqzZs3Sd4xERERERERERERERAZVpAd8Xrx4ETt37oSLiwuOHj2K1q1bo0aNGnB0dETnzp31HSMRERERERERERERkUEVKVkuFoshlUqRnp6OsLAwzJ8/HwCQlJQEOzs7vQZIREREREREREREZAgCE0FJh/CfJ5VK8fXXX+Pw4cMwNzfHsGHDMGzYMK1yAwcOxKVLl7SWh4aGYt68eUhPT0f9+vU11tnb2yMsLExvsRYpWd6mTRt8+umnMDc3h52dHVq0aIH9+/dj7ty56NGjh96CIyIiIiIiIiIiIiLj9f333yM8PBy//fYbHj16hP/973+oVKkS2rdvr1FuyZIlkMvl6vc3b97Ep59+iv79+wMA7t27B3t7e+zdu1ddxsSkSLOMv1GRkuUzZ87Ehg0b8PDhQ/Tt2xdisRgymQwjR47EgAED9BogERERERERERERERmfnJwcbNu2DatXr0ZQUBCCgoIQExODjRs3aiXL7e3t1f9WKBRYuHAhPvroI1SrVg0AEBcXB09PT5QrV85g8RYpWS4UCjFkyBCNZd27d9dDOERERERERERERET0XxAVFYW8vDzUqlVLvaxOnTpYsWIF8vPz3zgyfOfOnUhPT8fHH3+sXnbv3j14eHgYNN4iJctjY2OxYMECxMXFQSaTaa0/duzYvw6MiIiIiIiIiIiIiIzX8+fP4eDgAJFIpF7m7OwMqVSKtLQ0ODo6am2jVCrxyy+/YNCgQbCyslIvj42NRV5eHnr16oWnT5+ibt26mDp1KsqXL6+3eIuULJ84cSLMzc0xaNAgmJub6y0YIiIiIiIiIiIiIiq9ZDKZ1gBqkUikkRB/KTc3V2v5y/e6BmEDQFhYGJ48eYI+ffpoLI+Li4OjoyOmTp0KpVKJhQsXYuTIkdi2bRtMTU3/TZXUipQsf/DgAXbs2AFvb2+9BEFERERERERERERU3AR6fkBkWbBy5UosXbpUY9nYsWMxbtw4rbIvn3X5qpfv3zQI+9ChQ2jWrJnGHOYAsG/fPggEAvV2ixcvRkhICG7evInatWsXtToaipQsb9asGa5evcpkOREREREREREREVEZMmLECAwdOlRjma5R5QBQoUIFpKamIi8vD0KhKhX9/PlzmJubw9bWVuc2Z86cwdixY7WWW1hYaLx3cnKCvb09nj59WpRq6FSkZPmUKVPQo0cP7NmzB66urhAIBBrr582bp5fgiIiIiIiIiIiIiKj0eNOUK7oEBARAKBTixo0bqFu3LgDg6tWrqFatms6He6akpCAxMRF16tTRWJ6VlYWWLVtiyZIlaNiwIQDg6dOnSE1NhZeX17+sUaEi3Wcwffp0mJiYwNnZWStRTkRERERERERERERkYWGB7t27Y+bMmbh16xaOHj2KtWvXYtCgQQBUo8wlEom6fExMDMRiMdzc3DT2Y21tjTp16mDevHm4desW7ty5g88++wxNmzaFn5+f3uIt0sjyK1euYNOmTQgMDNRbIERERERERERERET03zJ16lTMnDkTgwcPhrW1NcaNG4d27doBAEJCQjBv3jyEhoYCAF68eAFbW1udA7S/++47fPvttxg+fDhkMhlat26NL7/8Uq+xFilZ7uvri4yMDL0GQkRERERERERERET/LRYWFvjuu+/w3Xffaa2Ljo7WeN+xY0d07NhR537s7OwMPv13kZLl/fr1w+TJkxEaGgo3Nzf15Owvde/eXR+xERERERERERERERmMwIRTTFOhIiXLly1bBqFQiL/++ktrnUAgYLKciIiIiIiIiIiIiIxKkZLlx48f13ccREREREREREREREQlpkjJcgB49uwZNm7ciNjYWCgUCnh5eaF3797w8PDQY3hERERERERERERERIZnUpSNrly5gvfeew9hYWFwc3ODm5sbLl++jG7duuHq1av6jpGIiIiIiIiIiIiIyKCKNLL822+/xQcffICJEydqLP/xxx/xww8/YPPmzXoJjoiIiIiIiIiIiIioOBQpWR4TE4Mff/xRa3mvXr3w+++//+ugiIiIiIiIiIiIiAxNYCIo6RCoFCnSNCyurq64deuW1vKbN2/C2dn5XwdFRERERERERERERFScijSy/KOPPsKMGTMQFxeH6tWrA1Alyn///XdMmDBBrwH+W9I8Bb47eQvH7j2CWGiKgbV9MLC2j86yE/aE4dT9JxrLFnZpgGaeFZErz8OPp8NxIvYR8pVAG59KmNA0GJaiIj8jtcTwmLyZicgMIWE7ET5+FlJOX9JZxrZmAIKXfQ3b4KrIjLiH22NmIOPaHfX6Sn07oerXn8LcpRyeHz6LWyOnQ/4itbiqoDcCMzM4DRwFq7qNoZTJkH5wF9IP7tIq5zJlHiz8q2ktzzx9BM/XLgIA2LbuBPuOPWFiaY2c8GtIXrcU+dlZBq+DvkllMixcuQ6nL1yCSCzC+9064f3unXSWvRv3APN/XoO4+ER4urth4shh8PPxAgAolUps3r0Pu/YfQVZWNpo2/D979x3eVNXHAfybZnXvxWhpSwctZe+9VYZsFVABRfZSEBwgiCA4EGRPBRmyp+y9kSGb0gm0tGV1z8zm/SMlJSQglqRtXr6f58nz2ntP8v7O5eack98999y6GD2wP2xtrEuyOiYhV6nxw+HLOBybBGuREB/WCcaHdYONlv1sx2kcj7uvt+3Xro3RPKA8AGDtpRisuhCFXIUK7YIrYnzrmrARW157olAo8Ovi5Thx9hykEgne69oZ73Z722jZmLg7mLVoKe7cTYCfrw8+GzYQIYGVdfuPnz6L5avXISU1DeGhIRg7Ygi8PT1KqiomdTcuCr8v+hH37sahom8APh72BfwDq/zr+5bNnw5XVw/06DNQt+1B8j2sXDIT0beuwd7eEW90egedun9gzvBNTySGY7d+sK5WDxqlErnHdyPvxF7jRb0rwrH7RxBX9Icq5SGyd6yCIu4WhC7u8Pj6V6PvSV04Fco7UWasgImJxHDq8RFsatSHRqlAztHdyD2223jRcj5w6vkxJBUDoEp5gMxtf0ARG6HdaSWEQ4d3YVu3GSAUIv/CCWTtWgcUFJRgZUxDrlRixro9OHQpAtZiMfq+0Rh92zU2WvbE9WjM334Y9x6noaK7C4Z3aY2WNbTfL41Gg8W7jmHbqUvIVyjRKLQyvuzdAa4OdiVZHZOQq9T48cgV7RhWaIUP6wbjwzpBRsuO2XEWx2/r9zmzuzRC84ByetumHrwET3trDG4UZra4zUmhUGDO4mU4eeZvSCUSvNOtC97t1tlo2Zi42/h14VLcuRsPP18ffDp8MIKf6nM69/oQubl5eu/ZtXENbGxszFoHkxOKYNP2HYiDqkOjUkJ+8SgUF48aLWrb9ROIA/XHsblbl0Kdch+OgyYbfU/O+rlQJ8aZPGxz4hjWuJTkCJzaNgVpD6Ph4hmIpt2+hUeFqkbLyvMzseq7hnrbpLbO6PvNWb1tsrwMbJ7dCV2GbYCDSwWzxW4OCoUC8xcuxOnTZyCRSNCzR3f06N7daNnYuDjMmzcfd+Pj4evri1EjhiMoyLA9Xrd+PZKSk/F5GcsTvQy5QoFZy1bj2N8XIZVI0LvLW+jduf0L33P1VjSmzV2GTYt+1m3TaDRYu30Pth84iszsHIQG+uOzAR/A38eyzg+i10mxshDdCxvMNWvWYMWKFZBKpfD398f333+P9u1f3HiUtDmnbiLiUQYWd2+C+9l5+PbAZZRzsEXboPIGZW+nZWPqG7VR36coEeEoFQMAZp64gVsPM7Cgq/ZHyneHLmPWyRuY2KZmidTDlHhMjLOSSlBr9S9wCDee6AMAoa0N6u1ciuR1f+HagC/hO6g36u1YgmMh7aDOy4dTvWqovvR7bQL9aiSqzp6AGr/NwMWuQ0qwJqbh+t7HkPoF4f6PEyBy84TnwM+gSnmE3Iun9co9nPc9BKKipkQaEAKvYV8i84g2yWFXvxlc3/0Ij5fNguJ+Ejw+HgX3D4fi0eKfYWkWrfwTUXG3MXvqBDx8nILpcxbD29MdLRs30CuXL5Nh/NSf0K55E3w1agh27D+EL6b9jHWLZ8PG2ho7DxzByvVbMG7YQFT288W831bju1nz8cOEz0upZsX364lriHiYjiU9m+N+Vh4m77+Aco62aBtc0aDs7dRsTGtfH/V9PXXbnrQnh6MTseRsBKa1rwc3W2tM3n8Rc05cx5dtapVYXUxl8YrViIq9jVnTJuPho8f44dcF8PJ0R4smjfTK5ctk+PK76Wjbohm+HD0cO/cdwFffzcDapfNhY22NG7eiMHXmHIwaPAA1w8OweMVqTP15Nhb8PL2UalZ8Mlk+fv5uDBq3eBODR3+Dw/u24efvxmDW0i2wtn5+EuavLatx7MBOdO81QLetoKAAM6eORUBgKKb/+gceJCdi/sxv4OLmgSYt3iyJ6piEQ8feEFf0R9qSGRC6uMPpvcFQp6dAfv2CXjmBtQ1cBn0J+c1LyNywFDZ1msC536dI+XEc1BmpePTdcP3Pfft9CN28oIyPLcnqvDLHzu9D4hOA1IXTIHRxh3OfoVCnP4bsqv6Fa4G1DdyGfA3ZzX+QsW4xbOs2g+vHY/Bo+hgU5GTBof07sK3XHBnrFqMgJxPO7w2GY5cPkbXtj1KqWfHN3nwQEfHJWDamH+6nZuKbldtQztUJ7eroJ3KiEx9g7OIN+KxHOzQND8KZm3H4fMlGrP1qEEJ8vLHl5D/Yfvoypg/oAWc7G3z/5258t3onfh3Wu5RqVnxzTl5HxMMMLO7RVDuG3f+PdgwbbJhwuJ2Whalv1TXa5zzxx4VobL9xF4Ma/vuFu7JqyYpViI6Jw8xpU/Do8WP8OHsevDw9jPY5X0/5Hm1aNMf4T0fgr7378fWU6Vi9bAFsrK3xODUVubl5WL1sAaylUt37rK0tLwlq3aILhF4+yNm4AFaOrrBt/z4KstKgir5qUNbKzRt5u1dBFR+t26aR5wEFBchaOFH/c1t1g5WzO9TJd8xeB1PjGNaQUpGHfSsHI7Dm22jxznTcOrcB+1cOwXvj9kMssTUon/4wDlJbZ/T8dKdum0Cgf6O+PD8TB1YNQ35OqtnjN4flv/2GmJhY/DBjOh49eoRffpkFT09PNGvaVK+cTCbDN5Mmo3Wrlhg75jPs3rMXk779Fit++02vzTh67BhWr1mL1q1blXBNTGPBqg2IjLuLuVO+wIPHqZg2bxm8PdzRqlE9o+Xj4u9h4sz5kIj1+5rtB45i3c59+Hr4APiU98ba7Xswdtos/Dl3ul57S0RlR7GWYQG0CfOtW7fi6tWrOH/+PDZs2FDmEuX5ShW234zH582rIdTTGa0rl0ffOoHYeO22QVmFSo3krDxU9XKBu5217iURCQEAYisBxrfUfk6opzM6h/niSrLldYI8JsbZh1ZG49MbYVvZ94Xlyr3bAQX5ctz64ifkRN5GxJjvoc7ORbmebwEA/IZ9gOTNe5G0Zgeyr0fhSv/x8GzfAjZ+honDskwgkcKh+RtI/XMpFPFxyLt0Fhl7tsCxbSeDsgW5OVBnZmhfWVlw7dkXGXu3QHFXm6hx7tADGXu2IPfiGSiT4pG24XdIKvoBgmI3P6UiXybDrkNHMWpAX4RU9kfzhvXQu1snbN19wKDskVN/QyoRY1j/PvDzqYBRA/rCxsYax06fAwBs3b0f73XpiLbNG8PftyK+Hj0EZy9eRkJScklX65XkK1XYfv0OxrWqgVAvF7QOqoB+dUOw4Yphkk6hUiM5MxdVvY23J39ejkWfWoFoHlAeVb1dMaFtbey8eRf5SlVJV+uV5Mtk2H3wMEYO/AjBlQPQrFED9OreBdt27zMoe/TkGUglEgz56ENU8qmIEZ98BFsbGxw/rZ2htHHbTrRr2Qyd32oH34oVMHLgR0hNz0BmVlZJV+uV/X3yEMQSKfp8NBIVfPzx4SefwdrGFudOHzZaPi8vF7/+8BX+2rIabu5eevsyM9Lg6x+Ej4aOh3d5X9Ss2xhVq9dFdIRhEqSsEoilsG3QEtk71kCVdBfyGxeRe2wX7Jq8YVDWpk4zaORyZG1dAXXqQ+Qc2Ap1ykOIfPwBjQYF2Zm6l9DVE9bV6iFz/WKgQF0KNSsegUQKuwatkLntDygT70J2/SJyjuyCXVPDix+29ZpDI5chc9NvUKc8RPa+zVA9fgCxj3bWo13TdsjavR7yyKtQJt5FxqblsGvcFgKJZf0YzZcrsO30JYx79y2E+pZH61qh6P9GE6w/ZnjX297z11E/xB99WjeEr6cberWqj3oh/jjwj/aut1M3YvBm3aqoG+yHwApe6P9GE5yLNBz3lXXaPucuPm9ZXdvnBFZA37rB2HjVcIavts/Je26fkyNXYvxff2PlhSh4OVjYrOmn5Mtk2HPgMIYP+hjBgQFo2qgB3uvRFTt2Gd6lcuzkaUglEgz+uC8q+VTE8IEfw9bGGsdPnQEAJNxLhJurC8p7e8PVxUX3EggsbA1XsQSSag2Rf3QrCh4lQhV7DfILhyGt1cywrFAIKydXqB8kQJOXrXtBrQY0Gr1tVs5uEAfVQP7eNRZ3pwrHsMbdvrYXIpE1GrQfBxfPymjU6SuIpba4c32/0fIZj+Pg5O4HWwcP3cvG3k23/8Hdf7BtXk8o5XlG31/WyWQy7Nt/AEMGD0JQYCCaNG6Mnj17YudfuwzKHj9xAlKpBJ8MGABfX18MGTwINja2OHHyJABArVZj3vwFmP3rHJQrV87g/ZYgXybHX4dPYPTHfRAS4IcWDerg/a4dsGXvIaPltx84isFffw9XJyeDfXuOnkLvzm+hSd2a8C3vjXGD+iIrJwfXImPMXQ0iKqZiZ6sOHTqEXr16oX79+qhTpw569uyJ7du3mzC0VxedkgVVgQY1yrnqttUs74YbD9JRoNHolY3PyAEEQAUnw6vIAPBlqxqoWV7bGSZn5WFfVBLqVLS89dl5TIxzbV4fqcfO4XTT915YzqVBDaSd+UdvW9rZS3BuWBMA4Fy/BtJOXtTtkyU+QH5CMlwa1DB5zOYk8fWHQCiCLOaWbpssJgLSgGDgBT+aHJq1gZWdAzJ2bwagnQEo9QtE7j9nij4n+iYSJw4HNJb1QyP2bgLUKjXCqxTdeVA9NAQRMbEoeOZHU0RUDKqHhuh+YAoEAlSrEoIbUdoBUfKDRwgNKrrt2d3VBc6ODrhpYQOm6McZ2vakfNH3vmYFN9y4n2bQntxNz4ZAAFRwMrztX12gQcSDNNSuWHQHS7VyrlCqCxD9ONN8FTCDuDvxUKnUqPrUeVItrApuRccYOU+iER5WRe88CQ8Nwc1I7ey2Kzduolmjohlf5by9sH75Qjg5OpZATUwrNuoGQsJq6NU1OLQ6YiNvGC3/+GEylAoFvp+9Ep7e+nc9ubi6Y9T472FjaweNRoOoiKuIvHkFodVqm70epiIq7wtYCaF4aiaj8k40xL6VDdpYSeVQyG/+Azz1nUqdOwmKSMOLAw4d3kPeuaNQP75vsK8sE5X3BYRCKO4WHQ/F7UhIfAMNj0dgGGQ39I9HyuyJkN+6Ait7R1hZ2+rNqlfeT4BAJNIl0y1FVOIDqNRq1Kzso9tWM9AXN+4kGbQlbzeqiVHd2hp8Rk6+DADgZGeDk9dj8DA9CzKFEnsvXEcVH8tLXkQ/zizsc4qSUzXLG+9z4tOfjGGNLzWTnJULuboAa99vjYrPKWMJbt+5C5VKhapVQnTbwp/T59yKikZ4WKheO1w1tAoiCvuc+IREVCxveJeppRF6lAeEQqiTimZ/q5JuQ+hdCYB+e2Ll4gVogIKMf5/sY93sbSiun0FB2iNTh2x2HMMa9yjhKrz8auvV1atSbTxMuGK0fPpDbbL8eRKjTyG4bne0fX+OGaI1v9u3b0OlUiEsNFS3rWrVMERFRRmcJ5GRkagaVlXv2IWFheJWZCQAID8/H3fu3MGvs2chNNQy79x58r2pFlK0tEz1KkG4GXPb4HgAwN+XrmHiyE/wbifDiQ8j+vXCG82futtHIIBGo0FuXr5ZYieiV1esZVjWr1+PH3/8ER988AEGDRqEgoICXLp0CVOmTIFSqcQ777xj6jiLJSVXBmcbCcTComsCbrZSyNUFyMxXwMW2aJbRnbQc2EvEmHTgEi4mpsDbwQaDG1RBEz/9GW2TDlzC7sh7KO9oi4H1Q2BpeEyMS1iy7qXKSb09kB2hP2tW8TAVDlW1nah1OU/Ik/UH0fJHqbCu4G2aQEuIyNkV6pwsQF00q1edmQ4riRRW9g4oyDY+s9WpQ09kHtgBjVz7A13sqa230MEJHhN+gsjdC/k3ryD1z6UoyMs1f0VMKDUtA06ODhA/tYa2i7MTFAolsrJz4OxUlMBMTc+An6/+3QQuzk64k3BP998paUXr2OfLZMjKyUVGdraZa2FaKTmG7YmrrfVz2pNs2EvE+GbvBfyT+Bhe9jYY0jgMTfzLIVuugFxdAA/7ots2RVZWcLKR4FGOZQ0iU9PTC8+Totsvi86TbDg/Ndskzeh54ow7CQnIyclFdk4u1Go1xk2ehrg7dxEaHIRPh34CDzc3WJqM9BRU9NVPVjo5uyIxwfjs1kr+QRg36Zd//dzRn3RD6uMHqFWvCeo3spxbfK0cnVHwZPZiIXVOJgRiCQS29tDkFrUFQjdPKO/dhmOPjyGtWhvqtBRk71oL5V39xITYLwjiSoHIWLugxOphKkJHFxTk6h+PguxMCCQSWNnaa/cVErl5QpkQB6d3P4F11TpQpz1G1s41UNyJRkFeDjQqFYROrlA9TNJ+trP2+2Jl71CylXpFKZk5cLa3hfipZc7cHO0hV6qQkZuvt954QDn95xjEJj/C+cjbeKd5XQDAoI4tMHrBOrz55SwIrQRwd3LAqi8GwNL8tzGsts+ZtO8iLt57DG8HWwxuFIom/tpxSbCHM+Z0Nb7+uyVJTUuHk6PjM32OMxQKhUGfk5qWDj9fH733u7g44258AgAgITERMrkcY76ahHtJSQgM8MewgR/Dp4JlJdAFdk7Q5Ofq3V2jyc3Wtq82ttp9hYRuXtDI82HT4QOIfAJRkJ0B+Zm9UN25pfeZwvL+EJb3R97uVSVWD1PiGNa4vOzHcPHSf26Xjb0b0h8aT/xnPL6NArUS2xe8i9ysh/D2q4NGHb+EraN2qae6b4wGAGSnJ5k3cDNJS0uHk9PLtSdpaemoVEn/jmwXZ2fcjY8HANjb22PWLzNLJnAzSUnPgJOjvd73xrXwe5OZnQMXJ/3JKz98qf33333kpMFn1QjVX+b1r0PHoVYXoHoV48/coNIhsLKsO9/JvIp1NixfvhyTJ0/G2LFj0bp1a7Rt2xbjx4/HpEmTsHz5clPHWGwypVpvQA1A97dCrX818G56NmQqNRr6emJ+l0ZoUskLn/11DhEP9R/M2L9OIFa+0wzlHGwwasffBjNZyjoek1cjtLVBgVyht61AroCVVFK43/qF+y2FQCKFRqnU26ZRaf8WiMTG3gLrKtUgcnFD9vGiWxcFUu2tze4fDkXG7s14uOAHSCr4wmPQWDNFbj5yuVxv8AgAksLBk+KZYyWTKwzWqpOIRVAWlmvdtCHWbNmBu/eSIFcoMP/3NQAAlaUtOaJSQywU6m2T6NoT/SUg7qZp25NGfl6Y370pmvh749PtZxDxIA0ylbrwvYafpVBZzlISgPY8efbf/sl5o3zm31dm5JwSi0VQKlXIl2kvOM1btgLtWjbD9G++hFKpxNff/WB0NktZp5DLIRLrt4NisQRKpeI573g5n345A2O/mYn4OzFY/duvr/RZJUkglgCqZ77vz2ljBRJr2LXqhILsDKQv/xmK27fgMvALWDm56pWzbdAasusXUZBlgQ+Ulkh0fcwTmicXa40cD/s2nVGQlYHUpT9CHncLroO/gpWzK1BQANm183Do+B6snFwhsLaBU+cPoFGrIBBa1sOCZQolJCL9mJ8sIaJ89tx5SnpOLj5fvAE1K/uiZQ3tBIbk1AxYS8SYO7w3lo/9CF7Ojpj8xw7zBW8mxsew2mPyvD6nYSUvzO/eBE38vfDZjrOIeGB5348X0Y5N9M+TJ38/2+fI5QrDPkdUNDZJSExCdk4O3n+vB6ZO/BJSiQTjJn6LPAub+SgQi/UmewBPtSfPtANWrl4QiCVQ3Y1E7pbFUN2JgG23gRB66V9UkNRoDGXMVWhyLOtutyc4hjVOpZRBKNQfmwhFEqhVxscmGY9vQynPRcOOX6JN71nIy3qE/X8MRYEFLXv2IjK5HGLR88aw+ueJsXNKLBYblLNkcrnC8HgU9ssv6of/zc3oOMz/Yz36dGkPNxfnVwmRiMyoWL8cUlNTUbNmTYPttWrVwv37ZefWX4nICspnEsBP/rYW6ydlPqkfgl41AuBore0wgz2ccOtRBrbeiEeYl4uuXICb9grijPZ18dZv+3EpKRV1LWjpER6TV1Mgkxskvq2kEqjztIkt9fP251vWDw2NUqH9sfGUJwkcjUJu9D129Zog//o/KMjNKdpYOHjM2L0JeVe066w+XjEXFb+bB6GzK9QZaWaI3jwkEsMBoKLwh8GzD2aRSMQGPz4UShWkheX6vdsN9x88Qr9R4yESCtH5zTYI8q8EW1vLWjdVKhJC+UyC4slFN+tnkjwDG4aid63Ap9oTZ9x6lIEt1+9gRJPwwvcafpa12LISXBKxxODf/sl5I32mbTB2TimVKlhLJRAWJoQ6tmuDN1q1AABMGDsa3ft+goioGISHlu27eHZsXIkdm4seqBgYXBWqZxLjSqUCUumrPTguIEh7q7BSocDCXybj/Y9GQSQ2fkGvLNGolMAz3xE8r40tUEOZFI+cA1sBADnJ8ZAGV4NNnabIPVL4kDErK0ir1kbmusXmDt0sNEql4UWCwqSWRql/PDQFaigT7yJ7n3a5r+yku7AOqQ7bus2Qc2gHMrf9AZe+o+D97QIUyGXIObgN4kqBKJBZVj8sEYugeObH+JOLh9YS4+d4alYOhvy6CgUaDX4e/C6srKyg0WjwzYpt+KzHG2heXdtu/DToHbT/ejau30lENX/LeaaK8TFs4TF5pq/4pGEV9KpVWb/PeZiBrdfvIMzbBf8vJBKJQVL8yd8v1eeoisYmP0z5BmqVCjY22rHI159/il4fDcbZ8xfRpqWR9b7LKI1KZZAU110se+ainPzsfsgvHQfk2vZB/jgZQi8fSKo3Rv7BDYVvtoK4cjjy9qwxe+zmwjGs1uWjS3Dl2FLd354+1aFW649N1CoFRBLjdXnn078AgQAisXbs0vb9OVg7vTke37sGr0qW90D6Z0kkYihVxsewz54nYqNjWKXuPPl/YPR4FPbL1pLiTYS7ERWLsdN+QcNa1fFJr26vHCMRmU+xshChoaHYvn07Pv30U73t27ZtQ2BgoPE3lQJPextk5CugKiiAqPCWipRcGaQiIRyk+j80rAQC3YD6CX9XB8SlZUOpLsCJOw/QwMcD9oXvc7O1hpO1BBn5rzYrrqTxmLwaWfJDSL31LwRIvd0he6BdekWWZGS/lzvk9x+XWIymoEpPhdDeEbCy0j3ESOjkggK57LnLp9hWq4P07X/qbXuSDFfeT9RtU97X3poocnW3qGS5u5srMrOyoVKrISqcyZaWkQGpRAJ7O/11/T1cXZCWrj/7KC0jQzd7wMbaGlPGj0ZObh4EAsDO1had+w1BOU/9W+nLOk97a4P2JDVXBmuREA7WL9ee3E7NgpONBFKhFVJzZfB31V58UxVob6t3t3u1ZGpJe3KeqNVqCJ+cJ+lPzhP9dXHdXV2Rlp6hty0tPQOuLi5wcnSESCSET8Wi29+dHB3g5OCARykpAMp2srxN+25o0LSN7u+/tq5GRrr+mrCZ6WlwdvnvF1Yz01MRE3UDdRu20G2r4OMPlUqJ/PxcOIidix13SSnITIeVrYN+G+vgBI1CDo1M/8Fg6qwMqB/rPzhN9fgBhM5FM8vFlYIAoRDyGONrwJd16sw0WNnpHw8rR2cUKOTQ5Osfj4KsDKgePXs87uuWWynIyULqwmkQ2NoBSiUgEMCxU2+o0yyrH/Z0dkBGTp5en5OalQNrsQgONobt4sP0LAyarb1AtXxsf90yLenZuXiQnoVgn6Il9LxdneBsb4vk1AyLSpYbHcPmyf/jGNbyHpD8Ito+J+uZPifdeJ/j9vw+B4B2NvFTFxslEgm8vTyRkvbv63mXJZqcDAhs7LQPki98Po7AzgEapQIag4tmGl2i/ImC1Iewci9aPlFY3g8QCqGKjzJz5ObDMaxWaIP3EFDtLd3fV08sR152il6Z/OwU2DoYr8uzSXQbezdIbZ2Rm/XQ9MGWAnc3N2Rm6rcn6enpkEqlsDNoT9yQlq5/p056egZcXfXverNkHq4uyMzK0e+H0zONfm9exqUbtzB+xq+oVyMcUz4bAisu+UFUphXrGzpu3DisWLECvXv3xg8//IAffvgBvXr1wh9//IHx48ebOsZiC3Z3hMhKgOtP3XJ55X4aqno6w+qZB0ZNPngJUw5d1tsW9TgTfi72EAi0+0/dLeoI72fnISNfAX9Xe/NWwsR4TF5N+rmrcGmoP3PApVFtZJzTPmgt4/xVuDSpo9tnXdEbNj7lkH7O8EFsZZki4Q40ahWklYseyGIdXBXyOzF6D1V7wsreEWLPcpDFROhtV6U+hio9FRIff902cXkfaAoKoEq1rAckBflXglAkRERU0TqG1yOiUCUowGCwExYShBtR0dAUHiuNRoMbt6JRNUR7MXHRyj+x98gJ2NvZws7WFrdi4pCbm6f34CVLEOzhrG1P7hdd9LiSnIIwLxfD9mTfBXy7/6LetujHGfBzdYCVQIAwb1dcSSr6QX4tORUiKwGCPQyfKF+WBQb4QSQSIiKq6EGF1yMiERJU2ch5Eoybkc+eJ5EICwmGUChEcOUAxN2J15XPzMpCZnYWvD09S6Yyr8DewQne5X10r6CQaoiJvK5X1+hb1xAYEv6fP/vRw/v4dcaXSHuqDbkTFwlHJxc4ODqbqgpmpUyOBwrUEPsWTTAQ+4dAee+2QRurTIiFqJz+uqAiz3JQpxX9wBf7VoYq8a7BrElLoUqKB9RqSCoVrd0p8Q+BMsHweCjiYyEuX0lvm8izvC4Z7vz+MEhDqkGTlwuNUgFpaE2oszN1a5hbihAfb4iEQly/U3Sx+XJsAqr6VTBoS/LlCgyfuwZWAgF+G9sfns5F66g62tlAIhLidnLRxYL0nFxk5uSjgrtlzbAO9nAy7HOSUlDVWJ+z/yKmHNB/ILt2DGtZa9f/m8r+/hCJRLqHdALAjYhIhAQFGpwnoSHBuBkZpdcO37wVibAqwdBoNPhg4DDsO3REVz5fJkNS8n34VKxQMpUxEfWjJECt1ia5C4kqBED9IAGAfnti81Yf2LzZW2+blWcFvYd4CstVgvrBPYOlXSwJx7Ba1rbOcHKvpHt5+dbEw/jLenV9GH8Znj41DN6rkOXgjykNkBx3TrctN/MhZHnpcPawrAdIP09AQABEIpHuIZ0AcONmBIKDggzOkypVquBWxC399iQiAqEhlvkwT2OC/H0hFAlxMzpOt+1aZDRCA/3/c6L7dkIivvhhDhrWqoapY4dB9OzdhURU5hQrWV6rVi1s3boVNWrUQFxcHBITE1GvXj3s3bsXDRs2NHWMxWYjFqFTqC9mHLmKmw/TcTTuPlZfikXvmtoOLSVXplsrt4W/N/ZE3sOuWwm4l5GDpeeicOV+GnrVCIDIygrdw/2w4OwtXE5Oxa1HGfhq70W0CPBGZTfHF4VQ5vCY/HdSL3dYWWtvKXuwZR/Ezo4ImzUB9qGVETZrAoR2Nri/aS8AIH7JOlR4vwt8PuoJh2ohqLniJzzafQz5dxNf9H9R5mgUcuScPgKPfsMh9Q+Cbe2GcH6rGzIPam/5Fzo5a9fcLSSpWAkFCjlUjw1nVmTu3w6X7h/ApmpNSHz84d53GPIu/Q11ZkZJVcckrKVSvNWqOX5Z/DtuxcTh5N8XsH7HbvTspJ2hkpqeAXnhevUtG9dHTm4e5v62CnfvJWLub6uQL5ejVRNt++jm6oKVG7bgVkwcomJvY9rshejyVls4OljWhSYbsQidqvph+qFLuPkgDUdjk7D6YjR619YmvFJyZZApte1J88rlsedWPHZFxCMhPQdLz0bgSlIqetXU/vh6t0ZlrLoYhaOxSbj5IA0zDl9Gt2oBsLGwZVispVK82bolZi1chsiYWJz6+zw2bt+JHm93BKCd8SeXa5eVaNGkIXJyczF/+QrcTbiH+ctXQCaXo2XTRgCAd7u+ja279uDYqbOIv5eIH+csRGV/P4QGl507uF5W/SatkZebg9XLZyMx4Q5WL58NuTxfN/tcIZcZzDx/nspBofCvXAVL536PxIQ7uHLxDNatmIcu7/Q3Yw1MTKlA/sWTcOzxEUQVAyCtWgd2zTsg95T2mQ9WDk66ZVnyzh6GqJwv7Nt1h9DNC/Zv9IDQ1RP5l07rPk7sXdHiksFP0ygVyLt4Ak7vDIDYJwDW4XVh36oTck9o+1YrByfdjNe8M4cgKu8Lhzd7QOjuBYe3ekLo5om8f04BAApyc+DQ4T2IvCtCUjkUTj0+Qs6hHUYv9JZlNhIJ3m5UA9PW7sKNu0k4cuUWVh04gz6tGwAAUjKzIVNoL44s33sSiY/T8F3/rrp9KZnZyM6XQSQUokvjWpi15QD+ib6L2KSHmPDbVlQLqIiqlSzrwY02YhE6hVXCjMNXCvucZKz+Jwa9a1UG8MwYNqAc9txKwK6IeO0Y9u9buJKcil41K5dmFUzO2lqKN1q3xK8LlyAyOhanzp7Dpm070b2zYZ/TvEkj5ObmYsGy33E34R4WLPsdMpkMLZo2hkAgQMO6dfDHnxtw5foN3I1PwA+z5sLD3Q0N6tQuzSr+dyolFDcvwKbduxB6+0IUWA3Seq21y60AENg66NpXZdwNiMPqQhxWD1bO7pA2ehOiCgGQXzqh+zihezmoUy175jDHsMb5h78JhSwbZ3fNQPrDWJzdNQNKZR4CqmuPi0opQ1629kKjxNoe3v51cHb3D3h87zpSkm7i8Pqx8AlqClfvsn+h4GVYW1ujbZs2mDd/AaKio3HmzFls2boVXbp0BgCkpaXp2pOmTZsiJzcXi5csRXxCAhYvWQqZTIbmzS1nyaZ/Yy2Von3LJvh5yR+4FXsbJ879g3U79+Gdju0A6H9v/s1Pi1fC080VI/v3RmZWNlLTM/7T+4mo5Ak0mv/+62HYsGEYO3YsKlc27YAzZ4HpZ6XnK1WYcfQajsQlw14iRt/agehTOKiuM3cHJrethc5h2hlb227EY9WlGDzIzkeAqwPGNg9H7QraW8QVKjUWnL2FvVGJkCnVaBVYDuOaV9MtQWIO9sN/4jF5hv3wn7BbbN7lBzoqo3C2zYdIO3Fe9/fVAV8icdU2AIBTvWqotmAK7KtURtb1KNwYPhlZV27p3l+xbzcETx4FsasTUg6exrUh30CZlmHWeG/372TyzxVIpHDvOwx2dRujID8PGXu3IOuANlkesHIXHi2fjZxThwEAdvWbwa3PQCR82tfoZzm//R4c23aCldQaeZfP4fGqhQa31ptKwMpdeHjrn38vWAwyuRy/LP4dJ86eh52tLXp17YR3O7cHADTv2gdfjRyM9m20S0NERMfil8W/Iz4xCZUr+WLs0AEIDvADAKjVBViwYg0OHj8FgZUV3mjRFEP69dbd4mdqXqF1kLtkglk+O1+pwozDl3E4JlHbntQLwfuFyfLaszbj2zfronNVPwDAtut38MeFKDzIzkOAmyPGtqyBOhWLbnVdcT4Say/FQKEuQJvACviyTS1IReY5JnaDv0dy1DWzfLZMLsfshctw4uzfsLe1xXvduqBnF23iolXnd/DF6GF4q00rAMCt6BjMXrgM8YmJCPCrhDFDByGoctGdGLv2H8KaTVuRkZGJmtWqYuzwwfBwdzNL3OVDquNilPkefhcXfRO/L/wRSYnx8PWrjI+HfgG/ytr2/PjhXVg6ZxrW7vzb4H3Tvh6K0PDa6NFnoG5beupjrFwyEzevXYTU2gZvdOiJzu/0g+CZ2aWvqm6ICx6M+8Ckn6kjlsCp+0eQVqsHjSwPucd2I68wWe798xpkbliC/IsntUX9guDYpS9EXhWgepSMrB2robxTtCSAy4BxUCbHI2fvRvPE+hTvn9cg+bPe/17wPxKIJXB6ZwCsq9eHJj8POUd36ZLl5WevQ/qfi5B/QZvAkvgHw7Fbv8KLBMnI3PYHFLe1M+EEEimcen4M6/A60MhlyD11ADmHd5o83qeVn70O+cfWmfxz8xUKfL92Nw5fjoC9jTX6tWuMD9pqL6bVHPwtpvTrgi6Na6HrpHm4+9DwYtPbjWpgav9ukCuVWLDjCPZduAG5UoWGoQH4olcH3VIt5mDTsjdyFn9l8s/V9jlXcCQ2Sdvn1A1Gn9raC4h1Zm/F5DfqoHNV7Z0H267fwaqLMUV9TovqqG3kmTqDNp1AnYruGNwozOTxPs1+yAwkRpt+qSSZTI5fFy3FyTN/w87WFu9174IeXbTjwjZv98C40cPxVtvWAIDI6BjMXrAECYlJCPCrhE+HDUJQZe2EGYVCgd9W/4mjJ04hNzcPNauHY/TQQfD0MM9ziCoGhyNz5mizfDZEYti0exfioBrQyPMhv3AEisJkudPnc5C3dy2UN7XjfHG1hpDWawMrRxcUpDxA/rFtUCcWzSS17TEY6kdJkJ/cZZ5Yn+L0+RyOYZ/hFVoHM7ea78Hmj+5dw6nt3yLj0W24eoegabfJcC+vbQui/9mG45u/xsAZ2t958vxM/L37JyREHoVapUCl0NZo3HkCpDb6d0Fmpydh/U9t0Wv8ITi4mP7OjM+7W+FOXKzJPxcAZDIZ5i9YiFOnT8POzg49e3RHt65dAQBvdeiIMZ99ijfaaZPFUVFRmDt/Ae7duwd/Pz+MHDkCgUbyQzNnzdLGPWaMWWIGAP/KgUi5cdbknyuTy/Hz0lU4/vdF2NnaoE+X9niv05sAgCY9+uPr4QPQsbX+BYLdR07i943bsWXxLwC0SfXOn3xq9PONvd9U3MMbmeVz/5/dG9ajtEOwOD4Lt5R2CGZTrGR5w4YNsWHDBlSqVOnfC/8H5kgMWzJzJcstWUkkyy2NuZLllsqcyXJLZc5kuaUyZ7LcUpk7WW6JzJost1DmSpZbMnMlyy2ZuZLllsxcyXJLZdZkuYUyZ7LcUpk7WW6JzJkst1TmSpZbMibL/zsmy/+7/+dkebHub+/Tpw8+++wz9OrVC+XLlzd46nG9evVMEhwRERERERERERERUUkoVrJ84cKFAIBJkyYZ7BMIBLh165bBdiIiIiIiIiIiIiKisqpYyfLIp56QTERERERERERERERk6YqVLH/iyRORn132vHz58q8UFBERERERERERERFRSSpWsvzs2bMYP348UlJSAAAajQYCgUD3v1yGhYiIiIiIiIiIiMo6gZVVaYdAZUixkuVTpkxBgwYN8Mknn8DBwcHUMRERERERERERERERlahiJcuTk5OxbNky+Pj4mDoeIiIiIiIiIiIiIqISV6z7DBo0aIB//vnH1LEQEREREREREREREZWKl55ZPn/+fN1/e3t7Y9KkSTh16hR8fX1h9czaPiNGjDBdhEREREREREREREREZvbSyfJz587p/V2jRg08fPgQDx8+1NsuEAhMExkRERERERERERERUQl56WT56tWrdf+dnJwMb29vgxnlarUakZGRpouOiIiIiIiIiIiIyFw48ZeeUqw1y9u0aYOMjAyD7YmJiejTp8+rxkREREREREREREREVKJeemb5pk2bsHjxYgCARqNBjx49DGaWZ2VloXLlyqaNkIiIiIiIiIiIiIjIzF46Wd61a1eIxWIUFBTg66+/xkcffQQHBwfdfoFAABsbGzRs2NAsgRIRERERERERERERmctLJ8vFYjG6du0KAKhYsSJq164Nkeil305EREREREREREREVGYVK9tdr149HD58GDExMVCr1brtCoUCERERWL58uckCJCIiIiIiIiIiIiIyt2Ily6dOnYrNmzcjLCwM165dQ61atZCQkICUlBT07t3b1DESERERERERERERmZzASlDaIVAZYvXvRQzt2bMHM2fOxPr16+Hr64tvv/0WR48eRceOHaFUKk0dIxERERERERERERGRWRUrWZ6Tk4Pw8HAAQHBwMK5duwaRSITBgwfj+PHjJg2QiIiIiIiIiIiIiMjcipUs9/HxQUREBAAgKCgI165dAwBoNBpkZ2ebLjoiIiIiIiIiIiIiohJQrDXLP/74Y3z++eeYPn06OnTogO7du0MkEuHy5cuoU6eOqWMkIiIiIiIiIiIiIjKrYiXL33nnHfj5+cHOzg6enp6YNWsWduzYgWrVqmHEiBGmjpGIiIiIiIiIiIiIyKyKlSxXKpU4d+4c1q9fj9TUVACAt7c3+vXrBw8PD5MGSERERERERERERGQOAqtirVJN/6eKlSyfOnUqTp48ic8//xxhYWEoKCjAtWvXMHfuXKSlpWHMmDGmjpOIiIiIiIiIiIiIyGyKlSzfvXs3lixZgrp16+q2ValSBRUqVMCYMWOYLCciIiIiIiIiIiIii1Ks+wzs7e0hEhnm2R0cHIxuJyIiIiIiIiIiIiIqy146WZ6cnKx79e3bF1988QVOnDiB9PR0ZGVl4eLFi5g4cSJGjhxpzniJiIiIiIiIiIiIiEzupaeBt27dGgKBAACg0WgAAIMGDTLYNmXKFPTq1cvUcRIRERERERERERERmc1LJ8sPHz5szjiIiIiIiIiIiIiISpTASlDaIVAZ8tLJ8goVKpgzDiIiIiIiIiIiIiKiUlOsB3wSEREREREREREREf0/YbKciIiIiIiIiIiIiF57TJYTERERERERERER0WuPyXIiIiIiIiIiIiIieu299AM+iYiIiIiIiIiIiP6fCKw4l5iK8GwgIiIiIiIiIiIiotcek+VERERERERERERE9NpjspyIiIiIiIiIiIiIXnsCjUajKe0giIiIiIiIiIiIiErag3EflHYIFsf75zWlHYLZlKkHfCaOfLe0QyhTKs7biPQZw0o7jDLF5auFuN2/U2mHUaYErNyF3eKQ0g6jzOiojELmpUOlHUaZ4lS7LWS7F5d2GGWKdccheBxxvrTDKFM8wuojIja5tMMoU8ICyyOub8fSDqNMqbxqNy40bVjaYZQp9U79Ddm6H0s7jDLFuvcXkB1cWdphlCnW7fojMfpGaYdRZlQMDueY/hkBK3ch69LB0g6jTHGs3Q5bzxeUdhhlSvf6VoiPjSrtMMqUSoEhyD6/u7TDKFMc6nP8SvQqylSynIiIiIiIiIiIiKikCKwEpR0ClSFcs5yIiIiIiIiIiIiIXntMlhMRERERERERERHRa4/JciIiIiIiIiIiIiJ67TFZTkRERERERERERESvPSbLiYiIiIiIiIiIiOi1JyrtAIiIiIiIiIiIiIhKg8BKUNohUBnCmeVERERERERERERE9NpjspyIiIiIiIiIiIiIXntMlhMRERERERERERHRa4/JciIiIiIiIiIiIiJ67TFZTkRERERERERERESvPVFx3nThwgWj2wUCAcRiMTw8PFC+fPlXCoyIiIiIiIiIiIjIrKw4l5iKFCtZPmHCBCQmJqKgoABOTk7QaDTIysqCQCCAQCCARqNB9erVMW/ePHh6epo6ZiIiIiIiIiIiIiIikyrWpZNu3bqhWrVq2Lt3L86dO4fz58/j4MGDqFu3LsaNG4fTp0/Dy8sL06ZNM3W8REREREREREREREQmV6xk+R9//IEpU6bA399ft83HxwcTJkzAkiVL4OrqitGjR+Ps2bMmC5SIiIiIiIiIiIiIyFyKvShPenq60W1qtVr3t0AgKO7HExERERERERERERGVmGKtWd6zZ0988cUX+OyzzxAeHg6NRoObN29izpw56NatG9LT0/Hzzz+jfv36po6XiIiIiIiIiIiIiMjkipUsHzt2LOzs7DB79mw8evQIAODp6YkPPvgAAwYMwJkzZyASiTBp0iSTBktERERERERERERkKlwZg55WrGS5QCDA0KFDMXToUKSnp0MkEsHBwUG3v1mzZmjWrJnJgiQiIiIiIiIiIiIiMqdiJcsBID4+Hjdu3IBSqTTY17Vr11eJiYiIiIiIiIiIiIioRBUrWb58+XLMnDkTTk5OsLOz09snEAiYLCciIiIiIiIiIiIii1KsZPnvv/+OcePGYcCAAaaOh4iIiIiIiIiIiIioxFkV501yuRxvvPGGqWMhIiIiIiIiIiIiIioVxZpZ/vbbb+PPP//E+PHj+cRYIiIiIiIiIiIiskgCq2LNJab/U8VKlufk5GDz5s3YtWsXKlasCLFYrLd/1apVJgmOiIiIiIiIiIiIiKgkFCtZ7ufnhyFDhpg6FiIiIiIiIiIiIiKiUlGsZPmIESNMHQcRERERERERERERUal56WT5V199hQkTJsDe3h5fffXVC8vOmDHjlQMjIiIiIiIiIiIiIiopXMGeiIiIiIiIiIiIiF57Lz2z/OnZ4p9++im8vLzMEhARERERERERERFRSRBYCUo7BCpDijWzvGXLlnj//fexdu1apKWlmTomIiIiIiIiIiIiIqISVaxk+d69e9GiRQts2bIFzZs3R//+/bFp0yZkZmaaOj4iIiIiIiIiIiIiIrMrVrLcz88PgwYNwtatW7Fv3z60aNEC27dvR4sWLTB48GBTx0hEREREREREREREZFYvvWb580ilUkilUtjZ2UEgECA/P98UcZmOSAyXdwfApkYDaJQKZB/5CzlHdhkU8xg1GdKgqgbbc88eRfqfiwAA9i07wKFNZwisbZB/+SwyNv0OjVJh9iqYnFAE2zd7QRxSE1ApITt3CPLzh40WtesxGJLgGnrbcjYthDL2BmBlBZvmnSEJrw8IhVBcP4f8o9sBTYH562BiArEYbh8OhV3dxtAoFMjctw2Z+7YZlCv35QzYVKlmsD37xEE8/n0OAMCxTUc4d+gBK1t75N24hJSV81GQm2P2OpiLlUSMpue24sboqUg7cd5oGceaoQhfMAWO4cHIjojF9eGTkXXppm5/+fc6InjKp7Au54HHB07h2pBvoExNL6kqmIxcocRPKzbg6PkrkErE+KBjG7zfqe0L33MlMhbfLlqF7XO+022r33u40bKTh/ZFx+YNTBqzucmVKkzfcgSHr8VCKhaib6u66NeyjtGyu/+5hcUH/sbD9GxUqeiJcV1aololb93+pl8vRLZMrveeszOGw1YqMWsdTE2uUGDW0j9w/OxFSKVi9OrSAb27dHjhe65GRGHa3CXYtHiWwb4/Nu1A4v0HmDDKsi9G346LweL5sxAffwe+vn4YMvwzVA4KeW75v7ZvxvatG5CXl4smTVti4JBRkFpbAwCUSgV+X7YQJ48dhkgsRts32uP9vp9AILCctQYFYjHc+w7T9jtKBTL2bDXa75T/agZsQqsbbM86cQCPlz/V73TqCaGtPfKuX8LjFfMsrt8RSCSoNOZzuLRohQK5HA/W/4mH6/80Wta5eQtUHDQUEk9P5MXGIOHXWciLjtJ9js+wkXBt0wYAkH7iOO7Nm4MCmazE6mIqcqUK0/ecxeGIeG372jgc/RobjkGelpSejR4Lt2Fen3ao518OAJCnUOLnfedw+FY8CjQavBHmh8/fbABbqbgkqmFScqUK0zfux+ErUZCKRejbpgH6tTHeb+6+cAOL95zCw4xsVKnohXE92qKaX3kAgEajwYpDf2PTqcvIzM1HVd9y+PKdN1C5nHtJVsckFAoF5ixehpNn/oZUIsE73brg3W6djZaNibuNXxcuxZ278fDz9cGnwwcjOLCybn/nXh8iNzdP7z27Nq6BjY2NWetgahzXG9KOYTfiyFNj2A86tXnhe65ExmHyolXYMWeKbptGo8GyLXuw4+hZ5MvlaFAtFOM/egcujg7mroJZJN+NwLYVU/AwMRqeFQLR7aNvUcHfMCcAAApZHnatnYEbFw9CU6BBtfpvouP7X0BqbQcAyEx7iF1rpiMu4hzEEimqNWiPN9/5DGKJtCSr9EoUCgXmLVyMU2fOQiqRoGf3rujZvZvRsrFxcZgzfxHuxt9FJV9fjBo+DMFBgQAAtVqNlavW4MChw5DJ5ahXpzaGDxkEFxeXkqzOK5MrlPjxjy04cvEapGIxPuzQCh90aGm07KkrEVi4aQ/uPUxBBU83DO3ZHi1qhwPQfm/+2H0EWw+fRWZOLsICfDGubzcEVPA2+llEVPqKlSxPSkrCwYMHsX//fly7dg3VqlVD+/btMW3aNHh6epo6xlfi3PUDiH0D8HjedxC6usP1g+FQpz1G/pVzeuVSls+EQFh0OCR+QXD76DPknNwPALCp0QCO7d9B2qp5UGdnwvWDYXDq+gEyNv1eovUxBZvW3SH09kXOn3Ng5eQKu059UZCZBmXUZYOyQvdyyN25Asq7UbptGpl2EG3d7G1IqjVA7u7V0ORmw7bDB7Bp2wP5BzeVWF1MxfW9jyH1C8L9HydA5OYJz4GfQZXyCLkXT+uVezjvewhEReeJNCAEXsO+ROaR3QAAu/rN4PruR3i8bBYU95Pg8fEouH84FI8W/1yi9TEVK6kEtVb/Aofw4OeWEdraoN7OpUhe9xeuDfgSvoN6o96OJTgW0g7qvHw41auG6ku/1ybQr0ai6uwJqPHbDFzsOqQEa2Iac9duw63bCVg4cRTup6Thu0Wr4e3hijYNahstH5uQhC9/XQ6pWD8hsWfRdL2/1+05ikNn/0GLuoYJsbJu1l8nEXHvIZYN64HktGx8s24/yrs4oF0N/XPm0u1EfLvhICa/2w41/cthw+lrGL5sG/Z9MwC2UgkeZuQgWybH7gkfwfqp42UjsbxkzsI/1iMy7g7mfPcVHjxOwfdzl8Dbwx2tGtc3Wj4u/h6++XkeJGLDuh48eRa/r9+KN1o0NnfYZiWT5WPa5C/RvGVbjPzsS+zfuxPTvv0Ki35bC2trwyTM2dPHsf7Plfj08wlwdnbBvNk/4I8VSzBo6GgAwPIl83H96mVMmvoTZPl5+OXHqfDw9MKb7Y0niMoit14DIPUPRPIPX0Ps7gnPQWOgSn2E3Av6/c6Dud9DICo6N6SVQ+A9/EtkHS7sdxo0g1uvj/FoyS9Q3k+Cxyej4d53GB4t+qlE6/OqfIaNhF2VUESNHgGJtzcCJkyC4sF9pB87qlfO2t8flSdPwd2ff0TOtWvweq8Xgn76Bdff64ECuRwVPhoAh5q1EP35GAgEAvhPmISKg4ciYc7sUqpZ8c06eAERySlY1u8tJGfm4JttJ1HeyR7tqvo/9z3f7z6DfKVKb9vP+87hZnIKFn/4JgQAJu84hZn7z2FS56ZmroHpzdp2BBEJD7BsVB8kp2Xim9W7UN7VCe1qVdErdyn2Hr5duweT+3RAzYAK2HDiEoYv3IB9U7UXYDeduoxVh89hyvsdUcnTFSsPncPwhRuw7ZtBFtfvLFmxCtExcZg5bQoePX6MH2fPg5enB1o0aaRXLl8mw9dTvkebFs0x/tMR+Gvvfnw9ZTpWL1sAG2trPE5NRW5uHlYvWwBraVFyz7rwIqUl4bje0JMx7KLCMeyURatRzsMVbRrUMlo+NiEJXxgZw247fBo7jp7Fd8P7wcnBDj/+tgHTlv6JXz63vAv6ClkeVs4cjJqN38Y7g6bj3JENWPnLEIybuR8Sa1uD8rvWzkDinZsYMP43QABsWTYRu9f+iO4DvoNGo8HaeaNhY+uIwRNXIy83E1uWTYCVlRAdeo8rhdoVz7LfViAmNhY/TZ+Gh48eYeasX+Hp6YnmTZvolcuXyTBx8ndo3bIFxn02Grv27sM3336Hlb8thY21NTZs2oJjJ05iwlfj4eToiIWLl+HHX2bjh2nfPef/uWyas/4v3LpzD4u/Gob7KWn4dsk6eLu7oG19/cmEMQnJGDdnBUb3ehtNaobi7LUofDH3D6ya8imCK1XAliNnsWbPMUwe2Au+3h5YtfsoRv28DJt//ALWFjYpiOh1UaxlWNq0aYPt27ejVatWOHDgANavX49+/fqVuUS5QCKFXaM2yNy8EsrEO5Bdu4Dswzth3/wtg7KavFwUZGdqXzlZcHq7N7IP74Ty3m0AgH3L9sg5tgeym5egTIhD+vqlsG3YCgKxhTVuYgmkNRoj/9AmqB/egzL6KmR/H4S0TgvDskIRrJzdoLofD01ulu4FtfZHmHWd5sg/tgOq2xFQP7yHvP3rIK3VDBBbztVzQHueODR/A6l/LoUiPg55l84iY88WOLbtZFC2IDcH6swM7SsrC649+yJj7xYo7sYCAJw79EDGni3IvXgGyqR4pG34HZKKfoCgWF+1UmUfWhmNT2+EbWXfF5Yr924HFOTLceuLn5ATeRsRY76HOjsX5Xpqv2d+wz5A8ua9SFqzA9nXo3Cl/3h4tm8BG7+KJVENk8mXybHz6BmM7dcTVfx90apeTXzQqS027T9htPzWQyfxyeRf4OrkaLDP3dlJ95IrlNi47xgmDHof9raWNXMrT67Etr+vY3y3lgit6IU21QPRv3VdrD911aBsSlYeBrVrgE51Q1HRzRmD32iAzDwZ4h5oHxJ951EqPBztUNHNGe6OdrqXJc0UBrQ/Hv46dAyjB3yIkMp+aNGwLvp064gtew4aLb99/xEM+fI7uDjrnycqtRozF6/AjPnLUN67bPWtxXHqxFFIJFL0GzAEPr6VMGDQCNjY2uLMyeNGy+/asRVvd+mJevUbISi4CoaMGIvDB/dCLpMhOzsLhw/swbBRYxEcEorqNeugc7d3ER11q4RrVXwCiRQOLd5Ayhptv5P7z1mk794Mp+f2O+naV1Ym3Hr2RfqezZDf0fY7Lh17ImP3ZuRePANFUjxS1/8GqU8li+p3rKyt4fH220iYMxt50VHIOHEc9/9cA88e7xiUdarXAPl37iB1317Ik5OQuHgRJO7usPbTJpCdGjXG453bkRcVidzIW3i0fSsc6tQt6Sq9sjyFEtsuRWP8Ww0RWt4dbUL90L9JNaw///zzfPe1OOTKlQbbxUIrfNWhEcLKuyO0vDu61ArC5YRH5gzfLPLkCmw7exXje7RFqI832tQIQf+2DbH++D8GZVOycjDorSboVD8cFd1dMLh9U22fcz8FALDz3HX0bdMALaoFwc/LDRN6vYmM3HxciUss6Wq9knyZDHsOHMbwQR8jODAATRs1wHs9umLHrr0GZY+dPA2pRILBH/dFJZ+KGD7wY9jaWOP4qTMAgIR7iXBzdUF5b2+4urjoXpbWD3NcbyhfJseOo2cxtl8PVPH3Qat6NfBhp7bYuN94H7z10CkMmDwLbkbGsKev3ES7RrVRJywIgT7l8eHbbXHhRpSRTyn7rp3bC5HEGu17j4Nnhcro9MFXkFrb4vr5/UbLC4VidO47ERX8q6KCX1XUad4d8dGXAACP79/Bvdir6DloOrwqBsE/pC7a9hiFq2cN72gvq/JlMuw9cBBDBw1EUGBlNG3cCO/07I6du3YblD1+4iQkEgkGDvgIvr4+GDroE9jY2uDkSe0FKXWBGoMHDkD18HBU8vVF186dcDMioqSr9EryZXLsOPY3xn7YDVX8KqJV3er4sGNrbDx4yqDsvrOXUC8sCL3ebA4fLw+8264p6oYF4uB57W+iXSfP44MOLdGsVlVUKueJr/r3RGZOLq5E3ynpatGLWFnx9V9f/8eKVbs9e/Zg+/btGDRoECpUqGDqmExGXKESIBRCfqeoA1fERUJSKQh4wcDPtkFLWNnaI/vgdu0GgQAS30DI44oaeMXdGAiEIu3/hwURelYEhEKoEm/rtqkS4yAq7wdA/5gIXb0ADVCQnmLwOQJbewikNlAl39VtUz9KgkAogqjci5OrZY3E1x8CoQiymKIfoLKYCEgDgl94njg0awMrOwdk7N4MABBY20DqF4jcf84UfU70TSROHG6RS9O4Nq+P1GPncLrpey8s59KgBtLO6P9QTTt7Cc4NawIAnOvXQNrJi7p9ssQHyE9IhksD/SvyZV1MQhJUajWqBwfottWsUhk3Y++ioMDw3/fM1QhMHtoXfTq0euHnLt20C3XDQ1C/WpUXliuLopMfQ1VQgJqFt7UDQC3/8rgefx8FBRq9sm/UDMbAdtpb5WUKFdYcvwRXe1tU9nYFAMQ9SEMlD8u6NdOY2LsJUKvUqBYSpNtWPTQEETFxRs+Tc5euYuKoQXjvbf2LuPkyGeLi72Hpj98iPCTQ7HGbW3RkBEKrhuuSLgKBAFVCwxEVedOgrFqtRmxMJMLCi+60CKkSBpVSiTt34nDr5nXY2tkhvFpN3f4e7/bByE+/MHs9TEXiG2DY70RHQFo55F/6nbawsndAxq5n+p2LT/U7UTdx72vL6ndsA4MgEIqQc/2ablvOtauwDwszOB6qrEzY+PvDvlp1QCCAe8dOUOXkQJ6cpN2fmQmXVq0hdHCA0MEBLi1aIi86ukTrYwrRD9KgUhegpk/RxbJavl64nvTYoH0FgIw8GWYfvIBv3m5isO/rjo1Ry9cLgHaZlr3Xb6Oun+Xd+h2d9AgqtRo1A4outtcKqIjr8cmGfU7tUAx8S3ssZAol1hw9D1cHW90yK2O6tUbHukVLLQgggAZAzjNLgZV1t+/chUqlQtUqRUtahYdVwa3oGIM+51ZUNMLDQvXa4aqhVRARqf1+xCckomL58rB0HNcbijY6hg3Azdj4F4xhP0RvI2NYJ3s7nL58E4/SMiBTKHDgzEWE+PmYNX5zSYi9Cr/g2nrfiUpBtZEQe8Vo+S79J8EvWHs3afrjJFw9uwv+ofUAAA5O7vho3DI4OOkv5STLs5wle27fvgOVSoWw0KLfJOFhYYiMijZsTyKjEF417Jn2JBQRkZEAgA/79EbTxtq7W9IzMrB3/0FUr/biZcTKmuiEZKjUBagR5KfbVjPEHzfjDL83nZrWw4h3Oxp8Rk6edoniT3t3RvvGTy1TKQA0GiAn3/KWiCN6Xbz0Mizz58/HgAEDYGNjgz179ryw7IgRI145MFMQOrqgIDcbUKt129TZmRBIJLCys0dBTrbR9zm064KcY3ugUWgHzFY2dhBIJFBnPrXGckEBCnKzIXR2AxBjzmqYlJW9IzR5OUBB0TEpyM2GQCyBwMYOmvyiDt3K3RsaeT7sOveDyDcYBVnpyD+5C6rbEdDk50GjVsHKwRkFqQ+05R21iS6BjX3JVuoViZxdoc4pmjEPAOrMdFhJpLCyd0BBdpbR9zl16InMAzugkWs7ObGn9oen0MEJHhN+gsjdC/k3ryD1z6UoyMs1f0VMLGHJupcqJ/X2QHZErN42xcNUOFTVJguty3lCnqw/g03+KBXWFrZGW0p6Jpwc7CB+6nZdVydHyJVKZObkGqzVOHOs9nbUXcfPPvczH6SkYf/pi1j+3VjzBG1mKVm5cLazgVgk1G1zc7CFXKVGRl4+XO0Nb2E9F52AIUu2QgMNZrzfXrce+Z1HachXKDFgwSbcfZSGKhU8Ma5rS/h5WlYCPTU9E06ODhCL9c8ThUKJzOwcuDwzS2vGV58BAPYc0b9DwcHODotmTDJ/wCUkPT0NPr5+etucnV2QEG84oyY3NwcKhQKurkU/OIVCIRwcnZCa8hhpqSnw9PTG0cP7sWXjWqiUKrRu9xZ6vvcBrCxkhoPI2QXq7Gf6nayMf+13nDv1ROb+p/sd7ZrUQgcnlJ/4M8QeXsi/eRkpayyr3xG7uUOVmQmNquh4KNPSYCW1hsjJCaqMDN32tMOH4NykGUIXLYVGpYJGo0HMuLFQZ2vHdPcWzkPg9z+g1m7tzMD823GI+cJyboF/IiUnH8621vrtq72Ntn3Nl8HVTv9OpJn7z6NzjUAEvqDNnLjtBP66GovyzvYY3KKmuUI3m5TMHDjb2eofE0c7yJUqZOTmw9XBSJ8TdRdD5q/X9jn9Ouv6nNqV9ZN7W89cgbqgALUqW9Zdb6lp6XBydIT4qaUyXJydoVAokJWdDWcnJ72yfr769XZxccbd+AQAQEJiImRyOcZ8NQn3kpIQGOCPYQM/hk8Fy0qgc1xvKPU/j2EHAQD+Ov63wWd90qM9xvy8GB2HT4TQygpuzo743ULHsdkZj+FVUX9Cgr2TGx4mvvi3/cYlX+LyqR1wca+ANl2HAQBs7BwRXL1oaauCggL8fXAtKldtaPrAzSQt/eXbk7T0dPj56k+Qc3Euak+eWLXmT6xZtx4O9vaY/fOP5q2AiaVkZsH5me+Nm6MD5EoVMnPy4OJYlPPwr+Cl9964xAe4cDMGPVprLxjUDAnQ27/92DmoC9SoGfz8ZdWIqHS99K/Kc+fOQalU6v77ea/z540/ALA0CCQSaFT6t6M++fvp9T+fJg2qCqGzG3LOHHrqc6R67y36LNVzP6esEogl0Kj117KEurBeIv1rJ0I3LwjEEihv30LOhvlQxt2E/TtDIfT2BTQFUEZdgU3LLhA4OANSa9i07g6NWg0IhbAkAokUGuV/O0+sq1SDyMUN2ceLbtMTSLU/XN0/HIqM3ZvxcMEPkFTwhccgyxxAviyhrQ0K5PoPui2QK2BV+INUaGv9wv2WQqZQQCLW/45ICr8zimfWh31ZO4+eQWiAL8IDLXOglK9UQiLS/74/+VupUht7CwLLuWHdmD4Y9lZjfLPuAK7dvQ8AuPMwDVl5MgxsVx+/ftwFUrEIgxZvRq7Msh6iLJPL9RLlAHQ/OpTFPE/+H8jlMr0fXwAgEot144qnKeTaC9XPlhcXlpfJ8nE/OQkH9v6FEZ9+gX4DhmD3zq34a/tm81XAxAQSqeGYQvkv/U5odYhc3JB1bJ9um1XhWsLu/YZp+535MyCuUAmegy2r37GylqLgmQemP3mAuuDZ88bRCWI3N8TP+hkRgwcgdd9e+H89ESJnbZLYuoIPFA8fImr0CESP+RQCiQS+I0eXTEVMKF+pgkSkP0yXCLV/K1X6M9r+jkvC5YSHGPQvCfCPmlTD6gGdUN7JHsPWHjA6Q70se3GfY7x9DSzngXVffIRhHZvjmzW7ce1OkkGZa3eT8Mu2I+jfpgHcHS1rwofcaJ+j/fvZPkcuVxi2qyKRrh1OSExCdk4O3n+vB6ZO/BJSiQTjJn6LvMKZkZaC43pDMoXSYAwrLuYY9v7jVFhLJJg1bjCWTBoNLzdnTF2y1mSxliSlQgahSP/3iEgsgUr14rFni06fYOjkdXB2L48VMwcbnZ2/b/1MJN2NwBs9Laf/0bYnhmMvAAbjteeVfbZcm9YtMf/XX1CrZg18+c1k5ObpP0C4LJPJlXqJcqCofVU8p88BgIzsHIyfuxI1gvx0D/h82o3YePz650582KEV3J0NlzoiorLhpWeWr1692uh/l2UapdJgUPTk7wKF8dssbWo2hCziCjRPzRjQFHaYhp8lQoHSsm7X1KiUeg8yBQAIC+v1zA9V2am9kF88Co1MO0hWP0qC0NsX0ppNkbfvT+Qd3Ai7LgPgPGI6NAoZ8k/v0y7norCs24k0SoXBj/En/9aa55wndvWaIP/6PyjIferWusLZ+hm7NyHvivai0eMVc1Hxu3kQOrtCnZFmhuhLX4FMbpD4tpJKoM7Tngfq5+3Pt6wfXxKx2OAHxZOBUnEfzHL43GV0b9vslWMrLVKRCIpnkuJP/rY28rBKAHBzsIObgx2qVPDEtfj72HT2Gqr7lcOiwd2gUhfoZv3N+KA93vxuOY7fvI0OdSxniRqJWGyQoHjyw+F1eoDP5g1rsGVj0Y/noJBQgx9QKqUSUqnhg+PEEu1xera8UqmEVCqFlZUQeXm5+Gz8RHgWzvxLefwIe3fvQJfu75q6KmZhdHwifnG/Y1+vCfKu6fc7msI75zJ2bULeZe2Dyx//Nhc+0yyr3ylQKGD1zDNgnjwTpuCZZTEqDh2O/Lg4PNq6BQBw96cZCF+7Hu4dO+HRti3w+/JrRH06ErkR2iV+7s74HlXmL0LSb0uhTE0tgdqYhlQkhOKZpLhCrf3b+qmkl0ypwtRdZ/B1x0Z6242pXDjr/Kd3WqHtL+vxT/wD1PMvZ+LIzeeFfc5zHsrp5mgHN0c7VKnohWt3krDp1GVU9y9aQvLq7UQMX7QRTcMCMKxjc/MFbyYSicRIn6P9W/pMnyORGCaylCoVpIUP8/xhyjdQq1SwsdEmib/+/FP0+mgwzp6/iDYtLWeswnG9IYlYZDCGVRZjDKvRaDB54WqMer8rmtXWLqkxffQAdB45CTdi7yI80M9kMZvD0Z1LcGznUt3fPpWrQ/1MYlylVEAiefEzhLwqaGej9x4xCzNGtsDdqIsICC16iPve9TNxev8q9B4xC94+wc/7mDJHYiTZ/eRvqVT6TFnJc8dpT6tQuLTT+LGfoU+/j3D69Fm80a6NqUM3C6lYZHAh9kn7+rw+JzUzG8N/XAyNRoMfR/U3uOPxWsxdjJq5FI1rVMGQHobP0SOisuOlk+Xbt29/6Q/t2rVrMUIxPXVmGqzsHLQLzxde8RU6OqNAIYcm3/hVTevQGsjau0lvW0FuDjQKBYQOzlA9TNZutLKClZ0DCp5emsUCFGRnQmBrr30wTeF6e1Z2jtAoFbqkeBGNwbaC1AcQumt/WGnycpCzbg4E1rbaGRsCAWxbdYU6w3J+jAKAKj0VQntH/fPEyQUFctlzb7O0rVYH6dv/1Nv2ZNCsvF/0cCjlfe0MJpGru0UNqv8LWfJDSL311+eTertD9kC79Iosych+L3fI7z8usRhNwdPVGZnZuVCp1RAV3j2RmpEFqUQMh2I8mPNhajruJD1Ai7rV/71wGeXpZI+M3Hyo1AUQFc54TMnKg7VYBAcb/cHyjYQHEFoJEFqx6DbFyl6uiHuo/V5IRCJInuqRpGIRyrs64lGm5az1CAAebi7IzMrWO0/SMjIhlUhgb2e4RMD/qzc7dEaTZkVrnW7dvA4Z6fptYHpGGlxcXQ3e6+DgCIlEgoz0NFT00d7iq1arkZ2VCRdXN+Tn50EikegS5QBQvqIPUlMs54GFqvRUCB3+e7+Ttk1/9t6TfkWR/HS/o/1vkauHxfQ7ysePIXJy0t6ZVngBQOzqCrVMBvUzS+bZhVTBw80bizZoNMiPjYHU2xs2lfwgtLVFXmzRLfR50VEQCIWQeHpZVLLc08EWGXky/fY1Jx/WIiEcrIuSWzeSHiMxPRtjNxzRe//wtQfwdo1AfNm+IY5H30PDgPKwL3yfm70NnGykyMizrMkNns4OyMjNe6bPyS3sc/QvvN2IT4bQygqhPkXtROVy7roHfALAheh4jFy8CY1C/fHDR11gZWVZD7IEAHc3V2RmZUGtVkP4pM9JTy/sc+wMyqalZ+htS0vPgKuL9iKKRCwGnkoySyQSeHt5IiXNcr43AMf1xniYaAybnpWDh6npCPYtuuDk7eYCZwc73H+cVuaT5Q1av4dqDYoSlCd2LUd2hv6zubIzU+Dg7GHwXpVKgcjLxxAY3hjWhUuOOji5w9beGbnZRfmAnaum4dzh9Xh3yI8Ir/eGmWpiHm5ubsbbE6lhe+Lm5oq0dP08SFpGOlxdte3J3+cvIDAgAO7ubgC07Uk5b29kZhlfBqks8nBxQsaz35vM539vHqVlYMiMRQCAJV8P01umBQAu3orFZ78sR8NqIZg+7EOLWTqQ6HX10t/QuXPnvtRr3rx55oz3P1Em3gXUakj8ih60JgmoAmV8nPaJCs+wsnOAyMMb8tvPPNFbo4EiIRaSykWzGyX+wYBaDWVSvLnCNwv1w3uAWg1hhaJlH0Q+laG6Hw9A/5jYdvwQth0+0Nsm9KoIdeEa5bZv94PIPxQaWR6gUkJcuSoKcrNQkPLA7PUwJUXCHWjUKkif+ve1Dq4K+Z0Y4+eJvSPEnuUgi9F/orcq9TFU6amQ+BQdW3F5H2gKCqBKtZwkzn+Vfu4qXBrW0tvm0qg2Ms5pn/6dcf4qXJoUPdDEuqI3bHzKIb1wv6UIrlQRIqEQN2KK1li+GhWHsIBKxRrs3Ii9Ay83F3i7GyYLLUVIBQ+IrKxwLf6+btvlO0mo6uNlkHTYdu4G5uw+rbctIvERAjxdodFo0PH737HjfNHDHvPkSiSkZMDPy7LWLA/yrwShSIibUUXr+F+7FY3QQP/XalDs4OCIcuUr6F4hVcIQeesmNIVtqkajQWTEDQRXCTN4r5WVFQKDquBWxHXdtqhbNyESieDvXxkhVcKgUCiQlHRPtz/xXjw8PC3nOQiKhNvQqFWwDizqd2yCw17c73iV03tgHVDY76SlQOJr2f1OXkw0NGoV7KsW3a5sX70Gcm9FGBwPRWoKbPz0l66y9q0EeXIyFCnai7BP77eu5AcAkN9PNlP05hHi7QaR0ArXEov+HS8nPETVCh567Wt4BQ/8NbInNg7pqnsBwOTOTTGslfbBdRO3ncDJmKLvy/2MHGTkyeDv4VxS1TGJkIpeEAmFuHa3aCmVy3H3ULVSOcM+58w1zNlxTG9bRMIDBBRevI9JfozRSzejadXK+PnjbhBb2BKCT1T294dIJNI9pBMAbkREIiQo0KDPCQ0Jxs3IKL12+OatSIRVCYZGo8EHA4dh36Giiy75MhmSku/Dp2IFWBKO6w2F6Mawd3XbrhRjDOtobwuJWITbSUW/9TKycpCZnYvynm6mDNksbO2d4e5VSffyDayJ+NjLet+J+OjL8AmsYfBegcAKm5Z8hcgrx3XbMlKSkZeTDs/y2vWoD21dgHNHNqDX8F9Qo5Hhwx7LusoBARCJRLgVWZQLuRERgeCgIMP2pEoIIm5F6h27iIhbCC182PDS337HwSNF7UleXh4Sk5Lh62M5z4UIqVQBIqEVbsQW5XuuRN9BVX8fg+ORL5Nj5M9LYWUlwNIJw+Hh4qS3P/befYyd9RsaVw/FjBF9IRJZZp/z/05gJeDrP77+n71073jkyJGXeh0+fFj3nl27diGvFNel0igVyD1/HC7vDYTYtzKsq9eDQ5u3kX1c+4BSKwcnvRkU4nI+0CgUUBsZAOWcPACHNp1hXb0exL6V4fLuJ8g5c1i3pqbFUCmhuH4Odm/1hrBcJYiDasC6flvILxwFAAjsHIHCWxWVMdchCa8PSXgDWLl4wLpJe4gqVob8n2MAAE1+LmxadIaVezmIfINg+8Z7kJ3dj2eT7mWdRiFHzukj8Og3HFL/INjWbgjnt7oh8+BOAIDQyVl3OzgASCpWQoFCDtXjhwaflbl/O1y6fwCbqjUh8fGHe99hyLv0N9SZGSVVnRIh9XKHlbV25vCDLfsgdnZE2KwJsA+tjLBZEyC0s8H9TXsBAPFL1qHC+13g81FPOFQLQc0VP+HR7mPIv5v4ov+LMsdaKkGH5g3ww2/rEREXj2MXrmLNrkPo1V47ezYlIxMyxcu3B3H37sPfwh5y+iwbiRhv1wvDtM2HcSPhAY5cj8WqY/+gT3PtxZOUrFzIFNrbFXs2qoYLMfew9sQlxD9Ox8J9Z3Aj4QHeb65N5jQL9cei/WdxIfYeYh+kYMKf++DlZI9moZa1nru1VIr2LZth5uIVuBVzGyfOXcS6HXvwTqc3AQCp6RmQyy2s3zCBxk1bIDc3B78tnY97CXfx29L5kMtkaNKsJQDt2pfpaUWz9N7q2AXbt2zAubOnEBMdicULZ6Pdmx0htbZGhYq+qFOvIebN+hF3bsfi8j/nsXXTOrzVsXMp1e6/0yjkyD51GB79i/odp/bdkXngSb/j8px+x/BidMb+HXB9qt/x6D8cuZf+1n8oeRlXIJcjZe8eVPp8POyqhMK5WXN4934fjzZpZ5CLXF11z49J2bkDHp07w+3NtyCtUBEVhwyDxMsbKXv3QPn4MTL+Pgu/8V/CNiQEtiFV4Df+S6QeOqD3kFBLYCMR4e0agZi26wxuJD3GkVvxWHXmOvo00F5gSsnOg0ypgrVYBF83R70XoJ2Z7mZvA5HQCj3rhmDu4X9wKf4BIpJTMH7zUbSs4vvCh4GWRTYSMd6uXw3T1u/DjfhkHLkajVWHz6NPy3oAgJSsHMgU2mUBejatiQvR8Vh79ALiH6Vh4e4TuBF/H++30padtn4vvJwd8Xn3NsjIzUNKVo7e+y2FtbUUb7RuiV8XLkFkdCxOnT2HTdt2ontnbaIuLT0d8sLnQDRv0gi5ublYsOx33E24hwXLfodMJkOLpo0hEAjQsG4d/PHnBly5fgN34xPww6y58HB3Q4M6tUuziv8Zx/WGrKUSdGxeHzN+W4+bujHsYfRq3xIAkJKR9VJjWJFQiLdbNMSctdtw6VYsYu8l45sFfyA8yB9hAb7/+v6yJrz+m5DlZmPXmhl4mBSLXWtmQCnPQ/X62tnnSoUM2Rnai7BCoQj1W7+LAxtn427UP0i6cxN/LhiD0Nqt4VUxCI+S4nB0xyK06PQJ/IJrIzvjse5lKaytpWjXpjXmLFiIqOgYnD77NzZv3Y5und8GAKSlFbUnzZo2QU5uLhYtXY74hAQsWrocMpkczZtpH3LauWNHbN6yDecvXMTd+AT8OHMWypcrh3p16zz3/7+ssZZK0LFZPUxfsRk3byfg2MXrWL3nGHq9qV2y6+nvze9/HUbio1R8O6i3bl9KRhZyCp/5MH3FJni5OeOz9zsjIztXt/+//HYkopL10suwFMekSZNQo0YN2NqW3q3nmVv/gPN7A+ExajI0+XnI2rMRsqvadefKT1+GtDULkHdOe4XYytEJBfnGb8/Lv3QGIjcPuLw3EAKRGPlXzyFzx5oSq4cp5R3eDNu3esOhz2ho5DLkn9oFZfQVAIDzqB+Qu2sVFNf/hjL6CvL2r4d1k7dg5egK9eP7yNkwHwWZ2oRG/vG/YPtmLzh8OBZQyCE7f0SXdLc0qeuWw73vMJT7YjoK8vOQtn0t8v45CwCoNGcNHi2fjZxT2gtBQkfn597GmblvGwRiCTwGjYWV1Bp5l8/h8aqFJVaPktI28TSuDvgSiau2QZWdiwtdB6Paginw/eRdZF2PwoXOg6AuHBxk/H0FN4ZNQvDkURC7OiHl4GlcG/JNKdegeD77sAd++G09hk79Ffa2NhjUsyNa1a8JAOgw9GtMGvIBOrVo9FKflZaZBcf/g2U5Pu/SAt9vPoxPFm6GvbUEQ99shLbVtXfztPl2Kb7r9Qa61K+K0IpemPXR25i35zTm7DqFwHLuWDSoO7yctbcofvZ2M4iEVvhqzV5ky+SoH+iDBQO7QWiBs7FHftwHMxevxKhJ02Fna4sBvbqjRSNtgqbLxyPx9ciB6NDa8tbGfRW2tnaYMHk6liyYjYP7dqGSXwAmTvkB1tba21hPnziKeb/+iG27tX1Isxat8ejhAyyaPwtKpQKNGjdH34+H6D7vs3ETsHzxXHw9fhSkUmt06NQVHd/uXip1K67UP5fDo/8wlP9qBgrycpG+bS1yL54BAPjNW4NHS2cj+5T2YeNCpxf0O3u3QiAWw3Pw57Cytkbu5XNIWbmgxOphKvfmzUGlz8cjZO4CqHNzkPzbMqSfOAYAqLVzD25/PxWpe3cj7cghWNnYoNyH/SHx9EBeTAyiRo+AKkN7ceD2lEnwGTEKwT/PBjQapJ88jnsLys5dj//F5282wPe7z+CTlXu17WvL2mgb5gcAaPPLenzXpRm61Ap68YcAGNWmLgQQYNymo8hXqNAmtBK+aN/QzNGbx+c92uD79fvwyZw/YW8jxdCOTdG2pnYmY5uv5+G7DzqiS8PqCPXxxqyB3THvr+OYs/OYts8Z/h68nB2QkpWDK7e1s9Pf/Eb/u/Lk/ZZk6ID++HXRUoydMBl2trbo1+c9NGus/fd9p+8nGDd6ON5q2xp2trb4ftLXmL1gCXbvP4QAv0qYPnkCbAofFDzoow8hFAkxfeavyM3NQ83q4Zg+eYJuOQZLwnG9oaIx7BzdGLZ14Ri2feEY9u0W/94ufPZhD1hv/AvfzF8JuUKB+tWq4LvhfSEQWN4MQ2sbe/QbuwjbV3yL80c3wtsnBP0/XwKJtXZ8fu3vvdi87GvMWK29q+vNdz6DAAL8Oe9TKOT5qFq3Hd7uOwEAEHHpCAoK1Di6YzGO7lis9//z5P2WYPAnAzB34UKM+2oC7Oxs0ff93mjapDEAoNeH/fD5p6PxRrs2sLO1xdTJ32DugoXYs28//P38MG3KJF170rlTB8hkMsxdsAiZWZmoXasWvps0weLushzTpwtmrNyMIdMXwt7WGoO7v4nW9bR9xFsjv8Xkgb3wdvP6OHLhGuQKJfp/O0fv/Z2a1sOI9zriWuFdHZ0+naq3/8n7iajsEWg0Ru5HM5FatWph586d8PHxeanyiSMt48FcJaXivI1InzGstMMoU1y+Wojb/TuVdhhlSsDKXdgtDintMMqMjsooZF46VNphlClOtdtCtnvxvxd8jVh3HILHEedLO4wyxSOsPiJiLWupCnMLCyyPuL6Wdyu1OVVetRsXmlpmotVc6p36G7J1P5Z2GGWKde8vIDu4srTDKFOs2/VHYvSN0g6jzKgYHM4x/TMCVu5C1qWDpR1GmeJYux22ni/494Kvke71rRAfG/XvBV8jlQJDkH1+d2mHUaY41Of49b9Kmza4tEOwOK4Tl5R2CGZjWZf2iIiIiIiIiIiIiIjMgMlyIiIiIiIiIiIiInrtmXXNciIiIiIiIiIiIqKySiDgXGIqwrOBiIiIiIiIiIiIiF57TJYTERERERERERER0WuvWMnyCxcuQKVSGWxXKBQ4dOiQ7u8mTZrAxsam+NEREREREREREREREZWAYiXL+/bti6ysLIPtMTExGDNmjO7v+fPnw93dvfjRERERERERERERERGVgJd+wOeff/6J7777DgKBABqNBk2aNDFarnHjxiYLjoiIiIiIiIiIiIioJLx0srxPnz4ICgpCQUEB+vXrh7lz58LJyUm3XyAQwMbGBsHBwWYJlIiIiIiIiIiIiMikrASlHQGVIS+dLG/Xrh3WrFkDLy8vdOvWDY0aNYK9vb05YyMiIiIiIiIiIiIiKhEvvWZ5SkoKYmJiAADbt2+HQqEwW1BERERERERERERERCXppWeWd+rUCZ988gkEAu2tCc9bsxwAbt269eqRERERERERERERERGVkJdOlk+dOhXvv/8+srKy0LdvX8ybN09vzXIiIiIiIiIiIiIiIkv10slyAKhSpQoAYNWqVahduzZEov/0diIiIiIiIiIiIiKiMqlY2e5t27Zh27ZtL1V2xowZxfm/ICIiIiIiIiIiIjIrgdVLP9KRXgPFOhucnJywa9cuxMTEwM7ODi4uLnjw4AG2bduGnJwcU8dIRERERERERERERGRWxZpZfu/ePXz88cf47LPP9LavWLEC586d42xyIiIiIiIiIiIiIrIoxZpZfubMGXTt2tVge8uWLXH27NlXjYmIiIiIiIiIiIiIqEQVK1nu5+eHrVu36m3TaDRYvXq17iGgRERERERERERERESWoljLsEyYMAGDBw/GgQMHEBISAgC4ceMGCgoKsHTpUpMGSERERERERERERERkbsVKltetWxcHDhzAnj17cPv2bcjlcvTp0wetW7dGQECAqWMkIiIiIiIiIiIiMjmBlaC0Q6AypFjLsPzzzz/o2rUrgoKCMHToUJw4cQJLlixB586dsXfvXlPHSERERERERERERERkVsVKlk+fPh0dOnRAjRo1sHHjRkilUpw+fRpTp07F3LlzTR0jEREREREREREREZFZFStZHhMTg379+sHGxgZHjhzBG2+8AYlEgvr16yM5OdnUMRIRERERERERERERmVWxkuXu7u6IjY1FbGwsIiIi0KpVKwDAmTNnUK5cOZMGSERERERERERERERkbsV6wGf//v0xfPhwWFlZoVq1aqhfvz4WL16M+fPnY8aMGaaOkYiIiIiIiIiIiIjIrIqVLO/bty/q1auHpKQkNG3aFADQsGFDtGzZElWqVDFpgERERERERERERERmISjWwhv0f6pYyXIACA0NRWhoqO7vmjVrmiIeIiIiIiIiIiIiIqISx0snRERERERERERERPTaY7KciIiIiIiIiIiIiF57TJYTERERERERERER0WuPyXIiIiIiIiIiIiIieu0V+wGfRERERERERERERJZMYCUo7RCoDOHMciIiIiIiIiIiIiJ67TFZTkRERERERERERESvPSbLiYiIiIiIiIiIiOi1x2Q5EREREREREREREb32BBqNRlPaQRARERERERERERGVtKxZn5Z2CBbHccyvpR2C2YhKO4CnPbz1T2mHUKZ4hdZBQsyt0g6jTPENCuV58gyv0DrIvHSotMMoM5xqt8VucUhph1GmdFRGIe727dIOo0ypHBCAu7HRpR1GmeIXGIzYuDulHUaZEljZH49vnivtMMoUj6oNkHXpYGmHUaY41m6HO3GxpR1GmeJfORCJ0TdKO4wypWJwOG7HxZV2GGVGQOXKSLt2srTDKFNcqzdDwpDupR1GmeK7eCtuxSWVdhhlSmjlCuxznuFfOZC//57RURlV2iFYHisuvEFFeDYQERERERERERER0WuPyXIiIiIiIiIiIiIieu0xWU5ERERERERERERErz0my4mIiIiIiIiIiIjotcdkORERERERERERERG99kSlHQARERERERERERFRaRAIBKUdApUhnFlORERERERERERERK89JsuJiIiIiIiIiIiI6LXHZDkRERERERERERERvfaYLCciIiIiIiIiIiKi1x6T5URERERERERERET02hOVdgBEREREREREREREpcKKc4mpCM8GIiIiIiIiIiIiInrtMVlORERERERERERERK89JsuJiIiIiIiIiIiI6LXHZDkRERERERERERERvfaYLCciIiIiIiIiIiKi156otAMgIiIiIiIiIiIiKg0CK0Fph0BlCGeWExEREREREREREdFrj8lyIiIiIiIiIiIiInrtMVlORERERERERERERK+9YiXL+/bti6ysLIPtaWlp6N69+ysHRURERERERERERERUkl76AZ8nTpzAtWvXAAAXLlzA4sWLYWtrq1cmPj4eSUlJpo2QiIiIiIiIiIiIiMjMXjpZ7u/vj+XLl0Oj0UCj0eDSpUsQi8W6/QKBALa2tvj+++/NEigRERERERERERGRSQm4SjUVeelkuY+PD1atWgUA+OqrrzBhwgTY29ubLTAiIiIiIiIiIiIiopLy0snyp82YMQMymQwbN25EXFwc1Go1AgIC0L59e7i4uJg6RiIiIiIiIiIiIiIisyrWfQbR0dF44403sGjRIiQnJyM5ORlLlixBhw4dEBsba+oYiYiIiIiIiIiIiIjMqlgzy6dNm4YmTZpg6tSpEIm0H6FSqTBx4kRMnz4dv//+u0mDJCIiIiIiIiIiIiIyp2LNLL969SoGDhyoS5QDgEgkwsCBA3H58mWTBUdEREREREREREREVBKKNbPcw8MDCQkJCAgI0NuekJAAOzs7kwRGREREREREREREZFZWgtKOgMqQYiXLe/XqhYkTJ2L06NGoXr06AO1s87lz5+Kdd94xaYBEREREREREREREROZWrGT5gAEDkJ+fj5kzZyIzMxMA4O7ujv79++Pjjz82aYBEREREREREREREROZWrGS5QCDAyJEjMXLkSKSmpkIqlcLe3t7UsRERERERERERERERlYiXTpZv3779pT+0a9euxQiFiIiIiIiIiIiIiKh0vHSyfO7cuS9VTiAQlKlkuVyhwOwlK3Hi7HlIpBL06tIRvbp2NFo2+vZd/LLoN9yOvwd/34oYO+RjhARqH2Kq0WiwfsdubNtzEDk5uWjWsC5GD+wPWxvrkqyOSSgUCsxbtAQnz5yFVCJFz25d8E73rkbLxsbdxpwFi3AnPh6VfH0xevgQBAcGAgDUajVWrF6LA4eOQCaXoV6d2hgxeBBcXJxLrjImwvPEkFyhxE8rNuDo+SuQSsT4oGMbvN+p7QvfcyUyFt8uWoXtc77Tbavfe7jRspOH9kXH5g1MGnNJsZKI0fTcVtwYPRVpJ84bLeNYMxThC6bAMTwY2RGxuD58MrIu3dTtL/9eRwRP+RTW5Tzw+MApXBvyDZSp6SVVBZOKi43FvPnzEX/3Lnx9fTFi5EgEBQU9t/z2bduwZcsW5OXloVmzZhgydCisrfW/I0qFAqNGjcLQYcN0z8awFAqFAvMXLsapM2cglUjQo3s39OzezWjZ2Lg4zJ2/EHfj76KSry9GDR+OoCBtG6vRaLBx8xbs3rsX2VnZCA4OwrAhg1HJ17ckq2MycXGxmD9vHuLjtefJ8BGjXnyebN+GrVs2Iy8vD02bNcOQIcMMzxOlAqNHjcSQocNQvXoNc1fBpOQKBWYtW4XjZy9CKhGjV5cO6N2l/Qvfc/VWFKbNXYpNi34x2PfH5p1IvP8AE0YOMlfIZqXtczbiyFN9zged2rzwPVci4zB50SrsmDNFt02j0WDZlj3YcfQs8uVyNKgWivEfvQMXRwdzV8HktG3JQpw+fQYSiQQ9e3RHj+7djZaNjYvDvHnzcTc+Hr6+vhg1Yrju+6XRaLBp82bs3rMX2VlZCA4OxtChQyyyLVEoFJizeBlOnvkbUokE73Trgne7dTZaNibuNn5duBR37sbDz9cHnw4fjODAyrr9nXt9iNzcPL337Nq4BjY2Nmatg6kpFAosWLgQp0+fhkQiQY8ePV54nsyfN093nowcMUKvHT527Bj+WLUK6enpqF27NkaPGgUnJ6eSqorJyBVKzFy+FsfO/QOpRII+nd9An7fffOF7rt6KwXfzf8OWBT8Y3X/47EVMnLUYZzctN0fI5icSw7X3QNjWagSNUoGsgzuQfWinQTHPMd/BOjjcYHvO6cNIW70AEIng3LkPbOs1g5VEClnMTaSvXw51RmpJ1MLkbsfFYNG82YiPvwNfXz8MGfEZAoOCn1t+5/bN2L5lA/Ly8tCkWUsMGjIS0sKxyd9nTuKHaZP1yjdq0hxfTPjWnFUwKVP1O09bt349kpKT8fmYMeYO32z424/o9WP1sgWPHDnyUq/Dhw/r3rNr1y7k5eW94FPNb9HKPxEVdxuzp07AmMEfYeWGrTh25pxBuXyZDOOn/oTqYVWw7JfvUbVKEL6Y9jPyZTIAwM4DR7By/RYM+uA9LPjhWzxOTcd3s+aXdHVMYunvKxEdE4efv5+KkUMHY826DThx6oxBuXyZDBO+nYrwqmFY8OsvCKtSBRO/naY7Jus3b8WxEycx8ctxmPfLz8jOzsEPs2aXdHVMgueJoblrt+HW7QQsnDgK4z9+D8u37sXhc5eeWz42IQlf/rocmgKN3vY9i6brvT58ux3KubuiRV3LSoA+YSWVoNaaWXAIf/5AWmhrg3o7lyL91EWcatAd6Wcvo96OJRDaan+AO9WrhupLv0fMtPk43fQ9iF0cUeO3GSVVBZOSyWSYNGkSwqtWxZy5cxEaFoZvJ0+GrPA78axTp05h7dq1GDFyJGbMmIHIyEj8/vvvemUUCgV+/PFHxMfHl0QVTG7ZbysQHRuDH6dPw4hhQ7H2z3U4eeq0QTmZTIZvJk9BeNUwzP/1V4SFhuKbb6fojt3uvfuwZes2DBsyGPPmzIa3lxcmTvr2uce2LJPJZJg86RtUDQ/Hr3PmITQ0DN9+O+m5dTl96hT+XLsGI0aMwvQZPyAqMhIrfv9Nr4z2PPnBYs+ThX+sR2TsHcyZ8iXGDOqHFRu34egZ4z/AACAu/h6++Xm+QRsLAAdPnsXv67eaM1yze9LnLJo4Cl/o+pzLzy0fm5CEL4z0OdsOn8aOo2fx3fB+WDr5M6SkZ2La0j/NHb5ZLP/tN8TExOKHGdMxYvgwrF37J06eOmVQTiaT4ZtJkxEeXhXz5mjbkknfFrUVe/bsxZYtWzFsyBDMnTMHXl5e+Oab53//yrIlK1YhOiYOM6dNweihg7B63UYcP33WoFy+TIavp3yPamGhWPTrzwgLDcHXU6brxmuPU1ORm5uH1csWYNOq5brXsxfkLIH2PInBDzNmYPjw4Vi7du1zz5NJkyahang45s6Zg7DQUEx+6jyJiorCr3Pm4P3338fsWbOQk5ODWbNmlXR1TGL+6k2IvH0X8yd/js8/eR+/bfoLR85efG752PhEfP3LIhRoDNtXAMjOzcPs39eZK9wS4dKjHySVAvFw9mSkrVsKp47vwqZ2I4NyKYt/QuL4j3Wvx4tmQKNUIuf4PgCAU6desKnZAKm/z8aDmV9DYCWE+5DxJV0dk5DJ8jF10lcIC6+GX+YsRpXQqpj27VeQyfKNlj9z6gTWr/0DQ0eMwdQZvyA6MgJ//L5Et/9eQjzqNWiEFWs2617DR39eUtUxCVP1O08cPXYMq9esLanwzYK//V4fAoEVX//x9f/MrLWbNGkSUlNL7ypzvkyGXYeOYtSAvgip7I/mDeuhd7dO2Lr7gEHZI6f+hlQixrD+feDnUwGjBvSFjY01jp3WJky37t6P97p0RNvmjeHvWxFfjx6CsxcvIyEpuaSr9UryZTLsPXAIwwYNQFBgZTRt3BDv9uiGHbt2G5Q9fuIUJBIJBn3cH5V8fDBs0ADY2NjgRGHSp0CtxpBPBqB6eFVU8vVB186dcDPiVklX6ZXxPDGUL5Nj59EzGNuvJ6r4+6JVvZr4oFNbbNp/wmj5rYdO4pPJv8DVydFgn7uzk+4lVyixcd8xTBj0PuxtLWvmFgDYh1ZG49MbYVv5xbPxyr3bAQX5ctz64ifkRN5GxJjvoc7ORbmebwEA/IZ9gOTNe5G0Zgeyr0fhSv/x8GzfAjZ+FUuiGiZ14vhxSKVSDPjkE/j6+mLw4MGwsbHByZMnjZbfsWMHunTtigYNGiA4JAQjR47EwQMHdIPrhPh4jPnsM9y/f78kq2EyMpkM+w4cwNBBgxAUGIgmjRvhnZ49sHPXLoOyx0+chEQiwcABH8PX1wdDBg2Eja0NTpzU/ig5eOgwenTvhob166NihQoYOXwYsrKzcfOW5bWzJ04ch0QqxYAB2vNk0OAhsLWxwcmTxtuUHTu2o0uXrqjfoAGCg0MwYuQoHDz41HmSEI8xYz7FAws9T/Jlcvx1+DhGD/gAIZX90KJhXfTp2hFb9h4yWn77/iMY8tVUuDzTxqrUasxcshIzFixHeW/PkgjdLPJlcuw4ehZj+/VAFX8ftKpXAx92aouN+48bLb/10CkMmDwLbkb6nNNXbqJdo9qoExaEQJ/y+PDttrhwI8rcVTA5mUyGffsPYMjgJ21JY/Ts2RM7/zLWlpyAVCrBJwMGwNfXF0MGD4KNjS1OFLbDBw8dQo8e3dGgQX1UrFgBI0cMR1Z2NiIsbMyWL5Nhz4HDGD7oYwQHBqBpowZ4r0dX7Ni116DssZOnIZVIMPjjvqjkUxHDB34MWxtrHC+cHJJwLxFuri4o7+0NVxcX3UsgEJR0tV6JTCbD/v37MWTwYAQWnifv9OyJv/76y6Cs9jyR6s6TZ/vrv/76C82aNUPbNm3g7++PcZ9/jgsXL+LBgwclXa1Xki+TY+fhk/jso14ICaiElg1q44Mub2HzviNGy287eByDJ86Aq7Nhe/LE/NWbUMHLw1whm51AIoVdkzZI3/gblPduI//KOWQd2A6HloZ3MxXk5aAgK0P7ys6CU5f3kXVgOxQJcQAA+0atkLnjT8hjIqC6n4jUNYsg9QuCyLNcSVfrlZ06cQwSqRT9BwyBj28lDBg8HDY2tjh90njfs2vHFrzdpQfqNWiEoOAqGDpyDA4d3Ad54dgk8V4CfCv5w8XVVfeypOe6mbLfUavVmDd/AWb/OgflylneufEEf/sRmZZcLsfXX3+NunXromnTpgaT5p42dOhQhISE6L2OHj2q279y5Uo0a9YMtWrVwtdff438fOMXOovLrMlyzXOuzpeU2LsJUKvUCK9SdBWwemgIImJiUVBQoFc2IioG1UNDdINkgUCAalVCcCMqBgCQ/OARQoOKbt10d3WBs6MDbkbGlEBNTOf2nbtQqVQIC62i2xYeForI6BiDY3IrKgrhYaF6x6RqWBXcitT+6PywTy80bdwQAJCekYG9+w+ierjhbXtlHc8TQzEJSVCp1ageHKDbVrNKZdyMvWtwTADgzNUITB7aF306tHrh5y7dtAt1w0NQv1qVF5Yrq1yb10fqsXM43fS9F5ZzaVADaWf+0duWdvYSnBvWBAA416+BtJNFM5xkiQ+Qn5AMlwaWtYwEAERGRiKsalW970RYWBgijSR01Wo1YqKjEf5UO1ElNBRKpRJ37twBAFy/fh3Vq1fHLxY6my3u9h2DNrZqWBgio6IN29jIKFStGqbfxoaG4lZkJABg4ICP0LpVS115gUAAjUaDvNzSvWOrOCIjI1E1TP88CQ0LQ2Tkc86TmGiEh1fTbatS5cl5chvAk/OkBmb+Ypl3Mz3pd6qFFN2uXD00GBExcUbb2HOXr2HiqIF47+239Lbny2SIu3sPS3+YjPCQQLPHbS7RRvucANyMjX9Bn/Mhehvpc5zs7XD68k08SsuATKHAgTMXEeLnY9b4zeH27duFbUmoblvVqmGIiooyOCbGvl9hYUVtySefDECrVkXH6klbkpuXWwI1MZ0nY9iqVUJ028LDquCW0TFstOEYNrQKIiKjAQDxCYmoWL58yQVvJk/Ok1C986TqC86TMIP++sl5EhkZqdc/e3h4wMPDA5GF+y1FTPw9qNVqVAsuahNrVAnEzZg7RtuTvy9fxzcjPkavju2Mft6lm1G4dDMK/XsYX57REogr+kEgFEEeV3ThUB53CxK/IOAFF4jsGrWC0M4BWQe2aTcIBEhZMQeyW1cNylpZ25o8bnOLioxAaFi43neiSlg4oiIjDMqq1WrExkShanjRnbEhVcKgUipx5472QsK9hLsoX8Fyk5+m7Hfy8/Nx584d/Dp7FkJDLfN3H8DffkSm9tNPP+HGjRv4448/MHnyZMyfPx/79u0zWjYuLg4///wzTp06pXs1adIEALB//37Mnz8f3333Hf744w9cvXoVP//8s0ljfek1yy1RaloGnBwdIBYXVdPF2QkKhRJZ2TlwfmpGUmp6Bvx89Ts3F2cn3Em4p/vvlLSiNaXyZTJk5eQiIzvbzLUwrbS0NDg5OkIsFuu2Obs4Q6FQICs7G85PrUuYlpaOSpX0r6K6ODvjbnyC3rY/1q7DmnUb4GBvj9k/W97tRDxPDKWkZ8LJwQ5iUdExcXVyhFypRGZOrsHarzPHDgYA7DpueCv0Ew9S0rD/9EUs/26seYIuAQlLXu4WXKm3B7IjYvW2KR6mwqGqNjFmXc4T8uRHevvlj1JhXcHbNIGWoLS0NFSqVElvm7Ozs9GlMXJzc6FQKODm5qbbJhQK4ejoiJSUFABAx06dzBuwmaWlG7axLs7PaWPT0wzWDHZ2dtEdu/CqVfX27d1/AAVqNaqGhZmxBuaRnpYGX4PzxAXx8XcNyj45T1xfdJ50tOzzJDXdsN9xdXaEQqFEZnaOwQzyGV9+CgDYc0T/jg0HOzssmvGN2eM1t9T/3Odo12X/6/jfBp/1SY/2GPPzYnQcPhFCKyu4OTvidwvsd9LS0uHk9JJtyXPHa8bbkn379ltkW5Kalv7S7WtqWjr8fPUvkri4FI1hExITIZPLMearSbiXlITAAH8MG/gxfCpYVgI9LS0NTk5O+uP6554nL+6v09LT4ebqqrffxdlZ1+5aCm17Yq/fvjo5QqFUIjM7Fy5O+u3Jj+NHAAB2HzVcLk2hVOLHJavw0T64UwABAABJREFU+SfvQywSmjdwMxI6uaAgJwtQq3Tb1FkZsJJIYWXnoN1nhOOb3ZB1eBc08sKlNTQayCOv6ZVxaN0R6uxMKJIsb0m09LRU+Fby09vm7OyChPg7BmVzc3MKxybuum1CoRAOjk5ITXkMjUaDpMREXLl0AVs2/Al1gRpNmrVA7w8+0vt+lmWm7Hfs7e0x65eZJRO4GfG3H5Hp5OXlYdOmTVi2bBmqVq2KqlWrIiYmBmvXrsVbb+lPCFIoFEhMTES1atXg4WF4Z9eqVavQr18/3WSQKVOmYMCAARg3bpzJnj3zf73IjFwuN+icJIUDJ4VSqbddJldAYqSssrBc66YNsWbLDty9lwS5QoH5v68BAKiUKlgSmdFjov1baXBMDMuKxWKDcm1btcT82TNRq2Z1fPXNt8gt5XXq/yueJ4ZkCoXuGDwhET05JsWry86jZxAa4IvwQP9Xjq+sE9raoECu0NtWIFfASiop3G/9wv2WxNj3x1g78aTsk/0vU94SPe94AIZtrPGyIoN2BwAiI6OwdPlv6NmjO1xdXUwctfnxPNEnkyv0EsMAIBY9OU8sq78wBZlCadDniIvZ59x/nApriQSzxg3Gkkmj4eXmjKlLLG+9VJlcrjsnnvhvbYnx70tkZCSWLl+OHj16wPWZxGhZp63nM+dJ4d/Pfm/kcoXhMREVjdcSEpOQnZOD99/rgakTv4RUIsG4id8iL8+0t/Cam1wuN2xLinme/JfzqCzTjtWfc0xU/60uKzbvQkhAJTSoUfXfC5dhAokUGpX+d+TJ3wKR8USuNDgcQhc35J46+NzPtalRD47tuiBj+1q9RLyl0J7z+mPv4o5NHj96CLlcBpFYgs+/moSPPhmC40cP44/flhh8Vlllrn7ndfA6/fYjKq7IyEioVCrUqlVLt61OnTq4evWqwd0rt2/fhkAggI+P4d2harUa169fR926dXXbatasCaVSadK74f6vZ5ZLJIYN9pMfXdZSqUHZZxMUCqUK0sJy/d7thvsPHqHfqPEQCYXo/GYbBPlXgq2FrbsskUiMHBPt31KDY2JYVqlUGpSrUF67DtkXYz5F7/4DcOrMWbzZto2pQzcbnieGJGKxQYJCoXpyTIrXqR8+dxnd2zZ75dgsQYFMbjD4sZJKoM7TzsxRP2+/idfZMocN69djw4YNur9DQkJeqp0Ann9h7nnlLZFEbLzdBIy0sUbLqgzanYhbkZg4+VvUq1sHfT943wxRm96GDeuxccN63d8hIVVe/jyRvAbniUQM5TOJiydJnOK2sZZMIhYZ9DnKYvQ5Go0Gkxeuxqj3u6JZbe0yPtNHD0DnkZNwI/YuwgP9TBazuWnPEeNtybNthNjIOMbY9yXi1i18M2ky6tWti74ffmCGqM1LOy595jwp/Fv6zHlibGynVBWN136Y8g3UKpVu9tHXn3+KXh8NxtnzF9GmpeWMVSQSiWFb8pzz5N/G9cYSXZbY7mrH6saPiVTy8u1JXEISdhw6gTW/fGvK8EqFRqmA4JmLKk/+1ijkRt9jW7sRZDcuoSAvx+h+mxr14f7JWGQf24Pc08aft1HWbNqwFls2FF08DQoJhVKpn8B8/thEottvrLynlzdWb9gOe3sHCAQCBFQOREGBBr/OnI6PBg6FUFj270wwR7/zuvh//u1H9CIKhQIKhX47KpFIdG3m0x4/fgwXFxe9fe7u7vgfe/cdFsW1hgH8XViW3lUQFenV3gv2ksReozF2YxdNbNEYe89NrFiwx5JYYotRY1cUe1d6x67I0tld2v1jcXFdTER3gQ3v73n2uZeZM5vvjDNzznx75oxUKkVSUpLSII7o6GiYmJhg6tSpuH79OmxtbeHr64sWLVogJSUFUqkUFSoUvK9JKBTCwsJCre9Z+U8ny8tZWyE5JRXZOTkQ5jdQiUlJ0BeJYGKsPK9aeStLJIqTlZYlJiXB2tICAGBoYIC5UycgLT0DAgFgbGSELoNGoWIF7XrZSzlraySnpCAnJ0fRaIvFSdDXF8HE2PidslZIFIuVlonFSbDOH9V49foNuDg5oVw5+aPyIpEIFW1skZKiXVOO8DhRVcHKAsmp6Ur75HVSCvRFejD9iMT/i9dixDx5jhb1avx74f8AydMX0Lctp7RM37YcJM/lj99JnhSy3qYcpM9eFVuMH6tDx45o1ry54u99+/ZBrHKdEBc6YtHUzAwikQhisVjxK3FOTg5SUlK0boTj+1gXco1NFIsLvcZaW1ur7rsksdLI8Xv3H2DW3HmoW7s2pk+dAh0d7XggrEOHjmjWrOA4+WPfXojFiUplkt53nJi+OU4S/7PHSXkrS9V2R5xcaLtTFpRXU5sjTknDi9diuNlXUiyztbaEhakxnr1K1KpkeTlrayQnv9tfE0NfXx/GKv0160L7a2+fL/fu38fsOXNRp05tTPt+qtZcS94m768Vcn0Vva8Pm6S0LFGcBCtL+fVVpKcHvDUqUiQSwdamAhISX2u2EmpmbW2N5OTkDzpOCm1z3roOl/uX9dpCfj1JK+R6IoJpEa6v56/dQkpaOnqN+wEAkJM/6q11/7H4fuQAfNaskfqD15CcpETomJgBOjpAfj10zSyRK5MiN7PwdxcYeNdG8l97Cl1nVK8prIdMQFrASSTt26qxuNXt8w6d4dOspeLvA/t+Vznmk8SJsLSyxrve7ptUriKffiQnJwepKcmK8qamylOoVbG3h0wmQ1paKszNLdRbGQ1Qd7tTlvyX7/3KFB3tesl3aeDv7w8/Pz+lZePGjYOvr69K2czMTJUk+pu/3024R0dHQyKRwMfHByNGjMCpU6cwevRo7NmzB+XKlVPa9u3vevd7PoX29ZSLwNWxKnSFuggOK3i54oPgMHi4OqncJHi5u+JhWLjipaR5eXl4GBIO7/wXZq3b9huOnw2AibERjI2MEBIRhfT0DKWXQmoDZ0dHCIVCxUs6AeBhUDDcXF1V9omnuzuCQ8KU9klQSAg83OUvVtqwZRtOnS14G21GRiYeP30C+yra9WITHieq3KpWhlBXFw8jCubsuxcWBS+nqh91g/0wMgY21pawLVc2OlDia/dg2ai20jLLxnWQdE3+QqSk6/dg2bSuYp1BZVsYVqkI8TXVFyaVNqamprCzs1N8PD08EBwSonROBAcHw91D9WU+Ojo6cHVzQ1BQkGJZSEgIhEIhHB3/G9PzODu9ucYWPAIWFPyea6yHO4JDQpWvscEh8Mjfd7GxcZgzbz7q162LGdO/h1CoPb9vv3uceHh6IiT43eMkCB7unirb6ujowNXVDcGFHidOKuW1kaujPXSFuggKL5jf8n5IODxdHLUyifmp3BVtTqxi2d2PaHPMTIwg0hMi+knBqJKklDQkp6bDroJq8qM0c3JyUrmWvK+/5uHhoXJ+BQUHw9P9zbUkFnPnzkO9enUxY/p0rbqWvO1NH/bNSzoB4GFwKNxdXQrpw7ohKPTdPmwovDzckJeXh/7Dx+Dv02cV5TMlEjx5+gxVKleCNinsOAkKCoLre4+TYJX2+k2/3sPDQ6l9fvXqFV4lJCjaJG3h5lAFurq6CAqPViy7FxoBT2eHIl1Pen3eGr+vmI9f/zcLv/5vFn4YPQgA8Ov/ZsGnXi11h61RWY9ikJeTDX3HgvsRfRdPyGIjgfzj4W06xqbQK28LaZTq4+z67tVhPWQCUs8fh3jPJo3GrW6mpmaoaFdJ8XH39EZYcJDSORES/BDu7+mbuLi6IyTogWJZaEhQft/EGXdu3cCAPt0glUgU66OjomBqZqYViXJAve1OWfNfvvcj+icjR47ErVu3lD4jR44stKy+vr5KMvvN3wYGBkrLx4wZg4CAAPTo0QMeHh7w9fVF8+bNsXfvXsUTLIV9l7rmKwc+Mll+48YNZGerzksmk8lw+nTBY1hNmzZVa7BFZaCvj89bNccv67cgJCIKF6/ewO7DR9Grk3zy+NfiJEjz545q2aQB0tIzsGrzdsQ+eoxVm7cjUypFq6byUQPWVpbYtmc/QiKiEBYZjQXL16Lr521hZmpSYvX7GAYG+mjXuhVWrlmPsPAIBF65in0HD6N7F/nL0hLFYsWcbM18miA9PR1rN2xGXPwjrN2wGRKJFC2ayd9A26XjF9h34BCu3biJ2Lh4LPllOewqVkT9unVKrH4fg8eJKgN9ETo0b4glm3cjOCoO52/cw86/TqPvF/IXKCQkJUNShF/toh49g+N//AUm+jbloGMgv3A/3/839CzM4LVsBkw8neG1bAZ0jQ3xbN9xAECc/++o9HVXVBnSC6bV3VFr6094efQ8MmMfl2QVPoqPjw/S09Lg7++P+Lg4+Pv7QyKRoHn+6HOpVIrExIIRxZ06dsT+P/7A5cuXER4WhjV+fvj8889VGkhtZWBggLZtWmPVmrUICw/H5StX8MeBg+jWpQsA+QuR3lxjfXyaIi09Hes3bERcfDzWb9gIqUSCFs18AAAr/dagXPlyGDF8GJKTU5CYKFbaXpv4+PggPT0NG/zXIz4+Dhv810MikSieUnj3OOnYqRP27/8DVy5fRnh4GNauWY3P/kvHib4+vmjpg5/Xb0NIRDQCrt3C738eR+9O7QEotztlgYG+CB2bN8DizbsRpGhzzqDvFy0BAAlJKR/U5gh1ddG5RSOs3HUQt0MiEfnoKWau+RXVXB3h5WT/r9uXJvJrSRus9lsjv5ZcvoL9Bw6ga9c315LEt64lPvJrif8G+bXEf0P+dVg+nciq1X4oV748Rg4fjuTkZCQmJiptry0MDPTRvnVLrFjrj9DwSFy6cg37Dv6JHl06AlDuwzZv2hjp6elYs3ELYuMfYc3GLZBIJGjh0wQCgQCN6tXFr7/twd0HD+V92GWrUL6cNRpqWx82/zjx8/PLP04uY/+BA+jWtSuAwo8Tf39/xMXHq7TXHTt2xJmzZ3HixAnExMTg519+QYMGDWBrq139NwN9fXRo2QQ/bdyB4MgYXLh+B7/9eRJ9OsqniHwtTobkA66v5qYmqFLRRvEpb2UBAKhS0QbGhtrVFuVlyZB+9Tws+42CqKoLDGs2gFm7Lkg9+xcAQMfMAoK35u7Wq2SPXJkUOQkvlL9IRwfWA8dBGh6ElBMHoWNmofhAV/t+hGvi0xzp6WnY7L8Gj+Jjsdl/DaQSCZo2bwlA3jcRv9U3+aJTVxzavxdXL19CRHgo/NesQLvPO0LfwAAent4QiUTwW/kznjyOx60b1/DrlvXo3rNvCdWu6NTZ7pQFZfXej+htIpEIJiYmSp/CpmABABsbG4jFYqVc8qtXr2BgYAAzM+Unc3R0dGD+1kuFAfkPei9evICFhQX09fWVXkCenZ2NpKSkQl8G+rE+Klk+cOBApKSovjU7IiICEydOVPzt5+enGCJfUsYN7Q83Z0d8O3MBlm/YhiF9e6FF4wYAgO5DxuDspSsA5NNlLJkxGfeDw/DNpBkIDovETzOnwjD/xrxnx8/QtH5dTJ23FFPm/4TG9WpjzBDtmDv2XaO+GQpXF2dM/mEmVq/bgEFf90WzJo0BAH0GDMH5i5cAyPfJ/Fkz8DA4GGO+nYTQsDAsnDNTsU+6dOyAL3t2x6q1/hg3cTIEAmDezBlaOSqOx4mq7wb0hIejPUbPX4H/bd2DEb06olWDWgCADqN/wOkrtz74uxKTU2D2H59aoO3jQNh92QEAkJ2ajhvdRsLKpy58rh2ARcOauNFlBHLyXxyWdPUuHo6ZBdcfx6JJwO/IEifj3jfTSzL8j2ZkbIw5c+ci6OFDjB8/HqGhoZg3b54iqRkQEID+XxecAy1atsSXffrAb/VqzJgxA+7u7hg6bFhJha8RI78ZBlcXF0ydPgN+69ZjwNf94NO0CQDgqwEDcSHgIgD59WTe7Fl4GBSEcRO+Q0hoGObPnQ0DAwMkJooRHBKC+PhHGDB4KL4aMFDxebO9NjEyMsbsOfMQFPQQE8b7IjQ0FHPnzX/rOLmAAf37Kcq3aNESvb/sAz+/Vfhxxg9wc3fH0KHflFT4GuE7pB/cnR0wfvZiLNu4HcP6dEeLRvUBAF2HjceZwGslHGHx+m5AT3g6VsHo+Svx09a9GNGrI1rntzlfjP4Bp67c/uDvaVW/Jmb6bcOoeStgamyInycNh0CgfY/Wjhj+DVxdXPD9tOlYs24dBvT/Gj5N5QMW+vUfgAsBAQDyryVzZuNhUBB8x09AaGgo5s+bm38tScy/lsRjwKDB6Nd/gOLzZnttMnrYYLi6OGPSjNlYtX4TBvXrg2ZN5AMWeg/8BucuBgKQ75OFs37Ag6AQjP5uKkLCIrBo9gxFf23EkAFo3rQxFv28AmMnTUN2djYWzZ6hFfMKv2v48OFwcXHBtGnTsHbdOvTv3x9N84+Tr/v3R8Bbx8ncOXPwMCio0Pba09MT4319seu33zBx0iSYmJhg4nfflVi9PsWEQV/C3akqxs35GT9v2oVv+nRBy4byUZ2dRkzCmcs3SjjC4pe0bytk8VGo8N1cWH41HMlH9iDzrrydqfzTFhjVa6ooq2tqgbzMDJXvEFV1gdC6PAw8a6LyT1uUPvrO7sVWF3UxMjLGjDkLERx0H5PGj0JYaDBmzlsMAwP5YL9LAecwpH8vRflmLVqj55dfYZ3fcsyeMQWu7p4YNFQ+gtLQyAizFyxFSnIyJk0YDb+VP6P9553QvVefEqnbx1JHu1NWlNV7P6KP5enpCaFQiLt37yqW3bp1C9WrV1fJIU6bNg3TpyufI6GhoXByks/+UL16ddy6VZCPunv3LoRCoVqfhhPk5RXy7FUhfvvtN8ybNw8CgQB5eXnvvelo0qQJNm/e/FHBvAj58ORbWWDjWRfxESElHUapYu/qyePkHTaedZF8WzterFMczOu0xVE97euwa1LHrDBERUf/e8EyxNnJCbGR4f9esAxxcHFDZFTMvxcsQ1ycHfEqqGwlrf9Nee+GSLl9qqTDKFXM6rRDTFTkvxcsQxydXfA4/GFJh1GqVHarhuioqJIOo9RwcnZG4n3t+/FXk6xqNEP8qB4lHUapYr/+AEKinpR0GKWKp3MltjnvcHR24f3fOzpmhf17IVKSvvHHkg5B6xgPX1Ck8rNmzcLt27exaNEivHz5Et9//z0WL16M9u3b49WrVzA1NYWBgQFOnjyJiRMnYsGCBahduzaOHDmCjRs34ujRo6hcuTKOHj2KWbNmYenSpahQoQJ++OEHNGrUCD/+qL5/ww9+Xqpfv35wdXVFbm4uBg0ahFWrVikNixcIBDA0NISbm3bNzUxEREREREREREREmjF9+nTMmTMHgwYNgomJCXx9fdG+vXwaSh8fHyxevBg9evRA+/btMXv2bKxbtw5Pnz6Fq6srNm3ahMqV5e9H7NixI548eYJZs2ZBJpOhffv2mDJlilpj/eBkebt27bBz507Y2Nige/fuaNy4MUxMtGseZiIiIiIiIiIiIqI3BFo4nbC2MTQ0xNKlS7F06VKVdWFhyk9D9O7dG717937vd40YMQIjRoxQe4xvfPDRkJCQgIiICADAoUOHVN48SkRERERERERERESkrT54ZHmnTp3wzTffKOYqf/PimMKEhHCebSIiIiIiIiIiIiLSHh+cLJ8/fz6+/vprpKSkYODAgVi9erXSnOVERERERERERERERNrqg5PlAODh4QEA2L59O+rUqQOhsEibExERERERERERERGVSh+V7T548CAOHjz4QWUXL178Mf8JIiIiIiIiIiIiIqJi81GvezU3N8dff/2FiIgIGBsbw9LSEs+fP8fBgweRlpam7hiJiIiIiIiIiIiI1E8g4Keon/+wjxpZ/ujRIwwdOhTfffed0vKtW7fi2rVrHE1ORERERERERERERFrlo0aWX758Gd26dVNZ3rJlS1y5cuVTYyIiIiIiIiIiIiIiKlYflSx3cHDAgQMHlJbl5eVhx44dipeAEhERERERERERERFpi4+ahmXGjBkYOXIkTp48CXd3dwDAw4cPkZubiw0bNqg1QCIiIiIiIiIiIiIiTfuoZHm9evVw8uRJHDt2DNHR0ZBKpejXrx9at24NJycndcdIRERERERERERERKRRHzUNy61bt9CtWze4urpi9OjRCAgIgL+/P7p06YLjx4+rO0YiIiIiIiIiIiIi9dPR4aeon/+wj6rdokWL0KFDB9SsWRN79+6Fvr4+AgMDMX/+fKxatUrdMRIRERERERERERERadRHJcsjIiIwaNAgGBoa4uzZs2jfvj1EIhEaNGiAp0+fqjtGIiIiIiIiIiIiIiKN+qhkebly5RAZGYnIyEgEBwejVatWAIDLly+jYsWKag2QiIiIiIiIiIiIiEjTPuoFn4MHD8bYsWOho6OD6tWro0GDBli/fj38/PywePFidcdIRERERERERERERKRRH5UsHzhwIOrXr48nT57Ax8cHANCoUSO0bNkSHh4eag2QiIiIiIiIiIiIiEjTPipZDgCenp7w9PRU/F2rVi11xENERERERERERERUPASCko6ASpGPmrOciIiIiIiIiIiIiOi/hMlyIiIiIiIiIiIiIirzmCwnIiIiIiIiIiIiojKPyXIiIiIiIiIiIiIiKvOYLCciIiIiIiIiIiKiMk9Y0gEQERERERERERERlQSBDscSUwEeDURERERERERERERU5jFZTkRERERERERERERlHpPlRERERERERERERFTmMVlORERERERERERERGUek+VEREREREREREREVOYJSzoAIiIiIiIiIiIiohIh4FhiKsCjgYiIiIiIiIiIiIjKPCbLiYiIiIiIiIiIiKjMY7KciIiIiIiIiIiIiMo8JsuJiIiIiIiIiIiIqMxjspyIiIiIiIiIiIiIyjxhSQdAREREREREREREVCJ0BCUdAZUigry8vLySDoKIiIiIiIiIiIiouGX+trikQ9A6hv2ml3QIGlOqRpZnBO4v6RBKFaOmPZFy+1RJh1GqmNVph3T/GSUdRqliPHIhJEfXl3QYpYZBx1GIio4u6TBKFWcnJxzVcy/pMEqVjllhiI0ML+kwShUHFzccv5NV0mGUKl/U1kPmjgUlHUapYjjgR6StmVrSYZQqJmN/wsl7spIOo1RpX1OEjM2zSjqMUsVo2DxER0WVdBilhpOzMzIu7C7pMEoVoxZ9ERkVU9JhlCouzo5Y8SfH9r3t2y4C3uu8w9nJCTFRkSUdRqni6OxS0iEQaTXOWU5EREREREREREREZR6T5URERERERERERERU5jFZTkRERERERERERERlXqmas5yIiIiIiIiIiIiouAgEHEtMBXg0EBEREREREREREVGZx2Q5EREREREREREREZV5TJYTERERERERERERUZnHZDkRERERERERERERlXlMlhMRERERERERERFRmScs6QCIiIiIiIiIiIiISoSOoKQjoFKEI8uJiIiIiIiIiIiIqMxjspyIiIiIiIiIiIiIyjwmy4mIiIiIiIiIiIiozGOynIiIiIiIiIiIiIjKPCbLiYiIiIiIiIiIiKjME5Z0AEREREREREREREQlQsCxxFSARwMRERERERERERERlXlMlhMRERERERERERFRmcdkORERERERERERERGVeUyWExEREREREREREVGZx2Q5EREREREREREREZV5wpIOgIiIiIiIiIiIiKhECAQlHQGVIhxZTkRERERERERERERlHpPlRERERERERERERFTmMVlORERERERERERERGUek+VEREREREREREREVOZ9VLI8KioKqampAICLFy9i7ty52Ldvn1oDIyIiIiIiIiIiIiIqLsKibrBnzx7MmzcPW7duhYmJCUaPHo1GjRrh1KlTePr0KSZMmKCJOImIiIiIiIiIiIjUS4cTb1CBIh8NmzZtwtKlS9GgQQPs378fnp6e2LRpE5YvX87R5URERERERERERESklYqcLH/x4gXq1q0LADh37hzatm0LALC1tUV6erp6oyMiIiIiIiIiIiIiKgZFnobFyckJR44cgZWVFZ4+fYq2bdsiKysLW7ZsgYeHhyZiJCIiIiIiIiIiIiLSqCIny6dNm4YJEyYgOTkZ/fr1g7OzM+bNm4dTp05h/fr1moiRiIiIiIiIiIiIiEijipwsFwqFOH/+PGQyGczNzQEAY8aMwfTp06Gnp6f2AImIiIiIiIiIiIiINK3Ic5aPHTsW8fHxikQ5AJQrV46JciIiIiIiIiIiItIuAh1+ivr5DyvyyHJXV1fcu3cP7u7umohH7aRZWVi840+cuRUEA5EeBnzmg4GfNyu07MV7ofA7cAqPXr5G5fJWGNO9HVrW9lSsP3XzAfz2n8RLcQpquVbFzEHdYVfOsriqojZSWRZ+2roXZ6/fhb5ID/07tkH/Tm3+cZu7oVGYvW47Dq+cq1iWl5eHjfuP4fC5K8iUStGwuiemDukNSzNTTVdB7aTZOVhy5g7ORD6BgVAXA+q6YUA9t0LLfnc4EBeiniktW9GtCZo72QEAdt2OwPYbYUiXZaOdW2VMbV0LhnpFPtVKnDQrG4v2n8WZ+5HQ19PFwFb1MKhl3ULLHr0VgvUnr+KFOBUelStgSteWqF7VVrHe54e1SJVIlba5sngsjPRFGq2DJkRFRmK1nx/iYmNhb2+Pcb6+cHV1fW/5QwcPYv/+/cjIyECzZs0wavRoGBgYKJXJkskwfvx4jB4zBjVq1NB0FTRCR6QHn2sH8HDCfCQGXC+0jFktT1RbMxdm1dyQGhyJB2NnI+V2kGK9XZ+OcJv7LQwqlserk5dwf9RMZL0WF1cV1EYmk8Fv7XpcunwZ+iIRevbojl49uhdaNjIqCqv81iI2LhZV7e0xfuxYuLq6AJBfY/f+sR9Hjx9Hakoq3NxcMWbUSFS1ty/O6qjN45gQ7N00D88eRcC2sjO+/GYWqjh5F1o2O0uGo3tW4fbl45BJM+HiVQ89B/8AC2tbxfpDO37CrcBj0BUK0ahlD3TsOwECgaA4q/RJpNk5WHz8Gk6HxsNAT4iBjbwwsJHXP27zJCkNvfyPYFWfVqjvUHCN3X0zDNsuP0SqJAuNnStiZodGMDfU13QV1EqanYOl5+/jTORT6At1MaCOCwbUcSm07MQj13Ah5rnSsuWdG6K5oy1k2TlYezUUJ8IeIzM7B3UrWWNqixqwMTUsjmpoxKOYEOzZOB9P4yNQsYoz+gyfCfv3nDtZWTIc3b0atwKPQSrNhKtXffQaOh2W+efOvetnsOnnb5W2qdWwHYZNWqbpaqiFNDsHi0/dwpnwx/L+Wn13DGzwz+9Mepqcjl5b/saqns1Qz74CACArJxdrLz7AX0GxyM7NQ+dqDhjfogaEOtp34yeTybBm7VoEBgZCJBKhZ8+e6NmjR6FlI6Oi4Ld6NWLj4mBvbw/fceOU+jDnz5/Hr9u3QywWo06dOpgwfrzSACltIc3KwuLfjuLM7RAY6AkxoH0TDGzftNCyF++Hw+/QGTx6lYjK5SwxpmtrtKwlP6by8vLgf+Q8Dl66jUyZDI29nPH9Vx1hZWpcjLVRn6ioSPitXo24OHkfduy48f/chz10EAf2/4GMjAz4NGuGUaPGqPZhs2SYMN4Xo0aPQY0aNTVdBbV79SQYAfvnIPF5OCxtXNCi5xyUr1ztX7e7c34zgi7vQv8fziqWJSfEI+DAHLyIvwtTy0po1GESqnq21GD0mqHOex2ZTIa1a9YoXZ969OxZXFX5ZPI+/VoEBl6GSCRCr549/vH6unq1n+L6On7c2EL32++7d+PJ06eYPHGipsMnok9Q5B6hubk5Zs+eDR8fH/Tt2xcDBw5U+pQ2y/ceR3DsE2yYOgzT+3fBhj/P4tTNByrlwh89w6Q1u9DVpy52z/FFzxb1MWXtbwiLlydF70bG4Qf/PRjwmQ9+nz0OIqEQ0/x3F3d11GLVroMIiY7Huh/H4/uhfbDpwHGcuXbnveUj45/g+xWbkJebp7T84JlAHD53BfPGDsKG2d8hQZyMBRt+03T4GrEi4D6CX4jh36s5prWujQ1Xg3E6/HGhZaNfp2LBFw1wcmQnxaeRvQ0A4Ez4Y/hfCcaMdnXg37s5HjxPxMoA1eNNGyw7chHBj15g45ie+KFnG/ifuIpT98JVyt2Ofow5e05hZLtGOPD9QNR0sMPYjQeRIZUBAF4kpSFVIsXRGUNwZs4IxcdQpH1Po0gkEsyaNQvVvL2xctUqeHp5Yc7s2ZBIJIWWv3TpEnbt2oVxvr5YvHgxQkNDsWXLFqUyMpkMS5cuRVxcXHFUQSN09EWovXMZTKsV/gMTAOgaGaL+nxsgvnQTlxr2gPjKHdQ/7A9dI3kCy7x+ddTYsBARC/wQ6NMHepZmqLl5cXFVQa02bt6K8MgILF20AOPGjMau337HxUuBKuUkEglmzp6Lat5e8FuxAl6enpg5Z67ieDp6/G/sP3AQY0aNxOqVy2FrY4MfZ8157/FWmkklGdiwdDScPepg0uI9cHSrhQ1Lx0AqySi0/PF9a/DgxhkMGLcEE+buQE52NrYs+xZ5efJ26MCvixF2/wpGTffHwHE/4crZ/bh8Zl9xVumTLT99C8HPErGxfzv88HkD+Afcx6mQf74OLDp+DZlZ2UrLTgTFYsXpW5jcrh5+HfwZnienY/Hxwn+wKs1WXgpC8MskrO/RFNNa1cDGa2E4HfG00LLRiamY374OTgz7TPFpVKU8AGD9tVCci3qGBZ/VxZZePsjOzcOUY9cVx462kUoysH7xGDh71MHUJfJzZ/3ise89d47tXYN7189g4Pgl+G7+DuTkZGPTz98p6v/8cRSq1W2JhRvOKT5fjZpTjDX6NMvP30Xw80Rs6NMS09vVxYbLQTgV9ugft1l48qbKebPu0kMcCYrF7C8aYG3v5rge9wK/nL2rwcg1Z9PmzYiIiMCSxYsxduxY7Nq1CxcvXVIp96YP412tGlatXAkvT0/MnlPQpoSFhWHFypX4+uuvsXzZMqSlpWHZMu34EeVdy/84ieC4p9gwcRCmf90JG/66gFO3glTKhT9+jknrd6Nr09rYPXMUejaviyn+exH2SP5j3P6AmzgUeBsLh/XElilD8SopFfO2Hy7u6qiFRCLB7Fkz4V2tGlasXA1PTy/MmTPrvX2KwEuX8NuunRg3bjwWLV6CsNBQbN2yWamMvA+7RGv7sFmyDBzbPBIVHeui14T9sHWojaObRyFLVvj19Y2U149w86Sf0rLsLCmObBwKXT199Bi3B7VafoOTOyfiRfx9TVZB7dR9r7N50yZERERg8ZIliuvTpYsXi6s6n0x+fY3EksWLMG7sGOza9dt7r68zZ81GtWreWL1S3qefNUe1z37u/Hns2LmruMInok9Q5GS5p6cnxo4di759+8LHxwcNGjRQ+pQmmVIZDgXcxNR+neBZtRJa1/XGoC+aYc+Zqyplj1+9h/oezujXrgnsbazRp01j1Pdwwqkb8kTnjr8vokOjWujVsiEcKpbH1H6dkJCUCnFqenFX65NkSqQ4fO4KJg3qCQ/HKmhVvyYGdGqLvScuFFr+wOlLGDZ7GazNzVTWBd4NQrvGdVDXyxUuVewwoHNb3HgYpukqqF1mVjYOPYjBlFY14WljidaulTConjv23I1UKSvLzsHT5HR421qinLGB4iMS6gIAfrsTiX61XdDcyQ7etlaY0bYO/gyKVblJK+0ypFk4ePUBpnZvCc/KNmhTwwWDW9fD7kv3VMompGRgRLuG6FTPE5WtLTCyfUMkZ0gQ9TwRABDz8jXKmxmjsrUFypkZKz7aNAL0jYALF6Cvr49h33wDe3t7jBw5EoaGhrj4nk7f4cOH0bVbNzRs2BBu7u7w9fXFqZMnFR2n+Lg4TPzuOzx79qzQ7bWBiaczmgTuhZHzP492rvhlB+RmShHy/U9IC41G8MSFyElNR8VenwMAHMb0x9M/juPJzsNIfRCGu4OnosIXLWDoULk4qqE2EokEf588idEjRsDVxQVNmzRG71498edff6mUvRBwESKRCMOHDYW9fRWMGjEchkaGCLgo74SfOn0GPXt0R6MGDVC5UiX4jh2DlNRUBIWEFHe1PtmdK39DT2SALv0nw7aSM7oPmgZ9Q2PcvXqy0PLXLxxChz7j4eJVH7aVndFnxFzERz1EwvN4pKcl4+q5g+gzYg6qulSHW/VGaNVpEOIiteeGNFOWhYN3IzGlfT14VrRGaw97DG7shd033t+GHn0QjXRplsryrVeCMLiJN9p6VoVLBUt816YuIl6JkZObq8kqqFVmVjYOBcVhcvPq8KxggdbOdhhY1wV770erlJVl5+BpSga8bQpvh/8KeYSxjT1Rt3I5OFmb4cc2tRD0IgmPkrWrv/bG7csnoCfSR7cBk2Bb2Qk9B38PA0Nj3HnPuXPt/GF0+mo8XL3qo2JlZ3w1cg7iox7i1fN4AMDzx9GoWMUFZhblFB8jY9U+XmmUKcvGofsxmNqmDjxtrdDarTIGNfDAntsR793mWFAsMmTKfbC8vDzsvRMB3+bV4eNUEZ62VpjRvh7+uBuFDJnqOVaaSSQSnDhxAqNGjoSLiwuaNmmC3r164ciRIyplLwQEQF9fH98MG1ZoH+bIkSNo1qwZ2rZpA0dHR0yZPBk3bt7E8+fPVb6rNMuUynDo0m1M7fMFPKvaoXVtTwz6rCn2nFP9EfH49Qeo7+6Ifm0awb6CNfq0aoj67g44dfMhAODSwwi0r1cN9dwd4FLJBoM+88H10JjirpJaBARcgEhfH8OGyfuwI0aOgpGhIS5eDCi0/OHDh9C1azc0aNgQbm7uGOc7HqdOvdWHjY/DxInf4rkW92Ej7x6Hrp4+GneaCksbZzTt8gNEBsaIuvf3P253Yf9slKvkqbQsLuQcJOlitOn7E6xsXeFetyvc6nTB/YvbNFgD9VPnvc6b69PIUaPg4uKCJk2bolfv3oVen0ojiUSCv0+cxKiRb/r0TdCrVy/8eaSwPn0A9PVFiuvrqJEjYGhohID8/ZaTk4PVfmuwfMVKVKxYsbirQkQfocjJ8nHjxik+gwcPxoABA5SWlSZhj54hOycXNV0Kkji1XR3wMPoRct+5iezctA7G9/pM5TvSMuUdgpthMWhdt+CR10rlrXDsf1NhqWWP4YXHP0F2Tg5quDkpltXycEJQZJzKPgGAy/eCMXv0AHzVoZXKOnMTYwTeCcLLxCRIZDKcvHwT7g5VNBq/JoS/SkJ2bh5q2pVTLKtVyRoPnyUi952RaLHiVAgEQCVz1X/3nNw8BD9PRJ3K5RXLqle0QlZOLsJfJWuuAhoQ/vQVsnNzUcvBTrGstqMdHsQ9Q+47Txi0r+WG4e0aAgAksmzsvHAbViZGcLa1AgBEPU9E1fLaN11RYUJDQ+Hl7a1I9AsEAnh5eSG0kORlTk4OIsLDUa1awaOcHp6eyMrKQkyM/EbrwYMHqFGjBn7R0pFbAGDVvAFen7+GQJ8+/1jOsmFNJF6+pbQs8cptWDSqBQCwaFATiRdvKtZJHj9HZvxTWDbUrkd6o6JjkJ2dDS/PgmkBvL28EBoWrnKNDQkNg7e3l9Lx5O3piZDQUADA8GFD0LpVS0V5gUCAvLw8ZKT/84in0igu4j4c3Wsr1dXRrTZiI1R/gMvNzUX/cUvgXqOJyrrMjFTEhN6GoZEJXLzqK5a37foN+o1aoLkKqFnYCzGyc3JRq0pBe1GrSgU8fJqg0u4AQFKGFCvO3saPHRspLU+TyhD6PBFtPAr6OXWr2mD/yC7Q1aLpJMITUuTtcEUrxbJadtZ4+Fyssj/iktIAAVDJ3Ejle3Lz8jC/fR00tC+vsi6tkB8atEFsxD04edRRPnfcayE2vPBzZ6DvYnjUaKyyTpKRBgB4/iQaFeyqajZoDQl7lSTv11eyViyrXbl8of01AEjKlGLFhfv48bN6SsvFGVKky7JRrWLB97iWN0d2bi6Cn2vX1F/R0dHIzs6Gp2dB4s7b2xthYWEqbU5oaCi8vbxU+jBv2pzQ0FClPkv58uVRvnx5hOav1xZhj5/LjxPngnuS2i72eBjzWPX+r3EtjO/RTuU70jLlUwdaGBvh0oNwvBSnQCLLwt83HsCjiq1KeW0g//dX7sN6enkhNPQ9fdiIcFSrVl2xzMPjTR9W/iOmvA9bEz//srx4KqABL+LvoqJDXaV9Ylu1Nl7E3X3vNmE3DyE7SwLPBspTiaS8fgzLCk7QNyyYjtS6ovs/fldppM57naJcn0qjN/F7KcXv9Q/X13f3W0GfPjMzEzExMVixfBk8Pf956jAiKh0+aiLlX3/9FZs2bUJCQgIAwMrKCl999VWpS5YnJKXCwsQIesKCalqZmUCalY2ktAxYmZkoljvZVVDaNurJC1wPiUKvlg2QmpGJlPRM5OTkYswvWxH+6BmqOVXBDwO6oIKlds3j91qcDHNTY+V9Ym4GaVYWktPSVeYb/3nSCADAkQuqo/G/6fkFJv5vPTqO/RG6OjqwtjDDlnmTNFsBDUhIk8DCUAQ93YLEgpWRAaQ5uUjOlMHSqGDe15jEVJiI9DDz+A3cevwKNiaGGNXEC00dKyJVKoM0JxflTQrm8hPq6MDcUISXaZnFWqdPlZCSDgtjQ+jlj9QDAGtTI0izc5CUkQkrE9UkxbXweIzyP4A85GHx118o5iOPeZmITFkWhq3Zh9iXifCoVAFTurWEQwXtS6AnJiaialXlJIOFhUWhj5+mp6dDJpPB2rrgZlxXVxdmZmaKa2fHTp00G3AxiPf//YPK6duWR2qw8tMashevYeotn8vPoGIFSJ++VFovffkaBpW066Y0UZwIczMzpZdeW1pYQCaTISU1FRZvzf2aKE5UmX/cwsJScTxV81aek/j4iZPIzcmBt9c/z2tdGqUkvYJtZeX5p03NrfH8seqIUB0dHbhXV072BRzfCWNTS9hVdUd02B1YlbfD9YDDOH1oE3Kys9CgRTe06z4COlqSIE5Iy4SFkT70dN+6xpoY5l9jpbAyVp4T9udTN9G5ujNcylsoLX8slidAxekSDNr2N54mpaGhY0VM/aw+zAy0550QCemq7bC1kf572uE0mIj0MOvkbdx8nABbU0OMbOiBpg420BEI0NBeuT/3+90oWBiI4FpOu/prb6SIE2BbxVlpmZm5NZ4+Un36TUdHRyVRfv7YTpiYWsKuqhvy8vLw8mksQu5exsmDm5CXm4NajdqjY59xEApL/9RohZ03VsYG8vMmUworI+Xz5pezd9G5mgOc3/m3NzMUQaijg1dpmYp1L1Ll/TRxpvL7VUq7xMREmJubK7U5Fu9rc/6lD5MoFsPaykppvaWFhaLPoi0SktLef/+Xnqk037hTReUf1qKevsT10Bj0aiH/MXZEpxaY4PcbPvv+F+jq6KCcuQl+nfZN8VREzcSJibBX+fe3RFxcrErZN31Yq3/qw3bU/j5sRsorWNkqzyltaFoOic8Lf1olMy0RV4/9gs4jtuDlowfvbGeN9JRXyMvLUyRM05KfITM9SSOxa4o673UEAsF7r0+pKSkwt7DQWD3UITFRDHPzD+zTJ4pRtapyn97SwgKx+fvNxMQEy375uXgCJyK1KPJd5Zo1a7B+/XqMHTsWhw4dwoEDBzBmzBjs2rULGzZs0ESMH00iy4LeOy9WFOV3nLKyc967nTg1HZPX7EJNF3u0rO2JDIl87uWffvsLHRrXwsoJA5GVnY3xK7drxa+ib5PIsiB6Z5+86UzKijhVyLNXr2EgEmHZlJHwnzUBNtYWmO+vfXNwZWbnKN14AYAo/4ZdlqN8nMQmpkKSnYPGDjbw6+GDpo62+PbQZQQ/T4Qk/5gSFfJdsn843kqjzKwsxSPtb7z5+33njktFa/w+sR/GfN4EM38/ifux8scyY14kIiVDguHtGmDF0K7Q1xNixPo/kJ5/XmkTqVSq1GECAD09PWRlqY5YlEqlivUfUv6/TtfIELlS5X/zXKkMOvk/qugaGfzjem3xvmMEgMq/e+FlhZAVcnyEhoZhw6bN6NWzB6ystO+HJplUAuE7dRXqiZD9AefCg5tnce6vbej01QQIhXqQSTLw6lk8rpzeh69GzUeX/pMQ8PcuXDi2XVPhq50kK6fQtgIAst5pd65GP8PdRy8xoll1vCszf3qJxX9fx5Am3vipZ3NEJyThx8Oq82mWZpKsHKVEOQDF37Ic5X5WrFjeDjeyrwC/ro3RtKoNvjtyDcEvVEcEn496hp23ozCuiZfK92sLmUwCoZ7ydVCoJ0J29r+3ofdvnMXZI7+icz/5uSNOeAaZNBNCPT0M/e5ndBswGTcvHcWhHb9oKny1kmSrHicF543ycXI19jnuPnmF4Y1Vf1wU6uigtVslrA64jxepGUiVyrDs3F0IdQTIztGufr1UKlVKCgNFbXMK+iRF6eOUZhJZltJgD+DtPuz773XEqemYvG4PajpXQcua7gCAp6+TYCDSw8px/bBp8hBUsDTDnG3aOWc5+7CqsrMk0NFVrqOuUISc91xfA/9cDPd63VQS7ABg79EcMkkqbpxcjZxsGV4+eoDQ6/uRm6Nd+0udx4lUKlXp+73v+lQaSaRS6Ak/pU//3zpfygQdAT9F/fyHFXlk+d69e7Fw4UK0bt1asczT0xM2NjZYuHAhRowYodYAP4W+nhBZ7ySAZfmdJIP3vFzwdXIqRv+yFbl5efjfmH7Q0dGBbn5HvHvzeujUpDYAYOGIPmj77SLcj36EWi7a8zirSE+okhR/03E0KEJSKi8vD7PX7sD4r7uhWR35DfyiCcPQxXcWHkbGopqLg9pi1jR9oa5KcuLNzbnBOzcgwxt54qvaLooRe27lLRDyMgn7H8RgXNNq+duqfpeB3kc9xFFi9IVClQT/m78N9Ao/d6xNjWFtagyPShVwP+4Z9l25jxoOFbFuZHdk5+QqRpov7v8FPpu3CReCotGhbul+DG3P7t3Ys2eP4m93d3eVTk9WVhb09fXf3RSi93Sm3lf+vy5XIlVJfOvoi5CTIZ/qKud96zO166kMkZ6o0H9zACr/7oWXzYbBO+WCQ0Lx4+w5qF+vLgb2/1oDUavfqYMbcOrQRsXfVV1qqCTGs7Nk0NM3eHdTJfdvnMGvKyej2Wf90Lh1LwCAjq4uJJlpGOD7E6zKy6eKEic8R+DJ3WjVabB6K6IhIqFuoW0FAKX2QpKVjQXHruKHLxoW2o7o5ndShzSphpZu8ikHZnVsjL6bjuJlagYqmKo+BVQaiYQ6KsnOLMX+UE56fdPAHX1rOr3VDpsj5GUSDjyMg5dNwQ9J56KeYfrxm+hT0xHdq2lPP+3EgY04ebDg3HFwrYHsLOXETXaWDCKR4T9+z73rZ7BtxRQ0//wrNGkjny7Aqrwdlmy5BCNjMwgEAlR28EBebi62r56OHoOmQEdH9x+/s6Tp6+qqHCcF/bWC2CVZ2Vh48iamt6v73v7X923qYNqRK/h83REY6gnxTWMvPHz2GsZa9vJxkUikkgB+066825aIRIW3T2/apsISO9rYZ9HXE6oM7FD0Yd93/5eShtHLt8vv/0b1gY6ODvLy8jBzy0F826s9mteQJ89/GvElOkxfjgfRj1HdqXS/U2XPnt3Yu2e34m93d48P78OK/pt92Ftn1uP22YLBfTb2NVSS2TnZMghFqn2T+LCLeBF3Fy17Fz7ftpGJNdp9vQxn90zH7TPrYWpVGdWb9sf9i7+qtxJqpsl7ndzcXJW+n6JPbPDP/b/SQCTSQ1Z24fG/e33VE/03rp9EVKDIGby0tDQ4ODioLHd0dERiYqI6YlKb8pZmSErLQHZODoT5I7heJ6fCQKQHUyPVC/RLcTJG/CR/y/fGqcMV07RYmBhBqKsLh7ce1bMwMYK5iSFeJGrXXNTlrSyQnJquvE+SUqAv0oOp0T/feL1NnJKGF6/FcLOvpFhma20JC1NjPHuVqFXJ8gomBkjKlCE7NxfC/Ef4X6dLYCDUhamBcqdaRyBQebTd0coU0a9TYG4ogr6uDl6nS+BoJX9ZVnau/BHycsalv0PwtgrmJkhKz0R2Ti6E+T8WJaRkwEBPCFND5Ub/Yfxz6OoI4FnZRrHM2cYKUS/k1wORUAjRW1cafT0h7KzM8DI5TfMV+UQdOnZEs+bNFX/v27cPYrHy6EWxWAyrdx5bBgBTMzOIRCKIxWJUqSJPYuXk5CAlJaXQ8v91kqcvoG9bTmmZvm05SJ7Lp16RPClkvU05SJ+9KrYY1cHa2hrJKSnIycmBbv41NlEshr6+CCbGxiplVY6nJLHSyPF79x9g1tx5qFu7NqZPnaI104w0adcHtRp/rvj7zJ+bkZKk/Ch/anICzCxU55Z+4/blY9i55gc0bfslug/6XrHczKI89PT0FYlyAKhQ0QFJr7XnJXQVTA2RlCFVbnfSMvPbnYI25uHT13iclIZJfyi/hHvc7rPoXMMJQ5vIf6R1LFfwgkYHa/n/f5GSrjXJ8gomhirtcEK6BPpCXZjqf1g7HJWYqvj7RPhjzDx5G72qOWBSc9UR+aWZT/svUadJwTt0Th3aonLupCS9hrlluXc3VbgVeBzb/X6AT7ve6Dn4e6V1xibKU5LYVHZCVpYU6WnJMDUr3W1T+Q89b54l4nFSOiYfuqy0/bg/AtDJ2wE/flYPVsYG2NC3FZIzpfJRx3nA6oD7sCtkLvzSzNraGsnJyUptjlgshr6+Pow/pM15qw9T7l/Wa4vylqaF3P+lwUBPD6aGhd3/pWDEsm0AgI2TByumaRGnpuO5OBlub/Vvba3MYWFihGeJSaU+Wd6hQ0c0a1bQh/1j316Ixcr36knv68OavunDJv6n+rDejfvCpeYXir/vnNuEjBTlfmZG6isYm6r2TSLvHkNa8nNsnSN/n0pebjZycrKwcUYddBy2AXZO9VDVswUGzw5ERuorGJmUQ9DV3TC1qqTyXaWJJu918vLyPvj6VBqVs7ZGcnLKB8VfztoaiSr7LUmrzxeisq7Id921a9fGli1blKYfycnJwZYtW1CjRg21Bvep3KtUhFBXBw+iHimW3YmIg5dDJZWEQ6ZUhrHLtkFHR4BN04ajgmXBjadQVxeeDnYIf1Twtm9xajqSUjNgZ61dj8O7V60Moa4uHkbEKpbdDYuCl1PVIiVhzEyMINITIvpJQXIiKSUNyanpsKtg/Q9blj5u5S0g1BHgwbOCDuTdpwnwsrGEjkD50ZLZf9/AnBM3lZaFv0qCg5UpdAQCeNla4e6T14p195++hlBHALfy2jVXqnul8hDq6OB+XMExfyfmCbyr2EDnncdtDl57iJVHA5WWBT9+CacK8k5Sx4VbcPh6kGJdhjQL8QlJcLAp/eeOqakp7OzsFB9PDw8Eh4QgL/9FYnl5eQgODoa7h+oIeR0dHbi6uSEoqKDuISEhEAqFcHR0LLY6lBbia/dg2ai20jLLxnWQdE3+krqk6/dg2bSuYp1BZVsYVqkI8TXVl9iVZs5OjhAKhYoX+gBAUHAw3FxdVa6xnh7uCA4JVTqegoJD4JF/PMXGxmHOvPmoX7cuZkz/HkKh9jyhYmxijvK29oqPg2tNxIbfVaprTNgdOLgW3m8If3AVO9f8gGbtv0LPIT8oravqWgNZWVK8fBqrWPbiaTQs30qel3butlby/snjgiTonUcv4W1nrdTuVLOzxp9jumLP8I6KDwDM6tgIY1rUREVzY5Q3NUTYW1OQxCQkQwCgonnBe1lKO7dyZvJ2+K2XK959lgjvChaq7fCp25h7+o7SsrBXyXCwlNf3+qNXmHnyNvrUcMTUlqWrX/oh3j13HN1qIib8ntK5E/0P507Yg6vY7vcDmn/WF72HKp87IXcD8f1QH8ikBU/sPIkNhbGpRalPlAOAewUL+XnztKCfdedJArxsrZTPm4pWODy8A3YPbq/4AMCsz+phjI/8B6Yf/7qKKzHPYW6oD0M9IS5FP4OVkT6ctGxueycnJ9U2JygIroW0OR4eHggJDlbpw3i4uyvWv91nefXqFV4lJCjaJG3hXtlWfpxEP1YsuxMZBy8Hu8Lv/1bugI5AIJ9mxaLg/s/M2BAioRDRb/1oL05NR3JaBiqV074+rIenJ0KC3+3DBsHD3VNlWx0dHbi6uiG40D6sU7HVQd0MjCxgXq6q4mNTtRaex91R2ifPY+/Apqrqy+UbdZyMvpP/wpffHcSX3x1E/fbjYWxWAV9+dxAVqlSD+EUU/vQfDOTlwdisAgQ6OogLuQA754bFXMui0eS9zpvr09svB33f9ak0Kuz6+jCo8D69/Poa8k6fPhie7tp1/SSiAkW+Sk2fPh2nT59G27Zt4evrC19fX7Rr1w4XLlzAjBkzNBHjRzPUF6FT0zpYuOMQgmIe49ztYOw4cRH92sl/EU5IToVEJn9cZvNf5/H4VSLmDeulWJeQnIrU/CkCBnzmg99PX8GpGw8Q/fQl5mzZD3f7iqhWykcVvMtAX4SOzRtg8ebdCIqKw/kb97DzrzPo+0VLAEBCUgoksn+fB1Ooq4vOLRph5a6DuB0SichHTzFzza+o5uoILyf7f92+NDHUE6KTtwMWnb6NoOeJOBf5BDtuhuOrOvL56BLSJZBkyR/fbO5sh2MhcfgrOA7x4jRsuBKMu09eo28t+YvrvqzpjO03w3Au8gmCnidi8Zk76F7dCYZaNg2LoUgPnet7YcEfZ/Aw/jnOPojE9vO30K+5PNmZkJIOSf5cub0aV8eNiEfYFXAbca/EWPv3ZTyMf46vm9eBQCBAM09HrDtxBTciHyHyeQJm/PY3bMxN0MxT+xLGPj4+SE9Lg7+/P+Lj4uDv7w+JRILm+SMypFKp0hM2nTp2xP4//sDly5cRHhaGNX5++Pzzz2GgBY8eqoO+TTnoGMifRHi+/2/oWZjBa9kMmHg6w2vZDOgaG+LZvuMAgDj/31Hp666oMqQXTKu7o9bWn/Dy6Hlkxj7+p/9EqWNgYIC2bVpj1Zq1CAsPx+UrV/DHgYPo1qULAPkLgN7M8ejj0xRp6elYv2Ej4uLjsX7DRkglErRo5gMAWOm3BuXKl8OI4cOQnJyCxESx0vbapFbD9sjMSMXBX5fg+eMoHPx1CWTSTNRqJB9BK5NJFKNnc3Ky8bv/TLh41kObrsOQkpSg+GRnZ8HGzhFetZvjt3Uz8CQuFCH3AnHm8GY0bdenJKtYJIZ6QnSu4YQFx6/i4dMEnA2Lx/arwejXQJ60SEjLhCQrGwZ6QthbmSl9AKCCqRGsjA0hEAjQv4En1l24hyvRTxH2IhELj19DK/cqKGfy4U+LlTRDPSE6edpj8dl7CHohxrmoZ9hxOxJf1ZInZRLSJYr3grRwtMWx0Ef4KyQej5LSsOFaGO4+S0Tfmk7Izs3F3NN3ULeSNQbVdUVCukTxeXf6Dm1Rq1E7ZKanYv+2pXj2OAr7ty2FTJqJ2o0LP3d2rZsFF6+6aNdN9dxxdK8FkUgfv62fjRdPYxB05yIO7ViGtl2GlGQVP9ib/trCkzcR9Ow1zkU8xo7rYehXzw3AO+eNpanSB3hz3sjbX3NDEfwu3kfkqyTcjH+JJadvYWgjT5UfZ0o7eZvTBn5+fvI25/Jl7D9wAN26dgUgf1lfQZvjg7T0dPj7+yMuPl6lD9OxY0ecOXsWJ06cQExMDH7+5Rc0aNAAtrba9aJtQ30ROjWuhYW7/kJQ7BOcuxOCHScvo1+bRgDeuf87FoDHr8SYN6S7Yt2b+z+hri66NK2F5X+cxK3wWEQ+eYEftxxAdafK8KqqPT/OvuHj44P09DRs8F+P+Pg4bPBfD4lEohhV/G4ftmOnTti//w9cuXwZ4eFhWLtmNT77j/VhnWt8BmlmKgL/XITEF5EI/HMRsmWZcM4ffZ6dJVGMPDcysVZKtBuaWEFHRxfm5apCqGcAU6tKEL+Iwo2Tq5GS+Bg3T63F89hbqN60f0lWscjUea9jYGCANm3bws/PD+FhYbh8+TIO7N+Prt26lVDtiubN9XW135r86+sV7D9wAF27vunTq15f1/tvkPfp/Tfk77dmJVkFIvoEgrw3P38VgVgsxpEjRxAdHQ19fX04Ojqic+fOn/w4TUbg/k/avjCZUhkW7TiMM7eCYGJogEGfN8PX7ZsCAGoP/QFzh/ZEF5+66P7DMsQ+V33be+emdRQJ9AMXbmDTX+cgTk1HXXdHzBzUHTZWmhuBYtS0J1Jun1L790qkMizZvBtnr9+FiZEh+ndqi34dWgEA6n81DrNG9UfnFo2Utjly4So2/nEMf66ep1gmlWVh3d4jOHXlNqQyGRpU98CUwb1haWaq9pjfMKvTDun+6v9RJjMrG4vP3MGZiMcwEelhYH13fJ2fLK+z7A/M+aweung7AAAOPojBrzfC8Dw1A07WZpjUsibqVi54XG/r9VDsuh0BWU4u2rhUwrQ2taEv1Nw8oMYjF0JydL3avzdTloWFf5zB6fuRMDEQYXCreujfog4AoObE5ZjXtz26NvAGAFwIisbqY4GIfyWGS8VymNqtJWo5ym8kpFnZWH0sEH/fCUOqRIoGLlUwo2cb2Fpq5jgx6DgKUdHRGvluAAgLC4Pf6tV49OgRHBwd4TtuHJxd5D+WnDp1CsuXLcOx48cV5ffu3YtDBw8iKysLTZs2xZixYyESqb4foMMXX2DJ0qUaeULH2ckJR/Xc1f697+qYFYYrbQYgMeC64u97w6bh8faDAADz+tVRfc1cmHg4I+VBGB6OnY2UuwWjTSoP7A632eOhZ2WOhFOBuD9qJrISkzQWa2xkuEa+WyKRYPXadbgUeBnGxkbo1aMHenSTJy4+69gZk76dgPbt2gIAQsPCsXrNGsQ/egxHBweMHzcGLs7OSEwU46sBAwv9/re3VycHFzccv6O5FxHFRT7Avk3z8OJJNCrau+HLb2ahsqM8OXzt/CH8vv5HrNj9ELER97BiZuFzs4+duQWu3g2QmZGK/VsX4cGNM9DTN4BP+6/wWY9REKg50fVFbT1k7lig1u98IzMrGwuPXcOZ0HiYGOhhUCNv9G8o3x+1FuzA3M5N0LWms8p2tRbswMb+7VDfQZ7AysvLw6ZLD7D7ZhgyZNlo4VYZM75oqDQthToZDvgRaWumqv17M7OysfjcfZyNeipvh+u4oF9tef3rrjqM2W1ro4uX/Mf4gw/jsP12BJ6nZsLJyhSTmldDnUrl8OBZIgbvu1jo9/v3aIp6ld8/dcmnMBn7E07e09xLq2MjH2DPxvl48TgadlXd0Gf4TFTJP3eunj+EXWtnYvXeB4gJv4dlPxaemBk/ewtcvevj2aNI7N+2FLER96FvaIymbXvji17qP3fa1xQhY/MstX4nID9OFp28hTPhj2Gir4dBDdzxdT15+1b7pz2Y+0UDdKmu+mN87Z/2YGPfVqhnXwEAkCHLwqJTt3Ah8imM9IToU8cVQxupjrBVJ6Nh8xAdFaX275VIJPBbswaBgYEwNjZGz5490T0/GfVFhw6Y+N13aNeuHQB5H2a1nx8ePXoERwcHjPP1hYtzwXXm1KlT2LFzJ1JTU1GnTh1MGD8eZmZmhf1nP5mTszMyLuz+94IfIVMqw6Lf/sKZ2yEwMdTHoPZN8XXbxgCA2iNmY+7gbujSpDa6z1yN2BeF3P81roV5Q7pDmpWFNYfO4sSNh5BmZaGhpzO+/6qDYqoWdTNq0ReRUTEa+W5A/u+/xm+VvA/r4Ihxvr5wdn7Thz2JFcuX4eixvxXl9+7dg8OH5H3YJk2bYsyYcYX2YTt2+ByLlyxFjRqqI7I/lYuzI1b8WeR0xQd7EX8fAQfmQPwiCtYV3dG85xyUryR/MXDojQM4t/cHjP5fqMp2oTcO4OYpP/T/4axi2fO4u7h0aD7EL6JhZeuKpl2mw9ahtsq2n+rbLgKtudeRSCRY4+endH3q1r272mN2dnJCTFSk2r9Xfn1di0v58ffq2UNxff28Q0dM/O5btH/r+rrKb43i+urrO07p+vrGz8uWAQAmT5yo9njf5ph/btOHkxxaVdIhaB2DbuNLOgSN+ahkOQDExsYiKioKubm5cHR0hIvLp5+MmkiWazNNJcu1maaS5dpMU8lybaXpZLk2Kq5kuTbRZLJcW2k6Wa6NNJks11aaSpZrM00ny7WRppLl2kxTyXJtpclkubbSdLJcG2k6Wa6NNJ0s10aaSpZrMybLi05y2K+kQ9A6Bl3HlXQIGlPkuSFSUlIwbdo0nDt3DmZmZsjJyUF6ejrq16+PNWvWwNRUc6OKiYiIiIiIiIiIiIg0ochzli9YsAAvXrzA0aNHce3aNdy8eRNHjhxBRkYGFi9erIkYiYiIiIiIiIiIiIg0qsjJ8rNnz2LOnDlwcip4E7aLiwtmzZqFM2fOqDU4IiIiIiIiIiIiIqLiUORkub6+PnR0VDcTCATIyclRS1BERERERERERERERMWpyMny1q1bY+7cuYiPj1csi42NxYIFC9CiRQu1BkdEREREREREREREVByK/ILPKVOmYOzYsfjss89gZmYGQP7Sz2bNmmHmzJlqD5CIiIiIiIiIiIhIIwSCko6ASpEiJ8vNzMywY8cOhIaGIjo6Gvr6+nB0dFSaw5yIiIiIiIiIiIiISJt8ULL86dOnKsvMzMxQq1YtlTJ2dnbqiYyIiIiIiIiIiIiIqJh8ULK8devWEAgEyMvLgyD/0YS3///bf4eEhGgmUiIiIiIiIiIiIiIiDfmgZLmBgQE2bdoEW1tbDBw4ECtXroSVlZWmYyMiIiIiIiIiIiIiKhYflCw3NzfH4cOHUadOHTx79gz37t2DiYlJoWUrVaqk1gCJiIiIiIiIiIiIiDTtg5Lls2bNwurVq3H58mUAwKZNm6Cjo6NSTiAQoFu3bmoNkIiIiIiIiIiIiEgjCslxUtn1QcnyNm3aoE2bNgDk85fv378flpaWGg2MiIiIiIiIiIiIiKi4fFCy/G1nz57VRBxERERERERERERERCWGzxkQERERERERERERUZnHZDkRERERERERERERlXlMlhMRERERERERERFRmVfkOcuJiIiIiIiIiIiI/hMEgpKOgEoRjiwnIiIiIiIiIiIiojKPyXIiIiIiIiIiIiIiKvOYLCciIiIiIiIiIiKiMo/JciIiIiIiIiIiIiIq85gsJyIiIiIiIiIiIqIyT1jSARARERERERERERGVCAHHElMBHg1EREREREREREREVOYxWU5EREREREREREREZR6T5URERERERERERERU5jFZTkRERERERERERERlHpPlRERERERERERERFTmCUs6ACIiIiIiIiIiIqISocOxxFSARwMRERERERERERERlXlMlhMRERERERERERFRmcdkORERERERERERERGVeUyWExEREREREREREVGZx2Q5EREREREREREREZV5wpIOgIiIiIiIiIiIiKhECAQlHQGVIhxZTkRERERERERERERlniAvLy+vpIMgIiIiIiIiIiIiKm6SE5tLOgStY/DZsJIOQWNK1TQsGQF7SzqEUsWo+ZeIjooq6TBKFSdnZzwNu1/SYZQqdu418Cr4ekmHUWqU92qA2Mjwkg6jVHFwceM+eYeDixuO6rmXdBilSsesMB4n73BwccPz0DslHUapYutRG89C75Z0GKVKRY9aPE7eYetRG+FR8SUdRqni5mzPPuxb7Nxr8Lx5h61HbcRFhpV0GKVKVRd37pN3VHVx57nzDp47qqq68D6H6FNwGhYiIiIiIiIiIiIiKvOYLCciIiIiIiIiIiKiMq9UTcNCREREREREREREVGwEHEtMBXg0EBEREREREREREVGZx2Q5EREREREREREREZV5TJYTERERERERERERUZnHZDkRERERERERERERlXlMlhMRERERERERERFRmcdkORERERERERERERGVecKSDoCIiIiIiIiIiIioRAgEJR0BlSIcWU5EREREREREREREZR6T5URERERERERERERU5hU5WT5w4ECkpKSoLE9MTESPHj3UEhQRERERERERERERUXH6oDnLAwICcP/+fQDAjRs3sH79ehgZGSmViYuLw5MnT9QfIRERERERERERERGRhn1QstzR0RGbNm1CXl4e8vLycPv2bejp6SnWCwQCGBkZYeHChRoLlIiIiIiIiIiIiIhIUz4oWV6lShVs374dADB9+nTMmDEDJiYmGg2MiIiIiIiIiIiISKN0+EpHKvBByfK3LV68GADw6tUrZGdnIy8vT2m9nZ2deiIjIiIiIiIiIiIiIiomRU6WBwYGYubMmXj27BkAIC8vDwKBQPG/ISEhag+SiIiIiIiIiIiIiEiTipwsnzdvHmrUqIF169ZxKhYiIiIiIiIiIiIi+k8ocrL8+fPn2LRpE6pUqaKJeIiIiIiIiIiIiIiIil2RZ7CvV68ebt26pYlYiIiIiIiIiIiIiIhKRJFHltevXx9z587F+fPnUbVqVejp6SmtHzdunNqCIyIiIiIiIiIiItKUPIGgpEOgUuSjXvBZrVo1vH79Gq9fv1ZaJ+DBRURERERERERERERaqMjJ8h07dmgiDiIiIiIiIiIiIiKiElPkZDkABAcHY/PmzYiOjkZOTg4cHR3x9ddfo0GDBuqOj4iIiIiIiIiIiIhI44r8gs9Tp07hyy+/RF5eHnr06IEePXpAIBBg6NChOH36tCZiJCIiIiIiIiIiIiLSqCKPLF+5ciUmT56MwYMHKy3ftm0bVq9ejbZt26orNiIiIiIiIiIiIiKiYlHkkeWPHj1Cq1atVJa3atUKMTExagmKiIiIiIiIiIiISOMEOvwU9fMfVuTaOTs7IyAgQGX5hQsXUKlSJbUERURERERERERERERUnIo8DYuvry98fX1x79491KxZEwBw9+5dnDhxAj/99JPaAyQiIiIiIiIiIiIi0rQijyxv1aoVNm7cCKlUit9//x0HDhxAXl4efvvtN3To0EETMRIRERERERERERERaVSRR5YvWLAAAwcOxOrVqzURDxERERERERERERFRsSvyyPI///wTOjr/7YnciYiIiIiIiIiIiKhsKfLI8sGDB2Pu3LkYPHgw7OzsoK+vr7Tezs5ObcERERERERERERERaYyAg4KpQJGT5atWrQIAXLx4EQAgEAgAAHl5eRAIBAgJCVFjeJ9OmpWFxbv+wpnbwTAQCTGgvQ8Gtm9aaNmL98Pgd/A0Hr1KROVylhjTrQ1a1vIEANQePrPQbeYN6YHOTWprLH5NkMlkWLN2LQIDAyESidCzZ0/07NGj0LKRUVHwW70asXFxsLe3h++4cXB1dVWsP3/+PH7dvh1isRh16tTBhPHjYW5uXlxVURuZTIYV6zch4Mo16ItE6NOtC77s3rnQshFRMVi2bgNiYuPhYF8F340ZDncXZ8X6C4FXsGnH70h4nYhqnu6YNG4UbCuUL66qqJVUJsOyDb/iwpWb0NfXQ9+uHfBV139+N8G94DAsWOWPfeuXqaz7dd9hPH72HDPGj9RUyBolk8ngt3Y9Ll2+DH2RCD17dEevHt0LLRsZFYVVfmsRGxeLqvb2GD92LFxdXQDIr5d7/9iPo8ePIzUlFW5urhgzaiSq2tsXZ3XUgvvk/XREevC5dgAPJ8xHYsD1QsuY1fJEtTVzYVbNDanBkXgwdjZSbgcp1tv16Qi3ud/CoGJ5vDp5CfdHzUTWa3FxVUFteJyokspkWOG/BQFXrkMkEqFvt07o061ToWXDo2OwbO0mRMc9goN9ZUwa/Q3cXZwAyPfJtt1/4Oipc8iUSFG/VnV8O3IoLMzNirM6n0wqk2Gl/xZcULTDndCn23vaYcX+iIeDfWVMHD1csT9adu1T6DbTJ4zBZ61baCx+TeAx8n5RUZFYu3olYuNiYG9fFWPHTYCLq9t7yx8+dAAH9u9FZkYGfJq1wIhRY2FgYAAAeJ2QgA3+a3H/3l2I9EVo1qwlBg4eCpFIVFzV+STq6sO26tK70G2mfTuuTJ87ew79hYPHTiItPR0+DetjwoghMDI0KM7qqIVMJsPqtetx6fIV6ItE6NWj2z+2wyv91r3VDo+BW347nJOTg23bd+Lk6TOQSKWoX7cOxo4aAUtLy+Ksjlqoa5/I+yYH8NdbfZOxo0awb/IfaHd43hCVXR/000lgYCBkMhkA4MyZM0qf06dP4/Tp04r/X9os33cCwXFPsGHSEEzv1xkbjpzDqVsPVcqFP36OSet+R1efOtg9awx6tqiPKev3IOzRMwDAqZ+nKn0Gf+aDitYWimS6Ntm0eTMiIiKwZPFijB07Frt27cLFS5dUykkkEsyaNQve1aph1cqV8PL0xOw5cyCRSAAAYWFhWLFyJb7++mssX7YMaWlpWLZMNUGqDdZv3YGwyGgsWzAb3476Br/u3ocLgVdUymVKJJg2bxFqeHnCf/lSeHu6Yfq8xcjM3ycPQ8Iw/+eV6N2tM/yXL4Wenh7m/295cVdHbdb+uhuhUTFYOW86Jo4YjK17DuLc5cKTfgAQFfcIM/+3Gnm5eSrrTl28gi27D2gyXI3buHkrwiMjsHTRAowbMxq7fvsdFy8FqpSTSCSYOXsuqnl7wW/FCnh5emLmnLmKc+fo8b+x/8BBjBk1EqtXLoetjQ1+nFVwbmkT7pPC6eiLUHvnMphWe3/yRtfIEPX/3ADxpZu41LAHxFfuoP5hf+gaGQIAzOtXR40NCxGxwA+BPn2gZ2mGmpsXF1cV1IrHiap123YhLDIay+fPxHcjh2Lb7v04H3hVpVymRILv5y1FDW8PbFi2GNU83DBt/lJFu3PkxBkcPXUOP04ch9WL5yBBLMZPfv7FXZ1Ptn7bToRFRuXvj2H49R/3xxJUV+wPd0ybv0SxP/Zv81f6fNWjC2wqlEfThvWLu0qfjMdI4SSSTMydNQNe1aphxco18PT0wtw5P0IiySy0fOCli/h913aMHfctFiz+H0JDQ7Bty0YA8oTO4kXzIJVKsOR/yzD1+xm4fv0Kdu7YVow1+jTq6sPu/3WD0qdvj67550694q7SJ1PnubNt9x8YPqAv/JbMRUJiIub/op3v7dq4eSsiIiPx06IFGDdmFHb+thsBhbTDmRIJfpw9D9W9vbBmxfL8dnieYp/s2bcf5wMuYsb0qVi17H9ITU3D0l+0815HXfvk6PG/8ceBgxg7aiT8Vi6DrY0NZsyaC4lEWtxV+mRsd5TxvCEquz4oWT5u3DgkJiYCAAYOHAgjIyNUqlSp0E9pkimV4dClW5jatyM8q9qhdR0vDPrMB3vOXlMpe/zafdT3cEK/No1hX8EafVo1RH13R5y6KU+slzM3VXyksmz8fvYqZg3sBlMj7RpZIJFIcOLECYwaORIuLi5o2qQJevfqhSNHjqiUvRAQAH19fXwzbBjs7e0xcuRIGBoaKp4qOHLkCJo1a4a2bdrA0dERUyZPxo2bN/H8+fPirtYnyZRIcPTUGfgOHwI3Zyc0a9wQfXt0xcGjf6uUPXdRPipy1JABqFqlMsZ9MwRGhoaKm5K9B/9Eu5bN0OXzdrCvXAm+w4fgtTgJySkpxV2tT5YpkeDI6fOYMGwA3J0d0KJRPfTr3hH7j50qtPyhE2cxato8WFoojxjIzsnBz+u3YrHfRtjZViiO0DVCIpHg75MnMXrECLi6uKBpk8bo3asn/vzrL5WyFwIuQiQSYfiwobC3r4JRI4bD0MgQARflP0qdOn0GPXt0R6MGDVC5UiX4jh2DlNRUBJWyJ3P+DfdJ4Uw8ndEkcC+MnP95RFHFLzsgN1OKkO9/QlpoNIInLkROajoq9vocAOAwpj+e/nEcT3YeRuqDMNwdPBUVvmgBQ4fKxVENteFxokre7pyF7zeD4ObsiOaNG+CrHp1x8NgJlbJnL8lHM40e3B8OVSrB95tBMDQ0VNy8Xr11B62bNUatal5wqloFX3Xvgtv3VQcFlGZv9se4bwbnt8MN0Pc9++PcW/tD3g4PgtFb+8Pa0kLxkclk2P/XcUwZOwImxkbFXa1PwmPk/S4GXIBIX4Shw0agin1VDB85BoaGhrh0MaDQ8kcOH0SXrj3QoGEjuLm5Y6zvtzh16gQkEgkeP36EsNAQTPhuCqpWdYB3ter4uv8gXDh/tphr9XHU2Ye1srRUfKRSGQ78dQxTxo2CibFxcVfrk6jz3Dlw9G982bUT2jZvCkf7KvhhwhhcuXkb8Y+fFne1PkmmRILjJ09h9IjhcHVxhk+Txujdqwf+/OuoStmCdngI7O2rYPSIb2BoZIiLF+UJwpzcHIwcPgw1qlVDVXt7dOvSCUHBwcVdpU+mzn1y8vQZ9OrRHY0a1EflSpUwfuzo/L6Jdu0XtjvKeN4QlW0flCw3MzPDmjVrcPDgQTx58gRHjx7FoUOHCv2UJmGPniM7Jxc1nasoltV2rYqHMY+Rm5urVLZzk1oY36OdynekZar+IrzuzzNo4OGERl7OKutKu+joaGRnZ8PTs2BEvLe3N8LCwlT2SWhoKLy9vBRT7QgEAnh5eSEkNFSxvlq1aory5cuXR/ny5RGav15bRMXEITs7B94eBSNAq3t5ICQ8QmWfBIeFo5qXh9I+qebpjqDQcADA3YdBaNa4oaJ8RVsb7N60FuZm2vXIGQBExsYjJzsH1d0Lpt2p4emO4Igolf0CANdu38OP40egT+fPlZZnSiSIinuEDUvnoJq7i8bj1pSo6BhkZ2fDy9NDsczbywuhYeEq+yMkNAze3srnjrenp+LcGT5sCFq3aqkoLxAIkJeXh4z0DI3XQ524Twpn1bwBXp+/hkCfwqeDeMOyYU0kXr6ltCzxym1YNKoFALBoUBOJF28q1kkeP0dm/FNYNqyp9pg1iceJqqiYOORk56Cah7tiWXVPdwSHRxbS7kSguqe70j6p7umGoLAIAICZqSmu3LyDV68TIZXKcOZiIFycHIqtLurwph1W3h/va4dV90c1T3cEh4WrfO+W3/aiTo3qqFerhmYroAE8Rt4vLDQEXl7VlOrr6eWN0FDVH81ycnIQEREG72rVFcs8PDyRnZWF2JhoWFpaYe78RSqPwmekp2u2Emqizj7s27b+tgd1alRH3TJ+7jx9/hJebgV9V2srS1iYmSGokOtNaRZdSDtc7R/a4WqFtMPB+e3wgH5fwadJYwCAOCkJx0+cQo3q1aFt1LlPRgwbitatCqYqetM3SWffRKvbHZ43RGXbB81ZPmvWLKxevRqXL18GAGzatAk6Oqp5doFAgG7duqk1wE+RkJwKCxMj6AkLqmllZgxpVjaS0jNhZVowUsKpovKI16gnL3A9NBq9Wig/tvvsdRKOX7uPbdOGazZ4DUlMTIS5uTn09PQUyyws5KOvUlJTYfHWfOOJiYmoWrWq0vYWFhaIi4uTrxeLYW1lpbTe0sICCQkJGqyB+r0Wi2FuZqq0TywtzCGTZanuE3ESHOyVR3VaWlggJj4eaWnpSE1LR05ODqbMXoComFh4urni29HfoLy1dbHVR11ei5Pz98tb54+5GWSyLCSnpsHynTnnFk//DgBw7KzyyC5TY2OsWzxL8wFrWKI4EeZmZu8cJ+85d8SJKvMUWlhYKs6dat7eSuuOnziJ3JwceHt5abAG6sd9Urh4/98/qJy+bXmkBkcqLZO9eA1Tb/kPVAYVK0D69KXSeunL1zCoZKueQIsJjxNVr8VJKtdX+T7JQkpqmtKcnq/FSXCs8m67Y46YuMcAgEF9emD6wv+h19Ax0NXRgZWlBdb+NL94KqImhe0PK0U7/O7+EMOhShWl7a0szBET90hp2YtXCTgTcAl+S7RrX7zBY+T9EhMTYf9O/9TSwhJxcbEqZdPT0yGTyWD1Vj9MV1cXZmZmSEh4BQ9PL9SpW9DXz83NxdEjh1Gzlna8j0hdfdi3vXj1CmcCLmH10oWaDV5D1HnuWFqY41X+09WAfABISloaklNSNVwL9UoUi4vQDovh8E47bGlhgdg45eNk+87fsPP33TA1McHy/y3VbAU0QJ37pJq3ch/kTd+kGvsmWt3u8LwhKts+aGR5mzZtcOjQIZw5cwbm5uY4ePAgzp49q/I5c+aMpuMtEoksC3pCXaVlovzEeVZW9nu3E6emY/L63ajpYo+WtTyU1h26dAteDpVQ3anKe7Yu3aRSqdKPBwAUDUBWVpZq2bcahzdl35T7t/XaQiqVQlRIPQDV40RSaJ2FyMrKVsxJtnrjVrRr2QyLZk5DVlYWfpi3pNCR2KWdvK7vO1bef/78V73veAc+9NwRQlbIuREaGoYNmzajV88esLLSrpe8cJ98Gl0jQ+RKZUrLcqUy6OiL8tcb/ON6bcHjRFVhbYko/3r7bl0L3SfCgrb2+ctXMBCJsPjHKVi5aDbKl7PG0tXrNRi9+v1TO6y6P2SKfaUoK9RTKXfs1Fm4OzvD662no7QJj5H3k0olKvUVvqf/KZXK+2YfWn7rlo2IiorEgIFD1Bix5qirD/u2Y6fOws2F5w4AtPZpjF1/HEbsoyeQymRYs2UHACArW7v6wZ/eDqueL21at4Tfil9Qu1ZNTJs5G+kZ2jWKWhP7BJCPMPbftIV9k/9Au8PzpuzJEwj4KeLnv+yDkuVvMzIywrNnzzQRi9rp6wmRlZ2jtEyW37kx0NcrbBO8TknDyF+2Ijc3D/8b1VdlBP3pW0HooGWPwL9NJBKpdPDeXMQN9PVVy75zgc/KyoJ+frnCGoC312sLkZ5IpQPwpl767ySlRKLC6pwNA30RdHXlx0rHdm3QvlULeLi6YMakCYiOi0dw/iNp2kSkp6dyA1VwrGhXsk4dRHqFnw8AVI75wstmq5xjwSGh+GHWbNSvVxcD+3+tgag1i/vk0+RKpCqJbx19EXIy5MmdnPetzyz8JXalFY8TVYW1r7KsN/2TD9gn2fK2Ni8vD4tWrMWXXTuiSf26qO7pjrlTJuDWvYda1e6IRKrJ7vf2TfT0FPtKUTY7S6XchcvX0K6ljwaiLR48Rgrs3fMbevforPgAqomK7Pf0P0Ui0QeX37ZlI/48dAATJ09DVQdHdVZBY9TVh33bhcCraNeyuQaiLR7qOncAYGCfHnB3ccJg38no+NVQ6An14OJYFcb5L+LWFqL33LMBH9oOq54vlezs4ObqiqmTvoNMJkVgIS+VLc00sU/kfZM5qF+vLgb176eBqDWL7Y4ynjdEZdsHTcPyNl1dXa0ZOVzewgxJaRnIzsmBUFc+wvx1choMRHowNVR9MedLcQpG/LIFALBxylClaVoA4HliMqKfvVIZba5NrK2tkZycjJycHOjm7xOxWAx9fX0Yv/MCH2tra4jFYqVlYrEYVvlTr5T7l/Xaopy1FZJTUpX2SaI4CfoikcpLjcpZWSFRnKS0LFGcBCtLS5ibmUEo1EWVynaKdeZmpjA3NcXLhAQA7tAm5a0tkZySqnT+JCYl5+8X7XpRmjpYW1sjOSXlneNEDH191eOk0HMnSaw0wuTe/QeYNXce6taujelTpxQ6tVVpx33yaSRPX0DftpzSMn3bcpA8l0+9InlSyHqbcpA+e1VsMaoDjxNV5a0Kub4q2h3l62s5a0skJiUpLUsUJ8PaygJJySl4mfAazo4FU1JUKF8O5mameP4qQWtGhpazsirC/rAqZH8kwdrKQvH3y1cJiH30GE0bKk+lp014jBT4okMn+DQrmA94/749EIsTlcqIxWJYWqlOeWdqagaRSIQksRhVqsgfkc/JyUFKSgqs3irvv84Px44ewaQp09DUp5mGaqJ+6urDvvHyVQLiHj1G04b1NB67pqjr3AEAQwMDzJ36LdLSMyAQAMZGRug6cARsK5QvjqqoTdHaYSskvtMOJ77VDl+9fgMuTk4oV05+/ohEIlS0tUVySkox1ER91LlPAHnfZObc+ahbuxZ+mDqZfRMtb3cAnjdEZV2Rr+ItW7bEkCFDMGnSJCxbtgx+fn5Kn9LEvYothLo6eBD9WLHsTmQcvBwqqTRgmVIZxq78FToCATZNGYYKFqovZHwQ8wi2VuaoaG2h6dA1xsnJCUKhUPGyNAAICgqCq6uryj7x8PBASHAw8vLyAAB5eXkIDg6Gh7u7Yn1QUJCi/KtXr/AqIQEeHtr1Y4KLkwOEQl2ll4M9CA6Fu6uzyj7xcndDUGi40j55GBIKL3c36Orqws3ZCVExcYryySkpSE5NgW0F5TnxtYGrY1XoCnURFFYwp/L9kHB4ujhqZQfwUzk7OaqeO8HBcCvk3PH0cEdwSKjScRIUHKI4N2Jj4zBn3nzUr1sXM6Z/D6GwyL9blgrcJ59GfO0eLBspz4tr2bgOkq7dAwAkXb8Hy6Z1FesMKtvCsEpFiPPXawseJ6pcnBygK9RVGmH1ICQUHoW2O654qNLuhMHLzRWmpiYQ6ekh7tETRfmklBSkpKaioo32tDsF7fDb+yPsvfvj3Xb4Qf7+eCM4PBIVylnDprzyj03ahMdIAVNTM9jZVVJ8PDy9EPpO/zQkOAge7qr9Tx0dHbi6uiM46KFiWWhIMIRCIRwcnQAAv+/agePH/sLUaTPQvEWr4qmUmqirD/tGSHhE/rmjXcngt6nr3AGAddt24e+zF2BibARjIyOEREQhPT1D6QWI2sBZcf8Xplj2sAjtcHBwCDzz67xh8xacOntWUT4jIwOPnzyF/TvzV5d26twnMbFxmD1vAerXrYMf2Tf5T7Q7AM8borKuyBmvsLAweHt74+XLl7hz5w6uXbum+Fy/fl0TMX40Q30ROjWujYU7/0RQzGOcuxOMHScD0a9NIwDyF4BKZPJR8puPXcDjV2LMG9pTsS4hORWp+Y/DA0DUk5dwqqi9nUcAMDAwQNs2beDn54ew8HBcvnwZ+w8cQLeuXQHIX5oklUoBAD4+PkhLT4e/vz/i4uPh7+8PiUSC5s3lj2Z27NgRZ86exYkTJxATE4Off/kFDRo0gK2tdr18zkBfH5+1bollazciNCISl65ex95Df6Jn544A5L8gv9knLZo2Qlp6Ovw2bUVs/CP4bdoKiVSKlj7yt1t/2a0zDvx1DOcvXUHco8dYunItnB0d4OnmUmL1+1gG+vr4omUz/Lx+K0IiohFw7SZ+P3wMvTt9BkD+YhfpO/Mp/5fJz53WWLVmrfzcuXIFfxw4iG5dugAAEhPFb507TZGWno71GzYiLj4e6zdshFQiQYtm8ikBVvqtQbny5TBi+DAkJ6cgMVGstL224D4pOn2bctAxkD+S+Xz/39CzMIPXshkw8XSG17IZ0DU2xLN9xwEAcf6/o9LXXVFlSC+YVndHra0/4eXR88iMffxP/4lSh8eJKgN9fXzeqgWWrduEkIgoXLx6A3sO/YVenb8AoHx9bdmkIdLSM7B606+IjX+M1Zt+RaZUilY+jSDU1cXnbVpg7daduBcUgui4R1i4bA283Fzh4eJUklUsEgN9fXzWqgWWrZO3w/L9cQQ9C9kfLZo0zG+H5fvDb9OvSu0wAMTEP0JVLb8B5THyfk19miE9PR0b/dciPj4OG/3XQiKRwKe5fPS5VCqF+K2XMnbo1BkH9u/FlcuBCA8Pw9o1q9D+8w4wMDDAo/g47P59J3r17gsvr2oQJyYqPtpAnX1YAIiJ47nz5twBgHJWlti2ez9CIqIQFhmNhcv80PWLdjAzNSmx+n0MAwN9tGvTGivXrEVYeAQCr1zFHwcOoXsX+bRGb7ejzfLb4XUbNiEuPh7rNmyCRCJF8/x2uEvHjvhj/0Fcv3ETsXHxWPrzMthVrIj69eq+979fGqlzn6z0W4Py5cthJPsm/6l2h+cNUdkmyHvz81cpkBGwV+3fmSmVYdGuIzhzOxgmhvoY9JkPvm7bBABQe/hMzB3cHV2a1kH3mSsR+zxBZfvOjWtj3tAeAICFO/9EaoYES0Z8qfY4C2PU/EtER0Wp/XslEgn81qxBYGAgjI2N0bNnT3Tv1g0A8EWHDpj43Xdo164dAPmPI6v9/PDo0SM4OjhgnK8vXJydFd916tQp7Ni5E6mpqahTpw4mjB8PMzPVUfnq4uTsjKdh99X+vRKpFMvXbkTAlaswMTJCn+5d0aur/EajVZfe+H7CGHzeRj7aKCQ8AsvXbkTc48dwcqiKiaNHwNW5YG7Lv06cxs59B5CUlIxa1b0xaexIlC+n+miwuti518CrYM38UCWRSvHz+m24cPUGjI2M0K9bB3zZ+XMAgE/3AfjBdzg6tFae1/LY2QBs2X0Qf2xYrvJ9C1f5AwBmjB+pkXgBoLxXA8RGhv97wY8gkUiweu06XAq8DGNjI/Tq0QM9usl/aPqsY2dM+nYC2rdrCwAIDQvH6jVrEP/oMRwdHDB+3Bi4ODsjMVGMrwYMLPT7395enRxc3LhP3uHg4oajepofGdYxKwxX2gxAYsB1xd/3hk3D4+0HAQDm9auj+pq5MPFwRsqDMDwcOxspd0MU21ce2B1us8dDz8ocCacCcX/UTGQlJmksVh4nyhxc3PA89I7avxeQX1+XrduMgCvXYGxkhL7dO6N3lw4AgBZd+2La+FH4ok1LAEBIeCR+WbcJcY+fwLmqPSaO+QZuTvJ2RyqTYfOuPTh78QqkMhnq1ayOCSOGwMJcM22xrUdtPAu9q/bvlUilWL5uEy5cuZbfDndG7y7ydrhl1z74fvxopf2xbN3G/P1RFRPHfANXp4J2eNm6TUhLT8esyRPUHmdhKnrU0shxoq3HCCA/TsKj4jX2/eFhoVjjtxKPH8XDwcEJY3wnwNlZPjDh9KkTWLn8Zxw5dkpRft/e3fjz0H5kZWWhSdNmGDXGFyKRCPv27sb2bZsL/W+8vb06uDnbl/o+7PK1G5CWnoGZU75Ve5zvsnOvUeqvrzk5uVi7dQdOnb8EgY4A7Vs2w8hB/RRTVKibrUdtxEWG/XvBjyCRSLFq7VpcCrwCY2Mj9O7RXdEOt+/YBZO/nYD27doAkLfDq9asVbTDE8aNVtz/5ebmYu8fB/DXseNITklGndq1MX7MKFhba+Zep6qLe6neJ4mJYvQdMKjQ7397e3Wq6uJe6s+dkuibaOI40dbzBpAfJ1Q0GRd2l3QIWseoRd+SDkFjPipZ/ujRI/z222+Ii4vDnDlzEBAQAEdHR9St+2m/jGkiWa7NNJUs12aaSpZrM00my7WRJpPl2kqTyXJtVVzJcm2iyWS5ttJkslxbaSpZrs00lSzXZppOlmsjTSXLtZUmk+XaSpPJcm2lyWS5ttJkslxb8dxRxWR50TEfWXRGzYtnIHFJKPI0LDdu3ECXLl3w5MkTXLx4EVKpFNHR0Rg0aBBOnjypiRiJiIiIiIiIiIiIiDSqyMny//3vf5g0aRJWrVqleHnF1KlTMXnyZKxatUrtARIRERERERERERERaVqRk+Xh4eFo0aKFyvI2bdogPp6PWxIRERERERERERGR9ilysrxSpUp48OCByvLz58+jUqVKagmKiIiIiIiIiIiIiKg4CYu6wbfffotp06bhwYMHyMnJwaFDh/D48WMcPXoUP/30kyZiJCIiIiIiIiIiIiLSqCIny9u1a4cqVapgy5YtcHV1xZkzZ+Do6Ihdu3ahZs2amoiRiIiIiIiIiIiISP0EgpKOgEqRIifLDx06hA4dOqiMIs/IyMD27dsxcOBAtQVHRERERERERERERFQcPihZnpiYCIlEAgCYPn06XF1dYWlpqVQmNDQUP//8M5PlRERERERERERERKR1PihZfv36dXz77bcQ5D+W0KtXLwBAXl4eBAIB8vLyAABdunTRUJhERERERERERERERJrzQcnyzz//HGfPnkVubi7atm2Lffv2wcrKSrFeIBDA0NBQZbQ5EREREREREREREZE2+OA5y+3s7ADIp1t5n6ysLOjp6X16VERERERERERERERExajIL/hMSEiAv78/IiMjkZOTA0A+HUtWVhaioqJw48YNtQdJREREREREREREpHY6OiUdwX+eVCrF3LlzcfLkSRgYGGDo0KEYOnRooWXPnz+P5cuXIz4+HpUrV8a3336LNm3aKNbXq1cPqampStvcvn0bxsbGaom1yMnyH374AfHx8Wjfvj22bNmCIUOGID4+HqdOncK0adPUEhQRERERERERERERab+ffvoJDx8+xK+//oqnT5/i+++/h52dHT7//HOlcqGhoRg3bhymTp2KFi1a4NKlS5gwYQL++OMPeHh44MWLF0hNTcXp06dhYGCg2M7IyEhtsRY5WX7jxg1s2bIFtWvXRmBgIFq2bIm6detiw4YNCAgIwMCBA9UWHBERERERERERERFpp4yMDOzbtw8bN26Et7c3vL29ERERgV27dqkky//66y80atRIkV+uWrUqzp49i+PHj8PDwwNRUVEoX748qlSporF4i/ycQV5eHmxsbAAALi4uCA4OBgB88cUXePDggXqjIyIiIiIiIiIiIiKtFBoaiuzsbNSuXVuxrG7durh37x5yc3OVynbv3h2TJ09W+Y43065ERkbC0dFRo/EWOVnu5eWFw4cPAwA8PT0RGBgIAHj8+LF6IyMiIiIiIiIiIiIirfXq1StYWlpCJBIplpUrVw5SqRRJSUlKZZ2dneHh4aH4OyIiAleuXEHjxo0BAFFRUcjMzMSAAQPg4+OD4cOHIyYmRq3xFnkalsmTJ2PkyJEwNDRE165dsWnTJnTu3BlPnz5Fly5d1BocEREREREREREREZUeMpkMMplMaZlIJFJKiL+RmZmpsvzN3+9+x9sSExPh6+uLOnXqKF7wGR0djeTkZEycOBEmJibYuHEjBg8ejKNHj8LExORTqwXgI5LlP//8MwYPHowaNWrA0tIS+/fvx+nTp2FhYYEvvvhCLUERERERERERERERaVqeQFDSIWgdf39/+Pn5KS0bN24cfH19Vcrq6+urJMXf/P32SzrflpCQgCFDhiAvLw+rVq2Cjo58cpTNmzcjKysLxsbGAOR56hYtWuDcuXPo3LnzJ9cL+Ihkebdu3RAYGIgdO3ZAV1cXTZs2RbNmzdCkSRNF4ERERERERERERET03zNy5EgMGTJEaVlho8oBwMbGBmKxGNnZ2RAK5anoV69ewcDAAGZmZirlX7x4oXjB5/bt22FlZaX033j7v6Ovr4/KlSvjxYsXn1ynN4qc3f7yyy+xcuVKXLlyBRs2bICbmxsOHDiAZs2aoXfv3moLjIiIiIiIiIiIiIhKF5FIBBMTE6XP+5Llnp6eEAqFuHv3rmLZrVu3UL16dZWB1xkZGfjmm2+go6ODnTt3wsbGRrEuLy8Pbdu2xYEDB5TKx8XFwcnJSW11K/LIcgDIyclBUFAQbt++jXv37iE8PBwikajQXwOIiIiIiIiIiIiIqOwxNDREt27dMGfOHCxatAgvX77Eli1bsHjxYgDyUeampqYwMDCAv78/4uPjsWPHDsU6QD5di6mpKVq2bInVq1ejUqVKsLKywsqVK2Fra4sWLVqoLd4iJ8sHDBiAhw8fwszMDDVr1kTdunUxcuRIeHl5cRoWIiIiIiIiIiIiIlKYPn065syZg0GDBsHExAS+vr5o3749AMDHxweLFy9Gjx49cOLECUgkEpXZS7p3744lS5ZgypQpEAqFmDRpEtLS0tCoUSNs2LABurq6aou1yMlyoVAIgUAAS0tLVKhQATY2NrCxsWGinIiIiIiIiIiIiIiUGBoaYunSpVi6dKnKurCwMMX///vvv//xe/T19TFt2jRMmzZN7TG+UeRk+datW5GdnY2goCDcuHEDhw8fxty5c2Fqaop69eophtATERERERERERERlWoCDgCmAh81Z7lQKETNmjVhbGwMQ0NDiEQinDt3DlevXlV3fEREREREREREREREGlfkZPmuXbtw/fp13Lx5ExkZGahfvz6aNm2KCRMmwNnZWRMxEhERERERERERERFpVJGT5Xv37oWPjw/69u2LunXrQiQSaSIuIiIiIiIiIiIiIqJiU+Rk+eHDhzURBxERERERERERERFRieEM9kRERERERERERERU5n3UCz6JiIiIiIiIiIiItF2egGOJqQCPBiIiIiIiIiIiIiIq85gsJyIiIiIiIiIiIqIyj8lyIiIiIiIiIiIiIirzmCwnIiIiIiIiIiIiojKPyXIiIiIiIiIiIiIiKvOEJR0AERERERERERERUYkQCEo6AipFOLKciIiIiIiIiIiIiMo8JsuJiIiIiIiIiIiIqMwT5OXl5ZV0EERERERERERERETFLe3akZIOQeuYNOxc0iFoTKmaszw+IqSkQyhV7F09ERsZXtJhlCoOLm64GSYu6TBKlXrulgiOfFrSYZQaXi52iIyKKekwShUXZ0ccv5NV0mGUKl/U1uP19R0OLm44qude0mGUKh2zwnA1NLmkwyhVGnmY40pISkmHUao09jRD0p2zJR1GqWJRuzV+u8TxOG/r5yNgf+0tXi52uB/xsqTDKFVquFZAVHR0SYdRqjg7OUHy17qSDqNUMeg0GhFRcSUdRqni6lyV93/vcHF2LOkQiLQap2EhIiIiIiIiIiIiojKvVI0sJyIiIiIiIiIiIioueQKOJaYCPBqIiIiIiIiIiIiIqMxjspyIiIiIiIiIiIiIyjwmy4mIiIiIiIiIiIiozGOynIiIiIiIiIiIiIjKPCbLiYiIiIiIiIiIiKjME5Z0AEREREREREREREQlQiAo6QioFOHIciIiIiIiIiIiIiIq85gsJyIiIiIiIiIiIqIyj8lyIiIiIiIiIiIiIirzmCwnIiIiIiIiIiIiojKPyXIiIiIiIiIiIiIiKvOEJR0AERERERERERERUYkQcCwxFeDRQERERERERERERERlHpPlRERERERERERERFTmfdQ0LCkpKdiyZQsePHiA7Oxs5OXlKa3fvn27WoIjIiIiIiIiIiIiIioOH5Usnzp1Kh48eIDOnTvDxMRE3TERERERERERERERERWrj0qWX758GTt37kSNGjXUHQ8RERERERERERERUbH7qGS5jY0NdHQ43TkRERERERERERFprzyBoKRDoFLko6dhmTNnDsaPH4+qVatCT09Pab2dnZ1agiMiIiIiIiIiIiIiKg4flSz39fUFAIwYMUKxTCAQIC8vDwKBACEhIeqJjoiIiIiIiIiIiIioGHxUsvzMmTPqjoOIiIiIiIiIiIiIqMR8VLK8UqVKAIDAwEBERUUhNzcXjo6OaNKkicqULEREREREREREREREpd1HJcufP3+OMWPGICYmBo6OjsjJyUFcXBzs7OywdetW2NjYqDtOIiIiIiIiIiIiIiKN+ahk+dy5c2FtbY2tW7fC3NwcACAWizFlyhQsXLgQq1atUmuQRERERERERERERGon0CnpCKgU+aij4erVq5gyZYoiUQ4AlpaWmDx5MgIDA9UWHBERERERERERERFRcfioZLm5uTmSk5NVlqekpHDOciIiIiIiIiIiIiLSOh+VLO/YsSN+/PFHXLlyBWlpaUhLS0NgYCBmzpyJDh06qDtGIiIiIiIiIiIiIiKN+qg5yydMmIDXr19j2LBhyMvLAwDo6uqid+/emDp1qloDJCIiIiIiIiIiIiLStI9KlotEIixZsgQ//PADYmNjIRKJYG9vDyMjI3XHR0RERERERERERESkcR+cLL9x4wZq164NoVCIGzduKK2TSqUICgpS/F2/fn31RUhERERERERERESkAXkQlHQIVIp8cLJ8wIABCAwMhLW1NQYMGPDecgKBACEhIWoJjoiIiIiIiIiIiIioOHxwsjw0NLTQ/09EREREREREREREpO0+as7yNm3aYP/+/bCwsFBa/uLFC3Tr1g1XrlxRR2xqIZPJsHqdPy5evgJ9kT56de+K3j26FVo2MioaK9esQ0xcHKra22PC2FFwc3FRKXfhUiAWLPkfTv11SLPBa4hMJoPf2vW4dPky9EUi9OzRHb16dC+0bGRUFFb5rUVsXCyq2ttj/NixcHWV75O8vDzs/WM/jh4/jtSUVLi5uWLMqJGoam9fnNVRq9ioMGxZtxSPYqNQ2d4JQ8d8D0cXj3/dbqPfIlhZlUfPfsMVy54/fYRt/j8jPOQ+TEzM0L5Tb3Tq0V+T4WtEdFQE1vstQ1xcDOztHTBq7HdwdnV/b/kjh/7AoQN7kJGRjqY+LTF81HjoGxgAALKyZNiycS0unj8DoZ4e2rb/Al8P/AYCgfY88hQVFQm/1asRFxcLe3t7jB03Hq6uru8tf+jQQRzY/wcyMjLg06wZRo0aA4P8/fFGVpYME8b7YtToMahRo6amq6B2j2NCsHfTPDx7FAHbys748ptZqOLkXWjZ7CwZju5ZhduXj0MmzYSLVz30HPwDLKxtFesP7fgJtwKPQVcoRKOWPdCx7wStOkZ4jX0/HZEefK4dwMMJ85EYcL3QMma1PFFtzVyYVXNDanAkHoydjZTbBVO92fXpCLe538KgYnm8OnkJ90fNRNZrcXFVQa3iosOwbe0SPI6LRCV7JwwaPQ2OLp7/ut0Wv4WwtC6P7l+NUCy7eeUcVi/5Xqlcvcat4Tttidrj1qS46DD8um5xwT4ZNR0OH7JP1iyApVUFpX2SlSXD71uW42rACQiFemjetgt69h+jNdcTqSwL/9uyG+eu34G+SA9fd2qHrzu1/cdt7oZGYu7abTi4aoFiWcO+owstO3vMIHRo3kitMReXZ3HBOLpjDl48CUcFOxd0HDAHdg7VCi0rk2bg798XI/T2SeTl5cGr3mf4rM80iAyMAcjbnRN7luDhtb+gK9RDbZ+eaN3jO605Tt5gf01ZTFQ4Nqz5GfFx0ahi74jhYyfD2eX9++Po4b04vP93ZGamo7FPawwb+a1ifyQnibFx7S94cO8WTM3M0bPPQLRq26G4qqI2UZGRWO3nh7hYeR92nK/vP/dhDx7E/v37kZGRgWbNmmHU6NGKPqxMJsPaNWsQGBgIkUiEnj17okfPnsVVFbWQZmVj0YFzOHM/Avp6QgxsWReDWtYttOzRW6FYf/IqXiSlwqNSBUzp1gLV7W0V60/di8CqY4F4mZKGWg52mN27LeyszIqrKmoVFRWJNatX5t/rVMXYcePh4ur23vKHDx3A/v37kJmRAZ9mzTFy1FjFcZKQkIAN/mtx/949iPRFaNasBQYNHgqRSFRc1VEL3v8RlT06H1rw77//xvTp0zF9+nQ8efIE8+bNU/z95jNlyhTo6upqMt4i27BlG8IjovC/hfPhO3okdv6+BwGXLquUy5RIMGPOfFTz9sKaFb/Ay8MDP85ZgEyJRKlcWloa1vpvKq7wNWLj5q0Ij4zA0kULMG7MaOz67XdcvBSoUk4ikWDm7Lmo5u0FvxUr4OXpiZlz5kKSv0+OHv8b+w8cxJhRI7F65XLY2tjgx1lzFOu1jUSSif/Nmwh3r1pYsHwbXD2r43/zJkIiyfzH7Y7s34HzJ/9UWpabm4uf50+CmZkFFq34FUPHfI9De7ci8MIJTVZB7SSSTCyYPQ1e3jXw8wp/uHt6Y8Gc6e/dJ1cCL2D3b9swatxEzFu0DOFhwfh1q79i/SZ/P9y7cwuz5v+EiVNm4NTfR3Hy7yPFVZ1PJpFIMHvWTHhXq4YVK1fD09MLc+bMeu8xH3jpEn7btRPjxo3HosVLEBYaiq1bNiuVkclkWLp0CeLi4oqjCmonlWRgw9LRcPaog0mL98DRrRY2LB0DqSSj0PLH963BgxtnMGDcEkyYuwM52dnYsuxb5OXlAQAO/LoYYfevYNR0fwwc9xOunN2Py2f2FWeVPhmvsYXT0Reh9s5lMK32/hsuXSND1P9zA8SXbuJSwx4QX7mD+of9oWtkCAAwr18dNTYsRMQCPwT69IGepRlqbl5cXFVQK6kkE7/M+xZu3rUwd9l2uHjUwPL530H6L23O0QPbceHUYZXlTx/FoFb9Zli57ZjiM3TcDE2FrxFSSSaWzZ8AN69amPPLDrh41MCyBd/+6z45dmA7AgrZJ7s2/YKge9cxefZqjJo4HxdOHcL5kwc1Fb7ard51ACHRcVgz81tMHfoVNu0/ijNXb7+3fGT8E0xfvhF5uXlKy4+tX6L0GdC5PSqWs0Lzetp5cy6TZuC3lSNh71oXI2buR2Xn2vht5SjIpIW3O3//vhjPYh+i/8TNGDh5K57EPMCJPUveWr8Q0cGB6P/dJvQY/jNuB+zDrQt7iqs6asH+mjKJJBOL5kyBp3dNLF2xCW4e1bB4ztT37o+rgeex97etGDluMmYvXImIsCDs2LoOgPyH6/8t/AGJr19hzqKVGDLcF79u8sO1yxeKs0qfTCKRYNasWajm7Y2V/2fvvsOjKPo4gH+TXEnvhBISEtITeu8dpXdFpCq9iaKiIFVAFBWUJh1RmnSk916llzTSCaGkXHqu5t4/Di5cLiDEuyT38v08zz4PNzt7zGz2dmZ/Ozu7aBGCgoMxc8aMl/Ypzp07h40bN2Lc+PGYN28ewsPDsXbtWu36NatX4/79+5j3/fcYO3YsNm7ciHNnz5ZUdQxiwd6zCH3wBKtG98GU3m2w4shlHL11Xy/f9ZiHmLn1KEa+0xA7Jw1CTa+KGLtqN3JlcgDAzdgkfL3hIAa1qoO/PvsQIoEFvtpwoKSrYxBSaR5mTp+KkGrV8cuvSxEYFIyZM6e99Ldz/txZbNr4J8aNm4C58+Y/u9bRxErUajXmfTcbMpkMP/z4MyZ9NQVXrlzChj9/L8Ea/Xe8/iN6O712sLxBgwY6n58HNl7k5+eHZcuW/fdSGUieVIqDR45hzIih8PP1QbMmjfB+757Ys2+/Xt7TZ85BJBJhxMdDUMXDA2NGDIWVlRXOFApwrFy7HhUrVtDb3lRIpVIcOnIEo0eMgJ+vL5o2aYz3+vTG3/v26eU9feYsRCIRhg/9GJ6eHhg1YjisrK1w5uw5AMDRY8fRu1dPNGrQAJXd3TF+7BhkZmXhnonOWX/p7DEIRWJ8+NF4uHt4Y+Cwz2BpZY3L548XmT83Nwe/fD8Ze3f8CRfX8jrrMtLT4Onth49GT0KFSp6oVa8JQmrUQ2TorZKoisGcO3MSIpEYg4eOgodnFQwdMQ5W1ta4cLboC4R9e3aia/c+qN+gMfz8AzFq3Oc4fvQgZFIpsrIycfzIAYz55HP4BwShRq266NbzfURGmM7xcubMaYjEYgwdOgyenp4YMXIUrK2scPbsmSLz79mzG92790CDhg3h7x+AceM/wdGjR7Sdq4SEeEyc+CkeP3pUktUwqBsXD0EoskS3AV+ggrsPeg7+GmIrG9y8dKTI/FdO70anvp/AN7g+KlT2Qd8Rs5AQfRcpjxOQk52BSyd3oe+ImajiWx3+1RuhdZfBiI+6XcK1Kj6eY4tmG+SDJue3wtrn1aPiK77fCfl5MoR9NR/Z4TEInTgXqqwcVOzTAQDgNWYAkrYfxMMNe5B1JwI3h0yCW8eWsPKqXBLVMKjL545CJBLjgyGfoJKHN/oPmwhLKxtceUmbk5ebjcXff439O/6Ac6E2BwCSEuNQuYoPHJ1ctYuNrZ2xq2FQz/dJ3yETUMnDGx8O/RxWVja4cv5YkfnzcrOx5IevsH/ner19kp2VgbPH9uCjMVNQ1T8EwTUb4N3u/RETebckqvKf5Ull+PvEeUwc/D4CvT3RqkEtDOzaHtsPnyoy/85jZzF8+o9wdtD/m7s4OmgXmVyBrYdOYsrIAbB9dhPK1Ny7chACoRjt35+EcpV80KHfFIgtbRD6z6Ei81sIhOjYfxoqeVVDxSohqN2sFxLua2465GWn48a5Heg6eDbcq9ZA1eDGaPzuR3gYYzrtDsD+WmEXzpyASCTGwI/HoLKHFz4a8QmsrKxx8dzJIvMf+Hs7Ond7D3UbNIWvfxBGjP0SJ4/th0wqRUxUBCLC7mLClzPg7eOPug2aokef/tizY3MJ1+q/OXP6NMRiMYYO0/RhR44cCSsrK5x9SYB7z5496N6jBxo2bAj/gACMHz8eR49o+rBSqRSHDx/GyFGj4OvriyZNm6LPe+9h717TuaGSK1Ng1+W7mNSjJYIqu6FtdV8MaV0XW87f1MubkpWDEe0bokvdIFR2ccDIdxoiI1eK6CdpAID1p6+hU91AvNe4BrzcnPFVj1ZIycyBJPvVN3rLIs21jggfDx0OD09PjBg5GlZWVi+9EfL3nl3o1r0nGjRsBH//AIwdPwHHjh6GVCpFYuIDRISH4dPPvkCVKl6oVq06BgwYjFOniv4dllW8/iN6O712sNzZ2Rnz5s3DvHnzMG7cOHz33Xfaz8+XadOmoUaNGsYs7xuJiY2DUqlEcFDBNBrVgoMQHnkf+fn5OnnDIiJQLThI+3ihmZkZQoIDERYeoc1z685d3LpzFx++36dkKmAE0TGxevskJDgY4RGR+vskPAIhIcG6+yQoCGHP5qwfPvQjtGndSpvfzMwMarUauTlFj+wp66Ii7iIguKZOff2DaiAqvOgL6+QnSVDI5Zi78He4Vaiks87J2RWfTJoLK2sbqNVqRITeQvi9mwiqXsfo9TCkyPBQBIVU09kngUHVEBF+Ty+vSqVC1P1wBFcrOAcEBAZDqVAgNjYaYffuwNrGBtWq19Ku7/3+hxj/6Vd631VWhYeHIyQ4RGd/BAUHIzxc/wJSpVLh/v1IVKtWXZsWGBgEhUKB2NgYAMCdO3dQo0ZN/PTzwpKpgBHE378N74DaOvvE27824u7r3xjKz8/HgHHfI6BGE711eblZiA2/DitrW/gG19emt+s+DB+OmqOXv6ziObZozi0aIPXUZZxv1veV+Zwa1kTahWs6aWkXr8OxUS0AgGODmkg7e1W7Tpr4GHkJSXBqaHojZKMi7sIvSLfN8QuqgaiIO0XmT36SBIVChlkL/oBbBXe99UkPYlGhkulO0QMA0RF34BdUS2ef+AbWQPQr94kcM3/+E+XK6+6T+2E3YWVti8BqBY/Ud+k9BEPHTzdeBQzofnwilCoVagRU1abVDPDFvag4vXMJAFy8eQ/TxwxGv05tX/m9K7buRb1qAWhQ/d+ntimrEmNuwtOvrs5x4uFbGw9ibhaZv/OA6fD00/S/0lMScefyfngFaAYBJURdh9jKVvsZAJp1GoHuH39n3EoYGPtruiIj7iEwuIbO/ggIrobIl+6PMARVK2hH/AODoVQoERcbhSePk2Dv4IjyL/T1q3j5ICYqHEql0viVMZDw8HAEh+j2YYODgxFexA14lUqF+5GRqFatYGqjwKDnfdhYxMTEQKlUIiio4DwSEhKCiIiIIs9PZVFkUjKU+fmo5VXwd63tXQl34h8jv9DTOe/U9MfwdppzhFShxIbTN+Bsaw2f8s4AgKtRiWhbvWDq1souDjg4dSicbE3vhmREeBiCg6sVOk5CEB4eqpf33651nJycMWv2d3ByctLZLjcnx7iVMDBe/7091GbmXN5w+X/22nOW//PPP6hduzYEAgEaNmyIu3dfPjKnfv36L11XktLS0uBgbw+hUKhNc3RyhFwuR2ZWFhwdHF7IK0GVKroXmU6OjoiLTwAAyBUK/LJkGcaPHgGhoFhTvZcJaRL9feLk+JJ9IknTmxvX0dFJ+7hQtRDdOYkPHj6CfJUKIcHBRqyB8aRLUlDZs6pOmoOjMxITYorMX8XbD19O//lfv3fCsJ5ITX6M2vWbokHj1gYpa0mRSNLg4emlk+bo6ISE+Fi9vDk52ZDL5XB2dtWmWVhYwM7eAakpyUhLTYGbWwWcPH4YO7ZuhFKhRJv2HdCn7wCYm5vGiVaSlgbPKlV00jS/iTi9vDk5OZr94eKiTbOwsIC9vT1SUlIAAJ07dzFqeUtCZnoyKlTWfbeDnYMLHifqP8Zqbm6OgOqNddLOHNwAGzsnVKoSgJiIG3AuVwlXzuzBsd2roVIq0KBlD7TvOcJkjhGeY4uWsOL1RuCJK5RDVmiUTpr8SSrsQjTzQlpWdIMs6anOetnTVFi6m94TXxmSFLh76LY59o7OeBhfdJvj6e2PidOKvrBSq9V49DAed25cwt7t65Cfn48GTdqi14cjIXjhWCzr0iUpcNdrh12QmBBdZH5Pb398NrXoffL08UO4ulXC+ZP7sXf7OqiUCjRr0xVd3/vYJM4nKekZcLCz1elzOjvaQaZQICM7B072uiPIf/xiFABg36mXvzfocUoajpz/B6u+/dI4hS4h2RnJKFdJd65YG3tXJD/Ub3detHvNV7h1YQ8cXd3RstsYAIAk+QEcXdxx68JunN2/AiqlArWa9UKLzqNgZgLHyXPsr+lKT0tF5SreOmmOjs5IKOL8mpuTDYXe/hDAzt4eaanJcHB0Qk5ONmRSqXYO85SUp1CpVMjNyYa9g6NR62IoaWlpqKLXh3UschqI531Yl5f0Yc3MzODg4KB7jf2sr5OVmQmHQu81K4tSsnLgaGMFoaBgClkXOxvIlCqk5+bB2dZab5vLkQkYtXIX1FBj3ocdYC0WITNPisw8GVT5+Ri1YiciH6WgumcFTOndBuUdbEuySgahOU68dNKKc62TmpKCoKBg1K1bT7suPz8f+/buQc1atY1VfKPg9R/R2+m1o74DBw7E+fPn4eLigoEDB740n5mZGcLKyCPiUplMpxEHANGzzwqF4l/zCoVCbb6NW7bC18cH9erUxq3bRY9wMgWyl9QT0N8nRecVQF4oHwCEh0dg5eo16NO7F5ydnfTWmwK5TAaBUPdlI0KhCAqF/D9976dfz0N6eirW/TYff675BYNHfP6fvq8kyWRSvWNA8MLv4kVymQwAXvo7kkrz8CjpIY4c3Itxn34FSVoqli9ZALHYEt17vW+8ShjQy34/Re0P2b/sj/8XcplULxgnEIqgfI063rl6Aif3/Y73hk2DQCCEXJqL5EcJuHhsG/qNmo3M9GRsXfUtRGJLtO4yxEg1MCyeY/8bC2sr5Mt0z7n5MjnMxaJn6y1fud6UaH47hdocQfHanNTkx5A/O1+P/XIekp88xMZVP0Mul2HAcNNpczR10N0nAqEQymLsE5k0D08eJeDk4Z0YNn460iUpWP/bPIjElujYo+y/bFsqU0Ak1O2mi54FzuWK4o1m/fvkeQRVrYJqft7/nrkMU8iksBAU0e4oX32cNO04HPVa9cOxHT9j48IRGDF9B+TSXKQ9jce103+h+0ffITsjGfv+mAGhyBJN3v3YmNUwKPbXdL1sfxTVN5HJpNr1hfMrFHL4BQTD2dkVa1b8go9HToAkLRX7dmvmtDelkeWG7MOq1Wq9/fWyvk5ZlSdXQiTQfdfa888KparIbXwrumDzZ/1wJjQW07YchbuLgzYg/sOuUxjfqSnGuTlh6aGLGL96D7Z89iHMzU3npbjAmx4nUu16/fz65+N1a1cjOjoKC35ZbMASGx+v/4jeTq8dLA9/9lh44X+XZSKRSO+k9DwIIRaL/zWvQqGAWCxGbFw8Dhw6gpVLfjVugUuASFh0PYEi9kmReZWwLJQvNCwcU2fMRP16dTFoQH8jlNo49mz9HXu2r9d+9vUP0bsgVyjkEIstC2/6Rqr6aR5RVMjlWPbzDPT/6JMyO9Jv+18bsGPrRu1nv4AgvWNAqVAUuU+Ez95q/rLfkbm5BXJzc/DZpKlwc9OMAk1JfoqD+/eU2Yuvv/7agq1/bdF+DggIfGn9ChOJir5oeFl+U3F010oc3b1K+7mKbw29i0+lQg7hv/xubv9zHOt//QLN3/0QjdtoprYyt7CANC8bA8fPh3M5zWOxkpTHOH9ki8kEy3mO/W/ypTK9wLe5WARVruaCTPWy9Xllf17QvdvWYe/237WffYpqc5RyiIrR5ri6VcTSDUdhY2sPMzMzVKnqD7VajRULZ+DDjz+FeRl7+fpze7etw74d67Sfq/qF6F1gKxWKYu0TcwsL5OXmYNTEOXB1qwhAc1PhxKEdJhEsF4sEekFx+bPAnGUxbw6duHwDvdo1/89lK2ln9y/H2f0rtZ8re9eASllEuyN69XFSrpLmKag+IxdiwectEB/5D8wtLCDLy0av4T/B0VUzlU9G2iP8c3JTmQ6Ws7+ma+fWP7Bz6wbtZz//ovdHUeeS5/tDvy+j2X8ikRgTv/4WC36YgUHvd4CDgyO69/4Q61cvgZW1/ujjsuKvLVvw118FL6oNCAh4/T7sSwLfz/Pn5+fr7S9tX8fyv103lRSx0ALyQkHx558tRUVfp7nY2cDFzgaB7m64Hf8Y2y7cxoTOzQAAvRpWQ9d6mmu+ef07oM3Mlbgd/wi1vCsV+V1lxda/NmPrXwVP//m/0bXOq84lusfBurWrsWf3Tnz19Tfw8irbN2x5/UdEwBsEy5OSkl77SytVKhuNgquLCzIyM6FSqWDx7EJRIkmHWCyCrY1NobzOSJNIdNIkknS4ODvh3IWLyMzKwqDhmkdcn8/F1rXPB/h07Gi0bd2yBGpjGC5F7JM0iaTIfeLi4gJJ4X2SLtEZ1Xjr9h1Mn/Ut6taujcmTvjSZxzMBoG3HnmjYrGBuz707/0S6JFUnT4YkDY5OroU3/VcZklTcj7iLeo0Kjg13D28olQrk5eXATuhY7HIb07uduqFp84KpYnZu34x0SZpOHkl6GpycnfW2tbOzh0gkQrokDZU9NFNLqFQqZGVmwMnZBXl5uRCJRNoLLwCoVNkDqSlP9b6rrOjUqTOaN2+h/bx921ZICu2PdIkEzq/YHxJJGjw8PABo9kdmZmaR+U1Fk/Z9UatxB+3n43+vQWZ6ik6erIwU2DuWe+l3XL9wABuWTkHTdu+j5+CCOVDtHctBKBRrA+UA4FbRC+mpjw1YA+PiOfa/kSY9gbiC7jlXXMEV0sea84T0YRHry7tC9ii5xMpYXK079EKDZu20n/fv+AMZ6YXbnFQ4Or95mwMAtnYOOp8rVfaCQi5DdnYm7B3K5tMIevtk53pkFG6H01OL1Q47OrlCKBJrA+UAUNG9CtJSnhS/wCWonJMjMrKyoVSpIHh2LklNz4RYJIRdMV7M+SQlDbGJj9CinunN71+v5QcIqddR+/ncwdXIztD9zedkJsO2iHZHpZQj4uZJ+IQ0hdhKMwLU1sEVVraOyM2WwNahHARCsTZQDgAuFbyRmVa22x3213S179gDjZu10X7es32jXp8+XZIGJ2eXwpvCzs4Bwmf7w91DM9WCSqVEVmYmHJ00+X39g7BszVZIJKmwt3fArev/wM7eAVZWZTdY3qlzZzRvUdCH3bZtm36f42V9WPvnfVhJkX1YtVqNjIyMQtfYEojFYtgU6uuUVW72tkjPyYNSlQ+BhaZvlZKVA0uhAHaWukHNuwmPYWFujqDKbto0n/LOiH6SBkcbKwgszOHlVtDOOtpYwcHaCo/Ts0qmMv9Bx06d0exfrnUkkrR/udaRwOOFc0lmZqbOuWf5b0txYP9efP7lV2jarOzfsOX1HxEBb/CCzzZt2qBt27Z6S5s2bfTWlRU+3t4QCAQ6L+m8ey8U/n5+egGHoIAAhIZFQK3WvNBDrVbjXlgYAgMC0L1rZ6xdvhTLFy3E8kULMXH8WADA8kUL0bhhA5gSn6rP90nB0wH3Ql+yTwIDEBoWrrtPQsMQGKh5cV1cXDxmfjsb9evWxTeTv4LAxOZyt7VzQIVKHtrFL6A67off0alvZNht+AZU+5dv0vf0ySP8Mu9rpKUWXFjERofD3sEJdvaOhqqCwdnZ2aNiJXftEhAYjPCwezr7JDz0LvwD9edMNjc3h69fIMJCC6Ypigi7B4FAAG9vHwQEBkMul+Phwwfa9YkP4lHOrezONWxnZ4dKlSppl8CgIISFhunsj9DQewgM0H9Rmrm5Ofz8/BF6r+BlUmFhYc/2R1W9/KbCxtYB5Sp4ahcvv5qIi7yps09iI27Ay6/olz1H3rmEDUunoPk7/dD7oyk666r41YBCIcPTpDht2pOkGDiVKxs3YF8Hz7H/jeTyLTg10p3L0qlxHaRf1rwwNv3KLTg1LXhho2XlCrDyqAjJZf0XypY1tnYOKF/RQ7v4BlbH/fDbOn//+2G34eP/5m3OnesXMWZAO+0j0QCQEBsJWzuHMhsoB4rYJwGaF5zq7pNb8ClGO+wTUA0KuQyPHxbMx5uUGKcTPC/L/L08ILCwwN37BXNO3wqPRrCPV7Fumt2NikN5FydUcDW9i3UrW0c4l6+iXTx8auFB9A2d4yQh6gYqV9W/EWBmZo7daycj8vYpbVpGahJysyVwreiDyj41oVTIkPq4YD+nJEXrBM/LIvbXdGn2R2Xt4h9YDZFhd3X3R9gd+Ae8bH8EITz0tjYtMuweLAQW8PL2RVZWJqZOGqO5meDkAgsLAa5fvYiQ6mV73uXCfdigwECEhhXuw4YiIDBQb1tzc3P4+fvjXpF9WG9UrVoVAoFA5+Wg9+7dg18RfZ2yKsC9HATm5rgd/0ibdiM2CSEe5fWmTtl15R5+3X9OJy008SmqlneGwMIcwZXdEPmoYOCIJDsP6Tl5qORsb9xKGICdnT0qVXLXLpprnVCd4yQsNBQBr7zWKXiXXVhYqM61zqaNf+LggX2Y9PUUtGxpGu/u4vUfEQFvECw/fvw4jh07hmPHjmHq1KmoUqUKli9fjgsXLuDq1av4/fffERgYiOnTpxuzvG/E0lKM9m1a49elyxEReR/nL17Ctl170LOb5qUKaRKJdl6p5s2aICcnB8tWrkF8wgMsW7kGUqkMLZs3hb2dHdwrVdQuri6aCw33ShVhXYzRPaXJ0tIS7dq2waKlyxARGYkLFy9i+85d6NGtGwDNi06f75NmzZoiOycHy1euQnxCApavXAWZVIqWzTWPm/26ZClcy7lixPChyMjIRFqaRGd7U9OgaRvk5mTjz9ULkZgQiz9XL4RMlqcdfS6XSfVGqbyMj18QvH0CsXLRXCQmxOLm1QvYvG4xur83xIg1MLwmzVoiJycba1YuwYOEOKxZuQQyqRRNm7cCoJmXTZJWcKe9Q+fu2L3jL1y+eA73I8OxfNlCtH+3M8SWlnCv7Im69Rth8YIfEBsThRvXrmDnts3o0LlbKdXuzTVr1gw5OdlYuWI5EhLisXLFckilUu3IHZlMhrQX9kfnLl2wY8d2XLxwAZGREVi2dDHe7dABlibyiOrrqNXwHeTlZmHX+u/xODEau9Z/D7ksD7UavQsAkMul2pHnKpUSm1dMg29QPbTtPhSZ6SnaRalUoHwlbwTXboFNv32Dh/HhCLt1Hsf3rEHT9n1Ls4pvhOfYNycu7wrzZ6O4Hu84BKGjPYIXfAPbIB8EL/gGFjZWeLTtIAAgfsVmuPfvDo+P+sCuegBqrZuPp/tPIS8usTSrUCz1m2janI2rF+BhQgw2rl7wrM3RjLTWtDkp//ItGr6BNSASWWLtkjl4lBiPW9cuYMvvi9Gp18vfMVMWafZJFjat+RkPH8Rg05qfIZPloUHT9gDebJ9UdPdCzXrNsHrRLCTERuLOjYvYv3M92nTobcwqGIylWIROLRvhh9WbEBodh9P/3MTGfUfRt6Mm2JCangGp/PXnco95kATvyqZxo+DfBNd7F9LcLBza/B2Sk6JwaPN3UMjyEFJfM/pcIZdqR56bWwhQt+X7OLFzIRLuX0NS3F1sX/4ZAmu1hZu7H1wrVIVfjZbYvXYyHj8IR9Tdszh3cBXqtfqgNKv4xthf09WoWSvk5GRj3cpFeJAQi3UrF0EmzUPj5prR5zKZDJIX+vTvduqBPTs348rFM4iKDMOqZT+j3btdIba0hJ2dPaR5efhz3W948jgJxw/vxYmj+9G994elVb1iadasGXKys7FixQokxMdjxYoVkEqlaPGSPmyXzp2xY/t2XLhwAZEREVi6ZAk6POvDWlpaom27dliyZAkiIyJw4cIF7NyxA9179Cil2r05K5EQXesHY86OE7ib8Bgn7kThj1PX8GFzzU2QlMwcSJ9NhdWnUXX8E5WIjWduID5ZgmWHLuLug8fo30KTd1DLuth09iaO3IpEzJM0TP/rCALcy6G6Z9m9wfQyzZo1f3at89uza53f9K51XjyXdOrSFTt3bMPFC+efXesswrsdOsLS0hIPEhKwZfNG9HmvL0KCq0GSlqZdTAmv/94iZuZc3nT5P2amfn6L7A20atUKv/76K2rW1B3BcefOHYwePRrnzp17yZavlnDf8C8GlUplWLRsOc5euAgba2u837sHenXXdPbad+mBLz4dj3fbaYKh4RGR+HXZciQ8SERVryqYMHY0fH307wDeun0HX0yZhqP7dhu8vC/y9AtCXFSkwb9XKpVi8bLfcO78BdjYWKNPr17o1aM7AODdzl3x+acT8E57zcV6eEQkFi9dioQHifD28sIn48bA18cHaWkS9Bs4qMjvf3F7Q/Py9cfVCMm/Zyym6Mh7WLvsBzxMjIenlw8+Hv0VvHwCAACnj+/Dyl/nYOPfl/S2mzNlNIKq1UHvD4dr0ySpyfh9xU+4d/sqxJZWeKdTH3R7bzDMzAz7opd6AU4IjXr9aZLeVGREGFYsXYjEB/Go4lUVo8ZNRFUfPwDAiaOHsPiXH7Br/0lt/h1bN2Hvnu1QKORo3KQFRoz5VDunXU5ONlYvX4RLF89BLLZEx87d8X6/QQbdJ8G+lRAVHfvvGYspIiICS5cswoMHD+Dl5Y1x48fDx0czD+rRo0fwy8IF2H/gkDb/1q1/Yc/uXVAoFGjStCnGjBmn3R8v6typA+Z9/wNq1DD8I/K+Pt44eMN4L5WJj7qDbau/xZOHMajo6Y/3h01HZW/NaIvLp3Zj8/Kp+GXLXcTdv4VfphU95/bYaWvhF9IAeblZ2LHuO9z55ziEYks0e6cf3u01yuC/m461hUY5vwKme4718vXHfmGAwb+3sM6KCFxsOxBpZ65oP98a+jUS/9gFAHCoXx3Vl86CbaAPMu9E4O7YGci8WdA/qDyoJ/xnfAKhswNSjp7H7VHToEhLN1pZL4VnGOW7AU2bs/6375GUGAePKr4YMuZrVKmq+RucPb4Pqxd9i/V7ruhtN++bUQisVgc9+43QpiUmRGPT6oWIjrgLSytrtOrQEz36DjP4b6dRoAMuhmUa9DtfFBN5D+uXz9Puk8GjJ7+wT/ZizeJv8fvuf/S2m/fNSARWq6uzT3JzsrFh1Y+4fukURGJLtO3UB93eN/w+aRxkj/QbJwz6nQAglcnxw5pNOHn5JmytLdG/a3v066Tpszb8YDSmjRqELq0a62yz79RFrN6+D7uXzNVJ/2H1JmTl5mHOJ0MNXs6iONZug03n3vgS47U9jLmNfX/ORMqjaJSvHIDOA2eiYhXNqOGb53Ziz7opmLFG84SPUiHHiZ0LcefyPshluQiq0x4dP5yqnZZFmpuFg5vmIPz6UQjFVqjf+kO06DrG4MfJh83M2F97QbBvJdy+b7ypXe5HhGLVsp+e7Q8fjBj7Bbx9/AEAJ48dwLJf5mHbvrPa/Lu2bcD+PVuhUCjQsElLDBv9GUQizY3ch4kJWLnkR0TfD4db+YroP2Qk6jZoavAy1/BzQ3RMjMG/97mIiAgsWbxY04f19sb4cePg4/u8D3sUCxcswIGDB7X5t27dit27NH3Ypk2bYszYsdpjRCqVYumSJTh//jxsbGzQu3dv9OjZ0+Bl9qlaFdJ9vxn8ewEgT67A3B0ncOx2FGwtRRjSui4GtKgDAKj5+S/4tm97dG8QAgA4HRqDxQcuICFZAt+KrpjUvaXOfOQ7Lt3B6mNXkJadh3o+lTH9vbYo72hnlHJbdhmN+9Hx/56xmCIiwrFsySI8eJAALy9vjB0/QXutc+zoEfyy8CfsO3BEm3/b1i3Ys3vns2udZhg9ZjxEIhG2bd2C9b+vLfL/eHF7Q/DzqcLrv0J8fcr23PBlUfrNU6VdBJPjWKtVaRfBaIoVLK9fvz6WL1+OunXr6qRfvHgRn376KS5fvlyswhgjWG7KjBUsN2XGDpabImMHy02NsYPlpsjYwXJTZMxguakqqWC5KTF2sNwUGTtYboqMFSw3ZcYOlpsiYwfLTY2xg+WmyNjBclNkzGC5qTJ2sNwUGTtYbooYLH9zDJa/uf/nYHmxJkDt1q0bJk2ahE8//RSBgYFQq9W4c+cOFi1ahA8+MK3HFomIiIiIiIiIiIiIihUsnzx5MmxsbDBv3jzt/Eyurq7o378/Ro0aZdACEhEREREREREREREZW7GC5QKBABMnTsTEiRO1wXJnZ2eDFoyIiIiIiIiIiIiIqKQUK1gOAPHx8bh79y4UCv15cHuY0JuwiYiIiIiIiIiI6O2kNvCLvcm0FStYvnr1avz0009wcHCAjY2NzjozMzMGy4mIiIiIiIiIiIjIpBQrWL527Vp8+eWXGDp0qKHLQ0RERERERERERERU4syLs5FMJsM777xj6LIQEREREREREREREZWKYgXLu3btik2bNkGtVhu6PEREREREREREREREJa5Y07BkZ2dj+/bt2LdvHypXrgyhUKiz/o8//jBI4YiIiIiIiIiIiIiISkKxguVeXl4YNWqUoctCREREREREREREVGLUZsWaeIP+TxUrWD5u3Djtv7Ozs6FSqeDg4GCwQhERERERERERERERlaRiBcsBYP369Vi9ejVSUlIAAM7OzujXr59OIJ2IiIiIiIiIiIiIyBQUK1i+dOlSbNiwARMmTEDt2rWRn5+P69evY8mSJRCJRBgxYoShy0lEREREREREREREZDTFCpZv3boVc+fORZs2bbRpQUFBKF++PObOnctgORERERERERERERGZlGLNYJ+dnQ0vLy+9dG9vb6Slpf3XMhERERERERERERERlahiBctr166NtWvXIj8/X5umUqmwZs0a1KhRw2CFIyIiIiIiIiIiIjIaMzMub7r8HyvWNCyTJ09G//79ceHCBYSEhAAA7t27B7lcjtWrVxu0gERERERERERERERExlasYLmPjw+mTJmC9PR0xMTEQCwW4+TJk1i0aBECAwMNXUYiIiIiIiIiIiIiIqMq1jQsf/75J2bOnAk7OzvMnDkTkydPxsCBA/HFF19g69athi4jEREREREREREREZFRFStYvm7dOvz888/o2bOnNu2rr77Cjz/+iJUrVxqscEREREREREREREREJaFYwXKJRAJPT0+9dG9vb6SkpPznQhERERERERERERERlaRiBcvr1q2LxYsXIy8vT5smk8mwfPly1K5d22CFIyIiIiIiIiIiIjIWtZk5lzdc/p8V6wWf06dPx8cff4xmzZrBy8sLAJCQkABXV1csW7bMkOUjIiIiIiIiIiIiIjK6YgXLPT09ceDAAZw9exZxcXEQCATw8vJCs2bNYGFhYegyEhEREREREREREREZVbGC5QAgEonQtm1bQ5aFiIiIiIiIiIiIiKhU/H9PMkNERERERERERERE9BoYLCciIiIiIiIiIiKit16xp2EhIiIiIiIiIiIiMmVqmJV2EagM4chyIiIiIiIiIiIiInrrMVhORERERERERERERG89BsuJiIiIiIiIiIiI6K3HYDkRERERERERERERvfUYLCciIiIiIiIiIiKit56gtAtAREREREREREREVBrUZhxLTAV4NBARERERERERERHRW4/BciIiIiIiIiIiIiJ66zFYTkRERERERERERERvPQbLiYiIiIiIiIiIiOitZ6ZWq9WlXQgiIiIiIiIiIiKikpZ873JpF8HklAtpWNpFMBpBaRfgRY+/HFDaRShTKvy4AdJ9v5V2McoUyy6jeZwUUuHHDYge1Lm0i1Fm+Pyxnw1dIeVCGiLvzzmlXYwyxWrgVDwOv1HaxShTKgTWxqXwjNIuRpnSKNAB+4UBpV2MMqWzIgIxQ7qUdjHKlKq/70P6jROlXYwyxbF2G+Rt+K60i1GmWA2YgrioyNIuRpnh5euPB2N6l3YxyhSPZTuQcvdiaRejTHGt1hi/HSrtUpQtozsAUdGxpV2MMsXXxxtpt8+WdjHKFOcazUu7CKbHzKy0S0BlCKdhISIiIiIiIiIiIqK3HoPlRERERERERERERPTWY7CciIiIiIiIiIiIiN56DJYTERERERERERER0VuPwXIiIiIiIiIiIiIieusJSrsARERERERERERERKVBzbHE9AIeDURERERERERERET01mOwnIiIiIiIiIiIiIjeegyWExEREREREREREdFbj8FyIiIiIiIiIiIiInrrMVhORERERERERERERG89QWkXgIiIiIiIiIiIiKg0qM3MSrsIVIZwZDkRERERERERERERvfUYLCciIiIiIiIiIiKitx6D5URERERERERERET01mOwnIiIiIiIiIiIiIjeegyWExEREREREREREdFbT1DaBSAiIiIiIiIiIiIqDWozjiWmAjwaiIiIiIiIiIiIiOitx2A5EREREREREREREb31GCwnIiIiIiIiIiIiorceg+VERERERERERERE9NZjsJyIiIiIiIiIiIiI3nqC0i4AERERERERERERUWlQw6y0i0BlCEeWExEREREREREREdFbr9jB8r///hu9evVCvXr18ODBA8ydOxcrV640ZNmIiIiIiIiIiIiIiEpEsYLlmzZtwvz589GrVy8oFAoAQLVq1bBmzRosWbLEoAUkIiIiIiIiIiIiIjK2YgXL//zzT8yZMwcDBgyAubnmK7p374758+dj27ZtBi0gEREREREREREREZGxFStYnpSUBB8fH710Dw8PpKen/9cyERERERERERERERGVqGIFy2vWrIndu3frpKnVaqxduxY1atQwRLmIiIiIiIiIiIiIjEptZs7lDZf/Z4LibDR16lSMGDECp06dglwux6xZsxAXFwepVIpVq1YZuoxEREREREREREREREZVrGC5v78/Dh8+jL///hsxMTFQqVRo27YtunXrBhsbG0OXkYiIiIiIiIiIiIjIqIoVLAcAsViM9957z5BlISIiIiIiIiIiIiIqFa8dLG/Tpg3MzMxeK+/x48eLXSAiIiIiIiIiIiIiopL22sHy8ePHa/+dkJCA9evXo1+/fqhevTqEQiFCQ0OxYcMGDB482CgFLTaBEPY9B8Oyen2oFQrknN6P3DMHi85aoTLse30EYWVvKFOeIGvPH5BHh8HCyRXlpvxS5Dapy2ZDERthxAoYnkyhxHc7T+L47fsQCwUY1KouBreqW2Te/dfCsfzIJTxJz0Kguxu+7NES1T0rAABqfv5LkdvM6fcOutYLNlbxjYPHiR4zoRCug8bApl4TqBVypB/YiYxDu/TyVZo8D1ZB+i/2zTxzBMmrfwUA2LftDMcufWBhbYvcO9eRvG4x8nOyjV4HQ5PJ5Viw6g+cvngVYpEQH3TvhH7dO75ym1thEZizaCW2/faz3rr12/9G4qPH+Gb8CGMV2ehkShXmHbyMY+EJsBQKMKhRMAY1evXv/2F6Nvqs2ItFfVujvlcFbfqWqxH4/cJdZEkVaOxTEdM6NYKDldjYVTA4mVyOX1asxZmLVyASifBBjy7o26NLkXkjY2KxYNlqxMQ/gJdnZXw+ehgCfKsC0Lw4+/ct27H/6EnkSWWoX6s6Ph35MRwd7EuyOgYTHxOB35d9j8T4KLh7VsXg0V/D2zfoX7dbu2QunFzKoWe/gt/J1Ysnsfj7r3Ty1WvcBuO//t7g5TYmc5EQzS7vxN0Js5F25kqReexrBaHa0lmwr+aPrNAo3Bk7A5nX72nXV+rbGf6zPoVlxXJIPnIOt0dNgyJVUlJVMBgzoRAuA0dr2hy5HBmHdhXZ5lT8eh6sAqvrpWedOYrktS+0OZ16w9zaFrl3ryPl9yUm2uYo8OPaLTh55QbEIiH6d2mP/l3avXKbm+FRmLXsd+xaNEeb1vCD0UXmnTFmMDq1aGTQMhubps25hGNh8c/anBAMahzyym0epmejz/I9WPRBW22bk5knQ4uftujkc7QS49QXHxit7MYil8uxZNlynLtwAWKRCL179USfXj2LzBsVHY1FS5YhLj4OVTw98cnYsfDz8wWgaXO2bt+B/QcPIiszC/7+fhgzaiSqeHqWZHUMQyCE0wfDYV2rEdQKObKO7UHW8b162cp9OguW/tX00rMvHIdkwzKdNKcPR0GVkYbM/VuNVmxj0vRh/8SpS1chFonQr3sH9Ov2b33YSMxZtArbfvtRm6ZWq7Fx9wHsPnISGVnZCPL1xmdDB8Dbw93YVTCKp4mhOL51BlKTIuFSwRdt+s5CeQ/9Y6Kwq8dX49a5TRg644Q27frJ33Fm9zydfHVaf4wWPb4qvHmZFh0dhSWLFyM+Pg6enp4YO+4T+Pn5vTT/7t27sHPHduTm5qJZ8+YYNWoMLC0tdfIoFHJM+GQ8Ro0egxo1ahq7CgYlkyvw0+qNOHX5GsQiET7s9g4+7PruK7e5FXYf3y5Zgx1Ldful7QePR3Zunk7a8T+WwNpKd38RUel77WB5z54Fna5evXph7ty56NixoIFt27YtgoKC8Msvv2DMmDGGLeV/YNe5H4SVvZG2Yh4snFzh0HckVJIUyO78o5PPzNIKTiO+huzedWT8tRJWdZvCcfCnSPnhS6jSU/H027G639u1PyxcykMRH1WS1TGIBXvPIvTBE6wa3QdJkkxM23wElZzs0b6mbiN4PeYhZm49ihnvt0Mtr0r46/wtjF21G4emfgxrsQjHZwzXyf/nmes4cjMSrUJ8SrI6BsHjRJ/LB0Mh9vZF0vdTIHR1g9uIiVCmPkXOP+d18j1eNBdmAqH2s9gnABXGfo3M4/sBADYNm8Plg4/xdMXPUDx6iHLDJsB10Bg8/W1+idbHEJat34LwqFj8OutrPE5OwdzFK1GhnAtaN2lQZP7o+AeY9uMSiIRCvXVHz17E2i078U7LJsYutlEtPHYNoY/SsGpAezzKyMG0vy+gooMN2gdVeek23x28jDyFUift8L04/HLsGuZ0bwovF3vM3HcR8w5ewfe9mhu7Cgb32+8bEREVg4Wzp+Hx02TM+/U3lC/nilZNdYNSeVIpvvr2B7Rv2RRfTxiDvw8dxdezf8CmFb/CytISew8fx/6jJzF14jjY29lhwfLVmL9kBb775stSqlnxyaR5+PnbT9G4ZQcMnzAdJw7txMLZn+HHFbsgtrR66Xb7d/6B00f3oMcHw3TSkx7Eolb95vho7GRtmlBoWjdWzMUi1P7zZ9hV839pHgtrK9T/eyWSNu/F7aFfw3NEP9TfswKnAtpDlZsHh/rVUWPlXE0A/VY4QhZ+g5pr5uFqj1ElWBPDcO77McRefnj0wzcQuLjBbfhnUKY8Rc5V3TbnyeK5MBMUdF/FVQNQfszXyDjxrM1p0BzO73+E5FULIH/0EOU+/gSuA0fj6fIfYWoWb9yJsJh4LJ32KR4np2HWb+tRwdUZbRvVKTJ/VMJDTF64CmKhbvf+wHLdi/XN+0/g2MWraFHPtAIWALDw2FWEJqVi1cB38SgjG9P2nNe0OcFeL93muwOX9Nqc6JQMOFqJsX1Ud22a+es9QFvmrFqzDpFR9/HDd3Pw9GkyflqwEOXd3NC8WVOdfFKpFNNmzELrVi3xxWefYv/Bg5g2cxZ+X7MKlpaW2H/wEHbs3IWJn01AZXd3bNu+A1Onz8Sq5cv0Al9lnWOvQRB5+uDprzMgcC4H50HjoUxLRt6NSzr5Ulf+CLxwPhF5+cF16OfIPnNYJ59d++6wbdYeGfv/KpHyG8PSP/5CeHQcFs36Co+TUzFn8SpUKOeK1o3rF5k/Ov4Bpv6k34fdfeQkNv99CFPGDoVHpQrYuPsAPp+zAJsWfQdLsWm1wwpZLnavGIHAul3x7off4/b5zdizYiQ+mnYUQrH1S7fLSHmAS4eWwMrWWSc97UkUajT7EA3fLYiFCEUv7+OURVKpFDOmT0Or1m3w2cTPcfDAfsycOR1r1qwr8jxw/tw5bNq4AV98MQmOTo5YuOBnrFu7BqPHFFwTy+VyzJ//PeLj40uyKgaz5M9tCI+Jw5IZX+BRcipmL12LCq4uaNO4XpH5o+ITMeXn3yAS6f52nqZKkJ2bh+1L5sFSJNKmW1ma1u/m/5n6NWfSoLeDeXE2io2Nhb+//sWdh4cHHj58+J8LZShmQjGsG7ZC1p4NUD6Mg+zuVeSc2gebpu/o5bWq2xxqmQyZO9dBlfoE2Ud2QpXyBAIPb0CtRn5WhnaxcHaDZfX6yNiyHMhXlULNii9XpsCuy3cxqUdLBFV2Q9vqvhjSui62nL+plzclKwcj2jdEl7pBqOzigJHvNERGrhTRT9IAAK72NtpFqlBi89mbmPF+e9iZ2EhQHif6zERi2LV8BykbVkIeH42caxch2b8dDu30R8fm52RDlSHRLJkZcOkzCJID2yGL1dwgcOrcB+n7tyPn6gXIH8YjdcsaiD2qAGbFOv2UmjypDHuPn8aEoQMQ4OOFlo3q4cMenbHj4LEi8+8+fAKjJs+GU6FRwEqVCj+t+B3zlq5GpQpuJVF0o8mTK7DrZhS+fKcegiq6oE2gJ4Y0DsaWf17+FMX+OzHIkSn00tddvIchTULQLqgKfN2c8FnburifLIEqP9+YVTC4PKkU+4+ewPhhg+Hv440WjRugX6+u2HXgsF7eE+cuQiwSYfSQAfDycMf4YYNhZWWFU+c1F/OXrt1Am+aNUataMKpW8UC/nt1w/fbdkq6SQVw+dxQikRgfDPkElTy80X/YRFha2eDK+aKnbcvLzcbi77/G/h1/wNm1vN76pMQ4VK7iA0cnV+1iY2tn7GoYjG2QD5qc3wprn1eP2Kz4fifk58kQ9tV8ZIfHIHTiXKiyclCxTwcAgNeYAUjafhAPN+xB1p0I3BwyCW4dW8LKq3JJVMNgzERi2LV4B6mbNG1O7vWLSD+wA/YvbXPSNUtmJpz7DEL6wR2Qx2naHMdOvZF+YAdyrl6A4mE80v5aC1FlL5Nsc/4+cR4TB7+PQG9PtGpQCwO7tsf2w6eKzL/z2FkMn/4jnB30fwcujg7aRSZXYOuhk5gycgBsrU0riJMnV2DXjfv48t0Gz9qcKhjSJARbroa/dJv9d2KQI9dvc2JT0uHpYg9XWyvt4mxjWvsD0AS2Dh05gtEjRsDP1xdNmzTGe3164+99+/Tynj5zFiKRCMOHfgxPTw+MGjEcVtZWOHP2HADg6LHj6N2rJxo1aIDK7u4YP3YMMrOycC8srKSr9Z+YicSwadIW6dvWQvEgFnm3riDr6G7YttQfRZ2fm438zHTNkpUJx279kXl0NxQJ0ZrvsrSCy7AvYPdOTyjTkku6Kgaj6cOewYSPP0RAVS+0bFgX/Xt0enkf9shJjJwyF84ODnrrDpw8h37dOqBpvVrwrFQBX44YhMzsbNwOv2/sahhc5I0DEAjFaN59Epwr+KBlr28gEtsg8uahV253fOsMuLnrPxmX9jga5dwDYWNfTruILG2NVXyjOHPmNERiMYYOHQZPT0+MGDkK1lZWOHv2TJH59+zZje7de6BBw4bw9w/AuPGf4OjRI5BKpQCAhIR4TJz4KR4/elSS1TCYPKkMfx8/i88++gABVaugVcM6GNC9A7YfOlFk/l1HT2Pk1HlwdtR/CjTu4SO4OjnAvXw5uDg5aJfXneqYiEpWsa4c6tati++++w5PnjzRpj148ABz5sxB8+ZlZxSgoJInYG4BeXykNk0RGwmhpw9Q6KQk8gmC7N41QK3WpqUumg55+C2977Xr1Be5l09ClWx6J/3IpGQo8/NRy6uSNq22dyXciX+M/Hy1Tt53avpjeDvNiFmpQokNp2/A2dYaPuV176IDwLLDF9HAzxON/E3vUU0eJ/pEnlVhZiGA9H7BBZI0MhRinwC9ffIiu+btYG5rh/R92wFoLjLEXr7IuXqh4Hsi7uHBlLGA2rSCoFFxCVApVageUPAERo0gf4Tej0Z+EQHdyzduY+onw9G3awed9DypFNFxD7Dy+xmoFuBr9HIbU8QTCZSqfNTyKKdNq+XhhrtJKchXq/Xyp+fK8MuJ65jaWXeEdbZMjvDHaWgbWHD+qFulPHaM7AYLc9MKcEXHxkOlVKFaYIA2rXpQAEIjo/SOk9CI+6geFKDtJJuZmaF6kD/uRWguOO3t7HDx6g0kp6ZBJpPj+Nnz8K3qVWJ1MaSoiLvwC6qpU1e/oBqIirhTZP7kJ0lQKGSYteAPuFXQf7Q76UEsKlQyvfbmOecWDZB66jLON+v7ynxODWsi7cI1nbS0i9fh2KgWAMCxQU2knb2qXSdNfIy8hCQ4NTStEcMiT2/9Nud+KMRV/f+lzWkLcxs7pO8v1OZce6HNibyHxKmm1+bcj0+EUqVCjYCq2rSaAb64FxVXZJtz8eY9TB8zGP06tX3l967Yuhf1qgWgQfV/nwKprCm6zSmPuw9f1uZI8cvxq5jaSX+qmZjkDFRxNs0prV4UHRMLpVKJ4KBAbVpIcDDCIyL1jpOw8AiEhATrnIdDgoIQFq652TB86Edo07qVNr+ZmRnUajVyc3KNXg9DElb2gpmFALKYghv3suhwiLz8Xnk+sWncGuY2tsg6ulubJnBxg5lQiCfzvoQy5clLty3riuzDBvrh3v2YIs8nl67fxtTxw/B+F/2BQ+MGf4B3WjQuSHh2nOQUmlrCFDyKuwX3qnV1fhMVq9bBo7ibL90m9MpuKOV5CGnUR29d2pMYOJbzMlJpS0Z4eDhCgkN09klQcDDCw/VvmqlUKty/H4lq1QqmRgsMDIJCoUBsbAwA4M6dO6hRoyZ++nlhyVTAwO7HP4BKpUJ1/4JrtpqBvrh3P7bo386NO5g27mN80Lm93rq4xCR4VNQfAEJEZdNrT8Pyou+++w6ffPIJWrVqBQcHB6jVamRmZqJRo0b49ttvDV3GYjO3d0R+bhagKhjVq8rOgJlQBDNrW6hzsrTpFi5uUDyIgX3vjyEOqQNVWgqy9m2EIk73LrnQyw/CKr5I37i0xOphSClZOXC0sYJQYKFNc7GzgUypQnpuHpxt9R85uxyZgFErd0ENNeZ92AHWYpHO+keSTBy8HoH14983evmNgceJPoGjE1RZmYCq4LFlVWY6zEVimNvaIT8rs8jtHLv0QcbhPVDLNKMJhG4VAQAWdg6oNPVHCMuVR969G0jZsBL5uTnGr4gBpUrS4WBvB+ELj7c7O9pDLlcgIytbbwT5vK8/BQAcOHFWJ93Oxga/zZtm9PKWhJTsPDhaiyG0eOF8Ymv17Hwig7ON7uOaPx29iq7VfeBbzlEnPVGimUtYkiPF4N8PISk9Gw29K2LSu/Vhb6l7vinrijpOnBwdIZcrkJmVrTPfeKokHd4euiOAnRwdEBufCAAY3LcXJs/9EX0+HgMLc3M4Ozli2fzZJVMRA8uQpMDdo6pOmr2jMx7GxxSZ39PbHxOnFX1hpVar8ehhPO7cuIS929chPz8fDZq0Ra8PR0JQxJRHZVHCis2vlU9coRyyQnWn8ZI/SYVdiCbgYVnRDbKkpzrrZU9TYeleAaZE4OgMVXahNidD8q9tjkOnPsg48mKbo6m3hZ0Dyn0zHwLX8si7dxOpm0yvzUlJz4CDnS2EghfbHDvIFApkZOfAyV53BPmPX2im3tl36uJLv/NxShqOnP8Hq741vamcgJe0OTaWr25zavjC181J77tiUzKgzM9H/zX78DQrF3U8yuOLd+qjnN3Lp14oi9IkaXCwt4fwhXOfps2RIzMrC44vjAxOk6TpzT/u6OiknRqhWoju3O8HDx9BvkqFkGDTeg+Rhb0T8gufT7Ke9WFt7DTrimDXvgeyTuzTnk8AQPEwHim/zSsyvylJkaTDwd62UB/W4aV92O+/ngAA2F+oDwsANYN0ny7fe+w0VKp81Ah8+ZzWZVVOZjJcKugOXLG2c0Hqo6JHyedmp+Hc3p/Qe8w6PE7Qvdmfk5kCaW46Qq/swpFNkyEQilGtUR/Uaf2xSY0clqSlwbOK7lSKmvNEnF7enJwcyOVyOLu4aNMsLCxgb2+PlJQUAEDnzkW/s8dUpEqetcUv/nYc7CFXKJCRlQOnQk9z/TBpHABg/0ndKeQAIC7xEaQyOcbMmI+EpCfw9/bAp0M+gGcl0+qzEb0tijVkz83NDVu2bMHff/+NmTNnYtasWdi3bx/WrVsHR0dHAxex+MyEIkCpO0chlJpHMV+cYxkAzESWsGndBflZ6ZCs/hHymDA4Df8K5g66o6itG7aB9M5V5Gea3suzACBProTohUA5AO1nhbLoqUJ8K7pg82f9MObdxpi25Shux+uOlN51+R6CPdxQo0pF4xTayHic6DMTiaFW6j62rFYUvU+eswyqAYGTCzJPFTy6aP5sbjvXwWOQvn87niyZB6F7FbiN/NxIJTceqUyuE7QAAOGzfaEoNBfq20KqUEFkUeh8YqFpVhQq3fPJpZhHuPngKUY0138xX55cs//mHbqCj5qEYH7vFohJScfUPeeMVHLjkcpkOkELABA962DLFbq/KVkReYUCIRTP8j1+mgxLkQjzpn6JX7+bgXKuLvhh8XIjlt545DIpBELdGx9CgQgKhfyNvys1+THkMimEQiHGfjkPHwz5BBdPH8KW3xcZqrhlhoW1FfJluvsoXyaH+bOb1hbWlq9cbyrMRGJtG/Oc+iXt8HOWgdUhcHJB1umCKY7MxJppNFwHjta0OUu/h8jdE+VGmGKbo9CeO54TCZ6fS4rX5vx98jyCqlZBNT/v/1y+0iBVvKIPq9fmJOHmgycY0Vz/BeQAEJuagWyZHF+80wDze7VEcnYuPtly3OSm/iqyHRE+75u8RpsjFOi1TQAQHh6BlavXoE/vXnB21r/ZUJZp+rC6vxH1s9+MmaDocWJi/2qwcHJBzvmipyUxdTKZXNtnfe55n1ZR+BroDdyLjMaS9VvwYfeOcHFy/C9FLBVKeR4sBLrtpUAggkpZdN/kzM7vENygJ1wq6t8YkDzV3Py3tnNB9+G/oX67kbh85DfcOLXe8AU3opedUwqfT57nfb7+dfKbIqlMrtcWa8+xyjerY3zSY2Rm52BI7y74YdJYiEUijP/2Z+TkSf99YyIqccUaWQ4ASqUS9vb2qFFD0wlVq9WIjY1FWFgYOnXqZLAC/hdqpULnpS0AgGcdBbVcppuer4LiYTyyj+wEAGQnxUPsXx1WdZsh58Tfmjzm5hCH1EHGZtMMVgCAWGgBeaGg+PPPlqKiL0hd7GzgYmeDQHc33I5/jG0XbusExo/evo/3Ghd9MWIKeJzoUysU+jcKhC/ZJ8/Y1m+K3NvXkJ+TXfA9zy5e0/dtQ+6NywCA5DWL4DFnMSwcnaFKTzNG8Y1CJBLqXVA87yRZmlhgylBEAgvICwUo5CpNoMHyhY6lVKHEnAOXMKVjQ5305yyevVXtoybV0MrfAwAwvXNjfLB6P55m5cLNhEb6iUQivQuE54Gtwi++Egn18yqUCojFYqjVanz3yzKMHtIfTerXBQDM+nIC3h8+HqER9xEcULZHcO3dtg57t/+u/ezjHwJlocC4QimHSPzmL41zdauIpRuOwsbWHmZmZqhS1R9qtRorFs7Ahx9/CvNCN3BMWb5Uphf4NheLoMrVXFipXrY+z7Qeh1cr5No25jmzl7XDz9jUb4q8O7ptzvP3g6Tv34bcm1cAAMnrFqHyt6bX5ohFAr2guFz5/FxSvDbnxOUb6NWu7EyX+KZEglf0YfXanIuY0rFRkW0OAOwY1R1mL2z3U59WaLdwG+48TEEtD9N5n0iR7cizz+LXaXMUSr22KTQsHFNnzET9enUxaEB/I5TauNQKuV5Q3OzZ31ktLzoIalW7EaT3biA/N7vI9aZO04ct3N94dj4RFe98cjciCp/P+RmNatfAsA96/ucyloQrR5bjn6MrtJ8rVKmhFxhXKuUQivT7JnFhZ/Eo7iYGfjCnyO+u7NsAI7+7BCsbzc0l10oByMtOw+3zm1Gn9RDDVcLA/vprC7b+tUX7OSAgsMhzSuHzCQDtCyxfN78pEomEem2x9hz7hr+dhd98CqVSBWsrzfE185Ph6DHqS5y7egvvNm9omAITkcEUK1h+7NgxTJs2Denp6XrrypUrV2aC5fkZEphb2wHm5sCzkSIWdg5Qy2VQS3Xn31NlpkOVnKSTpkx+DAvHghHDwip+gIUFZPdN8wVrAOBmb4v0nDwoVfkQPBsBmpKVA0uhAHaF3sR8N+ExLMzNEVS54KLBp7yz9gWfAPBYkoWYJ2loXU338XpTwuNEn1KSCgs7e9194uCEfJn0pY+yW1evi7RdG3XSngcm5EmJ2jTFI82/Bc7lTCpwUc7ZCRmZWVCqVBA8C8alSTIgFolga2M6wVxDcrOzQnquDMr8fAiezS2emp0HS4EF7F6YPuVuUioS07Px+fbTOtuP23ICXWtUxcdNqgEAvF0LHgP2ctH8+0lmjkkFy4s+TtKLPE5cXZyQVqgdTZNkwMXZEekZmXiakgof74JHYd3KucLB3g6Pk1PKfLC8dYdeaNCsnfbz/h1/ICM9VSdPhiQVjs6uxfp+Wzvdl45VquwFhVyG7OxM2DuY1ijIV5EmPYG4gu4+EldwhfSxZuoV6cMi1pd3heyRab2ITilJhYXtm7c5kt2bdNKetynP2xnNvzUvnhc4u5pWm+PkiIysbJ1zSWp6JsQiIeyK8WLOJylpiE18hBb1TGs++xe52Vnrtzk5RbU5KUiUZOPzbad0th+3+Ri61vDB1M6NYVUoiO5sYwUHKzGeZpnW/NwuLi7IyMyESqWChbbNkUAsFsHWxkYvr0Si+8SjJF2iM3L81u07mD7rW9StXRuTJ30JcxN7bwgAqDLSYF74fGLvhHy5DPl5RZ9PrIJrI2P/1pIsZonS9E0KnU/+Qx/2+t0wTJr3C+rXrIZZn40ymeOkRtMP4F+74EWvV4+vQk5Wik6e3MwUWNvr3zCLvH4AWemPseIbzXzt+flKqFQKLP2yNnqMWgV3n3raQPlzzuV9kJ1Rtue679SpM5o3b6H9vH3bVkgkum1lukQCZ2f9d5bZ2dlDJBJBIkmDh4dmsItKpUJmZmaR+U1ROeeXtcUi2L3hb0ckFEL0wsAAsUiIim6uSE4zzSfR/x+pYTpTJpHxFatl+/nnn9G+fXvs378f9vb22LJlC5YvXw53d3d8+umnBi5i8SmS4oF8FYSeBXORCb0DoHgQo/OCRgBQJERBUFF3Hj+BW0Wo0goaUKGnD5SJcdopOkxRgHs5CMzNdaZSuRGbhBCP8jA31z057LpyD7/u150GITTxKaq+8ILPOwmPUcHRDhWdTPclSTxO9MkTYqBWKWHpW/DCKCv/YMhi7+vtEwAwt7WHsHxFnZezAYAyNRnKtBSIPAse+RZW8oA6Px/K1KeFv6ZM8/P2hIXAAvciC+YPvh0WiSBfb5O5SDC0gArOEFiY405iwfF/48FThFRygfkL8zNWq+SCv8d0x1/DO2sXAJjeuRHGtKyJig42KGdnhYgnBZ3F2JQMmAGo6GBbYvUxBN+qXrAQWCA0omC+yzth4Qj089E7ToID/HA3PBLqZ78ptVqNu2ERCPb3g52dLURCIeIfPNTmT8/MRGZWFiqWL/ujHm3tHFC+ood28Q2sjvvht3Xqej/sNnz8q73xd9+5fhFjBrSD7IV5ZRNiI2Fr5/B/FSgHAMnlW3BqVFsnzalxHaRf1rxUOv3KLTg1ratdZ1m5Aqw8KkJyWf+l02WZPCEWapUSYp+CNsfSP+TVbY5bRUjvh+qkK1OToZSkQuRh+m2Ov5cHBBYWuHs/Vpt2KzwawT5exWpz7kbFobyLEyq4mm4Ao6DNKbgZdCPhKUIquRZqc1zx99ie+GtEV+0CANO7NMGYVrWQLZOj+Y+b8U9cQV/4SWYO0nOl8HbRvRFX1vlU9YZAINC+pBMA7oWGwt/PT+84CQoMQGhYuM55+F5oGAIDNb+7uLh4zPx2NurXrYtvJn8FwUumLCnrFA805xORd8Hc2mKfQMjjo4o+n9jYQVCuAmTR4Xrr/l8U9GGjtWm3w4vXh41JSMRX3/+KRrWrY/bnY0zqOLG0cYRjuSrapaJXLTyKvaHzm0iKvY6KVfRvKjbr9gUGTd6P/pN2o/+k3Wjc6RPY2ruh/6TdKO9RDXcvbsP6ue9qvwsAkh+GwdmtbA8os7OzQ6VKlbRLYFAQwkLDdPZJaOg9BAbovxTa3Nwcfn7+CL13T5sWFhYGgUAAb++yXe/X5e/lAQsLC9yLLHjHzq3w+wh6w7ZYrVajz7jJOnOZ50llSHz8FFVM7D0zRG+LYkV4Hjx4gGHDhqFq1aqoVq0akpOT0bJlS8yYMQPr1q0zdBmLTyFH3tWzsO/9EQSVq0IcUhc2LToh55xmfktzOwftdBu5F49DUNETtu17wcKlPGzf6Q0LZzfkXS84oQkrVIbyycMi/ytTYSUSomv9YMzZcQJ3Ex7jxJ0o/HHqGj5srrkYT8nMgfTZo0Z9GlXHP1GJ2HjmBuKTJVh26CLuPniM/i0KLtyjHqfoBM9NEo8TPWq5DFnnjqPckLEQe/vBuk4jOHTshYwjmqlmLBycNHO9PyOqXAX5chmUyY/1viv98B449xoAq5BaEHl4o9yQsci5fgmqDNO6i24pFqNjq2b4afnvCLsfgzOXr2Hz3wfxXpd3AGhe1iiTvfn8y6bMSihA1xpVMefgJdxNSsGJiAT8cSkUHzbQdKhTsvMgVShhKRTA09leZwE0owSdbaxgZmaGAQ2C8NvpW7gYk4SIJ2mYe/AyWgd4wNX2zUdQliZLsRgdWrfEgt9WI+x+NM5e+gd/7d6HPl01I5lePE5aNWmI7JxcLF69HnEJiVi8ej3yZDK0btYIAgsLdGjbEsvWbcCte2GIiX+AuQuWItjfD4G+pncBUr9JG+TmZGPj6gV4mBCDjasXQCbLQ8Nno8/lMinSJSn/8i0avoE1IBJZYu2SOXiUGI9b1y5gy++L0anXQGNWocSIy7vC/NmTXo93HILQ0R7BC76BbZAPghd8AwsbKzzadhAAEL9iM9z7d4fHR31gVz0AtdbNx9P9p5AXl/iq/6LMUctlyD5/AuUGF7Q5jh16IuPo8zbH8SVtjv6IvYzDu+H0QpvjOmgMcq9fgiojvaSqYxCWYhE6tWyEH1ZvQmh0HE7/cxMb9x1F346tAQCp6RmQvmRKiaLEPEiCd2XTfLfMc5o2xwdzDjxrc8IT8Mele2/c5tiKRajj4YYfj/yDu0kpCHuUiq93nkETX3f4lTetG26WlpZo17YNFi1dhojISFy4eBHbd+5Cj27dAABpaRLtvMLNmjVFdk4Olq9chfiEBCxfuQoyqRQtmzcDAPy6ZClcy7lixPChyMjIRFqaRGd7U6FWyJF7+RSc+42EqIoPrGo2gF27bsg+uR8AYG6vez4RVvJEvlwGVWrZHgH8X2j6sE3x44r1CIt63oc9hPc6twfwZn3Y+ct/h5uLM8YP6YeMzCykStJNtg/sW6sDZHmZOL1zLlIfR+H0zrlQyPO0o8+VcilyMjU356ztXHQC7Va2LjCzEMCxXBUIRJbwDGiCnIxknN39A9KT4xFxfT+uHl+Feu2GlWYV31izZs2Qk5ONlSuWIyEhHitXLIdUKkXzFprR5zKZDGlpBSPPO3fpgh07tuPihQuIjIzAsqWL8W6HDrC0fPNp9soiS7EYnVo1wfxVfyI0Khanr9zApr+PoG/ntgA0T2hIX+PYNzMzQ5M61bF66x5cvxeOmAcPMWvxapRzdkKT2qY7nS3R/7NiBcvt7e2R92w+TG9vb4Q/G81QtWpVJCaWrQu0zL0boUyMg/OoKbDvORjZR3ZAdvcqAMBt+lJY1WoEAMhPT4Vk9Q8QB9eG6+fzIA6uDcnan3Re0Ghu6/DSx/dMyRfdWiC4shuG/bYD3+08idHvNkK7GppR1W1nrcLhGxEAgKDKbljwURfsunIP7/20AefC4/Db8J4o/8JIz9SsXNhbmf6cZDxO9KVuWg1ZXBQqTZ6HcoNGQ7JrI3KuXgAAeC3eANuGBY/sWTg4vvRR+YyDO5FxbC/cRn4B92k/QvH0EZJXLSyROhja+I8+RICPFz6ZMQ8LVv2BoX17omWj+gCA7kM/wfHzl0u5hCXv8/b1EFTBBcP/PIp5h65gVIuaaBuoefqi3S/bcTg0/rW+Z1CjYHxQLwBT95zHkN8Po7KTHWZ1bWLMohvN2KED4e9TFZ9N/Ra/rFiLj/q9hxaNGwAAeg0ZhRPnNL8jG2trfD91Em6HhmP455MRGnEfP0z/ClbPLjDGDR2EFo3rY/bPizHhm1mwtbHG3ClfwMzM9B4RtLK2xWdTFyAy9CZmfD4Y0RF38fn0XyC21NwMuXzuGCYMeb0p3KysbfDFzF+RlZGOmZ8PxtrFc9Dq3R7o1PP/I1jeLvE8Kr2v2RfKrBz802MknJvVRbPLO+HYsCb+6TYCqlxNHyz90k3cHTMdflPHosmZzVBIMnBr2OTSLH6xpW7WtDkVv/oOrgNHI233RuReuwgAqPLrBtg0LJhr28L+FW3OoV3IPLYP5UZ8jkrfzIfy6SM8XfNLSVTB4D4d2AeBVT0x5ttf8OPaLRj+Xhe0bqAZsNBp1Nc4duHaa39XWkbmGz8yXhZ9/k59BFV0wfA/DmPeoUsY1bIW2gZppqtqt3ArDofGvdb3zO7eDEEVXDB+8zEM++MwKjnaYl4P05zPfeSwofDz9cWkyd9gyW/LMbD/h2jWVNN+9hs4CKfPnAWgaXO+nTEdd+/dw7gJnyEsPAKzZ82ApaUl0tIkCA0LQ0LCAwwc8jH6DRykXZ5vb0rSt/8OeUI0yk2YBce+w5Cx7y/k3dT00dy/XwOruk21ec3tHaDOM63pd4rjkyH9EODjhfEzfsDPq//E0L490KpRPQBAt2Gf4thr9GFTJem4ExGFuMQk9Br5OboN+1S7vM72ZY3Y0hbdR6zAw5hr2PRTLzyKv4UeI1dCKNacKyNuHMCqac1e67vsnd3RfeRKJMXdwIYfuuH83p/RrOsX8K9dNqanfV3W1jaYMfNb3Lt3FxM+GY/w8HDM+na2Nvh95sxpDBzwoTZ/y5at8N77fbFkySJM/WYK/AMC8PHHpnWD4N9MGPw+AqpWwbiZP+Gn1RsxrG83tGqoeaqvy4jPcfzCP6/1PWMHvIfWjepixq+rMHTyXChVKiyYMgEWFm/nE8pEZZ2ZWl3E82j/YvLkyYiPj8e3336L2NhYzJ8/H7/88gsOHz6sXYrj8ZcDirXd/6sKP26AdN9vpV2MMsWyy2geJ4VU+HEDogd1Lu1ilBk+f+xH8j3T67AbU7mQhsj7s+gXEr2trAZOxePwG6VdjDKlQmBtXArPKO1ilCmNAh2wXxhQ2sUoUzorIhAzpEtpF6NMqfr7PqTfOFHaxShTHGu3Qd6G70q7GGWK1YApiIuKLO1ilBlevv54MKZ3aRejTPFYtgMpdy+WdjHKFNdqjfHbodIuRdkyugMQFR377xnfIr4+3ki7bXo39ozJuYZp3gAuTYmRpvvOudJSuRhTapqKYt3G+uabb1ClShXcvXsX7dq1Q82aNdGnTx9s3LgRX331laHLSERERERERERERERkVMV6I8epU6cwadIkODlp5vX76aefMHPmTIjFYghfeMMvERERERERERERUVmlNuOUOFSgWEfDrFmzIJHovpzP1taWgXIiIiIiIiIiIiIiMknFCpY3bNgQ+/btg1xuem+9JiIiIiIiIiIiIiIqrFjTsKSmpmLZsmVYvnw5nJ2dIRaLddYfP37cIIUjIiIiIiIiIiIiIioJxQqWv//++3j//feLXGdmZvafCkREREREREREREREVNKKFSxfvHhxkUFxMzMzCIVC7Ny5Ex07dkS/fv3+cwGJiIiIiIiIiIiIiIytWMHyAQMGYMmSJRgwYABq1aoFtVqNu3fv4s8//0Tv3r3h5uaG3377DdnZ2Rg+fLihy0xERERERERERET0n6nBWTKoQLGC5bt378bs2bPRuXNnbVrbtm0REBCA5cuXY/fu3QgKCsLUqVMZLCciIiIiIiIiIiKiMs+8OBslJCQgMDBQL93Pzw8xMTEAAC8vL6Smpv630hERERERERERERERlYBiBctr1aqFxYsXIzc3V5uWm5uLpUuXokaNGgCA06dPo0qVKoYpJRERERERERERERGRERVrGpbZs2dj1KhRaN68Oby8vKBWqxEfH4+KFSti8eLFOHfuHL777jv8+uuvhi4vEREREREREREREZHBFStY7uHhgb///hsXL15EZGQkLCws4Ofnh8aNG8PMzAwODg44ffo0nJ2dDV1eIiIiIiIiIiIiIiKDK1awHAAsLCzQrFkzNGvWTG8dg+RERERERERERERU1qnNijVLNf2f4tFARERERERERERERG89BsuJiIiIiIiIiIiI6K3HYDkRERERERERERERvfUYLCciIiIiIiIiIiKitx6D5URERERERERERET01hOUdgGIiIiIiIiIiIiISoMaZqVdBCpDOLKciIiIiIiIiIiIiN56DJYTERERERERERER0VuPwXIiIiIiIiIiIiIieusxWE5EREREREREREREbz0Gy4mIiIiIiIiIiIjorSco7QIQERERERERERERlQa1GccSUwEeDURERERERERERET01mOwnIiIiIiIiIiIiIjeegyWExEREREREREREdFbj8FyIiIiIiIiIiIiInrrMVhORERERERERERERG89QWkXgIiIiIiIiIiIiKg0qGFW2kWgMoQjy4mIiIiIiIiIiIjIKGQyGaZMmYJ69eqhWbNmWLt27UvzhoaG4r333kPNmjXRu3dv3L17V2f9vn370K5dO9SsWRNjx45FWlqaQcvKYDkRERERERERERERGcX8+fNx9+5drF+/HjNmzMCSJUtw6NAhvXy5ubkYMWIE6tWrh507d6J27doYOXIkcnNzAQC3b9/GN998g3HjxuGvv/5CZmYmJk+ebNCyMlhORERERERERERERAaXm5uLbdu24ZtvvkFISAjat2+PYcOGYePGjXp5Dxw4ALFYjEmTJsHHxwfffPMNbGxstIH1DRs2oGPHjujRowcCAwMxf/58nD59Gg8ePDBYeRksJyIiIiIiIiIiIiKDCw8Ph1KpRO3atbVpdevWxa1bt5Cfn6+T99atW6hbty7MzDTzyJuZmaFOnTq4efOmdn29evW0+StWrIhKlSrh1q1bBisvg+VERERERERERERE9Frkcjmys7N1FrlcXmTe5ORkODk5QSQSadNcXV0hk8mQnp6ul9fNzU0nzcXFBY8fPwYAPH369JXrDUFgsG8ygAo/bijtIpQ5ll1Gl3YRyhweJ/p8/thf2kUoU8qFNCztIpQ5VgOnlnYRypwKgbX/PdNbplGgQ2kXoczprIgo7SKUOVV/31faRShzHGu3Ke0ilDlWA6aUdhHKHC9f/9IuQpnisWxHaRehzHGt1ri0i1DmjO5Q2iUoe3x9vEu7CGWOc43mpV0EMnHqZ6OY6fWtWLECS5Ys0UkbN24cxo8fr5c3Ly9PJ1AOQPu5cID9ZXmf55NKpa9cbwhlKlieNmdkaRehTHGeugI5qxjgepHN8DlI+qxfaRejTKm0cDP+adaotItRZtQ/dwmZ14+WdjHKFPs67ZG9dFJpF6NMsR07H4/Cb5Z2McqUioG1cDEss7SLUaY0DrJHzJAupV2MMqXq7/uwXxhQ2sUoUzorIhAW/bC0i1GmBPm4Q/rX/NIuRpli2XcS4qIiS7sYZYaXrz/iR/Qo7WKUKVVW7kbWVf0Xnb3N7Op1wKpjpV2KsmV4OyA2Oqq0i1GmePv4Ivvy3tIuRpli27BraReB3gIjR47ERx99pJNWOIj9nFgs1gtmP/9saWn5Wnmf53vZeisrqzevxEuUqWA5EREREREREREREZVdIpHopcHxwsqXLw+JRAKlUgmBQBOKTk5OhqWlJezt7fXypqSk6KSlpKRop1552fpy5coVtyp6OGc5ERERERERERERERlcUFAQBAKB9iWdAHDt2jVUr14d5ua6oemaNWvixo0bUKvVAAC1Wo3r16+jZs2a2vXXrl3T5n/06BEePXqkXW8IDJYTERERERERERERkcFZWVmhR48emDlzJm7fvo1jx45h7dq1GDRoEADNKHOpVAoA6NChAzIzMzF37lxERUVh7ty5yMvLQ8eOHQEA/fr1w549e7Bt2zaEh4dj0qRJaNWqFTw8PAxWXgbLiYiIiIiIiIiIiMgoJk+ejJCQEAwePBizZs3C+PHj8c477wAAmjVrhgMHDgAAbG1tsWLFCly7dg29evXCrVu3sHLlSlhbWwMAateujW+//RZLly5Fv3794ODggHnz5hm0rJyznIiIiIiIiIiIiN5KarVZaRfh/56VlRV++OEH/PDDD3rrIiIidD7XqFEDu3bteul39erVC7169TJ4GZ/jyHIiIiIiIiIiIiIieusxWE5EREREREREREREbz0Gy4mIiIiIiIiIiIjorcdgORERERERERERERG99YodLM/KysLGjRsxZ84cpKWl4eTJk0hISDBk2YiIiIiIiIiIiIiISkSxguWRkZF45513sGPHDmzZsgU5OTk4cuQIunfvjitXrhi6jEREREREREREREQGp4Y5lzdc/p8Vq3Zz5sxBv379sHPnTgiFQgDAvHnz8OGHH2L+/PkGLSARERERERERERERkbEVK1h+584d9OjRQy/9gw8+QFRU1H8tExERERERERERERFRiSpWsNzZ2RmxsbF66devX4eLi8t/LhQRERERERERERERUUkSFGej4cOHY+rUqRg1ahTUajUuXbqEXbt2Yf369fjss88MXUYiIiIiIiIiIiIiIqMqVrD8gw8+gJubG9asWQNLS0vMnz8f3t7emD17Njp16mToMhIRERERERERERERGVWxguVPnjxBmzZt0KZNG0OXh4iIiIiIiIiIiKhEqGFW2kWgMqRYc5a3atUK/fv3x8aNG5GWlmboMhERERERERERERERlahiBcsPHjyIli1bYseOHWjRogWGDBmCbdu2ISMjw9DlIyIiIiIiIiIiIiIyumIFy728vDBixAjs3LkThw4dQsuWLbF79260bNkSI0eONHQZiYiIiIiIiIiIiIiMqljB8heJxWKIxWLY2NjAzMwMeXl5higXEREREREREREREVGJKdYLPh8+fIijR4/i8OHDuH37NqpXr46OHTtizpw5cHNzM3QZiYiIiIiIiIiIiIiMqljB8rZt2yIoKAgdO3bETz/9BHd3d0OXi4iIiIiIiIiIiMio1DAr7SJQGVKsYPmBAwdQtWpVQ5eFiIiIiIiIiIiIiKhUFCtYXrVqVRw7dgyrV69GTEwMVCoVvL29MWDAAPTo0cPARSQiIiIiIiIiIiIiMq5iBcu3bNmCH374AQMGDMCIESOQn5+P69evY9asWVAoFHjvvfcMXU4iIiIiIiIiIiIiIqMpVrB89erVmDFjhs4o8nbt2sHPzw/Lly9nsJyIiIiIiIiIiIiITIp5cTZKTU1FrVq19NJr166NR48e/dcyERERERERERERERGVqGIFy4OCgrB792699F27dsHX1/e/lomIiIiIiIiIiIjI6NQw4/KGy/+zYk3D8uWXX2LIkCG4fPkyatasCQC4efMmwsPDsXz5coMWkIiIiIiIiIiIiIjI2Io1srx27drYuXMnatSogejoaCQmJqJ+/fo4ePAgGjVqZOgyEhEREREREREREREZVbFGlgOAj48PJk+ejKysLAiFQlhaWhqyXEREREREREREREREJaZYwXKFQoEVK1Zgy5YtSE1NBQBUqFABQ4YMweDBgw1aQCIiIiIiIiIiIiIiYytWsHz27Nk4e/YsvvjiCwQHByM/Px+3b9/GokWLkJqaiokTJxq6nERERERERERERERERlOsYPn+/fuxYsUK1KtXT5sWGBgId3d3TJw4sWwFyy0EsOnYD8LAOoBCAemlI5BePlZ01nKVYN2pPwQVPKGSJCP38BYo4yP18ll3HgB1VjryzuwzdumNQqZU4ftj13H8/kNYCiwwsJ4/BtYPeOU2SRk5eO/3w/i1ZzPU83QDAChU+Vh27i72h8ZDmZ+PriFeGN+iOgTmxZoKv3QJhHDo/RGsajaAWiFH9sn9yDm1v+isFT3g0OdjiCpXhTLlMTJ2rYc8KlSz0twCdp3eh3W95oCFBfL+OYPMfZuB/PwSrIxhmIlEqDLxCzi1bI18mQyPt2zCky2biszr2KIlKo8YDZGbG3Kj7iPhlwXIjYzQfo/HmPFwbtsWACA5cxoPFv+KfKm0xOpiKDK5AvPXbcWJKzchFgkxoHNbDOjS9pXb3AyPxozf/sCeX2dp09RqNVbtOIA9Jy8iTyZDw+pBmPTRe3CytzN2FQxOplThh1O3cTwqCWKBBQbW8cXAOr5F5p249zJOxz7WSVvYtSFaeFeAXKnCskvhOByRiDylCnXdXTCpZQ2Ut7MqiWoYlEwux68r1uL0xcsQi0To26ML+vboWmTe+zGxWLBsNWLiE+DlWRkTRw9HgG9VAECr7n2L3GbyhDF4t01Lo5XfWOJjIrD+t3lIjI+Cu2dVDB41GV6+Qf+63dqlc+Dk7Iae/UZo0xQKOTavXYhLZw5DIBCiRbtu6D1gDMzMTOet7GZCIVwGjoZNvSZQy+XIOLQLGYd26eWr+PU8WAVW10vPOnMUyWt/BQDYt+0Mx069YW5ti9y715Hy+xLk52QbvQ7GYC4Sotnlnbg7YTbSzlwpMo99rSBUWzoL9tX8kRUahTtjZyDz+j3t+kp9O8N/1qewrFgOyUfO4faoaVCkSkqqCgYXE30fvy1eiPj4WHh6emHUuM/g6+f/0vx/796O3Tv+Qm5uLpo2b4URo8ZD/Gy6xEsXzuL7OTN08jdu2gJffTPTmFUwGJlCie/2X8Tx0DiIBRYY1LQ6BjfV/3286KEkC72X7sTi/u+gvndFAECuXIEfD17C8dB45KvVeCfEG190aAhrsbAkqmFQcrkcS5Ytx7kLFyAWidC7V0/06dWzyLxR0dFYtGQZ4uLjUMXTE5+MHQs/P02brVarsXX7Duw/eBBZmVnw9/fDmFEjUcXTsySrYxgCIVw+HAnrOo2Rr5Ah88geZB3do5et/OdzYBlQTS89+/wxpK5fAjORGE59h8K6diPAzBy51y5Asm0t1DLT7MP+8Ps2nPjnNsQiIQZ2ao0BndsUmffcjXtYtnU/HjxJhrubC0a/1xkt6xb8zg5duIbftu1HSnomGtcIxNRhH8DRzrakqmJQTx6E4ujmGUhJioRLRV+07zcLFTz1j4nCrhxdjZtnNmHE7BPatMfxd3Bi21w8TQyDnVMFNOowGiENexix9IanOZ8sw/nzFyASidCndy/07tWryLxR0dFYvHgJ4uLj4enpiU/GjYWfn59evs1btuBhUhK+KEsxotckkyvwwx+7cPzqbYiFQgzs1BIDO7YqMu/Zm6FYtv0QHjxJgbubC8b07oCWdUIAaM6v6/efxI4TF5GRnYvgqh6YNLAHqrpXKMHa0L9Rw3SuI8j4ihXVtLW1hUCgH2e3s7MrMr00WbfrA4uKVZC1YQFyDm2CVYsumsB5IWZiS9j1/xSq5EfIWPktFOE3YPveaJhZ6wavLBu/A8vazUuq+Ebxy+nbCH0iwYr3W+LrdnWw8mIojkUkvnKb745eR55CpZO2/Pw97LsXhxnv1sPSPi1wJeEpFpy8ZcyiG419t/4QeVRF6rI5yNi+Fnbv9oJlzQZ6+cwsreAyagqUTx7i6Y+TIL3zD5w/nghzW3sAgF3H92BdvwXSt6xA2op5EPtVg333gSVdHYPwGDMeNoFBiJgwDvELfoT7R0Ph1Kq1Xj5Lb2/4zJiFRxvW496Qgci9Hwm/+T/DXCwGALh/NBR2tWoj8ouJuP/l57CrUQuVR44u6eoYxKKNuxAWk4Dfpn6Crz7ui9U7D+L45RsvzR+V8BBf/bIa6ny1Tvqu4+ex5+RFfDt2MFbO+AwpkgzMWVn0jYiy7tdz9xD6NB3LezXF161rYNXlCBy7n1Rk3pi0LMx+pw4OD31XuzTyKAcAWH45HCejH2HOu3Wxtk8zKPPV+PLAFajV6iK/qyxb/vsGRERFY+Hsafhs5FCs37IDp85f0suXJ5Xiq2+/R/WQQKxcMA/VAgPw9ezvkffsRtKO31foLP16dUN5t3Jo2rB+SVfpP5NJ87Bg9gT4B9fCzJ//hG9gDSyY8ylk0rxXbndg5x84U0SAY+Pqn3Hv1hV8MWMxRk2cjdNHd+PUEf1Ac1nm3PdjiL388OiHb5Dyx29w6t4PNvWa6uV7sngu4icM0C6Pf50NtUKBjBOaG7o2DZrD+f2PkLp5NR7O+RIC53JwHWia51hzsQi1NyyAXbWXB4ItrK1Q/++VkJy7inMNe0Fy8Qbq71kBC2vNjTWH+tVRY+Vc3J+zBOeb9YXQyR4118wrqSoYnFSah9nTJyO4WnX8/OtyBAaFYM7MyZC+5Ldz4dwZbNm4HqPHTcTseT8jMjwU69eu0K5/kBCP+g0bY92G7dpl7IQvSqo6/9mCI/8g9GEKVg3piCldmmDFqRs4ei/2ldvM3XsBeXKlTtqPBy/h3sMULB/cAauGdMTdh8n46dBlYxbdaFatWYfIqPv44bs5GDdmNDZu2oyz587r5ZNKpZg2YxaqhQRjyS+/IDgoCNNmzoL0WZuz/+Ah7Ni5C2NGjcTiXxeiQvnymDp9pna9KXHqMwSiKj54smAa0jaugGOXvrCu01gvX/Jv3+PBF0O0y9Ol30GtUCDr1EHN9/QdCnEVXzz9ZRaeLpwOsbcfnN77uKSrYxC/bt6DsNgHWD5lLL4e0gerdh7Cscs39fLdT3iIL39Zg24tG2LTd5PQq01TfPXrOkTGPwQA3I2Ox+xVmzG8Vwf8PuszZObkYebyjSVcG8OQy3Kxc9kIVPath4Ff74R71drYuWwk5LLcV26XnvIAFw4s0UmT5WVhx7LhqFS1NoZM3YfGHcfi8MapeBh9zZhVMLjVa9bg/v0ofD/vO4wbOwYbN27C2XPn9PJJpVJMmz4D1aqFYPGvmvPJ9Jn654uTp07hzw2meXwAwK9b9iE09gGWfz0KXw/uhVW7juLYFf14x/2EJHy5aD26taiPzXMmonfrRpi0+A9EJmiuiXacvIg/D57GlwN74s9Zn6JSOWeM/2k18mTykq4SEb2m1w6WJyUlaZdBgwbhq6++wpkzZyCRSJCZmYmrV69i6tSpGD9+vDHL+2aEIohrNUXuka1QPX4ARcRN5F08Asv6rfSyimo0hlouQ+7BjciXJCPvzF7kpz2FoGKVZxksYdt7BCybdIAqI61k62FAeXIldt+JwZetayGovBPa+LljcP0A/HUj6qXbHAiNR65CoZOmVqux9WYUxjWvjqZVKyKovBOmtK+D7beikVvogqSsMxOJYdOwNTJ2rYciMQ7SO1eRfWIfbJq9q5fXun4LqGVSZGxbA1XKE2Qd2g5l8mMIPTQjQW2atUfm/i2Qhd+CIjEO6dtWw6ZJO5iJxCVdrf/E3NIS5bp2RcKvC5EbGYH0M6fxaNMGuPV+Ty+vQ/2GyIuNReqhg5AlPUTi8t8gcnWFpZe3Zn3jJkj+ezdyI8KREx6Gp7t3wq5uPb3vKevypDLsOXkRnw/ujUBvD7SuXxMDu7TD1sOni8y/89g5DJ2xAC4O9nrrzt+8h/aN66BusB98PSphYNd2+OduhLGrYHB5CiV234vHFy2qI8jNEW18KmFQXV9svR2jl1euVCEpMxch5Z3gamOpXUQCCwDAvrAHGNs4CHUru6Kqiz2mtq2Fe0/S8SAjp6Sr9Z/kSaXYf/QExg0bAn+fqmjeuAE+6NUVuw4c1st78txFiEUijB4yAFU8KmPcsMGwtrLSBtZdnBy1i1wux459B/Hl2BGwtbEu6Wr9Z5fPHYVIJEbfIRNQycMbHw79HFZWNrhyvugnvfJys7Hkh6+wf+d6OLuW11mXnZWBs8f24KMxU1DVPwTBNRvg3e79ERN5tySqYhBmIjHsWryD1E0rIY+PRu71i0g/sAP27bro5c3PyYYqI12zZGbCuc8gpB/cAXmcpt127NQb6Qd2IOfqBSgexiPtr7UQVfYCzEzrKS/bIB80Ob8V1j6vHsVa8f1OyM+TIeyr+cgOj0HoxLlQZeWgYp8OAACvMQOQtP0gHm7Yg6w7Ebg5ZBLcOraElVflkqiGwZ07cwoisRhDho6Ch2cVDB05FlZW1jh/tui2Z9+eHejavTfqN2wMP/9AjB4/EceOHoLsWQAj8UECPKt4w8nZWbvY2prGiNBcuQK7rkVgUqdGCKrkirbBXhjStDq2XA596Tb7b0UhR67QSxdaWGBy5yYIruSKoEqu6F7HHzcSnhiz+EYhlUpx6MgRjB4xAn6+vmjapDHe69Mbf+/Tf/r19JmzEIlEGD70Y3h6emDUiOGwsrbCmbOaQNjRY8fRu1dPNGrQAJXd3TF+7BhkZmXhXlhYSVfrPzETiWHbrB3S/loDeUIM8m5eRubhXbBr3Vkvb35uNvIz0zVLViYcew5AxuFdkMdHazIolUjbvBLyhGjIE2KQff4YxK/xRFRZo+nDXsLnA3u90Idti61Hz+rlPXThGuoH++ODDi3hUaEc3n+nOeoF++Hos8EhW4+cRfuGtdGleQP4ebrj29EDcP5WGB4+TS3pav1nEdcOQCAUo2XPSXCp4IPWfb6ByNIGkdcPvXK7o5tnoHxl3eMgU/II3sEt0LLnJDi6eiC4QTe4VvLDw5jrxqyCQUmlUhw6fASjRj4/nzRBnz598Pfeos4nZyAWizBs6FB4enpi1MgRsLKyxpmzmmNKpVJh8ZKlWPjLr6hYsWJJV8Ug8mQy7D59GV8M6I4gr8poU686BnVuja3H9G9GHrx4A/WDfdHvnebwKO+K99s1Rb0gHxy9rAms7z17FQM7tkSL2sGoUrEcJg/ujYzsXNy6H1fCtSKi1/XaV1Jt2rRB27Zt0bZtW/z444+Ij4/HiBEj0KRJEzRs2BADBgxAZGQkZs2a9e9fVkIE5SsDFhZQPojWpikfREFQyRso9IiFsEoA5JG3gBdGMWaunQdFtObi28LRFRAIkbl6LvLTk0uk/MYQmZwOpUqNmu6u2rRa7q64+zgV+UWM4EzPk+HXM7fxTfu6OumSXBly5EpUr+iiTfNzdYQyX43Qx6Z1M0FQyROwsIA8rmDKHXlMOESevkChR/pFvsGQ3r2mc5ykLJwKWdhNmNvaw9zSGor4ghsPikcJMBMItMF0U2Ht6wczCwGy79zWpmXfvgXb4GC9faLMzICVtzdsq9cAzMzg2rkLlNnZkCVpRqAoMzLg1LoNLOzsYGFnB6eWrZAbqT+9UVkXmfAQSpUKNfwL/pa1AqviXlQ88ouYZufCrVDMGD0Q/Trpj8Z3sLXB+Rv38DQtHVK5HEcuXEWAl4dRy28MkSmZUOarUbOiszatViUX3H0s0TufxKdnA2aAu4N+oDdfrcbsd+qgoWc5vXXZMv0gR1kWHRsPpVKFaoEFU1tVDwpEWOR9veMkNOI+qgcFaKcOMTMzQ7WgAIRG6P8+1m7aijo1qqNerRrGrYCRREfcgV9QLZ26+gbWQHTEnSLzJz9JgkIhx8yf/0S58u466+6H3YSVtS0CqxW0S116D8HQ8dONVwEDE3l6w8xCAOn9giCU9H4oxFX99c6xL7Jr3hbmNnZI378dgOZpJ7GXL3KuXSj4nsh7SJw6FlCb1vRfzi0aIPXUZZxvVvT0Q885NayJtAu6I/XSLl6HY6NaAADHBjWRdvaqdp008THyEpLg1LCmwctcEiLCQxEUXE3ntxMYXA0R4foBYpVKhaj7EQipVnCeCAgMhlKhQGyspi/8ICEOldxN88ZB5OM0KPPzUcvDTZtWu0oF3ElMRn5+EX3YXCkWHvkH07rpP7ExpUsT1K6iuRH3UJKFg7ejUc/L9B6Hj46JhVKpRHBQoDYtJDgY4RGRem1OWHgEQkKCdY6lkKAghIWHAwCGD/0IbVq30uY3MzODWq1Gbs6rR9mWNaLKXjCzEEAWHa5Nk0aFQeTt98rzq22TNjC3sUXm4Z3atLTNK7XfY+HiBpsGLSAzoRuzz0UmJEGpUqGmv7c2rVZA0X3YLs0bYNwH+lPHZedqbrjdjYpD7UAfbXoFFydUcHHCnag44xTeiB7F3YK7T12d34R71TpIir350m3uXd4NpTwP1Zr00UkvV8kfnQbP1/xu8vMRfecE0p7EorKv6TwNGBMT8+x8UnAjICQkGBEREXrHSXh4OEKCQ3T2XXBwwfkkLy8PsbGx+GXhAgS9cH4yJZEJj6BU5aOmn5c2rZa/F+5GJ+jtj67N6mH8+/o35LLzNE+BffpBV3RsUjC7gZmZZvBhdu6rn7AkotLz2nOmHD9+3JjlMAozWweoc7OB/ILpQ/KzM2EmFMHM2kaz7hlzR1cok2Jh3WkARP41kJ+eitxj26FM1FxcqJ4mIvuvpSVeB0NLyZHC0UoEoUXBfRJnG0vIlPnIyJPDyVp3BPSCk7fQJcQLPq4OOun2ViIIzM3wNDsPVV01I2efZGk60+l5pvU4kYW9E/JzsgDVC8dJVgbMRCKYW9tq1j0jcHGDIiEaDu8Pg2VIXajSkpH59wbIYyORn5sNtVIJCwdnKJ9oAsUWjpqbCea2pjUXtdDFFcqMDKiVBU8JKNLSYC62hMDBAcr0dG162vFjcGzaHEG/rYRaqYRarcb9Lz+HKkuz3x4sWwzfud+j9n7NyNq8mGjc/+rLEq2PIaRKMuBgZwPhC1NNOTvYQ6ZQICM7R2++8Z8+18yvvPe0/vQbw3p3xMQfl6Pz2KmwMDeHi6M91n77uXErYARFnU9crMWQqfTPJ7Fp2bAVCTH9yHVcTUxBBTsrjGwYiKZe5WFuZoaGnm463735ZjQcLUXwK3TuKetSJelwsLeDUPjCceLoALlcgcysbDi+8KRBqkQCLw/dmyTOjg6IjX+gk/YkOQXHz5zDku9nG7fwRpQuSYG7p+5NQwdHFyQmRBeZ39PbH59NXVjkuqePH8LVrRLOn9yPvdvXQaVUoFmbruj63scwN5F3ZggcnaHKzgRUBedYVYYE5iIxzG3tkJ+VWeR2Dp36IOPIHu18uUI3TXDPws4B5b6ZD4FreeTdu4nUTSuRn2taT2UkrNj8WvnEFcohK1T3aTj5k1TYhWjmSbWs6AZZ0lOd9bKnqbA00XlBJWmp8KzipZPm6OiEhHj9qUdycrIhl8vh7FIwIMLCwgJ29g5ITUmGWq3Gw8RE3Lz+D3b8tQmqfBWaNm+JfgM+glBY9ufqTsnKhaO1JYTPnkgCABdbK8iUKqTnSeFso/uOi58OXUa3Wn7wdXN66XdO3Xkae29GoZKjLUa2qm20shtLmiQNDvb2On8/J0fN00iZWVlwdHDQyVt4/nFHRyfEx8cDAKqFhOisO3j4CPJVKoQEBxuxBoZn4eiM/MLn18x0zfnVxk6zrgj2HXoi69jeIucjdxnyCWybtIEy5QnS9/1ltLIbS0p6BhwL9WFdHOye9WFz4WRf8HSJd6FzZXTiI/xzLxK92zZ59l2ZKOek2zdzdrDD07R041XASLIzkuFaUfc9O9b2LkhJul9k/tysNJzZ/RPeG78Oj+OLvtmvUsrx68Q6yFcpULPZB6jkXcvQxTaatDQJHBxe83ySJkGVKrrnEydHR8Q9O/oM2McAAQAASURBVJ/Y2tpiwc8/lUzBjSQlPVP/d2NvB5lCWcTvRvcpyOjEx/gnNAq922imf6od4K2zfvfpy1Dl56OWv246EZUdr31V6e7u/q9LuXLlkJKSYszyvhEzoQhqVaEpQZ5/ttC9T2AmEsOySQeoszOQtXkxFAn3YffhBJjbv7yDbYryFCoILSx00kTPAl1yle6c5Jfjn+DmwxQMb6TfSRaYm6ONX2UsOXsHT7JykSVTYOHpWxCYm0FhYi+zNBOJoFYWmmbm+XEiEBbKawnbtt2Qn5mO1JU/QBYdBueRk2Hu6Azk50N6+wrsOveFuYMzzCyt4NBtANQqJcwsytZc/v/G3FKMfIXuTQ/1s89mhS6oBfYOELq4IH7BjwgdORSphw7Ce8pUCBw1vx1Ldw/InzxBxIRxiJz4KcxEIniOn1AyFTEgqVwBkVD37/i88yRXvNnUQ4+SU2EpEmHBlyOxYvoElHdxxOwVpjefn1Sh0gmUA9B+lqt0zwNxkixIlSo08nTDku6N0bRKeXy29zJCn+i/dO9U9CNsuB6NcU2C9b6/rJPJZBAV+o08v+iQF5rOSiaTF3FMCfXyHTh6AgE+PggO0H9pkqmQy6QQCkU6aQKhEErFm99clUnz8ORRAk4e3olh46ej75AJOLb/Lxz+23Tm/TcTiaEuPL3Zs3bITFB00NIysDoETi7IOl0wpY+ZWBMcdB04Gun7t+PJ0u8hcvdEuRGmd/PtdVlYWyG/0Byf+TI5zMWiZ+stX7ne1MhkMr3fjlAohEKh/9SNTCbTri8qf/LTJ5DJpBAIRfhi8nR8NGwUTp88jvVrVuh9V1mUp1Bq+6zPPf+sUOq2OZeiH+JG/BOMaFXrld/5UbMa+HN4V1RytMWYPw8XOUK9LNMcH0W3OYWPkaLzCvTaHAAID4/AytVr0Kd3Lzg7m9a1kJlIrNevx7+cX8UB1WDh5Irss0eLXJ95eCcezZsEZWoyyn8y/ZUj1MsiqUyhE/ADoL2p/6o+bHpWNib9shY1/b21L/iUyuQQFfoukUDwxn3hskApz4OFQPf8aiEQQaUsum9ycsd3CGnUE66VXt0f6//FX+g85CeEXzuAq8fXGay8xiaVySAU/JfzSdFtk6mSyhU6N2eBF343ypcf75KsHHy5eD1q+nmhVZ0QvfV3ouOxcNNeDOrUCq6O+tN1ElHZUKwI3vXr1zFr1ixERUXpPYJiYWGBu3fLxuNpaqVCP0j5/HPhC/T8fKgeP0Demb0AgLwnDyCsGgRR9UaQnj9YAqUtGWKBORSFguLPg1qWL3R8pAoV5h65hq/b1YGlULeReG5Sm1r4et8ldFyxH1ZCCwxrFIy7j9JgIzKtwLBaodDrPD8/btQKmW7efBUUiXHIOqR5BD7rYRwsA2rAul5zZB/bg4xd6+E06BNUmLkU+TIpso/ugrCKL/L/5SV2ZU2+XA7zQhfnZs8+50t190nl0WORFx2Npzt3AADi5s9DtY1b4Nq5C57u2gGvr6cg4tPxyAm9p1k/by4Cl/yGh2tWQpFqOvMbioT6FwKKZx0lyzcIwqjVasxY9ic+6d8DzetoLjy+mzAU3cZPx92oOFTz9TJYmY1NJDCHolBQ/PnnwueNYQ0C8EHNqrC31Owr/3IOCHuajp134xFcvuBC/GT0I0w+eBV9a3qjZ7UqRq6B4YlE+sHu5xcOlmLdJ3dEQmERx5RCL9/pC5fRrUM7I5TWePZuW4d9OwouEKv6hUBRqN1VKhQQiS3f+LvNLSyQl5uDURPnwNVNMw9mavJjnDi0Ax17DPhvBS8haoVc78bj83ZILZcVtQls6jdF3p1ryM8peCru+ZNz6fu3IffmFQBA8rpFqPztYlg4OkOVblrTor2OfKlML/BtLhZB9WyKANXL1ueZRju87a+N2PFXwc1Tv4Agvd+OQqGAWKz/LhSRSKRdX1R+t/IV8Odfu2FrawczMzNU9fFFfr4av/z0HT4aPhoWFkX398oKsUCgdyNW24cVvtiHVWL23+cxpUsTnfSi+DwbdT7//TZo9+NmXIt/jPrepjO/rkgoKvLvDUDvGCk6r1KvzQkNC8fUGTNRv15dDBrQ3wilNi61Qq4fFP+382udJsi7ex35Lzx1/CLFo0QAQPLKH1H5x7UQ+4WY1HQsYpFA22d9TqF43oct+gZCakYmxs5bBrVajR8mFDy5JRIJ9QKFcqXyjfrCpeXSoeW4fLjg5mBFrxp6gXGVUg6hSL9vEht6FkmxNzHkwzmv/D8sBCKU9wxBec8QZGc8xfVTf6Je248MUwEjE4mEUChfrw8rFOkHxl/WNpkqkVAAhVI3bqL93YiKPt5TM7IwZv5KqPPVmD9+kN4Tj7fvx2H8z6vRtGYgRvXSfz8alS612rRuhJJxFSuqOWfOHLi7u+OLL77AhAkTMH/+fDx58gRLlizBtGnTDF3GYlNnpcPM2lbzkqtnc3ea29pDrZBDXSh4mZ+dAVXqY500VerT/7uR5W62VkjPk0OZnw/Bs5N3ao4UlgIL2FkWdJbuPU5DYkYOvvz7gs7243eeRZcQL3zTvi6cbSyxsm8rZOTJIRKYA2pg8dk7qGRvU6J1+q9UGWkwt7EDzM2BZzd/zO0dkS+XQZ2nO09jfmY6lE+TdNKUyY+0063kZ2ciddkcmFnbAAoFYGYG+y79oEozrXnuFcnJEDg4ABYW2ulphM7OUEmlUGVn6eS1CQjEk+1bCxLUauRF3Ye4QgVYVfGChbU1cqMKHmfMjYyAmYUFRG7lTSpYXs7ZERlZOVCqVBA8CyikpmdCLBLCztrqX7YuIMnMxpNUCfw9C+ZhruDiBEc7GzxKTjOpYHlR55OUHCnEAgvYFbr4Mjcz0wbKn/N2tkN0WsHxdDgyEdOOXEefal74vEV141fACFydnZGRmaVznKRJ0iEWifRezOnq4oy0F6Y0ep7XxdlR+/lpcgriHiSiaUPTmfMSAFp36IUGzQoC/Pt3rkeGRPf3npGeCkcn18Kb/itHJ1cIRWJtoBwAKrpXQVqK6bycTylJhYWtvU67Y+HghHyZ9KXTp1hXrwvJbt3R88+D4c8DOZp/a6YBEzi7/l8Gy6VJTyCuoHvciCu4QvpYM/WK9GER68u7QvbINNrhDp26olnzVtrPO7dthkSi+wROuiQNTs4uKMzOzh4ikQgSSRoqe2gej1epVMjKzNDmt7PTHcXm4ekJuVyO7OwsODg4GrYyBuZmb430XCmUqnwIno0oT8nKhaXQAnYvtC93E5ORKMnC53/pTiE59s/D6FrLD193aoTTEQlo5OMO22fbudhawcFajPRc/Sk4yjIXFxdkZGZCpVJpb3akSSQQi0WwtbHRy1v4WJKkS3RGjt+6fQfTZ32LurVrY/KkL01maqsXqSSpMNc7v2r69fl5RZ9fLavVQcbeLbqJFgJY16yPvNCb2uvG/KwM5GdnwcLEplcs5+SIdL0+bNZL+7BP09Ix6jvN9KMrpo7XmW7CzckBqem6U9mkpmeaxAjZms0/QECdjtrPV46uQk6m7lPxOZkpsLF3K7wpwq8dQJbkMZZ9pZlWIz9fCZVKgV8/q43eY1fB1rE8JE/j4B3cXLuNSwVf5GXrP0FZVrm6uCAjQ/d8IpFIIBaLYVPofOLq4oK0wucTSTqcnZ3x/8LNyUHvd5OS8fx3o39D5WlaBkZ9vxwAsHLKaJ3fDQBcDYvCpwvWolE1f8wdPcAkz69Eb5Ni/ULv37+Pzz//HM2bN0dISAiEQiH69++PGTNmYM2aNYYuY7EpHz8AVCoIKhfMBSXw8IUyKQ6A7mOWyocxsHDTfeGRhWt55KebTjDvdfi7OUJgYYY7SQUX0DcfpiC4ghPMX3ikMKSCM3YP7YjNg97RLgAw7Z16GN1E8zjR1AOXcTHuMRysRLASCnAu9hGcrcXaOcxNhfJhPKBSQVSl4JE6kXcAFAkxOi/yBAB5fBT+x95dhzd1vXEA/9aSumOFlrriDi0y3J3h7rYNhruzjQ2GuzsbMtzdGQ71Qh2ra5JKfn+kpIQUBl3SJr99P8+T5yH3nhvec5t7cu57zz3XwE5xtKt+STt5Mtyy9ygIPSpCmpEOaZYEQq8qyElNls9hri0yQoIhzcmGqU8F+TLTSpWRHuCvvE/i42DkqDjfmqFDeYhjYyGJk+2XD9cb5s29Kn6leNFB03mULwd9PT08++Cp5Y+CwuDtXP6rOjvmpsYQGOjjRUz+xbmklDQkp6bDrqRy8kOTuduaQ19XB09f53eWH71KgE9JS4X2BABmn3uAuecfKiwLepcMRytZR/Ju1DvMPPsA3Ss5YVIj7XyIJQC4OjtCX18P/kH5F4ieBgTB081F6Xvi7eGG54HBkOYdU1KpFE8DguDtnt8W+QeHoqStDUqV+PqkcnEyNbNAqTL28perRyWEBj1VqGtIwGO4eFT4h09S5uJRAVkSMV7HRMiXxUaHKyTPNZ0k8iWkOdkQuuQ/9MrQ3QfilyFKbSwgu9BvULIMRCGKD3XMjn+H7MR4COzz21gDO3tIc3ORHf/244/5v5B45zGs6ijOLW1VtxqS7jwGACTdfQwr3/yHvxqWKw0j+zJIzFuv6czMzFHGrqz85eHlgyD/5wrHToD/M3h4eCltq6urC1c3DwQ8z59LNzDgOfT19eHk5IKH9++hb/eOEIvyE8IvwsJgZm6u8YlyAPAobQN9XV08ic7/bj+MfAMfuxLQ1c3/zalQrgSOfd8NB0Z2kr8AYHYHP4xqXA06OjqYcfgqrgXnPx/iVVIakjJEcCphWWT1UQUXZyfo6+vLH6oHAM/9/eHu5qb0m+Pl6QH/gECF79Jz/wB4esraofDwCMyZNx81q1fH9KmToa+vXXeKvieJzmtfnfMftG3o6g1J+KfaVzMYlCgNcWiA4gppLmwGfAejijXki/SsbaFraq5wgVIbeJQvK+vDfvAQzkfBL+Dj7KD0PckUiTH253XQ1dHBhhljleYnr+DqiEfBL+TvX8cn4k1CEipqwWAPIxNLWJUsL3/ZOVVB7MuHCsdEbNgDlHFSfiB0g44TMHDGCfSbegT9ph6Bb9vvYGpREv2mHkEphwp4Hf4Ex7eMQ5Ykv319E/UM1qWdlT5LUzk7Oyu1J8+eF9yeeHp6IsA/4KP2xB9eHtr5MM+CuDvYQV9PF09DI+XLHgW/hI+TvfJxIxZjzK8boaOjgw3TRiodN6HRrzB+2VbUq+SJn8b0VZrehYg0T6GS5UZGRvKrjc7OzggKCgIAVKpUCS9fKj9wqNhkZ0H85BaMW/WGXpnyMHCvDMM6zSG6exEAoGNiLr8tT/zgKvRLlYVRg7bQtSoBo4btoGdZAuJnd4qzBipnZKCPtj6OWHTuPp6/SsClkBjsvBeEntVkyZm4dBFEWTkwNNCDg5WpwguQjSS1NpFdSbUwFGL1tWcIfZeMvyPf4ucLDzGwtqdSkkzTSbMkyPj7Kiy6DYaBvTMMK9SA6TdtkX5VNv2OrpkFkHe7fMbN89C3c4BZiy7Qsy0Fs5ZdoWdTEhn3rwMActPTYNa6O/RLl4PAxQsWXQYi7fxfBXbONVmuWIy4UydRfsIkmHh6wbJ+A5Tu2Rtv/5CNINe3toaOQHabXdzRv1CifXvYtGgJYdlyKDdiFASlSiPu1ElkvXuHpNu34DhpCow9PGDs4QnHSVMQf/6swkNCtYGhUIA2DWph8eZ9eB4Wgcv3HmPX8Qvo0aoRANlDYESSf55/WV9PD+0a1sHy3YfxICAUoVGxmLl6Oyq4OcHb2eEft9ckRgb6aOvlgMUXH+P5m0RcCnuFnQ9C0bOK7MQgLl0EUd7tiw2dSuNkYBSOB0QiKikNG+4E4dGrBPSo7Izs3FzMPf8Q1cvaoH91N8Sli+Svj6d50XSGQiFafNMQS9duRGBIKK7dvof9R46hSzvZSKb4xCSI8+ZTblivNtLS07Fq03aER0Zj1abtEInFaORXV/55LyOjUN6+XIH/lzapWa8xMtJTsWfzb4iJeoE9m3+DWJyJWr7NAMjmNE9K/LJnnpQp64jKNfywacVcRL4MxtOHt3Di0HY0btlFnVVQKalEjLQbF1Gi/2gIndxgXK0OLFt2QvK5owBkoyB1PpgKS1CuPHIlYmS/Ux49n3zmCKw694GRTxUI7J1g228UMh7cRk5yUlFVR+2EpWyhayj7zXl98DQMLM3hvXQ6TL1c4L10OvRMjPDqD9lvdsT6vSjbuwPsB3aFWUUPVNn6C96euIzMcO1Kbr1Xz68B0tPTsHn9akRFhmPz+tUQi0TwbdAIgGze2MSE/AEQrdp2wJGDB3D75nWEBAdi/erf0axlGwgNDeHp5QOBQIBVy39FTHQk7t+7g+1b1qFTlx7FVLuvYyTQR7sqblhw7AaexbzDxYBw7LjxFL3qygZxxKVmQJSVDUMDfTjYmCu8AKCkuQlsTI2gr6eLrjU8seL833gQ8Rr+sXGYdOAiGnmW/+zDQDWRoaEhmjZpjBWr1yAoOBg3b93Cn4cOo2P79gBkD+F7P5e9n58v0tLTsW7DRkRERmLdho0Qi0RoWN8PALB81WrYlrDFsKGDkZycgoSERIXttYVUIkH6rUuw7j0CgvKuMKpSG+bNOyDlwnEAsrtHP2xfDezy2teP707KzUXa1bOw6tQHQlcvCBxcUGLoBGQ+vousV4oP4tZ0hkIB2tSviUVbDsj6sH8/wc4TF9GjZUMAin3YLUfPIfptHOaM6C1fF5eUgrQM2ej6rk19cfL6PRy5fAshkTGYvXYX/Kr6oKyWDfgAAPeqLSHKSMGlPxci7lUoLv25EFmSTPno8yyJCOnJsoE/JmY2Col2Y1Mb6Orqw6pkeRgIDOFcoREEhmY4t3cWEt68RMC9Y7h7bhPqthxZnFX8KrL2pAlWrlota09u3sLBQ4fQocP79iThg/bET9aerN8ga0/Wb4BIJEKDBvU/919oFSOhAG39amDxtj/x/EUkLt1/hp2nrqBnc1kdZceNbCqaLUcvIvptPOYO6yFfF5eUgtS842bR1oMoZWOJ8b3aIyk1Xb7+/fZEpHkKNWSgTp06+O233zBjxgxUrVoV27Ztw7fffouLFy/C3FyzRhVnnPsDJq17w7zveEhFmci8egxZQbLRjVbjliDt6DZIntxCbnICUvesgHGL7jCs1xI5ca+Qun8VpKlJxVsBNRjfqDIWn3uAYQcuw1RogOG+PmjiLkvGNF97DHNa1kT7Co7/+Dmj/Spg8fkHGLTvEowN9NG7ujt6V3dXc/TqkXJkJyy6DYbN6JmQZmYg9fSfED29BwAoPW8dEvesRea9q8hJjEPC+sUw79Qfpk3aI/tNLBI2/oLcZNnI2tST+2HRdRBsv5sDqViE9Csn5Ul3bRO1cjnKT5gEjxWrkZOehtjNG5F49TIAoOrRk3ixcD7iT51AwsXz0DUyQpm+AyAoWQIZISEI+n4MspNk++TF3FmwH/Md3JcsA6RSJF67gqjVK4uxZoU3rm8X/LR5H0bOXw5TYyMM69oGjWtVAQC0GjkNs0b0QbuGdb7ocwwPHMPMVdsglkhQq6In5o3uBx0tu9AEAOPq+2DxpScYfugGTAUGGFHbE41d7QAALTafweymVdHe2wGNXe0wpVFlbL4XjNepmXC2NsOqDnVgZ26Mp68S8Do1E69TM9Fi8xmFz1/f2Rc1ymnXqOrRg/th2dpN+GHGPJgaG2NAz25oULc2AKDLgOGY/N1ItGrSCCbGxlg8YzKWrt2IY2fPw6V8efw8awqMDPNv7UxMSoaZqXZNbVUQI2NTjJu+DNvXLcbls0dgX94V42cuh9BQdvv3nevnsHnlPGw7cu+LPm/4uPnYtXEJFk0dCoHQEE1bd0PTNt3VWQWVi9+7Cbb9RqHM5EXIzcxAwpHdyLh/CwBQfvkuvN20DGnXZdNI6JlbfnJ6luTTh6FjIECJYT9CV2iIjId38G7HmiKrR1FoGn0DjwdPQfSOw8hOTce9jsNRcfVcOAz5FilPg3Cv/TDk5J2QJt1+hGejZsF99ncwsLZA3LkbeDJCc6YI/FrGxiaYPmch1q1ahrOnj6O8ozNmzlsMw7xj5/rVS1i57BccOSkbCFK/YWO8ffMaa1ctQ1aWBHV9G6D/oOEAACNjY8xe8DM2r1+DH78fCSMjY7Ro1RadumrPsTOhZW0sPH4DQ7aehKlQgJHfVENTb0cAQJMlezGvU310qPrPfdHvmtaADoCJ+y8iMysbTbwcMbn1P/9+a6LhQwZj5Zq1mDR1OkxMjNG3dy/4+dYDAPTs2w8//vA9mjdrChNjY8ybPQsrV6/GydNn4OToiPlzZ8PQ0BAJCYnwD5CNrO47YJDC57/fXpsk/rEF1r1GoNSP85GbmYGko/uQ+fA2AMD+122I27oC6bdkx4yeucUnp2dJPLITUkhhO3widAWGyHh4Gwn7NhZZPVRpfJ9OWLz1AEYsXAVTYyMM79IKjWvKRlC3HD0Ts4f1QruGtXHx7mOIJVkYMGupwvZt69fCnBG9UcnNCdMGdce6gyeRkpaBOhU9MX2Idlxw+5jQyBSdR67HuX2z8eTGAdjaeaDzqA0QCGXT5gXdP4nTu6Ziwuqgf/wsgaEJuo7ZhAsH5mPnT51hZGaFxl2nwbWydh07w4YOwarVazB5ylSYmJigb5/e8PP1BQD06tMX48f9gObNmsnakzmzsWLVapw6fVrWnsybC0PDr38WjSYb16s9Fm87iOGL18HU2BAjOjVH45qyqSJbfDcPs4d2R/v6NXHh7ycQS7LQf+4Khe3b+tXA2G9b43HencltxinOef9+eyLSPDpS6dcPeX3z5g0mTpyIZs2aoUePHhg4cCD+/vtv6OnpYc6cOejWrVuhgklYMLxQ2/2/sp6xHukbZxR3GBrFZOgCxI7rWdxhaBS7ZXtxz087T/DUoeb120h5cK64w9Ao5tWaIW31pOIOQ6OYjv4FrwIfFXcYGqWMZxXcCkj554L/IXW9zPFiQNviDkOjOG87jhMGHv9c8D+kTVYQAsK0a7o1dfNyKQvR/l+KOwyNYth9EsJDg4s7DI3h6OqOiGEdizsMjVJ+wxGk/n26uMPQKGY1WmLj+eKOQrMMbQq8DAst7jA0ipOLK9LuHCvuMDSKae12xR2C1vEP1a5pYjWBd94guf9HhRpZXqpUKezYsUP+fufOnQgNDYW5uTlKlSolX378+HE0btwYxsbGBX0MERERERERERERUbGRQvvu8ib1UckjeHV0dODm5qaQKAeAWbNmIT7+/+sBmURERERERERERET0/0clyfJPKcQML0RERERERERERERERU6tyXIiIiIiIiIiIiIiIm3AZDkRERERERERERER/ecxWU5ERERERERERERE/3n6xR0AERERERERERERUXGQQqe4QyANwpHlRERERERERERERPSfV6hk+b1795Cdna20XCKR4Pz58/L3vr6+MDIyKnx0RERERERERERERERFoFDJ8n79+iElJUVpeUhICMaPHy9/v2rVKtja2hY+OiIiIiIiIiIiIiKiIvDFc5bv2bMH8+bNg46ODqRSKXx9fQssV69ePZUFR0RERERERERERERUFL44Wd6rVy+4ubkhNzcX/fv3x4oVK2BhYSFfr6OjAyMjI7i7u6slUCIiIiIiIiIiIiIidfniZHmzZs2wa9culCpVCp06dULdunVhamqqztiIiIiIiIiIiIiI1EYKneIOgTTIF89ZHhcXh5CQEADAkSNHIJFI1BYUEREREREREREREVFR+uKR5W3btsWQIUOgoyO72vKpOcsBICAg4N9HRkRERERERERERERURL44WT5//nz07t0bKSkp6NevH1auXKkwZzkRERERERERERERkbb64mQ5AHh6egIAduzYgWrVqkFf/6s2JyIiIiIiIiIiIiLSSIXKdh8+fBiHDx/+orKLFy8uzH9BRERERERERERERFRkvvgBnx+ysLDA8ePHERISAhMTE1hZWeH169c4fPgw0tLSVB0jERERERERERERkcpJpTp8feXr/1mhRpZHRUVh0KBBGDdunMLyrVu34s6dOxxNTkRERERERERERERapVAjy2/evImOHTsqLW/UqBFu3br1b2MiIiIiIiIiIiIiIipShUqWOzo64tChQwrLpFIpdu7cKX8IKBERERERERERERGRtijUNCzTp0/H8OHDcfbsWXh4eAAAnj17htzcXGzYsEGlARIRERERERERERERqVuhkuU1atTA2bNncfLkSbx48QJisRi9evVC48aN4ezsrOoYiYiIiIiIiIiIiIjUqlDTsNy/fx8dO3aEm5sbRo4ciatXr2L9+vVo3749Tp06peoYiYiIiIiIiIiIiFQuFzp8feXr/1mhkuWLFi1C69atUblyZRw4cABCoRA3btzA/PnzsWLFClXHSERERERERERERESkVoVKloeEhKB///4wMjLCxYsX0bx5cwgEAtSqVQuxsbGqjpGIiIiIiIiIiIiISK0KlSy3tbVFaGgoQkND4e/vj2+++QYAcPPmTZQpU0alARIRERERERERERERqVuhHvA5YMAAjB49Grq6uqhYsSJq1aqFdevWYdWqVVi8eLGqYyQiIiIiIiIiIiIiUqtCJcv79euHmjVrIiYmBn5+fgCAOnXqoFGjRvD09FRpgERERERERERERERE6laoZDkAeHl5wcvLS/6+SpUqqoiHiIiIiIiIiIiIqEhIoVPcIZAGKdSc5URERERERERERERE/0+YLCciIiIiIiIiIiKi/zwmy4mIiIiIiIiIiIjoP4/JciIiIiIiIiIiIiL6z2OynIiIiIiIiIiIiIj+8/RV/YEJCQmwtrZW9ccSERERERERERERqZRUqlPcIZAGKdTIci8vLyQkJCgtj4mJQZMmTf51UERERERERERERERERUlHKpVKv6TgkSNHcOjQIQDA3bt3UbVqVRgYGCiUefv2LXJzc3H27FnVR0pERERERERERESkQg+C44s7BK1Tzd2muENQmy+ehqVZs2aIjo4GIEuWV6lSBSYmJgpljI2N0axZs0IHIzq7tdDb/j8ybD4Qogs7ijsMjWLYpB8yL+8t7jA0ilGjnhDt/bm4w9AYhj0n42VYaHGHoVGcXFxx9rGkuMPQKM0rC/A68GFxh6FRSntWRdLDi8UdhkaxrNqY++QjllUbIyAsprjD0CheLmVxwsCjuMPQKG2ygnAvKKm4w9AoNT0sERv0pLjD0Bh2HpWQ+vfp4g5Do5jVaInw0ODiDkOjOLq6I+Hp9eIOQ6NYV/RDZEhAcYehURzcvLhPPuLg5lXcIRBptS9OlpuYmGDMmDEAgLJly6J169YQCoVqC4yIiIiIiIiIiIiIqKgU6gGfnTp1QkREBJ49e4asrCyl9R07dvy3cRERERERERERERERFZlCJcs3bdqEX3/9FRYWFkpTsejo6DBZTkRERERERERERBpPCp3iDoE0SKGS5Vu2bMHEiRMxePBgVcdDRERERERERERERFTkdAuzkVgsRvPmzVUdCxERERERERERERFRsShUsrxdu3bYs2cPpFKpquMhIiIiIiIiIiIiIipyhZqGJS0tDX/++SeOHz+OcuXKwcDAQGH9jh07VBIcEREREREREREREVFRKFSy3NHRESNGjFB1LERERERERERERERExaJQyfIxY8aoOg4iIiIiIiIiIiKiIiWV6hR3CKRBCjVnOQAcPXoUnTt3Ro0aNRAVFYWFCxdiw4YNqoyNiIiIiIiIiIiIiKhIFCpZvmfPHvzyyy/o3LkzsrKyAAAVKlTA5s2bsWrVKpUGSERERERERERERESkboVKlu/cuRMLFixAnz59oKsr+4gOHTrgl19+wR9//KHSAImIiIiIiIiIiIiI1K1QyfLY2Fi4uLgoLbe3t0dSUtK/jYmIiIiIiIiIiIiIqEgVKlleuXJlHDlyRGGZVCrFli1bUKlSJVXERURERERERERERERUZPQLs9GMGTMwbNgwXL58GRKJBHPnzkV4eDhEIhE2btyo6hiJiIiIiIiIiIiIVE4KneIOgTRIoZLl7u7uOHPmDI4ePYoXL14gJycHTZo0Qfv27WFiYqLqGImIiIiIiIiIiIiI1KpQyXIAEAqF6NatmypjISIiIiIiIiIiIiIqFoVKlv/9999YsGABXrx4gaysLKX1AQEB/zowIiIiIiIiIiIiIqKiUqhk+fTp0+Hm5obx48fD0NBQ1TERERERERERERERERWpQiXL3759i3Xr1sHJyUnV8RARERERERERERERFTndwmzUrl07nDhxQtWxEBERERERERERERUZqVSHr698/T8r1MjyIUOGoGvXrjh06BDKli0LHR3FnbRjxw6VBEdEREREREREREREVBQKlSyfMGECrK2t0bRpU85ZTkRERERERERERERar1DJ8qCgIBw6dAguLi6qjoeIiIiIiIiIiIiIqMgVas7y6tWrIywsTNWxEBEREREREREREREVi0KNLPfz88O0adNw9uxZ2NvbQ09PT2H9mDFjVBIcEREREREREREREVFRKFSy/NKlS/Dy8sKbN2/w5s0bhXUfP+yTiIiIiIiIiIiISBPlFncApFEKlSzfuXOnquMgIiIiIiIiIiIiIio2hZqzHACioqLw888/Y9SoUXj79i3+/PNP3L9/X5WxEREREREREREREREViUIly+/du4f27dsjJiYG165dg1gsxosXL9C/f3+cPXtW1TESEREREREREREREalVoZLlS5YswY8//ogVK1ZAX182k8ukSZMwYcIErFixQqUBEhERERERERERERGpW6GS5cHBwWjYsKHS8iZNmiAyMvJfB0VEREREREREREREVJQK9YDPsmXL4unTp7C3t1dYfvnyZZQtW1YlgRERERERERERERGpk1SqU9whkAYpVLL8hx9+wJQpU/D06VPk5OTgyJEjiI6OxokTJ/DLL7+oOkYiIiIiIiIiIiIiIrUqVLK8WbNmsLe3x5YtW+Dm5oYLFy7AyckJu3fvRuXKlVUd478izsrGogNnceFxEIQG+ujXuBb6N6ldYNkT955j3anreJOUCs9ypTCxcxNUdLQDAOTk5mLlsas4eucpMiVZ8PN2xpSuzWBjblKU1VEJcVY2Fu07jQuPAmX7pGkd9G9ap8CyJ+4+w7qT1/AmMUW2T7o1Q0VH5bsHNp66jsh3iZjfr526w1cLcVYWFu89ifMP/GFoYIB+zeuhX7N6BZa9+jQYq45cQNS7BJSztcLoDo3RqLInAEAqlWLd8cs4fP0BMiVZqOvlgik9W8PaTEu/Jydv4YJ/BIQGeuhXrwL616v42W1iElPRZc1hrOzVDDWdygAAMiRZWHL6Di4ERCBXKkVzb0dMaFEbxkKDoqiGSkkkEqxaswY3btyEQCBA1y6d0aVz5wLLhoaFYeXKVQiPiICDgwO+GzMabm5uAGTfkz/+/BMnTp5CakoK3N3dMXLkCJR3cCjK6qhM1MsA7N84H7GRIShj74LuQ2fCwdmnwLJZWRKc2LcS92+chFicCTfvmug6aCqsbEoDAB7fvYBNv/6gsE2V2s0w+Mel6q6GyoglEvy+fguu3roLgUCAHh3bonvHtgWWDX7xEkvXbMKLiCg4OpTDjyOHwMPVGYDse7Jt3584ce4SMkVi1KxSET8MHwRLC/OirI5KiCVZWLJlHy7dfQihwAC92zZD77ZNP7vNo8BQzF2zDYdXLJAvq91jZIFlZ4/qj9YNCv4d01TcJwV7ERaCtSuXISLiJRwcHDFizDi4url/svzRI3/iyMH9yMjIgG/9Rhg2YiyEhoYAgNs3r+GnBbMVytf1bYDJ0+eoswoqpyswgN+dQ3j2/XwkXL1bYBnzKl6osHouzCu4I9U/FE9Hz0bKg+fy9Xbd28B97g8wLFMC785ex5MRM5EVn1hUVVC58LAgbF37M6LCQ1HWwRmDRk2Gk6vXP263adUiWFmXQJdeQ+XLXsdGYfv6JQgOeAJTU3M0a9sNbTv3VWf4KiWRSPD7uk24eusOhAIBundsj287FdwfDwl7iaVrN+BleCQcHewxbtRQeLi6AAC+ad+twG2m/DAGLRorT7+pycSSLPy87Q9cvPcEQoEB+rb+Bn3aNC6w7PWHz7HmwAlEvXmHsiVtMLJbGzSsnt/fPX3zPtb+cQJxSSmoW8kTM4b0gKWZaVFVRWVkfdh1uH7zJoQCAbp07oSunTsVWDY0LAwrVq1BeEQ4yjs44LvRo+Hm5gpA1jc58OdBnDh1CqkpqXB3d8OoEcO1sg8rlmTh1027cPn2fQgFAvRq3wK92rf47DaPA0Iwb+UmHFzzs3xZTk4u1u89hBOXb0AkEqNO1Yr4cXAvWFtaqLsKKieRSLBy7Xpcu3kLQoEQXTt1QLfOHQssGxr2AstXr8XLiAiUd3DA96NHwN3VVancles3sOCnJTh3/Ih6g1cDVe2PnJwcbN25G2fPX4RILELN6tUwZvgwWFlZFl1liOirFGrOcgDw9PTEL7/8goMHD+LIkSOYOXMmKlWqpMrYVGLpkYvwj3yFjWN7Ytq3zbH+9A2cexioVO5BaBTm7DmJ4a18cWjaEFR2KovRaw8gQywBAGw5dxtnHvhjyaAO2PVjPySnZ2LazmNFXR2VWHrogmyffN8b03q0xPqT13DuQYBSuQehkZiz6ziGt/LDoZnDUNm5HEav3o8MkUSh3Kl7z7H2xNWiCl8tlv15Dv4Rsdg4vj+m9WqD9ccv49z950rlgqNf48d1+9HRtyr2zxiBLvVrYML6AwiKeg0AOHjtPo7ceIhFg7tg64SBeJecink7jxZ1dVRi6bl78I+Nw8b+LTGtTV2sv/wI556//Ow2C0/cRGZWtsKyJafv4HlsHNb1bYGN/VriWUwcfj1zR52hq82mzZsREhKKnxYvwpjRo7B79x5cu35dqZxIJMLMWbNRoYIPVi7/Hd5eXpg1Zw5EIhEA4OTJUzh48BBGjRiBFcuXo1SpUpg5c5Z8vTYRizKwbvEouHhWw6Sf9sPJvQrWLR4NsSijwPInD6zG47sX0O+7nzBu/k7k5GRj06/jIJVKAQCvo8NQoXojLNxwSf7qOWJOEdbo31u7bTeCQl9g2fyZGDd8ELbtO4jLN24rlcsUiTB53s+o5OOJDUsXo4KnO6bM/xmZed+DY2cu4MS5S5gxfgxWLp6DuMRE/LJqfVFXRyVW7j6EgBcRWD3zB0wa1BObDp7AhdsPPlk+NDIGU5dthDRXqrD85LqfFF592zVHGVtrNKihWRfqvwT3iTKRKBPzZ02Fd4WK+G35Onh6+WDBnKkQiTILLH/z+lXs270dI8eMx/zFvyE40B/bt+QfI1GREahZuy627vpT/hr9/YSiqo5K6AoFqLprKcwqfPqCgZ6xEWoe3YDE63/jeu3OSLz1EDX/Wg89YyMAgEXNiqi0YSFCFqzCDb/uMLAyR+XNi4uqCionEmViybxx8PCujPnLtsPNqyJ+nTf+k9+T944f3InLZ/9SWJabm4tf54+HmbkVFv6+AwNHTcZfB7bi5pUz6qyCSq3buhNBoS+wdMFs/DBiCLbv+wNXbtxSKpcpEmHKvEWo5O2F9ct+ho+XO6bOWyz/zTm4fYPCq0fnDihVsgR8a9co6ir9a8v3/oWAl1FYN200pgzoio2HTuP8nUdK5UIiYzDx981o37A29iyahM6NfTF5+VYER8QAAJ6FRWD+xr0Y2rklts0dh5T0TMxZt7uIa6MaGzdvRXBoCH5etABjRo3E7j17ce36DaVyIpEIM2fPRQUfb6z6XdaHnTlnrryPeuLUaRw8dBijRgzHyuXLULpUKcyYNUcr+7Crdh5AYFg4Vs2ZiAlD+2DzH0dx8dbfnywfGhGNab+tQa5U8Xd455GTOHfjLhaMH4FNi2cgJS0dc1dsUnf4arFhyzYEh4RhycL5GDtyOHbt3Y+r128qlcsUiTB9znxU8PHG6t9/g7enJ2bMWSBvT95LS0vDmvXauS8A1e2PfX8ewuWr1zBjykSs/G0JUlPT8NPSZUVdHSL6CoVKlr958wbjxo1DQEAAxGIx+vTpA19fXzRu3BiBgcqJ6OKSIZbg8K0nmNS1KbzsS6NJZQ8MaFIb+67eVyobl5qOYS190bZmBZSztcTwlr5IzhAh7FUcANkV4wmdm6C6qwNcytiiV6MaeBQWXdRV+tcyxBIcvvkIk7o1h5dDGTSp4okBzepi3xXljkFcSjqGtfJD29oVUc7WCsNb10dyeibCXr8DAGTn5GLB3lOYves4ytlaFXVVVCZTLMHhGw8w8duW8HKwQ+OqXhjQ3Bf7LiuP3jp19ylqeTihV+M6cChpgx7f1EJNDyeczUusX38WghY1fFDD3RGuZUthQHNf3Al8UdRV+tcyJFk4/CAYk1rWgZedLZp4OWKAb0Xsu6t8UeW9E0/CkC7OUlpuoKeLqa3rwtvOFl52tuhQ1Q0PI9+qM3y1EIlEOH3mLEYMHwY3V1f41quHrl274uix40plr1y9CqFQgCGDB8PBwQEjhg+DkZExrl67BgA4d/48unTpjNq1a6FcubIYO2Y0UlJT4e//6f2rqR7cPAMDgRAd+/6I0uWc0WXAZBgameDh7bMFlr9z+S+07fkd3Lxrokw5F/QcPgeRYc/w7rXs4dCvo1+gjL0rzC1t5S9jE+0ZSZ0pEuHEuYsYO6Q/3F2c0KBuLfTs3A6HTyonXi5evwWhQICRA/rA0b4sxg7pDyMjI3li/fb9h2hcvy6qVPCGc3l79OzUHg+ePCvqKv1rmSIxjl68gfH9v4WnkwMa1aqCvu2a4c8zlwssf+j8NQydtQTWFmZK62wsLeQvsSQLB05fwrThfWCalxTUFtwnBbt+9TIEQiEGDB4Be4fyGDx8NIyMjHHj2pUCyx//6yDadeiCmrXrws3dEyPHjsf5c6chzjs5jY6KhEN5J1hZW8tfpqbaMyLU1MsF9W4cgLHL50dslvm2NXIzxQiY/AvSAl/Af/xC5KSmo0zXlgAAx1F9EPvnKcTs+gupT4PwaMAklGzVEEaO5YqiGip359o5CARC9Bz4HcraO6HvkPEwNDLG3RsXCiyfkZGG5T9NwbGDO2BjW0phXXJSAso7uWPgyEkobeeAKjV84VOpJoL8HxdFVf412W/OBYwdOhDuLs6oX7c2enTugMMnTiuVvXRNNqJ4xMC+KG9fDmOGDISxkZE8sW5tZSV/icUSHDp+EhPHjICpiXbdHZkpEuOvS7fxY9/O8HSyxzc1K6Nv2yY4cO6aUtnTN++jprc7erRsCPvSJfBt8/qo4e2Gc3ceAgAOnL2GZrWrom39WnBzKIt5I/vgxuMAxLyNL+pq/SsikQinz57FyGHv+7B10a1rFxw9XlAf9hoEAgGGDh4EBwd7jBg2FEbGRrh6TTY45Nz5C+jSuRPq1KqFcmXLYuzoUUhJTcXzAO3qw2aKxDh64RrGDewJD+fyaFS7Gvp0aIk/T10ssPzhs5cxfPoiWBdwd19OTg6+H9ADVb094GRvh29bN8XjwFB1V0HlMkUinDp7HqOGDYabqwv86tXBt1064a/jJ5TKXrl6HQKBAMMGDUB5e3uMGjYYRkZGuPrRBZgNW7ajTJnSRVUFlVLl/sjNycGIIYNRqYIPyjvYo2P7tniuhed9RP8lhUqWz5kzBwkJCbC0tMShQ4cQHByMffv2oXHjxpg/f76qYyy04Ji3yM7JQRWn/JOBqi7l8DTiFXI/GpnVvKonhraQTbshkmRh16V7sDYzhksZWwDAiNZ+aFLZAwAQn5qOQzcfo4ab9t1uFhydt0+cP9wn9ngaHqu8T6p5YWgrPwB5++TiHVibmcCldAkAssR7SMxb7Jo4AJWdtfOECwCCol/L9olL/gNrq7g64NnLGOTm5iqUbVe3Cr7rpHybfFqm7MTcwsQI156G4E1iCkSSLJy69xSe9mXUWwE1CH6dgOycXFSxLylfVtWhFJ7GvFP6ngBAUoYIy87dw8x2vkrrprWph6oOspPTmMRUnHr6AjUcta/T9OLFC2RnZ8PbK/82bx8fbwQFBSl9TwIDA+Hj7QMdHdlDQnR0dODt7YWAvIuJQ4YMxjfffCMvr6OjA6lUivSM9CKoiWqFhzyGs2c1hbo6eVRBeLByoiE3Nxf9xi6GZ6W6SutEGWkAgNcxL1DSrrx6g1ajsJcRyMnOQQVPD/myil4e8A8OVfqe+AeFoKKXh8K+q+jljudBIQAAczMz3Pr7Id7FJ0AsluDCtRtwdXYssrqoSkhENLJzclDJw1m+rLKHK56HhivtEwC49eg5Zo3qj56tm3z2c9cfOIYaFTxQq+I/T72gabhPChYU6A8v7woKx4SndwUEBforlc3JyUFoSBB8KuTf1ejh6Y3srCy8fBkGAIiKDIddWe3tn1g3qIX4y3dww6/7Z8tZ1a6MhJuKA0ESbj2AZZ0qAADLWpWRcC1/UIQo+jUyI2NhVVv77j4AgNCgZ/DwrqzwPXH3qoyQwKcFln/3JhZZEgkWLNuOEqUVpxK0srbF2EkLYWRsAqlUimD/xwh8/hBeFaupvR6qEPYyAtnZOfDxzL/zoKK3JwKCQwr4zQlGBW9Phf1WwcsDzwODlT536579qFapIqpX0by7hv9JcGQssnNyUNndSb6siocznodGKO2TtvVrYUwP5Slr0jJk/fpnoeGo6ukiX17axgqlbazwNDRcPcGrSdiLl3l9WE/5Mh9vbwQGBSvtk4DAIPj4eCt8T3y88vuwQwcPRONvGsnLv+/DZqQXfEehpgoJj0JOdg4qeuRPG1LZ0w3PQ18U+Dt8++FTzBwzGD3aNlNaN/jbDmhUW9ZmJCSn4OiFq6jm46FUTtO9eBmu9D2p4O2FwALak4CgIFTw9lL8nnh7IiAwSF7m8dNnePz0GXp927VoKqBiqtwffXv1gF892dR4iUlJOHXmHCpVqFBENSGiwijUnOW3b9/GoUOHUKZMGZw/fx5NmjRB5cqVYW1tjbZtC56XtTjEpaTB0sQYBvp68mU2ZiYQZ2UjKT0T1mbGStvcCQrHiNX7IYUUi/u1h7FQoLB+zYlrWH/6BsyNDbF9XB+110HV4lLSYGn6qX2SUeDc2ncCX2LEyr2yfTKgI4wNZfvE3NgQ2yf0L7LY1SUu+f0+yT8cbMxNP/ie5O8T5zIlFLYNjX2Lu4Ev0K2B7BbVYW0a4vvVe9FiylLo6erA1sIMOyYPLpqKqFBcWiYsjQ0VvyemRhBn5yApUwRrE8URi7+euYv2lV3hWvLTdxjMOHwVxx6Hws7SFMMbVlFX6GqTkJAICwtzGBjkz7VuZWkJiUSClNRUWFpYKJQtX17xYpqVpSXCIyIAABV8FOfzPn36DHJzcuDj7a3GGqhHSmIcStu7KCwzt7BBbJTyiBpdXV2lRPnlk7tgamYFu/LukEqleBsbjoBHN3H28CZIc3NQpU5ztOk+Bvr62jHHfXxiEizMzWBgkN+eyL4nWUhJTVOYbzw+MQlO9oqJPCtLC7yMkN211L97Z0xduARdB42Cnq4urK0sseYXzbkg/aXikpJhYWaq0MZaW5pBnJWF5LR0WJkrjpZeMmEEAOD4ZeVpBN57HZeAszfuYeO8ieoJWs24TwqWmBAPh/KOCsssLa0QGaE8BVh6ehokEgmsbWzly/T09GBmboH4uHeQSqWIiY7Gowf3cHD/HuTk5sC3fkP07DNQoR3XZJHr935ROWHpEkj1V2xzJW/iYeYje06GYZmSEMcq3tElfhsPw7Lad+EaAJIS41HWwVlhmYWlNaIiwwosX97JHRNm/fNzL34Y0hHx716jak0/1Kr7zT+W1wTxiYl5vzkf9k0s8n5zPuqbJCbB0eHj3xxLvIyMVFj25t07XLh6HSt/Xqje4NUkLikZlmYmiv16i/ftawaszPPvLnH66BgIi36Fe8+D0aVJvbzPSkEJK8V5p60tzPA2IUl9FVCDhMQEWJh/YR82MUFp/nFLSytEfKIPe+rMWa3sw8YnJcHC3FShv2ZtaQ6JJAvJqemw+uhOrp8njwUAnLikPP3iexv3H8GWP47BzNQYGxZMVU/gapSQoPw9sbT62nMdWXsiycrC76vWYOzIYQrHojZR5f54b/vuvdi1dz/MTE2xbIn2Tof2/0oKneIOgTRIoUaWC4VCiMViJCcn486dO2jUqBEAIDo6GhYWmvMgi0xJNgQfJPsAQJDXWGdlZxe0CVzLlMDeSQMwqnV9zNx9Ak9exiisb1urAvZM7I86Ho4YsXo/0jLF6gleTTIlWcr7xED2Pis7p8BtXO1KYO+UQRjVtiFm7jymtE+0nUiSJf9evPd+H33qewIAiWnpmLBuP6q4OKBR3l0HsfFJMBQYYMXontj040CUsjTH7O1/ffIzNFVmVjYE+orNg0BP9j4rW/FK+u2wGDyMfINh/5AAH+hbETsHt4WdhSlG7T5b4Ah1TSYSi2HwUcL2fecpK0tx+hmxWKyUjDEwMFAqB8hGoW/YtAldunSBtbW1iqNWP4lEBH0DxYuK+gYCZGdLPrFFvif3LuLise1o1+t76OsbIDHuFSTiTOgbGGDQuF/Rse8E/H39BI7s/E1d4aucqIC/vSDvREzyJd8T/fzvyeu372AoEGDxjIlYvmg2Stja4OeV69QYvXqIxFnyffDe+zZXkvXpNvZzjl66AS/n8qjg5vTPhTUQ90nBZMeEYnvyqbZTLBbL1xdU/t3bNxCLZe3ThKmzMHDICFy5dAHbN2vnvP+fo2dshFyxYpubK5ZAN2/Ah56x4WfXaxuxWKT0d9c3MEB2Ad+Tr/H9lJ/w48zfEPEyGLs2//6vPquoiMViCAo4BgAg66O2pKDfJwMDfaVyJ89dhLurC7w93NQQsfqJxFlKyTkDg39uX5NS0zDp9y2o7O4kf8CnSCwp4BxBv9DtdHH5VL8U+NI+rL5SHwYAAgODsGHTZnTt0hnW1to1JWdBf1v5PskuXFvSskFdbPlpJmpW9Mb385ciPePzz1HQNAX3YQv+nhTcnuT/Xu/edwCuLi6oUa2qGiNWL1Xuj/eaftMIq5b9iqpVKmHqzDlIz9CuOzKI/ksKdZmvadOm+OGHH2BoaAgLCws0atQIJ0+exKJFi9CpU8FP1S4OQgN9SD5KAEvykp+GgoJHFdmYm8DG3ASe5UrhSXgs/rj+EJWc8m/ZdCgh6wgs6NsWzWeuxoXHQehQR3tuUSxwn2TJ3n96n5jCxtwUnval8eRlDP649kBhn2g7gYG+/Hvx3vt99Kl9Ep+ShhG/70CuVIolw7+Frq4upFIpZm49jHFdmqNBJVny/Jdh3dBq2jI8fRmNik7acyu4UF8Pko+S4pIc2XvDDxI8oqxszD9+E9Pa1FVYXhCXvFHnv3T7Bk1/24f7Ea9R00l7pqgRCAyUOs/vO0CGQqHCcgOBcucoKysLwo/K+QcEYOas2ahZowb69dWOO1XOHNqIs4c3yt87ulVCdpZiEiY7SwKB4PPzJT++ewHbfp+IBi17ol6TLgAA6xJ2+GnLdRibmENHRwflHD0hzc3FjpVT0bn/ROjq6n32MzWBQCBQ+tu/P6n++HsiMFAum5Ut+55IpVIs+n0NRg7ojXo1qwMA5k78Ht8OHQv/oBCtSmIIBcqJBflvcSGTdRfvPETnpvX/dWzFhftE5o/9u3Fwf/7D8tw8vJD1UXtSUNsJyI619+sLKl+yVGns3H8EpqZm0NHRgbOLK3Jzpfj910UYOHQk9PQ0vz35UrkisVLiW1coQE7eVBI5n1qfqR2JnL8ObMPRP7fJ37u4+yj93bOzsiAQGv6r/8fZTTZ9UZZEjDW/zUavgd9BX8PvQhAYCJSSmO/3jfCjv7mgwL5JtlKbc+XGbbRv1VwN0RYNoUBfabBLlvx3+BP9+uQUjF68BlKpFD9/Pwi6urIBIgKBQQHnCMr7TNMV2N+Qf0++oG+Sla3Uh/EPCMSM2XNQs0Z19OvTWw1Rq5fAQPlvK98ngsL9fe3LyKadnDV2CDoMn4DLd+6jzTd+/y7QIlRwH/YT35MCyr7//X0ZHoGTp89iw6rl6g1YzVS1Pz5U1k527jt5/A/oOWAwrt+8hRZNPz/FHhEVj0Ily+fMmYNdu3YhJiYG3bt3h1AohEQiwYgRI9C7t+b8WJa0MEVSegayc3KhnzcqNi4lHYYG+jAzUuxQP4t4BT1dHXjZ59+O51LaFmGvZQ/4vPIsFJ7lSqGUpeyWLKGBPsraWCIpXTtONN4raWGGpLSP90lawfskPFa2TxzyE5of7pP/FyUt3++THOjnnTzHf2KfAMCbxBQMW7YdALDpxwHyaVoSU9PxOjEF7vb5D48qbW0BS1NjxMYnaVWyvKSZMZIyRIrfk7RMGOrrwcwwvwP5LOYdohNT8eN+xYfhjN59Fu0qu2JKqzq4EhyFOs52MM3bzsbUCBZGQiRlKD4tXdPZ2tggOTkFOTk58iRLYmIihEIhTD56+JWtjQ0SEhMVliUmJimMHH/85Almz5mLatWqYsrkSfITM03n1/xbVKvXQv7+3JEtSElSbBNSkuJhYWX78aZy92+cwo5V0+DXrBu6DJissM7EVPHupFLlnJGVJUZ6WjLMzDV/5H0Jayskp6QqtCcJiUkQCgQwNVGc+svWxgoJSUkKyxISk2FjbYmk5BS8jYuHi1P+/O0lS9jCwtwMr9/FaVWyvISVJZJT0xTb2KQUCAUGMCvEQyjfxCXgZfQrNKihnfMtA9wn77Vs3Q5+9RvJ3x/6Yy8SP2o7kxITYGVto7StmZk5BAIBEhMTUM5edutzTk4OUlOS5eXNzBQfxGbv4ACJRIK0tFRYWFiqtjLFSBT7BsLSim2usLQtRK9lU6+IYgpYX8oW4lfviizGf6NJq06o7ZefTDh+aCeSExUfsJiUGA9LK+XvyT9JToxHSNAz1KjTUL6srL0TsrOzkJmZDjMDy0LHXRRsbayRnJKq0DfJ/835qG9ibY2ExCSFZQmJSbC2yh8R/PZdHCKiouFbu4baY1eXElaWSEpN/6h9Tf1k+/o2IQkjFq0GAKyfMVZhmpaSVhaIT0pRKB+flAJbS+158DgA2NjYIDkl5aPvSSKEQuXviY2NjVI7nJiUqDBy/PGTp5g1dx6qV62KqZMmak0f9kOy/lpBv8MCmJkoT9X6Odf/fgx3JweUtJHtI6HAAHalSiApJU3lcauTbQHfk8TEpAK/J7Y21gWe69hYW+H6zVtISU1Fv6GyKeTez+/drmsP/DB6JJp80xDaQFX7AwBu370HV2dn2NrKfqcEAgHKlCqNlJTUIqgJERVGoX7Z9PX1MWDAAEyfPh2urrKHYnTs2BF9+vRB9memrShqHuVKQV9PD0/C86cNefgiGj7ly0BXV3E+osO3HmP50SsKy/yjXsO5tKxBW3r4Io7ffSZfly4SI/JdApxKfX3HvDh52Oftkw+mUnkYFgWf8nbK++TmIyz/67LCMtk++XQSTBt52JeGvp4enr6Mli97GBoJH8eySp2/TLEEo1fsgq6ODjb/OAAlP+gsm5sYQaCvhxex+SefiWnpSE7LRFlb7bo10aO0DfT1dPEkOn+O04eRb+BTtoTC96RC2RI4NrYrDozoKH8BwOz2fhj1jeyhjzMOX8W1kCj5Nq+S0pCUIYJTCcuiqo5KODs7Q19fX/6AIwB49twf7m5uSt8TT09PBPgHQCqVTTUjlUrx3N8fXh6yB8SEh4dj7tx5qFGjOqZPnQp9LZrLz8TUAiVKO8hfTu6V8TL4sUJdXwQ9hKNbwXfcBD29jR2rpqFBix7oNmiawrqARzcweZAfJOL8i5Ax4YEwMbPUikQ5ALg6O0JPXw/+eQ/pBICnAYHwdHNR+p54e7jhWWCwwr57FhAEb3c3mJmZQmBggIio/LY6KSUFKampKFOqJLSJu6M99PX08Cwkf97px4Fh8HZxLNQJ9rPQcJSysUJpW+34ThSE+0TGzMwcZezKyl8eXj4I8n+ucEwE+D+Dh4fyA0t1dXXh6uaBgOf5D3UMDHgOfX19ODm54OH9e+jbvSPEovwLsy/CwmBmbv5/lSgHgMQ7j2FVR/FWd6u61ZB0R/ag5aS7j2HlW12+zrBcaRjZl0HiHeUHMWsiUzMLlLazl7/cPCogJPCJwvckOOAJXD2+/mFp797EYvniyUiIz+/vvAwLhLmFFczMLVVVBbVxdXaEvr4e/IPyH9L51D8QHgX+5rjjudJvTiC8PfIfDhoQHIKStjYoVULxGT3axKN8WVn7+sFDOB8Fv4CPs4Nyv14kxtif10FXRwcbZoxVmp+8gqsjHgW/kL9/HZ+INwlJqOjqqM4qqJyLs5NSH/a5f8F9WC9PD/gHBH7Uhw2Ap+f7PmwE5sybj5rVq2P61Mla1Yf9kLuTPfT09fD8g7/v44AQeLl+/e/wyh0HcOrKTfn79MxMRMW+hmM57bmDFgBcnN5/T/If0vmpcx0vDw/4BwQpfk8CAuDp4YEO7dpgy7rVWLdiGdatWIbxY0cDANatWIa6tWsVXYX+JVXtDwDYsGUbzl28JC+fkZGJ6NgYONhrz2A6ov+aQiXL4+LisHDhQgwcOBD9+vVDv3790LdvX/To0QP16tVTdYyFZiQwQLtaFbBg/xk8i3iFi4+DsePCXfRqKBstEZeSBpFEdrtMV98quBccgd2X7yHibQLWnLiGZxGv0LtRTQBA9wbVsO3CHVx7HobQV+8wbccx2Ntawc/b5ZP/vyYyEhigXe2KWLD3FJ6Fx+LioyDsOH8Hvb6R1TMu+YN94lcV94LCsfviXdk+OX4Fz8Jj0btxzeKsgsoZCQRoV7cyFuw+jmfhMbj4KAA7zt5Er8a1AQBxyanyfbLp1DVEv0vAvAEd5eviklORmimCvp4eOtSriqUHz+J+cDhCY95g+uZDqOhcDj7l7YqreoViJNBHu8quWHD8Jp7FvMPFgAjsuPkUvWrLHt4Tl5oBUVY2DA304WBjrvACZCPTbUyNoK+ni641PLDiwn08iHgN/9g4TPrzEhp5Onz2YaCayNDQEE2bNMHKVasRFByMmzdv4eChQ+jQoT0A2UNg3s+h6+fnh7T0dKxbvwERkZFYt34DRCIRGjSQTZGwYuUq2JYogeFDhyI5ORkJCQkK22uTKnWaITM9FQe3/YxX0WE4uO1nSMSZqFpXNvpcIhHJR57n5GRj99pZcPWujmYdByMlKU7+ys7OgpNHFQgEQuxZNxtvYl/i+cNrOLJzKZq2H1icVfwqhkIhWn7TEEvXbkJASBiu3b6H/UeOo2u7VgBkD/UU580d3KhebaSlZ2Dlpu0Ij4zGyk3bkSkW4xu/OtDX00PLJg2xZusuPH4egBcRUVi4dDW83d3g6er8uRA0jqFQgNYN6+DnTXvgHxaOK/ceYffxc+jeSvYAvfikZIgk/zzH/XsvomLhpGUnoB/jPilYPb8GSE9Pw+b1qxEVGY7N61dDLBLBt0EjALK5dBMTEuTlW7XtgCMHD+D2zesICQ7E+tW/o1nLNhAaGsLTywcCgQCrlv+KmOhI3L93B9u3rEOnLj2KqXaqJSxlC11D2e3drw+ehoGlObyXToeplwu8l06HnokRXv1xCgAQsX4vyvbuAPuBXWFW0QNVtv6CtycuIzM8+nP/hcaq6dsYGelp2LlpKWIiX2DnpqUQizNR268pAEAiFiHpo5Hnn+Ls5g1HF09sXLEAMZEv8OjvG9i7dSXadxugxhqojqFQiBaNG2Hpmo0IDAnF9dt3ceDIUXRp1waAbPTw+75FQ986SEtPx6pNWxEeGYVVm7ZCJBajkV/+g7dfRkShvJYnbwyFArSpXxOLthzA87AIXP77CXaeuIgeLWWjWeOSUuTt65aj5xD9Ng5zRvSWr4tLSkFa3lzTXZv64uT1ezhy+RZCImMwe+0u+FX1QdmS2jVYStaHbYwVq9fI+rC3buHPQ4fRsf37PmziB31YX1kfdsNGWR92w0aIRSI0rC+bTmT5qtWwLWGLYUMHIzk5BQkJiQrbawtDoRCtG9bDLxt2wD/0Ja7cfYA9x86ge2tZOxKfmAyR+Mt+h7u2bIzdR0/j5oMneBEVg7nLN6Fc6ZKoW7WiOqugcoaGQjRr/A2Wr16HoOAQ3Lh1G38c/gud2rcFoNie1Perh/T0dKzZsBkRkVFYs2EzRCIxGtb3hbmZGcralZG/bG1kF/LL2pWBcSHunisuqtofANC+TSv8cegI7tz7G+ERkfjpt2WwK1MGNatXK7b6EdHn6UjfX/76CsOGDUNkZCSaN2+OLVu2YODAgYiMjMS5c+cwZcoU9OvXr1DBiM5uLdR2n5MpycLC/Wdw/lEQTI2EGNCkNvrkJYYrj/0J83q3ls85fuVZKFYeu4LId4lwLWOLSV2aooqzrMOYmyvF1vO38cf1h0hMy0BdTydM694cJT96UrYqGTYfCNGFHSr/3ExJFhbuPYXzjwJhaijEgGZ10aex7Cpv5VELMa9vW3SoK7uV+8rTEKz86zIi3yXAtUwJTOrWHFVclDvRM3ccAwDM79dO5fF+yLBJP2Re3qvyz82USLBw9wlceOgPUyND9G9WD32ayk4eqgyfg7n9O6BDvaroOGslwt8on4C1q1sZ8wd0gjgrC6v/uojT955BnJWNOl7OmNyjtXyqFnUwatQTor0/q/xzMyXZWHjiJs77h8PUUIAB9SqiT10fAEDlOVswr0N9dKiqPBVE5TlbsKl/K/l85JLsHKy8cB8nn4YhU5KNJl7lMblVHfm0LKpm2HMyXoaFquWzRSIRVq1eg+s3bsDExARdu3RGp44dAQAtW7fB+HE/oHmzZgCAoKAgrFi1GlFRUXBydMTYsWPg6uKChIQE9OrTt8DP/3B7VXJyccXZx1+eePta4aFPsX/jfLyJfgG78u7oPnQm7J1kI0FvXz6C3WtmYuWBp3gZ/BhLZxQ8N/t3s7fAzacmXkWF4uC2nxEe8gRCIxP4Nu2GVl1HQEdHtU8nb15ZgNeBD1X6me+JxGIsXbsZV2/dgYmxMXp0aodu7VsDABp26IEp341AqyaNAAABwaH4be0mRETHwKW8A8aPGgJ3Z9kDGsUSCTbv3o+L125BLJGgRuWK+H7YQFhaqOf279KeVZH08OI/FywEkViCnzfvwaU7j2BqbIje7ZqhZ2vZtAq1e4zEzBH90LZRXYVtjl++hU1/HseRVQsVlv+8aQ9SMzKx4LvBaon1Q5ZVG3OffMSyamMEhKnvQd/BQQFYt2oZoqMiUd7RGSPHjoOzi+y35sK501i57BccOZn/Nzl4YA+OHjmIrCwJ6vo2wPBR38vnM4+MeInN69cgKMgfRkbGaNGqLbr36qfy9sTLpSxOGHio9DM/1iYrCLea9EXC1bvy948HT0H0jsMAAIuaFVFx9VyYerog5WkQno2ejZRHAfLty/XrBPfZ38HA2gJx527gyYiZyEpIUmu894LU9/lhwc+xZc3PiI0Oh4OjKwaOnAxHF9nf4OqF49iwfD52Hb2jtN2CaSPhVaEauvQaKl+WGP8O29f/iudP7kFoaIRmrbuhfbf+Kv+e1PSwRGzQE5V+JiD7zVm2ZiOu3roNU2NjdO/UAV07yJLl37Tvhsnfj0LLJrILcQHBIVi2ZiMioqPh7Fge40cOg5tL/kOBl63ZgLT0DMyc+IPK4/yYnUclpP59Wi2fLRJLsHjrAVy8+ximxkbo26YxerVqBACo0ft7zB7WC+0a1kaXCQsR8eqt0vZt69eSJ9CPXbmDdQdPIiUtA3UqemL6kB6wVFO/3qxGS4SHBv9zwUIQiURYuWYtrt+4CRMTY3Tt3BmdO3YAALRo0w4//vA9mjeTJYoDg4KxcvVqREZFw8nREd+NGZXXh01Ez74Fn+d/uL0qObq6I+HpdZV/LiA7dn7ZsAuX79yHibERerdviR5tZf3wul0HY8bogUpzjp+4dB2bDhzF4bW/yJfl5uZi11+ncfjMJSSmpKF2ZW9MGNoHJdT00FPrin6IDAn454KFIBKJsWLNOly7eQsmxsb4tktHdM4bGNSsbUdM+GGsfI7twKBgLF+zDpFRsvbk+9Ej4eqiPKDj8ZOnmDBtJs4dP6KWmAHAwc1LLftEVfsjNzcXBw4exrGTp5GckozqVatg7MgR8gsJ6uDgpnxXHn3eDX/tmjpJE/h6m/5zIS1VqGR51apVsWXLFlStWhVdunTBtGnTUL16dWzYsAF3797Fpk2bChWMOpLl2kxdyXJtpq5kuTZTV7JcW6kzWa6t1J0s10bqTJZrK3Umy7WVOpPl2krdyXJtVBTJcm2j7mS5NlJXslxbqTNZrq3UmSzXVupMlmsrdSbLtZW6kuXajMnyr8dk+df7f06WF2oaFqlUilKlZA8xdHV1hb+/PwCgVatWePr06ec2JSIiIiIiIiIiIiLSOIVKlnt7e+Ovv/4CAHh5eeHGjRsAgOho7Zz7kIiIiIiIiIiIiIj+2wr1+Ooff/wRI0aMgJGRETp06IBNmzahXbt2iI2NRfu8B4UQEREREREREREREWmLQiXLq1evjkuXLkEkEsHKygoHDx7E+fPnYWlpiVatWqk6RiIiIiIiIiIiIiIitSpUshwATE1N8e7dOzx69AgGBgZo0KAB7O3tVRkbEREREREREREREVGRKFSy/NWrV5g0aRLu3bsHCwsLSKVSpKamonHjxli4cCEsLS1VHCYRERERERERERGRakmhU9whkAYp1AM+Z8yYAT09PVy4cAF37tzB3bt3cerUKSQmJmLWrFmqjpGIiIiIiIiIiIiISK0KNbL83r17OHToEMqWLStf5ujoiFmzZqFHjx4qC46IiIiIiIiIiIiIqCgUamS5i4sLgoODlZZHRUUpJNCJiIiIiIiIiIiIiLTBF48sP3LkiPzfderUwfTp0+Hv74+KFStCT08PQUFB2LZtGwYOHKiOOImIiIiIiIiIiIiI1OaLk+UrVqxQeG9lZYWTJ0/i5MmT8mVmZmY4ePAgRo0apboIiYiIiIiIiIiIiIjU7IuT5RcvXvzqDz9+/DgaN24MY2Pjr96WiIiIiIiIiIiISJ1ypcUdAWmSQs1Z/qVmzZqF+Ph4df4XRERERERERERERET/mlqT5VIpL80QERERERERERERkeZTa7KciIiIiIiIiIiIiEgbMFlORERERERERERERP95TJYTERERERERERER0X+efnEHQERERERERERERFQcpNAp7hBIg3BkORERERERERERERH95xUqWX7v3j1kZ2crLZdIJDh//rz8va+vL4yMjAofHRERERERERERERFREShUsrxfv35ISUlRWh4SEoLx48fL369atQq2traFj46IiIiIiIiIiIiIqAh88Zzle/bswbx586CjowOpVApfX98Cy9WrV09lwRERERERERERERERFYUvTpb36tULbm5uyM3NRf/+/bFixQpYWFjI1+vo6MDIyAju7u5qCZSIiIiIiIiIiIiISF2+OFnerFkz7Nq1C6VKlUKnTp1Qt25dmJqaqjM2IiIiIiIiIiIiIrWRSnWKOwTSIF88Z3lcXBxCQkIAAEeOHIFEIlFbUERERERERERERERERemLR5a3bdsWQ4YMgY6O7GrLp+YsB4CAgIB/HxkRERERERERERERURH54mT5/Pnz0bt3b6SkpKBfv35YuXKlwpzlRERERERERERERETa6ouT5QDg6ekJANixYweqVasGff2v2pyIiIiIiIiIiIiISCMVKtt9+PBhHD58+IvKLl68uDD/BRERERERERERERFRkfniB3x+yMLCAsePH0dISAhMTExgZWWF169f4/Dhw0hLS1N1jEREREREREREREQqJ5Xy9bWv/2eFGlkeFRWFQYMGYdy4cQrLt27dijt37nA0ORERERERERERERFplUKNLL958yY6duyotLxRo0a4devWv42JiIiIiIiIiIiIiKhIFSpZ7ujoiEOHDiksk0ql2Llzp/whoERERERERERERERE2qJQ07BMnz4dw4cPx9mzZ+Hh4QEAePbsGXJzc7FhwwaVBkhEREREREREREREpG6FSpbXqFEDZ8+excmTJ/HixQuIxWL06tULjRs3hrOzs6pjJCIiIiIiIiIiIiJSq0JNw3L//n107NgRbm5uGDlyJK5evYr169ejffv2OHXqlKpjJCIiIiIiIiIiIlK5XOjw9ZWv/2eFSpYvWrQIrVu3RuXKlXHgwAEIhULcuHED8+fPx4oVK1QdIxERERERERERERGRWulIpVLp125UqVIlnD59GnZ2dujcuTNq166NyZMnIyYmBq1bt8bjx4/VESsRERERERERERGRylx4KiruELROk4qGxR2C2hRqznJbW1uEhoYiIyMD/v7+mDJlCgDg5s2bKFOmTKGDiQ5+Vuht/x+Vc6+ApEeXizsMjWJZpRHS1k0t7jA0iumIxRCd21bcYWgMw2YD2JZ8pJx7BWRsnlXcYWgU48HzEBwWWdxhaBR3Fwfsuf7V18//r/Xy00HmrkXFHYZGMeozDaL9vxR3GBrFsPsk3AtKKu4wNEpND0ucMPAo7jA0SpusIFx5nlHcYWiMhj7GEJ3dWtxhaBTD5gPxKvBRcYehUcp4VoFfuyvFHYZGuX6sIa4+Ty/uMDRKAx8TxAY9Ke4wNIqdR6XiDoFIqxUqWT5gwACMHj0aurq6qFixImrVqoV169Zh1apVWLx4sapjJCIiIiIiIiIiIiJSq0Ily/v164eaNWsiJiYGfn5+AIA6deqgUaNG8PT0VGmARERERERERERERETqVqhkOQB4eXnBy8tL/r5KlSqqiIeIiIiIiIiIiIioSEilOsUdAmkQ3eIOgIiIiIiIiIiIiIiouDFZTkRERERERERERET/eUyWExEREREREREREdF/HpPlRERERERERERERPSfx2Q5EREREREREREREf3n6Rd3AERERERERERERETFQSot7ghIk3BkORERERERERERERH95zFZTkRERERERERERET/eUyWExEREREREREREdF/HpPlRERERERERERERPSfx2Q5EREREREREREREf3nMVlORERERERERERE/0lS6PD1lS+V7n+pFL/++ivq1KmDWrVq4ZdffkFubu4nyz969Ag9evRA1apV0aJFC/zxxx8K69u3bw8PDw+FV3Bw8BfHo1/omhARERERERERERERFdLWrVtx/PhxrFq1CtnZ2Zg4cSJsbGwwePBgpbLv3r3D0KFD0bNnT/z00094/vw5pk6dihIlSqBRo0bIyclBeHg4du3aBUdHR/l2VlZWXxwPk+VEREREREREREREVOR27NiB7777DjVq1AAATJgwAcuXLy8wWX7+/HnY2tpi/PjxAABHR0fcuXMHx44dQ6NGjRAdHY2srCxUqlQJQqGwUPEwWU5ERERERERERERERerNmzd49eoVatasKV9WvXp1xMTE4O3btyhZsqRC+fr168PLy0vpc9LS0gAAoaGhKFOmTKET5QDnLCciIiIiIiIiIiKiIvbu3TsAUEiK29raAgBev36tVL5cuXKoUqWK/H18fDxOnDiBunXrAgDCwsJgYGCA4cOHw9fXF3369MGTJ0++KiaOLCciIiIiIiIiIiKiLyKRSCCRSBSWCQQCCAQCpbIikQhv3rwp8HMyMjLk2374Oe//j88RiUQYO3YsbG1t0b17dwDAy5cvkZycjG7duuG7777DgQMH0L9/f5w8eRJlypT5oroxWU5ERERERERERET/SbnS4o5A+6xfvx6rVq1SWDZmzBiMHTtWqezjx4/Rr1+/Aj9n4sSJAGSJ8fdTp7xPkhsZGX3y/09PT8eoUaMQHh6OPXv2yMvOnz8fIpEIpqamAIA5c+bgwYMH+OuvvzBixIgvqttXJ8v79euHVatWwdzcXGF5QkIChgwZgkOHDn3tRxIRERERERERERGRFhg+fDgGDhyosKygUeUAULt2bQQFBRW47s2bN1iyZAnevXuHcuXKAcifmqVEiRIFbpOWloYhQ4YgMjIS27dvh6Ojo3ydvr6+PFEOADo6OnB2dv7kyPaCfFGy/OrVq/L5Xe7du4d169bB2NhYoUxERARiYmK++D8mIiIiIiIiIiIiIu3yqSlXvlapUqVgZ2eH+/fvy5Pl9+/fh52dndLDPQEgNzcXY8aMQXR0NHbu3AkXFxeF9X379kXt2rUxZswYefmgoCD07t37i2P6omS5k5MTNm3aBKlUCqlUigcPHsDAwEC+XkdHB8bGxli4cOEX/8dERERERERERERE9N/Vs2dP/PrrryhdujQA4LfffsOgQYPk6xMSEiAUCmFiYoI///wTd+7cwdq1a2Fubi4fhW5gYABLS0s0btwYq1evhpeXF5ycnLBjxw6kpqaiU6dOXxzPFyXL7e3tsWPHDgDA1KlTMX36dIUh7UREREREREREREREX2Pw4MGIj4/HmDFjoKenh65du2LAgAHy9V27dkWnTp0wduxYnDlzBrm5uRg+fLjCZ9SqVQs7d+7EgAEDIBaLsWDBAsTFxaFy5crYunXrV+WxvyhZHhsbK//32LFjkZKSgpSUlALL2tnZffF/TkRERERERERERET/TXp6epg6dSqmTp1a4PqLFy/K/7158+bPfpaOjg5GjBjxxQ/zLMgXJcsbN24MHR0dSKVS6OjoAACk0vxHxX64LiAgoNDBEBERERERERERERUVqVSnuEMgDfJFyfILFy6oOw4iIiIiIiIiIiIiomLzRcnysmXLqjsOIiIiIiIiIiIiIqJi80XJci8vL1y/fh02Njbw9PSUT8VSEE7DQkRERERERERERETa5ouS5du3b4eFhYX8359LlhMRERERERERERERaZsvSpbXqlVL/u/atWurLRgiIiIiIiIiIiIiouLwRcnyDzVu3PizI8v5MFAiIiIiIiIiIiLSBlJpcUdAmuSrk+Vjx45VeJ+dnY2oqCgcOnQI33//vcoCIyIiIiIiIiIiIiIqKl+dLO/UqVOByytXrowtW7agW7du/zooVZJIJFi+biOu3bwNoUCAbp064NtO7QssGxL2Ar+v2YCX4RFwdLDHD6OHw93VRb6+fY++SE/PUNjm+IFdMDIyUmsdVE0sycKSLXtx6c4DCAUG6N22OXq3a/bZbR4FhmLu6q04vHKhwvILt+9j7b4jeJeQhEoeLpg2rC/KlLBRZ/hqIc7Owc8XH+FCaCyEerroW8Mdfau7FVh2/F+3cOXFK4VlyzrURQPnMgrL5p97gJKmhhhe11ttcauTOCsbiw6cwYVHQRAa6KNfk9ro36TgaZhO3HuGdSev401SKjzLlcLELk1R0dEOACCVSrH1/G38cf0hktMz4eNQBlO6NYdLGduirI5KsD1RJs7OweJz93EhOBqG+nroW9MD/Wp5fnab2OR0dN1yGiu61EcNh5IAgKycXKy59hTHn4cjO1eKdhUc8V3DStDX1S2KaqhcWFgo1qxcjvCIl3BwKI/RY76Hq5v7J8v/deQQDh08gMyMDPjVb4hhI0bD0NAQABAfF4cN69fgyeNHEAgFqF+/EfoNGASBQFBU1VGJVxH+OLFzDt7EBKOknSva9J0DO8cKBZaViDNweu9iBD44C6lUCu8aLdCi+xQIDE0AANlZEpzZ/xOe3TkOPX0DVPXrgsadx2nVM1XE2TlYfOo2zgdEwNBAH/3q+KBfXZ/PbhOTlIau6/7Cih5NUNOxNAAgJVOMBr/uUyhnaSTE5Qk91Ba7OoizsrHoxC1c8A+HUF8P/Xwror9vxc9uE5OYii6rD2Fl7+ao6ST7Dc6QZGHJqdu44B+BXKkUzX2cMKFlbRgLDYqiGmoRHhaErWt/RlR4KMo6OGPQqMlwcvX6x+02rVoEK+sS6NJrqHzZ69gobF+/BMEBT2Bqao5mbbuhbee+6gxfLXQFBvC7cwjPvp+PhKt3CyxjXsULFVbPhXkFd6T6h+Lp6NlIefBcvt6uexu4z/0BhmVK4N3Z63gyYiay4hOLqgoqF/kiELvWL0RMRCjs7J3RZ8R0lHcpuA+alSXBX3tW4+6105CIM+HuUwM9h0yGlW0p2XqJGHs2LsaDWxdgIDBE8w590bxDv6Kszr8i68OexYXHeX3YxrU+04d9jnWnPujDdm4i78Pm5OZi5bGrOHrnKTIlWfDzdsaUrs1gY25SlNVRCbFEguXrt+DKrTsQCgTo3rEtundsV2DZkBcvsXTNJryIiISjQzmMHzkUHq7OAIBGHboXuM3U70ehReOGaotf3Sp5m2PGOE98O7Tg9uS9bu3Loldne5gY6eHi9XdYtiEUYnEuAEBgoIPxI9zQsF4JiCU52Hc4GvuORBdF+Cola0sWISYiFGXsndF3xLRPtiUf2rFmPiytS6B9jxHyZSlJCdi9YTECntyBqbkl2nQdAt/GBZ87aSqJRILf123CVfmx0x7fdvrEsRP2EkvXbsDL8Eg4Othj3Kih8Mg7//umfcF5sik/jNHqY4fo/5XKshCurq54+vSpqj5OZdZv3YHgkDD8umAuvh85DDv3HsCVG7eUymWKRJg2dyEqenth7e9L4O3lgWlzFyFTJAIAvIuPR3p6BnZuXI0/dmySv94nM7TJyl1/IiAsAqtnjsekwb2w6eBxXLh9/5PlQyNjMHXpekg/ui/lSVAYZq7YhF5tmmHHT9Mh0NfHjOUb1R2+Wiy/9hT+b5KwrosfpjSpgo23A3A+OKbAsi8SUjC/ZQ2cGdZa/qqTl/B7b/u9YBx5Fl4EkavP0sMX4R/5Ghu/64Vp3Vtg/anrOPcwUKncg9AozNl9EsNb+eHQ9CGo7FQWo9fsR4ZYAgD44/pD7LhwB1O6NsOeiQNQ1sYSo9fsR6Ykq6ir9K+xPVG27PIj+L9OwIbujTC1WXVsuPkc54KiPrvNwrN/IzMrW2HZ2uvPcOx5OGa3qoU13RrgbsQb/HbxkRojVx+RKBNzZ02Hd4UK+H35anh5eWPunBkQiTILLH/j+jXs3b0Do8f8gAWLlyAwMADbtsjaUqlUisWL5kEsFuGnJUsxafJ03L17C7t2bivCGv17EnEG9iwfDge36hg28yDKuVTFnuUjIBFnFFj+9N7FeBX+DH3Gb0a/CVsR8/Ipzuz/6YP1C/HC/wb6jNuEzkN/xYOrf+D+lf1FVR2VWHb+b/jHxmNj3xaY1qo21l99jHP+4Z/dZtHJ20rHTlhcMiyNhDg/7lv569DIDmqMXD2Wnr0H/5g4bBzQCtPa1sP6yw9x7vnLz26z8NhNZEoU98eSU7fxPCYO6/q3xMYBrfAs5h1+PX1HnaGrlUiUiSXzxsHDuzLmL9sON6+K+HXe+E+2J+8dP7gTl8/+pbAsNzcXv84fDzNzKyz8fQcGjpqMvw5sxc0rZ9RZBZXTFQpQdddSmFX49AVIPWMj1Dy6AYnX/8b12p2ReOshav61HnrGsgvSFjUrotKGhQhZsAo3/LrDwMoclTcvLqoqqJxYlIkVC8bCzasqZvy6Gy6elbFy4XcQf+J7cmzfWjy8cwmDxy3EpEVbkZOTjbW//Cjv6/+5fRkiQv0xfu4G9B42FccPbMD9m+eKskr/ytIjF+Ef+Qobx/bEtG+bY/3pG5/uw+45ieGtfHFoWl4fdu0BeR92y7nbOPPAH0sGdcCuH/shOT0T03YeK+rqqMS6bbsQFBqGZfNnYtzwwdi+7yAu37itVC5TJMLkeT+hoo8nNixdjAqeHpgy/yd5H/bgtvUKr56d26NUyRLwrV2zqKukMs7lTTB/is8/XnBvWM8Wg3o6YsnqYHw34wl8PM0xaoCzfP2ogS7wdDPD9zMeY+naEAzsWR6N6mnX4CBZW/JdXluyC66elbFi4fefbEveO314G66dP6ywTCqVYs3PPyIx/g0mzNuA7oMm4MC2pXhwW7um7V23dSeCQl9g6YLZ+GHEEGzf98cnz/+mzFuESt5eWL/sZ/h4uWPqvMX5x872DQqvHp075B07NYq6SkT0Bb46WX7v3j2l1+XLlzFv3jy4uRU8Ere4ZIpEOHn2AkYPGwR3V2f41a2N7l064q/jp5TKXr52A0KBAMMH9UN5+3IYPXQQjI0MceX6TQBAZFQ0bKytYFe6NKytrOQvbRrFBgCZIjGOXryB8QO+haezAxrVqoq+7ZrjzzOXCyx/6NxVDJ35M6wtzJXW7T52Fi39aqNzswYob1caPw7sgfikFCSlpKm5FqqVmZWNI0/DMaFRJXiVskJj17LoV8MdBx6HKZWVZOcgNjkDPqWtYGtiKH8J9PUAAGniLEw6dhvb7gWhlJl2jRD+UIZYgsO3HmNSl6bwsi+NJpU9MKBpHey7onxRJS4lDcNa+qJtrQooZ2uF4a38kJwhQtirOADA0TtP0a9JbTSs6AbHUjaY3qMFktIz8ShMu0ZasD1RlinJxpEnLzGpSTV4lbZGY/dy6F/LE/sfhHxym5PPw5HxUXJLKpXiwMMQjG1QEX7OZeBV2hrTm9fAn4/CkKGFF1WuXb0CgVCAQYOHwd6hPIYOHwUjIyNcv3a1wPLH/jqM9h06o1btOnB398DosT/g3LkzEIlEiI6OQlBgAL4fNxHlyzvCp0JF9O7TH1cuXyziWv07z++egr6BEM2+nYQSdi5o2XMahIYm8L93usDyevoGaNV7JuwcK6BMeR9U9euMyJAHAIDMtCQ8vH4Q7frPR1nnSnD2rou6LQYi5sWToqzSv5IpycLhhyGY2KIWvMrYoLFneQyo54N9fysnc9478fQF0gs4Hl7GJcHBxhy2pkbyl7WJdv3+ZEiycPh+ECa1rgMvO1s08XbEAN+K2HfH/5PbnHgcWuD+MNDTw9Q29eBtZwsvO1t0qOaOh5Fv1Bm+Wt25dg4CgRA9B36HsvZO6DtkPAyNjHH3RsHJhoyMNCz/aQqOHdwBm7xRwu8lJyWgvJM7Bo6chNJ2DqhSwxc+lWoiyP9xUVRFJUy9XFDvxgEYuzh8tlyZb1sjN1OMgMm/IC3wBfzHL0ROajrKdG0JAHAc1Qexf55CzK6/kPo0CI8GTELJVg1h5FiuKKqhcvdunIFAKETX/uNQppwzug+aCEMj408muG9eOoaOvUbDw6cG7Oxd0HfkTISHPsfbV5EQizJx/cIRdB88CeVdvFC1TmO06Ngfl05pxwVJWR/2CSZ1/aAP26Q29l0toA+bmi7rw9asgHK2lhje0lehD5uTk4sJnZuguqsDXMrYolejGlrXfwVkfdgT5y5izJABcHdxRv26tdCjczscPql8oezS9VsQCgQYOaAPytuXw5gh/WFsZCRPrNtYWcpfEokEB4+fwsTRw2BqYlzU1VKJDi3LYN0vVZCYJPnHst3alcUfR6Nx814CAkNSsWR1MNo0Kw2hUBeGQl20a14ayzeEIjgsDVdvx2PPwSh0aVu2CGqhOvdunIGBUIiu/X/Ia0smwNDIGH9/oi3JzEjD2l8m4tThbbC2La2wLiIsAGFBjzF03CI4OHuico0GaNlxAM4c2VEUVVEJ2bFzAWOHDsw7dmqjR+cOOHxCuf966dpNCAUCjBjYN+/YGQhjIyN5Yv3Dcz6xWIJDx09i4pgRMDXRvjtViP4LvjpZ3rdvX6XX2LFjkZmZiQULFqgjxkJ78TIc2dnZ8PH0kC+r4O2JgOAQ5ObmKpQNCApGBW8vebJKR0cHPl6e8A8MBgBEREajnJ1d0QWvJiER0cjOyUElj/zpICp7uuJ5yEulfQIAtx49w6xRA9CzTROldQ/8g/FN7ary93YlbXFk1SJYmpuqJ3g1CX6XjOxcKSrb5U8fU8XOBs9eJSD3o9H0EYlpgA5Q1qLgH7XYlHSIc3Kxu3djlPtEGW0QHPMW2Tk5qOKcf9JY1bkcnkbEIjdXcZ80r+aFoS19AQAiSRZ2XboLazNj+TQr4zs1Rpsa+VML6EAHUgBpIrH6K6JCbE+UBb1LQnZOLiqXzT92qpYrUeCxAwBJmWL8fuUJZrRQHEGRmCFGuiQbFcrkf45bCQtk5+bC/7X23RIfFBgAb+8KCn9/L28fBAYGKJXNyclBSEgQfCrkTzfh6emF7KwshL98ASsra8ydvwhWVlYK22Wkp6u3EioW/eIRHNyqK+wTe9eqiHrxqMDybfrMgoNbNQBAUlw0nt45AUePWgCAyNAHEBqZyt8DgF/rYegwaJF6K6FCQW8SkZ2Tiyr2JeTLqtiXwrOYuIKPnQwRfr/wN2a0rqO07sW7ZJS3Vr6grU2CXycgOzcXVezz79KqWr40nka/U/rNAWT7Y9nZe5jZ3ldp3bS29VC1vCxJHJOYilNPwlDDsbRSOW0RGvQMHt6VFY4dd6/KCAks+G7Od29ikSWRYMGy7ShRWjFJY2Vti7GTFsLI2ARSqRTB/o8R+PwhvCpWU3s9VMW6QS3EX76DG34FTwXxnlXtyki4qZgcTbj1AJZ1qgAALGtVRsK1v+XrRNGvkRkZC6valVUec1F4GfwUrp5VFL4nLp5VEBakfBExNzcXg75fAO/Kyu1JZkYaosODkJOdDReP/H3h6lUVL0OeFXiuoGnkfVinD/qwLuXwNOKVch+2qieGtqgH4H0f9p5CH3ZEaz80qSzr98WnpuPQzceo4fb5CzWaKOxlBLKzc1Dhgz5sRa+C+7D+QSGo6OWh8F2q4OUB/6Bgpc/dsucAqlWqiBpVKqm3AmpUu7o1FvwehP1/ff4iiK4u4OVmhkfPk+XLngemQF9fF66OpnB1MoWevi6eBqbI1z/xT4a3uxm0aSzMi0+0JS8KaEsAIO5NLLKyxJj56x7YllL8zXn3Jhpm5lYoUTr/WCzn6IaIsABkZ2vHYJj3x46PZ/6dTBU/cf7nHxSMCt6eSsfO80DlY2frnv2oVqkiqmvxsUP0/+6r5ywPDPz0qCdNE5+QCAtzcxgY5M9TaWUpuwqekpoKSwsLhbKODvYK21tZWSI8IhIAEBkdDZFYjPFTZyEqJgauzk4YNXQQ7MtqV8IrLikZFmamMNDP/9NbW5hDnJWF5LR0WJmbKZRfMnEUAOD45ZsKy1PTM5CSnoGcnFx8t3A5QiKi4ePmhEmDe6KktWJSR9PFpYtgaSSAgV7+tSMbYyHEOblIzpTAylgoX/4yIRWmAgPMOv03/o56h9Jmxhhe1wu+TrITcfcSlljesV6R10HV4pLTYGliDIO8EfMAYGNuAnFWNpLSM2Ftpjx65E5QOEas2gcppFjcvz2MhbL5lKu5KB5Xh24+Qk5uLqq6aNfoLbYnyuLSMmFpLISBXv73xNrEEOLsHCRlimFtrDitzG8XH6FdBUe42FooLDc3EkBfVxfv0jLl696kym73TMzUrosqAJCQkACH8uUVlllZWiEiIlypbHp6OiQSCaxt8i8U6OnpwdzcHHFx7+Dp5Y1q1fNvbc7NzcWJY3+hcpWqSp+lydKS36GEneLdZybmtngX8+m7EADgyObJeHzzL1jalkXD9rLfo8R3UbC0KYvHN4/g2on1yMnOQhW/zmjQZgR0tGSO+4KOHZv3x06GGNYmisfOr+f+RrtKrnAtqfz7+jIuGdm5uei9+Tjepmagmn0pTGheEyUKaKc1VVxqBiyNDRV/c0yN8toSkdJI+V9P30H7Km4F7o/3Zhy6gmOPQmFnaYrhjbTrePlQUmI8yjo4KyyzsLRGVKTy3W8AUN7JHRNmLf3Hz/1hSEfEv3uNqjX9UKvuNyqJtShErt/7ReWEpUsg1T9UYZnkTTzMfGTtkGGZkhDHvlVYL34bD8Oy2nlhJTkxDnb2it8TcwsbxESGKpXV1dVVSpRfPLEHpuaWKFfeHY//vgJTc0vof9DfMbe0RpZEjPTUJJhZWKunEioSl1JAH9bsC/qwq/fL+rD98vuw7605cQ3rT9+AubEhto/ro/Y6qFp8YhIszM1gYPDB+Z+lBSSSLKSkpsHygzuI4xMT4Wiv2Ie1trTAywjFKfbevIvDhavXseqn+eoNXs2mLZQ9x6BVk1KfLWdqog+hUA9xCfn90pxcICUlCyVtBciVAskpWcjOzr8gk5CUBaFQDxZmBkhK0Y7ksKwtcVFYZm5hjdhP/ObYO7nju+krClxnbmmDjIxUiMWZEAplv+OJca+Rk5ONzIw0mJlrfs4gPjEx79j58Pzv/bGjeP6XkJgERwfF81srS0u8jIxUWPbm3TtcuHodK39WfBYcFb9caNGVLVK7Qp1VSqVSXL9+Hdu3b8eePXtw545mzgUpFosVOgUA5O+zPprzUyyWKDSCAGCgr4+sLNkPW2R0DFLT0tC7exfMnzEFQoEAE2fMQUbG5+fv0jQisQSCj/bJ+/eSj/bJ52TkjQr+bdt+tKxfG79NGo2srCz8+PNqrRh18iFRVo5CohyAPIEhyclRWB6ekApRdg7qlC+FVZ194etUCuP+uqWVo18/JzMrSz61zHvv32dlF/w9cS1TAnsnD8SoNg0wc9cJPHmpPOf7k/AY/Hb4IgY0qQ1bLbsDge2JMlG28rEjyHuflaPYDtwOf41HMe8wtIAH3urr6qKxe1msvPoEb1IzkCqWYOmlR9DX1UF2jna1JwAgFouU/v76Bgbyv//HZQF8cfmtWzYiLCwUffsNVGHE6pclFkFP/+M6CpCd/fnbnn1bDcXgaftgYWOH3cuGQZqbC4koAwlvI3D/yn50GLgIzb+dhLvnd+LWuW1qrIFqibKyP93GfvS7c/tFLB5FvcGw+gWPPnoZn4w0sQQTmtfCL50b4l1aBr7bdwE5WvRbnJmVLW873pO3JdkftSVhMXgY8QbDGlX57GcO9KuEnUPbwc7SFKN2nilwhLo2+FR7kl1A+/A1vp/yE36c+RsiXgZj1+bf/9VnaSI9YyPkihXbl1yxBLp5SVA9Y8PPrtc2ErEI+gaKsesbGPxjGwsAj+5ewtm/dqJT77HQNzCQfdbH7bW+7LP/7feuKGRKCmpf8/prn+vDThqAUa3rY+Zu5T5s21oVsGdif9TxcMSI1fuRpmUX8sViMQQf90vz3ks++puKCzhXNNA3UCp38txFeLi4wNtDs6ZhVRdDYd5vdJbib0lWdi4MDGTTsGRlKf5evX9vYKA9CThZW/Lxd+Wf+2sFcXarAEurEti76ReIRZl4+yoS547tBgDkfOJY1DSfO3Y+Pv8TicXK538G+krlTp67CHfX/86xQ6StvnpkeVBQEMaMGYP4+Hg4OjpCKpUiPDwcjo6OWLlyJcqV05zRogKBQKlxev9e+FFnWCBQTkxkZWdDKJSNKv5p7kzkZGfDyEh2VXTahB/QY+Bw3Lr7N5o0qq+uKqic0MBAKSn+/r3hV5wg6OedxHb4xhetG8hGp8wbOxithk3Es5CXCtO8aDqBvq5SYu99ssLwo87ikDqe6FHVBeaGsn3lXsISAW+ScOjpS3iX1vyr419KqK8PSbZiwub9e0OBQUGbwMbcBDbmJvAsVwpPXsbgj+sPUckp/3a8xy+iMXrtAfh5O2NUmwbqC15N2J4oE+rpKR07krz3hh+cqIqysrHw7N+Y2qy60jH13uQm1TDl2C20XHsMRgb6GFLXG89excPkE983TXJg/x78sT9/tKO7h6fS3z87K0v+9/+QQCD77nxJ+W1bNuLokUOYNGUGyjs6qSp8tbh2Yh2undggf1/OqRJysj+uowQGgs8/1LaEnSsAoOvwZVj6YwNEBN+Drp4exJlp6Dz0V1jaytqY5IRXuHdpD+q1GKTimqiHQF/v023sB8eIKCsbC07ewrRWdT557Bwc0QE6H2z3a9dGaLrsDzyNiVOY1kSTCfX15W3He/K25KP9Mf/oDUxrW++T++M9l7xR57982xhNl+zF/YjXqOlURsWRq95fB7bh6J/b5O9d3H0KbB8Ewn/3QGhnNy8AQJZEjDW/zUavgd8pJUi0Wa5IrJT41hUKkJMhu0CZ86n1mdpx0frkn5tx6tBm+Xsnt4rIzlJMZmVnZUHwD23swzuXsPG3yfimdQ/Ub9YZAGAgECpNkfA+UfZvv3dFQWhQUB8271znS/qw4bFKfViHErL2ZEHftmg+czUuPA5ChzraM32CQKCc7H7frhh+1NcQFHCumJWdpVTuys07aN+yqRqiVZ++3RzQt1v+NDoT5jzFE//kz2yRTyIpOPFtoK8LkTgXerqAgcFHg6/y3ovEmnvx+sSfm3Hq0Bb5eye3CkoXxbKyJP/YlhTEQCDE8Am/YP1vkzG2T32Ym1ujRad+OLB1KQyNtGO6UoGB4JPHzhed/2VlK+VYrty4jfatmqshWiJSpa9Ols+ePRuVK1fG3LlzYZL3MIKUlBRMmzYNM2fOxNatW1UeZGHZ2lgjOSUFOTk50MsbKZyQmAihQKD0IAVbG2skJCYpLEtITIJ13jyxAgMD4IOTCIFAgNKlSiIuIV69lVCxEtaWSE5NQ3ZODvTz9kl8UgqEAgOYGX/5A8EszEyhr6eH8h/crmphZgpzMxO8iU8AoD3J8pKmRkjKlCA7Nxf6ebfwx2WIIdTXg5lQsVOtq6MjT5S/52RthrCEFPw/KWlphqT0DGTn5MovjMSlpMPQQB9mRoqdpWcRsdDT1YWXff53waWMrfzhSABwLzgCY9f9gbpeTvhpYAfo6mrPCIv32J4oK2FmhKQMscKxE5+WCUN9PZh9cJw8e5WA6KR0TDiiOJ3TmD+voq2PI2a0qAFrE0Ns6PENkjPFshFhUmDl1Sews9D8qSRatW4Lv/oN5e8P/rEfiYkJCmUSExNhZW3z8aYwMzOHQCBAUmIi7O1lJ3A5OTlISUmB9Qfl169dhZMnjuHHiVPg66f5F1RqNOwBnxqt5O+vn9qEtOR3CmXSU97B1LLEx5siJ1uCoEeX4OLjC6GR7A4UUwtbGJlaIiMtEaYWJaBvIJQnygHAprQTUhJeq6k2qlfSzFj52Ekv4NiJjUN0Yhp+/OOywvZj9p5Hu0oumNGmLow+ShpbmxjBwkiIt6kZaq+HqpQ0N0ZShkjxNyc1A4YGH+2P6HeITkzFj/sVH245eucZtKvihimt6+BKUCTquJSFad52NqZGsDAWIikvSarpmrTqhNp++c+JOX5oJ5ITFX8bkhLjYWml3J78k+TEeIQEPUONOvntVVl7J2RnZyEzMx1mBpaFjlvTiGLfQFjaVmGZsLQtRK9lU6+IYgpYX8oW4leK7ZSmatiiK2r4NpO/P314G5KTFL8nKUlxsLBSbmPfu3v9NLYsn4mGzbug+6AJ8uVW1iWQlpKEnJxs6OnJ2pfkxHgYCAxhZGL2qY/TGCUtTL+iD/sKero6in3Y0rYIey3rw155FgrPcqVQylJWb6GBPsraWCIpXTsuqrxna22N5JRUhfO/hMSkvD6sYj/L1sYaCUlJCssSEpNgY20pf//2XRzCo6LhW7smtMmRU7G4eD1/+qV38V8+Wjo5NQticQ5sLAWIjJb9/fV0AXNzA8QnSKCjA1iYG0BPVzY9CwBYWwkgEucgLV1zR1E3atEVNRXaku0FtCXxsLCy/XjTL+Lk5oOf1h1HcmIcTM0t4f/oNkzNLWFopPn9e+D9+V/qR+d/SQWf/1l//vwPkB07EVHR8K2t+PwmItI8Xz0Ni7+/P0aPHi1PlAOAubk5xo0bhwcPHqg0uH/LxckJ+vr68ofqAcAz/0B4uLlC96N5Tb083PE8MAjSvAdrSaVSPA8IhLenO6RSKfoMHYXT5y/Ky2eKRIiJfQX7ctr1hGt3R3vo6+nhWchL+bLHQaHwdnFU2iefo6+nB09nB4RE5D8MJSklDckpaShTonA/psXFvYQF9HV18PRVfnLrUUwcfEpZQfejJ7LMPvM35p5VfGBU0LtkOFpp/snD1/AoVwr6enp4Ep5/G+rDsCj4lC+jlOg+fPMJlv91WWGZf+RrOOedhIbEvsP3G/6En48LlgzqpDBHrzZhe6LMo6Ql9PV08TQ2v1P9MCYO3qWtFY6dCmWs8dfQ1tg3oLn8BQCzWtTAKL8KAIAZx2/j1svXsDASwshAH9dfvIK1sRDOH81vronMzMxhZ1dW/vL08kagv7/C3z/A/zk8PTyVttXV1YWbmwf8nz+TLwsM8Ie+vj4cnWTzz+7dvROnTh7HpCnT0aChdswtbGRqCetS5eUve5cqiAp7qLBPIkMfopyz8sP0dHR0cWTLVAQ/uSxflhwfi4y0RNiWcUE5l8rIzhIj/nX+71hcbJhC8lzTeZS2lh070fmJuYeRb+FjZ6t47NjZ4ujoTtg/rJ38BQCz2tbDqEZVkCaWoP6SvbgX/kq+zZuUdCRliOBko/nHznsepW2gr6uLJ9H5SYyHkW/gY1dC4TenQrkSOPZ9NxwY2Un+AoDZHfwwqnE16OjoYMbhq7gWnD+37qukNNn+KGFZZPX5N0zNLFDazl7+cvOogJDAJwrHTnDAE7h6VPjqz373JhbLF09GQnz+fn4ZFghzCyuYmVuqqgoaIfHOY1jVUZyr3qpuNSTdeQwASLr7GFa+1eXrDMuVhpF9GSTmrdd0JmYWKFnGQf5y9qiEsMDHCt+T0MDHcHavWOD2AU/uYMvymfimVXf0HDpFYV05Jw/o6evjRXD+Q2RDAx7C0dX7q84VikuBfdgX0QX3YW89xvKjVxSW+Ue9hnNp2cWopYcv4vjd/N/ndJEYke8S4FTq6y9WFSdXZ0fo6+vBPyj/OSFPA4Lg6eai9Df19nDD88Bghe/S04AgeLvnTxnhHxyKkrY2KKVl53ypadmIeSWSv96PFv8SUikQEJKKSt75v60+nhbIyc5FaHgaQl6mISc7Fz6e+fO/V/I2R0BIKgp4brfGUG5LKhbQljz6ZFvyOempyfh52iCkpSbBwsoWenr6eHL/Gjx8tCdRnH/s5J//PfUPhEeBx4670rHzLCAQ3h75DwcNCA7JO3Y+fSGTiDTDV/d4KleujFu3biktf/DgAby8vFQSlKoYGgrRvHEj/L5mPQKDQ3H91h38cfgoOrdvA0A2KlQsls0518C3LtLT07F64xaER0Zh9cYtEIlEaOhXDzo6OqhTozq279mPR0+fITwiEj8tXYEStjaoXb1acVbxqxkKBWjdsC5+3rgb/qHhuHLvEXYfO4vurRoDAOKTkiGSfNlV9l5tm+HAqUu4cOs+Xka/wvy12+DmaA8fV0c11kD1jAz00da7PBZfeITnrxNwKTQWO++HoGdV2ej4uHQRRHm3czZ0LoOTAZE47h+BqKQ0bLgdgEex8ehRRXtG0n8JI4EB2tWqiAX7TuNZRCwuPg7Gjgt30auRbARJXEoaRBLZbWZd/argXnAEdl+6h4i3CVhz4iqeRbxC729kZRfsO4VSluaY0LkJktIzEJeSprC9tmB7oszIQB9tfRyx8OzfeP4qHpdCorHzbhB61ZB1CuPSMiHKyoahgT4crMwUXoBsdO37BxlaGAmw6toThL5Lwt+Rb/HT+fsYVMdL6YKVNvD1q4/09HRsXL8GkZER2Lh+DUQiEfwayEZzisViJCbkX5xr3bYdDh08gFs3byA4OAhrVq9A85atYWhoiKjICOzbuwtdu/WAt3cFJCYkyF/axLtGC4gyUnF67yK8iw3F6b2LkCXOhE9N2ejzLIlIPvJcV08f1Rt+i4uHliEy5D5iw5/hz3Xj4FmlCUqWdYNtaWe4VWqII1um4nVUIEKfXcP1UxtRo1GP4qziVzEy0Ee7Si5YcPI2nsXG4WJgJHbcfo5etWT9KIVjx9pc4QW8P3aMYCoUoJp9SSw5ew/PYuMQ8CoeUw5dRT3XsnArpT1TgxkJ9NGuihsWHLuBZzHvcDEgHDtuPEWvuj4AZKPM5fvDxlzhBQAlzU1gY2oEfT1ddK3hiRXn/8aDiNfwj43DpAMX0ciz/GcfBqrJavo2RkZ6GnZuWoqYyBfYuWkpxOJM1PaTTX8gEYuQlPhldyU5u3nD0cUTG1csQEzkCzz6+wb2bl2J9t0GqLEGRUdYyha6hrKpIl4fPA0DS3N4L50OUy8XeC+dDj0TI7z64xQAIGL9XpTt3QH2A7vCrKIHqmz9BW9PXEZmePTn/guNVb1uU2Smp2L/liWIjQrD/i1LIBZlooav7OK0RCxCcqJstHROTja2r5oDd59qaNlpAJIT4+Qv2RRgRqjbqC12r1uI8JDneHjnEs4e3YkmbXsVZxW/mKwPWwEL9p/Bs4hX+X3YhrIEnUIf1jevD3v5fR/2mqwPm9ff7d6gGrZduINrz8MQ+uodpu04BntbK/h5a1e/31AoRItvGmLp2o0IDAnFtdv3sP/IMXRpJ/sNjk9MgjhvDv+G9WojLT0dqzZtR3hkNFZt2g6RWIxGfnXln/cyMgrl7TVn6lV1EQh0YW2Zfyfo4ZOx6NnZHvXr2MDTzQwTRrnh6NlXEItzIRbn4tTFN5gwyh2ebmaoX8cGPTvZ44+jys9w0mT5bcmviI16gf1bfoVEJCqwLfknJmYWEIky8OeO5Xj3OhrXzh3GjYtH0aJjf3VWQaUMhUK0aNwIS9fIjp3rt+/iwJGj6NJO+fyvoW+dvGNnK8Ijo7Bq01blYyfiv3HsEP0/+KJpWFatWiX/d/ny5bFo0SLcvXsXlSpVgq6uLoKDg3H8+HH06aN5TwcfOXgAfl+7AT9Onw0TY2P079Ud9evJ5tju1m8IJn4/Gi2bNoaJsTEWzpqGZavX48SZ83B2LI9Fs6fDyFCWyBk2sC/09PWw6NffkZ6egSqVKmDR7Ony23G0yQ/9uuHnTbsxat5SmBobYWi3dvimtixJ13r4JMwc2R9tG9X7x89pUqc6UtMzsHL3QSQkp6CatweWTBwFHS1Mbo1rWBGLLzzC8D+vwVRggBF1vdHYTTZKscWGk5jdvDra+5RHY7eymNK4CjbfCcLr1Aw425hjVSdf2Flox7xrX2NClyZYuO80hizfA1MjIUa28UPTKh4AgCbTVmJenzboUKcSvOxLY+nQzlh57AqWH70M1zK2WDu6O0pZmiEuJQ2PXsg6iS1mrlb4/PfbaxO2J8p+bFwFi87ex9B9l2EqNMAIPx80cZd1AputOYq5rWqhfcV/nl97dP2KWHTuPgbuuQhjA330ruGB3jU81B2+Whgbm2DWnPlYvWo5zpw+CUdHZ8yetxCGhrKprq5dvYzly37FsZPnAAANGn6DN2/eYM2q35GVlYV6vvUxcNBQAMDt27eQm5uL/ft2Y/++3Qr/z/vttYHQyBS9vluH4zvn4MHVAyhVzgO9vl8PgVB2G+7zuyfx19ZpmL05EADQpPN46EAHf6z9ARJxBryqNUOrXjPkn9d56K84tWcBti7uBQOhEWo17o1aTfoWS90K68fmNbHw5G0M3XEGpoYGGNGwCpp4lQcANF12AHPb+6JDZdd//Jz5Hfzw27m/MXbveUiyc9HIwx6TW9RSd/gqN6FlbSw8fgNDtp6EqVCAkd9UQ1NvRwBAkyV7Ma9TfXSo6v75DwHwXdMa0AEwcf9FZGZlo4mXIya3rqPe4NXI2NgUP878DVvW/IxLZ/6Cg6MrJs5aJm9Pbl8/jw3L52PX0Tv/+Fm6enoYP30Jtq//FXMmDYHQ0AjN23ZHi3bd1V2NItE0+gYeD56C6B2HkZ2ajnsdh6Pi6rlwGPItUp4G4V77YcjJe5B20u1HeDZqFtxnfwcDawvEnbuBJyNmFnMNCs/I2BRjpq/ArnULce3cIZQt74bvZqyEMO978veNs9i2ajY2HHqIiFB/JMS9RkLca0wc3Ezhc36ctxEeFWqg28AfsWf9Ivw2eyiMjE3RvvsIVKvTpKD/WiNN6NwEC/efwZAVeX3Y1h/0YaevwrzerQvow16R9WFHfSufdqVH/erIFGdh4f4zSEzLQF1PJywf3kUrpxMcPbgflq3dhB9mzIOpsTEG9OyGBnVrAwC6DBiOyd+NRKsmjWBibIzFMyZj6dqNOHb2PFzKl8fPs6bI+7AAkJiUDDPT/79zn481qV8C03/whF872d0HF669Q5lShpg4yh0GBrq4cvMd1m59IS+/cnMYJox0w4qFlZGekY3Ne8Jx9daXJZY1hZGxKcZOX45d6xbh6rlDKFfeDd/NWCFvS+7dOIttq+Zg46Evm1Fg+I8/Yee6hZgz7lvYliyL4RN+hpObjzqroHKjBvfHsjUbMW76nLxjpzsa1Ms7dvoPw+TvR6Flk29gYmyMRTOnYNmajTied/7306xpHx07STAzNS2uqtA/0OS7QKjo6Uil//yV6Nv3y05AdXR0sGPHjkIHEx387J8L/YeUc6+ApEeXizsMjWJZpRHS1k0t7jA0iumIxRCd21bcYWgMw2YD2JZ8pJx7BWRsnlXcYWgU48HzEBwWWdxhaBR3Fwfsuc5e4od6+ekgc9ei4g5Doxj1mQbR/l+KOwyNYth9Eu4FJRV3GBqlpoclThho5wVPdWmTFYQrz7XnWQLq1tDHGKKzmvOsK01g2HwgXgU+Ku4wNEoZzyryZDXJXD/WEFefpxd3GBqlgY8JYoOeFHcYGsXOQ7sGpWmCY/c19/kCmqpd9a9+DKbW+KKa7dy586s/eMOGDejRowfMzc3/uTARERERERERERERUTFS21Na1q1bh+TkZHV9PBERERERERERERGRyqgtWf4Fs7sQEREREREREREREWkEtSXLiYiIiIiIiIiIiIi0xf/vbOxEREREREREREREnyGV6hR3CKRBOLKciIiIiIiIiIiIiP7zmCwnIiIiIiIiIiIiov88JsuJiIiIiIiIiIiI6D/vq5PlCxYsQGRk5D+W69atG0xNTQsVFBERERERERERERFRUfrqZPnRo0eho/PPE99PmzYNVlZWhQqKiIiIiIiIiIiIiKgo/Y+9u45uImvDAP6kktS9WGmpO7o4FIfFpbC4u+8usgaL27I4xXVxd3cti3u9heJWt0jbfH8EUkICSyGpfDy/c3IOvXMz+967M3cmb27uGOT2DT179sSkSZPQs2dPlChRAiKRSGV7iRIltBYcERERERERERERka5ky/M7AipIcp0sX7BgAQDg/PnzyjKBQAC5XA6BQIDQ0FDtRUdERERERERERERElAdynSxv2bIlypUrh5o1a0JfX18XMRERERERERERERER5alcr1luYWGBJUuWoH379li2bBmePHmCEiVKwMHBAQ4ODrqIkYiIiIiIiIiIiIhIp3KdLB87dizOnTuHBQsWwMDAACNHjkRAQACmTp2KW7du6SBEIiIiIiIiIiIiIiLdynWyHFCsUV65cmWMGzcOR44cQbt27bBt2zZ06tQJ9evXx7JlyyCRSLQdKxERERERERERERGRTuR6zXIASEtLw+nTp3HkyBFcuHABRYsWRa9evdC0aVO8fv0as2bNwpUrV7Bq1Sptx0tERERERERERESkFXJ5fkdABUmuk+WDBg1CcHAwLCws0KRJE6xbtw5lypRRbvf09ERycjLGjBmj1UCJiIiIiIiIiIiIiHQl18lyOzs7LFu2DFWqVIFAINBYp2LFiti+fftXB0dERERERERERERElBdynSyfPHnyf9axt7eHvb39FwVERERERERERERERJTXvugBn0RERERERERERERE/0+YLCciIiIiIiIiIiKib16ul2EhIiIiIiIiIiIi+n8gh+ZnMtK3iTPLiYiIiIiIiIiIiOibx2Q5EREREREREREREX3zmCwnIiIiIiIiIiIiom8ek+VERERERERERERE9M1jspyIiIiIiIiIiIiIvnkG+R0AERERERERERERUX7Ilud3BFSQcGY5EREREREREREREX3zmCwnIiIiIiIiIiIiom8ek+VERERERERERERE9M1jspyIiIiIiIiIiIiIvnlMlhMRERERERERERHRN88gvwMgIiIiIiIiIiIiyg9yeX5HQAUJZ5YTERERERERERER0TePyXIiIiIiIiIiIiIi+uYxWU5ERERERERERERE3zyBXM6VeYiIiIiIiIiIiOjbs/3f7PwOodD5oer/7/zrAvWAz9f3L+d3CAWKvV8VPIyKyO8wChRnd088ibiX32EUKCU9/dkn7ynp6Y+Y6Oj8DqNAcXVzY598wNXNDc/C7+R3GAVKCa8yCIl6lt9hFCi+7iV4Hf6As7sn++QDzu6eHE8+UMKrDM7eT8/vMAqU2n4mOGjold9hFBjNZOG8N/kA79fUubq5IeXakfwOo0Axr9gY12pXy+8wCpSKZy/x3PmAq5tbfodAVKgVqGQ5ERERERERERERUV7hmhv0vv/fOfNERERERERERERERJ/ps2aW79mz57N32Lp16y8MhYiIiIiIiIiIiIgof3xWsnzBggUqfz9//hxCoRCOjo4wNDREbGwsJBIJvL29mSwnIiIiIiIiIiIiokLns5Llp06dUv57yZIluHv3LqZNmwYrKysAQGpqKsaNGwc7OzudBElEREREREREREREpEu5XrN81apVGDlypDJRDgBmZmYYOnQoduzYoc3YiIiIiIiIiIiIiIjyxGfNLH+fubk5QkJC4ObmplJ+/fp12NjYaC0wIiIiIiIiIiIiIl3KlgvyOwQqQHKdLB8wYADGjBmDy5cvw8fHB3K5HHfv3sXhw4cxffp0XcRIRERERERERERERKRTuU6Wd+zYEQ4ODtixYwc2b94MAPDw8MDq1atRsWJFrQdIRERERERERERERKRruU6WA0BAQAACAgK0HQsRERERERERERERUb7I9QM+AWDfvn0IDAxExYoV8fjxY0ybNg3Lly/XdmxERERERERERERERHki18nyTZs2YebMmQgMDIRMJgMA+Pn5YdWqVQgKCtJ6gEREREREREREREREupbrZPn69esxZcoUdO3aFXp6ire3atUKM2fOxPbt27UeIBEREREREREREZEuyOV85fb1/yzXyfJnz57Bzc1NrdzR0RGJiYnaiImIiIiIiIiIiIiIKE/lOlletmxZ7NmzR6VMLpdj9erVKFOmjLbiIiIiIiIiIiIiIiLKMwa5fcPYsWPRv39/nDlzBlKpFBMnTsTDhw8hFouxYsUKXcRIRERERERERERERKRTuU6We3p64ujRo9i/fz+io6ORlZWF+vXro2XLljA1NdVFjEREREREREREREREOpXrZPnvv/+OMWPGoF27dirlSUlJGD58OBYsWKC14IiIiIiIiIiIiIiI8sJnJctv3ryJ2NhYAMCePXvg5+cHMzMzlToxMTG4cOGC9iMkIiIiIiIiIiIi0gG5PL8joILks5LlxsbGWLhwIeRyOeRyOVauXAk9vZxngwoEApiYmGDUqFE6C5SIiIiIiIiIiIiISFc+K1nu7e2NkydPAgC6deuGoKAgWFpa6jQwIiIiIiIiIiIiIqK8ovffVVStX79eY6JcKpXi9u3bWgmKiIiIiIiIiIiIiCgv5foBnzdv3sSECRMQFRWF7OxslW36+vq4d++e1oIjIiIiIiIiIiIiIsoLuZ5ZPnnyZDg4OGDp0qXKtczHjh0LKysrzJw5UxcxEhERERERERERERHpVK5nlkdGRuLvv/+Gm5sb/Pz8YGhoiC5dusDW1hYrVqxA06ZNdREnERERERERERERkVZly/M7AipIcj2z3NjYGPr6+gAAV1dXhIeHAwDKlCmDBw8eaDc6IiIiIiIiIiIiIqI8kOtkedWqVTF79my8fPkS5cuXx6FDh5CYmIhTp07BwsJCFzESEREREREREREREelUrpPlY8aMQVJSEo4dO4ZmzZrBzMwMVatWxfTp0zFkyBBdxEhEREREREREREREpFO5XrO8aNGiWLdunfLv9evXIyoqChYWFihatKhWgyMiIiIiIiIiIiIiygu5nln+/fffY8GCBYiKigIACAQCeHh4MFFORERERERERERERIVWrmeW9+7dG8eOHcPy5cvh4uKCJk2aoFmzZihVqpQu4iMiIiIiIiIiIiLSCblckN8hUAGS62R5hw4d0KFDByQlJeHkyZPKxLmrqyuaNWuGPn366CJOIiIiIiIiIiIiIiKdyfUyLO9YWloiMDAQo0aNQp8+ffDw4UMEBQVpMzYiIiIiIiIiIiIiojyR65nlABASEoKjR4/i+PHjePr0KQICAjBlyhTUrVtX2/EREREREREREREREelcrpPl9erVw6tXr1C1alX069cPDRs2hJmZmS5i0wqJVIo5K9bh7KVrEAkN0bFVU3Rq1eST77kdGo4pC5Zj+5LZyjK5XI6Nuw9i77FTSEpJhY+7K37q2w0ujg66boLWSaVSBC1eigvBwRAJhWgb2AbtAttorBsVHY0FQYvxMPYhSjk5YfiQIfDwcAeg6JNtO3bi4OHDSElOgaenBwYPHIBSTk552RytkEqlmL90Bc4H/wuRUIgf2rRC+zYtNdaNjI7BvMXL8eBhLJydHPHTkAHwdHdTbm/ZsRvS0tJV3nNg2wYYGxvrtA3axj5RJ5VKsWjxYly8eBFCoRBt27ZF28BAjXWjoqMRtHAhHsbGwsnJCcOGDoWHh4dy+5kzZ/DPunVISEhAhQoV8OPw4bC0tMyrpmgN+0SdVCrFvKUrce7SZYiEQnRo3RLt27TQWDcy+gHmLFmOBw8fwdnJET8P7gevt+dO3ZY/aHzPbz8Nxff1aussfl2JiY7E0qA5iI19ACcnZwwc8jPcPLw+Wn//nh3Ys2sr0tPTUKNmHfQbOBwiIyMAgEwmxeoVi3H+zEkYGBqiQaMm6NK9LwSCwrHWIK/D6tgn6jiWfNyjmDBsWDYVT2OjUMLRFV0HjkEpN1+NdWUyKfZuWoQr549AKsmAp19FdOr7K6ztiiq2SyXYtGI6blw6CUOhERq16oZGrbrnZXO0Qk9oiJqXd+Hej5MRf+6KxjoW5Xzgv2giLPw9kRIShbtDxiP5xn3l9hIdmsFz4k8wKm6P18cu4M7APyGLS8irJmgN703UsU/USaQy/LV2O05dvQOR0BDdmtZF12b1NNa9cPM+Fm87iMcvX8OhiC0G/dAMtb8rrdx+JPg6lmw/iDeJyahWxhtj+3aElXnBzZF8jEAohNNPo2Bdqw6ypRK83LIJL7dt1ljXKqA2HPoNhNC+CNKjIvF4wRykR0ZAWKwYymzdrfE9YcMGIfXOLR22QLu0ed68s3nLFjx79gwjR4zQdfhE9BVyvQxL//79cf78eaxcuRJt2rQp0IlyAFj8zxaERT3A/Im/YUT/HlizbTdOB2u+gQSA6NjH+PPvIMiz5Srle4+dxpZ9h/FT325Y+fdEFC9ij1GTZ0Eskei6CVq3YtUaRERF4q9pUzB08CBs3LQZ5y9cVKsnFovx5/iJ8PfzRdC8efD18cGfEyZCLBYDAA4ePoKdu3Zj8MABWDh/LooVLYqx4yYotxcmy9asQ0RkNGZNmYgfB/XH+s3bcPbiJbV6GWIx/pg4FaV9fbBk3t/w9fHCHxOnIeNtm1/HxSEtLR3rVyzC9nUrlS+jtwmewoR9om7lqlWIjIzEjOnTMWTIEGzcuBHnL1xQqycWizFu3Dj4+ftjwfz58PXxwfgJOedGeHg45s2fjy5dumDunDlITU3FnDlz8ro5WsE+Ubd0zXqER8VgzpTx+GlgX/yzZftHz53fJk1DGV8fLJv7F/x8PPH7pOnKc2fnP8tVXh0DW6FoEXvUqFIxr5v01cTiDEwZ/xt8/cpg1rxl8PLxw5QJv0MsztBY/9LFs9iyaS0GDh2BSdPmICI8BP+sWabcvnJZEG7fvI5xk2dixOgxOH7kII4d2Z9XzflqvA6rY5+o41iimUScgQVThsHDpzzGztoIN++yWDh1OCQfGU/2b1mCm5dPo8/PU/HLtDXIysrEkpkjIZcr7vV3/DMXsVEhGDFxObr0/x0Hti3H9eDjedmkr6YnEqL8hjkw9/f8aB19E2NU2rccCReu4UKVQCRcuolKe5dB30QxccGyUmmUWT4VkVOCcLFmBxhaW6Dsqul51QSt4r2JOvaJuvmb9yL0wWMs/WMIfuvZDit2HcGJy7fU6kU+eorR81ahZe0q2DTtFwTWq4Ff569BROxTAMC96FhMXrEZ/QIbY+3En5GcloEJSzfmcWu0o+SgoTD18kbEz0PxaO4slOjZB9a11VcPMHJ2geufE/Fi4zqE9OmOjKhIuP81G3oiEaSvXuFWm2Yqr7gTx5AWGoK0+3fzoVVfTlvnzTtnzpzBhg0b8ip8IvoKuU6Wd+zYETKZDHPnzsXQoUMxaNAgzJw5Ew8ePNBFfF8lQyzB/pNn8WOfrvByc0btqhXRuXUz7Dx8QmP9PUdPYeDvk2FtaaG27dCp8+jYsglqVCwPpxLFMWpADySnpuJuaKSum6FVYrEYR44dw6D+/eHh7o4a1avhh3Ztse/AAbW6Z8+dh1AoRL8+veHk5IiB/fvB2MQY584rLhDHT5xE28A2qFq5Mko6OGDYkMFITknB/dDQvG7WV8kQi3Ho2EkM6d8bnu6uqFmtCjq0bY29Bw6r1T1z/iJEQiEG9O6OUo4lMaRfb5gYG+HshWAAwKPHT2BrY40SxYrBxtpa+Sossx3fYZ+oE4vFOHr0KAYOGAB3d3fUqF4dP7Rrh/371RN0Z8+dg0gkQt8+feDk5IQBAwbA2NgY58+fBwDs378fAQEBaFC/PlxcXDB61ChcvXYNL168yOtmfRX2iboMsRgHj5/EsH694OnmioBqVdAxsBV2HzyiVvf0ecUM2oG9uqGUY0kM7dsLJsbGymTY++eLRCLFrgOHMHroQJiZmuZ1s77ahXOnIRSK0KPPQDg6lUKf/kNhbGKC4PNnNdY/sHcXWrRqh0qVq8HD0xsDh47EyeOHIRGLkZKSjJPHDmHw8JHw9PJBmXLfoWWb9ogILxzXHl6H1bFP1HEs+birF49CKBKhXY+fUbykKzr0Hg0jY5OPJriDT+9H685D4OVXESUc3dBt0J94GHUfr54/gkScgQsn96BDn19Qys0H5avWw/ete+D04a153KovZ+bjhuoXt8HE7dO/nijevimyMyQI/XUmUsNiEDJiKrJS0lC8XWMAgPPgrni24zCebtiLlLvhuNXzFxRpUhvGziXzohlaw3sTdewTdRliCfae/hcjuwXC28URdSuVRbfm9bHt+Hm1ukeCr6OSryc6Nq4Nx2L2aN8oABV9PXD88k0AwLZj59GwSnk0D6gMDycHTBrUFRdvh+Lpq7i8btZX0TMygn2zlni8cC7SIyOQeP4sXmzegCJt2qnVtaxUBRkPYhB39DAkz57iyfIlENrawcjZBcjORmZ8vPIlKu4A61p18GDaJMizsvKhZV9Gm+dNVlYWFgYFYe68eShevHheN4U+k1zOV25f/89ynSy/du0avv/+e1y+fBklS5ZEyZIlce3aNbRu3RrXr1/XRYxfLOrhI2RlZqG0V87PX8r4eCIkMhrZ2dlq9S/fvIOxw/uhQ4vGatuG9OyIRrWq5xQIBJDL5UhNT1erW5BFxzxAZmYmfH28lWV+vr4IC49Q65PQsHD4+fkqk5oCgQB+Pj4IDQsDAPTr0wv16tZR1he87ZP0tMLVJzEPHiIzMxN+3jnLAfj7eiM0IlK9T8Ij4O/r80GfeCMkLAIAEPvoCUqWKJF3wesI+0RdTEwMMjMz4ePjoyzz8/NDeHi4Wp+EhYXBz1f13PH19VWeO2FhYfD391fWt7e3h729PcLebi8s2Cfqoh/EIjMzC37eObP7Sn/k3AkJj4C/r7dKn/j7eOH+23PnfWs2bUWFMqXxXbkyum2AjkSEhcDHz1+lrd4+/ggPu69WNysrC1GRYfD1z2mrl7cvMmUyPHgQjdD7d2Fiagr/0uWU29u274xhP/2q83ZoA6/D6tgn6jiWfNyDiLtw9y6n0l4373KIDr+jVjc7Oxu9f5wC37JV1bZlpKfiycNwZGVmws2rrLLc3ac8HkTe0/hZoSCyqVUZcWcu42LNDp+sZ12lLOKDVT+rxV+6Aauq5QAAVpXLIv78NeU28ZMXyHj0DNZVyqIw4b2JOvaJuohHz5CZlYWyni7KsnJerrgfFavWJ80DKmNoR/UlsFLTFbOG70U9RHnvnOUni9lao5itNe5GPdRN8Dpi7OYBgb4+Uu/lzP5OvXsbpr5+wAeTnDKTk2Ds4goz/zKAQAC7ps2QmZoKydOnavstOWAQ3hzYB/GjWJ23QZu0ed5kZGTg4YMHmDd3rsr+iKjgynWyfMaMGejatSu2bNmC3377DWPGjMG2bdvQrVs3/P3337qI8YvFJSTC0sIchoY5S7PbWFlAKpUhKSVVrf70335C7aqVNO6rrI8XitjZKP8+cOIssrKyUcbn4z93LIjiE+JhaWEBQ0NDZZm1lRWkUimSU1LU6tra2KiUWVlZ480bxbfk/n5+sLezU247fPQYsrOy4Oerec3IgiouPuGz+yQuPgG2NtYqZdbWVngTp+iTR0+eQCyRYMTv4/BD9z74fcIUPH76TPeN0DL2ibr4+HhYWlqq9InVx86d+HjY2NqqlFlZWeHNmzeK7QkJaueW9XvbCwv2ibq4hIS31533zx1LSKUyDWNsIuw+PHesrPA6TnUm0svXr3Hy3AV066A+s6ewSEiIh7WNnUqZlZU14t68VqublpYKqVQKm/fq6+vrw9zCEnFvXuPli+coUqQYTp88iqEDumNg787YtnldoUls8Tqsjn2ijmPJxyUlvIGVjb1KmYWlLRLiXqrV1dPTg2/ZqjA1z1lP+dTBTTCzsELJUp5ITHgDMwsrGLzXzxZWNpBJJUhLSdRZG7Tp0bLNCB01HdkZn15qSFTMHuJnr1TKpC/jYOxQDABgVLwIJB9sl7yKg9Hb7YUF703UsU/UvUlMgpW5KQwNcvIEtpbmkMhkSEpV/XLVxaEYPEvlPKcs+slzXL0fgcp+Hm/3lQx7a9U1220szfEqPlF3DdABQ1tbZCYlQZ6ZqSyTJcRDTySCgYVq++JPnUDipYvwXrQM3504h5KDhiFm/B/ISlU9nsz8y8DUrzSeb1yXJ23QJm2eN2ZmZpg9ezZcXFxARIVDrpPlkZGRaNu2rVp5u3btEFrAfuIqlkhVLoAAYGigGOxkskxNb/ks9yOiEbR2Ezq1bgpba6uvCTHPSSQSlQEfgPJvmUz2GXUNIP2gHgCEhYVj+cpVaNc2EDYffGAr6BTt/OA4efv3h8eJRCJV7xMDA2XfPXryFCmpqejSoS0mj/0NIqEQo8dOQHq65nU0Cyr2iTqJRKI+nuTq3DFU1vuv7YUF+0SdRCKB8KNjrOq5I/7IGPthvUPHT8HT3Q2+7/1KqrCRSMRqbTX4yP9f6dtngXzseBCLM/D82VMcO7wfQ3/6FT36DMTBfbuwf88O3TVAi3gdVsc+Ucex5OOkEjEMDIUqZQaGhsjMlP7ne29dOY1je9ejTZdhMDA0VOzL4IOxyUCx78xCdv35L/omxsiWqPZRtkQKPZHw7XajT24vLHhvoo59ok4skWnoE8Xf0k/kCRJTUvHLvNUo6+mifMCnWCKF8IN9CQ0MPrmfgkjPyAjZsg/GAKni/6tA+ME4aWEJQxtbxM6dhdBBfRF39DCcfx0LAyvVa61di1ZIPHcGMg2TIwo6bZ43RFT4GPx3FVUODg64c+cOnJ2dVcpv374NOzs7zW/KJ0KhIWSZqhcpWaZiwDL6whu/e+GRGDV5NqqWL4u+HTU/CbkgExoK1Qbtd3+LRKLPqJsJow/qhYSGYez4CahU8Tt079pFB1HrllAoVPtA+e5v0QfHiVCoftGTZWYq+27GxD+RlZkJY2PFw5L+GPUTOvYagEtXrqF+nQBdNUHr2CfqhEKh+ngiezeeiNTrajjP3vWJppun97cXFuwTdUJDoVrSLmeM/YxzR5apdn06e/FftGzSSAfR6s6OrRuwc1vOw608vHzU2popk0EkUn/Qr6FQ0f6PHQ96evpIT0/Dz7+MRZEiihmPb16/wuGDe9EqsL22m6J1vA6rY5+o41iS49COVTi8a5XybxeP0sj8IKGTKZNBKPz0g8NvXj6NFbN/Rd2mHRHQUHEPbygUITPzg7HpbdJdqGF8KsyyxRK1xLeeSIist0tJZH1se0bhmtzAexN17BN1IqGBhj5R/G0kMtT0FsQlJWPI9MWQy+X468fe0NNTzDsUCg0h/WBf0kz1Mbigk0ul0Pvgi0i9t0nybLFEpbzkwMHIeBCN13t2AgBiZ82A/7rNsGvSDC82v32Apb4+rGoE4MG0SboPXge0ed4QUeGT62R53759MX78eMTExKBMGcV6h7dv38b69esxYsQIrQf4NextrJGUnILMrCwY6OsDAOITkiASCmFmapLr/d24F4pfp81BpbL+mDBikPICWZjY2toiKTkZWVlZ0Ff2SQJEIqHag55sbW2RkJCgUpaQmKAyO+v2nbsYN3ESvitfHr//MrpQ9omdrY3mPhGq94mdrQ3iExJVyuITEmFjregToaEh8N63ykKhEMWKFsGb+ML1gBf2iTpbW1skJSWp9ElCQgJEIhFMP+fcSUiAzdufrdr9x/bCgn2iTnHupHxw7iRqPndsPn3uAMCr128Q+/gJalSpqPPYten7pi1RI6Cu8u9dOzYjMSFepU5CYjysNfz/NTe3gFAoRGJCPEo6Kh5Yl5WVhZTkJFjb2CIjIx1CoVCZKAeAEiUdEffmldq+CiJeh9WxT9RxLMlR+/t2qFijofLvI7vXIilR9R4iOfENLK3tP3yr0pULR7B6/p+o3agtOvQepSy3trFHanIisrIyoa+v+FiUlBAHQ6ERjE3NtdyS/CV+9hKiYqoTm0TF7CB+oRg7xU81bC9qB8nzwjUjlPcm6tgn6uytrZCYkqaSJ4hLTIFIaAhzE2O1+q/iEzFw2iIAwLKxw2BtYabcVsTaEnGJySr14xKTYWdlocMWaJ/09WsYWFoC+vrA2wdxGtrYIkssVltexcTTG692bs8pkMuRHh0FYbGcezMzP38IDAyQfO1KnsSvbdo8b4io8Mn1p4fAwED8+eefOHfuHH7++Wf89ttv+PfffzF16lR07dpVFzF+MQ8XJ+gb6ON+RJSy7E5oBHzcXXL9wSkm9gl+mz4XVcqXwaRRQ2FgkOvvGQoEN1cXGBgYKB82AQD3Q0Lg6eGh1ic+3l4ICQ2D/O1jbuVyOe6HhMLbW/EArocPYzFh0mRU+u47jPn918LbJy6KPgl570FY90LC4OXhrt4nXp64Hxau2iehYfD19oRcLkfXfoNx5MQpZf0MsRhPnz2HY0kHFCbsE3Wurq7q5879+/DQcO54e3sjNCREpU9CQkLg7eWl3H7/fs6DDV+/fo3Xb94oz63Cgn2izt3VGQYG+ggJzzl37oaEwcvDTa1PfL08cT8sQqVP7oWGwdcr51kYoRGRKGJni6L2H08CFUTm5hYoXsJB+fLy9kVY6H2VtoaF3IOnt/o60np6enD38EZoSM4DpsJD78PAwAAuLm7w8vaFVCrF06ePldufPI6FfZHCsa4ur8Pq2CfqOJbkMDW3RJHiTsqXq1cZRIfdVmlvVNhtuHqW1vj+0DuXsXr+n6jbpAM69ftNZVtJFy/oGxggJiJnvIkKvQlnd99C+SXLpyRcvg3rquVVyqyrVUDi5dsAgMQrt2Fd4zvlNqOSxWDsWBwJb7cXFrw3Ucc+UedVygEG+vq4995DOG9FxMDP1UmtTzLEEgz7ayn0BAIsHztMbX1yf3dn3IqIUf79Ii4BL+MTUdrdWZdN0LqMqAjIs7Jg5uunLDMrXRbpYaHA2+PhHdmbNzD6YKUBI0cnSJ4/V/5t6uOH9IgwyKX/vURWQaTN84YKh2w5X7l9/T/7orvAwMBA7Nq1C7dv38aVK1ewdetWNGnSRNuxfTUjkQhN6tTErKVrERoZg3OXr2PzvsP4obniJ6hxCYmQSD5v8P576RoUsbPFsF6dkZScgriExFy9v6AwMjJCg/r1sGDRYoRHRCD40iXs2LUbrVu2BADExydA8na92Jo1ayA1LQ1Ll69A7KNHWLp8BSRiMWoH1AQAzA9aBDt7O/Tv1wdJScmIj09QeX9hYWQkQqN6dTBv8TKERUThwqXL2L57HwJbNgOgmN32rk21alRDWloaFq1YjYePHmPRitUQi8WoXbM6BAIBqlb8Dv9s2opbd+/hYewjzJizAPZ2tqjyXYX8bGKusU/UKc6d+ggKClKcO8HB2LlrF1q3agVA8WCXnHOnJlLT0rBs2TLEPnqEZcuWQSwWo1atWgCAZs2a4eSpUzh69CgePHiAWbNno3LlyihWrHAk+95hn6gzEonwfb06mLN4BcIio3Dh3yvYtmcf2rZQP3dq16iK1LQ0BK1cg4ePHiNo5RqIJRLUqVlNub8HsY9RyrFkvrRFm6rXrI20tFSsWh6Ex48eYtXyIEjEYtQIqANAsdZjQnzOzPPGzVphz86tuHzpAiIjwrB08Vw0/L4ZREZGcCjphO8qVcXCOX/hQUwUbl6/gl3bN6Nxs5b51Lrc4XVYHftEHceSj/uuWgNkpKVg6+q/8exxNLau/hsScQYq1lDc30slYiQlKB6qlpWViX+CJsDTrwIat+mJpIQ3ypdiKShjVKvTHBuXTsXDyPu4efk0ju1bj/rNO+dnE7VGVNQOekaKZQBe7DwCQysL+M4ZAzMfN/jOGQN9U2M8334YABC7bDMcurSCY692MC/thXJrZuLVwTPIePgkP5uQa7w3Ucc+UWckEqJZQCVMW70N96NjcebaHaw/eAodG9cGoHhop/htknf1vuN48uoNJgzsotz2JjEZqW+fv9SuQQ0cunAVe85cQuSjpxi/ZANqlveDQxFbzf/xAipbIsGbI4dQasQvMPH2gVXNWijaoTNe7tgKADCwsYFAqBhPXh/YC/vmrWDTqDFEDiXh0H8QhEWLIe7IIeX+jF1ckfHwYX40RSu0ed4QUeEjkMvluf4+4NKlS7h79y5kMhk+fPvQoUO/OJjX9y9/8Xs/RiyRYNaytTj77zWYmpigc6smaN+iMQCgZmB3/DG0H5rWU103+dCp81i9dTd2LJsDQJFUb9VnuMb9a3q/ttj7VcHDqIj/rphLYrEYCxcvwYWLwTA1NUG7wEAEtlYM+t83a4GRP/2IRg0bAADCwiOwcNEiPHr8BC7Ozhg+dDDc3dwQH5+ATt26a9z/++/XNmd3TzyJuKf1/YrFEsxbshzng/+FqYkJOgS2QttWzQEA9Vu0xegfh6Bxg3oAgLCISMxdtAyPnjyFq3Mp/DS4PzzcXAEAUqkUq9ZvwulzF5CWlo5yZfzx46D+KGKvu/X8S3r6s0/eU9LTHzHR0TrZt1gsRtCiRbh48SJMTU3Rtm1btGndGgDQpGlTjPj5ZzRsqPipeHh4OBYGBeHx48dwcXbG0GHD4O7mptzX8ePHsX7DBqSkpKBChQr4cfhwWFjo5uearm5u7JMPuLq54Vn4HZ3sWyyRYO7iFTh36V+YmZigQ5tWaNdKkeCq2/IH/PrjYDSur1iiJDQiEnMXr0DskydwdS6FEYP6w8PNRbmvuYuXIzUtHX+O/kknsb6vhFcZhEQ909n+I8JDsWzRXDx5HItSzq4YOHQEXN0UDxo8dfwIFs77C7sPnlbW37ltE/bv3QGZTIpq1Wuh/+CfIHy7nnlaWipWLl2Afy9dgEhkhCbNWqF9p+4QCARajdnXvQSvwx9wdvdkn3zA2d1TJ+NJYR1LAMV4cvZ+us72/yDyHjYsnYoXTx/AoZQHug4YAydXxczW4FP7sDZoPJbvuomY8DuY8XsPjfsYOWkFvPwrQiLJwKZl03Dj35MwNjFDo1Y90KCF9te5r+1ngoOGup1l2EwWjkv1uyH+3BXl37f7/IYn63YDACwrlUbpRRNh5u2G5LvhuDdkPJJvhSrfX7J7G3iOHw5DG0u8OX4Rdwb+CVl8os5i5b2JKt6vqXN1c0PKtSM62bdYIsX0Ndtw6sptmJkYo1uzeujcpA4AoGKXHzG+f2e0qF0FbUdNRexz9aXemgdUVibQ95+9jKU7DyE5NR1VS3tjTN+OsDI3VXuPNphXbIxrtav9d8UvoCcSwWnEL7CuVQdZaWl4sWUjXr1Nllc8ewkPpk9WJsTtmrZA0Y6dIbS3R3pUJB4vmIv0yJz7A4+Zc5AeGYmnK5boJNb3VTx7SSfnjjbPm3dmz1HkmEbqeAljVw3/bfq0tWfyO4LCp2ed/I5Ad3KdLJ8xYwbWrVsHb29vtbWaBAIB1q1b98XB6CJZXpjpKllemOkqWV6Y6SpZXljpMlleWOnyw1dhpctkeWGl62R5YaSrZHlhpqtkeWGmq2R5YabrZHlhlBfJ8sJEl8nywor3a+p0mSwvrHSZLC+sdJUsL8yYLM89Jstz7/85WZ7rhRx37tyJGTNmoGXLwvFzZyIiIiIiIiIiIiKi/5LrNcv19fVRpkwZXcRCRERERERERERERJQvcp0s79KlCxYuXIj0dP60koiIiIiIiIiIiAovuZyv3L7+n+V6GZYrV67g5s2bOHLkCGxtbWFoaKiy/eTJk1oLjoiIiIiIiIiIiIgoL+Q6WR4YGIjAwEBdxEJERERERERERERElC9ynSxv06aN8t9JSUkwNzeHQCCAQCDQamBERERERERERERERHkl12uWy+VyLFmyBFWqVEG1atXw9OlTjB49GuPGjYNUKtVFjEREREREREREREREOpXrZPmiRYuwb98+zJgxA0KhEIBitvnFixcxc+ZMrQdIRERERERERERERKRruU6W7969G5MmTULdunWVS6/UqFEDf/31Fw4fPqz1AImIiIiIiIiIiIh0QS7nK7ev/2e5TpbHxcWhSJEiauUWFhZIT0/XSlBERERERERERERERHkp18nyqlWrYtWqVSplqampmDNnDqpUqaK1wIiIiIiIiIiIiIiI8kquk+UTJkxASEgIatSoAYlEgsGDB6N27dp4+vQpxo4dq4sYiYiIiIiIiIiIiIh0yiC3b7CwsMCOHTtw6dIlxMTEIDMzEy4uLqhZsyb09HKdeyciIiIiIiIiIiIiyne5TpY3b94cQUFBqFatGqpVq6aLmIiIiIiIiIiIiIiI8lSuk+V6enqQyWS6iIWIiIiIiIiIiIgoz2TL8zsCKkhynSyvU6cOevXqhbp168LBwQFCoVBl+9ChQ7UWHBERERERERERERFRXsh1sjw8PBx+fn549eoVXr16pbJNIBBoLTAiIiIiIiIiIiIioryS62T5+vXrP6ve8uXL0bFjR1hYWOQ6KCIiIiIiIiIiIiKivKSnqx0vXboUSUlJuto9EREREREREREREZHW6CxZLpdzdXwiIiIiIiIiIiIiKhxyvQwLERERERERERER0f8Dzvel9+lsZjkRERERERERERERUWHBZDkRERERERERERERffOYLCciIiIiIiIiIiKibx6T5URERERERERERET0zct1snzKlCl49OjRf9b74YcfYGZm9kVBERERERERERERERHlJYPcvmHfvn3o0aPHf9b7448/viggIiIiIiIiIiIioryQnZ3fEVBBkutkec+ePTFp0iT07NkTJUqUgEgkUtleokQJrQVHRERERERERERERJQXcp0sX7BgAQDg/PnzyjKBQAC5XA6BQIDQ0FDtRUdERERERERERERElAdynSxv2bIlypUrh5o1a0JfX18XMRERERERERERERER5alcP+DTwsICS5YsQfv27bFs2TI8efIEJUqUgIODAxwcHHQRIxERERERERERERGRTuU6WT527FicO3cOCxYsgIGBAUaOHImAgABMnToVt27d0kGIRERERERERERERES6letlWADFGuWVK1dG5cqVMWLECKxcuRJr1qzBhg0bUKJECbRv3x49e/ZUe/gnERERERERERERUUEhl+d3BFSQfFGyPC0tDadPn8aRI0dw4cIFFC1aFL169ULTpk3x+vVrzJo1C1euXMGqVau0HS8RERERERERERERkdblOlk+aNAgBAcHw8LCAk2aNMG6detQpkwZ5XZPT08kJydjzJgxWg2UiIiIiIiIiIiIiEhXcp0st7Ozw7Jly1ClShUIBAKNdSpWrIjt27d/dXBERERERERERERERHkh18nyyZMn/2cde3t72Nvbf1FARERERERERERERER5TSCXcxl7IiIiIiIiIiIi+vYsPZrfERQ+A7/P7wh054se8KkrCdMH53cIBYr174sh3jk3v8MoUIza/oykWT/mdxgFiuWo+Yjp2Ty/wygwXNceQPyd8/kdRoFiUyYA6We35HcYBYpJ7Y54EXYzv8MoUIp5l8edyFf5HUaBUsajCB4PbpvfYRQojot3IrZ/6/wOo0AptXwPUq4dye8wChTzio0hPrYmv8MoUIwa9UJMdHR+h1FguLq54aChV36HUaA0k4Uj+cbx/A6jQLGo0BA7LmfndxgFSrsqeoiOicnvMAoUN1dXJN04kd9hFCiWFRrkdwiFDqcR0/v08jsAIiIiIiIiIiIiIqL8xmQ5EREREREREREREX3zmCwnIiIiIiIiIiIiom8ek+VERERERERERERE9M1jspyIiIiIiIiIiIiIvnmfnSyfOXMm0tPTVcr++ecfNG7cGOXLl0fbtm1x9OhRrQdIREREREREREREpAvZcr5y+/p/9tnJ8jVr1iAjI0P59+rVqxEUFIQOHTpg3rx5aNiwIcaOHYtt27bpJFAiIiIiIiIiIiIiIl0x+NyKcrnq1wY7duzA2LFj0apVKwBA7dq14ejoiLlz56J9+/bajZKIiIiIiIiIiIiISIc+e2a5QCCAQCBQ/i0Wi+Hr66tSp3Tp0oiLi9NedEREREREREREREREeeCzk+VyuRyLFi3C9u3bcfXqVVSpUgX79+9XqbN582Z4eXlpPUgiIiIiIiIiIiIiIl367GVYfvvtN0RHR2P37t2Ijo5GUlISBAIB+vTpA0tLSzRu3Bhv3rzB8uXLdRkvEREREREREREREZHWfXayvGfPnip/x8XFISYmBpaWlgCAPn36oEaNGihRooRWAyQiIiIiIiIiIiLShQ+f00ifQ/DfVQqpz06Wf8jW1ha2trbKv3/44QetBERERERERERERERElNc+e81yIiIiIiIiIiIiIqL/V589s3zPnj2fvdPWrVt/QShERERERERERERERPnjs5Pl+/fvR3BwMCwsLGBqavrRegKBgMlyIiIiIiIiIiIiIipUPjtZvmrVKkyePBmnT5/Grl27YGVlpcOwiIiIiIiIiIiIiIjyTq7WLB87dixKliyJGTNm6CoeIiIiIiIiIiIiojwhl/OV29f/s8+eWQ4ollj5+++/ERISoqt4iIiIiIiIiIiIiIjyXK6S5QBQtGhRFC1aVBexEBERERERERERERHli1wnywHg6tWrGssFAgEMDQ1hb2+PEiVKfFVgRERERERERERERER55YuS5WPGjMGTJ0+QnZ0NS0tLyOVyJCcnQyAQQCAQQC6Xo0yZMli4cCGKFCmi7ZiJiIiIiIiIiIiIiLQqVw/4fKdNmzYoXbo0Dh8+jMuXL+PKlSs4fvw4KlasiNGjR+PixYsoWrQopkyZou14iYiIiIiIiIiIiIi07otmlv/zzz9Yu3YtXFxclGWOjo4YM2YMevbsiV69euHHH39Ex44dtRYoERERERERERERkTZlZ+d3BFSQfNHMcgBISEjQWJaVlaX8WyAQfOnuiYiIiIiIiIiIiIjyzBfNLG/Xrh1+/fVX/Pzzz/D394dcLsf9+/cxf/58tGnTBgkJCfj7779RuXJlbcdLRERERERERERERKR1X5QsHzlyJExNTTF37ly8evUKAFCkSBF07doVffr0QXBwMAwMDDBu3DitBktEREREREREREREpAtflCwXCAQYNGgQBg0ahISEBBgYGMDc3Fy5PSAgAAEBAVoLkoiIiIiIiIiIiIhIl74oWQ4AsbGxuHfvHmQymdq21q1bf01MRERERERERERERER56ouS5StXrsSsWbNgaWkJU1NTlW0CgYDJciIiIiIiIiIiIirw5PL8joAKki9Klq9evRqjR49Gnz59tB0PEREREREREREREVGe0/uSN0kkEjRq1EjbsRARERERERERERER5YsvSpa3aNECmzZtgpy/UyAiIiIiIiIiIiKi/wNftAxLamoqduzYgQMHDqBkyZIwNDRU2b5u3TqtBEdERERERERERERElBe+KFnu7OyMgQMHajsW3dA3gMn3HWHoVQ7IlEF8+QQkV05qrGradgCEnmVVylK3L4Ys6h6gpwfjWi0h9K8M6OtDevcyMk7vAeTZum+DlklkmZi27wJO3o+ByNAA3WuWRY+Asp98z9OEZLSdvw0LuzdBJVcHZfmGi3ew9vwtpIllaFTaDb+1qAFjoeEn9lRA6RvAuMEPMPQoA3mmDJJrpyG9dlpjVZPWfWHoXlqlLG3XcmS9eQ6L/uM1vid1ywJkPYnWeti6JDA0hG23QTCtWB1yqRRJR3Yj6chutXrFf5sOY+/SauUp547j9er5AACL+s1g1bQt9EzMkH7vBt6sDUJ2WqrO26BtEqkMs1ZuxJnL1yESCtG5ZSN0bvH9J99zOzQSk4JWYeeiGRq3n7x0DWPnLMWl7St1EbLOSWQyTN90ECdvhMLI0ADdGlVH90Y1NNY9fycCQXtO4vHreJS0s8bgVvVQp5w3AEAul2PZ/jPYfeEGMqRSVPN1w6+dmsHG3FTjvgoyiVSKectW49ylKxAKhejYujk6tG6usW5EzAPMWbwSMbGP4exUEiMH9YWXuysARZ9s3XMAuw8dQ2paGmpWqYQf+/eCibFRXjZHax5ER2D5oll4FBsDRycX9BsyCm7uXh+tf3DvNuzduRkZGWmoVrMe+gz4CSIjRduTEhOwYvFs3L19HeYWlmjboTvqNmiaV03RDgNDWHfsB5NyVSGXSZFyYi9STu5Xq2b/00QYefqrlacGn0TChsUqZdadByIrKR7JB7fpLGydMTCEbecBMKlQDdkyCZKP7UXK8b1q1YqOnAIjLw39cfEE4v4JgkAognWHPjApXxUQ6CH9ejAStq+GXCLOi1ZolUQqw19rt+PU1TsQCQ3RrWlddG1WT2PdCzfvY/G2g3j88jUcithi0A/NUPu7nGvzkeDrWLL9IN4kJqNaGW+M7dsRVuZmedUUrZHIMjFt2zGcvB2uuIetVxk96lfRWPfg1ftYevgCXiamwLtkUYwOrI/SziUAAFnZ2Vi4/xz2Xb6LDKkMNX1d8Vu7hrC1KHzXHKlUikWLF+PixYsQCoVo27Yt2gYGaqwbFR2NoIUL8TA2Fk5OThg2dCg8PDyU28+cOYN/1q1DQkICKlSogB+HD4elpWVeNUXr9ISGqHl5F+79OBnx565orGNRzgf+iybCwt8TKSFRuDtkPJJv3FduL9GhGTwn/gSj4vZ4fewC7gz8E7K4hLxqgtZIpDLMXLMNp67cgkhoiK7N6qNr8/qffM+tsGiMX7IOe+dPVJbJ5XKs2HkIe09fQoZEgiqlffBLrx9gbWGu6yboxLOHIdi7diJePolAEQd3tOo5AQ4ufhrrSiXpOLhhOu5fOw65XA7/yt+jaedfITJSjBtxL2Ox75/JeBR5E8amlqjWsAsCmhW+Z7xFR0VhYVAQYh8+hJOTE4YOG6YyTnxoz+7d2LlzJ9LT0xEQEICBgwbB6O39mlQqxeJFi1TGp8C2bfOqKVqhOHe24vR7506X5g0++Z5bYVGYsGQd9syfpCx7d+7sOx2sPHdG92pfaM8dov93X5QsHzp0qLbj0BnjeoHQL+aE1E3zoWdpA9Pm3ZGdFA9Z+E21uvp2xZG2bw1kD8OVZXJxOgDAKKAFhKWrIO3gesjTUmDStCuMG7RFxvHtedYWbZlz+F+EPH2NFX1a4FliKv7ccQolrMzQsLTbR98zde95ZEgzVcpO3IvB0pPXMLV9fdiaGePPHacx98i/+KNlgK6boHVGtVtBv6gjUrctgp6FDUyadEF2cjwyI26r1dWzLYb0g+uQGRuhLJNL0oHsbCQvHqu637ptoGdlh6xnD3TeBm2z6dAbImcPPP9rDAxsi6BIv5+R+eYV0q5dVKn3cuFUCAxyhhKRqxeKDv4NSacOAgBMKwfApn0vvF4xB9LnT2Hfezjsug3Cq6V/52l7tCFo/XaExTxE0PhReP46DpMXrUYxO1vUq1ZRY/2o2Cf4Y/YSCD/yBVJKWjrmrt6sy5B1bu6OYwiJfYblI3rgeXwSxq3ZjeK2Vmj4neoHjYgnLzBy6Rb81LYRapb2wKX7URi9bBs2/NEfXo7FsPPcNey5eANT+7SFlZkxpm08gEnr9mLekM751LIvt2TtRoRHxWDu5D/x4tVrTJ+/BEXt7VCnRlWVehliMX6d9Bca1q6B334cjH1HjuO3yX9h07L5MDYywv6jJ7F2yw6MGtIfbs5OCFq1DpNnL8T0saPzqWVfTizOwLQJoxFQpxGG/PwHjh3ai+kTfkHQyi0wMjJWq//vxTPYtmkNho8cC0srGyyaNw3r1yxB30E/Qy6X4++pfyA7OxsTps1HfNxrLJwzFSYmpqhSvXY+tO7LWAV2h9DJDa/mj4eBjT1sug9DZvxrZNz8V6Ve3PK/gffGWKGzB+z6jETquaMq9cwbtoJZzYZIOrg1T+LXNut2PSEs5YaXc/6Evo097Hr9iKy4V0i/cUml3uslM1T6Q+TiCfv+o5Fy5rBiPx36QFTKHa/mTQQgh22PYbD+oTfiP/hioTCYv3kvQh88xtI/huD5m3hMWLoRxexs0KBKOZV6kY+eYvS8VfixUyvUKOeLS3fC8Ov8NVg3eSQ8SzngXnQsJq/YjN97t4dXKQf8vW4XJizdiHmjB+RPw77CnD2nEPLoOVYM64Rn8Un4c8NBlLCxRMPy3ir1bkQ9xoRNhzC+cxOUcymJredvYMiSbTgyaTBMREKsPv4vjt4Iwd+9W8HK1AR/7TiOP9bvx7IhHfOpZV9u5apViIyMxIzp0/Hy1SvMnj0bRYoUQUDNmir1xGIxxo0bh7p162LEiBE4dOgQxk+YgNWrVsHIyAjh4eGYN38+hg4dCjdXVyxZuhRz5szBxIkTP/JfLtj0REKUXz8b5v6eH62jb2KMSvuW49nm/bjT5zc49e+ESnuX4YxXQ2SlZ8CyUmmUWT5VkUC/HQa/uWNQdtV0XGtdSCaNvWfBxt0IjXmEJWOH4/mbeExcsh7F7W1Qv0p5jfWjHj3Fr/NWQvTBL8h3n7yIvacvYdKQHrA0N8Vfq7ZiyvJNmD2q8I0nUkk6/pk9AOWqt0DbftNw5fRWrJszECNnHYVQZKJW/+CG6Xj64D56/bIKEAC7Vo7FoU1/oU3vScjOzsa62QPh4FoaQybvRNzLWGxdPAoW1kVRtrrmCRMFkaZxYsL48Vi1erUyAf6+CxcuYOPGjRg1ejSsrawwZ84crF69GoMHDwYArFq5EpGRkZg+YwZevXypHJ9qBhSefMG7c2fx23Nn0pL1KGZvg/pVKmisH/XoKX7TeO5cwL7TwZg0pCcszU0xY9UWTF2+EbNGFb7x5P9VNleZpvd89prlv//+O1JTU5X//tSrwDAUQlS2OjJObEfWy8eQRdyG+N/jEH2n4cO0vgH0rGyR+TwW8rRk5QtZigSx0Xe1kHFmLzJjQpD18jHSj26GqHwAYCjK40Z9nXSpDLuvheKX5tXh42CP+n4u6BlQDlv+vffR9xy8FYE0iUytfGPwXXSpXhq1vUvBv2QR/Nm6FvZeD0eGVL1ugWYohLB0VWSc3oXsV0+QGXUHkqsnFf9/P6SvDz1LG2S9eAR5eoryhawsQC5XKdOzsoWhR1lkHN4AZBeuXyAIhCKY12qEuE3LIY2NRvqNS0g8tBMWDdRv9rLTUpGVlKh4JSfDpl13JB7eCenDKACAVdO2SDy0E2nXgiF7Gov4rashLOkMCL7okQn5JkMswb6T5/Fzr47wci2FOlUqoGurxthx5JTG+ruPn8WAsdNhY2Xx0X0Grd8Oh6L2ugpZ5zIkUuy5cAO/dGgCn1IlUK+8D3p8XwNbT6vP3jp85S4qebmgc/2qcCpiiw51q6CSlzOOX1OMPRfuRaJRRX9U9HKGu0NR9Pi+Jq6EFb4vmTLEYhw8fgrD+vaAp5sLalWrjE6BLbD70FG1uqcuXIJIKMSgnl3h7OiAYX17wNjYGGcuKpKluw4eQftWzdGgVg24ODnijx8H49K1G3j05FleN+urBZ87BaFQhG69B6OkozN69R8OY2MTXLqg+Rc8h/btQLOWP+C7yjXg7umD/kNG4/SJg5CIxYiJCkd46D38OHo8XNw88V3lGmjdrgv27iw8XzwJhCKYVq+PxO2rIXv8ABm3ryDl+B6Y1W6iVjc7PRXZyYmKV0oyrFp2QfLxPZA9UvxaSWBkDNu+o2DeqA0y41/ndVO0QiAUwaxmA8RvXQXpoxhk3LqM5KO7YV63mVpdtf5o0xVJR3dDGvv211uZmYjfvBzSR9GQPopB6sUTELn75HGLvl6GWIK9p//FyG6B8HZxRN1KZdGteX1sO35ere6R4Ouo5OuJjo1rw7GYPdo3CkBFXw8cv6yYGLLt2Hk0rFIezQMqw8PJAZMGdcXF26F4+iour5v1VdIlUuy+dAe/tGsAH8diqF/WCz3rV8GWc9fV6r5JSUP/xjXQvJI/StpZYUDjGkhKFyP6+RsAQFZWNkYF1sd37k5wK26HznUq4lb0k7xu0lcTi8U4evQoBg4YAHd3d9SoXh0/tGuH/fvVf6Vy9tw5iEQi9O3TB05OThgwYACMjY1x/rzimNq/fz8CAgLQoH59uLi4YPSoUbh67RpevHiR1836amY+bqh+cRtM3Jw+Wa94+6bIzpAg9NeZSA2LQciIqchKSUPxdo0BAM6Du+LZjsN4umEvUu6G41bPX1CkSW0YO5fMi2ZojWI8uYSRPdq+N540wLajZzXW33XiAvqMnwNbS/V72Iu37qNhtQr4ztcD7o4l0K1FA1y9F65hLwXfnX8Pw1BohMYdR6OIgxuadfkdIiMT3Luifs8GAPoGhmjRfSwcXPzg4OyH72oFIjbiBgAgNfkNijt5o1WP8bAr5gyvsrXh5lsVDyPUx6eC7NzZsxCJROjTt6/GceJDe/fuRavWrVGlShV4enlh2LBhOH7sGMRisXJ8GjBwINzd3VG9Rg20++EHjeNTQZUhlmDf6WCM7NEO3i5OqFupHLo2b4DtR89prL/rxHn0HT8bNhrOneBb99Gw2neo4OsBN8cS6N6iYaE9d4h0QS6XY9asWahatSoqV66MmTNnIvsTebQpU6bAy8tL5bVhwwbl9gMHDqBBgwYoW7YshgwZgvj4+FzFU7iyVbmkX6QkoK+PzCcxyrLMJ9EwKOEMQKBa16YoIAeyE96o7UdgYgaByBiZzx4qy7JePYVA3wAGxT99E1bQRDyPQ2Z2Nso5FVOWlXcuhruPXyFbw1dpielizD3yL/5sXUulPCs7G/efvEIFlxLKsjKORSHLykLEi8L14UvfvgSgr4+spzmJucynMdAvVgofHid61m+Pk8T/bqNRQAtI7wYjO/6VtkPWOaGTCwT6BhBHhirLxJEhELl6AgLBR99nHlAfeqbmSDy4A4AiiSNydkfa9eCc/UTcx5OxQwrdEkaRsY+RlZWF0p7uyrKy3u64H/lA4yD+7827+HNob3Rs1lDj/m7cD8eN++Ho2VY9GVRYhD95gcysbJR1c1SWlXd3wr0HT9T6pEW1chgeqN4XqRkSAICVqQku3I3Aq4RkiKUyHLl6F96OxdTqF3TRD2KRlZkFf++c5UVK+3ghJCJKrU9CwiNR2scLgrfnlEAgQGkfT9wPjwQAPHvxCr7vHW+2NtawsrDA/fAIFDYR4ffh7VtGpa1evv6ICLuvVjcrKwtRkaHw8c9ZHszT2xeZskw8fBCFly+ewcLSCkWL5Vx/Sjm7ISYqDJmZmWr7K4gMSzpDoG8ASUzOhyRJdBiEzh6fHGNNq9WFnqkZUo7vUZYZ2BaBwNAQL6ePRuabl7oMW2eE7/ojOkxZJo4KhdDl0/1hVr0e9EzNkHx0l7IsfvNy5X70bYvAtHItSCI+PiGgoIp49AyZWVko6+miLCvn5Yr7UbFqY0nzgMoY2rGF2j5S0xVLz9yLeojy3jm/Hixma41itta4G/VQN8HrSMTTV8jMykI5l5xEZXm3krgb+1ztHrZReW/0+746AEAslWHD6auwMTeBW3E7AMDApjVRv6xinI5LScOu4Nuo6FG47ukBICYmBpmZmfDxyflCyM/PD+Hh4WrHSVhYGPx8fVXGYV9fX4SGhSm3+/vnLHFkb28Pe3t7hIWFobCxqVUZcWcu42LNDp+sZ12lLOKDVZOZ8ZduwKpqOQCAVeWyiD9/TblN/OQFMh49g3WVTy9fWdBEPHqKzKwslPF0VZaV89Y8ngBA8O0QjB/UDZ2a1lXbZmlmios37+NVfCLEUimOBV+Dl7OjWr3C4HH0bZTyrKByTjh5VMCjqFsa67fsMQ6lPBWziRNeP8WdSwfg4l0JAGBhVQQdh86FyNgUcrkcsRE38DD8Glx9KudJW7QlLCwMvn5+auNEWGioWt2srCxERkSojBvePj6QyWR48OBBrsangipS47njhvtRDz9x7nRH54+eO/eU587R4GvwLKTnDpEurFmzBgcOHEBQUBAWLFiA/fv3Y82aNR+tHx0djZEjR+LChQvKV9u3yzzduXMHY8aMwdChQ7F161YkJyfnemL3Zy/DMn36dOW/f/rpJxQtWjRX/6H8oGdmAXl6KpCdpSzLTkuBwFAIgbEp5Bk5aybr2RWDXJIB05Y9YODkiezkBGScP4DMmBDIM9Ihz8qEnrkVsuMUsyv0LKwBAALjwrXe45uUdFiZGMHQQF9ZZmtmAklmFhLTxbAxU/05/KyDwWhZ3gvuRW1UylPEUkgys1DEPOcnagb6erA0NsLLpDTdNkLLBKaWkGekqRwncuVxYqLY9pa+bVHIJRkwbtoVBo7uyE5JhCT4MDIfqN5A6JdwgX4JF6QfLJwPuzWwskFWas4vKwAgKykBekIR9MzMkZ2SrPF9lk3bIenYXuXasIZFFMlOfXNL2I+ZCQO7osi4fwtxm5YjO71wHSdxCUmwNDeDoWHOsGljaQGpTIaklDRYW6quN/fXL4rlqg6eVl22BgCkMhn+WrYOo/p2UTkXC5s3iamwMjOB4XtLIthYmEEiy0RiWobKeuOuxVVn0Ec/e4UrYQ/QrrbiQ0b/5rXxY9AmfP/rbOjr6cHO0gz//NY3bxqiRXEJibC0MFc5TqytrCCVypCckgqr92aaxCUkwsVRdXaatZUlHsQ+Uf779XvfgGeIxUhOTUVScoqOW6F9ifFxKFnKRaXMysoGj2Jj1Oqmp6VCJpXCxsZOWaavbwBzCwvEx72GpZU10tJSIRGLlWuYv3nzCllZWUhPS4WFpZVO26IN+hbWyP5wjE1JVIyxpuaKbRqYN2yNlFMHVNbflj2NxZsl0zXWLyz0rWzU+yP5v/vDonEbpJzYr3E9ctuew2FWvR4y37xE4oHCtzTNm8QkWJmbqoyvtpbmkMhkSEpNh7VFzv2ni4PqF4vRT57j6v0ItK1f/e2+kmFvrbrutI2lOV7FJ+quATrwJjkVVqYmqvew5qbvXXPUl024HP4QAxdthRxyTO/eEiYiocr2xQfPY9mRi7AwMcI/P3fVeRu0LT4+HpaWljB87+f+VlZWkEqlSE5JgdV7643Hx8ejVKlSKu+3srJCbGysYntCAmxtVO/3ra2s8OaN+kSigu7Rss/7pZGomD1SQqJUyqQv42Dup1if2ah4EUieqU56kbyKg5FD4foyX3EPqzqe2FhavB1P0tTWTJ41sj8AYP9Z1WXBAKBv2yYY8fdSNBsyFvp6erC1ssDqSSN12wAdSUl8jaIO7iplZpa2ePkk8pPv27HsN9y8uBfWdg6o13qw2vZZI+ojMe45vMrVgV+lRlqNWdf+a5x4X1paGqRSKWxtbZVl+vr6sLCwwJs3byAQCD46PqUkJ8PSykpn7dCWN7k+dxTLER04q7qEHAD0adsUI/9eiuZDxijPnVWTRum2AUSFyLp16zB8+HBUrKhY4nbUqFGYP38++vTR/OyH6Oho9OnTB/b26r/U37BhA5o0aYLWrVsDAGbOnIm6devi8ePHcHT8vC+pvmhmeZ06ddClSxds3Lgx11PZ85LAUAh51gezzLLeLhFioPo9gb5tUQgMhZDFhCJ1axBk0fdh9sMg6BdzAuTZkIXfgnGdVhCYWwEiIxjXC4Q8KwvQL1yJrgxZJoQfJOfe/S3LylIp/zfqCW7GvkD/et+p7Uf8dv3yDxN9QgN9SDOz1OoXZAJDQ5UP6AByjht91eNEz0ZxnGQ+DEPazqXIfBACkzb9oF9U9YQTlq0OWeRtyFOTdBq7rgiEIshlqsvpyDMVfwsMNK+/beRdGgbWtkg5m/PTRYFI8eWLXbdBSDy4Ay8XzYDQwQn2/QvfTbVYIoXQUPV4eHfzJ8vM3dJDa3YcgJdrKVQpq/kBQoWFWCrTOAYAgOwTM3wTUtIwaslWlHVzRJ23M/uexSXCSGiI+UM7Y+WoXihibYEJa9Uf7lfQiSUSlQ8FAJTHjfSDc0qioa6hgSFkb+vVq1kNG3fsxcPHTyGRSrFo9XoAn+7bgkoiEau11cDQEJky9XNH8jbxaaChvkwmhYeXL2xs7LBq2TyIxRl4/uwJDuxRJEMLy8xygVAE+QexymWKvwUGmucxiDz9oW9ti7SLJ3QeX15T9McHx8J/XHNEXv7Qt7ZD6vnjGrcnH92F59N/QWbcaxQdPu6TM9QLIrFEpvLhHIDySzip7OPHeWJKKn6ZtxplPV2UD/gUS6QQfrAvoYHBJ/dTEGVINd3DKtr1sXHRvbg9Nv/SE4ObBuDPjQdx58FTle3NK/tj0+geqOrljIGLtip/7VRYSCQSDcfJ23uTz7nmGOZcc/5r+/8jfRNjZEukKmXZEin03n6pom9i9MnthYVYKlO/hzX47/FEk+ev42AkFGLO6AFYNu5HFLW1wuRlG7UWa16SScXQN1T9f2lgIESWTPqRdyjUat4XA8ZthpVdCfwza4DaDONOwxag28+L8eJRGA5tnKH1uHUpN+OARCJRbtdUXyKRqN3LfWx8KqjEUvXPf8KvOncMMXv0QCwd9xOK2FpjyrIN//1Gom/Ay5cv8fz5c1SqVElZ9t133+Hp06d49Up9pYbU1FS8fPkSzs7OGvd3+/ZtZdIdAIoXL44SJUrg9m31ZxJ+zBclyw8fPozatWtj586dqFWrFnr27Int27cjKalgJQblmTIIPkh2Qv/tgP3BRVB84TCSgn6H9O6/yHr1FOILByGLDoGonOLhOOnHt0EuEcNq6DRYDZ2GzCcxkIvTAKn6bKaCTKQhmf3ub6P3LgRiWSYm7zmHP1oGqJS/k5MQU9+XpvoFmTwzUy0prjxuPvjwLrl0FMlLx0F2/wqyXz+DJPgIMh+EQlim+ntv1oOhmz9kIddQWMllUsWXCO95l7CQSzV/kDStVAMZd68jOy3nFxvvZusnHtyO9FtXIIkKxes1C2BarjL0rWw07qegEgoN1W6K3t3oiYSf/6Ep+tFT7D1xDj/1/PRPgwsDkaGBxjEAAIw+8lDTuORUDJjzD7Llcvw9sAP09PQgl8vx5+rd6NqwOmqV8UI5dyfM7N8el8NicDemcK0hKxQK1T4AvDtujESqz7gQGqrXlWXKIHpbr3uHQHi5u6LnsFFo1qk3DA0M4e5SCqYm6g/ELGh2bVuHru0aKV+A+gejTJkMQpH6w6IM355PHybSM2UyiERGEApFGPHbJNy7cwPd2zfGuF+HoGHjlgAAYxP1maUFkVwmVUuKC95eO+VSzR/SjctXhfj+TWSnp2rcXpgp+uODMeO/rjkVqiPj3o2P9ofs+RNIH0Tg9fK/YViyFEQehevLSZHQQC0BLFOOJR8ZX5OSMXBqEORyOf76sTf09BS3+UKhIaQf7EuamQmjQpbwExkaaLiHfdsnH7nm2FqYwrtkUfRvXANVvZyx/cJNle1O9tbwcyqOKd2aQyLLxMnbhWv9WKFQqOE4UYydatccDdcnmSznmqMpIfb+9v9H2WKJWuJbTyRE1tsljLI+tj0jI89i1AahofqXY++Om9yMA3K5HOMXr0fnZvUQUKE0ynq5YdqPfXDlXjjuFYJlnc7sW4aJ/b5TvgCoJcYzM6UwFH36PquIgzuc3Muh45A5ePE4HA/DVT/zlXT1h3f5umja+TdcOb0VmZmfTr7np61btiCwTRvlC1C/X/vYOCD8SOL7XX2hUKh2L6f87KThYaEFkdBQ/fOf9AvPnQmL16Fzs/rKc2e68twpfM9oInpHKpUiNTVV5SX9yGeZT3n9WvHcpSJFiijL7OwUvzLW9OyU6OhoCAQCLF26FLVq1ULLli2xe/du5fZXr16p7AsAbG1tc/Ucli/Kajo7O6N///7o378/njx5guPHj2PPnj2YOnUqqlSpgmXLln3JbrUuOyUJAhMzxYME366PrGdqAblMCrn4w5scuVpZdtwL6NsVV2xNT0Xq5vkQGJkoZj8JBDCp2xpZn7F2dUFSxMIUieliZGZlw0Bf8SHqTUo6jAwNYG6UcxG89/gVnsQnY+Qm1QecDFl7CC0qeGFMywCIDPTxJjUdLkUUS9JkZmUjKUMMe4vCkax4R56aCIGxqcpxIjA1/+hxAsmHx8lL6Nnl/BxTv4SzYq382ML1get9mQlx0DezAPT0lA8n1be0RrZE/NHlU0xKf4eEPZtUyrISFb88kT3PSXjKnitmdRnY2Cm3Fwb2NlZISklFZlYWDN7+oiQuMRkioRDmpp9/zJ+5fB3JqWloN/QPAIr1/wGgXtch+HVAN3wfUFX7weuIvbU5ElPTVfskKRVGhoYwN1a/CX6VkIz+c9YCAFaM6qlcpiUhJQ0vEpLgWTJnea9iNpawMjPB8/hElHYtPA/SsrexRlJyikqfxCckQiQUwuyD48TO1hrxiYkqZfEJSbC1sQIAGBsZYeIvPyE1LR0CAWBqYoJW3fujWJGC/1DYhk1ao1rNesq/9+7YiMQE1etlYkI8rG1sP3wrzM0tYSgUIjEhHg6Oip8CZ2VlIiU5GVbWivrunj5YvGobEhLiYGFhids3rsLcwhLGxoXj+pOVFA+9D8dYC2tkSyXIztA8xhr7lkfSwW15GWaeyUqIU+8PS6tP9oeRfwUk7d+iWqhvAJOylZARckt5/c5OSUJ2agr0zcw17KXgsre2QmJK2gfXnBSIhIYw1/CF2av4RAyctggAsGzsMJVlWopYWyIuUXUpm7jEZNh94gHUBVERSzMkpqWr3sMmpynuYT+45tyLfQ59PQF83nv2hVsxO0S/UCwpcvZeFLxLFkVRK8VxITI0gIOtFRLTClcS1NbWFklJScjKyoL+2+MkISEBIpEIpqamanUTEhJUyhISEmDzdukVu//Y/v9I/OwlRMXsVMpExewgfqGYxSZ+qmF7UTtInheuhykr7mE/HE+SPzqefExCcipexiXA08lBWVbM1hpW5qZ4/joe/u7O2g5dqyrX64DSVRor/z53YCVSklSXGUpNfANzK/X7rMxMKcJunoG7f3UYvV2G1czSDiZmVkhPSUBq0hs8iroF3+8aKN9TxMENWZkySDLSYGBeML+cbNqsGQJq5TybbPv27Z89DphbWEAoFCIhIUG5rEFWVhaSk5NhY2MDuVz+2eNTQVVEy+eOx3vnTlGVc8flE++mvCJXf4Qf/Ydly5YhKChIpWzo0KEYNmyYWl2xWIyXLzU/Xyk9PR2A4ov9d979W1PyPSYmBgKBAK6urujatSuuXr2KP//8E2ZmZmjYsCHEYrHKvt7tLzeJ/K9+wKdIJFIOeAKBABkF6Jv2rJePgaws6DvkDD4Gjm7IfB4LQPVMMGnWDSZNVdcq1C9aEllv1yg3adEDBi4+kIvTgUwZDN38kJ2WjOw3hesJ8V7FbWGgp4c7j3MO0puxL+DnYA89vZyfKPs7FsH+kZ2wbdgPyhcAjA+sjcENKkFPTwC/kkVw82FO++88egkDPT14FlNPfhRkWa+eKo6TEs7KMgMHV2S9eIQPjxPjxp1h/H0nlTK9Ig4qD/HUL14KWS8eqy3tUphIHz2APCsTIjdvZZmRpx8kDyI1XkX0zCxgWKQ4xJEhKuWZca+RmRAHoWPOOWhYwhHy7GxkxhWuB596OjtCX18f9yNy1li+HRYJHzdn5ey9z9GucT1snjcZ//w9Dv/8PQ5/DOoBAPjn73GoWbGctsPWKa+SxWCgr6cy+/tmVCx8nUuo9UmGRIoh89dDTyBQLLPyXpLGwtQYQgMDxLz34TMhJQ1JqelwsLPWfUO0yN3VGfoG+ggJz1nv8m5oGLw93NT6xNfLA/fCIiB/e07J5XLcCw2Hr6dirdQlazfiyKmzMDM1gamJCUIjo5GWlq7y8NCCytzcAsVLlFS+PL39ERF6T6WtYaF34enlq/ZePT09uHv4ICzkjrIsIvQ+9A304ezijpSUZIz9ZTBSkpNgbW0LfX0D3Lh2CX6ly+dZ+76W7LFijBW6eCrLRG7ekMZGaR5jTc1hYF9M5QGY/0+kT95ec1xzjm0jd19IH37smmMOQ/tikER98MAxeTZsew6Hcemcn13q29hBz8xC5UvbwsCrlAMM9PVVZmveioiBn6uT+vgqlmDYX0uhJxBg+dhhauuT+7s749Z7164XcQl4GZ+I0gU8sfUhr5JFYaCvjzsPc5ZSuRnzBH6liqvcwwLA7ku3MX/fWZWykMcv4Pr2HnXO7lM4cCXnwa9pYgkevY6HS9HCdQ/r6uoKAwMD5UM6AeD+/fvw8PBQO068vb0RGhKiMg6HhITA28tLuf3+/ZyHLr9+/Rqv37yBt7c3/l8lXL4N66qq1w7rahWQeFnxM+3EK7dhXSNnOUqjksVg7FgcCZc//2fcBYFXqZKK8STyobLsVng0fF1L5eoe1sLMBEJDA8Q8zfn8l5iciqSUNJQoUvDPHRMzK9gWLaV8ObqXw6PImyrnRGzkTTi6qT/AVSDQw87lvyP8Vs64kvjmGdJTE2BfwhXxr59g04LhSIrP+Yz99OF9mJrbwNS84N7Lmpubo0SJEsqXj7c3QkJD1cYJLw3jgJ6eHjw8PVXGjdDQUBgYGMDFxUU5Pr3/cNCPjU8Flafy3MmZ/X37K86dBxrOHYcidp94J1HBNmDAAFy/fl3lNWDAAI11b9++jUaNGml83bmj+Nz3fjL73b+NjdW/mGrdujUuXbqE3r17w9vbG926dUOHDh2webPimSUikUgtMS6VSjXu62O+aJR6+vQp1q5di06dOqFOnTrYt28fatSogaNHj2LdugL0QMNMGaR3L8O0cSfoFy8FQ4+yMKrcAJKrpwEAAlML5c98ZZF3IfSvDKF/FehZ28OoRhMYlHSD5PoZAIA8Iw3GtVtCz644DJw8YNKoA8SXjuLDZGpBZyw0RIsKXpiy5xzuPXmFUyEPsO78bXSurljX8k1KOsSyTBgZGsDJ1lLlBShmptu+fQho+yp++Of8bZwKeYB7T15hyt5zCKzkA+OP/BS2wMqUQXr/Kowbtod+MScYuJeGqFI9SG4oboYEJuY5x0n0PRj6VoShbyXoWdlBVO17GDi4QnLjnHJ3+nbFkRWn+RuzwkIulSD14inY9xgCkYsHTCpUhVXjNkg6vg+AYsaf4L01/oQlSyFbKkHma/V2Jx3dA+vArjD2Kwehowvsug9G+o1/kZWUmFfN0QojkQhN61THzBXrERL1AGev3MSmfcfQoVl9AIqHJ4kl//1NpaW5GRyLF1W+7N/OInYsXhSmGmZjF2TGIiGaVyuHqRsP4P7Dpzh9MxTrjwWjc33F7Pg3SSkQSxU/t1x16ByevE7ApF5tlNveJKUgJV0MA319tKxRDnN3HMP1iIeIevoSY1fvQmnXkvAtVSLf2vcljEQiNK5bG3OWrERoZDTO/3sVW/ccQLsWTQAoHuopeXuc1KleBalp6Vi48h88fPQEC1f+gwyJBHVrKvrPzsYaa7fsRGhkNMKjYjB1ThBaNWkIC/PC9WBpAKhasw7S0lKxZvkCPH70AGuWL4BEnIFqAYrZ5xKJBAnvzTz/vmlr7N21GVcunUNURChWLJ6NBt+3gMjICObmFhBnZGD9miV4+eIZTh7dj1PHD6JV28751bxck8ukSL98BjadBkBYyg3GZSvDvEFLpJ4+CADQs1AdYw1LOCFbKin015aPkUulSLt0GjZdBkJYyh3G5arAolErJJ88AEBTf7y95rz5oD+ys5F67his23SFyN0HQic32PcbhYzbVyB7/jgvm/TVjERCNAuohGmrt+F+dCzOXLuD9QdPoWPj2gAUD+0Uv/0QsHrfcTx59QYTBnZRbnuTmIzUdMUElnYNauDQhavYc+YSIh89xfglG1CzvB8cCkFy633GQkO0qOyPKVuP4l7sc5y6HYF1J6+gc23FlyNvklOV15x2NcrhakQsNp65ithX8Vh88DzuxT5HlzqKtTA71KqAtScv4/z9aEQ9f40/1u2Ho501avq65Vv7voSRkREa1K+PoKAghEdEIDg4GDt37ULrVq0AKB7W925d4Zo1ayI1LQ3Lli1D7KNHWLZsGcRiMWq9nVXarFkznDx1CkePHsWDBw8wa/ZsVK5cGcWKFa6HWf4XUVE76L39Ne2LnUdgaGUB3zljYObjBt85Y6Bvaozn2w8DAGKXbYZDl1Zw7NUO5qW9UG7NTLw6eAYZDwvXl29GIiGa1aqM6au2KMaTq7ex4cBJdGxSB4DqePIpBvr6aFG7KuZv3I0boVGIevwMfy76B/4eLvB1ddJxK7TPv/L3EKen4ODG6Xj1NAoHN06HVJKunH0uk4qRkqiYyKGvb4BKddvj+Pa5eBh+HU8f3MeWRSPgXaEeipb0QEnX0ijh7IddK8fg1dMohN8+iyNbZqFOS81Jo4KqZs2aSEtNxbJly/AoNlZtnJBIJCrPrGverBl27tiB4OBgRISHY1FQEBo3bgwjIyMYGRmhfoMGCAoKQkR4OIKDg7Fr5060evvAvcLASCRE01pVMGPVFoQoz50T6NikLgDFw7g/99xpXrsq5m/chRuhkYh+/AzjFq2Fv4cLfArhuUP0jlAohJmZmcrrwxnd71SpUgXh4eEaXy1atACQsxzL+//W9ABPgUAAqw8eEuzq6qqcuV60aFG1B5S/efNG474+5ouWYalfvz68vb3RtGlTzJo1Cw4ODv/9pnySfnIHTBp3gnnnHyGXiJFx4QBkEbcAAFbDZyDtwDpI7/4LWcQtpB/dAqMajaFnYYOs18+RujUI2UmKi0HG2f0w+b4jzLuNBKQSiK+cUibdC5tRTath6t7z6LtyH8yMhBjUoCIa+LsCAOpPX4dJbeug1Xf/PYukSVl3PEtMweTd5yDLykJ9P1f83LjwLCHxPvGZ3TBu2B6m7YdCLsmA+OJhZEYqvt2yGDwF6Yc3Qnb/CjIj7yDjxHaIqjaCnoU1st+8QNrOpZAn59w0CEzNkf3q6cf+U4VG3OaVsOs+GMV/nYbsjHTE79mI9OuKJ3uXmr8Br1bOReqFkwAAfQurjy7PknRkNwSGQtj3Hwk9kRHSb17G63WL86wd2vRjj/aYuWIDhk6YBVMTY/Tt0BJ1qihmHDXvPxJjB/dCs7o18jnKvDXyh+8xbdMB9Ju9FmbGIgxsWRf1KyhmCzccPQsTe7ZGy+rlcfJGKMQyGbpNX6Hy/hbVymFSrzYY1b4xFu05hT9W7oREJkMVHzdM7h0IQSF7KB8ADOnTDXOWrMLPYyfB1MQEvTr9gFrVKgMAAnsOxG/DB6JJ/TowNTHBjLG/YPaSldh/7CTcSjnhr3G/wvjtOo6BzRrjxavX+HXiDAj0BGhUJwADehSehPD7TExM8du4v7Bi8SycOLoPpZzd8MeEv2FkpPjyNfj8SSyeNx3bD5wHANSo3QCvXr3A8kWzIJPJUKV6bXTtNUi5v59/nYjlQX9j5JAeKFK0OEb+Ngnunj750rYvlbhjLaw79Yf9jxORLU5H0oGtyLh1GQDgMGMV4tYFIf1fxX2GnoUl5Bnp+RmuziVsXw2bzgNRdORkZGekI3HfFmTc/BcA4DhrLd6sWYC0S6cAAPoWlh9dniVhz3rIIYfdgNHQExoh/ea/iN+yQmPdgm5E1zaYvmYbBk4NgpmJMQa0bYJ6lRQzHhsP+RPj+3dGi9pVcOrKbUikMvQcN0fl/c0DKmPCwC4o4+GCP3p3wNKdh5Ccmo6qpb0xpm/H/GjSVxsVWB9Ttx5F3wWbYGYswqCmNdGgnGJmdP0xQZjUpSlaVS0DH8dimNMvEAv3n8X8fWfhXtwOSwa3Vy670jHgO2RIZJi69SgSUtNRzdsF8we0VZuhXhj069cPQYsW4bfffoOpqSm6du2KGjUU9yJdunbFiJ9/RsOGDWFqYoKJEyZgYVAQDh85AhdnZ0yaNAlGb685Pj4+GD5sGNZv2ICUlBRUqFABPw4fnp9N04kGTy7idp/f8GTdbmSmpOFq6wEovWginPq2R/LdcFxt2R9Zb79oSvz3Fu4NHgfP8cNhaGOJN8cv4s7AP/O5BV/m525tMWPVFgyaPB9mJsbo364Z6lUuBwBoMugPjBvYFS1q//fnuJ+7tYXRtv34M2gtJFIpKpf2xqQh3Qvl/ZqRsRm6jViCvWsn4OrpbSjm6IUeI5dBKFIs6Xb38mHsXPEHpq5TzIxu9MPPEAgE2Bz0E2SSDPhWbIjm3cYAAPT09NH1p0XYv24ylk7qBKHIGNUadkW1Rt3yrX1fwsTUFBMmTkTQwoU4cvgwnF1cVMaJc+fOYe6cOTh0WPGFUu06dfDy1SsELVwImUyGGjVqoHefPsr99evXD4uCgjSOT4VFzrkzT3nu1H177jR9e+40r13tM/bTDku37ce4oLUQS2WoUtobE4f0KJTnDpG2FS1aFCVKlMD169dRsqRiCdbr16+jRIkSamuPA8D8+fNx8+ZNrF27VlkWFhYGV1dFXrNs2bK4fv06AgMDAQDPnz/H8+fPUbas+i+HPkYgl+d+ZZ6YmBhlENqUMH2w1vdZmFn/vhjinXPzO4wCxajtz0ia9WN+h1GgWI6aj5iezfM7jALDde0BxN85n99hFCg2ZQKQfnbLf1f8hpjU7ogXYTf/u+I3pJh3edyJLFzLI+laGY8ieDy4bX6HUaA4Lt6J2P6t8zuMAqXU8j1IuXYkv8MoUMwrNob42Jr8DqNAMWrUCzHR0fkdRoHh6uaGg4YFf1mxvNRMFo7kG8fzO4wCxaJCQ+y4nJ3fYRQo7aroITom5r8rfkPcXF2RdONEfodRoFhWaPDflUjF7D2Fa9WIgmBka+192bN8+XKsX78es2bNAgCMGjUKvXv3Rq9evQAofi33bgnwO3fuoFOnThgxYgQaNmyICxcuYPr06Vi3bh3Kly+Pmzdvolu3bhg/fjxKly6NqVOnwtTUFEuXLv3seD57ZnlQUBD69OkDY2NjHDp06JN1hw4d+tkBEBEREREREREREdG3p0+fPoiLi8PQoUOhr6+Pdu3aoWfPnsrt7dq1Q5s2bTBs2DCUKVMG8+fPx4IFCzB//nw4ODhg9uzZKF9e8RyS8uXLY9KkSViwYAGSkpJQo0YNTJ48OVfxfHay/PLly+jevTuMjY1x+fLlj9bjz0iIiIiIiIiIiIioMJBnc2Z57mkv/6uvr4/ff/8dv//+u8btp06dUvm7QYMGaNDg47+gCAwMVC7D8iU+O1m+fv16jf8mIiIiIiIiIiIiIirsPjtZvmfPns/eaetC9IRjIiIiIiIiIiIiIqLPTpYvWLDgs+oJBAImy4mIiIiIiIiIiIioUPnsZPmH68N8jgMHDqBevXowMTHJ9XuJiIiIiIiIiIiIiPKKni53Pm7cOMTFxenyP0FERERERERERERE9NU+e2b5l5DL+TRZIiIiIiIiIiIiKpiymb6k9+h0ZjkRERERERERERERUWHAZDkRERERERERERERffOYLCciIiIiIiIiIiKibx6T5URERERERERERET0zWOynIiIiIiIiIiIiIi+eV+ULL969SoyMzPVyqVSKU6cOKH8u0aNGjA2Nv7y6IiIiIiIiIiIiIh0RC7nK7ev/2dflCzv3r07kpOT1cojIyMxYsQI5d9BQUGws7P78uiIiIiIiIiIiIiIiPKAwedW3LRpEyZNmgSBQAC5XI4aNWporFe9enWtBUdERERERERERERElBc+O1neuXNneHh4IDs7Gz169MCCBQtgaWmp3C4QCGBsbAxPT0+dBEpEREREREREREREpCufnSxv2LAhNmzYgKJFi6JNmzaoVq0azMzMdBkbEREREREREREREVGe+Ow1y9+8eYPIyEgAwJ49eyCVSnUWFBERERERERERERFRXvrsmeXNmzdH3759IRAIAOCja5YDQGho6NdHRkRERERERERERKRD2dny/A6BCpDPTpZPnjwZXbp0QXJyMrp3746FCxeqrFlORERERERERERERFRYfXayHAC8vb0BAOvWrUOFChVgYJCrtxMRERERERERERERFUhflO3evXs3du/e/Vl1p0+f/iX/CSIiIiIiIiIiIiKiPPPZD/h8n6WlJQ4cOIDIyEiYmprC2toaL168wO7du5GamqrtGImIiIiIiIiIiIiIdOqLZpY/fvwYvXv3xs8//6xSvmbNGly+fJmzyYmIiIiIiIiIiIioUPmimeXBwcFo3bq1WnmdOnVw6dKlr42JiIiIiIiIiIiISOfkcr5y+/p/9kXJcmdnZ+zatUulTC6XY/369cqHgBIRERERERERERERFRZftAzLmDFjMGDAABw7dgxeXl4AgHv37iE7OxvLly/XaoBERERERERERERERLr2RcnyihUr4tixYzh06BBiYmIgkUjQuXNn1KtXD66urtqOkYiIiIiIiIiIiIhIp75oGZbr16+jdevW8PDwwKBBg3Du3DksW7YMLVu2xOHDh7UdIxERERERERERERGRTn1RsnzatGlo2rQpypYti23btkEkEuHixYuYPHkyFixYoO0YiYiIiIiIiIiIiIh06ouS5ZGRkejRoweMjY1x6tQpNGrUCEKhEJUrV8azZ8+0HSMRERERERERERGR1snlfOX29f/si5LldnZ2iIqKQlRUFEJCQlC3bl0AQHBwMIoXL67VAImIiIiIiIiIiIiIdO2LHvDZs2dPDBkyBHp6eihdujQqV66MpUuXIigoCNOnT9d2jEREREREREREREREOvVFyfLu3bujUqVKePr0KWrWrAkAqFq1KurUqQNvb2+tBkhEREREREREREREpGtflCwHAB8fH/j4+Cj/LleunDbiISIiIiIiIiIiIiLKc1+0ZjkRERERERERERER0f+TL55ZTkRERERERERERFSYZcvl+R0CFSACuZxHBBEREREREREREX17Jm/OzO8QCp0/O/3/zr8uUC17EXYzv0MoUIp5l8ejyND8DqNAcfLwwcvQ6/kdRoFS1Oc7JN84nt9hFBgWFRri0cDA/A6jQHFaugtR0Q/yO4wCxd3NBbFR4fkdRoFSyt0L0TEx+R1GgeLm6oo39y7ldxgFip1/NaRcO5LfYRQo5hUb42FURH6HUaA4u3viedit/A6jQCnuXQ4x0dH5HUaB4ermxvvXD1hUaIiDhl75HUaB0kwWjntRL/I7jALF370Yx5IPuLq58fPfB5yW7srvEIgKNa5ZTkRERERERERERETfPCbLiYiIiIiIiIiIiOibx2Q5EREREREREREREX3zCtSa5URERERERERERER5RZ6d3xFQQcKZ5URERERERERERET0zWOynIiIiIiIiIiIiIi+eUyWExEREREREREREdE3j8lyIiIiIiIiIiIiIvrmMVlORERERERERERERN88g/wOgIiIiIiIiIiIiCg/yOXy/A6BChDOLCciIiIiIiIiIiKibx6T5URERERERERERET0zWOynIiIiIiIiIiIiIi+eZ+dLN+4cSMkEolK2YkTJ9CnTx+0aNECw4cPx507d7QeIBERERERERERERGRrn12snzKlClITU1V/r1nzx78/PPPcHFxQadOnWBpaYlu3brhxIkTOgmUiIiIiIiIiIiIiEhXDD634odPhl2zZg1+/fVXdO3aVVnm4+ODuXPnokGDBtqLkIiIiIiIiIiIiEgHsrPzOwIqSD57ZrlAIFD5OzExEZUrV1YpCwgIwNOnT7UTGRERERERERERERFRHvnsZLlcLsfu3bsRHByMZ8+eoVatWggODlapc+LECZQqVUrrQRIRERERERERERER6dJnL8PStWtXBAcHY/369Xj58iUEAgH09PQQGBgICwsL9OrVC1evXsWCBQt0GS8RERERERERERERkdZ9drJ87Nixyn+npqYiJiYGMTExsLCwAACUL18eI0aMQOnSpbUfJRERERERERERERGRDn12svx9ZmZmKFOmDMqUKaMsGz58uNaCIiIiIiIiIiIiIiLKS1+ULCciIiIiIiIiIiIq7ORyeX6HQAXIZyfLr169+tk7rVSp0hcFQ0RERERERERERESUHz47WT5p0iRERUUB+PQ3LgKBAKGhoV8fGRERERERERERERFRHvnsZPnOnTsxYsQIPHnyBFu3boVIJNJlXEREREREREREREREeUbvcysKhULMmTMHADBv3jxdxUNERERERERERERElOc+O1kOKBLms2fPhpOTk67iISIiIiIiIiIiIiLKc5+9DMs7bm5ucHNz00UsRERERERERERERHkm++OPZqRvUK5mlr/TvXt3JCcnq5XHx8cjMDDwq4MiIiIiIiIiIiIiIspLnz2z/Ny5c7hz5w4A4OrVq1i6dClMTExU6sTGxuLp06fajZCIiIiIiIiIiIiISMc+O1nu4uKClStXQi6XQy6X48aNGzA0NFRuFwgEMDExwdSpU3USKBERERERERERERGRrnx2stzR0RHr1q0DAPz+++8YM2YMzMzMdBYYEREREREREREREVFeyfUDPgFg+vTpEIvF2LZtG6Kjo5GVlQVXV1c0adIE1tbW2o6RiIiIiIiIiIiIiEinvihZHhERgb59+0JfXx/+/v7IysrC8ePHsXDhQqxfvx7u7u7ajpOIiIiIiIiIiIhIq+TZ8vwOgQqQL0qWT5kyBTVq1MDkyZNhYKDYRWZmJsaOHYtp06Zh9erVWg3ya0ikUsxbthrnLl2BUChEx9bN0aF1c411I2IeYM7ilYiJfQxnp5IYOagvvNxdAQByuRxrt+zAweOnkSGWoFK50vhpQG9YWVrkZXO0QiqVYuGSZTgffAkioQjt2rTCD4GtNdaNio7B/EVL8CA2FqWcnPDjkIHwfPtlSFZWFtas34hjJ05BLBGj0ncVMHRAf1hbW+VdY7REIpVi7rK1iuNEJETHVs3QsXUzjXUjYh5i9pJViIl9DBenkhg5sLfKcbJl70HsPnQcqalpCKhaET/26wkTY6O8bI5WSKQyzFyzDaeu3IJIaIiuzeoLvBzbAAEAAElEQVSja/P6n3zPrbBojF+yDnvnT1SWyeVyrNh5CHtPX0KGRIIqpX3wS68fYG1hrusmaJ+BIWw69YNJ+WqQy6RIPr4XKSf2qVUrMmISjDz91cpTL55E/PpFgIEBrFp2hkmlAOgJRRBH3kfClpXISozLi1ZoXXR0FIIWLkRs7EM4OTlhyNDh8PDw+Gj9PXt2Y9fOHUhPT0fNgAAMHDgYRkaq54hMJsWPw4dh4KDBKFOmrK6boFVSqRQLFy/FheBLEAmFaBfYGu0C22isGxUdjflBS/Aw9iFKOTlh+JDB8PTIGWPXrtuAYydOQiyRoNJ3FTBkYP9C+wuu6KgoLAwKQuxDxXEydNiwTx8nu3dj586dSE9PR0BAAAYOGqQ8TqRSKRYvWoSLFy9CKBSibdu2CGzbNq+a8tUkUinmrFiPM/9eg0goRKdWjdGpZZNPvud2aASmLFiB7Uv+VpbJ5XJs3HMIe46dRlJKKnzcXfBzn65wcXTQdRO0TiKV4a+123Hq6h2IhIbo1rQuujarp7HuhZv3sXjbQTx++RoORWwx6IdmqP1daeX2I8HXsWT7QbxJTEa1Mt4Y27cjrMwL39KBUqkUQYuX4kJwMERCIdoGtvnkWLIgaPF7Y8kQeLwdS+RyObbt2ImDhw8jJTkFnp4eGDxwAEo5OeVlc7RCIpVi/rLVOHvpMkRCITq0bo4OrVtorBupvK9/BGenkhgxqJ/yfq1Oqw4a3/P7j4Pxfb3aOotfF6RSKRYtXqwyHrYNDNRYNyo6GkELF+JhbCycnJwwbOhQlXH4zJkz+GfdOiQkJKBChQr4cfhwWFpa5lVTtIb3sB+nJzREzcu7cO/HyYg/d0VjHYtyPvBfNBEW/p5ICYnC3SHjkXzjvnJ7iQ7N4DnxJxgVt8frYxdwZ+CfkMUl5FUTtComOgLLg+YgNjYGjk7OGDBkJNw8vD5a/8Ce7di7awvS09NQvWZd9B34I0RGRjh1/DAWzZuhVl8gEGDHgTM6bIF2aXM8eWfzli149uwZRo4YoevwdYOf/4i+SXpf8qbbt2+jX79+ykQ5ABgYGKBfv364efOm1oLThiVrNyI8KgZzJ/+Jnwf0xtotO3Hm4r9q9TLEYvw66S+U8fPG8jnT4e/tid8m/4UMsRgAsP/oSRw8fhpjRwzFwukT8CYhATODluV1c7Ri+eq1iIiMxt9TJ2PYoAHYsHkrzl0IVquXIRZjzITJ8PfzxaJ5s+Hr7Y2xE6Yo+2TLjl04c+48xv42Ggtn/42UlFTMmDM3r5ujFUvWbkJ4dAzmTh6DEQN6Ye3WXTgTfFmtXoZYjF8mz0QZX2+smD0Vft4e+HXK38o+2XfsFNZu2Yn+XTtg0YwJeB2XgElzgvK6OVqxYONuhMY8wpKxw/Fr7w5YueswTl7++Pkd9egpfp23Uu0b2d0nL2Lv6UuYNKQHlo//GW8SkjBl+SZdh68T1m17QFjKHS/njkf85uWwbNYexhWqqdV7s3QmnvzSW/l6vWQ65DIZUs8eAQBYNu8I43JVELd6Ll7M+gMCPX3YDfwlr5ujFWKxGOPH/Qk/f3/Mm78QPj6+mDBhHMRvz4kPXbxwAZs2bsDQocMxbfoMhIeFYc3qVSp1pFIp/vprBmJjY/OiCVq3YtUaREZFYea0KRg6eCA2bNqCcxcuqtXLEIsxdvwklPbzxaJ5c+Hr44M/J0xSjidbt+/EmXPnMeb3X7BgjmKM/Wt24RxjxWIxxo0bB38/P8xfsAA+vr6YMH78R4+TCxcuYOPGjRg6bBimT5+OsLAwlS/iV61cicjISEyfMQNDhgzBxo0bceH8+bxqzldbtG4rwqIfYsHEXzGyf3es3rYXpy9d/Wj96NjHGDsrCNnybJXyPcdOY/O+I/i5T1esmjkBxYvYY+SUORBLJLpugtbN37wXoQ8eY+kfQ/Bbz3ZYsesITly+pVYv8tFTjJ63Ci1rV8Gmab8gsF4N/Dp/DSJinwIA7kXHYvKKzegX2BhrJ/6M5LQMTFi6MY9box0rVq1BRFQk/po2BUMHD8LGTZtxXsNYIhaL8ef4ifD380XQvHlvx5KJyvPr4OEj2LlrNwYPHICF8+eiWNGiGDtuwkfPv4Js6doNCI+Kfntf3wf/fPK+fgZKK+/rvfDb5BnK8XXn2mUqr06BLVG0iD1qVKmU1036aitXrUJkZCRmTJ+uHA/PX7igVu/dOOzn748F8+fD18cH4yfkHAfh4eGYN38+unTpgrlz5iA1NRVz5szJ6+ZoBe9hNdMTCVF+wxyY+3t+tI6+iTEq7VuOhAvXcKFKIBIu3USlvcugb2IMALCsVBpllk9F5JQgXKzZAYbWFii7anpeNUGrxOIMTB3/K3z8yuDvecvh5eOPaRN+g1icobH+pYtnsXXTWgwYOhITp81FRHgI1q1ZCgCoUaseVq7fpXwtW7sdxUo4oFnLdnnZpK+mrfHknTNnzmDDhg15Fb5O8PMf0bfpi5Ll9vb2ePTokVr5o0ePYGpq+tVBaUuGWIyDx09hWN8e8HRzQa1qldEpsAV2HzqqVvfUBcUMwEE9u8LZ0QHD+vaAsbGx8gb83+s3US+gGsr5+8K1lCM6tWmJG3fu5XWTvlqGWIzDx05gcP8+8HB3Q83qVdG+bRvsPXBQre7ZcxcgFArRv3dPlHJ0xOD+fWBsbKxM+mRnZWFg3z4o4++HUk6OaN2yOe6HhOZ1k75ahliMAydOY3if7vByc0GtqpXQqU1z7Dp4TK3uqQv/QiQ0xOCeneHs6IDhfbrD2NgIZy4qEuu7Dh5Fh1bN0KBWdbg4lcQfPw7EpWs38ejps7xu1lfJEEuw9/QljOzRFt4ujqhbqSy6NW+AbUfPaqy/68QF9Bk/B7Yafmlx8dZ9NKxWAd/5esDdsQS6tWiAq/fCdd0ErRMIRTCtUR8J21ZB9jgGGbcuI/nYHpjXUZ8Nmp2eiuzkRMUrJRmWrbog+dgeSB9FAwDMqtVF0t5NkESGIPP5E8RtWAKRswcMihTP62Z9tXPnzkIoEqFPn75wcnJC/wEDYWJsjPPnz2msv3fvHrRq1RqVq1SBp6cXhg4bjuPHjylvrh89isWIET/hxfPnedkMrVGMsccxqH+/t2NsNfzQLhD7NI6x5yEUCtGvTy84OTliUP++MDYxxvnzijE2KzsLA/r1QRl/f5Rycno7xobkdZO04tzZsxCJROjTV3GcDBgwAMbGxjj/kQT33r170ap1a1SpUgWeXl4YNmwYjh9THCdisRhHjx7FgIED4e7ujuo1aqDdDz9g//79edyqL5MhlmD/yXP4sXdneLk6o3aV79CldVPsPHxCY/09x05jwB9TYaNhdueh0xfQqWVj1KhYDk4limF0/+5ITk3FnbBIXTdDqxTXnH8xslvge9ec+th2XP34OBJ8HZV8PdGxcW04FrNH+0YBqOjrgeNvE2Hbjp1Hwyrl0TygMjycHDBpUFdcvB2Kp68K18wtsViMI8eOYVD//vBwd0eN6tXwQ7u22HfggFrdnLGkN5ycHDGwfz8Ymxjj3HlFguP4iZNoG9gGVStXRkkHBwwbMhjJKSm4H1q47tne3dcP7dsTnm6uCKhWGR0/cl9/+r37+lKOJTG0bw+YvHdfb2ttpXxJpVLsPHAYo4f0h5mpSV4366u8Gw8HDhgAd3d31KheHT+0a6dxPDx77hxEIhH69umjcRzev38/AgIC0KB+fbi4uGD0qFG4eu0aXrx4kdfN+iq8h9XMzMcN1S9ug4nbp39RUrx9U2RnSBD660ykhsUgZMRUZKWkoXi7xgAA58Fd8WzHYTzdsBcpd8Nxq+cvKNKkNoydS+ZFM7Tq4rlTEApF6N5nEEo6OaN3/2EwMjFG8PkzGusf3LsDzVu1Q8XK1eHu6YOBQ0fi1PFDkIjFEIlEsLaxVb7OnT4GyIGuvfrnaZu+hjbHk6ysLCwMCsLcefNQvHjh+3zzDj//EX27vihZ3rFjR4wdOxbbt29HeHg4wsPDsW3bNvz555/44YcftB3jF4t+EIuszCz4e+f8lKq0jxdCIqKQna06OyskPBKlfbwgEAgAKH4yVdrHE/fDFR84LczNcenaTbyOi4dEIsXJ8xfh7uqcZ23RlpgHD5GZmQlfH29lmb+vD8IiItX6JDQ8HP6+Pip94ufrjdAwxU1it84dUbN6VQBAQmIiDh89jjL+6j89KuiiHj56e5zkzLIo4+OFkEjNx0mZD48Tby/ce3ucPHvxCj4ebsr6djbWsLIwx/1ClriIePQUmVlZKOPpqiwr5+2K+1Gxan0CAMG3QzB+UDd0alpXbZulmSku3ryPV/GJEEulOBZ8DV7OjjqNXxcMSzpDoG8ASXTOhyRJdCiEzh7A2+NBE9NqdaFvao7kY7sVBQIB3qyZD3HobbW6ekaF60M6AISFhcHP10/lnPDx9UVYmHoSJisrC5GREfD3z1kuwdvbBzKZDA8exAAA7t69izJlymJWIZ1BHRPzQMMY64uw8Aj1MTYsHP5+vqpjrI8PQsLCAADdOndCzeqKmSvKMbZ0aRRGYWFh8PVTPU58fX0RpiFZl5WVhciICPi/dz3x9nl3nDxATEwMMjMz4ePjo9zu5+eH8PBwjeNTQfPumlPaK+enymW8PXA/MkZj/P/euIOxw/qiffNGatuG9uiIRrXem90kEEAulyMtXfOsuIIq4tEzZGZloayni7KsnJfma07zgMoY2lF92Y3UdMUXbveiHqK8d851uJitNYrZWuNu1EPdBK8j0RrGEr9PjCV+GsaS0LdjSb8+vVCvbh1lfcHb4yQ9LV3n7dCm6AexyFS7r/dGqIZ7WE339f4+XggJj1Db7+pN21ChTGlULFdGtw3QgdyMh4rrta/aOPzuOAkLC1MZd+3t7WFvb4+wt9sLC97DamZTqzLizlzGxZqalyB6x7pKWcQHX1cpi790A1ZVywEArCqXRfz5a8pt4icvkPHoGayrFK4l8wAgIiwEPn6lVc4Jb5/SiAi7r1Y3KysL0ZFh8PXPaaenty8yZZl4+CBKpW5KSjJ279iMrj37w9BQqNtGaJE2x5OMjAw8fPAA8+bOVdlfYcPPf0Tfri9as7xPnz7IyMjArFmzkJSUBACws7NDz5490bt3b60G+DXiEhJhaWEOQ8OcZlpbWUEqlSE5JVVlvfG4hES4OKp+I25tZYkHsU8AAD06BOL3qX+jXe/B0NfTg421FRbPnJw3DdGi+Ph4WFpYwNDQUFlm9XZWTXJKCqzem7kWH5+AUqVUZx9YW1nhYazqrwr+2bgZGzZvhbmZGeb+Xfh+hhf3P/buO7yp6o0D+Lcr6d5AWd2bsvdGhoyyh6KAoiCUJcoQEGQIPxCVXUZZKkv2kiEgyEaWzO4Bbdm0TXeTdOT3R9qUNCkjJG0j38/z5HnIvSe37znce+7Jm3vPTVG3n9iUup+4OqvZTxISFf9OSimesy9HLEZ6ZhZSMzJ0XAvtShalwcbKAiYvTLVkb2MNSW4u0jKzVOZq/Hmi/KqJP86o3go9vF9XTPhpDQLHzICRoSEcbK2x8fuJuq2ADhjZ2KEgMx3Iz1Msy09PhaFACEMLK/k6Naw790H6yUOQSQpvS5TJIIm4rVTGqn0g8jPSIH2of9OOiFJS4OziorTM1tYO8fH3VcpmZWVBKpXC3sFBsczIyAjW1tZISkoCAAQGqn+mhL5IEYlU+lj5eUdNHysSwdX51X3spi3bsOX37YV97ELdVkBHUlJS4KKyn9iqnWqnaD9xKGU/MTAwgI2NjfJ5rLCNM9LTYWNrq7N6aEOSKBU21pZK5xz7wnNOWkYm7Epc3fjD1PEAgMOnVK+yruunfCv9H3+dQX5+Aer4lj4XfEWUlJoG2xLnHAcbq8JzTjbsrIvnG3er7qT02dgHj3E1NAr9OrQo3FY6KtkpX4Vvb2OFZympuquADqSIVMdrpfclKSrzj8v7YfnxFVCrltK6o8eOoyA/H7X8/XVYA+1TN663L3W8JoJrTeWkpr2tDe7FJyote/o8CSfPnkfwD/o3pgcKx/Wl9Ieq4/qX98MpIhEc7O2V1tvZ2irOz/qCY1j1EkJ+f61yQqdKyAhTTv5KnybDqpb8vGJatTIkj54prZc8S4Zpib5ZH4hEyajp7Ka0zNbWDgnx91TKZmdlQiqVws7+xbGJMaysrZGc9Fyp7LHDB2Bv74DmrdrpJG5d0WZ/YmlpiUWLFpVN4DrE739E7y6Nriw3MDDAuHHjcPnyZVy4cAHXrl3D+fPnMXz4cBgaarRJnRBLJEqdPQAICgfY0txcpeUSNWVNjE2QW1juybPnMBUIsGDGZCybPwuVHB2wcMUaHUavG+rbRP4+t0SbqCtrYmKiUq7je+0QvORn1K9XB9O+m42sbP26Uknd/31p+4lYIlW014tli9qkfatm2LLnAO4nPoREKkXwRvkcbXm5edAnYmmuog2KFH3pkL5hXR4/T4apQIDFk0ciZOZ4VHGwxdwQ/Zs/1kAghCxPue5F7w2MTdR9BELvABjZOSDr/IlSt2tWtzGsO/VC6v6tSgMxfaG271TTTxSVLVr/OuX1UWntAaj2sa/bdh3at0Pw0kWoX68upn43S+/6WEC7+4lEIoHxa7ZxRSSRSGFiXHK8Ie9fc/M07wNCo2IR/Nt2fNyrKxz07EHbYkmuUmILgCIh+rJzTmpGJr5ZuhF1vd0UD/gUS6QQlNiWwNj4jc9d5e3t+xJjlTEMAERERGLt+g3o368v7O3162HBEolEZQxWVG/Vcb1UzTjGRKXckROn4OPhAX8f/fqBqYhEIlFz7Gh2znmTfroi4xj27RiZm6FAIlVaViCRwlAoKFxv+tL1+kSqZp83fuXYRLmeJY8RmUyGk8cPoWsP9Q/FrMi02Z/8V/D737tFJuPrTV//Za99Zfn+/ftfe6O9e/fWIBTtEwgEKh120SDJVChULmuiWjY3LxdCoRAymQzzl67CqKGD0KJxQwDAnMnj8cEX4xAWGa1XA2z1bSJ/LyzZJmrK5ubmqpSrXk0+z9aUCV/ho6HDcP7iJXTu+PInzlckAoHqib3U/USg+kVLmpunaJNPP+iDx0+e4dMvv4GxkRF6du4ALzcXmBc+FEdfCExUEwtFSRzTNxgMy2QyzFq1GV8O6o3WDeSJjPnjh6HnuJm4G3MfAZ6uWotZ12S5UhiUGEAWvZdJ1T9Mz7xBc4jv/ouC7Ey1683qNoHj8InIOH0EWRfUz1dc0ezYsR07d2xXvPfx8X2tfgKQHz9F61+nvD4SqPmikFtaH6vuvKO2j60GAPhm4tf4+NPPcOHCJbzfqWL3sTu2b8eOHTsU7318fF5/Pynli1lR+YKCAuSV1samplqJX5cEAhPk5pUcbxT2rwLNkg13I2Mwcd4iNKtfB8MH9nnrGMuaUGCs8kNBruI8rP7LaHJaOsYsWAWZTIaF4z9XXKwhEJhAWmJb0ry8Nzp3VQSl9Q/A6/YleSpjmLDwCMyYNRuNGzXEJ4MH6SBq3VI3Biuqt+q43kTNOCZXpdyZi5fRs0tHHURbNgQCgZpjp5Q2ecW4Xl2iSx/PzxzDvp0CsUQl8W0oFCC/cKqr/NLW51T86b/27NiMvTuLf+zw8vFT2efzStnnTQrPz7m5yj8UyI+R4rFHbHQEkpOeo1Wbij1OU0eb/cl/Bb//Eb27XjtZvnz58tcqZ2BgUGGS5ZXs7ZCWnoG8/HwYGxkBAFJEqRAKBCoP8HF0sENKaqrSshRRGhzsbZGalo5nScnwcCu+1ahyJUfYWFvhyfMkvUqWOzo4IC09Hfn5+TAqbBORKBVCoQCWJR7O6uhgjxSRSGmZSJQKh8Irkf65chWe7u5wdJTfjiYQCFC1ihPS0/VryhFHB3vV/SRV/X5Syd4OKaI0pWUpqamKq/jMTE0x55vxyMzKhoEBYGFujp6fBqFq5UplUhdtqWRvi7SMLKU2SU5Nh1BgAqs3SPyL0jPxNFkEb+fqimVODnawtbLA4+cpevVFIz81BYaW1oChIVA4b5+RtR0KpBIU5GSp/YxprfpIO7RD7TrzRi3h8Nl4ZJ49jtRdv+gsbm3r1i0QrVu3UbzfvWsnRKIUpTKpIhHsS9zKDQBWVtYQCAQQiVJQs/D2+Pz8fKSnp6str48c1PSxKSKR2j7WQU0fm5IqUlztqbaPdXJCWrr6Wz4rkm6BgWjdpng/2bVrF0Qq55NS9hProv1EpHY/kclkSEtLK3EeE0EoFFaoh4yXRj42yVTuX0Vpas85r+Pfu+H4ZsFSNK4bgDlfB1WoO/xeVyU7W6SqnHMySj3nPEtJRdD8lQCAkBnjlKZpqWxng+RU5WMkOTUdjraqD++ryN6sL3FQPb5e6EsA4NbtO5g553s0rF8f076ZrJf7iaO9mvFaqeN6ezXj+lQ42Nsq3j97noT7iQ/QsmljXYeuMw4ODq/dH6rdT17ohx1fsV5fcAz7dsSPnkLo5Ki0TOjkCPET+dQr4odq1ldxhOSx8lQkFdH73XqhReviuen3796G1JJj2NQUpalWihSNYVNFKahRU54TyM/PQ0Z6OuxeOEZuXL8C/4C6sLSyUtlGRafN/uS/gt//iN5drz1SPnXq1Gu9Tp48qfjMoUOHkF2Ot4t7urvCyNgIYZHFD1e8Ex4BXy8PlS8J/j5euBsRBVnhvQQymQx3wyPh7+0FKytLCExMEJ/4UFE+NT0d6RkZqFqlctlURks83NxgbGyseEgnANwNDYO3l5dKm/j5+CAsPFKpTULDw+HrI3+w0tqNv+LEqb8V5bOzc/Dg0UM4l5j7vaLzcnNR3U/CIuHr5a5+P4ksuZ9EoZaPJwBg9a/bcPTUWVhamMPC3Bzh0bHIyspWenioPvBxqQFjIyPcjb6vWHYzMhb+7i5v9AXb2tIcAhNjxD18oliWmp6JtIwsVKusOhCtyHIT70GWnwehW/H/pdDTD9L7MWrvQTK0sIJJJSdIYlUfjCX0qQ2Hz8Yj4/RRiHas12nc2mZlZYVq1aopXr5+fggPC1c6JsLCQuHro/owH0NDQ3h5eSMstPjBSeHh4TA2Noabm7tKeX3k4e6u2seGldLH+vogLDyiRNuFw6/w4XVrN2zEiVOnFOWzs7Px4OEjvehjS+4nfr6+CAsvuZ+EwcfXV+WzhoaG8PL2Rqja/cQN7oVt/OLDQUNDQ+Glpo0rIi83ZxgZGyE0Klax7HZEFPw83d44/riEB5jywzI0q18bcyeOhrHxa18DUaH4uFSXn3NeeAjnzag41HJ3VmmTHLEE4xaugaGBAdbOGKcyP3mApytuRsUp3j9JFuFpSipq61liy8O9aLxWfA4JfYO+JDQsHL6Fx9f9+/GY/f1cNG7YENOnTdHb/cTT3RXGKuP6yFLH9aElxvV3Csf1RcKiYlDZ0QFVKikn/vSJu+Kc88J+Ukp/6Ovri/CwMJV+uGhc7+vrq9TvPn/+HM+TkhT7kb7gGPbtiC7fgl2z+krL7Jo3QOpl+YMJU6/cgl3Lhop1pjWcYFazKkSXVR9cWNFYWVmjarUaipe3by1Eht9VOiYiwu7C21f1eQ6Ghobw8PJFRNgdxbLI8FAYGxvB1c1TsSw6Mhw+fgEqn9cH2uxP/iv4/Y/o3aXTb5UzZ85EcnKyLv/ES5kKhejyXlssXr0e4dGxOPfPVezYfwj9e3QFIH9QkKRwzrV2LZoiMysbK9b/hvsJD7Bi/W/IkUjwXqtmMDYyQpcObbHqly24FRqOuPhE/G/xSvh7e8HXU78SPKamQnRq/x6WrVyDyKhoXLj0D3btO4A+PeUP1UsRiRRzsrVu1QJZWVlYtXYD4hMSsWrtBojFErRt3RIA0DOwK3bt3Y/LV6/hfnwCfli0BNWqVkXjhg3KrX6akO8nbbBozUbFfrL9wGH0794FQMn9pAkys7KxfMMm3E98gOUbNsn3k5bNAAAO9nb4dccehEfHIjImDvOWrEKvLh1hbWVZ6t+viEyFAgS2aYIFG7YjNDYep6/ewpZDJzGwazsA8geoiaXSl28EgLGREXq0bYZlW/fh3/AYxCQ+wncrf0OAlxv83Z1f+fmKRJYrRdY/p2H3cRAELp4wq9sE1p16IuPUIQCAobUtDF6Yx9CkujMKpBLkJz1V3pChIRw+GQtJVCjSj+2DobWt4gUj/UtgtGrVCllZmVgbsgYJCfFYG7IGYrFYcVWxRCJBSkrxVTuB3btjz57duHTxIqKiIrFq5Qp07tIFpnowfcbrMDUVolOH9li2cpWij929dz/69OwBQP7g5OI+tiUys7Kweu16xCckYPXa9RCLJWjTuhUAoGdgIHbv2YcrhX3swp8Xy/vYRg1L/fsVVatWrZCVmYmQkBAkxMcjJCQEYrEYbUrZT7oHBmLP7t24ePEioiIjsTI4GF0K9xNTU1N06NgRwcHBiIqMxMWLF7F3zx70qiB3tb2KqVCIru1a4qeQ3xAeE4ezl6/j94N/YkBgJwDK55xX+XHNr6jsYI9xQz9CWnoGkkWpb/T5isJUKEBg68aYv3Gn/Jxz7TY2Hz6FgV3aAlA+52w8eAIPniVhdtAgxbqk1HRkZsunAOjfsSWOnL+K/acvITrhIWat3oJW9Wuhup4lt0xNTdGxQ3ssX7kKkVFRuHjpEnbv3YfePXsCUO5LWhX2JWvWrkN8QgLWrF0HiViMtoV9ybLglXCs5IgRXwxDWlo6UlJESp/XF6ZCITq/1xaLV69DRHRM4bj+D/RTM65v26IpMrOyEFw4rg9e/xvEEgnatWqu2N69hES46MGPjy8j3086IDg4WL6fXLyIPXv3onevXgDkD+Er3k9aITMrCyEhIYhPSFDphwMDA3Hy1CkcO3YM9+7dw8+LFqFJkyZwctKvBzdyDPvmhFUcYWgqnz7jyZ4/YWJrDf/F02Hp5wH/xdNhZGGGx7uOAgDiQ35H9UG9UPOz/rCq7YN6v/yIZ4dPI+f+g/Ksgkaat2qHrKxMbFy7AokJ97Fx7QqIxTmKq88lEglEKcW5jC6BvXFgz3ZcvnQOMVHhWLtqCTp27q40BVxC/D3UdHYt66pohTb7k/8Kfv8jencZyGS6m5a9fv36OHjwoOI26ld5EnFD6zGIJRIsXr0BZy9dhoW5OQb26YEBPbsBANr2GoipXwaha4d2AIDwqBgsWr0e8Q8ewsPFGRNGD4e3u/wJ2RKpFBu27sCpc5cgkUrRqG5tjB/xGWxtdHdbr5NvfSREh7+64BsSiyVYvmoNzl28BAtzc3zQrzf69pJ/+erUvTcmfTVOMed4RGQUlq1ag4TEB3B3dcH4MaPg6SH/gaCgoAA79+zDH0f+RFp6GhrWr4dxo4Lg6KC726+cvfzwNPy61rcrlkiwaM1GnL10Rb6f9O6OD3rKv3y16f0xpo0bia4d5F/aw6JisGjNRsV+MnHUMHi7uwIA8vMLsPKXLThx5jwMDA3xfttWCPr0I8VtoLpQxa8h0v8t/QEimhJLpPhhw3acunITluZmGNy9Iz7uJh88Nv5oLGYGDUaPts2UPvPHmX+wbvcRHFzxvWKZRJqL1Tv/wIlL/0IilaJJbV9MHjoAdta6uT3RukEnJATp5qE6BiYC2H08Eub1m6FAnI2M4wcUgyXnNXuR/NsKZF2S321h3rAl7D74HA+nDFPahsDNG05TflC7/aeLv4MkKlTturfhvGYvYmLvaX27RSIjI7EyeDkSExPh6uqGsePGwcNDfpXNiRPHsXTJYhw+8qei/M6dO3Bg/z7k5uaiRcuWGD16LARq5moO7NYFC35YiDp16mo9Zk8PN8THRL66oAbkfewqnL9wCRYW5hjQtw/69pZ/0Xg/sCcmfTVeMed4RGQUlq9chYTEB3BzdcX4saPg6eEBoLCP3b0Xh44cRVp6GhrUr48vRwfBwUE3ST8XTx/ExsW9uqCGIiMjEbxihXw/cXPDuLFj4eFZtJ+cwJLFi3Hk6FFF+Z07d2L/Pvl+0rJlS4weM0axn4jFYqwMDsaFCxdgYWGBfv36oXcf7c/V7eHujqS7l7S+XbFEgp/WbsKZf67BwtwMH/fqig+7dwYAtOw3FN+OGYbA9q2VPnP41Dls3Lkfe9YsAiBPDPYc/pXa7av7vLY4BjRHxrU/X13wDYklUiz4ZSdOXbkFS3MzDAlsj48Lk1uNBo3HrBEfo0fbpug36X+If/xM5fPdWzdRJND/OHMZa/YcQXpmNprV9sX04QNha6W7KXqsGnXB/ZgorW9XLBZjxarVOH/hIiwszNG/b19FX9I5sAcmfjUe73eSz7cdERmFFStXKvqSL8eOhqeHB1JSRPhoyCdqt//i57XN1dMbjyNuan27YokES1avx5lLl2Fpbo4P+/TAgJ6BAIB2vT7ElC9HKY3rF69eVzhec8GE0cPhVTiuB4DFq9cjMysLMyeN13qc6lT1rYe42NhXF3xDYrEYwStXKvWHfQp/POzarRsmfP01OnWS/xgXGRmJFcHBSExMhJurK8aOG6c45wDyvnjzli3IyMhAgwYNMP7LL2FtrZvvOu4eHjoZvwL6PYY9bKL7K3MDcyNxqcMQpJy9onh/a9hUPNi0DwBg07g2aq+cA0tfD6TficTdMbOQfrP4O2mNT/rAe9aXMLG3QdKJC7gd9B1yU1J1FuvdmCevLqih6MhwhKxchIeJ8XBx9cCIsRPg7iG/ivjUiaNYufQH7Dl8RlF+786tOHRgF3Jzc9GsRRt8MforCATF83R/1KcTvpnxP9Rv2ERnMQd4OumkLwG0258UWbR4MQBg4oQJOokZkPcn/P6nzHnNXq1v87/u2w36dRFBRTB/2H/rOQUv+s8ny/WZrpLl+kxXyXJ9pqtkub7SZbJcX+k6Wa6PdJks11e6TpbrI10ly/WZrpLl+kxXyXJ9pqtkuT7TVbJcX+kyWa6vyipZrk90nSzXR7pMlusrXSbL9RWT5W9u6jpxeYegd3744r9xd7g6FX9yTyIiIiIiIiIiIiIiHWOynIiIiIiIiIiIiIjeeUyWExEREREREREREdE7j8lyIiIiIiIiIiIiInrnaZQsv3r1KvLy8lSWS6VS/PXXX4r3LVu2hJmZmebRERERERERERERERGVAY2S5Z988gnS09NVlkdHR2PChAmK98HBwXB0dNQ8OiIiIiIiIiIiIiIdkclkfL3h67/M+HULbtu2Dd9//z0MDAwgk8nQsmVLteVatGihteCIiIiIiIiIiIiIiMrCayfLP/74Y3h5eaGgoACffvopli9fDhsbG8V6AwMDmJmZwdvbWyeBEhERERERERERERHpymsnyzt16oQtW7agSpUq6NOnD5o3bw5LS0tdxkZEREREREREREREVCZee87ypKQkREdHAwD2798PqVSqs6CIiIiIiIiIiIiIiMrSa19Z3r17dwwfPhwGBgYAUOqc5QAQHh7+9pEREREREREREREREZWR106Wz507F4MGDUJ6ejo++eQTrFixQmnOciIiIiIiIiIiIiJ9Iiso7wioInntZDkA+Pr6AgA2bdqEBg0awNj4jT5ORERERERERERERFQhaZTt3rdvH/bt2/daZRcsWKDJnyAiIiIiIiIiIiIiKjOv/YDPF9nY2ODQoUOIjo6GhYUF7Ozs8OTJE+zbtw+ZmZnajpGIiIiIiIiIiIiISKc0urI8MTERn3/+Ob7++mul5b/88gsuX77Mq8mJiIiIiIiIiIiISK9odGX5xYsX0bt3b5Xl7dq1w6VLl942JiIiIiIiIiIiIiKiMqVRstzV1RV79+5VWiaTybB582bFQ0CJiIiIiIiIiIiIKrICmYyvN3z9l2k0Dcv06dMxcuRIHD9+HD4+PgCAu3fvoqCgAGvXrtVqgEREREREREREREREuqZRsrxRo0Y4fvw4jhw5gri4OEgkEnz88cdo37493N3dtR0jEREREREREREREZFOaTQNy/Xr19G7d294eXlh1KhROHv2LEJCQtCzZ08cPXpU2zESEREREREREREREemURsny+fPno1u3bqhbty527twJoVCICxcuYO7cuVi+fLm2YyQiIiIiIiIiIiIi0imNkuXR0dH49NNPYWZmhlOnTuH999+HQCBAkyZN8OjRI23HSERERERERERERESkUxrNWe7o6IiYmBhkZ2cjLCwMU6dOBQBcvHgRVatW1WqARERERERERERERLogk8nKOwSqQDRKlg8dOhRjxoyBoaEhateujSZNmmDNmjUIDg7GggULtB0jEREREREREREREZFOaZQs/+STT9C4cWM8fPgQrVq1AgA0a9YM7dq1g6+vr1YDJCIiIiIiIiIiIiLSNY2S5QDg5+cHPz8/xft69eppIx4iIiIiIiIiIiIiojKn0QM+iYiIiIiIiIiIiIj+S5gsJyIiIiIiIiIiIqJ3nsbTsBARERERERERERHps4ICWXmHQBUIrywnIiIiIiIiIiIioncek+VERERERERERERE9M5jspyIiIiIiIiIiIiI3nlMlhMRERERERERERHRO4/JciIiIiIiIiIiIiJ65xmXdwBERERERERERERE5UEmK+8IqCLhleVERERERERERERE9M4zkMn4+wkRERERERERERG9e75akVneIeidpeMsyzsEnalQ07CExz4s7xAqFD+P6rgUnl7eYVQozf2s8fPegvIOo0KZ1NcQe6+wTYr0bWLIvqQEP4/qWHqQv4u+6KueBoiPiSzvMCoUF08fiA+tLu8wKhTT7qOw+s/yjqJiGdUFWPdXeUdRsXzREUi5c768w6hQ7Gu3QqseZ8o7jArl/B9tkXGNHUoRq0ZdsPsyx68v6t/UEHdjnpR3GBVKgKcTDpv4lHcYFUpgbiTSrx8r7zAqFOuGnREa87i8w6hQanlWLe8QiPQap2EhIiIiIiIiIiIioncek+VERERERERERERE9M6rUNOwEBEREREREREREZUVWQGnLaVivLKciIiIiIiIiIiIiN55TJYTERERERERERER0TuPyXIiIiIiIiIiIiIieucxWU5ERERERERERERE7zwmy4mIiIiIiIiIiIjoncdkORERERERERERERG984zf5sOZmZlISEiAp6cnpFIpLC0ttRUXERERERERERERkU4VyGTlHQJVIBpdWS6RSDBjxgw0adIE/fv3x9OnTzF16lQMGzYMaWlp2o6RiIiIiIiIiIiIiEinNEqW//TTT4iJicG+ffsgFAoBAOPGjYNIJMK8efO0GiARERERERERERERka5plCw/fvw4pk+fDh8fH8UyHx8fzJ07F2fPntVacEREREREREREREREZUGjZHlWVhbMzMxUlhcUFCA/P/+tgyIiIiIiIiIiIiIiKksaJcvbt2+PJUuWIDMzU7EsMTER8+bNQ9u2bbUWHBERERERERERERFRWdAoWT5z5kwYGhqiSZMmyMnJQb9+/fD+++/D2toa3333nbZjJCIiIiIiIiIiItI6WYGMrzd8/ZcZa/IhKysrrFixAomJiYiNjUVeXh7c3Nzg4eGh7fiIiIiIiIiIiIiIiHROo2T51atXFf+2sLAAAKSkpEAkEsHExASVKlVCtWrVtBMhEREREREREREREZGOaZQsnz59Oh48eICCggLY2NhAJpMhPT0dBgYGMDAwgEwmQ506dbBixQpUrlxZ2zETEREREREREREREWmVRnOW9+nTB7Vr18bRo0dx+fJlXLlyBSdOnECjRo0wefJkXLhwAVWqVMG8efO0HS8RERERERERERERkdZplCz/7bffMGfOHLi5uSmW1axZE9OnT0dISAjs7e0xfvx4XLp0SWuBEhERERERERERERHpikbTsACASCRSuyw/P1/x3sDAQNPNExEREREREREREemUrEBW3iFQBaJRsrx///6YMmUKvv76awQEBEAmkyE0NBTLli1Dnz59IBKJ8NNPP6FJkybajpeIiIiIiIiIiIiISOs0SpZPnDgRFhYWWLJkCZ49ewYAqFy5MgYPHoxhw4bh4sWLMDY2xsyZM7UaLBERERERERERERGRLmiULDcwMMCoUaMwatQoiEQiGBsbw8rKSrG+devWaN26tdaCJCIiIiIiIiIiIiLSJY3nLA8PD0d0dDQKCgoAADKZDFKpFGFhYZgzZ47WAiQiIiIiIiIiIiIi0jWNkuXBwcEIDg6Go6MjkpOTUaVKFSQlJSE/Px+dOnXSdoxERERERERERERERDplqMmHduzYgTlz5uD8+fOoWrUqNm/ejIsXL6JFixZwdnbWdoxEREREREREREREWlcg4+tNX/9lGiXLRSKRYk5yPz8/3LhxA9bW1vj6669x5MgRrQZIRERERERERERERKRrGiXLq1SpgsTERACAh4cHwsLCAACWlpZISUnRXnRERERERERERERERGVAoznLBwwYgAkTJmD+/Pno2LEjhg4disqVK+PixYvw9fXVdoxERERERERERERERDqlUbI8KCgITk5OMDMzQ506dTBt2jRs374dtra2mD9/vrZjJCIiIiIiIiIiIiLSKY2S5QDQu3dvxb8HDBiAAQMGqJQZMWIE5s2bh8qVK2v6Z4iIiIiIiIiIiIiIdE7jZPnruHr1KiQSiS7/BBEREREREREREZFGZAWy8g6BKhCdJssrkrjYaKxesQTx8ffg7OyKoLFfw9PLu9TyB/fvxv49O5CdnY2WrdthRNA4CE1NAQD/XDyHH+bNUirfvGUbTJk+W5dV0Lr4uEj8tnoBHsTHoLqzOz4NmgZXT79Xfm7jynmws6+MPh+NUCzLzZXi941L8M/ZYzA2NkGbjj3Rb/BoGBgY6LIKWpf0KAzn981BytMo2FX2RKs+s1Gpei21ZSU5adj0fTOlZUJzW3zy3SWlZeLsVOxe0h29Ru+AlV11ncWuK4/uh2HfL3Pw9EEUKlf3RJ/PZqO6m/o2kYqzcWjrAty9dgKyAhlqN+mMwEFTIDS1AACkpTzFoS3zERt2GSYCIWo37YrOA76GiUBYllV6a+xPlD1/GIaze2Yj5UkU7Kp4om2/2ahUI+CVn7txegNCL27F4G9PKZalJSXg7N7ZeJpwE1Z21dGs20S4+LXTYfTaJ5VKsWLVGpy/eAlCgQD9+/ZG/7591JaNiY3FsuDVuB9/Hy7OzvhyzGh4e3kCAGQyGXbu3otDR48iIz0D3t5eGBM0Ai7OzmVZHa2Q5OZh/t6/cfJ2NIQmxvikXUN82q6h2rKHr0dgzfF/8DQ1A77VK2Ny77ao7eykWH/iVjSWH7mAZ+mZqOdaDbMGdEQ1e+uyqopWPXsQhpM7ZyH5URQcnDzR/sM5qFLz1cfOtZPrcev8NgybVXzs/Pv3rzi7f4FSuQbvfY42vadoPW5depoYhhO/z0LSoyg4VPVEp4/mwMn51W1y5cR63Dy7DSPmFrfJk/g7OLXrf3j2IBxWdk5o1mUUajXtrcPotUsizcXP67fg9D/XIRQI8HHPzvi4Z+eXfuZWeDS+X7Eee1YtVCzLzy9AyO97cfj0BYjFEjSrXxsTh30Me1sbXVdB5+r4W2PG17744IsrLy03oGd1fNy3JizMjHDq/HMsWRsDiaQAACAwMcCEIC+0bVEJEmk+tu97gO37H5RF+FohkeZi4a+7cOrqbQgFJhjS7T0MDmyvtuz5G6FYtfMwEp8+R/XKDhg1IBBtG9ZWrP/z4nWs3nUYSanpaF7HFzOGD4StlWVZVUWrHt0Pw4Ffi8evvYa+ZPwqycbhLQsQeu0EZDIZApp0RrePi8evyU/jcfC3uUiIvgEzCxs07zQIrQOHlWV1tCIuNgprgxcjPj4ONZ1dMXLMRHh4+ZRa/tD+XTiwdzuys7PQotV7GB40HkJTU5w6cRQrl/6gUt7AwAC7D53WYQ10w1BgglaX9+Lu+LlIOau+L7Gu54eAlXNgHeCNjLAY3BkzC+n/hirWV/swEN5zvoJp1Up4fvw8bgd9h9xkUVlVQWsk0lz8+OsunLpyC0KBCQYHti+1PylyMyIWs1ZvwYFlxd9nZDIZthw+hd0nziE9KwftGtXB5KH9YW6qX9/5isTFRiPkhWMnaMyElx47f+zfhQN7dyA7OwstW72H4UFfKo6d4KULVcobGBhgz6G/dVkFInpDhuUdQFkQi3Mwd+Y0+AfUxqJla+DrVwvzZk+DWJyjtvzF82exfetvGDV2AuYuWISoiDD8tjFEsT4xIR6NmzbHL1t2K15jxk8qq+pohUScg8Vzx8Pbvx5mL9oMT986WDzvK0hKaZMiR/ZuwtkTB1SWb12/CKG3rmDSrBUImjAXZ07sx+nj+3QVvk7kSrPx568j4eTWEH3G7kYVl/o49msQcqXZasuLnsZCaG6LQd+eVbwGfH1IqYwkJw3HN41GTmZyWVRB66TibPz680i4+TTE2O93w8WrPn5dFASpWH2bHNq6AA/uhWLYNxswfNpGPIi7g8Nb5QMCmUyGrSvGQyrJwcgZmzFwzCJE3PgbJ/YsL8sqvTX2J8pypdk4smEkqro1RP/xe+DkWh+HN5R+3BRJT07EtePBSsvyciX4Y93nMDIRou/YHajXbjiOb5mApwm3dVkFrVu34RdEx8Tgx/nzMHZ0ELZs246z5y+olMsRizFj1veoXcsfK5cugb+fH76b/T1yxGIAwOGjf2L33n0YEzQSwcsWw6lKFUyfOQdisf7dsbX4j3MIS3yKdaP649t+7RFy/DJO3IpWKfdv3EPM3nkCI99vir3ffIK6rlUxZt1+ZEukAICb9x5h6paj+KRdA+z4+mMIjI0wZcuRsq6OVuRKsrE/ZASquzfCx5P2oqpbfRwIGYlcycuPnbSkRPzzZ7DK8pSnMajT6mN8Mfe84tWsyxhdha8TUkk29q4agRqejTBk6l5Ud6+PvatGQvqKNklNSsTFI8ptIsnJwJ5VX6Cae30MnXEIzbuOwbGtM/Aw9rouq6BVwZt3IiL2PoJnT8akLwZjw66DOHXpWqnlY+If4NtFq1AgU74yavP+Izhx4QrmTQjC+gUzkJ6ZhTnL1+s6fJ1zd7HA3Km1XnlhRtsWjvj8I1f8tDIKX864jVq+1hg91F2xfvRnHvD1ssL4GbeweHU0PvvIBe1aOOo6fK1Z9vsBhN9LxJpvx2Dq0P5Yt/dP/HX5pkq56ISHmLx0A3q2bYpt879B3/YtMWXZL4iKfwgAuBsbj7nrfscXfbvg1zlfIz0rB7PXbC3j2miHVJKN3xaNhKtPQ4yesxvOXvWxaXFQqX3J4S0L8PBeKD77ZgM+nyofvx7ZJh+/FhQUYNOiIFhY22PM3D3o9dks/H1wDW5dPKR2WxWVWJyD/82aAr9adfDT0rXw8QvA/NlTSx2/XrpwBju2/YqRYydizvwliIoMw6Zf1gAAWrZpj/Wb9ypeIb/uglO16gjs2b8sq6QVhkIB6m9ZDKuA0i96MTI3Q+ODayE6fw3nm/aF6NINND4QAiNzMwCATePaqLP2f4ieF4wLrT6EiZ016m5YUOr2KrLl2w4gPC4Bq6ePxZTPBmD93qM4eflGqeVjEh5hyrKNkJU47+w7dRHr9hzF6A97YP3sr/BclIoZwb/pOnydEItzMG/WFPjVqo2fl66Fr18A/vcax07Q2Alqj50Nm/coXmt/3Ymq1aojsGe/sqwSEb2GdyJZfv7saQiEQgwdFoSazi4YNnIMzMzMceHcGbXlDx3Ygx69+qFx0+bw8vbFqHET8NeJPyEpTGA8SEyAs4sb7OztFS9LS/266uLy+RMQCIT4cOh4VKvpho+HTYSZmQWuXPhLbfmc7EwEL5yCw3t/g71jFaV1mRlpOPfXAXw2+lu4e9eCf90m6NxrEOKi7pZFVbQm7vZRGBubomnXybCr7IHm3afBRGiOe3eOqS2f+jwWNo6uMLeqpHiZWToo1j+5fx37VvR/ZeKjIrt9+SiMBabo+tFkVK7uge6Dp0Foao47V9S3iZGRCXp+MgPV3WqhumstNGzTF/FR/wIAnj++h8SYW+g/Yj6q1PCCm08jdOz3JW5d0q8vG+xPlMXcPAojEyGad/8GdlU80LLntxCYWiD21p8v/dyZPbPgWF35Tpb48L8hzhKhw8AfYe/kBZ+GveDdoCdun/tVhzXQrhyxGEePn8CoEV/Ay9MDrVo0x4D+fXHw0GGVsmfOnoNAIMAXwz6Ds3NNjBoxHGbmZjh3Tp5YP/7XSfTv2wfNmjRGjerV8eWYUUjPyEBoeFhZV+utZEtyse/yXXzTuy38alRGh9qeGPpeQ2y/cFOlbFJGFkZ0aoruDf1Qw8EGI99virRsMWKfpgAAfjtzHd0a+mJA8zpwrWyPKb3bISk9C6LMl//QWxFF3TgCYxMhWvf6BvZOHmjbdzoEQgtE3Xz5sXNy5yxUrq56F1jKk1hUqu4LC+tKipfAVH/6EgCIvC5vk7Z9voGDkwfe6z8dAlMLRP378jY58fssVKmh3Cbposdw82+Dtn2+ga1jTfg36QnHal54GPevLqugNTliCQ6ePIevP/sIPu4uaNe0AQb36oLdR0+pLb/v+GmMnD4f9jaqd1nk5+dj/NCBqO/vA7ea1fBBt464FRGj6yroVK8uVbHmx3oQpUpfWXZAj+rYdfABLl5NQUR0Bn5aGYXATk4QCg1hKjREj/edsGxtDKJiM3H2n2Rs25OIft31407AHLEEB/7+BxOH9IWvW02817guhnTvgJ0nzqmU/fPidTT298bALm1R06kSPni/NRr5e+FEYSJs5/Fz6NS0Prq3bgIv5+r4ftRgXLgVjofP9O+Cj9v/HIWJwBRdBsrHr4GD5OPXu6WNX41N0KOU8WtmehKqOvui16ez4OjkCp+6beHh3wz3o/TnhzcAuHD2FAQCIT4ZNgo1nF3x+YhxMDU3w8Vzp9WWP3xgN7r36o9GTVrA09sPQWMn4tSJI5CIxRAKhbCzd1C8zv59HJABgz8boXZbFZWlnwdaXNgJc4+X37FX9YNuKMiRIHzKj8iMiEPYhP8hPyMLVft3AQC4jh6MR7uP4uGWA8i4E4mbQ79B5a5tYeZaoyyqoTXy/uQSJn7S74X+pCN2HlftTwBg78kLGDZ7CRxsrFTW7Th2FoMC26Nzi4bwqFEVs4MG4/yNUNx/9FTX1dC6C2f/hlAgxKfDRqGGsws+HzEWZubmLzl29iiOHS9vXwSNnYCTJ46qPXbO/C2/m2WInh07RO+CdyJZHhkRBj//AMWVJwYGBvD1D0BkhGrCIT8/HzHRkagVUEexzMfXH3m5ubh3LxYAkJhwH9Wq69fJr6TYyDvw8qun1CaevnUQG3lHbfnnTx8hN1eK2Ys2o1IV5S8Q0eE3YWZuCd+A4lvqu/cbimHjZuquAjrwLOEWqrg2UGqTKi4N8DThptryoqfyZHlpHkSdh3ejvug4aJkOoi0bCTG34Oqt3CYuXg2QEHNTbfleQ2fC1bsBAED0/CFuXToEN7/GAAArG0d8NnkdrGyUr9YSZ2fqrgI6wP5E2dOEm6jq2lCpPZxc6uNp/M1SPxN5bT/ycsXwa6J8FUV68gPYVXaH0Kx40O1Q1eel26po4uLuIS8vD/5+voplAf7+iIiMQkFBgVLZ8IhIBNTyV2q7Wn5+CIuIAACMGPY52r/XVlHewMAAMpkMWVn69QNc1KPnyCsoQD3Xaopl9d2q4U78ExSUmBvw/bre+KJjEwCAODcPW87cgL2lOTyq2AMArsU8QIfanoryNRxscHTGMNhZmpVBTbTr8f1bqO6ufOxUdW+Ax/dvlvqZsCv7kSfNQa1mqlfvpTyNg20lVx1FWzYe37+F6h7KbVLdvQEe3btZ6mdCL8vbJKCFcptUquaNbp/+KD9uCgoQe+cUUp7eQw3PxrqsgtZE309Efl4+avsU7+91fb0QGhOn0pcAwD837uC7scMwsHsnlXXDPuiFdk3l5+aUtHQcPHkWDWqVfvu4Pmja0B7zlkZix4GXT5diaAj4eVnhZmiaYlloRDqMjQ3h6WoJTzdLGBkb4k5EumL97bA0+HtbQR9mEoxKeIS8/HzU9XZTLKvn447QmHiV/aR76yYYO7CHyjYys+U/3t+NuY/6vh6K5U4OdnBysMOdmPu6CV6HEmNvwaXE+NX5JePXnp/OhMsL49fblw7BzVfeV1jbVsbAsUsgNLOATCZDfNS/uB95De5+TcqkLtoSFREGv1q1lcevfrURFRGqUjY/Px+x0RHwD6irWObt64+83Dzcv6f8Q1tGRjr27f4dg4eOgImJQLeV0DL7Nk2QfPoyLrT68KXl7JrWRcpF5R9HUi79C9tm9QAAtk3qIuVc8V0/4gdPkJPwCHZN60KfRCU8RF5+Puq8Rn8CABdvhmFW0GB81PU9lXUPnyUhwMNF8d7RzgZ2Vpa4E31fJ7HrUlREGHxVjp2XffeLQC2VYycX9wu/+xWRHzvb9PLYIXoXvBNzlotSkuHs4qq0zNbWDgnx91TKZmVlQiqVwt6hOKFnZGQEK2sbJCc9h0wmw8MHD3Dz36vYs2Mb8gvy0bJ1W3w0+DOYmJjouipakypKQnVnd6VlNrYOeJAQq7a8s5s3vp6xRO26Z08ewrFyNVz4+zD+2P0L8vNy0ap9D/QY8DkMDfXn95jsjOewq+KptMzM0gGip6pTBQBA6vM4FOTnYv/KD5CV/hROrg3RPHAqzK0rAwAavT8eAJAheqjbwHUoI/U5qtRQbhNLGwc8faC+TYrsDJmKG+cPwM6xOjr0Hg0AMLOwhnedVooyBQUF+OfEVnjUalbaZiok9ifKstOfw97JS2mZmZUjUp6o30dyMlPwz5FF6DFiI54l3inxOQdkpcvbpWhAmpn2GDlZqTqJXRdSRCLYWFsr/f/Z2dpCKpUiPSMDtjY2SmVdS8w/bmdri/vxCQCAgFr+SuuOHjuOgvx8BPgrL6/okjKyYGthBhNjI8UyBysLSPLykZqdA3tLc5XPXI5KQNDafZBBhgUfd4G5UID0HDHScyTILyhAUMheRD1OQm1nJ3zbrz2q2OjXFdQAkJX+HA5Oyv2ruZUDkh+rP3ayM1Nw/o+f0W/0L3iSoHzsZKUnQZydirAr+3B82zQYmwgR0Kw/Grz3uV49OyQz7Tkcq5ZoE2sHJD0qpU0yUnB2/88YMO4XPIlX/2N/fp4UyyY0QEF+Luq2GohqbvW0HbZOJKemwsbaEiYmxUN1e1trSKW5SMvIgl2JK/kWThkHADj89/lSt7lux35s3PUHrCzNsXbeNN0EXka+/Z88wde1Q5WXlrO0MIZQaISklOLpq/ILgPT0XFR2FKBABqSl5yIvr/iHu5TUXAiFRrCxMkFqeq5uKqAlSalpsLWygIlx8X7iYGMFSW4u0jKzYWdd3De6VXdS+mzsg8e4GhqFfh1aFG4rHZXslOext7exwrOUVN1VQEcyUp+jSvU3H7/uDpmKGxfk49f2hePXF/08oQNSkx/Dp1471Gr8vlZj1jWRKBk1nd2UlpU2fs0uHL/a2RffMWtkZAwra2skJz1XKnvs8AHY2zugeat2OolblxJCfn+tckKnSsgIU/6RQPo0GVa15ONf06qVIXn0TGm95FkyTEsccxVdcmo6bEr0J/aK/iQLdtbK552fJ34BAPjjzGWVbTnYWOGZqPhHyhyxBGlZWUjN0K+LpICiY8dVaZmNrf0bHjs2pRw7jmihh8cO0btAfzKZb0Eikaj8WmdiYoLcXNUBsEQiUaxXV/75s6eQSMQwNhFg0rSZ+Gx4EM78fRK/bQhR2VZFJpWIVdrE2MQEebmvvp21JIk4B08fJ+DvY3sxfNxMfDh0PP46vAPHDm7TVrhlIi9XDCMj5TYxMhYgP099m6Q+j0OuJAvNAqeiw0eLkZ3+DMd+G4WCgvyyCLdM5ErFMDIuuZ8IkFdKmxRp2304Rs36HbaO1fDLzyPVXo3w5/af8fB+GN7vP16rMesa+xNlebliGBop1+9lx82Fgwvg06i3SoIdAJx920AqzsDV4yuQnyfFs8Q7iLiyBwX5FTtZ8SL5/qH6/w1AZR8pray6fSk8IhIh6zeif7++sLe303LUupUjzYPghUQ5AMX73Dz1/aVnVQf8/vVHGN25Ob7bfgK34x8jRyJvl4X7TiOwoR+Wf94T0rx8jFt/QOUKdX2QJ81R7V9fcuyc3Tsf/k36wKGq6rEjehYHQJ5s7/XFajTuOBKXj6/GjdP6NT+oujZ5WX/y9575qNWsDxyrqbbJiwZN2oHAoT8j4voRXDv5i9bi1SWxRAqBsfI1LYq+JE+zPrFLm+bY+MN3aFzbH+PnLkZWtv5NX/SmTIWFfU2uch+Rm1cAExP5NCy5ucpjlKL3JiYV/4cmsSRXKbEFQPEDizQ3r9TPpWZk4pulG1HX203xgE91+5zA2Pil26mocqViGJX8nmMsQP4rvue06T4cI2fKx6+/qRm/fjRuOYZ8vQpPEiJwZKvqAy4rMqmaMYfxK8evLx/vymQynDx+CF179NVBxBWHkbkZCiTK+06BRApDoaBwvelL1+sLsUQKgUmJ/sT41f2JOh2bNcCvB07g3sMnkEhzsWSL/FlmeaWM+yqy0r77qcubvPzYKS4vk8nw1/HD6PYfP3b0jUwm4+sNX/9lb3VleWZmJhISEuDp6QmpVKoyz+7ChQvh6Fj2D8jZtWMr9uwofiCNl4+fUucEyJMWQqHq05gFAoFivbrylas4YfOO/bC0tIKBgQHcPTxRUCDD0p/n47MvRsHIyEhlmxXBH7t+waE9xV8Q3b1qqbRJXm4uBELTN962oZERcrKzEDRhHhwrVwUAJD9/glN/7kHX3oPfLnAduvF3CG6eXqt4X7lmHeTnK7dJfp4UxgL1t/cP+OoPwMAAxibyNus4aBm2zm+D54m3UcWlvu4C16G/D4bg9MHiNqnpUUclSZGXK4WglDYpUnQ1z0djF2PBuLYqt6se3f4zLhzbhI/GLoZTzdIfqFMRsD9Rdv3kGvx7qngfqeJcRyWZLT9uVPuShMhzeBp/E+0G/KF22+aWDug0aDFO7ZiGf0+ugZV9DdRuORi3z+lPwk+g5otn0fuS+4jARFDqvvGisPAITJ81B40bNcSngz/WQdS6JTQxgrTEl6Oi96YC9XdQOFhZwMHKAr7VK+N2/BPsungb4wPld6b0bRqAHo3k81MvGNQF7Wevxe34x6jnVk3ttiqKK8fX4OqJ4h/CnFzU9K95UpioOXbuh5/D4/s3MWTgPLXbruHZBCPn/wMzC/kPKY7VfJCTmYLbF35Hg/eGaq8SWvbPn2tw+Vhxm1R1VW2T/FLa5F7YOTy6dxNDP1bfJkWMjAWo4lwLVZxrITPtGf49vRmNOnymnQrokMDEBNI85eSEoi8RaJaAqVlVfhX2zHHD0WvkJJy+fB2B77V6xafK35ABzhgyoPgunEmz7+B2WNpLPlFMKlWf+DYxNoRYUgAjQ8DERPnaoaL3YonqD/0VjVBgjFyV/UT+3lSovn9NTkvHmAWrIJPJsHB88V2gAoHqPifNy4OpHiT8Th8MwZk/iscmNTzqqCTG8/KkMBG+fPxauXD8OnDMYvzwper4tYZ7gHxbuVLsXDMZXT6aDGPjitk+e3Zsxt6dJcevymOOvFLGryaK8au68W5xfxwbHYHkpOdo1aaDNkOvcArEEpXEt6FQgPzCKYzyS1ufo18/SApMTFSS4kX9y5v2A8P7dMajZ0n48JsFMDYyRN8OLeHtUgMWZm+eayhru3dswd6dWxTvvXz81R4L6vImr3vsxERHFh477bUZOhFpkUbJcolEgrlz52Lv3r0AgGPHjmHhwoXIycnB4sWLYVN4m/n775fP7WlduvVAq9btFO/37vodIpFIqUyqKEXp9pgiVlbWEAgEEIlSUKOmfGCen5+PjPQ0RXkrK+WHJ9V0doZUKkVmZgZsbGy1Wxktea9LXzRp1VHx/vDe35AmUn5gT1pqMmzt3vzHDVs7R5gIhIpEOQBUre6ClKSK/QAPv6Yfwr12F8X7W2fXIzsjSalMTkYSzK0qqf18ySS6maUDhOa2yEqv2PV+mabtP0TtpsVtcvbQemSkKrdJRloSrGxV2yQvT4qIG6fhGdACpmbyH86sbBxhbmmLrIzi4+/gpnm4fHI7PghaiAA9uIWV/YmyWs0HwrNuV8X7G3+vR3a68m2F2RnPYaHmuIm5eQSZaU/wy2z5Ld+ygjzk5+di3fQGCBy2FtXcG8HFry2GzrqA7IznMLd0ROg/22Flrx8PWgMABwcHpKWnIz8/X/FjR4pIBKFQAEsLixJl7ZFSYl9KSRUpXTl+6/YdfDdnLhrWr4dvv5mkV1NbFalsbYnUrBzk5RfA2Egef1JGFkxNjGFlqvwl/W7CExgZGsKvRmXFMo8q9oh9mgJbCzMYGxnCtXJx+9hamMHG3AxPUjPKpjJvoU7LgfCuX3zsXDu5DlklzjnZ6UmKqbxeFPXvEWSkPkHI9OYAgILCY2fl5ProHbQO1T0aKRLlReyreCAzrWKfj+q2HgifBsVtcuXEOmSlK7dJVnoSLNS0ScT1I8gQPcGqKcptsuzr+ug3Zh0sbatA9Ow+3PxbKz7j4OSJnEyRyrYqokr2dkhLz0Refj6MC/uS5NR0CAUCWFmoTl30Muev3YK3mzMqO8j3EaHABNWqVEJqun7cDr//6COcOl88xcHz5Ne/CzItIxcSST4cbAVIeCBPXBkZAtbWJkhOkcLAALCxNoGRoXx6FgCwtxNALMlHZlbFv6K6kp0tUjOySuwnGRAKTGBlrpoYfpaSiqD5KwEAITPGKU3TUtnOBsmp6Urlk1PT4Wir+tDYiqaJuvFrmnJfkpn6+uNXy8Lxa3aGCJlpSUiIuQn/hsXfoypX90B+Xi4kOVkwtqqYyfL3u/VCi9bFc0nv370NqaIUpTKpqS8fv6aKUlCjpnze6fz8PGSkp8PO3l5R7sb1K/APqAtLK9UHPP6XiB89hdBJ+Tuy0MkR4ifyfkn8UM36Ko6QPFYeH1d0lextkKbSn6SX2p+8jJmpEAvGf47MwjuYLM3N8H7Qt6hayf4Vnyx/nbv1RMsXvvvt2/27Fo6dNKXy78qxQ6TPNPrW/dNPPyEmJgb79u1T/Bo9btw4iEQizJv38it8yoKVlTWqVquuePn41UJkWKjiNgGZTIbwsLvw8fFT+ayhoSE8vXwQHlo892VEeCiMjY3h5uaBG9evYsiHvSERixXr42JjYWVtXSETW0UsrWxQpWpNxcvTpw5iIu8otUl0+C14+AS88bY9fAKQK5XgycN4xbJHD+4rJc8rIlNzW9g4uiheVZzr4Wn8DaU2eRp/A5Vrqj6cRSrOxG9zmuJRbPEcbVlpTyHOFsG2krtKeX1hbmkLxyouipezZz3Exyi3SXzUDdT0VG0TAwND7AqZhoibZxTLUpMeITtThMrV5G3y196VuHxqBwaOWYS6zQPLplJvif2JMpXjxqUenpQ4bp7cv4EqLqr7SLPASRg46RA++HofPvh6Hxq//yUsrCvjg6/3oXLNAIiexuJgyFBAJoOFdWUYGBoiPvwMqnk0LeNaas7D3R3GxsYIj4hULLsbFgZvLy+VRLefrw/CwiOU2i4sLBx+vvIH7927H49Z389D44YNMGPaFBgbv9XNYOXGp3olGBsa4nb8Y8WyG/ceoVbNKjA0VL7ac9+VUCw7rDznctiDZ3CvYg9jI0P416iMqMfFCRBRZg5Ss3JQzb7iJ3NMLWxhW8lF8arqWg+P7ykfO4/u/Yuqao6dVj0n4ZNphzHom/0Y9M1+NO/2JSytK2PQN/tRpWYA7l7ahd/+11npdsjnD8NhX7lin4/MLGxhV9lF8armVg+PSrZJ7L+o6qbaJm16T8JnMw7jk2n78cm0/WjZ/UtY2lTGJ9P2o4pzAJ7cv41DG79GrrS4f32aeBf2ThW7TYp4u9WEkbERQqPiFMtuhUfDz9P1jX80W7FpJ46euah4n5WTg8RHT+Bao2KP04pkZObh4WOx4lV0tfjrkMmA8OgM1PEvnou7lq8N8vMKEHM/E9H3MpGfV4BavsV9SB1/a4RHZ0Af7i72cakOYyMj3H3hIZw3o+JQy91ZZT/JEUswbuEaGBoYYO2McSrzkwd4uuLmC/vbk2QRnqakoranqy6roBXmlrZwqOKieNX0rIeE6BLj1+gbqOmhfvy6Z+00RKoZv1aq5o6U5w+wbfmXSEsp/vHx4f1QWFjZw8Kq4k6LJh+/1lC8vH1rITL8rlKbRITdhbev6nNQDA0N4eHli4iw4vFrZHgojI2N4OpWPBd8dGQ4fPze/LujvhFdvgW7Zsp3Dds1b4DUy7cAAKlXbsGuZUPFOtMaTjCrWRWiwvX6wselhrw/eeEhnDcj4+Cvpj95leXbDuDQ2cuwNDeDpbkZQmPjkZmdo/Tw0Iqq5LHj41sLEeGhJY6dO6UeO55evghXOnbCYGxsDFe34gcoR0eGwfcdOHaI9JlGyfLjx49j+vTp8PHxUSzz8fHB3LlzcfbsWa0Fpy0tWrVBVlYmNoSsRGLCfWwIWQmJWIyWbdoBkF8pL0op/rWwa/de2L9nJ/65eB7RUREIWbkUnboEQmhqCl+/WhAIBAhe9jMePkjA9auX8dvGNejTb2A51U4zjVu0R3ZWBrZtWISHiXHYtmERJJIcNGnZCYB8TvNUUdIrtiJXtbor6jZqhfXL5yDhXhTu3LiEw3t/Q/su/XRZBa1zC+gMqTgDlw4tgOhpDC4dWoDc3Gy415FfqZKXK0Z2hvwKAYGpJZzcGuLS4R/wPPEOkh6G4uT2iajp1Qr2ThV7WpE3EdCkM8RZGTi0ZQGePozBoS0LkCvJRp0m8jbJlYqRkSpvEyMjYzRp/wGO71yC+5HX8fBeKLatnAC/Bu1RpYYXnj2Mxd8HVqNt9+Fw9W6AjNTnipc+YX+izKNOZ0hyMnDh4HykPI3BhYPzkSfNgUfh1ed5uWLFlefmlg5KiXYzS3sYGhrBxtEFxiamsLKvDtHTWFw9vgLpKQ9w7cQqPLl/HbVbVtzpnEoyNRWiU4f2WLZyFSKjonHh0j/YvXc/+vTsAQBISREp5jNs3aolMrOysHrtesQnJGD12vUQiyVo01o+LcKy4JWoVMkRI78YhrS0dKSkiJQ+ry/MBCbo0dgf8/acwt2EJzh1JwabTl/Hx63lXzyT0rMgLrztt3+z2rga8wBbz95A/HMRVv15CXcTn2BQG3nZT9o2xLZzN3H8VhTinqZg5o7j8KleCbWd9eshWgDgWa8LJDnpOLP3f0h+EoMze/+HXGmO4urzPKkYWUXHjpWDUqLdzNIBBkbGsK3kAmOBKZx9WiAr7TnO7V+I1OfxiPz3MK6dXIdGHYeXZxXfmHf9LhBnp+Pv3f9D0uMY/L1b3iZFV5/nSsXISpO3iYWVg1Ki3dzSAYaGxrCr7AITgSncA9pBYGqFE7/PRMrTewi/+geunFiP5l1GlWcVX5upUIhubVvgx7WbEBZzD2eu/IttfxzDh93kV7cmi9IglrzeFdb9u7TH1oN/4uK/txGX+BBzlq1HDafKaF6/ti6rUG4EAkPY2xZPQbLvyCN81LcmWjdzgK+XFSaN9sLB448hkRRAIinA0VNPMWm0N3y9rNC6mQM+6lMTuw7qx8PZTYUCBLZujPkbdyI0Nh6nr93G5sOnMLBLWwDyh3aKpfL9ZOPBE3jwLAmzgwYp1iWlpiuu/OzfsSWOnL+K/acvITrhIWat3oJW9WuhemXVqycruoAmnSHOzsDhrQvw7GEMDm9dAKkkW3H1ecnxa+P3PsCJXcXj1+0rJ8C3cPxaw702qrnWwt710/HsYQwib53Bn9t/RrueI8uzim+seat2yMrKxMa1K5CYcB8b166AWJyjuPpcPn4tvuu4S2BvHNizHZcvnUNMVDjWrlqCjp27Q2haPJVEQvw9lQcf/lcIqzjCsPDutyd7/oSJrTX8F0+HpZ8H/BdPh5GFGR7vOgoAiA/5HdUH9ULNz/rDqrYP6v3yI54dPo2c+w/KswpvzFQoQGCbJlhQ1J9cvY0th09hYJd2AJT7k1dxtLPGuj1/IjQ2HuFxCZi5ajP6dWwFG0uLV3+4gmneqm3hsRNceOwEQywWK64+Vz12euHAnh24fOmc/LvfqsWlHDsuZV0VInoDGl2mlpWVBTMz1VtxCgoKkJ9f8R7aYG5ugemz/4c1wUtw/M9DcHF1x3ffL4CpqbwO58/+jRVLfsT+I6cAAK3btsezp0+wOngJcnOlaN6yDT79XD4gMjM3x6x5C7EhZBUmjh8FMzNzdO7aHX36f1hu9dOEmbklvp6+BL+tWYDTx/ejposnJny3DMLCNrl8/gQ2rPgev+6/+lrbG/n1XGxZ9xPmT/sCAqEpOnYbgI6B+tUmAlNLdP50Nc7vn42IKzth7+SDLkNDYCKQ3+4cd/sozuz+Fl8sCAcAtBuwAP8c/hF//jYS+XlSuPi1R4ue08uzClpnamaJTyeuxv5fZuPK3zvhVNMHQyeFQGAqb5Pb/xzF7nXfYsFmeZt0HvA1DGCAbSu+glSSg1qNOqHHJ/I2Cfv3FAoK8vH3gTX4+8Aapb9T9Hl9wP5EmcDUEt0+X4Oze2cj7J+dcKjqg27Dio+bmJtH8PfObzHqp4hXbsvYxBSdP12B8/vn4tbZX2Hv5IXAYetgZVex56IuaeTwYVi+ahUmT5sOCwtzfDLoI7RqKZ96ZuCQTzHpq/F4v1MHWJibY+6s77B85Soc+fMY3FxdMW/OTJiZmiIlRYSwcHmbDR46TGn7RZ/XJ5N6tsH/9pzC8NV7YGkqwKjOzdCxjvzqtA5z1uH7DzuhV5Na8KtRGYs/644VRy5i2eHz8KzqiNVf9EEVG/mt8Z3qeiE9R4wlf5xDSmYOGnnUwLLPesDAoOI/iK8koakleo0Iwcmds3Dn0k44VvNB75FrYSKUHzuRN47gxLZp+GpZ5Cu2BFjbV0evkWtx7uBPuH3hd5hbOaBVj0nwrt9N19XQKqGZJfqOCsGJ7bNw+4K8TfqOXgtBUZtcP4I/t0zDpJWvbhOBqQX6j12PkzvnYvMPfWFmZYf2/b+FZ92Or/xsRTF+6If4ce0WjJ39EyzMzTD8g15o10x+9WL3LyZgxpjPXmvO8X5d3kOORIKf1m6GKD0TTev648ep4/RyWqfX0aF1JUz/yhetesivFD557jmqVjHF5NHeMDExxJmLz7H6l+IrqFdsiMWkUV5Y/r+6yMrOw4Zt93H20utdMFIRTBjcBwt+2Ymg/wXD0twMI/t1RfvG8iuou4z5DrNGfIwebZvi1JVbkEhzMXTmYqXPd2/dBLODBqGOlxu+/fxDrNlzBOmZ2WhW2xfTh+vPj/cvMjWzxJAJq3Hg19m4Wjh+/XRiiKIvuXP5KPas+xb/2yQff74/4GsYGBjg9+CvkCvJgX+jTug+RD5+NTQ0wuCvVuKPTXOx5vuPIBCaoXmnwWj+/pByq58mzM0t8O2sHxCychH++vMPuLh6YPqchYrx64Wzp7By6Q/Yc1h+3LRq2wHPnj5BSPAi5ObmolmLNhjyeZDSNtNSU2Bh+d+cRqLjgwu4NWwqHmzah7yMLFztPRK1V86B8/APkH4nEld7jkB+4Q9Nqf/cxN3RM+E960uY2Nsg6cQF3A76rpxroJmvB/fBDxt3YtS8FbA0N8OI/l3Rvom8P+k6egZmjhyEHm1ffcfnh53b4vHzFIxfuAaGhgbo2qoxxn3UU9fh64S5uQWmz1qANSsX40ThsTOjxLETvHQh9h4+DaD42FkTvFj+3a9FW3zyufKPa2mpov/ssUP0X2Eg0+ARppMnT0Z2djYWLlyI1q1b4+DBgwCASZMmoUaNGli0aJFGwYTH6sdVHGXFz6M6LoWnv7rgO6S5nzV+3lvxH7hUlib1NcTeK2yTIn2bGLIvKcHPozqWHtSD+8nL0Fc9DRAf8+qE27vExdMH4kOryzuMCsW0+yis/rO8o6hYRnUB1v1V3lFULF90BFLunH91wXeIfe1WimQ1yZ3/oy0yrrFDKWLVqAt2X+b49UX9mxribsyT8g6jQgnwdMJhE59XF3yHBOZGIv36sfIOo0KxbtgZoTGPX13wHVLLUz+mWqtIvpif/OpCpGTdt/p399nr0uiSkpkzZ8LQ0BBNmjRBTk4O+vXrh06dOsHa2hrffaefv6ISERERERERERER0btLo2lYrKyssGLFCiQmJiI2NhZ5eXlwc3ODh4fHqz9MRERERERERERERFTBaDxZYWxsLGxtbdGuXTsIhUJs2bIFu3bt0mZsRERERERERERERERlQqNk+Y4dO9CzZ0+Eh4cjLCwMo0aNQmJiIpYtW4Zly5ZpO0YiIiIiIiIiIiIiIp3SKFm+fv16LFy4EE2aNMGePXvg5+eH9evXY8mSJby6nIiIiIiIiIiIiIj0jkZzlj99+hQNGzYEAPz999/48MMPAQBOTk7IysrSXnREREREREREREREOiKTyco7BKpANEqWu7u7448//oC9vT0ePXqEjh07Ijc3Fxs3boSvr6+2YyQiIiIiIiIiIiIi0imNkuVTpkzBV199hbS0NHz88cfw8PDA999/jxMnTmDNmjXajpGIiIiIiIiIiIiISKc0SpY3b94cly5dQkZGBmxsbAAAo0ePxrRp02BiYqLVAImIiIiIiIiIiIiIdE2jZPnVq1dfur5x48YaBUNEREREREREREREVB40SpYPGTJE7XKBQIBKlSrh5MmTbxUUEREREREREREREVFZ0ihZHhERofQ+Pz8fCQkJmDt3Lnr06KGVwIiIiIiIiIiIiIh0SVYgK+8Q3mkymQyLFi3C7t27UVBQgP79+2PSpEkwNDRUKTt16lTs27dPZXnTpk2xadMmAECjRo2QkZGhtP7ff/+FhYXFa8WjUbK8JCMjI7i5uWHq1KkYMWIE+vTpo43NEhEREREREREREdF/1C+//IJDhw4hODgYeXl5mDx5MhwcHDBs2DCVstOnT8fEiRMV7x8+fIghQ4bgk08+AQA8ffoUGRkZ+Ouvv2BqaqooZ25u/trxaCVZXiQ5ORnp6ena3CQRERERERERERER/Qdt2rQJX375JRo1agQAmDRpEpYtW6Y2WW5lZQUrKyvF+6lTp6JLly7o2LEjACA2NhaVKlVCzZo1NY5Ho2T5tGnTVJZlZWXh4sWL6NKli8bBEBEREREREREREdF/39OnT/H48WM0btxYsaxhw4Z4+PAhnj17hsqVK5f62UuXLuHq1as4duyYYllMTAzc3NzeKibVyV80ZGtriylTpmD27Nna2iQRERERERERERER/Qc9f/4cAJSS4o6OjgCAJ0+evPSza9euRZ8+fVC1alXFstjYWOTk5GDIkCFo1aoVvvjiC9y7d++NYtLoyvIFCxZo8jEiIiIiIiIiIiIi0mNSqRRSqVRpmUAggEAgUCkrFovx9OlTtdvJzs5WfPbF7RT9jdIkJibin3/+wfTp05WWx8XFIS0tDRMmTIClpSXWrVuHoUOH4vDhw7C0tHytumk8Z/lff/2F9evXIy4uDvn5+XBzc8PgwYPRu3dvTTdJREREREREREREVGZkBbLyDkHvhISEIDg4WGnZ2LFjMW7cOJWyt27dUjyAs6TJkycDkCfGhUKh4t8AYGZmVurfP3bsGPz8/ODp6am0fMOGDcjNzYWFhQUA4Oeff0bbtm3x999/o0ePHq9VN42S5du3b8fChQsxePBgjBgxAgUFBfj3338xZ84c5ObmYsCAAZpsloiIiIiIiIiIiIgqsJEjR+Kzzz5TWqbuqnIAaNq0KSIjI9Wue/r0KX766Sc8f/4cNWrUAFA8NUulSpVK/fvnzp1Dhw4dVJaXvLpdKBSiRo0apV7Zro5GyfL169dj1qxZSleRd+zYEV5eXlizZg2T5URERERERERERET/QaVNufKmqlSpgmrVquH69euKZPn169dRrVq1Uh/uKZPJcOfOHQQFBaks79SpE0aPHo2+ffsCkE/zEh8fD3d399eOSaNkeXJyMurVq6eyvH79+nj8+LEmmyQiIiIiIiIiIiKid8hHH32En3/+GU5OTgCARYsW4fPPP1esT0lJgVAoVEyt8vDhQ2RlZalMwWJgYIB27dphxYoVqF69Ouzt7bFs2TI4OTmhbdu2rx2PRslyPz8/7N+/H1999ZXS8n379qkESkRERERERERERERU0rBhw5CcnIyxY8fCyMgI/fv3x9ChQxXr+/fvjz59+ijmQ09OTgYA2NjYqGxr8uTJMDY2xsSJE5GZmYlmzZph7dq1MDIyeu14NEqWT548GUOHDsXly5dRt25dAMDNmzcRHh6OkJAQTTZJRERERERERERERO8QIyMjTJs2DdOmTVO7/tSpU0rv69atW+oc6EKhEFOnTsXUqVM1jkejZHn9+vWxd+9e7Nq1C3FxcRAKhWjSpAmWLl2quGSeiIiIiIiIiIiIqCIrkMnKOwSqQDRKlmdkZODAgQOIi4uDWCxGTk4Obt68iZs3bwIANm3apM0YiYiIiIiIiIiIiIh0SqNk+TfffIPQ0FB07doVVlZW2o6JiIiIiIiIiIiIiKhMaZQsv3TpEjZt2oQ6depoOx4iIiIiIiIiIiIiojJnqMmHKlWq9EZPESUiIiIiIiIiIiIiqshe+8ryR48eKf49aNAgzJgxA9988w1q1KihkjivVq2a9iIkIiIiIiIiIiIiItKx106Wt2/fHgYGBgAAWeFTYj/77DPFsqLlBgYGCA8P13KYRERERERERERERNolK5CVdwhUgbx2svzkyZO6jIOIiIiIiIiIiIiIqNy8drK8evXquoyDiIiIiIiIiIiIiKjcaPSATyIiIiIiIiIiIiKi/xImy4mIiIiIiIiIiIjoncdkORERERERERERERG98157zvKS8vPzce7cOdy/fx99+/bFvXv34O7uDisrK23GR0RERERERERERKQTMpmsvEOgCkSjZPnjx48xbNgwpKamIi0tDR06dMD69etx48YNbNiwAT4+PtqOk4iIiIiIiIiIiIhIZzSahuX7779Hw4YNce7cOQgEAgDA4sWL0aJFC8ybN0+rARIRERERERERERER6ZqBTIN7DRo3boydO3fCzc0N9evXx8GDB1GzZk3cv38fffr0wY0bN3QRKxEREREREREREZHWfPLd4/IOQe9smlu1vEPQGY2mYTE1NUVycjLc3NyUlt+7dw+WlpYaB/Mkgkn2Fzn51kdsXFx5h1GheLi7415sTHmHUaG4eXgiPiayvMOoMFw8fbiPlODm4cm+pAQPd3eec0pw8q2P6Nj48g6jQvHycEFM7L3yDqNC8fRwYx9bgpuHJxKiw8s7jArF2csPZ0OzyjuMCqVNLQtca9u8vMOoMBqducSxSQke7u6Ii40t7zAqFHcPD6RfP1beYVQo1g0747AJp719UWBuJMcmJbh5eJZ3CER6TaNpWAYOHIiZM2fi9OnTAORJ8j179uC7775D//79tRkfEREREREREREREZHOaXRl+ZgxY2BtbY3Zs2cjJycHI0aMgIODA4YOHYphw4ZpO0YiIiIiIiIiIiIirSsoeOMZquk/TKNkOQAMGTIEQ4YMQXZ2NvLz82FlZaXNuIiIiIiIiIiIiIiIyoxGyfLg4GC1yw0MDGBiYoLKlSujdevWcHBweKvgiIiIiIiIiIiIiIjKgkbJ8nv37uHIkSNwcnJCQEAAZDIZwsPD8ejRI9SrVw8ZGRmYN28e1q9fj3r16mk5ZCIiIiIiIiIiIiIi7dJ4Gpb+/ftj9uzZMDIyAgAUFBTgf//7H7Kzs7FgwQKsWbMGP/zwA7Zv3661YImIiIiIiIiIiIiIdMFQkw+dOnUKn3/+uSJRDgCGhoYYPHgw/vzzTwBAYGAgIiIitBMlEREREREREREREZEOaXRluaOjI65duwY3Nzel5devX4etrS0AICkpCZaWlm8dIBEREREREREREZEuyApk5R0CVSAaJcvHjRuH6dOn4/r166hduzZkMhlCQ0Nx+PBhzJw5E/fu3cOUKVMQGBio7XiJiIiIiIiIiIiIiLROo2R5z549Ua1aNfz+++/Yvn07jIyM4OnpiU2bNqFevXq4ffs2Bg8ejEGDBmk7XiIiIiIiIiIiIiIirdP4AZ+NGjVCo0aN1K6rU6cO6tSpo3FQRERERERERERERERlSaNkeU5ODnbs2IGYmBjk5+crlkulUoSFheHo0aNaC5CIiIiIiIiIiIiISNcMNfnQjBkzsHbtWuTk5ODgwYPIzc1FTEwMDh8+zHnKiYiIiIiIiIiIiEjvaHRl+dmzZ7Fs2TK0aNEC0dHRGDp0KAICAvDDDz8gOjpa2zESERERERERERERaZ1MJivvEKgC0ejKcolEAldXVwCAl5cX7t69CwD48MMPce3aNa0FR0RERERERERERERUFjRKlnt4eODixYsA5Mny69evAwAyMjIgkUi0Fx0RERERERERERERURnQaBqWsWPHYvz48SgoKECvXr0QGBiIoKAgREZGonXr1tqOkYiIiIiIiIiIiIhIpzRKlnfo0AFHjx5FQUEBqlatim3btuHAgQNo0KABhgwZou0YiYiIiIiIiIiIiIh0SqNkOQDUrFlT8W9fX1/4+vqqlGnQoAEOHDigVJaIiIiIiIiIiIiIqKLROFn+Ovg0WSIiIiIiIiIiIqqoZAUF5R0CVSAaPeCTiIiIiIiIiIiIiOi/hMlyIiIiIiIiIiIiInrnMVlORERERERERERERO88JsuJiIiIiIiIiIiI6J2n02S5gYGBLjdPRERERERERERERKQVxrrcuEwm0+XmiYiIiIiIiIiIiDRWUMD8JRV7q2T58+fPkZeXp5IUr1atGgDg5MmTsLW1fZs/QURERERERERERESkcxoly8+fP4+ZM2fi8ePHSstlMhkMDAwQHh4OALC3t3/7CImIiIiIiIiIiIiIdEyjZPncuXNRp04drF69GpaWltqOiYiIiIiIiIiIiIioTGmULH/y5AnWr1+PmjVrajseIiIiIiIiIiIiIqIyZ6jJhxo1aoTr169rOxYiIiIiIiIiIiIionKh0ZXljRs3xpw5c3D69Gm4uLjAxMREaf3YsWO1EhwRERERERERERGRrshksvIOgSoQjZLlFy5cQEBAAJKTk5GcnKy0zsDAQCuBERERERERERERERGVFY2S5Zs3b9Z2HERERERERERERERE5UajZDkAhIWFYcOGDYiLi0N+fj7c3NwwaNAgNGnSRJvxvTWJVIqlIRtx9tIVCAQCDOzdHR/27q62bFTcPSxetR5x8Ylwda6BiaOGw8fTHYD8loxft+/G4RN/I0csQeN6tfHVyM9ha2NdltXRqtiYGKwIDkb8/ftwdnbG2HHj4OXlVWr5/fv2Yc+ePcjOzkbr1q0RNGoUTE1NAQBSqRSrVq7EhQsXIBAI0K9fP/Tt16+sqvLWpFIpgletwoULFyEQCNC/X1/069tXbdmY2FisWBGM+/HxcHZ2xpdjx6htt9+3b8fDR48wacIEXYevE1KpFCtWrcH5i5cgFAjQv29v9O/bR23ZmNhYLAtejfvx9+Hi7Iwvx4yGt5cnACA/Px+/btqC43+dhFgiQeOGDTAmaATs7OzKsjpawf1EPfYlynjeUS82NgYrVyxDfPx9ODu7YMzYL+Hp5V1q+QP792LPnl3Iyc5Gq9ZtMDJojGI/SUpKwtqQVbh96xYEQgFat26LT4d+DoFAUFbV0YrY2BgEr1hR2CbOGDP2y5cfO/v3Ye+e3cjOzkar1q0RFDRa0SZFcnOlGP/lOASNGo06derqugpaw/5VlVQqxYrVITh38RKEAiH69+mFAX17qy0bExuHZStX4158PFycnTF+TBC8PT1Vyp05fwHzfvgJJw7t123wOpYQF4EtIfPxMD4GVWu6Y0jQt3Dx8H/l5zatmgtb+0roOTBIsSw9NQVb1y5A+O3LsLS2RWD/4WjZvqcuw9cqA4EAzl9Ngl2bdiiQSvB0+zY83fm72rK2rdui+hdBEFSqjOyYaCQuX4zs6CgInJxQZ8c+tZ+JGDcKmbdv6rAGusGxiTKpVIqVq1Yp1eFlfWzwihWKPnbc2LGl9rGPHj3CRD3tYyXSXPz46y6cunILQoEJBge2x+DA9i/9zM2IWMxavQUHls1SLJPJZNhy+BR2nziH9KwctGtUB5OH9oe5qVDXVdAZQ4EJWl3ei7vj5yLl7BW1Zazr+SFg5RxYB3gjIywGd8bMQvq/oYr11T4MhPecr2BatRKeHz+P20HfITdZVFZV0AqOTYjeXRo94PPEiRP44IMPIJPJ0LdvX/Tt2xcGBgb4/PPP8ddff2k7xrey+tetiIyJw5K53+HrkZ/j1+17cPrCPyrlcsRiTPl+IerU8sXaxQsQ4OuNqXMXIkcsBgD8cewkDp/4GzMmjMWKBbORJBLhx+CQsq6O1ojFYsycORMBtWph2fLl8PP3x+xZsyAurG9J58+fx9atWzF23DgsWLAAERER2Lhxo2L9hvXrER0djQU//IAxY8Zg69atOH/uXFlV562t37AB0dEx+GHBfIwdMxpbt27DufPnVcqJxWJ8N3MWAgJqYcWypfD388PM2bNV2u3v06execvWsgpfJ9Zt+AXRMTH4cf48jB0dhC3btuPs+Qsq5XLEYsyY9T1q1/LHyqVL4O/nh+9mf684dnbs2oPTZ89h+rRvsHzxT8jIyMTCRUvKujpawf1EFfsSVTzvqBKLczB75gzUCqiNpctWwtfPH7NnfwexOEdt+Qvnz2Hb1s0YO3Y8/rfgR0RGROCXjesByL+ULpg/FxKJBAt/WoRvpnyLK1f+wZbNv5Zhjd6eWCzGrJnfoVZAAJYuWwE/P3/Mnj2z1GPnwvnz2LZ1C8aO/RLzF/xQ2CYblMpIpVIsXPgD4uPjy6IKWsX+VdXajb8iKjoWP/1vLsaNGoktv+/A2fMXVcrliMWYPnsuAmr5Y+XSRfD39cWM2fMUfUmRzMxMrApZX1bh64xEnIPl876El199zPh5Czx962L5/8ZDUkp/UuTPfb/i3F/KCWGZTIZVCydClPwUk75fiw8/n4Sdvy7Gv/+c1GUVtKrGqLGw8PFF1NdjkbDkZ1QbOgx2bd9TKWfq6gb37+bgydZNCBv2CXJiouG5cBEMhUJInz3DzT6BSq/kv44jKzwMWaF3yqFWb4djE1XyPjYaPyxYoKhDaX3szJkzUSsgAMuXLYO/nx9mqeljT58+jS1btpRV+DqxfNsBhMclYPX0sZjy2QCs33sUJy/fKLV8TMIjTFm2UWVe432nLmLdnqMY/WEPrJ/9FZ6LUjEj+Dddh68zhkIB6m9ZDKuA0i9oMDI3Q+ODayE6fw3nm/aF6NINND4QAiNzMwCATePaqLP2f4ieF4wLrT6EiZ016m5YUFZV0BqOTYjeXRoly5ctW4ZJkyZh8eLFGDJkCIYOHYqlS5di0qRJWLFihbZj1FiOWIzDJ05h3PBP4e3hhjbNm+Cjvj2w78gxlbKnzsuvnh01dDBca1bHuOGfwszMTJHg+Of6DbRv3Rz1Avzh7lITH/XpiX9v3y3rKmnN2TNnIBQKMWz4cDg7O2PkyJEwMzPDuVIGfgcOHECv3r3RtGlTePv4YNy4cThx/DjEYjHEYjGOHTuGkUFB8PT0RIuWLdF/wAD88ccfZVwrzYjFYvx57DiCRo6Al6cnWrZogf79++PgH4dUyp45exZCoQDDhw2Ds7MzgkaOgJmZOc4Wtlt+fj5WBK/EkqXLULVq1bKuitbkiMU4evwERo34Al6eHmjVojkG9O+Lg4cOq5Q9c/YcBAIBvhj2GZyda2LUiOEwMzfDuXPyxHp+QT5GfjEMdQIC4OLsjN49uyM0LKysq/TWuJ+ox75EGc876p09ewYCoQCfD/sCNZ2dMWLkKJiZmZWabDh4YB969uqDJk2bwdvbB2PGjcdfJ45BLBbjwYNEREaE46uvJ8HFxRUBAbUxePCnOH367zKu1duRt4kQw4bJj50RI4NgbmaGc+fOqi1/4MB+9OrVG02aNoW3tw/GjvsSJ04cV3wRS0iIx4QJX+HJ48dlWQ2tYP+qSn4e/gujRwwrPA83wwf9+uCA2vPweQgEAoz4fChcatbE6BHDYGZmpvID99qNv6FqVaeyqoLOXL1wDCZCIfp/+hWq1nDHh59PgqmZOa5dPKG2fE52Jlb/OBlH9/0Ke0fl+sfHhiM28ha++Ho+nN19UbdRG3TpPRTH9m8qi6q8NUNTU1QK7InEFUuQHR2F1HNn8OT3Lajcp79KWZvGTZFzLw7Jx45C8ughHqxdDYGDI0xd3YCCAuSlpChewqrVYdemHe7N/x6y/PxyqNnb4dhEWVEdgkaOhGdhHzugf3+1dZD3sUJFH1uy7eR9bDCWLF2q532sBAf+voSJn/SDr1tNvNe4LoZ074idx9XvI3tPXsCw2UvgYGOlsm7HsbMYFNgenVs0hEeNqpgdNBjnb4Ti/qOnuq6G1ln6eaDFhZ0w93B+abmqH3RDQY4E4VN+RGZEHMIm/A/5GVmo2r8LAMB19GA82n0UD7ccQMadSNwc+g0qd20LM9caZVENreDYhOjdplGyPDExEe+9p3rFwnvvvYd79+69dVDaEnsvHvl5+Qjw9VEsq+3ng7CoGBQUFCiVDYuMRm0/H8UDSg0MDFDbzxuhkdEAAGsrK1y6dgPPk1MgkUhx8twFeLq7llldtC0iIgL+tWop1dff3x8R4eEqZfPz8xEdFYWAgADFMl8/P+Tm5uLevXuIi4tDXl4e/Pz8FOtr1aqFyMhIlXauiIri91eK319t/BEREajlX7Ld/BAeEQEAyMnJwb1797B0yWL4+fmWXSW0LC7uXmGbFNchwN8fEZFRKm0SHhGJgFr+Sm1Sy88PYYVtMuTjj9CqRXMAgCg1FUePnUCd2rXLqCbaw/1EPfYlynjeUS8yIhz+/gEl9pNaiIhQ/eEsPz8f0dFRCAgo7id8fYv2kzjY2dljztz5KlM5ZWdl6bYSWqaun/Dz90dERCnHzkvaBADu3LmDOnXq4mc9vHOH/auquHv31ZyH/RARFa16Ho6MRIC/n/J52N8X4RGRijK37tzFrTt38fEHqklUfRMXdQeevvWU6uvhWw9xkbfVlk96+gi5uRJ89/M2OFaprrTu+dMHsLK2QyWn4gRODVcvxMeGIy8vV3eV0BIzDy8YGBkh827x1d+Zd27Bwr8WUNg+RfLS02Dm5g7LgDqAgQEcuwUiLzMTkocPVbZbY+QoJB06CHGC/t2lAnBsUtKb1EHex/qrtN2Lfez9e/ewdMkSpe3pm6iEh8jLz0cdbzfFsno+7giNiVf7/3rxZhhmBQ3GR11VcyAPnyUhwMNF8d7RzgZ2Vpa4E31fJ7Hrkn2bJkg+fRkXWn340nJ2Tesi5eJ1pWUpl/6FbbN6AADbJnWRcu6aYp34wRPkJDyCXVP9mR6OY5N3j6xAxtcbvv7LNEqWe3h44OxZ1Sufzpw5g+rVq6v5RPlIFqXCxtoKJibFU7Pb2dpCKs1FekamSllHe+Uv3na2NnielAIA+PTDvjAyMkL/z0ej68ChuB0agZkTv9R9JXQkJSUFDvb2SstsbW2RlJSkUjYrKwtSqRQODg6KZUZGRrC2tkZSUhJSUlJgY2MDExMTpW1JpVJkpKfrrhJakpIigo2NtVL8doXxp2dkqJR1cFBuN7sX2s3S0hKLF/0Mdzc36LMUkQg21q/ZJiKRyr4kb5NkpWWbtmzDh4M+QWhYGEYO+1x3wesI9xP12Jco43lHvZSUFKX/dwCwtbV76X5ir2Y/SU5KgqWlJRo2bKRYV1BQgEN/HEDdevV1VwEdEKWkKNUR0KxNisoHBnbHiBEjVeYw1wfsX1WlpKSonIdt7d6sTZ4XnoelublYGrwK40aNgFDP5vVXJ02UBFv7SkrLrG3sIUp+prZ8TTdvfDl9ORwrV1NZZ23rgOzsDEgkxVO4iJKeID8/DznZmSrlKxoTBwfkpaVBlpenWJYrSoGhUAhjaxulsimn/kLqpQvwXRmChn+dRY1R4xA361vkZyrvT5YBdWBRqzYeb9WPq+vV4dhE2cvqoNqfqDs3KfexixYtgpue97HJqemwsbKAiXHxeM3exgqS3FykZar++P7zxC/Qvon6RK+DjRWeidIU73PEEqRlZSE1o+L3ISUlhPyO8EkLUJCjfsqiIkKnShA/Uu5zpU+TYVZdfveOadXKkJRYL3mWDNPq+nN3E8cmRO82jZLl48aNw8KFCzFp0iRs3rwZmzdvxsSJE/Hjjz9i3Lhx2o5RY2KJRKlzAwBBYQJDmqt8tYhETVkTYxPkFpZ78uw5TAUCLJgxGcvmz0IlRwcsXLFGh9Hrltr6mhTXt2TZovXqykskEhirWQdA7fYqGrFEAhPj14v/TdpNn5VWT0DzNunQvh2Cly5C/Xp1MfW7WcjKztZB5LrD/UQ99iXKeN5R7832E7FivWp5qUr5XzauR2xsDIZ8MlR7AZcBbR47+o79qyr1fYn6NlFX9sU22bp9Jzw9PNCogX79oFQaqUSs5lwhQF6eav/wKu5eAbC1q4Tf1/8IiTgHzx4n4MQf8vlk819IQFdUhqamKCjRLxZI5f/vBgLlNjK2toGJvQPil/yM8FHDkXzsKFynzICxrfKPto49eiH17GnkJj3XbfA6xLGJMolEopQUBtjHiiVSxfisSFEbSXPf7Njv2KwBfj1wAvcePoFEmoslW+TPRsjL078pjF6XkbkZCiQl+h6JFIZCQeF605eu1wccmxC924xfXUTVe++9h3Xr1mHbtm34/fffIRQK4ebmhm3btqFOnTrajlFjAoFApYMqOvmZCpWfTi0wUS2bm5cLoVAImUyG+UtXYdTQQWjRuCEAYM7k8fjgi3EIi4yGv0/pT1avKHZs344dO3Yo3vv4+KjWN1de35JK+3JWVL6goAB5atYBgFAPrnATCEyQm6c+/pL7iYlA9aRXWrvpM4Gak7vi//R1jh01bVK9mvyKrm8mfo2PP/0MFy5cwvudOmg7dJ3hfiLHvuTleN6R27njd+zc8bvivbeP7+vvJ4VXvqovr7wf/LJxPQ7s34spU6fD1bViX62zY8d27NyxXfHe543a5OXHjr5j/6pKfV9SynlYTdmiNrl3Px5H/jyOtcHLdBuwDh3evQFH9xY/bNHNK0DNuUIKgeDNzxMmAiFGTvoRIYumYNzg1rC2tkfnPp9g5y+LYWpm8dax65pMKoWhiXLyybCwvygQS5SW1wgajZx7sXi+fw8AIP7nHxCw6Xc4dg3Ek98LH9RoZATblq1xb/73ug9eizg2eTmBQIDcEj/+lNbHvqw/+S8RmJioJMWL2sj0DRO6w/t0xqNnSfjwmwUwNjJE3w4t4e1SAxZm+rF/aKJALFFJfBsKBcjPll/wkF/a+pyXP4i5IuHYhOjdplGyHACaN2+O5s2bazMWratkb4e09Azk5efD2MgIAJAiSoVQIIClhblSWUcHO6SkpiotSxGlwcHeFqlp6XiWlAwPt+K5yCpXcoSNtRWePE+q8EkLAOgWGIjWbdoo3u/atQsikUipjEgkgn2JWxYBwMraGgKBACKRCDVr1gQgn98vPT0d9vb2kMlkSEtLQ35+PowK21kkEkEoFMLCouJ/0XB0cEBaWvprxe/o4IAUlXZLVdtu+szBwQFp6cptkiISQSgUwLJEmzg42Ku0SUqqCPaF00v8c+UqPN3d4egov6VTIBCgqpMT0vTk1tUi3E/k2Je8HM87cl27BaJV6+L9ZPeunRCJUpTKiEQp6vcTqxf3E/kDpor2E7sXyq9ZvRJHDv+BiZOnoGWr1jqqifZ06xaI1q9ok9TSjh1Fm6SoPXb0HftXVY5qzsMiUara87CjmvOwSJQKB3s7nL94CekZGfjkiyAAUMyz2qP/QHw1ZhQ6vNe2DGrzdtp17o/GLTsp3v+57zekpSpP9ZaemgwbO0eNtu/mVQs/rDmENFESLK1tEXbzH1ha28LUzPzVHy5n0ufPYWxjAxgZAYUP4jSxd0C+WKwyvYq5ty+e7dlVvEAmQ3ZsDAROxdMiWNYKgIGxMdKvXSmT+LWFY5OXc3BweO06ODg4vHbb6bNK9jZIy8hSGq8lp6ZDKDCBlbnZG23LzFSIBeM/R2a2PBFsaW6G94O+RdVK/602e5H40VMInZT7XKGTI8RP5FOviB+qWV/FEZLH+nPHCscmRO+2156GZdq0acjMzFT8+2WvisLT3RVGxkYIK3xYGgDcCY+Ar5cHDA2Vq+7v44W7EVGQyeST1MtkMtwNj4S/txesrCwhMDFBfGLxA3BS09ORnpGBqlUql01l3pKVlRWqVaumePn5+iIsPFypvmFhYfDxVX3ghKGhIby8vREaGqpYFh4eDmNjY7i5ucHd3R3GxsZKD80JDQ2Fl5eXSjtXREXxFz2AAwDuhobBW038vr6+CA9TbrfQsDD4+fy3HtThoWiT4oeD3Q1T3yZ+vj4IC48osS+Fw6/wAYdrN2zEiVOnFOWzs7Px4OEjONfUn6ehA9xPirAveTmed+SsrKxRrVp1xcvXzw/hYWFKdQ0PC4OPj+rDwQwNDeHl5Y2w0LuKZeHhYYX7iTsAYNvWzTh65BC+mfot2rZVfdhWRVTy2JG3ScljJxS+L20TdceOe5nVQVfYv6rycHNTPQ+X0iZ+Pj4IC49UbpPwcPj6+KBXj0BsXLMSa5YvwZrlSzBh3BgAwJrlS9C8aZOyq9BbsLCyQeWqzoqXu09txEbcUqpvTMRNuHu/+cPDszLSsPDbz5GZkQobO0cYGRnj9vVz8KnV6NUfrgByYqIgy8+HpX8txTLL2nWRHREOyJQfvJWblARTV1elZaY1nSF5/Fjx3sKvFrKjIiCTvvmUNuWJY5OXU9fHllYHeR8bptJ2vj4++C/xcakBYyMj3H3hIZw3I+Pg7+78xv+vy7cdwKGzl2FpbgZLczOExsYjMztH6eGh/zWiy7dg10x5ai+75g2QevkWACD1yi3YtWyoWGdawwlmNatCVLheH3BsQvRu048zvIZMhUJ0ea8tFq9ej/DoWJz75yp27D+E/j26ApA/XE1SOJdWuxZNkZmVjRXrf8P9hAdYsf435EgkeK9VMxgbGaFLh7ZY9csW3AoNR1x8Iv63eCX8vb3g66mfX1JbtWqFrMxMhISEICE+HiEhIRCLxWhTeFWGRCJBSkrxFW/dAwOxZ/duXLx4EVGRkVgZHIwuXbrA1NQUpqam6NCxI4KDgxEVGYmLFy9i75496NW7dznV7s2YmpqiY4cOWBG8EpFRUbh48RL27N2LXr16ApA/6KZoPsNWrVohMysLa0LWIj4hAWtC1ha2W8W/qvFNmJoK0alDeyxbuQqRUdG4cOkf7N67H3169gAgf4hJUZu0btUSmVlZWL12PeITErB67XqIxRK0ad0KANAzMBC79+zDlavXcD8+AQt/XoxqVauicaOGpf79ioj7iXrsS5TxvKNeq1atkZWVibUhq5GQEI+1IashFosVVwJKJBKIXthPunXvgb17duHSxQuIiorEqpXL0blLV5iamiIxIQHbf9+K/gM+RC3/AIhSUhQvfdKqVavCNllT2CZrVNrkxWMnsHt37NmzG5cuXixskxXoXHjs6Dv2r6pMTYXo1P49LFu5RnEe3rXvAPr07A5AfrdX8Xm4BbKysrBq7QbEJyRi1doNEIslaNu6JaytrFC9WlXFy7HwAWTVq1WF+RtePVlRNGzeETlZGdix8Wc8SozDjo0/QyoWo1HL9wHI5zRPE6k+yFEdCysbiMXZ2L1pGZ4/eYBzJ/bhwqmD6Nz7U11WQWsKJBIk/XkELhO+gbmvH2xbtUGVDz/G093yKUmM7e1hIJBPA/D80AFU6t4L9u93gbB6DVQfMQqCKk5I/vOIYntmbu7IuX+/PKqiVRybKCvqY4ODgwv72IvYs3cvevfqBUB9HxsSEoL4hASVtvuvMBUKENimCRZs3InQ2HicvnobWw6fwsAu7QAASanpEL/mj0aOdtZYt+dPhMbGIzwuATNXbUa/jq1gY6kfdx68LmEVRxiayvuTJ3v+hImtNfwXT4elnwf8F0+HkYUZHu86CgCID/kd1Qf1Qs3P+sOqtg/q/fIjnh0+jZz7D8qzCm+EY5N3j6xAxtcbvv7LDGQy2RvX8OrVq6hXr57KQwykUinOnj2Ljh07ahTMk4gbGn3uZcQSCRav3oCzly7DwtwcA/v0wICe3QAAbXsNxNQvg9C1QzsAQHhUDBatXo/4Bw/h4eKMCaOHw9td/ouwRCrFhq07cOrcJUikUjSqWxvjR3wGWxtrrcdcxMm3PmLj4nS2/cjISASvWIHExES4urlh3Nix8PD0BACcOHECSxYvxpGjRxXld+7cif379iE3NxctW7bE6DFjFHPLisVirAwOxoULF2BhYYF+/fqhd58+Wo/Zw90d92JjtL5dsViM4JWrcL4w/v79+qJP4SC4S7dATPj6K7zfSX4LcGRkJJYHr0RiYiLcXF0xbtxYeHp4qGzz58WLAQCTJkzQerwvcvPwRHxM5KsLviGxWILlq1bh/IVLsLAwx4C+fdC3t3xQ/X5gT0z6arxizvGIyCgsX7kKCYkP4ObqivFjRynapKCgADt378WhI0eRlp6GBvXr48vRQXBwcNB6zADg4umjk30E0N/9xM3Dk31JCR7u7jo55wD6e95x8q2P6Nh4nWwbACIjI7AqeDkSExPg6uqGMePGw8NDvp/8deI4li75GYeOHFeU37VzOw7s34vc3Fy0aNkKo0aPg0AgwK6d2/HbrxvV/o0XP68NXh4uiIm9p9VtvigyMhIrg5fLjx1XN4wdN07RJidOHMfSJYtx+MifivI7d+7Agf37CtukJUaPHqs4dl4U2K0LFvywEHXq1NV6zJ4ebjwPl+Dm4YmE6PBXF3xD8vPwGpy7eAkW5ub4oF9v9C38kt6pe29M+mocOncsPg8vW7UGCYkP4O7qgvFjRsHTQ/WHtVu372DSt9/hxKH9Wo/3Rc5efjgbmqWz7d+Lvosta+bj8cN7qOHihcEjv4Wzu/wKvgunDuLX4NlYt/dflc/99N0X8KnVED0HBimWPXl4H5vX/A/3Y0LhWLk6+g4Zh7qNtJ8YbFPLAtfaan8KS0OhEM4TvoFdm3bIz8rCk+1b8awwWd7ozCXcWzBXkRB37NYDVQZ+DEGlSsiOiUbi8iXIjo5SbMvrx8XIjo7Gw3WrtR5nSY3OXOLYpAQPd3fExcZqfbtAUR+7UqkORX1s127dMOHrr9HphT52RXCwoo8dO26c2j52UWEfO1GHfay7hwfSrx/TybbFEil+2LgTp67chKW5GQZ3b4+Pu8rvVmv88ZeYOXIQerRtqvSZP85cxro9R3Fw+WzFsvyCAizdsg9Hz1+DoaEBurZqjHEf9VRM76Jt1g0747CJ7q/0D8yNxKUOQ5By9ori/a1hU/Fgk/wBpjaNa6P2yjmw9PVA+p1I3B0zC+k3i8+FNT7pA+9ZX8LE3gZJJy7gdtB3yE1J1VmsHJsocyscT9Lr6z9ed+ek/6rdy/TvIq7XpVGy3M/PDxcuXFCZgyksLAwDBw7E7du3NQpGV4kLfaXrZLk+0lWyXJ/pKlmur3SZLNdXuk6W6yNdJsv1la6T5fpI18lyfaSrZLk+01WyXJ/pOlmuj3SVLNdXuk6W6yNdJsv1lS6T5fqqrJLl+kRXyXJ9xmT5m2Oy/M39l5Plr/2Az23btuH777+HgYEBZDIZWrZsqbZcixYttBYcEREREREREREREVFZeO1k+ccffwwvLy8UFBTg008/xfLly2FjY6NYb2BgADMzM3h7e+skUCIiIiIiIiIiIiIiXXntZDkANG7cGABw8uRJVKtWDQYGBjoJioiIiIiIiIiIiIioLL1RsryIvb09fvvtN8TExCA/P1+xXCqVIiwsDEdfeFgKERERERERERERUUVUICso7xCoAjHU5EMzZszA2rVrkZOTg4MHDyI3NxcxMTE4fPgwAgMDtR0jEREREREREREREZFOaXRl+dmzZ7Fs2TK0aNEC0dHRGDp0KAICAvDDDz8gOjpa2zESEREREREREREREemURleWSyQSuLq6AgC8vLxw9+5dAMCHH36Ia9euaS04IiIiIiIiIiIiIqKyoFGy3MPDAxcvXgQgT5Zfv34dAJCRkQGJRKK96IiIiIiIiIiIiIiIyoBG07CMHTsW48ePR0FBAXr16oXAwEAEBQUhMjISrVu31naMREREREREREREREQ6pVGyvEOHDjh69CgKCgpQtWpVbNu2DQcOHECDBg0wZMgQbcdIREREREREREREpHWyAll5h0AViEbJ8jVr1iAwMBAuLi4AAF9fX/j6+mo1MCIiIiIiIiIiIiKisqLRnOWnT59G586d0a9fP2zcuBGPHz/WdlxERERERERERERERGVGo2T59u3bcfr0afTu3Rt///03OnXqhI8++gibN29GUlKStmMkIiIiIiIiIiIiItIpjZLlAFC5cmUMGTIEmzdvxtmzZ9GuXTssWbIEbdu21WZ8REREREREREREREQ6p9Gc5UUSEhJw7NgxHD9+HOHh4WjWrBkCAwO1FRsRERERERERERERUZnQKFkeHByM48ePIyYmBg0bNkS/fv3QuXNn2NnZaTs+IiIiIiIiIiIiIp2QFcjKOwSqQDRKlp87dw79+vVD165dUblyZW3HRERERERERERERERUpjRKlu/YsQMAcP/+fZw8eRIFBQVwc3ODp6enVoMjIiIiIiIiIiIiIioLGiXLMzIyMHXqVJw8eRI2NjbIz89HVlYWGjdujJUrV8LKykrbcRIRERERERERERER6YyhJh+aO3cunjx5giNHjuDy5cu4du0a/vjjD2RnZ2PBggXajpGIiIiIiIiIiIiISKc0SpafOnUKs2fPhru7u2KZp6cnZs6ciZMnT2otOCIiIiIiIiIiIiKisqDRNCxCoRCGhqp5dgMDA+Tn5791UERERERERERERES6JpPJyjsEqkA0urK8ffv2mDNnDhISEhTL7t+/j3nz5qFt27ZaC46IiIiIiIiIiIiIqCxodGX55MmTMWbMGHTu3BnW1tYAgPT0dLRu3RrfffedVgMkIiIiIiIiIiIiItI1jZLl1tbW2Lx5MyIiIhAXFwehUAg3NzelOcyJiIiIiIiIiIiIiPSFRsnyIg4ODrCxsVHM7fPo0SMAQLVq1d4+MiIiIiIiIiIiIiKiMqJRsvz8+fOYOXMmHj9+rLRcJpPBwMAA4eHhWgmOiIiIiIiIiIiIiKgsaJQsnzt3LurUqYPVq1fD0tJS2zERERERERERERER6VxBQUF5h0AViEbJ8idPnmD9+vWoWbOmtuMhIiIiIiIiIiIiIipzhpp8qFGjRrh+/bq2YyEiIiIiIiIiIiIiKhcaXVneuHFjzJkzB6dPn4aLiwtMTEyU1o8dO1YrwRERERERERERERERlQWNkuUXLlxAQEAAkpOTkZycrLTOwMBAK4EREREREREREREREZUVjZLlmzdv1nYcRERERERERERERETlRqNkOQAkJiZi27ZtiI+Px+zZs3H27Fm4ubmhYcOG2oyPiIiIiIiIiIiISCdkBbLyDoEqEI0e8Hn16lX07NkTDx8+xLlz5yCRSBAXF4dPP/0Ux48f13aMREREREREREREREQ6pVGy/KeffsLEiROxfPlyGBvLL07/5ptvMGnSJCxfvlyrARIRERERERERERER6ZpGyfKoqCi0bdtWZXmHDh2QkJDw1kEREREREREREREREZUljZLl1atXx507d1SWnz59GtWrV3/roIiIiIiIiIiIiIiIypKBTCZ741ns//rrL0yZMgUffPABtm7dii+++AIPHjzA4cOH8eOPP6Jbt266iJWIiIiIiIiIiIhIa7p/EVbeIeidQ+v8yzsEnTHW5EP//PMPtm7dio0bN8LLywsnT56Em5sbtm7dirp162ocTNLdSxp/9r/IMaA5HkapXsH/LqvuXZv7SQmOAc2RceVweYdRYVg1CcRhE5/yDqNCCcyNxL3YmPIOo0Jx8/BEfExkeYdRobh4+iAm9l55h1GheHq4IeX2ufIOo0Kxr9MamZf/KO8wKhTLpj2QEB1e3mFUKM5efngUebu8w6hQqvnUQVxsbHmHUWG4e3gg7d+/yjuMCsWmQUckBPUt7zAqFOc1exEa87i8w6hQanlW5bi+BDcPT37/KyEwl99z3pRMVlDeIVAFolGy/ODBgxg6dCh+/PFHbcdDRERERERERERERFTmNEqWDx06FHPmzMHQoUNRrVo1CIVCpfXVqlXTSnBERERERERERERERGVBo2T58uXLAQDnzhXfmmxgYACZTAYDAwOEh/NWVCIiIiIiIiIiIiLSHxoly0+ePKntOIiIiIiIiIiIiIjo/+zdd3xN9x/H8deVJUZChBAzISSIJPaIIkYbs1JVM9RW1N479qiRBKExatUWq7WpWXsnIcPWUhIiyJDc3x+pW9cNpT/JSZzP8/HI4yHnnPC+180Zn/M9n69QzH8qlhcsWPBj5xBCCCGEEEIIIYQQQgghFPOfiuVCCCGEEEIIIYQQQgiR2WmTtUpHEBlIFqUDCCGEEEIIIYQQQgghhBBKk2K5EEIIIYQQQgghhBBCCNWTYrkQQgghhBBCCCGEEEII1ZNiuRBCCCGEEEIIIYQQQgjVk2K5EEIIIYQQQgghhBBCCNUzVjqAEEIIIYQQQgghhBBCKEGbrFU6gshAZGS5EEIIIYQQQgghhBBCCNWTYrkQQgghhBBCCCGEEEII1fvgYnlQUBAJCQkGy58/f87y5cs/SighhBBCCCGEEEIIIYQQIj29V8/yqKgo4uLiABg+fDgODg7kzp1bb5uQkBBmzpyJt7f3x08phBBCCCGEEEIIIYQQQqSh9yqWnzx5kn79+qHRaNBqtbRo0UJvvVab0gi/adOmHz+hEEIIIYQQQgghhBBCCJHG3qtYXrNmTfbv309ycjL16tVj3bp1WFlZ6dZrNBrMzc0NRpsLIYQQQgghhBBCCCFERpWsTVY6gshA3qtYXqdOHbZu3YqtrS3NmzfHzs6OHDlypHU2IYQQQgghhBBCCCGEECJdvFexPDk5mSNHjlCtWjWCgoJo167dW0eR29raftSAQgghhBBCCCGEEEIIIURae69ieYcOHRg1ahQajQbAoGc5pPQt12g0hISEfNyEQgghhBBCCCGEEEIIIUQae69ieZ8+fejQoQNPnz6lbt26rF+/Xq9nuRBCCCGEEEIIIYQQQgiRmb1XsRzAwsICCwsL9u3bh62trW6UuRBCCCGEEEIIIYQQQgiR2b13sfyVYcOGvXehfPny5R8cSAghhBBCCCGEEEIIIdKDNlmrdASRgXxwsbxGjRoEBATw2WefUb58eUxMTAgODmbr1q00b96cfPnypUVOIYQQQgghhBBCCCGEECLNfHCx/OjRowwYMABvb2+95ZUqVWLdunX4+Ph8tHBCCCGEEEIIIYQQQgghRHrI8qE/cOnSJdzd3Q2WOzs7c+XKlY8SSgghhBBCCCGEEEIIIYRITx9cLC9TpgyLFi0iPj5etyw2Npa5c+dSsWLFjxpOCCGEEEIIIYQQQgghhEgPH9yGxcfHh65du1KjRg2KFi2KVqvlxo0b2NnZMW/evLTIKIQQQgghhBBCCCGEEEKkqQ8ulhcvXpydO3dy+PBhrl+/jrm5OcWLF6dq1appkU8IIYQQQgghhBBCCCHShDY5WekIIgP54GI5QFxcHO7u7tStW5fQ0FCOHDmCVqulWrVqHzufEEIIIYQQQgghhBBCCJHmPrhn+d69e/nss884c+YMN2/epG3btmzevJnvvvuOlStXpkVGIYQQQgghhBBCCCGEECJNfXCxfM6cOXz//fdUr16d9evXU6BAAXbs2MGsWbNYsmRJWmQUQgghhBBCCCGEEEIIIdLUBxfLb926haenJwD79u2jfv36ADg4OBAVFfVx0wkhhBBCCCGEEEIIIYQQ6eCDe5bb2tpy4sQJbGxsuH79Oh4eHgBs27aNYsWKfex8/7f4hARm/biCg7+fxszUlNbNvqB1U893/syFkGtM9P2R9Qtm6JZptVpWBf1C0O4DPHkai1MJO/p3bodd4YJp/RI+uoSEBOYGBHLo2O+YmZrSsnlTWjZvmuq2YRGRzJ6/iOs3blGsSGH69+pGyRLFdet/O3qcxctX8/BRFGWcSjGwT0/y58ubXi/lo5HPiaH4hESm/bSR/acvYmZiQvuGdWjXsHaq2x45H8z89b9w+/5DCubLQ88WntQqXxZIeU9+2rGfTfuO8yT2GaXtizDYuzn2BfOn46v5uLKYmuB+YhOX+04g6tDJVLexcHWi7LzxWJQtydPgcC71GkvM2Su69bbfNKLk+H5kLZCXv3Yf4WKP0SQ+ik6vl/DRJCQk4D9/PkePHsPU1JQWX3nxlZdXqtuGR0Tg5+fPjZs3KVKkCN/37oWDg4PBdj+vWcPde/cYNGBAWsdPEwkJCfjND+DIseOYmZrSwutLWng1T3Xb8IgI5vov4MbNGxQtUoTve31HSYcSACQlJbFs+Up2791HXHw8lSqUp1ePbuTOnTs9X85HExERjr+fHzdv3qBIkSL06v19qv//rwQFbWbTxg08f/4c95o16dHjO7Jmzaq3TWJiAn2/70OPnt9RrpxLWr+Ejyo+IZGZgas4eOIMZqamtGnagDZNPn/nz1wICcPHfzEb503VW16/Qx9in7/QW7ZvuT/ZzPXfr4wsPiGRacs3s093zKlFe8/aqW57+Hww8zfs1B1zvvvqC2qVLwO8OuYcYOP+4zyJfU5p+8IMaf9lpjzmJCQk4LdgIYePHcfM1IwWzZvxtdeXqW4bHhHJ3HkLuH7zJkWLFKFvrx6ULPHPvmTpilXs3rufuPg4KlUoT+/u3cidO1f6vZiPJCEhgTkBgRw6fgIzU1O++bIpLZs3SXXbsIjrzFrw2jnsd10p9fc5bJ2mX6f6M8P69eZzj1pplj8tJCQkMG/+fI4ePYqpqSlfffXVO4/D/n5+uuNwn96933ocvnfvHgMz6XE4PiGR6UvXcuDkecxMTWjXqC5tG9d758+cDw1n3ILlBM310S3TarX8uPEXth44xov4eKo4OzH425bktsiZ1i/h4zM2wap1V7K5VUObmEDMni083bvVYLN8A3zIWrKswfLYo/uIWjEPjI3J1bQN2SrVJIupGXFhV4heE0jS40fp8So+usiIMBb6z+LmzUgKFylGj14DKO5Q6q3bbwtaz5ZNa3n+/Bk13OvQpcf3mGXNyv49v+I/Z5rB9hqNho3bD6TlS/io5Lw+dXLtJ4T6fPDI8u+//55Ro0bRqVMnateujbOzM9OmTWPRokUMHjw4LTL+X+YtX0toxA18xw9lYDdvlqzbwoHjp966fcTN24ya6U+yVn8m3KDdB/h56076d27H4unjKJAvLwMnziIuPj6tX8JHF7B0BVfDIvhh4jj69uzK8p/X89vR4wbbvYiLY/j4yTiXdiJgznTKOJVi+PgpvIiLA+BySCgTZ8zh6y+bEDBnOiYmJkycPju9X85HIZ8TQ3PXbCPk+m0Chn/HsI5f8ePmXew9ecFgu7Bb9xg8dylNP6vM6kkD8apTjaG+P3Ht5l0ANu4/zspfDjLYuznLffpjm9eK72f8SFx8Qnq/pI8ii5kpbitnkbNsybduY5TNnEpbFxF95DRHqngRffwclbYsxCibOQCWlZwpt2gSYRP9Oer+DSa5LXBZPCW9XsJHFbh4MWFh4UydMpnevb5j1arVHD5yxGC7uLg4Ro8ZS9myZfCbO4fSTk6MGTeOuL/3J68cOHiQFStXpVf8NPHj4qWEhYczffJEen/Xg5Wr13DoyFGD7V7ExTFqrA/OZUozb85sSjs5MXqcj24fu3b9Rg4eOszI4UPwnTWDp09jmfZD5tzHxsXFMXbMaMqULcucuX44OZVm3LgxBv//rxw9coTVq1bSu/f3TJ4ylauhoSxdslhvm4SEBKZNm8rNmzfT4yV8dP4r1hMaeQP/sYMY1KUti9dvY//x02/dPvzmHUb8sIBkrVZv+YNH0cQ+f8EG/ylsX/SD7ss8q1lav4SPau6a7QRfv03AsB4M6+DFj5v3vP2Y4/sTTT+rxM8TB/BVnaoM8VvOtVv3ANh44Dgrfv2Nwe2bs2J8P2zzWtFnZiAvMuExZ9GSZVwLi2DGpAn06dmdlT+v5dCRYwbbvYiLY+S4CZQtU5p5c36gtKMjo8ZN1O1L1mzYxMFDhxk1bDB+P6TsS6bOypz7koClK7gaHsmsiWPp16MLP615+znsMJ/JlCvtxMLZ0yjjVJLhPv+cw278aZHeVyuvZtjky0uNKhXT+yX931KOw2FMnTKFXr16sWrVqrceh8eMGUOZsmXxnTuX0k5OjE3lOHzw4MFMPw+V76rNhETeYv6o7xnS6RsCN/3KvhNn37p9+K27DJsTiDZZf/+6ed8Rth44hk+vjiwaO4C/op8waVHmPEfJ/VUHTIuW4P7ssUT9vAjLRi0xL1/NYLuHAdO5M6ST7uuvBVPQJiYS+9tOACwbt8LctQqPlszmz5kj0GQxwrrHkPR+OR9FXNwLJo4dilMZZ2bOWYSjU1kmjRtGXNyLVLc/fvQ31q5eRo/eAxg/eTbXrgazfGkAADU+82Dxio26r0XL1lHAtiCNmn6Vni/p/ybn9Ybk2k89tMla+frAr0/ZBxfLGzZsyKFDh9i0aRMBASkHh6+//po9e/ZQo0YN3XZnzpwhIUHZC5MXcfFs23eIvp3aUMq+GLWqVKDtlw3Z+OveVLcP2n2A7iMmYWVpabDulwNHaN30C2pUdKWIbX4Gd/MmJjaWi6Fhaf0yPqoXcXH8snsfvbt9S8kS9tSsVoVvvmpG0PZfDbY9ePgoZqam9OjkTdHChejV9VuymWfltyMpFyXrNm+lXu3PaOLZgCKFCtKnWyceRUfz5ElMer+s/4t8Tgy9iItny8HfGdi+OY7FClGnYjnaN/Jg3R7Dk6Wdx89SqbQDrT7/jMI2eWlZ352KpUuw5+8ix/bDJ2nXsDY13cpQtEA+hndswZPYZ5y/dj29X9b/LYdTcaofXUe24kXeuV2Blg1JfhFPyNDpxIZGEjxgEklPn1GgxRcAFPuuHfc2/MrdlVt4eukq5zsOIZ9nLcyLFUqPl/HRxMXFsXPXbnp074ZDiRLUqF6dFi1asHXbdoNtfzt0CDMzU7p07kyRIkXo0b0b5ubZOHT4MJAy8tHPfx6z58ylQIEC6f1SPpoXcXH8unsPPbt1xaFEcdyrV+PrFl5s3b7DYNvfDh3G1NSUrp2/pUiRwvTs1gXzbOYcPpxSWE9KTqJ7186UK1uWokWK8GXTxlwJDk7vl/RRHDr0G6ZmZnTu3IUiRYrQrXsPspmbc/jwoVS337IliGbNvqRylSqULFmK3n2+Z8+e3bqLsFu3bjJgQD/+/OOP9HwZH82LuHi27jtM/29bUcq+KLWrlKddsy/YsHN/qttv3vMb3UdNwSqXhcG6G3f/wDq3JQVt8pInt6XuS6PRpPXL+GhexMcT9NsJBrVrhlOxQnhUdMa7UR3W7TW8yfTr8XNUKl2C1g1qUtjGmpb1alDRqTh7TqQcc7YdPk17z1p85laaogXyMrzDVzyJfc6FsBvp/Kr+Pyn7kr18163z3/uSqrT8qjlbUt2XHMHU1JRunTpStHBhvuvWGXNzc91NuuSkJHp06Uy5smUoWqTw3/uSkPR+Sf+3F3Fx7Nizjz5dv6Vk8ZRz2FZezdi8Y6fBtgcOH0s5h/22PUULF6J3l2/JZm6uK6xb5c6t+4qPT2DT9l8Y3LsHObJnT++X9X+Ji4tj165d9OjenRJ/H4e/btGCbdu2GWybchw20x2Hu3fvjrm5OYf1jsP+zJ4zJ5Mfh+PZeuAYAzu0wNGuCHUqudKucT3W70r9eLNp72G6jP0BK0vD/eux81eoX60C5Us7ULywLd5N6nPq8tW0fgkfncbUjOw16hK9bjGJtyN5cf4EMbuDyFnb8Cna5OexJMc8Tvl6GoNls7bE7A4i4VYEADmq1eHJltXEhwXz8o87PFq5ALNiDhjny3yfmaOHDmBmakaHzj0pVKQonbr1xjxbNo4dPpjq9ju2bKRxsxZUrFwdh5KO9Og9gH17fiU+Lg4zMzNyW+XRff12YA9arZb233ZL19f0/5DzekNy7SeEen1wsRzAysoKJycn3ff29vZYW1vrbdO1a1fu37///6X7P4XfuEXSyyScS/3zOFA5RweuhEWSnJxssP3vZy8yqk8XWjZuYLCud4dWNPjstbvvGg1arZZnz1O/85xRRVy/wcuXLynj+M/jZc6lHQm5Fm7wngRfDaNsaUfdBbdGo6GskyPBodcAuHApmJrVq+i2L5Dfhp8XL8AylZPNjEw+J4au3brHy6RkXByK6Za5lrLjSsRNg/eksXslerdsZPB3vGoJ0K91UzyrV/hnhQa0Woh9kfqI0ozM6rPKPDp4gqPu37xzu9xVXIg6dkZvWdTxs+Sq6gpArsouRB3+ZwRp3J0/eXHrHrmrZK42EpGRkbx8+ZLSrx0PypQpzdWrVw0+J6GhoZQpXUZvf1K6tBMhoaEAvHjxguvXrzNn9iycnBzT70V8ZJGR1/9+T/55DWVLlyb06jWD9yQk9Cply5TWe0/KODkR/Pd70r5Na9yrp+xPoh8/5tddeyjn7JxOr+TjSu3/36l0aUJDDQt2SUlJhIVdo2zZf16ro6MTiYmJXL8eCcClS5coV86FmZl0pH3YzdskJSXhXLKEbpmLYwmuhF1P/bhz7hKje3eiVaP6Butu3LlH4QI2aZo3rV279YfhMadkMS5H3DJ4P5q4V6RPasecF38fc1o1wbN6ed1yjSallcKbbWoyusi/z9f09yVOhF4LM9yXXL1K2dJO+vuS0o6EhKYU9dq3aYV79arAa/uSsoZtFjK6iOs3efkyiTKO/4zuSzmHNXxPgq9eS+UcthRX/j6Hfd3S1WspX86ZCq7l0vYFpIFXx2EnveNwmXcch0u/cRwurXccvnH9OnNmz9b7+zKbsFt3eZmURLmS9rplro7FuRJ+I9X967ELwYzt6U2bhnUM1lnmyM7Rc5d5EPWYuIQEdh07TclihdM0f1owKVQMjZEx8RH/FPrjI0IwLeaQspN8i+zV6mCUPScxuzenLNBoeLh0LnEhhk/9ZMma7aPnTmvXQoNxLOOs9zvh6FSWq6GGAxOSkpIIDwulTNl/ztVLOpbmZWIiN65H6G379GkMmzespl3HbpiYmKbti/iI5LzekFz7CaFeH9yz/H1ptcoPyX8Y/RhLixyYmPzzMq1yWZKQkMiTp7HkfqOoO3VYXwB27D9s8He5OOk/drNt728kJSVTzvHt/VYzoqiox1haWGBiYqJbljtXLhISEoh5+pRcr42WfhQVTbEi+ieEuXNbcv3mbWJjn/E0NpakpCSGjJlAxPWbOJUqQd+eXcmbJ0+6vZ6PQT4nhh4+iSFXzuyYGP/znuSxyEl84kuexD4nt0UO3XK7gvpFmog7f3LqShhfeaQU+VxL2eutDzp4gqTkJFxL2qXhK0gbtxb+/F7bmeXPy9PgcL1lCfcfkbNMyucga4F8xN97oLc+/sEjsmaynrpRUdFYWr7f/iQqKpqiRfVHZeTOlYsbf7fQyJEjB7N+mJk+wdNQVHT0e+9jo6KjKVYktffklt6y5StXs/LnNeTMkYPZMwz7YWYG0VFRFClaVG9Zrly5uXnzhsG2z549IyEhAavXjiVGRkZYWFjw8OFDABo1apymedPao+gnWOZ847hjaUFCYiJPnj4jt6V+P9xpQ3oDsOOA4UjrG3f+IC4+ge/GTufWvfuUtCtMv46tKGKbefYnDx//n8ec4HDdMcetlP6xJei3EyQlJ2e6Y05UVJTBviRX7g/dv+rvS35a9TMrf177974k8z3+/Sg6GkuLnG/sX1PO1wz3r48pVkR/xF7uXLm4fkv/Pbn/11/sO3QEv2mT0jZ8GomKisLS0lL/c/LW43AURQ32w7l0raxy5MjBDz/8kD7B09DD6CdYvrE/sbK0ID4xkSexzwz6jc8c2B2A7b8ZtvPp/FVDBs4IoHGvkRhlyUKeXBYs9hmUti8gDRhZ5iY5NgaSXuqWJcU8JoupGVmy50xZlwqLz5sTs2872vi/B7hotcSHXtTbJqdHI5KePiHhbuZriRYd/YjCRYrpLbPMZcWtm4ZPvz5/FktCQgK5rV4/NzEmp4Uljx7+pbftrh1bsLKyprp77bSInWbkvN6QXPsJoV7/aWR5ZhEfn4CJsYneslcnTokvX6b2I+/lyrUI/H9aQ5tmnuTJZJMjxcXH612cA7oDYmKi/nsSHx+Pqcmb758JiYmJup6P/ouWUK/2Z0waPYzExJeM9JmS6qiNjEw+J4bi4hP1LjIA3ecm4R3vyeOnsQzxXYaLQzHdBJ+vuxx+kzmrt9K+YR2sU2kn8KkwymZO8hv9cZPjE8hiZvr3+qzvXJ9ZxMXHG/7u6PYniXrL4+Pj9U6+X2375naZ3dteJ/z396SuR2385/yAm6sLw0aP5dnz52mQPG19yP9//N9zPHzKn5e4+ARM33Ysfvlhr/HmvT+JiX1Gx68aM21IL8xMTenj8wPPMtHTO3EJiZgYG+kte59jTvTTZwz2+wkXh2LU/nuCz9ddirjJ7NXb8G5YO9Mdc+JS+Z0xfcu+JLVtU/t9qVenNv6zZ+LmWo7ho8dlun1JquelbzmHTf09MTbY7pc9+ylZojilS2WuQQ2vxMfHp3K+pu7jcFyC4f7V9O/3KCHxw87r//jrEVlNTfhhcA8CxvQjX57cTFyY+fq5a0zN0L6xL331veaN87hXzEqWxSh3Hp4d2fPWv9fcpRIW9ZvxOGiVXiE+s0j5ndA/9zYxMeFlomEr2X/OTQy3T3xte61Wy97dO2jYJPVJMTMyOa//79Ry7SeEmnzSxXJTUxODi85Xxc+spv9tx3T5ajgDJsykqls5urRq/n9nTG+mpiYGFwqvDmpmb+ysTU1NSUh88/1LxMzMDCOjlI9OwwZ1aeBRC8eSJRgxsC+RN24RfNXwEdeMTD4nhsxMjA1uFLz63GQ1Tf2k+tGTp/SYsgCtVsu07zuSJYv+7uVi2A16z1hIdRdHenz1RdoEzyCS4+INTn6ymJmS9DyleJX0tvUvMlebgFR/d/7eZ2Q1059c0MTU8AQ6MTFlf/IpMU3lQuGffazZG9uavtd7UtDWlpIODgwZ2J+EhHiOpjKZXUazdu0avvL6UvcFhhdab/v/NzVN/cLsU/q8mJqaGBRtdJ+TDzzuzB7Zj+UzxlK5XGnKONgz7vuuJCQkcuS04WPyGZWpiTGJL5P0lv1zzEn9/Xj05Ck9pgagTdYyvY/3W445P1LDxZEeXp+nTfA0ZGpquH9IeNu+JJVtU9+XFKCUQwmGDuhHfEICR45l/H3J60xNUjkvfes5bGr74pdkfWO7347+Tv3an6VB2vRhamqayvla6sfh9/2cZHamJob711c33d78/38XrVbLuPnLadOoLjXLO+NSqjhT+nbm5OWrXA7PXPPuaBMT0LxxU+XV99qE+FR/Jlv5asRdPkvy89hU15u7VMa6yyCeHvyFZ0dTn+cpo9mwdiVtvvpC9wXoFbpTvk/E1Cyrwc+a/H0sSm17s9e2Dw+7yqOHf+H+mcfHjp/m5Lz+v1PLtZ8QapJmbVgygrxWuXkSE8vLpCSMjVJGLD2KfoKZqSk5sn94X7Wzl0MYMmUOlVzKMr5/D4MLs8zAOo8VT2JiSEpKwujv9yQq+vHf70l2g22jox/rLYuKfkye3LmxtLDA2NiYIoUK6tZZWuTE0iInfz18lOav42OSz4mhvLktefz0mf578iQGM1MTcv49q/frHkQ9pseUBQAsHPGd3iPzAKdDwun/QyBVnUsx+bv2mfI9+RBx9+5jll9/Hgez/NbE/Zny+F3c3VTW21gT/4f+Y5wZnXWePDx5or8/iY6OxszMjOwG+5M8REVH6y2Ljn6MlZVVuuVND3ny5EllHxuNmZnhPjZPHiuD9yTqcTRWVrkB+P3kKUrY22NtnfLIr6mpKQXy5+dJTMafRLlhw0bUrPlPAWrD+nVER0fpbfM4OjrV//+cOS0wNTUlOjqKwoVTWoElJSURExPzyXxe8lrl4snTN447j2MwMzUl5wced0xNTPRG25qZmlAgnzV/RUW/46cylnypHHMePnn69zHHsGjxIOoJPaamTDK/aETPVI85/WYtoWrZkkzq2S5THnOsU9mXREc/TnVfYp3KviQ6+jF53rUvsclPTMzTdHglH0/KOezT9zuHtbIiKpVzWKvcuXXfP/jrITdv36FGlYppnj2t5MmThydPnrzXcThPnjxEG3xOUt8PZ2b5rHLx5M1z2MdvP4d9m+iYWO4/isahyD/XOjZ5cpMrZ3b++CuKsiUyT2unpMdRZMlhAVmywN9PABtZ5CY5IZ7kF89S/ZmsZdx4sn1tquuyVaxBnm/7EntoN4/XL02z3B/b5w2bUqNmbd33mzf8zOM3z00eR+m1Wnnl1bnJ4+goChVOaWeUlPSSpzFP9LY/d+Ykpcu6kCNnToO/I6OT8/r/Ti3Xfp86rTZzdUgQaSvzXT18AAe7IhgZG3Hl2j+TblwMvYZTCbsPvnCKvHWHoVPnUtXNmQkDv8PYOHPeZyhhZ4exsbFukk6Ay8EhlHIoYfCelC7lwJXQq7r+81qtlsshV3FydMDIyIiSxe2JuH5Dt/2TJzE8iXlK/nx50+W1fCzyOTFUqmhBjI2ycDn8n/6D569dp4xdYYP35EVcPH1mLCJLFg2LRvYib25LvfXht/9g4KzFVC/nxJTe3hi/8aj9pyj6xAVyV3XTW5a7Wnken0gZ6fn45AVy1/hn0tOshfJjXrgA0Scyz0hQSJnc2djYWDeZD8DlK8GUdHAw+Jw4OjoSEhyitz+5EhyMU6nMO+lPaorr3pN/JtG6HJz6e+LkWIrgkFC99yQ4OASnvydgXrR4CXv279dt//z5c+7cvUeRwvp9eDOinDlzYmtrq/tydHIy+P8PDr6CYynDSeSyZMmCg0NJgq9c0S0LCQnB2NgYOzt7g+0zo5LFCmNkZMSVa5G6ZRdCw3AqXuyDjjtarZYWvYfr9TJ/ERfPnT8fUDQT9cEsWcQWY6MsXAr/p5/0W4858fH0nvkjGo2GRSN6Gh5z7vzBgNlLqV7Okam92xu0d8ksiv99vqa3L3nL/tWpVCmCQ/TP166EhOBY6u99yZJl7Nl/QLf98+cvuHPvbqbYl7yuhH0xjI2N9J5gvBQcSimH4qmcw5bkSui1N85hQyld6p+5ZUKuhZHPOg82eTPXeevrUjsOX7lyBYe3HoeD39gPB+s+J5+KkkULYWxkxOWwf0Z/X7gaQWn7oh+0f7XIkQ1TE2Ou3/1Tt+xxTCxPnj6jYD7rd/xkxpN4+zrapJeY2f3z+Tcr4UTCjXBIZZ6xLNlzYpI3P/ERoQbrzEo5k+fbvjw9+CvRawPTNPfHljOnBQVsC+m+SjmWITTkit7vRGjwJUo6ljb42SxZslDCwZGQ4Eu6ZVdDgjE2NqaYXXHdsrCrwTg6Zb4JlEHO6/8farn2E0JNPulieVYzMzxr12DGwp8ICY/k0Ikz/Lx1J183qg/Ao+jHxMcb9iRLzfSAZeTLY0Wfjq15EvOUR9GPP+jnM4qsWc343KMWs+cvIvRaOEeOn2Td5m14NW0IpIyAfNWT7bMa1Yh99ox5Py7lxq3bzPtxKXFxcdR2rw7A182bsGnbrxw8coybt+8wbe48itsVw7Fk5ur7KJ8TQ1nNTGlUsxKTl27gSuQtDp6+xIpfDtLq85SRog8fxxCXkPKalmzbx50HjxjXrbVu3cPHMcQ+T3msbPLS9djkyUX/tk15/PSZbv2rn/9UmNlYkyVryqOHf27ciUkuC0rPGkkOp+KUnjUSo+zm/LH+VwBuLvyZgm2bUfjbFuR0LoXr0uk82HGQFzfuKPkSPljWrFmpV7cufv7zuHrtGseOHWfjpk00a9YUSJlM7NX+xN3dndhnzwhYuIibt24RsHARcXFxfPZZTSVfwkeXNasZ9et6MHfefK5eC+Po8d/ZsCmI5k2bACkTIr16T2q61yD22TMWLArk5q1bLFgUSFxcPJ/VdAegaaNGbNi4mZOnTnPj5i2mzZyFbYECVKpY4a3/fkbl7u7Os2exLFoYwK1bN1m0MIC4uDhqfpayT4mPjycq6p/RXY0aN2bjxg0cP3aMa9euMn+eH59/8QVZsxqOMs6MspqZ0bB2dab/uILg8Ov8dvIcq7fu5ptGdYGUp5vi3uO4odFoqF7emcB1Wzh7JZTI23cZ7xdIXqvcVHcrl9Yv46MxNzOlsXtFpixLOeYcOHOZFb/+RusGKfuHlGNGyuPeS7bu586DR4zv1kq37uHjGJ7qjjkbscmTiwFt3jzmZK4+qlmzmlHfow5z5wXo9iXrN2+hedOUyW1fP1+r6V6dZ8+eMX/RYm7eus38RYuJi4unVs0aADRt5Mn6TUGc+HtfMvWH2Sn7kgrlFXt9/0VWMzM+96jNrPk/EhoWzpHfT7IuaCtfNWkE6L8ntWpUJfbZM/wDU85h/QOXEhcfT233arq/7/rN2xTNZDcM3vTqOOzv7//3cfgYGzdt4stmzYDUj8MLFy7k5q1bLFy48O/jcOZtQ5OarGamNPysClMXryE44iYHT11g5fa9tPKsA8DDx0/e6xzU2MiIxrWqMnfVJs6GhBFx+x5j5i2jrIMdTvZF/vXnMxJtYgLPfj9I7jY9MC1aAnOXyljUb8rT/dsByGKRC81rvbhNChYhOSGepIf39f+iLFnI492b+GtXiNm1mSwWuXRfGGW+AULV3Gvx7FksSxb5c/vWDZYs8icuLk43+jw+Pp7oqH+emP6iUTO2bFzLieOHCbsWysL5s6j3eWPMXjs3uXXzOoWLFH3zn8oU5Lz+w6jx2k8INUmzo5qdnZ3BpA9K+L5ja2YsWk6fsdPIns2czt98Se2qKY9bNu3SjxG9OtPI49079UfRj7l0NWV2Y6/uA/XWvc/PZzQ9O3dkzoJFDBg5juzZstGhTUs+q14VgBbeXRnStxdf1KtD9mzZmDRmOLPnLWL7rr3YFyvClLEjMP/7hKBWjWo8jY1l4dIVPH78BBfnMkwcNRSNRqPky/tP5HNiaECbZkxZtoEek+eTI1tWunt9jkellOLLF33GMbZrK5p8Vpn9py4Sn5BIx3Fz9X6+sXslen/TiIthN1K+7zdBb/2rn/9U1LtzlAudh3Fn+WZePn3GqS+74zxvPEW6tCTm0lVONe1G0t/FnMe/n+fyd2MoOfZ7TKwsebjnKBd7jFb4Ffw33bp2wX/efIYOG0727Nlp364t7jVSCjRt2rVnQP9+NKhfn+zZsuEzbiy+/vP4dedO7IoVY4LP+E+m+Pm67l064zt/PoOHjyR79mx4t22Ne42Um4yt2ndgUL++NKhfl+zZsjFh7Gh8583nl527sCtWjInjx+j2sU0bNyQuLg7feQt4EvOE8m5u+IwZmSlbSmTLlp2x43yY5+/Lzp2/UqyYHeN9Juj+/w8d+o05s2ex45edANSqVZv79+/j7+9LYmIi1WvUoFOnLkq+hI+ub4eWTP9xJb3HzSR7NnO6fNOU2lVSboQ07jaQUd99S6M6Nf717+nV7muMjYwYO/dHYp+/oEJZR2aN6KubWySz6N+mKVOWbaT7lAByZMtKj+YN8KjkDMDn3/swtus3NK1ZiX2nU445Hcb76v18Y/eK9GnZkAt/H3Ma9Z+ot/7Vz2cmPbp0wnd+AINGjE45X2vbiprVU4q937T/lkH9+vB5vb/3JWNGMnd+AL/s2o19saJMGjf6n31Jo4bExcXjO38hT2KeUMHNFZ/RmXNf8l3nDsye/yP9R44jR7ZsdGz9DZ9VrwLAVx26MbTvd3xRN+UcdvLoYcye/+Pf57BFmTrmn3NYgOjHj8mZI8fb/qlMo2vXrvjPm8ewYcPInj077dq1o8bfx+G27doxoH9/6v99HB4/bhx+/v6647CPj88neRzu3/4rpi5eQ88Jc8iRzZxuLRpRp7IrAA17jmBMj3Y0rlXt3X8J0L99CwLWbWOM/zLiEhKp4uzI+F4dMuW1zuP1S8ndpjv5+o8nOe45T7at5cX5EwAUmr6ERz/58ex4yhMoRjlzoX1hOAGwadESGOfJi3GevBSavkRv3f1Zo4m/dsXgZzKybNmyM3LsFALmzWLPzm0ULVacUeOnkTVrSrueo4f24z9nGpt2HATAvVZdHtz/kwD/WSQmJlCtei28O3XX+zufPI4me47M14LlFTmvf39qvfYTQi00Wm0qz169ISgo6L3/wi+//PI/h3l4OXNNNJTWrMtW4+61S/++oYoULOksn5M3WJetxtOTO5SOkWHkrNyIHSaf1iPF/69GiVe5HhGudIwMxa54CW6GX/33DVWkaIlShEdkrknL0lqJ4nZEXTysdIwMxapcTWJPbFM6RoaSo0oTboWFKB0jQyni4MS9qxeVjpGh2JYqR2RExL9vqBL2xYvz5GzmmBgyvViWr8etHl5Kx8hQigRs4kr4H0rHyFDKlCgg5/VvsCteQq7/3tAoUa5zPlTdVieVjpDp7Fvz6Qx+fNN7jSz39fX9941IeRz4/ymWCyGEEEIIIYQQQgghhBBKeK9i+f7XJhgTQgghhBBCCCGEEEKIT0Fy8r823RAq8p96lkdFRXH9+nWSk5OBlNmPExISCA4Oplu3bh81oBBCCCGEEEIIIYQQQgiR1j64WL5u3Tp8fHx4+fIlGo2GVy3PNRoN5cqVk2K5EEIIIYQQQgghhBBCiEwny4f+QEBAAD169ODixYvkyZOHAwcOsH37dpycnKhfv35aZBRCCCGEEEIIIYQQQggh0tQHF8sfPHjAl19+iampKWXKlOH8+fOUKFGCESNGsH79+rTIKIQQQgghhBBCCCGEEEKkqQ8ulltZWREVFQWAvb09ISEhANjY2HD//v2Pm04IIYQQQgghhBBCCCGESAcf3LPc09OToUOHMmnSJGrWrMmQIUMoU6YMBw4coEiRImmRUQghhBBCCCGEEEIIIT46bXKy0hFEBvLBxfJBgwaRM2dOoqOjqVu3Ll999RVjx44lV65cTJkyJS0yCiGEEEIIIYQQQgghhBBp6oOL5efPn6d79+6YmJgA0L9/f/r3709CQgKHDh366AGFEEIIIYQQQgghhBBCiLT2wT3Lvb29efr0qcHy8PBwBgwY8FFCCSGEEEIIIYQQQgghhBDp6b1Glq9evRofHx80Gg1arZYaNWqkul316tU/ajghhBBCCCGEEEIIIYQQIj28V7G8TZs2ODg4kJycTIcOHfD19cXS0lK3XqPRYG5uTsmSJdMsqBBCCCGEEEIIIYQQQgiRVt67Z3mlSpUA2LdvH7a2tmg0GmJjY0lKStIrnAshhBBCCCGEEEIIIURmoE3WKh1BZCAfPMFnwYIF+emnnwgMDOThw4cAWFlZ0bp1a3r37v3RAwohhBBCCCGEEEIIIYQQae2Di+Xz5s1j5cqV9O3bFzc3N5KTkzl79iz+/v6YmprSrVu3tMgphBBCCCGEEEIIIYQQQqSZDy6Wr1u3jkmTJuHh4aFb5uTkhI2NDZMmTZJiuRBCCCGEEEIIIYQQQohMJ8uH/kBsbCzFihUzWG5nZ0dUVNTHyCSEEEIIIYQQQgghhBBCpKsPLpa7urqyZMkSkpOTdcuSkpJYvHgxzs7OHzWcEEIIIYQQQgghhBBCCJEePrgNy4gRI2jbti3Hjh2jTJkyAFy5coWEhAQCAwM/ekAhhBBCCCGEEEIIIYRIC1pt8r9vJFTjg0eWBwYGsmnTJr799lvy5MmDra0t3bp1Y926dcyfPz8tMgohhBBCCCGEEEIIIYQQaeq9RpafO3eOmzdvAhAUFESZMmXImTMnrq6uum3WrFnDkSNH0iSkEEIIIYQQQgghhBBCCJGW3qtYbm5ujp+fH1qtFq1WS2BgIFmy/DMoXaPRkC1bNgYNGpRmQYUQQgghhBBCCCGEEEKItPJexXJHR0f27dsHQPv27fH398fS0jJNgwkhhBBCCCGEEEIIIYQQ6eWDJ/hcsWJFWuQQQgghhBBCCCGEEEIIIRTzwcVyIYQQQgghhBBCCCGE+BRok7VKRxAZSJZ/30QIIYQQQgghhBBCCCGE+LRJsVwIIYQQQgghhBBCCCGE6kmxXAghhBBCCCGEEEIIIYTqSbFcCCGEEEIIIYQQQgghhOpJsVwIIYQQQgghhBBCCCGE6hkrHUAIIYQQQgghhBBCCCGUoE1OVjqCyEBkZLkQQgghhBBCCCGEEEIIxWi1Wjp16sSmTZveud3t27fp2LEjrq6uNGzYkCNHjuitP3bsGI0bN8bFxQVvb29u3779QTmkWC6EEEIIIYQQQgghhBBCEcnJyUycOJGjR4++czutVkuvXr2wtrZm48aNNGvWjN69e3Pv3j0A7t27R69evfDy8mLDhg1YWVnx3XffodVq3zuLFMuFEEIIIYQQQgghhBBCpLv79+/ToUMH9u/fj4WFxTu3/f3337l9+zY+Pj4UL16c7t274+rqysaNGwFYv349ZcuWpVOnTjg4ODBlyhTu3r3LyZMn3zuPFMuFEEIIIYQQQgghhBBCpLsrV65QoEABNm7cSM6cOd+57YULFyhdujTZsmXTLatQoQLnz5/Xra9YsaJunbm5OWXKlNGtfx8ywacQQgghhBBCCCGEEEKI95KQkEBCQoLeMlNTU0xNTT/47/Lw8MDDw+O9tv3rr7/Ily+f3rI8efLw559/vtf695GhiuXWZaspHSHDKVjSWekIGY58TgzlrNxI6QgZSqPEq0pHyHDsipdQOkKGU7REKaUjZDglitspHSHDsSpXU+kIGU6OKk2UjpDhFHFwUjpChmNbqpzSETIc++LFlY6QoViWr6d0hAynSMC7JzRTozIlCigdIcOR83pDcv0n/l9HttVSOkKm4+fnh7+/v96y3r1706dPH4Nt4+LiuH//fqp/T968efVGif+bFy9eGBTkTU1NdYX7f1v/PjJUsVwIIYQQQgghhBBCCCFExtW9e3e+/fZbvWVvG1V+4cIFvL29U103b9486tV7/xvoZmZmPH78WG9ZQkICWbNm1a1/szCekJDwr73QXyfFciGEEEIIIYQQQgghhBDv5UNarlSpUoWrVz/OEyA2NjaEh4frLXv48KGu9YqNjQ0PHz40WO/k9P5PgsoEn0IIIYQQQgghhBBCCCEyNBcXF65cuUJcXJxu2ZkzZ3BxcdGtP3PmjG7dixcvCA4O1q1/H1IsF0IIIYQQQgghhBBCCJHhREVF8ezZMwAqV65MgQIFGD58OGFhYSxatIiLFy/SokULAL766ivOnj3LokWLCAsLY/jw4RQqVIgqVaq8978nxXIhhBBCCCGEEEIIIYQQGU6LFi1YsmQJAEZGRsyfP5+//voLLy8vtm7dyrx587C1tQWgUKFC+Pn5sXHjRlq0aMHjx4+ZN28eGo3mvf89jVar1abJKxFCCCGEEEIIIYQQQgghMgkZWS6EEEIIIYQQQgghhBBC9aRYLoQQQgghhBBCCCGEEEL1pFguhBBCCCGEEEIIIYQQQvWkWC6EEEIIIYQQQgghhBBC9aRYLoQQQgghxCckKipK6QhCCCGEEEJkSlIs/1tYWBh79uzh+fPn3L59G61Wq3SkDCM+Pp6LFy/y9OlTpaNkKFFRUar+nJw6dSrVr9OnT3PhwgXu3bundMR05e3tTUxMjMHyqKgovLy8FEiUMUREROj2HYcPH2b8+PGsX79e4VTKkc+JEP/d06dPWbVqFRMnTiQqKooDBw5w69YtpWMpxsnJKdWi+N27d6lbt64CiZQl+9cUQUFB7/0l1GvVqlXEx8frLdu7dy+dO3emSZMmfP/991y8eFGhdBlLbGwswcHBJCQkEBsbq3QcRSUlJXHw4EGWLVtGTEwMFy5cUHWNICgoiISEBIPlz58/Z/ny5QokEkJ8LMZKB1DakydP6Nu3LydPngRg165dTJo0idu3b7No0SIKFiyocML0Fx4ezogRIxg2bBglSpTgm2++4fr165ibm7NgwQKqVq2qdMR0d//+faZOnUq3bt2wt7enc+fOnDlzhvz587NgwQIcHR2VjpjuRo4cyZ07d0hOTsbS0hKtVktMTAwajQaNRoNWq6VcuXL4+fmRL18+peOmiUOHDukuJE6dOkVAQADZsmXT2+bmzZvcvXtXiXiKW7t2LT4+PixdupQcOXLQs2dPqlatyp49e7h37x59+/ZVOmK6kM/Ju8XExLBkyRIuXbrEy5cvDW5CqvViY+vWrSxbtoxbt26xefNmli9fTt68eenWrZvS0RRx7do1OnToQIECBXR/3r17Nzt37mThwoVUrlxZ6YjpIigoiE2bNgGg1Wrp1asXJiYmets8ePCAvHnzKhEv3cn+1ZCvr6/e93/88QempqYULlwYExMTbt68SXx8PI6Ojnz55ZfKhExn06dPp3fv3nqfjZ9++omff/6Z+/fvY29vT7du3fj8888VTJm+Jk6cyBdffIGZmRmQsm8ZPXo033zzDXXr1iUkJIT27dvzww8/UK9ePYXTKiM+Pp4JEybo9rm7du1i2rRpvHjxglmzZmFpaalwwvT1xx9/0LlzZx4/fsyTJ0+oW7cugYGBnDt3jsWLF1OqVCmlI6aLqKgo4uLiABg+fDgODg7kzp1bb5uQkBBmzpyJt7e3EhGFEB+B6ovlEydOxNzcnN9//51atWoBMHnyZAYPHszEiRNZsGCBwgnT3/jx4ylcuDB2dnZs2LCBp0+fcuTIETZu3Mi0adPYvHmz0hHT3bhx43j+/Dm5cuVi06ZNXLt2jTVr1rB161YmTJjAqlWrlI6Y7po3b87BgweZOnUqdnZ2ANy+fZsRI0bg4eFBs2bNGDduHBMnTjS4cPtU2NnZERgYiFarRavVcvbsWb2ihUajIVu2bEyaNEnBlMoJDAxk2rRpVK5cmQkTJuDk5ERgYCCnTp2if//+qimWy+fk3YYMGcKlS5do0qQJOXLkUDpOhrB69Wrmz59Pjx49mDFjBgBly5Zl8uTJJCQk0Lt3b4UTpr+JEyfSunVrvv/+e9zc3ACYMmUKVlZWTJ8+nQ0bNiicMH3Ur1+fO3fuAHDy5ElcXV3Jnj273jbZsmWjfv36SsRLd7J/NbR//37dnxcsWMClS5eYPHkyuXLlAlJGyY4ZMwZra2uFEqa/pUuX0rlzZ12xfMmSJSxYsIDvvvsOe3t7QkJCGDVqFE+ePKFly5YKp00fb96YXrp0KUOHDqVdu3a6ZU5OTsyePVu1xfIZM2YQHh7O5s2badWqFQB9+vRh+PDhTJw4UXd8VgsfHx8qVKjAuHHjqFixIgCzZs1i5MiRTJw4kRUrViicMH2cPHmSfv366QaHtWjRQm/9q9+tpk2bKhFPCPGxaFWuSpUq2mvXrmm1Wq3W1dVVe+vWLa1Wq9WGhYVpK1SooGQ0xZQrV073PrRu3Vo7btw4rVar1d65c0dbrlw5JaMpxtXVVRsZGanVarXaTp06aYcNG6bVarXaW7duqfY9qVKlijYkJMRgeUhIiLZKlSparVarDQ8P11asWDG9oyli2LBh2qdPnyodI0NxdnbW3rt3T6vVarV16tTRBgQEaLXalN8bV1dXJaMpRj4nhpydnbUXLlxQOkaG8sUXX2gPHDig1Wr1z00OHjyo/eyzzxRMphxXV1ftzZs3dX9+9Z7cunVL6+LiomAy5WzatEkbFxendIwMQ/avhipUqKANDw83WB4REaF1c3NTIJEySpUqpX348KHue09PT21QUJDeNtu3b9fWrVs3vaMpxtHRUe89+eyzz7RXr17V20bN+1etVqutWbOm9uLFi1qtVv+4c/nyZW3lypWVjKaIihUr6q6HX38/rl+/rqrz+tjYWO3du3e1t2/f1pYqVUp78eJF7Z07d3Rfd+/e1UZFRSkdUwjxf1L9yHLAoF8bpDxeY2yszrcnZ86cPHz4EGNjY86fP0/37t2BlMeJ8uTJo3A6ZZiZmREfH8+TJ084ceIEP/zwAwB37txR3SN4r4uOjk51WVJSku57jUaTnpEUM2XKFOLi4li3bh0REREkJSVhb2+Pp6enwaN5amFvb8+2bduwsrLi3r171KtXj8TERJYsWaLK1kWQ8jkB+Ouvv1JtOWJra6tELEXZ2NiQJYtMofK6e/fuUbx4cYPlhQsX5vHjx+kfKAOwsrLi+vXrFClSRG/52bNnVXtu0rx5c27evMnly5dJTEw0WK+GFhuvz4/Sp08fYmJiUu1bDurcv+bMmZPg4GCD/cmZM2ewsrJSKFX6e9Ui8JW4uDhKly6tt42zszOPHj1K72iK0Wq1bN68mdKlS1OsWDE+++wzjh07RsmSJXXb7N27l6JFiyqYUlnPnj3D3NzcYHlycrLetY5aZM2alUePHumeKH7l+vXrqnoysE6dOmzduhVbW1uaN2+OnZ2dql6/EGqhzmrwaxo3bsykSZPw8fFBo9Hw/Plzfv/9d8aOHUvDhg2VjqcILy8vevbsiampKYUKFcLd3Z2ff/6Z6dOnq6Ztwpvq1atHv379yJo1K5aWltSuXZtffvmFyZMn07x5c6XjKaJFixYMHTqU/v37U7ZsWbRaLVeuXGHu3Lk0b96c6OhoZsyYoZo+steuXaNLly4YGRlRtmxZkpKS2LNnD35+fqxYsYISJUooHTHdDRs2jL59+/LkyRPatGlD8eLF8fHxYc+ePQQEBCgdTxFHjx5l9OjR/PHHH0DKxeqrxzg1Gg0hISEKJ0x/Q4YMYdy4cXz//fcULVrUoP+yGgtcLi4uBAUF0adPH90yrVbLkiVLKFeunILJlNO1a1dGjRpFjx490Gq1/P7772zevJmffvqJ/v37Kx1PEYGBgcycORNLS0uDViwajUYVxXIPDw+9fSjot5dQ+/61e/fujBw5khMnTuDk5IRWq+XSpUv8+uuvupu3aqDVapk3bx6Ojo4UK1aMKlWqsG3bNgYMGKDb5ueff1ZNz2WAdu3acezYMVasWMH9+/fRaDRkyZIFLy8vLCws+Pbbbzl16tQn20rxfXh4eDB79mymTZumW3b79m0mTpyoa9+qJq1atWLMmDEMGTIESCmSnzx5ktmzZ/P1118rnC79JCcnc+TIEapVq0ZQUBDt2rV768AoNZ7DCvGp0GjfHNamMgkJCcyaNYtVq1aRmJioO1H4+uuvGTZsGFmzZlU6oiL27NnD3bt3ady4MdbW1vz2228kJydTp04dpaMp4uXLl6xcuZK7d+/yzTffUKJECYKCgoiNjaVt27aqGT39Oq1WS0BAAD///DMPHjwAIF++fLRr147OnTtz7Ngx1q5dy5gxYz7ZCT5f5+3tTcGCBZkwYYLuqZSXL18yatQoHjx4wJIlSxROmP5Onz5NmTJlSEhI0D2B8fDhQywtLQ0Komrx+eef4+TkRM+ePVMdhaLGSaVTe8pA7QWua9eu0a1bN/LkyUNoaCjVqlXjxo0bxMXF8eOPP+Lk5KR0REXs37+fxYsX657esbOzo2PHjqod3FC9enU6d+5M586dlY6imA+ZuFON+1eAw4cPs2HDBiIiIgBwcHCgbdu2up7DarBs2TIiIiJ0X0+ePEGj0fD7779jaWnJF198wcOHD1m0aBHly5dXOm66i42NJTIyksjISN1NNl9fX+rUqYOzs7Oy4RT09OlTRowYwb59+0hOTsbCwoKnT5/i7u7OjBkzdPMAqMmKFStYvHgxf/75JwB58uShY8eOdO7cWTVPCfr5+TFv3rx3Xv+r+RxWiE+F6ovlr8TFxXH79m2SkpIoUqSI3mzpQoh3i46OxtjYmJw5cyodRTEuLi5s3rwZe3t7veURERG0aNGCc+fOKZRMOVWqVGH58uWqGqn1b1xcXNi+fTuFCxdWOkqG8W/FLrUWuOLj49m6dSuRkZG6wnDTpk0NRhCrxf3797GxsVE6RoZSoUIFgoKCZH8ixAd69OgRkZGRVKpUCYD169dTo0YNGQUqUnX79m0iIiJ4+fIldnZ2qbZJU5vnz5+TlJSk2mu/mJgYnj59St26dVm/fv1b21qp9RxWiE+B6tuwPH78mLFjx+Lg4EDv3r0BqFWrFuXLl8fHx0eVB4DTp08zceJEIiMjU+2BqcY7pBEREcyaNYvIyEgSEhIM1u/bt0+BVMpTe6/U1+XNm5dbt24ZFMtv3bql2uKWg4MDFy5ckGL5aypWrMiZM2ekuPWaVxcSR48eJSIiguTkZOzs7Khevbpqn0CAlLky1PRY87+pXbs25cuXp2HDhnh6eqqq3/LbNGnShNWrVzNkyBBVPuEG4OTkxJEjR8iTJw+Ojo7vfB/UeP4KsHXrVpYtW8atW7fYvHkzK1aswNramm7duikdTTF58uTRm+tA9rUiNadOndL9+dW5fFRUFNHR0ZiYmJA3b15V3WDx9/dPdblGo8HExIR8+fJRs2ZNVcwjYmFhgYWFBfv27cPW1la1x2AhPmWqH1net29fHj16xPjx43V3iUNCQpg8eTK2trZ6PcrU4vPPP8fBwYGWLVum2oZGLT2oX/fll1+SNWtWmjVrlup7osa+5f/WK1VtNxACAwNZtmwZffv21fUUvnDhAr6+vnz99deq7Pffq1cv9u/fT548eShUqBCmpqZ665cvX65QMuUEBASwcOFCatWqlWp/7lc3bdXkzz//5LvvvuP69evY2dmRlJTEzZs3sbW1ZenSpaoZTfyq9/L7UNv+FeDGjRvs3r2bnTt3cu3aNSpWrEijRo1o0KCBaifaHjRoEDt37iR37twUKlTIYH+ihn3syZMnKV++PMbGxpw4ceKdv0NqPH9dvXo18+fPp0ePHsyYMYPt27dz9uxZJk+eTPv27VV5zBEpXi8E/5tXI/DVpkGDBty5c4fk5GQsLS3RarXExMToJozVarWUK1cOPz8/VbScHDhwIL/88gv58+fXzVcVEhLCvXv3cHV15enTp/z5558EBgbi6uqqdNx00b59+/c+d1PDMVmIT4nqi+UVK1Zk7dq1Bo9ThYWF0bZtW06ePKlQMuW4ubmxadMmg5mu1czV1ZWNGzfKY3evkV6p+rRaLf7+/qxcuZInT54AYG1tTceOHenUqZNq+vi97m0jUF5R40V6+/bt37pOo9Go8kS6Z8+evHz5UnfzDVJaOw0ePJhs2bKpZnKxzZs36/5869YtfvrpJ1q3bo2zszMmJiYEBwezcuVKOnTowHfffadgUuXduXOHPXv2sHfvXq5cuUKVKlVYuHCh0rHSnexjxb/x9PRk6NCh1K5dGzc3N7Zu3UrhwoX57bffGDNmDL/99pvSEdNFUFDQe2+rlicjmzRpQnh4OKA/Ke6b1Nx3ecGCBRw8eJCpU6fqrotv377NiBEj8PDwoFmzZowbNw5AFecqAwcOJFu2bIwbNw4jIyMgZbLLSZMm8fz5c6ZMmUJAQAAHDx5kzZo1CqdNHwEBAQQEBPDZZ59Rvnx53fna1q1bad68ud5NFDkmC5G5qL4NS9asWfnzzz8NiqBRUVG6SfrUpkmTJuzYsUN26K/57LPPOHPmjBTLXxMfH0+DBg2UjpFhaDQa+vTpQ58+fXj06BFmZmapTuCoJq/vQ2JjY0lKSlLtCNBXVqxYoXSEDOf3339n7dq1ep+N3LlzM2jQINq2batgsvT1+hNKXl5eTJo0CU9PT92yunXr4uTkxJw5c1RfLDczM8PMzIzs2bOj0Wh48eKF0pEUIedp+v7t6Qw1PpFx7969VM9dCxcuzOPHj9M/kEK2bdvGsWPHsLCweGdrPI1Go5pi+caNGxkwYAB37txh7dq1mJmZKR0pw/npp59YtmyZ3gCywoULM3LkSDp27Mi3335L3759adWqlYIp08/+/fvZtGmTrlAOkCVLFtq1a4eXlxdTpkyhUaNGBAQEKJgyfR09epQBAwbg7e2tt7xSpUqsW7cOHx8fhZIJIf5f6qwGv8bLy4sRI0bQv39/ypQpA0BoaChz586lWbNmCqdTRpcuXWjRogWbNm2iYMGCBhceahz5OGzYMJo3b862bdtSfU+mTJmiUDLlSK9UGan0Pn766ScCAwN5+PAhAFZWVrRu3VrVRZ7g4GAWL16sN3Fj27ZtVdkiAMDS0lL3NMbrYmJiVNuz/Pr165QsWdJgeeHChf91QtRP1d27d9mzZw+7du3i4sWLODs74+npycSJE1Xx+PvbvNmPevny5eTNm1eV/aj79Omj9/3Lly+5ffs2mzZtUmUrNEiZVDooKEjvvdFqtSxZskTXMk4NFi9ezIQJEzhw4ACbNm0iV65cSkdSnKmpKbNmzaJly5bMmTOHoUOHKh0pQ4qOjk51WVJSku57tVwHWVtbc/r0aYOnz8+cOaP7nXr48KGqBgtdunSJ8ePHGyx3dnZm7NixCiQSQnwsqi+W9+3bF61Wy9SpU3UjLHLnzk379u1VeaEBKT0wraysqFevXqr9udVo9OjRZMmSBWtra9WcEP2b2NhYNmzYwPbt21XbK/V9H7lU00il182bN4+VK1fSt29f3NzcSE5O5uzZs/j7+2NqaqrKfeyePXvo378/DRo0wMvLi6SkJM6fP0+nTp2YM2cO9erVUzpiumvUqBGjRo1i3LhxODs7Ayn9/n18fGjYsKHC6ZRRoUIFJk+ezOTJk3U922/fvs3EiROpWbOmwumU8WpkvaenJzNnztRNDKtmb/ajBihbtiyTJ08mISFBdTcl3zZ/jIuLC0uWLFHlJI6jRo2iW7duHDx4kISEBMaPH8+NGzeIi4vjxx9/VDpeuho1ahRhYWFMnTqVqVOnKh0nQzA1NeWHH35QZdvR99GiRQuGDh1K//79dT26r1y5wty5c2nevDnR0dHMmDFDNYMd+vTpw8iRIzlz5gzOzs6692PHjh2MGTOG69evM3ToUBo1aqR01HRTpkwZFi1axPjx43VPZ8TGxjJ37lwqVqyocDohxP9D9T3LXxcVFYWJiQk5c+ZUOoqiXFxc2LRpk7QceY2Liws///wzpUuXVjpKhiG9Uv+b7du34+HhQbZs2ZSOkuZq1arF2LFj8fDw0Fu+d+9eJk2axIEDBxRKppzGjRvTokULOnbsqLd82bJlbN68mS1btigTTEEJCQmMGTOGrVu36vqmGhkZ8fXXXzN06FBV3rR98OAB33//PRcuXNCbVKxq1arMnj1blaMiIyMjsbe3VzpGhiL9qN/PzZs3adKkCRcvXlQ6iiLi4+PZtm0bERERuqeZmjZt+s52JJ+q+/fvExwcTJ06dZSOIjIBrVZLQEAAP//8Mw8ePAAgX758tGvXjs6dO3Ps2DHWrl3LmDFjVPOE0+nTp/n555+5du0aRkZGlChRgnbt2uHq6srFixc5f/48bdu21WvV8imLiIiga9euxMTEULRoUbRaLTdu3MDOzo558+aRP39+pSMKIf4jVRbLg4KCaNiwIaampv/aRkGNo0E7depEq1atpB/1a1q0aMGgQYOoWrWq0lFEJle+fHm2bNlC4cKFlY6S5ipUqMD69esNClwRERF4eXlx4cIFhZIpx8XFha1bt1K0aFG95Wov5kBK25UbN25gampKkSJFVHFD6d+EhYUREREBgIODg+pvYu/du5fAwEC9Fkbt2rVT5bkapOxPtm/fTuHChfWK5ZGRkTRv3lx1+9hTp04ZLHv27BkrVqzg8ePHbNy4UYFUyho+fDgjR440aIvw5MkTRo8erYpJCcW/8/b2xt/fHwsLC73lUVFRdOnShU2bNimULOOIjo7G2NhY9YPqhKGEhAQOHz7M9evXMTc3p3jx4lIzEOIToMo2LL6+vtSqVQtTU9N3niSqtXWCu7s7I0aMYPfu3RQuXNjgzrAaRwy3bt2aIUOG4OXlRaFChQwmf1XL5+T1i67hw4e/c1s19nF/H2q6P+nm5saSJUvw8fEhS5YsACQlJamuV+rrihcvzqFDh2jfvr3e8t9++01VbSVOnTqFm5sbxsbGBgWu+Ph4rly5ovu+UqVK6R0vQ3j58iUWFha63xWtVsv169cJCQlRZXuaNWvWMG3aNNq1a0e3bt10bZ3Gjx9PYmKiKltsSD9qfW/uVwFMTExwdnZm4sSJCiRSxrlz57h58yaQMkCoTJkyBsXyyMhIjhw5okQ8xaV2UwVSrvtMTEzImzcvtra26Zwq/R06dEh3g/7UqVMEBAQY3KS+efOmaufJeCUkJISwsDCSk5OBlH1sQkICwcHBqfaq/pS9ePGCtWvXEh4ertez/dX78euvvyqYTjlxcXG4u7tTt25dQkNDOXLkCFqtlmrVqikdTQjxf1BlsXz//v26P0+bNo1y5crJDOCvOXDgAE5OTty/f5/79+/rrVNrv+558+ZhbGzM1q1bDdap9aaKEP9m+PDhtG3blmPHjukmUL5y5QoJCQkEBgYqnE4Zffr0oU+fPly4cAEXFxcAzp8/z65du5g+fbrC6dJP+/btOXr0KHny5Em1wPWKRqMhJCQkHZNlDHv37mX06NG6uVRelzdvXlUWywMDAxk7dqze8bZevXo4ODgQEBCgymK59KPWFxoaqnSEDMHc3Bw/Pz+0Wi1arZbAwEDdDWtI2a9my5aNQYMGKZhSOSNHjuTOnTskJyfrtbnSaDRoNBq0Wi3lypXDz8/vk26tYWdnR2BgoO5zcvbsWb35h159TiZNmqRgSmX5+/vj7++PtbU1jx49wsbGhocPH5KUlET9+vWVjpfuRo0axfHjx6lWrRo7d+7E09OTmzdvcunSJVUOpoOU87VBgwYxf/58ChYsSNu2bcmfPz/z5s1j4MCBtGvXTumIQoj/SJVtWF5XpUoVli9fTqlSpZSOIkSmcv/+fd3Ec+L9vf6ovBpER0ezbds2IiMjMTMzw87OjiZNmqiyV+orx48fZ/Xq1UREROjek44dO6pyJKhInaenJ5UqVaJjx460bt2aRYsW8fjxYyZMmMB3332Hl5eX0hHTnZubG5s3b6ZYsWJ6y2/cuEHTpk1V28IoPj6erVu36rWmUWs/akgZ9Xn06FEiIiIwMTGhePHiVKlSRelYimnfvj3+/v5YWloqHSXDWLBgAQcPHmTq1KnY2dkBKRMojxgxAg8PD5o1a8a4ceOA95/IPbN7W7setatZsya9e/fmm2++wcPDg59++glLS0v69++Pk5OT6m44VapUiblz51K9enWaNm3K5MmTKVu2LFOnTuWPP/5g7ty5SkdMd40bN8bLy4tOnToxc+ZMDh48yPbt2zlw4AATJkzQG6QphMhcVDmy/HUODg5cuHBBiuVvCA4OZvHixXoXX23btlXNbN+pefDgAatWrdJNkGRvb8/XX39tcOGuFrVr16Z8+fI0bNgQT09PrKyslI4kMqDcuXPz2WefUbBgQZKTk7Gzs1NtEQdg4sSJeHt74+fnp3SUDKNu3bps3LjRYNLK+/fv8+WXX3L8+HFlgino9u3bLFy4kCJFilC2bFn++usv6tWrR5YsWZg+fboqi+VOTk4EBQXRr18/veWbN2+mRIkSyoTKAMzMzFQ5qj41V69epXfv3jx69IhixYrpJlorVqwYfn5+FCpUSOmI6W7FihWpLk9ISCAkJET3hJOa/PTTTyxbtkxXKAcoXLgwI0eOpGPHjnz77bf07duXVq1aKZgyfU2ZMoW4uDjWrVund53j6elJ7ty5lY6nmOjoaGrWrAmkHIPOnTtH06ZN6d+/P99//73qiuXx8fG6614HBwcuX75M2bJl+eabb1Q7gvrWrVt4enoCsG/fPr744gsg5f2JiopSMpoQ4v+k+mK5paUlY8aMwdfXl0KFCmFqaqq3fvny5QolU86ePXvo378/DRo0wMvLi6SkJM6fP0+nTp2YM2cO9erVUzpiujt9+jRdu3alVKlSuLq6kpSUxKlTp1i5ciVLliyhQoUKSkdMd7/++iu7d+9m48aNTJkyhYoVK9KoUSMaNGggI5gEkDJh47Bhwzhw4AAWFhYkJSXx7NkzKlWqxLx581Q5SdLWrVvp2LGj0jEUt3PnTn777TcA7t69i4+Pj0E7tLt37xrMmaEWFhYWvHjxAkh5VD40NJR69ephb2/PnTt3FE6njMGDB9OxY0dOnDih18IoNDSUgIAAhdMp4/Tp00ycOJHIyEgSExMN1quthdHYsWNxcXFh/PjxupuyMTExjBgxgtGjR7N06VKFE6a/c+fOMW7cOMLDw3U9l18xMjLi8uXLCiVTVnR0dKrLXu/DrKbWk9euXaNLly4YGRlRtmxZkpKS2LNnD35+fqxYsUK1NyRtbGy4ffs2tra2FC9enODgYJo2bUqOHDlUWQgtXrw4x44do0WLFjg4OHDmzBlatWrF06dPiY+PVzqeImxtbTlx4gQ2NjZcv34dDw8PALZt26baAXVCfCpU34bF398fSHls8/Hjx2g0Gr3RbWrsv9W4cWNatGhhUNBZtmwZmzdvZsuWLcoEU1CLFi2oVq0aAwcO1Fs+c+ZMTp8+zZo1axRKljHcuXOHPXv2sHfvXq5cuUKVKlVYuHCh0rEyJDW1YRkyZAgRERHMmDEDe3t7AMLDwxk2bBglS5Zk8uTJCidMf/Pnz+fcuXN07NgRW1tbgwKxGiYVA4iKimLGjBlAyshgT09PsmbNqrdNtmzZaNasmSrb0wwfPpybN2/i4+PD9evXmT59OnPmzGHXrl26LzWKiIhg3bp1em2d2rRpQ4ECBZSOpojPP/8cBwcHWrZsafD7A6juacBy5cqxZcsWvRHDkPK58fLy4sKFCwolU46Xlxf58+endevW9O3bl+nTp3P//n38/f0ZPXq0Kuc/mDlzJlu3bqV///6ULVsWrVbLlStXmDt3Lg0aNKBnz54MHz4cY2Nj3XXip87b25uCBQsyYcIEjI1TxtK9fPmSUaNG8eDBA5YsWaJwQmUEBASwYsUKJk+eTO7cuenYsSO9e/fm2LFjxMbGqu76b9++ffTt25cxY8ZQs2ZNGjVqROXKlbl69Squrq7Mnj1b6Yjp7pdffmHIkCEkJSVRq1YtAgICmDZtGmvWrMHf358aNWooHVEI8R+pfmR5z5498fX1Zf369bo7xDY2NrRt25Zu3bopnE4Zt2/fpk6dOgbL69Spw6xZsxRIpLywsDBmzpxpsLxFixZvfcRVTczMzDAzMyN79uxoNBrdiEg1OXXqFG5ubrqLjFcSEhI4dOiQ7omMGjVqYG5urkTEdLd//36WLl2qK5QDlChRgjFjxtC1a1cFkynnVf/Tw4cPA/+MXNNqtaqazNLKyoopU6YAULBgQTp37qya34v3MXLkSCZNmsTly5dp1qwZu3btokWLFmTLlk13k0GNihcvzvDhw3n69CkmJiapFojV5MGDBwQEBBgUh9XKxcWF48ePG7wfZ8+excnJSaFUygoLC2PGjBkUL16cMmXKYGJiQtu2bcmTJw8//vijKovlAwcOJHv27MyePZsHDx4AkC9fPtq1a0fnzp05duwYxsbGjBkzRuGk6efChQuMGzdO7xzW2NiYrl270qJFCwWTKatHjx7kz58fc3NzypUrx/Dhw1mzZg25cuVS5YCPunXr8uuvv5KcnEyBAgVYvXo1W7ZsoXz58u+crP1T1rBhQ6pWrcr9+/d1x5mvv/6azp07Y21trdvuzJkzODs7G3QxEEJkXKovlk+bNo1du3YxaNAgypYtS3JyMpcuXcLX15eEhARVjiwvXrw4hw4dMjjo/fbbbxQsWFChVMoqWLAgFy9eNHic6sKFC3oHQjW5e/cue/bsYdeuXVy8eBFnZ2c8PT2ZOHEi+fLlUzpeuvP29ubo0aMGvdvDwsIYMGCAbvI5tYxSgpSbKFmyZDFYrtFo9B51/tQdPXqUSpUqYWpqyr59+5SOkyG8fnOpSpUq72wFUKlSpXRMljEcPHiQIUOG6HrFzpw5k3HjxmFmZoaJiYnC6ZSRmJjIwoULWbNmDY8ePQIgf/78dOzYkQ4dOiicThlNmjRhx44dqjxXfeX1Y2rRokWZPHkyJ0+epFy5cmTJkoVr166xfft21fbTNTc317Wzsre35+rVq9SqVYty5cpx/fp1hdMpQ6PR0LNnT3r27El0dDTGxsZ6beFq1qyp61OtFnnz5uXWrVt6gxsgpR+zmueZAfjyyy91f/76669TnSOiW7duqrn+ef3JWEdHRxwdHQ22KV++PFu2bFHFU7SQMgDk9eu/N3+PALp27aqq90SIT4Hqi+WbN29m3rx5eo+qOjo6UrBgQQYNGqTKC5A+ffrQp08fLly4oNcXdNeuXUyfPl3hdMro0qULY8eOJTIyUtcS4MKFC6xYsYIBAwYonE4ZdevWxdHRkYYNGzJz5kxV3khZvXo1Pj4+aDQatFrtWx+1q169ejonyxg8PDwYP348M2fOpEiRIgDcuHGDiRMnUqtWLYXTpZ/evXvz66+/kj9/fry9vdmwYYOqJ8wCaN++PUePHiVPnjzvHI2kptH2rxs/fjxr167V+5zkyJFDwUTKmzBhAocPH2bQoEGULl2a5ORkLl68iK+vL48ePVLlsbhLly60aNGCTZs2UbBgQYMey2qYd+fEiRN637u5ufHo0SMOHDigW+bi4qLa3txVq1blhx9+YNSoUbi5ubFs2TJatmzJ/v37sbCwUDqeYm7evMnly5dT7fX/enFULVq1asWoUaPo27ev3nWOr6+vTCD8Hk6dOqXant2pUXmX31TJeyJE5qP6Yrm5uXmqo7QsLCxUNbHL6+rUqcOPP/7I6tWr+fnnn3V9QVevXq3K3rGQ0vMRYOXKlSxdulT3nkyaNEk3A7ba/PLLL6neOVeTNm3a4ODgQHJyMh06dMDX11dvclONRoO5uTklS5ZUMKVyBg8eTK9evfj88891F+UxMTHUrFmT0aNHK5wu/VhYWDBv3jzKly/P3bt32bFjx1sLn2q5SA8NDU31zyJFlSpV2L59Oz169JBHdv+2Y8cOFi5cSMWKFXXLXg1uGDBggCqL5YMGDcLKyop69eqptiXNf2mFt2jRIlq1aqWKYvHIkSMZPHgwu3fvplWrVmzYsIGqVatiZGTEuHHjlI6niMDAQGbOnImlpaXBqGmNRqOa4/DrOnfuzIsXL5g5cyZPnjwBwNramo4dO9KpUyeF0wkhhBDpT/UTfG7fvp158+YxZMgQ3SPhoaGhuiJo48aNdduqZeK118XGxpKUlKRXABTq5e/vr+st/G/tRNTwVEb9+vVZuXIlNjY2DB8+nJEjR6p+9GdqQkND9SbkU9tNln379uHn58fTp0+5e/cu+fPnf2t7GrW0abl37957b6vGY2/r1q05d+4cWbJkwcrKymAiWLV8Tl5Xq1Yt5s6di6urq97yixcv0rNnT44ePapMMAW5uLiwadMmihcvrnSUTEVtLQJep9VqCQ8Px8LCAhsbG6XjKKJ69ep07tyZzp07Kx0lQ3r06BFmZmZyPvsB3Nzc2Lp1qyr3KamR98OQvCdCZD6qH1k+aNAgIGWiz9cnWgMICQlh9uzZqpt4DeCnn34iMDCQhw8fAim9uFq3bq2KAujb7N27l8DAQCIjI0lKSsLOzo527dqpagTKiRMn8Pb2xtzc3ODR59ep5amMhw8fEhYWho2NDUFBQQwePFjpSIpLrQhqYWGhV+B6tY1aiqB169albt26QMqI4c2bN6u+DYuHh0eq+4lXx9/X16np2PtKy5YtadmyZarr1LJ/Bf39ibe3N0OHDmXkyJE4OztjZGTEtWvX8PHxoU+fPgqmVE6FChWIiIiQYvkHUtM4oc8//5xGjRrRsGFDSpQogUajwcHBQelYioqPj6dBgwZKx1BcUFDQe2+rpmsdIYQQAqRYrsrRWf9m3rx5rFy5kr59++Lm5kZycjJnz57F398fU1NTunXrpnTEdLdmzRqmTZtGu3bt6Natm+49GT9+PImJiarp5/f6487/5dHnT03jxo3p0qWLrnj1tp7loJ6C36si6KubjIDen1//Xi3vyeuyZcvGH3/8ofpi+evH3oMHD7JixQqGDx+Os7MzpqamXLlyhalTp761YPyp8/PzS7UortFoMDExYdOmTXh6etK6dWsF0qWf12+qvCpwduvWzWDZ+PHjadWqlTIhFeTu7s6IESPYvXs3hQsX1k3k+IqaBziIFJ06dWL37t0sWrQIOzs7PD09adSoEUWLFlU6mmKaNGnC6tWrGTJkiKpuPr7J19f3vbZTa2saIYQQ6qb6YrkaJyX8N+vWrWPSpEl4eHjoljk5OWFjY8OkSZNUWSwPDAxk7NixeieL9erVw8HBgYCAANUUy2UUir4JEybQtm1bYmJi8Pb2xs/PT/Uti7JmzUpgYKBuMsu5c+fqzRCvdkZGRqlOKKY2rx97f/zxR+bOnaubUBpSRuD7+PjQs2fPT74gnJp27drh7+9Pu3btcHV1RavVcvnyZVasWMFXX31Fvnz5WLBgAbGxsXTt2lXpuGlGBjS824EDB3BycuL+/fvcv39fb52ai4DiH9988w3ffPMNT548Yd++fbrCub29PY0aNVJlK5LY2Fg2bNjA9u3bKVSokMHcVWqYGBdg//79H/wz27dvx8PDg2zZsqVBIvGpkOOPEOJToPpiuTAUGxtLsWLFDJbb2dkRFRWV/oEygEePHhn0SYWU/mN//PFH+gdSiIxCMeTo6AikXFyVL18eY2N171YtLS3ZsmUL5cuX548//uDChQtv7XupxpuVtWvX5ttvv6VOnToULFjQYPJGNY4EffbsGS9fvjRYHhsbq9obC0FBQUyYMIFGjRrpltWtW5dSpUoREBBAUFAQTk5OjBo16pMulr/PPiIhIYGQkBBV7k/kCS/xviwtLfHy8qJcuXL8+uuvLF26VDcPjdoUK1aMHj16KB0jUxozZgwuLi5SLBfvpKZWV+/Lzs7O4MacECJjU3dVR6TKzc2NJUuW4OPjo5uELikpiSVLllCuXDmF0ynDycmJoKAg+vXrp7d88+bNlChRQplQCpBRKG+3efNmNm/e/F7bTpkyJY3TKGfMmDH4+flx7NgxIOWpjLdNZqmWGyqvu3r1KmXKlOHBgwc8ePBAb51aR+I0bdqUIUOG0K9fPxwdHdFqtVy6dAlfX19VttYAuHXrlu5G3OscHByIjIwEUgo+jx49Su9oinnV+iw8PJzk5GS9dUZGRly+fFmhZMq6ffs2q1ev5ubNm4wbN45Dhw5hZ2dHhQoVlI4mMojg4GB27drFnj17uHv3LjVr1mTixInUqVNH6WiKUONN6Y9FrUXQ2NhYbt26RYkSJUhISDAYBDJt2jSsra0VSpf+/vrrL16+fGnweXg1F9G+ffvIlSuXAsnSx3950nrTpk1pE0YIkWakWC4MDB8+nLZt23Ls2DHKlCkDwJUrV0hISCAwMFDhdMoYPHgwHTt25MSJE7pWAefPnyc0NJSAgACF02VsahmFYmlpyapVqyhVqhSurq6YmpoSEhLC8ePHqV+//ltHV39qXp/M0sPDg40bN6q+P/frZCSooeHDh5M9e3amTJmie3rJ2tqatm3bqnb0n6urK35+fkyePFm373z+/Dnz5s3T3bT+7bffVNV3eOLEiRQsWJBBgwbRt29fpk+fzv379/H392f06NFKx1PEqVOn6NatGzVr1uTw4cPEx8cTGRnJuHHjmDVrlkxiKPDw8ODBgwdUrVqVrl27qup85HXDhw9n5MiR5MiRg+HDh79z2095QIP4MPHx8UyYMEFX6Ny1axfTpk3jxYsXzJo1S9d6US372iNHjjBmzBiDp6rfnIvoU2+/KE9aC6EOUiwXBooXL86vv/7Ktm3biIyMxMzMjBo1atCkSROyZ8+udDxFuLm5sWnTJtavX09ERARmZmZUqlSJ2bNnU6BAAaXjZWhqGYVy+/ZtOnXqRP/+/fWWL126lBMnTqjy4uu/PImgBjISVJ+xsTEDBgxgwIABumL5p36h9W8mTJhAjx49qFmzJsWKFUOr1XLz5k0KFCiAn58fR44cYfLkycydO1fpqOkmLCyMGTNmULx4ccqUKYOJiQlt27YlT548/PjjjzRs2FDpiOluxowZDBw4kHbt2uHm5gbAkCFDyJcvH76+vqop4LwyceJEvL29KVKkyDu3+/rrr1VTMO7WrRuff/653LQW4j+YMWMG4eHhbN68WfekW58+fRg+fDgTJ05kxowZCidMXxMmTKBcuXIsWLBANfvQ1Mj1jRDqIMVyYcDLy4spU6bg7e2tdJQM47vvvmPgwIEMGzZM6Sgigzp27BiDBg0yWF67dm3mzJmT/oFEhiQjQVN38+ZNLl++nGqPcjWOyilcuDBbt27l+PHjXLt2DSMjIxwcHKhWrRoajQZLS0t+++03Vd1UMDc3x8jICAB7e3uuXr1KrVq1KFeuHNevX1c4nTKuXbtGrVq1DJbXrVuXWbNmKZBIWVu3bqVDhw7/ut2IESPSIU3G0KpVKx48eMDs2bOJiIggKSkJOzs7vv76a+zs7JSOl25eH7DQr18/bGxsFEwjMovdu3czb948SpUqpVtWqlQpJkyYQKdOnRRMpow///yTwMBAChcurHSUDCUqKorr16/rWsRptVoSEhIIDg6mW7duCqcTQvxXUiwXBh48eKC7IBUpzp49q/qJG8W7FStWjE2bNjFw4EDdMq1Wy4oVK1LtPSzUSUaCGgoMDGTmzJlYWloaPL2k5kdYjYyMcHd3x93d3WCdmorkr1StWpUffviBUaNG4ebmxrJly2jZsiX79+/HwsJC6XiKKFiwIJcuXTIoXBw8eFCVE5527NgRHx8fOnbsiK2tLWZmZnrrX/XTVZPTp0/TtWtXXYu4pKQkTp8+zapVq1iyZIkqn2iqXbs25cuXp2HDhnh6eqpyfyrez7NnzzA3NzdYnpycTFJSkgKJlFWxYkXOnDkjxfLXrFu3Dh8fH16+fIlGo9E9Ua3RaChXrpwUy4XIxKT6Jwx8+eWXdOnShaZNm1KwYEGDiw01Fi7atGlD//79adWqVaoXYJUqVVIomcgoRo4cSffu3dm9e7duBMrly5dJTk5m0aJFCqcTGYWMBDW0ZMkSBg8eTOfOnZWOIjKwkSNHMnjwYHbv3k2rVq3YsGEDVatWxcjIiHHjxikdTxH9+vVj2LBhXLp0iaSkJIKCgrhz5w47duxg+vTpSsdLd6/6yB4+fFi37FXx4vV+umoydepU2rVrp3cjH2DmzJnMmDGDNWvWKJRMOb/++iu7d+9m48aNTJkyhYoVK9KoUSMaNGig60EtBKT0/J89ezbTpk3TLbt9+zYTJ05M9VzuU1epUiXGjx/PwYMHKVq0KCYmJnrr1Th5bkBAAD169KBbt254eHiwfv16nj17xpAhQ6hfv77S8YQQ/weNVi0NhcV78/DweOs6jUbDvn370jFNxvCukcFqvQB7X25ubmzdulUVoxAePXrEL7/8QmRkJPHx8djb2+Ph4YG9vb3S0UQG0ahRI3r16kXDhg31fjdWrFjB6tWr+fXXX5WOmO4qVKhAUFCQKvYR4uPRarWEh4djYWGh11Jh+/bteHh4fPKTSr8SGhrKkiVL9FpsdOzYUTcZuZoMGTIEV1dX3N3dU31CUo2j7V1cXNiyZQvFihXTW37jxg2aNWvGhQsXlAmWQdy5c4c9e/awd+9erly5QpUqVVi4cKHSsdLdqVOncHNzM3iKNiEhgUOHDlGvXj0gpRg6btw4rK2tlYiZ7p4+fcqIESPYt28fycnJWFhYEBMTQ82aNZkxYwa5cuVSOmK6at++/VvXaTQali9fno5pMoayZcuyc+dOChUqRPfu3fnyyy/x9PTk9OnTjBw5kl27dikdUQjxH8nIcmFAJq0wFBoaqnQEkcGdOXOGfv36MWPGDD7//HO8vLzYs2cPc+bMYcaMGXh6eiodUWQAMhLUUJMmTVi9ejVDhgxBo9EoHUdkEhqNBgcHB4PlY8aMwcXFRTXFckdHR719R1RUlGonc7SwsGDBggW6llaNGjWicuXKqt6vFCxYkIsXLxoUyy9cuKCague7mJmZYWZmRvbs2dFoNLx48ULpSIrw9vbm6NGjBi1pwsLCGDBgABcvXgTA399fiXiKyZkzJ35+fty+fZuIiAhevnyJnZ0dxYsXVzqaIlasWKF0hAzHysqKqKgoChUqhL29PSEhIXh6emJjY8P9+/eVjieE+D9IsVwAKSMK3peaW45ERUURHx/Pmw9kqLEP5vuOQqlRo0aq/f4+NZMnT6Zhw4a4uLiwePFizMzM2L9/Pzt27MDX11eK5QKA+vXrU7hwYZYsWYKDgwP79u3Dzs6OVatWqXIkKEBsbCwbNmxg+/btFCpUyOCxXjWOVBL/nZoemLx//z5Tp06lW7du2Nvb07lzZ86cOUP+/PlZsGCB6ubLGDVqFCNHjuTUqVPs3LlT13rE09OTRo0a4erqqmxABXTp0oWxY8cSGRlJuXLlgJRC+YoVKxgwYIDC6ZRx9+5d9uzZw65du7h48SLOzs54enoyceJE8uXLp3S8dLN69Wp8fHx0rYpq1KiR6nbVq1dP52QZS0REBPny5aN27docPnyYlStXUrp0ab7++muloykiODiYxYsXExkZqXuaqW3btlSuXFnpaIrw9PRk6NChTJo0iZo1azJkyBDKlCnDgQMHKFKkiNLxhBD/B2nDIgDDNiOvTpzMzc0xMTEhJiYGIyMjLCwsOH78uEIplXP8+HGGDBnCw4cPAXT9L9XcB9PJySnVUShXrlyhdevWulEoalGuXDl27tyJra0tXl5eVKlShaFDh3L37l0aNmyo+kedRYqgoCAaNmyIqamp3vLnz5+zYcMGvL29FUqmnH8bqabGHpjiv1NT66+ePXvy/Plzpk6dysGDB5k9ezY//vgjW7duJTQ0lFWrVikdUVGxsbEEBgaydOlSEhISsLW1pWXLlnTs2NFg7plP2aZNm1i5ciURERGYmZnpWvWo9Sa+o6Mjjo6ONGzYkEaNGqmyPc8rp06dIjk5mQ4dOuDn56fXs12j0WBubk7JkiUNzlnUYu3atfj4+LB06VJy5MhBy5YtqVq1KqGhoXz99df07dtX6Yjpas+ePfTv358GDRrg5uZGUlIS58+fZ+/evcyZM0c3UEpNEhMTWbhwIU5OTtStW5fZs2ezdu1acuXKxZQpU3Bzc1M6ohDiP5KR5QLQbzOyYcMGNmzYwKRJk3SPmd25c4dRo0bh7u6uVERFjR8/nipVqtClSxdy5sypdBzFyCiUt7O2tiY8PJznz58THBzMsGHDADh27BgFChRQOJ1QUlRUFHFxcQAMHz4cBwcHgzYJoaGhzJw5U5XF8teL4bGxsSQlJckka0K8h99//51NmzZRoEAB9u7dS926dXFxccHKyorGjRsreUJL9gAAILpJREFUHU8Rz54948CBA+zcuZMjR45gY2PDt99+S8OGDfnrr7+YOXMmJ0+eZPHixUpHTTdeXl54eXkpHSPD+OWXX2QuGVKedFu5ciU2NjY0b96catWqkSNHDqVjZSiBgYFMmzaNypUrM2HCBJycnAgMDOTUqVP0799fdcXyuXPnMmjQIDp27Ki3fNmyZfj5+amyWH7+/Hm6d++ueyqyf//+9O/fX/ektRAi85JiuTDwww8/sHTpUr1+bIUKFWLEiBG0a9eOLl26KJhOGffu3ePHH39UxUi1d2nTpg0ODg66USi+vr5vHYWiNh07dqRXr15kyZIFZ2dnKleuTEBAAP7+/kyZMkXpeEJBJ0+epF+/frq+uS1atAD0n1ABaNq0qWIZlfbTTz8RGBioe3rHysqK1q1by6hyId7BzMyM+Ph4njx5wokTJ/jhhx+AlAEOarzh1LNnT44dO4aFhQWenp4sX75c13oEoGTJksTExDBy5EgFU6a/48ePc+nSJRITEw3aFKllH+vv70/nzp0xNzfnl19+eee2anlPHj58SFhYGDY2NgQFBTF48GClI2U49+/fp0KFCgAcOHCAb775BoD8+fPz7NkzJaMp4vbt29SpU8dgeZ06dZg1a5YCiZT3tn7/4eHhev3+hRCZjxTLhQGNRsP9+/cNWrPcuHFDVY+tvq5KlSqcOXNG9cVyGYXydt7e3lSqVIm7d+/qnsCoWrUqtWvXVl3fWKHviy++YP/+/SQnJ1OvXj3Wr1+vd1L96iaTWiflmzdvHitXrqRv3764ubmRnJzM2bNn8ff3x9TUlG7duikdUYgMqV69evTr14+sWbNiaWlJ7dq1+eWXX5g8eTLNmzdXOl66s7a2ZuHChVSpUuWtk3pWrFiR9evXp3My5UydOpXly5fj6OhI9uzZ9dapaeLTEydO4O3tjbm5OSdOnHjrdmp6Txo3bkyXLl10r/ltT4sCqmw3CWBvb8+2bduwsrLi3r171KtXj8TERJYsWaLKc/vixYtz6NAh2rdvr7f8t99+U1U7I3nSWgh1kJ7lwoC/vz8rVqzg22+/xdHREa1Wy6VLl1i+fDl9+vShQ4cOSkdMF6/30b1//z5btmyhQYMGFClShCxZsuhtq5ZRKG5ubvj5+eHu7v7WnuVCiP8mMTHRYHJLNahVqxZjx47Fw8NDb/nevXuZNGkSBw4cUCiZyIzU1LP85cuXrFy5krt37/LNN99QokQJgoKCiI2NpW3btqoq/InUVapUidGjR6v6ySXxdqGhocTExODt7W3Qs/x1ap288fjx4/Tr148nT57Qpk0bxowZg4+PD7t37yYgIICyZcsqHTFdHThwgD59+vDFF1/oJqU/f/48u3btYvr06TRs2FDhhOlH+v0L8emTYrlI1dq1a1m/fj0REREAODg40K5dO1WdbL951/xtNBoNy5cvT+M0GcPo0aNZv379e12Aq3UUihDv8vDhQxYuXEh4eDhJSUlASjuWxMREIiIiOHXqlMIJ01+FChVYv369QQ/ZiIgIvLy8ZHJcAaRcmLq5uWFsrP9Q5Ku+oK96pfbu3Ztx48ZhbW2tRMwMQ60334S+qlWrsmbNGooVK6Z0FEUFBQW997ZffvllmuXIqE6ePEn58uUN9q8CkpOTefr0qa4Y+vDhQywtLVW7fz1+/DirV682mDD49ZZXanL37l1sbW3RaDQy744QnxgplgvxHu7du0f+/PkNRpQnJSURGhpKmTJlFEqW/mQUihD/Xbdu3bh16xYNGjRgyZIlfPvtt9y6dYs9e/YwbNgwVU7w2aVLF/Lnz4+Pj49uH5uUlMTo0aO5ffs2K1asUDihyAje9jTTlStXaN26tSr7gsrNN/Fv/Pz8uHHjBhMmTCBbtmxKx1HMm08uvY1Go2Hfvn1pnCbjGT58+Htvq6Z5eP5tH1qpUqV0SiIyMpl3R4hPk9w+Fqk6c+YMP/30Ezdv3iQgIIBt27ZRsGBBGjVqpHQ0RdStWzfVi/Q7d+7Qpk0bVY18fNWjb/ny5TIKRYgPdOrUKZYsWYKbmxtHjx6ldu3aVKhQgUWLFnHo0CFVFsuHDx9O27ZtOXbsmO7G45UrV0hISCAwMFDhdEJJ0hf03UaMGPHOm29CnDx5knPnzrFz507y5MljMBpWLYXh/fv3f/DPbN++HQ8PD1XcZLC0tGTVqlWUKlUKV1dXTE1NCQkJ4fjx49SvX1+18xO97SljU1NT8ubNq4rfn+HDhzNy5Ehy5MjxrzdV1HQj5RWZd0eIT5dUuYSB3bt3M3z4cFq2bMnBgwd5+fIlxsbGDBs2TNezTQ3Wr19PQEAAkDJS66uvvjIYWR4TE0Px4sWViKe4zZs3s3nz5vfaVo0nT0KkRqvVYmNjA0CJEiUIDg6mQoUKeHp6snjxYoXTKaN48eKMGDGCx48fExkZiZmZGQcOHMDX11eVE2iJf7Rp0wYHBwddX1BfX9+39gVVI7n5Jv6Nl5cXXl5eSsfIlMaMGYOLi4sqiuW3b9+mU6dO9O/fX2/50qVLOXHihGrP40NDQ/W+T0pK4tatW0yYMIEmTZoolEpkJOvWrWPSpEl6T684OTlhY2PDpEmTpFguRCYmxXJhwN/fn3HjxtGkSRPWrFkDQKdOncibNy++vr6qKZZ/+eWXmJiYkJyczIgRI/j222/JmTOnbv2ri/SqVasqmFI5MgpFiA9XunRptmzZQs+ePXVtJdq3b8+dO3eUjqaYFStWMHv2bEaPHs24ceMAyJIlC4MGDWLYsGG0bNlS2YBCMfXr12flypXY2NjQvHlzqlWrJseW18jNN/FvmjdvrvvzkydPyJkzJxqNRiZ/fQ9q6lR67NgxBg0aZLC8du3azJkzJ/0DZVBGRkbY2dkxbNgwunXrpvf79al6/UaJl5cXrq6uBk+ovJo7RI1iY2NTnRPCzs6OqKio9A8khPhopFguDNy8eRNXV1eD5eXKleP+/fvpH0ghJiYmukl+ChUqJC1H3iCjUIT4cIMGDaJ79+6Ym5vTrFkzAgMDadKkCffu3VPVBMqvW7p0KT/88AN16tTRLRs6dCgVK1ZkypQpUixXsYcPHxIWFoaNjQ1BQUEMHjxY6UgZitx8E/9Gq9USEBDAsmXLePr0Kbt27WLu3Llky5aNUaNGYWpqqnREkQEUK1aMTZs2MXDgQN0yrVbLihUr5AmvVDx69IiYmBilY6Q7b2/vVNuShoeHM2DAAFXOHeLq6sqSJUsM5t1ZvHgxzs7OCqcTQvw/pPInDJQoUYLDhw8bjCDfvHkzJUqUUCiVsipVqsS+ffsICwvTTaIFKXfSg4ODVdlXV0ahCPHhZs6cSceOHSlXrhy5c+dm48aN7N27l1y5cuHp6al0PEVER0dTpEgRg+V2dna6yZKEOjVu3JguXbroRsG+rWc5QEhISHrFyjAGDhxIjx495OabeKt58+axY8cOpk6dqhvc0Lx5c8aMGcP06dMZNWqUwglFRjBy5Ei6d+/O7t27KVWqFACXL18mOTmZRYsWKZxOOan16H727BnHjh3jiy++UCBR+pO5Q95txIgRMu+OEJ8ojVZNz5iJ93L69Gl69OhB9erV2b9/P82aNePGjRtcvnyZgIAAqlWrpnTEdOfj48OGDRsoXbo0Fy9exM3NjVu3bvHw4UNat27NmDFjlI6Y7po3b467u7vBKJQJEyZw5coV1q5dq2A6ITKmdevWcfToUU6cOIGRkRE1atSgZs2auLu7kzt3bqXjKaJLly7kyJGDKVOmYG5uDkB8fDyjR4/mr7/+YunSpQonFEoKDQ0lJiYGb29v/Pz89HqWv65y5crpnCxjiI2NJS4uDmtra+7fv6938+3NeVaE+tStW5epU6dSqVIl3Nzc2Lp1K4ULF+b06dP07duXo0ePKh0xw3r9/VKDR48e8csvvxAZGUl8fDz29vZ4eHhgb2+vdDTFpFYsNzExwdnZmWbNmqnmyYxTp07p5g558zj8+twhank/Xjd8+HD69OnDvn37iIiIwMzMDDs7Oz777DOmTp2Kr6+v0hGFEP+RFMtFqh4+fMiqVas4f/48WbJkoXTp0rRu3RpbW1uloymiatWq+Pj40KBBA7744gv8/Px0PevMzc2ZMGGC0hHT3enTp+nevTvW1tapjkJR64RrQrwPrVZLcHAwx48f5+jRo5w6dQonJyfWr1+vdLR0d+vWLTp16kR0dLSu7+OtW7ewtrZm/vz52NnZKRtQZAgnT56Udmhvcf36dSIiIjAxMcHe3l41xT3x71xdXdmyZQtFixbVK/5eu3aNb775hnPnzikdMcNSU7H8zJkz9OvXjxkzZmBvb4+Xlxfx8fG8ePGCGTNmqPbJN6Hv7t272Nraqn7Og3PnznHz5k0gpVg+cuRIg/lUIiMjWblyJWfPnlUiohDiI5ArDmEgMTGRNWvWsH79et0j8JGRkVhbW9OhQweF0ykjNjaWsmXLAlCyZEkuXryIg4MD3bt3p3PnzgqnU0bFihXZvXu33iiUNm3aqH4UihD/JikpiStXrnD27FkuXLjAtWvXMDU1xcLCQuloiihSpAi//PILhw8f5saNGxgbG1OsWDHc3d0xMjJSOp7IIDZv3szmzZvfa1u1zJnxxx9/MGTIEE6dOoWlpSVarZanT5/i4eHBpEmTyJUrl9IRhcKqVq3K4sWL8fHx0S2LjY1l1qxZVKlSRcFkIiOZPHkyDRs2xMXFhcWLF2NmZsb+/fvZsWMHvr6+qi6W7927l8DAQCIjI0lKSsLOzo527drp5rVSEysrK3766SfCw8NTbUv666+/Kpgu/Zibm+Pn54dWq0Wr1RIYGKj3JJdGoyFbtmyptisVQmQeUiwXBiZMmMDhw4cZNGgQpUuXJjk5mYsXL+Lr68ujR48YMGCA0hHTXeHChQkODsbW1hYHBwcuXrzIV199pbswVaPXR6F8/vnneHl5sWfPHubMmSOjUIR4i/bt23P58mUsLCxwcXGhQoUKdO/endKlS6u6ZYKpqSl169ZVOobIwCwtLVm1ahWlSpXC1dUVU1NTQkJCOH78OPXr1zcY1aUGo0aNwsjIiH379lGwYEEAbty4wYgRIxgzZow8/i0YN24cvXv3pkaNGsTHx/Pdd99x7949bG1tWbBggdLxFHHq1Cnc3NwMnlJJSEjg0KFD1KtXD0iZI+FVa7BPXVhYGH5+fpibm7N//34aNGiAqakplStXZty4cUrHU8yaNWuYNm0a7dq1o1u3biQnJ3P27FnGjx9PYmIiX3/9tdIR09WoUaM4fvw41apVY+fOnXh6enLz5k0uXbpE7969lY6XbhwdHdm3bx+Qcl7v7+//1hZxQojMS4rlwsCOHTtYuHAhFStW1C1zdHSkYMGCDBgwQJXF8k6dOjFo0CDdyAsvLy+MjY05d+4cFSpUUDqeImQUihAfztjYGI1GQ+7cucmXLx82NjbY2NioulAuxPu4ffs2nTp10k1S+MrSpUs5ceKEakaTv+7UqVNs2rRJVygHKFasGGPGjKFVq1YKJhMZhYWFBRs2bOD48eNERkby8uVL7OzscHd3V+1xx9vbm6NHj2JlZaW3PCwsjAEDBnDx4kUA/P39lYinCGtra8LDw3n+/DnBwcEMGzYMgGPHjlGgQAGF0yknMDCQsWPH6o0ir1evHg4ODgQEBKiuWH7o0CHmzp1L9erVCQsLo2PHjpQtW5apU6cSFhamdDxFrFixQukIQog0IsVyYSBHjhyp9gTNmTOnanuFfv311xQrVozs2bOTL18+Zs2axZYtW3B2dlbVnfTXySgUIT7c0qVLefnyJVeuXOHUqVNs2bKF8ePHkzNnTipWrKjKgp8Q7+PYsWOpPtJcu3Zt5syZk/6BMoDixYtz7do1SpQoobf89u3begV0oV6NGzfG39+fatWqUa1aNaXjKGb16tX4+Pig0WjQarXUqFEj1e2qV6+ezskyho4dO9KrVy+yZMmCs7MzlStXJiAgAH9/f1Wflzx69AhXV1eD5W5ubvzxxx/pH0hh8fHxurllHBwcuHz5MmXLluWbb76hXbt2yoYTQoiPTJ2VT2Hg3r17uj97e3szdOhQRo4cibOzM0ZGRly7dg0fHx/69OmjYErlJCYmcuLECdasWcOjR48AyJ8/Px06dCBv3rwKp1OGjEIR4r8xNjbGxcWF7NmzY25ujqmpKQcOHOD3339XOpoQGVaxYsXYtGkTAwcO1C3TarWsWLECR0dHBZOlr6CgIN2fq1atysiRIwkODtadr129epVly5bx7bffKhdSZBhZsmQhMTFR6RiKa9OmDQ4ODiQnJ9OhQwd8fX312iZoNBrMzc1VOzm9t7c3lSpV4u7du7i7uwMp+5fatWurav/6JicnJ4KCgujXr5/e8s2bNxvcpFSD4sWLc+zYMVq0aIGDgwNnzpyhVatWPH36lPj4eKXjCSHER6XRarVapUMI5Tk6Oupmtn79I/HmMo1GQ0hISPoHVNiYMWM4fPgwffv2Nejj7uXlpcrWNMuXL2fGjBlkyZKFkiVLsn79er1RKE2aNFE6ohAZzqpVqzh58iSnT5/m+fPnVKpUiRo1auDu7k7x4sWVjidEhnX69Gm6d++OtbU1pUqVAuDy5cskJyezaNEi1RS5PDw83ms7jUaj66kq1GvixIls2rSJOnXqULBgQUxNTfXWq+XpyPr167Ny5UpsbGwYPnw4I0eOVOU8B+LDnDt3jo4dO1K6dGlcXFwAOH/+PCEhISxcuJCqVasqnDB97du3j759+zJmzBhq1qxJo0aNqFy5MlevXsXV1ZXZs2crHVEIIT4aKZYLAO7evfve26rx0d4KFSoY9HEHOHr0KAMGDODEiRMKJVNWSEiIbhRK1qxZOX/+PFmzZlX1KBQh3qVZs2a4u7vj7u5OhQoVDAoXQoi3e/ToEb/88guRkZHEx8djb2+Ph4cH9vb2SkfL0LZv346HhwfZsmVTOopIZ+3bt3/rOo1Gw/Lly9MxjXLc3Nzw8/PD3d0dJyenVHuWC5GaiIgI1q9fT2RkJGZmZtjZ2dGmTRvy58+vdDRF3L59m+TkZIoWLUpoaChbtmwhd+7ctG/fXjUT4goh1EGK5UK8h1q1ajF37lyDvnUXL16kZ8+eHD16VJlgQgghhAqcOXOGfv36MWPGDOzt7fHy8iI+Pp4XL14wY8YMmVT6HcqXL8+WLVsoXLiw0lFEBrVo0SJatWqFhYWF0lHSxOjRo1m/fr3uidl3UeMTtCJ1T58+5ccffyQ0NJS4uDi0Wq3eZ0gtN5teCQgIoFGjRnIsEUKogvQsF+ItpI+7EEIIkTFMnjyZhg0b4uLiwuLFizEzM2P//v3s2LEDX19fKZa/g4yLEf8mICAAT0/PT7ZYPmHCBNq2bUtMTAze3t74+fnp9SwXIjVDhgzhypUreHp6kjNnTqXjKO7gwYP4+vri5OREo0aN8PT0lHmqhBCfLBlZLsRbSB93IYQQImMoV64cO3fuxNbWFi8vL6pUqcLQoUO5e/cuDRs25MKFC0pHzLDc3NzYunWrjAYUb6Wmz8jJkycpX748xsYyZky8m6urK8uXL6dcuXJKR8kwHjx4wK5du9i9ezfnzp3D2dmZhg0b4unpibW1tdLxhBDio5GzBCHeQibGEkIIITIGa2trwsPDef78OcHBwQwbNgyAY8eOycg2IcR727x5M5s3b36vbadMmZLGaURGljdvXoyMjJSOkaHky5eP9u3b0759e6Kioli/fj2zZ89m6tSpXLlyRel4Qgjx0UixXIi3UONEpkIIIURG1LFjR3r16kWWLFlwdnamcuXKBAQE4O/vLwUtIcR7s7S0ZNWqVZQqVQpXV1dMTU0JCQnh+PHj1K9fnxw5cigdUSjo9Tacbdu2ZdSoUQwZMoRChQoZFM5tbW3TO16GcOvWLd3o8pCQEKpWrUqjRo2UjiWEEB+VFMuFEEIIIUSG5u3tTaVKlbh79y7u7u4AVK1aldq1a+Po6KhwOiFEZnH79m06depE//799ZYvXbqUEydOyM03lfPw8DBoufntt9/qTez5aqJPtbXh9Pf3Z/fu3YSHh1OhQgW++uorPv/8c3Lnzq10NCGE+OikWC6EEEIIITI8JycnnJycdN+7uroqF0YIkSkdO3aMQYMGGSyvXbs2c+bMSf9AIkORNpxvd/jwYb766is8PT3Jly+f0nGEECJNSbFcCCGEEEKITObUqVO4ubkZTFSYkJDAoUOHqFevHgA1atTA3NxciYhCZDjFihVj06ZNDBw4ULdMq9WyYsUKeUpFSBvOd1i7di0AN27cYN++fSQnJ2NnZ0eJEiUUTiaEEB+fRvvq+SIhhBBCCCFEpuDk5MTRo0exsrLSW37lyhVat27NxYsXFUomMoqJEyfi7e1NkSJF3rnd5MmT6dmzpyraKZw+fZru3btjbW1NqVKlALh8+TLJycksWrSIkiVLKpxQiIzp6dOnDBs2jH379mFpaUlSUhLPnj2jUqVKzJs3j5w5cyodUQghPhoplgshhBBCCJEJrF69Gh8fHzQaja5vbmqqV6/O4sWL0zmdyGgqV67Mxo0bKVy4sNJRMpRHjx7xyy+/EBkZSXx8PPb29nh4eGBvb690NCEyrCFDhhAREcGMGTN0vyvh4eEMGzaMkiVLMnnyZIUTCiHExyPFciGEEEIIITKJU6dOkZycTIcOHfDz88PS0lK3TqPRYG5uTsmSJTE1NVUwpcgI5s+fz7lz5+jYsSO2traYmZnprbe1tVUomXLOnDlDv379dAU/Ly8v4uPjefHiBTNmzMDT01PpiEJkSBUrVmTp0qU4OzvrLb948SJdu3blxIkTCiUTQoiPT3qWCyGEEEIIkQnUr1+flStXYmNjQ/PmzalWrRo5cuRQOpbIoHx9fYGUifleef2phJCQEKWiKWby5Mk0bNgQFxcXFi9ejJmZGfv372fHjh34+vpKsVyItzAzMyNLliwGyzUaDUlJSQokEkKItCPFciGEEEIIITKBhw8fEhYWho2NDUFBQQwePFjpSCIDa9q0Ka6urri7u2NkZKR0nAwhLCwMPz8/zM3N2b9/Pw0aNMDU1JTKlSszbtw4peMJkWF5eHgwfvx4Zs6cqZsH4caNG0ycOJFatWopnE4IIT4uKZYLIYQQQgiRCTRu3JguXbroepXXqFHjrduqcdSw0GdhYcGCBQvw9fWlQYMGNGrUiMqVK7+1170aWFtbEx4ezvPnzwkODmbYsGEAHDt2jAIFCiicToiMa/DgwfTq1YvPP/8cCwsLAGJiYqhZsyajR49WOJ0QQnxc0rNcCCGEEEKITCI0NJSYmBi8vb0Nepa/rnLlyumcTGREWq2WU6dOsXPnTnbv3g2Ap6cnjRo1wtXVVdlwCli+fDkzZswgS5YslCxZkvXr1xMQEIC/vz9TpkyhSZMmSkcUIkMLDQ0lMjISMzMz7OzsZGJcIcQnSYrlQgghhBBCZDInT56kfPnyGBvLg6Li/cTGxhIYGMjSpUtJSEjA1taWli1b0rFjR4PJPz9lISEh3L17F3d3d7Jmzcr58+fJmjUrjo6OSkcTIsP766+/ePnyJW+WkdQ4YbAQ4tMlxXIhhBBCCCEymeHDh7/3tlOmTEnDJCIje/bsGQcOHGDnzp0cOXIEGxsbPD09adiwIX/99RczZ87EysqKxYsXKx1VCJGBHTlyhDFjxvDHH3/oLVfzhMFCiE+XDEURQoj/tXd/oT3vDxzHXxOTEje7sVlsZXNjo2xcKP+iKGsXbtniQsONiAtXmuhwt4RJ1OQGLTcoF1pkEkuarJgpM0m5cbeL2e/ulH7Or05tPr/v9nhcvt83z7tvvb6fPh8AKDGLFy/OzZs3U19fn9WrV6e8vDxDQ0N59uxZtm3bloULFxadSME6OjrS39+fRYsWZceOHenp6UlDQ8Pf93V1dfnx40dOnjxZYCVQCjo7O9PQ0JBLly75fQFmPGM5AACUmNHR0ezbty9Hjhz55fz69et5/vy5p8lJRUVFuru7s27dun/8qOfatWtz+/btP1wGlJqvX7/m6tWrqa6uLjoFYNp5DQsAAJSYNWvWpLe3NzU1Nb+cf/z4Ma2trXn9+nVBZQDMNPv378+uXbvS2tpadArAtPNkOQAAlJjly5ent7c3R48e/ftscnIyN27c8KFCAKZUU1NTTp06lb6+vixbtizz5s375f7w4cMFlQFMPU+WAwBAiXn58mUOHDiQioqK1NfXJ0nevHmTnz9/5sqVK6mrqyu4EICZYs+ePf94V1ZWlp6enj9YAzC9jOUAAFCCvn//nvv372dkZCTj4+Opra3Nli1bUltbW3QaAACUpDlFBwAAAP/OwMBAWltbs2LFinR0dOTx48fp7u5OS0tLHjx4UHQeADPM6Oho/vrrrxw8eDDfvn3LnTt3MjAwUHQWwJQzlgMAQIk5c+ZMdu7cmcbGxty6dSvz58/P06dP09nZma6urqLzAJhBXrx4kZaWloyNjeXJkycZHx/PyMhI2tra8vDhw6LzAKaUsRwAAErM+/fv09bWlgULFuTRo0fZvn17ysvL09zcnC9fvhSdB8AMcv78+Rw9ejRdXV2ZO3dukuT48eM5duyYP2iBGcdYDgAAJaaioiLDw8MZHh7O27dvs3nz5iRJf39/lixZUnAdADPJu3fvsnHjxv8637p1az59+lRAEcD0mVt0AAAA8O+0t7fn0KFDmTNnTlatWpXm5uZcvnw5Fy5cyNmzZ4vOA2AGqaqqyuDgYKqrq3857+vrS1VVVUFVANPDWA4AACVm7969aWpqytjYWDZs2JAkWb9+fTZt2pSVK1cWXAfATHLkyJGcOHEig4ODmZiYyN27d/P58+fcu3cv586dKzoPYEqVTU5OThYdAQAAAMD/n9OnT2f37t25du1aPnz4kImJidTU1KS9vT2NjY1F5wFMKWM5AAAAAL/V3Nyc3t7eLF26tOgUgGlnLAcAAADgty5evJhXr16lvb09lZWVmT9//i/3lZWVBZUBTD1jOQAAAAC/9btvYZSVlWVycjJlZWUZGhoqoApgehjLAQAAAPitsbGx/3lfVVX1h0oApp+xHAAAAACAWW9O0QEAAAAAAFA0YzkAAAAAALOesRwAAAAAgFnPWA4AAAAAwKxnLAcAAAAAYNYzlgMAAAAAMOsZywEAAAAAmPWM5QAAAAAAzHr/AR8js1pIMaVRAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABckAAAaWCAYAAABmmTVfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hT1R/H8U/Svdhll7K3yAaRJUOmWAEBEZD1A2UjouJAxIHKUBEZMmUoQxEBQWXKENkiyJ4FyiwU6F75/VGphlZtNDdJzfv1PHk0557cfk6e28vtNyfnmiwWi0UAAAAAAAAAALghs7MDAAAAAAAAAADgLBTJAQAAAAAAAABuiyI5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3BZFcgAAAAAAAACA26JIDgAA4MYsFouzIxjmvzw2AAAAAPZDkRwAACALDh48qJEjR6px48aqUqWKmjZtqldeeUXnz593djRJUrly5fTRRx/Z9Jply5bp3XffTX++fPlylStXThcuXLB3vAzu/qxy5crpzJkzmfbZsmVLeh9b3L59Wy+88IL27Nnzl/0uXLigcuXKafny5TbtHwAAAMB/C0VyAACAv7Fo0SJ16dJFkZGRGjFihGbOnKmnn35au3fvVocOHfTrr786O+I/Mm3aNEVFRaU/b9y4sZYsWaL8+fM7LIPZbNbatWsz3bZmzZp/tM8jR45oxYoVSk1N/ct++fPn15IlS9S4ceN/9HMAAAAA/DdQJAcAAPgLe/fu1VtvvaWuXbtqzpw5euSRR1SnTh09/vjj+vzzz+Xv769Ro0Y5O6Zd5MmTR1WrVpW3t7fDfmb16tUzLZInJiZq/fr1qlChgmE/29vbW1WrVlWePHkM+xkAAAAAXB9FcgAAgL8we/ZsBQUF6dlnn82wLU+ePHrxxRf18MMPKzo6Or19zZo1at++vapVq6YHH3xQo0eP1q1bt9K3f/TRR2revLmmTJmiOnXqqFmzZrp586aaNGmit99+W0899ZSqV6+u0aNHS5KioqI0evRo1atXT/fdd586deqkHTt2/GXuo0ePatCgQapbt64qVaqkBg0a6M0331R8fLwkqUmTJrp48aK++uqr9CVWMltuZfv27eratatq1KihOnXqaMSIEbp06VL69uXLl6tixYo6cOCAOnfurPvuu0+NGzfWzJkzs/T+tm7dWsePH9epU6es2rds2SKTyaSGDRtmeM2yZcvUvn17Va1aVVWqVNGjjz6aPut8586d6tGjhySpR48e6t69uySpe/fueu655zRkyBBVr15d/fr1s1puJSUlRR07dlTdunV148aN9J/18ssvq0qVKjp58mSWxgMAAAAg+6FIDgAA8CcsFou2bdumBx54QH5+fpn2admypQYNGqTAwEBJ0tSpUzV8+HDdf//9mjx5sgYOHKjvvvtO3bt3Ty9QS1JERITWrVunSZMmadiwYcqdO7ektKVd7q4v/uijjyohIUFPPfWUNmzYoOHDh2vKlCkqWLCg+vbt+6eF8qtXr+rJJ59UXFyc3nnnHc2cOVOtWrXSggULNG/ePEnSlClTFBwcrEaNGv3pEitff/21evfurQIFCmjSpEkaNWqU9u/fr86dOysyMjK9X2pqqoYNG6bWrVvrk08+UY0aNTRhwgRt3br1b9/jBx98UDlz5swwm3zNmjVq3ry5vLy8rNoXLVqk0aNHq2nTppoxY4bGjx8vLy8vjRw5UhEREapUqVL6hwujR4/Wa6+9lv7atWvXysvLSx9//HF6If0uDw8Pvfvuu4qNjU1fp33z5s364osvNHLkSJUuXfpvxwIAAAAge/J0dgAAAABXdfPmTSUkJKho0aJZ6n/r1i1NmzZNjz/+uFVxtmzZsnryySe1fPlyde3aVZKUnJysF154QfXq1bPaR/78+fXiiy/KbE6by7B06VIdPXpUS5cu1f333y9Jatiwobp3764JEyboyy+/zJDj+PHjqlChgj788MP04n29evW0Y8cO7d69W08//bQqVqwob2/v9CVW7pWamqrx48erXr16ev/999Pbq1evrtatW2vOnDkaOXKkpLQPEwYMGKDHH39cklSjRg2tW7dOmzdvVoMGDf7yPfP09FSzZs303XffadCgQZKkuLg4bdq0SR9//LH27t1r1f/8+fPq3bu3Bg4cmN5WtGhRtW/fXvv27VPbtm3TC9qlS5e2Km6bzWa98cYb8vf3l6QMNygtVaqUhg4dqvfee0/NmjXT66+/rgYNGqhbt25/OQYAAAAA2RszyQEAAP7E3UJ1SkpKlvr//PPPSkxM1COPPGLVXrNmTRUpUkQ7d+60ai9btmyGfZQqVSr950rSjh07FBwcrEqVKik5OVnJyclKSUnRQw89pEOHDlkt43JX/fr1tXDhQvn4+OjMmTPatGmTpk+frhs3bigxMTFLYzlz5oyuXbuWYSzFihVTtWrVMoylWrVq6f9/t/geGxubpZ9175IrmzZtkr+/v+rUqZOh74svvqiRI0fqzp07OnjwoFatWqVFixZJkpKSkv7y5xQtWjS9QP5nevXqperVq2vIkCFKTk7WuHHjZDKZsjQOAAAAANkTM8kBAAD+RK5cuRQQEKCIiIg/7RMbG6vExETlypUrvWCdL1++DP3y5cunO3fuZGjLrN8fRUVF6dq1a6pUqVKmP//atWvKmTOnVVtqaqomTZqkRYsWKTY2VoUKFVKVKlXk4+Pzp+O4V1RU1F9mPHz4sFWbr6+v1XOz2SyLxZKln1W3bl3lzp1ba9eu1aBBg7RmzRq1bNlSHh4eGfqGh4dr9OjR+umnn+Tp6amSJUuqXLlykvS3Py+zsdzLbDarXbt22rdvnypXrqzg4OAsjQEAAABA9kWRHAAA4C/Ur19fO3fuVEJCQqZF5uXLl+utt97SZ599ll6svn79ukqVKmXV79q1awoJCbH55wcFBal48eKaMGFCptszWwrmk08+0bx58zRmzBi1aNFCQUFBkqSOHTtm+efmypVLUtpY7nXt2rX0NdTtwdPTUw8//LC+/fZb9ezZU1u2bElfO/2PUlNT1a9fP3l5eWnp0qWqWLGiPD09dfLkSa1cudIuWa5fv64PP/xQFSpU0NatW7Vq1aoMs+kBAAAA/Lew3AoAAMBf6N27t6KioqzW5b4rMjJSs2bNUmhoqKpWrar7779f3t7eWrVqlVW/PXv2KCIiQtWrV7f559euXVuXLl1S3rx5dd9996U/duzYoVmzZmU623rv3r0qXbq0OnbsmF4gv3Llio4fP67U1NT0fn9c1uVeJUqUUHBwcIaxnD9/Xj///PM/Gstfad26tU6cOKFZs2YpX758Vsu33HXz5k2dOXNGHTt2VJUqVeTpmTbfY8uWLZKUPrbM3pOsuruW/Jw5c9SiRQu9+eabunr16j/eHwAAAADXx0xyAACAv1C1alUNHTpUH3zwgU6dOqXHHntMuXPn1okTJzRnzhzFxMTok08+kclkUq5cudSvXz9NmTJFXl5eatq0qS5cuKAPP/xQpUuXVvv27W3++e3bt9fChQvVq1cvPf300ypUqJB+/PFHzZw5U926dZOXl1eG11SpUkVTp07VJ598oqpVq+rcuXOaMWOGEhMTFRcXl94vR44cOnz4sHbt2qUqVapY7cNsNuvZZ5/VqFGjNHz4cIWFhenmzZuaMmWKcubMqV69etn+Zv6F2rVrKzg4WLNmzVLPnj0zXQc8b968KlKkiBYtWqSCBQsqR44c2rZtmz799FNJSh/b3Q8GNm/erJw5c6p8+fJZyrBixQqtX79eEyZMUJ48efTyyy+rTZs2evXVVzVjxgw7jRQAAACAq6FIDgAA8DeeeeYZVaxYUYsWLdK4ceMUFRWlggULqmHDhnr66adVuHDh9L6DBw9Wvnz5tHDhQi1btky5cuVSy5YtNWzYMPn5+dn8s/39/bVo0SJNnDhR48eP1507d1SkSBGNGDFCvXv3zvQ1/fv3182bNzV//nx9/PHHKlSokB599FGZTCbNmDFDt27dUs6cOdW7d2+9/fbb6tOnj+bOnZthP+3bt1dAQIBmzJihgQMHKjAwUA0aNNCzzz5r97W6zWazWrRooYULF6pNmzZ/2m/q1Kl666239OKLL8rb21ulS5fWtGnT9Pbbb2vPnj3q3r27ypQpo7Zt22rRokXaunWrVq9e/bc//8qVK3rrrbfUsGHD9OVVChQooGeffVavv/66vvzyS3Xo0MFu4wUAAADgOkyWrN5RCQAAAAAAAACA/xjWJAcAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAAAMcePGDTVv3lw7d+780z4//PCDHnnkEVWtWlWtWrXSpk2brLbPnDlTDRs2VNWqVdW9e3edPn3arhkpkgMAAAAAAAAA7G7v3r3q3LmzwsPD/7TP2bNnNXjwYA0dOlR79uzR4MGDNWzYMF25ckWS9NVXX2nBggWaPXu2du7cqUqVKmnIkCGyWCx2y0mRHAAAAAAAAABgV1999ZWee+45DR8+/G/71axZU82aNZOnp6dat26tWrVqacmSJZKkpUuXqmvXripTpox8fHw0YsQIRURE/OXMdFtRJAcAAAAAAAAA/K3ExERFR0dbPRITEzPtW79+fa1bt06tW7f+y32ePHlSZcuWtWorXbq0jh49mul2Ly8vFS9ePH27PXjabU8AAAAAAAAAkE1841XO2RGyndOTBmnKlClWbYMGDdLgwYMz9A0ODs7SPmNiYuTn52fV5uvrq9jY2CxttweXKJJzQFprk3RM8evmOTuGS/Ft3lPRHz/v7BguJXDge7owuJOzY7iUoh8t1ZUje50dw6UUqFBDsdu/dHYMl+H/YAfFblnq7Bguxb9hJ4WfOOLsGC6lWJkKujyym7NjuJSC4xfqxpv9nR3DpeR5ZYbiv5/r7BguxffhXrpw/JCzY7iUomUr69qv9vsa8H9BcKU6ujlugLNjuJTco6bq8tH9zo7hMgqWr6Yjpy46O4ZLqVCqCMfIPQqWr6brh3Y4O4ZLyVf5AWdHgJvo37+/evXqZdXm7e39r/bp5+en+Ph4q7b4+HgFBARkabs9sNwKAAAAAAAAAOBveXt7KzAw0Orxb4vkZcuW1YkTJ6zaTp48qTJlykiSypQpY7U9KSlJZ8+ezbBEy79BkRwAAAAAAAAA4BTt2rXTrl27tGbNGiUnJ2vNmjXatWuXHn30UUlShw4dtHDhQh09elQJCQmaOHGi8uXLp5o1a9otA0VyAAAAAAAAAIDDVKtWTStXrpQklSpVSh9//LFmzJihWrVqaerUqfroo49UokQJSVLHjh3Vs2dPDRw4UHXr1tXhw4c1Y8YMeXl52S2PS6xJDgAAAAAAAAD4bzp27JjV8/37re+10KBBAzVo0CDT15pMJvXu3Vu9e/c2LB9FcgAAAAAAAABux+RlcnYEuAiWWwEAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADcFkVyAAAAAAAAAIDb8nR2AAAAAAAAAABwNLOnydkR4CKYSQ4AAAAAAAAAcFsUyQEAAAAAAAAAbosiOQAAAAAAAADAbVEkBwAAAAAAAAC4LYrkAAAAAAAAAAC35ensAAAAAAAAAADgaCYv5g8jDUcCAAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3JanswMAAAAAAAAAgKOZPU3OjgAXwUxyAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG1RJAcAAAAAAAAAuC3Pf/rCw4cP68KFC2rcuLHu3LmjvHnz2jMXAAAAAAAAABjG5GVydgS4CJtnkkdGRqpLly7q1KmTXnjhBZ0/f17NmjXT/v37jcgHAAAAAAAAAIBhbC6Sv/322ypbtqx2794tT09PlSpVSv369dN7771nRD4AAAAAAAAAAAxjc5H8p59+0qhRo+Tn5yeTKe0rCX379tXJkyftHg4AAAAAAAAAACPZXCT38vJSfHy8JMlisUiSYmJiFBAQYN9kAAAAAAAAAAAYzOYieZMmTTRy5EidPXtWJpNJkZGRev3119WoUSMj8gEAAAAAAAAAYBhPW18wYsQIjRo1Si1btpQk1a9fX40aNdLYsWPtHg4AAAAAAAAAjGD2NDk7AlyEzUXygIAATZ48WTdu3NCFCxdUoEABFShQwIhsduOdL7fqbV2iX/q/ohtbdmXaJ7hlQ5Uf95z8S4QoPvySjrz4nq6u2Zy+veSIvio+qLu8cufQrT0HdXDAa4o5fsZBI7CfyDsxeuPztdpzIlweZrPa1KqkZx9rKk8P6y8VpKZaNGPtNn2144Bux8arSN5c6tfqQbWoXkGSlJCUrA+/3qR1Px9TbHyiihfIo6GPPqTaZUOdMax/7EZsgt7c+LP2XrguD7NZrcsX1bD6leRpzvgli8Ff79CeC9flYf79BPpeq1qqV7yAbscn6r0fDurHc1eVnJKqigVyaXiDyioXnNORw7ELc2AO5X6iv3xKV5QlNUWxu7fq1ooFUmqqVb98z4ySd6kK1q/18VX0tnWKWjJTkhTYtJ0CG7WS2T9ASeGndHPxJ0q+eslhY7GXm1G3NH7qLP186Ig8PMxq3qi+BvR6Up4eHhn67tizX9PnL9alK1eVPzivBjzVVfVqVZckJSYlafZnX2j9lu2Ki49XtcoVNaTvUyoQnNfRQ/rXbtyO1huffqU9R8/I08Os1nWranjnVpm+J8s27dSi77frWtRt5csVpCebP6hOTeqmb1+66Sct/G6brt+KVpF8uTW4Qws1rFrekcOxixu3o/XGgq+159jZtPekzv0a/niLzN+Tzbu0aP2PuhZ1R/lyBunJZg+o00N1JEn1Br1h1ddisSg+MUlv931crepUcchY7OVmVJQ+mDJVBw4ekoeHh5o2bqT+fXrJI5P3ZOfuPZo1b74uX76i4OBg9ev9lOrWrpWh35rv1un9jz7WutUrHDAC+zMH5FCOjr3Tzp+pqYrbt113Vn+W4RwrSV4lyyuoTRd5FigqS1yMYn9cr5hNqyRJ+d+cZdXXZDLJ5O2jqEUfK/7nHQ4Zi72Y/IMU0KabPEPLSqmpSjy4U7Hrv5AsGd8Tz2Jl5N+0gzyCCyk1PlYJe35Q/I/fZujn/3AnmXz8FLPqU0cMwe7Srte+1Z6Tf7heC2uS+fXat9v01Y5ffr9ea1kv/Xrtdmy8xi1bpx+PnFZSSooqFSukEY81Ufmirn3tfq+bUbc0aco0HTj0qzzMHmr2UEM93fupzM8le/Zq5ryFunT5ivIH51O/Xj30QO2akqTU1FQ90rm7ZLFIpt+v575YMFt+vr4OG4893Iy6rfemz9H+Q0fl4WHWww3raWDPJzL9N+euzTt26+P5i7Vs2sT0toTERE1fsFSbd+xWbHy8ihUppGe6dVL1+yo6Yhh2ZfIPlH+rJ+VZrEzaueTXXYrbsDzTc0lgp4G/nXNS0tuiv5ql5NOHJQ9P+TVoK+9KtSQvHyWHH1fsumWy3LnpyOHYxc2oW5owdaZ+PnRYHmYPNW9cX8/06pbpcfLTnv2aPv8zXbqcdg37TM8nVa9WDUlSQkKipsyer207dysxKVllSxXXoD49VKp49vrb74/27P5J8+fM1JXLlxScP7+e6t1fteo8kGnflJQULZg3U5s2rFNCQryq3F9NTw8arjx50q7ht/2wSZPGvyVvb+/019R5oL6Gj3zJIWP5tzhOMrp567benTZX+389Kg8PDz3c8AENeqrLX55jN+3Yranzl2rZtPHpbQmJiZq2cJk279ij2Ph4hRYppKeffFw17qvwp/sB4Dw2L7cSERGhLl266NKlS6pSpYrmzZunJ554QteuXTMi37+Wu1511du6RAGl//zE7F86VDWWfqTjr32o7/PW1PGxH6n65x/Ip3B+SVKR7mEqPqi7drXpo3UF6ujWvl9VY8lkRw3Brp6fs0J+Pt5a99ZgLRr5lH46dlYLN2X84GDxlr1ateuQZg99Uj9Nek5D2jXSi3O/1vlraReHH369ST+fvqAFI3poy3vD1L5eVQ2evkyXbtxy9JD+lRfX7pG/l6e+7dNC8zs31K7wa/ps/6lM+x6+EqUpjz6gbc+0TX/UK572R+YbG35WTGKyvn6qmTb0a6VKBXLr2dU7HTkUu8nTa5hSE+J16ZX+ujrhJfmWu0+BD7XJ0O/6tHGKeK5H+iPqi7lKvnFdt9cukyT5126kwEatdH3qW4p4sY8Sz59W3j4jHD0cuxgz4SP5+flq+dyPNWP8G9r7yyEtW7kmQ7/zEZf06nsfqG/Xjlrz2Sz17tJRr42frGuRNyRJnyxYrC07dmnCay/q63nTVbRQQY0Y87aSkpIdPaR/7YXpn8vfx0ffT3pRC14ZoJ1HTmrR99sz9Nu077A++vI7je3bUdumvqaxfR7XlOXfa/2eQ5Kkldv36ZOvN+rtfp21fepr6t2msZ6bukhXb9529JD+tRc+WSp/H299P36kFrzUXzuPnNKi9RmLlZv2H9ZHX63T2F4dtO2jVzS2d3tNWbFe6/f+Kkn6ccqrVo+m1SuqXqXSal6zkqOH9K+99e4E+fn6afGnczVl0njt//kXfbliZYZ+Fy5GaOy499SzW1etWPqZnnqyi958d7yuX4+06nf2XLimz5rtqPiGyNltkCyJCbr6xmBFTh4t7zKV5N+gVYZ+HsGFlLvPc4r9cYOuvtJXN+dMUECj1vK5L+2Dg6uv9LV6xB/cpYRjvyj+l+z3b09g+//JkpigqA+e1+054+RZorx86zTL0M+ct4CCugxW/N7NuvneUEUvniLfus3lVb56eh+TX4ACHu0t39pNHTkEu3t+7tdp12tvDtKi5+5er+3O0G/x1t+u14Z01U8TR6Rdr81bmX69NuazNYqJT9Cq0f31wztDVTm0kIZ98qWjh/OvvfHeRPn5+WnpvFn6eNI72vfzL/ri61UZ+l2IiNCYcRPU88kuWrlkgZ7q2llvvDtR1yLTziXnzl9QSnKyVnz+qb5Ztij9kd0K5JI0etLH8vP11YrZH+qTd8dozy+/aumqjB8YSVJycrIWffWNXps0VZZUi9W26QuW6uDRE5r+zmit+XSaHmnWSM+/PUmXr113xDDsKiCsryyJCbr10Sjd+fRdeRUvL5/aTTLt61GomKIXT1HUxGfTH8mnD0uS/Bo/Kq/yVXVnyRTdmvyCUm9eU9ATgyXznxfHXNWY8R/Kz9dXX86dpukT3tTeAwe17OuM17AXIi7p1XcnqU/XTvrm8znq9cTjGvPeh+nXsHMXL9P5iEv6dMpErfh0hkoVD9Ur4yZm2E92EXHxgt57a4y6du+lz75YpS5P9tT4d8Yq8nrmNY1lixfq5317NOHDaZqzYKm8vX308YcT0refOHFUjZs01+Lla9If2aVALnGcZObViVPl5+err2d9oJnvjNaeXw5ryarvMu2bnJysRSvW6LX3pyv1ng/lpi1cpoNHT2rGuFe0dt7HeqRpQz0/7n1dvhaZ6b4AOJfNRfLXX39dJUuWVGhoWtH5f//7n0qXLq033njjb17peEW6h6nq/Ak6Nvr9v+xXtPtjurFtj66s3CBLSooufbFWkVt2q1jfzpKkYn066dz0zxR9+KRSExJ19KWJ8i1WWHkb1XHEMOwm/NoN7TkRruGPPiQ/by8VzZdb/Vo+qMU/7M3Qt0vDGvripT4KCc6txKRk3YyOk5+Pl3y9vSRJ8UnJGtCmoQrmziEPs1kdHqwqb08PHT5/2dHD+sfOR0Vr78XrGvpgRfl5eapozgD1rV1OS37J+A2Bi7didDshUeXzZz4z/O2WNfVOq5oK8vFSXFKy7iQmKbefd6Z9XZlHvgLyLVtZt1YslCUpUSmRV3X7uy8V2LDlX77OM38h5Xq8t27Mn6zU21GSpIB6TRWz7XslX74gJSfp1tefySN3PvmUyV6FvguXLmv/ocN65qmu8vXxUeGCBdSj02NavmZdhr7fbtqqKhXKq0HdWvL08FCT+nVVtXIFrfp+oyRp/ZYf9VTnx1SiWFF5eXmqX/cuuhZ5Q3t/OeToYf0r4VcitefoGQ19vKX8fLxVNH8e/e+RJlq88acMfa9F3Vav1o1UpVQxmUwm3V+6mGqVL6l9v30TZ8G3WzXgseaqXDJEJpNJrerer09fflqBfj6OHta/En41UnuOndHQji3S3pPgPPpf28Z/8p7cUa+WDVSlVNqY7y9VTLXKldC+E2cz9F25fZ92Hjmlt/o+/pczV1zRxYhLOnDwkPr2ekq+vj4qVLCgnuzSSV+vzvhH17qNm1S5UgU9+EBdeXh4qFGD+qpSubK++e779D7x8Ql6670JeqzdI44chl155C0gn9IVdeebz6WkRKXcuKaY9SsU8GDzDH396zVXwqG9it+7VZKUfOm8Iqe8rqSzxzP09avZQN5l7lPUZ1MznZHuysy5g+VVvJxiN3wpJScpNeq64retkU+txhn6+tZ8SInHf1biL2m/VylXL+r2vHeVfP5kWgcvH+V8Zqws8bFKPJLx2ia7CL92M+16Lazxb9drudSvxYNavCWT67UGNfTFqD9er8VaXa+92+tRje8dphz+vopLSNKduATlDvR39JD+lbRzya/q17O7fH19VLhgQXXr8rhWrF6boe/3GzbrvooVVP+BOvLw8FDjBg+qSuVK+ubbtH+zj504qZLFQ+Xl5eXoYdjVhUtXtP/QEQ3o0Vm+Pj4qUjC/ej7+qL5csz7T/sPHjte+Q0fU7bGMkx4SEpPU54n2KpAvrzw8zGrX/CF5eXnp2KmzBo/Cvsy5g+UVWlZxm7767VwSqbjta+VTI+N9s8w588rkG6DkK+GZ7su7Yk3Fb1ur1OuXpNQUxW1eIXNQLnkWL2f0MOzqwqXL+vnQYT1tdQ3bXl+tyVjo+3bjFlWp+Mdr2Ad0f+UKWvXdBknSufMRslhSZbFYZJFFHmazfHyy17XaH21a/50qVLpPdevVl4eHh+o3bKzKle/X999+k2n/dd+t0WMdn1BwcH75+weob/+B2rdnly5fipAknTx+TKXLZK/j4y6Ok4wuXLqi/b8e1YDunf5wjm2nL9duyLT/sLETfjvHts6wLTExSX27PPaHc2zjtHPs6bMGjwLAP2Hzciv79+/X9u3b0y8u8+TJo1deeUUNGza0e7h/6/r32xTx2SpZUlKkzz74035BFUvrziHrPzqjj5xUjirl07efGj8zfZslOVmxJ88q6P7yivwh+8zYOnXpunL6+yp/rqD0tlIF8+nSzdu6HRuvHP6/z6Ixm03y9/HWj0dOa+DUpbLIopHtmyk4Z6AkafQT1rPedh47q+i4BJUrkn2+vnsq8o5y+nopONAvva1EniBdvhOnOwlJCvL5/Q+oX69Eyd/LU6PW7tGvV6KU199HT1YrpUcrpX1Y5PXb158//vGw5u45IX9vT33Yrq6yG69CIUqJuaPU279/nTTp0gV55gmWyc9flrjYTF+Xq1Nfxe78QYmnjv5hX0V1Z/3Xv3dKTVHytcvyKhKqhBO/GjYGezsTfkE5ggKVL0/u9LbiRYvoyrXruhMdo6DAgPT2s+EXVDI0xOr1oUWL6OSZc5KklNRU+fr8/nuW9k1vk8IvRqhujapGDsOuTkVcUc4AP+XPnSO9rWTh/LocGaU7sXEK8v/9d+qPy6pIaUuS7Dt+Vs92bq24hESdirgqs9mk3u98otMXryi0YLCGPt5C/r7Z64L6VMTVtPck1x/ek0LBunzjVsb35CHrD1hv3I7WvhPn9Ozj1h9G3YmN16Rl32rUk48oVzYraknSufBwBQUFKV/ePOltocWK6uq1a4qOjlZgYODvfc+Fq0So9Te+ioUU1ekzv39o+dH0Gapbq5aq319Fny1ZZvwADOBZsIhSY+6kf5goSclXLsojdz6ZfP1lif/9HOtVrKQST/yqnF0HyqdsZaVG31bM1m8Vt3OT1T5Nvn4KattVt7+aJ0tstKOGYjcewYWVGhstS/Tv30RLuRYhj5x5ZfLxkyUhLr3ds3BxJZ05ooDH+sirREVZYu8ofucGJexP+yBByUm6NWOMLDF3FPDIU44eit2cunQt7Xot5x+u1wrl/ZvrtTMaOO3u9VrT9Os1Lw8PyUP6aNUPmr1uhwJ8fPTR0x0dPqZ/42z4eQUFBVqfS0KK6uq164qOjlGg1b/D51WieDGr14cWK6pTZ85Kko4dP6mExEQNGP68Ll+9pmIhRfS/p7qpUoXstcTXmfMXlCMwwPraJKSIrlyP1J2YGAUFBFj1f3VIf+XPl0drNm7NsK/nn+ll9XzvwcOKiY1VmRLZa3kEj3yFlBp3z7nk+qVMzyUehUJlSYxXYFiftP+PuaP4XRuU+Mtv3/4ym2VJSvh955a0h0fegumzzbODs3evYe/53cnsGvZM+AWVDLX+3SkeUlSnzqZdw3YOa6PR77yvdt3/Jw+zWTlzBOn9N0c7ZiAGCA8/q9DiJa3aihYL1ZnTGb9RHBMTrcjr1xRavER6W67ceRQYGKSzZ04rf4GCOnXqhHx8ffXVF4uVmpqq6rXq6Kle/RQYFJRhf66G4ySjM+cvKkdggIL/cI4tUbTwn55jRw/tp/x58+ibzM6xT/e0ep5+jr3n3yoArsHmmeSenp66ceOGVdutW7fk64JfU0y4cj2tQP43PIMClBITZ9WWEhsvz9+KEh5/tj0gexUtYuIT5edjPbv57kyjuITETF9Ts3Qx7f7gec0Y9ISmrN6ib/dmvDD85cxFjZz9lZ5uXV9F8+Wye26jxCYly9fT+nMiX8+0mZqxidbLXySlpKpKoTwa8EAFfdunhYY3qKwJWw5q3YmLVv361C6nHwe0Vb/a5TT46x26cCvG2EHYmdnHT5aEBKs2S1Lib9sy/x33LllO3sXLpC+zcpfJx0+WxPh79pUg05/sx1XFxcXL954ZEHefx8Vbjy82Lk5+vvf29U7v1+iB2lrwxQpdvHRFCYmJmv3ZMiUmJirhT37/XFVsfMKfnkti4/98LNdv3dGg9+epQmgRtap7v+7ExslisWj+t1v1cvdHte79UWpV934Nev9TRVzPXut+Zv6eeP+27W/ekw8XqEKxwhnWG/984w4VzptbD9esbP/ADhAbFyffe34ffP7id+fe6whfHx/FxaX1W79ps8LPX1DP7l0NTGy8tPNi5ufYe8+NZr9A+T/4sOL3bdfVsQN168s5CmrbNX25lbv867dQys3rij+QfT60/yOTt2/6e3CXJfm3597Wx4/Jz1++tZoo8eBORb0/UjFrFsm/WYffl1uxpMoSc8cRsQ0Vk5DJ9ZrX312vhWj3+yM1Y2AXTVm9Vd/uPWK1/X8t6mnXxOfUv9WDGjB1qS5cjzIkuxFi4+Lk55Px/CBlPJfExcVl+m92/G/9vH28Vb5cGb3+ygv6fM501atdSy+89oYuXb5i4AjsLzYuPsP51fe3YyYuLiFD//z58mRoy8yhYyf16viP1LvTYypcIPjfB3Ugk7evlHjP70fSn5xLPD2VcvGM4n5YqVsfjVLshi/l3+xxeZWvlvayoz/Lt15LmXPlkzw85dvwEcnLSybP7PUNhNhMfx9+O06y9Lvjnf7vcEpKihrWq60v5kzV6kWzVb9OLb389ngl3PueZxNxmVx3+Pj4KD4+LtO+kjL09/6t/+1bUSpZsrTq1W+kKTPm6Z2JH+lSxEW9P+Ft4wZgRxwnGcXGxWf4m+73a9hMzrF5s3iOPX5Sr0z4WL07hWW7cyzgLmwukrds2VJDhgzRjh07dPbsWe3YsUNDhw5VixYtjMjnEMkxcfLwt/5Hz8PfV8l30gqcKX+2PTp7FUD9fLwUn5hk1Xb3ub9v5kuDeHt5ytPDrDrliqtt7Upau8e6SL78x5/V76PP1bfFg+rfqr4xwQ3i6+Wh+GTrD1HuPvf3ti6et6kQoo8efUDl8+eSl4dZD4TmV5vyIVp33LpI7uvpIW9PD3WrXloFA/30w+nss/yMJKUmxsvkbX0smLzSnqdmctEoSQEPNlfc/h1KvWO9Hr0lMUEmr3v+KPHykeVP9uOqfH19lHDPBwfxvz339/O7p6+v4u8pYMQnJKb3G9jrSVUuX0aDXx6rbgOfk7eXl0qGhljN0MgO/Ly9/+JckvkM8F9Ohavb2KkKLZhPHwzpLk8PD3n99iFVtxb1VapIAXl5eqpL0wdUKG8ubfvlmLGDsLPM35O0Y+HP35Pz6vbWdIUWzKsPBlnfCNZiseirrXvVpWldmUzZ827rvj6+GX53Ev7idyez3zN/Pz+dv3BRs+ct0EsjR2R6k77sxJKYINO9xZrfzrF/nOUoSZaUJCUc3qeEoz9LqalKOnNMcfu2yfd+629n+NdurJht3yu7siQlpL8Hd5k8f3t+7wetyclKPH5ASScPSZZUJYefUMLBnfKuWMNRcR3CzzuT67UkG67XalXS2r3W39jy9faSt5enejSprUJ5cmjTLxmX7XFVfr6+6f/u3nX3uZ/fPcVzX98MHzzHJyTI77dzzjN9emrkkIEKzptXPj4+6tT+UeXPl08792Sv5Xl8fXwyGedv/+b4/bPJCKvWbdbw199Vj47t1LNT2L+N6HCWpATpnnPJ3ef3TtpIPLRL0Us/VsqVC1JqqpLPHFHCoZ3yrpB2Lond+KWSL55WULdnlaP/a1JKklKuRig1PvNvVLqqvz5O7v132EcJiff+niXKz89PycnJeu29D9SqaWMF580jf38/De3XU9cjb2rPzweNHYSdLFuySF3at05/WCwWJSRYHxcJfzhX/NHdb4Hee52SmJAgPz9/5cqdR2+P/1DNHm4lH19fBecvoKd699O+PbsUF+v6xwzHSUa+vj4Z/qZLv4b9h5NDV67/QcNeH6+nOjyiXo8/+q8zwr5MXiYeNj7+q2wuko8cOVIlSpRQ//791bJlS/Xv319lypTRsGHDDIjnGNG/HldgxTJWbYEVSuvOryckSXd+PWG13eTpKf/SxTMs0eLqShcKVlRMnCJv/17cP3X5ugrkClLQPRfUE5Zv0ITl1mtuJSanpH/FNyU1VWM/X6vJKzfrg34d1KNpbeMHYGel8+bQrfhERcb+foF05sYdFQj0tVpqRZK+/vVchlnjiSmp8vlt5nmvpVu0/kREhu05fLPXjJPkS+flEZhD5qDf1173KlRUyTevZ17cNpvld19Nxe7ekmFT0qVweRX6w9IjZg95BhdU0qXzRkQ3TIliRXXrTrRuRP3+IcDZCxcVnDePAu/5NknJYkV19vwFq7ZzFy6qRLGikqTrkTfV4/HHtHzOx1o2c7Lat3lY5y5GqFxp6697urpSRQsoKjpWkbd+n7F5OuKqCuTOqSD/jBeOK7buUf/xs9W1eT2N699F3l5pxfHcQQHKkyMgw41LU1PT1jLMTkoV+e09uf37chenL11Tgdw5Mn9Ptu1V/0lz1bVZPY37X6f09+SuX89e1M07MWpeI3ut4f9HxUOL6fbtO7p5Myq97Vz4BQXny6uAe76mWjy0mM6FW58bws9fUPHQYtqy/UdFR0frmaHDFda5q14Z+5YkKaxzV23c/IPh47Cn5MvnZQ4Ikjnw92V5PAsUUUpUZIZzbPKVCJk8rI8Lk8msP16SeoWUlDkwR7a8WeddKVcjZPYPlCng96+kewQXVsrtG7LcU8BIuX4pw3sik0km/bcu1DO9XrsUaeP1Wlpho8ekBVq3/2iG7TkDMhaCXFXx0BDdvnNHN/54Ljmfdi4JvPdcUixEZ+85l5wLv6ASvy0PMHv+Ip04ddpqe1Jysry9s9d9ZEpmdm1y/qLyZ3Jt8ndSUlL13rS5mrFomd5+Yai6tMt4I+HsIOXab+cS/z+cS/IVSltC8J5ziXeVB9Jnjd9l8vCUJTntwyhzUC7Fb/9Wt6a8pNtTX1XC3s3yyFtAKZczX8PcVZUMDdGtO3d0Iyoqve3c+QuZXsOWKBaiM+HW17Bnz19QydCiiouP153oGCUl/f7hndlslslkSp/w4Ooe7/yk1U01y5WvqPPnzln1uRB+TsVCS2R4bWBQkPLmzafz586mt928cUN37txWseLFdfbMKc2f+4nVtWtSUpJMJpM8vVz//eE4yahkSJEM59gzFyL++Tl2+jzNWPSFxj0/RF3a/fW9vgA4l81Fcj8/P73zzjvau3evtm3bpgMHDmjs2LHy989eS4/80YVFK5W3UW0V6thKJg8PFerYSnkb1dbFRWnrKV+Y96WKD+ymoCrlZPbxVvm3RyjxynXd2LrHycltE5o/j6qVKqr3vlynmPgEXbgepU++3a7HHrg/Q98apUO0bNt+7T0ZrtRUizYfPKFv9x5RhwerSpLGf7le2w+f1mfP91Ld8hkvJrKDYrkCVbVwHk3cckgxiUm6eCtGs3Yd06MVM67BGJ2YrPc2H9TRq1FKtVi09cxlfXv8otpXLi5Jqlwwt2bsPKpLt2OVmJyi6T8dVVJKqhqVKOjgUf07ydcuK+HUEeXq0FMmH1955A1WjhYdFLtjU6b9vQqHyuTtrYTTGT8witmxSQENW8qrSKjk6aWcj3ZVyp1bSjh5JJM9ua6QwoVUpUI5fTR7vmLj4hRx5armL/1KbZo1ztD34cb1tf/QYW3c9pOSU1K0cdtP2n/osFo0biBJWrpqjcZNnq7YuHjdiY7WpBlzVa5UCVUoU8rBo/p3QgvkU7UyoRr/+TeKiUvQxWs3NHPVRoU1yDibc/2eQ3p7wdeaOOhJ9WjZIMP2jo3r6JNVG3UsPELJKSn6bN2Punrzth6qXtERQ7Gb0AJ5Va10qMYvXqOY+ARdvHZTM1dvVlj9TN6Tvb/q7UWrNPGZJ9Tj4Qcz3d/+E+dUIbRwhiUXspOiRQqrcsUKmjpztmJj43Tp8hUtWrxULZs3y9C32UONdeDgIf2wdZtSUlL0w9ZtOnDwkJo1aawnOz+uVV8u0Yoln2nFks/05uiXJUkrlnymJo0z3pDNlaVcv6LE08cU1K572jk2d7ACmoUpblfGYn/cjg3yqVxDvtXTjhGvEuXkW62e4vZtT+/jVaKcki6c+X1JgWwo9eZVJYWfkP/DnSRvH5lz5ZVv/dZK/Hl7hr4J+7bIq1xVeVdOW9ffs1gZ+VSuo4SDGW+Qm52F5s+jaiWL6r0v1/9+vfbddj32QJUMfWuUDtGy7T9bX6/tO6IO9dKu7e4LLaSpa7Yp4sYtJSYla+o3W5WYnKLG95XJsC9XVbTwb+eSWXPSzyULFy9Tq+ZNM/Rt/lAjHTj0qzZv3a6UlBRt3rpdBw79qmYPpZ0rzoaf18cz5+jGzZtKTErS/M+XKjY2VvUfqJNhX64spHBBValQVh/OWfTbtck1zVv2tdo0tf0eUR/NXaSf9h/QrPdeV637s+fyXpKUevOaks6flH/zjmnnkpx55fdgKyUc+DFDX5OPn/wf7iyPAkUlmeRZqrK8K9VS4v5tkiTfWk0U0La75OUjk6+f/Ft0UcrlcKVcOpdhX66saOFCuq9iOX00a37a786Vq5q/dLnaNH8oQ9+HH2qgnw8d1sZtO367ht2hnw8d1sONGygoMFD3VSynGZ9+pptRt5SQmKgZn36mnDmCdF/F7HmzysZNmuvQwZ+1bctmpaSkaNuWzTp08Gc1bpLxRtqS1KR5Sy1dvFBXLl9SXGysZn/ysSrdd78KFSqiwKAcWrNqhb76YolSUlJ07eoVfTp7hpo0aymve7/d4II4TjL6/Rz7mWLSz7Er1bZpxr9l/s7keZ/pp/2/aPa7r6nW/dl38gvgLkyWLE7XW716tdq2basVK1b8aZ+wsLB/FOIbL+NPmm2SjmlH0+66sWWXJKnFzX06OOA1RXy+SpKUr3l9lR/3nAJKFlPcuYs6Mmq8rn37++zYEsN6qfgzT8o7OI+i9hzUoYGvKebEWcOyxq+bZ8i+I2/HaNyy77X7+DmZTCY9UruyhoU9JA+zWXWfnaBXn2ipNrXSLpC/2nFAc77foRt3YhWaP7cGtm2kByuW1M3oWDUZNVlmsynthlB/8MfX25Nv856K/vh5u+83MjZe724+qD0XrstsktqUD9GQByvJw2xS/Wmr9dJD96t1+RBZLBbN3n1cK349pxtxiSqaw1/96pRXszKFJaXNyvp4xxF9e/yCklIsuq9gbj3boLJCcwf+TYJ/LnDge7owuJPd92sOyqlcj/eWT5lKksWi2F1bdOvrhZLFosIT5uvm4k8Utyftjwi/qnWU6/E+uvRyv8wzNmmrwAYtZA7MocTwU4paPFPJ1y7ZPfNdRT9aqitH7P+V6RtRt/TBJ3O1/+BhmcxmtWjcQE/3eEIeHma16NJLI57po4cbpS03tGv/AU3/dLEuXr6igvnz6ekeT+iBmmmzlWJiYzVx2hzt+vkXSVLtalU0tO9TypnDuJv6FKhQQ7Hbv7T7fiNv3dE7i1Zpz9HTMplMaluvmoY+3lIeZrPqPTNGr/QIU+sHqqrT6Mk6dfGKfLytv1XR+oGqeqVHmFJTU7Xw++1a/sNuXY26rRKFgjWiS2tVL2vMh2/+D3ZQ7Jalhuw78na03vlstfYcO5P2njxQVUM7PJz2ngx6Q690a6fWde9XpzFTdCriasb3pM79eqV7O0nSO5+t1s07MXq3f2dDsv6Rf8NOCj9hzIdXN29G6aPpn+jAwYMym8xq1qSx+vbsIQ8PDz3SsYuGDXxGTX8rXu3eu1+z5n2qS5cvq0BwfvXt1UN1atXMsM8DvxzUcy+9qnWrVxiSWZKKlamgyyO7GbJvc2AO5Qh7St6lK8piSVX83m26881iyWJR/jdn6faXcxS/P62o412uioJadJRHcCGlxtxWzOZvFPfTxvR9BYX1kDkgh24tmmJI1j8qOH6hbrzZ35B9mwKCFNDiCXkWLydZUpXwy0+K27hcsliU+/kPFbNmkRIPpV2/eZWqJL9G7eSRt4BSY6MVv+M7JezLeKOsuzfujFn1qSGZJSnPKzMU//1cQ/adfr12Ivz367VHG6ddr42YqFe7tFSbWml/bH+144DmrPvpD9drDfVghbRvKCUmJeuj1Vu0ds9hJaWk6L7ihfVc+6Yqnj9r66fayvfhXrpw/JDd93vjZpQ+mjFLP/9ySGazSc0faqz/9ewmDw8PtXn8SQ0f2F/NGqcViHfv26+Z8xYq4vJlFQgOVr9e3VWnZtoHlrfv3NH02Z9q5959io9PUPmypTWgby+VKlHc7pnvKlq2sq79av9ve9yIuqVJM+dr/6EjMplMatm4vp7p3lkeHmY17/o/jezfSw83qmf1mjUbt2rOkq/0xYxJkqSo23fUrvcgmc3mDDM9M3u9vQRXqqOb4wbYfb8m/yD5P9xZnqFlJYtFiYd2Km7TV5LFolwjJin228+V+OtuSZJvvZbyvv9BmQOClBp1XXFbv1HSsf1pO/L2VUDLJ+RZsoIkKen0YcWtWyZLnHFLbeYeNVWXj+63+35vREXpgxlz9fPBwzKZTWrxUAP17/GkPDzMatn5KY145n9q3vi3a9h9BzRj/me6eOm3a9innlTd365hb0RFadrcRdrz8y9KTklRxbJlNKhPd4UUKWz3zJJUsHw1HTl18e87/gv79+7Wp3M/0eVLEcqfv4B69O6nmrXSljT7YdN6TftokhYvXyNJSk5O1mcL5uiHjesVFxenylWqasCQZ5UrV9qNHQ8dPKAF82Yq/OxZeXt7q36jh/RU7/52/ZZKhVJFDDlGpOx9nFw/tMOQfd+IuqVJsxZo36GjMplMatX4QT3TrZM8PMxq9mR/jez/lFo0tD5HfrNxq+YsXaEvp0+UlHaOfaTPkD85x2Z8vT3kq/yA3ffpDjaVyThxFH/toRMHnB3BEFkukrdt21arV69WkyZNMt+RyaQNGzZkuu3vOKJInp0YWSTProwqkmdnRhXJszOjiuTZmVFF8uzKyCJ5dmVkkTy7MrJInl0ZWSTProwskmdXRhXJszOjiuTZmVFF8uzMqCJ5duWIInl2Y2SRPLsyskieXVEk/2coktvuv1okz/LiUKtXr5Ykvffee6pWrVq2v3kWAAAAAAAAAAA230Fh4MCB2rx5c6Z3fgYAAAAAAACA7MDs+d+6CTz+OZtv3BkSEqKDBw8akQUAAAAAAAAAAIeyeSZ5zpw51atXLxUtWlT58+eXyfT7Jy7z58+3azgAAAAAAAAAAIxkc5G8WrVqqlatmhITE3Xr1i3lzp1bnp427wYAAAAAAAAAAKezubrds2dPjR07Vt9++60SExPl5+ensLAwjRo1yoh8AAAAAAAAAAAYxuY1yd944w2dO3dO06ZN05o1a/TBBx/o4MGDmjBhghH5AAAAAAAAAAAwjM0zyTdu3Khvv/1WefPmlSSVLFlS5cuX16OPPqqXXnrJ7gEBAAAAAAAAwN5MHqa/7wS3YPNMch8fH3l4eFi1BQQEyM/Pz26hAAAAAAAAAABwBJuL5E8//bSGDBmio0ePKi4uTmfPntWoUaPUunVrRUREpD8AAAAAAAAAAHB1Ni+38uabb0qSwsLCZDKZZLFY0rfNmTNHFotFJpNJR44csV9KAAAAAAAAAAAMYHORfMOGDUbkAAAAAAAAAADA4WwukhcpUsSIHAAAAAAAAAAAOJzNRXIAAAAAAAAAyO7MHiZnR4CLsPnGnQAAAAAAAAAA/FdQJAcAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADclqezAwAAAAAAAACAo5nMJmdHgItgJjkAAAAAAAAAwG1RJAcAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADclqezAwAAAAAAAACAo5k8mD+MNBwJAAAAAAAAAAC3RZEcAAAAAAAAAOC2KJIDAAAAAAAAANwWRXIAAAAAAAAAgNuiSA4AAAAAAAAAcFuezg4AAAAAAAAAAI5m9jA5OwJcBDPJAQAAAAAAAABuiyI5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LY8nR0AAAAAAAAAABzNZDY5OwJcBDPJAQAAAAAAAABuy2SxWCzODgEAAAAAAAAAjrTzgTrOjpDt1Nmx09kRDOESy63Er5vn7Aguxbd5T33jVc7ZMVxKm6Rjiv74eWfHcCmBA9/TzXEDnB3DpeQeNVXhJ444O4ZLKVamgm7vW+fsGC4jR/XmOn3qlLNjuJSSpUrp7Mnjzo7hUoqXLqv41dOcHcOl+LZ9RjEzX3F2DJcS8L83Fb9hvrNjuBTfpj0U9fNmZ8dwKbmqNuYce4/ipcsq/sv3nR3Dpfh2GM417B8UK1NBO47cdnYMl/JAhRw6dfq0s2O4lFIlS+ri8YPOjuFSipS9z9kRgGyN5VYAAAAAAAAAAG6LIjkAAAAAAAAAwG25xHIrAAAAAAAAAOBIZg+TsyPARTCTHAAAAAAAAADgtiiSAwAAAAAAAADcFkVyAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG7L09kBAAAAAAAAAMDRTB4mZ0eAi2AmOQAAAAAAAADAbVEkBwAAAAAAAAC4LYrkAAAAAAAAAAC39a+L5KdOndKVK1fskQUAAAAAAAAAAIeyuUi+b98+hYWFSZIWL16sNm3aqGnTplq/fr29swEAAAAAAAAAYChPW18wceJENW7cWBaLRTNmzNA777yjXLlyaeLEiWrWrJkRGQEAAAAAAADArkxmVqJGGpuPhNOnT2vo0KE6ffq0rl+/rtatW6tx48a6cOGCEfkAAAAAAAAAADCMzUVyDw8PxcTEaMuWLapataq8vb118eJFBQYGGpEPAAAAAAAAAADD2LzcSrNmzdStWzddvHhRr7zyik6ePKmBAweqbdu2RuQDAAAAAAAAAMAwNhfJX331Va1YsUJ+fn5q3bq1zp49qy5duqhHjx5G5AMAAAAAAAAAwDA2F8k9PDzUoUOH9OfFixdXr1697BoKAAAAAAAAAABHsLlI/sMPP+jNN9/UxYsXZbFYrLYdOXLEbsEAAAAAAAAAwCgms8nZEeAibC6Sjx07Vg8//LAaNWoks9nm+34CAAAAAAAAAOAybC6SR0VF6bnnnpOHh4cReQAAAAAAAAAAcBibp4I/9NBD+uGHH4zIAgAAAAAAAACAQ9k8k7xHjx7q2rWrSpcurRw5clhtmz9/vt2CAQAAAAAAAABgNJuL5KNHj1a1atVUs2ZNllwBAAAAAAAAAGRrNhfJz507p127dsnLy8uIPAAAAAAAAABgOLOHydkR4CJsXpO8QoUKOn/+vBFZAAAAAAAAAABwKJtnkj/wwAPq0aOHWrZsqVy5clltGzRokL1yAQAAAAAAAABgOJuL5Lt27VKJEiV07Ngxq3aTia8nAAAAAAAAAACyF5uL5AsWLDAiBwAAAAAAAAAADmdzkVyS1q9fryVLlujixYsKDg5Wx44d9cgjj9g7GwAAAAAAAAAAhrK5SL5q1Sq9/vrr6ty5s5o0aaLw8HCNGTNG8fHxevzxx43ICAAAAAAAAAB2ZTKzfDTS2FwknzlzpqZMmaK6deumtzVq1Ehjx46lSA4AAAAAAAAAyFbMtr4gIiJCderUsWqrXbu2Ll++bLdQAAAAAAAAAAA4gs1F8oIFC2r37t1Wbbt371bhwoXtFgoAAAAAAAAAAEewebmVp556SgMHDlTnzp0VEhKi8PBwLVmyRKNGjTIiHwAAAAAAAAAAhrG5SP7444/Lw8NDy5cv1/r161WkSBG9+eabatmypRH5AAAAAAAAAAAwjM1Fcklq37692rdvr8jISOXMmVOenv9oNwAAAAAAAADgFCazzStR4z/K5iMhMTFRb7/9tqpVq6b69eurRo0aevXVV5WYmGhEPgAAAAAAAAAADGNzkXzatGnauXOnPvjgA61evVoffPCBDhw4oA8++MCAeAAAAAAAAAAAGMfmdVJWrVqluXPnKiQkRJJUqlQplSpVSk8++aSef/55uwcEAAAAAAAAAMAoNs8kv3XrlgoVKmTVVqhQIcXHx9stFAAAAAAAAAAAjmBzkbxcuXJavHixVdvixYtVtmxZu4UCAAAAAAAAAMARbF5uZdiwYerdu7dWrlypkJAQhYeH6+TJk5o9e7YR+QAAAAAAAADA7kxmk7MjwEXYPJO8Zs2a+vrrr1W/fn0FBASoefPmWr16tapXr25EPgAAAAAAAAAADGPzTPL27dtr/vz5GjJkiBF5AAAAAAAAAABwGJtnkl+9etWIHAAAAAAAAAAAOJzNM8mbNm2qHj16qEWLFsqfP79Mpt/X7gkLC7NnNgAAAAAAAAAADGVzkXzr1q2SpCVLlli1m0wmiuQAAAAAAAAAgGzF5iL5xo0bjcgBAAAAAAAAAIDDZblIvnv37r/tU6tWrX8VBgAAAAAAAAAcwexh+vtOcAtZLpJ3795dkqzWIM+ZM6fu3Lmj1NRU5cqVSzt27LB/QgAAAAAAAAAADJLlIvnRo0clSbNnz9bx48f1yiuvKCgoSLGxsXrnnXeUM2dOw0ICAAAAAAAAAGAEs60vmD17tl5//XUFBQVJkvz9/fXyyy9r6dKldg8HAAAAAAAAAICRbC6Sp6amKjIy0qrtwoUL8vDwsFsoAAAAAAAAAAAcIcvLrdz16KOPqk+fPurbt68KFSqk8+fPa9asWerSpYsR+QAAAAAAAAAAMIzNRfKRI0fK399f06ZN05UrV1SoUCF16tRJ//vf/4zIBwAAAAAAAAB2ZzKbnB0BLsLmIrmnp6eGDh2qoUOHGpEHAAAAAAAAAACHsXlNcknavn27nnnmGbVv317Xrl3Tu+++q+TkZHtnAwAAAAAAAADAUDYXyVetWqWRI0eqbNmyOnfunCRp48aNmjRpkt3DAQAAAAAAAABgJJuL5J988ommTp2q4cOHy2w2Kzg4WDNmzNDq1auNyAcAAAAAAAAAgGFsLpJfvnxZ999/vyTJZEpb3D40NFSxsbH2TQYAAAAAAAAAgMFsvnFn8eLFtWHDBjVr1iy97ccff1RoaKhdgwEAAAAAAACAUUzmf3S7RvwH2VwkHz58uAYMGKCmTZsqPj5eY8aM0apVq1iTHAAAAAAAAACQ7dj8cUm9evW0ePFi5ciRQ3Xr1lVqaqrmzp2rRo0aGZEPAAAAAAAAAADD2DyTPCYmRgsXLtTKlSuVmJgof39/BQYGqnz58vL29jYiIwAAAAAAAAAAhrB5Jvk777yjEydOaNq0aVqzZo3ef/99/fTTT3r//feNyAcAAAAAAAAAgGFsnkm+adMmrVy5Unny5JEklSxZUuXKlVPHjh31wgsv2D0gAAAAAAAAAABGsblI7ufnJw8PD6s2f39/paam2i0UAAAAAAAAABjJZDY5OwJcRJaXW4mIiFBERITCwsI0fPhwHT9+XDExMTpz5oxefPFF9ezZ08CYAAAAAAAAAADYX5Znkjdp0kQmk0kWi0WS1K5dO5lMaZ+2WCwWbdq0Sf369TMmJQAAAAAAAAAABshykXzDhg1G5gAAAAAAAAAAwOGyXCQvUqSIkTkAAAAAAAAAAHC4LK9JDgAAAAAAAADAf02WZ5IDAAAAAAAAwH+FyWxydgS4CGaSAwAAAAAAAADcFkVyAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG15OjsAAAAAAAAAADiayWxydgS4CGaSAwAAAAAAAADclslisVicHQIAAAAAAAAAHOn4Ey2dHSHbKfv5t86OYAiXWG4l+uPnnR3BpQQOfI/35B6BA9/TN17lnB3DpbRJOqbTPds6O4ZLKTlvta4c2evsGC6lQIUaipnxsrNjuIyA/m8p4tgvzo7hUgqXq6I9x246O4ZLqVkuty6P7ObsGC6l4PiFihj+hLNjuJTC73+uuM2fOzuGS/Fr/ISip49ydgyXEvj0OF04fsjZMVxK0bKVdWvCUGfHcCk5n/uQa9g/KFChhiYsT3V2DJfyXHuzzpw66ewYLqVEqdK6fmiHs2O4lHyVH3B2BCBbY7kVAAAAAAAAAIDbokgOAAAAAAAAAHBbLrHcCgAAAAAAAAA4ksnM/GGk4UgAAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3BZFcgAAAAAAAACA2/J0dgAAAAAAAAAAcDSzh8nZEeAimEkOAAAAAAAAAHBb/7pIHh0drcTERHtkAQAAAAAAAADAoWwukp86dUoDBw6UJK1bt05169ZVgwYNtHfvXruHAwAAAAAAAADASDavSf72228rf/78slgsmjRpkoYMGaKAgAC98847WrZsmREZAQAAAAAAAAAwhM1F8mPHjmn69Om6ePGiwsPD1bVrVwUEBGjixIlG5AMAAAAAAAAAwDA2F8mTk5NlsVi0fft2VapUSYGBgbpx44Z8fHyMyAcAAAAAAAAAdmcym5wdAS7C5iJ5vXr1NHjwYB09elR9+vTR+fPn9fzzz6tx48YGxAMAAAAAAAAAZDeRkZF69dVXtWvXLnl4eKhdu3Z64YUX5OlpXZLu27dvhvtdxsbGqnPnzho7dqxSU1NVo0YNWSwWmUy/f7Cxfft2+fv72yWrzUXyN954Q3PmzFGNGjXUo0cPHT16VJUqVdKzzz5rl0AAAAAAAAAAgOxt2LBhKlCggLZu3arr16/rmWee0bx589S3b1+rfrNmzbJ6/sUXX2jKlCkaNGiQJOnkyZNKSkrSvn375O3tbUhWm4vkAQEBGjx4cPrz8uXL65VXXrFrKAAAAAAAAABA9nTu3Dnt2rVLW7ZskZ+fn0JCQjRgwACNHz8+Q5H8j06fPq033nhDs2fPVv78+SVJBw8eVLly5QwrkEv/oEh+8OBBTZw4URcvXlRqaqrVtg0bNtgtGAAAAAAAAAAg+zlx4oRy5cqlAgUKpLeVKlVKERERun37tnLkyJHp615//XWFhYWpZs2a6W0HDx5UQkKCOnTooIsXL6pUqVIaMWKEqlevbre8NhfJR40apTJlyuiRRx6R2Wy2WxAAAAAAAAAAgOtKTExUYmKiVZu3t3eGWd4xMTHy8/Ozarv7PDY2NtMi+Z49e3TgwAFNmDDBqt3X11dVqlTR0KFDlTNnTi1atEh9+vTRypUrFRISYo9h2V4kv3jxor766it5eXnZJQAAAAAAAAAAOJqJCcA2mzFjhqZMmWLVNmjQIKvluSXJ399fcXFxVm13nwcEBGS67yVLlqhVq1YKDg62an/xxRetnvfp00fLly/XDz/8oG7duv2jcdzL5iJ5rVq1dOTIEVWpUsUuAQAAAAAAAAAArq9///7q1auXVVtma4WXKVNGUVFRun79uvLlyydJOnXqlAoWLKigoKAM/ZOTk7VhwwZ9/PHHGba9//77atGihSpWrJjelpiYKB8fn387nHQ2F8mHDRumHj16qE6dOhmmxY8bN85uwQAAAAAAAAAAriOzpVUyU7x4cdWoUUNvv/22xo4dq5s3b2rq1Knq2LFjpv2PHTumhISETNcZP378uPbs2aMPPvhAOXPm1CeffKLo6Gg1b978X4/nLpu/U/DWW28pb968fzotHgAAAAAAAADg3iZPnqzk5GQ1bdpUnTp1UoMGDTRgwABJUrVq1bRy5cr0vufPn1fOnDkznR0+btw4FStWTI8++qjq1KmjXbt2ae7cucqVK5fdsto8k/zXX3/V9u3bKZIDAAAAAAAAADKVL18+TZ48OdNt+/fvt3resmVLtWzZMtO+uXLlMnwFE5tnkoeGhiomJsaILAAAAAAAAAAAOJTNM8kfe+wx9e7dWx06dFCuXLlkMpnSt4WFhdkzGwAAAAAAAAAYwmQ2/X0nuAWbi+Tz58+XJC1YsMCq3WQyUSQHAAAAAAAAAGQrNhfJN27caEQOAAAAAAAAAAAczuYiuSQdOnRIX3zxhS5evKjg4GC1b99eNWvWtHc2AAAAAAAAAAAMZfONO7dt26auXbsqKipK5cqVU3R0tHr16qX169cbkQ8AAAAAAAAAAMPYPJN88uTJevfdd9WqVav0trVr12rq1Klq1qyZXcMBAAAAAAAAAGAkm4vkZ86cUYsWLazaWrRooZdfftluoQAAAAAAAADASCazydkR4CJsXm4lV65cOn78uFXb0aNHFRwcbLdQAAAAAAAAAAA4gs0zyR9//HE988wz6t+/v4oWLarw8HDNnDlTXbt2NSIfAAAAAAAAAACGsblI/r///U8JCQmaMWOGrl+/riJFiqhbt27q1auXEfkAAAAAAAAAADCMzUVyk8mkwYMHa/DgwUbkAQAAAAAAAADAYWxek9xisejTTz9V69atdf/996tZs2aaPn26LBaLEfkAAAAAAAAAADCMzTPJ58+fr7lz56pfv37pa5LPmjVLZrNZ/fr1MyIjAAAAAAAAANiVyWzz/GH8R9lcJF+8eLGmTp2qihUrprdVr15dgwcPpkgOAAAAAAAAAMhWbP645OrVqypfvrxVW/ny5RUVFWWvTAAAAAAAAAAAOITNRfLQ0FCtW7fOqm3dunUKDQ21WygAAAAAAAAAABzB5uVWBgwYoGHDhunbb79VSEiIwsPDtWHDBk2ePNmIfAAAAAAAAAAAGMbmmeTNmjXTrFmz5O3trV9//VU5cuTQokWL9NBDDxmRDwAAAAAAAAAAw9g8k/yZZ57R+PHjVbduXSPyAAAAAAAAAIDhTGaTsyPARdg8k3z//v3y9vY2IgsAAAAAAAAAAA5l80zytm3basiQIXrkkUcUHBwsk+n3T1xq1apl13AAAAAAAAAAABjJ5iL5woULJUmbN2+2ajeZTDpy5IhdQgEAAAAAAAAA4Ag2F8mPHj1qRA4AAAAAAAAAABzO5iK5JKWkpOj69etKSUmxai9cuLBdQgEAAAAAAAAA4Ag2F8m/++47jRo1SnFxcbJYLDKZTOn/ZbkVAAAAAAAAANmByWx2dgS4CJuL5BMmTFDfvn3VunVreXl5GZEJAAAAAAAAAACHsLlIfuvWLQ0YMMCILAAAAAAAAAAAOJTN3ym47777uHknAAAAAAAAAOA/IcszyadMmSJJypMnj/r06aNWrVopV65cVn0GDRpk13AAAAAAAAAAABgpy0XynTt3pv9/yZIldezYMavtJpPJfqkAAAAAAAAAAHCALBfJFyxYIEm6du2agoODM2w/ceKE/VIBAAAAAAAAgJGY9Ivf2LwmeYsWLTK0paSkqHPnznYJBAAAAAAAAACAo2RpJvm5c+fUp08fWSwWxcXFqWnTplbb4+PjVaRIEUMCAgAAAAAAAABglCwVyUNDQ/Xyyy/r5s2bGjNmTIYbdPr4+KhWrVqGBAQAAAAAAAAAwChZXpP8oYcekiQVLVpUtWvXNiwQAAAAAAAAAACOkuUi+V1Vq1bVl19+qStXrig1NVWSlJSUpOPHj2vatGl2DwgAAAAAAAAAgFFsLpK/9NJL2rp1q3Lnzq2kpCT5+/vrxIkTCgsLMyAeAAAAAAAAANifyWxydgS4CJuL5Fu3btXnn3+uGzdu6PPPP9fEiRM1Z84c/fLLL0bkAwAAAAAAAADAMGZbX5CamqqSJUuqZMmSOnLkiCTpySef1J49e+weDgAAAAAAAAAAI9lcJC9YsKDOnz+vPHnyKDIyUrGxsbJYLIqJiTEiHwAAAAAAAAAAhrF5uZVHHnlEXbt21RdffKHGjRvrmWeekY+PjypXrmxEPgAAAAAAAAAADGNzkbxfv34KCQlRQECAhg0bphkzZig6OlqvvvqqEfkAAAAAAAAAADCMzUXymJgYbdu2TS+++KISExPl5+enzp07q0CBAkbkAwAAAAAAAAC7M5ltXoka/1E2HwnvvPOOTp48qalTp+qbb77R+++/r507d+r99983Ih8AAAAAAAAAAIaxeSb5pk2btHLlSuXJk0eSVLJkSZUrV04dO3bUCy+8YPeAAAAAAAAAAAAYxeaZ5H5+fvLw8LBq8/f3V2pqqt1CAQAAAAAAAADgCFkukkdERCgiIkJhYWEaPny4jh8/rpiYGJ05c0YvvviievbsaWBMAAAAAAAAAADsL8vLrTRp0kQmk0kWi0WS1K5dO5lMJkmSxWLRpk2b1K9fP2NSAgAAAAAAAABggCwXyTds2GBkDgAAAAAAAABwGJPZ5OwIcBFZLpIXKVLEyBwAAAAAAAAAADiczTfuBAAAAAAAAADgv4IiOQAAAAAAAADAbVEkBwAAAAAAAAC4LYrkAAAAAAAAAAC3leUbdwIAAAAAAADAf4XJzPxhpOFIAAAAAAAAAAC4LYrkAAAAAAAAAAC3RZEcAAAAAAAAAOC2TBaLxeLsEAAAAAAAAADgSJdHdnN2hGyn4PiFzo5gCJe4ceeFwZ2cHcGlFP1oqW6OG+DsGC4l96ipOt2zrbNjuJSS81brG69yzo7hUtokHdOtfeudHcOl5KzeTPHfTHd2DJfh2+ZpXTu8y9kxXEpwxdo6fDLC2TFcSsXShXWqRxtnx3AppeZ/o9316zo7hkupte0nxX/+rrNjuBTfJ15Q/Lp5zo7hUnyb99SF44ecHcOlFC1bmev6e5Sct1q3961zdgyXkaN6cy3flersGC6lfW2zzp085uwYLiW0dDnd2fWNs2O4lKDaXL8C/4ZLFMkBAAAAAAAAwJFMZpOzI8BFsCY5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3JanswMAAAAAAAAAgKOZzCZnR4CLYCY5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3JanrS/YvXt3pu1eXl7KkyePihUr9q9DAQAAAAAAAIChzMwfRhqbi+QvvviiIiIiZDablTt3bt28eVOpqakym81KSUlRyZIlNWPGDIWEhBiRFwAAAAAAAAAAu7H545J27dqpXbt22rVrl7Zt26bdu3erY8eOGjRokPbu3av69evrrbfeMiIrAAAAAAAAAAB2ZXORfMWKFRozZowCAgIkSf7+/nrppZe0ZMkSBQQEaMSIEdq3b5/dgwIAAAAAAAAAYG82F8ljY2N1+/Ztq7Y7d+4oOjo6/bnJZPr3yQAAAAAAAAAAMJjNRfKWLVtq4MCB+vHHH3X27Fn9+OOPGjJkiB5++GFFR0frtddeU82aNY3ICgAAAAAAAACAXdl8486XXnpJb731lgYOHKi4uDj5+vqqY8eOGjFihH799Vfdvn1bY8aMMSAqAAAAAAAAANgHq2HgLpuL5D4+Pho7dqxGjx6tqKgo5c2bN/2AqlmzJrPIAQAAAAAAAADZhs1Fckn65ZdfdObMGVksFqv2sLAwe2QCAAAAAAAAAMAhbC6ST5o0STNnzlRwcLA8PX9/uclkokgOAAAAAAAAAMhWbC6Sr1y5UtOnT1ejRo2MyAMAAAAAAAAAgMOYbX1BTEyMGjZsaEQWAAAAAAAAAAAcyuaZ5I0bN9aqVavUrl07I/IAAAAAAAAAgOFMZpvnD+M/yuYieUJCgl588UVNnz5d+fLls9o2f/58uwUDAAAAAAAAAMBoNhfJy5Ytq7JlyxqRBQAAAAAAAAAAh7K5SD5o0CAjcgAAAAAAAAAA4HBZLpKPGTNGY8aM0ahRo/60z7hx4+wSCgAAAAAAAAAAR8jy6vQWi8XqvwAAAAAAAAAAZHdZnkn++uuvS5Kee+65DDfsBAAAAAAAAIDsxGQ2OTsCXESWZ5Lf1bhxYw0cOFCbNm1SamqqEZkAAAAAAAAAAHAIm4vkX3/9tUqUKKHXXntNjRo10qRJkxQeHm5ENgAAAAAAAAAADGVzkbxUqVJ67rnntHnzZr311lu6ePGiHnvsMfXo0cOIfAAAAAAAAAAAGMbmInn6C81m+fr6yt/fX97e3kpKSrJnLgAAAAAAAAAADJflG3fedfbsWa1YsUIrV65UXFyc2rVrpwULFqh06dJG5AMAAAAAAAAAwDA2F8lbtWqlunXrasSIEWrevLm8vb2NyAUAAAAAAAAAxjH/40U28B9jc5H8+++/V0hIiBFZAAAAAAAAAABwqCwXyT/55BP169dPX3/99Z/2GTRokF1CAQAAAAAAAADgCFkuku/evVv9+vXTzp07M91uMpnsFgoAAAAAAAAAAEfIcpF85syZkqQFCxYYFgYAAAAAAAAAAEfKcpF8xYoVf9snLCzsX0QBAAAAAAAAAMCxslwknzx58l9uN5lMFMkBAAAAAAAAZAsmM8tHI02Wi+QbN27M8k5Xr16ttm3b/qNAAAAAAAAAAAA4itmInY4ePdqI3QIAAAAAAAAAYFeGFMktFosRuwUAAAAAAAAAwK4MKZKbTKznAwAAAAAAAABwfYYUyQEAAAAAAAAAyA6yfONOAAAAAAAAAPivMJmYP4w0HAkAAAAAAAAAALfFjTsBAAAAAAAAAG7L5iL5gQMHMm3fsmVL+v8/+OCD/zwRAAAAAAAAAAAOYnORvFevXhnaoqOjNXTo0PTnU6ZM+XepAAAAAAAAAABwgCzduPPcuXNq06aNUlJSZLFYVKFChQx9qlevbvdwAAAAAAAAAAAYKUtF8tDQUC1btky3b99Wv379NHPmTKvtPj4+Klu2rCEBAQAAAAAAAMDuzCZnJ4CLyFKRXJIGDx6s9evXq0WLFqpdu7aRmQAAAAAAAAAAcIgsF8kjIyN15MgRrVu3TpcuXZLFYsnQp3DhwnYNBwAAAAAAAACAkbJcJG/SpIkee+wxmUwmNWnSxGqbxWKRyWTSkSNH7B4QAAAAAAAAAACjZLlIPnHiRD3//PNq2bKlVq9ebWQmAAAAAAAAAAAcIstFckkqUKCAPvvsMxUpUsSoPAAAAAAAAAAAOIxNRXJJmj9/fpb6jRs3zuYwAAAAAAAAAOAIJrPZ2RHgImw+Enx8fLRq1SrduXNH+fLlU3Jysr755htdvXrViHwAAAAAAAAAABjG5pnk58+f18SJE9WiRYv0tscee0yzZ89m9jgAAAAAAAAAIFuxeSb5vn371Lx5c6u2OnXq6ODBg3YLBQAAAAAAAACAI9hcJC9SpIjWrl1r1bZ8+XKVLFnSbqEAAAAAAAAAAHAEm5dbGT58uIYOHapFixapUKFCOn/+vM6cOaO5c+cakQ8AAAAAAAAAAMPYXCRv2rSpli9fru+++06RkZFq1KiRnn/+eVWuXNmIfAAAAAAAAABgdyazydkR4CJsXm5l48aN6tmzpwYPHqz8+fNrxowZ6tOnj5YuXWpEPgAAAAAAAAAADGNzkXzatGkaNmyYUlNTtXDhQk2ZMkWLFi3SzJkzjcgHAAAAAAAAAIBhbF5uJTw8XJ06ddLhw4cVFxenevXqydPTU9evXzciHwAAAAAAAAAAhrF5Jrmfn58iIyO1ceNG1ahRQ56enjp69Khy585tRD4AAAAAAAAAAAxj80zyDh06KCwsTLdv39bkyZN16NAh9e3bV7179zYiHwAAAAAAAAAAhrG5SD548GDVrl1bPj4+qlq1qi5duqSxY8fq4YcfNiIfAAAAAAAAANifyeZFNvAfZXORXJLq1KmT/v+FChVSoUKF7BYIAAAAAAAAAABH4eMSAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG39oxt3AgAAAAAAAEB2ZjKbnB0BLoKZ5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADcFkVyAAAAAAAAAIDbMlksFouzQwAAAAAAAACAI92eNMzZEbKdHM9+4OwIhvB0dgBJunJkr7MjuJQCFWoo/MQRZ8dwKcXKVOA4uUeBCjV0a996Z8dwKTmrN9M3XuWcHcOltEk6plOnTzs7hssoVbKkzp487uwYLqV46bI6eeqMs2O4lNKlSujarzudHcOlBFeqo9v71jk7hkvJUb25zpw66ewYLqVEqdK6cPyQs2O4lKJlK+v0qVPOjuFSSpYqpRu/bHV2DJeSp0oDhT/d3tkxXEax6ct15NRFZ8dwKRVKFeHfnHuUKFWav/3u0SbpmLMjZE9mFtlAGo4EAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG1RJAcAAAAAAAAAuC1PZwcAAAAAAAAAAEczmUzOjgAXwUxyAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG1RJAcAAAAAAAAAuC1PZwcAAAAAAAAAAIczM38YaTgSAAAAAAAAAABuiyI5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LY8nR0AAAAAAAAAABzNZDY5OwJcBDPJAQAAAAAAAABuiyI5AAAAAAAAAMBtUSQHAAAAAAAAALgtm4vkzzzzTKbt3bp1+9dhAAAAAAAAAABwpCzduPPChQtasWKFJGnbtm2aMmWK1fbo6GgdO3bM7uEAAAAAAAAAADBSlorkhQsX1okTJ3Tjxg2lpKRo586dVtt9fHz02muvGRIQAAAAAAAAAOzOxErUSJOlIrnZbNaHH34oSXrllVf05ptvGhoKAAAAAAAAAABHyFKR/I/efPNNXb58WatWrdLFixeVP39+tW3bVsWKFTMiHwAAAAAAAAAAhrH5OwUHDx5UmzZt9P333+vWrVvasGGD2rVrp7179xqRDwAAAAAAAAAAw9g8k3z8+PEaOnSoevTokd726aefasKECfr888/tGg4AAAAAAAAAACPZPJP82LFj6tq1q1Vb165ddfz4cbuFAgAAAAAAAADAEWyeSe7n56dLly4pJCQkve3SpUvKmTOnXYMBAAAAAAAAgGHMJmcngIuweSZ569atNXjwYG3dulVnzpzRDz/8oCFDhqh169ZG5AMAAAAAAAAAwDA2zyQfOnSobty4oQEDBigpKUk+Pj7q0KGDBg0aZEQ+AAAAAAAAAAAMY3OR3MfHR++8847Gjh2rW7duKV++fDKZ+GoCAAAAAAAAACD7yXKRfMWKFX/bJyws7F9EAQAAAAAAAADAsbJcJJ88efJfbjeZTBTJAQAAAAAAAADZSpaL5Bs3bszyTlevXq22bdv+o0AAAAAAAAAAYDSTyezsCHARhhwJo0ePNmK3AAAAAAAAAADYlSFFcovFYsRuAQAAAAAAAADZQGRkpAYMGKCaNWuqTp06euutt5ScnJxp3759++q+++5TtWrV0h9btmxJ3z5z5kw1bNhQVatWVffu3XX69Gm7ZjWkSG4ymYzYLQAAAAAAAAAgGxg2bJj8/f21detWffHFF9qxY4fmzZuXad9Dhw5p9uzZ2r9/f/qjYcOGkqSvvvpKCxYs0OzZs7Vz505VqlRJQ4YMsetEbRbeAQAAAAAAAADYzblz57Rr1y6NHDlSfn5+CgkJ0YABA7Ro0aIMfc+fP69bt26pYsWKme5r6dKl6tq1q8qUKSMfHx+NGDFCERER2rlzp93yUiQHAAAAAAAAAPytxMRERUdHWz0SExMz9Dtx4oRy5cqlAgUKpLeVKlVKERERun37tlXfgwcPKiAgQMOHD1fdunXVtm1bffHFF+nbT548qbJly6Y/9/LyUvHixXX06FG7jcvTbnsCAAAAAAAAgOzCzJLRtpoxY4amTJli1TZo0CANHjzYqi0mJkZ+fn5WbXefx8bGKkeOHOntiYmJqlq1qoYPH64yZcpo586dGjx4sAICAtSqVatM9+Xr66vY2Fi7jcuQIjk37gQAAAAAAACA/5b+/furV69eVm3e3t4Z+vn7+ysuLs6q7e7zgIAAq/awsDCFhYWlP69fv77CwsK0du1atWrVSn5+foqPj7d6TXx8fIb9/Bs2L7dy4MCBTNv/eLfRBx988J8nAgAAAAAAAAC4HG9vbwUGBlo9MiuSlylTRlFRUbp+/Xp626lTp1SwYEEFBQVZ9f3iiy+0du1aq7bExET5+Pik7+vEiRPp25KSknT27FmrJVj+LZuL5Pd+UiBJ0dHRGjp0aPrze6fcAwAAAAAAAADcQ/HixVWjRg29/fbbio6O1vnz5zV16lR17NgxQ9/o6Gi98cYbOnz4sFJTU7V582atXr1anTt3liR16NBBCxcu1NGjR5WQkKCJEycqX758qlmzpt3yZmm5lXPnzqlNmzZKSUmRxWJRhQoVMvSpXr263UIBAAAAAAAAALKvyZMna+zYsWratKnMZrPCwsI0YMAASVK1atX0+uuvq127dnrqqacUGxurQYMGKTIyUiEhIXr33XfTi+AdO3bUnTt3NHDgQN24cUP33XefZsyYIS8vL7tlzVKRPDQ0VMuWLdPt27fVr18/zZw502q7j4+PXae3AwAAAAAAAACyr3z58mny5MmZbtu/f3/6/5tMJg0YMCC9gH4vk8mk3r17q3fv3obklGy4cefgwYO1fv16tWjRQrVr1zYsEAAAAAAAAAAYzWS2eSVq/EdluUgeGRmpI0eOaN26dbp06ZIsFkuGPoULF7ZrOAAAAAAAAAAAjJTlInmTJk302GOPyWQyqUmTJlbbLBaLTCaTjhw5YveAAAAAAAAAAAAYJctF8okTJ+r5559Xy5YttXr1aiMzAQAAAAAAAADgEFkukktSgQIF9Nlnn6lIkSJG5QEAAAAAAAAAwGFsKpJL0vz587PUb9y4cTaHAQAAAAAAAADAkWy+hauPj49WrVqlO3fuKF++fEpOTtY333yjq1evGpEPAAAAAAAAAOzPZOJh6+M/yuaZ5OfPn9fEiRPVokWL9LbHHntMs2fPZvY4AAAAAAAAACBbsXkm+b59+9S8eXOrtjp16ujgwYN2CwUAAAAAAAAAgCPYXCQvUqSI1q5da9W2fPlylSxZ0m6hAAAAAAAAAABwBJuXWxk+fLiGDh2qRYsWqVChQjp//rzOnDmjuXPnGpEPAAAAAAAAAADD2DyTvGnTplq+fLkeeOABBQUFqVGjRpo2bZoqV65sRD4AAAAAAAAAAAxjc5F848aN6tmzpwYPHqz8+fNrxowZ6tOnj5YuXWpEPgAAAAAAAACwP7OZh62P/yibRzZt2jQNGzZMqampWrhwoaZMmaJFixZp5syZRuQDAAAAAAAAAMAwNq9JHh4erk6dOunw4cOKi4tTvXr15OnpqevXrxuRDwAAAAAAAAAAw9g8k9zPz0+RkZHauHGjatSoIU9PTx09elS5c+c2Ih8AAAAAAAAAAIaxeSZ5hw4dFBYWptu3b2vy5Mk6dOiQ+vbtq969exuRDwAAAAAAAAAAw9hcJB88eLBq164tHx8fVa1aVZcuXdLYsWP18MMPG5EPAAAAAAAAAADD2Fwkl6Q6deqk/3+hQoVUqFAhuwUCAAAAAAAAAMOZTM5OABdh85rkAAAAAAAAAAD8V1AkBwAAAAAAAAC4LYrkAAAAAAAAAAC3RZEcAAAAAAAAAOC2KJIDAAAAAAAAANyWp7MDAAAAAAAAAICjmczMH0YajgQAAAAAAAAAgNuiSA4AAAAAAAAAcFsUyQEAAAAAAAAAbosiOQAAAAAAAADAbVEkBwAAAAAAAAC4LU9nBwAAAAAAAAAAhzMxfxhpOBIAAAAAAAAAAG6LIjkAAAAAAAAAwG1RJAcAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtjydHQAAAAAAAAAAHM5scnYCuAiTxWKxODsEAAAAAAAAADhS3GfjnB0h2/HrOsrZEQzhEjPJY7d/6ewILsX/wQ66vW+ds2O4lBzVmytmxsvOjuFSAvq/pfhvpjs7hkvxbfO0Tp0+7ewYLqVUyZL6xqucs2O4jDZJx3T25HFnx3ApxUuX1dr9Sc6O4VJaVfNS3II3nR3Dpfh1f0XRHz/v7BguJXDge/r+QKKzY7iUh+/3Vuzs0c6O4VL8+4zV6VOnnB3DpZQsVUqxPyx2dgyX4t+oi06eOuPsGC6jdKkS+mAlc/n+aFg7E3/n3KNUyZI6c+qks2O4lBKlSjs7ApCtsSY5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALflEmuSAwAAAAAAAIAjmUzMH0YajgQAAAAAAAAAgNuiSA4AAAAAAAAAcFsUyQEAAAAAAAAAbosiOQAAAAAAAADAbVEkBwAAAAAAAAC4LU9nBwAAAAAAAAAAhzObnJ0ALoKZ5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADcFkVyAAAAAAAAAIDbokgOAAAAAAAAAHBbns4OAAAAAAAAAAAOZ2L+MNJwJAAAAAAAAAAA3BZFcgAAAAAAAACA26JIDgAAAAAAAABwWxTJAQAAAAAAAABuiyI5AAAAAAAAAMBteTo7AAAAAAAAAAA4nMnk7ARwEcwkBwAAAAAAAAC4LYrkAAAAAAAAAAC3RZEcAAAAAAAAAOC2KJIDAAAAAAAAANzWPyqSHzp0SJJ0+/ZtjR8/XrNnz1ZycrJdgwEAAAAAAAAAYDRPW18wbdo0zZo1S3v37tWbb76pQ4cOyWw26/Lly3r55ZeNyAgAAAAAAAAA9mVmkQ2ksflIWL16tRYtWqTExER99913mjRpkj799FOtWbPGiHwAAAAAAAAAABjG5pnkV69eVfny5bVjxw4FBQWpfPnykqS4uDi7hwMAAAAAAAAAwEg2zyQvUKCAdu/erRUrVuiBBx6QlDa7PCQkxO7hAAAAAAAAAAAwks0zyQcPHqy+ffvK19dXn3/+uXbs2KFRo0bpo48+MiIfAAAAAAAAAACGsblInjdvXv3444/y9PSUj4+P8ufPrw0bNih//vxG5AMAAAAAAAAAwDA2F8kHDhyozZs3y8fHR5IUGBiowMBAuwcDAAAAAAAAAMOYbF6JGv9RNh8JISEhOnjwoBFZAAAAAAAAAABwKJtnkufMmVO9evVS0aJFlT9/fplMpvRt8+fPt2s4AAAAAAAAAACMZHORvFq1aqpWrZoRWQAAAAAAAAAAcCibi+SDBg1K///IyEjlzJlTnp427wYAAAAAAAAAAKezeU3ypKQkvf3226pWrZrq16+vGjVq6NVXX1ViYqIR+QAAAAAAAAAAMIzNU8CnTp2qnTt36oMPPlDRokUVHh6u999/Xx988IGef/55IzICAAAAAAAAgH2ZTX/fB27B5iL5qlWrNHfuXIWEhEiSSpUqpVKlSunJJ5+kSA4AAAAAAAAAyFZsXm7l1q1bKlSokFVboUKFFB8fb7dQAAAAAAAAAAA4gs1F8nLlymnx4sVWbYsXL1bZsmXtFgoAAAAAAAAAAEewebmVYcOGqXfv3lq5cqVCQkIUHh6ukydPavbs2UbkAwAAAAAAAADAMDbPJK9Zs6ZWrFih+vXrKyAgQM2bN9fq1atVvXp1I/IBAAAAAAAAAGAYm2eSS1Lx4sXVuHFjXbhwQfnz58+wRjkAAAAAAAAAuDSTzfOH8R9lc5H82rVrevrpp3Xs2DHlzJlTN2/eVPHixTVnzhwVLFjQiIwAAAAAAAAAABjC5o9L3n33XRUvXlw7d+7U9u3btXPnTlWoUEHjxo0zIh8AAAAAAAAAAIaxeSb5Tz/9pG+//VYBAQGSpKCgII0ZM0ZNmza1ezgAAAAAAAAAAIxk80zy1NRUmUwmqzaTySQvLy+7hQIAAAAAAAAAwBFsLpLXqVNHY8aMUWxsrCQpJiZGY8aMUe3ate0eDgAAAAAAAAAAI9m83MrIkSPVq1cv1a5dW7ly5VJUVJRKly6tGTNmGJEPAAAAAAAAAOzvntUy4L5sLpIXLlxY33zzjXbv3q0bN26oSJEiuu++++Th4WFEPgAAAAAAAAAADJPlInlERITV89DQUIWGhkqSrly5IimtgA4A/2fvzsOtKgv9gX83Mjqi4gCIAyCOmTNa1wnDISccG9QuikMioJmamkOKRpZaEuKAhGFmDjlrmVNU9zpQmEPhhKgkhhOmByFA9u8Pf3E76r2dZXudvfF8Ps+zHvd+37UW33OeDeL3vL4LAAAAAJYULS7JBwwYsPiBndVqNUmava9UKpk6dWoJEQEAAAAAoBwtLsmXXXbZ3HrrrRk4cGDuu+++xUU5AAAAAAAsqVpcknfs2DFXXXVVllpqqdx8880fWZIPGzaspuEAAAAAAKBMLS7JzzjjjNxwww1ZtGhRHnrooQ/NVzwNFgAAAABYUrRrV+8ENIgWl+S77757dt999xx44IG5+uqry8wEAAAAAACtovCPS2644YYycgAAAAAAQKvz/xQAAAAAANBmKckBAAAAAGizlOQAAAAAALRZLX5wJwAAAADAJ0alUu8ENAgryQEAAAAAaLOU5AAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbZaSHAAAAACANqt9vQMAAAAAALS6ivXDvM8nAQAAAACANktJDgAAAABAm6UkBwAAAACgzVKSAwAAAADQZinJAQAAAABos9rXOwAAAAAAQKtrZ/0w7/NJAAAAAACgzVKSAwAAAADQZinJAQAAAABos5TkAAAAAAC0WUpyAAAAAADarPb1DgAAAAAA0OoqlXonoEFYSQ4AAAAAQJtVqVar1XqHAAAAAABoTfPuHl/vCEuczrsOqXeEUjTEdivv/ub6ekdoKEtvf1Cenzat3jEaSu8+fTLz6cfrHaOh9Fhvk7z250fqHaOhrLLh1nnhuWfqHaOhrN23n+/JP1m7b7/c2WG9esdoKHsseNpn5APW7tsvf33q0XrHaCirr79ZXnnqj/WO0VC6r7+pz8kHrL7+Znlm2kv1jtFQ+vVZ099hP6DHepv4vfMBq6+/WV587ul6x2gYa/Vdz/fjA9bqu57fNx/g982HrdXXf+fAv8N2KwAAAAAAtFlKcgAAAAAA2qyG2G4FAAAAAKBVVawf5n0+CQAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbZaSHAAAAACANktJDgAAAABAm6UkBwAAAACgzWpf7wAAAAAAAK2uUql3AhqEleQAAAAAALRZSnIAAAAAANqsQiX5Mccc85HjhxxySE3CAAAAAABAa/qXe5L/5S9/yS233JIk+d3vfpcxY8Y0m29qasrTTz9dSjgAAAAAACjTvyzJe/TokWeffTZvvvlm3nvvvTz88MPN5jt16pSzzjqrtIAAAAAAAFCWf1mSt2vXLhdffHGS5PTTT8+5555beigAAAAAgFK187hG3vcvS/J/du6552b+/Pl58803s2jRomZzPXr0qGkwAAAAAAAoW6GS/Je//GXOOOOMNDU1LR6rVqupVCqZOnVqzcMBAAAAAECZCpXko0ePzsEHH5x999037dsXuhQAAAAAABpOoab7lVdeybBhwxTkAAAAAAB8IhTanX6jjTbKc889V1YWAAAAAABoVYWWhG+++eYZPHhwdtttt3Tr1q3Z3LBhw2oaDAAAAACgLNVKpd4RaBCFSvJHH3006667bqZNm5Zp06YtHq/4QAEAAAAAsAQqVJJfffXVZeUAAAAAAIBWV/gJnPfee2+uu+66vPzyy1lllVVywAEHZK+99iojGwAAAAAAlKrQgztvv/32nHLKKenXr18OPfTQbLjhhvnWt76VG264oax8AAAAAABQmkIryceNG5cxY8Zkm222WTy2ww475JxzzsmBBx5Y83AAAAAAAFCmQiX5zJkz079//2ZjW2+9df7617/WNBQAAAAAQKkqhTbZ4BOs0Cdh9dVXz+TJk5uNTZ48OT169KhpKAAAAAAAaA2FVpL/53/+Z4499th84QtfSK9evfLSSy/luuuuy6mnnlpWPgAAAAAAKE2hkvzAAw/MUkstlZtuuin33ntvevbsmXPPPTe77bZbWfkAAAAAAKA0hUrykSNH5mtf+1r222+/svIAAAAAAECrKbQn+e23354uXbqUlQUAAAAAAFpVoZXk+++/f84+++zsu+++WXXVVVOpVBbPeXgnAAAAALDEqBRaP8wnWKGSfMKECUmS66+/fnFBXq1WU6lUMnXq1NqnAwAAAACAErWoJJ80aVJ22GGH3HfffWXnAQAAAACAVtOikvzEE0/M5MmTc9hhh+VXv/pV2ZkAAAAAAKBVtKgk79ChQ84777zMnDkzY8aM+chzhg0bVtNgAAAAAABQthaV5GeccUZuuOGGLFq0KA8//PCH5v/5AZ4AAAAAALCkaFFJvvvuu2f33XfPvvvum6uvvrrsTAAAAAAApapa+Mv/167IyX/729/S1NRUVhYAAAAAAGhVhUryJJk7d24ZOQAAAAAAoNW1aLuVf+jfv38OPPDAbL/99ll11VWbzXlwJwAAAAAAS5pCJflf/vKX9OrVK9OnT8/06dMXj3twJwAAAAAAS6JCJbmHdgIAAAAA8ElSqCRPkmnTpuXaa6/NX//614wcOTJ33nlnDjnkkDKyAQAAAACUo1L4cY18QhX6JPzXf/1XDjzwwMyePTv//d//nXnz5uWSSy7JFVdcUVY+AAAAAAAoTaGS/KKLLsr3v//9XHjhhVlqqaXSvXv3XHHFFbnuuuvKygcAAAAAAKUpVJK/+OKL2X777ZP8z8M6P/WpT+Vvf/tb7ZMBAAAAAEDJCpXkPXr0yJQpU5qNPfHEE+nevXtNQwEAAAAAQGso9ODOo48+Osccc0y+9KUvZcGCBRk3blyuvvrqnHDCCWXlAwAAAACA0hQqyffYY48su+yyueaaa9KjR4889NBD+eY3v5ldd921rHwAAAAAALX3/7eThkIl+S9+8Yvsvvvu2WGHHZqNX3fddfnCF75Q02AAAAAAAFC2f1mSz507N7Nnz06SnHbaadl0001TrVYXz7/zzjv5zne+oyQHAAAAAGCJ8y9L8qampuyxxx6ZN29ekmTAgAGpVqupVCqL//m5z32u9KAAAAAAAFBr/7IkX2WVVXLvvfdm7ty52WuvvXLHHXc0m+/UqVO6detWWkAAAAAAAChLi/YkX3nllZMkf/jDH9KuXbsPzS9cuDDt2xfa3hwAAAAAAOquULP9l7/8JZdccklmzZqVRYsWJUkWLFiQ6dOn56GHHiolIAAAAABAzX3EYmDapkIl+Te/+c1Uq9WsuOKKeeONN7LhhhvmlltuyeDBg0uKBwAAAADAkuaNN97IGWeckUceeSRLLbVU9t5773zjG9/4yB1Jrr322lx11VV59dVXs+qqq+YrX/lKDj744CTJokWLssUWWyx+PuY//Nd//VeWXnrpmmQtVJI/+eST+fWvf52ZM2fmBz/4QU4//fRsv/32ufzyyzNs2LCaBAIAAAAAYMl2/PHHZ7XVVstvf/vbvP766znmmGNy1VVX5Ygjjmh23r333puLLroo48aNy6c//en88Y9/zFFHHZVu3bpl1113zXPPPZcFCxZkypQp6dixYylZC/0/BV26dMkKK6yQNddcM88880ySZPvtt8/zzz9fSjgAAAAAAJYsL774Yh555JGcdNJJ6dKlS3r16pWhQ4fmmmuu+dC5s2bNypFHHplNN900lUolm222Wfr375/JkycnSZ544omst956pRXkScGSfM0118ykSZOyzDLLZNGiRZkxY0ZmzZqVhQsXlpUPAAAAAIAlyLPPPpuuXbtmtdVWWzzWp0+fzJw5M2+//Xazcw8++OAcddRRi9+/8cYbmTx5cjbeeOMk75fkf//737P//vtnm222ycEHH5wpU6bUNG+hkvzoo4/OiBEjMmPGjHzhC1/IF7/4xRx44IHZeeedaxoKAAAAAIDGMn/+/DQ1NTU75s+f/6Hz5syZky5dujQb+8f7d99993+9/2uvvZYjjzwyG2+8cfbcc88kSefOnbPJJptk7Nix+fWvf50BAwZkyJAhmTFjRs2+rkJ7ko8fPz7HHHNMOnTokKFDh2bttddOU1NTBg0aVLNAAAAAAABlq/7TQyBpmcsvvzxjxoxpNjZs2LAMHz682djSSy+duXPnNhv7x/tlllnmI+/9xz/+Mccdd1y23HLLjBo1avEDPk855ZRm5w0ZMiQ33XRTJk2alEMOOeTf+nr+oVBJvvvuu+f+++/PJZdckvXXXz8DBw7MLrvsUup+MAAAAAAA1N/RRx+dww47rNnYR3XD6667bt566628/vrr6datW5Jk2rRpWX311bPccst96Pwbb7wx5557bkaMGJHDDz+82dz3v//97Lrrrtlwww0Xj82fPz+dOnWqxZeUpOB2KwcffHDGjx+fBx98MIcddlieffbZ7Lvvvtlrr71qFggAAAAAgMbTsWPHLLvsss2OjyrJ11577WyxxRb59re/naampsyYMSNjx47NAQcc8KFz77777nzrW9/KD3/4ww8V5EnyzDPP5Lzzzstrr72W+fPnZ8yYMWlqasrAgQNr9nUVKsmTpKmpKQ899FAmT56cxx9/PO+9915WWWWVmgUCAAAAAGDJNnr06CxcuDA777xzDjrooGy33XYZOnRokmSzzTbLbbfdliQZM2ZM3nvvvYwYMSKbbbbZ4uPMM89MkowaNSprrrlm9tlnn/Tv3z+PPPJIJkyYkK5du9Ysa6HtVg466KBMnTo1ffv2Tf/+/XP66adn6623runSdgAAAAAAlmzdunXL6NGjP3Lu0UcfXfz69ttv/z/v07Vr14waNaqm2T6o0EryTp06pUOHDllhhRWy8sorp1u3bgpyAAAAAACWWIVWkl999dV5991389BDD+W3v/1tvva1r+Wdd97JZz7zmXzve98rKyMAAAAAQG1VCu9EzSdUoZI8SZZeeul89rOfzVJLLZV27drlrrvuysMPP1xGNgAAAAAAKFWhknzixIn5zW9+k8mTJ6d79+753Oc+l0svvTSbbrppSfEAAAAAAKA8hUryW2+9NQMHDswpp5ySvn37lpUJAAAAAABaRaGS/Oc//3lZOQAAAAAAoNXZnR4AAAAAgDar8IM7AQAAAACWdNWK9cO8zycBAAAAAIA2S0kOAAAAAECbpSQHAAAAAKDNUpIDAAAAANBmKckBAAAAAGiz2tc7AAAAAABAq6tU6p2ABmElOQAAAAAAbZaSHAAAAACANqtSrVar9Q4BAAAAANCamh6+vd4RljjL9t+r3hFK0RB7kr/07NR6R2goa667QV547pl6x2goa/ftl98/PbveMRrKluutmD8/N7PeMRrKhn175Llp0+sdo6H07bNOfvHognrHaBi7b9bBn68fsHbffrmzw3r1jtFQ9ljwdB566m/1jtFQtll/hTw49e16x2go226wfN569P56x2goXTcbkJ/+zvqbf/bl/6j4+9oHbNi3Rx5/9tV6x2gom6y7aqY9/3y9YzSMPr17Z94dl9Y7RkPpvOcxeXbai/WO0VDW7bOW//b7gL591ql3BFii2W4FAAAAAIA2qyFWkgMAAAAAtKZqxfph3ueTAAAAAABAm6UkBwAAAACgzVKSAwAAAADQZinJAQAAAABos5TkAAAAAAC0We3rHQAAAAAAoNVVKvVOQIOwkhwAAAAAgDZLSQ4AAAAAQJulJAcAAAAAoM1SkgMAAAAA0GYpyQEAAAAAaLPa1zsAAAAAAECrq1g/zPt8EgAAAAAAaLOU5AAAAAAAtFmFt1uZNWtWLr300rzwwgtZtGhRs7mJEyfWLBgAAAAAAJStcEl+6qmn5vXXX89OO+2UDh06lJEJAAAAAABaReGS/Iknnsjdd9+dlVZaqYw8AAAAAADQagqX5Mstt1w6duxYRhYAAAAAgFZRrVTqHYEGUbgkHzp0aE499dQceeSR6datW7O5Hj161CwYAAAAAACUrXBJfvrppydJ7rnnniRJpVJJtVpNpVLJ1KlTa5sOAAAAAABKVLgkv++++8rIAQAAAAAAra5wSd6zZ8/MmTMnkyZNyssvv5xVV101O+20U5Zffvky8gEAAAAAQGkKl+QvvvhiBg8enAULFqRHjx6ZOXNmzj///Pz4xz/OuuuuW0ZGAAAAAAAoReGSfNSoUdltt91y0kknpV27dlm0aFG+973v5Tvf+U7Gjx9fRkYAAAAAgNqqtKt3AhpE4U/CY489lq997Wtp1+79S9u1a5fjjjsujz32WM3DAQAAAABAmQqX5EsttVSampqajTU1NaVLly41CwUAAAAAAK2hcEm+00475etf/3qef/75zJ8/P9OmTctJJ52UnXbaqYx8AAAAAABQmsIl+de//vUsXLgwn//85/PpT386e+65Zzp27JgTTzyxjHwAAAAAAFCawg/u7Nq1a66++urMmDEjb7zxRnr27JlVVlmljGwAAAAAAFCqFpfkf/jDH7LFFltk8uTJzcZfeOGFvPDCC0mSrbbaqqbhAAAAAADKUE2l3hFoEC0uyY888shMmTIlhx566EfOVyqVTJ06tWbBAAAAAACgbC0uyadMmZIkeeqpp0oLAwAAAAAAranwgzsHDRr0keMDBgz4d7MAAAAAAECratFK8pdeeimXXnppkuS5557Lqaee2my+qakp8+bNq306AAAAAAAoUYtWkq+55ppZccUV/9f5lVZaKd///vdrFgoAAAAAAFpDi/ckP/nkk5MkvXr1ytChQ0sLBAAAAABQtmql8E7UfEK1uCT/wx/+kC222CJbbbVVJk+e/JHnbLXVVjULBgAAAAAAZWtxSX7kkUdmypQpOfTQQz9yvlKpZOrUqTULBgAAAAAAZWtxST5lypQkyVNPPVVaGAAAAAAAaE0tLslnzpz5L8/p0aPHvxUGAAAAAABaU4tL8gEDBqRSqTQbq1arzcZstwIAAAAAwJKkxSX5fffdlyS59dZb84c//CEnnXRS1lxzzbzyyiu54IILsummm5aVEQAAAACgtirt6p2ABtHikrxnz55Jkuuuuy633XZbVlhhhSRJnz598t3vfje77bZbjj766HJSAgAAAABACQr/uGTOnDlZtGhRs7F33303CxYsqFkoAAAAAABoDYVL8p133jlDhw7Ngw8+mBdeeCG//e1vc+yxx2bPPfcsIx8AAAAAAJSmxdut/MOZZ56Zs88+O0cffXTmz5+fTp06ZZ999skpp5xSRj4AAAAAAChN4ZJ8mWWWyXe/+92ce+65eeutt7LiiiumQ4cOZWQDAAAAAIBSFS7Jk+Txxx/P9OnTU61Wm40PGjSoFpkAAAAAAEpVrVTqHYEGUbgkv+iiizJu3Lisssoqad/+fy6vVCpKcgAAAAAAliiFS/Lbbrstl112WXbYYYcy8gAAAAAAQKtpV/SCOXPmZPvtty8jCwAAAAAAtKrCJfmOO+6Y22+/vYwsAAAAAADQqgpvt/L3v/89p5xySi677LJ069at2dzEiRNrFgwAAAAAAMpWuCTv169f+vXrV0YWAAAAAIBWUa0U3mSDT6jCJfmwYcMWv37jjTeywgorpH37wrcBAAAAAIC6K/zjkgULFuTb3/52Nttss/zHf/xHtthii5xxxhmZP39+GfkAAAAAAKA0hUvysWPH5uGHH84PfvCD3HHHHfnBD36Qxx57LD/4wQ9KiAcAAAAAAOUpvE/K7bffngkTJqRXr15Jkj59+qRPnz45+OCDc/LJJ9c8IAAAAAAAlKXwSvK//e1v6d69e7Ox7t27Z968eTULBQAAAAAAraFwSb7eeuvlZz/7WbOxn/3sZ+nXr1/NQgEAAAAAlKpScRQ9PqEKb7dy/PHH5/DDD89tt92WXr165aWXXspzzz2X8ePHl5EPAAAAAABKU7gk33LLLfPNb34zjz32WNq3b5+ddtopBx10UDbffPMy8gEAAAAAQGkKl+SjR4/OzTffnAkTJmTttdfOfffdl29/+9v529/+liOOOKKMjAAAAAAAUIrCe5LfeOONmThxYtZee+0kyc4775wJEybkmmuuqXU2AAAAAAAoVeGSvKmpKd27d2821r1797z77rs1CwUAAAAAAK2hcEm+0UYb5Yorrmg29qMf/Sjrr79+zUIBAAAAAJSpWmnnKHh8UhXek/yUU07J4Ycfnuuvvz6rr756/vrXv2bhwoW58sory8gHAAAAAAClKVySb7TRRvnVr36VBx54IK+++mq6d++eHXfcMcstt1wZ+QAAAAAAoDSFS/IkWWGFFTJo0KAaRwEAAAAAgNb1yd1IBgAAAAAA/gUlOQAAAAAAbdbH2m4FAAAAAGBJVk2l3hFoEFaSAwAAAADQZinJAQAAAABos5TkAAAAAAC0WUpyAAAAAADaLCU5AAAAAABtVvt6BwAAAAAAaG3VivXDvM8nAQAAAACANktJDgAAAABAm6UkBwAAAACgzVKSAwAAAADQZlWq1Wq13iEAAAAAAFrTa396uN4RljirbNS/3hFK0b7eAZLkrycdUu8IDWX17/0k8+64tN4xGkrnPY/xOfmA1b/3k0z7yh71jtFQ+ky807/gPmCVjfpn7tXn1jtGw+hy6On561OP1jtGQ1l9/c3y0FN/q3eMhrLN+ivkzg7r1TtGQ9ljwdN5fvCe9Y7RUHpfdUfeevT+esdoKF03G5C5P/l2vWM0lC6HnJYXnnum3jEaytp9+2XG0P3rHaOh9Br787z+5IP1jtEwum28bS79Zb1TNJZjdkuemza93jEaSt8+6+TNx39b7xgNZaVNtqt3hCVTpVLvBDQI260AAAAAANBmKckBAAAAAGizlOQAAAAAALRZSnIAAAAAANosJTkAAAAAAG1W+3oHAAAAAABobVXrh/n/fBIAAAAAAGizlOQAAAAAALRZSnIAAAAAANosJTkAAAAAAG2WkhwAAAAAgDarfb0DAAAAAAC0tmqlUu8INAgryQEAAAAAaLOU5AAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbZaSHAAAAACANqt9vQMAAAAAALS2asX6Yd7nkwAAAAAAQJulJAcAAAAAoM1SkgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFnt6x0AAAAAAKC1VVOpdwQahJXkAAAAAAC0WR+rJL/++uuz1157pX///pk5c2ZGjBiROXPm1DobAAAAAACUqnBJftVVV2X8+PE59NBD895772WZZZbJq6++mlGjRpWRDwAAAAAASlO4JL/22mszduzYHHTQQWnXrl1WWGGFjB49Og888EAZ+QAAAAAAoDSFS/LZs2dnnXXWSZJUq9Ukycorr5yFCxfWNhkAAAAAAJSsfdEL1l9//Vx33XX50pe+lErl/SfA3nXXXVl33XVrHg4AAAAAoAzVysd6XCOfQIVL8m984xsZPHhwbr311rz77rs58sgj88c//jFXXnllGfkAAAAAAKA0hUvyjTbaKHfccUduu+22bLDBBll99dVz9tlnp0ePHmXkAwAAAACA0hQuyZNktdVWy5FHHlnrLAAAAAAA0KpaXJIPGDBg8R7k/5v77rvv3w4EAAAAAACtpcUl+fDhw5Mkf/rTn3LfffflsMMOy5prrplXXnklEyZMyM4771xaSAAAAAAAKEOLS/J99903STJhwoRceeWV6dOnz+K5z3zmMznqqKPyjW98o/YJAQAAAABqrPovds2g7WhX9IIZM2ZkzTXXbDa22mqr5dVXX61ZKAAAAAAAaA2FS/KNN944559/fubPn58kmTt3bkaOHJktttii5uEAAAAAAKBMLd5u5R/OPvvsHH300fnZz36WFVdcMbNnz84666yTK664oox8AAAAAABQmsIlee/evfOLX/wiU6ZMyauvvprVV189m2++edq1K7woHQAAAAAA6qpwSZ4kCxYsyJprrpk11lgjyfv7lD/zzDMZOHBgTcMBAAAAAECZCpfkP//5zzNy5Mj8/e9/bza+8sorK8kBAAAAgCVCNZV6R6BBFC7JL7vsshx//PFZZpllMnny5Pznf/5nvve97+Wzn/1sGfkAAAAAAKA0hTcSf+211/Kf//mf2XbbbfPSSy9lo402yre//e3ccMMNZeQDAAAAAIDSFC7JV1555SxYsCDdu3fP9OnTkyQ9evTIG2+8UfNwAAAAAABQpsIl+SabbJIzzzwz8+bNy9prr51rr702N998c7p27VpCPAAAAAAAKE/hPclPPfXUnH766ZkzZ05OOumkfPWrX828efMyatSoMvIBAAAAAEBpCpfkkydPzg9/+MN06tQpq666ah566KEsWLAgXbp0KSMfAAAAAEDNVSuFN9ngE6rwJ+Hss89Ou3b/c1n79u0V5AAAAAAALJEKl+Sf+tSnctddd5WRBQAAAAAAWlXh7VbeeuutfOMb38gZZ5yRbt26pVKpLJ677777ahoOAAAAAADKVLgkP+SQQz5y/J/LcgAAAAAAWBIULsl/+MMffmQh3qFDh1x//fXZaaedMmTIkGb7lgMAAAAAQCMqXJIfdNBBuf7663PEEUekV69eefnll/OjH/0on/nMZ9K7d+/89Kc/zbx58zJ8+PAy8gIAAAAA/NuqsTMG7ytckt999925/PLLs+666y4e23rrrXPiiSfmzDPPzI477phDDz1USQ4AAAAAQMMrvCfKiy++mLXXXrvZWK9evTJ9+vQkyRprrJG33367JuEAAAAAAKBMhUvy9ddfP5dffnmzsR/96Efp27dvkuQ3v/lNevbsWZt0AAAAAABQosLbrZx++uk58sgjc8MNN6R79+555ZVXsmjRolx66aWZMmVKjj322Fx88cVlZAUAAAAAgJoqXJJvuOGGufvuu/PAAw/klVdeSc+ePTNgwIB06dIlb731Vn79619n5ZVXLiMrAAAAAADUVOGSPEmWXXbZ7LXXXh8a79q167+bBwAAAACgdNVK4Z2o+YTySQAAAAAAoM1SkgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFlKcgAAAAAA2qz29Q4AAAAAANDaqqnUOwINwkpyAAAAAADaLCU5AAAAAABtlpIcAAAAAIA2S0kOAAAAAECbpSQHAAAAAKDNal/vAAAAAAAAra1asX6Y9/kkAAAAAADQZinJAQAAAABos5TkAAAAAAC0WUpyAAAAAADaLCU5AAAAAABtVvt6BwAAAAAAaG3VVOodgQZhJTkAAAAAAG2WkhwAAAAAgJp64403MnTo0Gy55Zbp379/zjvvvCxcuPAjz500aVL22muvbLrpptl9993zwAMPNJsfN25ctt9++2y66aY59NBD8/zzz9c0q5IcAAAAAICaOv7447P00kvnt7/9bW688cY8+OCDueqqqz503gsvvJDhw4fnuOOOy+9///sMHz48xx9/fGbNmpUkufnmm3P11Vdn/Pjxefjhh7PRRhtlxIgRqVarNcuqJAcAAAAAoGZefPHFPPLIIznppJPSpUuX9OrVK0OHDs0111zzoXNvvvnmbLnllvnc5z6X9u3b5/Of/3y22mqrXHfddUmS66+/Pl/+8pez7rrrplOnTvn617+emTNn5uGHH65ZXiU5AAAAAAD/0vz589PU1NTsmD9//ofOe/bZZ9O1a9esttpqi8f69OmTmTNn5u2332527nPPPZd+/fo1G+vbt2+eeuqpj5zv0KFD1l577cXztdC+Znf6N6z+vZ/UO0LD6bznMfWO0HB8Tj6sz8Q76x2h4ayyUf96R2g4XQ49vd4RGsrq629W7wgNZ5v1V6h3hIazx4Kn6x2h4fS+6o56R2g4XTcbUO8IDafLIafVO0LDWbtvv399UhvTa+zP6x2h4XTbeNt6R2gox+xW7wSNp2+fdeodoeGstMl29Y7AJ0C1Uql3hCXO5ZdfnjFjxjQbGzZsWIYPH95sbM6cOenSpUuzsX+8f/fdd7P88sv/n+d27tw57777bovma6EhSvI3zz263hEaykqnX54545Ra/2yZI8/NzK99qd4xGkqP71+byf+xTb1jNJStfvdQ3p5yT71jNJTlNx+YpktOrneMhrHssd/NK0/9sd4xGkr39TfNg1Pf/tcntiHbbrB8nh+8Z71jNJTeV92ROzusV+8YDWWPBU9n6rSX6x2joWzQp2fmXffdesdoKJ2/cHJeeO6ZesdoKGv37ZcXjxpU7xgNZa0rbsk7v/9lvWM0jOW23C3j7q13isZy5OeS6dOeq3eMhrJOn75pevj2esdoKMv236veEWgjjj766Bx22GHNxjp27Pih85ZeeunMnTu32dg/3i+zzDLNxrt06ZJ58+Y1G5s3b97i8/7VfC3YbgUAAAAAgH+pY8eOWXbZZZsdH1WSr7vuunnrrbfy+uuvLx6bNm1aVl999Sy33HLNzu3Xr1+effbZZmPPPfdc1l133cX3+uf5BQsW5IUXXvjQFi3/DiU5AAAAAAA1s/baa2eLLbbIt7/97TQ1NWXGjBkZO3ZsDjjggA+du/fee+eRRx7JXXfdlYULF+auu+7KI488kn322SdJsv/+++cnP/lJnnrqqfz973/PhRdemG7dumXLLbesWV4lOQAAAAAANTV69OgsXLgwO++8cw466KBst912GTp0aJJks802y2233Zbk/Qd6XnLJJbn88suz1VZbZezYsfnhD3+YddZ5/3kMBxxwQAYPHpxjjz0222yzTf785z/n8ssvT4cOHWqWtSH2JAcAAAAA4JOjW7duGT169EfOPfroo83eb7fddtluu49+IG+lUsnhhx+eww8/vOYZ/0FJDgAAAAC0OdVqpd4RaBC2WwEAAAAAoM1SkgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFkfqyR/8803c9VVV+W8885LU1NTHnjggVrnAgAAAACA0hUuyf/0pz9lt912yy9/+cvceOONmT17do477rj8/Oc/LyMfAAAAAEDNVdPOUfD4pCr8lY0aNSqnnHJKfvazn6V9+/bp1atXLrnkkowfP76MfAAAAAAAUJrCJfkzzzyTffbZJ0lSqVSSJNttt11mzZpV22QAAAAAAFCywiX5SiutlOeff77Z2PPPP59u3brVLBQAAAAAALSGwiX5l7/85Rx99NG5/vrrs3Dhwtx111057rjj8oUvfKGMfAAAAAAAUJr2RS/4yle+kqWWWio//vGPs2jRoowePToHHXRQBg8eXEI8AAAAAAAoT+GS/PXXX8/BBx+cgw8+uIw8AAAAAAClq6ZS7wg0iMLbrey4444ZOnRoHnjggSxatKiMTAAAAAAA0CoKl+S33nprevfunbPOOis77LBDLrroorz00ktlZAMAAAAAgFIVLsn79OmTE088Mb/+9a9z3nnn5eWXX86+++6br3zlK2XkAwAAAACA0hQuyRdf2K5dOnfunKWXXjodO3bMggULapkLAAAAAABKV/jBnS+88EJuueWW3HbbbZk7d2723nvvXH311enbt28Z+QAAAAAAoDSFS/Ldd98922yzTb7+9a9n4MCB6dixYxm5AAAAAABKU02l3hFoEIVL8l/96lfp1atXGVkAAAAAAKBVFd6TvFevXvnxj3+cz3/+8/n0pz+dz33uc7nssstSrVbLyAcAAAAAAKUpvJL8xz/+cSZMmJCjjjoqa6yxRl566aVceeWVadeuXY466qgyMgIAAAAAQCkKl+Q/+9nPMnbs2Gy44YaLxzbffPMMHz5cSQ4AAAAAwBKl8HYrr776atZff/1mY+uvv37eeuutWmUCAAAAAIBWUbgkX2uttXLPPfc0G7vnnnuy1lpr1SwUAAAAAECZqqk4Ch6fVIW3Wxk6dGiOP/74/PKXv0yvXr3y0ksv5b777svo0aPLyAcAAAAAAKUpvJL8c5/7XK688sp07Ngxf/rTn7L88svnmmuuyU477VRGPgAAAAAAKE3hleRJss0222SbbbbJ7Nmzs+KKK9Y6EwAAAAAAtIrCK8mbmppy+umn59Of/nQ+85nPZPPNN893v/vdzJ8/v4x8AAAAAABQmsIl+fnnn59nn302Y8eOzZ133pnvf//7eeihh/L973+/jHwAAAAAAFCawtutPPDAA7ntttuy0korJUl69+6d9dZbLwcccEC+8Y1v1DwgAAAAAECtVVOpdwQaROGV5F26dMlSSy3VbGzppZfOokWLahYKAAAAAABaQ4tL8pkzZ2bmzJkZNGhQvva1r+WZZ57JnDlzMn369JxyyikZPHhwiTEBAAAAAKD2WrzdyoABA1KpVFKtVpMke++9dyqV9/+XhGq1mgceeCBHHXVUOSkBAAAAAKAELS7J77vvvjJzAAAAAABAq2txSd6zZ8//dW7hwoV55pln/s9zAAAAAACg0bS4JP+HX//61zn77LMza9asxVuvJEn79u3zxBNP1DQcAAAAAEAZqtVKvSPQIAqX5BdccEF22WWXLL/88nn66aez55575pJLLskBBxxQRj4AAAAAAChNu6IXzJgxIyeddFL22GOPzJ49O7vssksuvPDCXH/99WXkAwAAAACA0hQuyVdaaaW0a9cuPXr0yLRp05Ikffv2zV//+teahwMAAAAAgDIVLsnXW2+9XHzxxUmSlVdeOZMmTcrDDz+cTp061TwcAAAAAACUqXBJftJJJ+Xee+/Na6+9lhEjRmTo0KEZPHhwhgwZUkY+AAAAAAAoTeEHd/bp0yd33nlnkqRnz5554IEHMmfOnKyzzjqLz7njjjuy55571i4lAAAAAEANVVOpdwQaROGV5B+06qqrNivIk+TMM8/8d28LAAAAAACl+7dL8o9SrVbLuC0AAAAAANRUKSV5peJ/VQAAAAAAoPGVUpIDAAAAAMCSQEkOAAAAAECb1b7eAQAAAAAAWls1tozmfR7cCQAAAABAm1W4JH/sscc+cvw3v/nN4tef/exnP34iAAAAAABoJYVL8sMOO+xDY01NTTnuuOMWvx8zZsy/lwoAAAAAAFpBi/Ykf/HFF7PHHnvkvffeS7VazQYbbPChczbffPOahwMAAAAAgDK1qCRfa621csMNN+Ttt9/OUUcdlXHjxjWb79SpU/r161dKQAAAAAAAKEuLSvIkGT58eO69997suuuu2XrrrcvMBAAAAABQqmoq9Y5Ag2hxSf7GG29k6tSpueeee/LKK6+kWq1+6JwePXrUNBwAAAAAAJSpxSX5gAEDsu+++6ZSqWTAgAHN5qrVaiqVSqZOnVrzgAAAAAAAUJYWl+QXXnhhTj755Oy222654447yswEAAAAAACtosUleZKsttpq+elPf5qePXuWlQcAAAAAAFpNoZI8SSZOnNii80aNGlU4DAAAAAAAtKZ2RS/o1KlTbr/99rzzzjvp1q1bFi5cmDvvvDOvvvpqGfkAAAAAAGquWq04Ch6fVIVXks+YMSMXXnhhdt1118Vj++67b8aPH2/1OAAAAAAAS5TCK8mnTJmSgQMHNhvr379/nnjiiZqFAgAAAACA1lC4JO/Zs2d+8YtfNBu76aab0rt375qFAgAAAACA1lB4u5Wvfe1rOe6443LNNdeke/fumTFjRqZPn54JEyaUkQ8AAAAAAEpTeCX5zjvvnJtuuinbbrttlltuueywww659NJLs/HGG5eRDwAAAAAASlO4JL///vszePDgDB8+PKuuumouv/zyDBkyJNdff30Z+QAAAAAAam5RKo6CxydV4ZL80ksvzfHHH59FixblJz/5ScaMGZNrrrkm48aNKyMfAAAAAACUpvCe5C+99FIOOuig/PnPf87cuXPzmc98Ju3bt8/rr79eRj4AAAAAAChN4ZXkXbp0yRtvvJH7778/W2yxRdq3b5+nnnoqK664Yhn5AAAAAACgNIVXku+///4ZNGhQ3n777YwePTpPPvlkjjjiiBx++OFl5AMAAAAAgNIULsmHDx+erbfeOp06dcqmm26aV155Jeecc0522WWXMvIBAAAAAEBpCpfkSdK/f//Fr7t3757u3bvXLBAAAAAAQNmqqdQ7Ag2i8J7kAAAAAADwSaEkBwAAAACgzVKSAwAAAADQZinJAQAAAABos5TkAAAAAAC0We1rdaOmpqYsu+yytbodAAAAAEBpqtVKvSPQIAqvJN96660/cnzHHXf8d7MAAAAAAECrqlSr1eq/OunFF1/MmWeemWq1mt///vfZcsstm803NTXlrbfeyv33319aUAAAAACAWpnyzBv1jrDE2bzfyvWOUIoWbbey1lprZZdddsns2bMzZcqUD60m79ixYwYMGPCxQ8z71YSPfe0nUeddDsu8+ybWO0ZD6bzzVzL319fWO0ZD6bLjlzLv2vPrHaOhdP7SNzJ92nP1jtFQ1unTN796bH69YzSMXT7dMX996tF6x2goq6+/Wd561A+5/1nXzQb4nnxA180GZOq0l+sdo6Fs0Kdn7uywXr1jNJQ9FjydyU+/Ve8YDWWr9bpm5tOP1ztGQ+mx3iZ55/e/rHeMhrLclrvlheeeqXeMhrF2335584nf1TtGQ1npU/+Rl56dWu8YDWXNdTfwPfmANdfdoN4RYInW4j3JDz744CTJGmuskUGDBpWVBwAAAAAAWk3hB3cOGjQojz/+eKZPn54P7tSiPAcAAAAAYElSuCS/6KKLMm7cuKyyyipp3/5/Lq9UKkpyAAAAAGCJUE2l3hFoEIVL8ltvvTWXXXZZdthhhzLyAAAAAABAq2lX9IJ3330322+/fRlZAAAAAACgVRUuyXfcccfcfvvtZWQBAAAAAIBWVXi7lb///e855ZRTctlll6Vbt27N5iZOnFizYAAAAAAAULbCJXm/fv3Sr1+/MrIAAAAAAECrKlySDxs2rIwcAAAAAACtplqt1DsCDaLwnuRJcv3112evvfZK//79M3PmzIwYMSJz5sypdTYAAAAAAChV4ZL8qquuyvjx43PooYfmvffeyzLLLJNZs2Zl1KhRZeQDAAAAAIDSFC7Jr7322owdOzYHHXRQ2rVrlxVWWCE//OEP88ADD5SRDwAAAAAASlO4JJ89e3bWWWedJEm1Wk2SrLzyylm4cGFtkwEAAAAAQMkKl+Trr79+rrvuuiRJpfL+5vZ33XVX1l133domAwAAAACAkrUvesE3vvGNDB48OLfeemvefffdHHnkkfnjH/+YK6+8sox8AAAAAAA1V02l3hFoEIVL8o022ih33HFHbrvttmywwQZZffXVc/bZZ6dHjx5l5AMAAAAAgNIULsmTZLXVVsuRRx5Z6ywAAAAAANCqCpfkkyZNyrnnnpuXX3558YM7/2Hq1Kk1CwYAAAAAAGUrXJKfc8452WWXXbLDDjukXbvCz/0EAAAAAICGUbgkf+utt3LiiSdmqaWWKiMPAAAAAAC0msIl+U477ZRJkyZlwIABZeQBAAAAAChdtVqpdwQaROGS/Ctf+Uq+/OUvp2/fvll++eWbzU2cOLFmwQAAAAAAoGyFS/Izzzwzm222WbbccktbrgAAAAAAsEQrXJK/+OKLeeSRR9KhQ4cy8gAAAAAAQKtpV/SCDTbYIDNmzCgjCwAAAAAAtKrCK8m33XbbfOUrX8luu+2Wrl27NpsbNmxYrXIBAAAAAEDpCpfkjzzySNZZZ508/fTTzcYrFU+DBQAAAACWDIvqHYCGUbgkv/rqq8vIAQAAAAAAra7wnuRJMm3atJx77rkZNmxYZs+enZ/85Ce1zgUAAAAAAKUrXJL/13/9Vw488MDMnj07//3f/5158+blkksuyRVXXFFGPgAAAAAAKE3hkvyiiy7K97///Vx44YVZaqml0r1791xxxRW57rrrysgHAAAAAAClKVySv/jii9l+++2T/M/DOj/1qU/lb3/7W22TAQAAAABAyQo/uLNHjx6ZMmVKtthii8VjTzzxRLp3717TYAAAAAAAZalWK/WOQIMoXJIfffTROeaYY/KlL30pCxYsyLhx43L11VfnhBNOKCMfAAAAAACUpnBJvscee2TZZZfNNddckx49euShhx7KN7/5zey6665l5AMAAAAAgNIULsmTZIcddsgOO+yQJGlqakrHjh1rGgoAAAAAAFpD4Qd3Tps2Lccee2yS5J577sk222yT7bbbLn/4wx9qHg4AAAAAAMpUeCX5t7/97ay66qqpVqu58MILM2LEiCyzzDL5zne+kxtuuKGMjAAAAAAAUIrCJfnTTz+dyy67LC+//HJmzJiRL3/5y1lmmWVy4YUXlpEPAAAAAKDmqqnUOwINovB2KwsXLky1Ws1//dd/ZaONNsqyyy6b2bNnp1OnTmXkAwAAAACA0hReSf6Zz3wmw4cPz1NPPZUhQ4ZkxowZOfnkk7PjjjuWEA8AAAAAAMpTeCX5yJEjs/HGG+fggw/OV77ylcyZMycbbbRRzjjjjDLyAQAAAABAaQqvJF9mmWUyfPjwxe/XX3/9nH766Vm4cGFNgwEAAAAAQNkKl+QvvfRSLrnkksyaNSuLFi1KkixYsCDTp0/PQw89VPOAAAAAAABQlsIl+Te/+c1Uq9WsuOKKeeONN7LhhhvmlltuyeDBg0uIBwAAAABQe9Vqpd4RaBCF9yR/8sknc8kll2To0KFZbrnlcvrpp+eiiy7Kgw8+WEY+AAAAAAAoTeGSvEuXLllhhRWy5ppr5plnnkmSbL/99nn++edrHg4AAAAAAMpUuCRfc801M2nSpCyzzDJZtGhRZsyYkVmzZnlwJwAAAAAAS5zCe5IfddRRGTFiRO6444584QtfyBe/+MUstdRS2XnnncvIBwAAAAAApSlckg8YMCC/+tWvsvLKK2fo0KFZe+2109TUlEGDBpUQDwAAAAAAylO4JE+SVVZZJY8//nhmzZqVNddcMxtvvHGtcwEAAAAAQOkKl+Qvvvhijj766PzlL39J165dM3v27Gy00UYZM2ZMVl111TIyAgAAAADUVDWVekegQRR+cOfIkSOzzTbb5Pe//31+97vf5eGHH06fPn1yzjnnlJEPAAAAAABKU3gl+RNPPJGxY8emY8eOSZJll102Z555ZnbcccdaZwMAAAAAgFIVXknes2fPvPTSS83G/vrXv6Zr1661ygQAAAAAAK2ixSvJb7nlliTJ5ptvniOPPDJDhgxJz5498+qrr+ZHP/pRPve5z5WVEQAAAAAAStHiknz06NGLX1cqlfzoRz9qNv/LX/4yJ510Uu2SAQAAAABAyVpckt9///0tvukdd9yRPffc82MFAgAAAAAo26JqvRPQKArvSd4SZ555Zhm3BQAAAACAmiqlJK9W/RgGAAAAAIDGV0pJXqlUyrgtAAAAAADUVCklOQAAAAAALAmU5AAAAAAAtFnt6x0AAAAAAKC1VWPLaN7nwZ0AAAAAALRZhUvyxx577CPHf/Ob3yx+/dnPfvbjJwIAAAAAgFZSuCQ/7LDDPjTW1NSU4447bvH7MWPG/HupAAAAAACgFbRoT/IXX3wxe+yxR957771Uq9VssMEGHzpn8803r3k4AAAAAAAoU4tK8rXWWis33HBD3n777Rx11FEZN25cs/lOnTqlX79+pQQEAAAAAICytKgkT5Lhw4fn3nvvza677pqtt966zEwAAAAAAKWqViv1jkCDaHFJ/sYbb2Tq1Km555578sorr6RarX7onB49etQ0HAAAAAAAlKnFJfmAAQOy7777plKpZMCAAc3mqtVqKpVKpk6dWvOAAAAAAABQlhaX5BdeeGFOPvnk7LbbbrnjjjvKzAQAAAAAAK2ixSV5kqy22mr56U9/mp49e5aVBwAAAAAAWk2hkjxJJk6c2KLzRo0aVTgMAAAAAAC0pnZFL+jUqVNuv/32vPPOO+nWrVsWLlyYO++8M6+++moZ+QAAAAAAaq5adRQ9PqkKrySfMWNGLrzwwuy6666Lx/bdd9+MHz/e6nEAAAAAAJYohVeST5kyJQMHDmw21r9//zzxxBM1CwUAAAAAAK2hcEnes2fP/OIXv2g2dtNNN6V37941CwUAAAAAAK2h8HYrX/va13LcccflmmuuSffu3TNjxoxMnz49EyZMKCMfAAAAAACUpvBK8p133jk33XRTtt122yy33HLZYYcdcumll2bjjTcuIx8AAAAAAJSmcEl+//33Z/DgwRk+fHhWXXXVXH755RkyZEiuv/76MvIBAAAAANTcolQcBY9PqsIl+aWXXprjjz8+ixYtyk9+8pOMGTMm11xzTcaNG1dGPgAAAAAAKE2lWq1Wi1zQv3//PPzww/nzn/+cgw8+OJMnT0779u2z2Wab5dFHHy0rJwAAAABAzdz3xLx6R1ji7PypzvWOUIrCD+7s0qVL3njjjdx///3ZYost0r59+zz11FNZccUVP3aIvzzz5Me+9pNojX4b560//rreMRpK1013TNNlp9Y7RkNZ9qujMu+eq+odo6F0HjjYnycfsEa/jfPu+DPrHaNhLD3knDwz7aV6x2go/fqsmZ/+rtDPyz/xvvwflcz9ybfrHaOhdDnktMy77rv1jtFQOn/h5Ex++q16x2goW63XNXd2WK/eMRrKHguezqQ/vVvvGA1lh42WzrxfTah3jIbSeZfD8spTf6x3jIbRff1N8x97Tap3jIbyu9t3yG/+NKfeMRrK9hstk5lPP17vGA2lx3qb1DsCLNEKl+T7779/Bg0alLfffjujR4/Ok08+mSOOOCKHH354GfkAAAAAAKA0hUvy4cOHZ+utt06nTp2y6aab5pVXXsk555yTXXbZpYx8AAAAAABQmsIlefL+vuT/0L1793Tv3r1mgQAAAAAAylatVuodgQbRrt4BAAAAAACgXpTkAAAAAAC0WUpyAAAAAADaLCU5AAAAAABtlpIcAAAAAIA2q329AwAAAAAAtLZqtd4JaBRWkgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbVb7egcAAAAAAGht1VTqHYEGoSQHAAAAAKDVvPvuuxk5cmTuv//+LFy4MDvvvHPOOuusLLPMMh95/t13352xY8dmxowZ6dq1a/bbb78MHTo07dq9v1HK7rvvnpkzZy5+nyQ33nhj+vTp06I8SnIAAAAAAFrNyJEj88orr+Tuu+/Oe++9l+OPPz4XXHBBzjrrrA+d++STT+bkk0/OD37wg+ywww6ZPn16jjzyyCy99NI5/PDD09TUlOnTp+e+++5Lz549P1Yee5IDAAAAANAq5s6dm9tvvz0jRoxI165ds/LKK+fEE0/MTTfdlLlz537o/Jdffjlf/OIXs9NOO6Vdu3bp06dPBg4cmMmTJyd5v0Tv2rXrxy7IEyvJAQAAAACooXnz5mXWrFkfOTd37twsWLAg/fr1WzzWp0+fzJs3Ly+88EI22GCDZufvuuuu2XXXXZvd+9e//nX22muvJMkTTzyRLl265JBDDsmzzz6bnj17Zvjw4dlpp51anFdJDgAAAADAvzR//vzMnz+/2VjHjh3TsWPHZmOPPfZYvvKVr3zkPY477rgkydJLL714rEuXLkmSOXPm/J+/flNTU4477rh07tw5gwcPTpJUKpV86lOfygknnJAePXrkl7/8ZYYPH56f/OQn2XTTTVv0dSnJAQAAAIA2Z1G13gmWPJdffnnGjBnTbGzYsGEZPnx4s7H+/fvn6aef/sh7/PnPf87FF1+cuXPnLn5Q5z+2WVl22WX/11/7+eefz4gRI7Lyyitn4sSJi8894ogjmp23995754477sjdd9/d4pK88J7kxxxzzEeOH3LIIUVvBQAAAADAEuLoo4/OH/7wh2bH0UcfXege66yzTjp06JDnnntu8di0adPSoUOHrL322h95zaRJk3LggQdmu+22y/jx47PCCissnhs/fnwefPDBZufPnz8/nTp1anGmFq0k/8tf/pJbbrklSfK73/3uQz8taGpq+l9/MgAAAAAAwJLvo7ZWKapLly7Zfffdc8EFF+Tiiy9OklxwwQXZc88907lz5w+d/8c//jHHHntsvvWtb+WAAw740Pwrr7ySG264IePGjUv37t1zyy235NFHH83ZZ5/d4kwtKsl79OiRZ599Nm+++Wbee++9PPzww83mO3XqlLPOOqvFvygAAAAAAG3TWWedlfPPPz977bVXFixYkJ133jlnnHHG4vk99tgje+21V7761a/msssuy8KFC3PeeeflvPPOW3zOFltskSuvvDInn3xy2rVrly9/+ct555130rdv31xxxRVZa621WpynRSV5u3btFrf6p59+es4999wW/wIAAAAAAPAPyy67bEaOHJmRI0d+5Pydd965+PVll132f96rY8eOOe2003Laaad97DwtfnDnzJkzkyRDhw5d/PqDevTo8bGDAAAAAABAa2txST5gwIBUKpUkSbX6P49+rVQqqVarqVQqmTp1au0TAgAAAADUWLVaqXcEGkSLS/L77ruvzBwAAAAAANDqWlyS9+zZs8wcAAAAAADQ6lpckm+++eaZMmVK1l9//cXbrnyQ7VYAAAAAAFiStLgkv+KKK5IkP/7xj//XkhwAAAAAAJYkLS7Jt9xyyyRJ//79SwsDAAAAAACtqcUl+T8MGDDgf11J7uGeAAAAAMCSoFqtdwIaReGSfPjw4c3ev/nmm/n5z3+eAw88sGahAAAAAACgNRQuyffdd98PjQ0cODAnnHBCDjvssJqEAgAAAACA1tCuFjfp2bNnXnjhhVrcCgAAAAAAWk3hleSTJ09u9n7BggX55S9/mbXXXrtWmQAAAAAAoFUULskPPfTQZu/btWuXPn365KyzzqpZKAAAAAAAaA2FS/KnnnqqjBwAAAAAAK1mUSr1jkCDKFySJ0lTU1MmTZqUWbNmZY011sj222+fzp071zobAAAAAACUqnBJ/sQTT+SII45I586ds/rqq+fll19Ox44dc+WVV6Z3795lZAQAAAAAgFK0K3rBqFGjcthhh2XSpEm57rrr8tvf/jb77LNPzjnnnDLyAQAAAABAaQqX5M8991yOPPLIxe8rlUqGDh2aJ598sqbBAAAAAACgbIVL8vXWWy9//OMfm41NnTo1vXr1qlUmAAAAAABoFS3ek3zMmDFJku7du+foo4/OAQcckDXWWCOvvvpqbrzxxuyyyy6lhQQAAAAAqKVqtd4JaBQtLskffvjhxa832GCD/OlPf8qf/vSnJEmfPn3y/PPP1z4dAAAAAACUqMUl+dVXX93im15xxRU56qijPlYgAAAAAABoLYX3JG+Jyy67rIzbAgAAAABATZVSkldt6AMAAAAAwBKglJK8UqmUcVsAAAAAAKipFu9JDgAAAADwSVGtWujL+0pZSQ4AAAAAAEsCJTkAAAAAAG2WB3cCAAAAANBmFS7JR44cmaampv/znAMPPPBjBwIAAAAAgNZSuCS//fbb07lz5//znNNOO+1jBwIAAAAAgNbSvugF+++/f84555zst99+WWWVVVKp/M9TYHv06FHTcAAAAAAAZVhkx2j+v8Il+YQJE5Ik119/fZKkUqmkWq2mUqlk6tSptU0HAAAAAAAlKlyS77PPPtlmm22y1VZbNVtFDgAAAAAAS5rCJfmyyy6b888/P8stt1z222+/7LfffllttdXKyAYAAAAAAKUq/ODOM844I7/97W9z0kkn5fHHH8/AgQMzZMiQ3HXXXZk/f34ZGQEAAAAAoBSFS/Ik6dChQ3bZZZdceumlmThxYmbPnp0TTjgh2223Xc4///y88847tc4JAAAAAAA197FK8tdeey0TJkzIoEGDcuihh6ZHjx4ZO3ZsfvzjH2f69Ok55phjap0TAAAAAKBmqlVH0eOTqvCe5EOGDMlDDz2U3r17Z7/99ss+++yTlVZaafH8CSeckC984Qs1DQkAAAAAAGUoXJKvscYaufbaa7PJJpt85HzPnj1z4403/tvBAAAAAACgbIVL8rPPPvv/nF9mmWXSp0+fjx0IAAAAAABay8fakxwAAAAAAD4JlOQAAAAAALRZhbdbAQAAAABY0lVTqXcEGoSV5AAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbZaSHAAAAACANktJDgAAAABAm9W+3gEAAAAAAFrbomq9E9AorCQHAAAAAKDNUpIDAAAAANBmKckBAAAAAGizlOQAAAAAALRZSnIAAAAAANqs9vUOAAAAAADQ2qrVeiegUVhJDgAAAABAm6UkBwAAAACgzVKSAwAAAADQZlWqVbvvAAAAAABtyw0PLap3hCXOgdt8MtdcN8SDO1/708P1jtBQVtmof1547pl6x2goa/ftl78882S9YzSUNfpt7HvyAWv02zjPT5tW7xgNpXefPr4n/6R3nz6Z+fTj9Y7RUHqst0n+/NzMesdoKBv27eHfwx+wdt9+vicfsHbffv48+YAe622SSX96t94xGsoOGy2dOzusV+8YDWWPBU/7u8kH+Ptac7379Mk7v/9lvWM0lOW23C2/32HbesdoKFtOetDvmw/o3adPvSPAEq0hSnIAAAAAgNZkfw3+4ZO5Ph4AAAAAAFqgxSvJb7nlln95zqBBg/6NKAAAAAAA0LpaXJKPHj06SbJo0aLMmjUrXbt2TY8ePfLqq6/m9ddfz3rrrackBwAAAABgidLikvz+++9Pkpx//vnp2LFjjjvuuLRr9/5uLWPHjs1f/vKXchICAAAAAEBJCu9J/vOf/zzDhg1bXJAnyVFHHZW77767psEAAAAAAKBsLV5J/g+dOnXKtGnTsv766y8ee/LJJ7P88svXNBgAAAAAQFkWVSv1jkCDKFySH3zwwRkyZEgOPPDA9OjRIzNmzMj111+fESNGlJEPAAAAAABKU7gk/+pXv5pu3brltttuyy9+8Yt07949Z555ZvbYY48y8gEAAAAAQGkKl+RJcsABB+SAAw6odRYAAAAAAGhVhR/cmSTXX3999t577/Tv3z8zZ87MiBEjMmfOnFpnAwAAAACAUhUuya+66qqMHz8+hxxySN57770ss8wymTVrVkaNGlVGPgAAAAAAKE3hkvzaa6/N2LFjc9BBB6Vdu3ZZYYUV8sMf/jAPPPBAGfkAAAAAAGquWnUUPT6pCpfks2fPzjrrrJMkqf7/78zKK6+chQsX1jYZAAAAAACUrHBJvv766+e6665LklQqlSTJXXfdlXXXXbe2yQAAAAAAoGTti17wjW98I4MHD86tt96ad999N0ceeWT++Mc/5sorrywjHwAAAAAAlKZwSb7RRhvlzjvvzG233ZYNNtggq6++es4+++z06NGjjHwAAAAAAFCawiX5ueeem9NPPz1HHHFEs/GTTz453/3ud2sWDAAAAAAAytaiknzWrFl58MEHkyQ33HBDNt5442bz77zzTu65557apwMAAAAAKEG1Wu8ENIoWleQrrrhifvKTn+TNN9/M/PnzM3r06GbznTp1yrBhw0oJCAAAAAAAZWlRSd6xY8fceOONSZIhQ4Zk/PjxpYYCAAAAAIDW0K7oBR9VkC9cuDB//vOfaxIIAAAAAABaS+EHd06aNCnf+ta3MmvWrFT/aeOe9u3b54knnqhpOAAAAAAAKFPhkvx73/tedtlllyy//PJ5+umns+eee+aSSy7JAQccUEY+AAAAAAAoTeGSfMaMGTnppJPyl7/8JQ899FB22WWX9O7dO1/72tdy6KGHlpERAAAAAKCmFlX/9Tm0DYX3JF9ppZXSrl279OjRI9OmTUuS9O3bN3/9619rHg4AAAAAAMpUuCRfb731cvHFFydJVl555UyaNCkPP/xwOnXqVPNwAAAAAABQpsIl+UknnZR77703r732WkaMGJGhQ4dm8ODBGTJkSBn5AAAAAACgNIX3JO/Tp0/uvPPOJEnPnj3zwAMPZM6cOVlnnXVqHg4AAAAAAMpUeCX5XnvtlR//+MeZPXt2kmTVVVdVkAMAAAAAsEQqXJJ/6Utfyp133pkddtghxx9/fH73u9+VkQsAAAAAoDTVasVR8PikKlySf/nLX87111+fm2++OT179sw3v/nNDBgwIGPGjCkjHwAAAAAAlKZwSf4Pffr0ybBhw3LCCSckScaPH1+zUAAAAAAA0BoKP7gzSR588MHccsstueeee7L22mtnyJAh2XvvvWudDQAAAAAASlW4JN9hhx0yZ86cfP7zn8/EiROz8cYbl5ELAAAAAABKV7gkHzFiRD7/+c+nS5cuZeQBAAAAAIBWU7gk33///fPkk0/mxhtvzMsvv5xVVlkl++23X7bccssy8gEAAAAA1Fy1Wu8ENIrCD+783e9+ly9/+ct56623st5666WpqSmHHXZY7r333jLyAQAAAABAaQqvJB89enTOP//87L777ovHfvGLX2Ts2LH53Oc+V9NwAAAAAABQpsIryadPn55dd9212diuu+6aF154oVaZAAAAAACgVRQuybt27Zpnnnmm2dhTTz2VVVZZpWahAAAAAACgNRTebuXAAw/MMccck6OPPjprrLFGXnrppYwbNy5f/vKXy8gHAAAAAAClKVySH3nkkfn73/+eyy+/PK+//np69uyZQw45JIcddlgZ+QAAAAAAam5Rtd4JaBSFS/JKpZLhw4dn+PDhZeQBAAAAAIBWU7gkf++993L33XfnhRdeyKJFi5rNDRs2rGbBAAAAAACgbIVL8rPOOit33nln1l9//bRv/z+XVyqVmgYDAAAAAICyFS7JH3jggUycODGf+tSnysgDAAAAAACtpl3RCxYtWpQNN9ywjCwAAAAAANCqCpfke+65Z8aPH19GFgAAAACAVlGtOooen1SFt1v505/+lClTpuTSSy/NSiut1Gzuvvvuq1kwAAAAAAAoW+GS/MADD8yBBx5YRhYAAAAAAGhVhUvyfffdd/HrN99880OryQEAAAAAYElReE/yhQsX5vvf/3622GKLDBgwIDNmzMj++++f1157rYx8AAAAAABQmsIl+Q9/+MM89NBDufjii9OhQ4esvPLKWX311XPuueeWkQ8AAAAAAEpTeLuV22+/Pddee21WW221VCqVLL300hk1alQGDhxYRj4AAAAAgJqrVuudgEZReCX5u+++u3gf8ur//yR17tw57doVvhUAAAAAANRV4WZ70003zZgxY5IklUolSXL11VfnU5/6VG2TAQAAAABAyQpvt3Laaadl8ODBufnmmzNnzpx8/vOfz5w5czJhwoQy8gEAAAAAQGkKl+TdunXLnXfemV//+td5+eWXs/rqq2fHHXfMsssuW0Y+AAAAAAAoTeGSfM8998xtt92W3XffvYw8AAAAAADQagqX5Ekyd+5cK8cBAAAAgCXWomq9E9AoCpfk/fv3z4EHHpjtt98+q666arO5YcOG1SwYAAAAAACUrXBJ/pe//CW9evXK9OnTM3369MXjlUqlpsEAAAAAAKBshUvyq6+++l+ec8UVV+Soo476WIEAAAAAAKC1tCvjppdddlkZtwUAAAAAgJoqpSSvVu16DwAAAABA4yu83UpL2J8cAAAAAGhk1vnyD6WsJAcAAAAAgCWBkhwAAAAAgDZLSQ4AAAAAQJvlwZ0AAAAAALRZhUvykSNHpqmp6f8858ADD/zYgQAAAAAAoLUULslvv/32dO7c+f8857TTTvvYgQAAAAAAyrZokaPo8UnVvugF+++/f84555zst99+WWWVVVKpVBbP9ejRo6bhAAAAAACgTIVL8gkTJiRJrr/++iRJpVJJtVpNpVLJ1KlTa5sOAAAAAABKVLgk32effbLNNttkq622araKHAAAAAAAljSFS/Jll102559/fpZbbrnst99+2W+//bLaaquVkQ0AAAAAAEpV+MGdZ5xxRn7729/mpJNOyuOPP56BAwdmyJAhueuuuzJ//vwyMgIAAAAAQCkKl+RJ0qFDh+yyyy659NJLM3HixMyePTsnnHBCtttuu5x//vl55513ap0TAAAAAKBmqlVH0eOT6mOV5K+99lomTJiQQYMG5dBDD02PHj0yduzY/PjHP8706dNzzDHH1DonAAAAAADUXOE9yYcMGZKHHnoovXv3zn777Zd99tknK6200uL5E044IV/4whdqGhIAAAAAAMpQuCRfY401cu2112aTTTb5yPmePXvmxhtv/LeDAQAAAABA2QqX5Gefffb/Ob/MMsukT58+HzsQAAAAAAC0lkq1+knech0AAAAA4MMuu7veCZY8X9213gnKUXgleRlmjxpa7wgNZcVTx2bez79f7xgNpfP+X8vfLjiu3jEaygonXpznB+9Z7xgNpfdVd+TNx39b7xgNZaVNtsu7k35W7xgNY+kdvpi/PvVovWM0lNXX3yyPP/tqvWM0lE3WXTUzhu5f7xgNpdfYn+fFowbVO0ZDWeuKW/LO739Z7xgNZbktd8u8X02od4yG0nmXw/L8tGn1jtFQevfpkzs7rFfvGA1ljwVP5+0p99Q7RsNYfvOBufHhRfWO0VAO6N8u055/vt4xGkqf3r3ztyn31jtGQ1lh88/VO8ISydJh/qFdvQMAAAAAAEC9KMkBAAAAAGizlOQAAAAAALRZSnIAAAAAANosJTkAAAAAAG1Wi0vyH/zgB4tfz58/PyNHjsy2226bnXbaKZdffnkZ2QAAAAAASrGo6ih6fFK1uCSfOHHi4tcXX3xxHnnkkZx11lk5/vjjc9NNN2Xs2LGlBAQAAAAAgLK0b+mJ1er//Kjg7rvvzhVXXJHevXsnSTbccMMceeSRGTp0aO0TAgAAAABASVq8krxSqSx+/fe//z29evVa/L5v377529/+VttkAAAAAABQshaX5PPnz8/YsWMzadKkfPrTn85vf/vbxXN33XVX1lprrVICAgAAAABAWVq83cqIESPy5JNP5sYbb8zMmTPzt7/9LQMGDMgVV1yRH/7wh/n+979fZk4AAAAAAKi5FpfkRx111OLXb775Zl577bUkyWabbZZrr702G2+8ce3TAQAAAACU4J+fwUhLVf71KUugFpfk/2yllVbKSiutlCTZaqutahoIAAAAAABaS4v3JAcAAAAAgE+aFq8kv+WWW/7lOYMGDfo3ogAAAAAAQOtqcUn+s5/9LI899li6d+/+kfOVSkVJDgAAAADAEqXFJfmECRNyyCGHZL/99svBBx9cZiYAAAAAAGgVLd6TvEuXLvnOd76TSy+9NPPnzy8zEwAAAABAqapVR9Hjk6rQgzvXXXfdXHDBBZk7d25ZeQAAAAAAoNW0eLuVf9hmm23KyAEAAAAAAK2ucEk+efLkjxzv0KFDVlpppay55pr/digAAAAAAGgNhUvyU045JTNnzky7du2y4oorZvbs2Vm0aFHatWuX9957L717987ll1+eXr16lZEXAAAAAABqptCe5Emy9957Z++9984jjzyS3/3ud5k8eXIOOOCADBs2LH/4wx/yH//xHznvvPPKyAoAAAAAADVVeCX5LbfckrvuuitdunRJkiy99NI57bTTsvvuu+eYY47J17/+9Wy33XY1DwoAAAAAUCuLFtU7AY2i8Eryd999N2+//XazsXfeeSdNTU2L31cqlX8/GQAAAAAAlKxwSb7bbrvl2GOPzX//93/nhRdeyH//939nxIgR2WWXXdLU1JSzzjorW265ZRlZAQAAAACgpgpvt3LaaaflvPPOy7HHHpu5c+emc+fOOeCAA/L1r389f/rTn/L222/nW9/6VglRAQAAAACgtgqX5J06dco555yTM888M2+99VZWXnnlxdurbLnlllaRAwAAAACwxChckifJ448/nunTp6darTYbHzRoUC0yAQAAAABAqyhckl900UUZN25cVllllbRv/z+XVyoVJTkAAAAAsET4wPpf2rDCJfltt92Wyy67LDvssEMZeQAAAAAAoNW0K3rBnDlzsv3225eRBQAAAAAAWlXhknzHHXfM7bffXkYWAAAAAABoVYW3W/n73/+eU045JZdddlm6devWbG7ixIk1CwYAAAAAAGUrXJL369cv/fr1KyMLAAAAAAC0qsIl+bBhw8rIAQAAAADQahZV652ARtHikvxb3/pWvvWtb+XUU0/9X88ZNWpUTUIBAAAAAEBraPGDO6vVarN/AgAAAABAUe+++25OPfXU9O/fP1tssUVOPvnkzJkz5389/6yzzsrGG2+czTbbbPFx3XXXLZ6/+eabM3DgwGy66abZb7/98uijjxbK0+KV5GeffXaS5MQTT/zQAzsBAAAAAKAlRo4cmVdeeSV333133nvvvRx//PG54IILctZZZ33k+U888URGjhyZfffd90NzDz/8cEaOHJlx48Zlk002yTXXXJNjjjkmDzzwQLp06dKiPC1eSf4PO+64Y4499tg88MADWbRoUdHLAQAAAABoo+bOnZvbb789I0aMSNeuXbPyyivnxBNPzE033ZS5c+d+6Pz58+fnmWeeycYbb/yR97vhhhuyxx57ZIsttkiHDh0yePDgrLjiirnrrrtanKnwgztvvfXW3HzzzTnrrLNSrVaz77775oADDsiaa65Z9FYAAAAAACwh5s+fn/nz5zcb69ixYzp27NhsbN68eZk1a9ZH3mPu3LlZsGBB+vXrt3isT58+mTdvXl544YVssMEGzc5/6qmnsnDhwowePTp/+MMfstxyy2X//ffPEUcckXbt2uW5557L/vvv3+yavn375qmnnmrx11W4JO/Tp09OPPHEnHDCCfnd736XW2+9Nfvuu2822mijTJw4sejtAAAAAABanUcvFnf55ZdnzJgxzcaGDRuW4cOHNxt77LHH8pWvfOUj73HcccclSZZeeunFY//YFuWj9iV/5513svXWW+fQQw/NRRddlKlTp+bYY49Nu3btcsQRR2TOnDkf2lalc+fOeffdd1v8dRUuyf+hXbt26dy5c5Zeeul07NgxCxYs+Li3AgAAAACgwR199NE57LDDmo19cBV5kvTv3z9PP/30R97jz3/+cy6++OLMnTs3yyyzTJIs3mZl2WWX/dD5n/3sZ/PZz3528ftNNtkk//mf/5m77rorRxxxRLp06ZJ58+Y1u2bevHlZccUVW/x1FS7JX3jhhdxyyy257bbbMnfu3Oy99965+uqr07dv36K3AgAAAABgCfFRW6sUtc4666RDhw557rnn8ulPfzpJMm3atHTo0CFrr732h86/99578/rrr+eLX/zi4rH58+enc+fOSZJ11103zz77bLNrnnvuuWy//fYtzlT4wZ277757HnvssXz961/PpEmTcuqppyrIAQAAAAD4l7p06ZLdd989F1xwQd588828+eabueCCC7LnnnsuLr7/WbVazahRo/Lggw+mWq3m0UcfzcSJE/OFL3whSXLAAQfk9ttvz0MPPZQFCxbkqquuyhtvvJGBAwe2OFPhleS/+tWv0qtXr6KXAQAAAABAzjrrrJx//vnZa6+9smDBguy8884544wzFs/vscce2WuvvfLVr341AwcOzKmnnppvfetbmTVrVrp165bhw4dnn332SZJsu+22OeussxbP9+3bN+PGjUvXrl1bnKfFJfkVV1yRo446Krfeeuv/es6wYcNa/AsDAAAAAND2LLvsshk5cmRGjhz5kfN33nlns/df/OIXm2238kH77LPP4tL842hxST558uQcddRRefjhhz9yvlKpfOwQAAAAAACtqbqoWu8IS6BPZgfc4pJ83LhxSZKrr766tDAAAAAAANCaWlyS33LLLf/ynEGDBv0bUQAAAAAAoHW1uCQfPXr0/zlfqVSU5AAAAAAALFFaXJLff//9Lb7pHXfckT333PNjBQIAAAAAgNbSroybnnnmmWXcFgAAAAAAaqrFK8mLqFY9GRYAAAAAaFyLVJj8f6WsJK9UKmXcFgAAAAAAaqqUkhwAAAAAAJYESnIAAAAAANosJTkAAAAAAG1WKSW5B3cCAAAAALAkKFySP/bYYx85/pvf/Gbx689+9rMfPxEAAAAAQMmqVUfR45OqcEl+2GGHfWisqakpxx133OL3Y8aM+fdSAQAAAABAK2jfkpNefPHF7LHHHnnvvfdSrVazwQYbfOiczTffvObhAAAAAACgTC0qyddaa63ccMMNefvtt3PUUUdl3LhxzeY7deqUfv36lRIQAAAAAADK0qKSPEmGDx+ee++9N7vuumu23nrrMjMBAAAAAECraHFJ/sYbb2Tq1Km555578sorr6T6ETu19+jRo6bhAAAAAACgTC0uyQcMGJB99903lUolAwYMaDZXrVZTqVQyderUmgcEAAAAAKi1RYs+vAiYtqnFJfmFF16Yk08+ObvttlvuuOOOMjMBAAAAAECraHFJniSrrbZafvrTn6Znz55l5QEAAAAAgFZTqCRPkokTJ7bovFGjRhUOAwAAAAAArald0Qs6deqU22+/Pe+88066deuWhQsX5s4778yrr75aRj4AAAAAAChN4ZXkM2bMyIUXXphdd9118di+++6b8ePHWz0OAAAAAMASpfBK8ilTpmTgwIHNxvr3758nnniiZqEAAAAAAMpUrTqKHp9UhUvynj175he/+EWzsZtuuim9e/euWSgAAAAAAGgNhbdb+drXvpbjjjsu11xzTbp3754ZM2Zk+vTpmTBhQhn5AAAAAACgNIVXku+888656aabsu2222a55ZbLDjvskEsvvTQbb7xxGfkAAAAAAKA0hUvy+++/P4MHD87w4cOz6qqr5vLLL8+QIUNy/fXXl5EPAAAAAABKU7gkv/TSS3P88cdn0aJF+clPfpIxY8bkmmuuybhx48rIBwAAAAAApSm8J/lLL72Ugw46KH/+858zd+7cfOYzn0n79u3z+uuvl5EPAAAAAKDmqtV6J6BRFF5J3qVLl7zxxhu5//77s8UWW6R9+/Z56qmnsuKKK5aRDwAAAAAASlN4Jfn++++fQYMG5e23387o0aPz5JNP5ogjjsjhhx9eRj4AAAAAAChN4ZJ8+PDh2XrrrdOpU6dsuummeeWVV3LOOedkl112KSMfAAAAAACUpnBJniT9+/df/Lp79+7p3r17zQIBAAAAAEBrKbwnOQAAAAAAfFJ8rJXkAAAAAABLskXVar0j0CAq1apPAwAAAADQtoy8dmG9IyxxzvjSJ3PNdUN8VX996tF6R2goq6+/WV56dmq9YzSUNdfdILOm/qHeMRrKahtskben3FPvGA1l+c0H5qWv7lfvGA1lzctuynPTptc7RsPo22edvPjc0/WO0VDW6rtepj3/fL1jNJQ+vXvn9ScfrHeMhtJt423zzu9/We8YDWW5LXfLC889U+8YDWXtvv3yylN/rHeMhtJ9/U3z/LRp9Y7RUHr36ePvsB+w/OYDc2eH9eodo2HsseDpPPncX+sdo6Fs3Hd1f5Z8QO8+ffy33wesedlN9Y4ASzR7kgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFkNsSc5AAAAAEBrqi6qdwIahZXkAAAAAAC0WUpyAAAAAADaLCU5AAAAAABtlpIcAAAAAIA2S0kOAAAAAECb1b7eAQAAAAAAWlu1Wq13BBqEleQAAAAAALRZSnIAAAAAANosJTkAAAAAAG1Wi0vyG264odn7H/3oRznggANyyCGH5I477qh5MAAAAAAAKFuLS/JRo0Ytfj1u3LhcddVV2X333fOZz3wm5513Xn72s5+VEhAAAAAAAMrSvqUn/vPTXn/+859nzJgx2WSTTZIk2267bb7xjW/ki1/8Yu0TAgAAAADU2KJF9U5Ao2jxSvJKpbL49TvvvJONNtpo8fvNNtssr732Wm2TAQAAAABAyVpcki9YsCC33nprpk2bli222CKPPvro4rmHHnooq622WikBAQAAAACgLC3ebmW//fbLxIkT88wzz2ThwoV5++23c9VVV+W6667Ld77znZx66qll5gQAAAAAgJprcUl+9tlnJ0nmz5+fp556Kk1NTUmSlVde+f+xd+fhMZ3//8dfk0ZiqY+tliTUWqWW2iKo2mpt8LEk9EOppY1Su1bt1FJarX1XtGhRakvsW7UoUrrYlSIIUYkikTSRmd8ffuZrJG0zbSZnOM/HdfW6kvtMxqtzJWfOvM99v29NnDhR9evXd01CAAAAAAAAAABcJM1F8vu8vLzsG3ZKojgOAAAAAAAAAHhkOV0kBwAAAAAAAIBHnc1mMzoC3ESai+Th4eF/+xh/f/9/FQYAAAAAAAAAgIyU5iL50KFDdfHixT+9w2KxWHTixIl0CwYAAAAAAAAAgKuluUi+fPlyvfLKK+rXr5+aNGniykwAAAAAAAAAAGQIj7Q+MHfu3Bo/frwmTpwoq9XqykwAAAAAAAAAAGSINBfJJaly5crq3bu3bty44ao8AAAAAAAAAABkmDS3W7mvRYsWLogBAAAAAAAAABnHmvrWizAhp2aSS1L37t1THX/11Vf/dRgAAAAAAAAAADJSmmaSX7p0SWvXrpUk7dmzRzNmzHA4Hhsbq1OnTqV7OAAAAAAAAAAAXClNRXJfX1/98ssviomJUXJysg4cOOBw3NvbWyNHjnRJQAAAAAAAAAAAXCVNRXIPDw9NnTpVkjRs2DCNHTvWpaEAAAAAAAAAAMgITm/cOXbsWF29elWhoaG6fPmy8uXLp6ZNm+rpp592RT4AAAAAAAAAAFzG6SL5kSNH1KlTJxUrVkwFCxbUkSNHNG/ePC1YsECVK1d2RUYAAAAAAAAASFc2q83oCHATThfJJ06cqD59+qhjx472sc8++0wfffSRli1blq7hAAAAAAAAAABwJQ9nf+DUqVNq166dw1i7du10+vTpdAsFAAAAAAAAAEBGcLpIniVLFl25csVh7MqVK8qRI0e6hQIAAAAAAAAAICM4XSR/+eWX1atXL3377bc6d+6cdu/erd69e+vll192RT4AAAAAAAAAAFzG6Z7kffr0UUxMjHr06KGkpCR5e3urdevW6tmzpyvyAQAAAAAAAADgMk4Xyb29vTVhwgSNHj1aN2/e1FNPPSWLxeKKbAAAAAAAAADgEjab0QngLtJcJF+7du3fPqZFixb/IgoAAAAAAAAAABkrzUXyadOm/eVxi8VCkRwAAAAAAAAA8EhJc5F8586daX7SsLAwNW3a9B8FAgAAAAAAAAAgo3i44klHjBjhiqcFAAAAAAAAACBduaRIbqPrPQAAAAAAAADgEZDmdivOsFgsrnhaAAAAAAAAAEgXVisTfXGPS2aSAwAAAAAAAADwKKBIDgAAAAAAAAAwLYrkAAAAAAAAAADTYuNOAAAAAAAAAIBpOV0k/+mnn1Id/+abb+xfv/DCC/88EQAAAAAAAAAAGcTpInnnzp1TjMXGxqpPnz7272fMmPHvUgEAAAAAAACAC9lsNv5z8r/HlWdaHnThwgUFBgYqOTlZNptNpUuXTvGYSpUqpXs4AAAAAAAAAABcKU1F8sKFC2vlypW6deuWQkJCNH/+fIfj3t7eKlmypEsCAgAAAAAAAADgKmkqkktSr169tH37djVq1EhVq1Z1ZSYAAAAAAAAAADJEmovk0dHROnHihLZt26YrV66k2oPG19c3XcMBAAAAAAAAAOBKaS6S16tXTy1btpTFYlG9evUcjtlsNlksFp04cSLdAwIAAAAAAAAA4CppLpJ//PHHGjhwoBo3bqywsDBXZgIAAAAAAAAAl7JZjU4Ad5HmIrkk5c+fX1988YX8/PxclQcAAAAAAAAAgAzjVJFckhYvXpymx40fP97pMAAAAAAAAAAAZCQPZ3/A29tboaGhun37tp566indvXtXGzZs0LVr11yRDwAAAAAAAAAAl3F6JvnFixf18ccfq1GjRvaxli1basGCBcweBwAAAAAAAAA8UpyeSX748GE1aNDAYSwgIEBHjhxJt1AAAAAAAAAAAGQEp2eS+/n5adOmTQoMDLSPrV69WsWKFUvXYAAAAAAAAADgKlabzegIcBNOF8n79eunPn366PPPP5ePj48uXryoc+fOadGiRa7IBwAAAAAAAACAyzjdbuWll17S6tWrVb16dWXPnl21a9fW7NmzVbZsWVfkAwAAAAAAAADAZZwuku/cuVOdOnVSr169lC9fPs2dO1ddu3bVl19+6Yp8AAAAAAAAAAC4jNNF8tmzZ6tv376yWq1aunSpZsyYoc8//1zz5893RT4AAAAAAAAAAFzG6Z7kERERatOmjY4fP674+HjVqFFDnp6eun79uivyAQAAAAAAAADgMk4XybNkyaLo6Gjt3LlTlStXlqenp06ePKlcuXK5Ih8AAAAAAAAApDubzWZ0BLgJp4vkrVu3VosWLXTr1i1NmzZNR48e1euvv64uXbq4Ih8AAAAAAAAAAC7jdJG8V69eqlq1qry9vVWhQgVduXJFo0ePVsOGDV2RDwAAAAAAAAAAl3G6SC5JAQEB9q99fHzk4+OTboEAAAAAAAAAAMgoHkYHAAAAAAAAAADAKBTJAQAAAAAAAACm9Y/arQAAAAAAAADAo8xqtRkdAW6CmeQAAAAAAAAAANOiSA4AAAAAAAAAMC2K5AAAAAAAAAAA06JIDgAAAAAAAAAwLYrkAAAAAAAAAADT8jQ6AAAAAAAAAABkNJvN6ARwF8wkBwAAAAAAAACYlsVm454JAAAAAAAAAHPpOz3W6AiPnCm9njQ6gku4RbuVE2cvGx3BrZQu7qfvTtwyOoZbqV76P/potdXoGG7l7VYeWn2Q1+RBrap6cD55SOnifpqynnuh9/VtbtGFM6eMjuFWCpd4Vglhs42O4VYyN+2u2ZuNTuFeujeW5m83OoV7eaO+FHNkj9Ex3ErucjVVs9luo2O4lT2htXX7e04oD8pepbFWHeAa9kFBAR46euaq0THcRtkSBbQh07NGx3ArgUmndOvQFqNjuJX/VG6kY2euGB3DrZQp4WN0BOCRRrsVAAAAAAAAAIBpUSQHAAAAAAAAAJiWW7RbAQAAAAAAAICMZLPSnhT3MJMcAAAAAAAAAGBaFMkBAAAAAAAAAKZFkRwAAAAAAAAAYFoUyQEAAAAAAAAApkWRHAAAAAAAAABgWhTJAQAAAAAAAACm5flPf/DmzZu6ePGinnvuOd29e1deXl7pmQsAAAAAAAAAXMZqsxkdAW7C6ZnkcXFxGjBggAICAvTqq6/q/PnzatCggX799VdX5AMAAAAAAAAAwGWcLpJ/+OGHunPnjjZt2qRMmTKpUKFCqlu3rsaNG+eKfAAAAAAAAAAAuIzT7VZ27dql0NBQ5ciRQxaLRZkyZdKgQYNUq1YtV+QDAAAAAAAAAMBlnJ5JbrVa7f3Hbf+/b8+DYwAAAAAAAAAAPCqcLpJXq1ZNo0ePVnx8vCwWiyRpypQpqlq1arqHAwAAAAAAAADAlZxutzJ48GB1795d/v7+Sk5OVsWKFVWkSBHNmTPHFfkAAAAAAAAAIN3ZrDajI8BNOF0kz5Mnj1asWKEjR47o8uXLKlCggMqXL68nnnjCFfkAAAAAAAAAAHAZp4vk4eHh9q+feuop3b17V4cPH1amTJmUO3duPf300+kaEAAAAAAAAAAAV3G6SD5o0CBFRkbKw8NDuXLl0o0bN2S1WuXh4aHk5GQVK1ZMc+fOVaFChVyRFwAAAAAAAACAdOP0xp3NmzdX8+bNdfDgQe3Zs0fh4eEKCgpSz549dejQIdWsWVPjxo1zRVYAAAAAAAAAANKV00XytWvXatSoUcqWLZskKWvWrBoyZIhWrFihbNmyacCAATp8+HC6BwUAAAAAAAAAIL053W7lzp07unXrlrJkyWIfu337tmJjY+3fWyyW9EkHAAAAAAAAAC5gs9qMjgA34fRM8saNG+utt97Svn37dP78ee3bt0+9e/dWw4YNFRsbq5EjR6pKlSquyAoAAAAAAAAAQLpyeib5kCFDNG7cOL311luKj49X5syZFRQUpAEDBujYsWO6deuWRo0a5YKoAAAAAAAAAACkL6eL5N7e3ho9erRGjBih33//XXny5LG3V6lSpQqzyAEAAAAAAAAAjwyni+SStH//fkVFRclmu9e3JykpSadOndKwYcPSNRwAAAAAAAAAAK7kdJF87NixWr58ubJlyyZJSk5OVlxcnF588cV0DwcAAAAAAAAAgCs5XSTftGmTli5dqvj4eK1fv17vv/++PvjgA925c8cV+QAAAAAAAAAg3VltRieAu3C6SB4fH68KFSrot99+07Fjx2SxWNSzZ0+9/PLLrsgHAAAAAAAAAIDLeDj7AwUKFFB0dLTy5s2rq1evKikpSZkzZ1ZsbKwr8gEAAAAAAAAA4DJOzySvXbu2OnXqpM8++0z+/v4aMmSIvL29VaRIERfEAwAAAAAAAADAdZyeSd6/f3/997//VaZMmTRixAj9/vvvOnPmjMaOHeuKfAAAAAAAAAAAuIzTM8kzZcqk119/XZKUPXt2zZ8/P8VjQkJCNG/evH+fDgAAAAAAAAAAF3K6SJ4W33//vSueFgAAAAAAAADShc1qMzoC3ITT7VYAAAAAAAAAAHhcUCQHAAAAAAAAAJgWRXIAAAAAAAAAgGlRJAcAAAAAAAAAmBZFcgAAAAAAAACAaXm64kltNnaGBQAAAAAAAOC+qGHivn88k/zmzZs6evSorFarEhMTHY598MEH/zoYAAAAAAAAAACu5nSRPC4uTgMGDFBAQIBeffVVnT9/Xg0aNNCvv/5qf0zDhg3TNSQAAAAAAAAAAK7gdJH8ww8/1J07d7Rp0yZlypRJhQoVUt26dTVu3DhX5AMAAAAAAAAAwGWc7km+a9cuhYaGKkeOHLJYLMqUKZMGDRqkWrVquSIfAAAAAAAAAAAu4/RMcqvVKi8vL0n/19z+wTEAAAAAAAAAAB4VTs8kr1atmkaPHq0RI0bIYrFIkqZMmaKqVaumezgAAAAAAAAAcAWr1WZ0BLgJp2eSDx48WGfPnpW/v79u376tihUrKjw8XO+++64r8gEAAAAAAAAA4DJOzyTPkyePVqxYoSNHjujy5csqUKCAypcvryeeeMIV+QAAAAAAAAAAcBmnZ5JL0rFjx1S+fHm98MIL2r59uz799FPdvXs3vbMBAAAAAAAAAOBSTs8knz17tj755BMdOnRIY8eO1dGjR+Xh4aGrV69q6NChrsgIAAAAAAAAAIBLOD2TPCwsTJ9//rkSExO1ZcsWTZo0SZ999pk2btzoinwAAAAAAAAAALiM0zPJr127plKlSum7775T9uzZVapUKUlSfHx8uocDAAAAAAAAAFew2WxGR4CbcHomef78+RUeHq61a9eqevXqku7NLi9UqFC6hwMAAAAAAAAAwJWcnkneq1cvvf7668qcObOWLVum7777ToMHD9b06dNdkQ8AAAAAAAAAAJdxukjeqFEj1alTR5Lk7e2tfPnyaceOHcqXL196ZwMAAAAAAAAAwKWcLpKHh4enOn7hwgX5+/v/60AAAAAAAAAAAGQUp4vkHTp0SDHm4eEhHx8f7dixI11CAQAAAAAAAACQEZwukp88edLh+5iYGM2cOVN+fn7pFgoAAAAAAAAAXMlmtRkdAW7C6SL5w3Lnzq133nlHjRo1UpcuXdIjEwAAAAAAAADgMXXnzh2NGTNGO3fu1N27d/XSSy9p5MiRypYtW4rHjhgxQqGhoQ5jCQkJqlGjhhYsWCBJatKkiSIjI+Xh4WF/zKpVq1S8ePE05fH4+4f8vZs3b+qPP/5Ij6cCAAAAAAAAADzGxowZoytXrmjLli3aunWrrly5oo8++ijVx44ePVo//PCD/b/p06frP//5jwYNGiRJio2N1blz57Rx40aHx6W1QC79g5nkgwcPdvg+KSlJhw4dUo0aNZx9KgAAAAAAAACAicTHxys0NFSLFy9Wzpw5JUlvv/22OnbsqIEDBypLlix/+rMxMTF6++23NXToUD3zzDOSpKNHjypnzpz/qh34v2634u3trQ4dOqht27b/9qkAAAAAAAAAAI+4hIQERUVFpXosPj5eSUlJKlmypH2sePHiSkhI0Pnz51W6dOk/fd6PPvpIZcuWVfPmze1jR44cUZYsWfTqq6/ql19+kZ+fn3r16qW6deumOa/TRfLx48c7+yMAAAAAAAAAgEdcYmKiEhMTHca8vLzk5eXlMPbTTz+pY8eOqT5Hnz59JElZs2a1j92fPR4XF/en//bFixe1fv16rVy50mHcYrGoXLly6t+/v3x9fbV582b16tVLS5cuVYUKFdL0//WPZpJ/9tlnWrFihS5fvqy8efMqKChI3bp1k8Vi+SdPBwAAAAAAAAAZyma1GR3hkTN37lzNmDHDYaxnz57q1auXw1hAQIBOnTqV6nMcP35cU6dOVXx8vH2jzvj4eEnSk08++af/9ldffaWKFSummGn++uuvO3zfvHlzhYWFacuWLa4rkn/22WdatGiRQkJCVLBgQUVEROiTTz6Rh4eHQkJCnH06AAAAAAAAAMAjoFu3burcubPD2MOzyP9O0aJFlSlTJp05c0bPP/+8JOns2bPKlCmTihQp8qc/t3XrVnXp0iXF+IIFC/Tcc8+pevXq9rHExER5e3unOZPTRfLly5dr1qxZeu655+xjlSpVUq9evSiSAwAAAAAAAMBjKrXWKs7KkiWLmjRpoo8++khTp06VdK/XeNOmTZU5c+ZUf+bGjRs6e/as/P39Uxy7cuWKVq5cqfnz58vHx0dr167VDz/8oPfeey/NmZwukl+7dk2lSpVyGCtVqpR+//13Z58KAAAAAAAAAGAyI0eO1AcffKBmzZopKSlJL730koYPH24/HhgYqGbNmunNN9+UJF26dEmSlD9//hTPNXDgQHl4eKhdu3a6ffu2SpQooXnz5qlw4cJpzuN0kbxw4cLatm2bGjVqZB/btm2bU/8oAAAAAAAAAMCcnnzySY0ZM0ZjxoxJ9fiGDRscvi9Xrtyf9jj38vLSkCFDNGTIkH+cx+kieY8ePdS3b19t3rxZhQoV0oULF7Rz505NmzbtH4cAAAAAAAAAAMAIThfJ69evrwULFmj16tU6fvy4/Pz89Pnnn6t8+fKuyAcAAAAAAAAA6c5qsxkdAW7iH/Uk37hxo65du6a7d+/q3Llz+uijjyRJixcvTveAAAAAAAAAAAC4itNF8nfffVc3b97Uiy++qEyZMrkiEwAAAAAAAAAAGcLpIvmPP/6ob775RtmzZ3dFHgAAAAAAAAAAMoyHsz/g4+MjDw+nfwwAAAAAAAAAALeT5pnkkZGRkqTmzZtr8ODB6t69u3LkyOHwGF9f3/RNBwAAAAAAAACAC6W5SF6vXj1ZLBbZ/v+ur1u3bpXFYpEk2Ww2WSwWnThxwjUpAQAAAAAAACAd2aw2oyPATaS5SL5jxw5X5gAAAAAAAAAAIMOluUju5+fnyhwAAAAAAAAAAGQ4duAEAAAAAAAAAJgWRXIAAAAAAAAAgGlRJAcAAAAAAAAAmFaae5I/KDExUbt379bly5fVtm1bXbhwQaVKlUrvbAAAAAAAAADgEjabzegIcBNOF8kjIiLUpUsXJSUl6datW6pdu7Zat26tGTNmqG7duq7ICAAAAAAAAACASzjdbmXcuHFq1aqVvv76a3l6eqpo0aIaO3aspk2b5op8AAAAAAAAAAC4jMXm5LqCgIAAffvtt/Ly8lLVqlV18OBBWa1WVa1aVd9//72rcgIAAAAAAABAuuk4/IrRER45i8f4GB3BJZxut5I9e3Zdv35dvr6+9rHffvtNOXLk+Mchrp784R//7OOoQKmKOvvrr0bHcCvFixXTubNnjI7hVooWL6ELZ04ZHcOtFC7xLL8nDylavATnkwcUL1aM95yHFChVUb+cvWB0DLfyTPHCOnP2nNEx3EqJ4kU5vz6kaPESivjlhNEx3MrTz5TWN8fijI7hVmqVyabva1c3OoZbqbL7O65NHlK8WDH9evas0THcRrHixXXr0BajY7iV/1RupA2ZnjU6hlsJTDrFtclDihYvYXQE4JHmdLuVZs2aqWfPntq7d6+sVqt+/vlnvf322woMDHRFPgAAAAAAAAAAXMbpmeQ9evRQQkKCevbsqfj4eHXo0EFBQUHq2bOnK/IBAAAAAAAAQLqzWp3qQo3HmNNF8kyZMundd9/Vu+++q5iYGOXKlUsWi8UV2QAAAAAAAAAAcCmni+QzZsxIddzLy0u5cuVSjRo15Ofn96+DAQAAAAAAAADgak4XyU+fPq2tW7eqXLlyKlSokCIjI/Xjjz+qXLlySk5O1rhx4zR79mxVr84GNQAAAAAAAAAA9+Z0kdzT01MjRoxQu3bt7GNfffWVDhw4oA8//FAbN27UpEmTtHLlynQNCgAAAAAAAABAevNw9gf27duntm3bOoy1aNFCu3fvliQ1adJEv/76a/qkAwAAAAAAAADAhZyeSZ41a1YdPXpUzz//vH3s+PHj8vLykiRFR0crS5Ys6ZcQAAAAAAAAANKZzWozOgLchNNF8k6dOikkJESvvPKK/Pz8dPnyZa1cuVJdu3ZVZGSk3nzzTQUGBroiKwAAAAAAAAAA6crpInnHjh2VJ08effXVV9q6dat8fX01atQoNWzYUCdPnlSrVq3UoUMHV2QFAAAAAAAAACBdOV0kl6TAwMBUZ4uXKlVKpUqV+tehAAAAAAAAAADICE4XyW/cuKElS5YoKipKVqtVkpSUlKTTp09r/fr16R4QAAAAAAAAAABXcbpIPnjwYJ0/f165c+dWbGysfH19tWfPHrVv394V+QAAAAAAAAAAcBmni+Th4eHauHGjoqKiNG/ePM2YMUPr1q1TWFiYK/IBAAAAAAAAQLqz2WxGR4Cb8HD2Bzw9PZU/f34VKVJEp06dknSvR/nx48fTPRwAAAAAAAAAAK7kdJHcz89PR48e1X/+8x/FxcUpJiZGd+7cUUJCgivyAQAAAAAAAADgMk63W2nXrp06dOigDRs2qGnTpnrttdfk6ekpf39/V+QDAAAAAAAAAMBlnC6SBwUFqWTJknrqqaf0zjvvaNGiRYqLi1OXLl1ckQ8AAAAAAAAAAJdxukguSeXLl7d/HRISkuJ4pUqVdPjw4X+eCgAAAAAAAACADPCPiuR/h51hAQAAAAAAALgzm9VqdAS4Cac37kwLi8XiiqcFAAAAAAAAACBduaRIDgAAAAAAAADAo4AiOQAAAAAAAADAtCiSAwAAAAAAAABMiyI5AAAAAAAAAMC0PF3xpDabzRVPCwAAAAAAAADpwmqlhol7/lGRPDExUTExMbJarQ7jvr6+kqQdO3b8+2QAAAAAAAAAALiY00XyTZs2aeTIkbp9+7Z9zGazyWKx6MSJE5Kk3Llzp19CAAAAAAAAAABcxOki+fTp09WuXTu1bNlSnp4u6dYCAAAAAAAAAECGcLrKfeXKFfXs2ZMCOQAAAAAAAADgkefh7A+UKVNGZ86ccUUWAAAAAAAAAAAylNPTwStVqqROnTqpcePGeuqppxyO9ezZM92CAQAAAAAAAICr2Gw2oyPATThdJP/hhx/0zDPP6OzZszp79qx93GKxpGswAAAAAAAAAABczeki+ZIlS1yRAwAAAAAAAACADPePdt/cvn27VqxYocuXLytv3rwKCgpSs2bN0jsbAAAAAAAAAAAu5fTGnaGhoRo0aJBKliypDh066LnnntOoUaO0cuVKV+QDAAAAAAAAAMBlnJ5JPn/+fM2YMUPVqlWzj9WuXVujR49WcHBwuoYDAAAAAAAAAMCVnC6SR0ZGKiAgwGGsatWqunr1arqFAgAAAAAAAABXslltRkeAm3C63UqBAgUUHh7uMBYeHi5fX990CwUAAAAAAAAAQEZweib5a6+9prfeektt27ZVoUKFFBERoRUrVmjw4MGuyAcAAAAAAAAAgMs4XSQPDg7WE088odWrV2v79u3y8/PT2LFj1bhxY1fkAwAAAAAAAADAZZwukktSq1at1KpVq/TOAgAAAAAAAABAhkpzkXzUqFEaNWrUX7ZVGT9+fLqEAgAAAAAAAAAgI6S5SG6zsdsrAAAAAAAAgMeDzUq9E/ekuUj+3nvvSZJeeeUVPf/88ymOf/PNN+mXCgAAAAAAAACADODh7A907tw5xVhsbKz69OmTLoEAAAAAAAAAAMgoaZpJfuHCBQUGBio5OVk2m02lS5dO8ZhKlSqlezgAAAAAAAAAAFwpTUXywoULa+XKlbp165ZCQkI0f/58h+Pe3t4qWbKkSwICAAAAAAAAAOAqae5Jfn/2eFhYmAoVKuSyQAAAAAAAAAAAZJQ0F8nve/LJJzVt2jRFRUXJarVKkpKSknT69GmtX78+3QMCAAAAAAAAQHqz2qxGR4CbcLpIPnjwYJ0/f165c+dWXFycfHx8tGfPHrVv394V+QAAAAAAAAAAcBmni+Th4eHauHGjoqKiNG/ePM2YMUPr1q1TWFiYK/IBAAAAAAAAAOAyHs7+gKenp/Lnz68iRYro1KlTkqTAwEAdP3483cMBAAAAAAAAAOBKThfJ/fz8dPToUf3nP/9RXFycYmJidOfOHSUkJLgiHwAAAAAAAAAALuN0u5V27dqpQ4cO2rBhg5o2barXXntNnp6e8vf3d0U+AAAAAAAAAABcxukieVBQkEqWLKmnnnpK77zzjhYtWqS4uDh16dLFFfkAAAAAAAAAIN3ZrDajI8BNOF0kX7hwoVq0aCEvLy9JUkhISLqHAgAAAAAAAAAgIzjdk3zz5s2qXbu2evXqpW+++UY2G3dcAAAAAAAAAACPJqdnkn/55Zc6e/asVq9erWHDhsnDw0MtW7ZU69atVbBgQVdkBAAAAAAAAADAJZyeSS5JxYsX1zvvvKOvv/5aw4cP17p169SwYcP0zgYAAAAAAAAAgEs5PZP8vv3792vdunXasmWLihUrpjfffDM9cwEAAAAAAAAA4HJOF8knT56s0NBQxcbGqlmzZvriiy9UqlQpV2QDAAAAAAAAAJewWdlrEfc4XSQ/dOiQ+vTpo8aNG8vb29sVmQAAAAAAAAAAyBBOF8mXLl0qq9Wqo0eP6tKlS8qXL58qVaokD49/1N4cAAAAAAAAAADDOF0kv379urp166aTJ08qZ86cunHjhooUKaKFCxeqQIECrsgIAAAAAAAAAIBLOD39e8KECSpSpIgOHjyovXv36sCBAypdurTGjx/vinwAAAAAAAAAALiM0zPJ9+/fr82bNytbtmySpOzZs2vUqFF66aWX0j0cAAAAAAAAAACu5HSR3Gq1ymKxOIxZLBZlypQp3UIBAAAAAAAAgCvZbDajI8BNON1uJSAgQKNGjdKdO3ckSXFxcRo1apSqVq2a7uEAAAAAAAAAAHAlp2eSv/POO+rcubOqVq2qnDlz6vfff1eJEiU0d+5cV+QDAAAAAAAAAMBlnC6S+/r6asOGDQoPD1dMTIz8/PxUrlw5PfHEE67IBwAAAAAAAACAyzhdJJfu9SUvWrSoChcuLEmKioqSdK+ADgAAAAAAAADAo8LpIvmmTZs0YsQIxcbG2sdsNpssFotOnDiRruEAAAAAAAAAAHAlp4vk06dPV/v27dWyZUt5ev6jiegAAAAAAAAAYCir1Wp0BLgJp6vcV65cUc+ePSmQAwAAAAAAAAAeeR7O/kCZMmV05swZV2QBAAAAAAAAACBDOT0dvFKlSurUqZMaN26sp556yuFYz5490y0YAAAAAAAAAACu5nSR/IcfftAzzzyjs2fP6uzZs/Zxi8WSrsEAAAAAAAAAAHA1p4vkS5YscUUOAAAAAAAAAAAy3D/affPs2bNatmyZrl69qjFjxmjDhg169dVX0zsbAAAAAAAAALiEzWozOgLchNMbd+7du1fBwcG6ceOG9u3bp4SEBM2cOVPz5s1zRT4AAAAAAAAAAFzG6SL5pEmTNHnyZH388cd64okn5OPjo3nz5mnFihWuyAcAAAAAAAAAgMs4XSS/cOGCatWqJen/NussV66cbt68mb7JAAAAAAAAAABwMaeL5L6+vjp8+LDD2JEjR+Tj45NuoQAAAAAAAAAAyAgWm83mVIf6jRs3atSoUfrf//6nxYsXq0ePHlqyZIn69++vFi1auCgmAAAAAAAAAKSfpm8cNzrCIyds/nNGR3AJT2d/4NChQxoxYoTWr18vX19f7d+/X0OHDlWjRo3+cYjrR7/7xz/7OHqqbHVdPn3E6Bhuxa9kOX5PHvJU2eq6fXCD0THcSvaqgdqQ6VmjY7iVwKRTOnf2jNEx3EbR4iV04cwpo2O4lcIlntWZs+eMjuFWShQvqpifvzU6hlvJXf5FxR4INTqGW3kyoJkifjlhdAy38vQzpRV56mejY7gV32fL69ezZ42O4VaKFS+um4e3Gx3DreSoVF8Rb7YyOobbeHrOah07c8XoGG6lTAkfrukfUrR4CT77PSQwic85/4TNZjU6AtyE00Xy0NBQDR48WE2bNnVFHgAAAAAAAAAAMozTRfLWrVtrzJgxatmypfLmzWvfvFO6168cAAAAAAAAAIBHhdNF8kWLFkmSVqxYIUmyWCyy2WyyWCw6cYIlpwAAAAAAAACAR4fTRfIdO3a4IgcAAAAAAAAAABnO6SK5n5+fK3IAAAAAAAAAAJDhnC6SAwAAAAAAAMCjzma1GR0BbsLD6AAAAAAAAAAAABiFIjkAAAAAAAAAwLQokgMAAAAAAAAATIsiOQAAAAAAAADAtCiSAwAAAAAAAABMy9PoAAAAAAAAAACQ0WxWm9ER4CaYSQ4AAAAAAAAAMC2K5AAAAAAAAAAA03K6SL5p06ZUx1esWPGvwwAAAAAAAAAAkJHS1JM8Pj5eN27ckCQNGTJEFSpUkM32fz17bt++rQkTJqht27auSQkAAAAAAAAAgAukqUgeGxurwMBAJSQkyGazqV69evZjNptNFotF9evXd1lIAAAAAAAAAABcIU1F8rx582r79u2Kj49Xs2bNFBYW5nDc29tbTz31lEsCAgAAAAAAAEB6s9qsRkeAm0hTkVySAgMDtX//fjVo0EB+fn6uzAQAAAAAAAAAQIZIc5E8MTFR27dv19atW9WmTRuHnuT3+fv7p2s4AAAAAAAAAABcKc1F8rZt26pv375KTk7Wq6++muK4xWLRiRMn0jUcAAAAAAAAAACulOYi+bvvvqt3331XFStW1A8//ODKTAAAAAAAAAAAZAgPZ39g165drsgBAAAAAAAAAECGS/NM8vt69eoli8Xyt49bvHjxPwoEAAAAAAAAAK5ms6bccxHm5HSRvGLFivriiy/UunVrFS1aVFevXtWKFStUvXp1FStWzBUZAQAAAAAAAABwCaeL5AcOHNCsWbNUtWpV+1iDBg00evRoTZo0KV3DAQAAAAAAAADgSk73JD99+rQqV67sMFayZEmdP38+vTIBAAAAAAAAAJAhnC6SFy9eXIsWLXIYmz17tsqWLZtuoQAAAAAAAAAAyAhOt1sZPHiwunfvrqVLl6pAgQKKjIyUl5eXFi5c6Ip8AAAAAAAAAAC4jNNF8sqVK2vLli3atWuXoqOjVahQIdWpU0eZM2d2RT4AAAAAAAAASHc2q9XoCHATTrdbkaTk5GS1atVKr732mmJiYvT111+ncywAAAAAAAAAAFzP6ZnkK1eu1Lhx4/Tjjz9q4sSJ2rhxoywWi3799Vf16NHDFRkBAAAAAAAAAHAJp2eSL126VDNnzlRycrJWr16t6dOna9myZfryyy9dkQ8AAAAAAAAAAJdxeib5lStX9MILL+jw4cPy9PRUpUqVJEm3bt1K93AAAAAAAAAAALiS0zPJc+TIoQsXLmjLli2qWrWqJGn//v3KmzdvuocDAAAAAAAAAMCVnJ5J3rlzZzVr1kyStGTJEh06dEjdunXTyJEj0z0cAAAAAAAAALiCzWozOgLchNNF8nbt2unFF1+Up6enfHx8FBMTo88//1xly5a1P+bQoUOqXLlyugYFAAAAAAAAACC9OV0kl6RChQrZv86dO7dy587tcPyNN97Q4cOH/10yAAAAAAAAAABczOme5Glhs7FUAQAAAAAAAADg/lxSJLdYLK54WgAAAAAAAAAA0pVLiuQAAAAAAAAAADwK/lFPcgAAAAAAAAB4lNlsVqMjwE0wkxwAAAAAAAAAYFoUyQEAAAAAAAAApuWSInmRIkVc8bQAAAAAAAAAAKSrNPckX7t27d8+pkWLFpKk1atX/9M8AAAAAAAAAABkmDQXyadNm/aXxy0Wi71IDgAAAAAAAADAoyDNRfKdO3e6MgcAAAAAAAAAZBir1WZ0BLiJNBfJH3Tx4kVFRUXJZrv3i5SUlKTTp0+rU6dO6ZkNAAAAAAAAAACXcrpIPnfuXE2ePFkWi0WSZLPZZLFYVLp0aYrkAAAAAAAAAIBHitNF8i+++ELTpk2Tl5eXdu7cqf79+2vMmDHy8fFxRT4AAAAAAAAAAFzGw9kfuHXrlho2bKhSpUrp6NGjypkzp4YOHaqNGze6Ih8AAAAAAAAAAC7jdJE8X758io2NVf78+XXp0iXZbDblzp1bN2/edEU+AAAAAAAAAABcxul2K/7+/urdu7emTJmi5557TpMmTZK3t7fy58/vinwAAAAAAAAAkO5sVqvREeAmnJ5JPmjQIBUuXFh3797V0KFDtWPHDn355ZcaOnSoK/IBAAAAAAAAAOAyTs8kP3v2rEaOHClJyp07t70X+TfffJO+yQAAAAAAAAAAcDGnZ5J37tw5xVhsbKz69OmTLoEAAAAAAAAAAMgoaZpJfuHCBQUGBio5OVk2m02lS5dO8ZhKlSqlezgAAAAAAAAAAFwpTUXywoULa+XKlbp165ZCQkI0f/582Ww2WSwWSZK3t7dKlizp0qAAAAAAAAAAAKS3NPckvz97PCwsTIUKFZIkRUdHK0eOHPL0dLq1OQAAAAAAAAAYxma1GR0BbsLpnuQFChTQyrlD8QAAWyNJREFU+++/r4oVK6pmzZqqXLmyhg8frsTERFfkAwAAAAAAAADAZZwuks+aNUsHDhzQlClTFBYWpilTpuinn37SlClTXBAPAAAAAAAAAADXcbpPSmhoqBYtWmRvuVK8eHEVL15c7du318CBA9M9IAAAAAAAAAAAruL0TPKbN2/Kx8fHYczHx0cJCQnpFgoAAAAAAAAAgIzgdJH82Wef1fLlyx3Gli9frpIlS6ZbKAAAAAAAAAAAMoLT7Vb69u2rLl26aP369SpUqJAiIiJ05swZLViwwBX5AAAAAAAAACDd2WxWoyPATTg9k3zz5s1at26datasqWzZsqlBgwYKCwtLMbscAAAAAAAAAAB3l6aZ5FFRUfruu+8kSStXrlTZsmX19NNP6+mnn5Yk7dy5U9u2bXNdSgAAAAAAAAAAXCBNRfJcuXJp6dKliomJUWJioqZNm+Zw3NvbWz179nRJQAAAAAAAAAAAXCVNRXIvLy+tWrVKktS1a1f6jwMAAAAAAAAAHgtO9ySnQA4AAAAAAAAAeFykaSY5AAAAAAAAADxObFab0RHgJpyeSQ4AAAAAAAAAwOOCIjkAAAAAAAAAwLQokgMAAAAAAAAATIsiOQAAAAAAAADAtCiSAwAAAAAAAABMy9PoAAAAAAAAAACQ0WxWq9ER4CaYSQ4AAAAAAAAAMC2K5AAAAAAAAACADBcfH6+2bdtq9erVf/m4n376ScHBwapYsaLq1aunlStXOhxfs2aNGjRooAoVKqhVq1b64YcfnMpBkRwAAAAAAAAAkKF++eUXtW/fXj/++ONfPu7mzZsKCQlRixYtFB4ernHjxmn8+PH6+eefJUkHDhzQmDFjNGHCBIWHh6t58+bq3r274uPj05yFIjkAAAAAAAAAIMN89913eu2119SyZUv5+vr+5WO3bt2qnDlzqn379vL09FT16tXVrFkzff7555KklStXKjAwUJUrV1amTJnUqVMn5cqVSxs3bkxzHjbuBAAAAAAAAAD8rcTERCUmJjqMeXl5ycvLy2EsISFBUVFRqT5H3rx5VapUKe3atUve3t5atGjRX/6bv/zyi0qWLOkwVqJECa1atUqSdObMGbVu3TrF8ZMnT6bp/0lykyL5U2WrGx3B7fiVLGd0BLfD70lK2asGGh3B7QQmnTI6gtspWryE0RHcSuESzxodwe2UKF7U6AhuJ3f5F42O4HaeDGhmdAS38/QzpY2O4HZ8ny1vdAS3U6x4caMjuJ0cleobHcHtPD3nr/uwmk2ZEj5GR3A7XNOnxGc/pIc9obWNjvDImT59umbMmOEw1rNnT/Xq1cth7KefflLHjh1TfY6ZM2eqfv20Xw/ExcUpS5YsDmOZM2fWnTt30nQ8LdyiSA4AAAAAAAAAcG/dunVT586dHcYenkUuSQEBATp1Kn1uZmXJkkW3b992GEtISFC2bNnsxxMSElIcz5UrV5r/DYrkAAAAAAAAAIC/lVprFVcrWbKk9u7d6zB25swZPfPMM5KkZ555Rr/88kuK47Vq1Urzv8HGnQAAAAAAAAAAt9SgQQNdv35dn376qZKSkrR//36Fhoba+5AHBQUpNDRU+/fvV1JSkj799FNFR0erQYMGaf43KJIDAAAAAAAAANxGYGCg5syZI0nKlSuXFi5cqM2bNysgIEDDhg3TsGHDVK1aNUlS9erVNXLkSI0aNUpVq1bVhg0bNH/+fOXMmTPN/57FZrPZXPE/AgAAAAAAAACAu2MmOQAAAAAAAADAtCiSAwAAAAAAAABMiyI5AAAAAAAAAMC0KJIDAAAAAAAAAEyLIjkAAAAAAAAAwLQokgMAAACPuNjYWKMjAAAAAI8s0xfJjx8/rq1btyoxMVHR0dFGx3ErZ8+eVVRUlNEx3EpsbKwSExONjmGo8PDwVP/78ccfFRERYXQ8Q3Tv3j3V8VdffTWDk7iPo0ePSpJu3bqliRMnasGCBbp7967BqYzD7wjwz8XExOjTTz/VuHHjFBsbq127dhkdyVBVq1ZNdbxOnToZG8SNcI79P2vXrv3b/wD8vZs3b+ro0aOyWq2m//wnSYmJidq2bZs+/fRTxcfH6+TJk0ZHMsymTZtSHV+xYkUGJwGQ3jyNDmCU6OhovfXWWzp69KgyZcqkVatWKSgoSAsXLlTFihWNjmeIw4cPa/To0Vq7dq2WL1+uUaNGydPTU1OmTFH9+vWNjmeIs2fPatKkSZo5c6a2bdumfv36KVu2bJo1a5YqV65sdDxDDBo0SJGRkfLw8FCuXLl048YNWa1WeXh4KDk5WcWKFdPcuXNVqFAho6O61KVLl+wfNPfs2aMZM2Y4HI+NjdWpU6cMSGa82bNn65NPPtGhQ4c0duxYHT16VB4eHrp69aqGDh1qdLwMw+/IX4uKitLs2bN1/vx5Wa1Wh2OLFy82KJXxvvzySy1ZskTXrl3TmjVrNGHCBI0fP17ZsmUzOpohjh07ps6dO6tYsWI6deqUOnbsqD59+mjkyJFq3bq10fEyzIULFzRixAjZbDbFxsaqY8eODsdjY2P1n//8x6B0xuAcm7pp06ZJkqxWq6KiopQzZ075+vrq2rVrun79up599lm1aNHC2JAZbMqUKerbt6+ke4W+Dz74QBs3blTmzJn1yiuvqFu3bsYGNMDKlSsVHBxs/37hwoUOr0nTpk0NTGesuLg4jRgxQhs2bFDmzJm1evVqde7cWYsWLVKxYsWMjmeIiIgIdenSRUlJSbp165Zq166t1q1ba8aMGapbt67R8TJEfHy8bty4IUkaMmSIKlSoIJvNZj9++/ZtTZgwQW3btjUqIoB0YNoi+fvvv6+SJUtq0aJFqlWrlooXL66QkBB9+OGHWrZsmdHxDPHxxx+rTp06stlsmjt3riZMmKCcOXPq448/Nm2R/P3331e+fPlks9k0adIk9e7dW9myZdOECRO0cuVKo+MZonnz5oqMjNSIESOULVs23blzR+PHj5evr686duyoqVOnaty4cZozZ47RUV3K19dXv/zyi2JiYpScnKwDBw44HPf29tbIkSMNSmessLAwff7550pMTNSWLVu0YsUK5c2bV82bNzdVkZzfkb82ePBgXb9+XXXr1lWmTJmMjuMWPv30Uy1btkxdu3bVhx9+qGzZsunatWsaP368xo4da3Q8Q4wfP16DBg1Sq1at5O/vr0KFCmnmzJkaP368qYrkhQsXVsOGDXXjxg0dPnw4xWxyLy8v1atXz6B0xuAcm7qdO3dKkj744AN5eXmpT58+8vC4t3h41qxZunTpkpHxDLF48WJ7kXzq1Kk6ePCgRo4cqT/++EOzZs1ScnKyevToYWzIDDZ+/Hh7kXz+/PlasmSJXnvtNf3xxx/2VTuvvPKKwSmN8eGHH+rOnTvatGmT2rRpo0KFCqlu3boaN26cFixYYHQ8Q4wbN06tWrVS9+7dVbVqVRUtWlRjx47VtGnTTFMkj42NVWBgoBISEmSz2Rzec202mywWi2lrJsBjxWZSNWrUsN25c8dms9ls/v7+NpvNZktMTLRVqVLFyFiGqlatms1qtdrOnDljK1u2rO2PP/6w2Ww2W4UKFQxOZpwXXnjBlpiYaLt48aLtueees92+fdtmtVptFStWNDqaYerUqWP/27nvzp07ttq1a9tsNpstISHB/jdlFkOHDjU6glu5fx7dt2+f7YUXXrCPm/nvht+RlKpUqWKLjo42OoZbadiwoe3MmTM2m+3/rk2ioqJsNWrUMDKWofz9/W137961f31fpUqVjIpkuDVr1hgdwe1wjk3J39/flpiY6DCWlJRkyr+dBz/LvPTSS7azZ8/avz99+rT9GtZMHnxNGjVqZPvpp5/s3x8+fNjWoEEDI2K5hRdffNH2+++/22y2/3vfiY+PN93nmwdVrVrVXhu4/zokJyfbKleubGSsDHf9+nXbxYsXbRUqVLBdunTJ4b/ffvvN6HgA0oFpZ5JnypRJCQkJypIli32ZTFxcnGmXM0vSE088obi4OH3zzTeqUKGCvLy8dPnyZT355JNGRzPM3bt3ZbPZtHfvXpUpU0ZPPvmkYmJi5O3tbXQ0w9y5c0e3bt1SlixZ7GO3b9922DDMYrEYEc0wY8eO1dWrVxUaGqrLly8rX758atq0qZ5++mmjoxkif/78Cg8P19q1a1W9enVJ92aXP+4teP7K2LFjlZiYqJiYmBStRXx9fQ1KZazs2bPLy8vL6Bhu5caNGypatKgk2a9N8uTJY+p+/rlz59avv/6qZ555xj7266+/6qmnnjIwlbFatGihn3/+WefOnXNY6n3/mJlERkZKknr06GH/+mFmPcd6e3vr7NmzKlWqlH3s6NGjpmvLIzlel/7xxx8O1yMlSpTQzZs3jYhlqAdfk9u3b6tMmTL27ytWrKjffvvNiFhuwWq12q9P7p9jHxwzo+zZs+v69esO59PffvtNOXLkMDBVxgsMDNT+/fvVoEED+fn5GR0HgAuYtkher149vfPOOxo2bJgsFouio6M1duxY1a5d2+hohqlfv75effVVXb58WcOGDdOZM2f01ltvmbonXY0aNdSrVy+dPHlSXbt21cWLFzVw4EBTb47VuHFjvfXWW+rfv798fX0VGRmpadOmqWHDhoqNjdXYsWNVpUoVo2NmqCNHjqhTp04qVqyYChYsqCNHjmjevHlasGCBKXvX9+rVS6+//royZ86sZcuW6bvvvtPgwYM1ffp0o6MZZvPmzRo+fLjDzSTb/1+aeeLECQOTGadHjx4aPHiw3njjjRQFT7MWtUqVKqUVK1bof//7n72AsXHjRocCsdm0a9dO3bp105tvvqm7d+9q48aNmj17tql7fk6aNEnz589X3rx55en5f5fyFovFdEXyevXq2f9WHrxhYLFYTH+Obd++vbp27arg4GD5+vrq4sWL+vLLL9W7d2+jo2W4xMREzZo1S2XKlNHzzz+vb7/91t4qYePGjSpcuLDBCTNeUlKS1q1bp7Jly6py5cr64Ycf7Nfv+/fvV/78+Q1OaJxq1app9OjRGjFihP38MmXKlD/dNNkMmjVrpp49e2rAgAGyWq36+eefNXHiRAUGBhodLUMlJiZq+/bt2rp1q9q0aZPiRrUk+fv7G5AMQHqx2FL7yzaBuLg4DR48WFu3bpV072K6du3amjhxorJnz25wOmMkJydr7dq1ypIli15++WWdP39eu3btUseOHfXEE08YHc8QcXFxWrhwoby9vRUSEqKTJ09q1apV6t+/v7JmzWp0PEPc71UYGhqq+Ph4Zc6cWUFBQRowYICOHTumhQsXatSoUcqXL5/RUTNMx44dVb9+fYeN1D777DNt3rzZlHscfP/99ypdurQ8PT3l7e2t2NhY3blzx1S/Ew97+eWX1bBhQ7Vs2dKhqCXJtDNRHpzdKFHUku5tUtmpUycVL15cR48eVfXq1fXjjz/qk08+0fPPP290PMN8/vnn+uKLL3T58mUVKFBAbdq0UadOnex9ls2mdu3aGj16tKkndtx3+fLlv32MWc+xkrRq1SqtX79eUVFR8vHxUXBwsOmKWpI0b948HT16VEePHlVkZKT8/f21ZMkSzZs3T9OnT9fkyZNN10t45MiROnr0qE6fPq27d+8qICBAn376qVasWKEJEyZo8ODBatOmjdExDREdHa3u3bvr+PHjSk5OVubMmVWkSBHNmTPHtDcPkpKSNGnSJC1fvlzx8fHy9vZWUFCQ3n33XVPNsP/ggw+0ZMkSJScnp1ogN/M1LPC4MG2R/L6YmBhdunRJ+fPnN+2bHvBP3L17V7///rvy5MljuvYqDwsICNDevXsdip9JSUmqVq2aDh06ZGAyYwQEBOjrr792aMljdhUrVlR4eHiKArmZ/VVxy8xFraioKK1fv16RkZEqUKCAmjVrZtqZ9ZJ0/fp1U7dWSY2/v78OHjxo+vde4J+IiYnRb7/9pmeffVbh4eHKkiWLypYta3QswyQmJurkyZOKjY1VjRo1tH37dkky3U2Dh9lsNh05csR+c7Z8+fKmnTT2sJiYGOXKlcvU70EVK1bUDz/8YHQMAC5g2k/rkZGR6t+/v4YPH67y5cvrgw8+0I8//qhp06Ypb968RsczxO7duzV27Fhdvnw5xZ1Rs94RPXLkiD7++GNdvnw5RR/hHTt2GJTKePRCdZQlSxZduXLFocfllStXTNen775ChQrpyJEjpl6W+rAyZcrozJkzKWZPm5mfn5/i4uK0e/duey//unXrmrJf7oPy58+vN954w+gYbqNOnTqqVauWgoODVbt2bdPOHn9QnTp1FBoaqubNmxsdxXCVKlXS4cOHVapUqT8t2Jj1GlaSvvzySy1dulRRUVFas2aNJkyYoPHjx5t6D6bcuXMrd+7ckmiLIEleXl4qX768/XuzF8clKTw83P71U089pbt37+rw4cPKlCmTcufObco9h2bMmJHquJeXl3LlyqUaNWqYaoLDrl27jI4AwEVMO5O8W7duypMnj4YMGWLfjHHy5Mm6efOmpk2bZnQ8Q7z00ktq2LBhqh9CzVrsatq0qZ555hnVrFkzxWvSsmVLg1IZ6696oZr1xsGHH36offv2acCAASpYsKAiIiI0efJk1axZU2+//bbR8TJc165dtX//fhUsWFD58uVzKFwsXrzYwGTGmTRpkr788ks1btw4xazYnj17GpTKWBcuXFCnTp2UlJRk39/AarXqs88+M10P7gf7Kv8Zs55fz549qzVr1mj9+vWy2Wxq2bKlgoKCTFmkuK93797avn27ihQpkuJ8YrZz7Pfff68qVarowIEDf/o3ZNZr2E8//VTLli1T165d9eGHH2rHjh0KCQnRM888o7FjxxodD3BbL730kiIjI+Xh4aFcuXLpxo0bslqt8vDwUHJysooVK6a5c+eaakP63r17a+vWrSpXrpwKFSqkyMhI/fjjjypXrpySk5P166+/avbs2apevbrRUTNEhw4d0jST3mzvycDjwLRF8qpVq2rv3r3KlCmTfeyPP/5QrVq1dODAAQOTGady5co6ePAgS8keULFiRR08eNDh98Ts6tSpo/fee49eqA/4448/NHLkSG3YsEFJSUny9vZW69atNXDgQGXOnNnoeBnuz2abSOYtCHfo0CHVcYvFYtoL6DfffFNFixbVO++8Iw8PD1mtVk2cOFGnT5/WggULjI6XodasWSPpXk/yHTt2qHPnznr66ad15coVLVq0SC+99JLeffddg1May2q1as+ePVq3bp2+/vprlSlTxrR/O5xjkRaNGjXSrFmzVLx4cVWtWlUHDx7UtWvX1LJlS+3du9foeBlq7dq1f/sYs62GfHC29J8x60z7qVOnKjIyUiNGjFC2bNl0584djR8/Xr6+vurYsaOmTp2qiIgIzZkzx+ioGaZ///6qUqWK2rVrZx/76quvdODAAX344YfauHGjFi1apJUrVxqYMuNMmjRJX3zxhVq3bq2iRYvq6tWrWrFihapXr65ixYrZH8d7MvDoMW2RvEaNGlqzZo1DH/Jr164pODhYu3fvNjCZcd5++229/PLL9t3eIYWEhKhnz54OyxDNjl6ofy4xMVE3b97UU089xevz/0VHRytHjhz04kYK1atX1+7dux02fEpISFDNmjX1/fffG5jMOM2bN9fkyZNVvHhx+9iFCxcUEhKiLVu2GJjMPRw8eFChoaH2WdRm3BgZqfur1RhmXYVRtWpV7d+/Xx4eHvL391d4eLiSk5NVo0YN000IeuWVV/TTTz/Jx8cn1eNmXA3ZsGFDXbx4MdXNByVzb0BYt25dbdy40WFvnfj4eDVp0kRff/21/vjjD7344os6ePCggSkzVrVq1bR3716HyXQPnk9sNpuqVKlimr2Y2rZtqwEDBjisVDp27JhGjx6tFStWGJgMwL9l2qpF48aN1bt3b/Xt21c+Pj66cuWKpk2bpkaNGhkdzTAdO3ZUu3btVKJEiRQ9Yc06W6tv377q2LGjAgICUrwm48ePNyiVseiF+n+YmZS6pKQkTZw4UStXrlRCQoK8vLzUvHlzDR8+3KEgajbbt2/XihUrdPnyZeXNm1dBQUFq1qyZ0bEM88QTTyg2NtbeG1aSYmNjTb3h68WLF1O0EcmfP7+uXbtmUCLjnT9/XmvXrtX69esVHx+v5s2ba8mSJSpRooTR0Qz15ZdfasmSJbp27Rq9piX16tXL4fuYmBh99dVXCg4ONiiR8UqVKqUVK1bof//7n/0GwsaNG03XzkqSFi1apFdffVWtWrVS+/btjY7jFpYvX65XXnlF/fr1U5MmTYyO41bu3LmjW7duOVyP3L59W7GxsfbvzTYZJmvWrDp69Kief/55+9jx48ft1/XR0dGmun47ffq0Kleu7DBWsmRJnT9/3phAANKNaYvk77zzjt577z1169ZNiYmJ8vLyUosWLdS3b1+joxlmxIgRqlixoqpUqULLlf9v3LhxypMnj2k/dKbmjz/+0KBBgzRnzhzT90L9u/0LLBaLKYvks2bN0oEDBzRlyhSHHu1TpkzRwIEDjY5niNDQUL333ntq27at6tWrp4iICI0aNUoJCQmmLeLUrVtXAwYM0PDhw1WwYEFdvHhRY8eOVd26dY2OZpiyZcvqgw8+0MCBA+Xl5aX4+HiNHTs2xQcxM2nSpImqVaumAQMGqEGDBqa+0Xbfw72ms2XLpqioKI0fP960vaZT2yemQYMG6t+/vzp37mxAIuO9++676tSpk9atW6c7d+7ojTfe0I8//qhPPvnE6GgZLkuWLJowYYI6d+6s4OBgziO6t4Hp+PHj9c4776hRo0ZsivyAxo0b66233lL//v3te6ZMmzZNDRs2VGxsrMaOHasqVaoYHTNDderUSSEhIXrllVfk5+eny5cva+XKleratasiIyP15ptvKjAw0OiYGaZ48eJatGiRXn/9dfvY7NmzVbZsWQNTAUgPpm23cl9SUpJu3rypPHnymO6O8MPov51ShQoVtHfvXorkD6AX6j8TFhampk2bGh0jQ9SvX1+LFi1y2NAoIiJC7du317fffmtgMuM0b95cQ4YMUbVq1exj+/fv1+jRo7Vx40YDkxnn999/V69evRQeHm5//61Vq5YmTpyYYuWOWfz666/q1q2brly5Yt8srGjRopo3b96ftgl43F28eNFUm6OlBb2m0yY5OVkBAQGmbd8k3WsluX79el2+fFkFChRQs2bN5Ovra3Qsw+zfv1+lS5dWjhw5jI7iNtauXasXX3xRefLkMTqK2/jjjz80btw4hYaGKj4+XpkzZ1ZQUJAGDBigY8eOaeHChRo1apTy5ctndNQMtWHDBn311Ve6cuWKfH191bZtWzVs2FAnT57U/v371aFDB9NMtDt06JC6d++urFmzqkCBAoqMjJSXl5cWLlxo6o3FgceB6Yrk9wtVf9UmwYwzPyWpXbt2Gjt2rMNmE2b33//+V/PnzzfdRRDSX6VKlXT48GGjY2QIf39/fffddw59yJOSklSjRo00bRT1OKpSpYpDMVi6txFhlSpVTPN78WcuXryo6Oho+fn5KW/evEbHMdzdu3d1+PBhXbt2TQUKFFClSpVMP8Pvs88+S9GqqFu3bqad3ECv6ZQefm9JSkrS5s2bdfz4ca1atcqgVMYaO3ashg0blmJ84MCB+vDDDw1IBDxa7t69q99//53JdEjVjRs3tGvXLkVHR6tQoUKqU6eOMmfObHQsAP+S6dqtzJkzR02bNv3TNglmbY8g3dtErWPHjmrcuLFy5szpcMysM4RbtmypLl26qHXr1sqZM6fDBZLZfk9GjRqlUaNGafDgwX/6GLP2aU8LM92PfPbZZ7V8+XK9+uqr9rHly5erZMmSBqYyVoECBRQeHu6wwU94eLgpZ/QdOnRIlStXTlHUOn/+vL2Xo7+/vwHJ3ENSUpKefvppFSxYUNK9mwinT59WgwYNDE5mjM8++0yLFi1SSEiIvX3TJ598Ig8PD4WEhBgdzxD0mk6pQ4cODt97eHioePHiGjlypEGJjBEVFaXvvvtOkrRy5coUS/9v376tbdu2GRHNLfzZjfpMmTIpd+7cppwB2r17d82ePTvF+KuvvqqlS5cakMg97N+/X1FRUfbr96SkJJ06dSrVG09mcOPGDS1ZskRRUVGyWq2S7r0mp0+f1vr16w1OZ4zk5GS1atVKiYmJWrVqlb7++ms1btzY6FgA/iXTFcnDwsIkSR9++KEqVqxomiVBaXHw4EEVLVpUp06dchg3853z+z22lyxZ4jBuxpsp9y8SbTabqX8n/ikzvWZ9+/ZVly5dtH79ehUqVEgRERE6c+aMFixYYHQ0w7z22mt666231LZtW/trsmLFir+86fS4euONN3T48OEURa37LBaLTpw4kcGp3MNXX32lMWPG6I8//nAYz5Mnj2mL5MuXL9esWbP03HPP2ccqVaqkXr16mbZITq/plE6ePGl0BLeQK1cuLV26VDExMUpMTEwxKcjb29u0E18kadCgQYqMjJSHh4e9pZXVapWHh4eSk5NVrFgxzZ0797Fv8XTp0iX7quo9e/akaKUYGxub4vOgmYwdO1bLly+3t9tMTk5WXFycXnzxRYOTGWfw4ME6f/68cufOrdjYWPn6+mrPnj2m3Qh35cqVGjdunH788UdNnDhRGzdulMVi0a+//qoePXoYHQ/Av2C6div3BQQE6OuvvzbVLsxAerh+/XqKDTvx98zUbkW611s5LCxM169fV8GCBRUYGCg/Pz+jYxlq9erVWr16ta5fvy4/Pz8FBwcz4wQOGjRooPbt2ytbtmwKDw/Xa6+9pokTJ+qFF17QG2+8YXQ8Q9xfdfBgyxmr1Sp/f38dOnTIwGTGioqK0vr16xUZGUmv6f8vNjZWu3fvVlRUlAoWLKhatWqZeul7165dTX1zOjVTp05VZGSkRowYoWzZsunOnTsaP368fH191bFjR02dOlURERGaM2eO0VFdymq1ql+/foqJibGv7nqQt7e3WrRoYZq9dB72wgsvaObMmYqPj9f69ev1/vvv64MPPtCdO3c0evRoo+MZonLlytq4caOioqI0b948zZgxQ+vWrVNYWJjmz59vdLwM99///lcDBw5UtWrVVLVqVc2fP1958+ZVhw4d9PXXXxsdD8C/YLqZ5PcVKlRIR44ccVj6Dmn79u0p+n42a9bM6FiGOnr0qFatWmV/TVq1amW6Hc0fVKdOHdWuXVtBQUGqXbu26XvlInVFihRRnTp1dOnSJeXLl8+0mw7eN2bMGPXr10+tWrUyOorbaNGiRar7g9SrV087d+7M+EBu4LffftNrr72my5cv66uvvlKZMmX0/vvvq1OnTqYtkhcuXFjbtm1To0aN7GPbtm1T4cKFDUxlvPz585v2dyI1R44c0euvv67MmTOrQIECunz5sry8vPTJJ5+Ydq+d1Arkd+/e1enTpx1WZpjJ2rVrtXHjRvskqaxZs2rIkCFq0qSJunfvrgEDBphitrCHh4emTp0qSRo2bJjGjh1rcCL3Eh8frwoVKui3337TsWPHZLFY1LNnT7388stGRzOMp6en8ufPryxZsthXGQQGBpp2f4MrV67ohRde0OHDh+Xp6alKlSpJkm7dumVwMgD/lmmL5Dly5FDnzp1VsGBB5cuXz6EVwv0WG2YTGhqq9957T23btlW9evUUERGhUaNGKSEhQcHBwUbHM8SePXvUo0cP1atXT88++6wiIiLUuXNnTZ48WfXr1zc6niHWrVunNWvWaOTIkbLZbGrZsqWCgoJM2ccRqfvtt9/05ptv6tSpU8qRI4du3LihIkWKaOHChSpQoIDR8QwRGhqqIUOGGB3DcBEREfbep2fOnEnRbiY2NlYJCQlGRHMLefLkUVJSknx8fHTu3DlJkq+vr6Kjow1OZpwePXqob9++2rx5s71V0Y4dO/50bxkz2L17t8aOHavLly+n2O/CrK2Kxo8fr86dO+vNN9+UdK813LRp0zR69Gh9+umnxoYzyO7duzVq1CiHvsrSvWLXkSNHDExmnDt37ujWrVsOK4lv376t2NhY+/dmao8n3WstcvXqVYWGhury5cvKly+fmjZtaurr+gIFCig6Olp58+bV1atXlZSUpMyZMzv8npiNn5+fjh49qrJlyyouLk4xMTHy9PQ07TVbjhw5dOHCBW3ZssU+6XL//v1sQA88BkxbJK9YsaIqVqyoxMRE3bx5U7ly5ZKnp2lfDknS/PnzNWPGDFWrVs0+Vrt2bY0ePdq0RfJp06bpgw8+UJMmTexjmzZt0qxZs0xbJC9evLjefvtt9e/fX3v27NG6devUsmVLlSlTxrQ3mNLCTJ2tPvjgAxUpUkSLFy9WtmzZdPv2bY0aNUrjx4+3z1wym9atW+u9995Ty5YtU9yYNVOLhKefftreBzY1uXPn1uTJkzM4lfsoX768RowYoeHDh6tIkSJatmyZMmfOnGIzbTOpX7++PvnkE61Zs0bHjh2Tn5+fPv/8c5UvX97oaIYZPXq0GjZsyGquB5w5c8Zh/xiLxaIePXqoevXqBqYy1sSJE9WwYUP95z//0alTp9S0aVPNnDlTQUFBRkczTOPGjfXWW2+pf//+8vX1VWRkpKZNm6aGDRsqNjZWY8eONd1q0SNHjqhTp04qVqyYChYsqCNHjmjevHlasGBBijYsZlG7dm116tRJn332mfz9/TVkyBB5e3urSJEiRkczTLt27dShQwdt2LBBTZs21WuvvSZPT0/TbrTeuXNn+2r7JUuW6NChQ+rWrZvpNosGHkem7UkeGxur0aNHa/PmzUpMTFSWLFnUokULDR48WF5eXkbHM0SVKlUUHh7uULyxWq2qUqWKqXopP8jf318HDhxI0QvVzK/Jgw4ePKjQ0FBt377dXtAxo59++knPP/98ivFvvvlGtWrVkiT17NkzxcZIj6uaNWtq8+bNevLJJ+1jt2/f1ksvvaSDBw8amMw4pUqVsn99/xx7fxNcs878nDVrFpsbPeTatWv2pe8RERF68803lZCQoPHjx5u+9Zkk3bhxQ7ly5TI6huEqV66sgwcPsvn8Azp06KC+ffs6FPV+/vlnjRw5UmvWrDEwmXGef/55HTp0SJcuXdLw4cO1ZMkSnTlzRv369VNoaKjR8Qzxxx9/aNy4cQoNDVV8fLwyZ86soKAgDRgwQMeOHdPChQs1atQo5cuXz+ioGaZjx46qX7++OnbsaB/77LPPtHnzZtNe1yclJemzzz5T27ZtdefOHQ0bNky3b9/WiBEjTNuqSLp3Ti1VqpQsFosWLVqkuLg4denSRTly5DA6miEuXrwoT09P+fj4KCYmRpGRkSpbtqz9eGr9/gG4P9MWyd99912dP39evXv3lo+Pjy5evKjp06erUqVKpl0S37RpU40YMcKhT/uBAwc0ZswYhYWFGZjMOA0aNND06dMdClzHjx9Xv379tGXLFgOTGef8+fNau3at1q9fr/j4eDVv3lzBwcEqUaKE0dEMk9qmnLGxsXrxxRf1ww8/GJTKODVq1NC2bduULVs2+1hsbKwaNWqkvXv3Gpgs4+3evVu1a9fW5cuX//QxZtvQ9P6HhvDw8D99jFlnJm3YsEH169eXt7e3pHv9g5OSkky9yXhsbKwmTJig0NBQ+6SGV155RX379jXtpIa3335bL7/8surVq2d0FMPdv/kcERGhnTt3KigoSAULFtS1a9e0atUqNWzYUKNGjTI2pEHq1q2rHTt26O7du6pTp4727dsn6d759a/Ov2Zw9+5d/f7778qTJ4/p2qs8LCAgQHv37nVYUZ2UlKRq1aqZenPkvxMSEqJ58+YZHcOtpPZ5yMx4PYBHk2n7i+zcuVObN29Wnjx5JEnFihVTqVKl9N///te0RfLXXntNb731ltq2bWvv+7lixYoUPWPNJDg4WN27d1e3bt1UsGBBRUREaP78+WrXrp3R0QzTpEkTVatWTQMGDFCDBg1MW6S4cOGCAgMDlZycLJvNptKlS6d4zP1NXMwmICBAo0aN0nvvvaesWbMqLi5Oo0aNMuVGyW+//bbCw8PVuXNnbd261eg4buGNN97Q4cOH1aFDh1SPm3l2/XvvvaeGDRvav/f09DR9K7gPPvhAv/zyi2bNmmWf1DB16lRNnjxZ7777rtHxDNGxY0e1a9dOJUqU0H/+8x+HY2Zre3bgwAH716VLl9axY8d07NgxSffaw/36669GRTPcs88+q6lTp+qtt95Snjx5tHv3bmXOnNl+E86sfv75Z507dy5FG7wWLVoYE8hgWbJk0ZUrV1SoUCH72JUrV0w7Ozitvv/+e6MjuB2Tzr38U7wewKPJtJ+8vL29UyxTzZYtm6lnawUHB+uJJ57Q6tWrtX37dvn5+Wns2LFq3Lix0dEM88Ybb+iPP/7Q3Llzdf36dfn5+enVV19V586djY5mmK1btzpcSJtV4cKFtXLlSt26dUshISGaP3++w3Fvb2+VLFnSoHTGeuedd9S5c2dVrVpVOXPm1O+//64SJUpo7ty5RkfLcJkyZdK4ceMUGRn5p+12evbsmcGpjHV/Vs3JkycNTuJ+ypUrp40bN+q///2v0VHcxq5du7R+/Xrlzp1b0r1JDc8++6yCgoJMWyQfMWKEKlasqCpVqpi+5cqDfcj/zrx58xQSEuLCNO7lnXfeUe/evdWmTRv17t1bPXr0kNVq1cCBA42OZphJkyZp/vz5yps3r8MNSIvFYtoi+csvv6xevXppwIAB9glBkydP1ssvv2x0NDxizL4q42G8HsCjybTtVpYuXaqtW7dqyJAhKly4sKKiovTxxx/r6aefVvv27e2PM9OGag+Kjo5Wjhw5TD+DDf/n/ofLv+qrbbZiX/369bV9+3YNHDhQH374odFx3Mrdu3cVHh6umJgY+fn5qVy5cqYs5mzatEkrV67U/v37U+1LaLFYTDfzMzIy8m8fY9b33tatW+vYsWPy8vLSU0895fABa8eOHQYmM06DBg20atUqh1mNt27dUuPGje3tI8ymYsWKOnjwoDJlymR0lEeK2Ze+X7t2TXFxcSpatKjRUQxTp04dvffee6pdu7bRUdzGH3/8oZEjR2rDhg1KSkqSt7e3WrdurYEDBypz5sxGx3NbZj+fpIbXxBGvB/BoMm0FdOzYsZLuLa2zWCwOy2EWLlxoyg3VEhMT9dFHH2nlypVKSEiQl5eXmjdvruHDh5u2pYbNZtPixYu1YsUKXb58WXnz5lVQUJC6detmurvD4eHhCgkJcVja/CCzvR7SvZtJJ06c0LZt23TlypVUl9WZqdj3cPGzcOHCKly4sCQpKipKkrleD+lee6ImTZqoZcuWTs14fJzVq1cvxfni/nvufWZ6733Qq6++muq4Gc+v988nLVq0UL9+/TRo0CD5+fnp2rVrmjhxojp16mRsQAOVLl1aFy9eVLFixYyO8kgx27ygZs2aKSgoSM2bN1euXLlMtRnln4mLi7NvqI57vL29NWHCBI0ePVo3b95McYMWAAAzMW2R3Kwzsv7K7NmzdeDAAU2ZMsVhud2UKVNMuzRz8eLFWrRokUJCQuyvySeffCIPDw9TLdmVZG8nQqHv/9SrV08tW7aUxWJJsYGaGW+0PVj8vF+MePB7s70eD7p586ZiY2P15JNPGh3FcPfff9etW6dDhw7pnXfe0dNPP60rV67oo48+UoUKFYwNaKDp06enWpzIlCmTvvzyS9WtW1ddu3aVh4eHAeky1v3zyf1zSfPmzR3OJ7t27TLd+/B91atXV8eOHdW4cWPlzJnT4ZjZVnQ5w2yFv//9739au3atPv74Y9WrV09BQUGqWbOm0bEMVadOHYWGhqp58+ZGRzHc2rVr//YxZm1BAwAwL9O2W0FK9evX16JFixz6TUdERKh9+/b69ttvDUxmnCZNmujjjz/Wc889Zx87fvy4evXqZbobLVxMpy4qKkqNGzdWWFhYqsf9/PwyOJFxqlSponXr1qlBgwbavn17qrP2zPR6PKhevXpasWKF8ubNa3QUt1G7dm2tX7/eoY3G7du31bhxY+3du9fAZMaZM2eOvvzyS73++usqVKiQLl++rIULF6pmzZoqVqyYvvjiCzVp0kS9evUyOqrLXb58+W8fY9bzyV9temu29k3OMOvS97Nnz2r16tUKCwvTE088oVatWpn2Zkrv3r21fft2FSlSRE899ZTDMbP97Tw8ueNhFovFdJ91nGHW88lf4TVxxOsBPJpMO5McKd28eVM+Pj4OYz4+PkpISDAokfGuXbumUqVKOYyVKlVKv//+uzGBDDRt2rS/PG7WTY/y58+vL774wrTFmgd5eXnp008/1RNPPKE1a9akWiQ36wfzgIAABQcHq1atWimWvJv1NYmLi5PVanUYu3PnjpKSkgxKZLwtW7Zo7ty5euaZZ+xjVatW1dtvv60RI0aoTp066tChgymK5H91Tr17965Onz5t2vMuK7rgjOLFi6tnz54qWbKkpk6dqgULFpj2fadkyZKm3VT9YTt37kzzY8PCwtS0aVMXpnn0MM8wJV4TR0WKFDE6AoB/gCI57J599lktX77coSfq8uXLTX0xWbhwYW3btk2NGjWyj23bts3eZ9lMuJj+c2mdfTR+/HgXJzHW8OHDtXLlSlmtVu3fvz/FcbMtdX/QpUuXVKhQIZ07d07nzp2zj5v5NXnppZfUo0cP9e7dWz4+Prp48aKmTp1qqnPHwy5cuJDiQ9X93xtJKliwoG7dumVAMuN8/fXXeu+99xQVFeXwAdzT01NHjhwxMJmxzp49q2XLlunq1asaM2aMNmzY8Kc97WFe3333ndauXatt27apSJEi6tq1q6lbjZj15sC/NWLECFO+N9+8eVMXL17Uc889p7t37zrs0fXBBx8YmMwYiYmJiomJSTHB4f5+Q2ZYeeDMyurVq1e7NgwAl6BIDru+ffuqS5cuWr9+vQoVKqSIiAidOXNGCxYsMDqaYXr06KG+fftq8+bN9tdkx44dfzur2uzMdjHt7e2tVatWqU6dOipatKiuXr2qLVu2yN/f31QbZd3fpDI4OJiZjg/h9UhpxIgReu+999StWzclJibK29tb//3vfzVo0CCjoxmmVKlSmjt3rkMhZ+HChSpRooQk6ZtvvjHd7OmPPvpIDRs21H/+8x+dOnVKTZs21cyZMxUUFGR0NMPs3btXvXr1Ut26dbVv3z4lJCRo5syZunPnjmn7tKeF2WY51q5dW3FxcXr55Ze1ePFilS1b1uhIhhk1apRGjRqlwYMH/+ljHveJDP+G2f524uLiNGLECG3YsEGZM2fW6tWr1blzZy1atMi+YXLDhg0NTpmxNm3apJEjR+r27dv2sYf3G8qdO7dR8TIMK6uBxx89yeHg3LlzCg0N1fXr11WwYEEFBgaa7gP5w/bv3681a9bo+vXr8vPzU1BQkMqXL290LLdWsWJF/fDDD0bHyDBdu3ZVmzZtHFYc7Nu3TwsWLDD1TSY4YuZn6hITE/X7778rV65cypQpk9FxDHX8+HG98cYb8vT0lI+Pj65cuSKr1arZs2crMTFRr732mqZOnfq3vWQfJ88//7wOHTqkS5cuafjw4VqyZInOnDmjfv36KTQ01Oh4hmjdurV69+6t2rVry9/fX+Hh4Tpy5Ij69u1ripl8qRkzZoz69ev3l5sjv//++xoyZEgGpjLWV199pZdffllZsmQxOorhRo4cqffee0+DBg360xVcFMn/nNl6K48cOVLXrl3TwIED1aZNG+3bt0/jxo3TxYsXTXtd//LLL6thw4Zq2bKlPD0d51mavVYA4PFCkRx2rVq10uLFi//yA4bZdO/eXRMnTuQ1cZLZLqYrVqyoQ4cOycPDwz6WnJys6tWr6+DBgwYmg7t4cObnrl27tGHDBrVq1UqdO3c29czPn3/+WefOnUsxS83Ms3BiY2O1a9cuXblyRX5+fqpXr56yZMmi33//XcnJycqTJ4/RETNU3bp1tWPHDt29e1d16tTRvn37JMleHDajKlWqKDw8XBaLRVWrVrW/z1SpUkXff/+9wemMUbVqVe3bty9F8cbsjh49qlWrVuny5cvKmzevWrVqpSpVqhgdyzDXr19PsWEn/p7Zrutr1aql0NBQ5ciRw36OTUhIUK1atUx7XV+xYkWFh4dzjn3AxYsXHVrBJSUl6fTp0+rUqZOxwQD8K5zlYHft2jWjI7idH374waH/HJAaPz8/bdq0SYGBgfax1atX25dkApMmTdLkyZPtMz99fHw0b9489e3b17RF8kmTJmn+/PnKmzevw4cusy9VffLJJ9WsWbMU4zlz5sz4MG7g2Wef1dSpU/XWW28pT5482r17tzJnzixvb2+joxnG19dXhw8fVuXKle1jR44cSbH5upm0bt1ao0ePVqtWrZQ3b16H2cL3++WazZ49e9SjRw/Vq1dPzz77rCIiItS5c2dNnjxZ9evXNzqeIerUqaPatWsrKChItWvXdpjcANxntVrtn//uF0AfHDOjMmXK6MyZMypVqpTRUdzC3LlzNXnyZPt7zf3WM6VLl6ZIDjziKJLD7qWXXlLHjh3VqFEj5cuXz+EDhlkLFk2bNlXv3r3VrFmzFB+6/P39DUwGd9KvXz/16dNHn3/+uX0DwnPnzmnRokVGR4ObuHDhgmrVqiXp/zbrLFeunG7evGlkLEOtX79ec+bMUe3atY2OAjf2zjvvqHfv3mrTpo169+6tHj16yGq1auDAgUZHM0y3bt3UvXt3/e9//1NSUpLmz5+vJUuWqH///kZHM8z999svv/xS0r3z7MP9cs1m2rRp+uCDD9SkSRP72KZNmzRr1izTFsnXrVunNWvWaOTIkbLZbGrZsqWCgoL09NNPGx0NbqRatWoaPXq0RowYYb9mmzJliqpWrWpwMuNUqlRJnTp1UuPGjVOsxjDjhrhffPGFpk2bJi8vL+3cuVP9+/fXmDFjTH2zGnhc0G4Fdn/W49RisZi2x+Wf3S0384eutDDbskxJOn36tLZs2aLo6GjlzZtXAQEBpl7SDEfNmzfXyJEjVblyZfvS3SNHjmjIkCGm7avs7++vgwcP/ml/WCA1165dU1xcnIoWLWofCwsLM9Vm0ZK0e/duff7557p8+bIKFCiQYl8Ms3n33XdVrVo1+fv7pzinmLVfrr+/vw4cOOAwW9pqtapKlSqmu0Z7mNVq1Z49e7Ru3Tp9/fXXKlOmjBYvXmx0LLdltr2GoqOj1b17dx0/flzJycnKnDmzihQpojlz5ih//vxGxzNEhw4dUh23WCym/Nu5/zdx9epV9ejRQ6tXr1ZMTIyCgoK0c+dOo+MB+BeYSQ47TugpnTx50ugIjySz3XvbuXOnhg0bpn379mnWrFmaM2eO5s2bp6FDh6pNmzZGx4MbYOZnSnXq1FFoaKiaN29udBQ8QvLly5dibMSIEaYrkteuXdu+CiM2NtbUbQCke22KPvjgA2XPnl2tWrVSq1atTFvMui9nzpw6ffq0w4SPkydPKm/evAamcg8eHh7KnDmzsmbNKi8vLyUlJRkdyTA//fSTnn/++RTj33zzjX0F3AsvvJDRsQyVJ08erVixQkeOHLHfiCxfvryeeOIJo6MZZsmSJUZHcCv58uVTbGys8ufPr0uXLslmsyl37tymXiEKPC6YSY40bXxl5tYiycnJun79upKTkx3GzdrjMi0X0z179tSMGTMyOpphgoODFRwcrKCgINWsWVMTJkxQ7ty51a9fP23bts3oeHATzPx01Lt3b23fvl1FihRJsXTXjLOS8M+ZbZbj2bNnNWnSJM2cOVPbtm1Tv379lC1bNs2aNcuhT7nZJCUladeuXVqzZo327t0rf39/tW7dWvXr1zflTYR58+Zp2bJl6tatmwoWLKiIiAjNnz9f7dq10xtvvGF0PEOcP39ea9eu1fr16xUfH6/mzZsrODhYJUqUMDqaYVJb/RkbG6sXX3zRVOfVhx09elRly5bVrVu3NHfuXOXOnVuvvfaaqTeu3L59u1asWGHfCDgoKCjVPVTMYNiwYYqMjNSUKVPUu3dvlStXTt7e3tq4caM2btxodDwA/wJFcthnmDy4PDVHjhy6ffu2rFarcubMqe+++86oeIbasmWLBg8erPj4eHtvS7P3uORiOqWAgAAdOHBAx48fV/v27e27v5utcIM/t2nTJoe+sPetWLFCbdu2NSCR8f7qRpoZ+1vinzNbi6+uXbsqX758ev/999WkSRO1atVK2bJl09q1a7Vy5Uqj47mFH3/8UaNHj9bx48eVI0cOtWrVSj169FD27NmNjpZhbDabZsyYodWrV+v69evy8/NTcHCwOnfubNoNK0uXLq1q1aopKChIDRo0MOXNE+nePimBgYFKTk62f655WKVKlfT5558bkM54s2fP1ieffKJDhw5p4MCBOnr0qDw8PFS9enUNHTrU6HiGCA0N1Xvvvae2bdvab7p9+eWXGjRokIKDg42Ol+FiY2P18ccfq1evXoqOjlafPn0UGxur8ePHm27lBfC4oUgOuwULFuj06dMaNmyYsmfPrjt37mjChAnKkSOHBgwYYHQ8QzRo0EAtW7bUyy+/rEyZMjkcM1OPSy6m/1qdOnX01VdfadmyZfrxxx/1ySef6OTJk+rRowdtjEwsPj5eN27ckCQFBgZq48aNDq2Ibt++rVdeeYUbKbrX/zNHjhymnqGFf85sRfKaNWtq165dioqKUqNGjXTgwAFly5ZNlStXNtXr8LDffvtNYWFhWrdunc6ePavatWurVatW8vX11ZQpUxQbG6ulS5caHRMGunjxogoVKmR0DLdw4sQJ3bp1SyEhIZo/f77DMW9vb5UsWVJZsmQxKJ2xAgMD9fHHH6tYsWLy9/fXihUrlDdvXjVv3lx79+41Op4hmjdvriFDhqhatWr2sf3792v06NGmnDmdlpXVAB5NfBqF3YIFC7Rz505lzpxZkpQ1a1YNHTpUtWrVMm2R/ObNm+rRo4fRMQxXuHBhrVy58m8vps2qdevWatGihW7duqVp06bp6NGjev3119WlSxejo8FAsbGxCgwMVEJCgqR7myM/vCKlfv36Bqc0TlJSkiZOnKiVK1cqISFBXl5eat68uYYPH27a2X1AWty9e1c2m0179+5VmTJl9OSTTyomJkbe3t5GRzNM165dtX//fhUrVkytWrXSf//7X+XOndt+vH///qZbtZOcnKwtW7bo/PnzslqtDsfMtlpn3rx5CgkJ0bp16/70MWZ7TXr16qXt27erUaNGqlq1qtFx3Mq1a9dUqlQpfffdd8qePbt91XV8fLzByYwTGRmpgIAAh7GqVavq6tWrBiUyVufOnVNdWd2nTx8mvwCPOIrksLNarYqOjnaYIX3p0iVTb1JSrlw5nTx50mHTI7PiYvrP9erVS1WrVpW3t7cqVKigK1euaPTo0WrYsKHR0WCgvHnzavv27YqPj1ezZs0UFhbmcNzb2ztFL24zmTVrlg4cOKApU6bYl+5OnjxZU6ZM0cCBA42OB7itGjVqqFevXjp58qS6du2qixcvauDAgapTp47R0QxTsGBBLVu2TOXLl0/1uJ+fn1atWpXBqYw1cuRIbdiwQaVKlXJYpZPaasDHXXh4uEJCQnTgwIFUj5vxNYmOjtaJEye0bds2XblyRaktLjfr/kv58+dXeHi41q5dq+rVq0uSwsLCTL0KoUCBAgoPD3f4DBgeHm6q35GHV1aXLl06xWMqVapkQDIA6Yl2K7AbP368du/erddff10+Pj66ePGiPvnkEzVv3ly9e/c2Ol6Gut8r98KFC9q3b5+aNGminDlzOjzGbDNOKlasqC+++ELt2rVL0TbiPjNdKAHOsFqtqfaAvXv3rmlbjNSvX1+LFi1y+NAZERGh9u3b69tvvzUwGR41Ztv/IS4uTgsXLpS3t7dCQkJ08uRJrVq1Sv3791fWrFmNjgc38cILL2jOnDkqV66c0VHghgYMGKANGzakeoPA7PsvbdmyRQMHDlTmzJm1bNkyRUVFKSQkRNOnTzftzciVK1fqww8/VNu2bVWoUCFFRERoxYoVGjx4sFq3bm10vAzzcJuiB9uQmr1NEfC4oEgOu7t372rmzJlav369oqKi5OPjo+DgYL3xxhumm2HRoUOHvzxusVi0ePHiDErjHriYBv65iIgIzZw5U1FRUfZl70lJSTp37pz2799vcDpj+Pv767vvvnO4SZCUlKQaNWooPDzcwGRwJ2np+9mzZ8+/3AjWLMx80w0pVa9eXXv27DH1itD71q5d+7ePadGihctzuJuoqCg1btw4xUq3+8y0/9LD/vjjD0n3Cp+xsbG6c+eO8uXLZ3AqY61evTrFRsCNGzc2OpYhHtzfgH11gMcLRXLgL/z222/KmzdvivFffvlFzzzzjAGJjMXFNPDPdOjQQTabTbly5VJ0dLSee+45rV27Vp06dTLdqpT7Xn31VTVu3FivvvqqfWzJkiXavHmzaTcBRkqpbcoZGxurF1980VSzxx/ETTekxbhx45Q3b16FhIQYHcVw9erV+8vjFotFO3bsyKA07uXEiROpto0ws7+6Ue/v75+BSeCu2FcHeHxRJIeDvXv3aunSpYqKitLcuXO1cOFCDRgwwLR3RlP7cJ6cnCx/f/8U42bBxTTgvIoVK+rrr79WZGSkpkyZorlz5+qbb77R3LlzTVsQ/v7779WlSxeVKlXKvnT3zJkzWrBgAT0dTe7hvp+prWCqVKmSaf92uOmGtGjXrp0OHz6sLFmyOGxiKsm0BeG0CAsLU9OmTY2OkWEGDx6cpseNHz/exUncR2p7UXl4eMjHx8d0fzujRo3SqFGj/vL3xEy/G/dNnTpVO3fuVP/+/R321alZsyb76gCPOHNWPpGq0NBQjR8/XsHBwTp48KAkaefOnbJYLKY62V+4cEFdu3aVzWZTfHy8XnrpJYfjCQkJpp4xndY2M2a8YAL+TJYsWexLMU+fPi1JqlWrlt59912DkxmnSpUqGjp0qH766Sd5enqqbt26atOmDQVyqHDhwlq5cqVD388H3e/7aVZHjx51uOk2bNgw1apVS3PnzqVIDrvg4GAFBwcbHeORM2LECFMVyb29vbVq1SrVqVNHRYsW1dWrV7Vlyxb5+/ubtr3IyZMnHb6PiYnRzJkzTfn5j/mUqQsNDXXYV6d48eIqXry42rdvb6q6CfA4okgOu3nz5mnWrFmqUKGCvvjiC+XNm1dz585Vx44dTXWyL1y4sIYOHaobN25o1KhRKT5went7m3qpHRfTgPOefvpp7d69W7Vr15bVatXFixfl5eWlu3fvGh3NMNOmTdOaNWu0aNEiFSlSRDt27ND777+vmzdv6vXXXzc6HgzWq1cvbd++XY0aNVLVqlWNjuNWuOmGtGjZsqX965iYmBSzyZE6sxUFL168qI8//liNGjWyj7Vs2VILFixgwsv/lzt3br3zzjtq1KiRunTpYnScDPXee+9Jkl555ZU/3R/EjG7evCkfHx+HMR8fHyUkJBiUCEB6oUgOu6tXr9rf/O4vbS5cuLDu3LljZCxD1K1bV5JUsGBBPpw/hItpwHndunVT7969FRYWprZt2+qVV17RE088kWKlipmsWrVKn3/+uX0WzksvvaRnnnlGr732GkVyKDo6WidOnNC2bdt05cqVVAtXvr6+BiQzHjfdkBZ3797V9OnTtXTpUiUnJys0NFR9+/bVnDlzUt1vB/ek1t7pcXb48OEUq3UCAgLUt29fYwK5qZs3b9o38zSjzp07p7o/SJ8+fUy5P8izzz6r5cuXO+yrs3z5clOvcgMeFxTJYXd/Jl/9+vXtY/v27VPhwoUNTGWsChUq6KuvvkqxOdbp06c1e/Zsg9MZg4tpwHkLFixQ9+7dlSlTJvXo0UNFihRRbGysWrRoYXQ0w8TGxqY6C8eMN2aRUr169dSyZUtZLJYUm+7d71N+4sQJg9IZKyQkhJtu+FvTp0/X/v37NXXqVPXr10958uRRgQIFNHbsWE2dOtXoeHATfn5+2rRpkwIDA+1jq1evVrFixQxMZayH+28nJSXp0KFDqlGjhkGJjPHw/iCp7Ull1hZ5ffv2VZcuXbR+/foU++oAeLRRJIddv3791KNHD7300ktKSEjQqFGjFBoaqkmTJhkdzTBDhgzRt99+q1y5cikpKUlZs2bVL7/8YurCFhfTgPOaNGminTt3aubMmSpVqpQaNGighg0bysvLy+hohilTpozmzZunHj162McWLlyY6oZZMJ+PP/5YAwcOVOPGjRUWFmZ0HLdSr149bd26VXny5OGmG/5UaGioli1bpvz588tisShr1qwaP368GjRoYHQ0uJF+/fqpT58++vzzz+Xj46OLFy/q3LlzWrRokdHR3Ia3t7c6dOigtm3bGh0lQ7E/yJ/bvHmz1q1bp9DQUF2/fl0NGjTQlClTNHXqVNPeOAAeFxab2Rqv4S+dPHlSK1as0OXLl1WgQAEFBQWpfPnyRscyTEBAgJYtW6aYmBgtW7ZMH3/8sRYuXKiff/5ZU6ZMMTqeIXbs2KE+ffqofPnyKS6my5Yta3Q8wK3Fxsbqm2++0a5du7R9+3YVLFhQoaGhRscyxLFjx9SlSxdlyZJFBQoU0NWrV3X37l198sknFMphd+LEiVRnr5md1WrVzz//rKioKPn5+fH+ixSqVaumb7/9VpkyZZK/v7/Cw8OVmJio2rVr67vvvjM6ntuqVKlSirYSj7vTp09ry5Ytio6OVt68eRUQEKAqVaoYHQtu5OLFi/b2eGYVFRVlP3eOHDnS3q/9vtu3b2vSpEmmbD8DPE6YSQ67uLg4LV26VOvXr1diYqKyZs2qJ598UqVKlTLtbEer1apixYopZ86c9mXd7du318KFCw1OZpyXXnpJq1evtl9M165dWwMHDuQDOvA3YmNjtX//foWHh+vnn39WcnKyqfvClilTRlu3btWuXbt07do1+fj4qE6dOsqePbvR0eBGFi9enKbHmWlPjAsXLqhbt266dOmScubMqRs3bqhMmTKaMWMGG2jDrkKFCpoxY4b69etn77O9ZMkSlStXzuBk7s1s88d27typYcOGad++fZo1a5bmzJmjefPmaejQoWrTpo3R8Qzz2Wef2SeO5c2bV0FBQerWrZvpetbf9+STT2ratGmptiBdv369wekyRq5cubR06VLFxMQoMTFR06ZNczju7e2tnj17GpQOQHqhSA67CRMm6JdfftHs2bPtM4SnTp2qyZMn69133zU6niEKFChgv3MeHR2tO3fuyMPDQ3FxcUZHMwwX04Dz2rRpoxMnTqhEiRIKCAjQsGHDVLVqVXl7exsdzVA5cuSgRQT+kre3t1atWqU6deqoaNGiunr1qrZs2SJ/f3/TFoTHjBmjatWqadCgQcqcObNiY2M1btw4jR49WjNmzDA6HtzEkCFD1KlTJ61Zs0ZxcXF6+eWXFRcXZ+o2Gj/99JOef/75FOPffPONatWqJUl64YUXMjqWoWbPnq2+ffvKarVq6dKlmjFjhnLnzq1+/fqZ9rr+s88+06JFixQSEqKCBQsqIiJCn3zyiTw8PBQSEmJ0PEMMHjxY58+fV+7cuRUXFycfHx/t2bNH7du3NzpahvHy8tKqVaskSV27dqX/OPCYot0K7GrWrKn169crd+7c9rGrV68qKChIe/bsMTCZcebNm6clS5Zo1apVmjRpkq5evSpvb2/Fx8dryZIlRsczRHBwsIKDgxUUFKSaNWtqwoQJ9ovpbdu2GR0PcEsdOnTQsWPHVL58eb3wwguqWbMmLSSANOjatavatGmjRo0a2cf27dunBQsWmPYDakBAgL799luHVX7x8fGqU6eODhw4YGAyuJM7d+7IYrHo66+/trdRrFOnjp588kmjoxkmtVYqsbGxevHFF03bIiEgIEAHDhzQ8ePH1b59e4WHh8vT01MVK1Y07WvSpEkTffzxx3ruuefsY8ePH1evXr20Y8cOA5MZp3Llytq4caOioqI0b948zZgxQ+vWrVNYWFiKXuUA8ChjJjnssmTJoieeeMJhLGvWrPYlVWYUEhKiQoUKKVu2bOrbt6/mzp2r2NhYDR8+3OhohomIiFCbNm10/PhxxcfHq0aNGvL09NT169eNjga4rSVLlujOnTvav3+/vv32W/Xr10+3b99WjRo1NHHiRKPjAW7r8OHDKT6ABwQEqG/fvsYEcgN+fn6KiIhQiRIl7GNXr15Vzpw5jQsFt9O0aVOtX79eTZo0MTqKoS5cuKDAwEAlJyfLZrOleoPazBvtZcmSRdHR0dq5c6cqV64sT09PnTx5Urly5TI6mmGuXbuWYm+UUqVK6ffffzcmkBvw9PRU/vz5lSVLFp06dUqSFBgYqA8//NDgZACQviiSQ5GRkZKkFi1aqF+/fho0aJD8/Px07do1TZw4UZ06dTI2oIHi4uK0Z88eDRo0SImJicqSJYvatm2r/PnzGx3NMFxMA/9M1qxZ9cILL+iJJ56Qh4eHNm7cyKxP4G/4+flp06ZNCgwMtI+tXr1axYoVMzCVMdauXSvpXkHvjTfeUNeuXe3XawsXLlT9+vWNDQi3Ex8fb+qZ45JUuHBhrVy5Urdu3VJISEiKm27e3t4qWbKkQemM17p1a7Vo0UK3bt3StGnTdPToUb3++uvq0qWL0dEMU7hwYW3bts1hBdO2bdtUuHBhA1MZy8/PT0ePHlXZsmUVFxenmJgYeXp6KiEhwehoAJCuaLcClSpVShaLxWGjmvubkthsNlksFvumlWYzfPhwnT59Wr1793bo0x4QEGDaPu3Tp0/Xl19+ab+YzpMnj/1i2qx9+oC/s3jxYn3zzTcKDw+Xj4+P6tevr/r166tChQpGRwPc2o4dO9SnTx+VL1/e/j587tw5LVq0yHQbRterV+8vj1ssFtO2AkBKgwcP1nfffadatWql6N9vts3l6tevr+3bt2vgwIHMfE3FgQMH5O3trQoVKujKlSs6cuSIGjZsaHQsw2zfvl19+/ZVgwYNVKhQIV24cEE7d+7UtGnTVLduXaPjGWLVqlUaN26cNmzYoE8//VTfffedfXb5nDlzjI4HAOmGIjl0+fLlv32Mn59fBiRxP/RpTx0X04BzWrdurQYNGqh+/foOLRIA/L3Tp09ry5Ytio6OVt68eRUQEKAqVaoYHcuthYWFqWnTpkbHgIE6dOiQ6rjFYtHixYszOI2xKlasqC+++ELt2rXTxo0bldrHX19fXwOSwV0dOHBAq1evVnR0tPz8/NS6dWuVL1/e6FiG+vnnn+2T6xYtWqS4uDh16dJFOXLkMDoaAKQbiuTAX2jQoIFWrVrl8OZ/69YtNW7cWPv27TMwGQAAj7+dO3dq2LBh2rdvn2bNmqU5c+bIYrFo6NChatOmjdHx3FZqGxQCD5s3b54pVgEOGDBAGzZssK+UfZDZV80ipWvXrmnmzJmKiIjQ3bt3HX5vzHaD6b6FCxeqRYsWDhPHAOBxRJEcSMX9Pu1r1qzRoUOHUvRpr1Chgik+VAAAYKTg4GAFBwcrKChINWvW1IQJE5Q7d27169dP27ZtMzqe26pYsaJ++OEHo2PAzZnpZkpUVJQaN26ssLCwVI+bddUsUurcubNu3rypF198UZkyZXI4ZrZWRfe1adNGJ06cUJ06dRQcHKwXX3wx1ZtOAPCoo0gOpII+7QAAGC8gIEAHDhzQ8ePH1b59e4WHh8vT05Mi8N8wU/ET/5zZ/o5OnDih0qVLGx0Dbq5ixYr65ptvlD17dqOjuJWzZ89q9erVCg0NlYeHh1q2bKnWrVurYMGCRkcDgHTjaXQAwB2x8RUAAMbLkiWLoqOjtXPnTlWuXFmenp46efKkcuXKZXQ04JFntpmgaW2VMX78eBcngTvz8fGRh4eH0THcTvHixfXOO+9owIAB2rVrl8aNG6e5c+fq+PHjRkcDgHRDkRxIBUsuAQAwXuvWrdWiRQvdunVL06ZN09GjR/X666+rS5cuRkcD8Ijx9vbWqlWrVKdOHRUtWlRXr17Vli1b5O/vr3z58hkdDwa7326zefPmGjx4sLp3755iU0qzb/C6f/9+rVu37v+1d2+hTd99HMc/sdlCPTBPrbbZxVZkVGi7HmyrbnPDSVsoYhtpRFRwtqiUigf0wgNSDzh64dzUzRNdwUXGSnF4wFq0FQSDdTg2KqYIIraWKDZWaz2gNt3FIDx96p7JQ+zvn+T9uvP3z8X7Qnrxze//jZqampSSkqKVK1eaTgKAsGLdCgAAACyrtbVVDodDmZmZ8vv9amtrU0FBgeksS2PdCt5ErP0/KS8vl9vtVmFhYejM6/WqtrZWtbW1BstgBazb/Gd79uzRqVOn1NfXp7lz56qsrEypqammswAg7BiSAwAAAFEk1nZN4/8Ta0PyrKwsXb16ddAqjf7+fs2YMUNXrlwxWAYr6Orq+tfPxOrbxosXL1ZZWZmKiorkcDhM5wDAW8O6FQAAACBC/Pnnn/r444+HnF+8eFGzZs2SJH3yySfDnYUIFGt3pZxOpxobG1VcXBw6O378uFJSUgxWwSpidQD+Jjwej4LBoK5du6Y7d+4oMTFR2dnZ7G4HEHW4SQ4AAABEiNfd/u3r69Nnn33G7XGE7NixQ2vXrtXo0aP/8TO7du3Spk2bhrHKrObmZq1evVoZGRlKSkpSZ2enbt26pbq6OqWlpZnOAyyru7tbK1asUHt7u8aOHauenh598MEH+vHHHzV58mTTeQAQNgzJAQAAAAu7ffu2iouL1d/fH9qN+9+ys7N17NgxA3Wwory8PHm9XtntvDj8n27cuKGmpiYFAgElJCQoPz9f06ZNM50FWNr69es1MDCg7du3a9SoUXr8+LGqq6v16tUrfffdd6bzACBsGJIDAAAAFufz+dTb26vly5fryJEjg545HA599NFHio+PN1QHq6mpqdGTJ0/kcrmUkJAw6IuV5ORkg2XmtLS0aMuWLfJ6vfrhhx908OBB2Ww2bd68WW6323QeYFmffvqpzp49O+jNlMePH+vLL79knz+AqMLVAgAAAMDiVq1apfPnz6uwsFB5eXmmc2BxdXV1kqT6+npJks1mC72F4PP5TKYZc+DAAa1Zs0bBYFAej0f79+/X+PHjtXbtWobkwP8QDAaHvMFks9n0zjvvGCoCgLeDITkAAABgcYFAQD6fT+fOnZPf73/tjy7G6g1hDDVv3jxNnz5dubm5r13PE4s6Ojrkdrt1/fp1PXv2TDNnzpTdbld3d7fpNMDS8vPzVV1drW3btmnkyJF68uSJqqur+cIWQNRhSA4AAABY3OzZs1VaWiqbzabZs2cPehbrN4Qx1OjRo1VTU6MxY8bI5XLJ5XJp0qRJprOMio+PVyAQUEtLi3JycmS329Xe3q5x48aZTgMsbcOGDfrqq6+Ul5ensWPH6uHDh5oyZYoOHTpkOg0Awoqd5AAAAEAEuHfvnoqKinT69OnXPnc6ncNcBCt7+fKlLly4oF9//VWXLl1Sbm6u5s+frzlz5ujdd981nTfs9u3bp/r6evX29mrv3r2aMGGCKioqtGzZMi1fvtx0HmBpr1690m+//aYHDx7I6XQqPT1dcXFxprMAIKwYkgMAAAARwufzaerUqaYzEGH++OMPbd++XdevX9d7770nl8ulyspKjRkzxnTasGptbZXD4VBmZqb8fr/a2tpUUFBgOguwvBcvXujBgwcKBoODzlnzBSCaMCQHAAAAIsTGjRvf6HNff/31Wy6B1d2/f1+nT5/WiRMndPPmTX3++edyuVxKTk7Wt99+q76+Pnk8HtOZACyusbFRW7duVV9fX+iMNV8AohE7yQEAAIAI4XA41NDQoC+++EIffvih7t69q6amJuXm5ioxMdF0HiyivLxcly9fVkpKilwul+bNm6fx48eHnq9bt04LFiwwWAggUuzbt0+LFi1SaWmp7HZGSACiF3/hAAAAgAjR2dmp3bt3q7CwMHRWWlqq2tpabo8j5P3339fPP/+sjIyM1z53Op1qaGgY5ioAkcjv96uqqooBOYCox7oVAAAAIEJkZWXp6tWrGjFiROisv79fM2bM0JUrVwyWAQCi0eLFi7VlyxalpqaaTgGAt4qvAgEAAIAI4XQ61djYqOLi4tDZ8ePHlZKSYrAKABCtsrOztXTpUhUVFWnixImDnlVVVRmqAoDw4yY5AAAAECGam5u1evVqZWRkKCkpSZ2dnbp165bq6uqUlpZmOg8AEGWWLFny2nObzaajR48Ocw0AvD0MyQEAAIAIcuPGDTU1NSkQCCghIUH5+fmaNm2a6SwAAAAgYo34948AAAAAsIKWlhYtXbpUq1atUmJiog4dOqTy8nLV19ebTgMARKmbN29q586dqqqqUk9Pjzwej+kkAAg7huQAAABAhDhw4IDWrFmjYDAoj8ej/fv369ixYzpy5IjpNABAFLp06ZLKysrU09Mjr9er58+f6/vvv9fhw4dNpwFAWDEkBwAAACJER0eH3G632tvb9ezZM82cOVNpaWnq7u42nQYAiELffPON9uzZo927dysuLk5JSUk6fPiwfvnlF9NpABBWDMkBAACACBEfH69AIKCWlhbl5OTIbrervb1d48aNM50GAIhCt2/f1qxZsyT9/WOdkpSenq5Hjx6ZzAKAsLObDgAAAADwZubPn6+SkhL19vZq7969unbtmioqKrRs2TLTaQCAKJScnKzff/9dOTk5obO2tjYlJSUZrAKA8LMNDAwMmI4AAAAA8GZaW1vlcDiUmZkpv9+vtrY2FRQUmM4CAEShM2fOqLq6WgsXLtTRo0dVWVmpn376SevWrVNJSYnpPAAIG4bkAAAAAAAAGGLHjh3KysrSyZMn1dXVpcmTJ8vtdquwsNB0GgCEFUNyAAAAAAAADJGXlyev1yu7nW29AKIbQ3IAAAAAAAAMUVNTo6dPn6q0tFQJCQmhH++U/t5XDgDRgiE5AAAAAAAAhkhNTR30b5vNpoGBAdlsNvl8PkNVABB+DMkBAAAAAAAwRFdX1z8+czqdw1gCAG8XQ3IAAAAAAAAAQMwaYToAAAAAAAAAAABTGJIDAAAAAAAAAGIWQ3IAAAAAAAAAQMxiSA4AAAAAAAAAiFkMyQEAAAAAAAAAMYshOQAAAAAAAAAgZjEkBwAAAAAAAADELIbkAAAAAAAAAICY9RfrwAZ7Iy79FQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2506,7 +2557,7 @@ }, { "cell_type": "code", - "execution_count": 239, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -2793,7 +2844,7 @@ "std 5.824659 4.156724e+04 " ] }, - "execution_count": 239, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -2852,7 +2903,7 @@ }, { "cell_type": "code", - "execution_count": 240, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -2879,7 +2930,7 @@ "dtype: float64" ] }, - "execution_count": 240, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -2911,7 +2962,7 @@ }, { "cell_type": "code", - "execution_count": 241, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -3116,7 +3167,7 @@ "[5 rows x 21 columns]" ] }, - "execution_count": 241, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -3146,12 +3197,56 @@ }, { "cell_type": "code", - "execution_count": 242, + "execution_count": 35, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAArmCAYAAACgTmnUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdf4/8Nds303vpGCo0lkCSDlAyqkHgqffiJ54p9gOVMrpqZwRDymHUYrlBBU8G+KJR7vzEPEnemIDSzABRBSkBVI3Pdm+O78/tkAgIbvJ9ryej0cekJ3PzHxmdplh3vv+vD+CKIoiiIiIiIiIiIiIAkgS7A4QEREREREREVHnw6AUEREREREREREFHINSREREREREREQUcAxKERERERERERFRwDEoRUREREREREREAcegFBERERERERERBRyDUkREREREREREFHAMShERERERERERUcAxKEVERERERERERAHHoBRRCJg0aRIeffTRVpc/+uijmDRpUgB7REREoaRPnz544YUXgt0NIiJyauv/76G6baJQIwt2B4gIWLNmDaKjo4PdDSIiClHvvvsuunTpEuxuEBEREfkUg1JEIaB///7B7gIREYWwIUOGBLsLRERERD7H4XtEIeD8FN26ujrk5eVhxIgRuOKKK7By5UrY7fYg95CIiHxh0qRJePbZZ/Hkk0/iiiuuwMiRI7FgwQLU1tYCcAzXnjlzJp544gkMHToU1157LWw220XD9yoqKvCXv/wFo0ePRk5ODv7whz/g+++/dy+32+1Yv349rr76agwcOBC/+c1v8NZbbwX6cImIIprFYsHf/vY3XHHFFRg+fDj+8pe/oLq62r38u+++wx/+8AdotVqMGDHiouUAcOTIEdx5553IycnBxIkT8d577120nz59+mDNmjXIzc3F4MGDsWbNGgDAyZMnMX/+fIwZMwZDhgzBbbfdhoKCgmbrNjQ0ID8/H1dddRUGDRqEadOmYcuWLc3aTJo0CWvWrMGTTz6JkSNHIicnBw899BCampqwfv16XHnllRg2bBjmzZuHmpoa93qHDh3CzJkzMWzYMOTk5OCOO+5AYWFhR08rdTLMlCIKIXa7Hffccw/Onj2Lv/zlL4iPj8c//vEPHDx4EKmpqcHuHhER+cA///lPZGdnIz8/H9XV1Vi9ejVOnTqFTZs2AXA8xCiVSqxduxZ6vR5SqbTZ+k1NTZgxYwZsNhseeeQRpKWl4bXXXsNdd92F7du3o1u3bli8eDG2bduG2bNnIycnB99++y2efPJJ1NfXY86cOcE4bCKiiPPBBx9Aq9XiqaeeQnV1NVatWoVjx47hX//6F/bv348777wTo0aNwnPPPYe6ujo8//zzuP3227FlyxaoVCqUl5fjD3/4A7p164aVK1eisbERq1atQlVV1UX7evnll/HQQw+he/fuyMzMxLFjx3DzzTejW7duePzxxyGXy7FhwwbMnDkTr732GkaMGAGj0Yhbb70VVVVVmD9/PjIzM7F7924sXLgQOp0O9957r3v7r732GsaMGYNnn30Whw4dwurVq/HDDz8gNTUVy5Ytw5kzZ7B8+XIkJyfjiSeeQGNjI+655x6MGjUKL7zwAsxmM1566SXcfffd+PTTTxETExPIt4LCGINSRCHks88+w4EDB/DKK6/gyiuvBACMHj2aRc6JiCKIRCLB66+/7v4Pe2JiIubMmYPPP/8cAGC1WrF06dJWa0ht374dZ8+exfbt29GvXz8AwNChQ3HDDTfg22+/hSiK+Ne//oU///nPmDVrFgBg7NixEAQB69atw6233oqEhIQAHCkRUWRLSEjAq6++Co1G4/59zpw5+Oyzz7Bu3Tp0794d69atc3+5oNVqMXXqVGzduhW///3v8cYbb8Bms2H9+vVITEwEAHTv3h0333zzRfsaPnw47rzzTvfvDzzwABQKBTZs2OCuTTthwgRMmzYNK1aswJYtW7Bt2zb8/PPP2LRpE3JycgAA48aNg9VqxYsvvohbbrkF8fHxAIDo6Gg8++yzkMlk+NWvfoXt27ejvLwcmzdvdt+vPv/8c+zfvx8AcOzYMdTU1OD222/H0KFDAQA9evTAu+++i6amJgalyGMcvkcUQr777jvI5XKMGzfO/ZpGo8H48eOD2CsiIvKlSZMmNfvP+qRJkyCTyfDtt98CAOLj4y9Z1LygoABZWVnugBQAqNVqfPjhh7jpppuwb98+iKKISZMmwWq1un8mTZoEk8l00dAOIiJqn/Hjx7sDUkDz63lRURHGjx8PURTd1+GuXbuiZ8+e+PLLLwE4rudDhgxxB6QAR+AqIyPjon2df80HgG+++QYTJ05sNlmSTCbD1KlTcejQITQ1NeGbb75BZmamOyDl8tvf/hYmkwlFRUXu1wYPHgyZ7FzOSnJyMrp3797sfhUfH4+GhgYAQO/evZGYmIh7770XixYtwkcffYTk5GQ88sgjnJiDvMJMKaIQUldXh/j4eAiC0Oz1lJSUIPWIiIh8LS0trdnvEokECQkJqKurAwBERUVdcv3a2lokJSVdcjkATJ06tcXl5eXlXvSWiIhac+H/0V3X8/r6etjtdrzyyit45ZVXLlpPqVQCcPzfPysrq83tAmgW/HKtm5ycfFG75ORkiKKIxsZG1NXVtbgt13r19fXu11qaCfzCfZ4vKioKb7/9Nl566SV88MEHePfdd6FSqXD99dfj8ccfh0KhaHVdovMxKEUUQhISElBTUwObzdashojrAYOIiMLf+UViAcBms6GmpgaJiYkoKytrc/2YmBicOXPmotf379+PuLg4xMbGAgDefPPNFgNcLX0DT0RE3rvw/+iu63l0dDQEQcAdd9zR4hcEarUagOP//jqdrs3ttiQuLq7FdSsrK93bjouLw6lTpy7ZpiN69OiBlStXwmaz4cCBA/jPf/6Dd955B5dddhnuueeeDm2bOg8O3yMKIaNHj4bVasXu3bvdr5nNZneKLxERhb/PPvsMZrPZ/fvHH38Mq9WK0aNHe7T+8OHDUVxcjKNHj7pfM5lMmDdvHrZs2YLhw4cDcAS/Bg0a5P6prq7G888/zy86iIh85Msvv4TVanX//uGHH8JqteLKK69E//79cfz48WbX4d69e+OFF17A119/DQAYNWoUvv/++2YZrMeOHUNxcXGb+77iiivwv//9D42Nje7XbDYb3n//fQwaNAgKhQJXXHEFzp4922x2VgB47733IJfLMXjw4HYf+65duzBq1ChUVlZCKpUiJycHixcvRmxsLEpKStq9Xep8mClFFEJGjx6NsWPH4vHHH0dVVRUyMzOxYcMGVFdXX3KoBhERhY/S0lLcd999uP3221FaWopnnnkG48aNw8iRI7F9+/Y218/NzcVbb72F++67D/Pnz0dCQgI2bNgAi8WCW2+9FV27dsVvf/tb/PWvf8XZs2cxcOBAnDhxAs8++yyysrLQrVs3/x8kEVEnUFlZiXnz5uG2227DyZMn8cwzz2DMmDEYPXq0e7KJhx56CL/97W9hs9nw2muvoaioCPfffz8AYObMmdiyZQvuvvtuzJs3DzabDc8++yzkcnmb+547dy4+++wz3H777Zg1axbkcjk2btyI4uJi/OMf/wDguF/885//xJw5czB//nxkZWXhk08+wdatWzF37lx3Zm17DB06FHa7HXPmzMGsWbMQFRWFDz74AA0NDbjmmmvavV3qfBiUIgoxa9aswapVq/D3v/8dJpMJ1157LW6++WZ8/PHHwe4aERH5wNSpUxEbG4sHHngAGo0G//d//4cHH3zQ4/Wjo6OxceNGrFixAsuWLYPdbseQIUOwYcMGdO3aFQCQn5+PdevWYdOmTSgrK0NSUhKuvfZaPPDAA82GhxMRUfvdeuutaGhowJw5c6BQKHDdddfhkUcegSAIGDt2LF599VWsWbMG8+fPh1wux4ABA/D6669jyJAhABzD59555x0sX74cjz76KKKionDPPfdg586dbe67d+/e+Oc//4lnnnkGeXl5EAQBgwcPxoYNG9wZs2q1Gm+99RZWr16N559/Ho2NjejRoweWL1+O6dOnd+jYU1NT8Y9//APPP/88Fi5cCIPB4M4EGzVqVIe2TZ2LIIqiGOxOEBEREXUGkyZNwogRI/DUU08FuytEREREQceaUkREREREREREFHAMShERERERERERUcBx+B4REREREREREQUcM6WIiIiIiIiIiCjgGJQiIiIiIiIiIqKAY1CKiIiIiIiIiIgCjkEpIiIiIiIKG2azGdOmTcPXX3/tfq24uBh33HEHhgwZgmuvvRZffPFFs3W++uorTJs2DVqtFrfffjuKi4ubLX/jjTcwbtw45OTk4LHHHoPBYHAvM5lMeOyxxzB8+HCMHTsWr732mn8PkIioE2FQioiIiIiIwoLJZMKf//xnHD161P2aKIqYM2cOkpOTsXXrVlx//fWYO3cuSkpKAAAlJSWYM2cOcnNzsWXLFiQmJuL++++Ha76nDz/8EGvWrMHSpUvx5ptvoqioCCtXrnRvf8WKFTh06BDefPNNPPHEE1izZg127doV2AMnIopQsmB3IJxVVTXAm7kLBQFISorxer1wEenHB0T+MUb68QGRf4zeHJ+rLfmWN+c+Uj+HvsLz1Daeo7bxHLXt/HMEhO694dixY3jooYdw4eTh+/btQ3FxMTZt2gSNRoOePXti79692Lp1K+bNm4fNmzdj4MCBuOuuuwAA+fn5GDNmDL755huMHDkSGzZswMyZMzFx4kQAwJIlS3D33XfjkUcegSiK2Lx5M1555RUMGDAAAwYMwNGjR/H2229j8uTJXvU/1D+DkfxvJZKPDeDxhbtwOT5/PTswKNUBooh2fWjau164iPTjAyL/GCP9+IDIP8ZIP75Q5s255/vkGZ6ntvEctY3nqG2hfn5cQaQHH3wQQ4YMcb9eVFSE/v37Q6PRuF8bNmwYCgsL3cuHDx/uXqZWqzFgwAAUFhZi+PDhOHjwIObOnetePmTIEFgsFhw5cgSiKMJqtSInJ6fZtl9++WXY7XZIJJ4PPAmXz2C49LM9IvnYAB5fuIv042sNg1JERERERBTybr311hZfr6ysRGpqarPXkpKSUFZW1uby+vp6mEymZstlMhni4+NRVlYGiUSChIQEKBQK9/Lk5GSYTCbU1tYiMTHR4/4LgsdNg8LVv1DvZ3tE8rEBPL5wFy7H56/+MShFRERERERhy2AwNAsaAYBCoYDZbG5zudFodP/e0nJRFFtcBsC9fU+F6rDIC4VLP9sjko8N4PGFu0g/vtYwKEVERERERGFLqVSitra22Wtmsxkqlcq9/MIAktlsRmxsLJRKpfv3C5er1WrYbLYWlwFwb99T4VIvJtT72R6RfGwAjy/chcvxsaYUERERERHRBdLS0nDs2LFmr+l0OveQvLS0NOh0uouW9+vXD/Hx8VAqldDpdOjZsycAwGq1ora2FikpKRBFETU1NbBarZDJHI9OlZWVUKlUiI2N9aqf4VIvJlz62R6RfGwAjy/cRfrxtcbzynxEREREREQhRqvV4ocffnAPxQOAgoICaLVa9/KCggL3MoPBgMOHD0Or1UIikWDQoEHNlhcWFkImk6Fv377o168fZDKZu2i6a9uDBg3yqsg5ERG1jFdSIiIiIiIKWyNGjEB6ejry8vJw9OhRrF+/HgcOHMD06dMBADfeeCP279+P9evX4+jRo8jLy0NWVhZGjhwJwFFA/dVXX8Xu3btx4MABLF68GDfffDPUajXUajVuuOEGLF68GAcOHMDu3bvx2muv4fbbbw/mIRMRRQwO3yMiIiIiorAllUrx4osvYuHChcjNzUV2djbWrl2LjIwMAEBWVhZeeOEFPPnkk1i7di1ycnKwdu1aCM6ppKZOnYqzZ89i0aJFMJvNuOaaa/DII4+4t5+Xl4fFixdj5syZiI6Oxrx583DNNdcE5ViJiCKNIIqdcdSib+h03hUiEwQgOTnG6/XCRaQfHxD5xxjpxwdE/jF6c3yutuRb3pz7SP0c+grPU9t4jtrGc9S2888RwHuDv4T6ZzCS/61E8rEBPL5wFy7H569nBw7fIyIiIiIiIiKigGNQioiIiIiIiIiIAo5BKSIiIiIiIiIiCjgGpYiIiIiIiIiIKOAYlCIiIgoDoihCr9eD85MQEVE4s9vtqKioQEVFBex2e7C7Q0RBJgt2B4j8beyVo1BWWtpmuy7p6fjis30B6BERkfcMBgPWfFSEuVdrodFogt0dIiKidtHpdFj3cREAYPavtUhNTQ1yj4gomBiUoohXVlqKBW/uabPdipnjA9AbIqL2kytVwe4CERFRh0XFJQa7C0QUIjh8j4iIiIiIiIiIAo5BKSIiIiIiIiIiCjgGpYiIiIiIiIiIKOAYlCIiIiIiIiIiooBjUIqIiIiIiIiIiAIuLIJSZrMZ06ZNw9dff+1+rbCwELfccgtycnLwm9/8Bps3b262zldffYVp06ZBq9Xi9ttvR3FxcbPlb7zxBsaNG4ecnBw89thjMBgMATkWIiIiIiIiIiIKg6CUyWTCn//8Zxw9etT9WmVlJf74xz9ixIgR2L59O+bPn49ly5bh008/BQCUlJRgzpw5yM3NxZYtW5CYmIj7778foigCAD788EOsWbMGS5cuxZtvvomioiKsXLkyGIdHRERERERERNQphXRQ6tixY7j55ptx+vTpZq/v3r0bycnJ+POf/4xu3bph6tSpuOGGG/Df//4XALB582YMHDgQd911F3r37o38/HycPXsW33zzDQBgw4YNmDlzJiZOnIjBgwdjyZIl2Lp1K7OlQsDYK0ehV+9sj37GXjkq2N0loiBqKYu2uLgYd9xxB4YMGYJrr70WX3zxRbN1mEVLRERERBQ6ZMHuwKV88803GDlyJB588EEMGTLE/fq4cePQr1+/i9o3NjYCAIqKijB8+HD362q1GgMGDEBhYSGGDx+OgwcPYu7cue7lQ4YMgcViwZEjR5CTk+O/A6I2lZWWYsGbezxqu2LmeD/3hohClclkwkMPPdQsi1YURcyZMweXX345tm7dit27d2Pu3LnYuXMnMjIy3Fm08+bNw7hx47B27Vrcf//9eO+99yAIgjuLduXKlUhKSkJeXh5WrlyJRYsWBfFIiYiIiIgiV0gHpW699dYWX8/KykJWVpb796qqKrz//vuYN28eAMfwvtTU1GbrJCUloaysDPX19TCZTM2Wy2QyxMfHo6yszKv+CYJXzd3tvV0vXATj+Hy9r7a2x/cw/EX6MXpzfOF6Do4dO4aHHnrIPSTbZd++fSguLsamTZug0WjQs2dP7N27F1u3bsW8efOaZdECQH5+PsaMGeP+AuT8LFoAWLJkCe6++2488sgjUKvVAT9OwBFoMxgMQds/EREREZE/hXRQyhNGoxHz5s1DcnIyfve73wEADAYDFApFs3YKhQJmsxlGo9H9e0vLvZGUFNOuPrd3vXDRkeMTJAI0GqXHbZOT296Xp9v0dHsA38NIEOnHGMnH11oWbVFREfr37w+NRuN+bdiwYSgsLHQvD7csWoPBgDUfFWHu1dqg7J+IiIiIyJ/COijV1NSE+++/HydPnsQ///lP9zfJSqXyogCT2WxGbGwslEql+/cLl3v7TXRVVQMu+KL+kgTB8aDo7Xq+MmbcKJSVlrbZrkt6Or78fJ/X2/fF8Yl2EXq9yeO2Ol2Dz7bpyfaC/R76WyQcX5ufcwEQBAFpaV3a9TkPdd68h6624aa1LNpLZcm2tdyXWbS+JlMoYTDooVIxW4qIiIiIIkvYBqUaGxtxzz334PTp03jzzTfRrVs397K0tDTodLpm7XU6Hfr164f4+HgolUrodDr07NkTAGC1WlFbW4uUlBSv+iCKaNeDe3vX6yhP6zWtmDm+Q/0L5PH5ej+ebi9Y72GghPPxefI512iUWHzTqLA9Rk+E83vYXpfKkm1ruS+zaL0ZOunJkGGr2YR1/zuMeyf1d78WrkMvvRXpw219geeobTxHbeM5IiKiYAnLoJTdbsfcuXNx5swZvPXWW+7gkotWq0VBQYH7d4PBgMOHD2Pu3LmQSCQYNGgQCgoKMHLkSABAYWEhZDIZ+vbtG9DjICIi31EqlaitrW32mtlshkqlci8PRBatN9lnbbXV66VQqRWQRGmQlBQDtVqB5OQYqNVqd60poRM8RYZjRl+g8Ry1jeeobTxHREQUaGEZlNqyZQu+/vprvPTSS4iNjUVlZSUAQC6XIz4+HjfeeCNeffVVrF+/HhMnTsTatWuRlZXlDkLdeuutWLRoES6//HKkpqZi8eLFuPnmm1lIlogojKWlpeHYsWPNXtPpdO4heYHKovVm6GRbbfV6PYwGMwSJDVVVDTAYzM5hxg144f8VYd412mY1tCJNJAwp9jeeo7bxHLXt/HMEMDhFRESBE5ZBqQ8//BB2ux2zZ89u9vqIESPw1ltvISsrCy+88AKefPJJrF27Fjk5OVi7dq372+SpU6fi7NmzWLRoEcxmM6655ho88sgjwTgUIiLyEa1Wi/Xr18NoNLqzowoKCjBs2DD38kBk0XozdLKttucvc/3d9adcqeo0wzQ7y3F2BM9R23iO2sbzQ0REgRY2QamffvrJ/fdXX321zfbjx4/H+PHjW10+a9YszJo1yyd9IyKi4BsxYgTS09ORl5eH+++/H//73/9w4MAB5OfnAwCzaImIiIiIQowk2B0gIiLyBalUihdffBGVlZXIzc3Fe++9h7Vr1yIjIwMA3Fm0W7duxfTp01FbW3tRFu3s2bOxaNEi3HXXXRg8eDCzaImIiIiI/ChsMqWIiIgudH4WLQBkZ2dj48aNrbZnFi0RERERUehgphQREREREREREQUcg1JEREQhThRFGAwGFiEmIiIioojCoBQREVGIs5pNePWzH2GzWoLdFSIiIiIin2FQioiIKAzIFapgd4GIiIiIyKdY6JyIiCgMmGyAyWwPdjeIiIiIiHyGmVJEREQhThSBz8uBD0+ZUdFoDnZ3iIiIiIh8gkEpIiKiEFdjBhosgE0Evj9dFezuEBERERH5BINSREREIa5Ef+7vv1Qbg9cRIiIiIiIfYlCKiIgohImi2CwodbzaFLzOEBERERH5EINSREREIazODDRZz/3OTCkiIiIiihQMShEREYWwBrMIAIhTOH6vNlhRo7cEsUdERERERL7BoBQREVEIs9gdf6qlQJTM8fdjVfrWVyAiIiIiChOyYHeAKJDMNjtOVulR0WiGyWpHvFqG7AQNkqMVwe4aEVGLLHZHppRcAsQrHEP5jukMQe4VEREREVHHMShFnYLVLuJQaT0Kz9S7H/Bc9p+pR9/UKECmDFLviIhaZ3VmSskEQOm8a5+uNSJeGrw+ERERERH5AoNSFPEkiVn494Ey1BgcNVjiVDJ0S9RAJZegvMGEk9UGHKloQvRv5sNstUMh46hWIgodruF7coljCB8AVOnNiI8JXp+IiIiIiHyBQSmKaJ/8XInY/1uMGoMFarkEo7IT0DNZA0EQ3G3O1hnx/45UAl0HI3/3UTwxuU8Qe0xE1Jwru1MmAVTOu3ZVkwU9Y3gLJyIiIqLwxv/RUkQSRRFvflOMtV+chCBXIitOhQm9k6CWXzzeJTNOhav7JGPnD+XY8UM5ftM3BaO6JQah19RZjL1yFMpKSz1q2yU9HV98ts/PPaJQ1nKmlAW8hRMRERFRuOP/aCniWGx25H90FP/9oRwAYDz4IX7zx3sgOS876kJZ8WqYDv0/qAZPxlO7j+HdO4ZDyWF85CdlpaVY8OYej9qumDnez72hUHd+TSmVMyhVY7DCLoqtr0REREREFAb41E0RpdZgwbytB/HfH8ohEYBHJvWE4cuNlwxIuRi+3YqUaAXO1hnx/uHyAPSWiKhtrkwpmQRQSACp83JmsDIoRUREREThjUEpihjHKpsw8+3vUVBchyiFFM/830DcnJPp+QYsRtx2RVcAwNvfnWEWAhGFBFdNKbkEEAQgUeNIcjZYeI0iIiIiovDGoBRFhI9/rsRd73yPkjojMuNU+MctQzCmu/d1oa4f2AUxShlO1xjw+S9VfugpEZF3XMP35M4MqSS1HABgcC0gIiIiIgpTDEpRWKs3WrD4gyN49L8/wmCxY8Rl8Xjz9znolRLVru1pFFLkatMBAFuLPCtETUTkT+cP3wOYKUVEREREkYOFziksiaIIeY8R+N0bBdA1mSEAuO2KLNw3tjtkkrbrR7WkUd+EXr2zIYnrgrgZK/HVcR16DxoI0djQrJ0gEZCW1oUzohGR39nsIlylo+TOoFScwvFnk9kanE4REREREfkIg1IUVkRRxOkaAwqK6xB9zTzomszITlBj0eQ+GJwR27Ft2+3uGdG2HyiDrsmMqUveQf8uMc3aaTRKLL5pVIf2RUTkCYPF5v67K1MqQe24dRsZkyIiIiKiMMegFIUFg8WGo5VNOFLeiDrnk5hoNuCPV/bBzBFdoZJLfbq/nska6JrMOKbTXxSUIiIKFL1z7J6Ac+PtE1WO6x1n3yMiIiKicMeaUhSy7KKI4hoDPvqpEm8XnMXXp2pRZ7RCLhEwJDMWdW//GbPHdPN5QAoAeiZpAADlDSbozbaLlruG+rX1M/ZKZlQRUfs1Oa8/rpn3RFFElNTxGoNSRETNlZaWYvbs2Rg6dCgmTZqEN954w73s8OHDuOmmm6DVanHjjTfi0KFDzdbdsWMHrrrqKmi1WsyZMwfV1dXuZaIoYtWqVRg1ahRGjBiBFStWwG7nZBNERL7ATCnyiNVmR3mjCXKJBIkaOWRS/8UzTVY7jpQ34nBZAxrPCwilRivQJzUaPZI1UEgl+J+p0W99iFLKkBylgK7JjDN1BlyeEt1s+flD/S5lxczx/uoiEXUC5welAMBqMeHzn84C0MBoY1CKiOh8DzzwADIyMrBt2zYcO3YMDz/8MDIzMzFmzBjMmjUL1113HZ566im88847mD17Nj766CNoNBocOHAACxcuxJIlS9C3b18sX74ceXl5WLduHQDg9ddfx44dO7BmzRpYrVY88sgjSEpKwt133x3kIyYiCn8MSlGrRFHE7p912FZUgu/P1MH1/KOQCujfJQZX90nF5H4piFXJfbK/U9V6qMfOxD8LzsJqd+xMKZOgd3IU+qRGITFK4ZP9eCorXuUIStUYLwpKEREFgitTU3be/A1RSse10GRzFEInIiKgrq4OhYWFWLZsGbp164Zu3bph3Lhx2Lt3L+rq6qBUKrFgwQIIgoCFCxfis88+w65du5Cbm4uNGzdiypQpuOGGGwAAK1aswMSJE1FcXIyuXbtiw4YNmD9/PoYPHw4AePjhh/H8888zKEVE5AMcvkcXadQ3ofeQIcj580t4bMeP+K7YEZASrWaIdhvMNhGFZ+ux8pNj+PXfP8Nfdx7BwZJ6iKL3D0eiKOLb0zV4cPsh3PT6d1ANvApWu4hEjRzjeybi1mGZGN09IeABKQDoGq8CAJypM8LejmMjIuqoJmehc9l5d2v5eX9vbGF4MRFRZ6RSqaBWq7Ft2zZYLBYcP34c+/fvR79+/VBUVIRhw4ZBEBwRfkEQMHToUBQWFgIAioqK3AEnAEhPT0dGRgaKiopQXl6O0tJSXHHFFe7lw4YNw9mzZ1FRURHQYyQiikTMlKKLSGNSkXXPWjSabJAKAgZnxODy1CjEKB0flzqjFWdqDfipognVemDXjxXY9WMF+neJwR/H98DI9BjI2xje12C0YteRCmw/UIqjlU3u180nv8cN1/4GGbFK938cgiU1RgmFVIDJaoeu0YzUGGVQ+0NEnYsoiqhpNABoHoiSCI7MKasI1ButSA9S/4iIQolSqcSiRYuwbNkybNiwATabDbm5ubjpppvw8ccfo1evXs3aJyUl4ejRowCAiooKpKamXrS8rKwMlZWVANBseXJyMgCgrKzsovWIiMg7DEpRMwaLDam/W4ZGkw2xKhl+0zcF8ermw/Pi1XLEq+UY0CUGzzxyJ25dtA4fHqnA4bIGPPhuEZI0cky6PAUjs+NxeWo0EtRyWO0iKhpNOFLeiK9OVOPTY1UwWR0FIlUyCaYNSMMtQzPx65G3IXPG9cE49ItIBAEZcSqcrDbgbJ2RQSkiCiiDwYCPD58FIGk2fA8AFBLAanMEpYiIyOGXX37BxIkTceedd+Lo0aNYtmwZRo8eDYPBAIWieda9QqGA2WwGABiNxlaXG41G9+/nLwPgXt9TQf6+tU2u/vm7n+dvXxACc14CdWzBwuMLb+FyfP7qH4NS5GYXRXz8sw6y2BTEqWSYNiANGkXrM9sJggBb5Qk8MbkP5l3ZHf8+WIZtB0pRXm/C5sISbC4sueT+eiRpcMPgdFzbLxVxat/UpfK19FglTlYbUN5gCnZXiKgTsgsyAPZmmVIAoJACehvQYGJQiogIAPbu3YstW7Zgz549UKlUGDRoEMrLy/HSSy+ha9euFwWQzGYzVCpHqQalUtnicrVa3SwApVQq3X8HALVa7VUfk5Ji2nVsgebvftpseqjVCue+opGcHLjzEi7vQXvx+MJbpB9faxiUIreis/UorTfBbjbgmiE9LhmQulCiRoG7R12GP0/phx3fncaeY1U4VNqAk9V6d9HyKIUUPZI0GNo1HhN6JWFAl5igD9FrS1qM4z8r5Q0miKIY8v0loshicc44LrsgKOUKUtWbWFOKiAgADh06hOzsbHegCQD69++Pl19+GcOHD4dOp2vWXqfTuYfepaWltbg8JSUFaWlpAIDKykpkZWW5/w4AKSkpXvWxqqoBoVymVBAcD8X+7mdVVSMMBrP771Kpxn87cwrUsQULjy+8hcvxufrpawxKEQCgzmDB92fqAADVu9chfvwz7dqOXCrBuJ5JGNsjCYCjJoreYsM110zAmbPFOAPgMwDPtbJ+Y1Nju/brL0lRcsgkAsw2ETUGCxI1gS+4TkSdl9X5P5OLMqVcQSkO3yMiAuCo+XTq1CmYzWZ3dtPx48eRlZUFrVaLV155xf0FoyiK2L9/P+69914AgFarRUFBAXJzcwEApaWlKC0thVarRVpaGjIyMlBQUOAOShUUFCAjI8PrelKiiJB+4HTxdz/P33agz0m4vAftxeMLb5F+fK1hUIoAAHtP1sAmAplxKpw+/KnPtisIAqIUMpSfLcaCN/e02f6vNw712b59QSIISI1RoKTOhLJ6E4NSRBRQ7kypFmpKAQxKERG5TJo0CStXrsTjjz+O++67DydOnMDLL7+MBx98EJMnT8bq1auxfPly3HLLLdi0aRMMBgOmTJkCAJgxYwZuu+02DBkyBIMGDcLy5csxYcIEdO3a1b181apV6NKlCwBg9erVuOuuu4J2rEREkeTSU6SFCLPZjGnTpuHrr792v1ZcXIw77rgDQ4YMwbXXXosvvvii2TpfffUVpk2bBq1Wi9tvvx3FxcXNlr/xxhsYN24ccnJy8Nhjj8FgMATkWEJRab0RxbVGCAIwpntCsLsTcro4C5yzrhQRBZq1leF7Cg7fIyJqJiYmBm+88QYqKysxffp05Ofn47777sPvfvc7REdHY926de5sqKKiIqxfvx4ajWPYWE5ODpYuXYq1a9dixowZiIuLQ35+vnvbd999N6699lrMnTsXf/rTn3D99dfjjjvuCNKREhFFlpDPlDKZTHjooYfcU7YCjiFhc+bMweWXX46tW7di9+7dmDt3Lnbu3ImMjAyUlJRgzpw5mDdvHsaNG4e1a9fi/vvvx3vvvQdBEPDhhx9izZo1WLlyJZKSkpCXl4eVK1di0aJFQTzS4BBFEd+edgzb65saHbIFx4MpzRmUqmjwboYVIqKOsjlTuKUXZErJnSX/WOiciOicXr164fXXX29x2eDBg7F9+/ZW183NzXUP37uQVCpFXl4e8vLyfNJPIiI6J6QzpY4dO4abb74Zp0+fbvb6vn37UFxcjKVLl6Jnz56YPXs2hgwZgq1btwIANm/ejIEDB+Kuu+5C7969kZ+fj7Nnz+Kbb74BAGzYsAEzZ87ExIkTMXjwYCxZsgRbt27tlNlSJfUmlDeYIBUE5GTFBrs7ISk5yjFkr95khcmVtkBEFADOeSIg4fA9IiIiIopAIR2U+uabbzBy5Ei8++67zV4vKipC//793Sm3ADBs2DAUFha6lw8fPty9TK1WY8CAASgsLITNZsPBgwebLR8yZAgsFguOHDni3wMKQQdL6gEAfVKjEKUI+cS5oFDJpYhROtISdE3MliKiwLE5q122FpRq4PA9IiIiIgpjIR2FuPXWW1t8vbKy8qLZLpKSklBWVtbm8vr6ephMpmbLZTIZ4uPj3et7ShDabtNSe2/X85cavQXFtUYAwMD09k/teOFxBfL4ArWv5CgFGkwGVDWZ0dvLdUPl/fZEqH1G/cF9bEL4HKc3/fTmPQyX4+/MXJlS0gtelzNTioiIiIgiQEgHpVpjMBjcU726KBQKmM3mNpcbjUb3762t76mkpPYFctq7XkcJEgEajdL9+97TtQCAnilRSE+Kbtb2/HZtbTM5ufnxtHR8F+77Ujqy79badXTf6QkanKg2oOa8B0BPtulpH0NNsD6jvuDp+y0IwXtvvPlMtvczFM7vIZ3T6vA9Z5SqnjWliIiIiCiMhWVQSqlUora2ttlrZrMZKpXKvfzCAJPZbEZsbCyUSqX79wuXq9Vqr/pRVdUA58gKjwiC40HR2/V8RbSL0OsdM8hZbHb8VNoAAOibEuV+3eXC3y+1TZ3OsZ1LHd/5+25Le/bdVruO7jvWOVamvM7YZtv29DFUBPsz6gttvd+CAKjVSohi8N4bbz6T3n6GvHkPXW0pdNnaqCnVaLLBZhchvbABEREREVEYCMugVFpaGo4dO9bsNZ1O5x6Sl5aWBp1Od9Hyfv36IT4+HkqlEjqdDj179gQAWK1W1NbWIiUlxat+iCLa9eDe3vV86RedHha7iFiVDOmxnmVstOaiAFQAjy9Q+0lxFjuvM1phsnpXwyXY73V7hMJn1F/cxxVGxxiu1xnquLYKnYsAGk1WzpxKRERERGEppAudt0ar1eKHH35wD8UDgIKCAmi1WvfygoIC9zKDwYDDhw9Dq9VCIpFg0KBBzZYXFhZCJpOhb9++gTuIIDtS3ggA6JcWDYGFZdqkkksR7Rwvo2tgsXMiCozWMqUkAiBzvsa6UkREREQUrsIyKDVixAikp6cjLy8PR48exfr163HgwAFMnz4dAHDjjTdi//79WL9+PY4ePYq8vDxkZWVh5MiRABwF1F999VXs3r0bBw4cwOLFi3HzzTd7PXwvXFXrzahsMkMQgN4pUcHuTthI0DgyEXRNng27IiLqKHeh8xa+O3DVlaozWgLXISIiIiIiHwrLoJRUKsWLL76IyspK5Obm4r333sPatWuRkZEBAMjKysILL7yArVu3Yvr06aitrcXatWvdGUFTp07F7NmzsWjRItx1110YPHgwHnnkkWAeUkD9otMDAC6LV0Mtv3BOJ2pNosYxhK+qkZlSROR/oii2OnwPABTOSFUdM6WIiIiIKEyFTU2pn376qdnv2dnZ2LhxY6vtx48fj/Hjx7e6fNasWZg1a5bP+hcuRFHEscomAEAvZkl5JdGZKVXVyEwpolBWWlqKxYsX49tvv0V8fDxuv/123HHHHQCAw4cP44knnsDPP/+MXr16YcmSJRg4cKB73R07duC5555DZWUlxo4di2XLliExMTEox2G1nysK1mJQSiIAEFFnYKYUEREREYWnsMyUovYrqzeh0WyDXCrgsnhVsLsTVlzD96qamClFFMoeeOABaDQabNu2DY899hiee+45fPTRR9Dr9Zg1axaGDx+Obdu2IScnB7Nnz4Ze78gePXDgABYuXIi5c+fi3XffRX19PfLy8oJ2HBbbuaBUSzmtruF7jSZmShERERFReGJQqpM5XuV4+OqeqIFMyrffG3FqOQQAJqsd0ujgZE4Q0aXV1dWhsLAQ9913H7p164arrroK48aNw969e7Fz504olUosWLAAPXv2xMKFCxEVFYVdu3YBADZu3IgpU6bghhtuQN++fbFixQrs2bMHxcXFQTkWs83u/ntLmVJy54ssdE5ERERE4YpRiU5FwMlqAwCge5ImyH0JPzKJgDi1Y8SrPPmyIPeGiFqiUqmgVquxbds2WCwWHD9+HPv370e/fv1QVFSEYcOGuesLCoKAoUOHorCwEABQVFSE4cOHu7eVnp6OjIwMFBUVBeNQ3JlSAoCWJkl1ZUo1MFOKiIiIiMIUg1KdiLRLL+gtjqF7mXEcutceCWrHED55cnaQe0JELVEqlVi0aBHeffddaLVaTJkyBVdeeSVuuukmVFZWIjU1tVn7pKQklJWVAQAqKiouuTzQXJlSLWVJAecypTh8j4iIiIjCVdgUOqeOU3S/AgCQnaCGtLWnHLqkRI0CJ6oNzJQiCmG//PILJk6ciDvvvBNHjx7FsmXLMHr0aBgMBigUimZtFQoFzGZHnTij0XjJ5Z5qKauptTaXausqdH7h5dq1zvmZUp7sMxx5cp46O56jtvEctY3niIiIgoVBqU5CFEXIeziCUr4cuteob0Kv3ueyhgSJAPG8GaPc7ZoafbbPYHIP30vMDHJPiKgle/fuxZYtW7Bnzx6oVCoMGjQI5eXleOmll9C1a9eLAkxmsxkqlSNzVKlUtrhcrVZ71YekpBiftNXUOWoAyiSAWq10/l0EpFLIZXJEiRIAVhhtQHKy5/sMR96c086K56htPEdt4zkiIqJAY1Cqkzhc3ghpTDJkEgFZPhy6J9rtWPDmHvfvGo0Ser3ponZ/vXGoz/YZTPHO4XuyhEyIouiuTUNEoeHQoUPIzs52B5oAoH///nj55ZcxfPhw6HS6Zu11Op17yF5aWlqLy1NSUrzqQ1VVA8SLY/PNCILj4e9SbSurHMF8QQQMBsd11WI2QZDKYJXaAZtzRtBGI3S6Bq/6GC48OU+dHc9R23iO2nb+OQIYnCIiosBhTalO4pOfHQ9aXRPUnHWvA+JUjjiuVB0Do9XeRmsiCrTU1FScOnWqWcbT8ePHkZWVBa1Wi++//x6i86lUFEXs378fWq0WAKDValFQUOBer7S0FKWlpe7lnhJFz37aamu2tTx8z7Wuu6aU0erxPsPxx5tz2ll/eI54jnx9joiIiAKF0YlOQBRF/O9oJQCge6J3w1CoOZlUglhnYKrWYAlyb4joQpMmTYJcLsfjjz+OEydO4JNPPsHLL7+M2267DZMnT0Z9fT2WL1+OY8eOYfny5TAYDJgyZQoAYMaMGfjPf/6DzZs348iRI1iwYAEmTJiArl27BuVYLM5C59JWEjJdNaXqWeiciIiIiMIUg1KdwC86PYprjRCtZnRNYFCqoxI0jkLIdQY+CBKFmpiYGLzxxhuorKzE9OnTkZ+fj/vuuw+/+93vEB0djXXr1qGgoAC5ubkoKirC+vXrodE46uzl5ORg6dKlWLt2LWbMmIG4uDjk5+cH7Vhay5RycWVKNZlssDO1gYiIiIjCEGtKdQKfH68CAFjO/ACFtFeQexP+EjQKnKrWM1OKKET16tULr7/+eovLBg8ejO3bt7e6bm5uLnJzc/3VNa+4MqVaC0opnF8riXAEpmJUvKUTERERUXhhplQn8PkvzqDUqe+D3JPIkBDlKC5cZ2RQKpQcq2zCF8erIIlPD3ZXiHzC0kamlFQiQOEc21dv4vWIiIiIiMIPv1aNcNV6Mw6VOmZSsZwuDG5nIoRr+F4th++FhDqDBSs+Pob/95OjblrcLSvw2S9V+FX3RMhae5onCgPmNjKlACBGKUOV3oJGow2IC1DHiIiIiIh8hJlSEe7L49UQAfRNjYbYVBPs7kSEhChHUKrBaIXNzjouwWS22vHwf37A//upEgKAXslREEU7fqpowkdHKiGyzg6FMVdNqdYKnQNAtNJR7ZyZUkREREQUjhiUinBfHK8GAIztkRjknkSOKIUUdosRIoBGznoVVKv/9wsKz9YjSiHF67cOwTszh6Hx/ZWQSgScqTPix/LGYHeRqN3cNaUu0SbaOQVfg8kWgB4REREREfkWg1IRzGy1Y99JR3bU2J5JQe5N5BAEAdbacgBAvZFBqWA5VFqPbQdKIQB4clo/DEiPBQBYzxzCiMviAQBfn6pl4JDCVls1pQDH8D0AaOS1iIiIiIjCEINSEez7M3XQW2xIilKgX1p0sLsTUax1ZQCABgY8gkIURTzzv+MAgKkD0vCr7s0zAQd0iUZajAJWu4iDzppqROHG4tXwPV6LiIiIiCj8MCgVwT4/7ph1b2z3REgEFnz2JWutIyjFTKng+Px4NQ6W1kMtl+D+sd0uWi4IAnKyHFWfj5Q3wmjh0CYKL6IoQm8yAWgrU8o1fI/XIiIiIiIKPwxKRShRFPG5s57UuJ6sJ+Vr1joO3wumfxacAQDcNCQDKdHKFttkxamQpJHDahdxmLWlKMwYDAZ8d8Ixo+SlglLRCsfwvQZei4iIiIgoDDEoFaGOV+lRUmeEQipgRHZCsLsTcVyZUsxOCLyfKhpRUFwHqUTAzTmZrbYTBAGDMhx1pn6uaOJMfBR+pI6AEzOliIiIiChSMSgVoVyz7g2/LB5quTTIvYk85w/fY7AjsN7dfxYAcNXlyUiLaTlLyqVbohoyiYAGkxUVjeZAdI/IZ+yi5zWlWNCfiIiIiMIRg1IR6vNfnPWkenDWPX+w1lc4/rSLMFjsQe5N56E327D7Z8eQppuGZLTZXi6VoHuSBgBwtLLJr30j8jW7M959qRu1a/gehxITERERUThiUCoC1eotOFhaDwAY14P1pPzCZkW0gsNmAu1/R3UwWOzoGq/CYOfQvLb0To4CABzX6WG3M6uNwofNFZTi8D0iIqJ2s9vtqKioQHl5Oex2fplMFGoYlIpAX52shl0EeqdEoUusKtjdiVgxKmYoBNqOw44C89f2T4Pg4YyS6XFKqOUSmGx2lDaY/Nk9Ip+yexCUcg3fY6FzIiKilul0Ory8uwir//MtdDpdsLtDRBdgUCoCfeYcuscsKf+KZVAqoCoaTCg4XQvAEZTylEQQ0DVeDQA4Va33R9eI/MKzTCnn7HvMlCIiImpVVFwiouP5bEQUimTB7gD5ltlqx76TNQCAK3tGdj2pRn0TevXObrtdU6Nf9s+HwcD631EdRACDM2KREeddBmB2oho/VzbhVI0Bo7txCB+FB1em1KUKnUcpHN8tmax2mK12KGT8romIiIiIwgeDUhFm/5laNJltSIpSoF+XmGB3x69Eux0L3tzTZru/3jjUL/tnplRgfXLUkW7968uTvV43K04FqSCg0WRDtd6CqCgOa6XQ58nwPYnt3KySDSYrkmQKP/eKiIiIiMh3GJSKMJ/9Ug3AMXRP4mHNHWofV1CKtVzab+yVo1BWWtpmO0Edi/jbXwAECSb29j4oJZNKkBmvwukaA4prDeiaEtkBW4oMNtERlbpUUEoqESCXABa7MygVxaAUEREREYUPBqUiiCiK+NxVTyrCh+6FAtfwPb3FBqvNDpmUw2a8VVZa6lG224/ljfjieDX6d4lBejuL92fFOYJSZ+uM7VqfKNDcw/faaKeQCrDYRQbIiYiIiCjs8Ck6ghytbEJZgwlKmQQjLosPdncinlImgcJZ7KWedaX86nSNAQAwoVf7g62uOlTl9SZYbZwOmEKfJ8P3ALivQ6xvR0REREThhkGpCOKadW9kdgJU8ra+W6eOEgSBQ/gCwGYXUeLMbvpV9/bPmhKvlkEjl8Imwr09olDmyex7ACB3NuB1iIiIiIjCDYNSEeTz4+fqSVFgxKjkAJgp5U+l9UZY7SLsTTW4PCWq3dsRBAEZcUoAQHG13lfdI/IbzzOlHH/Wmyz+7RARERERkY8xKBUhKhtNOFzWAAAYy3pSAROr5Ax8/lZc68hqspw+AKGDxfsznUP4imsYlKLQ11amlCiKMBgMkMExHLWipgGiszg6EREREVE4YFAqQriypAamxyCZsy8FDIfv+V+xs56Upbiow9ty1ZWqqDdBUGg6vD0if3IXOm8lKGU1m/DqZz9CCkfDL49VwGAwBKh3REREREQdx6BUhHDNuncls6QCKkbFTCl/qjdaUWe0QgBgOXOow9uLVsoQp5JBBCDL6Nfh7RH5iyiKHg3fkytUUDjv5DaBtQSJiIiIKLwwKBUBDBYbvj1dCwAY14NBqUCKUToeAhvNNg6b8YMztY6sj7QYJWD2TQaIawifLLO/T7ZH5A9W+7nrSduFzh1/mm28BhERERFReAnroFRpaSlmz56NoUOHYtKkSXjjjTfcyw4fPoybbroJWq0WN954Iw4dap5lsWPHDlx11VXQarWYM2cOqqurA9x73/nmVA1MVjsyYpXomcwhSYEUpXBkStnsIoxWe5B7E3lOO4fudU1Q+2ybriF88swBPtsmka9ZzgswtZX/5ApKWXgJIiIiIqIwE9ZBqQceeAAajQbbtm3DY489hueeew4fffQR9Ho9Zs2aheHDh2Pbtm3IycnB7Nmzodc7ihsfOHAACxcuxNy5c/Huu++ivr4eeXl5Aelz/4GD0LNXNnr1vvTP2CtHebzNz5xD98b1TOpwIWjyjlQiQCN3ZktxBj6fstpFlNSbAABd41U+2256rGMGPmliJioaTD7bLpEvmW3nIkyeZkqZGBgnIiIiojAjC3YH2quurg6FhYVYtmwZunXrhm7dumHcuHHYu3cv6urqoFQqsWDBAgiCgIULF+Kzzz7Drl27kJubi40bN2LKlCm44YYbAAArVqzAxIkTUVxcjK5du/q13yUlJVjw5p42262YOd6j7dlFEV84i5yPYz2poIhWSqG32NBgsiElOti9iRxl9UbY7CKiFFIkauQ+265KLkVqjBIVDSYUnKnFlH5pPts2ka+4MqUEAG1916BgphQRERERhamwzZRSqVRQq9XYtm0bLBYLjh8/jv3796Nfv34oKirCsGHD3FlDgiBg6NChKCwsBAAUFRVh+PDh7m2lp6cjIyMDRUUdn90r0H4obUC13oIohRRDs+KC3Z1OKUbpiO0yU8q3SuocWUyZcSqfZwBmOYcDFhTX+XS7RL7iqinVVpYUwOF7RERERBS+wjYopVQqsWjRIrz77rvQarWYMmUKrrzyStx0002orKxEampqs/ZJSUkoKysDAFRUVFxyeThxDd37VfdEyKVh+3aGtWgGpfyipN4IAEiPU/p821kJjtpr+4trfb5tIl9wZUp5G5TihAtEREREFE7CdvgeAPzyyy+YOHEi7rzzThw9ehTLli3D6NGjYTAYoFAomrVVKBQwm80AAKPReMnlnvI2ecPVXhAAT54bPNn+58cdQanxvZK87o+veXt84ailcxztmoHPZPN4nVB1/nsYTGarHbpGx7/HjFhHPalGfRN69c5uc93GpsZLLhcEICNeBdFuR3GtERWNJsfsfiHMm/fDm/cw2O8ztc6VKeXJW+QKSokADBY7ovzWKyKi0GY2m5Gfn48dO3ZALpdj+vTpePDBByEIAg4fPownnngCP//8M3r16oUlS5Zg4MCB7nV37NiB5557DpWVlRg7diyWLVuGxMREAI6A/+rVq7FlyxbY7XZMnz4dDz/8MCQSfiFMRNRRYRuU2rt3L7Zs2YI9e/ZApVJh0KBBKC8vx0svvYSuXbteFGAym81QqRwPt0qlssXlarV3M3wlJcW0q+9qddsPwIJEQHLypbd/ukqPX3R6SCUCrht2GeLaqLsjSARoNJ49fHvarqW2rR1fIPYdqHbnt02KtQKoQZPFdtH6nryPoai9n21vtfaZLKtshAggXi1HaoLjEVu027F48742t/nQlAEevY823UnIUnvgaK0JA7one933jvDm32J7P0OBeg/JP6x2x1g8TzKlpAIgQIQIAY1mGwL7aSYiCh1/+9vf8PXXX+PVV19FU1MTHnzwQWRkZOC3v/0tZs2aheuuuw5PPfUU3nnnHcyePRsfffQRNBqNexKkJUuWoG/fvli+fDny8vKwbt06AMDrr7+OHTt2YM2aNbBarXjkkUeQlJSEu+++O8hHTEQU/sI2KHXo0CFkZ2e7A00A0L9/f7z88ssYPnw4dDpds/Y6nc49ZC8tLa3F5SkpKV71oaqqwauMIFdWgsFganM90S5Cp2u4ZJv/FJwFAAzJjIVFb4ROb2xzm3q9Z7ONedru/LaC4AhItXZ8/tx3oNq5jvH8tnI4Hh7rDZaL1vfkfQwlguAIZnj72W6v1j6TJyod2U5dYpTNlvvifXS9h9bSHyFL7YFPD5dhbNdYL3veMd78W/T2M+TNe+hqS6HHXVPKg7aC4MiWMtuBBg4jJqJOqra2Flu3bsXrr7+OwYMHAwDuuusuFBUVQSaTdWgSpA0bNmD+/PnumrQPP/wwnn/+eQaliIh8IGxzTlNTU3Hq1KlmGU/Hjx9HVlYWtFotvv/+e3dtDVEUsX//fmi1WgCAVqtFQUGBe73S0lKUlpa6l3tKFL3/ca3ni+276kld2TPJ4337k7fHF45aOjZXoXOzTYS5hSnZ2/M5CeZPIPvcmpI6R4A1ww/1pFz7tZz9EQBQUFwblHPsbZ/99R5SaPKmphQAyAVH+9aGERMRRbqCggJER0djxIgR7tdmzZqF/Pz8Dk2CVF5ejtLSUlxxxRXu5cOGDcPZs2dRUVERmIMjIopgYRuUmjRpEuRyOR5//HGcOHECn3zyCV5++WXcdtttmDx5Murr67F8+XIcO3YMy5cvh8FgwJQpUwAAM2bMwH/+8x9s3rwZR44cwYIFCzBhwgR07do1yEfluQajFfvPOGYOG9cjKci96dzkUgmUMsc/JRY77zijxYZqvQUAkB6raqN1+1nLfoZEAIprjShvuHTW0tgrR6FX7+w2f8ZeOcpv/aXOxeaqKeVpUMp5N2emFBF1VsXFxcjMzMS///1vTJ48Gb/+9a+xdu1a2O32Dk2CVFlZCQDNlicnOwZKh+MkSUREocYvw/f27duHkSNH+nwa9/PFxMTgjTfewPLlyzF9+nQkJibivvvuw+9+9zsIgoB169bhiSeewL/+9S/06dMH69evh0bjmHErJycHS5cuxd///nfU1dVhzJgxWLZsmd/66g97T1bDZhfRPVGDrgne1cIi34tWSmGy2tFgtiGRVYY7pLTeESBKUMuhUUj9tyOzAX1So/FjeSP2n6nFlH5prTYtKy3Fgjf3tLnJFTPH+7KHEScQ94ZIYbF7mSklYaYUEYWuQFz/9Xo9Tp06hU2bNiE/Px+VlZVYtGgR1Gp1hyZBMhqN7t/PXwbA75MkBVqgJrw5f/uCEJj9nX9sof4+tEeoTFbkLzy+0OCv/vklKPWnP/0JcrkckydPxrRp0zBkyBB/7Aa9evXC66+/3uKywYMHY/v27a2um5ubi9zcXL/0KxBcQ/fG9WSWVCiIVshQ1WRhppQPuIbupfth6N6FhnWNx4/ljSgorrtkUIp8I1D3hkjgTU0pAJA7/5PQwKAUEYWgQFz/ZTIZGhsbsXr1amRmZgIASkpK8M477yA7O7vdkyCdH4BSKpXuvwMI2CRJgebvftpseqjVCue+ov0+KZDNpodK5dhfYqL/9xdM4fIZay8eX2TyS1Dqyy+/xJdffoldu3Zh1qxZiI6OxpQpUzB16lT079/fH7vsVKw2O746UQMAuLJnYpB7Q8C5ulIMSnVcSb2znpQfh+65DOsah43fncH+4lq/74t4b/CG1duaUq5MKTOvQUQUegJx/U9JSYFSqXQHpACge/fuKC0txYgRI9o9CVJamuNLq8rKSmRlZbn/7tqnNwI1kUx7BWrCm6qqRhgMZvffpVKN/3bm3IfRaIZKpUB1tf/3FwyBnqwo0Hh8ocFfkyT5JSglk8kwfvx4jB8/HlarFV999RU++eQT3HrrrUhLS8N1112H3NxcZGRk+GP3Ea/wbD0aTFbEq+UYmB7YWcOoZdFKxzAzDp3pGL3ZhlqD46E6Pdb/mVJDMuPcdaXK6o3oEoBAWGfGe4PnXJlSnmZJy5wNeQ0iolAUiOu/VquFyWTCiRMn0L17dwCOSZAyMzOh1WrxyiuvQBRFCIIA1yRI9957r3vdgoIC9yiK8ydBSktLQ0ZGBgoKCtxBqYKCAmRkZFxUh6ot4TLJiL/7ef62A3FOWpoIJlLx+MJbpB9fa/xa6NxsNmPPnj14//338cEHHyAhIQGTJk3CyZMnMXXqVGzcuNGfu49YrqF7Y3skQurp1+jkV9HMlPIJV5ZUUpQcKrkf60k5RStl6N/FEe3/5nSt3/dHDrw3tM1id8zk6W2mFIfvEVEo8+f1v0ePHpgwYQLy8vJw5MgRfP7551i/fj1mzJjR4UmQZsyYgVWrVuHrr7/G119/jdWrV+P222/3yTkhIurs/JIptXv3buzatQuffvop5HI5fvOb32Dt2rXNplp9++238cwzz+APf/iDP7oQsURRxOfHWU8q1LiCUpz5qmNc9aQCMXTPZUR2Ag6VNuCbUzX47cAuAdtvZ8R7g+dsXhc6d/zZaGZQiohCT6Cu/6tWrcKyZcswY8YMqNVq/P73v8dtt93W4UmQ7r77blRVVWHu3LmQSqWYPn067rjjjnb3k4iIzvFLUOovf/kLrrrqKjzzzDMYM2YMpNKLMx4GDhyIO++80x+7j2inagw4U2uEXCpgZHZ8sLtDTjHO4XsGix1WuwgZM9japbTOMfNeRlwAg1KXxeO1fafx7ela2EURklCf9iKM8d7gOYu3NaUEV6YUA+NEFHoCdf2PiYnBihUrWlzWkUmQpFIp8vLykJeX16H+ERHRxfwSlPrqq6/Q2NiI+vp6901n586duOKKK9wFAbVaLbRarT92H9G+OF4NABiaFYcohV/ePmoHpUwCmUSA1S6iyWRFnFoe7C6FnUaTFfUmKwQAXWL8X0/KZXBGLFQyCar1Fvyia0LvlOiA7buz4b3Bc97WlHJnSnH4HhGFIF7/iYioNX6pKbV//35cffXV+O9//+t+bcOGDbj22mtRUFDgj112Gl8cd9WT4tC9UCIIAoudd5Br6F5KtAIKmV/L3TUjl0owtGscAGDfyZqA7bcz4r3Bc14P3xNcs+/x+kNEoYfXfyIiao1fnvyefvpp3HvvvZg/f777tU2bNuGee+7Bk08+6Y9ddgoNRisKz9YDcBQ5p9DCulIdU1If+KF7Lr/q5vj39OWJ6oDvuzPhvcFzFldQysP2rkwpXn+IKBTx+k9ERK3xS1Dq5MmTmDx58kWvT5kyBceOHfPHLjuFfadqYLOL6JaoRla8OtjdoQtwBr72E0UxKEXOXcY4g7yFZ+rQYOT75y+8N3jO6nWhc0d7V107IqJQwus/ERG1xi9BqR49euCDDz646PVPPvkEl112mT922Sl86Ry6N6Y7h+6FIlexcw6f8V690Yomsw0SAUiLUQR8/1nxanRP0sAmAntP+i5bymoX8d7BMjz07x9w64YCPPzvH/DpUZ3Pth9uAnVvMJvNWLJkCa644gr86le/wjPPPANRdARqDh8+jJtuuglarRY33ngjDh061GzdHTt24KqrroJWq8WcOXNQXR2c7Dmrs9C5p3X3Zee1a2RglYhCDJ8NiIioNX6plP3AAw/g/vvvx5dffokBAwYAAH766Sd89913eOGFF/yxy4hns4v48oSj3s24ns2H7o29chTKSkvb3EZjU6Nf+kYO0QpmSrWXa+hearQSMmng6kmdb1yPRJyo0uOL49W4pm9qh7d3TNeEJ3Yewc+VTe7XjlY2Yc8vVYi6Zn6nnKUxUPeGv/3tb/j666/x6quvoqmpCQ8++CAyMjLw29/+FrNmzcJ1112Hp556Cu+88w5mz56Njz76CBqNBgcOHMDChQuxZMkS9O3bF8uXL0deXh7WrVvns755yttMKYngCExZRccQvngNJ1sgotDBZwMiImqNX4JSV155JbZv346tW7fi+PHjkMlk6Nu3L5YsWYKuXbv6Y5cR73BZA2oNFkQrpdBmxDZbVlZaigVv7mlzG3+9cai/ukdgTamOKHUN3YsL3Kx7FxrbIwkbvj2Dz49XwWy1d6jY+v4ztXjo3z+g0WRDrEqGGUMz0Sc1GoVn6/DPgrNAjyvw2bEqTOydBMHTVJgIEIh7Q21tLbZu3YrXX38dgwcPBgDcddddKCoqgkwmg1KpxIIFCyAIAhYuXIjPPvsMu3btQm5uLjZu3IgpU6bghhtuAACsWLECEydORHFxccDvXVa7HYB36cxyCWC18RpERKGHzwZERNQavwSlAKB379549NFH/bX5Tsc1696o7MSgZZLQpblm32sy22AXRUg6UbChI0RRREm9KygV+HpSLoMzYpESrUBloxl7T9ZgfK/2DZM9WtmIP209BKPVjiGZsXj6t/2RqHEMSRzXMwkjshMw593v8UuVHikxCgxKj21ji5HF3/eGgoICREdHY8SIEe7XZs2aBQD461//imHDhrkDgYIgYOjQoSgsLERubi6Kiorwxz/+0b1eeno6MjIyUFRUFISglHeZUoAjKGWwgXXRiCgk8dmAiIha4pegVH19PV577TUcPHgQVqvVXcvDZcOGDf7YbUTbd6oWAPCr7gnB7Qi1SqOQQhAAUQT0Zps7c4ourdZghcFih1QQkBodvEwpqUTA1X1S8M+Cs/h/RyraFZQSVNF4+N8/wGi144rL4vHMDQOgkkubtRmZnQDDV29DM24mCorr0Cs5CuoL2kSqQNwbiouLkZmZiX//+994+eWXYbFYkJubi/vuuw+VlZXo1atXs/ZJSUk4evQoAKCiogKpqakXLS8rK+twv7xlcdWU8mId1wx89SaL7ztERNQBfDYgIqLW+OWpecGCBTh48CCuu+46REdH+2MXEa9R34RevbMBAIJCg7g7XoIgkeDPf5iMB5tqmrdlraiQIBEERCukaDDZ0GCyMijlIdese11ilZAGucbSNX1T8c+Cs/jslyoYLDavgkV2u4ioq+ehpN6ErHgV8qf1uygg5WI6/DG6Tr4HVU0WfFdch3E9EltsF2kCcW/Q6/U4deoUNm3ahPz8fFRWVmLRokVQq9UwGAxQKJoX0lcoFDCbzQAAo9F4yeWe8iRJ0tWmtbY2sfVMqdbWkQl2ABJUNxg8LpAe6to6T8Rz5Ameo7b5+xzx2YCIiFrjl6fmr776Chs3bnTX8yDviXa7u07UyWo9PvpJhziVDH988d8XtWWtqNARrZShwWRDo4kz8Hnq3NC94GVJufRPi0ZWvApnao34f0cqcP2gdI/X3XeqBvLM/tDIpVh1/QDEqS9RaFoUMbpbAnb8UIGfKxoxLCsOGkXkZ0sF4t4gk8nQ2NiI1atXIzMzEwBQUlKCd955B9nZ2RcFmMxmM1Qqx7BRpVLZ4nK1Wu1VH5KSYjrcViJz3J6VCinU6nO3aplEBKRSyGXNP18yiQiVXACMgCiTIjnZ8z6EA2/OaWfFc9Q2nqO2+esc8dmAiIha45egVFpaGiQS1j3ylbO1jof2zCDW2yHPOLKjTJyBz2MCSuscM++lxwb/8y0IAnIHp+Pvn53Au9+X4LcDu3hUiPxIeSN+KHNkLC69tg96Jke1uU56rAqp0QpUNJpxpKIRQ7PiOtz/UBeIe0NKSgqUSqU7IAUA3bt3R2lpKUaMGAGdTtesvU6ncw/ZS0tLa3F5SkqKV32oqmrABSNTLiIIjoe/1trqDY7gmM1qg8FwLshtMZsgSGWwSu3N2lvMJkhEBQAJyqr10OkavOpzqGrrPBHPkSd4jtp2/jkCfB+c4rMBERG1xi93hwULFmDx4sX47LPPcOrUKZSUlDT7Ie+EQhFo8kyMs9g5g1KekSZdBpPNDrlUQEq0ou0VAuD6QV2gkklwtLIJ+8/Utdm+vMGEL09UAwAM32zB+F7JHu9rQBfHf/qPlDfCbo/8J6VA3Bu0Wi1MJhNOnDjhfu348ePIzMyEVqvF999/765lIooi9u/fD61W6163oKDAvV5paSlKS0vdyz0lip79XKrtpWpKtfZQLXM2bjDZPO5DOPx4c0476w/PEc+Rr8+Rr/HZgIiIWuOXTKl58+YBODfjkSvTQBRFCIKAH3/80R+7jUhNJitqDVYIYFAqHLjqSDVw+J5HZFkDAABdYpQhM1thrEqOqQPSsLWoFP/Yd/qSGUxNJis++qkSdhHonqjG/v3vAfi7x/vqnqTBvlM1aDLbUFxrQHaixgdHELoCcW/o0aMHJkyYgLy8PCxevBiVlZVYv3497rvvPkyePBmrV6/G8uXLccstt2DTpk0wGAyYMmUKAGDGjBm47bbbMGTIEAwaNAjLly/HhAkTgjJdeftm33Os02jm9YeIQgufDYiIqDV+CUp9/PHH/thsp3TWmSWVHKWAUsa051DnCkoxU8oz8kxHUCozPrQCrrddkYX/HirDd6dr8b9jVS22MVvt2HWkEgaLHYkaOcb3SsJ+ePf1slQioGdyFA6VNuB4lT7ig1KBujesWrUKy5Ytw4wZM6BWq/H73/8et912GwRBwLp16/DEE0/gX//6F/r06YP169dDo3Gc95ycHCxduhR///vfUVdXhzFjxmDZsmUB6fOFLHbH8DxvrvpyZwCL1x8iCjV8NiAiotb4JSjlquVx9OhRnDx5EmPGjEFVVRWysrI8qs9C57jqSTFLKjxEO4tVN5ptuHC6Y2rObLVDlt4HQOjVS8uMU+MPV3TFa/tO45n//QJB3Txbymy14//9VIlqvQVquQRX90mBXNq+oHH3RA0OlTbgdI0BNrsY9BkI/SlQ94aYmBisWLGixWWDBw/G9u3bW103NzcXubm5PutLe9mcmVLenBa58yPIiRaIKNTw2YCIiFrjl9Sburo63HHHHbj++uvxpz/9CVVVVVi+fDmmTZuGs2fP+mOXEUkURZQ4i0CHWiYJtcyVKWWzizBa7W207twOltZDkCuhlkuQcKmZ6oLkzhFdkRWvQnmDCdFTF6DB6Mg+qWw04b8/lKO03gS5RMDkfqmIVbU/vp8Wo4BGLoXZJuJsndFX3Q9JvDd4zlVTqj3D9xqYKUVEIYbXfyIiao1fglJ/+9vfoFarsW/fPiiVjmnen3zySXTp0gV/+9vf/LHLiFRntEJvsUEqAGkhUgSaLk0qEaCRs9i5J745VQPAkSUVit+SquRSvHDjICRFKSBLvgzvfl+Cfxacxb8PlrszpKYOSENyVMf+bQqCgG6JagDAiSq9L7oesnhv8Jy7ppQX67gzpVhTiohCDK//RETUGr8EpT7//HP8+c9/RmxsrPu1xMRE5OXl4dtvv/XHLiNSiTNrIi1GCVk7hwZR4MWoHEEpFju/tG9O1wIIvaF758uKV+PlmwbDUnwQIoAmsw0CgF7JGtwwqIvPZgzMdgalztYZI3rYJ+8NnmtXoXN3TSkOHyai0MLrPxERtcYvNaUAwGQyXfRadXU1ZDK/7TLilDU4zmF6bOg+tNPFohUylMPsHu5FF2swWnG4rAFA6NdL65akQeP7KzDr5d2w2OyIUsigcdYO85UuMUpIBUfQq85oRXwIDmf0Fd4bPGPtQE0pi12EyWqHSu7bzykRUUfw+k9ERC3xS/rNtGnTsHz5chw9ehSCIECv12Pfvn3461//imuvvdYfu4xI5c6gVFqMMsg9IW/EqDgDX1sKimthFwFbTYm7Dleoi1fLkRKt9HlACgBkUgnSYh3/zs/URm5dKd4bPGe1eT98TyoArhgW60oRUSjh9Z+IiFrjl6DUggULoNVqkZubC71ej+uvvx533303Ro8ejQULFvhjlxFHEpXgnkHJV0OEKDBcQRY+FLbONXTPcvaH4HYkhGTGOYbwlURwsXPeGzzXnuF7gnAuW6qemZpEFEJ4/Sciotb4JUVBoVDg0UcfxQMPPIDi4mLYbDZ07doVUVFR/thdRFJm9AEAJGrkUMhYTyqcRCtdhc5ZU6o1XzuLnFvPMCjlkhmnwrcASuqNsNtFSLyJRoQJ3hs8Z7Y5Zu/09mOgkAow20VmahJRSOH1n4iIWuOXoFRLBQsPHz7s/vsVV1zhj91GFFdQKpVD98JOjJLD9y6ltN6I0zUGSATAWvJjsLsTMpKj5FBKJTDZ7KjSm5ESHXn/9nlv8JzNVVPKy/VcmVLM1CSiUMLrPxERtcYvQanbbrutxdcVCgVSUlLw8ccf+2O3EUWZ0RcAkBbDoXvhJtpZc8hiFyEoo32+/bFXjkJZaWmb7bqkp+OLz/b5fP8d9eXxagDAoPRYfGrWB7k3oUMQBKTGKFBca0R5Q2QGpXhv8Fx7hu8BjkwpQOTwPSIKKbz+ExFRa/wSlDpy5Eiz3202G06fPo1ly5bhuuuu88cuI4rNLkKR1gsAkBaBD6aRTiaVQC2XwGCxQxKT7PPtl5WWYsGbe9pst2LmeJ/v2xe+POEISo3pkYhPg9uVkJMWo3QGpUwYmB4T7O74HO8NnmtvUMqVKcVMTSIKJbz+ExFRawJSrEgqlaJ79+549NFH8fzzzwdil2FN12SGIJNDJZMgVhUeM5NRc64hfP4ISoUzo8WGb51Fzsd0TwxuZ0KQa7iua+bNSMd7Q+vcQSkv13NkSrHQORGFNl7/iYjIJaARj6qqKtTX1wdyl2HJ9UCaFqOEIEResePOIFopQ0WjudMGpVobYijrOhgxUx+BvbEK144ZgMamxiD0LnSlRisgAGgy29Bosrpncox0vDc0Z7OLcMak4O0tgDWliCic8PpPRER+eeLJy8u76LWmpiZ89dVXmDx5sj92GVEqnEGpVNaTClvnMqVSgtyT4GhtiOGXx6txuLwR/XtkY9ybe/DXG4cGoXehSy6VIDFKjqomCyoazREXlOK9wTOuLCmgvTWlgAZmShFRCOH1n4iIWhOwJ574+Hj85S9/wfXXXx+oXYYlURRR3mAG4MiUovAUrXQUO5dEJwW5J6FDFEWcrjUAAC5LUAW5N6ErLVrpCEo1mNAjSRPs7vgd7w0Xs9rt7r97O3yPmVJEFC54/SciIsBPQan8/Hx/bLZTaDTboLfYINqsSIliplS46uyZUi2pNVjRaLJBIgAZcQxKtSY5WgGUO2rLRRreGzxjsXUgU8q5AgudE1Eo4fWfiIha45eg1Jo1azxuO3fuXH90IWxVNjoeRC2VpyCT9ghyb6i9XMOupJ20plRLip1ZUumxKsilAZljISwlO4PRuiYzRFFso3V44b3BM+cP3/O6ppQjSZOFzokopPD6T0RErfFLUOrUqVPYtWsX4uPjMXDgQCgUChw5cgSnT5/GkCFDIJM5dtvRIt5msxn5+fnYsWMH5HI5pk+fjgcffBCCIODw4cN44okn8PPPP6NXr15YsmQJBg4c6F53x44deO6551BZWYmxY8di2bJlSEwM/mxgVc7sCHPFLwAmBrcz1G6u4XuCUoMGoxUxnEURp2tcQ/fUQe5JaEtQyyEVHNkykRZYCNS9IdxZbY7he+0J3TJTiohCEa//RETUGr88KSsUClx33XVYsmQJ5HK5+/Wnn34adXV1ePLJJ32yn7/97W/4+uuv8eqrr6KpqQkPPvggMjIy8Nvf/hazZs3Cddddh6eeegrvvPMOZs+ejY8++ggajQYHDhzAwoULsWTJEvTt2xfLly9HXl4e1q1b55N+dcS5oNSJIPeEOkIulUAlk8BotaOk3og+quhgdymojBYbyuodBfxZT+rSJBIBiRoFKpvMETeEL1D3hnDnypTydugecF6mFINSRBRCeP0nIqLW+GUMzc6dO3HPPfc0u+kAwM0334ydO3f6ZB+1tbXYunUrli1bhsGDB2P06NG46667UFRUhJ07d0KpVGLBggXo2bMnFi5ciKioKOzatQsAsHHjRkyZMgU33HAD+vbtixUrVmDPnj0oLi72Sd86oqrJAgAwlx8Pck+oo1x1pUrrjEHuSfCdrDZABJAcJUesSt5m+84uKdoxhM91PYgUgbg3RAJXTan2JAycy5SywWaPrOGfRBS+eP0nIqLW+CUolZaWhs8///yi1z/88EN07drVJ/soKChAdHQ0RowY4X5t1qxZyM/PR1FREYYNG+ZOARYEAUOHDkVhYSEAoKioCMOHD3evl56ejoyMDBQVFfmkb+2ldxY5BwCL7lRQ+0Id5xrCV9pgCnJPgu94lR4A0L0TzCbnCynn1ZWKJIG4N0QC1+x77blBuzKlAA7hI6LQwes/ERG1xi/D9x566CE88MAD+PTTT9G3b18AwMGDB3H48GG8/PLLPtlHcXExMjMz8e9//xsvv/wyLBYLcnNzcd9996GyshK9evVq1j4pKQlHjx4FAFRUVCA1NfWi5WVlZT7pW3u5hu7FqWQ4bWF2TbhjppSDwWJDifMc9GBQyiNJERqUCsS9IRJ0ZPieVBCglktgsNhRb7QiTs3MRCIKPl7/iYioNX4JSl199dXYtm0btm3bhl9++QUqlQojRozAs88+i5SUFJ/sQ6/X49SpU9i0aRPy8/NRWVmJRYsWQa1Ww2AwQKFQNGuvUChgNjse8IxG4yWXe8rboRWu9oIAtDSpVpXesX/X7Fvhpq3jiwTevOfRzuLmpfXGdg3D8YWOfEZ95WS13jl0TxESQ/fcxyb49jgv2n4HJKhlEACYrHYImjivtunNexjoz2Ug7g2RwDV8rz1BKQCIVcpgsJhRb7QA4MQCRBR8vP4TEVFr/DYlWJ8+fZCXl4e6ujpER0dDIpH4dEYNmUyGxsZGrF69GpmZmQCAkpISvPPOO8jOzr4owGQ2m6FSOQosK5XKFper1d795z0pKaZdfVerlS2+Xmt0DN3r4pydTKNpuV1LPG3r63YttW3t+AKx70C186RtUqyjHlBFkwXJye37rLREkAge9VOQCO3eb3s/2+fv29XHUzWVAIA+6TEt9jtY77cgeH5+fH3OPdlevEaOGr0FsqTL2vU+dvQ99Bd/3xsigWv4XnvPSoxKivJGFjsnotDC6z8REbXEL0EpURTx8ssv44033kBDQwM+/PBDPP/889BoNHj88ccvylJqj5SUFCiVSndACgC6d++O0tJSjBgxAjqdrll7nU7nHrKXlpbW4nJvv6mpqmrwKiPIdd81GEwtrlde7xjiFCt3VBLR6z2vReRpW1+3O7+tIDgCUq0dnz/3Hah2rmP0pK0CjpNwqqoJlZX1PvuPl2gXPToe0S5Cp2vwatuC4AhmePvZbmnfer0JBosNZ2oMAICsGGWL/Q70++16D0XR8/Pj63PuyfbiVTLU6C2QJGR59T568x662gZKIO4NkaCjmVIxCsetvd7AoBQRhQZe/4mIqDV+KXS+du1avPfee3jqqafcN5n/+7//w5dffokVK1b4ZB9arRYmkwknTpxwv3b8+HFkZmZCq9Xi+++/h+h8IhNFEfv374dWq3WvW1BQ4F6vtLQUpaWl7uWeEkXvf1zrXchsc9T/AMJ3+N6lji9SeHNssc6aUk1mG2oN1nZ9Xlr7DHnT3/Z+Rn3RxxNVjqF7KVEKxKr8lpjpFXf/gnjOPZGocVwHpEld/foeBlIg7g2RoCM1pQC4/63VGRmUIqLQwOs/ERG1xi9Bqe3bt2Pp0qWYOHGiOztkzJgxePrpp/HBBx/4ZB89evTAhAkTkJeXhyNHjuDzzz/H+vXrMWPGDEyePBn19fVYvnw5jh07huXLl8NgMGDKlCkAgBkzZuA///kPNm/ejCNHjmDBggWYMGFCUGf/qHYWNI5SSKE6f/okClsyqQT2pmoAwNlaQ5B7Exy/6DrXrHuN+ib06p3d5k9jU2Ob20rQOOpvSRMjZ1aiQNwbIoHV1v7he6IoQi11BLUcNaWIiIKP138iImqNX1IXqqqqLprdDgBiY2Oh1+t9tp9Vq1Zh2bJlmDFjBtRqNX7/+9/jtttugyAIWLduHZ544gn861//Qp8+fbB+/XpoNI4H45ycHCxduhR///vfUVdXhzFjxmDZsmU+61d76JocDw9JUcEvBE2+Y6uvhCQqEWdqjRiQHhvs7gRUncGCsgYTBAA9kztHUEq027HgzT1ttvvrjUPbbJPoCkolZMBqFyFrb9pMCAnUvSHcdSRTymo24aiuCYAMFbUNEEWRNVuIKOh4/Sciotb4JSg1atQovPrqq1i6dKn7tcbGRjzzzDMYOXKkz/YTExPTasrv4MGDsX379lbXzc3NRW5urs/60lFVzkypJE14Dt2jltnrK4D0PjhbZwx2VwLu58omAEBmnArRytAYuhdOYlUyyCQCrDIFztQY0C0Css0CdW8Idx2tKaWSO/69FZyqhsFgcH8hQ0QULLz+ExFRa/wyfG/x4sU4fPgwxowZA5PJhPvvvx/jx4/H2bNn8fjjj/tjl2HPHZQK03pS1DJ7XTkA4ExnG74nCDjqDEpdnhoV5M6EJ0EQkKB2ZEv9UtUU5N74Bu8NnnHNvtfeG7RzrgxY/XOLJyLyGq//RETUGr+kL8TGxmLLli3Yu3cvjh8/DqvViu7du2Ps2LGQSPif5AvZ7CJqDI7he+Fa5JxaZquvAACc6WSZUrKug9FktkEplSA7kVka7RWvkaOyyYxT1ZER1OS9wTOuTKn2jrpTOE+l2RbBs04QUVjh9Z+IiFrjl6DUtGnTsGbNGowePRqjR4/2xy4iSp3RArsIyKUCopUsch5J7M6gVGcrdK4aeDUAR5ZUJNRCCpZ4teMSfbI6Mupt8N7gmY7Ovqdw3kbMdh91iIiog3j9JyKi1vjlqwmJRAKLhbP+eKpG7zhXCWo5C9JGGFdQqrLRDJO1czwhnqk1QNZ1EACgX1p0kHsT3uKdw/ciJSjFe4NnLLaODd9jphQRhRpe/4mIqDV+yZSaMGEC7rzzTkycOBGZmZlQKJoPSZs7d64/dhu2ap1D91wPoBQ5RGMDohRSNJltKKkzonsEFKtuy+bCEgiCBFnxKsTxM90hcSrH+TtVbYiIWdR4b/CMrYOZUnJ3UAoQRQamiCj4eP0nIqLW+CUo9dNPP2HAgAGoqKhARUVFs2Xh/lDlD+5MKQ0f4CNRVrwaP1U0orjWEPFBqQajFf8+UAYAGNglJsi9CX+xKhlEuw16iyPbLjVGGewudQjvDZ7xVU0pOwCj1Q5ONUBEwcbrPxERtcZnQanf//73eOmllxAbG4u33noLAGA0GqFSqXy1i4hVY7ACgHumLYoslyU4glKnayK/rtTWohLoLTZYq04jK75rsLsT9qQSAfb6Ckjj03GyWh+WQSneG7zX0dn3pAIgABABNJhsSPJVx4iIvMDrPxERecJnNaUKCgouGiv+q1/9CsXFxb7aRUSy2UXUGZkpFckuS1ADAE7XREZdoNYYLTZs+r4EAGAq2slvPn3EVuM4pyfDdAY+3hu858qUau/wPUE4ly1Vb7T6qFdERN7h9Z+IiDzh1zlYWcuibfVGK0TnzHtRCs68F4lcQalTYRpU8NTWolJUNZmREauE+di+YHcnYthrSwEApyKk2DnAe0NbOhqUAs7NwFdvYlCKiEJHoK7/s2bNwqOPPur+/fDhw7jpppug1Wpx44034tChQ83a79ixA1dddRW0Wi3mzJmD6urqZn1etWoVRo0ahREjRmDFihWw2zvH5DVERIHg16AUta3GwJn3Il12oqOOVCQP3zNYbNjwreObz7tHZQN2W5B7FDlsta5MqcgJStGldXT4HnCu2HmDkf8Wiahzef/997Fnzx7373q9HrNmzcLw4cOxbds25OTkYPbs2dDrHffVAwcOYOHChZg7dy7effdd1NfXIy8vz73+66+/jh07dmDNmjX4+9//jv/+9794/fXXA35cRESRikGpIKvRmwFw5r1Ilu3MlNI1mdFkjsyshX8WnEG13oLMOBWu7Z8a7O5EFJszU4pBqc7DJ5lSzrt7HTOliKgTqa2txYoVKzBo0CD3azt37oRSqcSCBQvQs2dPLFy4EFFRUdi1axcAYOPGjZgyZQpuuOEG9O3bFytWrMCePXvcwww3bNiA+fPnY/jw4Rg1ahQefvhhvP3220E5PiKiSOTT2fc++OADREdHu3+32+346KOPkJiY2KzdDTfc4MvdhjV3kXPWk4pY0UoZEjVyVOstOF1jQL+0yJqVTtdowpvfOP7jdv/YbpBJGev2JdfwvYpGR1AzSuGXSVP9ivcG71hsjkypjiTPuoNSBgaliCh4An39f/rpp3H99dc3m+GvqKgIw4YNc49IEAQBQ4cORWFhIXJzc1FUVIQ//vGP7vbp6enIyMhAUVERFAoFSktLccUVV7iXDxs2DGfPnkVFRQVSU/lFHBFRR/ns6SYjIwOvvfZas9eSkpKwcePGZq8JgsAHj/PU6M8N36PIlZ2gdgSlqv0blLLa7Gg0B3a4zotfnITBYsfA9Bhc3ScloPvuDERTU1gHNXlv8J7F3vFMKaWzplStwXLphkREfhLo6//evXvx3Xff4b///S8WL17sfr2yshK9evW6qB9Hjx4FgBaDS0lJSSgrK0NlZSUANFuenJwMACgrK/M6KBXqlTpc/fN3P8/fviAEZn/nH1uovw/tEaj3Llh4fKHBX/3zWVDqk08+8dWmOg07Z97rNC5L0OD7s/V+qytltdlRVNKAgyX17gfa2N8/i38WnMHvcjIh7cjT7SV8f6YO//2hHADwwPgerIvmJ9mJGlTr63CyWh92QSneG7xntXW8ppQrKFXDTCkiCpJAXv9NJhOeeOIJLFq0CCqVqtkyg8EAhULR7DWFQgGz2VFCw2g0trrcaDS6fz9/GQD3+t5ISgqPe7i/+2mz6aFWK5z7ikZysv/3p1I59peY6P/9BVO4fMbai8cXmcJvHEgEqXPNvCfhzHuRLjvRUVfKH3WBLDY7dv1YibIGEwDHTI52O4CYZDz76XHs/kmHldf3R1KU4tIb8pLZakf+bse3jNcP6gJtZpxPt0/ndEtU4/szdTgZ4TM4koMvakopnRGtWiMzpYgo8q1ZswYDBw7EuHHjLlqmVCovCiCZzWZ38Kq15Wq1ulkASqlUuv8OAGq12ut+VlU1IJQnoBUEx0Oxv/tZVdUIg8Hs/rtUqvHfzpz7MBrNUKkUqK72//6CIVDvXbDw+EKDq5++xqBUELlm3ovXcOa9SNc9yXHzO17l26CUXRTx0U86lDWYIJcKGNcjET2SNLDZRaxZtQxpV9+Dg6X1uOudQqydPghZ8d7/B6o16746hRNVeiSo5Zg3rrvPtksX6+acwfEUi513ChbX7Hs+Gb7HTCkiinzvv/8+dDodcnJyAJwLHH344YeYNm0adDpds/Y6nc499C4tLa3F5SkpKUhLSwPgGAKYlZXl/jsApKR4X7JAFBHSD5wu/u7n+dsOxDk5fx/h8h60F48vvEX68bWGQakgYj2pzqNnchQAR6aU1Wb3WTHwQ6UNOFtnhEwiYEq/VKTFOL7Fk0kFmA9/gg1vvIj52w7iTK0R9/3rANbfokV6bPO09rFXjkJZaan7d0EiQLS3fDXskp6OLz7bh+/P1OGtbx3FzR+7ujfi+Bn2q2xnUIoz8HUOPsmU4vA9IupE3nrrLVit5653q1atAgA8/PDD+Pbbb/HKK69AFEUIggBRFLF//37ce++9AACtVouCggLk5uYCAEpLS1FaWgqtVou0tDRkZGSgoKDAHZQqKChARkYGi5wTEfkIg1JB5CpAy3pSka9LjBIauRR6iw2naw3okRTV4W3WGiz47nQtAGB0twR3QOp8XRPU+MctQzD73SKcqjHg/s0HsP53WqREn2tbVlqKBW/ucf+u0Sih15ta3OeKmeNR1WTGwvd/hAhg2oA0TOid3OFjoUvr5hz+ebrGAJtd9FuNMAoNPqkp5Zp9z2iFXRQhYTYuEUWwzMzMZr9HRTn+n5WdnY2kpCSsXr0ay5cvxy233IJNmzbBYDBgypQpAIAZM2bgtttuw5AhQzBo0CAsX74cEyZMQNeuXd3LV61ahS5dugAAVq9ejbvuuiuAR0dEFNk4d3sQuTKl4pllEvEEQUDPZEe2yy8632S7fHu6FjYRyIxToU9q60GupCgFXrxpMDLjVDhTa8T9mw+gWu99cU4AgESGvB0/orLRjO5JGjwyqVfb61CHdYlRQSEVYLGJKK03Brs7YWXWrFl49NFH3b8fPnwYN910E7RaLW688UYcOnSoWfsdO3bgqquuglarxZw5c1BdXR3oLvtk9j1XmUKbXUSDkdlSRNR5RUdHY926de5sqKKiIqxfvx4ajeP/ZTk5OVi6dCnWrl2LGTNmIC4uDvn5+e717777blx77bWYO3cu/vSnP+H666/HHXfcEaSjISKKPAxKBYldFFFvZFCqM+nhHML3i66pw9uqaDDhZLUBAhxZUm3VJEuNUeLFmwYjNVqBk9UGzN1yEHVeThUviiI0E/+I78/UIUohxYrr+kPDAv0BIZUIyHTWAyuuZbFzT73//vvYs+dcFqBer8esWbMwfPhwbNu2DTk5OZg9ezb0ekeg+MCBA1i4cCHmzp2Ld999F/X19cjLywt4v30xfE8qAHLnHd71BQgRUWfx1FNP4amnnnL/PnjwYGzfvh0HDhzA5s2b0b9//2btc3Nz8emnn+L777/HmjVrkJCQ4F4mlUqRl5eHb7/9Fvv27cPDDz/MWrBERD7EoFSQNJpssImOh45oJR/sO4OePgxKFRTXAQB6p0R5PPwzI06Fl27WIilKgaOVTZi/7RAaTZ5lUIiiiM+PV0PZ+1eQSgQ8fV1/dEuKvJlLQtllrqBUDYNSnqitrcWKFSswaNAg92s7d+6EUqnEggUL0LNnTyxcuBBRUVHYtWsXAGDjxo2YMmUKbrjhBvTt2xcrVqzAnj17UFxcHNC+W2wdL3QOAEqpYwM1XgagiYiIiIgChUGpIKlzZknFquSs9dFJ9PTRDHySuC44U+cYwpWTFefVupclqLF2+iDEqWQ4XNaAP207BEEVfcl1LDY7Pj5ahZ8qmiDa7Xhi8uUY2S3hkuuQ72W5M6U4fM8TTz/9NK6//nr06nVuiGlRURGGDRvm/oZbEAQMHToUhYWF7uXDhw93t09PT0dGRgaKiooC2nera/heB7ejchU7b+9wXSIiIiIiP2NQKkjqnDMixatZa76zcGVKFdcYYLDY2r0d5YBfAwAuS1AhVuX956dnchTWTB+EaKUUB0rqEXPjMpytaznQUd5gwn8OluNElR6CADR9/CKm9Etrd9+p/S5LcMyayEyptu3duxffffcd7r///mavV1ZWXjRbUlJSEsrKygAAFRUVl1weKL7OlKrm8D0iIiIiClGMiASJq55PnIr1pDqLRI0cSVEKVDWZ8XNFI7SZ3mU5AYDBYoOizzgAQP+0mHb3pW9aDF65ZQgW/OcHFCMZOw9XICNWiW5JGiTGWFBdb8SpGoM7WKWWS3DV5cnY8NLX7d4ndUwWa0p5xGQy4YknnsCiRYugUqmaLTMYDFAoFM1eUygUMJsdmURGo/GSyz3lSfKrq01LbduqKdXa9i98XSk7N3wvXBNyL3WeyIHnqG08R23jOSIiomBhUCpI6pyzIcUxU6rTEAQB/dOi8fnxavxQ1tCuoNSHP1ZAooxCjFKGrHhV2ytcQq/kKGz4w1CMnr0Y6kHXoKTehJJ600XtLk+JwojseKjlrH0WTJclOIJSZ+uMsNpFyDqaRhOh1qxZg4EDB2LcuHEXLVMqlRcFmMxmszt41dpytVrtVR+SkjwPGLfU1iY6glJqlRxqZfOEZplEBKRSyGXyNl+PNgCADUYRSE5ufxA7FHhzTjsrnqO28Ry1jeeIiIgCjRGRIGGmVOfUv0sMPj9ejcNlDV6vK4oiNheWOLcT7ZOZX6KVMhi+fAszb78Dv+iaUN5ggtkuQimVICVKgd4pUYhpxxBB8r3UGCUUUgFmm4iyeqM7c4qae//996HT6ZCTkwMA7iDThx9+iGnTpkGn0zVrr9Pp3EP20tLSWlyekpLiVR+qqhrgjCu1ShAcD38ttTVbHcP3zCYLDPbmyyxmEwSpDFapvc3XJaLj325JVRN0Ou+vOaHgUueJHHiO2sZz1LbzzxHA4BQREQUOnzaDwGqzo9HsqCnEmlKdS/8ujv/k/Vje6PW6B0sb8HNlE0SrGZenRPm0X7EqmbtoukajhF5/ccYUBZdEEJAZr8aJKj2Kaw0MSrXirbfegtV6blbJVatWAQAefvhhfPvtt3jllVcgiiIEQYAoiti/fz/uvfdeAIBWq0VBQQFyc3MBAKWlpSgtLYVWq/WqD6IIjx98W2rbVk2p1rZ94euq82pKhfuDuDfntLPiOWobz1HbeH6IiCjQWOg8CFxD95RSCZQyvgWdiasO1OkaAxqM1jZaN7fFmSVlPrYPKg6l65Quc9WVquEMfK3JzMxEdna2+ycqKgpRUVHIzs7G5MmTUV9fj+XLl+PYsWNYvnw5DAYDpkyZAgCYMWMG/vOf/2Dz5s04cuQIFixYgAkTJqBr164B678oim3WlPKUK8mxqomz7xERERFRaGJEJAjOryfliyFYFD7iNXJkxDnq1xwu93w4TbXejN0/VwIATD/s9kvfKPSx2HnHREdHY926de5sqKKiIqxfvx4ajQYAkJOTg6VLl2Lt2rWYMWMG4uLikJ+fH9A+2kTAlajQ0Ru02lnoXMegFBERERGFKI4dCwJ3PSk160l1Rv3TYlBSZ8Sh0nqMzE7waJ33DpbBYhPRv0sMvqw84eceUqi6LMER0DzDoJTHnnrqqWa/Dx48GNu3b2+1fW5urnv4XjBYbefVhOpwppRjA01mG5rMVkQpeMsnIiIiotDCTKkgcGdKsYB0pzS0q6N207enaz1qb7OL2HagFAAwXZvur25RGHBlSp2uYVAqUrmG7gEdD0rJJQI0csdtvrKR2VJEREREFHoYlAoCZkp1biMuiwcAHCiph9Fia7P9lyeqUVpvQpxKhqv7eDcLGEWWyxIcQamSOiOsdlajjUQW+7lMKV8M7k7SOL78qGzk5AVEREREFHoYlAqCWldQiplSndJlCWqkRitgsYkoPFvXZntXgfPrBnZhgfNOLjVGCYVUgNUuoqyexc4jkStTSi4R4IuSg0kax5cfzJQiIiIiolDEoFSACcpomJ0PHQxKdU6CIGCEs5bUN6dqL9n2TK0Be0/WQABwI4fudXoSQUAmi51HNIuzppSso2P3nM5lSjEoRUREREShh0GpAJPEOwIL0QopZFKe/s5qRHY8AGDfqZpLttu0/ywAYFS3BHc9IercurqCUjXMlIpEVueXFjJpx4NSoigiTuH4O4fvEREREVEoYlQkwKRxXQCwnlRnNzo7EVKJgKOVTfhF19Rim1q9Bf8+WAYA+P3wrEB2j0JYV2ZKRTRXTSlfZEpZzSYcOVMJgEEpIiIiIgpNDEoFmCtTikP3Ord4jRxjuicCAHYeLm+xzeaiEpisdvRJjXYXRye6LEEFwDG0kyLP+TWlfEHtLEPHGmREREREFIoiIig1a9YsPProo+7fDx8+jJtuuglarRY33ngjDh061Kz9jh07cNVVV0Gr1WLOnDmorq4OWF8lzJQip6kD0gAAH/xYAdsFM6lV6814+7szAIDbr8iC4IuKxxQRXMM4T9cwKBWJfF1TSiV1XFuqmiw+2R4RERERkS+FfVDq/fffx549e9y/6/V6zJo1C8OHD8e2bduQk5OD2bNnQ6/XAwAOHDiAhQsXYu7cuXj33XdRX1+PvLy8gPX33PA9Zkp1dmO7JyJOJUNloxkfHqlotuzFL06iyWxD39Ro/PrylCD1kELRZQmOoFRJnRHWC4KZFP5c76kvakoB54JSOr0FdpGfFyIiIiIKLWEdlKqtrcWKFSswaNAg92s7d+6EUqnEggUL0LNnTyxcuBBRUVHYtWsXAGDjxo2YMmUKbrjhBvTt2xcrVqzAnj17UFxc7Pf+2uwiJHGO7Jg4FTOlOjuFTIJbhzlqRT2/5zgajFYAwJ5jVXjPWUvq4Uk9IfVRxgRFhtQYJRRSAVa7yCFZEciVKeWr4XtK513eZhdRa2C2FBERERGFlrBO13n66adx/fXXo6LiXJZJUVERhg0b5h7uJAgChg4disLCQuTm5qKoqAh//OMf3e3T09ORkZGBoqIidO3a1a/9Las3QpDKIRWAaKXUr/ui8PCH4VnYebgcp2oMeGD7IYztkYhX952GCOBGbTq0mXHt3najvgm9eme33a6psd37oMCTCAIy49U4UaXHmVoDZ2WMMK6aUjIffWUkEQClFDDZgMoGMxI1Ct9smIiIiIjIB8I2KLV371589913+O9//4vFixe7X6+srESvXr2atU1KSsLRo0cBABUVFUhNTb1oeVlZmdd98LbMz2lnYeJYlRySCKwR5DokQQAidZRIe962S62jlEvw18mXY+7mgzhQUo8DJfUAgCt7JuGRX/dq1/5cRLsdC97c02a7v9449KK+Xuo9DPePrrv/Qvgcy4X97OoMShXXGjFaaLmtJ8cWLsffmVhcw/d8mCGpdgalyhqM6JMW7bPtEhERERF1VFgGpUwmE5544gksWrQIKpWq2TKDwQCFovk3wQqFAmazGQBgNBovudwbSUkxXrXX/aQDACRGK6DRKNts70kbb9v6ul1LbdXqltcNxL4D1c7TtoJEQHLypT8nVyXH4OPsJDz70c+oajRhUr803Dw8C0pZy9l0gkTw+3G39h56cjyudqH+fguCZ8cCBOacX2rfF/azT0YsPvulCjqjrdVj8Pb6RKHB6hq+56OaUgCgkQmoNYsoqzf5bJtERERERL4QlkGpNWvWYODAgRg3btxFy5RK5UUBJrPZ7A5etbZcrfZ+CExVVYNXGUGHi2sAADEKKfT6th8OPGnjbVtftzu/rSA4ghkGg6nF8+LPfQeqnesYPd2maBeh0zW02U4J4NGJPdy/N9Tq0dpaol3023G39R56ejz+6KM3bS/VznWMDY2NiItP9Gh7jU2NQfs31tI5T3IO//25tO6iZYLgCEh5cn1ytaXQcW74ng8zpZx3etYgIyIiIqJQE5ZBqffffx86nQ45OTkA4A4yffjhh5g2bRp0Ol2z9jqdzj1kLy0trcXlKSnez3Amit4NUzvlnMI9ThWWp71NrnMRqUP3gPYdWzidD0/ew3A6npa4j9HD4Y1A8yGOgdaob0LPXs1rg8ky+yPmujzs2f8Dei6YCgDokp6OLz7b527j7fWJQoOr0Lkvg1JKwQpAirO1ep9tk4iIiIjIF8IyOvLWW2/BarW6f1+1ahUA4OGHH8a3336LV155BaIoQhAEiKKI/fv349577wUAaLVaFBQUIDc3FwBQWlqK0tJSaLVav/f7dLUzKKXmzHvU3NgrR6GstNSjtixM3rm0FDxrNFnxzv4SyBPS8fAbn0IiCFgxc3yQeki+5K+aUgBQ3uD9MHUiIiIiIn8Ky6BUZmZms9+joqIAANnZ2UhKSsLq1auxfPly3HLLLdi0aRMMBgOmTJkCAJgxYwZuu+02DBkyBIMGDcLy5csxYcIEv8+8Z7WLKG9wDNeJ1Ewpar+y0tKwyNqh0BClkEIqADYRaDTZEMtrSsSwnF9TyuabbaqljkBXeSODUkREREQUWnw06XToiI6Oxrp169zZUEVFRVi/fj00Gg0AICcnB0uXLsXatWsxY8YMxMXFIT8/3+/9kkkE3JyTAWPhDqjkLRewJiLyhCAIiFE5Mi7rjZYg94Z8yeqPmlLOW06V3gKz1e6z7RIRERERdVREfL3+1FNPNft98ODB2L59e6vtc3Nz3cP3AumRX/fCuvv+Bdx3f8D3TUSRJU4lQ63BgjqjFVnB7gz5jMXu+5pSCgncmXUVjSZkxXs/sQcRERERkT9EXKYUEVFn4BqyV2+0ttGSwolr9j25D4NSggBoZI7tldV7PtslEREREZG/MShFRBSGXEGpOgOH70USV1BKJvVdUAoANHLH9k7r6iFyWkYiIiIiChEMShERhSHXLJ7MlIosVj8M3wPOZUq9V3QaBoPBp9smIiIiImovBqWIiMKQK1OqwWSFnZkvEcMfw/eAc5lSRjsn2iAiIiKi0MGgFBFRGIpWSCEVALsINJpswe4O+YjF5q9MKcefTRbOvkdEREREoYNBKSKiMCQIAmLcxc5ZVypSWOx+qinlHL7XZGFWHRERNWe321FRUYGKigrY7fzygogCSxbsDhARUfvEqeSoNVhZVyqCWJ2ZUqLNClF0zJznCwrREbjUW+wsdE5ERM3odDqs+7gIALAwKRpSqSbIPSKizoSZUkREYco9Ax+DUhHDVVPqm2NlsNp8976qnV9B2UR+XoiI6GJRcYmIiksMdjeIqBNiUIqIKEy5g1IGDt+LFO6aUjLfJjJLBUDprHFe3mj26baJiIiIiNqLw/eIyGON+ib06p3ddrumxgD0huLUcgDg8L0I4sqU8nGdcwCARgqYbEB5A4NSRERERBQaGJQiIo+JdjsWvLmnzXZ/vXFoAHpDrkypBpMVEJj4GgkszgKzfglKyYAaM1DBTCkiIiIiChF8iiEiClPRCimkAmAXAUl0UrC7Qz7gzpSC74uRu+pKlTFTioiIiIhCBINSRERhShAExDizpSRxaUHuDfmCq6aUv4bvAcyUIiIiIqLQwaAUEVEYi1M56kpJGZSKCFa7/2pKuTKlyhtNvt84EREREVE7MChFRBTGYt2ZUl2C3BPyBXemlB+2rXEGpSo4fI+IiIiIQgSDUkREYcwdlIplplQk8Ofse2rn8L1qgxUmq933OyAiIiIi8hKDUkREYSxOzeF7kcSfNaUUEkDq3G55A4fwEREREVHwMShFRBTGzmVKpcJm9/2MbRRYrppSfohJQRAAjdyx5bJ6ox/2QERERETkHQaliIjCWLRCCrlEgCCVQW+2Bbs71EGuYXVSf0SlAGhkzqAUM6WIiCjIRJFfphERg1JERGFNEARMvDwZTXteQ4wza4rClyso5Y/hewAQxUwpIiIKAfUmO7Yd1WP9t+XB7goRBRmDUkREYS47QQ3zj/8Ldjeog2x20T18z++ZUvXMlCIiouD5ptQEsw34z5GaYHeFiIKMQSkiIqIQcP6MeH4LSsk5fI+IiIJLb7Gh0nDunlfVZA5ib4go2BiUIiIiCgEm67maYP7LlHL8WVpnYC0PIooo5eXlmD9/PkaMGIFx48YhPz8fJpMjAF9cXIw77rgDQ4YMwbXXXosvvvii2bpfffUVpk2bBq1Wi9tvvx3FxcXNlr/xxhsYN24ccnJy8Nhjj8FgMATsuCLRpyfqm/1+TNcUpJ4QUShgUIqIiCgEuDKl5BIBgp8zpUrqTWjS6/2zEyKiABNFEfPnz4fBYMDbb7+NZ599Fv/73//w3HPPQRRFzJkzB8nJydi6dSuuv/56zJ07FyUlJQCAkpISzJkzB7m5udiyZQsSExNx//33uwP3H374IdasWYOlS5fizTffRFFREVauXBnMww1735xpbPb7sUoGpYg6MwaliIiIQoDRGZRSyvx3a1bLBAgA7CJQa7D6bT9ERIF0/PhxFBYWIj8/H71798bw4cMxf/587NixA/v27UNxcTGWLl2Knj17Yvbs2RgyZAi2bt0KANi8eTMGDhyIu+66C71790Z+fj7Onj2Lb775BgCwYcMGzJw5ExMnTsTgwYOxZMkSbN26ldlSHaDTO+4/yWrH/e4oM6WIOjUGpYiIiEKAK1NK4ceglFQQkOgcw1feyBoeRBQZUlJS8I9//APJycnNXm9sbERRURH69+8PjUbjfn3YsGEoLCwEABQVFWH48OHuZWq1GgMGDEBhYSFsNhsOHjzYbPmQIUNgsVhw5MgR/x5UBNM1WQAA6VFSAMyUIursGJQiIiIKAa6glNJfBaWcktSOh4CKBgaliCgyxMbGYty4ce7f7XY7Nm7ciFGjRqGyshKpqanN2iclJaGsrAwALrm8vr4eJpOp2XKZTIb4+Hj3+uQdo8WGBrPjfpce7bgfnahqcs8+S0SdD4NSREQUUfxZ7NafzAEYvgcAqc5MqVLOwEdEEWrlypU4fPgwHnzwQRgMBigUimbLFQoFzGZHYP5Sy41Go/v31tb3hiCE7o+rf/7uZ5Xecd6kApCokkAtk8BsE3G21hCwY4zUHx5feP+Ey/H5g8w/myUiIgo8V7Hb2NhYvP3226irq8Njjz0GiUSCBQsWYM6cObj88suxdetW7N69G3PnzsXOnTuRkZHhLnY7b948jBs3DmvXrsX999+P9957D4K/7sLnMQUoKJUW7QxK1TMoRUSRZ+XKlXjzzTfx7LPP4vLLL4dSqURtbW2zNmazGSqVCgCgVCovCjCZzWbExsZCqVS6f79wuVqt9rpvSUkxXq8TCDabHmr1ucCbP/t5rN5xLqMUEmg0SqTH2XG8ygijRIrkZP/s12bTQ6VyHF9iYrTf9hMKQvUz5is8vsjEoBQREUUMV7HbL7/80l1bZP78+Xj66adx5ZVXori4GJs2bYJGo0HPnj2xd+9ebN26FfPmzWtW7BYA8vPzMWbMGHzzzTcYOXKk3/tustoAADJBhOjHUQxdouUAHDPwERFFkmXLluGdd97BypUr8Zvf/AYAkJaWhmPHjjVrp9Pp3EPy0tLSoNPpLlrer18/xMfHQ6lUQqfToWfPngAAq9WK2tpapKSkeN2/qqoGv17f26uqqhEGg9mdBeHPfh47WwsAUEkBg8GMGLnji5gTpbXom6D0yz6rqhphNJqhUilQXd0IqVTT9kphRhAcAY1Q/Yx1FI8vNLj66WscvkdERBHDX8VuA8E1+15FnR42m8Vv+0mLcnwfxaAUEUWSNWvWYNOmTXjmmWcwdepU9+tarRY//PCDeygeABQUFECr1bqXFxQUuJcZDAYcPnwYWq0WEokEgwYNara8sLAQMpkMffv29bqPohi6P67++bufFc6h42qZIwIWr3Lck6qaLAE7xkj94fGF90+4HJ8/MChFREQRw1/FbgPBNXxPHqDhe2UNZthYWJaIIsAvv/yCF198EX/84x8xbNgwVFZWun9GjBiB9PR05OXl4ejRo1i/fj0OHDiA6dOnAwBuvPFG7N+/H+vXr8fRo0eRl5eHrKwsd4bsrbfeildffRW7d+/GgQMHsHjxYtx8883tGr5HQIVz5leNM0MqXuUodl6t5+QbRJ0Vh+8REVHEchW73bJlC9544412F7v1hiflp84vaOlitjmCUtIWlnmyfU9fT9bIIAFgtYvQNZnQJVbVdoeDpKXzRM3xHLWN56ht4X6OPv74Y9hsNrz00kt46aWXmi376aef8OKLL2LhwoXIzc1FdnY21q5di4yMDABAVlYWXnjhBTz55JNYu3YtcnJysHbtWnctwalTp+Ls2bNYtGgRzGYzrrnmGjzyyCMBP8ZIcVGmlNqZKaX3X4YwEYU2BqWIiCgi+bLYrTe8GWt/flupwlHrSSGXQq1SAlIp5DJ5s/Yyidih12UKBaKjZIhWSFBvtqNeFDAwDAq+dtbCn97gOWobz1HbwvUczZo1C7NmzWp1eXZ2NjZu3Njq8vHjx2P8+PHt3j55rrLREZTSOINSCa5MqSZmShF1VgxKERFRxPF1sVtveFKksqWCltV1esdfbHYYjCYIUhmsUnuz9SzmDr5uMOGZ94qhksajHsDh09W4PM4/hWV9IVwKfwYTz1HbeI7adv45AsI3OEWhzzV8Ty1vnilVzUwpok6LQSkiIooo5xe7nTx5svt1rVaL9evXw2g0urOjCgoKMGzYMPfylordzp0716v9e1MI8vy2/5+9+46Pqkr/OP6ZSTKTRg1JpIkKIiAwhKqLLEUsCIoGG7qWtYAKsu6uopFdVBBRwLIKCihW/Ckq2AtrWXUVhTWYICJIEyIkkEL6JJNk7u+PSQZCKJlkWibf98u8yNxzy3PuxHtmnnvOuTVzSoWZD5YdbZvGLI+wWImpviG9J7+sSXxJ9+XkmqFC5+j4dI6OT+dHfKnKaZBzWE+pmonONaeUSPOlic5FRCRk+HKyW19zJ6X8MKdLTPUd6j35ZcdZU0RExDsO2CuoMsBsgsjDh++VVuBUVlSkWWqySal9+/Yxbdo0Bg8ezLBhw5g7dy7l5a7Me0ZGBtdffz39+vXjggsu4Jtvvqm17Zo1axg3bhw2m41rr72WjIyMQFRBRES87NDJbs8666xaP2FhYTz99NNkZ2eTnJzMe++9d8TJbleuXMmll15Kfn5+rclufa3Mn0mp6n7SGfl23x9MREQEyK8eotfCEoa5um1tVd1TqsppUFhWGbDYRCRwmuTwPcMwmDZtGi1btuTVV1+loKCAe++9F7PZzPTp05kyZQrdu3dn5cqVfPbZZ0ydOpWPPvqIDh06sHfvXqZMmcLtt9/OsGHDWLRoEbfddhvvvfee3754iIiIb/h6sltf8mdPqdjqnlK7D9gxDEPtn4iI+NwBu2uIXsvq3lEAEWEmWkaGU1hWSV6pg9ZREUfbXERCVJNMSu3YsYO0tDS+/fZb2rVrB8C0adN45JFH+OMf/0hGRgavv/460dHRdO3ale+++46VK1dy++238+abb9K7d29uuOEGAObOncvQoUNZt26d34ZoiIiIHO7wOaV8KSYcTECJo4rc0graxVh8f1AREWnWDlT3lGplDau1vG10hCspVVLBKXGBiExEAqlJDt+Lj4/nueeecyekahQXF5Oenk6vXr2Ijo52Lx8wYABpaWkApKenM3DgQHdZVFQUp59+urtcREQkEMorqwAI80OvpTCzifYtXYmoXbklPj+eiIhIvr06KRVZu19E22hXe5Rb4rvJzp2Gweaccn7N8f2wdafTyf79+9m/fz9Op/P4G4g0c00yKdWyZUuGDRvmfu10Olm+fDlnnHEG2dnZ7sd714iLiyMrKwvguOWeMJk8/6nZLhSFev2gYXWr799FMNB72LQdfp1pSn974t/hewAdW7i+BGzdX+ifA4qISLN2MCl1eE+p6qSUj57AZxgG6zIdrNldyrz/7vXJMQ6Vk5PDks/TWfJ5Ojk5OT4/nkhT1ySH7x1u/vz5bNq0ibfeeosXX3wRi6X2MASLxYLD4brI2e32Y5Z7Ii6uRYPijYqy1mu96Oj6refJut5e70jrHq1+/ji2v9ar77oms4l27Y7/d2Iym4Kq3sf6Gw32c95cj33431pDr08SOP4cvgfQqZWF/+2BDD2BT0RE/KBm+F5LaxhUVriXx8W45pHKK6044naN9dn2AnYWuCZR31tUQU5xOe1i6/85rCFiWrX16f5FQkmTT0rNnz+fl156iccff5zu3btjtVrJz8+vtY7D4SAyMhIAq9VaJwHlcDho2bKlx8fOzS3CkyeX1vRKsNvL67VdaWl5vfdd33W9vd6h65pMrmTG0erny2P7a72aOtZ3n4bTICenqF7rBUO9j/ce+vLY/tqnp++hN4/dkPXqu27N35rJ5EpI1ef6VLOuBIdaPaX88FTsTtXD95SUEhERf3D3lLKGUXjIg/Zqekod8FFPqa931f4sviGziFGn+jYpJSL11ySH79WYPXs2L7zwAvPnz+e8884DIDExsU43yZycHPeQvaOVx8fHe3x8w/D8p2a7UBTq9YOG1a2+fxfBQO9h03b4daYp/e2J/4fvdWrl+kC+W0kpERHxgwPVSamWh80p1Tra1VPqgI96SmXku27utYlyDRtM31Pgk+OISMM02aTUwoULef3113nssccYO3ase7nNZuPnn3+mrOzgh+zU1FRsNpu7PDU11V1mt9vZtGmTu1xERCQQyir8N9E5uIbvAWQVluOo1ESsIiLiW0ebU6pNVEStcm8qcVSSXerqltU9ztXu/bRXcymKBJMmmZTavn07Tz/9NDfffDMDBgwgOzvb/TN48GDat29PSkoKW7duZenSpWzYsIFLL70UgAkTJrB+/XqWLl3K1q1bSUlJoVOnTgwZMiTAtRIRkebM33NKtY0KJ9wMVQZk5Jf656AiItJs1ZpT6hA1SakDPkhK/ZbnetpeZJiJzq1cx/llX7G7zRWRwGuSSanPP/+cqqoqnnnmGc4666xaP2FhYTz99NNkZ2eTnJzMe++9x6JFi+jQoQMAnTp14qmnnmLlypVceuml5Ofns2jRIkx6DJWIiASQP4fvGYZBWVkZLSJcB9uSme/7g4qISLPlNAwKjtJTqmb4ni96Sv2W67rp0tJqooXFTJvIMCqdBlv2F3v9WCLSME1yovNJkyYxadKko5Z36dKF5cuXH7V8+PDhDB8+3BehiYiIeMwwjFpJKV9P91VZUc6yr3+hZXgkB8phZ/WdZBEREV8oLq+kqrpxa3WUnlLF5VVUVDmJ8GKX4R3VSalWVjMmk4lOrSwcKLOzp8BO3w6eP+hKRLyvSfaUEhERCSUVVYY7EeWvic4jLJFUP4CPnXma7FxERHynZuhejCWsTtKpRWS4u+3zdm+p3/Kqe0pZXMdMiHElwLIK6/8UZBHxLSWlREREAuzQuS38NacUQEvXZ3P1lBIREZ+qSTa1ru4VdSizyUSrKN88gW9nbgkALa3VSalY13EyC3UzRiRYKCklIiISYOWVrifvmU3gzxkOa5JSvxeUadJXERHxmZpkU5voukkpOJis8uZk545KJ3sKXMmnVhZX61rTUypTPaVEgoaSUiIiIgFWVp0QsoaZ/frgDWsYWMzgNGBXnp7AJyIivnGsnlJwMFmV78WeUllF5TgNsIaZiAyvnZTKUk8pkaChpJSIiEiA1fRSsoT7t1k2mVxPJALYXj3EQURExNtqekC1OVpSKsr7T+CrGaKXEBvhvuFzcPheOYbh68eKiEh9KCklIiISYDVJKaufk1IAraonf92WrZ5SIiLiG3nu4XuWI5b7YvheTW+omt5RAPExrofPl1c6vT6puog0jJJSIiIiAeZOSvnr0XuHqJlnY3tOsd+PLSIizUNeiQOAuJhjzynl3Z5SrnmjDk1KWcLMxMVYapWLSGApKSUiIhJgNROdB6KnVKy5EoDN+4ooLVVvKRER8b68UldSqu1RekrVzCnlzafv1fSUqukdVaNDS2utchEJLCWlREREAixQc0oBtKz+fpBbWsmB6i8NIiIi3pQbgKfvZRXV7SkFcELLSEA9pUSChZJSIiIiAVbicPWUiorwf7McYYaam8ibMvP9fnwREQl9NT2g4o7TU8qbT99zD9+LrZ2Ual/dUypTPaVEgoKSUiIiIgFWVOYaQtfSGn6cNX2jVfV3hB15+oAuIiLeVek0KKjuAdX2KHNKtYlyNUTemlOqymmw7zg9pbLUU0okKCgpJSIiEmCF1UmpFoFKSlV/Xt+Rpw/oIiLiXfmlDgzAbIJWkUcZvlfdU6qgrIIqp9HoY+aUOKhyGoSZTbSNqt22qqeUSHBRUkpERCTACstrklJhATm+ekqJiIiv1Mwn1ToqgjDzkZ8y2yYqArMJnAZemd+wZhLzxFhLnWO6e0oV6UaMSDBQUkpERCTAispcH9gD1VOqdXVSandBOWUVVQGJQUREQlPNk/fiYo48nxTg6tFUPd9Udknjk1I180nVJKAOVdNTqrCskhJHZaOPJSKNo6SUiIhIgBWUBbanVGSY68dpwC/7igMSg4iIhKa8kur5pI7y5L0a8bGupFROsTeSUq6eUjUJqEPFWMJpGRlevZ56S4kEWmBuyYo0E8WlJXQ7tcvx1yvRl0CR5qwowHNKmUzQ1gp7SyF9TwFJnVoFJA4REQk9NT2l2h7lyXs12sV4r6dU1jF6SgGc0MJKYVklWYVldGsX0+jjiUjDKSkl4kOG08n0l7467nr/nNDfD9GISLByzykVGZieUgBx1UmpDXsLAxaDiIiEnlx3T6ljJ6XiY129mnKKG9976Vg9pVzLI/k1u0Q9pUSCgIbviYiIBFign74Hrp5S4EpKGUbjn3wkIiICh84pdezhe+6eUl4YvnfcnlLVyaosPYFPJOCUlBIREQmwmonOIwwHgcoHtbaAJcxEQVkluw7YAxOEiIiEnHoP36uZU6qRw/cMwzikp9SRk1I1y/cWqKeUSKApKSUiIhJAZRVVOKpcmag3vttCVWVFQOIwm6B7nOtD+vqM/IDEICIioSevtHr43nF6SnlrovMCeyVllU4AElscbfhedU+pIvWUEgk0JaVEREQCqGboXpgJoiKP/OHZX2yJrqTUp5v3A667zaWlpTidTkpLSzWsT0REPJZbUr+eUvExrjawsROdZ1YnmtpGR2ANP/LX3ZphfZpTSiTwlJQSEREJoJpJzmOt4ZhMpoDGMvRE1xOI1u8pJKe4HLvdzsJP0zlwII+Fn6Zjt2tYn4hIKNpbXMl720pZ/O0er+7XXlHl7il1tEnHa8RV95Q6UOqg0tnwmyA1iaajDd07NJbcEgfl1b2qRCQwlJQSEREJoKLqnlItrYF78l6N9rERtLGacBqwelMmABHWyFr/iohIaPl2dxFfZ5RTUmHwwrpMPt2c7bV918ztFGsNo2XksYfvtYmKIMwETsOVmGqorOM8eQ+gdVQEMRZXu7unQDdcRAJJSSkREZEAKqye5DyQT9471Imxrt5aH2zaT5VTd49FREKZ0zBY9sN+DKCFxXX9f/Dfv1Jg9878hnsLXAmiDsfotVQjzGwizgtP4Ms8zpP3AEwmEye2iQJgd56SUiKBpKSUiIhIANXMKRUbBD2lAE5sYSbcBNtyy/jw56xAhyMiIj6UvqeQfSUVhJvhvJOiOLltJCWOKr7cluOV/buTUq3q19vWG0mp+vSUAg4mpfTEWZGAUlJKREQkgIqq55RqGRkcPaUiw02c1sr1+/M/7KPEod5SIiKh6qNN+wDo3CKciDAT5/eMA+CzLd5JSu3xMCmVEOtKJO0ravgE5PXpKQXQpU00oKSUSKApKSUiIhJABdU9pVoESU8pgK4toUWEiQNlVXyyo5RX07PZV1JJWUVVoEMTEREvcVQ6+exX1/xRJ7dy3RgZdWobAP63+wD5XhjC58nwPYDO7t5LpQ06ntMw3Nt2bh11zHVrekrtauCxRMQ7lJQSEREJoCJ3Uio4ekoBhJngj50sdIuLpLzK4JUfs/n8NzvjXkhj4ZdbayWnDMOgtLQUw2j4k5JERMT/fsjIp7i8iriocBKiXV8LT2wTSfeEGKoM+HJr43tLeTp876S2rkTRb3kNSxTtLSjDXuHEEmZyJ7iO5sS2Gr4nEgyUlBIREQmgmonOrWYnwZTXiYkw8eiYkxjU3srwk1sSFW6iosrgpdRMrl/+A7v352MYBna7nYWfpmO360O9iEhTsmZnHgADO8ZgMpncy8/uHg/A19tzG32MvYWeJqVcQ+p+a+Dk49tzStz7CTebjrluTU+qvNIK9w0iEfE/JaVEREQCyF7hmrMpdXsmVZXeedpRQ9QkmA5NjFnDzZza1kLK8E6MPzWau/6QgMUM2/PK+dP/beCXva4vNBHW+n3ZEBGR4GAYBt/scF3DB3WMrVV21iltAfjf7nzKKxs+r2BhWQXF5a6ete3rOXyvJim1r6icUofnQ8a3VSeluraLOe66sdZw2lVPrL4733s3VqqcBhmFlWzKcfDzfg0NFDkeJaVEREQCKLlve/54cms6t7IENI7KinJe+m57ncRYTbKq0uHgl527GX4CxISDvQqmrNpM+t4i93oaxici0jTsPmBnT0EZ4WYT/drXTuB0j48hPtZCWaWTH3/Pb/AxMgtcE463iYog2lK/eRNbRUXQNjoCaNhcT9uyXdt0q0dSCg59Ap93kkeGYTD36z18s6ec9OwK7v00g9SMfK/sWyRUKSklIiISQENPacvs87thCTv2MAN/iLDUfXx2paOcZV//QlVlBRGWSGIjYPgJEBdpothRxd/f/5VdBRWUlWkYn4hIU/Ft9dC9/p1aERVR+yuhyWTiDye3rV7vQIOPUTMvVMfWnvWm7eIewud5oqhm+F7X+PolpU6Ocx1ry74Sj491JK+t38N3GcWYTdAm0kyl0+DOd392z60lInUpKSUiIhJArp5IpUE1n9ThIiy1v1BYw2B4xwj+cGILKpwG3/5exsqNuYRbrHV6TKkHlYhI8KmZxHxo9VC9ww2tTkp9syO3wdfvnzILATj9hBYebeee7DzXs6SUo9Lp7vFU355SfTu0BCBtT4FHxzqSrMIyFv13JwBJCRZGd4nktHaRFJdXsXTNb43ev0ioUlJKREQkgOx2O4s//ymg80kdS0V5GRWVdSeAdZQWEluaxUnRrrJnf9jHmj1l5BYWu3tMGYZBXl4uT/374GslqEREAiunuJy0Pa6E0ahT2x1xncFdWmMNN/N7fhlb9hc36Djp1ceoSfzUV0MnO9+ZV0qV4XqabUJs/YbEJ3VqBcDm/cUNmsPqUMu+342jyqB3QhSntgkn3GzilkGJAHz8y352ephkqy+n08n+/fvZt28fTmfD5wATCRQlpURERAIsGCcKP9LE54ezWK30axeOLT4cswl2FVRyw8ptbCk08Wt2KTkFxTzz2U+Yw1xziehJfSIigffF1lwMoHf7FpxwlAnIYyzh7gnPV2/O9vgYpY4qtma7klm2jq082rZrnKuX06asIo9uYqzb5RpqePoJLWo9TfBY2reMJLGFlSqn4e7Z1RAZB+y8vzELgGuT4t3H794uihHd4nAasMRHvaVycnJY/Fk6j777P3JycnxyDBFfUlJKRERE6nDPJVV17B5cJhOc1iacBWNOooXFREF5FRv2O7j5rU1csOxH3t8Txoc7y5n58a+8vv53SowIP9VARKRpq+kBs3//fq/2gPliqyvJdHb3+GOud26PBAD+vXk/Tg97uP6cVUiVAYktrCS2qDtf4bHYOrbEGm4mq6icrdn1n+vp6+25AAzrGufR8fp1rB7C93vDh/At/W4XVQb84eQ2nJ4QXavslqEnYQI+/zWHzfuKGnyMY4lp1ZbY1kceiikS7JptUqq8vJx7772XgQMHctZZZ/H8888HOiQREQkCah8OOnwuqWPplRDN2G4x3D64HSdEm4mpftKS04CSCoOvfivkmbVZfLS9lBvf+JnX1+8hM6+Q0tKDwxk0vE9EglUg2oacnByWfJ7Oks/TvdYDZltOCakZBZg4+tC9GkNPbkuMJYz9xQ6PnyBXM3TP5uHQPYDIiDCGdGkDHEw0Hc+BUgcb9rqO+ceuniVnaobwrW9gUmpbTgmrf9kPwK1DT6pT3rVdDOf1dCX4nvn2twYdQySUhQc6gECZN28eGzdu5KWXXmLv3r3cfffddOjQgfPPPz/QoYmISACpfWg4s8nEqJNbkHWgiKv6d+C5/26jgjDKzRF0adeaDVnFbNhnZ1uunUf/s50nzSbO7NKKnu1bERNuEBVu5stfMrhj9Ol0iW9VPXwwNtDVEhEJWNsQ08q7vV9eXLsbgFHd29Gh1bFvPFjDzZzfM4GV6ZksXbOLgZ1b12tYnGEY7mSSraPnSSmA4V3j+Hp7Ll9vz+WmM7scd/1vduThNOC0hNijDkk8mpoE2PrfC9iZW+p+Il99GIbBU1/vwMCV5OuR2IL9++sOUZ90Zhc+3ZLNmp0H+GpbDsO7HTshKNKcNMukVGlpKW+++SbPPvssp59+Oqeffjpbt27l1Vdf1ZcOEZFmTO1Dw9TMP+V0uv6tKHcN/bNYIrEArSxmzj8xjNx9B+jYMZJdhRX8XhZBvsPg6535fL0zv9b+vn1lAye1sdI6rIJn/vwHIqo7dtccJyrK9WQmu91OZGQkZWVlREVFub8sHWm9Q8tFRDwRKm3D9pwSPt3iGrr358En1mubPw85kQ9+3kfankK+3ZnHWaccf2jcmp0H+GVfMdZw83GHCB7N0FPaYgJ+2VfMb3ml7snPj6TSafDGj3sBz3tJAXRq7Zr36cttubz0vwzuP/+0em/7Zloma3YeICLMxC1H6CVVo3ObKP40sBMvrcvgoU+3YuvYitZR3hvOXmUYVDoN9TSWJqlZJqU2b95MZWUlSUlJ7mUDBgxg8eLFOJ1OzOZmO6pRRKRZU/vQMDXzT0VYInnp2z1ERMbUGvpX6SjnpW+3uJaHwaltIuhpsXLGSW1Jz64k2+4k/fc8HBWVVBhhFFQY/HagHICRj69h9GnxnHNaPEalg1e+285JJ8SxM8/Oz1lFRISZMZxOeiTE0DWhFQktrJiclaz5dS/n9u6MJdzMpz/t4uIBJ9PCGk6Xdq2Ii7VgPkIC62hJq5p1jpQAO3wdJb9EQk8g2obySicrf85lY7aDmAgTvx0op207g3Bzw64vuSUO/vbOzzgNGHZKW05LrF8v1MQWVi7v14FXfvid2at/5enL+tK1Xcwx466Z0Puyfh2Ii6nfU/AOFxdj4YyT2vDdbwe47+MtLLvSRnjYkc/zqz/8zub9xbSwhpNs69Cg410/uDNfbsvlk1/2k9y3fb2eGPjplmz+9dV2AG7/4ynH7WF185ld+Hp7LjtzS5n61k/8K7l3g89PWUUVqb8X8J+tOfzvt1z2FlUApazaVEjvDvv5Y9c4RnSLIz7Ws/m8RAKhWSalsrOzadOmDRbLwYtAu3btKC8vJz8/n7ZtNUmciEhzpPah4WqSUBGWI38APnx5paOcf6/fTLg1mknDuvNqZSFVla47vCVl5WSUmNjriKTA4eSDn/fxwc/73NumZu93/15e5Zr8N3VvCal7a0+Im/qf39y/r/lw28FYzCbiYy3Et7CC08meA8WcHBdLYusY2kZbCDdDQVklewvK2J1XQrGjCkdFFa2iIrA7KjilXQvaxFiJMBlYLeHVibEqNmbkMPDkBCKtFsJNgLOKKKuFiDAzEeFmIsPNWKt/IsPDiAgzUVbhpKSiipLySvJL7JiAmKhILGFmIsJMhJtNGFUVxEZFEhFuJsLsWl6T+DKZYL/DID+/BMNwva5hotaLI/2K0zCocrp+Kp2u8282mTCbTYSZwGRy7cVsMoHrP1y/Vu/dvezoX5SPdef+mPf0j3PD/1jFxiGlJuBAFRw4UIIBx3yiZGNiMo4T8LGO27jzcPQVWkSG07FV1LF3IMcViLbhh935PL/+4FPvvv9gJ9bwXZyWEEvPxFhOS4glPtZCjCWcKEsYR/o/0FHlJK+0gp8zC3kzLZN8ewWdWkfyj/O6exTLDWecyNpdB/g1u4SbXk/j4j7t6dexFXExEYSbTYSZXdey3/JKWfHjXrbsLyYy3Mw1gzo16hzce86pXPXyejZlFXHLGxuY0K89HVpGYjaZcBoGB0or+HJbDh9ucrUJfxt5Cu0amOQ5vX1LzjqlLd/syOO2Nzdw9YCO9O3YilhLGDEW11dmR5UTe0UVv+fb+XJbLt/syANcw/auTDp+MswabuahsT2Z8tYGtuwv5vIXf+Ci3ifQt0NL2kZHEBkehjXcjIHr2mwYB/8tdlSyr6icfUXl/Ph7Aet/L6C8su7k98UOJ9//doDvfzvA/M+30euEFvTv1IpObaJIiLXQNtpCmNlEmMmEyYT735pjOp2uXleu3w2qDKr/NXBUOXFUGpRXVJJXUEhFlUGLFrFYwsMIN5sIDzMTYTYREWYiIsxMuNn1r6stMxPWwISq0+kkP/8ArXOiMZmsmEyBu0Hoq55oJhMUGiYOHCg9bhvlDWFmEx1bRQbNTbRmmZSy2+21GhXA/drhcNR7P2bz8T/YHMpkghYtWmCNMB93uxYtWmAJr9//cPVd19vrHb6uyQSWMDNVR6ifr4/tr/Vq6hgs59zb6x3rPfT1sf21T0/fQ28e29P1PN2n2XzwC2l9rk9B0g4FFW+0D56ce7MZzGYTZmclYVS6y51UYTKZCDtsO28s9+W+PV0eaQnHZHby4tc/E2GxuMuizFWc1jqcvpFhnN3vJBZ8uo38Cten5hhLGIM6t2BXVg4tIyDMDKXlFdiNCEoqwWGYcBomMJmprKzCaTKBOYJWURHsK3ZQVgVgorC8isLymknWw/klp4xfcso4MhNh4eEUVxhgCmdrrh1y684ZAmbe26THcUtweejCHgw9+dhJk0OvSVJXIL47DOrSiluHJPKfLfsprTJRUhVGeZXBjtxSduSWuhMxnji1XRQpwzti2AtqXcLy8w9QZXdNEp6bm0tYWEmdOB8a3YkHv/qdbbnlvPNTFu/8lHXU47RvaeGOM9vXOc6Rjpeff4CwsCN/IIkApg9rz6PfZrE9t5R5n28/4nqx1nDGnNqKMxLN5OZm1ymvOV6F00J+vgXzUZIjfz8zAbOzkvWZpbyRlskbaZlHrWPNccf3bMNVfePIyzt47T9W/dqY4dExXXjk6z38Xlhx3HN5NBFhZhJjIxjUMZZTWzjZvDeHSKuFfh1bs8seztqMYn7NLWfXATu7DhypvfIWtXlN1dheCUwf3c2jbXz13cFkNMOBpx9//DEPPvgg3377rXvZ9u3bueCCC1i7di2tW7cOXHAiIhIwah9ERORwahtERHynWd4PSUxM5MCBA1RWHrwrnZ2dTWRkJC1bNuwJESIi0vSpfRARkcOpbRAR8Z1mmZTq2bMn4eHhpKWluZelpqbSp08fTWIrItKMqX0QEZHDqW0QEfGdZnkVjYqK4uKLL+b+++9nw4YNfPbZZzz//PNce+21gQ5NREQCSO2DiIgcTm2DiIjvNMs5pcA1YeH999/Pv//9b2JjY7nxxhu5/vrrAx2WiIgEmNoHERE5nNoGERHfaLZJKRERERERERERCZxmOXxPREREREREREQCS0kpERERERERERHxOyWlRERERERERETE75SUEhERERERERERv1NSysvKy8u59957GThwIGeddRbPP//8UdfdtGkTl112GTabjQkTJrBx40Y/RtowntTvyy+/ZPz48SQlJXHhhRfy+eef+zHShvOkjjV+//13kpKSWLt2rR8ibBxP6rdlyxYmTpxI3759ufDCC/n+++/9GGnDeVLHTz/9lDFjxpCUlMTEiRP5+eef/Rhp4zgcDsaNG3fMv7umeJ0JdQ25xjQ3+/btY9q0aQwePJhhw4Yxd+5cysvLAx1W0Jo0aRL33HNPoMMISg6HgwceeIBBgwbxhz/8gcceeww946e2zMxMJk+eTP/+/Rk1ahQvvvhioEMSP2tO19xQvF6G+nUuVK9RR/ocn5GRwfXXX0+/fv244IIL+OabbwIYof8oKeVl8+bNY+PGjbz00kvcd999LFy4kE8++aTOeqWlpUyaNImBAweyatUqkpKSmDx5MqWlpQGIuv7qW7/NmzczdepUJkyYwDvvvMOVV17JX/7yFzZv3hyAqD1T3zoe6v777w/6965GfetXVFTEDTfcQLdu3Xj//fc555xzmDp1Krm5uQGI2jP1rePWrVv5+9//zuTJk3n33Xfp2bMnkydPxm63ByBqz5SXl/O3v/2NrVu3HnWdpnqdCXUNucY0J4ZhMG3aNOx2O6+++iqPP/44//nPf3jiiScCHVpQ+vDDD/nqq68CHUbQevDBB1mzZg3Lli3j0Ucf5Y033mDFihWBDiuo3HHHHURHR7Nq1SruvfdennjiCT799NNAhyV+0pyuuaF6vQz161woXqOO9DneMAymTJlCu3btWLlyJePHj2fq1Kns3bs3gJH6iSFeU1JSYvTp08f4/vvv3csWLVpk/OlPf6qz7ptvvmmMGjXKcDqdhmEYhtPpNM455xxj5cqVfovXU57Ub/78+caNN95Ya9kNN9xgPPbYYz6PszE8qWONd99917jyyiuN7t2719ouGHlSv5deeskYPXq0UVlZ6V6WnJxsfPnll36JtaE8qeMLL7xgXHLJJe7XRUVFRvfu3Y0NGzb4JdaG2rp1q3HRRRcZF1544TH/7pridSbUNeQa09xs27bN6N69u5Gdne1e9v777xtnnXVWAKMKTgcOHDD++Mc/GhMmTDDuvvvuQIcTdA4cOGD06tXLWLt2rXvZkiVLjHvuuSeAUQWX/Px8o3v37saWLVvcy6ZOnWo88MADAYxK/Km5XHND9XoZ6te5ULxGHe1z/Jo1a4x+/foZJSUl7nWvu+4648knnwxUqH6jnlJetHnzZiorK0lKSnIvGzBgAOnp6TidzlrrpqenM2DAAEwmEwAmk4n+/fuTlpbmz5A94kn9LrnkEu688846+ygqKvJ5nI3hSR0BDhw4wPz585k1a5Y/w2wwT+q3bt06zj77bMLCwtzLVq5cyfDhw/0Wb0N4UsfWrVuzbds2UlNTcTqdrFq1itjYWE488UR/h+2RdevWMWTIkOPeBWuK15lQ5+k1pjmKj4/nueeeo127drWWFxcXByii4PXII48wfvx4unXrFuhQglJqaiqxsbEMHjzYvWzSpEnMnTs3gFEFl8jISKKioli1ahUVFRXs2LGD9evX07Nnz0CHJn7SXK65oXq9DPXrXCheo472OT49PZ1evXoRHR3tXjZgwIBm8bldSSkvys7Opk2bNlgsFveydu3aUV5eTn5+fp11ExISai2Li4sjKyvLH6E2iCf169q1Kz169HC/3rp1K9999x1nnnmmv8JtEE/qCPDwww9zySWXcOqpp/oxyobzpH4ZGRm0bduWf/7znwwdOpTLL7+c1NRUP0fsOU/qeMEFFzBixAiuuuoqevfuzbx583jyySdp1aqVn6P2zFVXXcW9995LVFTUMddriteZUOfpNaY5atmyJcOGDXO/djqdLF++nDPOOCOAUQWf7777jh9++IHbbrst0KEErYyMDDp27Mg777zD+eefz9lnn82iRYuUAD6E1Wpl5syZrFixApvNxpgxY/jjH//IZZddFujQxE+awzU3lK+XoX6dC8Vr1NE+xzfnz+1KSnmR3W6v9UUDcL92OBz1Wvfw9YKJJ/U7VF5eHrfffjv9+/fn7LPP9mmMjeVJHdesWUNqamqTauA8qV9paSlLly4lPj6eZ599lkGDBnHjjTeSmZnpt3gbwpM6HjhwgOzsbGbOnMkbb7zB+PHjSUlJaRLzZtVHU7zOhLqGXkebs/nz57Np0yb++te/BjqUoFFeXs59993HzJkziYyMDHQ4Qau0tJRdu3bx+uuvM3fuXO6++25eeeWVkJkk11u2b9/OyJEjWbFiBXPnzuWTTz7hvffeC3RYEiChds0N9etlc7jONZdrVHP+3B4e6ABCidVqrfNHU/P68Ivg0dYN5oulJ/WrkZOTw5///GcMw+DJJ5/EbA7uPGh961hWVsbMmTO57777gvo9O5wn72FYWBg9e/Zk2rRpAPTq1Ytvv/2Wd999l1tuucU/ATeAJ3VcsGAB3bt35+qrrwZg9uzZjBkzhpUrVzJp0iT/BOxDTfE6E+oach1tzubPn89LL73E448/Tvfu3QMdTtBYuHAhvXv3rtW7QeoKDw+nuLiYRx99lI4dOwKwd+9eXnvtNW644YYARxccvvvuO9566y2++uorIiMj6dOnD/v27eOZZ57hoosuCnR44meheM0N9etlqF/nmtM1ymq11uk131w+tysp5UWJiYkcOHCAyspKwsNdpzY7O5vIyEhatmxZZ92cnJxay3Jycup02QsmntQPXI+XvfbaawF4+eWXadu2rV/jbYj61nHDhg1kZGS4EzY1br75Zi6++OKgnWPKk/cwPj6eU045pdayk046Keh7SnlSx59//plrrrnG/dpsNtOjR4+QecpFU7zOhDpPr6PN2ezZs3nttdeYP38+5513XqDDCSoffvghOTk57rnJahKbq1ev5scffwxkaEElPj4eq9Xq/qIGcPLJJwd9O+ZPGzdupEuXLrW+9PTq1YvFixcHMCoJhFC95ob69TLUr3PN6RqVmJjItm3bai1rLp/bg7vbShPTs2dPwsPDa01GlpqaSp8+fer0ELLZbPz4448YhgG4HgG5fv16bDabP0P2iCf1Ky0t5aabbsJsNrN8+XISExP9HG3D1LeOffv25d///jfvvPOO+wdcj2T9y1/+4ueo68+T97Bfv35s2bKl1rIdO3bUavSCkSd1TEhIYPv27bWW7dy5k06dOvkjVJ9riteZUOfJ32dztnDhQl5//XUee+wxxo4dG+hwgs4rr7zC+++/725/Ro0axahRo9xtkbjYbDbKy8vZuXOne1lTaMf8KSEhgV27dtXqwbljx46QaQelfkL5mhvq18tQv841p2uUzWbj559/pqyszL0sNTW1WXxu1ydgL4qKiuLiiy/m/vvvZ8OGDXz22Wc8//zz7t5C2dnZ7j+y888/n8LCQubMmcO2bduYM2cOdrudMWPGBLIKx+RJ/ZYsWcLu3bt55JFH3GXZ2dlB//S9+tYxMjKSLl261PoBV4Y7Li4ukFU4Jk/ewyuvvJItW7bw1FNPsWvXLv71r3+RkZHB+PHjA1mF4/KkjpdffjlvvPEG77zzDrt27WLBggXs3buXSy65JJBVaJSmfp0Jdcf7+xTX3BFPP/00N998MwMGDHC3H9nZ2YEOLWh07NixVvsTExNDTEyMuy0Sl1NOOYURI0aQkpLC5s2b+e9//8vSpUuZOHFioEMLGqNGjSIiIoJ//OMf7Ny5ky+++ILFixfX6kUsoS3Ur7mhfr0M9etcc7pGDR48mPbt25OSksLWrVtZunQpGzZs4NJLLw10aL5niFeVlpYa06dPN/r162ecddZZxgsvvOAu6969u7Fy5Ur36/T0dOPiiy82+vTpY1x66aXGzz//HICIPVPf+p133nlG9+7d6/zcfffdAYq8/jx5Dw/VvXt34/vvv/dTlA3nSf1++OEH45JLLjF69+5tjB8/3li3bl0AIvacJ3V84403jPPPP9/o16+fMXHiRGPjxo0BiLjhDv+7C4XrTKg71t+nGMaSJUuO2H5079490KEFrbvvvrtJtK+BUFhYaNx1111Gv379jDPPPNN46qmnDKfTGeiwgsrWrVuN66+/3ujfv78xevRo44UXXtA5akaa2zU3FK+XoX6dC+Vr1OGf43/77Tfj6quvNnr37m2MHTvW+PbbbwMYnf+YDKN6XIeIiIiIiIiIiIifaPieiIiIiIiIiIj4nZJSIiIiIiIiIiLid0pKiYiIiIiIiIiI3ykpJSIiIiIiIiIifqeklIiIiIiIiIiI+J2SUiIiIiIiIiIi4ndKSomIBBmHw8G4ceNYu3atx9u+9957XHPNNXWWv/jiiwwbNoykpCTuvfde7Ha7N0IVEZEg0ZC2Y926dYwfPx6bzcbll1/O5s2bfRihiIhIXUpKiYgEkfLycv72t7+xdetWj7f9/vvvmTlzZp3lq1evZuHChcyaNYuXXnqJ9PR05s+f741wRUQkCDSk7cjIyODmm2/mnHPO4d133+W0007jtttuw+Fw+DBSERGR2pSUEhEJEtu2bePyyy9n9+7dHm+7cOFCbr75Zjp37lyn7OWXX+a6665j5MiR9O3blwceeICVK1eqt5SISAhoaNuxfPly+vbty9SpUznppJO49957MZvN7Nixw0eRioiI1KWklIhIkFi3bh1DhgxhxYoVdcp++OEHkpOT6du3LxdeeCGrV6+uVf7tt9+ybNkyzj333FrLq6qq+Omnnxg4cKB7Wb9+/aioqNAwDRGRENDQtmPdunW12oyoqCg+++wzevTo4Ze4RUREAMIDHYCIiLhcddVVR1yenZ3N5MmT+etf/8qwYcNIS0vjnnvuIS4uzp1seu211wDqzCVSWFhIeXk5CQkJ7mXh4eG0bt2arKwsH9VERET8paFtR0ZGBpGRkUybNo0ffviBbt26MXPmTLp16+bnGoiISHOmnlIiIkHu1Vdf5Q9/+AN/+tOf6NKlC+PHj+eKK67gpZdeOu62ZWVlAFgsllrLLRaL5g0REQlhx2s7SktLWbBgAYMGDeLZZ5+lffv2XH/99ZSUlAQ4chERaU7UU0pEJMjt2LGD//znPyQlJbmXVVRUcPLJJx93W6vVClAnAeVwOIiKivJuoCIiEjSO13aEhYUxatQo9xNbZ8+ezYgRI/jiiy+48MILAxKziIg0P0pKiYgEucrKSi688EJuueWWWsvDw49/CW/dujVWq5WcnBy6du3q3l9+fj7x8fE+iVdERALveG1HfHx8rZsbFouFjh07kpmZ6dc4RUSkedPwPRGRIHfyySeza9cuunTp4v75/PPPef/994+7rdlspk+fPqSmprqXpaWlER4erslsRURC2PHajn79+rFlyxb3+g6Hg4yMDDp16hSokEVEpBlSUkpEJMhdddVVbNy4kccff5zffvuN999/n8cee4wOHTrUe/tly5bx2WefsWHDBu6//34uv/xyDd8TEQlhx2s7rrvuOlavXs3//d//8dtvvzFr1iysVisjRowIbOAiItKsaPieiEiQ69ixI4sXL2bBggUsW7aMxMRE7rnnHi666KJ6bT927Fj27NnDzJkzcTgcnHvuudx1110+jlpERALpeG2HzWbjiSeeYMGCBcydO5fevXvz3HPPER0dHeDIRUSkOTEZhmEEOggREREREREREWleNHxPRERERERERET8TkkpERERERERERHxOyWlRERERERERETE75SUEhERERERERERv1NSSkRERERERERE/E5JKRERERERERER8TslpURERERERERExO+UlBIREREREREREb9TUkpERERERERERPxOSSkREREREREREfE7JaVERERERERERMTvlJQSERERERERERG/U1JKRERERERERET8TkkpERERERERERHxOyWlRERERERERETE75SUEhERERERERERv1NSSsSLDMMIdAgiItJEqM0QEZHG8Gc7ojZLfEVJKWn2Ro0axT333NOofRQWFjJ9+nR++OEH97JrrrmGa665prHhiYhICPjwww8ZOXIkvXv3ZubMmWzdupWJEyd6vJ9D26zff/+d0047jVWrVtV7+9NOO42nnnrK4+OKiEhg+aIdqa/PP/+cu+++2+NjidRHeKADEAkFv/zyC++++y4TJkwIdCgiIhKEZs2axUknncTDDz9MYmIi77//Pj/++GOj9pmQkMCKFSs48cQT673NihUrOOGEExp1XBER8T9ftCP19eKLL/rlONI8KSklIiIi4mP5+fkMHTqUIUOGeG2fFouFfv36ebSNp+uLiEhw8EU7IhIMNHxPBKioqODBBx9k0KBBDBw4kLvvvpu8vDx3+ZtvvklycjL9+vWjb9++jB8/no8//hiAtWvXcu211wJw7bXX1hqyZxgGzz77LCNGjKBv375cccUVbNiwwV3+1FNPcc4557Bw4UIGDx7MWWedRUFBAVVVVbz66qtceOGF9O3blxEjRrBgwQLKy8trxf3tt99y1VVXMWDAAIYMGcLf//53MjMz3eWrVq2iT58+/PDDD0yYMIE+ffpw3nnn8cUXX7Bjxw6uu+46bDYb55xzDh9++KF7O6fTyeOPP86oUaPo3bs3o0aN4tFHH6WiosK7J15EpAnYuHEj1113HQMGDCApKYnrr7+etLQ0d/knn3zivl5fcskl/Pjjj/Tq1YtVq1axdu1aTjvtNAAWLVrEaaedxj333MPChQuBxg2nO3T4XlZWFj179mT58uW11snLy+P000933+U+9Hg1sX333XfccMMN2Gw2hg4dyvz586mqqnLvo7i4mJkzZ3LmmWeSlJTEX//6V1588UV3vURE5NiCtR0BKCoqYu7cuYwePZo+ffowbtw43nrrLXf5Nddcw7p161i3bh2nnXYaa9eubfCxRI5ESSkR4OOPP+bnn3/m4Ycf5u677+bLL7/k5ptvdieHZs6cyejRo1myZAkLFizAYrFw5513kpWVxemnn87MmTMBmDlzJvfdd597v6mpqXz66af885//ZP78+ezfv59bb72VyspK9zp79+7lq6++4vHHHyclJYVWrVoxc+ZMd+PwzDPPcPXVV7N8+XJuu+029ySD77zzDjfccAPt27fnscceIyUlhR9//JErrriC3Nxc9/4rKyv5+9//zpVXXskzzzxDVFQUd955J7fccgsjRoxg8eLFJCQkcPfdd5OVlQXAs88+y2uvvcaUKVN4/vnnmThxIsuWLeOZZ57xx9shIhI0iouLuemmm2jTpg1PPfUUjz/+OHa7nRtvvJGioiI+//xz/vKXv9C9e3cWLlzIOeecw6233orT6QTg9NNPZ8WKFQBceumlrFixgttvv51LL70UcA2nu+yyyxod5wknnMDgwYNr3WAA1xcdwzAYO3bsUbe98847GTBgAIsXL2bcuHE899xzvPnmm+7y2267jY8//pjbb7+dxx9/nJKSEh599NFGxywi0hwEcztSVlbGVVddxfvvv89NN93E008/zYABA5gxYwaLFy8G4L777qNXr1706tWLFStWcPrpp3vhrIgcpOF7IkCbNm1YtmwZ0dHR7tdTpkzh66+/JiMjgxtvvJHbbrvNvX7Hjh1JTk4mNTWVsWPH0q1bNwC6devm/h1cQyuWLl1K69atAdeE6P/4xz/Ytm0bPXr0AFxJo7vvvpuBAwcCsG3bNt566y3+/ve/M2nSJACGDh1KQkIC06dP5+uvv2bYsGEsWLCAs846q9YXg/79+3PBBRewbNkypk+fDrh6Pd1yyy3uxqqwsJC//vWvXHfddfz5z38GoEWLFkyYMIGNGzdywgknsG7dOnr37u2eI2vw4MFERUXRokUL7554EZEgt23bNg4cOMC1115L//79ATjllFNYsWIFJSUlLFq0iN69e7uvxX/84x8xmUw88cQTAMTGxrqHzJ1wwgm1fgfvDqcbP3489957L3v37qVDhw6Aa2LcP/zhD8THxx91u8suu4wpU6YAcOaZZ/LZZ5/x5ZdfcuWVV/Ldd9+xdu1annrqKc4991x3HceNG8f27du9FruISKgK5nZk1apV/Prrr7z++uskJSUBMGzYMCorK3n66ae58sor6datG7GxsY0+lsjRqKeUCDB8+HB3QgpcT6UIDw/nf//7H/fccw933nknhYWFpKWl8e677/Lqq68C4HA4jrnfbt26uRNSAJ06dQJc3WQP1bNnT/fv69atA6hzV3vs2LGEhYWxdu1adu7cSXZ2NuPGjau1zoknnkhSUpJ7HzVqGhmAuLg4AGw2m3vZoUkzgCFDhriHBj733HNs27aNP/3pT4wfP/6Y9RURCTWnnnoqbdu25ZZbbmHmzJl8+umntGvXjrvuuotWrVrx888/c/bZZ9fa5qKLLgpIrOeeey5Wq5WPPvoIgMzMTFJTU4977T60jQDXF53S0lIAvv/+eyIiIhg9erS73Gw2c8EFF3g5ehGR0BTM7ci6devo2LFjnXbgoosuory8nPT0dL/EIc2bklIiUOcOstlspk2bNhQWFrJ7926uv/56Bg0axJ/+9CeWLVvmHn5XM5TuaA5NdNXsF3B3x60RExPj/r2goOCIMYWHh9OmTRuKiorIz88HoF27dnWO2a5duzpJr5q7G4eKioo6atw33XQTM2fOpKysjAULFjB27FjGjRvH999/f9RtRERCUUxMDK+++irDhw/n448/ZurUqZx55pnMnDnTPfdg27Zta22TmJgYiFCJjY1l9OjR7iF8H330EVFRUbUSSkcSGRlZ67XZbHa3bwcOHKB169bu9qtGzQ0OERE5tmBuRwoKCo7Yk7bmO0bNDWsRX9LwPRFwJ3lqVFVVceDAAdq0acOkSZOIiIjgrbfeomfPnoSHh7Nt2zbeffddn8TSqlUrALKzs+nYsaN7eUVFhTummp5NOTk5dbbPzs6mTZs2jYrBbDZz9dVXc/XVV5Obm8tXX33F4sWLuf322/n222+xWCyN2r+ISFNyyimnuCf/3rBhA++++y6vvfYaCQkJmM3mOtfiw9sUf7rooouYNGkSu3bt4sMPP+S888475k2I40lMTOTAgQM4nc5aialD5y4UEZFjC9Z2pFWrVuzatavO8uzsbIBGf6cQqQ/1lBLB9RS7QycfX716NZWVlfTs2ZOdO3dy6aWX0qdPH8LDXXncr7/+GjjY4yksLMxrsQwePBigzmS1H374IVVVVQwYMICTTz6Z+Ph4Pvjgg1rrZGRkkJaW5h6v3lBXXnklDz74IOC6G56cnMzVV19NYWEhxcXFjdq3iEhT8sknn3DGGWeQnZ1NWFgYSUlJ3H///bRs2ZK8vDySkpL497//Xavn7H/+85/j7vfwnkfectZZZ9GuXTtefvllfv7550YPux48eDCVlZV88cUX7mWGYfDZZ581NlQRkWYhmNuRQYMGsWfPHn788cday9977z0iIiLo27ev144lcjTqKSWC627A7bffzjXXXMNvv/3GY489xtChQxkzZgwLFizg1Vdf5YQTTqBly5b897//5eWXXwbAbrcDuCcA//LLL2nVqpV7EvOG6NatG5dccglPPvkkdrudQYMG8csvv7Bw4UKGDBnCsGHDMJvN/O1vfyMlJYW///3vXHTRRRw4cICFCxfSqlUr9wTmDTVo0CCef/552rVrR1JSEvv27eOFF15g8ODBdboXi4iEsv79++N0OpkyZQqTJk0iJiaGjz/+mKKiIs4991wuuOACrr/+eqZMmcIVV1zB7t27+de//nXc/bZs2RKADz74AJvNRufOnb0Sb1hYGGPHjmX58uUkJiYyZMiQRu1v0KBBDB06lBkzZpCTk0OHDh1466232LJlCyaTySsxi4iEsmBuR5KTk/m///s/pkyZwrRp0+jUqRNffPEFK1euZOrUqe5jtGzZkh9//JHvvvuOXr16uUd2iHiDUp4iwFVXXUVcXBxTpkzhX//6FxdeeCELFy7EZDLx9NNPk5iYyD333MMdd9xBeno6zzzzDKeccgo//PAD4JrAcNy4cbz66qvceeedjY5nzpw5TJkyhffff59Jkybx6quvcu211/Lss8+671QkJyfz5JNPsnPnTqZMmcLDDz9MUlISb7311jGfslQff/nLX7jllltYuXIlN910Ew8//DBnnXUWTz75ZKPrJiLSlCQkJPDcc8/RokULZsyYweTJk/n555956qmnOOOMMxg4cCDLli1j//79TJ06lddff5277777uPs999xz6dOnD/fccw/Lli3zaszjx4+nqqqKcePGeeXu9uOPP86oUaN49NFH+ctf/oLFYmHixIl15k0UEZG6grkdiYqK4pVXXmHkyJH861//4tZbbyU1NZU5c+Zw++23u9e7+uqriYiI4Oabb3aPGBHxFpNxvJmaRURERKTefv/9d84++2zmzp1LcnJyoMNplD179pCWlsbZZ59da0L0adOmkZGRwdtvvx3A6EREQlMotSMix6PheyIiIiIBZBgGVVVVx10vLCzM70PmzGYz99xzD2effTaXXnopYWFh/Pe//+Xf//43c+fO9WssIiJyZMHcjogcj5JSIiIiIgH09ttvk5KSctz1Xn755UbPEeWp9u3b8+yzz7Jo0SLuuOMOKisr6dq1KwsWLGDcuHF+jUVERI4smNsRkePR8D0RERGRADpw4AC///77cdc7+eSTiY2N9UNEIiLSlKgdkaZMSSkREREREREREfE7PX1PRERERERERET8TkkpERERERERERHxOyWlRERERERERETE75SUEhERERERERERvwsPdABNWW5uEZom/iCTCeLiWui8HIfOU/3pXNVPQ89TzXbiXYe/D6H4d6w6NQ2qU9MQbHUKhbbB4XCQnJzMP//5T4YMGQJAWloaDz/8MFu2bCEhIYGbbrqJyy67zL3NmjVreOihh8jIyMBmszFnzhw6d+7sLn/xxRdZtmwZxcXFjBkzhn/+859ERUV5FFdD2+lg+dto6nQ+vU/n1LuC/Xz6qn1QUqoRDIOg/GMJNJ2X+tF5qj+dq/rReQoOR3sfQvH9UZ2aBtWpaQjFOgVCeXk5f//739m6dat7WXZ2NjfffDMTJ07k4Ycf5ueffyYlJYX4+HhGjBjB3r17mTJlCrfffjvDhg1j0aJF3Hbbbbz33nuYTCZWr17NwoULmT9/PnFxcaSkpDB//nxmzpzpUWwNfY/1t+FdOp/ep3PqXc3tfGr4noiIiIiINHnbtm3j8ssvZ/fu3bWWf/bZZ7Rr146//e1vnHTSSYwdO5aLL76Y999/H4A333yT3r17c8MNN3Dqqacyd+5c9uzZw7p16wB4+eWXue666xg5ciR9+/blgQceYOXKldjtdr/XUUQk1CgpJSIiIiIiTd66desYMmQIK1asqLV82LBhzJ07t876xcXFAKSnpzNw4ED38qioKE4//XTS0tKoqqrip59+qlXer18/Kioq2Lx5s49qIiLSfGj4noiIiIiINHlXXXXVEZd36tSJTp06uV/n5uby4YcfcvvttwOu4X0JCQm1tomLiyMrK4vCwkLKy8trlYeHh9O6dWuysrJ8UAsRkeZFSSkREREREWkWysrKuP3222nXrh1XXHEFAHa7HYvFUms9i8WCw+GgrKzM/fpI5Z4wmTyLtWZ9T7eTI9P59D6dU+8K9vPpq7iUlBIRERERkZBXUlLCbbfdxm+//cb//d//uZ+eZ7Va6ySYHA4HLVu2xGq1ul8fXu7p0/ca+tSqpv40xGCj8+l9Oqfe1dzOp5JSIiIiIiIS0oqLi7npppvYvXs3L730EieddJK7LDExkZycnFrr5+Tk0LNnT1q3bo3VaiUnJ4euXbsCUFlZSX5+PvHx8R7F4Olj3oP98fBNjc6n9+mcelewn8+a+LxNSSkREREREQlZTqeTqVOn8vvvv/PKK6+4k0s1bDYbqamp7td2u51NmzYxdepUzGYzffr0ITU1lSFDhgCQlpZGeHg4PXr08CiOhj7mvbk9Ht7XdD69T+fUu5rb+dTT90REREREJGS99dZbrF27lgcffJCWLVuSnZ1NdnY2+fn5AEyYMIH169ezdOlStm7dSkpKCp06dXInoa666iqWLVvGZ599xoYNG7j//vu5/PLLPR6+JyIidamnlIiIiIiIhKzVq1fjdDqZPHlyreWDBw/mlVdeoVOnTjz11FM89NBDLFq0iKSkJBYtWoSpelbfsWPHsmfPHmbOnInD4eDcc8/lrrvuCkRVRERCjpJSIiIiIiISUrZs2eL+fdmyZcddf/jw4QwfPvyo5ZMmTWLSpEleiU1ERA7S8D0REREREREREfE79ZSSoON0Ot1PQGnXrh1ms3KnIiKeMAyDvLw8ANq2besegiIiIiIiEkz0bV+CTk5ODks+T2fJ5+l1Hs8rIiLHl5eXx+IvNrD4iw3u5JSIiDQ9hmFgNKfHcIlIs6OeUhKUYlq1DXQIIiJNWnSL1oEOQURERETkmNRTSkRERERERERE/E5JKRERERERERER8TslpURERERERERExO+UlBIREREREREREb9TUkpERERERERERPxOSSkREREREREREfE7JaVERERERERERMTvlJQSERERERERERG/C+qk1Keffsppp51W62fatGkAbNq0icsuuwybzcaECRPYuHFjrW0/+OADRo8ejc1mY8qUKeTl5bnLDMNgwYIFnHHGGQwePJh58+bhdDr9WjcRERFfMwyDAwfyMAwj0KGIiIiIiNQR1Empbdu2MXLkSL755hv3z4MPPkhpaSmTJk1i4MCBrFq1iqSkJCZPnkxpaSkAGzZsYMaMGUydOpUVK1ZQWFhISkqKe78vvPACH3zwAQsXLuTJJ5/k/fff54UXXghUNUVERHzCXlzA4n//WOvGjIiIiIhIsAjqpNT27dvp3r078fHx7p+WLVvy0UcfYbVamT59Ol27dmXGjBnExMTwySefALB8+XLGjBnDxRdfTI8ePZg3bx5fffUVGRkZALz88stMmzaNgQMHcsYZZ3DnnXfy6quvBrKqIiIiPhEZ0yLQIYiIiIiIHFHQJ6VOOumkOsvT09MZMGAAJpMJAJPJRP/+/UlLS3OXDxw40L1++/bt6dChA+np6ezbt4/MzEwGDRrkLh8wYAB79uxh//79Pq2PiIiIiIiIiIi4hAc6gKMxDIOdO3fyzTffsGTJEqqqqjj//POZNm0a2dnZdOvWrdb6cXFxbN26FYD9+/eTkJBQpzwrK4vs7GyAWuXt2rUDICsrq852x1KdE5NqNeejsefl0O1NptA7z946T82BzlX9NPQ86byKiIiIiEggBW1Sau/evdjtdiwWC0888QS///47Dz74IGVlZe7lh7JYLDgcDgDKysqOWl5WVuZ+fWgZ4N6+vuLiNCTiSBp7XqqqSomKslTvK5Z27ULzPOvvp/50rupH50lERERERJqSoE1KdezYkbVr19KqVStMJhM9e/bE6XRy1113MXjw4DoJJIfDQWRkJABWq/WI5VFRUbUSUFar1f07QFRUlEcx5uYWoQcaHWQyub4UN/a85OYWY7c73L+HhUV7KcLg4K3z1BzoXNVPQ89TzXYiIiIiIiKBELRJKYDWrVvXet21a1fKy8uJj48nJyenVllOTo576F1iYuIRy+Pj40lMTAQgOzubTp06uX8HiI+P9yg+w0BflI+gsefl0G1D+RyHct28TeeqfnSe5EgMw+DAAdfT99q2beuej1FEREREJNCCdqLz//73vwwZMgS73e5e9ssvv9C6dWsGDBjAjz/+iFH97cswDNavX4/NZgPAZrORmprq3i4zM5PMzExsNhuJiYl06NChVnlqaiodOnTwaD4pERGRpqC8tIi5X/zGRS9v5K43f2BrRpa7/RQRERERCaSgTUolJSVhtVr5xz/+wY4dO/jqq6+YN28eN910E+effz6FhYXMmTOHbdu2MWfOHOx2O2PGjAFg4sSJvPvuu7z55pts3ryZ6dOnM2LECDp37uwuX7BgAWvXrmXt2rU8+uijXHvttYGsroiIiE/kVVn4qciKw2niqww7N67cwt59OcffUERERETEx4J2+F5sbCzLli3joYceYsKECcTExHDllVdy0003YTKZWLJkCffddx9vvPEGp512GkuXLiU62jX3UFJSErNmzeLJJ5+koKCAoUOHMnv2bPe+b7zxRnJzc5k6dSphYWFceumlXH/99QGqqYiIiG8YBvxa0RoDOCHKoMBhwl5l4sMteUw6wbMh6yIiIiIi3ha0SSmAU089lRdeeOGIZX379uXtt98+6rbJyckkJycfsSwsLIyUlBRSUlK8EqeIiEgwyndAuRFGuAkGxTn5vczCjzlVvLkxh2v/0I3IiLBAhygiIiIizVjQDt8TERGRxsmyuyY1T4gyEWaGE2NNxESYyC+r4uNN+wIcnYiIiIg0d0pKiYiIhKiapNQJ0a7m3mwycWJ0FQCfbMwgNzdXk56LiIiISMAoKSUiIhKCShxOCipMgMEJ0Sb38hOiXEmotKwyFn22gby8vABFKCIiIiLNnZJSIiIiISjb7uoR1cJUgTXsYFKqZQRYTVU4MVFkjg1UeCIiIiIiSkqJiIiEooIyJwCx5spay00maGsuA2BPcWWd7URERERE/EVJKRERkRBUUO5KSkWbK+qUtQ0rByBLSSkRERERCSAlpUREREJQQblr+F6MqW7iqZXZAUCRw6Coej0REQk+hmHogRQiEtKUlBIREQkxjkonxQ7Xl5gYc92kVITJICbc9fuWHLs/QxMRERERcVNSSkREJMRkFJRjABFmgwicR1ynjdU1+fmW7FI/RiYiIiIicpCSUiIiIiFmV75rzqiWEa6JzY+kbXVSarN6SomIiIhIgCgpJSIiEmJqklItIo4+D0mbyJqeUnbNVyIiIiIiAaGklIiISIjJKKhJSh19nVYWE2YTFJZXsaegzE+RiYiIiIgcpKSUiIhIiNlfUgFATPjRe0CFmUy0jnR9DNi8r9gvcYmISP3pyXsi0hwoKSUiIhJisquTUpFhx16vTfUKW7OVlBIRERER/1NSSkREJISUVzopKKsCIPq4SSnXx4Bfs0t8HZaIiIiISB1KSomIiISQ7GLXfFJhJog4TivvTkrtV08pEREREfE/JaVERERCyL4iV1IqOsKEyXTsdVtbXV2p9hc7OFDq8HVoIiJ+4XA4GDduHGvXrnUvy8jI4Prrr6dfv35ccMEFfPPNN7W2WbNmDePGjcNms3HttdeSkZFRq/zFF19k2LBhJCUlce+992K32/1SFxGRUKeklIiISIgwDINtmbkARIcfv4mPCDPRoYUF0BA+EQkN5eXl/O1vf2Pr1q3uZYZhMGXKFNq1a8fKlSsZP348U6dOZe/evQDs3buXKVOmkJyczFtvvUXbtm257bbb3JOMr169moULFzJr1ixeeukl0tPTmT9/fkDqJyISapSUEhGRkJKZmcnkyZPp378/o0aN4sUXX3SXbdq0icsuuwybzcaECRPYuHFjrW0/+OADRo8ejc1mY8qUKeTl5fk5+sbJy8vjow2uu/tWs7Ne25zSNhLQED4Rafq2bdvG5Zdfzu7du2st//7778nIyGDWrFl07dqVyZMn069fP1auXAnAm2++Se/evbnhhhs49dRTmTt3Lnv27GHdunUAvPzyy1x33XWMHDmSvn378sADD7By5Ur1lhIR8QIlpUREJKTccccdREdHs2rVKu69916eeOIJPv30U0pLS5k0aRIDBw5k1apVJCUlMXnyZEpLSwHYsGEDM2bMYOrUqaxYsYLCwkJSUlICXBvPVZitAESFH2fsHq7eAx2iXMkrJaVEpKlbt24dQ4YMYcWKFbWWp6en06tXL6Kjo93LBgwYQFpamrt84MCB7rKoqChOP/100tLSqKqq4qeffqpV3q9fPyoqKti8ebNvKyQi0gyEBzoAERERbykoKCAtLY3Zs2dz0kkncdJJJzFs2DC+++47CgoKsFqtTJ8+HZPJxIwZM/j666/55JNPSE5OZvny5YwZM4aLL74YgHnz5jFy5EgyMjLo3LlzYCvmgZIKV5IpKuz4SSl7cQG78yuASDZnFfo4MhER37rqqquOuDw7O5uEhIRay+Li4sjKyjpueWFhIeXl5bXKw8PDad26tXt7ERFpOPWUEhGRkBEZGUlUVBSrVq2ioqKCHTt2sH79enr27El6ejoDBgzAVD37t8lkon///ke9U96+fXs6dOhAenp6IKrSYKWVrjlQoup52ymhVSwAuwvKKa+s35A/EZGmxG63Y7FYai2zWCw4HI7jlpeVlblfH237+jKZPP9p6Hb60fnUOW2aP8F+Pn1BPaVERCRkWK1WZs6cyezZs3n55ZepqqoiOTmZyy67jM8//5xu3brVWj8uLs49Ge7+/fuPeSe9vg5vsA/9gOFrJhOUVveUio6oObBrucHBfw9dFhUO1jAT5VUGO3NL6HlCi3od59B/Q4Hq1DSoTr4XLHF4k9VqJT8/v9Yyh8NBZGSku/zwBJPD4aBly5ZYrVb368PLo6KiPIojLu7419dDGYaB0+kkLq4FZrP6EniLp++DHJ/OqXc1t/OppJSIiISU7du3M3LkSP785z+zdetWZs+ezZlnnnncO+VlZWVeuRN+tA8S/viAUVZRiqPK9Xub2AjCnQaR1ggioyJwVjgxR7j+rb3MQlx0BXuLKthrr2RYu/rHGYofmlSnpkF1Ek8kJiaybdu2WstycnLcNyISExPJycmpU96zZ09at26N1WolJyeHrl27AlBZWUl+fj7x8fEexZGbW0T1A/3qyaBNmxhyc4swmZSUaiyTyfX/mefvgxyNzql3Bfv5rInP25SUEhGRkPHdd9/x1ltv8dVXXxEZGUmfPn3Yt28fzzzzDJ07dz7ine7j3Sn39E744R8k/PkBY9ueAgDCTAZV5RVUVjkoK6+gzF6Bs9KBudKMs7LuspYW2Auk7sjl7JPbHPc4wf6hqSFUp6ZBdfJfPKHEZrOxdOlSysrK3Nf81NRUBgwY4C5PTU11r2+329m0aRNTp07FbDbTp08fUlNTGTJkCABpaWmEh4fTo0cPj+IwDBr0HgfD30Uoaej7IEenc+pdze18KuUuIiIhY+PGjXTp0sX9pQOgV69e7N2796h3wo93p9zTO+E1HyQO/Tnacm//HCitBMBiBqgeg3NYDEda1iYyDHA9ga++x/JXnfz5ozo1jR/VyT/xhJLBgwfTvn17UlJS2Lp1K0uXLmXDhg1ceumlAEyYMIH169ezdOlStm7dSkpKCp06dXInoa666iqWLVvGZ599xoYNG7j//vu5/PLLPb5pISIidSkpJSIiISMhIYFdu3bV6vG0Y8cOOnXqhM1m48cff8So/sZlGAbr16/HZrMBde+UZ2ZmkpmZ6S5vCgrKXWP3rGGebdcm0vVxYGt2Cc5Q/EYqIs1aWFgYTz/9NNnZ2SQnJ/Pee++xaNEiOnToAECnTp146qmnWLlyJZdeein5+fksWrSImgdjjB07lsmTJzNz5kxuuOEG+vbty1133RXIKomIhAwN3xMRkZAxatQo5s+fzz/+8Q9uvfVWdu7cyeLFi/nrX//K+eefz6OPPsqcOXO48soref3117Hb7YwZMwaAiRMncs0119CvXz/69OnDnDlzGDFiBJ07dw5wreov3+7qKWX18JZTS6uZCLOJEkcVewvK6NRad/9FpGnbsmVLrdddunRh+fLlR11/+PDhDB8+/KjlkyZNYtKkSV6LT0REXNRTSkREQkaLFi148cUXyc7O5tJLL2Xu3LnceuutXHHFFcTGxrJkyRJSU1NJTk4mPT2dpUuXEh0dDUBSUhKzZs1i0aJFTJw4kVatWjF37twA18gz+WXVSakwz3o7mU0mTmrjesLUr9klXo9LRERERORI1FNKRERCSrdu3XjhhReOWNa3b1/efvvto26bnJxMcnKyr0LzuYKyhvWUAjilbSRbc8v4dX8xo05t5+XIRERERETqUk8pERGREJFf5ppTyuLhnFLgSkqBa7JzERERERF/UFJKREQkRDSmp1TXmqSUhu+JiIiIiJ8oKSUiIhIi8u01T9/z/Al6J7dxJaX2FZWTb6/walwiIiIiIkeipJSIiEiIKCivmejc821jLGF0bOVKTG3N1hA+EREREfE9JaVERERCgGEY5NtdSSmLh627YRgcOJDHSa0jAEj7bT+5ubkYhuc9rkRERERE6ktJKRERkRBQVF5JVXUOydOeUvbiAl5as52cAwUAfLIpk8VfbCAvL8/LUYqIiIiIHKSklIiISAg4UOqaByrCDGEmz7ePim1FfMtoAEqc4US3aO3F6ERERERE6lJSSkREpIkzDIPfsnIAsDYkI1WtVaTrY0FBuVND90REgoBhGLoei0hIU1JKRESkicvLy+ON/20HPJ9P6lAtLGbCzVDphJIKfQkSEREREd9SUkpERCQEGBGuoXcNefJeDbPJRPvYcMDVW0pERERExJeUlBIREQkBZZWunk2N6SllGAaJka5kVEFZlTfCEhERERE5KiWlREREQoCj+tF7lkbMKWUvLiAraz8A+eopJSIiIiI+pqSUiIhICHAnpRrZsh862bmIiIiIiC8pKSUiIhICHE5XUirC3PCeUgDRpkoAihx6Ap+IiIiI+JaSUiIiIiHAUT0FlKURE50DRJpcO6p0Qp69spFRiYiIiIgcnZJSIiIiIaDcS8P3zCaIdj2Aj72FjkZGJSIiIiJydE0mKTVp0iTuuece9+tNmzZx2WWXYbPZmDBhAhs3bqy1/gcffMDo0aOx2WxMmTKFvLw8d5lhGCxYsIAzzjiDwYMHM2/ePJxOzZ0hIiJNV82cUo0dvgcQG+Haxx4lpURERETEh5pEUurDDz/kq6++cr8uLS1l0qRJDBw4kFWrVpGUlMTkyZMpLS0FYMOGDcyYMYOpU6eyYsUKCgsLSUlJcW//wgsv8MEHH7Bw4UKefPJJ3n//fV544QW/10tERMQbDMM45Ol7jd9fbLgrKaWeUiIiIiLiS0GflMrPz2fevHn06dPHveyjjz7CarUyffp0unbtyowZM4iJieGTTz4BYPny5YwZM4aLL76YHj16MG/ePL766isyMjIAePnll5k2bRoDBw7kjDPO4M477+TVV18NSP1EREQaq7zSoHqecyK80LLHRLj+3VNU3vidiYiIiIgcRdAnpR555BHGjx9Pt27d3MvS09MZMGAAJpPrTq7JZKJ///6kpaW5ywcOHOhev3379nTo0IH09HT27dtHZmYmgwYNcpcPGDCAPXv2sH//fv9USkRExIuKqmc5N2EQ3vjRexq+JyIiIiJ+ER7oAI7lu+++44cffuD999/n/vvvdy/Pzs6ulaQCiIuLY+vWrQDs37+fhISEOuVZWVlkZ2cD1Cpv164dAFlZWXW2OxaTFz74h5Ka89HY83Lo9iZT6J1nb52n5kDnqn4aep50XkNHUbkrKWUxu27UGI3cX01SKrPQgdMwMOuPRURERER8IGiTUuXl5dx3333MnDmTyMjIWmV2ux2LxVJrmcViweFw3dEtKys7anlZWZn79aFlgHv7+oqLa+HR+s1FY89LVVUpUVGW6n3F0q5daJ5n/f3Un85V/eg8NV81SSlvDN0D19P3TLie6Jdd7CCxhdU7OxYREREROUTQJqUWLlxI7969GTZsWJ0yq9VaJ4HkcDjcyaujlUdFRdVKQFmtVvfvAFFRUR7FmJtbhNHY29EhxGRyfSlu7HnJzS3Gbne4fw8Li/ZShMHBW+epOdC5qp+Gnqea7aTpK3Yc7CnlDWaTiRiLiWKHQcYBu5JSIiIiIuITQZuU+vDDD8nJySEpKQk4mDhavXo148aNIycnp9b6OTk57qF3iYmJRyyPj48nMTERcA0B7NSpk/t3gPj4eI9iNAz0RfkIGnteDt02lM9xKNfN23Su6kfnqfnydk8pgNgIM8WOKvYWlHlvpyIiIiIihwjaic5feeUV3n//fd555x3eeecdRo0axahRo3jnnXew2Wz8+OOPGNXfvgzDYP369dhsNgBsNhupqanufWVmZpKZmYnNZiMxMZEOHTrUKk9NTaVDhw4ezSclIiISLGomOo8wey8rGVvd7WpPoZJSIiIiIuIbQdtTqmPHjrVex8TEANClSxfi4uJ49NFHmTNnDldeeSWvv/46drudMWPGADBx4kSuueYa+vXrR58+fZgzZw4jRoygc+fO7vIFCxZwwgknAPDoo49yww03+LF2IiIi3lNc7t3hewCxluon8OXbvbdTEREREZFDBG1S6lhiY2NZsmQJ9913H2+88QannXYaS5cuJTraNfdQUlISs2bN4sknn6SgoIChQ4cye/Zs9/Y33ngjubm5TJ06lbCwMC699FKuv/76ANVGRESkcdxP3wvz3j5jq8cC7i0o995ORUTEI4ZhuEeHiIiEoiaTlHr44Ydrve7bty9vv/32UddPTk4mOTn5iGVhYWGkpKSQkpLi1RhFREQC4eDwPe/t0z18r0A9pURERETEN4J2TikRERGpH18M34upznDllVZQVlHlvR2LiIiIiFRTUkpERKSJ88VE5xFmg+hw17xSv2teKRERERHxASWlREREmrgiH/SUKispJAzXfn/dk+O9HYuIiIiIVFNSSkREpImrGb7nzTmlAFpUz5yeWeTw7o5FRERERFBSSkREpEmrdBqUVDgB7/aUAtzD9/YVKyklIuJvevKeiDQHSkqJiIg0YcVlle7fvd1TKibC9W9mUYV3dywiIvWixJSIhLrwQAcgnnM6neTkuOb3aNeuHWazcosiIs1VYbkrKRVuBrPJu/uu6SmVpZ5SIiIiIuIDymY0QTk5OSz5PJ0ln6e7k1MiItI8FZa5ejFZw7yckQJiapJSRRW6Uy8iIiIiXqeeUk1UTKu2gQ5BRESCQEH18D2LD5JS0dWfEsoqneTbK2gTbfH6MURERESk+VJPKRERkSasyIdJqTCziajq3lJ7Csq8vn8RERERad6UlBIREWnCaobv+SIpBRBb/Ui/vUpKiYiIiIiXKSklIiLShPly+B5AbIR6SolI05eZmcnkyZPp378/o0aN4sUXX3SXbdq0icsuuwybzcaECRPYuHFjrW0/+OADRo8ejc1mY8qUKeTl5fk5ehGR0KWklIiISBNWM3zPFxOdA8RU95RSUkpEmrI77riD6OhoVq1axb333ssTTzzBp59+SmlpKZMmTWLgwIGsWrWKpKQkJk+eTGlpKQAbNmxgxowZTJ06lRUrVlBYWEhKSopfYjYMQw+ZEJGQp6SUiIhIE3Zw+J5v9h97SFLKMAxyc3PJzc3VFyURaTIKCgpIS0vj1ltv5aSTTmL06NEMGzaM7777jo8++gir1cr06dPp2rUrM2bMICYmhk8++QSA5cuXM2bMGC6++GJ69OjBvHnz+Oqrr8jIyAhwrUREQoOSUiIiIk2Ye/ie2bfD9/YWlJGXl8fiLzbwzOcbyM3N9cnxRES8LTIykqioKFatWkVFRQU7duxg/fr19OzZk/T0dAYMGIDJ5LrWmUwm+vfvT1paGgDp6ekMHDjQva/27dvToUMH0tPTA1EVEZGQEx7oAERERKTh3E/fC/fR8L3qpNS+wjKqnAbRLVr75DgiIr5itVqZOXMms2fP5uWXX6aqqork5GQuu+wyPv/8c7p161Zr/bi4OLZu3QrA/v37SUhIqFOelZXlcRwmDy/TNeubTJ5vK3Udej7FO3ROvSvYz6ev4lJSSkREpAkrPHROKacPDlBWhAkzVYaJ7JIKHxxARMT3tm/fzsiRI/nzn//M1q1bmT17NmeeeSZ2ux2LxVJrXYvFgsPhAKCsrOyY5Z6Ii2vh0fpVVVVUVFQQF9eCiIgIj48nR+bp+yDHp3PqXc3tfCopJSIi0oQV1MwpZfZNUspkgugwg5IqE5lFnn8JExEJtO+++4633nqLr776isjISPr06cO+fft45pln6Ny5c50Ek8PhIDIyEnD1sjpSeVRUlMdx5OYW4cl0fE5nFS1aWMnJKSQiwnL8DeSYTCbXl31P3wc5Op1T7wr281kTn7cpKSUiItJEGYZBUXn18L0wE1T65jhRZiclVWayitVTSkSano0bN9KlSxd3ogmgV69eLF68mIEDB5KTk1Nr/ZycHPeQvcTExCOWx8fHexyHYeDRF82adT3dTo5N59P7dE69q7mdT010LiIi0kSVVTqpqHJ9arGE+W4Cgqgw1zGy1FNKRJqghIQEdu3aVavH044dO+jUqRM2m40ff/zR/URRwzBYv349NpsNAJvNRmpqqnu7zMxMMjMz3eUiItI4SkqJiIg0UQV2V8+lMJPrx1eizK5xgVnFSkqJSNMzatQoIiIi+Mc//sHOnTv54osvWLx4Mddccw3nn38+hYWFzJkzh23btjFnzhzsdjtjxowBYOLEibz77ru8+eabbN68menTpzNixAg6d+4c4FqJiIQGJaVERESaqJqhe2ajivKycp8dJ9rdU0rD90Sk6WnRogUvvvgi2dnZXHrppcydO5dbb72VK664gtjYWJYsWUJqairJycmkp6ezdOlSoqOjAUhKSmLWrFksWrSIiRMn0qpVK+bOnRvgGomIhA7NKSUiItJE1Tx5z+LjW0zu4XvFDkjURwcRaXq6devGCy+8cMSyvn378vbbbx912+TkZJKTk30VmohIs6aeUiIiIk1UTVIq3OTb2TBrhu8VlFW557ASEREREWksJaVERESaqJrhexE+TkpFmCHWEgZASYXTp8cSERERkeZDSSkREQkpDoeDBx54gEGDBvGHP/yBxx57zP1UpU2bNnHZZZdhs9mYMGECGzdurLXtBx98wOjRo7HZbEyZMoW8vLxAVKHeisv901MKoH2LCNcxHUpKiYiIiIh3KCklIiIh5cEHH2TNmjUsW7aMRx99lDfeeIMVK1ZQWlrKpEmTGDhwIKtWrSIpKYnJkydTWloKwIYNG5gxYwZTp05lxYoVFBYWkpKSEuDaHJs/k1IntLC4junQ8D0RERER8Q7NVioiIiEjPz+flStX8sILL9C3b18AbrjhBtLT0wkPD8dqtTJ9+nRMJhMzZszg66+/5pNPPiE5OZnly5czZswYLr74YgDmzZvHyJEjycjICNpHfxeVVwG+H74H0D7WlZQq0vA9EREREfES9ZQSEZGQkZqaSmxsLIMHD3YvmzRpEnPnziU9PZ0BAwZgMpkAMJlM9O/fn7S0NADS09MZOHCge7v27dvToUMH0tPT/VoHT7h7Spl9nyhq31LD90RERETEu9RTSkREQkZGRgYdO3bknXfeYfHixVRUVJCcnMytt95KdnY23bp1q7V+XFwcW7duBWD//v0kJCTUKc/KyvIohuqcV53Xhy/3hkOH75lMYFQf59B/MdVv2fHKOriH7zl9WqdAUZ2aBtXJ94IlDhERaR6UlBIRkZBRWlrKrl27eP3115k7dy7Z2dnMnDmTqKgo7HY7Foul1voWiwWHwwFAWVnZMcvrKy6uhUfLG6O8utNSVISZyKgInBVOzBG1/420RtQpO9KyY5VhVNHrxDbALkoqDCzWCJ/VKdBUp6ZBdRIREQkNSkqJiEjICA8Pp7i4mEcffZSOHTsCsHfvXl577TW6dOlSJ8HkcDiIjIwEwGq1HrE8KirKoxhyc4swDpniyWRyfdk8fLk35BWXu36pqqTMXoGz0oG50lzr37LyijplR1p2zPXLKghzOIgwm6hwGuQVlR+xrk2ZL9+nQFGdmoZgq1NNPCIiIv6gpJSIiISM+Ph4rFarOyEFcPLJJ5OZmcngwYPJycmptX5OTo57yF5iYuIRy+Pj4z2KwTA44hfLoy1vjEOH79Xs+/B/Meq37HhlZpOJxNgIfi90UFTdRcsXdQo01alpUJ1ERERCgyY6FxGRkGGz2SgvL2fnzp3uZTt27KBjx47YbDZ+/PFHjOpvfYZhsH79emw2m3vb1NRU93aZmZlkZma6y4NRTVLK10/fMwyDAwfyaBflmmxGk52LiIiIiDcoKSUiIiHjlFNOYcSIEaSkpLB582b++9//snTpUiZOnMj5559PYWEhc+bMYdu2bcyZMwe73c6YMWMAmDhxIu+++y5vvvkmmzdvZvr06YwYMYLOnTsHuFZHZhhGrZ5SvlReWsRLa7aTl18AQJGSUiIiIiLiBT5JSn3//ffuO9EiIiL14a22Y8GCBZx44olMnDiRu+++m6uvvpprrrmG2NhYlixZQmpqKsnJyaSnp7N06VKio6MBSEpKYtasWSxatIiJEyfSqlUr5s6d2+h4fMVe4aSq+nT5OikFEBXbilZRNU/gUxsvIt6j7w4iIs2XT+aU+stf/kJERATnn38+48aNo1+/fr44jIiIhBBvtR0tWrRg3rx5Ryzr27cvb7/99lG3TU5OJjk5uUHH9bei6l5SZhOE+emYMRGuL41FFeopJSLeo+8OIiLNl0+SUt9++y3ffvstn3zyCZMmTSI2NpYxY8YwduxYevXq5YtDiohIE6e2wzM1Q/diLWGYTP45Zkz1p4ZihxPDMPx2XBEJbbr+i4g0Xz5JSoWHhzN8+HCGDx9OZWUla9as4YsvvuCqq64iMTGRCy+8kOTkZDp06OCLw4uISBOktsMzNUmpGIv/poeMrv7UUOmEA6WVtI3x26FFJITp+i8i0nz59JOsw+Hgq6++4sMPP+Tjjz+mTZs2jBo1it9++42xY8eyfPlyXx5eRESaILUd9VNU5kpKRZoNvz1GPswEUdVjBX8vKPPPQUWk2dD1X0Sk+fFJT6nPPvuMTz75hC+//JKIiAjOO+88Fi1axMCBA93rvPrqqzz22GP86U9/8kUIIiLSxKjt8ExWXj4ABSV2yiPK8FenpZgIE/Yqg9/zy+mrTgsi4gW6/h+ZYRiaAF5EQp5PklJ33303o0eP5rHHHmPo0KGEhdWdgrV37978+c9/9sXhRUSkCVLb4ZkSh2uycWuET5ryo4oJhxzg93z1lBIR79D1X0Sk+fLJJ9k1a9ZQXFxMYWGhu1H56KOPGDRoEPHx8QDYbDZsNpsvDi8iIk2Q2g7PFDuqAIgwG+DHh+HFRJgAgwwlpUTES3T9FxFpvnwyp9T69es555xzeP/9993LXn75ZS644AJSU1N9cUgREWni1HZ4prS6p1SE/+Y5ByAm3PXIvd+yS8jNzdXQEhFpNF3/j05D+EQk1Pnko+wjjzzCLbfcwrRp09zLXn/9dW666SYeeughXxxSRESaOLUdnjnYU8q/x3X1lIIduXae+XwDeXl5/g1AREKOrv8iIs2XTz7K/vbbb5x//vl1lo8ZM4Zt27b54pAiItLEqe3wTEl1Uqq645LfxFQP/C93moiIbuXfg4tISNL1X0Sk+fJJUuqUU07h448/rrP8iy++4MQTT6z3fnbt2sWNN95IUlISI0aM4LnnnnOXZWRkcP3119OvXz8uuOACvvnmm1rbrlmzhnHjxmGz2bj22mvJyMioVf7iiy8ybNgwkpKSuPfee7Hb7R7WUkREvMlbbUdzUVIRmOF7ljCTax4roLjCj5NZiUjI0vX/yGqG7mn4noiEMp9MdH7HHXdw22238e2333L66acDsGXLFn744Qeeeuqpeu3D6XQyadIk+vTpw9tvv82uXbv429/+RmJiIuPGjWPKlCl0796dlStX8tlnnzF16lQ++ugjOnTowN69e5kyZQq33347w4YNY9GiRdx222289957mEwmVq9ezcKFC5k/fz5xcXGkpKQwf/58Zs6c6YvTISIi9eCNtqM5qTXRuZ/FhEO+A4odSkqJSOPp+n90T3z6K9cP6hzoMEREfMYn91f/+Mc/8vbbb9OrVy927NjB7t276dGjBx9++CHDhw+v1z5ycnLo2bMn999/PyeddBLDhw/nzDPPJDU1le+//56MjAxmzZpF165dmTx5Mv369WPlypUAvPnmm/Tu3ZsbbriBU089lblz57Jnzx7WrVsHuCZOvO666xg5ciR9+/blgQceYOXKleotJSISQN5oO5qTQE10DhATXt1TyqG79yLSeLr+H4PJz2O0RUT8zCc9pQBOPfVU7rnnngZvn5CQwBNPPAG4uq6uX7+e//3vf9x3332kp6fTq1cvoqOj3esPGDCAtLQ0ANLT0xk4cKC7LCoqitNPP520tDQGDhzITz/9xNSpU93l/fr1o6Kigs2bN5OUlNTgmEVEpHEa23Y0B4ZhkJeXR2FZBeBKSvk7NRRd/elBw/dExFt0/RcRaZ58kpQqLCzk+eef56effqKysrLOOOiXX37Zo/2NGjWKvXv3MnLkSM477zweeughEhISaq0TFxdHVlYWANnZ2UctLywspLy8vFZ5eHg4rVu3dm9fX4G6cXHocU2m4LmBUhNHY+MJ1vp5i7fOU3Ogc1U/DT1PwXZevd12hKq8vDwWf7GBonIzYCLCDA4/x1Az2XmJhu+JiBfo+i8i0nz5JCk1ffp0fvrpJy688EJiY2Mbvb8nn3ySnJwc7r//fubOnYvdbsdisdRax2Kx4HC4PpYfq7ysrMz9+mjb11dcXAtPq+IVVVWlREVZqmOIpV0738bhdDrJzs4GID4+HrP52GNFGnte/F2/QAnU309TpHNVP039PHm77QhlkbGtqKIYgAiT/5NS0Rq+JyJepOu/iEjz5ZOk1Jo1a1i+fDl9+/b1yv769OkDQHl5OXfeeScTJkyoM/+Tw+EgMjISAKvVWifB5HA4aNmyJVar1f368PKoqCiP4srNLSIQD8PIzS3Gbne4fw8Liz7OFo2zf/9+Fn+WDsAto211eqHVMJlcX4obe178XT9/89Z5ag50ruqnoeepZrtg4e22I5Q5qg6+0eGBmFMqzPVvSYUTp/7nFJFG0vVfRKT58klSKjEx8bi9aY4nJyeHtLQ0Ro8e7V7WrVs3KioqiI+PZ8eOHXXWr0mWJCYmkpOTU6e8Z8+etG7dGqvVSk5ODl27dgWgsrKS/Px84uPjPYrRMAjIF+VDj+mPGAwDYlq1rffxGhuTv+sXKKFcN2/Tuaqfpn6evNF2NBcVrgfvEW4CcwCGYUaFgwmoMuCAvRLPWk8Rkdp0/T86p9OJ06mh0iISunxy9Z8+fTr3338/X3/9Nbt27WLv3r21furj999/Z+rUqezbt8+9bOPGjbRt25YBAwbw888/u4fiAaSmpmKz2QCw2Wykpqa6y+x2O5s2bcJms2E2m+nTp0+t8rS0NMLDw+nRo0djqy4iIg3kjbajuXA4XdnHQPSSAlciLDrClQ3LKqoITBAiEjJ0/RcRab580lPq9ttvB2DSpEkAmKpn0zUMA5PJxC+//HLcffTp04fTTz+de++9l5SUFPbs2cP8+fO55ZZbGDx4MO3btyclJYXbbruN//znP2zYsIG5c+cCMGHCBJYtW8bSpUsZOXIkixYtolOnTgwZMgSAq666ipkzZ9K9e3cSEhK4//77ufzyyz0eviciIt7jjbajuaioHr4XEcCOBbEWEyUVBlnF/p7RSkRCja7/IiLNl0+SUp9//nmj9xEWFsbTTz/N7NmzueKKK4iKiuKaa67h2muvxWQy8fTTTzNjxgySk5Pp0qULixYtokOHDgB06tSJp556ioceeohFixaRlJTEokWL3A3c2LFj2bNnDzNnzsThcHDuuedy1113NTpmERFpOG+0Hc1FTU+piECM3asW4+4ppaSUiDSOrv8iIs2XT5JSHTt2BGDr1q389ttvDB06lNzcXDp16uRODNVHYmIiCxcuPGJZly5dWL58+VG3HT58OMOHDz9q+aRJk9x3Y0REJPC81XY0BzVzSgW2p5QZqCKrWMP3RKRxdP0XEWm+fJKUKigo4C9/+Qvr1q0DYPXq1cyZM4eMjAyWLl3qbnhERERqqO2oP0cwDN9TTykR8RJd/0VEmi+ffJx98MEHiYqK4vvvv8dqtQLw0EMPccIJJ/Dggw/64pAiItLEqe2ov4ogGL4Xa6lOSqmnlIg0kq7/IiLNl0+SUv/973/529/+RsuWLd3L2rZtS0pKCv/73/98cUgREWni1HbUXzD0lIqxuA6eU1KBo1KPKxeRhtP1X0Sk+fLZx9ny8vI6y/Ly8ggP98mIQRERCQFqO+onGJ6+FxkGYSYwgKyiuu+biIgndP0XEWmefPJxdty4ccyZM4etW7diMpkoLS3l+++/55///CcXXHCBLw4pIiJNnNqO+quo7pgUyKSUyWSqnuwc9hTYAxeIiDR5uv6LiDRfPvk4O336dGw2G8nJyZSWljJ+/HhuvPFGzjzzTKZPn+6LQ4qISBOntqP+Dg7fC+xTqWKqJzvfW1AW0DhEpGnzx/Xf4XDwwAMPMGjQIP7whz/w2GOPYRiua+mmTZu47LLLsNlsTJgwgY0bN9ba9oMPPmD06NHYbDamTJlCXl6eV2ISEREfPX3PYrFwzz33cMcdd5CRkUFVVRWdO3cmJibGF4cTEZEQoLaj/g5OdB7YOFw9parYk6+klIg0nD+u/w8++CBr165l2bJllJSU8Ne//pUOHTpw0UUXMWnSJC688EIefvhhXnvtNSZPnsynn35KdHQ0GzZsYMaMGTzwwAP06NGDOXPmkJKSwpIlS7wWm4hIc+aTpNSRJiTctGmT+/dBgwb54rAiItKEqe2ov5qeUuFBkZSCvYVKSolIw/n6+p+fn8/KlSt54YUX6Nu3LwA33HAD6enphIeHY7VamT59OiaTiRkzZvD111/zySefkJyczPLlyxkzZgwXX3wxAPPmzWPkyJFkZGTQuXPnRsUlIiI+Skpdc801R1xusViIj4/n888/98VhRUSkCVPbUX8He0oFdvhebHVXLQ3fE5HG8PX1PzU1ldjYWAYPHuxeNmnSJAD++c9/MmDAAEwm1/XUZDLRv39/0tLSSE5OJj09nZtvvtm9Xfv27enQoQPp6elKSomIeIFPklKbN2+u9bqqqordu3czbYVFUgABAABJREFUe/ZsLrzwQl8cUkREmji1HfVjGAYVVa7fLQHvKeX6ErdHSSkRaQRfX/8zMjLo2LEj77zzDosXL6aiooLk5GRuvfVWsrOz6datW6314+Li2Lp1KwD79+8nISGhTnlWVlaj4xIRER8lpQ4XFhbGySefzD333MOkSZO45JJL/HFYERFpwtR2HJm90olR/Xu4GdwvAiC6eqLzwrJKisoqaRGpR7eLSON5+/pfWlrKrl27eP3115k7dy7Z2dnMnDmTqKgo7HY7Foul1voWiwWHwwFAWVnZMcs9YfKwc2vN+iaT59tKXYeeT/EOnVPvCvbz6au4/PrpMTc3l8LCQn8eUkREmji1HbWVOJwAmDAIMxHQpFRlaSERQAVh7C0o47TI2MAFIyIhx1vX//DwcIqLi3n00Ufp2LEjAHv37uW1116jS5cudRJMDoeDyMhIAKxW6xHLo6KiPI4jLq6FR+tXVFS4t4uOjvb4eHJknr4Pcnw6p97V3M6nT5JSKSkpdZaVlJSwZs0azj//fF8cUkREmji1HfVT4nCN3Yswu+Y+CWBOCoDocCiohD2FZZyWqKSUiHjO19f/+Ph4rFarOyEFcPLJJ5OZmcngwYPJycmptX5OTo57yF5iYuIRy+Pj4z2OIze3CMODi3ZlZYV7u9LSKo+PJ7WZTK4v+56+D3J0OqfeFeznsyY+b/NbT6nWrVtz9913M378eH8dUkREmji1HXWVVrh6SoUHSdfuKLNBAbAn3x7oUEQkhHjz+m+z2SgvL2fnzp2cfPLJAOzYsYOOHTtis9l49tlnMQzDleg3DNavX88tt9zi3jY1NZXk5GQAMjMzyczMxGazeRyHYeDRF82adT3dTo5N59P7dE69q7mdT58kpebOneuL3YqISAhT21E/7qRUgCc5rxEd5opHT+ATkYby9fX/lFNOYcSIEaSkpHD//feTnZ3N0qVLufXWWzn//PN59NFHmTNnDldeeSWvv/46drudMWPGADBx4kSuueYa+vXrR58+fZgzZw4jRozQk/dERLzEJ0mphQsX1nvdqVOn+iIEERFpYtR21E9pxcHhe8EgKsx1K09P4BORhvLH9X/BggXMnj2biRMnEhUVxdVXX80111yDyWRiyZIl3HfffbzxxhucdtppLF261D2HU1JSErNmzeLJJ5+koKCAoUOHMnv27AbFICIidfkkKbVr1y4++eQTWrduTe/evbFYLGzevJndu3fTr18/wsNdhzUF67TyIiLid2o76qfUEWzD99RTSkQaxx/X/xYtWjBv3rwjlvXt25e33377qNsmJye7h++JiIh3+SQpZbFYuPDCC3nggQeIiIhwL3/kkUcoKCjgoYce8sVhRUSkCVPbUT8He0oFx2QDNT2l9haW4TQMzM08aSgintP1X0Sk+fJJ5/+PPvqIm266qVajAnD55Zfz0Ucf+eKQIiLSxKntqJ9gm1Mq0mxgNkFFlUFOseP4G4iIHEbXfxGR5ssnH2kTExP573//W2f56tWrNSmgiIgckdqO+qlJSkUESYckswkSYlxfJDWET0QaQtd/EZHmyyfD9/7+979zxx138OWXX9KjRw8AfvrpJzZt2sTixYt9cUgREWni1HbUT4nDNXwvWHpKAZzQwkJWcQV7Csro16lVoMMRkSZG138RkebLJx9pzznnHFatWkX37t3Zvn07e/bsYfDgwaxevZrBgwf74pAiItLEqe2on2AbvgdwQqx6SolIw+n6f2SGYQDBMX+giIiv+KSnFMBpp51GSkoKBQUFxMbGYjabm/0Tk0RE5NjUdhxfzdP3gmX4nmEYtA539d76vcAe4GhEpKnS9f/IDMOoTk6JiIQmn9xnNQyDZ555hiFDhnDmmWeyd+9e7rrrLmbOnInDoUlQRUSkLrUd9VPz9L3wIHn6XnlpEZt/zwFgd25xgKMRkaZI138RkebLJ0mpRYsW8d577/Hwww9jsVgAuOSSS/j222+ZN2+eLw4pIiJNnNqO+nFPdB5Ew/dax0YDkFWkL48i4jld/0VEmi+ffKR9++23mTVrFiNHjnR3ux06dCiPPPIIH3/8sS8OKSIiTZzajvpxzykVRKNaYqrHEuaWVlJe6QxwNCLS1Oj6f3Qavicioc4nSanc3FwSEhLqLG/ZsiWlpaW+OKSIiDRxajvqpzQIn75nMbviMYDMQk12LiKe0fVfRKT58slH2jPOOINly5bVWlZcXMxjjz3GkCFDfHFIERFp4tR2HJ9hGEE5fM9kMhFbHZCewCcintL1X0Sk+fLJR9r777+fTZs2MXToUMrLy7ntttsYPnw4e/bs4R//+IcvDikiIk2c2o7js1c43Q8HD6bhewAxFtdHij1KSomIh3T9FxFpvsJ9sdOWLVvy1ltv8d1337Fjxw4qKys5+eSTOeusszCbg+jWroiIBA21HcdXXF4JgAkIC7KkVGz1vFLqKSUintL1X0Sk+fJJUmrcuHEsXLiQM888kzPPPNMXhxARkRCjtuP4Sqrnk4oIA1OwJaUsGr4nIg2j67+ISPPlk1sPZrOZiooKX+xaRERClNqO4ytxuHpKRZiDLCOFhu+JSMPp+i8i0nz5pKfUiBEj+POf/8zIkSPp2LEjFoulVvnUqVN9cVgREWnCfNF2TJo0ibZt2/Lwww8DsGnTJu677z5+/fVXunXrxgMPPEDv3r3d63/wwQc88cQTZGdnc9ZZZzF79mzatm3buIp5UUl5dU+pIExKafieiDSUvjuIiDRfPklKbdmyhdNPP539+/ezf//+WmWmYBtvICIiQcHbbceHH37IV199xSWXXAJAaWkpkyZN4sILL+Thhx/mtddeY/LkyXz66adER0ezYcMGZsyYwQMPPECPHj2YM2cOKSkpLFmyxCv18wZ3T6lgm1CKg8P3isorKSyroGVkRIAjEpGmQt8dRESaL68lpa6++mqeeeYZWrZsySuvvAJAWVkZkZGR3jqEiIiEGF+1Hfn5+cybN48+ffq4l3300UdYrVamT5+OyWRixowZfP3113zyySckJyezfPlyxowZw8UXXwzAvHnzGDlyJBkZGXTu3LlR8XhLcfWcUuFBOO9vuNlEm8hwDpRVsregTEkpETkmfXcQERHw4pxSqampdcaC/+EPfyAjI8NbhxARkRDjq7bjkUceYfz48XTr1s29LD09nQEDBrjvuptMJvr3709aWpq7fODAge7127dvT4cOHUhPT29ULN7knug8CIfvGYZBuyhXXL/n2wMcjYgEO313EBER8NFE5zUMw/Dl7kVEJAQ1tu347rvv+OGHH7jttttqLc/OziYhIaHWsri4OLKysgDYv3//McuDQUm5a/ieJQiH79mLCygudSWjtmUdCHA0ItIU6buDiEjz45M5pURERAKhvLyc++67j5kzZ9YZAmK32+tMnmuxWHA4HIBr2Mixyuvr8OlPal57Y1qUgz2lDu7TADAd/P3wf49U1tj1ObROh5S1jLKQWe4kq8jhlfr6kzffp2ChOjUNwVanYIlDRESaByWlREQkZCxcuJDevXszbNiwOmVWq7VOgsnhcLiTV0crj4qK8iiGuLgWHi33RFX1sL0oaziRkRbMERE4K5xEWiOIjHL9XrPsWGXeWB/AarXUKmtdGQb5DvLKnbRr1/j6BoI33qdgozo1DaFYJxERkePxalLq448/JjY21v3a6XTy6aef1nmcds0ksiIiIt5sOz788ENycnJISkoCcCeZVq9ezbhx48jJyam1fk5OjnvIXmJi4hHL4+PjPapPbm4Rh45AMZlcXzYPX94QOQVlrl+cTsrKHJgrzTgrHZSVV1Bmr8BZeXDZscoau75R5SAqwkp5ee0yi+HqabY7z05OTlHjKutn3nyfgoXq1DQEW51q4vEHfXcQERGvJaU6dOjA888/X2tZXFwcy5cvr7XMZDKpYREREcD7bccrr7xCZWWl+/WCBQsAuPPOO/nf//7Hs88+i2EYmEwmDMNg/fr13HLLLQDYbDZSU1NJTk4GIDMzk8zMTGw2m0d1MgyO+MXyaMs9UeJw1a1monP3/g7Z9+H/HqmssevXKj/kdXT1XFf7iyuochqYm+A4IG+8T8FGdWoaQrFOx6LvDiIiAl5MSn3xxRfe2pWIiDQT3m47OnbsWOt1TEwMAF26dCEuLo5HH32UOXPmcOWVV/L6669jt9sZM2YMABMnTuSaa66hX79+9OnThzlz5jBixAg6d+7s1Rgbo6S8ek6psAAHchRR4a7ppiqcBtnFDhJbWAMdkogEKX13EBER8PHT90RERIJFbGwsS5YscfeGSk9PZ+nSpURHRwOQlJTErFmzWLRoERMnTqRVq1bMnTs3wFHXVtNTKjxIeyCZTCZiLK7Yfs+3BzgaEREREQl2muhcRERC1sMPP1zrdd++fXn77bePun5ycrJ7+F4wKrRXAGBUOCAiwMEcRQuLmWJHFbvyShnQuXWgwxERERGRIKaeUiIiIk1EafVT78LNwdlTCqCV1fXRYmeeekqJiIiIyLEpKSUiItIEGIZBaUX1nFJB3Hq3rE5K/ZZbGuBIRESaNsMwmtXk9yLSPAXxx1rYt28f06ZNY/DgwQwbNoy5c+dSXl4OQEZGBtdffz39+vXjggsu4Jtvvqm17Zo1axg3bhw2m41rr72WjIyMWuUvvvgiw4YNIykpiXvvvRe7XXd0RUQkeJVVOnFWfzkJ5qTUwZ5SSkqJiIiIyLEF7cdawzCYNm0adrudV199lccff5z//Oc/PPHEExiGwZQpU2jXrh0rV65k/PjxTJ06lb179wKwd+9epkyZQnJyMm+99RZt27bltttuw6i+1bB69WoWLlzIrFmzeOmll0hPT2f+/PmBrK6IiMgxlZRXVv9mEBa8o/doYXF9tNhXVE6poyrA0YiIiIhIMAvapNSOHTtIS0tj7ty5nHrqqQwcOJBp06bxwQcf8P3335ORkcGsWbPo2rUrkydPpl+/fqxcuRKAN998k969e3PDDTdw6qmnMnfuXPbs2cO6desAePnll7nuuusYOXIkffv25YEHHmDlypXqLSUiIkGruDrBE24yMAXp0/cAnPZCInDF+pt6S4mIiIjIMQRtUio+Pp7nnnuOdu3a1VpeXFxMeno6vXr1cj/GG2DAgAGkpaUBkJ6ezsCBA91lUVFRnH766aSlpVFVVcVPP/1Uq7xfv35UVFSwefNm31ZKRESkgUpqklIBjqM+YquDVFJKRKRxDMOg0qmJpUQkdAVtUqply5YMGzbM/drpdLJ8+XLOOOMMsrOzSUhIqLV+XFwcWVlZAMcsLywspLy8vFZ5eHg4rVu3dm8vvuF0Otm/fz/79+/H6XQGOhwRkSalZvheuCn4v5zEhLuu8Ts12bmISKN88msBf16xicoqfXYWkdDUFG64AjB//nw2bdrEW2+9xYsvvojFYqlVbrFYcDgcANjt9qOWl5WVuV8fbfv6CtToiUOPazL5Po76Hq9m+dHKc3NzWPJ5OgC3jLbVSRx6erym6njnSQ7Suaqfhp4nndempeSQ4XvBLjbM9eVph5JSIiINVuU02F9cAUBeaQUJLawBjkhExPuaRFJq/vz5vPTSSzz++ON0794dq9VKfn5+rXUcDgeRkZEAWK3WOgkmh8NBy5YtsVqt7teHl0dFRXkUV1xcCw9r4h1VVaVERVmqY4ilXTvfxuHp8Y52XqqqSml3wgnH3Y+/6xcogfr7aYp0rupH5ym0lThcPaXCmkBSqkV1T6lf9xcHOBIRkaar4pDeURrCJyKhKuiTUrNnz+a1115j/vz5nHfeeQAkJiaybdu2Wuvl5OS4e94kJiaSk5NTp7xnz560bt0aq9VKTk4OXbt2BaCyspL8/Hzi4+M9ii03twgjAO1Dbm4xdrvD/XtYWPRxtvDP8Uwm15fio52X+u7H3/Xzt+OdJzlI56p+GnqearaTpqGkvOn0lGpR3VMqq6icfHsFraMiAhyRiEjTU155MClVpaSUiISooJ1TCmDhwoW8/vrrPPbYY4wdO9a93Gaz8fPPP7uH4gGkpqZis9nc5ampqe4yu93Opk2bsNlsmM1m+vTpU6s8LS2N8PBwevTo4VF8hhG4H3/HUN/jHW8dT/YT6HPs6/MZ6Biayo/OlW/PkzQdTWn4XoQZ2rdwJaJSt+8lNzcXQ39wIiIecVQdvG6qp5SIhKqgTUpt376dp59+mptvvpkBAwaQnZ3t/hk8eDDt27cnJSWFrVv/n707D2+i2v8H/s7SpGlL6V6pRVD2paSFCipFhAsoi8utiPdyZRG1XAG5/lTUgrJ+AVlcrhYVlFVQkMUF9IriggsIWmwLIlD20hbadF/SpEnO7480A6H7mjR5v56nD82cmek5k2Em88k5n5OKNWvWICUlBWPHjgUAPPjggzhy5AjWrFmD1NRUxMfHIzw8HAMGDAAAjB8/HmvXrsW+ffuQkpKC+fPnY9y4cfUevkdERNRSiltRonMA6BRgvad+cOgc3v0uBbm5uQ6uERFR62KwG77HROdE5Jqcdvjet99+C7PZjHfeeQfvvPOOXdnJkyfx9ttvY86cOYiNjUWHDh2watUqhIWFAQDCw8Px1ltvYcmSJVi1ahWioqKwatUqyCqy+o4ePRrp6emYO3cujEYjRowYgVmzZrV4G4mIiOqqNfWUAoBbAjzx84VClAgVvNrwSx8iovoymphTiohcn9MGpeLi4hAXF1dteYcOHbB58+ZqywcPHozBgwc3eP9UdxaLBTqdDjIZEBDg7ejqEBG5JFui89YSlOoUYJ18JK+M3+4TETWE3fA9c+u49hMR1ZfTDt+j1kOn02H1t8l4d18ysrOzHV0dIiKX1Np6SnUOtAalCg0WfsNPRE4lLi4OL774ovT6+PHjeOihh6DVavHggw/i2LFjduvv2bMHw4YNg1arxfTp01tsODJ7ShGRO2BQipqEd9sAeLcNcHQ1iIhcVkkryykVoFEiQKOEAJCrNzu6OkREAIAvvvgC+/fvl16XlpYiLi4O0dHR2LVrF6KiojB16lSUlpYCAFJSUjBnzhzMmDED27ZtQ2FhIeLj41ukrgYTc0oRketjUIqIiKgVKG5lPaVkMhm6B1tzSeXo+TBFRI6Xn5+P5cuXIyIiQlr25ZdfQq1W4/nnn0enTp0wZ84ceHt746uvvgIAbN68GSNHjsQDDzyA7t27Y/ny5di/fz/S0tKavb4G09WAPntKEZGrYlCKiIioFWhtw/cASEEpHXtKEZETWLZsGe6//3507txZWpacnIx+/fpJEyLJZDL07dsXSUlJUnl0dLS0frt27RAWFobk5ORmry9zShGRO3DaROdERER0VWsbvgcA3YO9AAA5DEoRkYMdPHgQv//+O3bv3o358+dLy7Ozs+2CVAAQGBiI1NRUAEBWVhZCQkIqlV++fLnedaiIe9VZuflqL1OzEPXenuzZjh+PY9PhMW1azn48m6teDEoRERE5OSEEiltRUEoIgby8XAQrLJABKC0X0JWUIzDQ0TUjIndkMBgwb948zJ07F56ennZler0eKpXKbplKpYLRaAQAlJWV1VheH4GBbeq1vofn1b/r5e2JoKD6bU9Vq+/7QLXjMW1a7nY8GZQiIiJycmUmC2wjN1pDUMpQWoSNB85AmA3wVfmjwAic0OnR7SZH14yI3FFCQgJ69+6NQYMGVSpTq9WVAkxGo1EKXlVXrtFo6l2PnJwiiHpcwnML9NLveQWl0OmK6v036SqZzPqwX9/3garHY9q0nP142urX1BiUIiIicnK2oXtyGaBwcF3qSuPTFsJcBv9yOQqMFpzMLnV0lYjITX3xxRfQ6XSIiooCACnItHfvXowZMwY6nc5ufZ1OJw3ZCw0NrbI8ODi43vUQAvV60Lx29r1ys8UpH1Jbo/q+D1Q7HtOm5W7Hk4nOiYiInFyxwZqTyctD7rR5BqoToLZW+ES2vpY1iYiaxwcffIDdu3fj008/xaeffoqhQ4di6NCh+PTTT6HVavHHH39AVDwBCiFw5MgRaLVaAIBWq0ViYqK0r8zMTGRmZkrlzcl4TU4pJjonIlfFnlJEREROrtho7Snl5dFa+kld5V8RlDqVo4fJIqCUt7KoGhG1ejfeeKPda29vbwBAhw4dEBgYiFdffRWLFy/GP/7xD2zduhV6vR4jR44EAPzzn//EhAkTEBkZiYiICCxevBh33XUX2rdv3+z1vranlMnCoBQRuSb2lCIiInJytiTnXqrWd9tu4wF4yAGDSeCMrsTR1SEisuPj44PVq1cjMTERsbGxSE5Oxpo1a+DlZZ09NCoqCgsXLsSqVavwz3/+E23btsXSpUtbpG7Ga3pHMShFRK6KPaWIiIicnG34nreHAih3cGXqSSaTIVCjwOUSM/7MLES3EB9HV4mI3Nwrr7xi97pPnz745JNPql0/NjYWsbGxzV2tSuyG7zEoRUQuqvV95UpERORmbD2lvFthTykACNRYhx0ezeTMUUREdWU3fO+aABURkStpnZ9uiYiI3EixsaKnlKr15ZQCgCAva72PZRY6uCZERK2HkTmliMgNMChFRETk5EpsPaU8WudtO1Bjrff5XD0uZGRJs1wREVH1mFOKiNxB6/x0S0RE5EZsPaW8WmlPKU+lHO3aqAAAS3f/htzcXAfXiIjI+V2bU8rMoBQRuSgGpYiIiJycLaeU3GRAa+1k1D1YAwAokXs7uCZERK0Dh+8RkTtgUIqIiMjJ5RaVAgCSL1yGwVDm4NrUnxACN3lbH6jyjDIH14aIqHXg8D0icgdKR1eAiIiIalZabv223EujAUpbX7JwfXEBzheWA/BErgHMKUVEVAecfY+I3AF7ShERETm5koqcUh7y1hvMCfHzgRwC5UKGzCKjo6tDROT0rs0pxZ5SROSqGJQiIiJyciVG64OJshWPfJPLZPCz5jrHX9l6x1aGiKgVYE4pInIHDEoRERE5udJyW08pB1ekkfzV1oeqkwxKERHVijmliMgdtPKPt0RERK7P1lOq1QelpJ5SpY6tCBFRK2C4dviemUEpInJNrfzjLRERkWszmiwor/iGXNnK79oBFT2lzuaWoayi9xcREVXNfvgeE50TkWtq5R9viYiIXFux0ST97tGKc0oBgEYBqGQWmAVwMqvY0dUhInJaQggO3yMit8CgFBERkRMrNlh7FCnlgKyVB6VkMsDPw/pt/5+XixxcGyIi52W8briemUEpInJRDEq5MYvFgqysLGRlZcHCLsFERE6p2GDtKeUhb+URqQptldb7zdEMBqWIiKpz7dA9gD2liMh1MSjlxnQ6HVZ/m4zV3yZDp9M5ujpERFQFW1BKpXCNoJSv0trz62QWg1JERNW5Nsk5wKAUEbkupaMrQI7l3TbA0VUgIqIalBitQZzWPvOejW9FT6m0/DIUG0zwUfOjCBHR9Sr1lOLse0TkolzkIy4REZFrkobvuUhPKZUcCPH2AMBk50RE1ak8fI+pNojINTEoRURE5MSKpZ5SrhGUAoDOgZ4AgBNXGJQiIqqKgTmliMhNMChFRETkxFwtp5QQAuFe1oerv64wrxQRUVWYU4qI3AUTORARETkpIQR0BdbeREoX+RrJUFqEMxlKAJ44nlng6OoQETkl5pQiInfhIh9xiYiIXE9ubi4Sz2cDAOQWs4Nr03RC/HwAAJcKjCg1uk67iIiaSuWeUswpRUSuiUEpIiIiJ2ZRqAAAStcYvQcA8FTIoFHKIACcYrJzIqJKbD2lbCO3zRy+R0QuikEpIiIiJ1ZeMWTDlRKdA0CAxvoR5ASDUkREldiCUsqKqBRzShGRq2JQioiIyImVVzyIuEpOKRt/TwUABqWIiKpiG75n+0KCQSkiclUu9hGXiIjItZRXpFzycLE7doCmIih1uQg5OTkQgg9cREQ2kTe2xc0BGtzsbx3CzeF7ROSqXOwjLhERkWux9ZRyueF7ntaPIOdyS7Hy05+Rm5vr4BoRETmPm/w12PTP3rglwBqU4ux7ROSqGJQiIiKXcuXKFcycORP9+/fHoEGDsHTpUhgMBgBAWloaJk+ejMjISIwaNQo///yz3bYHDhzAmDFjoNVqMXHiRKSlpTmiCXaMUk4pB1ekiWmUMvh7KmERgFHl6+jqEBE5JbnMNnyPs+8RkWtysY+4RETkzoQQmDlzJvR6PbZs2YLXX38d33//Pd544w0IITB9+nQEBQVh586duP/++zFjxgxkZGQAADIyMjB9+nTExsZix44dCAgIwLRp0xw6rMxkEbB9Oe5qOaVkMhk6B3oCAPKNrtULjIioqdg6yZoFOMyZiFyS0tEVIKovi8UCnU4HAAgKCoJc7mJPakTUYGfPnkVSUhJ++eUXBAUFAQBmzpyJZcuW4c4770RaWhq2bt0KLy8vdOrUCQcPHsTOnTvx1FNPYfv27ejduzemTJkCAFi6dCkGDhyIw4cPY8CAAQ5pT6nRLP3uIQfgYl+Udw3S4Lf0YuQZHV0TIiLndO3IbZNFwEPBID4RuRY+zVOro9PpsPrbZKz+NlkKThERAUBwcDDef/99KSBlU1xcjOTkZPTs2RNeXl7S8n79+iEpKQkAkJycjOjoaKlMo9GgV69eUrkjlJRbo1AKmZCGcLgKIQTae1mDbrkG12obEVFTkePq9ZEz8BGRK2JPKXI6ZouAwSygruGbIO+2AS1YIyJqLXx9fTFo0CDptcViwebNm3HbbbchOzsbISEhdusHBgbi8uXLAFBruSPYekopXTBmoy8uwG9XDAA0KDHLkKc3IdDRlSIicjLXfh9hMgvAw3F1ISJqDgxKkdNZdegyvj5diqE3eTq6KkTUyq1YsQLHjx/Hjh07sGHDBqhUKrtylUoFo9E6dkyv19dYXlfXd2iyvW5IR6dSk7WnlIfcur0AANnV32ta1pzr49o2NWL/bdu2hW+hEYXlwInsUnRpX/9j1FQa8z45K7apdXC2NjlLPcjao1Quu9o7ysyeUkTkghiUIqeSUVCGb84UQAD4K6fc0dUholZsxYoV2LhxI15//XV07doVarUa+fn5dusYjUZ4eloD4Gq1ulIAymg0wte3fjPDBQa2qdfymsjV1iCZSimDp8YDlnILPNUe0u9yj+qX1VTWFOtbj5mq0fsP8jKhsEDgXJEJQUH1P0ZNrSHvk7Njm1oHV2wTNZ5MJoMM1kA+Z+AjIlfUKoJSRqMRsbGxePnll6Vks2lpaXj55ZeRlJSEsLAwzJ49GzExMdI2Bw4cwJIlS5CWlgatVovFixejffurX8Fu2LABa9euRXFxMUaOHImXX34ZGo2mxdtG9rYeSYftS6CMEjMyi4y4bjQNEVGtFi1ahI8++ggrVqzA3XffDQAIDQ3F6dOn7dbT6XTSkL3Q0NBKeep0Oh169OhRr7+dk1OEaydIksmsD5vXL6+LyzklAAAFBMr05bCYjCgzlEu/y03yapfVVNbY9YXZCI2HGgZD4/ffVmEGIEfihQLodEX1O0BNqDHvk7Nim1oHZ2uTrT7keBaLBUIIa+9SwZxSROSanD7RucFgwDPPPIPU1FRpWWOn9d67dy8SEhKwcOFCbNy4EcnJyVixYoVD2kdXlRrN+OyoNXeLpiKByv9O5TuwRkTUGiUkJGDr1q147bXXMHr0aGm5VqvFn3/+ibKyMmlZYmIitFqtVJ6YmCiV6fV6HD9+XCqvKyEq/1S3vLafkoqcUh6yq/vBdfusbllzrm9X3sj9B6qtL07p9NAbzQ06Tk3109D3yZl/2KbW8eNsbSLnYpvogkEpInJFTh2UOn36NMaNG4eLFy/aLf/111+RlpaGhQsXolOnTpg6dSoiIyOxc+dOALCb1rtLly5YunQp0tPTcfjwYQDApk2bMGnSJAwZMgR9+vTBggULsHPnTuj1+hZvI111KqsYpeVmBGqU6BtqHbJyJLPEwbUiotbkzJkzePvtt/HEE0+gX79+yM7Oln769++Pdu3aIT4+HqmpqVizZg1SUlIwduxYAMCDDz6II0eOYM2aNUhNTUV8fDzCw8OlHrqOUGK05ZRy3QcRbyXgKbeg3CKQnF7o6OoQETkdeUWeL5PZde8FROS+nDoodfjwYQwYMADbtm2zW96Yab3NZjOOHj1qVx4ZGYny8nKcOHGieRtENUrVWQNQtwSo4e9pPTUvFRiZ1JGI6uzbb7+F2WzGO++8g5iYGLsfhUKBt99+G9nZ2YiNjcXnn3+OVatWISwsDAAQHh6Ot956Czt37sTYsWORn5+PVatWQebArL8l5RWz7zn13bpxZDIgwMPazsMX8x1bGSIiJyQFpfiZmIhckFPnlBo/fnyVyxszrXdhYSEMBoNduVKphJ+fn0On/SbgdLY1KHWzvydkJj3kMqDcIpBZWIZwP+b7IqLaxcXFIS4urtryDh06YPPmzdWWDx48GIMHD26OqjVIqfHq7HuuLNDDggwD8NvFPAA3O7o6REROxTp8TzDRORG5JKcOSlWntmm7ayq35RJpjmm/W8q1f1cma3g96rqf2ta7firjhu7ntM4WlFLjoq4Mvio58g0WnM8tRXt/TZ334+ycbepnZ8ZjVTcNPU48rs5P6inl4u+Vv9IEQI2TWcUo0BvRVqOqdRsiIndhuwWwpxQRuaJWGZRqzLTearVaen19eX1n33PUzCRmcyk0FR/YAwN9GjyFdl33U9t615Zb16n/fiwWgbM5pQCAyI7+yC7Rw9/LiHyDBVllZrt1m6r9jsaZbeqOx6pueJxcj7v0lJIZCuGt0KDELMePf6Xj3r7sLUVETevKlStYvHgxfv31V6jVaowaNQrPPPMM1Gp1o2f1bm7MKUVErqxVBqUaM623n58f1Go1dDodOnXqBAAwmUzIz89HcHBwverhqKl7c3KKodcbpd8VCq9atmjcfmpbz1Zu63VR3XGpaT/p+XoUG0zwUMjgLUzQ643wVljLjqXl2U0T3lTtdxRnm/rZmfFY1U1DjxOn/XZ+RQZrTymVCyc6twnxUuJckQVJmSW419GVISKXIoTAzJkz4evriy1btqCgoACzZ8+GXC7H888/j+nTp6Nr167YuXMn9u3bhxkzZuDLL79EWFiYNKv3U089hUGDBmHVqlWYNm0aPv/88xbLOWj7M+wpRUSuqFUGpbRaLdasWYOysjKpd1RiYiL69esnlVc1rfeMGTMgl8sRERGBxMREaUalpKQkKJVKdO/evV71cNS0udf+zcbUoa77qW29a6cyrmlfNe0n1ZZPKsALioo7r6/a2jXgfE5ppW3rUm9n15rr3tJ4rOqGx8n1FBmtQSlX7ykFAMEaGc4VAUmXOesqETWts2fPIikpCb/88guCgoIAADNnzsSyZctw5513Ii0tDVu3boWXlxc6deqEgwcPYufOnXjqqafsZvUGgKVLl2LgwIHShEwtQV7x2ZiT/xCRK2qVH3MbO633+PHjsXbtWuzbtw8pKSmYP38+xo0bV+/he9R0bPmkugR7S8t8VRVBqVw9BJ+0icgNXe0p5eCKtIBgT+tD18V8A3TFBgfXhohcSXBwMN5//30pIGVTXFzcqFm9Wwpn3yMiV9Yqe0rZpvWeM2cOYmNj0aFDhyqn9V6yZAlWrVqFqKgou2m9R48ejfT0dMydOxdGoxEjRozArFmzHNkkt3euIp/UzYHXBqVkkMuAIoMJOaXlCPJm4lsich8WIVBc0VNKpXBwZVqASiGDv6cceWUW/JaWj5E9Qh1dJSJyEb6+vhg0aJD02mKxYPPmzbjtttsaNat3fTV0QhIpKCUsnKSkETiBTtPjMW1azn48m6terSYodfLkSbvXjZ3Wu7Zpw6llXczTAwA6+GsAWBP7KuQyBHt54EpJOS7l6RmUIiK3UmIww/aluDsM3wOAG7wVyCuz4PAFBqWIqPmsWLECx48fx44dO7Bhw4YGz+pdX/XN4+hZ0YNUoVAAMMPL27PVTvDjTJhPs+nxmDYtdzuerSYoRa5LCIELuRVBqQAvwFwslYX6WINSGYVliERbR1WRiKjFFZSVAwAUMuuPO2jno8RfOeU4eD4PFiGkPCpERE1lxYoV2LhxI15//XV07dq1UbN611d9JyQpKan4TCysX9jm5pfaTf5D9cMJdJoej2nTcvbj2VyTJDEoRQ6XXWxEabkZChkQ7ueJvBz7oBSuABkFZQ6sIRFRyyssMwEA1O4SkQIQ7KWARilHTokRJ64Uo+cN7vVNIRE1r0WLFuGjjz7CihUrcPfddwNo3Kze9VXfCUls68phvQ+YzMIpH1RbG04M0/R4TJuWux1PNxkQQM7sQp41n9SNfhp4KOxPyVAfDwAMShGR+yms6CmlcqOglFwGRARbh8n8dCbHwbUhIleSkJCArVu34rXXXsPo0aOl5VqtFn/++SfKyq5+1kxMTIRWq5XKq5rV21beEmRSonNLi/1NIqKWwqAUOZxt6N5N/pVnP7QFpTILGZQiIvdi6ynlTkEpfXEBSosKAAD7U7McXBsichVnzpzB22+/jSeeeAL9+vVDdna29NPYWb1bAmffIyJXxqAUOdwFKcm5V6Uy9pQiIndV4IbD9wCgvb91FtbUnDJkFRkcXBsicgXffvstzGYz3nnnHcTExNj92Gb1zs7ORmxsLD7//PMqZ/XeuXMnxo4di/z8fLtZvVuC7S+ZzAxKEZHrYU4pcrjzudbhex0Cqu8pdaXIAJNFQCl3r4czInJf7jh8DwA8lTIEeymQXWrGvlPZGN8v3NFVIqJWrrZZtxs7q3dzs036wJ5SROSK2FOqFdqcnI3/ndUjr8w1xpVfrCEoFaBRwkMhg1mA35gTkVtxx+F7Njf5Wr8z23dSV8uaRESuz/adrJlBKSJyQQxKtTLFBhN2HMtFvsGC7y7qcS6vdQ9rKzaYkFFoDTbdEuBdqVwuk6Gdr3VKXg7hIyJ3cnX4noMr4gDtfZWQATiaWYjLzClIRG6OOaWIyJUxKNXK/HgmB+UVNySjGdic1Lq/RT6dXQIACPFRwc/Lo8p1wmxBqXo+mFgsFmRlZSErKwsWzlZCRK1Mod49h+8BgJeHHL1DrXkGvz6R7eDaEBE5lm34ntHMz7NE5HoYlGplvjlp/XB+g7f1rfsrWw8hWu+3JqeyiwEAXUN8ql2nXVs1gPr3lNLpdFj9bTJWf5sMna7hwTsGt4jIEaThe0r3C0oJITDgBusXFbuS03ntJSK3Zvtuoqyc10Iicj0MSrUiRWUm/Ho+DwCgDVFBDqDAYEZ6Kx7WdjLLGpTqVkNQ6sa21lxTDWmnd9sAeLcNaFjlKjRVcIuIqD4K3XT2PQDQFxfg/KVMKCCQXmjE/r8uObpKREQOo6h4YiszmR1bESKiZsCgVCuSnFEAk0Ug3FeFAE8F/D2tb9/RzEIH16zhTmVZh+/V1FOqvZ91+N6lfH2L1KkqTRHcIiKqjwI3nX3Ppo1vW4R7W3sC/+9UnoNrQ0TkOLbZp8vKGZQiItfDoFQrckZnnaWuU4A1SBOosb59xzKKmvXvWoSQ8lg1JZPZgjM51qBUt5DKSc5twv2sPaXS8hwXlCIiaklCCLeefc+mo4/13vPT+ULoijkDKxG5J9ttQM/he0TkghiUakXO6KwBnA5+KgBAkJd1Sqbm7CklhMCynzKw82Qpfs0wIF9varJ9n8stRblZwFulkJKZV8UWlCooM6GwoucAEZEr05dbpFmW3HH4no2/GvBTmmGyCGz9I8PR1SEicgippxSH7xGRC2JQqhW5GpSyJv4OqugpdSq7BAZT83xz8v3pHPx8oQgCwLkCE1b83HQPBSkZ1mBatxAfyGTVP3R5qRQI9LYG4i7lt978WUREdWUbuuchl8GNY1IAgJs11mOxMzkDJcam+2KEiKi1YE8pInJlDEq1EiaLwPlc6/A9W1DKSymDt0oOs0U0y9C2snIzXv3utPVv+iogA5B0uVRKTt5YP53JBQDc3tG/1nWdIa8UEVFLyS0xAgD8NMoag/buIFhlRrivCsUGMz47etnR1SEianHMKUVEroxBqVbiUr4eRrOAp1KOUB/rNNkymQw3trH2ILqYV9rkf/PA+TxkFRsR6KVE/3ZqtPe1Dhf86Eh6o/etL7fgt4vWxLV3dg6sdX0prxSDUkTkBnQl1t5B/hqlg2viDATuudl6D/gwMR0mM3sKEJF7UUhBKV7/iMj1MCjVSpytGLp3S5A35Nd8ax7e1hqUutAMPaX2n9YBAAZ1aAOlXIbuAdZg2N6/spBbamzUvv/ILIHRLBDu54mbA7xqXb+9FJRquuF7FosFWVlZyMrKgsXCmzwROY+cimusv6fCwTVxPENpES6kZ0ItF7hSZMAniecgRNNPvkFE5KyUFU9szClFRK6IQalW4nRFUKpToH0Ax9ZTqqmDUiaLwC9nK4bXtW8DAAjUKNAl0BMmi8DeE9mN2v+Bi9YZA+/sFFinoSnhtuF7TdhOnU6H1d8mY/W3ydDpdE22XyKixrIN32NPKSufNm1xSxtrIOqdXy9Bl5Pj4BoREbUcRcVnZeaUIiJXxKBUK3Euxzo875Ygb7vlN1b0lLqY27TD95LTC1BQZkJbTyV6BGuk5X+7pS0A4Is/rzR434UGC/aftyY5H9Y1uE7btPdvnuF73m0D4N02oEn3SUTUWDkMSlVycxsBDzlQVC7Dz+ebb9ZZIiJnw5xSROTKGJRqJWw9oTr4a+yWX80p1bTBmv2nrd9Cx3QKlMaxA8CdHa1D+U5mFeN0dkmD9p2SbYRFADG3BCAizLdO29zkr4EMQG5pOfL1nH2JiFxbTilzSl1PJQc6+Vo/tmxOzobZwiF8ROQe5LD2kCozWWDh8GUicjEMSrUCQlydXe+m64JSYb7WoFRBmQn5FQ8xTfH3bPmk7upkn4S8racSMbdYexZtT8qo974vl5iRVmSGXAZMH3RznbfzVimltp/Ja7q8UkREzojD96rWua0cHnLgYr4B355q3DByIiJnJ4SAEFd7SgGA0cQhfETkWhiUagWyi40oM1mgkAE3tvW0K/NUynFDGzUA4EITzcB3WleCjEID1Eo5BnT0r1T+z343AgA+O3YZl+oxnK603IzDmQYAwKiufuh83VDE2nQP9QEAnMkx1Gs7IqLWRkp0zqCUHQ+5DN0DrV/GvHfwAntLEZFbUFyTflXPIXxE5GIYlGoFbEPzwtp6Qqmo/JbZehA1VbJz29C9/jf5QeNReeanvuF+uK2DP8wWgbd+PFfnh4L1R7JRUi7g7SHD5KiQeterW4g1KHU6lz2liMi12XJKBTAoVUn3QBV8VHKcz9Vj5+9nORMfEbkFVUVkqow9pYjIxTAo1QpcrOgBdZO/V5XlHQKsyy/kNk1Q6scz1qDUXZ2Dql3n3zEdIQPwXaoOz++9gOQsIy4VmVBsqPrbm98v5uPLU/kAgP7t1NB41P/Uk3pKMShFRC6s1GiWZljyY1CqEg+FDKM7WXvavnXgEjKucPZUInJ9nkrrZ2f2lCIiV8OgVCtwsSKH0vX5pGxsyy82wfC907oS/HWlGAoZENOp+lnpet3QBv83ujs0HnKc0JXheE45frpkwN/XpuCnM/ZTdRcbTFi09yQAoLOfEjd4V+59VRe2nlKXi8thNPObcSJyTbkVQ/c8lXJolLxNX08IgTsCjfD2kKHMLMPWo8wtRUSuTQgBz4ovdMvK2VOKiFwLP+22Ald7SlUdlOoQ0HTD9z5JzgQA3Nk5CAFeqhrXHdE9BB9O7IdH+wajk58S3h4yFBrM+H+f/IlNh9Ok9VZ+dxoZhQaEeCsRGVLzPmvi6+kh5dTKLeMNmYhck23oXqC3CjKZrJa13Y++uAAf/ngMvf2tH2G2H9XhxJUiB9eKiKh5qdlTiohcFMcFtAIXq5l5z8a2/FK+HmaLgELesIeYUqMZXxy/AgB4UNuuTtuE+2kwtlcgyvSlMAsBi9obO5Kz8dZP55CqK4GHXIYvjmdBLgOeiwnDHxdzat9pDXq3a4P0gjJcKTE3uMcVEZEzy6mYSdVXJUNeXi6YMqkyT28f+HvJ0L6NEmlFJsz98iQ2PRIFzyryIBIRuQKN0np9Y04pInI17Cnl5EwWgfSCmofv3dDGEyqFDOVmgczChudb2vL7JZQYzWjv54lbb/Kr9/YKmQyzhnbAfwbfDAD46q8s7P7TGuSaMehm9AqpOidWfQy6JRAAcKnI1Oh9ERE5I1tPqfziUmz46TjK9MyjVxWZTIZb26nhp5bjXG4p5nxxgrPxEZFLEkJAraxIdM6eUkTkYhiUcnKX8vUwWQQ8lXKEtFFXuY5CLkO4ny2vVMOG8P2VrcfaXy8AAOLu6Ah5I4aMTLi1PVY/3Af39grFoFsCsPrhPphwa/sG7+9aA28JgFIOFBoFCg38poiIXI+uIijl7amCxsfXwbVxbpayQnTTlEIOgR/P5OCVfanI1uk4Ix8RuRxPW08p5pQiIhfD4XtO7myONZ/UzYFeNQaKOgR44WxOKS7k6XHHzfX7G7llZiz8/hLMArinRwju6RHSmCoDAPqG+6FvuF+j93M9H7USfW7wxpGMEvaWIiKXlFHRO9bHg/mk6iLMvw3u8FHgQHoZPj16GYdPXsB7/4hCcFAgcnNzAQABAQHMz0VErZpnRU8p5pQiIlfDnlJO7lxOCQDglsCah751sM3Al1u/GfgKDRZ8d6EMhQYzeoT64IW/dW5YRVvQ7e2ts/CdLzTx23AicjmX8q09Xn3UvEXX1U1tPTBrUDjkMiDDqMbyny4hS5eDd79LwbvfpUjBKSKi1sqWM09fboYQgp+Bichl8BOvkzsn9ZTyrnE9W76p+szAV2ay4Of0MpRbgG5Bnnj7oT7wUTt/57lBHXyhlAMFBoHDl4odXR0ioiZ1Kd/aU6qNirfouhJCINLfjP9E+0EGgf3nCvHGLxnQ+LSFVxs/R1ePiKhRLBYLVIqrOaVW/3zWwTUiImo6/MTr5GzD92rrKdUxwFp+vh49pTYn61BgEPBUyPDS4PBWEZACgDZqBbr4ewAAth7N4TdFROQyispMyNdbZ9/z8eAtuq70xQXYeOAMjp85B22bMshlwL4z+TiWbXR01YiIGk0I6+d1ANCXWwAORyYiF8JPvE7MZBG4kHs1p1RNbgmylmcXG5FXWvuH8NxSI748mQcA6N9OhQCv1hGQsuke4AGFDDiVU4bvT+c4ujpERE3iUoG1t6u/pxIeCj501IfGpy00Pr5oa8pHd2/rffBothEZxcw/SESt34ls6+iAMhNzShGRa2FQyoml5+thNAuolXKEtfWscV1vlRLt/azrnMouqXXfW36/BINZIMBTjjAfRZPUtyV5KmXoHmDtLfX692eY9JGIXIJt6F47X5WDa9K6dQv2xs0+1hmqDl4qQ3ZJuYNrRETUOEqZbfgeZ98jItfCoJQTk/JJBdQ8855N1xBrAvDUWoJSJUYTdiRlAgB6B3m02hmJegZ5IMRbictFBrx/8IKjq0NE1Gi2JOdhbTwcXJPWr7e/gJ8KMJgFlu5Pg8nMBzkiar1snWfZU4qIXA2DUk7sVEU3XdvQvNp0CbYmQz+VVXPy729P6lBabkZYG49W2UvKRimXYeqtoQCAzb9fwtGMQgfXiIiocWxBKfaUajyFDOgfooSHHDiepUfCT+cdXSUiogYRQkAhvyanFBGRC2FQyomlVARZItr51mn9rsHWnlK2YFZ1Pj92GQAwvLNfq+0lZXNb+zYY1TMEFgHM/d8J5JdyiAYRtV5pFcP3wtqoHVwT1+DtIcNtN1qHtm9JvIQfUnUOrhERUcNIPaWYsoKIXAyDUk7KbBE4llkEAIgIq1tQytZT6nyuHgZT1d+inM8pRXJGIeQy4G+31G2/zu7ZIZ3QzleNS/llePqTY3VK9E5E5GyEELiYx+F7Ta29rwdiewYAAOb97wRSa+lNTETkjK4GpdhTiohcC4NSTupcTilKjGZ4eSjQKci7TtuEtlGjracSZovA2Zyq80rt/tPaS+qOmwMQ6OUaDz2+nh54MzYCbT2V+PNyER5c9zte2ZeK/53Kg05vhskiHF1FIqJaZRYakFNihEIugy9KIXjpahJCCAwNLEGgWqC03IJpHyfhz/OZEDzARNSKMKcUEbkqBqWcVEpGAQCgV7s2UMrrNsROJpOhV7s2AIDfL+ZXKjeZLdjz5xUAwH29b2iaijqJjoFeWPVQH3QN9kaRwYSdyZlIOHQF35wvw/aTpXhh74UG55wqM1mQXmRCRrEJOs7gRETNJCndet3vHOCJDd/8hjJ9mYNr5Br0xQX4YP8x3BbqAV8PgXyDBdM/O4Uz6VmOrhoRUZ3ZHgeYU4qIXA2DUk7Klk+qTx2H7tnc0dE6ROGXc7mVyn45l4fc0nL4azwQc0tA4yvpZLqF+GDTI32x7L6emHhrOPqGecOz4mulY1l6TPkoCXP2/FWpF1m5RSC7pBz668bop+Xp8cq+VIz/OBU/XjJgf5oBj35yBu/8fA7lVcziZLFYkJWVhaysLFgs/MBARPVjC0r1DvWCp3cbB9fGtXh6+0ClkOH2YAu8lECJSYb4r88ju9jg6KoREdWJEtbenTklRo4CICKXonR0BagyixD4raKnU72DUjcHAN+fQVJ6IYoNJvior77Fnx3NBACM6hkKD4VrxiMVchmGdgnC0C5ByMrKwubf01BSboFeqLDvTAG+PpmNr09mI7SNGgpYkF1SjnILsOPkGQBnoFbK4afxgEohkxIOA9ZkuQoZUGgUWHcoDX9dKcarD/SyO446nQ6rv00GAEz9mxYhISF2dbNYLNDpdJDJgICAug3JJCL3kXTJ+mVE71Av/Jrh4Mq4KI0SGHiDEj9dNuN8ngGPfZSExaN71Dl3IxGRo3grBYK8PaArKUdGQZk0BLm1T1pEROSakYlW7khaAbKKjWijVqJfe796bdveX4Ob/DUwWwQOXzOE73R2CX46mwsZgAciXGvoXm28PeR4+o52+GBCX9zZKRBKuQxXigzIKLIGpICr4/QNJguuFBmQll8GuQy4vaM/lg5vj3s7aTC6kxfi7wyDp1KOg+fz8NIXJyp9U+XdNgDebavuhWYLWr27LxnZ2dnN2WQiamXyS8txLrcUANAzxMvBtXFtPh4yDO+owQ3eCmQWGvD41iQs/eYU0vJKodPpkJOTw3xTROR0ZDIZBnVsC8Cae5bXKSJyFewp5YS+OG7N+zS8WzDUyvrHDe+4OQAX89Kx72Q2hnYJAgCs/fUiAOBvXYPRMdA9H3i6hfjg1Qd6obCsHOdySpGTm4cfT2dDo5Rhcv/2aOMfhDy9Efml5Sg2mNEt1Ad+Gg9kZWUh5ZJ1OGRMB1/cGByI//fpMXyXqsPir0/h5bu7Ql7Hb6mqC1g1lK33FQAEBQVBLmecmag1OnjBeo25OcALbT15a25uCmMRbiw6D5mmAzINSuxKuYxdKZcRoAb8VRY8GNkefW+5Ae18PeGlUkAIgdzcXAQEBLBXAhE5hMViwZ03+eCTP3W4kF8GQ7kJnioPXpOIqNVz20++BoMBCxYswNdffw1PT09MmTIFU6ZMcXS1oC8347tT1iDDqJ4htaxdtVE9Q7D1SDq+OZmNcZFh0JvM+PaUtWfOY7fd1GR1ba18PT2gvbEtsjwMSEqzBnFkMhm8VAp4qTS4sa2mxu0HdPTHktE98OLu49jz5xWUmy2Ye3e3Jq1jXYNNtQ0ZJKL6a+n7gxACW49Yx+sNvMkbeXm5nHmvBfh4e+G2GzQosCig0wsczTIg1wDkGuRY/lM68FO6dT21AoEaJYqLixF9czC6tfNHRx9rQvobQoL4QEjkJpzh2eHX8zkI8PJAbmk5JmxJwtp/RsHPS9WidSAiampuG5Ravnw5jh07ho0bNyIjIwMvvPACwsLCcM899zisThaLBf/d9xdKy80Ib+tZ73xSNj1C2+D+iBvw2dHLeGH3cZQazRAA7usdis7BzGXUFO7qEoQFI7tj3lcnsfdENs7mlOLRyAAIIZrkAaU+waam7n1F5O5a+v6QklGI45eL4CGXISf7MjZcLITBUAZerVuGryiBShgQ4GdEmXcIcvUCJpMJF4ssMAkZig1mFBvMADywNzUfe1PzAQByCNzir0KvG9ogqkMQ/JUm3OCtRBu1AnK5nL2qiFyMMzw7WExmPB4dihU/XsLFfAOmbU/Bu+O08NV4tMjfZx4rImoObhmUKi0txfbt2/Hee++hV69e6NWrF1JTU7FlyxaHBqW+O3YBO4/nAJDh0ajARl3wZwy6GQfP5SKr2AgAuK2jP14c1qWJakoAcHePEPh7eeDF3X8hNbsEs78pgY+HDKHeCgSeykO02RPBPmr4e3lICdGFELAAKDdboFDUvH8Gm4haniPuD3v+tA7Zjgn3hJ+PEnoFUKYvq2Urakoan7bwNJfBq40SNyiKkHn+LLSdesJYXoaCEiP0JhPKLB7oHh6ECwXlOJpthMEMnM4rx+m8XHz219UZbxUyAW8l0K+9HyJvCkS3EB+EeBjh5aFgoIqolXKWZweLxYLBHXxwKFyNQ5lGpOpK8fQnR7FsTA8E+9bc05+IyFm5ZVDqxIkTMJlMiIqKkpb169cP7777LiwWS4vn5SnQl+OTlEysPpAGQIaObZW4rX3jpgP303hg66Ro/JFegKIyE/7WNchlZ9xzpP4d/LFzSjRWH7iAPccuo7hcoDjfhIRDV4BDV6T1VAoZTBYBW170j08cQRu1EiFtVAj2USPEx/pvW40HlHIZykqKcTa/HHKZDL9cKERAoQKAgMFkkX7KTBbk5hfiZG45PBUyJGeWoJuHHje0UUNVkYuMOaeI6scR94fObRUIUAuYCy6jTBHU5Pun+vP09gEAeMiBYD9fCHMZ8rKzUJJrQaDZgJHtg1FiMCDPpEKhWQ6zyYSMUkBvEjALGQrLge/PFuD7swUVexTwUgDdQ33QMagNNDIzgvx84K1SwqgvhUJmnT3Wv60vvFQKWAwl8FEp0D40ED5qDyjk9Qtk2XJgyWRAYKBPEx8dIvfjLM8OFosFaw6ch58KuONGNX66VIajmcWY9GES4u7ogL91DUYbT2uvqWsToTMYTkTOzC2DUtnZ2fD394dKdXUMdlBQEAwGA/Lz8xEQ0Dw9VM7llCIpvQDFBhOKDSZcKTbirK4Ep7JLYK6IVoT7KBAd2rix4dcGImJuZiCiufl7qfDisC4Y36MN3vj5AnL0FqhVHkgrNCGv1AizAIzmygliigwmFBlMOKMrrXH/BzMyANQ+P/yBjDQAaQCAQG8V2vmqoZJZkJlbCIUMiAgPhK+PF2QyGeQyQC6TVfwAMgB6fSlkMsDHyxtyubVMVlFm+x0QKC2x1tfHxxtyuRwyWNeRyawfgEpKSiAD0MbHB3K5DJDJ7NaRwbrTa1/bPivZXgshUFJcBJkMCL8xBMXFBsgqVrh2X9bf6qY+n8fqumr99tmwD4QClc+d6/MNyWRAP5kC7jmFQdNyxP1hWGc/ZOQVorTI0uT7pqal8WkLYS6DTCaDtwfg4ymHMJch8/xZ9OnUE6byMpQKNcrlSrRVmPDblXLkGwTKLHKUmoEjGSU4klFSsbe6zMKaCgDw8pDDR6WAXAYIWK8Btp63EIBcDihkMijk1ms6LBYUlpVbr6GB5+GpVEIhzNB4yKGwXdsrrqdyGeDp6Ylyo/U66+vjhTZqpfXHUwlPD4Xd1cv2u7UeAkVFxRAQ8Pbxka5ztnvHtddsCwBhESgqLoIA4O3tA5lMJj04265rFiFQXFwML29vADIICFgsAsUlJfDy8q64JppRUlKGNj4+FW2WQVnxr1wuk4J8V+9dla+bopoX115zhahylev2Vf36oqItAtZ7YsWNssp9tskoRlGR3vre2le12lnWqq0frDspLi5Gu0A/3HZzAJT1DGySPUc9O1RFVvH/wkchMChMhd+yTMguKcfib05j8Ten0dZTCW+VAl4qBQrLTLgl0MuaN9VDAY1KAU+lHJ5KBVRKufT/xPb/Ri6TwSKs/w/NFgGLEDBZBEoMJqTll+FiXinKzQId/DXoGOiFQG8VlHI5lArr/0HFNf/n6tWmarap6bPT1WuRqLRutfuTAW3aFEn/1+zLqt6opuZUX+8GbFTDdg2pQ01b1fQeVVuHGtraVqdHQaG+8sWrAX+ntr/VEhyR1tN2PspkgG+OHoWFlc/RpqSQyaC90ReeHrUM3WkhbhmU0uv1djcVANJro9FY5/3I5ZU/5FTHbBGYsTMFpcbKDx0aDwU6+qkwKMwDutxcyIxG5OfnQaGo+r9efn4ezPpC6ffr18vJycWHvxwHAIwf2BOBgVXfKGvbT13Xu7Y8JycHCkVJlcelOf6eM+zHpqykAO2UpWjXBrg/IgCBgQGwCIFSo0BpuRmFBfn45sQVKOTAP267GQXlHsgtMSFHX47cUjNy9CaUGs0wW4BSgwEZhQYIAfh7eQAKJWQAVAo5VAqZ9Ucph8VowJlcPYwWGTyUSuQZBIxma4+q87n6ipqpAQH8dLEYQHGVdbdXUPsqAIDcWspz6rif2mQ10X5cm0qZit1P3Fqvmwu/OK2sKe4P198bbMe5unuGQiGDuawYwqiHTGmGMBkhNxuB8hIIk1FaVlNZS68PkxHmMjlg1DtFfRqyflO2yctTBZSXQG4ywldphqXciOzz53F7h66wmIwol6tQYjCj0GiB3mT9okIo1TBZALmHChaLBeXlJkChgFkAZpkSZiGDWVz9T1pqquEDhy06de1Habm1t8T5XAMAQy1n7bX3hqJa1nUmdQnsubsrePmeLhjWNbjOW/DeUJkjnh2s68ugVsphVsmBii/trLFNGWQyGdQeAiM6qnGhyIKLRRaUlguYBVBoMKPQYAYAHLtcl89+9ZNTWo4j6YVNvl8iajmDOwdi4aj6TdbVXPcHtwxKqdXqSjcQ22tPT8867ycgoH5D7A7PGV6v9at3CwYOrK08ugn2U5+/1xT7aem/19L1Bsb8rS77ISJHaYr7Q3X3huqWBwa2wbIuHepRSyIiakmOenYIDGyD+R3a1WsbIqLWxi3HdYWGhiIvLw8mk0lalp2dDU9PT/j6NmzGOyIiav14fyAiouvx3kBE1HzcMijVo0cPKJVKJCUlScsSExMRERHB/EtERG6M9wciIroe7w1ERM3HLa+iGo0GDzzwAObPn4+UlBTs27cP69atw8SJEx1dNSIiciDeH4iI6Hq8NxARNR+ZqG5KDxen1+sxf/58fP311/Dx8cFjjz2GyZMnO7paRETkYLw/EBHR9XhvICJqHm4blCIiIiIiIiIiIsdxy+F7RERERERERETkWAxKERERERERERFRi2NQioiIiIiIiIiIWhyDUtRoV65cwcyZM9G/f38MGjQIS5cuhcFgcHS1nF5cXBxefPFFR1fDKRmNRixYsAC33nor7rjjDrz22mtg+ruqZWZmYurUqejbty+GDh2KDRs2OLpKdA2DwYDZs2cjOjoaMTExWLdunaOrVElN1/D/+7//Q7du3ex+Nm/eLG27Z88eDBs2DFqtFtOnT0dubq5UJoTAypUrcdttt6F///5Yvnw5LBZLi7Xrm2++qVT3mTNnAgCOHz+Ohx56CFqtFg8++CCOHTtmt60ztmvXrl2V2tOtWzd0794dAPDkk09WKvv++++l7Tds2IBBgwYhKioKs2fPhl6vl8occZ4ajUaMGTMGhw4dkpalpaVh8uTJiIyMxKhRo/Dzzz/bbXPgwAGMGTMGWq0WEydORFpaml25o9tYVZuSkpLwj3/8A1FRUbj77ruxfft2u23uu+++Su/bqVOnANR+ruXl5eGpp55CVFQUhg4dis8++6zJ20TNqz7nZW3XLbKqzzGt7bpJ9qq6xl2P52nd1eV4us05KogawWKxiHHjxonHH39cnDp1Svz2229i+PDh4pVXXnF01Zzanj17RNeuXcULL7zg6Ko4pZdfflmMGDFCJCcniwMHDogBAwaIjz76yNHVckrjxo0TTz/9tDh37pz45ptvhFarFV9//bWjq0UVFi5cKO69915x7Ngx8fXXX4uoqCjxv//9z9HVktR2DZ88ebJYvXq1yMrKkn5KS0uFEEIkJyeLPn36iE8++UT89ddf4pFHHhFxcXHSvteuXSsGDx4sfvvtN3Hw4EERExMj3n///RZr29tvvy2mTp1qV/eCggJRUlIiBg4cKF555RVx+vRpsWjRInHHHXeIkpISp26XXq+3a0tGRoYYPny4WLx4sRBCiOHDh4vPPvvMbh2DwSCEEOKrr74S/fr1E999951ITk4Wo0aNEgsWLJD23dLnaVlZmZg+fbro2rWr+PXXX4UQ1nPx3nvvFc8++6w4ffq0ePfdd4VWqxXp6elCCCHS09NFZGSkWLt2rTh16pT4z3/+I8aMGSMsFotTtLGqNmVlZYno6Gjx6quvinPnzok9e/aIiIgI8f333wshhDCZTCIiIkIcPnzY7n0rLy8XQtR+rk2dOlVMmjRJnDx5Unz88ceid+/eIjk5ucnaRM2vrudlbdctuqo+/9drum6SvaqucdfjeVp3dTmeQrjPOcqgFDXK6dOnRdeuXUV2dra0bPfu3SImJsaBtXJueXl54s477xQPPvggg1JVyMvLEz179hSHDh2Slq1evVq8+OKLDqyVc8rPzxddu3YVJ0+elJbNmDHD7kGMHKekpERERETYfdhYtWqVeOSRRxxYK3u1XcMHDRokfvrppyq3nTVrlt01LCMjQ3Tr1k1cvHhRCCHE4MGDxc6dO6XyTz/9VAwZMqQ5mlGlZ599Vrz66quVlm/fvl0MHTpUCmZYLBYxfPhwqa7O3i6bd999VwwbNkwYDAZhMBhEjx49xNmzZ6tcd/z48eLNN9+UXv/222+iT58+orS0tMXP09TUVHHfffeJe++91+7D+IEDB0RkZKTdw8ukSZOker/xxht2dSotLRVRUVHS9o5sY3Vt+vDDD8U999xjt+7LL78snnnmGSGEEOfPnxfdu3cXZWVlVe63pnPtwoULomvXriItLU0qnz17Nj9XtCL1OS9ru26RVX2OaW3XTbqqumvc9Xie1k1dj6c7naMcvkeNEhwcjPfffx9BQUF2y4uLix1UI+e3bNky3H///ejcubOjq+KUEhMT4ePjg/79+0vL4uLisHTpUgfWyjl5enpCo9Fg165dKC8vx9mzZ3HkyBH06NHD0VUjACdOnIDJZEJUVJS0rF+/fkhOTm7RYWw1qekaXlxcjCtXrqBjx45VbpucnIzo6Gjpdbt27RAWFobk5GRcuXIFmZmZuPXWW6Xyfv36IT09HVlZWc3SluudOXOmyronJyejX79+kMlkAACZTIa+ffsiKSlJKnfmdgFAfn4+3nvvPTz77LNQqVQ4e/YsZDIZ2rdvX2lds9mMo0eP2rUpMjIS5eXlOHHiRIufp4cPH8aAAQOwbds2u+XJycno2bMnvLy87OpR3fui0WjQq1cvJCUlObyN1bXJNhz2erbPSKdPn0a7du2gVqsrrVPbuZacnIx27dohPDzcrvyPP/5odHuoZdTnvKztukVW9TmmNV03yV5117jr8Tytm7oeT3c6RxmUokbx9fXFoEGDpNcWiwWbN2/Gbbfd5sBaOa+DBw/i999/x7Rp0xxdFaeVlpaGG2+8EZ9++inuuece/O1vf8OqVauc5iHemajVasydOxfbtm2DVqvFyJEjceedd+Khhx5ydNUIQHZ2Nvz9/aFSqaRlQUFBMBgMyM/Pd1zFrlHTNfzMmTOQyWR49913ceedd+K+++7DJ598Iq2blZWFkJAQu/0FBgbi8uXLyM7OBgC7clvg6/Lly83ZJADWXDznzp3Dzz//jLvvvhvDhg3DypUrYTQakZ2dXW29Aedul81HH32EkJAQ3HPPPQCsH1x9fHzw/PPPIyYmBmPHjsX+/fsBAIWFhTAYDHZ1ViqV8PPzk9rUkufp+PHjMXv2bGg0Grvltb0vNZU7uo3VtSk8PByRkZHS65ycHHzxxRe4/fbbAVgDpx4eHpg6dSoGDhyIRx55BCkpKVJ7gerPteqOx5UrVxrdHmoZ9Tkva/v/QVb1OaY1XTfJXnXXuOvxPK2buh5PdzpHGZSiJrVixQocP34c/+///T9HV8XpGAwGzJs3D3PnzoWnp6ejq+O0SktLceHCBWzduhVLly7FCy+8gA8++IAJvKtx5swZDBkyBNu2bcPSpUvx1Vdf4fPPP3d0tQiAXq+3+2AMQHptNBodUaVaXXsNt31Dd8stt2DNmjV46KGH8PLLL+Obb74BAJSVlVXZPqPRiLKyMun1tWVAy7Q9IyNDOv5vvPEGXnjhBezevRvLly+v9n2x1cuZ2wVYA27bt2/HI488Ii07e/YsysrKEBMTg/fffx+DBw/Gk08+iaNHj1ZZZ9tro9HoNOdpbe9LTeWtoY1lZWV46qmnEBQUhIcffhgAcO7cORQUFOChhx7CmjVr0KlTJ0yaNAmZmZm1nmu1HS9yfvU5L/l+1019jmlN101qGJ6nTcudzlGloytArmPFihXYuHEjXn/9dXTt2tXR1XE6CQkJ6N27t12vBKpMqVSiuLgYr776Km688UYA1gfMjz76CFOmTHFw7ZzLwYMHsWPHDuzfvx+enp6IiIjAlStX8M477+C+++5zdPXcnlqtrvRBzPbaGQPT11/Du3TpgiFDhsDPzw8A0L17d5w/fx4fffQRhg8fXm37NBqN3UOAbWiSbd3avhlsCjfeeCMOHTqEtm3bQiaToUePHrBYLJg1axb69+9fZb1t74kztwsAjh49iitXrmD06NHSsmnTpmHChAlo27YtAOt79eeff+Ljjz+WviSqrk1ms9kpzlO1Wl2pJ0Nd3hdfX99K78W15c7QxpKSEkybNg3nz5/Hhx9+KJ0rixYtQllZGXx8fAAA8+fPx5EjR/DZZ5/hjjvukOpZ1blW3fFwxmsLVa0+9wi+33VTn2Na03UzIiKiZSrsYnieNi13OkfZU4qaxKJFi7B+/XqsWLECd999t6Or45S++OIL7Nu3D1FRUYiKisLu3buxe/duu3HvZM1xo1arpYAUANx8883IzMx0YK2c07Fjx9ChQwe7m33Pnj2RkZHhwFqRTWhoKPLy8mAymaRl2dnZ8PT0hK+vrwNrVllV13CZTCYFpGxuueUWaXhQaGgodDqdXblOp0NwcDBCQ0MBXB2CdO3vwcHBzdUMO35+flJeCwDo1KkTDAYDgoODq6y3bciBs7frp59+QnR0tPQhFQDkcrnda+Dqe+Xn5we1Wm3XJpPJhPz8fKlNznCeVnfc6/K+OHMbi4uL8dhjjyE1NRUbN260y3OmVCqlgBQAqWfilStXaj3Xajoe1DrU57ys7f8HWdXnmNZ03aSG4XnatNzpHGVQihotISEBW7duxWuvvWb3zS3Z++CDD7B79258+umn+PTTTzF06FAMHToUn376qaOr5lS0Wi0MBgPOnTsnLTt79qxdkIqsQkJCcOHCBbtvpc6ePWuX+JYcp0ePHlAqlXYJPhMTExEREQG53Hluv9Vdw//73/9i8uTJduueOHECt9xyCwDr/9XExESpLDMzE5mZmdBqtQgNDUVYWJhdeWJiIsLCwlrkw+lPP/2EAQMGQK/XS8v++usv+Pn5ScmghRAArMPhjhw5Aq1W6/TtAoCUlBT07dvXbtmLL76I+Ph4u2W290oulyMiIsKuzklJSVAqlejevbvTnKdarRZ//vmnNGzNVo/q3he9Xo/jx49Dq9U6bRstFgtmzJiBS5cu4YMPPkCXLl3syidMmICEhAS79U+ePIlbbrml1nMtMjIS6enpdrlaEhMT7XJYkXOrz3mp1WprvG6RVX2OaU3XTWoYnqdNy63OUcdN/Eeu4PTp06JHjx7i9ddfF1lZWXY/VLMXXniBUzdXIy4uTjz88MPir7/+Ej/++KO47bbbxMaNGx1dLadTWFgoBg4cKGbNmiXOnj0rvv32W9G/f3/x0UcfObpqVOHll18Wo0ePFsnJyeKbb74Rffv2FXv37nV0tSQ1XcOTk5NFz549xfvvvy8uXLggtmzZInr37i2OHDkihBDiyJEjolevXuLjjz8Wf/31l3jkkUfE1KlTpX2vXr1axMTEiF9//VX8+uuvIiYmRqxbt65F2lVUVCQGDRoknnnmGXHmzBnxww8/iJiYGLFmzRpRVFQkbrvtNrFo0SKRmpoqFi1aJAYOHChKSkqcvl1CCDFkyBCxZ88eu2V79+4VvXr1Ep988ok4f/68eOutt0SfPn1EWlqaEEKIPXv2iL59+4pvvvlGJCcni9GjR4tFixZJ2zvqPL12KmyTySRGjRolnn76aXHq1CmxevVqERkZKdLT04UQQqSlpYmIiAixevVqcerUKfGf//xH3HvvvdLU487SxmvbtG3bNtG9e3fx/fff2/3fysvLE0IIsW7dOtGvXz+xb98+cebMGTFv3jxxxx13iKKiIiFE7efalClTxCOPPCL++usv8fHHH4uIiAiRnJzc5G2i5lPTeZmVlSX0er0QQtR63aKr6npMa7tuUtWuvcYJwfO0sWo6nu50jjIoRY2yevVq0bVr1yp/qGYMSlWvsLBQzJo1S0RGRorbb79dvPXWW9KDB9lLTU0VkydPFn379hXDhg0T69ev57FyIqWlpeL5558XkZGRIiYmRqxfv97RVbJT2zX8m2++Effee6+IiIgQ99xzT6WH+J07d4rBgweLyMhIMX36dJGbmyuVmUwmsWTJEhEdHS0GDBggVqxY0aLn5qlTp8TkyZNFZGSkGDhwoN11JDk5WTzwwAMiIiJCjB07Vvz555+tpl0RERHixx9/rLT8448/FiNGjBC9e/cWf//738Xhw4ftylevXi1uv/120a9fPxEfHy/KysqkMkedp9d/GD9//rz417/+JXr37i1Gjx4tfvnlF7v1f/jhBzFixAjRp08fMWnSJHHx4kW7cmdo47VtmjJlSpX/tx555BEhhBAWi0W888474q677hK9e/cW//rXv8TJkyelfdV2rul0OjF16lQREREhhg4dKnbv3t0sbaLmU9N52bVrV7Fz507pdW3XLbKqzzGt7bpJlV1/3eZ52ji1HU93OUdlQlT0ryMiIiIiIiIiImohzpPUgoiIiIiIiIiI3AaDUkRERERERERE1OIYlCIiIiIiIiIiohbHoBQREREREREREbU4BqWIiIiIiIiIiKjFMShFREREREREREQtjkEpIiIiIiIiIiJqcQxKERERERERERG5GKPRiDFjxuDQoUN13ubw4cO4//77odVqMW7cOJw4caIZa8igFBERERERERGRSzEYDHjmmWeQmppa523S0tLwxBNPYPjw4fjss8/QrVs3TJs2DUajsdnqyaAUEREREREREZGLOH36NMaNG4eLFy/Wa7vNmzejT58+mDFjBjp27IjZs2dDLpfj7NmzzVRTBqWIiIiIiIiIiFzG4cOHMWDAAGzbtq1S2e+//47Y2Fj06dMH9957L/bu3Wu33YgRI6TXGo0G+/btQ/fu3Zutrspm2zMREREREREREbWo8ePHV7k8OzsbU6dOxf/7f/8PgwYNQlJSEl588UUEBgYiOjoaaWlp8PT0xMyZM/H777+jc+fOmDt3Ljp37txsdWVPKSIiIiIiIiIiF7dlyxbccccdeOSRR9ChQwfcf//9ePjhh7Fx40YAQGlpKVauXIlbb70V7733Htq1a4fJkyejpKSk2erEnlJERERERERERC7u7Nmz+P777xEVFSUtKy8vx8033wwAUCgUGDp0KCZMmAAAWLRoEe666y589913uPfee5ulTgxKERERERERERG5OJPJhHvvvRf//ve/7ZYrldbQUHBwsBSgAgCVSoUbb7wRmZmZzVYnDt8jIiIiIiIiInJxN998My5cuIAOHTpIP99++y12794NAIiMjMTJkyel9Y1GI9LS0hAeHt5sdWJQioiIiIiIiIjIxY0fPx7Hjh3D66+/jvPnz2P37t147bXXEBYWBgCYNGkS9u7diw8//BDnz5/HwoULoVarcddddzVbnWRCCNFseyciIiIiIiIiIofo1q0bNm3ahAEDBgAADhw4gJUrV+LUqVMIDQ3Fo48+ikceeURaf9++fVi5ciXS09PRu3dvLFy4EF26dGm2+jEoRURERERERERELY7D94iIiIiIiIiIqMUxKEVERERERERERC2OQSkiIiIiIiIiImpxDEoREREREREREVGLY1CKiIiIiIiIiIhaHINSRERERERERETU4hiUIiIiIiIiIiKiFsegFBERERERERERtTgGpYiIiIiIiIiIqMUxKEVERERERERERC2OQSkiIiIiIiIiImpxDEoREREREREREVGLY1CKiIiIiIiIiIhaHINSRERERERERETU4hiUIiIiIiIiIiKiFsegFBERERERERERtTgGpYiIiIhamBDC0VVoNFdoAxGRu+A1m5wVg1JETejy5cv417/+hYiICNx+++3o1q0bLl265OhqERGRE0lNTcU///nPJtvfr7/+irvvvhu9e/fG448/3mT7rU5hYSGef/55/P77783+t4iIqHYvvvgihg4dKr2eMGECJkyYIL3evn07li1bJr3etWsXn1PIaSgdXQEiV7Jx40YkJSVhxYoVuHDhAt544w1HV4mIiJzMV199hT/++KPJ9rd8+XJYLBasWbMGgYGBTbbf6vz111/47LPP8OCDDzb73yIiovqbN2+e3et33nkH/fv3l17fdddd2LZtG0JCQlq6akSVMChF1ITy8/MREhKCUaNGYdeuXY6uDhERuYH8/HzceuutuOOOOxxdFSIicgKdO3eusTwgIAABAQEtVBuimnH4HlETGTp0KHbt2oWMjAx069YNCQkJldb55ZdfMH78ePTr1w8DBgzAs88+i8zMTLt1zp8/j5kzZ2LgwIGIjIzEhAkTkJiYKJVfunQJ3bp1w/r163HPPfdAq9Vi586dKCsrw/z583HnnXeid+/euOeee7B27dpmbzcRkSv7+9//jieffNJu2bBhw3DXXXfZLZs2bRoee+wxlJWV4dVXX8WIESPQu3dv9O3bF48++ij++usvAMBbb70l3R+6deuGt956CwCknk7Dhw9H7969cffdd+ODDz6w+xsTJkzAc889h5kzZyIyMhKPPvoounXrhvT0dHz66afo1q0bDh06hLfeegvDhw9HQkIC+vfvj5iYGBQUFMBsNmPLli2499570adPH9x1111YuXIlDAaD9DdefPFFTJ48GTt37pSGBN5///348ccfAQCHDh3CxIkTAQATJ060Gx5CROTOhBDYsGEDRo4ciT59+mD48OFYu3atlMuptueAXbt2oWfPnkhOTsbDDz+MiIgIDBkypNLn+YKCAsTHx6N///649dZbsWLFClgsFrt1rh2+N3ToUKSnp+OTTz6RhuxVNXyvqepHVF8MShE1kYSEBAwePBjBwcHYtm0bxo4da1f+6aefYsqUKWjXrh1ee+01xMfH448//sDDDz+MnJwcAMDp06cRGxuLS5cu4aWXXsLKlSshk8kwadIkHD582G5/b731Fp544gksX74cAwcOxJIlS/Djjz/ihRdewNq1a/G3v/0Ny5cvx86dO1vsGBARuZrBgwfj8OHDMJvNAKxfDKSlpSEzMxNpaWkAgPLychw8eBB33XUXnn/+eezcuRNxcXFYt24d4uPjkZqaimeffRZCCDz00EPS/WHbtm146KGHAADz58/Hm2++ifvuuw/vvvsu7rnnHixZsgSrVq2yq8///vc/eHt745133sGUKVOwbds2BAcHY/Dgwdi2bRt69eoFAMjIyMD+/fvx+uuvIz4+Hm3btsXcuXOxdOlSDBs2DO+88w7+9a9/YfPmzZg2bZpdAtxjx45h7dq1mDlzJlatWgWFQoGnnnoKBQUF6NWrF+bOnQsAmDt3bqUhIkRE7mr58uVYvnw5hg4dinfffRdjx47FypUrsWbNmjo9BwDWLyiefvppjBo1CmvWrEHfvn2xfPly/PTTT1L5448/jv379+OFF17AK6+8giNHjuDLL7+stl4JCQl294mqhuw1Vf2IGoLD94iaSM+ePREQEACVSoXIyEicPXtWKrNYLFi5ciViYmLw6quvSsv79u2LUaNGYe3atXj++eeRkJAAlUqFTZs2wcfHB4B1zPeYMWOwfPly7NixQ9p25MiRdvk8Dh8+jIEDB2L06NEAgAEDBsDLy6tF8osQEbmqu+66C++88w5SUlIQFRWFgwcPomPHjtDpdPjtt9/Qvn17JCYmorS0FDExMfjhhx/w0ksvYdSoUQCA/v37o7i4GK+88gp0Oh1uuOEG3HDDDQCAyMhIAMC5c+fw8ccf45lnnkFcXBwAICYmBjKZDKtXr8b48ePh7+8PAPDw8MCCBQugUqmkOqpUKgQEBEj7AwCTyYQXXngB0dHRAKxfeuzYsQPPPvus9DcGDhyIkJAQPP/88/jxxx8xePBgAEBRURF27dqFm266CQDg5eWFRx55REqobhsW0rlz51qHiBARuYPCwkJs2rQJjzzyCGbNmgUAuOOOO5CdnY3ffvsNJ06cqPU5ALD2tpo2bZr0hUW/fv3wzTff4IcffsCgQYPw448/IiUlBe+99x7uvPNOAMDtt99ul+T8ej179qzyPmFT1+eUutSPqCHYU4qoBZw7dw7Z2dkYM2aM3fKbbroJUVFRUi+ow4cPY8iQIVJACgCUSiVGjx6NY8eOoaSkRFreo0cPu30NGDAAH3/8MZ544gls3rwZaWlpmD59eqUhJkREVHd9+vSBv78/Dhw4AMA6092AAQOg1Wrx22+/AQB+/PFHdOnSBTfffDPWrl2LUaNG4cqVK/j111+xdetWfP/99wAAo9FY5d/49ddfIYTA0KFDYTKZpJ+hQ4fCYDDYDeG+5ZZb7AJSNbn2PmG7z9i+uLAZPXo0FAoFDh06JC0LCAiQAlIApCCaXq+v098lInI3SUlJMJlMGDFihN3yl156CfHx8XV6DrCJioqSfrcFk0pLSwEAv//+Ozw8POwCQF5eXtKXCg1R1+eUutSPqCEYlCJqAfn5+QCAoKCgSmVBQUEoKioCYB0jXt06QggUFxdLy7y8vOzWmTNnDp5++mlcunQJixYtwrBhw/CPf/wDJ06caMKWEBG5F7lcjjvvvBMHDx4EcDUo1b9/f+mD+k8//YQhQ4ZIv48cORJ33nknpk2bhs8//1wKIl07RO5atnvE6NGj0atXL+nH9k30lStXpHW9vb3rXPdr1y0oKAAABAcH262jVCrh7+8v3YcAQKPR2K0jk8kAoFLOEiIisrJdx6tKHl7X5wAbT09Pu9dyuVy6fxQUFMDPz0+6Lttcf22vj6asH1FDcPgeUQvw8/MDAOh0ukpl2dnZ0rCMtm3bVrsOAPj7+yMrK6vKv6FSqfDkk0/iySefREZGBr7//nu8/fbbePbZZ/HFF180UUuIiNyPLVdUSkoKdDod+vfvj7CwMLz++uv4448/cOrUKcyfPx8XL17E9OnTMWzYMKxevRrt27eHTCbDli1basy34evrCwDYuHFjlUGnsLCwRrehbdu2AKz3kxtvvFFaXl5ejry8POk+RERE9We7jufm5uKWW26RlmdkZODkyZMAan8OqAt/f3/k5eXBbDZDoVBIy22BpYao63MKUXNhTymiFnDzzTcjODgYe/bssVuelpaGpKQk9O3bFwBw66234vvvv7frEWU2m/HFF18gIiKi2iEbZWVluPvuu7Fu3ToA1geYf/3rXxg9ejQyMjKaqVVERO4hJiYGQgisXr1aup5HRETAy8sLK1asgL+/P6KionDs2DEYDAbExcXhpptukr7JtgWkbN8ky+X2H79seZ/y8vIQEREh/eTm5uK///1vox42bPr37w8Alb6k+OKLL2A2m9GvX7867+vaByEiIrIO9fbw8JCGa9usW7cOb775Zp2eA+ri9ttvh8lkwr59+6RlRqMRv/zyS43bXX/fuVZdn1OImgt7ShG1ALlcjmeeeQbx8fF49tlncd999yEvLw8JCQlo27YtHn30UQDAjBkz8OOPP2LixImIi4uDh4eHlB/q/fffr3b/np6e6NWrFxISEuDh4YFu3brh3Llz+OSTT3D33Xe3VDOJiFySr68voqKisG/fPjz88MMArMPeoqOj8eOPP+L++++HXC5Hr169oFQqsWLFCkyZMgVGoxG7du3CDz/8AABSzg3bN+p79uyBVqtFt27dcN999+Hll19Geno6evfujXPnzuH1119HeHg4Onbs2Og2dO7cGX//+9/x5ptvQq/X49Zbb8Vff/2FhIQEDBgwoF4Jatu0aQMA+OGHH9C2bVt079690fUjImrNAgICMHHiRGzYsAEqlQr9+/dHcnIyPvroIzz//PNo06ZNrc8BdXH77bcjJiYGL730EnJycnDjjTdi06ZNyM3NrXFyI19fXxw/fhyHDx9Gnz597Mrq+pxC1FwYlCJqIbGxsfD29sbq1asxffp0+Pj4YNCgQXjmmWekceBdunTBhx9+KE3FKpPJ0KdPH2zatEn6Jr06CxcuxBtvvIF169YhOzsbgYGBGDt2LP7zn/+0RPOIiFza4MGD8dtvv2HAgAHSsgEDBuDHH3+UJpTo0KEDXn31VSQkJODJJ59E27ZtERkZiQ8++AATJkzA77//jm7dumHEiBH47LPP8OKLL2Ls2LGYP38+li5ditWrV2Pr1q24fPkyAgMDMWrUKDz99NNN1jNp8eLF6NChA3bu3In33nsPISEhmDhxIqZNm1bjt+jX69KlC8aMGSMNS7z+23UiInc0a9YsBAYGYuvWrXj//fcRHh6Ol19+Gf/4xz8AoNbngLpKSEjAypUr8eabb8JgMGDUqFEYN24cvv3222q3mTJlCpYsWYLHHnsM69evr1Rel+cUouYiE8xKRkRERERERERELYw5pYiIiIiIiIiIqMUxKEVERERERERERC2OQSkiIiIiIiIiImpxDEoREREREREREVGLY1CKiIiIiIiIiIhaHINSRERERERERETU4hiUIiIiIiIiIiKiFsegFBERERERERERtTiloyvQmuXkFEGIuq8vkwGBgW3qvV1rwfa1Xq7cNoDtq207alq8N9hj+1o3tq/14r3B+fD+0Hg8JlXjcakaj0vVnO3+wKBUIwiBBp3cDd2utWD7Wi9XbhvA9lHL4L2hamxf68b2tV6u3LbWhveHpsNjUjUel6rxuFTNWY4Lh+8REREREREREVGLY1CKiIiIiIhaDaPRiDFjxuDQoUOVyoqKijBo0CDs2rXLbvmePXswbNgwaLVaTJ8+Hbm5uVKZEAIrV67Ebbfdhv79+2P58uWwWCxSeV5eHp566ilERUVh6NCh+Oyzz5qvcUREboZBKSIiIiIiahUMBgOeeeYZpKamVlm+YsUKZGVl2S1LSUnBnDlzMGPGDGzbtg2FhYWIj4+XytevX489e/YgISEBb775Jnbv3o3169dL5fHx8SgqKsK2bdvw5JNP4qWXXkJKSkrzNJCIyM0wpxQRERERETm906dP49lnn4WoJgnK77//jl9//RXBwcF2yzdv3oyRI0figQceAAAsX74cQ4YMQVpaGtq3b49NmzZh5syZiI6OBgA899xz+O9//4vHHnsMFy9exPfff49vv/0W4eHh6Nq1K5KSkvDhhx+iT58+zdpeIiJ3wJ5SRERERETk9A4fPowBAwZg27ZtlcqMRiNefvllzJ07FyqVyq4sOTlZCjgBQLt27RAWFobk5GRcuXIFmZmZuPXWW6Xyfv36IT09HVlZWUhOTka7du0QHh5uV/7HH380QwuJiNwPe0oREREREZHTGz9+fLVl7777Lnr27ImYmJhKZVlZWQgJCbFbFhgYiMuXLyM7OxsA7MqDgoIAQCqvatsrV67Uu/4yWcPWr+92rozHpGo8LlXjcalaQ49Lcx1HBqWIiIiIiKjVOn36NLZu3YrPP/+8yvKysrJKvadUKhWMRiPKysqk19eWAdbeV3q9vtpt6yswsE29t2nMdq6Mx6RqPC5V43GpmrMcFwaliIiIiIioVRJC4KWXXsLMmTOlHk7XU6vVlYJIRqMRGo3GLgClVqul3wFAo9FUu62np2e965qTU4Rq0mFVSSazPjTWdztXxmNSNR6XqvG4VK2hx8W2XVNjUIqIiIiIiFqljIwM/PHHHzh58iSWLVsGANDr9Zg3bx6+/PJLvP/++wgNDYVOp7PbTqfTITg4GKGhoQCA7OxsKW+UbUifrby6betLCDTowbih27kyHpOq8bhUjcelas5yXBiUIiIiIiKiVik0NBRff/213bIJEyZgwoQJuO+++wAAWq0WiYmJiI2NBQBkZmYiMzMTWq0WoaGhCAsLQ2JiohSUSkxMRFhYGEJCQhAZGYn09HRcvnwZN9xwg1QeGRnZco0kInJhDEoREREREVGrpFQq0aFDh0rLAgMDpV5Q//znPzFhwgRERkYiIiICixcvxl133YX27dtL5StXrpSCTq+++iqmTJkCAGjfvj1iYmIwa9YszJkzB0ePHsWePXuwefPmFmwlEZHrYlCKiIjIgY6k5eP7H89j6oBweKt4WyYiampRUVFYuHAh3nzzTRQUFGDgwIFYtGiRVP7YY48hJycHM2bMgEKhwNixYzF58mSpfPny5ZgzZw7GjRuH4OBgLFmyBH369HFAS4iqZjAYcPDgMeTnl9gNx+rTJ1LKlUbkrPjpt4U9MHYc0i/rqi0P8vfHpnUbWq5CRETkUJt/T8ePZ3LQK9gLd3cPqX0DIiLCyZMnqy377rvvKi2LjY2Vhu9dT6FQID4+HvHx8VWWBwYG4t13321YRYlaQEpKEtbvPQj/djdLy65cSEUcgFtvHeC4ihHVAYNSLSxLl4cHZv232vJPV/ynBWtDRESOppTLAADFBpODa0JEREStVbubuyKkY09HV4Oo3uSOrgAREZE781IpAAAlRrODa0JERERE1LIYlCIiInIgjYc1KKVnUIqIiIiI3AyDUkRERA7kXdFTqrScQSkiIiIici8MShERETmQpiIopWdQioiIiIjcDINSREREDuRVMXyvlMP3iIiIiMjNMChFRETkQBqV9VbMoBQRERERuRunCEoZjUaMGTMGhw4dkpalpaVh8uTJiIyMxKhRo/Dzzz/bbXPgwAGMGTMGWq0WEydORFpaml35hg0bMGjQIERFRWH27NnQ6/VSmcFgwOzZsxEdHY2YmBisW7eueRtIRERUDamnFIfvEREREZGbcXhQymAw4JlnnkFqaqq0TAiB6dOnIygoCDt37sT999+PGTNmICMjAwCQkZGB6dOnIzY2Fjt27EBAQACmTZsGIQQAYO/evUhISMDChQuxceNGJCcnY8WKFdL+ly9fjmPHjmHjxo2YN28eEhIS8NVXX7Vsw4mIiHA1KMXZ94iIiIjI3Tg0KHX69GmMGzcOFy9etFv+66+/Ii0tDQsXLkSnTp0wdepUREZGYufOnQCA7du3o3fv3pgyZQq6dOmCpUuXIj09HYcPHwYAbNq0CZMmTcKQIUPQp08fLFiwADt37oRer0dpaSm2b9+OOXPmoFevXhg+fDgef/xxbNmypcXbT0RE5MXZ94iIiIjITTk0KHX48GEMGDAA27Zts1uenJyMnj17wsvLS1rWr18/JCUlSeXR0dFSmUajQa9evZCUlASz2YyjR4/alUdGRqK8vBwnTpzAiRMnYDKZEBUVZbfv5ORkWCyWZmopERFR1bw4+x4RERERuSmlI//4+PHjq1yenZ2NkJAQu2WBgYG4fPlyreWFhYUwGAx25UqlEn5+frh8+TLkcjn8/f2hUqmk8qCgIBgMBuTn5yMgIKCpmkdERFQrTcXwvRIO3yMiIiIiN+PQoFR19Hq9XdAIAFQqFYxGY63lZWVl0uuqyoUQVZYBkPZfVzJZvVaX1pfJgIr0V02yX2dxbftckSu3z5XbBrB9tW1HjiX1lDKaIYSAjG8MEREREbkJpwxKqdVq5Ofn2y0zGo3w9PSUyq8PIBmNRvj6+kKtVkuvry/XaDQwm81VlgGQ9l9XgYFt6rW+jUajrrbMQ6lAUFDD9ussGnpcWgtXbp8rtw1g+8g52XpKmQVgNAuolQxKEREREZF7cMqgVGhoKE6fPm23TKfTSUPyQkNDodPpKpX36NEDfn5+UKvV0Ol06NSpEwDAZDIhPz8fwcHBEEIgLy8PJpMJSqW1+dnZ2fD09ISvr2+96pmTU1Rjj6fr2b781usN1W5XbjJDpyuqVz2chUxmfSiu73FpLVy5fa7cNoDtq207cixbUAqw9pZSKx0+MS4RERERUYtwyk++Wq0Wf/75pzQUDwASExOh1Wql8sTERKlMr9fj+PHj0Gq1kMvliIiIsCtPSkqCUqlE9+7d0aNHDyiVSilpum3fERERkMvrdziEqP+Pbbum3q+z/LT2+rtz+1y5bWxfzduRYynkMikwxRn4iIiIiMidOGVQqn///mjXrh3i4+ORmpqKNWvWICUlBWPHjgUAPPjggzhy5AjWrFmD1NRUxMfHIzw8HAMGDABgTaC+du1a7Nu3DykpKZg/fz7GjRsHjUYDjUaDBx54APPnz0dKSgr27duHdevWYeLEiY5sMhERuTFvdUVQisnOiYiIiMiNOOXwPYVCgbfffhtz5sxBbGwsOnTogFWrViEsLAwAEB4ejrfeegtLlizBqlWrEBUVhVWrVknJYUePHo309HTMnTsXRqMRI0aMwKxZs6T9x8fHY/78+Zg0aRJ8fHzw1FNPYcSIEQ5pKxERkZdKCcDInlJERERE5FacJih18uRJu9cdOnTA5s2bq11/8ODBGDx4cLXlcXFxiIuLq7JMo9Fg2bJlWLZsWcMqS0RE1ISunYGPiIiIiMhdOOXwPSIiInfirbZ+R8SeUkRERETkThiUIiIicjCppxSDUkRERETkRhiUIiIicjAfW08pDt8jIiIiIjfCoBQREZGDWROdMyhFRERERO6FQSkiIiIH81Zbh+8xpxQRERERuRMGpYiIiBzM1lOKOaWIiIiIyJ0wKEVERORg3hWJzjl8j4iIiIjcCYNSREREDualZk8pIiIiInI/DEoRERE5mE9FTqkS9pQiIiIiIjfCoBQREZGDMacUEREREbkjBqWIiIgcTKW03o6NJuHgmhARERERtRwGpYiIiBzMQyEDAJgsFgfXhIiIiIio5TAoRURE5GBKufV2bLKwpxQRERERuQ8GpYiIiBxMKfWUYlCKiKg2RqMRY8aMwaFDh6RlSUlJ+Mc//oGoqCjcfffd2L59u902Bw4cwJgxY6DVajFx4kSkpaXZlW/YsAGDBg1CVFQUZs+eDb1eL5UZDAbMnj0b0dHRiImJwbp165q3gUREboRBKSIiIgfzUFhvx2YGpYiIamQwGPDMM88gNTVVWpadnY0nnngC/fv3xyeffIKZM2di0aJF+OGHHwAAGRkZmD59OmJjY7Fjxw4EBARg2rRpEMJ6zd27dy8SEhKwcOFCbNy4EcnJyVixYoW0/+XLl+PYsWPYuHEj5s2bh4SEBHz11Vct2m4iIlfFoBQREZGDKeUVPaXMzClFRFSd06dPY9y4cbh48aLd8n379iEoKAjPPPMMOnbsiNGjR+OBBx7A7t27AQDbt29H7969MWXKFHTp0gVLly5Feno6Dh8+DADYtGkTJk2ahCFDhqBPnz5YsGABdu7cCb1ej9LSUmzfvh1z5sxBr169MHz4cDz++OPYsmVLi7efiMgVMShFRETkYLaeUhy+R0RUvcOHD2PAgAHYtm2b3fJBgwZh6dKlldYvLi4GACQnJyM6OlpartFo0KtXLyQlJcFsNuPo0aN25ZGRkSgvL8eJEydw4sQJmEwmREVFSeX9+vVDcnIyLJycgoio0ZSOrgAREZG7Y04pIqLajR8/vsrl4eHhCA8Pl17n5OTgiy++wFNPPQXAOrwvJCTEbpvAwEBcvnwZhYWFMBgMduVKpRJ+fn64fPky5HI5/P39oVKppPKgoCAYDAbk5+cjICCgKZtIROR2GJQiIiJyMM6+R0TUNMrKyvDUU08hKCgIDz/8MABAr9fbBZUAQKVSwWg0oqysTHpdVbkQosoywJpwvT5ksnqtLq1f3+1cGY9J1a49LkLYL3fnY8XzpWoNPS7NdRwZlCIiInIwD1tPKTODUkREDVVSUoJp06bh/Pnz+PDDD6HRaAAAarW6UgDJaDTC19cXarVaen19uUajgdlsrrIMADw9PetVv8DANvVav7HbuTIeE3tt23oDyIFGo5aWeXp6wM/PG0FBPFY8X6rmLMeFQSkiInJacXFxCAgIwCuvvAIAOH78OObNm4dTp06hc+fOWLBgAXr37i2tv2fPHrzxxhvIzs5GTEwMFi1aJA2tEELg1VdfxY4dO2CxWDB27Fg899xzkFf0UsrLy8PcuXPx888/w9/fH//5z39w//33t0g7lVJOKeYnISJqiOLiYjz++OO4ePEiNm7ciI4dO0ploaGh0Ol0duvrdDr06NEDfn5+UKvV0Ol06NSpEwDAZDIhPz8fwcHBEEIgLy8PJpMJSqX10Sk7Oxuenp7w9fWtVx1zcorserHURiazPjTWdztXxmNStYKCEgCAXm+QjktZWTny80ug0xU5sGaOxfOlag09LrbtmhoTnRMRkVP64osvsH//ful1aWkp4uLiEB0djV27diEqKgpTp05FaWkpACAlJQVz5szBjBkzsG3bNhQWFiI+Pl7afv369dizZw8SEhLw5ptvYvfu3Vi/fr1UHh8fj6KiImzbtg1PPvkkXnrpJaSkpLRIWz3kzClFRNRQFosFM2bMwKVLl/DBBx+gS5cuduVarRaJiYnSa71ej+PHj0Or1UIulyMiIsKuPCkpCUqlEt27d0ePHj2gVCqRlJQklScmJiIiIkL6UqOuhKj/T0O3c+UfHpOaj0tjzzlX++FxaNrj0hwYlCIiIqeTn5+P5cuXIyIiQlr25ZdfQq1W4/nnn0enTp0wZ84ceHt746uvvgIAbN68GSNHjsQDDzyA7t27Y/ny5di/fz/S0tIAWKf8njlzJqKjo3Hbbbfhueeek6b0vnjxIr7//nv83//9H7p27YqHHnoI9913Hz788MMWaa+tp5RFAJbmuuMTEbmoHTt24NChQ/i///s/+Pr6Ijs7G9nZ2cjPzwcAPPjggzhy5AjWrFmD1NRUxMfHIzw8HAMGDABgTaC+du1a7Nu3DykpKZg/fz7GjRsHjUYDjUaDBx54APPnz0dKSgr27duHdevWYeLEiQ5sMRGR6+DwPSIicjrLli3D/fffj6ysLGlZcnIy+vXrB1lFlkWZTIa+ffsiKSkJsbGxSE5OxhNPPCGt365dO4SFhSE5ORkqlQqZmZm49dZbpfJ+/fohPT0dWVlZSE5ORrt27exmb+rXrx9Wr17dAq29OvseYM0rpVIyIycRUV3t3bsXFosFU6dOtVvev39/fPDBBwgPD8dbb72FJUuWYNWqVYiKisKqVauk+8no0aORnp6OuXPnwmg0YsSIEZg1a5a0n/j4eMyfPx+TJk2Cj48PnnrqKYwYMaJF20hE5KoYlCIiIqdy8OBB/P7779i9ezfmz58vLc/Ozkbnzp3t1g0MDERqaioAICsrq9opv7OzswHArjwoKAgApPKqtr1y5UqTtasmSvk1QSmLgKqGdYmICDh58qT0+9q1a2tdf/DgwRg8eHC15XFxcYiLi6uyTKPRYNmyZVi2bFn9K0pERDViUIqIiJyGwWDAvHnzMHfu3EqzGtU0pTdgnQa8PlN+Xzuld237ro+GTK+rvCYviVlYIJMp6v13nZWrT8fM9rVurtw+Z5vym4iIqCoMShERkdNISEhA7969MWjQoEpl1U3pbQteVVeu0WjsAlDXT/+t0Whq3Xd9NGRWEnFNHilfP28E+ahrWLt1cpZph5sL29e6uXL7XLltRETU+jEoRURETuOLL76ATqdDVFQUgKuBo71792LMmDFVTultG3ZX3ZTfwcHBCA0NBWAdAmjLG2Ub0mcrr27b+mro9LoKGWAWQFZ2EVBW/x5azsrVp2Nm+1o3V26fs035TUREVBUGpYiIyGl88MEHMJlM0uuVK1cCAJ577jn89ttveO+99yCEgEwmgxACR44cwb///W8AV6f8jo2NBQBkZmYiMzMTWq0WoaGhCAsLQ2JiohSUSkxMRFhYGEJCQhAZGYn09HRcvnwZN9xwg1QeGRlZ7zY0dMpcpUIOs8mCcrNwuYdjoHmnEnYGbF/r5srtc+W2ERFR68egFBEROY0bb7zR7rW3tzcAoEOHDggMDMSrr76KxYsX4x//+Ae2bt0KvV6PkSNHAgD++c9/YsKECYiMjERERAQWL16Mu+66C+3bt5fKV65cKQWdXn31VUyZMgUA0L59e8TExGDWrFmYM2cOjh49ij179mDz5s0t1XQo5TIYAJgtfHokIiIiIvfAoBQREbUKPj4+WL16NebNm4ePP/4Y3bp1w5o1a+Dl5QUAiIqKwsKFC/Hmm2+ioKAAAwcOxKJFi6TtH3vsMeTk5GDGjBlQKBQYO3YsJk+eLJUvX74cc+bMwbhx4xAcHIwlS5agT58+LdY+2wx8JgaliIiIiMhNMChFRERO65VXXrF73adPH3zyySfVrh8bGysN37ueQqFAfHw84uPjqywPDAzEu+++2/DKNtLVoJTFYXUgIiIiImpJ8tpXISIiouamVLCnFBERERG5FwaliIiInIBSbr0lm8wMShERERGRe2BQioiIyAkomFOKiIiIiNwMg1JEREROgDmliIiIiMjdMChFRETkBJhTioiIiIjcDYNSREREToA5pYiIiIjI3TAoRURE5ASUzClFRERERG6GQSkiIiInwKAUEREREbkbBqWIiIicwNWcUkx0TkRERETugUEpIiIiJyD1lGJOKSIiIiJyEwxKEREROQEp0TmH7xERERGRm2BQioiIyAkwpxQRERERuRsGpYiIiJzA1ZxSDEoRERERkXtgUIqIiMgJKKScUkx0TkRERETugUEpIiIiJ8Dhe0RERETkbpw6KJWZmYmpU6eib9++GDp0KDZs2CCVHT9+HA899BC0Wi0efPBBHDt2zG7bPXv2YNiwYdBqtZg+fTpyc3OlMiEEVq5cidtuuw39+/fH8uXLYeEU3ERE5EAMShERERGRu3HqoNTTTz8NLy8v7Nq1C7Nnz8Ybb7yBb775BqWlpYiLi0N0dDR27dqFqKgoTJ06FaWlpQCAlJQUzJkzBzNmzMC2bdtQWFiI+Ph4ab/r16/Hnj17kJCQgDfffBO7d+/G+vXrHdVMIiIizr5HRERERG7HaYNSBQUFSEpKwpNPPomOHTti2LBhGDRoEA4ePIgvv/wSarUazz//PDp16oQ5c+bA29sbX331FQBg8+bNGDlyJB544AF0794dy5cvx/79+5GWlgYA2LRpE2bOnIno6GjcdttteO6557BlyxZHNpeIiNyclOjczKAUEREREbkHpaMrUB1PT09oNBrs2rULzz77LNLS0nDkyBE8/fTTSE5ORr9+/SCTWT/Ay2Qy9O3bF0lJSYiNjUVycjKeeOIJaV/t2rVDWFgYkpOToVKpkJmZiVtvvVUq79evH9LT05GVlYWQkJAWbyu1Hg+MHYf0y7pqy4P8/bFp3YaWqxARuQzb8D0ze0oRERERkZtw2qCUWq3G3LlzsWjRImzatAlmsxmxsbF46KGH8O2336Jz58526wcGBiI1NRUAqgwuBQYG4vLly8jOzgYAu/KgoCAAwOXLl+sVlKqIidV7fZkMEDU8c9R3v87i2va5IpkMyNLl4e/P/7fa9+/TFf9ple13h/fu2n9dTUPb56rHo7W6mlOKOQ6JiIiIyD04bVAKAM6cOYMhQ4bg0UcfRWpqKhYtWoTbb78der0eKpXKbl2VSgWj0QgAKCsrq7a8rKxMen1tGQBp+7oKDGxT7zYBgEajrrbMQ6lAUFDD9ussGnpcWgtXfv9c/b1j+8iZMdE5EREREbkbpw1KHTx4EDt27MD+/fvh6emJiIgIXLlyBe+88w7at29fKYBkNBrh6ekJwNrLqqpyjUZjF4BSq9XS7wCg0WjqVcecnKIaezxdz9YrQa83VLtduckMna6oXvVwFjKZ9aG4vseltXDl988d3ju2r/rtyDkoFUx0TkRERETuxWmDUseOHUOHDh2kQBMA9OzZE++++y6io6Oh09nn9dHpdNLQu9DQ0CrLg4ODERoaCgDIzs5GeHi49DsABAcH16uOQtQ8DK+m7RpT7uwaelxaC1d+/9zhvWP7yFmxpxQRERERuRunnX0vJCQEFy5csOvxdPbsWYSHh0Or1eKPP/6AqHj6EkLgyJEj0Gq1AACtVovExERpu8zMTGRmZkKr1SI0NBRhYWF25YmJiQgLC2OScyIichgpKGVmTikiIiIicg9OG5QaOnQoPDw88NJLL+HcuXP47rvv8O6772LChAm45557UFhYiMWLF+P06dNYvHgx9Ho9Ro4cCQD45z//ic8++wzbt2/HiRMn8Pzzz+Ouu+5C+/btpfKVK1fi0KFDOHToEF599VVMnDjRkc0lIiI3x9n3iIiIiMjdOO3wvTZt2mDDhg1YvHgxxo4di4CAADz55JN4+OGHIZPJsHr1asybNw8ff/wxunXrhjVr1sDLywsAEBUVhYULF+LNN99EQUEBBg4ciEWLFkn7fuyxx5CTk4MZM2ZAoVBg7NixmDx5soNaSkREBCgVHL5HRERERO7FaYNSANC5c2esX7++yrI+ffrgk08+qXbb2NhYxMbGVlmmUCgQHx+P+Pj4JqknERFRYynlTHRORFQXRqMRsbGxePnllzFgwAAAQFpaGl5++WUkJSUhLCwMs2fPRkxMjLTNgQMHsGTJEqSlpUGr1WLx4sXSKAoA2LBhA9auXYvi4mKMHDkSL7/8sjQJksFgwIIFC/D111/D09MTU6ZMwZQpU1q20URELspph+8RERG5k6s5pRiUIiKqjsFgwDPPPIPU1FRpmRAC06dPR1BQEHbu3In7778fM2bMQEZGBgAgIyMD06dPR2xsLHbs2IGAgABMmzZNyk+7d+9eJCQkYOHChdi4cSOSk5OxYsUKaf/Lly/HsWPHsHHjRsybNw8JCQn46quvWrbhREQuikEpIiIiJ3B1+B4TnRMRVeX06dMYN24cLl68aLf8119/RVpaGhYuXIhOnTph6tSpiIyMxM6dOwEA27dvR+/evTFlyhR06dIFS5cuRXp6Og4fPgwA2LRpEyZNmoQhQ4agT58+WLBgAXbu3Am9Xo/S0lJs374dc+bMQa9evTB8+HA8/vjj2LJlS4u3n4jIFTEoRURE5ASknlIcvkdEVKXDhw9jwIAB2LZtm93y5ORk9OzZU8ovCwD9+vVDUlKSVB4dHS2VaTQa9OrVC0lJSTCbzTh69KhdeWRkJMrLy3HixAmcOHECJpMJUVFRdvtOTk6GhV8iEBE1mlPnlCIiInIXzClFRFSz8ePHV7k8OzsbISEhdssCAwNx+fLlWssLCwthMBjsypVKJfz8/HD58mXI5XL4+/tDpVJJ5UFBQTAYDMjPz0dAQECd6y+T1XlVu/Xru50r4zGp2rXHRQj75e58rHi+VK2hx6W5jiODUkRERE6AOaWIiBpGr9fbBY0AQKVSwWg01lpeVlYmva6qXAhRZRkAaf91FRjYpl7rN3Y7V8ZjYq9tW28AOdBo1NIyT08P+Pl5IyiIx4rnS9Wc5bgwKEVEROQEruaUYlCKiKg+1Go18vPz7ZYZjUZ4enpK5dcHkIxGI3x9faFWq6XX15drNBqYzeYqywBI+6+rnJwiu14stZHJrA+N9d3OlfGYVK2goAQAoNcbpONSVlaO/PwS6HRFDqyZY/F8qVpDj4ttu6bGoBQREZETuJpTijlKiIjqIzQ0FKdPn7ZbptPppCF5oaGh0Ol0lcp79OgBPz8/qNVq6HQ6dOrUCQBgMpmQn5+P4OBgCCGQl5cHk8kEpdL66JSdnQ1PT0/4+vrWq55CoEEPxg3dzpXxmNizHYvrjwmPkxWPQ9Wc5bgw0TkREZETYKJzIqKG0Wq1+PPPP6WheACQmJgIrVYrlScmJkpler0ex48fh1arhVwuR0REhF15UlISlEolunfvjh49ekCpVEpJ0237joiIgFzORykiosbilZSIiMgJKJhTioioQfr374927dohPj4eqampWLNmDVJSUjB27FgAwIMPPogjR45gzZo1SE1NRXx8PMLDwzFgwAAA1gTqa9euxb59+5CSkoL58+dj3Lhx0Gg00Gg0eOCBBzB//nykpKRg3759WLduHSZOnOjIJhMRuQwO3yMiInICnH2PiKhhFAoF3n77bcyZMwexsbHo0KEDVq1ahbCwMABAeHg43nrrLSxZsgSrVq1CVFQUVq1aBVnFVFKjR49Geno65s6dC6PRiBEjRmDWrFnS/uPj4zF//nxMmjQJPj4+eOqppzBixAiHtJWIyNUwKEVEROQEOHyPiKjuTp48afe6Q4cO2Lx5c7XrDx48GIMHD662PC4uDnFxcVWWaTQaLFu2DMuWLWtYZYmIqFocvkdEROQErs6+x0TnREREROQeGJQiIiJyAraeUmb2lCIiIiIiN8GgFBERkRPg8D0iIiIicjcMShERETkBpaIi0Tln3yMiIiIiN8GgFBERkROw9ZQS4BA+IiIiInIPDEoRERE5AVtQCuAQPiIiIiJyDwxKEREROQH7oBRn4CMiIiIi18egFBERkROw5ZQCmFeKiIiIiNwDg1JEREROQHG1oxSH7xERERGRW2BQioiIyAnIZDJpCB+DUkRERETkDhiUIiIichJXg1LMKUVEREREro9BKSIiIiehrBjDx5xSREREROQOGJQiIiJyEkq59bbM4XtERERE5A4YlCIiInISiorhe2YGpYiIiIjIDTAoRURE5CRsOaXMgkEpIiIiInJ9DEoREZFTuXDhAh577DFERUXhrrvuwvvvvy+VpaWlYfLkyYiMjMSoUaPw888/22174MABjBkzBlqtFhMnTkRaWppd+YYNGzBo0CBERUVh9uzZ0Ov1UpnBYMDs2bMRHR2NmJgYrFu3rnkbWgVbTynmlCIiIiIid8CgFBEROQ2LxYK4uDj4+/vjk08+wYIFC/DOO+9g9+7dEEJg+vTpCAoKws6dO3H//fdjxowZyMjIAABkZGRg+vTpiI2NxY4dOxAQEIBp06ZBVPQ62rt3LxISErBw4UJs3LgRycnJWLFihfS3ly9fjmPHjmHjxo2YN28eEhIS8NVXX7Vo+5UcvkdEREREbkTp6AoQERHZ6HQ69OjRA/Pnz4ePjw86duyI22+/HYmJiQgKCkJaWhq2bt0KLy8vdOrUCQcPHsTOnTvx1FNPYfv27ejduzemTJkCAFi6dCkGDhyIw4cPY8CAAdi0aRMmTZqEIUOGAAAWLFiAxx57DLNmzYIQAtu3b8d7772HXr16oVevXkhNTcWWLVtwzz33tFj7pZ5SDEoRERERkRtgTykiInIaISEheOONN+Dj4wMhBBITE/Hbb7+hf//+SE5ORs+ePeHl5SWt369fPyQlJQEAkpOTER0dLZVpNBr06tULSUlJMJvNOHr0qF15ZGQkysvLceLECZw4cQImkwlRUVF2+05OTobFYmn+hldgTykiIiIicicMShERkVMaOnQoxo8fj6ioKNx9993Izs5GSEiI3TqBgYG4fPkyANRYXlhYCIPBYFeuVCrh5+eHy5cvIzs7G/7+/lCpVFJ5UFAQDAYD8vPzm6+R11GypxQRERERuREO3yMiIqf05ptvQqfTYf78+Vi6dCn0er1d0AgAVCoVjEYjANRYXlZWJr2uqlwIUWUZAGn/dSWT1Wt1aX2Z7OrwPbMQ9d6Ps7q2fa6I7WvdXLl9DW2bKx4LIiJyXgxKERGRU4qIiABgnRXvueeew4MPPmg3Wx5gDRh5enoCANRqdaUAktFohK+vL9RqtfT6+nKNRgOz2VxlGQBp/3UVGNimXutfu51Gbb0te/uoERTUsP04q4Yel9aC7WvdXLl9rtw2IiJq/RiUIiIip6HT6ZCUlIRhw4ZJyzp37ozy8nIEBwfj7Nmzlda3DckLDQ2FTqerVN6jRw/4+flBrVZDp9OhU6dOAACTyYT8/HwEBwdDCIG8vDyYTCYoldZbY3Z2Njw9PeHr61uvNuTkFEHUY/SdTGZ9aMzJKYLFbM1flZtfCp2uqF5/11ld2776HJfWgu1r3Vy5fQ1tm207IiKilsCcUkRE5DQuXbqEGTNm4MqVK9KyY8eOISAgAP369cOff/4pDcUDgMTERGi1WgCAVqtFYmKiVKbX63H8+HFotVrI5XJERETYlSclJUGpVKJ79+7o0aMHlEqllDTdtu+IiAjI5fW7VQpR/x/bdtfmlGrIfpz1p6HHpbX8sH2t+8eV29eYaxIREVFLYFCKiIicRkREBHr16oXZs2fj9OnT2L9/P1asWIF///vf6N+/P9q1a4f4+HikpqZizZo1SElJwdixYwEADz74II4cOYI1a9YgNTUV8fHxCA8Px4ABAwAA48ePx9q1a7Fv3z6kpKRg/vz5GDduHDQaDTQaDR544AHMnz8fKSkp2LdvH9atW4eJEye2aPttOaVMZj4VEhEREZHra1BQ6tdff4Xg1yhERHSNprg3KBQKvP3229BoNHj44YcxZ84cTJgwARMnTpTKsrOzERsbi88//xyrVq1CWFgYACA8PBxvvfUWdu7cibFjxyI/Px+rVq2CrCJr7+jRozF16lTMnTsXU6ZMQZ8+fTBr1izpb8fHx6NXr16YNGkSFixYgKeeegojRoxoVHvqS1nRK8vM2feIyIXw2YGIiKrToJxS//nPf+Dh4YF77rkHY8aMQWRkZBNXi4iIWpumujeEhoYiISGhyrIOHTpg8+bN1W47ePBgDB48uNryuLg4xMXFVVmm0WiwbNkyLFu2rH4VbkKKa4bvERG5Cj47EBFRdRoUlPrll1/wyy+/4KuvvkJcXBx8fHwwcuRIjB49Gj179mzqOhIRUSvAe0PjKSp6dbGnFBG5Et4fiIioOg0KSimVSunbaJPJhAMHDuC7777D+PHjERoainvvvRexsbHSkAoiInJ9vDc0nlJREZTiMBciciG8PxARUXUalejcaDRi//79+OKLL/C///0P/v7+GDp0KM6fP4/Ro0fXOMSCiIhcE+8NDcdE50Tkynh/ICKi6zWop9S+ffvw1Vdf4YcffoCHhwfuvvturFq1CtHR0dI6W7ZswWuvvYZHHnmkySpLRETOi/eGxlPK2VOKiFwP7w9ERFSdBgWlXnjhBQwbNgyvvfYaBg4cCIVCUWmd3r1749FHH210BYmIqHXgvaHxlOwpRUQuiPcHIiKqToOCUgcOHEBxcTEKCwulm8qXX36JW2+9FcHBwQAArVYLrVbbdDUlIiKnxntD40lBKfaUIiIX0lL3h8zMTMyfPx+//fYb/Pz8MHHiREyePBkAcPz4ccybNw+nTp1C586dsWDBAvTu3Vvads+ePXjjjTeQnZ2NmJgYLFq0CAEBAQAAIQReffVV7NixAxaLBWPHjsVzzz0HubxRmVCIiAgNzCl15MgRDB8+HLt375aWbdq0CaNGjUJiYmKTVY6IiFoP3hsajzmliMgVtdT94emnn4aXlxd27dqF2bNn44033sA333yD0tJSxMXFITo6Grt27UJUVBSmTp2K0tJSAEBKSgrmzJmDGTNmYNu2bSgsLER8fLy03/Xr12PPnj1ISEjAm2++id27d2P9+vVNVm8iInfWoKDUsmXL8O9//xszZ86Ulm3duhWPP/44lixZ0mSVIyKi1oP3hsZTyCpySlkYlCIi19ES94eCggIkJSXhySefRMeOHTFs2DAMGjQIBw8exJdffgm1Wo3nn38enTp1wpw5c+Dt7f3/2bvv+KbK/Q/gn4w2TRfdhbbILiCUUoqAAiJeByAKFvS65YKCsrwqgoXLFpHlYqgoIIg/QcAFKihex1WmhRawAmUXupLukSZNcn5/pDk0tIWmTTM/79erL5oz0uc5J5znnG+e5/tg9+7dAIDNmzdj6NChGDlyJLp06YKlS5fi119/RWZmJgBTAG3q1Kno3bs3+vXrh2nTpuHTTz+1SbmJiDxdo4JSFy5cwJAhQ2otHzp0KM6cOdPkQpnpdDrMnz8ft9xyC2677Ta8+eabEKqHNKSnp+Ohhx5CfHw8Ro0ahRMnTljsu2vXLtx1112Ij4/HpEmTUFBQIK4TBAHLly9Hv3790KdPHyxduhRGo9Fm5SYi8kT2ahvcmVzGROdE5H7s0T74+PhAqVTiiy++QFVVFc6dO4cjR46ga9euSEtLQ2JiIiTVgX+JRIJevXohNTUVAJCWlmaRdL1Vq1aIiopCWloacnNzkZ2djVtuuUVcn5iYiCtXriAvL88mZSci8mSNCkq1b98e33//fa3l//3vf3HTTTc1uVBmr732Gvbt24d169ZhxYoV+Pzzz7F161Z2wSUickL2ahvcmbmnlN7AL0qIyH3Yo31QKBSYM2cOtm7divj4eAwdOhS33347HnroIahUKkRERFhsHxoaipycHABAXl5evetVKhUAWKwPCwsDAHF/IiJqvEYlOv/3v/+NiRMn4o8//kC3bt0AAKdOncKff/6JlStX2qRgRUVF2LFjBzZs2IAePXoAAMaOHYu0tDTI5XKxC65EIsGsWbPw22+/Yffu3UhKSrLoggsAS5cuxeDBg5GZmYnWrVtbdMEFgGnTpuGdd97BuHHjbFJ2IiJPZI+2wd2xpxQRuSN7tQ9nz57F4MGD8a9//QsZGRlYuHAhbr31Vmg0Gnh7e1ts6+3tDZ1OBwCorKysd31lZaX4uuY6AOL+DVX9vYPV21u7nzvjMalbzeNS8xZCIvHsY8XPS90ae1ya6zg2Kih1++2348svv8SOHTtw7tw5yOVydOnSBfPnz0fr1q1tUrCUlBT4+/ujT58+4rLx48cDAGbPnl1vF9ykpCSkpaXh2WefFfer2QXX29v7ul1wr/2WhIiIGsYebYO7u9pTikEpInIf9mgf9u/fj+3bt+PXX3+Fj48P4uLikJubi/feew+tW7euFUDS6XTw8fEBYOplVdd6pVJpEYBSKBTi7wCgVCqtKmNoaECj6tbY/dwZj4mlFi38AORDqVSIy3x8vBAU5IewMB4rfl7q5izHpVFBKQDo1KkTXn31VVuWxUJmZiaio6Px1Vdf4f3330dVVRWSkpLw/PPPQ6VSoWPHjhbbh4aGIiMjA0DTuuBaE5Rqyrcd1/sS3FUjue4eiXbn8+dJ584dOdO3Hc3dNrg7ucw0qp49pYjI3TR3+3DixAm0adNGDDQBwM0334z3338fvXv3hlqtttherVaL9/2RkZF1rg8PD0dkZCQAQKVSISYmRvwdAMLDw60qY35+6XXvIa8lkZgeGq3dz53xmNStuLgcAKDRaMXjUllZhaKicqjVpQ4smWPx81K3xh4X83621qigVElJCdavX4/jx49Dr9eLycfNNm3a1OSCVVRU4OLFi9iyZQsWL14MlUqFOXPmQKlUOk0X3MaekJoR7Gt5yWUuH812lohrc3Hn8+fu5471a172aBvcnUzKnlJE5H7s0T5ERETg4sWL0Ol04r39uXPnEBMTg/j4eHz44YcQBAESiQSCIODIkSN47rnnAADx8fFISUlBUlISACA7OxvZ2dmIj49HZGQkoqKikJKSIgalUlJSEBUVZfUIC0G4/hebtt7PnfGYWDIfi2uPCY+TCY9D3ZzluDQqKDV9+nQcP34c999/P/z9/W1dJgCAXC5HWVkZVqxYgejoaABAVlYWPvvsM7Rp08YpuuA2JrIIWEawr1WlN7hsNNvdI9HufP484dyxfvXvZyv2aBvcnXn4HntKEZE7sUf7cOedd2LZsmX4z3/+g+effx7nz5/H+++/jxdffBFDhgzBihUrsGjRIjzyyCPYsmULNBoNhg4dCgB49NFH8eSTT6Jnz56Ii4vDokWLcMcdd4hDCx999FEsX74cLVu2BACsWLECY8eObZZ6EBF5mkYFpfbt24fNmzeLCcibQ3h4OBQKhRiQAoB27dohOzsbffr0cYouuE35tqMp652ds0Rcm4s7nz9POHesX/OxR9vg7syJztlTiojciT3ah4CAAHz88cdYtGgRRo8ejZCQEDz//PP45z//CYlEgg8++ABz587F559/js6dO2Pt2rXw9fUFACQkJGDBggV49913UVxcjP79+2PhwoXie48bNw75+fmYPHkyZDIZRo8ejTFjxjRbXYiIPEmjglKRkZGQSqW2LouF+Ph4aLVanD9/Hu3atQNg6oIbHR3tNF1wiYjoKnu0De5Ozp5SROSG7NU+dOzYERs2bKhzXY8ePfDll1/Wu29SUpL47HAtmUyG5ORkJCcn26ScRER0VaNah+nTp2PevHn47bffcPHiRWRlZVn82EL79u1xxx13IDk5GSdPnsT//vc/rF27Fo8++iiGDBmCkpISLFq0CGfOnMGiRYtqdcH9+uuvsW3bNpw8eRLTp0+vswvuwYMHcfDgQaxYsQJPPfWUTcpNROSp7NE2uDuxp5SRQSkich9sH4iIqD6N6ik1ZcoUAMD48eMBAJLqb3bNPZf+/vtvmxRu+fLlWLhwIR599FEolUo8/vjjePLJJ9kFl4jICdmrbXBn5pxSDEoRkTth+0BERPVpVFDqp59+snU56hQQEIClS5fWuY5dcImInIu92gZ3Zu4pZWBQiojcCNsHIiKqT6OG70VHRyM6OhoVFRVIT09HcHAwjEYjoqKiLBKTExGR52Db0HRiTykmOiciN8L2gYiI6tOonlLFxcV44YUXcOjQIQDAnj17sGjRImRmZmLt2rVsXIiIPBDbhqaTSZnonIjcD9sHIiKqT6N6Sr322mtQKpU4cOAAFAoFAOD1119Hy5Yt8dprr9m0gERE5BrYNjSdmOjcYHRwSYiIbIftAxER1adRQan//e9/eOmllxAYGCguCwkJQXJyMg4fPmyzwhERketg29B05uF77ClFRO6E7QMREdWnUUEpANBqtbWWFRQUQC5v1IhAIiJyA2wbmoaJzonIXbF9ICKiujQqKDV8+HAsWrQIGRkZkEgkqKiowIEDBzB79mwMGzbM1mUkIiIXwLah6cRE5wxKEZEbYftARET1adRXE9OnT8ebb76JpKQkVFVVYcSIEZDJZHjooYcwffp0W5eRiIhcANuGppPLTN8VsacUEbkTtg9ERFSfRgWlvL298eqrr+Lf//43MjMzYTAY0Lp1a/j5+dm6fERE5CLYNjSdnD2liMgNsX0gIqL6NCooVVdCwvT0dPH3W265pfElIiIil8S2oelkzClFRG6I7QMREdWnUUGpJ598ss7l3t7eCA8Px08//dSkQhERketh29B07ClFRO6I7QMREdWnUUGpkydPWrw2GAy4dOkSFi5ciPvvv98mBSMiItfCtqHpZFL2lCIi98P2gYiI6tOo2feuJZPJ0K5dO7z66qt45513bPGWRETk4tg2WE8uY08pInJ/bB+IiMjMJkEps/z8fJSUlNjyLYmIyMWxbWg4GYfvEZEHYftARESNGr6XnJxca1l5eTn27duHIUOGNLlQRETketg2NJ28RqJzQRAgqQ5SERG5MrYPRERUn0YFpeoSFBSEGTNmYMSIEbZ6SyIicnFsG6wjqxGEMgiAnDEpInJTbB+IiAhoZFBq8eLFti4HERG5OLYNTWfuKQWYekvJpYxKEZHrY/tARET1aVRQatWqVQ3edvLkyY35E0RE5GLYNjRdzZ5SeqMRCtumfiQicgi2D0REVJ9GBaUuXryI3bt3IygoCN27d4e3tzdOnjyJS5cuoWfPnpDLTW/LXBhERJ6DbUPT1ewZZWCycyJyE2wfiIioPo0KSnl7e+P+++/H/Pnz4eXlJS5fsmQJiouL8frrr9usgERE5BrYNjSdjEEpInJDbB+IiKg+jRoX8N133+GZZ56xaFQA4OGHH8Z3331nk4IREZFrYdvQdBKJBOa0UnoGpYjITbB9ICKi+jQqKBUZGYn//e9/tZbv2bMHrVu3bnKhiIjI9bBtsA25zNQ0s6cUEbkLtg9ERFSfRg3fe/nll/Hvf/8bv/zyC7p06QIAOH78ONLT0/H+++/btIBEROQa2DbYhjnZOXtKEZG7YPtARET1aVRPqbvvvhtffPEFYmNjcfbsWVy5cgV9+vTBnj170KdPH1uXkYiIXADbBtuQyxiUIiL3wvaBiIjq06ieUgDQuXNnJCcno7i4GP7+/pBKpZwxg4jIw7FtaDr2lCIid8T2gYiI6tKonlKCIOC9995D3759ceuttyIrKwuvvPIK5syZA51OZ+syEhGRC2DbYBvmGfiYU4qI3AXbByIiqk+jglKrV6/GN998gzfeeAPe3t4AgAcffBB//PEHli5datMCEhGRa2DbYBtyBqWIyM2wfSAiovo0Kij15ZdfYsGCBRg8eLDY7bZ///5YsmQJvv/+e5sWkIiIXAPbBtsw95Ti8D0ichdsH4iIqD6NCkrl5+cjIiKi1vLAwEBUVFQ0uVBEROR62DbYBntKEZG7YftARET1aVRQql+/fli3bp3FsrKyMrz55pvo27evTQpGRESuhW2DbVztKWV0cEmIiGyD7QMREdWnUUGpefPmIT09Hf3794dWq8XEiRMxaNAgXLlyBf/5z39sXUYiInIBbBtsgz2liMjdsH0gIqL6yBuzU2BgILZv3479+/fj3Llz0Ov1aNeuHQYMGACptFFxLiIicnFsG2yDOaWIyN3Yq33Q6XRYvHgxdu3aBS8vL4wePRovvvgiJBIJ0tPTMXfuXJw+fRodO3bE/Pnz0b17d3HfXbt24e2334ZKpcKAAQOwcOFChISEADDNHrhixQps374dRqMRo0ePxrRp09i2ERHZQKOCUsOHD8eqVatw66234tZbb7V1mYiIyAWxbWi8S5cuISPjIgBAW6kBAJw9dw6BZZlWvU9ISChiYlrbvHxERE1hr/bhtddew8GDB7Fu3TqUl5fjxRdfRFRUFB544AGMHz8e999/P9544w189tlnmDBhAn788Uf4+vri2LFjmDVrFubPn48uXbpg0aJFSE5OxgcffAAA2LBhA3bt2oVVq1ZBr9fjlVdeQWhoKMaNG9dsdSEi8hSNCkpJpVJUVVXZuixEROTC2DY0zuXLmbit/y3QVCf7jXzsDfi07o6582aj4vQ+q97LR+mLfX8cZmCKiJyKPdqHoqIi7NixAxs2bECPHj0AAGPHjkVaWhrkcjkUCgWmT58OiUSCWbNm4bfffsPu3buRlJSEzZs3Y+jQoRg5ciQAYOnSpRg8eDAyMzPRunVrbNq0CVOnTkXv3r0BANOmTcM777zDoBQRkQ00Kih1xx134F//+hcGDx6M6OhoeHt7W6yfPHmyTQpHRESuw1ZtQ25uLhYtWoQDBw5AoVBg2LBheOmll6BQKJCZmYnZs2cjNTUVUVFRmDlzJgYMGCDuu2/fPrz++uvIzMxEfHw8Fi1ahNatrwZoPv74Y6xbtw5lZWUYOnQoZs+eDaVSCQDQarWYP38+fvjhB/j4+GDs2LEYO3asDY7M9eXn50NTUYHRLy5GREw7HCj0QX4VcM/TLyHKZ2qD3yfv8nlsfysZBQX5DEoRkVOxx7NDSkoK/P390adPH3HZ+PHjAQCzZ89GYmIiJBLT8GiJRIJevXohNTUVSUlJSEtLw7PPPivu16pVK0RFRSEtLQ3e3t7Izs7GLbfcIq5PTEzElStXkJeXV+esgkRE1HCNCkqdOnUK3bp1Q15eHvLy8izWmS/2RETkWWzRNgiCgKlTpyIwMBCffvopiouLMXPmTEilUkyfPh2TJk1CbGwsduzYgb1792Ly5Mn47rvvEBUVhaysLEyaNAlTpkzBwIEDsXr1akycOBHffPMNJBIJ9uzZg1WrVmHZsmUIDQ1FcnIyli1bhjlz5gAwfTN+4sQJbNy4EVlZWZgxYwaioqIwZMgQmx+rukTEtENUh5vhk54HFFeiRUQ0osL97PK3iYiakz2eHTIzMxEdHY2vvvoK77//PqqqqpCUlITnn38eKpUKHTt2tNg+NDQUGRkZAFBncCk0NBQ5OTlQqVQAYLE+LCwMAJCTk2NVUMraqpq35+PVVTwmdat5XATBcrknHyt+XurW2OPSXMexwUGpxx9/HO+99x4CAwPxySefAAAqKyvh4+PTPCUjIiKnZ+u24dy5c0hNTcUff/wh3vRPnToVS5Yswe23347MzExs2bIFvr6+6NChA/bv348dO3ZgypQp2LZtG7p37y72blq8eDH69++PQ4cOoW/fvti0aROefvppDB48GAAwf/58jBs3Dq+88goEQcC2bdvw4Ycfolu3bujWrRsyMjLw6aef2i0oZVad5xxGgYnOich12fvZoaKiAhcvXsSWLVuwePFiqFQqzJkzB0qlEhqNplbvLG9vb+h0OrFc9a2vrKwUX9dcB0Dcv6FCQwOsrldT9nNnPCaWWrTwA5APpVIhLvPx8UJQkB/Cwnis+Hmpm7MclwYHpVJSUmqNBb/tttvw9ddfWwyNICIiz2HrtiE8PBwfffSRGJAyKysrQ1paGm6++Wb4+vqKyxMTE5GamgoASEtLE/N9AIBSqUS3bt2QmpqK3r174/jx4xZDRHr27ImqqiqcPHkSgiBAr9cjISHB4r3ff/99GI1Gu86wJK3+GooxKSJyZfZ+dpDL5SgrK8OKFSsQHR0NAMjKysJnn32GNm3a1Aog6XQ6MUCmUCjqXK9UKi0CUAqFQvwdgDj8u6Hy80uturZLJKaHRmv3c2c8JnUrLi4HAGg0WvG4VFZWoaioHGp1qQNL5lj8vNStscfFvJ+tNWr4npnAM0tERNdoStsQGBiIgQMHiq+NRiM2b96Mfv36QaVS1Tu8AsB115eUlECr1Vqsl8vlCAoKQk5ODqRSKYKDgy2+CQ8LC4NWq0VRUZE4Lbg9sKcUEbmr5nx2CA8Ph0KhEANSANCuXTtkZ2ejT58+UKvVFtur1WqxTYiMjKxzfXh4OCIjIwGY2piYmBjxd/PftIYgNO4Lh8bu5854TCyZj8W1x4THyYTHoW7Oclzs99UvERGRlZYtW4b09HS8+OKLNxx+cb31dQ2/qLm+vn0B64dnmPM3WPNj2tG8v+kXYxNuEhpThub8ccYysX6snyfUr0nXJBcTHx8PrVaL8+fPi8vOnTuH6OhoxMfH4+jRo2JQTBAEHDlyBPHx8eK+KSkp4n7Z2dnIzs5GfHw8IiMjERUVZbE+JSUFUVFRTHJORGQDTeopRURE1FyWLVuGjRs34q233kJsbCwUCgWKioostmnI8IvAwMBaQy5qrlcqlTAYDHWuA2B1/hNruzUHBZmSmfsovOHrq4C3lwwAIJfL4OuruN6uFnx8TEG04GDnzB/hLHkLmgvr59rcuX7uXLea2rdvjzvuuAPJycmYN28eVCoV1q5di+effx5DhgzBihUrsGjRIjzyyCPYsmULNBoNhg4dCgB49NFH8eSTT6Jnz56Ii4vDokWLcMcdd4jDDB999FEsX74cLVu2BACsWLHCLrOzEhF5AquCUt9//z38/f3F10ajET/++GOtYQ0jR460SeGIiMj5NUfbsHDhQnz22WdYtmwZ7r33XgCm4RVnzpyx2K4hwy+6du2KoKAgKBQKqNVqdOjQAQCg1+tRVFSE8PBwCIKAwsJC6PV6yOWmplGlUsHHxweBgYENLjdgfc6QoiJTHohKrQ4VFVoYDUbTa50eFRXaBr9PZaUpiFZY6Fz5IyQS987nwPq5NneuX2PrZt7PFuz97LB8+XIsXLgQjz76KJRKJR5//HE8+eSTkEgk+OCDDzB37lx8/vnn6Ny5M9auXSvmKExISMCCBQvw7rvvori4GP3798fChQvF9x03bhzy8/MxefJkyGQyjB49GmPGjLFJmYmIPF2Dg1JRUVFYv369xbLQ0FBs3rzZYplEImFQiojIQzRH27Bq1Sps2bIFb775psXMd/Hx8Vi7dq3F7E0pKSlITEwU19ccXqHRaJCeno7JkydDKpUiLi4OKSkp6Nu3LwAgNTUVcrkcXbp0AWDKMWVOim5+77i4OKuTnFs7Pl/ctvpfc06ppuReccaHa2fJW9BcWD/X5s71c1TdHPHsEBAQgKVLl9a5rkePHvjyyy/r3TcpKQlJSUl1rpPJZEhOTkZycrJNyklERFc1OCj13//+tznLQURELsjWbcPZs2exZs0ajB8/HomJiWIyWQDo06cPWrVqheTkZEycOBE///wzjh07hsWLFwMARo0ahXXr1mHt2rUYPHgwVq9ejZiYGDEI9dhjj2HOnDmIjY1FREQE5s2bh4cfflicPWnkyJGYN28eXn/9deTl5WH9+vXie9vT1ZxSbvqETEQegc8ORETUEMwpRURETuOnn36CwWDAe++9h/fee89i3alTp7BmzRrMmjULSUlJaNOmDVavXo2oqCgAQExMDFauXInXX38dq1evRkJCAlavXi0Gee677z5cuXIFc+bMgU6nwz333INXXnlFfH9zHpKnn34a/v7+mDJlCu655x77Vb7a1dn37P6niYiIiIjsikEpIiJyGuPHj8f48ePrXd+mTZtaQz9qGjRoEAYNGtSo91cqlViyZAmWLFnS8AI3Ayl7ShERERE1mVarxf79J1BUVG4xjLlHj57iJDjkeAxKERERORGJmFPKseUgIiIicmXHjqViw579CG7VTlyWezED4wHccktfxxWMLFiXvdWBxo8fj1dffVV8nZ6ejoceegjx8fEYNWoUTpw4YbH9rl27cNdddyE+Ph6TJk1CQUGBuE4QBCxfvhz9+vVDnz59sHTpUhiNRrvVhYiIqD7sKUVERERkG63axeKmLvHiT2SbTo4uEl3DJYJS3377LX799VfxdUVFBcaPH4/evXvjiy++QEJCAiZMmICKigoAwLFjxzBr1ixMnjwZW7duRUlJicVsGRs2bMCuXbuwatUqvPvuu9i5cyc2bNhg93oRERFdSyYGpRxcECIiIiKiZub0QamioiIsXboUcXFx4rLvvvsOCoUC06dPR4cOHTBr1iz4+flh9+7dAIDNmzdj6NChGDlyJLp06YKlS5fi119/RWZmJgBg06ZNmDp1Knr37o1+/fph2rRp+PTTTx1SPyIiopqk1S2zgVEpIiIiInJzTh+UWrJkCUaMGIGOHTuKy9LS0pCYmCjOqCSRSNCrVy+kpqaK63v37i1u36pVK0RFRSEtLQ25ubnIzs7GLbfcIq5PTEzElStXkJeX16x1+epYNsojujfr3yAiItfG4XtERERE5CmcOii1f/9+/Pnnn5g4caLFcpVKhYiICItloaGhyMnJAQDk5eXVu16lUgGAxfqwsDAAEPdvDkZBwJs/n0Nx+7uQnlPabH+HiIhcm5TD94iIiIjIQzjt7HtarRZz587FnDlz4OPjY7FOo9HA29vbYpm3tzd0Oh0AoLKyst71lZWV4uua6wCI+zeUeYakhpBJJBh7a2us+u0C9l0oRLi/N8L9656G0pr3dSbmcrtq+W+kZv2u14HBFevvSefOHTW2fu56PFydjMP3iIiIiMhDOG1QatWqVejevTsGDhxYa51CoagVQNLpdGLwqr71SqXSIgClUCjE3wFAqVRaVcbQ0ACrtn956M346KufUBnSAecLK9EmIrDWNl5yGcLCrHtfZ2PtcXE1SmXdwUTA9c+fu5871o9cAYfvEREREZGncNqg1Lfffgu1Wo2EhAQAVwNHe/bswfDhw6FWqy22V6vV4pC8yMjIOteHh4cjMjISgGkIYExMjPg7AISHh1tVxvz80uv2mLmWRAIoVX+ZglLqcvRpra21TZXeALXaNYf3SSSmh2Jrj4urMPcq0Wi09dbPVc+fJ5w71q/+/ci5cPY9IiIiIvIUThuU+uSTT6DX68XXy5cvBwBMmzYNhw8fxocffghBECCRSCAIAo4cOYLnnnsOABAfH4+UlBQkJSUBALKzs5GdnY34+HhERkYiKioKKSkpYlAqJSUFUVFRtfJQ3YggXH8YV10UxZmQSICSSj2KNVVoofSq831dWWOOiyu5Ud1cue6ecO5YP3J25gA4e0oRERERkbtz2qBUdHS0xWs/Pz8AQJs2bRAaGooVK1Zg0aJFeOSRR7BlyxZoNBoMHToUAPDoo4/iySefRM+ePREXF4dFixbhjjvuQOvWrcX1y5cvR8uWLQEAK1aswNixY+1SL6mxCi0DFMgu0eJycWWdQSkiIvJcMqkpKsWcUkRERETk7pw2KHU9/v7++OCDDzB37lx8/vnn6Ny5M9auXQtfX18AQEJCAhYsWIB3330XxcXF6N+/PxYuXCjuP27cOOTn52Py5MmQyWQYPXo0xowZY7fyxwQpTUGpIg26teTQGSIiuoqz7xERERGRp3CZoNQbb7xh8bpHjx748ssv690+KSlJHL53LZlMhuTkZCQnJ9u0jA0V3UKBwwDySnXiEEQiIiKgZk4pRqWIiIiIyL1JHV0ATxSs9IIEQKXeCE2V0dHFISIiJyJlTikiIiIi8hAMSjmAXCZFoI+pk1pBhc7BpSEiImciFXNKObggRERERETNjEEpBwnx8wYAFFRUObgkRETkTKQcvkdEREREHoJBKQcJ8TXNupdfzp5SRER0lYzD94iIiIjIQzAo5SDmoFQhe0oREVEN5uF7Rg7fIyIiIiI3x6CUg4T4mobvFWqqYOS830REVM08fM/AnlJERERE5OYYlHKQAIUMXjIJjAJQVMneUkREZMLZ94iIiIjIUzAo5SASiQRBStMQvmKN3sGlISIiZyEzD98TAIGBKSIiIiJyYwxKOVCgQg4AKKlkUIqIiEzMw/cAgDEpIiIiInJnDEo5UKAPg1JERGRJejUmxbxSREREROTWGJRyoEClOSjFnFJERGQiq9FTivNgEBEREZE7Y1DKgQIVppxSJVr2lCIiIpMaMSkmOyciIiIit8aglAOZh++VaQ0w8OtwIiKCaSIM8xA+tg1ERER0PX/nlmL5UR1+USlx5HKxo4tDZDUGpRxI6SWFV/WTRyl7SxERUTVzsnPGpIiIiOh6Nh26jLMlAor1MqRkFqOyyuDoIhFZhUEpB5JIJAhgsnMiIrqGTAxKMSpFREREddMbBRy4WAAAkMJ0z3C5qNKRRSKyGoNSDtbCh8nOiYjIkrS6dTayqxQRERHV43hWCcq0BvjJgfZ+pufJzCKNg0tFZB0GpRws0MeU7LyYPaWIiKiaefiegTEpIiKrjR8/Hq+++qr4Oj09HQ899BDi4+MxatQonDhxwmL7Xbt24a677kJ8fDwmTZqEgoICcZ0gCFi+fDn69euHPn36YOnSpTAajXarC9H17Dtv+qzeHCJFpML0PHm5qJI9rcmlMCjlYAFisnMGpYiIyETK4XtERI3y7bff4tdffxVfV1RUYPz48ejduze++OILJCQkYMKECaioqAAAHDt2DLNmzcLkyZOxdetWlJSUIDk5Wdx/w4YN2LVrF1atWoV3330XO3fuxIYNG+xeL6K6/FEdlOoeIkWItxFeMgkq9Uaoy3QOLhlRwzEo5WD+3jIAphn4yHkVVujw29l8VLa4ydFFISIPIOPwPSIiqxUVFWHp0qWIi4sTl3333XdQKBSYPn06OnTogFmzZsHPzw+7d+8GAGzevBlDhw7FyJEj0aVLFyxduhS//vorMjMzAQCbNm3C1KlT0bt3b/Tr1w/Tpk3Dp59+6pD6EdWk1RtxRlUOAOgcJIVUArQKVAAAVAxKkQthUMrB/BXsKeXszqjKMWr9n3jpy79Q0DUJ5/MrHF0kInJznH2PiMh6S5YswYgRI9CxY0dxWVpaGhITEyGpvq5KJBL06tULqamp4vrevXuL27dq1QpRUVFIS0tDbm4usrOzccstt4jrExMTceXKFeTl5dmnUkT1yCzSQAAQoJAj0Nu0LEhpSg1TxHzF5EIYlHIwf4Wpp5TOIECn5/h0Z7R2/0WUavXwq+7VduBCIfQGnisiaj5Xc0oxKkVE1BD79+/Hn3/+iYkTJ1osV6lUiIiIsFgWGhqKnJwcAEBeXl6961UqFQBYrA8LCwMAcX8iR7lYYPqivG2IUgy6moNSxRp2eCDXIXd0ATydl0wKhVwKrd6IMh0vHs7mjLocP2eoIQHw/sM9MGbdryhDII5nlyIhpoWji0dEbkpqurdkTikiogbQarWYO3cu5syZAx8fH4t1Go0G3t7eFsu8vb2h05mGN1VWVta7vrKyUnxdcx0AcX9rVMcNrN7e2v3cGY/JVRfEoJQvJBLT5zHYt7qnlKYK8DMdJ08+VjU/LzVvqXhcLP+1dj9bY1DKCfh7y0xBKeaVcjqfpVwGANwZG4auLQMQcPkAijrcg3P5FQxKEVGzkVVHpQwcv0dEdEOrVq1C9+7dMXDgwFrrFApFrQCSTqcTg1f1rVcqlRYBKIVCIf4OAEql0upyhoYGWL1PU/ZzZzwmQE65aYhe19ZBaKGoApCPlsF+AIBynQGyYC8EBfkhLMxzj1WLFn4A8qFUKsRlPj48LmbO8v+IQSkn4K+QI7+iinmlnIwgCNh3vhAAkNSjFQDAp+AsJB2AgurzZc4JRkRkS8wpRUTUcN9++y3UajUSEhIAXA0c7dmzB8OHD4darbbYXq1Wi0PyIiMj61wfHh6OyMhIAKYhgDExMeLvABAeHm51OfPzS2FNB1iJxPTQaO1+7ozH5KpT2SUAgAiFDMXFpoTngl4PH7kUlXojCiqMKCoqh1pd6shiOpT5uGg0WvHzUllZ5fHHpbH/j8z72RqfqJ2AOa8Ue0o5l7P5FVCX66CQSxEfbeoVJTVoERGgQG6pFpcKNbi5pXNEl4nIvXD4HhFRw33yySfQ669+ubt8+XIAwLRp03D48GF8+OGHEAQBEokEgiDgyJEjeO655wAA8fHxSElJQVJSEgAgOzsb2dnZiI+PR2RkJKKiopCSkiIGpVJSUhAVFVUrD1VDCAIaFUhp7H7uzNOPiSAIuFigAQC0CfaFusi83JRXKqdUi3KjlMdJsPy35nJPPi5mznIcGJRyApyBzzkdumjqJZUQ3QIK+dU5AW4K9mFQioialXn4HoNSREQ3Fh0dbfHaz880hKlNmzYIDQ3FihUrsGjRIjzyyCPYsmULNBoNhg4dCgB49NFH8eSTT6Jnz56Ii4vDokWLcMcdd6B169bi+uXLl6Nly5YAgBUrVmDs2LF2rB1RbaoyHSqqDJBJJYgJ8kHNvn5BSrkpKGWQOax8RNZgUMoJiEEpHXtKOZNDF4sAAH3aBFksvylIicOXipFVrIXBKIgPj0REtiLOvseJPomImsTf3x8ffPAB5s6di88//xydO3fG2rVr4evrCwBISEjAggUL8O6776K4uBj9+/fHwoULxf3HjRuH/Px8TJ48GTKZDKNHj8aYMWMcVBsiE3OS85gWPpDLpBbrWlTPwMegFLkKBqWcgL+3efieHr4OLguZ6A1GHLlcBADo2ybYYl2wr5c4Y2JBhQ7h/oo63oGIqPE4fI+IqPHeeOMNi9c9evTAl19+We/2SUlJ4vC9a8lkMiQnJyM5OdmmZSRqisvFppkhWwfXTrjfwsf0iK8xSmutI3JG/KQ6AXNPqQqdAYKEp8QZnFVXQFNlRIBCjo7hfhbrJBIJwv1Ns7GoyqyfDpiI6EauJjpnUIqIiIgs5ZaYglItA2p/OW5+tmRQilwFP6lOQOklhVQCCACM3n433J6a38k802wMnSP9xYfDmsL9GJQiouYj5pTi8D0iIiK6Rk6pFgDQKtCn1jpzUKpKkEJn4Jdb5PwYlHICEokE/t6mi4dBEejg0hAAnMwtAwB0ifCvcz17ShFRczIP3zOwpxQRERFdI6fEFJRqGVi7p5S3TAIvmelGolDL+whyfgxKOQk/hSmvlJFBKadwKu9GQSlTA1CkqUIVMxETkY1x+B4RERHVJ6d6+F5kHcP3anZ4KNDatVhEjcKglJMIUJh7SgU4uCSkNwo4rSoHAHSJrDso5estg5+3DAIAdTl7SxGRbYnD9xiTIiIiohoMRgG51aM1WtYxfA8A/Ks7PBRU8kaCnB+DUk7Cnz2lnMbFggpo9Ub4esnqnNHCLKw6rxSDUkRka+Lse4xKERERUQ355ToYjAJkkqvPI9fyq+7wwOF75AoYlHISfswp5TTMQ/c6R/jVmeTcLMTXCwBQWFFll3IRkecwX3uYU4qIiIhqMic5jwhQiD2rr+XvXd1TikEpcgEMSjkJ8/A9I4fvOdyZ6qF7ncLrHrpnFsygFBE1k6s5pRxcECIiInIq5nxSLevIJ2VmnoGPw/fIFTAo5STMic4NPoEQ+M24Q10s1AAA2ob6Xnc7MSilqeI5IyKbklW3zhy+R0RERDXlVveUiqwnnxRwNTUMh++RK2BQykmYu1hC5o2SSr1jC+PhLhRUAADahtSfTwoAWvh4QSIBqgwCynUGexSNiDwEZ98jIiKiumSXmIJSrQJv3FOqUMt7CXJ+DEo5CblMCqWX6XSYxwmT/VUZjLhSZOop1Sb4+j2lZFIJWvhwCB8R2d7VnFIOLggRERE5lYYM3/PzkgEQoBeAAk7KRE6OQSknYk52br7QkP1dLqqEQQB8vWQI9697NouaQmoM4SMishUph+8RERFRHXJrJDqvj1QqgUJiuofILWNQipwbg1JOxDz219wlk+zvYvXQvTYhSkiuM/OeWbDSFJQqYE8pIpvT6XQYPnw4Dh48KC7LzMzEmDFj0LNnTwwbNgy///67xT779u3D8OHDER8fj6eeegqZmZkW6z/++GMMHDgQCQkJmDlzJjQajbhOq9Vi5syZ6N27NwYMGID169c3bwWvQ8bZ94iIiKgOquogU4R//UEpAPCRGk3bcxQOOTkGpZyIeexvDoNSDnNBDEpdf+ieGWfgI2oeWq0WL730EjIyMsRlgiBg0qRJCAsLw44dOzBixAhMnjwZWVlZAICsrCxMmjQJSUlJ2L59O0JCQjBx4kRxIoI9e/Zg1apVWLBgATZu3Ii0tDQsW7ZMfP+lS5fixIkT2LhxI+bOnYtVq1Zh9+7d9q14Nc6+R0RERNfS6Y3iCI0bBaUU1UGpPPaUIifHoJQTMfeUyinl8D1HuWCeee8GSc7Ngqp7ShVzBj4imzlz5gwefvhhXLp0yWL5gQMHkJmZiQULFqBDhw6YMGECevbsiR07dgAAtm3bhu7du2Ps2LHo1KkTFi9ejCtXruDQoUMAgE2bNuHpp5/G4MGD0aNHD8yfPx87duyARqNBRUUFtm3bhlmzZqFbt264++678cwzz+DTTz+1e/0BU7d7gMlJiYiI6Cp1dX4ob5kELZTy624r9pQqY4cHcm4MSjkRf2/2lHK0S+LMew3rKRXoI4cEQJVRQAVn4COyiUOHDqFv377YunWrxfK0tDTcfPPN8PW9+v8zMTERqamp4vrevXuL65RKJbp164bU1FQYDAYcP37cYn3Pnj1RVVWFkydP4uTJk9Dr9UhISLB477S0NBiNxmaqaf2qY1LMKUVEREQic4ApzF9xw1QjCgalyEVcP7xKdhVQPXwvm4nOHUIQBFwoaNjMe2YyqQQBPnKUVOpRVKlvzuIReYzHHnuszuUqlQoREREWy0JDQ5GTk3PD9SUlJdBqtRbr5XI5goKCkJOTA6lUiuDgYHh7X53gICwsDFqtFkVFRQgJCbFV9RpExtn3iIiI6Bp5Yj6pG0/I5FOd6JzD98jZMSjlRMzD9woqqqDVG6GQsyObPRVUVKFUq4cEQOvghg3fA0xD+Eoq9SjmDHxEzUqj0VgEjQDA29sbOp3uhusrKyvF13WtFwShznUAxPdvqAbMkVD39jX2u5pTqnFRKWvL0JzMZXGmMtkS6+fa3Ll+ja2bOx4LIndh7vUUfoN8UgB7SpHrYFDKiSjkUsBQBci8kFuqxU1WBEao6S4WmobuRbXwsSogGKSU41IhUMSgFFGzUigUKCoqslim0+ng4+Mjrr82gKTT6RAYGAiFQiG+vna9UqmEwWCocx0A8f0bKjQ0wKrtg4L8TH9H4Q1fX1M5ffWmYJQAiMtuxMfHFEQLDvZDWJh1ZbAHa4+Lq2H9XJs718+d60bkafJKTfcm4Q3pKWVOdF7KnlLk3Jw6KJWbm4tFixbhwIEDUCgUGDZsGF566SUoFApkZmZi9uzZSE1NRVRUFGbOnIkBAwaI++7btw+vv/46MjMzER8fj0WLFqF169bi+o8//hjr1q1DWVkZhg4ditmzZ0OpdGwQSCKRQKYtgcE3FNkllQxK2Zk4dK+BSc7NWviYkp0XaTh8j6g5RUZG4syZMxbL1Gq1OCQvMjISarW61vquXbsiKCgICoUCarUaHTp0AADo9XoUFRUhPDwcgiCgsLAQer0ecrmpaVSpVPDx8UFgYKBV5czPL4U1HZyKisoBAJVaHSoqTN9mVmlNQW6DQRCX3Uhlpemms7CwHGp1qRUlbl4Siemh2Nrj4ipYP9fmzvVrbN3M+xGR8zH3errRzHvA1Z5SFVUGlGn14kzvRM7GaceHCYKAqVOnQqPR4NNPP8Vbb72Fn3/+GW+//XazTwvuSFJtCQAgl8nO7e6ilUnOzWrOwEdEzSc+Ph5//fWXOBQPAFJSUhAfHy+uT0lJEddpNBqkp6cjPj4eUqkUcXFxFutTU1Mhl8vRpUsXdO3aFXK5XEyabn7vuLg4SKXWNZWCYP2Pacer7yEVc0o17im5MWVozh9nLBPrx/p5Qv2adE0iIqeTJw7fu3FPKbkEUJqyw0DFvFLkxJw2KHXu3DmkpqZi8eLF6NSpE3r37o2pU6di165dzTotuKPJKk1BKSY7t7+LYk8pa4NSpm8dynQGCFJ+A0HUXPr06YNWrVohOTkZGRkZWLt2LY4dO4bRo0cDAEaNGoUjR45g7dq1yMjIQHJyMmJiYtC3b18ApgTq69atw969e3Hs2DHMmzcPDz/8MJRKJZRKJUaOHIl58+bh2LFj2Lt3L9avX4+nnnrKIXUVZ9/j0yERERFVMyctjwxo2ND+IIWkej92eCDn5bRBqfDwcHz00UcICwuzWF5WVtas04I7mrmnVHYpLxz2dqG6p1QbK4dN+njJxBxUeqV9Z+gi8iQymQxr1qyBSqVCUlISvvnmG6xevRpRUVEAgJiYGKxcuRI7duzA6NGjUVRUhNWrV4tTJt93332YMGEC5syZg7Fjx6JHjx545ZVXxPdPTk5Gt27d8PTTT2P+/PmYMmUK7rnnHsfUtToqZTQyKEVERESAIAhQW5HoHABaVHeoYrJzcmZO260jMDAQAwcOFF8bjUZs3rwZ/fr1a9Zpwa3R2NlMJJL6u0bLtKY8ILkllS43+4krz2Cj1RuRVWzqndYu1LfOOlzv/AUpTcnpDcoQl6y/K5+7hmD9rr+fMzt16pTF6zZt2mDz5s31bj9o0CAMGjSo3vXjx4/H+PHj61ynVCqxZMkSLFmypHGFtSFzUMogmG5CJa5wsoiIiKjZFGv00BlMDyENGb4HmHtKCRy+R07NaYNS11q2bBnS09Oxfft2fPzxx802Lbg1GpsEUqmsP7LtrS8DAOSVVznl7EkN4YrJMU/llEIAEOgjR+xNIdd9AKzr/IUFKJBbqoXgH+qy5w1wzXNnDdaPXIVcevUapDcK8JIxKEVEROTJzEPwgpVe8JI1bMBTkLfp/iGXo3DIiblEUGrZsmXYuHEj3nrrLcTGxjbrtODWaMxsJgCg0Wjr3U+oKAIAZBVpkKcqEZPdugJXnsHm6FkVAOCmYCXy88vq3OZ658/fy9QwVCmCnGrWq4Zy5XPXEKzf9fcj51M7KOXAwhAREZHDmXs7NbSXFHA1pxR7SpEzc/qg1MKFC/HZZ59h2bJluPfeewE077Tg1mjsDCXX20eqLYNMYnoIUZfpGjxe2Jm44swtYj6pEN8blr2u9S18TP+V9MoQl6t7Ta547qzB+pGrkEgkkEkkMAgC9MwrRURE5PHMPaUiGpjkHACCqjdlTilyZk6b6BwAVq1ahS1btuDNN9/EfffdJy5vzmnBHU0CQQxEZZfw4mEv5pn32lqZ5NwsSOkFADAogzlbFhHZhLx6yJ7ewGsKERGRp1OJSc6t6CnlbZ59jz2lyHk5bU+ps2fPYs2aNRg/fjwSExOhUqnEdTWnBZ84cSJ+/vlnHDt2DIsXLwZgmhZ83bp1WLt2LQYPHozVq1fXmhZ8zpw5iI2NRUREhMW04M6gVaACOaVa5JRUokdUoKOLY5WRox/GlRx1vevDgoOxaf3H9itQA9XsKdUYAT5ySCWAUWZKeN4q0MeWxSMiDySXSqAF2FOKiIiIkFdqHr5nTU8pU1CqoFwHvcEIeQNzURHZk9MGpX766ScYDAa89957eO+99yzWnTp1CmvWrMGsWbOQlJSENm3a1Dkt+Ouvv47Vq1cjISGh1rTgV65cwZw5c6DT6XDPPfdYTAvuaJGBPsCVEuS4YE+pPHUhRr7yTr3rv1r2gh1L0zCCIFztKdXIoJRUIkGgjxxFGj0uFFQwKEVETWbOK6U3Gh1cEiIiInI08/C9SCuCUv5epvsJvVGAulyHlnxGISfktEGp603bDTTvtOCO1irQPHyv8gZbki2oy3WoqDJAJgFighp/oQ5SelUHpTS4ta3tykdEnulqUIo9pYiIiDydmOg8oOHD96QSCcL8vJFTqkVeGYNS5JzYf88JmS8WOZy60y7MQ/eig5QNnl61Lua8Uher34+IqCmYU4qIiIjMruaUsm4iLHNidCY7J2fFoJQTall94XDF4Xuu6EL10L02jUxybtZCaep4yKAUEdmCXGpqog3sKUVEROTRKqsMKK7UAwAirEh0XnN7JjsnZ8WglBMy5yPi8D37MAeRGptPyizIx9RTyhzkIiJqCg7fIyJquNzcXEydOhV9+vTBwIEDsXjxYmi1pi94MzMzMWbMGPTs2RPDhg3D77//brHvvn37MHz4cMTHx+Opp55CZmamxfqPP/4YAwcOREJCAmbOnAmNhvd6ZF/qclNASSGXIkBhXQYec88qFUfhkJNiUMoJtazOKVWuM6BMq3dwadyfOcl5m5Cm9pQyBaXU5TqeNyJqMiY6JyJqGEEQMHXqVGg0Gnz66ad466238PPPP+Ptt9+GIAiYNGkSwsLCsGPHDowYMQKTJ09GVlYWACArKwuTJk1CUlIStm/fjpCQEEycOBGCYPpCYM+ePVi1ahUWLFiAjRs3Ii0tDcuWLXNkdckDmZOcR/h7i5N3NVS42FOKQSlyTgxKOSGllwwtfEwRcPaWan4XbNRTSiGXQqorAwBcLOQ3aETUNDL2lCIiapBz584hNTUVixcvRqdOndC7d29MnToVu3btwoEDB5CZmYkFCxagQ4cOmDBhAnr27IkdO3YAALZt24bu3btj7Nix6NSpExYvXowrV67g0KFDAIBNmzbh6aefxuDBg9GjRw/Mnz8fO3bsYG8psitVaXWScyvzSQFAhLmnFIfvkZNiUMpJRbUwDeHLKmZQqjlVVhnEhPJtmhiUAgCZphAA80oRUdMx0TkRUcOEh4fjo48+QlhYmMXysrIypKWl4eabb4av79X7vMTERKSmpgIA0tLS0Lt3b3GdUqlEt27dkJqaCoPBgOPHj1us79mzJ6qqqnDy5MnmrRRRDXliknPr8kkBV2frY08pclbWDUglu4luocTfuWW4XMSgVHMy92hq4SMXZ89rCllFAapatBZ7XxERNRZzShERNUxgYCAGDhwovjYajdi8eTP69esHlUqFiIgIi+1DQ0ORk5MDANddX1JSAq1Wa7FeLpcjKChI3N8aVo66Ere3dj935qnHxNzLKSJAUWfdax4XQbBcHhlQs6eUYPXwP1d2vePiQYehlsb+P2quY8aglJOKCTL1lLpcxK7BzclWSc7NZJqC6vfleSOipjHPvsegFBGRdZYtW4b09HRs374dH3/8Mby9LXuXeHt7Q6czPeRrNJp611dWVoqv69vfGqGhAVbv05T93JmnHZOC6ny1naJaICysdt1btPADkA+l8urwPh8fLwQF+aFr21BIJIBWb4RUqUBoI4YAuqrrHZe6jqOncZb/RwxKOSkxKMXhe83KHDyydVCKPaWIqKnYU4qIyHrLli3Dxo0b8dZbbyE2NhYKhQJFRUUW2+h0Ovj4mO61FQpFrQCTTqdDYGAgFAqF+Pra9Uql9RPk5OeXWvTWuBGJxPTQaO1+7sxTj8kldTkAwF8KqNWltdYXF5vWazRa8bhUVlahqKgcpUUVCPX1hrpch/QL+eja0jkCEfZwveNS13H0FI39f2Tez9YYlHJSMUGmho49pZqXOXjU1Jn3zOQVpqBUZpEGBqMgJiomIrLW1ZxSnH2PiKghFi5ciM8++wzLli3DvffeCwCIjIzEmTNnLLZTq9XikLzIyEio1epa67t27YqgoCAoFAqo1Wp06NABAKDX61FUVITw8HCryycIaFQgpbH7uTNPOyY5JaZ8UJH+ijrrbV527TrzcWoZqIC6XIfsEi26RHpOUOpGx8XTOctxYKJzJxVdneg8u0TLb8mb0dWglG16Skm1pVDIpagyCJw5kYiahD2liIgabtWqVdiyZQvefPNN3HfffeLy+Ph4/PXXX+JQPABISUlBfHy8uD4lJUVcp9FokJ6ejvj4eEilUsTFxVmsT01NhVwuR5cuXexQKyLTxEyFmioApuBSY7SszitlnuCJyJkwKOWkIgIU8JZJYDAKyGFwo1kYBQGXCm07fE8CATcFm3pdcQgfETUFg1JERA1z9uxZrFmzBs8++ywSExOhUqnEnz59+qBVq1ZITk5GRkYG1q5di2PHjmH06NEAgFGjRuHIkSNYu3YtMjIykJycjJiYGPTt2xcA8Nhjj2HdunXYu3cvjh07hnnz5uHhhx9u1PA9osbIrQ4k+XrJEKBo3ECnyABTh4fcEs8JSv10WoUXf9fiN7US5/L5XObMGJRyUlKJBFHVvaWucAa+ZpFbqkWl3gi59OqxtoU2YlCKQy+JqPEYlCIiapiffvoJBoMB7733HgYMGGDxI5PJsGbNGqhUKiQlJeGbb77B6tWrERUVBQCIiYnBypUrsWPHDowePRpFRUVYvXq1OEPZfffdhwkTJmDOnDkYO3YsevTogVdeecWR1SUPY+7dFBmoaPTMeeYeVrmlnvFcuf9CAf7z7UlUGoDCKhl+Oq0Wg3vkfJhTyonFBClxoUCDy8Ua9EWwo4vjds5WJwxsG+IrPvzZgnko4EX2lCKiJjDPvmdgUIqI6LrGjx+P8ePH17u+TZs22Lx5c73rBw0ahEGDBjX6/Ymak7l3k3kIXmN40vA9vcGI1/acht4oIDFciuxSHbIq5dh3vhAj4yIdXTyqA4NSTuxqsnPPiGjb2zm1KWjUPtQ2Q/fM2jIoRUQ2cDXROYNSREREniqnundTY/NJ1dw3xwOG7/1yJh95ZTqE+Hrh6S4SfHuqFKoqL6jLdTibXwFvRxfQzrRaLY4dS7VYJpEAd9450DEFqgODUk6sdZBpSFlmIYeBNYez+aaeUh3C/Gz6vuaZ/Dh8j4iagsP3iIiIKEfsKdX4dCOR1T2l1OU66PRGeMvdN4vP1qNXAABJPVrBS5oLH5mAuFYBOHK5BKfzytHdfatep2PHUrF21/8Q2aaTuCz3YgaCgvzQqVN3B5bsKg87Ja7FPAzsPHvcNIvm6inVJtj0foWaKhRXz5RBRGQtmRiUMjq4JEREROQo5iF3TekpFaT0gqI6EJVX5r69pc6oy5F6pQQyqQSj4luJyzuF+wMAsooroTXaLm2Lq4hs0wk3dYkXf2oGqJwBg1JOrF11UOpKkQZVBj6U2JLBKIjBvvY27inl6y1DhL+pY+hF9nIjokZiTykiIiIyJ+iObEJOKYlEIu7vzgm/f8lQAwD6twtBmP/V4xXoI0eEvzcEADk6TxvA5/wYlHJi4f7e8POWwSAAlxjcsKms4kpo9UYo5FJE23DmPTNzXqkLnH6UiBrJHJQyCoCRgSkiIiKPYxQE5JQ0PacUALSq3j+r2H3zFf92Nh8AMKhDaK115pQt2QxKOR0GpZyYRCIRh/Bd4BA+mzqXf3XmPZkNZ94za1c9JNCct4qIyFpy2dUmmr2liIiIPE9eqRY6gwC5VILIJuSUAmpMouWmQam8Ui3+zi2DBED/9iG11rcLNdW/2CBDWRXvq5wJg1JOrl110uzz7HFjU2fUpmCRrfNJmcVGmMYtn84ra5b3JyL3J6sRL2dQioiIyPOYZ2GPauEj9qBuLDEo5aYjcP53ztRLqnurQIT61e4N5ectR7DSC4AEp4uYGseZMCjl5Nqyp1SzOJVnCkp1rg4e2Vrn6mR6p1XlEAQ+TBKR9SQSCfNKERERebDMIlMAKSao6elGYqpTlpjf0938ca4AADCwQ+1eUmbmtC1/FzIo5UwYlHJy5mFgFwrc8+LhKKdySwE0X1CqfZgv5FIJSir1bp1MkIial5wz8BEREXmsy9UBpNbVvZyaIibY9B6ZRRq3+9JcbxRw5HIxAODWtsH1bhddHdw7WWh0u2PgyhiUcnI1e0oZ+R/HJkoqq5BVYgoUNVdQyksmFQOKpziEj4gaSV49hk9v4PWfiIjI05iH78XYIihV3UuoTGtAcaW+ye/nTNJzSlGuM6CFj1xMo1KXVoEKSCAgXwtccdPcWq6IQSknFx2khEIuhVZvFC9K1DTmIFFUCx8E+Mib7e9czSvFZOdE1DgcvkdEROS5Mm3YU8rHS4YIf1OupctuNoTv0MVCAEDvm4IgldSfe8tLJkWQ3BSQO1i9Dzkeg1JOTi6ViNNXsseNbZzMNR3HLs3US8osNtx03k6reN6IqHHkUlMzzaAUERGRZxEEQQwe2SKnlOl9rg7hcyeHLhUBAPrcFHTDbUPFoFRR8xWIrMKglAswB0/MwRRqGnNwr0tk8walzEMD/+Z5I6JGYk8pIiIiz5RfUQVNlRFSiWmEhy20Fmfgc58ROJoqA45nlQAAbrmp/nxSZqFeVQCAPy8VwcD7K6fAoJQL6BxR3eOGPaVswhzcu954Y1voGhkAqQTILdVCVcZk50RkPTEoZWCicyIiIk9yudDUm6lloA+8ZLZ5bDf3uHKnnlJHMouhNwqIClQ0qEdZoMwApQwo1erxd/XkV+RYDEq5gM6RAQCAk3llnCWgiYo1VbhYfYHvVn1cm4uvt0wcemmO3hMRWcPHy9RMV+oZlCIiIvIklwrN+aRs00sKAFpXz8Bnfm93YM4N1adNMCTXySdlJpUAsUGm+6tDHMLnFBiUcgEdw/wgkwBFmirklekcXZxajIKAPy8V4fOjWSgP74ZyrfPO5nCsOjjUJliJIF+vZv97PaICq/8uo/BEZD0fLxkAU9d0IiIi8hxn1KbJksxfcttCh1DTe51Vl7vNzO7moFTfNjceumfWJVhqsS85FoNSLkAhl6Jd9QXE2fJK/Z1bijGfHsXz245h6U9nUNzhbvzfkSz8cb7AKYebpFUHpeKjA+3y9+Jamf7O8Wz2lCIi6ynFoJTzXU+JiIio+WRUT5bU0YZBqZhg08zulW4ys7uqTItz+RWQwDTzXkN1DTb1qDqWVcIv/pwAg1IuwpyUOz3HeYIb+y8UYPyWNPydWwZfLxkGdQyFV2kWACA9pww7/8qD1smGnKRdKQYAxEe1sMvfi6vuKXUytxRVThikIyLnpqwevscbJiIiIs8hCAIyVKaeUp3CbReUkkslaB/qCwA44wYzhJuH33WJ9EeQsuGjYMJ9JGgZoIDeKODI5eJmKh01FINSLqJndc+eo07ynyb1cjFe/uovVOqN6Nc2GF+MuwUrRnZD+F+fY0iXcPjIpVCX67DnZJ7T9JjS6Y1IzzENo7NXT6nWQT4IUnpBZxA4Cx8RWc3cU6qSQSkiIiKPoS7XobhSD6kE4ogZWzH3vDIHvVxZY4buAYBEIhH3OcQhfA7HoJSLSIgJAgCcyCl1eO+jnJJKzNiZjiqDgEEdQvHmyG4I9fMW17cOVmLYzRHwlkmQW6rDH+ed4z/6ybwy6AwCgpVeuKk6yV9zk0gkSIgx9co6fMk5jgMRuY6rPaWcI7hPREREzc8cMGoT7AuF3LaP7J2qZyA356xyVYIg4NClIgDWB6UAoE+bIADA4er3IMeRO7oA1DCtg3wQ6ueN/HId/sopQa/qIJW9GQUB83afQkFFFTqF+2HBsC51TlEa6ueNuzuH47v0PJxWlaNVoAKx1RdARzlwoQAA0Kt1iwbNzGAr/doE4ecMNQ5eKMS4fm3s9nfJ0sjRD+NKjrre9WHBwdi0/mP7FYioAWomOhcEwa7XLiIiInKMM9VBqY42HLpn1slNekqdVVcgv1wHH7lUnFzKGrdU56DKUJVDXaZFmL/CxiWkhmJQykVIJBIkRLfA3tMqHL1c7LCg1PbULKRkFsNHLsWS+2+Gr7es3m2jWvigV+sWSMksxr4LhYhqYbvpTBtjX3WPrdvahtj17/Zta4rcH8suRZlWD38F/9s5Qp66ECNfeafe9V8te8GOpSFqGGX1t6NGAagyCPCWMyhFRETk7jLUts8nZWYevneluBLlOj38vF3z2eRA9bC7hJgW8G5Eb7JgX290jfTH37ll+P1cAUb2aGXrIlIDcfieCzEPAzuS6Zi8UpmFGqz87TwAYMrt7dG6AUPgekYHIjLAG1UGAb+dLYCjJh4trNCJ+aRubWd9986miG6hROsgHxiMAlIcdO6IyDXJZVJ4yUyBKCY7JyIi8gzm55bYcNuPNAny9UKEvyn1yt85rpvztrH5pGoa2CEUAPC/cwU2KRM1DoNSLqT3Taag1NErxSjX6e36t42CgAV7TqFSb0Tv1i0wumfDIslSiQS3dwiFTCLBleJKVEbGNXNJ67b/QiEEmL5tCHdA10zzxXL/BV7wiMg6Srl5CB/zShEREbk7VZkWlwo1kACNGpbWEGJnh8tFzfL+za1Mq0dKZhGApnU4uL06KHXwYiEnlXEgBqVcSLsQX9wUrESVQRCHotnLliNXkHqlBL5eMsy+tzOkVuQ1CVJ6iQG18nZ3ILuksplKWb/fq6Pft7Wz79A9swHVF7yfM9TQGx3VX4yIXJGPmOycN0tERETuzjwqJjbCHwE+zTO0rpcYlHLNURy/nc1HlUFAuxBftG/C7ISx4X6IDFBAqzfiz+ogl7vT6Y0o1MtQ4URfdjIo5UIkEgnu6GgKbvySUX/CZlu7VKjBmt8vAACmDmrXqNxQ3VsFIDJAAUHujdf2nIYg2C8wU6bV47ez+QCAwdXHz9763hSEFj5yFFRUIYUzPBCRFZQ1kp0TERGRezMHisyBo+Zgzk98IrsUOgfP7N4Y/z1teha+MzasSe8jkUgwsL2p08Le0/Z7vnaEcp0e/z2txsbDl3GoNBAfpVU4ukgiBqVczB0dTf/x/jhfYJcLiFEQ8NqeU9Dqjeh9UxCSGpkAzjSMLwQwVOHQpSJ8eSzbxiWt339Pq6HVG9E2RImbWwbY7e/WJJdJ8Y/YcADAnpN5DikDEbkmc1Cq0om+0SIiIqLmYR5S15xBqTYhSoT4ekGrN+Kv6vxVrqJcpxdTovyjiUEpABjSNQIA8N/TKrf9ArDUIMWOtByczTcFopRSA3q39HJwqa5iUMrFdGsVgHB/b5TrDPj9XH6z/71tR7Nw9EoJlF5SzL4ntknTkQcpveB38XcAwDu/nkdWsX2G8X2bngsAGHZzpEOnU7+niyko9d8Mtdte8IjI9pQcvkdEROQR1GVaXCgw5ZNKaMaglEQiEXtLudqwtR9PqqAzCLgpWCnOJNgUPaICERPkA02VEb+ccb/eUiqNgD9LA6DVGxHi64UH41ri9hYluC3G/nmW68OglIuRSiQY3i0SAPB5alaz/q0L+RVY9T/TbHtTb2/fqGF711JmHUHP6EBUVBmw8IfTMDbzML5z+eU4crkYEgBDq6PgjpIQ0wLRLXxQrjNg54kch5aFiFyHj3n4ngt2ryciIqKGMw8h69oyAC2UzduT5da2pgThP55S2TW1SlMIgoBt1c/AI+Na2qTDgUQiwbCupufrXSdym/x+zkRVpsW7x3XQCVKE+HpheLdIhFXPvOhMGJRyQaPioyCTACmZxchQNc80npVVBry6Kx2VeiNuuSkISfGNG7Z3LQmAOfd2hkIuxZ+XirD58GWbvG991h+4BAAY1DEULQObHlRrCqlEgsd7xwAAPv3zMhOe24kgCCiprILByxd6Ax/qyfWYe0pV6NhTioiIyJ19Vz3Cwx5fpg/uFAZvmQTn8ytwOq+82f+eLRzPLsVpVTkUcinu797SZu87rFsEpBLg0KUinM5rnudreyvSVGHS9uPIrzQN1xvaNQIKuXOGf5yzVHRdkQEKDO5kGj+7qRmCOoIg4LUfTuOsugIhvl5YMKyLVbPt3UjrYCVevKM9AGD17+dx8GLzzCR4qVCDH0+pAADj+t3ULH/DWvd3i0SQ0gtZJVrs/tu9IvHOJLNQg/UHLmH81jTc/u4fuHPVfuQmjseGQ5fx2ZEr+DlDjXP5FTAwMEguINjX9E2pulzHzywREZGbupBfgb9zyyCTXE370ZwCfOS4vXqG8O9c5Llk85+mZ9+7O4cjyIY9yaJbKMX8vx8fyrTZ+zpKuU6PF744gfP5FWjhDdziXwZfb5mji1UvBqVc1JO3tIYEwO6/85B2xbZTeb73xwXsOamCTCrBovu6IszP9l38knq0wvBukTAKwIxv0nEq17YRaUEQsOynMzAKwID2IegS6ZgE59fy8ZLhiereUu/+eh7FmioHl8h9CIKAgxcL8cIXx5G0/jDe++MCjl4uRuU1Q57KtAacUVfgp9NqfHbkClIyi9gDhZxasNILCrkUBqMAdbnO0cUhIiKiZvDlcdNEUP3ahiDE1z5DrIZUD1vb/Xee0+euTL1cjJ8z1JBKII4+saV/9W0NANh7SoWzatfoOVYXrd6IaV/9hfScUrTwkWNqnBeUMuceLeKxQSmtVouZM2eid+/eGDBgANavX+/oIlnl5pYBeCDO1GVxyU9nUGmDi4ggCHjvjwvYcNAUHZ55Vyf0vimoye9bF4lEglfv6oReMS1QrjNg8o7jSLfhzA9fHsvGgYuFUMileOH29jZ7X1t4LDEa7UJ9UaipwvKfz7rMGG5nZTAK+OFkHp745Agmbz+OfecLIQHQr20wZt7dCVvHJOKPfw9AqwNv48ne0Rh2cwR6RAXA10sGTZURRy6X4LMjV1Da8W5cKtQ4ujrkBJytfZBIJGgVaEpGmV2idWhZiIg8lbO1DeResoorxVxJo3vaJm1KQ/RvF4yoQAUKKqrEXkjOSG8w4q1fzwEAHuje0iYJzq/VKdwfd3QMhQDgtR9Ou2Tv9MoqA2Z8k44/M4vh6yXDO6Pi0MrP+UM+ckcXwFGWLl2KEydOYOPGjcjKysKMGTMQFRWFIUOGOLpoDTZ5QDv8kqFGhqocc78/hcX3d230MDtNlQGv/5iB3X/nAQCm3t5ODHo1F4VcihUju2HitmP4O7cMz32ehtn3dsbdnZvWXXXf+QIs//ksAGDigLZoG+pri+LajJdMill3d8L4rWnY/XcebgpW4tlb2zi6WBg5+mFcyal/xomw4GBsWv+x/Qp0A1UGI75Lz8Wmw5fFYJKPXIoHurfEo4nRiAlSittKJKZ8Zj5eMkS3kCG6hQ96tw7ChYIK/JVTitxSHSpb9sDo9YdxZ2wYnrqlNW5u6Ry968j+nLF9aBmowIUCDXJKKoHoQIeVg4jIUzlj2+CJtFot9u8/gaKictT8XrdHj55QKJxnNjFrCIKAlb+dQ5VBwC03BaF/uxC7/W25TIrJt7fHzF1/Y9OhTNzfLdLheXjr8vav55CeUwo/bxkm9G/bbH9n2p0dcfhSEU5kl2L9gUt49jbHP6M1VFFFFV7dlY6UzGIo5FK8+WA3dGsZgMMuMBrRI4NSFRUV2LZtGz788EN069YN3bp1Q0ZGBj799FOXaliCfL2w5IGbMWXHcfw3Q43pX6dj7pDOCPBp+Gk1CgJ+OZOPd345i6wSLWQS03/G0T2jmrHkV/kr5FjzUA+8ujMdBy8WYeauv/Hf02pMGtjWIqjQEIIg4MvjOXjz57OoMgj4R2wYHukV3Uwlb5r46BZ45c6OWPLTGazddxGFFVX496D28LZz8jmd3oiCCh0MgoCsMgF3TF4Ob5kU3jIJZFKJxYwWXy17wa5lq8+Fggp8+1cuvk3PharMNJSphY8c/0yIxsMJUQ2eqUQmlaBDmB86hPkhp0SLPb/tgy60A346rcZPp9WmBP89WqF/+xAovZx3DDbZlrO2D60CTDeIOaVaGAXBpnn+iMj9ZBZqkJ5bCi+fQvSPCYRCznasKZy1bfBEx46lYsOe/Qhu1U5clnsxA+MB3HJLX8cVrAk+2n8Je0+bhqW9MKi9TWaUs8ZdsWHYEhWIY1kleOGLE1j7z/hmn/mvoYyCgI/2X8TWo6ZeZPOGdG6W1DJmkQEKvDS4AxbuOY21+y9CIZfiyVti7H5OrHXgQgFe+yEDuaVa+HrJ8FZSN/SKCXJ0sRrMI4NSJ0+ehF6vR0JCgrgsMTER77//PoxGI6RS5+/iZpbYOgjzh3bB3O9P4tez+Ri1/jAeTYzGP2LD0TrIp87/QHqDEWfU5dh3vhDfpefiYnUvkwh/b7x2X1ckxLSwax38FXK8/WB3fHTgEjYcvIS9p1X4OUOF/u1DcVfnMCREt0BkgKLei0Gxpgr7LhTg86NZOJFtGgJ4R8dQvGbjBO22NrpnFEq1eqz5/QK2pWbhf2fz8XjvGNzZKQwRAU3/pkerN0JVpkVuqeknr1SLvDId8syvy7QoqKiR06rnGGxLzRZfyiQS+Ctk8FfI4a+Qobx1P+z6KwcR/gpE+CsQHuANP+/mvYQIgoCCiir8nVuKlMxiHL5UhFM1ZsQI8/PGE71j8GCPVk1K3tcyUIEWf3+Fdz/8P3xyOBN7/s7D4UtFOHypCD5yKfq3D0GvmBbo3ioQncL94CVznWsEWcdZ24cQPy94yyTQGQQcyypBz2j7XqeJyPkVVVRh72kVvkvPxfHsqykRFgzrjKHVeWOocZy1bXBnVQYj8st1yC/XQV1ehfwKHfLLdMi4pIc6pDsqfEIhl0qg9JJBaOWFM8VGRBZqEOrn1ez3p7ZypViD93435fIFgJcHd0TnCH+7l0MikWDhsC54ZksqzuVX4KlPj+KlOzpgQPsQyKSOeZYyCgKOXi7GR/sv4s9MU/7k5/u3xR3Vk301pwe6t0ROSSU+3H8JK/93HocvFeGZW29Cj6hApwpOlev0OHihEDvSsnHoUhEA4KZgJZbcfzM6htt+eGNzco3/sTamUqkQHBwMb++rUdawsDBotVoUFRUhJMR+XSZt4e7O4Yhu4YPZ353EpUIN1vx+AWt+v4BAHzlaBiig9JJBIZeiXGeAuvrirq8xRtbPW4aHE6Iwps9NDsvKL5dJ8Vz/thjcMQyrfz+P/RcK8dvZfPx2Nh+AaVhW62AlgpRekEtNvXjKdQbkllQiq0aOFW+ZBBMHtMOjidFOHZAy+1ffmxAb7o/XfjiNnFItVvx8Fit+PosQXy+0CfFFTAsf+Cnk8PWSwksmhQAA1adOLwiorDKgssqISr0BFToDCiuqUFChQ0FFFcobmLxbJpVAIZNCoymHXKFElcH0BwyCgOJKPYor9aYN2/TH/N2nLfb185Yh3N8bYX6mAJWfQgZfLxl8veWQyySQSUzvL5VIxPMmkUhgNArQGwUYjAL0RqP4u84goLSyCsWVeuSX63CpUFOrHjIJcGu7ENx3cyRu7xBq095lHcP8MH9oFzzXvy22p2Zj72kVsoorxd5T5r8fEaBAy0AfhPp6w89bBl9vGZTeMvjIpZBJJJBIAGn1vxKJBFJU/ysxnb6r3c0FCEL1MkDMLyYuq9EvveYywWKZ6VWfTuHoEeZcQ1VdkbO2D1KJBLfcFIQ/zhfi8KViFJRXIcTPC1JJ9f8rAMUaOfx7DsUvmTpkCFkOKWd9/P19UFZW6ehiNBtnrF9D0xXeaDMJAD9/BcrKtDd4z4b9wYaUqyHv1NBMHzfK2yiRAL6+CpSXXz9fm62OZ0PKZFZUXARNRcV1/5bOIKBQK+ByqQEXSozi35dKgPYtZOjROgi3tXWt+1pn5Ii2oUJnwLr953FFnY8qXRWkMN1XSSVAy8hIeHvJIZOa7q+kElM7YL7vMP8O1LwPAQCJmNJAIql5b2H+q5b3JUDte5PrLat5f1L9ble3qXHPUvNvaHQGlGr1KNPqUVKpR6GmCgXluqv3n3XyBipq5qL1R1paFd5MOwwAUHpJEepnuj8N9fNGCx8v+HhJoZBL4SOXwUsmEe/TbnSMjIK5PrXv2a69X7v2Xs18n1bzGGiqDFCV63BWXY4MlSmZtlQCTBzQDg8n2GekSl2iWvhg5ag4TN1xHFnFlZj29V8IVnqhW6sAtAxQVH9JLYeXzHTQbnzMTPU2osbvNY6Zseay6m30RgF5ZTrklFTinLoChdUTQnnJTLmIH+jevKllanr21jbwV8ix+n/nceBiIQ5cLESIrxc6R/gjzM8bIX6mZwCZRAKp1HSPb/7drL7PTc31Db3fBwCt3oAijR5FmipkFmksZhKXSSV4uGcUxt9mKrercb0S24BGo7FoVACIr3W6hs9sJJU2/CYFMN/4+ELhJa13Pz9fXzTmy5buUQHYNrY39p5S4Ye/VUjNKoHBKFgEbMx8vGTwU0gR17IFBnQIwZ2xoTb5RsEW9evayh+rHorDhQINfvg7DwcvFeK8ugIGwZTgt64kv/4KOdqGKDGoYyhGxrVCiF/zdDdtrvM3sGMIvm5zC75LV2HvaRX+yi6FziAgQ3W1sbK+rBL4K+TwlksR4e+NcD9vRAR4I6xGL6cIfwXC/bzRQimHVCrBw088gSGTXxcDRpVVBpTrDCjTGlCuNeDvo/vRvfdtUJfpoCrXokJnmsVBXV4FdXnzzCIokUgQoJAjOsgH8VGBSIgJRGLrYKvPsbXnLjrIBy/c0Q5TB7XFqbxy7L9QiL+zS5GeV4rSSgNKtQaUqsqRAeeZmWPz4UzsmXgrfKwYaugCcVu7s0X7YG3bIJfLEBAQgDLVFRRc51rcEkC3Ft64WOmN3DIdcsuuLY8/2jzwAr48rwfOX2h4AYjIDUjhp5BCl3ce5Sd/Q/nJ36EuL8JxX1/868dfEOzX8HQGbBtqc8Szw/HsEnxxPM+8p+VKVV6t7d2Nv0IOmQQI8AYCvCQI9JYg0BuoLC5AVqkWPv4toBeAKqMUZRot5AoFKgVvVN+eVj+863FGXX9g19ECFHJ0aiHBfW1luMk7F6mpuY1+r3PnzqAoqxgS4epnrCT3Es75lcHLinvD2Yky/HDJGwfzjKjQC0i9UtLoMjVVqK8cvcKluCtGhhD9ZaSmWp+IvSnH5WYZMLePAj9dNiJVbYTOIFj0QnU0pZcMoT5AfKgUt7aUIUxZiDN/F9ba7ty5MyjJLUCe99Xnp5K8S5DJYhsVz2gOEsEDp/76/vvv8dprr+GPP/4Ql509exbDhg3DwYMHERQU5LjCERGRw7B9ICKia7FtICJqPh45ADoyMhKFhYXQ6692C1WpVPDx8UFgIGc1IiLyVGwfiIjoWmwbiIiaj0cGpbp27Qq5XI7U1FRxWUpKCuLi4piokIjIg7F9ICKia7FtICJqPh55FVUqlRg5ciTmzZuHY8eOYe/evVi/fj2eeuopRxeNiIgciO0DERFdi20DEVHz8cicUoApYeG8efPwww8/wN/fH+PGjcOYMWMcXSwiInIwtg9ERHQttg1ERM3DY4NSRERERERERETkOB45fI+IiIiIiIiIiByLQSkiIiIiIiIiIrI7BqWIiIiIiIiIiMjuGJRqJjqdDsOHD8fBgwfr3SY9PR0PPfQQ4uPjMWrUKJw4ccKOJWyahtTv+eefR+fOnS1+fv75ZzuW0jq5ubmYOnUq+vTpg4EDB2Lx4sXQarV1buuK586a+rnauQOAixcvYty4cUhISMAdd9yBjz76qN5tXfH8WVM/Vzx/7k6r1WLmzJno3bs3BgwYgPXr19e7rSt+Pq2p3y+//IIRI0YgISEB999/P3766Sc7lrRxrKmf2eXLl5GQkHDddtJZWFO/U6dO4dFHH0WPHj1w//3348CBA3YsaeNYU78ff/wRQ4cORUJCAh599FH89ddfdixp47n7faenash59STW3Mt6EmvuET3R+PHj8eqrrzq6GE7jxx9/rPWcMHXqVMcWSiCbq6ysFCZNmiTExsYKBw4cqHOb8vJyoX///sIbb7whnDlzRli4cKFw2223CeXl5XYurfUaUj9BEIS7775b+Prrr4W8vDzxR6vV2rGkDWc0GoWHH35YeOaZZ4TTp08Lhw8fFu6++27hjTfeqLWtK547a+onCK517gRBEAwGg3DPPfcIL7/8snD+/Hnhl19+EXr16iV88803tbZ1xfNnTf0EwfXOnydYsGCBcP/99wsnTpwQfvjhByEhIUH4/vvva23nip9PQWh4/f7++2+hW7duwsaNG4ULFy4ImzdvFrp16yb8/fffDih1wzW0fjWNGzfuhu2ks2ho/UpKSoTbbrtN+M9//iNcuHBBeOedd4TExERBrVY7oNQN19D6nT59WoiLixO+/PJL4eLFi8L8+fOF/v37CxUVFQ4odcO5+32np2ro/bansPZe1lNYe4/oaXbt2iXExsYKM2bMcHRRnMaaNWuECRMmWDwnFBcXO7RMDErZWEZGhvDAAw8I999//3UbkW3btgl33nmnYDQaBUEwXWjvvvtuYceOHfYsrtUaWj+tVit07dpVOHfunJ1L2DhnzpwRYmNjBZVKJS7buXOnMGDAgFrbuuK5s6Z+rnbuBEEQcnNzhRdeeEEoLS0Vl02aNEmYO3durW1d8fxZUz9XPH/urry8XIiLi7O4Xq5evVp44oknam3rip9Pa+q3bNkyYdy4cRbLxo4dK7z55pvNXs7GsqZ+Zl9//bXwyCOPuMTDpDX127hxo3DXXXcJer1eXJaUlCT88ssvdilrY1hTvw0bNggPPvig+Lq0tFSIjY0Vjh07ZpeyNoa733d6qoaeV09izb2sJ7HmHtHTFBYWCrfffrswatQoBqVqePnll4UVK1Y4uhgWOHzPxg4dOoS+ffti69at190uLS0NiYmJkEgkAACJRIJevXohNTXVDqVsvIbW79y5c5BIJGjdurWdStY04eHh+OijjxAWFmaxvKysrNa2rnjurKmfq507AIiIiMDbb78Nf39/CIKAlJQUHD58GH369Km1rSueP2vq54rnz92dPHkSer0eCQkJ4rLExESkpaXBaDRabOuKn09r6vfggw9i2rRptd6jtLS02cvZWNbUDwAKCwuxbNkyLFiwwJ7FbDRr6nfo0CH84x//gEwmE5ft2LEDgwYNslt5rWVN/YKCgnDmzBmkpKTAaDTiiy++gL+/P2666SZ7F7vB3P2+01M19Lx6EmvuZT2JNfeInmbJkiUYMWIEOnbs6OiiOJWzZ8+ibdu2ji6GBbmjC+BuHnvssQZtp1Kpav0HCQ0NRUZGRnMUy2YaWr9z587B398f06dPx6FDh9CyZUtMmTLFaW9cAwMDMXDgQPG10WjE5s2b0a9fv1rbuuK5s6Z+rnburnXnnXciKysLgwcPxr333ltrvSuev5puVD9XP3/uSKVSITg4GN7e3uKysLAwaLVaFBUVISQkxGJbV/t8WlO/Dh06WOybkZGB/fv345FHHrFbea1lTf0A4I033sCDDz6ITp062buojWJN/TIzM9GjRw/Mnj0b//3vfxEdHY0ZM2YgMTHREUVvEGvqN2zYMPz3v//FY489BplMBqlUig8++AAtWrRwRNEbxN3vOz1VQ8+rJ7HmXtZT3ege0ZPs378ff/75J3bu3Il58+Y5ujhOQxAEnD9/Hr///js++OADGAwGDBkyBFOnTrVoJ+2NPaUcRKPR1Drx3t7e0Ol0DiqRbZ07dw6VlZUYMGAAPvroIwwaNAjPP/88jh8/7uiiNciyZcuQnp6OF198sdY6dzh316ufq5+7d999F++//z7+/vtvLF68uNZ6Vz9/N6qfq58/d1TfZw5Arc+dK34+ralfTQUFBZgyZQp69eqFf/zjH81axqawpn779u1DSkoKJk6caLfyNZU19auoqMDatWsRHh6ODz/8ELfccgvGjRuH7Oxsu5XXWtbUr7CwECqVCnPmzMHnn3+OESNGIDk5Gfn5+XYrb3NxxWsL0fVc717WU93oHtFTaLVazJ07F3PmzIGPj4+ji+NUsrKyxPbg7bffxowZM7Bz504sXbrUoeViTykHUSgUtW4EdDqd2/zHmThxIp588knx28UuXbrgr7/+wueff464uDgHl+76li1bho0bN+Ktt95CbGxsrfWufu5uVD9XPncAxDJqtVpMmzYN06dPt7gRd/Xzd6P6ufr5c0f1feYA1PrcueLn05r6manVavzrX/+CIAh49913IZU673dkDa1fZWUl5syZg7lz5zr1+bqWNedPJpOha9eu4iw9N998M/744w98/fXXeO655+xTYCtZU7/ly5cjNjYWjz/+OABg4cKFGDp0KHbs2IHx48fbp8DNxBWvLUT1udG9rKe60T2ip1i1ahW6d+9u0bOOTKKjo3Hw4EG0aNECEokEXbt2hdFoxCuvvILk5GSL4fn25Lx3gW4uMjISarXaYplarUZERISDSmRbUqm0Vnf39u3bIzc310ElapiFCxdiw4YNWLZsWb3dXl353DWkfq547tRqNfbu3WuxrGPHjqiqqqqVa8AVz5819XPF8+fuIiMjUVhYCL1eLy5TqVTw8fFBYGBgrW1d7fNpTf0A05Tejz/+OHQ6HTZt2lRr+JuzaWj9jh07hszMTEydOhUJCQliDqNnn30Wc+bMsXu5G8qa8xceHo727dtbLGvbtq1T95Sypn5//fUXunTpIr6WSqXo0qULsrKy7Fbe5uKK1xaiujTkXtaTWHOP6Cm+/fZb7N27V2yLd+7ciZ07d1rkFvRkQUFBYn5BwJRaQavVori42GFlYlDKQeLj43H06FEIggDANL7zyJEjiI+Pd3DJbOPVV19FcnKyxbKTJ0/Wupl1JqtWrcKWLVvw5ptv4r777qt3O1c9dw2tnyueu8uXL2Py5MkWgZcTJ04gJCSk1gOvK54/a+rniufP3XXt2hVyudwioXBKSgri4uJq9RByxc+nNfWrqKjAM888A6lUis2bNyMyMtLOpbVeQ+vXo0cP/PDDD/jqq6/EHwB47bXX8MILL9i51A1nzfnr2bMnTp06ZbHs3LlziI6OtkdRG8Wa+kVERODs2bMWy86fP4+YmBh7FLVZueK1hehaDb2X9STW3CN6ik8++QqLbjsAAQAASURBVAQ7d+4U2+I777wTd955p9gue7L//e9/6Nu3LzQajbjs77//RlBQkEM/LwxK2ZFKpUJlZSUAYMiQISgpKcGiRYtw5swZLFq0CBqNBkOHDnVwKRuvZv3uvPNO8WJw8eJFrFq1CikpKXjiiSccXMq6nT17FmvWrMGzzz6LxMREqFQq8Qdw/XNnTf1c7dwBpu7K3bp1w8yZM3HmzBn8+uuvWLZsmTicxNXPnzX1c8Xz5+6USiVGjhyJefPm4dixY9i7dy/Wr1+Pp556CoDrfz6tqd8HH3yAS5cuYcmSJeI6lUrl1LPvNbR+Pj4+aNOmjcUPYOqhEhoa6sgqXJc15++RRx7BqVOnsHLlSly8eBHvvPMOMjMzMWLECEdW4bqsqd/DDz+Mzz//XLx+Ll++HFlZWXjwwQcdWYVGc/VrC1FNN7qX9VQ3ukf0RNHR0RZtsZ+fH/z8/MR22ZMlJCRAoVDgP//5D86dO4dff/0VS5cuxTPPPOPYggnUbGJjY4UDBw5YvN6xY4f4Oi0tTRg5cqQQFxcnjB49Wvjrr78cUcxGu1H9Pv/8c+Gee+4RunfvLjz44IPCoUOHHFHMBvnggw+E2NjYOn8EwfXPnbX1c6VzZ5aTkyNMmjRJ6NWrl9C/f3/hvffeE4xGoyAIrn/+BMG6+rni+XN3FRUVwvTp04WePXsKAwYMEDZs2CCuc4fPZ0Prd++999Z5HZoxY4aDSt4w1py/mq5tJ52VNfX7888/hQcffFDo3r27MGLECJe4vlhTv88//1wYMmSI0LNnT+HRRx8VTpw44YASN46733d6Kle5jjS3G93LerLr3SOSIMyYMcPp7zPs6fTp08KYMWOEnj17Cv379xdWrlzp8M+LRBCq+/ESERERERERERHZCYfvERERERERERGR3TEoRUREREREREREdsegFBERERERERER2R2DUkREREREREREZHcMShERERERERERkd0xKEVERERERERERHbHoBQREREREREREdkdg1JERERERERERGR3DEoREREREREREZHdMShFRERERERERER2x6AUERERERERERHZHYNSRERERERERERkdwxKERERERERERGR3TEoRUREREREREREdsegFBERERERERER2R2DUkREREREREREZHcMShERERERERERkd0xKEVERERERERERHbHoBQREREREREREdkdg1JERERERERERGR3DEoREREREREREZHdMShFRERERERERER2x6AUERERERERERHZHYNSRERERERERERkdwxKERERERERERGR3TEoRUREREREREREdsegFBERERERERER2R2DUkREREREREREZHcMShERERERERERkd0xKEVERERERERERHbHoBQREREREREREdkdg1JERERERERERGR3DEoREREREREREZHdMShFRERERERERER2x6AUERERERERERHZHYNSRERERHYiCIKji0BERM2E13jb4bH0HAxKEbmwgwcPonPnzjh48KCji0JERNf49ttvMXjwYHTv3h1z5sxBRkYGHn300Wb5WytXrkTnzp2b5b2JiKg2W13jn3zySTz55JPNUELXpNPp8Prrr2Pnzp2OLgrZCYNSRERERM1gwYIFiIiIwLp16zB27Fjs3r0bR48edXSxiIjIBniNbx55eXnYuHEj9Hq9o4tCdiJ3dAGIiIiI3FFRURH69++Pvn37OrooRERkY7zGE9kGe0oR2VBVVRWWL1+O22+/HT169MC4cePw1VdfoXPnzrh8+TJeffVVPP3005g7dy569eqFYcOGwWAwoKCgAPPnzxe7APfp0weTJk3C5cuXLd5/y5YtuPfee9GjRw888cQTyMrKqlWGrKwsvPTSS+jTpw/i4+Px9NNPIz093V6HgIjILZw4cQJPP/00EhMTkZCQgDFjxiA1NVVcv3v3btx///3o0aMHHnzwQRw9ehQ333wzvvjiC3FoNQCsXr0anTt3xquvvopVq1YBADp37oyVK1c2uCwGgwFr167F8OHD0aNHD/Ts2ROPPPIIDhw4UGvbvXv34t5770VcXBweeugh7N+/32J9Xl4ekpOTMWjQIPTo0QOjR4/GTz/9JK4fO3YskpKSar3vxIkT8cADD4iv//zzTzzxxBOIj49Hnz59MGPGDBQUFDS4TkREjuRM13iz1atX47bbbkNCQgImTpyIzMxMi/V79+7FY489hoSEBHTv3h1DhgzBp59+arHNxo0bMWTIEMTFxWHgwIGYN28eysrKxPVGoxFr167F3Xffje7du+Pee+/FJ598YvEeTz75JObMmYM1a9Zg4MCBiI+Px7PPPgu1Wo0dO3bg7rvvFo/Ztc8qe/fuRVJSEuLi4tC/f3+89tprqKioENevXLkSd999N3755Rfcf//9Yhm++uorAMDly5fxj3/8AwCQnJyMO++80+rjSK6HQSkiG5ozZw42btyIJ554AqtXr0ZYWBhmz55tsc2ff/6J7OxsrF69Gi+//DKkUikmTJiAP/74A9OmTcO6deswefJk7N+/H3PnzhX327x5M+bOnYtBgwZhzZo1iI+Pr/XeBQUFeOSRR/DXX39h9uzZWLFiBYxGIx5//HGcPXvWLseAiMjVlZWV4ZlnnkFwcDBWrlyJt956CxqNBuPGjUNpaSl++uknvPDCC4iNjcWqVatw99134/nnn4fRaAQAdOvWDVu3bgUAjB49Glu3bsWUKVMwevRoAMDWrVvx0EMPNbg8y5cvx5o1a/DPf/4TH330ERYuXIiioiK88MIL0Gg0FtvOmjULTz31FFauXAk/Pz88++yzOH78OABArVZj9OjR+PPPP/Hiiy9i5cqViI6OxqRJk/DNN98AAB544AH89ddfuHjxovieJSUl+O233zBixAgAwOHDhzFmzBj4+Pjg7bffxsyZM3Ho0CE89dRTqKysbORRJyKyD2e7xgNASkoKvv32W8yZMwevvfYaTp48iaeeekoMKP3yyy+YNGkSunXrhjVr1mDlypVo3bo1FixYgLS0NADArl27sGzZMjz++ONYt24dJk2ahK+//hoLFy4U/868efPw7rvv4oEHHsD777+PIUOG4PXXX8fq1astyrNr1y7s378fixYtwqxZs7B//3488cQT2LRpE2bMmCH+3QULFoj77Ny5E5MmTUL79u2xevVqTJ48Gd988w0mTpxokbRcpVJhwYIFeOqpp7B27VrExMRgxowZOHv2LCIiIsTg3vPPPy/+Tm5OICKbuHjxotC5c2dh/fr1FsvHjh0rxMbGCpmZmcKMGTOE2NhYITs7W1yfk5MjPPnkk8Lhw4ct9lu4cKHQvXt3QRAEwWg0Crfeeqvw73//22KbOXPmCLGxscKBAwcEQRCEN998U4iLixMuX74sbqPVaoV//OMfwpQpU2xaXyIid3X06FEhNjZWSElJEZddvHhRWLp0qZCdnS08+OCDQlJSksU+a9asEWJjY4UdO3aIy2JjY4V3331XfP3uu+8KsbGxVpfnpZdeEj7++GOLZXv27BFiY2OFo0ePWrz3999/L25TWVkp9O/fX7z+L126VOjWrZtFGyEIgvD0008L/fv3FwwGg1BeXi707NlTWLVqlbh+27ZtQpcuXYScnBxBEAThn//8pzB8+HBBr9eL25w7d07o2rWrsHnzZqvrR0RkT852jX/iiSeE7t27WzwfpKenC7GxscInn3wiCIIgfPjhh8KMGTMs9issLBRiY2OFDz74QBAEQZg9e7Zw7733CgaDQdzm66+/FjZt2iQIguk63blzZ3F7s7feekuIi4sTCgoKxPLExcUJRUVF4jbjxo0TYmNjhUuXLonLFixYICQmJgqCYHpWuf3224Vx48ZZvPe+ffuE2NhY4eeff7Y4Rvv27RO3uXLlihAbGyusW7dOEARByMzMrHWsyb2xpxSRjRw8eBCCIGDIkCEWy4cPH27xOigoCC1bthRfR0ZGYtOmTUhMTMTly5fxxx9/4JNPPsGRI0eg0+kAAOfOnUN+fj4GDx5s8V5Dhw61eL1//3507doVkZGR0Ov10Ov1kEqluP3227Fv3z5bVpeIyG116tQJISEheO655zBnzhz8+OOPCAsLwyuvvIIWLVrgr7/+EocXmNUc2mZrK1aswNNPP42CggL8+eef2LFjh9izydxOAICXlxfuuece8bVCocDtt9+Ow4cPAwAOHTqEhIQEREdH1yq7SqXCuXPn4Ovri7vuugvfffeduP7bb7/FrbfeisjISGg0GqSlpWHQoEEQBEFsa1q3bo0OHTrgjz/+aLbjQERkC852jQeAXr16WTwfdO3aFa1btxav38888wzeeOMNlJeX48SJE/juu+/wwQcfALjaDvTr1w/nz59HUlISVq1ahePHj+P+++8XZ/Y7cOAABEHAnXfeKV679Xo97rzzTmi1WqSkpIh/v0OHDmjRooX4OiwsDMHBwWjdurW4LCgoCKWlpQBMzyo5OTm13vuWW26Bv79/rbahZ8+e4u/metcc5keehYnOiWzEnEsjNDTUYvm1r/38/Grt+8033+DNN99EdnY2goKC0LVrV/j4+Ijri4uLAQDBwcEW+4WHh1u8LioqwsWLF9GtW7c6y6jRaKBUKhtYIyIiz+Tn54dPP/0U7733Hr7//nts3boVPj4+GDFiBCZMmAAACAkJsdgnMjKy2cpz/PhxzJ8/H8ePH4dSqUTHjh0RFRUFABZDIoKDgyGVWn7fGBoaipKSEgCmtqTmA4VZWFgYAIjbjRgxAt988w1OnjyJsLAwHDx4EK+//rq4jdFoxIcffogPP/yw1nspFAob1JiIqPk42zUeuHodrqnm9bugoABz587F3r17IZFI0KZNG/Tu3RvA1XZg2LBhMBqN+L//+z9xiF90dDSmTZuGYcOGoaioCABw33331VmG3Nxc8Xd/f/9a6319festv/m958+fj/nz59dan5eXZ/G65vOIud2q2Z6RZ2FQishGzI2VWq0WHxYA3DDx659//okZM2bgySefxLhx48T3Wbp0qfiNhTkYlZ+fb7GvuQEwCwgIQJ8+fTB9+vQ6/5a3t3fDK0RE5MHat2+PZcuWwWAw4NixY/j666/x2WefISIiAlKpFGq12mL7a6/HtmLOfdK5c2d8++23aN++PaRSKX799Vfs2bPHYtvS0lIIggCJRCIuU6vV4sNVixYtoFKpav0N8zJzW3PrrbciPDwc33//PcLDw6FQKMQeWH5+fpBIJBgzZkydDzb84oOIXIGzXOPNzF9A16RSqZCQkAAAmDZtGs6dO4ePP/4YCQkJ8Pb2hkajweeff26xz/DhwzF8+HCUlpbi999/x4cffohXXnkFiYmJCAwMBGBKhl7Xl+Q1n1+sZX7v6dOno0+fPrXW1+x1RXQtDt8jspHExETIZDL8+OOPFst/+OGH6+539OhRGI1GTJkyRQxIGQwGcbid0WhE27Zt0apVK+zevdti359//tnidZ8+fXD+/Hm0a9cOcXFx4s/XX3+N7du3QyaTNbWaRERub/fu3ejXrx9UKhVkMhkSEhIwb948BAYGoqCgAAkJCfjhhx8svtW99npcl2t7MTXEuXPnUFRUhKeeegodO3YU3+O3334DADHxLmDqDVtzRr7y8nL88ssv4nTlt9xyC44ePYorV65Y/I1vvvkG4eHhaNOmDQBAJpPh/vvvx88//4zdu3fjrrvuEr8h9/f3x80334xz585ZtDOdOnXCypUrcfDgQavrSERkT850jTdLSUkRh8IBQFpaGq5cuYJ+/fqJ6++55x707dtX/JL52nbg3//+NyZNmgTA9EX10KFDMXHiROj1euTl5Yk9qwoLCy2u3wUFBXjnnXeaFHhr3749QkNDcfnyZYv3joyMxIoVK6yaCZzPK56HPaWIbKR169YYNWoU3nzzTVRVVaFLly748ccfxUasvoaqR48eAIAFCxZg1KhRKC4uxqeffoqTJ08CMI2v9vf3x7Rp0/Dyyy/jP//5D4YMGYLU1FR89tlnFu81ZswYfP311xgzZgzGjh2L4OBgfPfdd/j888+RnJzcjLUnInIfvXr1gtFoxKRJkzB+/Hj4+fnh+++/R2lpKe655x4MGzYMY8aMwaRJk/DPf/4Tly5dwjvvvHPD9zV/k7xr1y7Ex8fXOZTuWu3atYO/vz/ef/99yOVyyOVy7NmzB9u3bwcAi9n3vLy8MHPmTLz00kvw9/fH2rVrUVlZiYkTJwIA/vWvf+Gbb77BmDFjMHnyZAQFBeGrr77CgQMH8Prrr1u0UyNGjMD69eshlUprDdN76aWXMH78eLz88st44IEHYDAYsH79eqSlpYl/i4jIWTnTNd7MaDRi/PjxeO6551BYWIgVK1YgNjZWzGXVo0cP7Ny5E926dUPLli1x5MgRrF27FhKJRGwH+vXrh7lz52LJkiW4/fbbUVJSglWrVqFt27bo0qULvLy88MADD2D27Nm4cuUKunfvjvPnz+Ott95CTEwM2rZta/3BrCaTyfDiiy9izpw5kMlkGDx4MEpKSrBmzRrk5ubWm1qkLgEBAQBMuXI7dOiA+Pj4RpeLXAN7ShHZ0OzZs/HII49g/fr1mDhxInJycvD8888DqH8cdt++fTFnzhwcPXoUzz77LN544w1ERUWJU6Cah/ANHz4cb731FlJTU/H888/j559/tpiGFTANIdyyZQuio6Mxb948PPfcczh27BgWLVqEMWPGNF/FiYjcSEREBD766CMEBARg1qxZmDBhAv766y+sXLkS/fr1Q+/evbFu3Trk5eVh8uTJ2LJlC2bMmHHD973nnnsQFxeHV199FevWrWtQWQICArBmzRoIgoAXXngB06dPR1ZWFjZv3gw/Pz/8+eef4rYhISF4+eWX8dZbb2Hq1KmQyWTYvHkz2rdvD8CUh/Czzz5Dt27d8Nprr+GFF15AdnY21qxZg1GjRln83S5duiA2NhahoaG49dZbLdYNGDAA69atQ05ODqZOnYrp06dDJpNhw4YNFslriYickTNd483uuusu9O7dG6+88goWLFiAPn36YOPGjWKevjfeeAPx8fFYuHAhJk2ahJ9++gnz58/HgAEDxHbgkUcewX/+8x/89ttvYhL3Dh06YP369fDy8gIALF68GP/617+wZcsWPPPMM3j//fcxbNgwrF+/vsk9lB566CGsWLECR44cwXPPPYd58+YhJiYGn3zyiVUBOn9/f/zrX//C3r178eyzz6KqqqpJ5SLnJxGYUYzIJoqKivDbb79h4MCBFgnJlyxZgi+++IJDGoiI3Njly5fxj3/8A4sXL0ZSUpKji0NERDbEazxR8+HwPSIbUSqVWLRoEbp27Yqnn34avr6+SE1NxebNm8WZPIiIiADTLEMGg+GG28lkMovE5URE5Px4jSdqOAaliGxEoVDg448/xttvv41XX30VGo0GN910E2bMmIHHH3/c0cUjIiIn8uWXXzYo19+mTZvEROVEROQaeI0najgO3yMiIiKys8LCQly+fPmG25kTnRMRkevgNZ6o4RiUIiIiIiIiIiIiu+Pse0REREREREREZHcMShERERERERERkd0xKEVERERERERERHbHoBQREREREREREdmd3NEFcGX5+aVw5jTxEgkQGhrg9OVsLNbPdblz3QDXqZ+5nGRb+fmlAFzjM2BrrvLZtyVPrDPAertzvdk2NB9rPzee8HkDPKOenlBHgPV0N9fWs7naBwalmkAQ4BIfQlcpZ2Oxfq7LnesGuH/9qG41z7mnfgY8sd6eWGeA9SayRmM/N57yefOEenpCHQHW0900dz05fI+IiIiIiIiIiOyOQSkiIiIiIiIiIrI7BqWIiMgl6XQ6DB8+HAcPHhSXpaam4pFHHkFCQgLuvfdebNu2zWKfffv2Yfjw4YiPj8dTTz2FzMxMi/Uff/wxBg4ciISEBMycORMajcYudSEiIiIi8kQMShERkcvRarV46aWXkJGRIS5TqVR49tln0adPH3z55ZeYOnUqFi5ciF9++QUAkJWVhUmTJiEpKQnbt29HSEgIJk6cCKF6kPyePXuwatUqLFiwABs3bkRaWhqWLVvmiOoREREREXkEBqWIiMilnDlzBg8//DAuXbpksXzv3r0ICwvDSy+9hLZt2+K+++7DyJEjsXPnTgDAtm3b0L17d4wdOxadOnXC4sWLceXKFRw6dAgAsGnTJjz99NMYPHgwevTogfnz52PHjh3sLUVERERE1EwYlCIiIpdy6NAh9O3bF1u3brVYPnDgQCxevLjW9mVlZQCAtLQ09O7dW1yuVCrRrVs3pKamwmAw4Pjx4xbre/bsiaqqKpw8ebKZakJERERE5Nnkji4AERGRNR577LE6l8fExCAmJkZ8nZ+fj2+//RZTpkwBYBreFxERYbFPaGgocnJyUFJSAq1Wa7FeLpcjKCgIOTk5zVALIiIiIiJiUIqIiNxOZWUlpkyZgrCwMPzzn/8EAGg0Gnh7e1ts5+3tDZ1Oh8rKSvF1XeutIZHU/bsnMNfXk+rtiXUGWG93rrc7142IiJwPg1JERORWysvLMXHiRFy4cAH/93//B6VSCQBQKBS1Akw6nQ6BgYFQKBTi62vXm/dvqNDQgDp/9ySeWG9PrDPAehMREVHTMChFRERuo6ysDM888wwuXbqEjRs3om3btuK6yMhIqNVqi+3VajW6du2KoKAgKBQKqNVqdOjQAQCg1+tRVFSE8PBwq8qQn18KwPTQmp9fiurJ/TyCROJ59fbEOgOstzvX21xHIiIie2BQioiI3ILRaMTkyZNx+fJlfPLJJ2JwySw+Ph4pKSnia41Gg/T0dEyePBlSqRRxcXFISUlB3759AQCpqamQy+Xo0qWLVeWo+aAqCHDbB9fr8cR6e2KdAdabiIiImoaz7xHdgNFoRF5eHvLy8mA0Gh1dHCKqx/bt23Hw4EG89tprCAwMhEqlgkqlQlFREQBg1KhROHLkCNauXYuMjAwkJycjJiZGDEI99thjWLduHfbu3Ytjx45h3rx5ePjhh60evucqjEYjcnKykZOTzWsbEZETMhqNuHLlCrKzs3idJiK3xZ5SRDegVqvxwU9pAIAJ/4ivNXsXETmHPXv2wGg0YsKECRbL+/Tpg08++QQxMTFYuXIlXn/9daxevRoJCQlYvXo1JNVZfe+77z5cuXIFc+bMgU6nwz333INXXnnFEVWxi7y8XLz/41EAwHN3J6Bly1YOLhEREdWUm5uDDb+dQGVlFZ67OwGtWkU5ukhERDbHoBRRA/i1CHF0EYioDqdOnRJ/X7du3Q23HzRoEAYNGlTv+vHjx2P8+PE2KZsr8A8Oc3QRiIjoOgJCIuCl0Tq6GEREzYbD94iIiIiIiIiIyO4YlCIiIiIiIiIiIrtjUIqIiIiIiIiIiOyOQSkiIiIiIiIiIrI7BqWIiIiIiIiIiMjuOPseERGRmzIajcjLywUAREREQirld1FERERE5Dx4d0pEROSm8vJy8f6PR/H+j0fF4BQRERERkbNgTykiIiI35h8c5ugiEBERERHViT2liIiIiIiIiIjI7hiUIiIiIiIiIiIiu2NQioiIiIiIiIiI7I5BKSIiIiIiIiIisjsGpYiIiIiIiIiIyO4YlCIiIiIiIpeh0+kwfPhwHDx4UFyWmpqKRx55BAkJCbj33nuxbds2i3327duH4cOHIz4+Hk899RQyMzMt1n/88ccYOHAgEhISMHPmTGg0GnGdVqvFzJkz0bt3bwwYMADr169v3goSEXkQBqWIiIiIiMglaLVavPTSS8jIyBCXqVQqPPvss+jTpw++/PJLTJ06FQsXLsQvv/wCAMjKysKkSZOQlJSE7du3IyQkBBMnToQgCACAPXv2YNWqVViwYAE2btyItLQ0LFu2THz/pUuX4sSJE9i4cSPmzp2LVatWYffu3XatNxGRu2JQioiIyM0JRiPy8nKRk5MNo9Ho6OIQETXKmTNn8PDDD+PSpUsWy/fu3YuwsDC89NJLaNu2Le677z6MHDkSO3fuBABs27YN3bt3x9ixY9GpUycsXrwYV65cwaFDhwAAmzZtwtNPP43BgwejR48emD9/Pnbs2AGNRoOKigps27YNs2bNQrdu3XD33XfjmWeewaeffmr3+hMRuSMGpYiIiNxcWXEBNu8/i/d/PIq8vFxHF4eIqFEOHTqEvn37YuvWrRbLBw4ciMWLF9favqysDACQlpaG3r17i8uVSiW6deuG1NRUGAwGHD9+3GJ9z549UVVVhZMnT+LkyZPQ6/VISEgQ1ycmJiItLY1BfiIiG5A7ugBERETU/PyCQuDn5+foYhARNdpjjz1W5/KYmBjExMSIr/Pz8/Htt99iypQpAEzD+yIiIiz2CQ0NRU5ODkpKSqDVai3Wy+VyBAUFIScnB1KpFMHBwfD29hbXh4WFQavVoqioCCEhIQ0uv0TS4E0tt5eYfrd2f1dhrpe71g/wjDoCrKe7ubaezVVfBqWIiIg8hEYvoFCjR0tHF4SIqJlUVlZiypQpCAsLwz//+U8AgEajsQgqAYC3tzd0Oh0qKyvF13WtFwShznWAKeG6NUJDA6zaXqv1B5AHHx8FQkL8ERZm3f6uxtrj44o8oY4A6+lumrueDEoRERF5AK0B+PW8Ft+dv4Cn+xjwQHvvG+9ERORCysvLMXHiRFy4cAH/93//B6VSCQBQKBS1Akg6nQ6BgYFQKBTi62vXK5VKGAyGOtcBgI+Pj1Xly88vRXVu9QYpLDQNP6ys1KKgoAwKRalVf89VSCSmh15rj48r8YQ6Aqynu7m2nubXtubUOaWys7MxYcIE9OrVC3feeSc+/vhjcV16ejoeeughxMfHY9SoUThx4oTFvrt27cJdd92F+Ph4TJo0CQUFBeI6QRCwfPly9OvXD3369MHSpUs5JpyIiNzaxXIJdEZAbxSw7sAlfHH0sjjzFBGRqysrK8O4ceOQkZGBjRs3om3btuK6yMhIqNVqi+3VajXCw8MRFBQEhUJhsV6v16OoqAjh4eGIjIxEYWEh9Hq9uF6lUsHHxweBgYFWlVEQrP8x7di4fV3pp7HHx5V+PKGOrKf7/Vxbz+bg1EGpf//73/D19cUXX3yBmTNn4u2338aPP/6IiooKjB8/Hr1798YXX3yBhIQETJgwARUVFQCAY8eOYdasWZg8eTK2bt2KkpISJCcni++7YcMG7Nq1C6tWrcK7776LnTt3YsOGDY6qJhERUbMyCMDFMlMigABpFQBg58lCsd0kInJlRqMRkydPxuXLl/HJJ5+gU6dOFuvj4+ORkpIivtZoNEhPT0d8fDykUini4uIs1qempkIul6NLly7o2rUr5HI5UlNTxfUpKSmIi4uDVOrUj1JERC7Baa+kxcXFSE1NxfPPP4+2bdvirrvuwsCBA7F//3589913UCgUmD59Ojp06IBZs2bBz88Pu3fvBgBs3rwZQ4cOxciRI9GlSxcsXboUv/76KzIzMwGYpn2dOnUqevfujX79+mHatGmc1pWIiNxWrlYOrVEChdSIhDBT018k+EDPTsJE5Aa2b9+OgwcP4rXXXkNgYCBUKhVUKhWKiooAAKNGjcKRI0ewdu1aZGRkIDk5GTExMf/P3p3HR1Xd/x9/3ZnJLNkIWQgEEBUXZAthcy9qrRWX6jcurW1dqi1U5WtXrUjrAqUoLu3XQlVa64Y/tYrailtdWls31CBBRJRNiNkXss5kJjNzf39MZiCQQBIymcnk/Xw85pHMPffOPWcI98z9zDmfw7HHHguEEqg/+OCDvP7666xfv55bb72Viy++GJfLhcvl4vzzz+fWW29l/fr1vP766/z1r3/lsssui2GLRUQSR9wGpZxOJy6Xi2effZa2tja2bdvG2rVrOeaYYyguLmbatGkY7enfDcNg6tSpkW8w9l72dcSIEeTl5VFcXExlZSXl5eXMmDEjUj5t2jRKS0upqqrq1zaKiIj0h1qfFYCRTj9pSZDmsBHEoNob44qJiPSBV199lWAwyNy5cznppJMij/Dqe6NGjeKPf/wjq1at4sILL6S+vp7ly5dH7iXOPvts5s6dy80338yVV17J5MmTuf766yOvP3/+fCZMmMDll1/Obbfdxv/+7/9yxhlnxKStIiKJJm4TnTscDm6++WYWLVrEo48+SiAQoLCwkIsuuog33niDI444osP+WVlZbN68GYCqqqoul32trq4G6FCenZ0NQEVFxT7HiYiIDHSN/tB3UENsAQzDypihLjZUNFHlMTjiAMeKiMSjzz//PPL7gw8+eMD9Z82axaxZs7osnzNnDnPmzOm0zOVycccdd3DHHXf0vKIiIrJfcRuUAti6dSunnnoqP/jBD9i8eTOLFi3i+OOP3++yrhBaCrYny772dlnX9i9X4la4fvFez97qr/bt+fqG0X/vZyL/+yVy22DgtC/e6yd9I2iaNLUHpdJtofl6o4c62VDRRK1XfwQiIiIiEjtxG5R67733eOaZZ3jrrbdwOp1MmjSJyspK7rvvPkaPHt3p0qzhZVm7WvbV5XJ1CEDtvQRseNnY7orGcojRMFDq2VvRbl8g4MblsrefK5Xs7P59PxP53y+R2waJ3z4ZGJp8JkEMrIZJsjW0bEp2Suia5g4YtAWjtJSKiIiIiMgBxG1QasOGDYwZMyYSaAIYP348999/P9OnT+90Wdfw1Lv9Lfuam5sLhJZyHTVqVOR3gJycnB7Vsba2KWrLIvYFwwjdFMd7PXurv9pXW9uMx+OL/G61JkfvZHtI5H+/RG4bDJz2hespiW1Xa+iPMD1p9+g4Z5IVhyWIN2ihwRvHf6QiIiIiktDiNtH5sGHD2LFjR4cRT9u2bWPUqFHk5+fz8ccfY7bf7Zmmydq1a8nPzwf2Xfa1vLyc8vJy8vPzyc3NJS8vr0N5UVEReXl5Pc4nZZrx/xgo9Yz39sXq3zyR//0SuW0DqX2S+HZ5Q1P2hiR1/AdPa5/K1+DVEnwiIiIiEhtxG5Q67bTTSEpK4te//jXbt2/nzTff5P777+fSSy/lzDPPpLGxkcWLF7NlyxYWL16Mx+Nh9uzZAFxyySX8/e9/5+mnn2bTpk3ccMMNnHLKKYwePTpSftddd7FmzRrWrFnD3XffrWVdRUQkIdW3j4RK75hqMRKUqtdIKRERERGJkbidvpeWlsbDDz/M4sWLufDCC8nMzOTqq6/m29/+NoZh8MADD3DLLbfwt7/9jaOPPpoVK1aQnByaVlVQUMDChQu59957aWho4MQTT2TRokWR177qqquora1l3rx5WK1WLrzwQq644ooYtVRERCR6GttHQqXvPVLKqpFSIiIiIhJbcRuUAjjiiCN46KGHOi2bPHkyzz33XJfHFhYWUlhY2GmZ1Wpl/vz5zJ8/v0/qKSIiEo+8/iCtgdDvyVYgsLssPTJ9z8TUXE4RERERiYG4nb4nIiIiB6fG7QfAapgk7dXjp9iCGJj4glDr8cegdiIiIiIy2CkoJSIikqCqWtoAcFmCkZX3wqwGpLSPly5p8CEiIiIi0t8UlBIREUlQVS2hEVAua+fT85Lbg1IVTW39VSURERERkQgFpURERBJU9QGCUim20PbyZgWlRERERKT/KSglIiKSoMLT95yWzlfYi4yUUlBKRERERGJAQSkREZEEdaCRUsnt28s1fU9EREREYkBBKRERkQS1Z6LzzqTsMVLKNDsPXImIiIiIRIuCUiIiIgkoEDSpde9/pJSrPSjV6jepc2u0lIiIiIj0LwWlRERkQPL5fJxzzjmsWbMmsq2kpIQrrriCKVOmcNZZZ/H22293OObdd9/lnHPOIT8/n8suu4ySkpIO5Q8//DAnn3wyBQUF3HTTTXg8nn5pSzRUN3sJmGAATkvnQSmrsTuv1Ff1A7etIiIiIjIwKSglIiIDjtfr5ec//zmbN2+ObDNNk2uvvZbs7GxWrVrFeeedx7x58ygrKwOgrKyMa6+9lsLCQp555hkyMzO55pprItPWXn31VZYtW8bChQt55JFHKC4u5s4774xJ+/pCZZMXgOQkA8Poer9Ue+ijwFf1rf1RLRERERGRCAWlRERkQNmyZQsXX3wxO3fu7LD9/fffp6SkhIULFzJ27Fjmzp3LlClTWLVqFQBPP/00EydO5Morr+TII49kyZIllJaW8sEHHwDw6KOPcvnll3PqqacyefJkbrvtNlatWjVgR0tVN/uA3VP0upKaFIpYaaSUiIiIiPQ3BaVERGRA+eCDDzj22GN56qmnOmwvLi5m/PjxJCcnR7ZNmzaNdevWRcqnT58eKXO5XEyYMIF169YRCAT45JNPOpRPmTKFtrY2Nm3aFN0GRUmdOxSUclr3M0yK3UGp0gaNlBIRERGR/nWA709FRETiy3e/+91Ot1dXVzNs2LAO27KysqioqDhgeWNjI16vt0O5zWYjIyMjcnx37TlVbn/T5qIpGAxSUr0LAId1//sm20LTF3fWNmKaQSyW3n9fFW5vrNodC4OxzaB2J3K7E7ltIiISfxSUEhGRhODxeLDb7R222e12fD7fActbW1sjz7s6vruystI6/b0/lZWVsWZ7NWDFYTVxOe0YdjumJYBht5Oc7Ihscza1Aklsr/Xg97eQl5d30OePVbtjaTC2GdRuEREROTgKSomISEJwOBzU19d32Obz+XA6nZHyvQNMPp+P9PR0HA5H5Pne5S6Xq0f1qK1tAkI3rbW1TZidL3wXVXV1zfhIAoJYgwE8rT4sQStBX+in2+2NbLP4fUASnoBBVU0TdntTr89rGLFtdywMxjaD2p3I7Q63UUREpD8oKCUiIgkhNzeXLVu2dNhWU1MTmZKXm5tLTU3NPuXHHHMMGRkZOBwOampqGDt2LAB+v5/6+npycnJ6VI89b1RNk5jcuJomtPpDJ7Zb918Bh8XEgkkQg5oWPyP7oL6xancsDcY2g9otIiIiB0eJzkVEJCHk5+fz6aefRqbiARQVFZGfnx8pLyoqipR5PB42btxIfn4+FouFSZMmdShft24dNpuNcePG9V8j+lBrIPTTcYCe3jDA2f4VVVVLW3QrJSIiIiKyBwWlREQkIcycOZMRI0Ywf/58Nm/ezIoVK1i/fj0XXnghABdccAFr165lxYoVbN68mfnz5zNq1CiOPfZYIJRA/cEHH+T1119n/fr13HrrrVx88cU9nr4XL7ztI6UOlOgcILl9n+oWfxRrJCIiIiLSkYJSIiKSEKxWK3/605+orq6msLCQf/zjHyxfvjySuHvUqFH88Y9/ZNWqVVx44YXU19ezfPlyjPalps4++2zmzp3LzTffzJVXXsnkyZO5/vrrY9mkXmv1B2mPSWHvRk/vap/iV6mRUiIiIiLSj5RTSkREBqzPP/+8w/MxY8awcuXKLvefNWsWs2bN6rJ8zpw5zJkzp8/qFyv17XP3LJjYDDhQ6htX+6cBjZQSERERkf6kkVIiIiIJpqE9KGW3mLQPBNuv8PQ95ZQSERERkf6koJSIiEiCqW8NjXhyWLq3PJjLFtqvSiOlRERERKQfKSglIiKSYOr3GCnVHa49Ep0Htc69iIiIiPQTBaVEREQSTDgo1d2RUk4rGIA/aFLb4otizUREREREdlNQSkREJMGEp+91d6SUxdid7Ly80RutaomIiIiIdKCglIiISIJp6OFIKYCUpFBG9PKG1qjUSURERERkbwpKiYiIJJhGb89ySgEkh4NSjQpKiYiIiEj/UFBKREQkwTR5gwAkGT0fKVXRpOl7IiIiItI/FJQSERFJMM2+XoyUsmmklIgMDD6fj3POOYc1a9ZEtpWUlHDFFVcwZcoUzjrrLN5+++0Ox7z77rucc8455Ofnc9lll1FSUtKh/OGHH+bkk0+moKCAm266CY/HEynzer3cdNNNTJ8+nZNOOom//vWv0W2giMggoqCUiIhIgjmYkVLlDRopJSLxy+v18vOf/5zNmzdHtpmmybXXXkt2djarVq3ivPPOY968eZSVlQFQVlbGtddeS2FhIc888wyZmZlcc801mGboGvnqq6+ybNkyFi5cyCOPPEJxcTF33nln5PWXLl3Khg0beOSRR7jllltYtmwZr7zySv82XEQkQSkoJSIikkD8gSAef3tQqjeJzhtbIzdqIiLxZMuWLVx88cXs3Lmzw/b333+fkpISFi5cyNixY5k7dy5Tpkxh1apVADz99NNMnDiRK6+8kiOPPJIlS5ZQWlrKBx98AMCjjz7K5ZdfzqmnnsrkyZO57bbbWLVqFR6PB7fbzdNPP82CBQuYMGEC3/jGN/jhD3/I448/3u/tFxFJRApKiYiIJJBGrz/ye3ucqVvC0/da/UEaPP4D7C0i0v8++OADjj32WJ566qkO24uLixk/fjzJycmRbdOmTWPdunWR8unTp0fKXC4XEyZMYN26dQQCAT755JMO5VOmTKGtrY1NmzaxadMm/H4/BQUFHV67uLiYYDAYpZaKiAwetlhXQERERPpOY3tAKckCRg+CUlaLwVCnlV2tAcqbWslITopSDUVEeue73/1up9urq6sZNmxYh21ZWVlUVFQcsLyxsRGv19uh3GazkZGRQUVFBRaLhaFDh2K32yPl2dnZeL1e6uvryczM7KvmiYgMSgpKiYiIJJCG1jYA7NYeRKTaDUtNCgWlGlo5Jjetr6smIhIVHo+nQ9AIwG634/P5Dlje2toaed5ZuWmanZYBkdfvrp58UdBhfyP0e0+PHyjC7UrU9sHgaCOonYlm73ZGq70KSomIiCSQxtbQSCm7tefHDkux8XkNlDcq2bmIDBwOh4P6+voO23w+H06nM1K+dwDJ5/ORnp6Ow+GIPN+73OVyEQgEOi0DIq/fXVlZPQv2e72pQBVOp4PMzFSysxP7y4Kevj8D0WBoI6idiSba7VRQSkREJIGEg1IOSy9GSqWEpuyVN7b2aZ1ERKIpNzeXLVu2dNhWU1MTmZKXm5tLTU3NPuXHHHMMGRkZOBwOampqGDt2LAB+v5/6+npycnIwTZNdu3bh9/ux2UK3TtXV1TidTtLT03tUz9raJnqyjsSuXc0AtLZ6qatrxuFo6tH5BgrDCN309vT9GUgGQxtB7Uw0e7cz/LyvKdG5iIhIAtk9fa/nx+akhG64KjRSSkQGkPz8fD799NPIVDyAoqIi8vPzI+VFRUWRMo/Hw8aNG8nPz8disTBp0qQO5evWrcNmszFu3DiOOeYYbDZbJGl6+LUnTZqExdKzWynT7PkjdGDvjh1Ij96+PwPpMRjaqHYm3mPvdkaDglIiIiIJpCEyfa/nI6Vy20dKlWmklIgMIDNnzmTEiBHMnz+fzZs3s2LFCtavX8+FF14IwAUXXMDatWtZsWIFmzdvZv78+YwaNYpjjz0WCCVQf/DBB3n99ddZv349t956KxdffDEulwuXy8X555/Prbfeyvr163n99df561//ymWXXRbLJouIJAxN3xMREUkgjR6NlBKRwcVqtfKnP/2JBQsWUFhYyJgxY1i+fDl5eXkAjBo1ij/+8Y/87ne/Y/ny5RQUFLB8+XKM9qy9Z599NqWlpdx88834fD7OOOMMrr/++sjrz58/n1tvvZXLL7+c1NRU/vd//5czzjgjJm0VEUk0CkqJiIgkkEii84PIKdXk9dPs9ZPq0McEEYlPn3/+eYfnY8aMYeXKlV3uP2vWLGbNmtVl+Zw5c5gzZ06nZS6XizvuuIM77rijd5UVEZEuafqeiIhIAggGg1RUlFPd2AL0bqSUK8nCEKdGS4mIiIhI/1BQSkREJAFUVVVy/2sf8+UuDwBmW++CSiPSQ0ucK6+UiIiIiESbglIiIiIJInVoNn4zNEQqqZc9/PB0BwAVCkqJiIiISJQpKCUiIpJAvP4AAPZe9vDhkVLlmr4nIiIiIlGmoJSIiEiCCJomvoAJaKSUiIiIiMQ/LasjIiKSINqCu39PsgCBnr9GXiSnlJdgMEhVVSUAw4blYrHouywRERER6Tv6dCkiIpIg2tpHSVkNE4vRu9cIT9+raGyNJE+//7WPI8EpEREREZG+opFSIiIiCcLXPlLKZpi9fo3w9L06dxtef5DUodl9UTURERERkX1opJSIiEiCaAu255Pq5SgpgHSnjeSk0Ap+1W5/X1RLRERERKRTCkqJiIgkiLb2HFIHM1LKMAxGDAmNlqpqbuuLaomIiIiIdEpBKRERkQQRTnRus/Q+KAW780pVtWiklIiIiIhEj4JSIiIiCSI8fe9gRkoBDE9rHynVopFSIiIiIhI9CkqJiIgkiPBIqYPJKQW7R0pVa6SUiIiIiESRVt8TERFJEG2B3o+UMoNBqqoqARieZgegsqWNXEff1U9EREREZE8KSomIiCSIg8kp1dxQx8r3PCQnl3FqwTFA+0ipTH1UEBEREZHo0CdNERGRBBHOKdXb6XspGZmkpKQwLCX08aDO4ydoWrEYBzkfUERERESkE8opJSIikiAiI6UOMtH5EKcVu9UgaIK77eBeS0RERESkKwpKiYiIJIhITqleTN8LM4NBaqqryEkOjZZqUVBKRERERKIkroNSPp+P2267jRkzZnDCCSdwzz33YJqhD8cbN27koosuIj8/nwsuuIANGzZ0OHb16tWcfvrp5Ofnc+2111JXVxcpM02Tu+66i+OOO46ZM2eydOlSgsFgv7ZNRESkr+0eKdX71wjlltqKPxAAYFeLtw9qJiIiIiKyr7gOSv32t7/l3Xff5cEHH+Tuu+/mb3/7G0899RRut5s5c+Ywffp0nn32WQoKCpg7dy5utxuA9evXs2DBAubNm8dTTz1FY2Mj8+fPj7zuQw89xOrVq1m2bBn33nsvL7zwAg899FCsmikiItIndueUOrjRTSkZmWSkugDwBA66WiIiIiIinYrboFR9fT2rVq1i0aJFTJ48meOPP54rr7yS4uJiXnrpJRwOBzfccANjx45lwYIFpKSk8MorrwCwcuVKZs+ezfnnn8+4ceNYunQpb731FiUlJQA8+uijXHfddUyfPp3jjjuOX/7ylzz++OOxbK6IiPSR8vJy5s6dy9SpUznttNN4+OGHI2UHM8p2IGhrDyAdbE4pgFRHaPqex3/QLyUiIiIi0qm4DUoVFRWRmprKzJkzI9vmzJnDkiVLKC4uZtq0aRjtqwEZhsHUqVNZt24dAMXFxUyfPj1y3IgRI8jLy6O4uJjKykrKy8uZMWNGpHzatGmUlpZSVVXVP40TEZGo+elPf0pycjLPPvssN910E3/4wx947bXXDnqUbbwLBE387bEoWx/07mntQSl3QCvviYiIiEh02GJdga6UlJQwcuRInn/+ee6//37a2tooLCzk6quvprq6miOOOKLD/llZWWzevBmAqqoqhg0btk95RUUF1dXVAB3Ks7OzAaioqNjnuP2J9xWyw/WL93r2Vn+1b8/XN4z+ez8T+d8vkdsGA6d98V6/3mhoaGDdunUsWrSIQw89lEMPPZSTTz6Z9957j4aGhsgoW8MwWLBgAf/5z3945ZVXKCws7DDKFmDp0qWceuqplJSUMHr06Ng2rBs8/t25EftmpJS1/XUP+qVERERERDoVt0Ept9vNjh07ePLJJ1myZAnV1dXcfPPNuFwuPB4Pdru9w/52ux2fzwdAa2trl+Wtra2R53uWAZHjuysrK63H7YqFgVLP3op2+wIBNy6Xvf1cqWRn9+/7mcj/foncNkj89sUjp9OJy+Xi2Wef5Re/+AUlJSWsXbuWn/70p/sdZVtYWEhxcTE/+tGPIq+15yjbgRCUcvtCQSmrEXocrPBIKU+AyCIjIiIiIiJ9KW6DUjabjebmZu6++25GjhwJQFlZGU888QRjxozZJ4Dk8/lwOp0AOByOTstdLleHAJTD4Yj8DuByuXpUx9raJuL5c7phhG6K472evdVf7autbcbj8UV+t1qTo3eydsFgkNraGjIzU7FYnBhG3M607RX9bcaHcD0TicPh4Oabb2bRokU8+uijBAIBCgsLueiii3jjjTd6Pcq2J/YeXdlf3O0jpex9MXcPSLZbMTAxMfD4uzdSdKCMEuxLg7HNoHYncrsTuW0iIhJ/4jYolZOTg8PhiASkAA477DDKy8uZOXMmNTU1HfavqamJ3Ezk5uZ2Wp6Tk0Nubi4A1dXVjBo1KvJ7+Jw9YZrE9Q1n2ECpZ29Fu317vnZ/vZfV1TU88EYxTqedK046hpyc7k8rHUj0tynRsHXrVk499VR+8IMfsHnzZhYtWsTxxx9/UKNse2LPQF9/Bv2sztAXLQ6bFZfTjmG3Y1oCnf5MTnYccJ/UFCcuK7gD4LdYyczs/kjRRAt2dsdgbDOo3SIiInJw4jYolZ+fj9frZfv27Rx22GEAbNu2jZEjR5Kfn8+f//xnTNPEMAxM02Tt2rX8+Mc/jhxbVFREYWEhEFqJqby8nPz8fHJzc8nLy6OoqCgSlCoqKiIvL69H+aREoi1lSGZk2qCIdM97773HM888w1tvvYXT6WTSpElUVlZy3333MXr06F6Psu2J2tomoP9Hy1XWtgBgsxh4Wn1YglaCvs5/ut3ebu3jtARxB6zsammjrq4Zu71pv3UYKKME+9JgbDOo3Ync7kQcRSsiIvErbucEHX744ZxyyinMnz+fTZs28d///pcVK1ZwySWXcOaZZ9LY2MjixYvZsmULixcvxuPxMHv2bAAuueQS/v73v/P000+zadMmbrjhBk455ZRITpBLLrmEu+66izVr1rBmzRruvvtuLrvsslg2V0RE+sCGDRsYM2ZMJNAEMH78eMrKyrocRdudUbY9secIufDv/fFo9gUAsPdFQql2LmtoSmBLm9ntevR3u+PhMRjbrHYn9kNERKS/xG1QCuCuu+7ikEMO4ZJLLuFXv/oV3/ve97j00ktJTU3lgQceiIyGKi4uZsWKFSQnh3L9FBQUsHDhQpYvX84ll1zCkCFDWLJkSeR1r7rqKs466yzmzZvHT37yE8477zyuuOKKGLVSRET6yrBhw9ixY0eHEU/btm1j1KhR5Ofn8/HHHxNO2h0eZZufnw/sHmUbtuco24HA3da3OaUAXJbQe9XSprtUEREREel7cTt9DyAtLY2lS5d2WjZ58mSee+65Lo8tLCyMTN/bm9VqZf78+cyfP79P6ikiIvHhtNNO48477+TXv/41V199Ndu3b+f+++/nZz/7GWeeeSZ33303ixcv5jvf+Q5PPvnkPqNsL730UqZMmcKkSZNYvHhxh1G28a4lHJSy9mFQqn2klFtBKRERERGJgrgeKSUiItITaWlpPPzww1RXV3PhhReyZMkSrr76ar797W8f9CjbeOf29X1QKrk9KNWsoJSIiIiIREFcj5QSERHpqSOOOIKHHnqo07KDGWUb78LT95KsBgT75jWTrWb7a5sEggpMiYiIiEjf0kgpERGRBBCNnFJOi4mBSRCo9fj77HVFREREREBBKRERkYQQjZxShgHJ7WOqK5vb+ux1RURERERAQSkREZGE4PYFgL4dKQWQbA39rFBQSkRERET6mIJSIiIiCWD3SCmjT1832RbKJVXRpKCUiIiIiPQtBaVEREQSwO5E5308Uio8fa9FOaVEJL6Vl5czd+5cpk6dymmnncbDDz8cKdu4cSMXXXQR+fn5XHDBBWzYsKHDsatXr+b0008nPz+fa6+9lrq6ukiZaZrcddddHHfcccycOZOlS5cSDPbRihIiIoOcglIiIiIJwB2FnFKwewU+Td8TkXj305/+lOTkZJ599lluuukm/vCHP/Daa6/hdruZM2cO06dP59lnn6WgoIC5c+fidrsBWL9+PQsWLGDevHk89dRTNDY2Mn/+/MjrPvTQQ6xevZply5Zx77338sILL3S5yquIiPSMglIiIiIDnGmae6y+19fT90I/lehcROJZQ0MD69at4+qrr+bQQw/l9NNP5+STT+a9997jpZdewuFwcMMNNzB27FgWLFhASkoKr7zyCgArV65k9uzZnH/++YwbN46lS5fy1ltvUVJSAsCjjz7Kddddx/Tp0znuuOP45S9/yeOPPx7L5oqIJAwFpURERAY4T1uQYGhAU9+PlGoPStW3BvC0Bfr0tUVE+orT6cTlcvHss8/S1tbGtm3bWLt2LccccwzFxcVMmzYNwwgF7Q3DYOrUqaxbtw6A4uJipk+fHnmtESNGkJeXR3FxMZWVlZSXlzNjxoxI+bRp0ygtLaWqqqpf2ygikohssa6AiIiIHJxmbyjfkwHYLH07UirJAnYL+IJQ2tDKEdkpffr6IiJ9weFwcPPNN7No0SIeffRRAoEAhYWFXHTRRbzxxhscccQRHfbPyspi8+bNAFRVVTFs2LB9yisqKqiurgboUJ6dnQ1ARUXFPsftj9HDy3NkfyP0e0+PHyjC7UrU9sHgaCOonYlm73ZGq71RCUq9//77HHvssZFvI0RERNQ3RE+zLxSUSrIQlfc3JcnA5zUprVdQSkR6rr+u/1u3buXUU0/lBz/4AZs3b2bRokUcf/zxeDwe7HZ7h33tdjs+nw+A1tbWLstbW1sjz/csAyLHd1dWVlqP9vd6U4EqnE4HmZmpZGf37PiBpqfvz0A0GNoIameiiXY7oxKU+slPfkJSUhJnnnkm55xzDlOmTInGaUREZABR3xA9Ld7QtLoka3Ru+FKSDHZ5TcoaW6Py+iKS2Prj+v/ee+/xzDPP8NZbb+F0Opk0aRKVlZXcd999jB49ep8Aks/nw+l0AqFRVp2Vu1yuDgEoh8MR+R3A5XL1qI61tU2YZvf337WrGYDWVi91dc04HE09Ot9AYRihm96evj8DyWBoI6idiWbvdoaf97WoBKXeeecd3nnnHV555RXmzJlDamoqs2fP5uyzz2b8+PHROKWIiMQ59Q3Rs+dIqWhItYeCXaX1nuicQEQSWn9c/zds2MCYMWMigSaA8ePHc//99zN9+nRqamo67F9TUxOZepebm9tpeU5ODrm5uQBUV1czatSoyO8AOTk5PaqjadKjG9jIvmbPjx2I1MbEoXYmlmi3MypBKZvNxqxZs5g1axZ+v593332XN998k+9+97vk5uZy7rnnUlhYSF5eXjROLyIicUh9Q/Q0h0dKRSkolZLUHpRq0EgpEem5/rj+Dxs2jB07duDz+SKjm7Zt28aoUaPIz8/nz3/+M6ZpYhgGpmmydu1afvzjHwOQn59PUVERhYWFAJSXl1NeXk5+fj65ubnk5eVRVFQUCUoVFRWRl5fXo3xSIiLSuaiuvufz+Xjrrbd48cUXefnllxk6dCinnXYaX375JWeffTYrV66M5ulFRCQOqW/oe+FE50l9nOQ8LLU9KFWmoJSIHIRoXv9PO+00kpKS+PWvf8327dt58803uf/++7n00ks588wzaWxsZPHixWzZsoXFixfj8XiYPXs2AJdccgl///vfefrpp9m0aRM33HADp5xyCqNHj46U33XXXaxZs4Y1a9Zw9913c9lll/XJeyIiMthFZaTU66+/ziuvvMK///1vkpKS+OY3v8ny5cs7LLX6+OOPc8899/D9738/GlUQEZE4o74henYHpaLz+nuOlAqPNBAR6a7+uP6npaXx8MMPs3jxYi688EIyMzO5+uqr+fa3v41hGDzwwAPccsst/O1vf+Poo49mxYoVJCcnA1BQUMDChQu59957aWho4MQTT2TRokWR177qqquora1l3rx5WK1WLrzwQq644oqDek9ERCQkKkGpX/3qV5x++uncc889nHjiiVit1n32mThxIj/4wQ+icXoREYlD6huip8UX3UTnyUkGBuD1B6l1t5GdYj/gMSIiYf11/T/iiCN46KGHOi2bPHkyzz33XJfHFhYWRqbv7c1qtTJ//nzmz59/UPUTEZF9RSUo9e6779Lc3ExjY2Ok03nppZeYMWNGJCFgfn4++fn50Ti9iIjEIfUN0RPtkVJWwyA72Ua1209pvUdBKRHpEV3/RUSkK1H5+Lp27Vq+8Y1v8MILL0S2Pfroo5x11lkUFRVF45QiIhLn1DdET3N4pFSUckoBDE9LAqCsUXmlRKRndP0XEZGuRCUodccdd/DjH/+Y6667LrLtySef5Ic//CG/+93vonFKERGJc+oboqclPFJq3xkxfSY3JRSUKq1XUEpEekbXfxER6UpUglJffvklZ5555j7bZ8+ezZYtW6JxShERiXPqG6In2qvvAQxPbQ9KaQU+EekhXf9FRKQrUQlKHX744bz88sv7bH/zzTc55JBDonFKERGJc+oboieS6DxKOaUAclNDaSjLFJQSkR7S9V9ERLoSlUTnP/3pT7nmmmt45513mDBhAgCff/45H330EX/84x+jcUoREYlz6huiRyOlRCSe6fovIiJdicp3ql/72td47rnnGD9+PNu2bWPnzp2MGzeOF198kVmzZkXjlCIiEufUN0RPs7d9pFQ0c0q1B6Wqmrz4/MHonUhEEo6u/yIi0pWojJQCOPLII7nxxhuj9fIiIjIAqW+IjmZf9EdKZTitOG0WWv1BKpq8HDLUFbVziUji0fVfREQ6E5WgVGNjI3/961/55JNP8Pv9mKbZofzRRx+NxmlFRCSOqW+IDq8/SFsg9F5GM6eUYRjkDXGyrdZNaYNHQSkR6TZd/0VEpCtRCUrdcMMNfPLJJ5x77rmkpqZG4xQiIjLAqG+IjnA+KQBbFINSACPDQal65ZUSke7T9V9ERLoSlaDUu+++y8qVK5k8eXI0Xl5ERAYg9Q3REV55z2WzYDGiN30PYGRGaHSUVuATkZ7Q9V9ERLoSle9Uc3NzsVii/HWtiIgMKOoboiM8UirFHv33Nm+IE9AKfCLSM7r+i4hIV6I2fe/WW2/luuuuY8yYMSQlJXUoz8vLi8ZpRUQkjqlviI5wUCo5igmlzGCQqqpKUoIpAHxV74nauUQk8ej6LyIiXYlKUOp///d/AZgzZw4QSo4KYJomhmHw2WefReO0IiISx9Q3REdz+/S9aAalmhvqWPmeh4A9GUihtKE18u8mInIguv6LiEhXohKUeuONN6LxsiIiMoCpb4iOjiOlglE7T0pGJk5XMkadlxZfgDp3G1kp9qidT0QSh67/IiLSlah8rTpy5EhGjhyJ2+1m48aNDB06lGAwSF5eHiNHjozGKUVEJM6pb4iOcKLz/sgpZbUYZCeHvs/SFD4R6S5d/0VEpCtRGSnV0NDAT37yEz744AMAXn31VRYvXkxJSQkrVqxQ5yMiMgipb4iO/sgptae89CSq3X527vKQP3JIv5xTRAY2Xf9FRKQrUfkE+9vf/haXy8X777+Pw+EA4He/+x3Dhw/nt7/9bTROKSIicU59Q3REVt9LsvbL+fLSQlP2NFJKRLpL138REelKVIJS//3vf/n5z39Oenp6ZFtmZibz58/nww8/jMYpRUQkzqlviI4Wb3ui836YvmcGg6TRCsDOXQpKiUj36PovIiJdicr0PQCv17vPtrq6Omy2qJ1SRETinPqGvtfs2z19r6E1yudqqKOkMQAMYVt1U3RPJiIJRdd/ERHpTFS+Vj3nnHNYvHgxmzdvxjAM3G4377//Pr/5zW8466yzonFKERGJc+oboiM8Uiqln3JKZQ5JBaCs0Ut5eRkVFeUEg9Fb9U9EBj5d/0VEpCtR+Wrihhtu4J577qGwsJC2tjbOO+88rFYrF110ETfccEM0TikiInFOfUN07DlSqj+EFt8zaQ0YPLimBH9TLT/+RgHDh4/ol/OLyMCj67+IiHQlKkEpu93OjTfeyE9/+lNKSkoIBAKMHj2alJSUaJxOREQGAPUN0RFJdN4POaUArAa4LCaeoEHQmUGqzeiX84rIwKXrv4iIdCUqQanOEhZu3Lgx8vuMGTOicVoREYlj/dU3+Hw+lixZwurVq0lKSuLCCy/kZz/7GYZhsHHjRm655Ra++OILjjjiCG677TYmTpwYOXb16tX84Q9/oLq6mpNOOolFixaRmZnZJ/WKluZwovN+GikFkGwN4glaaGxtax85JSLSNd0biIhIV6LyUfLSSy/tdLvdbicnJ4c33ngjGqcVEZE41l99w29/+1vWrFnDgw8+SEtLCz/72c/Iy8vjW9/6FnPmzOHcc8/l9ttv54knnmDu3Lm89tprJCcns379ehYsWMBtt93GuHHjWLx4MfPnz+eBBx7ok3pFS3ikVH8GpVJsJrVt0NDqZ3hqv51WRAYo3RuIiEhXohKU2rRpU4fngUCAnTt3smjRIs4999xonFJEROJcf/QN9fX1rFq1ioceeojJkycDcOWVV1JcXIzNZsPhcHDDDTdgGAYLFizgP//5D6+88gqFhYWsXLmS2bNnc/755wOwdOlSTj31VEpKShg9enSf1K+v+YMmrf5QkvHkJGu/nTfZGjpnY6sfFJQSkQPQvYGIiHSlX75WtVqtHHbYYdx444383//9X3+cUkRE4lw0+oaioiJSU1OZOXNmZNucOXNYsmQJxcXFTJs2DcMI5UAyDIOpU6eybt06AIqLi5k+fXrkuBEjRpCXl0dxcXGf1C0aWtpHSUH/5ZQCSGkPSjW0tvXbOUUkcejeQEREwvrvEyxQW1tLY2Njf55SRETiXF/2DSUlJYwcOZLnn3+eM888k69//essX76cYDBIdXU1w4YN67B/VlYWFRUVAFRVVe23PN4Eg0G2l5YD4LBZsFn6L+F4yh4jpUzT7Lfzikhi0b2BiIhEZfre/Pnz99nW0tLCu+++y5lnnhmNU4qISJzrj77B7XazY8cOnnzySZYsWUJ1dTU333wzLpcLj8eD3W7vsL/dbsfn8wHQ2tq63/LuMozOf+9r1dWVPPKfjUAyyTYjqufam8tqAiZtAfAGQu0MPyC67Y43g7HNoHYncruj0TbdG4iISFf6bc2cjIwMfvWrX3Heeef11ylFRCTO9XXfYLPZaG5u5u6772bkyJEAlJWV8cQTTzBmzJh9Akw+nw+n0wmAw+HotNzlcvWoDllZaZ3+3td8viZSs7JhlxtXEvh8zTidSSQnO3A57Rh2O6Yl0OnPg93HYQmQbDNw+8FnWMnMTCU7u3/aHa8GY5tB7Zbe072BiIhAlIJSS5YsicbLiojIANYffUNOTg4OhyMSkAI47LDDKC8vZ+bMmdTU1HTYv6amJjJlLzc3t9PynJycHtWhtrYJCN201tY2Ea3ZbXV1zTR7Qjmdmlpauffva0jNGYk9eSieVh+WoJWgr/Ofbrf3oPdJtibh9hvUNvuoq2vGbm/CMKLf7ngzGNsMancitzvcxr6kewMREelKVIJSy5Yt6/a+8+bNi0YVREQkzvRH35Cfn4/X62X79u0cdthhAGzbto2RI0eSn5/Pn//8Z0zTxDAMTNNk7dq1/PjHP44cW1RURGFhIQDl5eWUl5eTn5/fozrseaNqmkTtxtU0oS0Q+t2RZCN5SGZ0TtSFFJtJjdeg2Wfu085otjteDcY2g9ot3aN7AxER6UpUglI7duzglVdeISMjg4kTJ2K329m0aRM7d+5kypQp2Gyh0xqJPCFfREQ66I++4fDDD+eUU05h/vz53HrrrVRXV7NixQquvvpqzjzzTO6++24WL17Md77zHZ588kk8Hg+zZ88G4JJLLuHSSy9lypQpTJo0icWLF3PKKacwevToPml/NLQFQ3fFtn5dtiQkpf0TRKNPd+Yisn+6NxARka5EJShlt9s599xzue2220hKSopsv+OOO2hoaOB3v/tdNE4rIiJxrL/6hrvuuotFixZxySWX4HK5+N73vsell16KYRg88MAD3HLLLfztb3/j6KOPZsWKFSQnJwNQUFDAwoULuffee2loaODEE09k0aJFfVKnaGkLLYJHktH/gaFUW+icCkqJyIHo3kBERLoSlaDUSy+9xKpVqzp0OgAXX3wx//M//6OOR0RkEOqvviEtLY2lS5d2WjZ58mSee+65Lo8tLCyMTN8bCGI5Uiq1/Z+x2WcSCCowJSJd072BiIh0JSofY3Nzc/nvf/+7z/ZXX301rqdBiIhI9Khv6HvhnFK2GMx4cVnBZjEIAuXNbf1fAREZMPrr+u/z+bjtttuYMWMGJ5xwAvfccw9me/KvjRs3ctFFF5Gfn88FF1zAhg0bOhy7evVqTj/9dPLz87n22mupq6uLlJmmyV133cVxxx3HzJkzWbp0KcFgsM/qLSIymEVlpNQvfvELfvrTn/Lvf/+bcePGAfDJJ5+wceNG7r///micUkRE4pz6hr4XHimVFIORUoYBGa4kalp8lDT4mN7/VRCRAaK/rv+//e1vWbNmDQ8++CAtLS387Gc/Iy8vj29961vMmTOHc889l9tvv50nnniCuXPn8tprr5GcnMz69etZsGABt912G+PGjWPx4sXMnz+fBx54AICHHnqI1atXs2zZMvx+P9dffz1ZWVlcddVVfVZ3EZHBKiofY7/xjW/w7LPPctRRR7F161ZKS0uZOXMmr776KjNnzozGKUVEJM6pb+h74ZxSsZi+BzA0OTQVZ2eDLzYVEJEBoT+u//X19axatYpFixYxefJkjj/+eK688kqKi4t56aWXcDgc3HDDDYwdO5YFCxaQkpLCK6+8AsDKlSuZPXs2559/PuPGjWPp0qW89dZblJSUAPDoo49y3XXXMX36dI477jh++ctf8vjjj/dJvUVEBruojJQCOProo5k/fz4NDQ2kpqZisVi0ooaIyCCnvqFvRUZKxSDROUCGK/QxokRBKRE5gGhf/4uKikhNTe0Q5JozZw4Av/nNb5g2bVrkfIZhMHXqVNatW0dhYSHFxcX86Ec/ihw3YsQI8vLyKC4uxm63U15ezowZMyLl06ZNo7S0lKqqKoYNG9ZnbRARGYyi8t2qaZrcd999HHvssRx//PGUlZVx/fXXc/PNN+Pz9e6D65w5c7jxxhsjzzUvXERkYIlG3zDYRXJKxWqklCs0UkpBKRHZn/64/peUlDBy5Eief/55zjzzTL7+9a+zfPlygsEg1dXV+wSPsrKyqKioAOg0uBQur66uBuhQnp2dDRA5XkREei8qH2OXL1/OP/7xD26//XbsdjsA//M//8M777zT5YpI+/Piiy/y1ltvRZ673W7mzJnD9OnTefbZZykoKGDu3Lm43W6AyLzwefPm8dRTT9HY2Mj8+fMjx+85L/zee+/lhRde4KGHHjrIVouIyP70dd8gsV19D0I5pQC+avRpBT4R6VJ/XP/dbjc7duzgySefZMmSJfzqV7/iscce4+GHH8bj8UTOG2a32yMBsdbW1i7LW1tbI8/3LAN6HFAzjJ4/Qgf27tiB9Ojt+zOQHoOhjWpn4j32bmc0RGX63nPPPcftt9/OjBkzCA+TPfHEE7njjjv4yU9+wq9//etuv1Z9fT1Lly5l0qRJkW17zgs3DIMFCxbwn//8h1deeYXCwsIO88IBli5dyqmnnkpJSQmjR4/uMC8c4Je//CX/93//p2SFIiJR1Jd9g4SEc0olGUAMYkJpThtWA3wBk6/qPRyaldz/lRCRuNcf13+bzUZzczN33303I0eOBKCsrIwnnniCMWPG7BNA8vl8OJ1OABwOR6flLperQwDK4XBEfgdwuVw9qmNWVlqP9vd6U4EqnE4HmZmpZGf37PiBpqfvz0A0GNoIameiiXY7oxKUqq2t7XR+dXp6emQ0U3fdcccdnHfeeVRVVUW2FRcXa164iMgA05d9g0DQNDsmOg/0fx0shsEQh0Fdq8kX1S0KSolIp/rj+p+Tk4PD4YgEpAAOO+wwysvLmTlzJjU1NR32r6mpidQpNze30/KcnBxyc3MBqK6uZtSoUZHfw+fsidraJswefIGwa1czAK2tXurqmnE4mnp0voHCMEI3vT19fwaSwdBGUDsTzd7tDD/va1EZ8H/cccfx4IMPdtjW3NzMPffcw7HHHtvt13nvvff46KOPuOaaazps17xwEZGBp6/6Bglp9e/OhZgUo+l7ABmO0Mk3VzfHrhIiEtf64/qfn5+P1+tl+/btkW3btm1j5MiR5Ofn8/HHH2O23z2apsnatWvJz8+PHFtUVBQ5rry8nPLycvLz88nNzSUvL69DeVFREXl5eT3+Mts0e/4IHdi7YwfSo7fvz0B6DIY2qp2J99i7ndEQlZFSt956K/PmzePEE0/E6/VyzTXXUFZWRl5eHvfdd1+3XsPr9XLLLbdw8803R4bWhsXTvPB4tucc0ETUX+3b8/WjOZd273PuPYc3kehvMz70d/36om+Q3Vp8oaCUgYkFYjF7D4ChjtAf0hdVLTGqgYjEu/64/h9++OGccsopzJ8/n1tvvZXq6mpWrFjB1VdfzZlnnsndd9/N4sWL+c53vsOTTz6Jx+Nh9uzZAFxyySVceumlTJkyhUmTJrF48WJOOeUURo8eHSm/6667GD58OAB33303V155ZZ/UW0RksItKUCo9PZ1nnnmG9957j23btuH3+znssMM46aSTsFi693XusmXLmDhxIieffPI+ZV3N+473eeGxMlDq2VvRbl8g4Mblsrefq3/m8wcCbpzO0DkTOYeA/jYHl77oG2Q3d/vcPVt74DpWQakMZ+jf7guNlBKRLvTX9f+uu+5i0aJFXHLJJbhcLr73ve9x6aWXYhgGDzzwALfccgt/+9vfOProo1mxYgXJyaEpxwUFBSxcuJB7772XhoYGTjzxRBYtWhR53auuuora2lrmzZuH1Wrlwgsv5IorruizeouIDGZRCUqdc845LFu2jOOPP57jjz++V6/x4osvUlNTQ0FBAbA7cPTqq69yzjnnDMh54f0t0ee69lf7amub8Xh8kd+t1ujnTKmtbaa11YfTaaeurn/O2Z/0txkfojUvvCt90TfIbuGRUklGbP/IhjgMDKC62ccut4/smNZGROJRf13/09LSulzNb/LkyTz33HNdHltYWEhhYWGnZVarlfnz53dYzVtERPpGVIJSFouFtra2g3qNxx57DL/fH3l+1113AaGV8j788EP+/Oc/Y5omhmEQnhf+4x//GNg9LzzcsXQ1LzwclDrYeeHxbqDUs7ei3b49X7u/3svO5vAmokRuGyR++3qqL/oG2S0yUsoS2z+yJIvB8LQkypva+KK6hSMPyYppfUQk/uj6LyIiXYlKUOqUU07hBz/4AaeeeiojR47cJ7/TvHnzDvgae66cAZCSkgLAmDFjyMrK0rxwEZEBpi/6Btlt9/Q9E4htArPDhzoob2pjU2UzZ8e0JiISj3T9FxGRrkQlKPX5558zYcIEqqqqqKqq6lBm9EFm3dTUVM0LFxEZYKLdNww2LXvklIq1IzMdvLOzmQ3liblcuYgcHF3/RUSkK30WlPre977HfffdR3p6Oo899hgQWgVv75Xzeuv222/v8FzzwkVE4l+0+4bBzO0LAJBkif1IqaOzQwuFfFreGNN6iEj80PVfRES6o8+WuygqKtpnrvgJJ5xASUlJX51CREQGGPUN0dPSYfpebB2R5cBqQFWzj/IGT6yrIyJxQNd/ERHpjqiuwW0qw6+IiOxFfUPf8MTR9D2nzcLY7FDux3U762NbGRGJW7r+i4jI3qIalBIREZHoCI+USoqDkVIAE0ekA/BxSX1sKyIiIiIiA4aCUiIiIgNQZPU9S7wEpdIA+HjnrhjXREREREQGij5dfe/ll18mNTU18jwYDPLaa6+RmZnZYb/zzz+/L08rIiJxTH1DdLT44mf6HsDkvNBIqeKvGvD6g9it+t5LZLDT9V9ERA6kz4JSeXl5/PWvf+2wLSsri5UrV3bYZhiGOh4RkUFCfUP0tLS1r74XJ9P3DhnqIjvFTk2Lj0/KGikYmU5VVWWkfNiwXCwWBapEBgtd/0VEpDv6LCj15ptv9tVLiYhIglDfED2RkVIxnr5nBoOR4NPUUUP45+fVFJXUMzLJw/2vfUzq0Gyad9Xw428UMHz4iJjWVUT6j67/IiLSHfrKUkREZAByx0mi8+aGOla+t5X7X/uYozJCcwmLShoASB2aTXrmMFKHZseyiiIiIiISpxSUEhERGWBM09yd6DwOckqlZGSSOjSbSbkuAD4pb8TrD8a4ViIiIiIS7xSUEhERGWDcbQGC7QOkkuJk9T0zGMTmqSMnJYm2gMln1a2xrpKIiIiIxLk+XX1PREREoq/ZG0pybhA/3y6FpvF5SCYTsFJU1oIj1pUSERERkbgWL59lRUREpJuavH4AkqxgxMH0vbCUjEwOywkt/15U5o5xbUREREQk3ikoJSIiMsC0tAel7JY4iki1G5Fqw2JASaOPlrb4mFooIiIiIvFJQSkREZEBJjJSKg57cYfNYFy2E4DylkCMayMiIiIi8SwOP86KiIjI/oRzSiVZ42+kFMD0kSkAlDVrBT4RERER6ZqCUiIiIgNMcxyPlAI4blQoKFXZEsTnV2BKRERERDoXpx9nRUREpCu7p+/F50ipQzIcjE63EwR27vLEujoiIiIiEqcUlBIRERlgwtP37NYYV2Q/TjgktArftlqtwiciIiIinVNQSkREZICJ5+l7ZjBIVVUlx6R6AfiqvpW2oFbhExEREZF92WJdAREREemZ5jievtdcX8dj2xoI+jwkW0fjDkC5Ep6LiIiISCfi8DtWERER2Z9mX3tQKk6n76VkZJKSkcmI5NAIqa+aAzGukYiIiIjEIwWlREREBpim1vacUnE4UmpPI1yhoFR5c5BWrcInIiIiIntRUEpERGSAiYyUivNefEgSpNqt+E1YW6aE5yIiIiLSUZx/nBUREZG9tYRzSlnje6SUYcBhWckA/PvLxhjXRkRERETijYJSIiKSsObMmcONN94Yeb5x40Yuuugi8vPzueCCC9iwYUOH/VevXs3pp59Ofn4+1157LXV1df1d5W5piuPV9/Z2ZE4KAB+WtlDvaQMgGAxSUVFORUU5waCm9YmIiIgMVgPg46yIiEjPvfjii7z11luR5263mzlz5jB9+nSeffZZCgoKmDt3Lm53aFrZ+vXrWbBgAfPmzeOpp56isbGR+fPnx6r6XfIHTTxtoUBOvOeUAshKsZPhMPAH4Z+bqgCoqqrk/tc+5v7XPqaqqjLGNRQRERGRWFFQSkREEk59fT1Lly5l0qRJkW0vvfQSDoeDG264gbFjx7JgwQJSUlJ45ZVXAFi5ciWzZ8/m/PPPZ9y4cSxdupS33nqLkpKSWDWjU83to6Qgflff29thQ0IV/fsnFZhmKPl56tBsUodmx7JaIiIiIhJjCkqJiEjCueOOOzjvvPM44ogjItuKi4uZNm0ahhEaXWQYBlOnTmXdunWR8unTp0f2HzFiBHl5eRQXF/dr3Q8kHJSyWw0sRvyPlAIYk27FbjX4orqFT8qbYl0dEREREYkTCkqJiEhCee+99/joo4+45pprOmyvrq5m2LBhHbZlZWVRUVEBQFVV1X7Lu8swQo89f+/LR4svAECqfeB04Q6rwdcOTQPg6XWl7BlLi8Z71N+PRGmH2q1279lGERGR/mCLdQVERET6itfr5ZZbbuHmm2/G6XR2KPN4PNjt9g7b7HY7Pp8PgNbW1v2Wd1dWVlqnv/cVS4MXgDSnDZfLjt9jx7DbMS0BDLud5GQHLmfHbXv/jOo+Pg9OZ8d92jx2vjduBK9vbeSNL2q45oRcXK7Qe52ZmUp2dt+/T/0tGv/WA4HaLSIiIgdDQSkREUkYy5YtY+LEiZx88sn7lDkcjn0CTD6fLxK86qrc5XL1qA61taHpaVlZadTWNtGeQqnPlFWFXt9pNfB4fHhafViCVoK+0E+327vPtr1/RnMfhwVaW30d9/H4yLEFyR+ZTnFpIw++8xVOM/Re19U1Y7cP3Cl9hhG9f+t4pnYnbrvDbRQREekPCkqJiEjCePHFF6mpqaGgoAAgEmR69dVXOeecc6ipqemwf01NTWTKXm5ubqflOTk5ParDnjeqpkmf37g2teeUSkmyAMG+ffEoMYNBKisrKTwqleLSRl7e3MCZh9px2YyovEexkCjt6Cm1W0RERA7GwElIISIicgCPPfYYL7zwAs8//zzPP/88p512GqeddhrPP/88+fn5fPzxx5HV30zTZO3ateTn5wOQn59PUVFR5LXKy8spLy+PlMeLJm8op1Ry0sDpwpsb6lj53lbWbPiCcdlOfAGTz+r8Bz5QRKQX5syZw4033hh5vnHjRi666CLy8/O54IIL2LBhQ4f9V69ezemnn05+fj7XXnstdXV1kTLTNLnrrrs47rjjmDlzJkuXLiUYHBhfCIiIDAQD5xOtiIjIAYwcOZIxY8ZEHikpKaSkpDBmzBjOPPNMGhsbWbx4MVu2bGHx4sV4PB5mz54NwCWXXMLf//53nn76aTZt2sQNN9zAKaecwujRo2Pcqo6aWtsAsAa8kQDbQJCSkUlaZjbfnZwJwNb6AB7/wKm/iAwML774Im+99VbkudvtZs6cOUyfPp1nn32WgoIC5s6di9vtBmD9+vUsWLCAefPm8dRTT9HY2Mj8+fMjxz/00EOsXr2aZcuWce+99/LCCy/w0EMP9Xu7REQSlYJSIiIyKKSmpvLAAw9QVFREYWEhxcXFrFixguTkZAAKCgpYuHAhy5cv55JLLmHIkCEsWbIkxrXeV9WuRgC2VdRGbqoGkinDkzkmx0nQhM9qNVpKRPpOfX09S5cuZdKkSZFtL730Eg6HgxtuuIGxY8eyYMECUlJSeOWVVwBYuXIls2fP5vzzz2fcuHEsXbqUt956i5KSEgAeffRRrrvuOqZPn85xxx3HL3/5Sx5//PGYtE9EJBEpp5SIiCSs22+/vcPzyZMn89xzz3W5f2FhIYWFhdGu1kFxt4WmjbicjhjXpHcMw+C7k7L4zZulbG0IUN3SxvBYV0pEEsIdd9zBeeedR1VVVWRbcXEx06ZNwzAMIHQNmjp1KuvWrYt8QfGjH/0osv+IESPIy8ujuLgYu91OeXk5M2bMiJRPmzaN0tJSqqqqIjkJRUSk9zRSSkREZABp8YWCUjYjxhU5CPnDXeS4DIImPPFJ3YEPEBE5gPfee4+PPvqIa665psP26urqfYJHWVlZVFRUAHQaXAqXV1dXA3Qoz87OBogc3xOG0fNH6MDeHTuQHr19fwbSYzC0Ue1MvMfe7YwGjZQSEREZQFraQonOkywDNx+TYRhMzknijZ0+3tjWyJe1bg7NSo51tURkgPJ6vdxyyy3cfPPNOJ3ODmUejwe73d5hm91uj6zO2tra2mV5a2tr5PmeZbB7ddeeyMpK69H+Xm8qUIXT6SAzM5Xs7J4dP9D09P0ZiAZDG0HtTDTRbqeCUiIiIgPI7pFSAzcoBZDtspCXaqGsOcj9737J7eeOj3WVRGSAWrZsGRMnTuTkk0/ep8zhcOwTQPL5fJHgVVflLperQwDK4XBEfgdwuVw9rmdtbRM9WZ9i165mAFpbvdTVNeNwNPX4nAOBYYRuenv6/gwkg6GNoHYmmr3bGX7e1xSUEhERGUBa2nNKJQ3woBTApGwb5c0+3viiho0VTYwfPji+cRSRvvXiiy9SU1NDQUEBsDtw9Oqrr3LOOedQU1PTYf+amprIlLzc3NxOy3NycsjNzQVCUwBHjRoV+R0gJyenx/U0TXp0AxvZ1+z5sQOR2pg41M7EEu12KqeUiIjIAOIOj5RKgB48w2HhlMNCgaj73v4ytpURkQHrscce44UXXuD555/n+eef57TTTuO0007j+eefJz8/n48//hiz/Y7KNE3Wrl1Lfn4+APn5+RQVFUVeq7y8nPLycvLz88nNzSUvL69DeVFREXl5eUpyLiLSRzRSSkREZIAwTXNAj5Qyg0GqqipDv5smhmHw3clZ/GdHM+/v2MWn5Y1MGJEe41qKyEAzcuTIDs9TUlIAGDNmDFlZWdx9990sXryY73znOzz55JN4PB5mz54NwCWXXMKll17KlClTmDRpEosXL+aUU05h9OjRkfK77rqL4cND64TefffdXHnllf3YOhGRxKaglIiIyADh9QfxB0PBqIGYU6q5oY6V73kw2zyk5owk2eXC4q5j1qGpvLmtib+u2cnd50+MdTVFJIGkpqbywAMPcMstt/C3v/2No48+mhUrVpCcHFpcoaCggIULF3LvvffS0NDAiSeeyKJFiyLHX3XVVdTW1jJv3jysVisXXnghV1xxRYxaIyKSeBSUEhGCwWAkn0J2djYWSwLMCxJJQM2+QOR3W5SW5Y22lIxMgj4PsDtI5cwZCZj8Z2sdW6pbOCInJbaVFJEB7fbbb+/wfPLkyTz33HNd7l9YWEhhYWGnZVarlfnz5zN//vw+raOIiITozlNEqKmp4YE3inngjeJ9kn2KSPxo9voBSLKEVkBJBCkZmYwaPpzRaVYAHv5gZ4xrJCIiIiL9RUEpEQEgZUgmKUMyY10NEdmPPYNSieaYzNDg7dc+r6ZklyfGtRERERGR/pCAH2tFREQSUyQoZU2QYVJ7yLDDpGwbQRMe/bCEYDBIRUU5FRXlBIPBWFdPRERERKJAQSkREZEBoskbyillT8Deu7mhDltLaPrwyxsr2fZVGfe/9jH3v/ZxZMU+EREREUksSnQuIiIyQOyevpd4I6UA8jLT2FZt0OAzeXNbE6lDs2NdJRERERGJogT8rlVERCQx7Z6+F+OKRIlhwBEZoca9tLke0zRjXCMRkdhoavXz0Noaat2BA+8sIjKAKSglIiIyQCT6SCmAMUOsuGwGpY1tVLmVS0pEBqePSup59rN6PipvjXVVRESiSkEpERGRAaKxNRSUsifoSCkIBdxOPSwdgC31GiEgIoPToZnJAFS3BAhq1KiIJDAFpURERAaISFAqgUdKmcEgx2aH2lnaHMTdppsxERl8Ds10keawEDBhV6uugyKSuBSUEhERGSAavYk/Uqq5oY5/f/IlQ4xWTGB7o0ZLicjgYxgG43NcANS0aiqziCQuBaVEREQGiN3T9xJ3pBRASkYmY1JDv+9oDCjhuYgMSuNznABUe3QNFJHEpaCUiIjIANHU2gYk9vS9sOEOPxbDpMlnsqXOG+vqiIj0u3BQqsYTVHBeRBKWglIiIiIDxGBIdB5ms8BwZ+gm7N9fNsW4NiIi/W9sphMD8Aag1qOpzCKSmBSUEhERGQCCpkmTd3BM3wsbmRwKSv3nyyb8QY0SEJHBJclq4LSFrvf17V9KiIgkmrgOSlVWVnLdddcxc+ZMTj75ZJYsWYLXGxrCX1JSwhVXXMGUKVM466yzePvttzsc++6773LOOeeQn5/PZZddRklJSYfyhx9+mJNPPpmCggJuuukmPB5Pv7VLRESkp9y+AOG4TFJc9959J8cZGhVW3xrgo527Yl0dEZF+50pqD0pppJSIJKi4/VhrmibXXXcdHo+Hxx9/nN///vf861//4g9/+AOmaXLttdeSnZ3NqlWrOO+885g3bx5lZWUAlJWVce2111JYWMgzzzxDZmYm11xzTWQu9quvvsqyZctYuHAhjzzyCMXFxdx5552xbK6IiMh+7Znk3DYIckoBWAw4JC00V/Hlz6piXBsRkf7nioyUUlBKRBJT3Aaltm3bxrp161iyZAlHHnkk06dP57rrrmP16tW8//77lJSUsHDhQsaOHcvcuXOZMmUKq1atAuDpp59m4sSJXHnllRx55JEsWbKE0tJSPvjgAwAeffRRLr/8ck499VQmT57MbbfdxqpVqzRaSkRE4lZje5LzVHvcdt1RMSY9FJT61+YaPG26KRORwcVpC13zG7y6/olIYorbT7Y5OTn85S9/ITs7u8P25uZmiouLGT9+PMnJyZHt06ZNY926dQAUFxczffr0SJnL5WLChAmsW7eOQCDAJ5980qF8ypQptLW1sWnTpug2SkREpJfCI6VSB0OW8z1kOQ2GpybhaQvyny21sa6OiEi/ioyU8iinlIgkJlusK9CV9PR0Tj755MjzYDDIypUrOe6446iurmbYsGEd9s/KyqKiogJgv+WNjY14vd4O5TabjYyMjMjx3WXE+eyJcP3ivZ49FQwGqampwTAgMzMl6u3b8/UNo3/ezz3P0x/n7O82JurfZthAaV+810862h2Uitvvk6LCMAy+NiaVv326i39+Xs03jxl24INERBKEU9P3RCTBxW1Qam933nknGzdu5JlnnuHhhx/Gbrd3KLfb7fh8PgA8Hk+X5a2trZHnXR3fXVlZaT1tRkwMlHp2V2VlJQ+//RkAv8hMJTc3N6rnCwTcuFyhv5esrFSys6P/fgYCbpzO0DkzM6N/zli0MXSuxPrb3Fuit0/6V2P7yntpDiswuG5OvnZoGn/7dBfvbq+jsbWNdGdSrKskItIvnEkKSolIYhsQQak777yTRx55hN///vccddRROBwO6uvrO+zj8/lwOp0AOByOfQJMPp+P9PR0HA5H5Pne5S6Xq0f1qq1twozjFaoNI3RTHO/17Kna2masjtTIKI9ot6+2thmPx7f73NbkAxzRN+dsbfXhdNqpq4v+Ofu7jYn6txk2UNoXrqcMDE3tI6VS7BYGW1BqTIaDsdnJbK1x8+/NtXxr0vBYV0lEpF+42nNKKSglIokq7oNSixYt4oknnuDOO+/km9/8JgC5ubls2bKlw341NTWRKXm5ubnU1NTsU37MMceQkZGBw+GgpqaGsWPHAuD3+6mvrycnJ6dHdTNN4vqGM2yg1LO7wm3Z82c027fna/fXe7nnefrjnLFoY3+fKxYSvX3Sv3YnOreC2Rbj2vS/b44bxp/e/pIX1pcwM8dk2LBcLJbBNZVRRAYfTd8TkUQX15/mli1bxpNPPsk999zD2WefHdmen5/Pp59+GpmKB1BUVER+fn6kvKioKFLm8XjYuHEj+fn5WCwWJk2a1KF83bp12Gw2xo0b1w+tEhER6blwTqm0QZZTKuwbR4e+OFpX4eYPr6yjqqoyxjUSEYm+cKLzRm8Af1DfdIlI4onbT7Zbt27lT3/6Ez/60Y+YNm0a1dXVkcfMmTMZMWIE8+fPZ/PmzaxYsYL169dz4YUXAnDBBRewdu1aVqxYwebNm5k/fz6jRo3i2GOPBeC73/0uDz74IK+//jrr16/n1ltv5eKLL+7x9D0REZH+MlhX3wsbleHiqCwHYLDLOiTW1RER6ReO9qCUCTR4Bt8oWRFJfHE7fe+NN94gEAhw3333cd9993Uo+/zzz/nTn/7EggULKCwsZMyYMSxfvpy8vDwARo0axR//+Ed+97vfsXz5cgoKCli+fDlGexKis88+m9LSUm6++WZ8Ph9nnHEG119/fb+3UUREpLvCic5T7RbqY1uVfmUGg5FRUVOz4Ita2NGoaSwiMjhYDAOHFbwBqHP7yEqxH/ggEZEBJG6DUnPmzGHOnDldlo8ZM4aVK1d2WT5r1ixmzZrV69cXERGJJ02DdKRUc0MdK9/zMGykj51fbgPyqG2FiqY2hivfuYgMAk6rgTdgUtfSBj1LgSsiEvfidvqeiIiI7BZOdJ7mGFxBKYCUjEzSM4cxNGMIOaFFdHl9W2NsKyUi0k+c7cMIat2+/e8oIjIAKSglIiIS54LBIPXuUFDK21SHOYiXdRydEmr761sbCSjpr4gMAg5rKAVJnVs5pUQk8SgoJSIiEudKy8vx+IMAvPTRJtxud4xrFDu5LhO7FWo9ft7/clesqyMiEnXhoNQuBaVEJAEpKCUiIhLnGr2hgJQBpA8ZGtvKxJjVgEPTQh9fHnl/G8FgMMY1EhGJrvCs7fA0bhGRRKKglIiISJxr9IZWm3MmWWhfSHZQy7M2YWDycbmb9zftjHV1RESiyt4+UqqhfcELEZFEoqCUiIgklMrKSq677jpmzpzJySefzJIlS/B6vQCUlJRwxRVXMGXKFM466yzefvvtDse+++67nHPOOeTn53PZZZdRUlISiybsIxKUsg2+JOedSbaajHCF8kmt2lgX49qIiERXeKRUg0cjpUQk8SgoJSIiCcM0Ta677jo8Hg+PP/44v//97/nXv/7FH/7wB0zT5NprryU7O5tVq1Zx3nnnMW/ePMrKygAoKyvj2muvpbCwkGeeeYbMzEyuueaauEgq3tC6e6SUhIxNC/27/HdHM59WNMW4NiIi0WO3hEdKKSglIolHn25FuqHWE+CDci/3vFOG16/8JSLxatu2baxbt44lS5Zw5JFHMn36dK677jpWr17N+++/T0lJCQsXLmTs2LHMnTuXKVOmsGrVKgCefvppJk6cyJVXXsmRRx7JkiVLKC0t5YMPPohxq/YcKaVuO2yIHcakWzCBu97cQjAOgociItGwe6SUpu+JSOLRp1uRA9ha18o/v2xla72fN7Y18q/NNbGukoh0IScnh7/85S9kZ2d32N7c3ExxcTHjx48nOTk5sn3atGmsW7cOgOLiYqZPnx4pc7lcTJgwIVIeS7tzSmn63p7yc5Jw2Qw2lDfxRFFprKsjIhIVu3NKtcXF6F0Rkb6koJTIAXxY2tzh+X+21saoJiJyIOnp6Zx88smR58FgkJUrV3LcccdRXV3NsGHDOuyflZVFRUUFwAHLY0kjpTrnshlcURAKQP7xv9spLm2IcY1EJFaimU/w4Ycf5uSTT6agoICbbroJj8fTb+0CsLd/H9EWMGnViH0RSTD6dCtyAOsr3ACMSQ99Inh3ex1tAX0gEBkI7rzzTjZu3MjPfvYzPB4Pdru9Q7ndbsfn8wEcsLy7DIPICnnh3w/2sefqe9LRWUcN4YyjswkETX7+3CcUfbED0wz22XvfnQf037ni6aF2J+5joIlmPsFXX32VZcuWsXDhQh555BGKi4u58847+7V9NgPC30ko2bmIJBpbrCsgEs98/iCfVYe+DRufZafB56O+NcDarxo4dszQGNdORPbnzjvv5JFHHuH3v/89Rx11FA6Hg/r6+g77+Hw+nE4nAA6HY58AlM/nIz09vUfnzcpK6/T3g+EOxaRIT3HgCtox7HZMS6DTn8nJDlzOGO7j8+B09s+5XC47WVlp3HBqMh9ur2KXF37+0pc8cXkq+Ucd2ifvfXf11b/1QKN2SzwI5xN85513ItO3r7vuOu644w6+9rWvUVJSwpNPPklycjJjx47lvffeY9WqVfzv//5vh3yCAEuWLOHEE0/kgw8+4Nhjj+XRRx/l8ssv59RTTwXgtttu46qrruL666/H5XL1S/sMwyDdYaXOE6DB42d4z7olEZG4pqCUyH5sqGjEFzBxWg2GOAxmjkrln1saeHtbnYJSInFs0aJFPPHEE9x5551885vfBCA3N5ctW7Z02K+mpiYyZS83N5eampp9yo855pgenbu2NrQSXFZWGrW1TfRF+o/a5lCwzBIM4mn1YQlaCfo6/+l2e2O6j8MCra2+fjmX1ZpEXV1oivXXRrv4d2mAhlY/1zz1GXed5WHs6DwsluiOLjOMvv23HijU7sRtd7iNA0m08glOnz6dTz75hHnz5kXKp0yZQltbG5s2baKgoCC6DdtDmj0UlKrXCnwikmA0D0BkP4p2NgAwLMWCYRhMyg19oPm8qnl/h4lIDC1btownn3ySe+65h7PPPjuyPT8/n08//ZTW1tbItqKiIvLz8yPlRUVFkTKPx8PGjRsj5d1lmkRuVsO/H+xjd04pJTrfW/g9ctoMZo8fhsMSpLQlyDXPfcFH64opLy8nEAj22b9FZ4896zGYHmp34j4GmmjlE2xsbMTr9XYot9lsZGRk9Hu+wTRH6LZN0/dEJNEoKCWyHxsrQyMeclyhG8HRQxwAbK91x6xOItK1rVu38qc//Ykf/ehHTJs2jerq6shj5syZjBgxgvnz57N582ZWrFjB+vXrufDCCwG44IILWLt2LStWrGDz5s3Mnz+fUaNGceyxx8a0TaZpKqdUF8xgkKqqSqqqKjFNkzSHjZkZrSQZJrv8Nm5+q4b7/vkxVVWVsa6qiPSjvsonGP4Soy/yDcJB5PcyIM0R+iza2OqPec4x5WpTG9XOwdvOaND0PZH92LkrlE9qSPu3U6OH2DGAek8bu9w+hibb93O0iPS3N954g0AgwH333cd9993Xoezzzz/nT3/6EwsWLKCwsJAxY8awfPly8vLyABg1ahR//OMf+d3vfsfy5cspKChg+fLlGNHqgbupxRcgvNiS02ahIaa1iS/NDXWsfM+D2eYhNWckQ7IgzRZkRnaQ96st1AQcVFtTYl1NEelHfZlP0OFwRJ7vXd6bfFI9nRbp9aYCVTidDrKtNqAFv8VCdvbAml7ZXQNt2mhvDIY2gtqZaKLdTgWlRLrgD5qUNoS+IUuzh25KnTYLI4Y4KWtoZVutm2kKSonElTlz5jBnzpwuy8eMGcPKlSu7LJ81axazZs2KRtV6rb59qobVAJtVI6X2lpKRSdDXcXn2TAcclepjU7ODdVV+at1+hseofiLSf/o6n2BGRgYOh4OamhrGjh0LgN/vp76+npycnB7Xr6e5yHbtCqWLaG31Ym+//pfVtVBT09Tjc8czwxg8udoSuY2gdiaavdsZft7X9OlWpAvlDa0EgiYOq4HLtnukxOFZobxS2zSFT0T6QTh/iEPppHrkMFcbGXaTtiCsLK6NdXVEJMqikU/QYrEwadKkDuXr1q3DZrMxbty4Htex1/m9zFCicwj1CbHOORatPGaxroPaqHaqnQduZzQoKCXShfDUvbx0e4fpO+GglPJKiUh/2BUJSsV2GuFAYxgwYUho3uMb2xpZs+lLgsFgjGslItEQzXyC3/3ud3nwwQd5/fXXWb9+PbfeeisXX3xxr6bvHYxwTqkGj79fzysiEm2avifShZ317UGpNDuw+0bm8KxQfpJttS2xqJaIDDK1LaFcJk6bglI9NdQBwx1+Krw2Fr22jb9kOBg+fESsqyUifSya+QTPPvtsSktLufnmm/H5fJxxxhlcf/31/d7GyOp7rVp9T0QSi4JSIl0oCY+USkuCoDey/TCNlBKRflTdrKDUwTgqxUuF10qlz8b2XV6GK7mUSMKJdj7BA71+f0jfY/qeiEgi0fQ9kS6U7DF9b0/hoFSdu00fDEQk6mraR0q59DVSr6TaTPJcoSQIT22oi3FtRER6J719+l69pu+JSIJRUEqkCzt3hUZCjdwrKOVKspKdEtr2VUPrPseJiPSlmvaRUi7llOq1I9JDQal3dzZrlKuIDEjpzlBQqsnrpy2g/HgikjgUlBLphM8fpKIpNGUvlFOqo9EZTgC+2uXZp0wOLBgMUllZSVVVlRIPixzA7pFSCkr1VnoSjEy1YAIPrdkZ6+qIiPRYqt1C+LuJeo3UF5EEoqCUSCdKG1oJmpBit5Lh3Hcd9lEZoRVXvmqITlDKNM3IIxHV1NRw998/5P7Xi6mpqYl1dUTiWnVzKECunFIHZ3xWaP7jq5uq+KpeXyiIyMBiMQwykkNflNa5FZQSkcShoJRIJ8JT90ZnuCKrr+xp9NBQUKqkvu+n79W5fVz53Fae3OTmyU8aqGyfupNoUjMySRmSGetqiMS1oGlS237zoZFSByfTaWF6XjJBMzRaqqKinIqKco3WFJEBIzM5CYBd7sT8bCgig5OCUiKd2Nk+Le+Q9uDT3kYOid70vWeLy6lqCSWx9PhN/v7Zrj4/h4gMDPWeNgJBEwNwKtH5Qfv2xFAg/MVPK/n9K+u4/7WPqaqqjHGtRES6Z6grFJTSSCkRSSQKSol0oqR9asfoLoJSu0dK9W1Qyh80eW59OQBj0kPTBl/f2kBrW6BPzyMiA0M4yfkQpxVLJ6M2pWfG5biYcUgGARN2BtJJHZod6yqJiHTb0MhIKQWlRCRxKCgl0omSA4yUGjUktL3O3Ybb13cBo3e21VLV7CPdYWXmCAepdgvNviCvfV7dZ+cQkYGjuj3J+VDXvrntpHeuOu4QALbVB2jyaeqeiAwcQ9tzSu1SonMRSSAKSol04kDT99KcNoa0z6Xpy4S54eDT6WOHYLMYHJ0d+vDxz00KSokMRrXtI6WGau5en5k2OoNpeckEgXVV/lhXR0Sk25RTSkQSkYJSIntpbQtQ1X4jODqj86AU7J7C15dBqQ3lTQBMHZECwKj00IeP9WWN+IOJuRKfiHStuiW08l5WsoJSfemqqTkYQFlLkI9KW2JdHRGRblFOKRFJRApKiewlnCdqiNPGkPbOvzOjMvp2Bb5dbh+lDa0YwFHZoUTqQ11WkpMsuNsCbKlu7pPziMjAURMZKaXpewfLDAapqqqkoqIch3cXRw4NvafLP6iixacRUyIS/5RTSkQSkYJSInsJT93rKsl52OiM9hX4+mikVHiU1KGZyaTYQzdLFsNg/LBQPT4ubeyT84jIwFHTnlMqUyOlDlpzQx0r39vKyo9KeOw/Gzjc5SMlyaDG7Wf5f7+MdfVERA4oklNK0/dEJIEoKCWylwPlkwoLj5Tqu6BUKOg0cURah+0ThiUDsO6rhj45j4gMHOWNoel7OQpK9YmUjEzSM4eRPCQTmwVm5Ibe16fXlfGxrrEiEufCOaU0fU9EEomCUiJ7Ca+8t798UtD30/fCI6X2DkpNbB8pta60AdNUXimRwcI0zUjQe3ha11OJpfeGuQxOzgu9t7e+tJGdpaUEg1qRT0TiU3j6Xqs/iKet71Z/FhGJJQWlRPYSzil1oJFS4el7VU1evP6Du4kJmiafVoSDUukdyo7MdpJkNahzt1Ha0DcBMBGJfw2tflp8oZuOYSkKSkVDc0MdZkM5dvyUNbVxwz8+o6qqMtbVEhHpVHKSFYctdPumvFIikigUlBLZS3dzSmW4kkixWzGBsoMMFn1Z56bFF8Bps3B4dkqHMrvVwpE5qQBsbA9ciUjiCwehs1PsOG3qrqMlY+hQJg4J3dxtc9vZVueNcY1ERDpnGAYZrnCyc+WVEpHEoE+5Into9voj8/QPNH3PMIw9pvAdXF6pDWWhYNP44WnYLMY+5eNzQ0GpTxWUEhk0StuvK6PaR2VK9Ax3BBjhMjGB/3u/En9QU6VFJD6F80rVtGiklIgkBgWlRPYQDi5lJieR6jhwYuG+WoFvQ0XnSc7Dxg8Pbf9MQSmRQSM8UmrkEAWl+sOEjCB2C2zb5eXxj76KdXVERDqVm+YAoKJRKR1EJDEoKCWyh5113csnFbZ7Bb6D+2AQTnI+Ya98UmET2oNVm6qaCegbfJFBobQ+HJTq3vVIDo7TClOGhUYg/Pm9Heyoc8e4RiIi+8pr/6KiTEEpEUkQCkqJ7GFnN5Och4Wn1RzM9D23L8DWmhYAJnUxUmrM0GSSk6x42oJs142SyKBQ2hC6rozU9L1+MyYVJmRZ8fqD3PLip/gDWt1KROJLePTsweYzFRGJFwpKieyhJJzk/AD5pMLCydB3HkSg6LPKJoImDEu1k5Pq6HQfq8VgXHteqY3lmsInMhh8Va/pe/2tpXEXaZ4qbAZ8WuXhz//5PNZVEhHpYER6qE8ob9SiDCKSGBSUEtlDSQ9HSh2eFVopr6zRS4vP36tzhqfuTcrrfOpeWDiv1MZKBaVEEl1bIEhlU+iGw+5rpKqqEtPU1N3+kJ2ZwXGHDQXgkY9rKC5tiHGNRER2y9NIKRFJMApKibQLmibba0Mjng7JTO7WMRmuJLJT7ACRY3tqQ3koyfmE4Z1P3QuLBKWU7Fwk4ZXUezABp83gyf9+wmP/2YDbram7/WXcsFRGp1oImPDz5zawvaY51lUSEQF2j5Rq8vppau3dF6IiIvFEQSmRdmUNrbT4AiRZDQ7t5kgpgLHZoQDWluqWHp/TNE0+CY+U6iLJedj44aHpe5urW/D5gz0+l4gMHJ9XhYIgh2U4SMvMJnlIZoxrNLgYhsExzkbSLG00egNc8/T6Xl3jRUT6WrLdylBXaFEGJTsXkUSgoJRIu83tNxyHZ6Vgs3b/v8bY7NAUvq29GClV2eSltsWH1SCSM6oreelOhjht+IMmm6v79lv7rxq8VLQEcLcp2CUSDzZVhv6Pj83sPM+cRJ/NAsflWkizG9S4/Vz1xDpe2qhplCISeyPap/CVawqfiCQABaVE2oUDPUfmpPTouHBQaktNz79FD+eTOjInFWeSdb/7GobBhPbV+T6t6Lug1DPrypj7j+38a2cr/9ji4d/bG/vstUWkd76oUlAqHjis8PVD7EzKdeFuC3DLy59z5coPeeXjLZSXl1FRUU4wqGC+iPSvvPYpfBopJSKJQEEpkXbhkVI9DUodER4p1YupHZ+E80mN2H8+qbDxuX2b7PyljZXc8cYWAJJtBibw+3fLKCqp75PXF5GeM02TTe1BqcOHauW9WHNYDRaeNpLL8rOwYLKhqpXfvFnGD57dym2r11NRWRHrKorIIJM3JPSFhZKdi0giUFBKpN0X7UGlo3L2P41ub4dnJWMAuzxt1Ll9PTo2PFJqYneDUu3Jzj8tP/jRTM1eP7//9zYA/md8Juce4WJ0mhV/EBa9+gVtgcT59j8YDFJVVUVVVZVGNUjcK21opdkbym83eog91tURwGYxuGhiJmcd7mSMy4cFk9pWk48aXFzzwg4eX7OD1rZArKspIoPEyPbpezt3eWJcExGRg6eglAw4Td4AH5Z7eXmbhx89tYn1ZX0ToAl/29TTkVLOJCuj2xOjh/PAdIfbF+DT9pX0powc0q1jJuWlYwBf1nmoaelZAGxvD76/k3pPG4dmuriiIAeLYXBcnoOhLiulDa08tz5xvv2vqanhgTeKeeCNYmpqamJdHZH9Ck/dOyI7hSSrEePaiBkMUlVVSVVVJck2mJDm47QRQSbnpZFkga8a21jw3AbOuv89fv/PT9i6o0TT+kQkqsa1j5zfUN5EUHnuRGSAU1BKBpTaFh83/nMnW+r91HuDrC9r5odPrOPvn5Qf1Ot+0Z5PaliqnSHtK5r0xKS80Mp5H3/V0O1jPv6qgUDQJG+Ik1EZ3VvtL8OVxNHDQiO5Pty5q8f1DKtu9vLUx6UA/HTWWGyW0I2vzWJwyaRsAB58fweeBPrmP2VIJilawUwGgPAIyqOG9WzUpkRHc0MdK9/bymP/2YDbHVrQwmmFY8cM5dTMZo6wN+M0AjR6g/y/T3Zx2aqtzP/HJ5RVJE5gX0Tiy1HDUklOstLk9bO1FzlNoyUYDFJeXhZ5KDgvIt2hoJQMGEHTZP4LG/my3ovTanDSSAdnjsskaMIdb2zhs4PIs1RUEgomhYNLPTV1VGikU0+CUh+0B5VmHpLRo3PNHBPa/8Md9T06bk8rP/qKtoBJfl46Jxw2tEPZN4/MYFSGkzp3G8+tP7hgn4j03Dvb6wA4Kh2qqrTaWzxIycgkuZOgts0C44a5mD0qQEFmkGRLEJ9pYUOTk+te3MmaL3v/5YGISFdsFoNJeaHRUh9/FT8L1FRWVnD/ax/z+Ecl3P/ax1Qq556IdIOCUjJgPL++nI9LG3HaDL4+xsnodBu3nnkYs47Ioi1gctPqz3qd0+PDHe0BojFDD7Bn58JBqU8rmrpdhw/ag0ozehqUOiRUxw921vfqZrXe3cazxaFg0w+OOwTD6Dg9yGYxuGLmaAAe+/ArvH59yyXSX8oaWtlW68ZiQPHnWzqMzpH4ZTFgZLLJ17LcTMgI4rBCSaOPeas+4fq/f8pX9cr7IiJ9K5z6obi0+1+I9tSBRj7tWR4uSxuaTXpWLmlDs6NWLxFJLLZYV0AGvmAwGMnTk52djcXS97HOqiYv9/5nOwCXT8mhsSU0VNkwDG458yi+83ARX9W38tCanVx90mE9em23L8D69ukyPR21FDZyiJNhqXaqmn18Ut7IjEP2H9yqbfGxpX24dU+DUvkj00myGlQ2edmxy8Ohmck9Ov6Jj0tp9QcZNyyVEw7tvJ5njc/lz+/tpLLJyz82VHDRlLwenUNEeuftbaFRUsfkuBg61EmTvjoaUCwGHJZqcmRmEs1+gzdLfPx7Sy3vbq/jO1NH8p2pI8lJdcS6miKSAMJBqXWlDZimuc+XjF0JBoOREUy5ucOxWCy4fQHKG1upd/vYWVGNN2AyZMgQGhoaeP2TL3GlpNHa0sTXJzUxNGP3Z8faXXW8/slOgsBxR9VjANsbAqTjxvQEafQGGN6DuonI4KSglBy0cBJpgLlfz2fYsGF9fo4739xCiy/AxBFpnH30UJ5Yu3v+fLoziV+cdgS/+sdGHv3wK2Yfk8uhWd0P1PQmt9PeDMOgYNQQXt1UzdqShgMGpd74ohqAY3JTGZrcs9W1nElWpo4awpod9bz+eTU/PH5Mt49t9vr5W3suqR8cO7rLDwlJVguXzRjNnW9u4dEPSjh/0nCSrH1zd+z1B3l3ZxNf1HpxmEEl6BTZw9vbagGYkZeMxxM/eUKkZ3zNuwi4PZwxZiQflrqpbbPx6Idf8f+KSvnG0dmcdoiDo7OckRtCEZGemjgijSSrQVWzj49K6jv97Ll3ACqIwZpNO/jLfzfT5LeQMaSU8pYAVc2dLZ5T2f7TBU1+wMW6dyv32B4WWgnw07V7LCRTGfr9jZLtpDlKGD3UxSEZTrLtAUYNsTM63c6UsaOwWS1UVlZgGJCZeeRBvR8iMnApKCV9IpoJpN/cXMO/t9RitRgs+MZRWM19b9ROPSKLEw/L5J3tddzxxmb+dNHkbn8r8/6O3uV22tuMQzJ4dVM1b2yuYc4JY/Z7/hc2hDr0s8bn9upcZ43PZc2OelZ/WslVnUzB68oz68po9gY4NNPFKUfuf1j1tybm8tc1O6lo8vLyxiq+NWl4r+oaZpomz31SwbL/bKfJ649s//KlL7npmy4m9zKfl0iiKG9s5YOd9QDMHJXKW5sVlBrIUjIyGTFiOEbLRr5qClAaSKWuzcrLn1Xz8meQYg1y/oQ6Lpo5lpFDeveFiIgMXs4kK+dPGsHT68r4/b+38dj3p2K17P48aJom67eWsPxfm2jwW3GmfsW2Xb72tAyhQNKO1t1Ti+0WsAbbcCTZsBIgEAiAGcSa5MDhcuH3+chyWkiy7/4y1d/mY5c3iNnmIxjwY5pBSHJhJDlp8vjwBKDJ62djRRMbKzrmfrUaO8lLS8LX6ibdFuTnrVBwyHCsCtSLDDoKSklca2r1c+cbWwC4fMYojshJoapq3xs1wzD45Wlj+eiRej4qaeCVTVXMPubAAZ/WtgCvfFYFwEmHH1xg7etH5XDXm1vZXutmfVkj+e3Dqve2ubqZTVXN2CwGZ47r3aiyU4/MZukbWyhtaOXj0gamjso44DG1LT4e+bAEgCtmHoLlAIEsZ5KV708fxf+9tY0H1+zkjHE5OJOsvaqvzx9k4auf8+qm0AixnGQbdhtUNvvZWuflx38r5tYzj+aMXr4fIong8Y++IhA0mXFIBqOH9GwEpcQvw4Ax2akc43Jx9NAk3ijxsaaijZaAhcfX1/H4+jomDHNx3uSRfGPcMFId+mgmIt0z5/gxvPJZFZurW/jVPzZy0uGZVLf42FjRxKflTezytAHtQW9PKwAuG6QnGWQ4DI4fYWd4ioXP6toYljuC0i2fYiS5MNs87T99GElJ5I3JpXTLp7S0tGC2eDFsDoaPGkP5l9s4LHskZlvrHscFyRsznNItn9LY3AL2FCYdkkOFO8jaKj8tQRv1bh9+E0oa24AkKn1w9aotJCdtZ8YhGXxtbBYnjc0ks4ezCURkYBq0n3y8Xi+33XYb//znP3E6nVx55ZVceeWVsa6W7OX//rONmhYfhwx1ceVx+5+mNirDxZXHHsJ973zJXW9uZcrIIYxId+73mFc3VVHvaWNEuoMTD886qLqmOmycfnQOqz+t5O+fVHQZlHpmXSjJ+Mljs8hITurVuVxJVk4/Koe/b6jg6Y/LuxWUWvbf7TR7A4wblsqZx3Qv+FM4eQT/r+gryhp6l68LQlMGr//HRj7aWY/VYnDtSYdyxhg7z35aRX2TlwqvhXd3NrPgxU1UNnn5/vRRyj0gMRWL/qG2xcfzn4SmWIQWGmiN6vmk/zU31PF2uQd7m4dvjBhJeVMbO90WdgXsfFrl4dPXt3DXv7YyKdfFlOHJzDpmFEcOS8Nm0fVQJB7E471DRnIS133tUBa/toW3ttby1tbaDuVWA9LtBumGF2fQzeF5OTSXbiF96EjMNg/bd7Swze8lLXtkt86XmpEdCVilZ+XStKtmv/sPGRraf+PWLzH9XiZmjyRvzCi+2vwpdc0eWvwmweRsmoI26n3Q5AtE2mEA47IdTB+ZwnFH5jFhRDop9kF76yqS0Abt/+ylS5eyYcMGHnnkEcrKyvjVr35FXl4eZ555ZqyrJu2eXV/O39tv0haccSQO24GH8146YxRvba1lY0UTC1Z/xn0X53d5XCBo8sTaUH6li6bk9ckH//MnDWf1p5X88/NqrjzukH1yVG2saOK59aGg1LcLDi55+EVT8vjHhgpe/6KaC3aOYPp+ph+++UU1qz8NTRm84etHdBjevT/JdivXn3YEN/xjI498+BVfG5vFhBHdn2ZX2+Ljp89uYFNVM8lJVpaeN55jxwylujo0Os1hM7hx5kj+32fNPLm2lHv/s52yhlZ+cdoRA/pGLJTDoZLa2maysqKT/F+ip7/7h6Bpctsrn+P1Bxk/PI0Zh2RoGe0ElZKRSdDnwWKBkS4/o4e4SBuWx9rPt1PiseIO2Cgqc1NU5ubBtTXYrQajh9g5LMPBoUPtjB89jJEZLkakO3H1cuSqiPROPNw77JkjKrza3aHBak7KaOZLj52sNBeZacnkJvnYUVmH1V3DkKyRmG1ejKRU8kaMoLSlLvJ64SBTtO19HsOA7MxMsto8GEkmZlsj/iQf5vDhfFFaTW0whWYzic9qvHxW4+Wx4joMIG+Ik0ynQbbLyrAUGzmpdo4eOYwRQ5zkpjl6PaJfRGJrUAal3G43Tz/9NH/+85+ZMGECEyZMYPPmzTz++OMKSsWJlzZWsrR92t7cE8Z0ayQQhBJ0/+6ccXz/sbV8Ut7Ez5/bwJ3nTSDZvm8n9ae3v2RrjZvkJCvnHWS+pLDJeekUjBrCx181cPNLm1jx7Xxs7QnCGzxt/PafX2ACZx4zjGmju9emrhydm0ph/ghWFZez5PXN/OU7+Z0mTf/4qwZufvlzAC6ZOpJJPczddOqR2Zx6ZDb/2lzDT57dwIrv5HN4VsoBj1v7VT2/eXETVc0+hrqS+L8LJnJMbto++1ktBr84dSwj0h384d/beKa4nJ27PNx85tHkpvVulaq2QJDi0kbe3V5H0VcNfLXLjactgN1qsK3pK4493MuJh2dyWGZyVEZl1dTU8PDbn9Ha6ota8n+Jjlj0D08WfcV7X+7CbjWYWzCE8vIyamqqMbUIwKCQ6rAxNqWNIzJsNHjc1AWc7Gqzsstr0how2VrnZWudN7Rz0e5RCekOK8PTnQxNTsJlBMhwWhnitDJ6WCZZKXaGJtvJTE5iqCtJN2oiByle7h0qKyu4/7WPSRuaTfmXX2DYHJh+L0OyRzI5yUNLSx3DMsdQ9uUXZGaPxLRHL+drX0vPzGbosBEkeeowkgzcrc1UBVw0+G24/VDnNSltaKW0Ye8jqyK/DXFYyElJYlRmKrlpDlLwkpOSRFayjSNHDSc7VYErkXg0KINSmzZtwu/3U1BQENk2bdo07r//foLBoEY17IdpmtS2+Nha62ZbrZttNS18XtHA1joPbQF45vPPyUjexpihLsZmp3B4dgpHZKcwNjv5gENuTdNke52bRz4o4aWNoQ5m9jHDuOq4Q3pUx5FDXNx9/gR+9uynfLCznu888hFzTziUWUdkkeqwUdPs5bGPQqsgQWgUVrqzd9Po9mYYBrfNPprvPlrEJ+VN/PDJYr47bSSetgCPfvgVO3d5GOK08ZNZh/fJ+a496TDe2lLLzl0ernpiHb887QiOHTMUiwEVTV6eLS7nsQ9LCJhw/KFDua6X573lzKOobPKysaKJKx7/mLknHMq5E3P3ed+CpklxaSNPryvjtc9D+aPGDHVxz/9M5JCh+0/k+91poxiR7uQ3L23ig531fPvhj7i4II9vTRx+wFURg6ZJRaOXj3bW8/b2OtZ8uQt3W2Cf/dqCJmu+ambNV83c+5/tDE9zcMJhmZxwWCYzDsnoNHjZU4GgSbMvgC01A3tSG4GgAgsDSSz6h60VuwCTgpwknnvz3UhejtSc7k2nkMRgGJBuC5KRbBL0NeE2PHja2vCn5WK6hlJaXUdLG3iCFgJYaPQGaKzuLBl+7T5bkpOspNoNUuwWkm0Wku0WUpJCj1SHlSEOKxlOG2OGZ5OZ4mCIy4bdaiHJasFuNbBaDAJBk1Z/EK8/iC8Q+lneGqS0qoGK6lqCJuRkZuJIspJkNUiyWkiyGtitFqwGNOyqIcliMGJ4Ls4k2wHzGorEk1jfO5jtI7ABUjOyIlPnwv1FWGpGdrem1Q0ELqvJoc7QKKqWlhaGHH4IO3buhNQcPD4/rSThaQvS4gcfNvwmNHiDNHi9bAkH8jv4CoBUh5WsZDtpSSZDnTbSHFayh6SRbLcS8LbgslkYnp1JqtNGcpKVFLutwzUtyWLBZjWwWULbujv7QES6NiiDUtXV1QwdOhT7HqtHZGdn4/V6qa+vJzMzOt8q/OuLat7bUoEJOJ0uMIzIN+GmCSahm+vdz83IdsxQmUn4efvv7eWmuXvfYNCk1evFxCQ5JRmvz48FA8MAi2G0P9j93GJgIfx76Gf48ur1B/G0BWn2+qls8lLZ5O30Zj+sLWhS3eyjutnHRyUdv8rISbWTnWInK8VOit2KzRKqS5PXT72njfLG0OuHXXnsaOaeeGivRrJMHZXBsgsnMX/1Z5Q3ern1ldBIIYfN0r7qSMgPjh3d58m1R6Q7WXTWOH794iY+rWhiwYubImXD0xz8vnAi2Sl9k7gxzWnjvosn85NVn1BS38pPnt2A1WJgtxp42na384yjc1hwxlG9nhKXYrfxf/8zkV+9sJG1XzXwh7e2sey/2xmT6SIr2Y7FYtDgaWNHnSfy92EA35o4nJ+fOrbbwZ5Tj8zmse9PZeGrn7OhvImH1pTw0JoSctMcHDLURZrDhjPJgs1i0NoWxN0WoLbFx5d17g7tBchMTuL4Q4dy3KGZDLW08spnlXj8Jodlp7Ohto21JfWhwN36cp5dX47VgJxUByOGOMlOsWO3GtisltANlcXAHwjSFjTxB4L4AiZtgSCt/iAtXj/N3gAtvtDPvf9/PPP559itX5DqsJHqsJFit0Z+T7VbsdssGLT/vzM6/tzzOhA09/hJ6P9+IBjE09qKaUL+IVl8e+qoXv37ym6x6B+unJoNfg+5w3IpDe7CYncR9EV/OoXEt9ShmST7PFjsMGJ0BsN9Ze1/G24CNhctHi+NnjZ8fj9GylCSUoZQW1eHpy2ILwht2GgzLQQxcLcFcLcBB1zQ8WCnjZZ1Y59tQCjXTeimzsBhs5JktWAhiM0CSe03e8lOO3arFVt7cCt8Yxj+3Wax0NlHhPC10+1uCT2B0IceE5KTk9n7INM0cbvdkefJycmYJrg97n1GLBqGgdOZhMVI6vA6XY1sDG8Olwb3Olfo8+Ce9Q794vHsvga4XK596rxfexyfOzSNy2cewhBX33z5NljF6t4hrLmhjpXvtWC2538asv8FlBNOakY2ubnD8TfVhqb7JfkwkqyR/FYjDhnNjs0babW4cHt9NHj8tAZMgo40/FYnTe5WWoMGJgbN3gDN3r372L2HX1XRXRYDrIaBrf0eymYJzQKwGgZWS+g6F3oOjiQrBIORe7HwfZiBucc2MNrv26wWo/0zYuQygdH+e/j+aM/tFsMgOXn3LACP2w2YGB3qa2C2X5EMDJJTUjq8Vuh6GOosUlJCMyPcLaHn4euYYRikpKRg7PHKkUuUaRII+mhtbQMgOTmlW/dye563O8eF9w9fe8P7dvd8B8sAXMl2PG4fe17992xHf9Wlu/asm8WA/5l6GEd3MoslFgZlUMrj8XToVIDIc5/P1+3XsVh2f9g4kEDQZOmbW2mNBESa9rt/3+nbZLkWi0G608awFBuHDHEweoiDoVYfn5XXYbeYfOPoXAxXGqWNPnbW+9jZ4GXnLi91rQE8bUFK6lspqe+6ThkuG1OGp3DBxEyOzHKyq27fb3rq63cR8DQCUFtbi9Xa0um/Q54DHvjWYbzw+S7e3tFIaWPo4mi3WjhsqJ1LJmdTkJdCbW31ftu85/nq63dhtR744nLMEPjz+YezamMdX+4KBdqmjEjhm0cMId1wU1vr3u/x4XO2Be3U14eCPl1JA+6ZPYZnN9bx1peNtPhCf2NpDgvjh7k486ghHDcqFU9THV3d5na3jb/9+gje2JrCy1/Us7PBR2VT6BFmsRjkpNqZOTKFc8cN5dChjk7PW1+/i7aWRgJe3z7nSwfu+MZIPipt4aXN9Wyq8tDiC/BZZXOX74HVYiHDZWFMhoNpealMzUvm8ExH5Jv42loPyYFmkg04NW8IF04aTqs/l08r3Xxc3sLashaqWvw0+wJsrm5hc6ejDw7MYjG6XDnLFzCpc7dR527r1WsfyJrSFs6fPAJXD0Z7xVE/GTf6on/Y8wvz7vQT9iQrSd4GvE02gq1NmH4/pt/T6U9vU23c7+O3BAgErXFTn/7YZ+82R7s+Fpuf1ICHtGQXpt+HYW0kJzONquYajGQXpt+DYXMRbPPQ0urD1+YnaUguKZnZ1FZVErTaafMHCFiSaAsE8Rt2fEETb9AgaEmiLWjs9wJhwcQwA6EbKNOPzWrFMIP4g6EPvUHDgmG1EQwECWIJBdKNrkeSeAMm3sCeAX0TCEKTv1v/53qm676kZ/v0le70N/v/zLBfX7kZPyKtR1/AqW/YVyzuHQCsVgu+pjr8rU24HA6C1iABTwPexhr8rU1Y/D6Cfm+Hn/1V1tfnabOaeJtcvXpNX1Mthq+JFJsPl+klJ9URKrP5GZY3moqdFRhWB36/j0ZPG21+E+uQLOxpmeyqq8PnD+IPmlgcyfiDoS/ZDZsDb5sf07C2DwqwYBrGXiGefQWAQHCPJ7uHFADBzg7pYz29XuzvGrS/su5eJ3t7Pe3v46Ihnuqyrxr3Fu65qGC/+4T7g/C1K1r9g2EOwqQVL7/8Mr/97W955513Itu2bt3KWWedxZo1a8jIyIhd5UREJGbUP4iIyN7UN4iIRM+gTJ6Um5vLrl278Pt3fwNXXV2N0+kkPb1nSaBFRCRxqH8QEZG9qW8QEYmeQRmUOuaYY7DZbKxbty6yraioiEmTJinJuYjIIKb+QURE9qa+QUQkegblVdTlcnH++edz6623sn79el5//XX++te/ctlll8W6aiIiEkPqH0REZG/qG0REomdQ5pSCUMLCW2+9lX/+85+kpqZy1VVXccUVV8S6WiIiEmPqH0REZG/qG0REomPQBqVERERERERERCR2BuX0PRERERERERERiS0FpUREREREREREpN8pKCUiIiIiIiIiIv1OQakEVFlZyXXXXcfMmTM5+eSTWbJkCV6vN9bVioo5c+Zw4403xroafcrn83HbbbcxY8YMTjjhBO655x4SKfVbeXk5c+fOZerUqZx22mk8/PDDsa5Sn/D5fJxzzjmsWbMmsq2kpIQrrriCKVOmcNZZZ/H222/HsIbSX7xeLzfddBPTp0/npJNO4q9//Wusq9Qr++tLDvS3/e6773LOOeeQn5/PZZddRklJSYfyhx9+mJNPPpmCggJuuukmPB5Pv7Wru/buXzZu3MhFF11Efn4+F1xwARs2bOiw/+rVqzn99NPJz8/n2muvpa6uLlJmmiZ33XUXxx13HDNnzmTp0qUEg8F+a8uB7K/fSeR2768/SuR2S/xLhH6kN5+LBkrfMVj6xx07dnDVVVdRUFDAKaecwl/+8pdIWSK1c0+J3Pe/9tprHH300R0e1113HRAH7TQloQSDQfPiiy82f/jDH5pffPGF+eGHH5rf+MY3zNtvvz3WVetzq1evNo866ijzV7/6Vayr0qd+85vfmGeccYZZXFxsvvvuu+axxx5rPvHEE7GuVp+5+OKLzZ/+9Kfm9u3bzddee83Mz883//nPf8a6WgeltbXVvPbaa82jjjrKfP/9903TDP1fPPfcc81f/OIX5pYtW8z777/fzM/PN0tLS2NcW4m2hQsXmueee665YcMG85///KdZUFBgvvzyy7GuVo/sry850N92aWmpOWXKFPPBBx80v/jiC/MnP/mJec4555jBYNA0TdN85ZVXzGnTpplvvvmmWVxcbJ511lnmbbfdFsvm7mPv/qWlpcU88cQTzdtvv93csmWLuWjRIvOEE04wW1paTNM0zeLiYnPy5Mnmc889Z3722Wfm97//fXPOnDmR13vwwQfNWbNmmR9++KH53nvvmSeddJL5l7/8JSZt60xX/U6it7ur/ijR2y3xb6D3I735XDRQ+o7B0j8GAgHzjDPOMH/xi1+Y27dvN//973+bU6dONf/xj38kVDv3lOh9/5/+9Cdz7ty5ZlVVVeTR0NAQF+1UUCrBbNmyxTzqqKPM6urqyLYXXnjBPOmkk2JYq763a9cu82tf+5p5wQUXJFRQateuXeb48ePNNWvWRLY98MAD5o033hjDWvWd+vp686ijjjI///zzyLZ58+bFRUfUW5s3bza/9a1vmeeee26HD1/vvvuuOWXKlMgF3TRN8/LLLzfvvffeWFVV+kFLS4s5adKkyN+BaZrm8uXLze9///sxrFXP7a8vOdDf9h/+8IcO7XW73WZBQUHkPfnud7/b4f/Bhx9+aE6ePNl0u93Rbla3dNa/PP300+Zpp50W+UAdDAbNb3zjG+aqVatM0zTN66+/vkNfVFZWZh599NHmzp07TdM0zVmzZkX2NU3TfP75581TTz21v5q0X/vrdxK53fvrjxK53RL/Bno/0tvPRQOl7xgs/WNlZaX5k5/8xGxqaopsu/baa81bbrklodoZNhj6/l/84hfm3Xffvc/2eGinpu8lmJycHP7yl7+QnZ3dYXtzc3OMahQdd9xxB+eddx5HHHFErKvSp4qKikhNTWXmzJmRbXPmzGHJkiUxrFXfcTqduFwunn32Wdra2ti2bRtr167lmGOOiXXVeu2DDz7g2GOP5amnnuqwvbi4mPHjx5OcnBzZNm3aNNatW9fPNZT+tGnTJvx+PwUFBZFt06ZNo7i4eEBN39lfX3Kgv+3i4mKmT58eKXO5XEyYMIF169YRCAT45JNPOpRPmTKFtrY2Nm3aFN1GdVNn/UtxcTHTpk3DMAwADMNg6tSpXbZ5xIgR5OXlUVxcTGVlJeXl5cyYMSNSPm3aNEpLS6mqquqfRu3H/vqdRG73/vqjRG63xL+B3o/09nPRQOk7Bkv/OGzYMP7whz+Qmvr/2bvv+KbK/Q/gn5OkGW1pSycdyJQNpYAgAjJEZSlYQYV7FQUFZXhFBKkIMgQERK8KCiiKilcQQb0CguK6/pShxZYlUGZLB226R0aTnN8faSKhLTRtdj/v16sv6Hlyzvk+p+15cr55RiBEUURycjJ+//139O7d26fqadEY2v5z586hZcuW1bZ7Qj2ZlPIxQUFBGDBggPV7k8mELVu24NZbb3VjVI514MAB/PHHH5g2bZq7Q3G4jIwMxMbG4ssvv8SwYcNwxx13YN26dV7xJqQuFAoFFi5ciG3btiE+Ph7Dhw/H7bffjnHjxrk7tHqbMGECXnjhBahUKpvteXl5iIyMtNkWFhaGnJwcV4ZHLpaXl4emTZtCLpdbt4WHh0On06GoqMh9gdnpem3JjX63r1deUlICnU5nUy6TyRASEuIRfxu1tS83qnNubm6t5Xl5eQBgU255mPGEOl+v3fHlel+vPfLlepPn8/Z2pL7vi7yl7WiM7eOQIUMwYcIEJCQk4O677/a5ejaGtl8URVy4cAH/93//h7vvvhtDhw7Fq6++Cr1e7xH1lNWrVuQ1Vq9ejZMnT+Lzzz93dygOodPp8NJLL2HhwoVQKpXuDsfhKioqcOnSJWzduhUrVqxAXl4eFi5cCJVKhUmTJrk7PIc4d+4cBg8ejMceewxpaWlYunQp+vbti3vvvdfdoTmURqOxeUMJAHK5HHq93k0RkSvU9nMH4NU/+6vbks2bN1/3d/t6v/tardb6fW37u8v12pcb/T1rtVq76uxJvxPXa3d8ud5A7e2Rr9ebPJuvtiM3+rvy1rajMbSPb775JtRqNRYtWoQVK1b41M+ysbT9WVlZ1vr8+9//xuXLl/Hyyy9Dq9V6RD2ZlPJhq1evxocffojXX38d7dq1c3c4DrF27Vp06dLF5hMKXyKTyVBWVoY1a9YgNjYWgPkm8umnn/pEUurAgQP4/PPP8fPPP0OpVKJr1664cuUK3nnnHZ9LSikUimqfaOr1ep9MptLfFApFtUbY8r23/uyvbUtu9Ltd2zUICgqCQqGwfn9t+bWfqrva9dqX2up0ozqrVCqbN2fX1t/ddQau3+60aNHCZ+t9vfaoefPmPltv8ny+2I4AN35f5I1tR2NpH7t27QrAnMB57rnncP/991dbLc9b69lY2v7Y2FgcOnQIwcHBEAQBHTt2hMlkwpw5c9C7d2+315PD93zU0qVL8cEHH2D16tW4++673R2Ow+zevRv79+9HQkICEhIS8PXXX+Prr7+2GXfvzSIiIqBQKKwPBgDQqlUrZGdnuzEqxzl+/DhatGhh86aqU6dOyMrKcmNUzhEVFQW1Wm2zTa1WV+v+Sr4lKioKhYWFMBgM1m15eXlQKpUICgpyY2T1U1NbcqPf7drKIyIiEBISAoVCYVNuMBhQVFSEiIgIJ9fm+q7XvjSkzlFRUQBg7eJ+9f/dXWdLDLW1O75c7+u1R75cb/J8vtaOWPha2+Hr7aNarcb+/ftttrVt2xaVlZWIiIjwmXo2prY/JCTEOm8UALRp0wY6na5BP09H1ZNJKR+0du1abN26Fa+99hpGjhzp7nAc6uOPP8bXX3+NL7/8El9++SWGDBmCIUOG4Msvv3R3aA4RHx8PnU6HCxcuWLedP3/e5mHBm0VGRuLSpUs22fbz588jLi7OjVE5R3x8PE6cOGHt1gqYJxSOj493Y1TkbB07doRMJrOZ0D45ORldu3aFROJdTW5tbcmNfrfj4+ORnJxsLdNoNDh58iTi4+MhkUjQtWtXm/KUlBTIZDJ06NDBBbWq3fXal/j4ePz5558QRRGAeW6GI0eO1Frn7OxsZGdnIz4+HlFRUYiJibEpT05ORkxMjEckqa/X7vhyva/XHvlyvcnz+VI7cjVfajsaQ/t4+fJlzJgxA1euXLFuO378OEJDQ9GzZ0+fqWdjaft/+eUX9OnTx6aH219//YWQkBD07NnT/fW0a60+8nhnz54VO3bsKL7++utibm6uzZcvev75522WqPQFU6ZMER988EHxr7/+Ev/3v/+Jt956q/jhhx+6OyyHKCkpEfv16yfOmTNHPH/+vPj999+LvXv3Fj/99FN3h+YQVy99bDAYxBEjRojPPPOMeObMGXHDhg1i9+7dxczMTDdHSc62YMECceTIkWJqaqr43XffiT169BD37dvn7rDscr225Ea/2xkZGWLXrl3FDRs2iGfOnBH/9a9/iffcc491qeFdu3aJPXr0EL/77jsxNTVVHDlypLh06VJ3VrdGV7cvpaWl4q233iouXbpUTEtLE5cuXSr269fPuhz2kSNHxM6dO4ufffaZ+Ndff4n//Oc/xalTp1qPtWHDBrF///7iwYMHxYMHD4r9+/cX33//fbfUqya1tTu+XO/rtUe+XG/yDr7Qjoiife+LvKXtaCzto8FgEBMTE8VJkyaJaWlp4k8//STedttt4ubNm32qntfy1ba/tLRUHDBggPjss8+K586dE3/66Sexf//+4saNGz2inkxK+ZgNGzaI7dq1q/HLF/liUqqkpEScM2eO2L17d7Fv377iW2+9Zb2J+4K0tDTx0UcfFXv06CEOHTpU/OCDD3ymfle/+RJFUbx48aL4j3/8Q+zSpYs4cuRI8ddff3VjdOQqFRUV4ty5c8Xu3buL/fv3Fz/44AN3h2S3G7UlN/rd/umnn8S77rpL7Natmzhx4kQxPT292vH79u0r9uzZU0xKShK1Wq3L6lZX17Yvqamp4pgxY8SuXbuKY8eOFU+cOGHz+h07dogDBw4Uu3fvLk6fPl0sKCiwlhkMBnH58uVir169xD59+oirV6/2qPve9dodX6739dojX643eT5faEdE0f73Rd7QdjSm9jEnJ0ecPn262KNHD7Ffv37iO++8Y72X+VI9r+bLbf+ZM2fERx99VOzevbvYr18/j2rrBVGs6qdFRERERERERETkIt47MJmIiIiIiIiIiLwWk1JERERERERERORyTEoREREREREREZHLMSlFREREREREREQux6QUERERERERERG5HJNSRERERERERETkckxKERERERERERGRyzEpRURERERERERELsekFBERERERERERuRyTUkRERERERERE5HJMShERERERERERkcsxKUVERERERERERC7HpBQREREREREREbkck1JERERERERERORyTEoREREREREREZHLMSlFREREREREREQux6QUERERERERERG5HJNSRERERERERETkckxKERERERERERGRyzEpRURERERERERELsekFBERERERERERuRyTUkRERERERERE5HJMShERERERERERkcsxKUVERERERERERC7HpBQREREREREREbkck1JERERERERERORyTEoREREREREREZHLMSlFREREREREREQux6QUERERERERERG5HJNSRERERERERETkckxKERERERERERGRyzEpRURERERERERELsekFBERERERERERuRyTUkRERERERERE5HJMShERERERERERkcsxKUXUSImi6O4QiIjIg7GdICJyLN5XiapjUorIg8ybNw9Dhgxp8HEuX76M9u3bY+fOnQCAt956C+3bt7eWJycnY8qUKQ0+DxER+aa0tDSMHz/eIcc6dOgQ2rdvj0OHDjnkeERE3mD37t0YPHgwunTpgoULF9b7vjpkyBDMmzcPQPX3+HXRvn17vPXWW3af1x5lZWUYMmRIjXE999xzaN++fbWvvXv3OjUm8h4ydwdARI4XGRmJbdu24aabbqqxfPv27Th37pyLoyIiIm+xd+9e/Pnnn+4Og4jIay1ZsgQtW7bEK6+8gqioKHz99dcNvq/e6D1+TbZt24ZmzZo16LzXU1xcjGnTpiEzM7PG8lOnTmHUqFF4+OGHbba3bNnSaTGRd2FSisgHyeVydO/e3d1hEBERERE1SkVFRejXrx/69OnjsGPW5z2+M58Jvv/+eyxbtgzl5eU1lut0Oly4cAETJ07kswnVisP3iOy0cuVKdOvWDaWlpTbb3377bfTs2ROrVq3CnXfeibVr16J3797o378/iouL7TrHtm3bMGjQIHTr1g0TJ07EyZMnrWXXDsWzuLpr7vW69s6bNw9ffPEFMjMz7e7+S0Tk7Zx5D583bx4mTpyIl156CT169MCIESNgNBphMpmwceNG3HnnnejSpQvuvvtufPzxxzb7Pvzww5g/fz42btyIQYMGoWvXrnjooYdw9OhRm9cdO3YMkydPRp8+fdCjRw88+eSTSEtLA2B+89+zZ0+sXLnSZh+DwYBbb70VL7/8MgBAq9VizZo1uOuuu9ClSxf06NEDjz32GP766y8A5nZm7dq1AGzblrrUAwC2bt2Ku+++G926dcM///lPZGVl1en6ERF5iuPHj2PixIno2bMnEhIS8OijjyIlJcVavnfvXtxzzz3o1q0b7rvvPvz555/o1KkTdu7caR2yDADr1q1D+/btMW/evBrvq/a6+j1+Tk4OOnbsiC1btti8pqCgAJ07d8bmzZurnc8S24EDBzBp0iTEx8ejX79+WL16NYxGo/UYZWVlWLhwIfr27YuEhATMmjULmzdvtnkGKSkpwYwZM3DLLbfgvffeqzHeM2fOwGAwoGPHjvWqLzUOTEoR2Wns2LHQ6XTVxkF/9dVXGDFiBFQqFbKysvDzzz/j9ddfR1JSEoKDg+t8/JycHKxduxbPPPMMXnvtNRQXF+Phhx922Jv6adOmYeDAgYiIiLAmv4iIGgtn38P/+OMPZGdnY926dZg9ezakUikWLVqEN998E/feey/Wr1+PYcOGYfny5Vi3bp3Nvvv27cP333+PF198Ea+99hrUajVmzpxpfVA4ePCgdT6S5cuX4+WXX0Z2djYeeughnDt3DgqFAnfffTe++eYbm8l0f/31VxQWFmL06NEAgLlz52LHjh2YMmUK3n//fSQlJSEtLQ2zZ8+GKIoYN24cxo4dC8D8Icm4ceMAoE712LJlC1566SUMHDgQb7/9NuLj47FgwYI6Xz8iIncrKyvD448/jqZNm+Ktt97C66+/Do1Gg8mTJ6O0tBTff/89/vWvf6Fdu3ZYu3Yt7rzzTjz11FMwmUwAgM6dO2Pbtm0AzG3Otm3bMHPmzBrvqw3RrFkz9O7dG7t377bZvnfvXoiiiJEjR9a673PPPYeePXti/fr1GDVqFN577z1s377dWj5t2jR88803mDlzJl5//XWUl5djzZo1NsdQKpXYvXs3Vq5ciaZNm9Z4nlOnTgEwTx3Sv39/dOnSBRMmTEBqamp9q00+iMP3iOzUpk0bJCQk4KuvvrI2KEeOHMHFixfxyiuv4P/+7/9gMBjw/PPPo1evXnYf32g0Yt26dejWrRsAID4+HkOHDsXHH3+M559/vsHx33TTTQgNDeUQPyJqlJx9DzcYDFiyZIl1/o4LFy7gs88+w7PPPmtdYKJ///4QBAEbNmzAhAkTrG/mDQYDNm3ahMDAQABAeXk5nn/+efz111/o0qUL1qxZgxYtWmDjxo2QSqXWY915551488038cYbb2D06NHYsWMHkpOTrfHv3r0brVu3RteuXaHX61FeXo4XX3wRI0aMAAD07t0bZWVleOWVV6BWq9GsWTNr/JZ2oi71CAkJwdtvv40RI0bghRdesL6mrKwMW7dutftaEhG5w9mzZ1FYWIhHHnkEPXr0AAC0bt0a27ZtQ3l5OdatW2e9JwPA7bffDkEQ8O9//xsAEBgYaL13NmvWzOb/gGOH040ePRovvPACsrKyEBMTA8B8z7/tttsQERFR637jxo3D9OnTAQB9+/bF/v378dNPP+Ghhx7CgQMHcOjQIbz11lu46667rHUcNWqUzZy0crkcrVu3vm58lh64Go0Ga9asQVFRETZu3IhHHnkE27ZtQ4cOHRpUf/IN7ClFVA/3338//vjjD+uEfl988QVatWqFhIQE62vq2021efPm1oQUAERERKB79+74/fffGxY0EREBcO49PCQkxGZC2YMHD0IURQwZMgQGg8H6NWTIEOh0OiQnJ1tf27ZtW2tCCgCioqIAmN/MV1RU4NixYxg+fLg1IQUAQUFBGDx4MA4fPgzAnGCKiYmxfnKu0+mwf/9+ay8puVyOTZs2YcSIEbhy5QoOHjyIrVu34scffwQA6PX6GutVl3qcP38e+fn5GDx4sM2+w4cPr9e1JCJyh5tvvhmhoaF48sknsXDhQnz33XcIDw/HnDlzEBwcjBMnTuCOO+6w2efee+91S6x33XUXFAoF9uzZAwDIzs5GcnKy9Z5fm6vbO8CcMKuoqABgvt/7+flh6NCh1nKJRGL9IMMe//znP/Hee+9h1apV6NOnD+6++2588MEHUKlUWL9+vd3HI9/EpBRRPViGeHz11VfQ6XT45ptvkJiYaPOagICAeh07PDy82rawsDCUlJTU63hERGTLmffwa/crKioCAIwcORKdO3e2fll6aV25csX6WpVKZbOvRGJ+m2YymVBaWgpRFGtsI8LDw61zZAmCgHvuuQd79+6F0WjEjz/+iIqKCtxzzz3W1//yyy8YPnw4br/9dkybNg3//e9/IZfLAcBm2J+99bDMvXXtMI7rfVpPRORpAgIC8Mknn2DgwIH45ptvMGPGDPTt2xcLFy5EQUEBACA0NNRmH8uHCK4WGBiIoUOHWj+I2LNnD1QqlU1CqSZKpdLme4lEYr3/FxYWIiQkxNoGWYSFhdkdX+vWrTFgwACbbUFBQejRo4d1aB8Rh+8R1UNAQACGDRuGb775Bu3atUNFRcUNP5Goq5om1M3Ly7M2foIgADAP87N8Wl7bihdERFSdM+/h1woKCgIAfPjhhzUmuizDLW6kSZMmEAQBarW6WlleXh5CQkKs348ePRobNmzAoUOHsGfPHtxyyy2IjY0FAKSnp2P69OkYOnQoNmzYgObNm0MQBHzyySf45ZdfGlQPy4cn+fn5NmWWhBYRkbdo3bq1dfLvo0eP4quvvsKnn36KyMhISCSSavdid97n7r33XkyZMgWXLl3C7t27cffdd1f7kMMeUVFRKCwshMlksklMXXtvr4s9e/YgKCgI/fv3t9mu0+mqJfao8WJPKaJ6Gjt2LM6cOYMPP/wQt912m8M+Iblw4QLS09Ot32dnZ+PPP/+0LidrGdqRk5Njfc3Vwz/q4tpPPoiIGhtn3cOvZZnXqbCwEF27drV+FRQU4I033qjzg4y/vz+6dOmCb775xmaFpNLSUvz000/o2bOndVubNm3QuXNn7N69Gz///LPNsJLjx49Dp9NhypQpuOmmm6wfdFgSUpZPyq9tJ+pSj5YtWyI6OrraJPKWoYFERN5g7969uPXWW5GXlwepVIqEhAQsWrQIQUFBKCgoQEJCAr799lubnqV1uc856/13//79ER4ejo8++ggnTpxo8IcsvXv3hsFgwA8//GDdJooi9u/fb/extm7dipdeeslmaPiVK1dw5MgR67MNEXtKEdVTz5490apVKxw+fBivv/66w46rUCjw1FNPYdasWTAajXjjjTcQEhKCiRMnAgAGDhyIFStWYOHChZg8ebJ1lSd7hpoEBQVBrVbj559/RseOHREZGemw+ImIvIGz7uHXat++Pe69914sWLAAmZmZ6NKlCy5cuIDXX38dcXFxaNmyZZ2PNXv2bEyePBlTpkzBhAkTUFlZiY0bN0Kv11snrLUYPXo0Vq5cCZlMhmHDhlm3d+7cGTKZDKtXr8akSZOg1+uxc+dO/PTTTwBgnVPE0jNq165diI+Pr1M9BEHAc889h9mzZ+PFF1/EsGHDkJKSgk8//bRhF5GIyIV69OgBk8mE6dOnY8qUKQgICMA333yD0tJS3HXXXRgxYgQeffRRTJ8+HQ8++CDS09Pxxhtv3PC4195Xmzdv7pB4pVIpRo4ciS1btiAqKqrByZ5bbrkF/fr1w/z586FWqxETE4PPP/8cp0+ftn6QUVfTpk3DY489hmnTpuGRRx5BcXEx1q5di5CQEEyaNKlBcZLvYHcJogYYNGgQgoODbzhu2x6dOnXCuHHjsGjRIsydOxc33XQT/vOf/1i7uLZq1QorV67E5cuXMWXKFHz00UdYunSpXYmlxMRExMbGYvr06fjyyy8dFjsRkTdxxj28JitWrMBjjz2GrVu34vHHH8f69esxYsQIvP/++zaTlt9I37598cEHH0Cr1eLZZ5/FggULEBUVhc8++wzt2rWzee2oUaMgCAIGDx6MJk2aWLe3aNECa9aswZUrV/DUU09h4cKFAICPP/4YgiDgjz/+AGCePLdr166YN28eNm3aVOd6jBo1Cq+//jpSUlLw1FNP4ccff8SSJUsadP2IiFwpMjIS7733Hpo0aYL58+dj6tSpOHHiBN566y3ceuut6NWrFzZt2oTc3FzMmDEDW7durdMK2TXdVx1l9OjRMBqNGDVqlEN6ZL3++usYMmQI1qxZg3/961+Qy+UYP348/P397TrOrbfeivfffx8VFRWYNWsWlixZgs6dO+OTTz6xaZuocRPE2ma0JKLrEkURI0eORP/+/a1LXxMRkXfgPZyIiBzl8uXLuOOOO7BixYpqC2d4m8zMTKSkpOCOO+6wmRD96aefRkZGBr744gs3Rke+iMP3iOxUVlaGzZs349ixY8jIyMDDDz983deLomgz/0dtpFKp3V1iiYjIPryHExGRu3ly2yKRSDBv3jzccccdGDt2LKRSKX755Rd8++23WLFihUtjocaBSSkiOymVSmzduhUmkwnLly+/4Xjww4cP45FHHrnhcX3hkxUiIk/HezgREbnbF198gaSkpBu+7qOPPnL5hODR0dF49913sW7dOjzzzDMwGAxo06YNXn31VYwaNcqlsVDjwOF7RE5WVlaGCxcu3PB1cXFxaNq0qQsiIiKiuuI9nIiIHK2wsBCXL1++4etatWplXXmbyFcxKUVERERERERERC7H1feIiIiIiIiIiMjlmJQiIiIiIiIiIiKXY1KKiIiIiIiIiIhcjkkpIiIiIiIiIiJyOZm7A/Bm+fmlsGeaeEEAwsKa2L2fJ/H2Onh7/ID318Hb4we8vw6W+AsKShEa2sTd4ficxtg2OAOvS3W8JtXxmlTX0Gti2Z8czxt+T739b4rxuxfjdy9nx++s9oFJqQYQRdTrh13f/TyJt9fB2+MHvL8O3h4/4P118ObYPVljbhucgdelOl6T6nhNquM18Tze9DPxplhrwvjdi/G7l7fFz+F7RERERERERETkckxKERERERERERGRyzEpRURERERERERELsekFBERERERERERuRyTUkRERERERERE5HJMShERERERERERkcsxKUVERERERERERC7HpBQREREREREREbkck1JERERERERERORyTEoREREREREREZHLMSlFREREREREREQux6QUERGRG32ekoXbV/2Iy0Uad4dCRETkMEajERcvXrB+GY1Gd4dERB5I5u4AiIh8xaSpjyO/oKjW8rDQELy/4T3XBUReITWzBOkFFfj2VB4e63OTu8MhIiJyiIyMdKzf9wdCIqJRlJeNJ+8GWrZs5e6wiMjDMClFROQg+QVFGDnr1VrLd7/+nAujIW/RsVkgvvkrF8eyStwdChERkUOFREQjtFmcu8MgIg/G4XtERERu1C0mCABwLLsUoii6ORoiIiIiItdhUoqIiMiN2kcGQi6ToEhTictFWneHQ0RERETkMhy+R0RE5EZ+UgnahStxPKcCuw8dw20x8nofKzQ0DHFxzR0YHRERERGR8zApRUREHuXKlStYtmwZDh48CIVCgREjRuDZZ5+FQqFARkYGFixYgJSUFMTExOCFF15A//79rfv+9ttvWL58OTIyMhAfH49ly5ahefO/kzSbN2/Gpk2bUFZWhuHDh2PBggVQqVQAAJ1Oh8WLF+Pbb7+FUqnEpEmTMGnSJKfX9/LlDBzesw3+Pe7Bvz/egYXfvVPvYylV/vjt19+ZmCIiIiIir8CkFBEReQxRFPH0008jKCgIn3zyCYqLi/HCCy9AIpFg7ty5mD59Otq1a4cdO3Zg//79mDFjBvbs2YOYmBhkZWVh+vTpmDlzJgYMGIB169Zh2rRp+O9//wtBELBv3z6sXbsWq1evRlhYGJKSkrB69WosXLgQALBq1SocP34cH374IbKysvD8888jJiYGw4YNc2qd8/PzUZ5xEv497sFNfYbhoWED63Wc3MsX8PnrSSgoyGdSioiIiIi8ApNSRETkMc6fP4+UlBT8+uuvCA8PBwA8/fTTWLlyJW6//XZkZGRg69at8Pf3R5s2bXDgwAHs2LEDM2fOxPbt29GlSxdr76YVK1agX79+OHz4MPr06YOPPvoIEydOxODBgwEAixcvxuTJkzFnzhyIoojt27fj3XffRefOndG5c2ekpaXhk08+cXpSCgCMZQUAAJNUgZg2XC6biIiIiBoHTnROREQeIyIiAu+99541IWVRVlaG1NRUdOrUCf7+/tbtPXv2REpKCgAgNTUVvXr1spapVCp07twZKSkpMBqNOHbsmE159+7dUVlZiVOnTuHUqVMwGAxISEiwOXZqaipMJpOTavs3k6YEAKA1OP9cRERERESegkkpIiLyGEFBQRgwYID1e5PJhC1btuDWW29FXl4eIiMjbV4fFhaGnJwcALhueUlJCXQ6nU25TCZDSEgIcnJykJeXh6ZNm0Iu/3uS8fDwcOh0OhQVFTmhpraMVUkpncEEkyg6/XxERERERJ6Aw/eIiMhjrV69GidPnsTnn3+OzZs32ySNAEAul0Ov1wMANBpNreVardb6fU3loijWWAbAevy6EgS7Xg5BAEyaUuv3eoMJSj+pfQdpYAyeyFIHX6iLo/CaVMdrUl1DrwmvJRERuRKTUkRE5JFWr16NDz/8EK+//jratWsHhUJRrdeSXq+HUqkEACgUimoJJL1ej6CgICgUCuv315arVCoYjcYaywBYj19XYWFN7Hp9SEgAIJrgJ4ioFAVAJoO/v/zGO15DqTTv07RpAMLD7YvBk9l7PRsDXpPqeE2q4zUhIiJv4BVJKb1ej8TERCxYsAB9+vQBAKSkpOCVV17B6dOnERkZiccffxzjxo2z7tOQZcGJiMi9li5dik8//RSrV6/G3XffDQCIiorC2bNnbV6nVqutQ/KioqKgVqurlXfs2BEhISFQKBRQq9Vo06YNAMBgMKCoqAgREREQRRGFhYUwGAyQycxNY15eHpRKJYKCguyKPT+/FPaMwCsqKgcA+ElEVBoFFJVqoBTsH8Kn1ZqTaIWF5VCrS2/was8nCOaHanuvpy/jNamO16S6hl4Ty/7erKZnh4yMDCxYsAApKSmIiYnBCy+8gP79+1v34bOD6xiNRmRkpFu/b978Jkil0lq3E5Fv8/g5pXQ6HZ599lmkpaVZt+Xl5eGJJ55A79698cUXX+Dpp5/G0qVL8dNPPwGAdVnwxMREfP755wgNDcW0adMgVrXMlmXBlyxZgg8//BCpqalYvXq1O6pHRETXWLt2LbZu3YrXXnsNI0eOtG6Pj4/HiRMnrEPxACA5ORnx8fHW8uTkZGuZRqPByZMnER8fD4lEgq5du9qUp6SkQCaToUOHDujYsSNkMpl10nTLsbt27QqJxL6mUhTt/wIAeVUiyhGTndcnBk/88qW68JrwmnjTNfFmNT07iKKI6dOnIzw8HDt27MDo0aMxY8YMZGVlAeCzg6tlZKRj/b4/sPVIJtbv+8OaiKptOxH5No9OSp09exYPPPAA0tNtb0j79+9HeHg4nn32WbRs2RIjR47EmDFj8PXXXwOAzbLgN998M1asWIHMzEwcPnwYAGyWBe/WrRsWL16MHTt2QKPRuLyORET0t3PnzuHtt9/GE088gZ49eyIvL8/61bt3b0RHRyMpKQlpaWnYuHEjjh49irFjxwIA7r//fhw5cgQbN25EWloakpKSEBcXZ/2UfMKECdi0aRP279+Po0ePYtGiRXjggQegUqmgUqkwZswYLFq0CEePHsX+/fvx/vvv45FHHnFZ3eUS88OPtpIr8BER1Udtzw4HDx5ERkYGlixZgjZt2mDq1Kno3r07duzYAYDPDu4QEhGN0GZxCImIrtN2IvJdHj187/Dhw+jTpw9mzZqF7t27W7cPGDAAHTt2rPb6srIyANdfFrxXr144duwYZsyYYS2/elnwq5cDJyJypDNnTmH0uLG1loeFhuD9De+5MCLP8/3338NoNOKdd97BO++8Y1N2+vRpvP3225g/fz4SExPRokULrFu3DjExMQCAuLg4vPXWW1i+fDnWrVuHhIQErFu3DkLVrL0jR45EZmYmFi5cCL1ej7vuugtz5syxHj8pKQmLFi3CxIkTERgYiJkzZ+Kuu+5yWd2tSSkH9JQiImqMant2SE1NRadOneDv72/d1rNnT2vvWD47EBG5j0cnpSZMmFDj9ri4OMTFxVm/z8/Px+7duzFz5kwADVsWnIjIWQwmYOSsV2st3/36cy6MxjNNmTIFU6ZMqbW8RYsW2LJlS63lAwcOxMCBA+t1fJVKhZUrV2LlypV1D9iB/KqG7+kqjW45PxGRt6vt2eF6zwY3KuezAxGRc3l0UqoutFotZs6cifDwcDz44IMAGrYsuD3qs+x3ffbzJN5eB2+PH/D+Onh7/IBz6+CK6+ILPwNfxJ5SRETOcb1ngxuVu/PZwR0c+R7h2mMIwt9f9myvzzm94VrXhPG7F+Ov2/EdzauTUuXl5Zg2bRouXryI//znP9YVMBqyLLg96rsyibevaAJ4fx28PX7A++vg7fED1esg85PC319R6+sFAdctl/lJER7uuusSGur9PwNfwqQUEZFzKBQKFBUV2WzT6/VQKpXWck9+dnAHR8RaUhIIlUoOf38FNCo5QkMDER7exO7t7orfnRi/ezF+1/LapFRZWRkef/xxpKen48MPP0TLli2tZQ1ZFtwe9i616wvLFnt7Hbw9fsD76+Dt8QO118FQaURFha7W/UQR1y03VBqhVpc6MtQaWeIvKChlYsqD/D3ROYfvERE5UlRUFM6ePWuzTa1WW4fkeeqzgzs48n1aQUEZNBo9Kip00Gj0KCgoQ1BQqd3b3RW/OzB+92L8dTu+o3llUspkMmHGjBm4fPkyPv74Y2sDYVHbsuAzZsywWRbcsiLT1cuC26O+y+b6wnK73l4Hb48f8P46eHv8gHPq4Mpr4u3X39fILXNKsacUEZFDxcfHY+PGjdBqtdbeUcnJyejZs6e13JOfHdzBEbFeu7/lmPZur++5veVa14Txuxfjdy2JuwOoj88//xyHDh3Cyy+/jKCgIOty4ZZuuQ1ZFpyIiMgd/Dh8j4jIKXr37o3o6GgkJSUhLS0NGzduxNGjRzF2rHlFXD47EBG5j1f2lNq3bx9MJhOmTp1qs7137974+OOPG7wsOBERkavJqz4m0hlMMIkiJN46yyYRkYeRSqV4++23MX/+fCQmJqJFixZYt24dYmJiAIDPDkREbuQ1SanTp09b/79p06Ybvr4hy4ITERG5mp/wdz9rncEElZ/UjdEQEXm3q58dAKBFixbYsmVLra/nswMRkXt45fA9IiIiXyMRALnU/Kk855UiIiJfVag1Ir1M5MIeRATAi3pKERER+Tq5VAK90Qg9k1JEROSDijSVWPhTLnLKRSSrM9GlKYeqEzV27ClFRETkIfyk5ma50uRFS6YQERHVgUkUkfT1SeSUGyABYBKBYwUiskor3R0aEbkRk1JEREQewq9q+F6lkT2liIjIt5xS6/BHRjEUUgFDYgU0D1FCBLDlWLG7QyMiN2JSioiIyENYe0oZ2VOKiIh8yy8ZFQCA25r7I1guoE+LphAA/J6twakrpe4NjojchkkpIiIiD8GeUkRE5IsMRiN+Sy8HAHRUlcNkEtHU3w+xAebyb/7KdWN0ROROTEoRERF5CPaUIiIiX3QhtxgVRkApBQ6nHkdZmblnVPNA84cx+07lwSiy7SNqjLj6HhERkYfwk7CnFBER+Z58gxwA0CYiEMFlEdbtzVRAE7kE+eV6HM/VuSs8InIj9pQiIiLyEOwpRUREvqjI5AcAiA5S2myXCAL6xqkAAL9ernB5XETkfkxKEREReQjLnFJ69pQiIiIfoTOYUG4yD9CJaqKoVt4nxh8A8GeOBiKH8BE1Ohy+R0QON2nq48gvKKq1PKZZONavXe+6gIi8hLWnlIlvyomIyDfkluoACFBJTPCXS6uVd4xQwN9PiiKtEUV6AWGuD5GI3IhJKSJyuPyCIoyc9Wqt5fvWPu/CaIi8h5yr7xERkY/JKTXPFRXiZ6yx3E8ioHeLEPx0Nh85FUAbVwZHRG7H4XtEREQegnNKERGRr7liSUrJak5KAUC/VqEAgGwN2z+ixoZJKSIiIg/hx55SRETkQ0RRhLpMDwAIltXetvVrbU5KFeoAbWXtySsi8j1MShEREXkI9pQiIiJfUm4wz5MoQESAtPakVESgAs2DzDPLZJXoXBUeEXkAJqWIiIg8hJ+EPaWIiMh3FJs7SSFQYkBVE1errpFKAEBmsdbJURGRJ2FSioiIyEOwpxQREfmSkqqkVIDEcMPXdo0wJ6WymJQialSYlCIiIvIQljmljKIIk8jEFBERebdivbktC6xDUqpThAICgBKtAeWVbAOJGgsmpYiIyGPp9XqMGjUKhw4dAgDMmzcP7du3r/b1yCOPWPfp1atXtfLy8nIAgE6nwwsvvIBevXqhf//+eP/9923Ol5GRgUcffRTdu3fHiBEj8H//93+uqyz+7ikFsLcUERF5v+JK8791SUr5+0nQVGH+fx47SxE1GjJ3B0BERFQTnU6H2bNnIy0tzbpt/vz5mD17tvX7zMxMPPzww9ak1JUrV1BaWor9+/dDqVRaX+fv7w8AWLVqFY4fP44PP/wQWVlZeP755xETE4Nhw4ZBFEVMnz4d7dq1w44dO7B//37MmDEDe/bsQUxMjEvqLJUIkAiASTTPK6WQ8bMjIiLyTjqDCWU2SSm/G+4TqQIKdECuhh/MEDUWTEoREZHHOXv2LGbPng3xmiFsTZo0QZMmTazfz5s3D8OGDcPQoUMBAOfOnUNERASaN29e7ZgVFRXYvn073n33XXTu3BmdO3dGWloaPvnkEwwbNgwHDx5ERkYGtm7dCn9/f7Rp0wYHDhzAjh07MHPmTOdW+Cp+Ugl0BhP0nOyciIi8WEaJOSOl8pNAIalbmxapFHAKInI1qPYegIh8Ez+CJSIij3P48GH06dMH27Ztq/U1Bw4cwO+//45nn33Wuu3s2bNo1apVja8/deoUDAYDEhISrNt69uyJ1NRUmEwmpKamolOnTtZeVZbylJSUhlfIDpZ5pTh8j4iIvNnlUvOQvRDVjXtIWYQpAZlEgM4EpFcltYjIt7GnFBEReZwJEybc8DUbN27Efffdh+joaOu2c+fOQaPR4OGHH8aFCxfQsWNHvPDCC2jVqhXy8vLQtGlTyOVy6+vDw8Oh0+lQVFSEvLw8REZG2pwjLCwMOTk5jqtYHcilEgBGVLKnFBERebGsUnNSKUTlB5TXbR+JIKBZkByXi7Q4lqvDQCfGR0SegUkpIiLyOhkZGTh48CDmz59vs/38+fMoLi7Gs88+i8DAQLz77rt49NFHsXv3bmg0GpuEFADr93q9vtZyvV5vV2yCYF9drK+v+lcmaXhPKXtj8ESWOvhCXRyF16Q6XpPqGnpNeC3JUbLKLD2lZLUmpUwmIzIzLwMAMjMvw2QCYoOVVUkpznZO1BgwKUVERF5n37596NixI9q2bWuzfdOmTaisrERAQAAA4NVXX8XAgQPx448/QqFQVEswWb5XKpVQKBQoKiqqVn71hOl1ERbW5MYvukpIiDlWpUIOf38FlHIZAD0kMin8/RV1Po5SaU6oNW0agPBw+2LwZPZez8aA16Q6XpPqeE3I3bKqhu8FK/1Q20C8kvxcfHqpDHGtBKSfPoaQ6JaIjY0CAJxU62AwmiCTcsYZIl/GpBQREXmdX375BXfccUe17XK53Ka3k0KhQFxcHK5cuYIePXqgsLAQBoMBMpm5+cvLy4NSqURQUBCioqJw9uxZm+Op1epqQ/puJD+/FPbMzVpUZP74WKvTo6JCBynMO5dpzN/XlVZrTrAVFpZDrS6tewAeShDMD9X2Xk9fxmtSHa9JdQ29Jpb9iRrCaBKRU7X0XrDKD+rrvDYoLAqhzeJQlJcNAAj194NcAmgNIk7klCI+NtgFERORuzDtTEREXkUURRw7dgw9evSotn3o0KHYuXOndVtFRQUuXbqE1q1bo2PHjpDJZDYTlycnJ6Nr166QSCSIj4/HiRMnoNVqbcrj4+PtjM/+L/OO5n/8qj4RbsicUvWJwRO/fKkuvCa8Jt50TYgaKqdUi0qT+WEzUCG1a19BEBCpMv//8KUih8dGRJ6FSSkiIvIqmZmZKC8vrzZ0TxAEDBo0CG+99RYOHTqEtLQ0zJ07F82aNcPAgQOhUqkwZswYLFq0CEePHsX+/fvx/vvv45FHHgEA9O7dG9HR0UhKSkJaWho2btyIo0ePYuzYsS6tH1ffIyIib5deqAEABPiZJy+3V4TSvM/v6YUOjYuIPA+H7xERkVfJz88HAAQHB1crmzNnDmQyGWbPno2ysjLceuut2LhxI6RS86e0SUlJWLRoESZOnIjAwEDMnDkTd911FwBAKpXi7bffxvz585GYmIgWLVpg3bp1iImJcV3l4JieUkRERO50qcCclGriV7/9LT2ljmaXokJvhL/cvt5WROQ9mJQiIiKPdvr0aZvv4+Pjq22zUCgUmDdvHubNm1djuUqlwsqVK7Fy5coay1u0aIEtW7Y0LOAGsqy+ZzCxpxQREXmnSwUVAOqflAr0ExDpL0FuhRF/ZhajX6tQB0ZHRJ6Ew/eIiIg8iKxq+J6Bw/eIiMhLZRSZe0oF+tk/dM+ia6R59dvDlziEj8iXMSlFROREpToDNJVGd4dBXkQmMTfN7ClFRETe6nKRedGQgAaMy7EkpX5PL3JARETkqTh8j4jICUTRvIzxwYtFEAHEBishKALdHRZ5AT8O3yMiIi9mMInIKTEnpQLrOXwPALpEKgAAaXnlKKjQI9Rf7ojwiMjDsKcUEZETHMsuxYGqhBQAZBZrobptAkSutU03IJVYVt/jROdEROR9ckq0MIqAnwRQNmB+8mCFFDdHBAAA/mBvKSKfxaQUEZGDaSuNOHK5GADQq3kwxnSNgkQA5C2645y6ws3Rkafzk7KnFBERea/MYnMvqcgAGQSh/nNKAcAtN4UAAA7XkJQyGo24ePGC9cto5HQJRN6ISSkiIgdLySxBpVFEWIAfuscGISJQgYS4YADAn5nF7C1F18XV94iIyJtZklJRDZlQqoolKXUko6haWUZGOtbv+wNbj2Ri/b4/kJGR3uDzEZHreUVSSq/XY9SoUTh06JB1W0ZGBh599FF0794dI0aMwP/93//Z7PPbb79h1KhRiI+PxyOPPIKMjAyb8s2bN2PAgAFISEjACy+8AI1G45K6EJFv0xtMOJlTBgC4pXmI9RPCLs2aQKzUoUhjQG6Z3p0hkoezTnTO1feIiMgLZVatvOeIpFT32GBIBCCjSIsrpbpq5SER0QhtFoeQiOgGn4uI3MPjk1I6nQ7PPvss0tLSrNtEUcT06dMRHh6OHTt2YPTo0ZgxYwaysrIAAFlZWZg+fToSExPx+eefIzQ0FNOmTbP2Tti3bx/Wrl2LJUuW4MMPP0RqaipWr17tlvoRkW+5WFABoygiRCVDXIjSul0uk6Dy0hEAwOncMneFR15AZh2+xzmliIjI+ziyp1SgQoYOUU0AAMk19JYiIu/n0Umps2fP4oEHHkB6um1XzIMHDyIjIwNLlixBmzZtMHXqVHTv3h07duwAAGzfvh1dunTBpEmTcPPNN2PFihXIzMzE4cOHAQAfffQRJk6ciMGDB6Nbt25YvHgxduzYwd5SRNRgZ6vmjGobHlBtHgVd2gEAwHl1BQycxJpqweF7RETkzTKLGp6UMpmMyMy8jIsXL6BtkHnbkYxiR4RHRB7Go5NShw8fRp8+fbBt2zab7ampqejUqRP8/f2t23r27ImUlBRrea9evaxlKpUKnTt3RkpKCoxGI44dO2ZT3r17d1RWVuLUqVPOrRAR+TSjnz+yqj4dbBMeUL38ylkEyKWoNInIrqELOhHwd1LKJAImJqaIiMiLiKKIy8VVw/cC65+UKsnPxacHz2LrkUxcquqg8Ad7ShH5pIb3qXSiCRMm1Lg9Ly8PkZGRNtvCwsKQk5Nzw/KSkhLodDqbcplMhpCQEOv+RET1oQ1tAxFAZKAcQcqab69xIUqczi1HZpEWzUNUrg2QvIJM+vfnRQaTCLmkYSsXERERuUqJ1oAynXkVvEh/aYOOFRQWhdBmcWhhEnEsXURmsRY5JVo0C1LeeGci8hoenZSqjUajgVwut9kml8uh1+tvWK7Vaq3f17Z/Xdm7wqnl9Q1cGdWtvL0O3h4/4P118Pb4gdrroAtuAQBoEVp7sik22JyUulzVtb22YzuTL/wMfJlUAAQAIqqSUu4OiIiIqI6yS8zvb0L9/aCQOWZQjhQmxPkLSC8H9v15Fv/s3xFSacMSXkTkObwyKaVQKFBUVGSzTa/XQ6lUWsuvTTDp9XoEBQVBoVBYv7+2XKWyr9dCWFgTOyNv2H6exNvr4O3xA55dB5mfFP7+iuu+xpPjr6ur61BpNEEXHAcAaBsVVGP9BQFoGx2MH9LyUaiphEkqRaDi79uwzE+K8HDXXZfQUO//GfgiQRAgkwioNIlVk53zjTcREXmHrBLz9AQxwY7rzVSSn4vKcjmAptiRkomBLQLQsmUrhx2fiNzLK5NSUVFROHv2rM02tVptHZIXFRUFtVpdrbxjx44ICQmBQqGAWq1GmzZtAAAGgwFFRUWIiIiwK478/FKIdkz3IQjmh1h79/Mk3l4Hb48f8I46GCqNqKioec4kS+8cT47/Rmr6GRzJKIIolUMpkyBAihrrL4qAWGlAeIAc6nI9zmYXo11koLXcUGmEWl3qsvgLCkqZmPJQMqk5KVVp9NI/EiIiapRyqnpKNWvi2CF2zZookV0KFINTHxD5Go+e6Lw28fHxOHHihHUoHgAkJycjPj7eWp6cnGwt02g0OHnyJOLj4yGRSNC1a1eb8pSUFMhkMnTo0MGuOETR/q/67udJX95eB2+P3xvqcKO/G0+Pvz4/g4MXCwEAsSHKaqvuXSu26tPDnBomO3d1/OSZuAIfERF5o+yqnlLRQdfvMW+vED8jBAAVBiCv3ODQYxORe3llUqp3796Ijo5GUlIS0tLSsHHjRhw9ehRjx44FANx///04cuQINm7ciLS0NCQlJSEuLg59+vQBYJ5AfdOmTdi/fz+OHj2KRYsW4YEHHrB7+B4RkcWhS0UAgLg6dFePbGKeJSi31L557KjxkEnMzTOTUkRE5E2yq1Yhjnbg8D0AkAlARKD5/dMJNVcwJvIlXpmUkkqlePvtt5GXl4fExET897//xbp16xATEwMAiIuLw1tvvYUdO3Zg7NixKCoqwrp166y9F0aOHImpU6di4cKFmDRpErp164Y5c+a4s0pE5MU0lUacumIedleXORQiA82fHhZqKqE3mpwaG3knmbSqpxR/P4iIHCI7OxtTp05Fjx49MGTIEGzevNladvLkSYwbNw7x8fG4//77cfz4cZt9d+3ahaFDhyI+Ph7Tp09HQUGBi6P3HpaJzh3dU8p8TPN7rON5NS8WQ0TeyWvmlDp9+rTN9y1atMCWLVtqff3AgQMxcODAWsunTJmCKVOmOCw+Imq8jmeXwCgCUl2pzcTltfGXSxEol6JMb0Remd46nI/IgsP3iIgc65lnnkFMTAx27tyJs2fP4rnnnkNsbCz69euHKVOm4J577sErr7yCTz/9FFOnTsV3330Hf39/HD16FPPnz8fixYvRoUMHLFu2DElJSdiwYYO7q+SRLFMTNAtSAmUlDj12TLACqVnAyTz2lCLyJV7ZU4qIyJOkXDa/6ZKXZtV5n8gm5k8Q88r4xoqqY1KKiMhxiouLkZKSgqeeegotW7bE0KFDMWDAABw4cAB79uyBQqHA3Llz0aZNG8yfPx8BAQHYu3cvAGDLli0YPnw4xowZgw4dOmDVqlX4+eefkZGR4eZaeZ4ynQElWvN8T87oKRXVRAEBQF6FEZnFGocfn4jcg0kpIqIGSsksBmBfUsoyLwLnlaKayKRVc0px9T0iogZTKpVQqVTYuXMnKisrcf78eRw5cgQdO3ZEamoqevbsaZ3mQxAE9OjRAykpKQCA1NRU9OrVy3qs6OhoxMTEIDU11R1V8Wg5VZOcBytlCJA7fkCOn1SCplW5ruSMYocfn4jcw2uG7xEReSKDScSx7KqeUiV29JSqmlcqlz2lqAaWnlKV7ClFRNRgCoUCCxcuxNKlS/HRRx/BaDQiMTER48aNw/fff4+2bdvavD4sLAxpaWkAgNzcXERGRlYrz8nJsTuOGyzO6xEsMdYn1pxS81xPzYKUEATn1DdCCRTogCMZRYjvZNsb6+pzesO1rgnjdy/GX7fjOxqTUkREDXA2rwyaShMCFVLINPl13i8swA8AoKk0QVNphMpP6qwQyQv5VSWljCZOdE5E5Ajnzp3D4MGD8dhjjyEtLQ1Lly5F3759odFoIJfLbV4rl8uh15t7Mmu12uuW2yMsrEn9K+Bi9Ym15Iz5fVCL8ACEhzdBSUkgVCo5/P0VUCr9IFH4Nfj/ccF+OF1ciT8zSzC7fyvr8TUqOUJDA61xe9O1rgnjdy/G71pMShERNcCJHPOqe52bNYE9s0v4SSUIUspQojUgv1yPuBCVcwIkr2TtKcXhe0REDXbgwAF8/vnn+Pnnn6FUKtG1a1dcuXIF77zzDpo3b14twaTX66FUmhchUSgUNZarVPa32/n5pRA9/LYuCOYH2vrEejbbPKQuTCmDWl2KgoIyaDR6VFTooNVWQiJWNvj/gYIBUgHIKtbidEaR9fgajR4FBWUIDi6td/yeoCHX3xMwfvdydvyW4zsak1JERA1wsiop1cnOpBQAhPn7oURrQEFFJZNSZEMm5UTnRESOcvz4cbRo0cKaaAKATp06Yf369ejVqxfUarXN69VqtXXIXlRUVI3lERERdschivCaB936xJpbtfJeRKDcaXWVSQS0CvHD2UI9Tqptp0C4+pzedK1rwvjdi/G7Fic6JyJqgJM5ZQCATlH2f2oQGmAeDpBfzsnOyZZMUjXROZNSREQNFhkZiUuXLtn0eDp//jzi4uIQHx+PP//8E2LVE5woijhy5Aji4+MBAPHx8UhOTrbul52djezsbGs5/S23zHx9JdoSXLx4AZmZl2FyQjvWMdw8l9TJPM7LSeQLmJQiIqonjd6I8/nlAMw9pewV5m+eV6qgotKhcfkSvV6PUaNG4dChQ9ZtL7/8Mtq3b2/ztWXLFmv5rl27MHToUMTHx2P69OkoKCiwlomiiFdffRW33norevfujVWrVsF01bxNhYWFmDlzJhISEjBkyBB89dVXrqnoNSzD9wxGzilFRNRQQ4YMgZ+fH1588UVcuHABP/zwA9avX4+HH34Yw4YNQ0lJCZYtW4azZ89i2bJl0Gg0GD58OABg/Pjx+Oqrr7B9+3acOnUKc+fOxaBBg9C8eXM318rz5FUt3vK/Y2nYeiQTn/zvGMrKSh1+nk5VSam/1ExKEfkCDt8jIqqn07llMIlAeIAckU0UN97hGmFVPaUKNZUw3uCTxElTH0d+QVHtxwoNwfsb3rM7Bk+m0+kwe/Zs6wpIFufOncPs2bNx3333WbcFBgYCAI4ePYr58+dj8eLF6NChA5YtW4akpCRs2LABAPDBBx9g165dWLt2LQwGA+bMmYOwsDBMnjwZAJCUlAStVott27YhNTUVL774Ilq1aoVu3bq5qNZmHL5HROQ4TZo0webNm7Fs2TKMHTsWoaGheOqpp/Dggw9CEARs2LABL730Ej777DO0b98eGzduhL+/PwAgISEBS5YswZtvvoni4mL069cPS5cudXONPI8oitbhe5FhYQhtFoeivGynnKtDuAICgKwyA7ShXrpMGhFZMSlF5KMaYxLD1U5cNZ9UfQTIpVBIJdAZTSjSXL+3VH5BEUbOerXW8t2vP1evGDzV2bNnMXv2bOtwiqudO3cOkydPrnE+jy1btmD48OEYM2YMAGDVqlUYPHgwMjIy0Lx5c3z00Ud4+umn0atXLwDAc889hzfeeAOTJ09Geno6fvzxR3z//feIi4tDu3btkJKSgv/85z+uT0pJmJQiInKktm3b4oMPPqixrFu3bvjiiy9q3TcxMRGJiYnOCs3rGY1GnDx7AfqqxTnkEue2XYFyCdpGBCAtrxxqLRDj1LMRkbMxKUXkoxpbEsMd/p7kPLBe+wuCgNAAP2SX6DiE7xqHDx9Gnz59MGvWLHTv3t26vaysDFeuXEHLli1r3C81NRVPPPGE9fvo6GjExMQgNTUVcrkc2dnZuOWWW6zlPXv2RGZmJnJzc5Gamoro6GjExcXZlFt6WbmSTFo1pxRX3yMiIg+XkZGO9d8fAxAGmWiAplzr9HN2jw2uSkqxnSTydkxKERHV019XqiY5r2dPKQAIUZmTUjfqKdXYTJgwocbt586dgyAIWL9+Pf73v/8hJCQEjz32mHUoX25urnXFJIuwsDDk5OQgLy8PAGzKw8PDAcBaXtO+V65csSt2wc6RBNbXX7VfQ3tK2RuDJ7LUwRfq4ii8JtXxmlTX0GvCa0n1IQsKBzQilFLXJIkS4oKxPSULaufnv4jIyZiUIiKqh2JNJdILNQCAjvVYec+iqco82Xkhe0rVyfnz5yEIAlq3bo1//vOf+P3337FgwQIEBgbizjvvhFarhVwut9lHLpdDr9dDq9Vav7+6DDBPqK7RaGrd1x5hYfb9PoSEBAAAlAo5/P3Nc5M1qTS/qTeKonXbjSiV5tibNg1AeHj9fyc9jb3XszHgNamO16Q6XhNyJa3B/K9ScM0CHQmxQQCAYj2gM3BRECJvxqQUEVE9HLtcDACIDVYipCqxVB8hVSvwFWoqUb9BgI3LmDFjMHjwYISEhAAAOnTogIsXL+LTTz/FnXfeCYVCUS2JpNfroVKpbBJQCoXC+n8AUKlUte6rVCrtijE/vxQ1TIVVq6Ii8wqOWp0eFRXmSWINenOSstJosm67Ea3WHHthYTnUasevduRqgmB+qLb3evoyXpPqeE2qa+g1sexPZA9N1XBzhWB0yfnCAxWIDpQhu8yAK6U6voci8mJMShER1UPq5SIADRu6B/zdU6pUa0CAIG1oWD5PEARrQsqidevWOHjwIAAgKioKarXaplytViMiIgJRUVEAgLy8POu8UZYhfZby2va1hyjCrgdB62uv2sey+l5lPeeU8qWHc3uvZ2PAa1Idr0l1vCbkSpqqnlIKiet6LXUMVyC7zIDsEi1utn8RZCLyEBJ3B0BE5I2OViWlOkY17LM5lZ8ECqkEIgCDKqTBcfm6N954A48++qjNtlOnTqF169YAgPj4eCQnJ1vLsrOzkZ2djfj4eERFRSEmJsamPDk5GTExMYiMjET37t2RmZmJnJwcm/KrJ1p3FZmkaqJzk1jjCoRERESeRFPVQcpVPaUAoFO4OROVU1K3HsVE5JmYlCIiqoejVcP3GtpTShAE6xA+gyq0wXH5usGDB+P333/Hpk2bkJ6ejv/85z/48ssvMWnSJADA+PHj8dVXX2H79u04deoU5s6di0GDBqF58+bW8ldffRWHDh3CoUOHsGbNGjzyyCMAgObNm6N///6YM2cOTp06he3bt2PXrl34xz/+4fJ6WiY6B4B6znVORETkMtaeUi6aUwoAOlQlpfLK9fVeGISI3I/D94iI7KQu1yO7WAsBQIcG9pQCgKYqGa6U6lDJpNQNdevWDW+88QbefPNNvPHGG4iNjcWaNWuQkJAAAEhISMCSJUvw5ptvori4GP369cPSpUut+0+ePBn5+fmYMWMGpFIpxo4da9PzatWqVZg/fz4eeOABREREYPny5ejWrZurq2mTlDKYREglXA6LiIg8l7WnlMQIoP5zbdoj0l8KldR87gJ2liLyWkxKERHZ6WSOeRLpVmH+CJA3/DZqmSjdoApr8LF80enTp22+Hzp0KIYOHVrr6xMTE5GYmFhjmVQqRVJSEpKSkmosDwsLw/r16+sfrINIJAIEmKeZMphMULBjMxEReSitwYTKqg5Srlp9DzD3Ng9XAhnlgFrLnlJE3orvcomI7HQy25yUaujQPQtrUkoZ4pDjkW+wTHZuqOdk50RERK5QUNVNyk8iQCa4ts0KV5rbSrXWpaclIgdiTymiBpg09XHkFxTVWh4WGoL3N7znuoDIJSw9pRyVlApSmm/FBlUITKIIicChWmQewldpFDlPBhEReTRLUipA4fxVhE0mIzIzLwMAMjMvI1RhbiPzdUAl20sir8SkFFED5BcUYeSsV2st3/36cy6MhlxBFEWcuGJJSjV8PikAaKKUQRAAUSJDbqkOzYKUDjkueTfLPFJGvskmIiIPVqA1J6X85VLAyYvvleTn4tNLZYhrJSD99DEEN2sJpSwIWoMJ5wv1aOfc0xORE3D4HhGRHbJLdCjWGOAnFdAuwjFJKYkgIEhh/owgvVDjkGOS95NJzE00e0oREZEny7f0lHLAPJt1ERQWhdBmcQgKjYAgAM2CzKvw/aXmbOdE3ohJKSIiO1iG7nVoFgS5zHG30GCV+Y1cRhGTUmRmWYGPSSkiIvJk1uF7cucP36uJJSl1kkkpIq/EpBQRkR2OV01y3i0u2KHHDVKaJztnTymyYFKKiIi8Qb6bk1LRTczTHpxS6zjkncgLMSlFRGSHkzklAIDuzUMcetxgJYfvka2/k1KuW16biIjIXu7uKRUa4AeZAGgMItLyyt0SAxHVH5NSRER1ZDCJ+OtKGQAg4aYQhx47WMWeUmSLE50TEZE3KNAYAAD+LppT6loSQUBY1Roxf14udksMRFR/TEoREdXROXU5tAYTAhVStA53zCTnFpaeUpnFWg7XIgCATFrVU8rI3wciIvJMBqMJRVpzj1539ZQCgAiluc1kUorI+7gnnU1E5KEmTX0c+QVFNRe2ugWI6otOzZpAUtWLxVEC5FLAZIARMmQXa9G8qcqhxyfvwzmliIjI06nL9RABCABUfu7r73B1TylRZLtJ5E2YlCIiukp+QRFGznq1xrItX30DAOgS3cTh5xUEATJNEQwB4Ugv0jApRUxKERGRx8sr0wMAVDLzexl3aaoA/CQCCjWVOJdXjhCOByLyGvxzJSKqo8rAZgCAzs2CnHJ8mbYIAOeVIjOZxNxEMylFRESeKq9MBwBQuW/kHgBAKghoFyYHABy+UODeYIjILkxKERHVgd5ggkEVCsA5PaWAv5NSGUxKETjROREReb78ikoAgMLNSSkA6BiuAAAcvpDv5kiIyB5MShER1UFeuR4QBEQHKRAWIHfKOf7uKVXhlOOTd+HwPSIi8nQF5ebhe0oPSEp1sial2FOKyJswKUVEVAeW7unOGroHAFJtIQD2lCIza1LKaHJzJERERDXLrzAnpRRS980nZXFzqBxSiYCsYi2yi7XuDoeI6ohJKSKiOsgtNb/pctbQPeDvnlLZJTroDExENHYyKXtKERGRZysoNw/f84SeUkqZBB2jAgEARy4XuzkaIqorrr5HRF5l0tTHkV9QVGt5WGgI3t/wnkPPKYoicqt6SjkzKSWp1CBALkW53ojMYg1ahwU47Vzk+Th8j4iIPF2BtaeUmwOpkhAXjOPZpfjzcjFGdIpydzhEVAdenZTKzs7GokWL8PvvvyMkJASPPPIIHn30UQDAyZMn8dJLL+HMmTNo27YtFi9ejC5dulj33bVrF/79738jLy8P/fv3x9KlSxEaGuqmmhBRXeUXFGHkrFdrLd/9+nMOP2e53ghNpQkwGdE+MtDhx7cQANzUVIW/rpQhvYBJqcaOE50TEZGns0x07gk9pQCgR1wwPv79MntKEXkRrx6+98wzz8Df3x87d+7ECy+8gH//+9/47rvvUFFRgSlTpqBXr17YuXMnEhISMHXqVFRUmCcPPnr0KObPn48ZM2Zg27ZtKCkpQVJSkptrQ0SeKqfU3EvKr0INpZ9z33Xd1FQFAEjnvFKNHntKERGRp7NMdO4pPaXiY4MgCOb3Ueqq2IjIs3ltUqq4uBgpKSl46qmn0LJlSwwdOhQDBgzAgQMHsGfPHigUCsydOxdt2rTB/PnzERAQgL179wIAtmzZguHDh2PMmDHo0KEDVq1ahZ9//hkZGRlurhUReaKcEnNSSl6a5fRzxYWYk1KZnKCz0ZNJzE00k1JEROSJKvRGaKvmwPSUnlJBSj90qFqUJoW9pYi8gtcmpZRKJVQqFXbu3InKykqcP38eR44cQceOHZGamoqePXtCEMyfMguCgB49eiAlJQUAkJqail69elmPFR0djZiYGKSmprqjKkTk4bItSamSTKefKzZYCQDILGZPqcZOxuF7RETkwQquWnnP0mZ5gt4tmwIAUjKZlCLyBl6blFIoFFi4cCG2bduG+Ph4DB8+HLfffjvGjRuHvLw8REZG2rw+LCwMOTk5AIDc3NzrlhMRWWgqjSjSmOdLULiwp9TlIvaUauysq+8ZmZQiIiLPk181PC5E6VmPlL1bhQHgCnxE3sKrJzo/d+4cBg8ejMceewxpaWlYunQp+vbtC41GA7lcbvNauVwOvd5849RqtdctryvBzg8ELK+3dz9P4u11cEf8jj6XI+vgjp+jK34Gjjy2ZeheU5UfJAYtBMG5dYgLUVadVwujKNr1yWNd4/H2v+PGQmqdU8rk5kiIiIiqs0xyHqyQAjC4N5ir3NLK3FPqbF45SrSVCFL6uTkiIroer01KHThwAJ9//jl+/vlnKJVKdO3aFVeuXME777yD5s2bV0sw6fV6KJXmhz2FQlFjuUqlsiuGsLD6LQ1f3/08ibfXwVHxy/yk8PdXXLc8PLz+5xr70D+Qm19YY1lkWFN8vvUTt8V2PVefWxRFlGgNUMgkNpOE1/dn4Ox6XXt8dUYJAKB5qD+Krjn2tXW4UWyCgBvG3qFFGOQyCfQGEyplMjQL9a/TsetT79BQ7/479nXW4Xui+e9IYBaRiIg8iGWS82ClZyWlwvz9EBMoQ1aZAd/9mYYxvdtDKvWQSa+IqBqnJKUOHjyIPn36OPUN9PHjx9GiRQtrogkAOnXqhPXr16NXr15Qq9U2r1er1dYhe1FRUTWWR0RE2BVDfn4pRDtGVQiC+SHW3v08ibfXwdHxGyqNqKjQXbdcrS6t9/GzctQYOetVm22CAKhUCmxfPvO6x3Z2bNdjOfeZ3DIcuVyCUp35jUqovx/6Vo3zr+/PwNn1uvb4F/PLAAARAX5QVx27tt+jG8Umirhh7AUFZYgJUuBigQbHLqihMjWt07Htqbcl/oKCUocmplxx729Mru4lZzCJ8JPyuhKRb2L74Z0sc0qFKDxr+N6lS5cAbQkAf/zn90voGa1Cy5at3B0WEdXCKXeQf/3rXxgwYABefvll6+TijhYZGYlLly7Z9Hg6f/484uLiEB8fjz///BNi1dOiKIo4cuQI4uPjAQDx8fFITk627pednY3s7GxreV2Jov1f9d3Pk768vQ6OjN9Zvye1HV9nMCG7WIujl4tQEncbVu4/i0XfnMbib07j3z+dx46ULJzILq3zHDROu84ADl0qxM/nClCqM1iHiRVUVGL3yVwUxd4Kk0n0+GtepjOgSGOAgL8nIL/e75EjiCIQG/z3vFLOqrfl9Y7kjHu/Xq/HqFGjcOjQIeu2lJQUPPTQQ0hISMDdd9+N7du32+xz7733on379jZfZ86cAQCIoohXX30Vt956K3r37o1Vq1bBdNXwuMLCQsycORMJCQkYMmQIvvrqK4fUoz6uTkpxsnMi8mWueHYgxzIajbiYkw8AkOjLYXJzO2UyGZGZeRkXL15Aeno6YkLMPc3LJAFujYuIbswpPaV+/fVX/Prrr9i7dy+mTJmCwMBADB8+HCNHjkSnTp0cco4hQ4Zg9erVePHFF/HUU0/hwoULWL9+PWbNmoVhw4ZhzZo1WLZsGR566CFs3boVGo0Gw4cPBwCMHz8eDz/8MLp3746uXbti2bJlGDRoEJo3b+6Q2IgcRYR5EsmLBRqkF2qgLr9q2GlsL2xPqXni7RCVHypv6o8ynQGBCteP0q2I7IKjWeZeOz3igtAtJghGk4jkjGKcvFKGkmY98cr+s3j+jrYe/amoZbLxiEA5FDLXfQpomVfK2yY7d/S9X6fTYfbs2UhLS7Nuy8vLwxNPPIHx48fjlVdewYkTJ5CUlISIiAgMGjTI/Cb54kVs2bIFLVu2tO7XtKm5x9kHH3yAXbt2Ye3atTAYDJgzZw7CwsIwefJkAEBSUhK0Wi22bduG1NRUvPjii2jVqhW6devWsItTD4IgQCqYh+8ZmJQiIh/mimcHcqyMjHSkpOcDUOLUpSy0iwpCuBvjKcnPxaeXyhDXSsCViyehDG4OIACFOkBr4NyMRJ7MKU+rMpkMAwcOxMCBA2EwGPDbb7/hhx9+wIQJExAVFYV77rkHiYmJiImJqfc5mjRpgs2bN2PZsmUYO3YsQkND8dRTT+HBBx+EIAjYsGEDXnrpJXz22Wdo3749Nm7cCH9/c8Y8ISEBS5YswZtvvoni4mL069cPS5cudVT1iRrMYDTh+zNqqLs8gJ1HbVeFDJRLEd5Egbzjv+Kh+0ZD5SeFSRRRWFGJiwUVOJpVYl4tLqYHPvszG/GxTZAQGwyJi5bqPasuR3HL2wEAvW8KQXxsEADATwr0ax2KsAA5fjmXjx2p2Wiq8sPUfi1dEld9XC7SAPh7RTxXianqlZVVrHHpeRvKkff+s2fPYvbs2RCv6c61f/9+hIeH49lnnwUAtGzZEocOHcLXX3+NQYMG4fLly6isrES3bt2gUFSfg+ujjz7C008/jV69egEAnnvuObzxxhuYPHky0tPT8eOPP+L7779HXFwc2rVrh5SUFPznP/9xS1IKME92bjSKTEoRkU9zxbMDOZ5JpgSMQFCgv7tDAQAEhUUhtFkctKVq6EwiAuRSlOuNSCvQo4O7gyOiWjm1C4Ver8cvv/yCb7/9Fj/99BOaNm2KIUOG4OLFixg5ciRmz56Nf/7zn/U+ftu2bfHBBx/UWNatWzd88cUXte6bmJiIxMTEep+byBlEUcS+U3lY+8sFXCnVAYHNIBGA5iEqtAhVoXmICv5y84TXy15/F99c+qXaMYIgQBHSAnlNOwJRN+PI5RJkFetwR7tw+Mv/nuTxzJlTGD1ubK2xhIWG4P0N79kd/6s/nAUkMjQPUaJbTPX5ijpEBeLEjztQ0GIw3juYjsgmCtzXLdqu87iCSRSRWWzuqWTpueQqluF7lvN7G0fc+w8fPow+ffpg1qxZ6N69u3X7gAED0LFjx2qvLyszz/119uxZREdH15iQunLlCrKzs3HLLbdYt/Xs2ROZmZnIzc1FamoqoqOjERcXZ1O+YcMGey+Bw8gkEuiNRialiKhRcPazAzmW1mj+Vy54Xk8kQQCigxQ4q67ASbUO97g7ICKqlVOSUvv378fevXvx008/wc/PD3fffTfWrVtn/WQaAD755BO89tprbFiIqpy+UobVP5xFapZ5tbdQfz9Unv4Fo++7Hyq/6iuGGEyoNgn61VZPHYXEZdvwy/kC5JTqsPvkFYzsFGVNTN1o/92vP2d3HX45X4DkjGLAZED/1qG1Ds0LVJ/EfQ9OxKaD6Vi5Pw0RgXL0bx1m9/mcKbtYB71RhFImQUSg3KXnjq1KgnlbUsqR9/4JEybUuD0uLs4maZSfn4/du3dj5syZAIBz587Bz88PU6dOxfHjx9GqVSvMnTsX3bp1Q15eHgBYF70AgPBw82CDnJwc5OXl2ZQBQFhYGK5cuWLHVQDsHZFqfX0N+8mkAlCJOs8TV98YPJGlDr5QF0fhNamO16S6hl4Td1xLPjt4J09OSgFAsyAlzqor8Je69oViiMj9nJKUev755zF06FC89tpr6NevX41LcHbp0gWPPfaYM05P5FVEUcSnRzLx5v8uwGgyJ0Ee63MTJvSMxYMT1kDl90C9j90mPABhAXLsOZmLIo0Be07m4t6uUZBLHT8/kkkUsfaXCwCAwOwUBCpaX/f1T/ZrYU6WnbiCpK//wvoH49G5Wd1XgtMbTMgo0iC/vBJ6owmBCimig5RwVH/4HqbIAAEAAElEQVSS8wUVAICWof6QuPgdumVS9RKtASXaSgQp/Vx6/vpy9b1fq9Vi5syZCA8Px4MPPggAuHDhAoqLizFu3Dg8/fTT+OyzzzBx4kTs2bMHWq05ySeX/51ktPxfr9dDo9HYlFnKr15Qoy7Cwuxb0TAkxDwJq1Ihh7+/bQ8vv6q5zGRyWbWyaymV5tibNg1AeLjjVlV0N3uvZ2PAa1Idr0l13nRN+OzgfbQGEyyfl3hqUio6yNxunsnXo9Jogp8T3v8SUcM5JSn122+/oaysDCUlJdZGZc+ePbjlllsQEREBwLwCnr2r3RH5mhJtJZbsPYOfz5lXLxl8czhmD26DqCbXf/i0R4jKD6M6R+Lr47ko1FTip7R83Nne8VNR/nq+ABfyKxAglyIw6w8A1x8eKwgCXrzzZuSX6XHwUiFm7TyOt8Z2RfvIwOvuZ5QH4rcLBTh1pQzVO48Uw6/LgziaVYJuMUH1rotJFHEx35yUahXm2vmkAEDlJ0VYgBz55XpkFmu9Jinlynt/eXk5pk2bhosXL+I///kPVCrzz2np0qXQarUIDDT/Hi1atAhHjhzBV199hdtuuw2AOQFlGd5nSTipVCooFIpqCSi9Xg+l0r7hm/n5pXatbFhUVA4A0Or0qKiw/TTX8lhWXqFDhbL6Q9rVtFpz7IWF5VCrS+segIcSBPNDtb3X05fxmlTHa1JdQ6+JZX9X4rOD9ynWmhNRUokAqcM+EnSsYKUMcgmgN4k4daUMnaICkJGRbi1v3vymGhOgRORaTkkXHzlyBHfeeSe+/vpr67aPPvoII0aMQHJysjNOSeR1soq1eOw/Kfj5XD78pAKev6MtVt7T0aEJKYsgpR/ubB8OqQBcKtTgWLbjH1g/Sb4MALivWzQkxrr1LJFJJXjl3o7oEBmIQk0lpm5LxS9VCbprZZdo8cr+NFzpPhEncswJqWClDJ2iApEQG4TWYf6QCgIqA6PwxNYUbDp4qdok2XWVXaKD1mCCQiZBTJBr55OysPSWyvSiFfhcde8vKyvD5MmTkZaWhg8//NBmlT2ZTGZNSAHm5Gfr1q1x5coVREVFAYB1GN/V/4+IiEBUVBTUarXNudRqtfWBqK5E0f4v847VjyWtWqDA3jml6hODJ375Ul14TXhNvOmauBqfHbxPkc48dk/lJ/HY4bOCICCs6m1cSmYxMjLSsX7fH9h6JBPr9/1hk6AiIvdxSlJq5cqVePLJJ/H0009bt23duhWPP/44li9f7oxTEnmVSwUVeHxrCtILNWjWRIH3x3fH2O4xtc7B5AiRTRTo26opAOCP9CJIQhw3ufipK6VIziiGVAAeTLBvZZwAuQxvj+uGhLhglOuNePbLE3juyxP4/kweUjOLsefkFcz970nct+l37EjNBiRSRAcpMKJTJMZ1j0a/1qHodVMI7mgXjgk9Y6DKOwWTCKz/9RKWf5cGYz0miD6Ta540u1WoymWrFl7LmpTyonmlXHHvN5lMmDFjBi5fvoyPP/4YN998s035ww8/jLVr19q8/vTp02jdujWioqIQExNj84CTnJyMmJgYREZGonv37sjMzEROTo5N+dUTrbuarJ5JKSIib8JnB+9TXDWhlH8N8556kjCFuR09WjVna0hENEKbxSEkwvMW2SFqrJySlLp48SKGDRtWbfvw4cNx9uxZZ5ySyGtkFWsxbftR5JXp0TrMH5vGd0eHKNd0k+8QGYjmIUoYRcD/tn+gvj2JrvVJciYAYGj7CDSrR8+iJkoZ3rq/K/7ZKw4SAfj5XD7mff0XHt+aipe+OY0f09QwmkTcclMIwk7swKjOUYgNVlZL4in9pGh67lvMG9oWEgH48lgOln93BiY76mmUqXC+auieq34uNfk7KaVxWwz2csW9//PPP8ehQ4fw8ssvIygoCHl5ecjLy0NRUREAYMiQIdi8eTO+//57nD9/HkuWLEFpaSnuu+8+AMD48ePx6quv4tChQzh06BDWrFmDRx55BADQvHlz9O/fH3PmzMGpU6ewfft27Nq1C//4xz8cEnt9MClFRI0Bnx28T7HOPHyvpsV4PEl41dvS1MwSh73vJSLHcsqcUq1bt8Y333yDqVOn2mz/4YcfcNNNNznjlEReoUxnwDM7jyO3TI+WoSq880A3hPq7bmU3QRAwoHUoPkvJBiJb46y6AjdHBDTomFdKdfjutHkI1D96xd3g1bVTyCT418DWGNk5Cl8fz0FyRjFKtZWICFSgS3QQRnaOxM0RgRj9WeYNj3V/fAyClH54cfdf+O/xK1DIpJgzpE2deqJVRHaCSQQiAuUuX3XvanEh5jmSvGn4nivu/fv27YPJZKp2jt69e+Pjjz/Go48+Cp1Oh5dffhlqtRrx8fH44IMPrEP6Jk+ejPz8fMyYMQNSqRRjx47Fo48+aj3OqlWrMH/+fDzwwAOIiIjA8uXL0a1bN4fEXh/W4Xt2rr5HRORN+Ozgff4evicFKt0czHWEKAA/CVCoqUR2mcHd4RBRDZySlHrmmWcwbdo0/Prrr+jcuTMA4PTp0/jjjz/w1ltvOeOURB7PaBLxwq6/cKGgApGBcqwb69qElEWAQoaEuGD8nl6EQ5cK0SJU1aDV+D77MxNGk4geccHo6ICeRW3DAzBrUJsGH+fO9hGoNJqw6JvT2J6SBYVMgqdvb3XdxJSm0ojyZvEAgE5R159w3dm8cfies+79p0+ftv5/06ZN132tIAh48skn8eSTT9ZYLpVKkZSUhKSkpBrLw8LCsH79+nrH6miyqr/N+gxDJSLyFq54dtDr9VixYgV27doFPz8/jB07FrNmzYIgCDh58iReeuklnDlzBm3btsXixYvRpUsX6767du3Cv//9b+Tl5aF///5YunQpQkNDHRKXt7JMdK7y8+wV7aSCgLahcvyl1uFUvu7GOxCRyznlLnL77bfjiy++QKdOnXD+/Hmkp6ejQ4cO2L17NwYOHOiMUxJ5vA8PZ+DAxUIoZBKsGdMZkU6Y0LyuukY3gbEkF5pKE/68XFzv41Tojdh5NBsAMKFn/XtJOcuITlFIutM859CWPy5j42+Xrvv6LX9chkkeiECFFK3DG9aDrKFiQ8xJqZwSLQxGz1xq+Vq89zseh+8RUWPgivbj5Zdfxm+//YZNmzZhzZo1+Oyzz7Bt2zZUVFRgypQp6NWrF3bu3ImEhARMnToVFRXmofxHjx7F/PnzMWPGDGzbtg0lJSW1frDRmBRVzSmlknv28D0AaB9m/hD4VH7dFuIhItdySk8pALj55psxb948Zx2eyCucOXMKo8eNhT6wGdSdxwKCBKpTe/H8jH8DAMJCQ/D+hvdcHpdUIkBz+HMEDp2G49mlaB8ZiBCVn93H2XUiB2U6I5qHKDGgTd0/MTz110ncO3ZsreUNuS6Wa361oGbxKGk5EO8dTMfXX3+JXa88U22/zGINPv49AwDQ+6YQazLAXcIC5FDIJNAZTMgp9Z5P9njvd6y/k1LekZgkIqovZ7YfRUVF2LFjBz744APrkOxJkyYhNTUVMpkMCoUCc+fOhSAImD9/Pv73v/9h7969SExMxJYtWzB8+HCMGTMGgHmY9+DBg5GRkYHmzZs7JV5vYDN8z8N1CFMAKMUptQ632begLhG5gFOSUiUlJXj//fdx7NgxGAyGapPKffTRR844LZHHMZiAu/+1GjtTswGtAW3D/TG47+PW8t2vP+e+2C4fR/MQJTKKtDh0qQh3d7CvlTaJIrYeMc/v9FCPOEjsWDmw0ihi5KxXay1vyHUxmFDjsVMyS/B7ehGuRPTA+wfT8Wif5taYy3QGzPriBDSVJviVZqF1mPvfZEoEATFBSlwoqPCaIXy89zsee0oRUWPg7PYjOTkZgYGB6N27t3XblClTAAALFixAz549rcP7BUFAjx49kJKSgsTERKSmpuKJJ56w7hcdHY2YmBikpqY26qTU1cP3PH1JlnZVPaWyywzQhbr3Q0ciqs4pSam5c+fi2LFjuOeee6yTyxI1Vn9eLkax1gB/Pylua+VZ8w/c2rIpLqdmI71Qg8xirXUeo7r45VwBMoq0aKKQYVTnKCdG6RjdY4NgNJlw5HIJ3vn1In69UIDRXZvBaBLx4eEMZBZrEREohyT5Gwh33VrjMa7uhSXzk8JQabQtP5eGkQ6MOTbEu5JSvPc7npRJKSJqBJzdfmRkZCA2NhZffvkl1q9fj8rKSiQmJuKpp55CXl4e2rZta/P6sLAwpKWlAQByc3MRGRlZrTwnJ8fhcXqT4qt6Snl6UqqJXIrWYf44n18BtRaIdndARGTDKUmp3377DVu2bHHrikVEnkASFImjWSUAgH6tm0Ih86zJIENUfugUFYgTOWU4eLEQ93VrVuceT58euQwAuK9bM/h7wXwCANAjLhjn/vcF9O3vxNGsEuvPBgAiA+V4bUwXzN1fXuv+V/fC8vdXoKLCdljdyamjHBqvdbJzL1mBj/d+x7P0lOJE50Tky5zdflRUVODSpUvYunUrVqxYgby8PCxcuBAqlQoajQZyue3CM3K5HHq9ef4hrVZ73XJ72NGp3G0sMV4vVm2lERqDuV3y95OiwAVx1VVN8QsCEB8bhPP5FcjXiTbbPe1nUpfr78kYv3s5O35nHdcpSamoqChIJJ718E3kDqpb7odJBJqHKNEy1N/d4dSoR1ww0vLKUVBRibS8crSPvPEnlKdzy5CcUQypAIzrHuOCKB1DEAQE5J7AxyuS8N9jOTh0qQgqPwm6xgTh4VviECB32jR79RIbogJgnu/KG/De73gyaVVPKSOTUkTku5zdfshkMpSVlWHNmjWIjY0FAGRlZeHTTz9FixYtqiWY9Ho9lErzB0MKhaLGcpVKZXccYWENX6XYVa4Xa0aBeRJ4iQAEN1FCrfSDROEHf38FlG7+v0plXkhIUbVdo5IjNDQQAzrI8cXRHBTqBZvt4eGe+TPxpt+VmjB+9/K2+J02fG/RokV4+umn0aJFC/j52U6gHBPjPQ+xRPWVWaSFX/OuEATzMDlPpfSTIiEuGIcuFeH39CK0CvOHXHr9N4bvH0wHANzRLgLNguo+5M9TRAcpMbVfS0zt5+5Irs/bekrx3u94sqqHNA7fIyJf5uz2IyIiAgqFwpqQAoBWrVohOzsbvXv3hlqttnm9Wq22DtmLioqqsTwiwv4Zs/PzSyF6+O1cEMwPtDXFajQakZGRjjP55p7iSgmg0eih1VZCIlaiokLn9v9rNObYdDrz9vJyDY4ePQVV02YAgHyNiKJSDTQaPQoKyhAUVOrS63sj17v+3oDxu5ez47cc39GckpSaOXMmgL8nELRMHCiKIgRBwF9//eWM0xJ5DFEU8Xt6EQCgU1T9VrZzpc7NmuCvnDKU6AxIzihG3+sk0U5kl+CHNDUEAI/depPrgmyErEmpYi284fMO3vsdjxOdE1Fj4Oz2Iz4+HjqdDhcuXECrVq0AAOfPn0dsbCzi4+Px7rvvWs8liiKOHDmCJ5980rpvcnIyEhMTAQDZ2dnIzs5GfHy83XGIIrzmQbemWNPT07F+3x+o8DcneGSCsYY93csSs+XfkvxcfHqpDHGtBChEPXSCHFdKdAiAZ/88PDm2umD87uVt8TslKfX9998747BEXuNSoQZ55XqIlTp0v+pTOU8llQi4rVVT7D2Vh+PZpWgdVvNQQ5Mo4o3/XQAAjOgchbbhAa4Ms9GxJKVKdQYESBVujubGeO93PE50TkSNgbPbj9atW2PQoEFISkrCokWLkJeXh40bN+Kpp57CsGHDsGbNGixbtgwPPfQQtm7dCo1Gg+HDhwMAxo8fj4cffhjdu3dH165dsWzZMgwaNKjRrrwXEhENnRAC5BZALnhH2xQUFoXQZnEIyziNLAOQVazFzd7X0Z/IZzll8HZsbCxiY2NRUVGBkydPomnTpjCZTIiJibHpNkvki0RRRMpl8wTaur9+8ppJwJs3VeHmCHOS6cc0NYyy6q31Z39m4c/LxVDIJJh6WwtXh9joKP2kCA8wT65qUAa5OZob473f8f6e6Nzk5kiIiJzHFe3Hq6++iptuugnjx4/H888/j3/84x94+OGHERgYiA0bNlh7Q6WmpmLjxo3w9zd/QJeQkIAlS5Zg3bp1GD9+PIKDg7FixQqHxOStNFWrDysk3pGUsmgqNc8NllXiHdMiEDUWTukpVVxcjH/96184fPgwAGDfvn1YtmwZMjIysHHjRj6ckE/LKdUhr1wPqSBAd/J7AE+4O6Q6u7VFCHJKdCjVGaBrNwLleoN18u+Uy8V463/nAQBP394a0V44l5Q3ig1WQl2uh1ER4u5Qboj3fsfj8D0iagxc0X40adIEq1atqrGsW7du+OKLL2rdNzEx0Tp8jwCN3pyUkntpUkpdXgm90UuXVyPyQU7pKfXyyy9DpVLh4MGDUCjMQ06WL1+OZs2a4eWXX3bGKYk8xtEs84SJN0cGQNSWuTka+yj9pLirQzj8JAL0QXF47JMU/Pd4Dt4/mI4ZO45BbxTRr1UoxnWPdneojUZsiDn55w09pXjvdzwmpYioMWD74V0sPaW8ZfiehUJiQoDU3PM4j52liDyGU5JSv/zyC5599lkEBf39EBUaGoqkpCT8/vvvzjglkUco0lQivVADAOga7Q1TU1cX6i/H8E6RkOjLcKGgAkv3ncE7v16EzmDC7W3C8Mo9Ha0TkJLzxQWbl5w2KoLdHMmN8d7veExKEVFjwPbDu2gqzYkdb+spBQBNZeaEWp7W+2In8lVOGb4HADqdrtq2goICyGROOyWR2x3LMs8l1aKpyuNX3LueqCYKRBz7FCOnL0VyehECFTIMvjkMIzs3sz4kk2vEBHtPTymA935Hk0nNnx2JImAyiZDw74+IfBTbD+9h7Skl8b75DkP9DLis80Oext2REJGFU3pKjRo1CsuWLUNaWhoEQUBFRQUOHjyIBQsWYMSIEc44JZHbVeiNSMsrBwB0i/GOBML1SCs1eKpfS7w3vjv+ndgFo7tGMyHlBpaklDf0lOK93/GkV/3NsbcUEfkqth/epcJLJzoHgKZ+5thLKoFirdHN0RAR4KSk1Ny5cxEfH4/ExERUVFRg9OjRmDx5Mvr27Yu5c+c645REbncqtwxGEYgMlCOqidzd4ZCPsCal5IEwiZ795o/3fseTXpUHZlKKiHwV2w/vYTSJqDSa2yNvm1MKAOQSINTfPJrhhLp67zwicj2n9IeVy+WYN28ennnmGWRkZMBoNKJ58+YICAhwxumI3M4kijh9xTypeedmTTjnEjlMeIAcMokAA6So0BsRqPDcYQy89zueIAjmn79JZFKKiHwW2w/vYelcJECEzEvf7sYEK1FQUYljuZztnMgTOOXppqYJCU+ePGn9/y233OKM0xK5TWaxFmV6IxRSCVqG+bs7HPIhUomA6CAFMoq0KNUZPDopxXu/c/ydlPK+uTuIiOqC7Yf30FU1RXLBBG/9DDY2WInj2aX4M0cLURT5YTKRmznl6ebhhx+ucbtcLkdERAS+//57Z5yWyG0svaTaRvhz3iVyuOggpTkppTUg2oOnK+O93zks9xQje0oRkY9i++E9LD2l5IL3flASE6SARADyNUacy69A23D2yCNyJ6ckpU6dOmXzvdFoRHp6OpYuXYp77rnHGackcpsKvREXC81LeHSIDLRr3zNnTmH0uLG1l59Lw8gGReedrnddGuM1scwrVarz7Ak5ee93Dstk5xy+R0S+iu2H99D5QFJKJpUgQglc0QC/nS9gUorIzVwyDkQqlaJVq1aYN28epkyZgvvuu88VpyVyibS8cohVE5yHBtg3wbnBBIyc9Wqt5SenjmpoeF7petelMV6Tv5NSBjdHYh/e+x1DVjXbucHIpBQRNQ5sPzyXLySlACDaX8AVjYhfLxTgkd7N3R0OUaPmlNX3apOfn4+SkhJXnpLIqUSYV90DgPZ29pIiqquYoKqklNa7klIWvPc3jIw9pYiokWL74Xm01pX3vDspFaUy/5uaWYwyL/vQj8jXOKWnVFJSUrVt5eXl+O233zBs2DBnnJLILfRNYlCiNcBPIqBNOCc4J+ew9JTy9DdNvPc7h0xi/vyIc0oRka9i++E9LHNKKQQjXNy/waEC/QTENpEis9SAgxcLMbR9hLtDImq0XLaMU0hICJ5//nmMHj3aVackcjpNeHsAQKswf/hJvbdhJs8WXZWUKtcbYTKJkHjRZPq89zcce0oRUWPE9sMz2Q7f8+73vgnNlMgsLcOvFwqYlCJyI6ckpVasWOGMwxJ5lEqjCZqwmwEAbSM4QSI5T5i/H2AyQJTIUKY3Ikjpss8T7MJ7v3NwonMi8nVsP7yHL6y+Z9GjmQq70srw24UCmEQREsF7PvQj8iVOebJZu3ZtnV87Y8YMZ4RA5HS/XSiAKFPC30+K6CCFu8MhHyYIAmS6EhhUoSjVGTw2KeXoe79er0diYiIWLFiAPn36AAAyMjKwYMECpKSkICYmBi+88AL69+9v3ee3337D8uXLkZGRgfj4eCxbtgzNm/89genmzZuxadMmlJWVYfjw4ViwYAFUKvPEEjqdDosXL8a3334LpVKJSZMmYdKkSXWuk7P83VPK+x8AiIhqwmcH72HtKSXx/japQ7gC/n5SFFRU4nRuGTpGNbEpNxqNyMhIt37fvPlNkEqlrg6TyOc55cnm0qVL2Lt3L0JCQtClSxfI5XKcOnUK6enp6N69O2Qy82kFZqPJi+39KxcA0Cbcn5+skNNJtVVJKa0BCHZ3NDVz5L1fp9Nh9uzZSEtLs24TRRHTp09Hu3btsGPHDuzfvx8zZszAnj17EBMTg6ysLEyfPh0zZ87EgAEDsG7dOkybNg3//e9/IQgC9u3bh7Vr12L16tUICwtDUlISVq9ejYULFwIAVq1ahePHj+PDDz9EVlYWnn/+ecTExLh9PhNrUoqr7xGRj+Kzg3eoNIqorMpF+UJPKT+JgN4tQvDT2Xz872x+taRURkY61u/7AyER0SjKy8aTdwMtW7ZyU7REvsspSSm5XI577rkHixcvhp+fn3X7ypUrUVxcjOXLlzvjtEQuU6Yz4JfzBQCAtuEcukfOJ9WZVx8q9eDJzh117z979ixmz54NUbRNwhw8eBAZGRnYunUr/P390aZNGxw4cAA7duzAzJkzsX37dnTp0sXau2nFihXo168fDh8+jD59+uCjjz7CxIkTMXjwYADA4sWLMXnyZMyZMweiKGL79u1499130blzZ3Tu3BlpaWn45JNPPCYpxYnOichX8dnBOxRXdZOSCIAMvtEmDWobjp/O5uOns/mY2q9ltfKQiGiENotzfWBEjYhTZqfbs2cPHn/8cZtGBQAeeOAB7Nmzx2Hn0ev1WLx4MW655RbcdttteO2116wPMSdPnsS4ceMQHx+P+++/H8ePH7fZd9euXRg6dCji4+Mxffp0FBQUOCwu8n0/pqmhM5gg0xQgLMDvxjsQNZDMC5JSjrr3W5JI27Zts9mempqKTp06wd//75Uue/bsiZSUFGt5r169rGUqlQqdO3dGSkoKjEYjjh07ZlPevXt3VFZW4tSpUzh16hQMBgMSEhJsjp2amgqTm4fNyaScU4qIfJurnh2oYYp15vZQ5SeFt3daM5mMyMy8jJv8SiEVgLPqcqQXatwdFlGj5JSkVFRUFH755Zdq2/ft22czt0dDvfzyy/jtt9+wadMmrFmzBp999hm2bduGiooKTJkyBb169cLOnTuRkJCAqVOnoqKiAgBw9OhRzJ8/HzNmzMC2bdtQUlJS41K0RLWxDN1TqU+zKzm5hKWnVJkHJ6Ucde+fMGECXnjhBetcTxZ5eXmIjIy02RYWFoacnJwblpeUlECn09mUy2QyhISEICcnB3l5eWjatCnkcrm1PDw8HDqdDkVFRXWOHQAEwf4v8441H68+E53XJwZP/PKluvCa8Jp40zVxNVc9O1DDFFXNcq7y8+5V9wCgJD8Xnx48i93HcxAs0QEwf+hMRK7nlOF7s2fPxjPPPIOffvoJHTp0AAAcO3YMJ0+exPr16x1yjqKiIuzYsQMffPABunXrBgCYNGkSUlNTIZPJoFAoMHfuXAiCgPnz5+N///sf9u7di8TERGzZsgXDhw/HmDFjAJjnERk8eDAyMjLY8NENqct0+COjCACgUp9xbzDUaFiH71mWvfFAzr73azQam6QRYB7yodfrb1iu1Wqt39dULopijWUArMevq7CwJjd+0VVCQsxDgJUKOfz9qy+a4K+siksQaiy3UFa9rmnTAISH2xeDJ7P3ejYGvCbV8ZpU503XxBXPDtRwfyelpIDnfkZWZ0FhUQhtFocWJRkoyBfxY5oaE3vzWZDI1ZySlLrzzjuxc+dO7Ny5E+fOnYNSqUTv3r3x+uuvIyIiwiHnSE5ORmBgIHr37m3dNmXKFADAggUL0LNnT1h6sAiCgB49eiAlJQWJiYlITU3FE088Yd0vOjoaMTExSE1NZVKKbujb03kwiUDX6CbIP1js7nCokbAM36uoNMJgNEEm9bxPKZ1971coFNV6Len1eiiVSmv5tQkkvV6PoKAgKBQK6/fXlqtUKhiNxhrLAFiPX1f5+aUQ7RhpV1RUDgDQ6vSoqNBVKzcZzA8B2kpjjeUWWq053sLCcqjVpXZE7JkEwfxQbe/19GW8JtXxmlTX0Gti2d+VXPHsQA139fA9X0hKWcT4Ayn5wImcUuSUaNEsyL52n4gaxmnrirdv3x5JSUkoLi5GYGAgJBIJHDnMKSMjA7Gxsfjyyy+xfv16VFZWIjExEU899RTy8vLQtm1bm9eHhYVZV3HKzc297hCQurK3Old3p/ZW3l4HR8RvGbo3rGMkPvnCAUHZyZXX3hnnuvpn4I4HiDNnTmH0uLG1lqedS6u1zMKZdajtmgsGLfwkAipNIsr0RoSoqiel6vrzcubfsTPv/VFRUTh79qzNNrVabb2fR0VFQa1WVyvv2LEjQkJCoFAooFar0aZNGwCAwWBAUVERIiIiIIoiCgsLYTAYrKs85eXlQalUIigoyK44RdG+3wvra2vZpz4TnfvSw7m917Mx4DWpjtekOm+7Js5+dqCGs+kp5UPTLyllAjqEy/GXWoefzubjoR6x7g6JqFFxSlJKFEWsX78emzdvRmlpKfbt24c33ngD/v7+ePHFF6sNkaiPiooKXLp0CVu3bsWKFSuQl5eHhQsXQqVS3XCIh1arvW55XdX3UyRv6k5dG2+vQ33jP5dXhr+ulEEqEfDgba2wzU963eE0ggCnlTvz2AAg85PWewiQ7AbXBQBUKvfU2ygC4+a/VWv5kkfurPO5r62DM6+5n58UQf5+yC/TQ4/qw7jq8/MKDXXs37Gz7/3x8fHYuHEjtFqttfdScnIyevbsaS1PTk62vl6j0eDkyZOYMWMGJBIJunbtiuTkZPTp0wcAkJKSAplMZh0qIpPJkJKSYp0MPTk5GV27doVE4t5eaZY5pSqN3r/8NhFRTVzx7EANZ1l9TyX3vN7aDdUnRoW/1Dr8mKZmUorIxZySlFq3bh12796NV155BbNmzQIA3HfffVi4cCFWrVqFF198scHnkMlkKCsrw5o1axAba75xZGVl4dNPP0WLFi1qHIZxoyEe106qeyP2dov2hS7m3l6Hhsa/9beLAIA+LUIArR6GGwynEUU4vFwQzMkQZxz7aoZKY72HAF3vulg+9NRodLX+DK4Xm7PrXZdzW34G19bBmdfcUGlEoJ8U+QDUxRpEqmR13vdalr+DgoJShyamnH3v7927N6Kjo5GUlIRp06bhxx9/xNGjR7FixQoAwP33349NmzZh48aNGDx4MNatW4e4uDhrEmrChAlYuHAh2rVrh8jISCxatAgPPPCA9d4/ZswYLFq0CMuXL0dubi7ef/9967HdybL6nj09pYiIvIkrnh2o4WyG7/mY3jEqbD5ahJTMYhRU6BHqz0Qokas4JSn1xRdf4JVXXsEtt9xi7Xbbr18/rFy5Ev/6178c0rBERERAoVBYE1IA0KpVK2RnZ6N37941DuG40RAPe8es17dbtLd1p66Jt9ehvvHvP23+vbmrfaTb6u/K89Z2rklTH0d+QVGt+505l4aRNzimt//+XP2vM45dk0CF+U1gaS0r8Nkbj6Pjd/a9XyqV4u2338b8+fORmJiIFi1aYN26dYiJiQEAxMXF4a233sLy5cuxbt06JCQkYN26ddZYRo4ciczMTCxcuBB6vR533XUX5syZYz1+UlISFi1ahIkTJyIwMBAzZ87EXXfd1aCYHcHP0lOKSSki8lGueHaghrt6+F7tH7F5p4gAGTo1a4KTOaXYf1qNBxJi3B0SUaPhlKRUfn5+tTmbACAoKAgVFRUOOUd8fDx0Oh0uXLiAVq1aAQDOnz+P2NhYxMfH491334UoihAEAaIo4siRI3jyySet+yYnJyMxMREAkJ2djezsbMTHxzskNvJN59TluFBQAT+pgNvbhLk7HLfKLyjCyFmv1lp+cuooF0bTeDRRmm/ZpTrPXIHPGff+06dP23zfokULbNmypdbXDxw4EAMHDqy1fMqUKdZFMa6lUqmwcuVKrFy5sl6xOousavgge0oRka9yxbMDNVyR1tJTSuJTSSmTyYjMzMvoHRmMkznANyevMClF5EJOGRB86623YtOmTTbbysrK8Nprr1mHUTRU69atMWjQICQlJeHUqVP45ZdfsHHjRowfPx7Dhg1DSUkJli1bhrNnz2LZsmXQaDQYPnw4AGD8+PH46quvsH37dpw6dQpz587FoEGDuPIeXdf+03kAgFtbNLUmB4hcqYnC/HtXpvXMJW9cce9vjCzD9zinFBH5KrYfnq/SaEJ5pbkd8vex4Xsl+bn49OBZ5BUWAxBxPKcUl4t8aCZ3Ig/nlKTUokWLcPLkSfTr1w86nQ7Tpk3DwIEDkZmZ6dDut6+++ipuuukmjB8/Hs8//zz+8Y9/4OGHH0ZgYCA2bNhg7Q2VmpqKjRs3wt/fHwCQkJCAJUuWYN26dRg/fjyCg4M9Yt4Q8lyiKGL/GXNSamh7Lk1M7mFJStU2fM/dXHXvb2wsq+8Z2FOKiHwU2w/PV1BRCQAQAChkvjfReVBYFGLimiNSZW5zv6labZuInM8p3T2CgoLw+eef48CBAzh//jwMBgNatWqF/v37O3QVoyZNmmDVqlU1lnXr1g1ffPFFrfsmJiZah+8R3cg5dQUuFmgg59A9ciNLUkprMKHSaIKf1LPeFLrq3t/YWJJSJhEwiSIkXCKdiHwM2w/PV1BhXiRKIYV13i9fdFOAgFyNiL1/5WJoM77nJ3IFpySlRo0ahbVr16Jv377o27evM05B5FLfVfWS6tsyFIEKDt0j95DLJFBIJdAZTSjVGTxuZRje+51DdlXy0WAUIZf57sMAETVObD88X0G5uaeU0rdG7lUTGwAcKxSQXqjBuUL9jXcgogZzykcPEokElZWVzjg0kcuJomidT+qO9uFujoYauyZKywp8njfZOe/9ziG9KgfFIXxE5IvYfni+/Kt6SvkymURArxgVAOB/6Zxkn8gVnNLlY9CgQXjssccwePBgxMbGQi63/TR/xowZzjgtkVOcVZcjvdA8dG9Aa3bjJfcKVMigLq9EqQdOds57v3MIggA/iYBKkwiDyQTAx58IiKjRYfvh+QrKzUkpX+8pBQC3N/fHrxkV+PVyBe6I5odBRM7mlKTU6dOn0blzZ+Tm5iI313aSOF8eg0y+ydJL6rZWHLpH7ufJk53z3u88Mqk5KVVp5JtjIvI9bD88n2Wic1/vKQUA3aKUCPX3Q0FFJXI0AjhOgsi5HPaE/Y9//APvvPMOgoKC8PHHHwMAtFotlEqlo05B5HLmVffUAICh7bjqHrmfJSlV5iFJKd77XYMr8BGRr2H74V3yyy3D93w/SSiTCBjeMQqfJF/GpVIRXdwdEJGPc9icUsnJydXGgt92223IyMhw1CmIXO5MnnnonkImQf82oe4OhwhNlFU9pTxk+B7v/a4hq1p9ikkpIvIVbD+8i2X1vcYwfA8A7ukSBQDIrgA0lZ43jyeRL3HqGquiyDfP5N2uHroXIOfQPXK/QIVlonPPSErVhPd+x5NVfTJtMJrcHAkRkfOw/fBc+RWNY/U9izbhAWjbVA4RQFpeubvDIfJpTk1KEXkz89A9c1JqaDuOJifPYBm+pzeK0BmYoGgsOHyPiIjcqaC8cay+d7UhLQMAAGdyy5kwJXIiJqWIanEmtxyXi7TmoXtcdY88hJ9UApWf+dbtyb2lyLGYlCIiIncxGE0orpo2oLH0lAKA25r7QyIAhZpKFOrdHQ2R73LoeKRvvvkGgYGB1u9NJhO+++47hIbazsUzZswYR56WyCm+q+ol1b91KPzljagFJo8XqJBBU6lHqdaA8AD5jXdwMt77nU8mNSciufoeEfkSth/eoVBjHronEQB5I+rSEOAnQaw/kFEOXCxl+0vkLA5LSsXExOD999+32RYWFoYtW7bYbBMEgQ0LeTxRFK3zSXHVPfI0TRQy5JXpPaKnFO/9ruHHnlJE5GPYfniPgnJzUipIIYHg44vvmUxGZGZeBgBkZl7GTQHmpNTlckDHeR2JnMJhSakffvjBUYcicrszueXILDYP3evXmqvukWexzCtV5gFJKd77XcM6fI9viInIR7D98B7qqpX3ghVSAL69El1Jfi4+vVSGuFYC0k8fQ3CzlghUBKNMZ8ThTA3at3F3hES+pxF1wCSqux/PqgEAfVs2hcqPQ/fIszRRev4KfORY1tX32FOKiIhczDLJeUgjmeU8KCwKoc3iEBQaAUEA2kWYJzz/8SJX4SNyBq5xT43epKmPI7+gyGZbbrcJgH84UvZ+ikl7cvD+hvfcExxRDQKrekqVan3700r6Gyc6JyIid8m3JKVUjbM/Q7uIQBy5XILjeTpkFWsRE6x0d0hEPoVJKWr08guKMHLWq9bvizWV+CwlG4IA3Dt+Eva/NdeN0RFVZxm+V6ozQBRFCL4+wQNBJjE/CDApRURErqauSko1VUqBRrgKXROlDBFKIE8L7D5xBU/c1sLdIRH5lMaZ7ia6josFGgBATJASChn/RMjzWJJSBpMIrYFzDDUG1uF7nFOKiIhcLL9qovPGMnyvJi2bmNvhr0/kwCTyAyIiR+ITN9E1LhZUAABahqrcHAlRzaQSAf5Vc515wmTn5HxcfY+IiNwlv1wHAAhRNt6kVKw/4O8nILtEh+SMIneHQ+RTmJQiukq53oDcMnO/5BZMSpEHa6I095Yq0TIp1RhIq5JSlUYmpYiIGmrKlCmYN2+e9fuTJ09i3LhxiI+Px/3334/jx4/bvH7Xrl0YOnQo4uPjMX36dBQUFLg6ZLfKrzD3lGqqbLyPjlKJgH5x/gCA/x6/4uZoiHxL472zENXgUtXQvchAOQLknHKNPFcThaWnFCc7bwz8pJxTiojIEXbv3o2ff/7Z+n1FRQWmTJmCXr16YefOnUhISMDUqVNRUWHuOX/06FHMnz8fM2bMwLZt21BSUoKkpCR3he8W1onOG3FPKQAY3LJqFb40NXuqEzkQk1JEV7HMJ9Uy1N/NkRBd39WTnZPv+3v1Pc4pRURUX0VFRVi1ahW6du1q3bZnzx4oFArMnTsXbdq0wfz58xEQEIC9e/cCALZs2YLhw4djzJgx6NChA1atWoWff/4ZGRkZ7qqGS2kqjSjXmz8Aa+xJqbZN5Wgd5g+dwYRvT+W6Oxwin8GuIERVdAYTskq0ADifFLnHmTOnMHrc2JrLzqVh5FXfBzIp1ajIOKcUEVGDrVy5EqNHj0Zu7t8JhdTUVPTs2dO6kq0gCOjRowdSUlKQmJiI1NRUPPHEE9bXR0dHIyYmBqmpqWjevLnL6+Bqll5SSpkEKlnjXu1XEATc06UZ3vj5PP57/AoS42PcHRKRT2BSiqhKeqEGogg0VfkhWOXn7nCoETKYgJGzXq2x7OTUUTbfW+aUaozdx3fu3Fnj0AlBEHDq1Ck89dRT+OGHH2zK1q9fj8GDBwMANm/ejE2bNqGsrAzDhw/HggULoFKZE9E6nQ6LFy/Gt99+C6VSiUmTJmHSpEnOr9QN/L36HpNSRET1ceDAAfzxxx/4+uuvsWjRIuv2vLw8tG3b1ua1YWFhSEtLAwDk5uYiMjKyWnlOTo7dMQhekNOxxGj5N7/CnJQKC5BDIvH8Clwbv6OPPaJTJNb+cgEnckpxPr8cbcIDHH6Oq//1NozfvZwdv7OOy6QUURWuukfexDKnVKnWCLGRLU08YsQIDBgwwPq9wWDAxIkTMWjQIADAuXPnsHr1avTt29f6muDgYADAvn37sHbtWqxevRphYWFISkrC6tWrsXDhQgDAqlWrcPz4cXz44YfIysrC888/j5iYGAwbNsx1FayBTMI5pYiI6kun0+Gll17CwoULoVQqbco0Gg3kcrnNNrlcDr3enIzRarXXLbdHWFgTu/dxF0us+uwyAECzEBVCQwOhUsnh76+AUukHicLP4/6vUikAAAoHH1+jkiM0NBCtW4RhSIdIfHfyCvafK0CfDs2cev29FeN3L2+Ln0kpIgAGowkZRVVD98Js55OyZ0gVkasEyGUQABhFEZrKxjXPkFKptHmo2LBhA0RRxHPPPQe9Xo/Lly+ja9euiIiIqLbvRx99hIkTJ1p7TS1evBiTJ0/GnDlzIIoitm/fjnfffRedO3dG586dkZaWhk8++cQDklJ/D98TRdE6zISIiG5s7dq16NKli80HGhYKhaJagkmv11vbmdrKLT1s7ZGfXwpP/xxJEMwPtJZYL2QXAwCC5VIUFJRBo9GjokIHrbYSErHS4/6v0egAADqdY4+v0ehRUFCGoKBSDGsXju9OXsGO5MuY3CsWMqnjpmm+9vp7G8bvXs6O33J8R2NSighAZrEWRpOIQIUUYf62Q/fsGVJF5CpSiQB/uRTlemOjnleqqKgI7777Ll5++WXI5XKcOnUKgiDUOM+H0WjEsWPHMGPGDOu27t274//Zu/P4mO79j+OvyTKTTYRsRJTa1RIRRYur3Ja2dLmq+6324uptqf660Kpb2qpqi25ocanuqupWiy63um9og9CiYo9IZBPZM8nM+f0RmUojJCSzJO/n45EHc77nnPl8z8ycM+cz36WkpIRdu3ZhGAalpaXExsY6yuPi4li4cCF2ux0vL9fNDeLr/UcSymY3HN35RETkzNatW0dGRobj/F6eZPrss88YPnw4GRkZFdbPyMhwdNmLjIw8Zfmpfvg4E8PAY250y2MtH1MqNNDsEbGXx1jbsdrtNg4fPoxhQJTJoEmAL1kFJXy/L4uB7cJq98nwrPfKqSh+1/K0+DX7nghl40kBnNfEXy0QxGOUz8DXEMeVKrd8+XIiIiIcLZn27dtHUFAQkydPpn///owcOdIx9XdOTg7FxcUVxgbx8fEhJCSE1NRU0tPTadKkSYVuGmFhYRQXF5Odne3Uev2Z90njeJSoC5+ISI28+eabrFmzhtWrV7N69WoGDx7M4MGDWb16NTExMWzZssXRFd4wDDZv3kxMTAwAMTExxMfHO/aVkpJCSkqKo7y+yziRlAoLNJ9hzfotJzON5Rv28O7mZJZ8Hk//FmUt6T7dqVn4RM6VWkpJg2eAo+veeSEaT0o8R5DFG3Ib7gx85d3txo4d61i2b98+ioqK6N+/P+PGjePzzz/nrrvuYsWKFYSFlf2SWdXYIIZhnLIMqNHYITXNazvWP812XiYT3iYTNsOo1rhS9SG37umDjdYFHZPKdEwqO9djUh+PZYsWLSo8DgwsG5y6VatWhIaGMnfuXGbOnMlNN93Eu+++S2FhIVdccQUAN998M7fddhs9evSgW7duzJw5k0suuaRBzLwHkJlfAkBooC9gc20wLhYcGknTZtEAXNgygDWJuXy3L4sCq40As7eLoxPxXEpKSYNXGhBGvtWGj5eJ5o39zryBiJsIPjEDX25xw/ySuH37do4ePcqwYX+M7Hb33Xdz2223OQY279SpE7/99hvvvfce9913H1A5wVQ+NojNZjtlGVBpYNzTqWlf+5CQspsjP0vZ4LFV8fU2YSs18PH1OeV6fn5lCbQmTQIJC/OsAS5Px9MG63QGHZPKdEwq0zGpnqCgIBYtWsT06dN577336NixI4sXLyYgoGyM0djYWJ544gleeukljh8/Tr9+/ZgxY4aLo3aejJO670GRa4NxE3a7DUv+UZoF+pCaX8o3ielc0aVuBjwXaQiUlJIGryikNQBRjf0cgwmLeIKgE933cosaZkup7777jl69ejkSUABeXl4VHgO0adOGPXv2EBISgsViISMjg7Zt2wJlM/dlZ2cTHh6OYRgcO3aM0tJSfHzKjm16ejp+fn4EBwdXO66aDi6ZnZ0PQFFx2eCxVSk/P+UVFON/is73RUVlNw7HjuWTkZFb/QDclKcPNloXdEwq0zGp7FyPSV0NZOtOnn766QqPu3fvzgcffFDl+iNGjGDEiBF1HZZbyjy5+16hi4NxEzmZabx7MI+QkLakAh8lHFJSSuQcKCklDV5Rk/MBOK+JWkmJZzl5TKlAF8fiCtu2baNnz54Vlj388MOYTCZmzZrlWLZr1y46dOiAl5cX3bp1Iz4+nj59+gCwdetWfHx86NSpE1A2xtTWrVvp1asXAPHx8XTr1q1Gg5zXdHBJx7pn2KZsdh8bJbYz77w+3Zx72mCdzqBjUpmOSWU6JnKubHaDYwV/tJTKV1LKITg0kujoZuzKTmVLahG5RaU08tOttcjZ0EDn0qBlF5RQElT2y0ZLjSclHubkpFRDvO9ITEykXbt2FZYNHjzYMZjtwYMHmT9/PvHx8fz9738H4JZbbmHp0qWsX7+ebdu28dhjj3HDDTfg7++Pv78/1157LY899hjbtm1j/fr1vPrqq4waNcoV1aukfAa+EpvdxZGIiEhDkF1Ygs0oG/IwJy2Z5OTD2DXZhkPTADPBvmAz4Os9GWfeQEROSelcadB+PJAFJhNNA3wdXaFEPEWgxRsTZV+G7L4Nr61URkZGpW51Q4YMYfr06bzyyiscOXKE9u3bs2TJEqKjywYmHTZsGMnJyUybNg2r1cqQIUOYNGmSY/spU6bw2GOPcfvttxMUFMQ999zDkCFDnFqvqvh6lSeldEMgIiJ1r7zrno/JxsqtRzj0+3ZCmrcmzMVxuZPoQBM7sg3+93s6V3VVFz6Rs6G7cGnQftiXBcB5TdRKSjyPl8lEoMWbvGIbNkv9Hv/jVLZt23bK5ddffz3XX399lduNGzeOcePGnbLM39+fZ555hmeeeaZWYqxNvt5ljZtL9Cu1iIg4QeaJrnsBvt40bRZNdnqKiyNyP9FBsCMbfj54jGMFVpoEmM+4jYhUpO570mCV2g02HDwGqOueeK7yLnylluoPxC2eSd33RETEmTLyypJSFm8XB+LGGvmaaBPii82ALxPVhU/kbCgpJQ3WztRccopKMZUWEdFIv2qIZypPStmUlKr3fE60lCpV9z0REXGC8u57/kpKVclut9E1uASANQlJ2Gw2F0ck4nmUlJIGa+OJVlKW44fxMplcHI3I2QlSUqrBcIwpZVdLKRERqXsZ+WopdSY5mWkcOnQQgN/Si0jYvd/FEYl4nnqRlBo3bhwPP/yw4/GOHTu4/vrriYmJ4brrruPXX3+tsP7atWu59NJLiYmJYfz48WRlZTk7ZHEDmw5lA2A5fsi1gYicg0Ynvimq+17990f3PbWUEhGRupeZX9YCyM9bP96eTnhoKBFBZsDEhuQCV4cj4nE8Pim1bt06vvnmG8fjgoICxo0bR69evfjvf/9LbGwsd955JwUFZSeIbdu2MXXqVCZMmMCKFSvIyclhypQprgpfXKTAamP7kRwALMeTXByNyNlr5KeWUg2FY6BzjSklIiJOUD7QuZ9aSp1R27CyWZB/SFJSSqSmPDoplZ2dzbPPPku3bt0cyz7++GMsFguTJ0+mbdu2TJ06lcDAQD799FMA3nrrLa644gquvfZaOnXqxLPPPss333xDUpISEw3J5sPHKbUbRAVb8C4+7upwRM7aH2NKNcKmWdnqNR8vtZQSERHnKR9TSkmpMzs/1B8w2J1l5effEjlwYL/GlxKpJh9XB3AunnnmGa655hrS0tIcyxISEoiLi8N0Yowgk8lEz5492bp1KyNGjCAhIYF//vOfjvWbN29OVFQUCQkJtGzZ0ul1aChG3zmWzKzsKstDm4bw6qIlTotn04nxpC5s1YSfnfasIrUvwOyNlwnsXt7kFpUSEuDr6pCkjpjLBzpX8lFERJzAkZTy6DtG5wg0+xDiXUK2zczLG1OJLEnlX0OhdevzXR2aiNvz2FPMTz/9xC+//MKaNWt47LHHHMvT09Np165dhXVDQ0NJTEwEIC0tjYiIiErlqampNY6hpmNjl6/vyWNqn20dMrOyGXbfnCrL1z3/YJ0dl9HjxpJRnhAzgY+PN0c63wgBYXy7ahmH9ybWzRPXEWe+f+riuU5+Dxkeem/tTnXwMpno26oJCT99SUjAgGq9ZvXhXNQQ+TjGlFL3PRERqVuFVhv51rKWPmopVT2RPkVk28ykWn3pGNHc1eGIeAyPTEoVFxczffp0pk2bhp+fX4WywsJCzGZzhWVmsxmrtSzTX1RUdNrymggNbVTjbc5lO3dS0zr4+HoTEGA5bXlYWN0cl+zcXK6fOs/xOL+4lCXfl82Mcf2Y8cz+ac1pYzOZqLL8dGV1XV7Xz3261+RMr+eZ9g3g7++e9a7Jc/+5Dq56vS9sa+Hwqh8JD/93lfs+laZNPf9c1JD8MaaUh2ZzRUTEY5SPJ2X2NuGjH7GqJcKniN3FjcjIt5JXooMmUl0emZSaP38+Xbt2ZcCAAZXKLBZLpQST1Wp1JK+qKvf3969xHJmZuTVqJWEylSVzarqdOznbOpSW2CgoKD5teUZGbi1EePrnNpkgKbvs/2GBvhilpRgGp43tdOXnsu3ZlptMZcmQun7uHb/9xsWXDD1lWeLeRIae5b7LW+cUFhZX+R5yt2P+57Ly1+DPdXDGc1elJp+h8s9xVlauElMexLd8TCm7WkqJiEjdOppb9p2jqZ83JpOuO9VhNhk09bWRWeLD4XxXRyPiOTwyKbVu3ToyMjKIjY0FcCSZPvvsM4YPH05GRkaF9TMyMhxd9iIjI09ZHh4eXuM4DOPsuu6c7XbupC7q4IxjYhhw6FjZrBhRjf3OsLZ7ctZ7p9ROlV0uZ985/Kz3Wx6/J38G3LUONY3H3eKX0/uj+55eOBERqVvpeWX3V6EB3oCSUtUVaS4ls8SHpDxdq0WqyyNn33vzzTdZs2YNq1evZvXq1QwePJjBgwezevVqYmJi2LJlC8aJuy3DMNi8eTMxMTEAxMTEEB8f79hXSkoKKSkpjnKp3wzDICmrEIDoxjVvHSci4irl3fdKNaaUiIjUMUdLKX8NKFUTEeZSvEyQUwJJOSWuDkfEI3hkUqpFixa0atXK8RcYGEhgYCCtWrXi8ssvJycnh5kzZ7Jnzx5mzpxJYWEhV1xxBQA333wzH374IStXrmTXrl1MnjyZSy65RDPvNRDZhaXkFZfibYLIRuYzbyAi4ibKu+/ZDLBrBj4REalDaSeSUqFKStWIrxdEh5T1xvjukPrwiVSHRyalTicoKIhFixYRHx/PiBEjSEhIYPHixQQEBAAQGxvLE088wYIFC7j55ptp3Lgxs2bNcnHU4izJx4sAaBbsh493vXv7i0g95nvSOatESSkREalDaSe67zXV1Hs11j48CICvD+ZTquu1yBl55JhSf/b0009XeNy9e3c++OCDKtcfMWIEI0aMqOuwxA2VJ6U8dTwpEWm4vL1MeJnAbkCJzY7FR4l1ERGpGye3lDqe4+JgPEyrJv5YvOBYkZ0f9mUysF2Yq0MScWv1Iiklrjf6zrFkZmVXWb57byLDnBfOKdntBik5ZUmpaCWlRMQD+Xp5UWyza7BzERGpU2l5J5JSAT7sc3Esnsbby8R5jSDxOKzenqqklMgZKCkltSIzK7vKmdoAdpzDbG21JS3PSonNwM/Hi9BAX1eHIyJSYz7eJoptUGrXYOciIlI3Sm12MvNPdN/TmFJn5fwgE4nHDX7cn8XR3GIiG1lcHZKI21Lbf2kwyrvutWwagMlkcnE0IiI15+tddu5SSykREakr6XnF2I2yFj+NLbpdPBuBPnbaNirrcv/m9zux2WyuDknEbeksIw1GeVLqvKYBLo5EROTslA92XmJTSykREakbKSe+M4cHmvHSD7lnJSczDXKPAvDhzmMcPHTQxRGJuC8lpaTOFJfaycq3Yi11/c2TtdTuGLCxpZJSIuKhfL1OtJTSbD4iIlJHjp5ISkWoy9k5adU0ELO3iSLDmy2pRa4OR8RtaUwpqXVHjhfx86Fsx1SyAIGX3UNGnpWwILNLYkrJLcYAgi0+NPb3paCg2CVxiIici/KWUqXqviciInWkvKVURJCSUufC2wQdI4LYnpLL2sRcrrvI1RGJuCe1lJJaYzfKBvNbtyPNkZAynxj/xLdFZ1b/msqejHyXxJacXQhAVIhm3RMRz+Vz4pxqVfc9ERGpI6k55S2lXPNjcn3StXkjTMCv6cX8fjTP1eGIuCUlpaRWGCYv1v+ewW+pZSfbCyKDuKVnFLf3bsmNsVGUHErAMOCrxEz2uiAxlXy8rGVUdGMlpUTEc/l6qaWUiIjUrVS1lKo1QRYfogPL/v9W/GHXBiPippSUknNmsxtkt72Mg8cK8TaZuLRDGP3aNCXQUtY7NNjPh/wvF9M5MgiAb/dmkV1Y4rz4fAMdz9c8WBdXEfFcjtn37GopJSIidSNVY0rVqvaNy67dn/+e7miFJiJ/UFJKztnCHw5QGNYRLxNc1imM80NPNZC4wcXnN6F5sIVSu8EXuzOwG875pb+4cUugbAYRP19vpzyniEhdcCSl1FJKRETqSEpO2bAXES4aC7a+aWIx0SXcgs1usGLLEVeHI+J2NNC5OIy+cyyZWdlVloc2DWHZ4iUVln2xO53XNiUB8Je2obQM8a9yey+TicHtw3g/IYWsghJ2pObRtXmjWon9dIobnwdAC40nJVIvfP7550yYMKHCsqFDh/LSSy+xY8cOpk+fzu7du2nXrh2PP/44Xbt2day3du1aXnjhBdLT0+nfvz8zZsygadOmABiGwdy5c3n//fex2+2MHDmSBx98EC8v9/n9pnygc3eY1VREROofwzA4emLYi4hGFoqzXBxQPXF1+0b8ll7MB9tSGN3nPBr56TZcpJw+DeKQmZXNsPvmVFm+7vkHKzw+cryIGZ/tBiDwSDztL/rbGZ8jwOzNhec15vt9x4hPyqZtWAD+ddh6yTAMR0upFhpPSqRe2LNnD4MGDWLGjBmOZRaLhYKCAsaNG8dVV13F008/zfLly7nzzjv5/PPPCQgIYNu2bUydOpXHH3+cTp06MXPmTKZMmcKiRYsAWLZsGWvXrmX+/PmUlpYyadIkQkNDGTNmjKuqWom5PCmlgc5FRKQOZBeWYLXZMQFhgWaSlZSqFT2a+dEmNIB9mQW8uyWZf17UytUhibgN9/n5VzxKqd1g2se7yLfa6B4VTPChH6u9bceIIEIDfbHaDBKSc+owStibUYDdHIi3l0n94kXqib1799KhQwfCw8Mdf8HBwXz88cdYLBYmT55M27ZtmTp1KoGBgXz66acAvPXWW1xxxRVce+21dOrUiWeffZZvvvmGpKSy1p5vvPEGEydOpFevXvTt25cHH3yQt99+25VVrcTsU56UUvc9ERGpfUdzy2bQbhpodrTOlXNjt9tIOZLMNe3KepQsjz9MblGpi6MScR8608hZeW3jIRKO5BBo9uaJKztiovo3SF4mExe2DAFgx9E8Cqy2OooSfjpQ9vNOVLAFHy9TnT2PiDjP3r17ad26daXlCQkJxMXFYTKVfdZNJhM9e/Zk69atjvJevXo51m/evDlRUVEkJCRw9OhRUlJSuPDCCx3lcXFxJCcnk5aWVqf1qQnziTGl1H1PRETqQlreia57Gk+q1uRkprF8wx4OHs0i0KuU3GIb725JdnVYIm5DSSmpsS2HjvGfHw8CMPmv7WjRuOpxpKoSHeJHeJAZm91g25G6ay3144FjJ56v5jGKiPsxDIP9+/fz/fffM3ToUC699FLmzJmD1WolPT2diIiICuuHhoaSmpoKQFpaWpXl6enpABXKw8LCABzbuwN13xMRkbqUlluWlArytnHgwH6Skw9jt6t17rkKDo0ktHlLuoT6ArA8Ppm8YrWWEgGNKSU1lG8t5d53t2IzYGincK7oHHHmjU7BZDLRM7oxn+1KZ1daHqFevrUcKRRYbWw9fByAlhrkXKReOHLkCIWFhZjNZl544QUOHz7Mk08+SVFRkWP5ycxmM1ZrWVeEoqKiKsuLioocj08uAxzbV5epho0yHetXY7s/uu+dPilV0xjcUXkd6kNdaouOSWU6JpWd6zHRsWzYyltKpaRn8u7mYg79vp2Q5q0Jc3Fc9UV0IBwp8uFwbinvbk5mrMaWElFSSmpmzhd7OZRVQLNGFh76a3tHN5mz0TLEj8Z+PhwvKqUgvHMtRlnm50PZlNoNvIuOE+zXstb3LyLO16JFCzZu3Ejjxo0xmUx07twZu93OpEmT6N27d6UEktVqxc+vLCltsVhOWe7v718hAWWxWBz/B/D3r1lLy9DQms0qGhISCICfxUxAwOnHvjO8yyaGKLEZ+PubK5yD/fzK6tCkSSBhYXU/s6mz1PR4NgQ6JpXpmFSmYyJnI+3EmFIhQYE0bRZNdnqKiyOqX0wmEyM7N+aFTZm8HX+YG2KjCPar/R/nRTyJklJSbYWh7Vnz21G8TDBjWKdznsrUZDLRtXkjfth/jPxmMdgNA69a/HmufDwpS/YBTKZutbZfEXGtkJCQCo/btm1LcXEx4eHhZGRkVCjLyMhwdMmLjIw8ZXl4eDiRkZEApKenEx0d7fg/QHh4eI3iy8zMxahBT4fs7HwAioqtFBQUn3Zd20ktpI7nFjlaTgEUFZXdSBw7lk9GRm4NInZPJlPZTXVNj2d9pmNSmY5JZed6TMq3l4apvKWUX91Njt3g9Y32p+2+APZmFDB//a/c0jUEm82GyWTC29uLnJwgAgOb4uWlF0EaBo0pJdWSU1RK9vmDAZgwqB2x0Y1rZb/twwMxe5uw+Tfhp/3HamWfUDbuzE/7y5JSftkHa22/IuJa3333HX369KGwsNCxbOfOnYSEhBAXF8eWLVswTtyFGYbB5s2biYmJASAmJob4+HjHdikpKaSkpBATE0NkZCRRUVEVyuPj44mKiqo0DtWZGEbN/8o2PPO+vb1MlM/ZcLoufGcTgzv+1ae66JjomHjSMZGGq3xMKX81Xagz3iYT/7q4NQAf/X6c134+zNz3/sdzH3zL8vhk5v73B5KSDrk2SBEnUlJKzshuN/gqMQPDx0L3qGAm/rV9re3b19uLjhFBALy7ufZmoTh0rJAjOcX4epsw52h2C5H6IjY2FovFwr///W/27dvHN998w7PPPsvYsWO5/PLLycnJYebMmezZs4eZM2dSWFjIFVdcAcDNN9/Mhx9+yMqVK9m1axeTJ0/mkksuoWXLlo7yOXPmsHHjRjZu3MjcuXMZNWqUK6tbiclk+mOwc83AJyIitcgwDI4qKVWn7HYbycmHaeWTw3mBYMOLg9YggpuGExwaSdNm0TSJiHJ1mCJOpdONnNEvScdJy7NiKi1m5rBO+HjXbi7zgmaN2H7kOBsOHmN/ZgHnhwac8z5/OjHrXo8WjUm2l5zz/kTEPQQFBbF06VKeeuoprrvuOgIDA7npppsYO3YsJpOJRYsWMX36dN577z06duzI4sWLCQgoO6fExsbyxBNP8NJLL3H8+HH69evHjBkzHPseM2YMmZmZTJgwAW9vb0aOHMkdd9zhoppWzeztRVGpXTPwiYhIrTpeVEphSdm1JUA9x+pETmYayw/mEX2+Cb/s/eB7PjuO5tLY34tzvwMS8UxKSslp7c3IJ+FIDgAh+76keePLav05gv188Du2n6KmbVmxJZmHLz33lljl40ld1LoJ75/z3kTEnbRv355ly5adsqx79+588MEHVW47YsQIRowYccoyb29vpkyZwpQpU2olzrpi9jFBMVht6mMjIiK1JzWnbCbapv7eeHvpGlNXyltERaelkF5s41ipN/utgXTx149N0jApKVWPjL5zLJlZ2VWWhzYN4dVFS6q9v/S8Yr7ZU5bc6d68ERkbEs81xCoFpiZQ1LQtn+xIY8KA8wmynP1bs8Bq45dD2QBcdH5TJaVEpF7xVfc9ERGpA0dyyrruRTbyBaynX1nOmckE7QKK+TkngJRSf1rbClwdkohLKClVj2RmZTPsvjlVlq97/sFq7yvfWsr/dmVgMwxahvhxYasQPqmNIKtgzjlM66b+HMgq5JOdaVzf4+z7Uv+4PwurrSzutrXQFVBExJ04xpRS9z0REalF5S2lmgWZwVBSyhlCfO20DPEjKbuIfQVmurg6IBEX0EDnUklRiY1PdqRTUGIjxN+Hwe3D8DKZ6vQ5TcDImLJE1MqtRzDOYeqXr/eUTfl+SbswTHUct4iIs5l9lJQSEZHad+R4WVKqrKWUOEuv80IASLX6kJWvZKA0PEpKSQX51lLW7UjjWGEJAb7eDO0U7rgBqmvDukTi7+vF/swCNh8+flb7sJba+X5fWZfDQe3DajM8ERG3YPYuS7ZbSzXeh4iI1J7U8u57QepM40xhgWYifIoAE78knd09kIgnU1JKHEoCwvno16NkFZTg7+vFsC4RBPs575eSIIsPV3SOBOD9rUfOah+bDh0j32ojLNBMl+aNajM8ERG3oO57IiI1d/ToUSZOnEjv3r0ZMGAAs2bNori4LAmTlJTEHXfcQY8ePbjyyiv5/vvvK2z7448/Mnz4cGJiYhg1ahRJSUmuqEKdstlsHMwom9zIqyj7nHotSM21MecBBgePFZJRqOu7NCxKgwslNjvvbk4mvesNUGwj2M+HKzpHEOxX8e2xe/curh45Eh9fb0pLbBXL9iYyrBZiGdmjOf/dlsJXezJJzysmPMhSo+0/3pEGwKUdw+u8y6GIiCuo+56ISM0YhsHEiRMJDg7m7bff5vjx4zzyyCN4eXkxefJkxo8fT4cOHVi1ahXr169nwoQJfPzxx0RFRXHkyBHGjx/PPffcw4ABA1iwYAF33303H330Ub0aJiIp6RCHjxcDXnwdv5Ow0AhCm7s6qoYj0MtGc0spKcW+bEsrdXU4Ik6lpFQDlpFXzPrdGazYkszh7CLw8qZVE3/+0rYpfr7eldYvtcOw++YQEGChoKC4QtmOO4efUyy7d+/imutHAmC+4DqswS244dF5BB/eAFRv5sC84lK+3ZsJwJUXRJxTPCIi7sqs2fdERGpk3759bN26lR9++IGwsLLhHSZOnMgzzzzDX/7yF5KSknj33XcJCAigbdu2/PTTT6xatYp77rmHlStX0rVrV0aPHg3ArFmz6NevH5s2baJPnz6urFatyi+xU3qiE01EaAi6wjhfG38rqcW+HMm3k5hVTKtWro5IxDmUlKoHDMNg25EcjrcawIfbU8kpKqXEZsfby4Svtxe+3l6YvU0c73Q1kz78jQKrjeTjRSSfGMwQoGmAL/btH3PZraNd8qtPecILYH9mAet3Z1DSui9DRozA19urWjMHfpmYQXGpndZN/ekUEVTXIYuIuMQfLaXUtUJEpDrCw8NZsmSJIyFVLi8vj4SEBC644AICAv6YsTkuLo6tW7cCkJCQQK9evRxl/v7+dOnSha1bt9arpFRGQVnrHIuPFz4msOoS43QB3gbtwgNJTM9n5Y4cLo11dUQizqGklIfbcvg4L36zj99Sc6F5LPl5f8zYYLMZWG024ERXu5DWfL0n01FuAjpFBnFV12YMuyCSm2+d6xbNkFs19SfY4kNOcSm70/Pp0qx6Y0N9tD0VgCsviHSLeoiI1IXygc5L1H1PRKRagoODGTBggOOx3W7nrbfeom/fvqSnpxMRUbGFfWhoKKmpZd8rz1ReX6Tnl90vNLJU7i0hzhPbIpg96flsTi1iR2ouF1TzPkjEkykp5UFG3zmWzKxsAAxM5LbsS15ULzCZMNlKsB7czJChV9LE3xezjxc2u0GJzY7VZmAttfPLJ8v515134efjTbNgC21DAwkJcL8pX71MJrpFNeKH/cfYlpxTrVZPv6XmknAkBx8vE1d1iXRClCIirqHueyIi52b27Nns2LGD999/n9deew2z2Vyh3Gw2Y7WW/dBbWFh42vKacOffTNNOtJRqZCm7PXTnWE+nPG5PjT8kwJfWjb3Yf9zOkg0Hef5vXV0dUo14+vFX/NXbf21TUsqDZGZlM+y+OdjsBl8mZpCSVQhAh/BALjwvhAVv3ku7W6+vcvsd6Tu5LibKWeGekw7hgWw5nEOe1cauo3lnXP/dzckADOkUTlgNB0cXEfEkGuhcROTszZ49m9dff53nn3+eDh06YLFYyM7OrrCO1WrFz88PAIvFUikBZbVaCQ4OrvFzh4a6b6uX7NKyu82mjfwgHywWXwICLPj5+eLlQf/39y+7D/Dk+LuF+XAwx8p3e7NILbbTtUVj4MQMiQcPOl6zVq1a4e3tni3b3Pm9Xh2K37mUlPIwdsNg/e4MDh0rxMsEA9uF0i4s0NVh1Tofby9io4P5Yf8xtiQfp7FX1S26DmcX8vnv6QDc1LOFs0IUEXEJR0spm4HdMDTTqIhINc2YMYPly5cze/Zshg4dCkBkZCR79uypsF5GRoajy15kZCQZGRmVyjt37lzj58/MzMVw07GaDmaW/dgdcKKLeHFxCQUFxRQVleBleM7/CwuLPT7+YIsX/VsG8O2hAmZ/spO513YB4MCB/bzy6S+EhDcnOz2Fuy7vRevW57vmDVMFk6ksIeLO7/XTUfzV239t86r1PUqdMYAf9x/j0LFCvE0mLu8UUS8TUuU6RgTRyOJDYYmd3JZ9q1xv3rf7sdkN+rZqQudIz8oKi4jUlMXnj0u3uvCJiFTP/Pnzeffdd3nuuecYNmyYY3lMTAy//fYbRUV/TAAUHx9PTEyMozw+Pt5RVlhYyI4dOxzlNWEY7vt3NL9i9z1PvCGHP+L29Piv6xSMCfhmTya7juY5XqeQ8OY0bRZNSHhzl79nqvorr4en/in+M++/tikp5UEKIrqw80RXtsEdQmkR4ufiiOqWt5eJ/m2aAJDfrAcJyccrrbPp4DG+TMzAywT3XtLG2SGKiDhd2cyqZb9kFykpJSJyRnv37uXll1/mn//8J3FxcaSnpzv+evfuTfPmzZkyZQqJiYksXryYbdu2MXLkSACuu+46Nm/ezOLFi0lMTGTKlClER0fXq5n37IZBWnlSyk8dadxBi2BfhnQKB2DxjwfPsLaIZ/PYpNTRo0eZOHEivXv3ZsCAAcyaNYvi4rLmmklJSdxxxx306NGDK6+8ku+//77Ctj/++CPDhw8nJiaGUaNGkZSU5Ioq1Ehieh7HWw8E4MLzGtO6acAZtqgfokP8aR8eCCYTkz7cwaFjhY6yw9mFTF23C4C/dW9er1uNiYiczO9Ea6liJaVERM7oiy++wGaz8corr9C/f/8Kf97e3rz88sukp6czYsQIPvroIxYsWEBUVNk4rNHR0cybN49Vq1YxcuRIsrOzWbBgQb2a6Tktt5gSe9nM3EGafc9tjO3bCm8TfLs3k/ikbFeHI1JnPDIVbhgGEydOJDg4mLfffpvjx4/zyCOP4OXlxeTJkxk/fjwdOnRg1apVrF+/ngkTJvDxxx8TFRXFkSNHGD9+PPfccw8DBgxgwYIF3H333Xz00Udue3EptRs89snv4OVDyxA/YqJqPrCiJ7u4dRMOHNjPMSIYu3wro/ueh6+3iaUbDpFdWELnyCDuHahWUiLScPj5eJNbbKOoxObqUERE3N64ceMYN25cleWtWrXirbfeqrJ84MCBDBw4sC5CcwvJx8u6Lgb4oHEK3Ujr0ACu7d6cVQkpvPjNPh7rF+LqkETqhEcmpfbt28fWrVv54YcfCAsLA2DixIk888wz/OUvfyEpKYl3332XgIAA2rZty08//cSqVau45557WLlyJV27dmX06NEAzJo1i379+rFp0ya3bYa7PP4wu9PzMZUWMbBdC7dNntUVs48XTXd9SOCQe9mXWcDcr/Y6ys5r4s+ca7rg76tfdUSk4fDzLWsppe57IiJyrg5nl/VECKx6XiFxkXEXt+LTnWnsPJrHD0lmV4cjUic8svteeHg4S5YscSSkyuXl5ZGQkMAFF1xAQMAf3dvi4uLYunUrAAkJCfTq1ctR5u/vT5cuXRzl7ubI8SJHP+LGB79vsMkX75JC3rqtJ/dd0oae0Y3p0SKYu/q15p1RcUQ0srg6PBERpyof7LyoREkpERE5N+UtpYI8srlC/WO32zh8+DAHDuwnJy2Z23qVzS7+zm/HsdnraKRpERfyyFNPcHAwAwYMcDy22+289dZb9O3bl/T0dMcUruVCQ0NJTU0FOGN5TdS0wVL5+qfbbvS4sWRkZQNgAFmdrqY4pDXm44dJ3vAh/H10jeM8VQznur3JVHej71fF7OPFrb2iubVX9Fnvw5Xx1xZPbyhXn14Dd6tDdd8b1TkXiXvzO/EDhcaUEhGRc3U4uywpFeirLwbu4HjGUZbvOkb0+Say01P4x6U9+W+QmbQ8K4k5JsKjXB2hSO3yyKTUn82ePZsdO3bw/vvv89prr2E2V2zaaDabsVqtQNk0rqcrr4nQ0EZnFe/ptsvOzeX6qfMASDyay8e/puJtMnHT0H7MW20jIKDqVkEmE6ct9/H1Jiys6uf28fU+4/79/cvKy/+t7nOfa/mZYj+dU9Xr5PjPJba6rnd9fW6o/B5y1nPXZr2d+Tmoi89I06Zn95kS13O0lCrVmFIiInJukk5MJBRYL+4M64fg0EiaNiv7Id7i7cX4Aecz/ZPf2ZVtEGMtdXF0IrXL4089s2fP5vXXX+f555+nQ4cOWCwWsrOzK6xjtVrx8/MDwGKxVEpAWa1WgoNrPnh4ZmZujVpJmExlCanTbVdaYqOgoBib3eC7xAwAYlo0wmIyMAwoKCiucv9nKi8tsZGRkXva8jPtv7CwGH9/C4WFxRXqcK6xnWvsp3NyvcoTayfHfy6x1XW9T1VeXgdXPHdtbFveOufP7yFnPPe5lpeXnep95KznrkpNPiPl56KsrFwlpjyUn7rviYhILTAMwzG7dSONKeW2Lu8cwVsb95OYZeXnQ8fpHuTqiERqj0eOKVVuxowZLFu2jNmzZzN06FAAIiMjycjIqLBeRkaGo8teVeXh4eE1fn7DqPnfmbYrt/NoHrnFpfj7etG9Fmfbq85zn2n7k/91prM53n+O05Xx1xZPjh3q12vgbnU4m3OReKby7nsa6FxERM5Fep6VghIbXiYIUlLKbXmZTPwjJgSAxPR8sor0JU7qD49NSs2fP593332X5557jmHDhjmWx8TE8Ntvv1FUVORYFh8fT0xMjKM8Pj7eUVZYWMiOHTsc5e7AWmpny+HjAMS1bIyvt8e+TCIiUgfKW0oVq/ueiIicg4PHCgCIDPTBS4NNuh273UZyctmg5wGF6ZwXWLZ8a5aBXb8uSj3hkd339u7dy8svv8y4ceOIi4sjPT3dUda7d2+aN2/OlClTuPvuu/nqq6/Ytm0bs2bNAuC6665j6dKlLF68mEGDBrFgwQKio6Pp06ePU2IfedOtHEnNqLJ8995EIo7kUFRqp7GfDx0j1DZTREQq0ux7IiJSGw5klXXdiwryAWo+xq7UrZzMNJYfzCP6fBOHft9O68jzSSkM4lixwbeHCmhzvqsjFDl3HpmU+uKLL7DZbLzyyiu88sorFcp+//13Xn75ZaZOncqIESNo1aoVCxYsICqqbJqC6Oho5s2bx1NPPcWCBQuIjY1lwYIFmJz0y0Ba5jGG3TenyvKd/3cr21PKxoXp3SpEv1iIiEglfr7lLaXsGIbhtGuYiIjULwezylpKRTXyhVIlpdxR+aDn2ekpeHkZxEY3ZtOhbN7+NZvrLyol0OyRt/QiDh75Dh43bhzjxo2rsrxVq1a89dZbVZYPHDiQgQMH1kVo58yv2xBsdoPIRmZaNfF3dTgiIm7n6NGjzJw5kw0bNmCxWLjyyiu5//77sVgsPPnkk7z55psV1n/00Uf5+9//DsDatWt54YUXSE9Pp3///syYMYOmTZsCZYO9zp07l/fffx+73c7IkSN58MEH8fJyvy7Ufj5lY0oZgNVmYPFRUkpERGru4IlBzls08iH9mIuDkWrp2rwRvx3JJrvIzqsbkrjnL2ouJZ7NI5NS9VW+tRRzx/4AxLUMqfVfvnfv3sU114+sunxvIsOqLBURcT3DMJg4cSLBwcG8/fbbHD9+nEceeQQvLy8eeugh9u7dywMPPMDf/vY3xzZBQWXdoLdt28bUqVN5/PHH6dSpEzNnzmTKlCksWrQIgGXLlrF27Vrmz59PaWkpkyZNIjQ0lDFjxrikrqfj7WXC18tEid2gqMTm6M4nIiJSE4dOaimlpJRn8PYy0T3UxE9HDZZvPsy13ZrRUo0ZxIMpKeVGEpJzMHn7EtnIQlSwpdb3X2rntF0Hd9w5vNafU0SkNu3bt4+tW7fyww8/EBYWBsDEiRN55plnHEmpMWPGnHJG1bfeeosrrriCa6+9FoBnn32WQYMGkZSURMuWLXnjjTeYOHEivXr1AuDBBx/kxRdfdMukFIDF14uSYlvZGISuDkZERDxOUYmNlJxioGxMqQQXxyPV19wfYiL9SDhaxAvf7GPutV1cHZLIWdNPq24i31rKrqN5QNmMexofRESksvDwcJYsWeJISJXLy8sjLy+Po0eP0rp161Num5CQ4Eg4ATRv3pyoqCgSEhI4evQoKSkpXHjhhY7yuLg4kpOTSUtLq5O6nKvyLnzFpRrsXEREau7gsUIMINjPh2CLbgs9iWHYuaJZEd4m+HZvJj/uq3oiLRF3p7OPm0hIzsFmQOnRPXXSSkpEpD4IDg5mwIABjsd2u5233nqLvn37snfvXkwmEwsXLuQvf/kLV199NR988IFj3bS0NCIiIirsLzQ0lNTUVMcsrieXlye+UlNT67JKZ83PMQOfzcWRiIiIJ9qbkQ9A29AA/SDuYXIy0/gqYS/nNyp7/Oz63ZTa9COVeCZ133MDJ7eSKtq6DtO1g10ckWcZfedYMrOyqyzXWFki9dfs2bPZsWMH77//Pr/99hsmk4k2bdrw97//nZ9//plHH32UoKAgLrvsMoqKijCbzRW2N5vNWK1WioqKHI9PLgOwWms2G1FNv9c71q/hdv7mspZSBadIStWHe4vyOtSHutQWHZPKdEwqO9djomPZcOxJL0tKtQsPcnEkcjaCQyPp2CaaQ/GHSc4tZfnmZG67sKWrwxKpMSWl3EB5K6nIRhayU353dTgeJzMrW2NliTRAs2fP5vXXX+f555+nQ4cOtG/fnkGDBhESEgJAp06dOHDgAMuXL+eyyy7DYrFUSjBZrVb8/f0rJKAsFovj/wD+/jUbPDQ0tFGN1g8JCQTAz2ImIKD6LWVDAs2Qnk+xHQICLPj5ldWhSZNAwsJqFoM7q+nxbAh0TCrTMalMx0TOZM+JllLtwgKAYtcGI2fF4uNF16YmNmcYLPzhABed35R2YYGuDkukRpSUcrE/jyWllJSIyJnNmDGD5cuXM3v2bIYOHQqAyWRyJKTKtWnThg0bNgAQGRlJRkbFMRcyMjIIDw8nMjISgPT0dKKjox3/B045aPrpZGbmYhjVXz87u+ymoKjYSkFB9W8KzCdaMxzPL9uuqKgsiXbsWD4ZGbnVD8BNmUxlN9U1PZ71mY5JZTomlZ3rMSnfXuq/8pZSgaU5JCenY1fvL4/UOggMHz+2pBbx6LpdvHpLD/x9vV0dlki1aUwpFzu5lZTGkhIRObP58+fz7rvv8txzzzFs2B+dc1988UXuuOOOCuvu2rWLNm3aABATE0N8fLyjLCUlhZSUFGJiYoiMjCQqKqpCeXx8PFFRUZXGoToTw6j5X9mGNTsOAafpvnc2MbjjX32qi46JjoknHROp/44XlpCeX/Zjxqb96bz97Xby8jz/B42GyGQycVdcU5r4+7InI58Zn+3GMAxsNhsHDux3/NlsGoNS3JNaSrmQZtwTEamZvXv38vLLLzNu3Dji4uIcrZkABg0axOLFi1m6dCmXXXYZ33//PatXr+aNN94A4Oabb+a2226jR48edOvWjZkzZ3LJJZfQsmVLR/mcOXNo1qwZAHPnzmX06NHOr2Q1BZYnpaz6kikiIjVT3nUvwAcio1qSn+mek3pI9TTx8+aZqy/grpXb+Pz3dEIDzYxobWLR/+IJCW9OdnoK/xoKrVuf7+pQRSpRUsqF1EpKRKRmvvjiC2w2G6+88gqvvPJKhbLff/+dF198kZdeeokXX3yRFi1aMHfuXGJjYwGIjY3liSee4KWXXuL48eP069ePGTNmOLYfM2YMmZmZTJgwAW9vb0aOHFmp5ZU7CTgpKWVX0wYREamB8q57jc1nWFE8Rmx0Y6Ze1p4nPtvNu5uTyc0JonFYM5o2i3Z1aCKnpaSUi+QXn9RKKlqtpEREqmPcuHGMGzeuyvJLL72USy+9tMryESNGMGLEiFOWeXt7M2XKFKZMmXLOcTqDv683JsAACk/RhU9ERKQqu9PL7kMa+7o4EKlVV3YO52h6Oos2H2PdnjzaNoJBzfTDlbg3JaVcZOuRk1pJNVYrKRERqRkvk4kAszf5Vpu68ImISI38llo2flQTi34Y93R2u43k5MMAJCcfJvH3FGJDm7Ml02BvLvjsy6JLgBJT4r6UlHKBvJNaSfXSWFIiInKWypNS+VYb6oEhIiLVUWC1sT+zAIAm+m3c4+VkprH8YB7R55s49Pt2Qpq3pleHlhRt3s7O4mB+T8snLxBG2pSYEvek2fdcYGtyDnYDmgdbiGrs5+pwRETEQwX4arBzERGpmV1pudgNaOrvjb+PfhyvD4JDI2naLJrgpuGOZVG+RXQPKsLLBMn58MyPGeruL25JSSknKzU34ve0P2bcExEROVvlM/DlKyklIiLV9FtKWde9dk3Uxra+i7TYGNopHG8TJKQVMX7lNnKKSlwdlkgF6r7nZMebxWE3IKqxhebBaiVVXbt37+Ka60eeumxvIsOcHI+IiDsItJyUlNKP3SIiUg07Ust+IG/X1ExxfrGLo5G6Fh3iz4BmJn7OMLE9JZd/vbeNedd1IzRQSUlxD0pKOdHh7ELywzoBEBcd4tpgPEypHYbdN+eUZTvuHO7kaERE3EOA+aTuexoXREREqmFHag5Q1lLqt3wXByNO0cRsZ0JnE4t2e5GYns8/393Ky9d3p5kaSYgbUPc9J1q64RCYvGnR2I9mwbp7EBGRcxNkLvttKbeo1MWRiIiIJ0jNKeJITjFeJmir7nsNRk5mGl9v20ufMAM/k42k7CLGvpvAwawCV4cmoqSUsxiGwWc70wCNJSUiIrUjxN8XgNziUjSpjoiInMnmw8cB6BTZiABf3Qo2JMGhkZzXsiWXRHkR4QdHc4sZ885mfjty3NWhSQOnM5GTmEwm7rukLU0Ofk1kI7WSEhGRc+fv64WvlwkDKLBpUCkRETm9Xw5lA9BLP5I3WCXH04guOkBjMxwvtvPPFQn8d1sKhqFft8Q1lJRyoutjo2iU8ZurwxARkXrCZDLR+ERrqXybLukiInJ68UnZAMS1DHFpHOJaoaFhXBsTTTN/gxI7zPo8kQfej+d4QdnA9zabjQMH9jv+bDbN8it1R99gRUREPFhj/7JxpfJLdUkXEZGqHTleNp6Utwl6tFBLqYbO7OPFBV5ptCQTE/DdoQKue/Vn1v12lEOHDrLws194d3MyCz/7haSkQ64OV+oxzb4nIiLiwRr7lbWUylNLKREROY1NB48B0KaJmbQjh0hOPozd7uKgxKVMJugUaiGmWQRf707jeLGdxz79nY6hZiKDmtG0WbSrQ5QGQEkpERERDxZS3lJKSSkRETmNb/ZmAmDLy+LdzaUc+n07Ic1bE+biuMT1mgf78dfmBjbDxOdHTPyeaeV3YG9hGh0CNdaU1C0lpURERDxYeUspdd8TEZGqFFhtf7SUCm9E02bRZKenuDgqcSd5WWnk5eXx15bt+PlAJhneTUk+XkTyccj9MZ37AsLpEBHkWN9ms1Xo1tey5Xn4+Hi7InTxcEpKiYiIeLDyMaWshgkvv6AzrC0iIg3RhgNZWG0GkYHeBPuqz56cWnBoJC2iW1J8LJUinwLSfCNITM/nl5Qibn1zM5d2COOfF7eiTWggSUmHWPjZL4SENyc7PYV/DYXzzz/f1VUQD6SklIiIiAfz9fYi0OxNvtWGb7i+DIqISGVf7ynrundhlD+m0gIXRyOeIMDb4JJ2obQ2F5Bv8uPHw4Ws353BF7sz6N8ygAFNCwgO1bhTcu7U1l9ERMTDRQSZAbC06OTiSERExN3kFZfyVWIGAH1bBLg4GvE0wWYT9/UJ451RPekd5Y8BfJdUwFNbDTamWikssbk6RPFwSkqJiIh4uMhgCwCW6AtcHImIiLibz39Pp6jUTqsm/nRoanZ1OOKh2ocHMemiMAZHmTiviR+YTBwp9uW9LUfYm2NgMzQgupwdJaVEREQ8XLNGJ5JSUZ2w60uhiIic5MPtqQBc060ZJpPJxdGIp7HbbSQnH+bAgf0kJx+msS8M7RRBnH8WjbxtWG0GWzMNHvnyKLuO5ro6XPFAGlNKRETEw4UGmPHGAP9GpOZrAFuR+uDw4SSysjKrtW6O1c5XSSUkpJeQkm/H4mOiWYAXl7YL4Y6/XICXEhEN1o7UXH5LzcXby8SwLpHkpCW7OiTxMDmZaSw/mEf0+SYO/b6dkOatCQNCvEvo07iQgsYt+fngMfZllzDqrS2M7pfNbT2bE+CrVINUj94pIiIiHs7Ly0RjXxtZJT4kZtu43NUBicg5OXw4iYv7XUhR4RkGpDZ50ShuOCEDRuFl9nMstloNcq02En/JxM9nF7f061zHEYu7WrrhEABDO4XTNMBMjovjEc8UHBpJ02bRZKenVFhuMkGXZo1oUppNtuHPD4cLWPL9ft6PP8w/+rTkupgoLD7qnCWnp6SUiIhIPdDU105WCfyWWerqUETkHGVlZVJUWMDI+2YREX3qWTVL7LAlx490a9nX+cY+Nlr7lxDia8PXbOb3wxns3PEr0X/5mzNDFzfy+9E8vt2biZcJhkR7Obpf2dWgVmqZn4+J/+sZyg292/D8N/s4kFnA81/v442NB7mxZzRXdWtOWKDGM5NTU1JKRESkHmhmKWVPgZmEjFJyi0pp5KdLvIini4g+n6i2lScwyC4s4X+70jluLcXby0TfViF0jgxyjBcUEGDBYt/C93NfJOSB65wdtrgBu2Hw3Nd7AbgoOoA1PyYQEt68QvcrkdpSPu5UdDQ8GgezvznOwdLGZBbaePmHgyz68SA9m/tzZbdoBrQNo7G/r6tDFjeib6wiIiL1QLCPHWv6AQhvzfrd6fyte3NXhyQideBwdiFf7M7AajMINHszpFO4WiBIJR9tT2Xz4eP4+Xhxc5fGfPV781N2vxKpDSePO3X0wA5aNo3morbRbEj4jaRiC3mGHz8fKeTnI4l4mRJp39TMxW0j6HVeE7pHBePn6+3qKogLKSklIiJSD5hMkP/rV5gH/YN1vx1VUkqknjEMg19Tc9l4IBsDiAgyc1nHcALMupmTivZm5PPCN/sA+Fe/1kQGlrg4ImkIysedKsrNwGqAj7cXUb5FRAd5E9yiGfE793C0xJdCw8LvmVZ+zzzMsk2H8fEy0SbEl7ZNzLRpYuaiTufRNrwRPl6aoKGhaLBJqeLiYh5//HH+97//4efnx+jRoxk9erSrwxIRERfz5OtD/o6vCR38DxKO5PDD/iz6nd/U1SGJSC0otdn5Yf8xdqfnA9AhPJD+bZrirZs2p/GUa0N6XjH3r/6NfKuNC8Is9G1qJTk5WeNIiUs1DTTT1pJP++BAmp53PrsPJuPtZWJfvjdZhTZ2Z1nZnWUFYMEvWZi9TTQP9iPUYhAZ6ENEoA9toyJoGmghxN+Xxv4+NPLzwewFyYeTHM/TsuV5eHsrUe9pGmxS6tlnn+XXX3/l9ddf58iRIzz00ENERUVx+eWas0hEpCHz5OuDLS+TS1ua+d8hK7O/2EPc7XFqEi/i4VJzivl2bybHi0oxAX1ahdC1eSPH+FHiHJ5wbdiTkc99//2V1NxiIgN9CCtMYuXWEo0jJW4l2M+HptY08vLyuKR1OxJ378Zoeh40CiclK4e8EhPFNoODxwo5ePKG27Ir7csEeGHH7O2FyV5CeGASjQMsBJu9iDiRzAoL8CGmXUtahATg6/3HTIA2m42kpEOOxy1bnoePj74zuUKDTEoVFBSwcuVK/vOf/9ClSxe6dOlCYmIib7/9tltdWERExLnqw/Xh6rYWtmZB8vEiJn+0g2evvkCJKREPZG7WjvjjfqSmHQUgwNebS9qF0iLEz8WRNTzufm3IKSpheXwyr/+cRInNoHmQD2PalfLbsUiNIyVuKzg0ktDmLTmekYqXpZTWrZuwL3cPucV5NIlux/79+/AOaY5v43BS09IpLDUw+fpTVGrDhjc2AwzAhheFNgBfDuYBecWVn+z7dLxMENnIQovGfrRo7E+AUci2PQeJCG1C6fGj3DPUoE2bNs49CAI00KTUrl27KC0tJTY21rEsLi6OhQsXYrfb8fLyOs3WIiJSX9WH64O/j4nHr+jE/33wKz8dOMatb27mH31a0v/8UEICNNuNiDsqtdlJySnm4LECth3J4X+/5dH89hdIPXFv1TEikN7nhSjB7CLucG0wDIMSm0FxqZ3jRSUcOlZI0rFCtiQf54d9WRSVlvXPC/UuJq6pic82/arWUeKRGodGcl7LlpRmn0hWtWrCvpw9eFkCad3hPPZt/5ncvDyiWrXjQOIOAiLOI7JlWw4m7sDm60+TyGiSDh2g2OSHyb8R2fmFFNlMlNghJaeYlJxifkk6fuLZQvjtiAFE8MtHyTRvnEVUE398S4to6udNY4sX0ZHhNPLzJdDiTaDZhwCzN2ZvL3y8TPh4m8r+9fLC26vs/2fbrdpuGJTaDErsdkpsBqV2A7vdwFpaSnLyEUymsu947Vq3wt9Sv77PNcikVHp6Ok2aNMFs/mOmkrCwMIqLi8nOzqZp0+qNweHlBYZR/ec1mSAgwB+Lr1eV2zUKCsLsc+oL2+nKnFVu8fXC7O2F7U91cGVsNdnWZKJS/M567toqL6+DpxzzPzOZ/ngvedrnoLzsVO8jZz13VQICAqjud+LyHh/q+VFZbVwfanpt8PHxplGjRuSlJ5NlPvvLcm56Mo0aNeLAgX20bevN5AsD+c/2IrIKSpj71T7mfrUPfx9obPaikRm8TOV/Jsf/TYDJZMKoSQWqcK77MZnA7OuDtaS0RsezLmJxl32YTODr40NJqc3lsZy0Jwyq3s+fn6I6z3imsP5c7OPrTWmJ7Y+ySs955mf9Yw1T2RY1PDSVVzdVqsif17HZoaAUimwGuVYDW4UVvAj0sdGUfDqFmQn2KaIgNZOC6gRjgnyzmbwT5wRvb+9qXx9A14ZTccW9Q8rxYh79eBepxwux2soSUlUNC+Xj7UXnJmb+El5KUkoWwX6NyLGYKck7Rn5mKiX5x/EqsVbr/wVZqVjzsinFt8bbusP/FX/DiD/A4k+AxZdgizdehVn4FzchqDgDL8OfKK/G2EtS8DL7ExURyOHERPLz8whp3opjx/OI7dSWEksjDqTnsveYlWKTmaKySwhpeVbS8qwVP2C78qr3oT3BBHh7gbep7IuV6cSyP/5v4kQRdgNK7WUJKFu1rztp+JjA4uuFvzf4eJvw9Trx5w0+vj6UlvzxPcHgj/NO+f+9THBrn/MZ3KFmaeu6uj6YjNr5RuJRVq9ezYsvvshXX33lWJaUlMSll17KN998Q7NmzVwYnYiIuIquDyIi8me6NoiI1B3374dQBywWC1ZrxQxo+WM/P/XTFxFpqHR9EBGRP9O1QUSk7jTIpFRkZCTHjh2jtLTUsSw9PR0/Pz+Cg4NdGJmIiLiSrg8iIvJnujaIiNSdBpmU6ty5Mz4+PmzdutWxLD4+nm7dunnEILYiIlI3dH0QEZE/07VBRKTuNMizqL+/P9deey2PPfYY27ZtY/369bz66quMGjXK1aGJiIgL6fogIiJ/pmuDiEjdaZADnQMUFhby2GOP8b///Y+goCDGjBnDHXfc4eqwRETExXR9EBGRP9O1QUSkbjTYpJSIiIiIiIiIiLhOg+y+JyIiIiIiIiIirqWklIiIiIiIiIiIOJ2SUiIiIiIiIiIi4nRKSp0jq9XK8OHD2bhxo2PZr7/+yo033khsbCw33HBDheljAX788UeGDx9OTEwMo0aNIikpqUL5a6+9xoABA4iNjeWRRx6hsLDQ7eqwatUqLr/8cmJjY7n++uuJj493WR3OJv5yCQkJdO7cmcOHDzuWGYbBnDlz6Nu3L7179+bZZ5/FbrfXWfxnW4dNmzZxzTXXEBMTww033MCuXbtcVoeziX/58uX89a9/pWfPnowZM6bC58CZ8R89epSJEyfSu3dvBgwYwKxZsyguLgYgKSmJO+64gx49enDllVfy/fffV9jWHT7L5xK/O32OG6ri4mIeeeQRevXqRf/+/Xn11VddHZJTfP7553Ts2LHC38SJEwHYsWMH119/PTExMVx33XX8+uuvFbZdu3Ytl156KTExMYwfP56srCxXVKHWnOr86Qnnnrp0qmPy5JNPVnrPvPXWW47y070vXHFdry2efo0S9+CJ55n68N4/ePAgY8aMITY2lksuuYQlS5Y4yjylDgDjxo3j4Ycfdjw+l+u0M8/HdfVdw1l1sFqtPP7441x44YVcfPHFPPfcc5QPB+4J8deIIWetqKjIGD9+vNGhQwdjw4YNhmEYRkZGhhEXF2f8+9//Nvbs2WMsW7bM6NGjh5GcnGwYhmEkJycbPXr0MJYuXWrs3r3buPfee43hw4cbdrvdMAzD+PTTT424uDjjyy+/NBISEowrr7zSePzxx92qDt98843RvXt348MPPzQOHDhgPP/880bPnj2N1NRUp9fhbOIvZ7VajeHDhxsdOnQwkpKSHMuXLl1qDBw40Pj555+Nn376yejfv7+xZMmSOon/bOtw6NAho3v37sa8efOM/fv3G//+97+NQYMGGcXFxU6vw9nE/+233xqxsbHGl19+aezbt8+YMGGCcdVVVzn26az47Xa7ccMNNxhjx441du/ebfz888/GZZddZjz99NOG3W43rrrqKuOBBx4w9uzZYyxcuNCIiYlxq8/yucTvTp/jhuyJJ54wrrrqKuPXX381/ve//xmxsbHGJ5984uqw6tzLL79s3HnnnUZaWprj7/jx40Z+fr7Rr18/4+mnnzb27NljzJgxw7j44ouN/Px8wzAMIyEhwejevbvxwQcfGDt37jT+/ve/G+PGjXNxbc7eqc6fnnDuqUunOiaGYRh33HGHsWjRogrvmYKCAsMwzvy+cPZ1vbZ4+jVK3IMnnmfqw3vfZrMZQ4YMMR544AFj//79xtdff2307NnT+OijjzymDoZhGGvXrjU6dOhgPPTQQ4ZhGOd8nXbm+biuvms4qw6PPvqoMWTIECMhIcH48ccfjT59+hjLly/3mPhrQkmps5SYmGhcffXVxlVXXVXhJL9kyRLjr3/9q1FaWupYd8yYMcacOXMMwzCMF154wfj73//uKCsoKDBiY2Md299yyy3GSy+95Cj/+eefje7duzu+eLlDHf7v//7PmDZtWoV9DRkyxFixYoVT63C28Zd7+eWXjZtuuqlSUmrgwIHGqlWrHI9Xr15tDBo0qFZjP9c6PPXUU5XeR3/961+NnTt3OrUOZxv/jBkzjHvuucdRtmvXLqNDhw5GZmamU+Pfs2eP0aFDByM9Pd2xbM2aNUb//v2NH3/80ejRo4fjBG8YhnH77bc73tvu8Fk+l/jd5XPckOXn5xvdunWrcOO9YMGCCu+r+uqBBx4w5s6dW2n5ypUrjcGDBzu+eNvtduOyyy5znA8mTZrk+GJsGIZx5MgRo2PHjsahQ4ecE3gtqur86QnnnrpS1TExDMMYMGCA8d13351yuzO9L5x5Xa9Nnn6NEtfz1PNMfXjvHz161Lj33nuN3Nxcx7Lx48cb06dP95g6HDt2zPjLX/5iXHfddY5z7Llep515Pq6r7xrOqMOxY8eMCy64wNi4caNj2aJFi4yHH37YI+KvKXXfO0ubNm2iT58+rFixosLypKQkunTpgre3t2NZx44dHV2XEhIS6NWrl6PM39+fLl26sHXrVmw2G9u3b69Q3qNHD0pKSip0zXJ1HcaOHcs//vGPSvvLzc11ah3ONn6A/fv38/bbb1doigplTYVTUlK48MILHcvi4uJITk4mLS2tVuM/lzps2rSJIUOGOMr8/f1Zv349nTp1cmodzjb+kJAQfv75Z/bu3UtpaSmrV6+mRYsWNG7c2Knxh4eHs2TJEsLCwiosz8vLIyEhgQsuuICAgIAKcbjTZ/lc4neXz3FDtmvXLkpLS4mNjXUsi4uLIyEhwfXNqOvY3r17ad26daXlCQkJxMXFYTKZADCZTPTs2bPKz13z5s2JiooiISHBGWHXqqrOn55w7qkrVR2TvLw8jh49esr3DJz+feHs63pt8vRrlLiep55n6sN7PyIighdeeIGgoCAMwyA+Pp6ff/6Z3r17e0wdnnnmGa655hratWvnWHYu12lnn4/r4ruGs+oQHx9PUFAQvXv3diwbN24cs2bN8oj4a8rHZc/s4W655ZZTLg8LC6t0QkhNTeXYsWMApKenExERUaE8NDSU1NRUcnJyKC4urlDu4+NDSEgIqamptVyDs69Dly5dKpR9++23HDhwgL59+zq1Dmcbv2EYTJs2jXvuuYfQ0NAK66WnpwNUiL/8gpiamlrptTtXZ1uHpKQk/Pz8mDhxIr/88gvt2rVj2rRptGvXzql1ONv4b7vtNn766SeuvPJKvL298ff35+2338bb29up8QcHBzNgwADHY7vdzltvvUXfvn1P+1kF9/gsn0v87vI5bsjS09Np0qQJZrPZsSwsLIzi4mKys7Np2rSpC6OrO4ZhsH//fr7//nsWLVqEzWbj8ssvZ+LEiaSnp1f48gtl79vExEQA0tLSTvu+9iRVnT894dxTV6o6Jnv37sVkMrFw4UK+/fZbQkJC+Mc//sHf/vY34PTvC2df12uTp1+jxPU89TxT3977gwcP5siRIwwaNIihQ4fy1FNPuX0dfvrpJ3755RfWrFnDY4895lh+LtdpZ56P6+q7hrPqkJSURIsWLVi9ejULFy6kpKSEESNGcNddd3lE/DWlllK1bMiQIWzbto333nuP0tJSvvvuO7744gtKSkoAKCwsrHADAmA2m7FarRQVFTken6rcWc5Uh5MdOnSIKVOmcNVVV9GlSxe3qMOZ4n///fcpKSnhhhtuqLTtqeIv/787vQYFBQXMmTOHCy+8kP/85z80b96cO+64g/z8fLeow5niT0tLo7i4mDlz5vDuu+9y4YUXMmnSJIqLi10a/+zZs9mxYwf33XffaT+r4J6f5ZrEfzJ3/Bw3BFW9RuDc842zHTlyxFH3F154gYceeog1a9bw7LPPnvF9W1RUVO/fl5547qlr+/btw2Qy0aZNGxYvXsz111/Po48+yueffw6c/n3hDtfE2uLp1yhxH572/vH09/5LL73EwoUL2blzJ7NmzXL7OhQXFzN9+nSmTZuGn59fhbJzuU4783xcV981nFWHgoICDh48yLvvvsusWbN46KGHePPNN3nttdc8Iv6aUkupWtahQwdmzJjBk08+yfTp0+ncuTM333yzY7YLi8VS6QW3Wq0EBwdjsVgcj/9c7u/v75wKcOY6lNu/fz//+Mc/aNmyJU8++SSAW9ThdPGnp6fz/PPP89prrzmaPJ7s5A/ln+viTq+Bt7c3gwcP5rbbbgNgxowZXHLJJXz55Ze0atXK5XU4U/zTp09nyJAhXHXVVQDMnTuXSy65hC+++ILo6GiXxD979mxef/11nn/+eTp06IDFYiE7O7vCOlar1XFxdrfPck3jL+eun+OGoKr3EFDpdapPWrRowcaNG2ncuDEmk4nOnTtjt9uZNGkSvXv3PuUxOdPnrj69Lz3t3OMM1157LYMGDSIkJASATp06ceDAAZYvX85ll1122veFu1zXz5WnX6PEvXjS+6c+vPe7desGlCV7HnzwQa677rpKs+W5Ux3mz59P165dK7RWK1dVbNW5TjvzfFxX3zWcVQcfHx/y8vKYO3cuLVq0AMoSbcuXL6dVq1ZuH39NqaVUHbjuuuv45Zdf+Oabb/jvf/+LyWRy3GhHRkaSkZFRYf2MjAzCw8MJCQnBYrFUKC8tLSU7O5vw8HC3qQNAYmIif//732nWrBlLlixxfAjcpQ5Vxf/9999z7NgxbrzxRmJjYxk+fDgAw4cPZ+HChURGRgJ/dOM7+f/u9BqEh4dz/vnnO9Y1m820aNGClJQUt6nD6eL/7bff6NSpk2PdwMBAWrVqRXJyskvinzFjBsuWLWP27NkMHToUqPqzWt6s1Z0+y2cTP7j/57i+i4yM5NixY5SWljqWpaen4+fnR3BwsAsjq3shISEVfhho27YtxcXFhIeHn/Xnrr7wpHOPs5hMJkdCqlybNm04evQocPpj4i7XxHPh6dcocT+e8v7x5Pd+RkYG69evr7CsXbt2lJSUnNO1zhl1WLduHevXryc2NpbY2FjWrFnDmjVriI2NPafj7+zzcV1813BWHcLDw7FYLI6EFMD555/vuNdz9/hrSkmpWrZhwwbuu+8+vL29iYiIwDAMvvvuO/r06QNATEwM8fHxjvULCwvZsWMHMTExeHl50a1btwrlW7duxcfHp8INvKvrkJaWxujRo2nVqhVLly4lKCjIsa071OF08V922WV8+umnrF69mtWrV7N48WIAFi9ezE033URkZCRRUVEV4o+PjycqKsqpfWzP9Br06NGD33//3bG+1WolKSmJ6Ohot6jDmeKPiIhg7969FeI/fPiwS+KfP38+7777Ls899xzDhg1zLI+JieG3335zNHMtjyMmJsZR7g6f5bON390/xw1B586d8fHxqTAJQ3x8PN26dcPLq/5ensvPBSf/Srxz505CQkKIi4tjy5YtGIYBlI0JsXnz5io/dykpKaSkpDjK6wNPOfc404svvsgdd9xRYdmuXbto06YNcPr3hTtcE8+Fp1+jxD15wvvH09/7hw8fZsKECY7kOcCvv/5K06ZNiYuLc+s6vPnmm6xZs8ZxvzR48GAGDx7M6tWriYmJOevrtDPPx3X1XcNZdYiJiaG4uJj9+/c7lu3bt48WLVp4zGtQI06f768eOnmK1dTUVCMmJsZ4++23jUOHDhnTp083BgwYYOTl5RmGYRhJSUlGt27djEWLFhm7d+827r33XuOqq65yTOm4du1ao2fPnsbnn39uJCQkGMOGDTNmzJjhVnW4//77jYsvvtjYt2+fkZaW5vgrL3dFHWoS/8mSkpKMDh06GElJSY5lixYtMvr3729s2LDB2LBhg9G/f3/j1VdfrdP4a1qHrVu3Gl26dDHefvttY//+/cbUqVONv/zlL46pZV1Rh5rEv2jRIqN3797Gl19+aezdu9eYPHmyMXjwYKOoqMip8e/Zs8fo3Lmz8fzzz1d4L6elpRmlpaXGlVdeafzf//2fsXv3bmPRokVGjx49jOTkZMMw3OOzfC7xu+PnuCF69NFHjWHDhhkJCQnG559/bvTs2dP47LPPXB1WncrNzTUGDBhg3H///cbevXuNr7/+2ujfv7+xePFiIzc31+jbt68xY8YMIzEx0ZgxY4bRr18/x7lt8+bNRpcuXYz33nvP2Llzp/H3v//duPPOO11co3N38vnTE849znDyMUlISDAuuOACY8mSJcbBgweNt99+2+jatauxefNmwzDO/L5w1XX9XHn6NUrciyedZ+rDe7+0tNQYMWKEMXr0aCMxMdH4+uuvjYsvvth47bXXPKYO5R566CHjoYceMgzDOOfrtLPOx3X5XcNZdRg3bpxx4403Gjt37jS+/fZbo2/fvsbrr7/uMfHXhJJSteDkk7xhGMZXX31lXH755UZMTIwxatQoY8+ePRXW//rrr40hQ4YY3bt3N26//Xbj0KFDFcoXLVpkXHTRRUZcXJwxZcoUx426O9TBbrcb3bt3Nzp06FDp76WXXnJZHWr6GpQ7VVKqtLTUeOqpp4xevXoZffr0MWbPnu24CLhTHT7//HNj6NChRteuXY2bbrrJ2L17t0vrUJP4S0tLjUWLFhmDBw82evbsaYwZM6bC58BZ8S9atOiU7+UOHToYhmEYBw4cMG699Vaja9euxrBhw4wffvihwvau/iyfbfzu+jluiAoKCozJkycbPXr0MPr3728sW7bM1SE5xe7du4077rjD6NGjh9GvXz9j3rx5js94QkKCce211xrdunUzRo4cafz2228Vtl21apUxcOBAo0ePHsb48eONrKwsV1ShVv35/Onu5x5n+PMx+fzzz42rrrrK6Natm3H55ZdXSt6e7n3hquv6ufL0a5S4F086z9SX935qaqoxfvx4o2fPnka/fv2MV155xXHu8ZQ6GEbFpJRhnNt12pnn47r6ruGsOuTk5BiTJk0yevToYVx00UUeF39NmAzjRLsvERERERERERERJ6m/g1aIiIiIiIiIiIjbUlJKREREREREREScTkkpERERERERERFxOiWlRERERERERETE6ZSUEhERERERERERp1NSSkREREREREREnE5JKRERERERERERcTolpURERERERERExOmUlBIREREREREREadTUkpERERERERERJxOSSkREREREREREXE6JaVERERERERERMTplJQSERERERERERGnU1JKREREREREREScTkkpERERERERERFxOiWlRERERERERETE6ZSUEhERERERERERp1NSSkREREREREREnE5JKRERERERERERcTolpURERERERERExOmUlBIREREREREREadTUkpERERERERERJxOSSkREREREREREXE6JaVERERERERERMTplJQSERERERERERGnU1JKREREREREREScTkkpERERERERERFxOiWlRERERERERETE6ZSUEhERERERERERp1NSSkREREREREREnE5JKRERERERERERcTolpURERERERERExOmUlBIREREREREREadTUkpERERERERERJxOSSkREREREREREXE6JaVEnMQwjHr5XCIiIiIi4jz6ri/1iZJSInVg3bp1DBo0iK5duzJt2jQSExO5+eaba7yfwYMH8/DDD9domy+++IKHHnqoyvI333yTwYMHV1p+8OBBOnbsWOlv+PDhNY5bRMSTnc25V0RExBn+/F1/48aNdOzYkY0bN7owKpGz5+PqAETqoyeeeILWrVvz9NNPExkZyZo1a9iyZYtTnvu1116rsmzdunWOmP5s586dju39/f0dy/38/Go9RhERERERqbk/f9fv0qULK1asoF27dq4JSOQcKSklUgeys7Pp168fffr0cXUoAGRmZvLiiy+yYsUKQkJCTrnOzp07adasGRdddJFzgxMRERERkbMSFBREjx49XB2GyFlT9z2RP/n111+5/fbbiYuLIzY2ljvuuIOtW7c6yj/99FOuuuoqunfvzt/+9je2bNnCBRdcwH//+19H81mABQsW0LFjRx5++GHmz58PQMeOHZk3b95Zx5abm8usWbO49NJL6datG8OHD+f99993lN92221s2rSJTZs2VWjGu3DhQr7//nvmzZvHoEGDTrnvXbt20blz57OOTUSkPikpKeHZZ5+lX79+9OjRg9GjR3Pw4EFH+Q8//MAtt9xCXFwcffr04YEHHiAlJcVRPm/ePMf14GR/vg6sXbuWq6++mu7du9O3b18efPBBjh49WmGblStXMmzYMLp27coll1zCvHnzsNlsNa7Tzz//zJgxY7jwwgvp2rUrgwcPZt68edjtdsc6aWlp3HffffTu3ZsLL7yQadOm8fzzz1fq9l1bMYmIOMvgwYN56qmnuP322+nevTtTp04lOzubadOmcfHFF9OtWzduuOEGfvrppwrbdezYkbfffpupU6fSu3dvYmNjuffee8nIyKiw3scff8yIESOIjY2lX79+TJs2jePHjwOwefNmOnbsyFdffVVhm507d9KxY0c+//xzAA4fPszkyZPp378/Xbp04aKLLmLy5MkcO3YMOPV3/VN139u+fTtjxoyhT58+9OzZk3/9618kJiY6ysu3+emnnxg9ejQxMTH069eP2bNn1/hcbrPZWLx4McOHD6d79+706NGDm266iQ0bNlRY7+uvv2bEiBF0796doUOHsnbtWi677LIK18TqvB5S/ygpJXKSvLw8xo4dS5MmTZg3bx7PP/88hYWFjBkzhtzcXL744gvuvfdeOnTowPz587nsssu46667HF/oy5vPAowcOZIVK1Zwzz33MHLkSABWrFjB9ddff1axFRUVccstt7BmzRrGjh3Lyy+/TFxcHFOnTmXhwoUATJ8+nQsuuIALLriAFStW0KVLFwBuuukmPvvsM4YMGVLl/nfu3El+fj433XQT3bp1o1+/fsyZM4eSkpKzildExJN9/PHHJCYm8vTTTzN9+nR+/fVX7rvvPgBWr17N6NGjad68Oc899xxTpkxhy5Yt3HjjjWRmZlb7OeLj45k8eTJDhgzhP//5D1OmTGHDhg088MADjnUWLVrEo48+ykUXXcTChQu59dZb+c9//sOjjz5ao/rs2rWLO+64g5CQEJ5//nleeeUVevXqxfz58/nkk08AsFqt3H777WzevJlHHnmEWbNmsWvXLl599dUK+6qtmEREnO3tt9+mW7duvPzyy4wcOZLbb7+dL774gvvuu4/58+fTrFkzxo4dWykR8vzzz2O323nuueeYPHkyX331FU899ZSj/OWXX+b++++nR48evPTSS4wfP57PPvuM2267jaKiInr27Ml5553HunXrKux37dq1hISEMHDgQAoLCxk1ahR79+5l+vTpLF26lFGjRrFu3Tqef/55oOrv+ifbsGGDYyzbp556iieffJKUlBRuuukm9u7dW2HdBx98kLi4OBYuXMjw4cNZsmQJK1eurNExnTNnDi+//DI33ngjS5YsYcaMGWRnZ3PvvfdSWFjoiOnuu++mefPmzJs3j1tvvZXp06dX+DGnuLi42q+H1C/qvidykj179nDs2DFGjRpFz549AWjTpg0rVqwgPz+fBQsW0LVrV+bOnQvAX/7yF0wmEy+88AJQsflss2bNKvwfOKemtf/973/ZvXs37777LrGxsQAMGDCA0tJSXn75ZW666SbatWtHUFBQpedq27btafedlZXF0aNHsdlsTJo0iaioKH766Sf+85//kJKS4qiviEhDERkZycsvv4yvry9QNhnEK6+8Ql5eHnPmzKF///4Vzo09e/bkyiuvZOnSpUyePLlazxEfH4+fnx/jxo3DbDYDEBISwvbt2zEMg7y8PMcX/X//+98A9O/fn5CQEP7973/zj3/8g/bt21fruXbt2sXFF1/M7Nmz8fIq+02yX79+fPnll2zcuJFhw4bx0UcfsW/fPlatWkXXrl0B6Nu3L5deeqljP7m5ubUWk4iIs0VFRfHggw8C8N5777Fr1y7ee+89YmJigLLv9rfddhtz5sxh1apVju06dOjArFmzHI+3bdvGp59+CsDx48d55ZVXuOGGG5g2bVqFbW699VZWrVrFrbfeytVXX82rr75KUVERfn5+GIbBxx9/zOWXX47ZbHYMpfHMM8/QsmVLoOwcnJCQwKZNmwCq/K5/srlz59KqVSsWL16Mt7c3UHaevuyyy3jppZd48cUXHetef/31jB8/HoCLLrqI9evX8/XXX3PTTTdV+5iWt7C97bbbHMssFgv33HMPv//+Oz169GDevHm0b9+e+fPnYzKZAAgNDeX+++93bPPhhx9W+/WQ+kUtpURO0r59e5o2bcq//vUvpk2bxueff05YWBiTJk2icePG/Pbbb/z1r3+tsM3VV1/tlNg2bdpEixYtHAmpk5+/uLiYhISEs953QEAAr776KitWrODaa6+ld+/e3HvvvYwfP561a9dW+lVFRKS+6969uyMhBRAdHQ3Ajh07SE9PrzQz6XnnnUdsbKzjxqE6LrzwQgoLCxk+fDhz587ll19+oX///kyYMAGTycSWLVsoKipi8ODBlJaWOv7Ku9L98MMP1X6ua6+9lv/85z+UlJSwa9cuPvvsM1566SVsNpujReyGDRto2bKlIyEFZT+2nNztuzZjEhFxtpOHqvjpp58IDw+nS5cujnOZzWZj0KBB/Prrr46ud1A5AdSsWTNHK6CtW7ditVorXRd69epFixYtHNeFq6++moKCAkcXvs2bN3PkyBGuueYaR2zvvPMOLVq04MCBA3zzzTcsXbqUffv2YbVaq1W/goICtm/fzhVXXOFISAEEBwczaNCgSteoP99XNGvWjIKCgmo9V7m5c+dy++23k5WVxS+//MKqVav46KOPgLIWuFarlS1btjBkyBBHQgrg8ssvx8fnjzYyNXk9pH5RSymRkwQGBvL222/zyiuv8Mknn7BixQr8/Py45ppruPPOOwFo2rRphW1ONZNdXTh+/Djh4eGVloeFhQGQk5Nz1vv28/OjX79+lZZfcsklvPDCC+zateuMra1EROqTgICACo/LWxeVf8kvP/eeLCwsjB07dlT7OWJjY1m8eDGvvfYay5YtY/HixYSFhfGvf/2L2267jezsbADGjRt3yu3T0tKq/VxFRUXMmDGDDz/8kNLSUqKjo4mNjcXHxwfDMAA4duwYoaGhlbY9eVltxiQi4mwnn9uzs7NJT08/ZRc4gPT0dBo3bgxQYWZqKLsmlJ87y5MlVV0XcnNzAWjVqhWxsbGsW7eOK664gnXr1nHeeec5emcALFu2jIULF5KdnU1YWBhdu3bF39/fsY8zyc3NxTCMM8ZS7s+zbJ9cr+ravn07jz/+ONu3b8ff35927doRFRUFgGEYZGdnY7PZKl1fvL29K0zAVJPXQ+oXJaVE/qRNmzaOQf62bdvGhx9+yPLly4mIiMDLy6vSoIblX9DrWuPGjSsMslsuPT0dgCZNmpz1vg8cOMCGDRu48sorCQ4OdiwvKioCKifiREQaqvIv0H++FkDZ+bj8XFz+a7DNZnMksvLz8yttM2DAAAYMGEBhYSEbNmzgjTfe4MknnyQmJsZxPp4zZw6tW7eutO2pbjqqMnPmTD777DNeeOEFLr74YseN2ckzrkZGRnLgwIFK2548TlZtxiQi4kqNGjWidevWzJkz55Tl5S1kz6Q8UZKRkUGbNm0qlKWnpzu64kFZa6lZs2aRm5vLp59+6hj7CWDNmjU8/fTTTJo0iREjRji+f997771s37692nUymUxVXqOqmoX7bJWPx9uxY0fWrVtHmzZt8PLy4ptvvuGzzz4Dyn7Y8PX1rRST3W6vcB9VW6+HeB513xM5yaeffkrfvn1JT0/H29ub2NhYHnvsMYKDg8nKyiI2Npb//e9/FX5B+PMsGqdS/gv7ubjwwgtJTk5my5YtFZZ/9NFH+Pr60r1797N+rvT0dKZPn+7oG1/u448/JigoqMpfLEREGhqz2Ux4eDhr166tsDwpKYmtW7c6fvEuH/MjNTXVsU58fHyFbZ555hmuu+46DMPA39+fQYMG8dBDDwFw5MgRYmJi8PX15ejRo3Tr1s3x5+Pjw3PPPcfhw4erHXd8fDx9+vTh0ksvdSSkfv31V7KyshyTdfTu3ZvDhw+zc+dOx3ZFRUV89913jse1GZOIiCv17t2blJQUQkNDK5zPfvjhB5YsWVKh+9vpxMTEYDabK10XfvnlF44cOVKhJdSVV16JYRi8+OKLZGZmVhgGJD4+nuDgYMaOHetISOXn5xMfH19hltTTfdcPCAiga9eufPLJJxVm0cvNzeXrr78mLi6uWnWqrn379pGdnc2oUaNo166dI7Zvv/0WKEs8eXt707NnT7744osK23755ZeUlpY6HtfW6yGeRy2lRE7Ss2dP7HY748ePZ9y4cQQGBvLJJ5+Qm5vLkCFDuPLKK7njjjsYP348N954I4cOHaowWGBVyn9ZXrt2LTExMRV+MamuESNG8M477zB+/HgmTpxIdHQ0X375JatWrWLChAmO5wgODmbLli389NNPXHDBBdVq5hoXF8dFF13E008/TVFREe3atePrr7/mzTff5OGHH67QekpEpCEzmUzcf//9TJkyhQceeICrr76aY8eOMX/+fBo3bsw//vEPAAYOHMisWbOYNm0aY8aMISUlhQULFhAYGOjYV9++fVm2bBkPP/wwV199NSUlJSxZsoSQkBD69u1LSEgIY8eO5cUXXyQvL48+ffpw9OhRXnzxRUwmE506dap23N27d+eTTz5h+fLltG3bll27dvHKK69gMpkc46IMHz6cxYsXM378eO69916Cg4NZtmwZmZmZjq4YTZo0qbWYRERcacSIEbz11lv84x//4F//+hfNmzfnxx9/5D//+Q9///vfK4wreDohISGMGzeOBQsW4Ovry6BBgzh8+DAvvvgi7dq1429/+1uFdQcOHMg777xDbGwsrVq1cpR1796d5cuX8/TTTzNo0CDS0tJYunQpGRkZFb7P//m7/p898MADjBkzhnHjxnHLLbdQUlLC4sWLsVqtjkHNa8v5559PUFAQCxcuxMfHBx8fHz777DPef/99AMf1ZeLEidx2221MnDiRkSNHcuTIEcc9VHnL4tp6PcTzKCklcpKIiAiWLFnCiy++yNSpUyksLKR9+/bMmzePvn37ArB06VJmz57NhAkTOO+883jooYccMxBVZciQIXz44Yc8/PDDjBw5kscee6zGsfn7+/Pmm28yd+5cx81AmzZtmDlzJiNHjnSsd+utt/Lrr7/yz3/+k1mzZnHVVVedcd9eXl7Mnz+f+fPn89prr5Gens55553HjBkzuP7662scq4hIfTZixAgCAwNZtGgR48ePJygoiAEDBnD//fc7xv47//zzeeaZZ3jllVcYN24cbdu2ZcaMGcyYMcOxn4EDBzJnzhxeffVVx+DmcXFxvPHGG44uFv/3f/9HeHg477zzDkuWLKFx48ZcdNFF3H///TRq1KjaMT/88MOUlJTwwgsvYLVaiY6O5q677mLPnj18+eWX2Gw2fHx8WLp0KTNnzuSxxx7Dx8eHq6++mpCQEPbv3+/YV23FJCLiSgEBAbz99tvMnTuX2bNnk5ubS4sWLXjggQcYPXp0jfZ1zz33EBYWxltvvcWKFSsICQnh8ssv5//+7/8qjVF4zTXXsH79+krf0f/2t79x+PBhVq1axTvvvENkZCQDBw7klltu4dFHH2Xv3r20bdu20nf9iIiICvu56KKLWLZsGS+99BL3338/ZrOZXr168cwzz9T67KiNGjXi5Zdf5tlnn+Xee+8lMDCQzp0789Zbb/HPf/6TX375hcGDB9OrVy/mzZvHiy++yN13302LFi149NFHue+++xw/1tTm6yGexWTUdCQzEang8OHD/PWvf2XWrFmMGDHC1eGIiIiclcTERPbt21dphqSRI0fSrFkz5s+f78LoRETEU33xxRc0a9aswpAgiYmJDB8+nJdffrnS7ObSsKillIiTGYZRoY93Vby9vSvcFIiIiPzZyeNxVMXLy6ta4w0WFBRw7733csstt3DZZZdhs9n4+OOP+fXXX3nwwQdrI1wREfEAtX2/8v333/Pxxx/z4IMPcv7553P06FFeeeUV2rRpQ//+/WsjZPFgSkqJONkHH3zAlClTzrjeG2+8QZ8+fZwQkYiIeKrqTETxt7/9jaeffvqM68XExPDCCy+wdOlSVq9ejWEYXHDBBSxZssTRhV1EROq/2r5feeihh/Dz8+OVV14hLS2NkJAQBgwYwAMPPIDFYqmNkMWDqfueiJMdO3asWrMTlQ8cKCIiUpXqTBPepEkTTaUtIiLVpvsVcSYlpURERERERERExOnOPMCAiIiIiIiIi1mtVh5//HEuvPBCLr74Yp577jnKf1/fsWMH119/PTExMVx33XX8+uuvFbZdu3Ytl156KTExMYwfP56srCxHmWEYzJkzh759+9K7d2+effZZ7Ha7o/zYsWPcc889xMbGMnjwYD788EPnVFhEpAFQUkpERERERNzek08+yY8//sjSpUuZO3cu7733HitWrKCgoIBx48bRq1cv/vvf/xIbG8udd95JQUEBANu2bWPq1KlMmDCBFStWkJOTU2G8nGXLlrF27Vrmz5/PSy+9xJo1a1i2bJmjfMqUKeTm5rJixQruuusu/v3vf7Nt2zan119EpD5S9z0REREREXFr2dnZ9OvXj2XLltG7d28AFi9ezP79+4mLi+OVV15h/fr1mEwmDMNg6NCh/Otf/2LEiBFMnjwZLy8vx4D/KSkpDBo0iM8//5yWLVtyySWXMHHiREaMGAHAhx9+yIsvvsiXX37JoUOHuOyyy/jiiy8cY7NNnToVm81WrQkERETk9NRSSkRERERE3Fp8fDxBQUGOhBTAuHHjmDVrFgkJCcTFxTmmpjeZTPTs2ZOtW7cCkJCQQK9evRzbNW/enKioKBISEjh69CgpKSlceOGFjvK4uDiSk5NJS0sjISGB5s2bV5gsIC4uji1bttRxjUVEGgYfVwfgyTIzc6lJOzOTCUJDG9V4u/pC9Vf9VX/3qn95TFK73Ok1/jN3fB/WlKfXwdPjB8+vg6fHD3VbB3e9NiQlJdGiRQtWr17NwoULKSkpYcSIEdx1112kp6fTrl27CuuHhoaSmJgIQFpaGhEREZXKU1NTSU9PB6hQHhYWBuAoP9W2R48erXEddO9QPaq36t0QeGK96+r6oKTUOTAMzuoNdLbb1Reqv+qv+rs6CqlLnvAae0KMZ+LpdfD0+MHz6+Dp8UP9qEN1FRQUcPDgQd59911mzZpFeno606ZNw9/fn8LCQsxmc4X1zWYzVqsVgKKioirLi4qKHI9PLoOygdXPtG8RETk3SkqJiIiIiIhb8/HxIS8vj7lz59KiRQsAjhw5wvLly2nVqlWlJJHVasXPzw8Ai8VyynJ/f/8KCSiLxeL4P4C/v3+V25bvuybOtoWBO7ZccwbVu2FRvRsuJaVERERERMSthYeHY7FYHAkpgPPPP5+UlBR69+5NRkZGhfUzMjIc3e4iIyNPWR4eHk5kZCQA6enpjnGjyrv0lZdXtW1Nqfte9ajeqndD4In1rqvuexroXERERERE3FpMTAzFxcXs37/fsWzfvn20aNGCmJgYtmzZQvmk4oZhsHnzZmJiYhzbxsfHO7ZLSUkhJSWFmJgYIiMjiYqKqlAeHx9PVFQUERER9OjRg+TkZFJTUyuU9+jRo8Z1KO9uWZO/s93O0/9U74b1p3p7zl9dUFJKRERERETcWps2bbjkkkuYMmUKu3bt4rvvvmPx4sXcfPPNXH755eTk5DBz5kz27NnDzJkzKSws5IorrgDg5ptv5sMPP2TlypXs2rWLyZMnc8kll9CyZUtH+Zw5c9i4cSMbN25k7ty5jBo1CoCWLVvSv39/Jk2axK5du1i5ciVr167l1ltvddmxEBGpT9R9T0RERERE3N6cOXOYMWMGN998M/7+/tx6663cdtttmEwmFi1axPTp03nvvffo2LEjixcvJiAgAIDY2FieeOIJXnrpJY4fP06/fv2YMWOGY79jxowhMzOTCRMm4O3tzciRI7njjjsc5c8++yxTp07lhhtuIDw8nKeeeoru3bs7u/oiIvWSyTDqqhFW/ZeRUfN+4WFhjWq8XX2h+qv+qr971b88Jqld7vQa/5k7vg9rytPr4Onxg+fXwdPjh7qtg64NdUf3DtWjeqveDYEn1ruurg/qviciIiIiIiIiIk6npJSIiIiIiIiIiDidklIiIiIiIiIiIuJ0SkqJiIiIiIiIiIjTKSklIiIiIiLiZqyldleHICJS55SUEhERERERcSM7UnMZNP9HFny1x9WhiIjUKR9XB9DQGIaBYRiAydWhiIhIAzH6zrFkZmUD4OPrTWmJzVEW2jSEVxctcVFkIiJyKnsz8ikutfPLgSxu7Bbp6nBEROqMklIiIiL1XGZWNsPumwNAQICFgoJiR9m65x90VVgiIlIFs3dZh5ZideETkXpO3fdERERERETciNlHSSkRaRiUlBIREREREXEjfySlbGdYU0TEs3lEUspqtTJ8+HA2btzoWLZ161ZuuukmYmNjGTp0KCtXrqywzY8//sjw4cOJiYlh1KhRJCUlVSh/7bXXGDBgALGxsTzyyCMUFhY6pS5w8rhSIiIiIiIiFVnKu++VqKWUiNRvbp+UKi4u5v777ycxMdGxLD09nX/+85/07t2bDz74gIkTJzJjxgy+/vprAI4cOcL48eMZMWIE77//Pk2bNuXuu+92JII+++wz5s+fzxNPPMHrr79OQkICs2fPdkX1REREREREKlD3PRFpKNw6KbVnzx5uuOEGDh06VGH5+vXrCQsL4/7776d169YMGzaMa6+9ljVr1gCwcuVKunbtyujRo2nfvj2zZs0iOTmZTZs2AfDGG29w++23M2jQILp3787jjz/OqlWrnNpaSkRERERE5FTKW0pZlZQSkXrOrZNSmzZtok+fPqxYsaLC8gEDBjBr1qxK6+fl5QGQkJBAr169HMv9/f3p0qULW7duxWazsX379grlPXr0oKSkhF27dtVRTURERERERKpHY0qJSEPh4+oATueWW2455fLo6Giio6MdjzMzM1m3bh333HMPUNa9LyIiosI2oaGhpKamkpOTQ3FxcYVyHx8fQkJCSE1NrVF8JlONVnes/+d/G4qGWu9yqn/Ffxsad6y/O8UiIiIifzD7lF2k1X1PROo7t05KVUdRURH33HMPYWFh3HjjjQAUFhZiNpsrrGc2m7FarRQVFTken6q8JkJDG9U4XsMwCA1thMlkwtRA7wjP5rjVJ6q/6i8iIiJyOmZvjSklIg2DRyel8vPzufvuuzlw4ADvvPMO/v7+AFgslkoJJqvVSnBwMBaLxfH4z+Xl21dXZmYuNZlEz2SCpk2DyMzMBRpeUspkKrshr+lxqy9Uf9Xf3epfHpOIiIi4l/KklM1uUGo38G5g9w0i0nB4bFIqLy+PsWPHcujQIV5//XVat27tKIuMjCQjI6PC+hkZGXTu3JmQkBAsFgsZGRm0bdsWgNLSUrKzswkPD69RDIbBWd1cussNqauc7XGrL1R/1b8h119ERETOzOLzx9C/1lI7/r7eLoxGRKTuuPVA51Wx2+1MmDCBw4cP8+abb9K+ffsK5TExMcTHxzseFxYWsmPHDmJiYvDy8qJbt24Vyrdu3YqPjw+dOnVyWh1EROTcWK1Whg8fzsaNGx3Ltm7dyk033URsbCxDhw5l5cqVFbb58ccfGT58ODExMYwaNYqkpKQK5a+99hoDBgwgNjaWRx55RLOyioiIS/h6V0xKiYjUVx6ZlHr//ffZuHEjTz75JMHBwaSnp5Oenk52djYA1113HZs3b2bx4sUkJiYyZcoUoqOj6dOnD1A2gPrSpUtZv34927Zt47HHHuOGG26ocfc9ERFxjeLiYu6//34SExMdy9LT0/nnP/9J7969+eCDD5g4cSIzZszg66+/BuDIkSOMHz+eESNG8P7779O0aVPuvvtujBNN1z777DPmz5/PE088weuvv05CQgKzZ892RfVERKSB8/Yy4eNV1mXPalNSSkTqL4/svvfZZ59ht9u58847Kyzv3bs3b775JtHR0cybN4+nnnqKBQsWEBsby4IFCxxjOA0bNozk5GSmTZuG1WplyJAhTJo0yRVVERGRGtqzZw8PPPCAI5lUbv369YSFhXH//fcD0Lp1azZu3MiaNWu45JJLWLlyJV27dmX06NEAzJo1i379+rFp0yb69OnDG2+8we23386gQYMAePzxxxkzZgyTJk3SjxYiIuJ0Fh8vSq02JaVEpF7zmKTU77//7vj/0qVLz7j+wIEDGThwYJXl48aNY9y4cbUSm4iIOE95Eum+++6jR48ejuUDBgygc+fOldbPy8sDICEhgV69ejmW+/v706VLF7Zu3UqvXr3Yvn07EyZMcJT36NGDkpISdu3aRWxsbN1VqBaMvnMsmVnZVZbv3pvIMOeFIyIitcDs7UU+Ns3AJyL1msckpURERKCsC/apREdHEx0d7XicmZnJunXruOeee4Cy7n0REREVtgkNDSU1NZWcnByKi4srlPv4+BASEkJqamqN4nPFBEmZWdkMu29OleU77hwO/BGbyVRxwH1PmtTp5Dp4Ik+PHzy/Dp4eP9RtHTz5uNQ3Zp8T3feUlBKRekxJKRERqXeKioq45557CAsL48YbbwTKJr0wm80V1jObzVitVoqKihyPT1VeE6Ghjc4h8rPj4+tNQIClynKTiQrl/v5//N/H15uwMOfHfK5ccZxrk6fHD55fB0+PH+pHHaRq5hODnRer+56I1GNKSomISL2Sn5/P3XffzYEDB3jnnXcc40FZLJZKCSar1UpwcDAWi8Xx+M/lNR1PKjMzlz8Nd1XnSktsFBQUV1luGFBQUIzJVJaQKiwsdsRYWmIjIyPXSZGeO5Op7EbcFce5Nnh6/OD5dfD0+KFu61C+b3E9s09ZUkotpUSkPlNSSkRE6o28vDzGjh3LoUOHeP3112ndurWjLDIykoyMjArrZ2Rk0LlzZ0JCQrBYLGRkZNC2bVsASktLyc7OJjw8vEYxGAZue6NbHtef43PXeE/HnY9zdXh6/OD5dfD0+KF+1EGqZvFWUkpE6j8vVwcgIiJSG+x2OxMmTODw4cO8+eabtG/fvkJ5TEwM8fHxjseFhYXs2LGDmJgYvLy86NatW4XyrVu34uPjQ6dOnZxWBxERkXLlLaXUfU9E6jMlpUREpF54//332bhxI08++STBwcGkp6eTnp5OdnY2ANdddx2bN29m8eLFJCYmMmXKFKKjo+nTpw9QNoD60qVLWb9+Pdu2beOxxx7jhhtuqHH3PRERkdpQnpQqsak5nIjUX+q+JyIi9cJnn32G3W7nzjvvrLC8d+/evPnmm0RHRzNv3jyeeuopFixYQGxsLAsWLMB0YqqpYcOGkZyczLRp07BarQwZMoRJkya5oioiIiKO7nvF6r4nIvWYklIiIuKxfv/9d8f/ly5desb1Bw4cyMCBA6ssHzduHOPGjauV2ERERM6FBjoXkYZA3fdERERERETcjNlbY0qJSP2npJSIiIiIiIibUUspEWkIlJQSERERERFxM+UtpZSUEpH6TEkpERERERERN2PxUfc9Ean/lJQSERERERFxM2afstlhS5SUEpF6TEkpERERERERN+MY6Fzd90SkHlNSSkRERERExM1YNNC5iDQASkqJiIiIiIi4Gd/ygc5thosjERGpO0pKiYiIiIiIuBnHQOdqKSUi9ZiSUiIiIiIiIm7G7GgppaSUiNRfPq4OQERERKQujL5zLJlZ2acsC20awquLljg3IBGRGtCYUiLSECgpJSIiIvVSZlY2w+6bc8qydc8/6ORoRORcff7550yYMKHCsqFDh/LSSy+xY8cOpk+fzu7du2nXrh2PP/44Xbt2day3du1aXnjhBdLT0+nfvz8zZsygadOmABiGwdy5c3n//fex2+2MHDmSBx98EC+vsqTQsWPHmDZtGt9//z1NmjTh3nvv5Zprrqnz+pp91FJKROo/dd8TERERERG3t2fPHgYNGsT333/v+HvyyScpKChg3Lhx9OrVi//+97/ExsZy5513UlBQAMC2bduYOnUqEyZMYMWKFeTk5DBlyhTHfpctW8batWuZP38+L730EmvWrGHZsmWO8ilTppCbm8uKFSu46667+Pe//822bdvqvL6O7ntqKSUi9ZiSUi5gGAaGoVk0RERERESqa+/evXTo0IHw8HDHX3BwMB9//DEWi4XJkyfTtm1bpk6dSmBgIJ9++ikAb731FldccQXXXnstnTp14tlnn+Wbb74hKSkJgDfeeIOJEyfSq1cv+vbty4MPPsjbb78NwKFDh/jqq6948skn6dChA9dffz1XX30177zzTp3X1zHQuVpKiUg9pqSUiIiIiIi4vb1799K6detKyxMSEoiLi8NkMgFgMpno2bMnW7dudZT36tXLsX7z5s2JiooiISGBo0ePkpKSwoUXXugoj4uLIzk5mbS0NBISEmjevDnR0dEVyrds2VI3lTyJWkqJSEOgMaVERERERMStGYbB/v37+f7771m0aBE2m43LL7+ciRMnkp6eTrt27SqsHxoaSmJiIgBpaWlERERUKk9NTSU9PR2gQnlYWBiAo/xU2x49erTGdTiRM6s2i0/ZBtZSe4239WTldW1IdQbVW/V2f3UVq5JSIiIiIiLi1o4cOUJhYSFms5kXXniBw4cP8+STT1JUVORYfjKz2YzVagWgqKioyvKioiLH45PLAKxW6xn3XROhoY1qtH6OcSIpZTcIC6vZtvVBTY9XfaF6NywNtd4nU1JKRERERETcWosWLdi4cSONGzfGZDLRuXNn7HY7kyZNonfv3pWSRFarFT8/PwAsFsspy/39/SskoCwWi+P/AP7+/lVuW77vmsjMzKUmw8oW5JUlzIpLbGRk5Nb4+TyVyVR2o17T4+XpVG/V292Vx1zblJQSERERERG3FxISUuFx27ZtKS4uJjw8nIyMjAplGRkZjm53kZGRpywPDw8nMjISgPT0dMe4UeVd+srLq9q2pgyDGt18mr1OjCllM7DbDceYWQ1FTY9XfaF6NywNtd4n00DnIiIiIiLi1r777jv69OlDYWGhY9nOnTsJCQlxDDxePru1YRhs3ryZmJgYAGJiYoiPj3dsl5KSQkpKCjExMURGRhIVFVWhPD4+nqioKCIiIujRowfJycmkpqZWKO/Ro0cd1xjMPn/cqpXYGvhdq4jUW0pKiYiIiIiIW4uNjcVisfDvf/+bffv28c033/Dss88yduxYLr/8cnJycpg5cyZ79uxh5syZFBYWcsUVVwBw88038+GHH7Jy5Up27drF5MmTueSSS2jZsqWjfM6cOWzcuJGNGzcyd+5cRo0aBUDLli3p378/kyZNYteuXaxcuZK1a9dy66231nmdLSclpaw2zcAnIvWTuu+5gNHQ2+eJiIiIiNRAUFAQS5cu5amnnuK6664jMDCQm266ibFjx2IymVi0aBHTp0/nvffeo2PHjixevJiAgACgLKH1xBNP8NJLL3H8+HH69evHjBkzHPseM2YMmZmZTJgwAW9vb0aOHMkdd9zhKH/22WeZOnUqN9xwA+Hh4Tz11FN07969zuvs4/VHd73iUjtBljp/ShERp1NSSkRERERE3F779u1ZtmzZKcu6d+/OBx98UOW2I0aMYMSIEacs8/b2ZsqUKUyZMuWU5aGhoSxcuLDmAZ8jk8mEr7eJEpuBza4ftUWkflL3PRERERERETfkdWJwc5t6WohIPaWklIiIiIiIiBsq78KnllIiUl8pKSUiIiIiIuKGvJSUEpF6TkkpERERERERN1TeUko5KRGpr5SUEhERERERcUPeaiklIvWcklIiIiIiIiJuSEkpEanvPCIpZbVaGT58OBs3bnQsS0pK4o477qBHjx5ceeWVfP/99xW2+fHHHxk+fDgxMTGMGjWKpKSkCuWvvfYaAwYMIDY2lkceeYTCwkKn1EVERERERKQ6fLzKbtc0+56I1Fdun5QqLi7m/vvvJzEx0bHMMAzGjx9PWFgYq1at4pprrmHChAkcOXIEgCNHjjB+/HhGjBjB+++/T9OmTbn77rsxTpzMP/vsM+bPn88TTzzB66+/TkJCArNnz3ZJ/URERERERE7lRE5KLaVEpN5y66TUnj17uOGGGzh06FCF5Rs2bCApKYknnniCtm3bcuedd9KjRw9WrVoFwMqVK+natSujR4+mffv2zJo1i+TkZDZt2gTAG2+8we23386gQYPo3r07jz/+OKtWrVJrKRERqZdM/sEcyCrAarO7OhQREamB8pZSdrWUEpF6yq2TUps2baJPnz6sWLGiwvKEhAQuuOACAgICHMvi4uLYunWro7xXr16OMn9/f7p06cLWrVux2Wxs3769QnmPHj0oKSlh165ddVshERERJzIMg+/3ZdH4xqf5/PcMPtyeSnaB1dVhiYhINZ0YUopStZQSkXrKx9UBnM4tt9xyyuXp6elERERUWBYaGkpqauoZy3NyciguLq5Q7uPjQ0hIiGN7ERGR+iAxPZ+dR/MA8PUykV1YyvvxhxnZozlmb7f+XUpERDhpTCklpUSknnLrpFRVCgsLMZvNFZaZzWasVusZy4uKihyPq9q+ukym/2fvzuObqtL/gX9ukjZJN0pXaIuA7EtJS5FFQIRBBcHBKei4y6BTRkFH5+sGjCwygICKPwUVVBTFEURcQcF1HEdEsNiy1ELZS2npmq7Zc39/pAkttNDsye3n/XpVyT25955zC/fkPjnnOc7V2/7+C//fXrTXdtux/c3/394EYvsDqS7keQ1GC3adrAIA6LI/xZ1ZD+Kzg+dQazDj4NlaDO7Swc81JCKiy7Gvvsfpe0QkVUEZlFIqldBqtc22GY1GqFQqR/mFASaj0YioqCgolUrH6wvL1Wq1U/WIjY10sua2qRSxsZEQBAFyudzp/aXAlesmJWw/20/kC/mldTBZRMSFh+Lowa8RFvoQrrqiA74rqMD+4hr07xQBVUj77IeIiIKFPSjFlIBEJFVBGZRKTEzE0aNHm20rLy93TMlLTExEeXn5ReX9+vVDdHQ0lEolysvL0aNHDwCA2WyGVqtFfHy8U/WoqKiFM19aCAIQExOBiopaAO0vKCUItgdyZ6+bVLD9bH+gtd9ep2BlNBqRmZmJp59+GsOGDQMAFBYW4umnn0ZOTg6SkpIwd+5cjBo1yrHPrl27sHTpUhQWFkKj0WDJkiXo0qWLo/ztt9/Gm2++ibq6OkycOBFPP/20019YBAJRFHG41DZtb2DnSBwVbU8zV8aG4UBxHcrqDMgvrUNaMkdLEREFMkdQKlA+PBAReVhQJpTQaDQ4dOiQYyoeAGRnZ0Oj0TjKs7OzHWU6nQ55eXnQaDSQyWRITU1tVp6TkwOFQoG+ffs6VQ9RdP7H1f2k8sP2+78ObD/bf2GdgpHBYMA//vEPFBQUOLaJoohZs2YhLi4OW7duxZQpUzB79mycPXsWAHD27FnMmjULmZmZ+PDDDxETE4MHH3wQYuOF2LlzJ1avXo1nnnkGGzZsQG5uLlauXOmX9rnrbI0BdQYLQuQCusecD6oJgoBBjdP2jpY1+Kt6RETURudHSgVxp01EdAlBGZQaOnQoOnfujDlz5qCgoADr1q3D/v37MW3aNADA1KlTsW/fPqxbtw4FBQWYM2cOUlJSHN+k33HHHXjzzTfxzTffYP/+/Vi4cCFuvfXWoPw2nIiovTl69ChuvfVWnD59utn23bt3o7CwEM888wx69OiBmTNnIi0tDVu3bgUAbNmyBQMHDsSMGTPQq1cvLFu2DEVFRdizZw8A4J133sG9996LsWPHYtCgQVi0aBG2bt0KnU7n8za6q6CsHgDQIy4cigsSmveMj4BMAKp0JlTWcyU+IqJAxqAUEUldUAal5HI5XnnlFZSVlSEzMxOfffYZ1qxZg6SkJABASkoKXn75ZWzduhXTpk2DVqvFmjVrIDRm9Z00aRJmzpyJ+fPnY8aMGRg0aBAef/xxfzaJiIjaaM+ePRg2bBg2b97cbHtubi769++PsLAwx7aMjAzk5OQ4yocMGeIoU6vVGDBgAHJycmCxWHDgwIFm5WlpaTCZTMjPz/dugzxMFEWc0doCaT1iwy4qV4XI0SXa9iXM0XKOliIiCmQKJjonIokLmpxShw8fbva6a9eu2LhxY6vvHzNmDMaMGdNqeVZWFrKysjxWPyIi8o077rijxe1lZWWO3IJ2sbGxKCkpuWx5TU0NDAZDs3KFQoHo6GjH/m3l71UNKxtM0JmsUMgEJEYqm5XZ69YzPgynqnQ4UdmACPi/zs7w5EqW/mh3IK7E6axgb0Ow1x/wbhuC+bpIkX2klJkjpYhIooImKEVERHQpOp0OoaGhzbaFhoY6Vlu9VLk9R+Gl9m8rfySPV4TIERZmC0D93pgrqktMGCIjbKvSCgIc5QDQq7NtFb4avRkR4R0RFxd8Ce/bcp2bXpeWyvzZ7mBeZMAu2NsQ7PUHpNEGujQ5R0oRkcQxKEVERJKgVCqh1WqbbTMajVCpVI7yCwNMRqMRUVFRUCqVjtcXljubb9AfKyyaTRY0NBgAACfKbKvudYoIdWwTRaChwQBBANRqJawmMxIilDhXa0B9eDLKy2t9W2E3OLOSZdPr0lKZP9odiCtxOivY2xDs9Qe824ZgX5lVauQCc0oRkbQxKEVERJKQmJiIo0ePNttWXl7umJKXmJiI8vLyi8r79euH6OhoKJVKlJeXo0ePHgAAs9kMrVaL+Ph4p+rhz5UNzRYrSmpso75SolUXlTddBTIlWoVztQYYoq8IygdzT1xnf7Y72FfABIK/DcFef0AabaBLY6JzIpK6oEx0TkREdCGNRoNDhw45puIBQHZ2NjQajaM8OzvbUabT6ZCXlweNRgOZTIbU1NRm5Tk5OVAoFOjbt6/vGuGm8nojLCKgDpGhg+rS3zuldLAFrQxRXZirhIgoQCnkjUEp3qaJSKIYlCIiIkkYOnQoOnfujDlz5qCgoADr1q3D/v37MW3aNADA1KlTsW/fPqxbtw4FBQWYM2cOUlJSMGzYMAC2BOpvvvkmvvnmG+zfvx8LFy7Erbfe6vT0PX8qrbNNP0yIUDpWnG1NXEQolAoZRIUSeSXBM32PiKg9kXH6HhFJHINSREQkCXK5HK+88grKysqQmZmJzz77DGvWrEFSUhIAICUlBS+//DK2bt2KadOmQavVYs2aNY7gzaRJkzBz5kzMnz8fM2bMwKBBg/D444/7s0lOK6215U9KiGw5uXdTMkFAp8b35RZVe7VeRETkGgUTnRORxDGnFBERBa3Dhw83e921a1ds3Lix1fePGTMGY8aMabU8KysLWVlZHqufr50fKRV6mXfadIpS4lSVDjlFNbj7Km/WjIiIXCFjTikikjiOlCIiIpKAeoMZ9UYLBADxbQ1KNRkpxW/hiYgCj32kFHP/EZFUMShFREQkAfZRUh3DQhAib1v3HhceCsFiQrXejJOVDd6sHhERuUAus93P+cUBEUkVg1JEREQSUObk1D3ANi0kpK4EAJBTVOOVehERkevs3zFw+h4RSRWDUkRERBJQ2WALSsWGtz0oBQChtWcBAPuZ7JyIKOAoGkdKWRiTIiKJYlCKiIhIAirqTQBcCErVnQMAHCqp9XidiIjIPTKBic6JSNoYlCIiIgpyFoUKDSYLAFtOKWeENAalTlXqUGcwe7xuRETkOoXcFpSyMihFRBLFoJQfiKIIkckKiYjIQ8xhcQCAKKUCoW1Mcm4nN+vQOUoJEUD+uTov1I6IiFwlb1x9z8JnByKSKAaliIiIgpwpLB4AEBPu3Cgpu/6dIgFwCh8RUaCRc/oeEUmcwt8VICIiau9mzLwfFZXaVstjY6Kxfu0brZabwm0jpZzNJ2U3oFMkvj1SjjwGpYiIAopjpBSDUkQkUQxKERER+VlFpRaTHn2u1fLtqx675P6mxul7sU7mk7LjSCnPu1SgMalTHF5b/ZpvK0REQYnT94hI6hiU8jF7PimhcSguERGRO8xWEWZ1DACgY5hrI6X6JkZAAHCu1oCKeqPLI67ovEsFGneuftLHtSGiYGUPSlmtfq4IEZGXMKeUH9gDU0x2TkRE7irS6gCZHAqZgEil3KVjhIcq0C02DAA4hY+IKIDYg1JmPjcQkUQxKOUnr+866e8qEBGRBJyoaAAARKtD3BqFyyl8RESBR8GcUkQkcQxK+Qun7xERkQecqLQHpdybkT+gMSjFkVJERIHj/PQ9BqWISJoYlCIiIgpixxtHSnV0Mcm5Xf8mQSlOLyciCgxMdE5EUsegFBERURBrOn3PHb3iwhEiF1CtN6OoWu+JqhERkZvknL5HRBLHoBQREVGQslhFnGycvtfRzaBUqEKGXvERADiFj4gCW1ZWFp566inH67y8PNxyyy3QaDSYOnUqDh482Oz927Ztw/jx46HRaDBr1ixUVlY6ykRRxHPPPYfhw4dj6NChWLFiBaxNlrqrqqrCQw89hPT0dIwbNw6ffvqp9xvYhFxgUIqIpI1BKSIioiBVXKOHwWwFrGZEqtzLKQUA/RPtQak6t49FROQN27dvxw8//OB43dDQgKysLAwZMgQfffQR0tPTMXPmTDQ02AL2+/fvx7x58zB79mxs3rwZNTU1mDNnjmP/t956C9u2bcPq1avx0ksv4fPPP8dbb73lKJ8zZw5qa2uxefNmPPDAA/jnP/+J/fv3+6y9nL5HRFLHoBQREVGQso+SUui0kHlgAQ17Xqnfz3GkFBEFHq1WixUrViA1NdWx7YsvvoBSqcQTTzyBHj16YN68eQgPD8eOHTsAABs3bsTEiRNx8803o2/fvlixYgV++OEHFBYWAgDeeecdPPzwwxgyZAiGDx+Oxx57DO+99x4A4PTp0/j+++/xr3/9C71798Ytt9yCP/7xj/j3v//tszYr5PZE5z47JRGRTzEoRUREFKROV+kAAAp9lUeO168xKJV/ro5TRYgo4CxfvhxTpkxBz549Hdtyc3ORkZEBoTEwLwgCBg8ejJycHEf5kCFDHO/v3LkzkpKSkJubi3PnzqG4uBhXXXWVozwjIwNFRUUoLS1Fbm4uOnfujJSUlGblv/32m5dbep79CwczR0oRkUS5P9afiIiI/OJ8UErrkeN1jwmDSiFDg8mCU1UNuDI23CPHpcAxY+b9qKjUtloeGxON9Wvf8F2FiNro559/xq+//orPP/8cCxcudGwvKytrFqQCgNjYWBQUFAAASktLkZCQcFF5SUkJysrKAKBZeVxcHAA4ylva99y5cy61wdkBrYIAKGS2MQRWq+j0/sHK3s720l47ttu/9fC1YGy3t+rKoBQREVGQ8nRQSi4T0DcxAjlFNfi9pI5BKQmqqNRi0qPPtVq+fdVjPqwNUdsYDAYsWLAA8+fPh0qlalam0+kQGhrabFtoaCiMRiMAQK/Xt1qu1+sdr5uWAYDRaLzssZ0VGxvp9D7yYluOP5lchrg45/cPZq5cLylgu9uX9truphiUIiIiClKOoJTOM9P3AFteqZyiGuSV1GLSgESPHZeIyFWrV6/GwIEDMXr06IvKlErlRUEio9HoCF61Vq5Wq5sFoJRKpePPAKBWqy97bGdVVNTCmVl4ggDIG0dK6Y1mlJe3j3x/gmB7UHf2egU7tpvtDnT2Onsag1JERERBSG+y4FytAQAg11d77Lj9E5nsnIgCy/bt21FeXo709HQA5wNHO3fuxOTJk1FeXt7s/eXl5Y5pd4mJiS2Wx8fHIzHRFngvKytz5I2yT+mzl7e2rytEEU4/fCrsq+9ZxaB5cPUUV66XFLDd7Ut7bXdTTHROREQUhM5obdNOIpUKyMw6jx3Xnuz8SFk9zBYu90RE/vfuu+/i888/xyeffIJPPvkE48aNw7hx4/DJJ59Ao9Hgt99+g9j4VCeKIvbt2weNRgMA0Gg0yM7OdhyruLgYxcXF0Gg0SExMRFJSUrPy7OxsJCUlISEhAWlpaSgqKkJJSUmz8rS0NN80HICsSVCKiEiKOFKKiIgoCJ3W2gJRXTqqofXgcbtEqxChlKPOYMGxigb0SYjw4NGJiJyXnJzc7HV4uC3fXdeuXREbG4vnn38eS5YswW233YZNmzZBp9Nh4sSJAIDbb78dd999N9LS0pCamoolS5bg2muvRZcuXRzlzz33HDp16gQAeP755zFjxgwAQJcuXTBq1Cg8/vjjmDdvHg4cOIBt27Zh48aNvmq6Y6QUY1JEJFUMShEREQWh05UNAIArPByUEgQB/RIjsfe0FnkltQxKEVFAi4iIwNq1a7FgwQJ88MEH6NOnD9atW4ewsDAAQHp6Op555hm89NJLqK6uxsiRI7F48WLH/vfddx8qKiowe/ZsyOVyTJs2DdOnT3eUr1ixAvPmzcOtt96K+Ph4LF26FIMGDfJZ+2QCR0oRkbQxKEVERBSEChtHSl0RrcZ+Dx+7fydbUOr3c7X4Ezp7+OhERO559tlnm70eNGgQPv7441bfn5mZiczMzBbL5HI55syZgzlz5rRYHhsbi9dee831yrpJIW8MSrX3pDNEJFkMShEREQUh+8p7V3RUe/zY/RNto6PySuowY+b9qKjUtvre2JhorF/7hsfrQEREgJw5pYhI4hiUIiIiCkL2oFQXbwSlGpOdHy2vR0JVLSY/+lyr792+6jGPn5+IiGzknL5HRBIX1KvvFRcXY+bMmRg8eDDGjRuHt99+21GWl5eHW265BRqNBlOnTsXBgweb7btt2zaMHz8eGo0Gs2bNQmVlpY9rT0RE5Jo6gxmVDSYA3hkplRipRExYCCxWEaZw15Y+JyIi98kdic4ZlCIiaQrqoNQjjzyCsLAwfPTRR5g7dy5efPFFfP3112hoaEBWVhaGDBmCjz76COnp6Zg5cyYaGmxJYffv34958+Zh9uzZ2Lx5M2pqalqdR05ERBRo7PmkYsJCEKH0/KBnQRAwoHG0lDGik8ePT0REbWMPSpk5UoqIJCpog1LV1dXIycnBAw88gG7dumH8+PEYPXo0fv75Z3zxxRdQKpV44okn0KNHD8ybNw/h4eHYsWMHAGDjxo2YOHEibr75ZvTt2xcrVqzADz/8gMLCQj+3ioiI6PJOV3ovn5RdalIUAAaliIj8SeEYKeXnihAReUnQBqVUKhXUajU++ugjmEwmHD9+HPv27UO/fv2Qm5uLjIwMCI1zsAVBwODBg5GTkwMAyM3NxZAhQxzH6ty5M5KSkpCbm+uPphARETnldONIqS7RXgxKdbYFpUyRDEoREfkLE50TkdQFbVBKqVRi/vz52Lx5MzQaDSZOnIhrrrkGt9xyC8rKypCQkNDs/bGxsSgpKQEAlJaWXrKciIgokHlz5T27/p0iIRMAizIK9Uaz185DREStY1CKiKQuqFffO3bsGMaOHYu//OUvKCgowOLFizFixAjodDqEhoY2e29oaCiMRiMAQK/XX7K8rRoHYjn9/qb/d/YYwezC9rc3bH/z/7c3gdj+QKoLOafQB0GpsFA5esSFo6CsHqW1RnSP9fxHhhkz70dFpbbV8tiYaKxf+4bHz0tEFCwcQSkmOiciiQraoNTPP/+MDz/8ED/88ANUKhVSU1Nx7tw5vPrqq+jSpctFASaj0QiVSgXANsqqpXK12rkP97GxkU7X22q1IjY2EmFhSsTFRTqmGLYnrlw3KWH72X7yruLiYixcuBB79+5FdHQ07rnnHkyfPh2AbWXWBQsW4MiRI+jZsycWLVqEgQMHOvbdtm0bXnzxRZSVlWHUqFFYvHgxYmJi/NSSlomi2GSkVJhXzzUoKaoxKGVA91jPn6uiUotJjz7Xavn2VY95/JxERMGEI6WISOqCNih18OBBdO3a1RFoAoD+/fvjtddew5AhQ1BeXt7s/eXl5Y4pe4mJiS2Wx8c7t+x1RUUtnPnSQhCAjh3DUVFRi4YGA8rLa9tVUEoQbA/kzl43qWD72f5Aa7+9TlLzyCOPICkpCR999BGOHj2Kxx57DMnJyRg5ciSysrJw00034dlnn8X777+PmTNn4uuvv0ZYWJhjZdZFixahb9++WLJkCebMmYO1a9f6u0nNVOvMqDXYptOlRKsu8273DEqKwtbcYpTUGrx6HiIiapnckeg8QD48EBF5WNDmlEpISMCpU6eajXg6fvw4UlJSoNFo8Ntvv0FsvHmLooh9+/ZBo9EAADQaDbKzsx37FRcXo7i42FHeVqLo/I99P1f3D/af9tputp/tD9T2S017WJn1TLVtlFRCRChUIXKvnis9pQMAoKzeCJPF6tVzERHRxRQy2+OaVWRgioikKWiDUuPGjUNISAj++c9/4sSJE/juu+/w2muv4e6778aECRNQU1ODJUuW4OjRo1iyZAl0Oh0mTpwIALj99tvx6aefYsuWLcjPz8cTTzyBa6+9Fl26dPFzq4iIyB3tYWXWM1o9ACC5g3dHSQFA5ygV5IYaiCJQWutc3kUiInKfvMmsCiun8BGRBAVtUCoyMhJvv/02ysrKMG3aNCxbtgwPPPAA/vznPyMiIgJr165FdnY2MjMzkZubi3Xr1iEszJYPIz09Hc888wzWrFmD22+/HR06dMCyZcv83CIiInJXIKzMal/EwpkfZ45b1DhSKiVa7fSCGa0l3L9U3UJrzgIAimv0Hm2zs+2+cD9PHN/Vertzbmfq78t6OXtd/NkGT10Hf9chkNtAgUMuP/8LsTAmRUQSFLQ5pQCgZ8+eeOutt1osGzRoED7++ONW983MzERmZqa3qkZERH7i75VZXcnTpQiRIyxMecnyuDjbccv1FgBAr6QOjm2X218Q0KxcrT7/56bHbom6oRg69EVpvanFc1xu/0txpt0Xast1vtTx3al3W1yubf7K5+bONb9QsOekC/b6A9JoA11a05FSTHZORFIU1EEpIiKipgJhZVZXktmbTRY0NLSeTNxssqC8vBYAcOxcDQAgJlTm2Ha5/UURaGgwQBBsASmdzuCoY9Njt0RRVQh0BUqqdaip1UEhbz7I+nL7X4oz7bYThLYvGmAyWXCuqh5anQnR6hBEKs9/7HGn3m3RWtvsz5eXqv+MrPtRXqlt9dhxMdFYv+4Nj9arafnlroszv4NAFOz1B7zbBvuxKTDYE50DzClFRNLklaDU7t27MWzYMLSnleWIiOjSfNE3BMLKrN5KIm8/ZlGTnFLOnqdpwv2WtrdErtciPFSOeqMFJbUGpERfHKTz5nNSa8e+3HU+XlGPiv6Z2LTvrGNbp0glxvaKRURjcMofz3cXLnrQkvJKLSY9+lyrx9i+6jG/XPOW3hfMz8jBXn8geNrAZwPXNQ1KmTlSiogkyCtBqb///e8ICQnBhAkTMHnyZKSlpXnjNEREFER80Tc0XZnVPhWv6cqsr7/+OkRRhCAIsK/M+re//Q3A+ZVZ7VO7XV2Z1Zv0JgtK62yjuXyR6BwAhMZzHSmrxxmtvsWgVKD59bQWj3x8EMaoFAgCEKVUoEZvRkmtAZ8cKMGN/RIufxAvEiEgp6gavxVW42SVDtU6E0wWK0wWEZFKBbTdxiCnqAbxEaFIiAhFiDxoU4ASAeCzgTuaxKQ4fY+IJMkrQamffvoJP/30E3bs2IGsrCxERERg4sSJmDRpEvr37++NUxIRUYDzRd8wbtw4rFy5Ev/85z/xwAMP4MSJE3jttdfw6KOPYsKECXj++eexZMkS3Hbbbdi0adNFK7PefffdSEtLQ2pqKpYsWYJrrw2slVmLa2zTrsJD5YhWh/jsvCnR54NSgS6vpBb/98khGMxWhGpPI3PccEQqFajVm/HV4TJUNpjw9ZFyhMl8d/3sDGYrDpytQdGge3H/+7mtv7GTBntPawHYplLFh4fiyrgw9IwLhzpE7pvKEnkQnw1cJwgC5DIBFqvI6XtEJEleCUopFAqMGTMGY8aMgdlsxq5du/Ddd9/hjjvuQGJiIm666SZkZmYiKSnJG6cnIqIA5Iu+wb4y65IlSzBt2jTExMQ4VmYVBAFr167FggUL8MEHH6BPnz4trsz60ksvobq6GiNHjsTixYs91XyPOKO1rbyX1EHl02kw9lFZVToT6gxmx/S3QHOyogF//+ggGkwWDLkiGkW/rEHkxFEAgEiVApP6J+Cj/SWo0Zth6j7Gp3U7WlaPXSerYDBbgZBwdFApkNElGn0SIhAbHoIQuQwhchmqdSaseed9JAwag3O1BtQbbaPjSuuM+OWUFldEq2EM9+9ILyJn8dnAPXIBsIAjpYhImrz6qdJoNOLHH3/EV199hf/85z/o2LEjxo0bh5MnT2LSpEn4v//7P9x1113erAIREQUYb/cNUl6ZtajaNlLJ11PoVCFyxEeEoqzOiDNaPfomRvj0/G1RUqPHrA/3Q6szoV9iBJ6b0h93fGBp9h5ViBzjesXi80Ol0MX3x/6zNRiUFOXS+WbMvB8Vl0hGfuRYASbBlph414kq/H6uDgAQrQ7BuZ2vIkypR75oRX5LbTlWgNunTQUA1BrMOF2lQ0FZPcrqjDhVpQNSb8M/Pj6Iv43sht4Jgfe7IGoNnw1cI5cJgEWEhSOliEiCvBKU+uabb7Bjxw785z//QUhICG644QasWbMGQ4YMcbznvffewwsvvMCOh4ionWDf4D77SKkUH+WTauqKjmqU1RlxsrIh4IJSVQ1GzP7wAErrjOgWo8ZLmakID235I06nKBX6JITjcGk9XvzPcbx5u8alUWcVl0lGnjdzMqyiiP8UVOBYRQMAYHBKFNJTOuCF1/Zh8mvbLrmvXaRSgQGdIjGgUySqGkzIPVuDgtJa/Hi8ErtOVOKuq7rgryO6Qqlg3ikKXLz/u0fWeI+yWP1cESIiL/BKUOrJJ5/E+PHj8cILL2DkyJGQyy/OfzBw4ED85S9/8cbpiYgoALFvcJ99pFRytO+DUlfGhiG7sBpF1XoYzFaPBEGM4fHYc0qLKp0JAoAIpRwp0Wokd1A1W3HqUuoMZvz9o4M4VaVDYqQSL09NRXTYpfNFZXTpgCPFWhworsGPxytxTY9Yt9vSkl0nqnCsogGCAPyhVxy6x4a5dbyOYSG4tmcsqr9+Fam3/gPfHinHhj2F+O/RCiyY2AcDOkV6qOZEnsX7v3sUMntQiiOliEh6vBKU2rVrF+rq6lBTU+PodL744gtcddVVjqW1NRpNQK1oRERE3sW+wX1FjYnGUzr4fgW8aHUIOqpDUKUz4VRlg1vTxopr9Fj6VQHKU29H+dmaZmWHSuoQHiqHJjkKonDppN41ehP+8fEh/H6uDh3VIVg9LRWdoi4fsAsPVSC8JBd1yUOw8dczXglKhfYe6Ziy54mAVFMKvRbP3tQf3xeU49lvCnCisgF/3ZSDJ//QE1NSO3vsPESewvu/e+xBek7fIyIp8spY73379uG6667D559/7tj2zjvv4MYbb0R2drY3TklERAGOfYN7rKKIomrb9D1/jJQC4AisHG+cjuaKn45X4vYN2dh9qgqwWtAjNgwju3fEqCs7ol9iBNQhMtQbLdh1ogrn0u/F+/uKoDdZLjrOkdI6/HVTLnLP1iBSqcBLUweiW0zbAz/hJbmQywT8dqYaeSW1LrenJZUNRqiH3QoAuOqKDh4NSDU1tlccNk8fgmt7xsJkEfGvrwrw6v9OQOSDKwUY3v/dc376Hv9tE5H0eCUotXz5cvztb3/Dww8/7Ni2adMm3H///Vi6dKk3TklERAGOfYN7yuuMMFpEyAWgU6TSL3XoEWcLrpzR6lFnMDu9/xd55/B/nxxEvdGCQUlRSMjdiHG949C/UyT6JUZi1JUxuG1wMq7u3hHhoXJYQyPwwvfHMGndL1j2dQE+PVCMT/YX46H3f8PdG3/D8YoGxIWHYt2fNeib6NzUNbmpHjf0tY3QeO/XM063pTUWq4j/HK2AIA9Bl2gVNC4mUm+raHUIlv+xP7JGdAUArP+lEM9/f4yBKQoovP+7xz5Sysp/10QkQV4JSp08eRITJky4aPvEiRNx9OhRb5ySiIgCHPsG95xpHCWVGKWCQu6fpNbR6hB0jlJCBJDfODWtrb49UoZFOw7DIgKT+idg7a2DoDBUX/Q+hUzAgE6R+HN6Ejoc/xado5So0Zvx0f5i/OurAvzrqwJ8nnsWFquIa3vG4t27B6NnfLhL7bkjI8VRt5IavUvHuNChklpU1Jtg1dfhmh6xLiVRd5ZMEPDXq7tiznW9IADY/NtZrP7xhNfPS9RWvP+7R954G+FIKSKSIq98qr3yyivx5ZdfXrT9u+++wxVXXOGNUxIRUYBj3+Ce8/mk/DN1z65f48p7+aV1bX5A2n2yEv/cng+rCNyc2gkLJvS5bGBNLhMQXnoIH983FC9NHYjbBydjWNdojLoyBveN6o537krHyikDEBce6nJb+iREYMgV0bCIwKZ9Z10+jp3OZMG+M7ZAm/7XjxAWeumcWJ6WOagznrquFwDgnb1nsDXX/TYReQLv/+6RM9E5EUmYVxKdP/LII3jwwQfx008/YcCAAQCAw4cP49dff8XLL7/sjVMSEVGAY9/gnjONK++lRPs+yXlT3WLCoA6pgs5kxeHSy4+W2n+2Bo9/mgezVcT43nF4anwvp0YPyWUCRnSLwYhuMQAAQQDi4iJRXl4LT8xkuSsjBb+e1uKTA8W4f8QViFC6/tHo19NamCwi4sJDcfToL+5XzgWZgzpD22DCqz+dxMpvj6JbTBgyukT7pS5Edrz/u4eJzolIyrwyUuqaa67Bxx9/jP79++P48eM4ffo0+vbti+3bt2PMmDHeOCUREQU49g3uKdI2Jjn380gpuUxAWnIHAEB2YTWs8tZHKhWU1eGRjw5Cb7ZieLeOeObGvo6Hq0AxontHdI8JQ73Rgs8Olrh8nIp6I/JL623H7BYNwH8Pjz++9QzUZfmwiMCDG3dh8u13Y8ot0zDllmk4cqzAb/Wi9ov3f/cw0TkRSZlXRkoBQK9evfDUU0956/BERBSE2De4rsgxUsq/QSkA6J8YgbySWlTrzajtMqLF9xSU1WH2hwdQazAjpPYsTn7wCqZtap4c/cixAkxyox4zZt6Pikptq+VtOb5MEHDb4CQs++YoNv92Fn9OT3Y6cCaKIn4+WQUAuDI2DJ2i/Ps7qqzU4s93jccnB0qgRQRCxz+EG/rGQxAE5M2c7Ne6UfvF+7/rFPZE51Y/V4SIyAu8EpSqqanB+vXrceDAAZjN5otWgHnnnXe8cVoiIgpg7BvcY88pldzBv9P3AEAmEzC8W0fszC9DfScNPsw5i2lpSY7y/x6rwMIvD6PWYIaivgy3jxsK5fXDLzqOuwGSikotJj36XKvlbT3+jf0T8cr/TuJstR4/HKvAuF5xTtXjZKUOxTUGyAUBw7pGO7Wvt4TIZfhD7zh8vL8EhVo9jpY3oJeLCeGJ3MX7v3tkjUEpM6fvEZEEeSUo9cQTT+DAgQO46aabEBER4Y1TEBFRkGHf4DqrLARVOhMAIMnD0/eOHMnHlFumtV7eymijKzqqkdGlA7ILq7H826PYc1qLgZ0ise9MNX46UQkA0CRF4dynr0E5PsOjdfY0VYgcUzWdsf6XQryffcapoJTZKmL3KdsoqUFJkW7lpPK0mLBQDE7pgF8Lq/HziaqAGGVH7RPv/+6Rc/oeEUmYVz457dq1Cxs3bsSgQYO8cXgiIgpC7BtcZ1FGAgAilQpEqjzbdZutcHm0UXpyFA7v/hYNKUPwfUE5vi8oBwAIAO7ISMEDo7rh1o+MHq2vt9ySloR39p5BTlEN8kpq0b9TZJv2O1hcgzqDBWEhcmiSo7xcS+dpkqJwvKIBlQ0m/Hpa6+/qUDvF+7975I7pewxKEZH0eCXReWJiImQyrxyaiIiCFPsG11mUtmCHp0dJuUsQBEQV7sI7dw3GHRnJuL5PPO4bfgU2Tx+CR669EkpF8Py+4yKUuL5vPADg39ln2rRPg9GC387UAACGdo1GiDzw2iuTCRjZvSMAIL+0HvKYFD/XiNoj3v/dY7+1cPU9IpIir03fW7hwIR5++GF07doVISEhzcqTkpJa2ZOIiKSKfYPrzI1Bqc5RSj/XpGV9EiLQJyH4p+TcMTgFX+SV4uvDZbh/eFd0iw275Pv3ntbCbBURHxGKnnGXfq8/dYpSoUdsGI5VNEA1JNPf1aF2iPd/93D6HhFJmVeCUg899BAAICsrC4Dtm1TAtjqNIAj4/fffvXFaIiIKYOwbXBeoI6Wkpk9iBMb0iMUPxyrwyk8nseKP/Vt9ryEqGWfL6gEAI7p1dPx9DlRXdY3GicoGhCT1xdlqPf8ukU/x/u8ee6JzjpQiIinySlDq22+/9cZhiYgoiLFvcJ1F1RiUimIgwdseGNUNPx6vwPcF5dh3RovBKdEXvUdvskDb/Q8AgL6JEUiMDMwRbE1FKhXomxiBvJI67D2txR8HJgZ8II2kg/d/9ygEe04pP1eEiMgLvDK5Ozk5GcnJyWhoaEBeXh46duwIq9WKpKQkJCcne+OUREQU4Ng3uM6s7ACAI6V8oUdcOP44sBMAYNGXh1FnMDcrF0UR//rqCCzqaISHyjHsimg/1NI16ckdIJqNKK0zoqTG4O/qUDvC+7977InOOX2PiKTIK0Gp6upqTJ8+HVOmTMHf//53VFRUYMmSJZg8eTKKioq8cUoiIgpw7BtcZ199j0Ep3/j7mCuRFKXE2RoD5n+RD73JAgCwiiLW/O8kduaXAVYLru0Zi9AgSuYeFiqHseBnAMD+4ho/14baE97/3WOfvmfm9D0ikiCvfJL617/+BbVajd27d0OptA1pX7p0KTp16oR//etf3jhl0BFFESI7FiJqR9g3uMZgtkJU2IJRnTl9zycilAo8c2NfhMgF/Hi8Eve9n4P1u09j1pb92LCnEADQ4dR/gzJIaMj7DgBwukqPqgaTn2tD7QXv/+6RO6bv8dmBiKTHK0GpH3/8Ef/4xz8QFRXl2BYTE4M5c+Zg79693jhl0GFQiojaG/YNrrFPH+uoDkFYqNzPtWk/NMkd8PLUVEQqFThSVo9XfzqJXwurESoX8PQNvRF+7oC/q+gSa20ZusWoAQAHOFqKfIT3f/dw+h4RSZnXxpwbDBfnKqisrIRC4ZXc6kREFATYNzivRm8LSnUOwlE5wS6jSzTevzcDD43ujnG94pB1dVe8d0+GI+dUsBqUZAsMFJTVo8Fo8XNtqL3wxP3/1KlTuO+++5Ceno5rr70Wb7zxhqOssLAQ06dPR1paGm688Ub873//a7bvrl27MHnyZGg0Gtxzzz0oLCxsVv72229j9OjRSE9Px9y5c6HT6ZrVfe7cuRgyZAhGjRqF9evXt7nOniBvfGLj6ntEJEVeCUpNnjwZS5YsQUFBAQRBQENDA3bv3o2nn34aN954ozdOSUREAY59g2tqG0dKceU9/0iMVOKeoV2w/I/98dcRXdEtJszfVXJbYqQSCRGhsIrAoZJaf1eH2gFP3P+tViuysrLQsWNHfPzxx1i0aBFeffVVfP755xBFEbNmzUJcXBy2bt2KKVOmYPbs2Th79iwA4OzZs5g1axYyMzPx4YcfIiYmBg8++KBj1sLOnTuxevVqPPPMM9iwYQNyc3OxcuVKx7lXrFiBgwcPYsOGDViwYAFWr16NHTt2eP5CtcI+fY8jpYhIirwSlHriiSeg0WiQmZmJhoYGTJkyBffddx9GjBiBJ554whunJCKiAMe+wTX26XvBmL+IApd9tFT+uTo+6JLXeeL+X15ejn79+mHhwoXo1q0bxowZgxEjRiA7Oxu7d+9GYWEhnnnmGfTo0QMzZ85EWloatm7dCgDYsmULBg4ciBkzZqBXr15YtmwZioqKsGfPHgDAO++8g3vvvRdjx47FoEGDsGjRImzduhU6nQ4NDQ3YsmUL5s2bhwEDBuC6667D/fffj/fee89r1+tCMk7fIyIJ88p8idDQUDz11FN45JFHUFhYCIvFgi5duiA8PNwbpyMioiDAvsE1jpFSHZR+rglJSdcYNcJC5GgwWXCysgE94vjvkLzHE/f/hIQEvPjiiwBsuVn37duHvXv3YsGCBcjNzUX//v0RFnZ+JGNGRgZycnIAALm5uRgyZIijTK1WY8CAAcjJycGQIUNw4MABzJ4921GelpYGk8mE/Px8iKIIs9mM9PT0Zsd+7bXXYLVaIZN5fwVORWNQijEpIpIirwSlWkpYmJeX5/jzVVdd5Y3TEhFRAGPf4JpavS3nD0dKkSfJBAF9EsLxW1ENDpfWMyhFXuXp+/+4ceNw9uxZjB07FjfccAOWLl2KhISEZu+JjY1FSUkJAKCsrKzV8pqaGhgMhmblCoUC0dHRKCkpgUwmQ8eOHREaGuooj4uLg8FggFarRUxMTJvr3TgLz+n32xOdm61Wp48RjOxtbA9tbYrt9m89fC0Y2+2tunolKHX33Xe3uD00NBTx8fH49ttvvXFaIiIKYOwbnCeKInNKkdf0SYjAb0U1KKrWo0ZvRpSKCw6Qd3j6/v/SSy+hvLwcCxcuxLJly6DT6ZoFjezHNhqNAHDJcr1e73jdUrkoii2WAXAcv61iYyOder9dRJhtpKxKHYq4ONeOEYxcvV7Bju1uX9pru5vyyqeP/Pz8Zq8tFgtOnz6NxYsX46abbvLGKYmIKMCxb3Ce3myFuXG+Rqd2GJQ6ciQfU26ZdtF2RYgcZpMFR44VYJIf6uVvrV0XR3kbr0ukSoHkDioUVetxuLQOV10R7bE6EjXl6ft/amoqANuqeI899himTp3abLU8wBYwUqls902lUnlRAMloNCIqKgpKpdLx+sJytVoNi8XSYhkAx/HbqqKiFs4soCcItgdWk8EEAKitM6C8XPqLE9jb7ez1CnZsN9sd6Ox19jSffCUml8vRvXt3PPXUU8jKysKf/vQnX5w2oImi6Fjxg4ioPWLfcHn2JOcyYx2UCu/nLQk0Zisw6dHnLtoeFqZEQ4MBeTMn+6FW/tfadbFz5rr0TYxAUbUeR0rrkdGlgyeqR3RZrtz/y8vLkZOTg/Hjxzu29ezZEyaTCfHx8Th+/PhF77dPyUtMTER5eflF5f369UN0dDSUSiXKy8vRo0cPAIDZbIZWq0V8fDxEUURVVRXMZjMUCtujU1lZGVQqFaKiopxqtyjCpYdPmWP6nhg0D6+e4Or1CnZsd/vSXtvdlE8/4VZUVKCmpsaXpyQiogDHvqF1NXpbUEpu4PUh7+jaUQ2VQoYGkwWFVbrL70DkQc7c/8+cOYPZs2fj3Llzjm0HDx5ETEwMMjIycOjQIcdUPADIzs6GRqMBAGg0GmRnZzvKdDod8vLyoNFoIJPJkJqa2qw8JycHCoUCffv2Rb9+/aBQKBxJ0+3HTk1N9UmSc+B8onOuvkdEUuSVkVJz5sy5aFt9fT127dqFCRMmeOOUREQU4Ng3OK/OYEtyrtAzKEXeIZcJ6B0fjv3FtThcWu/v6pBEeeL+n5qaigEDBmDu3LmYM2cOioqKsHLlSvztb3/D0KFD0blzZ8yZMwcPPvggvv/+e+zfvx/Lli0DAEydOhVvvvkm1q1bh7Fjx2LNmjVISUnBsGHDAAB33HEH5s+fj969eyMhIQELFy7ErbfeCrVaDQC4+eabsXDhQixduhSlpaVYv36949i+IBcYlCIi6fJZRsvo6Gg8+eSTmDJliq9OSUREAY59w6XZk5xzpBR5U68EW1CqUKtDgqL95S4j/3D2/i+Xy/HKK69g8eLF+POf/wy1Wo27774b99xzDwRBwCuvvIJ58+YhMzMTXbt2xZo1a5CUlAQASElJwcsvv4ylS5dizZo1SE9Px5o1ayA0BnsmTZqEoqIizJ8/H0ajEddffz0ef/xxx7nnzJmDhQsX4t5770VERAQeeughXH/99Z6/KK213T5Sqr3P8SEiSfJKUMpX3xwYjUYsW7YM27ZtQ0hICKZNm4ZHH30UgiAgLy8PCxYswJEjR9CzZ08sWrQIAwcOdOy7bds2vPjiiygrK8OoUaOwePFip5Z0JSIi5/jyW2WpqOX0PfKBmLBQxIaFoKLBBF1MT39XhyTIU/f/xMRErF69usWyrl27YuPGja3uO2bMGIwZM6bV8qysLGRlZbVYplarsXz5cixfvty5CnuIvElOKSIiqfFKUKq1zqIls2fPdvk8//rXv/DLL7/gzTffRH19PR599FEkJSXhj3/8I7KysnDTTTfh2Wefxfvvv4+ZM2fi66+/RlhYGPbv34958+Zh0aJF6Nu3L5YsWYI5c+Zg7dq1LtelrURRhNVqbffJzIio/fFV3yAl9pFSCgalyMt6xoej4pQWuri+/q4KSRDv/+6RM6cUEUmYV4JSp06dwo4dOxAdHY2BAwciNDQU+fn5OH36NNLS0hwrV9iHzLpCq9Vi69ateOuttzBo0CAAwIwZM5CbmwuFQgGlUoknnngCgiBg3rx5+O9//4sdO3YgMzMTGzduxMSJE3HzzTcDAFasWIGxY8eisLAQXbp0cbv9RER0MV/0DVIiiqJj9T2OlCJv6xEXhj2ntDBGJeGMVoeUaLW/q0QSwvu/exiUIiIp80pQKjQ0FDfddBMWLVqEkJAQx/bly5ejuroaS5cudfsc2dnZiIiIwNChQx3b7ENun376aWRkZDg6NkEQMHjwYOTk5CAzMxO5ubn461//6tivc+fOSEpKQm5urteDUqIoQuQwKSJqh3zRN0hJg8kCiwgIAOTGOn9XhyQuPFSBpA4qFFXrseP3Utw/oqu/q0QSwvu/e7j6HhFJmVfWMf3iiy9w//33N+t0AODWW2/FF1984ZFzFBYWIjk5GZ988gkmTJiAP/zhD1izZg2sVivKysqQkJDQ7P2xsbEoKSkBAJSWll6yvK0EwfkfW0DK9uPK/sH+4+p1k8oP2+//OrD9F9fJV3zRNwC2fIOLFi3CVVddhauvvhovvPCC48uAvLw83HLLLdBoNJg6dSoOHjzYbN9t27Zh/Pjx0Gg0mDVrFiorKz1WL2fZV94LV8ohiFa/1YPaj57xYQCAL38v5Rdo5FG+uv9LlWP1Pf67JCIJ8spIqcTERPz444+48sorm23fuXOnx0YiNTQ04NSpU9i0aROWLVuGsrIyzJ8/H2q1GjqdDqGhoc3eHxoaCqPRCADQ6/WXLG+r2NhIp+ttMpnw7r5ihIUpERcX6Riu3J64ct2khO1n+9srX/QNQHDmG2yJPcl5pLL99RPkH91iwvBfyzmcrgLyztVhQKf2e78iz/LV/V+qOH2PiKTMK590/+///g+PPPII/vOf/6BvX1vCzAMHDiAvLw+vvfaaR86hUChQV1eH559/HsnJyQCAs2fP4v3330fXrl0vCjAZjUaoVLZljpVKZYvlarVz+RMqKmqdSlguCEBUlAo6vRGCIEN5eW27CkoJgu2B3NnrJhVsP9sfaO2318lXfNE3SCnfoD3JeaRSAU7eI18IlcugqjoOXVwf7Py9lEEp8hhf3P+ljKvvEZGUeSUict111+Gjjz7CRx99hGPHjkGlUmHo0KFYtWoV4uPjPXKO+Ph4KJVKR0AKALp3747i4mIMHToU5eXlzd5fXl7umLKXmJjYYrmzdRNFuPRwKYq2h0FX9w927bXddmw/299e2++LviFY8w22JFiCUkeO5GPKLdNaLz9WgEk+rA+5R11xBLq4Pvj2SBkeufZKyHw9z5ckyRf3fynjSCkikjKvDdPp06cP5syZg+rqakREREAmk8GTK2poNBoYDAacOHEC3bt3BwAcP34cycnJ0Gg0eP311yGKIgRBgCiK2LdvH/72t7859s3OzkZmZiYAoLi4GMXFxdBoNB6rHxERXczbfUPTfIOvvfYaTCYTMjMz8cADD6CsrAw9e/Zs9v7Y2FgUFBQA8Gy+QU+wT9+LUMk9dtymuc08FRw1W4FJjz7XannezMmeOVGjpm3w1LF8yRu/A09Sak8jQilHaZ0R+8/WID2lw0Xv8eTvwB+Cvf6Ad9vgrevi7fu/lDHRORFJmVeCUqIo4rXXXsPbb7+N2tpa7Ny5E//v//0/hIWF4Z///OdF+ZxcceWVV+Laa6/FnDlzsHDhQpSVlWHdunV44IEHMGHCBDz//PNYsmQJbrvtNmzatAk6nQ4TJ04EANx+++24++67kZaWhtTUVCxZsgTXXnst57QTEXmRL/qGYM03qAiRIyxM2WxbvcmW3Dw+KgwnQuSIi2v9uC3t35QgoFm5Wq1stexy+3qy3J191WqlW/srLnNNL8fZa36hpr8DZ/f15jUPUQA3DOiMrfvO4MdTWlyXltLqe4M9R16w1x8Injb44v4vZUx0TkRS5pWg1Jo1a7B9+3Y8++yzePTRRwEAf/rTnzB//nysWLEC//znPz1ynueeew6LFy/G7bffDrVajTvvvBN33303BEHA2rVrsWDBAnzwwQfo06cP1q1bh7Aw26oy6enpeOaZZ/DSSy+huroaI0eOxOLFiz1SJyIiapkv+oZgzDcIAGaTBQ0NBsdrqyiiRm8CAITACrPJgvLy2jbvfyFRBBoaDBAEWzBEpzM46mgvu9y+3ih3Zd8L2+DquS93TS+nrdf8QvaBIU1/B23d1xPll9vXbLLgmm7R2LrvDLbnnsWsEVc4pg41bUOg5chzRrDXH/BuG7yRb9BXzwZSxel7RCRlXglKffzxx3j22Wdx1VVXOYbljhw5EsuXL8ff//53j3U8kZGRWLFiRYtlgwYNwscff9zqvpmZmY7pe0RE5H2+6BuCOd9gUw1GC0QRkAlAWKjccVx3NQ1EBStPteHIkXz8cVrrubBiY6Kxfu0b7p2kBcHwOxh6RTQ6qBSoaDAhu1CLq67o2OL7gj1HXrDXHwieNvjq2UCqmOiciKTMK0GpioqKi/JyAEBUVBQaGhq8cUoiIgpwvugbpJJv0JFPSqlgomkvuVwurO2rHvNhbQKLQi7Dtb3i8OmBEnxzuLzVoBRRW/HZwD0cKUVEUibzxkGHDx+ON998s9m2uro6vPDCCxg2bJg3TklERAHOF31D03yD+fn5+PHHH7Fu3TrcfvvtmDBhAmpqarBkyRIcPXoUS5YsuSjf4KeffootW7YgPz8fTzzxhN/yDTZdeY/IH67rYxsh+F1BOUdnkNv4bOAeReMTG/8tEpEUeSUotXDhQuTl5WHkyJEwGAx48MEHMWbMGBQVFXF4LhFRO+WrvuG5557DFVdcgdtvvx1PPvmkI99gREQE1q5d6xgNlZub22K+wTVr1uD2229Hhw4dsGzZMo/Vyxnng1Jyv5yfKKNLNDqqQ6DVmfDr6Sp/V4eCHJ8N3KOQ2R7ZOFKKiKTIK1/BRkVF4cMPP8TPP/+M48ePw2w2o3v37hg1ahRkMq/EwYKOKIoQgyEJABGRh/iqb5BCvsFagwUAEKniSCnyD4VMwLjecdiaW4yvD5dheLcYf1eJghifDdzD6XtEJGVe+bQ7efJkrF69GiNGjMCIESO8cQoiIgoy7BvarmlOKSJ/ua5PPLbmFuP7ggo8Nd6KEDmDB+Qa3v/d4whK8QttIpIgr3y6kMlkMJlM3jg0EREFKfYNbcecUhQI0pI7IDY8FLUGM345xSl85Dre/90jFzhSioikyyufdq+99lr85S9/wdixY5GcnIzQ0NBm5bNnz/bGaYmIKICxb2gbi1VEvbFx+h6DUuRHcpmA8b3jsPm3s/j6cBlGXRnr7ypRkOL93z2cvkdEUuaVT7uHDx/GgAEDUFpaitLS0mZlApe2JiJql9g3tE290TZKSi4ToA7hdCnyr+v6xGPzb2fxw9EKGMxWKBX8O0nO4/3fPYrGoBRX3yMiKfJYUOrOO+/Eq6++iqioKLz77rsAAL1eD5VK5alTEBFRkGHf4LxavX2UlJwPa+R3qUlRSIgIRWmdET+fqMS1veL8XSUKErz/ew5HShGRlHns667s7OyL5opfffXVKCws9NQpiIgoyLBvcB7zSVEgkQkCxveJBwB8fbjMz7WhYML7v+cw0TkRSZlXx2CLvHFehNeEiNo73gcvjUEpCjTXNwalfjxeAb3J4ufaUDDj/d818sZBsxwpRURSxMQAREREAaRWbwtKRTAoRQGif6dIdI5SQmey4ueTXIWPyNc4fY+IpIxBKR8TRRE6k9Xf1SAiogDlGCmlYlCKAoMgCBjbmEvqu4JyP9eGqP1RMChFRBLm0U+8X375JSIiIhyvrVYrvv76a8TExDR738033+zJ0waVl78/jo/yKjG6a6S/q0JE5BPsG5zD6XsUiMb1isO/s4vw47EKGM38co3ahvd/zzifU8r2BTcXwSAiKfHYJ96kpCSsX7++2bbY2Fhs3Lix2TZBENp1x7P6P8cBAD+eqvVzTYiIvI99g3PMFqtjNG2kUu7n2hCdl5oUhbjwUJTXG7HntBY3d+rg7ypRgOP933PsQSnAFphSMCZFRBLisaDUd99956lDSVq0OgRanW0lEotVRIif60NE5E3sG5xTZ7QlkQ6RC1AqOMOeAodMEHBtz1h8mFuM746U4eahXf1dJQpwvP97TrOglFV0TOcjIpICfuL1sf6dz0/bO1xa58eaEBFRoLEnOY9UKjg9gwLOuN62vFI/HKuA2cIpfES+IheaB6WIiKSECSt8rGk3svuUFpouMa2+l4iI2hfmk6JAlp4SDblFj2qdClffMhOKytMXvSc2Jhrr177hh9oRSZdCxqAUEUkXP/X6WNNvFvcWVmOmH+tCRESBhUEpCmQKmQBlxTE0JAxAp7H3YtgVF+eV2r7qMT/UjEjaZAxKEZGEcfqeD4miCHOTjqSqMbcUERERcH76XoSKSc4pMKkqjgIAjpXVQRT5cEzkCzJBgD0uZbZy6iwRSQuDUj5mspz/AGe28MMcERGdV2uwJTrnSCkKVMqaQoTKBdQbLThXa/R3dYjaDXuyczNHShGRxDAo5WNNv93g8FsiImqK0/co0AmiFVd0VAMATlQ2+Lk2RO2HPdm5hSMUiUhiGJTysaajo0wMShERUSOjxQqD2fbFBYNSFMi6x4YBAE5WNnAKH5GP2EdKceFLIpIaBqV8rOmQWw6/JSIiu7rGfFJKhQyhCnbPFLhSOqgQIhdQZ7CgvJ5T+Ih8QeEISvH5gYikhV/F+pipydcbzClFRER256fuXZzk/MiRfEy5ZVqr+x45VoBJXqsZUXMKuQxdY8NxtLQOpyp1iI9Q+rtKRJInZ1CKiCSKQSkfaz5SiuNviYjI5lJJzs1WYNKjz7W6b97MyV6rF1FLroxrDEpV6TDkimh/V4dI8jhSioikivMDfKzp6ChO3yMiIjsmOadg0i0uHAKAygYT6hr/7hKR9zhW32MeNyKSGH7y9bGm0/esou3bDnsnQ0RE7VdtY06pCBW7ZvKftk4VVYfIkRipREmtAaeqdBjQKdJ3lSRqhzh9j4ikip98fezC0VFmBqWIiAgcKUWBwZmpol1j1LagVCWDUkTeJhcYlCIiaeL0PR8zXbCOK/NKERGRCAalKPhc0VENACiu0cNo5ucZIm/iSCkikioGpXzsopFSXIGPiKjdE+VKmBr7g5ZW3yMKRNHqEHRQKWAVgTPVen9Xh9qBc+fO4eGHH8bQoUMxevRoLFu2DAaDAQBQWFiI6dOnIy0tDTfeeCP+97//Ndt3165dmDx5MjQaDe655x4UFhY2K3/77bcxevRopKenY+7cudDpdI4yg8GAuXPnYsiQIRg1ahTWr1/v/cZegEEpIpIqBqV8yGIVcWFuQhM7FiKids+sjAIAqENkUMjZNVPw6No4WupUZYOfa0JSJ4oiHn74Yeh0Orz33ntYtWoVvv/+e7z44osQRRGzZs1CXFwctm7diilTpmD27Nk4e/YsAODs2bOYNWsWMjMz8eGHHyImJgYPPvggxMYP5jt37sTq1avxzDPPYMOGDcjNzcXKlSsd516xYgUOHjyIDRs2YMGCBVi9ejV27Njh0/YrmOiciCSKcwR8qKXV9swWDncnImrvLCpbUIpT9yjYXBGjxv7iWhRq9bDyYZm86Pjx48jJycFPP/2EuLg4AMDDDz+M5cuX45prrkFhYSE2bdqEsLAw9OjRAz///DO2bt2Khx56CFu2bMHAgQMxY8YMAMCyZcswcuRI7NmzB8OGDcM777yDe++9F2PHjgUALFq0CPfddx8ef/xxiKKILVu24PXXX8eAAQMwYMAAFBQU4L333sOECRO83u7Tp0+joOAUDHrbyK1jx48hsva0U8eIiYlFSkoXb1SPiMht/PTrQ03zRwmw5RBpKVBFRETti0XJoBQFp8RIJZRyGQxmK8rqjP6uDklYfHw83njjDUdAyq6urg65ubno378/wsLCHNszMjKQk5MDAMjNzcWQIUMcZWq1GgMGDEBOTg6GDBmCAwcOYPbs2Y7ytLQ0mEwm5OfnQxRFmM1mpKenNzv2a6+9BqvVCpnMe6Nbz5wpxNUjr4KuoQGJdy6HKmUAnp7/T+gKfnbqOCp1GHb9tJeBKSIKSPz060NN80cpZAJMVpE5pYiIyDF9L1LFbpmCi0wQkBytwvGKBhRW6S6/A5GLoqKiMHr0aMdrq9WKjRs3Yvjw4SgrK0NCQkKz98fGxqKkpAQALlleU1MDg8HQrFyhUCA6OholJSWQyWTo2LEjQkNDHeVxcXEwGAzQarWIiYlpcxsEJxfcrqysgK6hAbc8ugxHw/ui0gRMmP4PdFZZ2nyM0jMn8OGqOaisrECXLsERlLJfJ2evV7Bju/1bD18LxnZ7q6789OtDTUdFyWWAycqRUkREdH6kVARHSlEQ6mIPSmn1CL3824k8YuXKlcjLy8OHH36It99+u1nQCABCQ0NhNNpG7+l0ulbL9Xq943VL5aIotlgGwHH8toqNjXTq/dHR4QCALj37oLg2ApVVOiR06Y6endp+HJXKVteOHcMRF+fc+f3N2eslFWx3+9Je290UP/36kD0AJRNs3ywCIkxW5pQiImrvzk/f48p7FHxSom3JzsvrjUhUqP1cG2oPVq5ciQ0bNmDVqlXo3bs3lEoltFpts/cYjUaoVCoAgFKpvCiAZDQaERUVBaVS6Xh9YblarYbFYmmxDIDj+G1VUVF70aJHl6LV1gMA9AYjxMbnCL3BhIYGQ5uPodfb6lpVVY/y8tq2n9yPBMH2oO7s9Qp2bDfbHejsdfY0SSzxk5WVhaeeesrxOi8vD7fccgs0Gg2mTp2KgwcPNnv/tm3bMH78eGg0GsyaNQuVlZU+qaepMam5gPND3zh9j4iofRNFkTmlKKiFhcoRGxYCADB0uMLPtSGpW7x4Md566y2sXLkSN9xwAwAgMTER5eXlzd5XXl7umJLXWnl8fDyio6OhVCqblZvNZmi1WsTHxyMxMRFVVVUwm82O8rKyMqhUKkRFRTlVd1F0/se24/lnB3cWFHDl/P76Cbb6st1sd3tptzcEfVBq+/bt+OGHHxyvGxoakJWVhSFDhuCjjz5Ceno6Zs6ciYYG21LF+/fvx7x58zB79mxs3rwZNTU1mDNnjk/qen6klAC50HwbERG1T1U6E0S57YGe0/coWNlHSxmiu/q5JiRlDmO9HAAAc31JREFUq1evxqZNm/DCCy9g0qRJju0ajQaHDh1yTMUDgOzsbGg0Gkd5dna2o0yn0yEvLw8ajQYymQypqanNynNycqBQKNC3b1/069cPCoXCkTTdfuzU1FSvJjm/kKwxKuWth0IiIn8J6qCUVqvFihUrkJqa6tj2xRdfQKlU4oknnkCPHj0wb948hIeHY8eOHQCAjRs3YuLEibj55pvRt29frFixAj/88AMKCwu9Xt+m0/eExo7FPnqKiIjap7PVtoeo8FA55LIgynZJ1ESXaNs0JkN0V7dGchC15tixY3jllVfw17/+FRkZGSgrK3P8DB06FJ07d8acOXNQUFCAdevWYf/+/Zg2bRoAYOrUqdi3bx/WrVuHgoICzJkzBykpKRg2bBgA4I477sCbb76Jb775Bvv378fChQtx6623Qq1WQ61W4+abb8bChQuxf/9+fPPNN1i/fj3uuecen7Zf5oGRUkREgSiog1LLly/HlClT0LNnT8e23NxcZGRkOII+giBg8ODBrS4J27lzZyQlJSE3N9fr9bVYzgel7BeeI6WIiLwnGKZ324NSHCVFwSwxUokQuQBriBr55+r8XR2SoG+//RYWiwWvvvoqRo0a1exHLpfjlVdeQVlZGTIzM/HZZ59hzZo1SEpKAgCkpKTg5ZdfxtatWzFt2jRotVqsWbPG8bwwadIkzJw5E/Pnz8eMGTMwaNAgPP74445zz5kzBwMGDMC9996LRYsW4aGHHsL111/v0/bb68pHByKSmqD9BPzzzz/j119/xeeff46FCxc6tpeVlTULUgG2JV8LCgoAAKWlpZdcMtabmk7fkzV+3cGgFBGRd9ind//pT38CcH5690033YRnn30W77//PmbOnImvv/4aYWFhjundixYtQt++fbFkyRLMmTMHa9eu9Wo97UEpJjmnYCaTCUjuoMLJSh1+PlmJ/k6sDkbUFllZWcjKymq1vGvXrti4cWOr5WPGjMGYMWNcOr5arcby5cuxfPnytlfYwzhSioikKiiDUgaDAQsWLMD8+fMvWvXiUku+AoBer79kuTMEJ2dZmEWrY7/zI6WsTh8nWNnb2V7aeyG2v/n/25tAbH8g1cXTLje9WxAEzJs3D//973+xY8cOZGZmNpveDQArVqzA2LFjUVhYiC5dunitrmdrbEGpKFVQdslEDinRapys1GHXiSrcN5y5pYg8SWBOKSKSqKD8BLx69WoMHDgQo0ePvqistSVfL7ckrFrt/BLGzi6HGF5tW75VIROgUNjCUupwFeLi2te3id5YRjKYsP1sP3mffXp3aWmpY9ulpndnZmYiNzcXf/3rXx3vbzq925tBqVq9bUWnKFWI185B5Av2vFKHimtQZzD7fErqjJn3o6JS22JZbEw01q99w6f1IfIkjpQiIqkKyqDU9u3bUV5ejvT0dABwBJl27tyJyZMnu7wkrLMqKmqd+raioqr+/IvGaXuV2gaUl9c6fe5gJAi2B3Jnr5tUsP1sf6C1314nqfH39G5nR6BNH9YFu7//Et2HZTq3owuajtgLlL+HzvLlqENvnENqv4OmbYhQKmCtPgd0SETmQ3OhrjrebL+4mGisX+e9wFBFpRaTHn2uxbLtqx676O9OMI8W9WYbgvm6SBlX3yMiqQrKoNS7774Ls9nseP3cc7YPII899hj27t2L119/HaIoQhAEiKKIffv24W9/+xuA80vCZmbaPvwXFxejuLjYsWSsM0TRuY7BbGm6+p59m7XddS7OXjepYfvZ/vbcfm8LhOndzgb6RsVFIqZkD6Ii7mj1PYIAhIUpPVauVitbLfP2uT21r1qt9Oq5FSHyS45kVoTI3bouTX8Hzu7rr2tuL7fXvaU2mIp/h7JDIrqMuxNj+zYP8n684hGvjg6/1O+kpd+nFILyUmgDtY392YEjpYhIaoIyKJWcnNzsdXh4OABbgsPY2Fg8//zzWLJkCW677TZs2rQJOp0OEydOBADcfvvtuPvuu5GWlobU1FQsWbIE1157rVenZtjZk5oLAOQCE50TEXlaIEzvdmU0nNlkQUODodVyUYRHyu0BBZ3O4Kijp47tSrkr+17YBm+dO+/QIVx97Q2tlhccK8ANLpzb/mDZ9HfgbN18fc0vLNfpDBf9PbIzFeVD2fdanKyov+g4ZpPFq6PDL/XvqOm5A3HkqrO82QapjqINdo6RUn6uBxGRpwVlUOpSIiIisHbtWixYsAAffPAB+vTpg3Xr1iEsLAwAkJ6ejmeeeQYvvfQSqqurMXLkSCxevNgndTNbbYnOZYLg+FBqsrBrISLylECY3h3Io+GaBqKCla/aYLai1algALBy5mSXjiv134G55AgEADV6M2r1ZkRekMDfn+2+8NyB/G+1raTQBmob+yJJHClFRFIjiaDUs88+2+z1oEGD8PHHH7f6/szMTMf0PV8yNZm+Z09WyJFSRESeEyjTu4naLZMeCZFKnKs1oKhaj76qCH/XiEgS7It08NGBiKRGEkGpYGEPQMkEwTEE12yx+rNKRESSEqzTu4mkJLmDCudqDThTrUffRAaliDzB/oW2yJFSRCQxssu/hTzF3MJIKRO/7iAi8gn79G77aKjc3NwWp3evWbMGt99+Ozp06IBly5b5udZEwScl2pan7Wy1nlONiDyEI6WISKo4UsqH7DmlhKar77FnISLymmCZ3k0kJfERoQiRCzCYraioNyI+ovXV/IiobThSioikikEpH2p5+h47FiIiIpIOmSAgKUqFU1U6nNHqAyIodeRIPqbcMs3xWhEih9lkcbyOjYnG+rVv+KNqRG3CkVJEJFUMSvnQ+aBU00TnzClFRERE0pISbQtKFVXrkZ7Swd/VuWg1xbAwJRoaDI7X21c95o9qEbWZ/dmBU2KJSGqYU8qH7KOiBOH8hedIKSIiIpKa5A62vFLnag0wcVEXIredn77n33oQEXkag1I+1OL0PY7BJSIiIomJUikQoZTDKgIlNYbL70BEl+SYvufnehAReRqDUj5kn6onQ5PV9/jtIREREUmMIAhIaRwtdaZa7+faAEJYB5zR6nBGq4PRzM9eFHyY6JyIpIo5pXyoaU4prr5HREREUpYcrUZ+aT2KtP4LStUZzNhzSosOty7Dl7+XAQAEAP2TopDWORJhoXK/1Y3IGQKY6JyIpIlBKR8yOXJKCZA3RqVMzClFREREEpQUZVt1r0pnQr3R7PPzVzYY8WVeGRoaV9mLVitgsQK1BjMOna3BsdI6XN83HomR/l8dkOhyOFKKiKSK0/d8yNLiSCkOISciIiLpUYXIERceCgAo8vEUvlq9GdsOlaLBZEFHdQhqP1uKW9KScNvgJPxxYCLiIkKhN1ux/dA5FFbpfFo3IlfY89FypBQRSQ2DUj5kzx/FROdERETUHqRE2/JK+XIKn8Uq4tuCchjMVsSFh2DygARYKs84yhMjlbh1SBd07aiGRQS+PlIOY0Qnn9WPyBX2L7StHClFRBLD6Xs+1DSnlH0IrpnT94iIiEiikjuokFNUg6JqPaJ9dM7fzlSjrM6IULmA8X3ioQq5OG9UiFyGP/SOw1eHy3BGq0dl78koqzMgPqLlqXwzZt6Pikptq+eMjYnG+rVveKoJRBfhSCkikioGpXyoWaJzxzZO3yMiIiJpSoxUQiEToDNZEREW6/Xz1ehNyD1bAwAY3SMWkcrWP+rKZQKu6x2HTw+eQyXCMHfb73j1lkFQyC+eSFBRqcWkR59r9VjbVz3mfuWJLkFgTikikihO3/Mhc5NE5zKuvkdEREQSJ5cJ6NyY8NzQ4Qqvn2/3SS2som2EVvcY9WXfr5DLML53HASzETlFNVjzv5NeryORKzhSioikikEpH7KPimo6fY+r7xEREZGUJTfmlfJ2UMoYkYhTVToIAEZ06wjBPrTkMjqoQxB97GsAwMZfz+CHo+VerCWRa7j6HhFJFYNSPtQ8pxQTnRMREZH0JXewBaWMkUkwmL2XtqA2eRgAoFd8ODqGhTi1r7rqGO7ISAYALN55BGV1Bo/Xj8gdAkdKEZFEMSjlQxZ7UApNp+8xpxQRERFJV0d1CMJC5BDlIcgtqvbKOQ6V1MLQsRsEAOkpUS4dY/bo7uibEIFqvRkLvjzMVc4ooDhGSoF/L4lIWhiU8iH7qChBOJ+skNP3iIiISMoEQXBM4fvllNYr59i4txAA0DM+HFEq50ZJ2YXIZVg8qS+UChn2ntbi39lFnqwikVuYU4qIpIpBKR+yJzrn9D0iIiJqT+xT+PacqvL4sc9W6/FdgS0P1KDOkW4dq1tMGP4xtgcAYM2PJ3C4tM7t+hF5gj1DGkfwEZHUMCjlQyZHovMm0/csnL5HRERE0mYPSh0urYO2weTRY2/+rQhWEVBqTyMmPNTt4/0ptRPG9IiF2Srin9t/h95k8UAtidxj/0KbMSkikhoGpXyII6WIiIioPQoLlUNRXwYRwJ7TnhstpTNZ8NnBEgBAeMlvHjmmIAj45/W9ERceipOVOrz4w3GPHJfIHfYvtDlSioikhkEpH2q++l7zbURERERSpqy25X36xYNT+Hb8Xoo6gwUp0Sootac8dtzosBAsnNAHALA1txj66O4eOzaRK2SNDw8WPjsQkcQwKOVD5xOdn5++Z+L0PSIiImoHlNWnAdiSnYseGO0hiiI+zDkLAJiqSXLk3PGUYd064o6MZACAtsd41BnMHj4DUdspGJQiIoliUMqHmo6UEsDpe0RERNR+hNaeRahcwLlaA05V6dw+3oHiWhwpq4dSIcPkAYkeqOHFZo3qjt7x4bCGqPHV4TJ+mUh+Y0/9YRHhkaAuEVGgUPi7Au2JucVE5yJEUYQgePr7PSIiIqLAIbOakZ7SAb+c0uLHYxXoFhPm1vHso6Su6xOPaHWIJ6p4kVCFDM/dPAA3v/IfVNSH4YejFfhD7zinPrfNmHk/Kiq1rZbHxkRj/do3PFBbkjK57PzfOasIyPnoQEQSwaCUDzVPdG7bJsL2jYeCHQsRERFJ3JiecfjllBb/OVqBu6/q4vJxqhqM+OZIGQBgWlqSp6rXos5RKnQ8sh1VA2/BiUod9p2pRkaX6DbvX1GpxaRHn2u1fPuqxzxQS5K6pkEpi1Vs9pqIKJhx+p4POXJKQXQMwQUAM4eCExERUTswpkcsAGD/2RqU1xlcPs6nB0pgsojo3ykSAzpFeqp6rVLWFmNk9xgAwL4zNThYXOP1cxI11XRklIXT94hIQhiU8qHzQanz0/eabiciIiKSsoRIJQZ2tgWRfjhW4dIxzBYrtjRO3Zum6eyxul1O38QIDE6JAgD8fFKL3KIa5vYhn2m6UBKTnRORlHD6ng9ZmiY6bxqUsrBjISIiovZhbM84HCyuxTeHyzBV4/zUu+8KylFaZ0RMWAhu6JvgkTodOZKPKbdMa738WAEmARic0gFWEcgpqsGe01rU6M0Y0S3aI3Uguhy5TIDVIjIoRUSSwqCUD9lXbLHllLJ922EVzydAJyIiIpK68X3i8fKPJ5BdWI1ztQYkRiqd2n/TviIAwFRNZ4QqPDPo32zFJfM+5c2cDMA2WuWqK6KhUsiw+5QW+aV1OFdrgCzSu3mtiABALggwQeT0PSKSFAalfMjsGCllGyalkAkwWkRO3yMiIqJ2I6mDCukpHfDbmWrs+L0U9w5tW8LzGTPvR7FRhfKBtwJWCz5bPR/bVzU4yu2jmXwhNSkKHcNC8J+jFajSmYAB0/Dglv24ObUThnbt2OJqgKJoG+FitIiQCbaV/WRcfZmcYE9uznS0RCQlDEr5iFUUYY89yQTbBxN7UMrE6XtERETUjtzYLwG/nanGF3nncM9VKRDaEJypqNSiw6SnUF7RgF6JUbh29jPNyu2jmXwlJVqNaZrO2FtYjfySGuw9rcXe01oAQExYCMJD5QCAc2n34t29Z2C0WNH0e0i5AHQMC4U+ZRjOaHVIiVb7tP4UfM4HpfjsQETSwUTnPtI0b5TQZKQUwETnRERE1L78oXc8QuUCjlc0YP/Ztq1kZwmNwPFK28goe7J0f1OFyDH6yhgk5GzA9KFdcGVsGACgssGEQq0ehVo9LKoO0JubB6QAwCIC5fVG1KUMw7T1e7H06yOo0Zv80AoKFvLGZwhO3yMiKeFIKR9pGniyr5yhkMsAWBy5poiIiIjag0iVAhP6JeCzg+ewad9ZaJI7XHafuqQMiCLQOUqJuPBQH9Sy7RSGWswa3R2zRndHncGMM1odDGbb57un/jkPY+58GKFyGUIVMoTIBIgiUGc041ytEd/890cgqT8+3l+Cz/YeQceCLxFad85x7NiYaKxf+4a/mhaQjEYjMjMz8fTTT2PYsGEAgMLCQjz99NPIyclBUlIS5s6di1GjRjn22bVrF5YuXYrCwkJoNBosWbIEXbqcnzr69ttv480330RdXR0mTpyIp59+Gmq1bfSawWDAokWL8NVXX0GlUmHGjBmYMWOGbxsNQN44nIAjpYhISjhSykdC5ALCQ+XoGBZyPijFkVJERETUTt02OBkA8H1BGUpq9Jd8b3GNHvUJAwEA6SmXD2D5U4RSgb6JkdAkd4AmuQNC60oQExaKCKUCoXIZBEGATCYgShWCXvHhqPtqNSYPSECUSgGLMgpVg27DoL8sxqRHn8OkR59DRaXW300KKAaDAf/4xz9QUFDg2CaKImbNmoW4uDhs3boVU6ZMwezZs3H27FkAwNmzZzFr1ixkZmbiww8/RExMDB588EGIjSOOdu7cidWrV+OZZ57Bhg0bkJubi5UrVzqOv2LFChw8eBAbNmzAggULsHr1auzYscO3DQen7xGRNDEo5SMhchnW367Be38ZDJkgOHJKAeBIKSIiImp3esVHYMgV0bCIwDt7z1zyvWt3nQJkciRFKZHcQeWjGvpO5ygV/jSoE7pEq2CxivgqvwxF1ZcO1LVHR48exa233orTp0832757924UFhbimWeeQY8ePTBz5kykpaVh69atAIAtW7Zg4MCBmDFjBnr16oVly5ahqKgIe/bsAQC88847uPfeezF27FgMGjQIixYtwtatW6HT6dDQ0IAtW7Zg3rx5GDBgAK677jrcf//9eO+993zefntifCun7xGRhARtUOrcuXN4+OGHMXToUIwePRrLli2DwWAAYBu+O336dKSlpeHGG2/E//73v2b77tq1C5MnT4ZGo8E999yDwsJCn9S5e2wYujXmGgCAeqMZAJjonIiIiNql+4dfAQD4KPcsjlfUt/ieX09rsf2QbTrbkCuifVU1nwuVy3Bdn3h0i1HDKgLfHC5DZYPR39UKKHv27MGwYcOwefPmZttzc3PRv39/hIWd/5ydkZGBnJwcR/mQIUMcZWq1GgMGDEBOTg4sFgsOHDjQrDwtLQ0mkwn5+fnIz8+H2WxGenp6s2Pn5ubCavXtF8sKjpQiIgkKyqCUKIp4+OGHodPp8N5772HVqlX4/vvv8eKLL7o9fNeX7B2L3mzx+bmJiIiI/C2jSzSu7RkLiwis/O7YRQ/bdQYzln59BAAQVrIfiZFKf1TTZ+QyAWN7xSExUgmjRcQ3h8thlYX4u1oB44477sDcuXMduZ7sysrKkJCQ0GxbbGwsSkpKLlteU1MDg8HQrFyhUCA6OholJSUoKytDx44dERp6Po9ZXFwcDAYDtFqtU/UXBOd/bDva/idzM9G5K+f310+w1ZftZrvbS7u9ISgTnR8/fhw5OTn46aefEBcXBwB4+OGHsXz5clxzzTUoLCzEpk2bEBYWhh49euDnn3/G1q1b8dBDDzUbvgsAy5Ytw8iRIx3fvPiSfQUNeyJMIiJy37lz57BkyRLs3r0bSqUSN954I/7xj39AqVS6nQiXiDzv4WuuxM8nq/DraS3+3w/H8ei1V0IQBBjMVjz26SEUavVIiAiFrHAXgMn+rq7XKWQCru8Th4/2l6Bab4ax+1h/Vyng6XS6ZkEjAAgNDYXRaLxsuV6vd7xuqVwUxRbLADiO31axsc6tGhkdHQ4AUClDERamhDJUDgCQyeUIC2tbgFalstW1Y8dwxMUFxqqVbeXs9ZIKtrt9aa/tbioog1Lx8fF44403HAEpu7q6OreG73o7KCWKYrMRWfZkhXoTg1JERJ5gH0kbFRWF9957D9XV1Zg7dy5kMhmeeOIJzJo1C71798bWrVvxzTffYPbs2fjiiy+QlJTkGEn70EMPYfTo0VizZg0efPBBfPbZZxC89dUQEaFLRzUWTOiDudt+x/v7inCysgEZXaKx7VAJTlbqEB4qxws3D8QT37SfqWyqEDnG9YrFtkOl0MX3xbdHyvCH3vH+rlbAUiqVF41aMhqNUKlUjvILA0hGoxFRUVFQKpWO1xeWq9VqWCyWFssAOI7fVhUVtXBmkJNWa5vSqjcY0dBggNg4klBvMKOhwdCmY+j1trpWVdWjvLzWqfr6iyDYHtSdvV7Bju1muwOdvc6eFpRBqaioKIwePdrx2mq1YuPGjRg+fLhbw3d9zT59z8Dpe0REHiGVkbRE7c11feJRUW/E//vhOH4+WYWfT1YBADqqQ7Dspn7okxjh5xr6XqcoFTTJUcgpqsHyb44iIyUa0WGcyteSxMREHD16tNm28vJyx2f+xMRElJeXX1Ter18/REdHQ6lUory8HD169AAAmM1maLVaxMfHQxRFVFVVwWw2Q6GwPTqVlZVBpVIhKirKqXqKIpx6+HS8t/H/7q6+FywPvnbOXi+pYLvbl/ba7qaCMqfUhVauXIm8vDw8+uijbg3fdZa7czDtHYvBYvX73FDOm2X72f722X6p8dZIWiLyvtsGJ2Pz9CG4JS0JE/slIOvqrvjovquQ0SXa31Xzm8EpHaBoqECVzoTV/zvh7+oELI1Gg0OHDjmm4gFAdnY2NBqNozw7O9tRptPpkJeXB41GA5lMhtTU1GblOTk5UCgU6Nu3L/r16weFQtGsL8jOzkZqaipkMt8+Sskb+21Xc0oREQWioBwp1dTKlSuxYcMGrFq1Cr1793Zr+K6znB26ZrFYoNfrERYWCqtVhCrUtvqePDQk6OZ4u6O9z5tl+9l+8p5AGEkbyMG+psHRYH2madqGYCS134Gzbbjc761rjBpPju/pWsWcrIOnfwfe+Dsplwmo+eEthE18DJ/uL8ZP761CaEMZIAAKhRxmswVxHaOxft0bHjtnMP7bGjp0KDp37ow5c+bgwQcfxPfff4/9+/dj2bJlAICpU6fizTffxLp16zB27FisWbMGKSkpjlGwd9xxB+bPn4/evXsjISEBCxcuxK233upIqH7zzTdj4cKFWLp0KUpLS7F+/XrHsX3J3ZFSRESBKKiDUosXL8b777+PlStX4oYbbgDg3vBdZzk7/9NqtSA8PAQNDUZYrVaIjcvIVlbrgmaOtzsEIfjmzXoS28/2B1r77XWSMvtI2g8//BBvv/22T0bSunJNFSGXTlorCPBouVqtbLXM2+f21L5qtdJv5/ZEedPfgS/P7Ylj2+veUhsutb8iRO7Wl3Du/DtpqcyT/w4u1TZ3/32bSo+jd2IEjpyrQ8jov2BaRgqa5rn7eMUj7erLzZbI5XK88sormDdvHjIzM9G1a1esWbMGSUlJAICUlBS8/PLLWLp0KdasWYP09HSsWbPGcR0nTZqEoqIizJ8/H0ajEddffz0ef/xxx/HnzJmDhQsX4t5770VERAQeeughXH/99b5vp8CgFBFJT9AGpVavXo1NmzbhhRdewIQJExzbNRoN1q1bB71e7xgdlZ2djYyMDEd5S8N3Z8+e7XQdXJ4X3sjesehMloB5SPWF9j5vlu1n+9tz+33JXyNpXQk8mk2WSyatFUV4pNweUNDpDI46eurYrpS7su+FbfDluT1Rbo8lNP0d+LJunji2Tme46O9RW/Y3myxufQnnzr+TpmXe+HdwqbZ54t93RnIUjpfVo7hajwOFVegVH+5og7vX9ULB8oXF4cOHm73u2rUrNm7c2Or7x4wZgzFjxrRanpWVhaysrBbL1Go1li9fjuXLl7tWWQ9xjJTiBwkikpCgzCl17NgxvPLKK/jrX/+KjIwMlJWVOX6aDt8tKCjAunXrsH//fkybNg2Abfjuvn37sG7dOhQUFGDOnDnNhu/6kqLxg6nBzNX3iIg8afHixXjrrbcuGknb0kjZy42kjY93bsUre+DRmR9fafoAHqyCvQ3BXn/AvTa48u/D0/9OvPU78Ga9I5QKaJJtAfI9p7QwNn52bNoWT/5QYOL0PSKSoqAMSn377bewWCx49dVXMWrUqGY/9uG7ZWVlyMzMxGeffdbi8N2tW7di2rRp0Gq1zYbvepsoihAbe3tHonMGpYiIPKbpSNpJkyY5truTCJeIyN8GdY5EhFKOeqMFh0rq/F0d8gPH9D3GpIhIQoJy+t6lhtcC7g/f9RVFY1BKb2JQiojIE+wjabOyshwjae3cTYRLRORPCrkMQ7pE4z9HK7C/qAYZ3WIAAEeO5GPKLdNa3Cc2Jhrr13ouCTr5F0dKEZEUBWVQSirOj5Sy+LkmRETS0HQk7auvvtqs7PDhw24lwiUi8rcecWHIKaqBVmfCvtNaaDpHwGwFJj36XIvv377qMR/XkLyJQSkikiIGpfzIPgRXz+l7REQeIZWRtERELZEJAoZ06YBvjpTjt8Iq9I5T+7tK5EMMShGRFDEo5UcK5pQiIiIiCnqXmkJ35FgBJrVY4ppuMWrEhYeivN6InKIaDx6ZAp28ceCuldnoiUhCGJTyI3ljmnm9idP3iIiIiILVpabQ5c2c7NFzCYKAIVd0wI7fy/B7SS2EsA4ePT4FLlnjF9pmjpQiIgkJytX3pIIjpYiIiIjIWSkdVEjqoIJFBFQDr/d3dchHFI2pPzhSioikhEEpP5IzKEVEREREThIEAcOujAUAhPYZhXqD2c81Il/gSCkikiJO3/MjJjonIiKi9uJSeZcAIDYmGuvXvuHDGgW3Lh3VSIxU4lwtkHO2BiO7x/i7SuRl9lkWVj46EJGEMCjlR+en7zGnFBEREUnbpfIuAcD2VY/5sDbBTxAEZHTpgC/ySpF/rg5pSVEIV/KjvZTJGr/QtnD6HhFJCKfv+dH5ROdWiOxciIiIiMgJSVFKmEsKYBVto6VI2uypPyycvkdEEsKglB/ZkxWKAEwWdi5ERERE1HaCIECfsx0AkH+ujrmlJM7+hTaDUkQkJQxK+ZAois1GRNm/7QCY7JyIiIiInGcuOYJOkUrbaKkijpaSMnmTL7S5Ah8RSQWDUj724teHHX8WIMIel9IzrxQRERERuSCjSwcAQH5pHeo4Wkqymn6hzdFSRCQVDEr5miA0e6lS2H4FHClFRERERK7oHKV0jJbK5WgpyWJQioikiEEpPwttDErpTQxKEREREZHz7CvxARwtJWUyQYA9LMUV+IhIKhiU8jOlY6QUp+8RERERkWuSOqjQOYqjpaTu/Ap8fq4IEZGHMCjlZyqFHACg5/Q9IiIiInLD4BSOlpK680EpjpQiImlQ+LsC7ZkoilAqbB0Lg1JERETUnh05ko8pt0xrvfxYASb5sD7ByD5aqrjGwNFSEmVfgY/T94hIKhiU8iOr1dpk+h6DUkRERNR+ma3ApEefa7U8b+ZkH9YmeA1O6YDteaXIL61DfGiEv6tDHiZvnOfCkVJEJBWcvudHoiiivM4IANCbmFOKiIiIiNzTNLdUbdIQf1eHPMw+fc/KoBQRSQSDUn5m/7aDI6WIiIiIyBPsuaUaEgagpEbv59qQJ8kap++ZOX2PiCSCQSk/UzR+28GgFBERERF5gn20FGRy7D2t9Xd1yIPszw5mC4NSRCQNDEr5kSiKjmSFnL5HRERERJ4yrlccok7+iOv6xPu7KuRBqhDbyt38QpuIpIJBKT+Tc6QUEREREXlYWKgcESW/OYIYJA2qxkWSdPxCm4gkgkEpP7MPwdUzKEVERERERJegCrE9vvHZgYikgkEpP7NP3+NIKSIiIiIiuhSVwjbyjak/iEgqGJTyM/vqexd2LKIoQuSqGkRERERE1EjNkVJEJDEMSvmZsjEqVdlg8nNNiIiIiIgokClD7COlGJQiImlgUMrPIpS2juVstc7PNSEiIiIiokBmT3SuN3P6HhFJA4NSfhausOWUOlttgJXT9YiIiIiIqBWO6XscKUVEEsGglA/Z8kQ13xYeKoNMAAwWKyrqjf6pGBERERERBTx7onOzVYTZwsAUEQU/BqX8TCYISIxUAgCKtHo/14aIiIiIiAJViFyAzDbRgsnOiUgSGJTyM1EUkRTVGJSqZlCKiIiIiIhaJgiCY7QUp/ARkRQwKOVnVqsVnSNDAQBFTHZORERERESXoAphsnMikg4GpQJAkdYWjOJIKSIiIiIiuhTHCnwcKUVEEsCglJ+JoogIpW0IbtOcUlarFVYrOxoiIiIiIjpPFdI4fY8jpYhIAhiUCgDhIbZshU1HStlW6rP9EBERERERAedHSuk4UoqIJIBBqQAQprD9v7zeiJIaW2BKFEWs++mE488MThERERER0fmRUgxKEVHwY1AqACgEID0pEgDw7+wiAECdwYxKnaldTOFj0I2IiIiIqG3sic51Rk7fI6Lg126DUgaDAXPnzsWQIUMwatQorF+/3q/16ai0/So+OVCMzw6W4LZ3c/DpoXLc++8c7CvU+rVuRETtSaD1D0RE5H+B1DfEqEMAACW1Blj5xS4RBTmFvyvgLytWrMDBgwexYcMGnD17Fk8++SSSkpIwYcIEv9QnIUyGnrFqHK3QYfHOI47th0vr8dDWg5h7XS9MGpAIQRD8Uj8iovYi0PoHIiLyv0DqGxKjlFApZNCbrSiuMSC5g8rndSAi8pR2GZRqaGjAli1b8Prrr2PAgAEYMGAACgoK8N577/ntocNqtaJ7BwX0plAoQ+RQQETvWCVySnQorDFi0c4j+PxQCf44IBHX9IxDpCrEL/UkIpKyQOwfiIjIvwKtb5AJAq7oqMaRsnqcrGzweFDKKooorTVABBCtDoG6MYcVEZE3tMugVH5+PsxmM9LT0x3bMjIy8Nprr8FqtUIm88+sxhiVHCO7hCFEoYDFKsJiMWNEShg6lMuRV6bDvjM12HemBoqvjyItOQr9O0UhPiIUkUoFIpRyRCgViFQqoFTIoDdZUW80wyqKCFXIESIXECKTQS4TYBVFiABC5TJEqWz7yGW+G4GlN1kak7obcLpKB4PZgmh1CFKTotA5SgUZR4MRkZ8Eav9ARET+E4h9Q7fYMFtQqkKH9GQLwkJdCxyZrSLK6ww4WdmAA2drcaC4BodKalGjNwMABACdO6hwZWxY4084usWooQ6VI0QmgyAAZosIk9UKo0WEyWy94M8iTBYrjGbbtvLKStTU1cNkBSyiiNZmH6pUIdDrTbY6CIBSLkAlF6BUAPEdohAfFwcr7LlpbYE0UQSsEKGQyRAqFxCqkCFUfv4Hgq09MkFw/Nn2RwEWUYTVKsIqirCIaPJnEVZHXS8sA+wNsDdDIROgkMsQIhMQIrfVQy4TIKDJ880Fjzr2l4IAlJlEaLX1EEVAEASEyGztsB8rVG77sy+f3Yi8rV0GpcrKytCxY0eEhoY6tsXFxcFgMECr1SImJqZNx5HJ0OqNtLX3h8oFmBUyR2JvQRAu+rNcBsggQiHIIAgC0jup0DdOiZPVJtSbgMJqA/JL65FfWt/2k19GiFyAIAiNN2rbTVEmCLY/w/Zne6yoaZtFERDR/GZs/7P9fSLOdzhWEdBfYvnaUIUMkaFyyGW2c8tlQuOfz5+/rVy5VXtzeqQAQK6Qw2KxNL9Yl62T16rkc3KFHBazf5Ny+i31ggDI5c7//tuqT0IEHv9DD6f+Dkvp75aneKJ/cLZvAICwsDCEKlp/qImMiPBIuSDYvpCwhMgcdfTUsV0pd2Xfpm3w9bk9US4ItjJlk9+BL+vmiWMrQ2QX/T3y1bk90W5f/zvwxrHb+u8gLCwMzsZL2DdczF/PDgqFHJGRkagrK0JlaPPHtjAR6KgKh0kU8PnBEoTKRMgFEfZYhdj4H7NJhV6zXsein2ug2LvbVtb4BbVZBGqMIqwt1KmDSgGZAJisQI3ejJyiGuQU1bS98m4zXKKssvGn/TofUGt85hGaP/s0/XcstPD6/PuEFrZd8PqCc1tF298v+0AHq3j+77X9PMIFf7afy/HnC8plMttzcNMAneN9uPDPTj4XCgDEy9/bLlV84b6XO/2lypv+c5PLBVgsFz9LA63fKwSheZmzdQNsz/s3D4zDLUN7tuHdrZ/LUwSxHS579sknn+D//b//h++//96xrbCwEOPHj8cPP/yATp06+bF2RETkL+wfiIjoQuwbiIi8p13OQ1AqlTAajc222V+rVEwUSETUXrF/ICKiC7FvICLynnYZlEpMTERVVRXMZrNjW1lZGVQqFaKiovxYMyIi8if2D0REdCH2DURE3tMug1L9+vWDQqFATk6OY1t2djZSU1OZxJaIqB1j/0BERBdi30BE5D3t8i6qVqtx8803Y+HChdi/fz+++eYbrF+/Hvfcc4+/q0ZERH7E/oGIiC7EvoGIyHvaZaJzANDpdFi4cCG++uorRERE4L777sP06dP9XS0iIvIz9g9ERHQh9g1ERN7RboNSRERERERERETkP+1y+h4REREREREREfkXg1JERERERERERORzDEoREREREREREZHPMSjlIwaDAXPnzsWQIUMwatQorF+/3t9VuqRz587h4YcfxtChQzF69GgsW7YMBoMBAFBYWIjp06cjLS0NN954I/73v/8123fXrl2YPHkyNBoN7rnnHhQWFjYrf/vttzF69Gikp6dj7ty50Ol0jrLLXafLndsbsrKy8NRTTzle5+Xl4ZZbboFGo8HUqVNx8ODBZu/ftm0bxo8fD41Gg1mzZqGystJRJooinnvuOQwfPhxDhw7FihUrYLVaHeVVVVV46KGHkJ6ejnHjxuHTTz9tduzLndtTjEYjFi1ahKuuugpXX301XnjhBdjTz7WH9gNAcXExZs6cicGDB2PcuHF4++2321wPqVwDCm7u3McDjbP34UDhzr00ELhzH/Q3o9GIyZMn45dffnFsc/fzi6+11IacnBzcdtttSE9Pxw033IAtW7Y02yfQ2kCuCbbnBldJqZ9yVbD2b64K9n7RVcHcn/qESD7xzDPPiDfddJN48OBB8auvvhLT09PFL7/80t/VapHVahVvvfVW8f777xePHDki7t27V7zuuuvEZ599VrRareJNN90k/t///Z949OhR8bXXXhM1Go1YVFQkiqIoFhUViWlpaeKbb74pHjlyRPz73/8uTp48WbRaraIoiuKOHTvEjIwM8bvvvhNzc3PFG2+8UVy0aJHj3Je6Tpc7tzds27ZN7N27t/jkk0+KoiiK9fX14siRI8Vnn31WPHr0qLh48WLx6quvFuvr60VRFMXc3Fxx0KBB4scffyz+/vvv4l133SVmZWU5jvfmm2+KY8aMEffu3Sv+/PPP4qhRo8Q33njDUT5z5kzx3nvvFQ8fPix+8MEH4sCBA8Xc3Nw2nduTnn76afH6668Xc3NzxV27donDhg0T33///XbTflEUxVtvvVV85JFHxBMnTohff/21qNFoxK+++qpdXQMKXu7cxwONs/fhQOLqvTRQuHof9De9Xi/OmjVL7N27t7h7925RFC//GeJyn18CoQ2lpaXikCFDxOeff148ceKEuG3bNjE1NVX8/vvvA7IN5Lpgem5wlZT6KVcFc//mqmDvF10VrP2przAo5QP19fViamqq40OFKIrimjVrxLvuusuPtWrd0aNHxd69e4tlZWWObZ9//rk4atQocdeuXWJaWlqzfyj33nuv+NJLL4miKIovvvhis3Y1NDSI6enpjrbfcccdjveKoiju3btXHDRokNjQ0HDZ63S5c3taVVWVeM0114hTp051dBZbtmwRx40b5/iAZ7Vaxeuuu07cunWrKIqi+PjjjzveK4qiePbsWbFPnz7i6dOnRVEUxTFjxjjeK4qi+Mknn4hjx44VRVEUT506Jfbu3VssLCx0lM+dO7fN5/Zku/v37y/+8ssvjm1r164Vn3rqqXbRflEURa1WK/bu3Vs8fPiwY9vs2bPFRYsWtZtrQMHNnft4IHHlPhwo3LmXBgJ37oP+VFBQIP7xj38Ub7rppmYBHXc/v/hSa23497//LU6YMKHZe59++mnxH//4hyiKgdUGcl2wPTe4Sir9lKuCuX9zVbD3i64K1v7Ulzh9zwfy8/NhNpuRnp7u2JaRkYHc3Nxm03YCRXx8PN544w3ExcU1215XV4fc3Fz0798fYWFhju0ZGRnIyckBAOTm5mLIkCGOMrVajQEDBiAnJwcWiwUHDhxoVp6WlgaTyYT8/PzLXqfLndvTli9fjilTpqBnz56Obbm5ucjIyIAgCAAAQRAwePDgVtvfuXNnJCUlITc3F+fOnUNxcTGuuuqqZvUvKipCaWkpcnNz0blzZ6SkpDQr/+2339p0bk/Jzs5GREQEhg4d6tiWlZWFZcuWtYv2A4BKpYJarcZHH30Ek8mE48ePY9++fejXr1+7uQYU3Ny5jwcSV+7DgcKde2kgcOc+6E979uzBsGHDsHnz5mbb3fn84muttcE+velCdXV1AAKrDeS6YHtucJVU+ilXBXP/5qpg7xddFaz9qS8xKOUDZWVl6NixI0JDQx3b4uLiYDAYoNVq/VexVkRFRWH06NGO11arFRs3bsTw4cNRVlaGhISEZu+PjY1FSUkJAFyyvKamBgaDoVm5QqFAdHQ0SkpKLnudLnduT/r555/x66+/4sEHH2y2/XJ1KC0tbbW8rKwMAJqV2ztie3lL+547d65N5/aUwsJCJCcn45NPPsGECRPwhz/8AWvWrIHVam0X7QcApVKJ+fPnY/PmzdBoNJg4cSKuueYa3HLLLe3mGlBwc+c+HihcvQ8HCnfupYHAnfugP91xxx2YO3cu1Gp1s+3ufH7xtdbakJKSgrS0NMfriooKbN++HSNGjAAQWG0g1wXbc4OrpNBPuSrY+zdXBXu/6Kpg7U99SeHvCrQHOp2uWccCwPHaaDT6o0pOWblyJfLy8vDhhx/i7bffbrEt9na01laj0Qi9Xu943VK5KIqXvE6XOrYnGQwGLFiwAPPnz4dKpWpWdrk66PV6p9rvTPt81f6GhgacOnUKmzZtwrJly1BWVob58+dDrVa3i/bbHTt2DGPHjsVf/vIXFBQUYPHixRgxYkS7ugYkHc7cxwOBO/fhQOHOvTRQuHofDERSu7/q9Xo89NBDiIuLw5///GcAwdcGalmwPze4Ktj6KVdJoX9zlRT6RVdJqT/1BgalfECpVF70F8v++sKbUaBZuXIlNmzYgFWrVqF3795QKpUXfUtjNBod7WitrVFRUVAqlY7XF5ar1WpYLJZLXqfLndtTVq9ejYEDBzb79sautfZdrv1qtbrZB4oLr4VarXb52J5uv0KhQF1dHZ5//nkkJycDAM6ePYv3338fXbt2lXz7Ads3WB9++CF++OEHqFQqpKam4ty5c3j11VfRpUuXdnENSDqcvY8HAnfuw4HCnXtpIHDnPhiI3Pn8Emjq6+vx4IMP4uTJk/j3v//tGFEVTG2g1gXzc4OrgrGfcpUU+jdXBXu/6Cqp9afewOl7PpCYmIiqqiqYzWbHtrKyMqhUqoD+oLB48WK89dZbWLlyJW644QYAtraUl5c3e195eblj2GFr5fHx8YiOjoZSqWxWbjabodVqER8ff9nrdLlze8r27dvxzTffID09Henp6fj888/x+eefIz093a32JyYmOtrUtH0AHOWt7XupY3u6/fHx8VAqlY7OAgC6d++O4uLidtF+ADh48CC6du3arEPo378/zp49226uAUmDK/fxQODOfThQuHMvDQTu3AcDkTv37kBSV1eH++67DwUFBdiwYQO6devmKAuWNtClBetzg6uCtZ9ylRT6N1cFe7/oKqn1p97AoJQP9OvXDwqFolnCsuzsbKSmpkImC8xfwerVq7Fp0ya88MILmDRpkmO7RqPBoUOHHNOQAFtbNBqNozw7O9tRptPpkJeXB41GA5lMhtTU1GblOTk5UCgU6Nu372Wv0+XO7SnvvvsuPv/8c3zyySf45JNPMG7cOIwbNw6ffPIJNBoNfvvtN4iiCAAQRRH79u1rtf3FxcUoLi6GRqNBYmIikpKSmpVnZ2cjKSkJCQkJSEtLQ1FRUbM5xNnZ2Y78EZc7t6doNBoYDAacOHHCse348eNITk5uF+0HbDmfTp061eybi+PHjyMlJaXdXAMKfq7exwOBO/fhQOHOvTQQuHMfDETufH4JFFarFbNnz8aZM2fw7rvvolevXs3Kg6ENdHnB+NzgqmDup1wlhf7NVcHeL7pKav2pV/hsnb927umnnxYnTZok5ubmil9//bU4ePBgcefOnf6uVouOHj0q9uvXT1y1apVYWlra7MdsNos33nij+Mgjj4hHjhwR165dK6alpYlFRUWiKIpiYWGhmJqaKq5du1Y8cuSI+Pe//1286aabHMtcbtu2TRw8eLD49ddfi7m5ueKkSZPExYsXO859qet0uXN7y5NPPulYqrW2tlYcPny4uHjxYrGgoEBcvHixOHLkSMeStfv27RMHDBggfvDBB+Lvv/8u3nXXXeLMmTMdx1q7dq04atQocffu3eLu3bvFUaNGievXr3eUz5gxQ7zrrrvE33//Xfzggw/E1NRUMTc3t03n9qSsrCzxz3/+s/j777+L//3vf8Xhw4eLGzZsaDftr6mpEUeOHCk+/vjj4vHjx8Vvv/1WHDp0qPj++++3m2tAwc2d+3ggcuY+HEhcvZcGAnfug4Gid+/e4u7du0VRvPxniMt9fvGXpm3YvHmz2LdvX/H7779v9m+6qqpKFMXAbQM5L5ieG1wltX7KVcHav7kqmPtFV0mhP/U2BqV8pKGhQXziiSfEtLQ0cdSoUeJbb73l7yq1au3atWLv3r1b/BFFUTx58qR45513igMHDhQnTZok/vTTT832/89//iNef/314qBBg8R7771XPH369EXHHzFihJiRkSHOmTNH1Ov1jrLLXafLndsbmnYWoiiKubm54s033yympqaK06ZNEw8dOtTs/Vu3bhXHjBkjpqWlibNmzRIrKysdZWazWVy6dKk4ZMgQcdiwYeLKlSubfVgsLy8XZ86cKaamporjxo0TP//882bHvty5PaWmpkZ8/PHHxbS0NHHEiBHiyy+/7Khne2i/KIpiQUGBOH36dHHw4MHi+PHjxbfeeqvdXQMKXu7exwONs/fhQOHOvTQQuHMfDARNAzqi6P7nF39o2oYZM2a0+G/6rrvucrw/ENtAzgum5wZXSa2fclWw9m+uCvZ+0VXB3p96myCKjWPFiIiIiIiIiIiIfERaE5OJiIiIiIiIiCgoMChFREREREREREQ+x6AUERERERERERH5HINSRERERERERETkcwxKERERERERERGRzzEoRUREREREREREPsegFBERERERERER+RyDUkRERERERERE5HMMShERERERERERkc8xKEVERERERERERD7HoBQREREREREREfkcg1JERERERERERORzDEoREREREREREZHPMShFREREREREREQ+x6AUERERERERERH5HINSRERERERERETkcwxKERERERERERGRzzEoRUREREREREREPsegFBERERERERER+RyDUkRERERERERE5HMMShERERERERERkc8xKEVERERERERERD7HoBQREREREREREfkcg1JERERERERERORzDEoREREREREREZHPMShFREREREREREQ+x6AUERERERERERH5HINSRERERERERETkcwxKERERERERERGRzzEoRUREREREREREPsegFBERERERERER+RyDUkRERERERERE5HMMShERERERERERkc8xKEVERERERERERD7HoBTRJYii6JN9Ao0U2kBERERERESBjUEpolZ8++23ePLJJ53aZ8uWLVi+fLlT+/zyyy/o06cPfvnlF6f28wSz2YynnnoK6enpGDx4MHbv3u1SG4iIiIiIiIicxaAUUSvefvttFBcXO7XPq6++Cq1W650KecGPP/6Ijz/+GNOnT8fatWuRmpoadG0gIiIiIiKi4KTwdwWIyH/swafMzEx06dLFv5UhIiIiIiKidkUQmTyG6CJ333039uzZ43j9zjvvoHv37li1ahV27dqFqqoq9O7dGw888AD+8Ic/AADGjRuHoqIixz7ffvstUlJSsHfvXrz22mvYv38/dDodEhIS8Kc//QmzZs2CTCbDL7/8gnvuuQfvvPMOhg0b1uY6btiwAe+//z6KiooQHR2NP/zhD3jssccQEREBADAYDHjuueewfft26HQ6XHfddUhLS8OiRYtw+PBhPPXUU/j4448dxxs6dCiKiopabAMRERERERGRp3H6HlELFixYgP79+6N///7YvHkzUlJSMG3aNPz666949NFH8fLLLyM5ORmzZs3CZ599BgBYvXo14uPjMWbMGGzevBkJCQnIz8/H9OnTER0djVWrVuHVV1/FkCFDsHr1anz55Zcu12/btm1YuXIl7rzzTrz55puYNWsWPv30UyxevNjxnsceewxbtmxBVlYWXnzxRWi1Wrz44ouO8gcffBAPPPCAo+4LFixosQ1ERERERERE3sDpe0Qt6Nmzp2PEUVpaGlauXInKykrs3LkTycnJAIAxY8Zg+vTpWLFiBSZPnoz+/fsjNDQUMTExSEtLAwDk5+fj6quvxsqVKyGT2WLAI0eOxHfffYdffvkFkyZNcql+e/bsQUpKCu68807IZDIMHToUYWFhqK6uBgAcOXIEX331FebPn48777wTADBq1ChMmjTJ8Z4rrrgCV1xxBQCgX79+jhFRF7aBiIiIiIiIyBs4UoqoDfbs2YP09HRHQMruj3/8I8rKynD8+PEW97v55pvx+uuvw2QyIT8/Hzt37sRLL70Ei8UCk8nkcn2GDx+OEydOIDMzE6tXr8aBAwdw00034e677wYA/PrrrwDgmFoIAHK5HJMnT3b5nERERERERESexJFSRG1QXV3dYiLwuLg4AEBNTU2L++n1eixevBiffvopzGYzUlJSkJ6eDoVCAXfSud14442wWq3497//jVdeecUxnfCxxx7DjTfe6BgNFRMT02y/xMREl89JRERERERE5EkMShG1QYcOHVBWVnbRdvu2jh07trjfkiVLsHPnTrz44ou4+uqrERYWBgAYMWKE23WaPHkyJk+ejNraWvzvf//D66+/jscffxwZGRmO+pSXlyMpKcmxT1VVldvnJSIiIiIiIvIETt8jaoU9BxQAXHXVVfjtt9+arUwHAJ999hni4+PRtWvXi/YBgOzsbAwbNgzjx493BKQOHjyIyspKWK1Wl+v2yCOPYNasWQCAyMhITJw4EQ8++CDMZjNKS0sxfPhwCIKAHTt2NNvv+++/v+yxL2wDERERERERkTdwpBRRK6KiovDbb7/h559/xvTp0/HZZ59h+vTpmD17NqKjo/HJJ59g9+7dWLp0qSOQExUVhby8POzZsweDBg3CoEGD8OWXX+L9999Hjx49kJ+fj1dffRWCIECn07lct+HDh2PBggVYvnw5rrnmGtTU1GD16tXo1q0b+vbti5CQENx2221YtWoVzGYz+vfvj88++wy//fZbm9rdtA0qlcrlehIRERERERG1hkEpolbceeedOHjwIP76179i2bJleP/99/H888/jX//6F0wmE/r27YtXXnmlWTLxGTNmYOnSpbjvvvvw1ltv4amnnoLJZMKLL74Io9GIlJQUPPDAAzh69Ci+++47WCwWl+p22223wWQyYdOmTfj3v/8NlUqFESNG4PHHH0dISAgAYP78+YiLi8O7776LmpoajBkzBnfccQfee++9Sx77wjYMGTLEpToSERERERERXYogupNtmYiCyssvv4zVq1fj8OHD/q4KERERERERtXMcKUUUQCwWy2VX5RMEAXK53Ec1IiIiIiIiIvIOBqWIAsh11113UTL1Cw0dOhTvvvuuj2pERERERERE5B2cvkcUQA4fPgyj0XjJ94SHh+PKK6/0UY2IiIiIiIiIvINBKSIiIiIiIiIi8jmZvytARERERERERETtD4NSRERERERERETkcwxKERERERERERGRzzEoRUREREREREREPsegFBERERERERER+ZzC3xUIZhUVtXBm7UJBAGJjI53ej1rG6+l5vKaeFejX014/IiIiIiIif2BQyg2iCJceNF3dj1rG6+l5vKaexetJRERERER0MU7fIyIiIiIiIiIin2NQioiIiIiIiIiIfI5BKSIiIiIiIiIi8jkGpYiIiIiIiIiIyOcYlCIiIiIiIiIiIp9jUIqIiIiIiIiIiHyOQSkiIiIiIiIiIvI5BqWIiIiIiIiIiMjnGJQiIiIiIiIiIiKfY1CKiIiIiIiIiIh8jkEpIiIiIvr/7d15lNxlnS/+d3U6vYQQIOuQwDAsI2toQgIZBGQZdRIMP7hh8cKI2x0JQmS4jhMMKLIYkUX0XglLVK4oXmEgOC4gXBAvV1lEgumAmWhCBDImSDcYAqSTTnfq90fSDZ0ApqGrKk29Xuf0CfX9fqueTz1Vx3Pq7ed5vgAAZdcvQqn29vZMmTIlv/rVr7qPLVu2LB/96EdzwAEH5Jhjjskvf/nLHs958MEHM2XKlDQ1NeXDH/5wli1b1uP8t7/97Rx++OEZN25czjvvvLS1tZXlvRSLxe4/AAAAgGq11YdSa9euzac//eksXry4+1ixWMxZZ52V4cOHZ+7cuTnuuOMyffr0LF++PEmyfPnynHXWWZk6dWpuu+22DB06NGeeeWZ3EHT33Xfn6quvzsUXX5wbb7wxzc3NueKKK8r2nq77xdKyjQUAAACwNdqqQ6klS5bk5JNPzjPPPNPj+MMPP5xly5bl4osvzu67755p06blgAMOyNy5c5Mkt956a/bbb798/OMfz9/+7d/m0ksvzR//+Mc88sgjSZLvfOc7+chHPpKjjjoq+++/fy666KLMnTu3bN1SKRTKMw4AAADAVmqrDqUeeeSRTJw4MbfcckuP483Nzdlnn30yaNCg7mPjx4/P/Pnzu89PmDCh+1xjY2P23XffzJ8/P52dnXn88cd7nD/ggAOybt26LFq0qLRvCAAAAIAkSW2lC3gzp5566useb2lpyciRI3scGzZsWJ599tm/eH7VqlVZu3Ztj/O1tbXZfvvtu58PAAAAQGlt1aHUG2lra0tdXV2PY3V1dWlvb/+L59esWdP9+I2ev6V6uwqv6/pC4dU/3rrXzid9w5z2ra19PrfWugAAgOrQL0Op+vr6rFy5ssex9vb2NDQ0dJ/fNGBqb2/PkCFDUl9f3/140/ONjY29qmPYsG17WfmGTdobG+szfPi2KfhF2CfeyufAmzOnfct8AgAAbK5fhlKjRo3KkiVLehxrbW3tXpI3atSotLa2bnZ+7733zvbbb5/6+vq0trZm9913T5J0dHRk5cqVGTFiRK/qeP75l7Lxhn5bpFBIhg4dnLa2tWltfUko9TYVCht+7Pf2c+CNmdO+tbXPZ1d9AAAAldAvQ6mmpqbMmTMna9as6e6OmjdvXsaPH999ft68ed3Xt7W1ZeHChZk+fXpqamoyduzYzJs3LxMnTkySzJ8/P7W1tdlrr716VUexmLf0Q/OtPo/XZz77njntW+YTAABgc1v13ffeyMEHH5wdd9wxM2fOzOLFizNnzpwsWLAgJ554YpLkhBNOyGOPPZY5c+Zk8eLFmTlzZnbaaafuEOrUU0/Nt771rdx7771ZsGBBLrzwwpx88sm9Xr73VhWLxRT9QgUAAACqWL8MpQYMGJBrrrkmLS0tmTp1an70ox9l9uzZGT16dJJkp512yte//vXMnTs3J554YlauXJnZs2d3L5f7wAc+kGnTpuWCCy7Ixz/+8ey///7513/910q+JQAAAICqUihq2XnLWlt7v6fUsGGDc8kPmjPt0F1TU9MvM8GtRqGQDB++ba8/B96YOe1bW/t8dtUHAABQCVIRAAAAAMpOKAUAAABA2QmlAAAAACg7oRQAAAAAZSeUKjP7ygMAAAAIpQAAAACoAKEUAAAAAGUnlAIAAACg7IRSAAAAAJSdUKoCisWiDc8BAACAqiaUAgAAAKDshFIAAAAAlJ1QCgAAAICyE0oBAAAAUHZCKQAAAADKTigFAAAAQNkJpQAAAAAoO6EUAAAAAGUnlCqzYrGYYrFY6TIAAAAAKkooBQAAAEDZCaUAAAAAKDuhFAAAAABlJ5QCAAAAoOyEUgAAAACUnVAKAAAAgLITSgEAAABQdkKpCigWiykWi5UuAwAAAKBihFIAAAAAlJ1QCgAAAICyE0oBAAAAUHZCKQAAAADKTigFAAAAQNkJpQAAAAAoO6FUmRWLxUqXAAAAAFBxQikAAAAAyk4oBQAAAEDZCaUAAAAAKDuhFAAAAABlJ5QCAAAAoOyEUgAAAACUnVAKAAAAgLITSgEAAABQdkIpAAAAAMpOKAUAAABA2QmlAAAAACg7oRQAAAAAZSeUAgAAAKDshFIAAAAAlF2/DqVWrFiRadOm5cADD8zRRx+db3/7293nFi5cmJNOOilNTU054YQT8sQTT/R47k9+8pO8973vTVNTU84666y88MILZa4eAAAAoHr161DqnHPOyaBBg3L77bfnvPPOy9e+9rXcc889Wb16dU4//fRMmDAht99+e8aNG5dp06Zl9erVSZIFCxbk/PPPz/Tp03PLLbdk1apVmTlzZoXfDQAAAED16Leh1Isvvpj58+fnk5/8ZP7mb/4m733ve3P44YfnoYceyp133pn6+vrMmDEju+++e84///xss802ueuuu5IkN910UyZPnpzjjz8+e+21Vy6//PLcf//9WbZsWYXfFQAAAEB16LehVENDQxobG3P77bdn3bp1Wbp0aR577LHsvffeaW5uzvjx41MoFJIkhUIhBx54YObPn58kaW5uzoQJE7pfa8cdd8zo0aPT3NxcibcCAAAAUHX6bShVX1+fCy64ILfcckuampoyefLkvOc978lJJ52UlpaWjBw5ssf1w4YNy7PPPpskee655970PAAAAAClVVvpAt6OJ598MkcddVQ+9rGPZfHixbnkkktyyCGHpK2tLXV1dT2uraurS3t7e5JkzZo1b3p+S21sxHpL1xcKvX8+PXXNn3nsO+a0b23t87m11gUAAFSHfhtKPfTQQ7ntttty//33p6GhIWPHjs2f/vSnXHvttdl55503C5ja29vT0NCQZEOX1eudb2xs7FUNw4Zt2+u6Ozo6MmhQXYYP3za1tf12+rcqb+Vz4M2Z075lPgEAADbXb1ORJ554Irvsskt30JQk++yzT6677rpMmDAhra2tPa5vbW3tXrI3atSo1z0/YsSIXtXw/PMvpVjc8usLhWS77RqzenV7WltfEkq9TYXChh/7vf0ceGPmtG9t7fPZVR8AAEAl9Ns9pUaOHJmnn366R8fT0qVLs9NOO6WpqSm/+c1vUtz4K7BYLOaxxx5LU1NTkqSpqSnz5s3rft6KFSuyYsWK7vNbqljs/d/bea6/15/PStfwTvszp9U1nwAAAJXSb0Opo48+OgMHDsznPve5/OEPf8h9992X6667LqeddlomTZqUVatWZdasWVmyZElmzZqVtra2TJ48OUlyyimn5Ic//GFuvfXWLFq0KDNmzMiRRx6ZnXfeucLvCgAAAKA69NtQatttt823v/3ttLS05MQTT8yll16aT37yk/ngBz+YwYMH5/rrr8+8efMyderUNDc3Z86cORk0aFCSZNy4cbn44osze/bsnHLKKdluu+1y6aWXVvgdAQAAAFSPQrFoAcdb1dra+z2ltt++MZf8oDlnHLabPaXepkIhGT58215/Drwxc9q3tvb57KoPAACgEvptpxQAAAAA/ZdQCgAAAICyE0oBAAAAUHZCKQAAAADKTigFAAAAQNkJpQAAAAAoO6EUAAAAAGUnlAIAAACg7IRSZVYsFrN+/foUi8VKlwIAAABQMUIpAAAAAMpOKAUAAABA2QmlAAAAACg7oRQAAAAAZSeUAgAAAKDshFIAAAAAlJ1QCgAAAICyE0oBAAAAUHZCKQAAAADKTigFAAAAQNkJpQAAAAAoO6EUAAAAAGUnlAIAAACg7IRSAAAAAJSdUAoAAACAshNKAQAAAFB2QikAAAAAyk4oVWbFYrHSJQAAAABUnFAKAAAAgLITSgEAAABQdkIpAAAAAMpOKAUAAABA2QmlAAAAACg7oVQFFItFd+EDAAAAqppQqswEUgAAAABCKQAAAAAqQCgFAAAAQNkJpQAAAAAoO6EUAAAAAGUnlAIAAACg7IRSAAAAAJSdUAoAAACAshNKAQAAAFB2QikAAAAAyk4oBQAAAEDZlSSUevjhh1MsFkvx0gAAAAC8A9SW4kX/+Z//OQMHDsykSZMyZcqUHHDAAaUYBgAAAIB+qiSh1AMPPJAHHnggd911V04//fQMHjw4kydPzgc+8IHss88+pRgSAAAAgH6kJKFUbW1tjjjiiBxxxBHp6OjIgw8+mPvuuy+nnnpqRo0alWOPPTZTp07N6NGjSzE8AAAAAFu5km503t7envvvvz933HFHfvrTn2aHHXbI0Ucfnaeeeiof+MAHctNNN73t17/oooty0EEH5d3vfneuuuqq7r2sFi5cmJNOOilNTU054YQT8sQTT/R47k9+8pO8973vTVNTU84666y88MILb6uWLWWvLQAAAIAShVL33ntvPvOZz+Td7353Pve5z6WxsTGzZ8/Oz3/+85x77rm58sor85nPfCZf/epX39Y4X/ziF/Pggw/mW9/6Vr7yla/k3/7t33LLLbdk9erVOf300zNhwoTcfvvtGTduXKZNm5bVq1cnSRYsWJDzzz8/06dPzy233JJVq1Zl5syZffHWAQAAANgCJVm+d+655+a9731vrrrqqhx66KEZMGDAZtfst99++djHPvaWx1i5cmXmzp2b//W//lf233//JMnHP/7xNDc3p7a2NvX19ZkxY0YKhULOP//8/L//9/9y1113ZerUqbnpppsyefLkHH/88UmSyy+/PEcddVSWLVuWnXfe+S3XBAAAAMCWKUko9eCDD+bll1/OqlWrugOpO++8MwcddFBGjBiRJGlqakpTU9NbHmPevHkZPHhwDj744O5jp59+epLk85//fMaPH59CoZAkKRQKOfDAAzN//vxMnTo1zc3N+cQnPtH9vB133DGjR49Oc3OzUAoAAACgDEqyfO+xxx7L+973vvz4xz/uPvad73wnxxxzTObNm9cnYyxbtixjxozJv//7v2fSpEn5+7//+8yePTvr169PS0tLRo4c2eP6YcOG5dlnn02SPPfcc296HgAAAIDSKkmn1GWXXZYzzjiju3MpSW6++eZcf/31+dKXvpS5c+e+7TFWr16dp59+OjfffHMuvfTStLS05IILLkhjY2Pa2tpSV1fX4/q6urq0t7cnSdasWfOm57fUxkast3R9odD759NT1/yZx75jTvvW1j6fW2tdAABAdShJKPXUU09l0qRJmx2fPHlyrrnmmj4Zo7a2Ni+//HK+8pWvZMyYMUmS5cuX5/vf/3522WWXzQKm9vb2NDQ0JEnq6+tf93xjY2Ovahg2bNte171mzZoMGlSX4cO33SwY4615K58Db86c9i3zCQAAsLmShFK77bZbfvrTn2batGk9jt93333567/+6z4ZY8SIEamvr+8OpJJk1113zYoVK3LwwQentbW1x/Wtra3dS/ZGjRr1uue79rvaUs8//1KKxS2/vlBIttlmYFavbk9r60tCqbepUNjwY7+3nwNvzJz2ra19PrvqAwAAqISShFLnnHNOzjzzzDzwwAPZd999kyS/+93v8uijj+brX/96n4zR1NSUtWvX5g9/+EN23XXXJMnSpUszZsyYNDU15Rvf+EaKxWIKhUKKxWIee+yxnHHGGd3PnTdvXqZOnZokWbFiRVasWNHrjdeLxbzlH5pv57n0ZC77njntW+YTAABgcyXZ6Pw973lPfvCDH2SfffbJ0qVL88wzz2SvvfbKHXfckSOOOKJPxthtt91y5JFHZubMmVm0aFF+8YtfZM6cOTnllFMyadKkrFq1KrNmzcqSJUsya9astLW1ZfLkyUmSU045JT/84Q9z6623ZtGiRZkxY0aOPPJId94DAAAAKJNCsdh////7l156KZdccknuueeeNDY25tRTT81ZZ52VQqGQBQsW5Atf+EKefPLJ7Lnnnrnooouyzz77dD/39ttvz//8n/8zL774Yg499NBccskl2WGHHXo1fmtr75fvDR48MJf8oDlnvmcPy/fepkIhGT58215/Drwxc9q3tvb57KoPAACgEkoSSq1atSo33HBDHn/88XR0dGTTIb7zne/09ZAVIZSqrK39B39/ZE771tY+n0IpAACgkkqyp9SMGTPy+OOP59hjj83gwYNLMQQAAAAA/VhJQqkHH3wwN910U/bff/9SvHy/VywWN+seAwAAAKgmJdnofNSoUampKclLAwAAAPAOULLlexdeeGHOPvvs7LLLLhk4cGCP86NHjy7FsAAAAAD0EyUJpT71qU8lSU4//fQkSaFQSLJh2VqhUMh//Md/lGJYAAAAAPqJkoRSP/vZz0rxsgAAAAC8Q5Rk46cxY8ZkzJgxWb16dRYuXJgddtgh69evz+jRozNmzJhSDAkAAABAP1KSTqkXX3wx//zP/5xHHnkkSXL33Xdn1qxZWbZsWebMmSOYAgAAAKhyJemU+uIXv5jGxsY8/PDDqa+vT5J86Utfyl/91V/li1/8YimGBAAAAKAfKUko9Ytf/CKf/vSnM2TIkO5jQ4cOzcyZM/PrX/+6FEP2K8ViMcVisdJlAAAAAFRMSUKpJFm7du1mx1544YXU1pZkxWC/IZACAAAAKFEoNWXKlMyaNSuLFy9OoVDI6tWr8/DDD+fzn/98jjnmmFIMCQAAAEA/UpK2pRkzZuSqq67K1KlTs27duhx33HEZMGBATjrppMyYMaMUQwIAAADQj5QklKqrq8tnP/vZnHPOOVm2bFk6Ozuz8847Z5tttinFcAAAAAD0MyUJpV5vM/OFCxd2//dBBx1UimEBAAAA6CdKEkqddtppr3u8rq4uI0aMyM9+9rNSDAsAAABAP1GSUGrRokU9Hnd2duaZZ57JJZdckmOPPbYUQwIAAADQj5Tk7nubGjBgQHbdddd89rOfzf/4H/+jHEMCAAAAsBUrSyjV5fnnn8+qVavKOSQAAAAAW6GSLN+bOXPmZsdeeeWVPPjgg5k0aVIphuw3isVipUsAAAAAqLiShFKvZ/vtt8+5556b4447rlxDbpWeen51fvtcW15p70xDQ6WrAQAAAKiMkoRSl156aSle9h1hzi+fzuPPrcl9S57PSQduU+lyAAAAACqiJKHU1VdfvcXXTp8+vRQlbLVeWdvZ418AAACAalSSUOrpp5/OXXfdle233z777bdf6urqsmjRojzzzDM54IADUlu7YdhCoVCK4bdqHeuLPf4FAAAAqEYlCaXq6upy7LHH5qKLLsrAgQO7j1922WV58cUX86UvfakUw/YLnevXJ0nWCaUAAACAKlZTihe9884780//9E89AqkkOfnkk3PnnXeWYsh+o3NjGNUplAIAAACqWElCqVGjRuUXv/jFZsfvvvvu7LzzzqUYst/oWra3rlMoBQAAAFSvkizf+5d/+Zecc845+b//9/9mr732SpI8/vjjWbhwYa677rpSDNlvvLqn1PoKVwIAAABQOSXplHrf+96X22+/Pe9617vy5JNP5o9//GMOPvjg3H333Tn44INLMWS/0WmjcwAAAIDSdEolyZ577pmZM2fmxRdfzODBg1NTU1OVd9vbVHcoZfkeAAAAUMVK0ilVLBZz7bXXZuLEiTnkkEOyfPny/Ou//msuuOCCtLe3l2LIfqN7TymdUgAAAEAVK0koNXv27PzoRz/Kl7/85dTV1SVJ/st/+S954IEHcvnll5diyH7D8j0AAACAEoVSP/jBD3LxxRfnqKOO6l6yd+ihh+ayyy7LT3/601IM2W90hVGdQikAAACgipUklHr++eczcuTIzY4PGTIkq1evLsWQ/UZXGLXOnlIAAABAFStJKPV3f/d3+da3vtXj2Msvv5yrrroqEydOLMWQ/UZH9/K99RWuBAAAAKByShJKXXjhhVm4cGEOPfTQrF27NmeeeWaOOOKI/PGPf8znPve5UgzZb9hTCgAAACCpLcWLDhkyJLfddlseeuihLF26NB0dHdl1111z2GGHpaamJDlYv9EhlAIAAAAoTSg1ZcqUXH311TnkkENyyCGHlGKIfsueUgAAAAAlWr5XU1OTdevWleKl+z3L9wAAAABK1Cl15JFH5mMf+1iOOuqojBkzJnV1dT3OT58+vRTD9gvdy/c6bXQOAAAAVK+ShFK/+93vsu++++a5557Lc8891+NcoVAoxZD9hk4pAAAAgD4Mpf7xH/8x1157bYYMGZLvfve7SZI1a9akoaGhr4Z4R+jeU0ooBQAAAFSxPttTat68eZvtI/Xud787y5Yt66sh+r1isdjdIdUplAIAAACqWEk2Ou9SLApeXuu1N9xz9z0AAACgmpU0lKKn13ZH2VMKAAAAqGZCqTISSgEAAABs0Kd33/vpT3+awYMHdz9ev3597rnnngwdOrTHdccff3xfDttvCKUAAAAANuizUGr06NG54YYbehwbNmxYbrrpph7HCoWCUCpJR+f6ClYCAAAAUFl9Fkrdd999ffVSvXb66adn6NCh+fKXv5wkWbhwYb7whS/k97//ffbYY49cdNFF2W+//bqv/8lPfpKvfe1raWlpyWGHHZZLLrlks26uUuh4zcbvncVkfbGYmkKh5OMCAAAAbG36/Z5Sd9xxR+6///7ux6tXr87pp5+eCRMm5Pbbb8+4ceMybdq0rF69OkmyYMGCnH/++Zk+fXpuueWWrFq1KjNnzixLrZt2R3W4Ax8AAABQpfp1KLVy5cpcfvnlGTt2bPexO++8M/X19ZkxY0Z23333nH/++dlmm21y1113JUluuummTJ48Occff3z22muvXH755bn//vuzbNmyktfbuck+UvaVAgAAAKpVvw6lLrvsshx33HHZY489uo81Nzdn/PjxKWxcFlcoFHLggQdm/vz53ecnTJjQff2OO+6Y0aNHp7m5ueT1btoYtc6+UgAAAECV6reh1EMPPZRHH300Z555Zo/jLS0tGTlyZI9jw4YNy7PPPpskee655970fCnplAIAAADYoM82Oi+ntWvX5gtf+EIuuOCCNDQ09DjX1taWurq6Hsfq6urS3t6eJFmzZs2bnu+N3u5R3lncNJRa3+vX4FVdc2cO+4457Vtb+3xurXUBAADVoV+GUldffXX222+/HH744Zudq6+v3yxgam9v7w6v3uh8Y2Njr+sYNmzbXl3/7Nqey/WGbLdNhg8b1Otx6am3nwN/mTntW+YTAABgc/0ylLrjjjvS2tqacePGJUl3yHT33XdnypQpaW1t7XF9a2tr95K9UaNGve75ESNG9LqO559/KcVerMB74c+v9Hj8XOtLGVTs7PW4bFAobPix39vPgTdmTvvW1j6fXfUBAABUQr8Mpb773e+mo6Oj+/GVV16ZJPnMZz6TX//61/nGN76RYrGYQqGQYrGYxx57LGeccUaSpKmpKfPmzcvUqVOTJCtWrMiKFSvS1NTU6zqKxfTqh+ame0it6yxulT9U+5vefg78Zea0b5lPAACAzfXLUGrMmDE9Hm+zzTZJkl122SXDhg3LV77ylcyaNSv/9b/+19x8881pa2vL5MmTkySnnHJKTjvttBxwwAEZO3ZsZs2alSOPPDI777xzyevu2ORue+vWu/seAAAAUJ367d333sjgwYNz/fXXd3dDNTc3Z86cORk0aMPeTePGjcvFF1+c2bNn55RTTsl2222XSy+9tCy1bbbReafWCQAAAKA6FYpFi0reqtbW3u0T86unX8j0257ofnz9B/fPgTtt3/eFVYlCIRk+fNtefw68MXPat7b2+eyqDwAAoBLecZ1SW7OOTVbr6ZQCAAAAqpVQqow6N93ofL1QCgAAAKhOQqky2jSU0ikFAAAAVCuhVBltFkq5+x4AAABQpYRSZbRpCKVTCgAAAKhWQqky2nxPKZ1SAAAAQHUSSpVRR9GeUgAAAACJUKqs3H0PAAAAYAOhVBl1brJar0MoBQAAAFQpoVQZbXb3vU1TKgAAAIAqIZQqo81CKZ1SAAAAQJUSSpXRpiGUjc4BAACAaiWUKqOO9T2X661bb/keAAAAUJ2EUmW0+Z5SOqUAAACA6iSUKqPOYs8Qap09pQAAAIAqJZQqo01vtufuewAAAEC1EkqV0abL93RKAQAAANVKKFVGXRudF7ofC6UAAACA6iSUKqOuTqkBG2fd8j0AAACgWgmlyqjrbnsDCht6pXRKAQAAANVKKFVGXSFU7cZZX9cplAIAAACqk1CqjDqLm3ZKWb4HAAAAVCehVBltuqeUTikAAACgWgmlyqg7lNp4+z17SgEAAADVSihVRq92Sm1cvufuewAAAECVEkqV0at7Sm14rFMKAAAAqFZCqTLq6pSq3bjRuT2lAAAAgGollCqjjk02Onf3PQAAAKBaCaXKqDuU0ikFAAAAVDmhVBl1btYpJZQCAAAAqpNQqow6N+uUsnwPAAAAqE5CqTLatFOqU6cUAAAAUKWEUmXUWezqlNrw2J5SAAAAQLUSSpXRqxuddz22fA8AAACoTkKpMuro7Fq+5+57AAAAQHUTSpVR1/K9mmz4txj7SgEAAADVSShVRl0BVO3GTqnEHfgAAACA6iSUKqPOTfaUSl7dZwoAAACgmgilyujVUOrVVKrDvlIAAABAFRJKlVH3nlKFDX+JO/ABAAAA1UkoVUZdnVKFwqv7Sq2zfA8AAACoQkKpMuoOpVLsDqUs3wMAAACqkVCqjDq6Q6lXA6p1lu8BAAAAVUgoVUavLt8rpKagUwoAAACoXkKpMikWi+nKn1670bk9pQAAAIBqJJQqk9c2RBWS13RKWb4HAAAAVB+hVJl0vqYjqvCaTqkOnVIAAABAFRJKlclrQ6maxJ5SAAAAQFWrrXQB1WLggEIG1Q1I5/r1qSls6JZK3H0PAAAAqE79tlPqT3/6U84+++wcfPDBOfzww3PppZdm7dq1SZJly5blox/9aA444IAcc8wx+eUvf9njuQ8++GCmTJmSpqamfPjDH86yZctKXu/AATX55gfH5pi9tk+hUMiAruV7OqUAAACAKtQvQ6lisZizzz47bW1t+d73vpevfvWr+fnPf56vfe1rKRaLOeusszJ8+PDMnTs3xx13XKZPn57ly5cnSZYvX56zzjorU6dOzW233ZahQ4fmzDPPTLFY+nBot2GDsl3Dhua0wsZWKXffAwAAAKpRv1y+t3Tp0syfPz8PPPBAhg8fniQ5++yzc9lll+U973lPli1blptvvjmDBg3K7rvvnoceeihz587Npz71qdx6663Zb7/98vGPfzxJcumll+bQQw/NI488kokTJ5btPby60bnlewAAAED16ZedUiNGjMg3v/nN7kCqy8svv5zm5ubss88+GTRoUPfx8ePHZ/78+UmS5ubmTJgwoftcY2Nj9t133+7z5WKjcwAAAKCa9ctOqSFDhuTwww/vfrx+/frcdNNN+bu/+7u0tLRk5MiRPa4fNmxYnn322ST5i+d7o2uz8t5eXyi8tlOq2OvXYYPXzid9w5z2ra19PrfWugAAgOrQL0OpTV1xxRVZuHBhbrvttnz7299OXV1dj/N1dXVpb29PkrS1tb3p+d4YNmzbXl3f0dGRJGlorM/AgWs2/Pegugwf3rvXoafefg78Zea0b5lPAACAzfX7UOqKK67IjTfemK9+9at517velfr6+qxcubLHNe3t7WloaEiS1NfXbxZAtbe3Z8iQIb0e+/nnX0pv9kfv7NwQSq1pW5vixg3O//xiW1pbX+r12Gzo8hg2bNtefw68MXPat7b2+eyqDwAAoBL6dSh1ySWX5Pvf/36uuOKK/MM//EOSZNSoUVmyZEmP61pbW7uX7I0aNSqtra2bnd977717PX6xmF790Oy6tlh8dTOvjs7iVvljtT/p7efAX2ZO+5b5BAAA2Fy/3Og8Sa6++urcfPPNueqqq/KBD3yg+3hTU1N++9vfZs2aNd3H5s2bl6ampu7z8+bN6z7X1taWhQsXdp8vl66Nzte5+x4AAABQhfplKPXkk0/mmmuuySc+8YmMHz8+LS0t3X8HH3xwdtxxx8ycOTOLFy/OnDlzsmDBgpx44olJkhNOOCGPPfZY5syZk8WLF2fmzJnZaaedMnHixLK+h+6Nzt19DwAAAKhC/TKU+tnPfpbOzs5ce+21Oeyww3r8DRgwINdcc01aWloyderU/OhHP8rs2bMzevToJMlOO+2Ur3/965k7d25OPPHErFy5MrNnz06hzLeh6gql1q0XSgEAAADVp1As2unkrWpt7f1G59f9cnFeXPlyFr2Y/EdLW/5x/E4558jdSlfkO1ihkAwfvm2vPwfemDntW1v7fHbVBwAAUAn9slPqnaB7+Z49pQAAAIAqJJSqkK6Nzjss3wMAAACqkFCqQrr3lOrUKQUAAABUH6FUhby6fE+nFAAAAFB9hFIV0nWvv3WdQikAAACg+gilyqhYLHbfgatr4nVKAQAAANVIKFUhXRud21MKAAAAqEZCqQqxpxQAAABQzYRSFdIdSumUAgAAAKqQUKpCupbv6ZQCAAAAqpFQqkK6OqXcfQ8AAACoRkKpCtmYSemUAgAAAKqSUKpCXu2UsqcUAAAAUH2EUhWiUwoAAACoZkKpCnH3PQAAAKCaCaUqpNAVSumUAgAAAKqQUKpCajamUu6+BwAAAFQjoVSF1OiUAgAAAKqYUKpC3H0PAAAAqGZCqQpx9z0AAACgmgmlKuS1y/eKRcEUAAAAUF2EUhVSeM1/d+qWAgAAAKqMUKpCal6TSq0TSgEAAABVRihVIa8NpTo6hVIAAABAdRFKVchrl++tW+8OfAAAAEB1EUpV0ICN7VI6pQAAAIBqI5SqkGKxmNqNs69TCgAAAKg2QqkK6trfXKcUAAAAUG2EUhXUtdm5u+8BAAAA1UYoVSHFYjE1hQ2pVKdOKQAAAKDKCKUqZEMoteG/O+wpBQAAAFQZoVQFDdjYKbV6XWeFKwEAAAAoL6FUBTUO3DD9z7+yrsKVAAAAAJSXUKqCGms3TH/Ly2srXAkAAABAeQmlKqhx4Ibley0vt1e4EgAAAIDyEkpV0KDuTimhFAAAAFBdhFJlVCwWkxS7HzfUbuiUan3F8j0AAACgugilKqh+wIZ/dUoBAAAA1UYoVUFdG523vtK+sYsKAAAAoDoIpSqocePyvbUd6/PS2o4KVwMAAABQPkKpCqopJEM2ruGzhA8AAACoJkKpClq/fn2GbTMwSdIqlAIAAACqiFCqwoYPqkuSPPfyWvtKAQAAAFVDKFVhXZ1Sz720JuvXr69wNQAAAADlIZSqoPXr12eHhg0fwX+ubBNKAQAAAFVDKFVhz7zwSpLkjoUteegPL1jCBwAAAFQFoVSF7TioJv/wrqEpJpl55+/z7Ko1lS4JAAAAoOSEUhVWLBYzuKYjQxsGpL2zmM/f+bt0rNctBQAAALyzVW0otXbt2px33nmZMGFCDjvssNxwww0VqaNYLGZAITlox/rU1iTNy1flml/8oSK1AAAAAJRLbaULqJTLL788TzzxRG688cYsX7485557bkaPHp1JkyaVvZZ169Zl0IBCDhxZl0eebc93H/3P7LJDQ/6/sTumUCiUvR4AAACAUqvKUGr16tW59dZb841vfCP77rtv9t133yxevDjf+973KhJKddlp29qsWlfMoufX5Yv3LMmzL63NqeN3yrYNAytWEwAAAEApVGUotWjRonR0dGTcuHHdx8aPH5/rrrsu69evT01NaVY1FovF/KWb6+21/YB0dCZLVq7LNx9elht//Z8ZPaQhw7epy9Bt6lJfW5O6AYU01NZkSMPADGmszXYNA7Pdxv+ur63JgEIhA2oKqd34l0Iha9Z1ZnV7Z9rWdeaVjf8+2fpKlrS8koEDCvnrHQZl7OghGTpoYLZtqE3jwAGpSSFJMTWFQgqFZEBNTTa8XKHnv4mOLgAAAKBXqjKUamlpyQ477JC6urruY8OHD8/atWuzcuXKDB06dItep6YmfzFk6nl9IfUDatI+sCZ5TYhTLBa7Q51isZCDxgzMjtvWZsnKzrzUvj7Pr16X51evS1pe2fLBeunBp1bm5t8sf8vPLySp2ZBOdQdWb3bt63ntVBZfM7Fdr9U1xmtfuqZQyPrefAhb6O1kbIU3fIf9Q6HQu+91l2L69wb9JfgaJSndd3RTe43cNlcev08G1Gz590+WDAAAVFJVhlJtbW09Aqkk3Y/b29u3+HWGDt2212Off8KwXj8HAAAA4J2mKu++V19fv1n41PW4oaGhEiUBAAAAVJWqDKVGjRqVP//5z+no6Og+1tLSkoaGhgwZMqSClQEAAABUh6oMpfbee+/U1tZm/vz53cfmzZuXsWPHlmyTcwAAAABeVZUJTGNjY44//vhceOGFWbBgQe69997ccMMN+fCHP1zp0gAAAACqQqFYLMNtobZCbW1tufDCC/N//s//yeDBg/Pf/tt/y0c/+tFKlwUAAABQFao2lAIAAACgcqpy+R4AAAAAlSWUAgAAAKDshFIAAAAAlJ1Qqo+tXbs25513XiZMmJDDDjssN9xwwxteu3Dhwpx00klpamrKCSeckCeeeKKMlfYPvZnPT37yk9lzzz17/P385z8vY7X9R3t7e6ZMmZJf/epXb3iN72fvbMmc+o4CAAC8qrbSBbzTXH755XniiSdy4403Zvny5Tn33HMzevToTJo0qcd1q1evzumnn55jjz02X/7yl/P9738/06ZNyz333JNBgwZVqPqtz5bOZ5I8+eSTueKKK3LIIYd0H9tuu+3KWW6/sHbt2vzLv/xLFi9e/IbX+H72zpbMaeI7CgAA8Fo6pfrQ6tWrc+utt+b888/Pvvvum/e97335p3/6p3zve9/b7No777wz9fX1mTFjRnbfffecf/752WabbXLXXXdVoPKtU2/ms729Pf/5n/+ZsWPHZsSIEd1/dXV1Fah867VkyZKcfPLJeeaZZ970Ot/PLbelc+o7CgAA0JNQqg8tWrQoHR0dGTduXPex8ePHp7m5OevXr+9xbXNzc8aPH59CoZAkKRQKOfDAAzN//vxylrxV6818Ll26NIVCITvvvHO5y+xXHnnkkUycODG33HLLm17n+7nltnROfUcBAAB6snyvD7W0tGSHHXbo0fkwfPjwrF27NitXrszQoUN7XLvHHnv0eP6wYcP+4vKfatKb+Vy6dGkGDx6cGTNm5JFHHslf/dVf5VOf+lSOOOKISpS+1Tr11FO36Drfzy23pXPqOwoAANCTTqk+1NbWttlSnK7H7e3tW3TtptdVs97M59KlS7NmzZocdthh+eY3v5kjjjgin/zkJ/P444+Xrd53Et/Pvuc7CgAA0JNOqT5UX1+/2Y/2rscNDQ1bdO2m11Wz3sznmWeemdNOO6170+i99torv/3tb/Nv//ZvGTt2bHkKfgfx/ex7vqMAAAA96ZTqQ6NGjcqf//zndHR0dB9raWlJQ0NDhgwZstm1ra2tPY61trZm5MiRZam1P+jNfNbU1Gx2F7Pddtstf/rTn8pS6zuN72ff8x0FAADoSSjVh/bee+/U1tb22Ax63rx5GTt2bGpqek51U1NTfvOb36RYLCZJisViHnvssTQ1NZWz5K1ab+bzs5/9bGbOnNnj2KJFi7LbbruVo9R3HN/Pvuc7CgAA0JNQqg81Njbm+OOPz4UXXpgFCxbk3nvvzQ033JAPf/jDSTZ0+axZsyZJMmnSpKxatSqzZs3KkiVLMmvWrLS1tWXy5MmVfAtbld7M59FHH50f//jH+fd///c8/fTTufrqqzNv3rx86EMfquRb6Fd8P/ue7ygAAMAbE0r1sZkzZ2bffffNRz7ykVx00UX51Kc+lfe///1JksMOOyx33nlnkmTw4MG5/vrrM2/evEydOjXNzc2ZM2dOBg0aVMnytzpbOp/vf//784UvfCHXXnttpkyZkvvuuy/f/OY3s9NOO1Wy/H7F97Pv+Y4CAAC8sUKxa30OAAAAAJSJTikAAAAAyk4oBQAAAEDZCaUAAAAAKDuhFAAAAABlJ5QCAAAAoOyEUgAAAACUnVAKoB9pb2/PlClT8qtf/WqLn/PII4/kuOOOS1NTU04++eQsWrSohBUCAABsGaEUQD+xdu3afPrTn87ixYu3+DnLli3LJz7xibzvfe/LD3/4w+y5554588wz097eXsJKAQAA/jKhFEA/sGTJkpx88sl55plnevW8m266Kfvvv3+mT5+ev/mbv8l5552XmpqaLF26tESVAgAAbBmhFEA/8Mgjj2TixIm55ZZbNjv36KOPZurUqdl///1z7LHH5u677+7xvPe///3djxsbG3Pvvfdmr732KkvdAAAAb6S20gUA8Jedeuqpr3u8paUl06ZNy3//7/89hx9+eObPn5/PfvazGTZsWCZMmJBly5aloaEhZ599dh599NHsscceueCCC7LHHnuU+R0AAAD0pFMKoB/73ve+l3e/+9350Ic+lF122SXHHXdcPvjBD+bGG29MkqxevTpXXnllDjrooHzjG9/IjjvumI9+9KN55ZVXKlw5AABQ7XRKAfRjS5cuzc9//vOMGzeu+9i6deuy6667JkkGDBiQo48+OqeddlqS5JJLLsmRRx6Z++67L8cee2xFagYAAEiEUgD9WkdHR4499ticccYZPY7X1m74n/cRI0Z0B1RJUldXlzFjxmTFihVlrRMAAGBTlu8B9GO77rprnn766eyyyy7dfz/72c/y4x//OElywAEH5He/+1339e3t7Vm2bFl22mmnSpUMAACQRCgF0K+deuqpeeKJJ/LVr341Tz31VH784x/nqquuyujRo5MkH/nIR3L33Xfnf//v/52nnnoqF198cerr63PkkUdWtnAAAKDqFYrFYrHSRQCw5fbcc8985zvfycSJE5MkDz74YK688sr8/ve/z6hRo/Kxj30sH/rQh7qvv/fee3PllVfmj3/8Y/bbb79cfPHF+du//dtKlQ8AAJBEKAUAAABABVi+BwAAAEDZCaUAAAAAKDuhFAAAAABlJ5QCAAAAoOyEUgAAAACUnVAKAAAAgLITSgEAAABQdkIpAAAAAMpOKAUAAABA2QmlAAAAACg7oRQAAAAAZSeUAgAAAKDs/n9aDq6WWL5RkAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAArmCAYAAACgTmnUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXyU5b3//9dsyUwWshD2RcUEV6iIsonQUlPbImBZtL9DrdhaeijW4zlFXICv9GtB1LZayldqsRRrabFgaUulim09Lig0WgTFQokiRiAhC9kmM8lsvz8mMxATkplk9ryfj0cekLm367pnuG/uz3yuz2Xw+Xw+REREREREREREYsgY7waIiIiIiIiIiEjvo6CUiIiIiIiIiIjEnIJSIiIiIiIiIiIScwpKiYiIiIiIiIhIzCkoJSIiIiIiIiIiMaeglIiIiIiIiIiIxJyCUiIiIiIiIiIiEnMKSomIiIiIiIiISMwpKCUiIiIiIiIiIjGnoJRInE2bNo177733nMvvvfdepk2bFsMWiYhIIrnooov46U9/Gu9miIhIq67+/56o+xZJROZ4N0Ckt1u3bh1ZWVnxboaIiCSoZ599loEDB8a7GSIiIiIRp6CUSJxdeuml8W6CiIgksCuuuCLeTRARERGJCg3fE4mzs1N06+rquO+++xg/fjxXX301jz76KF6vN84tFBGRSJg2bRqPPfYYDz30EOPGjWPcuHHcfffdnD59GvAP17711lt54IEHuOqqq/jKV76C2+1uN3yvurqa+++/n0mTJjFmzBjmz5/P22+/HVzu9Xr5+c9/TnFxMZdffjnXX389zzzzTMz7KyKSylwuFz/4wQ+4+uqrufrqq7nnnnuoqakJLn/rrbf42te+xmc+8xnGjRvXbjnAoUOHuO222xgzZgyf+9zn+NOf/tTuOBdddBHr1q1jzpw5jB07lieeeAKAjz76iDvvvJNrrrmGK664gltuuaXNvQCgoaGBhx56iOuuu45Ro0Zxww03sG3btjbrTJs2jXXr1vHQQw8xfvx4xowZw/e+9z3sdjs///nPmTJlCmPHjuW73/1u8H4FcPDgQW699VbGjh3LmDFjWLBgAfv37+/xeZXeR5lSIgnC6/Vy++2388knn7BkyRL69u3LU089xYEDB+jfv3+8myciIhHwm9/8hvPOO4/Vq1dTU1PDj370Iz788EO2bt0K+B9iDAYDP/3pT7Hb7ZjNbf+r1tTUxFe/+lVcLhff+973GDhwIE8//TS3334727Zt48ILL2TlypX8/ve/59vf/jZjxoyhpKSE1atXU19fz+LFi+PRbRGRlPOXv/yF0aNHs2bNGmpqavjhD3/IsWPH2LJlCyUlJdx2221MmDCBxx9/nLq6On7yk5/w9a9/nW3btmG1WqmoqOBrX/saw4cP59FHH6WxsZEf/vCHVFdXtzvW+vXr+a//+i8uuugiBg4cSGlpKTfddBPnnXcey5cvx2Kx8Ktf/Ypbb72VjRs3Mm7cOJxOJ//xH/9BVVUV3/3udxk2bBh//etfWbZsGVVVVfznf/5ncP+//OUvmTRpEo899hjvvvsuP/7xjzl48CADBgzgwQcf5OjRozzyyCMUFBTwwAMP0NjYyO2338748eNZu3YtLpeL9evX881vfpOXX36Z7OzsWL4VkuQUlBJJEK+++ioHDhzgySef5LOf/SwAEyZMUJFzEZEUYjAY+OUvfxn8D3t+fj6LFy/m1VdfBcDtdvP973+f8847r8Ptt2/fTllZGX/4wx+4+OKLAbjqqqu48cYbKSkpwWg08rvf/Y7/+Z//YeHChQBMnjwZg8HAk08+yX/8x3+Ql5cXg56KiKS2Pn368NRTTwVrw+bl5bF48WJef/111q1bxwUXXMCTTz6JyWQC4DOf+QzTp0/nueeeY/78+WzatAm3282GDRvo27cvABdccAE33XRTu2ONHj06eE0HuOuuu4KBqMD95LOf/Sw33HADjz76KFu3buX3v/89//73v/nNb37D2LFjAbj22mtxu9088cQTfPWrXyU3NxeAzMxMHnvsMcxmM5MmTWL79u2cOnWKrVu3kp2dzdSpU9mzZw///Oc/ASgtLaWmpoZbbrkluO8RI0awZcsWGhsbFZSSsGj4nkiCeOutt7BYLEyZMiX4WkZGBlOnTo1jq0REJJI+97nPtfnP+rRp07BYLLz11lsAWK1Whg8ffs7t33rrLYYOHRoMSAGkp6fzl7/8ha9+9avs2bMHn8/HtGnTcLvdwZ9p06bR3NzcbmiHiIh0z9SpU9tMVhS4nr/xxhvs37+fqVOn4vP5gtfhYcOGceGFF7J7924A3n77ba644opgQAr8gavBgwe3O9bIkSPb/P6Pf/yj3f3EbDYzffp03n33Xex2O//4xz8YMmRIMGgUMHPmTJqbm9sMtRs9enSbzNx+/foxYsSINvvPzc2loaEBgKKiIvLz81m0aBEPPPAAf//73+nXrx9Lly5l0KBBYZ1HEWVKiSSIuro6cnNzMRrbxor79esXpxaJiEikfXo4ttFoJDc3l/r6egD69u2LwWA45/a1tbVtHmA6Wg4wffr0DpdXVFSE2WIREelIQUFBm9/Pvp57vV42bNjAhg0b2m2Xnp4O+P/vP3To0HbLO/q//6ePVVdX1+61wHo+n4/GxsZO1wGC9x2gw5nAbTZbu9cCMjMz2bx5M+vXr2fnzp1s2bIFm83GzJkzWbZsWbCPIqFQUEokQeTl5XH69Gk8Hk8wzRfOPGCIiEjy+/Q13ePxcPr0afLz8ykvL+9y++zsbD755JN2r+/bt4+srCz69OkDwNNPP01mZma79Tr6Bl5ERMJ3dlAHzlzPs7KyMBgMLFiwoMMvCALBnry8PKqqqtotD+X//jk5OR1uW1lZGdx3Tk4Ox44d63SdnhgxYgSPPvooHo+HAwcO8Mc//pHf/va3DB06tM1QQ5GuaPieSIKYOHEibrebv/71r8HXWlpagim+IiKS/F577TVaWlqCv//tb3/D7XYzceLEkLa/6qqrKCsr4/Dhw8HXWlpa+O53v8vvfvc7rr76agBOnz7NqFGjgj+1tbU8/vjj+qJDRCRC3njjDdxud/D3F198EbfbzZQpU7j00kv58MMP21yHi4qKWLduHXv37gX8tWP37dvXJoO1tLSUsrKyLo999dVX8/LLLweH04E/KPb8888zatQo0tLSuPrqqzl+/Hi7Ydt/+tOfsFgsjB49utt9f+GFF5gwYQKVlZWYTCbGjBnDypUr6dOnT0hfsIicTZlSIgli4sSJTJ48meXLl1NdXc2QIUP41a9+RU1NTadDNUREJHmUl5ezaNEivv71r3Py5El+/OMfM3nyZMaPH8/27du73H727Nk888wzLFq0iP/6r/8iPz+fzZs343Q6ueWWWxg+fDgzZ85kxYoVHD9+nMsvv5yjR4/y2GOPMXToUM4///zod1JEpBcIzGp3yy238NFHH/HjH/+Ya665hokTJwYnm/je977HzJkz8Xg8bNy4kf3797No0SIAbr31VrZt28Y3v/lNvvvd7+LxeHj88cexWCxdHvuOO+7g1Vdf5etf/zoLFy4kLS2NX//615SVlfHUU08B/vvFb37zG+644w7uvPNOhg0bxt///neee+457rjjjmBmbXdceeWVeL1eFi9ezMKFC8nMzOQvf/kLDQ0NfOELX+j2fqV3UlBKJIGsW7eOH/7wh6xdu5bm5ma+/OUvc9NNN/G3v/0t3k0TEZEImD59On369OGuu+4iIyODr3zlK/z3f/93yNtnZWXx61//mkceeYRVq1bhdrv5zGc+wzPPPBMskP7QQw/x5JNPsmXLFsrLy+nbty9f/vKXueuuu9oMDxcRke676aabcDqdLF68mLS0NGbMmMHdd9+NwWBg8uTJ/OIXv2DdunXceeedWCwWLrvsMn75y19yxRVXAP7hc7/97W9ZtWoV9957L5mZmdx+++3s3Lmzy2MXFRXxm9/8hh//+Mfcf//9GAwGRo8eza9+9SuuuuoqwD9M8JlnnuFHP/oRa9eupbGxkREjRrBq1Srmzp3bo77379+fp556ip/85CcsW7YMh8NBUVERP/3pT5kwYUKP9i29j8Hn8/ni3QgRERGRVDdt2jTGjRvHmjVr4t0UERERkYSgmlIiIiIiIiIiIhJzCkqJiIiIiIiIiEjMafieiIiIiIiIiIjEnDKlREREREREREQk5hSUEhERERERERGRmFNQSkREREREREREYk5BKRERERERERERiTkFpUREREREJOHV1NRQXFzM3r17g6/t37+fefPmMWbMGKZNm8bWrVvbbLN9+3aKi4u54oormD17Nvv27Qsu83g8PPzww0yaNIkxY8awaNEiTp06FVxeXV3Nd77zHa666irGjx/PqlWrcLvd0e+oiEgvYo53A5JRdXUD4cxZaDBA377ZYW+XTNTH5Jfq/QP18VzrSmSE+rnqDZ/DntI5Co3OU2h0nrp29jmCxLw3vP3229x77718/PHHwdfq6upYuHAhd955JzfffDMlJSUsXryYiy66iNGjR7N3714efPBBNmzYwOjRo9m8eTOLFi3i5ZdfxmazsX79enbv3s1zzz1HdnY2K1asYPny5fz85z8H4K677mLAgAG89tprVFVVsWjRIjZt2sTtt98eVtsT/bOX6v9G1L/klur9g+TpY7SeHRSU6gafj259WLq7XTJRH5NfqvcP1EeJjnDPud6jrukchUbnKTQ6T11L1POzfft21q5dy913381///d/B1/ftWsXubm5zJ8/H4CJEycyY8YMNm/ezOjRo9m6dSvTp09n7NixACxYsIBnn32WnTt3MmfOHLZu3cqSJUsYNGgQAMuWLWPy5MmUlZXh9Xr5xz/+wauvvorNZmPYsGF85zvf4dFHHw07KJUsn71kaWd3qX/JLdX7B72jjx1RUEpERERERBLW5MmTmTFjBmazuU1Q6siRI4wcObLNuoWFhWzbtg2A0tJS5syZ0275oUOHaGhooLy8vM32BQUF5OTkcPjwYQByc3MZMGBAcPmFF17IiRMnqK+vp0+fPiG332AIva/xEGhforezu9S/5Jbq/YPk6WO02qeglIiIiIiIJKx+/fp1+Lrdbsdms7V5zWq10tTU1OVyu90OQEZGRrvlgWWf3jbwe1NTU1hBqUQcDtmRZGlnd6l/yS3V+we9o48dUVBKRERERESSjs1mo6Ghoc1rTqeTzMzM4HKn09lueV5eXjDA5HA4Otze5/O1Wxb4PbD/UCVLnZhEb2d3qX/JLdX7B8nTR9WUEhERERERaTVy5Eh2797d5rXS0lKKiooAKCoq4siRI+2WT5kyhZycHAYMGEBpaWlwCF9lZSW1tbWMHDkSr9dLbW0tVVVVFBQUAPDBBx8wcOBAsrPDeyhLljoxydLO7lL/kluq9w96Rx87Yox3A0RERERERMJVXFxMVVUVmzZtwuVysWfPHnbs2BGsIzV37lx27NjBnj17cLlcbNq0ierqaoqLiwGYPXs269evp6ysjMbGRlavXs24ceMYPnw4559/PmPHjmX16tU0NjZSVlbGE088wdy5c+PZZRGRlKNMKRERERERSTp5eXls3LiRVatWsXbtWvLz81m+fDkTJkwA/LPxPfDAA6xcuZKKigoKCwvZsGEDubm5ACxevBi32838+fOx2+2MHz+exx9/PLj/tWvX8n//7//l85//PEajkRtvvJHvfOc7ceipiEjqMvh8vTFBrGeqqsIb62kwQEFBdtjbJRP1Mfmlev9AfTzXuhIZoX6uesPnsKd0jkKj8xQanaeunX2OQPeGSEv0z16q/xtR/5JbqvcPkqeP0Xp20PA9ERERERERERGJOQWlREREREREREQk5hSUEhERERERERGRmFNQSkREREREREREYk5BKRERERERERERiTkFpURERBKYz+ejqakJTZYrIiLJzOv1curUKU6dOoXX6413c0QkQZjj3QCRaJo8ZQLlJ092ud7AQYN4/dU9MWiRiEh4HA4H617azx3FnyEjIyPezREREemWqqoqnvzbfgC+/fnP0L9//zi3SEQSgYJSktLKT55k6dOvdLneI7dOjUFrRES6x5JujXcTREREeiwzJz/eTRCRBKPheyIiIiIiIiIiEnMKSomIiIiIiIiISMwpKCUiIiIiIiIiIjGnoJSIiIiIiIiIiMScglIiIiIiIiIiIhJzCkqJiIiIiIiIiEjMJXRQqqamhuLiYvbu3Rt87cUXX2TWrFlceeWVTJs2jXXr1uH1eoPLt2/fTnFxMVdccQWzZ89m3759wWUej4eHH36YSZMmMWbMGBYtWsSpU6di2icREREREREREQFzvBtwLm+//Tb33nsvH3/8cfC19957j6VLl/L4448zdepUjh49yre+9S0yMjL4xje+wd69e3nwwQfZsGEDo0ePZvPmzSxatIiXX34Zm83G+vXr2b17N8899xzZ2dmsWLGC5cuX8/Of/zyOPZWAyVMmUH7yZJfrDRw0iNdf3RODFomIiIiIiIhItCRkUGr79u2sXbuWu+++m//+7/8Ovn78+HG++tWv8rnPfQ6ACy+8kOLiYkpKSvjGN77B1q1bmT59OmPHjgVgwYIFPPvss+zcuZM5c+awdetWlixZwqBBgwBYtmwZkydPpqysjGHDhsW+o9JG+cmTLH36lS7Xe+TWqTFojYiIiIiIiIhEU0IO35s8eTIvvfQSX/7yl9u8fv3113PfffcFf3c6nfzv//4vl112GQClpaWMHDmyzTaFhYUcOnSIhoYGysvL2ywvKCggJyeHw4cPR7E3IiISSR0N7d6/fz/z5s1jzJgxTJs2ja1bt7bZRkO7RUREREQST0IGpfr164fZ3HkSV2NjI4sXL8ZqtbJgwQIA7HY7NputzXpWq5WmpibsdjsAGRkZ7ZYHloXKYAj/p7vbJdNPT/sYjfcg0vtM9fcx1funPna8bjJ5++23ufnmm9sM7a6rq2PhwoXceOONlJSUsGrVKh566CEOHDgAEBzavWbNGkpKSpg5cyaLFi3C4XAAtBna/dprr2G1Wlm+fHlc+hfg8/loamrC5/PFtR0iIiIiItGUkMP3uvLhhx9y55130rdvX371q1+RlZUFgM1mw+l0tlnX6XSSl5cXDFYFHkLOXp6ZmRnW8fv2ze5Wu7u7XU9devkoTpw4EdK6gwcP5v333u32sXrSR4PRQEZGekjrFRSEdpxo7DNe72OsJHv/Qv289/SznuiS/X3syLmGdu/atYvc3Fzmz58PwMSJE5kxYwabN29m9OjRSTm02+Fw8NNd73D7tSOxWm1dbyAiIiIikoSSLij1yiuv8D//8z/cdNNNfO9732uTUVVUVMSRI0farF9aWsqUKVPIyclhwIABbYb4VVZWUltb227IX1eqqxsI58trg8H/gBjudpFy/JPjIdVqAn+9pqqqhrCPEYk++rw+mpqaQ1ov1DZGcp/xfh+jLVX619nn3WAAmy0dh6OZh7/evc96ogvnfQysmywmT57MjBkzMJvNbYJSR44c6XDo9rZt2wD/fWDOnDntlocytDucoFSomWdnZ7N1to7BYODJl9/nP6ddetZrITcnqYVyjkTnKVQ6T13TORIRkXhJqqDUO++8w+LFi1m5ciVz585tt3zu3LksXryYL33pS4wdO5bNmzdTXV1NcXExALNnz2b9+vWMGjWKvLw8Vq9ezbhx4xg+fHhY7fD56NZDe3e3i7WetDFWfYzGMULdZ7K8j92Vyv0L9OvTf6aiVHwf+/Xr1+HrnQ3d7mp5JId2hxvg62z9piYTVlsaxswM+vbNxmZLo6AgG5vNhsPhwGazYegFT4/JFDSNJ52n0Og8dU3nSEREYi2pglI/+9nPcLvdrFq1ilWrVgVfHzt2LE899RQTJ07kgQceYOXKlVRUVFBYWMiGDRvIzc0FYPHixbjdbubPn4/dbmf8+PE8/vjj8emMiIhEhM1mo6Ghbdbb2UOzYzW0O9Qsw1Cy2ZqamnA6WjAYPVRXN+BwtLRm9jXw0137+e4XPtMukJZKUiVzM9p0nkKj89S1s88RKDglIiKxk/BBqbNnxvvZz37W5fqzZs1i1qxZHS6zWCwsWbKEJUuWRKx9IiISXyNHjmT37t1tXistLaWoqAiI3dDucLPTOlv/7Nc/ndlnSbemZCZcR3pLP3tK5yk0Ok9d0/kREZFYS8jZ90REREJVXFxMVVUVmzZtwuVysWfPHnbs2BGsIzV37lx27NjBnj17cLlcbNq0qcOh3WVlZTQ2NnZ7aLeIiIiIiIQn4TOlREREOpOXl8fGjRtZtWoVa9euJT8/n+XLlzNhwgQADe0WEREREUlQCkqJiEjSOXtoN8CoUaPYsmXLOdfX0G4RERERkcSj4XsiIiIiIiIiIhJzCkqJiIiIiIiIiEjMKSglIiKSoHw+Hw6HQzNiiYiIiEhKUlBKREQkQblbmvnFq//C43bFuykiIiIiIhGnoJSIiEgCs6RZ490EEREREZGoUFBKREQkgZ1sgr0nWzhd34hP4/hEREREJIUoKCUiIpKgfD7YXwPHGrx8/y+HcDod8W6SiIiIiEjEKCglIiKSoE63gMPj/3uD1xTfxoiIiIiIRJiCUiIiIgnqRNOZv9c2e+PXEBERERGRKFBQSkREJAH5fL42Qam6Zp9qSomIiIhISjHHuwEiIiLSnt3t/wl8e+TyQkWjK65tEhERERGJJGVKiYiIJKBmjz8rymqG7DT/ax/WOOPYIhERERGRyFJQSnodn8+Hx6shMCKS2FytJaQsBsix+P/+gYJSIiIiIpJCNHxPegWny8P7FY18UGWnzuEGIC/DwsUDsrhkQFacWyci0l4gKGU2Qk4aYIejp5s5PzuuzRIRERERiRgFpSTFGTh4soG3ympp8bTNjqppcvHG0dOUVtoxpGXEqX0iIh1znxWUymrNlKpodHF+tiV+jRIRERERiSAFpSRl1TpcZH35e7zx0WkA8jMsjBqczeA+VgA+qnHwVlktpxpbyPry93C4PNgspng2WUQkyNU6zNhiAGvrpanG4QYUlBIRERGR1KCaUpKSjtU08Y3f7MMy/DOYDAYmnZ/HV0YPZGS/LLLSzWSlm7l8UDYzLxtAmsmAeeBIfvzyB/FutohI0NnD9wJBqVqHG69PNfFEREREJDUoU0pSzttltSz90/vUO9146iuZM3kU+ZlpHa6bn5lG8UX9eP79U/zh3XJuuGwAnxmSE+MWS28zecoEyk+eDGndgYMG8fqre6LcIklEgeF7FiOkG8EA+ACnW0EpEREREUkNCkpJSnn+YAU/2PVv3F4flw/K5vWnF5N//Y5OtxmcY6X5X6+QfslUHv5bKb++5UqMBkOMWiy9UfnJkyx9+pWQ1n3k1qlRbo0kqsDwPbMBDAawmsHhBoeCUiIiIiKSIjR8T1KC1+fjidePsvKFw7i9Pq4bWcD6eaPxOepD2t6xZwuZaSaOVNp542hNlFsrItI111mZUgA2kz9Y7nApKCUiIiIiqUFBKUl6jc1ulvzhIL/cWwbAgnHDWHXDJVjDKFrua27kK6MHAbD5rU+i0k4RkXCcPfsegNXcGpQKLBARERERSXIKSklS+6DKzjd+8w6vfVhDutnI//3yRSy+9oJuDb+7ecxgTEYDb5XVcaiiIQqtFREJ3aczpaytA+6VKSUiIiIiqUI1pSQpub0+nikpY8Obx3B5fPTPSuPRWZdx6cDsbu2vscnO5LEXkfn575BWNJF59zyMY/cz7dYbMnQIr/7vGz1tvohIl86uKQWQjj9KZW/xxKtJIiIiIiIRpaCUJB3z4Iv5xm/28a+KRgAmj8hn2RdGUnCOGfZC4fN6Wfr0K3x82sGLhyrJu/KLLP7WN9tlXD1622d70HIRkdC5P50p1Toi2elRppSIiIiIpAYFpSQp+Hw+yuubefuTOrJnLuNfFY1kpZv43ucuZPqlAzBEaLa8ITlW0s1GHC4vJ+uaGZJrjch+RUTC5WpXU8r/p2bfExEREZFUoaCUJDSHy8ORSjuHTzVS63AD4PO4uWnscL4xfhgFWekRPZ7JaOCCvhkcqmiktMquoJSIxIXP5ztTU6o15h7MlFJQSkRERERShIJSknB8Ph/H65wcOmXnWE0TrWVVMBsNFPbLZM+Pbmfp0n9G7fgXtgalPj7twOfztcnCamxs5MLC80Laz8BBg3j91T3RaqaIpDDnWTPsmdsN3/PX1RMRERERSXYKSkmnTtQ5OVrTRLPLQ47NwkX9s8hKj9LHxpzO++UNvHuygXqnO/hyQWYaFw/I5MK+maSZjbzZWB2d47cakJ2OxWjA6fZSbXdRkHWmVpW3tfZUKB65dWq0migiKa7prGLmpta4uNHtxEA6PgzUNLnokxWnxomIJJCDBw+yevVqDh8+jNVq5Ytf/CJLly4lLS2N/fv384Mf/IDS0lLy8vJYtGgR8+bNC267fft2nnjiCSorKxkxYgQrVqxgzJgxAHg8Hn74wx/yxz/+EYfDwYQJE/j+979P//7949VVEZGUpKCUdOjvR6p4+h9lvF/e0OZ1A/CZIX2YeflArruoHzaLqcfHOtXQzO/eOUHO1x5n99HTAKSZDBQWZHLxgCz69qCAeXeYjAYG51g5dtpBWa2jTVBKRCQW7C3+TCmLEQLJmgYDpBmh2Qt1ZwXuRUR6K6/Xy7e//W0WLlzIM888w6lTp1iwYAF5eXl87WtfY+HChdx5553cfPPNlJSUsHjxYi666CJGjx7N3r17efDBB9mwYQOjR49m8+bNLFq0iJdffhmbzcb69evZvXs3zz33HNnZ2axYsYLly5fz85//PN7dFhFJKQpKSRt2l4fPfOeHpF04DvDXb/LUnoAWB4bMfEx9+vHO8XreOV7Pj17+gC9fOoCbxwzm/L4ZYR/rUEUDv3n7OLsOV+Lx+jBas+iTbubyQdmM7J+JxWSMdPdCNjTXH5T6pNbJmKE5cWuHiPRO9hZ/0Mn8qTkcAkGpBgWlRESoq6ujsrISr9eLz+cf1mw0GrHZbOzatYvc3Fzmz58PwMSJE5kxYwabN29m9OjRbN26lenTpzN27FgAFixYwLPPPsvOnTuZM2cOW7duZcmSJQwaNAiAZcuWMXnyZMrKyhg2bFh8OiwikoIUlJKgFreXgq8sJ23opRgM8JnBfbh8UDY2y4jgOo3Nbkqr7Ox599/Ycwaw9Z0TbH3nBJMuyOPbnyvikrx0DJx7Jjyny8Nf/13JHw6Us/9EffD1MUNzeO2p7/PNlT/CGKGZ9HpiaK4NOE1FYzMtbi9p5vgFyESkd/H5fNQ0NgH+TKmzBX6vb1ZQSkQkLy+PBQsW8PDDD/PII4/g8Xj4/Oc/z4IFC1izZg0jR45ss35hYSHbtm0DoLS0lDlz5rRbfujQIRoaGigvL2+zfUFBATk5ORw+fDjsoFQC/Ne2U2dn5MbiOIG/x+q8xKp/8aL+Jb9k6WO02qeglADg9fn467+rsA69lDSTgS9e0p8B2e1ntstKN3PFkBx23X83m/+6j2f/eZzXP6zhjaOneePoPxjcJ51rL+zL6MF9GJxjxWo2Ud/s4qPqJv75SR27j9bQ2OyvlWIyGrhuZAH/MXYolw7MpnD52wkRkALoYzXTx2qm3ummvKGZ4Xm2eDdJRHoJh8PBH94+Cpj4dDzcYvQBBuqbPR1tKiLSq3i9XqxWKytWrGDu3LkcO3aMO+64g7Vr12K327HZ2v7/zWq10tTkD/p3ttxutwOQkZHRbnlgWTj69s0Oe5t4iHY7PZ4mbLa01mNlUVAQ2/OSLO9Dd6l/ya839LEjCkoJAG+X1XG8zonX5WT6qPNDqKPkY/x5eYw/L4+y0w62vnOCHQcrOFHfzLP7TvDsvhPn3HJwjpUbRw3khssG0C+rfeArUQzMTqfe6aZCQSkRiTGfKQ3wYOlg+B5o+J6ICMBLL73Eiy++yAsvvABAUVERixcvZtWqVcyYMYOGhra1UZ1OJ5mZmQDYbDacTme75Xl5ecFglcPhOOf24aiubsCXwJOmGgz+h+Fot7O6uhGHoyX4d5Mp/PIf3RGr/sWL+pf8kqWPgXZGmoJSQkVDM+8c9w+lq3lhHQVT1oa1/bA8G9+bdiErbrycnW+Xseej0xw+1UhlYwvNbi+Z6SaG5tq4dEAWE8/PZ/SQPgmTEdWZAdnp/LvSTnl9c7ybIiK9jMvr/x9J+0wp/58aviciAidPnqSlpaXNa2azGYvFwsiRI9m9e3ebZaWlpRQVFQH+ANaRI0faLZ8yZQo5OTkMGDCA0tLS4BC+yspKamtr2w0JDIXPR0I/aAZEu51n7zse5yRZ3ofuUv+SX2/oY0cUlOrlvF4fr31QA8DIfpl8fPj1bu8rI83MZ4sKmFpYEHxt8pQJfHjyJO8Cf+li+0Z7Y7ePHQ0D+/izuCobW/B4fZiMiR9IE5HU4PJPvtdBTSn//1QanBq+JyIyefJkfvSjH/Gzn/2Mb33rW5w4cYL169czY8YMiouLefTRR9m0aRPz58/n7bffZseOHTzxxBMAzJ07l8WLF/OlL32JsWPHsnnzZqqrqykuLgZg9uzZrF+/nlGjRpGXl8fq1asZN24cw4cPj2eXRURSjoJSvdzBigZOO1ykm42MPy+Xv0Z4/+UnT7L06VdCWnfFnCsjfPSeybGaSTcbaXZ7qba30L+DGlsiItHgbg1KfTpTKk2ZUiIiQYWFhTz55JM8/vjjPPXUU2RnZzNz5kwWL15MWloaGzduZNWqVaxdu5b8/HyWL1/OhAkTAP9sfA888AArV66koqKCwsJCNmzYQG5uLgCLFy/G7XYzf/587HY748eP5/HHH49fZ0VEUpSCUr2Yy+PlnU/8w/auHp6L1WKKc4sSi8FgYEB2Oh+fdlDe0KyglIjETDAo9akEzUCNqQYFpUREAJg0aRKTJk3qcNmoUaPYsmXLObedNWsWs2bN6nCZxWJhyZIlLFmyJCLtFBGRjiX0PPc1NTUUFxezd+/e4Gv79+9n3rx5jBkzhmnTprF169Y222zfvp3i4mKuuOIKZs+ezb59+4LLPB4PDz/8MJMmTWLMmDEsWrSIU6dOxaw/iea9kw043V76pJu5qF/4RRt7gwHZ/oLvpxpUV0pEYsfTWlDg06OGgzWlNHxPRERERFJAwgal3n77bW6++WY+/vjj4Gt1dXUsXLiQG2+8kZKSElatWsVDDz3EgQMHANi7dy8PPvgga9asoaSkhJkzZ7Jo0aLgzBnr169n9+7dPPfcc7z22mtYrVaWL18el/7Fm8vj5d2T/hlJxg7Lwah6SR3ql+nPjqqyu+LcEhHpTVrrnLcLSqW11pTS8D0RERERSQUJGZTavn07S5Ys4b//+7/bvL5r1y5yc3OZP38+ZrOZiRMnMmPGDDZv3gzA1q1bmT59OmPHjsVisbBgwQLy8vLYuXNncPm3vvUtBg0aRFZWFsuWLePVV1+lrKws5n2MtyOVdprdXrLTzYwoiM10rMmob6YF8A+VaQ6MpxERiTJPa1DKdM5MKQWlRERERCT5JWRQavLkybz00kt8+ctfbvP6kSNH2k3DWlhYyKFDhwDaTNv66eUNDQ2Ul5e3WV5QUEBOTg6HDx8Oq30GQ/g/3d0uEj+f5vP5gllSlw/KxtjRSt04D+d6LRq62/dwWS0mstL9tbaqm1qCx450OxPlJxnbHM57fnYf49nXcEXzfZTEFMyU+tTrgaBUi8eH06UhfCIiIiKS3BKy0Hm/fv06fN1ut2Oz2dq8ZrVaaWpq6nK53W4HICMjo93ywLJQ9e2bHdb6Pd2upwxGAxkZZ4p0H62yU+90k242csV5+aR9anqns9ftbJ8FBe378+k+fvrYXenJsc+1bqjHP9d6A/vYKK1spK7Znylls4W2v3DamUji9TmNlFDec5stPa7vTzify+62M9nfx97uXMP3zAYwAD782VKaoEJEREREkllCBqXOxWaz0dDQ0OY1p9NJZmZmcLnT6Wy3PC8vLxisCtSX6mj7UFVXN9BagzYkBoP/ATHc7SLF5/XR1HSmUPf+j08DUNQvE3eLC3dL2/XPXrezfVZVnXkvztXHTx+7K905dlfrhnr8c62Xa/U/9J2s9Qc/HY7mkN7HcNqZCOL9OY2Uzt5zg8EfkHI4muP6/oTzuQy3neG8j4F1JfGca/iewQBpJmj2+INSmhVURERERJJZUgWlRo4cye7du9u8VlpaSlFREQBFRUUcOXKk3fIpU6aQk5PDgAED2gzxq6yspLa2tt2Qv674fHTrob2720WSvcXNx6f9gbmL+2f1aF8d9SVWfYzleSzI9M/AV9XYEvax4/1+d0cifE6jJdCvT/+Z6JL1eiPdd65MKYA0o4Fmj486pyZgEBEREZHklpA1pc6luLiYqqoqNm3ahMvlYs+ePezYsYM5c+YAMHfuXHbs2MGePXtwuVxs2rSJ6upqiouLAZg9ezbr16+nrKyMxsZGVq9ezbhx4xg+fHg8uxVT/z5lxwcMyE4nL8MS7+YkhYIsf1CqzunGYLHGuTUi0ht4WyOKHQalWkfsqdi5iIiIiCS7pMqUysvLY+PGjaxatYq1a9eSn5/P8uXLmTBhAgATJ07kgQceYOXKlVRUVFBYWMiGDRvIzc0FYPHixbjdbubPn4/dbmf8+PE8/vjj8etQjPl8Pv5d6a+fdXH/8IYs9mY2iwmbxYjD5cXSd1i8myMivYCns0wpk7+qVL0ypUREREQkySV8UOrTM+ONGjWKLVu2nHP9WbNmMWvWrA6XWSwWlixZwpIlSyLaxmRRZW+h3unGZDRwft+MrjeQoLwMC466ZiwFvSerTkTip9Phe8qUEhEREZEUkVTD96RnjrRmSZ2fZyPNpLc+HPk2/xA+BaVEJBaChc47WJbWGqmqdSgoJSIiIiLJTZGJXsLr8/FhtX/2uMJ+GroXrkD9LUtfBaVEJPo6z5Tyv9jYrKCUiIiIiCQ3BaV6iZP1zThcXtLNRobmqFh3uIJBKWVKiSSsgwcPMn/+fK666iomT57MD37wA1pa/LNm7t+/n3nz5jFmzBimTZvG1q1b22y7fft2iouLueKKK5g9ezb79u2LRxeCOgtKWVrv3Bq+JyIiIiLJTkGpXuKj1iyp8/NtGDt6ypFO5dn8QSlzdl+cLk+cWyMin+b1evn2t7/N9ddfzz/+8Q+2bdvG66+/zoYNG6irq2PhwoXceOONlJSUsGrVKh566CEOHDgAwN69e3nwwQdZs2YNJSUlzJw5k0WLFuFwOOLWn64LnStTSkRERESSn4JSvYKBj2r8D1cX5KvAeXekmY1ktVYXPu3QjFciiaauro7Kykq8Xi8+nz+iYzQasdls7Nq1i9zcXObPn4/ZbGbixInMmDGDzZs3A7B161amT5/O2LFjsVgsLFiwgLy8PHbu3BmXvnh9PlpjUpg6Ckq13rkbFJQSERERkSSnoFQvYBpYSJPLg8VkYLCG7nVbYAjf6SYFpUQSTV5eHgsWLODhhx9m1KhRTJ06lfPPP58FCxZw5MgRRo4c2Wb9wsJCDh06BEBpaWmny0NlMIT+09n67sDYPdpnShkMYGl9saHZHdYxk+0n3HPaW390nnSeonGOREREYsUc7wZI9KVdcBUA5+XZMEVo6F5jk53CovPavGYwGvCd9TAF0GhvjMjxEkGuzUJZrZNaZUqJJByv14vVamXFihXMnTuXY8eOcccdd7B27Vrsdjs2m63N+larlaYm/7DmrpaHqm/f7Iis7zGeuY5m2tKC122z0QcmEwZjGtCCvcVDQUF4x0w24Z7T3krnKTQ6T13TORIRkVhTUCrF+Xw+LCOuBuD8CA7d83m9LH36lTavZWSk09TU3Oa1FXOujNgx4y23ta5UnaZhF0k4L730Ei+++CIvvPACAEVFRSxevJhVq1YxY8YMGhoa2qzvdDrJzPTPRGqz2XA6ne2W5+XlhdWG6uoGfL6u1zMY/A9+51q/vKo++PdmZ0swa8HV0ozBZMZnCVyLXFRW1mNIwbSGrs6R+Ok8hUbnqWtnnyNQcEpERGJHQakUd+hUI6bsfpiNBoblauheT+TY/P9cap3KlBJJNCdPngzOtBdgNpuxWCyMHDmS3bt3t1lWWlpKUVER4A9gHTlypN3yKVOmhNUGn4+wHnjPtX5La5VzI+2H0fh8YPGXt8Pt9eFwebEFXkhB4Z7T3krnKTQ6T13T+RERkVhTTakU9/KRKgCG5Voxm/R290QgU6qx2YPb441za0TkbJMnT6ayspKf/exneDweysrKWL9+PTNmzKC4uJiqqio2bdqEy+Viz5497Nixgzlz5gAwd+5cduzYwZ49e3C5XGzatInq6mqKi4vj0peW1uvLuUZbmw1nCqA3OJW5KSIiIiLJS5lSKS4QlIrk0L3eymo24nU2YrRmUe90k5+ZFu8miUirwsJCnnzySR5//HGeeuopsrOzmTlzJosXLyYtLY2NGzeyatUq1q5dS35+PsuXL2fChAkATJw4kQceeICVK1dSUVFBYWEhGzZsIDc3Ny59cQUypc4RlDIYDGSlm6lzumlodtM/Oz2GrRMRERERiRwFpVLYsZomPqpx4PO4GZ5n63oD6ZTBYMBVc5z0wRdRq6CUSMKZNGkSkyZN6nDZqFGj2LJlyzm3nTVrFrNmzYpW08Li6iJTCiAr3eQPSilTSkRERESSmMZzpbDXP6wBwH3yEGlmvdWR4Dp9HEAz8CUYn89Htb0Fp8sT76aI9FigppSps6BUmr+OVEOzglIiIiIikryUKZXCXvuwGgDXsX3Al+PbmBThrjkB+Ge9ksTw71ONPPr3Ut457p+xLOvLS3C4PCld/FlSW1c1pQCy0/23bwWlRERERCSZKX0mRdU7XbzzSR0Aro/2xbk1qcNV8wkAdQ49CCaCf1U08I3fvhMMSAFYhn+G7QfKadTDuiQp11mz751LVro/6KrPuYiIiIgkMwWlUtSbR0/j8cEFfTPwNlTGuzkpw336JAD1ehCMuyp7C0v+cJBmt5erhuWw41vj+O2tY/HUnsTe4uHVD2rwaW5rSUIh1ZRqHb5Xr5pSIiIiIpLEFJRKUYGhe9eOyI9zS1KLu64CgGa3l2a3N86t6d1+8sqHnGps4YL8DB6ddRkD+1gpLMik8S8/xmQwcLzOyaFT9ng3UyRsLV3MvgdnMqU0fE9EREREkpmCUinI7fXxxtHTAFw7om+cW5NafC4nNov/n41mvYqfgyfreeFfpzAA//fLF5GVfqY8nreunKuG5wDwz7I6PF5lS0lycYVQ6DxQU0rD90REREQkmSkolYL2H6+jodlNjtXMqMF94t2clBN4GNQQvvj5yatHAZh+2QAuHpDdbvllA7PJsJhocnkorVK2lCQXDd8TERERkd5CQakU9NoHNQBcMyIfU2dPNdItfaytQSk9DMbFwfIG9n1Sh9lo4D+vOb/DdUxGA6MG+4NV+4/Xq7aUJBWXN/The8qUEhEREZFkpqBUCjpTT0pD96IhEJTS8L342PLP4wB84eJ+DMhOP+d6F/fPwmIyUOd0U17fHKvmifSY3en/vIYyfK+h2ROLJomIiIiIRIWCUinmWE0TH592YDIamHB+Xrybk5LODN9zxbklvU9lYzMvHfbPJvnVK4d0um6a2ciIvhkAHNEQPkkigZpSnd2gA8P3Gpy6DomIiIhI8lJQKsW8/qF/6N6VQ3PaFH+WyMlWplTc7Hz/FB6vj9GD+3BJB7WkPq2oIBOAD6ubcKvguSSJkGpKBWffU6aUiIiIiCQvBaVSTHDo3oUauhctgeF7jc0evAp0xIzP5+P5gxUAzLx8QEjbDOyTTmaaCZfHx8enHdFsnkjEhFJT6uzZ97yqmSYiIiIiSUpBqRRS73Txzid1AFw7Ij/OrUldGRYTJoMBH9DYomypWPlXRSNHa5pINxv5/Mh+IW1jMBgobM2WOlrdFM3miURMcPheJ0GpzNbhez7ArmwpERGRDnm9Xk6dOkVFRQVerzfezRGRDigolULePHoajw8u6JvB0FxbvJuTsgwGQ3AIn2bgi52d7/uzpD5b2Desoann5fv/LXxS68CjzDZJAoFMqc4KnaebjaSb/bfwBs3AJyIi0qGqqip+9tf9/OiPJVRVVcW7OSLSARUdSiG9Zda9xiY7hUXnhbauvTEqbehjNVHrcOlhMEa8Ph9/+7f/PxJfvKR/WNv2z0rDZjHicHkpb2gmO8sajSaKRExLCJlSPp+PrDQTzW6vrkMiIiKdyMzJx2ZLi3czROQcFJRKEW6vjzeOngZgyoWpPXTP5/Wy9OlXQlp3xZwro9KG4Ax8ypSKiXdP1FNlbyEzzcS44eHNKmkwGBiWa+PflXaO1TRRNCgnSq0UiYxQhu85nQ5aXP6Z9xoVlBIRERGRJKXheyli//E6Gprd5FjNXD6oT7ybk/L6WC2AZuCLlb8f8WdJTR6RT5o5/MtWYAjfx6cd+FQUWhJccPa9LtYLDN9TcFxEREREkpUypVLEax/UAHDNiHxMnX29LhERrCmlDIUemTxlAuUnT3a5Xt7XfwIZ+UwLscD5pw3JsWI0QEOzhzqHCyVwSyILZfY9gLTWolMaviciIiIiyUpBqRTRW+pJJYo+Zw3f8/l8GAwKBHZH+cmTXQ7FrLa38PsD5aSbjUw6P7yhewEWk5H+WemUNzTzyWkHI/JUV0oSV2D4XmeFzgEsrSto+J6IiIiIJCsN30sBx2qa+Pi0A7PRwIRuPrRLeLLT/dOxuzw+mt2aXjaaymqdAFw9PBerxdTt/QzO8QeiymqaItIukWgJpaYUQFrrChq+JyIiIiLJSkGpFPD6h/6he1cOzSErXclvsWA2GcloDZBo6Ex0fVLrAGDi+T0r4D8kJx2AMtWVkgQX7vA9ZUqJiIiISLJSUCoFBIbuTb5QQ/diKVhXSlkKUdPi9lLe0AzApAt6lgXYLysds9GAw+WhpskVieaJREXIw/da7+C6BomIiIhIslJQKsnVO12880kdANeO6FkmiYSnj4JSUXe8zonPB57akwzNtfVoXyajgYF9/NlSJ+qckWieSFR0lSnl8/lwOByYfB4AapuaY9U0EREREZGIUlAqyb159DQeH1zQN6PHD+0SnrOLnUt0lLUO3XOVHYjI/oa01pU6rqCUJDCXx1+n7lw3aHdLM7949V/BoFS9o4WmJtVKExEREZHko6BUktOse/ETGL6nei7R4fP5+KS1yLnr4/0R2Weg2Hl5fTMYu180XSSaQil0bkmzBofv2Vs02YKIiIiIJCcFpZKY2+vjjaOnAZhyoYbuxVpW6wx8jc2eOLckNZ1ucmFv8WAyGHCfOBSRffbNsGC1GHF5fZj6XRCRfYpEWmD4Xqg1pRpbdA0SERERkeSkoFQS23+8joZmNzlWM5cP6hPv5vQ6gZkOG1vcms0tCspas6QG56SDJzKFyQ0GA0PzMgCwDLksIvsUibRQMqWgbVBK1yARERERSUbmeDegOw4ePMjq1as5fPgwVquVL37xiyxdupS0tDT279/PD37wA0pLS8nLy2PRokXMmzcvuO327dt54oknqKysZMSIEaxYsYIxY8ZEvc2XXj6K458c73K9gYMG8fqre0La52sf1ABwzYh8TF09vUjEZVpMGACvDxwuLxlpGg4WSYF6UkNzbUSmopTfsDwbpacaMQ+5NIJ7FYmcUINSaa1BKafbR2NTE5mZmVFumYiIiIhIZCVdUMrr9fLtb3+bhQsX8swzz3Dq1CkWLFhAXl4eX/va11i4cCF33nknN998MyUlJSxevJiLLrqI0aNHs3fvXh588EE2bNjA6NGj2bx5M4sWLeLll1/GZotukfATJ06w9OlXulzvkVunhrxP1ZOKL6PRQEaaCXuLh4Zmt4JSEeT2eKlo8M8oNizXGtF9D2vNlDIPKKTZ7SXdrIRRSRw+n6/L2fcCzv7oNrZ4GBDFdomIiIiIREPSPY3V1dVRWVmJ1+sNDlcwGo3YbDZ27dpFbm4u8+fPx2w2M3HiRGbMmMHmzZsB2Lp1K9OnT2fs2LFYLJZgMGvnzp3x7FK3HKtp4uPTDsxGAxPOz4t3c3qt4BA+FTuPqIqGFrw+yEwz0cca2dh5boYFm8WIwZzGwfL6iO5bpKc83jPD8Lq6QRsNYG4NXNlVV0pEREREklDSZUrl5eWxYMECHn74YR555BE8Hg+f//znWbBgAWvWrGHkyJFt1i8sLGTbtm0AlJaWMmfOnHbLDx0Kr4iyIcyRcoH1DQYIpexHKPt//ah/6N6Vw3KCs8DFU7h9TEYd9TE73URFw7mLnYf7WYmns/sXbyfq/fWkBvVJx2Aw0Nhkp7DovJC2bbQ3nnOZweCvKzWoj5UPq5vY90kdY4flRqLJURXOexLO+5gI77W05T47KBXC+2MxgtsDjZqBT0RERESSUPyjGWHyer1YrVZWrFjB3LlzOXbsGHfccQdr167Fbre3G4ZntVppamoC6HJ5qPr2ze5W22229C7XMRgNFBR0vf89H9cC8KXRg7tc32A0kJHR9bEDQl23o/U66mOsjh2rfZ7dx7ysdKhqwun1tds+1Pcy0XT3890d5/pslje0AHBBv2wyMtLxeb2s3BparbXvfemyLt/L8woy+bC6iQPljXF5j8L5N9ndz1Es30eJnEA9KQg9KOXwKFNKRERERJJT0gWlXnrpJV588UVeeOEFAIqKili8eDGrVq1ixowZNDQ0tFnf6XQGi7/abDacTme75Xl54Q1/q65uCCsbKJCN4HA0d7mdz+ujqqqh03XqnS5KWjOlxgzI7HJ9n9dHU1NzyO0Ndd2z1zMY/MGajvoY7WPHap8dvY/prU+NtfbmdtuH8l4mEoPBH8gI9/PdEx19Nls8XipaM6X62kzB5ZF4zwOf0wKb/9L39rHTnCivIy3GdaXC+TcZ7uconPcxsK4kDrf3TMZTKIlswRn4zpGtKSKS6mpra1m9ejWvvPIKXq+Xq6++mpUrV9K/f/8eTYDk8Xj44Q9/yB//+EccDgcTJkzg+9//Pv37949XV0VEUlLS1ZQ6efIkLS0tbV4zm81YLBZGjhzJkSNH2iwrLS2lqKgI8AewOlseKp8v/J/AdpHY/xsfnsbjgwv6ZjAkxxbSsaMt3D4mo476mNVa3PxcD4Td+azE8yfWbe5IRX0zPvxDI7PTIxs3Dxwzx2rG21RHs9vLwZMNcTnP4bY7Wu+jJJZAppSB0IZXBoNSGr4nIr3Ud7/7XZqamnjppZd4+eWXMZlMrFixgrq6OhYuXMiNN95ISUkJq1at4qGHHuLAAf+cvoEJkNasWUNJSQkzZ85k0aJFOBz+2X/Xr1/P7t27ee6553jttdewWq0sX748nl0VEUlJSReUmjx5MpWVlfzsZz/D4/FQVlbG+vXrmTFjBsXFxVRVVbFp0yZcLhd79uxhx44dwTpSc+fOZceOHezZsweXy8WmTZuorq6muLg4zr0Kj2bdSxyBQucNKnQeMWfqSUV21r2zGQwG3Cf9teTe/qQ2ascRCZc7xJn3AtJa7+IavicivdF7773H/v37WbNmDX369CErK4sHH3yQJUuW9HgCpK1bt/Ktb32LQYMGkZWVxbJly3j11VcpKyuLZ5dFRFJO0g3fKyws5Mknn+Txxx/nqaeeIjs7m5kzZ7J48WLS0tLYuHEjq1atYu3ateTn57N8+XImTJgAwMSJE3nggQdYuXIlFRUVFBYWsmHDBnJzc+PbqTC4vT7eOHoagCkX5se5NZKV7s+Ucnl8NLu9pMd4GFgqOlHnH9Y2OCd6QSkA94l/kXbheN4uq+ObE8693uQpEyg/eTKkfQ4cNIjXXw2t9pVIR4JBqRDXD2RKNSgoJSK90IEDBygsLOR3v/sdv/3tb3E4HFx77bXcc889HDlypNsTIDU0NFBeXt5m+4KCAnJycjh8+DDDhg0Lq52JPrFIrCa7OXv//slnonu8Tx8nVseMtUSarCgaUr1/kDx9jFb7Ih6U2rt3L+PHj4/0btuYNGkSkyZN6nDZqFGj2LJlyzm3nTVrFrNmzYpW06Ju//E6Gprd5NosXD6oT7yb0+tZTEasZiNOt5fGZjfp5rR4NympNbu9VNv9w3MH9wm9mH13uE74M6UOnKjH5fFiMXUcBig/eZKlT78S0j4fuXVqxNqXamJxb0gFLo9/GF6oN31LMFNKw/dEJDFF8/pfV1fH4cOHufzyy9m+fTtOp5OlS5dyzz33UFBQ0O0JkOx2OwAZGRntlgeWhSNZ6jdGu50eTxM2W1rrsbJiMtmMx9OE1eo/Zn5+bI4ZL8nyOeuuVO8f9I4+diTiQak777yT7OxsvvKVr/CVr3yFwYMHR/oQvdprH/gLnF9zQR6mUMd3SFRlpZtxultobHbTN1NBqZ4or3fiw1/zKTPC9aQ+zXv6OLk2C7UOF++XN/CZITlRPV5vp3tDaMIdvnemppQypUQkMUXz+p+W5v9/17Jly0hPTycrK4u77rqLm266idmzZ3c4wVEoEyAFglWB+lIdbR+OWE4i0x2xmuymuroRh6Ml+HeTKaOLLSJzTKezBas1jZqa2Bwz1uIxWVEspXr/IHn6GK1JkiI+1uj111/n7rvv5r333uP666/nG9/4Bn/+85/bFSeX7gnUk5qselIJIzCET7Nf9dyJev/QvUFRHroXcOVQfyDq7bK6mByvN9O9ITTu1kypcIfv6fojIokqmtf/wsJCvF4vLpcr+Jq3dRbTSy65pNsTIOXk5DBgwABKS0uDyyorK6mtrW03JDAU8Z7IJpEmu4nXOUmW90H96539S6Y+RkPEg1IWi4Xrr7+e9evX88orr3DdddexceNGJk+ezPe//30OHToU6UP2Gsdqmvj4tAOz0cCE8/Pi3RxpFSh23qhi5z12os7/jWW0h+4FjB2WC0BJWW1Mjteb6d4QmkCmlIbviUiqiOb1f9KkSQwbNoz7778fu91OTU0Njz32GNdddx033HBDjyZAmj17NuvXr6esrIzGxkZWr17NuHHjGD58eETOi4iI+EWtKnN1dTU7duzgD3/4A6WlpYwfP5709HQWLFjAz372s2gdNqW9/qF/6N6VQ3OCgRCJv0CmlAoN94zT5aGmyf9NZzRn3jvbuPNyAX+tNqdL718s6N7QOZfHH5QKd/Y9Dd8TkUQXjeu/xWLhmWeewWQycf3113P99dczcOBAVq9eTV5eHhs3buSFF15g/PjxLF++/JwTII0bN47nn3++zQRIixcvZurUqcyfP5+pU6fS3NzM448/HqGzISIiARGPbDz//PP88Y9/5I033mDEiBHMnj2bn/3sZ+Tn+2eKmzp1KosXL+Y///M/I33olBcYunfthRq6l0iy0pQpFQknW4fu5dosZKSZYnLM8/Js9M9K41RjC/uP1zNeGYhRo3tDaNzebg7fU1BKRBJUtK//AwYM4LHHHutwWU8mQLJYLCxZsoQlS5Z0q10iIhKaiAelvv/97zN9+nS2bNnC5Zdf3m75BRdcwIIFCyJ92JRX73Txzif+ujeTR+THuTVytmwN34uIWA/dAzAYDIw7L48/H6xg77HTCkpFke4NoQk3U+rs4Xs+nw9Dos8lLCK9jq7/IiLSmYgHpV5//XXKysoYMGAAAO+88w7Z2dlceOGFAAwcOJA777wz0odNeW8ePY3HBxf0zWBorq3rDSRmAsP3HC4vbq8Ps2ZF7JZAkfPBMSpyHjDuvFz+fLCCf3xcG9Pj9ja6N4SmuzWlXF4fzW4vVktssgxFREKl67+IiHQm4jWl/va3v3HjjTfy0UcfAbBv3z7mzZvHK6+8EulD9SrBoXuadS/hpJuNwUCUXdlS3dLU4qHWEagnFbtMKYCrh/uzow6faqTarpngokX3htAEglKh3pzNZwWvlK0pIolI138REelMxINS69at44knngim595222385Cc/4Uc/+lGkD9VruL0+3jh6GoApF2roXqIxGAzBbClNy949J+v9Q/fyMywxz/QoyEzjkgFZALxxtCamx+5NdG8IjcvTWlMqxEwpg+FMtlS9glIikoB0/RcRkc5EPCh18uRJrr322javTZ48mRMnTkT6UL3GwZP1NDS7ybGauXxQn3g3RzoQmA2xQQ+F3XKiLj5D9wKuucAf7A3McBlpLo+XFrc3KvtOFro3hCbc4XtwZga+BqeuPyKSeHT9FxGRzkQ8KDVkyBBee+21Nq+9+eabDB48ONKH6jXe/MifJTXuvDxMqleUkLJU7LxHTtTHvsj52QKTB+w9djqYqRIJ//yklu9ue5fP/nQ3k3/yOnM2lrDz/YqI7T+Z6N4QGrcnvNn34KwZ+JSpKSIJSNd/ERHpTMQLnS9cuJDFixfzhS98gSFDhnDixAleeuklHn744UgfqtcIBKUmfmpmsMlTJlB+8mSX2zfaG6PSLjkjOzB8T9Oyh83e7Kbe6cYADOwTn0ypSwZmk59hoabJxb5P6hh3Xs9m4XN7ffz45Q/Y+k7bb4E/Pu3ggb8cJvO6xXh9Poy9aKa0WNwbamtrWb16Na+88gper5err76alStX0r9/f/bv388PfvADSktLycvLY9GiRcybNy+47fbt23niiSeorKxkxIgRrFixgjFjxkSsbaEK1pQK46NxZvieKwotEhHpGT0biIhIZyIelJoxYwb9+/fnD3/4AwcPHmTQoEFs3LiRK6+8MtKH6hVqm1z8q7wBgAmfCkqVnzzJ0qe7LhK5Yo7OfbRlpSlTqrsCs+71zUwj3Rzx5M2QGA0GJo/I50/vVfD3I1U9Cko1u73c/+d/8eoH/skJvjJ6IP/flUPpYzWz471yfv7mMSicwD+O1bb7N53KYnFv+O53v0tOTg4vvfQSRqOR++67jxUrVvDII4+wcOFC7rzzTm6++WZKSkpYvHgxF110EaNHj2bv3r08+OCDbNiwgdGjR7N582YWLVrEyy+/jM0W29lOXZ7uB6UanAqKi0ji0bOBiIh0JuJBKYDx48czfvz4aOy619l77DQ+oKhfJv2y4jO0Sbp2ptC5glLhOlHXOnQvJ76f7+KL+vGn9yr427+rWPK5CzGbuhcge+ivR3j1g2rSzUZWTb+YqYUFwWULxg9ncI6VZc8f4t2TDQzJsTIsL7ZBj3iK5r3hvffeY//+/bzxxhtkZfkL1z/44INUVlaya9cucnNzmT9/PgATJ05kxowZbN68mdGjR7N161amT5/O2LFjAViwYAHPPvssO3fuZM6cOVFp77kEa0qFsc2Z4Xu6/ohIYtKzgYiInEvEg1IVFRWsX7+ejz76CK+3bW2WX/3qV5E+XMp785h/6N6EHg4nkugK1pRq8fS6YVk9daaeVHyG7gVcNTyPPJuF0w4XJWW1TDw//Jku0y//As8frMBogB/OupQJHezjCxf353urH8P6mS+x59hphuRYMfaCWnHRvjccOHCAwsJCfve73/Hb3/4Wh8PBtddeyz333MORI0cYOXJkm/ULCwvZtm0bAKWlpe2CT4WFhRw6dKjH7QpXuLPvAVgMPsBAvVPD90Qk8ejZQEREOhPxoNR9991HVVUVn/vc57BYLJHefcprbLJTWHRe8PecW36KMTOXJ/7PYtaeeL/tuqoVlTAy0kwYDODzQVOLJxikks4ZswtobPZgAAbEqch5gNlo4PMjC9i2/yQvHqoMOyh1vM6JbdJ/AHDnlBEdBqQCHG9vJ3fsdGodbv51qpHLBmb3qO3JINr3hrq6Og4fPszll1/O9u3bcTqdLF26lHvuuYeCgoJ2w/CsVitNTU0A2O32TpeHKtRYdGC9jtb3dFFTqqNtTD43YKG2qTmsWfsSWWfnSM7QeQqNzlPXonmO9GwgIiKdifiT87vvvsuLL75Ifn74WQYCPq83WCeq2t7C7w+UYzYa+K9VT7SbeU+1ohKH0WAgM81EY7MHu4JSITMPvgSAfllppHVzuFwkffGS/mzbf5K/Ha7kfz47gj7W0P7z3OB087d/V2EwmvjSJf35j7FDOt+gxcGVw3J44+hp3j3RwKUDsjCk+NNStO8NaWlpACxbtoz09HSysrK46667uOmmm5g9ezZOp7PN+k6nk8zMTABsNluHy/PywstQ7ds3vOBiR+ub0/2fOYvZhM3W9jpiNvrAZMJibvu5zEj3QSO4MFBQkFoBznDPaW+l8xQanaeuReMc6dlAREQ6E/En5+zs7ODDgfRMWe2ZWjufDkhJ4slON9PY7KGh2c2AbNX/CoV58KUADM6J79C9gNGD+1DUL5MjlXb+9F4FX7tqaJfbuDxedh2upNntxX3qQ+6/85qQAkwX9cvkrY9raWh2U1brZHiK15aK9r2hsLAQr9eLy+UiPd3/7y8wTOSSSy7hN7/5TZv1S0tLKSoqAqCoqIgjR460Wz5lypSw2lBd3YDP1/V6BoP/wa+j9Rsa/dd9r8eDw9G2cLmrpRmDyYzb1Hb4Cx4XkEZVvZOqqoaw2pyoOjtHcobOU2h0nrp29jmCyAan9GwgIiKdiXhqwne+8x3uu+8+Dhw4wIkTJ9r8SHg+qXUAMDQntR9WU0WwrpSKDYfE5/NhGeLPlBoU56F7AQaDgZuuGAzA1n3Hg0OpzsXn8/HqBzXUNLmwWYw0vvgTrBZTSMcym4yM7O8vyP1+eWoEEjoT7XvDpEmTGDZsGPfffz92u52amhoee+wxrrvuOm644QaqqqrYtGkTLpeLPXv2sGPHjmAdqblz57Jjxw727NmDy+Vi06ZNVFdXU1xcHFYbfL7Qf861vruL4XsdPVCbW9dtbPaE1YZE/wn3nPbWH50nnadonKNI0rOBiIh0JuKZUsuXLwfgpZdeAvwPeT6fD4PBwL/+9a9IHy5lub0+TjU0AzAkNzGySKRzWWmBGfg0LXsoPj7twJjVF6MBBiZQZtkXL+nPuteOcqK+mecPVnS67v4T9XxY3YTBAJ8fWcAz9pqwjnXpgCzeO9lAWa2TphYPGWmhBbSSUbTvDRaLhWeeeYY1a9Zw/fXX09zczLRp01i2bBl9+vRh48aNrFq1irVr15Kfn8/y5cuZMGEC4J+N74EHHmDlypVUVFRQWFjIhg0byM3N7XG7wuXy+J8Gw/nGKM3o36axRdceEUk8ejYQEZHORDwo9be//S3Su+yVKhub8fjAZjGSY1V9omSgTKnw/OPjWgAGZKdjToB6UgFWi4kF44fzk1c+5P+9fhTSOs5U/KDKTsnHdQBMOj+PQd2YPTDHZqF/VhqnGlv4qKaJS1O44Hks7g0DBgzgscce63DZqFGj2LJlyzm3nTVrFrNmzYpW00Lmbh1yGE6JsUCmVIOuPSKSgPRsICIinYn4k+CQIUMYMmQIdXV1HDx4kH79+mG1WhkypIvCv9LGyXp/ltSgPtaUL4CcKrLS/VkuDcqUCsk/jp0GYEiC1JM6281jBnNeno2aJhcZ13wd36fGMhyraeJ/S6sBf7bTJQOyun2sC/pmAPBhdXgzvSUb3RtCE8yUCuOyb2nNlLK3ePBGetyNiEgP6fovIiKdiXhQqrq6mq9+9avcdNNN3HPPPZSVlXHdddexb9++SB8qpZW3BqUGJkitHena2ZlSnw5iSFser4+3y/xZRokYlLKYjCz9fCFGA6RfNJndR0/T4vbi8nj5Z1kdLx2uwuuDC/JtTLwgr0eB4/Pz/UGp8vpmHK7UDWjq3hCaYE2pMLaxtK7s9UGThvCJSILR9V9ERDoT8aDU6tWrGTlyJCUlJZjNZi688EIWLlzII488EulDpSyv10dFaz2pQQlUa0c6FwhKub0+mt3eLtbu3Q6daqSh2Y2vuYmCrMSckWfceXks+8JIAP5V0civ3/qEp0s+4e1P6vABF/XPZFpRAcYeZjL2sZrpm2nBBxyrcfS84QlK94bQuDz+a0c4mVImw5n1NXxYRBKNrv8iItKZiAel9uzZw3333YfNZgtmD9x+++2UlpZG+lApq8regtvrI91kJC/DEu/mSIjMRgO21pQFDeHrXEnr0D3XiX/1OKgTTTMvH0jjiz8hx2rG0zojUZ90M58r7Mu1I/IxhhM56MR5ef66VcfrnBHZXyLSvSE0gUypcD9ZgWypeqeCUiKSWHT9FxGRzkS8grbFYsHpdGKz2YJDmOx2O5mZmZE+VMoqbzgzdE/1pJJLdroZh6tF2QpdCBQ5d3/yHvCVuLalK66jbzH3ikE0ON2YjAYy00wR/3c5JMfGPz+p53idMzgjUarRvSE07m7UlAJ/UKrZo2LnIpJ4dP0XEZHORDxTatq0adx999189NFHGAwGqqur+f73v8/UqVMjfaiUdVL1pJJWYAifHgzPzenysP+4v56U6/jBOLcmNEaDgRybhax0c1QCRv2z0rAYDTS7vVQ3uSK+/0Sge0NoArPvdScoBRq+JyKJR9d/ERHpTMSDUt/73vfIyMjgi1/8IvX19UyePBmHw8GSJUsifagUZaC83j+EZ5CCUkkn+6xi59KxAyfqafH46JeVhrf2ZLybkxCMRkMwCH28NjWH8OneEBpXN4fvpbVGsTR8T0QSja7/IiLSmYgP38vMzGTt2rXU1NTwySefMHDgQPr37x/pw6QsS8FwWjw+LEYDfTMTswC0nFtWugmARtWUOqfA0L1xw3P5d3ybklCG5Fopq3VyvM7JZ4b0iXdzIk73htC0tM7A6PN6AFPI2wUypZSlKSKJRtd/ERHpTMSDUiUlJW1+P3bsGMeOHQPg6quvjvThUk76sMsBGJCdntAFoKVj2Rq+16V/tBY5v3p4Hr+Oc1sSyeA+VgAqGprx+nwp9+9f94bQBAuda/ieiKQIXf9FRKQzEQ9K3XLLLe1eMxqNDBo0iL/97W+RPlzKSR96KaB6UskqK8rD9yZPmUD5ya6HvA0cNIjXX90TlTb0RJW9hX9VNAIw/vy8OLcmseRlWLCYDLg8PmqaXBSkWKak7g2hcXt6VlNKw/dEJNHo+i8iIp2JeFDq0KFDbX6vqanh//2//8eQIUMifaiUlD5oJODPlJLkExi+1+LxYUjLiPj+y0+eZOnTr3S53iO3Jmbx0DeP1gBwyYCslAu69JTRYKB/VjrH65ycamhOufOje0NogplS+MLazmI0AD5lSolIwtH1X0REOhPxQueflp+fz913383TTz8d7UMlvaYWD+Y+/QAoyEqtB9LewmIyYjX7/1kZswvi3JrE80ZrUOqaC/Lj3JLENCDb/+++oqE5zi2JPt0bOhYodN7dTKkG1bMTkQSn67+IiJwt4plSHamrq6O5OfUfsnrqVKP/HOXZLKSZoh4vlCjJSjfjdLdgzOob76bExTmHGBpN5N76BIb0DH689Bs8euoDGu2NsW9gAuvfmiFZ0dAS55bEhu4N7XkCQakwt0trrYne4HRFtkEiIlGg67+IiAREPCh13333tfnd5XLx9ttvM2nSpEgfKuWcan0Q7Z+tLKlklp1uosoOxux+8W5KXJxriOHJOid/fv8UVrOR2x/5BQaDgRVzroxDCxNX/yx/UKqh2U1Ti4eMtNBnX0t0ujeExuXpWaFzZUqJSKLR9V9ERDoT9Uyp9PR0brnlFm6++eZoHyrpBTKlAg+mkpwCxc6N2b0zU+pcPq51ADA014ohxWaWi5R0s5E8m4XTDheVjc2clx/5umSJQveGjrm7mSllaR3vp5k/RSTR6fovIiJni3hQ6qGHHor0LnsFr89Hld2fKdVP9aSS2pmgVO/MlDqXstNOAIbn2eLcksRWkJXGaYeLKntLSgWldG8IjaeHNaVU6FxEEo2u/yIi0pmIB6XWrVsX0np33HFHpA+d1OqdblweH16Xk7wMS7ybIz2Q3ToDnwqdn9HQ7Oa0w4UBGJqroFRnCjLTOFJpp8qeWrWBdG8ITaDQeXeH79lbPLi9PszhRrVERKJE138REelMxINSR44cYdeuXVx88cVccMEFlJeX889//pNLL72UzMxMAA3d6UAgS8pV+RFGw8g4t0Z6IpgplaWgVEDZaf/Qvf7Z6aSbVcS/MwWZ/qB0tT21ip3r3tA1n8/Xg+F7Z/7e2Owm16YvN0QkMej6LyIinYl4UMpoNHLffffx9a9/PfjaH//4R15++WUef/zxiByjtraW1atX88orr+D1ern66qtZuXIl/fv3Z//+/fzgBz+gtLSUvLw8Fi1axLx584Lbbt++nSeeeILKykpGjBjBihUrGDNmTETa1ROBB9CWU0fj3BLpqexAUMqWnXLFqrvrWI0/KDU8zxrnliS+/Ez/8F17i4emltQpWh2Le0OyCwzdg/AzpYwGAzaLEYfLq6CUiCQUXf9FRKQzEU9ZeOWVV5g/f36b12644QbefPPNiB3ju9/9Lk1NTbz00ku8/PLLmEwmVqxYQV1dHQsXLuTGG2+kpKSEVatW8dBDD3HgwAEA9u7dy4MPPsiaNWsoKSlh5syZLFq0CIfDEbG2dVd161CdlooP49wS6ak0s5E0k/+J8mS9M86tiT+ny8Px1vNwfgrVSIqWNJORHKs/sJlK2VKxuDckO/dZQanu3JyzWgPg9U7VlRKRxKHrv4iIdCbiQan8/HxKSkravPbaa68xcODAiOz/vffeY//+/axZs4Y+ffqQlZXFgw8+yJIlS9i1axe5ubnMnz8fs9nMxIkTmTFjBps3bwZg69atTJ8+nbFjx2KxWFiwYAF5eXns3LkzIm3rLp/PF3z4dFUqUyoVBLKlFJSCj2oc+HyQn2FR9kaIClqzpapSKCgV7XtDKnB5zgpKdWMkS5/WYGaDglIikkB0/RcRkc5EfPjet7/9bRYuXMj111/P4MGDKSsr4+WXX+anP/1pRPZ/4MABCgsL+d3vfsdvf/tbHA4H1157Lffccw9Hjhxh5Mi29ZgKCwvZtm0bAKWlpcyZM6fd8kOHDkWkbd3V1OLB6fZiAFxVH8e1LRIZWelmqptcnKxvjndT4u5odRMAI/oqSypUBVlpfFDdlFKZUtG+N6QCt9cb/Ht3qqsEJlmoc6ZWkXwRSW66/ouISGciHpSaN28eQ4YM4U9/+hPvv/8+w4YNY8uWLVx00UUR2X9dXR2HDx/m8ssvZ/v27TidTpYuXco999xDQUEBNlvbmb2sVitNTf6HYrvd3unyUIVb6yOwvsEAPl/75VVN/geIXJuFY+7kfAjtqo+pIJw+np0pFa/anT35nEbK2UP3LkiAoNSn+xiN9yYS+8xvnYGzpvXaEM4+w+lbLD+b0b43pIJAppQBX7fem8B1R8P3RCSR6PovIiKdiXhQCmDSpElMmjSJmpoa8vPzI7rvtDT/sJZly5aRnp5OVlYWd911FzfddBOzZ8/G6Ww7XMrpdAZn9rDZbB0uz8vLC6sNfftmd6vtNlt6h683VNgBGJDjLwKdkdHxeh0Jdd1Y7bOjPiZzfzpyrvfxbHnZ6VDeQI3TQ0FB9z4vHTEYDSG102A0dPu43f18n33sQBs/PFGHz+fP/BncN6vD9ePxntts6SGfo1DPeWDdSOxziMkEVFLvdGOwpHXrvezp+xgN0bw3pILgzHvdDBb2UVBKRBKUrv8iInIuEQ9KuVwu1q1bx69//Ws8Hg87duzgrrvuYv369fTv37/H+y8sLMTr9eJyuUhP9z/UeVuHPFxyySX85je/abN+aWkpRUVFABQVFXHkyJF2y6dMmRJWG6qrG8LKBgp84+1wNHe43claf6ZWTuvQi6am0Id8hbputPdpMPgf9DvqYzL2pyNdvY9ns7ZWazta2UhVVUNIxw+Fz+sLqT8+ry/s4xoM/kBGuJ/vjo4daOPhE/UAnJ9nO2e7Y/met/mchniOQj3ngXUjsk+fj3SzkWa3F2PO4LDey3Dex8C6sRDte0MqcHn897LuJrAFhu8pKCUiiUTXfxER6UzEC52vW7eOPXv28JOf/ASLxULfvn0ZOHAgq1atisj+J02axLBhw7j//vux2+3U1NTw2GOPcd1113HDDTdQVVXFpk2bcLlc7Nmzhx07dgTrSM2dO5cdO3awZ88eXC4XmzZtorq6muLi4rDa4POF/xPYriOBmff6thY3TkZd9TEVhNPHwDCa47WObn1eOvschdPe7n5OI9HGRBu6B+3fw0if80jt02AwBIfwmfoOi+r7GCvRvjekgp5mSmVbA5lSqiklIolD138REelMxDOlduzYwW9/+1sGDBiAwWAgIyODhx56KOzAz7lYLBaeeeYZ1qxZw/XXX09zczPTpk1j2bJl9OnTh40bN7Jq1SrWrl1Lfn4+y5cvZ8KECQBMnDiRBx54gJUrV1JRUUFhYSEbNmwgNzc3Im3rjha3l4Zm/7fafTM0M1mqCMyCVed00+B0Bx8We5PeOOteY5OdwqLzul7P3tjlOvkZFk7WN2PKGxqJpsVdtO8NqaAnQSmfz4fV4AH81x0RkUSh67+IiHQm4k/KTU1NwbHivtav4a1WK0Zj5JKyBgwYwGOPPdbhslGjRrFly5Zzbjtr1ixmzZoVsbb0VGB2raw0E1aLKc6tkUixmIx4m+owZuRwvM7BxdbEq+8Tbf+u9NdKu7AgMbKkYsHn9bL06Ve6XG/FnCu7XCc/w585aeqbGkGpWNwbkp27B8P33K5mdh/6GEijLoyhriIi0abrv4iIdCbid4MrrriCdevWAf4hKADPPPMMo0aNivShUkJ1kz8olcxD96Rj3vpTAByvc3axZuqpc7ioaGjGABT1y4x3c5JSXmD4Xv6wOLckMnRv6FpPh+/ZWicCqXO4gg9+IiLxpuu/iIh0JuKZUvfffz8LFixg+/bt2O12vvzlL2O32/nlL38Z6UOlhKpgPaneMbypN/HUn8I8sIjjtb0vKBXIkhqaayUzrfcNXYyEQFDKmJlHrcOV9EMgdW/omsvTGpTq5vZprRuWNzTjcDjIyOg9WYoikrh0/RcRkc5E/GmxoKCA559/nv/93//l+PHjDBw4kM9+9rNkZXU8HXxvFxi+p0yp1BPIlPqkzhHnlsSYwci/T/mDUsqS6r40k5HMNBP2Fg/HaprIHZIT7yb1iO4NXXO3ziRr6GamlKU1KOXyRqhBIiIRoOu/iIh0JuJBqRtuuIE//elPfOlLX4r0rlOO1+ej1tGaKZWhoFSqCQ7f62WZUpbzr6TJ5cFmMXJ+vjI1eiLXZsHe4uGjmiY+k+RBKd0buhbMlOpmUCqttSyhxwfNbi/61yciiUDXfxER6UxUKgw6HL0sM6Sb6p1uvD4wGw1kpavIearprTWl0i/7PAAX9c/C1N2nawEg1+b/3uBYTWpcU3Vv6FywplQ3tzcbzhRJD8zqKiKSCHT9FxGRc4l4ptT48eOZN28eU6ZMoX///m2W3XHHHZE+XFI73eTPksq1WYKFHyV1eBoqASivd+L2eDGbUn+WmY+qm7AMvRyAiwcoLb+nclrrSH1U0xTnlvSc7g1dc7XOvtfdWK7B4B/C1+KFeqcngi0TEek+Xf9FRKQzEQ9KffLJJwwbNoyjR49y9OjR4OsKurR3unXoXqCgsaQWn72WdLORZreX8oZmhuba4t2kqNv89icAnJdnIztdBc57KlDc/Njp5P+GWfeGrgUypXpyRgJBKWVKiUii0PVfREQ6E7Gnxm9+85v84he/4JlnngHA6XRitVojtfuUVNuaKZWX5LNqybn4GJpr5YOqJo6ddqR8UKra3sLO9ysAGDU4O86tSQ25Vv8l+nitA5fHiyUJs+10bwhdcPheD57T0oxgR0EpEYk/Xf9FRCQUEXvC2bdvX5vfp0yZEqldp6xAplSuMqVS1vA8f6nhj1Mg06Urv9t3nBaPD3dFKQOz0+PdnJSQkWbC1+LA44NPkrRgvu4NoXP3cPge+INSAPXNGr4nIvGl67+IiIQial+7+3y+aO06JXh9PuocypRKdcPz/NlRH6dATaDO1DlcPLvvBADOd55XSn6EGAwGPLUngdSoKwW6N3QmOPse3T9Hlta7ujKlRCTR6PovIiIdiVpQSg+lnWtwuvH4wKSZ91LaeYGgVIpnSv3mn8ext3go6peJ6+jb8W5OSgkEpY6lSFBK94ZzC9aU6kmmVOvtpEGFzkUkwUT7+u/xeLjlllu49957g6/t37+fefPmMWbMGKZNm8bWrVvbbLN9+3aKi4u54oormD17dpvsLo/Hw8MPP8ykSZMYM2YMixYt4tSpU1Htg4hIb5R8BUpSRHDons2MUQ9pKWt4LwhKnW5q4dl/Hgfg9onnQQ+yPKQ9byBTKoU/Q+LX09n34Ozhe8qUEpHeZd26dbz11lvB3+vq6li4cCE33ngjJSUlrFq1ioceeogDBw4AsHfvXh588EHWrFlDSUkJM2fOZNGiRTgc/vvt+vXr2b17N8899xyvvfYaVquV5cuXx6VvIiKpLGKFzt1uN3/4wx+Cv7tcrja/A9x4442ROlzSq9XQvV7hvNaaUuUNzThdHqyW1MuK2/Dmx9hbPFzcP4vPFvaNd3NSTrJnSuneEDpXoNB5D/YRCErVORWUEpH4iuX1/80332TXrl184QtfCL62a9cucnNzmT9/PgATJ05kxowZbN68mdGjR7N161amT5/O2LFjAViwYAHPPvssO3fuZM6cOWzdupUlS5YwaNAgAJYtW8bkyZMpKytj2LBhEWm3iIhEMChVUFDA2rVrg7/n5eW1+d1gMOjB4yynAzPvqch5SsuxmeljNVPvdFNW66CoX1a8mxRRH1U38fv9/lpS/zV1hLL+osBT6z+/H9U04fP5km74m+4NoYtEofPAaPBah4JSIhJfsbr+V1dXs2zZMp544gk2bdoUfP3IkSOMHDmyzbqFhYVs27YNgNLSUubMmdNu+aFDh2hoaKC8vLzN9gUFBeTk5HD48GEFpUREIihiQam///3vkdpVr3Bm+J6CUqnMYDAwPM/Geycb+Ph09IJSTS0e3j1ZT43dhdfnwzpmBpWNzfTLit4seD6fj0f/XorHB9eOyOeq4blRO1Zv5q2rwAA0NnuoaXLRNzMt3k0Ki+4NoQsWOo/A8L1ANq6ISLzE4vrv9Xq5++67ue2227j44ovbLLPb7dhstjavWa1Wmpqaulxut9sByMjIaLc8sCwcif59UqB90W7n2fs3GGJzXs4+TqyOGWuxev/iJdX7B8nTx2i1L2JBKQmd1+ejtsn/LbaG76W+QFDqWE10agIdrW7ildLq4NAfANv4m5j3y7e4c+oIvjJqYFSya3YdquQfH9eSZjLwP5+7MOL7l1YeF4NyrJyoc/JRTVPSBaUkdJEYvhfIlDqtTCkR6QWefPJJ0tLSuOWWW9ots9lsNDQ0tHnN6XSSmZkZXO50Otstz8vLCwarAvWlOto+HH37Zoe9TTxEu50eTxM2W1rrsbIoKIj+efF4mrBa/cfMz4/NMeMlWT5n3ZXq/YPe0ceOKCgVB43NHjw+HyYDZFv1FqS68/P937IdjUJNoI9qmvjbv6vwAQWZaVwyIAuvz8cre9/C3v9CHnrpCEdONbJkWiGmnqRffMrpphZ+/L8fAPCNCcMZmmvrYgvpifPzbZyoc3Kspomxw3Lj3RyJkkgUOg8EpeqdbjxeX0T/3YuIJJo//vGPnDp1iquuugogGGT661//ytKlS9m9e3eb9UtLSykqKgKgqKiII0eOtFs+ZcoUcnJyGDBgAKWlpcEhfJWVldTW1rYbEhiK6uoGfAk8D4zB4H8YjnY7q6sbcThagn83mTK62CIyx3Q6W7Ba06ipic0xYy1W71+8pHr/IHn6GGhnpCkiEgeBoXs5Notq8PQCI/r6v1H7sCr8dO/O1Dlc/P1INT6gsCCDqYV9g5+nP2//Pv/n16+x7rWjbNt/EnuLh5VfuqjDz9vkKRMoP+kvpm0wGvB5O74SDhw0iNdf3YPP52P1S0eoaXJxYUEGt1ylugrRdn5+Bm8cPc0xzcCX0twRHL7nA+qcLvIzlFknIqnrhRdeaPP7vffeC8CaNWs4ffo0jz76KJs2bWL+/Pm8/fbb7NixgyeeeAKAuXPnsnjxYr70pS8xduxYNm/eTHV1NcXFxQDMnj2b9evXM2rUKPLy8li9ejXjxo1j+PDhYbfT5yOhHzQDot3Os/cdq3Ny9nGS5X3oLvUv+fWGPnZEQak4CBY519C9XuHCAv83Mh/VNOH2+jBHIHPB6/Pxygc1eLw+BvVJbxOQAsDn4+vjhjE4x8rynYf4y79OYbOYuPe6wnZD+cpPnmTp068AkJGRTlNTc4fHfOTWqQBsf7ec/y2txmw08P0vXUyauSeDjSQU5+Wf+QxJ6nJ5/ZlSPblCGA3+wFSL13+vUVBKRHqrvLw8Nm7cyKpVq1i7di35+fksX76cCRMmAP7Z+B544AFWrlxJRUUFhYWFbNiwgdzcXAAWL16M2+1m/vz52O12xo8fz+OPPx6/DomIpCgFpeIgUIA2VzPv9QqDc6xYzUacbi+f1DqCw/l64t+n7FQ0NGMxGtoHpM5y3UX98Pp8LH/+EL8/cBKrxchdU0d0u8bUvyoa+OHfSwFYdM35XNQ/tWYTTFTn5fmHR34UpbpkkhgiUegcIN1soKXFF/wCRESkt1izZk2b30eNGsWWLVvOuf6sWbOYNWtWh8ssFgtLlixhyZIlEW2jiIi0pRSHOAgEpZQp1TsYDQYu6OsPREViCJ/b4+Wfn9QBMHZ4DtnpnceWv3Bxf5Zf769/8Ju3j/PkG8e6dVxDZh5L/nAQl8fH1Av7csvVQ7u1HwlfIChVXu+kxe2Nc2skWiJRUwrA2lpXqqappYctEhERERGJLgWlYszn81EXrCmlRLXe4sICf12pD6p7Pvzq/YpG7C0eMtNMXDogtEJzMy8fyN3T/DPk/WLPxzz9j7Kwjul0ecj+8t2camzhgr4ZPPDFi6Iyo590rG9mGjaLEa8PTtQ7u96gl/N4PNxyyy3B2iIA+/fvZ968eYwZM4Zp06axdevWNtts376d4uJirrjiCmbPns2+ffti3WzcEZh9DyDd5P+3GfgCREREREQkUSkoFWNOt5eW1iEafbrIcJHUEQhK9ThTymji3RP+6Y2vHJoT1sxaN40Zwh3XXgDAuteO8rt9x0ParqnFw58PnsLUdxh9M9P4yezLNWtkjBkMhuAMh2Uqdt6ldevW8dZbbwV/r6urY+HChdx4442UlJSwatUqHnroIQ4cOADA3r17efDBB1mzZg0lJSXMnDmTRYsWtZsKPNoilSkVCErVaPieiIiIiCQ4BaViLJAllZVuwmzS6e8tAsXOP6jqWaaU5bwxNLk82CxGivplhr39reOG8Y0J/lljHv37Bzzx+lH/3J7ncKqhmT+8W85phwuv/TQ/mzeaQX2s3W6/dN/w1iF8ZbUKSnXmzTffZNeuXXzhC18IvrZr1y5yc3OZP38+ZrOZiRMnMmPGDDZv3gzA1q1bmT59OmPHjsVisbBgwQLy8vLYuXNnTNt+pqZUz6ZdSW8dvqdMKRERERFJdIqKxFid0w1AjlX1pHqTwtZMqY9PN+F0ebq9n/TLPg/ARf2zwsqSOtt/TjqPW8cNA+CXe8vIvvEBTtY58Z01/2hDs5s3jtbwp/cqsLd4yLGaafjTKs7v2/Mi7dI9gUypT2o1fO9cqqurWbZsGT/60Y+w2WzB148cOcLIkSPbrFtYWMihQ4cAKC0t7XR5qAyG0H86Wj84fM9w7lhxKK+nm89kSoXTpkT7Cfec9tYfnSedp2icIxERkVjRGJwYq1U9qV6pIDONvplpVNtb+HelndGD+4S9j4+qm7AMvRwDcPGA7s96ZzAYuOPaCygsyOShl47QNOBC/vz+KTLTTORmpNHU7Ob0WRkWI/pmcO2IfB6vq+j2MaXnhuX6M9Q0fK9jXq+Xu+++m9tuu42LL764zTK73d4mSAVgtVppamoKaXmo+vYNrcbbudb3tT4JpqdbsFrBYm775YXZ6AOTqcvX+2AC3DS6PBQUhNemRBPuOe2tdJ5Co/PUNZ0jERGJNUVGYqzOoUyp3shgMHDJgCxe/7CG98sbuhWUeu7AScA/jKurGfdC8cVL+nPVsBym/dcaMi+fhr3Fg73lTMBjUJ90rhjSJ5ihI/E1TMP3OvXkk0+SlpbGLbfc0m6ZzWajoaGhzWtOp5PMzMzgcqfT2W55Xl5eWG2orm7AF8LIO4PB/+D36fUdzf77g6fFhdPgw21qO9Oiq6UZg8nc5esGTxoAp+qdVFW17XeyONc5krZ0nkKj89S1s88RKDglIiKxo6BUjAWG7+UqU6rXuXRgdjAoFS6Hy8OfD5YDcEkPsqQ+rSArnaZXN/KfC27hVGMLXqMRn9tDfoaFTBXiTyjDWoODJ+uduDxeLKpJ18Yf//hHTp06xVVXXQUQDDL99a9/ZenSpezevbvN+qWlpRQVFQFQVFTEkSNH2i2fMmVKWG3w+QjrgffT6wcKnRsM595PKK8HakqdbnIl/QN4uOe0t9J5Co3OU9d0fkREJNb0VBNDXp+Pemfr8D1lSvU6lw70f+v4r4rwg1K7Dp2isdmDp66CobmRLzRuNhkZnGNl5IBshuXZFJBKQAWZaVjNRrw+OFGnulKf9sILL/DPf/6Tt956i7feeosbbriBG264gbfeeovi4mKqqqrYtGkTLpeLPXv2sGPHDubMmQPA3Llz2bFjB3v27MHlcrFp0yaqq6spLi6OaR9cgZpSPdyPtbWmVL3THQx0iYiIiIgkIgWlYqix2YPXByYDZAa+ypZe49LWDKdjNQ4aW4fphMLn87H1Hf/Qveb3/45BFUh7JYPBEBzCp2Ln4cnLy2Pjxo288MILjB8/nuXLl7N8+XImTJgAwMSJE3nggQdYuXIl48aN4/nnn2fDhg3k5ubGtJ3u1gBSN+cwCEozgrl1J9X2lp42S0REREQkapQOEUN1rcWj+1gtGBVY6HXyMtIY1Cedk/XNHKpo5KrhuSFtd7C8gcOnGkkzGag99CpwT1TbKYlraK6NI5V21ZUKwZo1a9r8PmrUKLZs2XLO9WfNmsWsWbOi3axOuTxnZt/rCYPBQL7NzCm7i7Kqegb2iXx2pYiIiIhIJChTKoYC9aQ0817vddlAf4Hzd47XhbzNtndOAFB8UT98zY1RaZckB83Al9pc3tZMqQjsq2+G/z5T3eTqYk0RERERkfhRUCqGAplSqifVe109PAeAko9rQ1q/1uHipcOVAMy9YnC0miVJIlDsXJlSqSlSmVJwJihVZVdQSkREREQSl4JSMaRMKbl6uH+K+QMn6nG4PF2uv+O9clo8Pi7un8VlAzU9c293pqaUglKpKFI1pQDyM/xfflSpppSIiIiIJDAFpWJImVIyNNfKwOx03F5fl0P4vD4fz+33Fzife8UgFTgXhrZmSp2ocwYDGJIaPF4frYlSEbkxFyhTSkRERESSgIJSsWKy0Njiz4xRplTvZTAYuLq1wHnJsdpO133zo9Mcr3OSlW7i+ov7R79xkvD6ZaWRbjbi8cHJ+uZ4N0ciyO31Bf8eifhzfiAo1aRMKRERERFJXApKxYixzwAA0kwGrGad9t5s3Hn+IXyvH63B5/Odc73Nb30CwIzLBmK1mGLSNklsRoOBoYFi5xrCl1JcZ2W+9XT4ns/nI9vk358ypUREREQkkSk6EiOm3IEA5NosGobVy11zQT5pJgNHq5s4fKrj2fQOVTRQ8nEtJgP8f2OHxLiFksiCxc41A19KcXvOBKh7emN2tzTz8sFjAFQrKCUiIiIiCUxBqRgx5gwCoI9VQ/d6u2yrmamFBQA8//6pDtd5+h/+LKnrLurHoD7WmLVNEp9m4EtNLq8/s8lkNERk+F6WNR2AxhZPSJMqiIiIiIjEg4JSMWLK8WdK5dhU5Fxg+qX+4Zwv/utUu4LV756o56//rgTg61cPi3nbJLENDc7A54xzSySSXK2ZUuZITL0HmA1gat1VZaPqSomIiIhIYkraoJTH4+GWW27h3nvvDb62f/9+5s2bx5gxY5g2bRpbt25ts8327dspLi7miiuuYPbs2ezbty9m7TUGglLKlBJg/Pl59M1M47TDxe/eORF83evz8aOXPwBgxmUDGNk/K15NlAQ1TDWlUlKgppQlQkEpgwFsraXoKhtVFF9EREREElPSBqXWrVvHW2+9Ffy9rq6OhQsXcuONN1JSUsKqVat46KGHOHDgAAB79+7lwQcfZM2aNZSUlDBz5kwWLVqEwxGbBzvjWTWlRMxGA/856TwAntx9jIoG/0Pj2leOcrC8gQyLie9ce0E8mygJKjB873ids82MbZLcXN7IZkoBWFuDUlXKlBIRERGRBJWUaTtvvvkmu3bt4gtf+ELwtV27dpGbm8v8+fMBmDhxIjNmzGDz5s2MHj2arVu3Mn36dMaOHQvAggULePbZZ9m5cydz5syJantrHS6M1mxANaXkjJmjBvKn9yp492Q9Czbvo6hfJm9+dBqAe64rpCAzrdv7bmyyU1h0Xmjr2jsuti6JqX92OmkmAy0eH+X1Toa2BqkkuQWG8VpMkQtK2cxAM5xSppSIiIiIJKiki5BUV1ezbNkynnjiCTZt2hR8/ciRI4wcObLNuoWFhWzbtg2A0tLSdsGnwsJCDh06FHYbwi1CG5glKzPNhMWUtMlpnQqcE4MBfCmavNGdPnb2WTEZDKz80kju+v17lNU6qbL7sxnumjqC6ZcN6FFbfV4vS59+JaR1V8y5sk1bO+tfsk8ceXYfz/4z0Z3dTpPBwNBcGx9WN/FJrYNhebYO1w2lb8nS/94g0jWl4MzwvUAmpoiIiIhIokmqoJTX6+Xuu+/mtttu4+KLL26zzG63Y7O1fTizWq00NTWFtDwcfftmh7V+9bE6APIy08jISO9y/VDWCXfdWO3TZmv/WjL3pyMd9bEjBqOBgoLOPysFBdm89L0Ctr5VRr3TTfGlAxg54NzbGIyGqJ+jc/UvlP4E1kv099xmS0+a/nTUzgsHZPNhdROn3b5z9iHc65TEV2D2vUh+cZHReoc/Wa+glIiIiIgkpqQKSj355JOkpaVxyy23tFtms9loaGho85rT6SQzMzO43Ol0tluel5cXdjuqqxvCygZ6v6wGgOw0E01NXT8chLJOuOtGe58Gg/9B3+FobndukrE/HQlklXTUx474vD6qqhq6XhH4UlHf4N8728bn9UXtHHX2HgaOHUp/wmljOO2MxD7P7mNDYyM5ufld7qvR3hjX/nR03gdk+GvT/euT2nbLDAZ/QCqU61RgXYm/aGRKWU0+wEB5vWZqFBEREZHElFRBqT/+8Y+cOnWKq666CiAYZPrrX//K0qVL2b17d5v1S0tLKSoqAqCoqIgjR460Wz5lypSw2+HzhTdE7ViNf/heji2pTndYAucjVYfuQff6mEznI5T+JVN/OnJ2H0Md4hgY3hgvjU12LixsWx8s7dJpZE65jad//2ee+NaPARg4aBCvv7onuE641ymJL3drUCqSNaXSfC1AuoJSIiIiIpKwkipK8sILL7T5/d577wVgzZo1nD59mkcffZRNmzYxf/583n77bXbs2METTzwBwNy5c1m8eDFf+tKXGDt2LJs3b6a6upri4uKotzsYlLJq5j1pb/KUCZSfPBnSuipK3vt0FDw7Xudk5/un6HfR1Sz+qn/ZI7dOjUfzJEJcrYXOI1tTyh/oqm/20NTiISPNFLF9i4iIiIhEQlIFpTqTl5fHxo0bWbVqFWvXriU/P5/ly5czYcIEwD8b3wMPPMDKlSupqKigsLCQDRs2kJubG/W21TT5C1jn2hSUkvbKT54Muyi59G6BWTwbmt14fT6Mqlie9FzeyGdKWYz+H5fXX+z8gr4ZEdu3iIiIiEgkJHVQas2aNW1+HzVqFFu2bDnn+rNmzWLWrFnRblY7/zV1BEtX/B/6TLwv5scWkdSTmWbCaACvDxqbPcEglSSvM5lSkZ2h1WbyB6XKG5wKSomIiIhIwons/36lQ9MvG0Dzey/GuxkikiKMBkMwEFXvdMW5NRIJ0agpBWAz+/dXrhn4RERERCQBKSglIpKE+rTWqKt3uuPcEokElzfyNaUAMlqT6MobFJQSERERkcSjoJSISBIKZErVKSiVElxRzpQ6XmPHp+kYRURERCTBKCglIpKEcoLD9xSUSgXu1kLnka4pFciU+mdZDQ6HI6L7FhERERHpKQWlRESSkGpKpZZAoXNLhIfvBTKlHIpdioiIiEgCUlBKRCQJnV1TyqthWUkvUOjcHOHhe4FMqSa3T58TEREREUk4mkdcRCQJZaWbMBrA6wN7iyfezZEeChQ6txgNRDKpKd3oC35OappcZGVGcOciIpLUvF4vVVVVGAyQn68bhIjEh4JSIiJJyGgwkJ1ups7pVl2pFBAodI7PQyQTmrzuFtIMJpw+AxUNLQzvF7l9i4hIcquqquLJv+0HYFnfLEymjDi3SER6Iw3fExFJUsEZ+ByqK5XsAjWlDnxciccT2fczw+IfEljR2BLR/YqISPLLzMknMyc/3s0QkV5MQSkRkSSVYztTV0qSW2D2PYs58gnMGSb/n6cUlBIRERGRBKPheyISksYmO4VF53W9nr0xBq0ROHsGPgWlkl0gUyrCk+8BYGu90ytTSkREREQSjYJSIhISn9fL0qdf6XK9FXOujEFrBCAnMHxPQamkF6gpFY305cAMfKcaFJQSERERkcSi4XsiIkmqj9U/fK/B6QKikGIjMRMMSkXhbQwM31OmlIiIiIgkGgWlRESSVFa6CYMBPD4wZObFuznSA25vYPhe5KNSgeF7qiklIiIiIolGQSkRkSRlNBjok+6POJhyBsa5NdITUc2Uag1K1TndOFyeyB9ARERERKSbFJQSEUligWLnxpwBcW6J9EQ0C51bjP4fgIr65sgfQERERESkmxSUEhFJYoGglElBqaTm8kYvUwogw+zfcXmDMzoHEBERERHpBgWlRESSWE5rsXNlSiU3dxQzpQAyLK1BKWVKiYiIiEgCUVBKRCSJBTOl+igolcyCNaWitP9AptTJBgWlRERERCRxKCglIpLEcmz+TClDRm58GyI90hyjTKmKeg3fExEREZHEoaCUiEgS62M1c/XwHBz/2BrvpkgPNLv9QSlT1GtKKVNKRETia19FC//1/Ec0ON3xboqIJAAFpUREktwVQ3Jo+dfL8W6G9EAwKBWlVKlgUEo1pUREJI7sLi+Ha1yU1jgp+fh0vJsjIglAQSkREZE4a3Z7gChmSgWG7zU04/X5onMQERGRLnxQ6yZwFzpSaY9rW0QkMSgoJSIiEmctUR6+ZzP761W5vT6OV9XhU2BKRERizOP18WHtmSF7pVUKSomIglIiIiJx5fX5aGmdfc8Upbuy0WCgb4a/KP66vx/E4XBE50AiIjF26NAhbrvtNsaNG8c111zD0qVLqampAWD//v3MmzePMWPGMG3aNLZubVt/cfv27RQXF3PFFVcwe/Zs9u3bF1zm8Xh4+OGHmTRpEmPGjGHRokWcOnUqpn1LNf+qdOBwn/lSREEpEQEFpUREROIqkCUF0cuUAhiQneY/HpboHUREJIacTie33347Y8aM4fXXX+fPf/4ztbW13H///dTV1bFw4UJuvPFGSkpKWLVqFQ899BAHDhwAYO/evTz44IOsWbOGkpISZs6cyaJFi4JB+/Xr17N7926ee+45XnvtNaxWK8uXL49nd5NeRaMLgNx0/yPoJ7VOmlo88WySiCQABaVERETiyBmjoFT/LH9QqtGloXsikhpOnDjBxRdfzOLFi0lLSyMvL4+bb76ZkpISdu3aRW5uLvPnz8dsNjNx4kRmzJjB5s2bAdi6dSvTp09n7NixWCwWFixYQF5eHjt37gwu/9a3vsWgQYPIyspi2bJlvPrqq5SVlcWzy0mtusk/dC/XaiTfZgbgA2VLifR6CkqJiIjEUWDmPbPRgMEQvahUX6v/lm9v1hTcIpIaRowYwVNPPYXJZAq+9uKLL3LZZZdx5MgRRo4c2Wb9wsJCDh06BEBpaek5lzc0NFBeXt5meUFBATk5ORw+fDiKPUpt1Q5/plSG2cD5uemAhvCJCJjj3QAREZHeLBCUSjdH93uifpn+YXt2ZUqJSAry+Xw8/vjjvPzyy/z617/mV7/6FTabrc06VquVpqYmAOx2+zmX2+3+QElGRka75YFl4Yji9w09EmjXp/+MlkCmVIbZwHl56fzzpJ3SKntUj2swtO1for4XPRGr9y9eUr1/kDx9jFb7FJQSERGJo2a3v55GejTH7gGDshWUEpHU1NjYyH333cfBgwf59a9/zUUXXYTNZqOhoaHNek6nk8zMTABsNhtOp7Pd8ry8vGCw6tOTQpy9fTj69s0Oe5tY8HiasNnSgr9Hu521Lf4vYXIyLRQNyob3a6hxuikoiN5xPZ4mrFZ/H/Pzs6J6rHhL1M9ZpKR6/6B39LEjCkqJiEhKOHToEA8//DAHDx7EYrFwzTXXcO+995Kfn8/+/fv5wQ9+QGlpKXl5eSxatIh58+YFt92+fTtPPPEElZWVjBgxghUrVjBmzJiYtDuQKWUxGfBFMV40sLXQud3lwxfNA4mIxNDHH3/Mt771LQYPHsy2bdvIz88HYOTIkezevbvNuqWlpRQVFQFQVFTEkSNH2i2fMmUKOTk5DBgwoM0Qv8rKSmpra9sN+QtFdXVDVK/v3VVd3YjD0RLMfoh2OyvqWwAweT1YPP6sqZOnHVRVNXS2WY9UVzfidLZgtaZRU9OIyZTR9UZJxmDwBzMS9XPWU6neP0iePgbaGWmqKSUiIkkvmjMwRVsgKNXkbMHjdkXtOANah++5fVDrUF0pEUl+dXV13HrrrVx55ZX84he/CAakAIqLi6mqqmLTpk24XC727NnDjh07mDNnDgBz585lx44d7NmzB5fLxaZNm6iurqa4uBiA2bNns379esrKymhsbGT16tWMGzeO4cOHh91Ony9xfwLti3Y7XR4ftc4zw/dyrf7ciJqmlpj2M1V/1L/k/0mWPkaDglIiIpL0ojkDU7QFZt8zRXn4XprZSOtkR5yob47qsUREYuH3v/89J06c4C9/+Qtjx45lzJgxwZ+8vDw2btzICy+8wPjx41m+fDnLly9nwoQJAEycOJEHHniAlStXMm7cOJ5//nk2bNhAbm4uAIsXL2bq1KnMnz+fqVOn0tzczOOPPx6/zia5ansLXh8YgHSzgVyrvzh9TZMLZe+K9G4aviciIkkvMAPT2bqagWnbtm2Af7hG4Jvzs5cHZmgKVajFHz9dzLIlEJQyGABfp/vqyesGA2SaDTjcPk42NCd0Mc1kKfgZbzpPodF56lqynqPbbruN22677ZzLR40axZYtW865fNasWcyaNavDZRaLhSVLlrBkyZIet1OgstH/ZYjNbMBoMJDb+i1Js9uLvcVDVroeS0V6K/3rFxGRlBLJGZjCEe4Y+8D6aWX1gL+mlM2WhtnoA5MJi9nSZv2evG5OS8NmM5FjM1HldFPnJimKvfbWgp/h0nkKjc5T13SOJFpONbQGpSz+yKfVbCTDYqLJ5aGmyaWglEgvpn/9IiKSMiI9A1M4Qi1O+elillW1/unFDT4fDkczrpZmDCYzbpO3zXY9et3RzCPbS0jzWgEoLa+PamHZnkqWgp/xpvMUGp2nrp19jkDBKYm8U43+IucZ5jPpePmZFppqPdTYWxieZzvXpiKS4hSUEhGRlBCNGZjCEW4ByMD6za7W4XvGtsvOtU13X7ekWclsraN+or45KR7Oo1lUM5XoPIVG56lrOj8SLWcP3wvIs6XxSa2TmqaWeDVLRBKACp2LiEjSi+YMTNHWHKwpFf1jZQYLnesBQEREYieQKRUYvgfQt3VW2Oqm6M08KyKJT5lSIiKS9M6egemFF15os2zfvn1s3LiRVatWsXbtWvLz8885A1NFRQWFhYVtZmCKNmcHhc6jJRCUqmxsocXtJc2s76ZERCT6auytQamzvoHJz0hrs0xEeqekC0odOnSIhx9+mIMHD2KxWLjmmmu49957yc/PZ//+/fzgBz+gtLSUvLw8Fi1axLx584Lbbt++nSeeeILKykpGjBjBihUrGDNmTBx7IyIikRDNGZiiLZaZUmlGMBvB7YXjdU4u6JsR/YOKiEivV+vwZ0Oln11TKsOfKVWjTCmRXi2pviJ1Op3cfvvtjBkzhtdff50///nP1NbWcv/991NXV8fChQu58cYbKSkpYdWqVTz00EMcOHAAgL179/Lggw+yZs0aSkpKmDlzJosWLcLhcMS5VyIi0psFg1IxuCMbDJDdOnTiWE14swuKiIh0VzAodXamVGZrppRqSon0akkVlDpx4gQXX3wxixcvJi0tjby8PG6++WZKSkrYtWsXubm5zJ8/H7PZzMSJE5kxYwabN28GYOvWrUyfPp2xY8disVhYsGABeXl57Ny5M869EhGR3qzZ7QFikykFkJ3mP9BHCkqJiEgM+Hy+DoNSfWOYKRX4AkhEEk9SBaVGjBjBU089hclkCr724osvctlll3HkyBFGjhzZZv3CwkIOHToE+GdS6my5iIhIPMRy+B5AptF/vA+rGmJzQBER6dWaXB5aPP6aiVZzBzWlopgp5fP5+MfJZjYfqOPNj6N/3/N6vZw6dYpTp07h9SoQJhKKpApKnc3n8/HYY4/x8ssvs2zZMux2Ozabrc06VquVpib/N8FdLQ+HwRD+T2C7VKU+nnubUD4biUDvYfL79PUmmT5/vVmsg1JZ/i+mKat1xuaAIiLSq51uzYRKMxna3OuCw/fs0cuUevbdaj6odQPwv0fro3acgKqqKp78236e/Nt+qqqqon48kVSQdIXOARobG7nvvvs4ePAgv/71r7nooouw2Ww0NLSNfjudTjIzMwGw2Ww4nc52y/Py8sI+ft++2d1qt82WHtJ6GRmhrRfOurHaZ0d9TOb+dCTU99FgNFBQ0PVnxWA0JNQ56qx/yfD+hLJuoI+p0h9o/3nr7nVKYu9MTanYRKXOBKWaY3I8ERHp3epah+7lpJswnPWNWKDQeZPLg9PlwWoxdbh9dzW1ePjNgTOBoQ9qYvNlTGZOfkyOI5Iqki4o9fHHH/Otb32LwYMHs23bNvLz/f/oR44cye7du9usW1paSlFREQBFRUUcOXKk3fIpU6aE3Ybq6gZ8YczaHbj2OhzNIW3X1BT6g0Ko60Z7nwaD/0G/oz4mY386Eu776PP6qApheIzP60uIc9TZexjtY8dqn2f3MdbHjvY+A583g8EfkArlOhVYV+LLGetMqdY7f53TTa3DRa7NEpsDi4hIr3S6NSjVx9o26JSZZiLNZKDF4+O0w8WgCAeljtY04fGB0QBeH5xocHG6qYW81mGDIpIYkmr4Xl1dHbfeeitXXnklv/jFL4IBKYDi4mKqqqrYtGkTLpeLPXv2sGPHDubMmQPA3Llz2bFjB3v27MHlcrFp0yaqq6spLi4Oux0+X/g/ge1Slfp47m1C+WwkAr2Hye/T15tk+vz1Zs2u2AalzEawtQamNAOfiIhEW20wU6ptPoTBYAh+MXI6CsXOP6r23+MKbEZyrf7H3gMnVE9RJNEkVabU73//e06cOMFf/vIXXnjhhTbL9u3bx8aNG1m1ahVr164lPz+f5cuXM2HCBAAmTpzIAw88wMqVK6moqKCwsJANGzaQm5sbh578/+zdeXxU1f3/8ddMZpKZLGQhCC5YlwStChJBNlFbNFJFCGXRtvnZYr+KxajVFtxAxSKIX+tSSkG+KMW2VFqwaFFkqbsoEBRBacHEyqIs2UhIJpkkM3N/f0xmICaQTDLJLHk/H+aR5J67fM4N3nPvZ845V0RExKvO3blJKYAkq4kal8HesmouPj258w4sIiJdji/h5O0p5W5UlmK3UlRV5+9NFUxfNXzw0i3WjDnGTLmzjh0HjnJlRvegH0tE2i6iklI333wzN9988wnL+/bty/Lly09YnpOTQ05OTkeEJiIi0ia1Lu8Nekwn9l1OtBgUAQVFR4FTO+/AIiLS5ZQfN6fUt5NSqQ3zSlV0QFLK11MqOc6M3Wbhi9I6PjtQEfTjiEj7RNTwPRERkWjT2W/fq69zEm/2PhTs6aRJX0VEpOsqP8GcUkCHDt/z95SKM5Nu9x77v6Uati4SbpSUEhERCaFjSanOG7+XZPVOKLbnSE2nHVNERLomX8Lp23NKwXFJqSD3lKpzefi63NvGdYs1kRjnTUpVOF1U17lPtqmIdDIlpUREREKos3tKASQ1PBccqqzDUefqvAOLiEiXU17jbWeSm+kp5Ru+Vx7kpNS+8ho8BsRbzdgtJmJjTCTGeh99Dx5VL2GRcKKklIiISAg5fUmpTmyRY2PA92zwlYYyiIhIByqvqQOgW1wzSamGnlLlQR6+55tPqndyLKaGnsinJHiPdehobVCPJSLto6SUiIhIiLg8Bm6PdyhdZ/aUAu/ErwBfljg698AiItKl+IbmNddTqqOG7+1rGJ5+RrdY/zJfUko9pUTCi5JSIiIiIeJ78x50flKqW6z3gJr0VUREOorL7aGq1tvWJduamVOqg4bvHar0Jp56Jlr9y3okWBrK1FNKJJwoKSUiIhIivvmkAMyd3lOqISlVoqSUiIh0DF+yyWzCP6fT8VLtsY3WC5aDDUP0eiQcS0qdkugbvqeeUiLhREkpERGREPElpWJjTP45LzpLcsPDQWGJg+rqagzD6NTji4hI9CttmCsqxW7F3Ew7l2L39l466nThcnualLeVL/F0yvFJKf/wPfWUEgknSkqJiIiESG299wY8ztL5zXFSLJiAEkcdT639lJqamk6PQUREoltZtXeS8+4Jsc2Wd7NZ8aWqyp3BeRusYRj+xNMp6iklEvaUlBIREQkRX0+pUCSlTK464i3e3lGVbmsLa4uIiASuzOHtKZUW33w7E2M2kWwP7rxSFTUuf/vqm0cKjiWoiqvqqA9irywRaR8lpURERELE2TDReVxMaJrj5IbJzsuC/CpuERERONZTKjW++Z5ScGwIX3mQ2qKDDZOcd0+IxXpc+5piiyHOYsYADmuyc5GwoaSUiIhIiPjeSJQQ2/Q12Z0hueGD6/JafWIsIiLB5/vQ40Q9pQBSG3pKHQlSTynf0L1Tu8U1Wm4ymeiZ5F2mpJRI+FBSSkREJESO1npvwJNsIUpKNXxwXV6rSc5FRCT4/HNKnaynVHxw38DnmzOqV5KtSVmvhqTUQc0rJRI2lJQSEREJkaM13kldk+IsLazZMXxJqaN1BnWaX0NERILMP6dUwol7Svl6UZU56oJyzEMNPaV6faunFMCp3byJKr2BTyR8KCklIiISIkdrfUmp0PSUsseA1QwGsPeIPjUWEZHgKm3FnFK+N/OVBCkp5esF9e3he3AsUaU38ImEDyWlREREQqTSGdqeUiYTpDQ8J+wqcoQkBhERiV5HGuaU6n6SOaV6BDkpdaynVNPhe+opJRJ+QnMXLNIFVFU7yMj8TsvrOao6IRoRCUfH95QqqwxNDGmxUOyEnYd1LRIRkeDxGAZHGnpKpcXHQk1Ns+ulJ3qTUsVVQUpKVR430blR3ahMPaVEwo+SUiIdxPB4uPfFd1tc76Hxl3RCNCISjo7vKVUWohjSbMBR2HlIPaVERCR4jta4cDe8RyM13sqR5nNS9EjwJoqC0VOqpt7tnzC9V5KNmqONk1K+nlKHK2vxGAZmk6ndxxSR9tHwPRERkRA56mx4+16I5pQCb08pgH3lTsqrg/PmIxEREd98Ut1sFqwxJ37s7N7QU6rMUYfL0763wfqG7iXExpBka9r/4pTEWMwmqHMblKnNEwkLSkqJiIiEyNEQzykFEBsD3WK9nxTvOHg0ZHGIiEh0KfMP3TvxfFIAqXYrMSbvSzd8w/3a6tgk503nkwKwxJhJb5jDSkP4RMKDklIiIiIhUtkwp5SVeoz2fTjcLt1t3tuBHQeUlBIRkeDwTXKedpI37wHEmE3+N/C1d14p33xSvZp5856PJjsXCS9KSomIiISIr6fUP7cW4naFbhhBd7u3p9SWvUdCFoOIiESXUn9S6uQ9pQB/Uqq980r5ej/1SjpxUkqTnYuEFyWlREREQqDW5aHW5QEgwXbim+fOcFpCDGYT/OdwFV+X12AYBtXV1f7v1dXVLe9EREQiUq3L8H9IEkwlVd6eSL6E08n0SIxrtE1b+Xo/nWj43vFlh9RTSiQsKCklIiISApUNk5ybTWAJcWtss5jo1ysegA27i6mpqWH+hu3UnOD13SIiEh2+qXTxamE1Nyz9POg9hw5UePd3WvKJE0Q+6cHuKXXS4XvesgPqKSUSFpSUEhERCQHfp9KJsTGYwuCV1MNO9yal1v/nMADWuJYfIkREJHJtP+Tg/a9rcRtwpMbF9Nd3tfvtd8f7xpeUOkmvJZ/0xCDNKXXUN6fUiY/ZO9UOwP4j+uBFJBwoKSUiIhICR2tD/+a94w05Ix4TUFhaw3ZNeC4iEvVW/bsMAzg1IYaE2Bi2f3OU1z4/FLT9+4fSdVJPKZfHoLjKN3zvxD2leqd4k1JfVziDmoQTkbZRUkpERCQEKn09peJiQhyJV1JcDN9J9P78u/f34Qnl6wBFRKRDHamu4+MDDgAu6RnLzy7tBcC63cVB2X91nZvyGu8w9dNbkZTq0dBTqqQdPaWKq7y9vizHvc2vOackxRFnMeP2GBys0BA+kVBTUkpERCQEKhqSUt1s4dFTCuCCFLCa4csyJ9sP1ykxJSISpTbsLsZjQJrNTLc4M1f3SQPgk/3llFW3bwgdHJuvqZvNQmIregT7Jjo/2I55nnzb9kyKw3ySYfFmk4kzG4bw7dMQPpGQU1JKREQkBHw9pZLCpKcUQFwM9Ev3Pjz8p7SOKf/4D89v/oYt+yqoa3hToIiIRL43/lMEwFnJ3mv+6SlxnN8zEY8B7xSWtnv/vknOT/YWvOP5kkQVThfl1fVtOuZXpd43xX4nzd7q4+09orfLioSaklIiIiIhcLTh7Xv2GAinDknnplj41WWnYTbBrqJq/vzJQaa9XsDEP27h3V0HcDgcGOEUsIiIBKTEUcfnBysBODPp2AcjV/dJB+DNIAzhC+TNewB2a4x/Hqi2JooKi73DETPSE1pcVz2lRMKHklIiIiIhUNkw0XnBgVLcrrZ9KtxRrslMYXRGAtOu/A4j+3Qn1RbDgaN1TH29kDv+9jHV1d4Hhurqav/PIiISGTbtKQMgI82G3XrscfD7md6k1CdfV+Coc7XrGL6hdK15857Pd9K8b4H19XgK1JcN250bQFJKb+ATCT0lpURERELA5fb2NooPg7fvGYZBTU1Nox5bCbFmrr+gBw+MOIs/XHcGZyd55+f4/AjM37gft95YJCISkTb+9wgAA09vnLz5Tlo8vVNsuDwG+XvL23WMYz2lTvwWvG87qyEptacs8ESRYRh8WeLtKdWapJTvDXzB7il1sLKOz4rr2Hygln8X6UMbkdZQUkpERCQEfnTJ6fwkqxffSQp9U+yqq+XFjbtxuRt/Mm4YBkeOlLHso91cnGpwUYp3+crPinjwtf9Q6/JgGAbV1dUa0iciEgFcHoNNe709pQaentikfNjZ3gnPN35V1q7jfBPg8D2As9LaPs9TcVUdR50uYkzHklsn851U7zqHKmtx1rsDPl5zShx1TF27l89L6vlvhYuH3/ya3UVVQdm3SDQL/Z2wiIhIF3RW93huG3IGsTEnfkNQZ7LGNv002+ms4fl3dmIyWzCZIDMZhvSyYjGbeKughF+v/oLiiirmb9hOTY2GQIiIhLsdByqoqnWTbLPQp3vThJEvKfXhV2Vt/rDB5fb4h8WdkdzypOM+x3pKBZ6U+rLU20uqd6qdOEvLj7jJdgtp8VaAoCSOPIbBQ2t2Ue500y3WRHe7mRqXh3tWfU5VbfuGQopEOyWlREREQsA7ZK46rCY5P55vSJ/F2jhZ1TvJzGNX9yYhNobPDlXxqzVfUWuK9W/j6zWlHlQiIuHnnQLvm/WGnZ1GjLnphyKXnJFMnMVMUVUdXzRMHB6oghIHTpeHpDgLZ7biTXg+vjmlDlQ4qQ3wja+BTHIOYDKZuPj0ZAC2fV0R0LGas/Y/RWzdV47NYuLyM2x8r7eN05KsFFfV8dIn37R7/yfi8XgoKiri8OHDeDx6S65EJiWlREREQqCmpobn3vws7CY593HV1fLCe//B7a5vsvyDz75gQLdqbGaD/RV1rP2vg/f+e4Samhrmb9hOdXU1ZWWl/H79sR5USlKJiISWYRi8VVACwFUNb9r7Nps1hqFnpQLwrza+hW/HN0cB6HtaEmZT63sDd4+3khRnwWMEPgF5QUNS6pxWJqUA+p/eDYBPG+JtK5fbw+KP9gJwY990usWZiY0x8dP+PQBYtvVrKmo6pq0vKSnhuX9t56lX8ykpKemQY4h0NCWlREREQsQa1/q5NjrL8ZOeW2Obj88aa6N7QhzfO9XEuamx1LnhoXVfcveru9lfE8Oug0f43frPMJnN/mRUdXW1hvmJiITQvw9VcriyFrvVzODvpJ5wvezzvMmU9buL2/RBwvYD3iRPv9O6BbSdyWTinO7e3lKfHWx9oshjGGze6528vd+prT9m1hnenlLbD1S06+Udq3ce5utyJ2nxVsacd+y8XvadJDJ7JOCoc/PnrV+3ef8tSUhOIzElrcP2L9LRlJQSERERP38PqVb04LJb4PGrTuOC9FisZhPbDlSy6Rsnv3j1v7xxIIaVBbX8dPnn3LzsE17beRB3TNNhfiIi0phvSFZRUVFQh2S9+YW3J83wc7pjs8accL0rzu2O3WrmQIWTnYcqAz7Ojoak1MWnJQe87dCzvUmd978sbfU2/z5USVl1PQmxMVzSu/XHzOyRSLw1hqpat//NfYGqdXl4vqGX1KTBZ2KzHnu8NptM/OKyswD42yffUOqoa9MxRKKdklIiIiLSyIl6SDW7boyJ/j3jeGFcBn2SPKTZTCTGem8vDGBfeS3/Perht+8f4JXdDma88QVv7zrI79d/qqF9IiLNKCkpYdGb21n05vagDcmqrnPzz88PAXB1Q0+oE7FZY7ji3O4AvL7zcEDHOXTUyeHKWmJMcEGvpIDj9B13y77yVr8V772GBNbQs9KwxrT+8dZiNtH3NG+MH7dxXqlXdhykqKqOUxJjGdfv1Cbll5+TxoW9knC6PCzdsr9NxxCJdl0uKVVaWsrtt9/OwIEDGTx4MLNnz8bl0hsRRES6OrUP7XNKopWLe8ZxVe9Y/u8HpzCmN1x/dhyPjOhNnxQz3SwePMD7e45y35pC1ux189t397Bk016Wbizg1yu38d7uQ5RWVOLxeJSkEpGwEKq2ISE5jYTk4A3JWrXjIBVOF2ek2PyJn5MZc1EvAF79/BCHjjpbfZx3Cr0JosweicTHnrg31olkpCdwarc4al0eNu8tb9U2739ZBsAVGYGfr6FnebdZtf0gngDbnPKaepZs3gfA/ww5s9m3/plMJqY09JZa8emBoLzpTyTadLmk1N133018fDzvv/8+K1eu5KOPPmLp0qWhDktEREJM7UPgfPNPeTzH5qFy1dXy4sbdeDwu7Bbo38NCv+4xXHW6mSvSazmnm7cnVbXLYPW/S1i4cS8LNh9ia7Gbqa8XcO3z2/j1P7bzyz9/hKO6utGxjk9UNde7qjXriIgEIhrahqpaF39pmNPoZ5f2xtLMW/e+7dIzUxjYO5l6t8GiD/e26ji1Lg9/yvf2Bhrbr1ebYjWZTFx+jjdptvY/RS2uv3nPEQpLHMSYYNhZgSelcvr2IjEuhq/KqgMaMmgYBrPXf0FZdT1npdkZfdGJ6zv4rFRGZKbj9hg8unY39e7gviWv3mNQ5zYCTqqJhAtLqAPoTHv37mXLli2899572O12evfuze23386TTz7JLbfcEurwREQkRNQ+tI2rvpYXP/qS+PgEXnivxD/szxob5y1vmJ/Kt7yb1aBfopkfDzyDeR8d5szuiRypNdixr4R6j0GVy0SN28T7e7xzmPz7r58z/uLT+G7PJEqOOlie/xWnpCbz37IaDh6txTAMTk+20TvFxtnpidhjDDYXHuT73z2DOIsZa4yJNz/fx9gB53BaahK9usXRzWbB1Iq3QfkSbjabDafT6f9ut9tbtb2IRL5QtA1uj8HLO0vZUVRHvNXEFyU1pKR5iG2mF05r1Ls9TPvnvylx1HFqtzhGXdizVduZTCbyLj+bm//6Ka/tPMyFvZKY0P+0k27z923fUNwwlG30hW1LSgFcd2FPVnx6gH99UUz2F+mM6NP8cENHnYvZG74AYEL/00i2WwM+VmKchQkXn8bSLftZuHEP/U9PbnE/Lo/Bs+98yTuFpVhjTDx23XdbHDZ471UZfLy/nIJiB79+ZSdPjLkA+0nm9ToZZ72bD/cc4e2CEj7eW0ZxtQuo5uV/H+WiUw9zxbnd+X5mOj2T4tq0f5HO1qWSUgUFBaSkpNCz57GL8bnnnsuBAwc4evQo3boF9oYIERGJDmof2s6XgDrZm/qO56qv5c8bd3NKrI2a8hpuG3oOSx1FuA0DS4yFo/XwZYWLA04L31TUMu+9rxptv7PsSKPf9xxxsueIk/e/Kvcv+/T9fY3W+fD1Av/PdquZnomxJMfHYng8eDweku1WeiTZSYu34vJAqaOWvaVVfFlSjclsps7tIcVmoc7l4ozUBBKsMcTHmulmj/MOT/G4sZhNxMXFYjGZiDGDx+3CHhdHjBlMHjdJdhs2q5k4Sww2qxmL2URNvRtHnRtHrYtyhxOzCRJsccRaYrDGmLCYTRjuehLtNqwWM1azN9HmS4qZTFBUZ1Be7sAwvL/7mGj0S3M/YhjeB+B6t4dqpxNrbCwxZjMxJjCbTZgxgQnMpob9ef/DbGrYe8PvJ0vSnayXWouf6Z9khZa2NY5bwwQcccORIw4MvPXumJhOUtcWdnzS4jYeE6B7Qiw9EvVg2lahaBt2F1Wx5JNi/+/5b+zFsm4f56Yn8N2eiXy3ZyK9utlIiI0hPjYGczP//7k8BhU19RQUO/jHjoPsO1JDvDWGJ8dcGNCcSxed2o2fXtqbP+Xv54k3C9m89wjfz0zn9GQb1hjvdcxtGBRX1fFuYQn//Nw7/9TNg89scxIN4MJeSfx0UG9e3LKfR97Yzc5DVQw8M5mkOAtuj4HLY/Df0mqWbf2ag0drOa1bHLcPP7vNx/vRJaezasdBviyp5ucvfcqNWadzVpqdhNgYbNYY3B6DOreHyloXhcUOXv/3Yb4s8fbk/dX3zuW8noktHqN7QiyzR32XX7+6k4/2HGHCknxy+vbiuz2T6GazYLPGEBdjxgDchoFhGHgM75sFK50uiqpqOVxZy+cHK9m6rxynq2lvq5p6D/n7ysnfV85Tb3/Jd3smcskZKfROtdEjMY7u8VYsZjNms/e6HWMyYTZ5LzEew8Dj8R7b+7OB26Dhu7f+dS6DOpeb0vIK6t0GCYmJxB7XNlka/k1YY0yNlnnbs7b/ezAMD1+VlFFeXk1KSirmduyrvTqq57XJBEcNE0eOVLfYXgRDnMVMr27h8wboLpWUcjgc2O32Rst8v1dXV7e6YTGbW765OJ7JBElJScRZzS1ul5SU1OqLeGvX7Yx9mkwQG2PG/a06Rmp9mhPI3zHYx+6MfZ7ob9gZx+6sfR5fx2ioz7fX895keH9vzXVKnT2OCUb70Nq24djfyITZ4yKGxnOTeHB7bxa/tV24LW/PviyxFsAFJlj63k7Am5CymCAtFtJOAVuCnRS7jVf+c4R6zJySGIfL5eLys5LZ+dV+EmJjMJljqKp1UWuKpareoN7lwYixYHgMDLMZt9uAGAuJcTEcqqyn3vD+v1RS7aKk+rjzXl4HB5u+eSnG4r1NspnNON2AycK+8trj1tDcIBLezCZY8pP+nN09/qTrHd92yDGheHY4v1ci91x2Kut2HqLaY6LGE4Oj3uCbCiffVDj51xeBT3x+ardY7h56KumWGkpLa/zLy8uP4K7xvimvtLSUmBhHkzh/fEECuE7hH/8uY+v+CrbuP/GE4IlxFsZ8N5Urz7BQWlrcpPz445WXHyEm5sQ3IhPPT+CLQ0l8driGf+w4yD92HGx2vTOT4/j15adRU1lGTTPlvmPWe2IpL4/FfIKhi7+99js89vbXlFbXs3DjnhPG5ZOeEMsdQ3oypLe1UV1PVseMJHhi5Jk8/cFBypxuXvrkQIvHaY4lxsxZSVaGnJlEZqKbnV+XYIuNpf8ZKeytsbJpfxVflDjZX+5kf/mhNh2jdYIzCX9g9rW8irTKlOHf4UeXnB7QNh317GAyutBECxs2bGDGjBls3rzZv2z37t2MGTOGrVu3kpQU+BsiREQk8ql9EBGRb1PbICLS8brU5yGZmZmUl5c3erXql19+Sa9evdSoiIh0YWofRETk29Q2iIh0vC6VlDrrrLMYMGAAc+bMoaqqiv3797NgwQImTJgQ6tBERCSE1D6IiMi3qW0QEel4XWr4HkBJSQm/+c1v2Lx5M2azmbFjxzJ16lRiYtr29gMREYkOah9EROTb1DaIiHSsLpeUEhERERERERGR0OtSw/dERERERERERCQ8KCklIiIiIiIiIiKdTkkpERERERERERHpdEpKiYiIiIiIiIhIp1NSSkREREREREREOp2SUkFSWlrK7bffzsCBAxk8eDCzZ8/G5XI1u+67777L6NGj6d+/P9deey1vv/12J0fbNoHU8aWXXmLkyJFkZWUxcuRIli1b1snRBi6Q+vl88cUXXHzxxWzevLmTomyfQOq4ZcsWJk6cSFZWFldeeSWLFi3q5GjbJpA6vvjii4wYMYJLLrmE0aNHs27duk6Otn3KysrIzs4+6b+/SL3eRKO2XGO6ol27dnHzzTczaNAgLrvsMu69917KyspCHVZYcrvd3HTTTdx///2hDiUslZeXc++99zJ48GAuvfRSbr/9doqKikIdVtjZuXMnubm5DBw4kOHDh/PYY49RV1cX6rCkE3SV6200Xyuj/ToXrden5u7ht2/f7n/2GjFiBCtWrAhhhJ1LSakgufvuu4mPj+f9999n5cqVfPTRRyxdurTJenv27OHOO+/kl7/8JVu3buXOO+/k7rvv5vDhw50fdIBaW8d//etfPP300zzxxBN88sknzJ07l2effTbsH/hbWz+fmpoafv3rX+N0OjsvyHZqbR2//PJLJk+ezE9+8hM++eQTFi1axJIlS1i7dm3nBx2g1tbx3XffZdGiRTz//PN88skn3HHHHdx99918/fXXnR90G3z88cfceOON7Nu374TrRPL1JhoFeo3pipxOJ7fccgtZWVl88MEHvPbaa5SXl/Pggw+GOrSwNH/+fLZu3RrqMMLWnXfeSXV1NRs2bODtt98mJiaGhx56KNRhhRWPx8Ntt93GyJEj2bJlCytXruSDDz5g8eLFoQ5NOlhXut5G87Uymq9z0Xp9au4evqKigsmTJzN27Fjy8/OZPXs2jz/+ODt27AhhpJ1HSakg2Lt3L1u2bGHatGnY7XZ69+7N7bff3mzvoFWrVjFw4ECuvvpqLBYL1113HZdeeil/+9vfQhB56wVSx8OHD3PrrbfSv39/TCYTWVlZDB48mPz8/BBE3jqB1M/n0Ucf5eqrr+7EKNsnkDr+9a9/5aqrruKHP/whJpOJ888/n+XLlzNgwIAQRN56gdTxv//9L4Zh+L9iYmKwWq1YLJYQRB6YVatWMXXqVO65554W14vE6000ass1pis6cOAA559/Pnl5ecTGxpKamsqNN94Y1u1HqHz00UesX7+ea665JtShhKXPP/+c7du3M3fuXLp160ZiYiKzZs1i6tSpoQ4trFRUVFBcXIzH48EwDADMZjN2uz3EkUlH6yrX22i+Vkb7dS4ar08nuodfv349KSkp5ObmYrFYGDp0KKNHj+4y94lKSgVBQUEBKSkp9OzZ07/s3HPP5cCBAxw9erTRuoWFhfTp06fRsoyMDHbt2tUpsbZVIHXMzc1l8uTJ/t9LS0vJz8/noosu6rR4AxVI/QBeeeUV9u7dyx133NGZYbZLIHXcsWMHZ5xxBr/61a8YPHgw1157LVu2bKFHjx6dHXZAAqnjqFGjSE9P57rrruPCCy/kl7/8JXPnzqVXr16dHXbAhg8fzoYNG7juuutOul6kXm+iUaDXmK7qnHPO4fnnnycmJsa/bN26dVx44YUhjCr8lJaWMn36dJ566qmIvjnvSDt27CAjI4O///3vZGdnM3z4cJ544omwb8c6W2pqKpMmTeKJJ56gb9++XHnllZx11llMmjQp1KFJB+sK19tov1ZG+3UuGq9PJ7qHLygo6NL37EpKBYHD4WhyofP9Xl1d3eK6NputyXrhJpA6Hq+4uJhbb72Viy66iOuvv75DY2yPQOr35Zdf8swzz/DUU081asjDXSB1rKio4E9/+hNjxoxh48aN/OY3v+GJJ54I++F7gdSxvr6e888/nxUrVvDpp5/ym9/8hunTp7N79+5Oi7etevTo0aoeXZF6vYlGbb2GdmWGYfDMM8/w9ttvM3369FCHEzY8Hg/Tpk3j5ptv5vzzzw91OGGroqKC3bt3s2fPHlatWsUrr7zC4cOHue+++0IdWljxeDzYbDYeeughPv30U1577TW+/PJL5s2bF+rQpBNF4/W2K1wro/06F43XpxPdw3f1e3YlpYIgPj6empqaRst8vyckJDRabrfbm8xB5HQ6m6wXbgKpo8+nn37KhAkTOPvss1m4cGFYD4tqbf1qa2u55557ePDBBznttNM6Ncb2CuRvGBsby1VXXcX3vvc9LBYLl156KTk5ObzxxhudFm9bBFLHWbNmkZmZSb9+/YiNjWX8+PH079+fVatWdVq8HS1SrzfRqC3X0K6sqqqKu+66i9WrV/OXv/yF8847L9QhhY1FixYRGxvLTTfdFOpQwlpsbCwA06dPJzExkfT0dO6++27effddHA5HiKMLHxs2bGDdunX85Cc/ITY2lszMTPLy8njppZdCHZp0kmi93naFa2W0X+e60vWpq9+zKykVBJmZmZSXl1NSUuJf9uWXX9KrVy+SkpIardunTx8KCgoaLSssLCQzM7NTYm2rQOoIsHLlSiZNmsTPfvYznnrqKf9FM1y1tn6fffYZe/bsYfr06QwcOJCBAwcC8Itf/IKZM2d2dtgBCeRveO655zZ5s4Xb7faP5w5XgdTxwIEDTeposViwWq2dEmtniNTrTTQK9Brale3bt4/x48dTVVXFypUro+YBKVheffVVtmzZ4m+DXnvtNV577TV/eyReGRkZeDwe6uvr/cs8Hg9A2LdlnengwYNR3xbKiUXz9bYrXCuj/TrXla5PXf2eXUmpIDjrrLMYMGAAc+bMoaqqiv3797NgwQImTJjQZN0xY8awZcsW1qxZg8vlYs2aNWzZsoWcnJwQRN56gdRx3bp1zJw5k9///vf8/Oc/D0G0gWtt/QYOHMiOHTvYunWr/wvgueeeC/ukVCB/wx/96Ee8+eabvPrqqxiGQX5+PqtXr46qf6cjRozgL3/5Czt37sTj8bB27Vo2b97c4jxNkSRSrzfRKJB/m11ZRUUFP/vZz7jkkkt44YUXSEtLC3VIYWft2rV88skn/jbo+uuv5/rrr4/aN0u11bBhw+jduzcPPvggDoeDsrIynnnmGa6++moSExNDHV7YGD58OMXFxTz33HO43W7279/PwoULGT16dKhDkw4W7dfbrnCtjPbrXFe6PmVnZ1NSUsLSpUupr69n06ZNrF69mvHjx4c6tE6hpFSQzJs3D5fLxVVXXcUNN9zA5Zdfzu233w5AVlYW//znPwFvD5Q//OEPLFq0iEsvvZQFCxbw+9//nrPPPjuU4bdKa+s4f/583G43d911F1lZWf6vhx9+OJTht6i19Ytkra3j0KFDWbBgAX/6058YMGAADzzwAPfddx9XXXVVKMNvldbW8Y477iA3N5c777yTSy+9lP/7v//jD3/4A9/97ndDGX67Rcv1Jhqd7N+meP3jH//gwIEDvPHGGwwYMKBRGyISCKvVyp///GdiYmIYOXIkI0eOpFevXsyZMyfUoYWVjIwMFi1axFtvvcXgwYP56U9/yogRI1p8u6tEPl1vI1+0X+e60vUpNTWVJUuWsHbtWgYPHsyMGTOYMWMGQ4YMCXVoncJkREPfPhERERERERERiSjqKSUiIiIiIiIiIp1OSSkREREREREREel0SkqJiIiIiIiIiEinU1JKREREREREREQ6nZJSIiIiIiIiIiLS6ZSUEhERERERERGRTqeklIhImCkrKyM7O5vNmzcHvO0f//hHbrrppkbL3G43TzzxBMOGDSMrK4spU6ZQVFQUrHBFRCQMtKXtWLduHddffz39+/cnOzublStXdmCEIiIiTSkpJSISRj7++GNuvPFG9u3bF9B21dXVzJ07l7lz5zYpW7hwIRs3buTll1/m/fffx2azMWPGjGCFLCIiIdaWtmPTpk3cf//9TJs2jW3btjFr1iweffRRduzY0YGRioiINKaklIhImFi1ahVTp07lnnvuaVL24YcfMmHCBAYOHMioUaP45z//2ag8JyeH4uJifvzjHzfZdsWKFdx6662ceuqpJCYmMn36dN577z3279/fYXUREZHO0da2Y+nSpfz0pz/lyiuvxGQyMWTIEF5++WXOPPPMzgxfRES6OCWlRETCxPDhw9mwYQPXXXddo+W7du1iypQpTJ48mc2bNzNr1izmzJnD+++/71/nz3/+M0899RTdu3dvtG1lZSWHDh2iT58+/mXp6ekkJyeze/fujq2QiIh0uLa2HTt27CAlJYXJkyczePBgcnJy2LdvHykpKSGohYiIdFVKSomIhIkePXpgsViaLF++fDlXXXUV11xzDTExMVxyySXccMMNLFu2zL9Or169mt2nw+EAID4+vtFym83mLxMRkcjV1rajoqKCF154gSlTprBx40by8vK455572L59e2dXQUREurCmLZiIiISVb775hk2bNjFw4ED/Mrfb3aohFna7HYCamppGy51OJwkJCcENVEREwkZLbUdsbCzjx48nKysLgGuuuYahQ4eybt06Lr744pDELCIiXY+SUiIiYa5Xr1788Ic/5De/+Y1/WVFREYZhtLhtcnIyPXv2pLCw0D+Er7i4mPLy8kZD+kREJLq01Hace+651NXVNdrG7Xa3qm0REREJFg3fExEJcxMmTOC1117jgw8+wOPxsGfPHv7f//t/LFmypFXbjxs3joULF7J//36qqqqYM2cOgwYN0mS2IiJRrKW248c//jEvvfQSH374IR6Ph3Xr1rF582auv/76EEcuIiJdiXpKiYiEuYsvvpinn36ap59+ml/+8pfY7Xauv/56fvWrX7Vq+7y8PFwuF7m5uTgcDgYPHsyzzz7bsUGLiEhItdR2jB8/HrPZzOOPP87XX3/N6aefzjPPPMOFF14Y4shFRKQrMRnqoysiIiIiIiIiIp1Mw/dERERERERERKTTKSklIiIiIiIiIiKdTkkpERERERERERHpdEpKiYiIiIiIiIhIp1NSSkREREREREREOp2SUiIiIiIiIiIi0umUlBIRERERERERkU6npJSIiIiIiIiIiHQ6JaVERERERERERKTTKSklIiIiIiIiIiKdTkkpERERERERERHpdEpKiYiIiIiIiIhIp1NSSkREREREREREOp2SUiIiIiIiIiIi0umUlBIRERERERERkU6npJSIiIiIiIiIiHQ6JaVEgsQwjFCHICIiEUJthoiItEdntiNqs6QjKSklXdqIESO4//7727WPo0ePct9997F161b/sptuuombbrqpveGJiEgUWLNmDd///vfp27cvDz/8MIWFhfz4xz8OeD/3338/I0aM8P8eaBumtklEJDJ1VDvSGm09lkhrWUIdgEik+89//sMrr7zCuHHjQh2KiIiEoUcffZSzzjqLuXPn0rNnT1avXs22bdvavd/58+eTmJjY6vUfeeSRdh9TREQ6X0e1I63xxhtvdNqxpGtSUkpERESkA5WXl3PZZZcxePDgoO73ggsuCGj9jIyMoB5fREQ6R0e1IyLhQMP3pMurr6/nscce49JLL+XSSy/lvvvuo6yszF++YsUKxo0bR//+/enXrx85OTmsWbMGgM2bN/PTn/4UgJ/+9KeNhkUYhsHixYv53ve+R79+/bjxxhv57LPP/OW///3vyc7OZv78+QwePJirr76aI0eO4Ha7WbZsGaNHj6Zfv35873vf47e//S21tbWN4t64cSM/+clPGDBgAIMHD+bXv/41Bw8e9Jf/4x//oG/fvnz88ceMHz+evn37MnLkSN566y3++9//8rOf/YyLL76Y7OxsXn/9df92Ho+H3/3ud4wYMYKLLrqIESNG8PTTT1NfXx/cEy8iEgF27tzJz372MwYMGEBWVhaTJk1i+/bt/vK1a9cyZswY+vXrx9ixY9m2bRsXXHAB//jHP9i8eTPnnXceAH/4wx8477zzuP/++5k/fz4A5513Hr///e/bHNvxw/dGjhxJXl5ek3UmTpzI5MmTgabD98477zyWLVvG9OnTGTRoEFlZWdx1112UlJQ02scLL7zAVVddRb9+/fjRj37EW2+9xXnnncfmzZvbHLuISFcRzu1IS88dv//974N2LJETUVJKurw33niDzz//nLlz53LvvffyzjvvcPvttwOwbNkyHn74Ya666ioWLVrEk08+idVqZdq0aRw4cIALL7yQhx9+GICHH3640dCIjz/+mA0bNvDQQw/xxBNPcPjwYX7xi1/gcrn86xw4cIANGzbw9NNPc/fdd5OamsrDDz/MnDlzGDFiBAsXLiQ3N5e//OUv3H777f5JBl999VV+/vOf07NnT55++mkeeOABtm3bxo033khpaal//y6Xi1/96lf86Ec/YsGCBcTFxTF16lR+8Ytf8L3vfY/f/e539OjRg/vuu49Dhw4BsHjxYpYtW0ZeXh5Llizhxz/+Mc8//zzPPfdch/8tRETCSVVVFbfccgupqanMmzePZ555hpqaGv7nf/6HyspK3nzzTX75y1+SmZnJ/Pnzueaaa5gyZQoejweACy+8kL/97W8ATJgwgb/97W/ceeedTJgwAYC//e1vTJw4MSix5uTk8N5771FVVeVftm/fPnbs2EFOTs4Jt3vmmWfweDw8/fTT/jZwzpw5/vL58+fz29/+lmuvvZYFCxZw8cUXc8899wQlZhGRaBfu7UhLzx0TJ07skDZL5HgaviddXrdu3Xj++ef983KkpqaSl5fHBx98wP79+/n5z3/e6NPnM844g3HjxvHJJ59w/fXX+4dDZGRkNBoaERsby//93/+RkpICeBulGTNmUFhYyPnnnw94k0b33Xcfw4YNA7wTCa5cuZK7776bKVOmAHDZZZdxyimncO+99/Lee+9x+eWX8+STTzJs2DCeeeYZ//EuueQSrrvuOpYsWcK0adMAb6+nX/ziF/4G5OjRo/zqV7/iZz/7GTfffDMA6enpjB8/ns8//5xevXqxZcsWLrzwQsaPHw/AoEGDsNvtAc1bIiISDQoLCykrK+Omm25iwIABAJxzzjksX76cqqoq/vCHP3DRRRfx1FNPAXDFFVdgMpl49tlnAUhMTKR///4A9OrVq9HPgP/3YBgzZgzz5s1jw4YN/PCHPwRg9erVJCQkcNVVV51wuz59+vD444/7f9+xYwdr164FoLq6msWLF5Obm8vUqVMBGD58ODU1Nf6HJBERObFwbkda89xx5ZVXdkibJXI89ZSSLu/KK69slHAZMWIEVquVDz/8kPvvv59p06ZRWVnJZ599xurVq1m2bBlAi8PZMjIy/Akp8CazACorKxut16dPH//PW7ZsAWD06NGN1hk1ahQxMTFs3ryZr776iuLi4ibrnHnmmWRlZTUZTpGVleX/OT09HWjcqPhiPHr0KACDBw/mww8/5Cc/+Ql//OMf+fLLL/l//+//MXbs2JPWV0Qk2mRmZpKWlsaUKVN45JFHeOutt+jRowf33nsvKSkp7Ny5s0nCZ8yYMSGJ9YwzzmDAgAGNhmO//vrrjBw5EpvNdsLtvv2Q0atXL2pqagD49NNPcTqd/OAHP2i0zvXXXx+8wEVEolg4tyOtee4Q6QxKSkmX50vU+JjNZlJSUjh69Cj79u1j0qRJXHrppfz4xz9m8eLF/mSUbyjdicTHxzfZL+Dvjtvc8SsqKgDo0aNHo3UsFgupqalUVlZSXl7ebNy+Zd9OejXXw+lkDyi33HILDz/8ME6nkyeeeILrrruO0aNH89FHH51wGxGRaJSQkMCyZcu48sorWbNmDVOmTGHo0KE8/PDD/kR+Wlpao2169uwZilABGDt2LB999BFHjhzhP//5D19++eVJh+4B2O32Rr+bzWZ/++abX/HbdWyu/RERkabCuR1pzXOHSGfQ8D3p8nwNgo/b7ebIkSOkpqYyefJkrFYrf//737nggguwWCwUFhbyz3/+s0NiSU5OBqC4uNjfswq8vbJ8Mfl6Nn17Ilrfdqmpqe2KwWw2k5ubS25uLqWlpbz77rs899xz3HnnnXz44YfExsa2a/8iIpHknHPO4cknn8TtdrNjxw5effVVXnrpJU455RTMZnOTa7Hvg4NQ+MEPfsCsWbPYsGEDe/fu5dRTT2XQoEFt3p9vyEZZWRnnnHOOf/nxLwMREZGTC9d2pDXPHSKdQT2lpMv78MMPG00+vm7dOlwuF9/97nf56quvmDBhAv369cNi8eZw33vvPeBYj6eYmJigxeJ7eFi9enWj5a+//jput5sBAwZw9tln06NHjybr7N+/n08//ZRLLrmkXTH86Ec/4rHHHgOge/fujBs3jtzcXCorKxtNoCsiEu3Wrl3LkCFDKC4uJiYmhqysLGbOnEm3bt0oKysjKyuLdevWNeoB+/bbb7e4X1/P2WBLSkri+9//Pm+++SZr165l9OjR7TrW+eefT1JSEuvXr2+0fN26de0NVUSkSwjndqQ1zx3BOpbIyainlHR5JSUl3Hnnndx0003s2bOHp59+mssuu4xrr72W3/72tyxbtoxevXrRrVs3PvjgA1588UUA/5wbSUlJALzzzjskJyf7JzFvi4yMDH74wx8yf/58nE4ngwcP5j//+Q/z589n8ODBXH755ZjNZn71q1/xwAMPcM899zB27FiOHDnC/PnzSU5O9k9g3laXXnopS5YsIT09naysLA4fPswf//hHBg0a1KR7sYhINLvkkkvweDzk5eUxefJkEhISeOONN6isrOSaa67huuuuY9KkSdx+++38+Mc/Zt++ffzud79rcb/dunUD4LXXXuPiiy+md+/eQYt57Nix5OXl4Xa72z0vSWJiIrfccgvz5s3DbrczaNAgtmzZwksvvQToQUVEpCXh3I605rkjWMcSORndTUiXd8MNN5Cenk5eXh6/+93vGD16NPPnz8dkMrFgwQJ69uzJ/fffz913382nn37KwoULOeecc9i6dSvgncDw+uuvZ9myZf63E7XH7NmzueOOO3j99deZPHkyy5Yt46abbmLx4sX+B4Bx48Yxb9489u7dS15eHnPnziUrK4uVK1c2GRceqF/+8pf84he/4OWXX+aWW25h7ty5DB8+nHnz5rW7biIikeSUU07h+eefJykpienTp3Pbbbexc+dOfv/73zNkyBAGDhzICy+8QElJCXl5eSxfvpz77ruvxf1ec8019O3bl/vvv58XXnghqDFffvnlJCcnc8EFF5CZmdnu/d12223ccccdvPLKK9x2221s3brV39Z9e+5EERFpLNzbkdY8d3RkmyUCYDJamq1ZRERERFrl66+/5qqrruLxxx9n3LhxoQ6nXVwuF6+99hqDBw/m1FNP9S9ftmwZjz32GJs3b/Z/gi4iIsERTe2ISGto+J6IiIhIiBiGgdvtbnG9mJgYTCZTJ0R0jMViYfHixbz44otMmTKF1NRUdu3axe9+9zvGjh2rhJSISBgI53ZEpDWUlBIREREJkVWrVvHAAw+0uF6oPjF/7rnnePrpp5k5cyZHjx7ltNNOY9KkSdx2222dHouIiDQV7u2ISEs0fE9EREQkRI4cOcLXX3/d4npnnHGGXs8tIiJNqB2RSKeklIiIiIiIiIiIdDq9fU9ERERERERERDqdklIiIiIiIiIiItLplJQSEREREREREZFOp6SUiIiIiIiIiIh0OkuoA4hEpaWVaHr4Y0wm6N49SeelFXSuWk/nqvXaeq5820lwNHf+o/HfseoUGaKxThCd9Qq3OqltCL62ts/h8m8iGuicBp/OafCF+zntqPZBSak2MAzC8h9JqOm8tJ7OVevpXLWezlVonez8R+PfRnWKDNFYJ4jOekVjnTpbWVkZN954I4899hiDBw8GYN26dSxYsID9+/eTkpLCuHHjuP322zGbvQNGVq1axYIFCyguLuacc87hoYceIisrCwC3281vf/tbXn31VWpqahgyZAiPPvoop5xySkBxtfVvq38TwadzGnw6p8HX1c6phu+JiIiIiEhE+/jjj7nxxhvZt2+ff9nnn3/Ovffey913383WrVtZvHgx//jHP1i6dCkAmzdvZtasWcydO5f8/HzGjBnDlClTqKmpAWDhwoVs3LiRl19+mffffx+bzcaMGTNCUT0RkailpJSIiIiIiESsVatWMXXqVO65555Gy7/55ht+9KMf8f3vfx+z2cy5555LdnY2+fn5AKxYsYJRo0YxYMAArFYrkyZNIjU1lTVr1vjLb731Vk499VQSExOZPn067733Hvv37+/0OoqIRCslpUREREREJGINHz6cDRs2cN111zVaPnLkSB544AH/706nk3feeYcLL7wQgMLCQvr06dNom4yMDHbt2kVlZSWHDh1qVJ6enk5ycjK7d+/uwNqIiHQtmlNKREREREQiVo8ePVpcp6qqil/+8pfYbDYmTZoEgMPhwG63N1rPZrNRXV2Nw+EAID4+vkm5r6y1TKaAVvevH+h2cmI6p8Gncxp84X5OOyouJaVERERERCRq/fe//+Wuu+6ie/fu/OlPfyIxMREAu92O0+lstK7T6SQ1NdWfrPLNL3V8eUJCQkDHb+vbqvQWxODTOQ0+ndPg62rnVEkpERERERGJSu+++y6/+tWvuOGGG/j1r3+NxXLs8SczM5OCgoJG6xcWFnLFFVeQnJxMz549Gw3xKy4upry8vMmQv5YE+nr3cH8tfCTSOQ0+ndPgC/dz6osv2JSUEhERERGRqPPpp5+Sl5fHzJkzmTBhQpPyCRMmkJeXx7XXXsuAAQNYtmwZpaWlZGdnAzBu3DgWLlxI3759SU1NZc6cOQwaNIgzzzwzoDja+nr3rvZa+M6gcxp8OqfB19XOqZJSIiIiIiISdZ577jlcLhezZ89m9uzZ/uUDBgzg+eefZ+jQoTzyyCPMnDmTw4cPk5GRweLFi0lJSQEgLy8Pl8tFbm4uDoeDwYMH8+yzz4amMiIiUUpJKRERERERiQrHvxnvueeea3H9nJwccnJymi2zWq1MnTqVqVOnBi0+ERFpzBzqAEREREREREREpOtRUkpERERERERERDqdklIiIiIiIiIiItLpNKeUhBWPx0NJSQkA6enpmM3Km4qItJZhGJSVlQGQlpaGyWQKcUQiIiIiIiemJ34JKyUlJSx6czuL3tzuT06JiEjrlJWV8dxbO3jurR3+5JSIiEQewzAwutI74UWky1JPKQk7CclpoQ5BRCRixSelhDoEEREREZFWUU8pERERERERERHpdEpKiYiIiIiIiIhIp1NSSkREREREREREOp2SUiIiIiIiIiIi0umUlBIRERERERERkU6npJSIiIiIiIiIiHQ6JaVERERERERERKTTWUIdgIiIiASXYRgcOVIGQFpaGiaTKcQRiYiIiIg0FZY9pdasWcMFF1xAVlaW/2vatGkAbN++nYkTJ5KVlcWIESNYsWJFo21XrVpFdnY2/fv3Z9y4cWzbts1f5na7eeKJJxg2bBhZWVlMmTKFoqKiTq2biIhIR6upquDFD7/kubd2UFZWFupwRERERESaFZZJqc8++4ycnBy2bdvm/3ryySepqKhg8uTJjB07lvz8fGbPns3jjz/Ojh07ANi8eTOzZs1i7ty55OfnM2bMGKZMmUJNTQ0ACxcuZOPGjbz88su8//772Gw2ZsyYEcqqioiIdAh7YjLxSSmhDkNERERE5ITCNil10UUXNVm+fv16UlJSyM3NxWKxMHToUEaPHs2yZcsAWLFiBaNGjWLAgAFYrVYmTZpEamoqa9as8ZffeuutnHrqqSQmJjJ9+nTee+899u/f36n1ExERERERERHp6sIuKeXxeNi5cyfvvPMO3//+97niiit46KGHqKiooKCggD59+jRaPyMjg127dgFQWFh4wvLKykoOHTrUqDw9PZ3k5GR2797d8RUTERERERERERG/sJvovKysjAsuuICRI0cyb948jhw5wn333ce0adPo0aMHdru90fo2m43q6moAHA7HCcsdDgcA8fHxTcp9Za2l+WIb852PYJyX4/dhMkXfuQ7muYp2Olet19ZzpXMrIiIiIiKhFHZJqfT0dP9wPAC73c60adO44YYbGDduHE6ns9H6TqeThIQE/7rNlaempvqTVb75pZrbvrW6d08KaP2uIhjnxe2uxm6PbdhfIunp0Xmu9W+o9XSuWk/nSkREREREIknYJaV27drFa6+9xq9//Wv/K6zr6uowm83069ePF198sdH6hYWFZGZmApCZmUlBQUGT8iuuuILk5GR69uzZaIhfcXEx5eXlTYb8taS0tBLDaGsNo4/J5H0YDsZ5KS2toqamzv9zTEx8C1tElmCeq2inc9V6bT1Xvu0kehmGwZEjZaSlpfnbVBERERGRcBF2c0qlpKSwbNkynn/+eVwuFwcOHODJJ5/khz/8ISNHjqSkpISlS5dSX1/Ppk2bWL16NePHjwdgwoQJrF69mk2bNlFfX8/SpUspLS0lOzsbgHHjxrFw4UL2799PVVUVc+bMYdCgQZx55pkBxWgY+vr2VzDPS7Sf52ium85V5J0riW6OygpmrNnNP7ftwdAfXERERETCTNj1lOrVqxeLFi3i6aefZuHChcTFxTFq1CimTZtGXFwcS5YsYfbs2cybN4+0tDRmzJjBkCFDABg6dCiPPPIIM2fO5PDhw2RkZLB48WJSUlIAyMvLw+VykZubi8PhYPDgwTz77LOhq6yIiEgHMQyDT8tM7KvvxmNv7+e1XWU8M74fiXHWUIcmIiIiIgKEYVIKYNCgQSxfvrzZsr59+56wDCAnJ4ecnJxmy6xWK1OnTmXq1KlBiVNERCRcfXnUwz6HGTAwA58edLBkYyF3jfhuqEMTEREREQHCcPieiIiItN+eSg8A51gqGdDD+xnUqp1lVNW6QhmWiIiIiIifklIiIiJRxuGCynowYdDLUs3pCSa6xZqpqnOz4tMDoQ5PRERERARQUkpERCTqHKr2vmmvexxYTQYmk4nvpnvnklrz+UFKSko08bmIiIiIhJySUiIiIlHmUI03KdXLfizx1N1UDRjsKa9l5vJ3KCsrC1F0IiIiIiJeSkqJiIhEEZfHoKTW+/PxSanYGEiL8zb7lZbkUIQmIiIiItKIklIiIiJR5GitBwMTsWZItDYu6xXv7UFVXBcTgshERERERBpTUkpERCSKlNd637rXLdbUpKyX3dvsl9bHUOfydGpcIiIiIiLfpqSUiIhIFKlwepNNSdamSalusRBrNvBgorDM2dmhiYhIKxmGoRdSiEiXoKSUiIhIFKmodQPeBNS3mUwmUhuWf1FS04lRiYiIiIg0paSUiIhIFKnwDd9rpqcUQFqc95P3XcVKSomIiIhIaCkpJSIiEiVq6t046r1Jp6Rm5pQCSI31lu8uqe60uEREREREmqOklIiISJTYX1EHeOeNiotpPimVEuf9frCynvLq+s4KTURERESkCSWlREREosTe8loAullPvE6sGRJivEP8dh6q7IywRERERESapaSUiIhIlDhw1JuUSrSe/I1NyRbvZOg7Dx3t8JhERCQwvjfv6e17ItIVKCklIiISJYodLgDsMSdfL8ni7SlVUOzo6JBERKQNnl63K9QhiIh0CiWlREREokRJwxxRdsvJ1+vWMHzvi6Kqjg5JRETawtT8vIAiItFGSSkREZEoUexoSErFnHzIh6+n1IGjtVQ6XR0el4iIiIhIc5SUEhERiQKGYRzrKdXC8D2rGU5J8M6GXlCi3lIiIiIiEhpKSomIiESBo04XtS5vD6mWklIA56TZACgo0rxSIiIiIhIaSkqJiIhEOMMw+OLrIgDiYkzEtKJ19yWlvihWTykRiQ5lZWVkZ2ezefNm/7Lt27czceJEsrKyGDFiBCtWrGi0zapVq8jOzqZ///6MGzeObdu2+cvcbjdPPPEEw4YNIysriylTplBUVNRp9RER6QqUlBIREYlwZWVl/OmjLwCwtTCflI8/KaWeUiISBT7++GNuvPFG9u3b519WUVHB5MmTGTt2LPn5+cyePZvHH3+cHTt2ALB582ZmzZrF3Llzyc/PZ8yYMUyZMoWamhoAFi5cyMaNG3n55Zd5//33sdlszJgxIyT1ExGJVkpKiYhIVNi5cye5ubkMHDiQ4cOH89hjj1FXVwe075PySOG2xANgt7T8xibDMEiPcQLw31IHLrenQ2MTEelIq1atYurUqdxzzz2Nlq9fv56UlBRyc3OxWCwMHTqU0aNHs2zZMgBWrFjBqFGjGDBgAFarlUmTJpGamsqaNWv85bfeeiunnnoqiYmJTJ8+nffee4/9+/d3eh1FRKKVklIiIhLxPB4Pt912GyNHjmTLli2sXLmSDz74gMWLF7f7k/JIUV3vm0+q5aRUbXUlb3y6F4vJoM5tsOdIZNVVROR4w4cPZ8OGDVx33XWNlhcUFNCnT59GyzIyMti1axcAhYWFJyyvrKzk0KFDjcrT09NJTk5m9+7dHVQTEZGuR0kpERGJeBUVFRQXF+PxeDAMb3LGbDZjt9vb/Ul5pKh2eXs72S2tWz8+KZnUhpULNK+UiESwHj16YLE0vfg5HA7sdnujZTabjerq6hbLHQ7v0Ob4+Pgm5b6y1jKZAv9q63b60jnVOY3sr3A/px2hlbeuIiIi4Ss1NZVJkybxxBNP8L//+7+43W6uuuoqJk2axNy5c5v9JHzlypWA95Py8ePHNyn3fZLeWs011MffXHQkk+lYT6n4huF7JhMYAKZjP397WYrNTHG1m4IiB9dd0PpjHf89GqhOkSMa6xVudQqXOILBbrdTWVnZaJnT6SQhIcFf7nQ6m5Snpqb6k1Xf7jV7/Pat1b17UkDr+z5c6d49iZiYVrxOVVot0L+FtEznNPi62jlVUkpERCKex+PBZrPx0EMPMWHCBPbu3csdd9zBvHnz2vVJeSBOdgPR8TcXtThd3oeY5AQLtlgwW6146j3Y4qzY7N6fv72sp9tEQVk9X5U7SU8PLMZovGFSnSJHNNYrGusUan369GHjxo2NlhUWFpKZmQlAZmYmBQUFTcqvuOIKkpOT6dmzZ6MhfsXFxZSXlzf5oKMlpaWVGK17B0UDw7+d2aykVDCYTN7/xwL/W8iJ6JwGX7ifU198waaklIiIRLwNGzawbt061q5dC3gfNPLy8pg9ezajR49u8yflgWjuBqKzbi5KS6uorvcO3zO73Dg9dZhdZjyuOpy19Thr6vG4mi5LiLECsPObCoqLj2JqRReJcL9hagvVKXJEY73CrU4d9dARCtnZ2Tz55JMsXbqU3NxcPv74Y1avXs2CBQsAmDBhAnl5eVx77bUMGDCAZcuWUVpaSnZ2NgDjxo1j4cKF9O3bl9TUVObMmcOgQYM488wzA4rDMGjT37at28mJ6ZwGn85p8HW1c6qklIiIRLyDBw/637TnY7FYsFqt7fqkPBAnu4Ho6JuLWpeHhpwUseZjx/T+cOznby9Ltpkxm+BITT3FVXX0SIxr9TGj8YZJdYoc0VivaKxTqKWmprJkyRJmz57NvHnzSEtLY8aMGQwZMgSAoUOH8sgjjzBz5kwOHz5MRkYGixcvJiUlBYC8vDxcLhe5ubk4HA4GDx7Ms88+G7oKiYhEISWlREQk4g0fPpynnnqK5557jltvvZUDBw6wcOFCRo8e3e5PyiNBhdMNgAkDqxnwtG47i9nEGd3i2FdRyxfFjoCSUiIi4ejbb8br27cvy5cvP+H6OTk55OTkNFtmtVqZOnUqU6dODWqMIiJyjJJSIiIS8TIyMli0aBHPPvsszz//PElJSYwZM4a8vDxiY2Pb9Ul5JKhwugCIiwGTyUQgnS3OSbN5k1JFVVx2dlrHBCgiIiIi0gwlpUREJCoMGzaMYcOGNVvWnk/KI0F5Q08p39C9QJybZuOdryooKA7sFeciIiIiIu3VhttXERERCSfH95QK1NlpNgC+KKoKZkgiIiIiIi1SUkpERCTClfuSUubAZ0k+tyEpte9IDTX17qDGJSIiIiJyMkpKiYiIRLiKmobhe23oKZVqt5AWb8UAvizRED4RERER6TxKSomIiES48lpfT6m2bd/nlERAQ/hEREREpHMpKSUiIhLhKmraPqcUQJ8eDUkpTXYuIiIiIp1ISSkREZEIV9Hw9r1A55QyDIMjR8o41e7drqDYQWlpKYYR+NxUIiIiIiKBUlJKREQkwvkmOg90Tqmaqgpe/PBLtnyxF4Avi6t4+pUPKCsrC3aIIiIiIiJNKCklIiIS4cr9PaUC39aemMwpqcmYTeCo92CydwtydCIiIiIizVNSSkREJILV1LlwujxA2+eUijGbOKNbHABH64MVmYiItJVhGBpKLSJdgpJSIiIiEeyrg8WAt0G3mNq+nzNTfEmpduxERERERCQASkqJiIhEMP8k5zFgakc+6axUb1Kq0hWMqEREREREWqaklIiISASraOMk58czDIN0q3fc3tE69ZQSERERkc5hCXUAIiIi0naVtd6eUrHmtieTaqoq2HqwDrBTWQ8ezWMiIiIiIp1APaVEREQiWGVdQ1KqHT2lALonJ2HGwI2JoirNdi4iIiIiHU9JKRERkQjm6yllbUdPKQCzyURCQ//pA5V17Q1LRERERKRFSkqJiIhEsCr/8L327yvB6v3+zVElpURERESk4ykpJSIiEsF8w/eswUhKWbxzSR04Wtv+nYmIiIiItEBJKRERkQjm7ykV0/635iX6hu+pp5SIiIiIdIKwTUq53W5uuukm7r//fv+y7du3M3HiRLKyshgxYgQrVqxotM2qVavIzs6mf//+jBs3jm3btjXa3xNPPMGwYcPIyspiypQpFBUVdVp9REREOkIwe0olWr09pTR8T0REREQ6Q9gmpebPn8/WrVv9v1dUVDB58mTGjh1Lfn4+s2fP5vHHH2fHjh0AbN68mVmzZjF37lzy8/MZM2YMU6ZMoaamBoCFCxeyceNGXn75Zd5//31sNhszZswISd1ERESCparWAwRpTqmGnlKHqupxeYz271BERERE5CTCMin10UcfsX79eq655hr/svXr15OSkkJubi4Wi4WhQ4cyevRoli1bBsCKFSsYNWoUAwYMwGq1MmnSJFJTU1mzZo2//NZbb+XUU08lMTGR6dOn895777F///6Q1FFERCQYKv0Tnbd/+J49BswYuDwGh446270/EREREZGTCbukVGlpKdOnT+epp57Cbrf7lxcUFNCnT59G62ZkZLBr1y4ACgsLT1heWVnJoUOHGpWnp6eTnJzM7t27A47RZNLXt7+CeV6i/TxHc910riLvXElkMwyDKt/wvZj2789kAnuMt4fU1+U17d+hiIiIiMhJWEIdwPE8Hg/Tpk3j5ptv5vzzz29U5nA4GiWpAGw2G9XV1S2WOxwOAOLj45uU+8oC0b17UsDbdAXBOC9udzV2e2zD/hJJT4/Oc61/Q62nc9V6Olddj9Plob5hmF2sGQjCiLuEGA8Ot5l9R5wMOav9+xMREREROZGwSkotWrSI2NhYbrrppiZldrudysrKRsucTicJCQn+cqfT2aQ8NTXVn6zyzS/V3PaBKC2txNBUG34mk/dhOBjnpbS0ipqaOv/PMTHxLWwRWYJ5rqKdzlXrtfVc+baTyFVRUw+ACYMYE0FJSsXHeOeo2q+eUiIiIiLSwcIqKfXqq69SVFTEwIEDAfxJpn/961/ce++9bNy4sdH6hYWFZGZmApCZmUlBQUGT8iuuuILk5GR69uzZaIhfcXEx5eXlTYb8tYZhoIfkZgTjvBy/fTSf52iuW7DpXLWezlXXU1nrAsBqMjCZTMHISWE3e/dyoEJzSomIiIhIxwqrOaXWrl3LJ598wtatW9m6dSvXX389119/PVu3biU7O5uSkhKWLl1KfX09mzZtYvXq1YwfPx6ACRMmsHr1ajZt2kR9fT1Lly6ltLSU7OxsAMaNG8fChQvZv38/VVVVzJkzh0GDBnHmmWeGssoiIiJtdtR5LCkVLL45pZSUEhEREZGOFlY9pU4mNTWVJUuWMHv2bObNm0daWhozZsxgyJAhAAwdOpRHHnmEmTNncvjwYTIyMli8eDEpKSkA5OXl4XK5yM3NxeFwMHjwYJ599tnQVUhERKSdOiIpFW/2Dt87UOHEMLw9sEREREREOkJYJ6Xmzp3b6Pe+ffuyfPnyE66fk5NDTk5Os2VWq5WpU6cyderUoMYoIiISKked3jmlrA2JpGCwNfSUqq53U15TT2p8bND2LSIirWMYBobG5ItIFxBWw/dERESk9Xw9pSxB7CkVY4L0eO9nVhrCJyIiIiIdSUkpERGRCNURw/cAeiZ6e0d9o6SUiIiIiHQgJaVEREQi1PFv3wumXklWQD2lRERERKRjKSklIiISoSpqgp+UMgyDFIsbUE8pEREREelYYT3RuYiIiJyYf6LzICalaqsrOXjACsSxt6QyaPsVEREREfk29ZQSERGJUP7he0F8+x5ASkI8AIeq6oO6XxERaZn3rXt6856IdA1KSomIiESoig6a6DzBagKgqKoOt0cPRiIinc0wjIbklIhIdFNSSkREJEJVNiSlLEFOStliwGwCtwFFVbVB3beIiIiIiI+SUhHE4/FQVFREUVERHk9wh2qIiEhkcXuMDnv7nslk8veW0hv4RERERKSjKCkVQUpKSlj05nYWvbmdkpKSUIcjIiIhVNWQkILgJ6UAEmO9twjflCspJSIiIiIdQ2/fizAJyWmhDkFERMLA0Yahe3aLGbMp+PtPsJoBN98cVVJKRERERDqGekqJiIhEoKMNPaUS42I6ZP+JsRq+JyIiIiIdS0kpERGRCHTUWQ9AUmwHJaWsGr4nIiIiIh1LSSkREZEI5HvzXlKH9ZTy3iIc0PA9EYlgO3fuJDc3l4EDBzJ8+HAee+wx6urqANi+fTsTJ04kKyuLESNGsGLFikbbrlq1iuzsbPr378+4cePYtm1bp8VtGAaGEfz5AkVEwo2SUiIiIhGowukbvtcxTXlCQ0+pUkcdNXUuSktLKS0t1UOSiEQMj8fDbbfdxsiRI9myZQsrV67kgw8+YPHixVRUVDB58mTGjh1Lfn4+s2fP5vHHH2fHjh0AbN68mVmzZjF37lzy8/MZM2YMU6ZMoaamJsS1EhGJLkpKiYiIRKCOHr4XG3MsMbVrfxHPvbWD597aQVlZWYccT0Qk2CoqKiguLsbj8fgT6mazGbvdzvr160lJSSE3NxeLxcLQoUMZPXo0y5YtA2DFihWMGjWKAQMGYLVamTRpEqmpqaxZsyaUVRIRiTpKSomIiESgo86OnegcID3ee5twsLKW+KQU4pNSOuxYIiLBlpqayqRJk3jiiSfo27cvV155JWeddRaTJk2ioKCAPn36NFo/IyODXbt2AVBYWHjSchERCQ5LqAMQERGRwPmSUkmxMVR2wP5rqipw1hiAha+KKjrgCCIiHcvj8WCz2XjooYeYMGECe/fu5Y477mDevHk4HA7sdnuj9W02G9XV1QAtlgfCZGpb/CZT27eVxnznUeczeHROgy/cz2lHxaWklIiISASq7ISeUkm2WA7XeSiqdpNiU+dqEYksGzZsYN26daxduxaAzMxM8vLymD17NqNHj6aysnFK3+l0kpCQAIDdbsfpdDYpT01NDTiO7t2TAlrfN9wwLS0Rm80W8PHkxAL9W0jLdE6Dr6udUyWlREREIpB/TqkOTEolWL3fixwuUmyxHXYcEZGOcPDgQf+b9nwsFgtWq5U+ffqwcePGRmWFhYVkZmYC3gRWQUFBk/Irrrgi4DhKSysJ5B0RhuHxbxcXVx/w8aQpk8n7oB/o30JOTOc0+ML9nPriCzZ97CkiIhKBjtYeG77XUeIt3n7axdXuDjuGiEhHGT58OMXFxTz33HO43W7279/PwoULGT16NNnZ2ZSUlLB06VLq6+vZtGkTq1evZvz48QBMmDCB1atXs2nTJurr61m6dCmlpaVkZ2cHHIdhBP7V1u30pXOqcxrZX+F+TjuCekqJiIhEoM6Y6NyXlCqqdmMYBqZwneRARKQZGRkZLFq0iGeffZbnn3+epKQkxowZQ15eHrGxsSxZsoTZs2czb9480tLSmDFjBkOGDAFg6NChPPLII8ycOZPDhw+TkZHB4sWLSUlJCW2lRESijJJSIiIiEciXlDKcHdfFO6HhLqHGZVDnhjjdNYhIhBk2bBjDhg1rtqxv374sX778hNvm5OSQk5PTUaGJiAgaviciIhJxnPVual3eOUdeyf+C2lpnC1u0TYzZhL2ht1RVvadDjiEiIiIiXZeSUiIiIhGmsmE+KROQlNStQ4+VYPUmpRx1SkqJiIiISHApKSUiIhJhqmq9E49bY7xvQulIibHeW4UqJaVEREREJMiUlBIREYkwvp5SVnPHTzzuT0rVd9DEVSIiIiLSZSkpJSIiEmGqGpJSsTEdn5RKsKqnlIiIiIh0DCWlREQkKpSXl3PvvfcyePBgLr30Um6//XaKiooA2L59OxMnTiQrK4sRI0awYsWKRtuuWrWK7Oxs+vfvz7hx49i2bVsoqtBqVZ3aU0oTnYuIiIhIx1BSSkREosKdd95JdXU1GzZs4O233yYmJoaHHnqIiooKJk+ezNixY8nPz2f27Nk8/vjj7NixA4DNmzcza9Ys5s6dS35+PmPGjGHKlCnU1NSEuEYn1pk9pZIahu856gw8hobwiYiIiEjwKCklIiIR7/PPP2f79u3MnTuXbt26kZiYyKxZs5g6dSrr168nJSWF3NxcLBYLQ4cOZfTo0SxbtgyAFStWMGrUKAYMGIDVamXSpEmkpqayZs2aENfqxCqPm+i8o9ktJqxmMIBqzSslIiIiIkFkCXUAIiIi7bVjxw4yMjL4+9//zksvvURNTQ2XX3459913HwUFBfTp06fR+hkZGaxcuRKAwsJCxo8f36R8165dAcXQ3FvwfMuC/YY8R11DTynf8D2T9xgGTb83VxbI+iaTiVMSLHxT6aKqztNhdQol1SlyRGO9wq1O4RKHiIh0DUpKiYhIxKuoqGD37t1cdNFFrFq1CqfTyb333st9991Heno6dru90fo2m43q6moAHA7HSctbq3v3pDaVtUV9w1NjfJwFmy0WW5wVm92Kp96D2dr4e3Nlgaxvt8dyRoqbbypd1GImLS2xQ+oUDlSnyBGN9YrGOomIiLRESSkREYl4sbGxAEyfPp24uDgSExO5++67ueGGGxg3bhxOp7PR+k6nk4SEBADsdnuz5ampqQHFUFpaybenXDKZvA+azZW1R0mFd74rk8eD01mHs7YeZ009HlcdZpe50ffmygJZH2JItXqPW1ZVR1lZFenp6UGvUyh11N8plKKxThCd9Qq3OvniERER6QxKSomISMTLyMjA4/FQX19PXFwcAB6P921x3/3ud/nrX//aaP3CwkIyMzMByMzMpKCgoEn5FVdcEVAMhsEJHyhPVtYWlU7fnFIN42yO2/+3vzdXFuj6PeO9twtVdUajsnB4gA4m1SlyRGO9orFOIiIiLdFE5yIiEvGGDRtG7969efDBB3E4HJSVlfHMM89w9dVXc/3111NSUsLSpUupr69n06ZNrF692j+P1IQJE1i9ejWbNm2ivr6epUuXUlpaSnZ2dohrdWK+t+91xkTnhmGQgLdnVmW9p+MPKCIiIiJdhpJSIiIS8axWK3/+85+JiYlh5MiRjBw5kl69ejFnzhxSU1NZsmQJa9euZfDgwcyYMYMZM2YwZMgQAIYOHcojjzzCzJkzGTRoEK+//jqLFy8mJSUltJU6icrab0103oFqqir4YIe3J1lVnQdDXTlEREREJEiCPnxv8+bNDB48ONi7FRGRKBaMtqNnz54888wzzZb17duX5cuXn3DbnJwccnJy2nX8znSsp5QJXB1/vOT4OHCCywMVDUMHRUSCQc8OIiJdW9B7St11111cffXV/OEPf+DAgQPB3r2IiEQhtR2Bqar1JoY6o6cUgNkE9oahggcq6zrlmCLSNej6LyLStQU9KfXBBx8wbdo0Pv/8c0aOHMnPf/5zXnvtNerqdBMrIiLNU9vRei6PQXW9b6LzzjtugtWbADuopJSIBJGu/yIiXVvQk1JWq5WRI0eycOFC3n33Xa6++mqWLFnC8OHDefTRR9m1a1ewDykiIhFObUfrOWqPjdezdlJPKYCEhgH/B4/qQVFEgkfXfxGRrq3DJjovLS1l9erVvPLKKxQWFjJ48GDi4uKYNGkSzz33XEcdVkREIpjajpb5JzmPAbOpE5NSDT2lNHxPRDqCrv/HGIaB3ikhIl1F0Cc6f/3113n11Vf58MMPOeeccxg3bhzPPfccaWlpAFx55ZXk5eXxi1/8ItiHFhGRCKW2o/W+KSoFwOTx4KxxdtpxEywaviciwafrv4hI1xb0pNSjjz7KqFGjWL58ORdddFGT8rPPPptJkyYF+7AiIhLB1Ha0nqPOAzS8ea8TJVi93w9V1nfqcUUkuun6LyLStQU9KfXBBx+wf/9+evbsCcCnn35KUlIS5557LgC9evXirrvuCvZhRUQkgqntaD3/JOcdNgC/eb6eUmU1LqrrXC2sLSLSOrr+i4h0bUG/pX3zzTcZO3Yse/bsAWDbtm1MnDiRd999N9iHEhGRKKG2o/WqfD2lOjkpFRtjIrbhmDu+PIChCU9EJAh0/W+ed14pXWdFJPoF/ZZ2/vz5LFiwwN/99uabb+Z3v/sdTz31VLAPJSIiUUJtR+s56nw9pTr/YSXe4j3mHzbspKysrNOPLyLRR9d/EZGuLehJqYMHD3L55Zc3WjZ8+HAOHDgQ7EOJiEiUUNvReseSUp1/7ISGpFSt2db5BxeRqKTrv4hI1xb0W9rTTz+d999/v9Gyjz76iNNOOy3YhxIRkSihtqP1HPXe4XuWzp3nHICEhpkoj9a6O//gIhKVdP1vnobviUhXEfSJzidPnkxeXh7XXHMNp59+OgcOHGDDhg088cQTrd7HRx99xNNPP82XX36J3W7nBz/4AdOmTcNms7F9+3Yee+wxCgsLSU1NZcqUKUycONG/7apVq1iwYAHFxcWcc845PPTQQ2RlZQHgdrv57W9/y6uvvkpNTQ1Dhgzh0Ucf5ZRTTgn2aRARkQAEo+3oKqpC2FMqvuGuoarW0/kHF5GopOu/iEjXFvRb2tGjR7N48WKsVis7d+7EZrOxZMkSRo4c2arty8rKuO222/jxj3/M1q1bWbVqFVu2bOH//u//qKioYPLkyYwdO5b8/Hxmz57N448/zo4dOwDYvHkzs2bNYu7cueTn5zNmzBimTJlCTU0NAAsXLmTjxo28/PLLvP/++9hsNmbMmBHsUyAiIgFqb9vRlVSHaKJzODZ8r1I9pUQkSHT9FxHp2oLeUwpg8ODBDB48uE3bpqWl8eGHH5KYmIhhGJSXl1NbW0taWhrr168nJSWF3NxcAIYOHcro0aNZtmwZ/fr1Y8WKFYwaNYoBAwYAMGnSJP72t7+xZs0axo8fz4oVK5g6dSqnnnoqANOnT2f48OHs37+f3r17B6fyIiLSJu1pO7oCwzAoKyuj3OEEQttTqrLOg0fDSkQkSHT9FxHpuoKelDp8+DALFy5kz549eDyNu/f/6U9/atU+EhMTAbjyyis5fPgwAwcOZNy4cTz77LP06dOn0boZGRmsXLkSgMLCQsaPH9+kfNeuXVRWVnLo0KFG26enp5OcnMzu3bsDSkqZQjCPx7ePazKFLo5v88URjHjCtY7BEsxzFe10rlqvrecqnM5tMNqOaFdWVsZzb+1g3xEDsITk7Xv2GDABHgPKql2kd+/0EEQkyuj6LyLStQU9KfXAAw9QUlLC97//faxWa7v2tX79eioqKpg6dSp33XUXPXv2xG63N1rHZrNRXV0NgMPhOGG5w+EAID4+vkm5r6y1undPCrQqQeF2V2O3xzbEkEh6esfH4fF4KC4uBqBHjx6YzSf+aD4Y5yUUdQyFUP0bikQ6V60XyecqmG1HNItPSsFtOgqANQRJRbMJ7BaodsGhqjr6tLyJiMhJ6fovItK1BT0p9dlnn7Fu3TrS0tLavS+bzYbNZmPatGlMnDiRm266icrKykbrOJ1OEhISALDb7Tidziblqamp/mSVb36p5rZvrdLSSkIxaqG0tIqamjr/zzEx8S1s0X5FRUU896/tAPzi6oubnRTeZPI+DAfjvISijp0pmOcq2ulctV5bz5Vvu3AQzLYj2jW8fA9LCIbvASRYTFS7DA5W1ocmABGJKrr+i4h0bUG/pU1KSiI2NrbN23/yySf84Ac/oK6uzr+srq4Oq9VKRkYGBQUFjdYvLCwkMzMTgMzMzBOWJycn07NnTwoLC/1lxcXFlJeXNxkS2BLDCN1XKGJISE4jITmtxbgiuY6d/TcMdQyR8qVz1fHnKly0t+3oKgzD8CelQjGnFEB8Q0eGw5V1J19RRKQVdP1vnsfjaTKcUUQkGgX9lvb222/ngQceYMeOHRw4cKDRV2ucd955OJ1OnnrqKerq6vjmm2944oknmDBhAiNHjqSkpISlS5dSX1/Ppk2bWL16tX8eqQkTJrB69Wo2bdpEfX09S5cupbS0lOzsbADGjRvHwoUL2b9/P1VVVcyZM4dBgwZx5plnBvs0iIhIANrbdnQVbgMMvOP2QpWUSrB4j3+oSj2lRKT9dP0XEenagj58b8aMGQBs2LABAJPJhGEYmEwm/vOf/7S4fUJCAs8//zxz5szhsssuIykpidGjR5OXl0dsbCxLlixh9uzZzJs3j7S0NGbMmMGQIUMA79v4HnnkEWbOnMnhw4fJyMhg8eLFpKSkAJCXl4fL5SI3NxeHw8HgwYN59tlng30KREQkQO1tO7qKevex7m2WEE1Un9AwmdUh9ZQSkSDQ9V9EpGsLelLqzTffbPc+MjIyWLJkSbNlffv2Zfny5SfcNicnh5ycnGbLrFYrU6dOZerUqe2OUUREgicYbUdXUOfxJqWs5tC9PTGh4c7hoJJSIhIEuv6LiHRtQe/8f/rpp3P66adTUVHBzp076dGjBzabjdNPPz3YhxIRkSihtqN16t3e76EaugcQ39BFq7TaRZ1L852ISPvo+i8i0rUF/ba2tLSUH/3oR9xwww3cd9997N+/n6uvvppt27YF+1AiIhIl1Ha0zvE9pUIlLsb75j8DOFRZG7pARCQq6PovItK1Bf22ds6cOfTp04f8/HwsFgvnnnsukydP5n//93+DfSgREYkSajtaxzenlMUcorF7eOd7SYyNAeBARU3I4hCR6KDrv4hI1xb0pNSmTZt44IEHsNvtmBomvLjlllsoLCwM9qFERCRKqO1oHV9SKpQ9pQCS4rwBfFPhDG0gIhLxdP0XEenagn5ba7VacTq9N6mG4b15djgcJCQkBPtQIiISJdR2tE5dwxROoU9K+XpKKSklIu2j67+ISNcW9NvaESNGMG3aNPbs2YPJZKK0tJRHH32UK6+8MtiHEhGRKKG2o3WO9ZQK3fA9gKRY7+2DklIi0l66/ouIdG1BT0r9+te/Jj4+nh/84AccPXqU4cOHU1NTw9SpU4N9KBERiRJqO1onHCY6B0hs6Cml4Xsi0l66/ouIdG2WYO8wISGBefPmUVZWxtdff02vXr045ZRTgn0YERGJImo7Widc5pTqFqeeUiISHB19/S8vL2fOnDm8++67eDweLr30UmbOnMkpp5zC9u3beeyxxygsLCQ1NZUpU6YwceJE/7arVq1iwYIFFBcXc8455/DQQw+RlZUVtNhERKQDklL5+fmNft+7dy979+4F4NJLLw324UREJAqo7WidujAZvufrKVXhdFFV6yIxLui3EyLSRXT09f/OO+8kOTmZDRs2YDabeeCBB3jooYf43//9XyZPnsxdd93FjTfeSH5+Pnl5eZx33nn069ePzZs3M2vWLBYvXky/fv1YtmwZU6ZM4e2338Zut7c7LhER8Qr6XeRNN93UZJnZbObUU0/lzTffDPbhREQkCqjtaJ36MJnoPDbGRLe4GI7WujlQ4aTPKYmhDUhEIlZHXv8///xztm/fzocffkhiovc6NWvWLIqLi1m/fj0pKSnk5uYCMHToUEaPHs2yZcvo168fK1asYNSoUQwYMACASZMm8be//Y01a9Ywfvz4dsUlIiLHBD0ptWvXrka/l5WV8Yc//IHTTz892IcSEZEoobajdcJl+B5ArySrklIi0m4def3fsWMHGRkZ/P3vf+ell16ipqaGyy+/nPvuu4+CggL69OnTaP2MjAxWrlwJQGFhYZPkU0ZGRpN4RUSkfTr8tjYtLY1p06bx4osvdvShREQkSqjtaJ5vonNLiJNShmGQFuf9+euKmtAGIyJRJZjX/4qKCnbv3s2ePXtYtWoVr7zyCocPH+a+++7D4XA0GYZns9morq4GaLE8ECZT4F9t3U5fOqc6p5H9Fe7ntCN0yiQQFRUV1NbWdsahREQkSqjtaMrfU6qj7gpaqbqygqIjTsDKV4crgN4hjUdEokuwrv+xsbEATJ8+nbi4OBITE7n77ru54YYbGDduHE5n45c1OJ1OEhISALDb7c2Wp6amBhxH9+5JAa3vdrv92/mGHUpwBPq3kJbpnAZfVzunQU9KPfDAA41+r6+v5+OPP2bYsGHBPpSIiEQJtR0t8xhG2MwpBdAtPg6qPRyqqgt1KCISwTry+p+RkYHH46G+vp64OG/3To/HeyH97ne/y1//+tdG6xcWFpKZmQlAZmYmBQUFTcqvuOKKgOMoLa3EMFq/vsfj9m/ndAawoZyQyeR90A/0byEnpnMafOF+Tn3xBVuH39bGxcVx0003MWvWrI4+lIiIRAm1HU05XR7/z6EevgeQYPH21jpUVR/iSEQkmgTz+j9s2DB69+7Ngw8+iMPhoKysjGeeeYarr76a66+/npKSEpYuXUp9fT2bNm1i9erV/nmkJkyYwOrVq9m0aRP19fUsXbqU0tJSsrOzA47DMAL/aut2+tI51TmN7K9wP6cdIeg9pR5//PFg71JERKKc2o6WVdd5k1ImDGJMQAfdGLRWgtWblDpcWYdhGJhCPKRQRCJTR17/rVYrf/7zn5k7dy4jR46ktraWESNGMH36dLp168aSJUuYPXs28+bNIy0tjRkzZjBkyBDA+za+Rx55hJkzZ3L48GEyMjJYvHgxKSkpHRaviEhXFPSk1Pz581u13h133BHsQ4uISIRS29Gy6oaxexYzmEymUOekiG+4g6h1G5RW15OeEBvagEQkInX09b9nz54888wzzZb17duX5cuXn3DbnJwccnJy2nRcERFpnaAnpQoKCli/fj3nn38+Z599NocOHeKTTz7hggsu8E8cqE9TRUTkeGo7WlZd751jxBImp8FsMhFvNVFdb3CgwqmklIi0ia7/IiJdW9CTUmazmQceeICf/vSn/mWvvvoqb7/9Ns8++2ywDyciIlFAbUfLfD2lwmGSc59Eq5nqejcHKpz0O61bqMMRkQik67+ISNcW9Fvbd999l9zc3EbLrr/+ej766KNgH0pERKKE2o6W+eaUCodJzn0SY729F76pqAlxJCISqXT9FxHp2oJ+a5uWlkZ+fn6jZe+//z69evUK9qFERCRKqO1omW/4njWMRrEkNHTbOlDhDHEkIhKpdP0XEenagj5877bbbmPy5MmMHDmS0047jf379/P222/z+9//PtiHEhGRKKG2o2XHJjoP9RTnxyTGKiklIu2j67+ISNcW9KTUxIkTOf300/nnP//Jv//9b3r37s3y5cs577zzgn0oERGJEmo7WuYIs4nOARIaum0pKSUibaXrv4hI1xb0pBTAsGHDGDZsGGVlZaSlpXXEIUREJMqo7Tg535xS4TTRuS8pdaiyFpfbgyUmjIITkYih639jhmEA4dMrVkSkIwX97rG+vp5nnnmGAQMGMGLECPbv38/48eMpKioK9qFERCRKqO1o2bHheyEO5HjOSkwYeAxvYkpEJFC6/jfPMIyG5JSISHQL+q3t/Pnz2bRpE7/73e+wWq10796dXr16MXv27GAfSkREooTajpaF40TnJhPEx3gfmjSET0TaQtd/EZGuLejD91avXs1LL71Ez549MZlMxMfH8/jjj5OdnR3sQ4mISJRQ29GysOwpBdjNHhxus5JSItImuv6LiHRtQb+1ra6u9o8F93U5tdlsmM1hdhctIiJhQ21Hy3xzSoXT2/cA7A09pb5RUkpE2kDX/+Zp+J6IdBVBv9r379+f+fPnA2AyeccY/PnPf6Zv377BPpSIiEQJtR0tC8fhe+DtKQUavicibaPrv4hI1xb04XsPPvggkyZNYtWqVTgcDq677jocDgd//OMfg30oERGJEmo7Wha2w/d8c0odVVJKRAKn67+ISNcW9KRUeno6r7/+Ou+88w7ffPMNvXr14nvf+x6JiYnBPpSIiEQJtR0t8yWlrGGWlNJE5yLSHrr+i4h0bUFPSl1//fX885//5Nprrw32rkVEJEqp7Tg5wzCorvMO37OE6fC9sup6quvcxMfGhDgiEYkkuv6LiHRtHfJ5a01NTUfsVkREopjajhOrdXlwN8x3G27D96xmSIz1BqUhfCLSFrr+i4h0XUHvKTV48GAmTpzIFVdcwSmnnNKo7I477gj24UREJAqo7Tg5R0MvKQi/nlIAPRNjqSpzcqDCSUZ6QqjDEZEIouu/iEjXFvSk1Ndff03v3r356quv+Oqrr/zLfW/TEBER+bZgth1ut5tJkyZx+umnM3fuXAC2b9/OY489RmFhIampqUyZMoWJEyf6t1m1ahULFiyguLiYc845h4ceeoisrKz2VyxIfEkpqxnCsTntlWTly4aklIhIIPTsICLStQUtKfU///M/vPDCC/z5z38GwOl0YrPZgrV7ERGJQh3RdsyfP5+tW7dy+umnA1BRUcHkyZO56667uPHGG8nPzycvL4/zzjuPfv36sXnzZmbNmsXixYvp168fy5YtY8qUKbz99tvY7fZ21zEYHHUuAKzm8HxI65UYC8A3SkqJSCvp2UFERCCIc0pt27at0e9XXHFFsHYtIiJRKthtx0cffcT69eu55ppr/MvWr19PSkoKubm5WCwWhg4dyujRo1m2bBkAK1asYNSoUQwYMACr1cqkSZNITU1lzZo17YolmBy1DT2lYsI0KZXkTUqpp5SItJaeHUREBDpoonPwvilIREQkEO1pO0pLS5k+fTpPPfVUox5OBQUF9OnTp9G6GRkZ7Nq1C4DCwsKTlocDX0+pcJvkHLx/s0S8yagDFZqsWETaRs8OIiJdU9DnlPLROHAREQlUW9sOj8fDtGnTuPnmmzn//PMblTkcjibD8Gw2G9XV1a0qb63mQvcta2+TeGxOKZN/f8Zx3zE1XXaysvas/221NZV8+MUBwM435U7AiLh7gGD9ncJJNNYJorNe4VanUMURadcNEREJjg5LSomIiHSWRYsWERsby0033dSkzG63U1lZ2WiZ0+kkISHBX+50OpuUp6amBhRD9+5JbSprDVNsKQC22BhstljMViueeo//uy3Ois3eeNnJytq/fq3/d1uclZSeaVBWQ43LQ0y8jbSE2HbVN1Ta+3cKR9FYJ4jOekVjnURERFoStKSUy+XilVde8f9eX1/f6HeAsWPHButwIiISBYLVdrz66qsUFRUxcOBAAH+S6V//+hf33nsvGzdubLR+YWEhmZmZAGRmZlJQUNCkPND5TUpLK/n26BOTyfug2VxZIA6XOQAwGwZOZx1mlxmP69h3Z209zpr6RstOVtbe9WMt+H931tZTX+vCbjFR4zLY8d9iLjq1W9srGwLB+juFk2isE0RnvcKtTr54OpqeHUREBIKYlEpPT2fevHn+31NTUxv9bjKZ1LCIiEgjwWo71q5d2+j3+++/H4C5c+dy5MgRnnzySZYuXUpubi4ff/wxq1evZsGCBQBMmDCBvLw8rr32WgYMGMCyZcsoLS0lOzs7oLoYBid8oDxZWWtU+SY6Nx/b3/HfMZouO1lZe9ZvoqEsMdZMjcvNN+VOLuwVWUkpn/b+ncJRNNYJorNe0Vink9Gzg4iIQBCTUm+99VawdiUiIl1EZ7QdqampLFmyhNmzZzNv3jzS0tKYMWMGQ4YMAWDo0KE88sgjzJw5k8OHD5ORkcHixYtJSUnp8Nhay1Hrneg8XN++B5BgNVGM3sAnIq2jZwcREQHNKSUiIlFo7ty5jX7v27cvy5cvP+H6OTk55OTkdHRYbfbtic7DUWKstxvXN0pKiYiIiEgrheHLpUVEROR4jjpvTylLGLfavqTU/vKaEEciIiIiIpEijG9vRUREBKDc0dD7yOUKbSAnkRznvaX4qrQ6xJGIiIiISKRQUkpERCTMVdd7gPDuKdWtoadUWXU9R531IY5GRERERCJBGN/eioiICEB1nTcpZQ3jVtsaYyI93jtV5Z4yDeETEWkrwzC61JsYRaRrC+PbWxEREQGorvdOdG4J44nODcOgV4JvCJ8jxNGIiIiISCQIy6TUrl27uPnmmxk0aBCXXXYZ9957L2VlZQBs376diRMnkpWVxYgRI1ixYkWjbVetWkV2djb9+/dn3LhxbNu2zV/mdrt54oknGDZsGFlZWUyZMoWioqJOrZuIiEigfMP3rOGbk6KmqoKjVd5k1K4DZSGORkREREQiQdglpZxOJ7fccgtZWVl88MEHvPbaa5SXl/Pggw9SUVHB5MmTGTt2LPn5+cyePZvHH3+cHTt2ALB582ZmzZrF3Llzyc/PZ8yYMUyZMoWaGu8wgoULF7Jx40Zefvll3n//fWw2GzNmzAhldUVERE6q3u2hzu0dxxHOc0oBpMbHAbC/vDbEkYiIiIhIJAi729sDBw5w/vnnk5eXR2xsLKmpqdx4443k5+ezfv16UlJSyM3NxWKxMHToUEaPHs2yZcsAWLFiBaNGjWLAgAFYrVYmTZpEamoqa9as8ZffeuutnHrqqSQmJjJ9+nTee+899u/fH8oqdwkej4eioiKKiorweDyhDkdEJGI46tz+n8N5TimApIauXPsq6kIciYhIZCuqqueN3aWhDkNEpMNZQh3At51zzjk8//zzjZatW7eOCy+8kIKCAvr06dOoLCMjg5UrVwJQWFjI+PHjm5Tv2rWLyspKDh061Gj79PR0kpOT2b17N7179251jKYQDZ84/rgmU+fE0Zpj+padLJ7S0hIWvbkdgF9cfTGnnHJKm48Xkevl/QABAABJREFUyVpzrsRL56r12nqudG4jg6POBUAMBiaTiXCe+9aXlDpcVUety0NcuHftEhEJUxv3VrL2iwqGnNuLM1PtoQ5HRKTDhF1S6niGYfDss8/y9ttv85e//IU//elP2O2NL8o2m43q6moAHA7HCcsdDu88F/Hx8U3KfWWt1b17UqBVCQq3uxq7PbYhhkTS0zs+jkCOebLz4nZXk96rV4v7CUUdQyFU/4Yikc5V6+lcRSdHbcMk56ZwTkd5xcVAXIyJWrfBV6UOzu+pf5MiIm1R6/Je8yud9YCSUiISvcI2KVVVVcUDDzzAzp07+ctf/sJ5552H3W6nsrKy0XpOp5OEhAQA7HY7TqezSXlqaqo/WeWbX6q57VurtLQyJK9pLS2toqamzv9zTEx8C1t0zjFNJu/D8MnOS2tjD0UdO1NrzpV46Vy1XlvPlW87CW++4XuRkJQymUyk2MwcdrjZXVSlpJSISBt5Ghp0lyf8r/0iIu0Rlkmpffv2ceutt3LaaaexcuVK0tLSAOjTpw8bN25stG5hYSGZmZkAZGZmUlBQ0KT8iiuuIDk5mZ49e1JYWOgfwldcXEx5eXmTIYEtMQxC8pB8/DE7K4ZAjnmy8tbuJxR1DIVorluw6Vy1ns5VdPIP34uApBRAakNS6ouiwHohi4iIl2EYuBumYFVSSkSiXdhN9lBRUcHPfvYzLrnkEl544QV/QgogOzubkpISli5dSn19PZs2bWL16tX+eaQmTJjA6tWr2bRpE/X19SxdupTS0lKys7MBGDduHAsXLmT//v1UVVUxZ84cBg0axJlnnhmSuoqIiLQkkobvAaTaYgDYXVRFaWkphjKlIiIBcXsM//yBSkqJSLQLu55S//jHPzhw4ABvvPEGa9eubVS2bds2lixZwuzZs5k3bx5paWnMmDGDIUOGADB06FAeeeQRZs6cyeHDh8nIyGDx4sWkpKQAkJeXh8vlIjc3F4fDweDBg3n22Wc7uYYiIiKtV9XQUypyklLez7u+KKri6Vc+4Fdjh9O9e/cQRyUiEjlq3ceu90pKiUi0C7uk1M0338zNN998wvK+ffuyfPnyE5bn5OSQk5PTbJnVamXq1KlMnTq13XGKiIh0hkjrKdUtzozVbKLG5cFj6xbqcEREIk6dy+P/2eWOjGu/iEhbhd3wPYksHo+HoqIiDh8+jMfjaXkDEREJiCPCekqZTSbOSo0DoKI+xMGIiESg2uOSUm7dX4tIlFNSStqlpKSE5/61nadezaekpCTU4YiIRJ1IevueT0Z37xtvy+tMIY5ERMTL7XZz0003cf/99/uXbd++nYkTJ5KVlcWIESNYsWJFo21WrVpFdnY2/fv3Z9y4cWzbtq1TYq1zH9dTSsP3RCTKKSkl7ZaQnEZiSlrLK4qISMCqIjAp1Sfdm5Q6oqSUiISJ+fPns3XrVv/vFRUVTJ48mbFjx5Kfn8/s2bN5/PHH2bFjBwCbN29m1qxZzJ07l/z8fMaMGcOUKVOoqanp8FgbDd9TUkpEopySUiIiImHMURtZw/cAzu/h6ynlfYuUiEgoffTRR6xfv55rrrnGv2z9+vWkpKSQm5uLxWJh6NChjB49mmXLlgGwYsUKRo0axYABA7BarUyaNInU1FTWrFnT4fHWak4pEelClJQSEREJY77hezERlJQ6MzkOu8WMyzCxr6I21OGISBdWWlrK9OnTeeqpp7Db7f7lBQUF9OnTp9G6GRkZ7Nq1C4DCwsKTlnek2kbD9zSnlIhEt7B7+56IiIgc459TKsRxBCLGbKJPup3thxzsKq5hYEaoIxKRrsjj8TBt2jRuvvlmzj///EZlDoejUZIKwGazUV1d3aryQJgCHMlcf1xSym0Evr005TuHOpfBo3MafOF+Tjsqrki6xxUREelyqhqG71kjpKeUYRgcOVLGd5Jg+yHYXRz4A5yISDAsWrSI2NhYbrrppiZldrudysrKRsucTicJCQn+cqfT2aQ8NTU14Di6d08KaP24AxXHfrbHkp4e2PZyYoH+LaRlOqfB19XOqZJSIiIiYcyXlIqU4Xs1VRW8+GERh2o8QCK7ijt+UmARkea8+uqrFBUVMXDgQAB/kulf//oX9957Lxs3bmy0fmFhIZmZmQBkZmZSUFDQpPyKK64IOI7S0kqMAC7hJUeOJfMrjtZQUlJ5krWlNUwm74N+oH8LOTGd0+AL93Pqiy/YlJQSEREJY77he5HSUwrAnphMr1gnVMHe8locdS4SYnXLISKda+3atY1+v//++wGYO3cuR44c4cknn2Tp0qXk5uby8ccfs3r1ahYsWADAhAkTyMvL49prr2XAgAEsW7aM0tJSsrOzA47DMAjoAbP2W2/fC8eH00gV6N9CWqZzGnxd7ZzqDlFERCRM1bs9/oeTSHr7HoAtBmxmD06Pmf8cqmLgmSmhDklExC81NZUlS5Ywe/Zs5s2bR1paGjNmzGDIkCEADB06lEceeYSZM2dy+PBhMjIyWLx4MSkpKR0eW53eviciXYiSUiIiImHKUev2/xxpSSmAZIsHZ52Zzw8eVVJKREJu7ty5jX7v27cvy5cvP+H6OTk55OTkdHRYTejteyLSlZhDHYCIiIg0r6rOO5+U3WIO2zexnEyKxZtU+/yg5kMREWmtum8N3xMRiWZKSomIiIQp3yTn8bGR2VwnW70PVp8fqsToSpMjiIi0Q91xQ/aUlBKRaBeZd7kiIiJdQFXD8L0Ea0yII2mbbhYPMSYoddRxuLI21OGIiESE43tKuZWUEpEop6SUiIhImHLURXZPqRgTnJ1mAzSET0SktercGr4nIl1HZN7lioiIdAGR3lMK4Px0OwD5XxVRWlqqYXwiIi1olJTS2/dEJMopKSUiIhKmIn1OKYDzesQD8E5hCc+9tYOysrIQRyQiEt5qXcfPKaW374lIdIvcu1wREZEoV9mQlLIY9URqB6Pze3h7SlXUmbAlJoc4GhGR8Fert++JSBeipJSIiEiYKqmoAuCrw0eorXWGOJrAGYZBvLuKBKsJtwHlTn3iLyLSEs0pJSJdiZJSIiIiYaq63vtgYouLDXEkbVNbXcmfP/ovNqMOgNIad4gjEhEJf3r7noh0JUpKiYiIhKnqOm8SxxrBrbU9MZn0eO9E7SXVSkqJiLREPaVEpCuJ4NtcERGR6OZo6CllMYU4kHZKjfM+VJXWaPieiEhL6o6f6Fxv3xORKKeklIiISJhy+HtKRfZDSWrD6MOjdR4qa9VbSkTkZBr3lFIyX0Sim5JSIiIiYco3p1QkD98DiIuBBIv35y9KakIbjIhImKvV8D0R6UIi/DZXREQkejmiYE4pn7Q47xjEXcXVIY5ERCS8HT/RuZJSIhLtouA2V0REJDpVR8mcUgCpvqSUekqJiJxUnVtzSolI16GklIiISBhye4yoGb4HkGrzJqV2F9dgGHrIEhE5kVqX5pQSka4jCm5zJVAej4eioiKKiorwqKETEQlL1XXHJgS3REFrnRxrwmyCo7VuvqlwhjocEZGwdfzwPbeG74lIlIuC21wJVElJCYve3M6iN7dTUlIS6nBERKQZjjoXAGYTxETB8L0Yk4mUOO9tx67DVSGORkQkPHkMg/rjElGaU0pEop2SUl1UQnIaCclpoQ5DREROoKrW21Mq1hwFGakGafYYAHYVKSklItKc43tJgZJSIhL9lJQSEREJQ1W13p5SlpgQBxJEqTbvbcdu9ZQSEWlWnftbSSlNdC4iUU5JKRERkTBU1TB8L1p7SmmycxGRptRTSkS6GiWlREREwpCjYfieNRomlGqQHGsixgTlNfUcrqwNdTgiImGn9ts9pZSUEpEop6SUiIhImDEMg8NlFQBYo6inVF31UWzUA7Bb80qJiDRR52qchHLpTdkiEuWUlBIREQkzZWVlvLnrGwDMhjvE0QRXSqz3u97AJyLSVK2r8TXfrZ5SIhLllJQSEREJRxYbEF09pQCSLN5P/fUGPhGRpmob5pSyNDylafieiEQ7JaVERETCUH3DG5csUdZSd2tISmn4nohIU76371kaPpDwGODRiyFEJIpF2a2uiIhIdKhv+HTcGmUtdZLFgwkorqqjxFEX6nBERMKKb06p43vJutxKSolI9IqyW10REZHocCwpFV3D9ywm6J0cB8DWwgOUlpZiqBeAiAgAGT0S6B5v5Yxkq3+ZhvCJSDRTUkpERCQM1TfMdWuJrpwUAOd2986X9df8PTz31g7KyspCHJGISHjomRTHqz/Pov+pdv8yvYFPRKKZklIiIiJhqC5Kh+8BZDQkpSo9scQnpYQ2GBGRMGMymTj+8wj1lBKRaBaFt7oiItIV7dq1i5tvvplBgwZx2WWXce+99/p74Gzfvp2JEyeSlZXFiBEjWLFiRaNtV61aRXZ2Nv3792fcuHFs27YtFFVoxDfReVQmpdK8PQDKnO4W1hQR6ZqOT0y5lZQSkSgWhbe6IiLS1TidTm655RaysrL44IMPeO211ygvL+fBBx+koqKCyZMnM3bsWPLz85k9ezaPP/44O3bsAGDz5s3MmjWLuXPnkp+fz5gxY5gyZQo1NTUhrZNvTilLlM0pBd6eUiagut6gxqVhKSIizfFd/tVTSkSimZJSElE8Hg9FRUUUFRXh0fh6EWlw4MABzj//fPLy8oiNjSU1NZUbb7yR/Px81q9fT0pKCrm5uVgsFoYOHcro0aNZtmwZACtWrGDUqFEMGDAAq9XKpEmTSE1NZc2aNSGrj2EY/jmloq2nlGEY1DkqOCPJAkBJtXpLiYg0x2TyZqX09j0RiWZRdqsr0a6kpIRFb25n0ZvbKSkpCXU4IhImzjnnHJ5//nliYmL8y9atW8eFF15IQUEBffr0abR+RkYGu3btAqCwsPCk5aFQ6zLwPYJEW1KqtrqSFz/8EqPOASgpJSJyIuopJSJdgSXUAYj4VDpd3L1mDy6XiyGnxZ1wvYTktE6MSkQijWEYPPvss7z99tv85S9/4U9/+hN2u73ROjabjerqagAcDsdJy1vL1MwoO9+y5spOptrlTdSYMLCYwXADJu9+DJp+D7SsPes3rWTg+4pPSqaHu5ava6GkxoPJFPg5Cqa2/p3CWTTWCaKzXuFWp3CJoyszDAMwjktKaXSAiEQvJaUkbPxjx0EKSp0AnJemf5oiEriqqioeeOABdu7cyV/+8hfOO+887HY7lZWVjdZzOp0kJCQAYLfbcTqdTcpTU1MDOnb37kltKmvOntJyAKxmE/b4WDz1BrY4Kza7FU+9B7O18fdAy9q/fq3/97bu61SPm21lHspq3HRLiSc9PbBz1BEC/TtFgmisE0RnvaKxTtI+ZpMJMNRTSkSimp78JSzUuz38bds3/t8Lj7hCGI2IRKJ9+/Zx6623ctppp7Fy5UrS0ry9Kvv06cPGjRsbrVtYWEhmZiYAmZmZFBQUNCm/4oorAjp+aWklxreeG0wm74Nmc2Un802xN4kWYzJw1tTjcdXhrK33/2z+/+zdeXhU5fn/8fdM9o0sBMIiiBKCVUACSABRFI1UkKUs2hZpsSoW0vpFG1QEqxWDUqtSRNCiiFZ+agFRURRtq4JAWCyCG0hQIRqWLCRkT2bm/P4YZmAgCZlsM5n5vK4rF8x5zjm5nzOTeebc8ywWs8u/7pY1dv/gQBocl2NbkLWaYHMAVTbYvj+PywPCznFVmk9Dnydv5ot1At+sl7fVyRGPeI5hGBjGacP3NKeUiPgwr56poqCggNTUVLZt2+bc1phlva1WKwsWLGDIkCEkJyczffp0jh071mL1kdr9+9tcckuqCA6wt74/FFkordI8IyJSP0VFRfz2t7+lX79+vPDCC86EFEBqaip5eXmsWLGC6upqMjMzWbduHRMmTABg4sSJrFu3jszMTKqrq1mxYgX5+fmkpqa6FYNh1PxTV1ltPyWV9qEaQeZT5+CM853+r7tljdn/7Io37FwmE8SF2N/zvzxS5vY1auqfhjxP3v7ji3Xy1Xp5W53EsxzD9xwjKdVTSkR8mdcmpT777DNuuukmDh065NzW2GW9ly5dyubNm1mzZg2bNm0iNDSUuXPneqR+4mrzdwUAjL84jjbBJiwG7Pyp1MNRiUhr8cYbb5CTk8N7771H//79SU5Odv7ExsayfPly3n//fVJSUpg7dy5z585l0KBBAAwePJgHH3yQhx56iIEDB/Luu++ybNkyYmJiPFaf0pNL7/naJOdnig+z33J9fkTv9yIiZzKfnODLqqSUiPgwrxy+t3btWhYtWsSsWbO46667nNtPX9YbcFnWu0+fPi7LegNMnTqV119/nfXr1zNhwgRWrVpFeno6HTt2BGDOnDkMHTqU7OxsunTp0vIVFaesPPsNSc/4MLYfCuBElYXsE5UejkpEWotbbrmFW265pdby3r1789prr9VaPnbsWMaOHdscoTVIaZW9p1Sgj0843D7UDNj48kgZFquNwAAfz8KJiLhBE52LiD/wyk9/Q4cO5cMPP2TkyJEu2xuzrHdxcTFHjhxxKY+Pjyc6Opp9+/Y1U02kPqqtNn4osPdmuyA2hDYh9pdldlGVJ8MSEfGYMmdPKd/+drxNMIQEmCi32PjqSPG5DxAR8SMmZ1LKt9sCEfFvXtlTql27djVuP9ey3XWVl5bae+KEh4efVe4oqy9PLZV7+u9tzPLZ7pznXPuevq2uc9V1noPHy7DaDCJDAmgXEUj0yTlGfiyqqvH31Td2b+Rtyz57M12r+mvotdK19V5lVafmlPJlJpOJ9hEBZJ+wsDO7kEs7R3s6JBERr+EYvqeJzkXEl3llUqo2jVnW25GscswvVdPx9eWpFUms1jLCwoJPxhDZ4OWz3TnPufa1WssIDbWXx8XVfq66zvNp9gkAftaxDfHxUbRrEwJUklNcRWxcJAFmU73O05poVZv607WqP10r3+FY6CHQx5NSAAnh9qTU1gN5/C6lKyZlS0VEgNOH7ykpJSK+q1UlpRqzrHd0dDQJCQkuQ/xyc3MpLCw8a8jfuXhqyd78/BLKy6uc/w8ICD/HEY0/z7n2zc8voaKiitDQYAoKaj9XXef533d5AHSLCbWXWS0EmKDKarDnQC5dYsPqdZ7WwNuWffZmulb119BrpWW/vVfJyZ5SwX6QlIoxlQEBfHGkhMPH8uiUUHNvaRGRhti7dy8LFizgq6++IigoiMsvv5z77ruPuLg4du/ezSOPPEJWVhaxsbFMnz6dSZMmOY9du3YtS5YsITc3lwsvvJAHHniA5OTkFotdq++JiD9oVR93G7us9/jx41m6dCnZ2dmUlJQwf/58Bg4cSNeuXd2KwxuW6G3J89Rn3/qcq7bzOCY57x4fgWHYuypHnbwT+z7/7GXCveF5aOy193QMreVH16r5r5V4p+Iq/1h9DyAiEEIDwIaJr4+VeTocEfEhFRUV3HbbbSQnJ/Ppp5/yzjvvUFhYyP3339/oVb1bgiY6FxF/0Ko+7jZ2We+0tDSGDRvG5MmTGTZsGJWVlSxcuNBzFRIAsnLtSanE+FPDKNucnFfqhwLdoIiI/ymutCelgn18onOw99hrF2Z/z999xL05HkVE6pKTk8NFF11EWloawcHBxMbGctNNN7Fjxw6XVb0DAwNdVvUGXFb1DgoKYurUqcTGxrJ+/foWi98xnNmqnlIi4sO8fvjemSvjNWZZ76CgINLT00lPT2/SGKXhSiotHCuxD8frHh9BWVElAG2CzYBVSSkR8Usllf7TUwqgXaiZ7BIrn+coKSUiTefCCy/k+eefd9m2YcMGLrnkklpX9V69ejVgnwLEMRrj9HLHqt8tQXNKiYg/8PqklPi2g8ftXaDbRgQTGRKIIwXV5uTwvYMFLddFWkTEW5zqKeXhQFqIo6fUt/nllFRaiAzRxxMRaVqGYbBw4UI++ugjXnnlFV5++eUGr+rtroaujutoAiw2QyvmNpJWdW56uqZNz9uvaXPFpU994lEHT/aEOj/WtdGPDLa/4g+fqDjrGBERX2YYhl/NKQUQHmgiKthEcZXBjkOFXN0j3tMhiYgPKSkpYfbs2Xz11Ve88sor9OzZs1GrervL3UVFysoCAAgKCgCqCQ0LbrUrTnsbLfDS9HRNm56/XVMlpcSjHD2lzo9zTUpFnLwTyy2pospiI9gf1kUXEQHKq23OoRr+0lMKoFNkIPsKqtn8XYGSUiLSZA4dOsTtt99Op06dWL16NXFxcUDjVvV2l7ur45aX27+0tVntE5wXnqggL6+4rkPkHLSqc9PTNW163n5Nm2vlbj/6uCve6JCzp1S4y/aQAAgJMGEAR4orPRCZiIhnnKioBuxziQR4afft5tApyv492ebvCzC88ZOYiLQ6RUVF/Pa3v6Vfv3688MILzoQUNH5Vb3c0dHXc01ff8/Qqv77w09DnQj+6prqmrvE1NfWUEo+qraeUyWQiITKIQ0VVHC6qoOsZw/tERHxVUYUFgOAAk9fOKdAc2oWZCQkwkVdaxb5jJVyU4F9d10Wk6b3xxhvk5OTw3nvv8f7777uU7dq1i+XLl5ORkcGiRYuIi4urdVXvo0ePkpiY6LKqd0swn2wELNZmuhMUEfECSkqJx9gMg0Mnk1Jdz+gpBdD+ZFIqR/NKiYgfcfSUCvGnblJAVdkJIo1qKgll03cFSkqJSKPdcsst3HLLLbWWN2ZV75ZgHzMA1ubqniAi4gU0fE885mhxJZUWG4FmE52iQ88q7xAZBEBOkZJSIuI/TpzWU8rfdAy31/mj/XkejkRExPNM6iklIn5ASalWpKDcwv7j1VT7SMPkWHnvvJhQAs1n33y1j7AnpbQCn4j4E39OSrULthBggv25pfxQ4P6y6yIivuTUnFK+8dlfRKQmSkq1Ist2HGXnkSr+e6iC4kqrp8NptO8L7EP3usWdPXQPIEE9pUTED51KSnk4EA8INkO/TpEA/OfbXA9HIyLiWUpKiYg/UFKqlSirsrLtxxIACips/PXTHA9H1HjfHrPXp0e7iBrLEyKDAcg54f7qezabjWPHjnHs2DFsNlvDgxQRaWGOOaX8sacUwBXd2gDw4T4lpUTEv5mwtwPVVn2WFRHfpaRUK/Hpd/lUWg1CTn5z/vnhUiqqW3dvKUdSKqldZI3ljp5S+aVVbtc1Ly+P5/6zm+f+s5u8vIbPTaLkloi0NMfqe/420bnD4K5tCAowcSCvjL1Hiz0djoiIxziagSolpUTEhykp1Uo4vjHuHhNEWKAJmwHfHC3xcFQNV2218V2+fb6QpPY1J6Wigs1EnBy/crgBvaUiouOIiI5reJA0XXJLRKS+/HlOKcMwsJQVMaSLfeW913f8gKFVp0TETwWcvFMrr1ZSSkR8l5JSrUCVxcbWH44D0LVNAG3D7E/bl4dPeDKsRvk+vwyLzSAyJICObUJq3MdkMtH55Kp8PxaWt2R4LpoiuSUiUl/+PHyvsqyYl7YcoDT/JwDe/7aAnKP6QkBE/JNjIaDWPjpCRKQuSkq1Aj8UlFFpsREZbCYmxEz8yaTUF4db77CGb3NPDd1zLHdbky6xYQBkezApJSLSkk74+fC9sMhoOseEExEIFsPEx98XeTokERGPcCalLOopJSK+S0mpVuBAfikA58eEYDKZaBtmH9L2Rc6JZh3WUFJp4ZXdufxUbGny3/PtMXudahu653BejD0p9WOhVuATEf9QVO6/PaUcTCboFmX/iPLG1/kawicifinAZH/vU08pEfFlSkq1Agfy7HMvnR9jH+YWF2rGbIK80iqOFrs/11J9PfnRAV7dk8/GHyvZ+GMl1iZcjnafc5LzmlfeczjPC4bviYi0JH/vKeVwQRszgWY4VFjJlpND2EVE/EmAyTF8Tz2lRMR3KSnVChzIO9VTCuxdebud/P/eZprsfPdPRaz76igAZhPklFjZkt00wwXLqqzsybHPh9W7Y5s693UM31NSSkT8QUW11TlMw597SgEEmU0kxtpXYX1l548ejkZEpOU5hu+Vq6eUiPgwJaVage/OSEoBdIm2///Q8eZJ1jyz6XsAUrtHc3Fb+03Bm980zTfV/ztcisVm0DU2jPPjwurc1zF8L+dEJRYthysiPi6/rAqwJ6SC1EKTFBdEgAl2Hipk79HWO4+iiEhDOFbf05xSIuLL9JHXy5VVWck5YR+i1zU62Ln9vDb2/x88XtbkvzOvtIrPf7L3ZLr50ngSYwMxm2BvbnmTrPi3/Ud7764rLmxb5yTnAO0igwkJNGO1GRxpxqGKIiLeIL/UPp9UTGjgOd8f/YG5spi2ZvuXL+otJSL+JtCknlIi4vuUlPJy35+c5LxtRDDRoYHO7Z1OJqWao6fUpgP5GMDFHaKIjwgiLNDM+W3sv3vN7sONOrfNMNjxk71OV3SPO+f+ZpOJzs0wr5TNZuPYsWMcO3YMm03fPomIdygotfeUigsLPMee/uPCSPt8hh/uy+UnDeUWET/i6ClVabFh04IPIuKjlJTyco5Jzru3DXfZ3rkZk1IbD+QDMKx7W+e27jH2G6T/fpvXqBVAckqsnKi00iY0kEs7R9frmC4nh/BlN+EKfHl5eTz3n90895/d5OXlNdl5RUQawzF8L0ZJKaeQqiLaBlmxGfCPTVmeDkdEpMU45pQCe2JKRMQXKSnl5X4osCelLjgrKWWf56mgrJrikys1NYWyKivbD9rnjroy8VRSKj7MTEJkEGXVVj7Oym/QuW2GwZ5c+w3XuN4dXRraujjmlTpY0LRDFSOi44iIPndvLRGRllJwcvherJJSLi6Ot38R80FWIYdPNN0XFCIi3sxknEpENeZLYRERb6aklJfLPjlUoWus64Tg4UEBxEc4eks1XbJm28HjVFkNOkWHuvTOMplMDL/QvlLeuydX5XPXD0UWiioNIoPN/HbgefU+LrGdPY5vc0sb9HtFRFoLR08pJaVcxYea6RARgMVm8OK2Q54OR0SkWRmGgWHYP387VmItr1ZPKRHxTUpKebmDJ4fndYk9e5U6x8p1B5twCN8npw3dO3OS3WsujMYEZB487vYqSEUVFj4/Zr/ZurFXW9qEBtX72IvaRwHw7bESjacXEZ+WX6qkVG16tbN/EfP2l0fVW0pE/EZYUAAAFRb1lBIR36SklBez2gznpK5n9pQ6fVtTJaUsNoNPHUmp04buOXSMCua6i9oB8NyWg26de+n2o1RaISbEzJiL3Bsy161tOCGBZkqrrBwprnbrWBGR1sSx+l5sqJJSZ2ofEUhyxwis6i0lIn7CMAxCAu1fEleop5SI+CglpbzY0eJKqqwGQQEmOkSFnlXeNdY+rO1QQdMkpfbkFFFUYSG6jknIpw3pRoAJPv2ugH/t+gmjHj2X/rs/j00HizEBKR2DCQpwb5nzQLOJxPgIAA4U6NtxEfFdBRq+V6fJfe1fjLz9xRF2f5dTrzZIRKQ1Cw2095Qq15xSIuKjlJTyYo65os6LDiOghknBz3f2lGqaOaU+3m/vJXX5hXG1TkLeNTaMm/p1BuDx/x5gypos/nOwnN1HyjlRcXZjWVRezYJ/7wfgZ22DiAsLaFBsFyVEApClpJSI+DAN36udYRh0Dq6kb0IIVgPmvLefgoICT4clItKsQgPtt2sVWn1PRHyUklJe7NBxewKmpvmk4NTwvezj5Y2ea6nKYmP91/YJzIf3aFfnvjOHXcj/DbuQQLOJ4+VWjpXZ+Cyngj+++z1fHzk115RhGDz27ywKyqrpEh1Mr/j6zyN1pqT29qTUdwWVDT6HiIg3K6uyOm86YhuYwPdl5SVFvLTlAJEVxzABRytMbMt2b35DEZHWxDCMU0kp9ZQSER+lpJQXc/SUqmk+KYDO0aEEmE1UWGwcK25csua/+/MoqrDQPjKYyy+se84nk8nEzQPO44Ppg1k48nwGdAimTYiZ3FIL017fzZbv7d9cv/PVUf79bS4BJrh7SMcae3vV10Unk1L788s1XENEfJKjl1RYkJmKkiL0Vne2sMho4qMj6R5t//jy9y05FJZrrkER8V0hzqSUekqJiG9SUsqLZRfWvvIeQGCAmc7R9rmmDjVysvM1u3MA+EWfjrUO3TtTVGggPdqG0SM2iDEXtaF/pwgqLTbuXvslt776OQ9v+BaA24ecT1J8zXWorx7tIogIDqC4ykZ+hRplEfE9jvmkYkIDePa9bVSUa7hybS6OMdMm2ExBuYWMD77Vyqwi4rNCg+y3a5pTSkR8lZJSXsyRaOoaU3tCx9GLqjFJqfe+OcrnP50gwGxibO8ODTpHcICJP199Htf/rD1WA/bknABg4qUd+e3Arg2OzSEowMzlF9h7cP1YrEZZRHzP6fNJhUZEeTga7xZgNjG4cwgBJvg4K5/FG7/3dEgiIk3OMAxCTi4QpDmlRMRXaSZVL1VRbeWnQvu35Be0Da91v67Oyc4blpTKOVHFgn8fBOB3KV1oFxnSoPMABAWYeHjkRfxmYBd2HCrk4oTIWlfxa4hhiW35YF8uPxZb6Ns+uMnOKyLiDXJLTpvkXCPSzinMWkKPwGL2Vsfwz50/YrZW8atL2xEXF4fJ1PDh4iIi3iRMPaVExMepp5SXOni8HAOIDg0kLrz2CcLPj7MnrA41YAW+E5U27vvwEKVVVnp3bMPvBp3f0HBdJMZH8Kt+nZs0IQUw5II4As1QXGVwolLfFomIb/mxyP5FRIdIJd3r6/zoIH7Xvz0AL+06xv+98QX5+fkYhuH8V0SktTIMg+AAzSklIr5NSSkv9X2+Pcl0QdvwOr/xPb+Bw/cqLQYfHaogv8zCBXHh/HXMz+o9l5SnRIYEcmmHCACyCtWNQER8y48n5xHs1EZJKXfc2Lsdtw5IAGDfCTMvfnaM/Px8nnrrUwoKCjwcnYhIwxmGwb7cEgAqLeopJSK+SUkpL/V9filQ99A9ODV8L6eogqp6jjW3GQZbcyopsxh0igriuZv6EN+IYXstacxFsQBkHbdQVGHxcDQiIk3HkZTqGKWkVH0ZhsHx4wVc29lMvwR7O/avL/N44+t8wiLbeDg6EZHGCzSfGr5nGIZ6gIqIz1FSykt9d7Kn1IVtI+rcLz4imIjgAGwGHKznEL6NPxRzuNRKgAlmX9mZ2PDWcwPUv1MEsaFmrAa8vfe4p8MREWkSVpvBTyeH73VSUqreKsuKeWnLAVZs+przw230TbBfu+d3HCXH/VHtIiJeJ8BkT0Jp+J6I+ColpbzU6cP36mIymejRzp642p9bes7z2gyDf32RB8DFbYO4MC60kZG2LJPJxCVt7XNsrf26gKPFlR6OSESk8XJLKqm2GgSaTbSLqH0eQTlbWGS0s1fU+cHldAmtxgD+V2DmSHGVZ4MTEWmkk4vvaaJzEfFZSkp5oSqLzTmM48JzJKUAerSLBODbY+dOSn2Slc/BoiqCzJAU1zpvfM6LCqBdmJlKq8HCj7/zdDgiIo3248nVVjtFhxLg5fP7eTOTCfp1CCM22MBimMj4OLveQ9tFRLxRwMm5ZSv0XiYiPkpJKS906Hg5VgMiQwKIjzj3MI4kZ0+pknPu++pnP9qPiQ0iOKB13viYTCb6dwjGbIJ/f5vL5u81ka2ItG7ZJ7+IOC+mdfVe9UZmk4nL4m0EmQz251ewaKO+vBCR1svxcb1CPaVExEcpKeWF9h4rBqB724g6V95z6NH+ZE+p3NI6Jz88WFDGrp9OYDZBYmxg0wTrIbGhAc5JzzM++JYTFVqNT0RaL0dPqS4xYR6OxDeEB0LvKPvw7td35fCfb3M9HJGISMOYOTmnlHpKiYiPUlLKC+3JOQFA7071Wzmoe9twzCYoLK8mr7T2+TPe+eooAP06RRAe1Pqf+il929E1Nozckioeem8fFptWIxGR1skxZLuzklJNpl2wlUm92gIwb8O3zmssItKaBJ78yK45pUTEV7X+zIQP+iLH3lOqTz2TUqFBAZwfa5976ttaJju32gze/dqelLque3QTROl5oYFm/nJ9T4IDTGz6roBHNuyjrEoNtoi0Po7VU8+L1vC9pvTbfglc2rkNpVVWZq7ZQ2GZJj4Xkdbl1PA99ZQSEd+kpJSXKam0cCDPnliqb08pwLkC37fHap5XKvPgcXJLqogODWTgeVGND9RL9OrYhnmjfoYJePfrY/zihe3ct+5rXvjsGN8WVFNcpQZcRLxbcYWF7/LsSakOwdUcP15AHSOxpZ4Mw6C46DjTLgklNMDgYGElaa9/RnmVxdOhiYjUm1mr74mIj1NSyst8efgEBvYVmOozybmDo1fV9oPHayxf9+URAK6/OIGgVjrBeW2G94jnqfG96BwdSkFZNf/5No83vi7gs6NVvHOgnAf+k+1M9LnDMAy+P17BvoJqvius5rCWFheRZrDH8b4fFcy/Mr9hxaavqays8HRYrV5lWTEvbTnA2zv3cXmHIIJMBt8WVJO+dg8Wq76wEJHWIUBzSomIj2vds137IHeH7jkMuSAOPjrArp9OUFJpITLk1FNbWFbNJ1n5AIy+JAEoa7J4vcXlF8Rx2dQBfPZjId/llXEwt5AtPxRyrMzG/3JK+fXLn/GLPh35ZXJnurUNxzAMqqwGZdX21ZmsoRXEhgURGhRARbWVT78r4OUd2Xxz9FTPs51vfcdtg61MTelK4BlLtttsNvLy8gCIj4/HbFa+V0Tq5/MfiwDolRBOeEgIABXlSko1hbDIaAxrBaYAE4Pa29h81Mz2H0uY/c43PDLqZ4QE6r1aRLxbgMnAbLJPxfFTUQWd2tjbifoshiQi0hooKeVlMk/2dHI3KdUlNowuMaFkF1aw41AhV/eId5a9+/VRLDaDi9pHktQ+kmPHfC8pBRAcaGZwtzgGd4vj2LFgQo1Kiqts5FcFsDW7hDW7D7Nm92HCgwKw2mxUWu3fPL33/Q/AD4B9nioDqDz5bVSQ2UR8mJkqm0F+uY3nthzkx8Jy/vzznphP+zCQl5fHc//ZDcAd11xK+/btXWJzJK1MJoiLi2juSyEircjun+xJqUsSwjlaWOzhaHxX2xDo26aSL0rC+Dgrnxmr9jBv5EV00jxeIuLFzBj06RDJ54dL+Hh/Hr/u39nTIYmINCl9RehFfiwsZ0/OCcwmuDqxrdvHD7kgDoAt3xc4t1VabKz87EcAxl/asWkCbUWigs3Mveo8nr2xD0MvjCPAbKKs2upMSAUHQNuwQOeQxgqLjUqLjfaRwfwupQsvTejOVV1DST0/lLuHdCTAZJ+76smPDmCcMelLRHQcEdFxNcbhSFo9++/d5OZqaXIRsauy2PjqiD0R1Ssh3MPR+L74IAv3DY4lPMjMnpwT/HLFTpZ8+j25xZXk5eWd9b4uIuJphmFw+fn2+WD/s1/vUyLie9RTyou89/UxAAZ2jSU+MsTt4wdfEMfru3LYeCCfu6uthAUFsO7LI+SWVNE+MphRFyc0dcitRv8uMfTvEkNJpYXC8mry8/PZ8M0RAs0mbh7QhXbt2lFaZaWwvBqL1eD8uDBMJhPHjtmfE5PJxDXdo4mNiebP6/fy+q4cIkICmX55t3rHUFvCqqE0ZFCk9duRXUiV1SAmNIAwS4kmOG9mlWXF7Pj2R/qHV/NlWSTHq+HFbdms2JZNTJCVYYntSO7Wju5tI0iICiE6zP4xqaCggLi4OA2XERGPyC4oxQR8ebiYoycq6BijLzFExHcoKeUlbIbBe98cBeD6i9ufY++aXdYlhk5tQsg5UcnyzEOM69OBZVsPAvDbgV0I1twZRIYEEhkSSHBVsMu8UCaTyVlWl5//rD0llRYW/CeL5ZmHqKi28n/DLmyy+E5PNEHdyaZzDRkUEe/32v9+AiAuqJqXPv2G8Gj9HTe3sMhoQq0VDIsNIc8SSG6ZlX0F1RyvDuDNbwp485tTvY2DzCbiwsxUVVaQ3DWe3ufFcX4kJLYNpUO7eJcklWEYFBTYj1UCS0SaUoDNwiUJEXx5tJRZb3/DI6N6ckF8y66m7eihpfc2EWlqfpeUys/P54EHHmD79u0EBAQwZswY7r33XgIDPXcpbDYbL366n+zCCsKDA1zmg3JHcKCZu69OJP2tr/jnzh9564sjHC+vJjE+gjG9OjRx1P5rYt9OVFpsLPzkO/7fZz/xzZFibu4di2EYjW6oHYmmiOg4SosKzplsaureVyL+rKXbh+/yS8n84TgmoFeHKMyV6ibVkkwmE/HmUiIDKukQU0WxKYKE2Gi+K6zmh8IqKm0mqm0GR0utQBD//a6I/35nn//LjEH32GD6d2vHxR2iaGOuIsxayrtfHsZsht8P70Pbtu4PwxcR7+MN9w6GYdAhIoCDIQF8m1fG71d9yQu/6st5MWEtFoOISHPxu6TUzJkzSUhIYNOmTeTl5TF9+nRWrFjBbbfd5rGY/pf1E8t2HgFM/LZvPGFBAQ0+15Xd40jt2Y4P9+VyvLyajm1CWDShF6GNOKecbfKA84iPCGbeB9+y66cT7PrpBFHBJtqHB9D220L6W0OJjwgm5uSKfjbDwGozsAEV1VYi6ng6IqLjiIzRzYxIS2vp9sExZHtAxxAigsyUVzbLr5FzcPScCi0+DiXVdKOSi89vj8VSQaURQllVJUVl1VzcpR0HjlfxRW4VlVbYf7ya/cdzXM4VYAogKtjMiY0/0vf8Ci5qH0H7wGpCg8zqPSXSSnnDvYNhGMSFmHl61PnMfPcHCsqqmbFqD0+Nu5ju7Vq2x5SISFPzq6TUwYMH2b59Oxs3biQsLIwuXbowY8YMHn/8cY8kpUqrLKz/+hhPf3IQq2GifbiZkUkxjTqnyWTikVEX8at+nTlSXEly5zYNmp9Kzm3Ez9pzaec2PLv5Bz7Ym0txlUFxlYXF247AtiPO/cwmsJ3WAWL1vl1EBAfQPjKEdpHBtI8KoX1kMG1CgygvKyHreDVhVSVUlVvY9MMJ4orsKwJWWWxUWqxUWmxUVNsoKCpmb341IYHwv5xSegaU0bFNiDMBqTmnROrPE+1Dj2gzbUMMgsuOURHasB6y0rTCIqOxWSoACDBBRKCJcDMEFB+nKM9GW2sl13dpR0llJUeLq+nULo6DJywcKqqmzGLDapgorLS59KoCg/BA6Nkukk5tgmkTEkC7mCjCgwOoKi8jwARms4m46DaEBwdgVJYRGWzmvIR4okKDXIaa14djGKHJBG3bRjbxFRLxL95y72AYBtXVVbzx+Y8M7hjC5/kWDp+o5JZXd/O7lK6MvDiBdpHBSnyLSKvkV0mp/fv3ExMTQ0LCqQm/u3fvTk5ODidOnKBNmzbN8nt/Kipn56FCiiutlFRaOFZcyQ8FZew7VkLVyVXg2oebGdI5FHMjGpPTkxCXdIind6fmqY+c0qFNKA9dfxFTe0fz908PUVBhIyQ4iJ+KLRSUVWOxGS4JKYfSKivfF5TxfUFZLWe2z0uSmZMD5NSyzymZOdlANgCxYUF0aBNCqNnG4ePFBJigV+c4oiMjMJnAbDKd/LHfCJkwqCgvByAyIhyz2YwJ+34mE87/g0FZWSkmTERGRmAymew/2PcBg9LSUgCiIiNPnhs4bR/7+ewnPf2x42Vv/zUGxcUlmE3QuXN7SksqnWU1ne/czr1Tfc5zrl3qdw73/74Nzn4BnTkZtskEQ0OCG3B2cfBE+9C/cyQjEttQVmxr8nNL0wuLjMawVtjnIAyCautxTCU2zjcq+VkXe8+qclsIVeZA2pgt7DxazfFKg0rDTJkFdh0uZdfh0pNny6vhN/x0xuMs++8NMhMZbMZsMmEY9jkoDezvAwb25JnZZCLADAEmExg2TlRUYwLOa/sDIYGBBGIlNNBMgNmEmZPvpyfbgdCQEKqqqjCbICo8jKhQ+/yKUSGBRAQHnGwL7Ps63ucMw36TXFxSgmEYREWd6qlhGGA7+Z/T4zQMg9LSEkxAVGQUppNthGHY20mbYWAzDE4U2yf8D4+IOHnsqbYlIiKCsrJSoiJDMYzAk/U++WPCXr+T205/Tz79PdPl7dNl+6kHte7Pme+/dR/juEZRkZH2i3fGm/fpj6JySiguLndeL047R03qjBH7SUpKSriwQxz9usQoWdFAnrp3qI0JE0EmG5e2NWOxmskts/HMpz/wzKc/EB4UQFRIAOHBAYQHBRAWHEBE8MnHwYGEBZoJCQogJNBMgMmE2Wz/u7b/HzDAevLv0Wqz9/Cvthr8VFTOoePl5JVW0bFNCBfEhdM5JoygADNBASYCTCYCA05+NnPzdVbX7nV9ZnKUOP5uHfvWeT4TREUVO//OTm0/9++p7XzuHlNXgLWVNCSGuo6q+5q7d4wJiM4rp+hE+dlvRHWcsMmvaxPyxEQKrq9HaJNfzokT5Wd93m9KIYFmLu3UhsAA7+i04FdJqdLSUsLCXMdeOx6XlZXVu2Exm8++KazLPW9/TU7R2eMyggMDOD82iKGdgiguOo65uprCwuMEBNT8Z1dYeBxr+Qnn/8/cLz+/gP+3+WsAfn35xbRtW/N8Q+c6jzv7OsqrbcEUFgZjruUb3fr+zvr+Pm85j0NV2Qk6BZXRKQjG9o6jbds4DMOgrNqgymJwoug4739zBLMJfjX4QoqqA8kvtVBQbqGgzEJ+uYWyahtlFRVkF1ZgDgjCYrHQNjwYAux/psGBJoJMJkICzYQEmrFWVZKVX0aVzURIUCDHq6C82ka1zSC7sOJkZCFgwObsUqC0xthdFZ17F8CRNKtdfj3Pcy7Hmug8vu/8bdn88+a+br036R7llKZoH2pqGxzXuKaygAAT1ooSjKpyTIFWDEuV81+ztQqqS8+5raFljdnfsFmxWW0YVnOL/+7mqjeWKrBUYFS5d66wkEBsFhtUl2K2VBEVaMVWXUXuTz8w+PwkbJYqqk3BlFZZOZpfQFBMJ6psVqotBhabgTkoBJvNRnV1NQQEYjXAagrEapiwGKf+QMstUNtH5WpOLzv5rzkIgIPHK4FzjQstOe3/xefYtzaH3dz/yLl3kSZylGW/7ENS+/r3mlPbcIqn7h3MZvvnPWuQ2WXOUsNsTxKHAsPOCyan1OBgsY2ik3MSllbbKK224XhnaGrFuWV8m1vbF6oi0prcfFlnbh98vlvHNFf74FdJqfDwcMpP9ghxcDyOiIio93ni4twbu/3B3Ve5tX/tLuTyy89VPqAJzuPu72yK87T072vpuGHE1fU5j4h4QlO0D3W1DTWVtW0bxYIe7n0YEBGRluOpe4e2baN46KaEc+8oIuIDvKO/Vgvp0aMHhYWFziFuAAcOHKBDhw4uXc9FRMS/qH0QEZEzqW0QEWl+fpWU6tatG/3792f+/PmUlJSQnZ3NkiVLmDhxoqdDExERD1L7ICIiZ1LbICLS/ExGbTMo+qi8vDwefvhhtm3bhtlsZty4caSnpxMQEODp0ERExIPUPoiIyJnUNoiINC+/S0qJiIiIiIiIiIjn+dXwPRERERERERER8Q5KSomIiIiIiIiISItTUkpERERERERERFqcklIiIiIiIiIiItLilJSSRtm7dy+33HILAwcO5PLLL+eee+6hoKDA02F5LavVypQpU7jvvvs8HYpXKyws5J577iElJYXLLruMGTNmcOzYMU+H5ZW++uorJk+ezIABAxg6dCiPPPIIVVVVng7L7+Xn5zNjxgwGDBhASkoKGRkZWCwWT4d1lrrewx988EF69epFcnKy8+f11193Hrt27VpSU1Pp27cv48ePZ9euXc4yq9XKggULGDJkCMnJyUyfPr3F/obXr1/PxRdf7BL3rFmzANi9ezeTJk0iOTmZ4cOHs2rVKpdjvbVOb7/9tkt9kpOT6dWrF7169QJa33NVUFBAamoq27Ztc25rzuemJf4ea6rThg0bGDt2LP369WP48OEsXrwYm83mLL/++uu59NJLXZ63AwcOeE2dpHm58xx+8sknjB49mr59+3L99dfz0UcftXC0rYM71/S2226jd+/eLn9/GzdubOGIW4+a3uPOpNepe+pzTf3mdWqINFB5eblx+eWXG3//+9+NyspKo6CgwLj99tuNO+64w9Ohea2FCxcaF110kXHvvfd6OhSvdvPNNxtpaWlGUVGRUVxcbPzhD38wpk2b5umwvI7VajUuv/xy46WXXjKsVqtx+PBhY8SIEcbixYs9HZrfu/nmm40//elPRllZmXHo0CFj1KhRxrJlyzwdlotzvYf/4he/MN54440aj83MzDSSk5ONnTt3GlVVVcaLL75opKSkGGVlZYZhGMbTTz9tjB492sjJyTGKi4uNmTNnGrfffnuL1Ouxxx4z7rvvvrO2FxYWGgMHDjReeeUVo7q62tiyZYuRnJxs7N692+vrdKYjR44Yl19+ufHmm28ahtG6nqudO3ca1157rZGUlGRkZmYahtH8z01z/z3WVKcvvvjC6NOnj/Hf//7XsFqtRlZWlnH11VcbL7zwgmEYhlFcXGz07NnT+PHHH2s8p6frJM2vvs/h999/b/Tu3dv48MMPjerqauPdd981+vTpYxw5csQDUXs3d/4uUlJSjG3btrVwhK1TTe9xZ9Lr1D31uaaG4T+vUyWlpMEOHDhg3HrrrYbFYnFu+/e//23069fPg1F5ry1bthgjR4407rzzTiWl6vDFF18YvXv3NoqLi53bjh8/bnz77bcejMo7FRQUGElJScaLL75oWCwW4/Dhw8b111/vvOkRz/jhhx+MpKQklw9i7777rnHVVVd5MKqz1fUeXllZaVxyySW1/t396U9/MubOneuy7ec//7mxevVqwzAM48orrzTefvttZ1lubq7Rs2dP49ChQ81QE1eTJ082XnnllbO2/+tf/zKuu+46l21//vOfjXvuuccwDO+u0+lsNpsxZcoUY86cOYZhGK3quXrjjTeMq666ynj33XddPog353PT3H+PtdXp/fffN+bPn++y7/z5843f//73hmEYxtatW42UlJRaz+vJOknzc+c5fPLJJ41bbrnFZdutt95q/P3vf2/2OFsTd67poUOHjIsuusjls6bUrLb3uDPpdVp/9b2m/vQ61fA9abALL7yQ559/noCAAOe2DRs2cMkll3gwKu+Un5/PnDlzeOKJJwgLC/N0OF5tz549JCYm8q9//YvU1FSGDh3KggULaNeunadD8zqxsbFMnTqVBQsW0Lt3b4YNG0a3bt2YOnWqp0Pza/v37ycmJoaEhATntu7du5OTk8OJEyc8GJmrut7D9+7di8ViYdGiRQwZMoQRI0bwj3/8wzn0KCsri6SkJJfzJSYmsnfvXoqLizly5IhLeXx8PNHR0ezbt69Z62Sz2fjqq6/4+OOPufrqq7nyyit54IEHKCoqYv/+/bXG7M11OtNbb71FVlaWcxh4a3quhg4dyocffsjIkSNdtjfnc9Pcf4+11WnEiBHMnj3b+biiooKPP/7Y+Rnpiy++ICwsjJtvvpmUlBTGjx/vHOri6TpJ83PnOazr9S+nuHNNv/jiCyIiIrjrrrsYNGgQN9xwA6tXr27pkFuF2t7jzqTXaf3V95r60+tUSSlpEoZh8NRTT/HRRx8xZ84cT4fjVWw2G7NmzeKWW27hoosu8nQ4Xq+oqIh9+/bxww8/sHbtWt58802OHj3Kvffe6+nQvI7NZiM0NJQHHniAzz//nHfeeYcDBw6waNEiT4fm10pLS89KPjsel5WVeSKkczrzPby4uJiBAwcyZcoUPvnkEx5//HH++c9/snz5cqDmOoaGhlJWVkZpaSkA4eHhZ5U7yppLQUEBF198MSNGjGD9+vW89tpr/PDDD8yaNavOmMF763Q6m83G0qVL+f3vf09kZCRAq3qu2rVrR2Bg4Fnbm/O5ae6/x9rqdLqSkhLS0tIIDQ11fmlgMpno3bs3jzzyCJs2bWLq1Kn88Y9/5PPPP/d4naT5ufMcnuvvQ+zcuaZVVVX07duXu+66i02bNnHfffeRkZHBe++912Lxthb1eY8DvU7dUd9r6k+vUyWlpNFKSkq48847WbduHa+88go9e/b0dEhe5bnnniM4OJgpU6Z4OpRWITg4GIA5c+YQGRlJfHw8M2fO5JNPPmnRm7/W4MMPP2TDhg38+te/Jjg4mB49epCWlsarr77q6dD8Wnh4OOXl5S7bHI8jIiI8EVKdanoPv/zyy3n55ZcZOHAgQUFB9OnTh9/+9resX78esH/Qr6iocDlPRUUFERERzg+lZ14DR3lzio+PZ+XKlUycOJGwsDA6derErFmz2LhxI4Zh1BozeG+dTrdt2zaOHTvGxIkTndta63N1urpiPFf5uerg6b/H7777jl/+8pdYLBZefvllZzLxtttuY9GiRXTr1o3g4GDGjBnDkCFD2LBhg9fXSRrPnefwXH8fYufONR03bhzPP/88F198MUFBQQwdOpRx48b55M1+S9HrtOn50+tUSSlplEOHDjFhwgRKSkpYvXq1ElI1eOutt9i+fTsDBgxgwIABvPPOO7zzzjsMGDDA06F5pcTERGw2G9XV1c5tjmEohmF4KiyvdPjw4bNW2gsMDCQoKMhDEQlAjx49KCwsJC8vz7ntwIEDdOjQgaioKA9Gdrba3sP//e9/89prr7nsW1VVRWhoKGCv4/79+13Ks7Ky6NGjB9HR0SQkJJCVleUsy83NpbCw8Kyu/U1t7969/O1vf3N5r6iqqsJsNtOnT59aYwbvrdPpNmzYQGpqqksPmtb6XJ0uKSmp2Z4bT/49fvLJJ0yaNIkrrriCF154gejoaGfZCy+8wNatW132r6qqIiQkxKvrJE3DnefwXH8fYufONV29evVZN/aOvz9pGL1Om54/vU6VlJIGKyoq4re//S39+vXjhRdeIC4uztMheaX333+f//3vf+zcuZOdO3dyww03cMMNN7Bz505Ph+aVhgwZQpcuXbj//vspLS2loKCAp556imuvvdb5DbPYDR06lNzcXJ599lmsVivZ2dksXbqU0aNHezo0v9atWzf69+/P/PnzKSkpITs7myVLlrj0bvEGdb2HG4bBo48+ytatWzEMg127dvHyyy9z0003ATBx4kTWrVtHZmYm1dXVrFixgvz8fFJTUwEYP348S5cuJTs7m5KSEubPn8/AgQPp2rVrs9YpJiaGlStX8vzzz2OxWMjJyeHxxx/nF7/4BSNGjCAvL48VK1ZQXV1NZmYm69atY8KECV5dp9N99tlnXHbZZS7bWutzdbrU1NRme2489ff4+eefk5aWxuzZs7n33nvPGqpx+PBh/vKXv5CdnY3FYmH16tXs2rWLX/ziF15bJ2k67jyHY8aMYfv27axfvx6LxcL69evZvn07Y8eO9UDk3suda1pSUsK8efP4+uuvsdlsfPzxx7zzzjvO901xn16nTc+vXqcem2JdWr3ly5cbSUlJxqWXXmr07dvX5Udqd++992r1vXM4cuSIMXPmTOPyyy83BgwYYNxzzz1GUVGRp8PySps3bzYmTZpk9O/f37jqqquMJ5980qisrPR0WH4vNzfX+OMf/2gMHDjQGDRokPHYY4+5rHLnDc71Hv7qq68a1113nXHppZca11xzzVkr2r355pvGiBEjjL59+xoTJ040Pv/8c2dZVVWV8fjjjxtXXHGF0a9fP2P69OlGXl5ei9Rr27Ztxk033WQkJycbgwYNMubNm2dUVFQYhmEYe/bscZZdc801xpo1a1pFnRz69u1rfPzxx2dtb43P1ZkrDjXnc9NSf4+n1+mOO+4wevbsedbf1q233moYhn3VxIyMDGPo0KHGpZdeakyYMMHlenhLnaT51PUc9u3b13jrrbec+27cuNEYM2aM0bdvX2PUqFE1vg9I/a+pzWYznnnmGePqq682+vTpY4waNcp47733PBl6q3Dm+7Zep41X1zX1p9epyTA0HkZERERERERERFqWhu+JiIiIiIiIiEiLU1JKRERERERERERanJJSIiIiIiIiIiLS4pSUEhERERERERGRFqeklIiIiIiIiIiItDglpUREREREREREpMUpKSUiIiIiIiIiIi1OSSkRERERERERER9TUFBAamoq27Ztq/cxGzZs4IYbbqBv376kpqayevXqZowQApv17CIiIiIiIiIi0qI+++wz7rvvPg4dOlTvYzIzM7nvvvtYuHAhV155Jdu2beP2228nKSmJPn36NEuc6iklIiIiIiIiIuIj1q5dS3p6OnfddddZZVu2bGHixIkMGDCAUaNG8fbbbzvLVqxYwW9+8xuGDRuGyWRi0KBBrFmzhq5duzZbrEpKiYiIiIiIiIj4iKFDh/Lhhx8ycuRIl+179+5l+vTpTJs2jW3btjFv3jzmz5/Ppk2bANizZw8xMTFMmzaNlJQUxo4dy6FDh4iJiWm2WJWUEhERERERERHxEe3atSMw8OzZml577TWuueYarrvuOgICAujXrx833ngjK1euBKCoqIgXXniB6dOns3nzZtLS0rjrrrvYvXt3s8WqOaVERERERERERHzcTz/9RGZmJgMGDHBus1qtzuF5wcHBTJgwgeTkZACuu+46Bg8ezIYNG7j00kubJSYlpUREREREREREfFyHDh34xS9+wcMPP+zcduzYMQzDAKB79+5UVVW5HGO1Wp3lzUHD90REREREREREfNzEiRN55513+PTTT7HZbPzwww/cfPPNLF++HIBf/epXvPrqq2zZsgWbzcaGDRvYtm0bN9xwQ7PFpJ5SIiIiIiIiIiI+7tJLL+XJJ5/kySef5P/+7/8ICwvjhhtu4O677wZgwoQJmM1mHn30UX788Uc6d+7MU089xSWXXNJsMZmM5uyHJSIiIiIiIiIiUgMN3xMRERERERERkRanpJSIiIiIiIiIiLQ4JaVERERERERERKTFKSklIiIiIiIiIiItTkkpERERERERERFpcUpKiYiIiIiIiIhIi1NSSkREREREREREWpySUiIiIiIiIiIi0uKUlBIRERERERERkRanpJSIiIiIiIiIiLQ4JaVERERERERERKTFKSklIiIiIiIiIiItTkkpERERERERERFpcUpKiYiIiIiIiIhIi1NSSkREREREREREWpySUiIiIiIiIiIi0uKUlBIRERFpQYZheDqERvOFOoiI+Au9Z4s3U1JKpIkcOXKEm2++md69ezN48GB69uzJtm3bPB2WiIh4kaysLH71q1812fm2bdvGiBEj6NWrF7feemuTnbc2J06c4N5772Xnzp3N/rtEROTc7rvvPoYPH+58PGXKFKZMmeJ8vGrVKhYsWOB8/MYbb9CzZ09+/PHHFo1TpDaBng5AxFe89NJL7Nq1i8cff5yDBw+ycOFCT4ckIiJe5r333mPXrl1Ndr4FCxZgs9n4xz/+Qdu2bZvsvLX55ptvePPNNxk/fnyz/y4REXHfgw8+6PJ46dKlDBw40Pn4qquu4vXXX6d9+/YtHZpIjZSUEmkihYWFtG/fnpEjR6qHlIiItIjCwkIuu+wyhgwZ4ulQRETECyQmJtZZHhcXR1xcXAtFI3JuGr4n0gSGDx/OG2+8QU5ODj179mTx4sVn7fPFF19w6623kpKSQr9+/fj973/P/v37XfY5duwYs2fPZtiwYfTp04eJEyfyn//8x2Ufx/knTJhA//79WbJkCTabjb///e8MHz6cXr16MXz4cJ588kmqq6ubtd4iIr5s3LhxTJ8+3WXbiBEjGDp0qMu2mTNncvPNN1NRUcETTzzBddddR69evejXrx+33HIL33zzDQBPP/20s33o2bMnTz/9NICzp1Nqaiq9evVixIgR/POf/3T5HVOmTCE9PZ0777yTfv36MW3aNHr27MlPP/3Em2++6Rwy/vTTT5OamsrixYtJSUnh2muv5fjx41itVlauXMno0aPp06cPV111FX/729+orKx0/o777ruPqVOnsmbNGueQwDFjxvDJJ58A9qGCv/nNbwD4zW9+4zI8RETEnxmGwcqVKxk1ahR9+vQhNTWVZcuWOedy2rx5M7/+9a/p378/KSkp/OlPf+Lw4cPO49944w0uvvhidu/ezU033UTv3r256qqrWLZsmcvvKSoqYvbs2aSkpHDZZZfx+OOPY7PZXPY5ffje8OHD+emnn1i7dq1zyF5Nw/eaKj6RhlBSSqQJLF68mGHDhtGuXTtef/11Jk6c6FKemZnJr371K2w2GxkZGTzyyCMcPnyYX/7ylxw4cACAvLw8Jk6cyPbt27nrrrt4+umn6dy5M2lpabz99tsu51u6dCkjRozgySef5JprrmHZsmWsXLmStLQ0li9fzq9+9Suef/55nn322Ra7BiIivuaqq65i+/btWK1WwD534A8//EBubi7ff/89AFarlS1btnD11Vdzzz33sHr1aqZNm8by5cu57777+Pbbb7nrrrswDINJkyY524fXX3+dSZMmAfDQQw+xaNEixowZw7PPPsvPf/5z5s+fzzPPPOMSz3vvvUdQUBDPPPMMU6ZM4fXXX6ddu3YMGzaM119/nUsuuQSAnJwcPvzwQ5588klmzpxJbGwsf/7zn5k/fz7Dhw9n6dKlTJ48mVdeeYUZM2a4TID75Zdf8sILL3DnnXfyzDPPEBgYyJ133klRURGXXHIJf/7znwH485//fNYQERERf/Xkk0+SkZHBsGHDWLp0KZMmTeKpp55iyZIlvPXWW/zud78jISGBJ598ktmzZ7Nr1y5uuukm8vPzneew2WzMnDmTkSNH8o9//IP+/fvzt7/9jU2bNjnLb7vtNj7++GPS09NZsGABu3btYv369bXGtXjxYpd2oqYhe00Vn0hDafieSBO4+OKLiYuLIzg4mL59+7p88wzwxBNP0KVLF55//nkCAgIAGDp0KKmpqTz99NMsXLiQF198kYKCAt577z26dOkCwLBhw5g6dSp//etfueGGGzCb7XnkPn36MG3aNOf5//rXv3LJJZcwYcIEAAYOHEhYWBiRkZEtUX0REZ901VVXsXTpUvbs2UNycjJbt26lS5cunDhxgu3bt3PBBRfw+eefU1RUxNVXX82WLVt44IEHGDlyJGB/Ly4tLeWxxx4jNzeXDh060KFDBwD69u0LwPfff8+//vUv7r77buf7+tChQzGZTDz33HP8+te/JjY2FgCz2cy8efMIDw93xhgcHExcXJzzfAAWi4V7773XOaQvKyuL1atXM3PmTGfPr8svv5z27dtzzz33sHHjRoYNGwZAcXExb7zxBl27dgUgPDycm2++mczMTEaMGOEcFpKYmHjOISIiIv7gxIkTvPjii0yZMoV77rkHsL/HFhQU8Nlnn/Hqq68yZMgQnnrqKecx/fr1Y+TIkSxfvpxZs2YB9t5WM2bMcH5h0b9/fz788EM+/vhjrrjiCjZu3MiePXt47rnnuOqqqwAYNGiQyyTnZ7r44otrbCccbDYbjz/+eJPEJ9JQ6ikl0szKysr44osvGDlypDMhBdCmTRuuvvpq5/xT27dvJzk52ZmQchgzZgy5ubl89913zm1JSUku+6SkpLBlyxZ+/etf8+KLL3LgwAFuvvlmxo0b13wVExHxcX369CE2NpYtW7YAsHXrVgYNGsSll17K9u3bAdi4cSPdunXjwgsv5IUXXmDkyJEcO3aMHTt28Prrr/PRRx8B1DqcOjMzE8MwGD58OBaLxfkzfPhwKisr+eyzz5z7nnfeeS4Jqbqc3k44Yh09erTLPqNGjSIgIMBlHsS4uDhnQgpwJtHKy8vr9XtFRPzN559/TnV1NampqS7b77vvPubMmUNubu5Z779du3YlOTn5rHlok5OTnf93JJPKysoA2LlzJ0FBQVx55ZXOfcLDw51fKjTE999/32TxiTSUklIizay4uBjDMIiPjz+rLD4+nuLiYsA+Rry2fcD+LcyZ2xxuu+02/vznP1NRUcGCBQsYOXIko0ePZuvWrU1ZFRERv2I2m7nyyiud76WZmZmkpKQwcOBAduzYAdiTUldffTUAmzZt4vrrr+eKK67gjjvu4M033yQ4OBjAZYjc6QoLCwF7guiSSy5x/ji+iT569Khz35raiNqcvm9RUREA7dq1c9knMDCQ2NhYZzsEEBYW5rKPyWQCOGvOEhERsXO8j9c0ebij7Fz3AQ6hoaEuj81ms7P9KCoqIiYmxjlywuHM93Z3NGV8Ig2l4XsizSwqKgqTyUReXt5ZZbm5ucTExAAQHR1d6z6Ac/hGTcxmM5MnT2by5Mnk5+fzySef8Oyzz/LHP/6RLVu2OG+KRETEPVdddRX33HMPX331FUePHmXgwIEcPXqUv/3tb+zcuZNvvvmG++67j0OHDpGWlsY111zDc8895+xttHLlyjrn22jTpg0AL730EhEREWeVd+rUqdF1iI6OBuztyXnnnefcXl1dzfHjx+tsX0REpG6O9/GCggIuvPBC5/bDhw+zb98+gFo/47vz/hsbG+tcuOL00ReOxFJDOO5DmiI+kYZSTymRZhYeHk6vXr1Yv369c7JcsPeg+vjjj+nfvz8Al112Gbt27SI7O9vl+Lfffpt27dpx/vnn1/o7fvnLX/LII48A0LZtW8aPH8/kyZMpLi6mpKSkGWolIuIfhg4dimEYLF26lG7dupGQkMAll1xCVFQUTzzxBFFRUfTv358vv/ySyspK7rjjDpfhb46ElOOb5DO/4b7ssssAOH78OL1793b+FBYWsnDhwkbdbDgMHDgQgHXr1rlsf/fdd7Farc52qD5OvxESERH7UO+goKCzVsx+6aWXWLhwIe3atTvr/Tc7O5vPP/+cfv361fv3DB48GIvFwr///W/ntqqqKjZv3lzncWe2O6e74IILmiw+kYZSTymRFvCnP/2JW2+9ldtuu42bb76Z6upq/vGPf1BVVcUf/vAHAG655RbefvttbrnlFv7whz8QGxvLm2++SWZmJvPnz6+zQbnssstYvnw58fHxJCcnc/ToUV588UUGDhxYY1diERGpnzZt2pCcnMyHH37ITTfdBNgTMwMGDOCjjz7ihhtuIDAwkEsuuYTAwEAef/xxfve731FVVcUbb7zBxx9/DOCcc8Pxjfo777zDpZdeSlJSEmPGjOGBBx7gp59+olevXnz//fc89dRTnHfeeXTr1q3RdUhMTOQXv/gFixcvpqKigpSUFL755hsWL15MSkqKWxPURkVFAfDxxx8THR3NRRdd1Oj4RERas7i4OH7zm9/w0ksvERwczKBBg/jiiy945ZVXuPvuu4mJiWH27NncddddjBs3juPHj7N48WKio6O55ZZb6v17Bg8ezNChQ5k7dy75+fl07tyZl19+mYKCAtq2bVvrcW3atOHrr79m+/bt9OnTx6XMbDZz9913N0l8Ig2lpJRICxg8eDAvvvgiixYt4u677yY4OJgBAwawYMECevToAdjHg7/66qs88cQTZGRkUF1dzUUXXcSSJUu45ppr6jz///3f/xEcHMyaNWt45plniIqKYvjw4fzpT39qieqJiPi0YcOGsWPHDlJSUpzbBg0axEcffeRcAen888/niSeeYPHixUyfPp3o6Gj69u3LP//5T6ZMmcLOnTvp2bMn1113HW+99Rb33XcfEydO5KGHHuLRRx/lueee47XXXuPIkSO0bduWkSNHMnPmzCbrmZSRkcH555/PmjVreOGFF2jfvj1TpkwhLS2tzi89ztSjRw9uuOEG57DEd955p0niExFpzWbNmkV8fDyvvvoqy5cv57zzzuP+++/n17/+NQARERE899xzpKWlERkZyRVXXMHdd9/t9nxQixcv5m9/+xuLFi2isrKSkSNHcuONN57VS+t0v/vd75g/fz633norL7744lnl48ePb7L4RBrCZGhmMhERERERERERaWGaU0pERERERERERFqcklIiIiIiIiIiItLilJQSEREREREREZEWp6SUiIiIiIiIiIi0OCWlRERERERERESkxSkpJSIiIiIiIiIiLU5JKRERERERERERaXFKSomIiIiIiIiISIsL9HQArVF+fjGGUf/9TSZo2zbK7eNaC9Wv9fP1Oqp+dR8nTUNtw9l8vY6qX+um+tV9nDQdtQ9NQ9elZrouNdN1qZ23tQ9KSjWAYdCgF3ZDj2stVL/Wz9frqPpJc1LbUDtfr6Pq17qpftLc1D40LV2Xmum61EzXpXbecm00fE9ERERERERERFqcklIiIiIiIiIiItLilJQSERERERGvV1BQQGpqKtu2bTur7NixYwwZMoQ33njDZfvatWtJTU2lb9++jB8/nl27djnLrFYrCxYsYMiQISQnJzN9+nSOHTvmLM/Pz2fGjBkMGDCAlJQUMjIysFgszVdBERE/pKSUiIiIiIh4tc8++4ybbrqJQ4cOnVVms9lIT0/n+PHjLtu3bdvGvHnzeOyxx9ixYwdjxoxh+vTplJeXA7B06VI2b97MmjVr2LRpE6GhocydO9d5/MyZMwkPD2fTpk2sXr2arVu3smLFimatp4iIv1FSSkREREREvNbatWtJT0/nrrvuqrH8mWeeoUOHDnTs2NFl+6pVqxg1ahT9+/cnKCiIqVOnEhsby/r1653lt99+Ox07diQyMpI5c+awceNGsrOzOXjwINu3b2fWrFmEhYXRpUsXZsyYwcqVK5u9viIi/kSr74mIiIiIiNcaOnQoo0ePJjAw8KzEVGZmJu+++y5r1qxh9OjRLmVZWVlMmDDBZVtiYiJ79+6luLiYI0eOkJSU5CyLj48nOjqaffv2ARATE0NCQoKzvHv37uTk5HDixAnatGlT7/hNpnrv6rK/u8f5Ol2Xmum61EzXpXYNvTbNdS2VlBIREREREa/Vrl27Grfn5+dz//33s2jRIiIiIs4qLy0tJSwszGVbaGgoZWVllJaWAhAeHn5WuaPszGMdj8vKytxKSrVtG1XvfZviOF+n61IzXZea6brUzluujZJSIiIiIiLSqhiGwT333MOUKVPo1atXjfuEhYVRUVHhsq2iooLY2Fhngskxv9Tp5RERERiGcVaZ43FNCbC65OcXYxj1399kst8sunucr9N1qZmuS810XWrX0GvjOK6pKSklIiIiIiKtyuHDh9m+fTu7d+/mmWeeAaCkpIS//OUvbNiwgeeee44ePXqwf/9+l+OysrK48soriY6OJiEhgaysLOcQvtzcXAoLC0lKSsJms1FYWEheXh7x8fEAHDhwgA4dOhAV5d5NmWHQoJvihh7n63RdaqbrUjNdl9p5y7XRROciIiIiItKqdOrUiS+++IKdO3c6fzp16sSDDz7Ic889B8DEiRNZt24dmZmZVFdXs2LFCvLz80lNTQVg/PjxLF26lOzsbEpKSpg/fz4DBw6ka9eudOvWjf79+zN//nxKSkrIzs5myZIlTJw40ZPVFhHxOeopJSIiIiIiPmfw4ME8+OCDPPTQQxw9epTExESWLVtGTEwMAGlpaVgsFiZPnkxpaSkpKSksXLjQefyiRYt4+OGHueaaazCbzYwbN44ZM2Z4pjIiIj5KSSkREREPOFZcyXv787nq/BhCgwI8HY6ISKvgWBmvJv/973/P2jZ27FjGjh1b4/5BQUGkp6eTnp5eY3l8fDyLFi1qWKAiIlIvSkqJiIh4wIvbsln1eQ73p/bgF306ejocERERaYUqKyvZuvVLCgtLXeYH6tOnLyEhIZ4LTKSelJRqIeMm3shPR/JqLY+PjeXl5StaLiAREfEo68lPjvmlVR6ORERERFqrPXs+58UNW4nteIFz29GD+5kGXHZZiucCE6knJaVayLG844yb9fday998/P9aMBoREfG08JND9sqqrR6ORERERFqzjhck0b7bxZ4OQ6RBtPqeiIiIB4QF2Zvg8iolpURERETEPykpJSIi4gHhweopJSIiIiL+TUkpERERDwg7OXyvXEkpEREREfFTSkqJiIh4gLOnlIbviYiIiIifUlJKRETEA8KdPaVsHo5ERERERMQzlJQSERHxgDD1lBIRERERP+fRpFRBQQGpqals27bNuW337t1MmjSJ5ORkhg8fzqpVq1yOWbt2LampqfTt25fx48eza9cuZ5nVamXBggUMGTKE5ORkpk+fzrFjx5zl+fn5zJgxgwEDBpCSkkJGRgYWi6X5KyoiInIGR0+psiq1QyIiIiLinzyWlPrss8+46aabOHTokHNbUVER06ZNY9y4cezYsYOMjAweffRR9uzZA8C2bduYN28ejz32GDt27GDMmDFMnz6d8vJyAJYuXcrmzZtZs2YNmzZtIjQ0lLlz5zrPP3PmTMLDw9m0aROrV69m69atrFixokXrLSIiAqcmOi/T8D0RERER8VMeSUqtXbuW9PR07rrrLpftH3zwATExMUyePJnAwEAGDx7M6NGjWblyJQCrVq1i1KhR9O/fn6CgIKZOnUpsbCzr1693lt9+++107NiRyMhI5syZw8aNG8nOzubgwYNs376dWbNmERYWRpcuXZgxY4bz3CIiIi0pIlir74mIiIiIf/NIUmro0KF8+OGHjBw50mX7/v37SUpKctmWmJjI3r17AcjKyqq1vLi4mCNHjriUx8fHEx0dzb59+9i/fz8xMTEkJCQ4y7t3705OTg4nTpxo6iqKiIjUyTGnVKXFhsVmeDgaEREREZGWF+iJX9quXbsat5eWlhIWFuayLTQ0lLKysnOWl5aWAhAeHn5WuaPszGMdj8vKymjTpk294zeZ6r2ry/4mExh13He4e15vcXr9fJGv1w98v46qX93HiWc45pQCqKi2EhnikSZZRERERMRjvOoTcFhYGMXFxS7bKioqiIiIcJZXVFScVR4bG+tMMDnmlzrzeMMwzipzPHacv77ato1ya3+HsLCQWsuCAgOIj2/Yeb1FQ69La+Hr9QPfr6PqJ94kKMBEoNmExWZQVqWklIiIiIj4H6/6BJyUlMTmzZtdtmVlZdGjRw8AevTowf79+88qv/LKK4mOjiYhIcFliF9ubi6FhYUkJSVhs9koLCwkLy+P+Ph4AA4cOECHDh2IinLvRi4/v7jOHk9ncvRGKC+vrPW4aouVvLzimgu9nMlkvxl297q0Fr5eP/D9Oqp+dR8nnmEymQgPDuBEhYUyzSslIiIiIn7IY6vv1SQ1NZW8vDxWrFhBdXU1mZmZrFu3jgkTJgAwceJE1q1bR2ZmJtXV1axYsYL8/HxSU1MBGD9+PEuXLiU7O5uSkhLmz5/PwIED6dq1K926daN///7Mnz+fkpISsrOzWbJkCRMnTnQ7TsNw/8dxXFOf11t+Wnv8/l4/f6ij6lf7ceI5ESd7R2mycxERERHxR17VUyo2Npbly5eTkZHBokWLiIuLY+7cuQwaNAiAwYMH8+CDD/LQQw9x9OhREhMTWbZsGTExMQCkpaVhsViYPHkypaWlpKSksHDhQuf5Fy1axMMPP8w111yD2Wxm3LhxzJgxwwM1FRERgfCTk52XVSkpJSIiIiL+x+NJqX379rk87t27N6+99lqt+48dO5axY8fWWBYUFER6ejrp6ek1lsfHx7No0aKGBysiItKE1FNKRERERPyZVw3fExER8SfqKSUiIiIi/kxJKREREQ+JCFZPKRERERHxX0pKiYiIeEj4yeF7ZdU2D0ciIiIiItLylJQSERHxkMgQx/A9i4cjERERERFpeUpKiYiIeEj4yeF7ZVXqKSUiIiIi/kdJKREREQ+JODnRueaUEhERERF/pKSUiIiIh5yaU0pJKRERERHxP0pKiYiIeIizp1SVklIiIiIi4n+UlBIREfEQ55xS6iklIiIiIn5ISSkREREPiQhRTykRERER8V9KSomIiHiIekqJiIiIiD9TUkpERMRDwrX6noiIiIj4MSWlREREPCQwwN4MW6yGhyMREREREWl5SkqJiIh4SKDZBIDVUFJKRERERPyPklIiIiIeEqSeUiIiIiLix5SUEhER8ZDAAHtPKYtNSSkRERER8T9KSomIiHhIkPlkTymbzcORiIh4v4KCAlJTU9m2bZtz24YNGxg7diz9+vVj+PDhLF68GNtp76lr164lNTWVvn37Mn78eHbt2uUss1qtLFiwgCFDhpCcnMz06dM5duyYszw/P58ZM2YwYMAAUlJSyMjIwGKxtExlRUT8hJJSIiIiHqKeUiIi9fPZZ59x0003cejQIee2L7/8knvuuYeZM2eyc+dOli1bxhtvvMGKFSsA2LZtG/PmzeOxxx5jx44djBkzhunTp1NeXg7A0qVL2bx5M2vWrGHTpk2EhoYyd+5c5/lnzpxJeHg4mzZtYvXq1WzdutV5bhERaRpKSomIiHiIMymlOaVERGq1du1a0tPTueuuu1y2//TTT/zyl7/k6quvxmw20717d1JTU9mxYwcAq1atYtSoUfTv35+goCCmTp1KbGws69evd5bffvvtdOzYkcjISObMmcPGjRvJzs7m4MGDbN++nVmzZhEWFkaXLl2YMWMGK1eubPH6i4j4skBPByAiIuKvHMP3DMBqMwg4uRqfiIicMnToUEaPHk1gYKBLYmrEiBGMGDHC+biiooKPP/6Y0aNHA5CVlcWECRNczpWYmMjevXspLi7myJEjJCUlOcvi4+OJjo5m3759AMTExJCQkOAs7969Ozk5OZw4cYI2bdrUO36Tm2/tjv3dPc7X6brU7PTrcvpiviaTf18rvV5q19Br01zXUkkpERERD3H0lAL7ED4lpUREztauXbtz7lNSUsL//d//ERoaytSpUwEoLS0lLCzMZb/Q0FDKysooLS0FIDw8/KxyR9mZxzoel5WVuZWUats2qt77NsVxvk7XxVV0dASQT1hYiHNbaGgQMTERxMfrWun1UjtvuTZKSomIiHhIUMCpUfQWm40QjaoXEXHbd999x5133knbtm15+eWXiYyMBOxJpIqKCpd9KyoqiI2NdSaYHPNLnV4eERGBYRhnlTkeR0REuBVffn6xSw+WczGZ7DeL7h7n63RdalZUZE+ilpdXOq9LRUU1hYWl5OUVezAyz9LrpXYNvTaO45qaklIiIiIeEnhazyjNKyUi4r5PPvmEu+++mxtvvJE//elPBAaeur3p0aMH+/fvd9k/KyuLK6+8kujoaBISEsjKynIO4cvNzaWwsJCkpCRsNhuFhYXk5eURHx8PwIEDB+jQoQNRUe7dlBkGDbopbuhxvk7XxZXjWpx5TXSd7HQdauct10ZfyYqIiFexWq1MmTKF++67z7lt9+7dTJo0ieTkZIYPH86qVatcjmmtS36fPlxPK/CJiLjn888/Jy0tjdmzZ3Pvvfe6JKQAJk6cyLp168jMzKS6upoVK1aQn59PamoqAOPHj2fp0qVkZ2dTUlLC/PnzGThwIF27dqVbt27079+f+fPnU1JSQnZ2NkuWLGHixImeqKqIiM9SUkpERLzK4sWL2blzp/NxUVER06ZNY9y4cezYsYOMjAweffRR9uzZA7TuJb9NJpMzMaWklIiIe5599lksFgsZGRkkJyc7f2677TYABg8ezIMPPshDDz3EwIEDeffdd1m2bBkxMTEApKWlMWzYMCZPnsywYcOorKxk4cKFzvMvWrQIi8XCNddcw4033sgVV1zBjBkzPFBTERHfpeF7IiLiNbZu3coHH3zAdddd59z2wQcfEBMTw+TJkwH7Tcbo0aNZuXIlffr0cVnyG2Dq1Km8/vrrrF+/ngkTJrBq1SrS09Pp2LEjAHPmzGHo0KFkZ2djs9nYvn07GzdudFny+/HHH3fe1DS3QLMJq83AYrO1yO8TEWnNHCvjgT0pdS5jx45l7NixNZYFBQWRnp5Oenp6jeXx8fEsWrSoYYGKiEi9KCklIiJeIT8/nzlz5rBkyRKXnkr79+93WbIb7Et6r169Gmj9S34Hmk1UAlab4XPLFvv6csyqX+um+tV9nIiISEtQUkpERDzOZrMxa9YsbrnlFi666CKXsrqW9D5XeWtY8js40ExplZWo6HCfXbrZW5Ycbi6qX+um+omIiHiOklIiIuJxzz33HMHBwUyZMuWssrCwMIqLXZc0dizZ7ShvzUt+m092S8jLLyEuwK1f6fV8fTlm1a91U/3qPk5ERKQlKCklIiIe99Zbb3Hs2DEGDBgA4Ewy/fvf/+aee+5h8+bNLvtnZWXRo0cPoPUv+R14cqLzaqvhkzfG4D1LDjcX1a91U/1EREQ8R6vviYiIx73//vv873//Y+fOnezcuZMbbriBG264gZ07d5KamkpeXh4rVqygurqazMxM1q1b55xHqrUv+R2o1fdERERExE+pp5SIiHi12NhYli9fTkZGBosWLSIuLo65c+cyaNAgwHXJ76NHj5KYmHjWkt8Wi4XJkydTWlpKSkrKWUt+P/zww1xzzTWYzWbGjRvXokt+BwY4klJafU9ERERE/IuSUiIi4nUee+wxl8e9e/fmtddeq3X/1rzkt7OnlFU9pURERETEv2j4noiIiAcFmu1NsYbviYiIiIi/UVJKRETEgzSnlIiIiIj4KyWlREREPOjUnFJKSomIiIiIf1FSSkRExINOzSmlic5FRERExL8oKSUiIuJBGr4nIiIiIv5KSSkREREP0kTnIiIiIuKvlJQSERHxoAD1lBIRERERP6WklIiIiAedmlNKSSkRERER8S9KSomIiHjQqdX3NNG5iIiIiPgXJaVEREQ8yNFTyqrheyIiIiLiZ5SUEhER8SCtviciIiIi/kpJKREREQ8KDNDqeyIiIiLin5SUEhER8SD1lBIRERERf6WklIiIiAdp9T0RERER8VdKSomIiHjQqZ5SWn1PRERERPyLklIiIiIeFBig1fdERERExD8pKSUiIuJBgWZNdC4iIiIi/skrk1JfffUVkydPZsCAAQwdOpRHHnmEqqoqAHbv3s2kSZNITk5m+PDhrFq1yuXYtWvXkpqaSt++fRk/fjy7du1yllmtVhYsWMCQIUNITk5m+vTpHDt2rEXrJiIicjrNKSUiIiIi/srrklI2m4077riDESNGsH37dlavXs2nn37KsmXLKCoqYtq0aYwbN44dO3aQkZHBo48+yp49ewDYtm0b8+bN47HHHmPHjh2MGTOG6dOnU15eDsDSpUvZvHkza9asYdOmTYSGhjJ37lxPVldERPyc5pQSEREREX8V6OkAzlRUVERubi42mw3DsH9rbDabCQsL44MPPiAmJobJkycDMHjwYEaPHs3KlSvp06cPq1atYtSoUfTv3x+AqVOn8vrrr7N+/XomTJjAqlWrSE9Pp2PHjgDMmTOHoUOHkp2dTZcuXTxTYWkVxk28kZ+O5NVaHh8by8vLV7RcQCLiMxxzSmn4noiIiIj4G69LSsXGxjJ16lQWLFjAX//6V6xWK9dccw1Tp07lscceIykpyWX/xMREVq9eDUBWVhYTJkw4q3zv3r0UFxdz5MgRl+Pj4+OJjo5m3759biWlTCb36uTY32QCo457DnfP6y1Or58vMpngWN5xfnHP32t9/t58/P9adf394Tk8/V9f09D6+er1aG00p5SIiIiI+CuvS0rZbDZCQ0N54IEHmDhxIgcPHuQPf/gDixYtorS0lLCwMJf9Q0NDKSsrA6izvLS0FIDw8PCzyh1l9dW2bZS71QIgLCyk1rKgwADi4xt2Xm/R0OvSWvj68we+/xyqfuKNAk4OpNecUiIiIiLib7wuKfXhhx+yYcMG3n//fQB69OhBWloaGRkZjB49muLiYpf9KyoqiIiIACAsLIyKioqzymNjY53JKsf8UjUdX1/5+cV19ng6k6M3Qnl5Za3HVVus5OUV11zo5Uwm+82wu9eltfD15w/84zlU/Wo/TjxLPaVERERExF95XVLq8OHDzpX2HAIDAwkKCiIpKYnNmze7lGVlZdGjRw/AnsDav3//WeVXXnkl0dHRJCQkkJWV5RzCl5ubS2Fh4VlDAs/FMOoehlfXcY0p93YNvS6tha8/f+Afz6HqJ95GE52LiIiIiL/yutX3hg4dSm5uLs8++yxWq5Xs7GyWLl3K6NGjSU1NJS8vjxUrVlBdXU1mZibr1q1zziM1ceJE1q1bR2ZmJtXV1axYsYL8/HxSU1MBGD9+PEuXLiU7O5uSkhLmz5/PwIED6dq1qyerLCIifswx0blVPaVERERExM94XU+pxMREnnvuORYuXMjzzz9PVFQUY8aMIS0tjeDgYJYvX05GRgaLFi0iLi6OuXPnMmjQIMC+Gt+DDz7IQw89xNGjR0lMTGTZsmXExMQAkJaWhsViYfLkyZSWlpKSksLChQs9V1kREfF7p3pKKSklIiIiIv7F65JSAEOGDGHIkCE1lvXu3ZvXXnut1mPHjh3L2LFjaywLCgoiPT2d9PT0JolTRESksTSnlIiIiIj4K68bviciIuJPnD2ltPqeiIiIiPgZJaVEREQ8yDGnlHpKiYjUraCggNTUVLZt2+bctnv3biZNmkRycjLDhw9n1apVLsesXbuW1NRU+vbty/jx49m1a5ezzGq1smDBAoYMGUJycjLTp0/n2LFjzvL8/HxmzJjBgAEDSElJISMjA4vF0vwVFRHxI0pKiYiIeJBW3xMRObfPPvuMm266iUOHDjm3FRUVMW3aNMaNG8eOHTvIyMjg0UcfZc+ePQBs27aNefPm8dhjj7Fjxw7GjBnD9OnTKS8vB2Dp0qVs3ryZNWvWsGnTJkJDQ5k7d67z/DNnziQ8PJxNmzaxevVqtm7dyooVK1q03iIivk5JKREREQ/SROciInVbu3Yt6enp3HXXXS7bP/jgA2JiYpg8eTKBgYEMHjyY0aNHs3LlSgBWrVrFqFGj6N+/P0FBQUydOpXY2FjWr1/vLL/99tvp2LEjkZGRzJkzh40bN5Kdnc3BgwfZvn07s2bNIiwsjC5dujBjxgznuUVEpGl45UTnIiIi/sI50bnmlBIRqdHQoUMZPXo0gYGBLomp/fv3k5SU5LJvYmIiq1evBiArK4sJEyacVb53716Ki4s5cuSIy/Hx8fFER0ezb98+AGJiYkhISHCWd+/enZycHE6cOEGbNm3qHb/JVP+6nr6/u8f5Ol2Xmp1+XQzDdbs/Xyu9XmrX0GvTXNdSSSkREREP0pxSIiJ1a9euXY3bS0tLCQsLc9kWGhpKWVnZOctLS0sBCA8PP6vcUXbmsY7HZWVlbiWl2raNqve+TXGcr9N1cRUdHQHkExYW4twWGhpETEwE8fG6Vnq91M5bro2SUiIiIh6k4XsiIg0TFhZGcXGxy7aKigoiIiKc5RUVFWeVx8bGOhNMjvmlzjzeMIyzyhyPHeevr/z8YpceLOdiMtlvFt09ztfputSsqMieRC0vr3Rel4qKagoLS8nLK67jSN+m10vtGnptHMc1NSWlREREPEgTnYuINExSUhKbN2922ZaVlUWPHj0A6NGjB/v37z+r/MorryQ6OpqEhASysrKcQ/hyc3MpLCwkKSkJm81GYWEheXl5xMfHA3DgwAE6dOhAVJR7N2WGQYNuiht6nK/TdXHluBZnXhNdJztdh9p5y7XRROciIiIe5ExKaU4pERG3pKamkpeXx4oVK6iuriYzM5N169Y555GaOHEi69atIzMzk+rqalasWEF+fj6pqakAjB8/nqVLl5KdnU1JSQnz589n4MCBdO3alW7dutG/f3/mz59PSUkJ2dnZLFmyhIkTJ3qyyiIiPkc9pURERDwoQMP3REQaJDY2luXLl5ORkcGiRYuIi4tj7ty5DBo0CIDBgwfz4IMP8tBDD3H06FESExNZtmwZMTExAKSlpWGxWJg8eTKlpaWkpKSwcOFC5/kXLVrEww8/zDXXXIPZbGbcuHHMmDHDAzUVEfFdSkqJiIh4UGDAydX3bAaGYWDSMjEiIrVyrIzn0Lt3b1577bVa9x87dixjx46tsSwoKIj09HTS09NrLI+Pj2fRokUND1ZERM5Jw/dEREQ8yDF8D0Aj+ERERETEnygpJSIi4kEuSSkN4RMRERERP6KklIiIiAednpTSCnwiIiIi4k+UlBIREfEgx5xSoBX4RERERMS/KCklIiLiQQGnzWuuFfhERERExJ8oKSUiIuJBJpPJOYRPSSkRERER8SdKSomIiHjYqaSU5pQSEREREf+hpJSIiIiHBZ4cw6c5pURERETEnygpJSIi4mGBZntzrOF7IiIiIuJPlJQSERHxMM0pJSIiIiL+SEkpERERD1NSSkRERET8kZJSIiIiHnZqTilNdC4iIiIi/kNJKREREQ9TTykRERER8UdKSomIiHhYgJJSIiIiIuKHlJQSERHxMMfqe1YlpURERETEjygpJSIi4mGO4XtKSomIiIiIP1FSSkRExMM0fE9ERERE/JGSUiIiIh6mnlIiIiIi4o+UlBIREa+wdetWJk2aRL9+/bj88suZN28eFRUVAOzevZtJkyaRnJzM8OHDWbVqlcuxa9euJTU1lb59+zJ+/Hh27drlLLNarSxYsIAhQ4aQnJzM9OnTOXbsmLM8Pz+fGTNmMGDAAFJSUsjIyMBisbRMpU9STykRERER8UdKSomIiMcVFBRwxx138Ktf/YqdO3eydu1atm/fzj/+8Q+KioqYNm0a48aNY8eOHWRkZPDoo4+yZ88eALZt28a8efN47LHH2LFjB2PGjGH69OmUl5cDsHTpUjZv3syaNWvYtGkToaGhzJ071/m7Z86cSXh4OJs2bWL16tVs3bqVFStWtGj9A9RTSkRERET8kJJSIiLicXFxcWzZsoXx48djMpkoLCyksrKSuLg4PvjgA2JiYpg8eTKBgYEMHjyY0aNHs3LlSgBWrVrFqFGj6N+/P0FBQUydOpXY2FjWr1/vLL/99tvp2LEjkZGRzJkzh40bN5Kdnc3BgwfZvn07s2bNIiwsjC5dujBjxgznuVuKhu+JiIiIiD8K9HQAIiIiAJGRkQAMGzaMo0ePMmDAAMaPH8/ChQtJSkpy2TcxMZHVq1cDkJWVxYQJE84q37t3L8XFxRw5csTl+Pj4eKKjo9m3bx8AMTExJCQkOMu7d+9OTk4OJ06coE2bNvWO32Ryr76O/U2mU0kpi2Fz+zze7PQ6+iLVr3VT/eo+TkREpCUoKSUiIl7lgw8+oKioiPT0dO68804SEhIICwtz2Sc0NJSysjIASktLay0vLS0FIDw8/KxyR9mZxzoel5WVuZWUats2qt77nnlcRFiw/XeHhxAf37DzeLOGXpvWQvVr3VQ/ERERz1FSSkREvEpoaCihoaHMmjWLSZMmMWXKFIqLi132qaioICIiArAnkRwTop9eHhsb60wwOeaXOvN4wzDOKnM8dpy/vvLzizHcGH1nMtlvFvPzi7FU2ydWLzxRTl5e8TmObD1Or6M716a1UP1aN9Wv7uNERERaguaUEhERj/vf//7Hz3/+c6qqqpzbqqqqCAoKIjExkf3797vsn5WVRY8ePQDo0aNHreXR0dEkJCSQlZXlLMvNzaWwsJCkpCR69OhBYWEheXl5zvIDBw7QoUMHoqLcuykzDPd/HMc5V9+zGg06jzf/NPTatJYf1a91/6h+tR8nIiLSEpSUEhERj+vZsycVFRU88cQTVFVV8dNPP7FgwQImTpzIiBEjyMvLY8WKFVRXV5OZmcm6deuc80hNnDiRdevWkZmZSXV1NStWrCA/P5/U1FQAxo8fz9KlS8nOzqakpIT58+czcOBAunbtSrdu3ejfvz/z58+npKSE7OxslixZwsSJE1u0/proXERERET8kYbviYiIx0VERPD8888zf/58Lr/8cqKiohg9ejRpaWkEBwezfPlyMjIyWLRoEXFxccydO5dBgwYBMHjwYB588EEeeughjh49SmJiIsuWLSMmJgaAtLQ0LBYLkydPprS0lJSUFBYuXOj83YsWLeLhhx/mmmuuwWw2M27cOGbMmNGi9Xf2lFJSSkRERET8iNtJqW3btpGSktIcsYiISCvVFG1DYmIiy5cvr7Gsd+/evPbaa7UeO3bsWMaOHVtjWVBQEOnp6aSnp9dYHh8fz6JFi9wPuAkFmu0dl9VTSkR8je4dRESkLm4P37vzzju59tpreeaZZ8jJyWmOmEREpJVR29A46iklIr5K7YOIiNTF7aTUp59+yqxZs/jyyy8ZMWIEv/vd73jnnXdcJqcVERH/orahcQJMmlNKRHyT2gcREamL20mpoKAgRowYwdKlS/nkk0+49tprWb58OUOHDuUvf/kLe/fubY44RUTEi6ltaJzAgJNJKS17JSI+Ru2DiIjUpcGr7+Xn57Nu3TrefPNNsrKySElJISQkhKlTp/Lss882ZYwiItJKqG1oGOfwPauSUiLim9Q+iIhITdye6Pzdd9/lrbfeYsuWLVx44YWMHz+eZ599lri4OACGDRtGWloav//975s8WBER8U5qGxon0KyeUiLim9Q+iIhIXdxOSv3lL39h1KhRvPbaa/Tq1eus8gsuuICpU6c2RWwiItJKqG1onED1lBIRH6X2QURE6uJ2UurTTz8lOzubhIQEAD7//HOioqLo3r07AB06dODOO+9s2ihFRMSrqW1oHMdE5xb1lBIRH6P2QURE6uL2nFL/+c9/GDduHD/88AMAu3btYtKkSXzyySdNHZuIiLQSahsaxznRuVbfExEf09ztw1dffcXkyZMZMGAAQ4cO5ZFHHnGu7Ld7924mTZpEcnIyw4cPZ9WqVS7Hrl27ltTUVPr27cv48ePZtWuXs8xqtbJgwQKGDBlCcnIy06dP59ixY00Ss4iInOJ2Umrx4sUsWbLE2f32lltu4e9//ztPPPFEkwcnIiKtg9qGxnH2lNLwPRHxMc3ZPthsNu644w5GjBjB9u3bWb16NZ9++inLli2jqKiIadOmMW7cOHbs2EFGRgaPPvooe/bsAWDbtm3MmzePxx57jB07djBmzBimT59OeXk5AEuXLmXz5s2sWbOGTZs2ERoayty5cxsds4iIuHI7KXX48GGuuOIKl21Dhw4lJyenyYISEZHWRW1D4zh7Smn4noj4mOZsH4qKisjNzcVms2GcfP80m82EhYXxwQcfEBMTw+TJkwkMDGTw4MGMHj2alStXArBq1SpGjRpF//79CQoKYurUqcTGxrJ+/Xpn+e23307Hjh2JjIxkzpw5bNy4kezs7EbHLSIip7idlOrcuTObNm1y2bZ161Y6derUZEEVFhZyzz33kJKSwmWXXcaMGTOc3WXVDVdExPu0RNvgy071lLJ5OBIRkabVnO1DbGwsU6dOZcGCBfTu3Zthw4bRrVs3pk6dyv79+0lKSnLZPzExkb179wKQlZVVa3lxcTFHjhxxKY+Pjyc6Opp9+/a5HafJ5P5PQ4/z9R9dl7qvS2Nfd772o+vQ9NemObg90fm0adNIS0vjuuuuo3PnzuTk5PDhhx+yYMGCJgvqj3/8I9HR0Xz44YeYzWZmz57NAw88wF//+lemTZvGnXfeyU033cSOHTtIS0ujZ8+e9OnTx9kNd9myZfTp04eVK1cyffp0PvroI8LCwly64UZFRfHAAw8wd+5c/vGPfzRZ7CIi/qgl2gZfFnBy9T31lBIRX9Oc7YPNZiM0NJQHHniAiRMncvDgQf7whz+waNEiSktLCQsLc9k/NDSUsrIygDrLS0tLAQgPDz+r3FHmjrZto9w+pjHH+TpdF1fR0RFAPmFhIc5toaFBxMREEB+va6XXS+285dq4nZQaPXo07du358033+Srr76iY8eOLF++nH79+jVJQF9++SW7d+9my5YtREZGAjBv3jxyc3NduuECLt1w+/Tp49INF2Dq1Km8/vrrrF+/ngkTJrBq1SrS09Pp2LEjAHPmzGHo0KFkZ2fTpUuXJolfRMQfNXfb4Os00bmI+KrmbB8+/PBDNmzYwPvvvw9Ajx49SEtLIyMjg9GjR1NcXOyyf0VFBREREQCEhYVRUVFxVnlsbKwzWeWYX6qm492Rn1+MO985mEz2m0V3j/N1ui41KyqyJ0rLyyud16WioprCwlLy8orrONK36fVSu4ZeG8dxTc3tpBRASkoKKSkpTR0LAHv27CExMZF//etfvPrqq5SXl3PFFVdw77331toNd/Xq1YC9G+6ECRPOKq9PN1x3klLudls7vXtcXU96c3WHa26n188X+frzB/71HPqihtavqa9Hc7YNvs45fE9JKRHxQc3VPhw+fNi50p5DYGAgQUFBJCUlsXnzZpeyrKwsevToAdgTWPv37z+r/MorryQ6OpqEhASXIX65ubkUFhaedS9SH4ZR92fIpj7O1+m6uHJcizOvia6Tna5D7bzl2ridlDp69ChLly7lhx9+wGZznfvi5ZdfbnRARUVF7Nu3j169erF27VoqKiq45557uPfee4mPj/eKbrgNzQ6e3qXyTEGBAa2+e6W3dP9rLr7+/IHvP4eqX/Np7rbB1wUG2Kd4VE8pEfE1zdk+DB06lCeeeIJnn32W22+/nZycHJYuXcro0aNJTU3l8ccfZ8WKFUyePJnPPvuMdevWsWTJEgAmTpxIWloa119/Pf3792flypXk5+eTmpoKwPjx41m6dCm9e/cmNjaW+fPnM3DgQLp27dqomEVExJXbSanZs2eTl5fH1VdfTVBQUJMHFBwcDNiH1oWEhBAZGcnMmTO58cYbGT9+fI3dbFu6G25DurnZf3dlrcdVW6yttnulr3eN9PXnD/zjOVT9aj+uKTR32+Dr1FNKRHxVc7YPiYmJPPfccyxcuJDnn3+eqKgoxowZQ1paGsHBwSxfvpyMjAwWLVpEXFwcc+fOZdCgQYB9GpAHH3yQhx56iKNHj5KYmMiyZcuIiYkBIC0tDYvFwuTJkyktLSUlJYWFCxc2afwiItKApNQXX3zBhg0biIuLa454SExMxGazUV1dTUiIvWeK41uVn/3sZ/y///f/XPb3RDfcxnTBbUy5t/OW7n/NxdefP/CP51D1ax7N3Tb4ukCz5pQSEd/U3O3DkCFDGDJkSI1lvXv35rXXXqv12LFjxzJ27Ngay4KCgkhPTyc9Pb1J4hQRkZqZ3T0gKirK2ZupOQwZMoQuXbpw//33U1paSkFBAU899RTXXnstN9xwA3l5eaxYsYLq6moyMzNZt26dcx6piRMnsm7dOjIzM6murmbFihU1dsPNzs6mpKRE3XBFRJpIc7cNvs6RlFJPKRHxNWofRESkLm73lJoxYwazZ8/m9ttvJz4+3qWsU6dOjQ4oKCiIf/7znzz22GOMGDGCyspKhg8fzpw5c2jTpo264YqIeKHmbht8XYCSUiLio9Q+iIhIXdxOSs2dOxewL8EKYDKZMAwDk8nEN9980yRBJSQk8NRTT9VYpm64IiLepyXaBl+m4Xsi4qvUPoiISF3cTkr95z//aY44RESkFVPb0DjqKSUivkrtg4iI1MXtOaU6d+5M586dKSoq4quvvqJdu3aEhobSuXPn5ohPRERaAbUNjROgnlIi4qPUPoiISF3cTkrl5+fzy1/+khtvvJF7772X7Oxsrr32Wnbt2tUc8YmISCugtqFxNHxPRHyV2gcREamL20mp+fPnk5SUxI4dOwgMDKR79+5MmzaNv/71r80Rn4iItAJqGxpHw/dExFepfRARkbq4nZTKzMxk9uzZhIWFYTLZP0TfdtttZGVlNXlwIiLSOqhtaBz1lBIRX6X2QURE6uJ2UiooKIiKigoADMP+4bm0tJSIiIimjUxERFoNtQ2Nc6qnlM3DkYiINC21DyIiUhe3k1LDhw9n1qxZ/PDDD5hMJvLz8/nLX/7CsGHDmiM+ERFpBdQ2NI56SomIr1L7ICIidXE7KfWnP/2J8PBwfv7zn3PixAmGDh1KeXk56enpzRGfiIi0AmobGkdJKRHxVWofRESkLoHuHhAREcGiRYsoKCjgxx9/pEOHDrRv3745YhMRkVZCbUPjOIbvWQ378BbHvCsiIq2d2gcREamL20mpHTt2uDw+ePAgBw8eBOCyyy5rmqhERKRVUdvQOIHmUx2XrTaDwAAlpUTEN6h9EBGRuridlJoyZcpZ28xmMx07duQ///lPkwQlIiKti9qGxnH0lAKw2AwCAzwYjIhIE1L7ICIidXE7KbV3716XxwUFBTzzzDN07ty5yYISEZHWRW1D45yZlBIR8RVqH0REpC5uT3R+pri4OGbNmsVLL73UFPGIiIgPUNvgnsDTklKa7FxEfJnaBxEROV2jk1IARUVFVFZWNsWpRETER6htqL/TclLqKSUiPk/tg4iIOLg9fG/27Nkuj6urq/nss88YMmRIkwUlIiKti9qGxjGZTASaTVhshnpKiYhPUfsgIiJ1cTspdaaQkBCmTJnCTTfd1BTxiIiID1Db4L6Ak0kp9ZQSEV+m9kFERE7ndlLq0UcfbY44RESkFVPb0HiBZhOVaE4pEfEtah9ERKQubielFi9eXK/9/vCHP7gdjIiItE5qGxrPMdm5klIi4kvUPoiISF3cTkrt37+fDz74gIsuuogLLriAI0eO8L///Y+LL76YiIgIwD43hoiI+A+1DY0XcDIppeF7IuJL1D6IiEhd3E5Kmc1mZs+ezW9+8xvntrfeeouPPvqIhQsXNmVsIiLSSqhtaDz1lBIRX6T2QURE6mJ294BPPvmEyZMnu2y74YYb2Lp1a5MFJSIirYvahsY71VPK5uFIRESajtoHERGpi9tJqbi4OHbs2OGybdOmTXTo0KHJghIRkdZFbUPjafieiPgitQ8iIlIXt4fv3XHHHUybNo0RI0bQqVMnsrOz+eijj3j66aebIz4REWkF1DY0nnP4nqGklIj4DrUPIiJSF7eTUpMmTaJz5868/fbbfP3113Tp0oXXXnuNnj17Nkd8IiLSCqhtaDxnTymrklIi4jvUPoiISF3cTkoBDBkyhCFDhlBQUEBcXFxTxyQiIq2Q2obGCTTbR9Srp5SI+Bq1DyIiUhu355Sqrq7mqaeeon///gwfPpzs7GwmTJjAsWPHmiM+ERFpBdQ2NJ56SomIL1L7ICIidXE7KbV48WIyMzP5+9//TlBQEG3btqVDhw5kZGQ0R3wiItIKqG1ovADTyTmlNNG5iPgQtQ8iIlIXt4fvrVu3jldffZWEhARMJhPh4eE8+uijpKamNkd8IiLSCqhtaLzAAE10LiK+R+2DiIjUxe2eUmVlZc6x4MbJD86hoaGYzW6fSkREfITahsbT8D0R8UVqH0REpC5utwZ9+/Zl8eLFAJhODjX45z//Se/evZs2MhERaTXUNjReoFk9pUTE96h9EBGRurg9fO/+++9n6tSprF27ltLSUkaOHElpaSkvvvhic8QnIiKtgNqGxgtUTykR8UFqH0REpC5uJ6Xi4+N59913+fjjj/npp5/o0KEDV111FZGRkc0Rn4iItAJqGxrPMdG5RT2lRMSHqH0QEZG6uJ2UuuGGG3j77be5/vrrmyMeERFphdQ2NMyhQ4fYv/8gACXFZfZt2dns4ahb54mLa8t553Vp8vhERBqruduHwsJC5s+fzyeffILNZuOyyy7joYceon379uzevZtHHnmErKwsYmNjmT59OpMmTXIeu3btWpYsWUJubi4XXnghDzzwAMnJyQBYrVb+9re/8dZbb1FeXs6gQYP4y1/+Qvv27ZulHiIi/srtpBRAeXm5vt0QEREXahvc8+OP2Qy5/DLKy+zJqPjRs4i4eBhPL17E/M/edutcoWHhbNm8Q4kpEfFKzdk+/PGPfyQ6OpoPP/wQs9nM7NmzeeCBB/jrX//KtGnTuPPOO7npppvYsWMHaWlp9OzZkz59+rBt2zbmzZvHsmXL6NOnDytXrmT69Ol89NFHhIWFsXTpUjZv3syaNWuIiorigQceYO7cufzjH/9olnqIiPgrt5NSKSkpTJo0iSuvvPKsbwr+8Ic/NFlgIiLSeqhtcF9+fj7lZWVMvOtR2p93AZ+fCOGnCrh83G+58Ne/rvd5jv34Paufmk1BQb6SUiLidZqzffjyyy/ZvXs3W7ZscSa95s2bR25uLh988AExMTFMnjwZgMGDBzN69GhWrlxJnz59WLVqFaNGjaJ///4ATJ06lddff53169czYcIEVq1aRXp6Oh07dgRgzpw5DB06lOzsbLp00XutiEhTcTsp9eOPP9KlSxe+//57vv/+e+d2x2oaIiLif9Q2NFz78y6gU/eL2Z+VDxWlRMa1p1PnaE+HJSLSJJqzfdizZw+JiYn861//4tVXX6W8vJwrrriCe++9l/3795OUlOSyf2JiIqtXrwYgKyuLCRMmnFW+d+9eiouLOXLkiMvx8fHxREdHs2/fPiWlRESaUL2TUrfeeisvvPAC//znPwGoqKggNDS02QITERHv15Rtw969e1mwYAFfffUVQUFBXH755dx3333ExcU167wg+fn5PPDAA2zfvp2AgADGjBnDvffeS2Bgg0a4N9jJxfewaZ5zEfEBLXHvUFRUxL59++jVqxdr166loqKCe+65h3vvvZf4+HjCwsJc9g8NDaXs5JDp0tLSWstLS0sBCA8PP6vcUeYOd/Nvjv31vY4rXZeanX5dTl8rxWTy72ul10vtGnptmuta1vsT965du1weX3nllWzfvr3JAxIRkdajqdqGiooKbrvtNm688Uaee+45SktLuffee7n//vtZsGBBs84LMnPmTBISEti0aRN5eXlMnz6dFStWcNtttzXJNaov88mW3tDqeyLiA1ri3iE4OBiwD60LCQkhMjKSmTNncuONNzJ+/HgqKipc9q+oqCAiIgKAsLCwGstjY2Odyary8vJaj3dH27ZRbh/TmON8na6Lq+joCCCfsLAQ57bQ0CBiYiKIj9e10uuldt5ybRr8NbA+NIuIyJka2jbk5ORw0UUXkZaWRkBAAMHBwdx0003cc889zToviM1mY/v27WzcuJGwsDC6dOnCjBkzePzxx1s8KWVSTykR8WHNce+QmJiIzWajurqakBD7DbnNZgPgZz/7Gf/v//0/l/2zsrLo0aMHAD169GD//v1nlV955ZVER0eTkJBAVlaWcwhfbm4uhYWFZw0JrI/8/GLcqb7JZL9ZdPc4X6frUrOiInvvvfLySud1qaioprCwlLy8Yg9G5ll6vdSuodfGcVxTMzf0QM0TIiIiZ2po23DhhRfy/PPPExAQ4Ny2YcMGLrnkklrnBdm7dy+Ay03DmeXnmhdk//79xMTEkJCQ4Czv3r07OTk5nDhxwq06OLrJu/NjP9D+j6OnlK0Rn5waEkNz/3hrXKqf6qf61X1cU2uOe4chQ4bQpUsX7r//fkpLSykoKOCpp57i2muv5YYbbiAvL48VK1ZQXV1NZmYm69atc84jNXHiRNatW0dmZibV1dWsWLGC/Px8UlNTARg/fjxLly4lOzubkpIS5s+fz8CBA+natavbcRqG+z8NPc7Xf3Rd6r4ujX3d+dqPrkPTX5vm0LITZoiIiJyDYRgsXLiQjz76iFdeeYWXX365WecFOfNYx+OysjLatGlT77jd/eYoJsY+BCQ0JJjw8BCCg+1NckBAAOHhIXUd6iI01D58JTbWe7vpe0v38Oai+rVuql/rFRQUxD//+U8ee+wxRowYQWVlJcOHD2fOnDm0adOG5cuXk5GRwaJFi4iLi2Pu3LkMGjQIsPe6ffDBB3nooYc4evQoiYmJLFu2jJiYGADS0tKwWCxMnjyZ0tJSUlJSWLhwoecqKyLio+qdlLJYLLz55pvOx9XV1S6PAcaNG9dEYYmISGvQ1G1DSUkJs2fP5quvvuKVV16hZ8+ehIWFUVzs2v28qeYFMQzjrDLHY3fnDXG3C3RhoT0pVlFZRVlZJVaLFYCqagtlZZX1Pk9FRRUAx497Xzd9k8m3u86rfq2b6lf3cY3VUvcOCQkJPPXUUzWW9e7dm9dee63WY8eOHcvYsWNrLAsKCiI9PZ309PRGxygiIrWrd1IqPj6eRYsWOR/Hxsa6PDaZTEpKiYj4maZsGw4dOsTtt99Op06dWL16NXFxcQAkJSWxefNml32bal4Qm81GYWEheXl5xMfHA3DgwAE6dOhAVJR7N2Xudmt27nvy31PD99z6tTWf08s0Z5dvb6D6tW6qX/PQvYOIiNRHvZNS//3vf5szDhERaYWaqm0oKirit7/9LYMGDSIjIwOz+dSUh6mpqTz++OOsWLGCyZMn89lnn7Fu3TqWLFkC2OcFSUtL4/rrr6d///6sXLmyxnlBevfuTWxs7FnzgvTv35/58+fz8MMPc/z4cZYsWcLEiRObpF7uMJ+cbqUxc0qJiHgL3TuIiEh9aE4pERHxuDfeeIOcnBzee+893n//fZeyXbt2Neu8IIsWLeLhhx/mmmuuwWw2M27cOGbMmNFSVXdy9JRSTkpERERE/IWSUiIi4nG33HILt9xyS63lzTkvyJlDTDzFpJ5SIiIiIk2isrKSrVu/pLCw1OULvz59+hISUv8FZaT5KSklIiLiBZpiTikRERERgT17PufFDVuJ7XiBc9vRg/uZBlx2WYrnApOzKCklIiLiBTSnlIiIiEjT6XhBEu27XezpMOQczOfeRURERJqbekqJiIiIiL/x2qSU1WplypQp3Hfffc5tu3fvZtKkSSQnJzN8+HBWrVrlcszatWtJTU2lb9++jB8/nl27drmcb8GCBQwZMoTk5GSmT5/OsWPHWqw+IiIidXEsOKieUiIiIiLiL7w2KbV48WJ27tzpfFxUVMS0adMYN24cO3bsICMjg0cffZQ9e/YAsG3bNubNm8djjz3Gjh07GDNmDNOnT6e8vByApUuXsnnzZtasWcOmTZsIDQ1l7ty5LVIXm2FgmAJa5HeJiEjrFODoKaWuUiIiIiLiJ7wyKbV161Y++OADrrvuOue2Dz74gJiYGCZPnkxgYCCDBw9m9OjRrFy5EoBVq1YxatQo+vfvT1BQEFOnTiU2Npb169c7y2+//XY6duxIZGQkc+bMYePGjWRnZzd7faa9tpujfadSVF7d7L9LRERaJ8fwPatyUiIiIiLiJ7wuKZWfn8+cOXN44oknCAsLc27fv38/SUlJLvsmJiayd+9eALKysmotLy4u5siRIy7l8fHxREdHs2/fPrdjNJnc+wkNCsAWEsWH+/Kostia7Lze9NPa469v/ZrydeFtP75QB9WvYceJd9BE5yIiIiLib7xq9T2bzcasWbO45ZZbuOiii1zKSktLXZJUAKGhoZSV/X/27jw8qvJsA/g9WzKTdSYJhKAgQhJwCSQEE0BEBePGEgxR7Bf9jK1gIda6RKQFhMoXllorojVa1FILFQtILRZB2mpBlBAwgKJgIhACIfs2M8ns5/tjFhgSIJNMZr1/15ULcrZ53zmTmXOeed7nbb/ieq1WCwAICwvrtN6+zhWxsZEubf/q/4zGuKUfoRkR+L6hHeOGxnbaRiaVIC7OteP6GlefF3+jUIRecl0gnD8g8M8h+0e+TGyLSjEoRURERETBwqeCUm+99RZCQkLw8MMPd1qnUCigVqudlul0OoSHhzvW63S6TutVKpUjWGWvL9XV/q5obFTDlXsGqQiIOr0XLYl34USdBqMGRHTaxmgyo6FB3cXevk8kst4Mu/q8+At7NklHh/6S/fPn8wcExzlk/y69H/mG8zWlvNwQIiIiIiIP8amg1EcffYS6ujqMGTMGABxBpn/961+YP38+9u7d67R9RUUFkpKSAABJSUkoLy/vtH7ixImIjo5GfHy80xC/+vp6tLS0dBry1x2CAJdvbENbKwEADVoDOoxmKGSdC5/7+81yT54Xf3KlvgVC34PhHLJ/5Kvsw/fMPIlEREREFCR8qqbUjh078PXXX+PAgQM4cOAApk6diqlTp+LAgQPIyspCQ0MD1q1bB6PRiH379mHbtm2YOXMmACA3Nxfbtm3Dvn37YDQasW7dOjQ2NiIrKwsAkJOTg+LiYlRVVUGj0WD58uXIyMjA4MGDPdI3ibEdseEyAMCZFt0VtiYiomBjL3TO4XtEREREFCx8KlPqclQqFd59910UFRVhzZo1iImJwaJFizB27FgAwLhx47BkyRIsXboUtbW1SExMxNq1a6FUKgEABQUFMJlMyMvLg1arRWZmJlavXu3RPlwdrUCj1ogzLR1I6uf6sEEiIgpcEjGH7xERERFRcPHpoNTKlSudfk9JScHGjRsvuX12djays7O7XCeTyVBYWIjCwkK3ttEVg5RyHK5uw9lWZkoREZEzEWffIyIiIqIg41PD9wJdv4gQiAB0GC1oN5i93RwiIvIh9kLnrClFRERERMGCQSkPkkrEiJJbk9Oa2g1ebg0REfkSsX34HmNSRERERBQkGJTysJgwa7Hzpnajl1tCRES+xJ4pZWFUioiIiIiCBINSHhYTFgKAQSkiInJmS5SCANaVIiIiIqLgwKCUh8WE2zOlOHyPiIjOE9srnYND+IiIiIgoODAo5WH24Xst7UZ+E05ERA72mlIAM6WIiIiIKDgwKOVhkaFSSMUimAWgtcPk7eYQEZGPuCAmxbpSRERERBQUGJTyMJFIdEGxcw7hIyIiK7FIBHtcijEpIiIiIgoGDEp5QbTCGpRq0zFTioiIzrPXlTJz+B4RERERBQEGpbwgKlQKgEEpIiJyJrZ9KnP4HhEREREFAwalvCBKzqAUERF1Zs+UYkyKiIiIiIIBg1JeYA9KqfUMShER0XkSR1CKUSkiIiIiCnwMSnmBPSilNZhhMlu83BoiIvIVjuF7DEoRERFRN1gEgRnW5NcYlPKCUKkYIRLrt+FtzJYiIiIbR6Fzfl9BREREV7Dz+zr8co8B22oi8K8fGrzdHKIeYVDKC0QiEaLknIGPiIiciTl8j4iIiLppy+FqmGyXDCcb26E18N6S/A+DUl7CYudERHQxWxItzAxKERER0WWodSYcqW4DAISKrSnWZ1p03mwSUY8wKOUljmLnDEoREZGNWMzZ94iIiOjKSiqbYRaAAWEiDAmz3lNWNXd4uVVErmNQykvsQalWBqWIiMjGMXyPUSkiIiK6jC9PNgEAblCJ0T/Uek95tlXHawjyOwxKeUlkqDUopWGhcyIisrElSrGmFBGRi8xmMx5++GEsWLDAsezw4cO4//77kZaWhkmTJmHTpk1O+2zduhVZWVlITU1FTk4OysrKnI63atUqjB8/HmlpaZg7dy7q6uo81h+iyxEEAV+dagYA3BArhkpmgVwqhsEsoFaj93LriFzDoJSXRIRKAAAagxkCbz582sGqFqgHjsGppnZvN4WIApzEPvsePxeIiFzy+uuv48CBA47fW1tbMWfOHMyYMQOlpaUoKirCihUrcOTIEQBASUkJli1bhpUrV6K0tBTTp0/H3Llz0dFhHf5UXFyMvXv3YsuWLdizZw/kcjkWLVrklb4RXayp3YgGrQEiAMOiRBCJgPjIUABAo9bo3cYRuYhBKS8JD7FmSpktAvQmzv3tqz74+iwe/+AI1IMnYNfxBtTzmwci6kOOmlL8WCAi6ravvvoKn376Ke68807Hsk8//RRKpRJ5eXmQSqUYN24cpk2bhg0bNgAANm3ahClTpiA9PR0ymQz5+flQqVTYvn27Y/3s2bORkJCAiIgILFy4ELt370ZVVZVX+kh0ocpm65flCdFyhNhmSVEqrLO7t3YwKEX+hUEpL5GIRVDIrE+/Rm/2cmuoKzqjGe/sOw0AEOvVAIAvTzYzs42I+gyH7xERuaaxsRELFy7Eyy+/DIVC4VheXl6O5ORkp20TExNx7NgxAEBFRcUl16vVatTU1Ditj4uLQ3R0NI4fP96HvSHqnlNN1oy+a1TnX/NKhTXpoUXHoBT5F6m3GxDMIkKl6DAaoDGwrpQv+vDIOTR3GHFVtBzGz95B85jHUKcx4GRTB4bGhnm7eUQUgOzD9xiUIiK6MovFgueeew6PPvooRowY4bROq9U6BakAQC6Xo729/YrrtVotACAsLKzTevs6V9je2l3e3tX9Ah2fl/NO28qKDIkNg0hk/b8yzJ4pZQLCrc9TMD9XF75eLrysCvbnBej531JfPW8MSnlRRIgE9WCxc18kCAI+KKsGAORnDsKfdqpx/YBIHK5uw8nGdgaliKhPOIbvMSZFRHRFb731FkJCQvDwww93WqdQKKBWq52W6XQ6hIeHO9brdLpO61UqlSNYZa8v1dX+roiNjXR5n97sF+j4vADVGgMA4IZBKkQLHQAaMUBlfW1qDWZIVTIoleGIiwve5yo6OhxAIxSKUMcyuZzPy4V85W+JQSkvinDMwMfhe76mqkWH6lYdZBIR7h7RH38CcE2MAoer23CmpQMWQXBM3U5E5C724XtmRqWIiK7oo48+Ql1dHcaMGQMAjiDTv/71L8yfPx979+512r6iogJJSUkAgKSkJJSXl3daP3HiRERHRyM+Pt5piF99fT1aWlo6DfnrjsZGNVxJgBWJrDeLru4X6Pi8nFdeaw24xoWI0Vpnzd4TTCYoZGJ0GC1oaregpUWLhgb15Q4T0Fpbrc9LR4fe8XrR6YxB/7wAPf9bsu/nbgxKedH5oBQzpXxNSaV1itWRA6OgCLHOlNgvIgShUjH0Jgtq1XokRMm92UQiCkBiDt8jIuq2HTt2OP2+YMECAMDKlSvR3NyMl156CevWrUNeXh4OHjyIbdu24Y033gAA5ObmoqCgAPfccw/S09OxYcMGNDY2IisrCwCQk5OD4uJipKSkQKVSYfny5cjIyMDgwYNdbqcgoEdBlJ7uF+iC/XkxmCyobrUGYK9RKXCq1rpcEIBouQwdRj00FnHQP0/2vl/8HAT783IhX3kuGJTyoohQa7BDY2CmlK/ZbwtKZV6jciwTi0QYpJSjoqEdp5s7GJQiIrc7X1PKyw0hIvJzKpUK7777LoqKirBmzRrExMRg0aJFGDt2LABg3LhxWLJkCZYuXYra2lokJiZi7dq1UCqVAICCggKYTCbk5eVBq9UiMzMTq1ev9l6HiGyqWjpgEYDwEAliw0Nw6oJ1SoUUNWo92s0SbzWPyGUMSnlRRMj5TKkIL7eFzjNZBByoagEAZAxWOq0bpFKgoqEdZ1p0yLzG820josAmts2Ja2FUiojIZStXrnT6PSUlBRs3brzk9tnZ2cjOzu5ynUwmQ2FhIQoLC93aRqLeqrQXOY8Jg+iiciLRCmuxcy2DUuRHxN5uQDCzZ0p1GC0QRHzj8BXHatXQ6M2IDJViRLzzmNmEKGuhvOZ2I4xmizeaR0QBzD58z+wLudRERETkc87ahu5drew8aiNabk16aLfwNp/8B1+tXhQqFUNin2kplLlSvuLoOWvhu1FXRTnOj114iBRhMgkEAI1aoxdaR0SBTMzhe0RERHQZNW16AOiylIi9ZrGOQSnyI3y1epFIJEKErYi2OTTKy60hu2N1GgDAiP5dBwr7RYQAAOq1eo+1iYiCg8T2qczZ94iIiKgrNWrrPcgA2wiOC4Xb7i0NghgGM68lyD8wKOVl9mi2hUEpn3HcHpSK7zooFWcLSjVoDB5rExEFB86+R0RERJdT02YdvjcgsnOmVKhUDKltpEeLgdcS5B8YlPIye10pc2jkFbYkT9CbLDjRoAUADL9UplS4LVOKQSkicjMO3yMiIqLLqbVlSsV3kSklEokc95dNOo82i6jHGJTyMmZK+ZaKBi3MAqBUyBAf2fmNHjg/fK9VZ4LBxGLnROQ+9jJ2zJQiIiKii7UbzGjVmQAAAy5xr2Kf4b1Zz2sJ8g8MSnnZ+ZpSzJTyBcdrrUXOR/SP6DTFqp1cJnF8A9GgZbYUEbmPY/ILBqWIiIjoIvYsqYhQiSO54WKOTCkGpchPMCjlZcyU8i32IufDL1FPyi4mzJot1dzOGfiIyH3sw/fMTMIkIiKii9SoL11Pyi7cdn/ZpGNQivwDg1JedmFNKYHfjHvdjw3tAIDkfuGX3S4mTAYAaO5gUIqI3IfD94iIiOhSatouPfOenf3+ksP3yF8wKOVl4bYxv5DI0MIAh9dVNlmDUtfEhF12O5XCFpRiphQRuRFn3yMiIqJLqbEXOb9EPSngfE2pJr1HmkTUawxKeZlELIJCZj0N9jcZ8o6WdqOjcOA1KsVlt1VdkCnFDDcichdHTSkO3yMiIqKL1LbZh+9dLlPqfKFz3qeQP2BQygfY3zjs6ZjkHadsWVIDIkMhl0kuu220QgYRAL3Jgg4j7x6JyD3sw/fMvIgkIiKii9iTGAZEXaamVIgEgACjBRyJQ36BQSkfYJ+Bj5lS3lXZbA1KDbnC0D0AkIpFiJTbvoXgED4ichMO3yMiIqJLsc++1z8y5JLbSMQihIgEp+2JfBmDUj7gfKaUzsstCW6VTR0AgGtiLj90z85RV6rD0GdtIqLgwuF7RERE1BVBEFCvsd539I+49PA9AJCLrRcSdRrep5DvY1DKB3D4nm+wD98brLpyphRwQV0pZkoRuVVTUxOysrJQUlLiWHb48GHcf//9SEtLw6RJk7Bp0yanfbZu3YqsrCykpqYiJycHZWVljnVmsxmrVq3C+PHjkZaWhrlz56Kurs6xvrGxEfPmzcOYMWOQmZmJoqIimEymvu9oFzj7HhEREXVFrTdBb7IGm+LCL50pBQChtqBUvYb3l+T7GJTyAfZpOzl8z7sqm62ZUkNczpTyzs0rUSA6ePAgZs2ahdOnTzuWtba2Ys6cOZgxYwZKS0tRVFSEFStW4MiRIwCAkpISLFu2DCtXrkRpaSmmT5+OuXPnoqPD+jddXFyMvXv3YsuWLdizZw/kcjkWLVrkOP5TTz2FsLAw7NmzB5s3b8ZXX32FdevWebTfdvbhe6wpRURERBeyZz1Fy6VXrH8rtw3fY6YU+QMGpXwAh+95n9FswdkW+/C97mVKRduCUq0sIEjkFlu3bkVhYSGefvppp+WffvoplEol8vLyIJVKMW7cOEybNg0bNmwAAGzatAlTpkxBeno6ZDIZ8vPzoVKpsH37dsf62bNnIyEhAREREVi4cCF2796NqqoqVFZWYv/+/XjuueegUCgwaNAgzJs3z3FsTztfU8orD09EREQ+yp711O8KQ/eACzKlmPRAfoBBKR9gL3Te1G6Ezmj2cmuC09kWHcwCoJCJ0T/i8umwdkqFNZioM1lgkV56Bgwi6p4JEyZg165duPfee52Wl5eXIzk52WlZYmIijh07BgCoqKi45Hq1Wo2amhqn9XFxcYiOjsbx48dRXl4OpVKJ+Ph4x/phw4ahuroabW1t7u7iFUlsn8ocvkdEREQXqldbs576deNexV5Tql7LTCnyfVJvN4CAUKkYMBsASQjqNAYMVnVv+Bi5j33mvWtUYRDZMhWuRCYRIzxEAq3BDLNC1ZfNIwoK/fr163K5VquFQuH8viiXy9He3n7F9VqtFgAQFhbWab193cX72n9vb29HVFRUt9vfzbeOzttfsJ8jU6qHqVKutqGv2dvja+1yF/bPv7F/l9+PiHxLnS1T6kpFzgHWlCL/wqCUDxCJRJDo1TCHxeJcm45BKS845eLMe3bRCqktKBXTF80iIliDRGq12mmZTqdDeHi4Y71Op+u0XqVSOQJM9vpSF+8vCEKndfbf7cfvrtjYSJe2Vyqtx5eHhiAszHqBKUismbNmAVAoQroVJJfLrd+YqlThiItzrQ2e4upz42/YP//G/hGRP7DPvOdSphRrSpEfYFDKR4j1bTCHxaKWM/B5RaVt5r3u1pOyU8plqG7Vw8SgFFGfSU5Oxt69e52WVVRUICkpCQCQlJSE8vLyTusnTpyI6OhoxMfHOw3xq6+vR0tLC5KTk2GxWNDS0oKGhgbExcUBAH788UcMGDAAkZGu3cg1Nqrhyqi7lhZrppZOb0B7u/W9X3/BEG5tu96ROXU5Op31grO5WYuGBvUVtvYskch6Q+zqc+Mv2D//xv5dfj8i8i32TKl+kd3IlLIVOm/TmaAzmq9YGJ3Im3yyptSxY8fw6KOPIiMjAzfffDPmz5+PpqYmAH07Lbg3SXTW2iXnWOzcKxyZUi5mqdmLnZvDOHyPqK9kZWWhoaEB69atg9FoxL59+7Bt2zbMnDkTAJCbm4tt27Zh3759MBqNWLduHRobG5GVlQUAyMnJQXFxMaqqqqDRaLB8+XJkZGRg8ODBGDJkCNLT07F8+XJoNBpUVVXhjTfeQG5ursvtFATXf6w7nj+GRHw+CNWTIXw9aUNf//hqu9g/9o/9u/x+RORb7FlP3al/KxUJCBE770fkq3wuKKXT6fDYY48hLS0NX3zxBT7++GO0tLTg17/+dZ9PC+5NYr312+0azpDgFadtNaWGuJopZSt2zuF7RH1HpVLh3XffxY4dO5CZmYlFixZh0aJFGDt2LABg3LhxWLJkCZYuXYqMjAz885//xNq1a6FUKgEABQUFuPXWW5GXl4dbb70Ver0eq1evdhx/zZo1MJlMmDx5Mh544AHccsstmDdvnhd6CqfMKM7AR0RERHauzL4nEgHKUOs1RR3rSpGP87nhe9XV1RgxYgQKCgogkUgQEhKCWbNmYf78+U7TggNwmhZ85MiRTtOCA0B+fj4++OADbN++HTNnzsSmTZtQWFiIhIQEAMDChQsxYcIEVFVVYdCgQV7rMwBI9NZMqRpmSnlcS7sRrToTALhcz0tpz5SSK2EyWyCV+Fycl8gvHT9+3On3lJQUbNy48ZLbZ2dnIzs7u8t1MpkMhYWFKCws7HJ9XFwc1qxZ0/PGutEFiVIwM12BiIiIABjNFjS1GwF0L1MKAKJDgLoOZkqR7/O5O+ihQ4fi7bffhkRyftzrzp07ccMNN/TptODeJrYHpZgp5XGnbPWkEqJCXR5vHR4isQ63EUtwtpUBRSLqHZFIBIktMGVmqhQREREBaNBaA0syicjxpfiV2DOlOAMf+Tqfy5S6kCAIWL16NT777DOsX78e7733Xp9OC95dPZ1aVyS69Dh9e6ZUrVoPAUK3itv6Cn+fUrmy5XyR8676cLnzJxKJoJRL0dhuxOmWDgyJdW34n6/w93N4Jezf5fcj3yIVi2E2W2BiUIqIiIgA1NkSF/qFd29mXgBQhtiH7zFTinybzwalNBoNfvWrX+Ho0aNYv349hg8f3qfTgruipzOSKBSXHv8batFBLAKMZgEIDUFclLxHj+FN/jpTS13HGQDAiIHRl51O/VLnLzYiFI3tRtTrzD47HXt3+es57C72j/yBRCwCzGBQioiIiACcH4LXnXpSdspQ+77MlCLf5pNBqdOnT2P27NkYOHAgNm/ejJgYaxHpvpwW3BU9mVoXADo69Jfcz2Q0ol9EKGrVenxX2QhxQpRLbfImf59S+fuzLQCAeIW0y+nUr3T+ImxTW3x3psXnpmPvLn8/h1fC/l1+P/ItUokIMAImcwC+WImIiMhldY4i592rJwVckCmlZqYU+TafqynV2tqKRx55BKNHj8Y777zjCEgBfTstuCt6MyXv5QyItIazq1v1Xp9C2FNTDvvCT2WTNXtusErRo/MXbRvXfaqx3et9CdZzyP717r2JfIvUVu3cZLF4uSVERETkC3qWKcWaUuQffC5T6sMPP0R1dTU++eQT7Nixw2ldWVkZ3n33XRQVFWHNmjWIiYm55LTgtbW1SExM7DQtuMlkQl5eHrRaLTIzM52mBfe2AVGhOFztnzPwzch9AGdrGi65Pk6lwnvvrvNcg7rJaLbgbIs1KDUkpmf1oOzFBiubO66wJRHRlZ0PSjFqSEREROcDS65kSkXbMqXqtQZYBP+qWUzBxeeCUo8++igeffTRS67vy2nBvW2ArY5UTZv/RbPrGpox47lXL7n+7y/90oOt6b6zLTqYBSBMJnHpTf5C0XLrn1FLhxEtHcZuz4hBRNQVBqWIiIjoQvZMqf4uZEpFhwAiWGfzbW43Ija8Z/c6RH3N54bvBTP78L0atf8FpfzVqSb7zHuKbs9kcTGZRAyx3lpLqtJ2PCKinpJKbEEp1pQiIiIiXJApFdn9wJJELEKMLRDFIXzkyxiU8iEJjkwp/xu+56/sQ+4GqxS9Oo6kvcnpeEREPSUVWz+amSlFREREgiCgrgeZUtbtrUEp+/5EvohBKR8SH8VMKU+zZzb1tJ6UnaSjyel4REQ9xeF7REREZKfWm6A3WSc/iXNxCJ69MDozpciXMSjlQ+zD99p0JmgNJi+3Jjicss28d00vg1JSR1CKmVJE1Dv2oJSZs+8REREFPXuWU7RcCrlM4tK+/ZgpRX6AQSkfEhEqRWSotWi2PxY79zeCIKCy2VZTqrfD9zqaAZyvUUVE1FPMlCIi6r5jx47h0UcfRUZGBm6++WbMnz8fTU3WLwsPHz6M+++/H2lpaZg0aRI2bdrktO/WrVuRlZWF1NRU5OTkoKyszLHObDZj1apVGD9+PNLS0jB37lzU1dV5tG9EwIUz77k2dA84P9yvniNxyIcxKOVjBnAIn8e0dBjRpjNBBPfVlDrTqoPJzOwGIuo5FjonIuoenU6Hxx57DGlpafjiiy/w8ccfo6WlBb/+9a/R2tqKOXPmYMaMGSgtLUVRURFWrFiBI0eOAABKSkqwbNkyrFy5EqWlpZg+fTrmzp2Ljg5r1ntxcTH27t2LLVu2YM+ePZDL5Vi0aJE3u0tBql5tzXLqyUzh9n3qmSlFPoxBKR9jH8J3rpXFzvuafajdgKhQl1NhLyY2qCGXimG2CDjDc0dEvSBhoXMiom6prq7GiBEjUFBQgJCQEKhUKsyaNQulpaX49NNPoVQqkZeXB6lUinHjxmHatGnYsGEDAGDTpk2YMmUK0tPTIZPJkJ+fD5VKhe3btzvWz549GwkJCYiIiMDChQuxe/duVFVVebPLFITqbJlSrhY5v3CfOtaUIh/GoJSPuUppzdg5y8BGn3MM3etlPSkAEF1wHNaVIqLe4PA9IqLuGTp0KN5++21IJOe/XNy5cyduuOEGlJeXIzk52Wn7xMREHDt2DABQUVFxyfVqtRo1NTVO6+Pi4hAdHY3jx4/3YY+IOrNnOfUoUyqSmVLk+6TebgA5uzpaDgA408LARl9zFDnv5dA9u2tUChyv09hm4It1yzGJKPgwKEVE5DpBELB69Wp89tlnWL9+Pd577z0oFM7XeHK5HO3t1i8ltVrtJddrtVoAQFhYWKf19nWuEIl6tr2r+wW6YH1e7FlO8VGhXfb9wudFEJyXx9tG4aj1JnQYzQgL6d3oEH9yuecl2F5DF+vp31JfPW8MSvmYq5kp5TGVTe7LlAKAIfZMqWYWOyeinjsflGJ9OiKi7tBoNPjVr36Fo0ePYv369Rg+fDgUCgXUarXTdjqdDuHh4QAAhUIBnU7Xab1KpXIEq+z1pbra3xWxsZEu79Ob/QJdsD0vDe1GAEDy1SrExXXue3R0OIBGKBTnh/fJ5TIoleEYcpUKkXIp1DoTDFIJBnexf6C63PPS1fMYjHzlb4lBKR9zlfJ8ppQgCBAFexi3D1U2Wy80hsS4KVPKdpxTHL5HRL3AQudERN13+vRpzJ49GwMHDsTmzZsRExMDAEhOTsbevXudtq2oqEBSUhIAICkpCeXl5Z3WT5w4EdHR0YiPj3ca4ldfX4+WlpZOQ/66o7FR7ZSpcSUikfVm0dX9Al2wPi9nbF94hwkWNDSoO61vbbVm73V06B3Pi05nREuLFg0NasRHhEKtM+H7yiYog6h4z5Wel2DW078l+37uFkQvS/8wMEoOEYAOowVNtqg4uZ/RbMHZFvvwPfdkSp2vKcVMKSLqOQ7fIyLqntbWVjzyyCMYPXo03nnnHUdACgCysrLQ0NCAdevWwWg0Yt++fdi2bRtmzpwJAMjNzcW2bduwb98+GI1GrFu3Do2NjcjKygIA5OTkoLi4GFVVVdBoNFi+fDkyMjIwePBgl9spCK7/9HS/QP8JtudFrTNBozcDsBYtv9Lz0tXrzj67+7k2vdf7463XS2//HgPxpzfvTe7GTCkfEyIVIz4yFDVqPc60dCA23PWCdnRlZ1t0MAtAmEzSo6KBXRlsq03VqjOhpd0IZZjMLcclouDCoBQRUfd8+OGHqK6uxieffIIdO3Y4rSsrK8O7776LoqIirFmzBjExMVi0aBHGjh0LABg3bhyWLFmCpUuXora2FomJiVi7di2USiUAoKCgACaTCXl5edBqtcjMzMTq1as93EMKdjVqaz2paLm0x/Wg7HWl7McKFt80mnGqXYpIoxmKXs60Tn2LQSkfdLVSjhq1HmdbdRh1VbS3mxOQTjnqSSncNkRSIZNggC2gWNncDmUYzx0RuU4qtiYxmxmUIiK6rEcffRSPPvroJdenpKRg48aNl1yfnZ2N7OzsLtfJZDIUFhaisLCw1+0k6qnaNluR88jQK2x5aQNs+9a2BU/N4n98U4M3vjUBkOObg2eRNbyfI4GAfA+H7/mgq2zFzjkDX9850WgNSg1xU5FzO3tdqUrWlSKiHmJNKSIiIgKAGrU1kDQgSt7jY9j3DZZMqa/PtKBo1w8AALnYAosA7D3RBJOZE8j4KmZK+aCro+3FzoMnmu1pJxqthe+Gxro5KKUKQ0lliyMTi4jIVRy+R0RERABQq+59ppR939ogCUr9eX8VLAIwpr8Y8WINPm+KhsZgxpFqNeK83Tgv0Ov1OHLkkNMykQiYNOkW7zSoCwxK+aCrmSnV5+yZUsPiXJ/W93Icxc6bee6IqGfsQSmzIICzsBIREQWvGtvwvQG9Gb4XdT4oZREEiAP4uuJ0cwe+PNkMEYBpQ6T4ugrIvEaJ/5Q34ptzbbjV/RPH+bwjRw7hjx/vQfw1SY5ltZXlUCrDkZR0oxdbdh6DUj5okG28a2VzB29I+oDJIjgymYbG9c3wPWZKEVFP2YNSgPX9SibhZwAREVEwsg+5sweWeqJfeAjEIsBoFtDUbkRcAE+ktelQNQBg/LUx6K84PzKmpLIFWoMZ9cbgnIgq/pokDB4xytvNuCTWlPJB16gUEAFo05nQ3GH0dnMCzpmWDhjNAuRSMRJ6MT67K/YaVWdbdRy3TEQ9IrkoKEVERETByV6cvDfD96QSsSMQFcjFzs0WATu+rwMA3J820LFcJBI5SrbUGAI3IOfPGJTyQXKZBAm2ulInG5lx424nGqxR82tjw9yevto/IgQKmRhmi8CaYETUIyKRyBGYYlCKiIgoOJktAmo1BgC9K3R+4f7n2gK3rtS359rQ0mFEZKgUmYOVTuvsJVvqjDLoTLy28jUMSvmoIY5Z3BiUcrcfG+1D99xbTwqw3kxeo7JG4k/y3BFRDzmKnXMGPiIioqBUr9HDbBEgFYt6PeQuwTb871wAZ0rt/rERADD+WhWkEucwR1y4DFFyKSwQ4WgzR7P4GgalfJR9GNjJJhbMdrcTDbYi526eec8usZ812FVRr+2T4xNR4OMMfERERMGtyjbp1cBoudPQ/p6wT6RVFcATadmDUhOHxXZaJxKJMNhWt/kYg1I+h0EpH3WtLSjFgtnuV9GgAdA3mVIAkGQLSv1Qr+mT4xNR4DsflOKFExERUTCqspUCGWQLKPXGIEdQKjAzpaqaO3CqqQMSsQjjhsR0uc1VtvI4x1p4beVrGJTyUdfasnhOsaaUW7UbzKi0ZZ+N6B/RJ48x3HbcH+oYlCKinmGmFBERUXA7a8tqulrZ+4mZ7Mc4G6CZUvsqmwEAowZGIVIu7XKbhKhQiCCgUWed+Ip8B4NSPuoaW6ZUjVqPdoPZy60JHOX1GggA4sJDENtH06HaM6Wq2/RQ60x98hhEFNikEtaUIiIiCmb2rKar3ZApZT9GTZseBlPgZQrttwWlMq9RXXIbmUQMpdTktD35BgalfJRSIYNKIQPAIXzudLzOWudpeB9lSQFAlFzmKCZY3sBsKSJynVRs/Xg2M1OKiIgoKNmzedwxfC8mTIYwmQQCgOoAK3Zutgg4WNUKALjpoln3LhZrD0qdbunjVpErGJTyYcNsGTflrE3kNsfr1ACA4fF9F5QCgOR+9iF8LHZORK7j8D0iIqLgJQiCIyjljuF7IpEIV9mOE2hD147XaaDWmxAeIsF1AyIvu22szAgAKD3dwi/+fAiDUj5suC2wcZyBDbfxRKYUACT3D7c9HgOKROQ6BqWIiIiCV2O7ER1GC8Qi6+x77hCoxc5LbVlPYwYpHddPlxIlMUMuAdp0Jt6n+RAGpXzY8HgGNtzJaLbgxwZ7UKpvZt6zswe9vq9V9+njEFFgknD2PSIioqBlL0g+IDIUMol7btkDtdi5vT7UlYbuAYBYBCQrrc9nCetK+QwGpXzYiP7W9MPyeg3TC92gokELk0VAZKgUA6Pc843DpdyYEAUAONHQDo2exc6JyDUyW6Fzg4nv/URERMGmyjF0r/f1pOyudmRKBU5QSmc049BZaz2pjMsUOb/QdSprCIR1pXwHg1I+bLBKAblUjA6jJaDePLzlyNk2AMCNCZEQiS6f2tlbseEhGBgthwDgaA2zpYjINQqZBACgM3H2VSIiomBzqslW5FzlvqDUYNuxTjUGziRah8+2wWAW0D8iBENiuvdcjVCKbPu2QmfkdZYvYFDKh0nEIiTZip3/4IND+CyCgE++r8VvPjmOxuHZOFjVitYOo7ebdUmHq61BqVFXRXnk8VISrJlu39gel4iou+xBqQ4jh+8REREFm4p6a8kR+72gOwyLsx6ruk0fMCM59p+2DsHLuEbV7aSD/goR4iNDYTQLOHyW92m+gEEpH5dsq010rNa3glJnWjrwv+vL8ML249h2tBZ61bX4+kwrNh8+h2+q2yAIvjfk5LAttXPUwGiPPF6KbQjft+eYKUVErpHLrB/P/AaPiIgo+NhnX0+Mc19QSqmQoX9ECAA46uz6u5LKFgBAxjXKbu8jEomQYas/ZQ9qkXcxKOXjro+3Ztt8e853orgVDVo8tvEwjtdpEBEqwaOZgxB98jMMjAqFRQD2VbZgX2WLTwWmatp0qNMYIBEBNyRcfqpQd7lxoD0o5ZtBOiLyXeczpRiUIiIiCiatHUbUaQwAzmc3uUuiLfOqIgCCUs3tBseEYBmDu1dPyu4mWxBrvy2oRd7FoJSPS73amtXzbY0aepP3h3E0ag345ZZv0Kg1IDEuHJvyx6DglmsRXnsY917fH+OGWN8Qvj2nxiEfSoe0p2Ym949w3Oz1teR+4QiVitGqM+FkU+CM3SaivqewZUpx+B4REVFwsQeMBkaFIiJU6tZjJ8ZZR+GU1/t/UKrUVqg8MS4cseEhLu17ky2IdbxOg5Z23y0/EywYlPJxg5RyxIaHwGgWcLTGu0Eek9mCBdu+Q53GgGtUCrz5wEjERYQ61otEItyYEOkITB2oasXZFp23muukzDZ0b+RAz9STAgCZRIxRtsdjFJ6IXCG3Bc9NFgFGMwNTREREwcI+tC6xX4Tbj53YL8zpMfzZ/h4M3bOLCw/BsLgwCAAOVLW4s1nUA+4NvZLbiUQipF0VjX/9UI+yM60YfbXSa235c2kVDp1tQ3iIBL+bcQOiFbIut7sxIRLN7QYcq9Pis4oG5IxM8HBLnQmCgH2nrOOFb3IxtbO3xg5RYf/pFpRUNuPB0Vd59LHJ2YzcB3C2puGS6+NUKrz37jrPNYjoMmRiESQiEcyCAJ3RApmE3yEREREFA3sWU2JcmNuPnXRBppQgCH0+I3lfEQQBJZXni5z3RMZgFX5saMdXp5pwx/B+7mweuYhBKT+QdrU1KHXojPcypcrrNXj7q9MAgOfvSMSQmMu/SY4bokKdxoCmdiP2nmyCNysqnW7uwNlWHaRiEW6yFbXzlMxrVABO4mBVC4xm3lh6U11DM2Y89+ol1//9pV96sDVElycSiaCQiaExmNFhNCNSzo9rIiKiYFDRh5lS18QoIBWLoDWYca5Nj4HRcrc/hidUtehQo9ZDJhFh9NU9m8Tq5qExeP/rs/jiRBMsggCxnwboAgHvkP2A/Q/tcHUrTF4YxmEyW/CbHT/AZBFw67BY3D2i/xX3kUrEuC0xFiIRcKqpA/q4ZA+0tGtf2bKkUq+ORliIZ+pJ2SX2C0dMmAwdRguOVPtOjS0i8n32IXwdPlBPkIiIiPqezmh2FO8e3t/9QSmZROyY0c+XJtJylX0UzMiBUT2uFzz66miEh0jQ1G7E9z42032wYVDKDwyNC3MENg5WtXr88dftr8LxOg2i5VIsyErqdppnbHgI0q6y1lTSDJuMpnZDXzbzkr482QQAGD/Es0P3AEAsEjlSSr88ySlHiaj77MXOdZyBj4iIKCgcrVHDaBYQFx6CQcq+yWJKsyU8fH3G8/eV7vJ5hbUkx/ghMT0+hkwixljb/eGeHxvd0i7qGQal/IBYJMLEYbEAzv8BekpFvRbv7LMO2yuclIg4F2c2SL0qGjFhMgiyMLz074q+aOJlafQmxxvu+Gt7/qbVG/Zz968f6iEI3hzISET+xP7NXweDUkREREHha1sCwuiro/us3pMjKOWFZAd3aG434GtbcfJJyXG9OtaEodb7w2AJSpktAmra9DirD0Gb3ncy8RmU8hO3JVr/4P77YyMsHgpsmCwCXtx53DFs764RrheAk4hFuHVYLCBY8K8fGvCv4/V90NJL+095A/QmC4bEKDA01v3FArvjlqExUMjEqG7V4dtzaq+0gYj8j9yWKdVh9J2LBiIiIuo7X9tmDB89qGd1kroj7SrrsU82tXttJEtv/LeiEWbBOrzxaqWiV8eacG0sJCLgh3otTjW1u6mFvqmquQObDp3DtqO1+LY9HNsqdN5ukgODUn7ipsFKhIdIUK8x4LsazwQ2/lJahe9rNYiSS7HgjsQeR+vjIkIQVlUCAPjtvyvQ7ME3v+3f1QIA7r0+3muzS8hlEke21KceDsoRkf+yZ0px+B4REVHgM5ot+MZWgzath8W7u0MZJsMw28x+h/xwCN9/yq0jhyYl9S5LCrA+F2NtQwA/sd03BqIqfQh2HKuHWm9CqFSM/jIDbhsc6u1mOTAo5SdCpGLH8LPt39X1+eOdaNRi7VeVAIBnbhuGuIjevWjDqkowLC4MzR1GvPSfH93RxCs616Zz1OC657orF2fvS3fZisN/eqwOBhYtJqJuOD98j+8ZREREge6bc23QmyxQKWS49goznffW6KuVAIDS0y19+jjuVtOmQ0mltU7v5F4O3bO793rrfdon39d5bESSJx2sN+O7duvraUT/CDw4eiDSIrS4KtKzE4BdDoNSfiQ7ZQAA4J9Ha6HRm/rscYxmC5Z+chxGs4Cbr41x/KH2hkgwY8ndwyERAbuO1+M/P/R9xtCWw+cAAOmDojEgyrvTnY4dokK/iBA0tRux41jfBxWJyP8pHMP3mClFREQU6D49Zr0/Gn+tqs9HeNxsS3b4T3kDTBb/CcRs/aYGFsF6f3eNmwJ3E4fFIjxEgnNtepT5YebY5Xx1qgnrjpkAiDCifwQmDFUhROJ7ISDfaxFdUsZgJYbEKNBuNOOfR/suvfC13Scdw/Z+5cJse1dyXXwkHskYBABYvqsc1a19N461tcOITWXVAICfjL6qzx6nu2QSsaMd6w+cCcgovC8yWwTUa/SoqNfCJFfCaGbGCfkPe6aU1mDmJAlEREQBzGi2OGrv3nNdfJ8/XuY1SqgUMjS1G7G/0j9mCDeZLfjomxoAQO6ogW47rlwmwZ222snrD5xx23G97Uh1G+Z/9B3MAjBAZsDNQ/s+2NlTDEr5EZFIhPtTrYGNv359Fvo+GAa2/btavP/1WQDAkruHIz7SvWNNfzb2GlwXH4FWnQnP/+O7PquVsvHrs2g3mpHULxy32Oo5edt9IxMQHiLBycZ2fFbu2VkUg4laZ8KHR87hF1u+weQ/fIl73yrBg38+iLrUfKzbfwYflFXjy5NNqFXreaNPPi1aLoVYBOhNFrTp+i47loiIiLzry5PNaNWZEBsegjGDlX3+eFKJ2BGI+eR7/xjFsf27OjRqDYgND8Ftie69v3tozCCIRcAXJ5rwQ53Grcf2hop6LZ768FvoTBZcpxIhJVwLsY8GpAAGpfzO1Bvi0S8iBNWtOqw/UOXWYx843YJlO38AAPzvTYMcxbndKUQqxm+nXw+lQoZjdRr86uPvYXJz9srp5g78xRblfjRzsM/8AUaESvGgLVvq95/92KdDMINRvUaPV/97AlP/WIIVu8qx71QztAYzJCJApZBBZNIDANp0Jhyt0eAf39bi79/U4od6Dcx+lLZMwUMqEaOfrZ5fjVrv5dYQERFRX9l6xFp25K4R/SARe+bexV5z9/PyBjRqfXsWvg6jGcV7TwEAHhpzNaRuHoI2WKXA5GRrkM5eV9lfnWnpwBNbvoFab0JKQhTmXC+Dh15SPcaglJ8JC5HglxOHAgD+VFLltqkrSyqb8dTWb2GyCJiUFIeCW4a45bhdGRAlx++yr0eoVIwvTjTh1/885rasL5NFwIs7jkNvsuCmwUq3FcBzl/yMQbhaKUedxoBX/3uCmTpuUNXcgaJPf0D22/ux/sAZtBvNGBobhiduuRYbHh6NL566BbsKxiHhQDEeHnMVsobHITEuDBIR0KA14L8VTfigrBrtA9PRbmDtHvItCVHWoNS5NgaliIiIAtGB0y3Ye7IJEhGQMzLBY497/YBIXD8gEjqTBX/80rcDMetKTqNBa8DAaDkeSHXf0L0L/TRzMCQi4POKRscMf/7mTEsHCjYdQaPWgMS4cKzOuQGhEh+PSAGQersBntbY2IjFixdj//79kEgkmD59Op5//nlIpf7zVNw5oh/+/m0NDpxuwVMffos//U8qVGEhPTqWIAjYdKgar3x+AiaLgPHXqvCbe4b3eXbRqKuisWra9XjuH0fxWXkD5m06gqIpI3pVkNwiCPi/ncdxuLoNYTIJFt+V7DNZUnZymQQL7kjCE5u/wd+/qcFglQIP3zTI280CAMzIfQBnay79BhynUuG9d9d5rkFX8O25Nmw4cBb/Ka+HPdEp9aooPJIxCDdfG9PlmGm5TIIhMWEYEhOGsUPMOF6nwdFzGmgNZmDobZi2tgQPpA7ErLSroAyTebhH5G2++PkwICoUOGudbYaIiDzPFz8bgpVer8dXX32LlhYtLvxed+TIVISG+s709q4wmi145XPrzOQ5owa6rXh3d4hEIjx161DM+eAw/v7NOeSMSsDw/hEee/zu2nuiCX8qsY4QenLitQiR9k1eTWK/cPxvxiD8qaQKq/5VjuviI5Dg5cmyXHGsVo1n/34UdRoDBinleG3mjYiS+8f9TNC9mz711FOIj4/Hnj170NDQgLlz52LdunV47LHHvN20bhOJRCiaMgKPbijD2VYdHtt4GKumXY/EfuEuHae8XoNXPj/hmAo0a3g/LL17eJ/9oV/s5qExeG1mCgo/Oooj1W34yXsHMWf8EMwcmeByG1o6jFi+qxyflTdAIgJ+c89wn30TybxGhaduHYrV/z2BNbtPol5jwC8mXguZh2dCMJgsaNAaYDBZYIGAs1oxJv/iZcgkIoRIxZ0Cen9/6ZcebV9XNHoT/lvRiE2HqnG0Ru1YPmFoDB65aRBSr47u9rEUMglSr4pGSkIUyuu1+PJoBdoQg7f3ncb6A2cw7cYBuOe6/rgxIdJniwKSe/ni50N8ZChEANR6MzR6EyJCg+5jm4hcJAgCvqtR44d6LZTRLbj9mmgA/BzrKV/8bAhWR44cwp92fgVVwrWOZbWV5ZgD4KabMr3XsB4yWwQs+eQ4fqjXIiJUgtnjBnu8DWlXR+P2pDh8Vt6AZ7Z+i3d+kur1Wcsv9NWpJiz85/cQYM0isw+x6yuPjb0Ge35sQkWDFj//2xH8ITcFVysVffqYvWUyW/C3Q9X4w56TMJgFXBsbhjdyUxAX4T+B2qC6uq2srMT+/fuxe/duKBQKDBo0CPPmzcNLL73kdx8sMWEheDUnBQWbj+B0cwceXv81pt4Qj6k3xOOGhChIuxg4KggCzrbqUHq6BbuO1zuCUSESEQpuuRY/GX2Vx2++0wcp8V7eaLzwyTF8e06N33/2I9aVnMa918djwtAYjIiPQHhI1y9TQRDwY2M7/nW8HpsPVaNVZ4JELMJv7h6O25J8a9jexfLGXA2N3oS3953G+1+fxX8rGvA/6VdjcnKcW95A9CYL6jV61KqtP3X2fzUGx+/NHUbnnUY9jI22GQtFsA4VDQ+RICJUiogQCToS0vDfigYMiJQjPioU0XJpn79e2g1mlNdr8F2tBl+ebMKB0y2OaWtlEhHuHNEfeelXIalfz7/VkYhFGBEfge/fW4fCVWuxrqQKx+o02HSoGpsOVSMhKhQTh8Vi5MAo3JgQhYSoUAapApCvfj6ESMSIiwhBvcaA0tMtuC0xlq8/IurSmZYO7Pi+Dtu/q0VVy/nsynV5qbhhQJQXW+a/fPWzIZBZBAFtHSY0aA1o1Boc/za2G3DmnBH1MTeiXR6LUKkYYTIJRAYZTrVZMKhNh9jwEI9/ydsTgiDgWJ01OaDsTCukYhFWTL2uxyNfeuvXWUk41diOk03teGRDGX5561DckdzPY4kKXalq7sCGg2ew9cg5WAQgfVA0CicN6/PHDZGK8WrOjXj8b4dxpkWH/3nvIH6aORjZKQO8dn4upU6tx2flDdh0qBqVzR0AgFuGxmDpPcP9JkPKLqiCUuXl5VAqlYiPPz/N5rBhw1BdXY22tjZERfnXB/aQ2DCsf3g0Xtz5A7440YS/f1ODv39TgxCJCFdFKxAWIoFCJobJIqBBa0CDxgDdBbWbxCLY6kdd69UI8CCVAmsfTMW2b2vw9leVqNMYsP7AGceUnDFhMlytVEAuFUMqEcEiAK0dRlS1dECjP18D6NqYMLx473CMiI/0Vldc8vjNQzAiPgLLd5Wjuk2P3332I3732Y9IiArF1UoFYsNDEBMmQ4hEDLFYBKlIBLEYMJkF6E0Wx4/OZIbeZEFTuxHN7QY0tRutw9G6IVQqRqhUDIlIhNa2VohCwmEWBAiwTkOvNZhRp7EVPhw2CYUffefYVy4Vo39kKKLkUkSGSh3/hkjFkEnEkIlF1n8lIkjEIggCIACOOlr2tGujxQKd0YIOoxk6owUagwl1agPqNNbg2cVVt4bEKHD3df1x38gExLjxw0EEAZOT+2FSUhz2V7Zg29Ea7P6xEefa9PigrBof2AJ2CpkYAyLlGBBl7Xt4iBRhIRKEhUgQIhFDBEAkAsQikeNfscia4SiC/TkAAMHxHAjo/Nxc+PvFywSnZdbfskZehWvCg+ot3a18+fPhpsFKfPJdHSoa2tFhtGBAVCikYhEkttdYa4cUEan34PMqA8qFaq+181IiIuTQaAJ3+KGv9a+7pQq7W9EwIiIUGo3+Cse98tG6067utqk723WnZqNIBISFhUKrvXzNNnc+p67UkmxpbUFH+6VrhwoAOkwCGnUCKtvMOKc9f40XKgGSlBJkDI1Fci++uAl23vhsMJktePvLkzhV2wCj0QgxrNcRYhGQEB+PEJkUEpH12koiFjmuO4Dz1x7A+esO6/fU1uX2be3XFIDzNYljGTpfr11u2YWvavu1yYXHQxfLjGYBGr0JbToTNHoTWnVGNGqt17Gmy05AEwK0qy/4PQJlh4z47aH9AKwz18ZFhCA2LASx4SEID5FALpNALhVDLpM4PWf25+j8c2i/Zrvwuuv882O56Dm4+DmxdHGNduF2WoMZtWo9jtVqcLbV+rkhl4qx5O7hGDsk5jJ97ltKhQyv5abgF5u/wcmmdiz55Dhe+k8FbhgQiauiFYgIlSIyVOIIUl3utWURbH0XBMfz5XhuLniOLlwmQIBZAJrbDTjXpseZlg6cuSCwnn3jAMyfnOixgGP/yFAU3z8Si7cfw6GzbfjDF6fw5t5TGBYXjsGqMMSEyaC036OJrF9wW6/3ra+fi183l/q76s7f1IWvo3aDGS0dRjS1G3GyqR3Vreefo2i5FHMnDMF9IxN8rnxNdwTVHYxWq4VC4Rx8sf/e3t7e7Q8Wsbj7FyiA/aInDKEy8SX3Cw8Lg7gHf2exESF4deaNOHK2DX//5hxKKlug0ZtRrzUAWudtpRIxVCESJPePwLghKkxOisNAZe/TM93RvxCxCDNTE5CdEo8vTzXjvxUNKKtqQ2O7EQazgBONXV2UiRATHoK0gVG4+/r+mJgY22WGWG/15fm7PTkO465V4eOjdfjXD/X4vkYDtd6M72t7PhWpSCRChC041D8iBP0jQtEvQoZ+kaHoFx6K+MgQ9IsIRb+IEETZsp1EIuCBhx7C3U8sh8kswGCyBofaDRZo9SZojGZUHD2Eodenoq5Nh+YO68yBTe3WN8a+Eh4qRVy4DEn9IpAyMAoThsbgmhjXA6iunUMRxg1VYdxQFXRGM0oqW3DoTCuO1mpQUa+F2SKgXmuw/o35kA++Oo5/F97p8nsTWbnj88HVzwapVILIyEho6s+i6RIZoQCgAHBTrBTfaeRo1ZnQqrt45s4IXDP9l9h60gScPNX9BhBRABEjXCZAd+Yo2r/bjeaKEpwz6lAaFob7dn2OgQOv6vaR+NlwnjfuHU7Ut+ODw7X2PZ1X1td17yB+TC6TAADCpEBUiAhRMiAqVIRIKdDW0oizbXqERihhsIhgFETQ6gwQy+TQCVKYBcAsALVqA2rVvnWddjGlXIobY8WYNkSCmI5KHDrU80LjJ05UoKW6FSLh/OusrfY0ToRrILM9n93x3CgBn58JwRc1FrQZgKM1Ghyt6fk9SW9EhUqRpBThjqslSFS24btvv3b5GL19XuYOF3BAFYovzllQpRFQ3aZHtQ9NPBMZKsWgCBHG9BdjTH8xFEI1jhzu/OXkiRMVaKttQl3I+eyptrrTkEiSexTX6AsiIYim/9q1axcWLVqEkpISx7Ljx49j+vTpOHDgACIj/SPDhoiI3IufD0REdDF+NhAR9T3fH3TrRklJSWhpaUFDw/kZxn788UcMGDCAHypEREGMnw9ERHQxfjYQEfW9oApKDRkyBOnp6Vi+fDk0Gg2qqqrwxhtvIDc319tNIyIiL+LnAxERXYyfDUREfS+ohu8BQENDA1588UWUlJRALBZjxowZKCwshETS/fG2REQUePj5QEREF+NnAxFR3wq6oBQREREREREREXlfUA3fIyIiIiIiIiIi38CgFBEREREREREReRyDUkRERERERERE5HEMShERERERERERkccxKOVmTU1NyMrKQklJySW3+e9//4tp06YhNTUV99xzDz777DMPtrB3utO/xx57DCkpKUhLS3P87N6924OtdN2xY8fw6KOPIiMjAzfffDPmz5+PpqamLrf1x/PnSv/88fwBwFdffYX7778fo0ePxs0334xly5ZBp9N1ua0/nkNX+uev5zAQNTY2Yt68eRgzZgwyMzNRVFQEk8nU5bb++LoEXOvj+++/j7vuugtpaWm46667sGHDBg+31nWu9M/uhx9+wKhRoy77WekrXOnf/v37cf/99yMtLQ233nor3nrrLQ+31nWu9O/Pf/4zJk2ahNGjR2PatGnYuXOnh1vbc4F+/RlsunM+g40r17LBxJXrw2BkNpvx8MMPY8GCBd5uik/Yvn07rr/+eqd7hOeee87bzQIEcpsDBw4Id9xxh5CcnCzs27evy21OnjwppKSkCLt27RKMRqPwz3/+Uxg5cqRQU1Pj4da6rjv9EwRByMzMFEpKSjzYst7p6OgQbr75ZuHVV18V9Hq90NTUJMyePVt4/PHHO23rj+fPlf4Jgv+dP0EQhMbGRiElJUXYsmWLYDabhdraWmHq1KnCq6++2mlbfzyHrvRPEPzzHAaqhx56SHj22WeF9vZ24fTp08KUKVOEtWvXdtrOH1+Xdt3t465du4QxY8YIZWVlgsViEb7++mthzJgxwo4dO7zQ6u7rbv/s2tvbhalTp17xs9JXdLd/FRUVwqhRo4QPP/xQsFgswvfffy9kZGQIn3zyiRda3X3d7d/nn38ujBs3Tvjxxx8FQRCEHTt2CCNGjBCqqqo83WSXBfr1Z7Dp7vV2MHH1WjZYuHp9GIxWr14tjBgxQnj++ee93RSfsHLlSmHBggXebkYnzJRyk61bt6KwsBBPP/30FbcbM2YM7rjjDkilUtx777246aab8MEHH3iopT3T3f5VVVWhtbUV119/vYda1nvV1dUYMWIECgoKEBISApVKhVmzZqG0tLTTtv54/lzpnz+ePwCIiYnBl19+iZycHIhEIrS0tECv1yMmJqbTtv54Dl3pn7+ew0BUWVmJ/fv347nnnoNCocCgQYMwb968LrOD/PF1CbjWx9raWsyePRupqakQiURIS0tDZmZml+9FvsKV/tn95je/wR133OHBVvacK/3761//ismTJ+O+++6DSCTCiBEjsHHjRqSnp3uh5d3jSv9OnDgBQRAcPxKJBDKZDFKp1Ast775Av/4MNt09n8HGlWvZYOLK9WEw+uqrr/Dpp5/izjvv9HZTfMY333yDG2+80dvN6IRBKTeZMGECdu3ahXvvvfey21VUVCA5OdlpWWJiIo4dO9aXzeu17vbvm2++QXh4OJ5++mmMHTsWU6dOxebNmz3Uyp4ZOnQo3n77bUgkEseynTt34oYbbui0rT+eP1f654/nzy4iIgIAcOutt2LatGno168fcnJyOm3nj+cQ6H7//PkcBpry8nIolUrEx8c7lg0bNgzV1dVoa2tz2tZfX5eu9DEvLw9z5sxx/N7Y2IjS0lKfvDiyc6V/APD3v/8dlZWVeOKJJzzZzB5zpX9HjhzB1VdfjWeeeQaZmZm45557sH//fvTr18/Tze42V/o3ZcoUxMXF4d5778UNN9yAX/7yl1i5ciUGDBjg6Wa7JNCvP4NNd89nsHHlWjbYdPf6MNg0NjZi4cKFePnll6FQKLzdHJ9gsVhw9OhRfP7557j99tsxceJELF68GK2trd5uGoNS7tKvX79ufZum1Wo7/WHI5XK0t7f3VdPcorv9MxgMSE1NxdNPP409e/ZgwYIFKCoqwieffOKBVvaeIAh45ZVX8Nlnn2HhwoWd1vvr+bO7Uv/8/fwBwKeffordu3dDLBbjySef7LTe38/hlfoXCOcwUHT1WrP/fvHrzV9fl6708UL19fWYPXs2brzxRkydOrVP29gbrvTvxx9/xCuvvIKXX37Z6cbJl7nSv9bWVrz33nuYPn069u7dixdffBGrVq3Cjh07PNZeV7nSP6PRiBEjRmDTpk04dOgQXnzxRSxcuBDHjx/3WHt7ItCvP4NNd89nMLvStWywutL1YTCxWCx47rnn8Oijj2LEiBHebo7PaGpqwvXXX4+77roL27dvx8aNG3Hq1CmfqCnFoJSHKRSKTsXndDodwsPDvdQi95oxYwbefvttXH/99ZDJZJgwYQJmzJjhFzfEGo0GTz75JLZt24b169dj+PDhnbbx5/PXnf758/mzk8vliI+Px3PPPYc9e/Z0iv778zkErty/QDiHgSIsLAwdHR1Oy+y/X/x689fXpSt9tDt06BByc3Nx7bXXori42KdvwLrbP71ej6effhq//vWvMXDgQI+2sTdcOX8hISGYPHkybrvtNkilUtx0003Izs726fcWV/q3bNkyJCUlYeTIkQgJCcHMmTORmpqKrVu3eqy9fclf32OILtSda9lgdaXrw2Dy1ltvISQkBA8//LC3m+JT4uLisGHDBuTm5kKhUGDgwIF47rnnsHv3bmg0Gq+2jUEpD0tOTkZ5ebnTsoqKCiQlJXmpRe61efPmTheoBoMBoaGhXmpR95w+fRozZ86ERqPB5s2bL/kh56/nr7v989fz9/XXX+Puu++GwWBwLDMYDJDJZJ2+GfbHc+hK//z1HAaipKQktLS0oKGhwbHsxx9/xIABAxAZGem0rT++LgHX+ghYX5/5+fl45JFH8PLLLyMkJMSTzXVZd/v3zTff4NSpU1i4cCHGjBmDMWPGAAB+/vOfY+nSpZ5udre5cv6GDRvm9B4EWGc1EgTBI23tCVf6V11d3al/UqkUMpnMI23ta/76HkNk191r2WDiyvVhMPnoo4+wf/9+x+fxxx9/jI8//tjx2Rysjh07ht/97ndOn9sGgwFisdjr12MMSnnY9OnTsX//fmzfvh0mkwnbt2/H/v37kZ2d7e2muYVGo8GyZcvw3XffwWKx4PPPP8fHH3+MWbNmebtpl9Ta2opHHnkEo0ePxjvvvHPZ4oD+eP5c6Z8/nj8AGD58OHQ6HV5++WUYDAacPXsWq1atQm5ubqc3WX88h670z1/PYSAaMmQI0tPTsXz5cmg0GlRVVeGNN95Abm5up2398XUJuNbHnTt3YunSpXjttdfw05/+1AutdV13+zdmzBgcOXIEBw4ccPwAwJtvvunTQSlXzt+DDz6If//73/joo48gCAJKS0uxbds2n36NutK/SZMmYf369Th69CgsFgt27NiBkpKSgKnt46/vMUSAa9eywcSV68NgsmPHDnz99deOz+OpU6di6tSpjs/mYKVUKrFhwwa8/fbbMJlMqK6uxksvvYT77rvP+68Xr837F8AunsI1NTVV+Oijjxy/7969W5g+fbqQmpoqTJkyRfj888+90cweu1z/LBaL8Ic//EG4/fbbhZEjRwpTpkzx+emi3333XSE5OVkYNWqUkJqa6vQjCP5//lzpnz+eP7vy8nLh0UcfFcaMGSPcfvvtwu9//3tBr9cLguD/51AQut8/fz6Hgai+vl74xS9+IWRkZAhjx44VVq5cKZhMJkEQAuN1KQjd7+PUqVOFESNGdHofWrx4sTebf0WunMML+ct07q707/PPPxdycnKEtLQ0YfLkycL777/vrWZ3W3f7ZzQahTVr1gi33367MHr0aOG+++4Tdu/e7c2muyzQrz+Djb+8h3jCla5lg9nlrg/J6vnnnxeef/55bzfDJ5SUlAizZs0S0tLShLFjxwrLli0TdDqdt5sliATBh/OuiYiIiIiIiIgoIHH4HhEREREREREReRyDUkRERERERERE5HEMShERERERERERkccxKEVERERERERERB7HoBQREREREREREXkcg1JERERERERERORxDEoREREREREREZHHMShFREREREREREQex6AUERERERERERF5HINSRERERERERETkcQxKERERERERERGRxzEoRUREREREREREHsegFBEREREREREReRyDUkRERERERERE5HEMShERERERERERkccxKEVERERERERERB7HoBQREREREREREXkcg1JERERERERERORxDEoREREREREREZHHMShFREREREREREQex6AUERERERERERF5HINSRERERERERETkcQxKERERERERERGRxzEoRUREREREREREHsegFBEREREREREReRyDUkRERERERERE5HEMShERERERERERkccxKEVERERERERERB7HoBQREREREREREXkcg1JERERERERERORxDEoREREREREREZHHMShFREREREREREQex6AUERERERERERF5HINSRERERH1MEARvN4GIiPoQ3+fdh89lcGFQishPlZSUYPjw4SgpKfF2U4iI6ALbt2/H7bffjpSUFLzwwguoqKjAT37ykz55rA8//BDDhw/HmTNn+uT4RETUmbve5xcsWIBJkyb1QQv9V3FxMd555x1vN4M8iEEpIiIiIjf6zW9+g/79++Ptt9/GT3/6U3zyyScoKyvzdrOIiMhN+D7fd1avXo2Ojg5vN4M8SOrtBhAREREFkpaWFtx8883IzMz0dlOIiKgP8H2eyH2YKUXkJkajEb/73e8wceJEjBw5Ej/72c/w97//3TGsYsGCBXjkkUewZMkSjBkzBvfddx9MJhOamprwm9/8BrfffjtuvPFGZGRkoKCgoNNQjI0bN+Kuu+7CyJEj8dBDD6G6urpTG6qrq/HMM88gIyMDo0aNwiOPPILvvvvOU08BEZHfO3r0KB555BGkp6cjLS0N+fn5OHz4sGP9jh07MH36dIwcORIzZsxAWVkZrr/+enz44YeOYdUA8Ic//AHDhw/HggUL8PrrrwMAhg8fjtdee82l9mzatAk5OTlITU3FyJEjkZ2dje3bt3fa7uuvv8aMGTOQkpKCadOmddpGrVZjxYoVuOOOO5CSkoKpU6di8+bNjvWLFy/G2LFjYTKZnPZ76aWXkJGRAYPBAAD44Ycf8Pjjj2P06NEYPXo0CgoKUFVV5VKfiIi8ydfe5wHggw8+wG233YaRI0d2ef1eWlqKn/3sZ7jppptw4403YtKkSXjttddgsVgc22zfvt3R7rFjx6KwsBB1dXVOx9m0aROmTJmCG2+8Ebfddhtee+01p/f9BQsW4Gc/+xn+9re/4Y477sDIkSPx4IMP4uTJk/jss88wbdo0jBo1Cvfffz++//57p2MfOHAADz30EEaNGoWMjAw8//zzaGpqcqz/8MMPcf311+Pw4cOYNWsWUlJScNttt2Ht2rWObezP7euvv+74PwU+BqWI3OSFF17An//8Zzz00EP4wx/+gLi4OCxevNhpmwMHDqCyshKvvfYaCgoKIJFI8Pjjj2Pv3r149tln8c4772DevHn48ssv8cILLzj2W79+PZYsWYJbbrkFb7zxBkaNGtXp2E1NTXjwwQdx9OhRLF68GC+//DIsFgvy8vLw448/euQ5ICLyZxqNBo899hhUKhXWrFmDV155BR0dHfjZz34GtVqNf//73/jlL3+JpKQkvP7667jzzjsxd+5cx03BDTfcgA8++AAAkJubiw8++AC/+MUvkJubC8B603H//fd3uz0bNmzACy+8gMmTJ+Ott97CSy+9BJlMhueee67TFxOLFy/G3XffjT/84Q9ITEzE008/jS+++AIAoNPp8D//8z/4xz/+gZ/+9Kd44403kJ6ejoULF+LNN98EAGRnZ6O5uRlfffWV45iCIGD79u24++67ERISgpMnT+LBBx9EY2MjVq5ciaKiIlRVVeEnP/kJGhsbe/7EExF5iK+9zwNATU0NXnvtNTz11FP4/e9/j9bWVvzv//6vI6Bz7Ngx5OfnQ6lU4pVXXkFxcTFGjx6N119/Hf/85z8BAAcPHkRhYSHuvPNOrF27Fr/61a+wb98+PPvss47Heeutt7B48WKMGzcOb775JvLy8rB27Vqnew4AOHToEP7yl79gwYIFWL58OSoqKjBnzhysWLECjz/+OFasWIFz586hsLDQsU9paSny8/Mhl8uxevVq/PrXv8b+/fvxv//7v9DpdI7tLBYLnnrqKdx777344x//iPT0dPzud7/Dnj17HM/fhc8tBQmBiHqtsrJSGD58uPDuu+86Lf/pT38qJCcnC1VVVcLzzz8vJCcnC6dOnXKsr6mpER5++GGhtLTUab9ly5YJN9xwgyAIgmCxWIRx48YJv/jFL5y2eeGFF4Tk5GRh3759giAIwu9//3shJSVFOHPmjGMbvV4vTJ48udO+RETUWVlZmZCcnCwcOHDAsayyslJYtWqVUF1dLdx3331CTk6O0z5vvPGGkJycLGzZssWxLDk5WVizZo3j9zVr1gjJyckut2fFihXCb3/7W6dl3377rZCcnCxs27ZNEARB2LJli5CcnCy89dZbTtvNmDFDmDVrliAIgrBhw4ZO/RIEQfj1r38tpKSkCM3NzYLFYhEmTZokLFiwwLG+tLTUab9nnnlGGDdunKBWqx3bNDc3C+np6cLKlStd7h8Rkaf52vu8/f6grKzMsayurk4YOXKk8PLLLwuCIAhbt24VHnvsMcFsNju2MZvNQnp6urB48WJBEAThrbfeElJTUwWdTufY5vPPPxdee+01wWKxCG1tbcKoUaOEF154wenx//a3vwnJycnCDz/84NSeiooKxzaLFy8WkpOThS+//NKx7J133hGSk5OF1tZWQRAEYdasWcLUqVMFk8nk2ObEiRPCddddJ6xfv14QhPOfV3/7298c2+j1eiElJUV48cUXHcsufm4p8DFTisgNSkpKIAgC7r77bqflU6dOdfpdLpdj8ODBjt/j4+Px3nvvYcyYMaiursZXX32F9evX4+uvv4bRaAQAnDhxAo2NjZg8ebLTse655x6n37/66itcd911iI+Ph8lkgslkglgsxsSJE/Hll1+6s7tERAEpKSkJMTExmDt3LpYsWYL//Oc/6NevH+bPnw+lUomjR492ei+ePn16n7VnwYIFeO6556BWq/HNN99g27Zt2LBhAwA4PiPsLv5MuOOOO3Do0CFotVrs378fV111FdLT0zu1Xa/X4/DhwxCJRJg+fTp27drlGKr38ccfY9CgQY799u3bh8zMTMjlcsfnTEREBMaMGcPPGSLyC772Pg8AAwcORGpqquP3fv36ITU11fG+OmPGDKxduxZGoxHl5eX417/+hddeew1ms9nxWXDTTTdBp9Nh2rRpeOWVV3Dw4EFMmDABTzzxBEQiEcrKytDR0YFJkyY53r9NJpNj5r+9e/c6Hj86OhrDhg1zag8ApzYqlUoAQFtbGzo6OnD48GHceuutEATBcexBgwZh2LBhTscGgLS0NMf/Q0JCEBMTg/b29t4/keS3WOicyA3s6bWxsbFOy+Pi4px+j42NhUgkclr2j3/8A7///e9x7tw5KJVKjBgxAnK53LG+tbUVABATE+O0n/0Dwq6lpQWVlZW44YYbumxjR0cHFAqFC70iIgou4eHh2LBhA4qLi7F9+3Zs3LgRCoUC06dPR0FBAYDO78Xx8fF91p7Tp0/jhRdewL59+yCVSjF06FBHjQ1BEJy2vfgzITY2FoIgQKPRoLW1tdPnEXD+M6qtrQ2A9cbnjTfewO7du3Hbbbdhx44d+J//+R/H9i0tLdi+fXuXNa0ufl6IiHyRr73PA53vFwDre/i5c+cAWIdgL1u2DB999BFMJhOuvvpqpKWlQSqVOj4L0tLS8Mc//hHr1q3DO++8gzfffBP9+vXD7Nmz8cgjj6ClpQUAMGfOnC7bcGHtqYiIiC63udR9RFtbGywWC9auXetUH8ouNDTU6fcL73MAQCwWd/pMo+DCoBSRG9g/rBobG5GQkOBYfqUaGwcOHMDzzz+Phx56CD/72c8wYMAAAMBvf/tbHDx4EACgUqm6PJb9w8UuMjISGRkZmD9/fpePFRIS0v0OEREFqaFDh+Kll16C2WzGkSNH8NFHH+H9999H//79IRaL0dDQ4LT9xe/F7mKxWDBnzhzIZDL87W9/w/XXXw+pVIqKigr84x//6LR9a2ur04V+Q0MDJBIJoqOjER0djcrKyk771NfXAzj/OXPNNdcgNTUVn3zyCWQyGZqbm50yBCIjIzF+/Hg8+uijnY4llfKSkoj8g6+8z9vZvxi4UH19vSM4VlRUhJ07d2L16tUYP348wsLCAADjxo1z2ueWW27BLbfcgo6ODuzbtw/vvfceli9fjtTUVERFRQEAfve732HIkCGdHq+rwFh3hYeHQyQSIT8/H1OmTOm0nl+K05Vw+B6RG6Snp0MikeDTTz91Wn7x7xcrKyuDxWLBk08+6QhImc1mR7quxWLBkCFDkJCQgB07djjt+9lnnzn9npGRgZMnT+Laa69FSkqK4+cf//gHNm3aBIlE0ttuEhEFtB07dmDs2LGor6+HRCJBWloali5diqioKDQ1NSEtLQ07d+50mu3o4vfirojFrl9uNTc34+TJk8jNzcXIkSMdQZ/du3cDgFMbADiKxNrX7dixA6NGjYJcLsdNN92Es2fPOr7ssPvHP/4BmUyGkSNHOpZNnz4du3fvxscff4zU1FSnm5eMjAxUVFTguuuuc3zG3HjjjVi3bh127drlch+JiDzNl97n7SorK52+ODh37hzKysqQmZkJwFrEPDMzE3fccYcjIPXtt9+iqanJ0c5Vq1YhNzcXgiBAoVDg9ttvx/PPP+843qhRoyCTyVBbW+t0nyCTyfDyyy93mvXbFREREbj++utx4sQJp2Pbi8WXlJS4dLzePJfkn/i1FpEbDBo0CDNnzsTvf/97GI1GjBgxArt27XJ8iF3qzdV+I/Diiy9i5syZaGtrw/r163Hs2DEAQHt7OyIiIlBYWIhnn30WixYtwt13341Dhw7h/fffdzpWfn4+PvroI+Tn5+OnP/0pVCoVtm/fjr/97W/41a9+1Ye9JyIKDKNHj4bFYkFBQQHmzJmD8PBwfPLJJ1Cr1bjzzjtx7733Ij8/H/PmzcNPfvITnD59Gq+++uoVj2v/hvrjjz/GqFGjMGjQoCvuExsbi6uuugobNmzAgAEDEBUVhS+++AJ//vOfAViHZF9o9erVMJvNSEhIwPvvv4+TJ0/iT3/6EwAgJycHf/3rX/HEE0/gySefxKBBg/Cf//wHW7ZswRNPPOFoHwBMmTIFK1aswD//+U8sXLjQ6THmzZuHBx98EI8//jh+8pOfIDQ0FB988AH+9a9/Yc2aNVfsExGRt/nS+7xdaGgo5s2bh6effhpmsxmvvvoqlEolHnnkEQDW+4VPPvkE77//PoYNG4Zjx46huLgYIpHI8Vkwbtw4/OlPf8KCBQswffp0GI1GvP3221AqlRg7diyUSiUee+wxvPrqq9BoNMjMzERtbS1effVViEQijBgxogfP5nnPPPMM5syZg2effRbTp0+H2WzGu+++i8OHD2Pu3LkuHSsqKgplZWUoLS3FmDFjOpU+ocDDMCSRmyxevBgPPvgg3n33XcybNw81NTWON2H7txoXy8zMxAsvvICysjLMnj0bK1aswMCBA/H6668DgONb7alTp+KVV17BoUOHMHfuXHz22Wd48cUXnY4VHx+PjRs34qqrrsLSpUvx85//HEeOHEFRURHy8/P7ruNERAGif//+ePvttxEZGYmFCxfi8ccfx9GjR/Haa69h7NixGDNmDN555x00NDSgoKAAGzdudHwTfTl33nknUlJSsGDBArzzzjvdbs8bb7yB+Ph4LFiwAE899RQOHTqE4uJiDB06FAcOHHDatqioCO+99x7mzZuH2tparF27FhkZGQCsQyf+8pe/YNKkSVizZg3mzp2LgwcPoqioCL/4xS+cjqNUKnHrrbdCLBbj3nvvdVo3YsQIbNiwASKRCPPnz8eTTz6J+vp6/OEPf8Cdd97Z7X4REXmLr73PA8Dw4cPxwAMPYOnSpZg/fz4GDx6Mv/71r47hewsWLMAdd9yB1atX4/HHH8emTZswd+5cPPDAAygrK4PZbMbEiRPxu9/9DuXl5XjiiSfwzDPPQKFQ4L333nMUJX/qqaewYMEC7Nq1C7Nnz8ZLL72E9PR0rF+/HpGRkS4/lxeaMGEC3nnnHdTU1ODJJ5/E/PnzIZFI8Kc//cmpQHp3/PznP8c333yD2bNnO+pqUWATCawqRtRrLS0t2L17N2655RZHbQ7Amkr74Ycfupy2SkRE/uHMmTOYPHkyVqxYgZycHG83h4iI3Izv80R9i8P3iNxAoVCgqKgI1113HR555BGEhYXh66+/xl/+8hf8/Oc/93bziIjIRwiCALPZfMXtJBIJhywQEfkhvs8TuYZBKSI3CA0Nxbp167B69WosWLAAHR0dGDx4MBYsWIC8vDxvN4+IiHzE1q1bu1Xnj9/IExH5J77PE7mGw/eIiIiIPKS5ublbsxxdffXVTsPBiYjIP/B9nsg1DEoREREREREREZHHcfY9IiIiIiIiIiLyOAaliIiIiIiIiIjI4xiUIiIiIiIiIiIij2NQioiIiIiIiIiIPE7q7Qb4o8ZGNXy5PLxIBMTGRvp8O3sq0PsHBH4f2T/fYG8nuUdjoxqAf5x7d/OX17y7sd/sdyDiZ4P7ufqaCbbXGvsZOIKlr8Haz776fGBQqgcEAX7x4vOXdvZUoPcPCPw+sn8USC4818F67tnv4MJ+E3VPT18zwfJaYz8DT7D0lf10Dw7fIyIiIiIiIiIij2NQioiIiIiIiIiIPI5BKSIiIiIiIiIi8jgGpYiIyK80NTUhKysLJSUljmU7d+5EdnY2Ro8ejUmTJuH111+HxWJxrN+6dSuysrKQmpqKnJwclJWVOdaZzWasWrUK48ePR1paGubOnYu6ujqP9omIiIiIKBgxKEVERH7j4MGDmDVrFk6fPu1Y9u2332L+/Pl46qmncODAAaxduxYffvgh1q1bBwAoKSnBsmXLsHLlSpSWlmL69OmYO3cuOjo6AADFxcXYu3cvtmzZgj179kAul2PRokXe6B4RERERUVBhUIqIiPzC1q1bUVhYiKefftpp+dmzZ/Hggw/i9ttvh1gsxrBhw5CVlYXS0lIAwKZNmzBlyhSkp6dDJpMhPz8fKpUK27dvd6yfPXs2EhISEBERgYULF2L37t2oqqryeB+JiIiIiIIJg1JEROQXJkyYgF27duHee+91Wn7XXXfhV7/6leN3nU6Hzz//HDfccAMAoKKiAsnJyU77JCYm4tixY1Cr1aipqXFaHxcXh+joaBw/frwPe0NERERERFJvN4CIiKg7+vXrd8VtNBoNfvnLX0IulyM/Px8AoNVqoVAonLaTy+Vob2+HVqsFAISFhXVab1/XXSJR1/8PBvb+st/Bgf32bjv6WqD3j4iIfAuDUkREFBBOnDiBJ598ErGxsXjvvfcQEREBAFAoFNDpdE7b6nQ6qFQqR7DKXl/qwvXh4eEuPX5sbGSX/w8m7HdwYb+JiIiotxiUIiIiv/ff//4XzzzzDB544AE8++yzkErPf7wlJSWhvLzcafuKigpMnDgR0dHRiI+PdxriV19fj5aWlk5D/q6ksVENwHrD2tiohiD0slN+RCRiv9nvwBcs/bb3k4iIyBMYlCIiIr926NAhFBQUYOnSpcjNze20Pjc3FwUFBbjnnnuQnp6ODRs2oLGxEVlZWQCAnJwcFBcXIyUlBSqVCsuXL0dGRgYGDx7sUjsuvEkVBAT0TeulsN/Bhf0mIiKi3mJQiugyLBYLGhoaAFiLH4vFnBuAyNe8+eabMJlMKCoqQlFRkWN5eno63n77bYwbNw5LlizB0qVLUVtbi8TERKxduxZKpRIAUFBQAJPJhLy8PGi1WmRmZmL16tXe6YwHWCwW1NXVAgD694/n+xoRkY+xWCw4e/Ysmpo06N9/AN+niSigMShFdBkNDQ1469+HAQCPTx6F/v37e7lFRATAaWa8N99884rbZ2dnIzs7u8t1MpkMhYWFKCwsdFv7fFldXS3e3FUGAPh5VhoGDEjwcouIiOhCtbU1+NPub6HTGfHzrDQkJAz0dpOIiPoMg1JEVxAeHePtJhARuVWEKs7bTSAiosuIjOkPWYfe280gIupzzAUlIiIiIiIiIiKPY1CKiIiIiIiIiIg8jkEpIiIiIiIiIiLyOAaliIiIiIiIiIjI4xiUIiIiIiIiIiIij+Pse0RERAHGYrGgrq4WANC/fzzEYn4HRURERES+h1epREREAaaurhZv7irDm7vKHMEpIiIiIiJfw0wpIiKiABShivN2E4iIiIiILouZUkRERERERERE5HEMShERERERERERkccxKEVERERERERERB7HoBQREREREREREXkcg1JERERERERERORxDEoREREREREREZHHMShFREREREQ+r6mpCVlZWSgpKXEs27lzJ7KzszF69GhMmjQJr7/+OiwWi2P91q1bkZWVhdTUVOTk5KCsrMyxzmw2Y9WqVRg/fjzS0tIwd+5c1NXVOdY3NjZi3rx5GDNmDDIzM1FUVASTyeSZzhIRBQkGpYiIiAKUYLGgrq4WNTXnUFNzzulGjYjInxw8eBCzZs3C6dOnHcu+/fZbzJ8/H0899RQOHDiAtWvX4sMPP8S6desAACUlJVi2bBlWrlyJ0tJSTJ8+HXPnzkVHRwcAoLi4GHv37sWWLVuwZ88eyOVyLFq0yHH8p556CmFhYdizZw82b96Mr776ynFsIiJyDwaliIiIApSmtQnrv/oR6w9U4c1dZairq/V2k4iIXLZ161YUFhbi6aefdlp+9uxZPPjgg7j99tshFosxbNgwZGVlobS0FACwadMmTJkyBenp6ZDJZMjPz4dKpcL27dsd62fPno2EhARERERg4cKF2L17N6qqqlBZWYn9+/fjueeeg0KhwKBBgzBv3jxs2LDB4/0nIgpkUm83gIiIiPpOuDIGUTH9vd0MIqIemzBhAqZNmwapVOoUmLrrrrtw1113OX7X6XT4/PPPMW3aNABARUUFZs6c6XSsxMREHDt2DGq1GjU1NUhOTnasi4uLQ3R0NI4fPw4AUCqViI+Pd6wfNmwYqqur0dbWhqioqG63XyRyrb+O7UXW/7u6v7+w9ytQ+2cXLP0EgqevwdrPvuovg1JEREREROSz+vXrd8VtNBoNfvnLX0IulyM/Px8AoNVqoVAonLaTy+Vob2+HVqsFAISFhXVab1938b7239vb210KSsXGRnZ7WwDQ6yMA1EEuD0VMTATi4lzb39+4+vz4q2DpJxA8fWU/3YNBKSIiogB3vE6DH2sNuGmIDsPj5N5uDhGRW504cQJPPvkkYmNj8d577yEiIgKANYik0+mcttXpdFCpVI4Ak72+1IXrw8PDIQhCp3X238PDw11qX2OjGoLQ/e2bmzW2tujR1KRBaKjapcfzFyKR9WbX1efH3wRLP4Hg6Wuw9tP+u7sxKEVERBTADGZg74lmmAUBz+2sQv71cgiCAFGg55wTUVD473//i2eeeQYPPPAAnn32WUil529vkpKSUF5e7rR9RUUFJk6ciOjoaMTHx6OiosIxhK++vh4tLS1ITk6GxWJBS0sLGhoaEBcXBwD48ccfMWDAAERGunZTJghw6cbVsa3g+r7+KBj6CARPP4Hg6Sv76R4sdE5ERBTATmtFMAsCxBAgAPjgezXa29u93Swiol47dOgQCgoK8Ktf/QrPP/+8U0AKAHJzc7Ft2zbs27cPRqMR69atQ2NjI7KysgAAOTk5KC4uRlVVFTQaDZYvX46MjAwMHjwYQ4YMQXp6OpYvXw6NRoOqqiq88cYbyM3N9UZXiYgClk8GpY4ePYq8vDyMGTMGEyZMwP/93//BYDAAAA4fPoz7778faWlpmDRpEjZt2uS079atW5GVlYXU1FTk5OSgrKzMsc5sNmPVqlUYP3480tLSMHfuXNTV1Xm0b0RERJ5iEYBTWmtG1PAIA0QQ0C7IoDV5uWFERG7w5ptvwmQyoaioCGlpaY6fxx57DAAwbtw4LFmyBEuXLkVGRgb++c9/Yu3atVAqlQCAgoIC3HrrrcjLy8Ott94KvV6P1atXO46/Zs0amEwmTJ48GQ888ABuueUWzJs3zws9JSIKXD43fM9iseDxxx/HnDlz8Je//AV1dXWO6VsfeughzJkzB08++SRmzZqF0tJSFBQUYPjw4Rg5ciRKSkqwbNkyrF27FiNHjsSGDRswd+5cfPbZZ1AoFCguLsbevXuxZcsWREZGYvHixVi0aBH++Mc/ervbREREbtdslEBnFkEuFWOwwog6Ywga9UBthwj9o73dOiIi19lnxgOsQakryc7ORnZ2dpfrZDIZCgsLUVhY2OX6uLg4rFmzpmcNJSKibvG5TKnW1lbU19fDYrFAsA1cFIvFUCgU+PTTT6FUKpGXlwepVIpx48Zh2rRp2LBhAwBg06ZNmDJlCtLT0yGTyRzBrO3btzvWz549GwkJCYiIiMDChQuxe/duVFVVea2/REREfaXVZP2YHxAVCokIiJdbP1frdKwnRURERETe53NBKZVKhfz8fKxatQopKSm49dZbMWTIEOTn56O8vNxRiNAuMTERx44dAwCnQoUXr1er1aipqXFaHxcXh+joaKdvXLpDJPL9H39ppz/0z1vnnefQv6waTSEAAQAASURBVH/8pX8U2NS2oFRseAgAoL8tKNWoB4yWIKjMSUREREQ+zSeH78nlcixevBi5ubmorKzEE088gTVr1kCr1Tqmb7WTy+WOgq2XW6/VagEAYWFhndbb13VXX0yD2Bf8pZ095Yn+mc3tUChCbI8Xgbg4zz6nPIf+LdD7R76v1WgLSoXJAD0QIQNCxRboLWK06hmUIiIiIiLv8rmg1K5du7Bz507s2LEDgHUq14KCAhQVFWHatGlQq9VO2+t0OoSHhwMAFAoFdDpdp/UqlcoRrOro6Ljk/t3V2Kj26akfRSLrzbCvt7OnPNm/xkYNOjoMjv9LJGFX2MM9eA79m7/0z95OCkxmiwCt+XymVGuzdXmk1AK9QYxWvcWLrSMiIiIi8sGg1Llz5xwz7dlJpVLIZDIkJydj7969TusqKiqQlJQEwBrAKi8v77R+4sSJiI6ORnx8vNMQv/r6erS0tHQa8nclggCfvtG085d29pQn+nfh8b3xfPIc+rdA7x/5tlaDAAEiyMQCwkMkaLUtj5RY0ACghZlSRERERORlPldTasKECaivr8ebb74Js9mMqqoqFBcXY9q0acjKykJDQwPWrVsHo9GIffv2Ydu2bZg5cyYAIDc3F9u2bcO+fftgNBqxbt06NDY2IisrCwCQk5OD4uJiVFVVQaPRYPny5cjIyMDgwYO92WUiIiK3a9ZZM6GiZYDoggJikVLrcmZKEREREZG3+VymVGJiIt566y2sXr0ab7/9NiIjIzF9+nQUFBQgJCQE7777LoqKirBmzRrExMRg0aJFGDt2LABg3LhxWLJkCZYuXYra2lokJiZi7dq1UCqVAICCggKYTCbk5eVBq9UiMzMTq1ev9l5niYiI+og9EypK5pwRdT4oJThmuSUiIiIi8gafC0oBwPjx4zF+/Pgu16WkpGDjxo2X3Dc7OxvZ2dldrpPJZCgsLERhYaFb2klEROSrNAZrwClC5rw8QmqBCAIMFhGaOsxI8ELbiIiIiIgAHxy+R0RERL2nNVmDUgqJczaURASE276SOtWi93SziIiIiIgcGJQiIiIKMIIgoN1oD0p1Xh9pG9JX2WLovJKIiIiIyEMYlCIiIgowbXoLzLYEKUUXA/UjbMuq1QxKEREREZH3MChFREQUYOq1RgBAqNgCiajz+jBbUKpGY/Rgq4iIiIiInDEoRUREFGDqtCYAgFzc9ex64VLr8nNqBqWIiIiIyHsYlCIiIgow9e3WYJNCYulyvT1TqqHdBKO5622IiIiIiPoag1JEREQBxp4pdfHMe3ahYussfBYBONfGGfiIiIiIyDsYlCIiIgow9ppSiksM3xOJgAiZtdjUmZYOj7WLiIiIiOhCDEoREREFmHpHptSlh+ZFhNiDUjqPtImIiIiI6GIMShEREQUYx/C9S2RKAUC4LVPqbCszpYiIiIjIOxiUIiIiv9LU1ISsrCyUlJQ4lh0+fBj3338/0tLSMGnSJGzatMlpn61btyIrKwupqanIyclBWVmZY53ZbMaqVaswfvx4pKWlYe7cuairq/NYf9xNZzSjTW8GcIVMKRkzpYiIiIjIuxiUIiIiv3Hw4EHMmjULp0+fdixrbW3FnDlzMGPGDJSWlqKoqAgrVqzAkSNHAAAlJSVYtmwZVq5cidLSUkyfPh1z585FR4c1Q6i4uBh79+7Fli1bsGfPHsjlcixatMgr/XOHxnYDAGshc6no0tudH77HTCkiIiIi8g4GpYiIyC9s3boVhYWFePrpp52Wf/rpp1AqlcjLy4NUKsW4ceMwbdo0bNiwAQCwadMmTJkyBenp6ZDJZMjPz4dKpcL27dsd62fPno2EhARERERg4cKF2L17N6qqqjzex96yWCyoqKoBAIRKrAXNL8WeKVXdqoMgXHqYHxERERFRX5F6uwFERETdMWHCBEybNg1SqdQpMFVeXo7k5GSnbRMTE7F582YAQEVFBWbOnNlp/bFjx6BWq1FTU+O0f1xcHKKjo3H8+HEMGjSo2+27MAB0uWBQX6qvr8XGfT8AUEAmunygyV5vSmeyoKXDgJjw0B4/rr2/3uq3t7Df3m2HpwVLvwO9f0RE5FsYlCIiIr/Qr1+/LpdrtVooFAqnZXK5HO3t7Vdcr9VqAQBhYWGd1tvXdVdsbGSX//ckg0GNkCgV0KqDQiaCQh4CUUgIwsJCHf8XxGbrvwYtQkVS6AUxzjS3IPmaxF4/vrf67W3sd3AJ1n4TERH1BQaliIjIrykUCqjVaqdlOp0O4eHhjvU6na7TepVK5QhW2etLdbV/dzU2WtsQGxuJxkY1vDEirqlJA3WHdeY9GSzo0BkgtkjQ3q53/N9iOP+vQiaD3gBUVLdh5NXqKxz90kQi7/bbW9hv9jsQ2ftJRETkCQxKERGRX0tOTsbevXudllVUVCApKQkAkJSUhPLy8k7rJ06ciOjoaMTHx6OiosIxhK++vh4tLS2dhgReyYU3qYIAr9y0CgKgM1kfOERy5e0VEgEtEKFWY3RLe73Vb29jv4NLsPabiIioL7DQORER+bWsrCw0NDRg3bp1MBqN2LdvH7Zt2+aoI5Wbm4tt27Zh3759MBqNWLduHRobG5GVlQUAyMnJQXFxMaqqqqDRaLB8+XJkZGRg8ODB3uxWj+nM1rvl0G58witsgat6rakPW0RERERE1DVmShERkV9TqVR49913UVRUhDVr1iAmJgaLFi3C2LFjAQDjxo3DkiVLsHTpUtTW1iIxMRFr166FUqkEABQUFMBkMiEvLw9arRaZmZlYvXq19zrUS3qz9d/QbmRKhdmuAuq0xr5rEBERERHRJTAoRUREfuf48eNOv6ekpGDjxo2X3D47OxvZ2dldrpPJZCgsLERhYaFb2+gtjuF74iuPL1JIrNvUMVOKiIiIiLyAw/eIiIgCiN4+fK87NaVsX03VM1OKiIiIiLyAQSkiIqIAYbYI54fvuVBTSm2woN1g7ruGERERERF1gUEpIiKiANFmj0hBQEg3PuFlYusPAJxr0/VZu4iIiIiIusKgFBERUYBo0VmDUiEiASJR9/YJl1k3rGnT91WziIiIiIi6xKAUERFRgGjRWQuWd6fIuV2YLShVzUwpIiIiIvIwBqWIiIgCRKstUyrUhaBUuNSeKcWgFBERERF5FoNSREREAcIxfM+VoJQtU+och+8RERERkYcxKEVERBQg7IXOezJ8j5lSRERERORpDEoREREFCI3BAgCQdbPIOcBMKSIiIiLyHgaliIiIAoS6J5lStppSDVoDDCZLn7SLiIiIiKgrDEoREREFCI3BGpSSuRCUCpUAIRJrYKpWzWwpIvJdTU1NyMrKQklJiWPZ4cOHcf/99yMtLQ2TJk3Cpk2bnPbZunUrsrKykJqaipycHJSVlTnWmc1mrFq1CuPHj0daWhrmzp2Luro6x/rGxkbMmzcPY8aMQWZmJoqKimAymfq+o0REQYRBKSIiogChdgzf635QSiQSoX+4FABwjnWliMhHHTx4ELNmzcLp06cdy1pbWzFnzhzMmDEDpaWlKCoqwooVK3DkyBEAQElJCZYtW4aVK1eitLQU06dPx9y5c9HR0QEAKC4uxt69e7Flyxbs2bMHcrkcixYtchz/qaeeQlhYGPbs2YPNmzfjq6++wrp16zzabyKiQMegFBERUYCwD99zJVMKAPqHywAANawrRUQ+aOvWrSgsLMTTTz/ttPzTTz+FUqlEXl4epFIpxo0bh2nTpmHDhg0AgE2bNmHKlClIT0+HTCZDfn4+VCoVtm/f7lg/e/ZsJCQkICIiAgsXLsTu3btRVVWFyspK7N+/H8899xwUCgUGDRqEefPmOY5NRETuwaAUERFRgND2IFMKAPoxU4qIfNiECROwa9cu3HvvvU7Ly8vLkZyc7LQsMTERx44dAwBUVFRccr1arUZNTY3T+ri4OERHR+P48eMoLy+HUqlEfHy8Y/2wYcNQXV2NtrY2d3eRiChoSb3dACIiIuo9k0WA1mgNSrlS6Bw4nyl1jjWliMgH9evXr8vlWq0WCoXCaZlcLkd7e/sV12u1WgBAWFhYp/X2dRfva/+9vb0dUVFR3W6/yIUZUZ22F1n/7+r+/sLer0Dtn12w9BMInr4Gaz/7qr8MShEREQUAje588V2pixcN9ppSNcyUIiI/olAooFarnZbpdDqEh4c71ut0uk7rVSqVI8Bkry918f6CIHRaZ//dfvzuio2NdGl7vT4CQB3k8lDExEQgLs61/f2Nq8+PvwqWfgLB01f20z0YlCIiIgoArTojAEAmBsQuBqX62TOlWFOKiPxIcnIy9u7d67SsoqICSUlJAICkpCSUl5d3Wj9x4kRER0cjPj7eaYhffX09WlpakJycDIvFgpaWFjQ0NCAuLg4A8OOPP2LAgAGIjHTtBq2xUQ3BhQTW5mYNAECn06OpSYPQUPUV9vBPIpH1ZtfV58ffBEs/geDpa7D20/67u7GmFBERUQBos2VKhUhcz622Z0rVqvUwWwL46oqIAkpWVhYaGhqwbt06GI1G7Nu3D9u2bcPMmTMBALm5udi2bRv27dsHo9GIdevWobGxEVlZWQCAnJwcFBcXo6qqChqNBsuXL0dGRgYGDx6MIUOGID09HcuXL4dGo0FVVRXeeOMN5ObmutxOQXD9x7pjz/b1p5+ePj/+9hMs/QymvgZrP/sCM6WIiIgCgCMo1YOvm2IUUkjEIpgtAuo1egyIkru5dURE7qdSqfDuu++iqKgIa9asQUxMDBYtWoSxY8cCAMaNG4clS5Zg6dKlqK2tRWJiItauXQulUgkAKCgogMlkQl5eHrRaLTIzM7F69WrH8desWYMXX3wRkydPhlgsxowZMzBv3jwv9JSIKHAxKEVERBQA7MP3epIpJRGLEB8ZiupWHWraGJQiIt91/Phxp99TUlKwcePGS26fnZ2N7OzsLtfJZDIUFhaisLCwy/VxcXFYs2ZNzxtLRERXxOF7REREAeD88L2e7Z8QFQoAOKdmsXMiIiIi8gwGpYiIiPycxWJBdUMzgJ4N3wPgyI6qYbFzIiIiIvIQBqWIiIj8XF1dLb6qqAEAiCymHh0jIdKWKdXGTCkiIiIi8gwGpYiIiAKAILVmOvU0UyrBlil1jplSREREROQhDEoREREFAIPF+q+sx8P3rJlSNcyUIiIiIiIPYVCKiIgoAOjNAgBAJhZ6tP+FmVKC0LNjEBERERG5QurtBhAREVHvGczWf3uaKRVvqymlN1nQpDXAqGkCAPTvHw+xmN9hEREREZH7MShFREQUAIwWe6YUgB4kOoVIxYgLD0GD1oDvKqvx76+/BwD8PCsNAwYkuLGlRERERERWDEoREREFAKO9ppQIPQpKAUBCVCgatAbUaY2IUMW5rW1ERERERF1hPj4REZGfM5gtsCVKQdqLT/YBtrpS9VqTG1pFRERERHR5DEoRERH5uXZ7mhQESEU9P06CbQa+OgaliIiIiMgDGJQiIiLyc+0Ga1BKKgJEvQpKWTOl6rRGdzSLiIiIiOiyGJQiIiLyc1qjPSjVw2JSNgxKEREREZEnMShFRETk59rdFJQawOF7RERERORBnH2PiIjIz9mDUrIefNUkWCyoq6sFAIhtx9EaLDCaBcgkvRgLSERERER0BQxKERER+Tmt4cJMKdcCSZrWJqz/qgP9rzJA09yAyJAoqA0WaE0ClAxKEREREVEfYlCKiIjIz7UbzQB6FpQCgHBlDKJi+gMA+hkFqA16tBsFKEPd2UoiIiIiImesKUVEROTnzteU6v2x+odbv6/SGntXn4qIiIiI6EqYKUVEROTnHLPviXsXSBIsFkSIbXWlGJQiIiIioj7GoBQREZGfa7fVlJL1cvY9TWsTTrUAQATadEYAst42jYiIiIjoknxy+F5LSwvmz5+PzMxM3HTTTZg3bx7q6uoAAIcPH8b999+PtLQ0TJo0CZs2bXLad+vWrcjKykJqaipycnJQVlbmWGc2m7Fq1SqMHz8eaWlpmDt3ruO4RERE/krrxuF70ZEKAECHmUXOiYiIiKhv+WRQ6he/+AXa29uxa9cufPbZZ5BIJFi8eDFaW1sxZ84czJgxA6WlpSgqKsKKFStw5MgRAEBJSQmWLVuGlStXorS0FNOnT8fcuXPR0dEBACguLsbevXuxZcsW7NmzB3K5HIsWLfJmV4mIiHqtw3jh7Hu9o5DYjmnq9aGIiIiIiC7L54JS3377LQ4fPoyVK1ciKioKERERWLZsGQoLC/Hpp59CqVQiLy8PUqkU48aNw7Rp07BhwwYAwKZNmzBlyhSkp6dDJpMhPz8fKpUK27dvd6yfPXs2EhISEBERgYULF2L37t2oqqryZpeJiMgNjh49iry8PIwZMwYTJkzA//3f/8FgMADoXZatP3BXTSkACLMFpfQWEcwW1pUiIiIior7jc0GpI0eOIDExEX/729+QlZWFCRMmYNWqVejXrx/Ky8uRnJzstH1iYiKOHTsGAKioqLjkerVajZqaGqf1cXFxiI6OxvHjx11qo0jk+z/+0k5/6J+3zjvPoX//+Ev/AoXFYsHjjz+Ou+66C/v378fmzZvxxRdfYO3atb3OsvUH52tK9f5YMjEggTUY1W5iUIqIiIiI+o7PFTpvbW3F8ePHceONN2Lr1q3Q6XSYP38+nn/+ecTFxUGhUDhtL5fL0d7eDgDQarWXXK/VagEAYWFhndbb13VXbGykq93yCn9pZ095on9mczsUihDb40UgLs6zzynPoX8L9P75ktbWVtTX18NisUAQrIEUsVgMhULhlGULwCnLduTIkU5ZtgCQn5+PDz74ANu3b8fMmTO91idXtLtx+J5IBCgkFmjMEs7AR0RERER9yueCUiEh1gDAwoULERoaioiICDz11FN44IEHkJOTA51O57S9TqdDeHg4AEChUHS5XqVSOYJVF3/zfeH+3dXYqIbgw9fpIpH1ZtjX29lTnuxfY6MGHR0Gx/8lkrAr7OEePIf+zV/6Z29nIFCpVMjPz8eqVavw29/+FmazGZMnT0Z+fj5WrlzZZRbt5s2bAVizbC8OPl2YhdtdF2aeeToLrd1oBuCeoBQAKCQCNGZAaxS6lVV3YXZgMGG/vdsOTwuWfgd6/4iIyLf4XFAqMTERFosFRqMRoaGhAKzDMgDguuuuw1//+len7SsqKpCUlAQASEpKQnl5eaf1EydORHR0NOLj452G+NXX16OlpaXTzcqVCAJ8+kbTzl/a2VOe6N+Fx/fE41ksFjQ0NEAkAkymdohEcohEPjfK1m34GiV3sVgskMvlWLx4MXJzc1FZWYknnngCa9asuWwWLXD5LFtXXBjg82Swz2wR0GEbZhepkEEuD4EgNkMUcv7fsLBQKOQhTssut01EiAH1BsAAMWJiup8lGihBTlex38ElWPtNRETUF3wuKDV+/HgMGjQIv/71r7FixQro9Xq88soruOOOOzB16lSsWbMG69atQ15eHg4ePIht27bhjTfeAADk5uaioKAA99xzD9LT07FhwwY0NjYiKysLAJCTk4Pi4mKkpKRApVJh+fLlyMjIwODBg73ZZSKHhoYGvPXvwwiPjoFZr0H+hOvQr19/bzeLyOft2rULO3fuxI4dOwBYv6QoKChAUVERpk2bBrVa7bR9d7NsXdHYaH0MT2fJtemMjv+bDAboRBJYDAaILef/bW/Xo0PnvOxy24QIJgAStHaY0NSkQUiI+tINgP9kB7ob+81+B6JAyqIlIiLf53NBKZlMhr/85S9YuXIl7rrrLuj1ekyaNAkLFy5EVFQU3n33XRQVFWHNmjWIiYnBokWLMHbsWADWOiFLlizB0qVLUVtbi8TERKxduxZKpRIAUFBQAJPJhLy8PGi1WmRmZmL16tXe6yxRF8KjYxChjIVZH+LtphD5jXPnzjlm2rOTSqWQyWRITk7G3r17ndZ1N8vWFZ7OrLTT6K1D9yQiQOymYTcKia3QuVFwqS/Bmh3IfgeXYO03ERFRX/C5oBQAxMfH45VXXulyXUpKCjZu3HjJfbOzs5Gdnd3lOplMhsLCQhQWFrqlnURE5BsmTJiAl19+GW+++SZmz56N6upqFBcXY9q0acjKysJLL73U4yxbX6fRmwAAUjeO9FVIrMPmWeiciIiIiPqSTwaliIiIXJGYmIi33noLq1evxttvv43IyEhMnz4dBQUFCAkJ6VWWra+zZ0rJ3JUmBUAhtgajOkzWmlVERERERH2BQSkiIgoI48ePx/jx47tc15ssW1+nNVgzpWQS9x0zVCxADAEWiFDfbsJV7js0EREREZFD4E7rRUREFAT6IlNKJAIUtq+tajXGy29MRERERNRDDEoRERH5MXtNKZmbP9HDbEGpGgaliIiIiKiPMChFRETkx7QG92dKAUCYbQY+ZkoRERERUV9hUIqIiMiPOTKl3FhTCjifKcWgFBERERH1FQaliIiI/FjfDd+zZ0qZ3HtgIiIiIiIbBqWIiIj8mKbPhu9Z/2VNKSIiIiLqKwxKERER+TFtHxc6b9Wb0W4LfBER+ZqjR48iLy8PY8aMwYQJE/B///d/MBgMAIDDhw/j/vvvR1paGiZNmoRNmzY57bt161ZkZWUhNTUVOTk5KCsrc6wzm81YtWoVxo8fj7S0NMydOxd1dXUe7RsRUTBgUIqIiMiP9VWmlEwMhNiuEqpbdW49NhGRO1gsFjz++OO46667sH//fmzevBlffPEF1q5di9bWVsyZMwczZsxAaWkpioqKsGLFChw5cgQAUFJSgmXLlmHlypUoLS3F9OnTMXfuXHR0dAAAiouLsXfvXmzZsgV79uyBXC7HokWLvNldIqKAxKAUERGRH+urQucAEC6zBrrOMihFRD6otbUV9fX1sFgsEARrHTyxWAyFQoFPP/0USqUSeXl5kEqlGDduHKZNm4YNGzYAADZt2oQpU6YgPT0dMpkM+fn5UKlU2L59u2P97NmzkZCQgIiICCxcuBC7d+9GVVWV1/pLRBSIGJQiIiLyY9o+ypQCgIgQe1Cqw+3HJiLqLZVKhfz8fKxatQopKSm49dZbMWTIEOTn56O8vBzJyclO2ycmJuLYsWMAgIqKikuuV6vVqKmpcVofFxeH6OhoHD9+vO87RkQURKTebgARERH1nL2mVEgffM1kz5Ti8D0i8kUWiwVyuRyLFy9Gbm4uKisr8cQTT2DNmjXQarVQKBRO28vlcrS3twPAZddrtVoAQFhYWKf19nWuELn4nYFje5H1/67u7y/s/QrU/tkFSz+B4OlrsPazr/rr9qBUSUkJMjMz3X1YIiLyY/xs6BuCIDiG70nFIri7HDmH7xFRb/Xl+/+uXbuwc+dO7NixAwCQlJSEgoICFBUVYdq0aVCr1U7b63Q6hIeHAwAUCgV0Ol2n9SqVyhGssteX6mp/V8TGRrq0vV4fAaAOcnkoYmIiEBfn2v7+xtXnx18FSz+B4Okr++kebg9KPfnkk4iMjMR9992H++67DwMHDnT3QxARkZ/hZ0Pf0JksMFvLqEAmgduDUhHMlCKiXurL9/9z5845Ztqzk0qlkMlkSE5Oxt69e53WVVRUICkpCYA1gFVeXt5p/cSJExEdHY34+HinIX719fVoaWnpNOSvOxob1bCVvOqW5mYNAECn06OpSYPQUPUV9vBPIpH1ZtfV58ffBEs/geDpa7D20/67u7k92f+LL77Ac889h2+//RZ33XUXfvrTn+Ljjz/u9IFBRETBg58NfcM+dE8sAqR9kFJ94fA9IZCvuv6fvTuPj6q+9z/+mpnMZCYLWQiERVAxAVxAIsii1gWL2AriRdD2R23hXqUXUWtbXMFqqyjcarVIRUUttdBiUdGiVkHrioCgCEoFCQoJhOzrJJlklvP7YzIjgRASmMlkJu/n4zGPJGeZ8/lOkvM953O+i4iETTjP/xdccAElJSU8+eSTeL1e8vPzWbJkCRMnTmTcuHGUlpaybNky3G43GzduZM2aNVx99dUATJkyhTVr1rBx40bcbjfLli2jrKyMcePGATB58mSWLFlCfn4+TqeTBx98kJEjR9K/f/92x2kY7X/5dzy+faPpdbyfT7S9uko5u1JZu2o5wyHkLaWsVivjx49n/PjxlJeX8+abb/Lcc8/xu9/9jiuuuIJrr72WwYMHh/qwIiLSialuCA9ng79tlMNqxhSGjv4JVhMm/C2yyuvcdE+0hfwYIhLbwnn+z8rK4qmnnuKxxx7jmWeeITk5mSuvvJLZs2djs9l47rnnmD9/PosWLSI9PZ158+YxevRoAMaMGcO9997LfffdR1FREVlZWSxdupTU1FQAZs+ejcfjYdq0adTW1jJq1Cgee+yxEH0qIiISELaBzsvKynjttdd4/fXXyc3N5aKLLiI+Pp7p06czffp0/vd//zdchxYRkU5KdUNoORv9LaUSreGZTNdiMtE9IY7SOg8HqlxKSonIcQvX+f+8887jvPPOa3HdkCFDWLly5VH3nTRpEpMmTWpxndVqZc6cOcyZM+e44hIRkbYJeVLq9ddf59VXX+Xjjz9mwIABTJ48mSeffJL09HQALrroImbPnq0bDxGRLkR1Q3jUNrWUSghTUgqgV5KV0joPBVUuhvbpFrbjiEhs0vlfRERaE/Kk1G9/+1uuuOIKVq5cyVlnnXXE+lNPPZXp06eH+rAiItKJqW4Ij3C3lALITIrjy2I4UFV/7I1FRA6j87+IiLQm5Empjz76iPz8fDIzMwH4/PPPSU5O5rTTTgOgV69e3HLLLaE+rIiIdGKqG8LD2TTQucNqBnxhOUavJCugGfhE5Pjo/C8iIq0J+aPVd955h6uuuoq9e/cCsHXrVqZOncr7778f6kOJiEiUUN0QHoGBzhNtlrAdI7MpKXVASSkROQ46/4uISGtC3lJq8eLFPPHEE8HmuTNmzCArK4vf//73XHTRRaE+nIiIRAHVDeFR29R9L9xjSoFaSonI8dH5X0REWhPyq9iDBw/yve99r9myCy64gIKCglAfSkREooTqhvBwdsBA54GWUkU1DXi84ekiKCKxS+d/ERFpTcivYvv27cuHH37YbNmGDRvo06dPqA8lIiJRQnVDeATGlArnQOdpdgvxcWZ8BhTWNITtOCISm3T+FxGR1oS8+97MmTOZPXs2l112GX379qWgoIB169axcOHCUB9KRESihOqG8KhtbGopZTPTEKbedSaTiT7d7HxbXseBShcnpTrCcyARiUk6/4uISGtC/mh14sSJLF26FKvVyo4dO7Db7Tz33HOMHz8+1IcSEZEoobohPDqipRRA31Q7AAeqNa6UiLSPzv8iItKakLeUAhg1ahSjRo0Kx1uLiEiUUt0Qes7G8I8pBdCnW1NSqlJJKRFpP53/RUTkaEKelCoqKmLJkiXs3bsXn6/5gKjPP/98qA8nIiJRQHVDeARaSiVYLWE9TqCllGbgE5H20vlfRERaE/Kk1F133UVpaSmXXHIJVqs11G8vIiJRSHVDeATGlEq0dVBLqar6sB5HRGKPzv8iItKakCelvvjiC9566y3S09ND/dYiIhKlVDeER6CllCPc3fdS1FJKRI6Pzv8iItKakF/FJicnY7PZQv22IiISxVQ3hJ7H66PB4+8KE+6BzgNJqSqXJ5gIExFpC53/RUSkNSG/ir3xxhu566672L59OwUFBc1eIiLSNaluCL3AIOcQvoHODZ+P4uIinBUlpNj9jasPqLWUiLSDzv8iItKakHffmzdvHgDr1q0DwGQyYRgGJpOJr776KtSHExGRKKC6IfQO7bpnMZvCc4yqcpZvqCchoYBeiRlUuTwcqKxnUM+ksBxPRGKPzv8iItKakCel3nnnnVC/pYiIRDnVDaFX2xAY5DzkVXkzianpJCYm0rvByq4yF3kVGuxcRNpO538REWlNyNv79+3bl759+1JVVcWOHTvo0aMHdrudvn37hvpQIiISJVQ3hJ6z0d9SKine0iHH65PsnzVrf6W674lI2+n8LyIirQl5UqqsrIwf/ehHXHPNNdxxxx3k5+fz/e9/n61bt4b6UCIiEiVUN4Ses6mlVFJ8eFtKBfRuSkrlVaqllIi0nc7/IiLSmpAnpR588EEGDhzI5s2biYuL47TTTmPmzJn83//9X6gPJSIiUUJ1Q+jVNrWUSrR1TEup3sn+2bP2KyklIu2g87+IiLQm5EmpjRs3ctddd+FwODCZ/AOvXn/99eTm5ob6UCIiEiVUN4ReYKDzjmgpZfh8WBsqAShxNlLb4A77MUUkNuj8LyIirQl5UspqteJy+cebMAwDgNraWhITE0N9KBERiRKqG0KvtrGp+16YBzoH/yx8r2z5BlvTVcP2bw6E/ZgiEht0/hcRkdaEPCk1duxYbrvtNvbu3YvJZKKsrIzf/va3XHTRRaE+lIiIRAnVDaEXaCmV2EEDnSemppPi8Hfh27m/hMLCg/h8vg45tohEL53/RUSkNSFPSv36178mISGByy+/nOrqai644ALq6+uZM2dOqA8lIiJRQnVD6AUHOu+AllIB3Rz+Y725s4Qn122luLiow44tItFJ538REWlNyK9kExMTWbRoEeXl5ezfv59evXrRs2fPUB9GRESiiOqG0AsOdN5BLaUAUuz+ywa3NYGktIQOO66IRC+d/0VEpDUhT0pt3ry52c/79u1j3759AJx77rmhPpyIiEQB1Q2hF2wpFR8HGB1yzG52KwB1HlOHHE9Eop/O/yIi0pqQJ6Wuu+66I5aZzWZ69+7NO++8E+rDiYhIFOiIuqGyspIHH3yQ999/H5/Px7nnnst9991Hz5492bZtGw888AC5ubmkpaUxa9Yspk6dGtx39erVPPHEE5SUlDBgwADuuececnJyQhJXuARn37NZAE+HHLNbU0up2o45nIjEAN0biIhIa0KelNq5c2ezn8vLy/nTn/5E3759Q30oERGJEh1RN9x8882kpKSwbt06zGYzd911F/fccw//93//x8yZM7nlllu49tpr2bx5M7Nnz2bQoEEMHTqUTZs2cf/997N06VKGDh3KihUrmDVrFu+++y4OhyNk8YWaM9h9L46OSkoFuu+5vCY8vo5pnSUi0U33BiIi0pqQD3R+uPT0dG677Tb+8pe/hPtQIiISJUJdN3z55Zds27aNBQsW0K1bN5KSkrj//vuZM2cOa9euJTU1lWnTphEXF8eYMWOYOHEiK1asAGDVqlVcccUVDB8+HKvVyvTp00lLS+ONN94ISWzhUtus+17HiI8zE2fyJ6OcbiWlRKT9dG8gIiKHCntSCqCqqoqGhoaOOJSIiESJUNYN27dvJysri3/84x+MGzeOCy64gIULF9KjRw92797NwIEDm22flZUVfHqfm5vb6vrOxufzUVh4kBqXG4BEW8cNdG4ymUi0+ABwNiopJSLHR/cGIiISEPLHq3fddVezn91uN59++innnXdeqA8lIiJRItx1Q1VVFbt27eKss85i9erVuFwubr/9du644w4yMjKO6IZnt9upq6sDoLa2ttX1bWUytfx9qJWUFLFk7VZq3YmAiWR7HB53+I53uASLjyqPBafbwGQi+ILwlrszUrkjG0dH6yrlDnX5dG8gIiKtCXub//j4eK677jquvfbacB9KRESiRKjrBpvNBsDcuXOJj48nKSmJW2+9lWuuuYbJkyfjcrmabe9yuUhMTATA4XC0uD4tLa1dMXTvntzi96HW2FhDWq/eUFIDQLypnrpGJ3a7FY/dhslmwzB7m31NSIjHcZR17d0mJd7MwQao95lIT08iI6Njyt2ZqdxdS1ctd6jo3kBERA4V8qTUQw89FOq3FBGRKBfuuiErKwufz4fb7SY+Ph7wd3MDOP300/nb3/7WbPvc3Fyys7MByM7OZvfu3Uesv/DCC9sVQ1mZP0nUvXsyZWU1GGHq3VZe7qS6thEAEwZL3t5J8b7dJPXoi6+xEbPPcsTXuroG6l0tr2vvNjbDDViorPdSXu7EZqvBZAp/uTsjlVvljkWBcoaK7g1ERKQ1IU9KLV68uE3b3XTTTaE+tIiIdFLhrhvOO+88+vXrx913381DDz1EQ0MDjz76KN///veZMGECixYtYtmyZUybNo1PP/2UNWvW8MQTTwAwZcoUZs+ezQ9+8AOGDx/OihUrKCsrY9y4ce2K4dCbVMMgbDethgHuppnv4syQ0j0TZ2VZeA7WgsS4wJhSviPKGc5yd2Yqd9fSVct9vHRvICIirQl5Umr37t2sXbuWwYMHc+qpp1JYWMhnn33GGWecEewqYYr1zvgiItJMuOsGq9XKX//6VxYsWMD48eNpaGhg7NixzJ07l27duvHcc88xf/58Fi1aRHp6OvPmzWP06NEAjBkzhnvvvZf77ruPoqIisrKyWLp0KampqaEoeli4/XkhrBGoThOaBjqv84DL4+v4AEQkqujeQEREWhPypJTZbOauu+7ipz/9aXDZq6++yrvvvstjjz0W6sOJiEgU6Ii6ITMzk0cffbTFdUOGDGHlypVH3XfSpElMmjQpJHF0hENbSnU0mwmsZgO3z8SB6kZO6fgQRCSK6N5ARERaE/LL2ffff59p06Y1WzZhwgQ2bNgQ6kOJiEiUUN0QWm6v/2tcBBoXmEyQ3PRIK7+qseMDEJGoovO/iIi0JuRJqfT0dDZv3txs2YcffkivXr1CfSgREYkSqhtCK9BSyhqBllIASVb/8ZWUEpFj0flfRERaE/Luez//+c+ZOXMm48ePp0+fPuTn5/Puu+/y+OOPh/pQIiISJVQ3hFZgTKk4c2RGW04KtJSqVlJKRFoX7vN/ZWUlDz74IO+//z4+n49zzz2X++67j549e7Jt2zYeeOABcnNzSUtLY9asWUydOjW47+rVq3niiScoKSlhwIAB3HPPPeTk5ADg9Xp5+OGHefXVV6mvr2f06NH89re/pWfPniGJW0RE/EL+jHXq1Kk8+eSTWCwW/vOf/5CamsrKlSu54IILQn0oERGJEqobQivYUipCYwMnq6WUiLRRuM//N998M3V1daxbt453330Xi8XCPffcQ1VVFTNnzuSqq65i8+bNzJ8/n4ceeojt27cDsGnTJu6//34WLFjA5s2bufLKK5k1axb19fUALFmyhPXr1/PSSy/x4YcfYrfbmTdvXkhiFhGR74S8pRT4p+Y+77zzKC8vJz09PRyHEBGRKKO6IXSCY0pFqvte09XDwRo3bq8PW6QCEZGoEK7z/5dffsm2bdv4+OOPSUpKAuD++++npKSEtWvXkpqaGhzPasyYMUycOJEVK1YwdOhQVq1axRVXXMHw4cMBmD59Oi+88AJvvPEGV199NatWrWLOnDn07t0bgLlz53LBBReQn59Pv379QlYGEZGuLuRXkW63m0cffZThw4czduxY8vPzufrqqykuLg71oUREJEqobgitSM6+B2C3+I/tNSC/sj4yQYhIVAjn+X/79u1kZWXxj3/8g3HjxnHBBRewcOFCevTowe7duxk4cGCz7bOysti5cycAubm5R11fU1NDYWFhs/UZGRmkpKSwa9euE45bRES+E/LL2cWLF7Nx40b++Mc/YrVa6d69O7169WL+/Pnteh+v18t1113HnXfeGVy2bds2pk6dSk5ODmPHjmXVqlXN9lm9ejXjxo1j2LBhTJ48ma1btzZ7v4ULF3LeeeeRk5PDrFmzdDMkItJBQlU3iF9gTKlIdd8zmaCbzX/wvWV1kQlCRKJCOM//VVVV7Nq1i71797J69WpeeeUVioqKuOOOO6itrcXhcDTb3m63U1fnP2e1tr62thaAhISEI9YH1rWHydT+l3/H49s3ml7H+/lE26urlLMrlbWrljMcQt59b82aNfz9738nMzMTk8lEQkICDz30EOPGjWvX+yxevJgtW7bQt29fgGC/8FtuuYVrr72WzZs3M3v2bAYNGsTQoUOD/cKXLl3K0KFDWbFiBbNmzeLdd9/F4XA06xeenJzMPffcw7x583j66adD/RGIiMhhQlU3iN93A51HLoYUm5lyl5fc0louHdQjcoGISKcWzvO/zWYD/F3r4uPjSUpK4tZbb+Waa65h8uTJuFyuZtu7XC4SExMBcDgcLa5PS0sLJqsC40u1tH97dO+e3K7tGxqSgGLs9njS05PIyGjf/tGmvZ9PtOoq5YSuU1aVMzRCnpSqq6sL9hU3DH/3Arvdjtnc9ivnDRs2sHbtWi677LLgMvULFxGJXqGoG+Q7bm9T9z1TZGbfA0iJ9z8u213S/lYDItJ1hPP8n5WVhc/nw+12Ex8fD4DP58/an3766fztb39rtn1ubi7Z2dkAZGdns3v37iPWX3jhhaSkpJCZmdmsi19JSQmVlZVHdPlri7KyGox2nK4rKpwAuFwNlJc7iY+vafcxo4HJ5L/Zbe/nE226Sjmh65S1q5Yz8HOohfxuYNiwYSxevBgAU1P7rr/+9a8MGTKkTfuXlZUxd+5cHnnkkWZNatUvXEQkep1o3SDNBbvvRTCnl2b3/x6/VlJKRFoRzvP/eeedR79+/bj77rupra2lvLycRx99lO9///tMmDCB0tJSli1bhtvtZuPGjaxZs4arr74agClTprBmzRo2btyI2+1m2bJllJWVBVtwTZ48mSVLlpCfn4/T6eTBBx9k5MiR9O/fv91xGkb7X/4dj2/faHod7+cTba+uUs6uVNauWs5wCHlLqbvvvpvp06ezevVqamtr+eEPf0htbS1//vOfj7mvz+fjtttuY8aMGQwePLjZus7WL7wzO7TvZyzqyPIdeoxw9qM9/HiH99+NNfob7Rw6Mr4TqRvkSJEe6BwgNd5/8IIqF84GDxmRC0VEOrFwnv+tVit//etfWbBgAePHj6ehoYGxY8cyd+5cunXrxnPPPcf8+fNZtGgR6enpzJs3j9GjRwP+Xhf33nsv9913H0VFRWRlZbF06VJSU1MBmD17Nh6Ph2nTplFbW8uoUaN47LHHTjhmERFpLuRJqYyMDF5//XXee+89Dhw4QK9evbj44ouD07S25qmnnsJms3Hdddcdsc7hcFBT07zparT0C4+UaInzeHVE+bzeOhwOW9Pxwt+nP3A8hyOeGldNzI8joL/RruNE6gY5UqQHOgewWUxkJMRRWudhd0ktp/RNi1wwItJphfv8n5mZyaOPPtriuiFDhrBy5cqj7jtp0iQmTZrU4jqr1cqcOXOYM2dOSOIUEZGWhTwpNWHCBP75z3/ygx/8oN37vvrqqxQXFzNixAiAYJLp7bff5vbbb2f9+vXNto+WfuEdLdb7uHZk+crKnNTXNwa/t1gSjrFHaI4XZ28AoLw8/MeMBP2Ndg7h6hfekhOpG6S5Rq+PpoZSEW0pBTAgLZ7SOg9fFzvRkPUi0hKd/0VEpDVhuZw9vEVSW7355pt89tlnbNmyhS1btjBhwgQmTJjAli1bGDduXFT3C490389Ye3Vk+Tr69x44ln6H0f2KlvJ1pOOtG6S5ukAzKSAuwl1ET03zDyyscaVEpDU6/4uIyNGEvKXUqFGjmDp1KhdeeCE9e/Zstu6mm2467vdNS0tTv3ARkSgVrrqhK6pr9Cel4kxGxMctOzXN373562JnZAMRkU5L538REWlNyJNS+/fvp1+/fnz77bd8++23weWm47hyXrBgQbOf1S9cRCQ6hbJu6Opq3d8lpSLttHQ7ALtLanG5vRGORkQ6I53/RUSkNSFLSv3P//wPzz77LH/9618B/3hQdrs9VG8vIiJRSHVD6NV1oqRUZmIcaQ4rFfVu/nOwmv4JIX/WJSJRSud/ERFpi5CNKbV169ZmP1944YWhemsREYlSqhtCL5CUskZ4kHPwt3Q4s7d/sPzP8yojG4yIdCo6/4uISFuE7ZLW6OgRdEVEpNNT3XDiahs7T0spgLOaklJb8ysjG4iIdGo6/4uISEvClpRSP3ERETmc6oYT15m67wGc1asbAJ/nV0Q4EhHpzHT+FxGRlnSCxv8iIiLSVnVNA4rHdZL7uzN6+VtK5ZfXU1HXGOFoRERERCSahGxEUo/HwyuvvBL82e12N/sZ4KqrrgrV4UREJAqobgi94Ox75s7RUirZHsep6Ql8W17HtgPVXJSVEemQRKQT0PlfRETaImRJqYyMDBYtWhT8OS0trdnPJpNJFY+ISBejuiH06prGlLJ2ku57AOf0S+Hb8jo+3V+lpJSIADr/i4hI24QsKfXvf/87VG8lIiIxQnVD6AVbSkW4+57h81FcXATAOSd146VtB/m0abBz3yHrevbMxGzWaAEiXY3O/yIi0hYhS0qJiIhI+NV2kpZSzqpylm+oJyGhgB99bwgAu4trqap3U19VypPr/NPB/++4HHr16h3JUEVERESkk9KjSxERkSgSHOi8E4wplZiaTlJaBmmOOE7rkYgBfH6gCoCktAyS0tSVT0RERESOTkkpERGRKNJZWkoFBLrxDe3lAGBzXmVkAxIRERGRqKGklIiISBTpLGNKBTiryvnrx3uoqKkF4ONvSiMckYiIiIhECyWlREREokhdU1LK2gm67wUkpqYzqH9vTEB+VSPFte5IhyQiIiIiUUBJKRERkSjR6PHR6PUno+I6Sfe9ALvVQrrd33zrs4K6CEcjIiIiItFASSkREZEo4Wz0BL/vLN33DtU7yQLApwW1EY5ERERERKKBklIiIiJRwtngn3nPagZTZ0xKJfovK7YV1uE1OldLLhERERHpfJSUEhERiRLOBn9LKWsnrb3T4k2k2i3UewyK63yRDkdEREREOrlOelkrIiIih6sJJqU6YTMpwGQyMaZfEgD7a5SUEhEREZHWKSklIiISJWoDSSlLhANpxXlNSakDTi8+deETERERkVYoKSUiIhIlvhtTqnO2lAI4K9NBss1MgxdK6tVaSkRERESOTkkpERGRKFHTyceUMnw+ykuLGZrhb8qlLnwiIiIi0pq4SAcgIiIibRMc6NzSOVtKOavKWb6hnmqXAfRkf4268ImIiIjI0XXSZ60iIiJyOGejv/uerRPX3omp6fRJSyDOZODywq5SV6RDEhEREZFOqhNf1oqIiMihnJ189r0Aiwl62v0tpD7Oc0Y4GhERERHprJSUEhERiRLOKJh9L6B3gj8ptT7PqS58IiIiItIiJaVERESiRLS0lALoafcPyF5S52Hr/qpIhyMiIiIinZCSUiIiElO8Xi/XXXcdd955Z3DZtm3bmDp1Kjk5OYwdO5ZVq1Y122f16tWMGzeOYcOGMXnyZLZu3drRYbeJs6HzjykVYDFBv2R/k67XdhQFl/t8PgoLD1JYeBCfT7PziYiIiHRlUXBZKyIi0naLFy9my5YtwZ+rqqqYOXMmV111FZs3b2b+/Pk89NBDbN++HYBNmzZx//33s2DBAjZv3syVV17JrFmzqK+vj1QRjqqmk8++d7hTU/xJqXe+LqGuaZD24uIinly3lSfXbaW4uKi13UVEREQkxikpJSIiMWPDhg2sXbuWyy67LLhs7dq1pKamMm3aNOLi4hgzZgwTJ05kxYoVAKxatYorrriC4cOHY7VamT59OmlpabzxxhuRKsZRfdd9L8KBtFF3u4k+yVbq3T7W7SoOLk9KyyApLSOCkYmIiIhIZxAll7UiIiKtKysrY+7cuTzyyCM4HI7g8t27dzNw4MBm22ZlZbFz504AcnNzW13fWRiGgbOptVE0jCkFYDKZGJ+VAsCqzw9iaMBzERERETlEXKQDEBEROVE+n4/bbruNGTNmMHjw4GbramtrmyWpAOx2O3V1dW1a31YmU8vfh4rL7cPr8yd1rBbwhv4QJ6ylYo/L6sbfvihnV7GTLwtr6HnI4zCTKTyfVUcJxB7NZTgeKndk4wi3WC+fiIh0LkpKiYhI1Hvqqaew2Wxcd911R6xzOBzU1NQ0W+ZyuUhMTAyud7lcR6xPS0trVwzduye3+H2oFFX7Y7SYIDnBhqnBhslmIyEhHofd/71h9rb4tSO2AbAfts7hsHFK7xSuPLsPqz7dz0tfFjH34l44HP7t09OTyMgI/WfV0cLx+44GKreIiIicKCWlREQk6r366qsUFxczYsQIgGCS6e233+b2229n/fr1zbbPzc0lOzsbgOzsbHbv3n3E+gsvvLBdMZSV+RNf3bsnU1ZWQ6h7quWV+VtuJVjNuFxu6l2NmH0W6uoagt/7Glv+2hHbALhcjZgOWWaxWCkvd/JfZ/Zk1af7eWP7QSacbKO+vhGA8nInNlvNUcvc2ZlM4ft9d2Yqd2yXO1BOERGRjqAxpUREJOq9+eabfPbZZ2zZsoUtW7YwYcIEJkyYwJYtWxg3bhylpaUsW7YMt9vNxo0bWbNmDVdffTUAU6ZMYc2aNWzcuBG3282yZcsoKytj3Lhx7YrBMAjeqAa+D+WrxuUf5DzB1nmr7sPv0w2fj6KiIpK9NVyc1R0D+Pv2su/Wh+Fz6uhXrJRD5Va5Dy+niIhIR1BLKRERiWlpaWk899xzzJ8/n0WLFpGens68efMYPXo0AGPGjOHee+/lvvvuo6ioiKysLJYuXUpqampkAz9MtcsNgM3kI1oGDHdWlbN8Qz0JCQX81/AzeC+3jA/3ORl/io2U+M6bXBMRERGRjqGklIiIxJwFCxY0+3nIkCGsXLnyqNtPmjSJSZMmhTusE1JQ7G9hVO2so67OGuFo2i4xNZ3ExEQGpMdzcVZ33sst4z9lHsb0sUU6NBGJIV6vl+nTp9O3b99gHbBt2zYeeOABcnNzSUtLY9asWUydOjW4z+rVq3niiScoKSlhwIAB3HPPPeTk5ATf7+GHH+bVV1+lvr6e0aNH89vf/paePXtGpHwiIrFKjylFRESiQK3bB4DdGr3Pk64fczIAeTU+qhp8EY5GRGLJ4sWL2bJlS/DnqqoqZs6cyVVXXcXmzZuZP38+Dz30ENu3bwdg06ZN3H///SxYsIDNmzdz5ZVXMmvWLOrr6wFYsmQJ69ev56WXXuLDDz/Ebrczb968iJRNRCSWKSklIiISBWobvQDEmaOj615LBvVMYkw//6yHX5Z6IhyNiMSKDRs2sHbtWi677LLgsrVr15Kamsq0adOIi4tjzJgxTJw4kRUrVgCwatUqrrjiCoYPH47VamX69OmkpaXxxhtvBNffcMMN9O7dm6SkJObOncsHH3xAfn5+RMooIhKrlJQSERGJAoGWUnGm6E1KAfy/Id0B2O/0kVvminA0IhLtysrKmDt3Lo888ggOhyO4fPfu3QwcOLDZtllZWezcuRPwz7J6tPU1NTUUFhY2W5+RkUFKSgq7du1qd4wmU/tf/h2Pb99oeh3v5xNtr65Szq5U1q5aznCI3j4AIiIiXUhdU1LKGqYLgo5ySlo8Jyeb2Vfj4/ltZVxw5qmRDklEopTP5+O2225jxowZDB48uNm62traZkkqALvdTl1d3THX19bWApCQkHDE+sC69ujePbld2zc0JAHF2O3xpKcnkZHRvv2jTXs/n2jVVcoJXaesKmdoKCklIiISBWobm1pKRXH3vYCzMuLIq2lk68E6Ps2vZHi/1EiHJCJR6KmnnsJms3Hdddcdsc7hcFBTU9NsmcvlIjExMbje5XIdsT4tLS2YrAqML9XS/u1RVlZDeyZNrahwNh2vgfJyJ/HxNcfYIzqZTP6b3fZ+PtGmq5QTuk5Zu2o5Az+HmpJSIiIiUaA22FIq+q9+kmxmBqRa2FPp5U8f7uXZH5+NKVxtwkUkZr366qsUFxczYsQIgGCS6e233+b2229n/fr1zbbPzc0lOzsbgOzsbHbv3n3E+gsvvJCUlBQyMzObdfErKSmhsrLyiC5/bWEYtOvGNbit0f59o1FXKCN0nXJC1ymryhkaGlNKREQkCtQFBjqPgaQUwJnd47BZTHxxsJr135ZHOhwRiUJvvvkmn332GVu2bGHLli1MmDCBCRMmsGXLFsaNG0dpaSnLli3D7XazceNG1qxZw9VXXw3AlClTWLNmDRs3bsTtdrNs2TLKysoYN24cAJMnT2bJkiXk5+fjdDp58MEHGTlyJP37949kkUVEYo5aSomIiESB4EDnUfg4yfD5KC4uAqC4uAjDMHDEmZgwMJWXv6rguY35nH9qulpLiUjIpKWl8dxzzzF//nwWLVpEeno68+bNY/To0QCMGTOGe++9l/vuu4+ioiKysrJYunQpqampAMyePRuPx8O0adOora1l1KhRPPbYY5ErkIhIjFJSSkREJAoExpSKxu57zqpylm+op2ffRor2fk1Sj74kOBxckOlmzS5/a6nP9ldpbCkROSELFixo9vOQIUNYuXLlUbefNGkSkyZNanGd1Wplzpw5zJkzJ6QxiohIc1H4vFVEQsnn81FcXExxcTE+ny/S4YjIUQRm34vW7nuJqel0S+9JQko64E9UrfnsW3rHNwKwbFN+JMMTERERkQhQUkqkiystLeWpd7bx1DvbKC0tjXQ4ItICn2EEk1LWGKq5E1PTGdIrEbMJNu6r4D+FsTnDlIiIiIi0LIYubUXkeCWmpJPY1HpBRDqfukYvgfZR0dpS6mgS42BULysAf96UB/hbcBYWHqSw8KBacIqIiIjEMI0pJSIi0sk5GzwAmE1gibGxwJ1V5XidjUA67+eWsbe8DntjFU+u2wrA/47LoVev3pENUkRERETCQi2lREREOjlngxeIra57h+qZnkKfRDMGsGprAQBJaRkkpWVENjARERERCasYvbwVERGJHTVNLaWs5hhrJnWI7DQLAK/tKKLO7Y1wNCIiIiLSEZSUEhER6eQC3feslggHEkaZCWb6dbNR5/by9h4NeC4iXZPL7eXPn5VysMYT6VBERDqEklIiIiKdXKCllC2GW0qZTCauGJQCwLo9VRhGbA3oLiLSFruKnbz8VSWbDrgiHYqISIdQUkpERKSTq3E1JaViuKUUwEWnJBMfZ2ZvZSMVDUpKiUjXc3JaAgBVDT4avDoPikjsU1JKRESkk6vuAmNKGT4fdZWljOrrvyH7plJdV0Sk60lNsNKvmxWA0npfhKMREQk/JaVEREQ6ua7QUspZVc7yDXsweRsAyKv24vWplYCIdD2n93AAUFqvc6CIxD4lpURERDq5apcbiO0xpQASU9PJOqkXdrMPt2HigFOtBESk6zmjpx2AErWUEpEuQEkpERGRTq66C7SUCjCbTJxk95f32ypvhKMREel4ZzS1lKpwGTR4lJgSkdimpJSIiEgnF5x9zxLbLaUCTnL4W4YV1vkoqXVHOBoRkY7VKymOeIsJH5Bf3RjpcEREwkpJKRERkU4u2FKqi9TaCRaDdJt/LJX39tZEOBoRkY5lMplItPkfQlTWq8WoiMS2LnJ5KyIiEr0CSSlrF2kpBXBSoj8p9eE+JaVEpOtxxDUlpVxKSolIbOuUSamdO3cyY8YMRo4cyfnnn8/tt99OeXk5ANu2bWPq1Knk5OQwduxYVq1a1Wzf1atXM27cOIYNG8bkyZPZunVrcJ3X62XhwoWcd9555OTkMGvWLIqLizu0bCIiIu0V6L4X3wXGlAro5TAwA99WNPJtWV2kwxER6VD2OP9tmpJSIhLrOl1SyuVycf3115OTk8NHH33Ea6+9RmVlJXfffTdVVVXMnDmTq666is2bNzN//nweeughtm/fDsCmTZu4//77WbBgAZs3b+bKK69k1qxZ1NfXA7BkyRLWr1/PSy+9xIcffojdbmfevHmRLK6IiEirGjy+4EC31hiffe9QNjP0SvRfpqzdqQdIItK12IMtpTwRjkREJLw6XVKqoKCAwYMHM3v2bGw2G2lpaVx77bVs3ryZtWvXkpqayrRp04iLi2PMmDFMnDiRFStWALBq1SquuOIKhg8fjtVqZfr06aSlpfHGG28E199www307t2bpKQk5s6dywcffEB+fn4kiywiInJUNS7/QN9mE1g7Xa0dXv26+ZuGrd1VgmEYEY5GRKTjBLrvVamllIjEuLhIB3C4AQMG8MwzzzRb9tZbb3HmmWeye/duBg4c2GxdVlYWL774IgC5ublcffXVR6zfuXMnNTU1FBYWNts/IyODlJQUdu3aRb9+/doco6mTP6gOxNfZ4zwePp+P0tJSvN46zGY7JlN479AO/QxNpvB/pof/7jrymB11vEOPGYt/oxA95evs8YlfVdNT8kSrGVMX+6X1TTJjs5jIq6jn6+JaBmUmRTokEZEOYbdqTCkR6Ro6XVLqUIZh8Nhjj/Huu++yfPlynn/+eRwOR7Nt7HY7dXX+sSZqa2uPur62thaAhISEI9YH1rVV9+7J7S1KRERLnO1RVFTEnz/8CoBfTzqXzMzMsB7P663D4bAB0L17EhkZ4f1MA8dzOOKpcdWQnt5xx4SOKeOhYvFv9FCxXj7pGDVNSamkrjSgVBOr2cS5fRNZn+dk7a5iJaVEpMvQmFIi0lV02qSU0+nkrrvuYseOHSxfvpxBgwbhcDioqWk+C4/L5SIxMREAh8OBy+U6Yn1aWlowWRUYX6ql/duqrKyGztyLwGTy3wx39jiPR1mZkzh7Ena7jfJyJxZLwrF3OsHj1dc3Br/vqOPF2RsAYrKMENt/oxA95QvEKZ1bddMg50m2LtZ3r8mFJyf7k1I7S5j9vVMxd7HWYiLSNQVn32tQUkpEYlunTErl5eVxww030KdPH1588UXS09MBGDhwIOvXr2+2bW5uLtnZ2QBkZ2eze/fuI9ZfeOGFpKSkkJmZSW5ubrALX0lJCZWVlUd0CTwWw6BT32gGREuc7XFomTqifIe+f0ceL5bLePixY+1v9FCxXj7pGMGWUjYL4ItsMBEwvE8CCTYLhTUNvP/lt1x05imYzV0zQSciXUcgKVXT4MXrM7B0oYkuRKRr6XRXdVVVVfzsZz/jnHPO4dlnnw0mpADGjRtHaWkpy5Ytw+12s3HjRtasWRMcR2rKlCmsWbOGjRs34na7WbZsGWVlZYwbNw6AyZMns2TJEvLz83E6nTz44IOMHDmS/v37R6SsIiIix1LVNNB5chdtKRUfZ2ZUX38Lzic+/Ibi4qIIRyQiEn7xTUkpnwGV9e4IRyMiEj6drqXUyy+/TEFBAf/617948803m63bunUrzz33HPPnz2fRokWkp6czb948Ro8eDcCYMWO49957ue+++ygqKiIrK4ulS5eSmpoKwOzZs/F4PEybNo3a2lpGjRrFY4891sElFBERabtAS6lEmwXomlODX3hyMu9+W0Nhow2vT80PRST2mU0m4i3Q4IWKOjfdE22RDklEJCw6XVJqxowZzJgx46jrhwwZwsqVK4+6ftKkSUyaNKnFdVarlTlz5jBnzpwTjlNERKQj1Bw6plQXy0kZPh/FxUX0sRjYzODywpfF9fTtE+nIRETCL95iosFrUFbXSBbtGwNXRCRadM2+ACIiIlGiqtmYUl2Ls6qc5Rv28PePdtDL4R9P6/29NcfYS0QkNtibTvvldY2RDUREJIyUlBIREenEAt33kuO7ZpWdmJpOQko6fRP83fY+2ldDXaNmoxKR2GdvGleqok5jSolI7OqaV7giIiJRwOfzUVpTB4C3vgajC0/nmG6DJKuJeo/B21+XRDocEZGws1v8SamyWiWlRCR2KSklIiLSSRUXF5Ff4U9Krf/PXurq6iIcUeSYTHBqir8vyz+/KIxwNCIi4RffNPpvhbrviUgMU1JKRESkE3Mb/qq6W3JShCOJvFNTLJhNsK2gml3FzkiHIyISVvFmf0upwNiCIiKxSEkpERGRTsrjM3D7x/fGZu66XfcC7GaD4T39TQee+XA3Pp8vwhGJiIRPYH6Lape674lI7FJSSkREpJOqafhuQG+rKYKBdBLOqnKMav94Uu/vrebLb/dHOCIRkfCxNY0pVVWvllIiEruUlBIREemkqpuSUvFxZkxKSgHQq3s3+nSLx8DEC1+URzocEZGwiW9qKVWlllIiEsOUlBI5Bo/PIK/aw1cl9ZEORURasXPnTmbMmMHIkSM5//zzuf322ykv9ycttm3bxtSpU8nJyWHs2LGsWrWq2b6rV69m3LhxDBs2jMmTJ7N169ZIFOEIgaSUPU7V9aFG9E8FYN2ear4qqolsMCIiYWI7ZEyprjz7qojENl3lirTiP8V1vLK7jvUHGrh7XR5V9XpSJdIZuVwurr/+enJycvjoo4947bXXqKys5O6776aqqoqZM2dy1VVXsXnzZubPn89DDz3E9u3bAdi0aRP3338/CxYsYPPmzVx55ZXMmjWL+vrIJ6KDSSmrJcKRdC6ZyfH0TzZjAAvfzsXj1dhSIhJ7AmNKeX0GtY3e1jcWEYlSSkqJtGLdnqrgIMONXoMNeysiG5CItKigoIDBgwcze/ZsbDYbaWlpXHvttWzevJm1a9eSmprKtGnTiIuLY8yYMUycOJEVK1YAsGrVKq644gqGDx+O1Wpl+vTppKWl8cYbb0S4VFDtUkupozm7h5UEq5kdhTX86aO9kQ5HRCTk4sym78aVUhc+EYlRusoVacX2wjoAUuP9/yof7CmLZDgichQDBgzgmWeewWL5rkXRW2+9xZlnnsnu3bsZOHBgs+2zsrLYuXMnALm5ua2ubyuTieC4T4HvT/RV3ejPitut0VFdd+SwVwlWE7eOyQRg+Zb9rNy4C8Pwheyzb+sLOvZ4neWlcsf2SzqPbk0DS2mwcxGJVXGRDkCksyqsdlHodGMChvW08l5+Axv2luP2+rBaouMGUaQrMgyDxx57jHfffZfly5fz/PPP43A4mm1jt9upq/MnnWtra1td31bduye3+P2JaDT5zzXJDhsOw4bJZsMwe5t9TUiIx2FveV1HbuP/3DouDne9jQnDerHX6eVvnxXzh/WF9M1IYvKYwSH57NsjVL/vaKNyS2ewc+dOFi5cyI4dO7BarZx//vnceeedpKens23bNh544AFyc3NJS0tj1qxZTJ06Nbjv6tWreeKJJygpKWHAgAHcc8895OTkAOD1enn44Yd59dVXqa+vZ/To0fz2t7+lZ8+eHVq+JJuZ0jq1lBKR2KWklMhRfJpfBUCa3UxmooVUu4VKl5et+6sYeXJahKMTkZY4nU7uuusuduzYwfLlyxk0aBAOh4OamuaDYbtcLhITEwFwOBy4XK4j1qelte//vKzMf4zu3ZMpK6shFGPSFlf647JgUO9qxOyz4Gts/rWuruGo6zpyG//n1oipo+Kob6S83MmPTu/GR7tLyavxcddrezAaGvneGSdjNof/4YHJFNrfd7RQuWO73IFyRoPAeILXXHMNTz31FLW1tdxxxx3cfffdLFy4kJkzZ3LLLbcEu3PPnj2bQYMGMXTo0OB4gkuXLmXo0KGsWLGCWbNm8e677+JwOFiyZAnr16/npZdeIjk5mXvuuYd58+bx9NNPd2gZk5taSlWrpZSIxCg19xA5ii35lQBkJlowm0zk9PbfwG47UB3BqETkaPLy8rj66qtxOp28+OKLDBo0CICBAweye/fuZtvm5uaSnZ0NQHZ2dqvr28owCN6oBr4/0VdVcKDz6KiuO/o+3TDAhImRva1kWD00eOGut/axbuNWDh48yMGDB/F6fSH7fbT0CsTR1V4qd2y/okU4xxNctWoVN9xwA7179yYpKYm5c+fywQcfkJ+f36FlTLb5z/9qKSUisSo6rnJFImDbAX9LqZ4J/n+TU9PiAfimrH1dekQk/KqqqvjZz37GOeecw7PPPkt6enpw3bhx4ygtLWXZsmW43W42btzImjVruPrqqwGYMmUKa9asYePGjbjdbpYtW0ZZWRnjxo2LVHGCgrPvxWn2vcMZPh/FxUUUFxdhBs5JcZFiNWg0zNy/oZqlG/N4ct1WiouLIh2qiIRJuMYTrKmpobCwsNn6jIwMUlJS2LVrV7vjPO5xvUyHjCnl8kR8rDGN06ZyqqwqZzio+55ICxo9Pg5U+bvNpNn9Sal+Kf6k1LfltRGLS0Ra9vLLL1NQUMC//vUv3nzzzWbrtm7dynPPPcf8+fNZtGgR6enpzJs3j9GjRwMwZswY7r33Xu677z6KiorIyspi6dKlpKamRqAkzR06+56ekTfnrCpn+YZ6DHc9ST36EmeGkRk+1hebqPNa2FIKF2R2j3SYItJBQjmeYG2t/1ovISHhiPWBde3R3u6QDQ1JQDF2ezy2ODtQTSMmMjKio1tle0VLd9ET1VXKCV2nrCpnaCgpJdKCA1UufAY44szYm6biPTnVP5DvvvJ6PD6DOHOYUsUi0m4zZsxgxowZR10/ZMgQVq5cedT1kyZNYtKkSeEI7YQEW0pZLUpKtSAxNR1fY33w53gLjEip56OKBAqqGvjGrsscka4g1OMJBpJV9fX1R92/Pdo7DllFhbPpeA0kJloBKKqoo7S0prXdoo7J1LXGaYv1ckLXKWtXLWfg51DT1ZpIC/Iq/BchfbpZMTW1U+yRaMUeZ8bl8bG/sp5T0hNaewsRkRPicntp8PqvdOxxZmLrViR8kuIMBncz+E+ViW0lHqpcXnpFOigRCZu8vDxuuOEG+vTpw4svvhjsvj1w4EDWr1/fbNu2jCd44YUXkpKSQmZmZrMufiUlJVRWVh7R5a8t2jtWV3BbA5Jt/u57lfXumL35jbaxzI5XVykndJ2yqpyhoTGlRFqQX9mUlEq2BZeZTSZO7e5PRH2rcaVEJMwq6/1to8wmsFrUMrM9Tk0y6J5gxe2Dv2zeT2HhQXw+X6TDEpEQC+d4gpMnT2bJkiXk5+fjdDp58MEHGTlyJP379+/QMibZvhtTSkQkFqmllEgL8isOSUp5v2vafWr3BL4qcvJtWR2XtG9iLhGRdimv8yel4i0EW2xK25hMMPLkVP71VQlv5zXgefNzfnX5MHr16h3p0EQkhMI5nuDs2bPxeDxMmzaN2tpaRo0axWOPPdbBJYTk+KbZ9+rViVtEYpOSUiItyAu0lOpmo7DikKRUU5e9b8o02LmIhFdpbSMA9jglpI5H3xQ73a0eytxx5Hm6RTocEQmDcI4naLVamTNnDnPmzDnhOE9Et2BLKSWlRCQ2qfueSAu+ayllbbb81O7+wS2/Ufc9EQmzQFLKoa57x8VkMpGd6P8Mv632Ulanri8iEn2S4/1JKWeDF4+vCwxeIyJdjpJSIodxub0U1TQA0Lebrdm6k9P9s7Hsr6zH6Aqj2olIxJQ6/echtZQ6fuk2H+k2A58BL39VEelwRETaLclmJlALVKoLn4jEICWlRA6zv8rfXS8p3kK3pqdTAX262TEB9W4fZXW6MDgePp+P4uJiioqKNPCwSCuCLaXU0f6EZHfzn2fe3F1FeV1jhKMREWkfi9lEisPfcr9S154iEoOUlBI5TKDrXr9UxxGDC9vizPTqFg/AgaZxp6R9SktLefLtbTzy6mZKS0sjHY5Ip1XqDCSl1FLqRGTEQ7rdRKPX4G+fHoh0OCIi7ZaW4E9KKbEuIrFISSmRwwSSUv3THC2u75vqX54fhqSUYRjsrfLw+YFq9pQ3xmwXwcSUdJJS04+9oUgXpoHOQ8NkgjO6+5ubrfq8gNx9+yksPEhh4UG11hSRqJDelJSqUEspEYlBSkqJHCYw816/1JaTUv1S7QDsr3S1uP5EbD5Qy4aCBjbnVfL+3lo+2e8M+TFEJDp8131PSakT1SfRzCmpNuoavdz7r69YviWfJ9dtpbi4KNKhiYgcU5rDP8ZphcaUEpEYpKSUyGGC3feO0lLqpJTvBjsPtde/9g/Ea2uabev1rytDfgwR6fy8PoNyJaVCxmQycc2Z/taZe+vjsadkkJSWEeGoRETaJi3YUkrd90Qk9igpJXKYQLe8o3XfOyktkJQKbUupgioXnx6oBWBstv9m6dMDtRyo0thVIl1NZb0brwEm4LD5FuQ4ndc/ib7JVhp98J/CmkiHIyLSZt+NKaWWUiISe5SUEjlEvdtLSdPgwkfrvndSSqD7XmiTRa9+cRAD6JVopl+agz7JcRjAq18UhvQ4ItL5BQY5T7FbMJvUUioULGYT15zlby31+YFqXJ7YHLNPRGKPxpQSkVimpJTIIQJd91LsccHpdw93UlOyqsrlodoVuouDTfsqATglxT8gb3Z3//gBG/dWhOwYIhIdAuNJpTviIhxJbLn41GTS7CbcXoMvSj2RDkdEpE3Smq5JNaaUiMQiJaVEDhHoune08aQAEmwWuif6E0ah6sLX6PHxdYl/UPMMh7+vTq8k/wXIrmIntY26eRLpSkprGwBId6jvXiiZTSZyevjPrd9UefmqRN2jRaTzS0toGuhcY0qJSAxSUkrkEHkVrY8nFRDqLnxflzhxew26xVtIsvq76iTazGQmWfEZ8EVBdUiOIyLRIdCNOE0tpULC8PkoLi6iuLiIDIeJgT0SAXh8YzGNHl+EoxMRaZ3GlBKRWKaklMghgjPvHWU8qYBQD3b+5UH/oLsDM+yYDhk/5sye/uN8fkBJKZGuRN33QstZVc7yDXv46wdfUldXx6iTU7FbIL+6kT9vyot0eCIirQp036tt9CqRLiIxR0kpkUMca+a9gFC3lPryoD/pNCij+XHP7JkAwOcHqkJyHBGJDgeq/AnvzCQlpUIlMTWdhBT/QOd2q4VzMv03ecs+ySe3tDaSoYmItCrZHofF7H9oqXGlRCTWKCklcohA973WxpSC71pShSoptaNpevLBRySl/D9/ebAGt1dPxkS6ioKmpFRgbDkJvb4JMKxHHB6fwb2vfcmBggJ8Pp1nRaTzMZtM3w12rnGlRCTGKCkl0sTZ4An21T9m973UppZSVSfefa+yzh3sBjgww95sXb8UG93scTR4fOzRk3yRLsHrM4JJqUwlpcKmtrqChNoiLPj4uqyBu9fsoLi4KNJhiYi0SONKiUisUlJKpEmg1VN6gpWk+Na7zJzUlLQqcTbicntP6LiBVlInpzlIsjWfactkMnF6ZhIA/2naTkRiW7GzAY/PwGox0V1jSoVVenoqpyf7Wx3sqo2n0KmbPRHpnAItpSrVfU9EYoySUiJN8to4yDlAisNKclPi6kRbSwXGkzqrd3KL68/o5V/+n0LnCR1HRKLDgaaWk7272YNjiEj49LN7SLcZeA144pNiDMOIdEgiIkfonmgDvpudVUQkVigpJdIkMMj5scaTCgh24as4sXGlAjPvndm7W4vrT89sSkoVqaWUSFdwoMp/TumbYj/GlhIKJhMMTfNhNsHWg3W88Z/iSIckInKE3t3iAThYHZqZn0VEOgslpUSa5Fe0bea9gEAXvhNpKeUzjGD3vWO1lPqmtPaEuwqKSOcXmHlPSamOk2SFs7r7W78++t4eyjWQsIh0Mn2a6oSCEIxnKiLSmSgpJdIkr8Jfybel+55/u6aWUicwA19eRT01DR7i48xkZyS2uE3PJBvdE214DdhVrC58IrEu0H2vbxvPRRIaA1NN9Es2U+Xy8Pt3ciMdjohIM727+a871VJKRGKNklIiTfIq6oC2d9/rn5YAwN7yuuM+5o6mrnuDeyYRZ2n539FkMnFGYLDzIiWlRGKdWkpFRl11BZmeMsDg7a9LeW1HYaRDEhEJCrSUOljdoLHvRCSmKCklAlS73FS5PEDbW0qdluFPSuWW1B73xUFgkPMzj9J1L+D04GDnGldKJNYFklJ2j5Pi4iLdfHSgXt27cVZ3/wxXC9/OJbekNsIRiYj4ZSbHYzZBg8dHWZ1m4BOR2KGklAiwp9Tf2ikzOZ4Em6VN+5ySnoAJqHJ5KD/Oi4PvxpNqeZDzgDOUlBLpEsrrGqmsd2MCXv/kP/z1gy+pqzv+1pjSfoPTTJyRbsHl8TF71efsr9DnLyKRZ7WY6ZHUNNi5xpUSkRiipJQIsLvE3y0uu0fL4zq1xG61BLv67Slt/9N0l9vL101P4Y82yHnAmU0z8OVV1FPT1KJLRGJPYNy4Pt2spHbPICElPcIRdT111RWkNxTRzWaivN7Lz1/4nNzjOMeLiIRaH83AJyIxSEkpEQgmhwa2IykFMKB7Uxe+47hh2VXsxOszSE+w0is5vtVtUxOswQuRr4pC21rqs4JadpQ2kl/twetTNyGRSNrVNG7caWmtnxMkvFLT0phwVm+SrCaKaz38z98+588ffEXBwQJ8Pl+kwxORLkoz8IlILFJSSgSC44Zk9Uhq135ZTTPmfVPa/u4dga57Q3p3w2QyHXP7cHTh+8sn+dzzTj7bS9x8dKCBhz8qwKfxa0QiZlex/1w0QEmpiEuMj+P7J9sYmumgzu3lic0l/OSFXSx751Mlp0QkIgIz8BWopZSIxBAlpaTL8/qMYEun9nTfAzitKSm1p6z9LaW+bJp571iDnAec3tSF76sQzcD3xn+KWPzhtwD0TrRgBj7YV8NT6/eG5P1FpP12FfvPC6ela+a9ziDeYuJ3Y/tyw/AM4kxQ47WwZHs90174mr9t2E2jR4kpEek4vQMz8FU1RDgSEZHQUVJKolIoW/PkV9bT4PERH2du88x7Aacd0lKqPTEZhsEXBf6Z9441nlRAoKXUlwerT3g2rrpGL49/4E9IXXNWdy7ub2dkbxsAyz7JZ2957Azs6/P5KC4upri4WC0bpFNzNnjIr/Q//R6QrpZSnYXFbOLKwWlMOC2erIRG4kwGTq+ZP24s4sqln/DEe7lUuzQTloiE30mp/qRULF2niYgoKSVR5a3dlazJrWPZ1kpuf2sfeRX1J/yeuwNd9zISsZiP3Y3uUP3SHMTHmalze9lX3vZYDlS5KKxpIM5sOubMewFn9k4mzmyi2NkYvHE9Xs9vzqe0tpE+KXb+39DuAJyaamXkSUn4DGKqtVRpaSlPvbONp97ZRmlpaaTDETmqr5smXMhMjqdbfNtmAZXwMnw+iouLKC4uwmaGgUmNXNrbx5DuFlLjTZTWNvJ/b+7ih09u5KE3tvP13jwKCw8qAS4iYTG4ZzIWExTWNFCoLnwiEiOUlJKosWLLfhZtLMTp9rcS+rKonp/89VO+Lj6x7mw7i9o/816AP6nkb8G09UBVm/f7ZF8FAEP6dMNhbdvNp8NqYWgffwJrc15FOyP9TlW9m79/egCAWy48Favlu9PAz4ZlYALe/rqUnSEeUD2SElPSSdQsZtLJfVHg/58b3LN9Y9tJ+Dirylm+YQ9//eBL6ur8LROsZuhnqeLsuGJG9rKSZHbj8hi8/FUlP3vpG25/9UsOHDwY4chFJBYl2CwMbKojth2ojnA0zfl8Pg4eLOCgxtwTkXZSUkqiwpa8Sh57/xsATu9u5arTu3FGDwf1bh93vfYVtY2e43/v/EoAhvVNOa79zznJv9/W/W1PSm3O8x/z3P6p7TpWYPtP9lW2a79D/ePzAurcXrJ7JDI2O6PZulPS7Fx+ek8Ant2Yd9zHEJH2W/9NGQCnp5kpLi464W66EhqJqekktJDUTk5L5+xTe3NZX4Nzu3tJsnjxYOYrZzw3vZ7H+m/KIxCtiMS6wPVqex6GdoSiokKeXLeVJ9dtpaioMNLhiEgUUVJKOj2X28uD674GYHxWCsN62kh3WPjNJSfRM8lGXkU9j777zXG9d7XLzVdNs9m1N0EUkNOUlPosv7JNN5E+wwgmpUYeZ1Lq0/xKvL7237DWNXp54TN/K6npI/u1OOvfjFH9MQHv5Zaxp7T9A7iLSPtVu9xsbxpnbte3e5u1zJHOzWSCTAdckF7P0DQfdgsU1Li5dfWX/HL1l+SHoJu5iEjAsKbrzs/DnJRqreXT0dYlp2WQnJZx+FuJiLQqLtIBSHTz+XzBcXoyMjIwm0Of53xuUx75lS4yEm38z/CerN5eAEA3u4UHrjidmS9s49UvC5l4ViZnt7O106f5VRjAKekOeiYf38DCQ3p3w9I01lNBtYu+Ka0Plv51sZMql4cEq4Uze7VtkPOAM3slk2izUOXysKvYGRz8vK1Wbz9IlctDv1Q7lw7s0eI2p3ZP4JLsDP69u5Rln+Rz/w8Ht+sYItJ+G/dW4DWgX4qNnhl2aixqJRVtzCbon2hwWpqVOq+Jt/Ma+eibcjbureAH2Sn89/lZnJSWEOkwRSTKnd00lMOe0jqqXW662a1t2s/n8wVbMGVm9sJkMlFW20heZT0VtY3sLy6jzu0jKTkZk8lMdXUVG772P8g8b2AF3bp9d41dVV3F+l0F+ICzTynFkZCEt6GOXRUe4i0mviqpx57SSKrD2uIDUBGRQykpJSckMIg0wM8vPZuePXuG9P13lzh5fvN+AG67NItEW/MnNTknpTDprF68+mUhC9/J5fmfnENcOwYrD4ztNLJ/2nHHaLdaOCMzmS8OVvNZftUxk1Jrd5b4j3lyKnGW9iXx4ixmRp6cxru7S1m3q6RdSalGj4/lW/yf5c9G9mt1UPf/HtWff+8uZe3OYmaOOZl+ae2blfBoPF4fm/Jr2FHaSLLDoLTOTcupMZGu5aOmrl4j+yaCVy1rolmDs4LGunrOiXOzx5dBudfGml2VvP71Fi7JymBs/3jOynTQK7NXWB7kiEhs655o45R0B3vL63n1i0KuO7ffEdscmoACSOneg40781j28R6qPRYSk/I5UOOhttHbwhHKDvneP9vfzq1lhy0H8D/Mzf1PJVDZbM2mwgOw7gBJ8Rb6pTo4Oc1Bj3gv/VJs5AzoS58UO2UlRZhM0NCQhNWahMmk86FIV6WklJywcA0g7fUZPLhuN16fwcVZ3RmbnUFxcfER2930vVN5L7eU3SW1/GPrAf7f8JPa9P6GYbCpKSl1vF33AkaenMoXB6tZt6uEiWf1Oup2Hp/BG1/5yzDhzMzjOtYVZ/Tk3d2lvPGfImZ/79Q2J+Fe21FIaW0jPZNs/PCM1o89KDOJ809NZ/235fxlcz7zLht4XLEeanNeBff9axfFzsamJW42H/iG6851c8OYk9s986FIrKisc/Pv3f4Wp+f2TWRrnpJS0S4xNR1HYz09rRZ83Xrw2b4yiup8vLO7lHd2g93sY+LpZVwz8jROSVfrKRFpn+vO7cf9b33Nc5vymHhmL1ITvmst5TMMPv06jyc/2EWtOZGSWje13ly8BgSSTDQ0AP4WnnaTjzijEbvNRhxePB4PjoRE6murscYnEBdnoXeiBbvdERymoqHBRVGdD2+jC6/HTVJyN6qrKjHFJ+LBgscH5Q0GzgYvXxU5+arokEmJPigkzgx2k5c0h5W0uAb+94LTGDHwZLWqEumilJSSTuvFzwv48mANiTYLt43NOup2qQlWbvreqcxft5un1u/j+wN7tKkr3qf5VeRXurDHmRlxgkmpCWdm8uzGPDburaCw2kWvbvYWt9u0t4Ky2kbSHFbOP/X4knnnn5pOmsNKeZ2bjXvLuWBA92Pu42zw8NTH+wD/hYy1DS20Zozqx/pvy3l9RxHXjTiJk0/gxumvm/N5/INvMYBUu4VUGzg9UFrn5dmNeeSW1PLAFYOxt3EmQpFY8o/PD9Dg8TG4ZxJn9LCzVXMMxAyTCU5KdZDsiePM7lb+nd/IxwfduHxmVu2oYNWOLQzsHs+VQ/sy/vRMUh1t64YjIl3bFWdk8sJnB/i6pJZZq7Zz+ek9cTZ4+E9hDTsOVlPr9gEOwAf4r6262UwkWSE93sT3+to4s18PzPUVvLe/EWdlLSZrHIbbhcnqoM/JJ3Egdwcmqw/DXUttdS2Z3U7m4N6vMcXFY/M0cEZGXwx3Q9P2fTmQW/nd9rW1eKyNNFgSiE/rxYHiEhptKdT5zNS5odEHTiw4nT7ysXLja3n0TCrkggHduSirOyP6pWKLU8spka5CSSnplAqqXDzx0V4AZn/v1GMmma4c0ot/flnIFwdruO/NXTx+9ZBjtrx5Yau/n/wVZ2aSFH9i/wonpToY0S+FLflVrPmyiBvOO/mIbQzDCB7z8tN7trvrXkCcxczlp/fk758d4B9bC9qUlFq6YR/ldW76pzmYPLR3m45zdt8UxpySxoa9FSx4ezdPTB3a7idYPsPg8Q++DXYbnHRWL346pBsvfn4Au91Kj6QEHvv4IO/vKePGVdv5w1VnNXvaJxLrnA0e/rHVP07ez0b2w2Q6/plEpfNyVpXz3sF6TO56vt+7L4U1jeTVmin3xvN1WQMPv/sNj73/DWf0cHB2rwQuGtyXQZnJStSLSIssZhO3X3oat7z0JbmltSz+8Ntm6834SLGZOKl7N+KcxdjcNdi89XRL6Yvhruc/e2opbzA4uPdrkjP6HvN4SakZdOueSU1FKSarA8PdeovepNQMDHd9U8KqDymeimDCyumspd7jheRekJTO/nInJXVeip2NvLz9IC9vP4gjzsQ5fRIZmulgzMC+ZPdIOu7rZhHp/LpcUqqsrIx77rmHTz75BIvFwpVXXskdd9xBXFyX+yg6rbpGL3Ne3UGd28vQPt24+uxjJ1HMJhO/GT+I65Z/xua8Sp7duI+Z551y1O3zKur5YI+/b/w1OX1CEveVQ3qxJb+KF7cVMDWnzxFPvN/PLWPD3grizKY2lak1U4b1YdXnBWzYW8H7uWVclHX0xNSmvRXBGffmjD2tXU+ebr80ix/95VO25Fex6vMCrsk59oVLgMfr44F1u3l9RxEAt1x4Kted2y/YBdNkMnHxqd3I7tODX7+6gy8O1vA/Kz/n0f86i/4hGsMqUvxjORRRVuake/fwTAAgodfR9YNhGMxfu5sql4f+aQ4uyc6gpFjTaMeqxNR0fI31mE3Q2+6lbzcbKZl9+WzXN+TXmXH6rGwvqmd7UT1/3VaGxQR9utk4NdXGqWnxnNGvB31TEuidEk9yfJy6uYh0kM5w73DoGFGB2e6MkhLGJFdRZEqlrKaegT0SOSnJTHGdF0t9BRabgz4np3EgtwBTcnqzRNKhSaaOlpyWQZK7HpPVoE/fFE4yiin1VVDRaKKMZMo8Nuo9cazPc7I+z8mSzSXYLCZ6JMbRMyGOjIQ4//eJVgb1y6R3ip2eSfFt6gUgIp1Tl8vE3HrrrWRmZvLhhx9SWlrKrFmzWLZsGddff32kQ4tqgT7mJ6qq3s2dr33F7pJa0hOszL9iMOY2Xnif0j2B2y/N4ndvfc3SDXlYLWamj+x3xIW7y+1l7mtf4TNg9ClpDOieGJLYL83uwXPpeewtr2f+2q/5vyvPCB67oMrF7/+dC8B1555YVziA/mkOfjLiJJZ9ks/v/53L4MwkMltoTfZVUQ13vvYfvIa/i+GYU9rXZfCkVAf/e/4p/PH9b3jk3T1kJNoYe5RZ+w5VWO1i7us72V5QjcUE88YPZMKZLY+1NeykFJ750TB+8fIX5FXU899/28rcywZySfbxTymcX1HPx9+Ws2FvBTuLqimv82Axw8cHv2XYSZWMPiWNUSenkWwPzymwtLSUZR99hcvVGJYJACQ8Orp+eH1HEW9/XYLFBDeNSKeosIDS0pKQnU+l80uwWTg1wc1pqQ6q62op9zmocFuoagSn2yC/qpH8qkY+2OeEz78bZDjBaqZncjzpCVYcZp+/W7Tdwkk90uie6F+elmAjPcFKos2iBJbICegM9w5FRYU8uW4ryWkZwS50hqeB5Iy+jDm5Lwdyd1BbUU5+iX+ZEWX/8ilpGSQ31nOy1YavsZ5qHNTb0zlQVkO126DeY3Cg2s2BanfzHTc2PegE0hwWeiZaOSk9iV7J8STQQI9EK9l9e5KRbKd7glWtrUQ6qS6VlNq3bx+ffPIJH3zwAQ6Hg379+nHjjTfy+9//XkmpNqh3e/mmrI5vSmvZU1rHN2W17C6uoazOgwG8kruL3t3yOC0jgQEZiWQ1vfqm2o+ZWHK5vfx7dylPrd9LQXUDDquZ308686hjMx3NxLN6UVjdwNMb9vHER3vZklfJjFH9Gda3GyaTia9LnDz23jfsLHaS6rBy97jsE/hEmrPFmbn/h4OZ8bfPeS+3jJtf+oKrhvSmpLaRZZvyKK9zc1Kqnf8e1T8kx/vv0f1Zu6uEgioX//23rdw2NosLBqRjMZsodjbyzy8L+fOmPNxeg7P7dOOu7x9fWacN78ve8jpe/aKQO9Z8xdRhVUwb0bfFWQb3ltWxZkchL2wtoMHjIynewv0/HHzMLoandk/gz/8vh1+/soMdhTXc/s//cP6p6fz4nL6c0y/lmE+/AuMorP+2nI++KSev4shm5R4f7KtsYF9lIa9+WYjFBEP7dOO8U9M5f0A6WRmJIblxa/D4qHJ5sCalYljdeH1KMESDSNQPe4vKAIOze1h544MN/KupS0RSj7a3SJTYkRRn0M1m0L+xhjrqaTA14knuBYnp7C8qpdYN9T4zbizUuX3sLa9nb/nh57ryI97XajHRzWYhwWYmwWoi0WomwWoh0WomOd5Mt3gLqY44Tu6VQfeEeFIccdjjLMRZTNgsZuIsJrw+gwaPL/hq9PoocHkpKKrmYEkZXsMgIz0dW5wZm8WM1WLGajFhtZiJM0FVRRlWi4k+mZnEWy3EmU1KlElUiPS9g9HU8hogKbV7q13oAl3mop3JBKlWOKNfKr0aDvi7+5m8mLv1wp7ag4KDB6nHSr3bR50HXIYFAxPl9V7K673sLHUd9o4Hg9+lOuLonmAjyWqQZo+jR2oSibY4HFYzXlctDquZ3hnpJMVbSbBZcFj950KrxYTVfMh5zez/qkl6REKjSyWldu/eTWpqKpmZ3808dtppp1FQUEB1dTXdunULy3E3flvOv3cWgGFgdzgAE4Hb1MATccMAo+nnQ29h/cuN4Hr/wubLDMPAa4DX56Pe1YDPMEhKSqS+wY0JE2aTv3ub2eTvMnX4zxaTCVPTssBXt9dHvdtLvdtHibOBopoGyusOezpxGJfH4NvyOr4tr4Ovv2sObI/zP9HNSLSRlmANnszB31WvqKaB3SVOGv3TgtC7WzyPXHUm2T2SjuvzvuG8k0myx7H4g2/4JK+ST/IqAYgzm/A0JQji48wsmHg6vduZ9DqWwZnJ3DUum/97J5dN+yrZtK8yuC67RyKP/tdZIRsjxGG18OQ1Q7n5xS/YV1HPbf/8Dyb8ZXN5fMHtLjytO/dePvC4B4w0mUzc+f1s4swmXtp2kFWfF7Dq8wL6ptjpnWLHajZR2+hlf2V9s7+RnL7d+M3lgzgptW1d8bon2nj62rNZumEfz2/OZ/235az/thyH1cyp3RPJSLRhjzMTH2fG4zOod3upafCQV1FPSXBGP784s4lhff0Jp5MTfLyfW4zXB+f0T+ebGhMf7y3n27I6th6oZuuBav700V4SrBZ6p8TTu5udRJul2Y0VgNtr4Pb6cPv8Xxs9PurcXmobvDgbPTgbvNQ2enB7myehVu3ahcO6m6T4OJJscSTFW0hs+j4x3n9zduj/owmC/4eB/3+f0XRuMPzjdBn4v/p8BvUuF4YBY0/vzfcHqUXW8YpE/XD1GWlUOZ306JHJgT2VmG0OfI3Rf0MhJy4pLZ2ExnrMNujdN4UergPBvw8jzkGty0V1nZtGjwdTUjq2xFRKy8qod/to9IGbONyY8Rgm3F6DsnoPZcf80yo6wagPHnsTvgl+ZzWbiDObiLf6z7VmfFjNJv9yi/9roj0eW5wleCNos5iIswQSX6YWH3gFGhoaGNTV1X63ABMJCQn+E+wR+xjU1dUB+LcBapt+PrTlogmwO2yYTdYj3qelFo6HLgp86zvkWI7gNWHza0EMg/r6+u+2aW8C75D9T+6RyozR/dW16ThF6t4hwFlVzvINtcFWUSnH34g8ajXr7tczicTqRkxWS3DMKl+jE7fFQVLPvuzbt5fqejcuL3hsSdR7DFxecBsWDKCy3kNl/aFjN9a0cMQjZ/o+GhNgMfuvOy0mU9M1XdPPZrCYTMH1dlscPq8XyyH3Yv7rvUPuy/huucVsavrZvxz8pwL/daIpePzAcrPJf44LrKuvqwMMDj17mE3fnW9MmEhITGz2Xv5zYS0AiU3rDMOgrrY2eA4zmUz+dYe8c+AUFdjfbrficrlJSGj7A99Dj32s/Q7dNnDuNZlM7TreiTIBjgQb9XWNze7r21qGSDg0PqvZxLTRp9EntXPMANylklK1tbVNFwDfCfxcV1fX5orFbG5+oXEsj76XS3Ft4ATY0skvDIoOf0pw4pLi40ixm+mXEk//lHhOSrGSQgNb9pVgBi4amEmDJYH8qgbyqhrJq2wgv8qN22dQXuduNalli7PQK9nC5dmpXD4wlQRzPWUtXEFXVlbgra/G7bNRWWnDfJQnFJedbGPof53GyzvK2XzASU2DP0ljs5gY3ieRacMy6JXgpqyspNUyB44X+N5iOfbJ5fzeFpZMGsAr/ynnQHUjcRYT5/ZJ5NLTUolrrKas7Oj7Bo7nsVnwuGpbLSOADXjk8v688lU5//62imqXv5xJFjODMuyMz07heycn466tpKz2xMp4Q04qI3vZeOWrcr4sqqfK5aHK5Wy2TYo9jrN7JXBZVgrD+yZi8jopK2u+zbF+hz86I4kL+2Xx+s4KNuyvodrlI6+ivsXWTwFJ8XGkOyyc3SuR4X0TGZqZQILNfwFeVlaO3eOPYXByN84/JZ3rhiRT7HSz9WAtnxXU8kVRPY1eg6KaRopqGo96nGOJj7NwtDHz690+6t2NlBzl93Cicsu/5bLT25eU6mR1ZUSFon44dOiwttQTcXEWLK4qGmri8LlqMDweDE99i18basqOuk1r6zpyG1dVKb6GyMfRkZ9ZY00ZnroavD5Lh8VhivOQ4KknMcGB4XFjMlfTIy2Z4ppSTAmOpm38X2vrG2h0e7Cl9CKxewalRYX4LDY8Hh8eixW314fHZKXRCw0+8FlsuL1gmI6ewDAbPkz4sJgMTIaXOIsFk+HD6zMwx1lxuz0YJrP/oRlmDEz4TCag5ROOxwceX+BBigGHPpqrDvXA/85jb3LMbUJ5Em/Le9Wd0BE+3l/HRdkZnN6r7Q/6VDd8J1L3DhaLmcaacjyuGhzx8fgsPrz1VTRUl+Jx1WD2NOLzNGD2NLa4LBzrwnKcmlK8dVV4fJYTiiEurpFuvm70MCrITIr3r4tzN32Np0fvk9if9y019W7cHgNLt3QavOBye7AlJFPrrMUcn4DHZ+D2GZji4mlwezBMluC5zIfpmP8cXsBrgNvb9MN36QqoO/7ry7Zr7/mitXNQa+vaci5tz3aR3i8cOlMsLTNbvuW28We2uk3gTz5wDgtX/WAyutDgFevWrWPevHls2rQpuGzXrl1ceeWVbNmyheTk5AhGJyIikaL6QUREDqe6QUQk/LpUW97s7GwqKyspLf2ua9mePXvo1auXKhURkS5M9YOIiBxOdYOISPh1qaTUKaecwvDhw3nwwQdxOp3k5+fzxBNPMGXKlEiHJiIiEaT6QUREDqe6QUQk/LpU9z3wT9X+u9/9jk2bNmE2m7nqqquYM2cOFktoBp8WEZHopPpBREQOp7pBRCS8ulxSSkREREREREREIq9Ldd8TEREREREREZHOQUkpERERERERERHpcEpKiYiIiIiIiIhIh1NSSkREREREREREOpySUjFm586dzJgxg5EjR3L++edz++23U15eHumwQs7r9XLddddx5513RjqUkKqsrOT2229n1KhRnHvuudx4440UFxdHOqyQ2bFjB9OmTWPEiBFccMEFPPDAAzQ2NkY6rJAoLy9n3LhxbNq0Kbhs27ZtTJ06lZycHMaOHcuqVasiGKGEW1lZGTfeeCMjRoxg1KhRzJ8/H4/HE+mw2q21euRYf9OrV69m3LhxDBs2jMmTJ7N169bgOq/Xy8KFCznvvPPIyclh1qxZnfL81lL9Esvlbq3eieVyt1YfxXK5pXOLhXrkeK6Houl/qivVkRs2bGDq1Kmcc845nH/++dx///24XC4g9sraFer+N954gzPOOIOcnJzg67bbbgM6QVkNiRn19fXG+eefb/zxj380GhoajPLycuOGG24wfv7zn0c6tJB77LHHjMGDBxt33HFHpEMJqZ/85CfG7NmzjaqqKqOmpsa46aabjJkzZ0Y6rJDwer3G+eefb/zlL38xvF6vcfDgQWP8+PHG4sWLIx3aCduyZYvx/e9/3xg4cKCxceNGwzAMo7Ky0hg5cqSxfPlyw+12Gx9//LGRk5NjbNu2LcLRSrj85Cc/MX79618bdXV1Rl5ennHFFVcYS5cujXRY7dJaPXKsv+mNGzcaOTk5xpYtW4zGxkbjz3/+szFq1Cijrq7OMAzDePzxx42JEycaBQUFRk1NjXHrrbcaN9xwQySL26LD65dYL/fR6p1YLndr9VEsl1s6v2ivR47neiia/qe6Uh1ZVlZmDBkyxHjppZcMr9drFBUVGRMmTDD++Mc/xlxZDaNr1P0LFiww7rzzziOWd4ayKikVQ/bs2WP8z//8j+HxeILL3n77beOcc86JYFSh9/HHHxs//OEPjVtuuSWmklJffPGFMWTIEKOmpia4rKKiwvj6668jGFXolJeXGwMHDjT+/Oc/Gx6Pxzh48KDxgx/8wHj22WcjHdoJefnll42LL77YeP3115tdhP3jH/8wLrvssmbb/uY3vzFuv/32SIQpYbZ3715j4MCBRmFhYXDZ66+/blx88cURjKr9WqtHjvU3/etf/9qYN29es/WXX3658eKLLxqGYRgXXnih8c9//jO4rqSkxBg0aJCRl5cXruK0W0v1SyyXu7V6J5bL3Vp9FMvlls4t2uuR470eiqb/qa5WRwbqBp/PZ+zatcsYN26c8de//jXmytpV6v5p06YZy5cvP2J5Zyiruu/FkAEDBvDMM89gsViCy9566y3OPPPMCEYVWmVlZcydO5dHHnkEh8MR6XBCavv27WRlZfGPf/yDcePGccEFF7Bw4UJ69OgR6dBCIi0tjenTp7Nw4UKGDBnCRRddxCmnnML06dMjHdoJueCCC1i3bh0//OEPmy3fvXs3AwcObLYsKyuLnTt3dmR40kF2795NamoqmZmZwWWnnXYaBQUFVFdXRzCy9mmtHjnW33Rubu5R19fU1FBYWNhsfUZGBikpKezatSuMJWq7o9UvsVzu1uqdWC53a/VRLJdbOrdor0eO93oomv6nulodmZSUBMBFF13ExIkT6dGjB5MnT46psnaVut/n87Fjxw7ee+89LrnkEi688ELuueceqqqqOkVZlZSKUYZh8Oijj/Luu+8yd+7cSIcTEj6fj9tuu40ZM2YwePDgSIcTclVVVezatYu9e/eyevVqXnnlFYqKirjjjjsiHVpI+Hw+7HY799xzD59//jmvvfYae/bsYdGiRZEO7YT06NGDuLi4I5bX1tYekTi12+3U1dV1VGjSgVr6fQd+jtbf+eH1yLH+pltbX1tbC0BCQsIR6wPrIqm1+iWWy91avRPL5W6tPorlckvnFu31yPFeD0Xr/1RXqiPXrl3LBx98gNls5pZbbomZsnalur+8vJwzzjiD8ePH88Ybb7By5Ur27t3Lbbfd1inKqqRUDHI6ndxyyy2sWbOG5cuXM2jQoEiHFBJPPfUUNpuN6667LtKhhIXNZgNg7ty5JCUlkZGRwa233sr777/fKSqkE7Vu3Treeust/t//+3/YbDays7OZPXs2f//73yMdWlg4HI7gYJABLpeLxMTECEUk4ZSQkEB9fX2zZYGfo/F33lI9cqy/6dbWBy5mDv+MOsv/RGv1SyyXu7V6xzCMmC13a/VRLP++pXOLtXokIBb/p7paHWm328nMzOS2227jww8/jJmydqW6PyMjgxUrVjBlyhQcDgd9+vThtttu44MPPugU9b2SUjEmLy+Pq6++GqfTyYsvvhgzCSmAV199lU8++YQRI0YwYsQIXnvtNV577TVGjBgR6dBCIisrC5/Ph9vtDi7z+XyA/2lMtDt48OARM+3FxcVhtVojFFF4DRw4kN27dzdblpubS3Z2doQiknDKzs6msrKS0tLS4LI9e/bQq1cvkpOTIxhZ+x2tHjnW33R2dvZR16ekpJCZmUlubm5wXUlJCZWVlUc0CY+E1uqXWC53a/XO6aefHrPlbq0+iuXft3RusVSPHCrW/qe6Sh352Wefcfnllzc7VzY2NmK1WsnKyoqJsnalun/nzp08/PDDze4pGxsbMZvNDB06NPJlbfPoU9LpVVZWGhdffLFx5513Gl6vN9LhhN0dd9wRUwOdNzY2GuPGjTNuvvlmw+l0GmVlZcZPf/pTY/bs2ZEOLSR2795tnHXWWcaSJUsMj8dj5OXlGRMmTDAWLFgQ6dBC5tCBPcvLy40RI0YYf/7zn43GxkZjw4YNRk5OjrFhw4YIRynh8uMf/9j45S9/adTU1ARnTVq0aFGkw2qX1uqRY/1NB2Zr2bBhQ3B2lnPPPdeoqKgwDMMwHn30UWPChAlGXl5ecHaWn/zkJx1dxDY5tH6J5XK3Vu/Ecrlbq49iudzS+cVCPWIY7bseiqb/qa5URzqdTuOiiy4yHnzwQaOhocHYv3+/MWXKFOPee++NubIGxHLdf/DgQWPYsGHG008/bbjdbuPAgQPGNddcY9x9992doqxKSsWQ5557zhg4cKBx9tlnG8OGDWv2ikWxlpQyDMMoLCw0br31VuP88883RowYYdx+++1GVVVVpMMKmfXr1xtTp041hg8fblx88cXGH/7wB6OhoSHSYYXMoRdhhmEY27dvN6699lojJyfHuPTSS42XXnopgtFJuJWUlBg333yzMXLkSGP06NHGggULms3QEw2OVY8c62/6lVdeMcaPH28MGzbMmDJlivH5558H1zU2Nhq///3vje9973vGOeecY8yaNcsoLS3t0PK11eH1SyyXu7V6J5bL3Vp9FMvlls4tFuoRw2j/9VC0/E91tTpy9+7dxowZM4wRI0YYl1xyScyfJ2O97t+0aVOwPKNHjzbuv/9+w+VyGYYR+bKaDCMG+gWJiIiIiIiIiEhU0ZhSIiIiIiIiIiLS4ZSUEhERERERERGRDqeklIiIiIiIiIiIdDglpUREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHU1JKREREREREREQ6nJJSIiIiIiIiIiLS4ZSUEhERERERERGRDqeklIiIiIiIiIiIdDglpUREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHU1JKREREREREREQ6nJJSIiIiIiIiIiLS4ZSUEhERERERERGRDqeklIiIiIiIiIiIdDglpUREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHU1JKREREREREREQ6nJJSIiIiIiIiIiLS4ZSUEhERERERERGRDqeklIiIiIiIiIiIdDglpUREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHU1JKREREREREREQ6nJJSIiIiIiIiIiLS4ZSUEumiDMOIdAgiItKJqZ4QEQkdnVNFWqaklEgn8fjjjzNo0KCQvNfYsWO58847Adi/fz+DBg3i5ZdfBqC6upo77riDLVu2hORYIiISWwoLC/n5z3/OgQMHTvi9Dq+DRES6gjfeeINLLrmEIUOG8Jvf/Ibc3Fx+/OMft/t97rzzTsaOHRv8+dBr/La47rrruO6669p93Pa66aabWozr73//O4MGDTri9Zvf/CbsMUn0iIt0ACISeosXLyYpKanFdV999RWvvPIKkydP7uCoREQkGnz88ce899573HPPPZEORUQkKv32t7/llFNOYcGCBWRmZrJmzRq2bt16wu/b2jV+S+69994TPmZrvF4vDz74IOvWreO//uu/jlj/1VdfkZWVxfz585st7969e1jjkuiipJRIDDrjjDMiHYKIiIiISJdUWVnJ+eefz6hRo0L6vu29xs/Kygrp8Q+1c+dO7r//fr788kvsdvtRtxk6dCjDhg0LWxwS/dR9T6QdFi5cyNChQ6mpqWm2/OmnnyYnJ4eFCxcybtw4Fi9ezKhRo/j+979PRUVFu47x9ttvM378eIYMGcLUqVPZsGFDcN2mTZsYNGgQmzZtarbP4U1zj9a0d9OmTfz0pz8F4Kc//WmHNOcVEekswnkOf/zxx4+676pVq7jiiis466yzuPjii3n88cfxeDzBfe+8806mT5/OSy+9xPjx4znrrLO48soref/995sdY+/evdxyyy2cf/75DBs2jOuuu45PP/00uH78+PHMnj37iNimTp3KzJkzAf9T7aeffpoJEyYEbxR+9KMfBeual19+mbvuuguASy+9tFldcqxyAKxdu5Yrr7ySoUOH8l//9V/s3LmzTZ+fiEhnsWPHDn72s58xfPhwcnJymD59Otu2bQuuf/PNN4PnuauuuoqtW7dyxhln8PLLLwev1QH+9Kc/MWjQIO68804WL14MwKBBg3j88cePO7ZDr/Hbcs4//B5h0KBBrFixgrlz5zJy5EhycnK45ZZbKC0tbfYezz77LJdeeilDhw7lRz/6Ef/+97+PuAe544478Pl8vPDCCy22fPL5fHz99dcMHjz4uMsrXYOSUiLtMGXKFBoaGnjzzTebLX/llVe4/PLLSUhIoKCggHXr1vGHP/yBW2+9lbS0tHYd4+677+anP/0pjz/+OImJidxwww3k5uaGJP4zzzwz2If7N7/5Tdib9IqIdCbhPoe3tO9TTz3FPffcw5gxY3jyySeZNm0aS5cuPWI8jS+//JJnn32WW265hT/96U/ExcVxyy23UFVVBUBubi6TJ08mPz+fefPm8fDDD2MymfjZz37GJ598AsCkSZP44IMPcDqdwffNy8tj+/btTJo0CYCHH36YP/3pT1x77bU888wz/O53v6OiooJf/OIX1NXVcfHFFzNr1izA303kxhtvBGhTOf79739zyy23kJ2dzeLFi/nBD37Abbfd1ubPT0Qk0pxOJ9dffz1paWksWrSIRx99lPr6ev7nf/6Hmpoa3nnnHX7xi18Ez3OXXXYZs2bNwufzAf5r7RdeeAHw1zkvvPACN998M1OmTAHghRdeYOrUqSGJtS3n/JY8+uij+Hw+/vCHP3D77bfz3nvv8eCDDwbXL168mIcffpgf/OAHPPHEE5x99tn88pe/POJ9Fi5cyN///vejJp2+/fZb6uvr2bZtG+PHj+fMM89k/PjxvPLKK8dfaIlJ6r4n0g6nnXYaOTk5vPrqq8EKZfv27ezZs4ff/e53bNiwAY/Hwx133MF55513XMe49957ueKKKwAYM2YMl156KUuWLOGRRx454fiTkpKCzXizsrLC2qRXRKSzCfc5/PB9a2pqWLJkCddeey3z5s0D4IILLiA1NZV58+YxY8YMsrOzg9u+/PLL9O/fH4CEhAR+8pOfsHHjRsaPH8/ixYuxWq08//zzJCcnA3DxxRczYcIEfv/737Nq1SquvPJKFi1a1GxsjzVr1pCYmMill14KQHFxMb/85S+bPTm32+3cfPPN7Nq1i5ycnGAMp59+OieddFKby/GnP/2JM888M1hfXXjhhQAhqb9ERDpCbm4u5eXlXHfddQwfPhyAAQMGsHLlSpxOJ3/6058466yzmp3nTCYTjz32GOC/1g50VevVq1ez74GQdmNryzm/JQMHDuShhx4K/rx9+/bgw5q6ujqWLl3KtGnTmDNnDuA/39fX1weTbQHHagEVaClbUFDAnXfeSVxcHK+88gp33HEHjY2NXHPNNe0vtMQktZQSaaerr76aLVu2sH//foDgTcSIESOC2wwcOPC43ttisXDZZZcFf46Pj+fCCy/k448/PrGgRUQECO85/PB9t27dSn19PWPHjsXj8QRfgZmU1q9fH9w2PT09mAyC725g6uvrAfjkk0+45JJLggkpgLi4OK644gq++OILamtrOemkkxg+fDivv/56cJvXX3+d8ePHB8f7eOSRR5g+fTrl5eVs3bqVl19+mX/+858AuN3uFsvUlnK4XC527NhxxI3QD37wg3Z+giIikZOdnU16ejqzZs3i3nvv5d///jc9evTg9ttvJzU1tcXz3JVXXhmRWNtyzm/J4YmxXr16Beuazz//HJfLxeWXX95smwkTJrQ7vlGjRvH000+zbNkyLrnkEr73ve/xyCOPcN5557Fo0SIMw2j3e0psUlJKpJ1++MMf4nA4+Oc//0ljYyP/+te/jphtIiMj47jeOzU1FavV2mxZ9+7dqa6uPu54RUTkO+E8hx++b2VlJQAzZ87kzDPPDL4CLamKi4uD2zocjmbvYzKZAIJdQqqqqlqMKyMjA8Mwgt03rrrqKjZs2EBFRQVfffUVe/bsadaN44svvmDKlCmMGTOG6dOns2LFCsxm/+Xg0W4Q2lKOqqoqDMMgPT292b49e/Zs5dMSEelcEhMTWbFiBRdddBFvvPEGs2bNYsyYMfzmN78JXo8ffp7LzMyMRKjAsc/5LTm8vjGbzcHzf3l5OXBkGY+nXszIyOCiiy46IkF20UUXUVJScsQ4VtJ1qfueSDslJiZy+eWX869//YvTTz+d6upqrrrqqpC8d01NDYZhBG9GAEpLS4MVw+E3KQG1tbUkJiaGJAYRkVgWznP44bp16wb4x3E65ZRTjljfnov8lJSUFi/gS0pKAIJjX11++eXcf//9rFu3jn379tG7d29GjhwJfDdWyqBBg3jttdc47bTTMJvNvP/++7z11lsnVI7U1FTMZvMRMQYSWiIi0WLAgAH8/ve/x+v1sn37dl599VX+/ve/07Nnz053nmvtnH88Aq10y8vLGTBgQHB5IFnVHp988gkFBQVH1LENDQ1YLBZSUlKOO06JLWopJXIcpkyZwtdff81zzz3H6NGj6dOnT0jet7GxkY0bNwZ/rq2t5b333gtOJ5uUlATAwYMHg9tUVVWxZ8+eNh/DYrGEJFYRkWgVrnP44c4++2ysVitFRUUMGTIk+LJarTzyyCPBLoRtce655/Luu+82mznQ6/Xy+uuvM2TIEGw2GwDJyclccsklvPPOO7z55ptMnDgx2BLqm2++obKykp/+9KdkZ2cHl3/wwQfAdw88AsvbU474+HhycnJYu3ZtsxZX//73v4/jkxMRiYw333yT0aNHU1JSgsViIScnh/vuu49u3bpRXl5OTk4Ob731VrMHxO++++4x3/fw82qotHbOPx6DBw8mOTmZtWvXNlve2oOLo9mwYQN33nkn+/btCy7z+Xy89dZbnH322cF6S0QtpUSOw/DhwxkwYACffPIJDz/8cMje12q1cvfdd/OrX/2KpKQknn76aVwuV3D2o0GDBtG7d28WL15McnIyZrOZp59++ohmuK0JjEfy3nvvkZKSomlaRaTLCdc5/HBpaWlcf/31/PGPf8TpdDJq1CiKior44x//iMlkatf596abbuKDDz7gpz/9KTNnzsRms7F8+XLy8/N55plnmm171VVXMXv2bLxeb7OxTk499VSSkpJ48skniYuLIy4ujrfeeosXX3wR+G78qkDLqHXr1nHhhRdy2mmntakcv/rVr/jZz37GTTfdxLXXXsvevXtZsmTJCX2GIiId6ZxzzsHn8zF79mxmzpxJYmIi//rXv6ipqeGyyy7jhz/8IdOnT+fGG2/kxz/+MXl5efzxj3885vsGzquvvfYaZ599Nv369QtZzEc75x+PpKQkrr/+ehYtWoTD4WDkyJF88skn/P3vfwfal1z78Y9/zAsvvMD//u//cvPNN+NwOFixYgVff/01zz///AnFKbFFLaVEjtPFF19McnIy48aNC9l7pqSkcNttt/Hoo49yyy23YLFYWL58ebD5rMViYdGiRfTs2ZNf/epXPPDAA/zgBz9oNjj6sWRnZzNhwgRWrFgRnFVDRKSrCcc5vCW33nord955J+vWreOGG27g97//PcOHD2f58uXNBi0/luzsbP72t7+RkZHB3XffzW233YZhGDz//PNHzBT4ve99j5SUFM4444zg7H7gfyjxxBNPYBgGv/jFL7j99tspKChg+fLlJCYmsmXLFsA/OO15553HI488wsKFC9tcjhEjRrB06VKKioq46aabWLlyZbNpxkVEOruePXvyzDPPkJyczNy5c/n5z3/Ojh07ePzxxxk9ejQjRozg2WefpbS0lNmzZ7Ny5UruuOOOY77vZZddxpAhQ7jzzjt59tlnQxrz0c75x+vnP/85N910E6+88go///nP2bJlS/CeISEhoc3v07NnT/72t7+RnZ3NAw88wK233orL5WLZsmWcc845JxynxA6ToWHvRdrNMAwmTpzIqFGjuOeeeyIdjoiItIPO4SIiEir79+/n0ksv5aGHHmLy5MmRDueEeDweXnvtNUaNGkXv3r2Dy1esWMEDDzzApk2bgq2+REJF3fdE2sHpdLJs2TK++OIL9u7dyxNPPNHq9oZh4PV6j/m+ZrM5bH3NRUTET+dwERGJtLbWLRaLpdnkRx0hLi6OpUuX8pe//IVZs2aRlpbGzp07+eMf/8hVV12lhJSEhZJSIu1gt9tZuXIlPp+P+fPn079//1a3/+STT/jpT396zPe96aabuPnmm0MVpoiItEDncBERibTVq1dz1113HXO7SLW8evLJJ/nDH/7AfffdR3V1NX369GH69On8/Oc/7/BYpGtQ9z2RMHI6nXz77bfH3K5nz55kZmZ2QEQiItJWOoeLiEioVVRUtGn21ZNOOom0tLQOiEgkspSUEhERERERERGRDqcBEEREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHi4t0ANGorKyG9gwPbzJB9+7J7d6vM1EZOodoL0O0xw+xVYby8hrS05MjHU7M6Ip1Qzjoc2mZPpcj6TNp2Yl+LoH9JXSi4W802v+fFH/kRXsZFH/bjxFqSkodB8PguH7Rx7tfZ6IydA7RXoZojx9ipwwSOl25bggHfS4t0+dyJH0mLdPn0nlE0+8immJtieKPvGgvg+LveOq+JyIiIiIiIiIiHU5JKRERERERERER6XBKSomIiIiIiIiISIdTUkpERERERERERDqcklIiIiIiIiIiItLhlJQSEREREREREZEOp6SUiIiIiIiIiIh0OCWlRERERERERESkwykpJSIiIiIiIiIiHU5JKRERERERERER6XBKSomIiIiIiIiISIdTUkpERCQCPj9Qxcznt1BY7Yp0KCIiIiHj9XrZu/fb4Mvr9UY6JBHpxOIiHYCISKz4759fT1l55VHXd09P5bmnnum4gKRTe3tXCWv/U0TfZBs3XnBqpMMREREJifz8PJ58awupPXpTWXKQ/x0Pp5yiek5EWqaklIhIiJSVV3LFLx8+6vrXH53TgdFIZ3daRiIAXxRURzgSERGR0Ert0Zv0XidFOgwRiQLqviciIhIBQ3p3A2BHYQ0enxHhaEREREREOp6SUiIiIhFwavcEkuLjqHf7+Ka0NtLhiIiIiIh0OHXfExERiQCL2cTgHna27Hfy5pb/4DrJdtzvlZ7enZNO6hfC6EREREREwk9JKRERkQjYvz+f91/+C4kjr2bJP17jgTceO+73sjsS+Hj9ZiWmRERERCSqKCklIiISAWVlZdTu+4LEkVfTa9glXHvp6ON6n+L93/Lio3dRXl6mpJSIiIiIRBUlpUREpFPYuXMnCxcuZMeOHVitVs4//3zuvPNO0tPT2bZtGw888AC5ubmkpaUxa9Yspk6dGtx39erVPPHEE5SUlDBgwADuuececnJyAPB6vTz88MO8+uqr1NfXM3r0aH7729/Ss2dPwJ8cuueee/jkk0+wWCxceeWV3HHHHcTFhb+K9FQXA+A2WelzmqbLFhEREZGuRQOdi4hIxLlcLq6//npycnL46KOPeO2116isrOTuu++mqqqKmTNnctVVV7F582bmz5/PQw89xPbt2wHYtGkT999/PwsWLGDz5s1ceeWVzJo1i/r6egCWLFnC+vXreemll/jwww+x2+3MmzcveOxbb72VhIQEPvzwQ1588UU2bNjAsmXLOqTc3vpqABo8PnyGZuATERERka5FSSkREYm4goICBg8ezOzZs7HZbKSlpXHttdeyefNm1q5dS2pqKtOmTSMuLo4xY8YwceJEVqxYAcCqVau44oorGD58OFarlenTp5OWlsYbb7wRXH/DDTfQu3dvkpKSmDt3Lh988AH5+fns27ePTz75hNtuuw2Hw0G/fv248cYbg+8dbr76muD3jR5fhxxTRERERKSzUPc9ERGJuAEDBvDMM880W/bWW29x5plnsnv3bgYOHNhsXVZWFi+++CIAubm5XH311Ues37lzJzU1NRQWFjbbPyMjg5SUFHbt2gVAamoqmZmZwfWnnXYaBQUFVFdX061btzaXwWRq86bfbe/zEmcy8BgmXB4fdqulfW9ygjF0RoEyxEJZQkmfy5H0mbTsRD8XfZ4iItKRlJQSEZFOxTAMHnvsMd59912WL1/O888/j8PhaLaN3W6nrq4OgNra2qOur62tBSAhIeGI9YF1h+8b+Lmurq5dSanu3ZPbvC1AamoiAPEW8HgAi4WEhPh2vQeA3W4DIC0tkYyM9sXQmbX38+wq9LkcSZ9Jy/S5iIhINFBSSkREOg2n08ldd93Fjh07WL58OYMGDcLhcFBTU9NsO5fLRWKiP6njcDhwuVxHrE9LSwsmmALjSx2+v2EYR6wL/Bx4/7YqK6uhPcNCVVb6k2JWfICFSqeLVFv7e9W7XI0AVFTUUlpac4ytOz+TyX8z3d7PM9bpczmSPpOWnejnEthfJNS8Xi/5+XnBn/v164/FcmIthEUk+nXqMaXKy8sZN24cmzZtCi576623mDRpEueccw5jx45l8eLF+HzfjcOxevVqxo0bx7Bhw5g8eTJbt24NrvN6vSxcuJDzzjuPnJwcZs2aRXFxcYeWSUREWpaXl8fVV1+N0+nkxRdfZNCgQQAMHDiQ3bt3N9s2NzeX7OxsALKzs4+6PiUlhczMTHJzc4PrSkpKqKysZODAgWRnZ1NZWUlpaWlw/Z49e+jVqxfJye27KTOM9r8ArGb/Nw0hGFPqeGLojK9YKos+F30m0fi5iIRDfn4eT761hZWfHeDJt7YEE1Rer5e9e78Nvrxeb4QjFZGO1GmTUp9++inXXnsteXnfZdO//PJLbr/9dm699Va2bNnC0qVLefnll4OzJJ3oDEwiIhIZVVVV/OxnP+Occ87h2WefJT09Pbhu3LhxlJaWsmzZMtxuNxs3bmTNmjXBcaSmTJnCmjVr2LhxI263m2XLllFWVsa4ceMAmDx5MkuWLCE/Px+n08mDDz7IyJEj6d+/P6eccgrDhw/nwQcfxOl0kp+fzxNPPMGUKVM6rOy2pqSUy62BzkVETkRLD7S3bdvG1KlTycnJYezYsaxatarZPnqg3bFSe/QmvddJpPboHVx2tGSViHQNnTIptXr1aubMmcMvf/nLZssPHDjAj370Iy655BLMZjOnnXYa48aNY/PmzcCJzcAkIhJuX3+9k0lTp7T4+u+fXx/p8CLq5ZdfpqCggH/9618MHz6cnJyc4CstLY3nnnuON998k1GjRjFv3jzmzZvH6NGjARgzZgz33nsv9913HyNHjuT1119n6dKlpKamAjB79mwuuugipk2bxkUXXURDQwOPPfZY8NiLFi3C4/Fw6aWXcs011/C9732PG2+8scPKbjM1JaU8ejIsInK8WnqgXVVVxcyZM7nqqqvYvHkz8+fP56GHHmL79u2AHmh3Ji0lq0Ska+iUY0pdcMEFTJw4kbi4uGaJqfHjxzN+/Pjgzy6Xi/fee4+JEycCJzYDU79+/cJcKhHp6jw+uOKXD7e47vVH53RwNJ3LjBkzmDFjxlHXDxkyhJUrVx51/aRJk5g0aVKL66xWK3PmzGHOnJY/44yMDBYtWtS+gENILaVERE7M6tWrWbRoEbfddluze4e1a9eSmprKtGnTAP9DjIkTJ7JixQqGDh3a7IE2wPTp03nhhRd44403uPrqq1m1ahVz5syhd29/omTu3LlccMEF5Ofn695BRCREOmVSqkePHsfcxul08otf/AK73c706dOBE5+Bqa2Oa9rv49ivM1EZOodoL0O0xw/hLUNHfS6x8HuIJaEcU0pEpCs62gPt3bt3N3sgDf4H1i+++CLQcQ+0o6G+DeW1weHvYTJ992rP8uM5ZjR81i2J9vgh+sug+Nt+jFDrlEmpY/nmm2+45ZZb6N69O88//zxJSUnAic3A1B7HOyNJLMxkojJ0DtFehmiPH1ouQ5zVQkJC/FH3MZk46vo4q4WMjI79XNLTo//3EAu+676npJSIyPE42gPt1h5YH2t9KB9oR9N1Tyhira5OwuGwkZAQT73DRnp6EhkZye1eHqn4Iyna44foL4Pi73hRl5R6//33+dWvfsU111zDr3/9a+LivivC0WZguvDCC5vNwBR44nHoDEzt0d4pdmNhymKVoXOI9jJEe/zQehk8bi91dQ1H3dcwOOp6j9tLaWlNKEM9qkAZystrlJjqBGxNozu63BpTSkQklBwOBzU1zevWQx9Id9QD7Wi47gnlNVp5uZP6+kbq6hqor2+kvNxJt2417V4eqfgjIdrjh+gvg+Jv+zFCLaqSUp9//jmzZ8/mvvvua3FmpClTpjB79mx+8IMfMHz4cFasWNHiDExDhgwhLS2t2QxM7XG80+XGwjS7KkPnEO1liPb4ITxl6OjPJNp/B7HCpu57IiJhMXDgQNavX99sWW5uLtnZ2UDHPdCOpuueUMR6+P6B92zv8uM9drR81i2J9vgh+sug+Dtep5x972iefPJJPB4P8+fPbzYz0/XX+2etOtEZmERERDqa1fRdUsoXbVcRIiKd2Lhx4ygtLWXZsmW43W42btzImjVrguNITZkyhTVr1rBx40bcbjfLli1r8YF2fn4+TqfzuB9oi4jI0XX6llK7du0Kfv/kk08ec/sTmYFJRESkowVaShlAo8eH3WqJbEAiIjEiLS2N5557jvnz57No0SLS09OZN28eo0ePBpo/0C4qKiIrK+uIB9oej4dp06ZRW1vLqFGj9EBbRCTEOn1SSkREJJaZTWC1mHB7DVxKSomInJBDH2gDDBkyhJUrVx51ez3QFhGJrKjqviciIhKL7HH+RJTGlRIRERGRrkQtpURERCIsPs5MTYOSUiIiErsKnR7eOeAjuaKYk+0aQ1FE/NRSSkREJMKsFhMAbq+SUiIiEntqXB4WfFxCZSPkV7r4qNBgW5Er0mGJSCegpJSIiEiEfZeU0pNjERGJPX/84BsO1HhwWODkNAcAf9leidenek+kq1NSSkREJMKsZn91rJZSIiISaxo8PtbtLAFgRA8TF56WjtUM+dVu1nxZGOHoRCTSlJQSERGJMKulKSmlJ8YiIhJjPi10Uef20iPBQg872K0WBqf6Wwiv+rwgwtGJSKQpKSUiIhJhGlNKRERikc/nZd3XZQCcnerFaHr2cnISWEzwdUkt+dXuCEYoIpGmpJSIiEiEaUwpERGJReWlJeyo8Ndthft243TWABBvMTGslx2AD/NqIxafiESeklIiIiIRFuy+p5ZSIiISQ6q8VgxMJMVbyEzr1mzd/2fvzuOjqu/F/7/OLJmZrDNJIAmbLCGgAooom4h1SbmKgLIUf+V6i17UIrW33uIOFy3icvVbLdeCiuVyW6lYtNRSKWBbrYqCERERDSQIJATIMtlmz2y/PyYzEJNAJpnJzCTv5+ORB2Q+c855n5PknDnv8/m8P1cNTAHgo3I7fr88lBGit5KklBBCCBFjZ5JS8qFcCCFEz9Hg1QKQm6Zr1XZ5nh6DVkW13UtDU3dHJoSIF5KUEkIIIWJMakoJIYToiRp8gaRUThtJKZ1GxRWDTACcdnRrWEKIOKKJdQBCiJ7ljrsXYa6tb7e9X242L734UvcFJEQCkJ5SQgghehqf3x/qKZWTpqOhuvV7rhxi4oMjZk7b5fonRG8lSSkhRESZa+uZft9z7bbvePHBboxGiMSgVTX3lPJJTykhhBA9Q53djRcVGsWPKVlLQxvvmTwkEwCzC5xub/cGKISICzJ8TwghhIgx6SklhBCip6m0uADI0HhRKUqb78lN1zMoPdCb6kS9s9tiE0LED0lKCSGEEDEWrCnVJDWlhBBC9BA1tkD18nTNua9tY3P1AJxokKSUEL2RJKWEEEKIGEtq7inl8fplWmwhhBA9Qq3dDUCa+tzD8kb3DSSlTjY45RooRC8kSSkhhBAixoI9pfyA1ycfyIUQQiQ2v99PXXNSKvU8PaVGZiWhAmxNXqyebghOCBFXJCklhBBCxJhGdabWRpPUlRJCCJHgbB7w+Pyo8JOsOvd1TadRkRnoLEWVoxuCE0LEFUlKCSGEEDGmKMqZGfikrpQQQogE1xAoJ0WKykM7Nc5b6KsPvKnaIQ9mhOhtJCklhBBCxIHQDHwyfE8IIUSCCyalUlUdG4/X1xD4t9oJPqkrJUSvIkkpIYQQcaW2tpbCwkL27NkDwH/9138xduzYFl8XXngh//7v/x5a5oYbbuCSSy5p8Z4jR44A4PV6eeaZZ5g8eTJjx45l8eLFVFVVhZY1m83cc889XH755UyYMIFVq1bh8XR/UYtgXSnpKSWEECLRNTQFEksdTUqZdKBVKTT54Fi9O5qhCSHijCSlhBBCxI29e/cyf/58ysrKQq/94he/YN++faGv//mf/yE9PZ2HHnoIAKvVytGjR9m2bVuL9w0bNgyAtWvXsmvXLt566y0+/PBD9Ho9y5YtC63/Zz/7GcnJyXz44Ye8+eabfPLJJ2zYsKFb9xvO6iklNaWEEEIkuMYwe0qpFIW8DB0AB6qc0QpLCBGHJCklhBAiLmzZsoWlS5dy3333tfue2tpali5dyqOPPsrw4cMB+OqrrzAajfTv37/NZTZv3sydd95JXl4eqampPProo3zwwQeUl5dz/PhxPv30U+6//34MBgMDBw7knnvuYePGjVHZx3ORnlJCCCF6ArfPH5pFL6WDSSmAfhmBaucHqlzRCEsIEac0sQ5ACCGEAJgyZQozZsxAo9G0m5h67rnnGDVqFDNnzgy9duDAAQwGA//6r/9KSUkJ/fv359577+Waa67BYrFw+vRpCgoKQu/Pzs4mIyODQ4cOAWA0GsnJyQm1Dxs2jJMnT9LY2Eh6enqH4+9IIdc239/875mkVOd7SoUbQzwK7kNP2JdIkuPSmhyTtnX1uMjxFF1V2ZyR0qoUkpSOP2jpnx5ISn1jdtHk8ZGkkf4TQvQGkpQSQggRF/r06XPO9vLycv785z+zefPmFq8risLo0aP5z//8T/r168f27du59957ee2118jNzQUgOTm5xTJ6vR6bzQaAwWBo0Rb83m63h5WUyspK6/B7AYzGlEAsuiSSk3Xok5ovyWoVycm6Dq9Hr08CwGRKITs7vBjiWbjHs7eQ49KaHJO2yXERsXKqOSmVYdC2m+T0+bxUVJwAoKLiBD4fZCVr0anA5fVz4FQj4wYauyliIUQsSVJKCCFEQnjrrbdCRc7PtmjRohbfz5w5k7/85S/s2LGDH//4xwA4HI4W73E6naSkpOD3+1u1Bb9PSUkJKz6z2UI4EwbV1weSYk5XE3a7C1XzsnaHG7u940MXnM5A4Y66Ohs1NZaOBxCnFCVwMx3u8ezp5Li0JsekbV09LsHlheisk5ZAofIMvQbauZw1mqt4/biVAUMUyg4dwJg3mGxFoY8BTtigqKxeklJC9BKSlBJCCJEQdu7cyR133NHq9d/85jdcdNFFTJo0KfRaU1MTOp2OjIwMcnJyKC0tDQ3hq66upr6+noKCAnw+H/X19dTU1JCdnQ3AkSNHyM3NJS0tvJsyv5+wbgBD723+NzR8z9f5mlI96cY83OPZW8hxaU2OSdvkuIhYORnqKdV+UgogPSuHzNwB1FefCr3W16BwwuanqKyeH18Z7UiFEPFABuoKIYSIe3V1dRw5coQrrriiVdupU6d4/PHHKS8vx+Px8Oabb7Jv3z5uueUWAGbPns3atWspLy/HarXy5JNPMn78eAYNGsTgwYMZN24cTz75JFarlfLyctasWcPcuXO7excjUlNKCCGEiLVQTymDNuxl+wbKSnHwtAVbU8eLpAshEpf0lBJCCBH3TpwI1J04uyB50AMPPIBKpeKHP/whFouF/Px8XnnlFS644AIAlixZgsfjYcGCBdhsNiZMmMALL7wQWn716tX84he/4LrrrkOlUnHzzTdzzz33dMt+nU2rDjwnktn3hBBCJLJQTSm9lnAHladoFXJSVFTavOw70cCUoVmRD1AIEVckKSWEECLuBGfGCxo9enSr14KSkpJ45JFHeOSRR9ps12q1LF26lKVLl7bZnp2dzerVq7sWcAScSUpJTykhhBCJyeL00OAKPFzJMGjCTkoBjOqjp9Jm49Pj9ZKUEqIXkOF7QgghRBzQqALD9zw+SUoJIYRITGV1dgD0akhSd+5Wc3TzGL6isvpIhSWEiGOSlBJCCCHiwJmklAzfE0IIkZjK6gMz2KaGX04qZFRfHQClNTZq7U2RCEsIEcckKSWEEFHi9fk5Ue/A3uSNdSgiAWiaC517ZPieEEKIBFVR7wQgtQtFYjJ0aob3SQHgM+ktJUSPJzWlhBAiChxuL+8eqqHSEpgLOT87GVBiG5SIazJ8TwghRKKraAgkpVK0XfvMc8UgIyXVNj4tq+f7I/tGIjQhRJySnlJCCBFhPr+fbV9XUWlx0dz5hdIaO7qLvhfTuER806gCl2RJSgkhhEhUoaRUF7s+XDHICEhdKSF6A0lKCSFEhJVU26i1u9FpVMy+JI8pQ00A6C+bRYPDHePoRLzSyvA9IYQQCa6iuaZUV5NSYwdkoFYpnGxwUtHgaNHm9Xo5duxo6MvrlTIJQiQySUoJIUQEeX1+Pi9vAODS/ukYDVpG9k2lf4YeRZPEV6c7Mzmy6A2k0LkQQohE5vL4qLIGCpOndKHQOUBKkoaLctIAQp+rgsrLy3hpx2ds+ryCl3Z8Rnl5Wdc2JoSIKUlKCSFEBB0x27A2eUnWqrkoJxUARVEY3S/wwepItV2GZ4k2BZNSXn9gCKgQQgiRSE41D90zaBSSInCXOW5gBgB7TzS0ajP2ySMzdwDGPnld35AQIqbiOilVW1tLYWEhe/bsCb22f/9+5s2bx9ixY7n22mvZvHlzi2W2bNlCYWEhl156KbNnz2bfvn2hNq/XyzPPPMPkyZMZO3Ysixcvpqqqqtv2RwjR8x2ptgNwYW4qGvWZU2z/DD0+Wx0ur4/jtfZYhSfiWDApBVJXSgghROIJ1pPqm6JBUbo+uUswKfV5eX2X1yWEiF9xm5Tau3cv8+fPp6zsTHfMhoYG7rrrLm6++WaKiopYtWoVTz31FF9++SUAe/bsYeXKlTz99NMUFRUxc+ZMFi9ejMMRGIe8du1adu3axVtvvcWHH36IXq9n2bJlMdk/IUTP49UaQh/IhmUlt2hTKQpNpbuBQM0pIb5LfXZSSupKCSGESDAnmutJ5XShoJTP56Wi4gTHjh0lw1OHWqVwqtHVqq6UEKLniMuk1JYtW1i6dCn33Xdfi9d37tyJ0WhkwYIFaDQaJk2axIwZM9i4cSMAmzdvZvr06YwbNw6tVsvChQsxmUxs27Yt1H7nnXeSl5dHamoqjz76KB988AHl5eXdvo9CiJ7HmTkcP9AnJYkMQ+tiCk3fFgFwssGJxyt1g0RLiqKcVVdKklJCCCESS/DBXFeSUo3mKl7fXcqmzyv4v79/zjBj4PPU3vLWQ/iEED1DXCalpkyZwrvvvsuNN97Y4vWSkhIKCgpavJafn09xcTEApaWl7bZbLBZOnz7doj07O5uMjAwOHToUpT0RQvQmjqx8AIZlJ7fZ7ms4TUqSGq8fTltc3RmaSBBS7FwIIUSiOpOUUndpPelZOaF6URf30QEyhE+InqyLk3VGR58+fdp83WazYTAYWrym1+ux2+3nbbfZAsNlkpOTW7UH2zoq3CHSwfdHYGh1zMg+xIdE34dEjx/a3wdbk4em1ECxzQsy205KQaC21OFqGxX1TgYYW56vuuu49ISfQ0+lUSvgkeF7QgghEs+pxjM1peoi0LHJ5/OSowRmLd5zzIzH40GjicvbVyFEFyTUX7XBYMBiaTmdutPpJCUlJdTudDpbtZtMplCyKlhfqq3lOyorKy3c0Lu0XDyRfYgP8bwPGq2a5GTdOd8Tz/F31Hf34YuvK0GlJsOgJTez7XOKosDQvmkcrrZx0uJqcZw0WjXZ2d17XDIzE//n0NNoVCrAK8P3hBBCJJxgUio7WUMkxqE0mqsot9pQGEqN3cveQ0eZcPHwCKxZCBFPEiopVVBQwK5du1q8VlpayvDhgZPT8OHDKSkpadU+depUMjIyyMnJaTHEr7q6mvr6+lZD/s7HbLYQzmzdihK4gQ13uXgi+xAfEmEfPG4vdnvbQ9OCPXPiOf7zae9nsPPASQD6peva3X+/H7INgS7tNdYmaurtJCcFvve4vdTUWNpcLtKC+1Bba5HEVJyRmlJCCCESkcXpweryAtAnuWvD985myupL36YkKi1NfF3tZELE1iyEiBdxWVOqPYWFhdTU1LBhwwbcbje7d+9m69atzJkzB4C5c+eydetWdu/ejdvtZsOGDZjNZgoLCwGYPXs2a9eupby8HKvVypNPPsn48eMZNGhQWHH4/eF/dXa5ePqSfYiPr3jfh/P97cR7/J39Gew+VgfAAKP+nMfAoFWTmRwo2ln5nbpSsdgHEV+CSSm3FMIXQgiRQIK9pDL0GvSayN5i5qUHPlsdrJZ6nEL0RAnVU8pkMrF+/XpWrVrF6tWryczMZNmyZUycOBGASZMmsWLFCh577DEqKyvJz89n3bp1GI1GAJYsWYLH42HBggXYbDYmTJjACy+8ELsdEkL0CKcbnZTVOcDvo1/6uZNSAH1TddTa3VRZXQzJar/+lOh9tOpAUsorPaWEEEIkkFONgYRRv4zzfw4KV166ji8q4GCNC788UROix4n7pNR3Z8YbPXo0mzZtavf9s2bNYtasWW22abVali5dytKlSyMaoxCid9tXEajmqbVVkaQZfN73901LorgKqixNUY5MJBoZvieEECIRnW7uKZXbgYdz4cpJ06EANXYvJxud532/ECKxJNTwPSGEiEf7KxoBSGo82aH3900NFDivsTXhkyd+4izq0PA9+b0QQohIOHjwIAsWLODyyy9nypQpPPHEEzQ1BR4K7d+/n3nz5jF27FiuvfZaNm/e3GLZLVu2UFhYyKWXXsrs2bPZt29fLHYhIQR7SuWln3uym87QqlVkNq92b3kEpvUTQsQVSUoJIUQXfdHcUyrJ0rGklNGgQatW8Pj81Nnd0QxNJBitOnBZlp5SQgjRdT6fj7vvvptp06bx6aef8uabb/LRRx+xbt06GhoauOuuu7j55pspKipi1apVPPXUU3z55ZcA7Nmzh5UrV/L0009TVFTEzJkzWbx4cauZvEXAaUv0ekoBZDev9vPy+qisXwgRO5KUEkKILmh0ujlSYwcgyXKqQ8soikKf1CQAqqwyhE+ccWb4nhQ6F0KIrmpoaKC6uhqfzxeqRaRSqTAYDOzcuROj0ciCBQvQaDRMmjSJGTNmsHHjRgA2b97M9OnTGTduHFqtloULF2Iymdi2bVssdyluhXpKpUW+pxRAH0Pg+ri3vEHqSgnRw0hSSgghuuDASQsAg0wG1J6OPz0NDuGrtspMMuKMUFJKhu8JIUSXmUwmFi5cyDPPPMPo0aO5+uqrGTx4MAsXLqSkpISCgoIW78/Pz6e4uBiA0tLSc7aHQ1ES46srsQZrSuVl6EPriqQsHagVOG1xUe3wtnl8E+lYR/r4x8tXou+DxN+xbURa3Bc6F0KIeBYcundJv3T2hrFcdkqgp5TZJsP3xBma5tn3ZPieEEJ0nc/nQ6/Xs3z5cubOncvx48f5yU9+wurVq7HZbBgMhhbv1+v12O2B3s/naw9HVlZa53eim3UmVqfbS21zOYJRQ7KoPe3AYEgiOVmHXq9FpdN2+f9pKTpG9lU4WOngmI3Q+h2GJDIzU0NxJ9Kxbkuixw+Jvw8Sf/eTpJQQQnTBwdOBnlKjwkxKZSZrAaizS7FzcYZGJTWlhBAiUt5991127NjB9u3bARg+fDhLlixh1apVzJgxA4vF0uL9TqeTlJQUAAwGA06ns1W7yWQKOw6z2UK8X+oVJXAz25lYj9cGEnXJWjVum5PaWisORxN2uwun043K7+7y/x2OJgqMKRyshM+ON5Cpagq9XltrJSPD0un440FXjn+8SPR9kPg7vo1Ik6SUEEJ0kt/v55vKwAfai3PCO0Gn6zVoVIFi5w0OTzTCEwlIakoJIUTknDp1KjTTXpBGo0Gr1VJQUMCuXbtatJWWljJ8+HAgkMAqKSlp1T516tSw4/D7SZib3M7EWmkJlCLom5YEKFHb1wuzdWw5ZOHrGhdT+p55/eyYE+lYtyXR44fE3weJv/tJTSkhhOik8nonVpeXJLXCsOzksJZVFCXUW8psl2LnIiA0fE9qSgkhRJdNmTKF6upqXnrpJbxeL+Xl5axdu5YZM2ZQWFhITU0NGzZswO12s3v3brZu3cqcOXMAmDt3Llu3bmX37t243W42bNiA2WymsLAwxnsVf6qbJ23pkxqdIudBI7J0qBSotHlxeOQ6KURPIT2lhBCik75pHrpX0DcVjTr8HH9mShJV1iZqpa6UaHamp5R82BZCiK7Kz8/n5Zdf5oUXXuDVV18lLS2NmTNnsmTJEpKSkli/fj2rVq1i9erVZGZmsmzZMiZOnAjApEmTWLFiBY899hiVlZXk5+ezbt06jEZjbHcqDgV7SiUrTRw7dpSKihNEo8NvslZFQZ9Uiqus1Dihf+Q3IYSIAUlKCSFEJ33dPHTvojCH7gVlNfeUqu1AT6k77l6Euba+/XVlGln/8qudiiPe1NbWMn/+fJ544gkmTJgAwIoVK3jrrbfQarWh9z300EPMnz8fgC1btrBmzRqqq6sZOnQoy5cvZ+zYsQB4vV6ee+453n77bRwOBxMnTuTxxx+nb99A33+z2czy5cv59NNPUavVzJw5kwcffBCNpvsvkVqpKSWEEBE1efJkJk+e3Gbb6NGj2bRpU7vLzpo1i1mzZkUrtB4j2FPq+MkqNn3upOzQAYx5g8mOwrbGDshoTkrJdVKInkKSUkL0QL0pgRFLwZ5SF+amdmr5rLNm4DOe573m2nqm3/dcu+3vPL+0UzHEm7179/LQQw9RVlbW4vUDBw6wcuVKbrnlllbL7Nmzh5UrV7Ju3TrGjBnDxo0bWbx4Me+99x4Gg4G1a9eya9cu3nrrLdLS0li+fDnLli3jlVdeAeBnP/sZOTk5fPjhh9TU1LB48WI2bNjAokWLumWfzybD94QQQiSKwJDIMo5V1QGQkZZKZu4A6qtPRW2bYwdk8PrnFdQ4z/9eIURikKSUED1Qb0lgxJLX56e4ygrARbmd6yllau4pZXd7SdfoIxZbotqyZQurV6/m/vvv57777gu93tTUxOHDhxk1alSby23evJnp06czbtw4ABYuXMgbb7zBtm3bmDNnDps3b2bp0qXk5eUB8OijjzJlyhTKy8vx+Xx8+umnfPDBBxgMBgYOHMg999zDs88+G5uklAzfE0IIkSDKy8t4acdnlDblBF5wO6K+zUv7pwPQ6Aan2xv17Qkhok8KnQshRCccq7XjcPswaFVcYAqvyHlQklpFapIaALch/Cmme5opU6bw7rvvcuONN7Z4vbi4GI/Hw+rVq5k8eTLTpk3jlVdewddcsKK0tJSCgoIWy+Tn51NcXIzFYuH06dMt2rOzs8nIyODQoUOUlJRgNBrJyckJtQ8bNoyTJ0/S2NgYxb1tWzAp5ZbZ94QQQiQAY588XP7AZxm9KvoPVEzJSQxIC/SrON1cy0oIkdikp5QQQnTC181D90bmpKFuTiR0hjFZi7XJi8eQGanQElafPn3afN1isTB+/Hhuu+02fvnLX/LNN9+wZMkSVCoVixYtwmazYTAYWiyj1+ux2+3YbDYAkpOTW7UH2767bPB7u91Oenp6h+NXwvw1CL3/rOW62lMq3BjiUXAfesK+RJIcl9bkmLStq8dFjqcIh8/vx+4OPEjRdUNSCuDCbB0nLB5ONbpIl47mQiQ8SUoJIUQnBJNSF+Z0rp5UkNGg5US9U5JS53DllVdy5ZVXhr4fM2YMP/rRj9i2bRuLFi3CYDDgdLYsLuF0OjGZTKEEk8PhaNWekpKC3+9v1Rb8PiUlJaw4s7LCG8ZpNAbWr9clkZwcmEZbpQ1clv1+0OmTOpTw1OsDtclMphSyszs3lDQehXs8ews5Lq3JMWmbHBfRHZzNI+gU/CQp3ZOUuqiPjneP2jjd6GKEJKWESHiSlBJCiE74+nSgntTFnawnFWQyBOpKSVKqfX/729+oqanh1ltvDb3W1NSEXh/4JDp8+HBKSkpaLFNaWsrUqVPJyMggJyenxRC/6upq6uvrKSgowOfzUV9fT01NDdnZgXmCjhw5Qm5uLmlp4f1szWYL/jA+j9fXB3pqOV1N2O2BIQjes3pINVqd6DTnH2XvdAZmPaqrs1FTYwkj4vikKIGb6XCPZ08nx6U1OSZt6+pxCS4vREc4PIF/dYqv23rZXZgVeJBjtjXh9knXPiESndSUEkKIMDV5fByuDiSlLszpYlKqudi5W5JS7fL7/Tz11FN88skn+P1+9u3bx29/+1vmz58PwNy5c9m6dSu7d+/G7XazYcMGzGYzhYWFAMyePZu1a9dSXl6O1WrlySefZPz48QwaNIjBgwczbtw4nnzySaxWK+Xl5axZs4a5c+d2Is7wvwILnlmHSjkzms/jDb+uVGdiiMevnrQvclzkmCTicRGio4I9pXRK9xUdz0rWkKIBP2CWWfiESHjSU0oIIcJ0uNKC2+snXa9hgLFr/caNzT2lfLo0rC4PqTo5LX9XYWEhDz/8MI899hiVlZVkZ2dz7733MmvWLAAmTZrEihUrQu35+fmsW7cOo9EIwJIlS/B4PCxYsACbzcaECRN44YUXQutfvXo1v/jFL7juuutQqVTcfPPN3HPPPTHYU1AUBY1Kwe3zywx8Qggh4t7ZPaW6U7YebFaoccq1UohEJ3c/QggRpv0n6oFAPSmli33VdRoVBq0Kh9vH8Vo7F+d1vLB2T3bo0KEW3996660thu9916xZs0JJqu/SarUsXbqUpUuXttmenZ3N6tWrOx9shGnUgaSUV5JSQggh4pzDG7hW6VTd11MKIFuvcNzqp0Z6SgmR8GT4nhBChOnAiQag60P3goJ1pb412yOyPpHY1F2cgU8IIYToLrHsKQVQ5wJXJ4a7CyHihySlhBAiTPubk1IXdbHIeVBwCN/xOsd53il6A40kpYQQQiQIR6imVPcmhlI0kKxV4wNKa5u6ddtCiMiS4XtCdNIddy/CXFvfbntWppH1L7/afQGJbuF0ezlcGZjh7MKc1IisM8MQOBWXS1JKABpV4HmRJKWEEELEu1BPKZUXUEdtOz6fl4qKEwBUVJzA74fcdB3fmu18U+PipqhtWQgRbZKUEqKTzLX1TL/vuXbb33m+7fo1IrEdrrbh9fnJStaSk6aLyDrT9YGeUuX1kpQSZ4bvSU0pIYQQ8czv94d6Sumj3FOq0VzF68etDBiiUHboAMa8weSlG/nWbOfrGldUty2EiC4ZvieEEGH4+nRzL6nctC4XOQ/K0AeeD5TVOfDJXNy9ngzfE0IIkQisbh/BS1WSEv1C5+lZOWTmDiA9sw8Q6CkFcNjchEfqSgmRsCQpJYQQYQgmpSJVTwogTacBvw+Xx0e1Veoi9HaSlBJCCJEIapu7Sek0KtSReU4XFpNBS5IKXF4/xVXW7g9ACBERkpQSQogwhJJSEaonBaBSKaidgeLpUldKnElKyVNfIYQQ8SuYlEpJil4tqXNRFIWs5ln4Pi9viEkMQoiuk6SUEEJ0kMXp4VhtIGl0cV7kekoBaJz1AJRJXaleL1hTyuOVnlJCCCHiV6yTUgDZ+sA1c98JSUoJkagkKSWEEB30dfOsewMzDZiSkyK67lBSqlaSUr2dRi2FzoUQQsQ/cxwkpfo095TaV9Eg100hEpQkpYQQooMOngokpS4daIr4uoNJKZmBT0hNKSGEEIngTE+p2E3onpEEeo2C1eXlUHOJBSFEYpGklBBCdNDB5g87lwzIiPi61cGklNSU6vUkKSWEECIRBJNSyTHsKaVSFEZkBWbhKzpWG7M4hBCdF7u0thBCxJk77l6Euba+zTY/UH35naAxMHaQMeLbDvaUOtHgwOvzh+oKid5Howo8L5KklBBCiHhW6zwzfM8dwzguzNaxv9LJp0drmV6QFcNIhBCdIUkpIYRoZq6tZ/p9z7XZZnV5eP3zk6hVChf3y8DaYI/ottUuK1q1gtvr57TFSf8MQ0TXLxJHMCEptTGEEELEs1BNKZ2a+hjGcVF2oKfUnqO1+P1+QB7sCZFIZPieEEJ0QJW1CYDhfVLQayPfTV3BzwBjIBElQ/h6tzPD93wxjkQIIYRom9vrw9oUuE4lR+FzUTiGmZJIUivUWF2UyWcoIRKOJKWEEKIDqiwuAEblpkVtG4Oak1Jldc6obUPEP6kpJYQQIt7V2gMD9hRAp4ntLWWSWmFUXjoA+040xDQWIUT4JCklhBAdUN3cU+rivOglpQaagkmpyA4NFIlFo25OSnklKSWEECI+1doDn4t0alCU2A+XG9s8Cc3nkpQSIuFIUkoIIc7D5/dTYwt8+Ao+iYuGYFKqvF66nvdmaukpJYQQIs7V2gI9pfSxHbkXEkxKSU8pIRKPJKWEEOI86uxuPD4/isfFBZnRK0B+gUlqSokzw/ek0LkQQoh4ZT6rp1Q8GNMvHbVK4VSji1ONUgZBiEQis+8JIRLKHXcvwlxb3257VqaR9S+/GtFtBouca22VqKLYRX1gc02pkw1OPF4fGrU8N+iNNKrAz116SgkhhIhXtc09yOOlp1RykppR/TPYX17PvhMN5F2kj3VIQogOkqSUECKhmGvrmX7fc+22v/P80ohvM1jkPMlaGfF1n61PahJ6jQqnx0dFg5MLMpOjuj0Rn6TQuRBCiHgXLHQeLz2lACYMyQwlpW68KCfW4QghOighH8MfPHiQBQsWcPnllzNlyhSeeOIJmpoC2fr9+/czb948xo4dy7XXXsvmzZtbLLtlyxYKCwu59NJLmT17Nvv27YvFLgghEsjpYFLKcjKq21EURepKCUlKCSGEiHtnCp3Hvsh50PjBmYDUlRIi0SRcUsrn83H33Xczbdo0Pv30U958800++ugj1q1bR0NDA3fddRc333wzRUVFrFq1iqeeeoovv/wSgD179rBy5UqefvppioqKmDlzJosXL8bhkJs/IUTb7E1eGp0eAJIsp6K+vf4Zge7mJxukHkJvpT6rppTfL4kpIYQQ8cdsj69C5wBXDM5EAY7XOUJJMyFE/Eu4pFRDQwPV1dX4fL7Qh3WVSoXBYGDnzp0YjUYWLFiARqNh0qRJzJgxg40bNwKwefNmpk+fzrhx49BqtSxcuBCTycS2bdtiuUtCiDgWLJaZlaxF5Y3+B5z+GYGeUhWSlOq1NGc9dZZi50IIIeJRsKZUPA3fy0jWMiw7BYAvpLeUEAkj4ZJSJpOJhQsX8swzzzB69GiuvvpqBg8ezMKFCykpKaGgoKDF+/Pz8ykuLgagtLT0nO0dpSjhf3V2uXj6kn1ova5o/K5EYh9iFdv5th2Jn0E0960tpxsDQ/dy03Xn3YeuUhQYYAz0lKpocEZ1v8/eFxFfgsP3QIbwCSGEiE+1cdhTCmDsgAwAPpeklBAJI+EKnft8PvR6PcuXL2fu3LkcP36cn/zkJ6xevRqbzYbB0HK6dr1ej91uBzhve0dlZaV1KvbOLhdPZB/O0GjVJCfrztmenR2d43W+fYhlbOfbNnTtZxDNfWtr3ZXNTwIv6JOKRasOxd7WPpwvNkWh3fZg3BcOMgW2a21qsR/R2O/MzMT/e+6JVIqCSgGfX5JSQggh4o/H56fBEX+FzgEuG5DB5i9OSl0pIRJIwiWl3n33XXbs2MH27dsBGD58OEuWLGHVqlXMmDEDi8XS4v1Op5OUlEA3ToPBgNPpbNVuMpnCisFsthBOmQ9FCdzAhrtcPJF9aM3j9mK3u87ZXlNjabf9fO64axE1tfUtX1RAo1FjTEtj/Suvxiy2czl7241OD8fr7Hi8frJTkhhgCvQC6srPIJr79t11O9xezNZAUsqUpMbj9mI2W9r9PTpfbH4/7bYH405TAis9brZRXd2I0tydKZL7HfxbqK21SGIqTqlVCj6vX5JSQggh4k69vQk/oAC6OBp34/V6yfYHklEl1TbqbS6MKed+UCqEiL2IJ6X27NnDhAkTIr3akFOnToVm2gvSaDRotVoKCgrYtWtXi7bS0lKGDx8OBBJYJSUlrdqnTp0aVgx+P526oe7scvFE9iH8bXVWTW090+97rtXryck6Nq+6t8v7EM1j4Pf72VvewL6KxhavZ6ckoTFkRf1nEKl1B+s6ZSZrSU5St1h3NPbB74fcND0K4HD7qLW7yUxOCmv5cLcXKdE+9/c2GpWC2+uXmlJCiB5Prh+JJ1jkPF2niqtSAMePH2fTP/eRqsnB6oF/fHmE2ZMuinVYQojziHhu+6c//SnXX389v/71rzl5MvLTp0+ZMoXq6mpeeuklvF4v5eXlrF27lhkzZlBYWEhNTQ0bNmzA7Xaze/dutm7dypw5cwCYO3cuW7duZffu3bjdbjZs2IDZbKawsDDicQoRSY1ON8WVVnYdreXNvSeoHLuQ63/9MVN+9RFTfvURN768m7ve2M8v3zvCrqO1+IndJwQ/8OG3taGEVF66jvzsZJLUCjW2JipHzGHP8bqYxReOivpAUmpA84x43SFJo6Jvmq7F9hNBJM/9tbW1FBYWsmfPntBrO3bsYNasWVx22WVce+21vPjii/h8vlD7DTfcwCWXXMLYsWNDX0eOHAECT06feeYZJk+ezNixY1m8eDFVVVWhZc1mM/fccw+XX345EyZMYNWqVXg8ni7tQ1dpVIHLs/SUEkL0dNG+dxCR5fV6+ebbMgBS1D58Mb5O+XxeKipOcOzYUcrKysjIzqWfKTBKptjcfg9zIUT8iHhPqY8++oh//OMf/OlPf+Kll17iiiuuYPbs2Xz/+98nKanjT/zbk5+fz8svv8wLL7zAq6++SlpaGjNnzmTJkiUkJSWxfv16Vq1axerVq8nMzGTZsmVMnDgRgEmTJrFixQoee+wxKisryc/PZ926dRiNxi7HJUSkeXTpFJXVc7zWQV3zuP0QXToNzjM3zdXWJqqtTew70cDrn1eguux2vjzZyMW5aaHp5buLo8+FnKqyoQBXDctkRN9UAOxNXt4vNVPRAD/741f8avYorhgU3tDZ7uT3+zkRTEoZDed5d2T1z9BTaXFR0eBkdL/0bt12Z0Xq3L93714eeughysrKQq999dVXPPDAA7zwwgtcffXVHD16lDvvvJPk5GTuuOMOrFYrR48e5e9//zv9+/dvtc61a9eya9cu3nrrLdLS0li+fDnLli3jlVdeAeBnP/sZOTk5fPjhh9TU1LB48WI2bNjAokWLun5gOilY7FySUkKIni7a9w4issrLy9jy2REgA6vVitUA2TGMp9FcxevHrQwYolB57GsMmQPIyTBxuNrGIXP0Z00WQnRdxJNSWq2WadOmMW3aNGpra9m+fTvr16/nF7/4BdOnT2f+/PmMHDmyS9uYPHkykydPbrNt9OjRbNq0qd1lZ82axaxZs7q0fSGiaX9FAxv3VlB16b9R1dzbSCEw+1uflCRyTcl8/of/4dfPPYNBq8bvhzp7E8frHOw70cA/S83Ukcqe4/UUV1q5riCbrJTu+VBX0eCgYfD3ABg3MCOUkAJITlIzbWQfXt/xTxzGodz/9te8euul5PdJ6ZbYwlXncGN3e1GrFHLSu7ceQf8MPZ+faKCiwdGt2+2KSJz7t2zZwurVq7n//vu57777Qq9XVFRw6623cs011wAwbNgwCgsLKSoq4o477uCrr77CaDS2mZAC2Lx5M0uXLiUvLw+ARx99lClTplBeXo7P5+PTTz/lgw8+wGAwMHDgQO655x6effZZSUoJIUQ36I57BxFZqmQjuPzNpQ28sQ6H9KwcMnMH4LTU0OSHnOYe56V1TXi8PjTqOCp8JYRoJWqFzs1mM3/5y1945513KC0t5eqrr0an07Fw4UIWLlzIj3/842htWoiEVNHg4Ff/PMp7JTWBFxQV/TP0FPRNYaDRgE4TuKAmJ+v44+fvc9+Pf9TmevSKGqfPiGnqbTQ4Pbx9oJLvDc9iaFZy6D2HDxcza97cdmPJyjSy/uX2C6m359cfHsOv1pKXruOS/q17+KhVCtnf7iR75gPsO9HIf/zxAOt/ODb04SGelNcFeknlpelCCYLu0t8YGC6YSMP3grpy7p8yZQozZsxAo9G0SEoFb1aCnE4n77//PjNmzADgwIEDGAwG/vVf/5WSkhL69+/PvffeyzXXXIPFYuH06dMUFBSEls/OziYjI4NDhw4BYDQaycnJCbUPGzaMkydP0tjYSHp6bHqqBXs4Sk0pIURvIfcOicPlDVybkhTfed4ZG0aDhiQVNHn9HKqycnFeYvQ6F6K3inhS6p133uHtt9/m448/ZujQocyePZuXXnqJzMxMAK6++mqWLFkiFxYhmnl8fv53dxkbPi2jyetHrcBNF+fy8cbnuPHHj7SzDG0WQQ969u6bmHvvA7xfaqa83sk/DtfgH57FsOyUDi3/zvNLw96Pg6caefdQNfj9TBpsQtVO5UvF7+W5WRfz769/wbFaBz/741esu/USUnXxNRno0Vo7ABdkdu/QPYD+GYFtBgutJ4JInPv79Olz3u1YrVb+4z/+A71ez8KFCwFQFIXRo0fzn//5n/Tr14/t27dz77338tprr5GbmwtAcnJyi/Xo9XpsNhsQmJn1bMHv7XZ7WEmpcIu9ht7fxnIadXNPKW94H/jjqeBsZwX3oSfsSyTJcWlNjknbunpcuvt4yr1D4nE1d44KJKXi7w9QURQydXDaAftPNkpSSog4F/G7wMcff5zp06ezadMmRo0a1ap9yJAhoRsJIXq7KouLZe98EyoKfsUgI/95zTDys1OY9Wptl9at16r5/sg+fHiklsPVNt4vNZOSpCE3SkPRXvr4OACGmm/ISrngnO/NMGj51ezR3PH6F5TW2Hjgz1/zq9mj0Hawe3WDw80Rs52TDU5sTV7UikJmipbhfVKIRL8Sq8tDtTVQh2BwZvJ53h15/ZsLqydSUqo7zv3ffvstP/3pT8nKyuK3v/0tqamB4aHfHWY3c+ZM/vKXv7Bjx47QTYzD0XIopNPpJCUlBb/f36ot+H1KSnhDS7Oy0sJ6v9EYWL9el0Rycsu/S502MNujSqNu1fZden1geK7JlEJ2dngxxLNwj2dvIcelNTkmbUuU4yL3DonH2SIppY5pLO3J0iucdvjZX9HID8fFOhohxLlEpdB5eXl5aCjEF198QVpaGsOGDQMgNzeXn/70p5HerBAJ59PjdSx7p5g6h5uUJDUPXz+c74/sgxLBR5QqReGqYZm4fX6Omu387XA1t4zOjdj6g0prbOw+VodKgbQTnwL/ct5l+mXoeeGWi7nrjf0UldXzwJ+/5qmbLkSvbf/DzbFaO3XDvs/mL061Sj7VOdwcqbGjvXgex2vtXNCFZFKwl1Rumq65XkL3Cg7fq7K4aPL4SNLEfy2EaJ/7//nPf/Kf//mf/OAHP+DnP/85Gs2Zy9dvfvMbLrroIiZNmhR6rampCZ1OR0ZGBjk5OZSWloaG8FVXV1NfX09BQQE+n4/6+npqamrIzg6Uaj1y5Ai5ubmkpYV3Q2c2W/CHkRWtrw/01HK6mrDbW84QpDSvyO50t2r7LqczkECtq7NRU2MJI+L4pCiBm+lwj2dPJ8elNTkmbevqcQku313k3iHxuJo78cZ1Uqr5ec7+k414PB5OnCgPtQ0cOAi1Oj7jFqI3ividzt///nduvvlmjh07BsC+ffuYN28e//znPyO9KSES1vZvqvjpH7+izuFmeJ8UfvuvlzHtwr4RTUgFqRSFq4dlkpmsxeH28c8jXeuB1ZZNeysA+F5+NhpXY4eXG5mTxn/PvAidRsVH39Zy9x++5JjZ3up9R2psLHvnG+Zv+AxHn5H4CfQmumpoJjdd3JdpI/twcW4qWpWCOy2Pf/3d53xwxNzp/fm2JhDDkKzu7yUFYDJoMWhV+IFTjYnRWyqa5/4vvviCJUuW8PDDD/Pggw+2SEgBnDp1iscff5zy8nI8Hg9vvvkm+/bt45ZbbgFg9uzZrF27lvLycqxWK08++STjx49n0KBBDB48mHHjxvHkk09itVopLy9nzZo1zJ3bfs219vj94X8FFmy9LnUnC513JoZ4/OpJ+yLHRY5JIh6X7iT3DomnZU+p+JSpA7UCZlsTew8d5aUdn7Hp8wpe2vEZ5eVl51+BEKLbRLyn1IsvvsiaNWtC3W9vv/128vPzefbZZ7n66qsjvTkhEs5fDp7m8e2HAfj+iD4sn1Zwzt5BkaBVq7iuIJs/fnmaigYnSSOmRmzdZlsTf/2mEoAfjuvPf/0uvOUnDs7kf+aM5ud/OsjXpy38f7/dy5ShmVyYk4bD7WVveQMHTp1JdOlrv+Vfrp5Mn9SWMwoOMhkY0y+dt97bgzNjIA+8fZD/+pcR3HhRznc3eU61tiaqrE0o0KI4fHdSFIX+GQZKa2xUNDi71Ouru0Tz3P/SSy/h8XhYtWoVq1atCr0+btw4Xn31VR544AFUKhU//OEPsVgs5Ofn88orr3DBBRcAsGTJEjweDwsWLMBmszFhwgReeOGF0HpWr17NL37xC6677jpUKhU333wz99xzT5di7iqNFDoXQvQScu+QWLx+/3dqSsUntUphqElLSW0Th8wujH3yyMwdEOuwhBBtiHhS6tSpU1x11VUtXpsyZUqLmZSE6K3+frialTsCCam5l+Rx/3X57RYEjzSjQcv4QUY+OVaHYdws7E3eiAxNe2v/SZq8fkblpTGmX+cKSY4dkMHv/+0ynvpbCR8freP9UjPvl57p6aRW4Or8bO6YMIgHfrKaPtO/1+Z6UnUasorf5rI7VvLOwUoe334IjUrh+yP7djiWbyqtAAzONMRk6F5Q/wx9KCmVCCJ97g/OjAeBpNS5JCUl8cgjj/DII21PDKDValm6dClLl7ZdwD87O5vVq1d3Ks5o0agCHZnD7SklhBCJRu4dEovVdSYRpY3jpBTAiKwkSmqbKK5xIaXOhYhfEU9K9e/fnw8//LDFxeWTTz6hX79+kd6UEAnl4KlGVvz1ED4/zBqdywPX5UdluN65XJybSmm1jWqgqKyeq/OzurQ+p9vLm1+cAuCH4wZ0aX9y0/X8avZoSqtt/KOkmipLE2qVwoi+KVw1LIs+qR0r0K74fayYVoBGpfD2gdP8118PodeqmTrs/PvqU2kpqQnU+bkwN7YFYoN1pSrqEyMpJef+yNJ0cvieEEIkGrl+JJb65m5Seo0KVfxNvNfCyCwdfymxcsjcxBVd+8grhIiiiCel7rrrLpYsWcL3v/99+vfvz8mTJ3n33Xd55plnIr0pIRJGja2Jn7/9NS6PjylDM3n4+uHdnpCCwLCwSUNM/PmrSg5X27goN7XDyZ62bP+mijqHm9w0HdcMz45IjPl9UsjvE96sZ9+lKAoPXz8cp9vLjuJqHtr6Nc/fPIoJg03nXM6Wdylur58MvYZ+UZqlsKPOzMDnOM8744Oc+yNLo25OSnnj+ym0EEJ0lVw/EkuDM3BdMkS59EQkjGiudl7e6OYSY5xn0IToxSJe6HzGjBmsW7cOrVbLwYMH0ev1rF+/nmnTpkV6U0LEtcOHi5k1by4z583l5qf/gNnWhMZupvSNJ5k9fx533L3o/CuJgpw0HU2lewD4+Ggd/k5WNPX7/fz+80CB8/mX9Q/17IgXapXCYzeM5Hv5Wbi9fn7+9kH2nWho9/1mWxPWfoE5g8cNzIhJ0vBs/TMMAAkzfE/O/ZGllppSQoheItrXj/r6eh544AEmTJjAFVdcwT333ENVVRUA+/fvZ968eYwdO5Zrr72WzZs3t1h2y5YtFBYWcumllzJ79mz27dsXkZgSWUNzTymDNv5nBjbq1Qww6vEDteeeyFYIEUMR7ykFMGHCBCZMmBCNVQuRMDw+mH7fc3x5spFTx+tRqxRunjQK03VjAXjn+bbr23QHx94/kVwwkSprE6U1doZ3omfSnuN1HDXbSdaquXl0boeXK/7ma2aeY2azrEwj619+Nex4goLJwCC/okY3Yjou42B+/Psi1t82novzWlYW8Pv9/PK9I/jVSfRJSYpZgfOzBXtKnWxwdjpx2N3k3B85MnxPCNGbRPP6ce+995KRkcG7776LSqXi4YcfZvny5fz3f/83d911Fz/96U+ZP38+RUVFLFmyhBEjRjBmzBj27NnDypUrWbduHWPGjGHjxo0sXryY9957D4PBEJVYE0H92T2lEiDRc0m/dE7UOzG75HoqRLyKeFKqsrKStWvXcuzYMXy+lsMOfvvb30Z6c0LEtQaHm8/KA71zJg02YUrWxjiiAL+jgbED0ikqa6CorJ4hmQY06vCeeL3e3EtqxqgcUnUdP5W4vX6m3/dcu+1dTdYFk4EtXvP62F5czalG+Okfv2LljSOZPCQTCCSkXt1dxs5D1eD3MWmIKea9pADympNStiYvDQ5PjKM5Pzn3R5YkpYQQvUU0rx9fffUV+/fv5+OPPyY1NRWAlStXUl1dzc6dOzEajSxYsACASZMmMWPGDDZu3MiYMWPYvHkz06dPZ9y4QC/qhQsX8sYbb7Bt2zbmzJnTpbgSWainVFJiJKXG9M/gna+rMCdGx3MheqWIJ6UefvhhampquOaaa9Bq4+MGXIhY+ejbWrw+P/0ydIzs27U6SZE2Ki+dbyqtWF1evjxl4bIBGR1e9pjZzsdH61CA+WP7Ry/ICNGoVXx/ZB9+//ciGsnjP/74FVOGZjI6L5295fV8WlYPQMbR98mZvLDd9Rw+XMzMuXPRaNV43N7W7UdKmB6hmHUaFX1Tk6iyNiVEXSk590eWRobvCSF6iWheP7788kvy8/P5wx/+wOuvv47D4eCqq67iwQcfpKSkhIKCghbvz8/P58033wSgtLS0VfIpPz+f4uLiiMaYaOoTaPgeBHpKQWD4ni9Bep4L0dtEPCl14MABduzYQWZmZqRXLURC0V4wlpONLtSKwlVDs+Ki983ZNCqF8YOM/KPEzP6KRkb2TSU5qWNFKzftC/SSumpYFgNNidGFPUmtIuubLXzvx6vY9HkFH31by0ff1ja3Kfz4ysG8ufurc64j2AsrOVmH3d768eDXd98U0Zj7Z+ibk1Lx/3hPzv2RpVEFPuxLTykhRE8XzetHQ0MDhw4dYtSoUWzZsgWn08kDDzzAgw8+SHZ2dqtheHq9HrvdDoDNZjtnezji7CNgm4Ixni/WeC103lb8igJDs5NJ0SrY3H7MNjfq5tfj7WfS0eMfzxJ9HyT+jm8j0iKelEpLSyMpKSnSqxUioXi8PgxXzAbgkv5ppOujUr6ty4ZmJfPVKQtV1iY+K69n6rDzz5fb4HDzl4OVAPxwXPz3kjqbyufh59cMY/aYPHYWV3HK4qJvahI3XZzLIJOBN2Md4Hf0MxrYV9GYEEkpOfdHllqG7wkheoloXj+C63300UfR6XSkpqbys5/9jB/84AfMnj0bp7Pl9dXpdJKSEujZbjAY2mw3mc49k29bsrLSOrkH3e98sVo9geuSMVWPt0GLSqclOVmHXh/b/xsMgZn2dM2vOwxJZGam0rdPOhfnJvNpuY1ap4dBza9nZ8fnzySRflfak+j7IPF3v4jfKd9zzz08/PDD3HnnnWRnt5wivl+/fpHenBBx6eBpK6rULFKS1KFuw/FIURQmDjbx568qOVRl4+LcNLJSzv3BcOPeE7g8Pob3SQlryF88GZKVzN1XDo51GOcVLHZeUR//SSk590eWRt2clPJKUkoI0bNF8/qRn5+Pz+fD7Xaj0wWSFsG6VRdeeCG///3vW7y/tLSU4cOHAzB8+HBKSkpatU+dOjXsOMxmC/E+ckxRAjezbcXq9XopLy8DoLox0FNc5fNic7pR+d3Y7S6cMf6/wxGIy+UKvG6zOfjyy2Jqa630xQbA8RobfYxN1NZaSU+3dN/B7YBzHf9Ekej7IPF3fBuRFvGk1LJlywB49913gcBNr9/vR1EUvvnmm0hvToi40+Txsf9kIwCXD8wIu4B4d8tJ0zEkK5mjZjsffVvLjFE57b63xuri9b2BoXt3Tbog7oYk9jShpFQC1JSSc39kSU0pIURvEc3rx+TJkxk4cCCPPPIITz31FC6Xi+eff57rr7+em266idWrV7NhwwYWLFjA3r172bp1K2vWrAFg7ty5LFmyhBtuuIFx48axceNGzGYzhYWFYcfh95MwN7ltxVpWVsZLOz4jIzuXxiY/KAoGrZp4SusEYw7+22iu4vXjVgYMUTjy7RHQDuNUoxN/Rnz/POI5to5K9H2Q+LtfxJNSf//73yO9SiESylenLbg8PrwNp8nvMzDW4XTIxAuMnKh3UGVt4uvT1nbf99LHx3F6fIzKS+Pq/PMP9RNdcyYp5STe039y7o+sM7Pv+c7zTiGESGzRvH5otVp+97vf8fTTTzNt2jRcLhfXXnstjz76KOnp6axfv55Vq1axevVqMjMzWbZsGRMnTgQCs/GtWLGCxx57jMrKSvLz81m3bh1GozFq8cYzY588krPy8B8LPJyMt5pSbUnPyiEzdwC5Vac4bPfT5IX6pnj/RCVE7xPxpFT//oEaM19//TUnTpzge9/7HhaLhawsuYEVPZ/b6+OrU4HnRs4v3kH1L+NjHFHHpOo0jB9kZNfROj49XocppW+r9+w6WsvbB04DcO/UIdJLqhv0NwYKrFZaXOQo8d3jTs79kRWsKeX1B2YLUsnfmxCih4r29SMnJ4fnn3++zbbRo0ezadOmdpedNWsWs2bNikgcPYHDHXhQolH8oetUIlApYNJ4qXFrqI7/ighC9DoRv8sxm83ceuut/OAHP+DBBx+kvLyc66+/nn379kV6U0LEnZJqGy6PjzSdBvexz2MdTlguzEllkMmA1w+1BTdxvPbM7DJHzXZ+sf0QALde1p/LBhhjFGXvkpWsRadR4fODNym+ixbKuT+yNGd92JchfEKInkyuH4nD4fYCkKQk3nXJpA3EXu1IvNiF6OkinpR68sknKSgooKioCI1Gw7Bhw7jrrrv47//+70hvSoi44vP7OXAy0EtqdF5awg3mVRSFa/KzMBo0+HSp/GjjPl795Dgb9pSxaNMX1Nrd5GensGTK4FiH2msoikK/5iF8Hn18F5WXc39knZ2Ukhn4hBA9mVw/EkcoKaVKvOtSZnNSqsYpD3uEiDcRT0rt3r2bhx9+GIPBEBres2jRIkpLSyO9KSHiyvFaB40uDzq1ioK+KbEOp1OSNCqmX5RDUmMFtiYvL398nF9/dIxGp4fReWmsnTcGfQLUEOhJgnWlvLr4ncUR5NwfaYqi0DwBn3x4FkL0aHL9SBzBpJROlXj1DtPUPpLUCh4/fFvfFOtwhBBniXhNKa1Wi9PpxGAw4G/uKWKz2UhJScybdCE66kBzLakLc1PRxvmMe+eSnKQm65st3L7sV3xyrA6318dVQzO58aIcSUjFQP8E6Skl5/7I06hUeL0+6SklhOjR5PqROII1pRKxp5SiQF66nuN1Dr6qdhH+HIpCiGiJ+J3ztddey/3338+xY8dQFAWz2czjjz/O1VdfHelNCRE3Ki0uKi0uVApcnBvftX86QvH7uGVMHv898yKev2UUsy/pJwmpGOmXID2l5NwfeerQDHyJ9+FfCCE6Sq4ficPelLg1peDMZ6qDVa4YRyKEOFvEk1I///nPSU5O5l/+5V9obGxkypQpOBwOli5dGulNCRE3Djb3ksrPTiE5SZI3InL6pQeTUvGd7JRzf+RpmsfvebyJ+eFfCCE6Qq4fiSORa0oB9EvXAVBsduH2Jt4QRCF6qogP30tJSWH16tXU1tZy4sQJcnNz6du39fTyQvQUTreXo80z1V3UA3pJifiSlyA9peTcH3nBYudSU0oI0ZPJ9SNxJPLwPQBTspYkFbi8fr46ZWHsgPgujSBEbxHxpFRRUVGL748fP87x48cBuOKKKyK9OSFirrTGjs8PWclaslO0sQ5H9DDBnlI+bTJury9u65XJuT/yNKHhe/I0VwjRc8n1I3GECp0n6PA9RVHoa4ATNth9rFaSUkLEiYgnpW677bZWr6lUKvLy8vj73/8e6c0JEVN+v5/iSisAI3JSQ7PGCBEpaXoNaToNFpcHi8tDZnJSrENqk5z7I09qSgkhegO5fiQGv9+f8D2lAHINCidsfnYdrWPxlCGxDkcIQRSSUsXFxS2+r62t5de//jX9+/eP9KaEiLlqaxN1DjdqRSE/O7xZYg4fLmbWvLnttx8pYXpXA0xAclxay0vXYan2YHF5yUyOdTRtk3N/5GkkKSWE6AXk+pEY3D4IXo4SOSmV0/w56lCVlWqriz6putgGJISIfFLquzIzM7n//vuZNm0ad9xxR7Q3J0S3OlQV6CU1JMuAThPesCqPD6bf91y77V/ffVOXYktUclxa65eh53C1DavTE+tQOkzO/V0nSSkhRG8k14/45AqM3EOND3UCDwzQqxWGmbQcqWvik6N1zBydG+uQhOj1uqU4SUNDAy6XTL0pehafSsuRmkCB85E5qTGORvRkwSmMLa7ESUqBnPu7Si2FzoUQvZRcP+KPszkplaQkfp3Dy3IDn6s+PlYb40iEEBCFnlIPP/xwi+/dbjd79+5l8uTJkd6UEDHlzMrH7fOTrteQmyZdf0X0BIudx3NSSs79kadpLmrv8UpSSgjRc8n1IzG4mnNRPSEpNTZXz+ZvGtl9rA6P1xe63gohYiPqw/d0Oh233XYb8+fPj/amhOhW9uwRABT0SZEC5yKq8pp7SlnjOCn1XXLu7zoZvieE6I3k+hGfelJPqWGmJIwGLfUON/tPNjJuoDHWIQnRq0U8KfXUU09FepVCxJ1qq4um9IEADAuzwLkQ4Qr1lAp+IoxDcu6PvDNJqcS/ARBCiPbI9SMxuJp77faEpJRKUZg02MRfv6ni46N1kpQSIsYinpR68cUXO/S+n/zkJ5HetBDd5t1D1aAo5KQlka6PeodD0cvlZQSGh7q8Ppo8PpLCLKrfHeTcH3lq6SklhOgF5PqRGEI9pVSJn5QCuHJIZnNSqpZ7pw5p0eb1eikvLwt9P3DgINRqdXeHKESvEfG76ZKSEnbu3MnIkSMZMmQIp0+f5vPPP+eiiy4iJSXQo0SGOolEt/2bKkB6SYnukZKkQeV24NMasLg8ZGmSYh1SK5E899fW1jJ//nyeeOIJJkyYAMD+/ft54oknKC0txWQysXjxYubNmxdaZsuWLaxZs4bq6mqGDh3K8uXLGTt2LBD4cPncc8/x9ttv43A4mDhxIo8//jh9+/YFwGw2s3z5cj799FPUajUzZ87kwQcfRKOJbcJZI4XOhRC9gNw7JAZXi+F78fdwLFwTBptQKVBaY+NUo5O85l7pAOXlZby04zOMffKorz7Fj6fB4MFDzrE2IURXRPwTt0ql4uGHH+bf/u3fQq+9/fbbvPfee7zwwguR3pwQ3e5YrZ1vKq3g9zE0KznW4YheQu1qPJOUSom/pFSkzv179+7loYceoqzszBPKhoYG7rrrLn76058yf/58ioqKWLJkCSNGjGDMmDHs2bOHlStXsm7dOsaMGcPGjRtZvHgx7733HgaDgbVr17Jr1y7eeust0tLSWL58OcuWLeOVV14B4Gc/+xk5OTl8+OGH1NTUsHjxYjZs2MCiRYsidnw6Q2pKCSF6A7l3SAw9LSllNGi5pH8G+0408H6pmf/vsv4t2/vkkZk7IEbRCdG7RPyM8s9//pMFCxa0eO2mm27ik08+ifSmhIiJHc29pHT1ZRi00pVXdA+1qxGI32LnkTj3b9myhaVLl3Lfffe1eH3nzp0YjUYWLFiARqNh0qRJzJgxg40bNwKwefNmpk+fzrhx49BqtSxcuBCTycS2bdtC7XfeeSd5eXmkpqby6KOP8sEHH1BeXs7x48f59NNPuf/++zEYDAwcOJB77rkntO5YkqSUEKI3kHuHxNBTCp37fF4qKk5w7NhRLskMXGffK6mJcVRC9G4RT0plZmZSVFTU4rUPP/yQ3NzciG2jvr6eBx54gAkTJnDFFVdwzz33UFUVSBTs37+fefPmMXbsWK699lo2b97cYtktW7ZQWFjIpZdeyuzZs9m3b1/E4hI9n9/vZ0dx4HfNUHMoxtGI3iSYlIrXYueROPdPmTKFd999lxtvvLHF6yUlJRQUFLR4LT8/n+LiYgBKS0vbbbdYLJw+fbpFe3Z2NhkZGRw6dIiSkhKMRiM5OTmh9mHDhnHy5EkaGxs7HDuAooT/FViw7fUFp6j2eDuelOpMDPH41ZP2RY6LHJNEPC7dqTvuHUTX+P3+7/SUSlyN5ipe313Kps8rKCktAeCLEw2YbU0xjkyI3iviw/fuvvtu7rrrLqZNm0a/fv0oLy/nvffe43/+538ito17772XjIwM3n333VCX3+XLl/Pf//3fXRriIcT5fH3aQnm9E71Ghb7u21iHI3oRTTApFac9pSJx7u/Tp0+br9tstlbnaL1ej91uP2+7zWYDIDk5uVV7sO27ywa/t9vtpKendzj+rKy0Dr8XwGgM1ErR65JITta1ak+2uwHwK7TZHqTXB4ZzmkwpZGeHF0M8C/d49hZyXFqTY9K2RDku3XHvILrG6fETfD6S6EkpgPSsnNDQvGH1ao7UufngiJlbxuTFODIheqeIJ6XmzZtH//79+fOf/8zXX3/NwIED2bRpEyNGjIjI+r/66iv279/Pxx9/TGpqKgArV66kurq6xRAPoMUQjzFjxrQY4gGwcOFC3njjDbZt28acOXMiEp/o2bYXVwNwdX4WBz5yxzga0Zuo4zwpFc1zv8FgwGKxtHjN6XSGCuAaDAacTmerdpPJFEowORyONpf3+/2t2oLfB9ffUWazBX8YI+3q6wNJMaerCbvd1ard6w48lm5y+9psD3I6A0936+ps1NRY2n1folCUwM10uMezp5Pj0pock7Z19bgEl+8u0b53EF1X39xNSqNS0Cg9649tQr9kjtQ18F5JjSSlhIiRqEwtNHnyZCZPnkxtbS2ZmZkRXfeXX35Jfn4+f/jDH3j99ddxOBxcddVVPPjgg+0O8XjzzTeBwBCP7yafzh4CIsS5eHx+djYP3Zs2si8HYhyPCN/hw8XMmje3/fYjJUzvxnjCoXYFkg0Wlwe/3088zkQUrXN/QUEBu3btavFaaWkpw4cPB2D48OGUlJS0ap86dSoZGRnk5OS0GOJXXV1NfX09BQUF+Hw+6uvrqampITs7G4AjR46Qm5tLWlp4N2V+P2HdAIbe284ynakp1ZNuzMM9nr2FHJfW5Ji0LZGOSzTvHUTXNTgDvaMM2sQvcP5d4/sb+P3BBorK6rG6PKTqYjvzrhC9UcTPLG63m+eff55x48Zx7bXXUl5ezpw5c0I1n7qqoaGBQ4cOcezYMbZs2cKf/vQnKisrefDBB7s0xCMcvbXmQW/fh73l9dTa3WToNUwaYgr/lzcCujMP0ZVjfK51nv1vd/P4YPp9z7X75XGfv15TNPfhXMc12FPK7fXT1E6Noc78LURKNM/9hYWF1NTUsGHDBtxuN7t372br1q2hhwxz585l69at7N69G7fbzYYNGzCbzRQWFgIwe/Zs1q5dS3l5OVarlSeffJLx48czaNAgBg8ezLhx43jyySexWq2Ul5ezZs0a5s5tP3nZXc4kpRJ/qIQQQrQn2vcOousamntK9cQJfvqnaRmSlYzH5+ejb2tjHY4QvVLEU8Evvvgiu3fv5le/+hX33XcfWVlZ5ObmsmrVKn71q191ef1JSYHaGY8++ig6nY7U1FR+9rOf8YMf/IDZs2e3OYSjI0M8wtHZLs2JMrb/XHrzPvzzvUANqZsu6UdeTgYarfqcdV4U5dx1YLrSHs11A2i06k7XpjnfcQEwGBL3uAVjb2sfurL+8x3zJLUfg1aNw+3FrSiYvrOezvzMMjMj9/cczXO/yWRi/fr1rFq1itWrV5OZmcmyZcuYOHEiEBiqvWLFCh577DEqKyvJz89n3bp1GI1GAJYsWYLH42HBggXYbDYmTJjQYprx1atX84tf/ILrrrsOlUrFzTffzD333NOlmCNBZt8TQvQG0b53EF1XH+oppYYeWL3imuHZHDWX8V5JDf9yYd9YhyNErxPxpNTWrVt5/fXXycnJQVEUkpOTeeqpp0JPrLsqPz8fn8+H2+1GpwvclPmanyJfeOGF/P73v2/x/o4O8QhHuGP0FSXxax709n1we31s/+o0AFMHG6mpseBxe89Z58XvJ+LtwaRINNZ9No/be87aNHfctYia2vo220qOlDCtnXUHe+Y4HK52fwbR3LdIrNvhcGEw6Nrch66s/3zH3OP2kqoLJKWq6x2kqpVW7R2tJxT8W6ittUQsMRXpc/+hQy1ntxw9ejSbNm1q9/2zZs1i1qxZbbZptVqWLl3K0qVL22zPzs5m9erVnYozmkJJKa8/bodsCiFEV0X73kF0XYueUj0wKXVtfjbrd5ex62gttqb4rN0pRE8W8aSU3W4PjQX3N9+x6fV6VKrIjBScPHkyAwcO5JFHHuGpp57C5XLx/PPPc/3113PTTTexevVqNmzYwIIFC9i7dy9bt25lzZo1QGCIx5IlS7jhhhsYN24cGzdubDHEo6M6O0Y/kcb2t6e37sOeY/VYXB6yUpK4pF9GzI5Bd273XNuqqa1n+n3Ptdn27N03nXedifw7FM19ON8603Qaqq1N7RY7DzemSO5DtM/9vZFGHTh2fsDnB7XkpIQQPZBcP+JfvTOYlOpZPxOfz0tFxQn69fOTl6rhlNXDP0vNXJR8/mWFEJET8TPLpZdeyosvvggQeqr7u9/9jtGjR0dk/Vqtlt/97neo1WqmTZvGtGnTyM3N5cknnwwN8di+fTsTJkxg2bJl7Q7xGD9+PO+8806LIR5CtOdvhwOz7l07PBu1Su4MRWykNRffjMcZ+KJ97u+NNGeda2QInxCip5LrR/xrcDUP30vqWTWlGs1VvL67lDf2nUTfVA/AX7+RWmZCdLeI95R65JFHWLhwIVu2bMFms3HjjTdis9n43//934htIycnh+eff77Ntq4M8RCiLW6vj3+WmgG4riA7xtGI3ixNH/gwaI3DpFR3nPt7G7VKQVECPdo8Xh86Tc96Qi2EECDXj0TQkwudp2flkJk7gAJ3OUdP+Pn0eB11FxvOv6AQImIinpTKzs7mnXfe4f3336eiooLc3Fy+973vkZqaGulNCdEtPj1+Zujepf0zYh2O6MWC0xRbnOefJbC7ybk/OjQqBbfXLz2lhBA9llw/4t+ZQucqHDGOJVpStQrDM7WU1DbxcXl4M7MLIbom4kmpm266iT//+c/ccMMNkV61EDEhQ/dEvDh7+F68Fb6Wc390SFJKCNHTyfUj/p3dU6qnJqUArhqYTEltEx+W27nUGOtohOg9ojIWwOHoyacr0ZvI0D0RT4I9pTw+Py6PL8bRtCbn/sjTNhf6laSUEKInk+tH/HK6vTg9gWtQcg8cvne2yQOSUStwpK4Ji1uuu0J0l4j3lJowYQLz5s1j6tSp9O3bt0XbT37yk0hvToiokqF7Ip5oVArJWjV2txeLy4M+jj4cyrk/OjTNU+55vPLhWAjRM8n1I76Z7U0AqBTQ9vBpYDP0asZfYOKTY3WUW/1cEOuAhOglIp6UOnHiBAMHDuTo0aMcPXo09Ho8DTMRoqNk6J6IN6m6YFLKS584Krch5/7oCM7A5/bFX884IYSIBLl+xLdamxsAvap3/ExuuKgvnxyr47gVrvTLAyEhukPEklL//u//zm9+8xt+97vfAeB0OtHr9ZFavRDdTobuiXiUptdQZW3C4oyPGfjk3B9dwaSUDN8TQvQ0cv1IDLXNPaV08dM5O6quyc/GoDmM3ePndKMLXawDEqIXiFhNqX379rX4furUqZFatRAx8WmZDN0T8efsYufxQM790SXD94QQPZVcPxKD2R7oKdVbklJ6rZrJA5IBOFRti3E0QvQOUSl0DuCX7o4iwf3tkAzdE/EnmJSyxklS6rvk3B9ZGil0LoToJeT6EZ9qbYGeUvpekpQCuGZwCgBHzXbccv0VIuqilpTqDWOORc8lQ/dEvIq3nlLfJef+yDozfE9qSgkheja5fsSn2l7WUwqgIDOJVG3ggVCFdJYSIuqilpQSIpHJ0D0Rr1KbPxVanF55qtwLyPA9IYQQsRSsKaXv4TPvnU1RFAanBvb3mEWuv0JEW8QKnXs8Hv70pz+Fvne73S2+B7j55psjtTkhokqG7ol4ldrcU8rr9+Nw+0hOiu2jSzn3R5cUOhdC9FRy/UgMweF7vamnFMCgVDhYB2YXnLK4GRzrgITowSKWlMrOzmb16tWh700mU4vvFUWRC4tICDJ0T8QztUohJUmNrcmLxeWJeVJKzv3RpW2uKSU1LYQQPY1cPxJDsNB5T68p5fN5qag4AUBFxQl0Khhg1FNe7+S94zYmjY5xgEL0YBFLSv3jH/+I1KqEiKkiGbon4lyqToOtyYvV5SEnLbaTFcu5P7rODN+TmlJCiJ5Frh+JITh8r6f3lGo0V/H6cSsDhiiUHTqAMW8wBX2zKK938s8yOw/6/DJ6QogokZpSQnzH+6U1AHwvP0suPiIupQXrSsVpsXMROTJ8TwghRKw0eXxYXV6g5/eUAkjPyiEzdwDpmX0AuMBkIEkFtQ4vn5bVxTg6IXouSUoJcRavzx8aundNvgzdE/EpNAOf0xvjSES0SVJKCCFErJibe0lpVKDthXeNapXCwNTA/7d+VRnbYITowSI2fE+IRHPH3Ysw19a3eM2VmkftqHkoHhdrn3qQCS+/EpvghDiHNH1zUkp6SvV4GnXgLkBm3xNCCNHdzM1Fzo16NYrSO69DF6QqHGn088/SGhqdbtL12liHJESPI0kp0WuZa+uZft9zLV7bfawO8ykLw3JN1H1WG6PIhDi3UE8pSUr1eNJTSgghRKyEklI6NdA7P3MYk+CCDC3HG9zsKK5m3qX9Yh2SED1OL+yIKUTb/H4/x2sdAFyQmRzjaIRoX2pzUsrq8uD3S7KiJzuTlJJC50IIIbrXmZ5SvfeWUVEUrrkgBYCtX52OcTRC9Ey99wwjxHfU2d00ujyoFRho1Mc6HCHalapTowA+P9ibpK5UTxZKSsnwPSGEEN3MbHMDgeF7vdmUQcmoVQrfVFoprbHFOhwhehxJSgnR7FhzL6n+RgNatfxpiPilUhRSmmfgs0pSqkfTqGX4nhBCRILX6+W2227joYceCr22f/9+5s2bx9ixY7n22mvZvHlzi2W2bNlCYWEhl156KbNnz2bfvn3dHXZM1TT3lDL18qRUhk7NVUMzAektJUQ0yJ23EM2O1dkBGJxpiHEkQpzfmRn4emeNh95Cowpcpt2SlBJCiC558cUX+eyzz0LfNzQ0cNddd3HzzTdTVFTEqlWreOqpp/jyyy8B2LNnDytXruTpp5+mqKiImTNnsnjxYhwOR6x2odudXei8t5sxKheA7d9U4fHKkHohIkkKnQtB4MbebHOjAINMkpQS3e/w4WJmzZvbfvuREqaf9X2grpRLip33cNrmnlJenx+/34+iKDGOSAghEs8nn3zCzp07+f73vx96befOnRiNRhYsWADApEmTmDFjBhs3bmTMmDFs3ryZ6dOnM27cOAAWLlzIG2+8wbZt25gzZ05M9qO7me3BQucqevv0P5OHZJKZrKXW7mbX0Vquzs+OdUhC9BiSlBKCM72kctN1GLTyNEh0P4+PVrNBnu3ru29q8X1a8/A9SUr1bMGaUhBITAWH8wkhhOgYs9nMo48+ypo1a9iwYUPo9ZKSEgoKClq8Nz8/nzfffBOA0tLSVsmn/Px8iouLox5zvJCeUmdoVAo3XpTDa5+dYOtXlZKUEiKCJCklBHDMHJx1T3pJicSQFpqBT2pK9WTqs5JSbp8fjdwXCCFEh/l8Pu6//35uv/12Ro4c2aLNZrNhMLT83KfX67Hb7R1qD0cidHINxhj81+/3h5JSJkP8X3y+G3+k160oMHNUICn10dFa6uxNZKYkRXQbZ/+biBJ9HyT+jm8j0iQpJXo9h9tLpcUFwGBTcoyjEaJjQjWleklPqT//+c+sWLGixWtud2BWoK+++ooVK1bw1ltvodVqQ+0PPfQQ8+fPBwLFatesWUN1dTVDhw5l+fLljB07FggUv33uued4++23cTgcTJw4kccff5y+fft20961T6UoqBUFr98vxc6FECJML7/8MklJSdx2222t2gwGAxaLpcVrTqeTlJSUULvT6WzVbjKZwo4jKyst7GViJRhrg91NU/PMr0Pz0vn4eB3JyTr0ei0qnTbu/m8w6ADQRXj9DkMSmZmpZGenkZ2dxiUDjewvr+eDsgYWXTU0asc/kSX6Pkj83U+SUqLXK6tz4AeyUrSk6c/8SYRb40eI7pSqD/aU8uD39/xkxcyZM5k5c2bo+8rKSubMmcP9998PwIEDB1i5ciW33HJLq2WDxWrXrVvHmDFj2LhxI4sXL+a9997DYDCwdu1adu3axVtvvUVaWhrLly9n2bJlvPLKK922f+eiUSt4PX483p7/cxZCiEh6++23qaqq4vLLLwcIJZn+9re/8cADD7Br164W7y8tLWX48OEADB8+nJKSklbtU6dODTsOs9lCvF+qFSVwMxuM9ag50CMsTafB2mjH4WjCbnfhdLpR+d1x93+HI/CA2eWK7PodjiZqa62kpwcSmDeMyGZ/eT2v7znOrJHZEav1+N3jn4gSfR8k/o5vI9IkKSV6veO1zUP3vtNLKtwaP0J0p5QkNQrg84O9qXcN4fP7/dx///1873vfY9asWTQ1NXH48GFGjRrV5vvPV6x28+bNLF26lLy8PAAeffRRpkyZQnl5OQMHDuy2/WqPRqXgAjw+me1HCCHCsX379hbfP/TQQwA8/fTT1NXV8eyzz7JhwwYWLFjA3r172bp1K2vWrAFg7ty5LFmyhBtuuIFx48axceNGzGYzhYWFYcfh95MwN7nBWGusgaF7WSnahIg9GGOkY/X5vJw4cSK03uvy+/H8+99ypMbON5VWLsyJ7A16Iv2utCfR90Hi736qWAcgRCx5fX5ONgSemg0y6WMcjRAdp1IUUkLFzntXUurtt9+mtLQ0dHNRXFyMx+Nh9erVTJ48mWnTpvHKK6/ga07ilJaWtlnMtri4GIvFwunTp1u0Z2dnk5GRwaFDh7pvp84hWOxcekoJIUTkmEwm1q9fz/bt25kwYQLLli1j2bLJs/SLAAEAAElEQVRlTJw4EQjMxrdixQoee+wxxo8fzzvvvMO6deswGo2xDbybBOtJZUWwblIiajRX8fruUjZ9XsFLOz6jvvokVw3NBODd4uoYRydEzyA9pUSvdtriwu3zY9CqyO7lF12ReNJ0GqwuL9ZeUlcKAkVr165dy49//GNSU1MBsFgsjB8/nttuu41f/vKXfPPNNyxZsgSVSsWiRYvOWazWZrMBkJyc3Ko92NZR4fbgD73/PMtpm2fc60hNqUQtznm2RC80Gi1yXFqTY9K2rh6Xnnw8n3766Rbfjx49mk2bNrX7/lmzZjFr1qxohxWXzPbmpFSyfD5Oz8ohM3dA6PvCEX342+Ea3j1Uzb1Th0RsCJ8QvZUkpUSvVlYXGLo30GiQC4pIOGk6Dadw9Zpi5xCoD1VVVcXcuWfqvV155ZVceeWVoe/HjBnDj370I7Zt28aiRYvOWaw2mKxyOByt2oPFbjsq3DH2RmNg/XpdEsnJunbfl6RRA25UGnWb79PrAzcMJlMK2dmJV9yyPYlYqLM7yHFpTY5J2+S4iK44M3xPklJBPp+XiooT9M/th16jcNri4sApC2P6pcc6NCESmiSlRK9WHkxKmQzneacQ8Se1l83AB7Bjxw4KCwtb9Gz629/+Rk1NDbfeemvotaamJvT6wJDccxWrzcjIICcnp8UQv+rqaurr61sN+TufcAtL1tcHemI5XYHise1pHr2HzdH2+5zOwI1DXZ2NmhpLq/ZEk+iFRqNFjktrckza1tXjEq1CtiKxBHtKBUYS9J7PGefSaK7i9eNWBgxRMGLnNAbePVQtSSkhukhqSoley6PLoMHpQVFgQIbUkxKJJ625ppS1F9WU2rt3L1dccUWL1/x+P0899RSffPIJfr+fffv28dvf/pb58+cDgWK1W7duZffu3bjdbjZs2NCiWO3s2bNZu3Yt5eXlWK1WnnzyScaPH8+gQYPCii1YWDKcr8CC516vtjkr5e7A8L3OxBCPXz1pX+S4yDFJxOMihNSUaltwKN+QrMDDsb8dqsbbgeuzEKJ90lNK9FpO4wUA5KbpSNJIflYknrSzekqlxjiW7nLixAn69u3b4rXCwkIefvhhHnvsMSorK8nOzubee+8N1QE5u1htZWUl+fn5LYrVLlmyBI/Hw4IFC7DZbEyYMIEXXnihm/esfVp14Pzk9srse0IIIbpHTXNSymOtpaK+BpkAtqUcAyRrFWpsTXxR0cC4gcZYhyREwpKklOi1XKYhAAySoXsiQaXqA6dwq8tDeNWPEte+ffvafP3WW29tMXzvu85VrFar1bJ06VKWLl0akRgjLVjo3C2z7wkhhOgm1ZZALcbdR2toOHoAY95gsmMcUzxRKwoT+hl477iNdw9VS1JKiC6Q7iGiV3K4vbjS+wOBIudCJKKUJDWKAj4/+LS9JS3V+wR7SnkkKSWEEKIbeLw+Gl2BrlG5ef1Iz+wT44ji0+QBgXuIfxyu6dAMuUKItklSSvRKn5XVg0pDqk6N0SAdBkViUikKqUmBulIenRTZ7Kk0oZpSMnZCCCFE9NXa3QAogF5KXLRrVF89GXoNdQ43e8vrYx2OEAlLzjKiV9pzvA6AAUYDiqLEOBohOi84A59XklI91pmaUvIUVgghRPQFZ97TqZHPye3w+bxUnqrgijwdADuLq2IckRCJS5JSolf6tKwekFn3ROILFjv36iUp1VOdqSklPaWEEEJEX3DmPb06xoHEsUZzFa/vLsXlsAPwj8PVeOQ6LUSnSFJK9DrVVhdHzXbw+8lL18U6HCG6JE16SvV4weF7Uq9CCCFEd5CkVMekZ+VQMHgAOjVYm3zsaX7oLYQIT8ImpbxeL7fddhsPPfRQ6LX9+/czb948xo4dy7XXXsvmzZtbLLNlyxYKCwu59NJLmT17druzOIme7dPj9QBobVXotXK1FYktVR+sKZUW40hEtMjwPSGEEN2pRpJSHaZSFPonB67PW/Z+y7FjR/F6vTGOSojEkrBJqRdffJHPPvss9H1DQwN33XUXN998M0VFRaxatYqnnnqKL7/8EoA9e/awcuVKnn76aYqKipg5cyaLFy/G4XDEahdEjHzaXE9K11Ae40iE6DrpKdXzyfA9IYQQ3clsCxQ6l6RUxxg9gXuLj8vtrNn+GeXlZTGOSIjEkpDTjn3yySfs3LmT73//+6HXdu7cidFoZMGCBQBMmjSJGTNmsHHjRsaMGcPmzZuZPn0648aNA2DhwoW88cYbbNu2jTlz5sRkP3qDO+5ehLm2vt32rEwj619+tdvi8fv9oXpSuga5YIjEl6HXAuBXaWMciYgWrSrw/EiG7wkhhOgOweF7Oo0UOe8Io8qNTvHh8qlwpuTGOhwhEk7CJaXMZjOPPvooa9asYcOGDaHXS0pKKCgoaPHe/Px83nzzTQBKS0tbJZ/y8/MpLi4OO4ZwJ6EIvj+RJ6/o7D6Ya+uZft9z7ba/8/zSqB6XO+5aRE0wKaaAPzWb6ot/CD4PZfs/BH4WvY1HQXf+DkVjW2f/HvkT9P463vYhOUnN9QXZfP72FhTlhg4t0xPOSb2J9JQSQgjRnaSmVHgUBXJ0HsqcSZywxcGHQyESTEIlpXw+H/fffz+33347I0eObNFms9kwGAwtXtPr9djt9g61hyMrq3O1Wzq7XDwJdx80WjXJye0XE9do1WRnR++41FsszHv0f0Lff1Fez6nD1QzKTudAk+ucsSkKcdse7W2f7+dyrp/r+dYNYDAk7nELxt7WPsQqtouTdRy2nwz7bykzM/HPSb3B2TWl/H6/TM8thBAiqqSmVPhykgJJqVN2cMlDJCHCklBJqZdffpmkpCRuu+22Vm0GgwGLxdLiNafTSUpKSqjd6XS2ajeZTGHHYTZbwuohoSiBZE64y8WTzu6Dx+3Fbneds72mxtJue1edvX1FgfLaQBIyNzWJL/2cMzZ/HLYHkyLR3vbXBw8y+XvT2m0vOVLCtHaWP9e6g/fSDoer3d+jaO5bJNbtcLgwGHRt7kMsYwvnbyn491xba5HEVALQNPeU8gNenz/0vRBCCBFpfr+famvg84ZBklIdlqHxkZqkxtrk5YvTTkYMi3VEQiSOhEpKvf3221RVVXH55ZcDhJJMf/vb33jggQfYtWtXi/eXlpYyfPhwAIYPH05JSUmr9qlTp4Ydh9/fuWE7nV0unkRjH7rrmHh9fk7UBQrb98/Qd89GI6y7jpXHxzmHXT57902dWm8w/kT+O4jnfQg3pnjcB9GaRnUmCeX2+dHITYIQQogoaXB4aGqe7dWQUHeKsaUoMDQrmS9PWdh1ws78WAckRAJJqNn3tm/fzueff85nn33GZ599xk033cRNN93EZ599RmFhITU1NWzYsAG3283u3bvZunVrqI7U3Llz2bp1K7t378btdrNhwwbMZjOFhYUx3ivRXaqtTTR5feg0KrJSpCi0ECIxqBQllJhyeyWTKIQQInoqm3tJZehUqGS4eFiGZicD8PkpJw63N8bRCJE4ekz+22QysX79elatWsXq1avJzMxk2bJlTJw4EQjMxrdixQoee+wxKisryc/PZ926dRiNxtgGLrpNRX2gZ12/DL3UZBFCJBStWsHj8+OROhVCCCGiqNoSSEplGtSAJFbCkZ2SRIoGbB4/75XUcONFObEOSYiEkNBJqaeffrrF96NHj2bTpk3tvn/WrFnMmjUr2mGJOFXREEhKJerQPSFE76VRqQAfbp/0lBJCCBE9wZ5SkpQKn6IoXJCq8HW9n7cPnJaklBAdlFDD94ToLLfXF7rISlJKCJFotOrg8D3pKSWEECJ6qiyBmfcyZeq9TrkgDRTg8xMNHK8Nf5Z3IXqjhO4pJeLDHXcvwlxb32bb4SMlTO/ecNp0qjEwU1q6XkO6Xn7thRCJ5UxSSnpKCSGEiJ6q5oe4Wcka3JJTCVuyRmFsro7PTzv581enuXfq0FiHJETck7tz0WXm2vp2Z2r7upOztEVacOjeoMzkGEcihBDh06oCHZs9MnxPCCFEFFUFa0rp1VRKUqpTrhucwuennfzlYCWLrxyMRi2Dk4Q4F/kLEb3Cyeak1EBJSgkhEpAM3xNCCNEdqq2B4XtZBhm+1xk+n5dcnxmjXkWt3c1bu7/B65XaXEKciySlRI9nb/JSa3cDMNAkSSkhROIJPmWV4XtCCCGiqbLF7HsiXI3mKv7w6RFydIGHSP9bdJLy8rIYRyVEfJOklIg4r89PtbWJOrsbVLEfIRrsJZWVosWQJBdYIUTi0aqkp5QQQojosro82JoCvXqkp1TnpWflcMmQPADMXh2VVk+MIxIivsU+YyB6DIfby97yBg5X2/A21z3JuPUZPj/RwJi8tJiNpw7Wk5JZ94QQiUob7CklNaWEEEJEyenmz8wpSWoMWum70BUZBi0DMvScaHDyTqmFCaNiHZEQ8UvONiIiTjU62fzFKb6ptOL1+dFpVGjVCkqSgb3lDbzzdRUuT/c/4fcjSSkhROLTNNeU8khPKSGEEFFS2Rj4zNw3VRfjSHqG0f3SAPjHMRsWp/SWEqI9kpQSXeYwDWVbc9IpM1nL9Iv6ctvl/fnRFQOw/fM36DQqqqxNvPN1ZbffUHn1RmxNXlQK5KbJBVYIkZjOFDqXnlJCCCGi41Tzg9y+aUkxjqRn6J+hJ10LLq+fLV+einU4QsQtSUqJLvmsrJ664Tfg88OQTAOzRuXQL0OPoigoioL76F5uuqgveo0Ks83Nx8fqujU+V8ZAIJCQkulYhRCJSquS4XtCCCGiK9hTqo/0lIoIRVEYnhF4qPTGvgqpCylEO+QuXXTa8Vo7S98+CCo1gzMNXFuQ3WbiJzMliWsLsgE4VGXjqNnebTEGk1L9jTJ0TwiRuM70lJIPtEIIIaLjVIMDgL4yuiBiBqaCUR8YNfLuoepYhyNEXJJC54I77l6Euba+3fasTCP/+8qrLV6zN3m5/89fY2vyktR4kmsmTEClKO2uo3+Gnkv7p/NFRSOfHKtjgFEfKtwbLV6fH1f6wND2hRAiUSU1ny+bJCklhBAiSk43uADom5oEuGIbTA+hVhRuGJbG6wcbeO2zE9xwYV+Uc9wzCdEbSVJKYK6tZ/p9z7Xb/s7zS1u99tw/SjlqttMnNQnV3m1opk0873bG9k+ntMaG1eVlf0Ujlw8ydiXs8yqutODX6EhSK2SlyNh4IRLdtm3bWLp0KTrdmSe4119/Pc8++yz79+/niSeeoLS0FJPJxOLFi5k3b17ofVu2bGHNmjVUV1czdOhQli9fztixYwHwer0899xzvP322zgcDiZOnMjjjz9O3759u30f25OkaU5KeWT4nhBCiOg43djcUypVhySlIqdwaApvH7ZSUm3jgyO1XJ2fFeuQhIgrMnxPhO0fh6vZerASlQKrpl+I2t2x4XgatYqJF5gAOHDKgsPtjWaY7D4eqF/VL0N/zl5cQojEcODAAWbNmsW+fftCX88++ywNDQ3cdddd3HzzzRQVFbFq1SqeeuopvvzySwD27NnDypUrefrppykqKmLmzJksXrwYhyPw4Xvt2rXs2rWLt956iw8//BC9Xs+yZctiuautBIfvSU8pIYQQ0XK6QWbfizSfz0tj9SkKhyQDsO6TY/j98oBJiLNJUkqEpcriYtW7JQD8aPxAxg7ICGv5wZkGslOS8Pj8fHmyMRohhuxuLqo+wGiI6naEEN3jwIEDjBo1qtXrO3fuxGg0smDBAjQaDZMmTWLGjBls3LgRgM2bNzN9+nTGjRuHVqtl4cKFmEwmtm3bFmq/8847ycvLIzU1lUcffZQPPviA8vLybt2/czl7+J58mBVCCBFpbq+PGmsTILPvRVKjuYrXd5fidVpR4+NQlY2Pvq2NdVhCxBVJSokO8/n8PPbXQzQ6PVyYk8pdky4Iex2KonDZwEAi6+vTVrya6NR6sjg9HGhOeg2QIudCJDyfz8fBgwd5//33ueaaa5g6dSrLly+noaGBkpISCgoKWrw/Pz+f4uJiAEpLS9ttt1gsnD59ukV7dnY2GRkZHDp0KPo71kHB4Xt+f6BenhBCCBFJ1c0JKY0K6itPUFFxAp9cbyIiPSuHvP4DGZYRuJav++S4PGAS4ixSU0p02G8+OsqnZfXoNSpW3jiyzZn2OmKQUU9WihazzY29b+teD5FQVFaH1w8aRy1pukFR2YYQovvU1tZy0UUXMW3aNFavXk1dXR0PPvgg999/P3369MFgaNkjUq/XY7cHhhbbbLZ22202GwDJycmt2oNtHRXuKOHQ+zuwnFaloAB+oMnrR6OOTAzxKLgPPWFfIkmOS2tyTNrW1eMix7N3qrIGakhp/B7e2HeSskMHMOYNJjvGcfUkBRkKx63wTaWVj4/WceXQzFiHJERckKSU6JDDVVae3RHoNXDfNcO4IDP5PEu0T1EURuel836pGVvuGDxeX6cTXO35pHnonq7+OHBpRNcthOh+2dnZoeF4AAaDgfvvv58f/OAHzJ49G6fT2eL9TqeTlJSU0HvbajeZTKFkVbC+VFvLd1RWVlpY7zcaA+vX65JITj5//Y4kjQqXx4dKqyE5+czQCr0+8H+TKYXs7PBiiGfhHs/eQo5La3JM2ibHRYSjyhJISqUmacjMHUB99akYR9Tz6NQK3x+awtYSCy9/fIzJQ0wyE58QSFJKdIBPpeHRvxTT5PVxdX4Wt4zO7fI6h2Yls+d4HQ5S+UdJDd8fGblZrvx+/1lJqbKIrVcIETvFxcX85S9/4ec//3noA1xTUxMqlYoxY8bwf//3fy3eX1payvDhwwEYPnw4JSUlrdqnTp1KRkYGOTk5LYb4VVdXU19f32rI3/mYzRbC6Y1fXx/oieV0NWG3n3+WI61KwQU0Wp3olTMbcjoDQy7q6mzU1FjCijkeKUrgZjrc49nTyXFpTY5J27p6XILLi96lqnn4nl7uDqNqVkEafztm45tKK29+8g1X9DPg9XpRqRQaG9OprbUyYMAg1Op2ukQL0QNJTSlxXo0XTOForZ2+aTqWfX94RDL6apXChTmpALyx72SX13e2o7V2Ki0udBoVusYTEV23ECI2jEYjGzdu5NVXX8Xj8XDy5EmeffZZbrnlFqZNm0ZNTQ0bNmzA7Xaze/dutm7dypw5cwCYO3cuW7duZffu3bjdbjZs2IDZbKawsBCA2bNns3btWsrLy7FarTz55JOMHz+eQYPCG/rr94f/FViwY+sP1pU61wx8nYkhHr960r7IcZFjkojHRfQ+wZ5SBklKRVWGXs38sf0BWLPnFK/vPcH/+8NO/t8fP2D9R0dZu/0zysvlobroXeS0I87pWK0de84YAH75g0sxJSdF7MPKhTlpfF5Wx5cnG/n6tIWLciPzVO6To3UAjB2QQZnfG5F1CiFiKzc3l5dffplf/vKXrF27Fp1Ox/Tp07n//vvR6XSsX7+eVatWsXr1ajIzM1m2bBkTJ04EYNKkSaxYsYLHHnuMyspK8vPzWbduHUajEYAlS5bg8XhYsGABNpuNCRMm8MILL8RuZ9uhDc3AJ3eMQgghIiuUlFLLcLJo8fm8VFSc4OqcfmxSg9WrpV6bSXpmH1S6FLLyBuJwNMU6TCG6nSSlRLusLg8fHAlMWXrbFQOYMjw7okNDkpPUGMwlOPqM5A/7KnjshpERWe/u5qF7kwabkOcMQvQc48ePZ9OmTW22jR49ut02gFmzZjFr1qw227RaLUuXLmXp0qURiTNakppvFJo87feUEkIIITrjVGMgKZUsd4dR02iu4vXjVgYMUchyVVKhyWFveQOXqWX4kujd5PdftMnj9fHuoRpcHh9aaxX3TBkcle2knN4PwM5D1dTau/5kwOn28vmJegAmDZYZLYQQPUdHhu8JIYQQnXG6MTAhiCSlois9K4fM3AHkZyhoFT8NTg+nPfpYhyVETMlppwe44+5FmGvr223PyjSy/uVXO7w+v9/PB0dqqbE1odOoyCjZhlY9NwKRtpZkq+Si3DS+Pm3hzwdOs3BCeDVcvquorJ4mr5+cNB2DMw3nX0AIIRJEUvPwPbckpYQQQkSQy+PDbHcDkpTqLhrFz2BDEyV2HUebUunnd5x/ISF6KDnt9ADm2nqm3/dcu+3vPB/ekJT9Jxs5YrajKHB9QTb7PmrsaojnNPeSPH5x2sIfvzzFbVcMRK3q/Fj290trALh6WJZMsSqE6FGCSakmj9SUEkIIETnBXlJ6jUKSjKPpNgP1bircydjdUOHSMCrWAQkRI3LaES2UVNsoKmsAYPJgE/0yot+dtHBEH9L1Gk41uvj4aG2n1+Px+UM1sL43PCtS4QkhRFxI0jTXlJKeUkIIISLoVHNSKidNKw91u5FagUsHpAPwrT1JekKLXkuSUiKktNrGP0vNAFycmxqx2fDOR69VM+PiXADe3H+y0+vZX9FAvcNNhl7D2AHGCEUnhBDxIdRTSj60CiGEiKBgkfPcVG2MI+l9RvZNRa94afKrOHCiIdbhCBETkpQS+IEvTzbyXqkZP1DQJ4VJg03dGsOcS/IA+ORoHSfqOzem+v3mhNqUYVloujAEUAgh4tGZ4XuSlBJCCBEZXq+X4vJKAFJw4ffLEPHupFYpDEmyAvDZ8TrcPjn+oveRmlK9XJ29ibrhN3LqeD0Q6CE1cbCpRdfdw4eLmTl3LhqtGo/b22odh4+UML2LcQw0GZg42MTuY3X8cf8pfnr10LCW9/j87CyuAuC64dldjEYIIeKPNjT7nnxgFUIIERnl5WV8XFoJGPi2/CTDs5LJyot1VL1LrsbJcXcadjccaZQH66L3kaRUL1Vvd7PlwCl+W1SOMysflQITLjBxcW5qq7HkHh9Mv+85kpN12O2uVuv6+u6bOh3H4cPFzJoXmNnPaRoCI2bw2iclvLvmEVQ+T4dnDiwqq6PWHhi61929vIQQojskqaWmlBBChKu4uJhnnnmGgwcPotVqufLKK3nooYfIzMxk//79PPHEE5SWlmIymVi8eDHz5s0LLbtlyxbWrFlDdXU1Q4cOZfny5YwdOzaGexMdHrUBPGBKS451KL2SSoGhyU18ZdVT0uDHIT2iRS8jSakE5/P7aUrN5YuKBursblweHypFQatW0KpVJKlVWPpdzh/2VeD2+qmyuiiutLL/ZCPe5u6hWlsV0yeOpk+qrtvjDya8gvvyh32nsGBg2PxHuSg3rcMzB277OtBL6vsj+6JRy6hUIUTPI8P3hBAiPE6nk0WLFvGDH/yAl19+GZvNxoMPPsgjjzzCM888w1133cVPf/pT5s+fT1FREUuWLGHEiBGMGTOGPXv2sHLlStatW8eYMWPYuHEjixcv5r333sNgMMR61yLK5gn8a1B5AXVMY+mtcpI8nDBoqXe42XnEyoX5sY5IiO4jd+8JyuPz86cvT3HLb4qoGfUDisoaKK2xU17v5Hidg9IaO980J58sgybz7D+O8MI/v+X3eyv4/EQDXp+fkX1TefyGEWQfeCMmCanvUikKo/MCxdUPnLLg6+CYdqvLw/slNQDceFHfqMUnhBCxlKSRQudCCBGOkydPMnLkSJYsWUJSUhImkymUgNq5cydGo5EFCxag0WiYNGkSM2bMYOPGjQBs3ryZ6dOnM27cOLRaLQsXLsRkMrFt27YY71VkeXx+HM3VOQxqub7EikqBK4ZkAvDnEguONkqmCNFTSU+pBHSi3sGj7xTz9WkLAIqnicE5RrKStRi0avyA2+vD7fXR5PFz5MvdTJ5yNRqVQlZKEoMzk7likJEBxsBTnpeJn/okBX1T2FveQKPTw7HajhU8//NXp3F6fAzJSubibpoxUAghuluwp5TPH7iJkAkdhBDi3IYOHcqrr7YsA7Fjxw4uvvhiSkpKKCgoaNGWn5/Pm2++CUBpaSlz5sxp1V5cXBx2HEocn65rnYHkh1oBneLHE8exnkvwGMfzsT4XRYGCnDQ+PlxJo8vHH788xb9ePiDWYYWlJ/wMzv430XRH/NFatySlEsQddy/CXFuPKy2P2hEz8Wt0KB4naSc+5eTuP3H9r95sd9naP/2dp59Z3I3Rdp5WreLivFQ+P9HI3vIGDJz7N9/r8/PGvpMA3HpZ/1b1sIQQoqfQqs+c35o8PjRJMsRCCCE6yu/388ILL/Dee+/x2muv8dvf/rbVMDy9Xo/dbgfAZrOdsz0cWVnx+9DUrmgBSDdoURTQ6bQkJ+vQ67WoEuj/BkNg1Ec8xQ+EtYxapTC6j4bdpzy89lkFP76uAL028a718fz73hESf/eTpFSCMNfWM/aOJ9heXI3f56dvahLXFfQj9aoCnn1/U6zDi6hReekcPGWl3uGG7IJzvveDI2ZONjjJ0Gu48UIZuieE6LmC9QLdXj9NXh/JUvdDCCE6xGq18vDDD3Pw4EFee+01RowYgcFgwGKxtHif0+kkJSUFAIPBgNPpbNVuMoU/oY7ZbKGDVSm6XUnzyIs0XeCa4nK5sdtdOJ1uVP7E+b/D4Yq7+IEOL6PGDUA/vZc+yWqqrS5efa+EWy/rD4DX66W8vCz0cxs4cBBqdXx9DlCUQEIknn/fz0Xi7/g2Ik1qSiUItyGTnYeq8fr8DDTqmX5RX1J1PTOnqNOoGNM/8MveOHAyVpenzfd5vD5+/eFRAGZfkpeQTxKEECIcuua6Ui4pdi6EEB1SVlbGnDlzsFqtvPnmm4wYMQKAgoICSkpKWry3tLSU4cOHAzB8+PBztofD74/fr0pr4HN2WvN9RSLejMOZuBM9fgWFW0akA/B/n5bjdPvw+wO/x2u3f8breytYu/0zysrKYv6709ZXcF8S9Uvi79g2Ik2SUgmg3uGmduRM3F4/uWk6Ckf06fEzzI3KTSNNp8GnS2PtR8fafM9b+09xvM6ByaDl364Y2L0BCiFEDOg1geS7U5JSQghxXg0NDfzoRz/isssu4ze/+Q2ZmZmhtsLCQmpqatiwYQNut5vdu3ezdevWUB2puXPnsnXrVnbv3o3b7WbDhg2YzWYKCwtjtTtRcbp56r10fc982J2IvndBCjlpOqqtTbx94FTodWOfPDJzB2DskxfD6ISIvJ6d2egB/H4/v9h+CK8unXS9hsIR2ah7QXFbjVrFVUMDHxz+8MVJdhZXtWgvqbby64+OAnD3lRf02F5jQghxtlBPKZmVRwghzuuPf/wjJ0+e5K9//Svjxo1j7NixoS+TycT69evZvn07EyZMYNmyZSxbtoyJEycCMGnSJFasWMFjjz3G+PHjeeedd1i3bh1GozG2OxVhVbaWPaVE7GnVCgvHBx64/2Z3GbamtkeNCNFTJNzZp7i4mGeeeYaDBw+i1Wq58soreeihh8jMzGT//v088cQTlJaWYjKZWLx4MfPmzQstu2XLFtasWUN1dTVDhw5l+fLljB07NoZ7c35v7T/Fh9/Wgs/D9QW5vWqIWn+jnpRT+7DljeWx7YdweXxMvziHr09beGjrNzjcPi4fZGTWaHlaIIToHfTaQFJKekoJIcT53X777dx+++3tto8ePZpNm9qvzTpr1ixmzZoVjdDigt/v57Q12FNKS8fmvRbdYdboXH6/9wTl9U5+W3SCG/rHOiIhoieheko5nU4WLVrE2LFj+eijj/jLX/5CfX09jzzyCA0NDdx1113cfPPNFBUVsWrVKp566im+/PJLAPbs2cPKlSt5+umnKSoqYubMmSxevBiHI35Pv9VWFy8210xKL9tFVkpSjCPqfunHP+K6gmzcXj+/2HGYqat3cfvvv6DS4mKQycAzMy6UadGFEL2GXmpKCSGEiJAGpweHJ1AkJljoXMQHrVrFT6YOBWDjZycwO6S3lOi5EiopdfLkSUaOHMmSJUtISkrCZDIxf/58ioqK2LlzJ0ajkQULFqDRaJg0aRIzZsxg48aNAGzevJnp06czbtw4tFotCxcuxGQysW3bthjvVft++d4RbE1eLs5NI+X0l7EOJyYU/Dxx40juvWoIyVp16EZs+sU5rLv1EtL12hhHKIQQ3UcXrCnllqSUEEKIrqmoDzyc16vp8fVqE9E1+Vlc0i8dl8fHG183xjocIaImoYbvDR06lFdffbXFazt27ODiiy+mpKSEgoKCFm35+fm8+eabQGC2jGDhwrPbi4uLoxt0J330rZm/Ha5BrcAjhcO5/09RKnWfADRqFf82fiDzxvbDbGsiOUlNZnLv6zUmhBBnhu9JTSkhhBBdU9HgBCA1oe4Iezafz0tFxYnQ9z+ZcgF3/uEA7x+zcV1/hcxzLCtEokrYU5Df7+eFF17gvffe47XXXuO3v/0tBoOhxXv0ej12ux0Am812zvZwKGGOFgu+/1zL3XHXImpq6wHwqTRUX/KvoEtHX7GX+5espuRISfsLhxFDV5dXlOhNBXm+bScnqUlOMpz7zR1YTyz2IVK6+nOMtZ70M4jHfejo70dHzkkiPsnwPSGEEJFyoj6QlEqRgQdxo9FcxevHrQwYolBffYofT7uc6wuy+dvhGvab/QweGGcfPoWIgIRMSlmtVh5++GEOHjzIa6+9xogRIzAYDFgslhbvczqdpKSkAGAwGHA6na3aTSZT2NvPykrrVNznWq7eYmHeo/8DwJ6jZk5/W0uaXsNtP/wBWvWt/OLfCklO1rW5rKLQbhuARqsmO7v9bWu06nMuryhgMATag/92dPvni62rsZ9PW/sW3IeuxhbL9kSODdr+PYqH2DrS3tm/hWjH1pm/lczMzv9tidjQy/A9IYQQEXK8LvBwPlUrT6niSXpWDpm5A0Lf/2TqEP5ZWkO1E47XOUiPYWxCREPCJaXKysq488476devH2+++SaZmYFOjAUFBezatavFe0tLSxk+fDgAw4cPp6SkpFX71KlTw47BbLaE1UNCUQIJqXMt53F7sdtdONxe9h6rA+CKgRm4XW7cBHpk2O2uNpc9V1tw3TU1lnO2n2t5vx8cDhcGgw6Hw9VqH7oSW1djP5+z9y2YUAjuQ1dji0V7cB/iMbaOtAV75rT1exTr2Dra3tm/hWjHFs7fSvCcVFtrkcRUgtHJ8D0hhBARcrw2UFMqTXpKxbX+GQZmFKTzx+JGdh+r57pc6S0lepaEqmjX0NDAj370Iy677DJ+85vfhBJSAIWFhdTU1LBhwwbcbje7d+9m69atoTpSc+fOZevWrezevRu3282GDRswm80UFhaGHUcwoRHO1/mWC/r8RANun5/slCSGZiV36Xh1NOaOLn/2v92pM8e7rX2L5T5ESiLHDj3rZxCP+9CZc5JILGcP3/PLD1AIIUQn+f3+s3pKxTgYcV43j0hDrwaLy0Op1DwXPUxC9ZT64x//yMmTJ/nrX//K9u3bW7Tt27eP9evXs2rVKlavXk1mZibLli1j4sSJAEyaNIkVK1bw2GOPUVlZSX5+PuvWrcNoNMZgT9rW4HDzTaUVgAkXGFGk4IsQQoizBJNSPj+4fX6S1HKdEEIIEb5auxury4uCFDqPV2cXPa+tPMnFRthrhuJ6P3UOL4NjGp0QkZNQp6Dbb7+d22+/vd320aNHs2nTpnbbZ82axaxZs6IR2nnNvXUBJ0/XtNt++EgJ+vIG/H4YYNTTL0PfjdEJIYRIBBq1CrWi4PX7cbp9JMkU3kIIIToh2EuqT7IatUp63sajs4uelx06gCl3MH1TM6myNvH7g/WMvTDWEQoRGQmVlEpkVeY6pt/3XLvthx7+Md+aAxeH8YOM3RSVEEKIRKPXqrA1eXF5vMhlXAghRGcE60n1S9MCTbENRrQrWPS8vvoUigKTBpt4+6tK3j9u5+BpCxfnSm1Qkfjk02yc0F1yIwDDspLJSkmK6LoPHy5m1ry57bcfKWF6RLcohBAiWnSaQFJKZuATQgjRWcGkVF6qBnySlEoUfdN0DEqFMiv8v38c4Tf/3yVS8kUkPElKxQGzrYmkCy4FYOyAjIiv3+PjnL20vr77pohvUwghIq24uJhnnnmGgwcPotVqufLKK3nooYfIzMxkxYoVvPXWW2i1Z6q1PvTQQ8yfPx+ALVu2sGbNGqqrqxk6dCjLly9n7NixAHi9Xp577jnefvttHA4HEydO5PHHH6dv374x2c/z0WvPFDsXQgghOiM4fK9/moa6hhgHI8IyyqRQ6YADpxrZUVzNv1wYn59XhOgoKUYRB/adCFwJhmYlY0qW6S+EEOK7nE4nixYtYuzYsXz00Uf85S9/ob6+nkceeQSAAwcOsHLlSvbt2xf6Ciak9uzZw8qVK3n66acpKipi5syZLF68GIcj8JR47dq17Nq1i7feeosPP/wQvV7PsmXLYrav56PXqAFwSlJKCCFEJ5XVnT18TyQSg0Zh9sh0AP7ng29xuL0xjkiIrpGkVIzV2po4WuvA7/cxdkB6rMMRQoi4dPLkSUaOHMmSJUtISkrCZDIxf/58ioqKaGpq4vDhw4waNarNZTdv3sz06dMZN24cWq2WhQsXYjKZ2LZtW6j9zjvvJC8vj9TUVB599FE++OADysvLu3MXO0zXPAOfUz6ECiGE6ASn28uJ+kBSaoAkpRKOz+flspQG+iSrqbI28X97ymIdkhBdIsP3YuzzikYA3Mf2kTl5cGyDSUB33L0Ic219u+1SL0uInmHo0KG8+uqrLV7bsWMHF198McXFxXg8HlavXs3evXtJS0tjzpw5LFq0CJVKRWlpKXPmzGmxbH5+PsXFxVgsFk6fPk1BQUGoLTs7m4yMDA4dOsTAgQM7HGO4JR1C7w9zOUPz8D1HGz2lekJZieA+9IR9iSQ5Lq3JMWlbV4+LHM+e71itHZ8fMvQajHrpo5BoGs1VvHncyrC++VTb4bdFJ5g1Jo+8dJm9XSQmSUrFUK29iaPNM+459/8VfnhLjCNKPObaeqmXJUQv4/f7eeGFF3jvvfd47bXXqKmpYfz48dx222388pe/5JtvvmHJkiWoVCoWLVqEzWbDYDC0WIder8dut2Oz2QBITk5u1R5s66isrPBmwDEaUwLb0iWRnKzr+HKpeqARl9dPcrIOvT4wOYbJlEJ2ds+ZhSfc49lbyHFpTY5J2+S4iPaU1gSub/l9UqRIdoJKz8rhgqEDONJYTrXTz5PvlrB69ij5eYqEJEmpGNp3ItBLakimgX31J2McjRBCxD+r1crDDz/MwYMHee211xgxYgQjRozgyiuvDL1nzJgx/OhHP2Lbtm0sWrQIg8GA0+lssR6n04nJZAolq4L1pc5uT0lJCSs2s9mC39/x99fXB24KnK4m7HZXh5fTENiIxRFYzukMzJpUV2ejpsbS8QDilKIEbqbDPZ49nRyX1uSYtK2rxyW4vOi5/n/27jw8qvLs4/h3MpnsewJhFyEBBUECyC4oNqIiSwOoLdKiVSxEqVRALCi2lK1uiAgqSnlbqSggKpUquILIpiIgCiQgEPYsJGRPZua8f4SMxIAkYZKZyfw+F3Nd5DxnuZ+TzDlz7nmWlPRzSamY6t3nxL2YTCY6RZv47ARsOXSGVTtPMLxTE1eHJVJtaq/pImcKSjl4rpVUbcy4JyJS3xw5coRhw4aRl5fHypUradu2LQAfffQRy5cvr7BuSUkJAQFlzdjj4+NJSUmpUJ6amkp8fDzh4eHExsaSmprqKEtPTyc7O7tCl76qMIzqv8o2rN55CPYrG+g8v6TymFI1icEdX/WpLjovOieeeF6kfks9l5SKNBVy7NhR7Hb90j1VmJ+JuzuEAzDv84N8f9Lzv5wS76OklIuUz7jXMiqQ6GA/F0cjIuLecnJy+P3vf0/nzp157bXXiIqKcpQZhsHs2bPZvHkzhmGwY8cO/vWvfzlm3xs+fDhr1qxhy5YtlJaWsnTpUjIzM0lMTAQgKSmJRYsWkZaWRl5eHrNmzaJbt260aNHCJXW9lPKkVGGpXQ8SIiJSbftPl/XW2Hcim2UbdpOXp0SGJ7uldQh9WkVRbLUz6d09nM4txmazcejQj46XzabJUcR9qfueC5wpKOXAuVZSndVKSkTkkt5++22OHz/O//73Pz744IMKZTt27OCxxx7jySef5NSpU8TExPDQQw8xZMgQAHr27Mn06dMd5XFxcSxevJiIiAgAkpOTsVqtjBw5kvz8fLp37868efPquIZVF+Drg48J7AYUaAY+ERGphuyCUrKLyibKuKJ5U9JyT7o4IrlcPiYTM267itHLdnD4TCFjV+xias9I3tqwg4gGjclOP8EfB0DLlle6OlSRC1JSygV2HCtrJXVFpFpJiYhUxT333MM999xz0fK77rqLu+6666LlQ4YMcSSpfs5isTBx4kQmTpx42XHWBZPJRJDFTF6J7YJd+ERERC6mfJDzYF+wmNVppr4I8ffluaHtGPPmtxw5U8jjnxTSJTqWqEbNXB2ayCXpSlTHzhSUciDjXCup5molJSIi1Rd0rgtfgZJSIiJSDT+cKuuqF67vxesd29nTtOEkgWY4XQQbTtrJL7a6OiyRS1JSqo6VjyV1RWQgMWolJSIiNfBLg52LiIhcTPlA2FH+JhdHIs5gt9s4duwohw79yLFjR4lt0JDBHZvgb7KRb/PhvT2nyCvV+JPi3pSUqkNZBSWOsaS6qJWUiIjUkFpKiYhITZQnpSL9XRyIOMXZzNO8sSWV5d8ccwxaHxbgS5fALAJ97OQV2/j8hMHhnBJXhypyUUpK1aEdR8tmutCMeyIicjmC/MqGhMwvUbN8ERGpmjMFJRw/WwwoKVWfhJ0bOyosqoFjWaCPnevCC4kKslBkg+mfp7P7+FkXRilycRrovI6UBERxRDPuVdv+/XsZMmL4xcsPpDCwDuMREXEHwee3lApwcTAiIuIRvj+ZB0CTEF8sPnYXRyO1zd/H4Pb2sfx311Gyiu0kr9zF00Pa0+2KSFeHJlKBklJ1JKfJdQBcqVZS1WK1w8AJT1+0/PsHbq/DaERE3EPQ+WNKKSklIiJVUN51r3WUH1Dk2mCkTvj7+nB9IxOHCv3ZebqICau/Y/agdvRtHe3q0EQc1H2vDqSk51EYGQdoxj0REbl85w90bmj8UhERqYI955JScZH6gtyb+GBnVMsiujUJpMRmMPm971m397SrwxJxUFKqDiz+8ggAraKDiArSTUBERC5PiH9ZQ2er3aDE0AxKIiLyy6x2g2+Plc0CflW0BpTyJmczT7Ni2wGa+hURay7AZjeY9v5eXvt0NzabJkwR11NSqg7sT88Dw0ZCszBXhyIiIvWAr4+JEP+y1lJ5ViWlRETkl+07nUd+iY1Qf1+uiLC4OhypY2HRscQ0bk77gFwakoMBvPTNGeat241dTa7FxZSUqgPPJ11Dox9WqpWUiIg4TURA2UNFvk23chER+WXfpGUDkNAsHLNJX2Z4K5MJOkaZ6dgkFIDl35/lkXf2kFNY6ljHZrNx6NCPjpdaU0lt0yfZOnBFVBB+hRmuDkNEROqR8MCyLnxKSomIyKV8dS4p1UXj23o9kwm6XxFJQpSBrwm+OJjFb5ZuY+uhTADS0o7w0odfsfybY7z04VekpR1xccRS32n2PREREQ8UHniupZRVSSkREbk4q93g26Nl40k1Nudz7Nhp7HYXByUuF1VymquMEn70bU56gY0HV+3h5rYNSGrtS0SDxkQ1aubqEMVLKCklIiLigcIDym7heWopJSIiv2D38bMUlNrxxc6WA6dJ27+biMYtiXF1YOJyjaMj6dyqGV/sPcqPubBuXzqfp5q4MtSgW4wyl1I39ElWRETEA0WcaylVYDOBSbdzERG5sM9Sy4YRaRLiQ3Tj5oRFNXBxROJO/H19uDbK4M8dID7Kj2Kbwd5sePOb4+zNNiiyKjkltUufYkVERDxQsJ8Zs48JAxO+EY1cHY6IiLghwzDYcKBsrKAmQRrgXC7sbOZpvth9gA5hpbQuPUKw2Uaxzc6eMwYPfnCCN745RvF5ySkNhi7OpKSUiIiIBzKZTI4ufJaopi6ORkRE3NHBzAKOZhdh8YHYQFdHI+4sLDqW6MbNaRnpT8/wQm6IiybYF3KK7Tz76QGSXtvG27tOYLXZNRi6OJXGlBIREfFQkYEWsgpK8WvYytWhiIiIG/o0pazrXoeGAfj6lLg4GvEUJhPENwgm0ppFg8gI3knJ53ReCbPXp/DapoPc1MhGSFSsBkMXp1BLKREREQ/VMNQfAP+mV7s4EhERcTd2w+D9708B0LNZkIujEU/kYzKR2CqEt//QjdEdI/Az2ThdYOONg/DRMTvHsotcHaLUA0pKiYiIeKjYUD8A/Jpehd0wXByNiIi4kx1HcziaXUSwn5keTdV3T2rO39eHgfGh3NrCl24tIrBgJ9/mw9ofTrP1tJ3MQqurQxQPpqSUiIiIh4oO8sOMgTkghBP5mh1HxNvZDYOMvGKKSjXosMB7350EILFtAwJ89dgn1We32zh27CiHDv3IsWNH8QGubRpGr+AMmgeUYAKO5sOEdSdZ/s0xbHZ9QSbVpzGlREREPJSPj4lwi42sUl9Ss/UQKlKfHD2aRlZWZpXW3ZtlZd3hEvaesVJ87lLQONiHAfERjO3fHh+TZl3zNhn5JXy8v2w8qcHXNIKSqv0tiZzvbOZp3jicR7MrTRzZt5uIxi2JAXxNBlcFl9C1TQs+33eSrGKDpz85wPqUTCbdcCVtG4a6OnTxIEpKiYiIeLAoi52sUjiQo6SUSH1x9GgavXpfR1FhwS+u5xMUQdTNYwlu27tS2Yl8O0u/zaJtdCq/6hRfW6GKm3p9+1GKrXY6NA7jmsahHD6spJTUTFh02YDm2eknKpXFBPtxQ2MTURHhvPF9LjvTsrn73zu4uW0D/ti7Jc0j1W1ULk1JKREREQ8WaSlLRn2XYcVmNzD7qEWEiKfLysqkqLCA4RNm07DZlRdcJ7vUh69yAii2+2DCoHmglRYBpYT62jH7+fHd4dPs2LiO6Jv+VMfRi6tlFZSwaudxAAa18uPw4UMcO3YUu3p5Sy0wmUwMaB3KsB5tWbT5CO/tPMG6fel8vD+d/vExDOvUhM7NwjGpxaZchJJSIiIiHizGz4at8Cw5hLH9yBl6tIxydUgi4iQNm11Jk9btKi0/kJHPltQsbIZBRKAv/eNjiA72c5QHBfljlJbw+ba3Mfs8XIcRiztYsOFHiqx2Wkf6seXbPexr2LhC1ysRZyofd6qZCZIan+Xk/gwOE8OpQli/P4P1+zNoHOLLgHaNuCG+AVfHhqhLsVSgpJSIiIgH8zFBwQ8bCe08kLXfn1ZSSqQeMwyDr9Ny2HHsLADNIwLoHx+DnwaxlnO2HznDmj2nMAH3XBvBjsPWi3a9EnGG88edOnXoe8KjmjG4TQu+/XYHhwt9yTKFcyLPytJtR1m67SiRAT5cd0UUXVtE0rV5BM0iAtSKysspKSUiIuLh8vZ8SmjngXyakkF+iZVgP93eReqbUpudz1IzOZRVCEDHxqFcd0WEWhyIQ0ZeMU/+bx8Aw65tTNtoX3YcdnFQ4hXKx50qys2g5NwEfGFmK9dG+9OkdTO279zDyWIzZ00hnCmys25fBuv2lQ3EHxlgJi7Kj9YRFrrFN6N9kzCigvx+4WhS3+hTq4iIiIcrOb6XRkE+nCyws2RLGg/1vfAYNCLimc4WlbJ+XwZZBaX4mOD6VlG0aRji6rDEjeQVW5n47vecziuhaagvg67w0ThS4hb8zD40thTRNCSY5nHN2X/oCMG+Jo4U+7M/s5gzRTa2Hy9k+/FCln//PQBh/r40CDLRMNiX2GBf4po0IDLIj4hACxGBFsICfAn0NZFx6hjmc4n55s1bYDabXVlVqSGvS0plZmby+OOPs23bNsxmM4MHD+bRRx/F19frToWIiJzH0+8PI+L9eWFnIcu+PsrA9g1pFR3s6pBE5DIZBnx/Mpeth7Ox2g0CLT4ktm1AbKi/q0PzGp5wbzh5tog/v7OHlPR8Qvx8aGE7yXu77RpHStyO2ceEf/5psvPyaHdlPEHH92CKuRLfyCYcyzhDsc1EehGcLbZythgOnCkt23Bf7kX36WsCH2xE+KcRGuhHiMVETJCZ2GALMUFmrrmyKc2jgokOsji6CdpsNtLSjjj20bx5C3x9ldByFfe5mtaRhx9+mNjYWDZu3EhGRgZjx45l6dKl3Hfffa4OTUREXMjT7w+dGlro0yqQLw5mMeHt73hxREeaRWgqZhFPZLMbBF11PRvPBJKbfgaARqH+3BgfTYi/1318dyl3vjcUltpYvesEL395mIISG+H+PtwXb+dgbgONIyVurby7X3b6CXwsdlo2CSM4cx95RXn0vCKO1NT9+EY1IyCqMceOHye/1I45IITC4lJ8fC0UWMF2rpug1QAwc7oITheVVD7Y9iwAAnx9aBIeQLOIQEJNxaQcOU5MZDj23HQeutmgbVyrOqu/VORVd7XDhw+zbds2NmzYQGBgIM2bN2fcuHE89dRTbnFjERER16gv94fHfhXPH9/aSVp2Eb97fQcjuzbl5rYNNYioiJsrKLGRll3Iwcx8vk7L4eO9eTQY8ii5VvAzm+jSPIJ2jTRjVV1zh3uDYRhY7QZFpXZyi62kZRdy5Ewhu4+f5YuDWeQWWwEI8ymhZwN/NnzznVpHiccKi46lYZPm5GWexMfPRssmYYRk7sMnLJiWbVpwcPd28vLyaHZlPIf27SYk9goatYznx73fYbcEEtXkCtJ+TKXYJxBzSCRnzuZhM0xkl0CR1c7BzAIOZhaUH439pwwghi3vHKVByGmaRATiby8hKtBMVKCZ5g1jCA2wEOxvJtjPl2A/M4EWM75mE74+5S8fx89mH1ONr9M2u0GpzU6pzaDUbsdmNygptXH02DHshoGvj4nWLZsTFuCHr7l+TW7hVUmplJQUIiIiiI2NdSxr3bo1x48f5+zZs4SFhVVpPz4+Zc2pq8pkgqCgQPwtPhfdLjQk5BdnTvml8svZtqrl/hYf/Mw+2C5QB1fHVtVyk4kKdXCn2KpaXl4Hd4ytKmUm009/T7XxXric2KpaXtP3Qm3HFhQUhE8V70/l90o92/zEGfeH6t4bfH3NhIaGkpd+jKzLGJg8N/0YoaGhHDp0ELPZzKTO/izaaSctz87rXx3j9a+OYfGBCD8Tof4mLD5lM/aZTCZ8ALMPlP8pmEwmjOpU4gIudx8mE1h8fSm12lweizP3U9/OiwGYMGFw4f38fPeXOtqlwvl5cdnxwddixlpqKys3zi//5R1W2t+5BVU9N5XWOH9BFfZhGFBihyIr5FsN8kt/tr6PmUBbNk39S7i6YRB+1kKyj14yrHPHh3w/P/LOXRvMZnOV7w/nwpdzXPHskF1YymNrfiDtTAElVoNSm8EvDQvVKtKf3g1sZKZnEREUQoG/H6V5Z8jPPElpfg4+pSVV+n9B1klK8rKxYqn2tu7wf3eMH6jyNmZrCXkZx7EW5GByk3Pqrr+DQP9A/C2+BPtbMBWcwZyfSUBRJj72QGLsERSVnMLHL5AmkSEczUghPz+PmMbNyco5S48ObbEHRHDwdDY/pBdRYg4gv8SODR8KS+0cSM8/9846120wJf/Cb7xfer9T9tnKx2SCsn9ln7PK/28yOZZZ7QZWe1lCqmrDv6UDYPExEWAxEWAu+7+vjwmL2YS/nxmb1e64Bxn8dO05//8Ws4nkG9pwbdOqXcPK1db9wWQ449Oah3j33Xd57rnn+OyzzxzLjhw5QmJiIp9//jmNGjVyXXAiIuIyuj+IiMjP6d4gIlL76le7r0sICgqisLCwwrLyn4ODNSCsiIi30v1BRER+TvcGEZHa51VJqfj4eLKzs8nIyHAsO3DgAI0aNSI0NNSFkYmIiCvp/iAiIj+ne4OISO3zqqRUy5Yt6dKlC7NmzSIvL4+0tDQWLlzI8OHDXR2aiIi4kO4PIiLyc7o3iIjUPq8aUwogIyODv/3tb2zduhUfHx+GDh3KxIkTMZvNrg5NRERcSPcHERH5Od0bRERql9clpURERERERERExPW8qvueiIiIiIiIiIi4ByWlRERERERERESkzikpJSIiIiIiIiIidU5JKRERERERERERqXNKStVQVlYWiYmJbN261bHs888/Z+jQoSQkJDB48GDWr19fYZvVq1eTmJhIp06dSEpKYseOHY4ym83G3Llz6dWrFwkJCYwdO5bTp0+7VR0Mw+DFF1+kf//+dO7cmUGDBvHBBx94VB3Ot2nTJq6++mqOHj3qcXX48MMPuf322+nUqROJiYmsXLnSo+pgt9t57rnn6Nu3L126dOGOO+5g27ZtdV6HvXv3cs8999CtWzd69+7N5MmTycrKAmDnzp2MGDGChIQE+vfvz4oVKyps6y7v55rWwR3fz94kMzOTcePG0bVrV7p3787MmTOxWq2uDqvWrV27lnbt2pGQkOB4TZo0Cbi895ynutC101OuPbXpQudl+vTpXHPNNRX+dt58801HeX09L/XhPiWu46nXmPrwd79582ZGjBhB586d6d27NzNmzKCoqMij6mCz2Rg1ahRTpkxxLPOU2Gvr80Zd1SE7O5vJkyfTvXt3rrvuOsaNG+c4jifEX22GVNtXX31l/OpXvzLatGljbNmyxTAMw/juu++M9u3bG2+99ZZRWlpqbN++3UhISHCUb9myxUhISDC++uoro6SkxPjnP/9pdO/e3SgoKDAMwzBeeOEFY9CgQcbx48eN3Nxc4+GHHzbuv/9+t6rDP//5T6N///5GamqqYbfbjY8//tjo0KGDsXPnTo+pQ7nTp08bvXv3Ntq0aWOkpaU5lntCHTZv3mx06tTJ+Oyzzwy73W5s3rzZuOaaazzq97Bs2TLjtttuM06ePGnYbDbjn//8p9GpUyejqKiozupQWFho9O7d23j++eeN4uJiIysry7j//vuNBx54wMjOzja6detmvP7660Zpaanx5ZdfGgkJCY5z7C7v58upg7u9n73N3XffbTzyyCNGQUGBceTIEWPgwIHG4sWLXR1WrZszZ44xZcqUSssv9z3niS507fSUa09tutB5MQzD+PWvf228/fbbF9ymvp6X+nCfEtfx1GtMffi7z8zMNDp06GCsWrXKsNlsxqlTp4zbb7/deP755z2mDoZhGPPmzTOuuuoq49FHHzUMwzP+fsrV1ueNuqrD3XffbSQnJxs5OTlGbm6u8eCDDxpjxozxmPirS0mpanr77beNG264wXj//fcrXOSfeuopY9SoURXWfeKJJ4w//elPhmEYxiOPPGJMmzatQvktt9xirFy50jAMw+jbt6/x3nvvOcrS09ONtm3bGkeOHHGbOjz//PPGqlWrKpQPHTrU+Oc//+kxdTAMw7DZbMbvfvc7Y968eZWSUp5QhwceeMB49tlnK5Tv27fPOHPmjMfUYcaMGcYtt9xiHD9+3LBarcbSpUuNHj16OJJSdVGHAwcOGH/4wx8Mq9XqWPbRRx8ZnTt3Nt566y3j5ptvrhT/5MmTDcNwn/fz5dTBnd7P3ubQoUNGmzZtjJMnTzqWvf/++8YNN9zgwqjqxsiRI43XX3+90vLLfc95motdOz3l2lNbLnZeiouLjfbt2xv79++/4Hb19bzUh/uUuIYnX2Pqy999bm6uYRiGYbfbjX379hmJiYnGv//9b4+pw5dffmncdtttxvjx4x1JKU+J3TBq7/NGXdRh9+7dRocOHRx/Q4ZhGGfOnDH279/vEfHXhLrvVVOfPn1Yv349t912W4XlNpuNoKCgCst8fHw4ePAgAKmpqbRp06ZCeVxcHHv37iU3N5eTJ09WKI+JiSE8PJx9+/a5TR3Gjx9PUlKSo+zAgQOkpKTQvn17j6kDwMKFC4mOjmbYsGEV1vOUOuzatYuIiAjGjBlD9+7dGTJkCEeOHCEiIsJj6nDXXXdRVFTEDTfcQIcOHZg3bx7z58/H39+/zurQqlUrXn31Vcxms2PZhx9+SPv27UlJSbno+xXc5/18OXVwp/ezt0lJSSEiIoLY2FjHstatW3P8+HHOnj3rwshql91uZ8+ePXz22WfceOON9O3bl8cff5ycnJzLes95ootdOz3l2lNbLnZe9u7di9VqZf78+fTq1YsBAwbwyiuvYLfbgfp7XurDfUpcw5OvMfXl7z4kJASAfv36MWjQIBo0aEBSUpJH1CEzM5OpU6fyzDPPEBgY6FjuCbFD7X3eqKs67Nq1i7i4ON566y0SExPp06cPc+fOpUGDBh4Rf00oKVVNDRo0wNfXt9LyxMREvvjiCz788EOsVitff/01a9eupbi4GID8/PwKb2qAgIAACgoKyM/PB6j0EB8QEOAoc4c6nO/HH3/k/vvvZ/DgwVx33XUeU4dt27bx3nvv8be//a3Stp5Sh5ycHF577TXGjh3Lpk2bSE5OZsKECezcudNj6lBaWkq3bt343//+xzfffMN9993H+PHjSU9Pr/M6QNn4Ss899xyffvopU6dO/cX3K7jX+7mmdTifq9/P3uZCv5vyny/0+6kvsrKyaNeuHQMGDGDt2rUsX76cQ4cOMWnSpMt6z3mii107PfHa40wXOy+5ubl069aNUaNG8fnnn/PUU0/x73//myVLlgD1/7xA/bhPSd2pL9eY+vB3v27dOjZs2ICPjw/jx493+zrY7XYmTZrEPffcw1VXXVWhzN1jL1dbnzfqqg45OTns27ePQ4cOsXr1at555x1OnTrFo48+6hHx14SSUk7SuXNn/vGPf7BgwQJ69+7Na6+9RlJSEmFhYUDZA0f54HblioqKCA4OdvzhFBYWXrC8rlyqDuU++eQT7rzzTm6++WZmzpwJ4BF1yMrKYsqUKTz11FOOby/O5wl1APDz82PYsGEkJCTg6+vLzTffTM+ePfnwww89pg6TJ0+mb9++tGrVioCAAJKTkwkNDeWDDz6o8zrk5eUxfvx41qxZw+uvv07btm1/8f0K7vd+rkkdyrnz+7m+CgoKqnRuy3+uz+c3JiaGZcuWMXz4cAIDA2nSpAmTJk1iw4YNGIZR4/dcfeJp15660rt3b/71r3/RrVs3LBYLHTt25Pe//z1r164F6v95qQ/3KXEPnvR3U1/+7gMCAoiNjWXSpEls3LjR7evw8ssv4+fnx6hRoyqVuXvs5Wrr80Zd1cHPzw+AqVOnEhISQkxMDA8//DCff/65R8RfE0pKOUl2djbx8fGsWbOGrVu3snDhQk6cOME111wDQHx8PCkpKRW2SU1NJT4+nvDwcGJjY0lNTXWUpaenk52dXan5nSvrAPDiiy/yyCOP8PjjjzNlyhRMJhOAR9Rh48aNZGZm8oc//IGuXbsyePBgAAYPHswrr7ziEXWAsm4+JSUlFbax2WwYhuExdTh+/HilOvj6+mKxWOq0DkeOHGHYsGHk5eWxcuVK2rZtC0CbNm0u+n4F93o/17QO4P7v5/oqPj6e7OxsMjIyHMsOHDhAo0aNCA0NdWFktWvv3r08/fTTGIbhWFZSUoKPjw8dO3as8XuuPvGka09d+uijj1i+fHmFZSUlJQQEBAD1+7zUh/uUuA9P+bvx9L/7b775hltuuaXCZ92SkhIsFgtxcXFuXYd3332Xbdu20bVrV7p27cp///tf/vvf/9K1a1ePOf+19XmjruoQFxeH3W6ntLTUsay8u/rVV1/t9vHXiKsGs6oPzh848NtvvzU6depk/PDDD0Zpaanx/vvvGx07dnQMylk+Mv7mzZsdI+Ffd911jsGpn3vuOeP22283jhw54hgJ/+6773arOixZssTo0qWLsWfPngvuyxPqcL60tLRKA517Qh1WrlxpXHvttcamTZsMm81mfPDBB0b79u2N7777zmPqMHHiRCMxMdE4cuSIUVJSYixdutTo2rWrY+DnuqhDdna2ccMNNxhTpkwxbDZbhbKsrCyja9euxj//+U+jpKTE2Lx5s+P9axju836+nDq46/vZW/zmN78xJkyYYOTm5jpm35s/f76rw6pVJ06cMDp16mS88sorRmlpqXHs2DHjjjvuMP7yl79c9nvOk51/7fSUa09dOP+8rFu3zujYsaPx5ZdfGna73fjmm2+M7t27G++8845hGPX3vNSH+5S4nqddY+rD331eXp7Rr18/Y9asWUZxcbFx9OhRY/jw4cb06dM9pg7lHn30UcdA554Se21+3qiLOpSUlBiJiYnGQw89ZOTl5RmZmZnG7373OyM5Odkj4q8JJaUuw8+nK/7Pf/5j3HjjjUanTp2MpKQk48svv6yw/jvvvGMMGDDA6NSpkzF8+HDj22+/dZSVlJQYTz31lHH99dcbnTt3NsaOHWtkZGS4TR3sdrvRpUsXo127dkanTp0qvBYtWuQRdfi5CyWlPKUOb7/9tnH77bcbnTp1MgYOHGisW7fOo+qQl5dnzJgxw7j++uuNrl27GiNHjnRMZVpXdViyZInRpk0b49prr630N20YhrFr1y7jzjvvNBISEoybbrqp0kx17vB+rmkd3Pn97C3S09ONhx56yOjWrZvRo0cPY86cORVmGqqvtm7d6vib7NGjhzFjxgzHrJuX857zZD+/dnrCtacu/Py8vPHGG8bNN99sXHvttcZNN91UaVal+nhe6sN9SlzP064x9eXvPiUlxbjnnnuMrl27GjfeeKPx7LPPGsXFxR5VB8OomJTypNhr6/NGXdXh5MmTxsMPP2z07t3b6Nq1qzF58mQjJyfHY+KvLpNhnNeuTUREREREREREpA5oTCkREREREREREalzSkqJiIiIiIiIiEidU1JKRERERERERETqnJJSIiIiIiIiIiJS55SUEhERERERERGROqeklIiIiIiIiIiI1DklpUREREREREREpM4pKSUiIiIiIiIiInVOSSkREREREREREalzSkqJiIiIiIiIiEidU1JKRERERERERETqnJJSIiIiIiIiIiJS55SUEhERERERERGROqeklIiIiIiIiIiI1DklpUREREREREREpM4pKSUiIiIiIiIiInVOSSkREREREREREalzSkqJiIiIiIiIiEidU1JKRERERERERETqnJJSIiIiIiIiIiJS55SUEhERERERERGROqeklIiIiIiIiIiI1DklpUREREREREREpM4pKSUiIiIiIiIiInVOSSkREREREREREalzSkqJiIiIiIiIiEidU1JKRERERERERETqnJJSIiIiIiIiIiJS55SUEhERERERERGROqeklIiIiIiIiIiI1DklpUREREREREREpM4pKSUiIiIiIiIiInVOSSkREREREREREalzSkqJ1AHDMOrlsUREREREpO7os77UN0pKiTjZ2rVrufHGG+nQoQNPPPEEqamp/OY3v6n2fqZMmUL//v2rtc2ljvXdd9/Rvn17jh49Wqmsd+/etG3bttIrPT292rGLiHiq/v37M2XKFFeHISIiUsnHH3/Mo48+6vh569attG3blq1bt7owKpHL4+vqAETqm7/+9a+0bNmSOXPmEBsby5o1a9ixY0edHPt///vfRY+1d+9eHnjgAaxWa6WyjIwMMjIyeOyxx+jUqVOFsoiIiFqIVEREREREqmPp0qUVfm7fvj1vvvkmcXFxrglIxAmUlBJxsuzsbHr37k337t1dHQoAJSUlvP766zz//PMEBARccJ3vv/8egMTERJo2bVqX4YmIiIiISA2EhIRU+kJZxNOo+57Iefbs2cPvf/97unTpQkJCAqNHj2bnzp2O8g8++IDBgwfTsWNHhg4dyo4dO2jXrh1vv/22o/kswIsvvkjbtm2ZMmUKCxYsAKBt27a88MILNY7NZrOxbNkyBg0aRMeOHbnhhht4+umnKS4uBuCFF1644LE2bNjAggUL+OMf/8jEiRMvuO+9e/cSFhamhJSICFBaWso//vEPevfuTadOnbj33ns5fPiwo3zTpk389re/pUuXLnTv3p1HHnmEEydOOMrffvtt2rZtW6mr9M+7Bn755ZfceeedJCQkcN111zFu3DgOHjxYYZuPPvqIpKQkOnToQO/evfn73/9OQUFBtet09OhRJk+eTJ8+fWjfvj09e/Zk8uTJnDlzpkK9n376afr27UvHjh35wx/+wDvvvFOpLl999RV333031157Ld26dePRRx8lKyur2jGJiNSV/v37M2vWLH7/+9/TuXNnnnjiCbKzs3niiSfo1asXHTp04I477mDz5s0Vtmvbti3Lli1j6tSpdOvWjYSEBMaPH09GRkaF9dauXUtSUhIJCQn07t2bJ554gpycHAC++eYb2rZty0cffVRhmwMHDtC2bVv+97//AZe+To8aNYpt27axbds2R5e9C3Xf2717N3/4wx/o3r07nTt35o9//CMpKSmO8vJtNm/ezL333su1115Lr169mDt37gV7VFzKihUrSEpKolOnTnTs2JEhQ4awdu3aCuvs2LGDkSNH0qlTJ2644Qb+7//+j9GjR1e4JxYXF/OPf/yDfv36cc011zBo0KBK+5H6SUkpkXPy8vK47777iIyMZP78+Tz33HMUFhbyhz/8gdzcXD7++GP+9Kc/ER8fz4IFC7j55psZO3Ysdrsd+Kn5LMDw4cN58803eeihhxg+fDgAb775JiNGjKhxfE888QSzZs2if//+LFq0iJEjR/L6668zbtw4DMNgxIgRFzxWhw4d+OSTTxg7dixms/mC+/7hhx8ICwvjwQcfdCTkJkyYwOnTp2scr4iIp1q7di0pKSnMmTOHJ554gt27dzNhwgQA3n33Xe69915iY2N59tlneeyxx9ixYwd33nknmZmZVT5GWloaY8eOpX379ixatIi///3vHDx4kDFjxjjuK2vWrCE5OZlWrVrx4osv8uCDD/Lee+85rvtVVVhYyO9+9zsOHDjA9OnTee2117j77rv573//y7PPPutY74knnuD//u//uPvuu3nxxReJiYnh8ccfr7Cv7du3M3r0aAICApg3bx5/+ctf2LZtG7/73e8oKiqqckwiInVt2bJlji9uhwwZwu9//3s+/vhjJkyYwIIFC2jUqBH33XdfpcTUc889h91u59lnn2Xy5Ml89tlnzJo1y1G+cOFCJkyYwLXXXsv8+fNJTk7mww8/ZNSoURQVFdG5c2euuOKKSgmWNWvWEBoaSv/+/at0nZ4+fTrt2rWjXbt2vPnmm7Rv375SHbds2cJvfvMb7HY7M2fO5O9//zsnTpzgrrvu4sCBAxXWnThxIl26dOGll15i0KBBLFmyhJUrV1b7nD7xxBPcdNNNvPzyyzz11FNYLBYmTZrE8ePHgbLk2+jRowF49tlneeihh3jllVf4+uuvHfsxDIPk5GSWL1/OPffcw6JFixzPI++88061YhLPo+57IuekpqaSlZXFqFGj6NKlCwCtWrVi+fLl5OXl8eKLL3LNNdfwzDPPANC3b19MJhPz5s0DKjafbdSoUYX/A5fVtDY1NZWVK1fy8MMPM3bsWKBsYPKGDRsyefJkNmzYQL9+/S54rNjY2Evu/4cffuDUqVPccccdjB49mgMHDjB//nxGjRrF6tWrCQoKqnHsIiKeJjY2loULF2KxWAA4fPgwL730Enl5eTz11FP06tWL5557zrF+586due2221iyZAmTJk2q0jF27dpFUVERDzzwgOM63bhxYz7++GMKCgoIDg7m6aef5vrrr+fpp592bNeyZUtGjx7N559/zg033FClYx06dIhGjRoxZ84cWrRoAUCPHj3YvXs327ZtA+DIkSOsXr2aRx99lHvuuQeA66+/noyMDL744gvHvp555hmuvPJKXn75ZccXHddeey0DBw5k1apVjBw5skoxiYjUtYYNGzJlyhR8fHx466232Lt3L2+99RbXXnstUPbZftSoUTz99NOsWrXKsV2bNm2YPXu24+ddu3bxwQcfAJCTk8OiRYsYMWIE06dPr7DNyJEjefvtt/ntb3/L4MGDee211ygsLCQwMBCA999/n1tuuQV/f39++OGHS16n4+LiCAkJAS7+XPHMM8/QvHlzXn31Vcc1uk+fPiQmJvLCCy84nlsARowYQXJyMgA9e/bko48+4rPPPuOuu+6q8jlNS0vj3nvvdewHoFmzZiQlJfHNN9/QpEkTXn75ZUJCQnj11VcddW/VqlWF43z55Zds3LiR5557jttuuw0ouwcVFhby9NNPc/vtt+Prq9RFfaWWUiLnxMfHExUVxdixY5k+fTqffPIJDRo0YPLkyURERLBnzx5uuummCtsMHjy4TmIrvxkNGjSowvKBAwdiNpsve8aN2bNn89Zbb/HAAw/QtWtX7rzzTubPn8+hQ4f07YSIeJ2OHTs6ElIAzZs3B8rG30tPT690LW7RogUJCQnVuhZfe+21+Pv7M3z4cGbPns2XX37JVVddxYQJEwgJCeHgwYOcPHmS/v37Y7VaHa/rrruOkJAQNm3aVOVjXX311fznP/+hWbNmpKWlsXHjRpYsWcLBgwcpLS0FyrpzGIbBLbfcUmHb22+/3fH/wsJCdu7cSb9+/TAMwxFT8+bNad26dbViEhGpa61bt8bHp+zxd/PmzTRo0ID27ds7rmU2m40bb7yR7777ztH1DiongBo1akRhYSEA3377LSUlJZXuC127dqVp06aO+8KQIUMoKCjg008/BcoSW0eOHGHIkCFA1a7Tl1JQUMDu3bu57bbbKvSOCAsL48Ybb6x0j0pISKhUr+p2D58yZQqTJk0iNzeX3bt3s2bNGpYtWwbgiHvLli3069fPkZAqP/b5w4Zs3rwZk8lEv379Ktzz+vfvT3p6eoXuh1L/KN0ock5wcDDLli1j0aJFrF27luXLlxMYGMjgwYMd2f+oqKgK21SlFZIzlN8YGzRoUGG5r68vkZGR5ObmXtb+f35TAujSpQuhoaHs3bv3svYtIuJpft46tPwhpvxDfkxMTKVtYmJiHJNGVEWzZs14/fXXeeWVV3jrrbdYunQpYWFh/Pa3v+VPf/oT2dnZQNmMrn/9618rbV/d7tX//Oc/efnllzlz5gwxMTG0b9+ewMBAx/2jfEyo6OjoSvUqd/bsWex2O4sXL2bx4sWVjuHv71+tmERE6tL517Ps7GzS09Mv2AUOID09nfDwcIAKyRQouyeUd6Eu/4x+sftC+TW2efPmdO7cmffff5/bbruNNWvW0LRpU7p27epY/1LX6UvJzc3FMIxLxlLu5xMgnV+vqjpy5AhPPPEEW7ZswdfXl1atWjnG2C3fV1ZWVqV7C1R8rsnOzsYwDDp37nzB45w+fZqrr766WrGJ51BSSuQ8rVq14qmnnsJms7Fr1y7effdd3njjDRo2bIiPj0+lQQ3LHxpqW/lNMT09nWbNmjmWl5aWcubMGSIjI2u877Nnz7Ju3To6depUYTpZwzAoLS29rH2LiNQnERERAJXuBVB2fS6/XppMJgDH2FDl8vPzK/zcsWNHFixYQElJCV9//TVvvvkmL730Em3btiU+Ph6AyZMn061bt0rHK78vVMWaNWuYM2cOjzzyCMOHD3d8wfKnP/2J3bt3Az99yZKZmUnjxo0d254/TlZwcDAmk4nRo0czcODASsf5+YObiIi7Cg0NpWXLlhW6R5/v/M/bv6T8WpyRkUHr1q0rlKWnpzta2kJZa6mZM2eSm5vL//73P4YNG+a4X1TlOl2VOplMpoveo8rvYc5it9sZM2YMFouFt956i3bt2uHr60tqairvvfeeY71GjRpdcMzFzMxMrrzySkfsQUFB/Otf/7rgsa644gqnxi7uRd33RM754IMP6NGjB+np6ZjNZhISEnjyyScJCwsjKyuLhIQEPvzwwwoPGeVNcH9J+Tfsl6P8gWTNmjUVlr///vvYbDbHGFg1OZbFYuGvf/0rr7zySoXlH3/8MUVFRXTv3r2GUYuI1C9+fn40aNCg0rU4LS2Nb7/91vENb/mYH+fPyHfw4MEKX2QsXbqU/v37U1JSgp+fHz179mTGjBmO7Vq1akV0dDRHjx6lQ4cOjlejRo145plnqtUq6+uvvyY0NJQxY8Y4HnTy8/P5+uuvHfe0Ll26YDabWbduXYVtz/85JCSEdu3acfDgwQoxlU8AcrldyUVE6kq3bt04ceIE0dHRFa5nmzdvrjAe06Vce+21+Pn5VbovfPXVVxw/frxCy59bb70VgOeff5709PQKw4BU5ToNv/xZPygoiGuuuYa1a9dis9kcy3Nzc/nss88czwvOcubMGX788UeGDx9Ox44dHWM+bdiwAfjpi5nrrruODRs2OGYMh7LxbM+f1bVbt24UFBRgGEaF30dKSgovvvhijWYFFM+hllIi53Tu3Bm73U5ycjJjxowhODiY//3vf+Tm5nLzzTdz2223MXr0aMaNG8dvfvMbjhw5wvPPP3/J/YaFhQHw3//+l2uvvbbCNyZVFRcXx69//WsWLFjgSBT98MMPLFiwgO7du3P99dfX+FiBgYHcd999LFy4kOjoaPr27cu+fft44YUXuOGGG+jVq1e14xURqY9MJhN//vOfeeyxx5gwYQJDhw7lzJkzLFiwgPDwcMcA4T169CAwMJA5c+bw8MMPk5+fz4IFCyp8S92jRw+efvppkpOTufvuuzGbzSxfvhw/Pz9uvPFGzGYzEyZM4IknnsBsNnPjjTdy9uxZFi5cyKlTpy7a5eRCOnbsyBtvvMGcOXO48cYbOX36NK+99hoZGRmOb/mbN2/OsGHDePbZZyktLeWqq65i/fr1ji9fyh+E/vznPzNmzBgeeeQRBg8ejM1mY8mSJezcudMxEYeIiLtLSkri9ddf55577uGPf/wjjRs35ssvv2Tx4sXcfffdFcYV/CURERGMGTOGBQsWYLFYuOmmmzh69CjPP/88cXFxJCUlOdYNDw/nxhtv5D//+Q8dOnSo0LKqKtdpKPusv2PHDjZv3ky7du0qxfPII4/whz/8gfvuu4+7776b0tJSXnnlFUpKSnjwwQcv44xVFh0dTdOmTVm2bBmNGjUiLCyML774gv/7v/8DcIy79cc//pG1a9dy3333ce+993L27Fmef/55TCaTo6VYv379uO666xg3bhzjxo2jdevW7Nq1ixdeeIE+ffpUGkJF6hclpUTOadiwIa+++irPP/88U6dOpbCwkPj4eF544QV69OgBwGuvvcZTTz1FcnIyV1xxBY8++ijTpk37xf3efPPNvPvuu0yZMoXhw4fz5JNP1ii+mTNncsUVV7Bq1Spee+01GjZsyKhRo0hOTnY8LNT0WA899BAxMTG88cYbLFu2jIiICO68807Gjx9fo1hFROqrpKQkgoODefnll0lOTiYkJITrr7+eP//5z47xMUJDQ5k/fz7PPPMMycnJNG3alAcffLDCxBFXXXUVL730Ei+++CJ//vOfsdlsXHPNNSxZsoRWrVoBZTMjBQcH8+qrr/Lmm28SFBRE586defrpp6v1Bcevf/1rjh49yqpVq/jPf/5DbGws/fr147e//S2PP/44qampxMXF8fjjjxMUFMSSJUvIy8ujZ8+ejB07lhdffNExzlafPn147bXXWLBgAePHj8disdC+fXv++c9/XtYssyIidSkoKIhly5bxzDPP8NRTT5Gbm0vTpk155JFHuPfee6u1r/LP0a+//jorVqwgIiKCW265hYcffrhSt+bBgwfz4YcfVposqarX6ZEjR/Ldd99x//33M3v2bBo2bFhhPz179uSf//wn8+fP589//jN+fn507dqVuXPnOrqFO9PChQuZOXMmU6ZMwc/Pj7i4OBYtWsSsWbP46quvGDVqFFdccQWvvfYa//jHPxg/fjzR0dE88MADLFq0iODgYKDsi49XXnmF559/npdffpnMzExiY2MZPXp0hZn9pH4yGdUdzUxEHI4ePcpNN93E7NmzK3wTIiIi4kmys7PZsGED119/fYWxBOfOncvbb7+trnkiIlIjmzdvxmKxVBjUPScnh969ezN58mR+97vfuTA6cQdqKSVShwzDqNDH+2LMZrOjOauIiMiF2Gy2S86UZDKZqjQ2SmBgIDNnzuTqq6/m97//PUFBQXzzzTf8+9//5o9//KOzQhYRETfn7OeVPXv2OFputW/fnjNnzrBkyRJCQ0O5/fbbnRGyeDglpUTq0OrVq3nssccuuZ5aXomIyKUkJiZy7NixX1ynadOmfPLJJ5fcl7+/P0uXLmXevHlMmTKFwsJCWrRowZQpUxg5cqSzQhYRETfn7OeVe++9l5KSEt544w1OnDhBUFAQ3bp1Y+7cuRorSgB13xOpU2fOnKkw08TFNGvWrEL3CRERkZ/bt28fJSUlv7iOn58fbdu2raOIRETE0+l5ReqaklIiIiIiIiIiIlLnfFwdgIiIiIiIiIiIeB8lpURERERExG1lZ2czefJkunfvznXXXce4ceM4ffo0ADt37mTEiBEkJCTQv39/VqxYUWHb1atXk5iYSKdOnUhKSmLHjh2OMpvNxty5c+nVqxcJCQmMHTvWsV+AzMxMxo0bR9euXenevTszZ87EarXWTaVFRLyEklIiIiIiIuK2HnroIQoKCli/fj2ffvopZrOZxx9/nJycHMaMGcPQoUPZvn07M2fOZPbs2ezatQuArVu3MmPGDObMmcP27dsZPHgwY8eOpbCwEIBFixaxadMmVq1axcaNGwkICGDatGmO4z788MMEBQWxceNGVq5cyebNm1m6dKkrToGISL2lMaVERERERMQtfffdd/z2t7/lyy+/JCQkBChrOZWens63337Lq6++yocffuhYf/r06RQVFTF37lwmTpxIYGAgM2bMcJTfeuut3HfffQwbNox+/foxceJEBg0aBEBGRgZ9+vRh/fr12O12br75ZjZs2EBsbCwAa9eu5amnnuLTTz+twzMgIlK/+bo6AE+UmZlLdVJ5JhNER4dWe7v6wtvrDzoH3l5/cM9zUB6TOIc7/W5/zh3//qpLdXAPqoN7qM06uNu9YdeuXcTFxfHWW2/xxhtvUFhYyPXXX8+jjz5KSkoKbdq0qbB+XFwcK1euBCA1NZVhw4ZVKt+7dy+5ubmcPHmywvYxMTGEh4ezb98+ACIiIhwJKYDWrVtz/Phxzp49S1hYWJXroGeHqvHWeoP31l319qx619b9QUmpGjAMavTHU9Pt6gtvrz/oHHh7/UHnoD7zhN+tJ8R4KaqDe1Ad3EN9qMOl5OTksG/fPq655hpWr15NUVERkydP5tFHHyUmJobAwMAK6wcEBFBQUABAfn7+Rcvz8/MBCAoKqlReXvbzbct/LigoqFZSSkRELk5JKRERERERcUt+fn4ATJ06FX9/f0JCQnj44Ye54447SEpKoqioqML6RUVFBAcHA2VJpAuVR0ZGOhJM5eNL/Xx7wzAqlZX/XL7/qqppywJ3arFWl7y13uC9dVe9vZuSUiIiIiIi4pbi4uKw2+2Ulpbi7+8PgN1uB+Dqq6/mP//5T4X1U1NTiY+PByA+Pp6UlJRK5X379iU8PJzY2FhSU1MdXfjS09PJzs6mTZs22O12srOzycjIICYmBoADBw7QqFEjQkOr9yCp7ntV4631Bu+tu+rtWfWure57mn1PRERERETcUq9evWjevDl/+ctfyM/PJysri+eee45f/epX3H777WRkZLB06VJKS0vZsmULa9ascYwjNXz4cNasWcOWLVsoLS1l6dKlZGZmkpiYCEBSUhKLFi0iLS2NvLw8Zs2aRbdu3WjRogUtW7akS5cuzJo1i7y8PNLS0li4cCHDhw+vdh3Ku1lW51XT7Tz95a319ua6q96e9aoNSkqJiIiIiIhbslgs/Pvf/8ZsNjNgwAAGDBhAo0aNmDVrFpGRkSxZsoQPPviA7t27M23aNKZNm0aPHj0A6NmzJ9OnT+fJJ5+kW7duvP/++yxevJiIiAgAkpOT6devHyNHjqRfv34UFxczb948x7Hnz5+P1Wrlpptu4o477uD6669n3LhxLjgLIiL1l8kwaivfVX9lZFS/CW5MTGi1t6svvL3+oHPg7fUH9zwH5TGJc7jT7/bn3PHvr7pUB/egOriH2qyD7g3Op2eHqvHWeoP31l319qx619b9QS2lRERERERERESkzikpJSIiIiIiIiIidU5JKRERERERERERqXNKSomIiIiIiIiISJ1TUkpEREREREREROqcklIiIiIiIiIiIlLnlJSqI4ZhOF4iIiIiIiI/l11Qyu9f38G/Nx9ydSgiInXC19UBeJOXNh7kgT6tXB2GiIh4iXsfuI/MrGwAfC1mrKW2CuXRUREseflVF0QmIiIXsudkLntO5rLi66PcGh/t6nBERGqdklJ1yWRydQQiIuJFMrOyGTjhaQCCgvwpKCiuUP7+cxNdEZaIiFyExVz2vFBcandxJCIidUPd90RERERERNyAv2/Z41mJTUkpEfEOSkqJiIiIiIi4AYu57PGs+GfdrUVE6islpeqQBjoXEREREZGL8TvXUqrYqpZSIuId3DoplZWVRWJiIlu3bnUs+/DDDxkyZAidO3emf//+LFiwALv9p4v26tWrSUxMpFOnTiQlJbFjxw5Hmc1mY+7cufTq1YuEhATGjh3L6dOn67ROIiIiIiIiF+JvVlJKRLyL2yalvv76a+68806OHDniWPbdd98xefJkHn74Yb766isWL17M22+/zdKlSwHYunUrM2bMYM6cOWzfvp3BgwczduxYCgsLAVi0aBGbNm1i1apVbNy4kYCAAKZNm+aK6omIiIiIiFTwU0spdd8TEe/glkmp1atXM3HiRCZMmFBh+bFjx7jrrru48cYb8fHxoXXr1iQmJrJ9+3YAVqxYwcCBA+nSpQsWi4XRo0cTGRnJ2rVrHeX3338/jRs3JiQkhKlTp7JhwwbS0tLqvI4iIiIiIiLnK28pVWozsGvYDxHxAm6ZlOrTpw/r16/ntttuq7B8wIABPPbYY46fi4qK+Oyzz2jfvj0AqamptGnTpsI2cXFx7N27l9zcXE6ePFmhPCYmhvDwcPbt21eLtREREREREbm08pZSACXqwiciXsDX1QFcSIMGDS65Tl5eHn/6058ICAhg9OjRAOTn5xMYGFhhvYCAAAoKCsjPzwcgKCioUnl5WVWZTNVa3bG+yfTTy5ucX39v5e3nwNvrD+55DtwpFhEREQE/80835xKbHX9fswujERGpfW6ZlLqUgwcPMn78eKKjo/nXv/5FSEgIAIGBgRQVFVVYt6ioiMjISEeyqnx8qfPLg4ODq3X86OjQasdsGAaBgf7ExITi4+OWDdRqXU3OW33j7efA2+sPOgciIiJycWYfEz4msBvnWkr5uzoiEZHa5XFJqc8//5w///nP3HHHHTzyyCP4+v5Uhfj4eFJSUiqsn5qaSt++fQkPDyc2NrZCF7/09HSys7Mrdfm7lMzMXKrTxdtkgqioEAoLi8nIyPW6pJTJVPYgXt3zVp94+znw9vqDe56D8phERETEPZhMJvzMPhRZ7ZqBT0S8gkclpb799luSk5N58sknGT58eKXy4cOHk5yczK233kqXLl1YtmwZmZmZJCYmApCUlMSiRYvo0KEDkZGRzJo1i27dutGiRYtqxWEY1Oihsnw7d3kgrWveXPdy3n4OvL3+oHMgIiIiv8zftywpVWrTBwYRqf88qsnOSy+9hNVqZebMmSQkJDhe9913HwA9e/Zk+vTpPPnkk3Tr1o3333+fxYsXExERAUBycjL9+vVj5MiR9OvXj+LiYubNm+e6ComISLVlZWWRmJjI1q1bHcs+/PBDhgwZQufOnenfvz8LFizAbv/pG+bVq1eTmJhIp06dSEpKYseOHY4ym83G3Llz6dWrFwkJCYwdO5bTp0/XaZ1ERETKlQ92XmxTSykRqf/cvqXU+TPjvfTSS5dcf8iQIQwZMuSCZRaLhYkTJzJx4kSnxSciInXn66+/ZsqUKRw5csSx7LvvvmPy5MnMmzePfv368eOPP3L//fcTFBTEvffey9atW5kxYwaLFy+mY8eOLFu2jLFjx/Lpp58SGBjIokWL2LRpE6tWrSI0NJTHH3+cadOm8corr7iwpiIi4q38zGVJKc2+JyLewO2TUiIiIlDW2mn+/PlMmjSJCRMmOJYfO3aMu+66ixtvvBGA1q1bk5iYyPbt27n33ntZsWIFAwcOpEuXLgCMHj2aN998k7Vr1zJs2DBWrFjBxIkTady4MQBTp06lT58+pKWl0bx587qvaDXc+8B9ZGZlX7R8/4EUBtZdOCIi4gTlSSmNKSUi3kBJKRER8Qh9+vRh0KBB+Pr6VkhKDRgwgAEDBjh+Lioq4rPPPmPQoEFA2YQXw4YNq7CvuLg49u7dS25uLidPnqww4UVMTAzh4eHs27fP7ZNSmVnZDJzw9EXLv3/g9jqMRkREnKG8+16Juu+JiBdQUkpERDxCgwYNLrlOXl4ef/rTnwgICGD06NEA5OfnExgYWGG9gIAACgoKyM/PByAoKKhSeXlZVZlM1Vq9TpXHZjJVHmjfneM+3/l18FSqg3tQHaq2b3Edf1913xMR76GklIiI1AsHDx5k/PjxREdH869//YuQkBAAAgMDKSoqqrBuUVERkZGRjmRVYWFhpfLg4OBqHT86OvQyoq8ZX4uZoCD/i5abTFQoDwysuK6vxUxMTN3HfTlccZ6dTXVwD6qDuCs/c1lmUC2lRMQbKCklIiIe7/PPP+fPf/4zd9xxB4888gi+vj/d3uLj40lJSamwfmpqKn379iU8PJzY2FhSU1MdXfjS09PJzs6u0KWvKjIzcyu1Qqpt1lIbBQXFFy03DCgoKMZkKktIFRYWV4jRWmojIyO3DiK9fCZT2QO4K86zs6gO7kF1qNq+xXX81FJKRLyIklIiIuLRvv32W5KTk3nyyScZPnx4pfLhw4eTnJzMrbfeSpcuXVi2bBmZmZkkJiYCkJSUxKJFi+jQoQORkZHMmjWLbt260aJFi2rFYRiVu8a5i/K4LhSfu8Z8Me58nqtKdXAPqoO4K8dA52opJSJeQEkpERHxaC+99BJWq5WZM2cyc+ZMx/IuXbrw6quv0rNnT6ZPn86TTz7JqVOniIuLY/HixURERACQnJyM1Wpl5MiR5Ofn0717d+bNm+eayoiIiNf7qaWUMo4iUv8pKSUiIh5n3759jv+/9NJLl1x/yJAhDBky5IJlFouFiRMnMnHiRKfFJyIiUlP+5S2l1H1PRLyAj6sDEBERERERkTLlLaVK1X1PRLyAklIiIiIiIiJuwtF9T0kpEfECSkqJiIiIiIi4CT913xMRL6KklIiIiIiIiJvwM5sAKFFSSkS8gJJSIiIiIiIibsL/XPe9YnXfExEvoKSUiIiIiIiIm9BA5yLiTZSUEhERERERcRM/jSlluDgSEZHap6SUiIiIiIiImyhPSmlMKRHxBkpKiYiIiIiIuIny7nsl6r4nIl5ASSkRERERERE34RjoXC2lRMQLKCklIiIiIiLiJhzd99RSSkS8gK+rAxARERFxpnsfuI/MrOyLlkdHRbDk5VfrLiARkWoobymlMaVExBsoKSUiIiL1SmZWNgMnPH3R8vefm1iH0YiIVI/GlBIRb6LueyIiIiIiIm7Cz2wC1FJKRLyDklJ1yDAMx0tERERERC5t7dq1tGvXjoSEBMdr0qRJAOzcuZMRI0aQkJBA//79WbFiRYVtV69eTWJiIp06dSIpKYkdO3Y4ymw2G3PnzqVXr14kJCQwduxYTp8+7SjPzMxk3LhxdO3ale7duzNz5kysVmut17d8TKlitZQSES+gpFQde2XTj64OQURERETEY+zevZshQ4awY8cOx+upp54iJyeHMWPGMHToULZv387MmTOZPXs2u3btAmDr1q3MmDGDOXPmsH37dgYPHszYsWMpLCwEYNGiRWzatIlVq1axceNGAgICmDZtmuO4Dz/8MEFBQWzcuJGVK1eyefNmli5dWuv19dOYUiLiRZSUqmsmk6sjEBERERHxGLt37+aaa66ptHzdunVEREQwcuRIfH196dmzJ4MGDWLZsmUArFixgoEDB9KlSxcsFgujR48mMjKStWvXOsrvv/9+GjduTEhICFOnTmXDhg2kpaVx+PBhtm3bxqRJkwgMDKR58+aMGzfOse/a5Bjo3KbeFSJS/2mgcxERERERcUt2u509e/YQGBjIq6++is1mo1+/fkycOJGUlBTatGlTYf24uDhWrlwJQGpqKsOGDatUvnfvXnJzczl58mSF7WNiYggPD2ffvn0AREREEBsb6yhv3bo1x48f5+zZs4SFhVW5DtX9Tro8KWWzG9gMA18f7/hSu/w8eeN3+N5ad9XbtXFUV23Fq6SUiIiIiIi4paysLNq1a8eAAQOYP38+Z86c4dFHH2XSpEk0aNCAwMDACusHBARQUFAAQH5+/kXL8/PzAQgKCqpUXl72823Lfy4oKKhWUio6OrTK6wIElfw0blVYRBBBft71yFbd81WfeGvdVW/v5l1XOBERERER8RgxMTEVuswFBgYyadIk7rjjDpKSkigqKqqwflFREcHBwY51L1QeGRnpSDCVjy/18+0Nw6hUVv5z+f6rKjMzl+rMc2Q7b+Xjp84SEWip1vE8lclU9pBe3fNVH3hr3VVvz6p3edzOpqSUiIiIiIi4pb179/Lf//6XRx55BNO5viMlJSX4+PjQsWNH/u///q/C+qmpqcTHxwMQHx9PSkpKpfK+ffsSHh5ObGwsqampji586enpZGdn06ZNG+x2O9nZ2WRkZBATEwPAgQMHaNSoEaGh1XsoMwyq9eBpNpnw9TFhtRsUl9oxAqp1OI9X3fNVn3hr3VVv76aBzkVERERExC1FRESwbNkyXn31VaxWK8ePH+epp57i17/+NQMGDCAjI4OlS5dSWlrKli1bWLNmjWMcqeHDh7NmzRq2bNlCaWkpS5cuJTMzk8TERACSkpJYtGgRaWlp5OXlMWvWLLp160aLFi1o2bIlXbp0YdasWeTl5ZGWlsbChQsZPnx4ndT7p8HONQOfiNRvailVhwzDADxsNDMRERERERdp1KgRL7/8Ms8++yyLFi3C39+fgQMHMmnSJPz9/VmyZAkzZ85k/vz5REVFMW3aNHr06AFAz549mT59Ok8++SSnTp0iLi6OxYsXExERAUBycjJWq5WRI0eSn59P9+7dmTdvnuPY8+fP529/+xs33XQTPj4+DB06lHHjxtVJvf0tZvJLbEpKiUi9p6SUiIiIiIi4rW7durF8+fILlnXo0OGiZQBDhgxhyJAhFyyzWCxMnDiRiRMnXrA8JiaG+fPnVz9gJ/Azn2spZVVSSkTqN3XfExERERERcSNmn7LeFTaNNyMi9ZySUiIiIiIiIm7EkZSyKyslIvWbklIiIiIiIiJupDwpZVdSSkTqOSWlRERERERE3MhP3feUlBKR+k1JKRERERERETfiq+57IuIllJQSERERERFxIz4mtZQSEe+gpJSIiIiIiIgb8TWXjynl4kBERGqZklIiIiIiIiJupLyllFXd90SknnPrpFRWVhaJiYls3brVsWznzp2MGDGChIQE+vfvz4oVKypss3r1ahITE+nUqRNJSUns2LHDUWaz2Zg7dy69evUiISGBsWPHcvr06Tqrj4iIiIiIyKX4aqBzEfESbpuU+vrrr7nzzjs5cuSIY1lOTg5jxoxh6NChbN++nZkzZzJ79mx27doFwNatW5kxYwZz5sxh+/btDB48mLFjx1JYWAjAokWL2LRpE6tWrWLjxo0EBAQwbdo0l9RPRESktpmCItl7Ko+M/BJXhyIiItXg41PefU9JKRGp39wyKbV69WomTpzIhAkTKixft24dERERjBw5El9fX3r27MmgQYNYtmwZACtWrGDgwIF06dIFi8XC6NGjiYyMZO3atY7y+++/n8aNGxMSEsLUqVPZsGEDaWlpdV5HERGR2rTz2FnC75jJxoNZvLv7JN+fOOvqkEREpIo0+56IeAu3TEr16dOH9evXc9ttt1VYnpKSQps2bSosi4uLY+/evQCkpqZetDw3N5eTJ09WKI+JiSE8PJx9+/bVUk1ERETq3uncYrYfyQYg1N8XuwHrvz/FsZwi1wYmIiJVYlb3PRHxEr6uDuBCGjRocMHl+fn5BAYGVlgWEBBAQUHBJcvz8/MBCAoKqlReXlZV58YdrPb6JlPFl7c4v/7eytvPgbfXH9zzHLhTLOI8dsPg8wOZGEDJwe3c+dskNhzIYn96PtuPZNPkmlhM+uWLiLg1s1pKiYiXcMuk1MUEBgaSm5tbYVlRURHBwcGO8qKiokrlkZGRjmRV+fhSF9q+qqKjQ6sbOoZhEBjoj4+PiZiYUK98IKjJeatvvP0ceHv9QedAat+x7CKyC634m33I2foWppHDuK5FBD9mFZCeV8LhM4W0jAq69I5ERMRlyrvv2dVSSkTqOY9KSrVp04ZNmzZVWJaamkp8fDwA8fHxpKSkVCrv27cv4eHhxMbGVujil56eTnZ2dqUuf5eSmZlLde4PJhNERYVQWFiMyeRDRkauVyWlTKayB/Hqnrf6xNvPgbfXH9zzHJTHJPXLvvSy1r9xDYI4VXyulbCfmU7NI9h+6Ay7j+cqKSUi4uZ8TGopJSLewS3HlLqYxMREMjIyWLp0KaWlpWzZsoU1a9YwbNgwAIYPH86aNWvYsmULpaWlLF26lMzMTBITEwFISkpi0aJFpKWlkZeXx6xZs+jWrRstWrSoVhyGUf1XTberLy9vr7/OgervrufAE2VlZZGYmMjWrVsdy3bu3MmIESNISEigf//+rFixosI2q1evJjExkU6dOpGUlMSOHTscZTabjblz59KrVy8SEhIYO3Ysp0+frrP6OFNRqY3DWWVd2ts2DKlQ1qFpOAAnc4vJK7bWeWwiIlJ1vubyMaVcHIiISC3zqKRUZGQkS5Ys4YMPPqB79+5MmzaNadOm0aNHDwB69uzJ9OnTefLJJ+nWrRvvv/8+ixcvJiIiAoDk5GT69evHyJEj6devH8XFxcybN891FRIRkWr5+uuvufPOOzly5IhjWU5ODmPGjGHo0KFs376dmTNnMnv2bHbt2gXA1q1bmTFjBnPmzGH79u0MHjyYsWPHOrpzL1q0iE2bNrFq1So2btxIQEAA06ZNc0n9LteBzALsBsQEW4gO9qtQFhpgoVGoPwAHMwtcEZ6IiFSRWkqJiLdw++57P58Zr0OHDixfvvyi6w8ZMoQhQ4ZcsMxisTBx4kQmTpzo1BhFRKT2rV69mvnz5zNp0iQmTJjgWL5u3ToiIiIYOXIkUPYFxaBBg1i2bBkdO3ZkxYoVDBw4kC5dugAwevRo3nzzTdauXcuwYcNYsWIFEydOpHHjxgBMnTqVPn36kJaWRvPmzeu+opfhaHZZou3K6AuPldg6JoiTucWkZuTTsUlYXYYmIiLV4KuBzkXES3hUSykREfFeffr0Yf369dx2220VlqekpFQaGzAuLo69e/cCVBhL8Oflubm5nDx5skJ5TEwM4eHhlb4UuZSfz7BaF6/z2ewGx3OKAWgeEVApNihLSpmAzPxSzhZZXRb35dS3uufFnX5f1amDO79UB/d41WYdxPXMPmWPaRroXETqO7dvKSUiIgLQoEGDCy7Pz893zLBaLiAggIKCgkuW5+efGwg8KKhSeXlZVbli0Hhfi5mgoLIuecfOFGK1GwRazDSLCcFkMmEy4SgHiAwLonF4AMdzikgvtOJrMRMT41mD3VflPJ9/Xi5W7sp614cJBlQH91Af6iAXZj7XdMCqllIiUs8pKSUiIh4tMDCQ3NzcCsuKiooIDg52lBcVFVUqj4yMdCSryseXutD2VeWKmRWtpTYKCspaRx04dRaAJmH+FBaWAGWD2RcUFGMyQWCgP4WFxTQO8+d4ThE/ns7FWmojIyP3ovt3JyZT1WewPP+8XKzcFfWuTh3clergHmqzDuX7FtdSSykR8RZKSomIiEdr06YNmzZtqrAsNTWV+Ph4AOLj40lJSalU3rdvX8LDw4mNja3QxS89PZ3s7OxKXf4uxdUzGh7LKUu8NftZ1z2oOPtjs/AAvk7L4VhOEdGYPO6h3Fnn2ZX1dvXfijOoDu6hPtRBLqy8pZTGlBKR+k5jSomIiEdLTEwkIyODpUuXUlpaypYtW1izZg3Dhg0DYPjw4axZs4YtW7ZQWlrK0qVLyczMJDExEYCkpCQWLVpEWloaeXl5zJo1i27dutGiRQtXVqtarDY76fllraMah1dOSp0vJsQPP7OJEptBaUhsXYQnIiLV5HuupZRNOSkRqefUUkpERDxaZGQkS5YsYebMmcyfP5+oqCimTZtGjx49gLLZ+KZPn86TTz7JqVOniIuLY/HixURERACQnJyM1Wpl5MiR5Ofn0717d+bNm+e6CtVARn4phgGBFh9C/My/uK6PyUTT8AB+zCqkONyzZhcUEfEWPudGnFdLKRGp75SUEhERj/PzmfE6dOjA8uXLL7r+kCFDGDJkyAXLLBYLEydOZOLEiU6NsS6dzisbP6lhiD+mKkyd1fhcUqoktElthyYiIjXga1ZSSkS8g7rviYiIeLj0vLKuew1D/aq0fqPQspnpSkIba2YnERE3ZPYpS0ppoHMRqe+UlBIREfFw5S2lGoT4V2n9yCALFrMJw+zHgfT82gxNRERqwKzueyLiJZSUEhER8WAFJTbyim0ANAiuWkspH5OJ2HOtpXYez6m12EREpGbKW0opKSUi9Z2SUiIiIh4s/VwrqchAC36+Vb+tlyelvj12tlbiEhGRmnMkpdR9T0TqOSWlREREPFhmQSkA0cGWam1XPq7UzmNqKSUi4m4cY0rZXRyIiEgtU1JKRETEg2Xllw1yHl3FrnvlGoT4gWHndF6Jo7WViIi4h/KklFUtpUSknlNSSkRExINlnWspFRVUvZZSFrMPvoVZAHx/MtfpcYmISM35akwpEfESSkrVIcMwAN1YRETEOew+vuQUWYHqt5QCsOSdApSUEhFxNz9139Ozg4jUb0pKiYiIeChrUDQAgRYfAi3mam/vl38agO9P5jk1LhERuTwa6FxEvIWvqwMQERHxVvc+cB+ZWdkXLY+OimDJy69etLw0KAaAqKDqt5KCn1pK/XAqF8MwMJlMNdqPiIg4l1nd90TESygpJSIi4iKZWdkMnPD0Rcvff27iL25fnpSq7sx75SwFGVjMJnKKrBzLKaJZRGCN9iM/uVSisUmjGF5a8FLdBSQiHslsUlJKRLyDklJ1xFDTWxERcTLrZbaUMhl24huE8P3JXL4/mauklBNcKtH44YJH6zAaEfFUjjGl9AghIvWcxpQSERHxUNbASAAiA2vWUgqgfaNQAPZosHMREbeh7nsi4i2UlBIREfFAZwpKsFuCAIgIrHnD53aNQgDNwCci4k7Kk1JW9bYQkXpOSak6ZhiGuvKJiMhl+zGrAIBQfzO+5prfztudaym191QeVn0jLyLiFnx9yq7rdl2XRaSeU1JKRETEAx3KLEtKRVxG1z2AKyKDCLKYKbLaHfsUERHXKv+uQd33RKS+U1JKRETEAx08l0C6nPGkoKyLyFWx6sInIuJOzOUtpdTDQkTqOSWlREREPNCP5S2lgi4vKQU/deH7/pSSUiIi7qC8pZS6VYtIfaeklIiIiAc6lOWc7nvwU1JqzwklpUTEPdlsNkaNGsWUKVMcy3bu3MmIESNISEigf//+rFixosI2q1evJjExkU6dOpGUlMSOHTsq7G/u3Ln06tWLhIQExo4dy+nTpx3lmZmZjBs3jq5du9K9e3dmzpyJ1Wqt/Yqe81NLqTo7pIiISygpJSIi4mHyiq2czisBLr/7Hvw0A19qRj4lVvtl709ExNkWLFjAV1995fg5JyeHMWPGMHToULZv387MmTOZPXs2u3btAmDr1q3MmDGDOXPmsH37dgYPHszYsWMpLCwEYNGiRWzatIlVq1axceNGAgICmDZtmmP/Dz/8MEFBQWzcuJGVK1eyefNmli5dWmf1NZvKZt/TmFIiUt8pKSUiIuJhDp8pe6jyKcnHz/fyb+VNwgIID/DFajdIzci/7P2JiDjT5s2bWbduHTfffLNj2bp164iIiGDkyJH4+vrSs2dPBg0axLJlywBYsWIFAwcOpEuXLlgsFkaPHk1kZCRr1651lN9///00btyYkJAQpk6dyoYNG0hLS+Pw4cNs27aNSZMmERgYSPPmzRk3bpxj33XB7KOklIh4B19XByAiIiLVk3YuKeVblO2U/ZlMJq6ODWXL4TP8cCrX0Z1P6pd7H7iPzKzsi5ZHR0Ww5OVX6y4gkSrIzMxk6tSpLFy4sEJLpZSUFNq0aVNh3bi4OFauXAlAamoqw4YNq1S+d+9ecnNzOXnyZIXtY2JiCA8PZ9++fQBEREQQGxvrKG/dujXHjx/n7NmzhIWFObualfiazyWlNNC5iNRzSkqJiIh4GGcnpaCsC9+Ww2f44WQeXOu03YobyczKZuCEpy9a/v5zE+swGpFLs9vtTJo0iXvuuYerrrqqQll+fj6BgYEVlgUEBFBQUHDJ8vz8shahQUFBlcrLy36+bfnPBQUF1U5KneuJV631fc7rvlfd7T1VeT29pb7n89a6q96ujaO6aiteJaVEREQ8zOEzZQ9dZicmpa6O1Qx8IuJeXn75Zfz8/Bg1alSlssDAQHJzK16vioqKCA4OdpQXFRVVKo+MjHQkmMrHl/r59oZhVCor/7l8/9URHV391qdHC7LL/mMyERPjXa1Xa3K+6gtvrbvq7d2UlBIREfEwadllD1q+hdlO2+fV57rsHczIp6jURoDF7LR9i4jUxLvvvsvp06fp2rUrgCPJ9NFHHzF58mQ2bdpUYf3U1FTi4+MBiI+PJyUlpVJ53759CQ8PJzY2ltTUVEcXvvT0dLKzs2nTpg12u53s7GwyMjKIiYkB4MCBAzRq1IjQ0Oo/RGZm5lKdXngm009jSpVabWRkeMeXBSZT2UN6dc9XfeCtdVe9Pave5XE7mwY6FxER8SCGYZzXfe+M0/bbMMSPqCALNgP2p2uwcxFxvQ8++IBvvvmGr776iq+++orbb7+d22+/na+++orExEQyMjJYunQppaWlbNmyhTVr1jjGkRo+fDhr1qxhy5YtlJaWsnTpUjIzM0lMTAQgKSmJRYsWkZaWRl5eHrNmzaJbt260aNGCli1b0qVLF2bNmkVeXh5paWksXLiQ4cOH16gehlH9l2Og8xps68mvmp6v+vDy1rqr3p71qg1qKSUiIuJBsgtLyS22AuBblOO0/ZpMJto1CuWLg1n8cDKXjk1qfyBfEZGaioyMZMmSJcycOZP58+cTFRXFtGnT6NGjBwA9e/Zk+vTpPPnkk5w6dYq4uDgWL15MREQEAMnJyVitVkaOHEl+fj7du3dn3rx5jv3Pnz+fv/3tb9x00034+PgwdOhQxo0bV2f10+x7IuItlJQSERHxIEfOtZKKDfXHZNicuu92seeSUhpXSkTc0Jw5cyr83KFDB5YvX37R9YcMGcKQIUMuWGaxWJg4cSITJ154gP+YmBjmz59f82Avk5JSIuIt1H1PRETEg6RllyWlmkcGXmLN6ru6UQgA35/Kc/q+RUSk6nzPJaXstdVfRkTETSgpJSIi4kHKW0pdUQtJqavOzcB3KLOA/BKr0/cvIiJV43Nu7nWrWkqJSD2n7nsiIiIepHyQ8+YRgWx28r5jgv1oGOLH6bwS7p38BEXH9l903eioCJa8/KqTIxAREQBfs1pKiYh3UFJKRETEg5S3lKqN7nsA7RqFcjo1kwx7MHdOePqi673/3IXHYRERkctnNmlMKRHxDuq+JyIi4iEMw3CMKdUiovaSUgAlIbG1sn8REbk0s2NMqbJrv4hIfeWRSak9e/YwcuRIunbtSp8+ffj73/9OSUkJADt37mTEiBEkJCTQv39/VqxYUWHb1atXk5iYSKdOnUhKSmLHjh2uqIKIiEi1ZeSXUFhqx8cETSMCauUY1zQuS0qVhjSqlf2LiMillSelAGzKSYlIPeZxSSm73c4DDzzAgAED2LZtGytXruSLL75g8eLF5OTkMGbMGIYOHcr27duZOXMms2fPZteuXQBs3bqVGTNmMGfOHLZv387gwYMZO3YshYWFLq6ViIjIpZV33WscFoDFXDu38HaNQvExgc0/TIOdi4i4SIWklLrwiUg95nFJqZycHNLT07Hb7Y6mrD4+PgQGBrJu3ToiIiIYOXIkvr6+9OzZk0GDBrFs2TIAVqxYwcCBA+nSpQsWi4XRo0cTGRnJ2rVrXVklERGRKqnt8aQAgv18aR0TDMDp3JJaO46IiFycr89Pj2ka7FxE6jOPS0pFRkYyevRo5s6dS4cOHejXrx8tW7Zk9OjRpKSk0KZNmwrrx8XFsXfvXgBSU1N/sbyqTKbqvy53e09/eWu9dQ5Uf3c/B+JZymfeu6IWk1IAHRqHAXA6r7hWjyMiIhd2Xk5KLaVEpF7zuNn37HY7AQEBPP744wwfPpzDhw/z4IMPMn/+fPLz8wkMrPhBPSAggIKCAoBLlldVdHRojeIOCvLDZPIhJiYUHx+Pywdetpqct/rG28+Bt9cfdA7k8pQPct68lgY5L3dN41De3nWiVltK3fvAfWRmZV+0PDoqgiUvv1prxxcRcWfnt5RSUkpE6jOPS0qtX7+eDz/8kA8++ACA+Ph4kpOTmTlzJoMGDSI3N7fC+kVFRQQHl3VDCAwMpKioqFJ5ZGRktWLIzMylOq1oTSaIjAymoKAEk8lERkauVyWlTKayB/Hqnrf6xNvPgbfXH9zzHJTHVF/s2bOHWbNmsW/fPgICArjllluYPHkyfn5+7Ny5k7///e+kpqYSGRnJ2LFjGTFihGPb1atXs3DhQtLT02nVqhWPP/44CQkJLqzNhdVF9z34qaVUel4JNrtRYWwTZ8nMymbghKcvWv7+cxOdfkwREU9x/mXX5i4fHEREaoHHJaVOnDjhmGmvnK+vLxaLhTZt2rBp06YKZampqcTHxwNlCayUlJRK5X379q1WDIbBZT1UXu72nspb630+bz8H3l5/0DmoLeWTYIwZM4Z///vfnD592jFu4N13382YMWMYP348d955J9u3byc5OZm2bdvSsWNHxyQYixcvpmPHjixbtoyxY8fy6aefVmpd60p2w+BYTtkXKy1qOSl1RVQgPqWF2CyBZOSXEBvqX6vHExGRikwmE2ZT2cx7drWUEpF6zOOa6/Tp04f09HReeuklbDYbaWlpLFq0iEGDBpGYmEhGRgZLly6ltLSULVu2sGbNGoYNGwbA8OHDWbNmDVu2bKG0tJSlS5eSmZlJYmKii2slIiKXwxsmwcjIK6HYasdsgka1nCQymUz4nT0GwImzGldKRMQVfM41l7IqKSUi9ZjHJaXi4uJ4+eWX+eSTT+jevTu/+93v6N+/PxMmTCAyMpIlS5bwwQcf0L17d6ZNm8a0adPo0aMHAD179mT69Ok8+eSTdOvWjffff5/FixcTERHh2kqJiMhlcYdJMGpbeSup2LAAfM21f/v2yz0OwMmzRZdYU0REaoP53IwkykmJSH3mcd33AHr16kWvXr0uWNahQweWL19+0W2HDBnCkCFDais0ERFxAXeYBKO2ZjMs3++xnLLxpJpFBFT7WOfP/vjz7qMX21d5S6lTucXYDQOfC6xY2zM4nr//8+vg7H3XFWfXoTZcKjZPqMOlqA5V27e4Xvl4fhroXETqM49MSomIiJzPHSbBqMmg8b4WM0FBF++K52sxExNTtt8zJWUtl1rHhjmWXWp7k4kK5YGBFdc9f/8/F1h6Bj+zDyU2O4V2Ew1Cq75tVVSn7uerynmu6b6d4VLHBtdNMODM81IfJklQHcTdKSklIt5ASSkREfF47jAJRk1mVrSW2igouPiYTdZSGxkZZQm1/SdyAIj2NzuWXWp7w4CCgmJMprKEVGFhcYUYz9//z9lKrcSG+pGWXcSBU2cJNoddNLaaqE7doXozWJaW2th7LJvjOUUUltpoGh7AldFBWM51e7zc2H/JL9WrvAXKL9Xh3jH3kZGVfdH9x0RFsOSVV50eW3n5pc6LO84kWl2qQ9X2La5X3n1Ps++JSH3m9KTU1q1b6d69u7N3KyIiHqy27w19+vThmWee4aWXXuL+++/n+PHjFSbBeOqpp1i6dCkjR47k66+/Zs2aNSxcuBAomwQjOTmZW2+9lS5durBs2bIaTYJRWzMrlu/zWHZZa65mEQHVPk75+hfa7pf21TQ8gLTsIo5lF9GxSVil8tp+TrpYvL903PS8YrKuGsqHe9Mdy1IzCthx7CwDrmpARKDlovuubef/HgyjrPVDkdVGqdXAarcTFmAhIyubgROevug+3n9uYq3GXtV914eZRFWHuqFng5rzUUspEfECTk9KjR8/ntDQUH7961/z61//miZNmjj7ECIi4mFq+95QPgnGvHnzePXVVwkNDWXw4MEkJyfj5+fHkiVLmDlzJvPnzycqKuqik2CcOnWKuLg4t5wEo3yg86bhAXV2zGYRgXA4mxNni7Ha7HUywPrlyC4oZdyKXRRHtMBsgviGIQT4+pCSns/ZIivvfXeKoR1iXRaf3TAoCG/JzHX7+fbYWdLOFFaaVcun832s3nWSBiF+NA7zp1GYP8F+atgunkvPBjXne+6Sa3f3zKOIyGVw+qecL774gk8++YR33nmHl156ieuuu46kpCRuvvlm/Pz8nH04ERHxAHVxb6jPk2Dkl1jJKigFziWK6khEoC/BfmbyS2yczC2u02NXV0GJjYdXf8ehrEJ8inNJ6t7G0SqqfaNQPtybTkZ+CZ/sz8TXVLfJNbthsP90Pt8czSE/biCrd52stI4JMAC7XxAZ+SVk5Jfww6k8ABqH+RPfIJgro4PqNG4RZ9CzQc2VTzChllIiUp85PSllsVgYMGAAAwYMICsriw8++IAlS5bwt7/9jYEDB3LnnXdy1VVXOfuwIiLixnRvuDzHz7WSCg/wJcS/7lrNmEwmmoYHsD89n6PZRW6blCqx2pn83h72nMwlPMAXv2/fIeKGqY7yID8ziW1jeHvnSdLzSwhpel2dxZZXbOWTlAxO5ZaNeeZTWsiIbq3pdkUk8Q2CiQy0YDH74GOCnCIrv/3jQ3QcPp5TucWcPFtMRn4JJ84Wc+JsMZsPncG/WXdyi6yEBqj1lHgGXf9rzjHQuXJSIlKP1donmszMTP773//y/vvvk5qaSr9+/fD392f06NGMHj2aP/7xj7V1aBERcVO6N9RM+XhSTeqw6165ZhFlSam07EJ6UL0ZCeuCzW4w/X972Xo4m0CLD88nXcNfPjtTab0Qf196t4rkk5RM8ht35nRuMQ1Df3mWvIu594H7yLzIYOT7D6Qw8Nz/M/NLWPv9aYqsdixmE12ahfPJ7D+x8evWbLzIvn88kMLQB6bQ6lyrqLxiKynp+aSk55NTZKW0WXeGvLqN0d2a89uuzfA999Aq4u50/a8+tZQSEW/g9KTU+++/z7vvvsuXX35Jq1atSEpK4qWXXiIqKgqAfv36kZycrBuPiIgX0b3h8hzNKR/kvO5bKjWPCMTHBNmFVs4UlBIZZHHq/g3DwGSqWWLFMAz+8XEqH+3PwNfHxFND2tO+ceUB2cu1ig5iz8k8TuXCS5sO8cQtbWt03MxfGIz8+wduL1snv4T3vz9NsdVOVJCFxLYxhAVY+LC09BcHMi/fvlyIvy8JzcLp1DSMH7MK+fzbfeQSzQsbf+Sj/ek8MaAtcQ2Ca1QPkbqg63/N+WqgcxHxAk5PSv31r39l4MCBLF++nGuuuaZS+ZVXXsno0aOdfVgREXFjujdcnmPZhUDdDnJezs/Xh2YRARw5U8SPmQVEBoVf1v4Mw2D7kWyy2tzG618dpbDUjr/Zh5gQP66MDiQ+JrjKA6q/9OVh3t51AhPw94FX0f2KX27JZTKZ6HFFBO9+d4r3vz/FvT1a1Eqir6DExod70ym22mkY4setVzfEz/fyxrEymUy0ig7i+13/4b7pLzDvs4P8cCqPUa9/w7g+Lbm7a7MaJ/dEapOu/zX3U/c9JaVEpP6qlYHO09LSiI0tm93m22+/JTQ0lNatWwPQqFEjxo8f7+zDioiIG9O94fL81FKq7pNSAFdGBZUlpbIK6Ny85kmpzPwSZq7bz8aDWRAVB6V2AIptdo7lFHEsp4iv03Lo2CQMu8/FP6IYhsGCjT/yr+1HAZjyqzhuatOgSjE0DPXHP/swxRFX8OaO4zxyY+sa1+eCTD58tD+D/BIb4QG+3OKEhFSF3WMw+JpG9GoZyaz1KWw8mMX8DT/yw6k8nhjQhgCL2WnHEnEGXf9rTt33RMQbOH36mY8//pihQ4dy6NAhAHbs2MGIESP4/PPPnX0oERHxELo3XJ7ygc6bhrtmoPErooIwmSCroJQz52YBrK7U9HxGvf4NGw9mYTGbCDq5k8HXxDKyS1OSOjaiW4sIQvzNFJba2Xo4m9MJ9/Dv7WmcLap4vNO5xTzyzh5HQupP/VqRdG31ppgPPrEDgPd2nySv2Fqj+lyMf4ebOZVbjMVs4uarGuDvxITU+WJC/HlmaHsevSkOs4+J9fvSGf/2d06vj8jl0vW/5spbStnVUkpE6jGnt5RasGABCxcudDTPveeee4iLi+Opp56iX79+zj6ciIh4AN0bas5mN35KSrmopZS/rw8tIgI5fKaQvafy6Hll9QY8//5kLg+u3E1usZUro4KYeftVTBz3PLGhg4Cy2fGig/3o0DiUlIx8vj16lrMEMn/Dj7z85WESmobTONyfM8U2vkjJwGo38PUx8div4hncoVH165NzhFbRQRzMLOCd3Se5u2uzau/jQjLzSwjoVDbMee8ro4gIdO74Wz9nMpkY3qkJV0YH8cg7e9hxNIeHVu1mwfAOBPtpdj5xD7r+15z5XI9ctZQSkfrM6V/fnThxguuvv77Csj59+nD8+HFnH0pERDyE7g01dzqv2JGEaRhSs9ninOHq2BAA9qfnYbXZq7zdj5kFjF9VlpDq2CSMxXddS3yDkAuu6+Njom3DEEYkNCbiwHriYoIpttrZcvgMq3ed5LN96VjtBh2bhPHvuzvXKCEFYAJ+26UpAMu/OYbVCQ98hmGw6ccsTD5mWkYFEhcTdNn7rKouzSN4+c5rCQ/w5bsTuTzyzh5KrFX/HYnUJl3/a+6nMaVcHIiISC1yelKqadOmbNxYcaLjzZs306RJ9ZrWi4hI/aF7Q80dyy5rJdUkPMDxgOIKzSICCPX3pcRmkJpRUKVtTp4t4sGVu8gpsnJ1bAjzh11DeBVaD/mYTASl/8B/fteZZaM689iv4hjT6wqmD2rHm6O78NpvOl32jHO3XB1LZKCFU7nFfLI//bL2BXAws4BTuSUYpcX0bBlZ54OOt20YwvxhHQj2M/N1Wg5zPkrBUJcfcQO6/tecxpQSEW/g9LbdY8aMITk5mZtvvpmmTZty/Phx1q9fz9y5c519KBER8RC6N9TcsRzXzbx3PpPJRLtGIWw9nM2OYzmEmn55QO0zBSU8uHI3p/NKaBkVyPyk6ncpM5lMtGkYQpuGIZhMEBMTSkZGLs7Itfj7+jCiUxNe2XyYZV8fI7Ftgxonkqw2O9sOZwNQ9N06QvomX36ANdCuUSizB13Nw29/x5o9p2jbMIQ7Ozd1SSwi5XT9rzlfHyWlRKT+c3pLqUGDBrF48WIsFgt79uwhICCAJUuWMGDAAGcfSkREPITuDTV3NLt8kHPXJqWgrAtfkMVMXrGN/EYdL7peXrGV8au+4/CZQmJD/XlhWAcigmp3fKWaGNapMX5mE9+fzGXX8bM13s/uE7nkldgI9jNT/N1HToyw+hbPnkzIjxsAePrj/dz2+7EMGTGcISOGs/9AiktjE++k63/NaaBzEfEGtTIKZvfu3enevXtt7FpERDyU7g01c8wxyLlrZt47n8XsQ9cW4Ww4kEVu024cyiygZXTFsZNyCkv509vfsfd0Hj6lBRgb/8UD67Mr7Wv/gRQG1jCOex+4j8ysyvus7r6jgvy45eqGvPfdKZZ/c4xrm4ZXO5b8EivfHitLaHVrEcFqW81mJ3SWzKxs7nh4JOv3ZXD4TCEl3UZx+7WN8fUx8f0Dt7s0NvFeuv7XTHn3PWeMeyci4q6cnpQ6deoUixYt4tChQ9jtFQfZ/Ne//uXsw4mIiAfQvaHmHEmpWmgptX//XoaMGH7hsoskduIbBLPvdD6ncmHCO9+xaERHGoWVxfbDqVwef38vh88UYiotZEjnVsT0nXbB/V9OgiQzK5uBE56+aHl19v2bzs1477tTfJKSwYmzRTQOq955/upIDla7QcMQP1rX4eDmv8RkMtG3dRSrdp4kp8jKjqM5XNciwtVhiZfS9b/mHC2llJQSkXrM6Umpxx57jIyMDG688UYsFvdrqi8iInVP94aaO5Hz00Dnzma1c9HkzsUSOz4mE4ltY3jji+85mg13LP2KG+JiyC4sZdvhM9gMaBDiB5teJ6bvX5wes7PFNQjmuhYRbD+SzVs7jvOnfq2qvG16Xgn70/MB6OGCwc1/SYDFTK8rI/lofwY7j52ldbR7JMzE++j6X3PmcwOt2NR9T0TqMacnpXbv3s2HH35IVFSUs3ctIiIeSveGmrH7WDhTWNYdrEk1W/DUpkCLmegf3qHxwIfYefws//vhtKPsV21iePSmeH7/0cVbMrmb33ZpyvYj2byz+wT397yCIL9fHsQdwDAMNh86A0BcTBCxof61HWa1XRkdRMuoQA5lFfLluVhF6pqu/zVndsy+5+JARERqkdOTUqGhofj5+Tl7tyIi4sF0b6gZm38oAKH+voQG1MowkDXmW5zDK3ddyxcHs/gxswAfE/RtHc0VUZ7XIqfXlVG0iAzkyJlC1nx3skoz1v2YVcip3GLMPia37hrX44pI0s4UcuJsMZYWnVwdjnghXf9rzqd89j21lBKReszps++NGzeOxx57jF27dnH8+PEKLxER8U66N9SMzT8MgMZh7tcKB8q68vVtHc3vuzVn1HXNPTIhBWX1+M25RNT/bU+jqNT2i+sbJjNbD5e1PLq2SSgh/u6VMDxfaIAvHZuU/R0FdBmiWbykzun6X3PlY0rZNKaUiNRjTv8UNW1a2YCm69evB8oG2zQMA5PJxA8//ODsw4mIiAfQvaFmypNStTGelFQ0+JpG/N+2NE7mFrPi2+OMuq75RdfNbd6dvGIbwX5mR8LHnXVsGsb3p/IoDo8lJT2ftg1DXB2SeBFd/2vO16SBzkWk/nN6Uurjjz929i5FRMTD6d5QM1YlpeqMn68PD/S+gr9+sJ+l29K4tV0sMcGVuxz9cCqXvMadAeh9ZSQWs9MbnTudn9mHTk3D2Ho4m2+O5hAXE+xogSFS23T9rzl13xMRb+D0T1JNmzaladOm5OTksGfPHho0aEBAQABNm156fAYREamfdG+oGUdLKTca5Lw+u/XqWNo2DOFskZW/f7gf42cPgtkFpUx573sw+dAqOsijuiu2iw3BXpBDXrGNAxn5rg5HvIiu/zWn7nsi4g2cnpTKzMzkrrvu4o477uDRRx8lLS2NX/3qV+zYscPZhxIREQ+he0PNOMaUUkupOmH2MfHXW9viZzax6ccsFmw85EhMZReUMvHdPRw/W4y5KIfeV0a6ONrq8TX7ULynrMXKzuNnKyXcRGqLrv81Zz7XoFFJKRGpz5yelJo1axZt2rRh+/bt+Pr60rp1a8aMGcM//vEPZx/KIxmGoQ+CIuJ1dG+oGWuAuu/VtdYxwfz5xtYA/Gt7GuNW7OL5zw8y8t9fs/P4WYIsZqL2rSHAYnZxpNVXvP8L/MwmsgutHMoqdHU44iV0/a+58pZSmqBAROozpyeltmzZwmOPPUZgYCCmc4Pz3XfffaSmpjr7UB5JSSkR8Ua6N1RfidWO4VuWjHLX2ffqq2HXNmHazfGYTfBVWg6vf3WU03klNIsI4LXfdsJSmOXqEGumtIh2jUIB2HMy18XBiLfQ9b/mfM6dL6vdxYGIiNQipw90brFYKCoqIjAw0JF8yc/PJzg42NmHEhERD6F7Q/XlFlsBCA/wJdjP6bdruYQhHRrTqWk4H+/P4MTZIq5tGsaN8TEe/7u4OjaEncfOcuJsMVkFJUQFVR7MXcSZdP2vOY0pJSLewOktpfr378+kSZM4dOgQJpOJzMxM/vrXv9KvXz9nH0pERDyE7g3VV56UUtc917kiKoh7e7Rg6s1tuL19I49PSAGE+PtyRVQgAD+czHNxNOINnHH937x5MyNGjKBz58707t2bGTNmUFRUBMDOnTsZMWIECQkJ9O/fnxUrVlTYdvXq1SQmJtKpUyeSkpIqjGVls9mYO3cuvXr1IiEhgbFjx3L69GlHeWZmJuPGjaNr1650796dmTNnYrVaL/OMVJ2vuu+JiBdwelLqkUceISgoiFtuuYWzZ8/Sp08fCgsLmThxorMPJSIiHkL3hurLU1JKakl5F76U9HxK1C9IatnlXv+zsrJ44IEH+M1vfsNXX33F6tWr2bZtG6+88go5OTmMGTOGoUOHsn37dmbOnMns2bPZtWsXAFu3bmXGjBnMmTOH7du3M3jwYMaOHUthYdmYaosWLWLTpk2sWrWKjRs3EhAQwLRp0xzHfvjhhwkKCmLjxo2sXLmSzZs3s3TpUqefo4sp776nllIiUp85/Su/4OBg5s+fT1ZWFkePHqVRo0Y0bNjQ2YcREREPontD9eUW2QBoEqaklDhXkzB/wgN8ySmykpKRT/tzSSqR2nC51/+oqCi+/PJLQkJCMAyD7OxsiouLiYqKYt26dURERDBy5EgAevbsyaBBg1i2bBkdO3ZkxYoVDBw4kC5dugAwevRo3nzzTdauXcuwYcNYsWIFEydOpHHjxgBMnTqVPn36kJaWht1uZ9u2bWzYsIHAwECaN2/OuHHjeOqpp7jvvvucf6IuwNF9Ty2lRKQec3pSavv27RV+Pnz4MIcPHwbguuuuc/bhRETEA+jeUH3l3fcaq6WUOJnJZKJdo1A2HzrD9ydzaRcb4hiAWsTZnHH9DwkJAaBfv36cOnWKrl27kpSUxLx582jTpk2FdePi4li5ciUAqampDBs2rFL53r17yc3N5eTJkxW2j4mJITw8nH379gEQERFBbGyso7x169YcP36cs2fPEhYWVqXYAar79ipf33yuT4vNblR7H56ovI7eUNef89a6q96ujaO6aitepyelRo0aVWmZj48PjRs35uOPP3b24URExAPo3lB9jjGl1FJKakGbBsFsP5JNdqGVE2eL1U1Uao0zr//r1q0jJyeHiRMnMn78eGJjYwkMDKywTkBAAAUFBUDZgOoXK8/PzwcgKCioUnl52c+3Lf+5oKCgWkmp6OiatUYMDSl7X1r8fImJ8Z4WjTU9X/WBt9Zd9fZuTk9K7d27t8LPWVlZvPjiizRt2tTZhxIREQ+he0P1GIbh9QOd79+/lyEjhldY5msxYy21sf9ACgNdFJerXei8VCiv4rnx8/WhdUwQ+07nsz8932v/zqT2OfP6HxAQQEBAAJMmTWLEiBGMGjWK3NzcCusUFRU5ZvYLDAx0DIh+fnlkZKQjwVQ+vtTPtzcMo1JZ+c/VnTkwMzOX6vTAM5nKHlZLikoByC8sISMj9xJbeb7yelf3fNUH3lp31duz6l0et7PV+jQyUVFRTJo0iQEDBnDvvffW9uHcnmEYjulwRUS8le4Nv6zEZlBqK7tXNA7zd3E0rmG1w8AJT1dYFhTkT0FBMd8/cLuLonK9C52X81Xn3LRpEMK+0/n8mFlA7ysjnRGeyCVV9/r/zTff8Je//IX33nsPPz8/AEpKSrBYLMTFxbFp06YK66emphIfHw9AfHw8KSkplcr79u1LeHg4sbGxpKamOrrwpaenk52dTZs2bbDb7WRnZ5ORkUFMTAwABw4coFGjRoSGVu+hzDCo0YOn+byBzr3p8aGm56s+8Na6q97ezemz711ITk4OxcXFdXEoERHxELo3XFxuUVkrKZ+SfAIsZhdHI/VVbKgfYQG+WO0GP2YWuDoc8SLVuf63bduWoqIinnnmGUpKSjh27Bhz585l+PDhDBgwgIyMDJYuXUppaSlbtmxhzZo1jnGkhg8fzpo1a9iyZQulpaUsXbqUzMxMEhMTAUhKSmLRokWkpaWRl5fHrFmz6NatGy1atKBly5Z06dKFWbNmkZeXR1paGgsXLmT48Iu3VHQ2x0Dnmn1PROoxp7eUeuyxxyr8XFpaytdff02vXr2cfSgREfEQujdUT3nXPXNx/e+uIa5jMpmIbxDM12k57E/Px8PGWxUPcbnX/+DgYF599VVmzZpF7969CQ0NZdCgQSQnJ+Pn58eSJUuYOXMm8+fPJyoqimnTptGjRw+gbDa+6dOn8+STT3Lq1Cni4uJYvHgxERERACQnJ2O1Whk5ciT5+fl0796defPmOY49f/58/va3v3HTTTfh4+PD0KFDGTdunFPOS1WUD3RuVVJKROqxWu++5+/vz6hRo7jzzjtr+1AiIuIhdG/4ZeVJKd/iHBdHIvVdeVLqxNliGvppwFWpfTW5/sfFxbFkyZILlnXo0IHly5dfdNshQ4YwZMiQC5ZZLBYmTpzIxIkTL1geExPD/Pnzqxyns6mllIh4A6cnpWbPnu3sXYqIiIfTvaF61FJK6kqovy+Nw/w5cbaYwgZXuTocqYd0/a853/IxpTTojIjUY05PSi1YsKBK6z344IM1PkZ2djazZs3i888/x263c9111/Hkk0/SsGFDdu7cyd///ndSU1OJjIxk7NixjBgxwrHt6tWrWbhwIenp6bRq1YrHH3+chISEGsdSVYZhYLfbNZCZiHilurg31Cd5jqTUWRdHIt6gTYNgTpwtpiDmagzDwGRSRz5xHl3/a04tpUTEGzg9KZWSksK6deu46qqruPLKKzl58iTffPMN7dq1c0yferkfdh566CHCw8NZv349Pj4+PPbYYzz++OP84x//YMyYMYwfP54777yT7du3k5ycTNu2benYsSNbt25lxowZLF68mI4dO7Js2TLGjh3Lp59+6pgWVkREnK8u7g31SW6RDVBSSurGldFBbPrxDNbACHafyKVjkzBXhyT1iK7/NaeklIh4A6cnpcqTRL/73e8cy959910+/fTTCgMH1tR3333Hzp07+fLLLwkJCQFgxowZpKens27dOiIiIhg5ciRQNrjhoEGDWLZsGR07dmTFihUMHDiQLl26ADB69GjefPNN1q5d65ilo7YYaiIlIl6stu8N9YlhGOeNKaWklNQ+i9mHllGBpGYUsH5fupJS4lS6/tecklIi4g18nL3Dzz//3JEUKnf77bezefNmp+x/165dxMXF8dZbb5GYmEifPn2YO3cuDRo0ICUlhTZt2lRYPy4ujr179wKQmpr6i+VVZTJV/3U529aHlzfXXedA9Xfnc1BXavveUJ8UWe2OmZY0ppTUlVYxZS1W1u9L1wOwOJWu/zVXnpSy2l0ciIhILXJ6S6moqCi2b9/umIoVYOPGjTRq1Mgp+8/JyWHfvn1cc801rF69mqKiIiZPnsyjjz5KTExMpW54AQEBFBQUAJCfn/+L5VUVHV392WmsViuBgRbARExMKBaLpdr78HQ1OW/1jbefA2+vP3jvOajtewN45niDF1I+nlSQxYzJsLkkBvE+zcIDMFmLyMyHHUdz6NoiwtUhST1RF9f/+koDnYuIN3B6UuqBBx5gzJgxDBgwgCZNmpCWlsann37KCy+84JT9+/n5ATB16lT8/f0JCQnh4Ycf5o477iApKYmioqIK6xcVFTn6qwcGBl6wPDIysloxZGbmVmvAcpMJwsMDKSgoASAjI9erklImU9mDeHXPW33i7efA2+sP7nkOymOqC7V9b4D6M97g2aKypFRogNNv0SIXZfYxEZiZSkHsNazbd1pJKXGaurj+11fqvici3sDpn3hHjBhB06ZNee+99/j+++9p3rw5y5cvp23btk7Zf1xcHHa7ndLSUvz9/QGw28vatF599dX85z//qbB+amoq8fHxAMTHx5OSklKpvG/fvtWKwTC4rIfKy93eU3lrvc/n7efA2+sP3nsOavve4KnjDV5IXnFZ66hQfzPVa8crcnkCM/dTEHsNn+zPYFL/OCxmp4/yIF6otq//9ZmSUiLiDWrla9hevXrRq1cvsrKyiIqKcvq+mzdvzl/+8hdmz55NcXExzz33HL/61a+4/fbbmT9/PkuXLmXkyJF8/fXXrFmzhoULFwIwfPhwkpOTufXWW+nSpQvLli0jMzOTxMREp8YoIiKV1ea94fzxBt944w0KCwu5/vrrefTRRy863uDKlSuBsi8nfp58qsl4g85SPsh5iL+vWyel9u/fy5ARwy9efiCFgXUYj1w+v7PHiAqykFVQyrbD2fRu5dz3qXiv2rz+12dKSomIN3B6Uqq0tJQFCxbw+uuvY7PZWLNmDQ8//DCLFi2iYcOGl71/i8XCv//9b+bMmcOAAQMoLi6mf//+TJ06lbCwMJYsWcLMmTOZP38+UVFRTJs2zdGHvWfPnkyfPp0nn3ySU6dOERcXx+LFi4mIiLjsuERE5OJq+97gDuMNOmvg+PKkVKi/L6edtN/zB9p3Vks9qx0GTnj6ouXfP3C7cw50zvl1cOb+6lJt/B6cyYTBr9o24K0dx1m37zR9WldOHjj79+AKqkPV9u0stX39r88cSSl3vGCIiDiJ05NSCxYsYMuWLTz//PNMmDCB6OhoGjVqxMyZM3n++eedcozY2Fiee+65C5Z16NCB5cuXX3TbIUOGMGTIEKfEISIiVVPb9wZ3GG+wJuNz+VrMBAX5V1iWX1LWfS8mPJDDFjMxMRff74W2P5/JRIXywED/XyyvapkrywMD/f+/vTuPj6o89D/+PTPZF0hCkE1ck0BdkAiCKIJFI5VFKUu5t9QWroo/QFu5RRSl17YWhGtvtUihVqWplaoFRUVRtBYVkSVQBJeiCcoiexISsmeW8/sjmSHDmkkmZ7bP+/WKZs76nCdhTs53nqXVx445S72ezZnq/Wznlk7+Ofizf2vWN6dexl99vv6+db8+KCpRSvskJcTaT7ltJEzawDVYw4png0gV4519j1AKQOQKeCi1cuVKvfDCC+rUqZMMw1BSUpIeffRRusgBQBRr63tDKIw32JJB7J0Ol6qr67yvTdPUsZqGllJxMuV0uFRcXNHs/U9kmlJ1dZ0MoyEIqamp8ymjZ/2Z9j3bsa1af+I1tObYX3z+ua65fuhp12dmpGnJn5457foz1fuZzu1pgXLiz6G5+7d2/dn2dTpc6p4Uo86p8TpYUafXCnbrhpyOJ11DqE3a4C+uoXnHDhSeDVrO7pl9j1AKQAQLeChVXV3t7StuNt4lExISZLMxWCYARKu2vjeEwniDgRjEvsbhlss0ZUhKjrN7j9tanmOE6wO4FNhrOFvXwzcfn9EmdRUOPwdDhvJ6dNRfN3+rd3Yc0ZDsjqfcLhImbeAarMGzQcsxphSAaBDwu0Hv3r21cOFCSZLRmO7/9a9/1eWXXx7oUwEAwkRb3xs84w3a7XYNHTpUQ4cOVefOnTV37lylp6dryZIlevvtt9W/f3/Nnj37tOMN9uvXT2+++WbQxhv0jCeVFGf3PowAVrupZ0MQ9dHXpaqqdwa5NAh3PBu0HKEUgGgQ8JZSDz74oCZOnKgVK1aoqqpKw4YNU1VVlf785z8H+lQAgDBhxb0hEsYbbDrIORAsPc5J0XnpidpztEYfFJVo2CWdgl0khDGeDVqOgc4BRIOA/9WbmZmpN998U++//7727dunzp076/rrr1dKSkqgTwUACBPcG5qn0hNKJRBKIXgMw9CNPTpqyYY9+udXxYRSaBXe/1suhpZSAKJAwP/qHTFihF5//XXdfPPNgT50RDBN09ufHgCiBfeG5qmo9bSUOvWMZ4BVbszJ1JINe7R+V0MXvuQ4glK0DO//LecZ6JzZ9wBEsjYZYbCmpqYtDgsACGPcG86uos4lie57CL6szGSdl56oepepj3aWBrs4CHO8/7cMY0oBiAYB/6u3f//+GjdunAYNGqRzzjnHZ93dd98d6NMBAMIA94bmYUwphArDMDQkO1P5m/bqvcJiDf3OOWffCTgF3v9bjlAKQDQI+F+93377rbp3765vvvlG33zzjXe5Z7YNAED04d5wdqZpeseUSmFMKYSAG3M6Kn/TXn38Tamq611KiqNbKfzH+3/LeUIpU5LbNGWjzgBEoID91Xv77bfr2Wef1V//+ldJUm1trRISEgJ1eABAGOLe0HzV9S65TcmQlMzDP0JAzjnJ6tY+QfvKa/XxN6W6sUfHYBcJYYT3/9bzDHQuSU6XqbgYQikAkSdgY0pt3brV5/WgQYMCdWgAQJji3tB8nq57KfF2Pg1HSDAMQzfkZEqS3vvqSJBLg3DD+3/r2ZvcC1xMlAQgQrXJQOeSmGHuBMy6BwDcG87EM8h5CuNJIYTckNPQOuqjr0tV63AFuTQIZ7z/+8/epKUU40oBiFRtFkrRTxwAcCLuDafHIOcIRd/plKIu7eJV63Tr411Hg10chDHe//3XNJRyEkoBiFBtFkoBAIDmq6htDKUY5BwhpGEWvobWUu99SRc+wEpNMilaSgGIWAH7y9fpdOrVV1/1vnY4HD6vJWnUqFGBOl3Y+feBCn3wzTFd0SUp2EUBAMtwb2i+SlpKIUTd2CNTS7d8Sxc++IX3/9YzDEN2myGX2ySUAhCxAvaXb2ZmphYsWOB9nZ6e7vPaMIyovvH8z8ov9O2xeu2vqNeDNwW7NABgDe4NzXe8+x4z7yG0XNo5VZ1S43Wook4bdh/V2C5pwS4SwgDv/4ER4wmlGJMLQIQKWCj1z3/+M1CHikjHahoeNtym5OamAiBKcG9oHrdpqrKegc4Rmhq68GXqhX/t03tfFmvs1RcGu0gIA7z/B4ZnBj5aSgGIVIwpZZErzm3n/b6ouDqIJQEAhJqqepdMs2H8kOQ4Wkoh9NyQkylJ+nBnieqcdOEDrOIZ7JyBzgFEKkIpqzSZcWTj7rLglQMAEHIqGwc5T4mPYYYqhKTLu7ZTx5Q4VdW79FFhcbCLA0QNTyhFSykAkYo+AhZxutze7zfuKdPt1wSxMACAkFLBIOcIcTbDkHvvNin9O/rp//1V7YvePWmbDhlpWvLUM0EoHRC5CKUARDr++rWIw3X8RkL3PQBAUwxyjrCw/3Mp/TtydL5U3xt+k/dh2ePNx2cEqWBA5LI3/jNjoHMAkYruexYwTVOOJi2lmgZUAABU1DHIOUJfXMUBJcbaVO9068Cx2mAXB4gKMbSUAhDhCKUs4mwSRDm4qQAAmqhoHFMqNYFQCqHLkKnz0xMlSbtLa4JcGiA60H0PQKQjlLKI0328pZTLbcqkCS4AoFElY0ohTJyfkSRJ2n20hr9lAAsw+x6ASEcoZRHnCV32+LQDACBJbrepqvqG7nuEUgh1XdsnKNZuqKrepeKq+mAXB4h4tJQCEOn469ciJ3bZc7hNxTCeLQBEvcp6l0xJdsNQYqzvZ0VffbVDt44be9p9v9pZqOFtXD6gqRibofM7JKvocKV2ldaoY0p8sIsERDS70RhK0TIRQIQilLKIs8lA5w2vTSk2SIUBAIQMz8x7KfF2GYbvbGZOtzR8+m9Pu+8Xd41o07IBp3Jxx4ZQandpja46Ly3YxQEiGi2lAEQ6uu9Z5MR+4E3HmAIARC8GOUe4uaBDsgxDOlrjUHmNI9jFASIas+8BiHSEUhY5cUwph4sbCwCAQc4RfhJi7erSrqHb3u6jzMIHtCVaSgGIdPwFbBHHCS2jmEEDACAd775HKIVg82cMswvSk7S/vE67SmvUq2s7awoIRCFm3wMQ6fgL2CIntpTixgIAkKSKuoaZ91Limf0CweXPGGbnZyTq411HdbiiTrUOlxJi+f0F2oK3+x4DnQOIUHTfs8iJIZTDxZhSAIDjY0q1Y0wphJGU+BilJ8bKlPRteW2wiwNELLrvAYh0hFIWOWn2PW4sABD1TMOuaoenpRShFMLLeemJkqS9jCsFtBm7QSgFILIRSlnEcdLse9xYACDaueJTJDV0z0iI4ZaM8NI9PUGStLesVm66FqEN7dixQ5MmTVK/fv107bXXaubMmSotLZUkbdu2TePGjVNubq6GDBmiZcuW+ey7YsUK5eXlqXfv3ho9erS2bt3qXedyuTR//nxdc801ys3N1ZQpU3T48GHv+pKSEk2dOlV9+/ZV//79NWfOHDmdTmsuuhEtpQBEOv4CtshJY0rRfQ8Aop4zvr2khkHOjcZPw4Fw0Sk1XnF2Q3VOt45U1ge7OIhQtbW1uuOOO5Sbm6uPPvpIb7zxhsrKyvTggw+qvLxckydP1qhRo1RQUKA5c+bo0Ucf1fbt2yVJGzdu1COPPKJ58+apoKBAt9xyi6ZMmaKamobWfYsXL9a6dev08ssva+3atUpISNDs2bO957733nuVlJSktWvXavny5Vq/fr3y8/Mtue49e/Zo27ZPVFlR3vD622+1ffsnfn19++1eS8oKAK1BXwGLOBtn37MbksukpRQAQHLFp0pikHOEJ5th6Ny0RH1dUk0XPrSZ/fv3q2fPnpo2bZrsdrvi4uI0fvx4zZw5U++8847S0tI0YcIESdKAAQM0cuRILV26VL169dKyZcs0fPhw9enTR5I0ceJEvfTSS1q1apXGjBmjZcuWacaMGerSpYsk6aGHHtLAgQO1d+9eud1ubdq0SR9++KESExPVvXt3TZ06VY899pjuuOOONr3mb7/dq2uuvUo11dXKHDlDyZdcrycXLtDcLa/7dZyExCR9vK5A557bvY1KCgCtRyhlEUdjS6kYmyGXyzyp5RQAIPq4PC2lGOQcYap7eoK+LqnWnrIaxQe7MIhIF110kZ555hmfZatXr9all16qwsJC5eTk+KzLysrS8uXLJUlFRUUaM2bMSet37NihiooKHTx40Gf/zMxMtW/fXl9++aUkKS0tTZ06dfKuv/jii7V//34dO3ZM7dq1a/Y1+NsQtrS0RDXV1Ro3/VHta9dT+2qla0f9RBf98IfNPsbhb7/R8sdnqbS0RN27h0co5amnaGw4HK3XznUHtxz+aqvy8lewBUzT9PYDj7EZqnOZcrjpvgcA0c7TUiqVQc4RprqnNQx2XlLlUKfY5CCXBpHONE098cQTWrNmjZ5//nk999xzSkxM9NkmISFB1dXVkqSqqqrTrq+qqpIkJSUlnbTes+7EfT2vq6ur/QqlOnRIbfa2kpSW1vBvqXtWD1U6OmjfgWPK6NRVWRdkNPsYCQlxkqT09GRlZvp3/mDzt74iSbReO9cd3fgr2AJNu+rZG0fxoqUUAMAZ3/BQQyiFcJUYa1fHlDgdqaxXbdr5wS4OIlhlZaVmzZqlzz//XM8//7x69OihxMREVVRU+GxXW1ur5OSGUCcxMVG1tbUnrU9PT/cGTJ7xpU7c3zTNk9Z5XnuO31wlJRXyZy6AsrKGUKy2rl5us2GG1rp6p6qr65p9jNrahnHejh6tUnFxxVm2Dg2G0fCQ7m99RYJovXauO7yu21PuQOOvYAs0DaViGmfQYEwpAICLUAoRoHtaoo5U1qsu7YJgFwURas+ePbrzzjvVtWtXLV++XBkZDS2GcnJytG7dOp9ti4qKlJ2dLUnKzs5WYWHhSesHDRqk9u3bq1OnTioqKvJ24Tty5IjKysqUk5Mjt9utsrIyFRcXKzMzU5K0c+dOde7cWamp/j2Umab8evD0bmvKOwlGa2a4DKeHXsn/+ook0XrtXHd0C9vZ91wul2677TY98MAD3mWtmRK2LTVtFeUJpei+BwDRrdbhkjuu4dN2BjpHOOueliBJqmt/Lh+6IeDKy8v1k5/8RFdeeaWeffZZbyAlSXl5eSouLlZ+fr4cDoc2bNiglStXeseRGjt2rFauXKkNGzbI4XAoPz9fJSUlysvLkySNHj1aixcv1t69e1VZWam5c+eqX79+Ou+883TBBReoT58+mjt3riorK7V3714tWrRIY8eOtfT6Gx8dxD8tAJEqbD+aXbhwoTZv3qxu3bpJkndK2J/+9KcaP368CgoKNG3aNPXo0UO9evXyTgn79NNPq1evXlq6dKmmTJmiNWvWnNRfPNCcTQIoe+OnHXTfA4DoduBYQzeMWLuh+Jiw/YwIUGZKnOLshuqVoH8frNDlXZs/1g5wNq+88or279+vt956S2+//bbPuq1bt2rJkiWaM2eOFixYoIyMDM2ePVtXX321pIbZ+B5++GH98pe/1KFDh5SVlaWnn35aaWlpkqRp06bJ6XRqwoQJqqqqUv/+/fXEE094j79gwQL9+te/1g033CCbzaZRo0Zp6tSpVl26pOMtpWhNASBShWUotX79er3zzju66aabvMtaOyVsW/J8amhIstl8lwEAotP+Yw3jnKTGx3gfOoBwZDMMdWufoG9Ka7Rx91FCKQTUpEmTNGnSpNOuv/zyy/Xiiy+edv2tt96qW2+99ZTrYmNjNWPGDM2YMeOU6zMzM7VgwQL/Chxgx1tK8ewAIDKF3UezJSUleuihh/R///d/Pi2cTjcl7I4dOyTJp7/4qdb7wzD8+/LMvGczjle40236fZxw/mpJvUXaV7TXQbRff6jWQSQKl+7dB8qPh1JAuOvWOAvfxt1Hg1wSILLYGm/WZFIAIlVY/SXsdrt13333adKkSerZs6fPujNN+dqc9f7wd8T5CrPhZmIzDMXG2iU5FJ8YF3bTs7YWU15SB9F+/RJ1YIVw6d69n1AKEaRb+4ZxpT7df0yVdU6l8HsNBITn8yNaSgGIVGH1F8NTTz2luLg43XbbbSeta82UsP7yd+rG4tKGaV0NQzJdDeNLlR+rCZvpWVvLMMJzystAivY6iPbrl0KzDjxliiTh1L3b04s7Izm2zc4BWKVdQozcxw5L7c7RmHtmKeHoNydt0yEjTUueeqZNzv9fd92hktKy065vy3MDbcnTUoopkgBEqrAKpV577TUdPnxYffv2lSRvyPSPf/xDM2fObPGUsP7yd+pGh6tJ973GG4vDZYbMg6lVmPKSOoj265eog7bk6d69aNEi5efne5efrnv38uXLJTXcC04Mn1rSvdvf7pB3XnOeVv3tj8ruP8W/HVugaffRcP39a3oNVp6vLY4ZKT+HE6/Bse/fim93jjoP+k9de1HGSfu++fiMNvv5lZSWafj03552fdNzW/271Bba8hrCuV4ikefnYYbrmwYAnEVYhVInzrjhGS9k3rx5Onr0qB577DHl5+drwoQJ2rJli1auXKlFixZJapgSdtq0abr55pvVp08fLV261GdK2LbkmX3PZhjeG0vTGfkAAK0TCt27/W11likptXK3UlISTruNYUhJSfEBW5+YGH/G9W157kCtT0yMb/Nzx8Taz9jFPibW3uJ6k07+Ofizf2vWB+LYnrKf6hqcB/6t+O8M1v6KulMe52z12hpn+pmc7tyR0FI0Eq4BZ+ZtKUUmBSBChVUodSbp6emtmhK2LTldTWbf84ZS3FkAIFBCoXt3S7pmOh0uVVfXnXa9aSog6z1hQk1NnU8Zz7R/oM4dqPUnXkNbnvuLzz/XNdcPPe36wp2FGtqCevN8MHXiz8GfsrVmfSCOXVNTd8rfJUlyHPhKhqSyaocOlVYpNcH3z0ynw9VmQxec7d9S03OHYndqf7XlNURi1+5wRkspAJEurEOpefPm+bxuzZSwbcnZdPa9Jt33AACBEQrdu0O5a6anXKFavuaw8hqcbp2xK9hjd41o0XEj/ufgqNU5qfE6VFGnfeW16pmQctr9g+HEc4fyv9nmioRrwJnRUgpApLMFuwDR4HgoZdBSCgDawNtvv61//etf2rx5szZv3qwRI0ZoxIgR2rx5s/Ly8lRcXKz8/Hw5HA5t2LBBK1eu9I4jNXbsWK1cuVIbNmyQw+FQfn6+Zd27gUjjmYVvX3ntWbYE0Bw2WkoBiHBh3VIqXHgCKMNo0n3PxZhSAGCFUO7eDUSabu0T9K9vy7WvvFamacpg1GygVQxaSgGIcIRSFvAEUD7d97izAECbCZfu3UCkOSclTrE2Q3VOt0qrHeqQHBfsIgFhzfOBtpuWUgAiFN33LOBo0n3P83kh3fcAAECksdkMdW7XMAseXfiA1js+0HlwywEAbYWWUhbwzL5no/seAACIcN3SErS3rFb7ymvVq2u7YBdHkvTVVzt067ix3tcxsXY5HS7v6w4ZaVry1DPBKBpwRrbGj7TdIpUCEJkIpSzgO/ue7zIAAIBI0q1dw2DnB4/VyeU2ZbcFf1ypE2dUTEqKV3V1nff1m4/PCEaxgLOipRSASEf3PQs43Z4xpQzvYIWe1lMAAACRJD0pVomxNjndpg5X1J19BwCnZWOgcwARjlDKAqeafc/hpvseAACIPIZhqGv7htZSjCsFtI7N21KKVApAZCKUsoB3TCk1HVOKGwsAAIhM3UIolHK43LJ3ylbRkSodqaxnFjOEFYOWUgAiHGNKWcDZZPY9TxNcxpQCAACRyhNKHamsV73TrbgY6z8HNU1Tnx+s1L++LVfqzdO1pqhEkpQSZ9fA7I46NzXW+8APhCrPB9qEqQAiFS2lLOA6Vfc9WkoBAIAIlRIfo3YJMTIlHThmfWspt2nq/aISrd91VHVOt9xVZeqUGq9Yu6HKepfe/vyg3i8q8f6NBoQqT3BKJgUgUhFKWaDpQOfHW0oxphQAAIhcwezC99HXpSoqrpYhacAF6Tq2fLZuuayTftSnm/qc216GIRUVV2v1jiO0XkdIo6UUgEhHKGUBT6somyF5GonzBxAAAIhkx0Mpa2fg++pIpb48XCVD0o09MnVZl1TJbPgwMMZu05Xd2+vWK7oq1mZoX3mt1hQWyxTd+BCabLSUAhDhGFPKAsfHlGKgcwAAEB26tIuXJJXVOFRd77LknJV1Tq37+qgk6cru7XVBRtIptzu/Q7LyenbU2/8+rF2lNUo5t99pj/lfd92hktKy067vkJGmJU8906pyA6fjiUvd4tkBQGQilLKA09Xw6ZxhGPKMp0n3PQAAEMkSYu3KTI5TcVW9ZV34Nuwuk9NtqlNqvHp3a3fGbbu1T9Cgizvo/aISVXbrp/W7SjXggoyTtispLdPw6b897XHefHxGq8sNnA4tpQBEOrrvWcCnpdQJywAAACKVleNKHSiv1TclDeNIXXthuvdh/kyyOybrO51SJMPQL97coYNBGJQdOBODMaUARDhCKQt4Qykx+x4AAIgeXds3dOHbX17bpp2PTEkFe8skST07pahDclyz9736gnTFVh5Wea1TD76xw9vCHQgFnnCVz7MBRCpCKQscbynVdPY97iwAACCydU6Nl92QqupdciWktdl56tt116GKetkNKffcM3fbO1GMzVB64Sqlxsfo0wPH9MyGPW1USsB/npZSJi2lAEQoQikLeAY1N5oOdM6YUgAAIMLF2G3qlNrQWqquffc2O09F40DlPTulKDnO/yFTY+qOaVZetiTpzxv3aNu+8oCWD2gpWkoBiHSEUhbwBFBNZ9+j+x4AAIgGXRvHlWqrUOqzA8dU366bbIZ0RVf/Wkk1ldejo4Zfco7cpvQ/q3aoss4ZwFICLWNjTCkAEY5QygJNu+8ZdN8DAABRxDPYeV27c+Vqg79//rZlnyTp4sxkJce3bmLpGUOy1LV9gvYfq9Nj/ywKRPGAVjnefS+45QCAtkIoZQFP972mLaVcbpO+4QAAIOJlpsQpzm7IjEnQFwcrAnrsg8dq9c+vjkiSLu+S2urjpcTH6Nc395DNkFZ9cVjv7Djc6mMCreHpvmeKcaUARCZCKQscbyl1PJRquhwAACBS2QxD3dISJUkff1Ma0GO/vO2AXKYUV77Xrxn3zuSKbu31X/3PkyTN+0eRXHEpATku0BKeUEpiXCkAkYlQygKe8MloMvte0+UAAACR7Ly0hi586wIYStU73Xrt04OSpOSD2wN2XEm6fcD5uqxLqirqnDp68U2M54OgsTf5QNvF7yGACEQoZYGmA50bTZcz2DkAAIgC5za2lPr3oUqVVNUH5JhrCot1tMahjilxSjj6dUCO6RFjM/Trm3sqMdam+vbnavv+YwE9PtBctibdLNpiTDYACDZCKQscH1PK8Om+52gMqwAAACJZUpxdsZWHJEnrdwWmtdTybfslSd+/vIsMBf5hvXt6omYMyZIkFewp156jNQE/B3A2DRMlNXxPKAUgErVuihI0i3dMKTV04bPbDLncJi2lAABA1Igv2yVHSid9uLNUIy7t3KpjFR2p0if7jsluSKN6ddYbASrjiUZe2kn/99wrqu50mf5ZWKxRl3dWWmKsX8f4r7vuUElp2WnXd8hI05KnnmllSRHJYgxDDtOkGymAiEQoZYHjY0o1vI7xhFJ82gEAAKJEwtGvVXluf63/plS1DpcSYu0tPpanldTgrEx1TIkPVBFPYhiG2u96X6lZfXSook6rdxzRqMs7Kz6m+Z0NSkrLNHz6b0+7/s3HZwSiqIhgNpsh8ewAIELRfc8Cx2ffa0ilYhv78DlcdN8DAADRIbbqiDqnxqvW6dbG3UdbfJyqeqfe+uKwJGls7y6BKt5pGaZbeT0ylRJn17Fap1bvOMzfcLCUvfEZgpE/AEQiQikLHA+lGl7bG7/h0w4AABAtDEmDszpIktYUlbT4OCs/O6Rqh0sXZCSqb/e0wBTuLBJj7bqpZ0fF2Q0dqqjX2/8+ononCQGs4Xl2YPY9AJGIUMoCTtfx2fekhu57EqEUAACILt/NzpQkrd1Z0qLWRm7T1N+37pMkjc/tJsMwzrJH4HRIjtOwS85RrN3QwYo6rfz8kCpqnZadH9HL3vjExkDnACIRY0pZ4PiYUo3d9+yNoRRNvwEAQBS5olt7dUiOU0lVvdbvOqpBF3fwa/91X5dqb1mtUuNjNPzSTgEr11df7dCt48aeet3OQg1v/L5jSrxGXtpJb/37sEqrHXpl+wEldciRaZqWBmSILt6WUoRSACIQoZQFPDcQz3TFdN8DAADRKMZmaGjPjvrbln1664tDzQ6lPDPYFfccJaWdJ/c3G/UfP/ydd33T4KglnG6ddjDyL+4a4fO6Q3KcRl3eWe99VazDlfWqz/6e7nhxm37U91wNvChDsXY6IiCwPGNK0X0PQCQilLJA04HOTdOk+x4AAIhaN3/nHP1tyz59uLNElXVOpcSf/c/RktIyDbhrrl7edlCGpJEjRio1/vve9ScGR20tJT5GIy/tpE/2H9O/dhVr+/5jmvn6F0qMtenSLu3UrV2CYhpbxpdddIP+8eUR1bncqneacrrdirHZlJoQo47JcXLGt7O07Ag/tJQCEMn4KMcCTpfvQOfHGscfYOYWAAAQbXqck6ILOySp3mXqnR2Hm73f5wcqJUnnZyQqtRlBVluz2QxdeW57nfPJc5rYr7sykmJV43Br854yvfbZQb287YBe3nZA1edcqm9Ka7S/vE7FVfUqq3GquKpe35RUa9OeMh3Onah7X/lMRUeqgn1JCFHellKEUgAiUPDv6FHAO6ZU42tPOEVLKQAAEG0Mw9Coyzvr8fe/1otb9+v7vbqcdTwmV2ySChtDm8u6pFpRzGazO6o07boLNWXgBSo8XKWvjlTqUEWdPH/lvfDiC+o1eLji7DbFxdgUYzPkcLlVVuPUvvJafXu0Wuu+KdW6nUfUbu/HSj6wVU1ro0NGmpY89UwwLg0h4vjse0EuCAC0AVpKWcAztIBngHOb4RnonDsLAACIPrdc1llJsfaG1kK7y866fWW3q+QyTZ2TEqfOqfFtX8AWsBmGenRK0cjLOuuOAefrzsav1P2bdUnnVGV1TNZ56Ynq2j5B52ck6Ypu7TTsknNUseJXOj89UbLZdez865Q84gHdfO9jGj79txo+/bcqKS0L9qWFjNLSUuXl5Wnjxo3eZdu2bdO4ceOUm5urIUOGaNmyZT77rFixQnl5eerdu7dGjx6trVu3ete5XC7Nnz9f11xzjXJzczVlyhQdPny89V5JSYmmTp2qvn37qn///pozZ46cTutnXKT7HoBIRihlgZk3ZOmBodlKiGmobk9LKQc3FgAAEIVS4mM08rKG2fOe3/ztGbc9cKxWVedcJknqe15axM1y5644orwemRp4UboMQyoqrtY/vyqWm0GtfWzZskXjx4/Xnj17vMvKy8s1efJkjRo1SgUFBZozZ44effRRbd++XZK0ceNGPfLII5o3b54KCgp0yy23aMqUKaqpqZEkLV68WOvWrdPLL7+stWvXKiEhQbNnz/Ye/95771VSUpLWrl2r5cuXa/369crPz7f0uqXjzw6EUgAiEaGUBYb27KifXN3d+9rTUooxpQAAQLT6jyu7yW4ztGH3UW3YVXra7X63Zqdks6tLu3h1a59gYQmtYxiGvtMpVXk5mbIZ0jelNdqw62iwixUyVqxYoRkzZmj69Ok+y9955x2lpaVpwoQJiomJ0YABAzRy5EgtXbpUkrRs2TINHz5cffr0UWxsrCZOnKj09HStWrXKu/7OO+9Uly5dlJKSooceekgffvih9u7dq927d2vTpk267777lJiYqO7du2vq1KneY1vpePc9QikAkYdQKggae/Gp1kkoBQAAotO5aYn6Qe+ukqQnPvj6lGNt/rOwWO8XlUhul665IN3qIlru/IwkfTc7U5L0+cFK7ThUGeQShYaBAwfq3Xff1bBhw3yWFxYWKicnx2dZVlaWduzYIUkqKio67fqKigodPHjQZ31mZqbat2+vL7/8UoWFhUpLS1OnTp286y+++GLt379fx44dC/QlnhHd9wBEsrALpXbs2KFJkyapX79+uvbaazVz5kyVljZ8utaaPuVWimm8sdQRSgEAgCh2x4Dz1D4hRjuLqxtaRDVRVFyl36z+SpKUsn+LMpLjglFEy13UIUl9u7eXJH2866gciRlBLlHwdezYUTExJ8/PVFVVpcTERJ9lCQkJqq6uPuv6qqqGgfOTkpJOWl9VVXXKfT2vPcdvLsPw/6thx4b/eWbfc7cwlGrJ+YP1FW7l5dq57mi77rYQVrPv1dbW6o477tAPfvADPfXUU6qqqtL999+vBx98UPPnz9fkyZP105/+VOPHj1dBQYGmTZumHj16qFevXt4+5U8//bR69eqlpUuXasqUKVqzZs1JN5xAM01TZpPmtp5PO+ocrjY9LwBEkx07dmj+/Pn6/PPPFRsbq2uvvVYPPPCAMjIytG3bNv3mN79RUVGR0tPTNWXKFI0bN86774oVK7Ro0SIdOXJEF110kX7xi18oNzc3iFcDRId2CbH6xdAc3ffaF1r2yX7ZbYZu63uu/n2oUvP+UaiKOqeu6NpOhzcWSBob7OJapne3djp4rE7fltfqaNb35HC5FWsPu8+S21xiYqIqKip8ltXW1io5Odm7vra29qT16enp3r//PeNLnbi/aZonrfO89hy/uTp08G/GyLS0huMnxMcpKSleCfENj2yG3aakpOYN9J+Q0BDipqcnKzMztGasPBt/6yuSROu1c93RLaxCqf3796tnz56aNm2a7Ha74uLiNH78eM2cOdOnT7kknz7lvXr18ulTLkkTJ07USy+9pFWrVmnMmDFtXvbH3/nS+72npRTd9wAgMML1QwsA0uCsTN0z6EIt+PAbvfivfXrxX/u86y7qkKT/G3WpfvxKdH2QZxiGrs/uoOWfHFBtcqb+vHGPJl9zQbCLFXJycnK0bt06n2VFRUXKzs6WJGVnZ6uwsPCk9YMGDVL79u3VqVMnny5+R44cUVlZmXJycuR2u1VWVqbi4mJlZjZ0qdy5c6c6d+6s1FT/HiRLSirkz3BQZWUNrbhq6+pVXV0nd+M4tHX1TlVX1zXrGLW19ZKko0erVFxccZatQ4NhNDyk+1tfkSBar53rDq/r9pQ70MLqI5eLLrpIzzzzjOx2u3fZ6tWrdemll7aqT7m/WtTMrUlbN09LqXqnO+jN72ieSB1w/dFdB5Gi6YcWcXFxSk9P9wZQrR0IF0Dbu+2q7nr8+5fqgoyGIDgx1qYfX9VdS37YW+0TY4NcuuBIjLXrmgvTJUlLNu7V1yVVQS5R6MnLy1NxcbHy8/PlcDi0YcMGrVy50vuB89ixY7Vy5Upt2LBBDodD+fn5KikpUV5eniRp9OjRWrx4sfbu3avKykrNnTtX/fr103nnnacLLrhAffr00dy5c1VZWam9e/dq0aJFGjvW/xZ7pun/V8OODf/zdN9ztfDhtSXnD9ZXuJWXa+e6o+2620JYtZRqyjRNPfHEE1qzZo2ef/55Pffccy3uU+4vf9NBl6vh072kpDi53aYS4ho+7TBi7WHXnLY1aJ5IHUT79UvUQVvxfGjR1Nk+tFi+fLmkhg8tTmwx29IPLQC03MCLOujaCzNk6vhMxdHuog5J+nhjgWozLtLja77WgjGXyaBuvNLT07VkyRLNmTNHCxYsUEZGhmbPnq2rr75aUkPPiYcffli//OUvdejQIWVlZenpp59WWlqaJGnatGlyOp2aMGGCqqqq1L9/fz3xxBPe4y9YsEC//vWvdcMNN8hms2nUqFGaOnWq5dfJQOcAIllYhlKVlZWaNWuWPv/8cz3//PPq0aNHq/qU+8vfZnZud0MoVV1dL7fbLbOxCe7RitqwaU7bGoYRns0TAyna6yDar18KzTrwlCnSBOtDi1B+TmzaUi9Ufv/81fQawlWk/Rxacg1n+/lZEbi0xc+hrYptGIZK3s9X8qiHtWH3UX1v8n1KKNslGVJMjF1pqala8qdnznoc/84Z0MMF3Jdffunz+vLLL9eLL7542u1vvfVW3XrrradcFxsbqxkzZmjGjBmnXJ+ZmakFCxa0vLAB4hlOjFAKQCQKu1Bqz549uvPOO9W1a1ctX75cGRkNM5K0pk+5v/xtunbitvbGm32dwx22f5S2RFs2+QsX0V4H0X79EnXQ1oL5oUVLAr6YWPsZB601DAV0fWJi/BnXt+W5A7U+MTE+ZMvWnH2lk38OoVK25qz3lP1U13C2/WNa0UK8Lf6tNL2G1tTb2a6rtWV3VhSrz4WZ2rL7qFy5YzT66vO9LWdW/O+9UdXqPlod777HHxAAIk9YhVLl5eX6yU9+oquvvlpz5syRzXZ8SKy8vDw99thjys/P14QJE7RlyxatXLlSixYtktTQp3zatGm6+eab1adPHy1dutSnT7mVvLPvMdA5AARMsD+0aEkrOKfDdcZBa01TAVnvCRNqaup8ynim/QN17kCtP/EaQqlszV3naYFy4s8hFMrW3PU1NXWn/F1qzv5Oh6vFLcQD+W/lVP8eWlNvZ7uuQJT9sk7J+mJ/ucprHCr4ulhXdGunxMR4OZ0tr9PTidRWtOGM7nsAIllYDXT+yiuvaP/+/XrrrbfUp08f5ebmer88fcrffvtt9e/fX7Nnzz5tn/J+/frpzTff9OlT3tZM05TZ+JeP3Tv7XnTNJAMAbcXzocWVV16pZ5991htISa0fCLe5QmWwyNOVren/wxHXEBpaew2hMLBqW/wc2rrscXab+p2XJkn617flqqlv/BsyjAayRcsRSgGIZGHVUmrSpEmaNGnSade3pk+5lWIMWkoBQCA1/dDi7bff9lm3devWVg2ECwChILtjsj47UKGSaoe27T+m77ZPCnaRYBG67wGIZGEVSkUKz2CFhFIAEBiR8qEFAJyOYRjqc16a3tlxRJ8frFS/i5z66qsdunXc2NPu0yEjTUueCuxA6LCezdtSKsgFAYA2QCgVBN7uew7uLAAAAGie89ISdE5KnA5X1qtgV6mcbmn49N+edvs3Hz/1rHIILzGNzw5uuu8BiECEUkFwvPseY0oBAACEs7O1VvpqZ6GGB+hchmGo73lpWvXFYX2275iMZP9mCUV4stF9D0AEI5QKguMDndNSCgAAIJydrbXSF3eNCOj5urVPUNd28dp/rE4JVwwL6LERmjxDfzDQOYBIFFaz70UKTxNcxpQCAACAv/o2zsQXl3W1jtU6g1sYtDnvQOeEUgAiEKFUEHg+7aClFAAAAPzVKTVe52ckybDZ9cm+8mAXB23M08uC7nsAIhHd94Kg6acdTpdbMXayQQAAENnONPYSs8T5r/9FGdpdWq2vjlSpd7f2apfAn/WRyhNKuU3JNE0Zjc8SABAJuHsFgefGIjW0lkohlAIAABHuTGMvMUuc/7q0T5Rj3xeK7XaJPtlXrkEXdwh2kdBG7E1CKJfbVIydUApA5CANCYKm9xHGlQIAAEBL1H6ySpL01ZEqVTC2VMRq+oG2ix58ACIMoVQQGIah+JiGqieUAgAAQEu4jnytbu0TZJpibKkI1iSTYrBzABGHUCpICKUAAADQWlee216S9OWRKlXU0VoqEhmG4e1pwWDnACINoVSQJDSGUrVOV5BLAgAAgHDVuV28uraPb2gt9e2xYBcHbcQ7Ax8tpQBEGEIpi5hNPtUwTfN4SykHLaUAAADQcp7WUl8dqaS1VIQilAIQqQilgsA0TcXb6b4HAACA1uvSLkFd28XLbUqf7KO1VCTyzMDnpvsegAhDKBUk8bF03wMAAEBgXNm9sbXU4UpV0loq4tgaW0o5aSkFIMIQSgUJA50DAAAgULq0S1AXWktFrJjGUMrNowOACEMoFSSe7nu1hFIAAAAIgD6emfhoLRVxbI3d95h9D0CkiQl2AaJR04HOaxnoHAAARLmvvtqhW8eNPf36nYUabmF5wlWX9g2tpQ4cq6O1VIRhoHMAkYpQKgjcbrfi7XZJUh1jSgEAgCjndEvDp//2tOu/uGuEhaUJb1ee215vfnFYXx6uVMe4lGAXBwHS2MmCUApAxKH7XpB8XVIliTGlAAAAEDhd2x8fW6qia99gFwcBYqf7HoAIRSgVJJ4muIwpBQAAgEC6snFsqepzLlVxZV2QS4NAoPsegEhFKBUknhk0aCkFAACAQOrSLl7ntk+QDJvKaxnwPBLENvbfq3cRSgGILIRSQWCaprcJLmNKAQAAIJAMw1Bej0yd88lfdHFmcrCLgwBIaJwkqc7BswOAyEIoFSSellLMvgcAAIBAi7HbFFPHDHyRIiG2ceZuelkAiDCEUkHimUGD7nsAAAAAziQhpmHm7hpaSgGIMIRSQXK8+x6hFAAAAIDT87SU4tkBQKQhlAoSe0MmddKnHaZpymSqVwAAAACNPC2lGPoDQKQhlAoSz6cdRyrrg1wSAAAAAKHs+JhSdN8DEFkIpYIkNa7h044Dx2rlctMyCgAAAMCpeWbfq3eZPDsAiCiEUkESb2+Ygc/pNnWksi7YxQEAAAAQouJjbGoc/YNxpQBEFEIpCzSMEeX7iYbNMNQ5NV6StK+8NgilAgAAABAODMNQfGNrqVpm4AMQQQilgqhrO0IpAAAAAGfnGVeqhpZSACIIoVSQuN1udWkXJ4lQCgAAAMCZHZ+Bj5ZSACIHoVQQ7T1aLUnaV1YT5JIAAAAACGWellKMKQUgkhBKBVFK4wx8+2kpBQAAAOAMPC2lahyEUgAiB6FUkJimqeS4hupv2n3P7XbL7eZGAwAAAOA4T0upWifd9wBEDkKpIEqKafh/abVD1fUNNxfTNL1fAAAAACA16b5HSykAEYRQKohiDCnebkiStu8v9y5/6qNvCKcAAAAAeHkHOmdMKQARhFAqiEzT1IUZCZKkpZv3SZKq6l06UFGn+iholkvoBgAAADSPp6WUp4cFAEQCQqkg69EhQXZD2rD7qP625VvdtvQTrf6qVKOe3axXtx8IdvEAAAAAhIAOSXGSpKM1DlXVO4NcGgAIjKgLpUpKSjR16lT17dtX/fv315w5c+R0Bu9NPdEuDb4oTZL0+Ptf68CxuoZyVjs09x9FevLDr1XvdMntdtOyCADaUKjdHwAAwRdK94akOLvOSWkIpnaX1gSlDAAQaFEXSt17771KSkrS2rVrtXz5cq1fv175+flBK49pmkoynLowLU6XdU7RyEsydWuP9vrxlZ0kSX/dvE//8Zct+tvmvfrtP74KWjkBINKF2v0BABB8oXZvOD8jSZK0q41CqeLKOu09WqPiqno+DAdgiZhgF8BKu3fv1qZNm/Thhx8qMTFR3bt319SpU/XYY4/pjjvuCFq5kuLs6tc1SXa7Tbdffa7+9PEu1dXW6upzk7SjpF57y2r1+7W7JUmfHKhUr67t1KVdvNonxKhdYqzaJ8QqNSFGsXab6pxu1dQ7VedyK85uV6zdUKzdphib0djSSrLZ1LhPrOJjTp9LNr0RGYbR6ut0uU2V1ThUXFmvPUerdaSyXjZDujgzRd/pnKLkuKj6dQQQQkL1/gAACJ5QvDdckJGogj1l2n+sVkerHUpPim3RcUzTVEm1Q98erdHnByv06YFj+nT/MR2urPdu0y4hRhdmJOmizCRd1CFZF3VIUkZSnGLshmJshlxuUw6XqXqXWw6X+4zfHykpVXlllZxuyWmacp8m70pIiFVtrcP72m5ICTGGEuyGEmKkjPbt1CGjg9ymZDZeh9uU3I3PLXF2m2LtNsXHGIqLsSmu8TnIkCEZks2Q93vP043bNOV2Sy7TlNs05XIfP2bD96ZcpuRu8r3nuUpqKIckxdoMxcbYGv5vtynObshmM9T0Kcr3lbyFMAzpcL2psrKqhuc1w1Cs/fg1NFxXw2tbAJ7LgFASVSlAYWGh0tLS1KlTJ++yiy++WPv379exY8fUrl27Zh3HZpP8+eDANKU4u6H4GJs36DGMhpDI8/+G4xrK37Tbu112RrwuTI/XnnKH9lc4dKTapf3H6rT/2JHmn/ws7Daj4c3ZaPh/w/cNb4SGpDqnqaRYmwzD95qPvwmbaloVpne92eT7huPX1LtOewOSpHYJdsXbbTIMQ3Zb41dj2Vrz3tuat+1AhHGeMthjbHI53WrOr06o32paUi32GLtcETKAf4s+ODQku90ul8ulZv0S+GlQVgf9pF93/4oU6r9oFgrE/cHfe4MkJSUlKe4MHw6kpqQEZL1hNPyh7oq1+ZTxTPsH6tyBWt/0GkKtbM1dZxgN6+NP+DmEQtmauz4+1nbK36VQKFtz15/q30OolK256z3XcLZ9k5KSZPOzXwT3huOC9ewQE2NXamqqKo/sU+kpPrTtkpyoCqddq3ccVrzNlM2Q7EbDCczG/zgdCcqe9if9av0xxRRsaFhnNvzt7pZ0rN7UqSbxS42PUXyMVOeU3Ka0s6RaO0uqJRU3/wJape4s60sbv6KXoYZ/p0bj900DNsn337BxitfHtzNOseyE1yec2xMGuhuf9dym7+920/095z3++ngk17RctsbGE4Z89/V57f3ez+dCQ5J59ve1sx3yxP3PtP1p153wPG23G3K5ji848S3idO8ZTZ/LT3VdzameWJv0kz6ddUOvC5qxte+524JhRlG7zNdee02PP/643n//fe+yPXv2KC8vTx988IE6d+4cvMIBAIKG+wMA4ETcGwCg7UXVmFJJSUmqqfHtf+15nZycHIwiAQBCAPcHAMCJuDcAQNuLqlAqOztbZWVlKi4+3vx0586d6ty5s1JTU4NYMgBAMHF/AACciHsDALS9qAqlLrjgAvXp00dz585VZWWl9u7dq0WLFmns2LHBLhoAIIi4PwAATsS9AQDaXlSNKSVJxcXF+vWvf62NGzfKZrNp1KhRmjFjhux2e7CLBgAIIu4PAIATcW8AgLYVdaEUAAAAAAAAgi+quu8BAAAAAAAgNBBKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRyjVxkpKSjR16lT17dtX/fv315w5c+R0OoNdrDPasWOHJk2apH79+unaa6/VzJkzVVpaKknatm2bxo0bp9zcXA0ZMkTLli3z2XfFihXKy8tT7969NXr0aG3dutW7zuVyaf78+brmmmuUm5urKVOm6PDhw971Z6urs5070Fwul2677TY98MADzS5DpFx/WVmZZs6cqf79++uqq67S1KlTvWWNhjr4/PPPNWHCBPXt21cDBw7Ub37zG9XX10fN9SO8teY9PJS05D04lLTmfTRUtOa9MNhKS0uVl5enjRs3epe15v3baqcq/+rVq3Xrrbfqyiuv1JAhQ7Rw4UK53W7v+lAqP1omHJ8bWipS7lUtFe73uJaIhPtiS4TzvdQyJtrUj370I/PnP/+5WV1dbe7Zs8ccPny4+fTTTwe7WKdVU1NjXnvttebvf/97s66uziwtLTXvvPNO86677jLLysrMfv36mc8//7zpcDjMjz/+2MzNzTW3bdtmmqZpbtiwwczNzTU3b95s1tfXm3/+85/N/v37m9XV1aZpmuaTTz5pjhw50ty/f79ZUVFh3nvvveadd97pPfeZ6ups524LTzzxhNmzZ0/z/vvvb1YZIun6f/SjH5nTpk0zy8vLzYqKCvPuu+82J0+eHBV14HK5zGuvvdb8y1/+YrpcLvPAgQPm0KFDzYULF0bF9SO8teY9PNT4+x4calr6PhoqWvNeGGybN282b7zxRjMnJ8fcsGGDaZqtv4cHu/yffvqp2atXL/Of//yn6XK5zKKiIvO73/2u+eyzz4Zc+dFy4fbc0FKRdK9qqXC/x7VEuN8XWyKc76VWIpRqQ7t27TJzcnLMgwcPepe9+eab5vXXXx/EUp3Zzp07zdtvv910Op3eZf/4xz/MK6+80vz73/9u3nTTTT7b/8///I85c+ZM0zRN8+c//7k5e/Zsn/Xf+973zOXLl5umaZqDBg0yX3/9de+6I0eOmD169DD37Nlz1ro627kD7eOPPzaHDRtm/vSnP/XeLKLl+j/99FPz8ssvNysqKrzLjh49an711VdRUQelpaVmTk6O+ec//9l0Op3mgQMHzJtvvtl89tlno+L6Ed5a8x4eSlryHhxKWvM+Gipa814YTK+88op5/fXXm2+++aZPqNPa92+rnK78b7/9tjl37lyfbefOnWv+v//3/0zTDJ3yo+XC8bmhpSLlXtVS4X6Pa4lIuC+2RLjeS61G9702VFhYqLS0NHXq1Mm77OKLL9b+/ft17NixIJbs9C666CI988wzstvt3mWrV6/WpZdeqsLCQuXk5Phsn5WVpR07dkiSioqKTru+oqJCBw8e9FmfmZmp9u3b68svvzxrXZ3t3IFUUlKihx56SP/3f/+nxMRE7/Jouf7t27crKytLf//735WXl6eBAwdq/vz56tixY1TUQXp6uiZOnKj58+fr8ssv1+DBg3XBBRdo4sSJUXH9CG+teQ8PFS19Dw4lrXkfDRWteS8MpoEDB+rdd9/VsGHDfJa35v3bSqcr/9ChQzVr1izv69raWr3//vu69NJLJYVO+dFy4fjc0FKRcK9qqUi4x7VEJNwXWyJc76VWI5RqQ1VVVT5vNpK8r6urq4NRJL+YpqnHH39ca9as0UMPPXTK60lISPBey5nWV1VVSZKSkpJOWl9VVXXWujrbuQPF7Xbrvvvu06RJk9SzZ0+fddFw/ZJUXl6uL7/8Urt27dKKFSv06quv6tChQ7r//vujog7cbrcSEhL0i1/8Qp988oneeOMN7dy5UwsWLIiK60fk8Pc9PBS05j04lLTmfTRUtOa9MJg6duyomJiYk5a35v3bSqcrf1OVlZWaNm2aEhISNHHiREmhU360XLg/N7RUON6rWipS7nEtEQn3xZYI13up1Qil2lBSUpJqamp8lnleJycnB6NIzVZZWamf/vSnWrlypZ5//nn16NFDiYmJqq2t9dmutrbWey1nWu/5B3difXjWn62uznbuQHnqqacUFxen22677aR10XD9khQXFydJeuihh5SSkqLMzEzde++9+uCDD2SaZsTXwbvvvqvVq1frhz/8oeLi4pSdna1p06bphRdeiJrfAYS/lryHh4LWvAeHkta8j4aK1rwXhqLWvH+Hkq+//lr/8R//IafTqeeee04pKSmSwqf8OL1wfm5oqXC9V7VUpNzjWiIS7ostEWn30rZCKNWGsrOzVVZWpuLiYu+ynTt3qnPnzkpNTQ1iyc5sz549GjNmjCorK7V8+XL16NFDkpSTk6PCwkKfbYuKipSdnS2p4XpPt759+/bq1KmTioqKvOuOHDmisrIy5eTknLWuznbuQHnttde0adMm9e3bV3379tUbb7yhN954Q3379o2K65camo263W45HA7vMs/sPt/5zncivg4OHDjgnRHDIyYmRrGxsVHzO4Dw1tL38FDQmvfgUNKa99FQ0Zr3wlDUmvfvUPHBBx9o3Lhxuu666/Tss8+qffv23nXhUH6cWbg+N7RUON+rWipS7nEtEQn3xZaItHtpmwnmgFbR4D//8z/N6dOnmxUVFd5ZNBYsWBDsYp1WWVmZef3115sPPPCA6XK5fNaVlpaaffv2Nf/85z+b9fX15vr1683c3Fxz/fr1pmma3hkD1q9f75355aqrrjKPHj1qmqZpPv744+aIESPMPXv2eGce+9GPfuQ9/pnq6mznbiv333+/dwDCaLn++vp6My8vz7znnnvMyspKs6SkxPzxj39sTps2LSrqoLCw0LzsssvMxYsXm06n09yzZ485YsQIc968eVFx/QhvrXkPD0X+vAeHkta8j4aK1rwXhoqmA4W39v072OXfunWreemll5rLli075bahWH74L9yeG1oq0u5VLRWu97iWiIT7YktEwr3UCoRSbezIkSPmPffcY/br18+8+uqrzXnz5vnMNBFqlixZYubk5JhXXHGF2bt3b58v0zTN7du3m+PHjzdzc3PNG264wXz55Zd99n/11VfNoUOHmr179zbHjh1rfvLJJ9519fX15mOPPWZed9115pVXXmlOmTLFLC4u9q4/W12d7dxtoenNojlliJTrP3jwoHnvvfea1157rdm3b19z5syZZnl5edTUwbp168xx48aZffr0Ma+//nrzd7/7nVlXVxc114/w1dr38FDj73twKGnN+2ioaM17YShoGuqYZuvev4Ohafnvuusus0ePHif9u7799tu924da+eG/cHtuaKlIu1e1VDjf41oiEu6LLRHu91IrGKZpmsFurQUAAAAAAIDowphSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSwGmYpmnJPqEmEq4BAAAAABD6CKWAU3jvvfd0//33+7XPsmXLNH/+fL/2+fbbb9WjRw+98sorfu0XKH/5y180cOBA9erVS4sWLdKWLVt01113BaUsAAAAAIDoQigFnEJ+fr4OHDjg1z6LFy9WWVlZ2xSoDVRWVmrevHm67LLL9Oyzz+r73/++li1bpqKiomAXDQAAAAAQBWKCXQAAwVFeXi632628vDxdddVVwS4OAAAAACDK0FIKOMFtt92mTZs2adOmTerRo4c2btyow4cPa9asWRo8eLB69eqlsWPH6r333vPuM2TIEO3bt08rVqxQjx499O2330qSCgoKdPvtt+uqq67SZZddpiFDhujJJ5+U2+1uVRk//vhjjR8/Xrm5ubrqqqs0depUff311z7b/O1vf9PQoUPVq1cvTZgwQR9//LH3el555RUNGTJEkvTggw+qR48eeuCBB7RixQrt27cvqF0KAQAAAADRgVAKOMHDDz+sSy65RJdccoleeuklnXvuuRo7dqw2bdqk6dOn68knn1S3bt00bdo0vf7665KkhQsXqmPHjho8eLBeeuklnXPOOdqxY4cmTpyotLQ0Pf7441q8eLGuvPJKLVy4UG+++WaLy7d3715NmTJFl156qRYvXqzf/OY3+vrrrzV58mRv2PXXv/5Vv/rVr3TdddfpD3/4gy6//HJNnz7de4zrr79eCxculCRNmTJFL730kqZOnarBgwerY8eOeumll3T99de3vBIBAAAAADgLuu8BJ8jKylJKSookqXfv3nrsscdUWlqqt956S927d5ckDR48WBMnTtT//u//asSIEbrkkksUFxenjIwM9e7dW5K0Y8cOXXPNNXrsscdkszXkv9dee63ef/99FRQUaOTIkS0q3/bt21VbW6u77rpLnTp1kiR16dJF7733nqqrq5WUlKTFixdr6NChmj17tiTpuuuuU2VlpZYtWyZJysjI0He+8x1J0nnnnectc0ZGhuLi4ryvAQAAAABoK4RSwFls2rRJubm53kDK45ZbbtGsWbP09ddfKysr66T9Ro0apVGjRqmurk579uzR7t279fnnn8vlcsnhcLS4PFdccYXi4+M1duxYDRs2TIMHD1bfvn3Vq1cvSdLOnTtVUlKiG2644aTyekIpAAAAAACCjVAKOIvy8nKde+65Jy3PzMyUJB07duyU+9XW1uqRRx7Ra6+9JqfTqXPPPVe5ubmKiYmRaZotLs+5556r559/Xn/605/097//Xfn5+WrXrp1++MMf6mc/+5l3BsCMjAyf/TytqgAAAAAACAWEUsBZtG/fXsXFxSctP3LkiCQpPT39lPvNmTNHq1ev1hNPPKFrrrlGSUlJkqQBAwa0uky9evXSwoULVV9fry1btuill17SH//4R/Xo0UM9e/aUpJPK7AmrAAAAAAAIBQx0DpyCZwwoSbrqqqu0detW7d2712eb119/XR07dtT5559/0j6StGXLFvXv31833nijN5D67LPPVFpa2qrZ9/Lz8zVkyBDV19crLi5OAwYM0COPPCJJOnDggC688EJ16dJFq1at8tnvn//851mPfeI1AAAAAADQVngCBU6hXbt2+uabb7R+/XrvDHqTJk3Sq6++qg8++EDTp0/Xhg0bNH36dG+Q065dO33xxRfatGmTamtr1atXL3300Ud64YUXtGnTJj333HO68847ZRiGampqWly2q6++WocPH9a0adP0wQcf6KOPPtKsWbMUFxen7373uzIMQzNnztTatWs1a9YsrV27VosWLdKSJUuadd3FxcX64IMPdPjw4RaXEQAAAACAsyGUAk5hwoQJio2N1Z133qmNGzfqhRde0GWXXaY5c+boZz/7mQ4cOKBFixZpzJgx3n3+67/+S8XFxbr99tv12Wef6YEHHtCNN96oJ554QnfddZeWLVumKVOm6Ac/+IG2bt0ql8vVorL17NlTf/zjH1VZWan//u//1t13362ysjItWbJEF110kSRp2LBh+v3vf69PP/1UU6ZM0Zo1a/Tzn//8rMcePXq0unXrpmnTpunVV19tUfkAAAAAAGgOw2zNiMsAwsbGjRv14x//WM8995z69+8f7OIAAAAAAKIcA50DIcLlcjVrVr6YGP7ZAgAAAADCH0+3QIiYOHGiNm3adNbtvvzySwtKAwAAAABA26L7HhAivv76a1VVVZ11u8svv9yC0gAAAAAA0LYIpQAAAAAAAGA5Zt8DAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5WKCXYBwVFJSIX/mLDQMqUOHVL/3w+lRp4FHnQZeqNepp3wAAAAAEAyEUi1gmmrRA2ZL98PpUaeBR50GHnUKAAAAACej+x4AAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALBcSIdSpaWlysvL08aNG73Ltm3bpnHjxik3N1dDhgzRsmXLfPZZsWKF8vLy1Lt3b40ePVpbt271rnO5XJo/f76uueYa5ebmasqUKTp8+LBl12OapkzTtOx8AAAAAAAAoSpkQ6ktW7Zo/Pjx2rNnj3dZeXm5Jk+erFGjRqmgoEBz5szRo48+qu3bt0uSNm7cqEceeUTz5s1TQUGBbrnlFk2ZMkU1NTWSpMWLF2vdunV6+eWXtXbtWiUkJGj27NlBuT4AAAAAAIBoFpKh1IoVKzRjxgxNnz7dZ/k777yjtLQ0TZgwQTExMRowYIBGjhyppUuXSpKWLVum4cOHq0+fPoqNjdXEiROVnp6uVatWedffeeed6tKli1JSUvTQQw/pww8/1N69ey2/RgAAAAAAgGgWkqHUwIED9e6772rYsGE+ywsLC5WTk+OzLCsrSzt27JAkFRUVnXZ9RUWFDh486LM+MzNT7du315dfftlGVwIAAAAAAIBTiQl2AU6lY8eOp1xeVVWlxMREn2UJCQmqrq4+6/qqqipJUlJS0knrPeuayzD82ty7/Yn/R8tRl4FHnQZeqNdpqJYLAAAAQHQIyVDqdBITE1VRUeGzrLa2VsnJyd71tbW1J61PT0/3hlWe8aVOtX9zdeiQ6m/RffYzeBIMmJb+LHB61GngUacAAAAAcLKwCqVycnK0bt06n2VFRUXKzs6WJGVnZ6uwsPCk9YMGDVL79u3VqVMnny5+R44cUVlZ2Uld/s6mpKRC/kyiZxgND6We/QilWu/EOkXrUaeBF+p16ikfAAAAAARDSI4pdTp5eXkqLi5Wfn6+HA6HNmzYoJUrV2rMmDGSpLFjx2rlypXasGGDHA6H8vPzVVJSory8PEnS6NGjtXjxYu3du1eVlZWaO3eu+vXrp/POO8+vcpim/18t3Y8v6pQ6De+vUK9TAAAAAAiWsGoplZ6eriVLlmjOnDlasGCBMjIyNHv2bF199dWSpAEDBujhhx/WL3/5Sx06dEhZWVl6+umnlZaWJkmaNm2anE6nJkyYoKqqKvXv319PPPGEZeU3TVOmSUspAAAAAAAAwzT5rNxfxcX+d9/LzEzV4cPlMk3JZgurBmohyVOn/v4scHrUaeCFep16ygcAAAAAwUA6AgAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALBdWs++Fs4aZ98yQHOwYAAAAAADAarSUstAf134d7CIAAAAAAACEBEIpKxlGsEsAAAAAAAAQEgilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5SykGcGPgAAAAAAgGhHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUpZxDTNYBcBAAAAAAAgZBBKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRyhlIdM0ZZpmsIsBAAAAAAAQdIRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAASyHwxgAAKX5JREFUAAAAACxHKGUR0zRlmmawiwEAAAAAABASCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYLy1Dq888/14QJE9S3b18NHDhQv/nNb1RfXy9J2rZtm8aNG6fc3FwNGTJEy5Yt89l3xYoVysvLU+/evTV69Ght3bo1GJcAAAAAAAAQ1cIulHK73brrrrs0dOhQbdq0ScuXL9dHH32kp59+WuXl5Zo8ebJGjRqlgoICzZkzR48++qi2b98uSdq4caMeeeQRzZs3TwUFBbrllls0ZcoU1dTUBPmqAAAAAAAAokvYhVLl5eU6cuSI3G63TNOUJNlsNiUmJuqdd95RWlqaJkyYoJiYGA0YMEAjR47U0qVLJUnLli3T8OHD1adPH8XGxmrixIlKT0/XqlWrgnlJAAAAAAAAUSfsQqn09HRNnDhR8+fP1+WXX67Bgwfrggsu0MSJE1VYWKicnByf7bOysrRjxw5JUlFR0RnXAwAAAAAAwBoxwS6Av9xutxISEvSLX/xCY8eO1e7du3X33XdrwYIFqqqqUmJios/2CQkJqq6ulqSzrm8uw/CvzJ7tDeP4F1qnaZ0iMKjTwAv1Og3VcgEAAACIDmEXSr377rtavXq13n77bUlSdna2pk2bpjlz5mjkyJGqqKjw2b62tlbJycmSpMTERNXW1p60Pj093a8ydOiQ6ne5XS6XEhPjlZmZqtjYWL/3x6m15GeBM6NOA486BQAAAICThV0odeDAAe9Mex4xMTGKjY1VTk6O1q1b57OuqKhI2dnZkhoCrMLCwpPWDxo0yK8ylJRUqHE4q2YxDCktLUk1NXUqLq4glAoAw2h40Pf3Z4HTo04DL9Tr1FM+AAAAAAiGsBtTauDAgTpy5Ij++Mc/yuVyae/evVq8eLFGjhypvLw8FRcXKz8/Xw6HQxs2bNDKlSs1ZswYSdLYsWO1cuVKbdiwQQ6HQ/n5+SopKVFeXp5fZTBN/79auh9f1Cl1Gt5foV6nAAAAABAshmmG32PJxx9/rCeeeEJff/21UlNTdcstt2jatGmKi4vTp59+qjlz5uirr75SRkaGpk6dqtGjR3v3fe2117R48WIdOnRIWVlZmj17tq644gq/zl9c7H9LqfT0JP3q5a36fwMvoqVUABiGlJmZ6vfPAqdHnQZeqNepp3wAAAAAEAxhGUoFG6FU8IX6w344ok4DL9TrlFAKAAAAQDCFXfc9AAAAAAAAhD9CKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKYuYpun9AgAAAAAAiHaEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRyhlEdM0ZZpmsIsBAAAAAAAQEgilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilLMRg5wAAAAAAAA0IpQAAAAAAAGA5QimL0EIKAAAAAADgOEIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYLeCi1cePGQB8SAAAAAAAAESbgodRPf/pT3XjjjfrDH/6g/fv3B/rwAAAAAAAAiAABD6U++ugj3Xffffrss880dOhQ/dd//ZfeeOMN1dfXB/pUAAAAAAAACFMBD6ViY2M1dOhQLV68WB988IFuvPFGLVmyRAMHDtSvfvUr7dixI9CnBAAAAAAAQJhps4HOS0pKtHLlSr366qsqKipS//79FR8fr4kTJ+qPf/xjW502ZJmmKdM0g10MAAAAAACAkBDwUOrNN9/U5MmTNXjwYL388ssaNmyY3n//fT355JN64IEH9Pjjj+tPf/pTq85RVlammTNnqn///rrqqqs0depUHT58WJK0bds2jRs3Trm5uRoyZIiWLVvms++KFSuUl5en3r17a/To0dq6dWurygIAAAAAAAD/BTyU+tWvfqVu3brpxRdf1Ouvv66JEycqIyPDu/7CCy/UxIkTW3WOe+65R9XV1Xr33Xe1Zs0a2e12/eIXv1B5ebkmT56sUaNGqaCgQHPmzNGjjz6q7du3S2qYGfCRRx7RvHnzVFBQoFtuuUVTpkxRTU1Nq8oDAAAAAAAA/8QE+oAfffSR9u7dq06dOkmSPvnkE6Wmpuriiy+WJHXu3Fk//elPW3z8zz77TNu2bdPHH3+slJQUSdIjjzyiI0eO6J133lFaWpomTJggSRowYIBGjhyppUuXqlevXlq2bJmGDx+uPn36SJImTpyol156SatWrdKYMWNac9kAAAAAAADwQ8BbSr333nsaNWqUdu3aJUnaunWrxo0bpw8++CAgx9++fbuysrL097//XXl5eRo4cKDmz5+vjh07qrCwUDk5OT7bZ2VleQdXLyoqOuN6AAAAAAAAWCPgLaUWLlyoRYsW6bLLLpMkTZo0SVlZWXrsscc0ePDgVh+/vLxcX375pS677DKtWLFCtbW1mjlzpu6//35lZmYqMTHRZ/uEhARVV1dLkqqqqs64vrkMw78ye7Y3jONfaJ2mdYrAoE4DL9TrNFTLBQAAACA6BDyUOnDggK677jqfZQMHDtT06dMDcvy4uDhJ0kMPPaT4+HilpKTo3nvv1Q9+8AONHj1atbW1PtvX1tYqOTlZkpSYmHjK9enp6X6VoUOHVL/LXVdXp8TEeGVmpio+Pt7v/XFqLflZ4Myo08CjTgEAAADgZAEPpbp166a1a9f6BFPr169X165dA3L8rKwsud1uORwOb7jjdrslSd/5znf0t7/9zWf7oqIiZWdnS5Kys7NVWFh40vpBgwb5VYaSkgqZZvO3NwwpJSVONTV1Ki6uUHx8vV/nw8kMo+FB39+fBU6POg28UK9TT/kAAAAAIBgCHkpNnjxZ06ZN00033aRu3bpp//79evfddzV//vyAHP+aa65R9+7d9eCDD+rRRx9VXV2dHn/8cd14440aMWKEFixYoPz8fE2YMEFbtmzRypUrtWjRIknS2LFjNW3aNN18883q06ePli5dqpKSEuXl5flVBtNUix4wPfuF4sNpuKI+A486DTzqFAAAAABOZphm4B+VNm7cqFdffVVHjhxRly5d9P3vf19XXnllwI5/6NAhzZs3TwUFBaqrq9OQIUP00EMPqV27dvr00081Z84cffXVV8rIyNDUqVM1evRo776vvfaaFi9erEOHDikrK0uzZ8/WFVdc4df5i4v9bymVmhqnX728VVMHZdF9LwAMQ8rMTPX7Z4HTo04DL9Tr1FM+AAAAAAiGNgmlIh2hVPCF+sN+OKJOAy/U65RQCgAAAEAwBbz73qFDh7R48WLt2rXLO9aTx3PPPRfo0wEAAAAAACAMBTyUmjVrloqLi/Xd735XsbGxgT48AAAAAAAAIkDAQ6lPP/1Uq1evVkZGRqAPHfZM0xS9JQEAAAAAACRboA+YmpqquLi4QB8WAAAAAAAAESTgLaWmTp2qWbNm6c4771RmZqbPuq5duwb6dAAAAAAAAAhDAQ+lZs+eLUl69913JUmGYcg0TRmGoX//+9+BPh0AAAAAAADCUMBDqffeey/QhwQAAAAAAECECfiYUt26dVO3bt1UXl6uzz//XB07dlRCQoK6desW6FMBAAAAAAAgTAU8lCopKdF//Md/6Ac/+IHuv/9+7d27VzfeeKO2bt0a6FMBAAAAAAAgTAU8lJo7d65ycnJUUFCgmJgYXXzxxZo8ebL+93//N9CnAgAAAAAAQJgKeCi1YcMGzZo1S4mJiTIMQ5J0xx13qKioKNCnCjumaco0zWAXAwAAAAAAIOgCHkrFxsaqtrZWkrwBTFVVlZKTkwN9qrBCGAUAAAAAAHBcwEOpIUOG6L777tOuXbtkGIZKSkr0q1/9SoMHDw70qQAAAAAAABCmAh5K/fznP1dSUpK+973v6dixYxo4cKBqamo0Y8aMQJ8KAAAAAAAAYSom0AdMTk7WggULVFpaqm+//VadO3fWOeecE+jTAAAAAAAAIIwFPJQqKCjweb17927t3r1bknTVVVcF+nQAAAAAAAAIQwEPpW677baTltlsNnXp0kXvvfdeoE8HAAAAAACAMBTwUGrHjh0+r0tLS/WHP/xB3bp1C/SpAAAAAAAAEKYCPtD5iTIyMnTffffpL3/5S1ufCgAAAAAAAGGizUMpSSovL1ddXZ0VpwIAAAAAAEAYCHj3vVmzZvm8djgc2rJli6655ppAnyqsmKYp0zSDXQwAAAAAAICQEPBQ6kTx8fG67bbbNH78+LY+VUgrq3Fo59E6VdY5lZgY7NIAAAAAAAAEV8BDqUcffTTQh4wIz2/cq837a/Ta50d0x7WpwS4OAAAAAABAUAU8lFq4cGGztrv77rsDfeqQdrTaIUkqr3UGuSQAAAAAAADBF/BQqrCwUO+884569uypCy+8UAcPHtS//vUvXXLJJUpOTpYkGYYR6NOGPJe7YTwph8sd5JIAAAAAAAAEX8BDKZvNplmzZunHP/6xd9lrr72mNWvW6Iknngj06cKGszGU8oRTAAAAAAAA0cwW6AN+8MEHmjBhgs+yESNGaP369YE+VVjxhFFOQikAAAAAAIDAh1IZGRkqKCjwWbZ27Vp17tw50KcKK97ue4RSAAAAAAAAge++d9ddd2ny5MkaOnSounbtqr1792rNmjV68sknA32qsEL3PQAAAAAAgOMCHkqNGzdO3bp10+uvv64vvvhC3bt314svvqgePXoE+lRh5fhA54RSAAAAAAAAAQ+lJOmaa67RNddco9LSUmVkZLTFKcIOY0oBAAAAAAAcF/AxpRwOhx5//HH16dNHQ4YM0d69ezVmzBgdPnw40KcKK05CKQAAAAAAAK+Ah1ILFy7Uhg0b9Pvf/16xsbHq0KGDOnfurDlz5gT6VGGFllIAAAAAAADHBbz73sqVK/XCCy+oU6dOMgxDSUlJevTRR5WXlxfoU4UVp3dMKXeQSwIAAAAAABB8AW8pVV1d7R1HyjQbgpiEhATZbAE/VVhh9j0AAAAAAIDjAp4U9e7dWwsXLpQkGYYhSfrrX/+qyy+/PNCnCive2fcIpQAAAAAAAALffe/BBx/UxIkTtWLFClVVVWnYsGGqqqrSn//850CfKqx4x5RyEUoBAAAAAAAEPJTKzMzUm2++qffff1/79u1T586ddf311yslJSXQpworzL4HAAAAAABwXMBDqREjRuj111/XzTffHOhDhzVm3wMAAAAAADiuTUYfr6mpaYvDhjVaSgEAAAAAABwX8JZS/fv317hx4zRo0CCdc845PuvuvvvuQJ8ubBwfU8od5JIAAAAAAAAEX8BDqW+//Vbdu3fXN998o2+++ca73DMTX7RyuRvCKFpKAQAAAAAABDCUuv322/Xss8/qr3/9qySptrZWCQkJgTp82POEUQ5CKQAAAAAAgMCNKbV161af14MGDQrUoSOC09UQRrkIpQAAAAAAANpmoHNJMk3Cl6Y8YZTDRb0AAAAAAAC0WSgV7WNIncgTSpmitRQAAAAAAECbhVLw1XSAcwcz8AEAAAAAgCgXsIHOnU6nXn31Ve9rh8Ph81qSRo0aFajThZ2mraOYgQ8AAAAAAES7gIVSmZmZWrBggfd1enq6z2vDMAilGjkZVwoAAAAAAES5gIVS//znPwN1qIjk9GkpRfc9AAAAAAAQ3RhTygJu01TTtlF03wMAAAAAANEubEMpl8ul2267TQ888IB32bZt2zRu3Djl5uZqyJAhWrZsmc8+K1asUF5ennr37q3Ro0dr69at1pT1hBDKQfc9AAAAAAAQ5cI2lFq4cKE2b97sfV1eXq7Jkydr1KhRKigo0Jw5c/Too49q+/btkqSNGzfqkUce0bx581RQUKBbbrlFU6ZMUU1NTZuX9cQxpGgpBQAAAAAAol1YhlLr16/XO++8o5tuusm77J133lFaWpomTJigmJgYDRgwQCNHjtTSpUslScuWLdPw4cPVp08fxcbGauLEiUpPT9eqVavavLwu88SWUowpBQAAAAAAolvABjq3SklJiR566CEtWrRI+fn53uWFhYXKycnx2TYrK0vLly+XJBUVFWnMmDEnrd+xY4ffZTAM/7Y/MZRymabfx4AvT/1Rj4FDnQZeqNdpqJYLAAAAQHQIq1DK7Xbrvvvu06RJk9SzZ0+fdVVVVUpMTPRZlpCQoOrq6mat90eHDql+bW9W1Pm8Tk5NUGamf8fAqfn7s8DZUaeBR50CAAAAwMnCKpR66qmnFBcXp9tuu+2kdYmJiaqoqPBZVltbq+TkZO/62trak9anp6f7XY6SkgqZfgwLVVzpG0oVl1apODnW7/PiOMNoeND392eB06NOAy/U69RTPgAAAAAIhrAKpV577TUdPnxYffv2lSRvyPSPf/xDM2fO1Lp163y2LyoqUnZ2tiQpOztbhYWFJ60fNGiQ3+UwTfn1gHniQOcOpxmSD6jhyN+fBc6OOg086hQAAAAAThZWA52//fbb+te//qXNmzdr8+bNGjFihEaMGKHNmzcrLy9PxcXFys/Pl8Ph0IYNG7Ry5UrvOFJjx47VypUrtWHDBjkcDuXn56ukpER5eXltXu4Tx5Ri9j0AAAAAABDtwqql1Jmkp6dryZIlmjNnjhYsWKCMjAzNnj1bV199tSRpwIABevjhh/XLX/5Shw4dUlZWlp5++mmlpaW1edlODKGYfQ8AAAAAAEQ7wzTpVOKv4mL/xof5uqRK4/O3eF8/OuI7urFHxzYoWfQwDCkzM9XvnwVOjzoNvFCvU0/5AAAAACAYwqr7Xrhyuem+BwAAAAAA0BShlAXovgcAAAAAAOCLUMoCtJQCAAAAAADwRShlgRNDKYeLUAoAAAAAAEQ3QikLnNgyyumm+x4AAAAAAIhuhFIWcJ0w7ZaTllIAAAAAACDKEUpZgDGlAAAAAAAAfBFKWeDkMaXovgcAAAAAAKIboZQFaCkFAAAAAADgi1DKAieGUMy+BwAAAAAAoh2hlAWYfQ8AAAAAAMAXoZQF6L4HAAAAAADgi1DKAieFUnTfAwAAAAAAUY5QygIuk+57AAAAAAAATRFKWeDEllIMdA4AAAAAAKIdoZQFGOgcAAAAAADAF6GUBWgpBQAAAAAA4ItQygLMvgcAAAAAAOCLUMoCnhDKbjS8drjovgcAAAAAAKIboZQFXI1jSNltDakULaUAAAAAAEC0I5SygNPl21LKyZhSAAAAAAAgyhFKWcBlnhBK0VIKAAAAAABEOUIpC3jHlGrsvseYUgAAAAAAINoRSlnAM/teDC2lAAAAAAAAJBFKWcITStkaa5tQCgAAAAAARDtCKQt4xpSKMei+BwAAAAAAIBFKWcLTUoqBzgEAAAAAABoQSlnAdcJA504XoRQAAAAAAIhuhFIWcNJSCgAAAAAAwAehlAWOt5RqeO1wM6YUAAAAAACIboRSFjjeUup49z3TpLUUAAAAAACIXoRSFjixpZQpiWGlAAAAAABANCOUsoDL9G0pJUlOF134AAAAAABA9CKUsoDrhIHOJQY7BwAAAAAA0Y1QygKnDKXovwcAAAAAAKIYoZQFPK2ibIZkeJfRfQ8AAAAAAEQvQikLeIaPMoyGYEqSHHTfAwAAAAAAUYxQygKegc4NSbbGwc7pvgcAAAAAAKIZoZQFXN7ue0aTllJ03wMAAAAAANGLUMoCnjGlaCkFAAAAAADQgFDKAp6WUowpBQAAAAAA0IBQygKuJrPveUIpp4vuewAAAAAAIHoRSlnA1aT7nuHpvkdLKQAAAAAAEMUIpSzgnX3Pp6UUoRQAAAAAAIhehFIW8LSKssnwDnTO7HsAAAAAACCaEUpZ4FQDndNSCgAAAAAARDNCKQsw+x4AAAAAAIAvQikLeMaUskne7ntOuu8BAAAAAIAoRihlAbrvAQAAAAAA+CKUskB8TEM1x9iaDnROKAUAAAAAAKIXoZQFHrm5hwZd1E7xdoOWUgAAAAAAAArDUGrHjh2aNGmS+vXrp2uvvVYzZ85UaWmpJGnbtm0aN26ccnNzNWTIEC1btsxn3xUrVigvL0+9e/fW6NGjtXXrVkvK3O/8NF2UkSCJMaUAAAAAAACkMAulamtrdccddyg3N1cfffSR3njjDZWVlenBBx9UeXm5Jk+erFGjRqmgoEBz5szRo48+qu3bt0uSNm7cqEceeUTz5s1TQUGBbrnlFk2ZMkU1NTWWXgMtpQAAAAAAAMIslNq/f7969uypadOmKS4uTunp6Ro/frwKCgr0zjvvKC0tTRMmTFBMTIwGDBigkSNHaunSpZKkZcuWafjw4erTp49iY2M1ceJEpaena9WqVZZegyeUctBSCgAAAAAARLGYYBfAHxdddJGeeeYZn2WrV6/WpZdeqsLCQuXk5Pisy8rK0vLlyyVJRUVFGjNmzEnrd+zY4Xc5Gnvg+b29YRz/3uU2/T4OjmtapwgM6jTwQr1OQ7VcAAAAAKJDWIVSTZmmqSeeeEJr1qzR888/r+eee06JiYk+2yQkJKi6ulqSVFVVdcb1/ujQIdWv7V0uV8P5EuMVF1svqU4x8bHKzPTvODiZvz8LnB11GnjUKQAAAACcLCxDqcrKSs2aNUuff/65nn/+efXo0UOJiYmqqKjw2a62tlbJycmSpMTERNXW1p60Pj093e/zl5RUyPRjSCi3uyGUqq2pk9vV0G2vorJOxcUVZ9oNZ2AYDQ/6/v4scHrUaeCFep16ygcAAAAAwRB2odSePXt05513qmvXrlq+fLkyMjIkSTk5OVq3bp3PtkVFRcrOzpYkZWdnq7Cw8KT1gwYN8rsMpim/HjA925rm8dn3HC53SD6khht/fxY4O+o08KhTAAAAADhZWA10Xl5erp/85Ce68sor9eyzz3oDKUnKy8tTcXGx8vPz5XA4tGHDBq1cudI7jtTYsWO1cuVKbdiwQQ6HQ/n5+SopKVFeXp6l1+Cdfc/NEyoAAAAAAIheYdVS6pVXXtH+/fv11ltv6e233/ZZt3XrVi1ZskRz5szRggULlJGRodmzZ+vqq6+WJA0YMEAPP/ywfvnLX+rQoUPKysrS008/rbS0NEuvwRtKuQilAAAAAABA9DJMk04l/iou9n9MqcVrC3WsvFLfVJjaerBGwy45R7+6uWfbFTLCGYaUmZnq988Cp0edBl6o16mnfAAAAAAQDGHVfS8SGI1jStFSCgAAAAAARDNCKYvZG7vvORhTCgAAAAAARDFCKYsZ3jGl3MEtCAAAAAAAQBARSlnM1phK0VIKAAAAAABEM0Ipi3ln3yOUAgAAAAAAUYxQymI270DndN8DAAAAAADRi1DKYkbjvPC0lAIAAAAAANGMUMoCpmlKagihPAOdO1yEUgAAAAAAIHoRSlns+JhSdN8DAAAAAADRi1DKYsfHlKKlFAAAAAAAiF6EUhbztJRyMKYUAAAAAACIYoRSFvN232P2PQAAAAAAEMUIpSzWmEkx+x4AAAAAAIhqhFIWOz7QOaEUAAAAAACIXoRSFvMMdO6g+x4AAAAAAIhihFIWM9TQQoqWUgAAAAAAIJoRSlnM8My+5zJlmgRTAAAAAAAgOhFKWczTfU+SXGRSAAAAAAAgShFKWaxphTsZVwoAAAAAAEQpQimL2Y43lGJcKQAAAAAAELUIpSzmGehcYgY+AAAAAAAQvQilLGYYhuyNraVoKQUAAAAAAKIVoZTFTNOUvbEPH6EUAAAAAACIVoRSQRDb2FTKwfR7AAAAAAAgShFKBcHxllKMKQUAAAAAAKIToVQQxNoaqp2WUgAAAAAAIFoRSgVBDGNKAQAAAACAKEcoZTGfgc5ddN8DAAAAAADRiVAqCGJpKQUAAAAAAKIcoVQQ2Btr3UFLKQAAAAAAEKUIpSxmmiYtpQAAAAAAQNQjlAqCkmqHJGbfAwAAAAAA0YtQKggaG0rRUgoAAAAAAEQtQqkg8HTfq6hzBrkkAAAAAAAAwUEoFQSJsQ3VXlJZH+SSAAAAAAAABAehVBAkxDS0lDpSVRfkkgAAAAAAAAQHoVQQJMY0VPsRWkoBAAAAAIAoRShlAdM0ZTYZ0zyxsaVUMaEUAAAAAACIUoRSQRBv93TfI5QCAAAAAADRiVAqCBLsDc2mSqvq5XSbZ9kaAAAAAAAg8hBKBUG83ZDdkEw1BFMAAAAAAADRhlAqCAzDUEZSrCSpmFAKAAAAAABEIUKpIHC73erQGEoxAx8AAAAAAIhGhFJBYJqmKuudkqTiqroglwYAAAAAAMB6hFJBkhRrlyQdqaiTaTLYOQAAAAAAiC6EUkGSFNtQ9Ycr6+RyuYJcGgAAAAAAAGvFBLsA0cg0TcUaDd/vKq2W2+0OboEAAAAAAAAsRkupIOmQYJMh6dMDlXp+8z668AEAAAAAgKhCKBUkyTFS327JkqQ/rt+rzXuOBrlEAAAAAAAA1iGUChLTNHVR+1hd0D5GpqSH3/pKZTWOYBcLAAAAAADAEoRSQdLQXc/UFeckKCXO0JGqev3Pqh1yuenGBwAAAAAAIl/UhVIlJSWaOnWq+vbtq/79+2vOnDlyOp1BKYvD4ZBdbl3VKU52Q1q/66ieeL+Igc8BAAAAAEDEi7pQ6t5771VSUpLWrl2r5cuXa/369crPzw9qmdLiberbOUGS9OLWA/rl21/q4LHaoJYJAAAAAACgLcUEuwBW2r17tzZt2qQPP/xQiYmJ6t69u6ZOnarHHntMd9xxR5ud19NV70y6JtuUe068Pjlcp7f+fURv//uIOreLV2ZynDokxykhxqa4GJviY2xqFx+jdomxSkuMVWp8jNolxCg5zq4Ym00xdkN2myG70fD/Oqdb1Q6Xqutdqql3qcrh0uFjtfr0wDE5XKYyk+PU+9z26twuQe3iY5QSb5fdZsjWuL/NMGQz1PB/myG7IRmG0WZ1BQAAAAAAokNUhVKFhYVKS0tTp06dvMsuvvhi7d+/X8eOHVO7du2adRybTTL9GPrJZjMUb7epPtYmUw0hVdNgx/O6Z0e7MpNj9FWpQyW1blXUuVRRV6NvSmuaf7IWeGvHEb+2N9RwTTY/A6ozbempTvOEijUMQ4Ykw5D3/x42w5Dbnx9Ec8rYirzNOOMVhgfD8O9328M8S+ga6gL8a+SjLX5PT+X6rEzdf2OWX/uQLwMAAAAIpqgKpaqqqpSYmOizzPO6urq62aFURkaq3+d+cHSG3/sAAAAAAABEqqgaUyopKUk1Nb6tjjyvk5OTg1EkAAAAAACAqBRVoVR2drbKyspUXFzsXbZz50517txZqan+t34CAAAAAABAy0RVKHXBBReoT58+mjt3riorK7V3714tWrRIY8eODXbRAAAAAAAAoophnjiydIQrLi7Wr3/9a23cuFE2m02jRo3SjBkzZLfbg100AAAAAACAqBF1oRQAAAAAAACCL6q67wEAAAAAACA0EEoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKBUgJSUlmjp1qvr27av+/ftrzpw5cjqdp9z2gw8+0MiRI9W7d2/dfPPNWrNmjcWlDQ/+1Okdd9yhyy+/XLm5ud6vDz/80OISh4/S0lLl5eVp48aNp92G31P/NKdO+T0FAAAAgOMIpQLk3nvvVVJSktauXavly5dr/fr1ys/PP2m7Xbt26Z577tHPfvYzbd68Wffcc4/uvfdeHTp0yPpCh7jm1qkkffbZZ3r22We1detW79egQYOsLXCY2LJli8aPH689e/acdht+T/3TnDqV+D0FAAAAgKYIpQJg9+7d2rRpk+677z4lJiaqe/fumjp1qpYuXXrStitWrFDfvn114403KiYmRsOGDdNVV12ll156KQglD13+1OnevXtVXl6uSy65JAglDS8rVqzQjBkzNH369LNux+9p8zS3Tvk9BQAAAABfhFIBUFhYqLS0NHXq1Mm77OKLL9b+/ft17Ngxn22LioqUk5PjsywrK0s7duywpKzhwp86/fTTT5WcnKzp06fr6quv1ogRI7R8+XKrixwWBg4cqHfffVfDhg0743b8njZfc+uU31MAAAAA8BUT7AJEgqqqKiUmJvos87yurq5Wu3btzrhtQkKCqqur276gYcSfOq2vr1fv3r01ffp0ZWdna+PGjbrnnnuUnJysm2++2dJyh7qOHTs2azt+T5uvuXXK7ykAAAAA+KKlVAAkJSWppqbGZ5nndXJyss/yxMRE1dbW+iyrra09abto50+djho1Ss8884wuueQSxcbGauDAgRo1apTeeusty8obafg9DTx+TwEAAADAF6FUAGRnZ6usrEzFxcXeZTt37lTnzp2Vmprqs21OTo4KCwt9lhUVFSk7O9uSsoYLf+p0+fLlJz3Y19fXKz4+3pKyRiJ+TwOP31MAAAAA8EUoFQAXXHCB+vTpo7lz56qyslJ79+7VokWLNHbs2JO2veWWW7Rp0yatWrVKTqdTq1at0qZNm3TrrbcGoeShy586rays1COPPKIvvvhCbrdb77//vt544w2NHz8+CCWPDPyeBh6/pwAAAADgi1AqQBYsWCCn06kbbrhBP/jBD3Tddddp6tSpkqTc3Fy9/vrrkhoG6/7DH/6gp556SldddZUWLVqkJ598UhdeeGEwix+SmlunP/nJT/SjH/1Id999t3Jzc/Xb3/5W8+fPV9++fYNZ/LDD72ng8XsKAAAAAKdnmKZpBrsQAAAAAAAAiC60lAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAgjpaWlysvL08aNG5u9z+rVqzVixAj17t1beXl5Wr58eRuWEAAAAACaJybYBQAANM+WLVv0wAMPaM+ePc3eZ8OGDXrggQf0xBNPaNCgQdq4caPuvPNO5eTkqFevXm1YWgAAAAA4M1pKAUAYWLFihWbMmKHp06eftO7jjz/W2LFj1bdvXw0fPlyvv/66d11+fr5+/OMfa/DgwTIMQ1dffbVefvllnXfeeVYWHwAAAABOQigFAGFg4MCBevfddzVs2DCf5Tt27NCUKVM0efJkbdy4UY888ojmzp2rtWvXSpK2b9+utLQ0TZ48Wf3799ett96qPXv2KC0tLQhXAQAAAADHEUoBQBjo2LGjYmJO7nH94osv6oYbbtBNN90ku92uK6+8Uj/4wQ+0dOlSSVJ5ebmeffZZTZkyRevWrdO0adM0ffp0bdu2zepLAAAAAAAfjCkFAGFs37592rBhg/r27etd5nK5vN3z4uLiNGbMGOXm5kqSbrrpJg0YMECrV6/WFVdcEZQyAwAAAIBEKAUAYa1z5876/ve/r1//+tfeZYcPH5ZpmpKkiy++WPX19T77uFwu73oAAAAACBa67wFAGBs7dqzeeOMNffTRR3K73dq1a5d+9KMfacmSJZKk//zP/9QLL7ygjz/+WG63W6tXr9bGjRs1YsSIIJccAAAAQLSjpRQAhLErrrhCv/vd7/S73/1OP/vZz5SYmKgRI0bov//7vyVJY8aMkc1m06OPPqpvv/1W3bp10+OPP65LL700yCUHAAAAEO0Mkz4cAAAAAAAAsBjd9wAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOX+Pztqrx2BxQUzAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -3200,7 +3295,7 @@ }, { "cell_type": "code", - "execution_count": 243, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -3329,7 +3424,7 @@ "P-value 2.417229e-17 2.430304e-10 1.000000 " ] }, - "execution_count": 243, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -3398,14 +3493,14 @@ }, { "cell_type": "code", - "execution_count": 244, + "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "c:\\Users\\ADMIN\\anaconda3\\Lib\\site-packages\\statsmodels\\stats\\outliers_influence.py:198: RuntimeWarning: divide by zero encountered in scalar divide\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\statsmodels\\stats\\outliers_influence.py:198: RuntimeWarning: divide by zero encountered in scalar divide\n", " vif = 1. / (1. - r_squared_i)\n" ] }, @@ -3553,7 +3648,7 @@ "16 total_sqft inf" ] }, - "execution_count": 244, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -3587,6 +3682,1099 @@ "
Addressing multicollinearity in this case may require further investigation, such as feature selection, dimensionality reduction techniques or applying regularization methods to mitigate multicollinearity effects and improve model performance. \n", "
Overall, understanding the VIF values can help refine the regression model and ensure the reliability of the coefficient estimates.\n" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# MODELLING." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. Baseline model - simple linear model.\n", + "2. log transformation. \n", + "3. Multiple Linear Regression\n", + "4. Residual modelling.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Baseline model \n", + "\n", + " Baseline models provide a reference point for comparing the performance of more complex models. \n", + " Its purpose is to establish a benchmark against which the performance of more sophisticated models can be evaluated." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "FUNCTIONS TO BE USED." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "#use only numeric columns.\n", + "def numeric_col(housing_data):\n", + " '''returns a dataframe with only numeric values'''\n", + " for column in housing_data.columns:\n", + " if is_numeric_dtype(housing_data[column]) == False:\n", + " housing_data = housing_data.drop(column, axis=1)\n", + " else:\n", + " continue\n", + " return housing_data\n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "#Set a function for the predictor and target variale.\n", + "def X_Y(housing_data, target):\n", + " '''Returns a series of target (y) values and a DataFrame of predictors (X)'''\n", + " y = housing_data[target] # target variable\n", + " X = housing_data.drop(target, axis=1) # predictor features\n", + " return y, X\n" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "#A higher train score indicates that the model fits the training data well.\n", + "#A high test score suggests that the model is able to make accurate predictions on data it hasn't seen before, which is the ultimate goal in machine learning.\n", + "\n", + "def get_metrics(X_train, X_test, y_train, y_test):\n", + " ''' Parameters are X train, X test, y train, & y_test\n", + " Performs multiple regression on the split test and returns metrics'''\n", + "\n", + " # Initialize Linear Regression model\n", + " lr = LinearRegression()\n", + "\n", + " lr.fit(X_train, y_train)\n", + "\n", + " train_score = lr.score(X_train, y_train)\n", + " test_score = lr.score(X_test, y_test)\n", + "\n", + " y_hat_train = lr.predict(X_train)\n", + " y_hat_test = lr.predict(X_test)\n", + "\n", + " train_rmse = np.sqrt(mean_squared_error(y_train, y_hat_train))\n", + " test_rmse = np.sqrt(mean_squared_error(y_test, y_hat_test))\n", + "\n", + " return train_score, test_score, train_rmse, test_rmse\n", + "#These scores provide insights into how well the model is performing both on the data it was trained on and on new data.\n", + "# They help assess the model's overall effectiveness and whether it is overfitting or underfitting.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "def train_test(housing_data, size=0.20):\n", + " '''Takes in dataframe, and size of test for the split\n", + " Returns the train_set and test_set'''\n", + " train_set, test_set = train_test_split(housing_data, test_size=size, random_state=42)\n", + " return train_set, test_set\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# SIMPLE LINEAR REGRESSION." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "def simple_linear_regression(housing_data):\n", + " '''Creates a simple linear regression model with prices as the target variable \n", + " and the number of bedrooms as the predictor. Returns the model along with R-squared, \n", + " Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) for both train and test sets.'''\n", + " \n", + " # Extracting features and target variable\n", + " X = housing_data[['sqft_living']] # Predictor feature\n", + " y = housing_data['price'] # Target variable (prices)\n", + " \n", + " # Splitting the data into train and test sets\n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + " \n", + " # Create a linear regression model\n", + " model = LinearRegression()\n", + " \n", + " # Fit the model to the training data\n", + " model.fit(X_train, y_train)\n", + " \n", + " # Calculate predictions for train and test sets\n", + " y_train_pred = model.predict(X_train)\n", + " y_test_pred = model.predict(X_test)\n", + " \n", + " # Calculate R-squared for train and test sets\n", + " r2_train = r2_score(y_train, y_train_pred)\n", + " r2_test = r2_score(y_test, y_test_pred)\n", + " \n", + " # Calculate Mean Squared Error (MSE) for train and test sets\n", + " mse_train = mean_squared_error(y_train, y_train_pred)\n", + " mse_test = mean_squared_error(y_test, y_test_pred)\n", + " \n", + " # Calculate Root Mean Squared Error (RMSE) for train and test sets\n", + " rmse_train = np.sqrt(mse_train)\n", + " rmse_test = np.sqrt(mse_test)\n", + " \n", + " # Print coefficients, R-squared, MSE, and RMSE for train and test sets\n", + " print(\"Training set:\")\n", + " print(\"Intercept:\", model.intercept_)\n", + " print(\"Coefficient:\", model.coef_[0])\n", + " print(\"R-squared:\", r2_train)\n", + " print(\"Mean Squared Error:\", mse_train)\n", + " print(\"Root Mean Squared Error:\", rmse_train)\n", + " \n", + " print(\"\\nTest set:\")\n", + " print(\"R-squared:\", r2_test)\n", + " print(\"Mean Squared Error:\", mse_test)\n", + " print(\"Root Mean Squared Error:\", rmse_test)\n", + " \n", + " return model, r2_train, mse_train, rmse_train, r2_test, mse_test, rmse_test\n", + "\n", + "\n", + "# Example usage:\n", + "# Assuming housing_data is your dataset\n", + "# model, r2_train, mse_train, rmse_train, r2_test, mse_test, rmse_test = simple_linear_regression(housing_data)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set:\n", + "Intercept: -44593.95245340909\n", + "Coefficient: 281.4088930446383\n", + "R-squared: 0.49587806055811734\n", + "Mean Squared Error: 68601152192.940285\n", + "Root Mean Squared Error: 261918.21661148407\n", + "\n", + "Test set:\n", + "R-squared: 0.48264829402430887\n", + "Mean Squared Error: 68845100756.10751\n", + "Root Mean Squared Error: 262383.4993975565\n" + ] + }, + { + "data": { + "text/plain": [ + "(LinearRegression(),\n", + " 0.49587806055811734,\n", + " 68601152192.940285,\n", + " 261918.21661148407,\n", + " 0.48264829402430887,\n", + " 68845100756.10751,\n", + " 262383.4993975565)" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "simple_linear_regression(housing_data)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Intercept: This is like the starting point or baseline of our predictions. For example, if all other factors were zero, we'd expect the value to be around -44593.95. It's where our line would intersect the y-axis on a graph.\n", + "\n", + "\n", + "Coefficient: This tells us how much the predicted value changes for each unit increase in the independent variable. In this case, for every one-unit increase in the independent variable, we'd expect the dependent variable to increase by about 281.41.\n", + "\n", + "\n", + "R-squared: This is a measure of how well our model explains the variation in the data. An R-squared value of 0.49 means that about 49% of the variability in the dependent variable is explained by our model. So, it's doing a decent job, but there's still room for improvement.\n", + "\n", + "\n", + "Mean Squared Error (MSE): This tells us, on average, how much our predictions differ from the actual values in the training data. Here, the average squared difference is around 68601152192.94, which is quite large but it's relative to the scale of the dependent variable.\n", + "\n", + "\n", + "Root Mean Squared Error (RMSE): This is just the square root of the MSE. It gives us an idea of the average amount our predictions are off by. Here, it's around 261918.22, which is the typical difference between our predicted values and the actual values in the training data.\n", + "\n", + "\n", + "Test Set:\n", + "\n", + "R-squared: Similar to the training set, this tells us how well our model explains the variation in the test data. An R-squared value of 0.48 means that about 48% of the variability in the dependent variable is explained by our model when evaluated on the test data.\n", + "\n", + "\n", + "Mean Squared Error (MSE): This is the average squared difference between our predictions and the actual values in the test data. It's around 68845100756.11, similar to the MSE in the training set.\n", + "\n", + "\n", + "Root Mean Squared Error (RMSE): Again, this is just the square root of the MSE for the test data. It's around 262383.50, which is the typical difference between our predicted values and the actual values in the test data.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R-squared: 0.48264829402430875\n", + "Mean Squared Error: 68845100756.10753\n", + "Root Mean Squared Error: 262383.4993975565\n", + "Intercept: 540631.1560929463\n", + "Coefficients: [259767.82181675]\n" + ] + } + ], + "source": [ + "#STANDARDIZE OUR MODEL TO GET RID OF THE NEGATIVE INTERCEPT.\n", + "\n", + "\n", + "# Assuming you have your data loaded into X and y\n", + "# X should be your independent variables and y should be your dependent variable\n", + "\n", + "# Split data into training and test sets\n", + "X = housing_data[['sqft_living']] # Predictor feature\n", + "y = housing_data['price'] # Target variable (prices)\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "\n", + "# Initialize the StandardScaler\n", + "scaler = StandardScaler()\n", + "\n", + "# Fit and transform the scaler on the training data\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "\n", + "# Transform the test data using the scaler fitted on the training data\n", + "X_test_scaled = scaler.transform(X_test)\n", + "\n", + "# Fit the linear regression model on the scaled training data\n", + "model = LinearRegression()\n", + "model.fit(X_train_scaled, y_train)\n", + "\n", + "# Predict on the scaled test data\n", + "y_pred = model.predict(X_test_scaled)\n", + "\n", + "# Calculate R-squared and mean squared error on the test set\n", + "r_squared = r2_score(y_test, y_pred)\n", + "mse = mean_squared_error(y_test, y_pred)\n", + "rmse = np.sqrt(mse)\n", + "\n", + "# Print the metrics\n", + "print(\"R-squared:\", r_squared)\n", + "print(\"Mean Squared Error:\", mse)\n", + "print(\"Root Mean Squared Error:\", rmse)\n", + "\n", + "# Print the intercept and coefficients of the model\n", + "print(\"Intercept:\", model.intercept_)\n", + "print(\"Coefficients:\", model.coef_)\n", + "\n", + "#This code will scale your data using StandardScaler, which standardizes features by removing the mean and scaling to unit variance. \n", + "#It ensures that the intercept is not negative" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "R-squared (0.48): This value indicates that approximately 48% of the variability in the dependent variable (the house prices) is explained by the independent (sqft living). In simpler terms, the model captures about 48% of the patterns in the data.\n", + "\n", + "\n", + "Mean Squared Error (MSE) (68845100756.11): This is the average squared difference between the actual values and the predicted values from the model. It's a measure of the model's accuracy, where lower values indicate better performance. In this case, the average squared difference is quite large, indicating that there's still room for improvement in the model's predictive accuracy.\n", + "\n", + "\n", + "Root Mean Squared Error (RMSE) (262383.50): This is the square root of the MSE and provides a measure of the typical deviation of the predicted values from the actual values. It's in the same units as the dependent variable. Here, the RMSE indicates that, on average, the predicted values differ from the actual values by approximately 262,383.50 units.\n", + "\n", + "\n", + "Intercept (540631.16): This is the estimated value of the dependent variable when all independent variables are set to zero. In this case, it suggests that when all other factors are zero, we would expect the dependent variable to be around 540,631.16.\n", + "\n", + "\n", + "Coefficient (259767.82): This represents the change in the house prices for a one-unit change in the sqft living, while holding other variables constant. In this case, for every one-unit increase in the sqft living, we'd expect the house prices to increase by approximately 259,767.82 units.\n", + "\n", + "\n", + "Overall, the model suggests that there is a positive relationship between the independent and dependent variables. However, given the moderate R-squared value and the relatively high MSE and RMSE, it's clear that there may be other factors influencing the dependent variable that are not captured by the model. Further investigation or refinement of the model may be needed to improve its predictive performance." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# MULTIPLE LINEAR REGRESSION." + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Squared Error: 47548419769.890594\n", + "R-squared: 0.6426869041626193\n", + " Feature Coefficient\n", + "0 const 0.000000\n", + "1 bathrooms 24855.944322\n", + "2 sqft_living 117349.853313\n", + "3 floors 20057.401179\n", + "4 waterfront 63378.047594\n", + "5 condition 11809.217548\n", + "6 grade 154829.185004\n", + "7 sqft_basement 14434.666872\n", + "8 yr_built -108064.021718\n", + "9 yr_renovated 7255.426167\n", + "10 sqft_living15 25765.797630\n" + ] + } + ], + "source": [ + "\n", + "\n", + "# Define a function to keep only numeric columns\n", + "def only_numeric(housing_data):\n", + " '''returns a DataFrame with only numeric values'''\n", + " numeric_columns = [column for column in housing_data.columns if is_numeric_dtype(housing_data[column])]\n", + " return housing_data[numeric_columns]\n", + "\n", + "# Sample features and target variable\n", + "features = ['bathrooms', 'sqft_living',\n", + " 'floors', 'waterfront', 'condition', 'grade',\n", + " 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15']\n", + "target = 'price'\n", + "\n", + "# Load your housing data (assuming it's already loaded into 'housing_data' DataFrame)\n", + "\n", + "# Keep only numeric columns\n", + "housing_data_numeric = only_numeric(housing_data)\n", + "\n", + "# Check if all features exist in the DataFrame\n", + "missing_features = [feature for feature in features if feature not in housing_data_numeric.columns]\n", + "if missing_features:\n", + " print(\"The following features are not present in the dataset:\", missing_features)\n", + "else:\n", + " # Extract features and target variable\n", + " X = sm.add_constant(housing_data_numeric[features])\n", + " y = housing_data_numeric[target]\n", + "\n", + " # Split the data into training and testing sets\n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "\n", + " # Standardize the features\n", + " scaler = StandardScaler()\n", + " X_train_scaled = scaler.fit_transform(X_train)\n", + " X_test_scaled = scaler.transform(X_test)\n", + "\n", + " # Build a basic linear regression model\n", + " model = LinearRegression()\n", + " model.fit(X_train_scaled, y_train)\n", + "\n", + " # Make predictions on the test set\n", + " y_pred = model.predict(X_test_scaled)\n", + "\n", + " # Evaluate the model\n", + " mse = mean_squared_error(y_test, y_pred)\n", + " r2 = r2_score(y_test, y_pred)\n", + "\n", + " # Display results\n", + " print(\"Mean Squared Error:\", mse)\n", + " print(\"R-squared:\", r2)\n", + "\n", + " # Display coefficients\n", + " coefficients = pd.DataFrame({\"Feature\": X.columns, \"Coefficient\": model.coef_})\n", + " print(coefficients)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mean Squared Error (MSE): The MSE is a measure of the average squared difference between the actual and predicted values. In this case, the MSE is approximately \n", + "4.75\n", + "×\n", + "1\n", + "0\n", + "10\n", + "4.75×10 \n", + "10\n", + "\n", + "\n", + " , which means, on average, the squared difference between the actual housing prices and the predicted prices is \n", + "4.75\n", + "×\n", + "1\n", + "0\n", + "10\n", + "4.75×10 \n", + "10\n", + " .\n", + "\n", + "\n", + "R-squared (\n", + "𝑅\n", + "2\n", + "R \n", + "2\n", + "\n", + "\n", + " ): The \n", + "𝑅\n", + "2\n", + "R \n", + "2\n", + " score measures the proportion of the variance in the target variable (housing prices) that is explained by the independent variables (features) in the model. \n", + " \n", + " An \n", + "𝑅\n", + "2\n", + "R \n", + "2\n", + " score of 0.643 means that approximately 64.3% of the variance in housing prices is explained by the features included in the model. In other words, the model accounts for 64.3% of the variability in housing prices.\n", + "\n", + "\n", + "Coefficients:\n", + "Intercept (const): The intercept represents the estimated housing price when all independent variables are zero. In this case, it's not meaningful as it's unlikely for all features to be zero.\n", + "\n", + "\n", + "bathrooms: For each additional bathroom, the predicted housing price increases by approximately $24,855.\n", + "\n", + "\n", + "sqft_living: For each additional square foot of living space, the predicted housing price increases by approximately $117,350.\n", + "\n", + "\n", + "floors: Houses with an additional floor have a predicted price increase of approximately $20,057.\n", + "\n", + "\n", + "waterfront: Properties with waterfront views have a predicted price increase of approximately $63,378 compared to those without.\n", + "\n", + "\n", + "condition: Better condition properties (on a scale from 1 to 5) tend to have a predicted price increase of approximately $11,809 for each unit increase in condition.\n", + "\n", + "grade: Higher grade properties (on a scale from 1 to 13) have a predicted price increase of approximately $154,829 for each unit increase in grade.\n", + "\n", + "\n", + "sqft_basement: For each additional square foot of basement space, the predicted price increases by approximately $14,435.\n", + "\n", + "\n", + "yr_built: Each additional year of age decreases the predicted price by approximately $108,064.\n", + "\n", + "\n", + "yr_renovated: For each year renovated, the predicted price increases by approximately $7,255.\n", + "\n", + "\n", + "sqft_living15: For each additional square foot of living space in the nearest 15 neighbors' homes, the predicted price increases by approximately $25,766.\n", + "\n", + "\n", + "These coefficients indicate the strength and direction of the relationship between each feature and the target variable, holding other features constant. For example, features like square footage of living space, grade, and whether the property has a waterfront view have a substantial positive impact on the predicted housing price, while the year the property was built has a negative impact.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: price R-squared: 0.641\n", + "Model: OLS Adj. R-squared: 0.641\n", + "Method: Least Squares F-statistic: 3768.\n", + "Date: Tue, 30 Apr 2024 Prob (F-statistic): 0.00\n", + "Time: 17:34:27 Log-Likelihood: -2.9014e+05\n", + "No. Observations: 21142 AIC: 5.803e+05\n", + "Df Residuals: 21131 BIC: 5.804e+05\n", + "Df Model: 10 \n", + "Covariance Type: nonrobust \n", + "=================================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "---------------------------------------------------------------------------------\n", + "const 6.604e+06 1.41e+05 46.979 0.000 6.33e+06 6.88e+06\n", + "bathrooms 3.47e+04 3547.740 9.781 0.000 2.77e+04 4.17e+04\n", + "sqft_living 129.1822 3.765 34.313 0.000 121.803 136.562\n", + "floors 3.576e+04 3886.909 9.201 0.000 2.81e+04 4.34e+04\n", + "waterfront 7.828e+05 1.88e+04 41.703 0.000 7.46e+05 8.2e+05\n", + "condition 1.788e+04 2568.771 6.961 0.000 1.28e+04 2.29e+04\n", + "grade 1.319e+05 2290.923 57.586 0.000 1.27e+05 1.36e+05\n", + "sqft_basement 27.2065 4.581 5.939 0.000 18.228 36.185\n", + "yr_built -3728.7602 71.951 -51.823 0.000 -3869.790 -3587.730\n", + "yr_renovated 18.3132 4.407 4.156 0.000 9.676 26.950\n", + "sqft_living15 34.6185 3.669 9.435 0.000 27.427 41.810\n", + "==============================================================================\n", + "Omnibus: 16539.863 Durbin-Watson: 1.978\n", + "Prob(Omnibus): 0.000 Jarque-Bera (JB): 1296266.479\n", + "Skew: 3.184 Prob(JB): 0.00\n", + "Kurtosis: 40.828 Cond. No. 3.35e+05\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", + "[2] The condition number is large, 3.35e+05. This might indicate that there are\n", + "strong multicollinearity or other numerical problems.\n" + ] + } + ], + "source": [ + "# Fit the OLS model\n", + "model = sm.OLS(y, X).fit()\n", + "\n", + "# Get the summary\n", + "summary = model.summary()\n", + "\n", + "# Print the summary\n", + "print(summary)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "R-squared (R²): The coefficient of determination is 0.641, indicating that approximately 64.1% of the variance in the housing prices is explained by the independent variables included in the model.\n", + "\n", + "\n", + "Adjusted R-squared: The adjusted R-squared is also 0.641, which adjusts for the number of predictors in the model. It's useful when comparing models with different numbers of predictors.\n", + "\n", + "\n", + "F-statistic: The F-statistic is 3768, with a p-value close to zero, indicating that the overall model is statistically significant.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The standard errors, condition number, and other diagnostic information are also provided. \n", + "The condition number being large (3.35e+05) suggests that there may be strong multicollinearity or other numerical issues in the model. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1765: FutureWarning: unique with argument that is not not a Series, Index, ExtensionArray, or np.ndarray is deprecated and will raise in a future version.\n", + " order = pd.unique(vector)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABd8AAAMDCAYAAABTumynAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADIuUlEQVR4nOzdd7SU1d024HsO9YAKKMaKr0bAErsosSSaKDbEihq7SewYXxM1iVFj751EjZoYLNgVY0tiV0QFRWLHiIoigkgv0s/5/uBlPo+AHA6PwoHrWou1mGc/5TfPnpkF9+zZu1RdXV0dAAAAAACgMBWLugAAAAAAAFjSCN8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwCA79DMmTMXdQkAAMB3oOGiLgAAYElx6KGHpl+/fllttdXy9NNPf2vHLK1m36sFscMOO+S66677lipaMFVVVbnrrrvy4Ycf5owzzljU5VALv//979OrV69sueWWue222+p0jo8++igPPvhg+vTpk88++yzjx4/Psssum5VWWilbbrlldt1112y66aYFVz7L7PfMZpttljvvvPNbucbcrLPOOt/Y3rhx4zRv3jyrr756tthii/zsZz/L//zP/9TpWg888EBOO+20JMnjjz9e5/MAAHwbhO8AAPAd+N3vfpeHHnooe++996Iuhe/IVVddlb/97W+ZPn16je2jR4/O6NGj8+677+aWW27JTjvtlIsuuijLLLPMIqr0uzVt2rRMmzYtY8aMyZtvvplbb701p59+eg466KBFXRoAQKGE7wAA1CurrrpqHnnkkVrt27Dh4vPP3eHDhy/qEvgO/fnPf85f/vKXJMnOO++cfffdN+uss06aN2+eL7/8MgMHDsw999yTJ598Mo8//njGjh2bHj16pEGDBou48uJ06dIl55xzzhzbZ86cmXHjxqV37965+uqrM27cuJxzzjlZa621stVWWy3QNZZZZpmsscYaSZJGjRoVUjcAQFEWn/+NAABALZRKpTRv3nxRlwHz9MUXX+TGG29Mkvz85z/P73//+xrts6ed2W677XLeeefl9ttvT79+/fLII49kzz33XBQlfysaNmw4z/fqcsstl4MOOijt27fPwQcfnCS55pprFjh832mnnbLTTjstdK0AAN8GC64CAAAUqE+fPpk6dWqS5Mgjj/zGfX//+99nueWWS5I89thj33pti5sOHTqkY8eOSZIBAwZk1KhRi7giAIDiGPkOALCYe/XVV3PnnXfmtddeyxdffJFmzZplrbXWyo477piDDz44zZo1m+OY2iy0+Kc//Sl//vOfkyRvv/32HFO0/POf/8yDDz6YN998M+PGjcsyyyyT73//+/npT3+aAw888Bvnp37uuedy3333ZcCAARk7dmyWWWaZ/OAHP8jee++dzp07p1QqLcQdWXgDBgxIz5498+qrr2bUqFGprKxM+/bt07lz53Tt2vUbp68YMGBAHnjggfTv3z8jRozIlClTsuyyy6Zt27bZcccdc8ABB6Rp06bl/Wcv2jlbr169yo/fe++9JAvXX3379s1hhx2WJHnzzTdzww035O6778748eOzyiqrpFu3btljjz3K5/nss8/So0eP9O7dO8OGDUupVEqbNm3yk5/8JEcccURatWo11+uPGzcut912W55++ul89NFHmTFjRlZYYYVsvPHG2XvvvbP99tvP77bP0/PPP59HHnkk//nPfzJy5MhMmzYtLVq0yLrrrpvddtste+655xyvz9kLba600kp5/vnn88Ybb+Tvf/97XnnllYwdOzYrrLBCtt566xx55JFZe+2153ntAQMGpEePHnnzzTczcuTIrLLKKtl9993nG5p/kxEjRpT//vX53r+uUaNG2X333fPOO+9k1VVXnes+06ZNyz/+8Y889dRTeeeddzJ27NhUVFRk+eWXzyabbJL99ttvgUeMJ0l1dXUeffTR/OMf/8jbb7+d8ePHp2XLltl4442z//77Z7vttlvgc9bF+uuvn759+yZJhg4dmhVWWCHJ/39fHHvssdl1111z7rnn5q233kplZWV+8IMf5C9/+UseeeSR+S64+vrrr+euu+7Ka6+9lmHDhqVRo0Zp3759unTpkv3333+e01PV9XPsjTfeSM+ePfPKK69kxIgRadKkSVZdddVss802OeSQQ7L66qsXcdsAgHpA+A4AsJiqqqrK2WefnbvvvrvG9nHjxuU///lP/vOf/+SOO+7I9ddfn3XXXbfQa//2t7/NP/7xjxrbxo4dm9deey2vvfZaevbsmVtvvbU81/Js06ZNy+9///s8+uijNbaPGTMmL7zwQl544YU88MAD6d69+yJZXLKqqiqXXnpp/v73v9fYPm3atLzyyit55ZVXcs899+Qvf/lLVlpppRr7zJw5M2effXbuueeeOc47evTo9OvXL/369cv999+fnj17Ztlll/1Wn8vcXHTRRbnjjjvKjwcPHpw2bdqUHz/66KM57bTTyqOyZ3vvvffy3nvv5a677sq1116bDh061GgfMmRIDjvssHz22Wc1tg8bNizDhg3Lv/71r3Tp0iWXXXbZAn2xMnny5Pz617/OM888M0fbyJEjy6+Zhx9+OH/961/nGZLee++9OeusszJz5szytuHDh+eBBx7II488khtuuCFbb731HMddd911ueaaa2psGzx4cP785z/n3//+d51D0q8e171795x//vnfOJf7WWedNc+2IUOG5Mgjj8zgwYPnaBs6dGiGDh2aRx99NCeccEJ+9atf1brG8ePH54QTTiiH3rN98cUXefLJJ/Pkk09mjz32yAUXXJDGjRvX+rx18dXXzNzu06effprDDjss48aNS5JMnTo1pVJpvnVVVVXlqquuKk8BNNvUqVPLn2UPP/xwbrrpphqfRwvzOXbvvffmj3/8Y6qqqsrbpk+fnv/+97/573//m549e+aaa67JT3/60/ncFQBgSWDaGQCAxdSFF15YDt5/+MMf5pZbbslLL72UJ554IqecckqaNWuWzz77LEcccUSGDRtW2HUfeeSRcvB++OGH56GHHsrLL7+cxx9/PCeffHIaNmyYYcOGzXUhxdNPP70cWO2///554IEH0q9fvzz22GPp1q1bGjVqlD59+uQ3v/lNqqurC6u5trp3714O3nfaaafccccd6du3b5588smcdtppWXbZZfPOO+/kmGOOmSOg7tGjRzl479y5c+6666706dMnTz/9dG688cZsuummSWYF2TfffHP5uHPPPTevvfZaNt988ySzFqGcHfwV7Y477shOO+2Uf/3rX3n66adz9tlnl+t68cUXc8opp2Tq1KlZd911c+211+bFF19M7969c9VVV2XNNdfM2LFjc/TRR88R9J599tn57LPP0rp161x66aV58skn89JLL+Xuu+8uj45++OGH5wgr5+eyyy4rB++HHHJIevXqVX6NX3PNNWnXrl2S5KWXXsqDDz4413OMHj06Z511VtZcc8386U9/yosvvpinnnoqv/rVr9KgQYNMmzYtZ5xxRo0wNJk1cn528L7FFlukZ8+eefnll/Pggw9m7733zvvvvz/XLwVqY/vtt0/Lli3L1+ncuXNuuOGGDBw4cIFe9zNnzswJJ5yQwYMHp1mzZjnttNPyz3/+My+//HIeeeSR/OEPfyhf57rrrsvHH39cq/NWVVWlW7du6du3bxo2bJijjjoqjzzySPr27Zt//OMfOfTQQ1MqlfLQQw/lggsuWNCnv8DeeuutJLPmiJ/byPVHHnkkM2fOzFVXXZUXX3wxPXr0yPHHHz/f8950003l4L1jx47lz9DHHnsshx56aJLktddem+OzrK6fY0OHDs0555yTqqqq/OhHP0rPnj3Tp0+fPPvss7niiivyve99L9OmTctpp52WiRMn1u1mAQD1ipHvAAAFGzp0aNZZZ52FOsd7772X22+/PUmy88475+qrr05FxaxxE8svv3yOOuqodOjQIYceemjGjBmTiy++eI4RvHX1+OOPJ0m22mqr/OEPfyhvb9WqVY4++uhMnz493bt3T58+fTJmzJjyNCUvv/xyHnrooSSzplr5+c9/Xj62RYsWOfHEE7P++uunW7duee655/Lkk0+mU6dOC1xfdXV1Jk2aNN/9Kisry/csST7++OPccMMNSWZNZ3HGGWeU21q2bJkjjjgiHTp0yP7775933303d955Z4444ogks8LK2aH9NttskyuuuKLGaN3VVlstW265ZXbaaaeMGDEivXv3zv/+7/8mSRo3bpzGjRuXR/R+0yKUC2v11VfPVVddVR4hfuCBByaZFeKeeeaZqaqqykYbbZTbb789TZo0KR+32267ZZtttsk+++yTTz/9NJdcckmuv/76JMnEiRPTp0+fJLN+EfHVBUGXX375XHvttenSpUs++uijPPLII9l9991rVeuECRPKX2bst99+OfPMM2ucd4011shmm22WTp06ZcqUKendu3e6du06x3mmT5+e1VdfPffcc0+NUcgnnHBCJk2alJtvvjlDhw7NO++8kw022CBJMmXKlFxxxRVJks022yw333xzeRR1q1atcvHFF2e55ZbLLbfcUqvn8nXNmjXLlVdemWOPPTbTpk3LRx99lCuvvDJXXnllWrZsmU033TRbbrlltt5662/81coLL7yQgQMHJknOOeecGtMHtWrVKu3atctqq62Wbt26paqqKi+88MJcw+uv69WrV/r165ckueqqq2osWNqyZcucccYZadOmTS688MLcdddd2X///fODH/ygTvdifvr06VOuZdttt53nL2J+//vfZ7fddkuSWk2x8/nnn+faa69NkvzkJz/JtddeW34PLr/88jnjjDNSKpVy66235pFHHsmJJ56YNm3aLNTn2LPPPpvp06enWbNmue6662qMzN99992z8sor5+CDD87YsWPz4osvWigWAJYCRr4DACyG7r333lRXV6dRo0Y566yzaoTIs2266ab52c9+lmRWYF7UQoXTpk1LMmt6mxkzZszRfuCBB+bGG2/Mo48+WmNqldlzla+22mo5/PDD53ruHXfcsTwC/OvT6dTWZ599ls0222y+f2bPpz7b3XffnaqqqlRWVubXv/71XM+9wQYbpHPnznPUN2nSpOy7777Zfffdc8wxx8x1apXKyspstNFGSWZNT7Eo7LDDDnOdmuWFF17Ip59+miQ5+eSTawTvs7Vo0SLHHntskuSZZ54pz1s+ffr08ujeub3GGjVqlEsvvTQ9e/bMueeeW+taJ0yYkCOOOCK77rprjYDzq773ve9lrbXWSvLN9/Sggw6aa2j71TnLZz//ZNYXRSNHjkwy637MbfqS3/zmN2nRokXtnsxcbLPNNunVq1e23HLLGtvHjh2bZ555Jpdcckn23HPPdOrUqfza/LrmzZvnsMMOS+fOncvB89fNXqw0qf3rbvZ7dYsttphnAHzIIYdktdVWS5K5TrVUGzNmzMikSZPm+DN69Oi88cYbufLKK3PcccclmfUl1bzel6VSKTvvvPMCXfvJJ58sT0/zhz/8Ya7T2Rx55JFZc8018+Mf/zijR49OsnCfY7N/LTNjxoy59kWHDh1y7bXXplevXtl2220X6PkAAPWTke8AAAVbddVV88gjj9Rq36OOOir9+/efY/srr7ySZFZYM3vxwbnZZZddctttt6Wqqir9+/cvZCRlhw4d8swzz+Sdd97J/vvvn65du+bHP/5xeR7r5Zdffq4LMc6uef3118/kyZPnef6NN944/fv3z4ABA1JdXf2dLb46e3Tt97///SSZ5+j5jTbaKA899FA+/PDD8sj+ZZdddp7BYDIrbHv33XfL4fTcvrT4Lqy33npz3f7Veb3bt28/z+c+e2R4dXV1BgwYkJ133jmtWrVK27ZtM2jQoFx++eX573//m5122ik//OEPy4v9zv7SYUGsuuqqOeWUU+bZPm3atLzxxhvl19I33dONN954rtu/+t6ZMmVK+e8vv/xyklkj1GeHqF/XtGnTbLvttgs8lc5XtW3bNrfddls++OCDPPnkk3nhhRfy+uuv15jS6JNPPskf//jH9OrVK3/9619rfInQoUOHOebf/6px48bl1VdfLT+uzetu4sSJeeedd5LMeq9+069INtxwwwwdOrTOUyQ9/PDDefjhh+e7X7NmzXLZZZfN81cAq666apZbbrkFuvZLL72UZNb7/etrU8y20kor5d///neNbQvzOTa7r6ZNm5auXbvmZz/7Wbbffvusv/765c+5HXfccYGeBwBQvwnfAQAKViqVaj2tyLwWYRw+fHiSZO211/7G47/a/vXFMOvq4IMPzr/+9a+8+eabefvtt/P2228nSdZaa61su+222WGHHdKxY8cao/EnTpxYDp6feOKJPPHEE/O9zsSJEzNhwoQFDtVWW221PP300wt0TDJr4cokefvtt7PZZpvV6pjhw4eXp9WZbcSIEenTp08+/PDDfPzxx/n444/z4Ycfln8xkGSRzGefpDz/99fNfu5J7absSFJjHYGzzz47Rx55ZKZMmZJevXqlV69eadSoUTbbbLNst9122WmnnWos7LqgPvnkk/Tt27fGPR08eHCNMPmb7unX+2i2r45o/+rI8tnPrU2bNt/45c/sL2oW1tprr5211147xxxzTPlLhZdffjlPPvlk3n333STJgAED8utf/zo33XTTXM/x+uuv5z//+U8GDx6cTz75JB999FE+++yzGvelNq+7oUOHlhemveWWW2o1tU6Ra0oks77YWG655dK2bdv88Ic/TNeuXb/xS8Z5va6/yeeff54ktZqGZ7aF/RzbaKONctBBB+WOO+7IiBEj0r1793Tv3j0rrLBCttlmm/zkJz/J9ttvX/7SCgBY8gnfAQAWQ7MX45tfSPPV9i+//LKQa1dWVuaOO+7Irbfemvvvvz8ffvhhkuSjjz7KRx99lNtuuy2rrbZazjrrrPII+NrMwT43EydOXODwva7qssDhV48ZP358LrnkkvzjH//I9OnTa+zXvHnzbLXVVvniiy/Ko4oXhblNJ5Ms/HPfYost8tBDD+Uvf/lLnnjiiUyYMCHTp09P375907dv31x66aX5yU9+kvPOOy8rrrhira8xbNiwXHTRRXniiSfmmHalZcuW6dixY955550aXx7Mzdym2vkmEyZMSDLrtf5N5jX/+MJo3LhxeUT7CSeckN69e+e3v/1tRo8eneeffz5vvPFGjV8SvPrqq7n44ovz5ptvznGu1VdfPdtuu23uuuuuWl9/YV8LC2LvvffOxRdfXKdjv2per+tvMm7cuCTz7+OvKuJz7KyzzkrHjh1z++23p3///qmqqsqoUaPy0EMP5aGHHkrz5s1z3HHH5aijjqrTtQCA+kX4DgCwGGrWrFnGjx8/30D9q6HYgo6m/Oo0HF/XuHHjHHnkkTnyyCMzePDg9OnTJy+++GJeeumlTJo0KUOHDk23bt1yxx13ZKONNkrTpk3Lxx599NE5+eSTF6iW70LTpk0zceLEdO7cOVdeeeUCHTtjxoz88pe/zBtvvJFk1nQgW2+9ddq3b5+11147a665ZioqKnLKKad8a+H7N/XX/MzunxVXXDEvvPBCnc7xP//zP7noooty7rnn5rXXXsuLL76YPn365K233kp1dXWeeeaZHHXUUXnggQfmukbB102cODGHHHJIPv3005RKpfz4xz/OFltsUb6ns0fSH3jggfMN3xfU7Lnc5/f++uqvGWrr888/z/33359Ro0Zlv/32+8YFVZPkRz/6US6++OIcffTRSVIjfH/zzTdzxBFHlBfx3HHHHbPxxhunbdu2ad++fZZffvnMmDFjgcL3r4bR55xzTnndiCXN7Nf8N00dM69jkoX7HNtll12yyy67ZPTo0eXPzj59+uTzzz/PpEmTcvnll6dRo0blBZ0BgCWX8B0AYDG06qqrZvz48fnggw++cb+vtq+66qrlv88OP79pDuixY8fWqpY111wza665Zg4++OBMmzYtd955Zy666KJMnz49d955ZzbaaKMst9xyad68eSZNmlRjYcu5+S7nef+qVVddNf/973/rVN+//vWvcvB+6qmn5sgjj5zrsXVdaLXI/pqb2a+N0aNH58svv1yoaS8aNWqUjh07pmPHjvn1r3+dYcOG5YwzzsgLL7yQd999N6+++uoci4zOTc+ePct9cdVVV2XXXXed637fxuK1q6yySpJZ093MnDlzntM/ze+1Mjfjx4/PNddck2TWlx3zC9+TWb8smO2r88FfffXVmT59epZddtncf//9c51CZUHvz8orr1z+++L6Xi3Cqquumvfee2++X9zccMMNadiwYTbffPNsvPHGhX6OLb/88unSpUu6dOmS6urq9OnTJ7/5zW8ybty43HrrrcJ3AFgKzH9ICgAA37nZC/e9+uqr5TmI52b2YoGlUimbbLJJefvs0a3fFMz95z//mWPb5MmT88tf/jLbbbddevbsOUd748aNc/jhh6d9+/ZJ/v+8yqVSqbxw5YsvvviNo02PPPLIbL311jniiCO+07nRZ9f39ttvl+fUn5s//vGP6dixY/bdd9/yLwsGDBhQbj/ooIPmetzkyZPL9/TrU6jMT137q7ZmP/eZM2fm2Wefned+Dz/8cDbddNN07ty5vJDns88+m/322y8dO3YsT9fyVausskqNEcKzXxPzM/uetmrVap7B+/DhwzN48OAkxc6j/6Mf/SjJrF8TzOuXAFVVVXX6lcD3v//98hzl99xzT61Gz3/yySflv7dt27b899kLnW699dbznLt89sKiSe3u0fLLL19eK+Lpp5+e5zFVVVXp3LlzfvSjH+XUU0+d73kXN7PXdRg0aNA818OYOHFiunfvnksvvTQvvvjiQn+OnX/++dl5553zm9/8Zo79S6VStt122+yxxx5JZq0dAQAs+YTvAACLof322y9JMn369JxzzjlzDXPfeOON3H333UmS7bbbLt/73vfKbbODuiFDhsx1GpRHHnkkgwYNmmN7ZWVlPv/88wwfPjx33313jVG4s40bN64cZq2xxhrl7fvvv3+SWSO0L7vssrk+ryeeeCIvvPBCRo0alTXWWOM7HVU7u74ZM2bknHPOKS86+VWvv/56evXqlbFjx6Zly5blOb+/Oo3K3O5bVVVVzj333HJY//U54ZP/Py/53Nrq2l+1tcMOO6R169ZJkssvvzyjR4+eY5/Ro0ene/fu+fLLLzNy5Mist956SZIVVlghb7zxRsaOHZs77rhjruefvWjoV5/L/My+p+PGjcsXX3wxR/vUqVNz+umnl4PNukwBMy9bbrlleVqbSy+9dK5zmvfo0SNDhw5d4HM3aNAgBx98cJJZi5v++te//sa5xKdMmZILL7wwyawFYLfddtsa50pmrbcwt8+AYcOG5fLLLy8/nttra25mvxc++OCD/O1vf5vrPrfeems++OCDjBgxosYXAvXFnnvumYYNG6a6ujqXXHLJXL9kuP766zNjxoyUSqXstttuSRbuc6yqqiqDBw/OM888k48//niO46qrq/Pee+8lqfnZCQAsuYTvAACLoXXXXTeHHnpoklmj23/xi1+kb9++GTNmTIYMGZK//e1v5bmgW7RokbPPPrvG8TvuuGP57yeccEKeeuqpjBo1Kh988EGuvPLK/O53vyvPe/11v/zlL5Mk7733Xn7+85+nd+/e+fzzz/P555/nueeeyy9+8YtMmDAhDRo0yIEHHljjmttvv32SWVOKHH/88Xn11VczZsyYfPjhh7nuuuvKI6RbtWqVbt26FXW7amX99dcv1/v000/nsMMOywsvvJDRo0fnk08+ye23356jjjoq06dPT5MmTWqM9v1qIHryySfnqaeeyogRIzJs2LA88cQTOeSQQ/LAAw+U95nbXOKzR0O/+uqrGTRoUI0AfGH6qzaaNGmS008/PcmsQLhr16558MEHy/36xBNP5NBDDy2PwD755JPTvHnzJMmGG25YnkbmmmuuySWXXJJ33303o0ePzkcffZQePXrkggsuSJJstNFGNRYL/SbbbLNNklmB5THHHJOXXnopo0aNypAhQ/KPf/wjXbt2rTHyvKgFhZNZofa5556bZNaXKQceeGCee+65jBkzJh988EEuuuiiXHrppfOcjmZ+jj322PJr5sknn8zOO++cP//5z3n99dczYsSIjB49OgMHDswtt9yS3XffPX379k3jxo1zwQUX1Ljm7Hv03//+N6ecckrefffdco1//etfs9dee9X4pUFtFww96KCDsv766ydJLrvssvzhD3/IW2+9lbFjx+a9997LxRdfXF4odc011yx/FtUnK620Uo455pgks6aNOu644zJgwICMGTMmAwcOzHnnnZebb745SXLAAQdkzTXXTLJwn2OHHnpoGjdunC+//DI///nP06tXr3zyyScZPXp0Xn/99Zx88snp169fkuSQQw75ju4EALAomfMdAGAx9fvf/z7Tpk3L3XffnZdeeqnG9BKztWnTJtdcc015DuvZtthii+y333659957M3To0Bx//PE12tdcc82cdNJJOemkk+Y45957753XX389d955Z/r37z/X+c0bNWqU8847L+uss055W6lUyhVXXJGTTz45zz77bJ566qk89dRTcxzbunXrXH/99VlppZVqeysKc/rpp2f69Om577778uqrr5a/aPiq5s2b58orr6wxV/d2222Xzp0759FHH80nn3wyx/1Mku9973vZYYcdcuedd2batGkZNmxYjX7p2LFjHnvssQwfPjydO3dOkjz11FNZffXVF6q/amu33XbL+PHjc/7552fo0KH53e9+N8c+pVIp3bp1K4/+ne2yyy7L4YcfnsGDB+fmm28uh5Zfr7F79+61rme//fbLP//5z7zyyit5++235zr/9VprrZUNN9wwDz30UIYNG5Zp06alcePGtb7GN9l6661zySWX5Iwzzsh///vf8oKns6222mrZcccdc8sttyzwuRs3bpw///nPufjii3Pvvffmiy++yJ/+9Kf86U9/muv+q622Ws4///x07NixxvZTTz01/fv3zxdffJFHH300jz766BzHbr/99hk7dmz+85//zHW09bzqu/HGG3P88cfnjTfeyP3335/7779/jv3WXHPN3HTTTQu1RsCidMIJJ2Ts2LHp2bNnnnnmmTzzzDNz7NOpU6fyF1PJwn2OrbXWWrngggvyhz/8IUOHDs3vf//7udb1s5/9bJ7TVwEASxbhOwDAYqphw4Y599xz06VLl9x1113p379/Ro4cmeWWWy5rrrlmOnfunL322qs8Qvnrzj///Gy99da555578vbbb2fatGlZffXVs+uuu+YXv/jFXKc3me3ss8/OT37yk9x333154403MmrUqDRq1CgrrbRStt566xx22GHlkaJftcwyy+SGG27Ik08+mQcffDCvv/56xowZk0aNGmWttdbKT3/60xx66KELNYp7YTRq1CgXXHBB9tprr9x1110ZMGBAvvjii1RUVKRNmzb50Y9+lMMPP7zGopSzXXHFFenYsWN69eqV//73v5k6dWqWWWaZrLXWWvnJT36Sn/3sZ5k8eXLuvvvuVFVV5fHHH8/hhx9ePn7//ffPyJEjc//99+eLL75Iy5YtM3z48Ky++upJFq6/autnP/tZttlmm9xyyy156aWX8tlnn2X69On53ve+lw4dOuSQQw6Z68j1lVdeOb169UrPnj3z1FNP5YMPPsiXX36ZZZddNmuvvXY6deqUAw88ME2aNKl1LY0bN87NN9+cW265JY899lg++uijTJ8+Pcstt1zatm2bXXbZJfvss0/efffdPPTQQ5kyZUqef/75Gr8SWFh77bVXNtxww/ztb39Lv3798vnnn6d169bZYYcdcsIJJ+See+6p87krKytzzjnn5LDDDsu//vWvvPzyyxk6dGjGjBmTmTNnpnXr1mnXrl123HHH7L777uV5/79q9dVXT69evXLDDTfkueeey7Bhw1IqlbLCCitk/fXXzz777JMdd9wxf/nLX/Kf//wnr732WkaNGpUVVlhhvvWtuOKKueuuu/Lwww/nkUceyTvvvJNx48aladOmadeuXXbeeecceOCBadq0aZ3vwaJWUVGRP/7xj9lll11yxx13pH///hkzZkwqKyvzgx/8IPvtt1/5i7CvWpjPsT322CPrrbdebrvttvTr1y/Dhg0r9/dmm22W/fbbL1tttdV38fQBgMVAqfq7XOUKAAAAAACWAuZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAAChYw0VdADWNGjUh1dWLugoAAAAAAOamVEpWWGHZ+e4nfF/MVFdH+A4AAAAAUM+ZdgYAAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAAChYw0VdAAunoqKUiorSoi6Dr6iqqk5VVfWiLgMAAAAAWISE7/VYRUUpLVs1TwPh+2JlZlV1xo6ZJIAHAAAAgKWY8L0eq6gopUFFKbc+Nz7Dx81c1OWQZOUWDXLYdsuloqIkfAcAAACApZjwfQkwfNzMfDpqxqIuAwAAAACA/2PBVQAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYPU2fB89enQ6deqUvn37lredddZZ2WCDDbLpppuW/9x9993l9l69eqVTp07ZZJNNss8++2TAgAHltpkzZ+aSSy7J1ltvnU033TTHHXdcRowYUW4fNWpUjj/++HTo0CEdO3bMBRdckBkz/v8ip6+//nr222+/bLrppvnpT3+ae++991u+AwAAAAAALK7qZfjev3//HHDAAfnkk09qbH/zzTdz3nnnZcCAAeU/BxxwQJKkb9++Oe+883LxxRfnlVdeyR577JHjjjsukydPTpJcf/316dOnT+6///707t07TZs2zRlnnFE+90knnZRmzZqld+/eue+++/LSSy+lR48eSZJx48bl6KOPzl577ZVXXnklF1xwQS666KK88cYb380NAQAAAABgsVLvwvdevXrllFNOya9//esa26dNm5b//ve/2WCDDeZ63L333pvOnTtn8803T6NGjXLEEUekVatWeeyxx8rtRx11VFZZZZUss8wyOf300/P8889nyJAh+fjjj9OvX7+ceuqpqaysTJs2bXL88cenZ8+eSZLHH388LVu2zMEHH5yGDRtmq622SpcuXcrtAAAAAAAsXRou6gIW1LbbbpsuXbqkYcOGNQL4gQMHZsaMGenevXv69++fZZddNvvuu2+OPPLIVFRUZNCgQdl3331rnKtt27YZOHBgJkyYkOHDh6d9+/blttatW6dFixZ57733kiQtW7bMSiutVG5fe+2189lnn2X8+PF5//33axw7+9z33XffAj+/UmmBD2ExpS8BAAAAYMlT29yv3oXvK6644ly3T5gwIVtuuWUOPfTQXHnllXn33XfTrVu3VFRU5Mgjj8ykSZNSWVlZ45imTZvmyy+/zKRJk5IkzZo1m6N9dtvXj539ePbx8zr3glphhWUX+BgWP61aNV/UJQAAAAAAi1C9C9/nZZtttsk222xTfrzRRhvl8MMPz2OPPZYjjzwylZWVmTJlSo1jpkyZklatWpWD89nzv3+1vXnz5qmurp6jbfbj5s2bp7KyMhMmTJjrsQtq1KgJqa6u3b4NGlQIeRdTY8ZMysyZVYu6DAAAAACgYKVS7QZRLzHh+5NPPpmRI0fmZz/7WXnbtGnT0rRp0yRJu3bt8v7779c4ZtCgQfnxj3+cFi1aZKWVVsqgQYPK08d88cUXGTt2bNq3b5+qqqqMHTs2I0eOTOvWrZMkH3zwQVZeeeUsu+yyad++ffr06TPHudu1a7fAz6O6OrUO31m86UcAAAAAWHrVuwVX56W6ujoXXXRRXnrppVRXV2fAgAG59dZbc8ABByRJunbtmocffjgvv/xypk+fnh49emTUqFHp1KlTkmSfffbJ9ddfnyFDhmTixIm58MILs+WWW2aNNdbImmuumc033zwXXnhhJk6cmCFDhuS6665L165dkySdOnXKyJEj06NHj0yfPj0vv/xyHn744TnmmAcAAAAAYOmwxIx879SpU0477bScffbZ+fzzz9O6dev86le/yp577pkk2WqrrXLWWWeV29u2bZubbropLVu2TJJ069YtM2bMyMEHH5xJkyalY8eOufrqq8vn7969e84999zssMMOqaioyF577ZXjjz8+SdKqVavcfPPNueCCC9K9e/csv/zyOeOMM/LDH/7wu74NAAAAAAAsBkrV1SbHWJyMHFn7Od8bNpw15/ulD43Jp6NmfLuFUSurr9Awv92jVcaMmZQZM8z5DgAAAABLmlIpad16/nO+LzHTzgAAAAAAwOJC+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAVruKgLABZcRUUpFRWlRV0GX1NVVZ2qqupFXQYAAAAAiwHhO9QzFRWltGzVPA2E74udmVXVGTtmkgAeAAAAAOE71DcVFaU0qCjl1ufGZ/i4mYu6HP7Pyi0a5LDtlktFRUn4DgAAAIDwHeqr4eNm5tNRMxZ1GQAAAADAXFhwFQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBg9TZ8Hz16dDp16pS+ffuWt73++uvZb7/9summm+anP/1p7r333hrH9OrVK506dcomm2ySffbZJwMGDCi3zZw5M5dcckm23nrrbLrppjnuuOMyYsSIcvuoUaNy/PHHp0OHDunYsWMuuOCCzJgxo9bXBgAAAABg6VEvw/f+/fvngAMOyCeffFLeNm7cuBx99NHZa6+98sorr+SCCy7IRRddlDfeeCNJ0rdv35x33nm5+OKL88orr2SPPfbIcccdl8mTJydJrr/++vTp0yf3339/evfunaZNm+aMM84on/+kk05Ks2bN0rt379x333156aWX0qNHj1pdGwAAAACApUvDRV3AgurVq1e6d++eU089Nb/+9a/L2x9//PG0bNkyBx98cJJkq622SpcuXdKzZ89stNFGuffee9O5c+dsvvnmSZIjjjgid999dx577LHsu+++uffee3PKKadklVVWSZKcfvrp2XbbbTNkyJBUVVWlX79+ef7551NZWZk2bdrk+OOPz2WXXZYjjzxyvtdeEKVSEXeJxYG+XHrpewAAAIAlV22zn3oXvm+77bbp0qVLGjZsWCN8f//999O+ffsa+7Zt2zb33XdfkmTQoEHZd99952gfOHBgJkyYkOHDh9c4vnXr1mnRokXee++9JEnLli2z0korldvXXnvtfPbZZxk/fvx8r70gVlhh2QU+hsVPq1bNF3UJLCL6HgAAAICkHobvK6644ly3T5o0KZWVlTW2NW3aNF9++eV82ydNmpQkadas2Rzts9u+fuzsx7OP/6ZrL4hRoyakurp2+zZoUCHoW0yNGTMpM2dWfSvn1u+Lt2+z7wEAAABY9Eql2g2irnfh+7xUVlZmwoQJNbZNmTIlzZs3L7dPmTJljvZWrVqVg/PZ879//fjq6uo52mY/bt68+XyvvSCqq1Pr8J3Fm35ceul7AAAAAOrlgqtz0759+7z//vs1tg0aNCjt2rVLkrRr126e7S1atMhKK62UQYMGldu++OKLjB07Nu3bt0+7du0yduzYjBw5stz+wQcfZOWVV86yyy4732sDAAAAALB0WWLC906dOmXkyJHp0aNHpk+fnpdffjkPP/xweZ73rl275uGHH87LL7+c6dOnp0ePHhk1alQ6deqUJNlnn31y/fXXZ8iQIZk4cWIuvPDCbLnlllljjTWy5pprZvPNN8+FF16YiRMnZsiQIbnuuuvStWvXWl0bAAAAAIClyxIz7UyrVq1y880354ILLkj37t2z/PLL54wzzsgPf/jDJMlWW22Vs846K2effXY+//zztG3bNjfddFNatmyZJOnWrVtmzJiRgw8+OJMmTUrHjh1z9dVXl8/fvXv3nHvuudlhhx1SUVGRvfbaK8cff3ytrg0AAAAAwNKlVF1tduLFyciRtV9wtWHDWQtvXvrQmHw6asa3Wxi1svoKDfPbPVplzJhJmTHj21l0U78vnr6LvgcAAABg0SuVktat57/g6hIz7QwAAAAAACwuhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQsIaLugAAYP4qKkqpqCgt6jL4iqqq6lRVVS/qMgAAAFhMCd8BYDFXUVFKy1bN00D4vliZWVWdsWMmCeABAACYK+E7ACzmKipKaVBRyq3Pjc/wcTMXdTkkWblFgxy23XKpqCgJ3wEAAJgr4TsA1BPDx83Mp6NmLOoyAAAAgFqw4CoAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAULA6h+/Tpk3LY489Vn48efLk/PGPf8wuu+ySo48+Om+99VYhBQIAAAAAQH3TsC4HffHFFzn44IMzZMiQbLnllmndunXOP//83H///UmSwYMH55VXXsl9992Xtddeu9CCAQAAAABgcVenke/XX399Pvnkk+y7775p2rRpJk6cmIceeiirrrpqnnnmmdxyyy2prq7O9ddfX3S9AAAAAACw2KvTyPfnn38+22yzTc4///wkyb///e9Mnz49e+21V1ZZZZWsssoq2WmnnfLiiy8WWiwAAAAAANQHdRr5PmLEiPzgBz8oP+7Tp09KpVK22Wab8raVV14548ePX/gKAQAAAACgnqlT+N6iRYtMnDix/PiFF15IZWVlNt544/K2Tz/9NK1bt174CgEAAAAAoJ6pU/i+zjrr5PHHH8+nn36aXr165bPPPsu2226bhg1nzWLTv3//PPHEE9lggw0KLRYAAAAAAOqDOs35fswxx+SXv/xlOnXqlCRp0KBBfvGLXyRJrr766tx4441p2LBhjj766OIqBQAAAACAeqJO4fsWW2yRv//977nllluSJD/72c+yySabJEmaN2+ejTbaKKeccoqR7wAAAAAALJXqFL4nyeabb57NN998ju1HHnlkjjrqqCTJpEmT0rx587pXBwAAAAAA9VCd5nzfYYcdcuutt861rVQqJUn+/Oc/Z8cdd6x7ZQAAAAAAUE/VauT7F198kSlTppQfDx06NEOGDMmQIUPmuv/06dPTv3//fPnll8VUCQAAAAAA9Uitwvdnn302f/zjH8uPS6VSbr/99tx+++3zPKa6ujqbbbbZwlcIAAAAAAD1TK3C965du+bFF1/MyJEjkySvvvpqVllllay22mpz7FsqldKoUaOsssoqOfbYY4utFgAAAAAA6oFahe+lUilXXXVV+fG6666bffbZJyeccMK3VhgAAAAAANRXtQrfv+6pp57KcsstV3QtAAAAAACwRKhT+D57upmZM2dmzJgxmT59eqqrq+e676qrrlr36gAAAAAAoB6qU/g+c+bMXHPNNbn77rszfvz4ee5XKpXyzjvv1Lk4AAAAAACoj+oUvt9www258cYb07Bhw7Rv336xmoLmscceyymnnJImTZqUt+2444657LLL8vrrr+f888/PoEGD0qpVqxx33HHZb7/9yvv16tUr1113Xb744ot8//vfz5lnnplNN900yawvHC6//PL84x//yOTJk/PDH/4w55xzTr73ve8lSUaNGpUzzzwz/fr1S4MGDbLHHnvkd7/7XRo2rNMtBgAAAACgHqtTMvzggw+mdevWufPOO9OmTZuia1oob775Zvbcc89cdNFFNbaPGzcuRx99dE488cQccMABeeWVV9KtW7ess8462WijjdK3b9+cd955uemmm7LRRhulZ8+eOe644/LMM8+ksrIy119/ffr06ZP7778/yy67bM4888ycccYZufHGG5MkJ510UlZaaaX07t07I0eOzHHHHZcePXrkyCOPXBS3AQAAAACARaiiLgcNGzYsu+2222IXvCezwvcNNthgju2PP/54WrZsmYMPPjgNGzbMVlttlS5duqRnz55JknvvvTedO3fO5ptvnkaNGuWII45Iq1at8thjj5XbjzrqqKyyyipZZpllcvrpp+f555/PkCFD8vHHH6dfv3459dRTU1lZmTZt2uT4448vnxsAAAAAgKVLnUa+r7jiipk6dWrRtSy0qqqqvP3226msrMxf//rXzJw5M9ttt11OOeWUvP/++2nfvn2N/du2bZv77rsvSTJo0KDsu+++c7QPHDgwEyZMyPDhw2sc37p167Ro0SLvvfdekqRly5ZZaaWVyu1rr712Pvvss4wfP36BpuUplRb4abOY0pdLL30PSxfveQAAgKVLbf8fWKfwfbfddkuvXr1yyimnZNlll63LKb4Vo0ePzvrrr5+dd9453bt3z5gxY/K73/0up556alZcccVUVlbW2L9p06b58ssvkySTJk2aZ/ukSZOSJM2aNZujfXbb14+d/fjLL79coPB9hRUWn/tJ3bVq1XxRl8Aiou9h6eI9DwAAwLzUKXw/7LDD0rdv3+y333458MADs+aaa6Zx48Zz3XerrbZaqAIXROvWrWtM9VJZWZlTTz01+++/f/bZZ59MmTKlxv5TpkxJ8+bNy/vOrb1Vq1blIH3y5MlzPb66unqOttmPZ5+/tkaNmpDq6trt26BBhf/0L6bGjJmUmTOrvpVz6/fF27fZ9yy9vO8XX97zAAAAS59SqXaDqOsUvv/4xz9OqVRKdXV1Lr744m/c9913363LJepk4MCBeeSRR3LyySen9H9j/6dNm5aKiopstNFGueWWW2rsP2jQoLRr1y5J0q5du7z//vtztP/4xz9OixYtstJKK2XQoEHlqWe++OKLjB07Nu3bt09VVVXGjh2bkSNHpnXr1kmSDz74ICuvvPIC/zKgujq1Dt9ZvOnHpZe+h6WL9zwAAABzU6fwfa+99iqH24uTli1bpmfPnmnRokV+/vOfZ8SIEbnsssuy9957Z+edd84VV1yRHj165OCDD07//v3z8MMP57rrrkuSdO3aNd26dcuuu+6azTffPD179syoUaPSqVOnJMk+++yT66+/PhtuuGFatWqVCy+8MFtuuWXWWGONJMnmm2+eCy+8MOeee27GjBmT6667Ll27dl1k9wIAAAAAgEWnTuH7/Ea7Lyorr7xybrjhhlx55ZW5/vrr06RJk3Tu3DmnnnpqmjRpkptvvjkXXHBBunfvnuWXXz5nnHFGfvjDHyaZNT3OWWedlbPPPjuff/552rZtm5tuuiktW7ZMknTr1i0zZszIwQcfnEmTJqVjx465+uqry9fu3r17zj333Oywww6pqKjIXnvtleOPP34R3AUAAAAAABa1UnX1wv9YesSIERk3blzatWuXmTNnpkGDBkXUtlQaObL2c743bDhrDuBLHxqTT0fN+HYLo1ZWX6FhfrtHq4wZMykzZnw7cwDr98XTd9H3LL287xc/3vMAAABLr1Ipad16/tONV9T1AtOmTcvVV1+dbbfdNtttt1323HPPJMnNN9+cX/ziF/nkk0/qemoAAAAAAKjX6hS+T5s2LUcccUT+8pe/ZPLkyWndunVmD6AfM2ZMXnzxxRxyyCH5/PPPCy0WAAAAAADqgzqF73/961/z2muv5ZhjjslLL72U/fffv9x26qmn5uSTT86IESNy0003FVYoAAAAAADUF3VacPWRRx7Jpptuml//+tdJklKpVG4rlUo56qij0qdPn/Tu3buYKgEAAAAAoB6p08j3Tz/9NFtsscU37rPBBhtk+PDhdSoKAAAAAADqszqF782aNcuIESO+cZ9hw4alsrKyTkUBAAAAAEB9VqfwfdNNN80TTzwxz5HtH3/8cZ566qlsttlmC1UcAAAAAADUR3UK34855phMnTo1BxxwQO688858+umnSZK33norPXv2zEEHHZTp06fnl7/8ZaHFAgAAAABAfVCnBVc32WSTXHTRRTnzzDNz7rnnJkmqq6uz3377pbq6Og0bNszZZ5+dzTffvNBiAQAAAACgPqhT+J4kXbp0yVZbbZUHH3wwb731VsaPH5/mzZtnvfXWy5577pnVVlutyDoBAAAAAKDeqHP4niStW7fOkUceWVQtAAAAAACwRKhV+D5kyJC0aNEiyy23XPlxbbVp06ZulQEAAAAAQD1Vq/B9p512Srdu3XLCCSckSTp16pRSqTTf40qlUt55552FqxAAAAAAAOqZWoXvHTp0yOqrr15+vMUWW3xrBQEAAAAAQH1Xq/D9tttu+8bHAAAAAADA/1exMAcPGjQoH374YY1tN954YwYOHLhQRQEAAAAAQH1Wp/C9qqoqZ599drp06ZJ//etf5e3Tpk3LVVddlX322Sfdu3cvrEgAAAAAAKhP6hS+33PPPbnrrruy/vrrZ8sttyxvb9CgQf70pz9lww03zPXXX5/777+/sEIBAAAAAKC+qFP4fvfdd+f73/9+7rzzznTo0KG8vUGDBtlxxx1z2223ZY011sjtt99eWKEAAAAAAFBf1Cl8//jjj7PddtulcePGc21v3Lhxtt9++3zwwQcLVRwAAAAAANRHdQrfmzRpkpEjR37jPuPHj0+TJk3qVBQAAAAAANRndQrfN9poozz99NMZMmTIXNs/++yzPPXUU9lggw0WqjgAAAAAAKiPGtbloCOOOCLPP/98Dj300Bx55JHZeOONs+yyy2bChAl544038re//S0TJkzIL37xi6LrBQAAAACAxV6dwvetttoqp59+ei699NJccMEFNdqqq6vToEGD/O53v8uPfvSjQooEAAAAAID6pE7he5Iccsgh+clPfpJHH300AwcOzNixY9O8efOss8462WOPPbLGGmsUWScAAAAAANQbdQ7fk2S11VbL0UcfXVQtAAAAAACwRKhV+F5VVZWKiooaj2vrq8cBAAAAAMDSoFbh+w9+8IOccMIJ6datW/lxbZRKpbzzzjt1rw4AAAAAAOqhWoXvq6yySpZddtkajwEAAAAAgLmrVfh+/vnnp23btuXHTz/99LdWEAAAAAAA1He1mpD95JNPzm233VZ+fNppp+Wpp5761ooCAAAAAID6rFbh+6RJkzJu3Ljy4169euXdd9/91ooCAAAAAID6rFbTzvzP//xPHnjggXzxxRdp2bJlkuSpp57K0KFDv/G4UqmUCy+8cKGLBAAAAACA+qRW4fvJJ5+c//3f/80zzzyTZFao/u6778539LvwHQAAAACApVGtwvftt98+zz//fD766KNMnTo1hx9+ePbee+/svffe33Z9AAAAAABQ79QqfD/qqKOy6667Zp999kmSrLrqqllvvfWy5ZZbfqvFAQAAAABAfVSrBVf79euXjz/+uPz4s88+y/jx47+1ogAAAAAAoD6r1cj3pk2b5rnnnsvOO++cFi1aJEkmTJiQzz77bL7HrrrqqgtXIQAAAAAA1DO1Ct9/+tOfplevXtl3332TzFpI9dZbb82tt976jceVSqW88847C18lAAAAAADUI7UK388888yssMIKeffddzNt2rS88sorWXXVVbPaaqt92/UBAAAAAEC9U6vwvVmzZjnllFPKj9ddd93ss88+OeGEE761wgAAAAAAoL6qVfj+dRdddFHWW2+9omsBAAAAAIAlQp3C97333jtJUlVVlT59+uSdd97J2LFj87vf/S7//e9/s8wyy1hoFQAAAACApVZFXQ8cMGBAOnXqlKOPPjpXXXVVevTokST55z//mZ122ik9e/YsqkYAAAAAAKhX6jTy/cMPP8wvf/nLzJw5M/vtt1+GDx+e3r17J0natm2bZs2a5fzzz8/3v//9bLXVVoUWDACwNKmoKKWiorSoy+ArqqqqU1VVvajLAAAAFnN1Ct+vvfbazJw5M3fffXfWXXfd/PnPfy6H7507d856662Xrl275uabbxa+AwDUUUVFKS1bNU8D4ftiZWZVdcaOmSSABwAAvlGdwveXX345u+yyS9Zdd925tn//+9/PzjvvXA7kAQBYcBUVpTSoKOXW58Zn+LiZi7ockqzcokEO2265VFSUvvXw3a8eFj9+9QAAwIKoU/g+fvz4rLjiit+4T8uWLTN+/Pg6FQUAwP83fNzMfDpqxqIug++QXz0snvzqAQCABVGn8H3llVfOW2+99Y37vPHGG1l55ZXrVBQAACzN/Oph8fNd/uoBAIAlQ53C9x133DE9evTIfffdl65du87Rfuutt+a1117LEUccsbD1AQDAUsuvHgAAoP6qU/h+7LHH5oknnsiZZ56Ze+65J9OmTUuSnHvuuXnjjTfy9ttvZ5VVVsnRRx9daLEAAAAAAFAfVNTloBYtWuTOO+/MT3/607z55psZOHBgqqurc8cdd+Stt97K1ltvndtvvz2tWrUqul4AAAAAAFjs1Wnke5KsuOKKufbaazNq1Ki89dZbGT9+fJo3b5711lsvq6yySpE1AgAAAABAvVLn8H22FVZYIR06dMjkyZPTsmXLNGy40KcEAAAAAIB6rc5JeVVVVf7+97/n7rvvzpAhQ8rb11xzzeyzzz755S9/mYqKOs1qAwAAAAAA9Vqdwveqqqocf/zxee6551IqlbLKKqvke9/7XsaPH5/BgwfnyiuvzKuvvpobbrih6HoBAAAAAGCxV6fw/Y477sizzz6bbbbZJmeffXbatGlTbhsxYkT++Mc/5rnnnss999yT/fffv7BiAQAAAACgPqhT+P7AAw9k9dVXz7XXXpumTZvWaPve976Xq6++Ol26dMn9998vfAcAAKiliopSKipKi7oMvqaqqjpVVdWLugwAoJ6pU/j+4YcfZu+9954jeJ+tadOm2XbbbfPwww8vVHEAAABLi4qKUlq2ap4GwvfFzsyq6owdM0kADwAskDqF76VSKdOnT//GfaZPn56ZM2fWqSgAAIClTUVFKQ0qSrn1ufEZPs7/pRYXK7dokMO2Wy4VFSXhOwCwQOoUvq+zzjp57rnnMm7cuLRo0WKO9rFjx+bZZ5/NOuuss9AFAgAALE2Gj5uZT0fNWNRlAACwkCrqctCBBx6YL774Isccc0zefPPN8vYZM2akb9+++cUvfpFRo0blgAMOKKxQAAAAAACoL+o08n3PPfdM375988ADD2T//fdP06ZN07x584wZMyZVVVWprq7OXnvtlb333rvoegEAAAAAYLFXp/A9SS688MJsu+22ue+++/LOO+9k7NixWWaZZfKDH/wg++67bzp37lxknQAAAAAAUG/UOXxPkt122y277bZbUbUAAAAAAMASoU5zvldVVc11+4ABAzJ9+vSFKggAAAAAAOq7BQrfn3jiiXTp0iW9e/eeo23q1Kk57LDDsuOOO+aRRx4prEAAAAAAAKhvah2+9+zZMyeeeGLef//9vPfee3O0jxgxIqussko+//zznHrqqbnpppsKLRQAAAAAAOqLWs35/sYbb+T8889PixYtcuGFF+anP/3pHPu0adMmjz/+eJ588sn87ne/y9VXX51tttkm66+/fuFFAwAAwJKkoqKUiorSoi6Dr6mqqk5VVfWiLgOAeqpW4futt96aioqK9OjRI+uuu+437rvjjjvmz3/+c37+85/ntttuy0UXXVRIoQAAALAkqqgopWWr5mkgfF/szKyqztgxkwTwANRJrcL3/v3750c/+tF8g/fZttpqq3To0CF9+/ZdqOIAAABgSVdRUUqDilJufW58ho+buajL4f+s3KJBDttuuVRUlITvANRJrcL3L774IrvtttsCnXi99dbL66+/XqeiAAAAYGkzfNzMfDpqxqIuAwAoSK0WXG3RokUmTZq0QCeurq7OMsssU6eiAAAAAACgPqtV+N6mTZu8/fbbC3Ti//znP1lllVXqVBQAAAAAANRntZp2Zuedd86ll16aPn36ZJtttpnv/n369Mlbb72Vo48+eqELBAAAAFhSVVSUUmGx3cVOVVW1uf6BhVar8H3vvffOTTfdlJNOOindu3fPVlttNc99X3rppfzmN79J06ZN87Of/aywQgEAAACWJBUVpbRs1TwNhO+LnZlV1Rk7ZpIAHlgotQrfW7ZsmUsvvTTHHntsfvGLX6RDhw750Y9+lO9///tp3rx5xo0bl48//ji9e/dO//79UyqVcs0112TVVVf9tusHAAAAqJcqKkppUFHKrc+Nz/BxMxd1OfyflVs0yGHbLZeKipLwHVgotQrfk2TbbbfNHXfckVNPPTWvvPJKXn311Tn2qa6uzjrrrJOzzjorm222WaGFAgAAACyJho+bmU9HzVjUZQBQsFqH70my0UYb5d///nf69euXZ599NsOHD8+4cePSqlWrrLHGGtl+++2z0UYbfVu1AgAAAABAvbBA4ftsW265ZbbccsuiawEAAAAAgCVCxaIuAAAAAAAAljTCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAgtVpwVUAAAAAoO4qKkqpqCgt6jL4iqqq6lRVVS/qMliCCN8BAAAA4DtUUVFKy1bN00D4vliZWVWdsWMmCeApzEKF7+PHj89jjz2Wd955J+PGjcs111yT/v37p1QqZbPNNiuqRgAAAABYYlRUlNKgopRbnxuf4eNmLupySLJyiwY5bLvlUlFREr5TmDqH70888UROO+20TJo0KdXV1SmVZn1T99xzz+Wmm27Kz3/+8/z2t78trFAAAAAAWJIMHzczn46asajLAL4ldVpw9Y033sivf/3rNGnSJCeddFI6d+5cbuvYsWNWXXXV/P3vf8+///3vwgoFAAAAAID6ok7h+3XXXZdmzZrl/vvvzzHHHJO11lqr3LbNNtvk7rvvTsuWLXP77bcXVigAAAAAANQXdQrfBwwYkJ133jkrr7zyXNtbt26dnXbaKYMGDVqo4gAAAAAAoD6qU/g+efLkLLPMMt+4T5MmTfLll1/WqSgAAAAAAKjP6hS+r7HGGunfv/8826urq/PKK6+kTZs2dS4MAAAAAADqqzqF77vttlvefPPNdO/ePdXV1TXaZsyYkUsvvTQDBw7MLrvsUkiRAAAAAABQnzSsy0G//OUv8/TTT+f666/Pvffem0aNGiVJjjnmmLz77rsZMWJE1llnnfzyl78stFgAAAAAAKgP6jTyvUmTJrntttty6KGHZvLkyfnss89SXV2d5557LuPHj8/++++fnj17prKysuh6AQAAAABgsVenke9JUllZmT/84Q/5/e9/n48++ijjxo1L8+bNs9Zaa6Vx48ZF1ggAAAAAAPVKnUa+JymPdH/rrbey9tprZ7PNNss666yTCy+8ME8//XSRNdYbo0aNyvHHH58OHTqkY8eOueCCCzJjxoxFXRYAAAAAAN+xOoXvU6dOzXHHHZdjjz02zz77bHn75MmTc9ddd6Vbt2753e9+l6qqqqLqrBdOOumkNGvWLL179859992Xl156KT169FjUZQEAAAAA8B2r07Qzt9xyS5599tlsv/322W233crbKysr06tXr1x//fV56KGHss466+QXv/hFYcUuzj7++OP069cvzz//fCorK9OmTZscf/zxueyyy3LkkUfW+jyl0oJfe+UWDRb8IL4VX+2LuvRlXa/Fovdd9X1FRSmlb/vFxQKrrq5OVVX1t34d7/vFx3f5ef/167Fo6full3/nLb30/dJL3y+99P3S6bvs91KplIoK/7dfnFRVVae6uvb/r6/ta6RUvSBn/T+77757mjZtmvvuu2+u7dXV1dlnn30yderUPPbYYwt6+nrpySefzOmnn56+ffuWt7333nvZY4898sorr2S55Zb7Vq5bVVXtzbqY+S76RL8vnr6Lfqmurha+L4a+i37xvl/8fFd9ou8XP/p+6eXfeUsvfb/00vdLL32/dNInFK1OI9+HDh2agw46aJ7tpVIpP/zhD3P77bfXubD6ZtKkSamsrKyxbfbjL7/8stbh+6hRE7IgX4cYBbv4+S5GwOr3xdO33fcNGlSkVavmGTJkSKZOnfqtXYcF06RJk7Rp0yZjxkzKzJnf3nRr3veLn+/qFw/6fvGj75de/p239NL3Sy99v/TS90un7+rfeUa+L37qMvJ9hRWWne9+dQrfmzdvnqFDh37jPiNGjEizZs3qcvp6qVmzZpk8eXKNbbMfN2/evNbnqa7OAoXvM2dWJ/n2PxRYvOj3pdvUqVMzZcqURV0Gc7HgvyWrPe/7pZe+X3rp+6WTfl966full75feun7pdd3FfKz6NVpwdUOHTrkqaeeyttvvz3X9oEDB+bJJ5/M5ptvvlDF1Sft2rXL2LFjM3LkyPK2Dz74ICuvvHKWXXb+34IAAAAAALDkqNPI96OOOipPPfVUDj300BxwwAHZeOONs+yyy2bChAl5/fXXc99992XmzJk59thji653sbXmmmtm8803z4UXXphzzz03Y8aMyXXXXZeuXbsu6tIAAAAAAPiO1WnB1SR54okncsYZZ2TcuHE15qeqrq7OMsssk/PPPz+77LJLYYXWByNHjsy5556bvn37pqKiInvttVdOOeWUNGhQ+5WrR45csDnfgaVHw4az5nwfNGiQaWcWI02bNk3btm0zZsykzJjx7c35DgAAACweSqWkdev5z3ZS5/A9mbXI6HPPPZd33303Y8eOTfPmzbPuuutmxx13zDLLLFPX0y7VhO/AvAjfF0/CdwAAAFi61DZ8r9O0M7M1b948u+22W3bbbbeFOQ0AAAAAACxRahW+DxkyJC1atMhyyy1Xflxbbdq0qVtlAAAAAABQT9UqfN9pp53SrVu3nHDCCUmSTp061ZjnfV5KpVLeeeedhasQAAAAAADqmVqF7x06dMjqq69efrzFFlt8awUBAAAAAEB9V6cFV6dOnZomTZp8G/Us9Sy4CsyLBVcXTxZcBQAAgKVLbRdcrajLybt27ZrzzjuvLocCAAAAAMASr07h+8cff5zGjRsXXQsAAAAAACwR6hS+r7baavnkk0+KrgUAAAAAAJYItVpw9esuuuiiHHPMMTn11FOzyy67pE2bNqmsrJzrvm3atFmoAgEAAAAAoL6p04Krm266aWbMmJEZM2Z888lLpbzzzjt1Lm5pZMFVYF4suLp4suAqAAAALF1qu+BqnUa+b7DBBnU5DAAAAAAAlgp1Ct9vu+22ousAAAAAAIAlRp0WXAUAAAAAAOat1iPfR40alT/96U955plnMmbMmKy88srZddddc8wxx6RZs2bfZo0AAAAAAFCv1Cp8HzVqVPbbb78MGzYss9dn/eSTT3LjjTfmmWeeyZ133pnmzZt/q4UCAAAAAEB9UatpZ2688cZ89tln2WOPPfLPf/4zr7/+eh588MFst912ef/993Prrbd+23UCAAAAAEC9UavwvXfv3tl0001zySWXZK211kqTJk2y7rrr5tprr80aa6yRp59++tuuEwAAAAAA6o1ahe/Dhg3LZpttNsf2Bg0aZJtttsnHH39ceGEAAAAAAFBf1Sp8nzp1aiorK+fa1qpVq0yaNKnQogAAAAAAoD6rVfheVVU1z7ZSqfSN7QAAAAAAsLSpVfgOAAAAAADUnvAdAAAAAAAK1rC2Oz711FMZOnToHNsHDhyYJDnttNPmaCuVSrnwwgsXojwAAAAAAKh/StXV1dXz22ndddet28lLpbz77rt1OnZpNXLkhMy/R4ClUcOGFWnVqnkGDRqUKVOmLOpy+D9NmzZN27ZtM2bMpMyYYQ0UAAAAWNKVSknr1svOd79ajXy/6KKLFrogAAAAAABYWtQqfN97772/7ToAAAAAAGCJYcFVAAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACrZEhe+vv/561l133Wy66ablPwcffHC5/aOPPsrhhx+eTTfdNNtuu23+8pe/1Dj+ueeeS5cuXbLJJptk1113zTPPPFOj/aabbsqPf/zjbLLJJjn00EPz4Ycfltu+/PLLnHbaaenYsWM233zz/Pa3v82kSZO+3ScMAAAAAMBiaYkK3998881sscUWGTBgQPlPz549kyTTp0/Psccemw033DB9+/bNjTfemJ49e+af//xnkmTw4MH51a9+lf/93//Nq6++ml/96lc56aST8vnnnydJevXqldtuuy1/+9vf0rdv3/zgBz/IiSeemOrq6iTJeeedl2HDhuXf//53Hn/88QwbNiyXX375orkRAAAAAAAsUktc+L7BBhvMte2VV17JiBEjcuKJJ6Zx48ZZf/31c+ihh5bD+V69eqVDhw7Zcccd07Bhw+y2227ZYostcvfddydJ7rnnnhx00EFp165dmjRpkpNPPjmfffZZ+vbtm8mTJ+fhhx/OiSeemJYtW2aFFVbIKaeckgceeCCTJ0/+zp4/AAAAAACLh4aLuoAFMWXKlPJI9K9bccUV8+abb6Z169bZaaedMnHixGy55Zb5/e9/n5VXXjnvv/9+1lprrTRu3Lh8TNu2bXPjjTcmSQYNGpT27dvXOGfbtm0zcODAcvtRRx1VbmvUqFHWXHPNDBw4MC1btsz06dNrHL/22mtnypQpGTx4cNZbb71aP8dSqda7ArCY8RkOAAAAS77a/v+/XoXvr7/+eg477LC5tnXv3j3f+973svXWW+fAAw/M9OnTc9555+Xoo49Or169MmnSpFRWVtY4prKyMl9++WWSzLW9adOmtWqfOHFikqRZs2Y1zj37uAWxwgrLLtD+ACweWrVqvqhLAAAAABYj9Sp879ixY9577715tu+88841Hp955pnZaqut8sEHH6RZs2ZzTAEzefLkNG8+KyyprKzMlClTarRPmTKlVu2zQ/evnm/2tZZZZpkFeo6jRk3I/00jD1BDgwYVAt7F2JgxkzJzZtWiLgMAAAD4lpVKtRtEXa/C928ybNiw9OjRIyeeeGI5AJ82bVqSWSPU27Vrl8GDB2fGjBlp2HDW0x40aFDatWuXJGnfvn3efvvtGuccNGhQeQ75du3a5f33389PfvKTJLMWcB08eHDat2+ftdZaK40aNcqgQYOy8cYbJ0k++OCD8tQ0C6K6OsJ3gHrK5zcAAAAw2xKz4GqrVq3y6KOP5qqrrsrUqVMzevTonHPOOdlqq62yxhprpGPHjmnVqlWuuOKKTJ06NQMHDsxtt92Wrl27Jkn22GOP9OvXL4899lhmzJiRxx57LP369cuee+6ZJNl3331z++23Z+DAgZk6dWquuOKKtG7dOh06dEhlZWV23XXXXH755Rk9enRGjx6dyy+/PLvvvnuaNm26KG8LAAAAAACLQKm6eskZpzdw4MBccskleeutt5Ik22+/fU4//fS0bNkySfLxxx/n3HPPzeuvv55mzZrlkEMOydFHH10+vnfv3rn88svzySefZLXVVsupp56a7bbbLklSXV2dv//97+nZs2dGjx6dDTfcMOecc07WWmutJMnEiRNzySWX5Omnn8706dOzww475Mwzz6wxD3xtjBxp2hlg7ho2nDXtzKBBg+aYBotFp2nTpmnbtm3GjJmUGTNMOwMAAABLulIpad16/tPOLFHh+5JA+A7Mi/B98SR8BwAAgKVLbcP3JWbaGQAAAAAAWFwI3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgILVy/B98uTJOeCAA/LAAw/U2P7RRx/l8MMPz6abbpptt902f/nLX2q0P/fcc+nSpUs22WST7LrrrnnmmWdqtN9000358Y9/nE022SSHHnpoPvzww3Lbl19+mdNOOy0dO3bM5ptvnt/+9reZNGlSra8NAAAAAMDSo96F7++//34OPvjg/Oc//6mxffr06Tn22GOz4YYbpm/fvrnxxhvTs2fP/POf/0ySDB48OL/61a/yv//7v3n11Vfzq1/9KieddFI+//zzJEmvXr1y22235W9/+1v69u2bH/zgBznxxBNTXV2dJDnvvPMybNiw/Pvf/87jjz+eYcOG5fLLL6/VtQEAAAAAWLo0XNQFLIiXXnopJ598co477riMGTOmRtsrr7ySESNG5MQTT0zjxo2z/vrr59BDD03Pnj2z6667plevXunQoUN23HHHJMluu+2WBx54IHfffXdOPPHE3HPPPTnooIPSrl27JMnJJ5+ce+65J3379s3GG2+chx9+OLfeemtatmyZJDnllFNy2GGH5be//W0GDBjwjddeEKXSwt8nABYNn+EAAACw5Kvt//8Xq/B9ypQp5ZHoX7fiiitm3XXXzTPPPJMmTZrk73//e432999/P2uttVYaN25c3ta2bdvceOONSZJBgwalffv2NY5p27ZtBg4cWG4/6qijym2NGjXKmmuumYEDB6Zly5aZPn16jePXXnvtTJkyJYMHD57vtRfECissu8DHALDotWrVfFGXAAAAACxGFqvw/fXXX89hhx0217Zrr722PGp9biZNmpTKysoa2yorK/Pll1/Os71p06a1ap84cWKSpFmzZjXOPfu4+V17QYwaNSH/N9MNQA0NGlQIeBdjY8ZMysyZVYu6DAAAAOBbVirVbhD1YhW+d+zYMe+9916djm3WrFkmT55cY9vkyZPTvPmsoKqysjJTpkyp0T5lypRatc8O3b96vtnXWmaZZeZ77QVRXR3hO0A95fMbAAAAmK3eLbg6L+3atcvgwYMzY8aM8rZBgwaV53Bv37593n///RrHfLW9Xbt2NdqnT5+ewYMHp3379llrrbXSqFGjDBo0qNz+wQcflKemmd+1AQAAAABYuiwx4XvHjh3TqlWrXHHFFZk6dWoGDhyY2267LV27dk2S7LHHHunXr18ee+yxzJgxI4899lj69euXPffcM0my77775vbbb8/AgQMzderUXHHFFWndunU6dOiQysrK7Lrrrrn88sszevTojB49Opdffnl23333NG3adL7XBgAAAABg6bJYTTuzMBo2bJibb7455557brbZZps0a9Yshx56aPbZZ58ksxZIvfbaa3P55Zfn9NNPz2qrrZY//elPWWuttZIkXbt2zYQJE9KtW7eMHj06G264YW644YY0atQoSXLWWWflkksuSZcuXTJ9+vTssMMOOfPMM2t1bQAAAAAAli6l6moz1C5ORo604Cowdw0bzlpwddCgQXOsUcGi07Rp07Rt2zZjxkzKjBkWXAUAAIAlXamUtG49/wVXl5hpZwAAAAAAYHEhfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAK1nBRFwDAgmnSpMmiLoGv0B8AAADA3AjfAeqJqqrqVFVVp02bNou6FL5mdt8AAAAAzCZ8B6gnqqqqM2bMpFRUlBZ1KXyN8B0AAAD4OuE7QD0i5AUAAACoHyy4CgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAAD/r737jorq6h4+/p2hKzbsitjF2HtiiZKoibEX7IpgQUXFShR7IxawdywgAioq1mjsGk3UqClWwC4oihSlMzAz7x++Mz8wpj7EoezPWlkrMvcym7lz7z1n33P2EUJkM0m+CyGEEEIIIYQQQgghhBDZTJLvQgghhBBCCCGEEEIIIUQ2k+S7EEIIIYQQQgghhBBCCJHNJPkuhBBCCCGEEEIIIYQQQmQzSb4LIYQQQgghhBBCCCGEENlMku9CCCGEEEIIIYQQQgghRDaT5LsQQgghhBBCCCGEEEIIkc0k+S6EEEIIIYQQQgghhBBCZDNJvgshhBBCCCGEEEIIIYQQ2UyS70IIIYQQQgghhBBCCCFENjM2dAAiK4XC0BEIIYQQQgghhBBCCCGE+CN/N4er0Gq12v82FCGEEEIIIYQQQgghhBAif5GyM0IIIYQQQgghhBBCCCFENpPkuxBCCCGEEEIIIYQQQgiRzST5LoQQQgghhBBCCCGEEEJkM0m+CyGEEEIIIYQQQgghhBDZTJLvQgghhBBCCCGEEEIIIUQ2k+S7EEIIIYQQQgghhBBCCJHNJPkuhBBCCCGEEEIIIYQQQmQzSb4LIYQQQgghhBBCCCGEENlMku9CCCGEEEIIIYQQQgghRDaT5LsQQgghhBBCCCGEEEIIkc0k+S6EEEKIXEer1Ro6BCGEEEIIIYQQ4k9J8l0IIUSuIMlWERsby9OnTwFQKBSAfC+EEEKI/Cw2NjbLvzUajYEiEUL8V1QqFc+ePTN0GOIfSElJyfLv/N5nk+S7ECJXy+8X8bzu8ePHPHnyBPi/ZKvIv/bv309AQAAPHjxgz549hg5H5ADJycns37+f9PR0Q4ci/mPv3u/l/p83yHEU/4ukpCQWLFjAtWvXiI+PB0CplBRHbiTXAvFHNBoN48aNY+nSpTx8+NDQ4Yi/yc/Pj7CwMP2/83tfXu5MIsf6o1ELcmMWOlqtFoVCQWxsLK9evTJ0OCKbabVafH19CQ4O5uLFi/j5+el/LvKnsmXLcv36dQYOHMhPP/0ESEMuP0tMTKRjx45ERERgYmICyPUhr1Kr1fpzXa1Wk5qaKud+LqVWq7P8W46j+F+8efOGEiVKsHDhQpo1a8alS5cAuRfkNhkZGe+9FshxFPD2gdqIESMICQkhMDBQEvC5wKNHj7hx4wbr1q3jq6++4tChQ0D+Pqcl+S5yJLVajVKp5NmzZxw8eJD9+/fzww8/ANJIF2/pOuKvX7/G2dmZNWvW/G7aqcjdFAoFDRs25PTp04wePZrU1FT9z0X+omuodezYEaVSSUZGBuXKlZPpp/lYYmIivXv3plWrVowbN07/c931QcoO5B1qtRojIyM0Gg1ubm4MHz4cLy8v/THOzx253CYjI0N/LL29vZk6dSqhoaGAHEfx75QrV46WLVsSEhJCuXLlsLS0BN7eC+Q7lTtoNBqMjY3RaDTMnDmTGTNmsGnTJtLT01EoFHI/z+cyMjIAqFevHq1atWLv3r1s3bqVR48eGTgy8WcqV65Mr169OHfuHKmpqdSpUwfI3/14Sb6LHEer1WJkZERoaCh9+/bl/PnzHDlyhG+++YZ58+YZOjyRA2g0GoyMjAgJCcHLywuAoKAgPD09iYmJMXB04n+VkpLCtGnTSElJoVOnTqSnp1OsWDHUarW+3rfIP3QP2rRaLRqNhokTJzJ37lwuXbqEr68vDx48yLK9dLbzPpVKxaBBg6hQoQILFy4EYNeuXXh7e7NhwwZiYmJQKpXSYc8jdMnaHj16ANCjRw8mTpyIUqkkISFBkjO5iC7B1qtXL+7cuUN6ejrFixcH/u/aLddw8XdkPuetrKyYOXMm7du3Z+HChZw+fRpAf22Q71TOpRtwp9Vq6dy5My9evODNmzecOXOGefPmoVKp9K+L/MnY2JiQkBA++eQTihYtSpcuXTh37hw7duz4XR9AGF7ma7OJiQmdOnWidu3arFu3jp9//jnLdvntvDY2dABCvE9iYiKzZ8/GwcEBZ2dnYmNj6dGjB1qtltjYWKysrAwdojAgpVLJ8+fPGTp0KGPGjGHkyJHExsYyceJEVqxYwaRJk+Q7koulpKRw5swZnj17xooVK1i/fj13797F19eX+Ph4+vbtS6VKlfTb68oPibwn84jXI0eOANC1a1cAUlNT2b17N0qlktGjRxMZGclHH30k34V84OXLl5QuXZoWLVoA4OLiQlxcHEWLFiUuLo6goCD27t2rT+qJ3M/Pz4/y5cvj6ekJgIeHByEhITx9+pRNmzZRs2ZNA0co/kzm+/TcuXOpWbMmixYtAt4+OAsLC6NIkSL079+fUqVKGTJUkQvo2gZRUVE8efKEqlWrUq9ePe7du0diYiKbN2/GzMyMVq1akZ6ejpmZmaFDFn/AyMgIrVbLTz/9RIsWLZg5cyYqlYojR44QHBzMggULmD17NiYmJtLez6dUKhWbN2/GyclJP9Oxd+/ezJ49G5VKxYgRI6hYsaKBoxTwdpaCsbExWq2W+/fvY2NjwzfffMMPP/yAn58ffn5+GBkZUb9+/Xy5Nkf++4tFjpSSksK1a9eAt6MUdNNShwwZAsDw4cNp0aIF48aNY/LkyYSFheW7J2Uiq9u3b1OpUiUGDhyItbU19evXx9fXlyNHjkgJmlwqMTERf39/rKysOHz4MC9evGDixIlYW1vTuXNnevXqxbVr19i3bx/R0dGcPXsWyN/T1/Iy3Swo3YjXLVu2MH/+fHr27MmbN2+wt7enf//+XL16lWHDhuHo6MjLly8NHbb4ACpUqMCXX37J7t27mTNnDqampuzcuZMNGzawdu1aKlasyIEDBwAZRZtbvTuSvWTJksTGxvLNN98wePBgzp49y8CBAyldujT+/v4GilL8HZnr9cfExJCSkoKtrS1nzpxh8ODBbNiwgTdv3rB3717u379v4GhFTqdrG4SEhDBgwAC+/vprevXqxcmTJ6levTpOTk5UrVoVT09PvvjiC+bPn2/okMVfWLRoEUOGDCEuLg61Wo2pqSkdO3aka9euPH36lKlTp+pL0Ij8x9TUlLi4OFQqFfC2fVCvXj1cXV0JDg5mw4YNhIeHGzhKkbl81LBhwxg1ahRz5sxBpVLRsmVLBg0aRFJSElu3bmX69OnMmTPH0CF/cJJ8Fwan1WoJCAjAycmJ8+fP638eERHB3r176devH1WqVGHRokVERUURHR1NuXLl5Aacz7wvgZKQkKBPsqtUKmxsbGjVqhU7d+5kzZo1HzpE8T/6/vvviY+PR6VS6RMqUVFRDBkyhJSUFPr370/Pnj25dOkSffr0Yc2aNVJqII/SaDT6a/ySJUuoV6+efv0PACcnJ+Lj4+nZsyeTJ0+me/fuBAYGUrp0aUOGLf5DGRkZJCYm6v/ds2dPWrVqxe7du/niiy8ASE9Pp0SJEhQqVEi/rbQVcp+MjAz9iKjY2FiSk5OpU6cOZcuW5dWrVzRt2pSTJ0/SoUMHGjVqRIkSJQwcsfgjujKBGo2Gnj17cuvWLWrVqsXixYvx9/endOnSnDx5kmXLllGzZk3i4+MNHbLIwXQjn1+9esWCBQsYOHAgwcHBNG7cmFWrVnHixAmqVavG0KFD6dGjB40bN2bu3LmGDlu84922+/jx4/niiy+4dOkSUVFRAJibm9OtWzfatWtHUlIScXFxhghVGMD7+na2trZERETw6NEjffugevXq1K1bF2NjY6ytrT90mOIduvJQffv2pXz58pw+fRpvb2+ePXvGrVu3aNSoEaNHj6Zw4cLcvn0be3t7Q4f8wSm0MiRI5ABRUVFs27aNEydOsGDBAlq2bMmKFSvYvXs31atXZ8eOHQBMnTqV169fs3HjRulQ5yO66aVJSUkYGRlhbm5OeHg4PXr0YMiQIVkW21u4cCE2NjYsW7aMKVOmMHjwYANGLv6JjIwMtFotn3/+Od26dWPKlCm8fPkSBwcHihUrho+PDxYWFly9epUXL17w1Vdf6ae2yfUgb1qxYgU///wz48aNo1mzZgBER0czbNgwTExM2LJlC0WLFpXvQB6mq/U/a9YsPvroI7p3706hQoUASEtLY/369fTu3TtLx2vMmDE0atSIYcOGGSps8S/pzmWNRsPgwYNJT0/HwsKChQsXUqFCBTIyMnj+/Dnp6elcuXKFlStXEhAQQPXq1Q0duvgDWq0WDw8PXr16xapVqwB4+PAhRYsWxdTUFEtLSwIDA1m3bh27d++WJIr4UzExMaxatYrU1FSWLl2q//nUqVO5ffs2rq6u2NnZYWpqqn9NVwpBGF7mshQRERHExMTQoEEDEhMTmThxIo8ePWL79u2UL18eeHufT0tLo3DhwgaOXHwIuj7/y5cvefDgAUZGRtjY2OjLy7Ro0YJPP/2UTz/9FHd3dwoWLMjcuXP1iV/pCxhWWFgY69atY+HChajVambPns3NmzcxNzenTp06LFmyhOTkZBQKBQULFjR0uB+cJN+FQeluwI8fP2bHjh0cO3YMIyMj/QiYRYsW6RvoupEOu3btwsTEBI1Gky9rReU3uuMcFhbGkiVLiI6OpkePHjg6OnLu3DlcXFzo3LkzlSpVIjQ0lNDQUL777jtWrFjBy5cvWbx4saH/BPEXdMdYpVJhamrK9u3b8fLywsXFhdGjR+sT8FZWVmzevBlLS0v9vrpGmsgb3m04z5gxg6NHj9KrVy8mTZpEgQIFgLejYXv16oW1tTXbt2+Xe0E+0KVLF1JSUhg5ciRffvmlviOu1WqJiYkhMDCQGjVqcPz4ce7du8eBAwck2ZLLZG7Xubi4YGFhgZ2dHcePH+fBgwcsX76cjz76CHd3d3777TdMTU3x8PCgdu3aBo5c/BldYr1t27b6EiBqtZpnz54xevRoypYtS2hoKBs3bpRjKf6Qrn1w/Phxtm7dysOHDzl48KA+SQvg7u7OuXPnWLFiBZ988okBoxXvo7vGazQahg4dilqt5s6dO3z00UcMGTKEJk2aMGXKFJ4/f463tzcVKlQwdMjiA9Kd4yEhIYwZM4aKFSuSnJxMXFwcc+fOxdzcnPXr13Pnzh2sra1Rq9Xs3LlT8kIG9O7nfvPmTRwcHKhbty6pqamo1Wo8PT05ceIEN2/eZN26dQaM1vAk+S4M7sGDBwwYMIARI0ZgZGTEvXv3uHTpEkuXLqVx48b8/PPPXLt2DRsbG7744guMjY1lBEM+obugR0RE0KdPH+zt7UlNTeXbb7+lT58+jB49mgcPHuDn54dKpaJAgQLMmjULU1NTZs+eTcGCBZk6daqh/wzxN7x69YpRo0YxY8YMGjVqRFBQEHPmzMHV1VWfgO/YsSOdO3dm3rx5hg5X/AcyX9fT0tL0C6StWbOG77//nm7dutG9e3f9w5fY2FiSkpKkc5bHqdVqff1Ic3Nznj59yrBhw/QJeK1WS2hoKKtWrSIlJYXSpUuzcOFCTExM5OFcLpJ5NGRsbCw+Pj5MmTIFgJCQEDZv3sydO3fw9vbGysqKpKQkTExMKFasmIEjF+96tzMeFhaGv78/J0+eZMaMGXTu3Fn/2uHDhylatChVqlTJkkQVQud9SbXLly+zcuVKihYtypw5cyhbtqz+tfXr1zNy5Ei59udQWq2WIUOGYG1tzZQpU0hPT2fx4sVERkYyadIk6tWrR9++fTEyMiIoKEj6+/lMbGwsDg4O9OrVCycnJx49ekT37t3p27cv06dPR6PR8OzZM1QqFZUrV0apVEpeyEAyt9tu3ryJjY0NRYsW5eDBg7x8+ZIyZcrQtWtXAHx9fTlz5gwbNmzIlyPedST5Lgxu+fLlREZG4unpCby96AYGBrJv3z6WLFmiLzWgI53p/CUmJoYNGzZQqlQpnJ2dAdi/fz8rV66kZ8+ejBw5EnNzcwDCw8NJTk7m8uXLrFu3jsDAQKpVq2bI8MXf9PDhQ1auXMm9e/f0Nb6DgoKYO3curq6ujBo1itjYWIoUKSLnfx6ku65rNBrmzJlDVFQUGo2GVq1aMWTIEFavXs3Fixfp1q0b3bp1yzL7QeR94eHhODg4EBQUhJ+fH9999x3Ozs506NBBX4ImIyMDjUajLzUgnbHcQzfaTa1WM3DgQKKionj+/DleXl76RO3du3fZunUrly5dYtu2bdja2ho4avE+73bGAcqUKUOhQoVYunQpt2/fxsHBIUsCXog/omsbPHnyhLNnz5KQkECVKlXo1KkTV65cYfPmzZiamjJnzpzfrfki/cWcIzU1Vd9XCwkJYc6cOWzbtk2fhNNoNDg4OFCkSBHWrVtHSkoKsbGx8kAuH4iMjMTKyko/4ObZs2e4u7vj5+eHWq2md+/e1K5dm1GjRrFkyRJmzpxJqVKl9PvLiHfD0H3uarWaIUOG8OrVK5KSknB3d+fLL7/E2NiYa9eu8fTpU+7du8fevXvZvn07tWrVMnToBiXfVGFwr1+/1i+mqVarsbKy4rPPPuPNmzc4OTlx/fr1LNtLQypvS0lJYcWKFSQkJKBSqdi+fTsHDhzg2bNnwNtOeo8ePXB1deXgwYOsWLGCmJgYkpKS2LBhA3PnzuXo0aP4+vpK4j0HU6vVWf5dpUoVXF1dadCgAZMnT+bGjRv06dOHefPmsXLlSvbv34+VlRVGRka/21fkfrrEu729PUlJSfTq1Ytq1apx6NAhZs2ahaurK5988gmBgYF8++23712AWeQtmY+xqakpbm5ulCxZksmTJ9O+fXu8vb357rvv9As0Ghsb6xPvWq1WEu+5hFqt1peacnV1pWLFisyZM4eWLVvy3XffceHCBQB9WYLPPvsMCwsLQ4Ys/oBGo8HY2FifSFuyZAlubm507dqVH374gVGjRlGnTh38/f0JDg42dLgiFzAyMiIsLIz+/fvz+PFjnjx5gq+vL0OGDOHjjz+mf//+pKenM3HiRGJjY3+3rzA8Z2dnDh8+rP93QkICkZGRJCQkAG8T80qlkq5duxIfH09GRgYWFhaSeM8HUlJSWLduHbdv3+bJkyfcunWL1NRUbt++zdWrVxk4cCCVKlViwYIF3Lx5k5cvX2ZJvAOSeDcAXeJdq9UydepUSpYsiY+PD59++imrV6/myJEjJCcnExERgb+/Py9fvsTf3z/fJ94BpGciPijdKISMjAwUCgVGRkY0atSImTNn0rdvX5o2bQpA7dq1adGiBY0aNaJBgwaGDVp8UGfOnKFq1aqYmpqSkpJC7969efXqFRcvXuTs2bN89tlnAPTq1YvU1FR+/PFHihUrhlKp1NeEVqvV+tGQImcyMjLi4cOHXLlyhe7du2NhYUG1atUYOnQoCoUCNzc3Vq9eTe/evbGysqJNmzZZ9hV5Q+Ya73v27KFMmTIsX74cADs7O86cOYO3tzc//vgjkyZNQqPR0LJlS1lQKY/TfS9iY2PRarWULl2adu3a6UfVfv311ygUCrZs2UJKSgr29vb69QAA+X7kIkZGRmi1WrZt20aRIkWYM2cOZmZmFChQAD8/P3bu3IlSqaRly5bUrVsXW1vbLAspipxD1xkfOnQoZcuWZenSpTx58oTjx48zduxYfH19GTt2LJ6enhw6dIgvvvhCZjGJP6VSqVi6dCkDBgxg7NixpKSk0L17d2xtbYmNjaVt27aoVCpu3LhB0aJFDR2uyESXoBszZgz169dnz549dO3aFVtbWzQaDZs3b2bWrFlZZi+XLFnSwFGLD8nY2Jjo6GjmzJlDdHQ08+fPp3379rRr1w4XFxcaN26s7xOcPHlSFuPOIXQPPDZv3kxKSgrLly/HzMyMRYsWsWDBAjZs2IBSqaR79+50795dZiFlImVnxAejO/Hu37/P9u3biY+PZ+zYsVSpUoX58+dz/PhxJk+eTOXKlQkKCuLp06cEBgbqp7TISZt/qNVqJk6ciImJCTNmzCAtLY1169Zx//59RowYQdu2bfXbZp6uLt+R3CU4OJjp06fj7u5O37599Q3wH3/8kVGjRmFsbExQUJB+BoOUkchb3j2eGzdu5OLFi/j7++t/lpiYSN++ffnqq68YO3asIcIUH5juWv769WuGDx9OrVq1mDBhAlZWVkDW783s2bOJj49nxYoVknDPxV6+fKl/0L5y5Uq+/PJLAK5evUpgYCDR0dG4uLjQvHlzA0cq/sqzZ8+YPn06K1aswMrKSt9G++abb7h58yYBAQE8evSIIkWKUKJECUOHK3K41NRUnJycWLJkCTY2NvTo0YPq1asza9YsRowYgbu7O/Xr19dvLyUocgaVSsXevXvp16+ffu2udu3aMWTIEKZNm8b333/PhAkTaNOmDY0bNyYhIQEfHx/8/f2lpFg+oTtXHz58SM+ePfUlh+rUqaMvL5eamkqDBg14+PAhz549Y8+ePZiYmGQZuCM+LN1n/9NPP7Fu3TquX79OQEBAluuwh4cHhw4dYs6cOXz11VdyrDKRu5P4ILRaLUZGRoSGhtK/f3/UajXh4eE4OjoSEhLC+PHjGTRoEKtWrWLVqlXExsayY8cO/YroklTNP548ecKLFy/47LPPiImJYdWqVZibmzN69GiqV6/O5s2bOXr0qH57hUKh/36JnO3dcjE9e/Zk/vz5LFq0iMDAQNLS0gBo3rw5nTt3ZtKkSVSuXFm/vSTe8xZdeQJHR0dOnDhB8eLF0Wg03LhxQ7+NpaUldevW1SdpZLxA3qa734eEhODl5QVAUFAQnp6exMTEAOgXXQeYP3++PvEu343c4917QenSpdmzZw+1a9fmwIED/PbbbwA0bdqUPn36UK5cuSz3ApFzxcTEcOXKFcLDw4H/O9aVK1fGyMgIpVJJ1apVJfEu3kuj0WT5t7m5Oenp6fj7+9OnTx9sbW1ZunQparWahISE3y24LIn3nOHGjRscO3YMT09P+vXrR6FChdi0aRP+/v4sXbqUJk2asHPnTt68ecOFCxd48OCBJN7zkcwPyTQaDR4eHtSpU4e5c+dy8eJFmjdvzrRp0/jqq69ITU2lUaNG7N27FxMTE331BPFh6e7lus++WbNmTJ48mYYNG7J8+XIePHig33bGjBnY29tTp04dOVbvkJHv4oOJiYlhxIgR9O/fn969e3PhwgXmzJlDWloaGzZsoF69eiQkJGBmZoaJiQkKhUJGuuZDbm5uPHv2TL/o7qFDh6hUqRITJkwgOTmZJUuWUKRIERYsWGDoUMW/8OTJE33HvEuXLtSoUYODBw8ydepUxo4dS7t27fD39+fVq1ds3LhRZjXkQb/88gsNGzZEq9Wya9cufvnlF5YuXUpERIR+NtRXX31Fs2bNOHToEOvXr2fXrl1UrFjR0KGLD+D58+fY29szZswYWrduTWxsLBMnTqRFixZMmjRJPwI+83VBRkHlHpkXV96yZQsRERGUK1eOtm3bUqJECYYNG0apUqVwcXGhXr16QNbF+kTO8Uf3ZhcXFwoUKMCkSZMoV64c8HZ6+q+//sqyZcswMzOT81X8ju77FB4ezo0bNzAzM6Ndu3bs3r2b9evXU7x4cf1aAdOmTePZs2ds375dEu45TFpaGmZmZmzatIk1a9ZQoUIFjh49ikKh4Pz584waNQoHBwfc3d31SViVSiXlxPIJ3XkeGRlJaGgoxYoVo379+mRkZDBy5EjevHnDlClT+OSTT3j16lWWUkTSHzSMzO22gIAAXr9+jZmZGY6Ojty5c4dNmzahUqmYOXOmDJT4C5J8F/+pzBfJ8PBwpkyZQkBAAKmpqUyePJmvvvqK7777Tj/6/fPPP6dIkSKAdKbzK900pvnz51OxYkV27tzJ8ePHqVy5MuPGjUOtVlO8eHFpbOcSqampHDx4kC5duvD69Wvs7e35+OOPefz4Ma9fv6Zv376MGjWK4OBgvLy8KFOmDKampuzYsUOmFuZBgwcPpnr16syePZuFCxfi7+/PhAkTGDVqFABhYWGsWLGCBw8eYGlpiVqtZtGiRbJITz5y8uRJfHx8CAwM1J//T58+pWvXrvTo0YNx48bpE/Aid9JoNPTq1Yvy5ctTpkwZQkNDSU9Px9nZmQYNGjBixAgKFizI1KlTqV27ttwHcqDMnfGlS5eSkJBAVFQUY8eO5fbt23z//fckJibSunVrEhISCAoKYvv27dSsWdPQoYsc7N69e/Tt25cqVaoQGhrK8OHDGT9+PKtWreLKlSu8efMGa2tr4uLiCAgIwMTERErN5CAuLi40aNAAZ2dn/Pz8OHnyJKamptSuXZshQ4ZQvHhxzp8/z7hx4+jSpQvu7u5YWlrKNT6f0J2rISEhODk5UaFCBW7evMnMmTMZOHAgarUaZ2dn4uPjUavVVK9enSVLlhg67HxNd25mbrfpSkm9efOGHTt28OrVKzZt2kRMTAxLly6VwVJ/QoYUi/+Mbvp4WFgY58+fx8bGBhsbG1JTUxk6dCg1atSge/fuhIeH8+uvv3L27Fm6d++u319uwvlH5oZznTp1iI+PZ/v27cyePZv+/ftjbGzMjh072L9/P8OGDfvdPiLnOnLkCN7e3kRHR/Pw4UPGjBnDwIEDAfDx8WHPnj1UqVKFnj176uvFVa5cGaVSKTNf8piff/6ZqKgo3Nzc2Lx5M0OGDOG3337j8OHD9O3bl2LFilGjRg2WLl3K69evUalUWFlZ/W5auchb3tfpTkhIIDY2lmLFiqFSqbCxsaFVq1bs3LkTgDlz5hgiVJFNli1bRsWKFVm5ciXwdnDGjh072L59Oy1btmT58uW4u7tTvHhxQNqDOZEu8d6rVy8qVqxIvXr1iI+PZ/z48UyYMIEBAwZw8eJFLly4QKVKldixYwc1atQwdNgiB9I9yNFqtfj7+zN58mT69evHiRMn+PrrrzEyMmL8+PFERUXp+5NNmjTByMhI2ok5zNSpU6lYsSK7d++mdevWODg44Ovry+nTp/UPWNu0acPGjRuZNGkSEydOxNLSUq7x+YRSqeTp06eMHTsWV1dX7OzsWLFiBQsWLECtVuPg4MDmzZvZtGkTr1+/ZsqUKYYOOd/TnZvz5s3D2tqaNWvWAJCUlMSECRMYOXIkBw4coG/fvhw+fBgTExNDhpvjyd1K/GeUSiWRkZFMmzYNe3t7vvzyS1q1asXTp08pVKgQCxcuBODx48dMnz6dzp076+u2yk04b0tOTubUqVN07tyZly9f4uzszLBhw6hZsyY1a9bEzc2NlStXcuPGDerVq0fv3r0pXrw4dnZ2+t8hiffcwd7enri4OE6fPk1UVJR+IT0AJycnHj16xMaNG2nfvj1Vq1bVv6bRaKRDlYdotVrKlClDkSJFGDlyJNWqVWPEiBGsXbuWIUOGMGbMGDZt2kShQoX0/4m8T5d0SUpKwsjICHNzc2rWrElkZCQBAQGMGzdOPxW9TJkyTJ8+nWXLllGlShUGDx5s4OjFvxUZGUmlSpWAt9+BChUq0K1bNwYMGMDly5dp06YN27dvl05cDqVrp2/atIlSpUrpH6IAeHp6smTJEoKDg2ndujUZGRkolUpps4n30t0Dnjx5ws2bN4mPj6dhw4YYGRnRtm1bli5dytSpU0lKSmLq1Kn07t07y77STswZZsyYQdOmTenevTtPnz5lzpw5dO3alYULFzJ48GAyMjI4f/48Pj4+mJub06xZM77//nspNZOP6AbNHTt2jGbNmtG/f38iIyNRKpX06tWLb775BgsLC3r37s3o0aP1+8kDNsN4t8RPTEwM7du3B94uqKybnTh8+HBu3rxJmzZtaNKkCQULFjRUyLmCtIREttMtlpOQkMDMmTOxsLBgwIABaLVaChQoQFxcHD/++CPBwcGMGzeO0NBQOnbsqF9cVRLved+WLVtIT09HrVZjYmJC48aNOXLkCKNGjWLr1q2kpKRQokQJoqKi9Pt8/vnnKJXK3y3UJnIu3bEaMWIEHTt2RKVS8csvv/D69Wv9NnZ2dlhbW//uvJeOet6hWxypXLlypKeno9FoqFOnDo8fP6Z06dJs376d2NhYXFxcSEhIMHS44gPJPDvO1dWVvn374uvrS4UKFfDy8mLDhg18/fXXrF+/nvHjx3Px4kUcHBxwdHTk9u3bhg5f/E3vLqCo69C9fPmS5ORkfeeudu3aNG7cWN9xk852zrN//35SUlL09+vY2FjKly8PvB0FB2/X7SlQoAAnTpwA3h5HuZ+L99FqtRgZGXHv3j169erFxo0bOXbsGNu2bQPA1NSUtm3b4uXlhY+PDzt27Miyv9R+zjkKFSrEzJkzOX78ODY2NgQHB3Py5ElmzJiBWq1m2LBhfPrpp9y8eRMfHx8sLCwk8Z5P6Cpcx8fHA3D//n1KlixJRkYGY8aMoVSpUkydOpVSpUoxa9Ystm7dmmV/aQt8eBkZGfrZSFeuXOHu3btERUVx7tw5gCyDYqysrPT3eEm8/zX5NotspdVq9XWgdu3aRb169diwYQOnTp2iXbt2ALRo0YKuXbty6NAhLCws2L9/P8bGxrKIRj6gUqmIi4vD1dWVjIwMxo4dS6tWrZg7dy5xcXFcuHABPz8/qlSpwpkzZ7h//z5NmjShaNGi+t8h35HcQzctXalU4uDgQFpaGmfPnuXbb7+ldevWVKhQgcOHD0vDKg/TzWBIT09n2LBhtGzZkqZNm7J+/XpSUlLo378/tra2bN++ne7duzNp0iS8vb3lIWwep7suRERE4OjoiL29PampqWzevJk3b94wevRo9u3bh5+fHw8ePKBw4cIcOnQIgLi4OClFlEvoRqxptVoePnwIQOnSpenTpw9OTk5Ur16d9u3bU6FCBQICAnj8+DEVKlQApNRMTuPi4sKZM2c4evQoq1evxsLCgoyMDC5evAi87XTrFk20sbHRJ+WFeB/d7InExES2bdumnyUdEBDAsWPHmDt3LrNnz8bU1BQ7Ozu2b99O48aNDR22eIfuGj9t2jQSExOZOnUqRkZGtGvXDn9/fwYMGACAh4cHzs7OdO/eHWNjY1m3JR9RKBQkJCQwdOhQpk+fztixYzE1NcXb25vSpUszadIkAFq2bEmrVq2yzJAWH55Wq8XY2BiNRoO9vT0KhYKMjAxatGjB9evXWb9+PS4uLgB8++23JCUlUbZsWQNHnXvIgqsi2+iS59HR0Rw8eJDly5fj6upKcnIywcHBfPPNN3z66af67RMSEvSlBWRKUd6n1WpxdXUlISGBadOmYWtry9SpU4mIiKBbt2506dKFAgUK8Pz5c2JjY9m8eTNarZaVK1fKqKlcLnN9/o0bN/Ldd9/x+vVratWqRWxsrCyumkdlPp4zZ84kLS0NT09P4G2DzdfXl7p169KvXz9q1KhBVFQUqamp2NjYGDJs8YHExMSwYcMGSpUqhbOzM/B2ZO3KlSvp2bMnI0eOxNzcHHhbEzw5OZnLly+zbt06AgMDqVatmiHDF39Bd93XaDQMHToUtVpNREQExYoVw8PDg5cvXzJv3jxMTU2xtrbm0aNHrFmzhtq1axs6dPGOLVu2cPDgQdauXcuXX35Jx44dWb58Oc+fP2f06NFYWVmxdu1aFAoFx44dY8WKFezatQtra2tDhy5ysNjYWObOncvjx4+ZMWMGH3/8MYmJiRw8eJCjR49ia2vLjBkzsgy6kf5izqFr46nVagYNGkTVqlU5efIkSUlJLF26lI4dO3L79m2GDBnCxx9/zOLFi6WkYD4VHR2Nu7s7n376KQ4ODmg0GubOnYuRkRFz5szBzc2NiIgIAgICZM2vHGLUqFEUKFCA5cuXExsbi7m5Odu2bePy5ctERETQsGFDfv75Z9avXy/ttn9Aku8iW+huwCEhIbi6utK4cWOuXr2KRqPhiy++oEiRIuzdu5f58+fTsmXL9+4r8r7Q0FDc3NyoVKkSbm5uWFtb4+Hhwa1bt+jatSvdu3enQIEC+u0zr7AtCfjcLfMxDAgIYM2aNYwbN45+/frJoll53Pz58/nxxx8ZP348X331lf7nR48eZceOHVSsWJHhw4dLMjWPS0lJYePGjQwfPhwzMzPWrl1LYGAgnTp1Yt68efrr/b59+1i3bh3t27fH2dkZc3NzPDw8ePToERqNhjlz5lCrVi1D/znib9BqtQwcOJBy5cqxcOFCbt26xblz5/Dz82Pv3r1YWFgQEhKCQqGgdu3aMnoqB0pPT2fv3r0cPXqU169fY2VlxYsXL7CxsWHVqlXcvXuXRYsW8fjxY6pXr86bN2/w9PSUzrj4W9asWUNQUBAdO3Zk+PDhlCxZkqSkJA4dOoSfnx/29vYMGzbM0GGKP6EbyaxL0u3fv59ly5bh5eVFx44duXHjBmPGjGHv3r2ULl3a0OGKD+B91QwCAgJYuXIlBw8epFy5chw6dIivv/6aBg0akJSURHBwMCYmJtLnzwGSk5MZO3YskydPpnbt2vpZbSdPnuTx48dotVpsbGyoXbu2frai+Hsk0yGyhUKh4PXr10yaNIkBAwbg6OjIs2fP+PHHH9m8eTNffPEFPXv2xMXFhR07dlCvXr0s+4q8T61WY2try4oVK3B1dWXp0qV8/fXXzJgxg4ULF3LkyBGUSiVdu3bVJ+B1C/DKTTjny/wQ7X0P1HQjIJVKJQMHDqRAgQJ069ZNX8dfEu95x7vHv1q1aly4cIGDBw9ia2tLlSpVAPTrABw8eJAiRYoYKlzxgZw5c4aqVatiampKSkoKvXv35tWrV1y8eJGzZ8/y2WefAdCrVy9SU1P58ccfKVasGEqlkkmTJlGgQAHUarWMnMvhMne6w8LCMDY2ZtGiRZiYmNCkSROqV69OTEwMmzZtYvHixdJxy+FMTExo0aIFS5YsoWjRonh4eFCqVCkGDBjA5MmTWbVqFXv37uX8+fOUKFGCEiVKSIJNvJfu2pCWlkZaWhqFCxdm3LhxFC1alP3791OkSBHs7e0pVaoUXbp0oUSJEnz++eeGDlv8ifT0dOLj4xk4cCAARYsWZdiwYcTHxzN79mzgbVvv9OnTUuM9HzEyMiI8PJxff/2VLl26ADBw4EB+/PFHTp8+zaBBg+jatSuVKlUiMTGRjz/+WAZi5SCpqancuHGDGzduULt2bf0xef36Nd9//z1+fn6Sv/uXJKMlso2uIaUb2Vi+fHm++uorWrduzZ49e1CpVMyfP19Gw+RTuvrfVatWZfXq1Tx8+JClS5cSERHBzJkzqV27Nj4+Pvz4449Z9pOLe86nWyg5Ojqa+Pj4PzxmmRfM7dGjh/6hitTxzzt0i6vC28YbwIABA5g6dSovX75kz549PH78WL999+7dWbNmDSVLljREuOID6tSpE506dcLNzY358+dTsGBBXF1dad68OZs2beL06dP6bQcOHMjatWv114wSJUpQoEABSbzncLpFdDUaDffu3UOtVnP9+nUePHigf71IkSKUL1+e2NhYTExMDByx+DvUajVt27aldu3abNiwgXv37uHj40NYWBhjx45FrVbTpk0bateuLYl38V66a0NoaCijR49m6NChDB8+HF9fXwYNGkTnzp05d+4cwcHBREZGYmlpSfv27TEyMtK3G4XhvbuAdkpKCiqViidPngD/t7hm3bp1USgUeHh4kJiYKNf6fCYjI4NDhw7h5ubGmDFj8Pb2RqPRUL16dc6fP6/vJ9SrV48WLVroz3NJvOcMVlZWODo6snPnTi5cuKDvr6tUKiwtLUlLSzNwhLmXJN9FttFqtYSEhHD16lXgbWPd0tKSypUrU65cOU6ePImJiYk0pPIx3ejnzAl4T09PIiIicHd3p3///vrRjyJ3UKvVKJVKHj16RJ8+ffjtt9/+dPvMsxiuXbvG06dP/+sQxQeiazhrNBomTJiAq6srvXv3ZuvWrTRv3hxnZ2euXr1KUFCQPhkHYGlpacCoxYfy5MkTXrx4wWeffUZMTAyrVq3C3Nyc0aNHU716dTZv3szRo0f12+tmPsnDudwhIyMDpVKJVqulR48e+pGsTZs25dixY0RHR+uv/0qlklKlSqFSqZDqlzlflSpVWLZsGbNnzyYjI4OAgACePXuGj48Pv/zyCxMnTjR0iCKHUyqVPH36FCcnJz7++GNWrlxJ7dq1WbVqFd9//z1Dhw7lq6++IigoiMuXL2fZV+4BOUPma/yNGzd4/fo1hQsXpkuXLqxevZqzZ8+iUqkAiIiIYMiQIRw4cABLS0sZSJUP6HI7ugU7x4wZw/fff4+trS3Hjx+nf//+FC9enEuXLnHgwIHf7S/nec7Sr18/GjZsyPTp05kyZQpz5sxh3bp1uLq66tdjEv+c1HwX2WrFihVcuHCBiRMn6hdXnTVrFkWLFsXIyIiHDx/i4eEhN+J8Tld+5MGDB0yYMIGiRYvi5eWlHzH1vlpxIufRlRcJDw/n4MGDmJiYMHLkyL/cHmD79u34+vqyc+dOypQp86FCFv8xrVZL7969KV++POPHj+fcuXNs3LiRYcOGMXLkSI4cOcLq1avp2LEjY8aMkdFQ+YibmxvPnj0jMDCQffv2cejQISpVqsSECRNITk5myZIlFClShAULFhg6VPEvaTQatmzZwqNHj1i0aBEA3t7enD17Fmtraxo3bkxsbCy+vr74+flRs2ZNA0cs/qnw8HAWLFiAiYkJffr0oUqVKmg0GipWrGjo0EQOt2vXLkJCQpg7dy4APXv2pGHDhvTv35/o6Gg++eQT9u3bR/fu3aUPkMPo+m1qtZohQ4bw6tUrkpKScHd3p1OnTqxatYqtW7dSv359ihQpwsWLF9m5cycfffSRoUMXH4Cu3/7gwQMCAgJ4+PAhtWrVws7OjmbNmgGwevVqoqOjCQoKYsSIEUyePNnAUYu/kpiYyMWLFzl//jwVKlTgyy+/pGrVqoYOK1eT5LvIVtHR0axbt46jR4/SoEEDEhMTef36Nd9++y1nz57F29ub7du3S923PO7vJM91DbnQ0FA2b97M0qVLpbZ7LhQVFYWTkxMPHjxgzJgxjBs37r2L5WROvAcEBLB69Wq2bNlC3bp1DRG2yCbp6elZEuhXrlxh8+bNbNmyBXj78PXevXt4enry9OlTWrZsyYEDB2jcuLHUes5nfvrpJ9atW8f8+fOpWLEiO3fu5Pjx41SuXJlx48ahVqspXry43AdysTNnzuDi4kK1atXw9vamXLlyABw4cIBr164REhJCpUqVGD58uCTec7Hw8HC+/vprypYti4eHBxYWFoYOSeQCXl5ehIWFsXbtWvr27UvlypVZvnw5w4YNo3LlysycOVO/rQzCyTl0bXqtVoubmxtqtRo3NzfWrFnDzz//jIuLC926dePixYv6WY1t2rShUqVKhg1cfFD37t3DwcGBvn37YmxsTGhoKK9evaJnz5706dMHeHte//bbb9SrV09KzIh8SZLvItulpqby66+/cuPGDSwtLRkwYAAAvr6+/PDDD6xatUq/oKbIWx49ekSlSpVQKBT6lbH/jDSuczeVSsWKFStQq9XExsbyww8/sHv3bmxsbLJs927ifdWqVfj4+Mj6D7lcWloax44do3v37sDbDtrp06dZvHgxp0+fxt3dnVu3brF//368vb25ePEigYGBhg1afFCZH8QlJyczcOBAGjZsqF+Ibc+ePezYsYNu3boxbNiw3+0jcrb3LY62f/9+3N3dcXNzY8CAAVkSs2lpaRgZGUmnOw+IiIjAyMiIsmXLGjoUkQPp2vfp6ekoFAqMjY05c+YMO3bs4Pnz59SvX5+lS5cCMGzYMNq2bcuAAQN+t2C7yDm8vb357bffWL58OWZmZgDMnz+fCxcuMG7cODp06CCD6/IplUqFu7s7NWrU0M+ADg8PZ/v27URERPDNN99gZWWV5fyWxVVFfiS9G5HtzM3N+eSTTxgxYgR16tQhICCANWvWsGHDBiZNmiSJ9zzMx8eHzp07ExYWxr59+/5yQY7MDeyXL1/+biEfkbOZmppSqVIljh07xrhx42jatCmOjo6Eh4frt5HEe9715MkTpk2bxuLFi3FxceG3336jQoUKWFtbM3jwYO7cucPhw4cxNjYmMTERW1tb1Gq11HjOw5KTkzl06BAajYbIyEi6devGgQMHCAkJoUCBAri5uXHr1i1u3LgBQO/evZkwYQJOTk763yGJ99zD2NgYtVpNYGAg3t7eJCQk0KNHD+bMmYOnpye7d+/WL7wMYGZmJp3tPMLa2loS7+K9MpegcHNzY+TIkZw7d44mTZpgampKWloadnZ2REREMGXKFF69eqUfGSuJ95xF11776aef+OGHHzh//jwhISH612fPno2dnR0eHh6cOnUKjUYjbbx8yMTEhBcvXugftms0GipUqED79u25cOECkZGRQNbzW9oCIj+SHo74z2i1WpKSkggODubVq1ds375dar/lUfHx8UyYMAEXFxfS0tLo2rUrGRkZmJmZkZGR8d59tFqtPsni6+vLwoULSUlJ+ZBhi39I93BEt6ASQN++falbty6HDh3im2++wcbGhuHDh/PkyRPg/xpau3fvxtPTE19fX0m85xE1atRgw4YN+Pr6EhYWRsOGDalZsybW1tbcvXuXgQMH8vLlS3x9fdm3bx/9+/fHyMhIOtd52JYtW0hPT0etVmNiYkLjxo05cuQIo0aNYuvWraSkpFCiRAmioqL0+3z++ef6WrIidzh9+jTx8fEA9OrVi6CgIHbt2kXHjh158OAB/fv3Z86cOXh5eeHr65vlniGEyNuMjIwICwtj0KBBlC1blq5du2JnZ0fhwoXx8vLiiy++wM/PjxkzZqBSqdi3b5/+QZ7IGXTHQtdea9asGZMnT6Zhw4YsX75cX14GYMaMGdjb21OnTh2USqW08fKBdwfLpaSkULBgQSIjI0lJSdH37+vVq0fjxo2lNJkQ/5+UnRH/ObVaLTfjPEylUtGvXz9atmzJyJEj6dChA1qtFhsbG3bu3An8fmrZu6OhV6xYgY+Pj9T/zgUiIyNZuHAhbdq0oVu3bpiZmbF7926+/fZb/Pz8SE9Pp1evXlSqVInVq1ej1Wp5/fo1Xl5eDBo0SB7A5QGZy4Ls27ePgIAA7t27x+DBg/n666/RarV88803PHr0iOjoaIoWLcrUqVPl2OdhKpWKuLg4SpcuTUZGBmPHjqVVq1YMGjSIuLg4Lly4gJ+fH1WqVOHQoUPY2NgQFBRE0aJFDR26+IfOnDmDh4cHPXv2JDExkfT0dGbOnMnr16+ZPn06N2/exNfXl6pVq+Lr68v69es5ceKEHGsh8gGtVkt6ejoTJ06kSZMmODk5ER0dzeLFi4mMjKRcuXJ4enqiUqlITU2lUKFCKBQKKUGRg+hmLmg0GgICAnj9+jVmZmY4Ojpy584dNm3ahEqlYubMmVSuXNnQ4YoPTPf9eP78OZcvX6Zq1arUq1ePU6dOMXHiRCZNmkTz5s356KOP+Prrr4mIiMDf319mNQqBJN+FEP+jp0+fMnDgQAYNGsSVK1cYMGAAjRo1wsHBAVNTU4KDg/9wX10ZEl9fX2rVqvUBoxb/Vnh4OJs3b+bw4cM0a9aMJk2aMHDgQHr06EG/fv1wcnJCpVJhZGSUpZ5/WlqavkakyL10HWStVotKpdIf0x9++IGRI0fSv39/ZsyYAUBsbKz+9YIFCxosZvHf0mq1uLq6kpCQwLRp07C1tWXq1KlERETQrVs3unTpQoECBXj+/DmxsbFs3rwZrVbLypUrpTOWiyQmJmJpaQnAhg0bOH/+POnp6Tg5OdG5c2fg7XV+/PjxhISE4O3tTY0aNYiPj6dw4cKGDF0I8YEtWLCAly9fUqdOHYKCgrC2tqZDhw4sXryY5cuX065dO/22Uuc959AdC41GQ69evShfvjxKpZKIiAjevHnDjh07ePXqFZs2bSImJoalS5dSsWJFQ4ctPhDd9yMkJIThw4dTpEgR4uLi6N+/P+PGjePQoUNs3LiRpKQkrK2tUavV7NixAxMTE1nPRwgk+S6EyAazZ88mKCiITp06sWzZMgBCQkJwc3PD3NycPXv2cObMGerXr0/x4sUBqf+d2z169IhDhw5x6tQpzM3NKVSoEObm5ixbtgxzc3MUCoUsqJvH6I6nWq1mzJgxpKWlUbx4ccaMGUPlypU5e/Ysrq6uODo6UqFCBRQKBb179zZ02OIDCA0Nxc3NjUqVKuHm5oa1tTUeHh7cunWLrl270r179yzrvWTu4EtnLHeYN28ehQsXZuLEibx8+ZITJ06wceNGWrduzeTJkylRogTwdhbE0KFDiYmJ4eDBg5iYmEhiTYg8TNc2SEtLQ6lUYmJiwr59+9i/fz8lS5akdu3aDB8+HABnZ2eGDh3KJ598YuCoxZ+ZM2cOsbGxrFmzBoCkpCQmTJjAixcvOHDgABcvXuTw4cNMmjSJcuXKGTha8SHo2m2xsbF4eHjQoEEDBg8ezNatWzl69Cht2rRh9OjRxMTE8Pz5cxQKBfXr10epVMrMFiH+P0m+CyH+FV3SJC0tjenTpxMVFcX169dZsmQJXbp0ASAsLIxJkybx+PFjqlSpwoEDB1Aqlfj7++tHvEviPffSaDQoFAo2btzI7du3OXXqFFu2bKFVq1aGDk38RzQaDfb29lhbW2Nra8vJkycpWbIk06dPp3Llypw7d4558+ahUqnw8fGhRo0ahg5Z/McyL67n6upKlSpV+Prrr7G2tmbhwoXcvXuXrl270rVr1/cm4EXOl56ezvHjx1m+fDmvXr1i+PDhjB8/Hm9vb06ePImdnR29e/emVKlSwNsEfExMjCzIKUQep7v+h4WFsWTJEgoXLkyjRo0YPHgwAK9fv+bNmzeUKFGChQsXEhISwt69e2VgRg7z7mCZsWPH0r59e7p164ZKpcLU1JT79+8zfPhwVq5cSYMGDUhKSpJZjflMbGwsM2fOJDk5mbVr1+pnw/n4+HDkyBHs7Oywt7fPcu+XQRZC/B85E4QQ/5juRhodHc327duZNm0aO3bswMXFhalTp3L48GHg7YKMu3btYuXKlQQHB6NUKvn111/x9/eXxHseoFAoUCgUjB49Gi8vL8aPH09gYCDJycnIc928I/MiaKtWraJixYqsXr2awYMHY2NjQ1xcHB4eHoSHh2NnZ8e+ffs4fPiwJN7zCV1t2KpVq7J69WoePnzI0qVLiYiIYObMmdSuXRsfHx9+/PHHLPtJ4j33MDExoWXLlqhUKpRKJebm5sDbUayfffYZ586dY9++fbx48QIAU1NTSbwLkcdptdosi6tWrlwZjUZDYGCgfsR0TEwM06dPp2/fvjx9+pSgoCD9DDqRM2RkZGBkZIRWq+XKlSvcvXuXqKgozp07B7y9ngOUKVMGKysrfSJVEu/5h65PFxUVRYECBbh8+TIhISH6152cnOjSpQv79+/n4sWLWfaVxLsQ/0dGvgsh/hHd6IjIyEh27drFoUOHcHBwYNCgQZiYmLB27Vo2bNjA0qVL6dSp03t/R1RUlH6EnMjdMo9ePXPmDDt27MDb2xsTExMDRyayk1arZffu3Vy4cIGOHTvSqVMnpk+fjqmpKU2aNGHOnDkUK1YMT09PGjZsaOhwhQHoHsrqRsBXrVoVNzc3ypcvj5+fH4MHD5bRjrlM5tGQqampHD9+HK1Wy5o1a+jYsSOTJ08GYNOmTQQHB9O7d2+cnJzkOAuRTyQmJjJixAi+/PJLHB0dOX/+PFu2bCEhIYEvv/yS0aNH8/jxY1QqFdWqVZMSFDlM5hJw9vb2+sVvW7RowfXr17Gzs8PFxQWA3bt3s23bNvz9/SlZsqSBIxcfgq5dl7ktEBMTw7x587h16xbLli3L0uY/evQoX375pbQBhPgDcucTQvxtulEuISEhjB8/nqZNm2Jqasrx48dJSkrC2dmZsWPHolAomDx5MsWKFaNFixb6/XU3cUm85x2ZR6/eunWL0NBQkpKSKFq0qOGCEtnu+++/59ixY1SoUIHy5cuzatUqbt68yeHDh0lLS2P37t1YW1tTpEgRQ4cqDESpVGYZAT9hwgSmT5+Ol5cXjo6OwO+ntoucK/PiysePH6dcuXK0b98ec3NzEhIS8PHxQalUMnHiRAYPHoyZmRnt2rWT4ytEPpKQkEB8fDyDBg0iOTkZf39/7OzsePHiBVu2bOHevXssX75cv71Go5HEew6ia8O7uLhQqVIlli9fTmxsLObm5mzbto0ff/yRoKAgGjZsyM8//8z69esl8Z5PZC4puHv3bpKSkihcuDBjxoxhxowZrFy5kqlTp+Lp6Un9+vUB6NixY5Z9hRBZyd1PCPG3KRQKkpKSmD17Nj179mTkyJEkJSWxZ88eLl++zNatWxk+fDhjxoyhdOnSNGvWLMv+MvUs79JoNNSuXZtt27ZJ4j0PeLfhXLFiRdLT06lZsyYNGjRgy5YtTJgwAYCdO3cCMG3aNEm+53F/1aHKnID38vJi8+bNWTrq0hnLHdRqNcbGxmg0Gnr16kVqaiqxsbH06dOHQYMG0a9fP5RKJRs2bODs2bMYGxsTEBCAhYWFoUMXQvyH3l2rw9LSkurVqxMXF8eECRMoX748w4YN4+jRo9y5cweFQpHlviH9gJwnOTkZlUrFuHHjgLfH1NTUFFtbW8zMzNBqtdjY2DBp0iQqVKhg4GjFh6JLvA8aNAh7e3tKlizJDz/8QPv27Tl69CgjR45k48aNODo6EhQURPXq1bPsK4T4PUm+CyH+UubGdkZGBsnJyXz66afA25p/AwYM4MmTJ/j7+6NUKnFycsLe3l6/vYxyyfuUSiVt27Y1dBgim+jqf65bt47evXtTqVIlnJ2dmT59OvXq1aN48eIsWLCAS5cuceDAAfz9/SXxnoc9evSISpUqYWRkpF987Y/opijb2tri5eX1AaMU2UV3/g8aNEj/IGXhwoWcOnUKjUaDo6MjvXv3pmzZspw5c4YBAwZI4l2IfEChUBAdHU18fDzx8fE0aNCAZcuWER4ejlqtZunSpQCcPXuWhg0bMmXKFEAWXczJUlNTuXHjBjdu3KB27dr6Ptvr16/5/vvv8fPzkzVa8hmNRoNWq2Xz5s306NGDyZMno1arOXbsGG3btiUhIYFy5coxatQoKleuTJUqVQwdshC5gtwFhRB/Sq1Wo1AoiIuL4/79+6SmplK6dGn27Nmj38bU1JR27dpRuHBhfvrpJ7Zs2UJ6ejogo1yEyK127tzJ2rVrcXBw4NChQ5QuXZr+/fvrR7506NCB+Ph4AgICqFmzpqHDFf8hHx8fOnfuTFhYGPv27SMtLe1Pt8/cUX/58iUajea/DlFkE91SUBcuXMDCwkL/AMXExISKFSty8uRJ/Pz8ePLkCZ9//jkLFiygVq1ahgxZCPEfUqlUPHjwAID79+8zYMAApk+fzuDBg5k8eTLh4eGYmJgQGRnJ1KlTmTBhAmFhYfrZcVqtVvoCOZiVlRWOjo7s3LmTCxcu6I+VSqXC0tLyL+/3Iu/QLYSsW4Q3NjaWJk2aANCzZ0+qVKnCggULmDRpEkePHqVSpUqMHDlSFlEW4m+SO6EQ4g9pNBqMjIwIDQ3FwcGBcePG4enpiZ2dHU+ePGH16tX6RtmJEydo1qwZderU4erVq6xZs4b09HRpcAuRS7zbcO7duzfNmzcnKSmJM2fO4O3tzQ8//MDt27epU6cO06ZNw8PDA1tbWwNFLP5r8fHxTJgwARcXF9LS0ujatSsZGRmYmZmRkZHx3n0yJ1p8fX1ZuHAhKSkpHzJs8S/ozn/dg5OUlBSioqIAmDx5Mo8ePWLjxo1Uq1aN3bt3s3r1ajmuQuRxWq2WyZMn4+HhwbVr15g5cyZDhw5ly5Yt7N+/nzt37uDl5YWFhQWjRo3Sz4zau3cvxsbG+gE8Imfr168fDRs2ZPr06UyZMoU5c+awbt06XF1dMTc3N3R44gPQret29+5dHBwcSEtLo1ChQvj4+GBvb0/dunXx8vJCoVCQnp6OjY1Nlv2l1IwQf02h1Q1xEUKI9wgPD6dPnz64uLhgb2+PhYUFly5d4vTp00RERPDbb79Rq1YtoqOjOXjwIAAeHh5ERETg4eGBlZWVgf8CIcTfpdVqOXr0KJUrV6ZWrVpcvHiRc+fO6Ue2rlu3jmfPnjFw4EBmzZr1u/qvIu9QqVT069ePli1bMnLkSDp06KCv/aqr8/9uWbHM34eAgABWrFiBj48PdevWNcjfIP4eXU1mjUbD0aNHMTY2JiEhgc6dO3P58mUWL17M8ePHAZg3bx7m5uYMHTpUFt4TIh8IDQ1lypQplC9fHrVazfr16zExMQHezmzq0KEDc+bMoXv37ln2k7KTuUtiYiIXL17k/PnzVKhQgS+//JKqVasaOizxAejabrGxsUyYMIFWrVrh7OzM1atXWbRoEXFxcZw9exYAd3d37t+/z65duyThLsQ/JHdEIcSfunz5Mu3bt2fw4MHcunULd3d3zM3NuXv3Ll5eXvTv35+iRYtSp04d/T6TJk0iJSVFEu9C5DL3799n48aNFChQgN69e9O0aVNiYmIwNjama9eufPzxx2zZsgUHBwcASbznYS9evODVq1dYWlri6urK3LlzadSoEQ4ODvTs2ZPg4ODfJVYyJ95XrVqFn5+flCTJ4U6ePEn79u31i6uam5uTnp7O48ePiYuLo0GDBpQqVYro6GhOnz7NxYsX8fHxkcS7EPmAbv2OlStXMmnSJB49esSNGzdo3LgxGRkZlC5dmrZt2+pnyehotVpJvOcylpaWdOjQgQ4dOhg6FPGBKRQKXr9+jbu7O8+fP6dVq1YA1K1bl6FDhxIcHEyrVq2oUaMG6enpBAYG6kvNSAJeiL9PRr4LIf7U+fPnGTVqFE2aNCEuLo5q1arh4eHBggULMDMzY968efptddNLpdSMELlXbGwsp0+fxsvLi969e+s721u2bMHW1lYWTstHZs+eTVBQEJ06dWLZsmUAhISE4Obmhrm5OXv27OHMmTPUr1+f4sWLA/+XePfx8aF27dqGDF/8hVu3bmFvb8/o0aMpX748165dY/HixcTFxfHLL78wYcIE6tWrB0B6ejrPnj1j48aNWR62CyHyNt09/+nTp7i4uFC/fn1Gjx6NtbU1AEOHDqV169Y4OjoaNlAhxP9k48aN7Nq1izZt2jB69GjKlCmDWq1GqVRy9epVSpYsScWKFVEqlTKzRYh/QZLvQog/pVKpOHz4MImJidjY2PDZZ58Bb2vAlilTBjc3NwNHKIT4Lzx+/JgDBw4QGRnJwYMHGTx4MFOnTsXIyEhGvOdhukRLWloa06dPJyoqiuvXr7NkyRK6dOkCQFhYGJMmTeLx48dUqVKFAwcOoFQq8ff3Z9WqVfj6+kriPZc4ceIEbm5ulCpVikGDBjFkyBD9aLY9e/Zw7NgxBgwYQKFChbC2tqZ8+fKGDlkI8YHp7gv379/H1dWV0qVLY2NjQ2JiImFhYezfv18ScULkUpkH1WzdupVjx47x2WefYW9vT+nSpf90eyHE3yd3SSHEnzI1NaVXr15otVrOnTtHYGAgV69e5d69eyxevNjQ4Qkh/iOVKlVi9OjRpKWlYWVlRZ8+faRzncfpOlTR0dEEBwczbdo0SpYsydq1a5k6dSoAXbp0oUaNGuzatYvLly9jZ2eHUqnk119/xd/fXxLvucwXX3yBiYkJkyZNIjQ0FEDfqS5ZsiSpqam0aNGCAgUKGDJMIYQBKZVKNBoN1apVY+3atbi5uXHs2DFcXV1ZsmSJfnFVKUEhRO6jO7+VSiXDhg1DrVZz6tQpFAoFvXr1+l0CXhLvQvw70osWQvwt6enphIaG8sMPP1C5cmX279+PiYmJTDsTIg8zMzPDzMxMn3gVeZcucRIZGcmuXbs4dOgQJiYmDBo0iLFjxwIwbdo0lEolnTp1wtLSknbt2un3b9CgAX5+fpQqVcpQf4L4lz777DM8PT0ZP3481atXx8nJCYCIiAj9QqxCiLztr5LnugRdlSpVWLJkCRs2bGDAgAEolUpJvAuRy2VOwDs7O6NQKNi1axdlypShZ8+ehg5PiDxBys4IIf62d6eZSeJdCCFyP61Wi0KhICQkhPHjx9O0aVOuXr1KsWLFaNWqFc7OzpiamrJu3TrWrFnDtm3baNGihX5/mYKcNxw/fpzJkydTsWJFmjdvznfffcemTZtkJoMQedijR4+oVKkSCoUClUqFqanpn24viXYhciddW+/d/88sc3vu4MGDdO7cWc53IbKJJN+FEP/KH920hRBC5D5JSUk4OTnRtm1bRo4cSVJSEnv27OHy5cvUr1+f4cOHY2Jiwt69e+nevbs8eM2jzp8/z8iRI+nZsydTpkzBysrK0CEJIf5Ds2fP5vr166xYsYLr16/Ts2dPzMzM/nD7zMm5ly9fUrJkSXn4KkQOl7msoKmpKYULF/7DbeUBmxD/DblTCiH+FUm8CyFE7pZ5/EVGRgbJycl8+umnABQsWJABAwZQtmxZ/P392bZtGyqVCnt7e4yNjcnIyDBU2OI/1KZNGzZt2sSwYcMk8S5EHhYfH8+ECRNwcXEhLS2Nrl27kpGRgZmZ2R9e37VarT7R7uvry8KFC0lJSfmQYQsh/iG1Wo1SqeTRo0f06dOH33777U+3z/ww7dq1azx9+vS/DlGIfEGS70IIIYQQ+YxarUahUBAXF8f9+/dJTU2ldOnS7NmzR7+Nqakp7dq1o3Dhwvz0009s2bKF9PR0QBbcysvatGlD1apVDR2GEOI/olKpcHR0pEKFClhaWpKamkrx4sU5evQowHsfsGae8RoQEMDatWtxdnamYMGCHzx+IcTfo9VqMTIyIjw8nG+//Za+ffvqB1n80fa683z79u24ubn9ZSkqIcTfIz0nIYQQQoh8RKPRYGRkRGhoKA4ODowbNw5PT0/s7Ox48uQJq1evJi0tDYATJ07QrFkz6tSpw9WrV1mzZg3p6emSfBdCiFzqxYsXvHr1CktLS1xdXZk7dy6HDx8mISFBv7jiu6XFMifeV61ahZ+fH3Xr1v3gsQsh/j6FQkFUVBSjRo1i7dq1qFQqgPcupP7uA7b169ezevVqypQp80FjFiKvkp6TEEIIIUQ+olQqCQ8Px9HRkT59+hAcHIyXlxfVqlWjSpUq3LlzBzs7O4YNG8avv/7KvHnzmDhxItWqVePevXskJCQY+k8QQgjxL9nY2PDZZ5+xYsUKihUrRrt27bCyssLLy4v09HR69+4NwJkzZ4iJidHvp0u8+/j4UKtWLUOFL4T4m1QqFT4+PrRs2ZLOnTsTGBjI06dPfzeA4t3E+6pVq9i2bZs8YBMiG8mCq0IIIYQQ+cyePXu4efMm8+fP59atW7i7u2Nubs7du3fx8vLCwsKCokWLUqdOHf3CWykpKaSkpEgtcCGEyIV0iy6mpaUxffp0oqKiuH79OkuWLKFLly4AhIWFMWnSJB4/fkyVKlU4cOAASqUSf39/Vq1aha+vL7Vr1zbwXyKE+Lt2797N2rVr8ff3Z9myZdy6dYvt27dToUIF4P2Jdx8fHznPhchmknwXQgghhMhnzp8/z6hRo2jSpAlxcXFUq1YNDw8PFixYgJmZGfPmzdNvq6sPL6VmhBAid9Il3qOjowkODqZHjx6ULFmStWvXsn79+iwJ+MTERC5fvoydnR3Gxsb8+uuvTJs2jWXLlklCTogcTHeeq1SqLLXaXVxc+Oijj3BycmLs2LFERkbi7e1NxYoV9dvs3r2bRYsWERgYKDNbhPgPSC9KCCGEECKfad68OQsXLqRdu3ZMnjyZlStXUrBgQdLT07G0tMyyrZGRkSTehRAil1Kr1SiVSiIjI9mxYwc7d+7kyJEjpKenM3bsWFxcXJg2bRrffvstAJaWlrRr105f971Bgwb4+flJ4l2IHE53nk+cOJGgoCD9+j1t2rTh6tWrWFpasnnzZszMzFi2bBnwduR7XFwcN27cYOfOnZJ4F+I/IiPfhRBCCCHyKa1Wy7lz54iMjOTq1avcu3eP/fv3Y2JiYujQhBBC/I90JSVCQkIYP348TZs25erVqxQrVoxWrVrh7OyMqakp69atY82aNWzbto0WLVro99eNpBVC5A7h4eFs3ryZw4cP06xZM5o0acLAgQPp0aMH/fr1w8nJCZVKhZGRkb6sIEBaWhpmZmYGjFyIvE2S70IIIYQQ+ZRKpWLbtm388MMPVK5cmVmzZmFiYkJGRoZ+1KMQQojcKykpCScnJ9q2bcvIkSNJSkpiz549XL58mfr16zN8+HBMTEzYu3cv3bt3l2u/EHnAo0ePOHToEKdOncLc3JxChQphbm7OsmXLMDc3R6FQoFarsyTghRD/HUm+CyGEEELkY++ObJTEuxBC5G6ZF1F88+YNAwcOZOnSpfqSEiqVikWLFnHixAkcHBxwcnLS14iWe4AQeYNGo0GhULBx40Zu377NqVOn2LJlC61atTJ0aELkOzKHTAghhBAiH8uceNdqtZJ0EUKIXEy3SHZcXBz3798nNTWV0qVLs2fPHv02pqamtGvXjsKFC/PTTz+xZcsW0tPTAaTMjBB5hEKhQKFQMHr0aLy8vBg/fjyBgYEkJycjY3CF+LDkziqEEEIIIQD0IyWFEELkPhqNBiMjI0JDQ3FwcGDcuHF4enpiZ2fHkydPWL16tX4RxhMnTtCsWTPq1KnD1atXWbNmDenp6ZJ8FyKPUCgU+iS7ubk5tra2pKSkYGJiIu09IT4wGdokhBBCCCGEEELkckqlkvDwcBwdHXFxccHe3h4LCwsuXbrEkydPuHPnDnZ2dtSqVYvo6GgOHjwIgIeHB/fu3SMhIQErKysD/xVCiOySOcl+69YtQkNDSUpKomjRooYLSoh8SGq+CyGEEEIIIYQQecCePXu4efMm8+fP59atW7i7u2Nubs7du3fx8vLCwsKCokWLUqdOHf1iiykpKaSkpEjiXYg8SqPRcPbsWcqXL0/NmjUNHY4Q+Y4k34UQQgghhBBCiDzg/PnzjBo1iiZNmhAXF0e1atXw8PBgwYIFmJmZMW/ePP22uvrwUmpGCCGE+O9I2RkhhBBCCCGEECIPaN68OQsXLiQxMREbGxs+++wzANLT0ylevHiWbXUj34UQQgjx35GR70IIIYQQQgghRB6i1Wo5d+4ckZGRXL16lXv37rF//35MTEwMHZoQQgiRr8j8MiGEEEIIIYQQIg9JT08nNDSUY8eOUahQIX3iPSMjw9ChCSGEEPmKjHwXQgghhBBCCCHyGI1Gk6Wee0ZGBsbGUnlWCCGE+JAk+S6EEEIIIYQQQuRhWq0WhUJh6DCEEEKIfEfKzgghhBBCCCGEEHmYJN6FEEIIw5DkuxBCCCGEEEIIIYQQQgiRzST5LoQQQgghhBBCCCGEEEJkM0m+CyGEEEIIIYQQQgghhBDZTJLvQgghhBBCCCGEEEIIIUQ2k+S7EEIIIYQQQgghhBBCCJHNJPkuhBBCCCGEEEIIIYQQQmQzSb4LIYQQQgjxLwUHB2Nra8u0adP+dLtp06Zha2tLcHDwB4rsw7py5Qq2trZ/+V+3bt0+WEx3797l5MmTH+z9hBBCCCGEeJexoQMQQgghhBBC5A3ly5enR48ef/h6iRIlPkgc58+fZ9SoUTg7O9O+ffsP8p5CCCGEEEK8S5LvQgghhBBCiGxRvnx5xo0bZ+gwiImJQaPRGDoMIYQQQgiRz0nZGSGEEEIIIYQQQgghhBAim0nyXQghhBBCCANJTU1l7dq1dOzYkbp169KkSRMcHR05f/7877a1tbWldevWv/t5REQEtra29O/fP8vPr169yvDhw2nVqhV169albdu2zJs3j6ioqN/9jhcvXjB79mzatGlDnTp1aN26NbNmzeLly5fZ98e+xz9534SEBNasWUP37t1p2LAhderUwc7ODnd3d549e6bfbvDgwbi7uwOwceNGbG1tuXLlCvDPPkNdPf/g4GAmTJhAvXr1aN68eZY68ocOHaJfv340bNiQhg0b0rdvXw4dOvS735+amsqyZcvo0qULDRo0oEmTJgwePJijR4/++w9PCCGEEELkeFJ2RgghhBBCCANISEhg8ODB3L17lxo1atC3b1/evHnDmTNncHZ2ZuLEiYwaNepf/e7r168zdOhQChcuTPv27bG0tOT27dsEBgZy8eJFDh8+jLm5OQD37t3DwcGBuLg47OzsqFq1Kk+fPmXv3r2cOXMGf39/KleunJ1/+j9+3+TkZPr168eDBw9o2bIlLVu2JDU1lR9//JHg4GAuXbrEsWPHsLCwoEePHhQqVIjTp0/TpEkTPvnkE8qXL/+v41y2bBkFCxZk0KBBhIWF0aBBAwDmzp3Lzp07KV++PF27dsXMzIwzZ87g5ubG7du39Q8AACZMmMDZs2dp1aoVrVu3JjExkePHjzNx4kQSEhLo27fv//RZCiGEEEKInEmS70IIIYQQQvyP7t69y5o1a/709Xd5eXlx9+5d+vbty+zZszE2fts0Dw8PZ9CgQaxcuZLmzZtTv379fxzP9u3bUalU7Ny5ExsbG/3PZ8yYwd69ezl16hSdO3cG4Ouvv+b169d4e3tnGRV+/vx5nJ2dcXd3Z9euXX/rfZ89e/aHn0P58uXp2bOn/t//5H137drF/fv3GTduHGPHjtVvq9FoGDBgAL/88gtXrlzBzs5O/x665Pv/WoM+JSWFw4cPY2Vlpf/ZqVOn2LlzJy1atGD9+vVYWFgAMHnyZIYPH46vry+tW7emZcuWhIWFcfbsWbp27Yqnp6f+dwwfPpyvvvqKbdu2SfJdCCGEECKPkuS7EEIIIYQQ/6OQkBBCQkL+9vYqlYpDhw5RuHBhZsyYoU+8A1SoUIEJEyYwbdo0du/e/a+S71qtFoBr165lSb5PnTqV8ePHU7JkSQBu3LjBnTt36NChw+/KsbRp04aWLVvyww8/8ODBA6pWrfqX7/vs2TPWrl373teaNWumT4z/0/dt0aIF8+fPp1OnTlm2VSqVNGvWjF9++YXY2Ni/jO/f+OSTT7Ik3gGCgoKAtw8zdIl3ADMzMyZOnEj//v3Zs2cPLVu21B+Lhw8fEhsbq/9dFSpU4NixY/pjIYQQQggh8h5JvgshhBBCCPE/6tGjB4sXL/7D16dNm8b+/fv1/378+DHJycm0atUKMzOz323fpEkT4P0j5v+Ofv36cerUKdzd3Vm7di2tWrWiRYsWtGzZklKlSum3u3nzJgAxMTHvHbGenJwMwO3bt/9W8r1Zs2bs2LHjL7f7p+9bs2ZNatasSVpaGjdu3ODx48eEh4cTGhrK5cuXAVCr1X/5vv9GhQoV/jD+b7/9FqUy6zJa6enpANy5cwd4W2e+adOmXL16lTZt2tC4cWNatGhB69atqVmz5n8SsxBCCCGEyBkk+S6EEEIIIcQHlpCQAEChQoXe+3rp0qWB/0tC/1MtW7YkICAAHx8fLl68yO7du9m9ezcmJiZ07dqVmTNnUqBAAeLj44G3i7NevXr1D3/fmzdv/lUcf+Sfvq9KpWLt2rUEBgbqP7vChQtTt25dqlevzrVr17I1vsx0tfEz08W/fv36P9wv82e2efNmfHx8OHLkCJcuXeLSpUssW7aMSpUqMX36dNq0aZP9gQshhBBCCIOT5LsQQgghhBAfmKWlJQAvX7587+u65G6xYsWy/Fyj0fxu25SUlPf+jkaNGtGoUSNUKhU3btzg4sWLHDhwgH379qFUKlm4cCEFCxYEYMqUKYwYMeJf/z3/1D99X09PT/z8/GjRogVOTk7Y2trqH1B4eXn9o+T7P/kM/0jBggVRqVT88ssvKBSKv9zewsICFxcXXFxcePHiBZcvX+bUqVOcPHmSMWPG8N1332Ftbf2PYhBCCCGEEDmf8q83EUIIIYQQQmSnKlWqYGFhQVhYmD7RntmVK1cAqFGjhv5nJiYmJCUl/W7bJ0+eZPm3RqPB29ubFStWAGBqakqTJk2YMGECgYGBAPrR5rVq1QLe1mB/n4CAANauXUtERMQ//RP/1D993wMHDmBmZsaGDRto3bq1PvEOcP/+feD/6twDf5gQ/7uf4V/56KOPSElJISws7HevPX/+nG+++YaDBw8C8Ouvv7J48WJ+/fVXAMqUKUP37t1Zu3YtPXv2JD09nV9++eUfvb8QQgghhMgdJPkuhBBCCCHEB6Yr/5KYmMiiRYvIyMjQvxYREcGKFStQKBR0795d//OqVauSnJysT8zD27I0mzdvzvK7lUolZ86cYdOmTb8bER4eHg6gH2XdqFEjqlSpwsmTJzl58mSWba9fv86iRYvw9fX93Qj8/9U/fV8zMzMyMjJ4/fp1lm2PHDnCuXPngP+rtQ7oF7DN/LnC3/8M/4q9vT0ACxYsIDExUf9ztVrN/Pnz2b59O8+ePQMgMTERHx8f1qxZk2XUvVar1W/zvrryQgghhBAi95OyM0IIIYQQQhiAm5sbv/zyC8HBwdy6dYuPP/6Y+Ph4zpw5Q0JCAuPHj6dRo0b67QcOHMisWbMYPXo0nTt3xtzcnFOnTlG0aFF9GRudKVOm4OjoiKOjI+3bt8fa2poXL15w4sQJzM3NGT9+PPA2Ue/p6YmTkxNjx46lVatW2NraEhkZycmTJ9FqtSxatEhfJia7/NP37dWrFxs3bsTe3p4OHTpgYmLCjRs3uHbtGiVKlCA6OjpLYr5s2bIA+tHn3bp1o0aNGv/oM/wzXbp00Zfx6dixI23atKFgwYJ8//33PHjwgCZNmuDk5ARAixYtsLOz49y5c3Tp0oUWLVpgZGTE5cuXuXv3Ll9++SUNGjTIng9WCCGEEELkKJJ8F0IIIYQQwgAKFSrErl272Lp1K8eOHWPXrl0ULFiQhg0b4ujoSMuWLbNs36dPHzQaDQEBAQQHB1O0aFE6dOjA+PHjadeuXZZtmzRpQmBgIN7e3vz666+cPHmSIkWK0LZtW0aPHk316tX129apU4fg4GA2bdrEhQsXuHLlClZWVtjZ2eHs7Ey9evX+k7//n7zvuHHjKFSoEMHBwezZswdLS0sqVKjArFmzsLOzo23btpw7d44xY8bo//4hQ4awf/9+/P39qVSpEjVq1PhHn+FfWbx4MR9//DFBQUEcOXIEeDuCfcqUKQwaNAgLCwvg7YOGlStX4u/vz+HDh9m/fz8ZGRlUrlwZd3d3Bg4cmE2fqBBCCCGEyGkU2szFEYUQQgghhBBCCCGEEEII8T+Tmu9CCCGEEEIIIYQQQgghRDaT5LsQQgghhBBCCCGEEEIIkc0k+S6EEEIIIYQQQgghhBBCZDNJvgshhBBCCCGEEEIIIYQQ2UyS70IIIYQQQgghhBBCCCFENpPkuxBCCCGEEEIIIYQQQgiRzST5LoQQQgghhBBCCCGEEEJkM0m+CyGEEEIIIYQQQgghhBDZTJLvQgghhBBCCCGEEEIIIUQ2k+S7EEIIIYQQQgghhBBCCJHNJPkuhBBCCCGEEEIIIYQQQmQzSb4LIYQQQgghhBBCCCGEENns/wFwmUGY3x5N6QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "inf_coefs = list(zip(coefficients[\"Feature\"], coefficients[\"Coefficient\"]))\n", + "inf_coefs.sort(key=lambda x: abs(x[1]), reverse=True) # Sort coefficients by absolute value\n", + "\n", + "# Create a color palette with the specified color\n", + "color = \"#589aff\"\n", + "colors = [color if coef[1] > 0 else \"lightgray\" for coef in inf_coefs]\n", + "\n", + "# Create the bar plot\n", + "fig, ax = plt.subplots(figsize=(18, 8))\n", + "ax = sns.barplot(x=[x[0] for x in inf_coefs], y=[x[1] for x in inf_coefs], palette=colors)\n", + "plt.xticks(rotation=45)\n", + "ax.set_ylabel(\"Price Coefficients\", fontsize=15)\n", + "ax.set_xlabel(\"House Features\", fontsize=15)\n", + "ax.set_title(\"House Features and Sale Prices\", fontsize=20);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The model identifies the main factors that affect house prices, giving useful advice to real estate companies when they help customers. It's not perfect, but it does an okay job with a 63.1% score. We still need to check if it can predict prices well. However, the model does its job by helping with decisions and making marketing better by using details about houses and the market.\n", + "\n", + "We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# POLYNOMIAL REGRESSION." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Polynomial regression is a type of regression analysis where the relationship between the independent variable (or variables) and the dependent variable is modeled as an nth degree polynomial. Unlike simple linear regression, which assumes a linear relationship between the variables, polynomial regression can capture more complex relationships by introducing polynomial terms.\n", + "\n", + "In polynomial regression, the relationship between the independent variable \n", + "𝑥\n", + "x and the dependent variable \n", + "𝑦\n", + "y is modeled as:\n", + "\n", + "𝑦\n", + "\n", + "=\n", + "𝛽\n", + "0\n", + "+\n", + "𝛽\n", + "1\n", + "𝑥\n", + "+\n", + "𝛽\n", + "2\n", + "𝑥\n", + "2\n", + "+\n", + "𝛽\n", + "3\n", + "𝑥\n", + "3\n", + "+\n", + ".\n", + ".\n", + ".\n", + "+\n", + "𝛽\n", + "𝑛\n", + "𝑥\n", + "𝑛\n", + "+\n", + "𝜀\n", + "y=β \n", + "0\n", + "​\n", + " +β \n", + "1\n", + "​\n", + " x+β \n", + "2\n", + "​\n", + " x \n", + "2\n", + " +β \n", + "3\n", + "​\n", + " x \n", + "3\n", + " +...+β \n", + "n\n", + "​\n", + " x \n", + "n\n", + " +ε" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polynomial Model (Degree 2)- MSE: 35637716070.71762\n", + "Polynomial Model (Degree 2)- R-squared: 0.7321925161881991\n" + ] + } + ], + "source": [ + "features = ['bathrooms', 'sqft_living',\n", + " 'floors', 'waterfront', 'condition', 'grade',\n", + " 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15']\n", + "target = 'price'\n", + "\n", + "# Load your housing data (assuming it's already loaded into 'housing_data' DataFrame)\n", + "\n", + "# Keep only numeric columns\n", + "housing_data_numeric = only_numeric(housing_data)\n", + "\n", + "# Check if all features exist in the DataFrame\n", + "missing_features = [feature for feature in features if feature not in housing_data_numeric.columns]\n", + "if missing_features:\n", + " print(\"The following features are not present in the dataset:\", missing_features)\n", + "else:\n", + " # Extract features and target variable\n", + " X = sm.add_constant(housing_data_numeric[features])\n", + " y = housing_data_numeric[target]\n", + " \n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "\n", + " # Polynomial Regression\n", + "# Choose the degree of the polynomial\n", + "degree = 2\n", + "\n", + "# Create polynomial features\n", + "poly = PolynomialFeatures(degree)\n", + "X_train_poly = poly.fit_transform(X_train)\n", + "X_test_poly = poly.transform(X_test)\n", + "\n", + "# Build a polynomial regression model\n", + "poly_model = LinearRegression()\n", + "poly_model.fit(X_train_poly, y_train)\n", + "\n", + "# Make predictions on the test set\n", + "y_pred_poly = poly_model.predict(X_test_poly)\n", + "\n", + "# Evaluate the polynomial model\n", + "mse_poly = mean_squared_error(y_test, y_pred_poly)\n", + "r2_poly = r2_score(y_test, y_pred_poly)\n", + "print(\"Polynomial Model (Degree {})- MSE:\".format(degree), mse_poly)\n", + "print(\"Polynomial Model (Degree {})- R-squared:\".format(degree), r2_poly)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mean Squared Error (MSE): This value represents the average squared difference between the actual house prices and the predicted prices by the polynomial model.\n", + " A lower MSE indicates better performance, and in this case, the MSE is lower than the previous model's MSE, suggesting that the polynomial model fits the data better.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " \n", + "Generally,The \n", + "𝑅\n", + "2\n", + "R \n", + "2\n", + " value for the first model is 0.641, indicating that approximately 64.1% of the variance in housing prices is explained by the independent variables included in the model. On the other hand, the \n", + "𝑅\n", + "2\n", + "R \n", + "2\n", + " value for the polynomial model of degree 2 is 0.732, suggesting that approximately 73.2% of the variance in housing prices is explained by this polynomial model.\n", + "\n", + "Comparing the two \n", + "𝑅\n", + "2\n", + "R \n", + "2\n", + " values, we can see that the polynomial model of degree 2 explains more variance in housing prices compared to the first model. This suggests that the polynomial model provides a better fit to the data and captures more of the variability in housing prices." + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "from statsmodels.stats.diagnostic import het_breuschpagan" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [], + "source": [ + "#TEST FOR HOMOSCEDASCITICY" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Breusch-Pagan test p-value: 3.975373048166964e-258\n" + ] + } + ], + "source": [ + "poly = PolynomialFeatures(degree)\n", + "X_train_poly = poly.fit_transform(X_train)\n", + "X_test_poly = poly.transform(X_test)\n", + "\n", + "# Build a polynomial regression model\n", + "poly_model = LinearRegression()\n", + "poly_model.fit(X_train_poly, y_train)\n", + "\n", + "# Make predictions on the test set\n", + "y_pred_poly = poly_model.predict(X_test_poly)\n", + "\n", + "# Calculate residuals\n", + "residuals = y_test - y_pred_poly\n", + "\n", + "\n", + "\n", + "# Perform Breusch-Pagan test\n", + "lm, lm_p_value, fvalue, f_p_value = het_breuschpagan(residuals, X_test_poly)\n", + "print(\"Breusch-Pagan test p-value:\", lm_p_value)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A p-value of 3.975373048166964e-258, which is extremely close to zero, indicates strong evidence against the null hypothesis of homoscedasticity. In other words, there is a significant presence of heteroscedasticity in your data.\n", + "\n", + "Heteroscedasticity refers to the situation where the variability of a variable is unequal across the range of values of a second variable that predicts it. In the context of regression analysis, it means that the variance of the errors is not constant across observations." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Log transformation.\n", + "Transforming the dependent variable or one or more independent variables can sometimes stabilize the variance. \n", + "Common transformations include taking the natural logarithm, square root, or reciprocal of the variables." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import mean_squared_error, r2_score\n", + "import statsmodels.api as sm\n", + "\n", + "# Define function to keep only numeric columns\n", + "def only_numeric(df):\n", + " return df.select_dtypes(include=[np.number])\n", + "\n", + "features = ['bathrooms', 'sqft_living',\n", + " 'floors', 'waterfront', 'condition', 'grade',\n", + " 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15']\n", + "target = 'price'\n", + "\n", + "# Load your housing data (assuming it's already loaded into 'housing_data' DataFrame)\n", + "\n", + "# Keep only numeric columns\n", + "housing_data_numeric = only_numeric(housing_data)\n", + "\n", + "# Check if all features exist in the DataFrame\n", + "missing_features = [feature for feature in features if feature not in housing_data_numeric.columns]\n", + "if missing_features:\n", + " print(\"The following features are not present in the dataset:\", missing_features)\n", + "else:\n", + " # Extract features and target variable\n", + " X = sm.add_constant(housing_data_numeric[features])\n", + " y = housing_data_numeric[target]\n", + " \n", + " # Log transform features and target variable\n", + " X_log = np.log(X + 1) # Adding 1 to avoid log(0)\n", + " y_log = np.log(y)\n", + " \n", + " # Split the data into training and testing sets\n", + " X_train, X_test, y_train, y_test = train_test_split(X_log, y_log, test_size=0.2, random_state=42)\n", + "\n", + " # Polynomial Regression\n", + " # Choose the degree of the polynomial\n", + " degree = 2\n", + "\n", + " # Create polynomial features\n", + " poly = PolynomialFeatures(degree)\n", + " X_train_poly = poly.fit_transform(X_train)\n", + " X_test_poly = poly.transform(X_test)\n", + "\n", + " # Build a polynomial regression model\n", + " poly_model = LinearRegression()\n", + " poly_model.fit(X_train_poly, y_train)\n", + "\n", + " # Make predictions on the test set\n", + " y_pred_poly = poly_model.predict(X_test_poly)\n", + "\n", + " # Reverse log transformation for evaluation\n", + " y_pred = np.exp(y_pred_poly)\n", + " y_test_original = np.exp(y_test)\n", + "\n", + " # Evaluate the polynomial model\n", + " mse_poly = mean_squared_error(y_test_original, y_pred)\n", + " r2_poly = r2_score(y_test_original, y_pred)\n", + " print(\"Polynomial Model (Degree {})- MSE:\".format(degree), mse_poly)\n", + " print(\"Polynomial Model (Degree {})- R-squared:\".format(degree), r2_poly)\n", + " \n", + " # Convert to DataFrame for summary\n", + " #X_poly_df = pd.DataFrame(X_train_poly, columns=poly.get_feature_names(features))\n", + "\n", + " # Fit the OLS model\n", + " model = sm.OLS(y_train,X_train_poly)\n", + " results = model.fit()\n", + "\n", + " # Print the summary\n", + " print(results.summary())\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "R-squared: The R-squared value indicates that approximately 71.61% of the variance in the target variable (price) is explained by the model.\n", + "\n", + "MSE (Mean Squared Error): The MSE of approximately 37,774,083,176.84 represents the average squared difference between the predicted and actual house prices.\n", + "\n", + "Coefficients: The coefficients represent the estimated effect of each predictor variable on the target variable. For example:\n", + "The coefficient for const (intercept) is 4987.94.\n", + "The coefficient for x1 (bathrooms) is 3457.38.\n", + "The coefficient for x2 (sqft_living) is -16.53.\n", + "The coefficient for x3 (floors) is -16.98.\n", + "The coefficient for x4 (waterfront) is -59.75.\n", + "The coefficient for x5 (condition) is -66.70.\n", + "The coefficient for x6 (grade) is 21.71.\n", + "The coefficient for x7 (sqft_basement) is 56.12.\n", + "The coefficient for x8 (yr_built) and other coefficients follow.\n", + "\n", + "P-values: P-values indicate the statistical significance of the coefficients. A small p-value (typically < 0.05) suggests that the corresponding predictor variable is statistically significant in predicting the target variable. In this summary, some coefficients have p-values less than 0.05, indicating statistical significance, while others do not.\n", + "\n", + "\n", + "F-statistic: The F-statistic tests the overall significance of the model. A low p-value (typically < 0.05) suggests that at least one of the predictors has a non-zero coefficient, indicating that the model as a whole is statistically significant.\n", + "\n", + "\n", + "Overall, the summary provides valuable insights into the relationships between the predictor variables and the target variable, as well as the overall goodness-of-fit of the model.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# REGRESSION RESULTS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From all the models observed,We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation.\n", + "\n", + "Polynomial Regression is the preferred model beacuse from the evaluation it has the highest R-squared value of 0.73\n", + "\n", + "The features below impact price such that an increase will cause an increase in the price of the property. 'bedrooms','bathrooms', 'sqft_living','floors', 'waterfront','view''condition', 'grade', 'sqft_above','sqft_basement', 'yr_renovated', 'sqft_living15','renovated', 'basement'." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Assumptions\n", + "\n", + "Linearity: The relationship between the independent variables (predictors) and the dependent variable (response) is linear. This means that a change in the independent variable corresponds to a proportional change in the dependent variable.\n", + "\n", + "Independence of errors: The errors (residuals) from the regression model should be independent of each other. In other words, the residual for one observation should not predict the residual for another observation.\n", + "\n", + "Normality of errors: The errors are normally distributed. This implies that the residuals should follow a normal distribution with a mean of zero.\n", + "\n", + "No perfect multicollinearity: There should be no perfect linear relationship between the independent variables. In other words, no independent variable should be a perfect linear combination of other independent variables." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Limitations\n", + "Despite its effectiveness in predicting property prices, the model has several limitations that need to be addressed:\n", + "\n", + "Limited Property Characteristics: The dataset may lack comprehensive property-based characteristics, potentially limiting the model's ability to capture the full range of factors influencing housing prices.\n", + "\n", + "\n", + "Multicollinearity Concerns: The presence of correlated predictors, such as square footage and number of bedrooms, can introduce multicollinearity issues. This makes it difficult to discern the individual impact of each feature accurately, potentially affecting the model's reliability.\n", + "\n", + "Assumption Violations: Polynomial regression relies on the assumption of linearity between predictors and the target variable. However, in reality, this assumption may not always hold true, leading to biased estimates and less dependable predictions.Also heteroscedasticity was present.\n", + "\n", + "Overfitting Risk: Polynomial regression models, especially those with high degrees, are prone to overfitting. This occurs when the model fits the training data too closely, capturing noise rather than underlying patterns. As a result, the model may struggle to generalize well to unseen data, impacting its predictive performance." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Recommedations\n", + "To mitigate multicollinearity, strategies such as feature selection, principal component analysis (PCA), or regularization methods like ridge regression or Lasso regression can be employed. These techniques prioritize essential predictors and enhance the model's interpretability while stabilizing it against multicollinearity.\n", + "\n", + "\n", + "\n", + "Before opting for polynomial regression, it's essential to validate the assumption of linearity between predictors and the target variable. If this assumption doesn't hold, alternative regression techniques such as generalized additive models (GAMs) or spline regression should be considered to better capture intricate relationships.\n", + "\n", + "\n", + "Preventing heteroscedasticity, or addressing it if it's present, is crucial for ensuring the reliability of linear regression analysis" + ] } ], "metadata": { @@ -3605,7 +4793,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.7" } }, "nbformat": 4, From 079cbfaac08ab96be17ec425649c7d41d19e11da Mon Sep 17 00:00:00 2001 From: Winfred kinya Date: Wed, 1 May 2024 12:34:43 +0300 Subject: [PATCH 13/27] additional modelling changes --- student.ipynb | 1290 ++++++++++++++++++++++++++++++++----------------- 1 file changed, 836 insertions(+), 454 deletions(-) diff --git a/student.ipynb b/student.ipynb index 41fdf478..ffb0e513 100644 --- a/student.ipynb +++ b/student.ipynb @@ -219,7 +219,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -258,7 +258,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -497,7 +497,7 @@ "[5 rows x 21 columns]" ] }, - "execution_count": 2, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -521,7 +521,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -684,7 +684,7 @@ "20 * `sqft_lot15` The square footage of the land lots of the nea..." ] }, - "execution_count": 3, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -715,7 +715,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -746,7 +746,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -805,7 +805,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -850,104 +850,104 @@ " \n", " \n", " \n", - " 3102\n", - " 5151600195\n", - " 5/4/2015\n", - " 283200.0\n", - " 4\n", - " 1.75\n", - " 1830\n", - " 12540\n", - " 1.0\n", - " NaN\n", - " Good\n", - " 8 Good\n", - " 1130\n", - " 700.0\n", - " 1958\n", - " NaN\n", - " 2020\n", - " 12540\n", - " \n", - " \n", - " 18253\n", - " 2558160220\n", - " 12/10/2014\n", - " 385000.0\n", - " 4\n", + " 19757\n", + " 5676000004\n", + " 11/18/2014\n", + " 399000.0\n", + " 3\n", " 2.50\n", - " 2030\n", - " 11375\n", - " 1.0\n", + " 1430\n", + " 1250\n", + " 3.0\n", " NO\n", " Average\n", " 7 Average\n", - " 1330\n", - " 700.0\n", - " 1969\n", + " 1430\n", " 0.0\n", - " 1500\n", - " 9160\n", + " 2007\n", + " 0.0\n", + " 1360\n", + " 1269\n", " \n", " \n", - " 17466\n", - " 1525079056\n", - " 5/2/2014\n", - " 284000.0\n", + " 2821\n", + " 9828200147\n", + " 4/10/2015\n", + " 425000.0\n", " 3\n", - " 1.75\n", + " 2.00\n", + " 1180\n", " 1800\n", - " 23103\n", - " 1.0\n", + " 2.0\n", " NaN\n", " Average\n", - " 7 Average\n", - " 1800\n", + " 8 Good\n", + " 1180\n", " 0.0\n", - " 1968\n", + " 1994\n", " 0.0\n", - " 1410\n", - " 18163\n", + " 1500\n", + " 1948\n", " \n", " \n", - " 16157\n", - " 8081900101\n", - " 5/28/2014\n", - " 960000.0\n", - " 4\n", + " 3151\n", + " 8944750850\n", + " 5/21/2014\n", + " 288400.0\n", + " 3\n", " 2.25\n", - " 2410\n", - " 4560\n", + " 1870\n", + " 3230\n", " 2.0\n", " NO\n", - " Very Good\n", - " 9 Better\n", - " 1800\n", - " 610.0\n", - " 1929\n", + " Average\n", + " 7 Average\n", + " 1870\n", + " 0.0\n", + " 1997\n", " 0.0\n", - " 2150\n", - " 5100\n", + " 1620\n", + " 3363\n", + " \n", + " \n", + " 10199\n", + " 3298600340\n", + " 9/5/2014\n", + " 400000.0\n", + " 6\n", + " 3.00\n", + " 3320\n", + " 15600\n", + " 1.0\n", + " NO\n", + " Good\n", + " 8 Good\n", + " 1660\n", + " 1660.0\n", + " 1977\n", + " NaN\n", + " 2330\n", + " 15360\n", " \n", " \n", - " 3439\n", - " 6300500475\n", - " 9/2/2014\n", - " 412000.0\n", + " 18048\n", + " 7853220610\n", + " 7/29/2014\n", + " 457000.0\n", " 3\n", " 2.50\n", - " 1553\n", - " 1991\n", - " 3.0\n", - " NO\n", + " 2050\n", + " 5694\n", + " 2.0\n", + " NaN\n", " Average\n", " 8 Good\n", - " 1553\n", + " 2050\n", " 0.0\n", - " 2014\n", - " 0.0\n", - " 1509\n", - " 2431\n", + " 2004\n", + " NaN\n", + " 2680\n", + " 7187\n", " \n", " \n", "\n", @@ -955,28 +955,28 @@ ], "text/plain": [ " id date price bedrooms bathrooms sqft_living \\\n", - "3102 5151600195 5/4/2015 283200.0 4 1.75 1830 \n", - "18253 2558160220 12/10/2014 385000.0 4 2.50 2030 \n", - "17466 1525079056 5/2/2014 284000.0 3 1.75 1800 \n", - "16157 8081900101 5/28/2014 960000.0 4 2.25 2410 \n", - "3439 6300500475 9/2/2014 412000.0 3 2.50 1553 \n", + "19757 5676000004 11/18/2014 399000.0 3 2.50 1430 \n", + "2821 9828200147 4/10/2015 425000.0 3 2.00 1180 \n", + "3151 8944750850 5/21/2014 288400.0 3 2.25 1870 \n", + "10199 3298600340 9/5/2014 400000.0 6 3.00 3320 \n", + "18048 7853220610 7/29/2014 457000.0 3 2.50 2050 \n", "\n", - " sqft_lot floors waterfront condition grade sqft_above \\\n", - "3102 12540 1.0 NaN Good 8 Good 1130 \n", - "18253 11375 1.0 NO Average 7 Average 1330 \n", - "17466 23103 1.0 NaN Average 7 Average 1800 \n", - "16157 4560 2.0 NO Very Good 9 Better 1800 \n", - "3439 1991 3.0 NO Average 8 Good 1553 \n", + " sqft_lot floors waterfront condition grade sqft_above \\\n", + "19757 1250 3.0 NO Average 7 Average 1430 \n", + "2821 1800 2.0 NaN Average 8 Good 1180 \n", + "3151 3230 2.0 NO Average 7 Average 1870 \n", + "10199 15600 1.0 NO Good 8 Good 1660 \n", + "18048 5694 2.0 NaN Average 8 Good 2050 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", - "3102 700.0 1958 NaN 2020 12540 \n", - "18253 700.0 1969 0.0 1500 9160 \n", - "17466 0.0 1968 0.0 1410 18163 \n", - "16157 610.0 1929 0.0 2150 5100 \n", - "3439 0.0 2014 0.0 1509 2431 " + "19757 0.0 2007 0.0 1360 1269 \n", + "2821 0.0 1994 0.0 1500 1948 \n", + "3151 0.0 1997 0.0 1620 3363 \n", + "10199 1660.0 1977 NaN 2330 15360 \n", + "18048 0.0 2004 NaN 2680 7187 " ] }, - "execution_count": 6, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -997,7 +997,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -1026,7 +1026,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -1050,7 +1050,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -1093,7 +1093,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -1115,7 +1115,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -1128,7 +1128,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -1138,7 +1138,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -1158,7 +1158,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -1177,7 +1177,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -1188,7 +1188,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -1263,133 +1263,133 @@ " \n", " \n", " \n", - " 8401\n", - " 2324800110\n", - " 2014-06-12\n", - " 699000.0\n", + " 7979\n", + " 3886903615\n", + " 2015-04-16\n", + " 1290000.0\n", " 4\n", - " 2.5\n", - " 3280\n", - " 27441\n", + " 2.50\n", + " 3430\n", + " 7200\n", " 2.0\n", " 0\n", " 3.0\n", " 7.0\n", - " 3280\n", + " 3430\n", " 0.0\n", - " 1996\n", + " 2014\n", " 0.0\n", - " 3200\n", - " 26960\n", + " 1530\n", + " 7800\n", " \n", " \n", - " 295\n", - " 9510920070\n", - " 2014-07-10\n", - " 879000.0\n", - " 4\n", - " 2.5\n", - " 3360\n", - " 22111\n", + " 4578\n", + " 9478500590\n", + " 2015-04-08\n", + " 302500.0\n", + " 3\n", + " 2.50\n", + " 1690\n", + " 4476\n", " 2.0\n", " 0\n", " 3.0\n", - " 8.0\n", - " 3360\n", + " 5.0\n", + " 1690\n", " 0.0\n", - " 1994\n", + " 2008\n", " 0.0\n", - " 3150\n", - " 11374\n", + " 2250\n", + " 4488\n", " \n", " \n", - " 3958\n", - " 4113800300\n", - " 2015-04-14\n", - " 600000.0\n", + " 10023\n", + " 3423600060\n", + " 2014-12-02\n", + " 665000.0\n", " 4\n", - " 2.5\n", - " 2420\n", - " 7744\n", - " 2.0\n", + " 1.75\n", + " 2280\n", + " 3680\n", + " 1.5\n", " 0\n", - " 3.0\n", - " 7.0\n", - " 2420\n", - " 0.0\n", - " 1994\n", + " 5.0\n", + " 5.0\n", + " 1470\n", + " 810.0\n", + " 1926\n", " 0.0\n", - " 2820\n", - " 11129\n", + " 1850\n", + " 3680\n", " \n", " \n", - " 7966\n", - " 3122069029\n", - " 2014-06-19\n", - " 120000.0\n", - " 2\n", - " 1.0\n", - " 990\n", - " 39964\n", - " 1.0\n", - " 0\n", - " 2.0\n", + " 11990\n", + " 7852150200\n", + " 2014-09-23\n", + " 389950.0\n", + " 3\n", + " 2.50\n", + " 1700\n", + " 6396\n", " 2.0\n", - " 990\n", + " 0\n", + " 3.0\n", + " 5.0\n", + " 1700\n", " 0.0\n", - " 1945\n", + " 2003\n", " 0.0\n", - " 1560\n", - " 8990\n", + " 1700\n", + " 4444\n", " \n", " \n", - " 6996\n", - " 2767601100\n", - " 2014-10-27\n", - " 513000.0\n", + " 20266\n", + " 3356402705\n", + " 2015-03-17\n", + " 216000.0\n", " 4\n", + " 2.50\n", + " 1847\n", + " 8000\n", " 2.0\n", - " 2090\n", - " 4000\n", - " 1.0\n", " 0\n", " 3.0\n", " 5.0\n", - " 1480\n", - " 610.0\n", - " 1951\n", + " 1847\n", " 0.0\n", - " 1510\n", - " 5000\n", + " 2008\n", + " 0.0\n", + " 1767\n", + " 8000\n", " \n", " \n", "\n", "" ], "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "8401 2324800110 2014-06-12 699000.0 4 2.5 3280 \n", - "295 9510920070 2014-07-10 879000.0 4 2.5 3360 \n", - "3958 4113800300 2015-04-14 600000.0 4 2.5 2420 \n", - "7966 3122069029 2014-06-19 120000.0 2 1.0 990 \n", - "6996 2767601100 2014-10-27 513000.0 4 2.0 2090 \n", + " id date price bedrooms bathrooms sqft_living \\\n", + "7979 3886903615 2015-04-16 1290000.0 4 2.50 3430 \n", + "4578 9478500590 2015-04-08 302500.0 3 2.50 1690 \n", + "10023 3423600060 2014-12-02 665000.0 4 1.75 2280 \n", + "11990 7852150200 2014-09-23 389950.0 3 2.50 1700 \n", + "20266 3356402705 2015-03-17 216000.0 4 2.50 1847 \n", "\n", - " sqft_lot floors waterfront condition grade sqft_above \\\n", - "8401 27441 2.0 0 3.0 7.0 3280 \n", - "295 22111 2.0 0 3.0 8.0 3360 \n", - "3958 7744 2.0 0 3.0 7.0 2420 \n", - "7966 39964 1.0 0 2.0 2.0 990 \n", - "6996 4000 1.0 0 3.0 5.0 1480 \n", + " sqft_lot floors waterfront condition grade sqft_above \\\n", + "7979 7200 2.0 0 3.0 7.0 3430 \n", + "4578 4476 2.0 0 3.0 5.0 1690 \n", + "10023 3680 1.5 0 5.0 5.0 1470 \n", + "11990 6396 2.0 0 3.0 5.0 1700 \n", + "20266 8000 2.0 0 3.0 5.0 1847 \n", "\n", - " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", - "8401 0.0 1996 0.0 3200 26960 \n", - "295 0.0 1994 0.0 3150 11374 \n", - "3958 0.0 1994 0.0 2820 11129 \n", - "7966 0.0 1945 0.0 1560 8990 \n", - "6996 610.0 1951 0.0 1510 5000 " + " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", + "7979 0.0 2014 0.0 1530 7800 \n", + "4578 0.0 2008 0.0 2250 4488 \n", + "10023 810.0 1926 0.0 1850 3680 \n", + "11990 0.0 2003 0.0 1700 4444 \n", + "20266 0.0 2008 0.0 1767 8000 " ] }, - "execution_count": 16, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -1420,7 +1420,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -1493,7 +1493,7 @@ "4 37 0.0 11440.0" ] }, - "execution_count": 17, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1538,7 +1538,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -1586,155 +1586,155 @@ " \n", " \n", " \n", - " 5606\n", - " 4024101434\n", - " 2014-08-08\n", - " 318000.0\n", + " 8540\n", + " 3034200366\n", + " 2014-12-03\n", + " 409000.0\n", " 3\n", - " 1.00\n", - " 1010\n", - " 7200\n", + " 1.75\n", + " 1440\n", + " 9065\n", " 1.0\n", " 0\n", - " 5.0\n", " 4.0\n", - " 1010\n", + " 6.0\n", + " 1440\n", " 0.0\n", - " 1948\n", + " 1972\n", " 0.0\n", - " 1590\n", - " 7663\n", - " 76\n", + " 1990\n", + " 8812\n", + " 52\n", " 0.0\n", - " 9220.0\n", + " 11945.0\n", " \n", " \n", - " 18192\n", - " 9471200065\n", - " 2014-10-15\n", - " 1860000.0\n", - " 5\n", - " 3.25\n", - " 5570\n", - " 9600\n", - " 2.0\n", + " 19433\n", + " 2023059052\n", + " 2015-05-04\n", + " 450000.0\n", + " 3\n", + " 1.00\n", + " 1350\n", + " 92721\n", + " 1.0\n", " 0\n", - " 5.0\n", - " 7.0\n", - " 3860\n", - " 1710.0\n", - " 1952\n", + " 2.0\n", + " 4.0\n", + " 1200\n", + " 150.0\n", + " 1946\n", " 0.0\n", - " 3170\n", - " 10400\n", - " 72\n", + " 1860\n", + " 8096\n", + " 78\n", " 0.0\n", - " 20740.0\n", + " 95421.0\n", " \n", " \n", - " 12922\n", - " 3222049044\n", - " 2014-06-12\n", - " 835000.0\n", + " 7003\n", + " 7751800080\n", + " 2015-01-27\n", + " 465000.0\n", " 3\n", - " 3.00\n", - " 2790\n", - " 12523\n", - " 2.0\n", - " 1\n", - " 4.0\n", - " 6.0\n", - " 1600\n", - " 1190.0\n", - " 1977\n", + " 1.50\n", + " 1460\n", + " 9879\n", + " 1.0\n", + " 0\n", + " 3.0\n", + " 5.0\n", + " 1460\n", " 0.0\n", - " 2990\n", - " 11476\n", - " 47\n", + " 1956\n", " 0.0\n", - " 18103.0\n", + " 1610\n", + " 10050\n", + " 68\n", + " 0.0\n", + " 12799.0\n", " \n", " \n", - " 8840\n", - " 2817900180\n", - " 2015-04-11\n", - " 380000.0\n", + " 10151\n", + " 1180002075\n", + " 2014-08-25\n", + " 235000.0\n", " 3\n", - " 3.25\n", - " 2090\n", - " 51212\n", + " 1.00\n", + " 1210\n", + " 6000\n", " 1.0\n", " 0\n", " 3.0\n", - " 6.0\n", - " 1510\n", - " 580.0\n", - " 1989\n", + " 5.0\n", + " 1210\n", " 0.0\n", - " 2690\n", - " 40820\n", - " 35\n", + " 1930\n", " 0.0\n", - " 55392.0\n", + " 1210\n", + " 6000\n", + " 94\n", + " 0.0\n", + " 8420.0\n", " \n", " \n", - " 4657\n", - " 9547205225\n", - " 2014-08-14\n", - " 540000.0\n", + " 3506\n", + " 3449900090\n", + " 2015-04-10\n", + " 454200.0\n", " 4\n", - " 1.75\n", - " 1630\n", - " 6120\n", - " 1.0\n", + " 2.50\n", + " 2630\n", + " 5379\n", + " 2.0\n", " 0\n", - " 5.0\n", - " 5.0\n", - " 980\n", - " 650.0\n", - " 1918\n", + " 3.0\n", + " 6.0\n", + " 2630\n", " 0.0\n", - " 1630\n", - " 4080\n", - " 106\n", + " 2004\n", + " 0.0\n", + " 2630\n", + " 5379\n", + " 20\n", " 0.0\n", - " 9380.0\n", + " 10639.0\n", " \n", " \n", "\n", "" ], "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "5606 4024101434 2014-08-08 318000.0 3 1.00 1010 \n", - "18192 9471200065 2014-10-15 1860000.0 5 3.25 5570 \n", - "12922 3222049044 2014-06-12 835000.0 3 3.00 2790 \n", - "8840 2817900180 2015-04-11 380000.0 3 3.25 2090 \n", - "4657 9547205225 2014-08-14 540000.0 4 1.75 1630 \n", + " id date price bedrooms bathrooms sqft_living \\\n", + "8540 3034200366 2014-12-03 409000.0 3 1.75 1440 \n", + "19433 2023059052 2015-05-04 450000.0 3 1.00 1350 \n", + "7003 7751800080 2015-01-27 465000.0 3 1.50 1460 \n", + "10151 1180002075 2014-08-25 235000.0 3 1.00 1210 \n", + "3506 3449900090 2015-04-10 454200.0 4 2.50 2630 \n", "\n", " sqft_lot floors waterfront condition grade sqft_above \\\n", - "5606 7200 1.0 0 5.0 4.0 1010 \n", - "18192 9600 2.0 0 5.0 7.0 3860 \n", - "12922 12523 2.0 1 4.0 6.0 1600 \n", - "8840 51212 1.0 0 3.0 6.0 1510 \n", - "4657 6120 1.0 0 5.0 5.0 980 \n", + "8540 9065 1.0 0 4.0 6.0 1440 \n", + "19433 92721 1.0 0 2.0 4.0 1200 \n", + "7003 9879 1.0 0 3.0 5.0 1460 \n", + "10151 6000 1.0 0 3.0 5.0 1210 \n", + "3506 5379 2.0 0 3.0 6.0 2630 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", - "5606 0.0 1948 0.0 1590 7663 \n", - "18192 1710.0 1952 0.0 3170 10400 \n", - "12922 1190.0 1977 0.0 2990 11476 \n", - "8840 580.0 1989 0.0 2690 40820 \n", - "4657 650.0 1918 0.0 1630 4080 \n", + "8540 0.0 1972 0.0 1990 8812 \n", + "19433 150.0 1946 0.0 1860 8096 \n", + "7003 0.0 1956 0.0 1610 10050 \n", + "10151 0.0 1930 0.0 1210 6000 \n", + "3506 0.0 2004 0.0 2630 5379 \n", "\n", " house_age renovation_age total_sqft \n", - "5606 76 0.0 9220.0 \n", - "18192 72 0.0 20740.0 \n", - "12922 47 0.0 18103.0 \n", - "8840 35 0.0 55392.0 \n", - "4657 106 0.0 9380.0 " + "8540 52 0.0 11945.0 \n", + "19433 78 0.0 95421.0 \n", + "7003 68 0.0 12799.0 \n", + "10151 94 0.0 8420.0 \n", + "3506 20 0.0 10639.0 " ] }, - "execution_count": 18, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1745,7 +1745,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 114, "metadata": {}, "outputs": [ { @@ -1816,7 +1816,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -1892,7 +1892,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -1945,7 +1945,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -1958,7 +1958,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -1967,7 +1967,7 @@ "Text(0.5, 0, 'Number of Bedrooms')" ] }, - "execution_count": 23, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" }, @@ -2005,7 +2005,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -2022,7 +2022,7 @@ "Name: count, dtype: int64" ] }, - "execution_count": 24, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -2042,7 +2042,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 120, "metadata": {}, "outputs": [ { @@ -2091,124 +2091,124 @@ " \n", " \n", " \n", - " 4614\n", - " 2114700115\n", - " 2015-04-07\n", - " 291700.0\n", + " 18795\n", + " 3904960690\n", + " 2015-04-17\n", + " 612000.0\n", " 3\n", " 2.50\n", - " 1970\n", - " 4120\n", - " 1.5\n", + " 2120\n", + " 7401\n", + " 2.0\n", " 0\n", " 3.0\n", " ...\n", - " 1230\n", - " 740.0\n", - " 1927\n", + " 2120\n", " 0.0\n", - " 1470\n", - " 4080\n", - " 97\n", + " 1989\n", " 0.0\n", - " 8060.0\n", - " 100K-300K\n", + " 2010\n", + " 7972\n", + " 35\n", + " 0.0\n", + " 11641.0\n", + " 600K-1M\n", " \n", " \n", - " 1011\n", - " 865100055\n", - " 2014-06-12\n", - " 900000.0\n", - " 4\n", - " 2.25\n", - " 2460\n", - " 44431\n", - " 1.0\n", + " 16001\n", + " 7560000050\n", + " 2015-04-23\n", + " 730000.0\n", + " 3\n", + " 3.50\n", + " 2440\n", + " 3502\n", + " 2.0\n", " 0\n", - " 4.0\n", + " 3.0\n", " ...\n", - " 2460\n", - " 0.0\n", - " 1957\n", + " 1970\n", + " 470.0\n", + " 2000\n", " 0.0\n", - " 2830\n", - " 44431\n", - " 67\n", + " 2440\n", + " 3417\n", + " 24\n", " 0.0\n", - " 49351.0\n", + " 8382.0\n", " 600K-1M\n", " \n", " \n", - " 7116\n", - " 8563020380\n", - " 2014-05-20\n", - " 519900.0\n", - " 4\n", - " 2.00\n", - " 1820\n", - " 9350\n", - " 1.0\n", + " 9811\n", + " 3598600049\n", + " 2015-04-24\n", + " 224000.0\n", + " 1\n", + " 0.75\n", + " 840\n", + " 7203\n", + " 1.5\n", " 0\n", - " 4.0\n", + " 3.0\n", " ...\n", - " 1820\n", + " 840\n", " 0.0\n", - " 1967\n", + " 1949\n", " 0.0\n", - " 2260\n", - " 9299\n", - " 57\n", + " 1560\n", + " 8603\n", + " 75\n", " 0.0\n", - " 12990.0\n", - " 300K-600K\n", + " 8883.0\n", + " 100K-300K\n", " \n", " \n", - " 4142\n", - " 461002551\n", - " 2014-10-04\n", - " 330600.0\n", - " 1\n", - " 1.00\n", - " 580\n", - " 1799\n", - " 1.0\n", + " 15108\n", + " 9332800020\n", + " 2014-07-15\n", + " 745000.0\n", + " 4\n", + " 2.25\n", + " 2290\n", + " 10409\n", + " 2.0\n", " 0\n", " 3.0\n", " ...\n", - " 580\n", + " 2290\n", " 0.0\n", - " 1908\n", - " 2005.0\n", - " 1260\n", - " 4000\n", - " 116\n", - " 19.0\n", - " 2959.0\n", - " 300K-600K\n", + " 1972\n", + " 0.0\n", + " 2040\n", + " 10409\n", + " 52\n", + " 0.0\n", + " 14989.0\n", + " 600K-1M\n", " \n", " \n", - " 20907\n", - " 7852070210\n", - " 2014-05-27\n", - " 1150000.0\n", - " 4\n", - " 3.00\n", - " 5940\n", - " 11533\n", + " 20642\n", + " 4305500030\n", + " 2015-05-01\n", + " 625000.0\n", + " 3\n", + " 2.50\n", + " 3220\n", + " 6409\n", " 2.0\n", " 0\n", " 3.0\n", " ...\n", - " 4950\n", - " 990.0\n", - " 2004\n", + " 3220\n", " 0.0\n", - " 4240\n", - " 12813\n", - " 20\n", + " 2008\n", " 0.0\n", - " 23413.0\n", - " 1M-2M\n", + " 3330\n", + " 6231\n", + " 16\n", + " 0.0\n", + " 12849.0\n", + " 600K-1M\n", " \n", " \n", "\n", @@ -2216,38 +2216,38 @@ "" ], "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "4614 2114700115 2015-04-07 291700.0 3 2.50 1970 \n", - "1011 865100055 2014-06-12 900000.0 4 2.25 2460 \n", - "7116 8563020380 2014-05-20 519900.0 4 2.00 1820 \n", - "4142 461002551 2014-10-04 330600.0 1 1.00 580 \n", - "20907 7852070210 2014-05-27 1150000.0 4 3.00 5940 \n", + " id date price bedrooms bathrooms sqft_living \\\n", + "18795 3904960690 2015-04-17 612000.0 3 2.50 2120 \n", + "16001 7560000050 2015-04-23 730000.0 3 3.50 2440 \n", + "9811 3598600049 2015-04-24 224000.0 1 0.75 840 \n", + "15108 9332800020 2014-07-15 745000.0 4 2.25 2290 \n", + "20642 4305500030 2015-05-01 625000.0 3 2.50 3220 \n", "\n", " sqft_lot floors waterfront condition ... sqft_above \\\n", - "4614 4120 1.5 0 3.0 ... 1230 \n", - "1011 44431 1.0 0 4.0 ... 2460 \n", - "7116 9350 1.0 0 4.0 ... 1820 \n", - "4142 1799 1.0 0 3.0 ... 580 \n", - "20907 11533 2.0 0 3.0 ... 4950 \n", + "18795 7401 2.0 0 3.0 ... 2120 \n", + "16001 3502 2.0 0 3.0 ... 1970 \n", + "9811 7203 1.5 0 3.0 ... 840 \n", + "15108 10409 2.0 0 3.0 ... 2290 \n", + "20642 6409 2.0 0 3.0 ... 3220 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", - "4614 740.0 1927 0.0 1470 4080 \n", - "1011 0.0 1957 0.0 2830 44431 \n", - "7116 0.0 1967 0.0 2260 9299 \n", - "4142 0.0 1908 2005.0 1260 4000 \n", - "20907 990.0 2004 0.0 4240 12813 \n", + "18795 0.0 1989 0.0 2010 7972 \n", + "16001 470.0 2000 0.0 2440 3417 \n", + "9811 0.0 1949 0.0 1560 8603 \n", + "15108 0.0 1972 0.0 2040 10409 \n", + "20642 0.0 2008 0.0 3330 6231 \n", "\n", " house_age renovation_age total_sqft price_range \n", - "4614 97 0.0 8060.0 100K-300K \n", - "1011 67 0.0 49351.0 600K-1M \n", - "7116 57 0.0 12990.0 300K-600K \n", - "4142 116 19.0 2959.0 300K-600K \n", - "20907 20 0.0 23413.0 1M-2M \n", + "18795 35 0.0 11641.0 600K-1M \n", + "16001 24 0.0 8382.0 600K-1M \n", + "9811 75 0.0 8883.0 100K-300K \n", + "15108 52 0.0 14989.0 600K-1M \n", + "20642 16 0.0 12849.0 600K-1M \n", "\n", "[5 rows x 21 columns]" ] }, - "execution_count": 25, + "execution_count": 120, "metadata": {}, "output_type": "execute_result" } @@ -2270,12 +2270,21 @@ ] }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "KeyboardInterrupt\n", - "\n" + "ename": "AttributeError", + "evalue": "Rectangle.set() got an unexpected keyword argument 'legend'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[26], line 6\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[38;5;66;03m# Create a bar plot\u001b[39;00m\n\u001b[0;32m 5\u001b[0m plt\u001b[38;5;241m.\u001b[39mfigure(figsize\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m10\u001b[39m, \u001b[38;5;241m6\u001b[39m))\n\u001b[1;32m----> 6\u001b[0m sns\u001b[38;5;241m.\u001b[39mbarplot(x\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mprice_range\u001b[39m\u001b[38;5;124m\"\u001b[39m, y\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtotal_sqft\u001b[39m\u001b[38;5;124m\"\u001b[39m, data\u001b[38;5;241m=\u001b[39mhousing_data, errorbar\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, hue\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mprice_range\u001b[39m\u001b[38;5;124m\"\u001b[39m, palette\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcrest\u001b[39m\u001b[38;5;124m\"\u001b[39m, legend\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m 7\u001b[0m plt\u001b[38;5;241m.\u001b[39mtitle(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTotal Square Footage by Price Range.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 8\u001b[0m plt\u001b[38;5;241m.\u001b[39mxlabel(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPrice Range\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:2763\u001b[0m, in \u001b[0;36mbarplot\u001b[1;34m(data, x, y, hue, order, hue_order, estimator, errorbar, n_boot, units, seed, orient, color, palette, saturation, width, errcolor, errwidth, capsize, dodge, ci, ax, **kwargs)\u001b[0m\n\u001b[0;32m 2760\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ax \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 2761\u001b[0m ax \u001b[38;5;241m=\u001b[39m plt\u001b[38;5;241m.\u001b[39mgca()\n\u001b[1;32m-> 2763\u001b[0m plotter\u001b[38;5;241m.\u001b[39mplot(ax, kwargs)\n\u001b[0;32m 2764\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ax\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:1586\u001b[0m, in \u001b[0;36m_BarPlotter.plot\u001b[1;34m(self, ax, bar_kws)\u001b[0m\n\u001b[0;32m 1584\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mplot\u001b[39m(\u001b[38;5;28mself\u001b[39m, ax, bar_kws):\n\u001b[0;32m 1585\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Make the plot.\"\"\"\u001b[39;00m\n\u001b[1;32m-> 1586\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdraw_bars(ax, bar_kws)\n\u001b[0;32m 1587\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mannotate_axes(ax)\n\u001b[0;32m 1588\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39morient \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mh\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:1569\u001b[0m, in \u001b[0;36m_BarPlotter.draw_bars\u001b[1;34m(self, ax, kws)\u001b[0m\n\u001b[0;32m 1565\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m j, hue_level \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhue_names):\n\u001b[0;32m 1566\u001b[0m \n\u001b[0;32m 1567\u001b[0m \u001b[38;5;66;03m# Draw the bars\u001b[39;00m\n\u001b[0;32m 1568\u001b[0m offpos \u001b[38;5;241m=\u001b[39m barpos \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhue_offsets[j]\n\u001b[1;32m-> 1569\u001b[0m barfunc(offpos, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstatistic[:, j], \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnested_width,\n\u001b[0;32m 1570\u001b[0m color\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcolors[j], align\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcenter\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 1571\u001b[0m label\u001b[38;5;241m=\u001b[39mhue_level, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkws)\n\u001b[0;32m 1573\u001b[0m \u001b[38;5;66;03m# Draw the confidence intervals\u001b[39;00m\n\u001b[0;32m 1574\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfint\u001b[38;5;241m.\u001b[39msize:\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\__init__.py:1465\u001b[0m, in \u001b[0;36m_preprocess_data..inner\u001b[1;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1462\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[0;32m 1463\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minner\u001b[39m(ax, \u001b[38;5;241m*\u001b[39margs, data\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 1464\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m-> 1465\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(ax, \u001b[38;5;241m*\u001b[39m\u001b[38;5;28mmap\u001b[39m(sanitize_sequence, args), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 1467\u001b[0m bound \u001b[38;5;241m=\u001b[39m new_sig\u001b[38;5;241m.\u001b[39mbind(ax, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 1468\u001b[0m auto_label \u001b[38;5;241m=\u001b[39m (bound\u001b[38;5;241m.\u001b[39marguments\u001b[38;5;241m.\u001b[39mget(label_namer)\n\u001b[0;32m 1469\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m bound\u001b[38;5;241m.\u001b[39mkwargs\u001b[38;5;241m.\u001b[39mget(label_namer))\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\axes\\_axes.py:2528\u001b[0m, in \u001b[0;36mAxes.bar\u001b[1;34m(self, x, height, width, bottom, align, **kwargs)\u001b[0m\n\u001b[0;32m 2519\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m l, b, w, h, c, e, lw, htch, lbl \u001b[38;5;129;01min\u001b[39;00m args:\n\u001b[0;32m 2520\u001b[0m r \u001b[38;5;241m=\u001b[39m mpatches\u001b[38;5;241m.\u001b[39mRectangle(\n\u001b[0;32m 2521\u001b[0m xy\u001b[38;5;241m=\u001b[39m(l, b), width\u001b[38;5;241m=\u001b[39mw, height\u001b[38;5;241m=\u001b[39mh,\n\u001b[0;32m 2522\u001b[0m facecolor\u001b[38;5;241m=\u001b[39mc,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 2526\u001b[0m hatch\u001b[38;5;241m=\u001b[39mhtch,\n\u001b[0;32m 2527\u001b[0m )\n\u001b[1;32m-> 2528\u001b[0m r\u001b[38;5;241m.\u001b[39m_internal_update(kwargs)\n\u001b[0;32m 2529\u001b[0m r\u001b[38;5;241m.\u001b[39mget_path()\u001b[38;5;241m.\u001b[39m_interpolation_steps \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m100\u001b[39m\n\u001b[0;32m 2530\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m orientation \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvertical\u001b[39m\u001b[38;5;124m'\u001b[39m:\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\artist.py:1219\u001b[0m, in \u001b[0;36mArtist._internal_update\u001b[1;34m(self, kwargs)\u001b[0m\n\u001b[0;32m 1212\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_internal_update\u001b[39m(\u001b[38;5;28mself\u001b[39m, kwargs):\n\u001b[0;32m 1213\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1214\u001b[0m \u001b[38;5;124;03m Update artist properties without prenormalizing them, but generating\u001b[39;00m\n\u001b[0;32m 1215\u001b[0m \u001b[38;5;124;03m errors as if calling `set`.\u001b[39;00m\n\u001b[0;32m 1216\u001b[0m \n\u001b[0;32m 1217\u001b[0m \u001b[38;5;124;03m The lack of prenormalization is to maintain backcompatibility.\u001b[39;00m\n\u001b[0;32m 1218\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m-> 1219\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_update_props(\n\u001b[0;32m 1220\u001b[0m kwargs, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{cls.__name__}\u001b[39;00m\u001b[38;5;124m.set() got an unexpected keyword argument \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1221\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{prop_name!r}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\artist.py:1193\u001b[0m, in \u001b[0;36mArtist._update_props\u001b[1;34m(self, props, errfmt)\u001b[0m\n\u001b[0;32m 1191\u001b[0m func \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mset_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[0;32m 1192\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mcallable\u001b[39m(func):\n\u001b[1;32m-> 1193\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\n\u001b[0;32m 1194\u001b[0m errfmt\u001b[38;5;241m.\u001b[39mformat(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mtype\u001b[39m(\u001b[38;5;28mself\u001b[39m), prop_name\u001b[38;5;241m=\u001b[39mk))\n\u001b[0;32m 1195\u001b[0m ret\u001b[38;5;241m.\u001b[39mappend(func(v))\n\u001b[0;32m 1196\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ret:\n", + "\u001b[1;31mAttributeError\u001b[0m: Rectangle.set() got an unexpected keyword argument 'legend'" ] }, { @@ -2411,7 +2420,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -2421,7 +2430,7 @@ "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[51], line 5\u001b[0m\n\u001b[0;32m 2\u001b[0m fig, axes \u001b[38;5;241m=\u001b[39m plt\u001b[38;5;241m.\u001b[39msubplots(nrows\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m, ncols\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m, figsize\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m14\u001b[39m, \u001b[38;5;241m6\u001b[39m), sharey\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m 4\u001b[0m \u001b[38;5;66;03m# Bar plot for condition vs. price\u001b[39;00m\n\u001b[1;32m----> 5\u001b[0m sns\u001b[38;5;241m.\u001b[39mbarplot(x\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcondition\u001b[39m\u001b[38;5;124m'\u001b[39m, y\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mprice\u001b[39m\u001b[38;5;124m'\u001b[39m, data\u001b[38;5;241m=\u001b[39mhousing_data, ax\u001b[38;5;241m=\u001b[39maxes[\u001b[38;5;241m0\u001b[39m], hue\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcondition\u001b[39m\u001b[38;5;124m\"\u001b[39m, palette\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mviridis\u001b[39m\u001b[38;5;124m'\u001b[39m, legend\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m 6\u001b[0m axes[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mset_title(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCondition vs. Price\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 7\u001b[0m axes[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mset_xlabel(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCondition\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", + "Cell \u001b[1;32mIn[29], line 5\u001b[0m\n\u001b[0;32m 2\u001b[0m fig, axes \u001b[38;5;241m=\u001b[39m plt\u001b[38;5;241m.\u001b[39msubplots(nrows\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m, ncols\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m, figsize\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m14\u001b[39m, \u001b[38;5;241m6\u001b[39m), sharey\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m 4\u001b[0m \u001b[38;5;66;03m# Bar plot for condition vs. price\u001b[39;00m\n\u001b[1;32m----> 5\u001b[0m sns\u001b[38;5;241m.\u001b[39mbarplot(x\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcondition\u001b[39m\u001b[38;5;124m'\u001b[39m, y\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mprice\u001b[39m\u001b[38;5;124m'\u001b[39m, data\u001b[38;5;241m=\u001b[39mhousing_data, ax\u001b[38;5;241m=\u001b[39maxes[\u001b[38;5;241m0\u001b[39m], hue\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcondition\u001b[39m\u001b[38;5;124m\"\u001b[39m, palette\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mviridis\u001b[39m\u001b[38;5;124m'\u001b[39m, legend\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m 6\u001b[0m axes[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mset_title(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCondition vs. Price\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 7\u001b[0m axes[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mset_xlabel(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCondition\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:2763\u001b[0m, in \u001b[0;36mbarplot\u001b[1;34m(data, x, y, hue, order, hue_order, estimator, errorbar, n_boot, units, seed, orient, color, palette, saturation, width, errcolor, errwidth, capsize, dodge, ci, ax, **kwargs)\u001b[0m\n\u001b[0;32m 2760\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ax \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 2761\u001b[0m ax \u001b[38;5;241m=\u001b[39m plt\u001b[38;5;241m.\u001b[39mgca()\n\u001b[1;32m-> 2763\u001b[0m plotter\u001b[38;5;241m.\u001b[39mplot(ax, kwargs)\n\u001b[0;32m 2764\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ax\n", "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:1586\u001b[0m, in \u001b[0;36m_BarPlotter.plot\u001b[1;34m(self, ax, bar_kws)\u001b[0m\n\u001b[0;32m 1584\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mplot\u001b[39m(\u001b[38;5;28mself\u001b[39m, ax, bar_kws):\n\u001b[0;32m 1585\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Make the plot.\"\"\"\u001b[39;00m\n\u001b[1;32m-> 1586\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdraw_bars(ax, bar_kws)\n\u001b[0;32m 1587\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mannotate_axes(ax)\n\u001b[0;32m 1588\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39morient \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mh\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n", "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:1569\u001b[0m, in \u001b[0;36m_BarPlotter.draw_bars\u001b[1;34m(self, ax, kws)\u001b[0m\n\u001b[0;32m 1565\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m j, hue_level \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhue_names):\n\u001b[0;32m 1566\u001b[0m \n\u001b[0;32m 1567\u001b[0m \u001b[38;5;66;03m# Draw the bars\u001b[39;00m\n\u001b[0;32m 1568\u001b[0m offpos \u001b[38;5;241m=\u001b[39m barpos \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhue_offsets[j]\n\u001b[1;32m-> 1569\u001b[0m barfunc(offpos, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstatistic[:, j], \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnested_width,\n\u001b[0;32m 1570\u001b[0m color\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcolors[j], align\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcenter\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 1571\u001b[0m label\u001b[38;5;241m=\u001b[39mhue_level, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkws)\n\u001b[0;32m 1573\u001b[0m \u001b[38;5;66;03m# Draw the confidence intervals\u001b[39;00m\n\u001b[0;32m 1574\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfint\u001b[38;5;241m.\u001b[39msize:\n", @@ -2491,7 +2500,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -2557,7 +2566,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -2844,7 +2853,7 @@ "std 5.824659 4.156724e+04 " ] }, - "execution_count": 32, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -2903,7 +2912,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -2930,7 +2939,7 @@ "dtype: float64" ] }, - "execution_count": 33, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -2962,7 +2971,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -3167,7 +3176,7 @@ "[5 rows x 21 columns]" ] }, - "execution_count": 34, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -3197,7 +3206,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -3207,7 +3216,13 @@ "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", " with pd.option_context('mode.use_inf_as_na', True):\n", "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", " with pd.option_context('mode.use_inf_as_na', True):\n", "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", @@ -3295,7 +3310,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -3424,7 +3439,7 @@ "P-value 2.417229e-17 2.430304e-10 1.000000 " ] }, - "execution_count": 36, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -3493,7 +3508,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -3648,7 +3663,7 @@ "16 total_sqft inf" ] }, - "execution_count": 37, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -3719,7 +3734,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -3736,7 +3751,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ @@ -3750,7 +3765,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ @@ -3789,7 +3804,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ @@ -3809,7 +3824,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 42, "metadata": {}, "outputs": [], "source": [ @@ -3872,7 +3887,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -3904,7 +3919,7 @@ " 262383.4993975565)" ] }, - "execution_count": 48, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -3962,7 +3977,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -4055,7 +4070,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -4228,7 +4243,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 46, "metadata": {}, "outputs": [ { @@ -4240,8 +4255,8 @@ "Dep. Variable: price R-squared: 0.641\n", "Model: OLS Adj. R-squared: 0.641\n", "Method: Least Squares F-statistic: 3768.\n", - "Date: Tue, 30 Apr 2024 Prob (F-statistic): 0.00\n", - "Time: 17:34:27 Log-Likelihood: -2.9014e+05\n", + "Date: Wed, 01 May 2024 Prob (F-statistic): 0.00\n", + "Time: 12:24:01 Log-Likelihood: -2.9014e+05\n", "No. Observations: 21142 AIC: 5.803e+05\n", "Df Residuals: 21131 BIC: 5.804e+05\n", "Df Model: 10 \n", @@ -4308,7 +4323,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -4356,6 +4371,46 @@ "We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation.\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# RESIDUALS" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqsAAAIdCAYAAAAaiDSZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5oElEQVR4nO3deXwTdf4/8Nck6UVBWwpCq6g/Vg6vFShIEQUVYa0UpMgu6oIH9yG6RUCUCgLFdUFAQQERWL/rhd9FKhjFGxcXKSDrV1fXG4+FcrUc0tIryfz+mE6aNJNkJpkkM8nr+Xjw0KST5DP5ZCbvfOb9eX8EURRFEBEREREZkCXWDSAiIiIi8ofBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIoopr0RCRFgxWiSgujR49Gl26dPH617VrV+Tm5uL3v/893njjDd1fc/PmzejSpQsOHDjgd5sDBw6gS5cu2Lx5s+6vP3v2bFx//fVhPcf111/v875dfvnlGDhwIJYuXYq6ujqvbWfPnq3p+d9//3088MADYbWRiBKLLdYNICKKlEsuuQTz5s1z33Y6nTh8+DCee+45TJ8+Ha1atUK/fv10e71rr70Wr7zyCs455xzdnjMW+vfvjylTprhv19XVYffu3Vi1ahUOHjyIZcuWhfzczz33nA4tJKJEwmCViOJWy5Yt0a1bN5/7+/fvjz59+uDVV1/VNVht3bo1WrdurdvzxUrr1q193rfevXvj8OHD2Lx5M2bPnm36gJyIzINpAESUcJKTk5GUlORz/9///ncMHjwYl112Ga699lqsXLkSDofD/ffjx49jxowZ6Nu3Ly6//HLcfPPNeO2119x/V0oDeOeddzB06FD89re/RWFhIb7++muv19y9eze6dOmC3bt3e90/evRojB492n27trYWS5cuxaBBg3DZZZehR48euPvuu/HVV1/53c8vv/wSd955J3Jzc9G9e3fcdddd+Oyzz1S/T81ddtllEEURhw4dUvz76dOn8ec//xk33HADLr/8chQUFGDTpk1e+7Rnzx7s2bNHcZ+JiJRwZJWI4pYoil7BppwG8PTTT6O6uho333yz+2/PPPMMli9fjlGjRuHBBx/EV199hZUrV+LQoUN49NFHAQAzZ85EZWUl5s+fj/T0dGzduhUPPPAAsrOz0bt3b5/X/+CDD3Dvvfdi8ODBmDFjBr7++mvMnDkzpH2ZNWsW9u7di/vvvx/nn38+fvrpJzz55JMoKirCtm3bIAiC1/ZVVVUYN24cevfujRUrVqChoQGrV6/G2LFjsX37drRq1UpzG3788UcAQIcOHXz+Vltbi9tvvx0VFRWYNm0aOnTogPfeew9z5sxBRUUFJk2ahHnz5rn3f968ebjoootCeCeIKNEwWCWiuLV3715ceumlXvcJgoDOnTvjySefdE9GOn36NFavXo2RI0eiuLgYAHD11VcjIyMDxcXFuPvuu9GpUyfs2bMHU6ZMwQ033ABAujSekZEBq9Wq+PpPP/00Lr30UixduhQA3CkH8m216uvrUV1djYcffhg33XQTAODKK69EdXU1HnvsMRw7dsznsvz333+P48ePY/To0cjNzQUAdOzYERs3bkRVVVXAYLV5kF9ZWYkdO3Zg48aNyM/PV0x12Lx5M7799lu89NJL7te75ppr4HA4sGrVKtx666246KKL0LJlSwBQTM8gIlLCYJWI4tall16K+fPnAwCOHDmCJ598Eg0NDVi+fDl+85vfuLf79NNPUVNTg+uvv94rSJOD2Z07d6JTp07o3bs3Vq5cia+//hr9+/dHv379/M5sr62txZdffol7773X6/78/HzNwWpycjLWr18PADh69Ch+/vln7N+/H9u3bwcANDQ0+DymU6dOaN26NSZPnoz8/Hx3nu6sWbOCvt5rr73mld4AADabDQMHDsQjjzyi+Jg9e/bg3HPPdQeqsqFDh2LTpk347LPP0L9/fxV7S0TkLSGC1ePHj2PkyJEoKSlRvFSn5O2338bKlStx4MABtG3bFhMnTsSIESMi3FIi0lN6ejouv/xyAMDll1+O7t274+abb8aYMWNQWlrqHiE8efIkAGDChAmKz3P06FEAwPLly7FmzRps27YNb731FiwWC6666io88sgjPpfGT506BVEUfUYhQ52Y9NFHH+HRRx/F/v37kZ6eji5duiA9PR2Act3S9PR0vPjii1i9ejXefPNNbNy4EWlpaRg6dCjmzJmDlJQUv6913XXXYerUqQCkkei0tDSce+65SE1N9fuYU6dOoU2bNj73y/f9+uuvmvaXiEgW98Hqvn37MHv2bPzyyy+qH1NWVobZs2fjiSeeQL9+/bB7926MHz8enTt3xm9/+9sItpaIIikrKwtz587FtGnTsGjRIvcI51lnnQUAePzxx3HhhRf6PE4OuFq1aoWZM2di5syZ2L9/P95//32sWrUK8+fPx7p167wek5GRAYvFgoqKCq/75cBYJueaulwur/urq6vdwegvv/yCqVOnYsCAAXjmmWdw/vnnAwBefPFFfPTRR373t2PHjliyZAmcTic+//xzbNmyBS+//DLOO+88v4G53HY5yFfr7LPPxs8//+xz/7FjxwAAmZmZmp6PiEgW19UASktLMWPGDBQVFfn87eOPP8aIESPQs2dPDB48GFu3bnX/7bnnnsMdd9yB/v37QxAE5OXl4dVXX3V/QRCReQ0aNAjXXHMN7Ha7ezb6FVdcgaSkJBw5cgSXX365+19SUhKWLl2KAwcO4ODBg+jfvz/eeustAFIgOH78eFx11VU4fPiwz+ukpKSge/fueOedd7xGPj/44AOv7eQcTs8Z9qdOncIPP/zgvv3FF1+grq4OEydO9DoPyYGq0sjqW2+9hby8PBw7dgxWqxXdu3fHI488grPOOkuxveHq1asXDh48iH379nndv3XrViQlJbl/6Fsscf21Q0QRENcjq1dffTWGDBkCm83mFbB+/fXXmDx5MpYsWYIBAwbgs88+w5QpU5CZmYlrrrkGn3/+OXr37o0JEybgs88+Q/v27TFt2jR07tw5hntDRHp56KGHMHToUJSUlKC0tBSZmZkYN24cnnzySVRVVaF3797uHFdBENC1a1e0atUK7du3R0lJCaqqqnD++efjiy++wD/+8Q9MnDhR8XWmT5+OO++8E/fccw9GjhyJn376CatXr/bapkuXLsjOzsZTTz2FVq1awWKxYO3atUhLS3Nvc+mll8Jms2HJkiUYM2YM6uvrsXnzZnz44YcAgDNnzvi8do8ePeByuTB16lRMmDAB6enp2LZtG06fPo1Bgwbp92Y2Gj58OF566SXcc889uPfee9GhQwd88MEHePXVV3HPPfe4R6/POussfPrpp9i1axcuueQSnH322bq3hYjiS1z/xG3bti1sNt94fOPGjRgwYAAGDRoEq9WKHj164A9/+ANefPFFANKoxvr16zF58mTs3LkTU6dORVFRUVj1CYnIODp27IjRo0fj22+/xQsvvAAA+NOf/oTZs2fj3Xffxfjx47FkyRLk5ubihRdecM+cf+qpp3DNNdfgySefxJgxY/Dyyy/jnnvuced3NtezZ088++yzOHLkCO655x5s3LjRXQZLZrVasWLFCpxzzjmYPn06SkpKkJ+f7xVQXnDBBVi6dCmOHDmCyZMnY+7cuQCA559/HoIg4JNPPvF57XPOOQfr1q1Dq1atMGfOHEycOBFffvklVq5ciby8PF3eR09paWl4/vnncf3112PFihWYPHky9u3bh0WLFmHatGnu7f74xz8iKSkJ48ePx44dO3RvBxHFH0FUun4Uh7p06YK//e1v6N27N8aPH4+ysjKvCQZOpxPnn38+tmzZgu7du+OOO+7wGo2dMGECLrroIlUzaYmIiIhIH3GdBuBP+/btUVhYiAULFrjvO3r0qDvv6ze/+Q3q6+u9HuN0OhXzwoiIiIgocuI6DcCfESNGwG6345///CdcLhd++uknjBo1Chs2bAAA3HbbbXj55Zfx8ccfw+Vy4e2338bu3btRUFAQ45YTERERJZaEHFm94oorsGzZMixbtgz33Xcf0tLSUFBQgOnTpwMAbrnlFlgsFvz5z3/GgQMHcO6552L58uU+K+EQERERUWQlTM4qEREREZlPQqYBEBEREZE5MFglIiIiIsNisEpEREREhsVglYiIiIgMK26rAVRWnkYiTR0TBCArq1XC7bfZsJ/Mg31lDuwnc2A/mUM0+0l+LTXiNlgVRSTkAZGo+2027CfzYF+ZA/vJHNhP5mC0fmIaABEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWHZYt0AIiIiIgqf0wmUlVlx5IiAdu1E5OU5YbXGulXhY7BKREREZHJ2uw3FxSkoL2+6aJ6T40JJSR0KChwxbFn4mAZAREREZGJ2uw1jx6aivFzwuv/QIQFjx6bCbjf32CSDVSIiIiKTcjqB4uIUiCIAeAeroijdLi5OgdMZ/bbphcEqERERkUmVlVkbL/0Lin8XRQHl5RaUlZk3eZXBKhEREZFJHTmiHKSGup0RMVglIiIiMql27URdtzMiBqtEREREJpWX50ROjguCoByMCoKInBwX8vLMm7TKYJWIiIjIpKxWoKSkDgB8Alb5dklJnanrrTJYJSIiIjKxggIH1q+vRXa2d7CanS1i/fpa09dZNXfhLSIiIiJCQYED+fkOrmBFRERERMZktQJ9+5o3N9UfpgEQERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWEZOlh1Op0YPXo0Zs+eHeumEBEREVEMGDpYfeqpp/DJJ5/EuhlEREREFCOGDVZ37dqFd955B4MGDYp1U4iIiIgoRmyxboCSyspKzJkzB6tWrcJzzz0X0nMIgr5tMjp5fxNtv82G/WQe7CtzYD+ZA/vJHKLZT1pew3DBqsvlwsyZM3H33Xeja9euIT9PVlYrHVtlHom632bDfjIP9pU5sJ/Mgf1kDkbrJ8MFq8888wySk5MxevTosJ6nsvI0RFGnRpmAIEgfrkTbb7NhP5kH+8oc2E/mwH4yh2j2k/xaahguWN2yZQuOHj2Knj17AgBqa2sBAO+9956myVaiiIQ8IBJ1v82G/WQe7CtzYD+ZA/vJHIzWT4YLVt966y2v23LZqsceeywWzSEiIiKiGDJsNQAiIiIiIsONrDbHEVUiIiKixMWRVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwDBms7tq1C7///e/Ro0cP9O3bFwsXLkRtbW2sm0VEREREUWa4YPX48eOYOHEibrvtNnzyyScoLS3Fnj17sHbt2lg3jYiIiIiizBbrBjTXunVrfPzxx2jZsiVEUcTJkydRV1eH1q1bx7ppRERERBRlhgtWAaBly5YAgP79++PIkSPo2bMnhg8fruk5BCESLTMueX8Tbb/Nhv1kHuwrc2A/mQP7yRyi2U9aXkMQRVGMXFPCU1tbi1OnTmHGjBlISUnBunXrYt0kIiIiIooiQwerss8//xy///3vsWfPHpx99tmqHlNZeRrG3zP9CAKQldUq4fbbbNhP5sG+Mgf2kzmwn8whmv0kv5YahksD+Ne//oWHHnoIW7duRXJyMgCgvr4eSUlJSEtLU/08ooiEPCASdb/Nhv1kHuwrc2A/mQP7yRyM1k+GqwbQpUsX1NbWYunSpaivr8fBgwfxl7/8BSNGjHAHr0RERESUGAwXrKanp2PdunX47rvv0LdvX4wePRpXXXUVHnrooVg3jYiIiIiizHBpAABw0UUXYcOGDbFuBhERERHFmOFGVomIiIiIZIYcWSUiIjIqpxMoK7PiyBEB7dqJyMtzwmqNdauI4heDVSIiIpXsdhuKi1NQXt50YTInx4WSkjoUFDhi2DKi+MU0ACIiIhXsdhvGjk1Febn30juHDgkYOzYVdjvHf4gigcEqERFREE4nUFyc0lh70jtYFUXpdnFxCpzO6LeNKN4xWCUiIgqirMzaeOlfeUFzURRQXm5BWRmTV4n0xmCViIgoiCNHlIPUULcjIvUYrBIREQXRrp26tSfVbkdE6jFYJSIiCiIvz4mcHBcEQTkYFQQROTku5OUxaZVIbwxWiYiIgrBagZKSOgDwCVjl2yUlday3ShQBDFaJiIhUKChwYP36WmRnewer2dki1q+vZZ1VoghhUTgiIiKVCgocyM93cAUroihisEpERKSB1Qr07cvcVKJoYRoAERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWCEFq1988QUA4Ndff8WSJUuwfv16OBwOXRtGRERERGTT+oDVq1dj3bp12LdvH0pKSvDFF1/AYrHg8OHDmDNnTiTaSEREREQJSnOwarfb8eKLL6K+vh5vv/02XnnlFbRt2xZDhw5lsEpERERkMk4nUFZmxdGjAjp3Bi6+GLAYKFFUc7B69OhRdO3aFbt27UKrVq3QtWtXAEBNTY3ujSMiIiKiyLHbbSguTkF5eVN0mpOTjpKSOhQUGCPFU3Pc3K5dO+zduxevvfYa+vTpA0Aabe3QoYNujfr6669x991348orr0Tfvn0xa9YsHD9+XLfnJyIiIkp0drsNY8emorxc8Lr/0CEBY8emwm7XPKYZEZqD1WnTpmHcuHH48MMPMXnyZOzatQsPPvggioqKdGlQbW0txo0bh+7du+Of//wn7HY7Tp48iYceekiX5yciIiJKdE4nUFycAlEEAO9gVRSl28XFKXA6o9+25jSHzL/73e9w7bXXAgBSUlJwzjnn4P3338c555yjS4PKy8vRtWtXTJ06FVarFcnJyRg5ciRmzZqly/MTERERJbqyMqvXpf/mRFFAebmAsjIr+vaNbcSqOljdu3dvwL///PPP6NWrV9gN6tixI9atW+d139tvv41LL71U0/MIQvBt4om8v4m232bDfjIP9pU5sJ/Mgf1kPEePquuMo0eFiPSbludUHayOHj06yIsK+Oqrr9S/sgqiKOKJJ57A9u3b8cILL2h6bFZWK13bYhaJut9mw34yD/aVObCfzIH9ZBydO6vdLg1t2kS2LcEIoihlKxhNVVUVHnzwQXz55ZdYvXo1unTpounxlZWnYcw9iwxBkE4CibbfZsN+Mg/2lTmwn8yB/WQ8TifQo0c6Dh0S3DmqngRBRE6OiH37qmG16v/68mdCjZCmedXU1ODUqVNwuVwAgIaGBnz77bcYOHBgKE/n45dffsH48eORk5ODTZs2oXXr1pqfQxSRkAdEou632bCfzIN9ZQ7sJ3NgPxmHxQKUlNRh7NhUCILoFbAKgtRJCxfWwWKJfZ9pDlZfffVVLFy4EHV1dV73Z2Vl6RKsnjp1CnfeeSfy8vKwaNEiWIxUlZaIiIgoThQUOLB+fW1jndWmYDUnR8TChcaps6o5WF2zZg3+9Kc/IT09HXv37sWdd96JJUuWoG/fvro0aPPmzSgvL8e2bdvw1ltvef3t008/1eU1iIiIiEgKWPPzHR4rWKXh4ourDbWCleac1W7duuHTTz/FwYMHMWPGDGzcuBHl5eW466678M4770SqnZpVVCRWXowgAG3atEq4/TYb9pN5sK/Mgf1kDuwnc4hmP8mvpYbmuDkrKwsNDQ3Izs7Gjz/+CADIyclBZWWl1qciIiIiIgpIc7D629/+FnPnzkVtbS0uvPBCvPzyyygtLUVGRkYEmkdEREREiUxzzuqDDz6I4uJiVFdXY+bMmZg0aRJqa2vx5z//ORLtIyIiIqIEpjlYPeecc7B27Vr3/5eVlaGhoQFpaWm6N46IiIiIEpvmYPW1117z+7dhw4aF0RQiIiIiIm+ag9UVK1Z43T516hRqamqQm5vLYJWIiIiIdKU5WP3ggw+8bouiiGeffRYnT57Uq01ERERERABCqAbQnCAIGDt2LLZs2aJHe4iIiIiI3HRZn+DHH3+EIAjBNyQiIiIi0kBzGsDo0aO9AtOGhgZ88803GDp0qK4NIyIiIiLSHKz27t3b67bFYsFdd92FG264QbdGEREREREBIQSr99xzTyTaQURERETkQ3Ww+uCDDwbdhqtYEREREZGeNE+wOnHiBLZu3YrTp08jIyMDdXV1sNvtqK+vj0T7iIiIiCiBqR5ZlUdNJ02ahBUrVmDAgAHuv/3zn//EmjVr9G8dERERESU0zSOru3fvxnXXXed1X58+ffDll1/q1igiIiKiUDmdwM6dVmzebMPOnVY4nbFuEYVDc7B67rnnYtu2bV73bd68GRdccIFujSIiIiIKhd1uQ25uOgoLW2DSpDQUFrZAbm467HbNc8rJIDT3XFFREe677z68+OKLyM7OxoEDB/Dtt98yDYCIiIhiym63YezYVIii9/2HDgkYOzYV69fXoqDAEZvGUcg0j6wOGDAAW7duxVVXXYX09HT0798fW7du9am/SkRERBQtTidQXJzSGKh6r6opitLt4uIUpgSYUEhj4h07dmS9VSIiIjKMsjIrysv9j8GJooDycgFlZVb07cuI1UxUB6tDhgzB66+/juuvv95ruVVP77//vm4NIyIiIlLryBHl2CTU7cg4VAerEyZMACCtYOUvWCUiIiKKhXbtxOAbadiOjEPTyCoADB8+3Ov+H374AS1btkS7du30bRkRERGRSnl5TuTkuHDokODOUfUkCCKys0Xk5TEFwGw0T7D617/+hWHDhgEANm7ciMGDB2PAgAF477339G4bERERkSpWK1BSUgdACkw9ybdLSupgtUa9aRQmzcHq0qVLce2110IURTzzzDN47LHH8NRTT+HJJ5+MRPuIiIiIVCkocGD9+lpkZ3sHq9nZIstWmZjmagD79+/HCy+8gP3796OiogI33XQTkpOTUVRUFIn2EREREalWUOBAfr4DZWVWHDkioF076dI/R1TNS3OwarVaUV1djR07dqBbt25ITk7GwYMH0bJly0i0j4iIiEgTqxUsTxVHNAerN9xwA0aNGoWDBw+iuLgY33//PaZOnYqCgoJItI+IiIiIEpjmYPXhhx/Gli1bkJqaiptuugk//fQTbr31Vtxxxx2RaB8RERERJbCQ0gCGDx+OU6dO4YsvvsAll1yCP/7xj7AyGYSIiIiIdKa5GkB1dTXuv/9+9O7dG6NGjcJPP/2EgQMHYv/+/ZFoHxERERElMM3B6uLFi3HmzBls27YNSUlJ6NChA6677josWrQoEu0jIiIdOZ3Azp1WbN5sw86dVjg5B4WIDE5zGsD27dvx+uuv4+yzz4YgCEhKSsLs2bPRr1+/SLSPiIh0YrfbUFycgvLypnGKnBwXSkrqWH+SiAxL88iqy+VCcnIyAEAURZ/7iIjIeOx2G8aOTUV5ufcylIcOCRg7NhV2u+axCyKiqNAcrObl5WHBggWoqamBIEgnvSeeeAJXXnml7o0jIqLwOZ1AcXEKpPEF72BVXkO9uDiFKQFEZEiag9UHH3wQP/zwA3r16oXTp0+je/fu2Lt3Lx544IFItI+IiMJUVmZtvPQvKP5dFAWUl1tQVsaqLszpJTKekEpXvfLKK/j3v/+NgwcPon379ujcuTOWLVuGhx9+OBJtJCKiMBw5ohykhrpdvGJOL5ExqR5Z/eqrrzBgwAD06dMHt956Ky644ALk5+ejRYsWGDlyJLZu3RrJdhIRGZqRR+TatRN13S4eMaeXyLhUB6uLFi1C586dsXr1arRs2RJr1qxBWVkZbrvtNrRq1QqlpaWRbCcRkWHZ7Tbk5qajsLAFJk1KQ2FhC+TmphsmwMnLcyInxwVBUA5GBUFETo4LeXkGirCjiDm9RMam+kz61Vdf4d1330Xr1q3RtWtXjBo1Cq+++ipGjRqFP/3pT7BYNKe/EhGFzemUcjKPHBHQrp2IvDwnormgnjwiJzaLA+URufXra2N+CdlqBUpK6jB2bCoEQXQHYADcAWxJSV1U3zcjacrpVSbl9AooK7Oib9/wItZYf16JzEh1hOlyudC6dWsAQPv27XH48GFMmjQJ06dPZ6BKRDER6xFNM43IFRQ4sH59LbKzvaPq7GzRHVAbOZUhkqKV0xvrzyuRWak+QuQyVbKkpCSMHj1a9wYREalhhBHNaI7I6aGgwIH8fIfiyF4iTy6KRk6vET6vRGYV8pBoUlISkpKS9GwLEZEqRhnRNOMse6sV6NvXieHDHejbtylQTeTJRZHO6TXK55XIrFSfgRwOB1577TX37YaGBq/bADBs2DCdmkVE5J9RRjTjYZZ9sEBKEEQUF6cgP98Rt7mVkc7pNcrnlcisVAerbdq0wYoVK9y3MzMzvW4LgsBglYiiwigjmvKI3KFDgleAIxMEEdnZoqFn2TOQksg5vVIqRFNfZmeLYadCGOXzSmRWqoPVDz74IJLtICJSzSgjmvEwy56BVJNAOb3hMMrnlcisOI2fiEzHSHVD1cyyNzIGUt48c3rz8pwoKwu/OoKRPq9EZhTfWfNEFJeMNqIZqRG5aIiHVIZI0LM6gtE+r0Rmw5FVIjIlo41oKs2yNwM5kALgM/InBVbAkCENKCtLnLqrkaiOYLTPK5GZCKLYvOpbfKioOO1Tzy6eCQLQpk2rhNtvs2E/6S9SKwIlWl8pjSRaLCJcrqaAzYh1V/XuJ6cTyM1NbwxU/Y8079tXHdLnzCgrWEW7HYl2PJlVNPtJfi01mAZARKYmj2hSeDxTGbZts2Ht2iS4XN7bJEIB+0hXRzDC5zWRF4Agc2IaABERAZACqbw8p8dl7sQrYB/v1RESfQEIMicGq0REccDpBHbuDH/metPIonIwJo0sWlBWZpKkXI3iuToCV9Iis+JPKCIik1O6rJuR4cKECQ0oKqrXlIsY7yOLwcRzdQQuAEFmxZFVIiIT83dZ9+RJCxYvTsEll6RrurQbzyOLagSrjgCYt8xUov8QIfNisEpE5Idel9YjJdBlXdmJEwLGjFGfi8gC9vFbZirRf4iQeTENgIhIgd1uw8MPAwcOtHDfZ7QZ08Eu60oEACKKi1OQn+8IOiLIAvYSMy/04E88pzhQfOPIKhFRM3a7DWPGpOLAAe/7jTZjWv3lWm2TouJ1ZFErsy704E88pzhQfDPGGZeIyCC8L617E0UBgqB+lDLStF6u1ZKLGI8ji9T0Q0SakNf0ecjOFg111YDIE4NVIiIPZpoxLV/W9bfaUnNag1sjFLAn/fGHCJkNg1UiIg9mmjHtmV8qrZyt3CbmIlJz/CFCZsKcVSIiD2abMS1f1s3M9D97H2AuIhGZF4NVIiIPZizdVFDgwH/+U41Zs+qQkeHy+luiTYoiovjDNAAiIg/epZvgNdHKyKOUViswY0Y9iorqmYtIpuF0wpSfV7O226wYrBIRNVNQ4MCGDbV4+OE0r/JVZpgxzVxEMgulZYKNVstYiVnbbWaCKCoVaDG/iorTiqVn4pUgAG3atEq4/TYb9lPooj2SIQhAZmYr2O1ncPgwR0+MiseUOTTvJ3mZ4Oarr8lXL4yaumLWdqsVzeNJfi1V2zJYjQ88YZsD+yk0sRjJYF+ZA/vJHDz7yeEAcnPT/ZZck6tX7NtXbagfh06nOduthVGDVUNPsDp+/DgGDhyI3bt3x7opRBQj8kiGZwFzwHirScUDpxPYudOKzZtt2LnTCmeMsgmM0g6KjKZaxsql1qRaxupXXIsWs7Y7Hhj2LL9v3z7Mnj0bv/zyS6ybQkQx4r2alPcXhNFWkzK7WIxeK6V2bNvGfMB4Z6Zaxp7M2u54YMiR1dLSUsyYMQNFRUWxbgoRxRBHMqIjFqPXdrsNubnpKCxsgUmT0lBY2AKXXJKOMWM4ih7vzFbLWGbWdscDQx75V199NYYMGQKbzRZywCok2A8beX8Tbb/Nhv2kzdGj6t6oo0cF3d/TROkrNaPXDz+cgptu0m/02nuSSpMTJ+TXV9+OROkns/Pspz59pFrGhw4JEEXl3M+cHBF9+jgN1a9mbbcW0TyetLyGIYPVtm3bhv0cWVnqknbjTaLut9mwn9Tp3Fntdmlo0yYybYj3vvrwQ6C83P/fRVHAwYMCvviiFQYMCP/1nE7g4YfhZ/KG/28vuR1ffdUK117r+/d476d4IffTypXAiBFQqGUMAAJWrBDQrp3x+tSs7dbKaMeTIYNVPVRWJtbMUEGQPlyJtt9mw37S5uKLgZyc9KAjGRdfXI2KCn1fO1H66ttvbQDSgm43YoQLy5eHnze6c6cVBw60CPnx335bg8sua2pDovST2TXvp379gA0bbJgzRzk/uV8/h+7HtB78tTs724XRoxtQUeHCli3mLXMXzeNJfi014jZYFUV/v9zjW6Lut9kYoZ+MvgKL3L4hQxrwzDPJEATRK2CV6xouXFgHiyVy76cR+iqSzjlH3c6dPClgzJjUsOtIHj4c3vXFc84RFfsj3vspXnj20+DBDtx4o0PxPGTkvmze7v37LXj++ST85S8p7m3MPinQaMdT3AarROSf0VdgUWqfFKw2bWOG1aTMIC8vcB5eEwFA+NUXQp18ItewzMtjHat4YtYV1+R22+02LFmS7BPYyZMCzb5IgFEYshoAEUWO0euW+mufywUAIiZMqEdp6Rns21fNLwEdWK1ASUld463AgaQe1Rfk4FgeGVd4FZ92yNuWlNQZavSfEluwyYmA9HfWCQ6f4YPVb775Br179451M4jigtFProHaB0gz/u12m+FSFsyuoMCB9etrkZGhbtQznDqSnsFx84BVvp2Z6X1/drYYsREqLkBAoWJpvehhGgBRAmk6uSqTTq4CysqsMbk0Z/T2xbOCAgfOOkvEiBHBJz+FW0dSDo6lVI+mL3o5tSM/XzmPUW9GT4chY+MiAdHDYJUogRj95Brr9nlOOmvfXkRBQURexue1jDLBrW/f4HUk9cobLShwBAxKI/1jxF+tV+YaklpcJCB6GKwSmZjWgMfoJ9dotU/tMp/nnQcsXGjD4MH6Bi1GHdGTL9GPHZvqt/qCnnmjsZpcw2V8SQ/BJidyUqB+DJ+zSkTKlJarzM1NDzhBKtjkFqluqStmJ9dotE/LMp8HDwJjxug76czoE9zkS/TZ2dHLG4025hqah5FzitXkX3NSoD4YrBKZUKgBj9FPrpFun7/3zf8yn9J/9Zp0ZqQJboGCgIICB/btq0Zp6RmsWVNj6OoLTqe0CpeWYCbW6SakTig/yKMtEX7cGYEgikYq+6qfiorEWs1EEIA2bVol3H6bjR795HQCubnpjQGX/0tP+/ZV+w3qjHoZWhaJ9gV734IpLT0T9iXrnTutKCwMPoFJj9cKxOj9r1ao+2GUfkgkWs993jnFvukoRgsEjZiDHopoxhLya6lhnJ8nRKSKHjPmg01uibVItC/Y+xaMHqNsRhjRi5eJReHsR6LlGpotkDJjTrFZFzcwCwarRCajV8ATy8ktar44w2mf0muEGwDqMeks1hPczBgEKAl3P6I9kSyW9BpFj2bAyxJ21BxzVolMJpoBj96TG6KRg+bvNfbvD+10p+eks1hPcIuXiUV67Eci5BrqNZkv2rmjRrgCQcbCkVUik4nWJUy98xqjcfk50GssWZKMzEwXTp5Uft+alvj0HGWT/qvXKFusR/TiJQjQaz+Mng4TDr1G0WORNmKEKxDx+JkwM46sEplMNGb0611eKRqz4NW8hiBIM/zVLvN53nnAhg36fhnHckQv1kGAXtS2r02b4NvJ6SbDhzvQt2/8BCV6jD7HqnpFLK9AmKECQSJisEpkQpEMeCLxBRWNy89qXuP4cQtmzapXfN82bKjFf/7TVK7ptdfO4McfEZHgMValoWKdhqCXYPshmzYt9nVrY0WP0edYpY3EqsSe0WsgJzIGq0QmFamAJxJfUNG4/Kz2sR07uvy+b1arFAi1ayfiyBEBH32EiNU8jcWIntHr7KoVaD88HT6cuEGGHqPosUwbifYVCCPVQCZfiXcEE8WRSMzoj8QXVChfnJFcStbf+6acp5tu2PqjoeTWyUGAtJ9NfZidLRp2P5XI+zFnTgoOHfL/w8osFQ70pkdueyyXP7Zao5tTzAoExsZglShG5BP0oUMCKisFZGU1fXnE8ks1El9QWr84Q5ncFe6Xs9nqj4YzAS6SQUA0J6cUFDhw9tkibrnFf4H/RA0y9JjMF43JnME+x9EqsRcvkw/jFdMAiGLAM4l/ypQ0PPxwKqZMMUYyfyTyGj0v2zbNum8iisCVVzqxZYsNjz+eHPWlZINdAhRFYPr0FHz0kTHWJg8nt04uR7Zli7TNzTfrl4YQi8kpFRUMMvwJ91J6rJY/jkWOaLxMPoxXXG41TnC5VXMQBGDHjlYYMUJUDIwkIgQhtssJyl8iABRHZEJt2/z5yXj66WT47rfY7L7mt5tePxJLyapdflPNc+nF3whlOMvtRnKZ1Vgtj/nxx1YMG8alUwMJd7Rbj89N8+8oPZaN1pPcnmCjyNFqT6wYdblVBqtxgsGqObhcQM+erXDggHIw1kRETk5sT4x6BzbBvpy0CBZ4BAr0lO7fvNmGSZPSVL22UvCl96XvQO99ZqYY0rr2kQwmYxl4yMfUwYNiQgcZkRbuZ7z5d5TaH4jR/JERqR/pZmLUYJU5q0RRVFZmxYEDQPBgLTp5doG+gPTOaww2gUGLUJaSDRQAarm013zSzrZt0V08Yfz4BlXP4/keRXqZ1VhOTrFagSefBEaMQNwvnRpLeueOGjFHNF4mH8YjBqtEUaT1xBvJE3Wg4K15kHrzzeHPpNZzX7TmjQULAJ99tjbgRJLm5OBr+fJkLFmSrNukLDVB5auvqjtte75HaoPJdeuS0LatqPmHSawDj+HDpcUb5sxhkGEWRs0RjedVzcyMwSolBKMsn6f1xBupE3Wg4G3MmFRkZoo4cULfvEY99iWU2cdqAsC5c1OwYEEdxo1Lhb98WSVr1ybpOlqpJqiUKke4cPy4+hnaaoPEhx9Odf+/lj43QuBRUODAjTcyyDCLaC0bHYpoVSAg9VgNgOKekZbPy8tz4rzzAhcyl4jIzo7MSkJqil+fOKH/7Fy1qw75E+olXbWLHGRliZg1q97vdkpOnozN4gkjRkipAGpnaIcSJGrpc6OsjBWvS6fGo3hZoIKig8EqxTWjlEbxLBc0fjwaA8VAAYSA2lpg2zb92xcseJPu138FF7WrDnm8qtctNeV25Pd582Ybdu6UykxpuUR94YUuVdsCIjIz1W27Y4f6cldqg8obb3RqKkkU/IeCUjkx9X3OwINCEe1Vqsi8WA0gTrAagK9Iz1BWm1qglBsqBzqel9qV2gfoPwNVy8x3JeHOzlV6P5pfepcmygCzZtWjY0eXqku6/nJwR41qwOLFKUHbNWtWHdavT0JlpZrf8CKGDXPgtdeSVGyr/pK61vI5WtJb/M10VkNtn0eyNJY/PPeZQ6B+MkqaFhm3GgCD1TjBE7avSJZGUfulHKxc0P3312PduiScPBm9kj9aaooqWbOmBsOHhxd4eH457d9vwfPPJ+HQodADnGDvc0aGiJMn/QeATX/3frwyEWvW1GL+fHmZz+CBn5YfHpEsn6P8QyE4LX0e7cCD5z5zYD+Zg1GDVU6wIkOIxBdcpGYob91qa5yI46283HsGuJqJPc89l9SY96gsEiV/gk1sCObbby3YudMatI+U+hSAYpWBoqL6kPtfzfssCFLqRfPSRoA0giv/U5evKuDYMcEruA5Gy4SrSJbPaT7T+dgxwWtSlT9acl45OYWI9MZglWIu1EuHwQJctV+wx44JcDqhKjjautWGCRNSoRzUCBDFpoBEzcxuLUtF6hXQB1ozvCl3UXllLUDAsmUpWLYscB8p9Wl6ughBEFFV1XRfVpYLf/lLHYYOdQQNcPztv5r3+fhxAbNm1eGFF5Ka5S9L/y+NbKv300/a0/3V/PCQ97G+HlixohaCIH0+9Ryh9AwmnU5g9epkQ87IJiKScYIVxVSoE6DUzPCXRxADT2SSyvWoqQ5gt0sjqi5XoMCmaQa4njUl7XYbLrtMv4oG/iY2ZGTIt5u/Z77vob8+8ten1dWCV6AKAJWVFowbl4r585MDtjdQf6t9nzt2dGHBgrrGfQnv+pb6iVi+/LW3+T6OGNEC06alIjkZEZvZzolRRGQGDFajTGm2cqJyOoE5cwKXUFKaiaw2wLVagcJCebWfwMFXsOBYvtSs1qFDguqR3ays4LO07XbfiT/hVjQoKHBg375qlJaewZo1NZg1qw5paYBSNQC1FQICXZIP5Omnk7F1q/8fJoH6e/9+daex77+3YO5cuQ9D+yEhl2C6++4GZGWFFrAqfS70qloRyvmFM7KJyOg4wSqKIjlT1ozJ648/nqxqlrbnBCgtM/wBbWvRB5rMpHVS0sKFtRg3rkHVzO4FC+owfrzSLO1Al+SDt1kLfxOU1BbIl/sonMlbbdq48O9/e++H2v4WReDw4UA5uMHfy+Ck3Fc5gCsuTsHatYFHhJs/PifHt6/0qlqh9vziL53CrDOyzXjuS0TsJ3Mw6gQrjqxGiVHqfRqF3W7D4sXqvug9L5uqLfD+8cdWFfVElR+rVMRd6yX9zEwRZWVWDBnS4J7Y48nzEuvQocojW41bhtxmtQKPhmqbpBZO6kNFhe9+qO3v0aMbgtSuDT8lIyfHe6QxP1/rD0wBf/xjg08AqHYfA/Wx2vNLoHQKFtQnIqNisBoFalYMCqfYutlovaTuedlUbTA0dmwq3nortG9bpdfQugLQvHkpKCxsgWeeSQEgQGj2lM0DH89L8kVFdY1bqQ+wwgkStQb1SuT3J9zlNJvvh5Z81OCrT2nfv7ZtgYkT67Bp0xmsXFmL+nq4L6+HsiLXs88mwW63eV2u37FD3efU33uh9vyydSt/MBOROfHsFAVqZivrXZ7IyIK9H02ky6aeM5HVBkMnTwp45hktl2ibKL2G+nJP0mMrK723cbmkv02c2IBbb03GxRdXw9LsLZBHtkIJPMMJEsObCCYiM1OE0wmvAE5t6kVzzfdD25rz6lefCta2jAwXJk5swKJFKXj+eRfuvTdV8fK6XFVBbbrEyZMCxoxJRWamGHBBCCXN3wv5sv2OHerOLw88ELi8l5qyWnoxa8oBEcUGR1ajIFL1Ps1Ky342n4msfjRLGs20WNTP/A60frnnrGn/z+d5v+/ldEGQLsNec03gMllaAk891lwPbzRUwIkTFowY0QKXXZaORx5JxqhRDY0jyVqeV3k/tKw5r/V9a/76nk6dErB4cTIefBAYM8Z3NLK8XAo6XS4phzU9XfUrAwBOnGj++Qj0OfV9bzwv5y9fru4qhTRBL/RUA72oqeQRS5wES2Q8DFajQNvoUPxTu5+zZtX7TDyTg8bA+YkSURQay0z5qxnaRA5eRo1qwJYtyl9S8qzpnBzl123TRh5d8x8QHDxowSOPIOCXYK9eTpVBdmilhZp/Gffqpf1ytpLKSgueeSYFixenICND1BDASROXlPZDS2mlvDwnsrP9lyqTA9t165Tyg31HG0URWLbM32IBUj9PmJCKV16xoboafl9XoSV+n8+X9JyPPNL03vjLT9WD5w/JUIO2QI8zeu6+0QNpM/L8PHz4IRj8U0hYDSAKtK73HQozzbQM9n4A0vvxr38pvx92uw1jxsir7oRegsjztVu3dkEU4XVp1rNgffP2l5VZceiQgMpKAVlZUnsPHRIwZUqa6jb4qwShdkZ9q1YuTJ7cgKKietWfG38zxgsLG/D003LahB5BkPQhHDasAR9+aPNapav5e5+d7cKiRYErYmzdasMDD6R4le9q/v7Z7Tbcf3+K4uX15kuVOp3AunVJqlZvCk6PSgOBZWW5sGRJHfLzHZoqXADSvmdliaioCD42IVd1CLVySaDHBWt7qOdBvc59wZbsZRkv7SJZAYcig9UAEhgLb3sL9n4IArBokfL7Iddmbdw6xBZ4B0stW7pw/Ljgc2nWs2C95+hAWZm01OiIEQ5MnNiAESOk2dPKs/n98zeapDZN4vRpCxYvTlE98hNoVGvVqmSkp+t5ZpLSHvbsseGLL7xrubZvr+117HYb5s71DlSzsqQC/56B6tixqQqX1yUZGd4T2qxWoG1bvfY3tPxcLSorpc/K8uXJmibDycfXY4/VqU6nCGehjkCPC9b2aKYiNMdJsPoz+ig6mQuD1Shh4W1vWt8POVgcPz61cU32cIID78dWVQmK98uefjoZF18c/NKg1tnh/r4EtaaDqDn5B/syFkWgujrc99WbHHzs3StNHExOBpYskZb2bN7+MWNS8fjjyaoXgDh+XMD48dI+19cDM2cGWohARFpaU6kp+bP0zTdmOv1J+/Xss0maHiUfT0OHOlT9YAZCC9rUBHtq2x6L3H09yodREwb/pDemAURZpGbBmikNwJOa90PpUlL0ec/29ndpMNQUBaWFD4JXHmgS7BJqOMX6w7VmTQ1uvlnd5WvPlIBgxfIBES1bSv3S9IPDv9LSMzhxQlD4LKmbya+PyKcMAMDvf1+P2293+BxPwS7Lqv2ceH5eAX0/X82fOxg9zn2bN9swaVLwFJ41a2owfHhiDSyEItTPEcWeUdMAOA4fZXJ5olCZpeSLUjsB5bYHej+888hiyX+5n0GDHNi7V9qvtm1FZGSIOHlSWzDiOZokp0lIQa+6QCpY+TP9Rqu0B1vt2omqy5XJo8Tr19ciM1MM8hh1Qaps2zYb1q71N7oXnYA1KUlEQ0OgCX/6tOG665w+nwOnU1qsori4zivX2vMcEmrlErWPy8hw4dSpwLn74VS2CBUnweqLFXBIbwxWTcRut2HOnJTGy+ASeSRqyBDj/NpXGr3JzJRqYHpOfgmWaB/aOvMiWrcWkZwsnQjVjkyGQg4Qr7gi3SufMhTffGPBzp3WsH98ND/5yz8avv1Wbfv8BW0iLBa5Xqy20d68PCe2bFF7qhEASD8Ciovrgm6txUsvyW1QmokfThDir2SZ73vZ0GDx+1qpqSJqa/X5vJ5zjvdrBBpR9fy8hRq0qX3chAkNWLIk2WeSXaxz94PVUY5lIG1GDP5Jb2ZK2kpo8uVlf/l+RklW95djeOKE7wSmYLmWoa6s1K+fEzffHGz5Tf00XwBAG6l9y5dLK15dfHE6Fi9ODnkSmefJ37MMz7Jl8vMFqhHrP1AFEKAMmPLziSJw++1SKbBjx9Tvh5wfGN776t0WQERVVaDPUuhVJQQBuPFGh88iD1peSxCA1q2lqhSBSm9lZalb+MBzxTQtE1201LX1pPZxRUX1IeWqR7rmabQnwcZ7LddQP0dE/jBn1QScTuCSS9Ibgz3lYKJ1axFHj1pw4oT//Y50CkHwHENfgXItH3ooBevWaV2FKpr5h+HS79Jv8/fRXxmeaOVM+mujllHyVatqUFKSoil317/IfC5ycqSqBFlZIg4eFPDGGzZs26ZtEpSnWbPqsGSJ9JlXGnmcMKG+cQnfwOTcymDHpNLxJ392/LXB34RQLY8LNVdd6WqMnjl20Si1lCjlnEL9HFFsGTVnlcGqDiIdBH70kRW33BI8Wf2994ArrlDeb71OkIH2NZxJFs0T7bdutWHChNTG0bxYil1wp540uudZQzTYxKTY7o+615cnRCl94cWW6C6FdeKEgLlz9Zv8t2ZNDZKT4fdYzcwUNU1cCXWii951VuWAXu05UkvNU72/XCN5Pk+0Wq5Kn4dzz3Vh4cL4CszjiVGDVWNcOzaxaPxK3rlT3Znyww+BK65QbqPSJCV5ychZs+pVFZZX2teMDBduvNGBfv2c+P770L+wPXMt7XYbxo1LhXECRKO0w78pU5pW+wo+mSm0/TnrLBd+/TVQAKz2uYNvY7GIqKwUMHSoVOJM+twZpx/++McGnDollc/S84Terp2Ivn2dyM93uAOmtm2lEemKCgEul5SnfviwutzKUCe6FBQ4vNqgNmhTelxlpW9AH+gcGazskTyxMT/fEZH81nAnwfoT6/2KBc/Pw9GjAjp3TsPFF1crpMwQBcZgNQz+gkA5j3TWrHp07OgK+9d5OF+GgScpSbcXL07B888nKa4iJI8yvPmmFc8+63tJ/uRJCzZuTMbGjaG3EWjKtZTbG3vmuuBQWpqE4mLpB8ebb+p9WEuTq3791d83jP4jtS4XMH58KiyWWq8vvEOHBMyalaqpCkAkrFqVjIyMQGkN2t6T5kGmHDDZ7TZMm5bqM1lRFOW0isCTlNROYNm/37dvlYI2NaOOno+z222KAb1n1Yfm55xgP7aCVb4wqnjdr2Dkz4M0igZUVIT3nUaJib9vQqSm6PHixSnuIvIXX5yuWPRcDbUnrmuv9b1P7SQlpckWW7facNll0gSdZ59NgbqVeuSJOmp5J9qHOqkqcozSjkCaCpbPn5+suXB8YJ6Tq/y/vv6khQpmzUpBfX3TF96IEQ5MmlQfgdfT3japskX4E7b8TeDxNzFKLouWkRF8klJenhPZ2f4nbUlEPP98UtBzk+eEvUCLY8hCLQwfr2WP4nW/iKKBwWqIggdVzb9gpKUxL7lE3dKYnvr2dTaWfvI/k7t1a5disKr+xOf95TFvXjLGjUsNoSST/HrqA9aCAmnUzOmET7WD2NEy890Ynn46CU8/rXVCmpEJqKiw4Iormo4Zu92GF18MFoxHY9gm/AoQMjnIzM93uGeIf/SRFXPmBA70RBF45JFarFpVg9LSM9i3r9pnlNJqBUaPbgjSXgGHDgVenSmUpTNDXRUqXssexet+EUUD0wBCFOqv3xMnpBSBDRvUJ9JbrcDSpf6KxEsntqVL62C1+q7AouXEJ1+GGj48Fbt22RD6F7L68kaAgLVrk7F2bTKyslzo3Dl+Ln9F23vvhdNnSmI9EUtSWSkdM8OGOfDaa8FOWUb7ovd9DzMzRYwf750itG2brXFSnNofhwJOnhTwyCOpivVSPXXsqK7clb9zWqi5lqGOJMZrzdN43S+iaODIaoiUcrzU8X/5K5CCAgc2bFCuTxgo8M3LcyIjQ92XlWzXriToE6QEqukJn9eorLQ0vjaFRu/AMvaBqkRqx2uvyZ9L/+0SBGDy5HqMGBHrVAFZ87aKOHFCQNeuLgwf7kDfvlKgqjRqqVawesXhjuhFe4Q02jVPoyVe94soGhishsButzXWQgx1FEf55B5MQYED//pXNUpLz2DNGunS37/+5XvpD2gqOr1liw033hirEiH6FmCnRKbuMyOKwJo1ySGsBKX1WA792AeafqyGtkpbs5YEyP8Ewi/QHu4IaSivW1DgwJQp9V6LG0iP8a58YTYFBQ5NiyIQkYRpABrp8eUiCyWVQE1ZFaUSU+oKshvjsi9R6AQAInbt0vZDsFUrEadPq1/IIrzZzE2zvgHoUqM12EzyUaMasHix/APbO41IFKW/+xPuCOnYsamal1e1221YtSrZ5312uaRKDLm5LtMGdqGWBSNKZBxZ1UjP2eqRSKT3NxGi6aQf6DUZqJL5iaKAykoLWrYMPCmxZUsXVq2qwaxZdY2lsNQdj9nZItatq0VOTrBZ9oG99ZZV95nfzZ9PnsG/eLG/ah7SfYsXp/id2R/uCKnWkUQ15fa0plEZjTzoIKeCMFAlCowjqxqp/3LxP0oZiUR6pxN4/31g+vRAJ3lppSPWuKNE0KePE+++a4O/SYkrVtQhP9+B3Nz0IFcd5KVOG5Cf73CPglksaKyzHNoViZdeSsbAgTWaHxeIZy69vzrQ3gF2U7v91T4NZ4QU0D6SmKj1SInIP46saqR2NLRlS/+jEIC+ifR2uw09eqTjhhuC134URQEpKSL6929Afn4D7rqrHvn5/i8BEpmVFKgGpu5KiYBZs+oxf740OWbLFht27rQiP18aNczJCe3X3+nT0opUakYtX3nlTONEycD1UhcvTobdblMxOuk7yhoo9zXcXEstI4msR0pEzXFkVSO15Uf27KnGihXJWLs2CSdPNv0myM4WdV2K1f/oiX91dQL+8Q/OuqdE4RusyeWWiovrVD3DyZOCT2kpuWTUvn3VWL48Gc88k4RTp7T9/i8rs2LBgrrG5YW9R2g9f9hed50TeXlOvPVWoFN2036ddZYYUi5soFHLaOVa6l2PVM2qW0RkbAxWNVJ7SSw5GZgxox5FRfURO1HqOdmLKP74PybkoEzt6Nzatb4/7uTL5lOm1CtOBlLju+8EbNwo55N68/xhu3WrLUigKpH3a+fO8E4y/t4XeYRUDgC3bLHpfl7Tsx6p0mRT+UeGWSdoESUipgGEQMslsUgm0uu/NCmTWSmxzJ+fgvR0McBleMBiUa4LLIrSsqurVyeH/IPx9deTFOqrSksWL1ggBVROJ/DAA2qXO25qdzgCjVpqXXZVK73qkYay6hYRGZMgivE53aai4nTEJxLF+vLSpk02TJniu2oVEanV/CThfaVEaWRPr9dtmuzof/Rw375qlJVZUVjYQtOzv/rqGYwbl4oTJ7QtG+z5uv5KSjWlHfleVdKzVqi/UdEFC+qQlSW6z7t9+jjRrl0rr3O+04nGtA3l/fdM19q71xgpArH+Pok0QQDatGkVle9mCl00+0l+LTX40zIMamqeRordbsPDD6fE5LWJzEF5RNSbXLLKd5uMDBEDBgjYtCky7QoUCMuX86XaqNqeOydHRO/eoZyXAo9ahrrsaqiUcmQrKwXMnesbwK5cCfTr1/RYtRUFrrgiHZWV4acIhBtoMl2BKDCOrJqQv9ENIvJkzEUuMjNdGDHCgWef1RqIBiOd8DZsqEVmpqh5NLZ1axcef9x/cLRzp7oR3tLSMxH5Ee//vCf18/r1NRgyRGr75s02TJqk5qqT8qQ2LSPE4Qaa0RytjiWOrJqDUUdWmbNqMpxURaSWnrnc/hcX0JrrfeKEBc8/r/WilrrXyMwUkZ/vCKmsU7DgKtolpeQlozdvtuGjj6yYMyfwQgHjx6di61bpfVW/4Ir68l1Kws2LDTZaraUtRPGMwarJqJ9Upf1LlIiUyMda8+NJut2jh/ZIorZWPvWGFlT52+bECQvKyqwhrY7XfMJoc2qf85tvLNi50xpWgNV8Etctt7TAoUOBz3sul4Bx41IxdmwK6uuB7Gz/9WsDkVIELO7lcP3RI9AMdj5X2xaieMdg1WTUjlq0aMFAlUg//pcq/emncE+j+h6rR44IQZdI9RRouVRPlZWCR2UEJdLfli9PCatCgL/RSnUEvP56MkaObIFff5UmsPm+B+re72DnWj0CTS6AQKQOg1WTUTu6ceaMniWtiEjie8Xi+HFB8X519D9G27UTA5Z/8np1laWg7HYbxo9Phcvlbwvf1wilRJSeaU7V1dLjMzK829amjT6LDugRaGpZAMEzLSLckWsis2E1AJNRUzA7I0NsXHaViLzpMelKaYQ1nNFRzzSD0NvWvFi+XA9amvyj/LxqVtRTH0CGXyEg2Cx+baR+SUmRSnkdOSKgslJAZqaIefNSUFkZuKxVsJFmPVbaUrsAQmWl/xXU4mHyFVEwDFZNJvAKWtJ/x49vwOLFLGtF5CvUYFAOJP09Xo8R0vACVVEERo1qwJYtNrRtK92urwdWrKiFIADHjglo00Z0/79cYgmQRuz8lV1SF0AGuhSuvHyrEv0vdws4fFjA7t1WvPBCUrP9kEfDlVchDBZc67HSlpoVEQsLGzB+vO+S2vLIdbxUCyAKhMGqCfkbMTnvPGDBglrceKOj8cSsrSA4EZmFd5CVni4Fp/5+pMqjcP36eQdOasou6RFAqn2OUCaGqaG2Xq2akWaZ2qW3gwW9/s7n2dnSKmZz50avti2RURmyzmplZSUefvhh7NmzB1arFUOHDsUDDzwAm019bJ0Itdw8C1G3by+ioKAFTpyQ9ttut2HMmNTGLRmwEoXj1lvrsXGj3nVRQ5eZ6cL48Q04dQp46aVknD4d+BhXqtmptr6n2vqqgaitvSqvPBU8zUn+m9pzm3KKhSCIyMqSgkJ5FFRr0BdKnVWlRQQA3/vUrl62adMZWK0w9OpXrLNqDkats2rIYHX06NFo164dFi5ciIqKCkyePBnDhg3DuHHjVD9Hoh0QSh8wu92GadNSUF3N/FWiUGVluTB/fh1mz05BVZURrlZIB/jUqfVYtSpZ9WQkz6VUAXXLkXpu6y+ADLRSWLDlW5XIQTQAxdHK9etrAQBz5qQ0lrMKRF0ecLgLGWhZwUpLcKt2cYOMDBdOnjR2PiuDVXNgsKrSzz//jEGDBmHHjh1o164dAODNN9/EkiVLsH37dtXPU/HzESjumtUKpKY23a6u9v8kFguQlhbatmfOwG9PCwLQokVo29bUQGlKrvsDVuNqeqqaGrgcLtx3nzQjV2y26ssZtHTfSkEtrPB/sj6DdA3btoD8BZGMOtjg/4SpZdsapEFsLGCRhHokoUGXbWuRChesmre1oQHJqPe7bR1S4GzMtNGyrRUOpKDO77b1SIYDSZq3tcCJVNT63bYBSWhAsuZtBbiQhhpdtnXAhnrIl7JFtMAZXbZ1woo6NB33LeD/WA68rXfw44IFtUjzs60nsXHbpmM5DWcg+JmYJUJATcBtRVgEwCUCIixe26aiBhb4nbaPF0ul9hcWtlC1bd++TtjtNkwZA1jh9DmPyO9H83OEfCyvXi2lJnlp0aIpyb6uDnB4//2tt2yYPz8Fhw5b3OeInBwXHp33K24aJH0uXS5g5cpkLH8i2d0G7+O+rvFYVg5WPbdd+9QpDBvs/3OJ1FS4o8/6eqDB/znCa9uGBml7j/2aPDm1sScF93EvCCJsYgPWr/7V670qK7Pi1tukvg18jvD+XDYgCQ4hSRodv7FWeo/9SU4GkqRzBJxOoNb/cY+kJGl7rdu6XBBqa/wHQc22RU2AvrDZgJTG414Upe9PPbbVEhvEaRwhb9rmgvZN/RRgWwBAetNxj9paBCxT0WxbweVCmwva+d/ek2gw7777rnjllVd63ff111+LnTt3Fk+dOqX+iVq1EkWp67z+1d0wSDx27Ff3P1eLForbiYBYf9XVXts6s7L8b9utu9e2jg7n+922oUtXr20bunT1u62jw/le29Z36+53W7FNG7GiwmPbq672u20VWnjdZcdN/p8X8Lr5vxgRcNsWqHLf/CvuDLhtGxx133wKUwJuewF+dN9cjBkBt70EX7hvzsO8gNv2xB73zRlYHHDb/tjuvjkFTwXc9ibY3TfvxF8DbjsC/+u+OQL/G3DbO/FX982bYA+47RQ85b7ZH9sDbjsDi903e2JPwG3nYZ775iX4IuC2izHDffMC/Bhw26cwxX2zDY4G3PavuNN9swWqAm77vxjhdVegbe24yeuuKvg/R2xHf6+7jqKN3233oKfXXT/iAr/bfoFLvO76Apf43fZHXOB11x709LvtUbQRp0+vFVevPiMCorgd/f1uW4UW4jPPnHGfT3757e8Cvm+eN4OdI479dMj9vDUjbw+47f88/rP42mvV4uHDv4pn7h4XcFvPc8SKlPsDbut5jvhq5EMBtz3xznZ3e6vmLQy47cnX3nBve/qxxwNu63mOuAsbAm6r9RwhCC7x3HOd4vHnA297+rHH3e09+dobAbetmrfQve2JdwKfT6pnznZve/yj3YG3nXqve9vKff8OuO2Zu8e5t634an/AbWtG3t70/fnToYDb1g4Z5vVdG2jbeI4jnFlZoiiK7lgiUBzhatHC63nrbhgU8H3z3LZ2yDApTlPJcBOsqqurkZbmfdlDvn3mzBmcddZZYT1/crJN9bBzUpLVe1vB/+WkJFuzbS3+t7VZLd7bWv1fyrJaBO9tbYGvpWVleWyb5H/blBRAqJc+QUSUOJYtS0GbNuq27dw5rWnb86zA5+oel5IMBLiQIJ3TGkdZXClJAZ/rjjvSgLaNo0JpgfOGp90DnMyQBr6SlgoIcNEBgHRKP+88oHPnwG3IyEgH5PNweuBKK2ef3aJp25apAbf1JAZJV9CafCKKAg4eFPDf/7ZAZoDtWrZMRUu5vWcHzo9NT09BurxtRnrAbVu0SEELedvMINumJTdtW9Uy4LZpaclIk7cVA4zsAkhNTUKqvG1a4JSRlBQbUlTGBvEcR1ga2+eOJQLEEQKaXcZPDhxSem2boi38NFwawLvvvovi4mLs3r3bfd8333yDoUOH4pNPPkGrVuo+IJW/JF4aQFZWK1TWeqcBBBq+f+3dszF+fCoAgWkATANgGkAI26pPA/DdNrw0AP/bBru0Lx3Lose2vs8rQMo1/eenTVe05Ut8ZWVWjLzVN6hpfo7YtPG0/7JNjWkAdrsN8x8Cjh5qam92exceeaSu6XJ4kJQB97mv8jTE1DTY30zGmDGpsIn1SPI6n4jwDPlqkQpRsGDDhloUDDqj/tJ+iGkAW7faMO1e74EYpXPEyhU1GDrUNy3iofln4b+HpOPICgfaZ9TgxEnlAMXzuF+76jQKbwrw3RXFNAB3PzX/yDENQHnbGKUBZJ3fvqmfIpwGkHW+ujQAw42sdurUCSdPnkRFRQXaNP6k/+GHH9C+fXvVgSoAiC1a+B819Ly/ReBffCFvmxZkBmeo26b6SbYXAKSnQ6zxOBH427bRzTc78K9/1WP16mSvL+dgtGxbjxSPgEK/bRuQ7A6AYrWtA0nuLwQ9t3XChjMqD00t27pg9Qoo9NpWhCUi2wJChLaFIbb1DDAlnge694iKlm09A2L/pIL5tUiDIEijcO6/NE5kemhRLSwWR9P5JCUVTiewfU8yzgQ5TuuQioMnRYgt/P/4tL+uXI1g/xERd0xu6V0/VG5Dcor0r/mupKdDrHHB4ZAmXoki0IAUNARopzQJqRaDBzsgIhlICnLcy21I0rCtLUn6B6B1B2vjj3Nl8jmidQcBYgvvL/zfDQduuLkOZWUO9yQul8uKW24JXimgbbYVotrvLotV/feclm0Fi7RtYz8pfjc331bN80KI0LYwxrbRjiMA96EoX7sPFkd4PW9KkNig+bYaLhcYbpr4hRdeiNzcXDz66KOoqqrCf//7X6xatQojRoyIddPi0vz59Zg8uR5QGF2RGGrgnShutW4tYupUefTd/3HnvXxqOJUJpEoArVt7v1Z2tqhYaN5utyE3Nx3Llqn7QRmoZmqgVbHkwLm4OEXzkqJNCxgEfl8WLqzFvn3VirPlI7WsaV6eE9nZLvjrW0EQkZPj8jsabbUCffs6MXy4A337OnHVVdKiBP6W0w32fERmYriRVQBYsWIFFixYgAEDBsBisWDYsGGYMmVKrJsVt+bPr0durgsPPJCCysqm3y9t2rjw6KN1yMgQ8Yc/yL+uYl22hyieiBgyxIG77mrAVVdJ5Y5yc12NZZmUj7WsLBEVFfqNMyxcKNUYDVR2ybsma2BqVm4KtiqW1pWvZGoXH2jbVlQsLRVKzVS1tm2zNV41Vy7xBahbRECm16IERGZgyGC1TZs2WLFiRaybkVCGDnVg8GCH31qBU6fW4+mnk9E874uIQmOxiFi7Virr9Ne/JuHNN2248EIX7r67Afn5TcdimzYiXC5g1y4rBEFKH3viCf2WU87OFgMGhIFGQZtTGySpDSq1rp6ldgUspe38BeShLGvavO5qZaWguGSqLCNDxNKl2gPiQKtfGa3OKlE4DDfBSi+JVng4GoV8589PxurVyXC5GKwShU46QMeNa0BFhYCtW21ex5TFImLy5HrMmyelBCiN9ml/vdAL9mtZwUrtKKTa51RTrN/z3OdwBF8BS2mf5ZWz1CySEGykUqm/LBaxcY6K8qIKOTnaFk5oTsuiBLHCRQHMwaiLAhhyZJWMad68ejz4YD3++tck/PSTBeef78LFF7vw/PM2vP66cZaiJDIyiwVwuQSsWycfM97fCC4XGq9iSCkBai+/+6ccIImiusvEakc3i4rqMGtWvaogKS9PyrcMFlRqzbcM9dK4XmkJ/kZnA//ADy3lgSiRMFglTZKTgYkTvcu2XHONE5dcYmtcr5ujrkT+iQpVYJofM9JM/VWrknHOOaKqy+96URqhU3tpvV8/9aN5kcy3DOXSuB5pCVrSJbQ+dyCRzLONJTOMFlP0GK4aAJmP1QosXVrXWAqx+RebqHAfUSJy1+ZRsa004njkSPCZ7aERIAjeM+7l2f6FhS0waVIaCgtbIDc3HZWVQkRmnctBZXa2umoEWp97375qlJaewZo1NSgtPeN39j8QXq6rTG0lglCe2x95JNczKAea8mztdnOOR/n7LJp1fyh8zFmNE0bIB1L6hd+6tVRT78QJz99FWr60iSiSSkvP4MQJQbHmqRygTplSj1WrpNQE78v20t/Xrav1KWSvVrgjaHqc++ScVa25rp42b7Zh0iQ1NW61P3egNuuRZxsNavvJO5XC97MY7g8ZCow5qxT3CgocXrOY5S8ewPvL6J13rFi9WinHlZUGiKLt0CEBJSX+a54KgojS0iQ8+2wt5s5NaTaKJ/3/3LkpsFgQUhAh1w+NJT3SEkIZGQ0n5SFS5b9iKVj9XUEQUVycgvx8hyECcIoepgGQrpoXrrZafe+bP78e69bVIivLO3kvJ0fE/ffXoXNnB5g6QBQdlZVCwMvXUtBjQVaWiAUL6qCU2mP2y85A+GkJ8qQxf+kSgAiLRb+Uh0iV/4qlYKkU8mexrIyRaqIx75mFTC1QXdcHHpCW0/7rX5PwwQdWbN8uf0zNc9IlMjr5MnFWlrofhocOCZgzR67vGnzUy4wTZPxdHVLTbjWjs2vX1iIrK/ACDGrpkWdrNPEYgJM+GKxSzAS6/CdXHZg4sQF2uw3335/SWG2AiIILnBfuefk5M1NdMLNjh7VZ7nmzV/S47HzihGDaGerhpCVEs0h/pMp/xVI8BuCkD06wihNGmGAVSfJ63Tt3WiGKwN/+loTjx1kqiygUrVu78PjjUvAUbHKRXLS+uho4dSp45tjEiXVYuzY5ahNkjHjui9aosjwZCYDiSK6RJiOp6Sc9JrpReIw6wYo5q2QKVqtUx/HBB+vx0EP1ePxxqVSW//wwIlIuHSfi+HEBX39tgdPZdPka8Hc8Cfj1V3WBKgBs2pTkd4IM4F0uK14p5e5HQiTLf8VCoM9iuPV3ydw4shonjDi6EGlKpbJatRJx+rR8i6OuZHbhVsgI/PjsbBcWLZJGWJvSbZSCUnXtaNnShaqq4EGtmmVUA/EcuWzfXkRBQQucOJE4577mzJAfrOU7Kl4XOjADo46sMliNE4kYrALKJ+lt28JdS53IKEKtSaw2yBUhCNLl4vx8B3r0kC7BhhogFxQ0wG5PCrrdmjU1GD48tKBDKZA57zxg4cIaDB7MQMaotH5HmSEAj0cMVqMs0YK2RA1W/ZFPdNu22fDqqzZUVgYLXFnjlYxJEKSAUlqmVTmntHluqJYlP+U8wBUrajFiRIsQWykiM1PEunW1uOWW4M9RVFSHfv2cmgMQ/wXjpTaY8dJ3ouB3lDkwWI2yRDsgeCLwz/MXeps2InbtsuKZZ5JRVeW7Eg8DVgpPJH/0KH1Gfe/LyXGhRw+nqhFOTzfd1IA339T2GM82bNggjc4GWlWp+fuj5dKu2VZsIm/8jjIHBqtRlmgHBE8E2jS/xFRZKWDmTH/5ejKOvlIs+fv8SbVSFy6sc5cq2rnTGsYoqTbNA86tW20YNy618a+Bjxcts9Z37rSisDD4PoWbD0uRwe8oczBqsMo6q5SQlGopDh7swPLlyVi7NgknT/oLWhmwUqz4+9wJqKwUkJ0tuj/Tffs6kZnpaqxNHLl81zZtROzZU41kj9WTpUUG1L2mliU0zVownrmXROFjsErUyGoFZsyoR1FRPcrKrDh0SAoCsrKky4uVlYLC2uhEkaYu+PMM0qxWYOnSOowZk6r68U3UbiugokLA3r3ea89rDRbVrmFvxoLxnNVOpA8Gq0TNBFrBRl4i9q23rNi0KUnFxC2icKkL/poHaQUFDmzYUIvp01Nw8mTkfmA1D0737w/tmAgW5IazYlMsRje9J4M1OXRIwNixqZwMRqQBv2mJNJAD2YUL6/HFF9UoLT2D8eProFx8HQHup9Al3vsp5XYq77cgiMjJcSkGafn5DqSlwe9j9eAZJDudwPPPJ4X0et9+a8HOnVa/CwYELhgv/VepYLzdbkNubjoKC1tg0qQ0FBa2QG5uOuz2yI3VOJ3S4geJvjgCkV4YrBKFSA5cFy2qx4YNtcjJ8f4CbdPGhcmT6wOutJWa6opGU+OM2dMwtP+AkQIc5dFEUQRGjWrAli02n2BPSmexKD42XEpBcmivJ70Xy5alBA0k/a3YdN55UjWC5iOV8uhm89QdeXQzUgFrWZm18dK/8vsgpT5YUFbG5FUiNZgGQKSDggIH8vMdipcae/VyNeatNX1xZWa6MH58A+69tx5XXhloXXYyl+hOwGvRQkRyMrB4cYr7Ps+cyEhNNvK39KX21/MN2oNdJm9+rDWtYOXwuuQebHRT7cSuUJh1MhiRUTFYJdKJv1xXzy/Xo0cFdO6chosvroal8bpGSUkdxo5NbRwl45eXuanpP736WER1tYDqau97PYM9/SYbeQfh2dmi4iSh0F5PeyDpeawJAhS3aRrdVKZ2YlcozDgZjMjImAZAFAXyl+vw4Q5ce633l6u/S5uJmJtpZGlpot90jtj0leDxz6MlHjmRvXpJk5L8t1ud7GwRs2bVYc2aGpSWnsG+fdWKo57yJCh/rycIItq0ceG+++o89sGXHpfJYzm6qeZ98JdnTES+OLJKZADNL23u32/BunVJOH5cXb1L8+dxGl9NjfRf3xFw4/2okEcN9+61ukfutdRPzcmRll+tqNA2e16eBKV0pUAO3BYvrkN9vbr9CCeQjOXoppr3QWkyGBEp48gqkUF4jr7OmFHvnvlMxpGZKaJ9e+/gJidHxLp1tcjJccFogeuRI4J75F4q1q9OSUkd+vWTPot9+2or8+TvSkF2tujOQ41GIKn36KbTKa2itXmz70Q2JfL70Pzz4vk+EJE6HFklMijftABlM2bUY9myZLhc+o3CjhhRj2PHBPzjH6GsFW9Wwd4bASdOCNi06QysVvhMpLNY0FiE3zjkYK+gwIHaWmDKlLSgj5kwoSHsQCrQhEMgvJqpauk5uqlncX8uNUqkHUdWiQxK7cjQ/ffXY+3aWgQqiZSUJGLYsAafUR5f0nOuXFmHjRtrkZHB0lrNVVQI7hFwz1HHggIHZs1SeX1blxFYbbVX1f74yc/XZ8TP80pB89HZwDVT9btMrmaUN5hQy1/Jjzt0yPtxhw9HtmwWUTxisEpkUFq+0IcOdSjWek1Lc+H+++vwyy9VWLu2Fp9+Wo1Zs5QXMRAEEYLQ9JxWqzTKFv8CTZzyFejSdFFRPbKzg6cDWJqdeTMzXbj1VrWBLmCxiH5r+PoL9rReFg902VvrJXElegSSal9n3z5pAY9gE8SaC7W4PxcFINKXIIrxeVGiouJ0Ql1uEQSgTZtWCbffZhNKP2m5BKl2WUm1z+l0Apdcko4TJ5SL0puf3AnqJx7t21cdcMRPHlEDEKAUmfS6ffo40bu3E1df7URenlNFzV3pcevW1WLoUIfmy9P+2iYHsHKQGOh5Aei63n3zz2yvXk7s3at+adRInvt27rSisLBF0O1KS894lb8K9XHxjN9R5hDNfpJfS9W2DFbjA08E5hBqP0VibXMtgW1TLma4Aau/vNDYVDTIyXGhoMCBtWuTVWwtKq6SpMRut2HOnJTG1ZzUt6WwsAGrVkltUQpYMzNdWLrU9weFls9GsADXe01774DW+zPrP9gNVSi5oZE8923ebMOkScHzfNesqcHw4Q53X9jtNqxfH/wzJT8uEfA7yhyMGqwyaYbIBPwtOGC052wiYvz4etx4oxOiKOV57t9vwZIlyQCUJ7sUFDTg9dcjO6FLDrgmTpTalpfnRFmZVVWwWlDgQGamCKdTuQh9823POkvEiBHBR9dk5eUCVq1KxpQp9SgtTVJc8ayoqN7ntbX2Y6DJT8EvXyuPROuxIpR3kNxEzg2dObMeHTu6dPuxpoaWqgVKgbZez0+xEYlBAgoNg1Ui8ksOXiTqRz7Hj2/AokW+OZhdu/ouPZuVJeKWWxpw3nlixINVpZWXgs1Ml0d97fYk2O1Jqi95V1RoHSkWIIoiSkuTsGdPtaZL4YC2L1Z/AW6wVZ8CfQbCWRFKTZDsb0nZSFJbtaCyUsD48b6Btr8rBnpUO6DI0rMCBIWPE6yIyK+m4EVb4HXTTconc8/JLhMm1CMry4WKCgueeSYFDz+cCovF/wz38GbQi2jd2oU9e3wn1gSayKYk2CxwWahLj5aXW7B3r9XvTHoldrsNubnpKCxsgUmT0lBY2AK5uemaZ5zrsZpTKM8R/HOmbSa+XtRMclywoA5z5yoH2tLtyFU7oMgItQIERQ6DVSLyS2vgoabQutUKnDgh4Nlnk1BZ6f38LnelLOUv+MzMUJcOFXD8uBQEKikocODZZ2vRurXSc4c2mzsvz4msrNBKf2l53/X8YtXjsnQoz6H1cxbNGfXBqhZkZYmaAm0uCmBsrORgTAxWicgvLYGH2hGjQF8G8u3mpZ2ys6XJTUuX+hsBVddOf0GR3W7D3LkpqKxUd0pUs3a91QrccktoAYna913vL9Zg5a201nZVK5QAV00f6CVQ+Su1gfbYsfWaymZRbAQb5Y/m546acCybiPwKns/ZRCkfVImavEiXC1i4sBZt24o++Zfr19f65L22aSOqyhFVCor8TexRQw5U/OWL5uerrTQgk8pjqQ34gr2XWvNIg636JL9Heq93r+Vz1pweqQtq+MvzVRtoFxQ4EqZMlZmp/TxF63NHEo6sEpFfgfM5pVG2CRO0jRipPcm3bSsq5mwqjXL93/9Vh7QOfOBR3uDkWeD+8kXlIExLvq2WgC8SX6yBLntv2FCLDRv0L+SvNW/YU6xn1GtdbIGMTUsFCIoejqwSUUBy8NJ8NDMnR91IanN6fBkojXKFsg588FFeZcFmgcv5ouvX16KkpM6jTm1gEyY0aHo/I/XFGqi8FYCAfwuVv8+Z0WfUBxuNBjiZykzUVoCI9ecu0XBRgDjBgsvmYOZ+0qvmoNMJ5Ob6X6lJ/jIItlKUEq3lZtQWfW/ePgB49tlazJ0rB1aB92P58mSv0kv+aF3RKJLvZax4fs7277dg8eJkCIL/FbeGDHEY4phiqaPAzHTuU7vSWzwy6qIADFbjhJlOBImM/SSJ5JeBlqBa7bKYnuQAJDNTVL2kZl6eEz16SEFlsMA2lAA9nr9YgwWBRjqmWETePyP1kxqJ+uODwWqUmeWA0IvZTgSJiv3UxAhfBsFHJoHsbBdWrKhFRYV3AKJ1Kc5IBpVGeC8jKVAQyGPKHMzYT4n444PBapSZ6YDQgxlPBImI/eTNCF8GgYNIARs21GDwYN+AT+2orOel/UgGlUZ4L2OBx5Q5sJ/MgcFqlCXaAcETgTmwn4xJKYg891wXVqywoF8/5b4KNV80UYPKSOExZQ7sJ3MwarDKagBElPCUZr/36eNEu3atUFGh/JhQZ4H7q9dJRETKGKwSEcE3iBRUlCb1V25J7QIJscQRXiIyCwarRERhCFaT1IjifUIWEcUXBqtERGEy06V9f8vLei5kwICViIyEy60SESWIQMvLyjm3xcUpcJoj7iaiBMFglYgoQTQtL6uckCuKAsrLLSgrM3AOAxElHAarREQJ4sgRFbPGNGxHRBQNDFaJiBJEu3bqCieq3Y6IKBoYrBIRJYi8PCdyclwA/AWjInJyXMjLY9IqERkHg1UiogRhtQKFhQ2Nt5oHrNLtwsIGQ5fdIqLEw2CViChBOJ1AaWlS463meanS7dLSJFYDICJDYbBKRJQgglUDAFgNgIiMh8EqEVGCYDUAIjIjBqtERAmC1QCIyIwYrBIRJQi5GoAgKAejgsBqAERkPAxWiYgShNUKlJTUAYBPwCrfLimpYzUAIjIUBqtERAmkoMCB9etrkZ3tHaxmZ4tYv74WBQWOGLWMiEiZLdYNICKi6CoocCA/34GyMiuOHBHQrp2IvDwnR1SJyJAYrBIRJSCrFejbl7mpRGR8DFaJiIhINacTHJWnqGKwSkRERKrY7TYUF6c0Li4hyclxoaSkjvnOFDGcYEVERERB2e02jB2bivJy70UjDh0SMHZsKux2jn9RZDBYJSIiooCcTqC4OAWiCDRfrlcUpdvFxSlwMg2aIoDBKhEREQVUVmZtvPSvvBSvKAooL7egrIzJq6Q/wwarNTU1GDlyJDZv3hzrphARESW0I0eUg9RQtyPSwpDB6nfffYc//vGP+L//+79YN4WIiCjhtWunvERvqNsRaWG4YHXXrl248847UVhYiJycnFg3h4iIKOHl5TmRk+PyWaZXJggicnJcyMtj0irpL+pT92pra3HkyBHFv7Vt2xZdu3bF9u3bkZKSgr/+9a8hv46QYFci5P1NtP02G/aTebCvzIH9FB02G7BoUR3GjEmFIIjuSVUA3AHsokV1sPmJKthP5hDNftLyGlEPVj/77DPccccdin97+umnccMNN+jyOllZrXR5HrNJ1P02G/aTebCvzIH9FHl33QWcdRZw333AgQNN9593noAnngCGD08L+hzsJ3MwWj9FPVjt3bs3vvnmm4i/TmXl6cYSG4lBEKQPV6Ltt9mwn8yDfWUO7Kfo6tcP+OQT5RWsKir8P479ZA7R7Cf5tdSI2wq+ooiEPCASdb/Nhv1kHuwrc2A/RY/FAlx1lXduqtr3nv1kDkbrJ8NNsCIiIiIikjFYJSIiIiLDMnQawAcffBDrJhARERFRDHFklYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGZahl1sNhyDEugXRJe9vou232bCfzIN9ZQ7sJ3NgP5lDNPtJy2sIoiiKkWsKEREREVHomAZARERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVg1UQqKysxZcoU9OzZE71798aiRYvgcDgUt/3HP/6BIUOGoFu3bsjPz8f27duj3NrEpaWfxo0bh8svvxzdu3d3/9uxY0eUW5zYjh8/joEDB2L37t1+t+HxZAxq+orHVOx8/fXXuPvuu3HllVeib9++mDVrFo4fP664LY+p2NHST4Y5nkQyjVGjRon333+/eObMGfGXX34RBw8eLD777LM+2/3444/i5ZdfLr777rtiQ0OD+MYbb4i//e1vxcOHD8eg1YlHbT+Joij27t1b3L17d5RbSLJPPvlEvOGGG8TOnTuLZWVlitvweDIGNX0lijymYqWmpkbs27ev+OSTT4p1dXXi8ePHxfHjx4sTJ0702ZbHVOxo6SdRNM7xxJFVk/j555+xZ88ezJw5E2lpaejQoQOmTJmCF1980Wfb0tJS9OzZEzfccANsNhtuuukm9OrVC6+88koMWp5YtPTTf//7X5w6dQqXXHJJDFpKpaWlmDFjBoqKioJux+MpttT2FY+p2CkvL0fXrl0xdepUJCcnIzMzEyNHjsTevXt9tuUxFTta+slIxxODVZP47rvvkJGRgXbt2rnv+81vfoPy8nL8+uuvXtt+//336Ny5s9d9F110Eb7++uuotDWRaemnf//730hPT0dRURHy8vJQUFCATZs2RbvJCevqq6/Gu+++i5tuuingdjyeYk9tX/GYip2OHTti3bp1sFqt7vvefvttXHrppT7b8piKHS39ZKTjyRaTVyXNqqurkZaW5nWffPvMmTM466yzAm6bmpqKM2fORL6hCU5LP9XX16Nbt24oKipCp06dsHv3bkybNg3p6enIz8+ParsTUdu2bVVtx+Mp9tT2FY8pYxBFEU888QS2b9+OF154wefvPKaMIVg/Gel4YrBqEi1atEBNTY3XffLt9PR0r/vT0tJQW1vrdV9tba3PdqQ/Lf00bNgwDBs2zH376quvxrBhw7Bt2zZ+sRoIjyfz4DEVe1VVVXjwwQfx5Zdf4oUXXkCXLl18tuExFXtq+slIxxPTAEyiU6dOOHnyJCoqKtz3/fDDD2jfvj1atWrltW3nzp3x3Xffed33/fffo1OnTlFpayLT0k+bNm3Ctm3bvO6rr69HSkpKVNpK6vB4Mg8eU7H1yy+/4JZbbkFVVRU2bdqkGAABPKZiTW0/Gel4YrBqEhdeeCFyc3Px6KOPoqqqCv/973+xatUqjBgxwmfboUOHYs+ePXjzzTfhcDjw5ptvYs+ePbj55ptj0PLEoqWfqqqqsHDhQvznP/+By+XChx9+CLvdjpEjR8ag5eQPjyfz4DEVO6dOncKdd96JHj16YP369WjdurXfbXlMxY6WfjLU8RTrcgSk3rFjx8Rp06aJV155pZiXlyc+9thjosPhEEVRFLt16yZu2bLFve2OHTvEoUOHit26dRMHDx4sfvjhh7FqdsJR208ul0t8+umnxeuuu0787W9/Kw4ePFjctm1bLJuesJqXQ+LxZFyB+orHVOxs2LBB7Ny5s3jFFVeI3bp18/onijymjEJLPxnpeBJEURSjHyITEREREQXHNAAiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiII6fvw4Bg4ciN27d6t+zNtvv42CggJ069YNAwcOxKZNmzS/LoNVIqIY+emnn2LdBCIiVfbt24eRI0fil19+Uf2YsrIyzJ49GzNnzsSnn36KhQsXYv78+fj88881vTaDVSKKW9dffz0uv/xydO/eHd27d0e3bt1w9dVX4y9/+QtcLpdurzN69GisXLkSADB37lzMnTs36GM++OADjB07NuTX3Lx5M66//nqf+2tqanDllVfib3/7m+Lj7r//fkyZMiWk5yaixFRaWooZM2agqKjI528ff/wxRowYgZ49e2Lw4MHYunWr+2/PPfcc7rjjDvTv3x+CICAvLw+vvvoqzj//fE2vbwt7D4iIDGz+/PkYPny4+/Y333yDu+66C2lpabj33nt1f70FCxao2u7kyZOIxAKCaWlpuOWWW/D3v/8dd9xxh9ffjh8/jrfffhvr1q3T/XWJKH5dffXVGDJkCGw2m1fA+vXXX2Py5MlYsmQJBgwYgM8++wxTpkxBZmYmrrnmGnz++efo3bs3JkyYgM8++wzt27fHtGnT0LlzZ02vz5FVIkooXbp0Qa9evfCf//wHgDQqOnv2bFx33XW49tprUVVVhV9++QWTJk1C7969cd1112H58uWor693P8ff//53DBgwAN27d8cDDzyAmpoa999mz56N2bNnu2//z//8DwYOHIju3btj+PDh2LVrF3bv3o158+ahvLwc3bt3x5EjR1BfX48nn3wSAwYMwJVXXonx48fj559/dj/PDz/8gNGjR6N79+4YMmSIu/1Kbr/9dnz//ff4v//7P6/7N23ahP/3//4f8vLy8MEHH+DWW29Fnz59cMUVV2DUqFGKaQm7d+9Gly5dvO5rvo9vvPEGhgwZgtzcXAwfPhz//Oc/3X/bu3cvhg8fjp49e2LgwIFYtGgRHA6H37YTkfG0bdsWNpvv+ObGjRsxYMAADBo0CFarFT169MAf/vAHvPjiiwCAU6dOYf369Zg8eTJ27tyJqVOnoqioCJ999pmm12ewSkQJo6GhAbt370ZZWRn69u3rvv/jjz/Gxo0bsXXrVlgsFtx1113o1KkTduzYgZdeegkff/yx+zL/rl27sGDBApSUlGDv3r244oor8O9//1vx9TZv3oxVq1Zh8eLF2LdvH2677TZMnjwZXbp0wfz585GTk4NPP/0U7dq1w/Lly/Hhhx/iueeew0cffYQrrrgCY8aMQV1dHRoaGjBx4kR06tQJZWVlWLZsGd577z2/+9mhQwf0798f//u//+u+z+Vy4ZVXXsEdd9yBw4cP47777sOECROwa9cufPjhhxBFEU8//bTm9/Qf//gH5s2bh7lz52LPnj2YNm0apk2bhu+++w4AMGvWLIwePRqffPIJ/vrXv+Ktt97C+++/r/l1iMh4Dh48iHfffRc9e/Z0/3v++edx6NAhAEBycjJuueUWdO/eHTabDYMGDUKfPn3w9ttva3odBqtEFNfmz5/vPon26dMHCxcuxN13341Ro0a5t+nXrx/atWuHs846Cx9++CHq6+sxffp0pKSkIDs7G/fdd597pGDr1q3uE67NZsPtt9+OSy65RPG1S0tLMXLkSHTv3h0WiwW///3vsWHDBqSmpnptJ4oiNm7ciOnTp6NDhw5ISUnB1KlT0dDQgA8//BCffvopDh06hFmzZiElJQWdOnXC3XffHXC/77jjDmzbtg1VVVUAgI8++ghVVVUYMmQIWrdujTfeeAPXX389qqqqcPjwYWRmZuLIkSOa398XXngBt912G3r16gWr1YrrrrsO119/PTZu3AgASElJwbZt27B9+3ZkZGTgH//4B373u99pfh0iMp727dujsLAQn3zyifvf22+/jbVr1wIAfvOb33hdlQIAp9OpOQWKOatEFNfmzZvnlbOq5JxzznH//8GDB3H8+HH06tXLfZ8oimhoaEBlZSWOHDmCSy+91OvxHTp0UHzeY8eOIScnx+u+Hj16+Gx3/PhxnDlzBvfddx8slqYxhIaGBhw8eBD19fXIzMz0CnKDTVC46qqrkJ2dDbvdjltvvRUvvfQSRo4cidTUVIiiCLvdjo0bN0IQBHTu3BlVVVWKl/mCOXjwIPbs2YOXX37ZfZ/T6UReXh4AKQ1i5cqVmD9/Po4dO4ZrrrkGjzzyCNq3b6/5tYjIWEaMGIG7774bgwYNwlVXXYVffvkFEyZMwHXXXYcHH3wQt912GxYuXIhrrrkGeXl5ePfdd7F7925Mnz5d0+swWCWihCcIgvv/27dvj/PPPx9vvfWW+76qqipUVlaidevWaN++Pf773/96Pf7w4cPo1KmTz/NmZ2e7L4fJli9fjqFDh3rdl5mZiZSUFGzYsAHdunVz379//360a9cOX331FY4fP47q6mqkp6e7XzOYP/7xj/j73/+O/v37Y+fOnZg/fz4AYNu2bXjhhRfw8ssv44ILLgAALFy4EN9++63Pc1itVgBAfX09kpOTAQAnTpxAZmam+/0aNmwYJkyY4H5MeXk5UlNTUVdXh++//x6PPPIIbDYbfvzxRxQXF+PRRx/FihUrgrafiIztiiuuwLJly7Bs2TLcd999SEtLQ0FBgTsYveWWW2CxWPDnP/8ZBw4cwLnnnovly5f7/OAPhmkAREQerrvuOlRXV2PdunWor6/Hr7/+igceeABFRUUQBAG33HIL3nvvPWzfvh0OhwOlpaV+JwsMHz4cr7zyCj7//HO4XC68+uqrePHFF93BaU1NDRwOBywWC0aMGIGlS5fi8OHDcLlcKC0tRUFBAX7++Wd0794d/+///T+UlJSgpqYGP//8MzZs2BB0XwoLC/Hzzz/jiSeewA033OAezTx9+jQsFot7lHXHjh147bXX0NDQ4PMc559/Pmw2G9544w0AUn5vWVmZ++9/+MMf8Le//c1dN/Hf//43hg8fDrvdDkEQMH36dGzYsAEOh8M9SUMOdInIfL755hv07t3bffvaa6/F5s2bsW/fPvzzn//E7Nmz3T9sAek89Prrr+PTTz+F3W7HwIEDNb8mR1aJiDy0bNkSzz33HB577DGsW7cOLpcLvXv3xurVqwEAubm5WLx4MR577DEUFRUhLy/Pa7KWpyFDhuDXX3/FzJkzcezYMVx00UV49tln0bp1a/Tq1QtZWVno1asXNm7ciAceeAArV67E7bffjpMnT6JDhw5YsWKFOx927dq1mDt3Lq666iq0adMGAwYMwDvvvBNwX1q0aIHhw4fjf/7nf/DSSy+57y8sLMS+ffswePBgWK1WdOzYEXfeeSdefPFFn/yyc845Bw899BBWrVqFhQsXIi8vD8OHD3dXQLjxxhtx5swZPPTQQygvL0dGRgbuuusujB49GoIgYPXq1fjLX/6CZ555BlarFf369cOMGTNC7h8iSjyCGIlCf0REREREOmAaABEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWP8frtqmz+XHfi8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Calculate residuals\n", + "residuals = y_test - y_pred\n", + "\n", + "# Plot residuals vs predicted values\n", + "plt.figure(figsize=(8, 6))\n", + "plt.scatter(y_pred, residuals, color='blue')\n", + "plt.title('Residuals Plot')\n", + "plt.xlabel('Predicted Values')\n", + "plt.ylabel('Residuals')\n", + "plt.axhline(y=0, color='red', linestyle='--')\n", + "plt.grid(True)\n", + "plt.show()\n" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -4436,7 +4491,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 49, "metadata": {}, "outputs": [ { @@ -4490,7 +4545,8 @@ "mse_poly = mean_squared_error(y_test, y_pred_poly)\n", "r2_poly = r2_score(y_test, y_pred_poly)\n", "print(\"Polynomial Model (Degree {})- MSE:\".format(degree), mse_poly)\n", - "print(\"Polynomial Model (Degree {})- R-squared:\".format(degree), r2_poly)" + "print(\"Polynomial Model (Degree {})- R-squared:\".format(degree), r2_poly)\n", + "\n" ] }, { @@ -4526,9 +4582,49 @@ " values, we can see that the polynomial model of degree 2 explains more variance in housing prices compared to the first model. This suggests that the polynomial model provides a better fit to the data and captures more of the variability in housing prices." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# RESIDUALS" + ] + }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAIdCAYAAADI2D7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/kUlEQVR4nO3deXxTVfo/8M9N0o1SbWkR2hkcRFl+LiO1LFUEVISZagELjIyOiKyyKjCAKBVkcwEBBVkFdBxRHKFFzAAuI4pWWrDyVURxGQdRW6oti7SlTZPc3x/hpkmz3Ztmubn5vF8vXtrk3OQ0OU2ee+5zniOIoiiCiIiIiCjC6cLdASIiIiKiQGBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIi1eIeQkSkBANbIop6I0aMQOfOnZ3+denSBVlZWfjLX/6Cf//73wF/zoKCAnTu3Bk//fSTxzY//fQTOnfujIKCgoA//5w5c3DLLbc06zFuueUWl9ftmmuuQf/+/bF8+XLU19c7tZ0zZ46ix//Pf/6Dhx56qFl9JKLoYgh3B4iI1ODKK6/E/Pnz7T9bLBacPHkSL774ImbMmIGkpCT06dMnYM9300034bXXXsMll1wSsMcMh759+2LSpEn2n+vr61FSUoK1a9fi559/xooVK/x+7BdffDEAPSSiaMLAlogIQMuWLdG1a1eX2/v27Yvrr78eO3bsCGhg26pVK7Rq1SpgjxcurVq1cnndevbsiZMnT6KgoABz5syJ+OCdiCIHUxGIiLyIjY1FTEyMy+2vv/46br/9dlx99dW46aabsHr1apjNZvv9p06dwsyZM9GrVy9cc801GDx4MHbu3Gm/310qwttvv41Bgwbhj3/8I/Ly8nDs2DGn5ywpKUHnzp1RUlLidPuIESMwYsQI+891dXVYvnw5BgwYgKuvvhrXXXcdRo0aha+++srj73n06FGMHDkSWVlZyMzMxH333YfPPvtM9uvU1NVXXw1RFFFeXu72/nPnzuGJJ57ArbfeimuuuQa5ubnYvn270+908OBBHDx40O3vTETkDmdsiYhgW6TkGJhKqQhr1qxBTU0NBg8ebL9vw4YNWLlyJe655x48/PDD+Oqrr7B69WqUl5fj8ccfBwDMmjULVVVVWLBgARITE7Fr1y489NBDSE9PR8+ePV2e/7333sMDDzyA22+/HTNnzsSxY8cwa9Ysv36X2bNn49ChQ/j73/+OSy+9FMePH8ezzz6L6dOnY8+ePRAEwal9dXU1xo4di549e2LVqlVoaGjAunXrMGbMGOzbtw9JSUmK+/C///0PANCuXTuX++rq6nD33XejsrISU6dORbt27fDuu+9i7ty5qKysxIQJEzB//nz77z9//nxcccUVfrwSRBRtGNgSEQE4dOgQrrrqKqfbBEFAp06d8Oyzz9oXWp07dw7r1q3D8OHDkZ+fDwC48cYbkZycjPz8fIwaNQodO3bEwYMHMWnSJNx6660AbJfnk5OTodfr3T7/mjVrcNVVV2H58uUAYE97kH6Wy2QyoaamBo8++ihuu+02AECPHj1QU1ODJ598Er/++qtLasB3332HU6dOYcSIEcjKygIAdOjQAdu2bUN1dbXXwLbpCUFVVRX279+Pbdu2IScnx226RUFBAb755hu88sor9ufr3bs3zGYz1q5di7/+9a+44oor0LJlSwBwmyJCROQOA1siIgBXXXUVFixYAACoqKjAs88+i4aGBqxcuRKXX365vd3hw4dx/vx53HLLLU4BnRT4FhUVoWPHjujZsydWr16NY8eOoW/fvujTp4/HFf51dXU4evQoHnjgAafbc3JyFAe2sbGx2Lx5MwDgl19+wQ8//IDvv/8e+/btAwA0NDS4HNOxY0e0atUKEydORE5Ojj2vePbs2T6fb+fOnU4pFgBgMBjQv39/PPbYY26POXjwIH73u9/Zg1rJoEGDsH37dnz22Wfo27evjN+WiMgZA9smTp06heHDh2Px4sVuLxe689Zbb2H16tX46aef0Lp1a9x///0YNmxYkHtKRIGUmJiIa665BgBwzTXXIDMzE4MHD8bo0aNRWFhon3k8c+YMAGD8+PFuH+eXX34BAKxcuRLr16/Hnj17sHfvXuh0Otxwww147LHHXC7Pnz17FqIousxu+rvo6sMPP8Tjjz+O77//HomJiejcuTMSExMBuK8Lm5iYiK1bt2LdunXYvXs3tm3bhoSEBAwaNAhz585FXFycx+e6+eabMXnyZAC2Ge6EhAT87ne/Q3x8vMdjzp49i7S0NJfbpdt+++03Rb8vEZGEga2D0tJSzJkzBydOnJB9THFxMebMmYNnnnkGffr0QUlJCcaNG4dOnTrhj3/8YxB7S0TBlJqainnz5mHq1KlYsmSJfeb0oosuAgA8/fTTaN++vctxUnCWlJSEWbNmYdasWfj+++/xn//8B2vXrsWCBQuwadMmp2OSk5Oh0+lQWVnpdLsUREuk3Fir1ep0e01NjT1wPXHiBCZPnox+/fphw4YNuPTSSwEAW7duxYcffujx9+3QoQOWLVsGi8WCzz//HG+88QZeffVV/P73v/cYxEt9l04I5Lr44ovxww8/uNz+66+/AgBSUlIUPR4RkYRVES4oLCzEzJkzMX36dJf7Pv74YwwbNgzdunXD7bffjl27dtnve/HFF3Hvvfeib9++EAQB2dnZ2LFjh/3LhIgi14ABA9C7d28YjUb7qvxrr70WMTExqKiowDXXXGP/FxMTg+XLl+Onn37Czz//jL59+2Lv3r0AbEHjuHHjcMMNN+DkyZMuzxMXF4fMzEy8/fbbTjOq7733nlM7KefUsdLA2bNn8d///tf+8xdffIH6+nrcf//9Tp9DUlDrbsZ27969yM7Oxq+//gq9Xo/MzEw89thjuOiii9z2t7m6d++On3/+GaWlpU6379q1CzExMfZJAZ2OX1FEpAxnbC+48cYbMXDgQBgMBqfg9tixY5g4cSKWLVuGfv364bPPPsOkSZOQkpKC3r174/PPP0fPnj0xfvx4fPbZZ2jbti2mTp2KTp06hfG3IaJAeeSRRzBo0CAsXrwYhYWFSElJwdixY/Hss8+iuroaPXv2tOfkCoKALl26ICkpCW3btsXixYtRXV2NSy+9FF988QU++OAD3H///W6fZ8aMGRg5ciSmTJmC4cOH4/jx41i3bp1Tm86dOyM9PR3PPfcckpKSoNPpsHHjRiQkJNjbXHXVVTAYDFi2bBlGjx4Nk8mEgoICvP/++wCA2tpal+e+7rrrYLVaMXnyZIwfPx6JiYnYs2cPzp07hwEDBgTuxbxgyJAheOWVVzBlyhQ88MADaNeuHd577z3s2LEDU6ZMsc+KX3TRRTh8+DAOHDiAK6+8EhdffHHA+0JE2sLT4Qtat24Ng8E1zt+2bRv69euHAQMGQK/X47rrrsOdd96JrVu3ArDNlmzevBkTJ05EUVERJk+ejOnTpzer/iMRqUeHDh0wYsQIfPPNN3j55ZcBANOmTcOcOXPwzjvvYNy4cVi2bBmysrLw8ssv2ysIPPfcc+jduzeeffZZjB49Gq+++iqmTJliz0dtqlu3bnj++edRUVGBKVOmYNu2bfbSYRK9Xo9Vq1bhkksuwYwZM7B48WLk5OQ4BZ9/+MMfsHz5clRUVGDixImYN28eAOCf//wnBEHAJ5984vLcl1xyCTZt2oSkpCTMnTsX999/P44ePYrVq1cjOzs7IK+jo4SEBPzzn//ELbfcglWrVmHixIkoLS3FkiVLMHXqVHu7v/3tb4iJicG4ceOwf//+gPeDiLRHEN1dl4pynTt3xksvvYSePXti3LhxKC4udlo8YbFYcOmll+KNN95AZmYm7r33XqdZ3vHjx+OKK66QtaKYiIiIiAKDqQg+tG3bFnl5eVi4cKH9tl9++cWep3b55ZfDZDI5HWOxWNzmsRERERFR8DAVwYdhw4bBaDTio48+gtVqxfHjx3HPPfdgy5YtAIC77roLr776Kj7++GNYrVa89dZbKCkpQW5ubph7TkRERBRdOGPrw7XXXosVK1ZgxYoVePDBB5GQkIDc3FzMmDEDADB06FDodDo88cQT+Omnn/C73/0OK1eudNnBiIiIiIiCizm2RERERKQJTEUgIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCqyJcUFV1Dv4soxMEIDU1ye/jSVs4HqgpjglyxPFAjjge5JNeK18Y2F4gimjWoGru8aQtHA/UFMcEOeJ4IEccD4HDVAQiIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNMIS7A0RE4WKxAMXFelRUCGjTRkR2tgV6fbh7RURE/mJgS0RRyWg0ID8/DmVljReuMjKsWLy4Hrm55jD2jIiI/MVUBCKKOkajAWPGxKOsTHC6vbxcwJgx8TAaec5PRBSJGNgSUVSxWID8/DiIIgA4B7aiaPs5Pz8OFkvo+0ZERM3DwJaIokpxsf5C+oHg9n5RFFBWpkNxMZNtiYgiDa+3EVFUqahwH9D6246ISAu0spiWgS0RRZU2bcSAtiMiinRaWkzLVAQiiirZ2RZkZFghCO4DV0EQkZFhRXY2k2yJSPu0tpiWgS0RRRW9Hli8uB4AXIJb6efFi+sj8hIcEZESWlxMy8CWiKJObq4ZmzfXIT3dObBNTxexeXNdxF16IyLyhxYX00bW/DIRUYDk5pqRk2PWxGIJIiJ/aHExLQNbIopaej3Qq1cEXWMjIgogLS6mZSoCERERURTS4mJaBrZEREREUUiLi2kZ2BIRERFFKa0tpmWOLREREVEU09JiWga2RERERFFOK4tpmYpARERERJqgyhnbY8eO4amnnsLRo0cRExODXr16Yc6cOWjVqpVL27Fjx6KkpAQGQ+Ov8uyzz6JPnz6h7DIRERERhZnqZmzr6uowduxYZGZm4qOPPoLRaMSZM2fwyCOPuG3/xRdfYPPmzTh8+LD9H4NaIiIiouijusC2rKwMXbp0weTJkxEbG4uUlBQMHz4chw4dcmn7448/4uzZs7jyyivD0FMiIiIiUhPVpSJ06NABmzZtcrrtrbfewlVXXeXS9siRI0hMTMT06dNx5MgRpKWl4b777sOwYcMUP6/g525x0nH+Hk/awvFATXFMkCOOB3LE8SCf3NdIdYGtI1EU8cwzz2Dfvn14+eWXXe43mUzo2rUrpk+fjo4dO6KkpARTp05FYmIicnJyFD1XampSs/ra3ONJWzgeqCmOCXLE8UCOOB4CRxBFUZUbAFdXV+Phhx/G0aNHsW7dOnTu3FnWcQsWLEBVVRVWrVql6Pmqqs7Bn1dCEGwD0t/jSVs4HqgpjglyxPFAjjge5JNeK19UOWN74sQJjBs3DhkZGdi+fbvbaggAsH37dpfZWZPJhLi4OMXPKYpo1qBq7vGkLRwP1BTHBDnieCBHHA+Bo7rFY2fPnsXIkSNx3XXXYfPmzR6DWsA2q7to0SJ8+eWXsFqteP/992E0GjF8+PAQ9piIiIiI1EB1M7YFBQUoKyvDnj17sHfvXqf7Dh8+jMzMTCxYsACDBg3CyJEjUVtbiylTpqCqqgrt2rXDU089hW7duoWp90REREQULqrNsQ21ykr/c2zT0pL8Pp60heOBmuKYIEccD+SI40E+6bXyRXWpCERERERE/mBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpAgNbIiIiItIEBrZEREREpAkMbImIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpAgNbIiIiItIEBrZEREREpAkMbImIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmqDKwPbYsWMYNWoUevTogV69emH27Nk4deqU27YffPABBg4ciK5duyInJwf79u0LcW+JiIiISA1UF9jW1dVh7NixyMzMxEcffQSj0YgzZ87gkUcecWl7/PhxTJ06FQ8++CA++eQTTJ06FdOmTUNFRUUYek5ERERE4aS6wLasrAxdunTB5MmTERsbi5SUFAwfPhyHDh1yaVtYWIhu3brh1ltvhcFgwG233Ybu3bvjtddeC0PPiYiIiCicDOHuQFMdOnTApk2bnG576623cNVVV7m0/e6779CpUyen26644gocO3ZM8fMKguJDnI7z93jSFo4HaopjghxxPJAjjgf55L5GqgtsHYmiiGeeeQb79u3Dyy+/7HJ/TU0NEhISnG6Lj49HbW2t4udKTU3yu5+BOJ60heOBmuKYIEccD+SI4yFwVBvYVldX4+GHH8bRo0fx8ssvo3Pnzi5tEhISUFdX53RbXV0dEhMTFT9fVdU5iKLyfgqCbUD6ezxpC8cDNcUxQY44HsgRx4N80mvliyoD2xMnTmDcuHHIyMjA9u3b0apVK7ftOnXqhKNHjzrd9t133+Hqq69W/JyiiGYNquYeT9rC8UBNcUyQI44HcsTxEDiqWzx29uxZjBw5Etdddx02b97sMagFgEGDBuHgwYPYvXs3zGYzdu/ejYMHD2Lw4MEh7DERERERqYHqAtuCggKUlZVhz549yMrKQmZmpv0fAGRmZmLXrl0AgMsvvxxr1qzBhg0b0L17d6xduxarV6/GZZddFs5fgYiIiIjCQBBFTn4DQGWl/zm2aWlJfh9P2sLxQE1xTJAjjgdyxPEgn/Ra+aK6GVsiIiIiIn8wsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpAgNbIiIiItIEBrZEREREpAkMbImIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpAgNbIiIiItIEBrZEREREpAkMbImIiIhIExjYEhEREZEmqDqwPXXqFPr374+SkhKPbcaOHYtrrrkGmZmZ9n/79+8PYS+JiIiISA0M4e6AJ6WlpZgzZw5OnDjhtd0XX3yBzZs3o0ePHiHqGRERERGpkSpnbAsLCzFz5kxMnz7da7sff/wRZ8+exZVXXhminhERERGRWqlyxvbGG2/EwIEDYTAYvAa3R44cQWJiIqZPn44jR44gLS0N9913H4YNG6b4OQXBv75Kx/l7PGkLxwM1xTFBjjgeyBHHg3xyXyNVBratW7eW1c5kMqFr166YPn06OnbsiJKSEkydOhWJiYnIyclR9JypqUn+dDVgx5O2cDxQUxwT5IjjgRxxPASOIIqiGO5OeNO5c2e89NJL6Nmzp6z2CxYsQFVVFVatWqXoeaqqzsGfV0IQbAPS3+NJWzgeqCmOCXLE8UCOOB7kk14rX1Q5YyvX9u3bXWZnTSYT4uLiFD+WKKJZg6q5x5O2cDxQUxwT5IjjgRxxPASOKhePyVVdXY1Fixbhyy+/hNVqxfvvvw+j0Yjhw4eHu2tEREREFGIRN2ObmZmJBQsWYNCgQRg5ciRqa2sxZcoUVFVVoV27dnjqqafQrVu3cHeTiIiIiEJM9Tm2oVJZ6X+ObVpakt/Hk7ZwPFBTHBPkiOOBHHE8yCe9Vr5EdCoCEREREZGEgS0RERERaQIDWyIiIiLShIhbPEZEwWGxAMXFelRUCGjTRkR2tgV6fbh7RUREJB8DWyKC0WhAfn4cysoaL+JkZFixeHE9cnPNYeyZbwzIiYhIwsCWKMoZjQaMGRPvsiK3vFzAmDHx2Ly5TrXBbSQH5EREFHjMsSWKYhYLkJ8fdyGoFZzuE0Xbz/n5cbBYQt83X6SAvKzMud9SQG408rydiCjaMLAlimLFxfoLs52C2/tFUUBZmQ7Fxeq6th/JATkREQUPA1simSwWoKhIj4ICA4qK9JoImioq3Ae0/rYLlUgNyImIKLh4rY5IBq3mcrZpI2+rG7ntQiVSA3IiIgouztgS+aDlXM7sbAsyMqwQBPeBqyCIyMiwIjtbXdPTkRqQExFRcDGwJfJC67mcej2weHE9ALgEt9LPixfXq658VqQG5EREFFwMbIm8iIZcztxcMzZvrkN6unOQmJ4uqrbUV6QG5EREFFyRew2VKASiJZczN9eMnBxzRG10IAXkttznxtc/PV2M+NxnIiLyDwNbIi/UlssZzF229HqgV6/IunQfiQE5EREFDwNbIi+kXM7ycsGeU+tIEESkp4shyeXUamWG5orEgJyIiIKDObZEXqgll1PLlRmIiIgChYEtkQ/hXlyl9coMREREgcJpHiIZwpnL2ViZwT1bZQYBxcV6XpInIqKoxhlbIpn0elvObZs2IioqbIFkKGZJo6UyAxERUXNxxpZIpnAt3lJbZQYiIiK14owtkQzhXLzFXbaIiIjkYWBL5EO4F2+ppTJDUxYLUFSkR0GBAUVFoUnLICIi8oaBLZEPathWN9yVGZoyGg3IykpEXl4LTJiQgLy8FsjKSmTZMSIiCit+CxH5oJbFW2rZZUtKyxCbZEZIaRnhCLSJiIgABrZEPqlp8Va4d9nylZYhCCLy8+OQk2PmtrZERBRyTEUg8oGLtxqpIS2DiIjIEwa2pDmBXtSk1sVb4aCWtAwiIiJ3GNiSpgRrUZPaFm+Fi5rSMoiIiJpiji1pRrAXNall8VY4SWkZ5eWCvdSZI0EQkZ4uRkVaBhERqQ9nbEkTQlVrVlq8NWSIGb16RVdQCzAtg4iI1I2BLWkCFzWFDtMyiIhIrZiKQJrARU2hxbQMIiJSIwa2pAlc1BR64a6pS0RE1BRTEUgTWGuWiIiIGNiSJnBRExERETGwJc3goiYiIqLoxhxb0hQuaiIiIopeDGxJc7ioiYiIKDoxFYGIiIiINIGBLRERERFpAlMRKKQsFjD/lYiIiIJC1TO2p06dQv/+/VFSUuKxzQcffICBAweia9euyMnJwb59+0LYQ1LCaDQgKysReXktMGFCAvLyWiArKxFGI8+viIiIqPlUG9iWlpZi+PDhOHHihMc2x48fx9SpU/Hggw/ik08+wdSpUzFt2jRUVFSEsKckh9FowJgx8Sgrc97StrxcwJgx8QxuVc5iAYqK9CgoMKCoSA8L1+YREZEKqTKwLSwsxMyZMzF9+nSf7bp164Zbb70VBoMBt912G7p3747XXnstRD0lOSwWID8/DqIIAM6BrSjafs7Pj2OwpFKcaSciokihym+mG2+8EQMHDoTBYPAa3H733Xfo1KmT021XXHEFjh07pvg5BcF3G2/H+Xt8NCgp0aOszPM5lCgKKCsTUFKij/gyXVobD9JMu9hkp2Jppn3LFm584YvWxgQ1D8cDOeJ4kE/ua6TKwLZ169ay2tXU1CAhIcHptvj4eNTW1ip+ztTUJMXHBPJ4LZP7dtTWtkBaWnD7EipaGA8WC/Doo3AJagHbyYggAPPmJWDECHABoAxaGBMUOBwP5IjjIXBUGdjKlZCQgLq6Oqfb6urqkJiYqPixqqrOuf0C90UQbAPS3+OjQYsWegAtZLSrRWVl5M/YamU8FBXp8dNPnt83UQR+/BEwGmsjfqY9mLQ0Jqj5OB7IEceDfNJr5UtEB7adOnXC0aNHnW777rvvcPXVVyt+LFF0PzMVquO1rGdPCzIyrCgvF+w5tY4EQUR6uoiePS2aeQ21MB5OnpR33efkSSHif9dQ0MKYoMDheCBHHA+Bo8rFY3INGjQIBw8exO7du2E2m7F7924cPHgQgwcPDnfXyIFeDyxeXA/AFsQ6kn5evLiel7NVpk0beZ+ycttpGatGEBGpQ8QFtpmZmdi1axcA4PLLL8eaNWuwYcMGdO/eHWvXrsXq1atx2WWXhbmX1FRurhmbN9chPd05CEpPF7F5MxcgqYkUpJWXC0hNtbqcjEgEQURGhhXZ2dEdxbFqBBGRegiiyMlvAKis9D/HNi0tye/jo41adx4LVL8ifTwYjQbk58c1qWIh/SKNqQlSsBvtJyXOVSPcvz4DB5pljwm1/n1Q4ET6ZwQFFseDfNJr5QunFCik9HqobqGRu2AuI8OKxYvroypo81Tay530dDHqXp+mfNVnFgQR+flxuO02ea8RxyERUfNFXCoCUSBxRzQbb0Ga9HNqqhVr155HYWEtSktroj7YKi6W6jO7X2Rnq8+sQ3Gx7ylXjkMiosBgYEtRizuiNfIVpAECqqp0SE8X0asXL48DQEWFvKoRvtpxHBIRBQ4DWwoJNa4aD+SMW6QLVJAWTQJVNYLjkIgocHh9i4JOrbmDDOYaRWJpr3AvtMrOllef2VfVCI5DIqLA8WvG9osvvgAA/Pbbb1i2bBk2b94Mszm68+3IPTXnDkZiMBcsUpAWKaW91FBiK1D1mTkOiYgCR3Fgu27dOowcORIAsHjxYuzbtw+FhYV46qmnAt45imxqzx2MtGAumCJpEw01nSwFoj4zxyERUeAoDmyNRiO2bt0Kk8mEt956CytWrMA//vEP7N69Oxj9owim9tzBSArmQiESNtFQ48lSbq4ZpaU1KCysxfr1yqtGcBwSEQWO4qmNX375BV26dMGBAweQlJSELl26AADOnz8f8M5RZIuE3EEpmLPlADf2I1rrtObmmpGTY1btJgGNJ0vu2U6WBBQX60NaL7m59Zk5DomIAkNxYNumTRscOnQIO3fuxPXXXw/ANovbrl27gHeOIluk5A6qPZgLNTVuoiGJhJMlf3EcEhE1n+LAdurUqRg7dizi4+Px6quv4sCBA3j44YexevXqYPSPIligVo2HgpqDOWoUKSdL/uI4JCJqHsWB7Z/+9CfcdNNNAIC4uDhccskl+M9//oNLLrkk0H2jCCflDo4ZEw9BEJ2CW+YO+ifcJa7CLZJOlpoj2t9nIiJ/yQ5sDx065PX+H374Ad27d292h0hbmDsYOGqtBxxK0XCyxPeZiMh/giiKsq7ZSYvEPD6QIOCrr74KSKfCobLyHOS9Es4EAUhLS/L7+GgRLTNQwRoPUomrptUApGBOSdUCLbwXkRT8KRkTgXyfSZ34nUGOOB7kk14rn+3kBrZax8CWAkHueFASXFosQFZW4oUZb8+X30tLa3wGqJEUEPoSKQG6kjERqPeZ1IvfGeSI40E+uYGtX5XMz58/j7Nnz8JqtQIAGhoa8M0336B///7+PBxRVFEaXAaqxJXzbGAjaWODSJsN1NpCK7WWMiMiiiSKA9sdO3Zg0aJFqK+vd7o9NTWVgS1FlHDM+PkTXAaixJWvjQ0EQUR+fhxycsycDQwTLZcyIyIKFcWB7fr16zFt2jQkJibi0KFDGDlyJJYtW4ZevXoFo3+kUhYL8PHHehQV6SGKtpmzXr3CcynYnwA1EJfk3T2vwctflL/BZSBKXHE2UP20XsqMiCgUFG+p++uvv2LkyJG4/vrrceLECVx11VV4/PHH8frrrwejf6RCRqMBV16ZiKFDW2DFijisXBmHYcNa4MorE2E0+pXd0qy+ZGUlIi+vBSZMSEBeXgtkZXnvx65dBoweHe9UpQFonDWV8zv487z+bjEslbhqut2qRBBEZGRYvZa44myg+gXifSYiinaKA9vU1FQ0NDQgPT0d//vf/wAAGRkZqKqqCnjnSH2MRltQePq0awB0+rSA0aPlBYYSiwUoKtKjoMCAoiI9LAq+s6XL+koC1F27DBg/Ph624NJ11hSwzap664e35x09Oh4FBe6P8ze4lEpcAXAJeuSWuAr3bGBz3udoEYj3mYgo2ikObP/4xz9i3rx5qKurQ/v27fHqq6+isLAQycnJQegeqYnFAsydG3fhJ3dBmu22uXO9B4YSf2Y9Hfvi7bI+4BqgGo0GjB0bD6vVc4DpadZUyfNOmwa3v39zgkupHnB6uvN96emirEVf4ZwNbM77HG2a+z4TEUU7xd8sDz/8MPLz81FTU4NZs2ZhwoQJqKurwxNPPBGM/pGKFBfrUV7u61xIQHl58FfoK80ZlQJSuTzNrsp53h9/tLW74Qbn37+5u2bl5pqRk2P2a8FbuDY20FolhlBozvtMRBTtFAe2l1xyCTZu3Gj//+LiYjQ0NCAhISHgnSN1UZJ/GewV+kov6/sKSJvyNLvanFzVQASXzSlxFepd4FiJwX9aK2VGRBQqigPbnTt3erzvjjvuaEZXSO2U5F8Ge4W+0sv68oNyERkZnmdNm5urGu4thuXMBgaqDBorMRARUagpDmxXrVrl9PPZs2dx/vx5ZGVlMbDVEHfBTXa2Benptkvpnlb2A7bL6d27W1BU5D44CsQKfaWX9ZUE5d5mTbOzLUhJsV5YPOeufyJSUwWvuarhvtTsbTYwkDuTsRIDERGFmuLA9r333nP6WRRFPP/88zhz5kyg+kRh5i24WbKkHqNHxwMQ4RrY2YLHIUMa0KNHosfgKBAr9JVe1vcVCAOATidi48bQ5HwqudQcqo0kAp0PG+5KDEREFH0UV0VoShAEjBkzBm+88UYg+kNh5quEFgBs2VKHlBTXYCQlRcTkySasXRvrtQRXoFboK1lB7q2Uki0gFzFmjAmpqaLXig7FxXqcPu25Fi0goKoKHqsqKBWqigL+VJnwhXVZiYgo1Jod2ALA//73PwgCLydGOrnBTU6OGV9+WYMdO2oxY0Y9pk+vx/bttThypAaFhTE+jweU1+v0VAc1N9eM0tIaFBbWYv368ygsrEVpaY3bmUVPgbBOZ+vv88/H+QwcQ3l53Z86vf7yd/MIb1iXlYiIQk3xN+OIESOcgtiGhgZ8/fXXGDRoUEA7RqGndLFP7962f5KiIvnHK1lE5SvvU8llfcf81j17DNi4MQZWq3ObsjLbRgubNtVh0CDnAFnp5XV/0wh8n2QEtqJAsAL2cC+WIyKi6KI4sO3Zs6fTzzqdDvfddx9uvfXWgHWKwkNu0FJeLrhdGKY0OJKziMpX3uesWSZ06GBVXNM1O9uCyZPjL9zStN+2n207lDkHt75zdRsXjzVnIZbv8mTyKgrIDayDmQ8b7sVyFD6hyg8nIpIoDmynTJkSjH6QCsgNWh59NA5VVa7Bmj/BkbfZVjmzlkuXNm664C5o9PTFKqeurdUqYOzYeGzZ0pivK11e97yADqiqAhYtisXatbGyFmK566Ot8oRv3topCaybu3mEL6zLGn0CWWGDiEguQRSbfvW69/DDD/tsE8m7j1VWnnMJQuQQBCAtLcnv49XEYgGyshK9zkY2cq1CMGGCCRs2xHrcslYKjkpLa2TN2hQV6ZGX10J2/6V+SEGjty9WkwmYMEHOpiK2uraOfbZYgCuvTPRS8stWYcGW4uA5SCwtrcGePe772KePGdu2xfrs3aJFdbj//gaX251nul3fK3cVDqRjALitMsFdwvyjpc8IufwZf9EiGscDecbxIJ/0WvmiePHY6dOnsWvXLpw7dw7Jycmor6+H0WiEyWTyq6OkHnIW+1z4yek+URQgisC6dbEu+aoOrQAoWyykNJ/TcYHarl3eF159/73coe+6aMp3ZQRcCO69L8RauTLWbR/LygRs2xYjq3epqa6fhP5WOFBSZYLIk2BU2CAikkt2KoI0GzthwgSsWrUK/fr1s9/30UcfYf369YHvHYWcp8U+qakiKiu953x6o9NBcY1Yf/I5pQVqDz3kfSvXl1+OkbHZRCPHvOKvvw5IMRFs3Oi+goSc/kiaBqFA83b8Yj4sNRd3nCOicFKcY1tSUoK1a9c63Xb99ddj6tSpAesUhZe74Ka8XMCkSXIu3btntQpuZxe9kfI+bQG2stlbxxzgpqQv1tmz67F0qe/L/YBrXnEgnDkj5/Hc5/F62/q3uRUOojEfloucAoc7zhFROCn+pv7d736HPXv2ON1WUFCAP/zhDwHrFIVe0zqxgC24GTLEjF69LG5nBpVS+kXmmBoRDB06WLFpUx10Om+/m23zhqoqd7useT5OpxM9bkwAiEhO9piz4aEPzj8Lgue0Dn9KkrmrERwtQrUJRrRQ445z0T7GiaKJ4k/u6dOn48EHH8TWrVuRnp6On376Cd988w1TESKYnNXLcrak9cXfUlGzZ5ucqh94Zwv65PSxTRvxwsxkHcaOdVf6y3Nese1nKbhtujhGwMSJth3Ymm73Kx0rfwdq198jI8N7DVglFQ6ifeV6oLcRpuBX2FAq2sc4UbRRPGPbr18/7Nq1CzfccAMSExPRt29f7Nq1y6W+LUUGubtb+V5Y5nkGszlbp1osQM+eFlx8sdXj4zey3e9rZWnT/gwaZMaWLXXIyHA+0JY64S0NwvW+jAwR27cDjz1mwubNdWjhtaiD91lfd1JTrVi40PsXstwdv/bsCd3OZmrERU7BoaYd50K5ex8RqYPscl9aF43lvqTyXp5yWN2V5/I0+5GX14C1a235qkpKRXnLbXT3XJ5zTr2X2JLTn6Z9kZtXPGNGPTp1sm0Scf31FrRpYxsP9fVAu3YtPSwQk34X7/11d4wgyCuX5G2mKifHrPi91xq55eQKC2ublXMcyZ8RzRHumVJ/Pt9CIVrHA7nH8SCf3HJfsk9XBw4ciDfffBO33HKL05a6jv7zn//I7yGFnT+rl3NzzRgwwIwXXojB8eM6tG9vxahRDYiNBbKyrJg7N85p04C2bUUsWeL+i8zbFx8At5eIm0pNtSIvzwyrFdiyxfdCsNRUEUuXuu9P00VTUq6xL717W+zHOf5pvPBCjI+UCOHCMe7SFbwdI287XW8VDpRsf6zVhWRc5BRc4a6wweoMRNFJdmA7fvx4ALadxzwFtqQ+3mZE/flidxeMrlsXi8WL62G1AnLLGfvKbUxOFr2UwhKRkiLi+efrcOaMgHnzms7qeubrMr6j5uYKHj8ur08332zGe+8ZIHfmVskXsqcKBwzqgLQ09S1y0ppwVtjgGCeKTopmbAFgyJAhTrf/97//RcuWLdGmTZvA9oyazdelQLmbFEhf7J6C0bIy4cIWs0DT4MzTFrK+tsq1bYDgiYDTpwUcPKjHsmWu29Z6o6S6g5QrOGZMvMusqpxcwfbt5VU+uPlmC7p1sypYIGfTnC9kNa5cDyWj0YC5c72/3qFe5ESBFe1jnChaKV489umnn+KOO+4AAGzbtg233347+vXrh3fffTdgnaqqqsKkSZPQrVs39OzZE0uWLIHZ7H6WbezYsbjmmmuQmZlp/7d///6A9SVS+Vo0sWuXAf/8Zwy8L14SkZ5uW2TlLRj1PtNo25XMcRFO4yVCb4uyfPO8wYE7/i1ga85uXKNGNVwoJea57JdOJ2LUqAZMn25CerqcBXKNmvOFLM1GeypJ5m3BX6SXTpL+NhxTZpoK9SInCrzmjHEiilyKA9vly5fjpptugiiK2LBhA5588kk899xzePbZZwPWqWnTpqFFixb48MMPsX37dhw4cAAvvvii27ZffPEFNm/ejMOHD9v/9enTJ2B9iURyVnvPmROH8nLv28ICAkaMaIBeLzcY9Xyf47a0gbr0Z9vgQP5j5eU1+BWk5OaaUVpag8LCWqxffx6FhbUoLa3xmdIQGwtMnCjlZrjWogVs98fG2maHlyyphyC4riRvKhBfyP6uXI/0mq/eT9AatW3LbYQjnZqqM0SaSD95peimOLD9/vvv8eCDD+L7779HZWUlbrvtNtx000346aefAtKhH374AQcPHsSsWbOQkJCAdu3aYdKkSdi6datL2x9//BFnz57FlVdeGZDn1gpfQagoCj62x23UoYPtcnogglHpMeTPNHqeaVG2wYHN2rWxfgdgUq6gtGGF3C/D+fNNmDzZBF2Tl1unAyZPNmH+/MakZE+zw44C+YWsdDZaC6WTfJ+g2Tz3nP9BLYMC9WjOFZdoFeknr0SKR6per0dNTQ3279+Prl27IjY2Fj///DNatmwZkA59++23SE5OdsrZvfzyy1FWVobffvsNF110kf32I0eOIDExEdOnT8eRI0eQlpaG++67D8OGDVP8vP6uh5OOU9N6ul9+CVxn2ra1lZdq27b5eWjSY11/va+tchufy1Nu6/33N+Cpp5TkpNpydx99NA5/+pMZhw4FZ6W2IDQGNtLjP/qoCY88YsKWLY2VJEaPtlWSaGrgQDNuu822knzPHgO2bzc4beXra3MGpRyfz9vr4esqgCDYXtvbbvNeqSHc5P5tVFYKfv1NS7m7TfPaV68G+vZV/njUfHLHeKio8TtD4mtR75YtPBkINDWPB7WR/RqJCs2fP18cPHiw2K1bN3Hnzp3it99+Kw4YMEB88sknlT6UWzt37hT79u3rdNsPP/wgdurUSSwvL3e6vbCwUBwzZox49OhR0WQyiR9++KHYtWtXcffu3QHpS6Tat08UbdsUeP+XliaKguD+PkEQxd//XhTffVcUX3nF9t9WreQ9rrt/rVuLotnc2MfXX/d9TGqqrQ+Ot7VrJ4o7dojiv/4linq9/31x/Pn3v7c9ZiDs2OHa5+Y8vtlsez9fecX2X8fXMJTkjql9+8LTP7mC+Xvs2OH+70kQbP8CNcaIgsFsdv3sajqO27UL32cQkVyKN2iwWCx44403EB8fj9tuuw3Hjx/Hvn37cO+990IfgFPgd955B/n5+SgpKbHf9vXXX2PQoEH45JNPkJTkvTjvggULUFVVhVWrVil63qoq/zdoSE1N8vv4YLBYgOuuS/RapiojQ8TChfX2rWSbzoqKIpCS4lydoGVLK6qrlWav2F6UzZvrMGhQ45l+UZEed9zhuzj+jh210OvhNNOyZ48Bo0dLswr+nOaKTsdJs8CbNtUhNVX0e1bHaJT65dwn6fEjebajoMCA++/3vVnFhg3nMWSIen9HuX8bSov2S4/reTMA28ytlje8IHnU+J0ByP9M3rmzeRuWkDO1jgc1kl4rX/xKRRgyZAjOnj2LL774AldeeSX+9re/BSSoBYCOHTvizJkzqKysRFpaGgBbSbG2bdu6BLXbt29HYmIicnJy7LeZTCbExSkrmwQ0npf6q7nHB5JO57tM1aJF9fb8M1tJsMY2KSkiTp2yldRyVF1tu5x/4ZHcPLPo9vbJk00YONAMs7mxpq7cfK2iIj1mzTLZgwGLBZg71/fiH+/clxgbNy4eVmvjfUp2SXLulzPpUv3cuXH485/lX6r3VoPYn3bNcckl8gb3JZeIqvk7cEfu34ZOp+zv+cABX5sBAD//rMOBA9wMgGzU9J0BACdPyvs8PXlSUFW/tUJt4yGSKV48VlNTg7///e/o2bMn7rnnHhw/fhz9+/fH999/H5AOtW/fHllZWXj88cdRXV2NH3/8EWvXrnWbN1tdXY1Fixbhyy+/hNVqxfvvvw+j0Yjhw4cHpC+RTO6iiaYr/nfsqEXjeYG3sl5N/wJd/yKTkqwYO7YBt95qwa5dzgsSjMYYWb/HihVxTgsX5C7+UU5wCmqBxvq8+flxPhcByVmw51gZwhe5CzhCtdBDS6WTgrGgiJsBUKRj3V/SCsWpCPPnz8cvv/yC2bNn484778THH3+MJUuW4Mcff8TmzZsD0qnKykosXLgQJSUl0Ol0uOOOOzBz5kzo9XpkZmZiwYIFGDRoEERRxLp167B9+3ZUVVWhXbt2mDJlCv785z/78Zz+pyKoeZ9nkwnYtCkGJSV6tGwp4i9/MaN3b88zekVFeuTl+b4clZpqdVrU1KqVFVarVILLHW8zvd5JwdTmzXUwmYAJE3xfEg8GbzO4BQUGWf1av973pXrnBRyuM4pS8CW3XaBIzwe4pq4E4/mCLZAz3XL/bgoLeRk32qn1O8NiAbKyvKfppKcrT9Mh79Q6HtRIeq18tlMa2Pbp0wdvvvkmLr74YvTo0QMHDx5EXV0d+vTpg4MHD/rd4XDTYmBrNBrw97/HuezilZJixfLlzQvQpk1rvFyr1wNPPy0t8fcUuLpPU5BL+lB95pk63Hmn7wAiGLwFcB9+qMfQob77NW1aPfr2tTgFUY4BVuvWIqZMkTYP8PzlcvBgDXr08JbTGZwvIV+72UUr30GB7XX65BMGBdFO7d8ZWjp5jQRqHg9qIzewVXy90mq1IvZCnSIpJna8jdRBWsjkzunTtkvsjouZpODqm2/kZac880xjHrNtdy3A12YPzWG7lC/gyy8VZ88EjJQrm58fh5wc51xZuR9IzzwTh2eeaQwGAbgEir76UFYm4IUXYnzkdNraFRcHNqczN9eMnBz1lE5SC9/bLwvcDIBUz9O6i/T0wJYZJAomxYFtdnY2Fi5ciHnz5kG4UFTsmWeeQY8ePQLeOfKPtJDJxl1AaVsslZ8fhwEDzFi1KhYbN8Y0SSPwNMPqGsQ2zU0Nph9/DF9gC3gOGCsrlb0G5eWCxxMPOY4fl/c6BCOnU9qsgpx5CgoyMkSsWiWgTx8zZ2RI9XjySpFOcWD78MMPY+LEiejevTssFgsyMzPRvn17rF+/Phj9I4UsFltOrW27XG9sAdr/+38tce6ckvSB8C5+ad9e+Y5jvinP/3UMGC0W4Ndflb0uUiUGpc8rqamR144LPULLXVBw/fUWtGmThMrKcPeOSB6evFIk86vc12uvvYYjR47g559/Rtu2bdGpUyesWLECjz76aDD6SDK5y3/05dw5T/c4Bl5qIKJtWxGdO1uRnGzFmTOedi1r3nPIfcyvv9ahqEiPqioB8+Ype80b+beQrm1bEe+/b4D3/opITRVRXi6gqEjPGZcQahoUcEchIqLQkb147KuvvsKUKVNQVlaGP/7xj9i4cSMuvvhifP311/j73/+OiooKHDp0KNj9DZpIXzzmaYW8liQliV5ml5tLblDbtJ3/s65KSQs4Zs0yYelSZbWaucArfNTyGUHqwPFAjjge5JO7eEz2NNOSJUvQqVMnrFu3Di1btsT69etRXFyMu+66C0lJSSgsLGxWh8k3i8VWVqigwOBUV9VisS1A0nJQC3ibXQ6Epq+bCPkz1qF5zdu2tdVZ7dBBeTqGtNd7oOvbqoGnvwsiIoo+sr/lvvrqK7zzzjto1aoVunTpgnvuuQc7duzAPffcg2nTpkGnC++iHq3zVmYpJUX081J4pAll0O4pFUNZzrFeb4XF4iltQtls73PP1aF3bwuKipTnFHir6BDJWH6M5AjF7nxEpA6yoyGr1YpWrVoBANq2bYuTJ09iwoQJmDFjBoPaIJPSDBxXWgONs3B79mhvFk4dmh9IWyzS34a7ndqU5QlLC9R87QLmidLdz9TO19+FFmenSblQ7c5HROogOyIVmqyAiImJwYgRIwLeIXLmLc1AFG17du/YwQ/oaCBVOJBqpgJQHNwC3kuARcplfV9/F4DtfrX2n0KDJz9E0cfvqdaYmBjExMQEsi/kRnGx/sJlVk/BiICqKh1SU5XP4FGouJuZ9Zaa0KSlICIjw4rs7MYoTaqZmp6u/D33VAIskma2fP1daG122lGknHyEG09+iKKT7G8ss9mMnTt32n9uaGhw+hkA7rjjjgB1iyRyC+xfd50F777rqwQUqZv7rXEBuN21SqqZumlTDB59VM5mDyIyMkSnAFniXFWjkTSzpbatNOX+XQRjg4pwYk6xfI0nP+4Fa3c+Igov2YFtWloaVq1aZf85JSXF6WdBEBjYBoHcAvuHD+uxYUMdJkyIhzUYexhEHXWcIPjaylKvB1q3lj9ru3Cha4Dsa2ar6aKzQC/E8efx5P5daGmDikg7+Qi3aD35IYp2sgPb9957L5j9IA+ysy1ITbWiqsp71khlpQ4VFUJIt7fVtnC+jrbIZfZsE6ZPNwUsyAMEpKa6tlUys3X6tBDQGUN/ZyClBXTl5YL9srIjQRCRnu5+djoSKT35CGW/1FptIBpPfoioGTm2FBp6PTB0qLyA4fjx6Hk7r702kDNTtpq1d95pCuBjNocAQQBeftl9DnvTHMvu3S1ITpY3Tb9/vx7btxuwYUMMtm+3HV9eLi+I37tXH9CFOM1Z2ONtAZ239I1IpcacYrXnZPuqHuIud52IIp86PoHIqz/9yYyNG2N9tmvfPnpyED77LJBf4LaatW+/Haw/B3dpDd5THTzl/xmNBsydG4fy8saTmPR0K266yYKdO32f2Kxc6bpjWWqqvHGzfXtMwGYMAzEDKS2gs834Nj6Gr/SNSKS2y+qRkBYhnfyMGRMPQRCdZva1ePJDRDbRM8UXoYxGA6ZM8bUwSER6uhX33tsAnU7JjlnUSMCZM4H4c5CzqYN8+/c3zszu2mXA6NHxLjOs5eUCdu6UFg56eu8931dVJXi9XxBEh3SYwMwYBmoGMjfXjNLSGhQW1mL9+vMoLKxFaWlN2IOqQFPTZfVIqjbgqXpIerqoiuCbiAKPM7Yq5mlWxJWAujoRa9bERlGOrRp/TyVBhbz+O86wNl5SdVc6zNsuZr52OPO0y1rjsUOHyrtqEOiZRTnt9HpoflW7mnKKI63agFQ9RK25wEQUWJyxVSlvsyLunDkjYOlS34EHBZOyncRs5M+w2gIab8GpP/f5bjNhggk5OfJmtgI9s8iFPTZqyilWW1qEHNLJz5AhZvTqxaCWSMsY2KqU740ZnLmbxaFQEZGb29Cs491Tw3sqYMOGWPz6qxDQhThc2KOcWi6r86SEiNSMga1K+TfboYZAKPrMnm3CmDH+BrbeZlnVwWoVMH58PPLybL9jIGYM1TQDGUnUkFPMkxIiUjMGtirF2Y5IYPsCnz7dZK837J9QBLHNH0+FhTF4/nnXGcPkZBGzZslPV5CoZQYy0oT7sjpPSohIzRjYqlR2tgXp6VawwkGoKH2dRQhC4xe4Xg889VS9H48TKCK8V0XwtkBMDluVguRkEaWlNZg9u95eO/f0aR2WLo3zq4apGmYgSTmelBCRWgmi6HvNfTSorDwno/qAK0EA0tKS/D7em6efjsXSpa51RylYlG2jO3t2PWbOdN7UYcGCWKxZI/c982fbXncVDmy3de5sxddfK58m0+nEC9sw++5LcrIVf/tbA9aujXVZ2CjN1jGwcRbMz4hwU/POY2ql5fFAynE8yCe9Vr6w3JeKRdOGC+qgLMjs0MH1/XnsMRPi4+OwcqXYpPSacxArBYHJyVacPu2pIoG7wNfdzKutjdygdtQoEzp0sCI11VYiqqpKwNixvmol25w5I2DNGqn6hnq2dqXwiIZSa0QUWRjYqpTRaMCjj3K2Vs1at3Y9vTYaDVixAj7PvKXdsUpLdRcCRU9BrDvS7b7q07o3aJDZJRjZtKkO48fHy6iD7P1+XzVMOcMXHfg+E1G4MLBVIfkbM1A4NX1/LBZg7lxPtYdtM63JybYcxBtusAV9+fmJDvf7Q9lxKSnuV6sPGmQGUOcwc9u8BW3uqnoYjYYL2982pvZnZFg1t/1ttOP7TKR9aj555eIxlVG6MQOFT1FR43a30h+5tx2ZpG17dTrbJVyltYrdPZ5S48bZSnY17TtgC24nTzZ5OVq+lBTnqF86WSsrc90OeMyYeMWLzkid+D4TaZ/RaEBWViLy8lpgwoQE5OW18GvxcLCooxdk5zs4IrVw3O724out6NNHXq6hNJsZ2p2ZRKSkiOjUyYqsrES3s2k5OWYUFsYE5NkmTYrHsmW2GTpvJ2vMy9UOvs9E2ufpirJ08qqGxcOMoMLAYnE/YwaoaxtK8sS1rNbZszq8+aa8oDAtzXZs6GoV257n7rsbMG6c59m0lStjmzmD3KiqqnGGztfMtC0vV4fiYkY7kYzvM5G2+Tp5BWz3W8K8npSBbYj5msLnxgyRwFMVA3mOHtWhoMAAqxVIT/e8g5Nvno5zvj0jQ8SmTXUoLIzx+oH0/POBma21afyQ271bXiDDk7rIJvf94/tMFJki5eSVqQghJGcK31ZP1L/V7hQZ5s9vLK2VkmKFKNrKf0kBpo2cMSCV/nItIzZrVj06dLDak/p9pbiIonCh7JhvLVtaUVMjNOmv+8csKxPw/POxXttJeFIX2eS+f3yfiSJTpJy8MrANEbn5Z41BL4PaaHDmjO19Tk4WnQJLafGV72DT+X6pjFjTHCe5HzQtWlhRW+u5rm5Ghoi7727A0097KlHmD9vjuqvWQJEjO9uCjAwrysvdn/QIgq1ucqS9z2pe/U0USpFy8srANkTkzJg1zX0krXENBKWTmoQE4Pnna1FZ2fjlCQDLlsVixQp59YxTU61YuNB9SSW5HzS1tdIYdZ0JFkXg/Hng6aeV1lf2Pa6lrYlJHjUGW3q97X0cMybe5QqEdCUh0t5nli4jahQpJ6/MsQ2RcE/Nkxp4z0v66ivnP0e9HujdW/4HRFWVgHHj3JdUkj6QPOfzeg98Pc8guy6kU2r8+AYGCQqoudRObq4ZmzfXIT3deUykp4uqWC2tBEuXETmTTl4BuHyXqOnkVRBFbgMAwO99muXu8/z007FYupQ7iZE86elWjBjRgPbtrZgzJw6//SbvHFQ6Yy4trXH5cJG+qAG4yed1n3qQkiJiw4Y6PPhgPMrLvW39iyb3yU9TKCysDcm2rOGa5QzkXvDOefquM6JqCR7VOKOshMWCC2Xx3I95b39nvgRyPFDki8TxEK4rGdJr5bMdA1ubYAa2nr6MnB/H9kEpisDJk74X5pDWNS9/1TFYdAwyvv9eh3/+Mwbl5fIv1ixaVIdHH4333VCh5gQHgPfgqel9VVUC5s0LzyXlQH1xBTPYImdFRXrk5bXw2c6fk7JIDGQoeCJ1PITj5FVuYMtrKUEmbycxW0ArTfG7y1GjaBOYLW3dnVmnp1sxc2Y9vvxSh927fZf4On5cXhA8bJgJ27fLq4DQ3MtW3mYMALjc5y5dQk0FxeWQm6dfXKwPyQy4lkXK6m+icNHrodrPGQa2QSZvJzEBs2c3zhxNmmTCunWxEXX2RurSpo3otbycraqBvC/l9u2tstpdeqn8AeupeoMc3n6v0aO9zSxH9m5YDLZCJ1JWfxORKy4eCzK5XzJVVQKKivTYtcuANWtiL9SzJVJKREqKFd27W7xcKZA3JgVBREaGFaNGNfhceJaSYsVFF8n7kl+0qA6lpTV+BbW+d75x/OdI3QXF5WCwFTq+FltKfxvhXv1NRK4Y2AaZ3C+ZzZtjkZfXAuPGSTNOnHUh/5w+LWDVKl/b43ofX46pArGxnlfCSrnAp0/r8Nhj8dDpPFdJkIKBsWMb/J4d9bXzjb8iYZaTwVboRMrqbyJyxcA2yJSWWWqcdSLtaX5pLN8ECAKwcWPztsdtWp7JUxmnphqvNAQnGAhWABoJs5wMtkJLS6XLiKKJKgPbqqoqTJo0Cd26dUPPnj2xZMkSmM3uP0Q++OADDBw4EF27dkVOTg727dsX4t565+3LKHA7N1FkkN7r4AZRoijgzBn//7SnT6+3pwpYLMD+/Xo88UQsvvhCh7vuakCrVo55Mu4v+euaPH2ggoFAB6CRNsvJYCu0cnPNKC2tQWFhLdavP4/Cwlq/02iIKDRUuXhs2rRpaNOmDT788ENUVlZi4sSJePHFFzF27FindsePH8fUqVOxYsUK3HTTTXj77bcxbdo0vP3222jTpk2Yeu9K+jKyrdR2DAQY1EYff99z5SdByclWnD2rvHRcnz62si1GowF//3scTp9uGiT7Ci4FWK22XNrWrcWAloLxtfONd667qQGRN8uZm2tGTo45ouvERhI1r/4mIleqq2P7ww8/YMCAAdi/f789ON29ezeWLVvmMhu7cuVKHDlyBFu2bLHfNnbsWPzxj3/EAw88oOh5K3+ogNuXQq8H4h1WWtfUON3tVINO0AEJCR7bWq3AwYN67NljwAsvxaMOjW0TUAvBQ8AgQsB5tPCrbTzOQwfPK9FqkehX2zjUQQ/PH/bK2raAFHDEoh4GeJ4NUdL2PBIgXrgoEQMTYtAQkLZ1iIcVesVtDWhALEwe29YjDpYL55pN2+oEEVaHQM6xrR5mxKHe5fGmT6vHM8/EwoRYNCDWoW0d3NZBhYjU9BiUfGrCnj0GjB0dg3gPbQGgATH2x9XBcqFto1XPnsegQRfen5gYIPZCKTCr1bY3ryc+2u7da8DEifH2PpggbXwiogVqPTyoCDMMMCHe/vPlbasxf349/vxnN2PIx9+9krZKPiOc6Jq0ra2Fx1IpggC0aOFf2/Pn4XW1amKif23r6myr/QLRtkULW78BoL4e8HAFT3HbhITGywsmE9Dg+W9ZUdv4eNjPNJq0dalb6ti2ocHW3pO4OMBgUN7WbLa9Fp7Extr+7pS2tVhs750njn/LSto28zPCicFgey0A299ErafPCIVtA/QZ4TIemv7d8zPC3lawWpH2BxmTlqLKvPPOO2KPHj2cbjt27JjYqVMn8ezZs063T5o0SXziiSecbnviiSfEiRMnKn/ipCRRtL3NTv/qbx0g/vrrb/Z/1hYt3LYTAdF0w41ObS2pqR7bHkQ3p5v+hz94bPsFrnS66Qtc6bHt//AHp5sOopvHtr8gzemmfejrsW01WjjdZMRtHtuKgNOP/8Iwr21boNr+4wsY6bVtGn6x//gcJnlt+wf8z/7jUsz02vZKfGH/cT7me23bDQftP87EUq9t+2Kf/cdJeM5r29tgtP84Ei94bXtf4jZREKwiIIrD8C+vbaclb7b/eBuMXtseuGeFePLkb2J6ukXsi/e8tp2JpfYfu+Gg17Y1s+bY/y5OfVjive3kB+xtq0qPeG37HCbZf0zDL17bfnPDPeLOnTXihg214pvbvLc9n3uH09+yt7bB+owwdc10amtud6nHtg2duzi1bejcxWNbc7tLndqaumZ6bGtJTXVue8ONHttaW7Rwalt/6wCvr5tj27qBd3hve7zc3vb88Lu9tq386nt729pRY722rSo9Ym9bM/kBr21PfVjS2HbWHK9tT7+9z962ev4ir23P7Py3ve25J5/23nbrv+xtf1u1zmvbs5v+YW97dtM/vLb9bdU6e9szW71/npx78unGtjv/7bVt9fxF9ran397ntW2wPiNqR421t6386nuvbc8Pv7txXB4v99q2biA/I0SE+DMiKUlWOKe6VISamhokOJ6BAPafa2trcdFFF3ltGx8fj1pvZ1kKxcYaZO10AQAxMXrntoLnS6WxMYBgtr17REpV1+ggykxNWL5ch8EdgPJy4KrjAB7x3DY7Oxbvf5WE8nKgUwBTZVq0iEML6W8jJdF724TYxrbVLb22vWMw8N1lwDPP+O5Dx456dBx8YRaixns9vXf/Y4BpfxKGDPH9uMH6jIgxNGmr89zWoNc5t9V7zrHW6wTntgbPOQw6oUnbGM9tBTTZFSjW+9eLU9s4GW2l2Zt47wsjU1NbAtJjJ3jfMKRVK/ltU1ISG9u28L49enKyQ9tE720vvrhFY9uW3nf4c2qb5L3tRRclNLa9KMFr26SkeCRJbS/2vuNay5bxaCmzbWJiHBKltsk+/u6D9BmRkBCLBKmt6GXGGEB8fAzi7ePB+zqFuDgD4mT+3fMzwiaYnxFOzyOK6gqt3nnnHeTn56OkpMR+29dff41Bgwbhk08+QVJS4y86ceJEtG/fHg899JD9tieffBI//vgj1qxZo+h5q074n4qQmpqEqipllxn3vBWLkRNSAACiKDAVISpSEUwO6QWuH0CuqQj1HtuaEIv4lnpUVwvQw9IkFcEW8q5fX2e7zO7mMqPFAhw6pMcvvwi45BIR3btfyNGMjUXBmwm4//4Et+kFjtynIjR5bkmQLzMajQbMfSQWZ8ob+5uWasXgwWYMGGC2/X5xrpcZ9+41YMKE+At/TY2vsxU61Avx2LLlwoKsZqYi+PMZEW2XGaMpFcE+HkQwFcFd2yhLRXAaD0xF8NhWsFqReqnvVATVBbbHjx/Hn/70JxQVFSEtLQ2ALcf2qaeewgcffODUduXKlTh69Cg2bdpkv23s2LG4+uqrMW3aNEXP6+8+zc3Z59ndtqBgpQTNysiwIi+vAWvWSDND3t5nuePAfTtBEJGeLqK0tEbxoqKiIj3y8rzPxHiSnm7FkiX+7SjmjpL9yKW2e/fqsX17DKqqXLfbdeyXxQJkZSVeWNAZ2NfQ+XEicy94Cg6OB3LE8SCf9Fr5orpyX+3bt0dWVhYef/xxVFdX48cff8TatWsxbNgwl7aDBg3CwYMHsXv3bpjNZuzevRsHDx7E4MGDw9Bz5ZqWkpk9WzpL5ujWDhGAiJkzbSW08vNNSEmR8/7KPbnxvaOWxWILVgsKDCgq0ns9QQZslQfS062QPw5tv+Ps2fX49NPAlUIyGg3IykpEXl4LTJiQgLy8FsjKSoTR6P6SlF5v25xi48ZYVFU5vy7l5QLGjIl3OtbXZg+RtCsZERHZqC6wBYBVq1bBbDajX79+uPPOO9G7d29MmjQJAJCZmYldu3YBAC6//HKsWbMGGzZsQPfu3bF27VqsXr0al112WTi7r4hUSmbIEDNmzjRhyxbfRfApkgjo1s2MXr0seOMNAzZtirlQPis0s/Jr18YoCg4B25hcssTbSZbzbRkZIrZsqcPMmaaAlZwyGg0YMya+SXk8oKxMwOjR8Xj66ViXAN33dru2+6Xj5G72EAm7khERkY3qUhHCJRypCJ5YLMDEifHYudMApiVoQTjTS6RBKTjdJgjwWdDfUx3blBQrxo1rQIcO1qDUUPWVIiBpmvYgN4WisLAWvXpZFLf3Fy81kiOOB3LE8SCf3FQE1VVFIGDPHsOFoJaoudwFhgJEUcTMmXHIyTF7DEqljQCKivQoKtJDEGxXF264IbibATSmCHgnpRdIAbqSGViLxRZAJydbceaM9xzbSNmVjIiIGNiqjsUCzJ0rlYfhbK02qPF9FHDqlICVK2Mxc6bnldV6vW0nsj59Qhfcyb/0LwAQkZ9vC9Dlbrf7/fe6CzPCnhdtRuquZERE0U6VObbRrLhYj/Ly0OVgUiQJ/HWqjRtjfC4mCzW5ASrgvMBL2m5XCkqbEgQRrVpZsXRprEvublPp6aLPVA0iIlIfBrYqw4Uq5Fngx8aZMzosWxYrq1pCoPiq0uArQHWnokKAXm+bYQXgcqz0c2MOW9PX0jb7m5xsxY4dtSgtDVx1ByIiCh0GtiqjZLaKyDMRcmd4V6yIk1UtwR2lpcTklPByDFDl/g7S301urhmbN7tWFklPFzFrlslHRQoBZ87ooNOB6QdERBGKga3KZGdbkJrqfbtPIl8yMkTccYeyGUd3tV69UVpn1lMJL3fP6ylAbUoQRGRkWJ0WeDWtD11YaJuB7dBB3t8Vr5oQEUUulvu6QE3lvnbtMmDsWGn7PX7JknfS6v1Vq+pQWdm4QxcAXHllIk6f9l42y91jSbttedr5SwpSm9aMlS75b95ch5wcs/3Y1q1FTJkSj/JyZbt8WSzAypWxWLrUdbc2x+eSkzYQzPJe3nZIYzkfcsTxQI44HuSTW+6Lge0FagpsAWDBgtgLW68ysCXPPAV3UqC1Z48BGzfGSK1lP25hYS1OnxZctnzOyLBi4cJ6zJsX53Ur2pQUEXFxuLAQUj5PQaW77afdbZPrjVQft7xcsG/Y0LTf/myh66tv/OLSJiXbPTvieCBHHA/yMbBVSG2BLWCbuZ09Ow6nTjFjhNxzF9y5C7SUGj/ehOefj3E7I+tuZy/3lG9MsX79eQwZ4j5Q9TeQcCTNNANwCm6Vzv42fTxvM9cDB5r5xaUxzTnRYiBDjjge5JMb2DJiUrFBg8w4erQGixbVhbsrpEoiBg9ucAlq3eWxKrVjh8Hr1rTyKO+Dt8WTjttP9+qlLKiVFrmZTMCsWSa0beu6uExpUKt0C1/SBiW54kQUepyxvUCNM7YSuVuMktb4mvG0DbjJk02YP98UsHFy0UVW/PZbqM95Reh0wIkT1YiN9d1aCXeza+npVowY0bxtgeXm7O7cWYvBg1twRkYDfP2NyUln4QwdOeJ4kI8zthoilT8SBNf6nKRlvoJT2/3r1sXCZHLcirZ5Jz/du4djilGA1Srg0KHA1tnyNLt28qSAZctiERsLxbO/EiVb+JI2+Pobc9wwhIjCg4FthJBb/oiijS0gfOGFmIAFUDfd1JzAtnnj01Y1ITCCnSogt+Y0a1NrB09miNSPgW0EaVqfc+bMegRjm1WKPN9/r2t2ACXVhB01qkHxzl8SnQ5ITPTvWACoqgpcQBDs2TU5W/g2rbFLkY0nM0Tqx8A2wjguoJk924RNm+qgZJcp0iZBsAVa6elWeBsLtiDMdbxIwdnixfWIjfW8Na0vVitQUyNAFP1Lm0lNDdw4DvbsmpwtfBcvrucuZhrCkxki9WNgG+EGDTJjy5Y6pKQwsI1mXbtasGePAefPA95ybKXFCU3HS9OqAP6nvtieOzFRdKk8IEcgU21CMbvmbQtfpVUWSP14MkOkfqyKcIGaqyLIYbEA+/frMWpUPGprWT0h2vz1ryZs2yZvIwZBsAWdzz1Xh19/9V4TVqodu3WrAdu3KytXMHNmPXr1sqCiQkBamohx4+K97IImIiND+eYI3gRrQwZPz8Wdx6IH69hSoHA8yCe3KgIL7mmEXg/cfLMFzz1Xj9Gj4+G+VJT0V8OgN3LI2+TgjTekP2XfbUVRQHm5AJ0OHjdDkEipL+XlArZvl9FdB5s3x+DvfzfZt+C1BbVuewQgODNd99zTcGE7XufXMdCza9LrRNEhN9fstGW0vyXjiCjwmIqgMbm5nlMTUlJE/OlPZjAfN5LIOwk5f155mS8luaX+pAicPm1bmCVVJ7Bx/5wpKSJycgJ32d5oNCArKxFLl8ZdeE7n52WqADVXczYMIaLg4YytBkmzCUVFehQV6SEItg/gG26wffjOnx+LdetiwZlbLRCRmCiipkb5Oarc3FKLxfYvOdmKM2eUpblUVAgO1Qk8EXD6tK1dIGY9nbe5dWS7YfZsE6ZPNzEQ0aBAbLtMRJGNga1G6fVAnz4W9OnjGigsWGBCVpYVDz0Uh6oqTtpHuptvtsBolP8+SrmlclZuu8sllJseAdiC51DW/vRWuxYQIAgiXn45BtOnm5r9XKQuzcl7JSLtYFQTpQYNMuOLL2qwY0ctkpO9l4gi9Zo924RRoxpkt1eSW+pp1y65zyOVPQpl7U+5tWuXLo1FUZHe780ZSF08jdXycgFjxsTDaOQcDlG0YGAbxfR6oHdvC1assG3Xy+A2ktgCx+nTTbjhBgtSUuSdnMjNLfU182lLgZCe03vZo1DW/pQ767tyZRzy8logKyuRQU+EC/YOc0QUWRjYErfrDYlAbqLhHDjq9cDy5fVO9zV93vvvr0dhYS1KS2tkXZb1NfMJCKip0SE31+yyqULT4DmUtT+VzvpyRi/yBXuHOSKKLAxsCYAtuP300xrMni1t08sgN7ACu1BPaRWBnj2tilZuy535NBpjUFWlQ2qqFePG1WPRojrk59cjJUV0miEL1UYGvmaHm+KMXuQLZQ43EakfpynITq8HZs40oUsXK+bOjUN5Ob8IAsvX6yl3UZZzFQHv5bRsC6by8+OQk2OWHdgqnfmsqhLw/PPOlTaaLtwJRe1PaXZ4zJh4CILodmOGpmwzeoGryqAm0VAlIJQ53ESkfpyxJRecvQ0n+a+1NAMVjEuxVVUCdDol77trGbCyMgGjR8fj6adj7bOhoaj96W9qjdZm9KRavnl5LTBhQoJmc4pDmcNNROrHwJbckmZvt2ypQ0aGu7xNCrSBAxvcbqzhiTQDFehLsUajAePGxcNqld0VD2zB7tKlcbjuutAGVLm5ZpSW1qCwsBYzZtT7PgDamtGLpioBoczhJiL1Y2BLXuXmmrFwYT1SUx2jHC3MbMkJYsQLX4yhCXhGjjTjyJEatGrlq8KBiPT0xhkouQHZ99/7/nM3mYBZszxVQ/BfOAIqaXZ41ixTVM3oRWOVgFDlcBOR+jGwJa+k2buqqqZBjppTFALVL8EhRzOYv6uIlBTb4q5Dh/Q4dcrX9rgCRoyw1a798EM9PvhAj/h438HwP/8Z4zWYMRoNuPbaxAubdgT65CV8AVW0zeiFqkqAxQIUFelRUGBQRU1gx1n69evPK6oCQkTaoZ3rURRwcmqZylnwJAVtRmNMUPrpSt4CLLmuucaCL77Qu9mi1R9NXy/bgy5fbgus5KYLfPmlDldemYjTp+WemwooL/e8QMrzNrSBE85FWtKMnm1nqsbXOD1d1NzOVKGoEqDWXb6kWXoiil4MbMmjxpkfT1y/GJOTrRg7tgHXX2/Br782rsQuLtaHMLANLFtQ608Q4D6IdXTxxSLuv7/BXrpLblqB7bVUHoW6C2a8n8AEXrgWaYWiKoMaBLtKgKeTICndhJf+iSicGNiSR3IDkBkz6tGpk9VroCCtXLbNlqkpR9f3jLN/Qa2rjAwRCxfW45tvdNi4MQZnzuhw9qwOS5fG4eWXY7B4cT1ycsxISbHi9Gk5r5PyfjkGM1IpqA8/9HUC40huSTJ5fQi1aJjRk/7WyssFt2NXEESkp4t+5RT7yt/1p7QcEVEgMceWPJIbgPTu7bt8k5TnGF1b99q++GfMaNz1S6cDli2LxZkz7lerL14ceyGoDbzU1MYFUo6loFasiPNxpCP/+6a1RVpqFcycYu7yRURqx8CWPAp0fUgpz9G1fJg7oQp+gz973KmT1T5L6G22SxSBdetig9YvqxXYs8fgsRRUMGlxkZaaBatKAHf5IiK1YyoCeeRtFyd/AxXHPMe9e/XYsMFdIGd77JYtraiuDve5lwidDkhKEnH2rH9pFK1b234fOTnLza8d69mZM7ZZ4eRkMWT5tBItLtJSO8e/tfJyAVVVAlJTRft2x/6cYHCXLyJSOwa25FUwVpNLeY69elnQs6fr9r0ZGbbHtlqBsWPjL9wavhmgiRNNyMqyYvToeHheEOa5f2PGxGP8+Aa0bx/EqFUG24mJqKCSQrOeDQAwbpwJt91msedeR8MWr2qi1wOnTwtYvDgwFQyCmb9LRBQIgigGs8BP5KisPOdXqSNBANLSkvw+PlIEMyDx9tjz58deuDwfnsC2Wzczdu8+D8CWl2oLwhsDhKYz2d4kJYk4d04Ll2jlLyArLKy1p2EEokRUJAbG4fyMcK5g4HrFxZ+0BOkxAbi9isOqCN5Fy3cGycPxIJ/0WvnCGVuSJZiryT09ttFowBtvxCBwQa3yFf29e3v/nZV8EJ07J/UBivvh4dkD9DjyCIKI5GQR8fFwmmH3RmoXiBJRaq2dqlbBqmAQTTWBiSjyhDuBkcgtzwuc3EWS3qNLQRDRsqV/p8KOs41jxsS7CeiUBJbeatr60z/HTTKU8nSMCHePKc3GLV9ej08/rcHo0SZZz1JVJQRki1dP4yEcW/VGimBWMOAuX0SkVgxsSXV873jWlGOA5z4gi4lRGvw1bnMb2A0MbAvQUlOd+9P0Z6WP58xbsCuiVStbrq+7UlCCAEyebHKpXOG4ml6vB7p1kzd7n5oqNjvACkRgHI2CXcFAutLiq9QfEVEocZqDVMd39QB3bF/OqalWVFU5Xx69554GLF2qpFar8za3RUX+9Me7RYvqkZ4uoqJCQKtWIr74Qoenn45Fba1/lRdmzKjHFVdYkZ8fh1OnPD2G7fdaurQeOh28XkrOzzd5zWVtWkbKE+l3lMNTO1/jIZxb9TZHsPOFWcGAiKKR6gLb2tpaLFq0CO+99x7MZjP69euH+fPnIzEx0W37+fPnY8eOHYiJadyudc6cORg+fHioukwB1pwamI4BoxQsvPGGsmGeni5iyZLGXMFg1ORMTxfRq5cFCxbYFsdZrU3TFJTnAh84oMepU763QE5NtT23t+1lfeVU+95JTkRGRuN2ynJ4CrC0WDs1FPnCrGBARNFIdYHtokWLUF5ejrfeegsWiwXTpk3D008/jfnz57ttf+TIESxatAh5eXkh7ikFS3NmkKSA0Z/Hmz69Hn36WFxmzgI9o5WWZtvUYsGCWKxZE+v7AC+BrhScVFUJWLpUzmM1BoDNWRDoWOMY8F7juLkBltZmHgOxkE6OYNShJiJSO1Xl2J4/fx5vvvkmHnjgASQnJyM1NRUzZ85EQUEBzp8/79LeZDLhm2++wdVXXx2G3lKw+NrxzB1vu6DJ3UFt9myT21xBf/rjzdChDbBYvO0y5jln2JntvoUL6zFvnvxUi0AFgHJ3t2ruFq+B3gEvnEKdLxysHciIiNQq5DO2dXV1qKiocHvf+fPn0dDQgE6dOtlvu/zyy1FXV4fjx4/j//2//+fU/tixYzCbzVi1ahVKS0uRlJSEoUOHYuzYsdDplMXsgp9XMaXj/D2eXBkMwJIl9Rg92nWmyV25LCngWbKkHgY3I9rb4/k6Vl5/lL35OTkWvPBCTJP0g6ak+zw/vl4PbNxYh9RUUWYOsIjf/U7E9ddbAjZeBw4047bbPKc0OLbbsqUOjzzivBlH07QPd5r7/oWb42dESYm8fOGSksDlC8t9jyg0+J1Bjjge5JP7GoX8q+Czzz7Dvffe6/a+Bx98EADQokUL+20JCQkAgJqaGpf2586dQ48ePTBixAisWLECX331FSZPngydToexY8cq6ldqqu+iv8E8npzddx9w0UXAgw8CP/3UeHtqqm1kV1U13vb73wt45hlgyJAExY8n51hvx6elCZg8GejcGfjmG+Cxx7z/Xu3aAbm5LfDuu97bNfL8l2yxCOjQIQHl5fIfa9UqAW3aBH6sDh7su81FFwFNzzcFQYeLLkpAWpr3Y5v7/qlBamoSamvlta2tbeHzNVFKzntEocPvDHLE8RA4qtp57Msvv0ReXh4+/fRT+2Kx6upqZGVl4Y033kCXLl18PsamTZuwe/duFBQUKHruqir/dx5LTU3y+3jyzt3KccD/1eTNXYm+a5cBs2fHoarKedHPokX1ePTROK+LqQDbrkyDBpmxfn0MHn003k07ZTZsOI82bUTccUcLn20feqgeM2fKqz8baEajAaNHe94Ba8sWeZfFI3XnMekz4qOP9LLeq507ayOqwgO55268Ggz8zqBGjCHkk14rX1R18e6yyy5DTEwMvvvuO1x77bUAgP/+97+IiYlB+/btXdq/++67qKysxF//+lf7bSaTCfHxygMGUVS2i1Sgjyf3dDrghhtcv+Cb3ib3tXf3eHKPNRoNGDvW86If7ykJtvtatRIhisCoUQ2YPz8OVis8HCcvxeGSS0T07Ol9cRZgW5w1bZopLGPUYgHmzvW+A9bcuXH4859974DVnPcv3EQRPt8raSFdz56WgP9ekXhSEMk8Vb5YsqQe993H7wxyxvEQOKpaPJaQkICcnBw8/fTTOHXqFE6dOoWnn34aubm5boNVURTxxBNP4MCBAxBFEYcPH8ZLL73EUl8UcHIW/cghVSSIjQUmTpRmT93vQpaYKMpaMOVrcZYg2HJQwxXEBHMHrEjT3IV0/jIaDcjKSkReXgtMmJCAvLwWyMpK5I5tQeJtp7zRo+Oh8IIiESmgqsAWsNWlbd++PQYOHIg///nP+P3vf4958+bZ77/99tuxfv16AED//v3x8MMP47HHHkNmZiZmzZqFqVOnYjCTySjAfAVncheQff9945/c/PkmTJ5scsk71elsu3+tXl1ne2QZAZCaV79rsQ5tc4T6vVK6HbHFYtuUpKDAgKIiPXd0U0jOSfC0aeDrShQkqsqxDafKSv9zbNPSkvw+niJDQYEBEybIWaDkLYXAfT6pyQS88EIMjh/XoX17K0aNakDshUpgSgv5q/Fyc1GRHnl5vvNKCwu1mVfq6TMiFO+VxQJkZSV6zP2WUh9KS2ug14dm4witkzved+6sdZtmRdGFMYR80mvlC69DEckQmNqvtnzS/Pw45OQ05pPGxgL339/g9ojcXLPXHcKaas6mC8HCHbDcC8V7pWQ74tOnhZBsHKF1vEJBFF6qS0UgUiO5mwTMmuW96oA/+aRSADRkiNntBhJqF668UpIfPJWXCyHdOELLtLZTHlGkYWBLJIPc4OyKK6yyHi+QszWRkBOp5hxgLZMbPFVVCVzgFyByToLbtUPUXaEgChUGtkQyyQnOQj1bE0mr3XNzzSgtrUFhYS3Wrz+PwsJalJbWMKgNIrlXGlJT5Y1HXj73Tc5J8DPPgFcoiIKEi8cu4OIxksvboh+rFejWLQk//9x0612bpot1mkNa7e5p0wPOhKpDuD8jpHECOJemcxwnKSliVC/wCwbvdWwT+J1BAML/+RBJ5C4eY2B7AQNbCgRBAPbvT8KwYbbB4CmQaG7A6Wu1OyAiIyMwATQ1jxo+I3xVO5DGk68FfhxPynjaeSzc44HUQw2fD5GCVRGIwmTIEFtJr7lz45xqh6aniwErm+RrtTvQuNqdM2zkq7qGdPl8zJh4CILo9oSMC/yUU2OVEiKtY2BLFAS5uWb8+c/yy3QpJTfXce9eBrZk4yvIknLIbTO7wTkhI9IKNdYMJxsGtkRBEszZGrmLz3bsiMFjj5ki7gOXXxrhobRuMlE04kYm6sbAligCZWdbkJpqRVWV98ImlZW6iEtH4JdGePHyOZFnzot2G3EjE/VguS+iCKTXA0OHyvvwjKQSTdKXhuOlcKDxS0ONZcyIKDpYLOBGJhGAgS1RhMrJkRfYRsoOR/zSCI9I2OCDSA0aF+1yIxM14/QHUYSSiu/7KtEUKTsc+ar0YPvSYKUHX5TkJzPtg0g+uVe/IukqmRZxxpYoQsnd5jdSFv7wS6P5lOxEx7QPImVCvbMk+YeBLVEEk7PNb6SQ+2WQliby0rkbSgJVpn0QKSd3i+pIuUqmVdx57ALuPEaBEK7xoIXyWHJ2v0pOFhEfD5SXR86l81CMCV870TXdOayoSM8tdMOE3xmRTc4W1Uo+izge5JO78xhnbIk0QCrRNGSIGb16RV5QC/hOrRBF4PRpAeXlvHTelNJFLUz7IPKPlq6SaVX0fhMQkep42v2qbVsRdXW2wNbdpXNBEJGfH4ecHHNEBvXNpTRQZa4gkf+4kYm6MbAlIlVx96VhtQJDh3q+dB7tFROUBqpaq6hBFGrcyES9mIpARKrTNLXi11956dwbpYtatFZRg4hIwsCWiFRPrZfO1bK5gT+BKnMFiUiLmIpARKqnxkvnatvcwFN+cnq66LFPzBUkIq1hua8LWO6LAoHjIXgCUWYnUGXRpL40rQPrri+hHhNaKP2mZfyMIEccD/LJLffFwPYCBrYUCBwPwdWcWdJAzbAqrRnLMUGOOB7IEceDfHIDW6YiEFHE8PfSufMMayOpBq6SnNLGmrHuRXuFBiKicGJgS0QRRWmZHV/bxyqtgcvNDYiI1ItVEYhI05TuyuWLWis0EBERA1si0rhAz7AqrRlLREShw8CWiDQt0DOs3NyAiEi9GNgSkaYFY4aVmxsQEakTF48RkaZJM6xjxsRDEES3NXD9mWHl5gZEROrDGVsi0rxgzbBKFRqGDDGjVy8GtURE4cYZWyKKCpxhJSLSPga2RBQ1lNbAJSKiyMJUBCIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYFUEIgo6iwUss0VEREHHwJaIgspoNCA/Pw5lZY0XiDIyrFi8uJ5bzxIRUUAxFYGIgsZoNGDMmHiUlQlOt5eXCxgzJh5GI8+tiYgocFQb2J4/fx7Dhw9HQUGB13afffYZ/vKXvyAzMxO33HILXn/99RD1kIi8sViA/Pw4iCIAOAe2omj7OT8/Dhbul0BERAGiysD222+/xd/+9jf83//9n9d2Z8+exfjx43HHHXfg0KFDWLJkCZ544gl8/vnnoekoEXlUXKy/kH4guL1fFAWUlelQXMxkWyIiCgzVBbYHDhzAyJEjkZeXh4yMDK9t3377bSQnJ+Nvf/sbDAYDrr/+egwcOBBbt24NUW+JyJOKCvcBrb/tiIiIfAl5gltdXR0qKirc3te6dWt06dIF+/btQ1xcHF544QWvj/Xtt9+iU6dOTrddccUV2L59u+J+CX5+t0rH+Xs8aQvHQ6O2bUXZ7bT8enFMkCOOB3LE8SCf3Nco5IHtZ599hnvvvdftfWvWrMGtt94q+7FqamqQkJDgdFt8fDxqa2sV9ys1NUnxMYE8nrSF4wHIzQV+/3vg559xIc/WmSDY7s/NbREVpb84JsgRxwM54ngInJAHtj179sTXX38dkMdKSEjAuXPnnG6rq6tDYmKi4seqqjrn9svXF0GwDUh/jydt4XhwtmiRAaNHx0MQGheMAYAg2F6chQvrcPq0tkt+cUyQI44HcsTxIJ/0WvkS0bV2OnXqhKKiIqfbvvvuO3Ts2FHxY4mi+1mlUB1P2sLxYHP77WZs3lx3oY5tY2Cbni5i8eJ63H67OWpeJ44JcsTxQI44HgJHdYvHlOjfvz8qKyvx4osvoqGhAcXFxXjzzTcxdOjQcHeNiC7IzTWjtLQGhYW1WL/+PAoLa1FaWsPNGYiIKOAibsb29ttvx8CBAzFhwgSkpKRgy5YtWLJkCVatWoVWrVohPz8f2dnZ4e4mETnQ64FevViwloiIgksQRU5+A0Blpf85tmlpSX4fT9rC8UBNcUyok8Viq7VcUSGgTRsR2dmWkCxi5HggRxwP8kmvlS8RN2NLRETUHEaj4ULed2M2XkaGFYsX1zNFhijCRXSOLRERkRJGowFjxsQ7LWYEgPJyAWPGxMNo5HwPUSRjYEtERFHBYgHy8+MuXPJ1DmylcnT5+XGwMB2cKGIxsCUioqhQXKy/kH7gfgsjURRQVqZDcXEU7BhCpFEMbImIKCpUVMjbk1NuOyJSHwa2REQUFdq0kbfsXG47IlIfBrZERBQVsrMtyMiw2rd0bkoQRGRkWJGdzSRbokjFwJaIiKKCXg8sXlwPAC7BrfTz4sX1IalnS0TBwcCWiIiiRm6uGZs31yE93TmwTU8XsXlzHevYEkU4FuwjIqKokptrRk6OOSw7jxFRcDGwJSKiqKPXA716MZeWSGuYikBEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpgiHcHSAioshgsQDFxXpUVAho00ZEdrYFen24e0VE1IiBLRER+WQ0GpCfH4eyssYLfRkZVixeXI/cXHMYe0ZE1IipCERE5JXRaMCYMfEoKxOcbi8vFzBmTDyMRs6REJE6MLAlIiKPLBYgPz8OoggAzoGtKNp+zs+Pg8US+r4RETXFwJaIiDwqLtZfSD8Q3N4vigLKynQoLmayLRGFHwNbIiLyqKLCfUDrbzsiomBiYEtERB61aSMGtB0RUTAxsCUiIo+ysy3IyLBCENwHroIgIiPDiuxsJtkSUfgxsCUiIo/0emDx4noAcAlupZ8XL65nPVsiUgUGtkRE5FVurhmbN9chPd05sE1PF7F5cx3r2BKRarD4IBER+ZSba0ZOjpk7jxGRqql2xvb8+fMYPnw4CgoKvLabP38+rr76amRmZtr/vfbaayHqJRFR9NDrgV69LBgyxIxevRjUEpH6qHLG9ttvv8VDDz2Eo0ePYvjw4V7bHjlyBIsWLUJeXl6IekdEREREaqS6GdsDBw5g5MiRyMvLQ0ZGhte2JpMJ33zzDa6++uoQ9Y6IiIiI1CrkM7Z1dXWoqKhwe1/r1q3RpUsX7Nu3D3FxcXjhhRe8PtaxY8dgNpuxatUqlJaWIikpCUOHDsXYsWOh0ymL2QU/a4tLx/l7PGkLxwM1xTFBjjgeyBHHg3xyX6OQB7afffYZ7r33Xrf3rVmzBrfeeqvsxzp37hx69OiBESNGYMWKFfjqq68wefJk6HQ6jB07VlG/UlOTFLUP9PGkLRwP1BTHBDnieCBHHA+BI4iiqNrtYm655RZMmTIFQ4YMkX3Mpk2bsHv3bp+LzpqqqjoHf14JQbANSH+PJ23heKCmOCbIEccDOeJ4kE96rXxR5eIxud59911UVlbir3/9q/02k8mE+Ph4xY8limjWoGru8aQtHA/UFMcEOeJ4IEccD4GjusVjSoiiiCeeeAIHDhyAKIo4fPgwXnrpJZ+VFIiIiIhIeyJuxvb222/HwIEDMWHCBPTv3x8PP/wwHnvsMVRUVCAtLQ1Tp07F4MGDw91NIiIiIgoxVefYhlJlpf85tmlpSX4fT9rC8UBNcUyQI44HcsTxIJ/0WvkS0akIREREREQSBrZEREREpAkMbImIiIhIExjYEhEREZEmRFxVhGDhlroUCBwP1BTHBDnieCBHHA/yyX2NWBWBiIiIiDSBqQhEREREpAkMbImIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsm6GqqgqTJk1Ct27d0LNnTyxZsgRmsznc3aIwO3XqFPr374+SkpJwd4XC6NixYxg1ahR69OiBXr16Yfbs2Th16lS4u0VhcuDAAfzlL3/Bddddh169emHRokWoq6sLd7cozCwWC0aMGIE5c+aEuyuawcC2GaZNm4YWLVrgww8/xPbt23HgwAG8+OKL4e4WhVFpaSmGDx+OEydOhLsrFEZ1dXUYO3YsMjMz8dFHH8FoNOLMmTN45JFHwt01CoNTp07h/vvvx1133YVPPvkEhYWFOHjwIDZu3BjurlGYPffcc/jkk0/C3Q1NYWDrpx9++AEHDx7ErFmzkJCQgHbt2mHSpEnYunVruLtGYVJYWIiZM2di+vTp4e4KhVlZWRm6dOmCyZMnIzY2FikpKRg+fDgOHToU7q5RGLRq1Qoff/wxhgwZAkEQcObMGdTX16NVq1bh7hqF0YEDB/D2229jwIAB4e6KpjCw9dO3336L5ORktGnTxn7b5ZdfjrKyMvz2229h7BmFy4033oh33nkHt912W7i7QmHWoUMHbNq0CXq93n7bW2+9hauuuiqMvaJwatmyJQCgb9++GDhwIFq3bo0hQ4aEuVcULlVVVZg7dy6WL1+OhISEcHdHUxjY+qmmpsZlMEo/19bWhqNLFGatW7eGwWAIdzdIZURRxMqVK7Fv3z7MnTs33N2hMHv77bexf/9+6HQ6PPDAA+HuDoWB1WrFrFmzMGrUKHTp0iXc3dEcBrZ+atGiBc6fP+90m/RzYmJiOLpERCpTXV2NBx54AG+++SZefvlldO7cOdxdojCLj49HmzZtMGvWLHz44Yc4e/ZsuLtEIbZhwwbExsZixIgR4e6KJnF6yU8dO3bEmTNnUFlZibS0NADAf//7X7Rt2xZJSUlh7h0RhduJEycwbtw4ZGRkYPv27cynjGKffvopHnnkEezatQuxsbEAAJPJhJiYGF6GjkJvvPEGfvnlF3Tr1g0A7NUx3n33XS4kCwDO2Pqpffv2yMrKwuOPP47q6mr8+OOPWLt2LYYNGxburhFRmJ09exYjR47Eddddh82bNzOojXKdO3dGXV0dli9fDpPJhJ9//hlPPfUUhg0bZg90KXrs3bsXn376KT755BN88sknyM3NRW5uLoPaAOGMbTOsWrUKCxcuRL9+/aDT6XDHHXdg0qRJ4e4WEYVZQUEBysrKsGfPHuzdu9fpvsOHD4epVxQuiYmJ2LRpEx5//HH06tULSUlJGDhwICZPnhzurhFpjiCKohjuThARERERNRdTEYiIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIiCrhTp06hf//+KCkpkX3MW2+9hdzcXHTt2hX9+/fH9u3bFT0nA1sioghx/PjxcHeBiEiW0tJSDB8+HCdOnJB9THFxMebMmYNZs2bh8OHDWLRoERYsWIDPP/9c9mMwsCUiuuCWW27BNddcg8zMTGRmZqJr16648cYb8dRTT8FqtQbseUaMGIHVq1cDAObNm4d58+b5POa9997DmDFj/H7OgoIC3HLLLS63nz9/Hj169MBLL73k9ri///3vPndU9PTYRBSdCgsLMXPmTEyfPt3lvo8//hjDhg1Dt27dcPvtt2PXrl32+1588UXce++96Nu3LwRBQHZ2Nnbs2IFLL71U9nNzS10iIgcLFizAkCFD7D9//fXXuO+++5CQkIAHHngg4M+3cOFCWe3OnDmDYGwUmZCQgKFDh+L111/Hvffe63TfqVOn8NZbb2HTpk0Bf14i0q4bb7wRAwcOhMFgcApujx07hokTJ2LZsmXo168fPvvsM0yaNAkpKSno3bs3Pv/8c/Ts2RPjx4/HZ599hrZt22Lq1Kno1KmT7OfmjC0RkRedO3dG9+7d8eWXXwKwzbbOmTMHN998M2666SZUV1fjxIkTmDBhAnr27Imbb74ZK1euhMlksj/G66+/jn79+iEzMxMPPfQQzp8/b79vzpw5mDNnjv3nf/zjH+jfvz8yMzMxZMgQHDhwACUlJZg/fz7KysqQmZmJiooKmEwmPPvss+jXrx969OiBcePG4YcffrA/zn//+1+MGDECmZmZGDhwoL3/7tx999347rvv8H//939Ot2/fvh2XXXYZsrOz8d577+Gvf/0rrr/+elx77bW455573KZGlJSUoHPnzk63Nf0d//3vf2PgwIHIysrCkCFD8NFHH9nvO3ToEIYMGYJu3bqhf//+WLJkCcxms8e+E5H6tG7dGgaD69zptm3b0K9fPwwYMAB6vR7XXXcd7rzzTmzduhUAcPbsWWzevBkTJ05EUVERJk+ejOnTp+Ozzz6T/dwMbImIPGhoaEBJSQmKi4vRq1cv++0ff/wxtm3bhl27dkGn0+G+++5Dx44dsX//frzyyiv4+OOP7akGBw4cwMKFC7F48WIcOnQI1157LY4cOeL2+QoKCrB27VosXboUpaWluOuuuzBx4kR07twZCxYsQEZGBg4fPow2bdpg5cqVeP/99/Hiiy/iww8/xLXXXovRo0ejvr4eDQ0NuP/++9GxY0cUFxdjxYoVePfddz3+nu3atUPfvn3xr3/9y36b1WrFa6+9hnvvvRcnT57Egw8+iPHjx+PAgQN4//33IYoi1qxZo/g1/eCDDzB//nzMmzcPBw8exNSpUzF16lR8++23AIDZs2djxIgR+OSTT/DCCy9g7969+M9//qP4eYhIfX7++We888476Natm/3fP//5T5SXlwMAYmNjMXToUGRmZsJgMGDAgAG4/vrr8dZbb8l+Dga2REQOFixYYP/Avf7667Fo0SKMGjUK99xzj71Nnz590KZNG1x00UV4//33YTKZMGPGDMTFxSE9PR0PPvigfQZi165d9g9ng8GAu+++G1deeaXb5y4sLMTw4cORmZkJnU6Hv/zlL9iyZQvi4+Od2omiiG3btmHGjBlo164d4uLiMHnyZDQ0NOD999/H4cOHUV5ejtmzZyMuLg4dO3bEqFGjvP7e9957L/bs2YPq6moAwIcffojq6moMHDgQrVq1wr///W/ccsstqK6uxsmTJ5GSkoKKigrFr+/LL7+Mu+66C927d4der8fNN9+MW265Bdu2bQMAxMXFYc+ePdi3bx+Sk5PxwQcf4E9/+pPi5yEi9Wnbti3y8vLwySef2P+99dZb2LhxIwDg8ssvd7raBQAWi0VRGhZzbImIHMyfP98px9adSy65xP7/P//8M06dOoXu3bvbbxNFEQ0NDaiqqkJFRQWuuuoqp+PbtWvn9nF//fVXZGRkON123XXXubQ7deoUamtr8eCDD0Kna5yfaGhowM8//wyTyYSUlBSngNjX4osbbrgB6enpMBqN+Otf/4pXXnkFw4cPR3x8PERRhNFoxLZt2yAIAjp16oTq6mq3lxp9+fnnn3Hw4EG8+uqr9tssFguys7MB2FIxVq9ejQULFuDXX39F79698dhjj6Ft27aKn4uI1GXYsGEYNWoUBgwYgBtuuAEnTpzA+PHjcfPNN+Phhx/GXXfdhUWLFqF3797Izs7GO++8g5KSEsyYMUP2czCwJSJSSBAE+/+3bdsWl156Kfbu3Wu/rbq6GlVVVWjVqhXatm2LH3/80en4kydPomPHji6Pm56ebr8kJ1m5ciUGDRrkdFtKSgri4uKwZcsWdO3a1X77999/jzZt2uCrr77CqVOnUFNTg8TERPtz+vK3v/0Nr7/+Ovr27YuioiIsWLAAALBnzx68/PLLePXVV/GHP/wBALBo0SJ88803Lo+h1+sBACaTCbGxsQCA06dPIyUlxf563XHHHRg/frz9mLKyMsTHx6O+vh7fffcdHnvsMRgMBvzvf/9Dfn4+Hn/8caxatcpn/4lI3a699lqsWLECK1aswIMPPoiEhATk5ubaA9ehQ4dCp9PhiSeewE8//YTf/e53WLlypcvkgDdMRSAiaoabb74ZNTU12LRpE0wmE3777Tc89NBDmD59OgRBwNChQ/Huu+9i3759MJvNKCws9LgQYsiQIXjttdfw+eefw2q1YseOHdi6das9kD1//jzMZjN0Oh2GDRuG5cuX4+TJk7BarSgsLERubi5++OEHZGZm4rLLLsPixYtx/vx5/PDDD9iyZYvP3yUvLw8//PADnnnmGdx66632WdJz585Bp9PZZ2/379+PnTt3oqGhweUxLr30UhgMBvz73/8GYMtHLi4utt9/55134qWXXrLXpTxy5AiGDBkCo9EIQRAwY8YMbNmyBWaz2b4ARQqKiSjyfP311+jZs6f955tuugkFBQUoLS3FRx99hDlz5thPggHb59Cbb76Jw4cPw2g0on///oqejzO2RETN0LJlS7z44ot48sknsWnTJlitVvTs2RPr1q0DAGRlZWHp0qV48sknMX36dGRnZzstRHM0cOBA/Pbbb5g1axZ+/fVXXHHFFXj++efRqlUrdO/eHampqejevTu2bduGhx56CKtXr8bdd9+NM2fOoF27dli1apU9f3fjxo2YN28ebrjhBqSlpaFfv354++23vf4uLVq0wJAhQ/CPf/wDr7zyiv32vLw8lJaW4vbbb4der0eHDh0wcuRIbN261SUf7pJLLsEjjzyCtWvXYtGiRcjOzsaQIUPslSD+/Oc/o7a2Fo888gjKysqQnJyM++67DyNGjIAgCFi3bh2eeuopbNiwAXq9Hn369MHMmTP9fn+IKLoIYjAKIxIRERERhRhTEYiIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTfj/DTsF6E/744kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Calculate residuals\n", + "residuals = y_test - y_pred_poly\n", + "\n", + "# Plot residuals vs predicted values\n", + "plt.figure(figsize=(8, 6))\n", + "plt.scatter(y_pred_poly, residuals, color='blue')\n", + "plt.title('Residuals Plot')\n", + "plt.xlabel('Predicted Values')\n", + "plt.ylabel('Residuals')\n", + "plt.axhline(y=0, color='red', linestyle='--')\n", + "plt.grid(True)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 52, "metadata": {}, "outputs": [], "source": [ @@ -4537,7 +4633,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -4546,7 +4642,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 53, "metadata": {}, "outputs": [ { @@ -4597,11 +4693,264 @@ "Common transformations include taking the natural logarithm, square root, or reciprocal of the variables." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Log transformation of the multiple linear regression." + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 57, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Squared Error (Log Transformed): 0.09804039958945562\n", + "R-squared (Log Transformed): 0.6469123715948973\n" + ] + }, + { + "ename": "AttributeError", + "evalue": "'OLSResults' object has no attribute 'coef_'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[57], line 29\u001b[0m\n\u001b[0;32m 27\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMean Squared Error (Log Transformed):\u001b[39m\u001b[38;5;124m\"\u001b[39m, mse_log)\n\u001b[0;32m 28\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mR-squared (Log Transformed):\u001b[39m\u001b[38;5;124m\"\u001b[39m, r2_log)\n\u001b[1;32m---> 29\u001b[0m coefficients \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mDataFrame({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFeature\u001b[39m\u001b[38;5;124m\"\u001b[39m: X\u001b[38;5;241m.\u001b[39mcolumns, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCoefficient\u001b[39m\u001b[38;5;124m\"\u001b[39m: model\u001b[38;5;241m.\u001b[39mcoef_})\n\u001b[0;32m 30\u001b[0m \u001b[38;5;28mprint\u001b[39m(coefficients)\n", + "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\statsmodels\\base\\wrapper.py:34\u001b[0m, in \u001b[0;36mResultsWrapper.__getattribute__\u001b[1;34m(self, attr)\u001b[0m\n\u001b[0;32m 31\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m:\n\u001b[0;32m 32\u001b[0m \u001b[38;5;28;01mpass\u001b[39;00m\n\u001b[1;32m---> 34\u001b[0m obj \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(results, attr)\n\u001b[0;32m 35\u001b[0m data \u001b[38;5;241m=\u001b[39m results\u001b[38;5;241m.\u001b[39mmodel\u001b[38;5;241m.\u001b[39mdata\n\u001b[0;32m 36\u001b[0m how \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_wrap_attrs\u001b[38;5;241m.\u001b[39mget(attr)\n", + "\u001b[1;31mAttributeError\u001b[0m: 'OLSResults' object has no attribute 'coef_'" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "# Log transformation of features and target variable\n", + "X_log = np.log1p(X)\n", + "y_log = np.log1p(y)\n", + "\n", + "# Split the log-transformed data into training and testing sets\n", + "X_train_log, X_test_log, y_train_log, y_test_log = train_test_split(X_log, y_log, test_size=0.2, random_state=42)\n", + "\n", + "# Standardize the log-transformed features\n", + "scaler_log = StandardScaler()\n", + "X_train_scaled_log = scaler_log.fit_transform(X_train_log)\n", + "X_test_scaled_log = scaler_log.transform(X_test_log)\n", + "\n", + "# Build a linear regression model on the log-transformed data\n", + "model_log = LinearRegression()\n", + "model_log.fit(X_train_scaled_log, y_train_log)\n", + "\n", + "# Make predictions on the test set\n", + "y_pred_log = model_log.predict(X_test_scaled_log)\n", + "\n", + "# Evaluate the model\n", + "mse_log = mean_squared_error(y_test_log, y_pred_log)\n", + "r2_log = r2_score(y_test_log, y_pred_log)\n", + "\n", + "# Display results\n", + "print(\"Mean Squared Error (Log Transformed):\", mse_log)\n", + "print(\"R-squared (Log Transformed):\", r2_log)\n", + "coefficients = pd.DataFrame({\"Feature\": X.columns, \"Coefficient\": model.coef_})\n", + "print(coefficients)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAIeCAYAAABOTExvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtLklEQVR4nOydeXxTVfr/PzdJ07QFbUkRWsBhUBEZdIQKFBEEUYdiQQq4jMo4wy6b7DrDKouOrILsm/5Gx8ERWmSqoF8dFabKIjoz6riMog5LQVpaoEuaJrm/P25vmuUu5yY3yU36vF8vXtrk5N6Tk3vPee5znufzcDzP8yAIgiAIgiCIOMcU6w4QBEEQBEEQhB6QYUsQBEEQBEEkBGTYEgRBEARBEAkBGbYEQRAEQRBEQkCGLUEQBEEQBJEQkGFLEARBEARBJARk2BIEQRAEQRAJARm2BEEQBEEQREJAhi1BEESMoTo5BEEQ+kCGLUE0EUaOHInrr7/e71+nTp2Qk5OD++67D2+88Ybu5ywsLMT111+PU6dOybY5deoUrr/+ehQWFup+/ieffBJ33HFHWMe44447gsbtxhtvxF133YVVq1ahrq7Or+2TTz6p6fjvvvsunnjiCaa2//73v/GrX/0KTqcTAHD99dfj+eef13Q+vZC6ngL/jRw5MiZ9C+Sbb75BQUEBunTpgkGDBsW6O5oZOXKk31jOnDkT27dvj2GPCMK4WGLdAYIgokfnzp2xcOFC799utxtnz57Fiy++iBkzZqB58+bo27evbufr168fXn31VVx11VW6HTMW3H777Zg4caL377q6Ohw5cgQbN27E6dOnsXr16pCP/eKLLzK1q6urwxNPPIGZM2fCarWGfD69WLhwIaqqqrx/P/XUU97XRZo1axb1fkmxfv16nD59GuvXr4fdbo91d8Jmzpw5GDx4MPr3749rrrkm1t0hCENBhi1BNCGaNWuGm2++Oej122+/Hb169cKePXt0NWxbtGiBFi1a6Ha8WNGiRYugcevZsyfOnj2LwsJCPPnkkxE33l955RVwHIe77747oudh5dprr/X7WzRipa6vWFNRUYGOHTuiX79+se6KLrRq1QqDBg3CypUrsWnTplh3hyAMBYUiEAQBq9WKpKSkoNdfe+013HPPPejSpQv69euH559/Hi6Xy/v+hQsXMGvWLPTu3Rs33ngj7r33Xuzdu9f7vlQowttvv40hQ4bgpptuQkFBAb766iu/cx45cgTXX389jhw54vd64Hasw+HAqlWrcPfdd6NLly7o1q0bfve73+HLL7+U/Z5ffPEFHn30UeTk5KBr16747W9/i3/961/M4xRIly5dwPM8SktLJd+/fPkynnnmGdx555248cYbkZ+fj927d/t9p6NHj+Lo0aOS31nE6XTihRdewODBgzX30e12489//jMGDx6Mm266Cf369cPKlSv9QigAoKioCIMGDcKNN96IIUOG4KOPPkLnzp3DDhEpLCxE586d8dprr+G2225D37598d///hdutxtbt25Ffn4+brrpJtx888148MEH8dFHH3k/+/zzz+Ouu+7C+++/j8GDB6NLly741a9+haKiIr9zvPTSSxg4cCBuvPFG9OnTB4sWLfJ6k6+//nocPXoUx44d8wt5+eGHHzB16lT07t0bN998M0aOHInjx497jymGyLzwwgvIy8tDjx49UFhYiOeffx4DBw7EO++8g/z8fO91/+mnn+Kf//wn7rvvPtx0003Iz8/3+y6AEBIxfvx4dOvWDd26dcOkSZNw8uRJvzZnzpzB5MmTkZOTg969e+OFF16QHNchQ4bgvffewzfffBP6j0MQCQgZtgTRhOB5Hi6Xy/uvrq4OP/74I+bNm4fq6mrce++93rZbtmzB/Pnz0atXL2zevBkPP/wwtm3bhgULFnjbzJ49G99++y2eeuopbN26FZ07d8YTTzwha6D9/e9/x9SpU3Hddddh/fr1yMvLw+zZs0P6LnPmzMHu3bsxbtw47Ny5E08++SS++eYbTJ8+XTIZq6qqCmPGjEFGRgbWrVuHNWvWoLa2FqNHj8bly5dD6sP3338PAGjXrl3Qew6HAw899BD27duHUaNGYePGjcjJycHcuXOxefNmAMK2fefOndG5c2e8+uqr+MUvfiF5niNHjuDcuXMYOHCg5j4uWLAATz/9NO644w5s2rQJDz/8MF5++WVMnDjRO0579+7Fk08+iW7dumHjxo341a9+hYkTJ8Ltdms+nxRutxubN2/G0qVLMW3aNFx77bVYuXIlNmzYgAceeADbt2/H4sWLUVFRgccffxw1NTXez54/fx6LFy/Gb37zG2zduhVt27bFk08+ie+++w4A8MYbb+DZZ5/Fww8/jB07dmDSpEl4/fXXsXTpUgDAq6++6jfG/fr1w7fffothw4bh5MmTmDdvHlauXAmO4/Doo4/i6NGjfn1fs2YNRo8ejaVLlyI3NxcAcPbsWTzzzDOYMGECnnvuOVy8eBFTp07FjBkzcP/992P16tXweDyYPn06HA4HAOFaefDBB1FeXo4//vGPWLZsGU6ePIlf//rXKC8vBwDU1NTgkUcewVdffYXFixdjwYIFeO211/Dpp58GjWnXrl3RqlUrFBcX6/IbEUSiQKEIBNGEOHbsWJDxxHEcOnbsiLVr13oTrS5fvoxNmzbhgQcewLx58wAAt912G9LT0zFv3jz87ne/w3XXXYejR49i4sSJuPPOOwEI2/Pp6ekwm82S59+wYQN+8YtfYNWqVQDgDXsQ/2bF6XSiuroa8+fP9yYD9ejRA9XV1fjjH/+I8+fPB4UGfPvtt7hw4QJGjhyJnJwcAECHDh2wa9cuVFVVoXnz5rLnEx8IRMrLy3Hw4EHs2rULeXl5kuEWhYWF+Oabb/DKK694z9enTx+4XC5s3LgRDz74IK699lqmLfzDhw/jiiuuwM9//nO2AfL5zrt378a0adPw2GOPAQB69+6Nq666CnPmzMHBgwdx++23Y+3atejfv7/XGOzTpw+SkpI0/y5KTJgwwS8U4KeffsL06dP9vPA2mw1TpkzB119/ja5duwIAamtrsWzZMvTq1QsA0L59e/Tv3x8ffPABrrnmGhw5cgRt2rTBww8/DJPJhB49eiA1NRUVFRUAhHENHOPFixcjKSkJf/rTn7y/e79+/ZCfn48VK1bgtdde8/bp7rvvxogRI/y+S21tLRYuXOi9fr/77jusWrUKy5Yt87Z1u92YOnUqvv/+e9xwww1Yv349bDYbXnzxRW9/evXqhTvvvBPbt2/HE088gaKiIpw5cwavv/46rr/+egDATTfdhLvuuitoPDmOQ5cuXYK8wgTR1CHDliCaEL/4xS+8ST7nzp3D2rVrUV9fjzVr1vgloXz66aeora3FHXfc4WfQiYZvSUkJrrvuOvTs2RPPP/88vvrqK9x+++3o27evbIa/w+HAF198galTp/q9npeXp9mAslqt2LFjBwDBQPrxxx9x4sQJvPfeewCA+vr6oM9cd911aNGiBR577DHk5eV544rnzJmjer69e/f6hVgAgMViwV133YVFixZJfubo0aNo06aN16gVGTJkCHbv3o1//etfuP322xm+LXDy5Em0adOGqW1gHwAEhTDcc889+P3vf48jR46gffv2OHPmDB5//PGgNnoath07dvT7Wzz2hQsX8OOPP+L777/H3//+dwDBv5+v0d+6dWsA8Hp1c3Nz8eqrr2LYsGG4++670a9fPwwePBgcx8n25ejRo+jfv7/fw4zFYsE999yDDRs2oLq6WrbfIt26dfP+f2ZmZlA/09PTAQCXLl0CIDyc9OzZEzabzXtPNWvWDLfccgs+/PBDAMDHH3+Mdu3aeY1aAMjKypJ96GnTpg0++eQT2e9JEE0RMmwJogmRlpaGG2+8EQBw4403omvXrrj33nsxatQoFBUVeT2PlZWVAIBx48ZJHuenn34CIGzTbt68Gfv378eBAwdgMplw6623YtGiRUHb8xcvXgTP80HezVCTrg4dOoSnn34aJ06cQFpaGq6//nqkpaUBkNaFTUtLw5///Gds2rQJb775Jnbt2oWUlBQMGTIEc+fORXJysuy5+vfvj0mTJgEQPGUpKSlo06YNbDab7GcuXrzoNXh8EV8TDR4WqqqqkJKSwtzetw8A0LJlS7/XLRYLMjIycPnyZVy4cAEAgtQCAj8TLoHH/+yzz/DUU0/hs88+g81mw7XXXus13gN/P9/vbjKZ/NoMGjQIHo8Hr7zyCtavX4+1a9eiTZs2mDlzJu655x7Jvij9NjzP+6k9SLUDpBUflK6HyspKvPnmm3jzzTeD3hPviYsXL0p6/1u2bImysrKg11NSUkIOoyGIRIUMW4JowtjtdixYsABTpkzBsmXLvF60K664AgCwcuVKtG/fPuhz4mLfvHlzzJ49G7Nnz8aJEyfw7rvvYuPGjXjqqaeCdDbT09NhMpmCFmjRiBYRPW0ej8fv9erqaq/h+r///Q+TJk3CgAEDsGXLFlx99dUAgD//+c84dOiQ7Pft0KEDVqxYAbfbjX//+994/fXX8Ze//AVt27aVNeLFvosPBKxceeWV+PHHH4NeP3/+PAAgIyOD+VgZGRnehwmtfRDP2bZtW+/r9fX1qKioQEZGhtcDKsZ5igT+rSdivPP111+P4uJiXHPNNTCZTPjggw/w1ltvaT5efn4+8vPzcfnyZfzjH//Atm3bMHv2bNxyyy1o1apVUPsrr7xS0lD0/W1CGW8lmjdvjltvvRW/+93vgt6zWCze80pdM4H3iMilS5c0XUcE0RSg5DGCaOLcfffd6NOnD4qLi71JX7/85S+RlJSEc+fO4cYbb/T+E+MuT506hdOnT+P222/HgQMHAAhG49ixY3Hrrbfi7NmzQedJTk5G165d8fbbb/t55MTtZxHRE+arNHDx4kVvshAAfP7556irq8P48eO9Ri0Ar1Er5bE9cOAAcnNzcf78eZjNZnTt2hWLFi3CFVdcIdnfcOnevTtOnz7tl2kPAPv27UNSUhJuuukmAI0eSCWys7Nx9uxZzRXKevToAQD429/+5vf6G2+8AbfbjZycHLRu3RpXX301/u///s+vTSgGJisnTpxAZWUlfvOb3+C6667zjsHBgwcBBD/UKDFt2jRMnjwZgGA85uXleRPf5IzT7t2747333vPzdrrdbrzxxhu48cYbI6IT3KNHD3z77be44YYbvPdTly5d8OKLL3rHPjc3F6dOncJnn33m/dyFCxfwz3/+U/KYpaWlIYWoEEQiQx5bgiDwhz/8AUOGDMHSpUtRVFSEjIwMjBkzBmvXrkVVVRV69uzpjcnlOA6dOnVC8+bN0bp1ayxduhRVVVW4+uqr8fnnn+ODDz7A+PHjJc8zY8YMPProo5g8eTIeeOAB/PDDD0E6nNdffz2ysrKwfv16NG/eHCaTCVu3bvXbjv7FL34Bi8WCFStWYNSoUXA6nSgsLMT7778PAH5Z9SLdunWDx+PBpEmTMG7cOKSlpWH//v24fPlyRLRhhw0bhldeeQWTJ0/G1KlT0a5dO/z973/Hnj17MHnyZK9X/IorrsCnn37qldcSvay+9O7dG1u3bsV///vfoJjPf/7zn5JFHm677TZce+21KCgowPr16+FwONCzZ098+eWXWL9+PXr27Ik+ffqA4zhMnToVs2bNwsKFC3HXXXfhq6++woYNGwCwGd5a+fnPf45mzZph8+bNsFgssFgseOutt7xSaLW1tczHys3NxcKFC/Hss8+ib9++uHTpEtavX4/27dujU6dOkp+ZPHkyDh48iN/85jcYN24crFYrXn75ZZw8eTJiFb0mTpyIBx98EOPHj8evf/1rJCcn49VXX8U777yDdevWAQDuvfde/OlPf8LkyZMxffp0NGvWDJs2bZI09Hmex6effmqY6m4EYRTIsCUIAh06dMDIkSOxc+dOvPzyy/jtb3+LadOmoWXLlnjllVewfft2XHnllejVq5e3QhkgVHRavXo11q5di4qKCmRlZWHy5Mmy2/q33HILtm3bhtWrV2Py5Mlo27Ytnn76aUyYMMHbxmw2Y926dXj66acxY8YMZGZm4tFHH8WJEye88lo/+9nPsGrVKqxfvx6PPfYYrrzyStx888146aWXMHLkSHz88cd+CTiAEMu7fft2rF27FnPnzkVtbS2uu+46PP/8814ZJz1JSUnBSy+9hFWrVmHdunWoqqpChw4d/DLnAeDhhx/G559/jrFjx+KZZ56R1Kq95ZZbYLfb8cEHHwQZtv/4xz/wj3/8I+gzzzzzDK699losW7YMP/vZz7Bnzx7s2LEDV111FUaOHIlJkyZ5jdbBgwejpqYGO3bswJ49e3Dddddh7ty5mDt3LlJTU3UeGcGzunHjRixfvhyPP/440tLScMMNN+Dll1/G2LFj8fHHHzOXQn7wwQdRX1+PXbt24ZVXXoHNZkOvXr0we/ZsSW1mQEgkfOWVV7B69Wr84Q9/AMdxuOmmm/CnP/0Jt9xyi55f1UunTp3w5z//GWvWrMGcOXPA8zw6duyIDRs2YMCAAQCEpMj/9//+H55++mksW7YMHMfh/vvvR7t27YJCQ/7973+jsrIyJAk4gkhkOF7r3hZBEAQRdXbu3Ildu3bhrbfeUsz4D4Xi4mJ07twZHTp08L72/vvvY/z48Xj99ddlPZ9E7Pj973+PixcvYuPGjbHuCkEYCoqxJQiCiAMeeughuN1ub0yznuzbtw9jx47F3/72N3z88cfYvXs3FixYgB49epBRa0DOnDmDt99+O0iijSAI8tgSBEHEDZ988gmefPJJFBcX65rgVFFRgVWrVuHgwYO4cOECMjMz8atf/QpTp071KlEQxmHGjBm4/vrrZWPZCaIpQ4YtQRAEQRAEkRBQKAJBEARBEASREJBhSxAEQRAEQSQEZNgSBEEQBEEQCQEZtgRBEARBEERCQIYtQRAEQRAEkRBQ5bEGyssvw4j6EBwH2O3NDds/o0PjFx40fuFB4xceNH7hQeMXHjR+4aH3+InHU4MM2wZ4Hoa+cI3eP6ND4xceNH7hQeMXHjR+4UHjFx40fuER7fGjUASCIAiCIAgiISDDliAIgiAIgkgIyLAlCIIgCIIgEgIybAmCIAiCIIiEgAxbgiAIgiAIIiEgw5YgCIIgCIJICMiwJQiCIAiCIBICMmwJgiAIgiCIhIAMW4IgCIIgCCIhIMOWIAiCIAiCSAjIsCUIgiAIgiASAjJsCYIgCIIgiISADFuCIAiCIAgiIbDEugMEQRAEQRgXtxs4fNiMc+c4tGrFIzfXDbM51r0iCGnIsCUIgiAIQpLiYgvmzUvGmTONG7zZ2R4sXVqH/HxXDHtGENJQKAJBEARBEEEUF1swerQNZ85wfq+XlnIYPdqG4mLyjRHGgwxbgiAIgiD8cLuBefOSwfMA4G/Y8rzw97x5yXC7o983glCCDFuCIAiCIPw4fNjcEH7ASb7P8xzOnDHh8GEKtiWMBRm2BEEQBEH4ce6ctEEbajuCiBZk2BIEQRAE4UerVryu7QgiWpBhSxAEQRCEH7m5bmRne8Bx0oYrx/HIzvYgN5eCbAljQYYtQRAEQRB+mM3A0qV1ABBk3Ip/L11aR3q2hOEgw5YgCIIgiCDy813YscOBrCx/wzYri8eOHQ7SsSUMCYnQEQRBEAQhSX6+C3l5Lqo8RsQNZNgSBEEQBCGL2Qz07k2xtER8QKEIBEEQBEEQREJAHluCIAiCIIgI4XaDQjmiCBm2BEEQBEEQEaC42IJ585IbqrgJZGd7sHRpHSXfRQgKRSAIgiAMi9sNlJSYUVhoQUmJGW4K9STihOJiC0aPtuHMGf/qbKWlHEaPtqG4mHyLkYBGlSAIgjAkxcUWzJ8PnDqV6n2N1dtF279ELHG7gXnzksHzAOBv2PI8B47jMW9eMvLyXHRd6gx5bAmCIAjDUVxswahRNpw65f86i7eruNiCnJw0FBSkYsKEFBQUpCInJ408ZETUOHzY3BB+wEm+z/Mczpwx4fBhsmr1hgxbgiAIwlD4e7v84XnBUJg3L1kyLIG2fwkjcO6ctEEbajuCHTJsCYIgCEMRqrdLbfsXkDeICUJPWrWSeCoLox3BDhm2BEEQhKEoLQ3N20Xbv4RRyM11IzvbA46TNlw5jkd2tge5ufSUpTdk2BIEQRCGQUgYS2ZqG+jtou1fwiiYzcDSpXUAEGTcin8vXVpHiWMRgAxbgiAIwhCI8bHl5cqGp5y3i7Z/CSORn+/Cjh0OZGX5X29ZWTx27HCQjm2EoCh6giAIIuYoxcf6ouTtErd/S0s5b0xt4Gezsnja/iWiRn6+C3l5LpKeiyJk2BIEQRAxpzE+Vhm7ncfy5dI6tuL27+jRNnAc72fc0vYvESvMZqB3b3qYihYUikAQBEHEHNa418WLlYsz0PYvQTRtyGNLEARBxBzWuNdAg1UK2v4liKYLGbYEQRAJTjyUl9U7Ppa2fwmiaUKhCARBEAlMvJSXJXkkgiD0gAxbgiCIBCXeysvKxcdmZ1N8LEEQbBhrViMIgogzjLrNr1ZeluN4zJuXjLw8lyH6K+IbH/vTTxw6dkzBDTdUw0RuGIIgGCDDliAIIkSKiy2YNy/ZT6YqO9uDpUuVM/ejgZp8llBelsPhw2bDxaKK8bEcB2RmAmVlaDDQCYIglKFnYIIgiBAw+jY/lZclCKIpQoYtQRCERtS2+QHhfXcMHaFUXpYgiKYIGbYEQRAaadzml/Z2Ctv8Jhw+HLvgVVE+K1BhQITjeGRne6i8LEEQCQUZtgRBhITbDZSUmFFYaEFJiTmm3sloY7RtfqnfguSzCIJoilDyGEEQmjFy0lQ0MNI2v9pvsWOHo+H9RiM7K4tvMr8VQRBNC0N7bC9cuIC77roLR44ckW3zwQcfYPDgwbj55puRl5eH9957L4o9JIjEQ80Ta/SkqWhglG1+lt8iP9+F48erUVRUg82ba1FUVIPjx6vJqCUIIiExrGF7/PhxPPDAA/jf//4n2+aHH37AlClT8Pjjj+Pjjz/GlClTMG3aNJw7dy6KPSWIxCGwStXQoalo3x5eYzUekqaigRG2+bX8FqJ81rBhLvTubQydXYIgiEhgSMO2qKgIs2bNwvTp01Xb3XLLLbjzzjthsVgwaNAgdO/eHa+++mqUekoQiYOc9+/0aWDUKMH7Fw9JU9FCrkpWVlZ0qmTRb0EQBBGMIfcMb7vtNgwePBgWi0XRuP3222/RsWNHv9euvfZafPXVV5rPyRlUylHsl1H7Z3Ro/NhQ9v4J4zd/fjLmzatjOt5PP3FNYswHD3Zh0CCXbOWxSF5/P/3EdtB4/i3o/g0PGr/woPELD73Hj/U4hjRsW7ZsydSuuroaKSkpfq/ZbDbU1NRoPqfd3lzzZ6KJ0ftndGj8lHn/feDMGfn3eZ7D6dMcHI4U+UY+dOyYgsxMffqmBbcbOHQIKC0FsrKAPn0QlW33e+9Vfj8S11/AM71Cu9j8FnpC92940PiFB41feER7/Axp2LKSkpICh8Ph95rD4UBaWprmY5WXXzZkyUaOEy4Ko/YvmrjdkPWMyUHjx8Y331gAqButNlstsrOTUVrKeeM4fRGSpnjccEM1ysoi0FEFiostmDs3WB1g2bLYZf9H8vq74QYgOzvNkL+FXtD9Gx40fuFB4xceeo+feDw14tqw7dixI7744gu/17799lt06dJF87F43ti1yI3ev0gTrrxUUx8/Na66im1wWrcWZKJGj7aB43g/g0pMmlqypA4mU3THW4wPDjxnaSmHUaNsUYl5VSIS15/JBEP+FpGA7t/woPELDxq/8Ij2+BkyeYyVIUOG4OjRo3jzzTfhcrnw5ptv4ujRo7hXbV+QiCtIXiryaJGvinXSVCBNWanBaL8FQRBErIk7i6Br16546qmnMGTIEFxzzTXYsGEDVq5ciblz56JNmzZ4/vnn8fOf/zzW3SR0Qs1o4Tge8+YlIy/PRRJGYSDKV0l7/4T/+spX5ee7kJcnnzQVTRrVAaQR1AE4HD5sRu/eiWfdGum3IAiCiDWGN2y//vprv78//fRTv7/79OmDPn36RLNLRBRp6kZLNJGrUtW2LbB4sQP33OPv/RO1UWON0crbxoJQf4tQ4tYJgiCMjOENW6JpQ0ZLdAn0/rVuzSM/PxUVFS7DxpgZqbxtPNHUyyITBJGYkGFLGBoyWqKPr/eP46IjlxUOYnywkjpAVhYf8fK28YRSst3o0bFPtiMIggiVuE4eIxIfLUlNRNPECOVt44mmnGxHEETiQ4YtYWjIaCFYMLI6gNsNlJSYUVhoQUmJOeYGI5XiJQgikaFQBMLwyCU1ZWXxFA9IeDGiOkBxsQXz5wOnTqV6X4t1HCvFrRMEkciQYUvEBUY0WgjjYRSlBsC4cawUt04QRCJDhi0RNxjJaCEIJfzjWP2Jtf4yJdsRBJHIUIwtQRCEzhg5jjUe49aNFqdMEIRxIcOWIAhCZ4wex2rkZLtACguBbt3SUFCQigkTUlBQkIqcnDQqpU0QhCQ0MxAEkbDEqrJWPMSxhhK3Hu3xLC62YNQoBIVMxDpOmSAI40KGLUEQCUksK2vFSxyrlrj1aI+n2w3MnSuvtxvLOGWCIIwLhSIQBJFwiIoEvvJwQKOnL9Lb2P5xrP7vGTWOVYlYjGdjnLI0TUFvl2KLCUI7ZNgSBBE3sCz0RqmslZ/vws6dDrRp4/+6EeNYlYjVeBo9TjnSFBdbkJNDscUEoRW6QwgiTolV/GisYN0KZ/P0cTh82KxZPk7rmOfnuzByJFBcXIOzZ+Pzd4rkePoSOLYtW4YWp5wI94VRNZAJIh4gw5Yg4pBYxo+GQ6hGh5aFPlKevlDHXIxjldK0jQei4TmVGtusLA8yMjyorDRJjp1UnHK83he+qHnIKbaYIJShUASCiDNiHT8aKqFurWrdCmf19LG2E/sej2OuB5FWeJAb27NnOVRUcOD5YL1dIDhOOVF+o1hpIFM8L5EokGFLEHGEUeJHtRKO0aF1oWf1jLK2i9cx1wtR4SHYuBTgOB7Z2Z6QFB7UvZOA3Q6kpweem/N7LZF+o1jEFlM8L5FIkGFLEHGEkStayRGu0aF1oS8rY2vP2i4ex1xPIlmpjGVsy8uBigoOopdWpLKy8aEokX6jaGsgJ4qnmyBEyLAliDgiHjPFwzU6tC70ehsG8TjmehOpSmXaxkz+oai0NHF+o0h6yANJJE83QYjQoxhBxBHxUNEqkHANQ63FDvQujqB1zH0T5Fq35pGfz/RxwxNKpTI12K9TpYciDuXlbNeYke4LOUQP+ejRNnAc73cNq3nIA5Mze/VSvsajpXhBENGEPLYEEUdE05ujF+Ea41q3wvXeOtcy5oGxikOHpqJ9eyTMdq6o8DBsmAu9e4cvo6U2toHhB3LY7Xzc3RdKhOIhl4qT7dYtDYWF8ueh3QgiESHDliDiCNFoE7YOgzPFed54Fa30MMa1LvR6bp2zGsr790vHKp4+DYwaRbGKUrCMLQtZWXzE4oBjRX6+C8ePV6OoqAabN9eiqKgGx49Xyxq1cnGyI0bIP1jF4w4QQajB8Xy8qivqS1nZZUPqTHIckJnZ3LD9MzqJOH7FxRaMGmVr+Mt3IRO+4M6d+om36zV+4sILQHJrldXY1KqDq6dYv5JGal6eCzk5aQ2GhXz4w/Hj1XFlXEULubFdsqQOCxem4PRpXjGsRBzXRNCx1YrbDZVrTxiDjz8OvvbEz6qF7TTV6zYR149oovf4icdTbUeGrYBRL1y6scIj0cZPfRHTdyHSc/wSweiQM5RLSswoKEhV/XxRUU1UYhXl+in1OmCMSl1SfbNYgIMHm2PECOHiY3koSoTKY1oI99rT66EzEUm09SPaxMqwpb0xgogj4jnZIxLJR9FGjDENxEixinIPEAUF9SgqSvJ7PSPDAwCoqIj9w4bc2A4bJuxCzJ2b7LfVLoYfBPZT7jiJSrjXnhi2I1wz6uNLEEaHDFuCiCOMZECFQqIaHUaJVZQrPXzmDIcNG6xB7QV9WH+kyhTHmvx8FwYOjO+Hokihx7WXCA+dBCFChi1BxBFGMaAIf/SSGAtnG11Jk1T4m5d53R+h4hePefOSkZfnippxIxeKIJKoD0Xhon7tgUkRgsaXSBRIFYEgdCIatdbjUe4rUhiptr1ydr/wX7Ws/HDLmqoVwpB/PZhoV+qikq6hE8nKcAQRj5BhS8QlRjJqAGFh7tYtWENS74WZFjEBIxpCchJjmZnAuHH1yMjgZa9TJbmmUaNsWLnSqnqtRyL8JFoxwUrfXUmHlRCQu/ays3ns3g3DhJQQRDQgVYQGjJr1SFmZwWjJro/G+EVTfsv3nNFQGAh1/MRt5dJSoSqU3d64FR+u0e0fR2q8LG7xux84YMbu3UkoL1f+jdSULgJDCOR+Z9bseC1EWsWBReWjbVsOx45dhoncMKpIVR5r1YrWj1Ch9Tc8SO4rxhj1wqUbyx+tRk2kx8/tBjp3TmtIwpE2Slq04PHFF/rrQEZD1iiU8ZMyukV8jbJQ+h9tubNQ0XKdajVIlWSulA1kdqI1jqzffe/eGtx6a+KH1+gNrR/hQeMXHrEybOkZmIgblJJjxKSJefOSoxqW8OGH5gapJPm4xgsXTPjwQ/2tA73Lm+qB3LayyJkzQsb9U09ZQwolUIsjjXZsqBRar1Ot2/1y17pvmIqGoyGwgp1cSEskwn/iXeWDIAjjQYYtETcY0agpKWE7F2u7eEY5K1+EA88DGzZYJWMqR49WLj0bD4aQ1us0FAULuWs9P9+FOXOczMdp0YJHRoZ62eFIxTSTygc7RssrIAijQimnRNxgRKOGdXvFyNtYeoU0qBWPaETe4FOTmQrFEIp2JSqt16maXJPWc02f7sRLLyWhtFQ+PCY9XTBexe19pfGR08bVQ++WRSatbVuuSah8KJEIVfsIIlqQx5aIG4zo3WFNrDGqPqSenjg9HijUvO5qcmeC0eaBxyMYtLFQT9B6nSopXYRyLrMZWLasDhwnrZzBccDq1XXo00cwYJVCWiId/sOi8vHcczBEmE2sUFKNUNvhIIimCBm2RNxgRA3X3r3dDWVJ5Q2tjAyPIQ1bvRdMPR8o5IxkZSNQUA+orDRh+PBUdO6chlGj5L/fvn2WiGzthnKdysk1yV1Xate63PGkwgyUiEb4j1Jfd+50YNiwkA8d9xgxr4AgjA496hFxg2jUjB5tA8fxfluXsdJwNZuBVavqGuS+Ais7CX1atcp4urJqC6YYEjBoEPs2p2jQ6ZGVr1b+U6q2fSCN5WKlDAIe48bZ4PGoy2hpJdTr1LesaWkph4MHzdi1KwmB1xXrta5HmdRohf/I9dXSxFcotfAe4cGCw+HDZkM+PBNELCCPLRFX6OWJ0rtPO3fKe5yMGAMXCU+caNAJlbbkPdhSmfgirF73/HwXjh+vxu7dNUhPFz3mUuVi5ZPYfI1aQN+t3VCvU7NZMMiXLk3Grl1Wye+g5VoPVzkjmuE/RlT5iDVGzCsgCKPTxJ+HiXhED09UU+iTEpFaMNW8qdnZPAoK6rFxoxVAeF53MT60slKf53OW5DUt5Oe7MGiQC19+2RzffFOLq65SvybkErXEB4E5c5yYPt0ZteuKJblLLLxB6I8R8woIwuiQYUvEJaJ3x0gYsU9yRHLBDNxSl6o8lpPjCTJ+s7J4zaEAenuqxK3d7duT0LIlH/YDitkM9OsHdOniUlXGUJZLE4zul19OwvTp7HJe4cIaVgEIUlTx8FAXT9CDBUFohwxbgmiCRHrBVDPy9fJwR8pTNX++zfv/0ZJVMmo8pZwXXnwQAcSKZ/pKUbndwJEjZtTUAKmpZvTs2fSMZSPmFRCE0aEYW4JogrDILEV6wdQjppJF/ks+3peNaMkq6RkeoreYvxjTXFRUg82ba1FUVIPjx6sBICJSVKJM29ChqXjoIWDo0MjLtBkVI+YVEISR4XjeyNLx0cOotaCpVnV4GGX8ol0kgBU14XejjJ8SYlwqgCCPFs8DGRl8Q9ljFqSS0Bo92MePV2v63bSMX0mJGQUFqarHLCqqUfTYRkvM3+0WPbXSSXqhjpl/nHGwh7KpGnOhzCHxcP8aGRq/8NB7/MTjqbYjw1bAqBcu3VjhYYTxM3rVIKUF0wjjx4LSGN99twu//GUaysvDlyFTMyoD0TJ+oqGoFh6iZChG0yjUyxD3JVLGcjQx0kNsvNy/RoXGLzxiZdg2vX0dgogikSxHqhfxlPQmh1LMbkmJGeXl+kRdqYUBBBo1vXqxj2u48ZSs2sR6KD4AkVHWMGqcMStGfYh1u4GPPjKGsU0QkYZibAkiQlDVoOgiF7Orp3KCUrKaVPnebt3SUFjIfvxw4imjUSXMl0goa8SzbqtRS98WFgLdukW3rDRBxBIybAkiQpSURNfQIKRhNazs9tDLNSsZNSNGQJMRIZeopebxi7ZRGIkS1/Gq22rUh9jiYgtGjIDhjG2CiCRk2BJEBCgutmDMGJt6QxjT+5RIsBpgzz4bmkpEJIyaUBQjMjPZjD3WdmpEQlkjEsZyNIi2t5wFtxuYO9d4xjZBRBoybAlCZ0TvXWUlm8FqNO9TosFqgA0ZEloYgLpRA5w+zW7UhCLV5XYDX3zBNp1zITxHyfVJbykq8bcSjLHA+0JQuTCibqsRQyjY4pVpx4hIPGgfgiB0RLl6lD96VA0yUga2kVErMiAaYKEUjtDTqAkl+UjqM0qcP6/NuFLrU7yVk44ERgyhMKKxTRDRgAxbgtARNS9JI+EXQTBqBrZRYTXAtKpE6GXUhKKgIfcZPfqrpU96KWuID4YC0mWF9VR20Asjlr41orFNENGAQhEIQkdYvR/p6eFVDTJqBrbR0aPaWSDqcaFAmzbKcaFuNzBzpnI85Jw5ydi9uzEUQMvugNAPbfGpsUiIMmKsKgtGqOQXSON1Kf2+UeOVCSJcyLAliBCRijtk9X5s3epARgYfUslTo2ZgNxV8f/eDB8348EMz8vNdknGhrEbNmjXWhupo8gZdWZkJEyc2yjWtWWNVNAJD6YcvkTIylWKIY7F9HmpMc+BnjFb61mwGli0zlrFNENGA3DoEEQJyYQCLF9epbkmmp/N4/HEbSktDCyGIdxF7FrTEDkczzlgtntVk4uHxNP6dnc1j3ToOffu6ZMMF3G5g69YkTf0oLeWwfLmVuX1gLLEabjdw8CDbIGoxMtXCZ8LZPg/lOtArptn3M0aKN87Pd2H3bmDKFF4xtpwgEgkybAlCI0pxh2PH2jBxohMbN1olq0fxPFBREWwIaKlEluhJIVqMjWjGGbPEs4pe2/HjnRg40I1evdxo1ao5ysrkP3P4sBmVldo2z4Tris0IXLLEgTFj6pmNK63JaL5GppJxqXTfjBplw/jxTtx1lxtZWR6cPastVjVUA1WtPwMHupm/g+/9a6QHymHDgN69q6nyGNFk4HieKiADMGwtaKpVHR56jx9rLfvFi+uwYIH/QpuV5YHDIRq28p89frxacdEpKTGjoCBVta9FRTVhL7B6jJ8WT5q/4RBcUtbX8NfSNlzUfndffH9Hi0V9/AoLLZgwIUWXfvrDIztb/XryRW5MpQi8XpWMy7w8F/P4ZWR4UFHBgeMQ9GAIBP+u8n0W2u/cGXwdaPk9Wb8D6/0bTYy4fsSTkosRxy+e0Hv8xOOpQR5bgtAAaxiA3S4scL4TuMcDDB8ub5CyhhAYMQNbDi2eNLXYYd+MeIC9rR6LJrvaRePv+OGHZpjNQE0NkJpqRs+e0gt45LLSOTzyiJP5+2uVqgMaYzTVPJmzZzuZx0/Uf05P5/12N6S2z5X7LHi1Z84Mvg60/J6s3yERQoAiDSm5ENGAkscIQgOs2/v791uCMvBZ9UPVzmHEDGwptCo3aElWinb2fChhHaNH2zB0aCoeeggYOlRI+JJSq1BTVQiHDh086o0aUBtTX3wToliSGbXEEAsPJoDNBuzZU4NXXgH27pUuK6zeZw4VFSasWeMfj6zl9+R5DjwPbNnC9h3iNQQo0pCSCxEtyLAlCA2wqx4kBU3ULVuyfZalnVIG9uzZTjid0Ky2oCdalBvEDPP169kNB61xxqFkvvsSilc1sPKc3AKu9KAibKeHbvBq6TfrmM6YUednZLI8ZIQSQ1xaaoLZDPz615CVZistZevz1q1Jfr+59t+Tw8WL2mOOAwn3OoxXSMmFiCb0iEQQGlALA/AlcCucNcaItV1gBvaJEya89FISli9P9raJ1TYfa8jGmjVWvPxyEvO2MCAY/ibG5q1a8Zq3P31jADMzeXCcYPTZ7R6Ul6vHZDYaouwhEnKV0Vq04HHhAheUiOhv7OoTjsJq7PXp429ksms3e3Dxovp944vasYXfQ53KSpM3REB8mEpP9zQ8fGjxsEr/toD6mDflbfimoORCGAfy2BKEBvxr2SsRvBVeVsa2gLK2E/vTu7cbViuwYoU1yIMVq20+VmNn+XJr0NakGjwvPGBkZHgg783k0aKFYIhq2f4sLrYgJycNBQWpmDAhBSNGpGL48FRMnJiC8nKT99gKvYNg9GgPkcjPd+H48WoUFdVg8+ZaFBXV4IsvqrFzZ7BnPjubx6RJTnCcfuEo6oUmpAX9WQ3icePq/frHgtqx7XZtHmnx9x0xIrXBi8yuLuGPtjFv6tvwia7kQhiLxL6bCCIC5Oe7MH68E1u2JKu29Z2oI1XiUkvSVbTibrV9B22L2T/+YcZPP3Gor1du5/EA8+crbX8KiUVXXMGjd2839u/XXp42mPAWcKnStEraqDk5niAvb6gapeJD2+jRNkmpOkDacOve3e2j3yv1vQQP+9SpTnTqFNxfKVg9zoEGvxInTpiwYoU1Ir+v0pgb7f6MhSoBlfclogkZtgQRAgMHurFli3o734k6UmoGRtzmUw/ZUPZsKvHcc+oPFACHykoOlZXKbSoqOIwYkeqVYlNXBBAM4ubNPXj22TqcOGHCypVWn/fY0LqASxm8gLLRGwpyIRFKhtuxY2Z4PMpj5vEI7Xz7u3+/xSepjM2IDiQ3V9C9FXYq5PrAo3VrHi+9lKSonpCWxqO6Wss1KfRzzhwnpk+XV58w0v0Zq3CIcOa+eJIHI4wBhSIQUcPIiRNa+xbKtm2k1AyMuM3H8l2NRGkpp1jS1h8Oly+bYLfzeOWVYMNM8ZMy2/nhEKi+Ee6iLxUSIaVIIKL1+hP7u3RpHXbudCA7O/QStL5lY6VDCoTXfvOb+oZKf/LqCdXVJths2nYaOA54+WXlpEej3J+xDIcIde4LDA0Sy0kneugGER5k2BJRwcgTVCh9C3WijkQ9eaNu88l9V7udN2CyjHajYs0aK7M8loBQeS7aUmyhPFBqMZbDuf60GtFS5Oe7sHOnAxkZwcfPyOCxc6eDWfbM4dAa7y3ETG/fniQ7vpG8P1l/W7cbmDkztqoEWue+ph6XTIQOVR5rwKiVRRKh8kk0K0QFojZ+4fYt1K09PbfX9u2zYNw4m8J2sLYKVL59a92aR35+Kioqwq88tn+/BXv2WHySsIS+hWJUqsFxwvazUqW38NHad/lKWJEiGlvPYhUvtW3mUCpysc5/bjfw4YdmHDpkxunTHLKzefTp4/Ya5azV+vQgcHwjNT4sv604fk8+WYdnn1UP4dGjWqEaLHMfa4XHSFd5S4T1N5bEqvIYGbYNGPXCjfcbK9YTlNL46dW3WMaAsZVAFTLoFy50Mh0vcLFs2xZYsqQW99wTuiGkVvZUT8NTfCiZONGJDRu0x7+yo90oV7um9LyWovlAKZ4LUC+Dq+U7ssx/LAaemnGpJ0rlnwG2MsFqsP62HAdkZDRHZqaHSUt4+vQ6XH+9J+axrNEsG65EvK+/sSZWhi2FIhARJdoVorSgV9/0jnFkRUsJ1I0brapbd3Jbf6dPA6NGhb71p1721J/MTA8GD1Y3wuXIyuKxbZsDRUXa4l+1Ix6XfcZWuqb0DNeJtiA+6zaz3iFJrNvV6kUwQiX4s1Ljq2cIktbf9tAhMBfIWLMm2RChYkaJSybiEwpSISKKkSeo/fvZLn+9+6aXV4693r2Q9a0kKaS8WApPyqFKEqn3UzjfjBl16NPH7U2sysmxMHnYOI6H3c5j8eI6XHWVUFChpIR1bPQhuICCMuI15XQCL7yQhPffN+Pdd4OvxzNnOIwaZcO4cfXIy3MxXyuxyMRXU2jw9zI2Ihqheht4gTJacooPmZm8Ju1of5Qeijl8+KEZJhO843H0aDWOHQvv3tfy2952mxulpaxH9t+BCPV30QOj5g0Q8QEZtkREMeoE5XYDe/awXf569k3PmEet9e7PnOGwfLkVffu6gxbUSBpCrP3s2NHjd2w5TVVfRO/bqFH1+Ne/TNi9OykghjfyzJnjbKiepk3u66mnrNi0yaoqlQUAW7dasXWrlTl+++BBNmtJ74c2OVmyULRc3W7gyBEzamqA1FQzevYM/5qVMr67d3ejR4/IhCmMHm3z85aKv9+wYaEbilqdBVlZrEeOvcauSKSkEYmmAYUiEBEl1GpGkebwYTOTAZSZGV7ffLOWV6606prlG4rBvWZNsuQ2YyQ96y1bhvZwI7d960tGBo/0dB7Llydjy5bkqBq14rU7fboTR49WY8kSB373OyeuuEK+Ipr4mbffNmPDBmtDUQN2Aq+VwKz4ffuErf41a1i0fkMrBhKKZJ/WsB8xZGHo0FQ89BAwdKg+16zUbonVGkqYAtu4CSV7G9Ejo1+rs6BPHyjOwUrEKlQsUtKI0cLI0pZNAfLYEhEl1GpGkYZ1URw+vD6s5J1A76xUwpHoGZkzJxkOB7yeCBZxeuUiCPIEbjNGyrNeXGzB3LlqRhaPjAxp70ugh61lS0Eyq6yMw4kTJixfbpU4njocx6NZMx6XL4vjpj0JDBCu3f375X5n/99a/MyiRXWYMMEW0nl9vWgeD7BggdR52fqv1eMVzm6DFiOUNWRB6zWr1n+pMAUl3VsBuQRC6aRIPbygWr2ZotbvqFFSux9sCZCBv180EmZDKRZiBGJRBIOKWPhDHlsi4kRCuzVcWBfFgQNDe9SWS2pR8liVlZkwcSJ74oZyQowygUkmap51ADCZeJSXsxti4hgIVaGUqajgZGOexe3te+91wWQSjNqWLYVKUgKhGaVr1woFAux27Z4s8doFIPM7y3+mtJRrCD8Ibdtb9KKNGSN3XvWYZEDbA2W4mqKs91vLljxzYpSW3SCW/vtq6o4ezZq8KMSv+yMai5FJmA3Fm6mkKc2C7+8XTU1yPXSOo0kstHeNrBEfK0juqwGjynkkktxILJ4q5cZPXf5Hm/arL2oyYmz9ZpcBkvYMsyNK5qhLhwmJWSx90joGajJY4X5HXwK9J7W1wA03NENNDdtvtWSJA2PG1AMAunVLUyjnyiMzk8dzz5nQrFkNevZ0Y/9+C6ZMsTWUbg2X0DSAtXqP9JDFc7uBa69thupqyPSZR7NmwIsv1mLECHaZJxYZrbw8l+b+a9O99f8dMjI8DVXslNm8uTasWFstOrbi/Bc4B6vFFweOTSgScvHsTdSy/sZC2jKWGvEskNwXkfDEShZLri9KXg+OCz1EQi2ekAUtkkx5eS6sW+fA9Ol1yM+vR4sW2gI3xW3G/HwXtm1zwCQ7K7D3SesYKFVwkvd+a8du92Dx4saFv7jYgl690piNWkDwKprNQuUxtTKtZWUmtGkjXPf79wvfQzDu9ED7eMyYUafZ48UaH7t9e5Ji5auaGuXzVFcDZ89qi5tl2Q0KRdYvN9cNu531PhK8tunpHuzZU4Nt2xxMnwo3KTUUb2bgHKwUXxzo/Q1FQq4peROjLW0ZbUm/eIIMW6LJEqkQCb0yzVkmQnHhGDEiFWvWJKO4OAnJycCcOXWYMaOO6Ty+C6zdzitm6bNOzqGOwfz5Nr8FcN8+C7NWLwsXLnAYO1bYEgzVYG7VikdxsYU5vre0VJvmsDqhG0R9+mh/oGT9LefPt8kaLS+8kNSw2Mo/BPA8h08+Yeuc7zUrGnh79tRgxow6TJ9eh3XrBE+tlv77tjObgWefrUNjrLQaHCorTTCZBMMxWgmzejgLWOfBUBIAm1JJ3GhLWxpZIz7WJNaVRRAaUdPeDAW9pcvkJkK5JJuzZzmsWGHFtm0OzZI5ek3OeoxBaSmHMWNs0LPAgm/yDs9Do6EpjJe4fctKSQnw8ss2xjAKYdxuusmNf//bDI4DgpN9tBOOPJKW31JO+/SHH9h8KDyPkGSeAhP41qxp3JYPNTFyyBAXJk3yrV6nzqFDZuTmug2ZMKsEyzyoZW4IRd4tUkQrFCLa0pZG1oiPNeSxJZo8eodIqCdiaZvYpCZCtYWD54WM+cWLtSWZ6DU5sySj+SNfwUlvRE+GchhB0KcACNnlx46xhlkI3r4NG4A330xSadvIY4858c47tdi5M9iLJoSJsJy3kXCNKS2/pdwWKGv4RYcOHs2JUWqewfJyLmQP6sKFTmzf7miQcFNn9epk5OQIDz1yyVrjxjmRkcEbbotYbR7UMjcYxZsYzVCIaEtbGlUj3giQYUsQOsOStcxi3CpNhOoxrMLCYbfzzOEWbjfg8QBXXqmuw6o2OfuOAetWrrbXowvHAZMmOZGf72JSeQjjTLj77sZiAmIM5fjxwra4uu5t8FiHE1ojervy810ND1Fsxq2v0eJ2Ax98YFH5LA+O4/G739VrChFiiTMM5QHPlyFDXPjPf6obYm7Vv/+ZM5w3oU38/caNc8Ju96CszIQtW6S1pI2OFsPNCN7EaIdCRFt716ga8UaADFuCiADK8josSgHKEyHrgnDggJkpyUT0bAwfnoqLF6UNZqXJWUqQPD/fhdmznQzfNT7YuNGK4mKLJsmzUL57YKxnbq4b+/axSpsJ19aSJQ5s3lyLPXtqsG6dA04nJIXilYTkfb1dW7daAXAKiYXy3+PwYTODd5zDvffWw9qw65+f7/IWvZg8WVCiOHo0ODGK1TOo5QFPCqsVWLGiDhzHIq0n7JjMnp2MoiILPvrIjK1bk4Kum3iLNdViuMXamxirxKpoSlvGexGLSKLpjqqoqMDevXvx0UcfobS0FGazGVlZWejTpw8GDRqE9PT0CHWTIOIPqbi10lIOEyemqH42PZ3H6tXykkysC8KePUlYtMgpW+oUkI/VlerTqlXBfVKSHerQQWNpLd0Qv4x+iXxiXOAf/sCWlBfquTMz/X+IRvUFdlq25GG1AlOm2CR/l/x8l+LvBkDymmj02qp/N/F7sD6E+WpGB/fNhk2brEEyZVo8g8OGhRdPLxotc+cmM3jtOZSX+97rwWMWy5K1ocJaNCHWJXFZyy2vWGFFnz7BJcbDIRJ5G0rnisciFpGGScfW7XZjw4YN+H//7/+hS5cu6Nq1K1q3bg23242ffvoJx48fx3//+1+MHDkSEyZMgMUS3hNoeXk55s+fj6NHj8JsNmPIkCF44oknJI87ZswYHDlyxO+9tWvXom/fvprOaVSd2ETSsY0FRhs/Vn3Mv/61Bv36yU/6bjfQpUsaUwlZUfNT7jhserM87HYeS5bU+VVGU9NRHDzY5eNtVCI0TdZYHPfBB53YtSu0imcsZGV5sGxZo/E5apT2BLpZs+qwapVV9neZONGJjRvl309P51FRIa/Py9KfPXtq0KePm/maV9NTltLmPHjQzKR7u3t3Dfr21ceIYj2nFpTu0XCI1PzHkpDFojHMYniFkvxVWGjBhAnqDgQROW1no60fchhVKzhWOrZMFuhvfvMb9OjRA/v378dVV10l2ebs2bN46aWXMHLkSPzlL3/R1tsApk2bhlatWuHQoUMoKyvDY489hhdffBFjxowJavv5559jx44d6NGjR1jnJIhowFoG9/HHbV7jRgqzGRg+3NWwRayMklerpETZs9GIvwcqO1vQg12wQGm7j8e+fWpTDI/0dB4XLwrt9U4YE1QFdD0k3nxTjBeNTIhFaSmHUaNs2L7dgQUL1MoRS7NzZ5Li77JpU7BR6/u+coEBtu99/jznjdtOTvagrk7eULbbBbUJrdn0HONPwNqOhbIy/X/3eMtcV9oBEtHDmxhqeVqtIQ5yah7xAsvv0ZRg2t/64x//iMcff1zWqAWA1q1bY/bs2Vi+fHlYHfrxxx9x9OhRzJ49GykpKWjXrh0mTpyIP//5z0FtT548iYsXL6Jz585hnZMgooGWRJyzZ9Xj70SdTjXkJvniYkuDnJZ2RCkutQQ2lpjQgQOFwhCBcWl6EAllhUuXwiu+oY5w7GnTkhnVF4K5cEH5d1Eu6avPdztxwuSN266rU+5PebkJPXqkYc0aq6Zs+vPn2Y1svYhEXGiiZq6HUxI3nOQvraosTb2gQaLB5LFt164d8wG1tJXiv//9L9LT09GqVSvva9dccw3OnDmDS5cu4YorrvC+/tlnnyEtLQ3Tp0/HZ599hszMTPz2t7/FiBEjNJ9Xzyd6PRH7ZdT+GR2jjF9xsQVz5/p7HgSNS+n2ondq/vxkDBokHX/Xq5d6HFt2No9evdxB3581rlYO0bOnB7t2WXHwoAdLltQhPZ3H6NE2VFayGMWAnOeU4/iG7XT22FSTiccVVwje40hJjbHDoaoq1n0IDY7jkZHBY8UKq6brq7SUYy56ceCAGbfd5kbr1mwnaN2a994D4W7bivddOCWzRZTuUT0wwvxnsQC33abNWmTx3CvNjRaLIM03alSwlrAcYtztkSNmr/fTCOMXz+g9fqzHYTJsR44cCU7liH/605/YzqhCdXU1UlL8Y2PEv2tqavwMW6fTiZtvvhnTp0/HddddhyNHjmDKlClIS0tDXl6epvPa7epxG7HE6P0zOrEcv8JCYNSo4C1xtcmW5zmcPs3hyy+bo18/6TbPPw8MHx78unC7cli3jkOrVv7f3e0G5s/XY4tev9m+tNSEMWNSsHs3sGOH9Hdi7YP43adN47BwIXsfPB6uwaAmwoHnOTidnObrS8vDxJYtybj77mTcey/Qti1w+rT09cxxwvv5+akwm4V78fHHgVOnGtu0bQusXQsMG8be1+efB0aMCO8eUrpH9cDtBg4dEirfZWU1R58+METcJQvvvw+cOSP/Psvc+NvfAldcEfx7q1FTk4rMTP/XaP0Nj2iPH5Nh27NnTwDAqVOn8M4772D48OG4+uqrcfbsWfz1r3/FwIEDdetQamoqamtr/V4T/05L86/2M3ToUAwdOtT792233YahQ4di//79mg3b8nJjBodznHBRGLV/RifW4+d2A1OmpKmUE1Xm5ZeduHjRJelZunTJgoyM5CDPZEaGB6tW1aFvXxfKyvw/U1JixqlTeia/hB9vyvOC92rqVB7Hj1fjhRcsmDEj+HuxIMbg3X23C+vWpTXILLH2j0fz5oJebHW1UdQQ5cY38HU9lSBC+01NJqEkc1VVZM8vXiu9e1djyRIxwQ5Bn+F5Hjk5LpSVObB/v9Au0At4+jSPESOAnTvZ4yv79gV27gzehRG+f3A/pL6TeJ1K3aPh4HYLShpbtiShstI/NlUpbt9IfPONBYB68tc339SiSxf579O3L/Dxx4KH/uBBM1avVo9ZT02tQVlZo8eW1t/Q0Xv8xOOpwWTYTp48GQDw0EMPYevWrejWrZv3vV/96leYP39+iN0M5rrrrkNlZSXKysqQ2fDY9N1336F169Zo3tz/C+3evTvIO+t0OpGcrD3horG8pjExev+MTqzG76OPWJOz5Nmxw4odO6xBSRPy4QRCRrvcdz57Vm+vpH6SWqdPc/joIzPuuceFu+5yYdasZOzdmwSHg90w7dLFDZ4HundnU43wh8Ply8bz2kpvp6r9HdYZNbUePNiJv/0tiaGAhD4EXisTJ8qVvuWwd28S3n9fLE8svBZ4LI7jMXduMgYOZJfduuceFwYO9Jd1Ki/nMHasDcGJkMKNOHt2Ha65xuMXAqHnvFRcbMHMmdIPhGJSYjwkSF11FdugXHWVfDiXiMkE3HqrGz17urFrV5KqBFnPnm5JmTtaf0Mn2uOnadb/8ssv8ctf/tLvteuvvx4//PCDbh1q3749cnJy8PTTT6OqqgonT57Exo0bJeNmq6qqsGTJEvznP/+Bx+PB+++/j+LiYjzwwAO69YcgwiG8bGf/mcA3aUIpBk38Wy4RgjVRZerUuoZqS9Hl3DkOxcUW9OiRhl27rBqMWoG33hI8c4FJJ5FGSFTRf/Z+8MF6XHmlctWuSJyXBbG60ccfiz6S6I75uXOC8kJRkbKkXGUl12DssSWlsRJYhnbIEMHIDo7cE3YN/vznJFit0KV0dyDig64g0xZMPCVIRaKqFhU0aDpoMmyvueYavPjii36vbd68GZ06ddKzT1i3bh1cLhcGDBiA+++/H3369MHEiRMBAF27dsW+ffsAAI8++igeeeQRTJ48GV27dsXKlSvx7LPP4pZbbtG1PwQRKuzZzlLtpKSYhIXpww/ZKi6VlJiDKkuxLho33eSJmgfOlxMnTJLZ0Gz4hh1Ez8iaPr0OW7Y4Gv7S08jksWuX1WdLWf06iRbi9fPII/UMlcUiQ6tWPEN5aai810i4slvFxRZs3GiVvW/Ecrt6VxtTftBtJFQDPtpEygiNZmUwInYwFWgQ+eSTTzBhwgSkpqaidevWOHPmDDweD3bs2IHrr78+kv2MOEYVYI4XgWijEuvxEwsgKG1/pacLHdMSTzpjRh1TvFh6uicozs63shQgLZ4uJ+AfLo1KENIxiGL2ulDZyXghAXLMmlWH7dv9YxqV8b0Y5b5n5LRy9UC8lpxOaBLD14a86kVWlhCP/frr2sT4lQinUIKWYifp6YIhdeut+nhuWYtgiGzeXIthw2JrxLEWeQhFx1aPcwOxXz/iHUMXaBDp1q0b3n77bbz//vs4d+4cWrdujTvuuCMo9pUgCAHR8zB6dLDsjGhErlhRh/nzk6HFkGGdJAKz/H2FyLdtc+CJJ5L9athnZfGKhRdCJT3dg3Hj6tGxo0cmBlE4V1UVj6oqoyRtsbNypdZKZCzjalyjFgCee86Bfv2EymLaCDfJTXg4Ej12+mjACrJb4ZR4VSvj2oigvjF8eKouRhoAhhK//sRaN1fKYLXbPRg+XChHKxqakSpPSwUNEhvNK0h6ejo6duyIn//858jLy4PT6YxEvwgiYVDb/rLbec1bub17qwmQi3GX0uEMM2cmY/78ZL/kKrtdqCZmt/MhFwYIZPr0OhQV1eDLL6sxa5YT99zjwuzZTqSmSvc7XrVbBWLfd5tNPt5WDDFp3doj20aAzegRt7O1iuGzFe7wbRtMRgbvLVAinp89BES63b331uPwYf+wHS2EEsbAUmxAjeJiS8ODMQvaY1P1Rq7wQnm5CVu3WlFQkIqcnDTvmATGMVMMLKGGJsO2vLwcDz74IO6//3488cQTOHnyJO688058+umnkeofQSQEShV4tC2IwsLUu7dbNgat0aCVj7+tqDAFeXkuXBAyuvfvDz/+TzSiZs4UHnxff92ClSut6NYtDcuXJytIacXeOAwNI/Sbh8PR+P+++MbDDhnikmzj05rtbA0fV4qHjAzC9Ssa1r7nVzJuOY5HWpp80PimTYJRNWFCCgoKUtGlSxpDSehGQvGChpvQJRqJvrsuCmcDENsEKdZYYD0MfqLposmwffrpp9GxY0ccO3YMFosF11xzDcaNGxd2GV2CHbcbQclARHwg53nQuiCKC5OcJ1iM2VVH2pu7Z4+WxSTYQyjG0fbo4UKXLmleY2H58mTNW6aEFoSxbdaMD7omMjKEuM7ly5OxdasV2rym0vhu5cpdi5HE94EwP9+FnTsdyMiQ91bzPGCVjRgJHovychPGjLHhqaeUw0zEObm0lGtQEdE2BqEmdLEaiSIZGbwmrd5IwJboF18KDoTx0PQ4dPjwYbzzzjtISUnxViIbM2YMdu7cGZHOEf5EKpCeiC25ue6gJC85xo2r9/7WbrewWM2bV4fycg52u2DQeDzA8OGhFWDgea7hWB5cuMBSWpZD4EKens7D6eSwd6+0rigRSYRSvFarB3Pm1KF9ew8OHjRj1y5lOSytNGvm8TNsA6/F8nIOzz2nXU9cC4EPhGI85po1Vmzd6p/Il5XF45FH6rF8uVKfpK/NDRus6NrV4+PpbkRqTpYLA1JDaygDa0zvFVcAjz1Wh2nTnDHfxtfyHcUSt4cPmykeltCEJsM2KSkJDocDKSkpEMUUqqurgyqCEfojJ8bvmwxExm18YjYLBqvyoivQrp0Hbjewf3/wgpqV5cHIkfVo396jwTCVZsSIemzdamWssy68P316HZKSgBUrrJRBHGMuXOCwfLkVaWl8RCqoPfSQMNeUlJixf78Fe/ZY/OK1W7TwICPD06Cpqu/DjKiIIBUnajYDs2Y5MX26Myjh6PXXQ9nWFvr+5JPJuOeexuINYnWv5cu1Jg3Ko3XnhtVI3LgR+NWvnIa4J0MJ16BdHkIrmu70O+64A7Nnz8a8efPAcRzKy8uxdOlS3H777ZHqHwFhEp07V3rLSayaM29eMvLy2KvmEMZi+nQntm1LUjUE5s+3YfVqq6QIe2kpF2AcS3mO2DxJAwe60bOno8F4ZltYrrvOg6VL9VVTMAahjWFsETzpkSoLXFoKdOkiX9ntwgUTwtfzlVJPEEIKFi9WjhOVynoPRwmgrMzk9RwWFwuldIWETym0XStKhroSrN+nTRtNh40oYqKfnPyhFPPnJ8NmAzluCGY0zXozZ85EamoqBg4ciEuXLuG2225DbW0tZs2aFan+EQAOHQKTGL/RRbcJecxmYNUquQQY/78bjVrtJVWF+FvlBBsxazo/34VPPqnGmjWqhwUAlJdzuqkpEEqwVhoLXU5L7b2//c3KXK6YLaFMOtktOGZWePBbsCBZc2JRbq47rEp6YkW80aNtGryI6kYtoJ7QJZVbwVJopU0bD/r0YexqFGBN9POlvJwSyQhtaDJs09LSsG7dOnz44Yf461//ig8++ACbN28mHdsIU1rK1i7cqjlEbBETYLKzpRbzwL/ZdVDtdg82bqzF0KHOBl1b+YIAvvqggLAQTZkCpkpldrsB9jpVCaWP2h8gIkuki1eEX8GrsS0HIVJN2Rg3BaxEWVlCotPKldJGkNYKXqIg/803hx6r2bIlrylZiwWWilfFxRbk5KT5KTbk5KRh/35LTErEhpvALCYaBs9zclAiGaENzY9AH3/8MU6fPg2e53HixAnv60OHDtWzX4QPWVls7WItuk2Ej5gAs317EubPt+lwRCGR5/vvTdi7Vz2ByFcfVMRsBpYsqWuoVOa/teq7gMplpOuH2rYuS4hArI1SKWIZ2hBusQR1qqo43H+/E++8Y8GFC43n8RXk797djWPH/GNiAaGSl3T/OPA8WwiWdIKXFoTiDTyPMI4RzPTpdZgzRzmhiyW3YseO4JChrCw+IknFeiUw+xZeOHDAjL/8xYpLl9RKAVMiGcGGJsN24cKF2L17N6666iqvKgIAcBxHhm0E6dMHinFJocZoEcbEbAZOntQ3NvL550WJJyU4VFQELx6FhWgQgA/+vFipLCOD98odCZqakTCU5D3Ns2Y58X//Z8a//mWO0LkjSSz7G51z//Wv/klWzZrx+N3v6jFzZqNhF2iwlJSoZf2rGztyhiH7w4RQ4nnp0jqUlek7Vn37KhcbUJLz8s2tOH68OiLVuQKRG8szZziMGmXD9u0OSeUIOcQ46N693fjlLz2YOFG9LDLtShIsaDJs33zzTbz66qvo0qVLpPpDSGA2A8uW1WHUKPmyrLEU3SbYYa2PvnWrvvJMDgf7guC7eBQXWzBqFCQeqITr7t5767FgQTjeMD3gUFRkxnff0Q0QL1RVcVi5Mhk7diRh1ao6ScOMNY5Vrp2yzqvUZ4K91xkZPMaOrUdeniuE0sHSsDoi1OS8Ar2YkfRksozluHE2ANqMWxFW/WPalSRY0GTYNm/eHB07doxUXwgFxLikaG05EfrDso0nLiDqsG4ha99qFhcPJTUOMet+0yb95I7CQTBqyZvTiJxH0liKDhUVgrcvI4NHRYW/dF2nTmyG2scfm1FQEByOwKrz6stjjznRvDm8OrgVFSYsX56Mbdv0edDU4ohgNeyj4cVkGUuPh8OYMbaQikCoqSXQriShBU2G7WOPPYa5c+di9OjRuOKKK/zey87O1rVjRDC+cUmR3HIi9IdVh1jLYiwYA0rSQlqNWiGWUFw81PtiHAPJWH2JBmoGqtx7Rhsn4QEpUL6utJRDaSmbMblzpxUHDliCHvBDMfhefTXJLw5YREpezx/fG1v+nkxPb/QAK1FcbGkI/1EnGl5MLWMZivSkqJYwejTtShLho+lxtq6uDm+++SYKCgowYMAADBgwAHfccQcGDBgQqf4RAciVZSWMi1qsHCC8f/CgmTnLe/x4J/7zn2oUFdVg8+ZazJlTJ7GdpyXWNXjxoHg245Kkb6RKjJG6TrVde+IDou/9o93g4xr0d6XOr3wvZWXxmDTJGZTpn53NY+jQeqSnCzJjogc4JydN9l4XH4KFWHUleHAcj+7dI+/FZB/L0KUn5coysyhHEIQvHM+z1yO59dZbMWXKFNx2220wBeiztDGSCnQIlJVdNkRllkA4DsjMbG7Y/hkdI4xfSYkZBQWhlbiVo6ioJiimTozfPXDAjC1bWJLFGmnWjMe6df6LRyT6TehBKEoGWkMQjBWywIK4XX38eDXMZuF+yMlJ01QMIFT27KlBnz7uoBj68nIOY8fagh5qRS9koMEm9lkIN2Pr85w5dZg1yyn5nl7zn9Z+bd5ci2HDQjNEWfIQooUR1o94Ru/xE4+nhqZQBLfbjV//+tchd4ogmiKheT6lDQu1cqK5uW5MmsQuE5aS4sGkSf7Z6SKNcW8mmtQNRSjXU7SMVB4mE+DxRPOcDWcOSKZS2t7Wm/PnhWP7VjwTjUEtFSNDiQtevtyKTp08QQby4cNm/PQTh44dgRtuCNYK1oI4lqNGsc0t4YRHSFWNIwgtaLrUhw0bhj/96U+R6gsRJuEKZxORIbRJXog99Ec91qxxYVTfxszM9OC//62W1dIU1TgAqepRZOkmNtIqGCzcfbdoYMXmGvF9kJTb3pYm9P5K3eNq96JUxchQw398ixf4FnQYPz4F/fsD3brJhz6wkp/vwvbtDphMbJULCSJWaLrS//3vf+OFF17A2rVrceWVV/pp2b777ru6d45gRy/hbMIfPbbFQqmPLuDf1mQSsraVfk8tC+Py5XWwqoga5Oe7sHs3MGUK76fGQTQ1xAct9WvgwAFxWYnN9XL+PAe3G9771Dfpdv9+Xyk9qURLbSEYSjsoBw6wTRS+92yoD8Gip7qigmNKUlVCac4TpLwcGDNG9NxSkhdhPDTF2BYVFcm+V1BQoEuHYoVRY2hYYlT8M+7V47iaEuHE+Oj5sCD+RoCUJiwbLL8na1ysUlye/zmBjIzmeP31Ghw8KMTuatHETSziL+40NsR+nJTuU6n7WigsonWvXrgfpeStBP1nG1jGwTdePpy44I0ba7F0abJsHGxgDLIUrHNeU3GkUIxteMQqxlaTYfvYY49hxYoVaNasWVidMyJGvXDVLgy1oH6WySyRCfXGisTDQvilPdV/T/WFkYfdzmPJkjqvp0npunjjDQvmz0/BqVMhdzmOkZJPi1fDNp77zoJ0qWe5+zTQK1layjFVvgpE6gGRPdFKkNcLvJdDfQhessTBVIZbKvHU97xaEt2MkuQVKciwDY9YGbaaVthPP/0UVrW9SyKqhBLHRSjDKs+lNYY5P9+F48cbJbr27KlBVpZHIn5VHrXfU0zyAOTjYsvLTZg4MQUFBamqskOjRtmaqFELiL99s2Y8Zs+uw4kTVWje3IP4jS+O136zoO0+DZRNZK18FYjLhaDjs8e5S2/by8cFy/WRR1aWB3Y723eQClcKZc4j6UnCqGgybPPz8zF16lS88cYbOHr0KI4dO+b9R8QG1phK0iRlJ5IPC76LQZ8+boXkLGWUfk8tCTNinfd9+/yNW/+FrmlTVcVhxQorZsyw4fJlNoPFeMRjn8NDy32am+tGVpb2h5bVq/01ad1u4NAhtnkhLQ2yhRoCH4LnzFGaJzg4HMAPP7At53oluhGEUdGUPPbyyy8DAN5//32/1zmOw5dffqlbpwh2WJMNEqXGdrjbXyyfj+bDglypZDXUfs+8PBeuvJJHSYkZHg/wpz+JFZWkhfAD67yHIjuU6OzdG15WeewRf/tED0vwh+U+FRVAhLhYbeMjJmZNnOhEUVES831TXd0oTSY3L/mGDHTq5MHMmcmSVdAqKzksX25FRoYHlZXay9KSg4RIJDTN1F999VWk+kGESFOqsR1uwgLr56P5sOB2C6Vx582rQ3k5h4wMHgsXJuPCBfnkEZOJV6xKFEosb2Cdd1rAAkmk8Uik76LO+fMcCgstqg/C+fku7NzpkDUe5RDuUx4bNmgP0yst5Zjnpbw8F+bOTYaU4S3q4opoLUvb1BwkRGKjKXkMAM6ePYu//e1vOH36NK666irk5+fj6quvjlT/ooZRg8O1qCIAkJzMEkEVIdRkLnH8XnyxFqNGsX1eLQFLr4Q8uQWtoKAeGzdaJePdBHhwnPR3lhsnNhqTWQ4fpqpj8jQtj2cssNk8PuoboY61WCyi8fMsD8JuN/Dhh2aUlJjx3/9yKCmx+JTa1ZcHH3Ti1VeTmOalQ4fMGD6cTfHk5Zf9Pcdt2niwZIn8947WnBdvUPJYeMSFKsJnn32G3/72t+jQoQPatm2L//3vf/juu++wY8cO5OTkhNXhWGPUC5f1wkhk+ZVwlB9Euaqrr/Zo+nykHxbUDPXx453YssUq67WV6nMo5TilKCqqQW6uW5djEYQ2hOt/61YHnnhC9JyGcv35Tpbh3b9ut1Dda82a5BD6oUx6uhA6oDYv7d9vwYwZyaisVDewN2+uxb33unwqj6Xghhsuq1YeawoOEq2QYRsecaGKsGLFCjz++ON47bXXsGbNGuzZswfTp0/HypUrQ+4ooQ+ByQZFRTU4frw6ISaicBMbDh2C5s/LJWBlZfFhT/BqGcg8D2zdKm/UyvVZSza2EufOcTCbgYKC+rCOQ0SDxFtthw514auvTKioCP1abqwdFL6qidkM9O0bmVAuwVBVnpdWrbJi9GhbgwGsTqtWvF+Sar9+YPKyRnLOI4hooinG9uuvv8bOnTv9XnvooYewbt06XTtFhEai1tgON7GhtDS08/hWLNJTq1E9MYuDx8N2LN8+6xUX+/XXJqxcaQ0pZpCINonkTeeRlsZj794k9aYSn/UNO1B/KGxM3ALUk0pDrx4o31+OY9OpXbVKKSypET3yKSI15xFENNFk2KakpKC0tBTt2rXzvlZaWoorr7xS944RhEi4iQ1ZWaGfJxIPC3omZvn2uWXLcL13Quxo45YrxZIS0aW6OvSwA9aHQRHxPmQJ4xL1oUePtgUlZsmFPSjDMW/NshnS+pWzTVQHCdF00BSKMGjQIEyZMgWHDh3C999/jw8++ABTp07FoEGDItU/gvB6S+S0XjmOR3a2R9ZT0acPwvq83pw4EX4iSmCfi4stmDxZvepQIyzi72TUEtEk3HhubZ9t1Yr3xpUGSu2JEl6+xUvErfr09MB7hUNamvCaVj1q4XPhh5NkZPDYts2BjAwehYUWlJSYNReQIYhEQZPH9vHHH8eFCxcwceJE1NfXIzk5GcOHD8eUKVMi1T+CUPSWqMnYiJ8XNSpD+byeFBdbsHy5FeF5Q/377J+IxorUucmQJeIRbdetuGXfvbsbPXqkyca6cxyPefOSkZfn8s4NHg8aEtr879+aGuH/09N5TVJh1dWaui7L6NH1WLAg2Ou8bFkdfvtbfc4h0hRK6RLxDZMqwpw5c7B8+XJ89NFH6NWrF5xOJy5evIjMzExwXGIshkbNeqSszEZCUX7wHb+//S22yhF6qRbY7R6sWCH0Wa9jEkRTwDfD/8oreSb5rKKiGvTu7ca+fRaMG2fzkw8LPHbr1jzWr3fg3DkO8+cnN+hNy92X4oQezn0rxCXX1HCyCiu7d3Po21ef9SOR1XekoPU3PAwt99W1a1ccPXoUPXv2xCeffBJ+7wyIUS9curH80eotCBy/WHobSkrC1YblkZnJ45//rIa1Ia/r4EEzRowgvVmCYEE0wgBoks+yWtFQlUzdCBUN4aee8k3AjNRDp3J8L8fxaNuWw7Fj6nJfaoSqJR7P0PobHrEybJlCEa655hr069cPDocDAwYMkGzz7rvvaushQYRAuIkNsUyMCCdpTFw8li+v8xq1xcWCtiVBEGyhPevWOXDpEqcpdKdlSx5TprDHr587x8HtBoqKRHWHSO6kKB+b5zmcPCk8VJtMCKsUuZJEoVTYBkHECibDdtOmTfjoo48wb948TJ48OdJ9IoiEJJxylFlZvN92X2hxtf6IW6e1tZAViScIYyMatGzX7k8/cVi6VNpAC0SMxeV5aCpP3aoVzyDpF13GjLE16AILaA0fUPs+UhJqBBErmAzbli1bYsiQIbh48SIKCgoi3SeCSEi0aWHysNt5LFlS59Wm9K0wJuc9kTpOI/4SRTwPDB1aj02bSK+WiEe0P9WVl3OMBmdjgmZZGesDX6OO7Ouva8rLjjiBCW2i6gNr+ADrbtOhQ2ZKJiNijqZHymHDhuHFF18EAHz77be47777MH78eJw7dy4SfSOIhEJUdwCUZYE4ThBvX7GiDiNGuNC7t/9CwV5hTDjOpElOZGcHSxQBHLZsiXQMIBFfxFsgIdt1K8rj2e3s3+/uu13Iz3dp2GnhMHJkPczm8HZnBHiff+EeB1CqwHbwoFlVIoz1+6xenYycnDQ/mTSCiDaaDNslS5agqKgIALBo0SJkZ2fjyiuvxKJFiyLRN4JIOOTKVvqiVsJy/362RSM9XTjOwoVOLF5cB6mFUsjwJqOW4NGihVDhQKsWa3TxvYbZPamA8FB51VXsRurbb1vgdAo7LenpbNUfOnQQ2qlpb7Ocv/H7qR1DzghWjjsWS/aOGJGKCRNSUFCQKmuUavk+UhrABBFNNBm2R48exf/7f/8PFy9exCeffII//OEPWLJkCT7++ONI9Y8gEo78fBeOH69GUVENNm+uxe7dNdizR/j/oqIaHD9eLWvUut3A7t1sC8bWrQ6vJNiCBWKSGRmxRCCCsfLHP9Zh506pAgTGITubx/jxTo2f4jBzphP5+S5oUafkec5734wbV8/0GdGz6bs7E47XdezYeondlkbE3R2pXZlQfkc5o5R1twnw9wZTkYjo4nYLiYJNvUiHpkeq6upqpKen48CBA2jXrh1atWoFp9OZMFq2hDrxLM5tpL4rqTOIk5NUPw8fNuPCBbbnUd/PGCmRhTAawvz95JPJGDWqviF221jllJs392DHDgdMJuDDD7XftOvXW9GpkwcujWpUO3daceCABYsW1aFZMw+qqqR3OMREM9/qheLujKD7GtpYCvH0dSgv5/C//3EoLExCeXnjveybVDpvntNvfvN4wKTT64uSwoGW70PJZNGnqWkMK6HJsL3uuuuwceNGHDx4EP3790dVVRWee+45/OIXv4hU/wgDEesbJxzDtLjYgrlzo993tT4Hvl9ezklWEBL7qUUy7Px5oW04MmNE0+HCBQ4rVxpNPk4wsB95pB6PPWbzM+q0GN8OB4cxY2wYOpTN8+rLmTMcxo2T17D1rV4I+D+U5uW5kJfnwuHDZpSWcigv52C38/jmGxOee059rHfutGLnTuH/s7M9ePbZOtjtvOR8Eviw7HajIVnVpEk9Rckozc8Xvs/y5VasWaPef5p7ooOcSo7WJMFEQZNhu2jRIjz11FNo1qwZJk+ejP/85z84cuQI1q1bF6n+EQYh1jdOOEZ1YaEgrh7tvqv1Wep9qW1L335qSUoR24afyEI0DYxphNxyCxqUOwL7p72/e/cmQXuMrlhCVxrRawqIVQCl73ffh1gtSWwipaUcxo4V5oFhw9Tnq8ZS4ilBpcRZkDNKzWagb1831qxRPwbNPZGHNIaDYao81hQwamURI1Q+USvbKm7DHT9eHZEbJ5yKNx4PcMstzXHqlLR3J1J9V+vzxIlObNxolZiMlPt59Gg1undPQ2mpcqnO7OzG7yT+fmwyY1rhYTIBPI8IHJtoytjtHuTkuPH220nqjTWhV5hFYyXAt99Wv9+LipL8jF6TSQgXkO6LPvMVxwEHDzbHlCkezeFIYgU1KZxO4Je/TJMtGRzpNSFaGGH9VYO1oqXS7xkpDF15TMTtduOtt97CDz/8AI/HP0uUCjckLrEU5w73afTwYTNOnQr+bCT7ztLnTZukjFr1fh45Ym7wwtggvfg1bov6blEuXVqH0aNtIXlulOEwZEg9Xn/dEoFjE00TwWBcurQOEyawV/xiR69rlENZmTB3KN3vAO9TWreRxiVU6j7Wb74aNgzo3bsaH30keItbtODxwAMpCjrYwsNq9+7Sxxd3mvzDQnx6zgXPQUbASDkWcoTSR9Zwj6YUFqLJsF24cCHeeOMNdOrUCRZL40cpeSyxieWNE65RHYu+s/Q51KfX0aNtWL1ayF6fOTM5SHi9RQseK1cGh2fIJ37Iea/Yt2sHDnRhyBCXZH8IQjuCwThnTjKMGh7hy86dSSreULnvIBi9JpOvkcuG1vnKN/62pMSs8gDKweMBjh0LnlNZKh4GVkk0ArHOD2Eh1D6yhns0pbAQTYbte++9hz/96U+48cYbI9UfwoDE8sYJ1zBl7dO33+qnGhDJJ+PKysZ42//8pxolJWaUlJjBccLCdeut8k/4YuKH6BE4ccKEFSusEKqQBRq7AKtRkZnJ4+hRc4NRa6xseiJ+uXQpPpQ83nwznFAJwYhcssSBli15vP++Gbt2qVcC1DrXut3wemy//pptXAPnMfWKh0K1xKNHq2E1UDHDWOeHsBBOH9UqWkopdiQ6mgxbj8eDzp07R6ovhEGJ5Y0TrlGdm+tG27bA6dPK2+QrV1pRWwssXKhVI5O9L/ogGI9i+EXfvm707cs+7oGZ0506eYK8uHY7L7vNGAyPRx+1obo6PowQgpBHuG85LjBeXGlXQ5+HuJYteVitwK5dYnKbvAKD1rm2sBCYMiVNc4xt4DymLhsoqD6sXm1Fnz5upm30SIcHxENiVbh9VAo1M2pYSKTRdKXn5+djx44dkeoLYVCUxLkjfeOoVbwRS2XKTfRmM7B2rfiXssG5YYMV+/aFXy2Hpc8mU+jlMsWKQYcPhz/ggcUiiopq0KuXlgcUjoxaQlc4jkdmpsa9+bBpLHQgXRVQW1UvrWRm8pgyRa2ICg+e1zbXFhdbMGIENOnoys2prDtRq1cnK1Yx8+1bTk4aCgrUK5+Filr5cT3n0lDRo49yFS3VqlgmKppWpC+++AKrV69G165dMWDAAL9/RGITqxtHD6N62DBgzhwnlBciIbv3ySfDr5ajXKVHWJzGj3eC48IrX6pXyIPoxR02zIXcXDfeeYdKYRKxQrg/nn66DtnZHoRTtUsbHGbPdmLhQieOH6/GnDl1PmV0pTL/tZTzlX+IFY1IlwsND4jKc9SMGU7mudbtBubOVQodkO4PID2nat2JUiqtK269BxrcepfjjYfEKr36KOWkUKpimchounruu+8+3HfffZHqC2FwAmM0o5VZKpf4pCVJQazhrkZZmUkXhQT5ZC3h/19/PQkTJzpRWJjUIN2lnUiEPKxZY4XDQTGyRLQI9HwK/z9nTjL69XM16M5GB3GO2L/fghUrrBIJUlr1b8W24uf8v6uvEblnD9tSfPIk+7lDqTioNKeqhaQFIreNHs3wgHhIrNKzj0oVLZsSmgzbgoICydddWusUEnFLrG6ccI1qLROXXk/v+fkueDzAmDGiZFHjcUtLOWzYYA2pnnukYprdbmDr1ugZEgQhEGwwVlaasHevtSFmMDq9aNWKV0mQUi7UII9wHLvd06D7KuBrRL72GttSLJT0ZSOUeWzdOodszL5vLCdrKIaoWrN9exJatuS9Yxwt+ch4SKyKhz7GG5oM2//973/YsGEDzp0759Wxra+vx/fff4/Dhw9HpIMEIRKOUZ2b625YWNQ9GHo9vbvdwIIF0nFzor5lZaXWxSdyMc1r1lhRWUnxskQskI8vjDyNhgNLglSoLFlSh6ws6XK4PXu6sX+/+kNlz57s818o89jbb1sUk1HFnajZs5P9jHQ15s9v1CNuDPFQRg8HQzwkVsVDH+MNTavY3Llzcfr0aTRv3hwulwsdO3bEf//7XzzyyCOR6h9B6ILZDDz7bB2U4t2Eil3yiWhaUUsKkI7dU8Zuj0xMc3GxBcuXG0ijh2giaL8H9EWYC5YtEwwHdmNKu9GYlcV7Y9l79/bfbRozpr7BiJGfmziOx5gx9cznEz2BWtizx6KaY5Cf78KSJXWajusL68O8Xg6GeEisioc+xhOaPLaff/453n//fZw5cwbPPfcc5s2bh759+2LLli1UeYwwPEOGuDBpklOyCpCYFa3nk3EkEhKWLKlDXp4LJSXaQjKUZHXE7VeCaGpwnFDuVjQctBlTgdvxymVwlR6YrVahH8LcJHVc4X0t+rBmM1BQUI8NG5Jl+xZIeTlbjoG0cgQrviEd0dl6j1V+iBbioY/xgibDNiUlBVdeeSUsFgu++eYbAEDfvn3xxBNPRKRzBKE3Cxc60bWrB0884V8SMjtb/2o5kUhI+OEHE3Jy/DUps7I8GDmyHh06eCQnQ7WKNqEkmRBEorBxoxVdu3pgt/MoLeV8YmGVDUHpimHyCWJqBkpOjgdpaXyQfJ5ofGvV2Ha7gaIiMbxB39hcrYlkwYifCX28tBIPiVXx0Md4QJNhe/XVV+ODDz7A7bffDo/Hg5MnT8JqtVLyGBFXDBniwj33RP7JWJz8BVWE8Ly3HMcjI4OXDBcoLeWwfHmjx9XXaGWpaOMMvyYFQcQlYqz7uHE2eDxS1ffk8K8Y1qoVj/JyDgsWhKbcIl+qVkiey8nRrusb6gMra/a9XFyoFtLT/fMMWrfmMXJkPZxOofQveSyJUNBk2I4bNw5Tp05FcXExHnjgATz44IMwm82kY0vEHdF4Mm7cCpQOfRBQXxBEL0bjoqesqXnmjGC0btvmwIIF6rI6zz/vUO0DQSQunITnlY2WLXkMG9ZotIbywKymxBCq/JXWUCitIQDykobs7NjhgMkEb4nvl15Kkn1IJwhWNBm2ubm5ePvtt2G32zFx4kS0b98eVVVVGDp0aIS6RxDxS3GxBRs3KgXFyZXp9H8vK4vHI4/U+034ynDgeT4o3CLoTA2yOi4XcMUVPC5dirV+rb7VnAgidEJLcArlgVnNsxqq/JWWUKjAEADWUre+caGHDpmxejXbHCUa0bfeKhy3uFhaO9h3Z4mMW4IVTYZtfn4+9u3bB4tF+NigQYMi0imCiCekFgFAyQsj91rj675bnLm5brz+utZKPByzHM/48bYwjVq9DFIyaglWQimWoC8mEy97j8kZhlKvR6o6VmMcrElVC9g3ZEItJj8Q0ZjPzXVj164k1bhbKSM6WgUbiKaB5rp1tbW1aNasWST6QhBxh9wi8Mgj9WElZAVucUayMo42LV2+IWkm8DPkbSWiSWj6z3peox4PMHasDSaTvzdRbk4oKKhHUVGS5FzBgtY5wGwWZMxGjUqR1EcVS3sPHOj2Gt4sMflynlPWuNvAuONIeayJpgvH8+x1XX7/+9/jo48+Qt++fXHVVVf5vRfvcl9lZZejVuFGCxwHZGY2N2z/jE4kx89/EQheNMJZRIuKavwmcbcbyMlJ05yFfMUVngZvLFvYgzo8xo514uqredjtwnbirl0WvPoqaeASRiYyD17ilvrx49UShqFcMlqwCoCYRKVUeUo8h7b+AQcPNseUKR5VD6w4x8glu7L2Q8qwt9s9GD5cCFsIDGsoLLRgwoQU1e+yeXOt38N+NIjm+ssa/hFP6D1+4vHU0OSxPXXqFNq1a4fvv/8e33//vc/JyFNDGBe3W8iwPXtWvwlDbfsstNKb8gkcoZSzBIBLl0xoLEqhrrnJ0ENs2ybE0dntHjz7bB1oA4cwPpFZo3y9ibm5boZyvNJb7RwnJIeyVJ7SagANGwb07l2Njz4KDpfy1cP2ePQpdatVj5XVEx3JXatYozX8g1CGybBdtGgRFi1ahJdeeinS/SEIXSkutmD+fODUqVTva3pMGOylN+UMyGBvqZqGo5iFPHduMkpLlRZqdaM1UGYnFMrLTRgzxobevWniJZo2585xIZfj5XkOFy5wmDOnDi+/nKQoFxaqARSY1CZ1HD1L3WpJolPTxI1EwQYjEU74h94kiteYKQhw3759ke4HQehOcbEFo0bZcOqU/+vihFFcrDnE3IuWRA7RYA14FYELnVL5RNHrfPiwGXWq1SylJIOAzEwPNm6sRVFRDXbs0E/iq6TEAuVSxQSR2Hz9tQkHD4ZnAXTo4MHx49UoKqrB5s3CfXr8eLWfUTt6tC1IWkvrfCZ3nGiXuhURd6OA4LkykgUbjID6zp/wvlqZYz0oLrYgJycNBQWpmDAhBQUFqcjJSQtrnYwVTIathjBcgjAE/hOGP3pMGKyT+5w5TpXyk4JBOGtWnd8i5ovvhLN1qxUXLmhPSuN5DmVlJm+9+ltvFbwk0ka3FnwNdApJIhIRpYc24fU1a5KxZk14ZalbteK9ns5hw1zo3Tu47HW4BpCaZq7Sd+U4HtnZnoh4TsXdqMC5UulhPxFo9PLLe/PPnBHKHEcSvR6ajAJTbz0eDz7++GNFA7d79+66dYogwiXSmbas22fTpzsxdaoTv/xlmkyZTuHv1aut6NTJgyFD/Cdw+YpEoSF6mkON2ZWHjFoiMWnWjEdVlVI4kdRrcu2lXzeZgO7d5echveazUEOoouE51RqbmwhESupNC4kot8Zk2NbV1eGRRx6RfZ/jOHz55Ze6dYogwiXSE4aStE3gInD4sFmxUAIgyGeNGWPDzp2N3gll70po+Hqa8/NdmDjRiU2brCFXXiKI+EXe0LTbeSxZUocTJ0xYuVJO8UNOn1oqWVOuvfC6xwMcOyZvlO7fz+YxU5vPWOe7wBh81tLA4ZAo8Z1aMELiXCLKrTHdLSkpKfj0008j3ReC0I1oTBhyJSUDFwEtxrPvk3Gotd6lEb6nr6C8WBmNIo2IpkGgsSm90wIAK1bUweMRdlK0P1SG9hAqN08UF1uwdWsS0zHU5jPW+W77dgfMZuhiZLIYrE1VFcAIiXNG8BrrDdOqSXJeRLwhThhyMaR6xYvl57v8Ej52767B88874HQKyV5utxbj2T+eSln5QCvCsRYsEOLwIuENJghjo36dizGdADBmjE2iEAk7M2bUYfPmWixZwpaoKTVPiPepGqzzGcu8mJXlAcfpY9SyJCQlWnynFoyQOGcEr7HeUPIYkZD4Txj+7+k9YYgJH1YrMHWqDcOHN07iXbqk4fx5DtnZHrCqBhw6JBjErCVx2Wk0nNWSFgiiacHDbvfg6NFq5OW5MHNmeIlgANCnj5AENmZMfcgP2az3Kc+zzWdqhhTPAw4H/OawUDPj5QzWM2c4jBolGKzhJMWJSjGFhRavEyEeCTdxLtxxiJYTKJowGbbbtm2LdD8IQnfy813YudOBNm38X49Epq3cJF5ebsK4cTZkZrIHsa5enYwuXdLw/fd6hSH4c+4cF1fbSgQReTiUl5uwbp0Vq1ZZUVERzkOfvyEQjleOddfmjjtcyMjgmYwaOUMqPV34u6IifM+puvoCMHNmMkpKQlMFSCRpKiB45y9Q6k0OPcbBCF5jvdFUUjeRMWrJWiqpGx4cB2RkNEdxcY2ulcd8UStF6Y8WBYLIlAEtKqoBABQUpKq0JIimhlgFLJz7jvdLAhUJJY50y5YkzJ9vYz5z4PGU1g/f2NfMTB5TptgaDOnwy/qWlJiZ5pecHBeOH1c3wnzL6SqVMgegq9PCyOuv3uMQiTjnWJXUJcO2ASNeuICxb6x4IBrjxzqJC0jXjFf/TPgGru/iBAjGuFzSAkE0TcK710wmHlu3OoJk+0S0Zv7v3m3BxIkpzOcPNGpY5z/WOayoqIYpM76w0IIJE1j6zTbe4nnVnAhaDXApfH+j1q155OenoqLCWOtvpMZBb2WKWBm28em3JwgDoW1bX5ADMpmgUWIrvAVXaktJXx1bgkgEQg8/AKBo1ALaSs0C2hN2AnVHLYwrPOscJm5xqxk8WhJm1bDbG8M6Ii1NJeW1bNsWWLLEgnvuMY46Q6TGQev1aVQiE8RHEE0I7dmiHDweDr161TO3DxepuGIx1s5uN5ArgiDikIwMHnPmOHHPPS5dk5pC8XJprVbldgPnz7PNMTt2WJniOHNz3UhP10cce/jwxsIAkZSmksuTOH0a3mQ3o5CIEl16oumXuuOOOySlv5KSktCiRQv0798fo0ePhslE9jLRdMjNdcNu96gWYQjkn//UcvtpnaB4ZGbyWLy4zquDKOVhyc93YcAAF9q3b0bSXwQRIhUVJixfnoxt25K8f4uEE6dYVhb6/ciSeCbloZTGf1dHTCiTi+M0m4Fx4+qxfHn46hJ5eY3Hj5Q0lbI6g7AFbqTqW4ko0aUnmlbi+++/HzzPY/To0Vi0aBHGjh0Ls9mMW2+9FYMGDUJRURE2bNgQqb4ShCExm4Fnn62Dck35YGprI2NEcpyQALN8eR1GjPCvOS/FJ5+YG+JsY2XUNs3Jl4h3gu/3igqOWVWAxbMbjmEyf36yopdRzkMZfD8GhyqpSXEBwPTpTmRksMscBiIlMxUpaSo1WTWtXvBIk4gSXXqiybB96623sGXLFjz00EPo06cPHnzwQWzevBn//Oc/8cgjj2Dr1q0oLCyMVF8JwrAMGeLCpElOxtbaDGCtiGEHeXkupi3RAwdiNVn7jgMZt0Q8IV6vUlJW6kZgcbEF3br5yzR16xa8va9mwChRXi7oxUotySxyXPJ/N34vJWPPbAZWrapr0BHX2n9pmalISVPF29Z+Ikp06Ykmw/bHH39E+/bt/V5r164dvv/+ewBA27ZtcenSJd06RxDxxMKFTmzf7oDdrhRbJrcgqsGyMAiG4qJFwoSnpG8oeot277bgL39hK9cpd77QEcaANcGFIIyDth0OXyOwuNiCUaNsQaECpaVcUCynrwGj/V4Tjj9tGoIeavUs0KJk7OXnuzB7tlPzeTIz5bXGwy1oIEU8bu1HYhwSBU1LSqdOnbBlyxZMnjzZ+9rOnTtx7bXXAgAOHjyINoFq+CFQXl6O+fPn4+jRozCbzRgyZAieeOIJWCRWwA8++AArV67EyZMnkZWVhTlz5qB///5h94EgQmHIEBfuuceFw4fNOHDAjN27kwJib0NZSHy9mkqfF94bP94mmXQibolOnOhEUVESQ1ydGhzC97RycDXd+ZdoYpSWcpg7V4w7lfKM8pg1yz+WMy9PMA63bk1CZaW2+YPnOZw8KRiyt97aaN3q6XlUM/Y6dNCSRMbDbufxz39Ww2qVb5Wf70Jenks3aSrRMy4nfyjKZxlta1/vcUgUNBm28+bNw9ixY/Haa68hKysLpaWl8Hg82LRpEz755BNMmjQJa9euDbtT06ZNQ6tWrXDo0CGUlZXhsccew4svvogxY8b4tfvhhx8wZcoUrF69Gv369cPbb7+NadOm4e2330arVq3C7gdBhEPXrh7cdZcDHCdkHX/9tQlr1oSWTNGsGY/mzdkSQoSJWS4ujseGDQorhmaMsTVHEPHA+fOcX2JZMBwuXODw4Ydm9Onjlknu0r7rE2jIsnoe7XYPLlwIz9hj93IKuQErVtQpGrUiekpTiZ7x0aNtDaWFfQseCP816tZ+okh06Ykmw7Zz585466238N5776G0tBRt2rTBHXfcgZSUFFRWVuL999+H3W4Pq0M//vgjjh49ioMHDyIlJQXt2rXDxIkTsWLFiiDDtqioCLfccgvuvPNOAMCgQYNQWFiIV199FVOnTg2rHwQRClILkd3uwYgR9WjbNlTvJoeqKg4vvliDkhIzo3Est+iRIUoYjaagoyzc+0ePsllGJSVmXLzI+VSWCo9A47J7d1HJRVngf/HiOowdK2Xsscdx5ua6kZXlka1qJpKVxWPZstCrXIWLuLUvzN+N/WzbFli82GEoHVtCGc3RbRzHwWw2g+M41NfXo76+HikpKUhPT9elQ//973+Rnp7u53G95pprcObMGVy6dAlXXHGF9/Vvv/0WHTt29Pv8tddei6+++kr7iatrpEUDzWbA5lPSsLpa/hgmE5CSItvW4xEmtp9+4tCyFYcet1sbJ4UamfNzAFIDZg65toDweJnqU0Gmtla5EkBaWmhtHY7gwK1Q26amNj4W19VBcW9aS9uUFMDcYGA6nYBTQTc2JUX4/cS29QptbTZ4fziftgcOWDDlMQ48apDaMIE7YEN5uRlbtiTDgnqkoaphiQue4OuQDHfDLWlBPazwT0arPF2LVN6EVLj82prhQjLqgo4n4oQVLiRpbmuCGzY4ZNvWIwn1sGpuy8GDFNTq0tYFC5wQDX0eqajRpa0bZtSh8b5Phfx9r6WtByY4kBJS2xTUgJMJ/eDBoRapIbW1oRYmyN/3NUgLqW0yHDBD/r5vbMsxtE2FeM9YUQcL5O97LW1rkQK+IdUkCU4kQf6+19LWARs8MAe05XH0PR6pAfe1b1vxvrfU1WHZH5KQwlfDd64Q73uO49GqRR0W/eEyli1LRvmFYKNRaGtGy5Yczp5y4/C7DvTo4cbbb1vw1FPJqC1vvAp873sL6pHM1+GP8x0YOMAF68ZqPPVUMkrPmrxtr8oyCxJmeXVAtfx9j6Qk7H87FQ4HYIJHYo4QrtHp05yYPJ2HOaXBVevxCOuRwnG9bl21thYLkNxw3/O8sH7KkH+XpXFr/yzQJqMaeXkNlccCb1UttoGOdoRiWy22QTTsCA5Aikn4DrxEW612hMcDMFQeA6+BH374ge/Xrx/fu3dv/r777uN79+7N9+rVi//mm2+0HEaRvXv38rfffrvfaz/++CPfsWNHvrS01O/1Rx99lH/uuef8XluzZg3/6KOPaj9x8+Y8L/zMfv/q7rybP3/+kvefJzVVsh0P8M5bb/Nr67bbZdsexS18drabf+GFGv78+Uu8q93Vsm35zp35srLG49Zf30m2ravd1X59cN7cVbat2273b3vrbbJtPampfm3r7rxbvr+AX1vH4KHKbX8o9batfeAhxbZlX57wtq353RjFtuXHP+PLyi7xPM/zNZOmKra9cOiI97jVs59UbFvx9nvetlULlyi2vR3vef+ciPWKbQeh2Pvno3hBse0I/NX75wj8VbHto3jB++cgFCu2nYj13j9vx3uKbWdhuffPW3BUse1CLGy8nPG5YtvlmOX982f4XrHtekz0/pmJnxTbvoBHvX+mokqx7V8xwu8lpbbFGOT3UhXk54j3cLvfSz8hU7btUdzi99L3+Jls28/R2e+lz9FZtu33+JnfS0dxi2zbn5Dp99J7uF22bRVS/V4qxiDFcfP9868Yodg2FVXeP1/Ao4ptM/GT98/1mKjY9mf43vvncsxSbNsZn3v/XIiFim1vwVHvn7OwXLFt5OaIV3nAwwPa5oiR9n2Kbf81bjV/9qww/5XveUOx7dH7l/Ec5+EBj+ocUT37Se+8euHQEeW2k6Z625Yf/0yxbc3vxnjbln15QrFt7QMPNa5dP5QqtnUMHuq3zim1jZQd4by5q19bJTui/vpOfm3j0o5o3pzJnNPksX3mmWcwcOBAzJ49GyaTCR6PBytWrMAf//hH7NixQ8uhZElNTUVtwNOX+Hear/UOICUlBQ6H/xOgw+EIahcOVquFqTYxACQlmf3bShSz8KW01IRRo1KwezcwzKTc1m73Oa5ZPkbLbOL8+2CR3ycycQFtk+Tbcgio0WxVvnT82iYztBV/M5tyhr7d3qzxiS1FORCrRYtmQMO4pai0zchIazxuqvJWf3q6T9u08AXICYIg9Ee7NnXLlsCOrSagQL7NTTdZgVbNUVgI/GV8Kl5TON5bbyVBKj5XitTUZKSK82qG8hqemmJtbFvVTLFtSooVKWJbXsG7DMBmS4LNu74oJ9cmJ1uQzGgbRMqOSLIEtFWwIyxmk3/bBLMj/M7D8zzP2rhXr1744IMPYPWJ7HY4HLjtttvw8ccfM59UiR9++AG/+tWvUFJSgszMTADAm2++iWeffRYffPCBX9s1a9bgiy++wPbt272vjRkzBl26dMG0adM0nbf8f+cgORRhbiG43UDv3mkoPes/yYjbjIKQMo/jh87DbAo+P8cB9swrUF7rhrd7FIrA1jYlBZzZBLu9OcpLy8FHMBRh3z4LpkxNCWoqtc0oh1ooglxbCkWgUIT4DkVgaZsIoQgC941w4rXd4gM859OWhwUuTXNE0a5Kb/KW2w0cO2bG2bMcFi9OxpkLNrhDuO9f33MJt+bI3xuwWlH8VgpGjbKB492w+RxXvOY2b3YgPZ3HsAevVJ0jXt1VI3wHLeEFEQpFCGzL1dYI60f55eAll0IRGpGxIzgOweMXhh3BeTywX60uDKDJY2s2m1FVVYUWLVp4X6uqqkJKSvCCHirt27dHTk4Onn76aSxevBgVFRXYuHEjRowYEdR2yJAheOGFF/Dmm2/i7rvvxttvv42jR49i7ty5ms/Lp6bK/sZ+60Oqijc4oO1HJWZ8dzZVvjnP4fRpDh/9q7l0ZiMHIDUVfI3PhZEif7ygPthUfptQ2ybbZJtpbuvb3pos/NO5LZ9kBW9RSbUVj5tkFf5paNuinblhQZXHhSTv4qGGlrZuWFDDeCtraeuB2c/40KstD1NE2gJchNrCEG1rVa6vUNv6Gs96tvU19vVs60SyzwOKfm3rYfUaYZFs+/92pyEjwwOPB7h40V8KMPi+5yGX3HVVlhm33G4DbxZsg8OHzThXyeH8ZQ4nL/iPp5b7vvR8EniFdc7tBubOFYo78BLH5TgeTyxOxbx5dX7fW26OOF1pAp/qavy6AMCZ2NdaLW3BaW+blga+1iNtH4RhG0SkrRbbIBp2BIfg8QvHjmDcgNAkZNm/f3/MnDkTJ06cgNPpxHfffYfZs2frrhu7bt06uFwuDBgwAPfffz/69OmDiRMnAgC6du2Kffv2ARCSyjZs2IAtW7age/fu2LhxI55//nn8/Oc/17U/4RBvFU2I0AinQpAaHMerFH0gCMLY+M8LFRUcLl5kmfOljVqgUZGguNjiV4xl/nz2hwQp1OS5WMvPCooL4Z+PILSiyWM7c+ZMTJkyBYMGDQLXsB18++23Y+bMmbp2KjMzE+vWrZN879NPP/X7u0+fPujTp4+u59eTeKxoQmhHSQcxPITr4tln6zB/frKqZA7b8eghiiCii3QxhlDIyuIFRYJ8F4qLLbpJggE80tN5eDyCV1ZOxovVCWO383FZ9IBgw7tLYMDCEJoM2/T0dLz00ks4efIkysvL0aZNG7Rs2TJSfUsI4rWiCaEdOR3EcJk40QmTSQhHCt8oJaOWIIyBtntxxow69Onj9hoQviEB0seSe4j17uEHta2s5DB8eCqysz1e4zkQVieMaIBLFz3w9zoT8YWUXrvSNRNtQqqp2a5dO9x8881o2bIlLly4gAcffFDvfiUMvrW+A7ep6eZOPPLzXTh+vBpFRTW46y5BuzJcXnklCaNH21BRwbIQkuefIKJH9O63jh096N270Su2Zo0VpaXyIQFKRm2zZsr9FstvFxcH+77Uwq6EhGgPcnPd3of9rCz/tllZPHbscBjCCCK0Ie4SBDpvlK6ZaBNusXjU19fjX//6lx59SVjo5m5aiCUO//xnB7Zvd8BmCyc+VijBKe+V8UUqOp8giMgRvR0QX09pcbEFy5eHUhpbCGWqqjLBbvcgNdUDKc+u6F2dNy85KGldq7PG92F/8+ZaFBXV4Pjxalr34hC3W7gmpNYjpWsm2oRt2BJs0M3dNLnnHhcyMoDwjU32BVTNG9MIiwwIQRCxxNcDCjQaF9rgEXhfl5dzqKlRTwI7fDh4O1Grs0Z82B82zOXndSbiC9bEQalrJprE3mfchBBvbqLpcPiwuWG7MBoICSnJyYDV6sEFiTKbUu2DY+0IgtCG1qRM1vY8eN7fA9poXGhB6lzhKfbk57say88aMIGI0J94UXkiw5YgIkj4N7jWBZNDeTnnE/6g9nmpbG2CILQRyn3Ddm+3aMEjL6/RAxpto0EpWYycNU2LeFF5YjJs77jjDq+8VyDuWAdTEISBCe8GFz6blsY3FJ9hX9AcDrGtlhAGD6qqKDqJICLJffc58dprrPGxHC5c4HD4sNlrQEbLaCDFHiKQeFF5YjJsJ0+eLGvYEgQhj9pEoIzQXqmiotpntVBVRfc4kUgYU7O5bVvthqmYaZ6b6w5zTmGDFHsIKZT02o10zXA8ry7t7Ha7YWbsqZa2RqKsTKIWtAHgOCAzs7lh+2d0jDB+/iLqxlto/TGmMUAQ2jDedSx6sx56qB4rV2pN/hIQtUIBRHROMZImaSwxwvphRFh1bPUeP/F4ajDtOz788MP46KOPVNsdPHgQDz/8MMshCaLJkJ/v8hZZMD7GMgYIIjSMdR0L3i2gRw8XVq60gj1J07+dqBUKADt2OHDFFfr2ExDKdx89Soo9hDxGV3li8tiePHkSv//971FRUYH8/Hx07doVrVq1gsfjwU8//YTjx4/jwIEDuPLKK/HMM8/g6quvjkbfdcWoT2T0xBgeRhi/+PLYEomH8byXTY2MDCGZs6JCj6dbwfP7ySfVcDqB9u2b6T63LFniQMuWfJNXOjDC+hHPxMpjy2TYirz//vv4y1/+gqNHj6K2thYAkJKSgttuuw3Dhw9Hv379Qu5wrDHqhUs3VnjEevzcbiAnJ62hSku0jQup0pkEQUSajAwPRo+ux7XXenDihMmnmIJ+9+KcOXWYNcuJp56yYsMG/Y8vkp3tweLFdbDb+SYn6xXr9SPeiZVhq0nuq1+/fujXrx94nkdFRQVMJhPS09ND7SNBJAxuNyT1HEPTnNQTMmoJItps3+5Anz5uuN1A585pDa/qey8uX25Fp04eLFzoBABs3GiNiPF15gyHMWNs8O1/ODG4cnMlQehFSCsux3Fo0aIFGbVxitsNlJSYUVhoQUmJOebl7+Kd4mILcnLSUFCQigkTUlBQkIqcnDQUF1tiLFRNRi1BxILz54V778MPzQ3hB5G5F8XypQsXOnHyZBUefNAJqSpj4RHcdzHWV1RrYEVpriQIvYiLdBZCP2hi0RcxflYINWhEnPhPnKBbjCDij/AMQ1Fr9oUXkvTojAz+5UutVmDdujrs3OlAdrZ//zMzPRg/vg4zZtSFfC5fRJkn0bBmQW2upDWI0AtadZsQNLHoi1izXSpxQ5z4X345CVlZHq/GXzCxC9zq168+ZucmiNjCB/wLfE9afF7dG8ojK8uD3Fw3iostUZlTA3eFfDPWt2ypxXvvAZ9/Xo0lS5zo00e/7Tme9zeslWCZK7UYyQShBBm2TQSaWPSnMX5WeptRnPhHjhQMyGDjNtJGrfTxOY5HixYevP8+PcgQTRUOzZqJBixbmEBGBo9Jk5wNf0ndW8Jry5YJXtG5c0PTqtXK+fNc0LwtlrodNsyFfv3gjWEtL+egd6gCS7gV61zJYiQThBqaDdvPP/8cAHDp0iWsWLECO3bsgMtlDO0yQh6aWPSHNX62QwcPduxwICsrcDGJtFKCuIj5vNJgXFOGL9HUCa60Jxp8Uvckj+RkYN48J3budCAjI/gGysjgsXOnA/n5Lhw+bEZpKWtsrZzXmI35821M4WRuN7BggWhs6zfvsJT4ZZ0rY5uTQCQKmgzbTZs24dFHHwUALF26FO+99x6Kiorw7LPPRqRzhH7QxKI/rDXbW7XivduDc+bUIdyFTBv+v2dGBo/Zs50RTWghiPgg8PpXetDkUFoqPPjn57vwn/9UY8+eGsyYUYfp0+uwe3cN/vOfRoF6LfPoXXe5gmJig4u5KM8XSuFkYrLwihVWReeGVjiOR3a2EHahhpa5kiDCRdNeZHFxMf785z/D6XTirbfewquvvoqWLVtiyJAhmDt3bqT6SOgATSz6o1azXSyh6Tvxv/yymEwitagGeov0FtbnceECh4sXdTwkQUQU8R4wRpGJAwfM6N1bkKfq08ctG7OqZR6dOLEeubkOPwms7t3dOHLEjNGjbaislDK4g8PJOI7HvHnJyMtzeUMPiostmD8fOHUqVcO3VEfc+Vm6tI5JqiuUuZIgQkWTx/ann35Cp06dcPz4cTRv3hydOnWC3W73FmsgjIs4scglMWl5+iYEzGZ467YHjqvUxK8WDqK2eIUPB44D9uyJZKY2QehJ4INeuIR3jC1brIpeUVFCUZD7Uk80E+dc35jY3r3dsFoFr21lJbuHNTCcrLjYglGjbDh1SvPXDOqnyeT/PbKyeOzY4WDWsdU6VxJEOGjy2LZq1QrHjh3D3r170atXLwCCF7ddu3YR6RyhH+LEMnq0raFueeNkSRNL6OTnu7BjhwPz5iX7qU1kZfFBAuZGCPPgeQ5lZRzsdg8uXJD2nhCE8QiOFw/9OOExa1awV1S4/xv9RI2GoNz5hPcXL66TLVYQ6nyxf78Fublun2RhVoL7LK4NW7c6wq48pmWuJIhw0FRS96233sKcOXNgs9nwl7/8BefOncO4cePw/PPPx3U5XaDplNSVmoTDqSJjdKJVEtG3mk7Lljx4Higr818ESkrMKCjQd0swVMaOdWLbNrmwCIKIZyIftvDgg0706+fGiRMmrFhhlVSbUcNm8yAlBQ3x7gK+c3Go84Xd7sHWrQ4MH67ls8LkmJHBy/ZHK3IVxuKp8hiV1A2PWJXU1WTYAkBdnbCdkJycjKqqKtTU1OCqq64KrZcGwqgXbiRurHiaWMIl2hOT0oNDXp4LOTlpinFmLVrwKC+PvApfixYeXLhAan9EIhLteNxQzyfvId2xw6E6XygxbVodnntOi9yYIGU2b55Tl7UhURwoZNiGh6EN22PHjqkeqHv37mw9MyhGvXDpxgoPLeMXrsEvFsAI9N74LlYAMHq0DQAkw0G2bXPgiSeSI2jc+g4CeWoJwngIiVSffFKN/fstkvOFGr161eOjj7TE0vPIzuZx/Hh12E4OlnkwXoxbWn/Dw9CGbadOnVROxuHLL79k750BMeqFSzdWeLCOX7geBrcbyMlJa4gdk8/6PX5cWKyUzjV/vhVbtugv7i7EVnv/0v34BEHox5w5dZg1yyk5N6mRluZBdbX2h+Oiohr07h16ArGWeTAedgmj6RhJRGJl2DIlj3311Vdhd4ggjIq/h6ERURuSxcPQqHggjZCxzHl1MPPyXLKT4MCBbmzZEu63CsZu51FWRuEHhBFRS7ZqeixfbgUATJ/u9M4XpaUc5s9Pbqggpn84UygJa74G3fnzHPM8GI4BbTQSJfQiUdBcU7O2thYXL16Ex+MBANTX1+Obb77BXXfdpXvnCCLSqJUaltKGlEJrAQxR3kcKUZpNzusRGjyGDq3H9u2heYIbvb1keBCRgK6rYDgsX56Ml15KwrJljQaSzSaGM0mr2wwf7sLWrdaQzqhVxzwUbzJgDIUYvdDDMULoi6arcc+ePejVqxf69++PAQMGYMCAARg4cCCeeuqpSPWPICKKXqWG9SyAIUqzcRygLnHEvhC99lpoix2gLb6PICILj4wMD1q0kNflTiQCq4qJslmBJbpFbdm779ZuRIWiYy4adL7SXawkSiEgNccIILzvThzndFygyWO7efNmTJs2DWlpaTh27BgeffRRrFixAr17945U/wgiouhValjvyjri4jV7trjtKAfroqJHxTEybolYw4PjgFWrBHUe0XOZ2NemoOE7d24yrrySx/nzQvjS0aPVOHYsOJzp0CFtgZ2h6JgrGXQC0r9JolUY0xKClkihF0ZHk8f2/PnzePTRR9GrVy/873//wy9+8Qs8/fTTeO211yLVP4KIKHp5WiNRWSc/34UlS+rYPxA11CoqEYRW2K6n7OzGildynsvow3r+0PvJ8xxKS00YPjwVEyakoKAgFT16pKGigvNWKxPnFqHqGTtaq4gBoVRRTMxCQHo5Rgh90WTY2u121NfXIysrC99//z0AIDs7G+Xl5RHpHEFEGj1LDattEYYSZxX7RVsKmqQJOSJ1vfKYM6cOx49Xe+8jtxv46isTamrU+hPpe0jL/aBffwJDFERYH9anT69DUVGN35iyEoqhFs48aFT0DEEj9ENTKMJNN92EBQsWYP78+Wjfvj3+8pe/wGazIT09PULdI4jIonepYTXFA62ohTgIddwBnleLg2XdrmVtJ7SZPr0OLVrwmD/fxvAZgpCC7Zrr1MnjV8Z25sxkvypZUjRvDtTV8XA69X8YS072oK5Oi29I6INQHCX8/sglt7KGRc2Z4wx5XmI11JYscaBlSz5h5a/0DkEj9EGTx/b3v/89Lly4gOrqasyePRurVq3C/PnzMW3atAh1jyAij96eVlHxIHCLMBTUQhw4Drj7bpeKRqAWb4G2Bbe6msOYMfXIzvZoPA+RmGj1XrJ9huMak3CKiy0YNcqGigq1Bzkely9zcDojI3FXVxeacXrrrfoZOVLJrZEIiwqEdadrzJh6XeZBoxKNsSa0o7mkri8ulwv19fVISUnRs08xwagFEKhAQ3gkisC2nE5iQUE9Nm5UrlVvt3vgdgOVlUryYXxQnXg2BM9PZSWHrVvFSkcUqkCwoD3p669/rcFjj9lkdVzjgWbNeFRV6dv3zZtrMWxY4wO42w2sWWPF1q1JqKwMveiM0nwoqiIA0lUUEyHsIFoFfhIVQ1ceE9m7d6/se0OHDmU9jCExquFIhm14JNL4iQtNaSmH8nIOGRk8Fi6UF2vXSv/+9XjvPS1lOIFg4yTRM9SJWBIJozB68LDZeDgc+nuQfSuGSRlZGRkejB1bj+nT2cIPWA21RDfoEsUxEiviwrC94447/P6+ePEiamtrkZOTg5deekl7Lw2EUQ2fRDLMYkGijV+oguishF+IgSpIEZEkXh6c9OinEGqkfD/yyM5uLFHrXywgNC+q1mMkskGXaOtHtDF0SV2Rv//9735/8zyPbdu2obKyUlPnCIIIhnXrL5ITrLClKGZuh7Iwx4PRQcQfTe2BSfi+6oVRODzyiOCF1aOKYijHUKqiSBCxICy3D8dxGD16NF5//XW9+kMQuuJ2A++/DxQWWlBSYjZsBZjiYgtyctJQUNCoU5mTk+aV8lEXRCeISGEEV1UkYmoDv5ee3zO8vmZl8Rg3rp6pbYcOQnl7Paoo6lWJkSBiSdj7md9//z04jhZawngUF1vQrVsa+vcHxo8PNhaNglxpSl+dSnVBdD0RjIgrr+Tx/PO1uPJKwBjGDREbEnN+D1y27HZjXOP5+fX45JNq5OWxxaiK0luhFAtwu4GSErP3wb+0lAoOEPGPphV+5MiRfkZsfX09vv76awwZMkT3jhFEOMht24vGolEydt1uYOZM9a2/efOiX4Hs4kUOixYlN5TipYWMSAxSUz2YPLkeU6c6/UrSdu/uRo8eaQqa0dHho4/M2L/fgrw8lyaNVFZt2a+/NqGkxIzycg4LFvjH69vtHqZjUMEBwshoSh5bv369398mkwnXXHMN7rzzTpjjPFrcqMHhFLyuHbcbyMlJa/CAyi8IYsJFpPrAklCxcqUVy5cnqx5vyRKHDkUQhGIOHo9WrVEyagkjoHQtsqlzJCXx2LTJgSFDpB9q5SSstPcnHISksR07HADALKnldgPXXtsM1dWQ6ZfUGPm3bUwelT5GNOZOI0Hrb3jERfLY5MmTQ+4QQUSLxm17aYQ4MQ6HD5sjkvTAKoHjdsNH+1UZu51XqUDGhofNIeMDywJJxC9G+y2V+sMpvB/4mvQx6uuBMWNsGD/eiYED3UEPnGKxFuH+lT5GRoYHt9/uxjvvWFBVpfxtQkP4nvPmJeP48WrJ/mRl8UHzyRtvWBqMWq3naqQxeRQIHGsqOEDEC0we29///veqB3rmmWd06VCsMOoTGT0xaqew0IIJE9SLhgSKmuuBFqmckhIzCgpSmY5bVFSDigpOxptkNOOEMAZKSgI80tJ41NRwOiQkhn/9paV5cNddbhw8aMaFC5GRspNCTnPVd8clM1PwoJ4/37j7sn+/UP1MIJTvzjZmoj6tGAtbUmIGxwkqBLfe2miUu91Aly5pKC/Xb+zsdo/f8RJJn5YVWn/DIy48thUVFTh06BD69++Pdu3a4dy5c/i///s/3H333SF3lCD0hjX+S+84Ma1SOawJGBkZHq9nSc2bFAwZvYQ0ycnA2rUOPPGEWOQjVHy9fNqPc//9TqxdK3gBd++2YOLE6FWylIu5V5KwcruBuXPF8KHI3lviHLF/v/8u0OrV/obm4cNmXY1aAFiypA5ZWXxC6tMSiQ2TYSt6YydMmIB169ZhwIAB3vf+8Y9/YPPmzZHpHUGEgFjHnDXpQi+0hkCwGtZjx9Z7F5T8fBfy8lwoKTFjzBibSplcqLxHJDbK18WFCxzsdh7PPFOH8eNtYSZMhf7Z++9v1ETNyoquW4xV39UXofqf9tLToYxRq1Y8UyKs06n50KpkZfGkT0vEJZruziNHjqB///5+r/Xq1QtffPGFrp0iiHAwm4U4MKAxBEAkknFiWuV2RAM8sI+N8MjI8GD6dP9Vy2wW/gk14MlwTUzUDDyeoY06O3YkNRi1YR+qAe0HKitrvIZZ7gm9pee0arOGJnUlFQMs/104Toip797drbgLBAi7RJmZ+o2JeG69H/wJIlpoMmzbtGmD/fv3+71WWFiIn/3sZ7p2iiDCRUwCCfQA2e08xo1zIiOD171Yg9YQCCUDXFzwVq2SNsBJRzLRUa845R8CEBrFxUk6F/3Qfhxfo4zloVTqPT2KLbDeU/qFMEn/hr4P38eOsRVM4DghNEH+e7O+TgliRPyjybCdPn06nnjiCTz00EOYOXMmHnjgATz99NNMyWUEEW3y81345JNqvPceMH68E3a7B2VlJmzZkhyRYg1q3iYpT4icAZ6dzWPnTmmtXbdbSGTRB8qIiG/0uA5i+5A0ZYrN7z6UuyeysoR7YufO4Pf0+A6sBmturhtZWUpGpFb8+56VxXtjflmN7fPnOSxdWtdQdEKbERvYl/R0mhOI+EaTji0AnDhxAm+++SZ++ukntG7dGoMHD0a7du0i1b+oYdSsR8rKDA+OAw4ebI4RI3gmpYJwkdPBVDsXq+6tlJSYNGzJPJmZgrFPxDOhJ24ZAfHemD3biQ4dPN7rHwCOHDGjpiYVqak16NnTXwVgzRorli+3ikfxOaJwPJsNcDjYxiQtzYMVK+q8sfdq3sqnnrJiwwapc4eK0Oc5c5yYPt3pPT+rcoqoniA1P7RsCdx3Xx327k3ye71FCw8uXBD7Htl5MV6h9Tc8YqWKoNmwTVSMeuHSjRUeHg9wyy3NceqUdPJGJATHWXVsQzmulJSYlN6keK1wXLCBzfPw6ngapdoSoQdGU8DQ0h//tuL9MniwS3L+YynCcuWVPOrqONTWahsTtXtV7dz+38nbI9XzSs1F4rnUEmEDPyM+JLduzSM/PxUVFZfhcjW+3rIlj8mTbQ0ldKkQgxy0/oaHoQ3bwYMH429/+xvuuOMOv5K6vrz77rvae2kgjHrh0o0VHh9+aMbQoeweD71g9cBqOR7bYtq4MAOCLJFvBndWlgfLlvkv2tqqLemLxeKBy6X+nQh10tI8qK5ODO+76DXcudOB3/42JWj+Y9eAVjOupatvAYLHMi/PFXQfHz7Mdm673YMHH6zHxo2CZ5f13gqci0LdBRLaSK8fWj3BTZVorb96rxdGwdA6tuPGjQMgVB6TM2wJwohoVSrQCyUdzFBQkxITWbLEgTFjBHkwqfhhpzO4+hhLtaVI4XIlhiFmBHbscOB3v0tBbS1glAeF5GQPfvMbF5o357F6tXrpaBFfGa6RI4Pf37+fNTaeJQlP+tyzZiUHPRhmZ3uYd12WLKnDiBEu5OR4NN1bgXOR3P0pVX2MlVjNi0Qwkdrha8owzQ6DBw8GAAwbNszv9e+++w7NmjVDq1at9O8ZQehArIo16A3rAtOyJe81aqW0L8vLTRgzxoZJk5xYuLBRRky7Pi5hHHikpQGPPWbTvO0eaerqTNi2LQlDhtRr/izPczh9msOhQ0CXLo2vFxdbmEtRhwrPcw3xp/43UGkpx3xuMcEtP9+Fu+92oXPnZrh0Sf33kZqLxPtTL69eosyL8Q6LRjEZt9rR5C755JNPMHToUADArl27cM8992DAgAF45513ItE3ggib3Fw32raVkgcSiBfNRi0LkVIFNJENG6zYt8//udZsBi5d4hoyq41lIBFyCFvt1dUcKiqM6v3msG9fEtLSeAV9WnlKSxv/X7y2o4e0dqzJpPxdTCber5rbsWNmJqPWbpefi8RdoGHDXOjdO7yt6lAUXAh9UatUCQjv6y1L2RTQNBOuWrUK/fr1A8/z2LJlC/74xz9i/fr1WLt2baT6RxBhYTYD4uUZzWINeqNlIWoMW5BbSAVv7BNP+E+aovegokKLUau/YD6hhWg+gITzW3OorgZ4Xv4hU46srMb/V7+2owEHj4drMEikv4vHA4wd2yhjxrrjMnw4W/WzcIlVERuiEbVrWWvhEKIRTYbtiRMn8Pjjj+PEiRMoKyvDoEGD0K9fP5w6dSpS/SOIsBk2DJLal756kUZHy0LEuoiWlzdOmixeXnnIu5v46CEpxqFZM55ZJ5XjeLRp40GfPo2vGSnmc+xYJ0yyK6i/x411xyUvL3pzkZJecLzMi/FMtOOc3W4habCw0IKSEnNCe4I1qdObzWZUV1fj4MGDuPnmm2G1WnH69Gk0a9YsUv0jCF3Iz3dh4ED9YtRiAWsSiZa4OHHSZE1OC8Y4hgYRSfT5nauqTGj0/KqrFQgPayneV40U89m2LQ+PR/47CB43DocPm1FezsFkkm8vymtFe+tf79hdgp1oxjk3tQQ1TYbtnXfeiUceeQSnT5/GvHnz8O2332LSpEnIz8+PVP8IQjf0ViqIBYELUWYmD44TKg+VlJiRm+tGbq4bdrsH5eXqhqo4aRrJE0YYi2HDnCgstKo31IT69TZhgjNo0RVDcuR1l/XR8k1N9aC2Vlnbec0atjF54w0Ltm9XSjiL7dZ/IsyL8YjatazXw05TTFDTVKDB7Xbj9ddfh81mw6BBg/DDDz/gvffew29+8xuY4/wRz6g6saRjGx6JPH5KT+EeDzBmjK3hVWkDIDu7UYCdXReUaDrwyMjg4XIBly9HPzHNZOKxbZsDo0b569jK6y7LFUQQXr/nnnq88QabMTpnTh1WrFDTn2UzopU8teL7W7c6MGSI/sZFIs9/0SDS4xeORjELLIVMIlmII1Y6tppmK7PZjGHDhqF37974/PPPcfXVV+Phhx+Oe6OWIOINcUIM1MYUn8JNJmDSJKfMpwUvrxizW1JiRmkpB7vdA/0TwWg1jV84VFRwuHw5Nt58j0e4lgsL/V+Xiw3NzuYxaZIT2dnBr+/c6cCYMWwGgt3uwfTpTuzY4UDr1krXrygHJtdGeE/JqAWE78kad0wkFpGOc26qCWqaPLbV1dVYsGAB3njjDdhsNhQWFuJ3v/sdXnjhBXTo0CGS/Yw4Rn2ipSfu8EjE8dPyFP7GGxY88USyX1iC3e7B8OEupKfzeOmlJD8Beu1JQnJeK76hnK+WYxFEIDzateNw7NjloEQtuWpNSq8rV+8Trv3t2xu9p4cOmTF8eCgVzrSV001P92D1av3jHRNx/osm8V55rLDQggkTUlTbbd5ci2HDjL9jEBGP7fLly1FTU4P9+/cjKSkJ7dq1Q//+/bFs2bKQO0oQhDa0PIUPGeLC559XY/fuGuTn16NZMx7l5SZs3WrF8uXJDbXiQ6NRnSFwxuK9/SCjlghGywrH4eRJSHqU5HRdlV5furSuQadZug8DB7r8QgLOn2e7fgM9rna7aOiyfb6yUvBOS1ULJBIfPTWKfWmqhTg0Gbbvvfce/vjHP+LnP/85OI5DUlISnnzySXz22WeR6h9BEAFolYnZv9/SoKmZhKqqwM8G/y08FXswZowT0gaAsMW6bZtDUkaNINTRds3oldyYn+/CxIlyITrAW29Z/IzLli3Z+rljhwNFRTXYvLkWRUU1WLKkTmPPSJCf0J+mWohDk2Hr8XhgtYoB9XzQawRBRB4tT+HFxRaMGqWt6ALPcygrM+Gee1x44QUH2rTxfz8rS4hZHDLEhfx8Fz75pBpFRTXYuLEWzZp5GlqRp5aQpn9/N2w2bYatXh4ltxsoKpJTKPA3LouLLZg82SbTtuETDYbBrbe6/TxuoTzsJWq8IxE7mmohDk2GbW5uLhYvXoza2lpwwn4OnnvuOfTo0SMinSMIIhjWp/Du3d0+5Ue1G5qil4xT+ai4jZaZyTfolJJRS8jz3nsWOBxScd3BcByPdu0QskcpUJT+ww/ZwnjWrLFi9GibYqiOkmGgdo8qQdJ7hJ40xUIcmpLHysvL8dhjj+E///kP3G43bDYb2rdvj82bN6NVq1aR7GfEMWpwPQX/h0eijh+LTExGBh+WhJcoeRQsdyScY9YsJ3r1cuP8eQ4nTpiwcmUSPJ7oy0IR8Y50opV4Le/ezaFvX+n7VynpRkoOLz3dg8pK9WtUaKccI2u3e/Dss3WyMl3ysmTKFBXV6KYrm6jzX7RIpPGLVIKaErFKHtNk2AJCCMJnn32G06dPo3Xr1rjpppsSQu7LqBduIt1YsSCRx0+tmgxrRmwgoqoCz6PBYxWuQgJBqCGqaDReP9nZHixbVoff/jZF8v5Vuv4B+IjSB6oV6HeNqlVvkuqjXB8ioSmayPNfNKDxC4+4MGwrKyuRnp7u95rT6cSzzz6L+fPna+6kkTDqhUs3Vngk+vgpPYWzSxU1InrJZs92YvnyZJXWRFPCZuPhcET+wSU93YNx4+oxfboTFov0/etfTSnYy5uezjfElWurTsZxfMNn2XYeWIT0fe/REydMWL7cGmTE6yXIH9y/xJ7/Ig2NX3gYWu7ryy+/xIABA9CrVy888MADuHjxIgDg66+/RkFBAfbt2xdebwmCCAk5mRiWxBcB6birDh08Mu2JporDEZ3zXLzIYcUKK/bvl5a+cruFBC8pjWSe58DzaDBM5Yxw+UpiPA+MHVvP3FfROFVSM/C9R2fNckoqiSRyvCNBRBsmw3bZsmXo2LEjNm3ahGbNmmHz5s04fPgwfv3rX+OKK65AUVFRpPtJEAQjojeLRaM2I4PHnDl1Xpmi48erkZ/vSjhdQ0IPohNmomYsquk4h95PDnPmODF9ulNT4pdWNYP8fBeOH6/2kwcT7zuCIMKHSQ36yy+/xP/93/+hRYsW6NSpEx555BHs2bMHjzzyCKZNmwZTYEkYgiBigpI3yxff7V6peL7ycrFcqPJxCHXatQOaNXPjyy/jPxchWgjGIofDh824917/9yKpGtChg8crkTR6tA0cxzMnfmnpl+jFJQhCf5gsUo/HgxYtWgAAWrdujbNnz2LChAmYMWMGGbUEYSDUvVkC27c7MGuWtFHrdgMLFoQuE0b4c/IkEtCojY5HX8pYZN9N0N7H8+c5uN3yEklK0C4HQRgDJquUCxCyTEpKwsiRIyPSIYIgQofVa1RWJt+O1Tgmmi5CydjIk5nJ4/334dWhdbvZdJxbtPB4/98f5X7Pn29DTk4aiost3pCB3btrkJ7ukf1solZvIoh4JSR3a1JSEpKS5Kq3EAQRKoGC8lrLa7J6jU6ckL/1Q9/qlSu/ayRC7Q8fxmcTCR4mE++tNjd6tHx52nDgOB4ZGR5MnmxD//7A+PEpKChIRU5OGvbvt6hWU1q5sk6h3LPy71haymH0aBuKiy0wm4G+fd1YvboOHNe0qjcRRLzCFGPrcrmwd+9e79/19fV+fwPA0KFDdewWQcQngfJb3bu7cewYmyi2mi4tC7m5bmRleVT0Z3m8/HKSbHxtqFuq2dk8HnrICbdbkGXp3duNV1+14K9/NVrJ7VC0TMX2TV2rl4PHA3zyidkbI7pjh96/L9+gbBA8zqLRuWOHAzt2OBrul8Z2WVm83/2Sl+fy3o+ZmTzGjLE1FF5QODvPgeN4zJuXjLw8F8zmxtAEtfMRBBF7mHRs77jjDuWDcBzeffdd3ToVC4yqU0c6euERzfGTMkxNJh4ej7/ovNRCqKbLqUUKaOVKK5MGrVyFI7cbuO66tIbyuMrcf78Td9zhljXanU6gbdtmYDMGm7rRGD9s3lyLYcNccLuBnJw0lJZymqprKaN8HfgWMgDYqymVlJg1V+ILvEdiUb0pHGj9CA8av/CIlY4tk8f273//e9gdIohExt8wbcQTIAfr63ESDVU1Xc5A75EarBq0SiEHrEbKX/+ahIED3bIZ3lar4LktKWGZasiojRdathQu9FAVBMLBVzGhd2/5ay+QUEJsDhww+x0/ntUM4s0oJ4hQIUkDgggTZYmtYEMV8NfoVEvW0qqTyRpKINfu8GEzqqvZjQAlcXoAePhhdsH7xx+vU0zUIYyB7wNcKAoCyugvrwWEFmKzZYsVxcVM/h9DU1xsQU5OGgoKUjFhQmO8ciJ8N4IIhAxbgggTrSoCgYYq6wLN2o4la1wpi1ubwaBudGsxeL7+2oSBA13efkYXShBj/f6BqhqigsCePcoKAnqi1VAV48+19I3j1B/cjE5hITBqlM0vNhjwT5IjiESCDFuCkIFVoSBUFQHxc+F6WAMRt4eB0LK4Q/FsKY1Bbq7bK7+kxoEDSdi1ywqOA1JTI2Ec8ZA3YJUS7hKf++9nVziQukbMZqBPn0YFgUgZt6HKa5nNwMiR9dDyG2vdLdGLcNVRfI/z+OOQDXMC4t9wJ4hADGfY1tTU4Pe//z169uyJnJwczJkzB9XV1bLtFy5ciC5duqBr167ef6+++moUe0wkIlq27kJVERA/F66HVQq57WGWmvRq/ZFCaQzMZmDECG1Z4zwPVFdzGDq0Hps31+Kvf62BzaaHodR0DVc1Onf2YPt2B0wm+XFmuRbFay87O1IPJqHLa7HGnwcSyWpngegZNnD4sBmnTgF6hTkRRDxgOMN2yZIlKC0txVtvvYW3334bpaWlWLlypWz7zz77DEuWLMGnn37q/ffAAw9EscdEoiEmgrFu3Wk1BAONg3A9rHKEWpNe7I/g5VH+TqxGd16eVjkkYez37ROE8quqODgcGg+heGzfksEEABw6ZMaQIS5s3eqAlFdby7Xoe+1Nn16nWx+zs9UfzJQQk960Eq2qYlrnHjX0DnMiiHjAUIZtbW0t/va3v2Hq1KlIT0+H3W7HrFmzUFhYiNra2qD2TqcT33zzDbp06RKD3hKJiJpCARC8dadkmLIaB+F4WJUQs7iHDXOhd2/2LOi8PBcyMtQWc0FvlMXQCcULLGimcpg3Lxlz56rLl2mHFnNf3n3XguJiC4YMcWHnzmCPq9ZrUbz25sxxhvDbB8Jjzpw6pgczXwK39F0ab6NoVhULZe5RQ+8wJ4KIB6IeNe5wOHDu3DnJ92pra1FfX4+OHTt6X7vmmmvgcDjwww8/4IYbbvBr/9VXX8HlcmHdunU4fvw4mjdvjuHDh2PMmDEwmQxlsxNxQmMimDSBUkMicgLuJpO/5JeSoHt+vstPUD6WkjyHD5tRUaF2D3GYM4dNnD4cWagXXzRagYfERZSV870WS0s5lJdzsNt5ZGTwcLuhek0GSkstWlSHceNsCNaoVdcubtcOWLzYgXvu0WaVSulKC4ltbES7qlioc48SublutG0LnD4tfc+JmsBUDphIJKJu2P7rX//Cb37zG8n3Hn/8cQBAamqjiHZKSgoASMbZXr58GT169MDIkSOxevVqfPnll5g0aRJMJhPGjBmjqV+cQZ03Yr+M2j+jo3X8fvqJreFPP3FBxxw82IVBg1ySlcdKSzmUlQnVj1q04OHxSBsHFgtw222xX2RYx+GaazzMYzt4sOAJnDs3OWirNbrEcyEIX8+a3t9BMJyOHBEMJ4sFqKzksHRpcDW8ZcvkH2iKiy0Nv7F/oRKlSnjBxi4wfrwTeXlu5OenorLSpSrw7mtMnzhhwvLl1qDPqFUd8yU7O7pVxcKZe+SwWIC1a4ERIxD0QCka7suW1cFCwgiS0PobHnqPH/NxeAPxxRdf8B07duSrqqq8r12+fJnv2LEj/+WXXzIdY9u2bXxBQUGkukgkOO+9x/NC6pLyv/feYz/ma6/xfMuW/p9v25bn9+xpbONyCcd85RXhvy6Xvt9LK5EYBxHxu/7pTzxvMrGdh/41/mvWLLLHf+UV4Xfas4fnOS74fY4T/vlevyJyn5H7N3OmcC8E3htPPaXtXtizJ/g4of5r0YLn33kn+vdgJO85qfFp1076NySIeMdQz2k///nPkZSUhG+//Ra//OUvAQDfffcdkpKS0L59+6D277zzDsrKyvDggw96X3M6nbDZbJrPXV5uzJJ5HAfY7c0N2z+jo3X8brgByM6WLxEqxNzxuOGGapSVqR9v0SIrNmywItBb9f/bu/fwJsr0b+DfSXqkiK0FoRVwdQVPKFSOgqAUEFmKSPGAYJEzKqKLykEpFAQ8oMKqi0KBiiiKgmWXLcK6iiAiRUBA3p9HlvVES4UCaukhbTLvH+mkSTOTzGQmyTT9fq7L65I0nXnydNrceeZ+7vuXX0QMH+5clUpMBNaujUZxsfpVsWC78kogKSkBZ84olcByrjz7mwelbkcdOjj/u/9+aX6gcB7yJKKsDAjmXDVpUo6SEjumTk2o/R2on+/p/D146CERvXqdc915sNuh+D1yBEHE+vUiPv/8HPbtq1tpXbs2Gjk5db8LrVsDCxdWKKYiFBREYdw473bU/okez5dWMF94oRIdO9bgzBkNhzKA0X97nN/j/Pt3441/YP9++d9FtcdqjPj+q4/R8ycdzx9TBbbx8fEYNGgQnn/+ebz44osAgOeffx4ZGRmywaooinj66adx8cUXo0ePHjh06BDWrl2Lxx9/XPO5pc+xZmX28Zmd2vmzWJRzQaU3vgULqmCx+D/e5s1RbkFbfc7jrlghbYryPFhxsYBx4+J0bRzTyj0IbdFCVDVf9ee1/u3gN97wDtjdb+/m5Dhrp776aoxX+2HjSAMMR+DsGTzpF7zXIOVbdu9ux549/vM9jx8XsGdPXb6nv+9ROsbnnzuPUVAQJZs+cPw4MHas/O+C3Q7Mnq3U9c+3xETRIzVByn8fPNh/2kMwGPm3pz5RdB6/Z0+71+PkH99/9Qn1/AmiaK4fV1lZGZ599lls374d1dXV6NevH+bMmePKux08eDCGDBmC++67DwCwfv16vPbaaygpKUHz5s0xduxYjBo1SvN5T50y5ycyQQCaNz/PtOMzu0DnT27jSf2gzBe7HejQIQGlpYFvYpQCjQMHzgV984rc61Vj06ZyV2Aj5Va6B7JKq2L1gxSbDZg7NxZ5eUZvFDM6sNR6bsicP5xjUuIc66pVlbj11hrk50fhvvvi/X7X8uUVyMx0/hyzs2ORm6v957d8eQWGDq1B584JtbnXypuc6v8u7N5txbBhTbyer8Z775XDYkHYN2rWp/dvjzu+f+jD+dPH6PmTjuf3eWYLbMPFrBcuf7H00TN/SrfR1dDzhlvfe++Vo3fv4G0ok2pnBrLqJQU20u1gJ9/HqB+kSPNcXCxgzpxYlJaquZWtFBzWfzy8QeRtt9mwf39MbZF8J61VIUJJCqCSkkRV16/0wUbPB7lNm8oBQNP5JGoDcHeh/MAIBPZ3RM/fHnd8/9CH86dPuAJbU6UiEJmJVIczEEYWPB8/Pg5LlgQn39ZX7Uw1WrZ0ln969FEppcL/MaSyRatWRSMlRcTcufVXikX4D0iVglrgsceqsGpVdO1t5vAGkIMG2bFxI1BQUI4TJ5xVMR58MA4nTiDsY5NbUZYaAaxcWYnUVIfPfE/3MlGFhVbNQa37Mf75T3VvRfV/r7TWX/VVwsuoYNJdoKuvev72EDV2LPZKFARGFjw/ezawrkNq1NXO1BZkuReu371bqnmr7Rhz5sRhwgTvLkuBSk0VkZdXiV697Dh7Vvt4gkEq4SQ1ybBagRMnzDE2J/lGAHPnxuLJJ9V3w9P6Qa7+MQJtJOC/8Yfn40pNJoxsY+t+TCO7iBGROgxsiYJAesOt/8YamMC6DqkRyMpy/aBk926993Prj0H9mBYsqPRqF2ym9qBz5sThT3+CK4gpLjbD2HxvpnOuqFuQnCzKdsNr1UrE9Ok22GzOn73drv2DXP0A01+AqtQBTE076hkzqny2lA5GABqMLmJEpA4/MhIFgXunLWcau76AJpCuQ2oEsrJcv3uavuLbSt8sPa6cS5ucLGLs2GrEuO1XstuBkyfDHTx6jvn4cWDcuDg88IAN69dHh29YALR80CopEZCZ6dkNT6p0sXhxXYvjxEQHJkyoRlKSw2d5uORkEQsWVLnSD9xv8/vqTCddX0odwJS6/vnq8ifxF4AKgujqxqYlLSHQLmLBSIcgamwY2BIFQM0bkNIbrvyKmbrg1+jVSGmlzFcu5UUXCXjxxXKcPCn/Wnv1smPJEkOH5TUG77E527x265bgCl4Creygnb/yYd51XwH4KP0WSgLUBrfShx4p37OgIArPPSfXzcuC55+P9Xvcrl3tuP125SBT6feldWv/LXUDbUcdjDa2gPrfU/fnGVkNgagxY2BLpJGWNyC5N9zSUqF2w1Tdm9oFF4g4fdr/m6GRubtA3UqZs6KBd0UBUQQmTgROnXLWtrXbgX/+M8ojcOjZ047zzhPxxx/Gr5TedlsNNm+OUtxRK90ufuABG155xTvo0iInpxIvvxxT+3Pw1f7VuwZqXJwDlZW+AupwryJr4WwE4H7bX/0mQ+WvbdsWhc2bo3DrreoD1FatRGRkNMGZM/5ryway4SqQAFQNrTnDnpVJ6kjXdyjrWUcCrnw3biz3Vcus5TxYbkQfo+dPqTSWUn1WJfX/8Hbtake3br67DgWrRJFyqS7fK5PJyQ4MH+4MRN5/34qVK2NlnxcIQRCRlOQe7CsHFoIgQhBQ2+AhkADSea64ONSrwevtvPMcWLrUWcRf+vk1by5iwoS42g1rkUDEpEnVGDSoxhUQGFW+rnlzB44cUX8NB/vvn9rXVb/MmD92O9C5s7rfZwAB1fBVozG+f7AOsHmwjm2YmfXC5S+WPkbOn/RmpfQGBDjfgL74IrDgUwqaAUCu61AwVm38vyZ1kpMdOppRyDdxSEwUfeRsGsn9wvB/rpQUB7KyqnHppQ60bCnCZgPuusuYmsXBpT3XWwoIbDZorherREuQGOy/f1oCUK2/02p/n4MVXDvP1bjeP4xaeKj7vsY1f0YLV2AbKUsMREHnvzSWgOJiC5YuDSyXUsoxrL8LXalEkRECLfdVn3NlVao/q09KinPXfSAlxLRzrtY6KdXG9W53vHhxrKss1IgRxgR8ZiTdCj92zLi3ipISAXa7c7U0Pz/KVVkhHNRUVVDatOaP2t/nYKVDNDasREES5tgSqaT2jWXx4hhccYUjoEA00E0wgTLqzdL5xiG9gWtbGZwwoRqDB9d4vF61Bfv1EdG0qVgbQCuRex3ym8P0jCNUObjOjXhQOJ/3OKTKALm50fC/aU6dY8cstXcJ9N8qNiKXUk9VBTXH9vf7HGgNX/IUrI2A1PAwsCVSScsbSyAlgiSh7Dpk7JulMyhwpiWoD34GD67xer2heRMXUFZmRECp5xhaX6eeIFioDWqVzqlc19a5UU5vAC6iaVPnB7/6AtkkZWQuZTA/UPr7fVZTmcS9yxvJ48o3SZiKQKSS+qYLzgL3hYXm34brv3OTdpmZ1UhOdvh9nlLR/WCNy7y0vNEKaNpU77wEHhjrVVYmfyytt4qD0VRBCkAzM50ftEK1iz6Y6RCNCVe+ScLAlkgl9zcgNRrCyoDnazLmD/7KlTEyK7ba3rB9vdlHFu3XyMiRUmOMhjYvgtt/3qSOZ/4+EEZiLmU48usjTaDd6yjyMLAl0iAjowYzZthUPbehrAwovalqJ8JiUcrD9Py3mjds48YVWQYNCvW8hHb+/X0g9LfhUQqQP/vMaooNamplZNTgwIFz2LSp3GcLYJLHlW+SsNxXLbOW82C5EX2CMX92O3Dddc4SQUbXnQwnux1YujTGLQdS/Wqi701JnhYsqMSECdWq58Z9g1Dz5iKmTo3DiRPy+Yh1QrchS7vANmHVv66kefnkEyuWLlVTQ9hfWTOlcYlISBBRXu5vzo3hXtZK7vc3Pz9KVemxxESHR23hxtjFqzG+f7COrXmw3BdRA2G1AosWVUEQImtlwGoFHnvMhry8SqSmer6upCQHpk+vwsaN5Zg8ucorhzYlxVnUX40WLURNc+Oe+9injx2LFqlJnVDfOlY/redxBofOa0Xpe72vK1EE7rmnGv/8ZxR27XKuRpaUCLjhBjtSUvzl3boHrb6CWnnnzjk3ngUz/UHtrWK1d0LcO8MBnvm3Zik3RsbjyjdxxbaWWT+R8ROjPsGcv0ju7S6tBv76q4D27eNx5ZV/wGKpe7y4WEBpqYDk5Lod24WFwSs0X19BQRSmT4/V0RTCOBaLCIcj0JVMuZVl75XTpCTnBwml0mRJSQ6cOSNAEKCwqupvlVis/V7550id4GJjPbuzOV+7r+MqjcPze5QK6Mv9/trtwFVXJfho3qH8WgVBRGKid5e5SPm9rY/vH/pw/vQJ14oty30R+aFUKzPUNWdDSVoldf4hAU6dAv71L+VA3moFuna1+wl0RFgszufplZFRg8pK4IEHAm2OoJSqoD2F4a23KjBlSlzthjmtAa788xMTRaxeXYGTJwUcO2bBc8/F+HxjkFYn67q1ScdxoKYGtWXNfI1N8Hl8URRw+rSA994rh8UC1/VeWipgwoQ4aJm3KVNs2LQpOuCasVu3Rnm8xnoj9TkOURRqv9e76YbWcmNEZE4MbIl88LcqG8qas+Hk2aqyjntAkJTkb+VSgMMB7NtnTIF0fZunfK30aQtuz54V8NxzVbXtU0UD8lCddWMtFmDo0BpcdVWC3/xlqZFCfDywcmU5Tp1yBp4OBzB8uHHtfk+eFDB0qOeHuVWrKnH//XGoVpGJ0qOHHTk5NmRn2wL6QChVRHDSM8/yjSj01J8mInNgYEukQE0w1xhWd+x2YPZs5fJKUkCQna2uFJpRZdD8FbbXKjVVxLBh1V6rif60bCmiVy+7bPcqPZvYtm6Nwp49Vj+d0dzOVNtZyWoFMjOd12V+vrF/4pW6hj34oE3VBrZHHnFWFAn0A6G/7lJ6gl12piKKDAxsiWT4q5XZmFZ3du2CqlaVaruNGVUGTSrvM358XO3mKu1BTbNmDowY4UwpkVYNpdXE4mIBc+bEKqYY1O8IVT81RUohAOq33VUX7ObmRiMhQftcuX9wUD/Xvsck5dgqdQ37299iEBvrQFWVct5r06YievdWFzB65ngDV14JVwqEOoF/oGgI9aeJSBkDWyIZ7Dtep7hY3fOSk5272p0rlsq3+rW02/VHqnXrvVKqzh9/CFi5MtrjVrj7amJcHGRTDJSqX9RfibzySgfmzInHL7/UPSc1VURFhYizZ/2vNJ87p31znHswq35V2/c4RNE9OJf/oJeQAFRVAd5BpfMbX3pJXaUQ+fSfBCxcWKXpQ5H3hx11wW5DqT9NRPLCv6WYyITYd7xOSora54l48klfpbicczV3rrFdodzL+7zySgWaNfPfzlfir1NVIB2hpFJSGzdG4ZdfBDz1lLN279//XoEFCyqRnV2FiROrVewS1l7ntn65LKM6uGVk1NSmRCg3RTh92oIZM2xo1cp7rvLy1KXt+GuVW1oqqOoutWqV/M8sKYmdqYgiHVdsiWQ0hr7jStUe6uvdGz5X/dxvyTvbofpeGay/0q12HL6e575SeuiQFbm53rfMlfhbfddS/UJutdEpzqssWEKCiHPnVA/T36sAIF8/WQrOH3001quaQFycA5WVxq1vXHqpAwcPntO1McxX+s/cubF48skqTJzonX7ivoqekVGDwYO9f2Zbt0bJpq405PrTROSJgS2RDH+3cOvnVzY0WmrwSg0pxo3zHxBs26YuKpBWun2Nwz2YPHrUgry8aJw+7X+8gwbVaAps649JjprNTkqbDSWOegvJ6oNa/7fQLRbg/vttiivI33xjcStzVXcsZ06s/xq3BQXq3ipathSDtjFM+gCSnCzKpp/ULxkmNw6l1BUt5caIyNzYoKGWWQsws0C0PnrmTwpUAMgGcw21KoJnAOb7dbnPn686thkZNbDbgQ4dElQ1Tdi0qRxnzgiK4xBFIClJ9FMRwNlUoP7PQcs46o8p0Hxpux211QK01rJV015X7jmeAarSNVlQEIXZs2M9mhEoH9/XOJw1iJ25tsof9PS0kVbbKnf58gpkZtaoXumXo+d7Q3lMvfj+oQ/nTx82aCAymUhc3dFT7cHfLfnCQquqYDI52YGuXe3o1k2+PqszcBJ9FOGXCBBFEbNnx+KnnwT8/LMFf/qTA2PHVuPZZ6tqGwd4H9/rKAasvvsvQ6V49gCf4/9n528FWesYnCvOYtBu42tN/9FTQ9ro+tOR3IWQqKHh5jEiHyKt73hdAKa8CaioyFKbK+tNCggyM2vQq5fnipTajXTDh9dg3z7f43A+ri7gKi62YN68OKxeHYM5c+LQtm1THDxowZQpNv/f7SMokzaB5edHYfduq88Nb1u3Bn+N4Pbbfb8e95+drw8wekyebNO0kU4LKf2noW3u8rfhTW0aBxEZg79xRH6YobuYUbc5g1ntQe2K26BBNUGtJuFwAMuWxeCWW2qQmCi62s3KUVp917ICV1AQhdzcaGNfhIy2bdXN765dVnzySaAryL7dcosd8+YF1jXMH191ic26uYv1ronMhyu2RCZXUBCFzp0TMGxYE9x3XzyGDWuCzp0TAloJCla1B7vd+V9iogPypb48V9yCW03CGWBs2xYlE9SKAERMmmRTXH3XsgLn2eI1gJHWzklKiv+VSrUfrpYsiVXVBSyQMUhBrPQzLCkRXCvERlAqr5aaqn9VWMsKvFp674AQkfG4YktkYka39Q1GtQf5Elfym5ukFTej2+F6U05xEATnLv/58+XTD7SswGnLrVWeEwB+Vyp79rSraoARyOa1e+6pxtmzQu3Ks++fndzPOyXFgaysalx6qUP3Kq57Lrez81g8rrzyHCw6lmGClQPLetdE5sMVWyKT8hdkAcqNBZT4KtgfyO1epdXN+urnYfpuHCBCadXXCL5W0bSuwGkJWOoHZu5zoqYRhNUKDBtWLY2k/sigPi+5TlKSiMREEYsXx9aWSBN8jtPXavbixbGuOwodOiRg8+bA103cc7lvugm6buMHMwe2MdS7JmpoGNgSmVSwbnMG0k1Lju8NSs7KBomJDrz3nvwtf6VxJCU5/62nU5YackGp1hU4tQHLggWV+OmnMp+bEP1tVLTbgU2bpFxeuflWy/nB4bbbqnHmjOBVfcL58xQxeXKVxxj8/7zrlJZaMGFCHObP115P2EjB+HDorqFueCOKZExFIDKpYN7m1NJNS4n/2/ACzp51rgAqHXfQoBo0ayZi924rBMG5Stezp7NDVP0ya+6Skhw4e1bQtetfLijVugKnJrWjdWsBEydWw2LxvwnR10bFwEuKeUpNdbY+njtXysOVT7n417+iMW+ezaOcm9bzL1sWg7Q0B269NTxVRNQ2fVDqOudPQ9zwRhTpGNgSmVSwb3PqrfagN/CWy3tcv74u79E98G7Rwtm04dSpuiB84cIYLFsWA+/OXL4bDvjKI9aag6wmsPnb35zP01ugXG+e5iOPVKF3b7ur9bHWgE/7+Z3PnzkzFoMHh6cqQChyYCOx3jVRQ8bAlsikzN7WV0/grXZTnK/AOyfHWdf11VdjPNrVWizAzTfX4N//jgKgbRUtkBU4X4HNokVVyMyMx6lTii9DtcDzNEWkpoqYPr1u9TWQgC/Q85eWWgJeEdVL7ZiPHdO3Em7EHRAiMgZzbIl0CEYJIYnRG73q0zv2QPMLjcx7zMmx4aefyrBgQSXGj7e5cllfe60S06fbcP752vOIA8lBDkUjD3/z7Uv96ySQDyV6zh+uqgA9etiRkqJcgs5JxBtvROv+3fXVvISIQocrtkQBCkUbzWDd5jRi7IHmFxqd9xgTA0yeXO36t9xrS0x0YNKkakybZlMVcASyAhfsRh7u8+2dfiFPEESsXOkdjAdyN8DXz9ufcFUFsFqBrKxqLF7sq66vgOLiwPNsichcuGJLpJHdDjz/fAzGjQtNG02jVwOVyh8VFQkYNy5OU5mmQFY31a7ebdumfclL6bX99puA556L0dT61owrcNJ8JyerCxTvvLMagwd7/wwCvRug9PNWXhENf1WASy91+H8SjFlVDuYdnIZwfiIzEERR75aGyHDq1B+6N3cEgyAAzZufZ9rxmZ3R81dQEIXZs2NRXKz8mVBa7Tpw4JwpgiF3djvQuXOCjyL/gMUiIje3ErfeWqN6/rS0/N2924phw5qoGK2IvDzltIH65+za1Y5u3ZRfWzh+LsH6/bXZgI4dE1Ba6r92ra/V6s2bozBzZixKS7Wt3LvP/bZtVvzjH9Ey4xAhCNDVMcyI+VN7vW3aVK5rxTYUd3ACOf/LL1vQpw/fPwLB9199jJ4/6Xh+n8fA1smsFy5/sfQxcv48Nzz5X93R+0YZDFqDyiFDagy//tQE19IYEhOdK789e3oGynJv4snJDo8ATYnan4uWYF1JMH9/CwqiMG5cnHQmt6/IpykkJTnwwgt1QZbSHD77bJXm8lyBBsj+GDF/0vXmL+1Czwcepb8N0uq33nbA+s4vIC+vQnblnnzj+68+4QpsmYpApILv4vTyzNhGU8uY9BSu98X9NrhvAs6etWD48Cbo3DnBld6hlG7gXL30T80cFBREoXPnBAwb1sTVTevKKxPw/PMxXnOi9/av8beP5V/fmTPOVJOCgijFOTx9WsDEidpTaW69tQb/7/8Fd/NcoEKxCTOYTSDMfn4is2FgS6SCvy5gcszYRlP9mALraqZWRkYNJk2q9v/EWlLu8ubNUaq7XynxNwdKQd/ZsxYsXhyLq67yDLLrB8DuQbg/gX6/FMw4qb0mnc+bPTsWs2cbHwjJ5SSbJefTqG57coLVIdC48wPHjwfv/ERmw6oIRCpoWek0sr6sEbfD3Um74f2nATgFc9V50KAa5Oaqa7kqdcOaNSsWp04F9nlczc9Fzcq8tPI5ZYoNr7wS47MW75AhygGT2lq+cgLvQuasAOCL3m5ckmClJwQqWLVmQ9EEwsznJzIbrtgSqaB+pdO4Npp6VwPlqE8DcKr/uo1cgdNaF1UUBQ1BbWC3nNWtzDu/9uqrMQGveuq9fRyKIEXPOebPj8GECXFeOc9FRcZXDdEiGJUugt0h0OznJzIbBrZEKqgNwoy4tQko3w43opxYRkYNVq2qhMWi/FrkmisYHWj7yn3Uq345LLU/F/XBnACHQ3nV29/tZ723r0MRpAR6js2bo2pbHcsRIIqRlfMZaKOS0J0fuOii8JZcIwolBrZEKvgOwkQAImbMqMIXX+jfMBOMzSD1V1oHD65Bbm6la+zu5FY3gxVoK9dFVZac7D+IOHw4sI1MRgeMSoGy3tvHgXYBc6ZjOJCSEpxAzG4HZs6MhfO6VXqNwc05DbVgb04z+/mJzIaBLZFKSkFYaqqzNNZjj6nrauWP0ZtRlFZaLRYgL68Sqam+VzftdgRls5FEakCxcWM5EhOV259KAdezz/p/E4+JCeyWsxQw+m7Bqp5SoKz39rH/D1repOctWlSFRYuCEwgVFlpVlVwDIivnM5ib0/ScPzVVxMaNMEV1CqJQ4eYxIg2CtQHFnZGbQdRsUDpw4JzP17NrFwxtgSvHagX69LFjyZK6lrFKLXozMmpgsehvM6y0MU9qG+ss8a00x87mA0qbzPxtVAukpW19Su2WU1NFdOtWgx07rDh7tu7nVn9+gtGqWUuwGmk5n6H426D1/Ndfb0fLlufh1KnQjIHIDBjYEmkkbUAJFqM2g/hLaRAEEdnZsRg0qMbn6ykuVjUcQ1bglIK1+gGX3iDCX5eo1asr8eijsThzRj7oFEWgSRPg3Dn5rwO+Vz3dA2jn8eSDeH+vR2keAOCzz6zYvdsKUXRer/VXroMRiKm9dpOTIzPnM9h/G7SeX4icRXEi1RjYEpmMEat5gP+SUGpXWlNS1I3bqBU4tQFXoEGE2jJbgwbVYOnSGOTmRnusfCYmijhzRsC5c/LHT0wUPTp8+XqdRqya1p8HuaD9nXfky2wZHYj5LyfnnPRnn2XOJxEFBwNbIpMxajXPqJSG3r1hSKCtRbBWvrSsYlutwGOP2TBtms0VZDdvLmLqVLk2tq6jID7eWaNXDaNWTaW0im3brFixwrsigRS0r1xZieRkMWi3ytWkckyZYtPcspeISC1uHiMyISM2oxiV0mC1ImibjUItkI157rVPrVaguNhXnVvtO/711lZ13xy4YoV8RQJRdJbZmjQpztC6yHKka7f+psTmzR1YtaoSOTk2Q89HROSOK7ZEJqV3Nc+olAZpLMHYbBRqelexzdblSSmtQp4Ah8PzETVdzgIR7o1URNR4MbAlMjE9t+SNSmmQmDFY0dpyWO8qtpm6PKlp/+uPXPqFUcK9kYqIGiemIhBFMKPrawajJWmgAumEprdLVLi7TLlT1/7XP611kYmIzIyBLVGEkxogBNKJy6yUOqEVFQkYNy4O2dmx2L3b6tU0Qm+XJjN1eTI63SGSGiYQUePFwJaoETDTSqtevm/BOzdO5ebGKK7g6l3FDneXKcmxY8b++Y60hglE1Dgxx5aokdGal2o2/urzulPaHKU3Xzjc+cZ2O/DGG9Fw1oX1v9JqsYi1G8dCU66NiChcGNgSNSL+Om41BFpumfvaHKV3c1M4N0cVFlpry475lpFRjfHjq1FaKmDiRN+tihvShxsiIiVMRSBqJJTyUqVVTaPrmQaL1lvmkbg5Sm1wn5HhTD259VZzpE8QEQVbw3gnIyJdtHbcMjN/9XmVRNLmKLXB/cmTAux25+pyuNMniIhCgSu2RI1AIB23zMpXZQJfImlzlL+yY5I5c+I8NtCFYhOh3Q7s3m1Ffn6UbGUKIqJgYmBL1AiYrWOWXkqVCeSEsrZsqPgO7j3/HcpUk0BqCxMRGYmBLVEjYKaOWUZxr887eXIVADHstWVDSTm49041AZypKEasniqtyEZKDjcRNWwMbIkaATN1zDKSdGt9wQIb8vIa3+YoKbhfsKDS5/OMSjVRWpHdvDnKZw43YFxgTUTkCz9CEzUC0q3r8ePjIAiRWfIpXJujwl0X2GoFWrRQt9KuJ9VEWpEV652quFjAhAlx8FVP1xlYCygstIatRBoRNQ4MbIkaCenWtbOObV0QkpIiNqg6tr6EurasWeoCBzvVxF9Vjfp5vUoaSg43ETVcDGyJGhGWfDKOrxVMqdvZkCGhCW79lUDT213Mf7c3dQFrQ8rhJqKGiTm2RI1MKEo+RTr/K5ihzSn1VSXBiFQT9SutkZXDTUQNDwNbIiKNzFgXWKlKghEb6LSstDamyhREZD5MRSAi0sisdYGDlWqiNtXhySerMHdu5OZwE5H5MbAlItLIzHWBg7GBTm1VjYyMGgwezBxuIgofpiIQEWkUqXWBfVGb6sAcbiIKJ67YEhFp1BjqAsthVQ0iMjsGtkREGkgNGWw2YPp0G954IxrFxY0npzTUtYKJiLRgYEtEpJJcQ4aUFAdmzKjCpZc6uIJJRBRmzLElIlJBasjgvuMfAE6cEPDcczGIiQFzSomIwoyBLRGRH2ZryEBERPIY2BIR+WHGhgxEROSNObZEDYS0aYm70UPPrA0ZiIjIk2lXbCsqKnDXXXchPz/f5/MOHz6MO+64A2lpaUhPT8eGDRtCNEKi0CkoiELnzgkYNqwJ7rsvHsOGNUHnzgkoKOBn01Awc0MGIiKqY8rA9vvvv8eoUaNw6NAhn8/77bffMGnSJNx2223Yt28fFi1ahKeffhpffvllaAZKFAJKm5aKiwWMHx/H4DYEGmNDBiKihsh0ge2ePXtw7733YtiwYUhNTfX53A8++ACJiYkYNWoUoqKicP3112PIkCFYt25diEZLFFzctGQOUkMGAF7BbSQ3ZCAiamhCvtRTWVmJkpIS2a+1aNECV1xxBT7++GPExsbitdde83ms77//Hu3bt/d47LLLLsPGjRs1j0swaWqcNC6zjs/sGvr87d1r9aiZWp9z05KAvXutQSma39Dnz0hDhtQgL68Ss2fHeqyep6YqN2Tg/OnD+dOH86cP508fo+dP7XFCHtgePnwYo0ePlv3asmXL0L9/f9XHOnfuHOLj4z0ei4uLQ3l5ueZxJSefp/l7Qsns4zO7hjp/ai/l8vImaN48eONoqPNntDFjgKwsYNcuoLgYSEkBeve2wGqN9/l9nD99OH/6cP704fzpE+r5C3lg2717d3z77beGHCs+Ph5//PGHx2OVlZVISEjQfKzS0j9qb/eaiyA4Lwqzjs/sGvr8NWliBdBExfPKcepUcFZsG/L8BUuHDs7/AODMGeXncf704fzpw/nTh/Onj9HzJx3Pnwa966R9+/bYvXu3x2NHjx5Fu3btNB9LFGHqC9fs4zO7hjp/3bs7Ny0VFwuunFp3giAiJUVE9+72oL6+hjp/ZsH504fzpw/nTx/Onz6hnj/TbR7TYsCAATh16hTWrFmD6upqFBYW4l//+heGDx8e7qERGYKbloiIiNRrcIHt4MGDsXz5cgBAUlIS8vLysG3bNnTv3h3Z2dnIzs5Gjx49wjxKIuNkZNRg9epKpKR4BrYpKSJWr66U3bRERETUGAmiyAV2ADh1ypw5NIIANG9+nmnHZ3aRNH/h6DwWSfMXDpw/fTh/+nD+9OH86WP0/EnH86dB59gSNSZWK4JS0ouIiChSNLhUBCIiIiIiOQxsiYiIiCgiMLAlIiIioojAHFsiogYoHJsJiYjMjoEtEVEDU1AQhezsWBQV1d10S011YOHCKpZ/I6JGjakIREQNSEFBFMaPj0NRkWcnuuJiAePHx6GggOsVRNR4MbAlImog7HYgOzu2tiakZ2ArtVzOzo6FnVXhiKiRYmBLRNRAFBZaa9MPBNmvi6KAoiILCguZbEtEjRMDWyKiBqKkRD6gDfR5RESRhslYREQNRMuW6vpSqn1esLBiAxGFCwNbIqIGokcPO1JTHSguFlw5te4EQURKijOQDBdWbCCicGIqAhFRA2G1AgsXVgFwBrHupH8vXFgVttVRVmwgonBjYEtE1IBkZNRg9epKpKR4BrYpKSJWr64M26ooKzYQkRnw4zMRUQOTkVGDQYNqTJXHWlexQZ6zYoOAwkIrevVidEtEwcHAloioAbJaYaoAkRUbiMgMmIpARES6NZSKDUQU2RjYEhGRblLFhvqb2iSCICI11RHWig1EFPkY2BIRkW5mr9hARI0DA1siIjKEWSs2EFHjwc1jRERkGDNWbCCixoOBLRERGcpsFRuIqPFgKgIRERERRQQGtkREREQUERjYEhEREVFEYGBLRERERBGBgS0RERERRQQGtkREREQUERjYEhEREVFEYGBLRERERBGBgS0RERERRQQGtkREREQUERjYEhEREVFEYGBLRERERBGBgS0RERERRYSocA/ALAQh3COQJ43LrOMzO86fPpw/fTh/+nD+9OH86cP508fo+VN7HEEURdGYUxIRERERhQ9TEYiIiIgoIjCwJSIiIqKIwMCWiIiIiCICA1siIiIiiggMbImIiIgoIjCwJSIiIqKIwMCWiIiIiCICA1siIiIiiggMbImIiIgoIjCwDaPTp09jwIAB2Lt3r8fjBw8exDXXXOPzex0OB9LS0tCpUyekpaW5/isvLw/mkE1Fbv7+/e9/Y+jQobjuuuuQnp6Ov//973A4HIrHWLlyJfr06YNOnTohKysLx44dC8XQTUHv/DX2a1Bu/tatW4ebb74ZaWlpuPnmm/Hmm2/6PAavv8Dnj9ef/PsHAPz666/o2bMn8vPzfR6D11/g88frz3v+cnJy0KFDB4/5eOeddxSPEbTrT6Sw2L9/v9i/f3+xffv2YmFhoSiKouhwOMQNGzaInTp1Etu3b+/z+7/99lvx6quvFquqqkIxXNORm78jR46I1157rbh9+3bRbreLR48eFfv27SuuXr1a9hj5+fli7969xe+++06srKwUn376aXHw4MGiw+EI5UsJCyPmrzFfg3Lz99FHH4ldu3YVjxw5IoqiKB4+fFi85pprxD179sgeg9efvvnj9ec5fxK73S5mZWWJV1xxhfjee+8pHoPXn7754/XnPX/Dhg0T8/PzVR0jmNcfV2zDYNOmTXjssccwbdo0j8efeOIJbNiwAQ899JDfYxw5cgSXX345YmJigjVM01Kav+PHj2PEiBHo27cvLBYL/vznP2PAgAHYt2+f7HHeffddjBw5Eu3atUNsbCweffRRFBUVyX6CjyRGzV9jvQaV5i89PR3bt29Hhw4dUFNTgzNnzkAQBDRr1kz2OLz+9M0fr79psl9ftmwZWrVqhZSUFJ/H4fWnb/54/XnOn81mw3fffYcOHTqoOk4wrz8GtmFwww034D//+Q/+8pe/eDz+8MMP45133sFVV13l9xhHjhxBVVUVhg8fjh49emDUqFH44osvgjVkU1Gav4EDB+Lxxx93/buyshI7duzA1VdfLXuco0ePon379q5/R0dH409/+hO++eab4AzcJIyav8Z6DSrNHwA0bdoUx44dw7XXXotJkybh7rvvVvx95vWnb/54/XnPX2FhIbZs2YKcnBy/x+H1p2/+eP15zt8333yDmpoavPTSS+jZsycGDhyI3NxcxVS2YF5/DGzDoEWLFoiKivJ6vFWrVqqPERcXh2uvvRavvPIKduzYgfT0dIwfPx4///yzkUM1JaX5c1dWVoYpU6YgLi4OY8aMkX3OuXPnEB8f7/FYXFxcxOdIGTV/jfUa9Dd/bdq0weHDh7Fx40Zs2bIFubm5ss/j9SdP7fzx+vNUWlqKJ554As8//zwSEhL8HofXnyet88frz9Mff/yBbt26ISsrCzt37sRzzz2HN954A3l5ebLHCeb1x8C2gZo1axaeeuoptGzZEnFxcRg/fjxSU1Oxc+fOcA8t7I4dO4YRI0agpqYGa9euRdOmTWWfFx8fj8rKSo/HKisrVf1Ri2Rq54/XoLzo6GhER0fjmmuuwejRo1FQUCD7PF5/8tTOH6+/OqIoYsaMGcjKylJ9K5jXX51A5o/Xn6devXph7dq16NatG6Kjo3Httdfi3nvvxfvvvy/7/GBefwxsG6ilS5fiq6++8njMZrMhNjY2TCMyh507d+KOO+5A7969sXr1apx//vmKz23Xrh2+//5717+rq6vxww8/eNweaWy0zB+vQU9r1qzBX//6V4/HbDab4hzy+vOkdf54/dUpLi7G559/jmXLlqFLly7o0qULioqKMH/+fEyePFn2e3j91Qlk/nj9efrwww+xfv16j8dsNhvi4uJknx/M64+BbQP13XffYdGiRTh58iRsNhv+/ve/o6ysDAMGDAj30MLm0KFDmDJlCh5//HHMnDnT7+324cOH480338Q333yDqqoqvPDCC2jevDm6dOkSohGbi9b54zXoqUuXLvjwww/x/vvvw+Fw4MCBA1i7di3uvvtu2efz+vOkdf54/dVJTU3FkSNHsH//ftd/qampyMnJwYoVK2S/h9dfnUDmj9efJ1EU8fTTT2PPnj0QRREHDx7E2rVrcdddd8k+P5jXHwPbBmL//v1IS0tDUVERAODpp59G27ZtMXToUHTv3h2ff/45XnvtNSQmJoZ3oGG0fPly1NTUYNGiRR519CZMmADAew5vv/12jBkzBlOmTEGPHj3w1VdfYcWKFYiOjg7nywgbrfPHa9BThw4d8NJLL2H58uXo0qUL5s2bh9mzZ7s2WfD6803r/PH604bXnz68/nwbMGAAHn/8ccybNw9paWmYPn06pk6diqFDhwII7fUniKIo6j4KEREREVGYccWWiIiIiCICA1siIiIiiggMbImIiIgoIjCwJSIiIqKIwMCWiIiIiCICA1siIiIiiggMbImIiIgoIjCwJaIG7Ycffgj3EIiIyCQY2BKRT+np6bjmmmtcncg6deqEG264Ac8++ywcDodh58nKysLLL78MAJg7dy7mzp3r93u2b9+O8ePHB3zO/Px8pKenez1eUVGBbt26Ye3atbLf9+ijj+KBBx4I6Nih8Pvvv2P48OH4/fffsXfvXlx++eVBP2dRUZFHx7orrrjC47qROtiFSnl5OcaPH4+OHTti1KhRIT23Gu7Xh/vPi4j08d0MnogIwPz585GZmen697fffosxY8YgPj4eDz30kOHne/LJJ1U97+zZswhG88T4+HgMHz4cGzZswOjRoz2+dvr0afz73//GqlWrDD+vURYsWIA777wTzZo1C9k5U1NTcfDgQde/09PT8eCDD3pcN6H09ddf49NPP8XevXtN3+a0WbNmGDFiBBYuXIjFixeHezhEDRpXbIlIs8svvxxdu3bFV199BcC52jpr1iz07dsXN910E8rKyvDTTz/hvvvuQ/fu3dG3b18sXboUNpvNdYwNGzagX79+SEtLw8yZM1FRUeH62qxZszBr1izXv19//XUMGDAAaWlpyMzMxJ49e7B3717k5OS4VgpLSkpgs9nw4osvol+/fujWrRsmTpyIH3/80XWc//73v8jKykJaWhqGDBniGr+ckSNH4ujRozh06JDH4xs3bsQll1yCHj16YPv27RgxYgSuv/56dOzYEffcc49saoTcqmn917hlyxYMGTIEnTt3RmZmJj799FPX1/bt24fMzEx06dIFAwYMwKJFi1BTUyM77u+++w47d+7EsGHDFF+bu8rKSixevBg33ngjunbtiqysLHz55Zeur//yyy8YP348rrvuOtxyyy1Ys2ZNwCvAs2bNwkMPPYRBgwahR48e+Omnn/DFF19g9OjRuOGGG3DNNdcgMzPTNed79+5Feno6Xn31VfTu3RvdunXD1KlTUVZWBgAoKSnBhAkT0K1bN/Tp0wcPPvggfv31V3z44YcYO3YsAKBv377YsGEDHA4HcnNz0b9/f3Tu3Bm33347du3a5Rpbeno65s6di169euG2227Dnj17kJ6ejlWrVqFXr17o3LkzlixZgo8++ggDBw5EWloapk6d6rqm9V57Q4cOxY4dO/Ddd98FNLdE5MTAlog0qa6uxt69e1FYWIhevXq5Hv/ss8+wfv16bN68GRaLBWPGjEG7du3wySef4K233sJnn33mSjXYs2cPnnzySSxcuBD79u1Dx44dceTIEdnz5efn45VXXsHixYtx4MAB3H333bj//vtx+eWXY/78+a6VwpYtW2Lp0qXYsWMH1qxZg127dqFjx44YN24cqqqqUF1djcmTJ6Ndu3YoLCzEkiVL8OGHHyq+zjZt2uDGG2/Eu+++63rM4XDgnXfewejRo3HixAk8/PDDmDRpEvbs2YMdO3ZAFEUsW7ZM85zu3LkTOTk5mDt3Lj7//HNMnToVU6dOxffffw8AmDFjBrKysrB//3689tpr2LZtGz766CPZY7399tvo378/YmJiVJ173rx5+PTTT7F27Vrs3r0b/fv3x5gxY1BUVAS73Y7JkyfjwgsvxKefforVq1fjH//4h+bX527Xrl148cUX8cEHH+DCCy/E/fffj4EDB+KTTz7B3r170bZtW49Vy+PHj6OkpAT/+c9/sGHDBhw8eBBvvfUWAGDJkiVo1aoVdu/ejffffx/l5eWu4HXlypUAgIMHD+KOO+7AsmXLsG7dOrz44ovYu3cvxo0bhwceeMAjiP/yyy+xdetWrF27FhaLBcePH8fJkyexY8cOLFmyBCtWrMC6devw7rvvYvPmzdi7dy/ef/99ANB97cXExKBfv35Yv369rvklauwY2BKRX/Pnz0eXLl3QpUsXXH/99ViwYAHGjh2Le+65x/WcPn36oGXLlmjWrBl27NgBm82GRx55BLGxsUhJScHDDz+MdevWAQA2b96Mm2++Gddffz2ioqIwcuRIXHXVVbLn3rRpE+666y6kpaXBYrHgjjvuQF5eHuLi4jyeJ4oi1q9fj0ceeQRt2rRBbGwspkyZgurqauzYsQMHDx5EcXExZsyYgdjYWLRr1861qqdk9OjR2Lp1q2uFcNeuXSgrK8OQIUNwwQUXYMuWLUhPT0dZWRlOnDiBpKQklJSUaJ7fN998E3fffTe6du0Kq9WKvn37Ij093RXkxMbGYuvWrfj444+RmJiInTt3YuDAgbLHKiwsRFpamqrzVlVVoaCgAI8++iguvvhixMTE4N5778Wll16KgoICHDp0CD/88APmzJmDJk2a4KKLLsK0adM0vz53nTp1Qvv27dGsWTNER0fjnXfewciRI2Gz2XD8+HEkJiZ6zeGUKVMQFxeHiy++GN27d8f//vc/17wcOHAAW7Zswblz57Bq1SpkZ2fLnve9997DpEmTcPXVVyMqKgp/+ctfkJ6ejo0bN7qeM3DgQDRr1swjhWPy5MmIjo7GDTfcAAC4++67cf7556NNmzZo164dfvnlF8Ouveuuuw579uzRNb9EjR1zbInIr5ycHL+5khdeeKHr/48fP47Tp0+ja9eursdEUUR1dTVKS0tRUlKCq6++2uP727RpI3vckydPIjU11eOx6667zut5p0+fRnl5OR5++GFYLHWf2aurq3H8+HHYbDYkJSV5BMRt27b1+Zp69uyJlJQUFBQUYMSIEXjrrbdw1113IS4uDqIooqCgAOvXr4cgCGjfvj3KysoQFaX9z+rx48fx+eef4+2333Y9Zrfb0aNHDwDOVIyXX34Z8+fPx8mTJ9G7d2/MmzcPrVq18jpWcXExWrZsqeq8v/32G6qrq9G6dWuPx1u3bo1ffvkFF110EZKSktCkSROPr+nhfp1YrVbs3bsXEydORHl5OS677DJERUV55U23aNHC9f/R0dGur2dnZ2PFihVYvXo1Zs2ahSuuuALZ2dno0qWL13lPnTrldY21bt0a33zzjezYJElJSa6xAvAIei0WC0RRNOzaa9myJU6cOOH1OBGpx8CWiAwhCILr/1u1aoW2bdti27ZtrsfKyspQWlqKCy64AK1atcLPP//s8f0nTpxAu3btvI6bkpKC4uJij8eWLl2KW2+91eOxpKQkxMbGIi8vD506dXI9fuzYMbRs2RJff/01Tp8+jXPnziEhIcF1Tn9GjRqFDRs24MYbb8Tu3bsxf/58AMDWrVvx5ptv4u2338bFF18MwLlpSy5HUgqKbDabK0XgzJkzrqCpVatWuO222zBp0iTX9xQVFSEuLg5VVVU4evQo5s2bh6ioKPzvf/9DdnY2nnrqKbz00kte5xIEQfWGuubNmyM2NhY///wz/vznP7se/+mnn5Ceno7U1FScPn0aFRUViI+Pd41LD/fr5PDhw1iwYAHWr1+PDh06AADy8vJcK7L+fPXVV7jrrrswdepUnD59GsuWLcODDz6IwsJCr+dedNFFXtfczz//7BHMuo/N12P1GXXt2e12j8CYiLTjbxARGa5v376uW8M2mw2///47Zs6ciWnTpkEQBAwfPhwffvghPv74Y9TU1GDTpk04fPiw7LEyMzPxzjvv4Msvv4TD4cB7772HdevWuYKJiooK1NTUwGKx4Pbbb8cLL7yAEydOwOFwYNOmTcjIyMCPP/6ItLQ0XHLJJVi4cCEqKirw448/Ii8vz+9rGTZsGH788Uf87W9/Q//+/V2rpH/88QcsFotr9faTTz7BP/7xD1RXV3sdo23btoiKisKWLVsAOPOR3YOvO++8E2vXrnXlex45cgSZmZkoKCiAIAh45JFHkJeXh5qaGrRo0QJRUVGuoLi+iy66SDYd4sSJEx7//frrr7BYLBg+fDiWLFmCH3/8ETabDa+//jqOHj2KwYMHo2PHjrjsssvwzDPPoKKiAiUlJbLBdKDc5xAADh06hLVr13psMvRl+fLlWLBgAcrKytCsWTPEx8crzssdd9yB3Nxc/N///R/sdju2bt2K7du3q95k54tR196vv/7qdXeCiLThii0RGa5p06ZYs2YNnnnmGaxatQoOhwPdu3fHq6++CgDo3LkzFi9ejGeeeQbTpk1Djx49PDaiuRsyZAh+//13TJ8+HSdPnsRll12GlStX4oILLkDXrl2RnJyMrl27Yv369Zg5cyZefvlljBw5EmfPnkWbNm3w0ksvufJ3c3NzMXfuXPTs2RPNmzdHv3798MEHH/h8LU2aNEFmZiZef/1116YlwBnwHjhwAIMHD4bVasWll16Ke++9F+vWrfMKzC688EI88cQTeOWVV7BgwQL06NEDmZmZrkoQt9xyC8rLy/HEE0+gqKgIiYmJGDNmDLKysiAIAl599VU8++yzWLFiBaxWK/r06YPHHntMdry9evXCgQMHcOedd3o8fuONN3r8u3nz5ti9ezdmzJiBl19+GWPGjMHZs2dx+eWXY/Xq1bjkkksAAC+99BJycnJw/fXXo1WrVkhPT8fXX3/tc87U6tWrF0aOHIlRo0bB4XCgdevWyMrKwgsvvIBTp075/f4nn3wS8+fPR79+/WCz2dChQwe8+OKLss8dO3YsHA4Hpk2bhpMnT+Liiy/GkiVL0K1bN0NeixHX3oEDB1y5vEQUGEEMRhFIIiIKi2+++Qb33nsvdu7c6bXBTqvKykocPHgQ3bp1c6VTbN++HTk5OR6lski/iooK3HTTTXjzzTdlU3KISB2mIhARRZArrrgCvXv3Rn5+vu5jRUdH469//SveffddOBwOlJaWIi8vD3379jVgpOQuPz8fN910E4NaIp24YktEFGHOnDmDcePGYc2aNTj//PN1HWv//v1YvHgx/vvf/yI2NhYDBw7E9OnTPSolkD6//fYbxowZg9dee830XdKIzI6BLRERERFFBKYiEBEREVFEYGBLRERERBGBgS0RERERRQQGtkREREQUERjYEhEREVFEYGBLRERERBGBgS0RERERRQQGtkREREQUERjYEhEREVFE+P89VWlmYLtbjwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Calculate residuals\n", + "residuals_log = y_test_log - y_pred_log\n", + "\n", + "# Plot residuals vs predicted values\n", + "plt.figure(figsize=(8, 6))\n", + "plt.scatter(y_pred_log, residuals_log, color='blue')\n", + "plt.title('Residuals Plot (Log Transformed)')\n", + "plt.xlabel('Predicted Values (Log Transformed)')\n", + "plt.ylabel('Residuals (Log Transformed)')\n", + "plt.axhline(y=0, color='red', linestyle='--')\n", + "plt.grid(True)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5EAAAIdCAYAAACk1/moAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByw0lEQVR4nO3de3zOhf//8ed1bbsMwxZjTjnWKsdhm0PCCDkTEQ0hNDn3kag5H/qEYo45dUCOSwwffSRSztKnIhUlbDFm2GZsu67r94fvrl/L6b3ZXBd73G+362bX+/i63u+X9/bc+zCT3W63CwAAAAAAA8zOLgAAAAAA8OAgRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgCAh47dbnd2CQDw0CJEAsADYOTIkQoJCbnt+NDQUIWGht7Hiu5dSEiI/P39M7yqVKmiZ599VtOnT9f169fvOP++ffvk7++vffv23aeKXYPNZtOaNWvUrVs3BQcHq0aNGmrfvr0+/vhjpaSk5Mg609LS9Oabb6pGjRqqUaOG9u7dq82bN6tRo0aqUqWKwsPD79qj/5TZ6Y26cuWK3njjDR08eDDbl/1Pt9ouf3fo0CH5+/tr0aJFt13Gtm3b5O/vr507d2a5jqxsSyPzREZGyt/fX2fOnMlybQAeTu7OLgAAkHs1aNBAYWFhjvfXr1/Xvn37NHfuXEVHR2vGjBm3nbdSpUpatWqVKlaseD9KdQnJycnq37+//ve//+nFF19Unz595OHhoX379mnatGnauXOn5s2bJ4vFkq3r3bVrlyIjIxUWFqa6devqqaeeUkhIiMqWLaupU6eqWLFiMpvN6t69u+FlhoWFZWp6o37++WetX79eHTp0yPZl/9Ottsvf1axZU+XLl9fGjRvVp0+fWy5j/fr18vPzU/369bNcR05tSwC4HUIkAMBpHnnkEVWvXj3DsODgYJ09e1aRkZEaOXKkihYtest5vby8bpr3YTdlyhR99913+uSTTzJ89qefflpPPfWUhgwZouXLl+vll1/O1vVeunRJktShQweVLl3aMaxevXoKDg7O0jIfffTR7CrPaW61Xf6pQ4cOmjZtmn799Vc9/vjjGcbFx8drx44deuWVV2Q2Z/3isIdhWwJ4sHA5KwA8pDZv3qwOHTooICBA9erVU3h4uC5fvuwYHxERIX9//5vm8/f3V0RERIbltGnTRlWrVlXt2rX1+uuvKzY2NsM8a9asUcuWLVW5cmU1bNhQERERSktLy3LtlStXlt1u119//SXpxqWvkydPVo8ePVSjRg2Fh4ff8nLWn376SX369FHNmjVVu3ZtDR061LEM6cYP/eHh4apbt66qVKmiF154QXv27Mmw7t27d6tz584KCAhQYGCgwsLC9Pvvv9+21mbNmmnAgAE3De/UqZP69u0rSTp9+rReffVVBQcHq1q1aurcuXOmL1+8ePGi1q1bp+eff/6W4fm5555T79695efn5xiWkJCgKVOmqEmTJqpSpYpatWqltWvX3jTvnfbfyJEjNXLkSElSkyZNFBoa6uibOXPmOC53/OflkXa7XcuXL1fLli1VtWpVPfvss1q4cKHjXsVbXU55tz4aOXKkevbsqXXr1qlZs2aqXLmy2rRp49iW+/btc5yR6969u+MS76xsf6vVquXLl6t169aqWrWqGjZsqGnTpjkus77VdrmV9u3by93dXRs3brxp3KZNm5SWlqbnn39e0o1LW7t27aqAgABVrlxZzZs317JlyxzTp/f8ypUr1ahRI9WtW1fffPPNTdvy2rVrmj59upo2barKlSurRo0aevnll/Xzzz/fVMOqVavUsGFDVa1aVT169NDRo0fvuF0OHjyol156SdWqVVNQUJDeeOMNXbx40THeZrNp5syZCgkJUeXKlRUSEqIZM2YoNTX1jssF8GAhRALAAyQtLe2Wr38+RGTu3LkaOnSoqlWrplmzZmnAgAHaunWrQkNDde3aNcPrO3TokF5//XU1bdpUCxcu1Jtvvqm9e/dq+PDhjmkWLFigt99+W3Xq1NH8+fPVrVs3LVy4UOHh4Vn+nH/88YckZTi7s3z5ckfAbdu27U3zHDt2TC+++KKSk5M1depUjR8/XkePHlWvXr2Umpqq69evq0ePHvryyy81dOhQzZ49W35+furTp48jSKaHjUqVKmnevHmaOHGifv/9d/Xt21c2m+2WtbZt21Zff/21EhMTHcNOnTqlH374QW3btpXNZlO/fv109epV/fvf/9bcuXPl7e2tsLAw/fnnn4a3yZ49e5SWlqZGjRrddpoRI0boueeek3QjSHTt2lUbNmxQr169NHfuXNWsWVOjR4/W/PnzHfPcbf+FhYXp1VdflSTNnj1bo0eP1qpVqyRJHTt21KpVq255tnjGjBmaNGmSGjRooHnz5qlTp0567733NHfu3FvWbrSPfvrpJy1evFiDBg3SnDlz5O7urkGDBuny5cuqVKmSY/rw8HCNGTMmy9s/PDxckydPVkhIiObNm6du3bpp2bJlCgsLk91uv2m7jBkz5pbLKVKkiBo0aKCoqKib/p+uX79ederUUalSpbRjxw4NGDBAlSpV0ty5cxUREaGSJUtqwoQJ+u677zLM99577+mNN97QG2+8cctfKIwYMUJr165V3759tWTJEo0cOVK//vqrhg4dmqGGs2fPKiIiQkOGDNGMGTN0+fJlde/ePUMo/LsDBw6oZ8+e8vT01Pvvv69Ro0Zp//796t69u+O4snDhQi1fvlwDBgzQkiVL9OKLL2rRokUZeg7Ag4/LWQHgAREdHa1KlSrddnxQUJAk6fLly44f2v/+g+3jjz+ubt26KTIyUl27djW0zkOHDilPnjx65ZVXlCdPHkmSt7e3fvzxR9ntdiUmJmrevHnq3Lmz3nrrLUk3Lq309vbWW2+9pZdfflmPPfbYbZdvt9sznGmKi4vT119/rZUrV+q5557TI4884hhXtGhRjRw50nHZ3z8fqDN37lwVKlRIS5YscdTq5+enIUOG6JdfftHRo0d17NgxrV69WtWqVZMkPfPMMwoNDdW0adO0bt06/fDDD7p27Zr69eunYsWKSZKKFy+uL7/8UlevXpWXl9dNn6FNmzaaNWuW/vvf/6p9+/aSpI0bNyp//vxq3Lix4uLidOLECfXv318NGjSQJFWtWlWzZ8++68OD/u7s2bOSpFKlShmaPjIyUr/++qtWrFihmjVrSpLq16+vtLQ0zZ07V126dJGbm5uh/Zd+ueSTTz6ZYf1+fn63DDFXrlzR0qVLFRoaqhEjRkiS6tWrp4sXL+rQoUM3TZ+QkGC4jxISEhQZGemoKV++fHrppZe0d+9eNWvWzHGPbMWKFVWxYkWdP38+09v/+PHjWrt2rYYMGeIIivXq1VPRokU1YsQIff3112rQoMFtt8s/Pf/88woLC9PBgwcVGBgoSTpx4oR+/PFHvffee451tmvXTqNHj3bMFxAQoODgYB04cEA1atRwDO/SpYuaN29+y3WlpKQoKSlJb7/9tlq0aCHpxrEhKSlJU6dO1fnz5x2h32q1avbs2Y59WK1aNTVp0kQffvihhg0bdtOyp0+frnLlymnBggVyc3NzzNOyZUutW7dO3bp10/79+1WpUiXH2dWgoCDlzZv3lv93ADy4CJEA8IDw9fXVvHnzbjnu72Hx+++/V0pKilq3bp1hmlq1aqlkyZLat2+f4RAZGBio9957T61bt9Zzzz2nZ555Rk8//bTjh/HDhw8rOTlZISEhGcJg+qV133777R1D5Pr167V+/foMw9zd3fXss89q7NixGYZXqFDhjveNHTp0SA0aNHAESOlGWNi+fbskafHixfL19VWlSpUy1NqoUSP9+9//1uXLl1WtWjXlyZNHHTt2VIsWLdSgQQPVqlVLVatWve16S5UqpZo1a2rTpk2OELlp0yY1a9ZMnp6eypMnjypWrKi3335bu3fvdmzDN99887bLvJX0z367M6L/tH//fpUsWdIRINO1adNGa9eu1f/+9z+ZTKZ72n+38/333ys1NVXPPvtshuHpl3/+U2b66JFHHslwD2D65bvJycm3XHaRIkUyvf33798vSTf9H2rZsqXefPNN7du3z/F/wIgGDRrI19dXGzZscITIzz77TN7e3mrSpIkkOR68c/XqVZ06dUp//PGHfvzxR0m66VLQW12Gns5isWjx4sWSpNjYWP3555/6/fff9dVXX920rBIlSmT4JYCvr6+qV6+u3bt33xQik5OT9b///U+9e/fO8Muf0qVLq0KFCvr2228dTwyePn26unbtqmeffVbPPPOMXnrpJcPbCsCDgRAJAA8Ii8WiKlWq3HJc/vz5HV+n3/dYpEiRm6YrUqSIEhISDK8zICBAH3zwgT788EMtXrxY8+fPl6+vr1555RX16NHD8WCR9Hv//umf907+U6NGjRz3E5pMJuXNm1clS5aUp6fnLWu/k0uXLqlw4cJ3HH/+/Pnbns09f/68KlasqGXLlumDDz7Q6tWr9eGHH6pgwYLq2rWrBg8efNsQ265dO40dO1bx8fE6e/asTpw44bis0mQyacmSJZo3b57++9//6rPPPpOHh4eaNGmisWPHytvb+46fK13JkiUlSTExMbcNdufPn5ePj4/c3d11+fLl2/aAdONsYfqljVndf7eT3hd/P5NsZHojdeTNmzfDOJPJJOn24Tor2z/9/5Cvr2+G4e7u7vLx8cnU/6H0+dq1a6fVq1fr7bffdtwj2aZNG8eTdC9evKgxY8Zo27ZtMplMKlOmjOMXAP+8DPZOfS7deGrs5MmT9fvvvyt//vzy9/d3HCP+vqxb9UfhwoUz3Eec7sqVK7LZbFq4cKEWLlx40/j0X9706dNH+fPn17p16/TOO+9o6tSpevzxxzVq1CjVqVPnjnUDeHAQIgHgIVOoUCFJ0oULF1ShQoUM486fP++4zzD9h2+r1eq4NC0pKemm5dWvX1/169dXcnKy9u7dq48//liTJ09W9erVVbBgQUnStGnTVLZs2ZvmvVvw8/b2vm0wzqwCBQrc8l6unTt36oknnlCBAgVUtmxZTZs27Zbzp1+OmH6pY0pKig4dOqRVq1Zp/vz58vf3d1we+E/NmzfXhAkT9N///ld//vmnihcv7ri8WJKKFSumsWPHasyYMTp27Jj+85//aOHChSpUqJDGjRtn6PPVrl1bHh4e2rlz523PgvXr10/JycnasmWLChUqdMt7/s6fPy9J8vHxcZxNyur+u530vrh48aLKly/vGP7XX3/pzz//vOns6L320d1kdvun/x86f/58hstUU1NTFR8fLx8fn0zX8Pzzz2vhwoX6+uuvlS9fPp09e1adOnVyjH/99dd14sQJLV26VDVq1JDFYlFycrLWrFmTqfWcOnVKAwYMUOPGjbVgwQLHWdvly5dr165dGaa9cuXKTfOfP3/+luE/f/78MplM6tmzp1q2bHnT+PRwbzab1a1bN3Xr1k1xcXHauXOn5s+fr4EDB2r37t3Z/udnADgHD9YBgIdMtWrVZLFYbnoa5MGDBxUTE+O4tyr9HqW/n3X45wM83nnnHXXs2FF2u1158+ZVo0aN9MYbbzjmq1atmjw8PHTu3DlVqVLF8fLw8ND06dPv6x8pr1Wrlnbt2qWUlBTHsF9++UV9+/bVjz/+qKCgIP31118qXLhwhlr37NmjRYsWyc3NTR9++KFCQkKUkpIii8WiOnXqaMKECY7PezsFChRQo0aN9OWXX+o///mPWrdu7ThrefjwYdWtW1c//PCDTCaTnnzySQ0dOlSPP/644z5HIwoWLKiOHTtq9erV+uGHH24aHxUVpSNHjjgeOhQYGKjo6Oib7kHcsGGDPDw8VLVq1Rzbf1WrVpWHh4e+/PLLDMM/+ugjDR482PELjHTZWUf6L0TSZWX7p/8C4J//hzZt2iSr1XpTCDaiXLlyqlmzprZu3aotW7aoWrVqGf7kx6FDh9SsWTPVrl3bEbS+/vprScYvYZZuPHjo+vXr6tevX4bLftMD5N/PRP75558ZftHw119/6fDhw7f8sy1eXl566qmn9Pvvv2fYR4899phmz57tuEe5S5cumjhxoqQbZzU7dOigbt26KSEhIcPDpwA82DgTCQAPGW9vb/Xt21ezZ8+Wh4eHGjdurDNnzmjmzJmqWLGi44+wN2jQQFOmTNHbb7+tV155RWfPntXs2bMzXBpbp04dLV26VCNHjlSbNm2UmpqqRYsWydvbW7Vr15a3t7f69OmjmTNnKjExUcHBwTp37pxmzpwpk8mkJ5544r597rCwMHXu3NlxqW1KSopmzpypSpUq6ZlnnlFaWpqWLVuml19+Wf3791fx4sW1e/duLVy4UC+99JI8PDxUu3ZtTZs2TQMGDNBLL70kNzc3rVy5UhaL5Y5PRZVuXNI6YMAAWa1WtWnTxjH8qaeekqenp0aMGKGBAweqSJEi2r17t37++WfHn6NISUnR0aNH5efnl+FPdPzTsGHD9OOPP6pHjx6O+8/S0tK0a9curV69Ws8884zj3roOHTpoxYoVeu211zRo0CCVLl1a27dv17p16/Taa685zv7lxP575JFH1L17d3300UeyWCyqXbu2fvzxRy1btkzDhg2Tu3vGHz98fHyyrY4CBQpIknbs2KFChQoZ2v7/VLFiRbVv316zZ8/WtWvXFBwcrJ9//lmzZ89WcHCw6tevn6Xt0rFjR02ZMkXu7u4aOnRohnFVq1bVxo0bValSJfn5+enw4cNasGCB475VoypVqiR3d3e9++676tWrl1JSUhQZGakdO3ZIunHPZbo8efIoLCxMQ4cOldVq1cyZM+Xt7a0ePXrcctnDhg1T3759NXz4cLVp00ZWq1VLlizR//73P8cDiAIDA7VkyRIVKVJEAQEBOnfunJYuXaqgoCDDlzcDcH2ESAB4CKX/sLxs2TKtWbNG3t7eat68uYYMGeK47KxcuXJ65513NG/ePPXt21cVKlTQhAkTHGfepBtPL502bZqWLFmi1157TSaTSTVr1tTHH3/suJdsyJAh8vX11YoVK7Ro0SIVKlRIderU0bBhwxw/0N8PTz31lD755BNNnz5dQ4cOVf78+dWgQQO9/vrrslgsslgsWr58uaZPn653331XCQkJKlmypIYPH65evXpJkp544gnNnz9fc+bM0bBhw2S1WlW5cmUtWbIkw2WZt1K/fn0VKlRIfn5+Ge5ZzJMnj5YsWaLp06dr0qRJunLlisqWLavx48c7An1sbKw6d+6s1157TQMHDrztOgoWLKhPPvlEy5Yt0+bNm7Vy5UrZ7XaVKVNGb775pjp16uQIaHnz5nVsj1mzZikxMVHly5fXpEmT1LFjR8cyc2r//etf/1KRIkX06aefasmSJSpVqpRGjRp124c6ZVcdjz32mFq1auW4fDMqKuqu2/9WJk2apDJlymjdunVavHixihYtqtDQUA0YMOCOD3i6k+bNm2vixIlKS0u76dLoqVOnZvj/V7ZsWY0bN04bNmzQwYMHDa+jTJkymj59umbPnq1XX31VhQoVUvXq1fXJJ58oNDRUBw8edDyYx9/fXy1bttTYsWOVkJCgOnXqaNSoUbcNe08//bQWL16s2bNna9CgQfLw8FClSpW0dOlSxwN6Bg8eLIvFonXr1mnOnDkqUKCAQkJCMvxZIAAPPpP9n3drAwAAAABwG9wTCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADDM3dkFwDXExSXIbnd2FXgYmUxS4cIF6DG4BPoRroaehKuhJ3O39P1/N4RISJLsdnGgQI6ix+BK6Ee4GnoSroaexJ1wOSsAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMHdnFwAAwP3m5sbvUHF/2Gx22Wx2Z5cBANmKEAkAyDXMZpOsNrt8fPI7uxTkEmlWmy5fukqQBPBQIUQCAHINk8kkN7NJg1ce1vHYRGeXg4dcxaJemtklQGaziRAJ4KFCiAQA5DrHYxN1JOaKs8sAAOCBxE0hAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMNyZYg8efKks0sAAAAAgAfSQx8i7Xa7hg8frurVqyskJERHjx5Vq1atDM8fEhKiyMhISVKfPn00f/78u84THh6u8PDwLNd8K8nJyercubOjlnQffPCBKlWqpICAAMfrvffey9Z1AwAAAEA6d2cXkNNiY2MVFRWlyMhIVapUSfv27VNqamqWlrVo0SJD040fPz5Ly7+d3377TW+88YaOHDmizp07Zxj3008/6dVXX9Vrr72WresEAAAAgFt5oEJkRESE1q5dq+TkZJUuXVphYWFq3LixvvzyS82YMUPR0dGqUaOGSpcurevXr6t79+7q2rWrJKlbt2569tlntXXrVklSQECAlixZooCAAMPrDw0NVVBQkNq2baumTZtq8+bNKl++vCTpxIkTatOmjb766ivNmDFDkjR16lRFRETot99+k8Vi0Y4dO5QvXz61bdtWw4cPlyRdu3ZNU6ZM0ZYtW5Q3b161b99eGzZs0JQpUxQcHKw9e/Zo+PDhevXVVxUfH39TTT/++KM6dOhwT9tVkkyme14EcEvpvUWPwRXQh3CW2/Uex0i4GnoydzO63x+YELl3716tWrVKkZGR8vX11apVqzR69GiVKlVKgwcP1uTJk9WiRQtt27ZNw4cPV+vWrfXUU08pKipKjRs3VlRUlEqVKqWOHTuqe/fuOnz4cJZrefTRRxUcHKzPP/9cQ4cOlSRFRkaqfv36Klq06E3Tf/HFF5o6dareeecdffPNN+rXr58aN26s6tWra/Lkyfrpp5/0+eefq2DBgho3bpyio6Md8z7xxBP66quvlCdPHi1dujTDcuPi4hQTE6PVq1frrbfeksViUfPmzTV48GDlyZMnU5+pcOECWdgSgHH0GIDcyscn/12n4RgJV0NP4k4emBCZJ08eXb58WatXr1ajRo3UqVMnde7cWREREapcubLatGkjSWrevLk2btyY4/V06tRJ06dP15AhQ2Sz2bRhwwaNGTPmltOWLVtW7dq1kyQ1aNBAvr6+OnnypCpVqqQNGzYoIiJCxYsXl3TjfsqoqCjHvD4+Pret4fz586pVq5Y6dOig999/X6dPn9aQIUOUnJx821puJy4uQXZ7pmYBDDGZbnwjosfgCtzdzfL2vvsP9EB2io9PktVqu+U4jpFwNfRk7pa+/+/mgQmRAQEBioiI0CeffKJFixbJ09NToaGhiouLU4kSJTJMW65cOV24cCFH62natKkmTJigffv26fr167Lb7WrYsOEtp/X19c3w3sPDQzabTZcuXVJycrJKlizpGOfl5XXH4Ph3TzzxhJYvX+54X6FCBYWFhWns2LGZDpF2uzhQIEfRY3AF9CCc5W69xzESroaexJ08ME9njYmJUeHChbV48WLt379f77zzjubPny9fX1+dPn06w7Rnz57N8XosFovatGmjqKgobdiwQe3atZO7e+YyeeHCheXp6amYmBjHsKtXr97y3sdb2b9/vxYsWJBhWEpKijw9PTNVBwAAAAAY9cCEyB9//FF9+vTRsWPHZLFYVLhwYUlSUFCQfv/9d61atUppaWnavXu34+E5t5J+r2BCQsI91/TCCy9o27Zt2r59uzp27Jjp+c1mszp27KiIiAidO3dOycnJmjJliqxWq6H58+bNq4iICG3cuFE2m02//fab5s6de9MTXAEAAAAguzwwIbJZs2bq1auXXn31VVWvXl2DBw/WqFGjFBQUpKVLl+qzzz5T7dq1tXDhQgUGBt52OY8//rhq1qyp+vXra+fOnfdU02OPPaayZcuqUqVKKlu2bJaWMXz4cJUvX14tWrRQs2bN5OfnJ7PZLA8Pj7vOW6VKFc2YMUOLFi1SzZo11bt3b7Vu3Vr9+/fPUi0AAAAAcDcmu/3hu9p55MiRkm78iQ1Xd+DAAfn7+6tgwYKSpMTERNWsWVNbt27NcjDNigsXuHkaOcNkkooUKUCPwSW4u5vl45NfLWft0pGYK84uBw+5SiUKatOg+oqPT1Ja2u0frMMxEq6Enszd0vf/3TwwZyIfVkuWLNGkSZN07do1Xb9+XbNmzVK5cuXua4AEAAAAAKMemKez5oQBAwZo9+7dtx0/btw4x58OySljx47VuHHj1KBBA1mtVtWsWVMffPBBjq4TAAAAALLqoQyRRi9jnTNnTg5XcnfFihXT3LlznV0GAAAAABjC5awAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwx7Kp7MCAHAnFYt6ObsE5AL0GYCHFSESAJBr2O12WW12zewS4OxSkEukWW2y2ezOLgMAshUhEgCQa9hsdrmZTYqPT3J2KcglbDY7IRLAQ4cQCQDIdaxWm+z8XA8AQJbwYB0AAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGE8WAcAkOu4uWXud6g8YRMAgP+PEAkAyDXMZpOsNrt8fPJnar40q02XL10lSAIAIEIkACAXMZlMcjObNHjlYR2PTTQ0T8WiXprZJUBms4kQCQCACJEAgFzoeGyijsRccXYZAAA8kHiwDgAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEKki7l+/brOnj3r7DIAAAAA4JYIkS6ma9eu2r17d5bnDwkJUWRkZDZWBAAAAAD/HyHSxcTHxzu7BAAAAAC4LZcNkeHh4erVq1eGYePHj9eIESPk7++vqVOnKjAwUOPGjbvrskJDQzVy5Eg1atRIDRs2VGJiok6dOqX+/fsrODhYjRo10nvvvaeUlBRJUmRkpF588UVNnDhRtWvXVp06dTR69GilpqZKkmw2mz744AM1adJENWvWVMeOHbVr1y5J0tq1a/XMM8/IZrM51r9ixQq1bNlSknTixAn169dPDRs2VNWqVdWiRQt99dVXkqRevXopJiZGY8aM0fjx4yVJR44cUWhoqAIDA9W0aVN9+OGHstvtkiS73a758+fr6aefVq1atfTOO+/IarXey2YHAAAAgDty2RDZsWNH7dmzR+fOnZMkpaSkaNOmTQoODpYkJSUl6dtvv9XQoUMNLW/37t1auXKlNmzYILPZrJ49e+qxxx7T119/rRUrVmj37t2KiIhwTP/dd9+pcOHC2rVrlxYsWKDNmzfriy++kCTNmTNHy5cv18yZM7Vv3z716tVLYWFh+uGHH9SiRQslJiZqz549jmV99tln6tixoyRp4MCBevzxx/Xf//5XBw8e1NNPP62xY8dKkpYsWaISJUpo3LhxCg8P17lz59SjRw81b95cu3fv1ty5c7VixQqtWrVKkrRu3Tp99NFHWrBggXbv3i0PD48s309pMvHilXMveoyXK73uhbNr5/VwvugtXq72oidz98sI93v7dppzqlatqgoVKigqKkq9e/fWjh075OXlpaCgIElSu3btZLFYZLFYDC3vmWeeUbFixSRJmzdvVkpKioYNGyaTyaTixYtr8ODBGjRokIYPHy5J8vT0VP/+/WUymVS1alX5+/vrjz/+kHQjvPXt21eVKlWSJLVo0UJbt27V2rVrNX78eLVq1Urr169XvXr1dOLECf38889asGCBJGnBggUqVqyY7Ha7oqOjVbBgQUdQ/qcNGzaoQoUK6tatmySpYsWK6t27t5YtW6YuXbro888/1wsvvOCoY/DgwVq9enVWNrcKFy6QpfkAo+gxPOh8fPI7uwQ8xDhGwtXQk7gTlw2RktShQwetX79evXv3VmRkpNq3by/T/8XjokWLZmpZf58+OjpaFy9eVGBgoGOY3W5Xamqq4uLiJEmFCxd2rEuSPDw8HJeRXrhwQaVLl86w/FKlSunYsWOSpE6dOql79+5KSkpSZGSkQkJC9Mgjj0iSjh07prCwMJ0/f14VKlTQI4884ljuP0VHR+vIkSOqVauWY5jNZpObm5skKTY2VsWLF3eMc3NzU4kSJTK1XdLFxSXoNmUA98RkuvGNiB6DK3B3N8vbO2thMD4+SVar7e4TApnAMRKuhp7M3dL3/924dIhs27atZsyYocOHD+vbb79VeHi4415Dk9Fzrf/n79P7+fnp0Ucf1X/+8x/HsMTERMXFxTnC3p2ULFlSp0+fzjDs9OnTjqBapUoVlSlTRv/973+1ceNGTZw4UZJ07tw5DR48WLNnz1ZISIgkaevWrY7LZP/Jz89PwcHBWrx4sWNYfHy8kpKSHOP/XofdbldsbOxd678Vu10cKJCj6DG4gnvtQXoYOYVjJFwNPYk7cdl7IqUbZwMbNGig8ePHq1atWlk+y/ZPjRo1UlJSkhYtWqSUlBRduXJFb7zxhoYOHWoonHbq1EkffPCBjhw5IqvVqi1btmj79u1q3759hmlmzZols9msp59+WtKN+zitVqvy5s0rSTp+/LjmzJkjSY6H+lgsFiUkJEiSWrdure+//14bNmxQWlqaYmNj1b9/f02dOtWxjtWrV+vw4cNKTU3VvHnzdP78+WzZRgAAAABwKy4dIqUbl7QePXpUzz//fLYt08vLSx9++KH27dunZ555Rk2aNJHZbNa8efMMzf/yyy+rW7duGjp0qGrVqqUFCxZoxowZjvs1pRsBMC4uTh06dJDZfGMzly9fXiNGjNC//vUv1axZU4MHD9bzzz8vDw8P/frrr5JuPFDovffe0+uvv66SJUtq0aJFWrVqlerWrau2bduqfPnyjhDZqlUrDRo0SEOHDlVQUJBOnz4tf3//bNtOAAAAAPBPJvvtbshzEceOHVNoaKi++eYb5cmTx9nlPLQuXOC6d+QMk0kqUqQAPQaX4O5ulo9PfrWctUtHYq4YmqdSiYLaNKi+4uOTlJbGPZHIXhwj4Wroydwtff/fjcveE5mYmKiYmBi9//776tChAwESAAAAAFyAy4bIs2fPqnPnznriiScUFhZ22+kmTZqktWvX3nZ8v3791L9//5woEQAAAAByHZcNkRUrVtThw4fvOt3o0aM1evTo+1ARAAAAAMDlH6wDAAAAAHAdhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYS77Jz4AAMgpFYt65ci0AADkBoRIAECuYbfbZbXZNbNLQKbmS7PaZLPZc6gqAAAeLIRIAECuYbPZ5WY2KT4+KdPzESIBALiBEAkAyHWsVpvsZEIAALKEB+sAAAAAAAwjRAIAAAAADCNEAgAAAAAM455IuBSz2SSz2eTsMpAD3Nz4nRUAAMDDgBAJl2E2m1TIO5/cCRsPJR+f/M4uAZAkWW12mc0mWa08WQcAgKwgRMJlmM0mubuZNXjlYR2PTXR2OQAeQhWLemlmlwCZTCZJhEgAALKCEAmXczw2UUdirji7DAAAAAC3wHWDAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQ8Rq9Wq06dPO7sMAAAAAA8xQqQThIaGKiIiIkvzHjx4UAEBAZKkM2fOyN/fX2fOnJEkDR06VOvXr8+uMgEAAADgJoTIB0ytWrV0+PDhW46Lj4+/z9UAAAAAyG0IkQaFh4erV69eGYaNHz9eI0aMkL+/v6ZOnarAwECNGzfO0PJOnTql0NBQBQYGqkuXLvrhhx8c4/z9/bVv3z7H+8jISIWEhEiS9u3bJ39//5uWN3r0aB08eFALFixQ//79s/IRAQAAAOCu3J1dwIOiY8eO6ty5s86dO6dixYopJSVFmzZt0ogRI/T5558rKSlJ3377ra5du2ZoeV9++aUWLFig6tWra9GiRXrllVf03//+VwULFsxSfZMmTdKpU6cUFBSkgQMHZnp+kylLqwWAB5LJxHEPriG9D+lHuAp6Mnczut8JkQZVrVpVFSpUUFRUlHr37q0dO3bIy8tLQUFBkqR27drJYrHIYrEYWl7Hjh0VGBgoSerfv78+/fRT7dy5U61bt86xz3AnhQsXcMp6AcAZvL3zO7sEIAO+D8PV0JO4E0JkJnTo0EHr169X7969FRkZqfbt28v0f3G9aNGimVpWqVKlHF+bTCb5+fnp3Llz2VpvZsTFJchud9rqJUlubmb5+PCDHYCcd+lSktLSbM4uA5DJdOOHdVf4PgxI9GRul77/74YQmQlt27bVjBkzdPjwYX377bcKDw+XzXbjhxBTJs/5x8bGOr622WyKiYlRyZIlJUlms1mpqamO8ffjgTl2uzhQAMg1OObB1dCTcDX0JO6EB+tkQuHChdWgQQONHz9etWrVUokSJbK8rLVr1+p///ufUlJSFBERIXd3dzVo0ECSVKFCBW3dulVpaWk6deqU1q5da2iZFotFCQkJWa4JAAAAAO6GEJlJHTp00NGjR/X888/f03KaNm2qMWPGqHbt2jp06JAWL16sfPnySZLGjBmjI0eOKCgoSEOGDFHHjh0NLbNdu3Zat26dunbtek+1AQAAAMDtmOx2TlRnxrFjxxQaGqpvvvlGefLkcXY52ebCBedf9+7ufuOeyJazdulIzBXnFgPgoVSpREFtGlRf8fHcEwnXYDJJRYoUcInvw4BET+Z26fv/brgn0qDExETFxMTo/fffV4cOHR6qAAkAAAAARhEiDTp79qw6d+6sJ554QmFhYbedbtKkSXe8h7Ffv37q379/TpQIAAAAADmOEGlQxYoVdfjw4btON3r0aI0ePfo+VAQAAAAA9x8P1gEAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABjGn/iAy6lY1MvZJQB4SHF8AQDg3hEi4TJsNrvSrDbN7BLg7FIAPMSsNrvsdruzywAA4IFFiITLsNnsunzpqsxmk7NLQTbz8cmv+PgkZ5cBSLrRjzYbIRIAgKwiRMKl2Gx2frh7yJj+73cCVqtNnPyBs5n4HRUAAPeMB+sAAAAAAAwjRAIAAAAADCNEAgAAAAAM455IAECu4+bG71CzgvvWAQASIRIAkIuYzSZZbXb5+OR3dikPpDSrTZcvXSVIAkAuR4gEAOQaJpNJbmaTBq88rOOxic4u54FSsaiXZnYJkNlsIkQCQC5HiAQA5DrHYxN1JOaKs8sAAOCBxE0hAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMe6BB58uRJZ5fgctgmAAAAAHLSAxMi7Xa7hg8frurVqyskJERHjx5Vq1atDM8fEhKiyMjIHKzQ+ZYvX663337b2WUAAAAAeIg9MCEyNjZWUVFRWr58ubZv366EhASlpqY6uyyXcvHiRWeXAAAAAOAh5+6MlUZERGjt2rVKTk5W6dKlFRYWpsaNG+vLL7/UjBkzFB0drRo1aqh06dK6fv26unfvrq5du0qSunXrpmeffVZbt26VJAUEBGjJkiUKCAi463qPHDmiZcuW6cyZM6pSpYrefvttlS1bVpK0fft2ffDBB/rzzz919epVValSRRMnTlTZsmWVmJiot99+W7t375a7u7ueeOIJjRo1ShUqVJAkbdq0SfPnz1dMTIzKlCmjYcOG6emnn5YkhYaGKjAwUHv27NHPP/+sRx99VBMnTtRHH32kr776St7e3goPD1fDhg0dNU6dOlXHjh2Tj4+Punbtqh49eshkMikiIkK//fabLBaLduzYoXz58qlt27YaPny4PvvsMy1YsEBWq1W1atXSwYMHs3mvAQAAAIATzkTu3btXq1at0po1a7Rv3z516tRJo0eP1i+//KLBgwerX79+OnjwoF544QWtXbtWkvTUU08pKipKkhQVFaV3331XCxculCQdPnzYUICUpG3btmnKlCnatWuXSpUqpX79+iktLU1nz57V4MGD1bdvX+3Zs0c7duyQ3W7XnDlzJElLlixRYmKidu7cqa+++kq+vr6aNm2aJGnnzp0aM2aMwsPDtX//fg0cOFADBw7Ub7/95ljvqlWrNGHCBO3fv18FCxZU165d9dxzz2nfvn1q1qyZJkyYIEk6d+6cevTooebNm2v37t2aO3euVqxYoVWrVjmW9cUXX+jpp5/Wvn37NGHCBC1cuFDff/+92rdvr379+mU5QJpMvHjl3Ise4+VKL9w7Z+/Dh+3FNuXlai96Mne/jLjvZyLz5Mmjy5cva/Xq1WrUqJE6deqkzp07KyIiQpUrV1abNm0kSc2bN9fGjRuzdd29evWSv7+/JGnkyJGqVauWfvjhB1WuXFmbNm3So48+qsTERJ09e1Y+Pj46d+6cJMnT01PHjh3T+vXrVa9ePU2ePFlm8438vWzZMr344osKDAyUJDVq1EghISFauXKl4/7EZs2aqWLFipKkWrVq6cqVK2rSpIkk6ZlnntHSpUslSRs2bFCFChXUrVs3SVLFihXVu3dvLVu2TF26dJEklS1bVu3atZMkNWjQQL6+vjp58qSqV69+T9umcOEC9zQ/cDf0GPBw8PHJ7+wSHkocI+Fq6EncyX0PkQEBAYqIiNAnn3yiRYsWydPTU6GhoYqLi1OJEiUyTFuuXDlduHAh29ZdqlQpx9d58+aVt7e3zp07p4CAAEVFRWnlypUymUx6/PHHlZiYKHf3G5vnlVdekcVi0dq1azV+/HiVLl1aw4cPV9OmTRUdHa39+/fr008/dSzbarWqdu3ajvfe3t6Or93c3FSoUCHHe7PZLLvdLkmKjo7WkSNHVKtWLcd4m80mNzc3x3tfX98Mn8nDw0M2m+0et4wUF5eg/ysDyFYm041vRPQYXIG7u1ne3oSgexEfnySr9d6/7+AGjpFwNfRk7pa+/+/mvofImJgYFS5cWIsXL1ZKSor27Nmj1157Tf369dPRo0czTHv27FlHkMsOsbGxjq8TExMVHx+vkiVLasuWLVq2bJk+/fRTlSlTRpI0YcIE/frrr5KkX375RSEhIerZs6cSEhK0YsUKDR06VHv37pWfn5/atWunvn37ZviMnp6ejvcmg+eF/fz8FBwcrMWLFzuGxcfHKykp6Z4+txF2uzhQIEfRY3AF9GD2YDtmP46RcDX0JO7kvt8T+eOPP6pPnz46duyYLBaLChcuLEkKCgrS77//rlWrViktLU27d+92PDznVvLkySNJSkhIMLzuJUuW6Pfff1dycrImTZqkJ598UpUrV1ZCQoLMZrM8PT1lt9v19ddfa/369Y6nv65Zs0YjRoxQXFycvLy85OXlpXz58sliseiFF17Qxx9/rB9++MHx+Tp06OC4hzMzWrdure+//14bNmxQWlqaYmNj1b9/f02dOtXQ/Hny5FFiYqLjzCYAAAAAZLf7fiayWbNmOnnypF599VXFx8ercOHCGjVqlIKCgrR06VJNnjxZ7777rqpUqeK4z/BWHn/8cdWsWVP169fXzJkz1aBBg7uuu0mTJurfv7/i4+MVGBiouXPnymw2q3379jp06JBatmwpNzc3lS9fXj169NDy5cuVkpKiYcOGafz48WrZsqWuX7+u8uXLa+7cucqTJ4+aN2+uq1evatSoUYqJiZG3t7d69uyp0NDQTG+bkiVLatGiRZo2bZomTpwoNzc3NWzYUKNHjzY0f6NGjfTpp5+qZs2a2rFjhwoWLJjpGgAAAADgTkx2Fz5tNXLkSEkyfCYOWXfhAte9I2eYTFKRIgXoMbgEd3ezfHzyq+WsXToSc8XZ5TxQKpUoqE2D6is+PklpadwTmV04RsLV0JO5W/r+v5v7fjkrAAAAAODBdd8vZ80JAwYM0O7du287fty4cY4/HQIAAAAAyDqXDpFGL2OdM2dODlcCAAAAAJC4nBUAAAAAkAmESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhLv0nPgAAyAkVi3o5u4QHDtsMAJCOEAkAyDXsdrusNrtmdglwdikPpDSrTTab3dllAACcjBAJAMg1bDa73MwmxccnObuUB5LNZidEAgAIkQCA3MdqtclOFgIAIEt4sA4AAAAAwDBCJAAAAADAMEIkAAAAAMAw7okEAOQ6bm78DhWuhZ6Eq6En758H8aFlhEgAQK5hNptktdnl45Pf2aUAGdCTcDX05P2TZrXp8qWrD1SQJEQCAHINk8kkN7NJg1ce1vHYRGeXAwDI5SoW9dLMLgEym02ESAAAXNnx2EQdibni7DIAAHggcbEzAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMELkAyYyMlIhISHOLgMAAABALkWIBAAAAAAYRojMAUePHtWLL76ogIAAtW3bVvPmzVNISIgiIyPVoUMH9erVS7Vq1dLGjRt17tw5DRkyRCEhIapWrZoaN26stWvXOpZ14sQJhYaGKiAgQK1bt9bRo0czrOvIkSMKDQ1VYGCgmjZtqg8//FB2u/1+f2QAAAAAuYS7swt42CQmJqpPnz7q3LmzPvroI/3xxx/q37+/TCaTpBuhb+rUqZo/f75sNpsGDhwob29vbdq0SRaLRR9//LEmTJig5557ThaLRf369dMzzzyjRYsW6dSpU3rllVdkNt/I/ufOnVOPHj00dOhQLVmyRH/++afCwsLk6empLl26ZKru/ysPyHbpvUWPwRXQhwAAV+UK36OM1kCIzGbbt2+Xm5ubBg4cKLPZLH9/f/Xp00eLFy+WJHl4eKht27aOIDhx4kTlz59fHh4eiomJUf78+XXt2jVdvnxZZ86c0V9//aURI0YoT548euyxx/Tyyy/ro48+kiRt2LBBFSpUULdu3SRJFStWVO/evbVs2bJMh8jChQtk41YAbkaPAQAA3JqPT35nl5AphMhsdvbsWZUoUcIREiWpdOnSjq99fX0zjDt9+rT+/e9/6+TJkypbtqzKlCkjSbLZbDp37px8fHzk6enpmP7RRx91fB0dHa0jR46oVq1ajmE2m01ubm6ZrjsuLkFcBYucYDLdCJD0GFyBu7tZ3t4P1jdqAMDDLz4+SVarzdllOH5uuxtCZDYrUaKEYmJiZLfbHZewxsTEOMab/naOODU1Vf369dOwYcPUtWtXmUwm/fTTT9qwYYMkqXjx4rp48aKSkpKUP/+NH3rOnj3rmN/Pz0/BwcGOs5ySFB8fr6SkpEzXbbeLH/CRo+gxuAJ6EADgqh6k71E8WCebhYSEyG63a/78+UpJSdHvv/+eIeT9XWpqqq5duyZPT0+ZTCbFxMTo3XffdYwLCAhQuXLlNHHiRCUnJ+vPP//UkiVLHPO3bt1a33//vTZs2KC0tDTFxsaqf//+mjp16n35rAAAAAByH0JkNsuXL5/mzp2rL7/8UkFBQRo2bJjq1asnDw+PW047efJkzZkzRwEBAerevbvq1aunIkWK6Ndff5Wbm5s++OADxcbGqm7duurTp48aN27smL9kyZJatGiRVq1apbp166pt27YqX748IRIAAABAjjHZ+XsQ2So+Pl6///67atas6Rj2ySefaNOmTVq5cqUTK7uzCxe4Xw05w2SSihQpQI/BJbi7m+Xjk18tZ+3SkZgrzi4HAJDLVSpRUJsG1Vd8fJLS0lzjnsgiRe5+TyRnIrOZ1WpVjx49tHPnTknSmTNntGLFCjVq1MjJlQEAAADAvePBOtmsSJEiev/99zVt2jQNGTJEBQsWVPv27dW7d29nlwYAAAAA94wQmQOaNGmiJk2aOLsMAAAAAMh2XM4KAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIynswIAcp2KRb2cXQIAAA/s96N7DpEnTpyQl5eXihUrlh31AACQY+x2u6w2u2Z2CXB2KQAASJLSrDbZbHZnl5EpmQ6R3333ncaPH6/169dr5cqVGjt2rNzd3fX+++/ztxEBAC7NZrPLzWxSfHySs0sBHHx88tOTcCn05P1ls9kf/hA5ffp0NWzYUHa7XQsWLNDUqVPl7e2t6dOnEyIBAA8Eq9Um+4P1/RoPKZPpxr/0JFwFPQkjMv1gnd9//12DBw/W77//rgsXLqhFixZq2LChzpw5kxP1AQAAAABcSKZDpJubm5KSkvT111+revXqslgsio6OlpfXg3lTKAAAAADAuExfztqkSRO99NJLio6O1ltvvaXjx49rwIABatWqVU7UBwAAAABwIZkOkW+//bY+//xzeXp6qkWLFjp58qS6dOmi7t2750R9AAAAAAAXYrLbs3bL7OXLl3X69Gk99dRTSktLk8Viye7acB9duJDAzdPIESaTVKRIAXoMLiG9H131qYMP4hP6cG84RsLV0JO5W/r+v5tMn4lMSkpSeHi4Nm3aJE9PT0VGRurll1/W0qVLVb58+SwVCwDA/WA2m2S12eXjk9/ZpdxSmtWmy5euEiQBAC4t0yHy3//+t65evaotW7bohRdeUOnSpdWoUSNNmjRJixcvzokaAQDIFiaTSW5mkwavPKzjsYnOLieDikW9NLNLgMxmEyESAODSMh0iv/rqK23cuFGFChWSyWSSh4eHRo4cqWeeeSYn6gMAINsdj03UkZgrzi4DAIAHUqb/xIfNZnPc/5h+O+XfhwEAAAAAHl6ZDpG1a9fW+PHjlZycLJPJJEl6//33FRQUlO3FAQAAAABcS6ZD5JtvvqkTJ04oMDBQCQkJCggI0IEDB/TGG2/kRH0AAAAAABeS6Xsir169qlWrVunHH39UdHS0/Pz8VLVqVbm5ueVEfQAAAAAAF5LpENm5c2d98cUXqlq1qqpWrZoTNQEAAAAAXFSmL2f19vbWuXPncqIWAAAAAICLy/SZyMcee0wvvPCCqlevrqJFi2YYN2XKlGwrDAAAAADgejIdIvPly6emTZvmRC0AAAAAABeX6RDJ2cac8eeff6pMmTLOLgMAAAAA7ijTIXL27Nm3Hffaa6/dUzEPszNnzqhx48b68ssvVapUKQUEBGjhwoWqVauW3nnnHcXHx2vq1KmSlGEcAAAAALiSTIfIffv2ZXh/6dIlnThxQs2bN8+2onKDw4cPO76Oj4+/7TgAAAAAcCWZDpGffPLJTcM+//zzm8Llg+TIkSOaOnWqfvrpJ+XPn1+dOnXSoEGDdOjQIb333nv65ZdfVLBgQbVp00ZhYWGyWCyKiIjQb7/9JovFoh07dihfvnxq27athg8fLklKTEzUhAkTtG3bNuXLl09dunTJsE5/f399/PHHOnjwoDZu3ChJOnr0qDZs2OAYFxwcrPj4eM2YMUNfffWVUlNTVb16db355psqW7as4+zmxIkTNW/ePF2+fFlVq1bVlClT5Ofnd9+3IwAAAICHX6ZD5K20bdtWkydPzo5F3XeXLl1Sr169FBoaqsWLF+vs2bMKDQ1VsWLFNGnSJL3++utaunSp/vrrLw0cOFCJiYl66623JElffPGFpk6dqnfeeUfffPON+vXrp8aNG6t69eoaP368Tp06pS+++EJms9kRLv9pwIABOn36tCQ5Lmf9u0GDBslsNuuzzz5TgQIFNHPmTPXs2VNRUVGOaXbs2KH169crJSVFL7/8subOnavx48dnajuYTJmaHDAsvbfoMbiCB6UPH5Q6ce84RsLV0JO5m9H9ni0hcv/+/cqXL192LOq+++qrr5QnTx4NGDBAJpNJjz76qJYuXaqFCxfK399fPXr0kCSVKVNGw4cP16BBgzRq1ChJUtmyZdWuXTtJUoMGDeTr66uTJ0/qqaee0pYtWzR//nwVLlxYkjRixAi1bds2U7WdPn1a+/fv16ZNm+Tr6ytJev3117Vx40bt3LlT1apVkyS98sorKliwoCQpJCQkS5fDFi5cINPzAJlBjwHG+Pjkd3YJcAKOkXA19CTuJNMhMiQkRKa/RdTU1FRduHBBr776arYWdr+cP39exYsXz/CZypcvLw8PD5UuXTrDtKVKldK1a9cUFxcnSY5gl87Dw0M2m03x8fFKSUlR8eLFHeP+uSwjLly4cNO8bm5uKl68uKKjox0hskiRIo7x7u7ustvtmV5XXFyCsjAbcFcm041vRPQYXIG7u1ne3q4d0uLjk2S12pxdBu4TjpFwNfRk7pa+/+8m0yFy4MCBGd6bzWZVqFBBlStXzuyiXIKfn5/++usv2e12R5Dctm2bihUrpiNHjmSY9tSpU7JYLCpUqNAdl+nj46M8efLo9OnTKl++vCTp7Nmzma6tZMmSjvU+9thjkiSr1aqYmJibAuy9stvFgQI5ih6DK3hQevBBqRPZh2MkXA09iTsxZ3aGixcvqn379o5X27ZtVblyZb3//vs5UF7Oa9iwodLS0jR//nylpKTo1KlTmjx5sooUKaITJ07oo48+cgyfMWOGWrduLYvFcsdlWiwWtWvXTjNnztTZs2eVkJCgd999947TJyQk3DS8aNGiatCggSZOnKjz58/r2rVrmjZtmqxWqxo1anTPnx0AAAAAMstQiLx48aIOHDigAwcOKCIiQgcPHnS8P3DggLZv366PPvoop2vNEQULFtTixYu1Z88ePf300woNDVWXLl3UuXNnLVq0SFu3blXdunXVtWtX1atXT+Hh4YaWO3r0aFWtWlWtW7dW06ZNHZee3kqLFi303XffqWHDhjeN+/e//63SpUurffv2qlu3rn755Rd99NFH8vb2zuInBgAAAICsM9kN3ECXmJioZ5999qa/Z5jOYrGoc+fOGj16dLYXiPvjwgWue0fOMJmkIkUK0GNwCe7uZvn45FfLWbt0JOaKs8vJoFKJgto0qL7i45OUlsY9kbkFx0i4Gnoyd0vf/3dj6J5ILy8v7dmzR5LUvHlz/ec//7m36gAAAAAAD6RM3xN5uwB58eLFey4GAAAAAODaMv101h9++EH//ve/de7cOdlsNy63SU1N1cWLF/XTTz9le4EAAAAAANeR6TOR48ePl6+vr55++mmVK1dOL730ktzc3DR8+PCcqA8AAAAA4EIyHSJ/++03TZkyRd26dZPVatXLL7+s9957Txs3bsyJ+gAAAAAALiTTIbJgwYLy9PRU6dKl9dtvv0mSqlevrujo6GwvDgAAAADgWjIdIsuXL69PP/1UefLkUb58+fTzzz/rxIkTMplMOVEfAAAAAMCFZPrBOoMHD9arr76qevXqqXfv3nrhhRfk5uamF198MSfqAwAAAAC4kEyHyBo1aujrr7+WxWLRo48+qieffFIJCQmqV69eTtQHAEC2q1jUy9kl3MQVawIA4FYyHSIlyWQyadu2bYqOjlbnzp31559/ZnddAABkO7vdLqvNrpldApxdyi2lWW2y2ezOLgMAgDvKdIg8deqUevXqpdTUVF25ckUNGjTQ888/r9mzZ6tRo0Y5USMAANnCZrPLzWxSfHySs0u5JZvNTogEALi8TD9YZ9KkSerQoYN27Nghd3d3lStXThMnTtSsWbNyoj4AALKd1WpTWprrvQiQAIAHQaZD5Pfff68+ffrIZDI5nsjatm1bnT59OtuLAwAAAAC4lkyHyAIFCujChQsZhp0/f16FChXKtqIAAAAAAK4p0yGydevWeu211/Ttt9/KZrPphx9+0Ouvv66WLVvmRH0AAAAAABeS6QfrhIWF6dq1a3rttdeUnJys7t27q2PHjnrttddyoj4AAAAAgAsx2e12Q3fx9+7dW4sXL3a8T05OVnJysnx8fBz3RuLBdeFCgox1ApA5JpNUpEgBegwuIb0fXfXprK6Gp8XmPI6RcDX0ZO6Wvv/vxvCZyMOHD2d436BBA+3fvz/zlQEA4CRms0lWm10+PvmdXcoDIc1q0+VLVwmSAIAMMn05azqDJzABAHAZJpNJbmaTBq88rOOxic4ux6VVLOqlmV0CZDabCJEAgAyyHCK5hBUA8KA6HpuoIzFXnF0GAAAPpEw/nRUAAAAAkHsZPhOZlpam9evXO96npqZmeC9J7dq1y6ayAAAAAACuyHCILFKkiGbNmuV47+Pjk+G9yWQiRAIAAADAQ85wiNy+fXtO1gEAAAAAeABwTyQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCZCbExsbq6tWrzi7jtqxWq06fPu3sMgAAAAA8xAiRBl24cEHNmjXTxYsXs7yMzZs3q06dOqpZs6a++uqrbKzuhqFDh970tzsBAAAAIDsRIg26du3aPZ+FXLNmjVq2bKlDhw6pUaNG2VTZ/xcfH5/tywQAAACAv8sVIbJDhw768MMPHe9DQ0PVqVMnx/tly5apW7du2r59u7p06aI6deqoWrVqeumll3Ty5ElZrVa1atVKktSqVStt3rxZkrRp0ya1bt1aNWvWVIcOHfTNN99kWMfIkSPVqFEjNWzYUO3atdPevXu1cuVKNWnSRGfOnJG/v7+mTp2qwMBAjRs3TtL/D5o1atRQ69attWHDhgzLnD59urp166aAgAA999xzjlpGjx6tgwcPasGCBerfv3+ObUsAAAAAuZu7swu4H5599lnt2rVLPXv2VFJSkn766SelpqbqypUrKliwoLZv36569epp8ODBmjlzpkJCQhQfH6/XXntNc+bM0bvvvquoqCg1btxYUVFRKlWqlHbu3KkxY8Zo3rx5qlGjhr7++msNHDhQq1ev1mOPPSZJ2r17t9asWaO8efOqYMGCCg0NVVBQkAYOHKgzZ85IkpKSkvTtt9/q2rVrioyM1NSpUzV79mwFBQVp//79eu2115Q3b149++yzkqTVq1dr6dKlqlixoubMmaPw8HA1btxYkyZN0qlTpxzLzyyTKfu2N/B36b1Fj8EV0IdZw3bLORwj4WroydzN6H7PFSGySZMmmjt3rpKTk7V3715VrVpVly5d0t69e1W3bl3t379fEydOVKtWrfToo48qMTFRZ8+elY+Pj86dO3fLZS5btkwvvviiAgMDJUmNGjVSSEiIVq5cqbfffluS9Mwzz6hYsWJ3rK1du3ayWCyyWCxat26dOnfurDp16kiS6tSpo86dO2vlypWOENmsWTM99dRTkqT27dtr/vz5iouLU4kSJe5pGxUuXOCe5gfuhh4DHkw+PvmdXUKuwDESroaexJ3kihD52GOPqUSJEtq3b5927dqlevXq6cKFC9q9e7fS0tLk7++v4sWLa968eVq5cqVMJpMef/xxJSYmyt391psoOjpa+/fv16effuoYZrVaVbt2bcf7okWL3rW2v09z4cIFlS5dOsP4UqVKafv27Y73vr6+jq/Ta7PZbHddz93ExSXIbr/nxQA3MZlufCOix+AK3N3N8vYmFGVGfHySrNZ7/z6DW+MYCVdDT+Zu6fv/bnJFiJSkxo0b6+uvv9aePXs0Y8YMxcXFadKkSUpMTFTTpk21ZcsWLVu2TJ9++qnKlCkjSZowYYJ+/fXXWy7Pz89P7dq1U9++fR3DYmJi5Onp6XhvMnA++O/TlCpVSqdOncow/vTp0xmCY06x28WBAjmKHoMroAezhu2W8zhGwtXQk7iTXPFgHenGfZGbN2/WlStX9NRTTykoKEgxMTHatm2bnn32WSUkJMhsNsvT01N2u11ff/211q9fr9TUVElSnjx5JEmJiYmSpBdeeEEff/yxfvjhB0nSjz/+qA4dOigqKirLNXbs2FGrVq3Snj17ZLVatXfvXq1atUrPP/+8ofktFosSEhKyvH4AAAAAuJtccyayevXqcnd3V3BwsEwmkzw9PVWrVi3FxsaqfPnyKlWqlA4dOqSWLVvKzc1N5cuXV48ePbR8+XKlpKSoSJEievbZZ9W5c2eNHDlSL774oq5evapRo0YpJiZG3t7e6tmzp0JDQ7Nc43PPPafExERNnDhRMTExKlasmEaMGKF27doZmr9du3YaO3asfvrpJ61YsSLLdQAAAADA7Zjsdk5UQ7pwgevekTNMJqlIkQL0GFyCu7tZPj751XLWLh2JueLsclxapRIFtWlQfcXHJyktjXsicwrHSLgaejJ3S9//d5NrLmcFAAAAANw7QiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDB3ZxcAAMD9VrGol7NLcHlsIwDA7RAiAQC5ht1ul9Vm18wuAc4u5YGQZrXJZrM7uwwAgIshRAIAcg2bzS43s0nx8UnOLuWBYLPZCZEAgJsQIgEAuY7VapOdbAQAQJbwYB0AAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGE8WAcAkOu4ufE71AcJT4kFANdCiAQA5Bpms0lWm10+PvmdXQoyIc1q0+VLVwmSAOAiCJEAgFzDZDLJzWzS4JWHdTw20dnlwICKRb00s0uAzGYTIRIAXAQhEgCQ6xyPTdSRmCvOLgMAgAcSN4UAAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0TmkM2bN6tOnTqqWbOm/P39debMGWeXBAAAAAD3jBCZQ9asWaOWLVvq888/d3YpAAAAAJBt3J1dwMOoY8eOOnLkiA4cOKDly5dnGBcdHa13331X+/btk9lsVu3atfXGG2+oaNGikqSDBw/qvffe0y+//KKCBQuqTZs2CgsLk8ViUUREhA4fPqzLly/r9OnTmjNnji5evKhZs2bp7NmzKlq0qFq3bq2wsDBnfGwAAAAAuQAhMgesXbtWoaGhCgoKUvv27dW4cWNJUmpqqnr16qXKlSvriy++kN1u17hx49S/f3+tXr1ap06d0ssvv6zXX39dS5cu1V9//aWBAwcqMTFRb731liRpz549WrJkiapWrSq73a66detq4cKFCg4O1tGjR9WtWzc9/fTTqlq1aqZqNpmyfTMAkv5/b9FjcAX04YPtYdx/HCPhaujJ3M3ofidE3kcHDx7U6dOntW7dOnl5eUmSxo0bp6CgIP3000/auXOn/P391aNHD0lSmTJlNHz4cA0aNEijRo2SJJUuXVp16tSRJF27dk2enp5au3atbDabatSooUOHDslszvxVyoULF8imTwncGj0G4F74+OR3dgk5imMkXA09iTshRN5HcXFx8vHxcQRISfLy8pK3t7eio6MVFxen0qVLZ5inVKlSunbtmuLi4iTJcdmrJHl6eurTTz/V3LlzNXz4cCUmJqpZs2Z66623VKhQoUzWliC7/R4+HHAbJtONb0T0GFyBu7tZ3t4Pdxh5WMXHJ8lqtTm7jGzHMRKuhp7M3dL3/90QIu+jkiVLKj4+XomJiY4gmZCQoPj4ePn6+qpkyZL64osvMsxz6tQpWSwWRyg0/e0cc2JiomJjYzV9+nRJ0s8//6xhw4Zp/vz5euONNzJVm90uDhTIUfQYXAE9+GB7mPcfx0i4GnoSd8LTWe+jKlWqqGLFihozZowSEhKUkJCgsWPH6tFHH1WNGjXUsmVLnThxQh999JFSUlJ06tQpzZgxQ61bt5bFYrlpeUlJSXrllVe0ceNG2e12FS1aVGazWT4+Pk74dAAAAAByA0LkfeTu7q4FCxYoLS1NzZo1U6NGjZSamqqlS5fK3d1dpUqV0qJFi7R161bVrVtXXbt2Vb169RQeHn7L5RUrVkyzZs3SwoULVaNGDbVq1Uq1a9dWz5497+8HAwAAAJBrmOx2TlRDunCB696RM0wmqUiRAvQYXIK7u1k+PvnVctYuHYm54uxyYEClEgW1aVB9xccnKS3t4bwnkmMkXAk9mbul7/+74UwkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDB3ZxcAAMD9VrGol7NLgEHsKwBwPYRIAECuYbfbZbXZNbNLgLNLQSakWW2y2ezOLgMA8H8IkQCAXMNms8vNbFJ8fJKzS0Em2Gx2QiQAuBBCJAAg17FabbKTSQAAyBIerAMAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwH6wAAch03N36Hiox4AiwAGEeIBADkGmazSVabXT4++Z1dClxMmtWmy5euEiQBwABCJAAg1zCZTHIzmzR45WEdj010djlwERWLemlmlwCZzSZCJAAYQIgEAOQ6x2MTdSTmirPLAADggcRNIQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJGZdPLkSWeXAAAAAABOQ4i8A7vdruHDh6t69eoKCQnR0aNH1apVK8Pzh4SEKDIyUpLUp08fzZ8//67zhIeHKzw8PMs1AwAAAEBOcnd2Aa4sNjZWUVFRioyMVKVKlbRv3z6lpqZmaVmLFi0yNN348eOztHwAAAAAuB9yTYiMiIjQ2rVrlZycrNKlSyssLEyNGzfWl19+qRkzZig6Olo1atRQ6dKldf36dXXv3l1du3aVJHXr1k3PPvustm7dKkkKCAjQkiVLFBAQYHj9oaGhCgoKUtu2bdW0aVNt3rxZ5cuXlySdOHFCbdq00VdffaUZM2ZIkqZOnaqIiAj99ttvslgs2rFjh/Lly6e2bdtq+PDhkqRr165pypQp2rJli/Lmzav27dtrw4YNmjJlioKDgzO1fUymTE0OGJbeW/QYXAF9iLu53z3CMRKuhp7M3Yzu91wRIvfu3atVq1YpMjJSvr6+WrVqlUaPHq1SpUpp8ODBmjx5slq0aKFt27Zp+PDhat26tZ566ilFRUWpcePGioqKUqlSpdSxY0d1795dhw8fznItjz76qIKDg/X5559r6NChkqTIyEjVr19fRYsWvWn6L774QlOnTtU777yjb775Rv369VPjxo1VvXp1TZ48WT/99JM+//xzFSxYUOPGjVN0dHSW6ipcuECWPxNgBD0GwNX5+OR32ro5RsLV0JO4k1wRIvPkyaPLly9r9erVatSokTp16qTOnTsrIiJClStXVps2bSRJzZs318aNG3O8nk6dOmn69OkaMmSIbDabNmzYoDFjxtxy2rJly6pdu3aSpAYNGsjX11cnT55UpUqVtGHDBkVERKh48eKSbtxPGRUVlaWa4uISZLdnaVbgjkymG9+I6DG4And3s7y9nRcU4Nri45Nktdru6zo5RsLV0JO5W/r+v5tcESIDAgIUERGhTz75RIsWLZKnp6dCQ0MVFxenEiVKZJi2XLlyunDhQo7W07RpU02YMEH79u3T9evXZbfb1bBhw1tO6+vrm+G9h4eHbDabLl26pOTkZJUsWdIxzsvLSz4+PlmqyW4XBwrkKHoMroAexN04q0c4RsLV0JO4k1wRImNiYlS4cGEtXrxYKSkp2rNnj1577TX169dPR48ezTDt2bNn5e6es5vFYrGoTZs2ioqKUnJystq1a5fpdRYuXFienp6KiYlx3Ft59epVxcfH50TJAAAAACApl/yJjx9//FF9+vTRsWPHZLFYVLhwYUlSUFCQfv/9d61atUppaWnavXu34+E5t5InTx5JUkJCwj3X9MILL2jbtm3avn27OnbsmOn5zWazOnbsqIiICJ07d07JycmaMmWKrFbrPdcGAAAAALeTK0Jks2bN1KtXL7366quqXr26Bg8erFGjRikoKEhLly7VZ599ptq1a2vhwoUKDAy87XIef/xx1axZU/Xr19fOnTvvqabHHntMZcuWVaVKlVS2bNksLWP48OEqX768WrRooWbNmsnPz09ms1keHh73VBsAAAAA3I7Jbudq578bOXKkpBt/YsPVHThwQP7+/ipYsKAkKTExUTVr1tTWrVszHUwvXODmaeQMk0kqUqQAPQaX4O5ulo9PfrWctUtHYq44uxy4iEolCmrToPqKj09SWtr9f7AOx0i4Enoyd0vf/3eTK85EPqyWLFmiSZMm6dq1a7p+/bpmzZqlcuXKZfnMJgAAAADcTa54sE5OGDBggHbv3n3b8ePGjXP86ZCcMnbsWI0bN04NGjSQ1WpVzZo19cEHH+ToOgEAAADkboTIfzB6GeucOXNyuJK7K1asmObOnevsMgAAAADkIlzOCgAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMp7MCAHKdikW9nF0CXAj9AACZQ4gEAOQadrtdVptdM7sEOLsUuJg0q002m93ZZQDAA4EQCQDINWw2u9zMJsXHJzm7FLgYm81OiAQAgwiRAIBcx2q1yU5eAAAgS3iwDgAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMB6sAwDIddzc+B1qOp5KCgDILEIkACDXMJtNstrs8vHJ7+xSXEaa1abLl64SJAEAhhEiAQC5hslkkpvZpMErD+t4bKKzy3G6ikW9NLNLgMxmEyESAGAYIRIAkOscj03UkZgrzi4DAIAHEjeFAAAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0TexsmTJ51dAgAAAAC4nIc2RJ45c0b+/v46c+ZMpufdvn27evfu7XgfGhqqiIiI7CwPAAAAAB5ID22IvBeXLl2S3W53dhkAAAAA4HIe+hC5fv16NWnSRHXr1tVbb72lxMRE2e12ffDBB2rdurVq1aqlwMBADR8+XNeuXdO+ffs0ZswYxcTEKCAgQOfOnZMk/fnnn+rVq5cCAwPVuHFj/ec//3Gsw9/fXxMnTlRwcLD69+8vSdq2bZs6dOigGjVqqFmzZvrwww9ls9kkSTabTR988IGaNGmimjVrqmPHjtq1a5djeSEhIVq6dKnatGmjatWq6cUXX9SRI0f0yiuvKCAgQC1atNAPP/wgSUpMTNTQoUMVHBysevXqqXfv3jpx4sT92rwAAAAAchl3ZxeQ0w4ePKjVq1fLZrMpLCxMkydP1tNPP62PP/5Yy5YtU9myZXXixAl17dpVGzduVKdOnTRu3DjNnj1b27dvdyzn22+/1aJFi/Tkk09q3rx5evPNN9W4cWN5eHhIkk6dOqUdO3YoNTVVe/fu1ZAhQ/Tvf/9bTZs21S+//KKwsDBJUs+ePTVnzhytXbtWc+fOlb+/v7744guFhYVp+fLlqlq1qiRpzZo1WrJkiby8vPT8888rNDRUixcvVqVKlTRixAhNmzZNH3/8sZYsWaLExETt3LlTZrNZ4eHhmjZtmubNm5ep7WQyZdMGB/4hvbfoMbgC+vD22DbOwTESroaezN2M7veHPkSOHDlSjzzyiCRp0KBBevXVV/Xmm29q7dq18vPz08WLFxUfHy9vb2/HWcdbadGihSpVquT4etasWYqLi5Ofn58kqVWrVsqbN6/y5s2ryMhINW7cWC1atJAkVapUSX379tUnn3yinj17at26derbt2+G5W3dulVr1651hMjnn3/eseyqVasqMTFRAQEBkqSnn37aERI9PT117NgxrV+/XvXq1dPkyZNlNmf+BHPhwgUyPQ+QGfQY4Lp8fPI7u4Rcj2MkXA09iTt56ENkqVKlHF8XL15cKSkpunLlimbNmqWvvvpKjzzyiJ588kmlpqbe8T5Ib29vx9fpZx/T0tIcw4oWLer4Oi4uTk8++eRNdURHR0uSLly4oNKlS980/tixY7dcn5ubmwoVKuR4bzabHbW+8sorslgsWrt2rcaPH6/SpUtr+PDhatq06W0/y63ExSWI20CRE0ymG9+I6DG4And3s7y9CUz/FB+fJKvV5uwyciWOkXA19GTulr7/7+ahD5Hnzp2Tl5eXpBtPbM2XL58++OADxcTEaPv27Y5xrVu3vqf1mP527rdkyZI6depUhvGnT5+Wr6+vY/zp06dvGv/3IGoyeC75l19+UUhIiHr27KmEhAStWLFCQ4cO1d69e1WggPHfINnt4kCBHEWPwRXQg7fHtnEujpFwNfQk7uShf7DOu+++q8uXL+vs2bOaOXOmOnfurMTEROXJk0dubm66fv26lixZol9//VWpqamSpDx58ig5OTnDmcbMeP7557V9+3Zt2bJFVqtVR48e1cKFC/X8889Lkjp16qQPPvhAR44ckdVq1ZYtW7R9+3a1b98+0+tas2aNRowYobi4OHl5ecnLy0v58uWTxWLJUu0AAAAAcCcP/ZnIgIAANW/eXGazWa1atdLQoUMVGxurN998U3Xr1lW+fPlUs2ZNtW3bVr/++qskKTAwUIULF1ZgYKBWrlyZ6XVWq1ZNM2fO1Jw5czRq1Cj5+PjoxRdf1CuvvCJJevnll2Wz2TR06FCdP39eZcqU0YwZMxQUFJTpdQ0bNkzjx49Xy5Ytdf36dZUvX15z585Vnjx5Mr0sAAAAALgbk50/iAhJFy5w3TtyhskkFSlSgB6DS3B3N8vHJ79aztqlIzFXnF2O01UqUVCbBtVXfHyS0tK4J9IZOEbC1dCTuVv6/r+bh/5yVgAAAABA9iFEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAxzd3YBAADcbxWLejm7BJfAdgAAZAUhEgCQa9jtdlltds3sEuDsUlxGmtUmm83u7DIAAA8QQiQAINew2exyM5sUH5/k7FJchs1mJ0QCADKFEAkAyHWsVpvs5CYAALKEB+sAAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgByDZPJlOFfAACQeYRIAECuYTabMvwLAAAyjxAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQ+ZD5888/nV0CAAAAgIcYIfIh8s4772jevHnOLgMAAADAQ4wQ+RCJj493dgkAAAAAHnLuzi7gYXbkyBFNnTpVP/30k/Lnz69OnTpp0KBBOnTokN577z398ssvKliwoNq0aaOwsDBZLBZFRETot99+k8Vi0Y4dO5QvXz61bdtWw4cPlyQdOHBAU6ZM0alTp+Tj46OGDRvqjTfe0IIFC7Rx40ZJ0tGjR7VhwwZnfnQAAAAADylCZA65dOmSevXqpdDQUC1evFhnz55VaGioihUrpkmTJun111/X0qVL9ddff2ngwIFKTEzUW2+9JUn64osvNHXqVL3zzjv65ptv1K9fPzVu3FjVq1fXiBEjNGjQILVv315nzpzRiy++qFq1amnAgAE6ffq0JGnq1KmZrtdkytaPDzik9xY9Blfw936kJ+EKOEbC1dCTuZvR/U6IzCFfffWV8uTJowEDBshkMunRRx/V0qVLtXDhQvn7+6tHjx6SpDJlymj48OEaNGiQRo0aJUkqW7as2rVrJ0lq0KCBfH19dfLkSVWvXl158uTRli1b5O3trcDAQO3cuVNm871flVy4cIF7XgZwJ/QYXIm3d35nlwBkwDESroaexJ0QInPI+fPnVbx4cZn+FufLly8vDw8PlS5dOsO0pUqV0rVr1xQXFydJ8vX1zTDew8NDNptNkvTRRx8pIiJC48aN0/nz51W/fn2NHTtWfn5+91RvXFyC7PZ7WgRwSybTjW9E9Bhcgbu7Wd7e+XXpUpLS0mzOLgfgGAmXQ0/mbun7/24IkTnEz89Pf/31l+x2uyNIbtu2TcWKFdORI0cyTHvq1ClZLBYVKlTojsu8fv26jh8/rrFjx8rd3V1//PGH3nrrLU2ePFmzZs26p3rtdnGgQI6ix+AK0nuQfoSroSfhauhJ3AlPZ80hDRs2VFpamubPn6+UlBSdOnVKkydPVpEiRXTixAl99NFHjuEzZsxQ69atZbFY7rhMk8mkYcOGacmSJUpLS5Ovr6/c3d3l4+MjSbJYLEpISLgfHw8AAABALkWIzCEFCxbU4sWLtWfPHj399NMKDQ1Vly5d1LlzZy1atEhbt25V3bp11bVrV9WrV0/h4eF3XabFYtG8efP05ZdfKjg4WCEhIfL19dXrr78uSWrRooW+++47NWzYMIc/HQAAAIDcymS3c6Ia0oULXPeOnGEySUWKFKDH4BLc3c3y8cmv+HjuiYRr4BgJV0NP5m7p+/9uOBMJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAyDVsNnuGfwEAQOYRIgEAuYbdbs/wLwAAyDxCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDB3ZxcA12AyObsCPKzSe4segyugH+Fq6Em4GnoydzO63012u92es6UAAAAAAB4WXM4KAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJIFtdvXpVb775poKDg1WzZk2NGDFCSUlJd53v8OHDqlKlyn2oEA+7uLg4hYWFqVatWgoODtakSZOUlpZ2y2l37typ1q1bq3r16nruuef01Vdf3edqkRtkpifTbd26VY0bN75PFSK3yUxPfvrpp2rWrJkCAgLUrFkzLV++/D5XC1dEiASQrSZMmKC//vpLW7du1RdffKG//vpL06ZNu+30drtda9euVa9evZSSknIfK8XDasiQIcqXL5927dqltWvXas+ePfrwww9vmu7kyZMaOHCgBg8erIMHD2rgwIEaMmSIzp07d/+LxkPNaE9KUmpqqhYuXKhhw4bJbrff30KRaxjtyW3btmnGjBl655139N1332nq1Kl6//33tXXr1vtfNFwKIRJAtklOTtbGjRs1aNAgeXt7q3Dhwnr99dcVGRmp5OTkW84zatQorVmzRoMGDbrP1eJh9Oeff2r//v3617/+pbx586p06dIKCwu75W/OP/vsM9WqVUtNmjSRu7u7WrRoocDAQK1atcoJleNhlZmelKRevXpp3759euWVV+5zpcgtMtOT586d0yuvvKLq1avLZDIpICBAwcHBOnDggBMqhytxd3YBAB4s165du+2ZmuTkZKWmpurxxx93DKtQoYKuXbumkydP6sknn7xpnsGDB8vPz0/79u3LsZqRe/z222/y9vZWsWLFHMMqVKigmJgYXblyRQULFnQMP378eIZelaSKFSvq2LFj961ePPwy05OS9O6778rPz0+RkZH3u1TkEpnpyW7dumWYNy4uTgcOHNCbb7553+qFayJEAsiU//3vf+revfstxw0ePFiSlC9fPsewvHnzStJt74v08/PL5gqRmyUlJTl6Ll36+6tXr2b44ehW03p6eurq1as5Xyhyjcz0pMQxETkvsz2Z7vz58+rXr58qV66sVq1a5XidcG2ESACZEhwcrF9++eWW444ePaqZM2cqOTlZ+fPnlyTHZaxeXl73rUbkXvny5bvp0un09+k9mS5v3ry6du1ahmHXrl27aTrgXmSmJ4H7ISs9+f3332vw4MGqVauWpkyZInd3IkRuxz2RALJNuXLl5OHhoePHjzuGnThxQh4eHipbtqzzCkOu8dhjj+nSpUu6cOGCY9iJEyfk5+enAgUKZJj28ccf12+//ZZh2PHjx/XYY4/dl1qRO2SmJ4H7IbM9uXbtWvXs2VM9evTQ9OnTZbFY7me5cFGESADZJm/evHruuec0bdo0Xbx4URcvXtS0adPUqlUreXp6Ors85AJly5ZVzZo1NXnyZCUmJur06dOaO3euOnbseNO0bdq00f79+7V582alpaVp8+bN2r9/v9q2beuEyvGwykxPAvdDZnpy69atGjt2rCIiItSrVy8nVAtXRYgEkK3GjBmjsmXLqnXr1mrevLlKlSql8PBwx/iWLVtq/vz5TqwQD7tZs2YpLS1NjRs31gsvvKD69esrLCxMkhQQEKANGzZIuvEgiTlz5mjBggUKDAzU3LlzFRERoXLlyjmzfDyEjPYkcL8Y7cnZs2fLarVq0KBBCggIcLz+/n0duZPJzh8hAgAAAAAYxJlIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAJAp169f19mzZ51dBgDASQiRAADcgz/++ENvvPGGnnnmGQUEBKhJkyaaNm2akpKSsmX5drtdw4cPV/Xq1RUSEqLY2Fh17NhR1atX1+uvv64+ffpo/vz5d12O0emM6Nq1q3bv3n3T8OTkZAUFBenjjz++5XzDhw9XWFjYHZcdGRmpkJCQbKkTAJAz3J1dAAAAD6rvvvtOvXr1Uq9evbR+/Xo98sgj+uOPPxQeHq5evXppxYoVcnNzu6d1xMbGKioqSpGRkapUqZI2bNig6Oho7d+/XxaLxfByFi1adE91/F18fPwth+fNm1fPP/+81qxZo+7du2cYd/HiRW3dujVb6wAAOAdnIgEAyKLw8HC1a9dOgwYN0iOPPCJJKleunN577z0VLlxYp0+fliRFR0dryJAhqlOnjurVq6fhw4crNjbWsZwjR44oNDRUgYGBatq0qT788EPZ7XYdPXpUzZo1kyR169ZNgYGBGj16tOLj4xUcHKzdu3crNDRUERERkqS0tDTNnDlTDRo0UI0aNdStWzcdO3ZMkjJMZ7fb9fHHH6tZs2aqVauWunbtqp9++slRT0hIiBYsWKB27dopICBA7dq10969eyVJvXr1UkxMjMaMGaPx48fftE26du2q48eP6/vvv88wfO3atSpXrpxq166t7du3q0uXLqpTp46qVauml156SSdPnrxpWfv27ZO/v3+GYSNHjtTIkSMd7zdt2qTWrVurZs2a6tChg7755pu77zgAwD0hRAIAkAWnTp3Sb7/9platWt00rkiRIpo7d67Kli2r1NRU9erVS25ubvriiy+0ZcsWSVL//v2Vlpamc+fOqUePHmrevLl2796tuXPnasWKFVq1apWeeuopRUVFSZKioqJ04MABjRs3TiVKlNDhw4dVt27dDOudN2+eoqKitHjxYh04cEBBQUHq16+frFZrhulWrFihpUuXaubMmdqzZ486dOigl19+WRcuXHBMs27dOs2cOVO7d+/WE088obFjx0qSlixZohIlSmjcuHEKDw+/6bOXLl1aDRo00OrVqx3DbDabVq1ape7du+vs2bMaPHiw+vbtqz179mjHjh2y2+2aM2dOpvfBzp07NWbMGIWHh2v//v0aOHCgBg4cqN9++y3TywIAGEeIBAAgCy5evCjpRmC8k4MHD+r06dMaN26cChQooIIFC2rcuHE6duyYfvrpJ23YsEEVKlRQt27d5OHhoYoVK6p3795avnx5pmv67LPP1KdPH1WsWFFubm569dVXNXPmTNnt9gzTLV++XP369dMTTzwhDw8PdezYURUqVNCGDRsc03Ts2FFlypRR3rx51bp161ueKbyd7t27a8uWLUpMTJQk7dq1S4mJiWrdurUeeeQRbdq0SSEhIUpMTNTZs2fl4+Ojc+fOZfrzLlu2TC+++KICAwPl5uamRo0aKSQkRCtXrsz0sgAAxnFPJAAAWeDr6ytJOn/+vMqWLXvT+AsXLqhIkSKKi4uTj4+PvLy8HOO8vLzk7e2t6OhoRUdH68iRI6pVq5ZjvM1my9K9lOfPn1eJEiUc7y0Wi6pXr37TdNHR0XrnnXc0bdo0x7C0tDRVrlzZ8f7v4djd3f2mIHondevWVfHixRUVFaUuXbpoxYoV6ty5szw9PWW32xUVFaWVK1fKZDLp8ccfV2JiotzdM/8jSfq9oZ9++qljmNVqVe3atTO9LACAcYRIAACyoGTJknr88ce1efNmBQYGZhgXFxenRo0aacqUKSpZsqTi4+OVmJjoCJIJCQmKj4+Xr6+v/Pz8FBwcrMWLFzvmj4+Pz9LTXYsXL66//vrL8T41NVXvvvuu+vTpk2E6Pz8/DRo0SC1btnQMO3XqlLy9vTO9ztvp1q2b1qxZowYNGujbb7/VuHHjJElbtmzRsmXL9Omnn6pMmTKSpAkTJujXX3+9aRnpQTolJcXxEKH4+Hj5+Pg4Pke7du3Ut29fxzwxMTHy9PTMts8BALgZl7MCAJBFb7/9ttatW6fZs2crPj5edrtdP//8s/r3769KlSqpWbNmqlKliipWrKgxY8YoISFBCQkJGjt2rB599FHVqFFDrVu31vfff68NGzYoLS1NsbGx6t+/v6ZOnZrpejp06KDFixfrjz/+UFpamhYsWKBt27Y5Qle6F154QfPmzdOJEyck3bjctGXLljpw4ICh9VgsFiUkJNxxmvbt2+vPP//U+++/ryZNmsjPz0/SjQBtNpsdZyW//vprrV+/XqmpqTct49FHH5W7u7s2bdokSdq9e7fjAT/pn+Pjjz/WDz/8IEn68ccf1aFDB8d9pACAnMGZSAAAsigoKEjLli3T/Pnz1bJlSyUnJ6tIkSJq3ry5+vXrJw8PD0nSggULNHXqVDVr1kwpKSmqW7euli5dKnd3d5UsWVKLFi3StGnTNHHiRLm5ualhw4YaPXp0puvp06eP0tLS1Lt3b12+fFlVqlTRwoULHXWk69mzp+x2u8LCwhQbG6tixYopPDxcjRs3NrSejh076r333tOPP/6Y4ZLYv8uXL586dOigjz76SCtWrHAMb9++vQ4dOqSWLVvKzc1N5cuXV48ePbR8+XKlpKRkWEbRokU1atQozZ07VxMmTFDt2rXVoUMHJScnS5KaN2+uq1evatSoUYqJiZG3t7d69uyp0NDQzGw2AEAmmeyZuckBAAAAAJCrcTkrAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwLD/BzYX6MEuO4rRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Plot house prices against coefficients\n", + "plt.figure(figsize=(10, 6))\n", + "plt.barh(X.columns, model_log.coef_)\n", + "plt.xlabel('Coefficient Value')\n", + "plt.ylabel('Features')\n", + "plt.title('House Prices vs. Coefficients of Variables')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "visualization of the positive and negative coefficient variables." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Log transformation of the polynomial model" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polynomial Model (Degree 2)- MSE: 37774083176.83915\n", + "Polynomial Model (Degree 2)- R-squared: 0.7161383140038227\n", + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: price R-squared: 0.679\n", + "Model: OLS Adj. R-squared: 0.678\n", + "Method: Least Squares F-statistic: 557.0\n", + "Date: Wed, 01 May 2024 Prob (F-statistic): 0.00\n", + "Time: 12:27:46 Log-Likelihood: -3540.2\n", + "No. Observations: 16913 AIC: 7210.\n", + "Df Residuals: 16848 BIC: 7713.\n", + "Df Model: 64 \n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "const 4987.9435 522.414 9.548 0.000 3963.957 6011.930\n", + "x1 3457.3790 362.110 9.548 0.000 2747.606 4167.152\n", + "x2 -16.5312 7.635 -2.165 0.030 -31.497 -1.566\n", + "x3 -16.9803 5.626 -3.018 0.003 -28.008 -5.953\n", + "x4 -59.7513 8.202 -7.285 0.000 -75.827 -43.675\n", + "x5 -66.7001 16.473 -4.049 0.000 -98.988 -34.412\n", + "x6 21.7086 8.506 2.552 0.011 5.036 38.381\n", + "x7 56.1227 10.699 5.246 0.000 35.152 77.093\n", + "x8 0.1415 0.453 0.313 0.755 -0.745 1.028\n", + "x9 -1530.3915 159.119 -9.618 0.000 -1842.282 -1218.501\n", + "x10 -7.2389 1.397 -5.181 0.000 -9.977 -4.500\n", + "x11 27.1030 5.183 5.229 0.000 16.943 37.263\n", + "x12 2396.4725 250.995 9.548 0.000 1904.495 2888.450\n", + "x13 -11.4586 5.292 -2.165 0.030 -21.832 -1.085\n", + "x14 -11.7699 3.900 -3.018 0.003 -19.414 -4.126\n", + "x15 -41.4165 5.685 -7.285 0.000 -52.560 -30.273\n", + "x16 -46.2330 11.418 -4.049 0.000 -68.614 -23.852\n", + "x17 15.0473 5.896 2.552 0.011 3.491 26.604\n", + "x18 38.9013 7.416 5.246 0.000 24.366 53.437\n", + "x19 0.0981 0.314 0.313 0.755 -0.517 0.713\n", + "x20 -1060.7866 110.293 -9.618 0.000 -1276.973 -844.601\n", + "x21 -5.0176 0.968 -5.181 0.000 -6.916 -3.119\n", + "x22 18.7864 3.593 5.229 0.000 11.744 25.829\n", + "x23 0.0476 0.079 0.603 0.546 -0.107 0.202\n", + "x24 0.2000 0.083 2.399 0.016 0.037 0.363\n", + "x25 -0.4148 0.109 -3.823 0.000 -0.628 -0.202\n", + "x26 0.1250 0.245 0.511 0.609 -0.355 0.605\n", + "x27 0.1981 0.122 1.628 0.104 -0.040 0.437\n", + "x28 0.2251 0.161 1.396 0.163 -0.091 0.541\n", + "x29 -0.0032 0.006 -0.531 0.595 -0.015 0.009\n", + "x30 3.1411 1.477 2.127 0.033 0.247 6.036\n", + "x31 -0.0103 0.012 -0.883 0.377 -0.033 0.013\n", + "x32 -0.1564 0.078 -2.000 0.046 -0.310 -0.003\n", + "x33 0.0859 0.039 2.183 0.029 0.009 0.163\n", + "x34 -0.0407 0.079 -0.516 0.606 -0.195 0.114\n", + "x35 0.3258 0.195 1.668 0.095 -0.057 0.709\n", + "x36 -0.2649 0.091 -2.905 0.004 -0.444 -0.086\n", + "x37 0.1059 0.111 0.957 0.339 -0.111 0.323\n", + "x38 -0.0112 0.005 -2.119 0.034 -0.022 -0.001\n", + "x39 3.2391 1.094 2.960 0.003 1.094 5.384\n", + "x40 0.0084 0.008 0.989 0.323 -0.008 0.025\n", + "x41 -0.0497 0.054 -0.924 0.355 -0.155 0.056\n", + "x42 0.6010 0.091 6.569 0.000 0.422 0.780\n", + "x43 0.1950 0.270 0.721 0.471 -0.335 0.725\n", + "x44 0.3964 0.139 2.845 0.004 0.123 0.670\n", + "x45 -0.0224 0.156 -0.143 0.886 -0.329 0.284\n", + "x46 0.0471 0.006 7.361 0.000 0.035 0.060\n", + "x47 11.9015 1.585 7.511 0.000 8.796 15.007\n", + "x48 0.0005 0.012 0.044 0.965 -0.023 0.024\n", + "x49 -0.3608 0.079 -4.586 0.000 -0.515 -0.207\n", + "x50 -46.2330 11.418 -4.049 0.000 -68.614 -23.852\n", + "x51 -0.2814 0.262 -1.074 0.283 -0.795 0.232\n", + "x52 -1.4097 0.386 -3.649 0.000 -2.167 -0.652\n", + "x53 -0.0189 0.015 -1.223 0.221 -0.049 0.011\n", + "x54 17.2366 4.274 4.033 0.000 8.859 25.614\n", + "x55 -0.0160 0.016 -1.020 0.308 -0.047 0.015\n", + "x56 0.1612 0.187 0.861 0.389 -0.206 0.528\n", + "x57 -0.0348 0.081 -0.430 0.667 -0.193 0.124\n", + "x58 -0.5518 0.172 -3.212 0.001 -0.888 -0.215\n", + "x59 0.0147 0.008 1.939 0.053 -0.000 0.030\n", + "x60 -4.5317 1.668 -2.716 0.007 -7.802 -1.261\n", + "x61 -0.0425 0.016 -2.603 0.009 -0.074 -0.010\n", + "x62 0.6652 0.082 8.073 0.000 0.504 0.827\n", + "x63 0.7108 0.132 5.394 0.000 0.452 0.969\n", + "x64 -0.0074 0.009 -0.830 0.406 -0.025 0.010\n", + "x65 -10.6811 2.084 -5.125 0.000 -14.766 -6.596\n", + "x66 -0.0058 0.016 -0.357 0.721 -0.038 0.026\n", + "x67 -0.4727 0.098 -4.817 0.000 -0.665 -0.280\n", + "x68 -0.0051 0.002 -2.881 0.004 -0.009 -0.002\n", + "x69 -0.0156 0.088 -0.178 0.859 -0.188 0.157\n", + "x70 -3.158e-05 0.001 -0.045 0.964 -0.001 0.001\n", + "x71 -0.0010 0.004 -0.221 0.825 -0.009 0.007\n", + "x72 150.7551 15.531 9.707 0.000 120.313 181.198\n", + "x73 0.7643 0.175 4.359 0.000 0.421 1.108\n", + "x74 -5.7615 1.013 -5.690 0.000 -7.746 -3.777\n", + "x75 0.6353 0.261 2.434 0.015 0.124 1.147\n", + "x76 0.0173 0.007 2.394 0.017 0.003 0.031\n", + "x77 0.3068 0.032 9.733 0.000 0.245 0.369\n", + "==============================================================================\n", + "Omnibus: 86.286 Durbin-Watson: 2.008\n", + "Prob(Omnibus): 0.000 Jarque-Bera (JB): 100.078\n", + "Skew: -0.119 Prob(JB): 1.85e-22\n", + "Kurtosis: 3.291 Cond. No. 1.52e+16\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", + "[2] The smallest eigenvalue is 1.69e-24. This might indicate that there are\n", + "strong multicollinearity problems or that the design matrix is singular.\n" + ] + } + ], "source": [ "import numpy as np\n", "from sklearn.model_selection import train_test_split\n", @@ -4711,6 +5060,39 @@ "\n" ] }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqsAAAIdCAYAAAAaiDSZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvPklEQVR4nO3deXxU1f3/8ffNZCMBmwAKiV+tpVWsSy1GJIqKivorNWCDVNSKiggiuIGCtMYFjVZBpOJuAW3rQr9iojQtLq1aNRrE1K+trdpWq1QSUMIiBLLN3N8fw0wyySz3TmYyd2Zez8eDh2Zy5s7J3Fk+95zP+RzDNE1TAAAAgANlJLoDAAAAQCgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAfYq9aADYQbAKICVNmTJFw4cPD/h36KGHqqSkRD/+8Y/1+9//PuaPWVVVpeHDh+uLL74I2eaLL77Q8OHDVVVVFfPHX7BggU499dReHePUU0/t8bwdeeSROv3007VkyRK1trYGtF2wYIGt4//pT3/S9ddf36s+AkgvmYnuAADEy2GHHaabb77Z/7Pb7damTZv0+OOPa+7cuRowYIBOOumkmD3eySefrN/+9rfab7/9YnbMRBgzZoxmzZrl/7m1tVXr1q3Tgw8+qI0bN+qee+6J+tiPP/54DHoIIJ0QrAJIWf3799f3v//9HrePGTNGxx13nJ599tmYBqsDBw7UwIEDY3a8RBk4cGCP523UqFHatGmTqqqqtGDBgqQPyAEkD9IAAKSd7OxsZWVl9bj9mWee0ZlnnqkjjjhCJ598su677z51dHT4f79161Zdd911Gj16tI488kidddZZeu655/y/D5YG8NJLL2nChAn63ve+p/Lycn300UcBj7lu3ToNHz5c69atC7h9ypQpmjJliv/nlpYWLVmyRGeccYaOOOIIHX300Zo6dao+/PDDkH/n3//+d1100UUqKSnRiBEjdPHFF+v999+3/Dx1d8QRR8g0TTU2Ngb9/c6dO/Xzn/9cp512mo488kiVlZVp9erVAX/TO++8o3feeSfo3wwAwTCyCiBlmaYZEGz60gAeeOABNTc366yzzvL/7pFHHtHSpUt1wQUX6Kc//ak+/PBD3XfffWpsbNQdd9whSZo3b56ampq0cOFC5efna82aNbr++utVVFSkUaNG9Xj8V155RVdddZXOPPNMXXfddfroo480b968qP6W+fPna/369br22mt14IEH6rPPPtO9996rOXPmaO3atTIMI6D9rl27dOmll2rUqFFatmyZ2tvb9dBDD2natGl69dVXNWDAANt9+M9//iNJOuCAA3r8rqWlReeff762bNmiK6+8UgcccID++Mc/6oYbbtCWLVs0c+ZM3Xzzzf6//+abb9Z3vvOdKJ4JAOmGYBVAylq/fr0OP/zwgNsMw9Ahhxyie++9178YaefOnXrooYc0efJkVVRUSJJOOOEEFRQUqKKiQlOnTtXBBx+sd955R7NmzdJpp50myTs1XlBQIJfLFfTxH3jgAR1++OFasmSJJPlTDnw/W9XW1qbm5mbdeOON+uEPfyhJOvbYY9Xc3Kw777xTX331VY9p+X//+9/aunWrpkyZopKSEknSsGHDtGrVKu3atStssNo9yG9qatLrr7+uVatWady4cUFTHaqqqvTPf/5TTz31lP/xTjzxRHV0dOjBBx/Uueeeq+985zvq37+/JAVNzwCAYAhWAaSsww8/XAsXLpQkbd68Wffee6/a29u1dOlSffvb3/a3e++997Rnzx6deuqpAUGaL5itra3VwQcfrFGjRum+++7TRx99pDFjxuikk04KubK9paVFf//733XVVVcF3D5u3DjbwWp2drZWrFghSfryyy/1+eef69NPP9Wrr74qSWpvb+9xn4MPPlgDBw7U5ZdfrnHjxvnzdOfPnx/x8Z577rmA9AZJyszM1Omnn65bbrkl6H3eeecd7b///v5A1WfChAlavXq13n//fY0ZM8bCXwsAgdIiWN26dasmT56sysrKoFN1wbz44ou677779MUXX2jffffVZZddpkmTJsW5pwBiKT8/X0ceeaQk6cgjj9SIESN01lln6ZJLLlF1dbV/hHD79u2SpBkzZgQ9zpdffilJWrp0qR5++GGtXbtWL7zwgjIyMnT88cfrlltu6TE1vmPHDpmm2WMUMtqFSW+88YbuuOMOffrpp8rPz9fw4cOVn58vKXjd0vz8fD355JN66KGH9Ic//EGrVq1Sv379NGHCBN1www3KyckJ+VinnHKKZs+eLck7Et2vXz/tv//+ys3NDXmfHTt2aPDgwT1u99329ddf2/p7AcAn5YPV+vp6LViwQBs2bLB8n7q6Oi1YsEC/+MUvdNJJJ2ndunWaPn26DjnkEH3ve9+LY28BxNOgQYN000036corr9Ttt9/uH+HcZ599JEl33323DjrooB738wVcAwYM0Lx58zRv3jx9+umn+tOf/qQHH3xQCxcu1PLlywPuU1BQoIyMDG3ZsiXgdl9g7OPLNfV4PAG3Nzc3+4PRDRs2aPbs2Ro7dqweeeQRHXjggZKkJ598Um+88UbIv3fYsGFavHix3G63/vrXv+r555/X008/rf/5n/8JGZj7+u4L8q36xje+oc8//7zH7V999ZUkqbCw0NbxAMAnpasBVFdX67rrrtOcOXN6/O6tt97SpEmTdMwxx+jMM8/UmjVr/L97/PHHdeGFF2rMmDEyDEOlpaV69tln/V8QAJLXGWecoRNPPFE1NTX+1ehHHXWUsrKytHnzZh155JH+f1lZWVqyZIm++OILbdy4UWPGjNELL7wgyRsITp8+Xccff7w2bdrU43FycnI0YsQIvfTSSwEjn6+88kpAO18OZ9cV9jt27NAnn3zi//mDDz5Qa2urLrvssoDPIV+gGmxk9YUXXlBpaam++uoruVwujRgxQrfccov22WefoP3trZEjR2rjxo2qr68PuH3NmjXKysryX+hnZKT01w6AOEjpkdUTTjhB48ePV2ZmZkDA+tFHH+nyyy/X4sWLNXbsWL3//vuaNWuWCgsLdeKJJ+qvf/2rRo0apRkzZuj999/X0KFDdeWVV+qQQw5J4F8DIFZ+9rOfacKECaqsrFR1dbUKCwt16aWX6t5779WuXbs0atQof46rYRg69NBDNWDAAA0dOlSVlZXatWuXDjzwQH3wwQf685//rMsuuyzo48ydO1cXXXSRrrjiCk2ePFmfffaZHnrooYA2w4cPV1FRke6//34NGDBAGRkZevTRR9WvXz9/m8MPP1yZmZlavHixLrnkErW1tamqqkqvvfaaJGn37t09Hvvoo4+Wx+PR7NmzNWPGDOXn52vt2rXauXOnzjjjjNg9mXtNnDhRTz31lK644gpdddVVOuCAA/TKK6/o2Wef1RVXXOEfvd5nn3303nvv6e2339Zhhx2mb3zjGzHvC4DUktKXuPvuu68yM3vG46tWrdLYsWN1xhlnyOVy6eijj9Y555yjJ598UpJ3VGPFihW6/PLLVVtbq9mzZ2vOnDm9qk8IwDmGDRumKVOm6J///KeeeOIJSdI111yjBQsW6OWXX9b06dO1ePFilZSU6IknnvCvnL///vt14okn6t5779Ull1yip59+WldccYU/v7O7Y445Rr/85S+1efNmXXHFFVq1apW/DJaPy+XSsmXLtN9++2nu3LmqrKzUuHHjAgLKb37zm1qyZIk2b96syy+/XDfddJMk6Te/+Y0Mw9C7777b47H3228/LV++XAMGDNANN9ygyy67TH//+9913333qbS0NCbPY1f9+vXTb37zG5166qlatmyZLr/8ctXX1+v222/XlVde6W/3k5/8RFlZWZo+fbpef/31mPcDQOoxzGDzRylo+PDh+vWvf61Ro0Zp+vTpqqurC1hg4Ha7deCBB+r555/XiBEjdOGFFwaMxs6YMUPf+c53LK2kBQAAQGykdBpAKEOHDlV5ebluvfVW/21ffvmlP+/r29/+ttra2gLu43a7g+aFAQAAIH5SOg0glEmTJqmmpkZvvvmmPB6PPvvsM11wwQVauXKlJOm8887T008/rbfeeksej0cvvvii1q1bp7KysgT3HAAAIL2k5cjqUUcdpXvuuUf33HOPrr76avXr109lZWWaO3euJOnss89WRkaGfv7zn+uLL77Q/vvvr6VLl/bYCQcAAADxlTY5qwAAAEg+aZkGAAAAgORAsAoAAADHIlgFAACAYxGsAgAAwLFSthpAU9NO2V06ZhjSoEEDorovkg/nO71wvtMH5zq9cL6Tk++8WZGywappKuoXbW/ui+TD+U4vnO/0wblOL5zv1EUaAAAAAByLYBUAAACORbAKAAAAxyJYBQAAgGMRrAIAAMCxCFYBAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsTIT3QEAAAAnc7ulujqXNm82NGSIqdJSt1yuRPcqfRCsAgAAhFBTk6mKihw1NHRORhcXe1RZ2aqyso4E9ix9kAYAAAAQRE1NpqZNy1VDgxFwe2OjoWnTclVTw5hfXyBYBQAA6MbtlioqcmSakhQYrJqm9+eKihy53X3ft3RDsArAkdxuqbbWpaqqTNXWuvhCANCn6upce6f+jaC/N01DDQ0ZqqsjeTXeGL8G4DjkiAFItM2bgwep0bZD9BhZBeAo5IgBcIIhQ8yYtkP0CFYBOAY5YgCcorTUreJijwwjeDBqGKaKiz0qLeUDKd4IVgE4BjliAJzC5ZIqK1slqUfA6vu5srKVeqt9gGAVgGOQIwbAScrKOrRiRYuKigKD1aIiUytWtJBD30dI/gLgGOSIAXCasrIOjRvXwQ5WCUSwCsAxfDlijY2GP0e1K8MwVVRkkiMGoE+5XNLo0XzuJAppAAAcgxwxAEB3BKsAHIUcMQBAV6QBAHAccsQAAD4EqwAciRwxAIBEGgAAAAAcjGAVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACORbAKAAAAxyJYBQAAgGMRrAIAAMCxCFYBAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACORbAKAAAAxyJYBQAAgGMRrAIAAMCxCFYBAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsRwarH330kaZOnapjjz1Wo0eP1vz587V169ZEdwsAAAB9zHHBaktLiy699FKNGDFCb775pmpqarR9+3b97Gc/S3TXAAAA0MccF6w2NDTo0EMP1ezZs5Wdna3CwkJNnjxZ69evT3TXAAAA0McyE92B7oYNG6bly5cH3Pbiiy/q8MMPt3Ucw7D/2L77RHNfJB/Od3rhfKcPznV64XwnJzvnyzBN04xfV3rHNE394he/0FNPPaUnnnhCw4cPT3SXAAAA0IccN7Lqs2vXLv30pz/V3//+96gC1aamnbIbhhuGNGjQgKjui+TD+U4vnO/0wblOL5zv5OQ7b1Y4MljdsGGDpk+fruLiYq1evVoDBw60fQzTVNQv2t7cF8mH851eON/pg3OdXjjfqctxC6x27Nihiy66SEcffbRWrFgRVaAKAACA1OC4kdWqqio1NDRo7dq1euGFFwJ+99577yWoVwAAAEgExwWrU6dO1dSpUxPdDQAAADiA49IAAAAAAB+CVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACOlZnoDgCwzu2W6upc2rzZ0JAhpkpL3XK5Et0rAADih2AVSBI1NZmqqMhRQ0PnhEhxsUeVla0qK+tIYM8AAIgf0gCAJFBTk6lp03LV0GAE3N7YaGjatFzV1HDdCQBITQSrgMO53VJFRY5MU5ICg1XT9P5cUZEjt7vv+wYAQLwRrAIOV1fn2jv1bwT9vWkaamjIUF0dyasAgNRDsAo43ObNwYPUaNsBAJBMCFYBhxsyxIxpOwAAkgnBKuBwpaVuFRd7ZBjBg1HDMFVc7FFpKUmrAIDUQ7AKOJzLJVVWtkpSj4DV93NlZSv1VgEAKYlgFUgCZWUdWrGiRUVFgcFqUZGpFStaqLMKAEhZFGcEkkRZWYfGjetgBysAQFohWAWSiMsljR5NbioAIH2QBgAAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACORbAKAAAAxyJYBQAAgGMRrAIAAMCxCFYBAADgWASrAAAAcCyCVQAAADhWZqI7AKQ7t1uqq3Np82ZDQ4aYKi11y+VKdK8AAHAGglUggWpqMlVRkaOGhs5JjuJijyorW1VW1pHAngEA4AykAQAJUlOTqWnTctXQYATc3thoaNq0XNXUcC0JAADBKpAAbrdUUZEj05SkwGDVNL0/V1TkyO3u+74BAOAkBKtAF263VFvrUlVVpmprXXELFuvqXHun/o2gvzdNQw0NGaqrI3kVAJDemGcE9urL/NHNm4MHqdG2AwAgVTGyCqjv80eHDDFj2g4AgFRFsIq0l4j80dJSt4qLPTKM4MGoYZgqLvaotJSkVQBAeiNYhaP0Vc5oV4nIH3W5pMrKVknqEbD6fq6sbKXeKgAg7RGswjFqajJVUpKv8vI8zZzZT+XleSopybc8BR9toJuo/NGysg6tWNGioqLAYLWoyNSKFS3UWQUAQCywgkP4ckbNbrPivpzRSMFbbxZHJTJ/tKysQ+PGdbCDFQAAIRim2T08SA1btuzsEfhEYhjS4MEDorovoud2SyUl+XsXN/UcvTQMU0VFpurrm4MGcYGBrhFwP0khA13f+d68eaeOPjpfjY2GP0fVzuMjOfD+Th+c6/TC+U5OvvNmBWkASLje5IzGYnEU+aMAADgXwSoSrjc5o7FaHEX+KAAAzkTOKhKuNzmjsVwc5bT8UbdbjukLAACJQrCKhPPVHI2UMxqs5misF0e5XNLo0YmvbdqXu2kBAOBkpAEg4XqTM5qKxfX7ejctAACcjGAVjhBtzmiqLY5KxG5aAAA4GUM0cIxoc0Z9ga532rwzwCsqMpNu2rxzwVhw3gVjhurqXI5IVwAAIN4IVuEo0eaMOm1xVLQStZsWAABORbCKlOGUxVG9kcjdtAAAcCJyVgEHScUFYwAA9AbBKuAgqbZgDACA3iJYBRyG3bQAAOhEzirgQKmyYAwAgN4iWAUcKhUWjAEA0FukAQAAAMCxCFYBAADgWKQBoM+53SIXEwAAWEKwij5VU5O5d1vUzkH94mJP0m2LCgAA+gZpAOgzNTWZmjYtVw0NgVuFNjYamjYtVzU1XDulIrdbqq11qaoqU7W1LrlZMwYAsIHoAH3C7ZYqKnJkmpIUGKyapiHDMFVRkaNx4zpICUghjKQDAHqLkVX0ibo6196AxQj6e9M01NCQobo6ItVUwUg6ACAWCFbRJzZvDh6kRtsOzhZpJF3y/t5uSgApBQCQfhjaQJ8YMsSM3MhGOzhb50h6cN6RdEN1dS7LGx+QUgAA6YmRVfSJ0lK3ios9MozgwahhmCou9qi0lKGyVBDrkXRSCgAgfRGsok+4XFJlZask9QhYfT9XVrayuCpFxHIkPV4pBQCA5ECwij5TVtahFStaVFQUGKAUFZlasaKFqdwUEsuRdBbnAUB6Y+4MfaqsrEPjxnWwg1WK842kT5uWK8Mw/SOgkv2RdBbnAUB6Y2QVfc7lkkaPdmvixA6NHk2gmqpiNZLO4jwASG+MrAKIm1iMpPtSChobjYARWh/DMFVUZLI4DwBSFMEqgLjyjaT35v6xSikAACQf0gAAOB6L8wAgfTGyCiQht1tpt0iNxXkAkJ4IVoEkk847OfU2pQAAkHxIAwCSCDs5AQDSjaOD1a1bt+r000/XunXrEt0VIOHYyQkAkI4cG6zW19dr8uTJ2rBhQ6K7AjgCOzkBANKRI4PV6upqXXfddZozZ06iu4Ig3G6pttalqqpM1da6GMnrI+zkBABIR45McDvhhBM0fvx4ZWZmRh2wGlF8X/vuE81900VNTaZuuKHn4p7bb0++xT3Jdr6HDrW2Q9PQoWbS/E19KdnON6LHuU4vnO/kZOd8GaZpOnqPwuHDh+vXv/61Ro0aleiupL2qKmnSJKn7K8b3glu9Wpo4se/7lS7cbumgg6SNG3ueA8l7Hv7nf6T//EeUcwIApAxHjqzGQlPTzqBf6OEYhjRo0ICo7pvq3G7pyivz9y7k6b64x7uT0FVXmRo9ujlpAqVkPN+33ZapSy7JlWEo6E5Ot97aom3bkmuEu68k4/lGdDjX6YXznZx8582KlA1WTTP46FO875uq3n7bFTD1351pGtq40dDbb7uSrg5mMpxv3yYAra3SvHlt+s1vstTY2BmsFhWZqqxs1Zlndjj+b0m0ZDjfiA3OdXrhfKeulA1WEVss7kmcYJsAFBV5NH9+q4YN87CTEwAgpRGswpIhQ6xdrlpt1xvx3mrUSVuZ+jYB6D5asGmTocWLs7ViRUvSjWQDAGCH44PVjz/+ONFdgKTSUreKiz1qbDQCciV9DMNUUZE3sIuneG816qStTCNtAmAYpioqcjRuXAejqmH4Lj6+/NLQIYdI3/2ulOHIon0AgGD4yEYPweqoulxSZWWrpM7FPD6+nysrW+MaNMV7q9HeHD8etWfZBKD3amoyVVKSr/LyPF12WT+dcop09NH5bEsLAEmEYBUBun65z5zZT+XleSop8X65l5V1aMWKFhUVBQarRUWmVqxoievIY2+2GrUSSPbm+OGes94gT7h34n1xAwDoG3xawy9UfqTvy90XkJ5xRoceeyxLn32WoYMO8mjq1HZlZ8e3b52jjMF5RxkN1dUFViMIN60/fnxncN2b41t5zqLhpDzhZEMKBQCkDkZWIcn6yOKaNZk69th83XhjrlasyNaNN+bq2GPjP60azSijnZG1aI7fm9FYK0aOdCsjw5QUKhg1lZFhauRIFlh1RwoFAKQOglVIsv7lfumliZlWtTvKaDeQjGYUM94B0fr1Lnk8PTdh6GTI4zG0fj0BV3ekUABA6ogqWP3ggw8kSV9//bUWL16sFStWqKODXXOSmb0v7diPIkbiq0bQfXGXv0eGqeJij78agZVAcuPGDL3xRnTHl+IfEBFwRY8UCgBIHbaD1YceekgXXXSRJKmyslKvvvqqqqurddddd8W8c+g71r+0EzOtarcagdUArrExuuNL8Q+ICLiiF83FBwDAmWwHqzU1NXryySfV1tamF198Uffcc49+9atf6Q9/+EM8+oc+EunLPXTeZKB4jvKFqkZQUGBq3rw2jRvXObpvNYArKop8/FDVDnoTEFmpUEDAFT0nlFoDAMSG7WD1yy+/1KGHHqr6+noNGDBAhx56qAYNGqQ9e/bEo3/oI1a+3K2IdpTPap3SsrIO1dc3a/78VhUUeCRJ27ZlaNGinIByUVYCvf339+jEE4Mfv7p6tx5+eI+qq3ervr456Ir+aAMiq6WuCLh6J9TFR3Fx/EutAQBix3awOmTIEK1fv17PPfecjjvuOEne0dYDDjgg5p1D3wo3srh8eUvcRvns1ilduzZTixdna/v20Au9ehPouVzS6NFuTZzYodGjw2+1anc01m7tz0TWtk0FXS8+Hnlkj159VSEvPgAAzmSYZvcKkeG9+OKLmj9/vnJzc/X0009r8+bNmjFjhu677z6dfPLJceqmfVu27OxR+zISw5AGDx4Q1X1TiW97ys2bDQ0Z4t1C1eXqDLQkBWy56gv+ogmeAuuURj6m2y2VlOTvDfZCb/taX9/s73O4OquxOt+hnrPubez03e7xER7v7/TBuU4vnO/k5DtvltraDVYlqbXVO2KVk5OjXbt2affu3dpvv/3sHiauCFbjI1zwZzdQjSZ4q611qbw8L+Kxq6t3+4v3hwr0+vp8R9P3VJSowJv3d/rgXKcXzndyshOsWi6MuX79+rC///zzzzVy5Eirh0OSKivr0LhxHTEJNqLZNcrqAq7XXw/snxOCP0pRxfZiB9YxMg8gmVkOVqdMmRL294Zh6MMPP+x1h+B8vpzO3lq71trLr2vwZnUB19KlOf7/d0owlO6lqOK5NS1C4wIBQLKLKg0gGZAGECjakZV4jci43dIRR+SrqSnyGr/uU/olJflqbDQC8mY7+U5c5PzXvj7fkfoeLmc12fUmXzdWUvn9HYrdnPBUkY7nOp1xvpOTnTSAqHaw2rNnjzZt2qSGhgY1NDTo888/18svvxzNodAHgq22/+5383X33dlhd5yyu0rfjro6l6VAdfDgwAoD4Vb5e/UMhqLZYctqKS070rkUVby3pkVPdrccBgCnsh2sPvvsszruuON0yimnaOzYsRo7dqx+8IMfaOHChfHoH3opVKmk7du9tUkPOyx48Gm3xJJdVvMyzz67vUfw5ivnVFBg/RLaTjAUzyA9mUpRxTJgJ1+373GBACBV2P72ffjhh3XNNdcoPz9f69ev10UXXaTFixdr9OjR8egfeiHcyIrPtm2GLrkkVytXdgZKkUZkDMNURUWOxo3riHoU0Gpe5g9+EDxCGjeuQzfckCPvtL/1ACdSMBQqr7KhIXZ5lbFcpBYvsc5zTPd83UTgAgFAqrA9svrVV1/poosu0nHHHacNGzbo8MMP1x133KFnnnkmHv1DL0QaWfHqOR3YFyMyVrZ3DbfJQF2dS42Nkf62nsIFQ+GDe0OmKV13XfhpU6ujkVY2HohHKoIV8RhVZ+vYvscFAoBUYTtYHTRokNrb21VUVKT//Oc/kqTi4mI1NTXFvHPoHesjJoHBZ1+MyETK3zSM8Pmbdh+7azDUNQh87TVZDtIlQ1u3Zmjp0uygv41l+kA8UxHCiVeeYzrn6yYKFwgAUoXtYPV73/uebrrpJrW0tOiggw7S008/rerqahUUFMShe+gNuyMmvgCwr0ZkwuVv/vKXLSosNEOOKtp57K7B0Nq1nUHgZZf10ymnSEcf7Q0CrQbAjz6a1aM/sRyNjHe+cDjxHFVPpnzdVMAFAoBUYbt01ZdffqmKigpVVlZqw4YNmjlzplpaWvTzn/9c48ePj1c/baN0VeRyQd35SkT1dYml7uWxmpoM3XRT+HzJyCWs1OO+koKW8fGVu5o/v02LFuX0uH8wwcppxaIsU6JLPFVVZWrmzH4R2z388B5NnBhdcMkOVn0rHeuspuu5Tlec7+QU9+1Wu+ro6FB7e7v69Yv8BdeXCFa9QtVZ7CpYAOS7n6SAYDDe9Rnt1IUM1Uef/HyPZs9u15w5bZIiBe6mv7rA9u2RJxy6Bmux3EY10VuyJvrx4ykV399WpdsOVul8rtMR5zs5xWW7VZ/nnnsu5O9+9KMf2T0c4sw39XrttTnati34SJ3UczrQdz/viEzn/YqKzIgjMr3ZgMBOFYJIf9vu3YYWL87WoYd6VFhoht3aVTK0fbuh0aPbVVsbOVjtmoYQbY5vsOcp0Su4fXmOkUbVreY5pluQ5FSx2nUOABLBdrC6bNmygJ937NihPXv2qKSkhGDVoXylkpYuzdajj2YFjByGCz6jKbHUmynHznzJ4Lz5kobq6lz+L95wJay6Brhnntke9rF9/vEPlwoKPNq+Pfw0fNdgLZoc31DP0wUXWOtnvFZw+/Icp03LlWGYQUfVreY5puP0MwAg9nqdBmCapn75y19q+/btmj9/fqz61WvpngYQakTLzkiX3VGx3m7taDVf8sc/btM++0gHHeTRIYd4NHly5Gnr7GxTbW3WRiPnz2/VokW+Ff+R/w67Ob6RnqeCAlPbtyd2S9beBppO3OYzld7fCI9znV4438mpT3NWJcntduukk05SbW1tbw8VM+kcrMZiRMvuMdxu6bDD8vdOx0cXZFnNl+x+3EgLrOx6+OE9ys6Wrb/fao6vlQVUhYWmtm41ZBh9my/cXW/SORK5SCyUVHl/IzLOdXrhfCcnO8Gq7dJVwfznP/+RYbALihPEouxRNMdYujRb27ZFLnn01luhoxMrGwX4Vu53HjfcXxKdIUNMlZV1qL6+WdXVu/Xww3tUXb1b9fXNIYNEq2WZrJSG2ro1Q/PntyW8xJOVjQuCYZtPAEAs2c5ZnTJlSkBg2t7ero8//lgTJkyIacdgX7TbpHYdQdt3X1M33GDvGG63t/aoFRdemKt7723VhAk9A65w+ZKdQWrPnaVC/84uU8XFnfmodhelWMnxtbowatgwj+rrm5NycVKiF4kBAFKL7WB11KhRAT9nZGTo4osv1mmnnRazTiE6VhcovfWWSxkZ3mDh008z9JvfZO3dujSyYIuc6upclso9SVJzc4YuvTRXs2e36eab23r8PlQVAitbxgZbZGVd5F2zrIgU4FpdGPXppxlJu4KbbT4BALFkO1i94oor4tEPxIDVkapp03K7BZf2g4aujxXNCNkDD2RrxAhP0BHW7iOUzz+fqbVrI4/c5uWZ2r07umB14EBTd98d/1XqpaVuFRV5S0OFDqxNPfFElubMaUuKkdTuYl3+CgCQ3iwHqz/96U8jtvn5z3/eq86gd6yOVHnLMnVlP8Dr+lj2R8i8j7dgQY7OPLMjaEDWdVTxq68MS8Hq9de36Xvf8+jJJzO1enV2xPaSNHCgNH16q665pm8CQ5dLmjKlPcJOWT1Hr5NJLMtfAQBge4HVtm3btGbNGu3cuVMFBQVqbW1VTU2N2tp6Tuki/txu7yr6qqpMud1SUZGVBUrR5woahqniYk/AqFhpqVuFhR7ZHaHdssXaIpupU9uVkdFzcVUnUxkZpqZNa9fo0W794hetEdsbhqlnntmtL7+Urruub0cwhw3zWGqXzDmdVhec2dH1tV5b65I7+eJ4AEAULI+s+kZNZ86cqWXLlmns2LH+37355pt6+OGHY987hBWsvFRhoUemGaykU++CVCn4qJgvgLBaw7Q7KwFZdrZ02WVteuihbPX8O7x9uvzyNmVnd7a//PI2PfBA6PazZrXp5JOjX7DUm52Z0iWnM5pNJUJhgwEASF+2R1bXrVunU045JeC24447Tn//+99j1ilEFqq8lG+K37fPvU9hYe8Dn+6jYjU1mSopydekSXlqbg6XgxmalYCspiZTzz+ftff4gY+RkaGgi7VuvrlNs2e3KaPbKzxUezt8f3d5eZ5mzuyn8vI8lZTkWyoLJkUu0RVs9DpZRVv+qqtYlGMDACQv25/y+++/v9auXaszzzzTf1tVVZW++c1vxrRjCM1KiarcXOnZZ3dr82ZDTU2GtmwxdO+94fIkA/kWwSxb1qItW3qOigXuUBSNwDJRoYR+HO8NDz7YoiFDTFVVZfbo4803t+mnP23TY49l6bPPMnTQQR5NndruH4GNRqj++AInK1Pc5HRaF205NoTWm1kBAEgE28HqnDlzdPXVV+vJJ59UUVGRvvjiC/3zn/8kDaAPWSlR1dhoaN06l554Iqtb28jpAL6A6dZbgwdMbW3SvHnBAwhrrJWJCheo+OqrzpqVK4+n83fdp4a9KQTtUfTRXn/sBk6hSnQVFZlMbXdhtRxbsi5G62ukUwBIRraD1bFjx2rNmjX6wx/+oC+//FJjxozR3XffrQMOOCAe/UMQVhfedO5v312wPM7AgKm8vF033dTzS628vF2rVmWpqclOBkng8YuLrQVkkQIVyZCn21qlUCOcwUaTMm2++mMdOMUypzNVscFA7MRiVgAAEiGqZK9hw4ZRbzWB7C28CbfjU2CbggKPZsxo1yGHeDR9es8vtYYGY++iJRuPvneUdt68Vg0b5gkakIWalowmAAk2whlqNOn221t18cXWjx2PwClZC//3lXRZjBZvpFMASGaWg9Xx48frd7/7nU499dSA7Va7+tOf/hSzjsErWCDX1BRpi1HfSGaooCn4jk87dhhatChbhYVm2Kl3O1P/kaa1w01LRhuA+EY4ly/P0hdfGHrkkZ4BdmOjoUsuydU++0gnnRT8ON2f+8GDCZz6GhsMxAbpFACSmeVgdcaMGZK8O1iFClYRW8ECuaIij1pafD+FClSt6jnCIpnati381HtkpgoKvJUDjj8+9LR2pGnJX/6yJWygEsmNN+aG7uHev/Xqq6V331WPqgGhnvv8fE+YygemCgtNud0KuuAL9rEYLTZIpwCQzAzTjH49tyR98skn6t+/v4YMGRKrPsXEli07ba9UNwxp8OABUd031gIDudjWS40v7+KprvlvvhHKxkZvZYJBg0ztt5+pK6/MDbPtqLdawK23tmr6dG/QGU3AasX117fq2ms7S1mFf+59gvfZMAL7yeKV2IjFwiAnvb/7Wm2tS+XleRHbVVfvTomR1XQ+1+mI852cfOfNUlu7wepf/vIX3XrrrXruuee0atUq3XLLLcrMzNQvfvELnXbaaVF1OB6SOVh1u6WSkvy9q8SjC9D69/do167o7x+tQYM8Wry4NaAWa/cgw47q6t3ats3ocYyMDHPv4qpwaRBWmVq50htcx+K578o3+sfild7rbcklp7y/E8H3uo6UTlFf35wSo9TpfK7TEec7OdkJVm0vsFqyZIlOPvlkmaapRx55RHfeeacKCgq0ZMkSRwWrySzyKvjIdu3KkN3tT3vHm9P5f//X7K9j2vtarN6UgEmTeq6ab2oy9o64dt+pS4omyPQtLonFc98Vi1dih8Vo0SOdAkAys/2t/Omnn+rqq6/Wp59+qi1btuiHP/yhTj75ZH3xxRfx6F9aSr68Me+X3Z13tvoD1fA1Uq3zLibruRPShAkd+uUvW2KyM5dkqKEhwx8Mx5p38Yr3+ECi+Gr7FhUFvme670wHAE5je2TV5XKpublZr7/+ur7//e8rOztbGzduVP/+/ePRv7RkfTV5pOluq1UDest7jJtuylFGhvdLMVYjlIMGBX8uamoyNW9eToTFYPb4Rm3jJfkuQpBqqO0LIBnZDlZPO+00XXDBBdq4caMqKir073//W7Nnz1ZZWVk8+peWRo50a9Agz95RxeBB5oABUn6+qU2bIgVAwctUBf4uNroWF29ri9zeiu6jQJI3UL3kklAr/cMF5+H5vrh7U4Eg0vGBRCOdAkCysT0sdeONN+rCCy/UwoULddZZZykzM1Pnnnuurrvuunj0L+3U1GTq2GPz9+4QFbpO6s6dhgxDGj/eWlRYUBD/QMkX3FVU5GjffXv7eKaKiz096me63dINN+Ts/SnY89M1OA88XqgcXsPofCxfbl/wY4Tvbyhdjw8AAOyxHay6XC5NnDhRo0eP1gcffKADDzxQP/nJT+RiHqnXfAuSuu4VH86mTYZ+97ssS20feaRFgwZ5FO9FV778zI4O74r93jxesAUf3hJY4QJ5KfiGCL7bgven62P5cvtCpSD0FC6dwrvBAotXAACIju1gtbm5Wddee61GjRqlCy64QJ999plOP/10ffrpp/HoX9qIZkGSd6V5+KDQN6qXmakIo7Wx9fjjWfJ4oi//NH16W9AFH/bzPsMHnC6XNGtWm8aN61BtrUtVVZmqrXVp3LgOvf9+c4QA30rKgaEf/aidxSsAAETJdrC6aNEi7d69W2vXrlVWVpYOOOAAnXLKKbr99tvj0b+00bkgyV4wZprG3qCwswRNl9/6R/VefNF2enKvrF1rbcQ3lAMP7Pxb3G75A0n7wWr4PF2PR3rggWwddli+ysvzNHNmP5WX56mkJF8vvZSpxYtbZRg9n9uez3VoL72UqTfecMlNFgAAALbZDlZfffVV3XnnnfrWt74lwzCUlZWlBQsW6G9/+1s8+pc2ertSPD9fysvrHkAZys2VHnggS48+2rvg0brYpBn4puBrajJVUtIZSN58c+gtVKPhqwG7bVvg8+9bLCYpZLmf+fOt5Qvv3p2hs8/O09FH56umpm8vGgAASHa2vzk9Ho+y9xbT9G1+1fU2RKe3K8Wbm6XOnMzOwKulxVB9fV8GSLFJMygqMmOyqYA1PfvctZh/fX1z0HI/kvToo1navt3aNV9jo6FLLsn175YFAAAisz2yWlpaqltvvVV79uyRYXi/5H/xi1/o2GOPjXnn0omvZFL0I5NGt/8mr0GDPBo50h2TTQV6w7dYrLbWFbQupcslzZjRbuOI3r/j2mtzSAkAAMAi28HqT3/6U33yyScaOXKkdu7cqREjRmj9+vW6/vrr49G/tOFySeXldgKfYJI/UJWk733Po8cey4oqhzceLr00t0c+q286f86cNhUW2rnIMLRtmzcA9umak1tbS24rAABdGaZpb5J1+/bt+sY3vqG//e1v2rhxo4YOHapDDjlE99xzj2688cZ49dO2LVt22p4+Ngxp8OABUd23twKnvBMfoKGrwNQK3+Iq3xaVgZsUWDt348e3acWKVtXUZKqiIidgt6/iYo8qK1tJFYixRL6/0bc41+mF852cfOfNCssjqx9++KHGjh2r4447Tueee66++c1vaty4ccrLy9PkyZO1Zs2aqDucToKNokVTtgqxFK40Vc8aql03P3C7vXVZV67suQgrnN/9LksLF2YHravrW9zFYiwAAGwEq7fffrsOOeQQPfTQQ+rfv78efvhh1dXV6bzzztOAAQNUXV0dz36mhO4r231TykuXZlue8u5tof105HJZec6C7XgVuk6sL5+1rs47nV9W1qH772+x1a8HH8wOeoHSPRjuDVIMkAi87gDEkuWhmw8//FAvv/yyBg4cqEMPPVQXXHCBnn32WV1wwQW65pprlJFhO/01rYRa2d7YaGjRIuuVFLw1VYOP+CE4tzvS82Ro0CCPmpo62xUUmNq+PfLz+8YbnQuv7JUfM8JOV3mDYUO1tS65XOqxuMsKUgyQCLzuAMSa5ZzVESNG6L333vP/fMQRR2ju3Lm65JJL4ta53nBSzqrbLZWU5O+d7g0W0NgNPJMtUE1Uf00ZRudIZThTp7Zp2DCPBg0yVVRkyuORzj47z9ajeQPe2F60FRR4AkpjWf3SD5UD3T3fNp2Q1xZ/Tnndca7TC+c7OcUlZ9VXpsonKytLU6ZMsdezNBV5dyrf7dZXlCeXWPTX3ieQ78vRSqAqSY89lq0bb8xVZWWOtm0zdPzx3lJioXeq6pla4B2Zje0nZffRXSv5rOFyoGOZYpCOmN4OjdcdgHiJehgoKytLWVl9tStScrMzPWxnG0+ENnSoabMGqpcvGFy7NlOVla2Sgm9j6xV+K9fYsP+lH+niqHu+LawJlXPOQjgvXncA4sXyp2xHR4eee+45/8/t7e0BP0vSj370oxh1K7VY350q9iNzqcNeIHj//S3KyJAefdTezmrdd65asaJlb/5d18cP15f4j3r78lnr6lwaPbpnxGr14qi3W/ymk3A559Om5aZlWkV3vO4AxIvlYHXw4MFatmyZ/+fCwsKAnw3DIFgNwbc7VWOjEXFamnyb2PjqK0NnndVh+XnvyhcMvvWWS4WFpioqWtXUZGjDhgw99VSmmpudsZgw1Je+1Yuj3m7xmy4iTW/7Lm7GjeuwvPgtFfG6AxAvloPVV155JZ79SGkul1RZ2app03JlGGaEwIlRh1gYONDU8uVZ+u533WpoyFQ0i7ymTcsNWNwUm1Hv2C02C/WlH+niyDC8i8hKS0ketKJzeju4SCPd6YLXHYB4ccYQURooK+vQihX2CscjGqby8z0699x+uvHGXP3pT1mKNjgMXroqumMZhqnCQo8MI1wOrPVjFRd7Qn7p+y6OfG2731fy/j6dRwHtYHrbGl53AOKFYLUPlZV1qL6+WXPntia6KynK+4XY3GzI4+n+u2gCiVgtoDJlmtKSJa0hLljsL8CL9KUf6uKoqMi0nV/pWwG/enWmHnkkS6tXp9dKeKa3rYvl6w4AfCzXWU02Tqqz2l1trUvl5fZqeCKyggKPduwwguYWJpapgQNN/f3vzXK5pLY26bHHsvSnP2XqtdfsrSS3W1zd7fZOY0ezqYAUvMB7tH1JtGjf3746yZGmt+vrmxk13Ku3r7veou5meuF8Jyc7dVapuZIAdhZcwZof/7hNhx/u0S235Ca6K0EY2rrVm9O4bZsRMvgLzVuGa9y4Dttf+i6Xos6jDLUC3qehIT1WwofLOWd6O7jevO4AoDvSABLk/PPb9wYBwfIXuTS0a/XqLL32mrOjhRdecGnatNxuZbCkcOc7I8PU8uUtqqxs1ejRfTc6FW4FfCfvKHY6FHpnehsAEoeR1T5WU5Opa6/N0bZtXCfEkmkatqfU+9rq1Vkhgj9ffd2ut3uDokcfbdGECfENhIJN2UZaAd8pfVbCl5V1aNy4joRObwNAOnL2t3uKWbMmU5deGmmamrSA6HXdtjbY8xhq56n4MgxT/fubamoKF/wF71NGnK9pguWkFhd7bI8UpstKeKa3AaDvMbzXR9asydSMGbnyBiXp8cWeWMHLQ82c2abq6t16+OE9evbZ3dp//2BtY9sP05R27rR7zg0ZRnyn2H05qd3TEhobDT36qL2tlFkJDwCIF4LVPlBT4x1R9XgIUvtGqPqohtasyVJTk3cKd8sWQzNm+H4fn2Brn32kgoLojh3PvdQj7cokefNle9aE7dHLsDVfAQDoLdIA4sjtlt56y6W5c3MS3ZU0FDwloKHB2JuK0XlbYaGptjZDzc2x78XXX/d+JD0eU+yRc1J9tWp9C/5Cp1WwEh6RJLqUFYDkxshqnNTUZKqkJF9nn523d8tORlUTI3Jh/+3bvYHqOee09U2XbIrHFLvVAPiyy9pUXBzq8Q0VFjL9j/B8n4Xl5XmaObOfysvzVFKSr5oaxkoAWEOwGgehcgHhFD2nvQ1DeuONTBUVecJMffdtWbFI26r2htUA+BvfkOrrmzV/fquC/f3bt3trrRJ4IJhwedG8bgBYRbAaY9bqU8JpTNNQY2OGpkxpl9Rzb3NfkDZvXqxHX00FCwLjXWzetzFF+JxUU4sXZ+v3v8/UE0/4FlwFz29Nh1qrsMdKXjSvGwBWEKzGWGcuIIFqMho2zBO0+Htxsbc4/zHHuPcGeL0fYTUMU4YhzZ7dc6o93sXmfbsyBd+Ywt9DSdL11+eEfU3HcyEY4svt9m7/XFWVqdpaV0wDx0ifhbxuAFjFHEyMpUu9yVQ1ZIip0aPdPYq/NzUZuukmu9ukhldUZKqyslVlZR2qqGjr8wUoZWUdmj+/TYsWhV4AaJqGmpqsvaZ57SeXUDV2fa/J3rL6euB1AyASgtUYo95ksjKVkSGNHOkdWupa/L2mJlPTp+fuHYWMjmGYGjrU1P33t+irr3oGpIkqNj9smCdmx+K1nzx8uaTdX9O+XNJYjOpbfT3wugEQCWkAMWYtFxDOY8jjMbR+feBwZixykH2vhdtvb9WJJ7o1cWKHRo92Rukeq4HCoEGhX9PxXAiG2OurXNJIn4W8bgBYRbAaY75cQCnYIh04XfcpSfs5yKYyMvo2/7Q3rAYUd90V/DUd74VgiL2+yiUN91nI6waAHQSrcVBW1hF0kQ6c79NPO98Sbre0YoX1bUd9C6YefbTFv6VrdfVu1dc3OzJQlawHFBMmBH9NOzkQR3B9mUsa6rOQ1w0AOwzT7E0mnnNt2bLTdo6hYUiDBw+I6r7B+HZtef75TD3+eHbvD4g4M1VcbKq+vllr12bq2mtztG2b9eu5aBenOGF3H6uLbZzQ12jF+v2drGprXSovz4vYrrp6d8zyqPv6dcO5Ti+c7+TkO29WsMAqjnyLZj74gAHs5GCoocHQkiXZuvtuqxcXpgoKvKNExx9v/ws4mhXZ8fjiLyvr6FEBIZkCUVjnS/1obDT8OapdGYapoiIzprmkiVpACCA1EKz2gUGDuNRLJt5A1foU6IwZ7VEHqpFWZFspoRWrckORAop4lzpC3/ClfkyblivDMAMCVnJJATgRaQBd2J1KsDrC9frrLk2aFHnaDckrVNAW6jXidkslJfl7t6EMPrpVWGgqJ0dqbOw6Mu97YfYMMOKZAxgYWHftr/ex589v05w5bY4OcJgqDJTKFx+c6/TC+U5OdtIACFa7sPOCt5Pjd801Ofrtb8lZdb6egaDd+3YN2sK9RgoLTUt5g97jdg8OQ0/d1tc3xzxgjBRY+xQVeXT77d7XvxNzW/lC68mJ5ykWONfphfOdnAhWFd9gNdQoU/cRrpoa+4t0EGvBgzurQWA0ioo8mjixXQ8+mB3yNTJ9ersefTT2FzCxXBTjY3VBjuSthjBrVpuqq7McN2LHF1r64FynF853cmKBVRxFKqhtGKYqKnLk8UiXXpqbkD6iOyuBaOy2fGxsNPTAA75ANPhr5Nln4/PWi8fWldaPacg0zS5/e6dY7owEAEgvDPnZZLWg9jXX+PZbZ9/rxAo3dW3qmmukuXNb4/SYoV8jTU0ZYXeFilY8tq60d8zgf3ssd0YCAKQXRwarTU1NmjVrlo455hiNGjVKt99+uzo6nDEaY3WUadcuO7seoe95z82zzyph2z1OmtTu7UmPgDWagNPUwIHx2boyVlsIx2pnJABAenFksHrNNdcoLy9Pb7zxhlavXq23335bjz/+eKK7JSk+I1dIFEP//a80c2Zi0jX+539MzZjRpoEDA19TxcWmCgvDBYfBb9+61dDatZlyu715plVVmaqtdfV6JLPrLlfRBdKB4pGqAABIXY5bYPX555/rjDPO0Ouvv64hQ4ZIkv7whz9o8eLFevXVVy0fZ8vnmxX0T3O5pNwuwUlzs/9/eyRpZ2RI/foFtPV4pNGj87VpkyGzy8ipRxlqUT/58iP7abeMEF/spgztUeeCFTttc7VHGfKE/Lt3Kz+qtjlqkUuhoxp7bfPkG7nMVqsyFXpU3E7bPeonc+/1VZbalKX2mLRtUY48e9O3g7ftzHltUa48e4+bqQ5lqy3kcVuVI/fe42aqvUtbUxmG5OlS37L/wCz9aJI0blyHSo9p1cs1bl1+ee7e1oELwdqUrQ5580Jd6lCO9m6XuneDgpwcadNmbx/blK39il3exU3jWqWWlpD9VVaW3K5s1dW59GWjR0WFe3TssW5l7L2kfeGFTN1yS442bc5Qu7LUvrcPhjzqpz0hD9u97fNPN4UeAc7MlHL2ptCYprR7d+j+2mnrcsnol9v5/t7VHLZtqM+IHoJ8Rlhuu3u3Qq4GMQwpLy+6tnv2SJ7Q73vl50fXtqVFYa987LTNy/P2W5JaW6VwM2d22vbrJ2VkeD/L98nRlsatoRfc7G0rSWprk9pDf0YoN1f+Mgl22ra3e9uHkpPjfR3bbdvR4X0uQsnOlrKy7Ld1uyN+Rig7235bj8f7WotF2yDv+5ALrGx+Rlh+3/MZEbytzc8Iw+PR4G8OCd2+K9NhXn75ZfPYY48NuO2jjz4yDznkEHPHjh3WDzRggGl6T13Av9bTzjC/+upr/z9PXl7QdqZkth1/QkBb96BBIdu+o2NMw/CYkseUTPM/+mbIth/osICbPtBhIdv+R98MuOkdHROy7ZcaHHDTqxoTsu0u5QXcVKMfhmxrSgE//q8mhW2bp13+Hx/TRWHbDtaX/h/v16ywbb+p//h/XKTrwrY9TB/4f7xZN4dte4ze8f94nRaFbTtGr5oDB7rNggK3OUv3h237Q9X4f7xIj4Vt+2P91jQMj/nYY7vNHct/FbbtRXrM/+MPVRO27SzdbxqGxzQMj7n2+hfCtn3nnNvN4mK3KZnmMXonbNubdZPpe60fpg/Ctl2k6/b+r8c86hufhG27e+ql/vfblg8/Ddt2z+TzO9+fnzWGbdsy/kfmli1fm6Zpev8bpm28PiPavj8ioG3HAQeGbNs+/NCAtu3DDw3ZtuOAAwPatn1/RMi27kGDAtsef0LItp68vIC2raedEfZ569q2ZfyPwrf9rNHfds/k88O23fLhp/62u6deGrZtU/3fvK+dLV+b5nXhPyO2vrHOf9zmeQvCtt320qv+trtuvi1s2+3P/d7fduedd4dv++T/+tt+veyhsG13LP+Vv22kz4ivlz3kb7v9yf8N23bnnXd3tn3u92Hb7rr5Nn/bbS+9GrZt87wF/rZb31gXvu3sq/xtm+r/FrZtPD8jur6Gw7XlM8L7r9efEQMGWA7pHFcNoLm5Wf26XllI/p93796tffbZp1fHz87OtFwqISvLFdjWCD99uf/+ho44Qnrhhd70EE52xWxpwj0ZcrmkFydI+kNsjmvuXZR00039NGVxv4jtbR3bNGQY0sqVOfpBmHbP/G+WGixmBk0+x9CKtwx98YWdnhjaviP88fv1y1Y/33vODDNqIyk3N0u5vrb9wh83JydTOYO8bQcNCv/+j9dnRFZmt7YZodtmujIC27pC/32uDCOwbWbonOAMo1vbrNBtDXUrK5Md/usioG2Ohba+UZbcrLBtBw3qL/nPc/hybwMHdmkbQWFhfmfbvJywbQsKurTND9/2G9/I62zbP3yKUUDbAeHb7rNPv862+4T/jBgwIFcDfG2/Eb7sXP/+uepvsW1+fo7yfW0L8sO2zcvLUZ6vbWGEtv2yO9vu6h+2bVw/Iyy+dviM8IrnZ0SPxzJN07R1jzh7+eWXVVFRoXXr1vlv+/jjjzVhwgS9++67GjDA2gukaUN0aQCDBg1QU1PoNICu3G5p/XqXvvzS0KefZWrl0/v4dxsiDSCZ0gBy5ZEraNtpl7TqD3/IUuOmDH/bfQoMXXZZu+Zc0azbb5ZWrAz+5RU6DSB82+ef/VrHl/Scrqqrc2nyuXl70wC8X/Bd0wCC6do2Q249v2prwBS8ryj87Nm5+nJ7ttqV42+bK+8XgSHvhgNvvul9/a9f79KmpmwNHOo97pYvTRUX7tbIkd7jlpTka9v2zooAXdMAMuTWsKLdevPNEJsXxDkNwP/+Jg3AftskSwMYNCBHTZtIA0iXNICA7+4wbUMiDaBTH6YBDDrQWhqA40ZWDz74YG3fvl1btmzR4MGDJUmffPKJhg4dajlQlSQzLy/0h1TX2/O6PHmGpPx8mXs8nfcN1Vbe1WmjTvVuEnDH0sA93rsGmJHYaevNi41921ZZX2Rkp22bctSm8CMR0bRtV7Y/AIpn2/tW+s5N5xXu9u3SXXfl6MEHs3XZZW3abaHPHcryB42RNH6VJTOv50jEMWOkguJ+amw0/K9LtzK12+Lb2COX/ru1v0bleb/sg+2w1bVt1wuUfzdK9zySrSeeCF7sf9Sp3tdEba1LG7eHfj175NK/Gwfo7b+6Qm9e4H8fGT3ec7Foa5oK+vwGP65s9MFm234R3vfRts2N8L6Ptm1OhPe9nbZd22fneP/FvG22zLz80N8DXdtmZXv/WTmunbaZWd5/sW7rypTyIrzvo2mb4bL+GrbT1siIT1vf+z7Yd3eotpaOK2e0TfXPCBtrbR1XDeCggw5SSUmJ7rjjDu3atUv//e9/9eCDD2rSpEmJ7lpQ4TYJQCoIXS91505Dd9+drfx8jwLfhb0TquJE11X50Za7uvHGHNXUZPp3YfNuoWrNokXZPdr7iv3X1Hi/DK2u9KciAADAKscFq5K0bNkydXR0aOzYsTrnnHN04oknatasWYnuVlCRNglA6mtujt25z8vzyOMJPZNSVtahFStaVFQUGJwWFJjq3z9y0Lx1qze4vPbaaC+wwhf7t1rajRJwAACrHJezGivR7BEczf7CVVWZmjkztgtikIxMxfKCxTe9HmprUrdbWro0W48+mqXt27tec/rn0sIc3W5frbWvrt6t0lK3Skry1dho+APZrgzDm/9aXx8iZzWO2D88fXCuk5Mvh37zZkNDhpgqLXVb+pzgfCcn33mzwnE5q8mGESJ49TZQDQwIfdPr8+a16aCDPGpqMjRokDfQKy11a+3aTC1enB3lB7P1vhqGafkxNm82/KkK06bl7r1v52P5UhcqK1v7PFBNZ9EGAEBfCpZDH+miHemDYLWXfFtRhhpJAiLrOXLpfS2ZWrSo52KSoiKPWloUYhrfUCzzZ4uKTF1wQXvQfnTnu3DzpSp4v3g6+1dUZPLF08cIAJAMfDn03S+MfRftK1a08HpNc6QBdBHtVILvjSaJgBV9IFYpB6GO490Ja8WKFh1/fGc5KrtT+04b0Uu3qcLAAKDnCHcqBwDpdq6Tmdvt/XzxXthGlzrE+U5OdtIAHLnAKtmEWvQCBGdKMnXqqdEGClYD1eCvR8MwNXCgx///3X9nGNI997TqxBO9wWXXKgTdj8nUfvy53d6SYFVVmaqtdYUtY9j1PqGqlHRfFAckUqRFyqZpqKEhQ3V1fMCkM4LVGCkr61B9fbOqq3drxow2+QISoLuCAlPz57dp1qwwBcBjJFgwKkl3392qlSt7XmAVFZkhR9wKCnqOxBYWBm9fU5OpkpJ8lZfnaebMfiovz1NJSb6/xBWsifZ5JABAsqDcHazgmyOGXC5p9Gi3Ro92q7TUrblzc7R9O2+w1GBllb0127dnaNGiHBUVeZSf79lb+ip2rxPftNmtt7bqppvC542OG9cRcao+VD6ZZGrr1p79Jv8sNnrzPBIAIFlQ7g5WkLPaRazzXl5/3aVJk6zvTgWn6v5iiOYLPliw2/W40QYNgaOd3fMRe5s3ajefLBb5Z/GSTHltvX0ea2tdKi+P/NlTXb079E5iSSyZznW6873We1PujvPde4lYY0DOqkOMHu3WoEFh9tRF0rj88jYVFlr9FAy1u1SwlfvRjqqaKiz0RJzG9432T5zYodGjg3/4hMuJtDudzPRzbPT2efRVKem505mXYZgqLvaotDT1AlUkl3A785ET3zeSIW2LYDWOXC7prrtaRf5qclu2rEVnnOHWtm1WdyoLFZTGive1NH16u9av9+ZJP/zwHlVX71Z9fbOtKfZIH1J2p5OZfo6N3j6PBABIJqEWKYfLoUdshNp6u/tW2olGsBpnEyZ0aPbs+C+kQfwsXJijtWuje8NOmhSPc+8NfhctytGxx+Zr2zYj7MhpKFY+pOzmk1ltP3iwaXuFezqJRR4fAQCSSddFytFefMOeZKoaQs5qF/HMe1mzJlPXX5+jpiauD5JP9IurfvzjNj3zTHavHv0b3/DoiCPcqq31Bcy9r5lpNSfynXeadeyx1vPJrOSfFRSYys2VGhv7tlB9MuW1xSKPr+uxnFTvti8k07lG73G+o5Po3HZyVh1owoQOffBBs+bPJy0g+XiDhYwM++cscqDqfS2Eyi2UpB07jKCBqhT91a/VnMj16122ppMjTT+bprRtm6HGRmdPOSVaLKfxreQtJ1o0tWQB9E4ypW0RrPYhl0u67ro2rVzZouJigtXkYsjjsfOGDXZBEvzn00/v0MCB4V4P4RdiRbNoyc6HlN3p5FDthw41uyxSc/aUkxOkyzR+MizuAFJRMpUNIw2gi76cSvBNzb3wgkuPPOIbfUv81QtiwVraQEaGaTMADu/hh/do4kRrAUw00z92p5O7t/d4pLPPTvyUU7JNFabyNH68toRN1nON6HC+oxPLdKNo2EkD4NI1QbpuIDBqlEfXXpujbdsIVuMpFgX4Bw707C2EH+4YVo7vDd5iyc7Vr6+0UaQPqa6ljXyvWau6t6+qsvZx44QpJyex+7wni0iLOwzDVEVFjsaN60iZ4BxwEl+60bRpuXvTtHpeMDqlaghpAA5QVtahf/zDm89aUEBd1ngZP943QhP9pfcll7THpjOSYjWSHk3NzESUNkqmKSfEHzV5gcRLlnQjglWH8OWzfviht3THjBltbCgQY6tWZauw0FT//tEHQ9/5jkczZsQiYI1doGqa0gUXtOv55+0tTunrDykK1aOrZFrcAaSyZCgbRs5qF07Le2lrk446Kl9NTbEuKp++fMFdbq7U0iLZfV6rq3dbzr3sC/n5HhmGtGtX9GWg+ion0u2Wli7N1qJFPXO0e5ujaIXT3t/pLp5lczjX6YXznZzIWU0R69e7qMsaY76cHG+gauueKioy1d4u/fa3vXnbmOr9hUfnAq7m5p6vD18ZKKuBX1/kRNbUZKqiImfvtG9PRUVm3OuswlmiyZsGkJ6IhByM6S9n+fprQ+eck6dnn7Va5D94qarCwtBT4daPGfq1YZqGTFOaOzdHb7yR+JqVoXbK8pX3mj+/1XFTTog/toQFYBXBqoOx0MQpvOehudnevfr3D/y5uNjUypUtWrKkde9UVTzPr6Ht2zN09tmJrVkZbsW3ZMgwpCeeyEpAz+AEybK4A0BikQbgYFanyZYta9GmTYbmz8/V7t2MxsZW1y9Rq8+td6p/1y5v+4IC76KsOXPa5HIpqsAxL8+j3btDr5wOJ1JaQDxzVjtXfAfnXfFtqK7O5cjyTKlc49Qpyso6NG5cB88zgJAIVh3Mag20k07yfsnn5rbo0ktzfS36urspyu7z2HO0dMcOQ4sXZ+vQQz0aN65DFRU5No7tPV5vLkLC1awMlktqd4FWOMm84jvezw06pWotWQCxQRqAw9mZJpswoUOzZ7f1dRcdLhGpFKG3Eq2tDV9bMuAoRjSjusEFq1kZKpfUNxIbi9SBZK2t2hfPDQDAGkpXdeHk8hd2piPXrMnU9dfnUElAUmxW38fOnDmtWro0J3JDSYMHe7RlS2zPoW9LVt82e95gzN42e3Zei4nezi/wsay9v3vz3MAZnPxZjtjjfCcnO6WriGaShG+abOLEDo0eHT6fa8KEDn3wgbfA7zXXtPZdJx3JOYGq5H1zWnHbbS269dbYnzvfCGa0uwfV1GSqpCRf5eV5mjmzn8rLwy/gSsYV3+ysBADOQrCaonzB7fXXt4XdNchXPgh9Y/RotwoLPQr1nPt2cbr00vYeqR/hmcrJCX0uu+8OFU0uabRT48m24juZ82wBIBWReJXiIi3S6pwycdZ0eXDJ20ff1PG2bYa2bQv1N3jPh2+kMVI1CJ9Bgzy6665WZWRI06bl7j1O8MV4vhFMu7mk4UpQhVvA5ZNMK76TNc8WAFIVI6tpINzI1sqVLVq5sufvnMnpgaoUKlCVpFtvbdVNN4WvBDBwoKlx47wjjeGm0LsW1P/gg2ZNmNBhawTTFwiHGnH3jcS63VJVVaaWL8/q9dS4nVSWRLL63LCzEgD0DRZYdZHqSdrhFsZ0/d2++5rq6JAuuaTf3kL4yRAkRpK4UVlfuaPCQjOqvdDDlVAKNlopWVsA5ZvWlxR0xL2w0NS2bfauZ30LuJzIzvs73HMjqdfpC9Rvja9U/yxHIM53crKzwIo0gDQSrpZhsN/dd1+LLrkkN2j75BMsUI1fAHvbbS3ad18zIBCpqrL2duueCxlqCn3t2sy9q9Y7A8qiIo+mTGnXsGGesBckQ4Z4R3BXrGjZGwh3PmZhoamtW8OlK4SWKlPjvlHq7s9NUZHZ6zqr1G8FAHsYWe2Cq7Oe1qzJ1IwZufJ4UmF0NZTuQWuoINZK3VNTxcXByxrV1rqiGlkNNgq3dq135K9nDmlg331BkCRLo7P77mvqiity1dgYvGxTpJxcJ5dziub9HesRUN+IbffzFs2ILaOzofFZnl4438nJzsgqwWoXvOCDW7MmM8LOWGaY34XSF9Py0T5GqL/H1A9+0KEXXsgM+XtJWrky9LamdmuOBhuFKyryqKVFe0c+w/99gYvoAvscLECyGlB3f4zux3GiRL+/Y1m/ldHZ8BJ9rtG3ON/JiTqriKkJEzq0cmWLiouDfwoUFvpuD74IKPjtdvXFJ5C3r5df3tbjbx082KPly1v06197F6R1/s2dBg40Qwaqkv2ao+FKRXlzSSMH4oFBceidtdx7B3KjKcfk1BJUThOr+q3srgUg3fCpBku65k02NhpqajI0aJB3JKipydC8eTk9FuMUFpo6//x2VVdndftijWa008p9TA0ebOqWW1p18805amqy+zjeEkzPP5+ld95p1vr1wadYfc9Fba1LtbUuGYY33/f44yNPw1rNhQxXKsr+8xe6vTdAMlRX59Lo0W7LOafBcnIRXizqt/a2hBgAJCOCVVgWbBFWTU2mpk/PDTL1Ymr7dkMlJR5VVDT7c+v++c8M3XOPte1G7TFlGNKiRd5V99FuNesL3tavd4VcjCZ5n4uTTnLrpJPsly+yUnO0cxSub/gCpEi1XX1T1Zde2k4wZNO++/a+fmuk10X3iw8ASAWkASBqVkb/Kiq8gamvvuaJJ/buC3ThwhZddlmrBg3yBNxeXNw5FR2LnYXivTtRqJqjbrc3b7Svp3J9AVIybo+aDGpqMnXFFeEra1ip38ruWgDSEcEqohZNDl6kguuRclMffjhbo0Z59MEHzaqu3q2HH96j6urdqq9v9k+hx6J8UiJKMNXUeEtRlZfnacWKbIv3stLPcFvqmiosDAyQkm17VKfz5Zh6KywEZ/VCgN21AKQj0gAQtWhGecJt/9oZUIVexb9pk3cRSbigyRcQh1p1Ha56gW+au7TU3aelgQJLGnXva/B+FhSYys1VtyAosH3PagA9GUGeomTaHtXJws8+dLJav9Vqmga7awFIJYysImrRjvKEGrkrLjY1e3Zb2K1fg61g787lksrL23336H4E//+Fm+b2FdwvL8/TzJn9VF6ep5KS/LhMz0dOpwjezyVLWvWXv3SOMM+f39rjuRs0yBe8hgqUDG3dGnwFerJsjxotX8pFVVWmamtdIV9PvRFp9sFn2TJrI9akaQBIR4ysImq9GeUJN3J3yiluTZoUutZnpEUkbrf01FNZvl5075UkUwMHmsrJCRyV9I1uSQo6yukrDRTrrTY9HkVYTBX4N3Qfhev6HMyZ0xZw7MZGQ7Nm9YvYp1TOcfQ9319+aeiQQ6Tvflf6wx/6pk6p1ed1yxbrz388d9cCACciWEXUwk3pWxnlCbX9q9Uv7lCBwNKl2RH2tDe0dauhZ5/drYED8/TPf+7Rfvt1BtUlJfm2SwNZTRkIVsy9oMDTs2EQ06a1qaysI+x0fPfntLbW2hBbquY4Bnu+Cwvzg24lG6uLka7ilWNKmgaAdEKwil6JxyhPb77g3W7p0UezgrTuacsWQxMnSkcc0eEfRa2ttV8ayOpuQqHyUrdvtxacl5V12C5HlM45jqGe785ANf51SuP5/Ie62AOAVEPOKnqtrKxD9fWhV+fbFaliQLgSP3V1Lm3fbu1lHSzYtbtozOpuQtbyUu3/vZGka45j5Oe7d7tIWZWuzz8AxBLBKmIilotxevMFbzXY7F6uycfOqG6k3YSkzoVgkRfa+AKo2AY0brd3J7EZM9o0cGD6lKKyurAplFjm8FIKDAB6hzQAOFK06QVWg83p04PvwGRn2tbObkJWg5+CAjMgLaA36RTB0hMGDfLo7LO9+Y6pnOPY22Az1jm85JgCQPQIVuFY0XzBRwo2vUXwTc2Z0xb0/nYWjdlJGbAa/Cxf3uI/dm8CmlD5mlu3GvrlL7NSPlCKNtiMRw5v98V3Z50Vm3xYAEgXBKtwNLuLSLoGm6EK6p9/fvh97a2O6trZ693qiG0s6plGSk+I9SIiJ7Jy0eJlr4KFXVYX3wEAQiNnFSmnrKxDs2YFHzmVpAcfzI5Y3D/SojG7e7335UKbaLbBTTVWnu/CwvjmkFpdfAcACI9gFSnH7Zaqq0OVr4q8A5ZPqEVj0e713lcLbaLZBjcVhdspbeXKFv3jH7GrYNGdncV3AIDwuLRHyrGz8Omss+wdu7d7vffFQpt4FaJPRl2fb+8OVv303e82K2PvyyNedUrtvAaplQoA4RGsIuXEc2QxUhDis2xZi046KXgQEu9i7um8EUAwvufbMKTBg6UtW9Rj4VmsMboNALFDGgBSTjxHFuOx13usUYg+8RjdBoDYIVhFyunNDliRJEsQQiH6xIrnaxAA0g3BKlJOPEcWkykIifU2uLCO0W0AiB2CVaSkeI0sJlsQEu02uG63VFvrUlVVpmprXaxajwKj2wAQG4ZpxnupQWJs2bLT9iIK7wKMAVHdF87Uffegrivve3O+U7nYe6r+bYl6f4d7DSI++CxPL5zv5OQ7b5baEqx24gWfXnp7vlMxCAncprXn7k7JPCLI+zt9cK7TC+c7OdkJVildBUQp3iWo+hrbtCIdpeJFJ5BqCFYBSKKQPdJPqqa8AKmGBVYAJFHIHunFl/LS0BD4em5sNDRtWq5qahjLAZyCYBWApOSpIQv0VqSUF8n7e6pgAM5AsApAUnLVkAV6ozPlJfgsgTflJUN1dSSvAk5AsApAUvLVkAWiRcoLkFwIVgH4Ucge6YCUFyC5kEEOIEBZWYfGjevoVTmfeJQDosQQYsWX8tLYaPhzVLsyDFNFRSYpL4BDEKwC6KE3NWTjUQ6IEkOIJV/Ky7RpuTIMMyBgJeUFcB7SAADETDzKAVFiCPFAyguQPNhutQu2bEsvnO/YcrulkpL8vUFl6KnV+vpmyyNWsTwm5zt92DnXpJckP97byYntVoEUkGxfovHYAYtdtRBvqbZtMpCKCFYBB0rGHM14lAOixBAAgJxVwGGSNUczHuWAKDEEACBYBRwkmbeBjMcOWOyqBQAgWAUcJJm3gYzHDljsqgUAIFgFHCTZczTjUQ6IEkMAkN6cmfwGpKlUyNGMxQ5YfXFMAEByIFgFHCRVtoGMRzkgSgwBQHoiDQBwEHI0AQAIRLAKOAw5moiW2y3V1rpUVZWp2lqXI6tGAIBdpAEADkSOJuxKxo0kAMAKglXAocjRhFW+jSS674vu20iCEXkAyYw0AABIYsm8kQQAWEGwCgBJLJk3kgAAKwhWASCJJftGEgAQCcEqACSxVNhIAgDCIVgFgCTm20iie11eH8MwVVzscfxGEgAQCsEqACQxNpIAkOoIVgEgybGRBOKNDSeQSNRZBYAUwEYSiBc2nECiEawCQIpgIwnEGhtOwAlIAwAAAD2w4QScgmAVAAD0wIYTcAqCVQAA0AMbTsApHBus7tmzR5MnT1ZVVVWiuwIAQNphwwk4hSOD1X/961/6yU9+ov/7v/9LdFcAAEhLbDgBp3BcsPr222/roosuUnl5uYqLixPdHQAA0hIbTsAp+rx0VUtLizZv3hz0d/vuu68OPfRQvfrqq8rJydFjjz0W9eMYUaTQ+O4TzX2RfDjf6YXznT4417EzfnyHVq5s0Q035KihofMJLS42HVNnlfOdnOycrz4PVt9//31deOGFQX/3wAMP6LTTTovJ4wwaNCAh90Xy4XynF853+uBcx8bFF0tTpkhvvCE1NkpFRdKJJ2bI5eqX6K4F4Hynrj4PVkeNGqWPP/447o/T1LSzRxHjSAzD+2KP5r5IPpzv9ML5Th+c6/g44gjvP0nati2xfemK852cfOfNipTdwco0FfWLtjf3RfLhfKcXznf64FynF8536krZYBUA7HK7vYXQN282NGSIqdJSN4tHACDBCFYBQN490Csqcvbu2ONVXOxxzCKSVMeFAoBQHB2svvLKK4nuAoA0UFOTqWnTcntMITY2Gpo2LVcrVrQQsMYRFwoAwnFcnVUA6Etut1RRkbM3UA2spWKa3p8rKnLkpu55XPguFLqWRZI6LxRqahw9pgKgDxCsAkhrdXWuvSN6wYv+maahhoYM1dUxJx1rXCgAsIJgFUBa27zZWmVqq+1gHRcKAKwgWAWQ1oYMsVbrxmo7WMeFAgArCFYBpLXSUreKiz099j73MQxTxcUelZYyFx1rXCgAsIJgFUBac7mkyspWSeoRsPp+rqxspYxSHHChgHTkdku1tS5VVWWqttZFTrYFBKsA0l5ZWYdWrGhRUVFg0FRUZFK2Ko64UEC6qanJVElJvsrL8zRzZj+Vl+eppCSfqhcRGKaZmpuTbdlif49gw5AGDx4Q1X2RfDjf6cXK+aYwfWLEus4q7+30kiznO7Cec2cetu/CLN0ujH3nzVJbgtVOyfKCR2xwvtML59vZYnmhwLlOL8lwvt1uqaQkf2894Z4LBg3DVFGRqfr65rS5QLYTrDLuDABIOJdLGj2a5D2kps4ybcF5y7QZqqtz8T4IgpxVAACAOKJMW+8QrAIAAMQRZdp6h2AVAAAgjijT1jsEqwAAAHFEmbbeIVgFAACIM+o5R49qAAAAAH2grKxD48Z1UM/ZJoJVAACAPkKZNvtIAwAAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACOlZnoDgAAkEhut1RX59LmzYaGDDFVWuqWy5XoXgHwIVgFAKStmppMVVTkqKGhc6KxuNijyspWlZV1JLBnAHxIAwAApKWamkxNm5arhgYj4PbGRkPTpuWqpobxHMAJCFYBAGnH7ZYqKnJkmpIUGKyapvfnioocud193zcAgQhWAQBpp67OtXfq3wj6e9M01NCQobo6kleBRCNYBQCknc2bgwep0bYDED8EqwCAtDNkiBnTdgDih2AVAJB2SkvdKi72yDCCB6OGYaq42KPSUpJWgUQjWAUApB2XS6qsbJWkHgGr7+fKylbqrQIOQLAKAEhLZWUdWrGiRUVFgcFqUZGpFStaqLMKOARF5AAAaausrEPjxnWwgxXgYASrAIC05nJJo0eTmwo4FWkAAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHykx0B+LFMKK/TzT3RfLhfKcXznf64FynF853crJzvgzTNM34dQUAAACIHmkAAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsgtW9mpqaNGvWLB1zzDEaNWqUbr/9dnV0dCS6W4izrVu36vTTT9e6desS3RXEyUcffaSpU6fq2GOP1ejRozV//nxt3bo10d1CnLz99tv68Y9/rKOPPlqjR4/WbbfdppaWlkR3C3Hkdrs1ZcoULViwINFdQZwQrO51zTXXKC8vT2+88YZWr16tt99+W48//niiu4U4qq+v1+TJk7Vhw4ZEdwVx0tLSoksvvVQjRozQm2++qZqaGm3fvl0/+9nPEt01xMHWrVt12WWX6bzzztO7776r6upqvfPOO3r00UcT3TXE0f33369333030d1AHBGsSvr888/1zjvvaN68eerXr58OOOAAzZo1S08++WSiu4Y4qa6u1nXXXac5c+YkuiuIo4aGBh166KGaPXu2srOzVVhYqMmTJ2v9+vWJ7hriYODAgXrrrbc0ceJEGYah7du3q7W1VQMHDkx01xAnb7/9tl566SWdccYZie4K4ohgVdK//vUvFRQUaMiQIf7bvv3tb6uhoUFff/11AnuGeDnhhBP08ssv64c//GGiu4I4GjZsmJYvXy6Xy+W/7cUXX9Thhx+ewF4hnvr37y9JGjNmjMaPH699991XEydOTHCvEA9NTU264YYbtGTJEvXr1y/R3UEcEaxKam5u7vFC9/28e/fuRHQJcbbvvvsqMzMz0d1AHzJNU0uXLtWrr76qG264IdHdQZy99NJLev3115WRkaGrrroq0d1BjHk8Hs2bN09Tp07VoYcemujuIM4IViXl5eVpz549Abf5fs7Pz09ElwDE0K5du3TVVVfpd7/7nZ544gkNHz480V1CnOXm5mrIkCGaN2+e3njjDe3YsSPRXUIMPfLII8rOztaUKVMS3RX0AYaWJB188MHavn27tmzZosGDB0uSPvnkEw0dOlQDBgxIcO8A9MaGDRs0ffp0FRcXa/Xq1eQvprC//OUv+tnPfqY1a9YoOztbktTW1qasrCymiVPM888/ry+//FLHHHOMJPkrPvzxj39ksVUKYmRV0kEHHaSSkhLdcccd2rVrl/773//qwQcf1KRJkxLdNQC9sGPHDl100UU6+uijtWLFCgLVFDd8+HC1tLRoyZIlamtr08aNG3XXXXdp0qRJ/uAVqeGFF17QX/7yF7377rt69913VVZWprKyMgLVFMXI6l7Lli3TrbfeqrFjxyojI0M/+tGPNGvWrER3C0AvVFVVqaGhQWvXrtULL7wQ8Lv33nsvQb1CvOTn52v58uW64447NHr0aA0YMEDjx4/X7NmzE901AL1gmKZpJroTAAAAQDCkAQAAAMCxCFYBAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAgIi2bt2q008/XevWrbN8nxdffFFlZWX6/ve/r9NPP12rV6+2/bgEqwCQIJ999lmiuwAAltTX12vy5MnasGGD5fvU1dVpwYIFmjdvnt577z3ddtttWrhwof7617/aemyCVQAp69RTT9WRRx6pESNGaMSIEfr+97+vE044QXfddZc8Hk/MHmfKlCm67777JEk33XSTbrrppoj3eeWVVzRt2rSoH7Oqqkqnnnpqj9v37NmjY489Vr/+9a+D3u/aa6+NuDtfqGMDSE/V1dW67rrrNGfOnB6/e+uttzRp0iQdc8wxOvPMM7VmzRr/7x5//HFdeOGFGjNmjAzDUGlpqZ599lkdeOCBth6f7VYBpLSFCxdq4sSJ/p8//vhjXXzxxerXr5+uuuqqmD/erbfeaqnd9u3bFY8NBPv166ezzz5bzzzzjC688MKA323dulUvvviili9fHvPHBZC6TjjhBI0fP16ZmZkBAetHH32kyy+/XIsXL9bYsWP1/vvva9asWSosLNSJJ56ov/71rxo1apRmzJih999/X0OHDtWVV16pQw45xNbjM7IKIK0MHz5cI0eO1D/+8Q9J3lHRBQsW6JRTTtHJJ5+sXbt2acOGDZo5c6ZGjRqlU045RUuXLlVbW5v/GM8884zGjh2rESNG6Prrr9eePXv8v1uwYIEWLFjg//lXv/qVTj/9dI0YMUITJ07U22+/rXXr1unmm29WQ0ODRowYoc2bN6utrU333nuvxo4dq2OPPVbTp0/X559/7j/OJ598oilTpmjEiBEaP368v//BnH/++fr3v/+t//u//wu4ffXq1frWt76l0tJSvfLKKzr33HN13HHH6aijjtIFF1wQNC1h3bp1Gj58eMBt3f/G3//+9xo/frxKSko0ceJEvfnmm/7frV+/XhMnTtQxxxyj008/Xbfffrs6OjpC9h2A8+y7777KzOw5vrlq1SqNHTtWZ5xxhlwul44++midc845evLJJyVJO3bs0IoVK3T55ZertrZWs2fP1pw5c/T+++/benyCVQBpo729XevWrVNdXZ1Gjx7tv/2tt97SqlWrtGbNGmVkZOjiiy/WwQcfrNdff11PPfWU3nrrLf80/9tvv61bb71VlZWVWr9+vY466ij97W9/C/p4VVVVevDBB7Vo0SLV19frvPPO0+WXX67hw4dr4cKFKi4u1nvvvachQ4Zo6dKleu211/T444/rjTfe0FFHHaVLLrlEra2tam9v12WXXaaDDz5YdXV1uueee/THP/4x5N95wAEHaMyYMfrf//1f/20ej0e//e1vdeGFF2rTpk26+uqrNWPGDL399tt67bXXZJqmHnjgAdvP6Z///GfdfPPNuummm/TOO+/oyiuv1JVXXql//etfkqT58+drypQpevfdd/XYY4/phRde0J/+9CfbjwPAeTZu3KiXX35ZxxxzjP/fb37zGzU2NkqSsrOzdfbZZ2vEiBHKzMzUGWecoeOOO04vvviircchWAWQ0hYuXOj/ED3uuON02223aerUqbrgggv8bU466SQNGTJE++yzj1577TW1tbVp7ty5ysnJUVFRka6++mr/SMGaNWv8H7iZmZk6//zzddhhhwV97Orqak2ePFkjRoxQRkaGfvzjH2vlypXKzc0NaGeaplatWqW5c+fqgAMOUE5OjmbPnq329na99tpreu+999TY2Kj58+crJydHBx98sKZOnRr2777wwgu1du1a7dq1S5L0xhtvaNeuXRo/frwGDhyo3//+9zr11FO1a9cubdq0SYWFhdq8ebPt5/eJJ57Qeeedp5EjR8rlcumUU07RqaeeqlWrVkmScnJytHbtWr366qsqKCjQn//8Z/2///f/bD8OAOcZOnSoysvL9e677/r/vfjii3r00UclSd/+9rcDZqUkye12206BImcVQEq7+eabA3JWg9lvv/38/79x40Zt3bpVI0eO9N9mmqba29vV1NSkzZs36/DDDw+4/wEHHBD0uF999ZWKi4sDbjv66KN7tNu6dat2796tq6++WhkZnWMI7e3t2rhxo9ra2lRYWBgQ5EZaoHD88cerqKhINTU1Ovfcc/XUU09p8uTJys3NlWmaqqmp0apVq2QYhg455BDt2rUr6DRfJBs3btQ777yjp59+2n+b2+1WaWmpJG8axH333aeFCxfqq6++0oknnqhbbrlFQ4cOtf1YAJxl0qRJmjp1qs444wwdf/zx2rBhg2bMmKFTTjlFP/3pT3Xeeefptttu04knnqjS0lK9/PLLWrdunebOnWvrcQhWAaQ9wzD8/z906FAdeOCBeuGFF/y37dq1S01NTRo4cKCGDh2q//73vwH337Rpkw4++OAexy0qKvJPh/ksXbpUEyZMCLitsLBQOTk5Wrlypb7//e/7b//00081ZMgQffjhh9q6dauam5uVn5/vf8xIfvKTn+iZZ57RmDFjVFtbq4ULF0qS1q5dqyeeeEJPP/20vvnNb0qSbrvtNv3zn//scQyXyyVJamtrU3Z2tiRp27ZtKiws9D9fP/rRjzRjxgz/fRoaGpSbm6vW1lb9+9//1i233KLMzEz95z//UUVFhe644w4tW7YsYv8BONtRRx2le+65R/fcc4+uvvpq9evXT2VlZf5g9Oyzz1ZGRoZ+/vOf64svvtD++++vpUuX9rjgj4Q0AADo4pRTTlFzc7OWL1+utrY2ff3117r++us1Z84cGYahs88+W3/84x/16quvqqOjQ9XV1SEXC0ycOFG//e1v9de//lUej0fPPvusnnzySX9wumfPHnV0dCgjI0OTJk3SkiVLtGnTJnk8HlVXV6usrEyff/65RowYoW9961uqrKzUnj179Pnnn2vlypUR/5by8nJ9/vnn+sUvfqHTTjvNP5q5c+dOZWRk+EdZX3/9dT333HNqb2/vcYwDDzxQmZmZ+v3vfy/Jm99bV1fn//0555yjX//61/66iX/72980ceJE1dTUyDAMzZ07VytXrlRHR4d/kYYv0AWQfD7++GONGjXK//PJJ5+sqqoq1dfX680339SCBQv8F7aS93Pod7/7nd577z3V1NTo9NNPt/2YjKwCQBf9+/fX448/rjvvvFPLly+Xx+PRqFGj9NBDD0mSSkpKtGjRIt15552aM2eOSktLAxZrdTV+/Hh9/fXXmjdvnr766it95zvf0S9/+UsNHDhQI0eO1KBBgzRy5EitWrVK119/ve677z6df/752r59uw444AAtW7bMnw/76KOP6qabbtLxxx+vwYMHa+zYsXrppZfC/i15eXmaOHGifvWrX+mpp57y315eXq76+nqdeeaZcrlcGjZsmC666CI9+eSTPfLL9ttvP/3sZz/Tgw8+qNtuu02lpaWaOHGivwLCD37wA+3evVs/+9nP1NDQoIKCAl188cWaMmWKDMPQQw89pLvuukuPPPKIXC6XTjrpJF133XVRnx8A6ccw41HoDwAAAIgB0gAAAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA41v8HCQyeehfOsEQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Calculate residuals\n", + "residuals = y_test_original - y_pred\n", + "\n", + "# Plot residuals vs predicted values\n", + "plt.figure(figsize=(8, 6))\n", + "plt.scatter(y_pred, residuals, color='blue')\n", + "plt.title('Residuals Plot')\n", + "plt.xlabel('Predicted Values')\n", + "plt.ylabel('Residuals')\n", + "plt.axhline(y=0, color='red', linestyle='--')\n", + "plt.grid(True)\n", + "plt.show()\n" + ] + }, { "cell_type": "markdown", "metadata": {}, From 27458b4ebf06161ff8abf0d12425e6e6bc8ba234 Mon Sep 17 00:00:00 2001 From: Winfred kinya Date: Wed, 1 May 2024 14:45:46 +0300 Subject: [PATCH 14/27] explanations --- student.ipynb | 33 +++++++++++++++++++++++---------- 1 file changed, 23 insertions(+), 10 deletions(-) diff --git a/student.ipynb b/student.ipynb index ffb0e513..98875d24 100644 --- a/student.ipynb +++ b/student.ipynb @@ -4070,7 +4070,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 63, "metadata": {}, "outputs": [ { @@ -4243,7 +4243,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 64, "metadata": {}, "outputs": [ { @@ -4256,7 +4256,7 @@ "Model: OLS Adj. R-squared: 0.641\n", "Method: Least Squares F-statistic: 3768.\n", "Date: Wed, 01 May 2024 Prob (F-statistic): 0.00\n", - "Time: 12:24:01 Log-Likelihood: -2.9014e+05\n", + "Time: 13:34:57 Log-Likelihood: -2.9014e+05\n", "No. Observations: 21142 AIC: 5.803e+05\n", "Df Residuals: 21131 BIC: 5.804e+05\n", "Df Model: 10 \n", @@ -4323,7 +4323,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 65, "metadata": {}, "outputs": [ { @@ -4380,7 +4380,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 66, "metadata": {}, "outputs": [ { @@ -4411,6 +4411,13 @@ "plt.show()\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This plot is useful in understanding the assumptions of linear regression and detecting violations. The ideal case is to see a random distribution of residuals around the y-axis, centered around zero. This suggests that the residuals are normally distributed, and there are no systematic patterns in the errors" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -4702,7 +4709,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 60, "metadata": {}, "outputs": [ { @@ -4715,14 +4722,13 @@ }, { "ename": "AttributeError", - "evalue": "'OLSResults' object has no attribute 'coef_'", + "evalue": "'OLS' object has no attribute 'coef_'", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[57], line 29\u001b[0m\n\u001b[0;32m 27\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMean Squared Error (Log Transformed):\u001b[39m\u001b[38;5;124m\"\u001b[39m, mse_log)\n\u001b[0;32m 28\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mR-squared (Log Transformed):\u001b[39m\u001b[38;5;124m\"\u001b[39m, r2_log)\n\u001b[1;32m---> 29\u001b[0m coefficients \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mDataFrame({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFeature\u001b[39m\u001b[38;5;124m\"\u001b[39m: X\u001b[38;5;241m.\u001b[39mcolumns, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCoefficient\u001b[39m\u001b[38;5;124m\"\u001b[39m: model\u001b[38;5;241m.\u001b[39mcoef_})\n\u001b[0;32m 30\u001b[0m \u001b[38;5;28mprint\u001b[39m(coefficients)\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\statsmodels\\base\\wrapper.py:34\u001b[0m, in \u001b[0;36mResultsWrapper.__getattribute__\u001b[1;34m(self, attr)\u001b[0m\n\u001b[0;32m 31\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m:\n\u001b[0;32m 32\u001b[0m \u001b[38;5;28;01mpass\u001b[39;00m\n\u001b[1;32m---> 34\u001b[0m obj \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(results, attr)\n\u001b[0;32m 35\u001b[0m data \u001b[38;5;241m=\u001b[39m results\u001b[38;5;241m.\u001b[39mmodel\u001b[38;5;241m.\u001b[39mdata\n\u001b[0;32m 36\u001b[0m how \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_wrap_attrs\u001b[38;5;241m.\u001b[39mget(attr)\n", - "\u001b[1;31mAttributeError\u001b[0m: 'OLSResults' object has no attribute 'coef_'" + "Cell \u001b[1;32mIn[60], line 29\u001b[0m\n\u001b[0;32m 27\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMean Squared Error (Log Transformed):\u001b[39m\u001b[38;5;124m\"\u001b[39m, mse_log)\n\u001b[0;32m 28\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mR-squared (Log Transformed):\u001b[39m\u001b[38;5;124m\"\u001b[39m, r2_log)\n\u001b[1;32m---> 29\u001b[0m coefficients \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mDataFrame({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFeature\u001b[39m\u001b[38;5;124m\"\u001b[39m: X\u001b[38;5;241m.\u001b[39mcolumns, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCoefficient\u001b[39m\u001b[38;5;124m\"\u001b[39m: model\u001b[38;5;241m.\u001b[39mcoef_})\n\u001b[0;32m 30\u001b[0m \u001b[38;5;28mprint\u001b[39m(coefficients)\n", + "\u001b[1;31mAttributeError\u001b[0m: 'OLS' object has no attribute 'coef_'" ] } ], @@ -4792,6 +4798,13 @@ "plt.show()\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The model's residuals are randomly distributed, indicating no systematic bias. The log transformation visualizes residuals and patterns. A horizontal red line suggests linearity and normality are satisfied, but does not provide a definitive answer on model goodness fit and additional technique's could be used to assess the model." + ] + }, { "cell_type": "code", "execution_count": 56, From 70f86106b20215b90811839218567f79c5a58e42 Mon Sep 17 00:00:00 2001 From: Winfred kinya Date: Wed, 1 May 2024 16:47:23 +0300 Subject: [PATCH 15/27] FINAL COPY --- student.ipynb | 765 +++++++++++++++++++++++++------------------------- 1 file changed, 384 insertions(+), 381 deletions(-) diff --git a/student.ipynb b/student.ipynb index 98875d24..ee2a22a0 100644 --- a/student.ipynb +++ b/student.ipynb @@ -40,19 +40,25 @@ "\n", "\n", "1. \n", - "Market Analysis: Leveraging the dataset, agencies can discern market trends, including the demand for different property types, burgeoning neighborhoods witnessing property value escalations, and the impact obetter f featurenws or property renovations on sale prices. By employing market segmentation techniques, such as demographic or psychographic segmentation, agencies can further refine their analysis to understand the preferences and behaviors of distinct customer segments within the real estate market\n", + "Market Analysis:\n", + "\n", + " Leveraging the dataset, agencies can discern market trends, including the demand for different property types, burgeoning neighborhoods witnessing property value escalations, and the impact obetter f featurenws or property renovations on sale prices. By employing market segmentation techniques, such as demographic or psychographic segmentation, agencies can further refine their analysis to understand the preferences and behaviors of distinct customer segments within the real estate market\n", "\n", "\n", "\n", "\n", "2. \n", - "Property Valuation: By comprehending the correlation between house features and sale prices, agencies can proficiently gauge property values for both sellers and buyers, ensuring equitable and competitive pricing strategies\n", + "Property Valuation: \n", + "\n", + "By comprehending the correlation between house features and sale prices, agencies can proficiently gauge property values for both sellers and buyers, ensuring equitable and competitive pricing strategies\n", "\n", "\n", "\n", "\n", "3. \n", - "Targeted Marketing: Through discerning buyer preferences from the dataset, agencies can tailor marketing endeavors to resonate with potential buyers seeking specific property types or neighborhoods, thus enhancing the efficacy of their outreach efforts. Market segmentation insights can inform the development of targeted marketing campaigns tailored to the unique needs and preferences of different customer segments, thereby maximizing the impact of marketing investments.\n", + "Targeted Marketing: \n", + "\n", + "Through discerning buyer preferences from the dataset, agencies can tailor marketing endeavors to resonate with potential buyers seeking specific property types or neighborhoods, thus enhancing the efficacy of their outreach efforts. Market segmentation insights can inform the development of targeted marketing campaigns tailored to the unique needs and preferences of different customer segments, thereby maximizing the impact of marketing investments.\n", "\n", "\n", "\n", @@ -106,8 +112,6 @@ "\n", "\n", "Analyze various property features, including bedrooms, bathrooms, and square footage, to determine their impact on sale price.\n", - "Investigate location-related attributes such as zip codes and geographic coordinates to further comprehend their effect on \n", - "property prices.\n", "\n", "\n", "\n", @@ -219,7 +223,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 69, "metadata": {}, "outputs": [], "source": [ @@ -258,7 +262,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 71, "metadata": {}, "outputs": [ { @@ -497,7 +501,7 @@ "[5 rows x 21 columns]" ] }, - "execution_count": 4, + "execution_count": 71, "metadata": {}, "output_type": "execute_result" } @@ -521,7 +525,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 72, "metadata": {}, "outputs": [ { @@ -684,7 +688,7 @@ "20 * `sqft_lot15` The square footage of the land lots of the nea..." ] }, - "execution_count": 5, + "execution_count": 72, "metadata": {}, "output_type": "execute_result" } @@ -715,7 +719,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 73, "metadata": {}, "outputs": [ { @@ -746,7 +750,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 74, "metadata": {}, "outputs": [ { @@ -805,7 +809,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 75, "metadata": {}, "outputs": [ { @@ -850,104 +854,104 @@ " \n", " \n", " \n", - " 19757\n", - " 5676000004\n", - " 11/18/2014\n", - " 399000.0\n", - " 3\n", - " 2.50\n", - " 1430\n", - " 1250\n", - " 3.0\n", - " NO\n", - " Average\n", - " 7 Average\n", - " 1430\n", - " 0.0\n", - " 2007\n", - " 0.0\n", - " 1360\n", - " 1269\n", - " \n", - " \n", - " 2821\n", - " 9828200147\n", - " 4/10/2015\n", - " 425000.0\n", - " 3\n", - " 2.00\n", - " 1180\n", - " 1800\n", + " 20146\n", + " 7967000130\n", + " 4/1/2015\n", + " 370228.0\n", + " 4\n", + " 3.00\n", + " 2050\n", + " 4000\n", " 2.0\n", - " NaN\n", + " NO\n", " Average\n", " 8 Good\n", - " 1180\n", + " 2050\n", " 0.0\n", - " 1994\n", + " 2014\n", " 0.0\n", - " 1500\n", - " 1948\n", + " 2050\n", + " 4000\n", " \n", " \n", - " 3151\n", - " 8944750850\n", - " 5/21/2014\n", - " 288400.0\n", - " 3\n", - " 2.25\n", - " 1870\n", - " 3230\n", - " 2.0\n", + " 13983\n", + " 7338000150\n", + " 1/29/2015\n", + " 160000.0\n", + " 2\n", + " 1.00\n", + " 1070\n", + " 4200\n", + " 1.0\n", " NO\n", - " Average\n", - " 7 Average\n", - " 1870\n", + " Good\n", + " 6 Low Average\n", + " 1070\n", " 0.0\n", - " 1997\n", + " 1983\n", " 0.0\n", - " 1620\n", - " 3363\n", + " 1150\n", + " 4200\n", " \n", " \n", - " 10199\n", - " 3298600340\n", - " 9/5/2014\n", - " 400000.0\n", - " 6\n", - " 3.00\n", - " 3320\n", - " 15600\n", + " 3605\n", + " 8658303585\n", + " 8/7/2014\n", + " 252500.0\n", + " 2\n", + " 1.00\n", + " 900\n", + " 7500\n", " 1.0\n", " NO\n", " Good\n", - " 8 Good\n", - " 1660\n", - " 1660.0\n", - " 1977\n", - " NaN\n", - " 2330\n", - " 15360\n", + " 6 Low Average\n", + " 900\n", + " 0.0\n", + " 1961\n", + " 0.0\n", + " 1190\n", + " 10000\n", " \n", " \n", - " 18048\n", - " 7853220610\n", - " 7/29/2014\n", - " 457000.0\n", - " 3\n", - " 2.50\n", - " 2050\n", - " 5694\n", + " 9229\n", + " 1787250210\n", + " 12/22/2014\n", + " 379000.0\n", + " 4\n", + " 2.75\n", + " 2410\n", + " 5225\n", " 2.0\n", - " NaN\n", + " NO\n", " Average\n", " 8 Good\n", - " 2050\n", + " 2410\n", " 0.0\n", - " 2004\n", - " NaN\n", - " 2680\n", - " 7187\n", + " 2001\n", + " 0.0\n", + " 2300\n", + " 5378\n", + " \n", + " \n", + " 11243\n", + " 1843200350\n", + " 7/22/2014\n", + " 150000.0\n", + " 2\n", + " 1.50\n", + " 1360\n", + " 1934\n", + " 2.0\n", + " NO\n", + " Good\n", + " 7 Average\n", + " 1360\n", + " 0.0\n", + " 1978\n", + " 0.0\n", + " 1360\n", + " 1898\n", " \n", " \n", "\n", @@ -955,28 +959,28 @@ ], "text/plain": [ " id date price bedrooms bathrooms sqft_living \\\n", - "19757 5676000004 11/18/2014 399000.0 3 2.50 1430 \n", - "2821 9828200147 4/10/2015 425000.0 3 2.00 1180 \n", - "3151 8944750850 5/21/2014 288400.0 3 2.25 1870 \n", - "10199 3298600340 9/5/2014 400000.0 6 3.00 3320 \n", - "18048 7853220610 7/29/2014 457000.0 3 2.50 2050 \n", + "20146 7967000130 4/1/2015 370228.0 4 3.00 2050 \n", + "13983 7338000150 1/29/2015 160000.0 2 1.00 1070 \n", + "3605 8658303585 8/7/2014 252500.0 2 1.00 900 \n", + "9229 1787250210 12/22/2014 379000.0 4 2.75 2410 \n", + "11243 1843200350 7/22/2014 150000.0 2 1.50 1360 \n", "\n", - " sqft_lot floors waterfront condition grade sqft_above \\\n", - "19757 1250 3.0 NO Average 7 Average 1430 \n", - "2821 1800 2.0 NaN Average 8 Good 1180 \n", - "3151 3230 2.0 NO Average 7 Average 1870 \n", - "10199 15600 1.0 NO Good 8 Good 1660 \n", - "18048 5694 2.0 NaN Average 8 Good 2050 \n", + " sqft_lot floors waterfront condition grade sqft_above \\\n", + "20146 4000 2.0 NO Average 8 Good 2050 \n", + "13983 4200 1.0 NO Good 6 Low Average 1070 \n", + "3605 7500 1.0 NO Good 6 Low Average 900 \n", + "9229 5225 2.0 NO Average 8 Good 2410 \n", + "11243 1934 2.0 NO Good 7 Average 1360 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", - "19757 0.0 2007 0.0 1360 1269 \n", - "2821 0.0 1994 0.0 1500 1948 \n", - "3151 0.0 1997 0.0 1620 3363 \n", - "10199 1660.0 1977 NaN 2330 15360 \n", - "18048 0.0 2004 NaN 2680 7187 " + "20146 0.0 2014 0.0 2050 4000 \n", + "13983 0.0 1983 0.0 1150 4200 \n", + "3605 0.0 1961 0.0 1190 10000 \n", + "9229 0.0 2001 0.0 2300 5378 \n", + "11243 0.0 1978 0.0 1360 1898 " ] }, - "execution_count": 8, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } @@ -997,7 +1001,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 76, "metadata": {}, "outputs": [ { @@ -1026,7 +1030,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 77, "metadata": {}, "outputs": [], "source": [ @@ -1093,7 +1097,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 78, "metadata": {}, "outputs": [], "source": [ @@ -1115,7 +1119,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 79, "metadata": {}, "outputs": [], "source": [ @@ -1128,7 +1132,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 80, "metadata": {}, "outputs": [], "source": [ @@ -1138,7 +1142,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 81, "metadata": {}, "outputs": [ { @@ -1158,7 +1162,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 82, "metadata": {}, "outputs": [ { @@ -1177,7 +1181,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 83, "metadata": {}, "outputs": [], "source": [ @@ -1188,7 +1192,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -1263,133 +1267,133 @@ " \n", " \n", " \n", - " 7979\n", - " 3886903615\n", - " 2015-04-16\n", - " 1290000.0\n", - " 4\n", - " 2.50\n", - " 3430\n", - " 7200\n", - " 2.0\n", + " 4511\n", + " 723049333\n", + " 2015-04-05\n", + " 285000.0\n", + " 3\n", + " 1.50\n", + " 1490\n", + " 10367\n", + " 1.0\n", " 0\n", " 3.0\n", - " 7.0\n", - " 3430\n", - " 0.0\n", - " 2014\n", + " 5.0\n", + " 1010\n", + " 480.0\n", + " 1957\n", " 0.0\n", - " 1530\n", - " 7800\n", + " 1000\n", + " 8254\n", " \n", " \n", - " 4578\n", - " 9478500590\n", - " 2015-04-08\n", - " 302500.0\n", + " 1181\n", + " 7625700935\n", + " 2014-06-05\n", + " 875000.0\n", " 3\n", - " 2.50\n", - " 1690\n", - " 4476\n", + " 3.50\n", + " 3250\n", + " 6000\n", " 2.0\n", " 0\n", " 3.0\n", - " 5.0\n", - " 1690\n", - " 0.0\n", - " 2008\n", + " 8.0\n", + " 2500\n", + " 750.0\n", + " 2001\n", " 0.0\n", - " 2250\n", - " 4488\n", + " 1650\n", + " 6000\n", " \n", " \n", - " 10023\n", - " 3423600060\n", - " 2014-12-02\n", - " 665000.0\n", - " 4\n", - " 1.75\n", - " 2280\n", - " 3680\n", - " 1.5\n", + " 1875\n", + " 1853081000\n", + " 2014-07-17\n", + " 820000.0\n", + " 5\n", + " 2.75\n", + " 2830\n", + " 6137\n", + " 2.0\n", " 0\n", - " 5.0\n", - " 5.0\n", - " 1470\n", - " 810.0\n", - " 1926\n", + " 3.0\n", + " 7.0\n", + " 2830\n", + " 0.0\n", + " 2010\n", " 0.0\n", - " 1850\n", - " 3680\n", + " 3170\n", + " 6285\n", " \n", " \n", - " 11990\n", - " 7852150200\n", - " 2014-09-23\n", - " 389950.0\n", - " 3\n", + " 12273\n", + " 7016200030\n", + " 2015-03-20\n", + " 480000.0\n", + " 4\n", " 2.50\n", - " 1700\n", - " 6396\n", - " 2.0\n", + " 2080\n", + " 7966\n", + " 1.0\n", " 0\n", " 3.0\n", " 5.0\n", - " 1700\n", - " 0.0\n", - " 2003\n", + " 1200\n", + " 880.0\n", + " 1970\n", " 0.0\n", - " 1700\n", - " 4444\n", + " 1920\n", + " 7500\n", " \n", " \n", - " 20266\n", - " 3356402705\n", - " 2015-03-17\n", - " 216000.0\n", + " 8546\n", + " 7981900110\n", + " 2014-10-03\n", + " 350000.0\n", " 4\n", - " 2.50\n", - " 1847\n", - " 8000\n", - " 2.0\n", + " 2.75\n", + " 2300\n", + " 3175\n", + " 1.5\n", " 0\n", " 3.0\n", - " 5.0\n", - " 1847\n", - " 0.0\n", - " 2008\n", + " 4.0\n", + " 1340\n", + " 960.0\n", + " 1966\n", " 0.0\n", - " 1767\n", - " 8000\n", + " 1260\n", + " 3175\n", " \n", " \n", "\n", "" ], "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "7979 3886903615 2015-04-16 1290000.0 4 2.50 3430 \n", - "4578 9478500590 2015-04-08 302500.0 3 2.50 1690 \n", - "10023 3423600060 2014-12-02 665000.0 4 1.75 2280 \n", - "11990 7852150200 2014-09-23 389950.0 3 2.50 1700 \n", - "20266 3356402705 2015-03-17 216000.0 4 2.50 1847 \n", + " id date price bedrooms bathrooms sqft_living \\\n", + "4511 723049333 2015-04-05 285000.0 3 1.50 1490 \n", + "1181 7625700935 2014-06-05 875000.0 3 3.50 3250 \n", + "1875 1853081000 2014-07-17 820000.0 5 2.75 2830 \n", + "12273 7016200030 2015-03-20 480000.0 4 2.50 2080 \n", + "8546 7981900110 2014-10-03 350000.0 4 2.75 2300 \n", "\n", " sqft_lot floors waterfront condition grade sqft_above \\\n", - "7979 7200 2.0 0 3.0 7.0 3430 \n", - "4578 4476 2.0 0 3.0 5.0 1690 \n", - "10023 3680 1.5 0 5.0 5.0 1470 \n", - "11990 6396 2.0 0 3.0 5.0 1700 \n", - "20266 8000 2.0 0 3.0 5.0 1847 \n", + "4511 10367 1.0 0 3.0 5.0 1010 \n", + "1181 6000 2.0 0 3.0 8.0 2500 \n", + "1875 6137 2.0 0 3.0 7.0 2830 \n", + "12273 7966 1.0 0 3.0 5.0 1200 \n", + "8546 3175 1.5 0 3.0 4.0 1340 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", - "7979 0.0 2014 0.0 1530 7800 \n", - "4578 0.0 2008 0.0 2250 4488 \n", - "10023 810.0 1926 0.0 1850 3680 \n", - "11990 0.0 2003 0.0 1700 4444 \n", - "20266 0.0 2008 0.0 1767 8000 " + "4511 480.0 1957 0.0 1000 8254 \n", + "1181 750.0 2001 0.0 1650 6000 \n", + "1875 0.0 2010 0.0 3170 6285 \n", + "12273 880.0 1970 0.0 1920 7500 \n", + "8546 960.0 1966 0.0 1260 3175 " ] }, - "execution_count": 18, + "execution_count": 84, "metadata": {}, "output_type": "execute_result" } @@ -1420,7 +1424,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 85, "metadata": {}, "outputs": [ { @@ -1493,7 +1497,7 @@ "4 37 0.0 11440.0" ] }, - "execution_count": 19, + "execution_count": 85, "metadata": {}, "output_type": "execute_result" } @@ -1745,7 +1749,7 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 86, "metadata": {}, "outputs": [ { @@ -1816,7 +1820,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 87, "metadata": {}, "outputs": [ { @@ -1892,7 +1896,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 88, "metadata": {}, "outputs": [ { @@ -1945,7 +1949,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 89, "metadata": {}, "outputs": [], "source": [ @@ -1958,7 +1962,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 90, "metadata": {}, "outputs": [ { @@ -1967,7 +1971,7 @@ "Text(0.5, 0, 'Number of Bedrooms')" ] }, - "execution_count": 24, + "execution_count": 90, "metadata": {}, "output_type": "execute_result" }, @@ -2005,7 +2009,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 94, "metadata": {}, "outputs": [ { @@ -2022,7 +2026,7 @@ "Name: count, dtype: int64" ] }, - "execution_count": 25, + "execution_count": 94, "metadata": {}, "output_type": "execute_result" } @@ -2042,7 +2046,7 @@ }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 95, "metadata": {}, "outputs": [ { @@ -2091,124 +2095,124 @@ " \n", " \n", " \n", - " 18795\n", - " 3904960690\n", - " 2015-04-17\n", - " 612000.0\n", + " 1188\n", + " 2624049185\n", + " 2014-09-09\n", + " 405000.0\n", " 3\n", - " 2.50\n", - " 2120\n", - " 7401\n", - " 2.0\n", + " 1.75\n", + " 1760\n", + " 5355\n", + " 1.0\n", " 0\n", " 3.0\n", " ...\n", - " 2120\n", - " 0.0\n", - " 1989\n", + " 1160\n", + " 600.0\n", + " 1956\n", " 0.0\n", - " 2010\n", - " 7972\n", - " 35\n", + " 1790\n", + " 6225\n", + " 68\n", " 0.0\n", - " 11641.0\n", - " 600K-1M\n", + " 8875.0\n", + " 300K-600K\n", " \n", " \n", - " 16001\n", - " 7560000050\n", - " 2015-04-23\n", - " 730000.0\n", - " 3\n", - " 3.50\n", - " 2440\n", - " 3502\n", + " 20611\n", + " 2895800390\n", + " 2014-08-07\n", + " 359800.0\n", + " 5\n", + " 2.50\n", + " 2170\n", + " 2752\n", " 2.0\n", " 0\n", " 3.0\n", " ...\n", - " 1970\n", - " 470.0\n", - " 2000\n", + " 2170\n", " 0.0\n", - " 2440\n", - " 3417\n", - " 24\n", + " 2014\n", " 0.0\n", - " 8382.0\n", - " 600K-1M\n", + " 1800\n", + " 2752\n", + " 10\n", + " 0.0\n", + " 7092.0\n", + " 300K-600K\n", " \n", " \n", - " 9811\n", - " 3598600049\n", - " 2015-04-24\n", - " 224000.0\n", - " 1\n", - " 0.75\n", - " 840\n", - " 7203\n", - " 1.5\n", + " 2209\n", + " 3438500339\n", + " 2014-05-26\n", + " 276000.0\n", + " 3\n", + " 1.00\n", + " 1140\n", + " 5000\n", + " 1.0\n", " 0\n", " 3.0\n", " ...\n", - " 840\n", + " 1140\n", " 0.0\n", - " 1949\n", + " 1960\n", " 0.0\n", - " 1560\n", - " 8603\n", - " 75\n", + " 1140\n", + " 5000\n", + " 64\n", " 0.0\n", - " 8883.0\n", + " 7280.0\n", " 100K-300K\n", " \n", " \n", - " 15108\n", - " 9332800020\n", - " 2014-07-15\n", - " 745000.0\n", - " 4\n", - " 2.25\n", - " 2290\n", - " 10409\n", - " 2.0\n", + " 18431\n", + " 4167960330\n", + " 2015-01-09\n", + " 270000.0\n", + " 3\n", + " 2.00\n", + " 1820\n", + " 7750\n", + " 1.0\n", " 0\n", " 3.0\n", " ...\n", - " 2290\n", + " 1820\n", " 0.0\n", - " 1972\n", + " 1992\n", " 0.0\n", - " 2040\n", - " 10409\n", - " 52\n", + " 2080\n", + " 8084\n", + " 32\n", " 0.0\n", - " 14989.0\n", - " 600K-1M\n", + " 11390.0\n", + " 100K-300K\n", " \n", " \n", - " 20642\n", - " 4305500030\n", - " 2015-05-01\n", - " 625000.0\n", - " 3\n", - " 2.50\n", - " 3220\n", - " 6409\n", - " 2.0\n", + " 11609\n", + " 1972201550\n", + " 2014-07-16\n", + " 565000.0\n", + " 4\n", + " 1.00\n", + " 1540\n", + " 2452\n", + " 1.5\n", " 0\n", - " 3.0\n", + " 4.0\n", " ...\n", - " 3220\n", + " 1540\n", " 0.0\n", - " 2008\n", + " 1906\n", " 0.0\n", - " 3330\n", - " 6231\n", - " 16\n", + " 1290\n", + " 3360\n", + " 118\n", " 0.0\n", - " 12849.0\n", - " 600K-1M\n", + " 5532.0\n", + " 300K-600K\n", " \n", " \n", "\n", @@ -2217,37 +2221,37 @@ ], "text/plain": [ " id date price bedrooms bathrooms sqft_living \\\n", - "18795 3904960690 2015-04-17 612000.0 3 2.50 2120 \n", - "16001 7560000050 2015-04-23 730000.0 3 3.50 2440 \n", - "9811 3598600049 2015-04-24 224000.0 1 0.75 840 \n", - "15108 9332800020 2014-07-15 745000.0 4 2.25 2290 \n", - "20642 4305500030 2015-05-01 625000.0 3 2.50 3220 \n", + "1188 2624049185 2014-09-09 405000.0 3 1.75 1760 \n", + "20611 2895800390 2014-08-07 359800.0 5 2.50 2170 \n", + "2209 3438500339 2014-05-26 276000.0 3 1.00 1140 \n", + "18431 4167960330 2015-01-09 270000.0 3 2.00 1820 \n", + "11609 1972201550 2014-07-16 565000.0 4 1.00 1540 \n", "\n", " sqft_lot floors waterfront condition ... sqft_above \\\n", - "18795 7401 2.0 0 3.0 ... 2120 \n", - "16001 3502 2.0 0 3.0 ... 1970 \n", - "9811 7203 1.5 0 3.0 ... 840 \n", - "15108 10409 2.0 0 3.0 ... 2290 \n", - "20642 6409 2.0 0 3.0 ... 3220 \n", + "1188 5355 1.0 0 3.0 ... 1160 \n", + "20611 2752 2.0 0 3.0 ... 2170 \n", + "2209 5000 1.0 0 3.0 ... 1140 \n", + "18431 7750 1.0 0 3.0 ... 1820 \n", + "11609 2452 1.5 0 4.0 ... 1540 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", - "18795 0.0 1989 0.0 2010 7972 \n", - "16001 470.0 2000 0.0 2440 3417 \n", - "9811 0.0 1949 0.0 1560 8603 \n", - "15108 0.0 1972 0.0 2040 10409 \n", - "20642 0.0 2008 0.0 3330 6231 \n", + "1188 600.0 1956 0.0 1790 6225 \n", + "20611 0.0 2014 0.0 1800 2752 \n", + "2209 0.0 1960 0.0 1140 5000 \n", + "18431 0.0 1992 0.0 2080 8084 \n", + "11609 0.0 1906 0.0 1290 3360 \n", "\n", " house_age renovation_age total_sqft price_range \n", - "18795 35 0.0 11641.0 600K-1M \n", - "16001 24 0.0 8382.0 600K-1M \n", - "9811 75 0.0 8883.0 100K-300K \n", - "15108 52 0.0 14989.0 600K-1M \n", - "20642 16 0.0 12849.0 600K-1M \n", + "1188 68 0.0 8875.0 300K-600K \n", + "20611 10 0.0 7092.0 300K-600K \n", + "2209 64 0.0 7280.0 100K-300K \n", + "18431 32 0.0 11390.0 100K-300K \n", + "11609 118 0.0 5532.0 300K-600K \n", "\n", "[5 rows x 21 columns]" ] }, - "execution_count": 120, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" } @@ -2258,7 +2262,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 96, "metadata": {}, "outputs": [ { @@ -2269,27 +2273,9 @@ " grouped_vals = vals.groupby(grouper)\n" ] }, - { - "ename": "AttributeError", - "evalue": "Rectangle.set() got an unexpected keyword argument 'legend'", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[26], line 6\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[38;5;66;03m# Create a bar plot\u001b[39;00m\n\u001b[0;32m 5\u001b[0m plt\u001b[38;5;241m.\u001b[39mfigure(figsize\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m10\u001b[39m, \u001b[38;5;241m6\u001b[39m))\n\u001b[1;32m----> 6\u001b[0m sns\u001b[38;5;241m.\u001b[39mbarplot(x\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mprice_range\u001b[39m\u001b[38;5;124m\"\u001b[39m, y\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtotal_sqft\u001b[39m\u001b[38;5;124m\"\u001b[39m, data\u001b[38;5;241m=\u001b[39mhousing_data, errorbar\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, hue\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mprice_range\u001b[39m\u001b[38;5;124m\"\u001b[39m, palette\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcrest\u001b[39m\u001b[38;5;124m\"\u001b[39m, legend\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m 7\u001b[0m plt\u001b[38;5;241m.\u001b[39mtitle(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTotal Square Footage by Price Range.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 8\u001b[0m plt\u001b[38;5;241m.\u001b[39mxlabel(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPrice Range\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:2763\u001b[0m, in \u001b[0;36mbarplot\u001b[1;34m(data, x, y, hue, order, hue_order, estimator, errorbar, n_boot, units, seed, orient, color, palette, saturation, width, errcolor, errwidth, capsize, dodge, ci, ax, **kwargs)\u001b[0m\n\u001b[0;32m 2760\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ax \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 2761\u001b[0m ax \u001b[38;5;241m=\u001b[39m plt\u001b[38;5;241m.\u001b[39mgca()\n\u001b[1;32m-> 2763\u001b[0m plotter\u001b[38;5;241m.\u001b[39mplot(ax, kwargs)\n\u001b[0;32m 2764\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ax\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:1586\u001b[0m, in \u001b[0;36m_BarPlotter.plot\u001b[1;34m(self, ax, bar_kws)\u001b[0m\n\u001b[0;32m 1584\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mplot\u001b[39m(\u001b[38;5;28mself\u001b[39m, ax, bar_kws):\n\u001b[0;32m 1585\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Make the plot.\"\"\"\u001b[39;00m\n\u001b[1;32m-> 1586\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdraw_bars(ax, bar_kws)\n\u001b[0;32m 1587\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mannotate_axes(ax)\n\u001b[0;32m 1588\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39morient \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mh\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:1569\u001b[0m, in \u001b[0;36m_BarPlotter.draw_bars\u001b[1;34m(self, ax, kws)\u001b[0m\n\u001b[0;32m 1565\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m j, hue_level \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhue_names):\n\u001b[0;32m 1566\u001b[0m \n\u001b[0;32m 1567\u001b[0m \u001b[38;5;66;03m# Draw the bars\u001b[39;00m\n\u001b[0;32m 1568\u001b[0m offpos \u001b[38;5;241m=\u001b[39m barpos \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhue_offsets[j]\n\u001b[1;32m-> 1569\u001b[0m barfunc(offpos, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstatistic[:, j], \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnested_width,\n\u001b[0;32m 1570\u001b[0m color\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcolors[j], align\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcenter\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 1571\u001b[0m label\u001b[38;5;241m=\u001b[39mhue_level, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkws)\n\u001b[0;32m 1573\u001b[0m \u001b[38;5;66;03m# Draw the confidence intervals\u001b[39;00m\n\u001b[0;32m 1574\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfint\u001b[38;5;241m.\u001b[39msize:\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\__init__.py:1465\u001b[0m, in \u001b[0;36m_preprocess_data..inner\u001b[1;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1462\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[0;32m 1463\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minner\u001b[39m(ax, \u001b[38;5;241m*\u001b[39margs, data\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 1464\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m-> 1465\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(ax, \u001b[38;5;241m*\u001b[39m\u001b[38;5;28mmap\u001b[39m(sanitize_sequence, args), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 1467\u001b[0m bound \u001b[38;5;241m=\u001b[39m new_sig\u001b[38;5;241m.\u001b[39mbind(ax, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 1468\u001b[0m auto_label \u001b[38;5;241m=\u001b[39m (bound\u001b[38;5;241m.\u001b[39marguments\u001b[38;5;241m.\u001b[39mget(label_namer)\n\u001b[0;32m 1469\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m bound\u001b[38;5;241m.\u001b[39mkwargs\u001b[38;5;241m.\u001b[39mget(label_namer))\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\axes\\_axes.py:2528\u001b[0m, in \u001b[0;36mAxes.bar\u001b[1;34m(self, x, height, width, bottom, align, **kwargs)\u001b[0m\n\u001b[0;32m 2519\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m l, b, w, h, c, e, lw, htch, lbl \u001b[38;5;129;01min\u001b[39;00m args:\n\u001b[0;32m 2520\u001b[0m r \u001b[38;5;241m=\u001b[39m mpatches\u001b[38;5;241m.\u001b[39mRectangle(\n\u001b[0;32m 2521\u001b[0m xy\u001b[38;5;241m=\u001b[39m(l, b), width\u001b[38;5;241m=\u001b[39mw, height\u001b[38;5;241m=\u001b[39mh,\n\u001b[0;32m 2522\u001b[0m facecolor\u001b[38;5;241m=\u001b[39mc,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 2526\u001b[0m hatch\u001b[38;5;241m=\u001b[39mhtch,\n\u001b[0;32m 2527\u001b[0m )\n\u001b[1;32m-> 2528\u001b[0m r\u001b[38;5;241m.\u001b[39m_internal_update(kwargs)\n\u001b[0;32m 2529\u001b[0m r\u001b[38;5;241m.\u001b[39mget_path()\u001b[38;5;241m.\u001b[39m_interpolation_steps \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m100\u001b[39m\n\u001b[0;32m 2530\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m orientation \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvertical\u001b[39m\u001b[38;5;124m'\u001b[39m:\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\artist.py:1219\u001b[0m, in \u001b[0;36mArtist._internal_update\u001b[1;34m(self, kwargs)\u001b[0m\n\u001b[0;32m 1212\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_internal_update\u001b[39m(\u001b[38;5;28mself\u001b[39m, kwargs):\n\u001b[0;32m 1213\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1214\u001b[0m \u001b[38;5;124;03m Update artist properties without prenormalizing them, but generating\u001b[39;00m\n\u001b[0;32m 1215\u001b[0m \u001b[38;5;124;03m errors as if calling `set`.\u001b[39;00m\n\u001b[0;32m 1216\u001b[0m \n\u001b[0;32m 1217\u001b[0m \u001b[38;5;124;03m The lack of prenormalization is to maintain backcompatibility.\u001b[39;00m\n\u001b[0;32m 1218\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m-> 1219\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_update_props(\n\u001b[0;32m 1220\u001b[0m kwargs, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{cls.__name__}\u001b[39;00m\u001b[38;5;124m.set() got an unexpected keyword argument \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1221\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{prop_name!r}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\artist.py:1193\u001b[0m, in \u001b[0;36mArtist._update_props\u001b[1;34m(self, props, errfmt)\u001b[0m\n\u001b[0;32m 1191\u001b[0m func \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mset_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[0;32m 1192\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mcallable\u001b[39m(func):\n\u001b[1;32m-> 1193\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\n\u001b[0;32m 1194\u001b[0m errfmt\u001b[38;5;241m.\u001b[39mformat(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mtype\u001b[39m(\u001b[38;5;28mself\u001b[39m), prop_name\u001b[38;5;241m=\u001b[39mk))\n\u001b[0;32m 1195\u001b[0m ret\u001b[38;5;241m.\u001b[39mappend(func(v))\n\u001b[0;32m 1196\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ret:\n", - "\u001b[1;31mAttributeError\u001b[0m: Rectangle.set() got an unexpected keyword argument 'legend'" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAH8CAYAAAAXNqRbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAexElEQVR4nO3df6zWdfn48es+HJ3nMIjhcbCKRTseokV6jufQqZazPDQTBbLIWrXl3Cx3Jokm6werKQXZTxvWKVZr5CJzsUgthKypsUYcTJ2tZQEl0ljOcwhRDpRH3p8/HHw7X6x4w33ep+P1eGxn7n7tdbgvtovDnt7n3NSKoigCAAAgiYaxHgAAAKBKIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqJx1B+/bti7e//e2xbdu2f3vngQceiAULFkR7e3tcfPHFcd99953s0wEAANTFSUXQb3/723jve98bTzzxxL+98/jjj8eSJUvi2muvjQcffDCWLFkSS5cujSeffPKkhwUAADhVpSNow4YNccMNN8R11133X+91dXXFvHnzorGxMebPnx9z586NO+6446SHBQAAOFWlI+gtb3lL3HvvvTF//vz/eG/nzp0xa9asEWdnn312PPbYY2WfEgAAoG4ay37CWWeddUL3Dh48GE1NTSPOzjjjjBgaGir7lAAAAHVTOoJOVFNTUxw+fHjE2eHDh2PixImlfp19+56JoqjnZDBSrRYxdeoku8aos2tUxa5RFbtGVY7uWr2MWgTNmjUrfv/7348427lzZ8yZM6fUr1MUEUeO1HMyGKlWe+G/R46EL+CMKrtGVewaVbFrVKWhzv+wz6j9O0ELFy6M/v7+2LhxYwwPD8fGjRujv78/Fi1aNFpPCQAA8F/VNYI6OjrirrvuioiI1tbW+MY3vhFr1qyJuXPnRl9fX9x6663x6le/up5PCQAAUEqtKP63X7wcHHzGt8Mxqmq1iJaWSTEw4PuZGV12jarYNapi16hKQ0PEmWfW72eCRu3b4QAAAP4XiSAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACCV0hE0ODgYvb290dXVFd3d3bFy5coYHh5+0bvf+9734sILL4zzzjsvFixYEJs3bz7lgQEAAE5F6QhaunRpNDc3x5YtW2L9+vWxdevWWLt27XH3HnjggVizZk185zvfiYceeiiuueaaWLp0afz1r3+tx9wAAAAnpVQE7d69O/r7+2PZsmXR1NQUM2bMiN7e3li3bt1xd//85z9HURTHPiZMmBCnnXZaNDY21m14AACAskoVyY4dO2LKlCkxbdq0Y2etra2xd+/eOHDgQEyePPnY+SWXXBI//vGPY/78+TFhwoSo1WrxpS99KaZPn16/6QEAAEoqFUEHDx6MpqamEWdHHw8NDY2IoOeeey5mz54dK1eujNmzZ8fdd98dy5cvj9bW1njNa15zws9Zq73wAaPl6H7ZM0abXaMqdo2q2DWqUu8dKxVBzc3NcejQoRFnRx9PnDhxxPlnP/vZOO+88+Kcc86JiIh3v/vd8dOf/jQ2bNgQn/jEJ074OadOnVRmRDhpZ55p16iGXaMqdo2q2DXGm1IR1NbWFvv374+BgYFoaWmJiIhdu3bF9OnTY9Kkkcu/d+/emDNnzsgna2yM0047rdSA+/Y9E0eOlPoUKKVWe+GL9+DgM1EUYz0NL2V2jarYNapi16hKQ0N9XxwpFUEzZ86Mzs7OWLVqVaxYsSL+/ve/R19fXyxevPi4uxdeeGF8//vfj7e97W3x2te+Nn7+85/Htm3b4vrrry81YFGEP1RUwq5RFbtGVewaVbFrjLZ671fpt2pbvXp1rFixInp6eqKhoSHe+c53Rm9vb0REdHR0xE033RQLFy6Ma665JiZMmBBLliyJp59+Ol71qlfFN77xjXjta19b398BAABACbWi+N/u9sFB3w7H6KrVIlpaJsXAgJfyGV12jarYNapi16hKQ0N9f/as9D+WCgAAMJ6JIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApCKCAACAVEQQAACQiggCAABSEUEAAEAqIggAAEhFBAEAAKmIIAAAIBURBAAApFI6ggYHB6O3tze6urqiu7s7Vq5cGcPDwy96t7+/P97znvdER0dHXHDBBbFmzZpTHhgAAOBUlI6gpUuXRnNzc2zZsiXWr18fW7dujbVr1x53b9euXfHhD3843v/+98dDDz0Ua9asie9+97uxadOmeswNAABwUkpF0O7du6O/vz+WLVsWTU1NMWPGjOjt7Y1169Ydd/cHP/hB9PT0xGWXXRa1Wi1mz54dP/zhD6Ozs7NuwwMAAJTVWObyjh07YsqUKTFt2rRjZ62trbF37944cOBATJ48+dj5o48+Gm9+85vj+uuvj1//+tcxderUuOKKK+K9731vqQFrtRc+YLQc3S97xmiza1TFrlEVu0ZV6r1jpSLo4MGD0dTUNOLs6OOhoaEREfT000/HbbfdFrfcckt88YtfjIcffjg+8pGPxMte9rJ4xzveccLPOXXqpDIjwkk780y7RjXsGlWxa1TFrjHelIqg5ubmOHTo0Iizo48nTpw44vz000+Pnp6eeOtb3xoREXPnzo1FixbFPffcUyqC9u17Jo4cKTMllFOrvfDFe3DwmSiKsZ6GlzK7RlXsGlWxa1SloaG+L46UiqC2trbYv39/DAwMREtLS0S88AYI06dPj0mTRg7V2toa//znP0ecPf/881GU/BNSFOEPFZWwa1TFrlEVu0ZV7Bqjrd77VeqNEWbOnBmdnZ2xatWqePbZZ2PPnj3R19cXixcvPu7u+973vvjlL38Zd955ZxRFEdu3b4+77747Fi1aVLfhAQAAyir9FtmrV6+O4eHh6OnpicsvvzzOP//86O3tjYiIjo6OuOuuuyIi4k1velP09fXFbbfdFp2dnfHJT34yPv7xj0dPT099fwcAAAAl1Iqy359WscFBPxPE6KrVIlpaJsXAgO9nZnTZNapi16iKXaMqDQ31fQOO0q8EAQAAjGciCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASKV0BA0ODkZvb290dXVFd3d3rFy5MoaHh//j5/zpT3+Kc889N7Zt23bSgwIAANRD6QhaunRpNDc3x5YtW2L9+vWxdevWWLt27b+9f+jQofjYxz4Whw8fPpU5AQAA6qJUBO3evTv6+/tj2bJl0dTUFDNmzIje3t5Yt27dv/2cm266KebNm3fKgwIAANRDY5nLO3bsiClTpsS0adOOnbW2tsbevXvjwIEDMXny5BH3f/KTn8Tu3btj5cqV0dfXd1ID1movfMBoObpf9ozRZteoil2jKnaNqtR7x0pF0MGDB6OpqWnE2dHHQ0NDIyJo165dccstt8Ttt98eEyZMOOkBp06ddNKfC2WceaZdoxp2jarYNapi1xhvSkVQc3NzHDp0aMTZ0ccTJ048dvaPf/wjrrvuuvjUpz4VL3/5y09pwH37nokjR07pl4D/qFZ74Yv34OAzURRjPQ0vZXaNqtg1qmLXqEpDQ31fHCkVQW1tbbF///4YGBiIlpaWiHjhFZ/p06fHpEn/b6jf/e538fjjj8fy5ctj+fLlx86vvvrqWLRoUdx4440n/JxFEf5QUQm7RlXsGlWxa1TFrjHa6r1fpSJo5syZ0dnZGatWrYoVK1bE3//+9+jr64vFixePuNfV1RWPPvroiLPXvOY18a1vfSu6u7tPfWoAAICTVPotslevXh3Dw8PR09MTl19+eZx//vnR29sbEREdHR1x11131X1IAACAeqkVxf/2i5eDg34miNFVq0W0tEyKgQHfz8zosmtUxa5RFbtGVRoa6vsGHKVfCQIAABjPRBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIpHUGDg4PR29sbXV1d0d3dHStXrozh4eEXvXv77bfHRRddFB0dHXHRRRfFunXrTnlgAACAU1E6gpYuXRrNzc2xZcuWWL9+fWzdujXWrl173L1f/OIX8dWvfjW+8IUvxEMPPRQ333xzfO1rX4vNmzfXY24AAICTUiqCdu/eHf39/bFs2bJoamqKGTNmRG9v74u+wvPkk0/GVVddFe3t7VGr1aKjoyO6u7tj+/btdRseAACgrMYyl3fs2BFTpkyJadOmHTtrbW2NvXv3xoEDB2Ly5MnHzj/wgQ+M+NzBwcHYvn17fPKTnyw1YK32wgeMlqP7Zc8YbXaNqtg1qmLXqEq9d6xUBB08eDCamppGnB19PDQ0NCKC/tVTTz0VH/nIR2LOnDlx6aWXlhpw6tRJpe7DyTrzTLtGNewaVbFrVMWuMd6UiqDm5uY4dOjQiLOjjydOnPiin/PII4/EtddeG11dXfH5z38+GhtLPWXs2/dMHDlS6lOglFrthS/eg4PPRFGM9TS8lNk1qmLXqIpdoyoNDfV9caRUkbS1tcX+/ftjYGAgWlpaIiJi165dMX369Jg06fih1q9fH5/73Ofiox/9aFx55ZUnNWBRhD9UVMKuURW7RlXsGlWxa4y2eu9XqTdGmDlzZnR2dsaqVavi2WefjT179kRfX18sXrz4uLubN2+OG2+8MW699daTDiAAAIB6K/0W2atXr47h4eHo6emJyy+/PM4///zo7e2NiIiOjo646667IiLi61//ejz//PPx0Y9+NDo6Oo59fOYzn6nv7wAAAKCEWlH8b794OTjoZ4IYXbVaREvLpBgY8P3MjC67RlXsGlWxa1SloaG+b8BR+pUgAACA8UwEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqYggAAAgFREEAACkIoIAAIBURBAAAJCKCAIAAFIRQQAAQCoiCAAASEUEAQAAqZSOoMHBwejt7Y2urq7o7u6OlStXxvDw8IvefeCBB2LBggXR3t4eF198cdx3332nPDAAAMCpKB1BS5cujebm5tiyZUusX78+tm7dGmvXrj3u3uOPPx5LliyJa6+9Nh588MFYsmRJLF26NJ588sl6zA0AAHBSSkXQ7t27o7+/P5YtWxZNTU0xY8aM6O3tjXXr1h13d8OGDdHV1RXz5s2LxsbGmD9/fsydOzfuuOOOug0PAABQVmOZyzt27IgpU6bEtGnTjp21trbG3r1748CBAzF58uRj5zt37oxZs2aN+Pyzzz47HnvssVID1moRDX5yiVFUq73w34aGiKIY21l4abNrVMWuURW7RlWO7lq9lIqggwcPRlNT04izo4+HhoZGRNCL3T3jjDNiaGio1IBTp04qdR9Oll2jKnaNqtg1qmLXGG9KvcbS3Nwchw4dGnF29PHEiRNHnDc1NcXhw4dHnB0+fPi4ewAAAFUqFUFtbW2xf//+GBgYOHa2a9eumD59ekyaNPL/AMyaNSt27Ngx4mznzp3R1tZ2CuMCAACcmlIRNHPmzOjs7IxVq1bFs88+G3v27Im+vr5YvHjxcXcXLlwY/f39sXHjxhgeHo6NGzdGf39/LFq0qG7DAwAAlFUrinI/xjYwMBArVqyIbdu2RUNDQ7zzne+MG264ISZMmBAdHR1x0003xcKFCyMiYsuWLfHlL385nnjiiXjFK14Ry5YtiwsuuGBUfiMAAAAnonQEAQAAjGfefBoAAEhFBAEAAKmIIAAAIBURBAAApDKmETQ4OBi9vb3R1dUV3d3dsXLlyhgeHn7Ruw888EAsWLAg2tvb4+KLL4777ruv4mkZz8rs2u233x4XXXRRdHR0xEUXXRTr1q2reFrGszK7dtSf/vSnOPfcc2Pbtm0VTclLQZld6+/vj/e85z3R0dERF1xwQaxZs6biaRnPyuza9773vbjwwgvjvPPOiwULFsTmzZsrnpaXgn379sXb3/72//j34im3QTGGPvjBDxYf+9jHiqGhoeKJJ54oLrnkkuLb3/72cff+8pe/FK9//euLe++9t3juueeKn/3sZ8U555xT/O1vfxuDqRmPTnTX7r333qKrq6t4+OGHiyNHjhQPPfRQ0dXVVWzatGkMpmY8OtFdO2poaKi49NJLi1mzZhW/+c1vKpyU8e5Ed23nzp3FueeeW/z4xz8ujhw5UvzhD38o3vCGNxT33HPPGEzNeHSiu3b//fcXb3rTm4pdu3YVRVEUmzZtKmbPnl3s2bOn6pEZxx588MFi3rx5//HvxXq0wZi9ErR79+7o7++PZcuWRVNTU8yYMSN6e3tf9P+6b9iwIbq6umLevHnR2NgY8+fPj7lz58Ydd9wxBpMz3pTZtSeffDKuuuqqaG9vj1qtFh0dHdHd3R3bt28fg8kZb8rs2lE33XRTzJs3r8IpeSkos2s/+MEPoqenJy677LKo1Woxe/bs+OEPfxidnZ1jMDnjTZld+/Of/xxFURz7mDBhQpx22mnR2Ng4BpMzHm3YsCFuuOGGuO666/7rvVNtgzGLoB07dsSUKVNi2rRpx85aW1tj7969ceDAgRF3d+7cGbNmzRpxdvbZZ8djjz1WyayMb2V27QMf+EB8+MMfPvZ4cHAwtm/fHnPmzKlsXsavMrsWEfGTn/wkdu/eHddcc02VY/ISUGbXHn300XjlK18Z119/fXR3d8fFF18c/f39cdZZZ1U9NuNQmV275JJLoqWlJebPnx+ve93r4tprr42bb745pk+fXvXYjFNvectb4t5774358+f/x3v1aIMxi6CDBw9GU1PTiLOjj4eGhv7r3TPOOOO4e/Biyuzav3rqqafiqquuijlz5sSll146qjPy0lBm13bt2hW33HJLfOUrX4kJEyZUNiMvDWV27emnn47bbrstFi5cGL/+9a9jxYoV8YUvfCE2bdpU2byMX2V27bnnnovZs2fHj370o3jkkUdixYoVsXz58vjjH/9Y2byMb2edddYJvXJYjzYYswhqbm6OQ4cOjTg7+njixIkjzpuamuLw4cMjzg4fPnzcPXgxZXbtqEceeSQWL14cr371q+Ob3/yml/I5ISe6a//4xz/iuuuui0996lPx8pe/vNIZeWko83Xt9NNPj56ennjrW98ajY2NMXfu3Fi0aFHcc889lc3L+FVm1z772c9GW1tbnHPOOXH66afHu9/97mhvb48NGzZUNi851KMNxiyC2traYv/+/TEwMHDsbNeuXTF9+vSYNGnSiLuzZs2KHTt2jDjbuXNntLW1VTIr41uZXYuIWL9+fVxxxRXxoQ99KL7yla/E6aefXuW4jGMnumu/+93v4vHHH4/ly5dHV1dXdHV1RUTE1VdfHTfeeGPVYzMOlfm61traGv/85z9HnD3//PNRFEUlszK+ldm1vXv3HrdrjY2Ncdppp1UyK3nUow3GLIJmzpwZnZ2dsWrVqnj22Wdjz5490dfXF4sXLz7u7sKFC6O/vz82btwYw8PDsXHjxujv749FixaNweSMN2V2bfPmzXHjjTfGrbfeGldeeeUYTMt4dqK71tXVFY8++mg8+OCDxz4iIr71rW+JIE5Ima9r73vf++KXv/xl3HnnnVEURWzfvj3uvvtuf4dyQsrs2oUXXhjf//734/e//30cOXIkNm3aFNu2bfuvP98BZdWlDerwTnYn7amnniqWLFlSvOENbyje+MY3FjfffHMxPDxcFEVRtLe3F3feeeexu7/61a+KhQsXFu3t7cUll1xS3H///WM1NuPQie7apZdeWsyePbtob28f8fHpT396LMdnHCnzde1feYtsyiqza/fff3/xrne9q+jo6Ch6enqK22+/fazGZhw60V177rnnitWrVxdve9vbivPOO6+47LLLil/96ldjOTrj2P//92K926BWFF4PBwAA8hizb4cDAAAYCyIIAABIRQQBAACpiCAAACAVEQQAAKQiggAAgFREEAAAkIoIAgAAUhFBAABAKiIIAABIRQQBAACpiCAAACCV/wOOcKF2/5Ob0wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA10AAAJLCAYAAAAcg/xtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACh2ElEQVR4nOzdeXhMZ//H8c9MFkkkkkiIpVSF2Ped1lJFia2W6lPVUmtCrSG1twhqaUkttbUUfdTaoijVFlU7pVU0sW8J2ZBEZJn5/eFnnk5tiRoReb+uK9dlzn2fc75nTkzyyX3OfQxms9ksAAAAAIBNGDO7AAAAAAB4lhG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAGADfDc+ayHcwYAsBX7zC4AAJ4G77//vtasWfPAPgULFtSPP/74wD7JycmaOnWqypQpo5YtW6Z7/6tXr9bQoUO1detWPffcc/ftd+DAAc2bN0+HDh1SQkKCvL29VatWLQUEBKhw4cLp3t/T7MKFC2rYsOF92wsXLqwtW7Y81n0eOHBAc+bM0dy5cx/rdv+NTp06SZIWL178WLd753vt74xGo1xdXVWuXDn17t1bVapUyZTa7rWfvXv3Wi0zGAzKmTOnihYtqs6dO8vf39+mNQDA40DoAgBJgYGBeuONNyyvZ82apT///FMzZsywLHN0dHzodq5cuaKFCxdqwoQJj73GXbt2qVu3bmrYsKHGjRunXLly6dy5c/r888/Vvn17rVix4pkJXpIUEBCg+vXr37U8R44cj31fK1asUHh4+GPf7tNsxowZypMnjyTJZDIpKipKM2fO1DvvvKOVK1eqZMmS91139OjRT6pMlS5d2mp/aWlpioiI0MKFCzVw4EC5ubmpbt26T6weAHgUhC4A0O3Rk78Hlty5c8vR0VEVK1bMvKL+4bPPPlO5cuUUGhpqWVajRg3Vq1dPjRo10hdffPFEfxm2tcKFCz9V7/+zplSpUneNqpYuXVqNGjXSV199pTFjxtx33WLFitm6PAtXV9d7fh/Uq1dPtWrV0qpVqwhdAJ563NMFABnw+++/q2vXrqpRo4YqV66sXr16KSwsTJL1ZXFDhw7Vyy+/bFlvxYoVatOmjSpWrKjy5curVatW2rBhQ4b2HRUVdc/lefPm1YgRI1SnTh3LMpPJpJkzZ6p+/fqqUKGCevbsqY0bN6pEiRK6cOGCJOnTTz9ViRIl7tpeiRIl9Omnn1peX7hwQUOGDNGLL76oMmXKqFatWhoyZIhiY2MtfV5++WWNHz9e77zzjipXrqxRo0ZJkuLi4jRq1CjVrl1b5cqV0+uvv65du3Zl6Lgf5MqVKxo6dKjq1aun8uXLq127dtq6datVn1u3bmnmzJl69dVXVa5cOTVu3Fhz586VyWSS9L9LSy9evKgSJUpo9erV6T7ulJQUTZkyRXXr1lX58uXVtWtXffPNN1bvsyTt379fb731lipUqKDq1asrODhYMTEx6TrGmTNnqnbt2qpUqZICAwN1/vx5SVJYWJhKlCihr7/+2qp/ZGSkSpUq9dDLZe/lueeek6enpy5duiTp9qWIpUuX1ooVK/Tiiy+qbt26CgsLU6dOnSyXGN55H2bOnKlXXnlF5cuXl7+/v1atWmW17R9++EFt2rRRuXLlVKdOHY0bN06JiYkZrvEOR0dHOTg4WC1LSkrS1KlT1bhxY5UtW1aVK1dWly5ddOzYMUuf999/X507d9aqVavUpEkTlS1bVi1bttS2bdustnXo0CF17NhRFStWVP369bVo0SJ17txZ77//vqXPrVu3NGnSJNWrV09ly5ZVixYtMvz/GkD2wEgXAKTT7t271a1bN1WrVk0hISFKTk7WnDlz9MYbb2j58uUqVKiQZsyYoT59+iggIECNGzeWJC1dulTjxo1Tnz59FBwcrLi4OM2bN0+DBw9WxYoVVaBAgXTtv379+po/f746deqkVq1aqUaNGipUqJAkqX379lZ9J02apMWLF6tXr16qWLGi1q9f/0ijYDdv3tTbb78tT09PjR49Wm5ubjpw4IBmzpypHDlyaOzYsZa+S5cuVceOHdWjRw85OTnp1q1beueddxQVFaUBAwYob968WrVqlbp166b58+erVq1aD9y3yWRSamqq1TKDwSA7OztJt0Nou3bt5ODgoAEDBsjT01OrV69W7969NWnSJLVs2VJms1m9evXSb7/9pt69e6tUqVLas2ePpk2bpvPnz2vs2LEKDAxUTEyM5XLSwoULp/u4R40apfXr1+u9995TqVKltH79eo0cOdKq5n379qlLly6qWbOmpk2bpmvXrmn69Ol6++23tXLlSjk5Od33PThw4ICuXr2qUaNGKS0tTVOnTlXnzp21ceNGFS9eXBUqVNC3336rDh06WNb59ttv5eTkpCZNmqTvJP9NbGysYmNjrUZ909LS9Nlnn2ncuHGKiYm55yhXcHCwtm7dqoCAAFWoUEE7duzQsGHDZGdnp9atW2vdunUKCgpSixYt1L9/f128eFGffPKJwsPD9cUXX8hgMNy3JrPZbPV9cOfywpkzZyohIUGtWrWytA0ZMkT79u3ToEGDVLhwYZ05c0bTp0/XgAEDtHHjRst+/vjjD125ckV9+/aVq6urpk+frr59+2r79u1yd3fXyZMn1blzZ5UtW1Yff/yxYmNj9fHHH+v69euWe8jMZrN69+6tgwcPqm/fvvL19dWWLVs0YMAAJScnq3Xr1hl+/wE8w8wAgLsEBwebGzRoYLWsXbt25ldffdWcmppqWXbt2jVz9erVzf369TObzWbz+fPnzX5+fuZVq1ZZ+kyYMME8adIkq2398ccfZj8/P/O6devMZrPZvGrVKrOfn5/5/Pnz963p1q1b5pEjR5pLly5t9vPzM/v5+Zlfeukl88iRI83h4eGWfnFxceYyZcqYJ06caLV+586drfYRGhpq9vPzu2s/fn5+5tDQULPZbDb/+eef5v/85z/ms2fPWvXp2bOnuXHjxpbXDRo0MNevX9+clpZmWfb111+b/fz8zL/99ptlmclkMnfs2NHcpk2b+x7nnffwXl+lSpWy9Js0aZK5TJky5nPnzlmt/84775jr1KljTktLM//8889mPz8/87fffmvVZ+bMmWY/Pz9zWFiY2Wy++3yn57jPnj1rLlGihPnzzz+36vPuu+9avc8dOnQwN2/e3Or75tSpU+ZSpUqZlyxZct/34a233jKXKVPGfOHCBcuyY8eOmUuUKGFetmyZ2Ww2m5ctW2b28/Ozeg+aNm1qHjp06H23e+d77ezZs+aUlBRzSkqKOT4+3nz06FFz586dzaVLlzYfP37cqu/y5cvvqu2tt94ym81m819//WX28/MzL1q0yKpPv379zO+//77ZZDKZ69ata+7atatV+6+//mr28/Mz//TTTw98D+71fVCiRAlzixYtzBs3brT0vXXrlvndd981f/fdd1bb+Pzzz81+fn7myMhIs9l8+1zfOf479u7da/bz8zNv2rTJbDabzYMHDzbXrl3bnJiYaOlz8OBBs5+fnzk4ONhsNpvNv/zyi9nPz++u/QUFBZnr1KljTklJue9xAch+GOkCgHRITEzU77//rt69e1tGWiQpV65catCgwV2XJv3dncuRbty4oTNnzujMmTOWS+xSUlLSXYOjo6PGjBmj9957T9u2bdPu3bu1Z88eff3111q9erWmTp2qJk2a6LffflNKSspdMwC2bNlSv/76a0YOW6VKldJXX30lk8mk8+fP68yZMwoLC9OpU6fuGoXy9fWV0fi/q9Z37dqlPHnyqEyZMlZ9GzRooEmTJunatWtyd3e/77779Olz10Qafx8R2bt3rypVqmQZ7fv7cQ4dOlSnTp3S3r17ZWdnp2bNmt3VZ/r06dqzZ889R27Sc9x79uyR2WzWq6++arVu8+bN9csvv0i6PVJ4+PBhde3a1WrEplChQvL19dXOnTvVsWPH+74HFStWVMGCBS2vS5Ysqeeee06//vqrOnToIH9/f02YMEHffvut+vTpoyNHjujkyZMPvB/rjkaNGt21rGDBgpo8efJdl536+fnddzv79++/5/amTZsmSTp58qQiIiLUs2dPq++DatWqydXVVTt37rznhCl3lClTRh9++KGk25dOTp8+XSkpKfrkk0/k6+tr6efo6KgFCxZIun3Z6dmzZ3Xq1Cn99NNPkqz/r+XOndtqNC9fvnySbp8v6faodr169eTs7GzpU6lSJatzsWvXLhkMBtWrV8/quF5++WWtXbtWYWFhKlWq1H2PC0D2QugCgHS4ceOGzGazvL2972rz9vbWjRs37rvuuXPnNGrUKO3evVv29vYqWrSo5Zda8yM8GypPnjxq166d2rVrJ+n2L/9BQUH68MMP1ahRI127dk3S7V8s/87HxyfD+5KkL774QnPmzFFsbKy8vb1VpkwZOTs733XM/3xv4uLidPXqVZUpU+ae27169eoDQ1fBggVVrly5+7Zfu3btntPr36nj+vXrunbtmjw9PWVvb/3j7s6sfQ86bw877jv3ZHl5ed1z/3dqMJlMmjdvnubNm3fXPh42E+O9vt+8vLx0/fp1SbcnmXj11Ve1du1a9enTR2vWrNHzzz+vqlWrPnC7kjR79mzL++Dg4CBPT8/7fo/88xj/Li4u7oF97rR/+OGHlvD0d1euXHlgnTlz5rR8H5QrV06VKlVSq1at9O6772rNmjVW3+c7duzQ+PHjderUKeXMmVMlSpRQzpw5JVn/X/t7mJL+F+bv3OcXExNzz+O5837dOS6z2azKlSvfs+4rV64QugBYELoAIB3c3NxkMBjuOZnF1atX5eHhcc/1TCaTevToIQcHBy1fvlylS5eWvb29wsPDtXbt2nTv//DhwwoICNDkyZOtJsyQbs9g2LVrV02YMEGxsbHy9PSUdPuep6JFi1r63fnl9447v2impaVZRu8SEhKs+qxbt04TJ07UoEGD1K5dO8svuP369dPvv//+wJrd3NxUpEgRTZky5Z7tD3oeWXq4u7vf93xIkqenp9zd3RUbG6vU1FSr4HXnF/0779U/pee47wSU6Oho5c+f37JudHS05d85c+aUwWC47/Ok/vnL/z/dCVf/PL5KlSpZXrdt21Zr1qzRkSNH9P3331tNcPEgfn5+//ocSLdHe6XbQeXOiJEknTp1SjExMZZgPWTIEFWvXv2u9R8UvO/Fy8tLo0aN0nvvvaeQkBBNnTpV0u0/bvTu3VsNGzbUnDlzLCNZS5cu1Y4dOzK0j3z58lmdxzuio6P1wgsvSLr9/e3i4qIvv/zyntt4/vnnM7RPAM82Zi8EgHRwcXFR2bJltWHDBqWlpVmW37hxQz///LPlYbJ/v/RQuj0xwenTp9WuXTuVL1/e8ov/9u3bJf3vL+sPU6RIEd28eVNffvnlPdc5ffq08uTJo9y5c6tSpUpydna+axa1fz7Y2dXVVZJ0+fJly7KDBw9a9Tlw4IDc3NzUo0cPS/BISEjQgQMHHlp79erVdfnyZXl5ealcuXKWr127dmn+/Pl3vVcZVa1aNR06dMgym98da9euVZ48efT888+revXqSktLu+u9uBN475y3v18Wmd7jrlKliuzs7LR582ardf/+2tXVVaVLl9apU6es3oPixYtrxowZ2rNnzwOP8dChQ1ajcUeOHNHFixdVs2ZNq/ehSJEimjx5smJjY5/4BA533sMffvjBavknn3yisWPHqmjRovLy8tKFCxes3oN8+fJp6tSp+vPPPzO8z8aNG+ull17S+vXrLe/hH3/8oVu3bqlnz55Wlw7eCVwZGVWuVq2atm/frlu3blmWHTt2zGpGyurVqysxMVFms9nquMLCwjRz5sy7Lr8FkL0x0gUA6TRo0CB17dpV3bp101tvvaWUlBTNnTtXycnJ6tOnj6Tbf/2Wbt/v4evrqwoVKqhgwYJaunSp8uXLp1y5cumXX37RokWLJP3vHpKHcXd3V3BwsEaPHq0333xTr7/+ugoVKqQbN25oy5YtWrNmjaZMmSKDwSBXV1f17t1bU6dOlbOzs+rUqaMdO3bcFTzq1aunCRMmaOTIkerevbsiIiI0Y8YMy+VYklS+fHn997//1cSJE9WgQQNduXJFCxYsUFRU1ENHKNq0aaMlS5aoS5cu6tWrl/Lnz69ff/1V8+bN01tvvXXXdN8Z1aVLF61du1ZdunRRnz595OnpqW+++Ua7d+/W+PHjZTQaVbduXdWoUUOjR4/WlStXVLp0ae3du1fz5s3Ta6+9ZrmfK1euXIqKitK2bdtUqlSpdB13oUKF1LZtW3388cdKSUlRyZIltWXLFss9RHeC3MCBA9WjRw8NGjRILVu2VFpamj7//HPL6OWD3Bkp7dWrl2JjYzV16lT5+fmpZcuWVv3atm2rqVOnqk6dOlajbk9CyZIl9eqrr2rKlClKSkpSmTJl9Msvv2jLli2aNm2a7OzsNGDAAI0aNUp2dnZq0KCBrl+/rlmzZikyMvK+l58+zLBhw9SyZUuNGzdOa9asUZkyZWRvb6/Jkyfr3XffVXJyslavXq2ff/5ZkjI0PX2vXr20YcMGdevWTe+++66uX7+u6dOny2AwWEaI69Wrp2rVqikwMFCBgYHy9fXVkSNH9Omnn+rFF1+0hPWIiAhFRESodOnS6XrAOoBnEyNdAJBOtWrV0hdffKHk5GQNHDhQI0eOlI+Pj5YvX67ixYtLuj2y0aVLF/3www/q1q2bkpOTNWvWLPn4+Oj9999X//799dtvv2n27NkqWrSoZRKC9HjjjTe0cOFCeXp66uOPP1aXLl00dOhQRUVFadGiRWrevLmlb/fu3TVq1Cht2bJFAQEBOnHihHr16mW1vRdeeEEfffSRLl26pB49emjRokUaO3as8ubNa+nz2muvqXfv3tq4caO6d++u0NBQVa1aVWPGjFFcXJzCw8PvW6+Li4uWLl2qKlWqaPLkyerevbs2b96sQYMGaejQoek+7vvJkyeP/vvf/6ps2bIKCQlRv379dPnyZc2aNUtt27aVdPsSyjvT+n/55Zfq0aOHNm3apAEDBigkJMSyrTZt2qhgwYLq3bu3vvnmm3Qf98iRI/XGG2/o888/V2BgoCIiIixBysXFRZL04osvasGCBYqIiFDfvn01ZMgQ2dnZ6Ysvvnjow58bNGigatWqafDgwRozZoyqV6+uRYsW3XUv2J2JKNq0afOv39dHMXnyZL399ttavHixevbsqV9++UXTpk2zTDLSvn17TZ06VQcPHlSvXr30wQcf6LnnntPixYvvmgglvYoWLapOnTrpr7/+0pIlS/T8889r6tSpioyMVEBAgOVZcYsXL5bBYMjQ/7Xnn39eCxYs0K1bt9S3b1998skn6t69u/LkyWP5o4TRaNTcuXPl7++vOXPmqGvXrlq2bJk6d+6sTz75xLKtFStWqEOHDg+9dw3As81gfpS7uAEAWc7q1as1dOhQbd269bHcy5PdxcXFafv27XrppZes7g376KOPtHr16odeOvg4zZs3T/Pnz9eOHTsYTXkMdu3aJQcHB6sJSa5du6Y6depoyJAhevvttzOxOgBZEZcXAgDwCJydnRUSEqJSpUrpnXfekYuLiw4ePGh5KPWTsGbNGv3111/66quv1KNHDwLXY3L06FGFhoZq4MCBKlOmjGJjY/X555/Lzc3NakQZANKL0AUAwCPIkSOHFi5cqGnTpun999/XzZs3VbhwYb3//vsPfPbW43T8+HEtW7ZMr7zyirp37/5E9pkd3Lkn7L///a8uX74sFxcXVa9eXR999NFdj2IAgPTg8kIAAAAAsCEm0gAAAAAAGyJ0AQAAAIANEboAAAAAwIYIXQAAAABgQ4QuAAAAALAhpox/BNHRN8ScjwAAAED2ZTBIXl5u6epL6HoEZrMIXQAAAADShcsLAQAAAMCGCF0AAAAAYEOELgAAAACwIe7pAgA8ViaTSWlpqZldBh4TOzt7GY38jRYA/g1CFwDgsTCbzbp+PUY3b8Zndil4zJydXZUrV24ZDIbMLgUAsiRCFwDgsbgTuFxdPeXomINf0J8BZrNZycm3FB8fK0lyd/fK5IoAIGsidAEA/jWTKc0SuFxdc2V2OXiMHB1zSJLi42Pl5ubJpYYA8Aj45AQA/GtpaWmS/vcLOp4td84r9+oBwKMhdAEAHhsuKXw2cV4B4N8hdAEAAACADRG6AADPpLfeel2bN2/M7DIAAGAiDQDAs2nJkuWZXQIAAJIIXQCALOLy5Utq376l+vcP0pdffqFbt5L04ot1NXBgsJYtW6o//jiiGzdu6OLFC5owYYrGjRutd9/toWbNWujmzZuaPTtUP/74g1JTU1S2bHkFBQ1Vvnz5lZiYoM8+m6Ffftmu5ORkValSVf36BSl37odPj75hwzqtWrVcuXLl0rFjRzVw4PuqXLmKQkM/1rFjRxUTE63cub31zjvvqnnzVpKkF1+sqv79g7Rq1XJFRUWpWLFiCgoaJl/fYpKkffv2aNas6bp48aJ8fX1VrlxF/fnnH5oxY64k6YcfvtfixV8oIuKyChYspF69+qh69Zq2e+MBAP8alxcCALKUn3/+UYsWLdNXX63S+fPn9fHHH0mSDhzYp4CA97Rq1XqVLVveap2PP/5Ix479qQULFmvt2s3KndtLo0cPkySNHz9GFy6c14IFi7V8+bdycXHVsGGDZTab01XPiRPH1LhxU61du1n16tXXxIlj5eBgr8WLl2vz5u1q27a9PvlkkhITEy3r/PDDZs2YMVdr1mxQjhxOmjlzuqTbwTI4eKBat26nDRu2qlev97R27WrLert2/aIpUyZowIAh2rDhR3Xt2lPDhw/RqVMn/9V7CgCwLUIXACBL6dt3oDw9PeXl5a1u3Xrpp5+2KiUlRQUKFFSVKtXk4uIie/v/XciRkpKirVs3q3v3APn45JOjo6Pee2+gBgwYrNjYGP3881b17x8kT8/ccnFxUb9+g3Ts2FGdOHE8XfU4ODioSZNmcnR0VI4cTgoOHqFBg96Xvb29IiMj5OKSU7du3dL169ct67Rr10FeXt5ydXXVyy830vnz5yRJmzdvVPHifmrVqo3s7e1VoUIltWz5mmW9VauWq3XrdqpYsbLs7OxUp85LqlPnJX377arH9O4CAGyBywsBAFnKc88VtvzbxyefkpOTdf36NXl757ln/+vXryk5OVn58uWzLHNzc1PJkqX1559/SJJ69OhstY6dnb0uX76okiVLPbSe3Lm9rB4YfOnSRc2cOV3nz59ToUKFVahQIUmS2WyyWucOe3t7S9uVK5HKly+/1fYLFCioP/88KkmKiLisQ4cO6JtvVlra09LSVKVKtYfWCQDIPIQuAECWEhV1RYULF5F0O+A4OTnJ3d1D0tl79vf0zC1HR0dFRkZY1ouNjdGSJYv0xhsdJUlLl66Ul5e3ZZ3Tp0+pQIGC6arn78+wSk1N1ZAh/dWjR2+1adNeBoNBx48f0/ffp28WxXz58mvnzh1WyyIiIiz/zpMnr5o08VenTp2t2nPk4KHUAPA04/JCAECWMnv2DCUkxCsq6qoWLJijV1/1t7qc8J+MRqOaNPHXggVzFRV1Vbdu3dLcubN19OjvypMnr2rXflHTp0/VtWtxSk1N1aJFC9S9+9uKj7+R4dpSUlKUlJQkJycnGQwGRUREaPbsUEvbwzRp0kxhYSe0ceN6paWl6ejRP7R27RpLe8uWr2nlymU6duz2yNfx43+qW7e39MMP32e4VgDAk8NIFwAgS3nuuULq1KmDkpKS1LjxqwoI6KslSxY+cJ333huguXNnqXv3d5SUlKRKlapo3LjbE3CMGDFGn332qbp06aiEhHi98IKvpk6dYTXylV7Ozs4aNmy05s//TNOmTZGnp6datHhNp0+f0qlT4Spc+PkHrp83r4/GjZukmTOn6+OPP1Lx4iVUo0YtxcXFSpIaNHhFN2/e1PjxHyoyMlK5cuXS66+/qXbtOmS4VgDILoxGg4xGw8M7/j+TySyTKX2TKaWXwZze6ZlgERV1Q7xrAPA/KSnJio6+LC+v/HJwcLTJPu5MGb9ixVrlz1/AJvvIbJGREbp2LU5+fiUtyz799BPFxERr9OhxmVbXkzi/AGALRqNBHh4usrNL/wV+aWkmxcUlPjR4GQySt7dburbJSBcAAE+Ja9fiFBjYTTNmzFPJkqUUHh6mzZs3qm/fgZldGgBkSUajQXZ2Rg2fvFSnz0c+tP8LhXwUMrijjEbDYx3tyrTQtWHDBgUFBVnd/PvKK69o8uTJOnz4sMaNG6fw8HB5enoqICBA7du3t/Rbs2aNZs2apatXr6po0aIaOXKkKlWqJOn2LE5TpkzRt99+q5s3b6pmzZr68MMPlTdvXklSdHS0Ro4cqb1798rOzk4tW7ZUcHDwA+8HAABkP8eOHVXfvr3u2+7jk19Llix/rPv08yupfv2C9MEHwxQdHaXcub3UqVNnNWr06mPdDwBkN6fPR+r4yYuZtv9MSxq///67WrVqpQkTJlgtv3btmnr06KG+ffuqQ4cO2rdvn3r37q0SJUqofPny2rNnj8aOHat58+apfPnyWrp0qQICAvTTTz/J2dlZs2fP1s6dO7Vq1Sq5ublp5MiRGjFihObOnStJ6t+/v3x8fLRjxw5FRUUpICBACxcuVLdu3TLjbQAApFP+/AX0yy/7n9j+SpUqoy1bdjy842PWokVrtWjR+onvFwBgO5k2e+Hvv/+usmXL3rV88+bN8vDwUMeOHWVvb69atWqpRYsWWrp0qSRpxYoV8vf3V5UqVeTg4KDOnTvL09NTGzZssLR3795d+fPnl6urq4YPH67t27fr/PnzOnv2rPbu3avBgwfL2dlZhQoVUmBgoGXbAAAAAPC4ZcpIl8lk0tGjR+Xs7Kz58+crLS1N9erVU1BQkMLCwuTn52fVv1ixYlq58vaDIMPDw9W2bdu72o8fP64bN24oIiLCan1vb2+5u7vrxIkTkiQPDw/5+PhY2n19fXXp0iVdv35duXLlSlf9hvRPfgIA2QKfi9mDwcC5BpB9POzzLiOfh5kSumJiYlS6dGk1adJEoaGhio2NVXBwsAYPHqw8efLI2dnZqr+Tk5MSExMlSQkJCfdtT0hIkCS5uLjc1X6n7Z/r3nmdmJiY7tDl5ZW+WUoAILtISkpSTIxRdnYG2dvzCMhnjclkkNFolKdnTjk5OWV2OQBgc56eOR/r9jIldHl7e1td0ufs7KzBgwfr9ddfV5s2bZSUlGTVPykpSTlz5rT0vVe7p6enJUDdvHnznuubzea72u68vrP99IiOZsp4APi7lJRkmUwmpaWZlZpqyuxy8JilpZllMpkUG5sgB4eHP+QZAJ4WdnbGRwpQsbEJSkt78M8zgyH9gzGZErqOHz+u9evXa9CgQTL8/7hccnKyjEajypcvr0WLFln1Dw8PV/HixSVJxYsXV1hY2F3tdevWlbu7u3x8fBQeHm65xPDq1auKi4uTn5+fTCaT4uLiFBUVJW/v2w+9PHnypPLlyyc3t/SPXpnNInQBwN/wmZg98PMPQHbyOD/vMuUaEA8PDy1dulTz589XamqqLl26pMmTJ+u1115TkyZNFBUVpYULFyolJUW7d+/WunXrLPdxtWvXTuvWrdPu3buVkpKihQsXKjo6Wo0aNZIktWnTRrNnz9b58+cVHx+v8ePHq3r16ipcuLCKFCmiKlWqaPz48YqPj9f58+c1a9YstWvXLjPeBgDIFozG25ccPqkvo5GbjgAAT5dMGenKly+f5syZo48//lizZ89Wjhw55O/vr8GDBytHjhz6/PPPFRISotDQUOXOnVsjRoxQzZo1JUm1atXS6NGj9cEHHygyMlLFihXTvHnz5OHhIUnq3bu3UlNT1bFjRyUkJKhGjRqaNm2aZd+hoaEaM2aMGjZsKKPRqNatWyswMDAT3gUAePYZjQZ5errIaHxyf+O7fRlc4mN9qCUAAP+GwWzmQoGMiorini4A+LuUlGRFR1+Wl1d+OTg4Wpbb29++ln79b1sUHR9j8zq8XHOrecVGio1NSNe9ZZs3b9TkyeOtlqWkpMhgMOinn3bp6NE/NG3aZJ05c0oeHp5655131bx5a0nSggVzdOjQAc2YMdeyblxcnAYP7qe0tDRNnjxNXl7e9913WlqaRo58X76+xdS1a0/L8tjYGE2aFKJDhw7Izs5OjRs3U+/e/WRvf/vvpLas6X7ud34B4Gl35+fQm30/TtfDkUv6FtRXoQPT9XPEYJC8vZ/ie7oAANlLdHyMIq9HZXYZd2ncuKkaN25qeX316hV16/a2AgP76vr16xo8uJ+6du2pVq3a6PDhQxo6NEhFixZT6dJ3P2cyIuKyBg7so4IFn9OYMRPvmi3Xum+EJk0ap717d8vXt5hV26hRQ5UnT159880mRUdH6f33B2r58q/05ptv27QmAIDtMK8vAACSzGazxo4dpdq1X1STJs20bduPypXLXW3bvi57e3tVqVJNjRu/qtWrV9y17smT4erV611VrFhZEyd+/MBwc+7cWXXt2lFlypRTuXLlrdouXDivQ4cOKDCwr5ycnFSw4HPq3LmbVq1aLkk2qwkAYFuELgAAJH3//QadPn1K7703QJJ0+vRJ+fr6WvUpUuQFhYdbz6D7228H1bt3d9Wu/aKGDBkuOzu7B+7H29tbX3/9rbp27Sk7O+sLTk6fPqlcudzl7Z3nb/ssqsjICN24ccNmNQEAbIvQBQDI9kwmkxYuXKC3335XLi63n+eSmJgoJyfr0SEnJyfdvJloeX327Bm9//5AlS5dRjt37lBU1NWH7svFJadcXV3v2XZ7n9YPH77z+ubNRJvVBACwLUIXACDbO3hwv6Kjo9S8eSvLMicnZ926lWTVLykpSS4uLpbXycm3NHHix5o0aZoKFCiooUODlJycbGl/663X1ajRS2rU6CW99dbrD63jfvuUboe1x1ETAODJI3QBALK9n3/+UXXr1re676loUV+dPn3Kqt+ZM6dVtOj/Lu8rXryEKlasLHt7e40dO1EREZetZkNcsmS5tmzZoS1bdmjJkuUPraNoUV9du3ZNMTHRf9vnKeXN6yNXV9fHUhMA4MkjdAEAbM7LNbd8cnnb/MvLNfcj1ff777+pYsXKVsvq1Wug6OhoLV/+lVJTU3Xw4H5t3rxJ/v6t7rkNb+88+vDD8dq8eaOWL//qkeooVKiwypevqOnTpyoxMUGXLl3UwoXz5e/fMtNqAgD8e0wZDwCwGZPJLJPJpOYVGz3BfZoy/GDkS5cuWk1eIUnu7h6aNm2mpk+fovnz58jDw0P9+wepcuWq991O5cpV1b17gGbOnK6iRYupatXqGa5/3LiP9PHHk9S+fUsZDEa9+qq/Onfulqk1AQD+HR6O/Ah4ODIAWHvQw3ONRoOMRsMTq+V20OND+nHi4cgAsioejgwAyBYIQQCA7I57ugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANsSU8QAAm+I5XQCA7I7QBQCwGaPRIA9PF9kZn9yFFWkmk+JiEwleAICnBqELAGAzRqNBdkajFu7YqIhrMTbfXz733Or8UlMZjYYMh67Y2Fj16tVFwcEjVLlyVUnS0aN/aNq0yTpz5pQ8PDz1zjvvqnnz1pZ1Nm5cr4UL5ys6OkrPP/+CBgwYrLJly0uS+vTpoUqVqqhr156W/sePH9Pgwf1Us2ZtBQePkL393T+GDxzYp88+m6GzZ8/IyclJDRo0VGBgX+XI4ZRpNQEA/h0+WQEANhdxLUbnY65kdhn3deTIbwoJ+UAXL16wLLt+/boGD+6nrl17qlWrNjp8+JCGDg1S0aLFVLp0WR08uF+ffDJZU6ZMV+nSZbVq1dd6//2BWrlyvZycnO7ax759ezR8+BC9/vp/1K1br3vWERsbq8GD+yso6H29+qq/YmJiNHBgby1Zskhdu/bMlJoAAP8eE2kAALK1jRvX68MPR6hHj0Cr5du2/ahcudzVtu3rsre3V5Uq1dS48atavXqFJGn9+m/VsGFjlS9fUfb29urQoaPc3T20devmu/axZcsmDR06SH37DnxguPH09NT69ZvVrFkLGQwGXb8ep+TkZHl4eGRaTQCAf4/QBQDI1qpXr6mvv/5GDRs2tlp++vRJ+fr6Wi0rUuQFhYeHpav9juXL/6sxY0YqOHiEmjdv9dB6XFxySpLatPHX22+/IS8vbzVr1jJTawIA/DuELgBAtubl5X3P+5gSExPl5ORstczJyUk3byamq126PYq2bNkSFS/up/Xrv1Vqamq661q2bLW++WajjEajRowIfipqAgA8GkIXAAD34OTkrFu3kqyWJSUlycXFJV3tkuTs7Kw5c77Q+PFTFR7+l2bMmGZpi4iIUKNGL1m+Jk8eb7WtHDmc5O2dRwEB72nPnl91/fp1m9cEALANQhcAAPdQtKivTp8+ZbXszJnTKlrUN13tklS/fkPlyZNX+fLl0+jRIVq9erm++26tJClfvnzasmWH5Wvw4GH6/ffDevPNtkpJSbFsIyUlRQ4ODnJ2drZ5TQAA2yB0AQBwD/XqNVB0dLSWL/9KqampOnhwvzZv3iR//9v3QPn7t9TmzZt08OB+paamavnyrxQTE6O6dRvcc3vVq9dUly7dNXXqRB09+sc9+/j6FldSUpI+++xTpaSkKCLismbMmCZ//1ZycHDIlJoAAP8eU8YDAGwun3vuLLcfd3cPTZs2U9OnT9H8+XPk4eGh/v2DLM/wqlq1ugYNCtaUKRN09eoVFSlSVFOmhCpXLvf7brNz5276888/NGxYkBYsWCxv7zxW7S4uLpo69VOFhk5VixaN5erqqsaNm6pz526ZVhMA4N8zmM3mjD09EoqKuiHeNQD4n5SUZEVHX5aXV345ODhalhuNBnl4usjO+OQurEgzmRQXm5jhhyPj/u53fgHgaWdvb5SnZ0692fdjHT958aH9S/oW1FehAxUbm6DUVNMD+xoMkre3W/rqSFcvAAAegclkVlxsooxGwxPdJ4ELAPA0IXQBAGyKEAQAyO6YSAMAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYENMGQ8AsCmj0cBzugAA2RqhCwBgM0ajQR6eLrIzPrkLK9JMJsXFJhK8AABPDUIXAMBmjEaD7IxGTdu4Vhdiom2+v+dye6l/05YyGg3pDl0HDuzTZ5/N0NmzZ+Tk5KQGDRoqMLCvcuRw0tGjf2jatMk6c+aUPDw89c4776p589aWdTduXK+FC+crOjpKzz//ggYMGKyyZctLkvr06aFKlaqoa9eelv7Hjx/T4MH9VLNmbQUHj5C9/d0/hq9fv6bp06dq166dMplMqlSpsgYNGipvb29JypSaAAD/Dp+sAACbuxATrdNXIjO7jLvExsZq8OD+Cgp6X6++6q+YmBgNHNhbS5YsUvv2/9Hgwf3UtWtPtWrVRocPH9LQoUEqWrSYSpcuq4MH9+uTTyZrypTpKl26rFat+lrvvz9QK1eul5OT01372rdvj4YPH6LXX/+PunXrdd+ahg8fIje3XPr6629kZ2dUSMgHmjRpnCZNmqbr169nSk0AgH+HiTQAANmWp6en1q/frGbNWshgMOj69TglJyfLw8ND27b9qFy53NW27euyt7dXlSrV1Ljxq1q9eoUkaf36b9WwYWOVL19R9vb26tCho9zdPbR16+a79rNlyyYNHTpIffsOfGC4OX78mI4e/UPDh4+Wm5ubXFxyKjh4hHr1ek+SMqUmAMC/R+gCAGRrLi45JUlt2vjr7bffkJeXt5o1a6nTp0/K19fXqm+RIi8oPDxMkh7afsfy5f/VmDEjFRw8Qs2bt3pgLceOHVWRIi9o7dpv1KFDa7Vq1UQzZkyzXFqYGTUBAP49QhcAAJKWLVutb77ZKKPRqBEjgpWYmCgnJ2erPk5OTrp5M1GSHtou3b6/atmyJSpe3E/r13+r1NTUB9Zw/fo1nTwZpgsXzumLL5bqiy++0tWrVzRu3Oh07dMWNQEA/j1CFwAAknLkcJK3dx4FBLynPXt+lZOTs27dSrLqk5SUJBcXF0l6aLskOTs7a86cLzR+/FSFh/+lGTOmWdoiIiLUqNFLlq/Jk8fLwcFRktS37yC5uORU7txe6tEjULt27bQEKlvWBACwDUIXACDb+v33w3rzzbZKSUmxLEtJSZGDg4OKFHlBp0+fsup/5sxpFS16+/K9okV9H9guSfXrN1SePHmVL18+jR4dotWrl+u779ZKkvLly6ctW3ZYvgYPHqYXXnhBZrNZqan/qyctzfT//zI/dJ//tiYAgG0QugAA2Zavb3ElJSXps88+VUpKiiIiLmvGjGny92+lBg0aKjo6WsuXf6XU1FQdPLhfmzdvkr//7Xug/P1bavPmTTp4cL9SU1O1fPlXiomJUd26De65r+rVa6pLl+6aOnWijh794559qlWrqQIFCmrChDFKTExUbGys5s2bpZdeqi8Xl5yqV6/BE68JAPDvMWU8AMDmnsvt9VTux8XFRVOnfqrQ0Klq0aKxXF1d1bhxU3Xu3E2Ojo6aNm2mpk+fovnz58jDw0P9+wepcuWqkqSqVatr0KBgTZkyQVevXlGRIkU1ZUqocuVyv+/+Onfupj///EPDhgVpwYLF8vbOY9Vub2+vGTPm6tNPP9Z//vOabt1K1osv1lW/fkGSJHd3jydeEwDg3zOYzeb0PT0SFlFRN8S7BgD/k5KSrOjoy/Lyym+5L0m6/XBkD08X2Rmf3IUVaSaT4mIT0/1wZDzc/c4vADzt7O2N8vTMqTf7fqzjJy8+tH9J34L6KnSgYmMTlJpqemBfg0Hy9nZLXx3p6gUAwCMwmcyKi02U0Wh4ovskcAEAniaELgCATRGCAADZHRNpAAAAAIANEboAAAAAwIYIXQAAAABgQ4QuAAAAALAhQhcAAAAA2BChCwAAAABsiCnjAQA2ZTQaeE4XACBbI3QBAGzGaDTIw8NFdnZP7sKKtDST4uISCV4AgKcGoQsAYDNGo0F2dkaNXbFGZ69G2Xx/z+fx1sj2r8loNKQ7dF2/fk3Tp0/Vrl07ZTKZVKlSZQ0aNFTe3t46evQPTZs2WWfOnJKHh6feeeddNW/e2rLuxo3rtXDhfEVHR+n551/QgAGDVbZseUlSnz49VKlSFXXt2tPS//jxYxo8uJ9q1qyt4OARsre//4/h2NhY9erVRcHBI1S5clVJ0sGD+9W3by/lyZNXq1atl9FoHWaDgwdo584dCg39zLIOACDzEboAADZ39mqUwi5HZHYZ9zR8+BC5ueXS119/Izs7o0JCPtCkSeM0YsQYDR7cT1279lSrVm10+PAhDR0apKJFi6l06bI6eHC/PvlksqZMma7Spctq1aqv9f77A7Vy5Xo5OTndtZ99+/Zo+PAhev31/6hbt14PrOnIkd8UEvKBLl68cM/2lJRk7du3RzVq1LIsi4mJ1u+/H/l3bwYAwCaYSAMAkG0dP35MR4/+oeHDR8vNzU0uLjkVHDxCvXq9p23bflSuXO5q2/Z12dvbq0qVamrc+FWtXr1CkrR+/bdq2LCxypevKHt7e3Xo0FHu7h7aunXzXfvZsmWThg4dpL59Bz40cG3cuF4ffjhCPXoE3rdPo0ZNtXHj+rvWq1//5Ud4FwAAtkboAgBkW8eOHVWRIi9o7dpv1KFDa7Vq1UQzZkyTt7e3Tp8+KV9fX6v+RYq8oPDwMEl6aPsdy5f/V2PGjFRw8Ag1b97qoTVVr15TX3/9jRo2bHzfPs2atdCOHT8rPj7esmzDhnXp2j4A4MkjdAEAsq3r16/p5MkwXbhwTl98sVRffPGVrl69onHjRisxMVFOTs5W/Z2cnHTzZqIkPbRduj36tGzZEhUv7qf1679VamrqQ2vy8vJ+4L1eklS8uJ8KF37eMqp25MhvMhqNKl26bLqOGwDwZBG6AADZloODoySpb99BcnHJqdy5vdSjR6B27dops9msW7eSrPonJSXJxcVFkuTk5PzAdklydnbWnDlfaPz4qQoP/0szZkyztEVERKhRo5csX5Mnj89Q7c2atdSmTbcvMfzuu7WMcgHAU4yJNAAA2dYLL7wgs9ms1NQU5ciRQ9LtKeel26NJa9astOp/5sxpFS16+5LCokV9dfr0qbvaa9WqY3ldv35D5cmTV5I0enSIgoL6qnhxP/n7t1S+fPm0ZcuOR669ceNXNWvWdIWFndCOHdsUEND3kbcFALAtQhcAwOaez+P9VO6nWrWaKlCgoCZMGKNhwz7QrVu3NG/eLL30Un01avSq5s+fo+XLv1KbNq/ryJHftHnzJk2cOFWS5O/fUsOGDdbLLzdS+fIVtXr1csXExKhu3Qb33Ff16jXVpUt3TZ06UUWKFFWZMv/uUkB3dw/Vrv2ixo4dpcqVq8rDw+NfbQ8AYDuELgCAzZhMZqWlmTSy/WtPbJ9paaZ0P6PL3t5eM2bM1aeffqz//Oc13bqVrBdfrKt+/YLk5uamadNmavr0KZo/f448PDzUv3+Q5flXVatW16BBwZoyZYKuXr2iIkWKasqUUOXK5X7f/XXu3E1//vmHhg0L0oIFi+XtnedfHWuzZi0VHDyAUS4AeMoZzGZz+n4ywSIq6oZ41wDgf1JSkhUdfVleXvkt90ndYTQaZDQanlgtJpM53aEL6fOg8wsATzN7e6M8PXPqzb4f6/jJiw/tX9K3oL4KHajY2ASlppoe2NdgkLy93dJXR7p6AQDwiAhBAIDsjtkLAQAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2xJTxAACb4jldAIDsjtAFALAZo9EgDw8X2dk9uQsr0tJMiotLJHgBAJ4amRq60tLS1LlzZxUsWFATJ06UJB0+fFjjxo1TeHi4PD09FRAQoPbt21vWWbNmjWbNmqWrV6+qaNGiGjlypCpVqmTZ3pQpU/Ttt9/q5s2bqlmzpj788EPlzZtXkhQdHa2RI0dq7969srOzU8uWLRUcHCx7e7InANiC0WiQnZ1RQxeu1KmIKJvvr2g+b03o3E5GoyHDoSs2Nla9enVRcPAIVa5cVQcP7lffvr2UJ09erVq1XkajdXAMDh6gnTt3KDT0M1WuXPWe2zx4cL/mzJmps2dPy9nZRfXqNVCvXu/JyclJGzas0/jxH6pMmXKaM+eLu9Z9553/6OTJMK1YsVb58xfI0LEAAJ4umZo2ZsyYof3796tgwYKSpGvXrqlHjx7q27evOnTooH379ql3794qUaKEypcvrz179mjs2LGaN2+eypcvr6VLlyogIEA//fSTnJ2dNXv2bO3cuVOrVq2Sm5ubRo4cqREjRmju3LmSpP79+8vHx0c7duxQVFSUAgICtHDhQnXr1i0z3wYAeOadiojS8QuXM7uM+zpy5DeFhHygixcv3NWWkpKsffv2qEaNWpZlMTHR+v33Iw/c5tWrVxQcPFDvvTdA/v4tFRV1VcOHD9Hs2aEaMGCIJMnV1VUnThzTuXNnVLhwEcu6x4//qYiIS4/n4AAAmS7TJtLYtWuXNm/erMaNG1uWbd68WR4eHurYsaPs7e1Vq1YttWjRQkuXLpUkrVixQv7+/qpSpYocHBzUuXNneXp6asOGDZb27t27K3/+/HJ1ddXw4cO1fft2nT9/XmfPntXevXs1ePBgOTs7q1ChQgoMDLRsGwCQPW3cuF4ffjhCPXoE3rO9UaOm2rhx/V3r1K//8gO3e+nSRb34Yl21bPma7Ozs5OOTT02aNNNvvx2y9HF1dVOtWnW0ceN3VuuuX79WDRs2/ucmAQBZVKaErujoaA0fPlxTp06Vs7OzZXlYWJj8/Pys+hYrVkzHjx+XJIWHh9+3/caNG4qIiLBq9/b2lru7u06cOKGwsDB5eHjIx8fH0u7r66tLly7p+vXrGarfYOCLL7744uufX1lV9eo19fXX39w35DRr1kI7dvys+Ph4y7ING9apefNWD9xuhQqVNHr0OMtrk8mkbdt+VIkSJa36NW3aQt9/v0Emk0mSdOvWLf388w9q2rT5ox2QDWX29xhffPHFV0a/bP2Zl15P/PJCk8mkwYMHq0uXLipZ0voHT0JCglUIkyQnJyclJiY+tD0hIUGS5OLiclf7nbZ/rnvndWJionLlypXuY/Dyckt3XwDIDpKSkhQTY5SdnUH29v/7e96TnEDj7zKyXx+fvHeta29vtGyjVKmSev75Ivr55y1q3bqtDh/+TXZ2dipfvrxV/wdJTU3RxInjdPnyJY0dO0H29kbLjI51676kyZNDdOjQPtWoUUs//PCTypQpa/kjYXq2b2smk0FGo1Genjnl5OSUqbUAwJPg6ZnzsW7viYeuOXPmyNHRUZ06dbqrzdnZWTdu3LBalpSUpJw5c1rak5KS7mr39PS0BKibN2/ec32z2XxX253Xd7afXtHRN2RmUiwAsEhJSZbJZFJamlmpqabMLkdpaaZHruPOumlpt9dPTTWpadMW+u67dWre/DWtXfuN/P1bWraflmbSgQMHFBTU17KNTp266O2335UkRUVFafTooUpISNCsWfPl6eml1FTT3yb6sFPjxk21fv06ValSQ+vWfas2bV637P/fHMvjkpZmlslkUmxsghwcUjK1FgDICDs74yMFqNjYBMvn8P0YDOkfjHnioevbb7/VlStXVLXq7Zme7oSoH374QUOGDNHOnTut+oeHh6t48eKSpOLFiyssLOyu9rp168rd3V0+Pj5WlyBevXpVcXFx8vPzk8lkUlxcnKKiouTt7S1JOnnypPLlyyc3t4yNXJnNInQBwN8865+JjRu/qlmzpiss7IR27NimgIC+Vu0VKlTSli077lrv2LGjev/9gapSpbqGDBl+31GiZs1aqkePdxQeHqYzZ06pTp2XdPXqFZscy7/Bzz8A2cnj/Lx74tcrbNq0SQcPHtT+/fu1f/9+NW/eXM2bN9f+/fvVqFEjRUVFaeHChUpJSdHu3bu1bt06tW3bVpLUrl07rVu3Trt371ZKSooWLlyo6OhoNWrUSJLUpk0bzZ49W+fPn1d8fLzGjx+v6tWrq3DhwipSpIiqVKmi8ePHKz4+XufPn9esWbPUrl27J/0WAACyGHd3D9Wu/aLGjh2lypWrysPD46HrXLx4QQMG9FaLFq9p1KixD7wsz9e3mJ5//gWNGTNCjRs341EmAPCMeao+1T09PfX5558rJCREoaGhyp07t0aMGKGaNWtKkmrVqqXRo0frgw8+UGRkpIoVK6Z58+ZZfvj17t1bqamp6tixoxISElSjRg1NmzbNsv3Q0FCNGTNGDRs2lNFoVOvWrRUYeO/ZqgAAj0/RfN5Zfj/NmrVUcPCAu0a57mfFiv8qPj5eX3+9VF9//b+Zcn188mvJkuV39ff3b6FPPpmsMWMmPraaAQBPB4PZzIUCGRUVxT1dAPB3KSnJio6+LC+v/HJwcLQsNxoN8vBweaITaqSlmRQXl5jhhyPj/u53fgHgaWdvf/uerjf7fqzjJy8+tH9J34L6KnSgYmMTHno/rcEgeXs/pfd0AQCyD5PJrLi4RMtMfU9qnwQuAMDThNAFALApQhAAILvL3Ad/AAAAAMAzjtAFAAAAADZE6AIAAAAAGyJ0AQAAAIANEboAAAAAwIYIXQAAAABgQ0wZDwCwKaPRwHO6AADZGqELAGAzRqNBHh4usrN7chdWpKWZFBeXSPACADw1CF0AAJsxGg2yszMqeObXOnXpqs33V7RAHn3Uu4OMRkO6Q1dY2F+aOXOaTpw4LgcHB1WrVkPvvTdQp06Fq2/fXsqTJ69WrVovo9E6OAYHD9DOnTsUGvqZKleues9tL1myUPPmzZajo6NlWbt2b6hnz97asGGdxo//UGXKlNOcOV/cte477/xHJ0+GacWKtcqfv0AG3gUAwNOG0AUAsLlTl67q2JlLmV3GXW7dSlJQUF+1bPmaJk+ersTEBI0bN1rjx3+oN97oKElKSUnWvn17VKNGLct6MTHR+v33Iw/d/vHjf+qdd7rq3Xd73LPd1dVVJ04c07lzZ1S4cBGr9SIinr73CwDwaJhIAwCQbUVGRqhYMT917txNDg4Ocnf3UKtWbXT48EFLn0aNmmrjxvVW623cuF7167/80O0fO/anSpYsfd92V1c31apVRxs3fme1fP36tWrYsHEGjwYA8LQidAEAsq3ChYto6tRQ2dnZWZb99NNWlShRyvK6WbMW2rHjZ8XHx1uWbdiwTs2bt3rgtmNjYxQZGaF169aoVatX1b59S82aNV23bt2y6te0aQt9//0GmUwmSdKtW7f0888/qGnT5v/+AAEATwVCFwAAksxms+bOnaWdO3eoX78gy/Lixf1UuPDz2rp1syTpyJHfZDQaVbp02QduLzo6WhUqVFKzZi20YsVaTZ48Xbt3/6oZM6ZZ9atd+0UlJydr//69kqRt235U6dJl5e2d5/EeIAAg0xC6AADZXkJCvEaMGKLNmzdq5sx58vUtZtXerFlLbdp0+xLD775be9co1+HDh9So0UuWry+//FzFihXXzJnz9NJL9eXo6KgiRV5Q587d9eOPm63Wtbe3V5Mm/7uE8bvv1srf/8GjaACArIWJNAAA2drFixcUFNRXPj75NH/+Ynl4eNzVp3HjVzVr1nSFhZ3Qjh3bFBDQ16q9QoVK2rJlh9WyQ4cO6I8/jqhTpy6WZSkpycqRw+mu7Tdr1lI9eryj8PAwnTlzSnXqvKSrV688ngMEAGQ6RroAANnW9evX1bdvL5UrV0EffzzjnoFLktzdPVS79osaO3aUKleuet9+f+fs7KwFC+Zo8+ZNMplMOnXqpL74Yr5atnztrr6+vsX0/PMvaMyYEWrcuJns7fmbKAA8S/hUBwDYXNECT+b+pIzuZ8OGtYqMjNCPP27RTz/9YNX20UefWL1u1qylgoMH3DXKdT8lS5bWhx+O1xdfzNfkySFydXVTixat9fbb796zv79/C33yyWSNGTMxQ8cAAHj6Gcxmc/qeHgmLqKgb4l0DgP9JSUlWdPRleXnll4PD/x4EbDQa5OHhIju7J3dhRVqaSXFxiel+ODIe7n7nFwCedvb2Rnl65tSbfT/W8ZMXH9q/pG9BfRU6ULGxCUpNNT2wr8EgeXu7pa+OdPUCAOARmExmxcUlymg0PNF9ErgAAE8TQhcAwKYIQQCA7I6JNAAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANsSU8QAAmzIaDTynCwCQrRG6AAA2YzQa5OHhIju7J3dhRVqaSXFxiQQvAMBTg9AFALAZo9EgOzujhk9eqtPnI22+vxcK+ShkcEcZjYZ0h66tWzdrzJiRcnR0tCyrW7e+/P1bqW/fXsqTJ69WrVovo9E6OAYHD9DOnTsUGvqZKleues9t79u3R7Nnf6oLF87Lzc1NzZu3UufO3WQwGLRhwzqNH/+hypQppzlzvrhr3Xfe+Y9OngzTihVrlT9/gQy8CwCApw2hCwBgc6fPR+r4yYuZXcY9HTv2p5o0aaZhw0ZbLT94cL8kKSUlWfv27VGNGrUsbTEx0fr99yMP3O61a3EaOnSQRo0ap7p16+vMmdPq06eH8ucvoFdf9Zckubq66sSJYzp37owKFy5iWff48T8VEXHpMR0hACCzMZEGACBbO378T5UoUeq+7Y0aNdXGjeutlm3cuF7167/8wO1GREQoKSlJZrNJZvPtUTeDwSAnJydLH1dXN9WqVUcbN35nte769WvVsGHjjB4KAOApRegCAGRbJpNJJ04c165dv6ht2+Z67bVm+uijEF2/ft3Sp1mzFtqx42fFx8dblm3YsE7Nm7d64Lb9/EqoQYNXNHz4ENWvX1NvvdVeDRs2Uv36Da36NW3aQt9/v0Emk0mSdOvWLf388w9q2rT5YztOAEDmInQBALKtuLhY+fmVUP36DbV06UrNnv25Llw4p7FjR1r6FC/up8KFn9fWrZslSUeO/Caj0ajSpcs+cNvJyclyd3fX2LETtXXrTs2evUA//LBZ69d/Y9Wvdu0XlZycrP3790qStm37UaVLl5W3d57He7AAgExD6AIAZFu5c3tp5sx5at68lZycnJQvXz4FBvbV7t2/KjEx0dKvWbOW2rTp9iWG33239q5RrsOHD6lRo5csX19++blWr16hS5cuqUGDV2Rvb69y5Sqoffs3tHr1Sqt17e3t1aTJ/y5h/O67tfL3f/AoGgAgayF0AQCyrfDwMM2e/anlnitJSk5OkdFolIODg2VZ48av6vjxYwoLO6EdO7apSRN/q+1UqFBJW7bssHy9/fa7ioyMUEpKslU/e3t7q+3e0axZS23f/pPCw8N05swp1anz0mM+UgBAZmL2QgCAzb1QyOep3E+uXLm0evVy5cqVSx06dFRUVJRmzZqupk2bW4Ujd3cP1a79osaOHaXKlavKw8PjoduuU+clrVmzQhs3rterr/orPDxMK1d+rbfe6nxXX1/fYnr++Rc0ZswINW7cTPb2/HgGgGcJn+oAAJsxmcxKSzMpZHDHJ7bPtDRTup/RlTevjyZNmqY5c2Zq0aLP5ejoqFdeaayAgL46evR3q77NmrVUcPAABQT0Tde2q1WroVGjxurLL7/QJ59MVu7cufXGGx3Vpk37e/b392+hTz6ZrDFjJqZr+wCArMNg/vs1FUiXqKgb4l0DgP9JSUlWdPRleXnll4ODo1Wb0WiQ0Wh4YrWYTOZ0hy6kz4POLwA8zeztjfL0zKk3+36crudFlvQtqK9CByo2NkGpqaYH9jUYJG9vt/TVka5eAAA8IkIQACC7YyINAAAAALAhQhcAAAAA2BChCwAAAABsiNAFAHhsmJvp2cR5BYB/J8OhKzk5WVu2bNHChQt18+ZNHT9+3BZ1AQCyEDs7O0lScvKtTK4EtnDnvNrZMf8WADyKDH16njt3Tu+++65SUlJ0/fp11atXT23bttWMGTPUoEEDW9UIAHjKGY12cnZ2VXx8rCTJ0TGHDIYnN008bMNsNis5+Zbi42Pl7Owqo5ELZADgUWQodIWEhKhNmzYKCAhQ9erV9cILL2jcuHEKDQ0ldAFANpcrV25JsgQvPDucnV0t5xcAkHEZCl2//fabPv30UxkMBstfMFu1aqWQkBCbFAcAyDoMBoPc3b3k5uaptLTUzC4Hj4mdnT0jXADwL2UodLm5uSkqKkoFChSwLLt69arc3d0fe2EAgKzJaDTKaHTM7DIAAHhqZOhPVy1atFCfPn20c+dOmUwmHTlyREFBQfL397dVfQAAAACQpWVopCswMFBJSUnq06ePbt68qU6dOqldu3bq06ePreoDAAAAgCwtQ6HLwcFBwcHBCg4OVkxMjDw9PZmdCgAAAAAeIEOha8aMGfdc7ujoKE9PT9WuXVsFCxZ8LIUBAAAAwLMgQ6Hrr7/+0ubNm1WuXDkVKlRIly5d0m+//aZy5copLS1NISEhmj17tmrVqmWregEAAAAgS8lQ6LK3t9eoUaP05ptvWpatWrVKe/bs0aRJk7RhwwZ9/PHHWrFixWMvFAAAAACyogzNXvjrr7+qQ4cOVstat26tbdu2SZKaNm2qU6dOPb7qAAAAACCLy1DocnFx0R9//GG17M8//5Sj4+3nsURHR8vZ2fnxVQcAAAAAWVyGLi/s3LmzevTooTfeeEMFCxbUxYsXtWLFCnXt2lWXLl1Sr169eGYXAAAAAPxNhkLX22+/LS8vL61atUqbN29WgQIF9MEHH6hx48Y6fvy42rRpo06dOtmqVgAAAADIcjIUuiTJ39//nqNZJUuWVMmSJR9LUQAAAADwrMhQ6IqNjdXixYsVGRkpk8kkSUpJSdFff/2ltWvX2qRAAAAA4HEyGg0yGg0ZWsdkMstkMtuoIjzrMhS6hg4dqjNnzih37tyKj49XgQIF9Msvv6hjx462qg8AAAB4bIxGgzw8XGRnl6H55JSWZlJcXCLBC48kQ6Fr37592rBhgyIjIzV37lzNmDFD3377rdavX2+r+gAAAIDHxmg0yM7OqOCZX+vUpavpWqdogTz6qHcHGY0GQhceSYYfjuzj4yNnZ2edOHFC0u17vCZNmmST4gAAAABbOHXpqo6duZTZZSCbyNC4asGCBfXHH38oV65cSkhIUExMjBITE5WUlGSr+gAAAAAgS8vQSNebb76pTp066bvvvlPz5s31zjvvyN7eXtWqVbNVfQAAAACQpWUodLVr105+fn7y9vbW4MGD9cUXXyghIUFdu3a1VX0AAAAAkKVl6PLCcePGqXz58nJ0dJSDg4N69OihAQMGaNy4cbaqDwAAAACytIeOdEVGRmrXrl2SpBUrVqhs2bJW7Tdu3NCWLVtsUx0AAAAAZHEPDV2enp5asmSJYmJilJycrNDQUKv2HDlyqE+fPjYrEAAAAACysoeGLkdHR61cuVKS1LVrVy1YsMDmRQEAAADAsyJDE2ksWLBACQkJ2rZtmy5evKi8efOqQYMGypUrl63qAwAAAIAsLUOh6+zZs+rcubNSUlJUoEABXbp0SR999JEWLVqk4sWL26pGAAAAAMiyMjR74YQJE/Tqq69q+/btWr58ubZv365WrVpp4sSJtqoPAAAAALK0DIWuw4cPa8CAATIab69mNBrVr18/HT582CbFAQAAAEBWl6HQZWdnp/j4eKtl8fHxcnZ2fqxFAQAAAMCzIkOhq0GDBho0aJBOnTql5ORknTx5UoMHD1aDBg0yvONdu3apffv2qly5surUqaOxY8cqKSlJ0u0Rtfbt26tSpUp6+eWXtWLFCqt116xZo0aNGqlixYpq06aNDh06ZGlLS0vTRx99pNq1a6tSpUoKCAjQlStXLO3R0dEKDAxU1apVVaNGDYWEhCg1NTXD9QMAAABAemQodA0aNEipqalq1qyZKlSoIH9/fzk6OiooKChDO42JiVHPnj31n//8R/v379eaNWu0d+9ezZ07V9euXVOPHj3UunVr7du3TyEhIZowYYKOHDkiSdqzZ4/Gjh2riRMnat++fWrZsqUCAgJ08+ZNSdLs2bO1c+dOrVq1Sjt27JCTk5NGjBhh2Xf//v3l4uKiHTt2aOXKldq1a5cWLlyYofoBAAAAIL0yNHuhh4eHFi9erPPnzys6OloFCxZUnjx5MrzT3Llz69dff5Wrq6vMZrPi4uJ069Yt5c6dW5s3b5aHh4c6duwoSapVq5ZatGihpUuXqnz58lqxYoX8/f1VpUoVSVLnzp319ddfa8OGDWrbtq1WrFihoKAg5c+fX5I0fPhwvfjiizp//rxMJpP27t2r7du3y9nZWYUKFVJgYKAmT56sbt26Zfg4AAAAAOBhMhS6JOmPP/7QypUrdfHiReXJk0dt2rRR1apVM7xjV1dXSVK9evUUGRmpqlWrqk2bNpo2bZr8/Pys+hYrVszygObw8HC1bdv2rvbjx4/rxo0bioiIsFrf29tb7u7uOnHihKTbwdHHx8fS7uvrq0uXLun69evpft6YwZDhwwUAAE85o9EgQwZ/yJvNZplMZhtVhKcRvwdmHw871xn5XshQ6Prll18UGBiol19+WSVKlNC5c+fUpUsXffLJJ3rllVcysimLzZs369q1awoKClLfvn3l4+Nz18QcTk5OSkxMlCQlJCTctz0hIUGS5OLiclf7nbZ/rnvndWJiYrpDl5eXWzqPDgAAZBVpJpPsjBm68+KR1kHW5emZM7NLwBPyuM91hkJXaGioPvroIzVt2tSybOPGjZo1a9Yjhy4nJyc5OTlp8ODBat++vTp16qQbN25Y9UlKSlLOnLcP3NnZ2TLhxt/bPT09LQHqzv1d/1zfbDbf1Xbn9Z3tp0d09A2Z+aMWAADPDDs7ozw9c2rowpU6FRGVrnWK5vPWhM7tFBuboLQ0k40rxONy51w/Cs511vOo5zs959pgSP9gTIZC1+nTp9WkSROrZU2aNNHw4cMzshkdPHhQw4YN09q1a+Xo6ChJSk5OloODg4oVK6adO3da9Q8PD1fx4sUlScWLF1dYWNhd7XXr1pW7u7t8fHwUHh5uucTw6tWriouLk5+fn0wmk+Li4hQVFSVvb29J0smTJ5UvXz65uaV/9MpsFqELAIBn0KmIKB2/cDnD6/F7QfbBuc4+Hue5ztB4uIeHh/766y+rZcePH8/wZBolSpRQUlKSpk6dquTkZF28eFEfffSR2rVrpyZNmigqKkoLFy5USkqKdu/erXXr1lnu42rXrp3WrVun3bt3KyUlRQsXLlR0dLQaNWokSWrTpo1mz56t8+fPKz4+XuPHj1f16tVVuHBhFSlSRFWqVNH48eMVHx+v8+fPa9asWWrXrl2G6gcAAACA9MrQSFf79u0VEBCgnj176rnnntO5c+c0b948vfnmmxnaac6cOTV//nyNHz9ederUkZubm1q0aKHevXvL0dFRn3/+uUJCQhQaGqrcuXNrxIgRqlmzpqTbsxmOHj1aH3zwgSIjI1WsWDHNmzdPHh4ekqTevXsrNTVVHTt2VEJCgmrUqKFp06ZZ9h0aGqoxY8aoYcOGMhqNat26tQIDAzNUPwAAAACkV4ZCV/fu3XXr1i3NmTNHUVFRKliwoN566y116dIlwzsuVqyYPv/883u2lStXTsuWLbvvuq1atVKrVq3u2ebg4KCgoKD7PjvM29tboaGhGa4XAAAAAB5FhkKXwWDQe++9p/fee89W9QAAAADAMyVd93T9fbZCSTp16pRNigEAAACAZ026QldERITV6zfeeMMmxQAAAADAsyZdoeufT2c3M1cmAAAAAKTLIz1C/Z8hDAAAAABwb48UugAAAAAA6ZOu2QuTk5M1Y8YMy+ukpCSr15LUp0+fx1sZAAAAADwD0hW6KlWqpD179lheV6hQweo1lxsCAAAAwL2lK3QtXrzY1nUAAAAAwDOJe7oAAAAAwIYIXQAAAABgQ4QuAAAAALAhQhcAAAAA2FCGQ1dMTIwWLlyokJAQxcfH66effrJFXQAAAADwTMhQ6Dp69KheffVVbdq0SStXrlRsbKz69eunVatW2ao+AAAAAMjSMhS6JkyYoPfff1/Lli2Tvb29ChUqpJkzZ2rBggW2qg8AAAAAsrQMha6//vpLrVq1kvS/ByK/9NJLioyMfPyVAQAAAMAzIEOhK3fu3Dp16pTVslOnTsnb2/uxFgUAAAAAz4oMha4333xTPXv21PLly5WamqoNGzaoX79+6tChg63qAwAAAIAszT4jnd9++23Z2dlp0aJFMplMCg0N1euvv67OnTvbqDwAAAAAyNoyFLrmz5+vN998Ux07drRVPQAAAADwTMnQ5YVz585Vjhw5bFULAAAAADxzMhS6XnrpJc2bN09XrlyxVT0AAAAA8EzJ0OWFBw4c0Hfffafp06ff1Xbs2LHHVhQAAAAAPCsyFLomTZpkqzoAAAAA4JmUodBVvXr1ey6PiYl5LMUAAAAAwLMmQ6HryJEjmjRpkiIjI2UymSRJKSkpiomJ0R9//GGTAgEAAAAgK8vQRBpjxoxRnjx59OKLL+qFF17QW2+9JTs7Ow0aNMhW9QEAAABAlpah0BUWFqYJEyaoY8eOSktLU5cuXfTJJ59o3bp1tqoPAAAAALK0DIWuXLlyycnJSYUKFVJYWJgkqWLFirp48aJNigMAAACArC5Doato0aL673//qxw5csjFxUXHjh3TyZMnZTAYbFUfAAAAAGRpGZpIo1+/fgoICFCdOnXUtWtXvf7667Kzs9N//vMfW9UHAAAAAFlahkJX5cqVtX37djk4OKhDhw4qVaqUbty4oTp16tiqPgAAAADI0jIUui5dumT12tvbW97e3rp06ZIKFCjwWAsDAAAAgGdBhkLXyy+/fN/7t44dO/ZYCgIAAACAZ0mGQtfWrVutXsfExGj+/Plq2LDhYy0KAAAAAJ4VGQpdBQsWvOv1uHHj9Nprr6lly5aPtTAAAAAAeBZkKHTdz/Xr1x/HZgAAeOoYjQYZjel/NIrJZJbJZLZhRQCArCZDoWvGjBlWr1NSUrRjxw5VrFjxcdYEAMBTwWg0yMPDRXZ26X+sZVqaSXFxiQQvAIBFhkLXnj17rF7b2dmpUqVK6tmz52MtCgCAp4HRaJCdnVFjV6zR2atRD+3/fB5vjWz/moxGA6ELAGCRodC1ePFiW9UBAMBT6+zVKIVdjsjsMgAAWVSGQtc333yTrn6tW7d+hFIAAAAA4NmTodC1YsUKHTp0SB4eHipUqJAiIyMVGRmpvHnzys7OTpJkMBgIXQAAAADw/zIUukqUKKHy5csrKCjIErLmzJmjy5cv64MPPrBFfQAAAACQpaV/OiZJ69at04ABAyyBS5K6du2q77///rEXBgAAAADPggyFLicnJ506dcpq2R9//CF3d/fHWhQAAAAAPCsydHlhx44d1bVrV7Vv314FChTQ+fPntXz5cg0bNsxW9QEAAABAlpah0NWrVy95eXlp7dq12rx5swoVKqRJkyapXr16tqoPAAAAALK0DIUuSWrfvr3at29vi1oAAAAA4JmT7nu69u/frx9//FGSdPPmTQUHB6tFixaaMWOGzYoDAAAAgKwuXaFr27Zt6tKli06cOCFJ+uijj7Rnzx516NBBP/zwgxYvXmzTIgEAAAAgq0pX6Jo3b57Gjh2rgIAApaamau3atRoyZIjeeustTZw4UcuXL7d1nQAAAACQJaUrdJ04cULNmzeXJB0/flw3b95UrVq1JEnFixfXhQsXbFchAAAAAGRh6QpdaWlpsre/PefG4cOHVbhwYXl6ekq6fX+X0Zihx30BAAAAQLaRrrRUpEgRHTlyRJL0008/WUa5pNsTbBQpUsQmxQEAAABAVpeuKeM7duyowMBAlSxZUrt379bq1aslSV999ZVmz56tXr162bRIAAAAAMiq0hW62rZtK0dHRx08eFDdunWTn5+fpNsTbLRp00YdO3a0aZEAAAAAkFWl++HILVq0UIsWLayW/fTTT4+9IAAAAAB4ljADBgAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbStdEGjNmzHhonz59+vzrYgAAAADgWZOu0LVnz54HthsMhsdSDAAAAAA8a9IVuhYvXmzrOgAAAADgmZTu53TdsXv3bkVGRspsNkuSUlJSdOLECY0YMeKxFwcAAAAAWV2GQte4ceO0bNky5cyZU5KUlpamhIQEvfTSSzYpDgAAAACyugyFro0bN2rJkiW6efOm1q5dq/Hjx+ujjz5SYmKireoDAAAAgCwtQ6Hr5s2bqlixoq5evaqjR4/KYDCoT58+atasma3qAwAAAIAsLUPP6cqXL5+io6OVJ08eRUREKCUlRU5OToqPj7dVfQAAAACQpWVopKtevXrq3LmzFi1apGrVqmnYsGHKkSOHihQpYqPyAAAAACBry9BI18CBA9WqVSs5ODho1KhRio2NVXh4uMaNG2er+gAAAAAgS8vQSNcPP/ygbt26SZLc3Nw0f/58SdLXX3+t0qVLP/7qAAAAACCLe2jounnzpmJjYyVJw4YNU8WKFS3P6JKkGzduaOLEierQoYPtqgQAAACALOqhoSs+Pl7+/v5KSkqSJL388suWNrPZLIPBoFdeecV2FQIAAABAFvbQ0JUnTx798MMPunnzplq0aKH169dbtefIkUPe3t42KxAAAAAAsrJ0TaTh5eWl5557TgcOHFDBggXl5OSk6OhoGY3GRwpcx48fV5cuXVS9enXVqVNHQ4YMUUxMjCTp8OHDat++vSpVqqSXX35ZK1assFp3zZo1atSokSpWrKg2bdro0KFDlra0tDR99NFHql27tipVqqSAgABduXLF0h4dHa3AwEBVrVpVNWrUUEhIiFJTUzNcPwAAAACkV4ZmL0xMTFRgYKDq1Kmj119/XS+//LLeffddXb9+Pd3bSEpKUrdu3VSpUiX98ssvWr9+veLi4jRs2DBdu3ZNPXr0UOvWrbVv3z6FhIRowoQJOnLkiCRpz549Gjt2rCZOnKh9+/apZcuWCggI0M2bNyVJs2fP1s6dO7Vq1Srt2LFDTk5OGjFihGXf/fv3l4uLi3bs2KGVK1dq165dWrhwYUbeAgAAAADIkAyFrqlTpyoxMVHfffedDh8+rG+//VYmk0mTJ09O9zYuXbqkkiVLqnfv3nJ0dJSnp6c6dOigffv2afPmzfLw8FDHjh1lb2+vWrVqqUWLFlq6dKkkacWKFfL391eVKlXk4OCgzp07y9PTUxs2bLC0d+/eXfnz55erq6uGDx+u7du36/z58zp79qz27t2rwYMHy9nZWYUKFVJgYKBl2wAAAABgCxkKXT/99JOmTp0qX19f5ciRQ35+fpo8ebJ++OGHdG+jaNGimj9/vuzs7CzLvv/+e5UpU0ZhYWHy8/Oz6l+sWDEdP35ckhQeHn7f9hs3bigiIsKq3dvbW+7u7jpx4oTCwsLk4eEhHx8fS7uvr68uXbqUoZE6AAAAAMiIDD2n6+bNm3Jzc7NalitXLplMpkfaudls1rRp0/TTTz9pyZIl+vLLL+Xs7GzVx8nJSYmJiZKkhISE+7YnJCRIklxcXO5qv9P2z3XvvE5MTFSuXLnSXbfBkO6uAIBsip8V2QvnO/vgXGcfDzvXGfleyFDoqlChgqZPn66goCAZDAaZzWZNnz5d5cqVy8hmJN2ein7o0KE6evSolixZohIlSsjZ2Vk3btyw6peUlKScOXNKuh2S7kxd//d2T09PS4C6c3/XP9c3m813td15fWf76eXl5fbwTgCAbMvTM2M/V5C1cb6zD8519vG4z3W6QteBAwdUpUoVDRo0SG+//bbWrl2rggUL6uLFizIYDPriiy8ytNNz586pe/fuKlCggFauXKncuXNLkvz8/LRz506rvuHh4SpevLgkqXjx4goLC7urvW7dunJ3d5ePj4/VJYhXr15VXFyc/Pz8ZDKZFBcXp6ioKMuMiydPnlS+fPnuGr17mOjoG/rb86EBAM8oOzvjI/3gjY1NUFrao10FgszxqOda4nxnNZzr7MWWn+MGQ/oHY9IVurp3766DBw+qRIkS+v7777V161ZFR0erYMGCqlevnlxdXdO1M0m6du2a3nnnHdWsWVMhISEyGv93W1mjRo00efJkLVy4UB07dtSBAwe0bt06zZo1S5LUrl079e7dW02bNlWVKlW0dOlSRUdHq1GjRpKkNm3aaPbs2SpXrpw8PT01fvx4Va9eXYULF5YkValSRePHj9eYMWMUGxurWbNmqV27dumu/Q6zWYQuAMAD8XMie+F8Zx+c6+zjcZ7rdIUu89/26OHhobZt2z7yDlevXq1Lly5p48aN2rRpk1XboUOH9PnnnyskJEShoaHKnTu3RowYoZo1a0qSatWqpdGjR+uDDz5QZGSkihUrpnnz5snDw0OS1Lt3b6Wmpqpjx45KSEhQjRo1NG3aNMv2Q0NDNWbMGDVs2FBGo1GtW7dWYGDgIx8LAAAAADxMukKX4THeMdilSxd16dLlvu3lypXTsmXL7tveqlUrtWrV6p5tDg4OCgoKUlBQ0D3bvb29FRoamrGCAQAAAOBfSFfounnzpho2bPjAPlu3bn0sBQEAAADAsyRdocvBwUF9+vSxdS0AAAAA8MxJV+iyt7fXa6+9ZutaAAAAAOCZY3x4F+uJNAAAAAAA6Zeu0NWyZUtb1wEAAAAAz6R0ha4PP/zQ1nUAAAAAwDMpXaELAAAAAPBoCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABuyz+wCACCrMRoNMhoNGVrHZDLLZDLbqCIAAPA0I3QBQAYYjQZ5eLrIzpixCwXSTCbFxSYSvAAAyIYIXQCQAUajQXZGo6ZtXKsLMdHpWue53F7q37SljEYDoQsAgGyI0AUAj+BCTLROX4nM7DIAAEAWwEQaAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYkH1mFwA8K4xGg4xGQ4bWMZnMMpnMNqoIAAAATwNCF/AYGI0GeXi6yM6YscHjNJNJcbGJBC8AAIBnGKELeAyMRoPsjEYt3LFREddi0rVOPvfc6vxSUxmNBkIXAADAM4zQBTxGEddidD7mSmaXAQAAgKcIE2kAAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbss/sAp51RqNBRqMh3f1NJrNMJrMNKwIAAADwJBG6bMhoNMjT00VGY/oHFE0mk2JjEwleAAAAwDOC0GVDt0e5jFr/2xZFx8c8tL+Xa241r9hIRqOB0AUAAAA8IwhdT0B0fIwir0dldhkAAAAAMgETaQAAAACADWV66IqJiVGjRo20Z88ey7LDhw+rffv2qlSpkl5++WWtWLHCap01a9aoUaNGqlixotq0aaNDhw5Z2tLS0vTRRx+pdu3aqlSpkgICAnTlyhVLe3R0tAIDA1W1alXVqFFDISEhSk1Ntf2BAgAAAMiWMjV0HThwQB06dNC5c+csy65du6YePXqodevW2rdvn0JCQjRhwgQdOXJEkrRnzx6NHTtWEydO1L59+9SyZUsFBATo5s2bkqTZs2dr586dWrVqlXbs2CEnJyeNGDHCsv3+/fvLxcVFO3bs0MqVK7Vr1y4tXLjwiR43AAAAgOwj00LXmjVrFBQUpAEDBlgt37x5szw8PNSxY0fZ29urVq1aatGihZYuXSpJWrFihfz9/VWlShU5ODioc+fO8vT01IYNGyzt3bt3V/78+eXq6qrhw4dr+/btOn/+vM6ePau9e/dq8ODBcnZ2VqFChRQYGGjZNgAAAAA8bpk2kcaLL76oFi1ayN7e3ip4hYWFyc/Pz6pvsWLFtHLlSklSeHi42rZte1f78ePHdePGDUVERFit7+3tLXd3d504cUKS5OHhIR8fH0u7r6+vLl26pOvXrytXrlzpqt2Q/sduPbInsQ88PTjf2QfnOvvgXGcvnO/sg3OdfTzsXGfkeyHTQleePHnuuTwhIUHOzs5Wy5ycnJSYmPjQ9oSEBEmSi4vLXe132v657p3XiYmJ6Q5dXl5u6er3qDw9c9p0+3i6cL6zD8519sG5zl4439kH5zr7eNzn+qmbMt7Z2Vk3btywWpaUlKScOXNa2pOSku5q9/T0tASoO/d3/XN9s9l8V9ud13e2nx7R0TdkTsdjtOzsjI90wmJjE5SWZsrwesg8j3quJc53VsO5zl74HM8++L+dfXCusxdbfo4bDOkfjHnqQpefn5927txptSw8PFzFixeXJBUvXlxhYWF3tdetW1fu7u7y8fFReHi45RLDq1evKi4uTn5+fjKZTIqLi1NUVJS8vb0lSSdPnlS+fPnk5pb+0SuzWekKXf+GrbePpwvnO/vgXGcfnOvshfOdfXCus4/Hea4zfcr4f2rUqJGioqK0cOFCpaSkaPfu3Vq3bp3lPq527dpp3bp12r17t1JSUrRw4UJFR0erUaNGkqQ2bdpo9uzZOn/+vOLj4zV+/HhVr15dhQsXVpEiRVSlShWNHz9e8fHxOn/+vGbNmqV27dpl5iEDAAAAeIY9dSNdnp6e+vzzzxUSEqLQ0FDlzp1bI0aMUM2aNSVJtWrV0ujRo/XBBx8oMjJSxYoV07x58+Th4SFJ6t27t1JTU9WxY0clJCSoRo0amjZtmmX7oaGhGjNmjBo2bCij0ajWrVsrMDAwE44UAAAAQHbwVISuOzML3lGuXDktW7bsvv1btWqlVq1a3bPNwcFBQUFBCgoKume7t7e3QkNDH71YAAAAAMiAp+7yQgAAAAB4lhC6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANhQtgxd0dHRCgwMVNWqVVWjRg2FhIQoNTU1s8sCAAAA8AzKlqGrf//+cnFx0Y4dO7Ry5Urt2rVLCxcuzOyyAAAAADyDsl3oOnv2rPbu3avBgwfL2dlZhQoVUmBgoJYuXZrZpQEAAAB4BtlndgFPWlhYmDw8POTj42NZ5uvrq0uXLun69evKlSvXQ7dhNEpmc/r36ZMrjxzsHv5W587pabUPZD2FcueVo336/lv55Mpt+TfnO+spmtdHOewd0tW3YG7OdVZXPH8+OTk8/HwX8vay/JtznTWVKpRPzo7p+79dxIfznZWVej6/nHOk81zn87b8m3OdNZX0LShnJ8eH9nu+YB7Lvx92rg2G9O/fYDZnJD5kfd9++60++eQT/fzzz5Zl586dU6NGjbRt2zbly5cv84oDAAAA8MzJdlndxcVFN2/etFp253XOnDkzoyQAAAAAz7BsF7qKFy+uuLg4RUVFWZadPHlS+fLlk5ubWyZWBgAAAOBZlO1CV5EiRVSlShWNHz9e8fHxOn/+vGbNmqV27dpldmkAAAAAnkHZ7p4uSYqKitKYMWO0Z88eGY1GtW7dWkFBQbKzs8vs0gAAAAA8Y7Jl6AIAAACAJyXbXV4IAAAAAE8SoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG68Fjt2rUrs0sAgKfaX3/9pZSUlMwuA3hmmUymzC4Bj+hZPneELjw248eP1/z58zO7DDwGFy9ezOwSkEFjx47VL7/8ktll4CFGjRqlN954Q7t371Zqampml4MHCA8Pz+wS8Aj69++vUaNG8f8rC3rWzx2hC4/NtWvX5OvrK0lKS0vL5GrwqIKCgvT1119ndhnIgLCwMH333XcqWbJkZpeCB0hOTtaVK1eUmJiosWPH6tdff32m/6qblQUHB6t58+ZcvZHFnD59Wps2bdLKlSs1ceJE/n9lIdnh3BG68K/duUwmKipKXl5ekiQ7O7vMLAn/wunTp1W+fHlJEs9OzxoSExNlNps5X08xs9ksR0dHBQUFqUWLFsqTJ48GDhyoHTt2cN6eQsnJyZKkfv366eeff87cYpBuL7zwgvr166dq1app1apVGjx4cGaXhHTKDueO0IV/JS0tTQ4ODpKk+Ph45ciRQ5Kshoafxb9WPIvMZrPi4+MVGRlpOY8GgyGTq0J6ODg4yMfHRzlz5pR0+/8c/++eHiaTSQaDQWazWW5ubjKZTAoODlbHjh3Vv39/bd++neD1lLjz/6Z79+567bXXVLduXfXp00dbt27N5MrwIH//o1Px4sWVJ08effHFF9q7d68GDRqUydXhQbLTuSN04ZHNnTtXAwcOtPxF0M3NTZGRkTpx4oTOnDmjmzdvKjk5WUajkcsNs4A7vxQaDAa5uLhIsg7P/FL4dPnpp58UGRkpSYqMjJSzs7OlzWg0ymjk4/1pcOczULr9f8zHx0cVKlTQmDFjNGDAALVu3ZoRr6fInXPl7e2ts2fPql69egoKClK/fv30448/ZnJ1uB+DwWD5I+Err7yiy5cva8+ePZo3b55++eUXDRkyJJMrxP1kp3PHT2U8kpSUFDk6Oio6Olpjx45VUlKSEhIStGnTJnXq1Emvv/66GjVqpEaNGql169YaP378M3tjZFa3cOFCfffdd5Juj5jkyZNHkpSUlGQ1WsKo19Pjxx9/VEhIiFavXq34+HiZTCYdOXJEffv21aBBgzRhwgStXr1a27Zt0w8//KCEhITMLjlb6tOnj5o3b67169fr999/tyx/4403VKRIER04cECjR49W06ZN1aNHD+4fykQxMTFWr/PmzasuXbpo2bJlatasmd5991317duXSw2fMhMmTNCnn36q2NhY3bp1y7I8MDBQ586dk5+fn+bOnasdO3aod+/emVgp/ik7njv7zC4AWY/JZJKDg4PefPNNubu7a/ny5Ro2bJjOnTun8ePHq2jRokpOTtapU6d05swZxcTEqHXr1rK359vtaRMbG6tNmzbJw8NDLi4uKl68uMLCwjRixAjFxsYqX7588vLykru7u3Lnzq3KlSurWbNmmV12tvfyyy/rzz//1NatW+Xk5CRJyp07t6pVq6aDBw/q4sWL2r59u86fP6+cOXNq9erVlksP8WT89ddf2rdvn65du6bt27crLCxMderUUcuWLeXn56dChQpp7ty5mjNnjsaNGycnJyfly5cvs8vOloKCgrR79269//778vX1ValSpSRJFSpUUL58+XTx4kUNHDhQaWlp6tWrl+bOnau6detmctVYuXKlFi1aJEk6d+6cjEajAgICVKRIEZUuXVpTp07Vpk2b1KxZM82YMUNDhgxRZGSkfHx8MrlyrF69OlueO4OZ6xmQAbNmzdLly5dVsGBBVa1aVVWrVtU333yj5cuX6/jx41qzZo2ef/75zC4TGXD+/HlNmDBBBoNBlStX1sKFCzVy5EglJiYqKSlJv//+uyIiIhQbG6uJEyfKz88vs0vOts6ePasbN26obNmykqQFCxbo+++/182bN1WhQgWNGzdOJpNJRqNRCQkJunHjhuzs7Cyjl3hykpOTtWfPHn344Yd6/vnn1b9/f4WEhMjBwUEFChRQt27dFBwcrMGDB6tWrVqZXW62dfToUb333nu6dOmSKlSoIE9PT3l5eal3794qUKCA5s2bpy1btmj58uWSpBkzZqhp06aWmXqROUwmk06fPq2vv/5aW7ZsUb169eTs7KyVK1eqdevWatKkiW7cuKHly5fro48+Uq5cuXTr1i3L/crIXMePH9fKlSu1devWbHXuCF1It969eysiIkL169fXkSNHdO3aNdWvX1+BgYFat26dZsyYoapVq2rMmDGys7NTamoqo1tPqe+++043btxQsWLFVLVqVUVHR2vEiBEKDw+Xq6ur1qxZc9c6SUlJllEVPHl9+/bVpUuXdP78eZUtW1bt2rVT06ZN9dVXX2nGjBkqVaqUJk6caAlYd8IXnqyYmBjlzp1b0u3LsH/99VcNGDBAnTp10oABA3T48GF9/PHHunbtmo4fP6733nvvmbl0JitKTk7W9u3btXTpUiUkJGjAgAGaNWuWUlJSVLBgQXXu3FmfffaZevbsaZnVFZlr7Nixql27tho2bKgTJ05o2bJl+uWXXzRnzhzFxcVZQnKxYsV07tw5/fe//1WRIkUyu2zo9tU1OXPmlKOjo06dOqUvv/xSO3fuzDbnjt+IkS579uzR5cuXtWLFCtnZ2SkmJkabNm3SokWLlJqaqr59+yo1NVXffPONgoKCNGnSJMushni6BAQE6MKFC8qfP79CQ0NVt25dderUSZMmTdKIESN06NAhbd68WY0bN5Z0+xdHBweHZ+KvTFnV2LFjFRERoTlz5ujmzZuaPXu2vvrqK50/f149evSQwWDQypUrtW7dOvn7+8vHx4fAlQkWLFigffv2afjw4SpUqJAcHBz04osv6pNPPlH//v117do1ffDBB1q0aJF+/fVXHTx4UE2aNMnssrOlbdu2SZJcXV31yiuvyGAwaMaMGdq4caMWL16s/fv3a9myZerZs6diYmLk6+tL6HoKBAQE6PLlyxo5cqQkqUSJEnrzzTcVHx+vXr16KTQ0VMHBwWrfvr2++uor3bp1i8/Cp8SoUaN08eJFJSUlqV+/fqpevbr+85//KDExMfucOzOQDlu2bDG3aNHCatn169fNX3/9tbl169bm7777zpyammr+8ssvzT169DBHRkZmUqV4kGXLlpnbtWtneb1//35zQECAuXv37ubffvvNHBcXZw4ICDD36dPHvH79+kysFHckJSWZ+/TpY961a5fVsunTp5vfeust8/Lly81ms9n82WefmRs3bmxesGCBOTU1NbPKzdaWLFliLlGihLlPnz7mixcvWpanpaWZf/75Z3PlypXNw4cPtyw3mUyZUWa216dPH3O7du3MrVq1Mjdt2tS8YsUKs9l8++ecv7+/eciQIZa+u3btMs+YMcMcFhaWWeXi//Xo0cPcsWNHy+uYmBhzamqq2WQyma9evWoeNGiQ+ZVXXjEfOHDAbDbf/py8efNmZpWLv3nvvffMr7/+uvnIkSPmxo0bm+fMmWNpu3z5crY5d89YhIStlCtXTnFxcVq2bJllmZubmxo3bqwqVapo586dsrOz0+uvv67Jkycrb968mVgt7ufKlSuWofq0tDRVqVJFvXr1kpOTkxYtWiSDwWCZRINZ754OOXLkUGJiojZt2mS1rEePHipRooS+/fZbpaSkqGfPnurQoYMaN27Mw8mfMPP/X6UfHx+vTp066fDhwxoxYoQuX74s6fY05HdGvFauXKlx48ZJYkbQzPDBBx/o6tWrWrFihT799FPVq1fPMur14osvqn///jp27Jjl+UA1a9ZUQECAihUrlpllZ3urV6/W3r17NXXqVEnSl19+qaFDh6pjx47q27evnJycNGzYMFWtWlW9evXSkSNHlCNHDi6Jfwr8+eefiouL09KlS1WuXDlVq1ZN+/btU58+fTRt2jTlypVLwcHB2eLcEbpwX0eOHNGZM2d04cIF+fj46LXXXtP333+vjRs3Wvp4eHiofPnyOnbsmOXhyLly5crEqvEgL7zwgs6dO6ewsDDLL+bly5dXly5d9Oeff+rHH39UgQIFNHnyZA0ZMoQZ7zKR+W+32zZo0EBnz57Vzp07LcudnJwUFBSkv/76S+vWrZMkvfvuu3ruuecypd7s7E542rNnjypVqqS1a9cqPDzcKnjZ2dmpTp06+vzzz/Xmm29mZrnZVnJysq5evarg4GBJUqFChVSmTBkdOnRI169fl5OTk+rWrau+ffvqwIEDGjp0qCQ9e5c4ZUH58+dX5cqVdeLECS1ZskTz589XmzZt1KxZMyUmJqpbt25yc3NTt27d1KJFC7m7u2d2yfh/iYmJ+uuvv/Tbb79p8uTJWrdunV5++WV5eXnpwIEDGj58uHLnzq2uXbs+8+eOe7pwT71799b58+eVmpoqR0dHdevWTW+99ZamTJmilStX6tatW2rdurUk6erVq8qbNy/3cD2lYmJi5OrqKkdHR1WoUEGLFy/Wt99+q7feekv58uWT2WxWpUqVVK1aNW3btk0tWrRQ/vz5M7vsbO3OLKHPPfecqlatqg4dOuiXX37R/PnzZW9vrxo1aki6HbyqVq3KyPJTICkpSe+8847q1asnSVqzZo1ee+01DR8+XCEhIcqfP7/s7OxUu3btTK40+0pOTtbRo0d14MABVapUSdLtKzZ8fHyUK1cumUwmOTo66pVXXlGOHDmeqRv4s7r/a+9OA6K6soUNv1XFoFAqg4ii0CqOGLyJQhslIeKUaItjjLPGKU6IMqnRXDF2cJ4RwSnYjoCgRtvhkqRVNKItJiYaFdSoKCqIIIMgFFX1/fDjtHTS3fa9rQWynj9Sp04Vi+ycqr3O3nvtjh07cv78eYKDg/Hw8GDjxo20atUKeFbaf+7cuaSnp+Pq6sqsWbOwsLAwccSinIeHB02bNiU4OJhHjx6xbds25fpLTEwkIiKCzMxMmjVr9tq3nSRd4lcWLVrEo0eP2LdvH1evXuWHH34gODiY//7v/8bf35/o6GgiIyOJjY2lSZMmHDt2jC1btkihhUpo1qxZ3L9/n0ePHtGtWzcGDx5MQEAAn376KRqNhgEDBigl/i0tLalTp45MTTOx56uEpqSk8M0339CrVy/Wrl3L5MmTiYqKIjU1FR8fH06cOMGFCxeUO/LCdGrUqIGXlxcAJSUl2Nvbs3//fj788EP8/f1Zt25dld9jpqrTarV8+umnFUaR7927h16vB56NaO3atYuaNWvSv39/U4Up/k55JVY/Pz9u3rzJtWvXsLW1xWg0olKp+N3vfoe5uTllZWUAr3Wnvaopb6ONGzdy7tw5EhMTK8zGeOutt1Cr1crmyK9720nSJX4lOzubwYMHo9FoaNOmDW3atKFOnTrKdLPPPvuMixcvcvjwYZydnRk/fjxNmzY1ddji7wQHB5Oens6iRYs4fvw4ly9fZuLEiaxdu5awsDAWLVpEeno6DRs2xMrKigMHDrBjxw5Th12t/aMqoVu3bkWv1xMZGcnatWs5ePAge/fuxczMjE2bNuHs7Gzq0Ks1vV6PRqNRtsiwtLSkrKwMOzs74uLiGD16tNKxF6bl7e1NzZo1lceFhYVKJ3Dr1q2sW7eObdu2mSo88RvUajWlpaVYWFgwa9Ys8vPzK9zAOHLkCCUlJdStW9eEUYrfolKpMBgMaLVafHx8OH/+PJs2bWL27Nmo1Wr+8pe/oFKpsLW1NXWor4QkXUKh1+vR6/U8fPiQmzdvAn9bV+Lr60tRURHLly+nWbNmuLu74+7ubspwxT+Rl5dHdnY2K1aswNnZGVdXV65evcr27duZOnUqGzZsYNmyZRw7doyUlBQaNWrEtm3bZONjEysoKKCsrEwZbbSzs8PX1xczMzN27dqFi4sLwcHBFBYW8uTJE6ytrdFqtSaOunqJiIigZ8+eNGnSBJVKpSRcANHR0XTs2JFWrVphZmZGWVkZdevW5eDBg7IuqBLQ6/UVEi6A9PR03njjDQ4cOEBERATbtm3Dzc3NRBEKgEePHmFvb6881uv1ygjIjRs3aN26NTt37mTHjh24u7tz8uRJNm/eXOE1wjR+q+3KPx9PnTpF7dq1+frrr+nevTtvvvkmycnJbN68GRsbGxNF/GrJt4BQaDQaLCws+Oijj9iyZQsnTpxQFogbjUa6du2Ko6Mj9+7dM3Gk4p8xGo0UFRVx6dIlfvnlF+V4q1atGD16NO7u7qxZs4amTZsyefJkNm/ezLx585T58cJ03N3dycvL+80qoR4eHiQlJQHPpkk5OjpKwvWKJSYmKpt1ln82lncoZs6cycGDB2nevLlyfvnIl1QpfPVOnz5NYWGh8vj5mxnbt2/n0qVLyvF169axZMkSoqOjJeEysZkzZxIQEKDc+IW/XWOBgYFs374da2trOnbsSI8ePfD09CQmJoY2bdqYKmTx//2ztgsICGDfvn0MGzaMGTNm0Lt3bzw8PNi9e3e1uuYk6RIkJCSQnJysPO7evTujRo0iNDSUpKQkVCoVKpWKunXrYmNjw9OnT00YrfhXVCoVDRo0oFevXmzdupX09HTluRYtWtC1a1d++OEHsrOzlfNlHZfpfPvttxw6dIiUlBQcHR3p168fiYmJFUrEl1cJvXz5MsXFxSaMtnrT6/XY2Nig1+srrAsKDg7mwoULxMbGotFoMBgMFV4nSdertWTJEsaOHcuBAweUbS/KE+CQkBDi4uKUm0zNmjXDzs6OrVu38sYbb5gsZgGZmZmcOXOGv/71r6xcuZLbt28rz02bNo1r166xevVqzM3Nadq0KQEBAQwaNEhZlyxM51+13fXr11m4cCFarRYvLy8CAgIYOnRotWs7SbqqMaPRSGFhIRs2bCAmJoaUlBTg2XqEoUOH0r17d2bMmEFcXBw//fQTO3fu5Oeff1aqzojKZffu3Wzbto19+/ZhMBj44IMPsLCwYNOmTdy5c0c5r2vXrtja2lJQUGDCaAXA5MmTWbFiBbt27VJGkPv06YODgwN79uxh//79yrnlVUJlmpppNWjQAHNz8wqJVffu3Tl06JCymF/ayLTKp6ItXbqUuLg45UZhaGgo33//vbIeEqBTp07ExMRUGKEUpuHo6EhISAgdOnTgr3/9K7Nnz+bOnTvcv38fOzs7EhISsLCwUApmiMrjRdrO0tISnU5n6lBNSmV8/nadqFYMBgNFRUX06tWLWrVq4e7uzocffoiHhwcAubm5HD58mA0bNuDi4kJZWRnz5s2rVkPBVcWkSZN4/PgxNWvWJDs7m+3bt2NjY8ORI0fYs2cPWq2WKVOm0KpVK3bu3El0dDSxsbEyB96EVq1aRXJyMnFxccCztQoAVlZWWFhYEBkZyalTp7C1ta1QJVSuv1frp59+ok2bNmg0GiIjI/nxxx+Jior6zXPLysqUzrx49corpRUWFrJ69WqKiorYu3cvAQEBDBs2jHPnzuHt7Y2ZmRk6nU62OakkDAaDMqPmypUrxMbGMmzYMGbOnEmNGjVYsmSJMiIi7Va5SNv9e+TboRpTq9U8ffoUV1dXBg4cyO7du4mJicFoNOLp6YmtrS3Dhw/ngw8+oGbNmuj1emrVqmXqsMXfWb16NdnZ2cTHx5Obm8uoUaM4cuQIOp2Ofv36YWdnR0xMDAMGDKBjx47cvHmT8PBwSbhMLDMzk759+wKwbt06jh49ilqt5v79+4SEhChVQg8dOoSLi4tUCTWBXbt2ER8fz9ixY+nduzcWFhbcuHGD0NBQGjduTO3atWnSpAlOTk48fvxY1kWaWHmlNHhWlMbLy4uePXsyYcIE1Go1o0aNwszMDL1eX+07f5XJ8yPDrVu3Jicnhz179rB371569uzJ7NmzWbp0Kc7OztJulYy03b9Hkq5q7vr169SrV4/evXvTqFEjli9fTmxsLCqVShnxsrW1lekyldidO3cYPnw4ABs2bCAjI4MTJ05w8+ZNNm/ezMGDB1m1ahUpKSnUrl0bGxsb2UzXhAwGAwaDgXv37tGkSRNu3brFwYMH2bBhAyqViosXLxIcHIyDgwM+Pj5SJdSEevTowdmzZ4mPj8fS0pKCggKKi4spKioiPj6e7OxszMzMyMnJoW7dunz11VfY2dmZOuxqJyMjg4YNGwLPOoFarZYhQ4YQEhJCbGwsy5YtIyQkBJVKxYgRI6hRo4aJIxYAQUFBSvGuxo0bK2XDQ0JCCAsLIz8/n7179zJw4EBlj8Ln93gSphMYGIilpaW03b9Jkq5q7u2331bWaL355psEBgaycuVK9uzZQ1lZGW+//bYkXFVAeUevqKiIPXv24OrqSllZGePHj2f58uV8/vnnShItTEutVqNWq+nTpw/h4eFkZmYyatQoGjduTGlpKS4uLuzdu5fr16/j4+Nj6nCrpcLCQoqLi3FwcOCPf/wj8+fPJyYmhszMTAYPHsy0adMoKipCp9ORn5/PnTt3cHFxkYTLBPz9/UlMTCQwMJDGjRvTo0cP4Nmmq126dOHkyZP069eP0tJS5s6di7m5OaNHjzZx1OLEiRMcOnQIeDZCeePGDWbMmEGLFi1wdnZGpVIRHx/P+PHjiY+PZ9SoUSaOWJRLSUnh8OHDgLTdv0t609VY+TQMCwsLDAYDRqORdu3aERQUxJUrVzh8+LBUKqwCVqxYwXvvvQfAggULcHV1pbS0FDMzM9zd3WVhfyXl7e1N165d2b9/v1LpydzcHJVKhZWVlUzFMJGZM2fi5+dHnz59WLlyJVlZWYSFheHg4MCdO3fIz8/HaDRiZWVFnTp1cHZ2plOnTnIX1wQyMzPJysoC4NKlS8TExDB69GiSk5MpKiqiffv2REZGUlRUxMCBA1m2bBleXl4mjlro9XpcXV0JCwvDzMwMGxsbfH19mTt3Lp999hn79+9n1KhRHDp0iNu3b6PVaklISJBrrBJYs2YNOp2OkJAQzMzMsLe3l7b7N8hIVzVx584dnJ2dlcfPb1j36NGjCju5v/XWW3zxxRfY29vLNIwqoHzx+POL+Murd5mZmVGnTp0Ki12F6RmNRurVq8fAgQPJy8tj165dtG3bFhcXFy5fvsy5c+cICgoydZjVTnBwMOnp6SxYsIDr168TGxtLamoqI0eOZMGCBahUKtLS0khMTKR79+5yM8OESktLcXR05I9//CMLFy7k0qVLbN26lS1btrB+/XqKioqYNWsW9erVIzExkb59++Lr62vqsKu9hQsXkpGRwePHj3nnnXeYN28e8+bNY9euXcTFxfH111+zaNEiWrVqRWpqKrdu3ap2ZcUrq4kTJ1JQUMD06dNp27YtT548Yf369ezYsUPa7gVJ9cJq4NNPP8XS0pL58+cDFROuoKAgdDoda9euNWGE4kU9ffq0QiL8fFvq9XrlrnyXLl1IT09n9+7d7Ny5k2bNmpkq5GovIiKCnj170qRJE1QqVYU227lzJ7Vr1+bKlSvs3LkTV1dXrKysmDt3Lq1btzZx5NVLTk4OQUFBLF68GEdHRwBSU1PZsmULubm5TJs2jaZNmxIaGsqtW7f45JNPeP/9900cdfW0atUqLCwsGDNmDFZWVty4cYOAgABq1arFzp07ycnJITo6muPHj3Pt2jV69erF8uXLJUk2MX9/f3JzcxkyZAg3b95kx44dhIWFcfHiRaKiooiKiqJz587k5OSQmJjI8ePHmTVrFk2aNDF16NXelClTyM3NZffu3cqxwsJCdu/ezYoVK4iIiKBr167Sdv+CJF3VwJAhQxg4cCCDBg2qcHzmzJlcvXqVhIQEmcpUBXz66ad4eHgwcOBAoGLCFRYWhrOzM97e3ixevBidToe1tTVTp06lZcuWpgy7WktMTGTBggUkJSX9qsMXFBTErVu3SEhIAJ5NldJqtRiNRrRarSnCrdby8/Pp06cPkyZNYsiQIcrxtLQ0VqxYgYODA1988QWPHj1ixYoV+Pn54eTkZMKIq685c+Zw4MABpk+fzujRo5WqktOnT8fCwoKEhARUKhXXrl3j2rVrtGzZEldXV1OHXa2dOHGCNWvWsHfvXgDy8vKYOHEio0aN4v3332ft2rVs2LCBtWvX0qNHD6XgkGzBYHrr1q1j/fr1XL58GYC4uDguX75MTk4Obdq0wdLSksWLF7Nq1Sp69uwpbfdPyG2f15hOp6O0tJTc3Fxq165d4bnjx4+TlpamJFyy2WDllp+fT3JyMm3atFGOlSdcs2bN4rvvvmPEiBE0btyYqKgoNm3axMqVKyXhMjG9Xo+NjQ16vZ7n728FBwdz8eJF5a5hWVkZjo6OWFtbS8JlIlqtlq5du/Ljjz8qe6YBtGjRggkTJrB//35+/vln7O3t+eKLLyThMoHya0iv1/Pee++xYsUKNm7cSGlpKa6urqxZs4aysjIGDBiA0WikefPm9OrVSxKuSiA3NxcrKyvg2dTQOnXqAJCVlYVGo+GTTz5h4sSJ+Pv7880336BWq6XTXgkYDAYaNWqEt7c3qampbNq0icjISOzs7KhXrx5r167l4cOHzJkzh4CAAI4dOyZt90/If5XXmLm5eYViGfC3zTs7d+6Ml5eXknDJBVK55eXlkZeXpyRa5f70pz+RnJzMt99+i1qtprS0FAsLC6VCnjC9Bg0aYG5uXmFksnv37ixatEiuPxNLSEggOzubtm3b0rx5c4YOHYq/v7+ywWfjxo2BZ+tc27Vrp0ztlWvLNMrXrqalpREWFkavXr0ICgpCpVIxYcIEXF1dWb16NePGjWP48OHs2rVLWfMqTMvV1ZWsrCzu3btH/fr1gWdJdPlnn7W1NT4+PjRq1EimpFUiarUab29vTp48yeLFi7G0tGTz5s3KjYy2bduyefNm1qxZg5+fHy4uLiaOuHKTb/rXUEREBDVq1GDcuHGo1Wqsra3Jy8ujrKyMkpIS5UOufEqhdPgqP41Gg62trbI5dXlHfcCAAQwbNkzpvJcn18J0fvrpJ9q0aYNGo+HWrVtKovV8wly+FkgSLtOZPHkymZmZ2Nvbc+zYMTQaDXPmzGHJkiUEBgZSUlJCt27dePfdd9m9ezd379791YwB8eqVlJQwZMgQ3NzccHNzw2AwEBISgtFo5JNPPqFp06ZER0cr15skXJWDu7s769atw8nJCYPBgE6n4+nTp8qG4tu2bWPx4sWcPHkSe3t7E0crnmdnZ8fUqVMZPnw47dq1w9HREZ1Oh7m5OQ4ODlhZWdGgQQP8/PxMHWqlJ9/2r5mcnBwePnzIpUuXsLKy4sMPPyQjI4OlS5eyfPlyAOrXr0+dOnWoWbMmXbp0oX///vLFVAnt378fV1dX3N3dKSoqUqZjwN8S5fIk7PljwnR27dpFfHw8Y8eOpXfv3spak9DQUBo3bkzt2rVp0qQJTk5OPH78WOlwiFdr3759PHjwgH379gFw+fJlEhISmDZtGmvWrCE8PJyIiAjmzp1Lo0aNyMrKIjw8HAcHBxNHLqytrRkwYADw7KaFr68vKpWK2bNn8/TpU/z9/ZURSlG5tGjRAng2ZS03N5cHDx7QrFkz9uzZw/r164mLi5OEq5Jq2rQp4eHhGAyGClPgb9y4gVqtliUqL0h6aa8ZOzs7JkyYQExMDAkJCTx48AArKyvCwsIoLS2loKCAe/fuceXKFQoKCmjTpo0kXJXQzz//TEREBF5eXlhbW1NcXMyVK1eYNm0aBoOB+vXr4+rqio2NDZaWlnTs2JGmTZuaOuxqr0ePHpw9e5b4+HgsLS0pKCiguLiYoqIi4uPjyc7OxszMjJycHOrWrctXX30lG+qaQEFBgdIx1+v1uLm5odVqUavVhIaGsmbNGpYsWcL9+/cpKSmhXr16FbbVEKZVPktDo9FgNBrp3bs3paWlLF68mLFjx8o1VcmZmZlhbm5OkyZNWLVqFYcOHWLr1q288cYbpg5N/BMeHh6UlJSwdu1aHjx4gKWlJYcPHyY6OlrWIr8gqV74mkhISODhw4f813/9F82aNcPKyorIyEiOHTvGkydPOH78+K9eI1ObKrejR48SHR3Nm2++iZOTE5s2bSIgIICrV69SVFTE7du3SU9PR6VSER0dLUmXCRUWFlJcXIyDgwP5+fnMnz+fvLw8MjMzef/995k2bRpFRUXodDry8/O5c+cOLi4usmHkK1ZWVoZOp+PSpUtMmzaNrVu3VhhtTEtLIzw8nN///veMHDnShJGKF1XehVGpVBQWFkrnr4rIysrC29sba2trdu7cKaP+VYROp+Pbb79l3759NG/enH79+smWNP8GSbpeA8+vTSgoKECj0TB9+nTefPNNVq9ezb59+/Dz82P48OGAJFuV2ffff09BQQEdO3bEwsKCkydPEh4eTmFhIS4uLkRFRSnnGgwGjEYjhYWFFaYeildr5syZZGVlkZqayqBBg+jTpw8NGzbk888/58iRI3z00UfMmTNHRpRNLDQ0lF9++QW9Xs+MGTOIiYnBYDAwZcoUWrRooRRcmD9/PpmZmURGRpo6ZPGCyttOimZUHWVlZSxbtoyPPvpIqkuKakN63lVc+RTC59cm7N27l9mzZxMWFsaMGTNQqVT8+c9/pqSkhLFjx0rCVUlNnTqVO3fuUFxcjFqtZsCAAYwYMYJZs2Yxf/58MjIyuHLlirJprl6vx9zcXBIuEwoODiY9PZ0FCxZw/fp1YmNjSU1NZeTIkSxYsACVSkVaWhqJiYl0795dqt6ZiL+/P1lZWUyYMIF69erh7u5Ofn4+R44cYdOmTYwbN065025ra4tarcZgMEh7VRHliZYkXFWHmZkZISEh0h8R1Yr8317FFRUVKeVVn1+boFKpWLZsGcuWLWP06NE8ffqUpKQkPvzwQ6nAVQmV73WxZ88eLCwsiI6O5tixY2RkZBAcHExoaChLlixh3759lJWV4e7uLhtam1hOTg6PHj0iPDwcR0dHWrVqRfPmzdmyZQt/+tOfqF27NnPnziU0NJSNGzcCf6taKF6dn3/+mfT0dOLi4rCwsGDv3r0kJCRQVFTEgwcPcHV1JTg4GC8vL9RqNQkJCWzbtk0SLiFeMkm4RHUj3ypV1KRJk/j6669xcXHhu+++4+rVq0qJXBcXFwYNGkTDhg05ffo09erVY8yYMaxYsUISrkrIaDTy4MED+vbti6WlJSqVirFjx9K/f3/S09PZsmULHh4eTJw4kaSkJA4dOkRpaampw672zMzMuHnzJseOHVOOtWzZkvHjx6NWq4mLi0Or1TJnzhxatmyJu7u7CaOtvvR6PXq9HgsLC7Zs2cLq1atxcHDA3t6ey5cv8/jxY6ZMmUJGRgYGg4EdO3bI+hIhhBD/cXKboQoKCQnh+PHjdOjQgSFDhtCpUyeioqLw8/OjWbNmGI1GWrRogb29Pd999x0jR46UBfuVmEqlQqvVcvLkSfr06aOUgR8wYABFRUXExMTQr18/unXrhkajoXnz5rIfVyWg1Wrp2rUrP/74I56ensq6hBYtWjBhwgQ+/vhjhg4dSps2bfjiiy9k5MREbG1tuXv3LjExMTx48IDo6Gilrdzd3Vm+fDkLFizggw8+kDYSQgjx0sg3TBUzefJksrKymDJlCqmpqdSsWZMPPviAoqIiNmzYQFpamjKv3dbWFicnJ/R6vYmjFr/l+dEqLy8vcnJy+OabbyguLlaOjxgxAo1Gw1dffQWAj4+PJNAmlJCQwIYNG0hOTiYnJ4ehQ4fy448/Ehsby61bt5Tz3nrrLdq1a0eNGjUApDNvQs7OzkyZMoW4uDjOnDlDrVq10Ol0ADRq1AhbW1tZvyWEEOKlk5GuKmTcuHE8efKEmJgYjhw5QlJSEvBsnYjBYODIkSMEBgby7rvvAihrE8qnHYrKY+HChdy/fx8LCwu8vb3p27cvFy5cYPPmzZiZmdGlSxesra2BZyMnDRs2NHHE4vkqoceOHUOj0TBnzhyWLFlCYGAgJSUldOvWjXfffZfdu3dz9+5dmc5bSQwYMIDbt28THx/P+fPn6dmzJ/Cs8JAkXEIIIV4FSbqqiIMHD1JaWkpMTAzwrCOek5PDuXPn8PT0pGfPnjRr1oyzZ89y5swZGjZsyI4dO5Qd4EXl4e/vz7179xg/fjwnTpwgPj6epKQkli9fjk6n48svv+Ty5ct4enqSnp5OUlISU6ZMMXXY1dq+fft+VSU0ISGBadOmsWbNGsLDw4mIiGDu3Lk0atSIrKwswsPDcXBwMHHkAsDe3p6AgABUKhWBgYFER0fj4OCgbEJuY2Nj6hCFEEK85mSfririyZMnyshHaWkphYWFjB8/nsGDBzN48GATRyde1I0bN/j000/58ssv0Wq1GAwGjh8/zsaNG6lfvz6rV68mISGBkydPcvv2bRwcHJgxYwZubm6mDr1a27ZtGxcuXGDlypXo9Xo0Gg3p6els376d8+fPs2bNGuzt7bl//z4lJSXUq1ePunXrmjps8XdKSko4f/48Z86cwcXFhd///ve4uLiYOiwhhBDVgIx0VRHlCZfRaMTCwgI7Ozt8fX3ZsGEDnTp1wtnZWTaGrALy8/PJyMhQ1pSo1Wq8vb3RaDRs2rSJqKgoJk2aRP/+/SkqKsLMzExZFyRMx9XVlfXr13P16lWlsl15ldAHDx5w/PhxRo4cKZt8VnKWlpZ06tSJTp06mToUIYQQ1YxMZK9ink+qfHx8aNGiBUlJSZSUlEjCVYmVlJQAzwosNGrUiIiICMoHmc3MzHjnnXfw9vbm9OnTlJaWolar0Wq1knCZ0PLly5k1axbz5s1DrVbzzjvvEBUVRVpaGkCFKqGnT582cbRCCCGEqMwk6arCGjduzBtvvEFkZCQXL140dTjiH1i1ahVbtmwhPz8fgP79+5OWlsbmzZsxGAwAaDQavL29yc3NJS8vz5ThCmDq1KmkpKTQqlUrTpw4gbm5Ob6+vsqI5NWrVytUCW3QoIHSlkIIIYQQf0+mF1ZR5VMJ/fz8SE9PlwX7ldjDhw85cOAA5ubmTJgwgd69e5ORkcGpU6coLCwkICAAgHPnzlGjRg1q1qxp4oirt0OHDpGVlcWePXsASExMJCYmBo1GQ1ZWFm5ubgQHB+Pl5YVarVaqhEoFPCGEEEL8I5J0VVEqlUopdbx06VJThyN+Q3lirNfree+991ixYgUlJSX4+fnxySefEBsby9dff80777xD+/btOX/+PBs2bECr1Zo69Grtl19+wdHREYDIyEh++uknvLy8KCgo4OjRozg6OjJp0iSOHj0qVUKFEEII8UKkeqEQL1FZWRmDBg0iLCyMmzdvEhQUhJ+fH35+fuh0OqUj7+TkhKurK87OzqYOudpLTk6muLiYLl26cPbsWezt7WnWrBnwbOuG6Ohodu/ejbm5uYxuCSGEEOKFyEiXEC9RSUkJQ4YMwc3NDTc3NwwGAyEhIQCMHz8eOzs7hg0bZuIoxfM6duwIPEuYO3ToAIBOp8Pc3BwbGxtq1KiB0WiUhEsIIYQQL0ySLiFeImtrawYMGAA868T7+vqiUqmYPXs2JSUlTJ06VSoUVlIajQaouEfe3bt3qVWrFnq93pShCSGEEKKKkaRLiJfM3NwceNaJNxqN9O7dm9LSUhYvXsyYMWMk6aqkVCoV2dnZjBkzBicnJ+rUqcPJkyf58ssvlSRMCCGEEOJFyJouIV6h8stNpVJRWFgoRTMqubKyMk6cOEFycjKOjo507dqVpk2bmjosIYQQQlQxknQJ8YqVVzUs/1cIIYQQQrzeJOkSQgghhBBCiJdIym8JIYQQQgghxEskSZcQQgghhBBCvESSdAkhhBBCCCHESyRJlxBCCCGEEEK8RJJ0CSGEEEIIIcRLJEmXEEIIIYQQQrxEZqYOQAghhPhXunTpwsOHDzEze/a1ZTQa0Wq1+Pr6EhISglr963uI9+7d4w9/+AOHDh3CycnpPxbL2bNnGTVqFFZWVsoxg8FArVq18PHx4bPPPsPS0vI/9vuEEEJUfZJ0CSGEqBI+//xzBgwYoDxOTU3l448/pmbNmvj7+//qfCcnJ3744YeXFs/z720wGLhw4QKTJ0/G3t6eGTNmvLTfK4QQouqR6YVCCCGqpJYtW+Lp6cnly5cBGDlyJLNnz8bHx4fOnTuTmppKy5YtuXv3LgB37txh0qRJtG/fno4dOzJ//nxKS0sBSE9PZ9KkSXTo0AEfHx9WrVqlPPci1Go17dq1o0OHDly5cgV4Nhq3ceNGfH198fDwwNPTk6CgIJ4+fQrA7NmzmTdvHpMmTeKtt96ia9eubNu2TXnP3NxcAgICaN++PV27dmX79u24ubkpf8//NWYhhBCvjiRdQgghqhydTsfZs2c5c+YMXl5eyvHTp08TExPDgQMHsLa2Vo6XlZUxbtw4HBwcSEpK4s9//jMXLlwgPDycoqIiPv74Y5o3b05SUhK7du3i9OnThIeHv3A8er2e5ORkTp8+jbe3NwBHjhxh27ZthIeHk5KSQkxMDKdOneLgwYPK6/bu3cvIkSM5d+4cEyZMYPHixWRmZgIQHBxMQUEB3377LXv27OHYsWPo9XqA/0jMQgghXh2ZXiiEEKJK+Pzzz1m4cKHyuH79+owZM4YRI0Yox7y9vXF0dAQgPz9fOf7999+TkZHBnDlzqFmzJtbW1qxbtw6DwcDx48cpLS0lMDAQlUpFgwYNmD59Ov7+/gQFBf3DeDw8PAAoLS1Fp9Ph6enJnDlzlCmQ3t7etGvXjvr165OTk0Nubi42NjZKUgXQoUMHJWkcOHAgoaGhpKenA3Dq1CmOHDmCjY0NAHPmzOEPf/gDwP86ZiGEEKYhSZcQQogqITQ0tMKart9Sr1693zz+8OFDbG1tqVmzpnKsUaNGAPzP//wPOTk5eHp6Ks8ZjUZ0Oh2PHj3C3t7+N98zJSUFgPv37zNz5kxKS0vp0aNHhfdYtWoVx44dw87OjtatW6PT6TAajco5Dg4Oys/m5ubAs/Vh9+/frxAjgLOzs/JzRkbG/ypmIYQQpiFJlxBCiNeGSqX6zeP169cnNzeX4uJiJfFKSUnh0qVL1K9fHxcXF44ePaqcX1hYyKNHj7Czs/uXv7NBgwZERkYycOBApkyZQnR0NBqNhuXLl3Pv3j3+8pe/oNVqAfD19X2hv6O82mJGRgZNmjRRfn7+7/m/xCyEEOLVkjVdQgghXntt27alcePGLFmyhOLiYrKzs1m0aBE5OTn4+Pjw5MkTNm/eTGlpKfn5+cyaNYuAgIB/mMT9Pa1Wy+rVq/n++++JjIwEniVBlpaWaDQaSkpK+PLLL0lLS0On0/3L96tXrx4+Pj4sW7aMvLw88vLyWLp0qfL8fyJmIYQQr44kXUIIIV575ubmREVFkZmZSefOnenbty+enp74+/uj1WrZunUrZ8+exdvbm27duqFWq5Xk6UW1bt2awMBA1q9fzw8//MCMGTN4+vQpnTp1okuXLly4cIG+ffuSlpb2Qu8XFhaGSqWic+fO9O/fHzc3N+Vv+U/FLIQQ4tVQGZ+fXC6EEEKISuG7776jffv21KhRA3i2L1m/fv24cOGCbL4shBBVjIx0CSGEEJXQkiVLiIyMpKysjMLCQiIjI+nUqZMkXEIIUQVJ0iWEEEJUQitWrODChQu8/fbbdOnSBY1GU2FdlxBCiKpDphcKIYQQQgghxEskI11CCCGEEEII8RJJ0iWEEEIIIYQQL5EkXUIIIYQQQgjxEknSJYQQQgghhBAvkSRdQgghhBBCCPESSdIlhBBCCCGEEC+RJF1CCCGEEEII8RJJ0iWEEEIIIYQQL5EkXUIIIYQQQgjxEv0/71BheM6DafAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2305,7 +2291,7 @@ "\n", "# Create a bar plot\n", "plt.figure(figsize=(10, 6))\n", - "sns.barplot(x=\"price_range\", y=\"total_sqft\", data=housing_data, errorbar=None, hue=\"price_range\", palette=\"crest\", legend=False)\n", + "sns.barplot(x=\"price_range\", y=\"total_sqft\", data=housing_data, errorbar=None, hue=\"price_range\", palette=\"crest\")\n", "plt.title(\"Total Square Footage by Price Range.\")\n", "plt.xlabel(\"Price Range\")\n", "plt.ylabel(\"Total Square Footage\")\n", @@ -2377,7 +2363,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 97, "metadata": {}, "outputs": [ { @@ -2420,30 +2406,12 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 102, "metadata": {}, "outputs": [ - { - "ename": "AttributeError", - "evalue": "Rectangle.set() got an unexpected keyword argument 'legend'", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[29], line 5\u001b[0m\n\u001b[0;32m 2\u001b[0m fig, axes \u001b[38;5;241m=\u001b[39m plt\u001b[38;5;241m.\u001b[39msubplots(nrows\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m, ncols\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m, figsize\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m14\u001b[39m, \u001b[38;5;241m6\u001b[39m), sharey\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m 4\u001b[0m \u001b[38;5;66;03m# Bar plot for condition vs. price\u001b[39;00m\n\u001b[1;32m----> 5\u001b[0m sns\u001b[38;5;241m.\u001b[39mbarplot(x\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcondition\u001b[39m\u001b[38;5;124m'\u001b[39m, y\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mprice\u001b[39m\u001b[38;5;124m'\u001b[39m, data\u001b[38;5;241m=\u001b[39mhousing_data, ax\u001b[38;5;241m=\u001b[39maxes[\u001b[38;5;241m0\u001b[39m], hue\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcondition\u001b[39m\u001b[38;5;124m\"\u001b[39m, palette\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mviridis\u001b[39m\u001b[38;5;124m'\u001b[39m, legend\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m 6\u001b[0m axes[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mset_title(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCondition vs. Price\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 7\u001b[0m axes[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mset_xlabel(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCondition\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:2763\u001b[0m, in \u001b[0;36mbarplot\u001b[1;34m(data, x, y, hue, order, hue_order, estimator, errorbar, n_boot, units, seed, orient, color, palette, saturation, width, errcolor, errwidth, capsize, dodge, ci, ax, **kwargs)\u001b[0m\n\u001b[0;32m 2760\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ax \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 2761\u001b[0m ax \u001b[38;5;241m=\u001b[39m plt\u001b[38;5;241m.\u001b[39mgca()\n\u001b[1;32m-> 2763\u001b[0m plotter\u001b[38;5;241m.\u001b[39mplot(ax, kwargs)\n\u001b[0;32m 2764\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ax\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:1586\u001b[0m, in \u001b[0;36m_BarPlotter.plot\u001b[1;34m(self, ax, bar_kws)\u001b[0m\n\u001b[0;32m 1584\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mplot\u001b[39m(\u001b[38;5;28mself\u001b[39m, ax, bar_kws):\n\u001b[0;32m 1585\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Make the plot.\"\"\"\u001b[39;00m\n\u001b[1;32m-> 1586\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdraw_bars(ax, bar_kws)\n\u001b[0;32m 1587\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mannotate_axes(ax)\n\u001b[0;32m 1588\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39morient \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mh\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:1569\u001b[0m, in \u001b[0;36m_BarPlotter.draw_bars\u001b[1;34m(self, ax, kws)\u001b[0m\n\u001b[0;32m 1565\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m j, hue_level \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhue_names):\n\u001b[0;32m 1566\u001b[0m \n\u001b[0;32m 1567\u001b[0m \u001b[38;5;66;03m# Draw the bars\u001b[39;00m\n\u001b[0;32m 1568\u001b[0m offpos \u001b[38;5;241m=\u001b[39m barpos \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhue_offsets[j]\n\u001b[1;32m-> 1569\u001b[0m barfunc(offpos, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstatistic[:, j], \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnested_width,\n\u001b[0;32m 1570\u001b[0m color\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcolors[j], align\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcenter\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 1571\u001b[0m label\u001b[38;5;241m=\u001b[39mhue_level, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkws)\n\u001b[0;32m 1573\u001b[0m \u001b[38;5;66;03m# Draw the confidence intervals\u001b[39;00m\n\u001b[0;32m 1574\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfint\u001b[38;5;241m.\u001b[39msize:\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\__init__.py:1465\u001b[0m, in \u001b[0;36m_preprocess_data..inner\u001b[1;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1462\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[0;32m 1463\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minner\u001b[39m(ax, \u001b[38;5;241m*\u001b[39margs, data\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 1464\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m-> 1465\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(ax, \u001b[38;5;241m*\u001b[39m\u001b[38;5;28mmap\u001b[39m(sanitize_sequence, args), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 1467\u001b[0m bound \u001b[38;5;241m=\u001b[39m new_sig\u001b[38;5;241m.\u001b[39mbind(ax, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 1468\u001b[0m auto_label \u001b[38;5;241m=\u001b[39m (bound\u001b[38;5;241m.\u001b[39marguments\u001b[38;5;241m.\u001b[39mget(label_namer)\n\u001b[0;32m 1469\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m bound\u001b[38;5;241m.\u001b[39mkwargs\u001b[38;5;241m.\u001b[39mget(label_namer))\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\axes\\_axes.py:2528\u001b[0m, in \u001b[0;36mAxes.bar\u001b[1;34m(self, x, height, width, bottom, align, **kwargs)\u001b[0m\n\u001b[0;32m 2519\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m l, b, w, h, c, e, lw, htch, lbl \u001b[38;5;129;01min\u001b[39;00m args:\n\u001b[0;32m 2520\u001b[0m r \u001b[38;5;241m=\u001b[39m mpatches\u001b[38;5;241m.\u001b[39mRectangle(\n\u001b[0;32m 2521\u001b[0m xy\u001b[38;5;241m=\u001b[39m(l, b), width\u001b[38;5;241m=\u001b[39mw, height\u001b[38;5;241m=\u001b[39mh,\n\u001b[0;32m 2522\u001b[0m facecolor\u001b[38;5;241m=\u001b[39mc,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 2526\u001b[0m hatch\u001b[38;5;241m=\u001b[39mhtch,\n\u001b[0;32m 2527\u001b[0m )\n\u001b[1;32m-> 2528\u001b[0m r\u001b[38;5;241m.\u001b[39m_internal_update(kwargs)\n\u001b[0;32m 2529\u001b[0m r\u001b[38;5;241m.\u001b[39mget_path()\u001b[38;5;241m.\u001b[39m_interpolation_steps \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m100\u001b[39m\n\u001b[0;32m 2530\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m orientation \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvertical\u001b[39m\u001b[38;5;124m'\u001b[39m:\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\artist.py:1219\u001b[0m, in \u001b[0;36mArtist._internal_update\u001b[1;34m(self, kwargs)\u001b[0m\n\u001b[0;32m 1212\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_internal_update\u001b[39m(\u001b[38;5;28mself\u001b[39m, kwargs):\n\u001b[0;32m 1213\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1214\u001b[0m \u001b[38;5;124;03m Update artist properties without prenormalizing them, but generating\u001b[39;00m\n\u001b[0;32m 1215\u001b[0m \u001b[38;5;124;03m errors as if calling `set`.\u001b[39;00m\n\u001b[0;32m 1216\u001b[0m \n\u001b[0;32m 1217\u001b[0m \u001b[38;5;124;03m The lack of prenormalization is to maintain backcompatibility.\u001b[39;00m\n\u001b[0;32m 1218\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m-> 1219\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_update_props(\n\u001b[0;32m 1220\u001b[0m kwargs, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{cls.__name__}\u001b[39;00m\u001b[38;5;124m.set() got an unexpected keyword argument \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1221\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{prop_name!r}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n", - "File \u001b[1;32mc:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\matplotlib\\artist.py:1193\u001b[0m, in \u001b[0;36mArtist._update_props\u001b[1;34m(self, props, errfmt)\u001b[0m\n\u001b[0;32m 1191\u001b[0m func \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mset_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[0;32m 1192\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mcallable\u001b[39m(func):\n\u001b[1;32m-> 1193\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\n\u001b[0;32m 1194\u001b[0m errfmt\u001b[38;5;241m.\u001b[39mformat(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mtype\u001b[39m(\u001b[38;5;28mself\u001b[39m), prop_name\u001b[38;5;241m=\u001b[39mk))\n\u001b[0;32m 1195\u001b[0m ret\u001b[38;5;241m.\u001b[39mappend(func(v))\n\u001b[0;32m 1196\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ret:\n", - "\u001b[1;31mAttributeError\u001b[0m: Rectangle.set() got an unexpected keyword argument 'legend'" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABHcAAAH8CAYAAABb4EOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjYElEQVR4nO3df4zX9X3A8dfBabwjMIJnIN3IaM6jdEW9k6O3LiW0Ho0TBepK7bYuWbPEtrlIBSvZWrJF6WB2W+dybdnIloaaUmtGitVVcXZRSzrG4cTY/dACTnQhM3IUUQ5aTz77g0D7HWj5wnHf9+t4PJKL/X74HN8339d9P993n3y5a6qqqgoAAAAAUhrX6AUAAAAAcPbEHQAAAIDExB0AAACAxMQdAAAAgMTEHQAAAIDExB0AAACAxMQdAAAAgMTEHQAAAIDExB0AAACAxM467hw4cCA+9KEPxfbt29/ynCeeeCIWLVoUnZ2dcd1118Vjjz12tncHAAAAwGmcVdz5t3/7t/jYxz4WL7744lue88ILL8SyZcvi1ltvjSeffDKWLVsWy5cvj5dffvmsFwsAAABArbrjzubNm+P222+PFStW/MLzuru7Y8GCBdHc3BwLFy6MuXPnxn333XfWiwUAAACgVt1x5/3vf388+uijsXDhwrc9b/fu3TFz5syaY5dffnk8++yz9d4lAAAAAG+hud5PuOyyy87ovMOHD0dLS0vNsUsuuSSGhobqvUsAAAAA3kLdcedMtbS0xNGjR2uOHT16NCZMmFDX73PgwGtRVSO5MurV1BQxZcpEs2gwcyiHWZTDLMpwYg6Uw3Oi8VyfymAO5TCLMphDOUZ6/3Te4s7MmTPjP/7jP2qO7d69O2bPnl3X71NVEceOjeTKqFdT0/H/HjsWLgANZA7lMItymEUZxp31z97kfLF/ajzXpzKYQznMogzmUI6R3j+dt+3Y4sWLY2BgIB566KEYHh6Ohx56KAYGBmLJkiXn6y4BAAAALjgjGne6urrigQceiIiI9vb2+OpXvxrr16+PuXPnxrp16+LLX/5yvPOd7xzJuwQAAAC4oJ3TP8t67rnnam7v3Lmz5va8efNi3rx553IXAAAAALwN/0oeAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAILG6487g4GD09fVFd3d39PT0xJo1a2J4ePi0537961+Pa665Jq6++upYtGhRPPLII+e8YAAAAAB+pu64s3z58mhtbY2tW7fGpk2bYtu2bbFhw4ZTznviiSdi/fr18fd///fx1FNPxS233BLLly+P//mf/xmJdQMAAAAQdcadvXv3xsDAQKxcuTJaWlpi+vTp0dfXFxs3bjzl3Oeffz6qqjr5MX78+Ljooouiubl5xBYPAAAAcKGrq7Ts2rUrJk+eHFOnTj15rL29Pfbt2xeHDh2KSZMmnTx+/fXXx7e//e1YuHBhjB8/PpqamuIv/uIvYtq0aSO3egAAAIALXF1x5/Dhw9HS0lJz7MTtoaGhmrjzxhtvxKxZs2LNmjUxa9asePDBB2PVqlXR3t4e73rXu874Ppuajn/QOCcef3NoLHMoh1mUwyzK4PEvj/1T47k+lcEcymEWZTCHcoz0DOqKO62trXHkyJGaYyduT5gwoeb4F77whbj66qvjyiuvjIiIj3zkI/GP//iPsXnz5vijP/qjM77PKVMm1rNEzqNLLzWLEphDOcyiHGYBteyfyuH6VAZzKIdZlMEcxp664k5HR0ccPHgw9u/fH21tbRERsWfPnpg2bVpMnFj7xbFv376YPXt27Z01N8dFF11U1wIPHHgtjh2r61MYYU1Nx5/8g4OvRVU1ejUXLnMoh1mUwyzKMG6cmFAa+6fGc30qgzmUwyzKYA7lGOn9U11xZ8aMGTFnzpxYu3ZtrF69On784x/HunXrYunSpaece80118Q3vvGN+OAHPxjvfve745/+6Z9i+/btcdttt9W1wKoKX3SFMIsymEM5zKIcZtFYHvvyeE6UwyzKYA7lMIsymEPjjfTjX/ePrurv74/Vq1dHb29vjBs3Lj784Q9HX19fRER0dXXFnXfeGYsXL45bbrklxo8fH8uWLYtXX301fvVXfzW++tWvxrvf/e6R/RMAAAAAXMCaqqrsXjc46G3FjdbUFNHWNjH27/fWvUYyh3KYRTnMogzjxvm3+6Wxf2o816cymEM5zKIM5lCOkd4/jRux3wkAAACAUSfuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACRWd9wZHByMvr6+6O7ujp6enlizZk0MDw+f9tyBgYH46Ec/Gl1dXTF//vxYv379OS8YAAAAgJ+pO+4sX748WltbY+vWrbFp06bYtm1bbNiw4ZTz9uzZE5/85Cfjd3/3d+Opp56K9evXx9e+9rXYsmXLSKwbAAAAgKgz7uzduzcGBgZi5cqV0dLSEtOnT4++vr7YuHHjKed+85vfjN7e3rjxxhujqakpZs2aFd/61rdizpw5I7Z4AAAAgAtdcz0n79q1KyZPnhxTp049eay9vT327dsXhw4dikmTJp08/swzz8Rv/MZvxG233RY/+MEPYsqUKfGJT3wiPvaxj9W1wKam4x80zonH3xwayxzKYRblMIsyePzLY//UeK5PZTCHcphFGcyhHCM9g7rizuHDh6OlpaXm2InbQ0NDNXHn1VdfjXvuuSfuvvvu+PM///PYuXNnfOpTn4pf+qVfit/8zd884/ucMmViPUvkPLr0UrMogTmUwyzKYRZQy/6pHK5PZTCHcphFGcxh7Kkr7rS2tsaRI0dqjp24PWHChJrjF198cfT29sYHPvCBiIiYO3duLFmyJB5++OG64s6BA6/FsWP1rJKR1tR0/Mk/OPhaVFWjV3PhModymEU5zKIM48aJCaWxf2o816cymEM5zKIM5lCOkd4/1RV3Ojo64uDBg7F///5oa2uLiOPfOHnatGkxcWLtotrb2+OnP/1pzbE333wzqjq/gqoqfNEVwizKYA7lMItymEVjeezL4zlRDrMogzmUwyzKYA6NN9KPf13fUHnGjBkxZ86cWLt2bbz++uvx0ksvxbp162Lp0qWnnPvbv/3b8c///M/xne98J6qqih07dsSDDz4YS5YsGbHFAwAAAFzo6v5R6P39/TE8PBy9vb1x0003xbx586Kvry8iIrq6uuKBBx6IiIj3ve99sW7durjnnntizpw58bnPfS7+8A//MHp7e0f2TwAAAABwAavrn2VFRLS1tUV/f/9pf23nzp01t+fPnx/z588/u5UBAAAA8AvV/c4dAAAAAMoh7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACQm7gAAAAAkJu4AAAAAJCbuAAAAACRWd9wZHByMvr6+6O7ujp6enlizZk0MDw+/7ef86Ec/iquuuiq2b99+1gsFAAAA4FR1x53ly5dHa2trbN26NTZt2hTbtm2LDRs2vOX5R44cic9+9rNx9OjRc1knAAAAAKdRV9zZu3dvDAwMxMqVK6OlpSWmT58efX19sXHjxrf8nDvvvDMWLFhwzgsFAAAA4FTN9Zy8a9eumDx5ckydOvXksfb29ti3b18cOnQoJk2aVHP+/fffH3v37o01a9bEunXrzmqBTU3HP2icE4+/OTSWOZTDLMphFmXw+JfH/qnxXJ/KYA7lMIsymEM5RnoGdcWdw4cPR0tLS82xE7eHhoZq4s6ePXvi7rvvjnvvvTfGjx9/1gucMmXiWX8uI+vSS82iBOZQDrMoh1lALfuncrg+lcEcymEWZTCHsaeuuNPa2hpHjhypOXbi9oQJE04e+8lPfhIrVqyIz3/+8/GOd7zjnBZ44MBrcezYOf0WnKOmpuNP/sHB16KqGr2aC5c5lMMsymEWZRg3Tkwojf1T47k+lcEcymEWZTCHcoz0/qmuuNPR0REHDx6M/fv3R1tbW0Qcf4fOtGnTYuLEny3qhz/8YbzwwguxatWqWLVq1cnjn/70p2PJkiVxxx13nPF9VlX4oiuEWZTBHMphFuUwi8by2JfHc6IcZlEGcyiHWZTBHBpvpB//uuLOjBkzYs6cObF27dpYvXp1/PjHP45169bF0qVLa87r7u6OZ555pubYu971rvjbv/3b6OnpOfdVAwAAABARZ/Gj0Pv7+2N4eDh6e3vjpptuinnz5kVfX19ERHR1dcUDDzww4osEAAAA4PTqeudORERbW1v09/ef9td27tz5lp/33HPP1XtXAAAAAPwCdb9zBwAAAIByiDsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAiYk7AAAAAImJOwAAAACJiTsAAAAAidUddwYHB6Ovry+6u7ujp6cn1qxZE8PDw6c99957741rr702urq64tprr42NGzee84IBAAAA+Jm6487y5cujtbU1tm7dGps2bYpt27bFhg0bTjnve9/7XvzVX/1VfPGLX4ynnnoq7rrrrvjrv/7reOSRR0Zi3QAAAABEnXFn7969MTAwECtXroyWlpaYPn169PX1nfYdOS+//HLcfPPN0dnZGU1NTdHV1RU9PT2xY8eOEVs8AAAAwIWuuZ6Td+3aFZMnT46pU6eePNbe3h779u2LQ4cOxaRJk04e//jHP17zuYODg7Fjx4743Oc+V9cCm5qOf9A4Jx5/c2gscyiHWZTDLMrg8S+P/VPjuT6VwRzKYRZlMIdyjPQM6oo7hw8fjpaWlppjJ24PDQ3VxJ2f98orr8SnPvWpmD17dtxwww11LXDKlIl1nc/5c+mlZlECcyiHWZTDLKCW/VM5XJ/KYA7lMIsymMPYU1fcaW1tjSNHjtQcO3F7woQJp/2cp59+Om699dbo7u6OP/uzP4vm5rruMg4ceC2OHavrUxhhTU3Hn/yDg69FVTV6NRcucyiHWZTDLMowbpyYUBr7p8ZzfSqDOZTDLMpgDuUY6f1TXaWlo6MjDh48GPv374+2traIiNizZ09MmzYtJk48dVGbNm2KP/3TP43PfOYz8Qd/8AdntcCqCl90hTCLMphDOcyiHGbRWB778nhOlMMsymAO5TCLMphD443041/XN1SeMWNGzJkzJ9auXRuvv/56vPTSS7Fu3bpYunTpKec+8sgjcccdd8SXv/zlsw47AAAAALy9un8Uen9/fwwPD0dvb2/cdNNNMW/evOjr64uIiK6urnjggQciIuIrX/lKvPnmm/GZz3wmurq6Tn78yZ/8ycj+CQAAAAAuYPV9A5yIaGtri/7+/tP+2s6dO0/+7wcffPDsVwUAAADAGan7nTsAAAAAlEPcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASEzcAQAAAEhM3AEAAABITNwBAAAASKzuuDM4OBh9fX3R3d0dPT09sWbNmhgeHj7tuU888UQsWrQoOjs747rrrovHHnvsnBcMAAAAwM/UHXeWL18era2tsXXr1ti0aVNs27YtNmzYcMp5L7zwQixbtixuvfXWePLJJ2PZsmWxfPnyePnll0di3QAAAABEnXFn7969MTAwECtXroyWlpaYPn169PX1xcaNG085d/PmzdHd3R0LFiyI5ubmWLhwYcydOzfuu+++EVs8AAAAwIWuuZ6Td+3aFZMnT46pU6eePNbe3h779u2LQ4cOxaRJk04e3717d8ycObPm8y+//PJ49tln61pgU1PEON8ZqKGamo7/d9y4iKpq7FouZOZQDrMoh1mU4cQcKIf9U+O5PpXBHMphFmUwh3KM9P6prrhz+PDhaGlpqTl24vbQ0FBN3DnduZdcckkMDQ3VtcApUybWdT7nj1mUwRzKYRblMAuo5TlRDrMogzmUwyzKYA5jT11/p9Pa2hpHjhypOXbi9oQJE2qOt7S0xNGjR2uOHT169JTzAAAAADh7dcWdjo6OOHjwYOzfv//ksT179sS0adNi4sTa8jdz5szYtWtXzbHdu3dHR0fHOSwXAAAAgJ9XV9yZMWNGzJkzJ9auXRuvv/56vPTSS7Fu3bpYunTpKecuXrw4BgYG4qGHHorh4eF46KGHYmBgIJYsWTJiiwcAAAC40DVVVX3fRmn//v2xevXq2L59e4wbNy4+/OEPx+233x7jx4+Prq6uuPPOO2Px4sUREbF169b4y7/8y3jxxRfjl3/5l2PlypUxf/788/IHAQAAALgQ1R13AAAAACiHH5IJAAAAkJi4AwAAAJCYuAMAAACQmLgDAAAAkFhD487g4GD09fVFd3d39PT0xJo1a2J4ePi05z7xxBOxaNGi6OzsjOuuuy4ee+yxUV7t2FbPLO6999649tpro6urK6699trYuHHjKK927KpnDif86Ec/iquuuiq2b98+Squ8MNQzi4GBgfjoRz8aXV1dMX/+/Fi/fv0or3Zsq2cWX//61+Oaa66Jq6++OhYtWhSPPPLIKK927Dtw4EB86EMfettrjtfs88v+qQz2TuWwfyqH/VMZ7J3KMyr7p6qBfu/3fq/67Gc/Ww0NDVUvvvhidf3111d/93d/d8p5//3f/11dccUV1aOPPlq98cYb1Xe/+93qyiuvrP73f/+3Aasem850Fo8++mjV3d1d7dy5szp27Fj11FNPVd3d3dWWLVsasOqx50zncMLQ0FB1ww03VDNnzqz+9V//dRRXOvad6Sx2795dXXXVVdW3v/3t6tixY9V//dd/Ve9973urhx9+uAGrHpvOdBaPP/549b73va/as2dPVVVVtWXLlmrWrFnVSy+9NNpLHrOefPLJasGCBW97zfGaff7ZP5XB3qkc9k/lsH8qg71TWUZr/9Swd+7s3bs3BgYGYuXKldHS0hLTp0+Pvr6+0/5NxubNm6O7uzsWLFgQzc3NsXDhwpg7d27cd999DVj52FPPLF5++eW4+eabo7OzM5qamqKrqyt6enpix44dDVj52FLPHE648847Y8GCBaO4ygtDPbP45je/Gb29vXHjjTdGU1NTzJo1K771rW/FnDlzGrDysaeeWTz//PNRVdXJj/Hjx8dFF10Uzc3NDVj52LN58+a4/fbbY8WKFb/wPK/Z54/9Uxnsncph/1QO+6cy2DuVZTT3Tw2LO7t27YrJkyfH1KlTTx5rb2+Pffv2xaFDh2rO3b17d8ycObPm2OWXXx7PPvvsqKx1rKtnFh//+Mfjk5/85Mnbg4ODsWPHjpg9e/aorXesqmcOERH3339/7N27N2655ZbRXOYFoZ5ZPPPMM/Erv/Ircdttt0VPT09cd911MTAwEJdddtloL3tMqmcW119/fbS1tcXChQvjPe95T9x6661x1113xbRp00Z72WPS+9///nj00Udj4cKFb3ue1+zzy/6pDPZO5bB/Kof9UxnsncoymvunhsWdw4cPR0tLS82xE7eHhoZ+4bmXXHLJKedxduqZxc975ZVX4uabb47Zs2fHDTfccF7XeCGoZw579uyJu+++O770pS/F+PHjR22NF4p6ZvHqq6/GPffcE4sXL44f/OAHsXr16vjiF78YW7ZsGbX1jmX1zOKNN96IWbNmxT/8wz/E008/HatXr45Vq1bFc889N2rrHcsuu+yyM/qbPK/Z55f9Uxnsncph/1QO+6cy2DuVZTT3Tw2LO62trXHkyJGaYyduT5gwoeZ4S0tLHD16tObY0aNHTzmPs1PPLE54+umnY+nSpfHOd74z/uZv/sZb90bAmc7hJz/5SaxYsSI+//nPxzve8Y5RXeOFop7nxMUXXxy9vb3xgQ98IJqbm2Pu3LmxZMmSePjhh0dtvWNZPbP4whe+EB0dHXHllVfGxRdfHB/5yEeis7MzNm/ePGrrxWv2+Wb/VAZ7p3LYP5XD/qkM9k45jcRrdsPiTkdHRxw8eDD2799/8tiePXti2rRpMXHixJpzZ86cGbt27ao5tnv37ujo6BiVtY519cwiImLTpk3xiU98In7/938/vvSlL8XFF188mssds850Dj/84Q/jhRdeiFWrVkV3d3d0d3dHRMSnP/3puOOOO0Z72WNSPc+J9vb2+OlPf1pz7M0334yqqkZlrWNdPbPYt2/fKbNobm6Oiy66aFTWynFes88v+6cy2DuVw/6pHPZPZbB3ymlEXrPP9Ts/n4vf+Z3fqVasWFG99tprJ7+Ld39//ynn7d69u7riiiuq7373uye/c/QVV1xRPf/88w1Y9dh0prPYsmVL9Z73vKf6/ve/34BVjn1nOof/z097GHlnOot/+Zd/qX7t136tuv/++6tjx45VAwMDVWdnZ/W9732vAasem850FnfffXfV09NT/fu//3v15ptvVg8//HB1xRVXVP/5n//ZgFWPbW93zfGaff7ZP5XB3qkc9k/lsH8qg71Tmc73/qmhceeVV16pli1bVr33ve+tfv3Xf7266667quHh4aqqqqqzs7P6zne+c/Lc73//+9XixYurzs7O6vrrr68ef/zxRi17TDrTWdxwww3VrFmzqs7OzpqPP/7jP27k8seMep4TP8/mZOTVM4vHH3+8+q3f+q2qq6ur6u3tre69995GLXtMOtNZvPHGG1V/f3/1wQ9+sLr66qurG2+80f+ZOk/+/zXHa/bosn8qg71TOeyfymH/VAZ7pzKd7/1TU1V57xsAAABAVg37njsAAAAAnDtxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgMXEHAAAAIDFxBwAAACAxcQcAAAAgsf8De6fiXWDI/iIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAJOCAYAAADMCCWlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVkUlEQVR4nO3dd5hcZd0//vdMNksamJCAiaEpgfCTlkAgSJASQBAITRA18mCQjlIeWgAFEamC1IcakFBUkN4UVB5BBUKRJj4oIkhIIJBKTdns/P7IN0uWBEhgd+fszut1XbmuMzNnznw+Z252b9575p5SpVKpBAAAAACAQihXuwAAAAAAAN4ntAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AG2gUqlUuwQAAACgnRDaAu3WM888k6OOOiqbb7551llnnWy55Zb5wQ9+kPHjx7dpHXvuuWf23HPPptvDhw/P6NGjm25ffPHFueKKK5puX3DBBRk4cGCb1tjaRo8enYEDBzb7t+aaa2aTTTbJUUcdlVdfffVjjzFw4MBccMEFbVAtAEAxvfDCCzn55JOzzTbbZN11183666+fPfbYI9ddd13mzJnTqq89evToDB8+vFVfoyUNHz58ofnn2muvna233jpnn312Zs2a9ZHPHzduXAYOHJhx48a1UcUAS6au2gUAfBLXXXddTj311AwdOjRHHHFEll9++bz88ssZM2ZM7r333vz85z/PmmuuWZXaLrzwwvTo0aPp9rnnnpvvfe97Tbd33333fPnLX65Gaa1queWWy4UXXth0u6GhIS+++GLOOuusPPHEE7nzzjvTpUuXD33+9ddfn759+7ZFqQAAhXP33Xfn2GOPzRe+8IWMGjUqn//85zNz5szcf//9Oe200/LAAw/kkksuSalUqnaphbHZZpvloIMOaro9a9asjBs3LhdddFEmTJiQn/3sZx/63DXXXDPXX399BgwY0BalAiwxoS3Q7jz++OM55ZRTMnLkyBx//PFN9w8dOjRbbrlldt111xx77LG5/fbbq1LfF7/4xY98vG/fvh0ynKyvr8+gQYOa3TdkyJB07tw5xxxzTP7whz9k++23/9Dnf/C5AAC14oUXXsixxx6bjTfeOBdccEHq6t7/X/XNNtssQ4cOzSGHHJK77rorO+ywQxUrLZZll112oTnk0KFD89prr+Xmm2/O6NGjs/zyyy/yuT169DD/BArN8ghAu3PFFVdk6aWXzn//938v9Niyyy6b0aNH5ytf+Urefvvtpvvvvvvu7Lrrrhk8eHCGDRuWE044ITNmzGh6/IILLsjWW2+dP/7xjxkxYkTWWmutbLPNNrnllluaHX/ixIn53ve+l/XXXz/Dhg3Lz3/+84VqWHB5hPnLIFx44YVN24taHqGl6lvQHXfckYEDB+a5555rdv/999+fgQMH5umnn06SXHPNNdl2222z9tpr58tf/nJ+9KMfNTt3n9baa6+dJJkwYUKSeR+922uvvXLiiSdmyJAh2WWXXdLQ0LDQ8ghTpkzJcccdl4033jiDBw/OyJEj8/jjjzc93tjYmMsuuyxbb7110/m45pprWqxuAIC2MmbMmJTL5fzkJz9pFtjOt80222TnnXdOufz+/8IPHDgwF154Yb72ta9l/fXXz0UXXZQkefTRR/Pd7343G2ywQdZaa60MHz48F1xwQRobG5ueO2PGjBx77LEZOnRoNthgg/z0pz9t9vh8v//977Prrrtm7bXXzrBhw/KTn/wk77777of28cMf/jAbbbRRGhoamt3/05/+NBtuuGFmz56dWbNm5aSTTsqmm26atdZaK9tuu22uvPLKJT5nH2WttdZKpVJpWqJr+PDhOfXUU7PXXntlvfXWywknnLDI5RH+9re/ZZ999sn666+fjTbaKIcffnizZb6mT5+eE044IRtvvHHWXnvtfP3rX89DDz3UorUDzOdKW6BdqVQq+fOf/5zhw4ena9eui9xn2223bXb7oosuynnnnZdvfetbOfzwwzN+/Picd955efLJJ3PDDTc0fWT/jTfeyI9//OMceOCB6d+/f6644oqMHj0666yzTlZdddW8++67+fa3v51yuZwf//jHqaury3nnnZeXX345gwcPXmQt119/ffbYY4/stttu2X333Re5T0vV90Fbb711unfvnrvuuitrrLFG0/133nlnPv/5z2edddbJXXfdlTPOOCPHHHNMBg4cmH//+98544wzMnPmzJx++ukf/4YshhdffDFJstJKKzXd99hjj6VUKuWCCy7IO++8s9D/nLz77rv5xje+kTlz5uSII45I3759M3bs2Oyzzz658cYbs+qqq+ZHP/pRbr755uy///4ZPHhwHn300Zx66ql58803c/DBB7dI7QAAbeEPf/hDNtpoo/Tu3ftD9znjjDMWuu/iiy/OoYcemoEDB6Zv37557rnn8p3vfCfbbrttzjnnnFQqldx222258MILs8oqq2TEiBFpbGzMPvvsk1deeSVHHnlkevfunTFjxuTpp59udlXqHXfckSOPPDIjRozIYYcdlgkTJuScc87Jv/71r/z85z9f5DINO+20U2644YY89NBDTcuBVSqV3H333dl2221TX1+fE044IX/+859zzDHHpE+fPnnggQdyxhlnpGfPntl1111b4Gy+P/9cccUVm+677rrrMnLkyOy3337p0qXLQsHyc889l29+85tZZ511cvrpp6dSqeTss8/O3nvvndtvvz2NjY3Za6+9Mnny5Bx++OFZfvnlc9NNN2WfffbJmDFj8qUvfalFageYT2gLtCvTpk3LrFmzssIKKyzW/jNmzMjFF1+c3XffPSeeeGLT/auvvnpGjhyZm2++Od/61reSJO+9915OOeWUpgnXKquski222CL3339/Vl111dxyyy2ZOHFibrvttqYrZddZZ51svfXWH/r68z9y1bdv30V+/Kol6/ugLl26ZJtttsndd9+dI444Ikkyc+bM/OEPf8i+++6bZN4XMPTv3z8jR45MuVzOhhtumG7dumXatGmLdX4/aMHJ79tvv51nnnkmp512Wvr375/NNtus2X4nnXRSVl555UUe55Zbbsn48eNz6623NgXOQ4YMyc4775xHH3005XI5N9xwQ/77v/87++23X5Jkk002SalUyqWXXppvfetb6dWr1yfqAQCgLc2YMSMzZszIKqusstBjHwwWS6VSOnXq1HR7nXXWaZoLJcmtt96ajTfeOD/96U+brsodNmxY/vjHP+bRRx/NiBEj8sADD+Tpp5/OpZdems033zxJstFGGzX7ErJKpZKzzjorX/7yl3PWWWc13b/KKqvkO9/5Tu6///6m5y5o/fXXzworrJC77767KbR9/PHHM3HixOy0005JkkceeSQbb7xx07JZQ4cOTbdu3T7R3K1SqTQ7R1OmTMkDDzyQX/3qV/nqV7+aZZddtumx5ZdfPqNHj246Lx/8ArKLLroon/nMZ3LllVdmqaWWSjJvDn/YYYflH//4R/7+97/nueeeyw033JB11103SbLppptmzz33zFlnnZWbbrppiesH+ChCW6BdmT/Jmjt37mLt/+STT2b27NkZMWJEs/uHDBmS/v37Z9y4cU2haNJ8XdX5687O/wjYY489lhVXXLHZ0gb9+vX7VGthtWR9i7Ljjjvm5ptvzlNPPZV111039913X959992m19too41y/fXXZ9ddd81XvvKVbL755hkxYsQn+oKLCRMmLPLL39Zdd938+Mc/bnZldJcuXZpdeftBjz32WFZYYYVmVwgvtdRS+c1vfpMk+eUvf5lKpZLhw4c3m6gPHz48F198cR5//PFstdVWS9wDAEBbW9SyBEnyn//8J1/5ylea3de/f//cd999TbdXX331Zo/vvPPO2XnnnTNr1qy8/PLL+c9//pNnn302c+fOzZw5c5LMm2d17tw5m266adPzunXrls022yyPPvpokuTf//53Xnvttey///7N5lobbLBBevTokb/85S+LDG1LpVJ23HHHXHPNNTnppJNSX1+fO++8MyuuuGLWX3/9JPNC2l/96leZNGlStthii2y22Waf+FNSt956a2699dZm99XV1WXrrbfOj370o2b3r7rqqs2Wl/igxx9/PJtttllTYJvMC8Xnn+8rrrgiyy23XNZcc81m52SLLbbImWeemRkzZuQzn/nMJ+oDYFE6RGg7derU7LHHHvnJT36SoUOHLtZz7rnnnlxwwQV55ZVXstxyy2X//ffPbrvt1sqVAp9Wz549071790ycOPFD93n33Xcze/bs9OzZs2ld2D59+iy0X58+ffLWW281u2/BYHH+pK5SqSSZdxXEgn+tn2+55ZbL5MmTl7yZ/3fMlqpvUTbaaKP069cvd911V9Zdd93ceeedGTJkSNOVytttt10aGxvzi1/8IhdeeGHOO++89O/fP0ccccRHfmnYoiy33HK5+OKLm27X19enb9++i5y89u7d+yOD4enTp3/kxwOnT5+eJB9a46RJkxazagCA6urVq1e6devWtP7/fP369cuNN97YdPt//ud/8s9//rPZPh+cQ86cOTMnn3xybrvttjQ0NGSFFVbI4MGDU1dX12xO27Nnz4UCzOWWW65pe/5c66STTspJJ520UM2vv/76h/az884756KLLsoDDzyQzTffPL/97W+bXYRw/PHHp2/fvrn99tubjj148OCccMIJH/uFvh+0xRZbNAW+pVIpXbt2Tf/+/ZuWF1vQoubbC1qc+ecbb7yxyIsUknlLmQltgZbU7kPbxx9/PKNHj87LL7+82M95+OGHM3r06Jx77rnZdNNNM27cuOy7775ZffXVs84667RitUBL2GSTTTJu3LjMmjWr2V/C57v55ptzyimn5Be/+EXTxGny5MkLLSHwxhtvNFvn6uP06tUr//nPfxa6f/6k9pNoyfoWpVQqZcSIEbntttty8MEH54EHHmi2DEOS7LDDDtlhhx3y1ltv5c9//nMuv/zyHHXUURkyZEg++9nPLvZr1dfXN33p2Ke19NJL55VXXlno/ieeeCI9evTIMssskyQZO3ZsunfvvtB+n/vc51qkDgCAtrDlllvmvvvuy9tvv50ePXokWXhu1bNnz489zimnnJJ77rkn5557bjbeeON069YtSZqtt9qrV69MmzYtc+fObbbUwoJz2vlzraOPPjobbrjhQq/zUeHkyiuvnEGDBuU3v/lNOnfunGnTpmXHHXdsery+vj4HHnhgDjzwwEycODH/+7//m4suuihHHHFE06eqFlfPnj1bdP45derUhe6///77s8Yaa2TppZfOKqus0my5iAUt7vJtAIvrwz8b0A7ccsstOfLII3P44Ycv9NiDDz6Y3XbbLUOGDMn222+f22+/vemxq666Kv/1X/+VzTbbLKVSKRtttFFuuummj/yoLlAce++9d6ZPn55zzjlnocemTJmSMWPGNE0W11133dTX1+eOO+5ott9jjz2WiRMnZr311lvs191oo43yyiuv5Jlnnmm6b+rUqXnyySc/8nkf9TGslqzvw+y0006ZNGlSLrjggpRKpWZf1HbYYYfle9/7XpJ5E9WvfvWrOeiggzJ37tyPvIKitQ0ZMiTjx4/PP/7xj6b7Zs+ene9///u54YYbssEGGySZt8bx2muv3fRv+vTpOffccz9VkA4A0Nb233//zJ07N8cdd1xmz5690OMzZ87M+PHjP/Y4jz/+eIYOHZqtttqqKbD929/+lqlTpzYtw/ClL30pDQ0N+f3vf9/0vNmzZ+cvf/lL0+0vfOEL6d27d1555ZVmc62+ffvm7LPPzt///vePrGPHHXfMAw88kDvvvDODBg1qWq935syZ2WabbXLllVcmmfeH9pEjR2b77bfPa6+99rH9taYhQ4bkT3/6U7Pz/49//CP77bdfnnnmmWy44YZ59dVX07t372bn5KGHHsqYMWOaBeAALaFdX2m7ySabZMSIEamrq2sW3D733HM58MAD89Of/jRbbrllnnrqqRx00EHp1atXvvzlL+fpp5/O0KFDs99+++Wpp55K37598/3vf3+h9YCAYho0aFAOPfTQnHvuuXnhhReyyy67pFevXnn++edz5ZVX5p133slll12WUqmUnj17Zr/99suFF16Yzp07Z8stt8wrr7yS8847LwMGDFiib6jdaaedcvXVV+d73/teDj/88PTo0SMXX3zxh65DNt8yyyyTJ554Io8++miGDBnS7LGWrO/DDBgwIGuuuWZ+8YtfZOutt87SSy/d9NhGG22UE088MWeccUY23XTTvPnmm03fLjx/PdmXX345U6dO/VRr9y6pXXfdNddcc00OPPDAHHrooVl22WVz3XXXZebMmdlzzz2z0korZccdd8wPf/jDTJgwIWuttVZefPHFnHPOOVlhhRUW+UUeAABFtdpqq+Xss8/OMccck5133jlf//rXM3DgwDQ0NOSJJ57IjTfemMmTJ2efffb5yOOss846+c1vfpNf/vKXWXXVVfPcc8/l4osvTqlUynvvvZdkXmi7ySab5Ac/+EGmTJmS/v375+qrr87UqVOblgfo1KlTDj/88Jxwwgnp1KlTtthii7z55pu56KKLMmnSpA9dImC+7bffPqeddlruuuuuHH/88U33d+nSJWuuuWbT3HfgwIF58cUXc8stt2SbbbZp2u/vf/976uvrM2DAgE96SpfYQQcdlD322CP77rtv9tprr8yePTvnnXde1lxzzWy66aZpaGjItddem1GjRuWAAw5Iv3798uCDD+byyy/Pt7/97XTu3LnNagVqQ7sObRdcc2dBv/rVr7Lllls2Ldq+3nrr5etf/3quu+66fPnLX86MGTNyxRVX5IILLsjaa6+d++67L4cffniuvfbapm+BBIrtwAMPzBe/+MVcd911Oe200zJ9+vT07ds3m266aQ444IBmH4///ve/nz59+uTaa6/Nr3/96/Ts2TPbbrttDjvssGZrxH6c+vr6jB07NqeeempOOeWUlEqlfP3rX8+KK66YKVOmfOjzDjjggFx00UXZd999c/fddy/0eEvV91F22mmnPPvss80+mpYk3/jGNzJnzpz86le/yi9+8Yt06dIlX/rSl3LUUUc1TTwvuuii3HLLLc2uem1tPXr0yLXXXpszzzwzp5xyShoaGrLuuuvmmmuuafpUxGmnnZZLL700v/rVr/Laa6+ld+/e2W677XLYYYe50gEAaHe22mqr3H777fnlL3+ZG2+8MRMmTEilUsmKK66Y7bbbLt/4xjc+9g/To0ePzpw5c3Luuedm9uzZWWGFFXLggQfmX//6V+67776mJREuvPDCnHXWWTn//PMza9asbLfddvn617+eP/zhD03H2n333dO9e/eMGTMm119/fbp165b11lsvZ5111scu4dWzZ89sttlmuf/++7Pddts1e+zHP/5xzj333Fx55ZV544030rt37+y222459NBDm/b53ve+l/79++eaa65Z8hP5CX3xi1/MNddck7PPPjuHH354unfvns022yxHHnlk6uvrU19fn+uuuy5nn312fvrTn+att95q+i6Ivffeu83qBGpHqfJR32DTjgwcODBXX311hg4dmn333TcPP/xws7Uu586dm5VWWim33XZbBg8enP/6r/9qdnXufvvtlwEDBuToo4+uRvkAAAAAAEna+ZW2H6Zv377ZZZdd8uMf/7jpvtdff73p2zJXXXXVhdYJmjt37kd+AzsAAAAAQFto119E9mF222233Hnnnfnzn/+cxsbGvPTSS/n2t7/dtNj5N7/5zfzyl7/Mgw8+mMbGxtxzzz0ZN25cdthhhypXDgAAAADUug55pe26666bn/3sZ/nZz36WQw89NF27ds0OO+yQ//7v/06SfO1rX0u5XM5pp52WV155Jf37988555zzsYupAwAAAAC0tg6zpi0AAAAAQEfQIZdHAAAAAABor4S2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIHUVbuAT2rKlLdSq1+hViolvXsvXdPnAOOA9xkLJMYB8xgH75+DImjL96HW3vta6levHZNeO65a6levHZNe2+51P067DW0rlXT4wfNxnAMS44D3GQskxgHzGAfFUI33odbe+1rqV68dk147rlrqV68dk16rz/IIAAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKpK7aBQAAAAAAtJWJEyfkqqsuT319XUaOHJV+/fpXu6SFCG0BAAAAgJoxduwVefrpJ5MkDQ2NGT36hOoWtAiWRwAAAAAAasaECeMXuV0kQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUSFVD27lz52bPPffM6NGjq1kGAAAAAEBhVDW0vfDCC/PYY49VswQAAAAAgEKpWmj70EMP5d57781XvvKVapUAAAAAAFA4ddV40SlTpuT444/PRRddlKuuuuoTHaNUatma2pP5vdfyOcA44H3GAolxwDzGQbF6b8taau29r6V+9dox6bXjqqV+9dox1UqvH+yvGvO2j9PmoW1jY2OOOuqojBo1KmusscYnPk7v3ku3YFXtk3NAYhzwPmOBxDhgHuOgGKrxPtTae19L/eq1Y9Jrx1VL/eq1Y+rovZbL5WbbffoUr982D20vvfTS1NfXZ8899/xUx5ky5a1UKi1UVDtTKs37j6eWzwHGAe8zFkiMA+YxDt4/B0XQlu9Drb33tdSvXjsmvXZctdSvXjumWum1sbGx2fbkyW+12Wsv7ny1zUPb2267La+//nqGDBmSJJk5c2aS5Pe///0SfSlZpZIOPXgWh3NAYhzwPmOBxDhgHuOgGKrxPtTae19L/eq1Y9Jrx1VL/eq1Y+rovX6wtyL22uah7W9/+9tmt0ePHp0kOf3009u6FAAAAACAwil//C4AAAAAALSVNr/S9oNcYQsAAAAA8D5X2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgddUuAAAAAABgUcrlUsrlUoses1Ra8Hil1NW1znWtjY2VNDZWPtFzhbYAAAAAQOGUy6X06tU15XKnFj9u89fo3qLHn6+xcW6mTXvvEwW3QlsAAAAAoHDmXWXbKU/968S8/d5LLXbcWbMnN9v+yzN7tdix5+vRdZWsO+CklMsloS0AAAAA0LG8/d5LefPdf7bY8RorXTL/q74aK3Na9NgtxReRAQAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECqEto+9NBD2X333bPeeutl2LBhOfnkkzNz5sxqlAIAAAAAUChtHtpOnTo1+++/f775zW/mscceyy233JJHHnkkl112WVuXAgAAAABQOHVt/YLLLrtsHnzwwfTo0SOVSiXTp0/PrFmzsuyyy7Z1KQAAAAAAhdPmoW2S9OjRI0my2WabZdKkSRkyZEh23XXXapQCAAAAAFAoVQlt57v33nszY8aMHHnkkTnkkEMyZsyYxX5uqdSKhRXc/N5r+RxgHPA+Y4HEOGAe46BYvbdlLbX23tdSv3rtmPTacdVSv3rtmGqp17a04Plc3HNbqlQqldYpZ/E9/fTT2X333fPII4/kM5/5TLXLAQAAAAAK4i/P7JU33/1nix3vsjO75M3p877qa5mejdnv6Jktduz5lum2eoatPfYTP7/Nr7T961//muOOOy6333576uvrkySzZ89O586d07Vr18U+zpQpb6X6cXN1lEpJ795L1/Q5wDjgfcYCiXHAPMbB++egCNryfai1976W+tVrx6TXjquW+tVrx1S0Xjt1KqdXr+7VLuNTmTbtncyd29h0e3Hnq20e2g4cODAzZ87M2WefnSOOOCJvvPFGzjjjjOy2225NIe7iqFRSiMFTTc4BiXHA+4wFEuOAeYyDYqjG+1Br730t9avXjkmvHVct9avXjqmWem0Ln+Rcllu+jI/WvXv3jBkzJs8//3yGDRuWPffcMxtvvHGOO+64ti4FAAAAAKBwqvJFZAMGDMiVV15ZjZcGAAAAACi0Nr/SFgAAAACADye0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAAGrGsstXmrZ7L7BdJHXVLgAAAAAAoK0M33527qvUJ0m22H52latZNKEtAAAAAFAzll2ukt1Gzap2GR/J8ggAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABfKpQtupU6e2VB0AAAAAAOQThLYNDQ0555xzsv7662f48OEZP358vva1r+X1119vjfoAAKBq/v73v+fee+/N7NmzM2XKlGqXAwBAjVji0PaCCy7Iww8/nPPOOy+dO3dO796907dv35xyyimtUR8AALS5KVOm5Bvf+Ea+/vWv55hjjsn48eOz1VZb5Yknnqh2aQAA1IAlDm3vuOOOnH/++dlkk01SKpXSrVu3nHbaaXn44Ydboz4AAGhzp556alZfffU8+uijqaury6qrrpr99tsvZ555ZrVLAwCgBixxaPvuu+9m2WWXTZJUKpUkSZcuXVIu+04zAAA6hocffjjHHntsunbtmlKplCTZZ5998q9//avKlQEAUAuWOGkdNGhQLrzwwiRpmsBec801WXvttVu2MgAAqJLOnTtn5syZSd6/UOGdd95J9+7dq1kWAAA1YolD2+OPPz533HFHNt1007zzzjvZbrvtcvXVV2f06NGtUR8AALS54cOH56ijjspLL72UUqmUKVOm5KSTTspmm21W7dIAAKgBdUv6hBVXXDF33XVX/vjHP2bChAnp27dvNt988/To0aM16gMAgDZ3xBFH5Nhjj822226bJNlkk02y2Wab5cc//nGVKwMAoBYscWg7e/bsXHLJJdltt93y1a9+NWPHjs2YMWNyyCGHWNcWAIAOoXv37jn//PMzderUvPLKK/nsZz+bz372s9UuCwCAGrHEKetpp52WBx54IJ06dUqSrLnmmvnzn/+cs846q8WLAwCAapg4cWK+8Y1v5NVXX80666yTq666Kt/85jfzxhtvVLs0AABqwBKHtvfee2+uuOKKfO5zn0uSDBkyJJdcckluv/32Fi8OAACq4aSTTsoXvvCFrLzyykmSfffdNwMGDMjJJ59c5coAAKgFS7w8wqxZs9KtW7dm9/Xo0SMNDQ0tVhQAAFTTE088kb/85S/p3LlzkmTZZZfND37wg2y66aZVrgwAgFqwxFfaDhkyJKeddlpmz56dZF6Ie+aZZ2a99dZr8eIAAKAa6urqMnXq1Gb3zZgxI126dKlSRQAA1JIlvtL2+OOPzz777JP11lsvvXr1yrRp0/L5z38+l1xySWvUBwAAbW7bbbfNIYccksMOOyz9+vXLq6++mvPPPz/bbLNNtUsDAKAGLHFou+KKK+buu+/O448/nsmTJ6dv375ZZ511Ule3xIcCAIBCOuqoo3LSSSdl//33z+zZs1NfX5+dd945hx12WLVLAwCgBix20vraa6+lb9++mThxYpJkhRVWyAorrJAkef3115Ok6cvJAACgPevatWtOP/30nHzyyZkxY0Z69+6dUqlU7bIAAKgRix3abrfddvnrX/+a4cOHLzRhrVQqKZVK+b//+78WLxAAANrKnXfemR122CG33nrrh+6z8847t1k9AABtZeLECbnqqstTX1+XkSNHpV+//tUuqaYtdmh71113JUluv/32dO/evdUKAgCAarnkkkuyww475Pzzz1/k46VSSWgLAHRIY8dekaeffjJJ0tDQmNGjT6huQTVusUPbfv36JUkOOOCA3H777enRo0erFQUAANVw5513JknOPPPMDB48OJ06dapyRQAAbWPChPGL3KY6yp/kSe+9915L1wEAAIVx8MEHZ/bs2dUuAwCAGrXYV9rON3To0Oy+++7ZdNNNs/zyyzd77Hvf+16LFQYAANWy4oor5plnnsmGG25Y7VIAAKhBSxzavvLKK1lxxRXz4osv5sUXX2y637fpAgDQUXzmM5/JqFGjssIKK2T55ZdvNte9+uqrq1gZAAC1YIlC2wsvvDA9evTIJptskpEjR7ZWTQAAUFWDBw/O4MGDM3v27MyYMSO9evVKXd0SX+8AAACfyGKvaXvmmWfmF7/4RTp37pzzzz8/l112WWvWBQAAVfOd73wnL7/8cq666qpcf/31GTt2bKZMmZL99tuv2qUBAFADFju0vfPOOzN27Nicf/75Of/883PHHXe0Zl0AAFA1J598cv7zn//k4osvzt13351zzz03zzzzTM4666xqlwYAQA1Y7M94vfXWW1lttdWSJOuvv34mTZrUakUBAEA13Xffffntb3+b3r17J0m+8IUvZI011shOO+2U4447rsrVAQDQ0S32lbbl8vu7Ws8LAICObKmllkqnTp2a3de9e/d07dq1ShUBAFBLFju0rVQqrVkHAAAUxgEHHJBDDjkkzz33XN5777289NJLOfbYY7Pddttl4sSJTf8AAKA1LPYlsw0NDbn11lubbs+ZM6fZ7STZeeedW6gsAAConp/85CdJ5s1vS6VSswsYrrzyylQqlZRKpfzf//1ftUoEAKADW+zQtk+fPjn//PObbvfq1avZ7VKpJLQFAKBD+MMf/lDtEgAAqGGLHdred999rVkHAAAURv/+/atdAgAANWyx17QFAAAAAKD1CW0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKJC6ahcAAAAAACy+crmUcrnUoscslRY8Xil1da1zrWdjYyWNjZVWOXZHIrQFAAAAgHaiXC6lV6+uKZc7tfhxm79G9xY9/nyNjXMzbdp7gtuPIbQFAAAAgHZi3lW2nfKbf16Qqe9OaLHjvjN7WrPt654c3WLHnm/Zbv3z1dW/n3K5JLT9GEJbAAAAAGhnpr47IW+882KLHW9upaHZdksemyXni8gAAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFUpXQ9rnnnsuoUaOy4YYbZtiwYTn66KMzderUapQCAAAAAFAobR7azpw5M/vss08GDx6cP//5z7nzzjszffr0HHfccW1dCgAAAABA4bR5aDtx4sSsscYaOfjgg1NfX59evXpljz32yKOPPtrWpQAAAAAAFE5dW7/gF77whYwZM6bZfffcc0/WXHPNJTpOqdSSVbUv83uv5XOAccD7jAUS44B5jINi9d6WtdTae19L/eq1Y9Jrx1VL/eqVT6uWzueCvS5u320e2i6oUqnk3HPPzf/+7//m2muvXaLn9u69dCtV1X44ByTGAe8zFkiMA+YxDoqhGu9Drb33tdSvXjsmvXZctdSvXjuOHn065b3pjUmSpZfr1Kqv1atX91Y9fpF80l6rFtq+/fbbOfbYY/Pss8/m2muvzcCBA5fo+VOmvJVKpZWKK7hSad4Pilo+BxgHvM9YIDEOmMc4eP8cFEFbvg+19t7XUr967Zj02nHVUr96rZ5OncqtEnqutV33/O2ud5Ika361dUPVadPeydy5jR+7X2v12pY+2OvizlerEtq+/PLL2XffffO5z30uN954Y5ZddtklPkalkkL8h1JNzgGJccD7jAUS44B5jINiqMb7UGvvfS31q9eOSa8dVy31q9eOo0efumy012fa7PU68rn8oE/Sa5t/EdmMGTOy1157Zb311ssVV1zxiQJbAAAAAICOqs2vtL355pszceLE/OY3v8lvf/vbZo898cQTbV0OAAAAAEChtHloO2rUqIwaNaqtXxYAAAAAoF1o8+URAAAAAAD4cEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKJC6ahcAAAAAAEU0ceKEXHXV5amvr8vIkaPSr1//apdEjRDaAgAAAMAijB17RZ5++skkSUNDY0aPPqG6BVEzLI8AAAAAAIswYcL4RW5DaxPaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgdRVuwAAAAAA+DTK5VLK5VKLH7dUWvCYpdTVtc71j42NlTQ2Vlrl2LRPQlsAAAAA2q1yuZSevbqmU7lTqxx7we1evbq3+GskydzGuZk+7T3BLU2EtgAAAAC0W+VyKZ3KnTL2b1fntXcnteixZ8ya0Wz7jEd+2qLHT5K+3T6bvdb6r5TLJaEtTYS2AAAAALR7r707Ka+89UqLHnNuZW6z7ZY+PnwYX0QGAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAALAI9b2Xatpeqs9SH7EntCyhLQAAAAAsQt+t+6X753uk++d75LNb9at2OdSQumoXAAAAAABFtFTvpbLyN1epdhnUIFfaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgdRVuwAAAAAA2o+JEyfkqqsuT319XUaOHJV+/fpXuyTocIS2AAAAACy2sWOvyNNPP5kkaWhozOjRJ1S3IOiALI8AAAAAwGKbMGH8IreBliO0BQAAAAAoEMsjAAAAAHRA5XIp5XKpxY9bKi14zFLq6lr+msDGxkoaGystflxoL4S2AAAAAB1MuVxKz17d0qnc8oHqgkFwuVxKr17dW/w15jY2Zvq0dwW31CyhLQAAAEAHUy6X0qlczukPXZ+X33y9RY895b03m20fdM8FLXr8lZZZPqO/tEfK5ZLQlpoltAUAAADooF5+8/X8a9rEFj3m3GXqkzffS5I0fKa+xY8PVPmLyKZOnZqtt94648aNq2YZAAAAACym8pdWSvovk/RfJuWNVqp2OdAhVe1K28cffzyjR4/Oyy+/XK0SAAAAAFhCpZ5d02m7NapdBnRoVbnS9pZbbsmRRx6Zww8/vBovDwAAAABQWFW50naTTTbJiBEjUldX94mD21Lp4/fpqOb3XsvnAOOA9xkLJMYB8xgHxeq9LWuptfe+lvrVa8ek146r1vptC7V2Lmup31rtdXH7rkpou9xyy33qY/TuvXQLVNK+OQckxgHvMxZIjAPmMQ6KoRrvQ62997XUr147Jr12XLXWb2vp1at7tUtoU7XUr14/XtXWtP20pkx5K5VKtauojlJp3i+AWj4HGAe8z1ggMQ6Yxzh4/xwUQVu+D7X23tdSv3rtmPTacRWp306dyu0+GJs27Z3Mndv4sft1hF6T2uq3lntd3Plquw1tK5VU/QdgtTkHJMYB7zMWSIwD5jEOiqEa70Otvfe11K9eOya9dly11m9rqrXzWEv96vWjVeWLyAAAAAAAWDShLQAAAABAgVR9eYR//OMf1S4BAAAAAKAwXGkLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAokLpqFwAAAADQ3k2cOCFXXXV56uvrMnLkqPTr17/aJQHtmNAWAAAA4FMaO/aKPP30k0mShobGjB59QnULAto1yyMAAAAAfEoTJoxf5DbAJ+FKWwAAAKBmlMullMulFj9uqbTgMUupq2v56+QaGytpbKy0+HGB4hHaAgAAADWhXC6lZ69u6VRu+UB1wSC4XC6lV6/uLf4acxsbM33au4JbqAFCWwAAAKAmlMuldCqXc/zvbsyLU99o0WNPq19wu5RvXX9xix7/88sul1O23i3lckloCzVAaAsAAADUlBenvpHnJr/aoscsr/G5dJs1K0kyY41+mdTCxwdqi9AWAAAA4FNqXLpb3t5kzWqXAXQQLb+ICwAAAAAAn5jQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACqat2AQAAfHoTJ07IVVddnvr6uowcOSr9+vWvdkkAAMAnJLQFAOgAxo69Ik8//WSSpKGhMaNHn1DdggAAgE/M8ggAAB3AhAnjF7kNAAC0P660BQBqWrlcSrlcqnYZn1qptGAPpdTVdYy/zTc2VtLYWKl2GQAA0KaEtgBAzSqXS+nVq2vK5U7VLuVTWzB4ntdX9ypW03IaG+dm2rT3BLcAANQUoS0AULPmXWXbKb/55wWZ+u6Eapfzqbwze1qz7eueHF3FalrGst3656urfz/lckloCwBATRHaAgA1b+q7E/LGOy9Wu4xPpWvvSt7+f7lttz6Vdt8PAADUso6x2BkAQI1ba7vuWW7Vzllu1c5Z86sdY2kEAACoVa60BQDoAHr0qctGe32m2mUAAAAtQGgL0I5NnDghV111eerr6zJy5Kj069e/2iUBAEASc1WAT0NoC9SkeV8+VPr4HQvu6quvyNNPP5kkmTu3kuOPP7G6BbWQxsaKLx0CAGhDrTE/bqu5qrkj0BEJbYGaUy6X0rNnt3Tq1P6X9X711fe/7X7ixFfSq1fHWMdy7tzGTJ/+rsn3YnIVCwDwabTW/Lit5qrmjkBHJLQFak65XEqnTuUcd+tN+ffkydUu51OZvsDVENPKpXxjzKVVrKZlfKFPn5y689dSLpdMvBfT2LHvX8XS0NCY0aNPqG5BAEC70lrz47aYq5o7Ah2V0BaoWf+ePDnPvfZqtcv4VMor9U/3mTOTJNNW6p9X23k/ba2jLJMxceIrTdsTJrySurr2fxV54qOOANDWWnp+bK4K8MkJbQHascZu3fLWoLWrXUa7VC6X0rNXt3Qqt/+Ac8HguVwudZxlMhobM32ajzoCQHtlrgrwyQltAahJ5XIpncrlnP7Q9Xn5zderXc6n8na390PNt7snB91zQRWraRkrLbN8Rn9pDx91BAAAapLQFoCa9vKbr+df0yZWu4xPpTLks8nseR89fG/95dt9PwAAALVOaAsA7VypZ9d02m6NapcBAABAC2n/C/kBAAAAAHQgrrRtZyZOnJCrrro89fV1GTlyVPr161/tkgAAAACAFiS0bWfGjr0iTz/9ZJKkoaExo0efUN2CAAAAAIAWZXmEdmbChPGL3AYAAAAAOgahLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgvogMAAAAFqFcLqVcLrXa8Tt1ar3rqBobK2lsrLTa8QFoXUJbAAAA+IByuZSePbu1arDaq1f3Vjv23LmNmT79XcEtQDsltAUAAIAPKJdL6dSpnB/+4pa89PrkapezRFZZvk9O/tYuKZdLQluAdkpoC+3QxIkTctVVl6e+vi4jR45Kv379q10SAAB0SC+9Pjn/mPBatcsAoMYIbaEdGjv2ijz99JNJkoaGxowefUJ1CwIAAACgxbTe4jxAq5kwYfwitwEAAABo/4S2AAAAAAAFUjPLI5TLpZTLpWqX8amVSgv2UEpdXcfI3RsbKxbIBwAAAIDUSGhbLpfSs2e3dOrU/gPOBYPncrmUXr26V7GaljN3bmOmT3+31YNb4X2xCe8BAAAAaii07dSpnLNOvT7jX36j2uV8KlOnvNVs+9ADLqxiNS1jxZWWy5HH7ZFyudSqgZ3wvvjaKrwHAKBYJk6ckKuuujz19XUZOXJU+vXrX+2SAKCqaiK0nW/8y2/khecnVruMT6UhDe9vNzS0+37a0vzw/sdX3JL/vDq52uV8KpNnvNVs+7s/ubyK1bSMlfv1yQnf3aXVw3sAAD651vrk2tVXX5Gnn34ySTJ3biXHH39ii79G4pNdALQfNRXaQpL859XJ+ef416pdxqfSuWFu5k+VGxrmtvt+AAAovtb85Nqrr05o2p448ZVW+ySZT3YB0F4IbQEAAPhYrfnJtTfnlJttt8YnyXyyC4D2RGgL7VClvntKDbOatgEA6HiKus5rq3xyrceKqXtvZpJkRo8VM8MnyQCocUJbaIca+gxI3RvPN20DANDxjB37/jqvDQ2NGT36hOoW1Jrqu6Wh/7rVrgIACkNoC+2RSS0AtEut9SVO87XGWqPzFeULnIp69WlrmDBh/CK3AYCOT2gLAABtYN6XOHVNp06dWu01WuvLm5Jk7ty5mT79vaoHt0W8+rS1wvhSacFjllJX1/KhfFHCeACgOaFtO1NK11Qyu2kbAID2Yd6XOHXKmUdfkZdfeLXa5SyRlVbtl6PP/G4hvsCpaFefzgvju7XKVc4LBsHlcqlVQvm5cxszffq7VX9fAYDmhLbtTOesnDn5T9M2AADty8svvJoX/q/6YSMtY14YX87pF9yclydMbtFjvz2ztMB2OQeNvqxFj79S/z4Z/f1dCxHGAwDNCW3bmXK6ZqmsUe0yAACABbw8YXL+9eJrLXrMSmnFpPOsJMl7pRVa/PgAQHEJbQEAgBZnnddPr1TXLZ0+s061ywAAqkBoCwAAtCjrvAIAfDpCWwAAoEXNX+f1rFOvz/iX32jRY0+d8laz7UMPuLBFj7/iSsvlyOP2sM4rAFBVQlsAAKBVjH/5jbzw/MQWPWZDGt7fbmho8eMDABRBy39eCQAAoJWU0nWR2wAAHYnQFgAAaDc6Z+WU85mU85l0zsrVLgcAoFVYHgEAAGg3yumapbJGtcsAAGhVrrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAAqkKqHtlClTctBBB2XIkCEZOnRoTjnllDQ0NFSjFAAAAACAQqlKaHvYYYelW7du+dOf/pQbb7wxDz30UK666qpqlAIAAAAAUChtHtr+5z//ySOPPJKjjjoqXbt2zYorrpiDDjoo1113XVuXAgAAAABQOG0e2j7//PPp2bNnPvvZzzbdt+qqq2bixIl5880327ocAAAAAIBCqWvrF3znnXfStWvXZvfNv/3uu+9mmWWWWazjlMtJpbJkr73qgH5ZqkvnJXsSrW6FFfo0bZfb4M8Iq63UN13qjYOiWbFv76btthgHSfL/9e2brp2NhaJZpXfbjoUBvT6XLp2Mg6JZYZnlmrbbYhws32OV1JWXav0XYoks261f0/bijoNSqZWK+QQ+bL464IsrpUvX+rYv6FNY4fN9m7aX5L/J9jj//qRz0wGr9E2XpdpZr/0+2e/c9jqf/qTzzYGfa3/9rtznk/XaHufHn3TuuMZy/dK1rn31unKvT/jzqR3Odz/pXHDFHiukvty+fscmyWe7Ld+0vST9tsc57CeZ3yXJMt0GplO5SytU1Hq6d1m5aXvBXhd3vlqqVJY0+vx0fve73+UHP/hBxo0b13TfP/7xj+y444557LHHsvTSS7dlOQAAAAAAhdLmyyOsttpqmT59eiZPntx03wsvvJC+ffsKbAEAAACAmtfmoe0qq6yS9ddfP6eeemrefvvtjB8/PhdddFF22223ti4FAAAAAKBw2nx5hCSZPHlyfvzjH2fcuHEpl8vZeeedc+SRR6ZTp05tXQoAAAAAQKFUJbQFAAAAAGDR2nx5BAAAAAAAPpzQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoW3BTZ06NVtvvXXGjRv3ofvcf//9GTFiRAYNGpSvfvWr+d///d82rJDW9Nxzz2XUqFHZcMMNM2zYsBx99NGZOnXqIvc1Djq2hx56KLvvvnvWW2+9DBs2LCeffHJmzpy5yH2NhY5t7ty52XPPPTN69OgP3ccY6NjuvvvufPGLX8zgwYOb/h111FGL3NdY6JhqYX5Ya3OgWvs9Xyu/y2rp5/X06dNz9NFHZ+jQodlggw1y0EEH5fXXX1/kvu2919tvv73Zezp48OCstdZaWWuttRa5f3vv99lnn83IkSMzZMiQbLLJJvnJT36S2bNnL3Lf9t7rCy+8kO9+97sZMmRINt9881x88cVpbGxc5L7ttddFzSGeeuqp7L777hk8eHCGDx+eX//61x95jMsvvzybbrppBg0alD333DP//ve/W7vsT+zD5kxPPPFE1l577Y99ftV7rVBYjz32WGWrrbaqrL766pWHH354kfu8+OKLlbXXXrvyu9/9rjJnzpzKXXfdVVlnnXUqr732WhtXS0t77733KsOGDaucd955lVmzZlWmTp1a2XfffSv777//QvsaBx3blClTKmuvvXblpptuqsydO7cyadKkyg477FA577zzFtrXWOj4zj333Moaa6xROeaYYxb5uDHQ8Z1++umV0aNHf+x+xkLHVAvzw1qbA9Xi7/la+V1WSz+vv/3tb1cOPvjgyowZMypvvfVW5Xvf+15lv/32W2i/jtDrB7322muVYcOGVW699daFHmvv/c6dO7cybNiwytixYytz586tvPrqq5VtttmmcuGFFy60b3vv9e23365svvnmleOPP77yzjvvVF555ZXKDjvsULngggsW2re99rqoOcT06dMrG264YeXaa6+tzJkzp/Lggw9WBg8eXHnqqacWeYybb7658uUvf7nyz3/+szJz5szKaaedVtl+++0rjY2NbdnKYllUv42NjZVf//rXlUGDBlVWX331j3x+EXp1pW1B3XLLLTnyyCNz+OGHf+x+Q4YMyVZbbZW6urpst9122WCDDXL99de3UaW0lokTJ2aNNdbIwQcfnPr6+vTq1St77LFHHn300YX2NQ46tmWXXTYPPvhgdt1115RKpUyfPj2zZs3Ksssuu9C+xkLH9tBDD+Xee+/NV77ylQ/dxxjo+J555pkPvZpnQcZCx1Mr88NamwPV2u/5WvpdVis/r//2t7/lqaeeyumnn55lllkmPXr0yMknn5wjjzxyoX3be68fVKlUctRRR2XzzTfPTjvttNDj7b3fGTNm5I033khjY2MqlUqSpFwup2vXrgvt2957ffzxxzNlypSccMIJ6datW/r3758DDzwwv/zlL5t6n6899vphc4h77703PXv2zMiRI1NXV5cvfelLGTFiRK677rpFHueGG27It771ray22mpZaqmlcsQRR2TixIkf+emfaviwfo877rj8+te/ziGHHPKxxyhCr0Lbgtpkk03yu9/9Ltttt91H7vevf/0rq6++erP7BgwYkOeee641y6MNfOELX8iYMWPSqVOnpvvuueeerLnmmgvtaxx0fD169EiSbLbZZhkxYkSWW2657LrrrgvtZyx0XFOmTMnxxx+fs88+e5ET5fmMgY6tsbExzz77bP74xz9miy22yKabbpof/vCHmTFjxkL7GgsdT63MD2txDlQrv+dr6XdZLf28fvrppzNgwIDccMMN2XrrrbPJJpvkjDPOyHLLLbfQvu291w+67bbb8q9//etDl/po7/326tUr3/nOd3LGGWdk7bXXzmabbZZVVlkl3/nOdxbat7332tjYmM6dO6dz585N95VKpUyePDlvvvlms33bY68fNod4/vnnl6iXD/beuXPnrLLKKoXr/cP6PfTQQ3P99dfni1/84sceowi9Cm0LarnllktdXd3H7vfOO+8sNOHp0qVL3n333dYqjSqoVCo555xz8r//+785/vjjF3rcOKgd9957bx544IGUy+VF/nXQWOiYGhsbc9RRR2XUqFFZY401PnJfY6Bjmzp1ar74xS9mm222yd13351f/epXeemllxa5RqKx0PHU4vyw1uZAHfn3fK39Lquln9czZszIP/7xj7z00ku55ZZbcuutt2bSpEk55phjFtq3vfe6oMbGxlx88cU54IADmv7w8kHtvd/GxsZ06dIlP/zhD/Pkk0/mzjvvzAsvvJDzzz9/oX3be6/rrbdeunTpkrPPPjvvvfdeJkyYkCuuuCJJFlpjvD32+mFziCXtpb30/mH99u3bd7GPUYRehbbtXNeuXRf6ATJz5sx07969ShXR0t5+++0ccsghueOOO3Lttddm4MCBC+1jHNSOLl265LOf/WyOOuqo/OlPf1roag1joWO69NJLU19fnz333PNj9zUGOrY+ffrkuuuuy2677ZauXbvmc5/7XI466qg88MADefvtt5vtayzUro7y3tfiHKgj/56vtd9ltfTzur6+Pkly/PHHp0ePHunTp08OO+yw3H///XnnnXea7dvee13QuHHj8vrrr2e33Xb70H3ae7+/+93vcs899+Rb3/pW6uvrs9pqq+Xggw/OL3/5y4X2be+9LrPMMrn88svz1FNPZfPNN89hhx2WnXfeuemxBbX3Xhe0pL10pN4/ThF6Fdq2c6uvvnqef/75Zvf961//ymqrrValimhJL7/8cr72ta/l7bffzo033rjI/1lJjIOO7q9//Wu23XbbZt/SOnv27HTu3Hmhv/wZCx3TbbfdlkceeSRDhgzJkCFDcuedd+bOO+/MkCFDFtrXGOjYnnvuuZx11lnN1labPXt2yuVy0/80z2cs1K6O8N7X0hyoVn7P19rvslr6eT1gwIA0NjZmzpw5Tfc1NjYmyUJrgbb3Xhd0zz33ZOutt063bt0+dJ/23u+rr77a7GdTktTV1TVbQmC+9t7r7Nmz09DQkKuvvjrjxo3Lr3/965TL5QwYMKBD/Sz+oCXtZbXVVmu2/5w5c/LSSy8ttMRCR1CEXoW27dyOO+6YRx55JHfffXcaGhpy991355FHHlnkIui0LzNmzMhee+2V9dZbL1dcccUiv4xiPuOgYxs4cGBmzpyZs88+O7Nnz86ECRNyxhlnZLfddlto0m8sdEy//e1v89e//jWPPfZYHnvsseywww7ZYYcd8thjjy20rzHQsfXs2TPXXXddxowZk4aGhkycODE//elPs8suu/h5QJP2/t7X2hyoVn7P19rvslr6eb3xxhtnxRVXzHHHHZd33nknU6dOzTnnnJOtttpqoWUD2nuvC3r88cezwQYbfOQ+7b3fTTbZJG+88UYuueSSzJ07N+PHj8/FF1+cESNGLLRve+81Sb773e/mxhtvTKVSyd/+9rdccskl2WuvvRbaryP0Ot/WW2+dyZMn56qrrsqcOXPy8MMP54477sjXvva1Re7/ta99Lddee22ee+65zJo1K2effXb69OmzyD/AtXeF6LVC4a2++uqVhx9+uOn2oEGDKrfddlvT7QceeKCy4447VgYNGlTZfvvtK3/84x+rUSYt7Morr6ysvvrqlXXXXbcyaNCgZv8qFeOg1jz//POVUaNGVYYMGVLZYostKj/72c8qs2bNqlQqxkItOuaYYyrHHHNM021joLaMGzeusscee1QGDx5c2WijjSonn3xyZebMmZVKxVioJR15fliLc6Ba/D1fC7/Launn9WuvvVY57LDDKsOGDasMGTKkcvTRR1dmzJhRqVQ6Xq/zDRo0aJG1d7R+//KXv1R23333yvrrr1/ZfPPNO/TPp0ceeaSyyy67VAYNGlTZcsstK1dffXXTYx2p1w/OIZ5++ummn1Vbbrll5aabbmp67NFHH60MGjSoMmHChEqlUqk0NjZWrrjiisrw4cMrgwYNquy5556Vf//7323ew5L4YL+VSqXy8MMPV1ZfffVm9xWx11Kl8oHPKwAAAAAAUDWWRwAAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2ADXgpZdeqnYJAAAAwGIS2gK0khdffDHHHHNMNt100wwePDhbbbVVzjrrrLzzzjut8nrDhw/PzTffnCTZZ599cskllyRJ7rvvvnz3u99t2m/BxwAA4ONMnDgxJ554YoYPH55BgwZlww03zHe/+9385S9/abHXuPnmmzN8+PAWOx5Aeye0BWgFf/3rX7PLLrukf//+ufXWW/PEE0/k8ssvz1NPPZW99947c+fObdXXHzNmTA444IAkyfTp01OpVBb5GAAAfJR//vOf2XHHHTN79uxcfvnlefzxx3Pvvfdmxx13zMEHH5z777+/2iUCdEhCW4BWcMIJJ2TnnXfOIYcckmWXXTZJ8vnPfz7nnHNOevfunfHjx2fChAk57LDD8qUvfSnDhg3LEUcckddffz1JMm7cuAwfPjwXX3xxvvzlL2fDDTfM97///bz99ttJkkqlkksuuSSbbLJJhgwZkjPOOKNZELznnnvmggsuyLhx43LiiSdm4sSJGTx4cCZNmtT0WJI0Njbmsssuy1ZbbZX1118/u+22W/70pz81HWf48OG59NJLs/POO2fw4MHZeeed8/DDD7fVaQQAoMpOOOGEDBs2LKeddlpWXXXVdOrUKT179sxOO+2UE088MXPmzMnNN9+cXXfdNXvvvXeGDBmSO+64I5MmTcphhx2W4cOHZ911182WW26ZG2+8sem4L7zwQvbcc88MHjw4I0aMyN///vdmr/vss89mzz33zAYbbJCvfOUrueqqq5pdiADQ0QltAVrYyy+/nOeffz477LDDQo/16dMnF110Ufr375+99947nTp1yr333pvf/OY3SZIDDjggDQ0NSZIJEyZk0qRJ+d3vfpdf//rXeeKJJ/KLX/wiSXLTTTdl7NixufTSS/Pggw+mc+fOee211xZ6vaFDh+akk07K5z73uTzxxBP57Gc/2+zx//mf/8l1112X8847L+PGjcvee++dgw46KE8//XTTPjfddFPOO++8PPjgg1ljjTXyox/9qKVOFQAABfbaa6/liSeeyDe+8Y1FPr7LLrtkq622SjIvZB0xYkQefPDBbL311vnBD36Qzp0756677spf//rXfPvb387JJ5+cd955J3PmzMn++++f1VZbLQ8//HB+9rOf5fe//33TcSdNmpS99tor2267bR588MFcdNFF+cUvfpHrr7++TfoGKAKhLUALmzp1apJ5Ae2HeeyxxzJ+/PicdNJJWXrppbPMMsvkpJNOynPPPZe//e1vTfsdfPDB6dKlS1ZeeeUMHTo0L774YpLktttuy9e//vWsueaaqa+vz6GHHppevXotca033XRT9ttvv6y55pqpq6vLdtttl+HDhze7CmK33XbLyiuvnK5du2bEiBG+1AwAoEbMvyigb9++Tfc99NBDGTJkSIYMGZLBgwdnm222SZJ07tw5O+20U+rr69OlS5f85Cc/yYknnpjOnTtn4sSJ6d69e2bOnJkZM2bkiSeeyKuvvpqjjz46Sy21VFZbbbWMGjWq6TVuv/32rLrqqhk5cmQ6d+6cAQMG5Lvf/W6uu+66tj0BAFVUV+0CADqa5ZZbLknyxhtvZJVVVlno8cmTJ2fKlCnp1atXevTo0XR/jx490rNnz0yYMKEp8J1/rGTeRHj+R8Jef/319OvXr+mxTp065XOf+9wS1zp58uSsuOKKze5bYYUV8txzzzXdXjB8rqur87E0AIAaMX8uOmnSpHz+859PknzpS1/KY489lmTel4ddeOGFTfuWy+9fFzZ+/PiceeaZeemll7LKKqtk5ZVXTjJvea5JkyalV69e6dKlS9P+K620UtP2hAkT8uyzz2bIkCFN9zU2NqZTp06t1ClA8bjSFqCF9e/fP6uvvnruvvvuhR6bMmVKtthii0yYMCHTpk1rWqM2Sd56661MmzatWVD7Yfr27Zvx48c33a5UKk3r4S5prQseJ5k3wV5++eWX+FgAAHQs/fv3z9prr51f//rXH7tvqVRq2p6//MFOO+2UcePG5YYbbshee+3V9Hi/fv0yderUvPPOO033LbjUV9++fTN06NA89thjTf/+8Ic/5JZbbmmhzgCKT2gL0Ap++MMf5qabbsqFF16YadOmpVKp5P/+7/9ywAEHZM0118zee++dAQMG5MQTT8xbb72Vt956Kz/60Y+y0korZb311vvY4+++++654YYb8sQTT2TOnDm5+OKL88Ybbyxy36WWWirvvfde01q5HzzOZZddlmeffTZz587Nb37zm9x3333ZZZddPvU5AACg/Tv11FPzpz/9KT/84Q/z4osvplKp5O23386tt96aCy64YJF/7J8zZ05mzpyZLl26pFQqZeLEifnpT3/a9NjgwYPz+c9/Pj/5yU/y3nvv5T//+U+uvPLKpuePGDEiTz75ZG6//fY0NDTk9ddfzwEHHJDTTz+9zfoGqDahLUAr2HDDDXPttdfm73//e7bffvust956OeSQQ7LRRhtlzJgx6dy5cy699NI0NDRkm222yRZbbJE5c+bk5z//eerqPn7lmh122CGHHHJIDj/88Gy44YYZP358Bg4cuMh9N9hgg/Tu3TsbbLBB/vGPfzR7bNSoURk5cmQOP/zwDBkyJJdeeml+9rOfZcMNN2yR8wAAQPu2+uqr584770yXLl1ywAEHZP31189mm22WG264Ifvss0+uvvrqhZ7TrVu3nHrqqfmf//mfDB48OP/1X/+VYcOGpU+fPvnnP/+ZTp065bLLLsvrr7+ejTfeOPvss0+23HLLpuf3798/Y8aMyfXXX5+NN944O+20U77whS8IbYGaUqpYnBAAAAAAoDBcaQsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQP5/+1lQDJ6FW80AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2453,18 +2421,17 @@ } ], "source": [ - "# Create subplots with a shared y-axis\n", "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(14, 6), sharey=True)\n", "\n", "# Bar plot for condition vs. price\n", - "sns.barplot(x='condition', y='price', data=housing_data, ax=axes[0], hue=\"condition\", palette='viridis', legend=False)\n", + "sns.barplot(x='condition', y='price', data=housing_data, ax=axes[0], palette='viridis')\n", "axes[0].set_title('Condition vs. Price')\n", "axes[0].set_xlabel('Condition')\n", "axes[0].set_ylabel('Price')\n", "axes[0].grid(True)\n", "\n", "# Bar plot for grade vs. price\n", - "sns.barplot(x='grade', y='price', data=housing_data, ax=axes[1], hue=\"grade\", palette='viridis', legend=False)\n", + "sns.barplot(x='grade', y='price', data=housing_data, ax=axes[1], palette='viridis')\n", "axes[1].set_title('Grade vs. Price')\n", "axes[1].set_xlabel('Grade')\n", "axes[1].grid(True)\n", @@ -2473,7 +2440,7 @@ "plt.tight_layout()\n", "\n", "# Show plots\n", - "plt.show()\n" + "plt.show()" ] }, { @@ -4199,7 +4166,7 @@ "\n", "\n", "Coefficients:\n", - "Intercept (const): The intercept represents the estimated housing price when all independent variables are zero. In this case, it's not meaningful as it's unlikely for all features to be zero.\n", + "Intercept (const): The intercept represents the estimated housing price when all independent variables are zero.\n", "\n", "\n", "bathrooms: For each additional bathroom, the predicted housing price increases by approximately $24,855.\n", @@ -4368,7 +4335,10 @@ "source": [ "The model identifies the main factors that affect house prices, giving useful advice to real estate companies when they help customers. It's not perfect, but it does an okay job with a 63.1% score. We still need to check if it can predict prices well. However, the model does its job by helping with decisions and making marketing better by using details about houses and the market.\n", "\n", - "We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation.\n" + "We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation.\n", + "\n", + "\n", + "Addressing negative correlations in house prices, such as with the year built, is crucial. Older properties often have lower prices due to depreciation and maintenance issues. However, strategic renovations, updates, and modernization efforts offer opportunities to increase their value. Homeowners and investors can enhance the appeal and value of older properties in the market by undertaking such initiatives." ] }, { @@ -4709,7 +4679,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 106, "metadata": {}, "outputs": [ { @@ -4719,17 +4689,6 @@ "Mean Squared Error (Log Transformed): 0.09804039958945562\n", "R-squared (Log Transformed): 0.6469123715948973\n" ] - }, - { - "ename": "AttributeError", - "evalue": "'OLS' object has no attribute 'coef_'", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[60], line 29\u001b[0m\n\u001b[0;32m 27\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMean Squared Error (Log Transformed):\u001b[39m\u001b[38;5;124m\"\u001b[39m, mse_log)\n\u001b[0;32m 28\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mR-squared (Log Transformed):\u001b[39m\u001b[38;5;124m\"\u001b[39m, r2_log)\n\u001b[1;32m---> 29\u001b[0m coefficients \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mDataFrame({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFeature\u001b[39m\u001b[38;5;124m\"\u001b[39m: X\u001b[38;5;241m.\u001b[39mcolumns, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCoefficient\u001b[39m\u001b[38;5;124m\"\u001b[39m: model\u001b[38;5;241m.\u001b[39mcoef_})\n\u001b[0;32m 30\u001b[0m \u001b[38;5;28mprint\u001b[39m(coefficients)\n", - "\u001b[1;31mAttributeError\u001b[0m: 'OLS' object has no attribute 'coef_'" - ] } ], "source": [ @@ -4761,13 +4720,12 @@ "# Display results\n", "print(\"Mean Squared Error (Log Transformed):\", mse_log)\n", "print(\"R-squared (Log Transformed):\", r2_log)\n", - "coefficients = pd.DataFrame({\"Feature\": X.columns, \"Coefficient\": model.coef_})\n", - "print(coefficients)\n" + "coefficients = pd.DataFrame({\"Feature\": X.columns, \"Coefficient\": model_log.coef_})\n" ] }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 105, "metadata": {}, "outputs": [ { @@ -4789,7 +4747,7 @@ "\n", "# Plot residuals vs predicted values\n", "plt.figure(figsize=(8, 6))\n", - "plt.scatter(y_pred_log, residuals_log, color='blue')\n", + "plt.scatter(y_pred_log, residuals_log, color='blue',)\n", "plt.title('Residuals Plot (Log Transformed)')\n", "plt.xlabel('Predicted Values (Log Transformed)')\n", "plt.ylabel('Residuals (Log Transformed)')\n", @@ -5161,6 +5119,7 @@ "metadata": {}, "source": [ "# Recommedations\n", + "# Statistical recommedations.\n", "To mitigate multicollinearity, strategies such as feature selection, principal component analysis (PCA), or regularization methods like ridge regression or Lasso regression can be employed. These techniques prioritize essential predictors and enhance the model's interpretability while stabilizing it against multicollinearity.\n", "\n", "\n", @@ -5168,7 +5127,51 @@ "Before opting for polynomial regression, it's essential to validate the assumption of linearity between predictors and the target variable. If this assumption doesn't hold, alternative regression techniques such as generalized additive models (GAMs) or spline regression should be considered to better capture intricate relationships.\n", "\n", "\n", - "Preventing heteroscedasticity, or addressing it if it's present, is crucial for ensuring the reliability of linear regression analysis" + "Preventing heteroscedasticity, or addressing it if it's present, is crucial for ensuring the reliability of linear regression analysis\n", + "# Recommedation to real estate clients:Home owners and investors.\n", + "\n", + "\n", + "1.Invest in Larger Properties: Investors seeking maximum returns should focus on larger houses, as there's a positive correlation between total square footage and price. Such properties have the potential for higher profits upon resale or rental.\n", + "\n", + "\n", + "2.Upgrade Existing Properties: Homeowners can increase their property's value by investing in upgrades that increase square footage, such as adding extra rooms or expanding living spaces.\n", + "\n", + "\n", + "3.Optimize Bedroom and Bathroom Ratios: It's essential to find the right balance between bedrooms and bathrooms to maximize property value. Consulting with real estate professionals can help determine the optimal ratio based on market trends and buyer preferences.\n", + "\n", + "\n", + "4.Focus on Quality Over Quantity: Prioritize quality improvements that enhance functionality and aesthetics, such as renovating bathrooms with modern fixtures or upgrading kitchen appliances, to add perceived value to the property.\n", + "\n", + "\n", + "5.Highlight Features in Listings: Emphasize the number of bedrooms and bathrooms in property listings to attract buyers who prioritize space and convenience. Highlight unique features that add versatility to the property.\n", + "\n", + "\n", + "6.Differentiate Marketing Strategies: Tailor marketing strategies based on property condition and grade ratings. Highlight the benefits of higher-grade properties to attract premium buyers, while emphasizing renovation potential for properties with lower condition ratings.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CONCLUSION\n", + "\n", + "Property Size Matters: There is a clear positive correlation between the size of a property, indicated by total square footage, and its price. Investing in larger properties can potentially yield higher returns for investors and increase market value for homeowners.\n", + "\n", + "\n", + "Strategic Upgrades Add Value: Upgrading existing properties with strategic renovations and expansions, particularly those that increase square footage, can enhance their market value. Quality improvements that improve functionality and aesthetics are key to maximizing property value.\n", + "\n", + "\n", + "Balance is Key: While adding extra bedrooms and bathrooms can increase a property's price, there's a point of diminishing returns. It's important to strike a balance between quantity and quality, optimizing the bedroom-to-bathroom ratio to align with market trends and buyer preferences.\n", + "\n", + "\n", + "Marketing Differentiation is Essential: Tailoring marketing strategies based on property condition and grade ratings is crucial. Highlighting the unique features and benefits of higher-grade properties can attract premium buyers, while emphasizing renovation potential for properties with lower ratings can appeal to savvy investors.\n" ] } ], From a3a720702b318455c2268e864755bea306a2697b Mon Sep 17 00:00:00 2001 From: WairimuMundia <156019539+WairimuMundia@users.noreply.github.com> Date: Wed, 1 May 2024 10:09:39 -0400 Subject: [PATCH 16/27] Add files via upload --- README ().md | 261 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 261 insertions(+) create mode 100644 README ().md diff --git a/README ().md b/README ().md new file mode 100644 index 00000000..b73faf72 --- /dev/null +++ b/README ().md @@ -0,0 +1,261 @@ +# REAL ESTATE SALES PREDICTION MODEL + +## Project Overview + +In the fast-paced world of real estate, it's crucial for agencies to provide clients with precise information. Clients, whether they're looking to become homeowners or investors, rely on real estate companies for guidance on important decisions such as pricing, market trends, and property evaluations. To meet this need, real estate agencies can benefit from a sophisticated regression-based tool. This tool uses various property variables like the number of bedrooms, year built, floor count, living area, condition, location, and amenities to accurately predict property prices. By employing regression analysis, agencies can offer clients more precise pricing estimates, leading to better-informed decisions. Ultimately, this tool aims to improve client satisfaction, streamline decision-making processes, and drive success for real estate agencies. + + +### Business Problem + +Real estate experts in King County need help understanding what factors influence property values and market trends. This study aims to analyze property features, locations, buyer preferences, and market changes over time. By gaining insights from this analysis, real estate professionals can make informed decisions about buying, selling, and positioning themselves in the dynamic King County market. The goal is to provide practical advice to help them succeed in this ever-changing real estate landscape. +### The Data Understanding + +King County, Washington, situated in the northwest of the United States, is known for its vibrant housing market centered around Seattle. The county has experienced significant growth due to its strong economy and cultural importance, attracting a large number of residents and creating high demand for housing in both urban and suburban areas. Seattle, with its impressive skyline, is especially sought after by tech professionals and city lovers. King County's real estate market is competitive, offering a range of neighborhoods to suit different preferences, from historic areas to modern suburban developments +**Target Variable** + +price: Sale price of the house . + +**Unique identifier** + +id - Unique identifier for a house + +**Property Characteristics:** + + + +bathrooms: Number of bathrooms. + +sqft_living: Square footage of living space in the home. + +sqft_lot: Square footage of the lot. + +floors: Number of floors (levels) in the house. + +waterfront: Indicates whether the house is on a waterfront (categorical: YES/NO). + +view: Quality of view from the house, categorized into various types. + +condition: Overall condition of the house, categorized based on maintenance. + +grade: Overall grade of the house, reflecting construction and design quality. + +Additional Features: +sqft_above: Square footage of house apart from the basement. + +sqft_basement: Square footage of the basement. + +yr_built: Year when the house was built. + +yr_renovated: Year when the house was renovated. + +zipcode: ZIP Code of the property. + +lat: Latitude coordinate of the property. + +long: Longitude coordinate of the property. + +sqft_living15: Square footage of interior housing living space for the nearest 15 neighbors. + +sqft_lot15: Square footage of the land lots of the nearest 15 neighbors.bedrooms: Number of bedrooms. + +bathrooms: Number of bathrooms. + +sqft_living: Square footage of living space in the home. + +sqft_lot: Square footage of the lot. + +floors: Number of floors (levels) in the house. + +waterfront: Indicates whether the house is on a waterfront (categorical: YES/NO). + +view: Quality of view from the house, categorized into various types. + +condition: Overall condition of the house, categorized based on maintenance. + +grade: Overall grade of the house, reflecting construction and design quality. + +**Additional Features:** + +sqft_above: Square footage of house apart from the basement. + +sqft_basement: Square footage of the basement. + +yr_built: Year when the house was built. + +yr_renovated: Year when the house was renovated. + +zipcode: ZIP Code of the property. + +lat: Latitude coordinate of the property. + +long: Longitude coordinate of the property. + +sqft_living15: Square footage of interior housing living space for the nearest 15 neighbors. + +sqft_lot15: Square footage of the land lots of the nearest 15 neighbors. +### Key Points + +# **OBJECTIVES** + + +**Main Objective:** + +The primary aim of this project is to develop a predictive regression model to support real estate agencies in advising clients on house prices. This model is intended to anticipate potential changes in property value based on property characteristics, furnishing clients with valuable insights to facilitate informed investment decisions. + +Specific Goals: + +i). Identification of Key Influencing Factors on House Prices: + +Analyze various property features, including bedrooms, bathrooms, and square footage, to determine their impact on sale price. Investigate location-related attributes such as zip codes and geographic coordinates to further comprehend their effect on property prices. + +ii). Assessment of Model Performance: + +Employ metrics such as mean squared error, R-squared values, and residual analysis to evaluate the model's accuracy in predicting house prices effectively. + +iii). Provision of Actionable Recommendations: + +Offer practical recommendations to real estate agencies aimed at enhancing profitability and market presence. Utilize insights gleaned from the model to optimize marketing strategies and enhance overall decision-making processes. + +# **TABLE OF CONTENT** +1. Data Preparation +2. Data cleaning +1. Exploratory data analysis +2. Statistical Analysis +1. Modelling +2. Regression Results +1. Conclusion +2. Recomendations + + +#**Statistical Analysis** +Statistical analysis plays a crucial role in understanding relationships within datasets, identifying patterns, and gaining insights. In this regression modeling project aimed at predicting property values, several key steps in statistical analysis are essential: + +Descriptive Statistics +Correlation matrix +Distribution Analysis +Inferential Statistics using Hypothesis Testing and Analysis of Variance +MultiColinierity +# *Modelling** +Baseline model - simple linear model. +2. log transformation. +3. Multiple Linear Regression +4. Residual modelling. + +# **REGRESSION RESULTS** + +**SIMPLE LINEAR REGRESSION** +Intercept: This is like the starting point or baseline of our predictions. For example, if all other factors were zero, we'd expect the value to be around -44593.95. It's where our line would intersect the y-axis on a graph. + +Coefficient: This tells us how much the predicted value changes for each unit increase in the independent variable. In this case, for every one-unit increase in the independent variable, we'd expect the dependent variable to increase by about 281.41. + +R-squared: This is a measure of how well our model explains the variation in the data. An R-squared value of 0.49 means that about 49% of the variability in the dependent variable is explained by our model. So, it's doing a decent job, but there's still room for improvement. + +Mean Squared Error (MSE): This tells us, on average, how much our predictions differ from the actual values in the training data. Here, the average squared difference is around 68601152192.94, which is quite large but it's relative to the scale of the dependent variable. + +Root Mean Squared Error (RMSE): This is just the square root of the MSE. It gives us an idea of the average amount our predictions are off by. Here, it's around 261918.22, which is the typical difference between our predicted values and the actual values in the training data. + +Test Set: + +R-squared: Similar to the training set, this tells us how well our model explains the variation in the test data. An R-squared value of 0.48 means that about 48% of the variability in the dependent variable is explained by our model when evaluated on the test data. + +Mean Squared Error (MSE): This is the average squared difference between our predictions and the actual values in the test data. It's around 68845100756.11, similar to the MSE in the training set. + +Root Mean Squared Error (RMSE): Again, this is just the square root of the MSE for the test data. It's around 262383.50, which is the typical difference between our predicted values and the actual values in the test data +Overall +, the model suggests that there is a positive relationship between the independent and dependent variables. However, given the moderate R-squared value and the relatively high MSE and RMSE, it's clear that there may be other factors influencing the dependent variable that are not captured by the model. Further investigation or refinement of the model may be needed to improve its predictive performance. +# ** Multiple Linear Regresion +![alt text](image-1.png) +# **RESIDUALS** +![alt text](image-3.png) +A p-value of 3.975373048166964e-258, which is extremely close to zero, indicates strong evidence against the null hypothesis of homoscedasticity. In other words, there is a significant presence of heteroscedasticity in your data. + +Heteroscedasticity refers to the situation where the variability of a variable is unequal across the range of values of a second variable that predicts it. In the context of regression analysis, it means that the variance of the errors is not constant across observations. +The model identifies the main factors that affect house prices, giving useful advice to real estate companies when they help customers. It's not perfect, but it does an okay job with a 63.1% score. We still need to check if it can predict prices well. However, the model does its job by helping with decisions and making marketing better by using details about houses and the market. + +We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation. +#**Log transformation**. +Transforming the dependent variable or one or more independent variables can sometimes stabilize the variance. Common transformations include taking the natural logarithm, square root, or reciprocal of the variables. + +Log transformation of the multiple linear regression. +![alt text](image-4.png) + +![alt text](image-5.png) +The model's residuals are randomly distributed, indicating no systematic bias. The log transformation visualizes residuals and patterns. A horizontal red line suggests linearity and normality are satisfied, but does not provide a definitive answer on model goodness fit and additional technique's could be used to assess the model. +visualization of the positive and negative coefficient variables. +R-squared: The R-squared value indicates that approximately 71.61% of the variance in the target variable (price) is explained by the model. + +MSE (Mean Squared Error): The MSE of approximately 37,774,083,176.84 represents the average squared difference between the predicted and actual house prices. + +Coefficients: The coefficients represent the estimated effect of each predictor variable on the target variable. For example: The coefficient for const (intercept) is 4987.94. The coefficient for x1 (bathrooms) is 3457.38. The coefficient for x2 (sqft_living) is -16.53. The coefficient for x3 (floors) is -16.98. The coefficient for x4 (waterfront) is -59.75. The coefficient for x5 (condition) is -66.70. The coefficient for x6 (grade) is 21.71. The coefficient for x7 (sqft_basement) is 56.12. The coefficient for x8 (yr_built) and other coefficients follow. + +P-values: P-values indicate the statistical significance of the coefficients. A small p-value (typically < 0.05) suggests that the corresponding predictor variable is statistically significant in predicting the target variable. In this summary, some coefficients have p-values less than 0.05, indicating statistical significance, while others do not. + +F-statistic: The F-statistic tests the overall significance of the model. A low p-value (typically < 0.05) suggests that at least one of the predictors has a non-zero coefficient, indicating that the model as a whole is statistically significant. + +Overall, the summary provides valuable insights into the relationships between the predictor variables and the target variable, as well as the overall goodness-of-fit of the model. + +![alt text](image-6.png) +#**REGRESSION Results** + +From all the models observed,We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation. + +Polynomial Regression is the preferred model beacuse from the evaluation it has the highest R-squared value of 0.73 + +The features below impact price such that an increase will cause an increase in the price of the property. 'bedrooms','bathrooms', 'sqft_living','floors', 'waterfront','view''condition', 'grade', 'sqft_above','sqft_basement', 'yr_renovated', 'sqft_living15','renovated', 'basement' +# **Assumptions** +Linearity: The relationship between the independent variables (predictors) and the dependent variable (response) is linear. This means that a change in the independent variable corresponds to a proportional change in the dependent variable. + +Independence of errors: The errors (residuals) from the regression model should be independent of each other. In other words, the residual for one observation should not predict the residual for another observation. + +Normality of errors: The errors are normally distributed. This implies that the residuals should follow a normal distribution with a mean of zero. + +No perfect multicollinearity: There should be no perfect linear relationship between the independent variables. In other words, no independent variable should be a perfect linear combination of other independent variables. +#**Limitations** +Despite its effectiveness in predicting property prices, the model has several limitations that need to be addressed: + +Limited Property Characteristics: The dataset may lack comprehensive property-based characteristics, potentially limiting the model's ability to capture the full range of factors influencing housing prices. + +Multicollinearity Concerns: The presence of correlated predictors, such as square footage and number of bedrooms, can introduce multicollinearity issues. This makes it difficult to discern the individual impact of each feature accurately, potentially affecting the model's reliability. + +Assumption Violations: Polynomial regression relies on the assumption of linearity between predictors and the target variable. However, in reality, this assumption may not always hold true, leading to biased estimates and less dependable predictions.Also heteroscedasticity was present. + +Overfitting Risk: Polynomial regression models, especially those with high degrees, are prone to overfitting. This occurs when the model fits the training data too closely, capturing noise rather than underlying patterns. As a result, the model may struggle to generalize well to unseen data, impacting its predictive performance. + +**Limitations** +1. The dataset could have more property based characteristics +2. Multicollinearity:The presence of correlated predictors (e.g., square footage and number of bedrooms) can lead to multicollinearity issues, making it challenging to interpret the individual effects of each feature accurately + +1. Assumption Violations:Polynomial regression assumes linearity between predictors and the target variable, which may not hold true in all cases. Violations of this assumption can lead to biased estimates and unreliable predictions. +1. Overfitting: Polynomial regression models, particularly those with high degrees, are susceptible to overfitting, where the model fits the training data too closely and may not generalize well to unseen data. +Overall the model was the best fit model for this predictions + +# **RECOMENDATIONS** + +1.Invest in Larger Properties: Investors seeking maximum returns should focus on larger houses, as there's a positive correlation between total square footage and price. Such properties have the potential for higher profits upon resale or rental. + + +2.Upgrade Existing Properties: Homeowners can increase their property's value by investing in upgrades that increase square footage, such as adding extra rooms or expanding living spaces. + + +3.Optimize Bedroom and Bathroom Ratios: It's essential to find the right balance between bedrooms and bathrooms to maximize property value. Consulting with real estate professionals can help determine the optimal ratio based on market trends and buyer preferences. + + +4.Focus on Quality Over Quantity: Prioritize quality improvements that enhance functionality and aesthetics, such as renovating bathrooms with modern fixtures or upgrading kitchen appliances, to add perceived value to the property. + + +5.Highlight Features in Listings: Emphasize the number of bedrooms and bathrooms in property listings to attract buyers who prioritize space and convenience. Highlight unique features that add versatility to the property. + + +6.Differentiate Marketing Strategies: Tailor marketing strategies based on property condition and grade ratings. Highlight the benefits of higher-grade properties to attract premium buyers, while emphasizing renovation potential for properties with lower condition ratings. +# ** Conclusion** + +Property Size Matters: There is a clear positive correlation between the size of a property, indicated by total square footage, and its price. Investing in larger properties can potentially yield higher returns for investors and increase market value for homeowners. + + +Strategic Upgrades Add Value: Upgrading existing properties with strategic renovations and expansions, particularly those that increase square footage, can enhance their market value. Quality improvements that improve functionality and aesthetics are key to maximizing property value. + + +Balance is Key: While adding extra bedrooms and bathrooms can increase a property's price, there's a point of diminishing returns. It's important to strike a balance between quantity and quality, optimizing the bedroom-to-bathroom ratio to align with market trends and buyer preferences. + + +Marketing Differentiation is Essential: Tailoring marketing strategies based on property condition and grade ratings is crucial. Highlighting the unique features and benefits of higher-grade properties can attract premium buyers, while emphasizing renovation potential for properties with lower ratings can appeal to savvy investors. From 3acdb8ec1835fd56cf64e2b0b43fda54ae27e820 Mon Sep 17 00:00:00 2001 From: Paul Muniu Date: Wed, 1 May 2024 17:48:06 +0300 Subject: [PATCH 17/27] update README.md --- README.md | 320 +++++++++++++++++++++++++----------------------------- 1 file changed, 148 insertions(+), 172 deletions(-) diff --git a/README.md b/README.md index 5dd0f84d..e770ce06 100644 --- a/README.md +++ b/README.md @@ -1,285 +1,261 @@ -# Phase 2 Project Description - -Another module down - you're almost half way there! - -![awesome](https://raw.githubusercontent.com/learn-co-curriculum/dsc-phase-2-project-v2-3/main/halfway-there.gif) - -All that remains in Phase 2 is to put your newfound data science skills to use with a large project! - -In this project description, we will cover: - -* Project Overview: the project goal, audience, and dataset -* Deliverables: the specific items you are required to produce for this project -* Grading: how your project will be scored -* Getting Started: guidance for how to begin working +# REAL ESTATE SALES PREDICTION MODEL ## Project Overview -For this project, you will use multiple linear regression modeling to analyze house sales in a northwestern county. +In the fast-paced world of real estate, it's crucial for agencies to provide clients with precise information. Clients, whether they're looking to become homeowners or investors, rely on real estate companies for guidance on important decisions such as pricing, market trends, and property evaluations. To meet this need, real estate agencies can benefit from a sophisticated regression-based tool. This tool uses various property variables like the number of bedrooms, year built, floor count, living area, condition, location, and amenities to accurately predict property prices. By employing regression analysis, agencies can offer clients more precise pricing estimates, leading to better-informed decisions. Ultimately, this tool aims to improve client satisfaction, streamline decision-making processes, and drive success for real estate agencies. + ### Business Problem -It is up to you to define a stakeholder and business problem appropriate to this dataset. +Real estate experts in King County need help understanding what factors influence property values and market trends. This study aims to analyze property features, locations, buyer preferences, and market changes over time. By gaining insights from this analysis, real estate professionals can make informed decisions about buying, selling, and positioning themselves in the dynamic King County market. The goal is to provide practical advice to help them succeed in this ever-changing real estate landscape. +### The Data Understanding -If you are struggling to define a stakeholder, we recommend you complete a project for a real estate agency that helps homeowners buy and/or sell homes. A business problem you could focus on for this stakeholder is the need to provide advice to homeowners about how home renovations might increase the estimated value of their homes, and by what amount. +King County, Washington, situated in the northwest of the United States, is known for its vibrant housing market centered around Seattle. The county has experienced significant growth due to its strong economy and cultural importance, attracting a large number of residents and creating high demand for housing in both urban and suburban areas. Seattle, with its impressive skyline, is especially sought after by tech professionals and city lovers. King County's real estate market is competitive, offering a range of neighborhoods to suit different preferences, from historic areas to modern suburban developments +**Target Variable** -### The Data +price: Sale price of the house . -This project uses the King County House Sales dataset, which can be found in `kc_house_data.csv` in the data folder in this assignment's GitHub repository. The description of the column names can be found in `column_names.md` in the same folder. As with most real world data sets, the column names are not perfectly described, so you'll have to do some research or use your best judgment if you have questions about what the data means. +**Unique identifier** -It is up to you to decide what data from this dataset to use and how to use it. If you are feeling overwhelmed or behind, we recommend you **ignore** some or all of the following features: +id - Unique identifier for a house -* `date` -* `view` -* `sqft_above` -* `sqft_basement` -* `yr_renovated` -* `zipcode` -* `lat` -* `long` -* `sqft_living15` -* `sqft_lot15` +**Property Characteristics:** -### Key Points -* **Your goal in regression modeling is to yield findings to support relevant recommendations. Those findings should include a metric describing overall model performance as well as at least two regression model coefficients.** As you explore the data and refine your stakeholder and business problem definitions, make sure you are also thinking about how a linear regression model adds value to your analysis. "The assignment was to use linear regression" is not an acceptable answer! You can also use additional statistical techniques other than linear regression, so long as you clearly explain why you are using each technique. -* **You should demonstrate an iterative approach to modeling.** This means that you must build multiple models. Begin with a basic model, evaluate it, and then provide justification for and proceed to a new model. After you finish refining your models, you should provide 1-3 paragraphs in the notebook discussing your final model. +bathrooms: Number of bathrooms. -* **Data visualization and analysis are no longer explicit project requirements, but they are still very important.** In Phase 1, your project stopped earlier in the CRISP-DM process. Now you are going a step further, to modeling. Data visualization and analysis will help you build better models and tell a better story to your stakeholders. +sqft_living: Square footage of living space in the home. -## Deliverables +sqft_lot: Square footage of the lot. -There are three deliverables for this project: +floors: Number of floors (levels) in the house. -* A **non-technical presentation** -* A **Jupyter Notebook** -* A **GitHub repository** +waterfront: Indicates whether the house is on a waterfront (categorical: YES/NO). -The deliverables requirements are almost the same as in the Phase 1 Project, and you can review those extended descriptions [here](https://github.com/learn-co-curriculum/dsc-phase-1-project-v2-3#deliverables). In general, everything is the same except the "Data Visualization" and "Data Analysis" requirements have been replaced by "Modeling" and "Regression Results" requirements. +view: Quality of view from the house, categorized into various types. -### Non-Technical Presentation +condition: Overall condition of the house, categorized based on maintenance. -Recall that the non-technical presentation is a slide deck presenting your analysis to ***business stakeholders***, and should be presented live as well as submitted in PDF form on Canvas. +grade: Overall grade of the house, reflecting construction and design quality. -We recommend that you follow this structure, although the slide titles should be specific to your project: +Additional Features: +sqft_above: Square footage of house apart from the basement. -1. Beginning - - Overview - - Business and Data Understanding -2. Middle - - **Modeling** - - **Regression Results** -3. End - - Recommendations - - Next Steps - - Thank you +sqft_basement: Square footage of the basement. -Make sure that your discussion of modeling and regression results is geared towards a non-technical audience! Assume that their prior knowledge of regression modeling is minimal. You don't need to explain how linear regression works, but you should explain why linear regression is useful for the problem context. Make sure you translate any metrics or coefficients into their plain language implications. +yr_built: Year when the house was built. -The graded elements for the non-technical presentation are the same as in [Phase 1](https://github.com/learn-co-curriculum/dsc-phase-1-project-v2-3#deliverables). +yr_renovated: Year when the house was renovated. -### Jupyter Notebook +zipcode: ZIP Code of the property. -Recall that the Jupyter Notebook is a notebook that uses Python and Markdown to present your analysis to a ***data science audience***. You will submit the notebook in PDF format on Canvas as well as in `.ipynb` format in your GitHub repository. +lat: Latitude coordinate of the property. -The graded elements for the Jupyter Notebook are: +long: Longitude coordinate of the property. -* Business Understanding -* Data Understanding -* Data Preparation -* **Modeling** -* **Regression Results** -* Code Quality +sqft_living15: Square footage of interior housing living space for the nearest 15 neighbors. -### GitHub Repository +sqft_lot15: Square footage of the land lots of the nearest 15 neighbors.bedrooms: Number of bedrooms. -Recall that the GitHub repository is the cloud-hosted directory containing all of your project files as well as their version history. +bathrooms: Number of bathrooms. -The requirements are the same as in [Phase 1](https://github.com/learn-co-curriculum/dsc-phase-1-project-v2-3#github-repository), except for the required sections in the `README.md`. +sqft_living: Square footage of living space in the home. -For this project, the `README.md` file should contain: +sqft_lot: Square footage of the lot. -* Overview -* Business and Data Understanding - * Explain your stakeholder audience here -* **Modeling** -* **Regression Results** -* Conclusion +floors: Number of floors (levels) in the house. -Just like in Phase 1, the `README.md` file should be the bridge between your non technical presentation and the Jupyter Notebook. It should not contain the code used to develop your analysis, but should provide a more in-depth explanation of your methodology and analysis than what is described in your presentation slides. +waterfront: Indicates whether the house is on a waterfront (categorical: YES/NO). -## Grading +view: Quality of view from the house, categorized into various types. -***To pass this project, you must pass each project rubric objective.*** The project rubric objectives for Phase 2 are: +condition: Overall condition of the house, categorized based on maintenance. -1. Attention to Detail -2. Statistical Communication -3. Data Preparation Fundamentals -4. Linear Modeling +grade: Overall grade of the house, reflecting construction and design quality. -### Attention to Detail +**Additional Features:** -Just like in Phase 1, this rubric objective is based on your completion of checklist items. ***In Phase 2, you need to complete 70% (7 out of 10) or more of the checklist elements in order to pass the Attention to Detail objective.*** +sqft_above: Square footage of house apart from the basement. -**NOTE THAT THE PASSING BAR IS HIGHER IN PHASE 2 THAN IT WAS IN PHASE 1!** +sqft_basement: Square footage of the basement. -The standard will increase with each Phase, until you will be required to complete all elements to pass Phase 5 (Capstone). +yr_built: Year when the house was built. -#### Exceeds Objective +yr_renovated: Year when the house was renovated. -80% or more of the project checklist items are complete +zipcode: ZIP Code of the property. -#### Meets Objective (Passing Bar) +lat: Latitude coordinate of the property. -70% of the project checklist items are complete +long: Longitude coordinate of the property. -#### Approaching Objective +sqft_living15: Square footage of interior housing living space for the nearest 15 neighbors. + +sqft_lot15: Square footage of the land lots of the nearest 15 neighbors. +### Key Points -60% of the project checklist items are complete +# **OBJECTIVES** -#### Does Not Meet Objective -50% or fewer of the project checklist items are complete +**Main Objective:** -### Statistical Communication +The primary aim of this project is to develop a predictive regression model to support real estate agencies in advising clients on house prices. This model is intended to anticipate potential changes in property value based on property characteristics, furnishing clients with valuable insights to facilitate informed investment decisions. -Recall that communication is one of the key data science "soft skills". In Phase 2, we are specifically focused on Statistical Communication. We define Statistical Communication as: +Specific Goals: -> Communicating **results of statistical analyses** to diverse audiences via writing and live presentation +i). Identification of Key Influencing Factors on House Prices: -Note that this is the same as in Phase 1, except we are replacing "basic data analysis" with "statistical analyses". +Analyze various property features, including bedrooms, bathrooms, and square footage, to determine their impact on sale price. Investigate location-related attributes such as zip codes and geographic coordinates to further comprehend their effect on property prices. -High-quality Statistical Communication includes rationale, results, limitations, and recommendations: +ii). Assessment of Model Performance: -* **Rationale:** Explaining why you are using statistical analyses rather than basic data analysis - * For example, why are you using regression coefficients rather than just a graph? - * What about the problem or data is suitable for this form of analysis? - * For a data science audience, this includes your reasoning for the changes you applied while iterating between models. -* **Results:** Describing the overall model metrics and feature coefficients - * You need at least one overall model metric (e.g. r-squared or RMSE) and at least two feature coefficients. - * For a business audience, make sure you connect any metrics to real-world implications. You do not need to get into the details of how linear regression works. - * For a data science audience, you don't need to explain what a metric is, but make sure you explain why you chose that particular one. -* **Limitations:** Identifying the limitations and/or uncertainty present in your analysis - * This could include p-values/alpha values, confidence intervals, assumptions of linear regression, missing data, etc. - * In general, this should be more in-depth for a data science audience and more surface-level for a business audience. -* **Recommendations:** Interpreting the model results and limitations in the context of the business problem - * What should stakeholders _do_ with this information? +Employ metrics such as mean squared error, R-squared values, and residual analysis to evaluate the model's accuracy in predicting house prices effectively. -#### Exceeds Objective +iii). Provision of Actionable Recommendations: -Communicates the rationale, results, limitations, and specific recommendations of statistical analyses +Offer practical recommendations to real estate agencies aimed at enhancing profitability and market presence. Utilize insights gleaned from the model to optimize marketing strategies and enhance overall decision-making processes. -> See above for extended explanations of these terms. +# **TABLE OF CONTENT** +1. Data Preparation +2. Data cleaning +1. Exploratory data analysis +2. Statistical Analysis +1. Modelling +2. Regression Results +1. Conclusion +2. Recomendations -#### Meets Objective (Passing Bar) -Successfully communicates the results of statistical analyses without any major errors +#**Statistical Analysis** +Statistical analysis plays a crucial role in understanding relationships within datasets, identifying patterns, and gaining insights. In this regression modeling project aimed at predicting property values, several key steps in statistical analysis are essential: -> The minimum requirement is to communicate the _results_, meaning at least one overall model metric (e.g. r-squared or RMSE) as well as at least two feature coefficients. See the Approaching Objective section for an explanation of what a "major error" means. +Descriptive Statistics +Correlation matrix +Distribution Analysis +Inferential Statistics using Hypothesis Testing and Analysis of Variance +MultiColinierity +# *Modelling** +Baseline model - simple linear model. +2. log transformation. +3. Multiple Linear Regression +4. Residual modelling. -#### Approaching Objective +# **REGRESSION RESULTS** -Communicates the results of statistical analyses with at least one major error +**SIMPLE LINEAR REGRESSION** +Intercept: This is like the starting point or baseline of our predictions. For example, if all other factors were zero, we'd expect the value to be around -44593.95. It's where our line would intersect the y-axis on a graph. -> A major error means that some aspect of your explanation is fundamentally incorrect. For example, if a feature coefficient is negative and you say that an increase in that feature results in an increase of the target, that would be a major error. Another example would be if you say that the feature with the highest coefficient is the "most statistically significant" while ignoring the p-value. One more example would be reporting a coefficient that is not statistically significant, rather than saying "no statistically significant linear relationship was found" +Coefficient: This tells us how much the predicted value changes for each unit increase in the independent variable. In this case, for every one-unit increase in the independent variable, we'd expect the dependent variable to increase by about 281.41. -> "**If a coefficient's t-statistic is not significant, don't interpret it at all.** You can't be sure that the value of the corresponding parameter in the underlying regression model isn't really zero." _DeVeaux, Velleman, and Bock (2012), Stats: Data and Models, 3rd edition, pg. 801_. Check out [this website](https://web.ma.utexas.edu/users/mks/statmistakes/TOC.html) for extensive additional examples of mistakes using statistics. +R-squared: This is a measure of how well our model explains the variation in the data. An R-squared value of 0.49 means that about 49% of the variability in the dependent variable is explained by our model. So, it's doing a decent job, but there's still room for improvement. -> The easiest way to avoid making a major error is to have someone double-check your work. Reach out to peers on Slack and ask them to confirm whether your interpretation makes sense! +Mean Squared Error (MSE): This tells us, on average, how much our predictions differ from the actual values in the training data. Here, the average squared difference is around 68601152192.94, which is quite large but it's relative to the scale of the dependent variable. -#### Does Not Meet Objective +Root Mean Squared Error (RMSE): This is just the square root of the MSE. It gives us an idea of the average amount our predictions are off by. Here, it's around 261918.22, which is the typical difference between our predicted values and the actual values in the training data. -Does not communicate the results of statistical analyses +Test Set: -> It is not sufficient to just display the entire results summary. You need to pull out at least one overall model metric (e.g. r-squared, RMSE) and at least two feature coefficients, and explain what those numbers mean. +R-squared: Similar to the training set, this tells us how well our model explains the variation in the test data. An R-squared value of 0.48 means that about 48% of the variability in the dependent variable is explained by our model when evaluated on the test data. -### Data Preparation Fundamentals +Mean Squared Error (MSE): This is the average squared difference between our predictions and the actual values in the test data. It's around 68845100756.11, similar to the MSE in the training set. -We define this objective as: +Root Mean Squared Error (RMSE): Again, this is just the square root of the MSE for the test data. It's around 262383.50, which is the typical difference between our predicted values and the actual values in the test data +Overall +, the model suggests that there is a positive relationship between the independent and dependent variables. However, given the moderate R-squared value and the relatively high MSE and RMSE, it's clear that there may be other factors influencing the dependent variable that are not captured by the model. Further investigation or refinement of the model may be needed to improve its predictive performance. +# ** Multiple Linear Regresion +![alt text](image-1.png) +# **RESIDUALS** +![alt text](image-3.png) +A p-value of 3.975373048166964e-258, which is extremely close to zero, indicates strong evidence against the null hypothesis of homoscedasticity. In other words, there is a significant presence of heteroscedasticity in your data. -> Applying appropriate **preprocessing** and feature engineering steps to tabular data in preparation for statistical modeling +Heteroscedasticity refers to the situation where the variability of a variable is unequal across the range of values of a second variable that predicts it. In the context of regression analysis, it means that the variance of the errors is not constant across observations. +The model identifies the main factors that affect house prices, giving useful advice to real estate companies when they help customers. It's not perfect, but it does an okay job with a 63.1% score. We still need to check if it can predict prices well. However, the model does its job by helping with decisions and making marketing better by using details about houses and the market. -The two most important components of preprocessing for the Phase 2 project are: +We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation. +#**Log transformation**. +Transforming the dependent variable or one or more independent variables can sometimes stabilize the variance. Common transformations include taking the natural logarithm, square root, or reciprocal of the variables. -* **Handling Missing Values:** Missing values may be present in the features you want to use, either encoded as `NaN` or as some other value such as `"?"`. Before you can build a linear regression model, make sure you identify and address any missing values using techniques such as dropping or replacing data. -* **Handling Non-Numeric Data:** A linear regression model needs all of the features to be numeric, not categorical. For this project, ***be sure to pick at least one non-numeric feature and try including it in a model.*** You can identify that a feature is currently non-numeric if the type is `object` when you run `.info()` on your dataframe. Once you have identified the non-numeric features, address them using techniques such as ordinal or one-hot (dummy) encoding. +Log transformation of the multiple linear regression. +![alt text](image-4.png) -There is no single correct way to handle either of these situations! Use your best judgement to decide what to do, and be sure to explain your rationale in the Markdown of your notebook. +![alt text](image-5.png) +The model's residuals are randomly distributed, indicating no systematic bias. The log transformation visualizes residuals and patterns. A horizontal red line suggests linearity and normality are satisfied, but does not provide a definitive answer on model goodness fit and additional technique's could be used to assess the model. +visualization of the positive and negative coefficient variables. +R-squared: The R-squared value indicates that approximately 71.61% of the variance in the target variable (price) is explained by the model. -Feature engineering is encouraged but not required for this project. +MSE (Mean Squared Error): The MSE of approximately 37,774,083,176.84 represents the average squared difference between the predicted and actual house prices. -#### Exceeds Objective +Coefficients: The coefficients represent the estimated effect of each predictor variable on the target variable. For example: The coefficient for const (intercept) is 4987.94. The coefficient for x1 (bathrooms) is 3457.38. The coefficient for x2 (sqft_living) is -16.53. The coefficient for x3 (floors) is -16.98. The coefficient for x4 (waterfront) is -59.75. The coefficient for x5 (condition) is -66.70. The coefficient for x6 (grade) is 21.71. The coefficient for x7 (sqft_basement) is 56.12. The coefficient for x8 (yr_built) and other coefficients follow. -Goes above and beyond with data preparation, such as feature engineering or merging in outside datasets +P-values: P-values indicate the statistical significance of the coefficients. A small p-value (typically < 0.05) suggests that the corresponding predictor variable is statistically significant in predicting the target variable. In this summary, some coefficients have p-values less than 0.05, indicating statistical significance, while others do not. -> One example of feature engineering could be using the `date` feature to create a new feature called `season`, which represents whether the home was sold in Spring, Summer, Fall, or Winter. +F-statistic: The F-statistic tests the overall significance of the model. A low p-value (typically < 0.05) suggests that at least one of the predictors has a non-zero coefficient, indicating that the model as a whole is statistically significant. -> One example of merging in outside datasets could be finding data based on ZIP Code, such as household income or walkability, and joining that data with the provided CSV. +Overall, the summary provides valuable insights into the relationships between the predictor variables and the target variable, as well as the overall goodness-of-fit of the model. -#### Meets Objective (Passing Bar) +![alt text](image-6.png) +#**REGRESSION Results** -Successfully prepares data for modeling, including converting at least one non-numeric feature into ordinal or binary data and handling missing data as needed +From all the models observed,We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation. -> As a reminder, you can identify the non-numeric features by calling `.info()` on the dataframe and looking for type `object`. +Polynomial Regression is the preferred model beacuse from the evaluation it has the highest R-squared value of 0.73 -> Your final model does not necessarily need to include any features that were originally non-numeric, but you need to demonstrate your ability to handle this type of data. +The features below impact price such that an increase will cause an increase in the price of the property. 'bedrooms','bathrooms', 'sqft_living','floors', 'waterfront','view''condition', 'grade', 'sqft_above','sqft_basement', 'yr_renovated', 'sqft_living15','renovated', 'basement' +# **Assumptions** +Linearity: The relationship between the independent variables (predictors) and the dependent variable (response) is linear. This means that a change in the independent variable corresponds to a proportional change in the dependent variable. -#### Approaching Objective +Independence of errors: The errors (residuals) from the regression model should be independent of each other. In other words, the residual for one observation should not predict the residual for another observation. -Prepares some data successfully, but is unable to utilize non-numeric data +Normality of errors: The errors are normally distributed. This implies that the residuals should follow a normal distribution with a mean of zero. -> If you simply subset the dataframe to only columns with type `int64` or `float64`, your model will run, but you will not pass this objective. +No perfect multicollinearity: There should be no perfect linear relationship between the independent variables. In other words, no independent variable should be a perfect linear combination of other independent variables. +#**Limitations** +Despite its effectiveness in predicting property prices, the model has several limitations that need to be addressed: -#### Does Not Meet Objective +Limited Property Characteristics: The dataset may lack comprehensive property-based characteristics, potentially limiting the model's ability to capture the full range of factors influencing housing prices. -Does not prepare data for modeling +Multicollinearity Concerns: The presence of correlated predictors, such as square footage and number of bedrooms, can introduce multicollinearity issues. This makes it difficult to discern the individual impact of each feature accurately, potentially affecting the model's reliability. -### Linear Modeling +Assumption Violations: Polynomial regression relies on the assumption of linearity between predictors and the target variable. However, in reality, this assumption may not always hold true, leading to biased estimates and less dependable predictions.Also heteroscedasticity was present. -According to [Kaggle's 2020 State of Data Science and Machine Learning Survey](https://www.kaggle.com/kaggle-survey-2020), linear and logistic regression are the most popular machine learning algorithms, used by 83.7% of data scientists. They are small, fast models compared to some of the models you will learn later, but have limitations in the kinds of relationships they are able to learn. +Overfitting Risk: Polynomial regression models, especially those with high degrees, are prone to overfitting. This occurs when the model fits the training data too closely, capturing noise rather than underlying patterns. As a result, the model may struggle to generalize well to unseen data, impacting its predictive performance. -In this project you are required to use linear regression as the primary statistical analysis, although you are free to use additional statistical techniques as appropriate. +**Limitations** +1. The dataset could have more property based characteristics +2. Multicollinearity:The presence of correlated predictors (e.g., square footage and number of bedrooms) can lead to multicollinearity issues, making it challenging to interpret the individual effects of each feature accurately -#### Exceeds Objective +1. Assumption Violations:Polynomial regression assumes linearity between predictors and the target variable, which may not hold true in all cases. Violations of this assumption can lead to biased estimates and unreliable predictions. +1. Overfitting: Polynomial regression models, particularly those with high degrees, are susceptible to overfitting, where the model fits the training data too closely and may not generalize well to unseen data. +Overall the model was the best fit model for this predictions -Goes above and beyond in the modeling process, such as recursive feature selection +# **RECOMENDATIONS** -#### Meets Objective (Passing Bar) +1.Invest in Larger Properties: Investors seeking maximum returns should focus on larger houses, as there's a positive correlation between total square footage and price. Such properties have the potential for higher profits upon resale or rental. -Successfully builds a baseline model as well as at least one iterated model, and correctly extracts insights from a final model without any major errors -> We are looking for you to (1) create a baseline model, (2) iterate on that model, making adjustments that are supported by regression theory or by descriptive analysis of the data, and (3) select a final model and report on its metrics and coefficients +2.Upgrade Existing Properties: Homeowners can increase their property's value by investing in upgrades that increase square footage, such as adding extra rooms or expanding living spaces. -> Ideally you would include written justifications for each model iteration, but at minimum the iterations must be _justifiable_ -> For an explanation of "major errors", see the description below +3.Optimize Bedroom and Bathroom Ratios: It's essential to find the right balance between bedrooms and bathrooms to maximize property value. Consulting with real estate professionals can help determine the optimal ratio based on market trends and buyer preferences. -#### Approaching Objective -Builds multiple models with at least one major error +4.Focus on Quality Over Quantity: Prioritize quality improvements that enhance functionality and aesthetics, such as renovating bathrooms with modern fixtures or upgrading kitchen appliances, to add perceived value to the property. -> The number one major error to avoid is including the target as one of your features. For example, if the target is `price` you should NOT make a "price per square foot" feature, because that feature would not be available if you didn't already know the price. -> Other examples of major errors include: using a target other than `price`, attempting only simple linear regression (not multiple linear regression), dropping multiple one-hot encoded columns without explaining the resulting baseline, or using a unique identifier (`id` in this dataset) as a feature. +5.Highlight Features in Listings: Emphasize the number of bedrooms and bathrooms in property listings to attract buyers who prioritize space and convenience. Highlight unique features that add versatility to the property. -#### Does Not Meet Objective -Does not build multiple linear regression models +6.Differentiate Marketing Strategies: Tailor marketing strategies based on property condition and grade ratings. Highlight the benefits of higher-grade properties to attract premium buyers, while emphasizing renovation potential for properties with lower condition ratings. +# ** Conclusion** -## Getting Started +Property Size Matters: There is a clear positive correlation between the size of a property, indicated by total square footage, and its price. Investing in larger properties can potentially yield higher returns for investors and increase market value for homeowners. -Please start by reviewing the contents of this project description. If you have any questions, please ask your instructor ASAP. -Next, you will need to complete the [***Project Proposal***](#project_proposal) which must be reviewed by your instructor before you can continue with the project. +Strategic Upgrades Add Value: Upgrading existing properties with strategic renovations and expansions, particularly those that increase square footage, can enhance their market value. Quality improvements that improve functionality and aesthetics are key to maximizing property value. -Here are some suggestions for creating your GitHub repository: -1. Fork the [Phase 2 Project Repository](https://github.com/learn-co-curriculum/dsc-phase-2-project-v2-3), clone it locally, and work in the `student.ipynb` file. Make sure to also add and commit a PDF of your presentation to your repository with a file name of `presentation.pdf`. -2. Or, create a new repository from scratch by going to [github.com/new](https://github.com/new) and copying the data files from the Phase 2 Project Repository into your new repository. - - Recall that you can refer to the [Phase 1 Project Template](https://github.com/learn-co-curriculum/dsc-project-template) as an example structure - - This option will result in the most professional-looking portfolio repository, but can be more complicated to use. So if you are getting stuck with this option, try forking the project repository instead +Balance is Key: While adding extra bedrooms and bathrooms can increase a property's price, there's a point of diminishing returns. It's important to strike a balance between quantity and quality, optimizing the bedroom-to-bathroom ratio to align with market trends and buyer preferences. -## Summary -This is your first modeling project! Take what you have learned in Phase 2 to create a project with a more sophisticated analysis than you completed in Phase 1. You will build on these skills as we move into the predictive machine learning mindset in Phase 3. You've got this! +Marketing Differentiation is Essential: Tailoring marketing strategies based on property condition and grade ratings is crucial. Highlighting the unique features and benefits of higher-grade properties can attract premium buyers, while emphasizing renovation potential for properties with lower ratings can appeal to savvy investors. From dc62812a6541e9e6a8df003b30d170271f4bb068 Mon Sep 17 00:00:00 2001 From: Winfred kinya Date: Wed, 1 May 2024 17:53:16 +0300 Subject: [PATCH 18/27] readme changes --- Final Copy -Project Phase 2.ipynb | 5199 +++++++++++++++++++++++++++++ Project Group4 Notebook.pdf | Bin 0 -> 161155 bytes student.ipynb | 902 +++-- 3 files changed, 5644 insertions(+), 457 deletions(-) create mode 100644 Final Copy -Project Phase 2.ipynb create mode 100644 Project Group4 Notebook.pdf diff --git a/Final Copy -Project Phase 2.ipynb b/Final Copy -Project Phase 2.ipynb new file mode 100644 index 00000000..ee2a22a0 --- /dev/null +++ b/Final Copy -Project Phase 2.ipynb @@ -0,0 +1,5199 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Final Project Submission\n", + "\n", + "Please fill out:\n", + "* Student name:\n", + "1. Winfred Kinya Bundi.\n", + "2. Carol Mundia.\n", + "3. Paul Muniu.\n", + "4. Dennis Mwenda.\n", + "* Student pace: Full time Hybrid\n", + "* Scheduled project review date/time:2/05/2024 \n", + "* Instructor name: Mwikali Maryanne.\n", + "* Blog post URL:git@github.com:winnycodegurl/dsc-phase-2-projectgroup4.git\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## INTRODUCTION\n", + "\n", + "In the fast-paced world of real estate, it's crucial for agencies to provide clients with precise information. Clients, whether they're looking to become homeowners or investors, rely on real estate companies for guidance on important decisions such as pricing, market trends, and property evaluations. To meet this need, real estate agencies can benefit from a sophisticated regression-based tool. This tool uses various property variables like the number of bedrooms, year built, floor count, living area, condition, location, and amenities to accurately predict property prices. By employing regression analysis, agencies can offer clients more precise pricing estimates, leading to better-informed decisions. Ultimately, this tool aims to improve client satisfaction, streamline decision-making processes, and drive success for real estate agencies.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## BUSINESS UNDERSTANDING\n", + "\n", + "\n", + "\n", + "The provided dataset encompasses details on homes sold, encompassing their attributes and sale prices. This dataset holds significant potential for real estate agencies across various avenues:\n", + "\n", + "\n", + "\n", + "1. \n", + "Market Analysis:\n", + "\n", + " Leveraging the dataset, agencies can discern market trends, including the demand for different property types, burgeoning neighborhoods witnessing property value escalations, and the impact obetter f featurenws or property renovations on sale prices. By employing market segmentation techniques, such as demographic or psychographic segmentation, agencies can further refine their analysis to understand the preferences and behaviors of distinct customer segments within the real estate market\n", + "\n", + "\n", + "\n", + "\n", + "2. \n", + "Property Valuation: \n", + "\n", + "By comprehending the correlation between house features and sale prices, agencies can proficiently gauge property values for both sellers and buyers, ensuring equitable and competitive pricing strategies\n", + "\n", + "\n", + "\n", + "\n", + "3. \n", + "Targeted Marketing: \n", + "\n", + "Through discerning buyer preferences from the dataset, agencies can tailor marketing endeavors to resonate with potential buyers seeking specific property types or neighborhoods, thus enhancing the efficacy of their outreach efforts. Market segmentation insights can inform the development of targeted marketing campaigns tailored to the unique needs and preferences of different customer segments, thereby maximizing the impact of marketing investments.\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## PROBLEM STATEMENT.\n", + "\n", + "\n", + "\n", + "In King County, people involved in real estate have trouble figuring out what affects property values and trends in the market.\n", + "This study wants to help by looking at things like what features a property has, where it's located, what buyers prefer,\n", + "and how things change over time. By understanding these things better, people in real estate can make smarter choices about\n", + "buying and selling property and how they position themselves in the market.\n", + "The main goal is to give them practical advice that helps them do well in King County's real estate market, \n", + "which is always changing.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## OBJECTIVES.\n", + "\n", + "Main OBJECTIVE\n", + "\n", + "\n", + "The primary aim of this project is to develop a predictive regression model to support real estate agencies in advising clients \n", + "on house prices. This model is intended to anticipate potential changes in property value based on property characteristics, \n", + "furnishing clients with valuable insights to facilitate informed investment decisions.\n", + "\n", + "\n", + "\n", + "Specific Goals:\n", + "\n", + "\n", + "i). Identification of Key Influencing Factors on House Prices:\n", + "\n", + "\n", + "\n", + "Analyze various property features, including bedrooms, bathrooms, and square footage, to determine their impact on sale price.\n", + "\n", + "\n", + "\n", + "ii). Assessment of Model Performance:\n", + "\n", + "\n", + "Employ metrics such as mean squared error, R-squared values, and residual analysis to \n", + "evaluate the model's accuracy in predicting house prices effectively.\n", + "\n", + " \n", + "\n", + "iii). Provision of Actionable Recommendations:\n", + "\n", + "\n", + "\n", + "Offer practical recommendations to real estate agencies aimed at enhancing profitability and market presence. \n", + "Utilize insights gleaned from the model to optimize marketing strategies and enhance overall decision-making processes.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Understanding.\n", + "\n", + "\n", + "King County, Washington, situated in the northwest of the United States, is known for its vibrant housing market centered around Seattle. The county has experienced significant growth due to its strong economy and cultural importance, attracting a large number of residents and creating high demand for housing in both urban and suburban areas. Seattle, with its impressive skyline, is especially sought after by tech professionals and city lovers. King County's real estate market is competitive, offering a range of neighborhoods to suit different preferences, from historic areas to modern suburban developments.\n", + "\n", + "### Whereby the dataset contains:\n", + "\n", + "### Target Variable\n", + "\n", + "price: Sale price of the house .\n", + "\n", + "### Unique identifier\n", + "\n", + "id - Unique identifier for a house\n", + "\n", + "### Property Characteristics:\n", + "\n", + "bedrooms: Number of bedrooms.\n", + "\n", + "bathrooms: Number of bathrooms.\n", + "\n", + "sqft_living: Square footage of living space in the home.\n", + "\n", + "sqft_lot: Square footage of the lot.\n", + "\n", + "floors: Number of floors (levels) in the house.\n", + "\n", + "waterfront: Indicates whether the house is on a waterfront (categorical: YES/NO).\n", + "\n", + "view: Quality of view from the house, categorized into various types.\n", + "\n", + "condition: Overall condition of the house, categorized based on maintenance.\n", + "\n", + "grade: Overall grade of the house, reflecting construction and design quality.\n", + "\n", + "### Additional Features:\n", + "\n", + "sqft_above: Square footage of house apart from the basement.\n", + "\n", + "sqft_basement: Square footage of the basement.\n", + "\n", + "yr_built: Year when the house was built.\n", + "\n", + "yr_renovated: Year when the house was renovated.\n", + "\n", + "zipcode: ZIP Code of the property.\n", + "\n", + "lat: Latitude coordinate of the property.\n", + "\n", + "long: Longitude coordinate of the property.\n", + "\n", + "sqft_living15: Square footage of interior housing living space for the nearest 15 neighbors.\n", + "\n", + "sqft_lot15: Square footage of the land lots of the nearest 15 neighbors.\n", + "\n", + "### TABLE OF CONTENTS\n", + "1.Data Preparation\n", + "\n", + "2.Data cleaning\n", + "\n", + "3.Exploratory data analysis\n", + "\n", + "4.Statistical Analysis\n", + "\n", + "5.Modelling\n", + "\n", + "6.Regression Results\n", + "\n", + "7.Conclusion\n", + "\n", + "8.Reccomendations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. DATA PREPARATION" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "# Importing necessary libraries for data analysis and visualization\n", + "\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt # for data visualization.\n", + "%matplotlib inline\n", + "import seaborn as sns # for enhanced data visualization.\n", + "from pandas.api.types import is_numeric_dtype # Used to check if a data type is numeric.\n", + "\n", + "from statsmodels.stats.outliers_influence import variance_inflation_factor # For calculating Variance Inflation Factor (VIF).\n", + "from statsmodels.graphics.regressionplots import plot_partregress_grid # For partial regression plots.\n", + "from sklearn.model_selection import train_test_split # Used to split data into training and testing sets.\n", + "from sklearn.preprocessing import PolynomialFeatures # Generate polynomial features.\n", + "from sklearn.linear_model import LinearRegression # Linear Regression model.\n", + "from sklearn.preprocessing import StandardScaler # Standardizing/Scaling features.\n", + "from sklearn.feature_selection import RFE # Recursive Feature Elimination for feature selection.\n", + "from sklearn.metrics import mean_squared_error, r2_score # Evaluation metrics for model performance.\n", + "import statsmodels.api as sm\n", + "from scipy.stats import kstest\n", + "\n", + "# Statsmodels is used to create statistical models.\n", + "from scipy import stats # Scientific computing library for statistical tests.\n", + "from scipy.stats import f_oneway # One-way ANOVA statistical test.\n", + "from scipy.stats import ttest_ind # Independent sample t-test for comparing means." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *loading the King County House Sales dataset*\n" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 21597 entries, 0 to 21596\n", + "Data columns (total 21 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 id 21597 non-null int64 \n", + " 1 date 21597 non-null object \n", + " 2 price 21597 non-null float64\n", + " 3 bedrooms 21597 non-null int64 \n", + " 4 bathrooms 21597 non-null float64\n", + " 5 sqft_living 21597 non-null int64 \n", + " 6 sqft_lot 21597 non-null int64 \n", + " 7 floors 21597 non-null float64\n", + " 8 waterfront 19221 non-null object \n", + " 9 view 21534 non-null object \n", + " 10 condition 21597 non-null object \n", + " 11 grade 21597 non-null object \n", + " 12 sqft_above 21597 non-null int64 \n", + " 13 sqft_basement 21597 non-null object \n", + " 14 yr_built 21597 non-null int64 \n", + " 15 yr_renovated 17755 non-null float64\n", + " 16 zipcode 21597 non-null int64 \n", + " 17 lat 21597 non-null float64\n", + " 18 long 21597 non-null float64\n", + " 19 sqft_living15 21597 non-null int64 \n", + " 20 sqft_lot15 21597 non-null int64 \n", + "dtypes: float64(6), int64(9), object(6)\n", + "memory usage: 3.5+ MB\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontview...gradesqft_abovesqft_basementyr_builtyr_renovatedzipcodelatlongsqft_living15sqft_lot15
0712930052010/13/2014221900.031.00118056501.0NaNNONE...7 Average11800.019550.09817847.5112-122.25713405650
1641410019212/9/2014538000.032.25257072422.0NONONE...7 Average2170400.019511991.09812547.7210-122.31916907639
256315004002/25/2015180000.021.00770100001.0NONONE...6 Low Average7700.01933NaN9802847.7379-122.23327208062
3248720087512/9/2014604000.043.00196050001.0NONONE...7 Average1050910.019650.09813647.5208-122.39313605000
419544005102/18/2015510000.032.00168080801.0NONONE...8 Good16800.019870.09807447.6168-122.04518007503
\n", + "

5 rows × 21 columns

\n", + "
" + ], + "text/plain": [ + " id date price bedrooms bathrooms sqft_living \\\n", + "0 7129300520 10/13/2014 221900.0 3 1.00 1180 \n", + "1 6414100192 12/9/2014 538000.0 3 2.25 2570 \n", + "2 5631500400 2/25/2015 180000.0 2 1.00 770 \n", + "3 2487200875 12/9/2014 604000.0 4 3.00 1960 \n", + "4 1954400510 2/18/2015 510000.0 3 2.00 1680 \n", + "\n", + " sqft_lot floors waterfront view ... grade sqft_above \\\n", + "0 5650 1.0 NaN NONE ... 7 Average 1180 \n", + "1 7242 2.0 NO NONE ... 7 Average 2170 \n", + "2 10000 1.0 NO NONE ... 6 Low Average 770 \n", + "3 5000 1.0 NO NONE ... 7 Average 1050 \n", + "4 8080 1.0 NO NONE ... 8 Good 1680 \n", + "\n", + " sqft_basement yr_built yr_renovated zipcode lat long \\\n", + "0 0.0 1955 0.0 98178 47.5112 -122.257 \n", + "1 400.0 1951 1991.0 98125 47.7210 -122.319 \n", + "2 0.0 1933 NaN 98028 47.7379 -122.233 \n", + "3 910.0 1965 0.0 98136 47.5208 -122.393 \n", + "4 0.0 1987 0.0 98074 47.6168 -122.045 \n", + "\n", + " sqft_living15 sqft_lot15 \n", + "0 1340 5650 \n", + "1 1690 7639 \n", + "2 2720 8062 \n", + "3 1360 5000 \n", + "4 1800 7503 \n", + "\n", + "[5 rows x 21 columns]" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the dataset to inspect the initial state of the data\n", + "file_path = 'data/kc_house_data.csv'\n", + "housing_data = pd.read_csv(file_path)\n", + "\n", + "# Display basic information and the first few rows of the dataset\n", + "housing_data.info()\n", + "housing_data.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *loading the column.md dataset*\n" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Column_nameDescription
0* `id`Unique identifier for a house
1* `date`Date house was sold
2* `price`Sale price (prediction target)
3* `bedrooms`Number of bedrooms
4* `bathrooms`Number of bathrooms
5* `sqft_living`Square footage of living space in the home
6* `sqft_lot`Square footage of the lot
7* `floors`Number of floors (levels) in house
8* `waterfront`Whether the house is on a waterfront
9* `view`Quality of view from house
10* `condition`How good the overall condition of the house is...
11* `grade`Overall grade of the house. Related to the con...
12* `sqft_above`Square footage of house apart from basement
13* `sqft_basement`Square footage of the basement
14* `yr_built`Year when house was built
15* `yr_renovated`Year when house was renovated
16* `zipcode`ZIP Code used by the United States Postal Service
17* `lat`Latitude coordinate
18* `long`Longitude coordinate
19* `sqft_living15`The square footage of interior housing living ...
20* `sqft_lot15`The square footage of the land lots of the nea...
\n", + "
" + ], + "text/plain": [ + " Column_name Description\n", + "0 * `id` Unique identifier for a house\n", + "1 * `date` Date house was sold\n", + "2 * `price` Sale price (prediction target)\n", + "3 * `bedrooms` Number of bedrooms\n", + "4 * `bathrooms` Number of bathrooms\n", + "5 * `sqft_living` Square footage of living space in the home\n", + "6 * `sqft_lot` Square footage of the lot\n", + "7 * `floors` Number of floors (levels) in house\n", + "8 * `waterfront` Whether the house is on a waterfront\n", + "9 * `view` Quality of view from house\n", + "10 * `condition` How good the overall condition of the house is...\n", + "11 * `grade` Overall grade of the house. Related to the con...\n", + "12 * `sqft_above` Square footage of house apart from basement\n", + "13 * `sqft_basement` Square footage of the basement\n", + "14 * `yr_built` Year when house was built\n", + "15 * `yr_renovated` Year when house was renovated\n", + "16 * `zipcode` ZIP Code used by the United States Postal Service\n", + "17 * `lat` Latitude coordinate\n", + "18 * `long` Longitude coordinate\n", + "19 * `sqft_living15` The square footage of interior housing living ...\n", + "20 * `sqft_lot15` The square footage of the land lots of the nea..." + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "column_names_file = \"data/column_names.md\"\n", + "\n", + "with open(column_names_file, \"r\") as file:\n", + " markdown_content = file.readlines()\n", + "\n", + "column_names = []\n", + "description = []\n", + "for line in markdown_content:\n", + " parts = line.split('-', 1)\n", + " if len(parts) == 2: # Check if split produces two parts\n", + " column_names.append(parts[0].strip())\n", + " description.append(parts[1].strip())\n", + "\n", + "# Create DataFrame\n", + "data = {\n", + " \"Column_name\": column_names,\n", + " \"Description\": description\n", + "}\n", + "column_name_df = pd.DataFrame(data)\n", + "\n", + "column_name_df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are 3 columns with missing values.\n", + "waterfront 2376\n", + "view 63\n", + "yr_renovated 3842\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "# Creating function to check counts of missing values\n", + "def has_missing_values(df):\n", + " missing_values = df.isnull().sum()\n", + " num_missing_values = missing_values[missing_values > 0].count()\n", + " if num_missing_values == 0:\n", + " print(\"There are no missing values in the DataFrame.\")\n", + " else:\n", + " print(f\"There are {num_missing_values} columns with missing values.\")\n", + " print(missing_values[missing_values > 0])\n", + " \n", + "has_missing_values(housing_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are no duplicate rows in the DataFrame.\n" + ] + } + ], + "source": [ + "#creating a function to check for duplicates.\n", + "def has_duplicates(df):\n", + " num_duplicates = df.duplicated().sum()\n", + " if num_duplicates == 0:\n", + " print(\"There are no duplicate rows in the DataFrame.\")\n", + " else:\n", + " print(f\"There are {num_duplicates} duplicate rows in the DataFrame.\")\n", + "\n", + "has_duplicates(housing_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The dataset contains 21,597 entries and 21 features. Here’s a brief overview of the data:\n", + "\n", + "### Columns and their Data Types:\n", + "#### Numerical:\n", + "id, price, bedrooms, bathrooms, sqft_living, sqft_lot, floors, sqft_above, yr_built, yr_renovated, zipcode, lat, long, sqft_living15, sqft_lot15\n", + "\n", + "#### Categorical:\n", + "date (format object, should be datetime), waterfront, view, condition, grade, sqft_basement (format object, should be numeric)\n", + "\n", + "#### Missing Values:\n", + "waterfront: 2,376 missing values\n", + "view: 63 missing values\n", + "yr_renovated: 3,842 missing values\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. DATA CLEANING" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### a)Dropping columns:\n", + "We're dropping some columns during data cleaning to streamline our analysis and focus on the most relevant features. By removing unnecessary or redundant columns, we aim to simplify the dataset and improve the efficiency of subsequent analytical processes. This helps in reducing noise and enhancing the clarity of our findings." + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontconditiongradesqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15
2014679670001304/1/2015370228.043.00205040002.0NOAverage8 Good20500.020140.020504000
1398373380001501/29/2015160000.021.00107042001.0NOGood6 Low Average10700.019830.011504200
360586583035858/7/2014252500.021.0090075001.0NOGood6 Low Average9000.019610.0119010000
9229178725021012/22/2014379000.042.75241052252.0NOAverage8 Good24100.020010.023005378
1124318432003507/22/2014150000.021.50136019342.0NOGood7 Average13600.019780.013601898
\n", + "
" + ], + "text/plain": [ + " id date price bedrooms bathrooms sqft_living \\\n", + "20146 7967000130 4/1/2015 370228.0 4 3.00 2050 \n", + "13983 7338000150 1/29/2015 160000.0 2 1.00 1070 \n", + "3605 8658303585 8/7/2014 252500.0 2 1.00 900 \n", + "9229 1787250210 12/22/2014 379000.0 4 2.75 2410 \n", + "11243 1843200350 7/22/2014 150000.0 2 1.50 1360 \n", + "\n", + " sqft_lot floors waterfront condition grade sqft_above \\\n", + "20146 4000 2.0 NO Average 8 Good 2050 \n", + "13983 4200 1.0 NO Good 6 Low Average 1070 \n", + "3605 7500 1.0 NO Good 6 Low Average 900 \n", + "9229 5225 2.0 NO Average 8 Good 2410 \n", + "11243 1934 2.0 NO Good 7 Average 1360 \n", + "\n", + " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", + "20146 0.0 2014 0.0 2050 4000 \n", + "13983 0.0 1983 0.0 1150 4200 \n", + "3605 0.0 1961 0.0 1190 10000 \n", + "9229 0.0 2001 0.0 2300 5378 \n", + "11243 0.0 1978 0.0 1360 1898 " + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "housing_data = housing_data.drop(['long','lat','view', 'zipcode'], axis=1)\n", + "housing_data.sample(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### b)Checking for placeholders\n", + "\n", + "Placeholders are values used to denote missing, unknown, or invalid data within a dataset. Common examples include \"N/A\", \"-\", \"UNKNOWN\", \"NULL\", #, etc. It's important to identify and handle placeholders properly during data preprocessing to ensure accurate analysis and modeling" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Column 'sqft_basement': Found 454 occurrences of potential placeholder .\n" + ] + } + ], + "source": [ + "# Define a list of common placeholder values\n", + "common_placeholders = [\"\", \"na\", \"n/a\", \"nan\", \"none\", \"null\", \"-\", \"--\", \"?\", \"??\", \"unknown\", \"missing\", \"void\", \"empty\", \"#\", \"#####\"]\n", + "\n", + "# Check for potential placeholders in the DataFrame\n", + "found_placeholder = False\n", + "for column in housing_data.columns:\n", + " placeholder_count = housing_data[column].isin(common_placeholders).sum()\n", + " if placeholder_count > 0:\n", + " print(f\"Column '{column}': Found {placeholder_count} occurrences of potential placeholder .\")\n", + " found_placeholder = True\n", + "\n", + "if not found_placeholder:\n", + " print(\"No potential placeholders found in the DataFrame.\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# Convert the common placeholders to lowercase for case-insensitive matching\n", + "common_placeholders_lower = [placeholder.lower() for placeholder in common_placeholders]\n", + "\n", + "# Replace any of the common placeholders with NaN\n", + "housing_data['sqft_basement'] = housing_data['sqft_basement'].replace(common_placeholders_lower, pd.NA)\n", + "\n", + "# Drop rows with NaN in the sqft_basement column\n", + "housing_data.dropna(subset=['sqft_basement'], inplace=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Counter-check" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No potential placeholders found in the DataFrame.\n" + ] + } + ], + "source": [ + "# confirm no more placeholders\n", + "# Define a list of common placeholder values\n", + "common_placeholders = [\"\", \"na\", \"n/a\", \"nan\", \"none\", \"null\", \"-\", \"--\", \"?\", \"??\", \"unknown\", \"missing\", \"void\", \"empty\", \"#\", \"#####\"]\n", + "\n", + "# Check for potential placeholders in the DataFrame\n", + "found_placeholder = False\n", + "for column in housing_data.columns:\n", + " placeholder_count = housing_data[column].isin(common_placeholders).sum()\n", + " if placeholder_count > 0:\n", + " print(f\"Column '{column}': Found {placeholder_count} occurrences of potential placeholder .\")\n", + " found_placeholder = True\n", + "\n", + "if not found_placeholder:\n", + " print(\"No potential placeholders found in the DataFrame.\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "### b) Handling Missing Values:\n", + "waterfront: \n", + "Since these are categorical, we can replace missing values with the mode or create a separate category for missing values.\n", + "
yr_renovated: \n", + "A significant number of missing values suggest that these houses might not have been renovated. Impute with 0 or a specific marker value." + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [], + "source": [ + "# For categorical data, impute missing values with mode or specific marker\n", + "waterfront_mode = housing_data['waterfront'].mode()[0]\n", + "\n", + "housing_data['waterfront'].fillna(waterfront_mode, inplace=True)\n", + "housing_data['yr_renovated'].fillna(0, inplace=True) # Assuming no renovation if NaN" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### c) Convert Data\n", + "Convert date from object to datetime format.\n", + "sqft_basement: Convert from object to numeric, handling any non-numeric entries." + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "from datetime import datetime\n", + "\n", + "housing_data['date'] = pd.to_datetime(housing_data['date'])\n", + "housing_data['sqft_basement'] = pd.to_numeric(housing_data['sqft_basement'], errors='coerce') # Convert to numeric, coerce errors\n", + "housing_data['sqft_basement'].fillna(0, inplace=True) # Assuming no basement if NaN or non-numeric" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [], + "source": [ + "# Change waterfront to integer\n", + "housing_data['waterfront'] = housing_data['waterfront'].apply(lambda x: 0 if x == 'NO' else 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['7 Average' '6 Low Average' '8 Good' '11 Excellent' '9 Better' '5 Fair'\n", + " '10 Very Good' '12 Luxury' '4 Low' '3 Poor' '13 Mansion']\n" + ] + } + ], + "source": [ + "# checking \"grade\" column\n", + "unique_grade = housing_data.grade.unique()\n", + "print(unique_grade)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['Average' 'Very Good' 'Good' 'Poor' 'Fair']\n" + ] + } + ], + "source": [ + "# checking \"condition\"column\n", + "unique_condition = housing_data.condition.unique()\n", + "print(unique_condition)" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "# Convert grade and condition into representative numbers for easier Exploratory analysis.\n", + "housing_data['condition'] = housing_data['condition'].map({'Poor': 1,'Fair': 2,'Average': 3,'Good': 4,'Very Good': 5}).astype(float)\n", + "housing_data['grade'] = housing_data['grade'].map({'3 Poor': 1,'4 Low': 2,'5 Fair': 3,'6 Low Average': 4,'7 Average': 5,'8 Good': 6,'9 Better': 7,'10 Very Good': 8,'11 Excellent': 9,'12 Luxury': 10,'13 Mansion': 11}).astype(float) " + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Index: 21143 entries, 0 to 21596\n", + "Data columns (total 17 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 id 21143 non-null int64 \n", + " 1 date 21143 non-null datetime64[ns]\n", + " 2 price 21143 non-null float64 \n", + " 3 bedrooms 21143 non-null int64 \n", + " 4 bathrooms 21143 non-null float64 \n", + " 5 sqft_living 21143 non-null int64 \n", + " 6 sqft_lot 21143 non-null int64 \n", + " 7 floors 21143 non-null float64 \n", + " 8 waterfront 21143 non-null int64 \n", + " 9 condition 21143 non-null float64 \n", + " 10 grade 21143 non-null float64 \n", + " 11 sqft_above 21143 non-null int64 \n", + " 12 sqft_basement 21143 non-null float64 \n", + " 13 yr_built 21143 non-null int64 \n", + " 14 yr_renovated 21143 non-null float64 \n", + " 15 sqft_living15 21143 non-null int64 \n", + " 16 sqft_lot15 21143 non-null int64 \n", + "dtypes: datetime64[ns](1), float64(7), int64(9)\n", + "memory usage: 2.9 MB\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontconditiongradesqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15
45117230493332015-04-05285000.031.501490103671.003.05.01010480.019570.010008254
118176257009352014-06-05875000.033.50325060002.003.08.02500750.020010.016506000
187518530810002014-07-17820000.052.75283061372.003.07.028300.020100.031706285
1227370162000302015-03-20480000.042.50208079661.003.05.01200880.019700.019207500
854679819001102014-10-03350000.042.75230031751.503.04.01340960.019660.012603175
\n", + "
" + ], + "text/plain": [ + " id date price bedrooms bathrooms sqft_living \\\n", + "4511 723049333 2015-04-05 285000.0 3 1.50 1490 \n", + "1181 7625700935 2014-06-05 875000.0 3 3.50 3250 \n", + "1875 1853081000 2014-07-17 820000.0 5 2.75 2830 \n", + "12273 7016200030 2015-03-20 480000.0 4 2.50 2080 \n", + "8546 7981900110 2014-10-03 350000.0 4 2.75 2300 \n", + "\n", + " sqft_lot floors waterfront condition grade sqft_above \\\n", + "4511 10367 1.0 0 3.0 5.0 1010 \n", + "1181 6000 2.0 0 3.0 8.0 2500 \n", + "1875 6137 2.0 0 3.0 7.0 2830 \n", + "12273 7966 1.0 0 3.0 5.0 1200 \n", + "8546 3175 1.5 0 3.0 4.0 1340 \n", + "\n", + " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", + "4511 480.0 1957 0.0 1000 8254 \n", + "1181 750.0 2001 0.0 1650 6000 \n", + "1875 0.0 2010 0.0 3170 6285 \n", + "12273 880.0 1970 0.0 1920 7500 \n", + "8546 960.0 1966 0.0 1260 3175 " + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "# Check transformations\n", + "housing_data.info()\n", + "housing_data.sample(5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Feature Engineering:\n", + "\n", + "Create additional features that might be informative for our modeling:\n", + "\n", + "**House Age**: Calculate the age of the house from the 'yr_built' column to the current year.\n", + "\n", + "**Renovation Age**: If a house has been renovated ('yr_renovated' > 0), calculate the years since the renovation.\n", + "\n", + "**Total Square Footage**: Sum up 'sqft_living', 'sqft_lot', 'sqft_above', and 'sqft_basement' for a total square footage feature.\n", + "\n", + "These new features could reveal deeper insights into the housing prices and help improve the performance of our statistical models.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
house_agerenovation_agetotal_sqft
0690.08010.0
17333.012382.0
2910.011540.0
3590.08920.0
4370.011440.0
\n", + "
" + ], + "text/plain": [ + " house_age renovation_age total_sqft\n", + "0 69 0.0 8010.0\n", + "1 73 33.0 12382.0\n", + "2 91 0.0 11540.0\n", + "3 59 0.0 8920.0\n", + "4 37 0.0 11440.0" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Current year for age calculations\n", + "from datetime import datetime\n", + "\n", + "current_year = datetime.now().year\n", + "\n", + "# Feature Engineering\n", + "housing_data['house_age'] = current_year - housing_data['yr_built']\n", + "housing_data['renovation_age'] = housing_data.apply(\n", + " lambda x: 0 if x['yr_renovated'] == 0 else current_year - x['yr_renovated'], axis=1\n", + ")\n", + "housing_data['total_sqft'] = housing_data['sqft_living'] + housing_data['sqft_lot'] + \\\n", + " housing_data['sqft_above'] + housing_data['sqft_basement']\n", + "\n", + "# Display the new features\n", + "housing_data[['house_age', 'renovation_age', 'total_sqft']].head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The new features have been successfully added:\n", + "\n", + "**House Age**: Represents the age of the house since it was built.\n", + "\n", + "**Renovation Age**: If renovated, this indicates the number of years since the last renovation; otherwise, it is 0.\n", + "\n", + "**Total Square Footage**: Sum of the living area, lot size, above-ground level area, and basement area\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### *Sample data check.*" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontconditiongradesqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15house_agerenovation_agetotal_sqft
854030342003662014-12-03409000.031.75144090651.004.06.014400.019720.019908812520.011945.0
1943320230590522015-05-04450000.031.001350927211.002.04.01200150.019460.018608096780.095421.0
700377518000802015-01-27465000.031.50146098791.003.05.014600.019560.0161010050680.012799.0
1015111800020752014-08-25235000.031.00121060001.003.05.012100.019300.012106000940.08420.0
350634499000902015-04-10454200.042.50263053792.003.06.026300.020040.026305379200.010639.0
\n", + "
" + ], + "text/plain": [ + " id date price bedrooms bathrooms sqft_living \\\n", + "8540 3034200366 2014-12-03 409000.0 3 1.75 1440 \n", + "19433 2023059052 2015-05-04 450000.0 3 1.00 1350 \n", + "7003 7751800080 2015-01-27 465000.0 3 1.50 1460 \n", + "10151 1180002075 2014-08-25 235000.0 3 1.00 1210 \n", + "3506 3449900090 2015-04-10 454200.0 4 2.50 2630 \n", + "\n", + " sqft_lot floors waterfront condition grade sqft_above \\\n", + "8540 9065 1.0 0 4.0 6.0 1440 \n", + "19433 92721 1.0 0 2.0 4.0 1200 \n", + "7003 9879 1.0 0 3.0 5.0 1460 \n", + "10151 6000 1.0 0 3.0 5.0 1210 \n", + "3506 5379 2.0 0 3.0 6.0 2630 \n", + "\n", + " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", + "8540 0.0 1972 0.0 1990 8812 \n", + "19433 150.0 1946 0.0 1860 8096 \n", + "7003 0.0 1956 0.0 1610 10050 \n", + "10151 0.0 1930 0.0 1210 6000 \n", + "3506 0.0 2004 0.0 2630 5379 \n", + "\n", + " house_age renovation_age total_sqft \n", + "8540 52 0.0 11945.0 \n", + "19433 78 0.0 95421.0 \n", + "7003 68 0.0 12799.0 \n", + "10151 94 0.0 8420.0 \n", + "3506 20 0.0 10639.0 " + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "housing_data.sample(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Index: 21143 entries, 0 to 21596\n", + "Data columns (total 20 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 id 21143 non-null int64 \n", + " 1 date 21143 non-null datetime64[ns]\n", + " 2 price 21143 non-null float64 \n", + " 3 bedrooms 21143 non-null int64 \n", + " 4 bathrooms 21143 non-null float64 \n", + " 5 sqft_living 21143 non-null int64 \n", + " 6 sqft_lot 21143 non-null int64 \n", + " 7 floors 21143 non-null float64 \n", + " 8 waterfront 21143 non-null int64 \n", + " 9 condition 21143 non-null float64 \n", + " 10 grade 21143 non-null float64 \n", + " 11 sqft_above 21143 non-null int64 \n", + " 12 sqft_basement 21143 non-null float64 \n", + " 13 yr_built 21143 non-null int64 \n", + " 14 yr_renovated 21143 non-null float64 \n", + " 15 sqft_living15 21143 non-null int64 \n", + " 16 sqft_lot15 21143 non-null int64 \n", + " 17 house_age 21143 non-null int64 \n", + " 18 renovation_age 21143 non-null float64 \n", + " 19 total_sqft 21143 non-null float64 \n", + "dtypes: datetime64[ns](1), float64(9), int64(10)\n", + "memory usage: 3.4 MB\n" + ] + } + ], + "source": [ + "housing_data.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3. EXPLORATORY DATA ANALYSIS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next is EDA; Exploratory Data Analysis is a crucial step in data analysis. This process will involve examining and understanding the structure, patterns, and relationships within the dataset. It will aid us uncover insights, detect anomalies, and inform subsequent analysis and modeling decisions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### a.) Univariate Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**#Distribution of House Prices.**" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJRCAYAAABYy9SRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWIUlEQVR4nOzdd3iT5dvG8TOjm9GW6Yu4mCplyEYEqVZEBJThKgiioAz3AgVEEQFFVEBAUeQnQ5TtAAVFQQRZIhQUBVRkyIZSupvk/aMkNJ1J2zRJ+/14cEjz5EmuOy29c+Yej8Fms9kEAAAAAACKndHbBQAAAAAAUFoRugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AHmaz2bxdglv8rV4AAABfRugGUGpt2rRJ9erVy/HnmmuuUZMmTXTrrbdq5MiR+v3333M9f8qUKapXr57eeuutQtewfv169e/f361zhg0bpnr16mnhwoX53lbczp07p1dffVXLli0rsB5f8cILL6hevXqKiorSmTNnvFpLcfy8uOrQoUOqV6+e2rVr5/HncsXhw4f1yCOPqFmzZmrUqJHuvffefO8fHR2tevXqadOmTfnez/6aDhs2rDjL9Vn29mb/U79+fTVo0EBt27bVI488om+//datx12yZInq1aunZ555xkOVAwDyY/Z2AQDgaaGhobrpppscX9tsNiUmJmrfvn367LPPtHjxYj399NN68MEHi/V5jxw5ogcffFDVqlUr1sf1lHHjxmnJkiV69dVXvV2KS5KSkrRy5UoFBwcrJSVFS5YsKfbvIVzz7LPPatu2bapRo4aioqJ05ZVXerskv1azZk01btzY6bb09HQdPXpU33//vb7//nsNHDhQTz/9tHcKBAC4hdANoNSLiIjQxIkTcz321VdfacSIEXr99ddVtWpVdenSxXEsNjZWt912myIiIgr1vFartVDnPfXUUxowYICqVq1aqPMLK69p5d6qpyArV65UUlKShg4dqunTp+vTTz9V//79ZTAYvF2ax1WrVk0rVqxQQECAt0uRJO3cuVOS9PHHH+vSSy/1cjX+r1mzZho/fnyux9atW6dHHnlEM2fOVKdOnXTNNdcU+HgxMTFq1KiRypcvX9ylAgBcwPRyAGVa586dNWbMGEnS66+/rpSUFMexyMhI1apVS5GRkSVaU9WqVVWrVi2feYPsa/XYLV68WJLUrVs3tW7dWgcOHNDGjRu9XFXJCAgIUK1atXTZZZd5uxRJmaOwklS9enUvV1L6tWvXTjfddJNsNptWr17t0jnly5dXrVq1fO6DMwAoKwjdAMq822+/XVFRUTp+/LjTWsm81uj+8MMPevDBB3XDDTeoQYMG6tChg4YPH679+/c7nWuf0n7s2DHVq1dP0dHRki6uxx08eLBWrlypDh06qGHDhurSpYsSExMLXEP9ySefqFOnToqKitJNN92kN954Q+fOnXO6T0FrOO1rRbN+vXTpUknSiBEjVK9ePS1ZskRS3mu6MzIyNGfOHHXv3l2NGzdW48aN1aNHD82dO1cZGRlO97Wvrx87dqz++usvPfbYY2rZsqUaNmyo7t27OwK0qw4cOKBt27bpiiuu0GWXXaY77rhDkrRgwYJc75/1NT927JiGDx+u66+/XlFRUercubM++ugjWSyWHOf9/fffGjVqlDp27KjGjRurYcOGuvnmmzV69GgdO3Ys3xq/+eYb1atXT/fcc0+ux48dO6arr75aHTt2dNy2f/9+PfXUU4qJiVGDBg3UunVrPfzww1q/fn2u7cm+pvvo0aMaMWKEOnXqpIYNG6pFixbq27evvvzyy3xrze706dOaMGGCOnbsqAYNGqhFixZ68MEHtXbtWqf79enTx+nn6Nprr1W9evV06NAht56vMPbu3atnn31Wbdu2dax3fvbZZ7Vv374c97WvIT9w4ECOY/Z/51OmTHG6ffv27Ro8eLCio6Mdj//YY485RvWz+/vvv/X88887fi+0a9dOL774og4fPlw8Dc6iZs2akqRTp045bouOjlazZs30559/qnv37o7fTb/88ku+vw9+/vlnDR48WNdff72aNGmiLl266L333lNycnKR2piamqqpU6fqzjvv1HXXXacmTZrozjvv1Hvvvef04SYAlAWEbgCQHIG4oJHSb7/9VoMGDdKmTZtUq1YtRUdHKzg4WEuWLFGvXr0cb/jr1aunm2++WZIUEhKiLl26OL62+/PPP/XMM8+oUqVKatmypapVq6awsLB8n3/WrFkaPXq0QkJC1KFDB6WmpuqDDz7QPffco7Nnzxay9VKXLl0cb+QbN26sLl265DuKmpqaqgceeECvvvqq/v77b7Vs2VKtWrXSX3/9pTFjxmjAgAFKS0vLcd7evXvVs2dPbd26VU2aNNE111yj3bt364UXXtCsWbNcrtce0rt27Sopc/ps+fLl9d133+n48eN5nnfixAn16tVLq1evdmyo99dff2n8+PF67bXXnO67detW3Xnnnfr0009Vrlw5tWvXTk2aNNHJkyf1ySef6J577tH58+fzfK7o6GhFRkZq+/btuYa95cuXy2q1qnv37pKkf//9V71799ZXX32lihUrKjo6WpdffrnjQ57sG9xld+bMGfXt21cLFy6U2WzWjTfeqPr162vLli16+umnNW3atHzPt/v333/VrVs3zZo1S8nJyY7AunHjRg0cOFBvv/22475t2rRxWpJx++23q0uXLgoNDXXpuQrr22+/Vffu3fX5558rMjJSN910kyIjI/X555+rR48e+v7774v0+L/++qv69eun77//Xpdccomio6NVpUoVffPNN7rvvvv0888/O91//fr1uvPOO7Vs2TKFh4erQ4cOqlixohYtWqTu3btr165dRaonu71790qSLrnkEqfb09PTNXDgQMXHx6t9+/YyGAyqX79+no8zc+ZMRzuvuOIKXX/99Tpz5owmTZqU49+wO2202Wx65plnNGXKFJ06dUotW7ZUixYtdPDgQU2aNEmPPPJIsb4eAODrWNMNAJKuuuoqSZkjOfkZP368jEajli1bptq1a0vKfIP52muv6eOPP9ZHH32ksWPH6pZbbtE111yjb7/9VhUqVMh1TfnBgwd133336aWXXpLk2hrwv/76SyNHjlTv3r0lScnJyXrssce0bt06TZo0Sa+88opb7babOHGihg0bpoMHD6pnz57q1atXvvefNGmSNm/erKioKL333nuqVKmSpMyRt4cfflgbNmzQpEmTcuw6vXHjRnXs2FHjxo1zfMAwZ84cvfrqq5o5c6YeeOCBAtdkWywWLVu2TEajUXfeeackKTg4WLfddps+/fRTLVy4UEOGDMn13J07d6pZs2aaMmWKY9nAmjVrNGjQIC1YsECPP/64KlSoIEl6+eWXlZycrClTpuiWW25xPMaJEyd099136/Dhw1qzZo0j+GcXEBCgrl27avbs2fr888/16KOPOh1funSpjEajY5R+xowZOn36tF555RXdfffdjvutXr1aQ4cO1bvvvuu4b27mz5+vf/75Rw8//LCeeuoppzbfd999mjlzph566CEFBgbm+Rg2m01PPPGEjh8/rrvuuksjR4503H/nzp0aMGCApk+froYNGyo6OlqDBg2SJH3xxReSpAkTJshsdv2txYwZM/LdFf+PP/7IcduJEyf0zDPPKD09Xa+99pp69OjhOLZo0SKNGDFCTz/9tFauXFnoTQzfeustpaSk6MMPP1Tbtm0dt8+ePVvjxo3TjBkz1KpVK0mZswKeeuoppaWladKkSercubPj/p9++qlGjRqlJ554QitWrMj3tXfVsmXLtG7dOplMJnXq1MnpWEpKiiIjI/XJJ58oKChIVqtVRmPu4ytxcXGaNGmSwsLC9P7776tp06aSMjcofPjhh7V582bNnz9f/fr1c7uN27Zt06pVq9SiRQvNmjXLsffA6dOnddddd2njxo3aunWrmjVrVuTXAwD8AaEbACRH0CroslMnTpyQ2Wx2hExJMhgMeuSRR3T55ZfnO6qUm379+jn+nteb46xatGjhCNxS5ij6uHHjdOONN2r58uUaNmyYx0cZU1NTtWDBAhmNRk2aNMnptahUqZImTZqkjh07av78+Xr00UedRu/NZrNefvllp9vuvvtuvf766zp9+rROnjypKlWq5Pv869ev17Fjx3T99dfr//7v/xy39+jRwxG6H3nkEZlMplzPHzlypNM6/ejoaF166aU6dOiQ/vrrLzVu3FiJiYlq0KCBoqKinAK3JFWpUkU333yz/ve//xU4jbpnz56aPXu2li9f7hS6d+zYob/++ks33HCDIxieOHFCUs510TExMRo1apQqV66cb4jK6/yGDRvq1VdfVWBgYK5T6LPaunWrdu/ercsuu0wvvfSSU4Bu2LChnn/+eQ0fPlwffPCBY3ZIUWzYsMHtcz799FMlJyfrjjvucArckhyzKJYuXapPPvlETzzxRKHqsr+W2UeS77vvPkkXP6STMoN+fHy8YmNjncKolPmzvWbNGv3www9avXp1juN52bp1a46p4MnJydq7d68OHDggg8Gg5557TldccUWOc++9914FBQVJyv93yqeffiqr1apHHnnEEbilzKs9PPvss3r66acds0bcbaP9vEqVKjlt9hcZGakxY8bov//+U40aNVx6LQCgNGB6OQDo4kZQBY2yNm/eXCkpKbrzzjs1depU7dy5U1arVZUqVVLv3r3dGrkJDg7W5Zdf7ladWafy2lWuXFlRUVFKSUkp9mmsuYmLi1NKSoquueaaXKegX3bZZYqKilJqamqO9a+XX355jt3gAwMDHbe5stbTPrU8e+Bq1KiRateurf/++y/H2mO7kJAQpzXIdvYNpuzrWMPCwjRu3LgcU86PHz+utWvXas+ePZKU6xT6rOrUqaOGDRvq4MGD2rZtm+N2+3p5+9RyKfNnS5Ief/xxvfrqq1q3bp3j9YiNjVXHjh3zDVEtWrSQJL366qsaPny4Vq9e7Zj+fscdd+i2225TSEhIvvVu3rxZknTzzTfnOmJ96623ymQyaceOHQW23RUff/yx/vjjjzz/DB06NMc5W7ZskaQco7x2t912m1NbCsP+vbjvvvs0ceJEbd68Wenp6QoMDFS/fv2c1tLbrzXeunXrXB/Lft+Crkme1cGDB/XFF184/fnpp59ktVp1++236+OPP3b6wC6runXruvQc9tcntw9PGjZsqNWrV+u5555zqt3VNjZp0kQBAQFauXKl+vfvr4ULF+ro0aOOx+jevXuODzQAoDRjpBsAJMd66IoVK+Z7v1dffVVDhw5VXFycpkyZoilTpig8PFzt27dXz549HcHHFYXZDTyv0SH7G9j81jMXF/tz5DdSdemll2rHjh056rHPKMjOHvAKmmJ/5swZrVmzRlJmYMu+cVp8fLykzM3mcgsT5cuXz/WDFfvzZ79s2i+//KKFCxfqt99+07///qukpCRJFz+cyesya1n17NlTO3fu1PLly9W0aVOlpaVp5cqVqlixotM6/wceeED79+/XsmXLNGfOHM2ZM0eBgYFq1aqVOnfurC5duuQ5ei9lhs3du3fro48+0pIlS7RkyRKZzWZdd911uvXWW9WzZ0/HCGhe7N+vvC77FRoaqsjISJ04cUKnT5/2ym7lBf382Wu3j1YXxrPPPqvDhw/rxx9/1MyZMzVz5kyFhobqhhtuUNeuXZ2+b//9958k5foBQVb20OmKO++8M89LhhUkr39j2dlfn6yzRfLibhsvueQSvf766xo1apR++ukn/fTTT5IyP4SKiYnRvffey07qAMoUQjcASI6Ry9xGQbOqXr26Fi1apG3btunbb7/Vhg0b9Mcff2j58uVavny5BgwYkOeO4dm5Mp08u7xCkz38ubKetqApxgWxP1d+swLs98m+hrWo19D+/PPPHbMSfv311zzvt379eh06dChHeHTn+V9++WXNnz9fJpNJ9evX16233qratWurUaNG+vHHHzVjxgyXHqdz584aN26cvv76a40cOVJr1qxxTNXN+voEBARowoQJGjRokFatWqUff/xR27dv17p167Ru3TotXLhQH330Ub7rgp999ln16dNH33zzjX788Udt27ZNmzdv1ubNmzVv3jzNnz9f4eHheZ7vyocIeX1vS0pBP3/u1pfbv4dy5crpgw8+0O+//65Vq1bpp59+0q5du/TNN9/om2++0W233ea4qoH9/A4dOqhcuXJ5Po99DwhPc/X3SvYrDOSnMG287bbb1K5dO61Zs0Zr167Vzz//rL1792rv3r363//+p9mzZ6thw4Yu1wAA/ozQDQDKvAyYlLkbsyuaNm3qWAd56tQpLV68WG+99ZY+/PBD9enTp9AbOBUkr5Fs+yV77CPe9jfeuY0c20eDC8s+QpXfeuaDBw9Kypz6Xpzs07Kzb3CV1cCBA7V27Vp99tlnThuKucO+idQll1yiDz/8ULVq1XI6/vXXX7v8WOXKlVPHjh21bNkybdy4UatWrZLkPLU8qyuuuEIDBw7UwIEDlZycrB9++EEvv/yytm7d6tK64OrVq6tv377q27ev0tPTtXHjRo0ZM0b79+/XZ599poEDB+Z5bkHf28TERJ0+fVomkynf8O5JVatW1d9//61Dhw7lGmTttWffd0HKPWDn9+/h6quv1tVXX63HH39cCQkJWrlypcaOHasVK1aob9++aty4sapWrap//vlH999/v8u/P3xBlSpVdPjwYR09elRXXnlljuMLFixQtWrV1KFDh0K3sVy5curatatjs8Hdu3dr0qRJWr9+vd555x19+OGHxdYeAPBlrOkGUOatWLFCf/31l6pXr64bb7wxz/v99ddf6tKlix566CGn2ytVqqSBAweqXr16slqtjus3F3VUNzc//vhjjtsOHz6sXbt2qXz58rr66qslybGZWtbr+Nr98ssvuT62q/U2aNBAISEh+u233xzhOqt///1Xu3fvVmhoqBo0aODSY7pi9+7d2rNnjypVqpTn2lJJjh2+Fy9e7BgVd5d9FP2WW27JEbgtFovjklGujAxLmVPMpcyftXXr1qlu3bpOr43VatX999+vtm3bOq1rDwkJUadOnRyhxT7NNzdPP/20WrVq5XTN5ICAALVr186x+V5+50sX1zJ/9913uY6Efv3117JarWrWrFmhZmoUB3uN33zzTa7HV6xYIUlOSz3s/x5Onz6d4/7ZZ0ycO3dO3bt3z7F/Qvny5XXXXXc5Puyxv5b2evLaR+DNN99U9+7d892l3RvsHxquW7cux7H9+/frpZdecly73N02fvTRR+rQoUOOy9xde+21evbZZyW5N90eAPwdoRtAmWWz2bRy5UqNHDlSkjRixIh8p6RefvnlOnnypNavX59jpHPXrl3av3+/wsLCHDsb26eCJyUluXQ5MFcsW7ZMq1evdnx97tw5Pfvss7JYLE7Tle27qNt3o7b777//cr18mXRxOm5CQkK+NYSEhOiuu+6S1WrV008/7RRk7JcWslqt6tGjR4Ebd7nDvoFap06d8l3bfNNNN6lChQo6efKk02vlDvvGbhs3bnRsriZlbrQ2cuRIx3WSU1NTXXq85s2b64orrtDy5cuVkJCQYxM4o9Go8uXL68SJE5o0aZLTiOzZs2cdwSi/6biVKlXSmTNn9PrrrzttcpaSkuJ4HQqaztuiRQtdc801OnDggMaMGeP0ocWuXbv0+uuvS5LTDvol7a677lJoaKiWLl2aI9QtXrxYy5cvV2hoqONyctLFfw8ff/yx0wclH3zwgX777Tenx6hQoYKsVqv+/PNPzZ492+nYoUOH9Msvv8hoNDo+NLn77rsVGhqquXPn6quvvnK6//fff6+PPvpIu3fvLtYPoIpDbGysDAaDpk2b5lheI2XOZrBfetD+YY+7baxZs6aOHDmi6dOnO62tt9ls+vzzzyU5/ywmJydr//792r9/v2caCwBexvRyAKXemTNnnNZZW61WnTt3Tnv27NGJEydkMpk0cuRIxcTE5Ps4JpNJr7zyih599FE9/vjjuvbaa3XppZfqzJkz2rZtmywWi0aOHOlY8xgZGakKFSro3Llzuueee3TZZZflGXhd1ahRIw0dOlRNmjRRlSpVtHnzZp09e1YtWrRwujb1ZZddpltuuUWrVq3S3Xff7RgZ3rRpk+rWratatWrleINrv/zQtGnTtH37dnXr1s1pw6isnnrqKf3222/asmWLbr75Zseo4ubNm5WYmKhWrVq5vLbdFWlpafryyy8lqcDp1UFBQbr11lv12Wef6ZNPPnHsZu2OTp06aerUqfrzzz918803q3HjxkpLS9P27duVkJCgOnXqaO/evTp58qTLj9m9e3dNmjTJcf3u7J5//nlt3bpV//vf//Ttt9/q6quvVlpamn755RedP39eXbp0yXejvsGDB+v777/X119/rW3btjkC0M6dO3Xq1Cm1aNFCt99+e741GgwGTZo0SX379tWCBQv0ww8/qFGjRjp79qy2bt0qi8WigQMH5riMWkmqVq2aJkyYoKeeekrPP/+8PvroI1155ZX6+++/tWfPHoWEhOiNN95w2mjt/vvv18qVK/XNN9/o1ltvVb169fTnn3/qn3/+Ubdu3bR8+XKn53j55ZfVu3dvjRs3Tp999plq1aql8+fPa9u2bUpNTdUjjzyimjVr5qjnqaee0rvvvqurrrpK//33n+NqAsOHD3fMQvEVjRs31lNPPaU333xTPXr0UPPmzRUSEqIdO3bo1KlTateune6//35J7rfxpptuUkxMjFavXq2YmBhdd911CgsLc7zmVapUcbqE3s6dOx3Pldu12QHA3xG6AZR6SUlJ+uKLLxxfGwwGhYSE6NJLL9Utt9yi2NjYHFOI8xITE6MPP/xQs2fPVlxcnP744w9VqFBB7dq10wMPPKCWLVs67ms0GjVx4kRNmDDBMRW7qOupn376af36669asGCBdu3apRo1auiBBx5Q//79c4zST5w4Ue+//74+//xzbdy4UZUrV1bv3r01dOjQXEcq7733Xu3Zs0ffffed1q1bp1q1auUZuoODgzVr1izNnz9fn3/+uX7++WeZTCbVqVNH3bt3V69evYp1+vG3336r+Ph41ahRQ9ddd12B97/jjjv02WefafPmzdq/f3+Bu3ZnV65cOX322WeaPHmyNm7cqHXr1jkuzdarVy+1atVKbdq00fr165Wenu50LeK82Kfztm/f3uk64XaXXXaZFixYoBkzZmjTpk364YcfFBwcrDp16qhHjx45RsezCw8P17x58zR9+nT9+OOPWr9+vQICAnTllVfqoYceUu/evV2q88orr9TSpUs1c+ZMfffdd1qzZo0qVKigG264Qffff7+uv/76Ah/D02655RYtWrRIM2fO1KZNm7R//35VqVJFPXv2VP/+/XP8e46KitK8efM0ZcoUbd++XcePH1eDBg00evRoJScn5wjdjRo10vz58zVz5kz98ssvWrNmjcLCwtS0aVPdc8896tixY456Fi9erA8++EA///yzfvjhB1WqVEk33nij+vfv7/R7wZcMHDhQV199tT766CPFxcUpOTlZNWvW1P3336/+/fs7/Rt2p432D29mz56tFStW6JdffpHFYtEll1yi+++/X4888ojTmnsAKO0MNlcXpAEAgEJ79dVXNWfOHL333nv57h0AAABKF9Z0AwDgIfZN0TZv3qxFixapZs2aateunZerAgAAJYnp5QAAeMiLL76ob7/91hG+n3nmGa/t+g0AALyDnh8AAA9p2LChAgICVL16dY0aNUq33nqrt0sCAAAljDXdAAAAAAB4CCPdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdgBtsNpu3SwAAAB7iD/28P9QIwBmhG6XGsGHDFB0dnefxPn36qE+fPnl+XZBt27bp4YcfLlKNpcHRo0fVu3dvRUVFqXXr1kpOTs5xnyVLlqhevXo6dOhQro8xZcoU1atXz9OlFqthw4apXr16Tn+uvfZatW3bVs8++6z++++/Ah+jXr16mjJlSglUCwC+oU+fPk6/N+vXr68mTZqoe/fumjNnjiwWi1fqOnTokOrVq6clS5ZIks6dO6fnn39eW7duLdLjutNXFPS+JTf79u3TvffeW6Qa7TZt2qSOHTuqQYMGevDBB3O9j7vvrfxBdHR0ju9RVFSUYmJi9Oabbyo1NTXf8zdt2qR69epp06ZNJVQxSgOztwsAvOWll15y6/4LFy7Uvn37PFSN//jf//6n7du364033lC1atUUEhLi7ZJKTJUqVTR16lTH1xkZGfr77781ceJEbd++XV9++aWCg4PzPP/TTz9V9erVS6JUAPAZ11xzjaPPtVgsio+P19q1a/Xaa69p27Zteuutt2QwGEq0pqpVq+rTTz/VZZddJkn6/ffftWzZMnXv3r3Ij13UviI/K1eu1Pbt24tcoyRNmDBBVqtV77//vipVqlQsj+kv2rdvr8GDBzu+Tk1N1aZNmzRt2jQdPnxYkyZNyvPca6+9Vp9++qlq165dEqWilCB0o8zil2XhnD17VlWrVtVtt93m7VJKXGBgoBo3bux0W7NmzRQQEKDnn39e3333nTp37pzn+dnPBYCyoFy5cjl+/0VHR+vKK6/UuHHjFB0dra5du5ZoTbn9PvfkY7vTV5SUs2fPqnnz5mrTpo23SylxkZGROb5HLVu21NGjR7VkyRINGzZMVatWzfXc3H6egYIwvRxlVvYpURs2bNDdd9+tJk2aqHnz5ho8eLD++usvSZnTq5YuXarDhw87TUdLSEjQuHHjdPPNNysqKkq33367Fi1a5PQ86enpmjhxotq1a6eGDRvqwQcf1LJly5ymXw8bNkx9+/bVSy+9pGbNmunOO+9URkaGTp8+rZdfflkdOnRQgwYN1KJFCw0ZMsRp2nafPn00atQoTZ8+XTfccIMaNWqkAQMG6OTJk1q8eLFiYmLUpEkT9evXL8/p3nYFtSc6OlpLlizRkSNHin2qdFxcnB588EG1bNlS1113nR555BHt3bvXcTyv6VzZv4+7d+9W37591bRpU0e7d+zY4XTO1q1b1bt3bzVq1EgtWrTQ888/r9OnTxe69qioKEnS4cOHJeX9/cz+mp06dUovvPCC2rRpoyZNmig2Nlbbtm1zHLePQMTExKhBgwbq2LGj5syZ4/TcBw8e1KBBg9SyZUs1atRId999t9auXVvotgBASenTp4+qVq2qBQsWON2+cOFCde7cWQ0aNNCNN96oKVOmKCMjw3F82LBh6tevnxYvXuyYHt21a1en331Wq1XvvPOOoqOj1aBBA0VHR2vSpElKT0+X5Dy9fNOmTbr//vslSffff7/69OmjefPmqV69evr777+davvqq69Uv379AvvT3GTvK7KzWCyaN2+eunTpooYNG+rGG2/UxIkTHdOdp0yZ4hhBL6gP/ueff/TYY4/p+uuvV+PGjdWnTx9H/2Jv++HDhx3vR4pzqvSKFSvUvXt3NWnSRNdff71GjRql+Ph4x/G8lphlb9OKFSvUtWtXNWzYUK1atdIzzzyj48ePO51T0M+Kuxo0aCCbzeZYBhAdHa3XXntNffv21XXXXadRo0bl+n5k165deuihh9S0aVO1atVKTz75pNNSgrNnz2rUqFFq06aNoqKidNddd2njxo1Oz53f+1D4P0I3Sp2MjIxc/+S38Yg9uFx77bWaPn26Xn31Vf31118aOHCgrFarBg8erPbt26tKlSr69NNPdeONNyolJUX33XefPv/8c/Xv31/Tpk1T06ZN9eKLL2rGjBmOxx41apT+97//qXfv3nr33XdVuXJljRw5MkcNW7du1YEDBzRlyhQNGTJEJpNJDz/8sH766Sc9/fTT+vDDDzV48GBt2LBBo0aNcjr3q6++0oYNGzR27FgNHz5cGzZsUO/evTVnzhw9//zzevHFF7Vjxw698soreb4GrrRn6tSpTq9Dr1698v1eWK3WXL8XVqvV6X4///yz7r33XlmtVo0dO1avvvqq/vvvP91zzz3av39/vs+R1fnz5/XQQw8pIiJCkydP1ltvvaXk5GQ9+OCDSkhIkCRt2bJF/fr1U3BwsN5++2298MIL2rx5s+6//36lpKS4/FxZ2d+U2acpSjm/n2az88SipKQk3XPPPdqwYYOefvppTZ06VWFhYXrooYccbR49erQmT56srl27asaMGbr11lv12muv6d1335WU+fo+/PDDSkpK0uuvv65p06YpPDxcgwcP1oEDBwrVFgAoKSaTSa1bt9bOnTsdQem9997TyJEj1bp1a82YMUOxsbGaOXNmjn5v165d+vDDD/XYY4/p3Xffldls1mOPPeYIdzNnztS8efM0ZMgQzZo1S/fee68++OADp/7Z7tprr3U8/qhRo/TSSy+pS5cuCgoK0vLly53uu3TpUrVo0UKXXnqp2+3Nra/IatSoUXrttdcUHR2t6dOnKzY2VnPnztXgwYNls9nUq1cv9ezZU5Ly7YP37dun7t276+DBgxoxYoQmTpwog8Ggvn37avPmzY6p9VWqVFH79u316aef6tprr823dlffW02bNk1PPvmkGjVqpMmTJ2vIkCH65ptv1KdPH7f62G3btumZZ57RLbfcopkzZ2r48OH6+eef9fTTTzvu4+rPijvs36OaNWs6brN/ADNlyhR169Ytxzl79uzRvffeq+TkZI0fP16vvPKKfvvtN/Xv31/p6elKTU1V37599d133+nJJ5/U1KlTVb16dT300EOO4F3Q+1D4P6aXo1Q5fPhwvh1HixYtcr19586dSklJ0cMPP6xq1apJki655BJ99913SkpK0mWXXabIyEinKWPz58/Xn3/+qfnz56tp06aSpBtuuEEZGRmaNm2a7rnnHp07d05Lly7V888/rwceeMBxn5MnT2r9+vVONWRkZOjll1/W5ZdfLkk6duyYQkJC9Pzzz6tZs2aSMqc+HTp0KMeoQHp6uqZOnaqKFStKklavXq3169fr22+/dXQcv//+e443D1ktWbKkwPZcc801OV6H/MTExBR4H0l68803VbNmTX3wwQcymUySpLZt2yomJkZTpkzR22+/7dLj7Nu3T6dPn1afPn0cbbjqqqu0YMECnT9/XuXLl9ebb76pK6+8Uu+9957juRo1aqTOnTtr8eLFio2Nzfc5sn6Cfv78ecXFxWncuHGqUaOG2rdv73S/rN/P7JYuXaqDBw9q2bJlql+/vqTM6Yd33HGHtmzZIqPRqM8++0xPPfWUBg4c6HhNDAaD3nvvPd13333KyMjQ/v379cgjjzieu2HDhpo6dWqBG8EAgC+oXLmy0tPTdfbsWQUFBWn69Om6++67NWLECEmZv/fCw8M1YsQIPfDAA6pTp46kzJlZS5YscQTY0NBQ9e7dWz///LM6duyozZs369prr1WPHj0kZfb/ISEhKleuXI4aypUr51hyVrt2bcffY2Ji9Pnnn+vxxx+XwWDQ8ePHtWHDBr322msFtsvVvsJu3759WrRokZ544gkNGjRIknT99deratWqeu6557Ru3Tq1b9/esS9Ifn3w1KlTFRAQoI8//ljly5eXJN144426/fbb9cYbb2jhwoVq3LixAgMDc51mnZ2r763i4+M1ffp09erVy2nfnLp16yo2NlZLlizRfffdl+9z2W3btk1BQUEaMGCAgoKCJEnh4eGKi4uTzWbT+fPnXf5ZyY3NZnP6Hp06dUrr1q3TggUL1KlTJ0VGRjqOVa1aVcOGDZPRmDlWmX1WwLRp01SxYkXNmjXLUWv16tX1xBNP6I8//tBvv/2mPXv26LPPPlOjRo0kSe3atVOfPn00ceJELV68uMD3obn93MK/ELpRqlSpUkXTp0/P9Vh+G6c1atRIQUFB6tmzp2677Ta1b99ezZo1U8OGDfM8Z/PmzapRo4Yj3Nl17dpVixYt0o4dO3T8+HHZbDbdeuutTve5/fbbc4Tu4OBgp0+/q1Wrpo8//liSdOTIER04cED79+/XL7/84pgeZ1erVi1H4La/DpGRkU6f1IaHhztGewvbntzeKORn+vTpqlKlSo7bP/vsM3322WeSMkd84+LiHKP7dhUqVFCHDh3cmipdp04dRUZGatCgQerUqZPat2+v1q1b67nnnpMkJScna8eOHXrwwQedOtyaNWuqVq1a+umnn/IN3Xm98WjUqJFeeeUVp03lsn8/s9u6dasuvfRSR+CWpKCgIK1cuVKS9Mknn8hmsyk6OtrpjYF9BGTbtm266aabVLt2bY0cOVIbNmxQu3bt1LZtWw0fPtzFVwwAfIPBYND27duVnJyc6+89Sfrpp58cQSoyMtLpd6w9jNqvqNGyZUu9+eabuu+++xQTE6N27dqpd+/ebtXUs2dPffnll9q6dauaN2+u5cuXKzg4WB07dsz3PHf6CrvNmzdLkrp06eJ0e+fOnTV8+HBt2rTJ5T548+bN6tChgyNwS5LZbFbnzp317rvvKjExUWFhYS49luT6e6tff/1VaWlpOdrQrFkz1ahRQ5s2bXI5dDdv3lxvvfWWunTpok6dOjn6N/tr4M7PSm6WLVumZcuWOd1mNpsVExOj0aNHO91eq1YtR+DOzbZt29S+fXtH4JYyPwBfs2aNJOnDDz9UlSpVdO211zrV2qFDB73++uuKj48v1PtQ+BdCN0qVwMBAx5qp7PLrYC699FLNnTtX77//vj777DPNnj1bFSpU0H333afHH38811+28fHxqly5co7b7bedO3fOsU44+66guZ1XqVKlHLu3fv7555o0aZL+++8/hYeHq379+rnueJrbJ6Du7iruSnvcVbdu3Vyn4P3www+OvyckJMhms+X53Pl9UJBdWFiY5s2bp+nTp2vFihVasGCBQkJC1LVrV7344os6d+6crFarZs6cqZkzZ+Y4P2uHmZvsbzwCAwNVvXp1pw887HL7fmZ19uzZfHeLPXv2rCTludnOsWPHZDAYNGvWLE2fPl2rV6/W0qVLFRAQoJtvvlmjR49WeHh4vu0BAG87duyYgoODFR4e7vi9Z5/dk13W9bzZ+zj771v7VNyHHnpIYWFhWrx4sSZMmKDx48erbt26euGFF9S6dWuXamvVqpUuvfRSLVu2TM2bN9eyZcvUqVOnAvtXd/oKO/u0+OwfVJvNZkVERLjVF+bXn9tHid0J3a6+t7K3oTj68yZNmuj999/X7Nmz9eGHH2rGjBmqUqWKBgwYoL59+7r1s5KbDh06aMiQIZIyf3ZCQkJUo0aNXN9j5daerFzpz0+cOJHnbIETJ06odu3abr8PhX8hdAMX2KflpqWladu2bfr00081Y8YM1atXL9eduitWrJjrutkTJ05IkiIiIhzXHz116pQuueQSx31OnTpVYD1bt27V888/r969e+vBBx90fIr/+uuvO222VVxcaY8nlC9fXgaDQSdPnsz1ue3BMfsbKrvsn9hfddVVeuONN2SxWLRz504tX75cn3zyiS699FLdd999MhgM6tevX65htqA3Uvm98XBX+fLlc92IZ/v27SpXrpwqVKggKfMSbbm9Ofq///s/SZkzIkaPHq2XXnpJe/bs0ddff62ZM2eqYsWKevnll4ulVgDwBIvFos2bN+u6666TyWRy/N6bOHGirrjiihz3Lyj8ZGU0GhUbG6vY2FidOnVKa9eu1YwZM/Too49qw4YNLj2GwWDQnXfeqY8//lixsbHat29fvnuj2BWmr7AH8hMnTjh9WJ2enq4zZ8641QdXrFgxzz5V8lx/bm/DyZMnVatWrRzPbZ99Z+/PLRaLY4ZbYmJijse74YYbdMMNNyg5OVk///yzPv74Y7322mtq3LhxkX9WwsPDi7U/z20z1rVr16p+/foqX768rrjiCk2cODHX8+3fb3ffh8K/8LEJIGn27NmKjo5WWlqaAgMD1bp1a40ZM0aSHLtPZv+UsXnz5jp8+HCOAPz5558rICBADRs2VNOmTWUymbRq1Sqn+2T/Ojfbt2+X1WrVY4895gjcFovF8WahuDfWcKU9nhAaGqoGDRpoxYoVjg8ppMwR8B9++MEx3d0+mp91N9D4+Hinjda+/vprtWrVSidOnJDJZFKTJk00evRoVahQQUePHlW5cuV0zTXX6K+//lJUVJTjT506dTR16tRi3b21IM2aNdPBgwf1xx9/OG5LS0vTo48+qs8++0zNmzeXJJ05c8ap1rNnz+rtt9/W2bNntX37drVp00Y7d+6UwWDQ1VdfrSeffFJ169bV0aNHS6wtAFAYCxYs0PHjx3XvvfdKypx+HRAQoGPHjjn93gsICNCbb77p1o7h99xzj1599VVJmTOPunfvrtjYWCUkJOj8+fM57p91eVNWPXr0cFzZ44orrsixBKu42NdFf/HFF063f/XVV7JYLI7ndWXEs3nz5vr++++dRpYtFou++uorRUVFKTAwsBgrv6hRo0YKDAzM0YatW7fqyJEjuu666yTl3p//8ssvTudMmDBBPXv2lM1mU0hIiDp06KDnn3/ecV5x/qwUVbNmzfTjjz8qLS3Ncdsff/yhgQMHKi4uTi1atNB///2nSpUqOdW6ceNGx142rrwPhX9jpBtQ5hSyiRMnasiQIerdu7dMJpMWLFigwMBAdejQQVLmGuOTJ09q7dq1uvrqq9W9e3fNnz9fQ4cO1WOPPaaaNWtqzZo1Wrx4sYYOHaoKFSqoQoUK6tGjh+MyJfXr19fq1av1/fffS8q/87SH3FdeeUU9evTQuXPnNHfuXO3Zs0eSin1jDVfa4ylPP/20HnzwQT300EPq3bu30tPT9f777ystLU1Dhw6VlHkpkUsuuURTp05V+fLlZTQa9f777zuNTl933XWyWq0aMmSIBg4cqLCwMK1cuVIJCQm65ZZbJMmxMdnTTz+trl27ymKxaNasWdqxY4dj85qS0L17d82ZM0eDBg3S448/rsjISM2bN08pKSnq06ePLrvsMnXt2lUjR47U4cOH1aBBA/3999966623dOmll+qKK65QRkaGgoOD9dxzz+nRRx9V5cqVtWHDBv3++++Oy98AgLedP39ev/76q6TMD4zPnDmj9evX69NPP1XXrl0dv58jIiL00EMP6Z133tH58+fVsmVLHTt2TO+8844MBoPTHhgFad68uWbNmqXKlSurSZMmOnbsmD766CO1aNFCkZGRSkpKcrq/ff3zDz/8oIoVKzqe65JLLlGbNm20fv16Pfnkk8XwauSudu3auvPOOzV16lSlpKSoZcuW+v333zV16lS1bNlSN9xwgyQ5+uIvv/xSjRo1ctq7xW7o0KFat26d7r//fg0cOFCBgYGaO3euDh48qA8++MBjbQgPD9fAgQMdG7nddNNNOnTokN555x3Vrl1b3bt3lyS1b99e48aN08iRIzVgwAAdPXrUcQUPu9atW+ujjz7SsGHD1LVrV6Wnp+uDDz5QeHi4WrVqpfDw8GL7WSmqwYMH6+6773ZMfU9LS9M777yja6+9Vu3atVNGRobmzp2rBx54QI888oguueQSbdiwQTNnzlTv3r0VEBDg0vtQ+DdCNyCpfv36mjFjht5991099dRTslgsatCggWbNmqWrrrpKUmZIWrt2rYYMGaLHHntMAwcO1Jw5c/Tmm29q8uTJOn/+vK666iqNHTvWcUkPSRo5cqRCQ0M1a9YsnT9/Xq1bt9agQYP07rvvKjQ0NM+aWrZsqVGjRumjjz7S119/rcqVK6tly5aaOnWqhgwZ4ti4o7iEhIS41B5PsHeukydP1lNPPaXAwEA1a9ZMEyZMcGyEYjKZNHnyZL322mt66qmnVLlyZfXt21d//fWX4xIfVatW1QcffKB33nlHL774opKTk1WnTh1NmTJFrVq1kpS5u+mHH36oqVOn6rHHHlNAQICuvfZaffTRRy7tyF5cypUrp7lz5+r111/X2LFjlZGRoUaNGmnOnDmOzYHGjRun9957TwsWLNDRo0dVqVIl3XbbbXriiSdkMplkMpk0a9Ysvfnmmxo7dqzOnTunK664Qq+88orjzQ0AeNtvv/2mu+++W1Lmh82VKlXSlVdeqfHjx+fYdOuJJ55QlSpVNH/+fH3wwQeqWLGiWrduraeeesppY7CCPP744woMDNTixYv17rvvqnz58oqOjna65FRWderU0e2336558+bpxx9/1Jdffuk41qFDB23YsEF33HGH+413w9ixY3X55Zdr8eLF+vDDD1W1alX16dNHQ4YMcXxIf8stt2j58uUaNmyYevbsmWPTL3tb5s+fr0mTJumFF16QwWBQw4YN9fHHHzuuhuIp9g+A586dq4ULFyo8PFy33nqrnnjiCceH5FdeeaUmTJig6dOna+DAgapVq5bGjBnjGNmVMnf3njhxombNmqWhQ4fKYDCoadOm+vjjjx3LzorrZ6WorrnmGsf7pyeffFJhYWFq3769nnnmGQUGBiowMFDz5s3Tm2++qTfeeEMJCQmqUaOGnn76afXv31+Sa+9D4d8MtvwuXgygSM6ePat169bphhtucFpDNWHCBC1ZsqREpzMDAAD3DRgwQCaTKddrfAOAKxjpBjwoJCREY8eO1dVXX62+ffsqNDRUv/zyi+bMmaNHHnnE2+UBAIA8vPvuu/r777+1bt06zZ0719vlAPBjjHQDHvb777/r7bff1q+//qrk5GRddtlluueeexQbG5vvJaUAAID39OjRQwcOHNAjjzyihx56yNvlAPBjhG4AAAAAADyES4YBAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BAuGZaF1WpVRkaGjEYju0oDALzCZrPJarXKbDbLaOSz8bzQZwMAvM3VPpvQnUVGRobi4uK8XQYAAIqKilJgYKC3y/BZ9NkAAF9RUJ9N6M7C/ulEVFSUTCaTW+daLBbFxcUV6lxfQjt8C+3wLbTDt5TWdti/ZpQ7f/TZtMPX0A7fQjt8S2loR25tcLXPJnRnYZ+eZjKZCv3DUJRzfQnt8C20w7fQDt9SWtvBlOn80WdfRDt8C+3wLbTDt5SGduTWhoL6bD5GBwAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXT7mD4j13i7BAAA4IIFcQu8XQIAwA8Qun1McmqGt0sAAAAuSLeme7sEAIAfIHQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAP8WroPn36tGJiYrRp0ybHbTt27FCvXr3UpEkTRUdHa+HChU7nLF26VDExMWrcuLG6d++u7du3O45ZLBZNmDBBbdq0UZMmTTRo0CAdP368xNoDAEBpRZ8NAEDheC10b9u2TXfffbf+/fdfx23x8fEaOHCg7rjjDm3ZskVjx47VuHHjtHPnTknSpk2bNGbMGI0fP15btmxR165dNWjQICUnJ0uSpk+frp9++kmLFy/Wjz/+qODgYI0YMcIr7XNHn5FrvF0CAAB5os/OtCBugbdLAAD4Ia+E7qVLl+qZZ57Rk08+6XT7qlWrFB4ertjYWJnNZrVu3VpdunTRvHnzJEkLFy5U586d1bRpUwUEBKhfv36KiIjQihUrHMcHDBigSy65ROXKldOLL76odevW6eDBgyXeRnckp2Z4uwQAAHJFn31RujXd2yUAAPyQV0J327ZttXr1at12221Ot+/du1d169Z1uq127dras2ePJGnfvn15Hk9ISNDRo0edjleuXFkVK1bUH3/84aGWFI/gIBOj3QAAn0SffZHZaNacHXM0Z8ccb5cCAPAjZm88aZUqVXK9PTExUSEhIU63BQcHKykpqcDjiYmJkqTQ0NAcx+3HXGWxWNy6f9ZzCnOuzZY52m2xWGSzFe4xiktR2uFLaIdvoR2+hXb4luzt8LX20GdfZLPZlJaR5jjXZrPRZxcD2uFbaIdvoR2+I7c2uNoer4TuvISEhCghIcHptpSUFIWFhTmOp6Sk5DgeERHh6Njta8VyO99VcXFx7pZe6HONRqOSEpOUkmbRrl27lJiYqJ07d8pqtTrdJ+vXJaEor4EvoR2+hXb4FtrhW/ytHWWtzzYajTp5+qQS0xJls9m0a9cunTh+wqnPNhozJxDSZxcO7fAttMO30A7fUZg2+FTorlu3rn766Sen2/bt26c6depIkurUqaO9e/fmON6uXTtVrFhR1apVc5rOduLECZ09ezbH9LaCREVFyWQyuXWOxWJRXFxcoc4NDTsto9miBg0aKCzsmBo2bOh0vO9La/W/l9u79ZiFVZR2+BLa4Vtoh2+hHb4lezvsX/u6sthn/777d4WlZ34o0KBBA+2w7VDDqIt99ry4zPXssY1j3aqnsErrvwF/RTt8C+3wLaWhHbm1wdU+26dCd0xMjN544w3Nnj1bsbGx2rZtm7744gtNmzZNktSzZ08NGTJEnTp1UtOmTTVv3jydOnVKMTExkqTu3btr+vTpioqKUkREhF577TW1aNFCl112mVt1mEymQv8wFOZcgyHzj8lkcvw/q5S0jBL/4SzKa+BLaIdvoR2+hXb4Fn9rR1nssw0GgwwGg+Ncg8HgdH6GNcNxrCT5289OXmiHb6EdvoV2+I7CtMGnQndERIRmzZqlsWPHavLkyYqMjNSIESPUqlUrSVLr1q310ksvafTo0Tp27Jhq166tmTNnKjw8XJI0ZMgQZWRkKDY2VomJiWrZsqXefvtt7zUIAIBSij4bAADXeD10Z9+lNCoqSgsW5H0dzG7duqlbt265HgsICNAzzzyjZ555plhrBAAA9NkAABSGVy4ZBgAAAABAWUDoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQun1EcJBJA8as9XYZAACgAGajWYt2L/J2GQAAP0Ho9iHJaRneLgEAALgg3Zru7RIAAH6C0A0AAAAAgIcQugEAAAAA8BBCNwAAgJtOJZ3SugPrdD7tvLdLAQD4OEK3jwkOMqnPyDXeLgMAAORjzd9rtP3odo1aM8rbpQAAfByh2wclp7KhGgAAvio1I1WHEg5Jko4lHvNyNQAAX0foBgAAcMOB+AOy2qySpFPJp7xcDQDA1xG6AQAA3PD32b8dfz+TfEYZVmaoAQDyRugGAABwkdVm1YGzBxxfW2wWHTp3yIsVAQB8HaEbAADARcfOH1OKJUXBpmBVDasqSdp3ep+XqwIA+DJCNwAAgIsOnjsoSboi/ApVDc0M3ftP7/dmSQAAH2f2dgEAAAD+IjE9UZJUKbSSAowBkqT9ZwjdAIC8EboBAABclG5JlyQFmgIVGRIpiZFuAED+mF4OAADgojRrmiQpwBSgyqGVJWVOOU/NSPVmWQAAH0boBgAAcFHWke6wgDAFm4NltVn1z9l/vFsYAMBnEboBAABc5AjdxkAZDAbHFPOs1+4GACArQjcAAICL7NPLA02BkqRygeUkSaeSTnmtJgCAbyN0AwAAuCjr9HJJCg0IlSSdSiZ0AwByR+gGAABwUZrFeaTbHrpPJ5/2Wk0AAN9G6AYAAHCB1WaVxWaRdDF0hwWESWJ6OQAgb4RuAAAAF9hHuSWmlwMAXEfoBgAAcIE9dBsNRpmMJkmMdAMACkboBgAAcEH29dzSxZHuMylnZLVZvVIXAMC3EboBAABc4AjdxouhOyQgRAYZZLVZlZKR4q3SAAA+jNANAADgAnvoDjAFOG4zGoyKCImQJCWlJ3mlLgCAbyN0AwAAuCD7NbrtIkMiJRG6AQC5I3QDAAC4ILeRbkmqFFJJEqEbAJA7QjcAAIALclvTLUmVQjNDd3J6conXBADwfYRuHzdgzFpvlwAAACSlWXPuXi5lGenOYKQbAJATodvHJadleLsEAACgfKaXhzK9HACQN0I3AACAC3K7TrfEmm4AQP4I3QAAAC6w714eYHQe6Wb3cgBAfgjdAAAALshzpNu+kVoGG6kBAHIidAMAALggrzXdlUMrS5JSMlJksVpKvC4AgG8jdAMAALggr5HuCkEVZDRkvqVitBsAkJ3Z2wUgp+Agk3o+t0rBQSZvlwIAAC7I7TrdZqNZS35bolBzqM6nn2ddNwAgB0a6fVRSSoaSU7hcGAAAviKv6eXp1nSFBIRIYqQbAJAToRsAAMAF9t3Ls08vl6Rgc7AkKS0jrURrAgD4PkI3AABAAWw2m9KsuY90S1KQOUiSlGpJLdG6AAC+j9ANAABQgDRLmqw2qyTnNd12wabMkW5CNwAgO0I3AABAAbJukJbvSHcGoRsA4Izdy72IHcoBAPAPi39bLClzt3L75cGysq/pZqQbAJAdI91exA7lAAD4h8T0RElSgDHnKLfESDcAIG+EbgAAgAI4rtGdy87lEmu6AQB5I3QDAAAUwH65sNzWc0vsXg4AyBuhGwAAoAD2MJ3bzuVSljXdTC8HAGRD6AYAACiAfXp5QSPd9vsBAGBH6AYAACiAfXq5K2u67dfzBgBAInQDAAAUKN2aGbrNxtyvtmof6Zak82nnS6QmAIB/IHQDAAAUwGK1SMo7dJuNZsexc6nnSqwuAIDvI3QDAAAUwGLLDN1GQ95vnYJMmaPdjHQDALIidAMAABTAPtJtMpjyvI99vTcj3QCArAjdAAAABXBppPvCum5CNwAgK0I3AABAARwj3ca8R7qZXg4AyA2hGwAAoAD2ke78ppfbQzcj3QCArAjdAAAABXCE7vxGui9ML09ITSiRmgAA/oHQDQAAUAD79HJXdi9npBsAkBWhGwAAoAAuTS+3j3SnMdINALiI0A0AAFAAq9UqybU13UwvBwBkRegGAAAoQIYtQ5JkNDK9HADgHkI3AABAAVwa6WZ6OQAgF4RuAACAAriypjvQFCiJ6eUAAGeEbgAAgAJkWF2YXm6+OL3cZrOVSF0AAN9H6AYAACiA1Vbw9PJgU7CkzFHx5IzkEqkLAOD7CN0AAAAFsF+n22TMO3SbjWbHdbyZYg4AsCN0AwAAFMCVNd0Gg+Hium42UwMAXEDoBgAAKIAroVu6uJna+bTzHq8JAOAfCN0AAAAFsE8vt08fz4v9Wt2EbgCAnU+G7t27dys2NlbNmjVT27Zt9eqrryotLU2StGPHDvXq1UtNmjRRdHS0Fi5c6HTu0qVLFRMTo8aNG6t79+7avn27N5oAAECZUBb6bJvNdnGkO5813RKXDQMA5ORzodtqterhhx9Wx44dtXnzZi1atEjr16/XzJkzFR8fr4EDB+qOO+7Qli1bNHbsWI0bN047d+6UJG3atEljxozR+PHjtWXLFnXt2lWDBg1ScjI7iAIAUNzKSp9tD9xSwSPdTC8HAGTnc6E7Pj5eJ06ckNVqdVzj0mg0KiQkRKtWrVJ4eLhiY2NlNpvVunVrdenSRfPmzZMkLVy4UJ07d1bTpk0VEBCgfv36KSIiQitWrPBmkwAAKJXKSp+dZklz/L2gNd1MLwcAZOdzoTsiIkL9+vXThAkTFBUVpfbt2+uKK65Qv379tHfvXtWtW9fp/rVr19aePXskSfv27cv3OAAAKD5lpc9Ot6Q7/u7q9HJCNwDAzuztArKzWq0KDg7WyJEj1bNnTx04cEBDhw7V5MmTlZiYqJCQEKf7BwcHKykpSZIKPO4qi8VS8J3yOMedc222i3/yO2azFa6mwihMO3wR7fAttMO30A7fkr0d/tSestJnp6SnSJIMF/6TTY6R/axsNpsjdJ9LPefx76U//szkhnb4FtrhW2iH78itDa62x+dC9+rVq/XNN9/o66+/liTVqVNHQ4YM0dixY9WlSxclJDhvTJKSkqKwsDBJUkhIiFJSUnIcj4iIcKuGuLi4Qtfv6rlGo1GJiedltZgla2CO40lJybJaTJI1UMmpGdq5c6esVmuh63JXUV4DX0I7fAvt8C20w7f4YzvKSp99Jv2MpMz13MePH1eAMUCBATn77sTURKUmpUqSDh07pF9//bXQtbnDH392ckM7fAvt8C20w3cUpg0+F7r/++8/x66ndmazWQEBAapbt65++uknp2P79u1TnTp1JGV29nv37s1xvF27dm7VEBUVJZMp/+lj2VksFsXFxbl1bljYfwoJMikkOOe3ITTd6DhmMFnUsGFDt+oprMK0wxfRDt9CO3wL7fAt2dth/9oflJU++9/4f6WdktloVtWqVRVgDJDZlLPvDksP0ynjKSleMoeZ1bhxY7fqcldp/Tfgr2iHb6EdvqU0tCO3NrjaZ/tc6G7btq3efPNNzZgxQwMGDNCRI0c0ffp0denSRTExMXrjjTc0e/ZsxcbGatu2bfriiy80bdo0SVLPnj01ZMgQderUSU2bNtW8efN06tQpxcTEuFWDyWQq9A+DO+caDBf/5HfMYFCJ/3AW5TXwJbTDt9AO30I7fIs/tqOs9NkWXbxGt8FgkAzK/H82BoNBQebMjdQS0xNL7Pvpjz87uaEdvoV2+Bba4TsK0wafC921a9fWe++9p7ffflsffPCBypcvr65du2rIkCEKDAzUrFmzNHbsWE2ePFmRkZEaMWKEWrVqJUlq3bq1XnrpJY0ePVrHjh1T7dq1NXPmTIWHh3u3UQAAlEJlpc+2b6RW0CZqEruXAwBy8rnQLUlt2rRRmzZtcj0WFRWlBQsW5Hlut27d1K1bN0+VBgAAsigLfXa69ULoLuByYRK7lwMAcvK5S4YBAAD4Evt1uhnpBgAUBqEbAAAgH47p5W6MdCelJynDmuHRugAA/oHQDQAAkA/H9HIXRrrtoVuSEtMSPVYTAMB/ELoBAADy4Zhe7sJIt8loYoo5AMAJoRsAACAf9mnirox0S1K5wHKSCN0AgEyEbgAAgHy4M9ItEboBAM4I3QAAAPlwZyM16WLoTkhL8FhNAAD/QegGAADIhzsbqUmMdAMAnBG6AQAA8uHuSHf5oPKSCN0AgEyEbgAAgHw41nQz0g0AKARCNwAAQD7su5cbDa69bSJ0AwCyInQDAADkwz7SbTaaXbo/oRsAkBWhGwAAIB/2jdQY6QYAFAahGwAAIB+OjdTcXNOdkMolwwAAhG4AAIB82Ue6zQamlwMA3Efo9pIBY9Z6uwQAAOCCvaf2SpKMRqaXAwDcR+j2kuS0DG+XAAAAXGDfvdzl63QHcp1uAMBFhG4AAIB8WKwWSVynGwBQOIRuAACAfFhsF0K3iyPd9tCdakl1bMIGACi7CN0AAAD5cDd0hwWGOf7OaDcAgNANAACQD3enl5uNZoUGhEoidAMACN0AAAD5cnekW8pyre40rtUNAGUdoRsAACAf7o50S2ymBgC4iNANAACQj6KMdBO6AQCEbgAAgHww0g0AKApCNwAAQD6KtKY7lTXdAFDWEbr9SJ+Ra7xdAgAAZU5hRrqPnT8miZFuAACh268kp2Z4uwQAAMocq80qSTIaXH/bZDaaJRG6AQCEbgAAgHzZR7rtQdoVQaYgSYRuAAChGwAAIF+FWdMdaA6UROgGABC6AQAA8pRhzZBNNknuTS9npBsAYEfoBgAAyEOG9eJ+Ku5MLw80MdINAMhE6AYAAMhDmiXN8Xe3RrrNjHQDADIRugEAAPJQ6NB9YXp5QhrX6QaAso7QDQAAkAf79HKTwSSDweDyeVmnl9tsNo/UBgDwD4RuPxIcZFKfkWu8XQYAAGWGfaTbZHR953JJCgsIk5QZ2lMtqcVeFwDAfxC6/UxyakbBdwIAAMUi3ZIuyb3LhUkXR7ol1nUDQFlH6PYDwUEmDRizNsftjHoDAOBZ6dYLodvFkW6z0axFuxfJYDA4gvenuz71WH0AAN9H6PYTyWk5R7gZ9QYAwLMKM9JtD+r2zdSS0pOKvzAAgN8gdAMAAOShsGu6pYtTzFMzWNMNAGUZoRsAACAPjunlbq7pli5eqzvrZccAAGUPoRsAACAPhd1ITbo4vZzdywGgbCN0AwAA5ME+0m00uv+WyTG9nNANAGWa2dsFwD3BQSb1fG6VgoPc/8QdAAC4xz413Gxw/y1TsDk48zEymF4OAGUZodsPJaVkyGazyWAweLsUAABKtQxr5pVCCrORmj10M9INAGUb08sBAADyYF/TbTQwvRwAUDiEbgAAgDw41nQXInQ7di9nejkAlGmEbgAAgDw4ppezezkAoJAI3QAAAHmwh+7C7F5uD91cpxsAyjZCNwAAQB4cobsI08sZ6QaAso3QDQAAkIdimV6eQegGgLKM0A0AAJCH4hjpTrOkyWazFWtdAAD/QegGAADIQ5FC94WRbptsSs5ILta6AAD+g9ANAACQh6KEbrPRLIMMkqSE1IRirQsA4D8I3QAAAHkoyppug8HgmGJ+Pu18sdYFAPAfhG4AAIA8FGWkW7o4xTwhjZFuACirCN0AAAB5KMp1uiUx0g0AIHQDAADkpbhGugndAFB2EboBAADyUJQ13RKhGwBA6AYAAMhTkUe6mV4OAGUeoRsAACAPxbaRGpcMA4Ayi9ANAACQB0a6AQBFRegGAADIA2u6AQBFRegGAADIQ1FHugPNgZK4TjcAlGWEbgAAgDwUNXQHm4IlMdINAGUZoRsAACAPjtBtLNpIN6EbAMouQjcAAEAeirqmm5FuAAChGwAAIA9FXtNtYqQbAMo6QjcAAEAeiuuSYUnpSY7HAgCULYRuAACAPBQ5dF+4ZJgkJaYlFktNAAD/QugGAADIQ1HXdJuMJpmNZklcNgwAyiq3Q/emTZs8UQcAAIDPKepIt3RxtJt13QBQNrndgzz22GO6+eab9e677+rIkSOeqAkAAMAnFPWSYRKbqQFAWed2D7J+/Xo9++yz2rVrlzp27Kj+/fvryy+/VFpamifqAwAA8JqiTi+XLm6mRugGgLLJ7dAdEBCgjh07avr06Vq7dq1uvvlmzZo1S23bttXLL7+sPXv2eKJOAACAEsf0cgBAURW6Bzl16pS++OILLVu2TPv27VPLli0VFBSkfv36acaMGcVZIwAAgFcUR+i2Ty9PSGUjNQAoi9zuQb766isNHDhQ7du31+LFi3Xbbbfphx9+0JQpUzRs2DC99dZbev/994tU1NmzZ/Xcc8+pZcuWat68uQYPHqzjx49Lknbs2KFevXqpSZMmio6O1sKFC53OXbp0qWJiYtS4cWN1795d27dvL1ItAAAgb6W5z7barLLarJKKONLN9HIAKNPc7kFefvll1ahRQwsWLNDnn3+ufv36KTIy0nH8yiuvVL9+/YpU1KOPPqqkpCStXr1a33//vUwmk0aOHKn4+HgNHDhQd9xxh7Zs2aKxY8dq3Lhx2rlzp6TMndXHjBmj8ePHa8uWLeratasGDRqk5OTkItUDAAByV5r7bPsot1TENd1MLweAMs3s7gnr16/XwYMHVa1aNUnSr7/+qvLly6tWrVqSpOrVq+uxxx4rdEG7du3Sjh07tGHDBpUrV06SNGbMGJ04cUKrVq1SeHi4YmNjJUmtW7dWly5dNG/ePDVs2FALFy5U586d1bRpU0lSv3799Omnn2rFihXq0aNHoWsCAAA5lfY+O2voLpbp5VynGwDKJLd7kO+++0533HGH/vnnH0nS9u3b1atXL61du7ZYCtq5c6dq166tzz77TDExMWrbtq0mTJigKlWqaO/evapbt67T/WvXru3YvG3fvn35HgcAAMWntPfZxRW6GekGgLLN7ZHuqVOnatq0aWrQoIEk6YEHHlDt2rX1xhtvqH379kUuKD4+Xn/88YcaNGigpUuXKiUlRc8995yef/55Va5cWSEhIU73Dw4OVlJSkiQpMTEx3+OuslgsbtdtP8fVc2025z/5Hc/rWHCQSb1HrNH/Xi76627nbjt8Fe3wLbTDt9AO35K9HcXZnoMHD6pmzZrF9njZlfY+OzU91fF3gwyy2Wyy2WySTZn/zyavY8HmYEnS3lN7i/X7W1r/Dfgr2uFbaIdvKQ3tyK0NrrbH7dD933//6YYbbnC6rW3btnryySfdfahcBQZmTsF68cUXFRQUpHLlyumJJ57QXXfdpe7duyslJcXp/ikpKQoLC5MkhYSE5Ho8IiLCrRri4uIKXb8r5xqNRiUlJikpKUVWi0myBua4T1JSskvHklMztHPnTlmt1kLXnJuivAa+hHb4FtrhW2iHb/FEOzp16qQmTZqoZ8+e6tixo4KDg4v18Ut7n30m7YykzMB96tQpSVJiaqICjAEKDMjZP+d1LC0pTZKUkJxAn50P2uFbaIdvoR2+ozBtcDt016hRQz/++KNT8N64caP+7//+z+0nz03t2rVltVqVnp6uoKDM6Vj2zunqq6/W/Pnzne6/b98+1alTR5JUp04d7d27N8fxdu3auVVDVFSUTCb3NkyxWCyKi4tz+dzQsNNKyTApJMikkOCc34bQdKNLxwwmixo2bOhWrflxtx2+inb4FtrhW2iHb8neDvvXxWHt2rVavny5PvzwQ40ZM0adOnVS9+7d1aRJk2J5/NLeZx9JOCLFSSajSZUrV5YkhaWHKcAYILMpZ/+c17GUwBTpP8lmtNFn54J2+Bba4Vtoh+/IrQ2u9tluh+6BAwdqyJAhuuWWW1SjRg0dOXJEq1ev1oQJE9yvPBdt2rRRzZo19cILL2jcuHFKTU3VW2+9pZtvvlm33367Jk+erNmzZys2Nlbbtm3TF198oWnTpkmSevbsqSFDhqhTp05q2rSp5s2bp1OnTikmJsatGkwmU6F/GFw912Bw/pPf8YLO9cQPblFeA19CO3wL7fAttMO3eKIdlSpVUv/+/dW/f3/99ttv+uqrrzRs2DAZjUb16NFD3bt3d7oCibtKe59t1cXLhRkudMgGg0EyyPF1Vnkds08vT7Ok0Wfng3b4FtrhW2iH7yhMG9zeFaRLly6aOXOmAgICtHv3bgUHB2vWrFnq2LGjuw+Vq4CAAM2ZM0cmk0kdO3ZUx44dVb16db322muKiIjQrFmz9PXXX6tly5YaMWKERowYoVatWknK3Bn1pZde0ujRo9WiRQt99dVXmjlzpsLDw4ulNgAA/FFGRoaOHDmiI0eO6NSpUwoJCdGOHTt0yy23aOnSpYV+3NLeZ9s3UivKJmrSxet0p1pSc10LDgAo3dwe6Zakli1bqmXLlsVdi0O1atX01ltv5XosKipKCxYsyPPcbt26qVu3bp4qDQAAv/Hrr79q+fLlWrlypQwGg7p06aK5c+eqfv36kqTVq1frxRdf1J133lno5yjNfbY9dBflGt3Sxd3LrTarUi2pjpFvAEDZ4HboPnbsmKZPn65//vknx0YgH3/8cbEVBgAAiiY2NlZt27bVyy+/rOjoaAUEBDgdv/rqqxUdHe2l6nxfcY1026/TLWVeNozQDQBli9uhe/jw4Tp58qQ6dOiQo/MGAAC+Y86cObruuuty3L5u3Tq1a9dOl156qcaPH++FyvxDcYVug8GgQFOg0ixpOp92XpVDKxdHeQAAP+F26I6Li9M333xTpI1XAACA5z300EP65ZdfnG47f/68Hn/8cW3fvt1LVfmP4grdUuYUc3voBgCULW6H7vLlyzuuywkAAHzLgQMH1LlzZ1ksFtlsNl199dU57pPb6DdyKq413dLFKeaEbgAoe9wO3YMHD9bw4cM1YMAAxzUr7YrrWt0AAKBwLr/8ci1cuFDnzp3TwIEDNXPmTKfjQUFBqlu3rpeq8y+OkW5j0Ue67aE7ITWhyI8FAPAvbofuESNGSMrc8VTKXKdks9lkMBj0+++/F291AADAbfbR7S+//FI1a9b0cjX+q7inl0uMdANAWeR26P7uu+88UQcAACgmo0eP1ujRozVt2rQ87zNu3LgSrMg/FWfoZno5AJRdbvciNWrUUI0aNRQfH6/du3erSpUqCg4OVo0aNTxRHwAAcJPNZvN2CaVCca7pDjJnjnQnpDG9HADKGrdHuk+dOqUhQ4Zo165dCggI0KJFi9SzZ0/NmjVLTZo08USNAADADS+//LIkRrOLipFuAEBxcLsXee2111S3bl1t2bJFZrNZtWrV0sCBA/X66697oj4AAFBIJ0+e1GuvvSZJ2rp1q9q0aaPbb79d+/fv93Jl/sEToZuN1ACg7HG7F/n55581fPhwhYSEyGAwSMq8Dui+ffuKvTgAAFB4L7/8svbv3y+bzaaxY8fqtttuU4cOHfTKK694uzS/UKzTy9lIDQDKLLenlwcEBCglJUUhISGONWOJiYkKCwsr9uIAAEDhxcXFacWKFTpx4oT27NmjWbNmqXz58mrZsqW3S/MLnrhkWGJ6YpEfCwDgX9zuRaKjo/Xss8/qn3/+kcFg0KlTp/Tyyy+rffv2nqivVBowZq23SwAAlAHJyckKDg7Wxo0bVbduXUVERCglJUVms9ufuZdJTC8HABQHt3uRp59+WqGhobr11lt17tw5tW3bVsnJyXrmmWc8UV+plJyW4e0SAABlQMOGDTV69Gi9//77iomJ0cmTJ/XCCy+oRYsW3i7NLzC9HABQHNz+qDssLEyTJ0/W6dOndejQIVWvXl1Vq1b1RG0AAKAIxo4dq0mTJqlZs2Z6+OGH9dtvvyktLU2vvvqqt0vzC8U60m2+MNLNJcMAoMxxO3Rv2bLF6esDBw7owIEDkqTmzZsXT1UAAKDIqlatqvHjxzu+btSokWbMmOHFivxLcYZu+0h3YlqirDZrsTwmAMA/uB26+/Tpk+M2o9GoSy65RN99912xFAUAAIouMTFR8+fP1z///COr1ep0jGt4F8wTa7ptsikpPUnlAssV+TEBAP7B7dC9Z88ep69Pnz6td999VzVq1Ci2ogAAQNENHz5c27dvV8uWLRUQEODtcvxOcYZuk8Eko8Eoq82q82nnCd0AUIYUefvSyMhIPfvss+rYsaP69+9fHDUBAIBisGnTJi1atEg1a9b0dil+qTg3UjMYDAoyBSk5I5nN1ACgjCmWBUXx8fFKTU0tjocCAADFJCgoSNWqVfN2GX6rOEe6JS4bBgBlldsj3cOHD3f6Oj09Xdu2bVObNm2KrSgAAFB09913n8aPH6+hQ4cqMjLS2+X4HUfoNhZv6GakGwDKliJPLw8KClKfPn109913F0c9AACgmHz22Wc6cuSIPvnkkxzHfv/9dy9U5F+Ke6Sba3UDQNnkduhmt1MAAPxD1suFwX3FuaZb4lrdAFBWuR26p06d6tL9hg4d6nYxAACg+LRo0UJS5t4rBw8e1DXXXKOMjAwFBgZ6uTL/4Kk13Yx0A0DZ4nbo3rt3r1atWqX69evryiuv1NGjR/XLL7/ommuuUVhYmKTMHToBAIB3JSYmatSoUfrqq68UHBysJUuW6IEHHtBHH32kq666ytvl+TxPTS9nIzUAKFvcDt1Go1HDhw/X/fff77ht+fLl+v777/X2228XZ20AAKAIXn/9dSUlJWnlypW66667VLNmTXXo0EFjx47Vhx9+6O3yfB4j3QCA4uB2L7J27VrFxsY63Xb77bdr48aNxVYUAAAouu+//17jx4/XlVdeKYPBoICAAA0bNkxxcXHeLs0vFPuabkI3AJRJbofuyMhIbdmyxem2H3/8UdWrVy+2ogAAQNFZrVbH+m2bzZbjNuSP3csBAMXB7enlDz/8sAYOHKiOHTvq//7v/3Tw4EF9//33mjJliifqAwAAhdSqVSu98sorGjVqlGO/lbffftuxwRryx3W6AQDFwe1epFevXpoxY4ZMJpN+++03hYeHa8GCBWrbtq0n6gMAAIU0fPhw/fXXX2revLkSEhLUpEkTbdmyRc8//7y3S/MLHttIjUuGAUCZ4vZItyS1adNGbdq00enTpxUZGVncNQEAgGIQHByswYMHKy4uTrVq1VKVKlXUpEkTmUzFs0a5tPPUdboZ6QaAssXt0J2enq6pU6dq7ty5slgs+uKLL/TEE09o+vTpqlq1qidqBAAAbvrggw80depUpaamOtZzh4WF6amnnsqxISpyx+7lAIDi4HYvMnXqVP3888965513FBAQoEqVKql69eoaO3asJ+oDAABuWrhwoWbMmKEXX3xR69at065du7R27Vo988wzeuedd/TNN994u0S/4Knp5SkZKY7HBgCUfm6PdH/xxRf65JNPVK1aNRkMBoWGhmrcuHGKiYnxRH0AAMBN8+fPz9E3V6tWTffee68qVqyoOXPmqGPHjl6s0D94aqRbyhztDg8OL5bHBQD4Nrd7kaSkJMc6bvt0teDg4GLb2RMAABTNP//8ow4dOuR67Oabb9Zff/1VwhX5p+Je0200GBUaECpJSkhlMzUAKCvcTsqNGzfW1KlTJclx+ZE5c+YoKiqqeCsDAACFYjAYZDbnPpktMDBQKSkpJVyRfyruS4ZJUrnAcpJY1w0AZYnb08tfeOEF9evXT0uXLlViYqJuu+02JSYm6qOPPvJEfQAAAF6Rbk2XVHwj3VJm6D6eeJzQDQBliNuhu3Llyvrqq6/0ww8/6PDhw6pevbpuvPFGlStXzhP1AQAAN2VkZGjZsmV5HrdYLCVXjB8r7jXd0sWRbq7VDQBlh9uh+/bbb9fnn3+uTp06eaIeAABQRJUrV9bkyZPzPF6pUqUSrMZ/eTJ0M9INAGWH26FbkpKTkxnZBgDAR61Zs8bbJZQKngjd5QPLS2IjNQAoS9wO3S1btlSvXr3Url07Va1a1enY0KFDi60wAAAAb7HZbMW+e7nESDcAlEVuh+5Dhw6pZs2a+vvvv/X33387brfvZA4AAODvLLaL696LdaQ7KHOkm9ANAGWHy6H7wQcf1Icffqg5c+ZIklJSUhQcHOyxwgAAALzFPsotsaYbAFA0Lvci27dvd/q6Xbt2xV4M3BccZNKAMWvVZyTr9wAAKC6eCN1mo1l/nvxTEqEbAMqSQvciNputOOtAESSnZcgmG8EbAIBikjV0m4zFt6bbbMqcZLjv9L5ie0wAgG8rdOhmDbfvSU7NKPhOAACgQFlDt0HF954nyBQkSUrNSC22xwQA+LbiW6QEAABQSmS9XFhxDjQEmS+EbguhGwDKCpc3UsvIyNCyZcscX6enpzt9LUl33HFHMZUFAADgPZ64RreUZaSb0A0AZYbLobty5cqaPHmy4+uIiAinrw0GA6EbAACUCp64Rrd0MXSnWdJks9lYrgcAZYDLoXvNGjbpAgAAZYPHRrovTC+32qxKyUhRSEBIsT4+AMD3sKYbAAAgG0+F7gBjgGNjNi4bBgBlA6EbAAAgG0+FboPB4BjtJnQDQNlA6AYAAMjGU2u6pYvruhPSEor9sQEAvofQDQAAkI1jpNtY/G+VAk2BkhjpBoCygtANAACQjaeml0tSsDlYkpSQykg3AJQFhG4AAIBsPBm6GekGgLKF0A0AAJCNJ9d020e6Cd0AUDYQugEAALJhpBsAUFwI3QAAANmkW9IlSSaj53YvJ3QDQNlA6AYAAMjGkyPd9ut0c8kwACgbCN0AAADZpFsvjHR78jrd7F4OAGUCoRsAACCbErlkGCPdAFAmELoBAACycazp9sBId0hAiCTpbMrZYn9sAIDvIXQDAABk47hkmAc2UgsxE7oBoCwhdAMAAGRjX9Ptienl9pHuc6nnHOEeAFB6EboBAACysVgtkjy7plvKDN4AgNKN0A0AAJCNJ3cvNxqMjuDNFHMAKP0I3QAAANk4di83euatEqEbAMoOQjcAAEA2nty9XGIzNQAoSwjdAAAA2XjyOt0SoRsAyhJCNwAAQDaeXNMtScEBTC8HgLKC0A0AAJCNp9d0M9INAGUHoRsAACAb1nQDAIoLoRsAACAbT6/pZno5AJQdhG4AAIBs2EgNAFBcCN0AAADZODZSM3p2enl8SrxHHh8A4Dt8NnRbLBb16dNHw4YNc9y2Y8cO9erVS02aNFF0dLQWLlzodM7SpUsVExOjxo0bq3v37tq+fXtJlw0AQJlTGvts+0g3u5cDAIrKZ0P31KlTtXXrVsfX8fHxGjhwoO644w5t2bJFY8eO1bhx47Rz505J0qZNmzRmzBiNHz9eW7ZsUdeuXTVo0CAlJyd7qwkAAJQJpbHPtm+k5unp5YnpiY7nAgCUTj4Zujdu3KhVq1bplltucdy2atUqhYeHKzY2VmazWa1bt1aXLl00b948SdLChQvVuXNnNW3aVAEBAerXr58iIiK0YsUKbzUDAIBSr7T22Z4e6Q4yBTkeOz6VKeYAUJr5XOg+deqUXnzxRb355psKCQlx3L53717VrVvX6b61a9fWnj17JEn79u3L9zgAAChepbnPtq/p9tRIt8FgUMXgipKYYg4ApZ3Z2wVkZbVa9eyzz+qBBx5Q/fr1nY4lJiY6deiSFBwcrKSkJJeOu8NisRT6HFfOtdku/t/+J7f7uHvMZitc7Vm50w5fRjt8C+3wLbTDt2Rvh7+0p7T32RmWi7uX27J0uDabTbLJ6bbCHLPZbKoYVFGnk0/rVOIpXVnxSo+0wx/QDt9CO3wL7fAdubXB1fb4VOh+7733FBgYqD59+uQ4FhISooSEBKfbUlJSFBYW5jiekpKS43hERITbdcTFxbl9jqvnGo1GJSUmyWAwKCkpWVaLSbIG5rhfYY4lp2Zo586dslqtha7friivgS+hHb6FdvgW2uFb/K0dpb3PPp98XpKUEJ+gk+knHbcnpiYqwBigwICc/bM7x9It6QqwBEiSdvyxQ+bjhX9L5m8/O3mhHb6FdvgW2uE7CtMGnwrdy5cv1/Hjx9WsWTNJcnTI3377rZ577jn99NNPTvfft2+f6tSpI0mqU6eO9u7dm+N4u3bt3K4jKipKJpN7a7gsFovi4uJcOjc07HTm/9ONCgkyKSQ457ehMMcMJosaNmzoVt3ZudMOX0Y7fAvt8C20w7dkb4f9a19X2vts0x8mKVWKjIhU5fKVHbeHpYcpwBggsyln/+zOsQxrhv7P+n/6M+FPhVcPV+OrG7vVBlfb4Q9oh2+hHb6FdviO3Nrgap/tU6H766+/dvrafumR8ePH68yZM3rjjTc0e/ZsxcbGatu2bfriiy80bdo0SVLPnj01ZMgQderUSU2bNtW8efN06tQpxcTEuF2HyWQq9A+DK+caDBf/b/+T233cPWYwqNh+iIvyGvgS2uFbaIdvoR2+xd/aUdr7bMdGakaTDFk6XIPBIBnkdFthjhkMBkWEZI7sn0s7V6Tvvb/97OSFdvgW2uFbaIfvKEwbfCp05yciIkKzZs3S2LFjNXnyZEVGRmrEiBFq1aqVJKl169Z66aWXNHr0aB07dky1a9fWzJkzFR4e7t3CAQAoY0pDn501dHtKeHC4JDZSA4DSzqdD9/jx452+joqK0oIFC/K8f7du3dStWzdPlwUAALIpbX22p3cvl+TYvfx08mmPPQcAwPt87pJhAAAA3ubp63RLUuXQzLXihG4AKN0I3QAAANmkWzw/0m0P3aeSTnnsOQAA3kfoLqX6jFzj7RIAAPBLNptNFlvmtVc9uaa7UkglSdLJpJMF3BMA4M8I3aVUcmqGt0sAAMAv2aeWS54d6a4Umhm6E9ISlJqR6rHnAQB4F6EbAAAgi6yh25NrussHlnc8Puu6AaD0InQDAABkYd+5XPLsSLfBYFBoQKgkppgDQGlG6AYAAMjCvoma5NnQLUlhAWGSpFPJbKYGAKUVoRsAACAL+/Rys9Esg8Hg0ecKC8wM3Yx0A0DpRegGAADIwj693Gw0e/y57NPLuWwYAJRehG4AAIAs7CPdAcYAjz8Xa7oBoPQjdAMAAGSRdXq5p9mnl7OmGwBKL8/3JigxwUEm9XxulYKDPHd5EwAASjvHSLfJcyPdZqNZi3Yvcmykxkg3AJRejHSXMkkpGUpOyVBwkEl9Rq7xdjkAAPgd++7lnh7pTremq3xgeUnSv/H/evS5AADeQ+guxZJTM7xdAgAAfscb08uT0pNks9k8/nwAgJJH6AYAAMjCG7uXW21WxafGe/z5AAAlj9ANAACQRUnuXm42mhVkCpLEZcMAoLQidAMAAGRhX9PtyY3UsrJvpsYO5gBQOhG6AQAAsijJNd0S1+oGgNKO0A0AAJCFfU13SUwvl6SQgBBJTC8HgNKK0A0AAJBFSY90c61uACjdCN0AAABZeCt0H088XiLPBwAoWYRuAACALEo8dF+4VveJpBMl8nwAgJJF6AYAAMiixHcvD2SkGwBKM0I3AABAFiU90l0uoJwk6UTiCdlsthJ5TgBAySF0AwAAZFHSu5fbLxmWbk3X2ZSzJfKcAICSQ+guxYKDTOozco23ywAAwK/Yp5eX1Ei3yWhyBO9jicdK5DkBACWH0F3KJadmeLsEAAD8in16eUmt6Zacp5gDAEoXQjcAAEAWJb2mW7q4mRoj3QBQ+hC6AQAAsnCMdJfQmm5JKhfISDcAlFaEbgAAgCzsG6mV5Ei3PXRz2TAAKH0I3QAAAFl4Y3q5fU03oRsASh9CNwAAQBb23ctLdCM1+/TyJKaXA0BpQ+gGAADIwqsbqZ1nIzUAKG0I3QAAAFnY13R7YyO1xPREJaUnldjzAgA8j9ANAACQhTdGugNNgQo0BUpiXTcAlDaEbgAAgCwclwwrwTXdEpupAUBpReguI/qMXOPtEgAA8AveGOmWLk4x/+KPL0r0eQEAnkXoLiOSUzO8XQIAAH7Bvnt5SYdu+2ZqZ1POlujzAgA8i9ANAACQhbdHuhPTEkv0eQEAnkXoBgAAyMIbu5dLF0P3+fTzJfq8AADPInQDAABk4bWN1OyhO43QDQClCaG7lAsOMmnAmLXeLgMAAL/hrTXdFYMrSiJ0A0BpQ+guA5LT2EQNAABXOUa6S3h6efnA8pKkpPQkRw0AAP9H6C5hjDoDAODb7IF37T8l22eHmENkNGS+NTuZdLJEnxsA4DmE7hLGqDMAAL7NvpGa1WYt0ec1GAyOdd3HE4+X6HMDADyH0A0AAJCFfaTbaCz5t0mEbgAofQjdAAAAWdg3UjMZTCX+3IRuACh9CN0AAABZOEa6DSX/Nsm+mRqhGwBKD0I3AADABTabzbGmm5FuAEBxIHQDAABcYLFZHH/35kj3icQTJf7cAADPIHQDAABckPX62CYjI90AgKIjdAMAAFyQNXR7Y6Q7a+i22Wwl/vwAgOJH6AYAALjAvnO55N013enWdJ1NOVvizw8AKH6EbgAAgAvsI90mg0kGg6HEn99kNCnEHCKJKeYAUFoQugEAAC6w71xuNpq9VoNjM7UkNlMDgNKA0A0AAHCBfaQ7wBTgtRrCAsMkSUfPH/VaDQCA4kPoBgAAuMC+ptsXRrqZXg4ApQOhGwAA4ALHSLfReyPdXDYMAEoXQjcAAMAFPrGmOyhzpPvY+WNeqwEAUHwI3QAAABekWdIkSYGmQK/VYB/pPpZI6AaA0oDQDQAAcIE9dAeZg7xWgyN0nz8mm83mtToAAMWD0A0AAHBBakaqJCnI5P3QnWpJVXxqvNfqAAAUD0I3AADABamWzNDtzenlZqNZEcERkljXDQClAaEbAADgAl+YXi5J1cpVk8S6bgAoDQjdAAAAF9inl3tzpFuSqoVlhm4uGwYA/o/QDQAAcIFjpNuLa7olqWpYVUlMLweA0oDQXUb1GbnG2yUAAOBzfGFNt3RxevnGgxs1Z8ccr9YCACgaQncZlZya4e0SAADwOY7dy728prt6ueqSpHNp55RuSfdqLQCAoiF0AwAAXGCfXu7tkW779PLzaee9WgcAoOgI3QAAABf4yppu+0ZqiWmJstlsXq0FAFA0hO4yaMCYtd4uAQAAn2Rf0+3t6eX2kW6LzaKUjBSv1gIAKBpCdxmUnMZ6bgAAcuMrlwwLMAUoNCBUElPMAcDfEboBAAAu8JU13ZJUPrC8JCkhLcHLlQAAioLQDQAAcIF9enmwOdjLlUgVgypKInQDgL8jdAMAAFzgUyPdQZkj3UwvBwD/RugGAAC4wFfWdEsXR7rPpZ7zciUAgKLwydC9Z88ePfDAA2rRooWuv/56Pffcczp9+rQkaceOHerVq5eaNGmi6OhoLVy40OncpUuXKiYmRo0bN1b37t21fft2bzQhV+waDgAoTUpjf22fXv7zoZ+9XIlUIaiCJEa6AcDf+VzoTklJ0UMPPaQmTZpo/fr1+vLLL3X27Fm98MILio+P18CBA3XHHXdoy5YtGjt2rMaNG6edO3dKkjZt2qQxY8Zo/Pjx2rJli7p27apBgwYpOTnZy63KxK7hAIDSorT21/bp5QabwcuVXAzdjHQDgH/zudB95MgR1a9fX0OGDFFgYKAiIiJ09913a8uWLVq1apXCw8MVGxsrs9ms1q1bq0uXLpo3b54kaeHChercubOaNm2qgIAA9evXTxEREVqxYoWXWwUAQOlSWvtre+g2GU1eruRi6E61pCoxLdHL1QAACsvnQvdVV12lDz74QCbTxc7um2++0bXXXqu9e/eqbt26TvevXbu29uzZI0nat29fvscBAEDxKK39tX1Nt9lo9nIlUpA5SEGmIEnSf+f/83I1AIDC8n6Pkg+bzaa3335b33//vebOnauPP/5YISEhTvcJDg5WUlKSJCkxMTHf466yWCxu12o/J79zbbacX9v/5Hbf4jxms12szX48t1pdaYc/oB2+hXb4FtrhW7K3wx/b463+Wir+Ptu+pttkMMmWS0drs9kkmzx6zGazyWKxyGazqXxgeaUmp+pw/GFdWfFKl9vhT2iHb6EdvoV2+I7c2uBqe3w2dJ8/f17Dhw/X7t27NXfuXNWrV08hISFKSHC+VmVKSorCwsIkSSEhIUpJSclxPCIiwq3njouLK3TdeZ1rNBqVlJgkg+HiGrGkpGRZLSbJmnOH1OI+lpyaoV27dmXeJzFJKWkW7dy5U1ar1a12+Bva4Vtoh2+hHb7FX9vhzf5aKv4+Ozktc115/Ol4mVJyTjFPTE1UgDFAgQE5++DiOpZuSddvv/2mkydOKlCZt237Y5vKnS7ncjv8Ee3wLbTDt9AO31GYNvhk6P733381YMAA/d///Z8WLVqkyMhISVLdunX1008/Od133759qlOnjiSpTp062rt3b47j7dq1c+v5o6KinKbLucJisSguLi7fc0PDTjt/nW5USJBJIcE5vw3FfSwkVHpl7jEFB5kUGhYqo9mihg0bFqod/oB2+Bba4Vtoh2/J3g771/7A2/21VPx9dsYvmZueVq1SVeEh4TnODUsPU4AxQGZTzj64OI/tMexR5SqVVSmhko4kH5GxolGNGzd2uR3+hHb4FtrhW2iH78itDa722T4XuuPj49W3b1+1atVKY8eOldF4cdl5TEyM3njjDc2ePVuxsbHatm2bvvjiC02bNk2S1LNnTw0ZMkSdOnVS06ZNNW/ePJ06dUoxMTFu1WAymQr9w5DfuQZDzq/tf3K7b3EfS07NkGRTSLBZBoPybWNRXgNfQjt8C+3wLbTDt/hbO3yhv5aKt8/OsGbIYsucKmg2mZ1mp9kZDAbJII8fy7BlyGAwODZTO5p4NM92+tvPTl5oh2+hHb6FdviOwrTB50L3kiVLdOTIEa1cuVJff/2107Ht27dr1qxZGjt2rCZPnqzIyEiNGDFCrVq1kiS1bt1aL730kkaPHq1jx46pdu3amjlzpsLDw73QEgAASq/S2F/bdy6XMtd0+4LygeUlSf8lsJEaAPgrnwvdDzzwgB544IE8j0dFRWnBggV5Hu/WrZu6devmidIAAMAFpbG/zhq6fWH3ckkqH3QhdLN7OQD4LZ+7ZBgAAIA32C8XZjQYc50G7g32ke7TyaeVkpFSwL0BAL6I0A0AAKCLlwvzlVFuSQoyBSnAGCCJKeYA4K8I3QAAALo4vdxX1nNLctpM7XDCYS9XAwAoDEI3AACALk4v96WRbkmqGFxRknQw/qCXKwEAFAahGwAAQFlGuo2+M9ItSRWDLoTuc4RuAPBHhG4AAABdXNPtS9PLpYuh+9C5Q16uBABQGIRuAAAA+fD08iCmlwOAPyN0l3F9Rq7xdgkAAPgEn51efmFN9+GEw8qwZni5GgCAuwjdZVxyKp03AABSlkuGGXxrpDssIExBpiBZbVYdPX/U2+UAANxE6AYAANDF6eW+NtJtMBhUo0INSUwxBwB/ROgGAADQxenlvramW5JqVqgpiR3MAcAfEboBAADku7uXS1LNihdCNyPdAOB3CN0AAADy3Y3UpIsj3Vw2DAD8D6EbAABAvnvJMCnLSDfTywHA7xC6AQAAlGWk2xenl18Y6T587rAsVouXqwEAuIPQXcYFB5m4VjcAAMpyyTAfHOmuGlZVJoNJ6dZ0LhsGAH6G0A2u1Q0AgHx7TbfJaFJ4cLgk6UD8Ae8WAwBwC6G7jAoOMmnAmLXeLgMAAJ/huE63j00vNxvNWrR7kSqFVJIk/XP2H+8WBABwC6G7DEtOY4QbAAA7X55enm5NV2RIpCTp7zN/e7kaAIA7CN0AAADy7enlkhyhm+nlAOBfCN0AAAC6GLrNBt8b6ZYuhm6mlwOAfyF0AwAASErJSJHkuyPdESERkqTTyacVnxLv5WoAAK4idAMAACjLSLcPrumWpEBToMoFlpPEaDcA+BNCNwAAgLKs6fax3cuzigxmijkA+BtCNwAAgLJcMsxHp5dLrOsGAH9E6AYAAJBvXzLMzr6um9ANAP6D0A0AACDfv2SYJEUEE7oBwN8QupGD0ciPBQCg7LFPL/fVS4ZJF6eXH044rNSMVPpsAPAD/KZGDmPmHPJ2CQAAlKgMa4YsNosk3x7pDg0IVYWgCrLarJq+bbrWnFjj7ZIAAAUgdCOHpJQMb5cAAECJsk8tl3x793KDwaBaEbUkScfPH3eMzgMAfBehGwoOMqnnc6vU87lV3i4FAACvyBq6fXkjNbPRLKvNKkk6nXLay9UAAFxB6IakzNFtRrgBAGWVfcQ4wBggg8Hg5WryZ99M7XQyoRsA/AGhGw4hQSY9PHa9z7/ZAACguCWlJ0mSQgJCvFxJwaqGVZVE6AYAf0HohpPkNEa7AQBlT0JagiSpfGB5L1dSsEqhlSRl1pxhpd8GAF9H6AYAAGXe+bTzkqTyQb4fukMDQhUaECpJOpdxzsvVAAAKQugGAABlXkKq/4x0S1Ll0MqSpHPphG4A8HWEbgAAUObZp5eXCyzn5UpcUzmE0A0A/oLQDQAAyjz79HJ/Cd32dd2EbgDwfYRuAABQ5jmml/vBmm6J6eUA4E8I3QAAoMzzp93LJalKaBUZZFCKNUUnEk94uxwAQD4I3QAAoMzzt5HuAFOAIkIiJEm/nfzNy9UAAPJD6AYAAGWev63plqSqoVUlSb+dIHQDgC8jdAMAgDLP36aXS1K1sGqSCN0A4OsI3QAAoMzzt+nlklQlrIqkzOnlVpvVy9UAAPJC6AYAAGWefXq5P410R4ZEyiijzqed18H4g94uBwCQB0I3AAAo8xzTy/1opNtkMCk8MFyStPvEbu8WAwDIE6EbAACUaakZqUqzpEnyr43UJCkyMFKStPs4oRsAfBWhu4QMGLPW2yUAAIBc2Ee5jQajVv650svVuCciMPOyYXHH47xcCQAgL4TuEpKcluHtEgAAQC7s67nDAsKUYfOv/rpSYCVJ0u8nfteppFNergYAkBtCN/LUZ+SaIh0HAMAf+OPO5Xah5lBdU/ka2WTT2gN5z6pbELegBKsCAGRF6EaeklNzftqfNWjndhwAAH9jn17ub+u57dpf0V6S9MM/Pzhum7NjjubsmOP4Ot2aXtJlAQAuIHQjT8FBphyj2QRtAEBp4xjp9qPLhWV14+U3SpJ+PvSzY6p8uiVd6RaCNgD4AkI38kXIBgCUdv54ubCsrgi/QpEhkbLarFr/73pvlwMAyIbQDQAAyjT76LC/jnRLUu3I2pKk1ftXe7kSAEB2hG4AAFCm2aeX++uabkm6uvLVkqS1B9bq9xO/e7kaAEBWhG7kKzjIpJ7PrVLP51Z5uxQAADzC36eXS1Ll0MqO4D1l8xQvVwMAyIrQjQIlpWQoKYW13QCA0snfN1Kzu77m9TIZTNp8eLP+jf/X2+UAAC4gdAMAgDLNsabbj0e6JalicEVFVYuSJK36a5UOnjvo5YoAAJJk9nYBAAAA3pT1Ot32UW9/1apGKxkNRv3y3y/6au9XSslIUfMazXU25axsNpsMBoO3SwSAMoeRbgAAUKbZR7r9eSM1uyBzkKbeNlV1IuvIarNq9V+r9dqPr+l/O/6nbgu66du/vvV2iQBQ5jDSDQAAyrTSsqbbLtAUqJuvvFkNqjRQlXJVtPXIVv169FcdSTiiYd8OU6fanfTCDS8oJCDE26UCQJlA6Pawns+tUnCQydtleJS9jSGBZqWkWTRnTLTTMUla9Pot3ioPAIB82Ue6fzzwo8ICw7xcTfEwGAy6pPwl6n9dfw1sOlCzfpmlFEuKPtr+kVbuW6m4Y3HqfnV33d/4fsc5C+IW6J6oe7xYNQCUTkwv97CklAwll/Kdv+1tTE7LUHJqRo5j7HwOAPBVGdYMpVvTJUlmY+kdiwgwBWhw88G669q7FGAM0KGEQ1r420IlpiU67mN/HQAAxYvQjRxCgsx6eOz6Au8XHGTSgDFrS6AiAAA8w2w065Fmj2hw88EKMgd5uxy3BZoCteT3JQXez2w0a9HuRbq0wqXqWrerAk2B+u/8fxq6YqhjpB8A4BmEbuQqOc210WlX7wcAgK/q36S/+jfp7+0yCs3VEWr7/aqVq6bu9bsryBSkuONxGvzVYJ1LPefJEgGgTCN0o1AKM8LdZ+QaD1QCAADys2j3ohy3VQ2rqh5X91DFoIr67cRvGvzVYCWnJ0uS5uyYozk75pR0mQBQahG6USiFGeHOvt4bAAB4Xl4j4VXCqmjG7TMUHhyuPSf3aMmeJTqReELplnSlW1jfDQDFpfTuGAKvYJ03AAD+wWw0a8fRHepxdQ8t2LVAJ5NO6oHlD+jGy29UZEikt8sDgFKDkW4PKo3h05VQnZyW4fiTl9ymmjP9HADgLblNwfZ39s3T8pNuTVd4cLjuaXCPwoPDdfT8US3Zs0R/n/nbcZ8FcQtynJfbbQCA3BG6Pai0bjJWHO3Kbao5088BAN5SWi+X5Wq7woPDddc1d6lx9cZKs6Rp5f6Vmrhhos6lnsv1MUrr6wUAnkDohktCPDxtPOtjZx3xZvQbAADXuTK6nZeQgBDNuH2GGlZtKElasGuB7lhwh9YdWKeNBzfqYPxBvb/1fc3fOd9xjn3Em5FvAMgba7rhMk+O3Gd97Kwj3ox+AwDgnqKMQpuNZrW9rK0uq3iZfj/5u/af2a/tR7fr0ZWPOt2nQlAF/XP2H6VkpOimxJsY+QaAfDDSjRJXlBFzRr4BAPC8yypepvk95uuOenfomirXqEb5Ggoxh0iSMqwZOp18Wsv/WK5v9n+jTvM6ac7OOZq7c67T9b4Z/QaATIx0o8QVZcQ8r5HvPiPXaM6Y6EI/LgAAcGYymlQrspYuD79cfRr1kSTN3DpTyRnJOpNyRuHB4fpm/zc6kXhCp5NP6+2f39aMrTPU4+oe6tOoT56j3wviFuieqHtKsikA4FWEbnhd9pHv4CCTej63SsFBJsdtBYXq3MK40chEDgAAisui3YtkMpoUHhyuiJAI9WnUR1XDqspitSjueJwOxB/QvtP7NC9unhbsWqBLK1yqAFOALq94uSJCImQ2mhUWEKbkjOQcj02fDaA0I3TD63Ib+U5KyZDNZpPBYMi8TyFGuMfMOaSFbzQsvkIBACjD8hq5NhlNalC1gcbfPF4bDm7Q+PXj9d/5/3Qg/oAmbpiY6zlf7f1KbWq20e11b9fPB3/WiRMn1FD02QBKp1L3seKpU6c0ePBgNWvWTC1bttTYsWOVkcFmXN5k3/k86zW+7aPZvUd+l++5BV0X3Cab0/Gez61Sz+dWScoM7nnJa214fmvGWU8OAMWLPtu3ZN35PK+/53fu3J1z9W/8v7rr2ru0+K7Fan1pa7W/vL2uirhKYQFhCjGHyGTInMX2z9l/ND9uvu5bfJ8+/+NzHU06muvjztkxR3N2zHG6zWaz5btenLXkAHxNqRvpfuKJJ1StWjX9+OOPOnnypAYNGqTZs2froYce8nZpZZp9NDvrqLZ9NDskOPPHMK+AnfUce1iXpEWv3+I4bj83v6Dt9JhZRs6zjpbbb89tBD37aHtJrSNnyh2A0oo+2/dkHc3O6+9S7kE83ZLumKV2efjlalOzjQwy6M2Ob2rWL7NkNpplNpqVnJGs/xL+0+4Tu7Xv9D79E/+P/tE/emrVU7rz6jvV6tJWCjYHK8OaoaPnj+pk0km9/fPb+vPUn4o7FqeUjBQFGAO08LeFujLiSiWnJ+v2urcrIiRCweZgHTp3SPtO71OQKUhB5iAFmgL1+Z7PFdswViajSZ5Enw0gN6UqdB84cECbN2/WunXrFBISopo1a2rw4MF644036MD9RF6brGUN5HkFa/u5IUEmPTx2vWNqekFssuVYQ+7KpcpK6nJmTJMHUBrRZ/u/vKabZw3k2e9jMBgUGhCqWpG1VCuyls6lnNPaA2v15+k/9dPBn/TTwZ9kNpoVZApSqiVVGdbc+9o0a5oOxB/QgfgDkqRNhzc5HV+wO+do9+TNkxVkCtJlFS/TFeFX6IrwK1SjQg1FBEcoLDBMBhlkMBhkNBgVGhCqyqGVVT6wvNP7icS0RB08d1D/xv+rIwlHlGZJk81mU1hgmHYe3anUxFTdXeluVQiuoHKB5Rx/gkxBLr8vAVD6lKrQvXfvXoWHh6tatWqO22rVqqUjR47o3LlzqlChgherQ1FlDeQhBUw7z3rf/EakswZ5+6h79qnwZxJS893UzR7YQwLNSkmz5Ppc9nMKqsV+vn00/9NxNzl9yDBgzFqdSUiVdHGkP7825na7t3Z659N/AFnRZ5du9rBd0NT0CsEVdNOVN+mKgCsUWTlSX+39SglpCY6wHWAMUOXQyrrh8huUkJqgSiGVFBYYpnRLus6knNHZlLM6nXxap5NPKyUjRRarRWnWNAUYA5RmSVNyRrKsNqvj+VItqdp7eq/2nt7rUjuCTEGqFFpJUmbgjk+NL/Ccn77+KcdtZqNZweZgmQwmpVvTFRYQJpPRJJPB5Ph/QmqCKoVWUpA5SMHmYJ1KOqVakbUUbA52/AkxhyjYHCybbEpMS9T5tPNKTL/w/7TEzNfMFKBAU6ACjJn////27j+o6frxA/hzP2MChSa6/KTnpYSnoiEgKaSgIZ2ChpCeJqZX+QNPkgLlNDM1Uc4UP+qlFnbcFel1FGpkIlcqGjpE8Ud28jE/X0Klkx8TFBAGe+/7B58tEDQ2GO9tPB93u9vev/Z8b8Bzr/feG0qZ0jRNguaDChKJpNVBhpbXDYIBd+/exeXLlyGVStvMN15/dFuPuy6RSGAwGNAkNLW66A16SCVSKKQKKGQKKKSKVutI0HyQwniwwjjdyDi/5TItCYKA4nvFqPhvBaRSKQwwAGj+eILxulHLaY+b39Kj9/e4LC0zt9yvltMe9eh9G/ej8v8qTa+lHs3T3nrtLdfeMu3pyHodzWAkCAJKKktw+z+327wm7O7svRS9EDQ4CE5ypw5tsys41KC7trYWKpWq1TTj7bq6un8scOOTpNPpIJOZd/qRXq9vs66rSg59kwCnp6RwUrZ9qG1zngxKqRxOTjLgf38InrSemFnlsubH+PH74YT4HWfhopIhbtuvqH7QgKeUMjg9JYe721OI2/araRuP3l/L7SpkEihkgOv/1jFuz7gN43y5DKZ5Rsb7NE5XyJp/RlZsP4cd778MAKbrchlM8xUyCZyekiJ+x1n0dlWafq6al2meF7MlFzvefxmrdp03rddSy+kt76+9ZVsyLrtq13kAQEOjvk3WR5dtb16r50Wvx87Mu/hs2D//bj1pO12xnqXbB5r3QyKRtPo9X5J0BgCwd3Vgh+/bnAydyfs47e2HrWvvcWi5Hx/8+3yXP07m6OzPFfB3fxhvt/eCxpHYWmcroPh7vkQPuUQOeTsvk2xpngIKqOQqyCGH9JGv6bF0m1bJKgBKifKJ+/Evl39hwDMDEDMmxjRQNn7+WyFTQKVQoVHf+l3zpxVPY8gzQyCXtpNF0JtOJZdJZahvrIdEIsED3QOU1ZahuqEa1fXVeKB7gPqmeuj0zb0oGAQYYIBOr0NDUwNgALS1WtN2naROcHNyg0qhwjPKZ+DxrAf+rPoTjUIjanW1qGuog6vKFXWNdaiqr0KDvsG0blNTE5rQfDDhgf5Bu499TUNNq9t3qu+0u1y3+Eu8u+5SxWIH6CLFYgfoIiViB2im9dUianiUWeu01x0d7WyJwYFaPScnBx9++CE0mr9PMSoqKsL06dNRUFAAV1fXJ66v0+lw9epVa8ckIiL6R15eXlAqlWLHsBp2NhEROYp/6myHeqfbw8MDVVVVqKioQN++fQEAN2/ehFqt/sfyBgC5XA4vLy9IpVJ+7oaIiERhMBggCALkcoeq6DbY2UREZO862tkO9U43AMydOxdqtRobNmzAvXv3sHTpUoSGhmL58uViRyMiIqIW2NlERNQTONygu6KiAhs2bIBGo4FUKsXrr7+O+Ph4u/ncIhERUU/BziYiop7A4QbdRERERERERLaC/8OHiIiIiIiIyEo46CYiIiIiIiKyEg66iYiIiIiIiKyEg24iIiIiIiIiK+GguwtUVlYiJiYGvr6+8Pf3x6ZNm9DU1CR2LItptVqEhIRAo9GIHcUi169fx8KFCzF27FgEBARg5cqV0Gq1Yscy29mzZ/HGG29gzJgxCAgIwMaNG1FfXy92LIvo9XpER0cjMTFR7CgWO3r0KIYPHw5vb2/TJSEhQexYZquqqsLKlSvh7+8PPz8/xMTEoKysTOxYZjly5Eir58Hb2xsjR47EyJEjxY5mlmvXruHNN9+Er68vAgMD8cknn0Cn04kdy+Gxs20LO9v22Htns69th6P0NdD5zuaguwusWLECvXr1wunTp5GRkYGzZ88iLS1N7FgWuXDhAmbPno2SkhKxo1ikvr4e77zzDry9vXHmzBlkZWWhqqoKq1evFjuaWbRaLRYvXow5c+agoKAAmZmZyM/Px+effy52NIvs3r0bBQUFYsfolKtXr2LGjBkoLCw0XbZu3Sp2LLMtX74cdXV1yMnJwYkTJyCTybB27VqxY5ll+vTprZ6HY8eOwc3NDZs2bRI7WocJgoDFixcjNDQU+fn5yMjIwJkzZ/DFF1+IHc3hsbNtBzvbNtl7Z7OvbYcj9DXQNZ3NQXcn/fnnn8jPz0dCQgJUKhUGDhyImJgYpKenix3NbJmZmYiPj0dcXJzYUSxWWlqKYcOGYdmyZVAqlejduzdmz56N8+fPix3NLH369EFeXh5mzpwJiUSCqqoqNDQ0oE+fPmJHM9vZs2dx/PhxTJkyRewonXL16lW7PDLb0m+//YbLly9jy5YtePrpp+Hi4oKNGzciPj5e7GgWMxgMSEhIQFBQEGbMmCF2nA6rrq5GeXk5BEGA8T93SqVSqFQqkZM5Nna2bWFn2x5H6Gz2tW2y174GuqazOejupBs3bsDNzQ39+/c3TRsyZAhKS0tx//59EZOZLzAwEDk5OZg6darYUSz2wgsvIDU1FTKZzDQtOzsbI0aMEDGVZVxcXAAAEydORHh4ONzd3TFz5kyRU5mnsrISa9aswbZt2+x6MCEIAq5du4aTJ08iODgYEyZMwNq1a1FdXS12NLNcuXIFQ4cOxbfffouQkBAEBgYiOTkZ7u7uYkez2OHDh/HHH3/Y3WmQvXv3xoIFC5CcnAwvLy9MnDgRgwcPxoIFC8SO5tDY2baFnW1bHKGz2de2y177Guiazuagu5Nqa2vb/GEy3q6rqxMjksXc3d0hl8vFjtFlDAYDUlJScOLECaxZs0bsOBY7fvw4cnNzIZVKERsbK3acDhMEAQkJCVi4cCGGDRsmdpxO0Wq1GD58OEJDQ3H06FEcPHgQxcXFdvcZserqahQVFaG4uBiZmZk4dOgQ7t69i1WrVokdzSKCIGDPnj1YsmSJ6QWvvRAEAU5OTli7di0uXbqErKws3Lx5Ezt37hQ7mkNjZ9sudra4HKWz2de2yZ77Guiazuagu5N69eqFhw8ftppmvO3s7CxGJAJQU1OD2NhY/PDDD/j666/h6ekpdiSLOTk5oX///khISMDp06ft5mjtvn37oFQqER0dLXaUTuvbty/S09MRFRUFlUqFAQMGICEhAbm5uaipqRE7XocplUoAwJo1a+Di4oK+fftixYoVOHXqFGpra0VOZz6NRoOysjJERUWJHcVsOTk5yM7Oxty5c6FUKuHh4YFly5bhwIEDYkdzaOxs28TOFp+jdDb72jbZc18DXdPZHHR3koeHB6qqqlBRUWGadvPmTajVari6uoqYrOcqKSlBZGQkampqkJGRYZflffHiRbz22mutvhVRp9NBoVDYzSlfhw8fRn5+Pnx9feHr64usrCxkZWXB19dX7Ghmu379Oj799FPT53iA5udDKpWaitEeDB06FIIgoLGx0TRNEAQAaLVv9iI7OxshISHo1auX2FHM9tdff7X51lO5XA6FQiFSop6BnW172Nm2wVE6m31tm+y5r4Gu6WwOujtp8ODB8PHxQVJSEmpqanDr1i189tlndnskx95VV1fjrbfewpgxY7B//367/BITAPD09ER9fT22bdsGnU6HO3fuIDk5GVFRUXZTGseOHcPFixdRUFCAgoIChIWFISwszC6/EdXNzQ3p6elITU1FU1MTSktLsXXrVkRERNjN8wEA48ePx8CBA7F69WrU1tZCq9UiJSUFr776ql2e7nXhwgX4+fmJHcMigYGBKC8vx969e6HX63Hr1i3s2bMH4eHhYkdzaOxs28LOth2O0tnsa9tkz30NdE1nc9DdBXbu3ImmpiZMnjwZs2bNwiuvvIKYmBixY/VI33//PUpLS/HTTz/Bx8en1f8FtCfOzs5ITU3FjRs3EBAQgOjoaIwfP97u/o2Ko1Cr1di3bx9+/vlnjB07FpGRkfDy8sJHH30kdjSzKBQKfPXVV5DJZAgNDUVoaCjUajWSkpLEjmaR27dvo1+/fmLHsMjQoUOxb98+/PLLL/D398f8+fMxadIku/4manvBzrYd7Gzqauxr22TPfQ10TWdLDPZ4jgIRERERERGRHeA73URERERERERWwkE3ERERERERkZVw0E1ERERERERkJRx0ExEREREREVkJB91EREREREREVsJBNxEREREREZGVcNBNREREREREZCUcdBMREXWSVqtFSEgINBpNh9fJzs5GWFgYXnrpJYSEhCAjI8OKCYmIiAgQp7Pl5oYkop5h0qRJKC8vh1ze/GfCYDDAxcUF4eHhSEhIgFTa+phdaWkppk2bhh9//BEDBgwQIzKRKC5cuIDExESUlJR0eJ1z584hMTERO3bswIQJE6DRaPDuu+/ixRdfxKhRo6yYlogcETubqGPE6my+001Ej7V+/XoUFhaisLAQly5dwv79+3Ho0CHs3r27zbIDBgxAYWEhy5t6lMzMTMTHxyMuLq7NvLy8PERFRcHX1xfTpk3DkSNHTPPS0tIwf/58TJw4ERKJBC+//DK+++47DBo0qDvjE5EDYWcTPZmYnc1BNxF1mKenJ/z8/PD7778jOjoaiYmJCA4ORlBQEIqKiuDp6Ynbt28DAG7duoUlS5bAx8cH48aNw8cffwydTgcAKCkpwZIlS+Dv74/g4GCkpKSY5hHZk8DAQOTk5GDq1Kmtpl+/fh1Lly7FokWLoNFosHHjRiQlJeH06dMAgCtXrsDNzQ2LFi2Cv78/ZsyYgZKSEri5uYmwF0TkiNjZRK2J2dkcdBNRhzQ2NkKj0eDcuXMICAgA0HxU8ODBgzhy5AicnZ1NyzY1NeHtt9+Gu7s7cnNzkZWVhUuXLmHXrl2oq6vDggUL4OHhgdzcXHzzzTfIy8vDrl27xNo1Iou5u7ubTuds6eDBg5g8eTKmTJkCmUyGMWPGYNasWUhPTwcAVFdXY//+/Vi6dCl+/fVXLFu2DHFxcbh8+XJ37wIROSB2NlFbYnY2P9NNRI+1fv16JCUlmW6r1WosXLgQ8+bNw/HjxzFhwgT0798fAHD//n3TchcvXsSdO3ewevVqqFQqODs7Y/fu3RAEASdPnoROp8P7778PiUSC5557Du+99x5iY2PxwQcfdPs+ElnDnTt3cO7cOfj6+pqm6fV606loSqUSkZGR8Pb2BgBMmTIF48aNQ3Z2NkaPHi1KZiKyb+xsIst0R2dz0E1Ej7Vu3TrMnDnzsfP79evX7vTy8nL07t0bKpXKNO35558H0Pztj1qtFn5+fqZ5BoMBjY2NqKysxLPPPttF6YnEo1arERERgQ0bNpimlZWVwWAwAACGDBnS5vRMvV5vmk9EZC52NpFluqOzeXo5EVlMIpG0O12tVuPevXt4+PChaVpBQQHS0tKgVqsxaNAgFBQUmC6nTp1CVlYW+vTp013RiawqKioKWVlZOHPmDARBQHFxMebNm4cvv/wSADBnzhwcOHAAeXl5EAQB2dnZ0Gg0CAsLEzk5ETkqdjZR+7qjsznoJqIuN2rUKAwePBjJycl4+PAhKioqsHnzZmi1WgQHB6O2thapqanQ6XS4f/8+Vq1ahbi4uMe+ICCyN6NHj8b27duxfft2+Pn5Yd68eZg0aZLpdMzIyEisW7cOmzdvho+PD3bt2oWUlBSMGDFC5ORE1NOws6mn647O5unlRNTlFAoF9u7di6SkJAQFBUEulyM8PByxsbGQy+VIS0vDli1bkJqaCkEQ4O/vjz179ogdm6hTioqKWt0OCgpCUFDQY5ePiIhARESElVMRET0ZO5t6ou7ubImBHyAjIiIiIiIisgqeXk5ERERERERkJRx0ExEREREREVkJB91EREREREREVsJBNxEREREREZGVcNBNREREREREZCUcdBMRERERERFZCQfdRERERERERFbCQTcRERERERGRlXDQTURERERERGQlHHQTERERERERWQkH3URERERERERWwkE3ERERERERkZX8P7TtnW1/OhGNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Set the style for seaborn\n", + "sns.set_style(\"whitegrid\")\n", + "\n", + "# Create subplots\n", + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 6))\n", + "\n", + "# Histogram\n", + "sns.histplot(housing_data['price'], bins=\"auto\", kde=False, color='#003399', ax=axes[0])\n", + "axes[0].set_title('Histogram of House Prices')\n", + "axes[0].set_xlabel('Price')\n", + "axes[0].set_ylabel('Frequency')\n", + "\n", + "# Density Plot\n", + "sns.histplot(housing_data['price'], bins=\"auto\", kde=True, color='#339933', ax=axes[1])\n", + "axes[1].set_title('Density Plot of House Prices')\n", + "axes[1].set_xlabel('Price')\n", + "axes[1].set_ylabel('Density')\n", + "\n", + "# A common title\n", + "plt.suptitle('Distribution Analysis of House Prices.', fontsize=16)\n", + "\n", + "# Adjust layout\n", + "plt.tight_layout()\n", + "\n", + "# Show plots\n", + "plt.show();\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The histogram depicts the distribution of house prices, with most bars are clustered towards the left, suggesting that a significant number of houses are priced lower. The density plot illustrates a curve representing the density of house prices. Similar to the histogram, the curve peaks sharply on the left and gradually tapers off, indicating a right-skewed distribution. \n", + "
In summary, the majority of house prices are concentrated at the lower end, creating a skewed distribution.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**#Distribution of Bedrooms, Bathrooms and Floors.**" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAJRCAYAAACN9sAAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0YklEQVR4nOzdZ5RV1cEG4JcqYIldE0sSy2ABBKRYEEHFjomKnwWxdyxBJWqs0RgbdqPGGDUmsRJ7ib0lKogNNVGxo0YUsSFNmPv9cM3VkWGYgdEZDs+zFmtxT9l3333K7HPfe/ZpViqVSgEAAAAAAADmac0buwIAAAAAAADA3BP8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwBgnlAqlRq7CvUyr9UXmhLHDwAAwJwR/AEAUKsRI0akffv2M/1bY4010qVLl2y++eY5/vjj89///rfG9S+88MK0b98+55577hzX4V//+lf22muveq1z9NFHp3379rnxxhtrndbQPv/88/zud7/LLbfcMtv6zGs+/fTTDB06ND179kzHjh2zySabZPr06bNcfqONNqpx3+nUqVP69OmTI444Ii+++OL3Xu8itH1jqmkbtm/fPp07d84mm2ySY489Nm+//XaDvNe4ceNy5JFH5sknn6w2fdCgQWnfvn0ef/zxBnkfmo6q/am2c0mVm266aZb743f/3XTTTUm++Ru28847f98fBQAAmoSWjV0BAADmDe3atcvGG29cfl0qlfLll1/mtddeyw033JB//OMfOeKII7L33ns36Pu+//772XvvvbPMMss0aLnfl9NOOy033XRTfve73zV2VRrcqaeemttuuy1LLLFE+vbtm0UXXTQtW87+kmK99dbLEkssUX49bdq0vPvuu7njjjty991354ILLsgmm2zyfVadBrDJJpukbdu2Sb4+/qdMmZI333wzw4cPz5133pmrr746nTp1mqv3GDp0aEaMGJHtttuuIapMQS2xxBJZb731al1mxRVX/IFqAwAATYvgDwCAOllsscUybNiwGufdeeedOe6443LmmWdm6aWXTv/+/cvzBg4cmC233DKLLbbYHL1vZWXlHK13+OGHZ999983SSy89R+vPqVkNUdhY9WlIo0ePTpKce+656dmzZ53XO+CAA2pc/v7778/BBx+c4447Lr169UqbNm0arK40vGOOOSbLL7/8TNOvvvrqnHrqqfnNb36TO+64Y67ewxCf1MXKK688y79HAAAwvzPUJwAAc22rrbbKKaeckiQ588wzM2XKlPK8xRdfPCuvvHIWX3zxH7ROSy+9dFZeeeUsvPDCP+j7zkpTq8+c+Oqrr5Ikyy67bIOUt8kmm6RLly755JNPMmrUqAYpkx/eoEGDsuyyy2bMmDF58803G7s6AAAA8zXBHwAADWLrrbdOx44d8+GHH+b+++8vT5/VM/4efvjh7L333tlggw3SoUOH9O3bN8ccc0xef/31autWDS86bty4tG/fPhtttFGS5N1330379u1z0EEH5e67707fvn3TqVOn9O/fP19++eVsn+t27bXXZosttkjHjh2z8cYb56yzzsrnn39ebZmq50kdeeSRNZZR9Sypb7+++eabkyTHHXdctedMzao+06dPz1//+tdst9126dy5czp37pztt98+f/vb32Z65lXVs6pOPfXUvPHGGzn00EPTs2fPdOrUKdttt13+8Y9/1FjPWZk8eXL+8Ic/pH///unUqVO6du2aXXbZJbfddlu15arq/t577yVJNt1007Rv3z4jRoyo1/vVpCpE/PLLL2ea9+abb+aoo44q7yO9e/fOscceW67Hd7311lv59a9/nV69eqVz584ZOHDgLOtYtV/eddddOf7449OlS5d079692l1E7733Xk444YRstNFG6dChQ9ZZZ50MHjw4zz33XI1lzsm2POOMM/Lqq6/mwAMPTPfu3dOlS5cMGjSofHflqFGjsttuu6VLly7ZYIMNctRRR+Xjjz+e6b1vueWW7LrrrllvvfXSqVOn9OvXLyeffHI++OCDGuvakJo1a1Yeive723HKlCm58sors9NOO6VHjx5Zc801s84662TffffNv/71r/JyVcfzyJEjkyR77rlnjftYZWVlrr766vL5Zv31189RRx2VcePGVVuu6ti96qqrcu6555bb9tvH8oQJE3LGGWdks802S4cOHdKjR4/svffeeeSRR2b5WW+99dbssssu6dq1a/l8c8kll2Ty5MnVlqv6PIceemjef//9HHnkkVlnnXXSuXPn7LDDDuX3GDNmTA444IB069Yt6667bgYPHpyxY8fO9L51OV/OjSeeeCKHHnpoevfunQ4dOqRLly75xS9+kUsuuSTTpk2rtmzV+eC///1vbrnllmy33XZZa6210rNnzxx66KEZM2ZMje9x9913Z6eddkrXrl2zzjrr5Pjjj88nn3zSIPWfU2PGjMnQoUPTq1evdOjQIb169crQoUPz2muv1bh8Xc+Zyez3walTp+aiiy7Ktttum65du6ZLly7Zdttt88c//rHaj2cAAKC+DPUJAECD2WijjfLCCy/kiSeeyNZbbz3L5e6///4ccsghadGiRbp165ZFFlkkY8aMyU033ZR77rknN9xwQ1ZZZZW0b98+m2yySe6///60bds2m2yyyUx3Dr766qs58sgjs/rqq2eVVVZJqVTKggsuWGs9r7jiirzxxhtZc80107dv3zzzzDO5/PLL89BDD+Waa67JoosuOkefv3///nnuuecyduzYdO7cOSussEKtz5maOnVq9tlnn4wcOTLt2rVLz54906xZs4wYMSKnnHJKHnjggfzxj39M69atq603ZsyYDBgwIG3atEmXLl3y6aef5tlnn81vfvObfPbZZ9lrr71mW9dPPvkkgwYNypgxY7Loootmgw02yJQpUzJy5Mg8/fTT+fe//53TTz89zZo1S5cuXTJ9+vQ88MADmTRpUjbeeOO0a9cuSy655By1U5XKysq8+OKLad68eTp27Fht3r/+9a8cfPDBmTx5cioqKtK5c+e89dZbGT58eO6///78+c9/TocOHcrLv/jii9lrr73y2WefpaKiIl27di1Pq2l4yirnn39+3n///fTq1SvvvfdeVllllSTJ888/n7322isTJ07MT3/602y00UYZN25c7r///jz44IM56aSTsuOOO5bLmdNt+dJLL+Xaa6/Noosump49e2bMmDEZOXJkdt999xxzzDE56aST8vOf/zzrr79+nnrqqdxyyy15+eWXc8stt6RZs2ZJvhlqs127dll77bXTtm3bvPTSS/n73/+ee++9N7feemu1Zyw2tIkTJ+b111/PwgsvnJVXXrlam1SFmEsvvXS6du2aZs2a5ZVXXsmjjz6axx57LBdddFE22WSTtGvXLv3798/jjz+ejz/+OOuuu26WXHLJmfaxU089NW+++WY6d+6cXr165Zlnnsktt9ySkSNH5vbbb89CCy1Ubflrr702Y8eOzXrrrZcvvvgiP//5z5Mk77zzTgYOHJgPP/wwyyyzTDbaaKN88skneeKJJ/Kvf/0rBx54YH71q1+Vy6msrMzQoUNzxx13pHXr1unRo0fatm2bp556Kuedd17uueeeXHnllTMNafz+++9nwIABqayszNprr52xY8dm9OjROfDAA/Pb3/42v//977P44ounZ8+eeemll3L//ffn+eefz7333pt27dolqfv5ck5deeWVOf3009OqVat07do1nTt3zgcffJDRo0fn5ZdfzksvvZSLLrpopvX+8Ic/5L777kv79u3Tu3fvjB49Ovfcc0/+/e9/55ZbbskKK6xQXvb888/PxRdfnFatWqVnz55p2bJlbrvttjzzzDNzXO+5df/992fIkCGZNm1a2rdvn7XXXjtvvvlmbrvtttx7770577zz0rdv3/Ly9TlnfltN+2CpVMqRRx6Ze++9N8sss0x69uyZysrKPP300znnnHPyxBNP5KqrrvqBWwQAgMIoAQBALZ588slSRUVFqW/fvrNd9u677y5VVFSUdt555/K0Cy64oFRRUVE655xzytM23njj0hprrFEaM2ZMeVplZWXpd7/7XamioqL0m9/8pjx97NixpYqKitIGG2xQ7b2qpldUVJROOumk8vQZM2aUSqVS6aijjipVVFSUbrjhhvK8qmkVFRWlv/71r+XpkyZNKu2zzz6lioqK0vHHH1+e/o9//KNUUVFROuKII2r8vFVlfVtN7zur6b///e9LFRUVpe233740fvz48vTx48eXtt9++1JFRUXptNNOK0+v2hYVFRWlQw45pDRx4sTyvKuvvrpUUVFRWmeddUqVlZU11vfbBg8eXKqoqCjtv//+1cp56623ShtvvHGpoqKidPXVV1dbp2/fvqWKiorSW2+9Ndvyv738k08+WW36lClTSq+++mrp0EMPLVVUVJR+//vfV5v/8ccfl7p3715affXVS3fccUe1edddd12poqKitPHGG5emTp1aKpW+3ubbbLNNqaKionTxxReXl502bVrp6KOPLrfZt9u+ar9cbbXVSs8++2x5+owZM0pTpkwpbbDBBqWKiorShRdeWK09H3744VLHjh1La6yxRumll14qT5+bbTlkyJDStGnTSqVSqTR16tTSdtttV5533nnnldf56KOPSt27dy9VVFSU6zx16tTSWmutVerRo0dp3Lhx5WW/+uqr0sEHH1yqqKgo/eEPf5jFFqqbqrqMHTu22vRJkyaVRo8eXRo0aFCpoqKi9Je//KXa/CuuuKJUUVFRGjx4cOmrr74qT58+fXrppJNOKlVUVJT22GOPauvsuuuupYqKitK///3vGqevtdZapZEjR5anf/zxx6U+ffrMtH2rjt2KiorSnXfeWZ4+Y8aMUmVlZWnbbbctVVRUlI477rjyflQqlUrPP/98qUePHqWKiorSAw88UJ7+l7/8pbzfvf322+XpX3zxRWm//fYrVVRUlA4++ODy9G+fn3bdddfyMVZZWVk66KCDyvOOPvrocttMnDixtOmmm5YqKiqq7ff1OV/W17hx40prrrlmqUePHqU333yz2rynnnqqtMYaa5QqKipK//vf/8rTq85lq622WunWW28tT58yZUppp512KlVUVJROP/308vTnn3++1L59+1KPHj1K//3vf8vT33nnnfI5oqKioto+MitV23XXXXet82esOtZ22mmn8rQPP/ywtNZaa5Xat29fGj58eLXlb7zxxlL79u1LXbp0KX3wwQfl6fU9Z9a2Dz711FPlz1F17JdKX+/PVWU99dRTdf6MAADwbYb6BACgwSyyyCJJMtvh2z766KO0bNmy2l1IzZo1ywEHHJDjjz8+2267bb3ed4899ij/v3nz2Xdxe/TokV133bX8um3btjnttNPSqlWr3HrrrZk0aVK93n9OTJ06Ndddd12aN2+ec845p1pbLLHEEjnnnHPSvHnzXHPNNTMNn9iyZcv89re/rXZn44477pjWrVtnwoQJGT9+fK3v/d577+W+++7LQgstlLPOOqtaOT/96U9z6qmnJkkuv/zyhvio2W233crDorZv3z6dOnXK1ltvnX/+85/Zeuutc9RRR1Vbfvjw4fnss8+y0047Zauttqo2b8cdd0yfPn0yduzY3HfffUmSZ555Ji+//HJWX331HHjggeVlW7VqlZNOOqnWOxOrhuSs0rx589x9990ZN25cunfvnoMPPrjaHTwbbrhh9t1330yfPj1XXnllkrnbls2aNctxxx2XVq1aJUlat26dzTffPEmyzDLLZPDgweVll1xyyay99tpJkrfffjtJ8sUXX2Ty5Mlp27ZttTtVW7ZsmSOOOCInnXRSNtxww1l+/vrYeOONq23Hzp07Z8CAARkxYkT23Xff7LbbbtWWb9WqVTbccMMcfvjhadnym8FmWrRoUb5b8t13361XHf7v//4v3bt3L79efPHFy+eLV155Zabll1lmmWy55Zbl182bN8+oUaPy0ksvZcUVV8yJJ55Y7S7MTp06lffHb+//f/nLX5Ikv/vd76rdxbvQQgtl2LBhWXjhhXPvvfeWt8u3HXXUUeVjrFmzZuV9unXr1jnmmGPKbbPgggtmgw02SJJq5TT0+fLbxo8fn379+uWggw7Kz372s2rzunXrllVXXTVJzdtpo402yjbbbFN+vcACC5S366uvvlqefv3116dUKuXAAw/MaqutVp6+wgor5De/+c0c1XvkyJHV9sXv/vvvf/9b6/rXX399Jk+enF/84hfZfvvtq80bMGBAfvnLX+bLL7/Mtddem2Tuzpk17YMffvhhkq/PD1XHfvL1/nzKKafktNNOy3LLLVfPVgEAgK8Z6hMAgAbz1VdfJclMQ519V/fu3fPYY49l2223zYABA8rPlVpiiSWqBXJ10aZNm/z0pz+t1zr9+/efadqSSy6Zjh075plnnsmLL76YHj161KvM+nrhhRcyZcqUdOjQocbhQFdcccV07Ngxzz//fEaPHp111123PO+nP/3pTEMKtm7dOosttljGjRs32+dDPfXUU0mS9ddfPwsvvPBM83v27JmllloqH3zwQd55551ahyuti/XWW69aaDFt2rSMHz8+L730Uu64445MmTIlZ599dtq0aZMk5ee6ffszf1vv3r3z8MMPZ8SIEdlqq63Kn6d3794zLbvAAgukd+/e5WctfldFRcVM06qeM7fFFlvUuM6WW26Ziy66qLzc3GzLFVdccabha6ter7rqqtUCs+SbcL3quWtLLLFEVlpppbzxxhv55S9/mW233Ta9e/dO+/bt87Of/WymMGdubLLJJmnbtm359dSpU/PBBx/kv//9by6//PJMnDgxJ5xwQjl833XXXWc6nidPnpwxY8aUn3H33efHzc63Q9oqP/7xj5N8HYJ+V23bd5NNNpmpfZNk8803z3HHHZfnn38+06ZNy8cff5x33303iy22WNZZZ52Zll944YWzwQYb5K677srIkSOrnY9at26dNdZYo9ryVdt3ueWWK2/PKlWvp06dWp7WkOfL71pjjTVmev5qZWVlxo4dmxdeeCGfffZZkm/O7d9W07ZYeumlk6TaOajq+KwpgN5www3TqlWrGsuvzRJLLJH11ltvlvN/9KMf1bp+VZ1qO8Zvvvnm8r4yN+fMmvbBLl26pFWrVrn77rvz+eefZ4sttsgGG2yQZZdddpbnPQAAqCvBHwAADebTTz9NMvsvXX/3u9/l4IMPzgsvvJALL7wwF154YRZddNFsuOGGGTBgQL1Ct5q+hJ2dWd1JURUgVN2N8X2qeo/a7upYfvnl8/zzz89Un++GBVWqQozKysq5fu/lllsuH330UT788MO5Dv4OOOCA9OzZc6bpH3/8cQYPHpz7778/Z555Zk444YQkyf/+978kycEHH1xruR988EGSbz7PMsssU+NytT3jr6Z9dXbtU/Xssqo7K+dmW9b0/lXB+XfD3W/P+7bzzjsvhx56aF5//fUMGzYsw4YNy9JLL52+fftmp512mil4mlPHHHNMjW05duzY7L333rn22muzwgorZO+99y7PGz9+fK699tqMGDEib731VsaPH59SqVT+HKVSqV51qGnfb9GiRZJkxowZM82rbfvOar9o165dFl988Xz00UeZMGFCnbdv8vXded+28MILz3QXcn23b0OeL2syY8aM3HPPPbnzzjvz2muv5b333pvpRxw1baea2rZqW3z7HFTVfssuu+xMy7dq1SrLLrtsxo4dW686r7zyyhk2bFi91vm22W3T727PuTln1tROP/7xj8vnvH//+9/597//neTrsL9fv37ZeeedyyEqAADUl+APAIAG8/LLLydJ2rdvX+tyyy67bIYPH56nn346999/fx5//PG88sorufXWW3Prrbdm3333zZFHHlmn96zL0J7ftcACC9Q4verL7ZruAvqumkKG+qh6r9rujqxa5ttDEc5unfqYk/duSEsssUSOP/74bLfddhk+fHiOO+64NG/evNy2ffv2zUILLTTL9VdZZZUks2+P2rZnTevObttUza8aom9utmVd9rXZad++fe6666488cQTefDBB/Pvf/87b731Vq6//vrccMMNOf744zNw4MC5fp9ZWWGFFXLkkUfmkEMOyQ033FAO/kaMGJEDDjggkyZNyo9//OOstdZaWXnllbPGGmtkueWWy4ABA+r9XvU93mvbvrX59vZq7O3bkOfL75o0aVJ23333jB49Ou3atUuHDh2y3nrrpaKiImuvvXZOPvnk8t1u31XX89DslqsKC39IdT3G63Pure86W265ZXr37p0HH3wwjzzySJ588smMGTMmY8aMyV/+8pdcddVV6dSpU90+EAAAfIvgDwCABvPwww8nSa1DsH3b2muvXX5m2ccff5x//OMfOffcc/PnP/85gwYNmuUdXHNrVnf0vffee0m+ufOvKmSo6Q66qiHw5lTV3Ry1PeOs6i6Y2p5RN6+993dVPUNs6tSpmTBhQpZccsksvfTSeeutt7LbbrvVaV+qupOoavt9V33v4Jxd+1S1TdXwpU2hPVu0aJFevXqlV69eSZL3338/V199da688soMGzYs//d//1ftWWINrSqErbpbs1Qq5dhjj82kSZNy4oknZpdddqm2/H/+85/vrS6zM7vt9eWXX2bChAlp0aJFFl100fKwlY19vHwf58srrrgio0ePznrrrZcLL7xwpqD9888/n+t6L7PMMnnzzTfz3nvvlfeTKqVSaaa7JH8ISy+9dN588828++67M9Up+WZbf9/H+EILLZRtttmm/KzEl156Keecc07+9a9/5fzzz8+f//znOpcFAABV6v/zaAAAqMFdd92VN954I8suu2z69Okzy+XeeOON9O/fP/vss0+16UsssUT222+/tG/fPpWVlRk3blyShru77dsee+yxmaa99957efHFF7Pwwgtn9dVXT/L1kH/J11+yf9czzzxTY9l1rW+HDh3Stm3b/Oc//6lxmLt33nknL730UvkunIa09tprp1mzZvn3v/+diRMnzjT/ySefzIQJE7L88svnJz/5SYO+93e9+eabSb5+VuOiiy6a5OtnmiUpPwfuu84+++xst912ufHGG5N88yzABx98cKY7MWfMmFHj9q5N1fv/85//rHH+XXfdlSTlIRYbc1uOHDkyW2yxRXmY1Co/+clPcvTRR2eRRRbJpEmTanz+XUN66623knwTmo8fPz5jx47NIossMlPolyT/+te/ksx+WNrvQ9X2feCBBzJ9+vSZ5v/zn/9MZWVlunXrlubNm+cnP/lJlltuuXzyySflZ7592xdffFH+PFVlN5T6ni/r69lnn02SDBw4cKbQb9y4cXn99deTzN12qgrv77vvvpnmjRo1Kl9++eUclz2nqrbTPffcU+P87x7jDX3OvPLKK9O3b9/ccsst1aavueaaGTp0aJJvhjIGAID6EvwBADBXSqVS7r777hx//PFJkuOOO67W4SF/+tOfZvz48fnXv/41U7Dy4osv5vXXX8+CCy6YlVZaKck3w3JOmjSpwUKCW265pdqX0J9//nmGDh2aGTNmZODAgeX6r7baakm+/nL6pZdeKi//v//9b5bPl6pad3ZBS9u2bfN///d/qayszBFHHJEJEyaU502YMCGHH354Kisrs/3226dt27Zz9kFnYYUVVsjGG2+ciRMnZujQoZk0aVJ53tixY3PcccclSXbdddcGfd/v+uyzz3Lqqacm+XrYu6phEXfccce0a9cuf/vb33LnnXdWW+ehhx7KlVdemZdeeqkconXs2DHdunXLm2++mTPPPLO8n1RWVmbYsGF5++2361WvLbbYIksvvXRGjhyZSy65pNrQkI8++mguv/zytGjRIjvvvHOSxt2Wq666at55553ccsstefrpp6vNe/jhh/P5559n+eWXz+KLL16e/vrrr+f111/P5MmTG6QO48aNy7nnnpsk6d+/f5Kvn23XqlWrfP755zMNFXnvvffm4osvTpJMmzat2ryq4/37DCp79OiRNdZYI2+//XZOOeWU8vPskq/PQWeeeWaS6vv/7rvvnuTr89u3w90vv/wyQ4cOzcSJE9O3b99anwE3J+p7vky+Dppff/31OrVh1X7x0EMPVdvP33///Rx88MHlYHTq1Klz/BkGDhyYVq1a5bLLLsuoUaPK0z/66KOcdNJJc1zu3Pi///u/tGvXLjfffPNM4ds//vGP3HrrrWnXrl223XbbJA1/zlxhhRXy/vvv55JLLql2x2OpVMptt92WJNWG+Zw8eXL5uAUAgNkx1CcAAHXyySefVHuOVGVlZT7//PO8/PLL+eijj9KiRYscf/zx6devX63ltGjRIieffHIOOeSQHHbYYVlzzTWz/PLL55NPPsnTTz+dGTNm5Pjjjy/ffbL44otnkUUWyeeff56ddtopK6644ixDt7paa621cvDBB6dLly5ZaqmlMnLkyHz66afp0aNHBg8eXF5uxRVXzKabbpp77703O+64Y/nOshEjRqSioiIrr7zyTF/E/uxnP0uSXHzxxXn22Wfzi1/8IptsskmN9Tj88MPzn//8J0899VQ22WST8t0lI0eOzJdffpl11llnjp/dNTsnn3xy3nrrrTz44IPZaKON0q1bt0yePDkjR47MtGnT0r9//+yxxx4N8l6XXnpp+e685Osvtz/77LOMHDkyU6dOzc9//vPyXS7J10MDnnHGGTn88MNz+OGH5w9/+ENWWmml/O9//8uLL76YJDnmmGPKd2YmyWmnnZZBgwblqquuysMPP5zVVlstr7zySt5666107tw5zz33XJ3r27Zt25x//vnZb7/9ct555+WWW27JaqutlnHjxuXZZ59NixYtcuyxx1b7Yr6xtuViiy2WoUOH5rTTTsvAgQPTuXPnLL300hk3blyee+65tGzZcqa7AbfccsskydVXX52ePXvW+b1OO+20asFl1TCNo0aNyowZM9KlS5fynWlt2rTJTjvtlL/+9a/Zfffd07179yyyyCIZM2ZM3nzzzfIddF988UWmTJmSNm3aJPn6+Hnsscdyyimn5M4778yee+6ZLl26zG0zVdOsWbOcc8452X333XPdddfl4YcfzlprrZVPP/20/Fn222+/bLrppuV1Bg0alGeffTZ33313ttpqq3Tv3j1t27bNqFGj8sknn2S11VbL73//+watZ1L/82WS7LHHHnnvvfdy2mmnZbvttqu1/F133TV33313hg8fnmeeeSarrrpqJkyYkGeffTalUik///nP8+abb2b8+PFz/BlWXnnlHHvssfntb3+b3XbbLd27d8+CCy6YJ598MosttliWXHLJuSp/Tnz7HHPUUUflyiuvLH/Wl19+OW3bts1ZZ51VLchtyHPmxhtvnH79+uW+++5Lv3790rVr1yy44IJ59dVX89Zbb2WppZbKIYccUl5+9OjR2W233ZIkr7zySoO2BQAAxSP4AwCgTiZNmpTbb7+9/LpZs2Zp27Ztll9++Wy66aYZOHBgVl555TqV1a9fv/z5z3/OVVddlRdeeCGvvPJKFllkkfTu3Tt77rlntTCiefPmGTZsWM4444zyUIpz+3y9I444Is8991yuu+66vPjii1luueWy5557Zq+99prpbsVhw4blsssuy2233ZYnnngiSy65ZHbdddccfPDBNd7dsfPOO+fll1/OAw88kEcffTQrr7zyLIO/Nm3a5Iorrsg111yT2267LU8++WRatGiRVVddNdttt1122GGH8nMGG9oSSyyR66+/PldddVXuvvvuPProo2nbtm26dOmSnXbaqRwONYTHH3+82usWLVpk4YUXzhprrJGNNtooAwcOzIILLlhtmU033TT/+Mc/cvnll+fJJ5/Mww8/nCWWWCJ9+vTJXnvtNVNgteKKK+bGG2/MJZdckgcffDAPPfRQVllllVx00UV59dVX6xX8JUnXrl1z880357LLLstjjz2WBx54IIsttli23HLL7LnnntVCv6Rxt+Uee+yRpZdeOtdee21efvnlvPDCC1lsscWy1VZbZd99960WkM6N+++/v9rrVq1aZeGFF063bt2y2WabzfQcwWOOOSY///nPc/3112f06NFp3bp1lltuuRxwwAHZe++98+tf/zoPPfRQHnnkkWy22WZJkoMOOijvvfdennzyyTz22GNZf/31Gzz4S5Kf//znufnmm/OnP/0pDzzwQB588MEsssgi2WCDDbLbbrtl/fXXr7Z88+bNc+6556Z379658cYby0P9/vSnP80+++yTQYMGle9WbGj1OV/W11prrZVrrrkmF154Yf7zn//k0UcfzTLLLJN+/fplr732ygcffJBDDjkkDz30UHbcccc5fp+dd945P/3pT3PZZZeVw/sNNtggxxxzTAYNGjTH5c6NTTfdNMOHD8+f/vSnjBgxIq+//nqWWmqpDBgwIHvttddMf88a8pxZFT5fddVVueuuu/LMM89kxowZ+fGPf5zddtstBxxwQPn5ggAAUF/NSt8ezwMAAIDC69KlS66++up07NixsavC96B///4ZPHhwNt9888auCgAA8APzjD8AAID5yKhRo1JZWZmf//znjV0Vvgfvvvtu3njjjQa70xMAAJi3CP4AAADmE9OnT89vfvObHH300dWeC0dxHHXUUdlnn33y05/+tLGrAgAANAJDfQIAAMxHvvzyy5meqUhx2L4AADB/E/wBAAAAAABAARjqEwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAACgCSuVSo1dBQAAAOYRLRu7AkDTNGjQoIwcObLatIUXXjhrrLFGDj744PTo0WOu36N9+/Y5+OCDc8ghh8x1WQAATUFD9qE++OCDnHjiiTn++OOz/PLLJ0k22mij9OjRI6effnqD1hsAoCiOPvro3HzzzbOcf+aZZ2b48OFJkr/+9a8/VLUAfjCCP2CW1lhjjZx44olJkhkzZuSTTz7Jtddem7333js33XRTVl111UauIQBA09NQfajHH388Dz/8cI4//vjvs7oAAIWz1FJL5aKLLqpx3oorrlgO/gCKSPAHzNJCCy2Uzp07V5u23nrrZd11181NN92Uo446qnEqBgDQhOlDAQA0rtatW8/UHwOYX3jGH1Avbdu2zQILLJBmzZqVp91///3Zbrvt0rFjx6y//vr53e9+l0mTJlVbb+TIkdlxxx2z1lprZbPNNsvjjz9ebf67776b9u3b58orr8wWW2yRHj165KabbkqSvPDCC9l7773Ts2fPdO3aNQcccEDGjBlTbf0PP/wwxxxzTDbccMN06tQpAwYMyAMPPFBtmfbt2+faa6/N0UcfnbXXXjs9evTI7373u0yZMiVnnHFG1llnnfTs2TPHHntspk6dWl7v8ccfz4477pguXbqke/fuOeigg/LGG280SHsCAPOH7/ahZsyYkcsuuyxbb711OnXqlM6dO2ennXbKE088kSS56aabcswxxyRJNt544xx99NHlsr766quceeaZWX/99dO5c+fstddeefvtt8vzjz766Oy+++458cQT061bt2y77baZPn16pk6dmj/84Q/ZfPPN07Fjx2y66aa57LLLUllZWa2ud911V7bbbrt06dIl66+/fk444YR89tln5fkXXnhhNt9889x///3Zeuut07Fjx/ziF7/Is88+m+eeey477LBDOnXqlK233rr8eZJk6tSp+e1vf5vevXunQ4cO2XzzzXPFFVc0fGMDANRTQ/aT+vXrl4suuig9e/bMJptskk8++SQvvfRSdt9996y99trp0qVL9thjjzz//PM/9McE5hPu+ANmqVQqZfr06eX/f/rpp7n66qszbdq0bL/99kmS22+/PUceeWT69++fX/3qV3nvvfdy7rnn5rXXXsuVV16ZZs2a5aWXXspee+2Vnj175vzzz8/777+fww8/vMb3PPfcc3PCCSdkkUUWSYcOHfLkk09mn332Sffu3XPqqadm2rRp+eMf/5iddtopN9xwQ1ZeeeWMHz8+AwYMSKtWrTJkyJAstthiuemmmzJ48OCceeaZ2WabbcrlDxs2LFtttVUuuuiiPPjgg7n66qvzr3/9K6uttlrOOuusjBo1Kpdeeml+/vOfZ5999snYsWNz4IEHZvvtt8+QIUPy2Wef5dxzz81+++2Xe++9N82b+/0EAFBdXfpQw4YNyzXXXJMjjzwy7du3zwcffJA//OEPOeyww/Lwww+nT58+OfDAA3PJJZfkoosuSvv27cvl33XXXenVq1dOP/30fPTRRznttNMyZMiQ8o+mkmTUqFFp1qxZLrzwwnz55Zdp0aJF9t133zz33HMZPHhwVl999YwYMSLnnXdexo4dm1NOOSVJcvHFF+f888/PLrvskiFDhmTs2LE5//zz89xzz+WGG25ImzZtknz9/MGq923btm1OOeWUHHrooWnVqlUOPPDALLbYYjnnnHMyZMiQPPzww2nTpk1OPfXU/Otf/8pRRx2VJZdcMo8++mjOOOOMLLrootluu+1+qM0DAMwnqvpj39aiRYtqP2ZPvu6vHXDAAQ3WT3r//fdz33335Zxzzsknn3ySVq1aZZ999knPnj1zwQUX5Kuvvsoll1ySvffeOw899FAWXnjh778xgPmK4A+YpaeeeiprrrnmTNMPP/zwrLzyyimVShk2bFg22GCDDBs2rDz/Zz/7WfbYY4888sgj6dOnT/74xz9m8cUXzyWXXJLWrVsnSRZddNEMGTJkprI33XTTDBgwoPz6sMMOyworrJDLL788LVq0SJL06tUr/fr1y4UXXpjzzjsvV155ZSZMmJC77747K6ywQpJkww03zB577JEzzzwzW2+9dTmgW3nllXPyyScnSbp3757hw4fnq6++yrBhw9KyZctssMEGefDBB/PMM88kSUaPHp0pU6Zk//33zzLLLJMk+fGPf5wHHnggkyZNykILLTTX7QwAFMvs+lDJ16MVDBkyJIMGDSrPb9OmTQ455JC88sor6dKlS1ZcccUkyeqrr57ll1++vNwyyyyTiy++OK1atUqSvP3227n00kszceLEct9k+vTp+e1vf5uf/vSnSZJHHnkkjz/+eM4666zyj6LWX3/9tGnTJueff3523333LLXUUrnkkkuyww47lJ9RmCQVFRUZOHBgbrrppuyyyy5JksmTJ+fEE09M7969kySvv/56zj777Jx66qnlvtyMGTNy6KGH5s0338zqq6+ekSNHZr311stWW22VJOnZs2fatWuXxRZbbG6bHACgmvfee6/G/thhhx2Wgw46qNq0Rx99tEH7SdOnT89RRx2V9dZbL0ny3HPPZcKECRk0aFDWXnvtJMlKK62U6667LhMnThT8AQ1O8AfM0pprrpnf/va3Sb7+9dPnn3+eRx99NOeee24mTZqUbbbZJh988EH233//ar+i6t69exZaaKH8+9//Tp8+ffL000+nT58+5dAv+Trgqwryvq2ioqL8/0mTJuWFF17I4MGDqy27yCKLpG/fvnnkkUeSfD2MaJcuXcqhX5VtttkmxxxzTN54442sssoqSZIuXbqU57ds2TKLLbZYOnTokJYtvzkdLrroovniiy+SJGuttVYWWGCBDBgwIFtuuWU23HDDdOvWLZ06dap/gwIA84XZ9aGGDBmSs88+O0kyYcKEvP3223nzzTfz4IMPJvl6KM/adOrUqRz6JSn3gT7//PNy8NemTZtycJh83V9q0aJFttxyy2plbbPNNjn//PMzYsSILL/88pk2bVr69+9fbZlu3bplueWWy4gRI8pfaCVJ165dy/9fcsklk6Tas3QWXXTRcr2Sr4O+6667LuPGjUvfvn2z4YYbZvDgwbV+VgCAOVEV1H1X1Y+6v+376Cd9+/utVVddNYsvvngOPPDAbLHFFtlwww2z7rrr5te//vXcfkyAGgn+gFlacMEF07Fjx2rTevXqlUmTJuXyyy/P+uuvnyT57W9/W/5y69s+/PDDJMlnn32WxRdfvNq8qtDtu6q+NEqSL774IqVSqdq0by9XFc599tln1X4F/92yqr5sSlLjHXpt27adaVqV5ZdfPn/7299y2WWX5YYbbshVV12VRRZZJLvssksOO+wwQ30CADOZXR9qt912y/vvv5/f/va3eeGFF9KmTZusssoqWW655ZJ8HRbWpl27dtVeV/VHvv0MmiWWWKLaMFafffZZFltssWo/dkq+/lIs+brfVfV8mtn1varU1K+qGuKqJscee2yWXXbZ3HbbbeW+Y5cuXXLCCSdkjTXWmOV6AAD11bp165n6Y7PyffSTvr3cggsumL///e+55JJLctddd+W6665L27Zts8022+TYY4/NAgssUK/PBjA7gj+g3lZfffXceOON5de//vWv06NHj5mW+9GPfpTk6197jx8/vtq8UqlU7eHHNVl44YXTrFmzmdZNko8++qj8K/If/ehHs1wmyVwPH9WpU6dcdNFFmTZtWp5++ulcf/31ufTSS9O+ffuZfg0GADArVX2o119/PYccckjat2+fO+64IyuvvHKaN2+eRx55JPfcc8/38t4/+tGP8sknn2T69OnVvtSq+qHWYostVu67jR8/vjwkaZWPPvpoptEV6qt169Y58MADc+CBB+b999/PQw89lIsvvjhHHHFE7r777rkqGwBgTv0Q/aSVVlopZ511VmbMmJHRo0fn1ltvzbXXXpvll18+++23XwN/ImB+51YVoN6effbZtGjRIiuttFKWWGKJvPvuu+nYsWP537LLLpuzzz47//nPf5Ik6667bh599NFMnjy5XMZjjz0222Gs2rVrlw4dOuSuu+7KjBkzytO/+OKLPPzww+Vx0bt3755nn302Y8eOrbb+bbfdlqWWWqr8bJs5cdVVV2WjjTbKtGnT0rp166y77rrlhzr/73//m+NyAYD5T1UfaoEFFsinn36a3XbbLauuumr5jr1HH300yTd37jXkyAI9evTIjBkzctddd1WbfttttyVJ1l577ay11lpp3bp1br/99mrLjBo1Ku+//361oT3ra8qUKdlss81yxRVXJEl+8pOfZODAgdlqq63ywQcfzHG5AABz6/vuJ/3zn//MOuusk48++igtWrRIly5dctJJJ2WRRRbRDwK+F+74A2Zp4sSJee6558qvv/rqqzzwwAO5/fbbs+OOO2bJJZfMkCFDcsIJJ6RFixbp27dvPv/881x88cUZN25c+SHKgwcPzv3335+99947++yzTz755JOce+651Z5NMytHHHFEeb1dd901X331VS677LJMmzYtBx98cJJkzz33zG233ZY999wzBx98cBZbbLHccsstefLJJ/P73/9+rr40W2eddTJs2LAMHjw4u+66a1q0aJHrrrsurVu3Tt++fee4XACguGbXh1pppZWy0EIL5dJLL03Lli3TsmXL3HPPPRk+fHiSlH8stcgiiyRJ7rvvvvTu3XumX5fXR+/evdOzZ8+ceOKJ+fDDD7PGGmtk5MiR+dOf/pRtt922/Dzk/fbbLxdddFFatWqVjTfeOO+++27OP//8rLLKKtluu+3m+P3btGmTNddcs1x2+/bt8+abb+bmm2/OZpttNsflAgDMre+7n9S1a9dUVlZm8ODB2W+//bLgggvm7rvvzhdffJFNN930h/qYwHxE8AfM0n/+85/suOOO5dcLLLBAVlxxxQwZMiR77713kmSHHXbIggsumMsvvzzXX3992rVrl65du2bYsGHlYQ5+9rOf5W9/+1tOP/30DBkyJEsssUSOOuqonH766bOtw7rrrpsrr7wyF1xwQQ4//PC0bt063bp1yxlnnJFVV101yddjrl977bU5++yzc+qpp+arr77Kaqutlosvvjgbb7zxXLXBaqutlksvvTR/+MMfcvjhh2fGjBnp0KFDrrjiiqy00kpzVTYAUEyz60O1atUqF198cc4888wcdthhWXDBBbP66qvnb3/7W/bdd9+MGjUqG220UXr27Jn11lsvZ599dp544olcdtllc1ynZs2a5Y9//GMuuOCCXH311ZkwYUKWX375DBkyJHvuuWd5uUMOOSRLLrlk/va3v+XGG2/Moosums033zy/+tWvan0ucl2cfPLJOe+883LFFVfko48+yhJLLJEBAwbksMMOm6tyAQDmxvfdT1p66aVz+eWX5/zzz8+xxx6byZMnZ9VVV82FF16YddZZ54f4iMB8pllpdk+OBwAAAAAAAJo8z/gDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABRAy7osVFlZmenTp6d58+Zp1qzZ910nAIAmp1QqpbKyMi1btkzz5vX77ZS+FAAwv9OXAgCYc/XpS9Up+Js+fXpeeOGFBqkcAMC8rGPHjmndunW91tGXAgD4mr4UAMCcq0tfqk7BX1V62LFjx7Ro0WKWy82YMSMvvPDCbJejdtqx4WjLhqEdG4Z2bDjasmFox/qpaq/6/kI9qXtfqmjsYzXTLjXTLjXTLrOmbWqmXWqmXWbth2qbeaEvZT+ZN9hOTZ9tNG+wnZo+22je0BT7UnUK/qqGUWjRokWdKl7X5aiddmw42rJhaMeGoR0bjrZsGNqxfuZkeKn69qWKZn793LOjXWqmXWqmXWZN29RMu9RMu8zaD9U280Jfyn4yb7Cdmj7baN5gOzV9ttG8oSn1per/MysAAAAAAACgyRH8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoABaNnYFmpJSqZQpU6Y0WHlt2rRJs2bNGqw8AAAaR0P2E2fMmJGpU6dm8uTJadGiRYOUObf0WwGY35VKpUyePLnJ/Y1mZk2xL0V1VduoVCo1dlUA5kuCv2+ZMmVKtthiiwYr7+67707btm0brDwAABpHQ/cTmxr9VgDmd1OmTMnWW2/d2NWAQrnjjjuy0EILNXY1AOY7hvr8loa82w8AAAAAAAB+SO74m4WJHXdIqVWbeq/XrHJ6Fnru2u+hRgAANAUTO++cUvNG7EbP+CoLP39dkuSLtXZKWrSao2L0WwGgZo3+t55Za6B+EN8ffUyAxqcXMwul5i3mqPNg5GoAgGIrNW/ZdL5katFqjuui3woANWtSf+uZtbnoB/H90ccEaHyG+gQAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABFC74K5VKKZVKjV2NuVKEzwAAzLv0RZjfOQYAAACoi6Z4/Vio4K9UKuWQQw7JIYcc0uQauq5KpVIOO+ywXHTRRfPsZwAA5l1F6E/B3HAMAMyfqp3znf8BgDpoqnlOy8auQEOaMmVKXnzxxfL/27Zt28g1qr8pU6bkpZdeKv9/oYUWauQaAQDzkyL0p2BuOAYA5k9Tp0795kXl9CStG60uAMC8oanmOYW64w8AAAAAAADmV4I/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAATSr469OnT/kfc2du27IhtsXcljFgwID06dMnAwYMmOM6nHzyyTniiCNy8sknz9H6jz/+eHbcccc8/vjjc1wHAL5fztXfOOmkk9KnT5+cdNJJjV0VIA3Tp954441zxBFHZOONN270ujRUOQ1Vl4Zom4aqy6abbpo+ffpk0003neMyDj744PTp0ycHH3zwXNVlxx13zBFHHJEdd9xxrsr585//nI022ih//vOfG7WMhiynqWiovktDlXPFFVdk6NChueKKK+aqHAAAmoYmE/x990JL+Dfn5rYt991331pf18U//vGPWl/Pzosvvpjx48cnScaPH58XX3yx3nUYN25cHnnkkSTJI488knHjxtVr/SlTpuScc87JuHHjcs4552TKlCn1rgMA3y/n6m+MGzcuDz/8cJLk4YcfrvffPaBhNcT1TUNdIzWlck499dRaX9fVhRdeWOvrupjba5Yqjz76aKZNm5YkmTZtWh599NF6l/HOO++Ur3lefPHFvPPOO3NUl4a4jkqSTz/9NH//+99TWVmZv//97/n0008bpYyGLKepaKi+S0OV8+mnn+baa69NZWVlrr322nm+fQEAaELBH03HmDFjan1dF3N7IX7IIYfU+rouvvtL2fqW8fe//z0ff/xxkuTjjz/ONddcU+86APD9cq7+xtz+3QP4Idx33321vq6rhgjtGiI8TJITTjih1td1ccABB9T6uq4a4joqSY4//vhUVlYmSSorK+foMzVEGQ1ZTlPRUH2XhiqnaO0LAEDSsrErkMz6l6J9+vQp/3K9vubk124NfZdAY9RhbtuyIbbFTjvtNMvp11133WzXP+uss1IqlapNK5VKOeusszJ06NA61eGf//xnPvroo2rTPvzww/zzn//M5ptvPtv133333VxzzTXlepRKpVxzzTXZdNNNs/zyy9epDgB8v5yrvzG3f/dmZW77JTNmzMjUqVMzefLktGjRYq7KamxFv5u0KXy+prK/NERbNESfuqGukZpSObMaknPjjTfOAw88UOe6zOq8tvnmm+ef//xnncqY22uWKoceeugsp19wwQV1KuPaa6/NpEmTqk2bNGlSrr322uy88851rktDXEclyahRo/LCCy9UmzZ69OiMGjUq3bp1+8HKaMhymoqG6rs0VDlFa1+g6ZkyZco8fx1QZE2l/82s2UZNX1O4lq5Jowd/ffv2ne38hx56qE5lffsiZ9ttt52reqU0+0VmUYkGq8N3L9pmZ3ZD7czuovy1116rdf3XXnstq6yySq3LfPHFF/nggw9qnPfBBx/kiy++yMILLzzL9adNm5Y777yzxnl33nlnDjvssLRu3brWOsyYMSNnnXVWjfPOOuus9OvXr9YTZalUyvnnnz/L6WeeeWaaNWtWax0A+H45V39jbv/ufVeD9qeKqp59tCbLtp6t+vbHk9nfqXXAAQfk0ksvrXWZY445ZrbzTzvttNnW5dZbb53t/F/84hezLeeqq66a7fw99tij1mXGjRuXGTNm1DhvxowZGTduXJZZZpnZ1uXjjz+e5cX1lClT8vHHH2eJJZaotYy5vWapMnny5IwePbrGeaNHj87kyZPTtm3bWsuYPn16/vjHP9Y4749//GN22GGHtGw5+8v2hriOSr6+42tWz0c/+eSTc8stt6R589oHDmqIMhqynKaiofouDVVO0doXaEK+1X8aMGBAI1YE4Ic1J9eP35dG78XNrjGaUmMV3T777DNX85Nkt912m6v5s/sCoy5fcNxxxx21fqlwxx131Lr+O++8k6eeemqmMmbMmJGnnnpqjp+3AUDDca7+xtz+3QMa1ssvvzxX85PkiSeemKv5Vc4999y5ml+lLsHf7Oy4445zNb8hy5nba5Yqs7rbr67zk+Tqq6+eq/lVGuI6KklGjBiRzz//vMZ5n3/+eUaMGPGDlNGQ5TQVDdV3aahyita+AAB8o9Hv+GvWrFmt4V59fq3/7WVvvvnmtGnTpl51+fTTT78ZSmVObxKYyzpMmTKl/IvrH/pOhcsvv7zWcO/yyy+fbRlXX311+vfvX+v82hxzzDG13uE5u18/J8nWW2+dCy64oMYvQVu2bJmtt9661vVXXHHFdO/ePc8880y1Mlq0aJG11147K6644mzrAMD3y7n6G3P7d++75rY/9W0zZszI6NGj06lTp3l+WJJv99FSlLtJG3BbN4Smsr/MbX98tdVWqzXcW2211WZbxrrrrltruLfuuuvWqS5DhgypNdwbMmRIncrZY489ag33Zne3X5Jcf/31tYZy119/fZ3qcv3112f77befq3Lm9pqlygUXXJAtttii1vmzs9tuu9X6fnUNIRviOipJevbsmUUWWaTGQOhHP/pRevbs+YOU0ZDlNBUN1XdpqHKK1r5AE/Kt/tPw4cOz4IILNmJlqE1T6X8za7ZR09eYeU5tGj34e+ihh2odorKuw3x+V5s2bWY7rMp3NfR4rHNSh7nx8MMP19qWs3v2xuyG8Zzd/CRZeOGFs+yyy9Y4dM6Pf/zj2Q6Z07p162y11VY1DlPTv3//Og1P06JFiwwdOjSnn376TPN+/etfz/Yk2axZsxx22GHZfffda5zelA5ggPmVc/U35vbvXm3mti8zY8aMLLDAAmnbtq2LlCbuh+631qQo+8ull15aa598dsN8Jl/fnVVbGXW9e+sXv/hFrcFfXYb5TBom+FtmmWXSokWLGn+k0KJFizoN85kkSyyxRNq0aVPjtVubNm1mO8xnMvfXLFXatm2bTp061TjcZ+fOnet0TLVs2TL7779/jcN9HnjggXUa5jNpmOuoJGnevHlOOOGEHHnkkTPNO/HEE+s09GNDlNGQ5TQVDdV3aahyita+QNPUFPqYzFpR+t9FZhsxp5pET25WgVR9HjbP1+a2LRtiW1x33XU1Tr/22mvrtP7QoUNnulhp1qxZjjjiiDrXYfPNN89SSy1VbdrSSy+dTTfdtE7rL7/88tlll13K9WjWrFl22WWXLLfccnWuAwDfL+fqb8zt3z2gYTVEn7qhrpGaUjkPPPBAvabPyj//+c96Ta/J3F6zVJnVXX3nnXdencvYeeed065du2rT2rVrV+fhT6s0xHVUknTr1i0dO3asNq1Tp07p2rXrD1pGQ5bTVDRU36Whyila+wIA8LUmEfzRtKy66qq1vq6LQw45pNbXs3PhhRfW+rouLrroorkqY+DAgeVfDC+55JLZZZdd6l0HAL5fztXfmNu/ewA/hH79+tX6uq6+O9xnbcN/zsrcXrNUOfnkk2t9XRffvRO0LneG1qQhrqOS5JRTTinf8dW8efM5+kwNUUZDltNUNFTfpaHKKVr7AgDQhIK/7/5S1N1+c25u2/JPf/pTra/rYm4vxDt06JAll1wyydcXMR06dKh3HZZZZplsuOGGSZINN9ywzsMHVWnTpk0OP/zwLLPMMhkyZEijP/cGgJk5V39jmWWWKQ8N2KdPn3r/3QMaVkNc3zTUNVJTKufYY4+t9XVdNURo1xDhYZL07t27PJRm69at07t373qXseKKK5aveTp06DDHz6ptiOuoJFl00UUzcODANG/ePAMHDsyiiy7aKGU0ZDlNRUP1XRqqnEUXXTQ777xzmjdvnp133nmeb18AAJrAM/6+TdjXcOa2LRtiW8xtGcOHD5/rOpxwwgl57rnn0rlz5zlaf7311st666031/UA4PvjXP2Nk046qbGrAHxLQ/SpH3jggbnqzzZkXRqqnIaqS0O0TUPV5d57753rMr575/acuv766xtkn9l7772z9957N3oZDVlOU9FQfZeGKmevvfZK165d53qfAQCgaWgyd/wBAAAAAAAAc07wBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABRAy8auQENq06ZNOnToUP7/vKjqM0ycOHGe/QwAwLyrCP0pmBuOAYD50wILLPDNi+aF+roMAPieNNU8p1A9mWbNmuXCCy8s/39e1KxZs5x33nl57rnn5tnPAADMu4rQn4K54RgAmD9VO+c7/wMAddBU85xCBX9JMS7OmzVrVojPAQDMm/RDmN85BgAAAKiLppjneMYfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACqBlY1egqWpWOSOlGV/NwXrTv4faAADQVDSrnJ5SY1bg233UOeivVtFvBYCaNfrfematgfpBfH/0MQEan+BvFhZ64cbGrgIAAE3QQs9d29hVKFv4+esauwoAUDhN6W89s6YfBAA1M9Tnt7Rp06axqwAAAAAAAABzxB1/39KmTZvcfffdDVoeAADzvobsJ86YMSOjR49Op06d0qJFiwYpc27ptwIwv2vTpk3uuOOOJvc3mpk1xb4U1VVtI31MgMYh+PuWZs2apW3bto1dDQAAmpiG7CfOmDEjCyywQNq2bevLKgBoIqr+1vsb3fTpSzV9VduoWbNmjV0VgPmSoT4BAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABRAy7osVCqVkiQzZsyodbmq+bNbjtppx4ajLRuGdmwY2rHhaMuGoR3rp6qdqvpF9VHXvlTR2Mdqpl1qpl1qpl1mTdvUTLvUTLvM2g/VNvNCX8p+Mm+wnZo+22jeYDs1fbbRvKEp9qWaleqw1LRp0/LCCy/Mfc0AAOZxHTt2TOvWreu1jr4UAMDX9KUAAOZcXfpSdQr+KisrM3369DRv3jzNmjVrsAoCAMwrSqVSKisr07JlyzRvXr/R0vWlAID5nb4UAMCcq09fqk7BHwAAAAAAANC01e8nVgAAAAAAAECTJPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKIAGC/4+/vjjHHTQQenWrVt69uyZU089NdOnT2+o4ucbd911V9ZYY4106dKl/G/o0KGNXa15xoQJE9KvX7+MGDGiPO3555/PDjvskC5dumSjjTbKjTfe2Ig1nHfU1JYnnnhiOnToUG3/vP766xuxlk3Xyy+/nD333DM9evTI+uuvn1//+teZMGFCEvtkfdXWlvbJunviiSeyww47pGvXrll//fVzyimnZMqUKUnsk3x/avpbMj+r7Xw2v6vtHEUyY8aMDBo0KEcffXRjV6VJcM00a59++ml+/etfp2fPnunevXsOOuigfPjhh41drUZ12223VdtXunTpkg4dOqRDhw6NXbVG99JLL2XgwIHp1q1bevXqld/97neZNm1aY1frB1OXfsojjzyS/v37p3Pnztliiy3y0EMP/YA1JKnbdtpnn33SsWPHasf5o48++gPWcv5Un76tY6lx1GcbOY4aT32uhRxLjac+26lJHE+lBrLrrruWjjjiiNKkSZNK77zzTmmrrbYq/elPf2qo4ucbp59+eunoo49u7GrMk0aNGlXaZJNNShUVFaUnn3yyVCqVSp9++mmpR48epb/97W+lr776qvT444+XunTpUnr++ecbubZNW01tWSqVSttuu23ppptuasSazRsmT55cWn/99Uvnn39+aerUqaUJEyaU9t1339L+++9vn6yn2tqyVLJP1tXHH39c6tixY+kf//hHacaMGaVx48aVtt5669L5559vn+R7M6u/JfOr2Z3P5me1naP42nnnnVdabbXVSkcddVRjV6VJcM00a7vuumtp8ODBpc8++6z0xRdflA4++ODSfvvt19jValI++OCD0vrrr1+65ZZbGrsqjWrGjBml9ddfv/SXv/ylNGPGjNL//ve/0mabbVa66KKLGrtqP4i69FPefPPNUseOHUv33Xdf6auvvirdeeedpU6dOpU++OCDH7i286+69id79uxZGjFixA9YM+rTt3UsNY76Xn84jhpHfa6FHEuNp77XrE3heGqQO/7efvvtjBw5MkOHDk3btm2zwgor5KCDDsrf//73hih+vvLCCy/45eEcuPnmm3PkkUdmyJAh1abfe++9WXTRRTNw4MC0bNky6667bvr372/frMWs2nLatGl59dVX7Z918P7772e11VbL4MGD07p16yy22GLZcccd89RTT9kn66m2trRP1t3iiy+exx9/PNttt12aNWuWTz/9NFOnTs3iiy9un+R7Mau/JfOz2s5n87vazlF8/cvSe++9N5tuumljV6XJcM1UsxdffDHPP/98Tj/99CyyyCJZaKGFcsopp+TII49s7Ko1GaVSKUOHDk2fPn3yi1/8orGr06g+++yzfPTRR6msrEypVEqSNG/ePG3btm3kmn3/6tpPufnmm9OtW7dssskmadmyZbbccst0797dCCM/kLpup7Fjx+azzz7LGmus8QPVjKR+fVvHUuOozzZyHDWe+lwLOZYaT322U1M5nhok+BszZkwWXXTRLLPMMuVpK6+8ct5///18/vnnDfEW84XKysq89NJLefjhh9O3b9/07t07xx9/fD777LPGrlqT16tXr9x3333Zcsstq00fM2ZMKioqqk1bZZVV8vLLL/+Q1ZunzKotX3755UyfPj0XXHBB1ltvvWy22Wa57LLLUllZ2Ug1bbpWWmmlXH755WnRokV52j333JM111zTPllPtbWlfbJ+FlpooSTJhhtumP79+2eppZbKdtttZ5/kezGrvyXzs9rOZ8z6HDW/+/jjj3Psscfm7LPPni++jK8L10yzNnr06Kyyyiq54YYb0q9fv/Tq1StnnHFGllpqqcauWpNx66235rXXXjNsbpLFFlsse+yxR84444x07NgxG264YX72s59ljz32aOyqfe/q2k957bXX9JMbUV230wsvvJAFF1wwQ4YMyTrrrJOtt946w4cP/4FqOf+qT9/WsdQ46rONHEeNq67XQo6lxlXX7dRUjqcGCf6+/PLLmS5Eq15PmjSpId5ivjBhwoSsscYa2WyzzXLXXXfluuuuy1tvveV5FXWw1FJLpWXLljNNr2nfbNOmjf2yFrNqyy+++CI9evTIoEGD8sgjj+Sss87KX//611xxxRWNUMt5R6lUyrnnnpuHHnooxx57rH1yLny3Le2Tc+bee+/No48+mubNm+fQQw+1T/K9mNXfEr723fMZ3/juOWp+VllZmaFDh2bPPffMaqut1tjVaTJcM83aZ599lldeeSVvvfVWbr755txyyy0ZN25cjjrqqMauWpNQWVmZSy65JAcccED5i5v5WWVlZdq0aZPjjz8+zz33XO644468/vrrueCCCxq7at+7uvZT9JMbV12307Rp09K5c+cMGTIkjz32WI4++uiceuqpufvuu3+AWpLMvm/rWGp8s9tGjqOmYXbXQo6lpmF226mpHE8NEvy1a9cukydPrjat6vWCCy7YEG8xX1hyySXz97//PQMGDEjbtm3zk5/8JEOHDs2jjz6aiRMnNnb15klt27ad6SGbU6ZMsV/OgfXXXz9XX311evTokVatWqVTp07Zfffdc9dddzV21ZqsiRMn5tBDD83tt9+ev/3tb2nfvr19cg7V1Jb2yTnTpk2bLLPMMhk6dGgee+wx+yT8wGo6n/GN756j5ue7uP74xz+mdevWGTRoUGNXpUlxzTRrrVu3TpIce+yxWWihhbLkkkvmV7/6VR555JF8+eWXjVy7xjdixIh8+OGHGTBgQGNXpUm47777cs8992SXXXZJ69ats+qqq2bw4MG59tprG7tqTYZ+8rzhl7/8ZS6//PKsscYaadWqVXr16pVf/vKXAosfSF36to6lxlWXbeQ4ahpmdy3kWGoaZredmsrx1CDB36qrrppPP/0048ePL097/fXXs+yyy2bhhRduiLeYL7z88ssZNmxYeXz95OuEuHnz5uWLOOqnoqIiY8aMqTbttddey6qrrtpINZp33X///bnuuuuqTZs2bVratGnTSDVq2t55551sv/32mThxYoYPH17uWNkn629WbWmfrLtnnnkmm2++eaZNm1aeNm3atLRq1SqrrLKKfRJ+ILM6n83vajtHzc/DW956660ZOXJkunXrlm7duuWOO+7IHXfckW7dujV21RqVa6ZZW2WVVVJZWZmvvvqqPK1qCPRvt9f86p577km/fv3Srl27xq5Kk/C///2v2nk3SVq2bJlWrVo1Uo2aHtdu84bhw4fP9GXqtGnTssACCzRSjeYfde3bOpYaT123keOo8dTnWsix1Hjqs52ayvHUIMHfz372s6y99tr5/e9/n4kTJ2bs2LG5+OKL/ZKunhZddNH8/e9/z+WXX57p06fn/fffz1lnnZVtt912vr+InVP9+vXL+PHjc9VVV+Wrr77Kk08+mdtvvz3bb799Y1dtnlMqlXLaaafliSeeSKlUyrPPPpurr746O+64Y2NXrcn57LPPsvvuu6dr167585//XO1Br/bJ+qmtLe2Tdde+fftMmTIlZ599dqZNm5b33nsvZ5xxRgYMGJDNNtvMPgk/gNrOZ/O72s5R83Mf+J///GeeeeaZjBo1KqNGjcrWW2+drbfeOqNGjWrsqjUq10yztt5662WFFVbIb37zm3z55ZeZMGFCzj333GyyySaGtkzy9NNPp3v37o1djSajV69e+eijj3LppZdmxowZGTt2bC655JL079+/savWZGyzzTYZOXJk7rrrrkyfPj133XVXRo4cmV/84heNXTW+ZeLEiTnllFPyn//8J5WVlXn44Ydzxx13uC78ntWnb+tYahz12UaOo8ZTn2shx1Ljqc92airHU7NSA/30b/z48Tn55JMzYsSING/ePL/85S9z5JFHVnuAKLM3cuTInHPOOXn11VezwAILZKuttsrQoUP9wqIe2rdvn6uvvjo9e/ZM8vUDNU899dS8+uqrWXzxxXPQQQfV+OBNZvbdtrzuuuty5ZVXZty4cVlyySWz5557ZuDAgY1cy6bnyiuvzOmnn562bdumWbNm1eY9++yz9sl6mF1b2ifr7rXXXsvvf//7vPDCC1l44YXTv3//DB48OK1bt7ZP8r367t+S+dXszmfzu9rOUXzt6KOPTpKcfvrpjVyTxueaadbGjRuX008/PU899VSmTp2ajTbaKMcee2wWWWSRxq5ao+vSpUvOO++8bLjhho1dlSbj8ccfz3nnnZc33ngjCy+8cLbZZpv57tz73X5Kly5d8tvf/jbbbLNNkuSxxx7LsGHD8s4772S55ZbL0KFD7UONoLbtVCqVcskll2T48OH5+OOPs8IKK+Tggw/O5ptv3si1LrbZ9W0dS42vPtvIcdS4arsWciw1HXXdTk3leGqw4A8AAAAAAABoPA0y1CcAAAAAAADQuAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAABQL1988UUmTJjQ2NUAAADgOwR/MI9o37599ttvv5RKpWrTb7rppmy00Ubfy3tutNFGuemmm76Xsuvirrvuyrrrrpu11147Dz30ULV57777btq3b5/OnTunS5cuWWuttbLOOuvkyCOPzOeffz7H73n00Ufn6KOPntuqAwBNhD7U99OH6tevX8aMGZPk+21LAGDepA/20Ezz27dvn06dOqVLly7V/h177LFJGr/+QHEI/mAe8sgjj+Tyyy9v7Gr8YG688cZstdVWefrpp9O3b98al7njjjvy7LPP5vnnn88dd9yRt99+O6eeeuoPXFMAoCnTh5rZ3PahPvnkk4aqLgBQUPpgM/vTn/6UZ599tto/32MBDU3wB/OQQYMG5fzzz88zzzxT4/yqX3C/++675WkXXnhhBg0alOTrX1XtsssuOeOMM9KjR4+ss846+etf/5obbrghffv2zdprr50TTjihWpkvvfRStttuu/To0SN777133nrrrfK8d955JwcccEB69uyZvn375txzz820adPK77Xddttlr732Srdu3XL77bfPVN9PPvkkxx9/fHr16pWePXtm//33L5c/YMCAPPnkk7nuuuuyySab1Kl9llxyyWyzzTZ58cUXy9PGjx+fI488Muuvv3569eqVE044IRMnTizPf+CBB7LVVlulc+fO2X///at9iXXhhRdmr732yvbbb58ePXrkqaeeqrXOSfLKK69k3333TY8ePdK7d++cdNJJ+eKLL+ao/e+5555stdVWWXvttbPFFlvk4osvrlM7AADV6UPVrqY+1DPPPJPddtstvXr1SseOHbPddtvlueeeS5JsttlmSZJ99903f/rTn5Ik06dPz7Bhw9KnT5907do1xx13XKZPn57k6xEVDj300GyxxRZZZ5118s477+S9997Lr371q6y77rpZf/31c8QRR+TDDz8sv/+oUaMycODAdOvWLRtttFHOO++8chtdeOGFOeyww3LUUUela9eu6d27d+6+++784Q9/yHrrrZcePXpU6zddc8012WSTTdKtW7f0798/N954Y53aBQCYO/pgc27KlCk588wzs+GGG6Z79+4ZNGhQRo8eXZ5fW19qxIgR2XDDDXPEEUekW7duueyyyzJmzJgMHDgw3bt3T9++fXPUUUdV+34MKBbBH8xD+vXrlx133DGHH354Pv300zkq4+mnn84yyyyTJ598MoceemhOO+20jBgxInfddVeuuuqqDB8+PE899VR5+fvvvz+nnXZaHnvssSy//PLZf//9M3369EyaNCl77LFHVl111Tz66KO55ppr8vjjj+fCCy8sr/vSSy+lf//+efzxx9OvX7+Z6nLooYfmnXfeyc0335xHHnkkK620UvbYY49MnDgxw4cPT7du3bL//vvn/vvvr9Nn++ijj3Lfffdl0003TZJUVlbmoIMOSvPmzXPPPffk9ttvz4cffljuFL7xxhs57LDDsv/++2fUqFHZYYcd8thjj1Ur84knnsiRRx6Zhx56KF26dKm1zp988kl22223rLLKKnn00Ufzj/9v795jqq7/OI4/PcA5xzpyS0BAYCplbuCCdMplMhrTSqKpzTZYA2ls9Ee2QIG5RBje5ryALaIkCJtLLf8oUYzKaZoMJ801tXKJi5sSIjOg4MCB3x+OM4/6gwP9Lslej42N8/2e7/dzOf+89nl/z+ccOcL169fJyckZ9/z39fWxfv168vPzaWhoYNeuXezbt88h5ImIiIhzlKFGd3+G6uvr44033mDZsmV899131NfXExwczI4dO4C7DyfB3SfWMzIyAGhvb8fd3Z1vvvmGw4cPU11dzYkTJ+xtnDlzhpKSEmpra/H39yc9PR0XFxdqa2upqakBIDMzk8HBQRobG1mzZg1Lly7l3LlzVFZWcvLkSXv7I32Ij4+noaGBpKQksrOz6enp4fTp02zdupWSkhJaW1tpbm5m27ZtfPjhh1y4cIGcnByKioociowiIiLy36EMNnEFBQWcPXuW/fv38/3335OQkEBaWhptbW0MDAyMmqUAbt68yezZs6mrqyM5OZnCwkKioqI4f/48R44c4cqVK3oYSmQSU+FP5BGTm5uLt7c3eXl5D+yT7ozHHnuM1NRUDAYDsbGx2Gw2Xn/9daZOnUp4eDi+vr60trba35+ens7cuXMxmUzk5eXR0tLCjz/+yKlTp7BarWRlZWEymfD39+ett97iwIED9mvd3Nx4+eWXMRqNmM1mh340Nzdz/vx5Nm7ciI+PD2azmXXr1jE4OMjp06edHk9SUhILFiwgIiKC2NhYmpqaSExMBODSpUtcvnyZTZs2YbFY8PLyIjc3l2PHjtHV1cXx48cJCwsjKSkJV1dXEhISHtiKISgoiKioKB5//HFu3Lgxap+//fZb3NzcWLduHWazGR8fHzZu3MjJkyfp6OgY9/ybzWY+//xz6urqmDNnDg0NDcyfP398H7iIiIgAylD3Gy1Dubm5cejQIZKTk7FarbS2tuLp6Ul7e/u/vZ/FYiEjIwNXV1dCQ0N5+umnaWpqsp9/5plneOqpp3B3d+fChQs0NzdTWFjItGnTcHd3p7CwkJ9//plLly5x9OhR5s6dS2pqKkajkZCQELKzs/nss88YGhoCIDQ0lOeff54pU6YQExODzWYjMzMTNzc3++8GtbW14eLiwvDwMAcPHqShoYGoqCguXryIr6+v03MlIiIiE6cM5igzM5MFCxbY/x727cD+/n6qq6vJzs4mJCQEo9FIamoqs2fPprq6eswsNeKVV17Bzc0Ni8WCyWTizJkznDhxAoPBwBdffMGaNWvG81GIyCPE9f/dAREZH6PRSHFxMStWrKCiogIvL69xXe/p6cmUKVMAMBju1v7d3d3t5w0Gg31BBWDmzJn2/6dOnWpf9GltbeX27dssXLjQfn54eJiBgQE6OzsB8PHxsbdxv1u3bgF3C2sjXFxc8Pf3dwhsY/nyyy/tfezp6WHv3r2sXr2a48eP09LSgs1mIy4uzuEao9FIc3Mz7e3tBAQEOJwLDg522O7z3kWhsfo8PDxMQEAALi4u9vMjfRsZk7Pzbzab+fTTTyktLbU/wb5s2TLeeecdPDw8nJ4fERERuUsZytFoGcrPz4/6+noyMjL4888/CQ0NxdXVddTFOg8PD/v8wN2FM5vNZn99b6bq7OzEy8sLi8ViP2axWPD09KS1tZXOzk6H8cHd+ezr67PPkaenp/3cyFyNZKSR10NDQwQEBPDJJ59QXl5OZmYmNpuNlStXsn79ekwmk9PzJSIiIhOjDOaorKyMRYsWjfqeO3fuMDAw4DCWkbG1tLQQEBAwapaaPn064Ji/iouLeffdd9mzZw9ZWVlERkZSUFDAk08+6XTfReTRocKfyCMoODiYoqIicnJyWLlypf34SMFpYGDAfuzeIhbgsCDjjHu3QRrZzjIwMJDBwUGCg4MdtnDq6emhs7MTb2/vMdsKDAwE7u6vPhIybDYbbW1t+Pj4jKuPIywWC2vXrqWqqoqGhgZmzJiB2Wymvr7ePjdWq5Xm5mZCQkKYMWMGp06dcrjHzZs3HRaB7h3DWH12c3Ojra0Nm81mb2/kSXcfHx8aGxudnv+enh5+//13du3aBcBPP/1EVlYWZWVl5ObmTmB2RERERBnq4e7PUIGBgRQVFXHw4EHCwsIAqKio4Pr16xO6PzyYqbq6uujp6bEvWHV3d9PV1YWPjw+BgYHU1tY6XN/U1ITRaLQX95z9PDo7O7HZbLz33nsMDQ3xww8/sHbtWmbNmkVKSsqExyMiIiLOUwYbn+nTp2MymWhubmbOnDn2401NTTz33HNjZqmRh7VGxjM0NMSVK1d488032bBhAzdu3GDbtm3k5eVx5MiR/2jfReSfQVt9ijyiXnzxRVatWsWhQ4fsx5544gk8PDw4duwYw8PDXL582SHQTERFRQWNjY389ddfbNmyhXnz5hEWFkZ8fDy9vb2Ul5djtVr5448/yM3N5e2333YqlPn6+hIXF8fmzZvp6Oigr6+PnTt3YrPZHthu01n9/f1UVVVhNpsJDw9n/vz5hISEsH37dnp7e+nr62Pr1q2kpaVhs9lISkri6tWrHD58mMHBQc6ePcvXX3894T6PfLNw586d9PX10dHRwZYtW1i8eLE9IDqrt7eXjIwMjh49yvDwML6+vhgMhnE/GSciIiKOlKEedH+G6u7uxmAw2Le4unjxIvv378dqtdqvMRqNdHd3T6i98PBwQkND2bRpE93d3XR3d1NQUEBwcDCRkZEsX76ca9euUVVVhdVqpampid27d/PSSy9hNBrH1VZbWxvp6enU1dVhMBjw8/MDUKYSERH5H1MGc57BYGDVqlXs3r2b3377DavVSlVVFb/++ivLly8fM0s97H6bN2+muLiY/v5+vL29MZlMykMik5gKfyKPsA0bNjBv3jz7a6PRSFFRETU1NURGRrJ9+3ZWr179t9pISEggMzOTJUuWcOfOHUpLSzEYDFgsFj7++GPq6+tZsmQJCQkJGAwG3n//fafvvWPHDoKCglixYgXR0dH88ssvVFVVOWzdNJbExEQiIiKIiIggOjqac+fOUVZWRlBQEK6urnzwwQfcunWLpUuX2n+/prKyEpPJRFBQEGVlZRw4cIBnn32W0tLSh/54s7N9njZtGpWVlVy9epW4uDgSExMJDAykpKTE6fGM8PPzY+/evezbt4/IyEgSExNZvHgxaWlp476XiIiIOFKGGj1DxcTEkJycTEpKCgsXLqSwsJDXXnuN27dv27e5evXVV8nOzmbPnj3jnRp7RhscHGTZsmXEx8czMDBAZWUlrq6uzJw5k/Lycr766iuio6NJTk4mJiaG/Pz8cbcVHh5Ofn4+BQUFREREkJKSQnJyMi+88MK47yUiIiJ/jzKY83JycoiNjSUtLY1FixZRU1PDRx99xKxZs8bMUg9TXFzMtWvXiI2NJTo6mu7uboqKiv7j/RaRf4YpwxP5VVURERERERERERERERER+UfRN/5EREREREREREREREREJgEV/kREREREREREREREREQmARX+RERERERERERERERERCYBFf5EREREREREREREREREJgEV/kREREREREREREREREQmARX+RERERERERERERERERCYBFf5EREREREREREREREREJgEV/kREREREREREREREREQmARX+RERERERERERERERERCYBFf5EREREREREREREREREJgEV/kREREREREREREREREQmARX+RERERERERERERERERCaBfwFt1qcbniE8LQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "# Create subplots\n", + "fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 6))\n", + "\n", + "# Common title for all subplots\n", + "fig.suptitle('Distribution of Bedrooms, Bathrooms, and Floors.', fontsize=16)\n", + "\n", + "# Box plot for bedrooms\n", + "sns.boxplot(x=housing_data['bedrooms'], ax=axes[0])\n", + "axes[0].set_title('Bedrooms')\n", + "axes[0].set_xlabel('Number of Bedrooms')\n", + "\n", + "# Box plot for bathrooms\n", + "sns.boxplot(x=housing_data['bathrooms'], ax=axes[1])\n", + "axes[1].set_title('Bathrooms')\n", + "axes[1].set_xlabel('Number of Bathrooms')\n", + "\n", + "# Box plot for floors\n", + "sns.boxplot(x=housing_data['floors'], ax=axes[2])\n", + "axes[2].set_title('Floors')\n", + "axes[2].set_xlabel('Number of Floors')\n", + "\n", + "# Adjust layout\n", + "plt.tight_layout()\n", + "\n", + "# Show plots\n", + "plt.show();\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After analyzing the distribution of bedrooms, bathrooms and floors, an outlier was detected in the bedroom column. To ensure the accuracy of our analysis, the outlier value was identified and subsequently removed from the dataset. The box plot below displays the distribution of bedrooms after excluding the outlier value. " + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "# Identify the outlier value\n", + "outlier_value = housing_data['bedrooms'].max() \n", + "\n", + "# Filter the DataFrame to exclude the outlier\n", + "housing_data = housing_data[housing_data['bedrooms'] != outlier_value]" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'Number of Bedrooms')" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAHBCAYAAAAWz6MMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAhuklEQVR4nO3deXSV9Z348XcWskhUQAIoix4EoyNBww6mBihL1UCrYLFYFUXFEZUB2VygYwUFAZGliJURHBdcUuwAIhYQohYRRJGlU2vLdICKkAACgcYkN3f+4Jf7M4IhoORJwvt1DufkPs9dPvmS3PvOfW5yo8LhcBhJknRaiw56AEmSFDyDQJIkGQSSJMkgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCKQKd9NNN5GSklLqX5s2bbj55ptZu3btD3IbKSkpzJgx4we5Lkmnh9igB5BOR//yL//Cr371KwBCoRD79u1j/vz5DBw4kAULFtC8efOAJ5R0ujEIpAAkJSVx+eWXl9rWqVMnOnbsyIIFCxg1alQwg0k6bXnIQKokEhMTiY+PJyoqKrJt+fLlXHfddaSmpnLFFVcwbtw4Dh8+XOpya9eupV+/flx22WX07NmT1atXl9q/Y8cOUlJSmDt3LldddRXt2rVjwYIFAGzatImBAwfSvn17WrVqxV133cXnn39e6vK7d+/mgQceICMjg5YtW9K3b19WrFhR6jwpKSnMnz+f0aNH07p1a9q1a8e4cePIz89n4sSJdOjQgfbt2/PQQw/x9ddfRy63evVq+vXrR1paGm3btuXuu+9m69atP8h6SjoxBoEUgHA4TFFREUVFRRQWFpKTk8OTTz5JQUEBffr0AWDRokUMHjyYpk2b8pvf/IZ77rmHhQsXcvfdd1PyJqVbtmzhtttuIykpiWnTpnHLLbcwbNiwY97m1KlTGThwIOPGjaNDhw6sWbOGX/ziFxQXFzN+/HjGjRvHzp07ueGGG/jb3/4GQG5uLn379mXt2rUMHTqUGTNm0LBhQwYPHszChQtLXf/kyZOJi4tj5syZ/PSnP+WFF17gZz/7GTt37mTSpEnccMMNZGVl8cILLwCwfft2/vVf/5VLL72Up59+mnHjxrF161buvPNOiouLT9XSS/oOHjKQArBu3TouvfTSo7YPGzaMCy+8kHA4zOTJk/nRj37E5MmTI/svuOACBgwYQHZ2Np07d+aZZ56hTp06PP3008TFxQFQq1Ythg4detR19+jRg759+0ZODxkyhMaNGzNnzhxiYmIASE9Pp3v37syYMYOnnnqKuXPnsnfvXt566y0aN24MQEZGBgMGDOCJJ54gMzOT6OgjP1dceOGF/PrXvwagbdu2ZGVlUVhYyOTJk4mNjeVHP/oR77zzDh9//DEAGzduJD8/n0GDBlG/fn0Azj33XFasWMHhw4dJSkr63ussqfwMAikAl156KY888ghw5NmCAwcO8O677zJ16lQOHz5M7969+fLLLxk0aBBFRUWRy7Vt25akpCT++Mc/0rlzZ9avX0/nzp0jMQBHHvhLHuC/6aKLLop8fPjwYTZt2sTgwYNLnfess86iS5cuZGdnA0cOR6SlpUVioETv3r154IEH2Lp1K82aNQMgLS0tsj82NpbatWvTokULYmP//91MrVq1OHjwIACXXXYZ8fHx9O3bl6uvvpqMjAzatGlDy5YtT3xBJX1vBoEUgJo1a5KamlpqW3p6OocPH2bOnDlcccUVADzyyCORcPim3bt3A7B//37q1KlTal/Jg/G31a1bN/LxwYMHCYfDpbZ983wlD9r79++nUaNG33ldBw4ciGw71k/0iYmJR20r0ahRI1588UV++9vf8tprrzFv3jzOOuss+vfvz5AhQyLPPEiqGAaBVIlccsklvP7665HTI0eOpF27dked7+yzzwaO/MSdm5tbal84HGb//v1l3s6ZZ55JVFTUUZcFyMnJoVatWpHb+a7zAMcMjxPRsmVLZs6cSUFBAevXr+fVV19l9uzZpKSkcPXVV3+v65Z0YkxwqRL55JNPiImJoWnTppxzzjns2LGD1NTUyL8GDRowZcoU/vSnPwHQsWNH3n33Xf75z39GruO9996jsLCwzNs544wzaNGiBUuWLCEUCkW2Hzx4kFWrVtG6dWvgyCGKTz75hO3bt5e6/MKFC0lOTub8888/6c913rx5dO3alYKCAuLi4ujYsSOPPvooADt37jzp65V0cnyGQApAXl4eGzZsiJwuLCxkxYoVLFq0iH79+lG3bl2GDh3K2LFjiYmJoUuXLhw4cIBZs2axa9euyAsSBw8ezPLlyxk4cCC33347+/btY+rUqdSoUeO4M9x///2Ry/3yl7+ksLCQ3/72txQUFHDPPfcAcOutt7Jw4UJuvfVW7rnnHmrXrs3vf/971qxZw2OPPfa9ntbv0KEDkydPZvDgwfzyl78kJiaGV155hbi4OLp06XLS1yvp5BgEUgD+9Kc/0a9fv8jp+Ph4mjRpwtChQxk4cCAA119/PTVr1mTOnDm8+uqrnHHGGbRq1YrJkydHXuR3wQUX8OKLLzJhwgSGDh3KOeecw6hRo5gwYcJxZ+jYsSNz585l+vTpDBs2jLi4ONq0acPEiRMjfykxOTmZ+fPnM2XKFMaPH09hYSEXX3wxs2bN4sc//vH3WoOLL76Y2bNn85vf/IZhw4YRCoVo0aIFzz33HE2bNv1e1y3pxEWFS36hWZIknbZ8DYEkSTIIJEmSQSBJkjAIJEkSBoEkScIgkCRJlPPvEBQXF1NUVER0dHSp92qXJEmVVzgcpri4mNjY2OP+IbFyBUFRURGbNm36QYaTJEkVKzU1tdS7oh5LuYKgpCpSU1OP+baqp5tQKMSmTZtcj1PMda4YrnPFcJ0rhutcWsl6lOfPjJcrCEoOE8TExLjA3+B6VAzXuWK4zhXDda4YrnNp5Tnc74sKJUmSQSBJkgwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmIDXoAnXrhcJj8/PygxzhhoVCIr7/+mnA4HPQoklTtGQSngfz8fK666qqgxzhpixcvJikpKegxJKla85DBaaAqPjsgSapYPkNwmslLvZ5wjYSgxziuqOIikjbMD3oMSTptGASnmXB0DMTUCHqM4/JVA5JUsTxkIEmSDAJJkmQQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCE5KOBwmHA4HPYYqIb82JFVVBsEJCofDDBkyhJkzZ3rHr1LC4TD33nsv9957r18bkqqc2KAHqGry8/PZsmVL5OOkpKSAJ1JlkZ+fz+bNmyMfJyYmBjyRJJWfzxBIkiSDQJIkGQSSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiQBsUEP0Llz58jHq1atCmwO6XT14x//OPJxVfkerIr3G1Vxnfv27Utubi5169YlKysr6HHK5de//jXZ2dlkZGTwyCOPBD1OuaxevZpp06YxZMgQOnXqFNgcgT5D8M1v6mOdlnRqVcXvwTvuuKPM05XR7373uzJPV0abN28mNzcXgNzcXDZv3hzwRMe3a9cusrOzAcjOzmbXrl0BT3R8+fn5PPnkk+zatYsnn3yS/Pz8wGbxkIGkKuXzzz8v83RlNGPGjDJPV0b33ntvmacro3vuuafU6aow80svvcSePXsA2LNnDy+//HJgswR2yOC7fhLp3LlzlXk6LT8/n5iYmKDHOK4gi/OH4DqfGlXxe7AqznzDDTd85/ZXXnmlgqcpn0mTJhEOh0ttC4fDTJo0iREjRgQ0VdmWLl1KTk5OqW27d+9m6dKl/OQnPwloqrLt2LGDl19+ObLW4XCYl19+mR49etCoUaMKnyeQIOjSpctx969cubKCpjkx3/wm6du3b4CTnKTw8c9SKVTxdf72nWllc7xDA5XxAfavf/3rcfc3a9asgqYpn4MHD/Lll18ec9+XX37JwYMHOfPMMyt4qrIVFBTw5ptvHnPfm2++yZAhQ4iLi6vgqcoWCoWYNGnSMfdNmjSJ7t27V7ofKsLhMNOmTfvO7U888QRRUVEVOlMghwyOd2dZ2e9MJVW822+//XvtD8LNN9/8vfYH4fHHH/9e+4OwePFiQqHQMfeFQiEWL15cwRMd37Zt21i3bt1Rc4dCIdatW8e2bdsqfKZAniGIiooq80G/oqvoRHxztqysLGrWrBngNOXz1Vdf8Ytf/OLIicq7tKVVwXXOz8/n2muvBSr313BVNWfOnDIf9OfMmVOB05TPf/7nf9KrV68y91c2DzzwQJnP0D7wwAMVOE35ZGZmMn369GNGQWxsLJmZmQFMVbYmTZrQtm1bPv7441Jzx8TE0Lp1a5o0aVLhMwUSBCtXrizzKcvKerjg2xISEkhMTAx6jOOqase2v62qrHNVsmrVqjK/Byvb4QLguIcDKtvhAoAzzzyTBg0aHPOwwbnnnlvpDhcAxMXFcc011xzzsEGvXr0q3eECOPIgOmLECCZMmHDUvpEjR1a6wwVw5IeGIUOGcMsttxxzexA/VAT2WwbfdYdTGe+IpOqoKn4PVsWZv+uFg/Pnz6/gScpvxIgRRz0gRUVFcf/99wc00fH95Cc/ITk5udS2evXq0aNHj4AmOr5GjRrRv3//yFpHRUXRv39/GjZsGMg8/tqhpCqlefPmZZ6ujKrir/BVxV+VnDlzZqnTVWHmG2+8kXPOOQeAunXr0r9//8BmCTQIvl31lbnypeqoKn4PPvvss2Weroz69OlT5unKqEWLFtStWxc48kDVokWLgCc6vvr165ORkQFARkYG9evXD3ii40tISGDYsGHUr1+foUOHkpCQENgsgf/p4qpwByRVZytWrGDDhg1cfvnlQY9SblXxfqMqrnNV+XPF3zR27Ngqt86dOnUK9E8Wl/CQgSRJMggkSZJBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZKA2KAHqGoSEhJo0aIFeXl5JCQkBD2OKpGSr42SjyWpKjEITlBUVBRPPfUUGzZsICoqKuhxVIlERUUxY8aMyMeSVJUYBCchKirKO3wdk18XkqoqX0MgSZIMAkmSZBBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkoDYoAdQxYoqDhEOFQY9xnFFFRcFPYIknVYMgtNM0qbXgx5BklQJecjgNJCQkBD0CJKkSs5nCE4DCQkJvPXWW0GPccJCoRAbN240aCSpAhgEp4GoqCgSExODHuOEhUIh4uPjiYqKCnoUSar2PGQgSZIMAkmSZBBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJiC3PmcLhMAChUOiUDlNVlKyD63Fquc4Vw3WuGK5zxXCdSytZh5LH8bJEhctxroKCAjZt2vT9J5MkSRUuNTWVuLi4Ms9TriAoLi6mqKiI6OhooqKifrABJUnSqRMOhykuLiY2Npbo6LJfJVCuIJAkSdWbLyqUJEkGgSRJMggkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEJyQP//5z9x66620a9eOK664gpEjR7J3796gx6q2QqEQN910E6NHjw56lGrrq6++YuTIkbRv3562bdty9913s3v37qDHqna2bNnCjTfeSJs2bUhPT2fcuHEUFBQEPVa1sXfvXrp3786HH34Y2fbpp59y/fXXk5aWRteuXXn99dcDnLBqMAjKKT8/n9tvv520tDTef/99Fi9ezFdffcWDDz4Y9GjV1syZM/noo4+CHqNau/feezl8+DDLli1j5cqVxMTEMGbMmKDHqlaKi4sZNGgQPXv2ZO3atWRlZfH+++/z7LPPBj1atbB+/Xr69evHtm3bItv279/PnXfeyc9+9jPWrVvH+PHjefzxx9m4cWOAk1Z+BkE5ffHFF1x88cUMHjyYuLg4ateuTb9+/Vi3bl3Qo1VLH3zwAX/4wx/o0aNH0KNUW5s3b+bTTz9lwoQJnHXWWSQlJfHoo48yfPjwoEerVvbv309OTg7FxcWRN5iJjo4mMTEx4MmqvjfeeIPhw4czdOjQUtv/8Ic/UKtWLW688UZiY2Pp2LEjvXr14qWXXgpo0qrBICinpk2bMmfOHGJiYiLb3n77bS699NIAp6qe9uzZw0MPPcSUKVO80zyFNm7cSLNmzXjttdfo3r076enpTJw4keTk5KBHq1Zq167NgAEDmDhxIqmpqWRkZHDBBRcwYMCAoEer8tLT01m2bBlXX311qe2ff/45F110UaltzZo1489//nNFjlflGAQnIRwOM3XqVFauXMlDDz0U9DjVSnFxMSNGjODWW2/l4osvDnqcam3//v189tln/P3vf+eNN97g97//Pbt27WLUqFFBj1atFBcXk5CQwJgxY9iwYQOLFy/mb3/7G9OnTw96tCovOTmZ2NjYo7YfOnToqB8mEhISOHz4cEWNViUZBCcoLy+P++67j0WLFvHiiy+SkpIS9EjVyjPPPENcXBw33XRT0KNUeyVvhfrQQw+RlJRE3bp1+bd/+zeys7M5dOhQwNNVH8uWLePtt9+mf//+xMXF0bx5cwYPHsz8+fODHq3aSkxMJD8/v9S2/Px8atasGdBEVcPRaaXvtG3bNu644w7OO+88srKyqFOnTtAjVTv/9V//xe7du2nTpg1A5Jt6+fLlvsDwB9asWTOKi4spLCwkPj4eOPLTLIBvgvrD2blz51G/URAbG0uNGjUCmqj6u+iii/jjH/9Yattf//pXmjdvHtBEVYPPEJTT/v37ueWWW2jVqhX/8R//YQycIkuXLuXjjz/mo48+4qOPPiIzM5PMzExj4BTo1KkTjRs35sEHH+TQoUPs3buXqVOn0q1bN5KSkoIer9pIT08nJyeH2bNnEwqF2L59O08//TS9evUKerRqq3v37uTm5jJv3jwKCwtZs2YNixYtok+fPkGPVqkZBOW0YMECvvjiC9566y1at25NWlpa5J9UFdWoUYMXXniBmJgYevbsSc+ePWnQoAGPPfZY0KNVK82aNeOZZ57hnXfeoX379tx888107dr1qFfG64dTu3ZtnnvuOZYuXUr79u15+OGHefjhh+nQoUPQo1VqUWGfG5Qk6bTnMwSSJMkgkCRJBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAomUlBTuvPPOo/5c74IFC+jatespuc2uXbuyYMGCU3Ld5bFkyRI6duxI69atWblyZal9O3bsICUlhcsvv5y0tDQuu+wyOnTowPDhwzlw4MBJ3+bo0aMZPXr09x1d0iliEEhAdnY2c+bMCXqMCvP6669zzTXXsH79erp06XLM8yxevJhPPvmETz/9lMWLF/O///u/jB8/voInlVRRDAIJuOmmm5g2bRoff/zxMfeX/NS8Y8eOyLYZM2ZE3pVxwYIF9O/fn4kTJ9KuXTs6dOjACy+8wGuvvUaXLl1o3bo1Y8eOLXWdW7Zs4brrrqNdu3YMHDiQv//975F927Zt46677qJ9+/Z06dKFqVOnRt4gZ8GCBVx33XXcdttttGnThkWLFh017759+xgzZgzp6em0b9+eQYMGRa6/b9++rFmzhldeeYVu3bqVa33q1q1L79692bx5c2Rbbm4uw4cP54orriA9PZ2xY8eSl5cX2b9ixQquueYaLr/8cgYNGsS+fftKrd1tt91Gnz59aNeuHevWrStzZoDPPvuMO+64g3bt2nHllVfy7//+7xw8ePCk1v/tt9/mmmuuoXXr1lx11VXMmjWrXOsgVWcGgcSRN0Pp168fw4YN46uvvjqp61i/fj3169dnzZo13HfffTz++ON8+OGHLFmyhHnz5pGVlcW6desi51++fDmPP/447733Ho0aNWLQoEEUFRVx+PBhBgwYQPPmzXn33Xd5+eWXWb16NTNmzIhcdsuWLfTq1YvVq1fTvXv3o2a577772LZtG2+88QbZ2dk0bdqUAQMGkJeXR1ZWFm3atGHQoEEsX768XJ9bTk4Oy5Yto0ePHsCRd0W8++67iY6O5u2332bRokXs3r078qC7detWhgwZwqBBg/joo4+4/vrree+990pd5wcffMDw4cNZuXIlaWlpZc68b98+br75Zpo1a8a7777L7373O/7nf/6HkSNHnvD65+fnM2LECMaOHcv69euZMmUKzz77LBs3biz/f7ZUDRkE0v8zatQo6tSpw+jRo0/q7X/POOMMbrnlFqKjo0lPTycUCjFw4EASExNJTU2lXr16/OMf/4ic/7bbbiMlJYX4+HhGjx7Njh072LhxI6tWraKgoIBhw4YRHx/Pueeey5AhQ3jppZcil61RowY//elPiYuLIyEhodQc27dvZ+3atYwZM4bk5GQSEhIYPnw4RUVFZGdnl/vz6d27N23atCEtLY309HS2bdtGZmYmAJs3b2bLli386le/Iikpidq1azNq1CjefPNN9u3bx5IlS2jRogW9e/cmNjaWbt26HXVoonHjxnTs2JGaNWuyc+fOMmdesWIFNWrUYPjw4SQkJJCcnMyYMWN45513yMnJOeH1T0hIICsriw8++IALL7yQ9evX07JlyxP7D5eqmdigB5Aqi7i4OJ566imuvfZannvuOWrXrn1Cl69VqxZRUVEAREcfae2zzjorsj86Opri4uLI6UaNGkU+TkxMpFatWuzatYt//OMf7N27l7Zt20b2h8NhCgsL2bNnDwDJycmR2/i23Nxc4MgDbomYmBjOPffcUkFyPAsXLozMmJeXx/Tp0/n5z3/OkiVL2LFjB6FQiIyMjFKXiYuLY/v27ezatYvzzjuv1L4mTZqUOmxQr169cs8cDoc577zziImJiewvma3kcyrv+ickJDB//nxmzZrF/fffT15eHj179uThhx/m7LPPLvf6SNWNQSB9Q5MmTXj00UcZOXIk1113XWR7yQNRYWFhZNs3H9yAyINRee3evTvyccnT4g0bNqSoqIgmTZqwdOnSUvv37NlDnTp1jntbDRs2BI68DqF58+YAhEIhvvjiC5KTk09oxhJJSUncd999PP/886xfv54GDRqQkJDAhx9+GFmbgoICtm/fzvnnn0+DBg1YtWpVqev48ssviY+Pj5z+5udwvJlr1KjBF198QSgUitzetm3bgCNxtHXr1nKvf15eHrt372bKlCkA/Pd//zfDhg1j9uzZjBo16iRWR6oePGQgfcvVV19Nnz59ePXVVyPbzjnnHM4++2zefPNNwuEwW7ZsKfWAfTKee+45tm7dyj//+U/Gjx/PJZdcQosWLejSpQuHDh1izpw5FBQUcODAAUaNGsXQoUPL9aBXr149MjIyGDduHDk5OeTn5zN58mRCodB3/kbB8Xz99dc8//zzJCQkkJqaSsuWLTn//POZMGEChw4dIj8/n8cee4wBAwYQCoXo3bs3f/nLX3jttdcoKiri/fffZ9myZSc9c8kzEZMnTyY/P5+cnBzGjx9Phw4dIjFRXocOHeKOO+5g0aJFhMNh6tWrR3R09Ak/IyRVNwaBdAwPPvggl1xySeR0XFwcjz76KG+99RatWrViwoQJ/PznP/9et9GtWzfuuusurrzySvbv38+sWbOIjo4mKSmJefPm8eGHH3LllVfSrVs3oqOjefrpp8t93U888QSNGzfm2muvpVOnTnz22Wc8//zz1KpVq9zXkZmZSVpaGmlpaXTq1InVq1cze/ZsGjduTGxsLM888wy5ubn06NEj8hqDuXPnEh8fT+PGjZk9ezYvvfQSrVu3ZtasWcd88WN5Zz7zzDOZO3cuf/nLX8jIyCAzM5OGDRsybdq0cn8+JerXr8/06dN59tlnadWqFZmZmXTo0IEBAwac8HVJ1UlU+GRePSVJkqoVnyGQJEkGgSRJMggkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkSQL+D7X5xamrxROAAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Box plot for bedrooms\n", + "sns.boxplot(x=housing_data['bedrooms'])\n", + "plt.title('Bedrooms')\n", + "plt.xlabel('Number of Bedrooms')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### b.) Bivariate Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**#Total Square Footage of houses by Price Range.**" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "price_range\n", + "300K-600K 10560\n", + "600K-1M 4691\n", + "100K-300K 4433\n", + "1M-2M 1234\n", + "2M-5M 187\n", + "70K-100K 30\n", + "5M-8M 7\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Define the labels with ranges\n", + "labels = [\"70K-100K\", \"100K-300K\", \"300K-600K\", \"600K-1M\", \"1M-2M\", \"2M-5M\", \"5M-8M\"]\n", + "\n", + "# Cut the data into the specified ranges and assign labels\n", + "housing_data.loc[:,\"price_range\"] = pd.cut(housing_data.price,\n", + " bins=[70000, 100000, 300000, 600000, 1000000, 2000000, 5000000, 8000000],\n", + " labels=labels)\n", + "\n", + "# Count the occurrences of each category\n", + "housing_data['price_range'].value_counts()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontcondition...sqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15house_agerenovation_agetotal_sqftprice_range
118826240491852014-09-09405000.031.75176053551.003.0...1160600.019560.017906225680.08875.0300K-600K
2061128958003902014-08-07359800.052.50217027522.003.0...21700.020140.018002752100.07092.0300K-600K
220934385003392014-05-26276000.031.00114050001.003.0...11400.019600.011405000640.07280.0100K-300K
1843141679603302015-01-09270000.032.00182077501.003.0...18200.019920.020808084320.011390.0100K-300K
1160919722015502014-07-16565000.041.00154024521.504.0...15400.019060.0129033601180.05532.0300K-600K
\n", + "

5 rows × 21 columns

\n", + "
" + ], + "text/plain": [ + " id date price bedrooms bathrooms sqft_living \\\n", + "1188 2624049185 2014-09-09 405000.0 3 1.75 1760 \n", + "20611 2895800390 2014-08-07 359800.0 5 2.50 2170 \n", + "2209 3438500339 2014-05-26 276000.0 3 1.00 1140 \n", + "18431 4167960330 2015-01-09 270000.0 3 2.00 1820 \n", + "11609 1972201550 2014-07-16 565000.0 4 1.00 1540 \n", + "\n", + " sqft_lot floors waterfront condition ... sqft_above \\\n", + "1188 5355 1.0 0 3.0 ... 1160 \n", + "20611 2752 2.0 0 3.0 ... 2170 \n", + "2209 5000 1.0 0 3.0 ... 1140 \n", + "18431 7750 1.0 0 3.0 ... 1820 \n", + "11609 2452 1.5 0 4.0 ... 1540 \n", + "\n", + " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", + "1188 600.0 1956 0.0 1790 6225 \n", + "20611 0.0 2014 0.0 1800 2752 \n", + "2209 0.0 1960 0.0 1140 5000 \n", + "18431 0.0 1992 0.0 2080 8084 \n", + "11609 0.0 1906 0.0 1290 3360 \n", + "\n", + " house_age renovation_age total_sqft price_range \n", + "1188 68 0.0 8875.0 300K-600K \n", + "20611 10 0.0 7092.0 300K-600K \n", + "2209 64 0.0 7280.0 100K-300K \n", + "18431 32 0.0 11390.0 100K-300K \n", + "11609 118 0.0 5532.0 300K-600K \n", + "\n", + "[5 rows x 21 columns]" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "housing_data.sample(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:641: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", + " grouped_vals = vals.groupby(grouper)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA10AAAJLCAYAAAAcg/xtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACh2ElEQVR4nOzdeXhMZ//H8c9MFkkkkkiIpVSF2Ped1lJFia2W6lPVUmtCrSG1twhqaUkttbUUfdTaoijVFlU7pVU0sW8J2ZBEZJn5/eFnnk5tiRoReb+uK9dlzn2fc75nTkzyyX3OfQxms9ksAAAAAIBNGDO7AAAAAAB4lhG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAGADfDc+ayHcwYAsBX7zC4AAJ4G77//vtasWfPAPgULFtSPP/74wD7JycmaOnWqypQpo5YtW6Z7/6tXr9bQoUO1detWPffcc/ftd+DAAc2bN0+HDh1SQkKCvL29VatWLQUEBKhw4cLp3t/T7MKFC2rYsOF92wsXLqwtW7Y81n0eOHBAc+bM0dy5cx/rdv+NTp06SZIWL178WLd753vt74xGo1xdXVWuXDn17t1bVapUyZTa7rWfvXv3Wi0zGAzKmTOnihYtqs6dO8vf39+mNQDA40DoAgBJgYGBeuONNyyvZ82apT///FMzZsywLHN0dHzodq5cuaKFCxdqwoQJj73GXbt2qVu3bmrYsKHGjRunXLly6dy5c/r888/Vvn17rVix4pkJXpIUEBCg+vXr37U8R44cj31fK1asUHh4+GPf7tNsxowZypMnjyTJZDIpKipKM2fO1DvvvKOVK1eqZMmS91139OjRT6pMlS5d2mp/aWlpioiI0MKFCzVw4EC5ubmpbt26T6weAHgUhC4A0O3Rk78Hlty5c8vR0VEVK1bMvKL+4bPPPlO5cuUUGhpqWVajRg3Vq1dPjRo10hdffPFEfxm2tcKFCz9V7/+zplSpUneNqpYuXVqNGjXSV199pTFjxtx33WLFitm6PAtXV9d7fh/Uq1dPtWrV0qpVqwhdAJ563NMFABnw+++/q2vXrqpRo4YqV66sXr16KSwsTJL1ZXFDhw7Vyy+/bFlvxYoVatOmjSpWrKjy5curVatW2rBhQ4b2HRUVdc/lefPm1YgRI1SnTh3LMpPJpJkzZ6p+/fqqUKGCevbsqY0bN6pEiRK6cOGCJOnTTz9ViRIl7tpeiRIl9Omnn1peX7hwQUOGDNGLL76oMmXKqFatWhoyZIhiY2MtfV5++WWNHz9e77zzjipXrqxRo0ZJkuLi4jRq1CjVrl1b5cqV0+uvv65du3Zl6Lgf5MqVKxo6dKjq1aun8uXLq127dtq6datVn1u3bmnmzJl69dVXVa5cOTVu3Fhz586VyWSS9L9LSy9evKgSJUpo9erV6T7ulJQUTZkyRXXr1lX58uXVtWtXffPNN1bvsyTt379fb731lipUqKDq1asrODhYMTEx6TrGmTNnqnbt2qpUqZICAwN1/vx5SVJYWJhKlCihr7/+2qp/ZGSkSpUq9dDLZe/lueeek6enpy5duiTp9qWIpUuX1ooVK/Tiiy+qbt26CgsLU6dOnSyXGN55H2bOnKlXXnlF5cuXl7+/v1atWmW17R9++EFt2rRRuXLlVKdOHY0bN06JiYkZrvEOR0dHOTg4WC1LSkrS1KlT1bhxY5UtW1aVK1dWly5ddOzYMUuf999/X507d9aqVavUpEkTlS1bVi1bttS2bdustnXo0CF17NhRFStWVP369bVo0SJ17txZ77//vqXPrVu3NGnSJNWrV09ly5ZVixYtMvz/GkD2wEgXAKTT7t271a1bN1WrVk0hISFKTk7WnDlz9MYbb2j58uUqVKiQZsyYoT59+iggIECNGzeWJC1dulTjxo1Tnz59FBwcrLi4OM2bN0+DBw9WxYoVVaBAgXTtv379+po/f746deqkVq1aqUaNGipUqJAkqX379lZ9J02apMWLF6tXr16qWLGi1q9f/0ijYDdv3tTbb78tT09PjR49Wm5ubjpw4IBmzpypHDlyaOzYsZa+S5cuVceOHdWjRw85OTnp1q1beueddxQVFaUBAwYob968WrVqlbp166b58+erVq1aD9y3yWRSamqq1TKDwSA7OztJt0Nou3bt5ODgoAEDBsjT01OrV69W7969NWnSJLVs2VJms1m9evXSb7/9pt69e6tUqVLas2ePpk2bpvPnz2vs2LEKDAxUTEyM5XLSwoULp/u4R40apfXr1+u9995TqVKltH79eo0cOdKq5n379qlLly6qWbOmpk2bpmvXrmn69Ol6++23tXLlSjk5Od33PThw4ICuXr2qUaNGKS0tTVOnTlXnzp21ceNGFS9eXBUqVNC3336rDh06WNb59ttv5eTkpCZNmqTvJP9NbGysYmNjrUZ909LS9Nlnn2ncuHGKiYm55yhXcHCwtm7dqoCAAFWoUEE7duzQsGHDZGdnp9atW2vdunUKCgpSixYt1L9/f128eFGffPKJwsPD9cUXX8hgMNy3JrPZbPV9cOfywpkzZyohIUGtWrWytA0ZMkT79u3ToEGDVLhwYZ05c0bTp0/XgAEDtHHjRst+/vjjD125ckV9+/aVq6urpk+frr59+2r79u1yd3fXyZMn1blzZ5UtW1Yff/yxYmNj9fHHH+v69euWe8jMZrN69+6tgwcPqm/fvvL19dWWLVs0YMAAJScnq3Xr1hl+/wE8w8wAgLsEBwebGzRoYLWsXbt25ldffdWcmppqWXbt2jVz9erVzf369TObzWbz+fPnzX5+fuZVq1ZZ+kyYMME8adIkq2398ccfZj8/P/O6devMZrPZvGrVKrOfn5/5/Pnz963p1q1b5pEjR5pLly5t9vPzM/v5+Zlfeukl88iRI83h4eGWfnFxceYyZcqYJ06caLV+586drfYRGhpq9vPzu2s/fn5+5tDQULPZbDb/+eef5v/85z/ms2fPWvXp2bOnuXHjxpbXDRo0MNevX9+clpZmWfb111+b/fz8zL/99ptlmclkMnfs2NHcpk2b+x7nnffwXl+lSpWy9Js0aZK5TJky5nPnzlmt/84775jr1KljTktLM//8889mPz8/87fffmvVZ+bMmWY/Pz9zWFiY2Wy++3yn57jPnj1rLlGihPnzzz+36vPuu+9avc8dOnQwN2/e3Or75tSpU+ZSpUqZlyxZct/34a233jKXKVPGfOHCBcuyY8eOmUuUKGFetmyZ2Ww2m5ctW2b28/Ozeg+aNm1qHjp06H23e+d77ezZs+aUlBRzSkqKOT4+3nz06FFz586dzaVLlzYfP37cqu/y5cvvqu2tt94ym81m819//WX28/MzL1q0yKpPv379zO+//77ZZDKZ69ata+7atatV+6+//mr28/Mz//TTTw98D+71fVCiRAlzixYtzBs3brT0vXXrlvndd981f/fdd1bb+Pzzz81+fn7myMhIs9l8+1zfOf479u7da/bz8zNv2rTJbDabzYMHDzbXrl3bnJiYaOlz8OBBs5+fnzk4ONhsNpvNv/zyi9nPz++u/QUFBZnr1KljTklJue9xAch+GOkCgHRITEzU77//rt69e1tGWiQpV65catCgwV2XJv3dncuRbty4oTNnzujMmTOWS+xSUlLSXYOjo6PGjBmj9957T9u2bdPu3bu1Z88eff3111q9erWmTp2qJk2a6LffflNKSspdMwC2bNlSv/76a0YOW6VKldJXX30lk8mk8+fP68yZMwoLC9OpU6fuGoXy9fWV0fi/q9Z37dqlPHnyqEyZMlZ9GzRooEmTJunatWtyd3e/77779Olz10Qafx8R2bt3rypVqmQZ7fv7cQ4dOlSnTp3S3r17ZWdnp2bNmt3VZ/r06dqzZ889R27Sc9x79uyR2WzWq6++arVu8+bN9csvv0i6PVJ4+PBhde3a1WrEplChQvL19dXOnTvVsWPH+74HFStWVMGCBS2vS5Ysqeeee06//vqrOnToIH9/f02YMEHffvut+vTpoyNHjujkyZMPvB/rjkaNGt21rGDBgpo8efJdl536+fnddzv79++/5/amTZsmSTp58qQiIiLUs2dPq++DatWqydXVVTt37rznhCl3lClTRh9++KGk25dOTp8+XSkpKfrkk0/k6+tr6efo6KgFCxZIun3Z6dmzZ3Xq1Cn99NNPkqz/r+XOndtqNC9fvnySbp8v6faodr169eTs7GzpU6lSJatzsWvXLhkMBtWrV8/quF5++WWtXbtWYWFhKlWq1H2PC0D2QugCgHS4ceOGzGazvL2972rz9vbWjRs37rvuuXPnNGrUKO3evVv29vYqWrSo5Zda8yM8GypPnjxq166d2rVrJ+n2L/9BQUH68MMP1ahRI127dk3S7V8s/87HxyfD+5KkL774QnPmzFFsbKy8vb1VpkwZOTs733XM/3xv4uLidPXqVZUpU+ae27169eoDQ1fBggVVrly5+7Zfu3btntPr36nj+vXrunbtmjw9PWVvb/3j7s6sfQ86bw877jv3ZHl5ed1z/3dqMJlMmjdvnubNm3fXPh42E+O9vt+8vLx0/fp1SbcnmXj11Ve1du1a9enTR2vWrNHzzz+vqlWrPnC7kjR79mzL++Dg4CBPT8/7fo/88xj/Li4u7oF97rR/+OGHlvD0d1euXHlgnTlz5rR8H5QrV06VKlVSq1at9O6772rNmjVW3+c7duzQ+PHjderUKeXMmVMlSpRQzpw5JVn/X/t7mJL+F+bv3OcXExNzz+O5837dOS6z2azKlSvfs+4rV64QugBYELoAIB3c3NxkMBjuOZnF1atX5eHhcc/1TCaTevToIQcHBy1fvlylS5eWvb29wsPDtXbt2nTv//DhwwoICNDkyZOtJsyQbs9g2LVrV02YMEGxsbHy9PSUdPuep6JFi1r63fnl9447v2impaVZRu8SEhKs+qxbt04TJ07UoEGD1K5dO8svuP369dPvv//+wJrd3NxUpEgRTZky5Z7tD3oeWXq4u7vf93xIkqenp9zd3RUbG6vU1FSr4HXnF/0779U/pee47wSU6Oho5c+f37JudHS05d85c+aUwWC47/Ok/vnL/z/dCVf/PL5KlSpZXrdt21Zr1qzRkSNH9P3331tNcPEgfn5+//ocSLdHe6XbQeXOiJEknTp1SjExMZZgPWTIEFWvXv2u9R8UvO/Fy8tLo0aN0nvvvaeQkBBNnTpV0u0/bvTu3VsNGzbUnDlzLCNZS5cu1Y4dOzK0j3z58lmdxzuio6P1wgsvSLr9/e3i4qIvv/zyntt4/vnnM7RPAM82Zi8EgHRwcXFR2bJltWHDBqWlpVmW37hxQz///LPlYbJ/v/RQuj0xwenTp9WuXTuVL1/e8ov/9u3bJf3vL+sPU6RIEd28eVNffvnlPdc5ffq08uTJo9y5c6tSpUpydna+axa1fz7Y2dXVVZJ0+fJly7KDBw9a9Tlw4IDc3NzUo0cPS/BISEjQgQMHHlp79erVdfnyZXl5ealcuXKWr127dmn+/Pl3vVcZVa1aNR06dMgym98da9euVZ48efT888+revXqSktLu+u9uBN475y3v18Wmd7jrlKliuzs7LR582ardf/+2tXVVaVLl9apU6es3oPixYtrxowZ2rNnzwOP8dChQ1ajcUeOHNHFixdVs2ZNq/ehSJEimjx5smJjY5/4BA533sMffvjBavknn3yisWPHqmjRovLy8tKFCxes3oN8+fJp6tSp+vPPPzO8z8aNG+ull17S+vXrLe/hH3/8oVu3bqlnz55Wlw7eCVwZGVWuVq2atm/frlu3blmWHTt2zGpGyurVqysxMVFms9nquMLCwjRz5sy7Lr8FkL0x0gUA6TRo0CB17dpV3bp101tvvaWUlBTNnTtXycnJ6tOnj6Tbf/2Wbt/v4evrqwoVKqhgwYJaunSp8uXLp1y5cumXX37RokWLJP3vHpKHcXd3V3BwsEaPHq0333xTr7/+ugoVKqQbN25oy5YtWrNmjaZMmSKDwSBXV1f17t1bU6dOlbOzs+rUqaMdO3bcFTzq1aunCRMmaOTIkerevbsiIiI0Y8YMy+VYklS+fHn997//1cSJE9WgQQNduXJFCxYsUFRU1ENHKNq0aaMlS5aoS5cu6tWrl/Lnz69ff/1V8+bN01tvvXXXdN8Z1aVLF61du1ZdunRRnz595OnpqW+++Ua7d+/W+PHjZTQaVbduXdWoUUOjR4/WlStXVLp0ae3du1fz5s3Ta6+9ZrmfK1euXIqKitK2bdtUqlSpdB13oUKF1LZtW3388cdKSUlRyZIltWXLFss9RHeC3MCBA9WjRw8NGjRILVu2VFpamj7//HPL6OWD3Bkp7dWrl2JjYzV16lT5+fmpZcuWVv3atm2rqVOnqk6dOlajbk9CyZIl9eqrr2rKlClKSkpSmTJl9Msvv2jLli2aNm2a7OzsNGDAAI0aNUp2dnZq0KCBrl+/rlmzZikyMvK+l58+zLBhw9SyZUuNGzdOa9asUZkyZWRvb6/Jkyfr3XffVXJyslavXq2ff/5ZkjI0PX2vXr20YcMGdevWTe+++66uX7+u6dOny2AwWEaI69Wrp2rVqikwMFCBgYHy9fXVkSNH9Omnn+rFF1+0hPWIiAhFRESodOnS6XrAOoBnEyNdAJBOtWrV0hdffKHk5GQNHDhQI0eOlI+Pj5YvX67ixYtLuj2y0aVLF/3www/q1q2bkpOTNWvWLPn4+Oj9999X//799dtvv2n27NkqWrSoZRKC9HjjjTe0cOFCeXp66uOPP1aXLl00dOhQRUVFadGiRWrevLmlb/fu3TVq1Cht2bJFAQEBOnHihHr16mW1vRdeeEEfffSRLl26pB49emjRokUaO3as8ubNa+nz2muvqXfv3tq4caO6d++u0NBQVa1aVWPGjFFcXJzCw8PvW6+Li4uWLl2qKlWqaPLkyerevbs2b96sQYMGaejQoek+7vvJkyeP/vvf/6ps2bIKCQlRv379dPnyZc2aNUtt27aVdPsSyjvT+n/55Zfq0aOHNm3apAEDBigkJMSyrTZt2qhgwYLq3bu3vvnmm3Qf98iRI/XGG2/o888/V2BgoCIiIixBysXFRZL04osvasGCBYqIiFDfvn01ZMgQ2dnZ6Ysvvnjow58bNGigatWqafDgwRozZoyqV6+uRYsW3XUv2J2JKNq0afOv39dHMXnyZL399ttavHixevbsqV9++UXTpk2zTDLSvn17TZ06VQcPHlSvXr30wQcf6LnnntPixYvvmgglvYoWLapOnTrpr7/+0pIlS/T8889r6tSpioyMVEBAgOVZcYsXL5bBYMjQ/7Xnn39eCxYs0K1bt9S3b1998skn6t69u/LkyWP5o4TRaNTcuXPl7++vOXPmqGvXrlq2bJk6d+6sTz75xLKtFStWqEOHDg+9dw3As81gfpS7uAEAWc7q1as1dOhQbd269bHcy5PdxcXFafv27XrppZes7g376KOPtHr16odeOvg4zZs3T/Pnz9eOHTsYTXkMdu3aJQcHB6sJSa5du6Y6depoyJAhevvttzOxOgBZEZcXAgDwCJydnRUSEqJSpUrpnXfekYuLiw4ePGh5KPWTsGbNGv3111/66quv1KNHDwLXY3L06FGFhoZq4MCBKlOmjGJjY/X555/Lzc3NakQZANKL0AUAwCPIkSOHFi5cqGnTpun999/XzZs3VbhwYb3//vsPfPbW43T8+HEtW7ZMr7zyirp37/5E9pkd3Lkn7L///a8uX74sFxcXVa9eXR999NFdj2IAgPTg8kIAAAAAsCEm0gAAAAAAGyJ0AQAAAIANEboAAAAAwIYIXQAAAABgQ4QuAAAAALAhpox/BNHRN8ScjwAAAED2ZTBIXl5u6epL6HoEZrMIXQAAAADShcsLAQAAAMCGCF0AAAAAYEOELgAAAACwIe7pAgA8ViaTSWlpqZldBh4TOzt7GY38jRYA/g1CFwDgsTCbzbp+PUY3b8Zndil4zJydXZUrV24ZDIbMLgUAsiRCFwDgsbgTuFxdPeXomINf0J8BZrNZycm3FB8fK0lyd/fK5IoAIGsidAEA/jWTKc0SuFxdc2V2OXiMHB1zSJLi42Pl5ubJpYYA8Aj45AQA/GtpaWmS/vcLOp4td84r9+oBwKMhdAEAHhsuKXw2cV4B4N8hdAEAAACADRG6AADPpLfeel2bN2/M7DIAAGAiDQDAs2nJkuWZXQIAAJIIXQCALOLy5Utq376l+vcP0pdffqFbt5L04ot1NXBgsJYtW6o//jiiGzdu6OLFC5owYYrGjRutd9/toWbNWujmzZuaPTtUP/74g1JTU1S2bHkFBQ1Vvnz5lZiYoM8+m6Ffftmu5ORkValSVf36BSl37odPj75hwzqtWrVcuXLl0rFjRzVw4PuqXLmKQkM/1rFjRxUTE63cub31zjvvqnnzVpKkF1+sqv79g7Rq1XJFRUWpWLFiCgoaJl/fYpKkffv2aNas6bp48aJ8fX1VrlxF/fnnH5oxY64k6YcfvtfixV8oIuKyChYspF69+qh69Zq2e+MBAP8alxcCALKUn3/+UYsWLdNXX63S+fPn9fHHH0mSDhzYp4CA97Rq1XqVLVveap2PP/5Ix479qQULFmvt2s3KndtLo0cPkySNHz9GFy6c14IFi7V8+bdycXHVsGGDZTab01XPiRPH1LhxU61du1n16tXXxIlj5eBgr8WLl2vz5u1q27a9PvlkkhITEy3r/PDDZs2YMVdr1mxQjhxOmjlzuqTbwTI4eKBat26nDRu2qlev97R27WrLert2/aIpUyZowIAh2rDhR3Xt2lPDhw/RqVMn/9V7CgCwLUIXACBL6dt3oDw9PeXl5a1u3Xrpp5+2KiUlRQUKFFSVKtXk4uIie/v/XciRkpKirVs3q3v3APn45JOjo6Pee2+gBgwYrNjYGP3881b17x8kT8/ccnFxUb9+g3Ts2FGdOHE8XfU4ODioSZNmcnR0VI4cTgoOHqFBg96Xvb29IiMj5OKSU7du3dL169ct67Rr10FeXt5ydXXVyy830vnz5yRJmzdvVPHifmrVqo3s7e1VoUIltWz5mmW9VauWq3XrdqpYsbLs7OxUp85LqlPnJX377arH9O4CAGyBywsBAFnKc88VtvzbxyefkpOTdf36NXl757ln/+vXryk5OVn58uWzLHNzc1PJkqX1559/SJJ69OhstY6dnb0uX76okiVLPbSe3Lm9rB4YfOnSRc2cOV3nz59ToUKFVahQIUmS2WyyWucOe3t7S9uVK5HKly+/1fYLFCioP/88KkmKiLisQ4cO6JtvVlra09LSVKVKtYfWCQDIPIQuAECWEhV1RYULF5F0O+A4OTnJ3d1D0tl79vf0zC1HR0dFRkZY1ouNjdGSJYv0xhsdJUlLl66Ul5e3ZZ3Tp0+pQIGC6arn78+wSk1N1ZAh/dWjR2+1adNeBoNBx48f0/ffp28WxXz58mvnzh1WyyIiIiz/zpMnr5o08VenTp2t2nPk4KHUAPA04/JCAECWMnv2DCUkxCsq6qoWLJijV1/1t7qc8J+MRqOaNPHXggVzFRV1Vbdu3dLcubN19OjvypMnr2rXflHTp0/VtWtxSk1N1aJFC9S9+9uKj7+R4dpSUlKUlJQkJycnGQwGRUREaPbsUEvbwzRp0kxhYSe0ceN6paWl6ejRP7R27RpLe8uWr2nlymU6duz2yNfx43+qW7e39MMP32e4VgDAk8NIFwAgS3nuuULq1KmDkpKS1LjxqwoI6KslSxY+cJ333huguXNnqXv3d5SUlKRKlapo3LjbE3CMGDFGn332qbp06aiEhHi98IKvpk6dYTXylV7Ozs4aNmy05s//TNOmTZGnp6datHhNp0+f0qlT4Spc+PkHrp83r4/GjZukmTOn6+OPP1Lx4iVUo0YtxcXFSpIaNHhFN2/e1PjxHyoyMlK5cuXS66+/qXbtOmS4VgDILoxGg4xGw8M7/j+TySyTKX2TKaWXwZze6ZlgERV1Q7xrAPA/KSnJio6+LC+v/HJwcLTJPu5MGb9ixVrlz1/AJvvIbJGREbp2LU5+fiUtyz799BPFxERr9OhxmVbXkzi/AGALRqNBHh4usrNL/wV+aWkmxcUlPjR4GQySt7dburbJSBcAAE+Ja9fiFBjYTTNmzFPJkqUUHh6mzZs3qm/fgZldGgBkSUajQXZ2Rg2fvFSnz0c+tP8LhXwUMrijjEbDYx3tyrTQtWHDBgUFBVnd/PvKK69o8uTJOnz4sMaNG6fw8HB5enoqICBA7du3t/Rbs2aNZs2apatXr6po0aIaOXKkKlWqJOn2LE5TpkzRt99+q5s3b6pmzZr68MMPlTdvXklSdHS0Ro4cqb1798rOzk4tW7ZUcHDwA+8HAABkP8eOHVXfvr3u2+7jk19Llix/rPv08yupfv2C9MEHwxQdHaXcub3UqVNnNWr06mPdDwBkN6fPR+r4yYuZtv9MSxq///67WrVqpQkTJlgtv3btmnr06KG+ffuqQ4cO2rdvn3r37q0SJUqofPny2rNnj8aOHat58+apfPnyWrp0qQICAvTTTz/J2dlZs2fP1s6dO7Vq1Sq5ublp5MiRGjFihObOnStJ6t+/v3x8fLRjxw5FRUUpICBACxcuVLdu3TLjbQAApFP+/AX0yy/7n9j+SpUqoy1bdjy842PWokVrtWjR+onvFwBgO5k2e+Hvv/+usmXL3rV88+bN8vDwUMeOHWVvb69atWqpRYsWWrp0qSRpxYoV8vf3V5UqVeTg4KDOnTvL09NTGzZssLR3795d+fPnl6urq4YPH67t27fr/PnzOnv2rPbu3avBgwfL2dlZhQoVUmBgoGXbAAAAAPC4ZcpIl8lk0tGjR+Xs7Kz58+crLS1N9erVU1BQkMLCwuTn52fVv1ixYlq58vaDIMPDw9W2bdu72o8fP64bN24oIiLCan1vb2+5u7vrxIkTkiQPDw/5+PhY2n19fXXp0iVdv35duXLlSlf9hvRPfgIA2QKfi9mDwcC5BpB9POzzLiOfh5kSumJiYlS6dGk1adJEoaGhio2NVXBwsAYPHqw8efLI2dnZqr+Tk5MSExMlSQkJCfdtT0hIkCS5uLjc1X6n7Z/r3nmdmJiY7tDl5ZW+WUoAILtISkpSTIxRdnYG2dvzCMhnjclkkNFolKdnTjk5OWV2OQBgc56eOR/r9jIldHl7e1td0ufs7KzBgwfr9ddfV5s2bZSUlGTVPykpSTlz5rT0vVe7p6enJUDdvHnznuubzea72u68vrP99IiOZsp4APi7lJRkmUwmpaWZlZpqyuxy8JilpZllMpkUG5sgB4eHP+QZAJ4WdnbGRwpQsbEJSkt78M8zgyH9gzGZErqOHz+u9evXa9CgQTL8/7hccnKyjEajypcvr0WLFln1Dw8PV/HixSVJxYsXV1hY2F3tdevWlbu7u3x8fBQeHm65xPDq1auKi4uTn5+fTCaT4uLiFBUVJW/v2w+9PHnypPLlyyc3t/SPXpnNInQBwN/wmZg98PMPQHbyOD/vMuUaEA8PDy1dulTz589XamqqLl26pMmTJ+u1115TkyZNFBUVpYULFyolJUW7d+/WunXrLPdxtWvXTuvWrdPu3buVkpKihQsXKjo6Wo0aNZIktWnTRrNnz9b58+cVHx+v8ePHq3r16ipcuLCKFCmiKlWqaPz48YqPj9f58+c1a9YstWvXLjPeBgDIFozG25ccPqkvo5GbjgAAT5dMGenKly+f5syZo48//lizZ89Wjhw55O/vr8GDBytHjhz6/PPPFRISotDQUOXOnVsjRoxQzZo1JUm1atXS6NGj9cEHHygyMlLFihXTvHnz5OHhIUnq3bu3UlNT1bFjRyUkJKhGjRqaNm2aZd+hoaEaM2aMGjZsKKPRqNatWyswMDAT3gUAePYZjQZ5errIaHxyf+O7fRlc4mN9qCUAAP+GwWzmQoGMiorini4A+LuUlGRFR1+Wl1d+OTg4Wpbb29++ln79b1sUHR9j8zq8XHOrecVGio1NSNe9ZZs3b9TkyeOtlqWkpMhgMOinn3bp6NE/NG3aZJ05c0oeHp5655131bx5a0nSggVzdOjQAc2YMdeyblxcnAYP7qe0tDRNnjxNXl7e9913WlqaRo58X76+xdS1a0/L8tjYGE2aFKJDhw7Izs5OjRs3U+/e/WRvf/vvpLas6X7ud34B4Gl35+fQm30/TtfDkUv6FtRXoQPT9XPEYJC8vZ/ie7oAANlLdHyMIq9HZXYZd2ncuKkaN25qeX316hV16/a2AgP76vr16xo8uJ+6du2pVq3a6PDhQxo6NEhFixZT6dJ3P2cyIuKyBg7so4IFn9OYMRPvmi3Xum+EJk0ap717d8vXt5hV26hRQ5UnT159880mRUdH6f33B2r58q/05ptv27QmAIDtMK8vAACSzGazxo4dpdq1X1STJs20bduPypXLXW3bvi57e3tVqVJNjRu/qtWrV9y17smT4erV611VrFhZEyd+/MBwc+7cWXXt2lFlypRTuXLlrdouXDivQ4cOKDCwr5ycnFSw4HPq3LmbVq1aLkk2qwkAYFuELgAAJH3//QadPn1K7703QJJ0+vRJ+fr6WvUpUuQFhYdbz6D7228H1bt3d9Wu/aKGDBkuOzu7B+7H29tbX3/9rbp27Sk7O+sLTk6fPqlcudzl7Z3nb/ssqsjICN24ccNmNQEAbIvQBQDI9kwmkxYuXKC3335XLi63n+eSmJgoJyfr0SEnJyfdvJloeX327Bm9//5AlS5dRjt37lBU1NWH7svFJadcXV3v2XZ7n9YPH77z+ubNRJvVBACwLUIXACDbO3hwv6Kjo9S8eSvLMicnZ926lWTVLykpSS4uLpbXycm3NHHix5o0aZoKFCiooUODlJycbGl/663X1ajRS2rU6CW99dbrD63jfvuUboe1x1ETAODJI3QBALK9n3/+UXXr1re676loUV+dPn3Kqt+ZM6dVtOj/Lu8rXryEKlasLHt7e40dO1EREZetZkNcsmS5tmzZoS1bdmjJkuUPraNoUV9du3ZNMTHRf9vnKeXN6yNXV9fHUhMA4MkjdAEAbM7LNbd8cnnb/MvLNfcj1ff777+pYsXKVsvq1Wug6OhoLV/+lVJTU3Xw4H5t3rxJ/v6t7rkNb+88+vDD8dq8eaOWL//qkeooVKiwypevqOnTpyoxMUGXLl3UwoXz5e/fMtNqAgD8e0wZDwCwGZPJLJPJpOYVGz3BfZoy/GDkS5cuWk1eIUnu7h6aNm2mpk+fovnz58jDw0P9+wepcuWq991O5cpV1b17gGbOnK6iRYupatXqGa5/3LiP9PHHk9S+fUsZDEa9+qq/Onfulqk1AQD+HR6O/Ah4ODIAWHvQw3ONRoOMRsMTq+V20OND+nHi4cgAsioejgwAyBYIQQCA7I57ugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANsSU8QAAm+I5XQCA7I7QBQCwGaPRIA9PF9kZn9yFFWkmk+JiEwleAICnBqELAGAzRqNBdkajFu7YqIhrMTbfXz733Or8UlMZjYYMh67Y2Fj16tVFwcEjVLlyVUnS0aN/aNq0yTpz5pQ8PDz1zjvvqnnz1pZ1Nm5cr4UL5ys6OkrPP/+CBgwYrLJly0uS+vTpoUqVqqhr156W/sePH9Pgwf1Us2ZtBQePkL393T+GDxzYp88+m6GzZ8/IyclJDRo0VGBgX+XI4ZRpNQEA/h0+WQEANhdxLUbnY65kdhn3deTIbwoJ+UAXL16wLLt+/boGD+6nrl17qlWrNjp8+JCGDg1S0aLFVLp0WR08uF+ffDJZU6ZMV+nSZbVq1dd6//2BWrlyvZycnO7ax759ezR8+BC9/vp/1K1br3vWERsbq8GD+yso6H29+qq/YmJiNHBgby1Zskhdu/bMlJoAAP8eE2kAALK1jRvX68MPR6hHj0Cr5du2/ahcudzVtu3rsre3V5Uq1dS48atavXqFJGn9+m/VsGFjlS9fUfb29urQoaPc3T20devmu/axZcsmDR06SH37DnxguPH09NT69ZvVrFkLGQwGXb8ep+TkZHl4eGRaTQCAf4/QBQDI1qpXr6mvv/5GDRs2tlp++vRJ+fr6Wi0rUuQFhYeHpav9juXL/6sxY0YqOHiEmjdv9dB6XFxySpLatPHX22+/IS8vbzVr1jJTawIA/DuELgBAtubl5X3P+5gSExPl5ORstczJyUk3byamq126PYq2bNkSFS/up/Xrv1Vqamq661q2bLW++WajjEajRowIfipqAgA8GkIXAAD34OTkrFu3kqyWJSUlycXFJV3tkuTs7Kw5c77Q+PFTFR7+l2bMmGZpi4iIUKNGL1m+Jk8eb7WtHDmc5O2dRwEB72nPnl91/fp1m9cEALANQhcAAPdQtKivTp8+ZbXszJnTKlrUN13tklS/fkPlyZNX+fLl0+jRIVq9erm++26tJClfvnzasmWH5Wvw4GH6/ffDevPNtkpJSbFsIyUlRQ4ODnJ2drZ5TQAA2yB0AQBwD/XqNVB0dLSWL/9KqampOnhwvzZv3iR//9v3QPn7t9TmzZt08OB+paamavnyrxQTE6O6dRvcc3vVq9dUly7dNXXqRB09+sc9+/j6FldSUpI+++xTpaSkKCLismbMmCZ//1ZycHDIlJoAAP8eU8YDAGwun3vuLLcfd3cPTZs2U9OnT9H8+XPk4eGh/v2DLM/wqlq1ugYNCtaUKRN09eoVFSlSVFOmhCpXLvf7brNz5276888/NGxYkBYsWCxv7zxW7S4uLpo69VOFhk5VixaN5erqqsaNm6pz526ZVhMA4N8zmM3mjD09EoqKuiHeNQD4n5SUZEVHX5aXV345ODhalhuNBnl4usjO+OQurEgzmRQXm5jhhyPj/u53fgHgaWdvb5SnZ0692fdjHT958aH9S/oW1FehAxUbm6DUVNMD+xoMkre3W/rqSFcvAAAegclkVlxsooxGwxPdJ4ELAPA0IXQBAGyKEAQAyO6YSAMAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYENMGQ8AsCmj0cBzugAA2RqhCwBgM0ajQR6eLrIzPrkLK9JMJsXFJhK8AABPDUIXAMBmjEaD7IxGTdu4Vhdiom2+v+dye6l/05YyGg3pDl0HDuzTZ5/N0NmzZ+Tk5KQGDRoqMLCvcuRw0tGjf2jatMk6c+aUPDw89c4776p589aWdTduXK+FC+crOjpKzz//ggYMGKyyZctLkvr06aFKlaqoa9eelv7Hjx/T4MH9VLNmbQUHj5C9/d0/hq9fv6bp06dq166dMplMqlSpsgYNGipvb29JypSaAAD/Dp+sAACbuxATrdNXIjO7jLvExsZq8OD+Cgp6X6++6q+YmBgNHNhbS5YsUvv2/9Hgwf3UtWtPtWrVRocPH9LQoUEqWrSYSpcuq4MH9+uTTyZrypTpKl26rFat+lrvvz9QK1eul5OT01372rdvj4YPH6LXX/+PunXrdd+ahg8fIje3XPr6629kZ2dUSMgHmjRpnCZNmqbr169nSk0AgH+HiTQAANmWp6en1q/frGbNWshgMOj69TglJyfLw8ND27b9qFy53NW27euyt7dXlSrV1Ljxq1q9eoUkaf36b9WwYWOVL19R9vb26tCho9zdPbR16+a79rNlyyYNHTpIffsOfGC4OX78mI4e/UPDh4+Wm5ubXFxyKjh4hHr1ek+SMqUmAMC/R+gCAGRrLi45JUlt2vjr7bffkJeXt5o1a6nTp0/K19fXqm+RIi8oPDxMkh7afsfy5f/VmDEjFRw8Qs2bt3pgLceOHVWRIi9o7dpv1KFDa7Vq1UQzZkyzXFqYGTUBAP49QhcAAJKWLVutb77ZKKPRqBEjgpWYmCgnJ2erPk5OTrp5M1GSHtou3b6/atmyJSpe3E/r13+r1NTUB9Zw/fo1nTwZpgsXzumLL5bqiy++0tWrVzRu3Oh07dMWNQEA/j1CFwAAknLkcJK3dx4FBLynPXt+lZOTs27dSrLqk5SUJBcXF0l6aLskOTs7a86cLzR+/FSFh/+lGTOmWdoiIiLUqNFLlq/Jk8fLwcFRktS37yC5uORU7txe6tEjULt27bQEKlvWBACwDUIXACDb+v33w3rzzbZKSUmxLEtJSZGDg4OKFHlBp0+fsup/5sxpFS16+/K9okV9H9guSfXrN1SePHmVL18+jR4dotWrl+u779ZKkvLly6ctW3ZYvgYPHqYXXnhBZrNZqan/qyctzfT//zI/dJ//tiYAgG0QugAA2Zavb3ElJSXps88+VUpKiiIiLmvGjGny92+lBg0aKjo6WsuXf6XU1FQdPLhfmzdvkr//7Xug/P1bavPmTTp4cL9SU1O1fPlXiomJUd26De65r+rVa6pLl+6aOnWijh794559qlWrqQIFCmrChDFKTExUbGys5s2bpZdeqi8Xl5yqV6/BE68JAPDvMWU8AMDmnsvt9VTux8XFRVOnfqrQ0Klq0aKxXF1d1bhxU3Xu3E2Ojo6aNm2mpk+fovnz58jDw0P9+wepcuWqkqSqVatr0KBgTZkyQVevXlGRIkU1ZUqocuVyv+/+Onfupj///EPDhgVpwYLF8vbOY9Vub2+vGTPm6tNPP9Z//vOabt1K1osv1lW/fkGSJHd3jydeEwDg3zOYzeb0PT0SFlFRN8S7BgD/k5KSrOjoy/Lyym+5L0m6/XBkD08X2Rmf3IUVaSaT4mIT0/1wZDzc/c4vADzt7O2N8vTMqTf7fqzjJy8+tH9J34L6KnSgYmMTlJpqemBfg0Hy9nZLXx3p6gUAwCMwmcyKi02U0Wh4ovskcAEAniaELgCATRGCAADZHRNpAAAAAIANEboAAAAAwIYIXQAAAABgQ4QuAAAAALAhQhcAAAAA2BChCwAAAABsiCnjAQA2ZTQaeE4XACBbI3QBAGzGaDTIw8NFdnZP7sKKtDST4uISCV4AgKcGoQsAYDNGo0F2dkaNXbFGZ69G2Xx/z+fx1sj2r8loNKQ7dF2/fk3Tp0/Vrl07ZTKZVKlSZQ0aNFTe3t46evQPTZs2WWfOnJKHh6feeeddNW/e2rLuxo3rtXDhfEVHR+n551/QgAGDVbZseUlSnz49VKlSFXXt2tPS//jxYxo8uJ9q1qyt4OARsre//4/h2NhY9erVRcHBI1S5clVJ0sGD+9W3by/lyZNXq1atl9FoHWaDgwdo584dCg39zLIOACDzEboAADZ39mqUwi5HZHYZ9zR8+BC5ueXS119/Izs7o0JCPtCkSeM0YsQYDR7cT1279lSrVm10+PAhDR0apKJFi6l06bI6eHC/PvlksqZMma7Spctq1aqv9f77A7Vy5Xo5OTndtZ99+/Zo+PAhev31/6hbt14PrOnIkd8UEvKBLl68cM/2lJRk7du3RzVq1LIsi4mJ1u+/H/l3bwYAwCaYSAMAkG0dP35MR4/+oeHDR8vNzU0uLjkVHDxCvXq9p23bflSuXO5q2/Z12dvbq0qVamrc+FWtXr1CkrR+/bdq2LCxypevKHt7e3Xo0FHu7h7aunXzXfvZsmWThg4dpL59Bz40cG3cuF4ffjhCPXoE3rdPo0ZNtXHj+rvWq1//5Ud4FwAAtkboAgBkW8eOHVWRIi9o7dpv1KFDa7Vq1UQzZkyTt7e3Tp8+KV9fX6v+RYq8oPDwMEl6aPsdy5f/V2PGjFRw8Ag1b97qoTVVr15TX3/9jRo2bHzfPs2atdCOHT8rPj7esmzDhnXp2j4A4MkjdAEAsq3r16/p5MkwXbhwTl98sVRffPGVrl69onHjRisxMVFOTs5W/Z2cnHTzZqIkPbRduj36tGzZEhUv7qf1679VamrqQ2vy8vJ+4L1eklS8uJ8KF37eMqp25MhvMhqNKl26bLqOGwDwZBG6AADZloODoySpb99BcnHJqdy5vdSjR6B27dops9msW7eSrPonJSXJxcVFkuTk5PzAdklydnbWnDlfaPz4qQoP/0szZkyztEVERKhRo5csX5Mnj89Q7c2atdSmTbcvMfzuu7WMcgHAU4yJNAAA2dYLL7wgs9ms1NQU5ciRQ9LtKeel26NJa9astOp/5sxpFS16+5LCokV9dfr0qbvaa9WqY3ldv35D5cmTV5I0enSIgoL6qnhxP/n7t1S+fPm0ZcuOR669ceNXNWvWdIWFndCOHdsUEND3kbcFALAtQhcAwOaez+P9VO6nWrWaKlCgoCZMGKNhwz7QrVu3NG/eLL30Un01avSq5s+fo+XLv1KbNq/ryJHftHnzJk2cOFWS5O/fUsOGDdbLLzdS+fIVtXr1csXExKhu3Qb33Ff16jXVpUt3TZ06UUWKFFWZMv/uUkB3dw/Vrv2ixo4dpcqVq8rDw+NfbQ8AYDuELgCAzZhMZqWlmTSy/WtPbJ9paaZ0P6PL3t5eM2bM1aeffqz//Oc13bqVrBdfrKt+/YLk5uamadNmavr0KZo/f448PDzUv3+Q5flXVatW16BBwZoyZYKuXr2iIkWKasqUUOXK5X7f/XXu3E1//vmHhg0L0oIFi+XtnedfHWuzZi0VHDyAUS4AeMoZzGZz+n4ywSIq6oZ41wDgf1JSkhUdfVleXvkt90ndYTQaZDQanlgtJpM53aEL6fOg8wsATzN7e6M8PXPqzb4f6/jJiw/tX9K3oL4KHajY2ASlppoe2NdgkLy93dJXR7p6AQDwiAhBAIDsjtkLAQAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2xJTxAACb4jldAIDsjtAFALAZo9EgDw8X2dk9uQsr0tJMiotLJHgBAJ4amRq60tLS1LlzZxUsWFATJ06UJB0+fFjjxo1TeHi4PD09FRAQoPbt21vWWbNmjWbNmqWrV6+qaNGiGjlypCpVqmTZ3pQpU/Ttt9/q5s2bqlmzpj788EPlzZtXkhQdHa2RI0dq7969srOzU8uWLRUcHCx7e7InANiC0WiQnZ1RQxeu1KmIKJvvr2g+b03o3E5GoyHDoSs2Nla9enVRcPAIVa5cVQcP7lffvr2UJ09erVq1XkajdXAMDh6gnTt3KDT0M1WuXPWe2zx4cL/mzJmps2dPy9nZRfXqNVCvXu/JyclJGzas0/jxH6pMmXKaM+eLu9Z9553/6OTJMK1YsVb58xfI0LEAAJ4umZo2ZsyYof3796tgwYKSpGvXrqlHjx7q27evOnTooH379ql3794qUaKEypcvrz179mjs2LGaN2+eypcvr6VLlyogIEA//fSTnJ2dNXv2bO3cuVOrVq2Sm5ubRo4cqREjRmju3LmSpP79+8vHx0c7duxQVFSUAgICtHDhQnXr1i0z3wYAeOadiojS8QuXM7uM+zpy5DeFhHygixcv3NWWkpKsffv2qEaNWpZlMTHR+v33Iw/c5tWrVxQcPFDvvTdA/v4tFRV1VcOHD9Hs2aEaMGCIJMnV1VUnThzTuXNnVLhwEcu6x4//qYiIS4/n4AAAmS7TJtLYtWuXNm/erMaNG1uWbd68WR4eHurYsaPs7e1Vq1YttWjRQkuXLpUkrVixQv7+/qpSpYocHBzUuXNneXp6asOGDZb27t27K3/+/HJ1ddXw4cO1fft2nT9/XmfPntXevXs1ePBgOTs7q1ChQgoMDLRsGwCQPW3cuF4ffjhCPXoE3rO9UaOm2rhx/V3r1K//8gO3e+nSRb34Yl21bPma7Ozs5OOTT02aNNNvvx2y9HF1dVOtWnW0ceN3VuuuX79WDRs2/ucmAQBZVKaErujoaA0fPlxTp06Vs7OzZXlYWJj8/Pys+hYrVkzHjx+XJIWHh9+3/caNG4qIiLBq9/b2lru7u06cOKGwsDB5eHjIx8fH0u7r66tLly7p+vXrGarfYOCLL7744uufX1lV9eo19fXX39w35DRr1kI7dvys+Ph4y7ING9apefNWD9xuhQqVNHr0OMtrk8mkbdt+VIkSJa36NW3aQt9/v0Emk0mSdOvWLf388w9q2rT5ox2QDWX29xhffPHFV0a/bP2Zl15P/PJCk8mkwYMHq0uXLipZ0voHT0JCglUIkyQnJyclJiY+tD0hIUGS5OLiclf7nbZ/rnvndWJionLlypXuY/Dyckt3XwDIDpKSkhQTY5SdnUH29v/7e96TnEDj7zKyXx+fvHeta29vtGyjVKmSev75Ivr55y1q3bqtDh/+TXZ2dipfvrxV/wdJTU3RxInjdPnyJY0dO0H29kbLjI51676kyZNDdOjQPtWoUUs//PCTypQpa/kjYXq2b2smk0FGo1Genjnl5OSUqbUAwJPg6ZnzsW7viYeuOXPmyNHRUZ06dbqrzdnZWTdu3LBalpSUpJw5c1rak5KS7mr39PS0BKibN2/ec32z2XxX253Xd7afXtHRN2RmUiwAsEhJSZbJZFJamlmpqabMLkdpaaZHruPOumlpt9dPTTWpadMW+u67dWre/DWtXfuN/P1bWraflmbSgQMHFBTU17KNTp266O2335UkRUVFafTooUpISNCsWfPl6eml1FTT3yb6sFPjxk21fv06ValSQ+vWfas2bV637P/fHMvjkpZmlslkUmxsghwcUjK1FgDICDs74yMFqNjYBMvn8P0YDOkfjHnioevbb7/VlStXVLXq7Zme7oSoH374QUOGDNHOnTut+oeHh6t48eKSpOLFiyssLOyu9rp168rd3V0+Pj5WlyBevXpVcXFx8vPzk8lkUlxcnKKiouTt7S1JOnnypPLlyyc3t4yNXJnNInQBwN8865+JjRu/qlmzpiss7IR27NimgIC+Vu0VKlTSli077lrv2LGjev/9gapSpbqGDBl+31GiZs1aqkePdxQeHqYzZ06pTp2XdPXqFZscy7/Bzz8A2cnj/Lx74tcrbNq0SQcPHtT+/fu1f/9+NW/eXM2bN9f+/fvVqFEjRUVFaeHChUpJSdHu3bu1bt06tW3bVpLUrl07rVu3Trt371ZKSooWLlyo6OhoNWrUSJLUpk0bzZ49W+fPn1d8fLzGjx+v6tWrq3DhwipSpIiqVKmi8ePHKz4+XufPn9esWbPUrl27J/0WAACyGHd3D9Wu/aLGjh2lypWrysPD46HrXLx4QQMG9FaLFq9p1KixD7wsz9e3mJ5//gWNGTNCjRs341EmAPCMeao+1T09PfX5558rJCREoaGhyp07t0aMGKGaNWtKkmrVqqXRo0frgw8+UGRkpIoVK6Z58+ZZfvj17t1bqamp6tixoxISElSjRg1NmzbNsv3Q0FCNGTNGDRs2lNFoVOvWrRUYeO/ZqgAAj0/RfN5Zfj/NmrVUcPCAu0a57mfFiv8qPj5eX3+9VF9//b+Zcn188mvJkuV39ff3b6FPPpmsMWMmPraaAQBPB4PZzIUCGRUVxT1dAPB3KSnJio6+LC+v/HJwcLQsNxoN8vBweaITaqSlmRQXl5jhhyPj/u53fgHgaWdvf/uerjf7fqzjJy8+tH9J34L6KnSgYmMTHno/rcEgeXs/pfd0AQCyD5PJrLi4RMtMfU9qnwQuAMDThNAFALApQhAAILvL3Ad/AAAAAMAzjtAFAAAAADZE6AIAAAAAGyJ0AQAAAIANEboAAAAAwIYIXQAAAABgQ0wZDwCwKaPRwHO6AADZGqELAGAzRqNBHh4usrN7chdWpKWZFBeXSPACADw1CF0AAJsxGg2yszMqeObXOnXpqs33V7RAHn3Uu4OMRkO6Q1dY2F+aOXOaTpw4LgcHB1WrVkPvvTdQp06Fq2/fXsqTJ69WrVovo9E6OAYHD9DOnTsUGvqZKleues9tL1myUPPmzZajo6NlWbt2b6hnz97asGGdxo//UGXKlNOcOV/cte477/xHJ0+GacWKtcqfv0AG3gUAwNOG0AUAsLlTl67q2JlLmV3GXW7dSlJQUF+1bPmaJk+ersTEBI0bN1rjx3+oN97oKElKSUnWvn17VKNGLct6MTHR+v33Iw/d/vHjf+qdd7rq3Xd73LPd1dVVJ04c07lzZ1S4cBGr9SIinr73CwDwaJhIAwCQbUVGRqhYMT917txNDg4Ocnf3UKtWbXT48EFLn0aNmmrjxvVW623cuF7167/80O0fO/anSpYsfd92V1c31apVRxs3fme1fP36tWrYsHEGjwYA8LQidAEAsq3ChYto6tRQ2dnZWZb99NNWlShRyvK6WbMW2rHjZ8XHx1uWbdiwTs2bt3rgtmNjYxQZGaF169aoVatX1b59S82aNV23bt2y6te0aQt9//0GmUwmSdKtW7f0888/qGnT5v/+AAEATwVCFwAAksxms+bOnaWdO3eoX78gy/Lixf1UuPDz2rp1syTpyJHfZDQaVbp02QduLzo6WhUqVFKzZi20YsVaTZ48Xbt3/6oZM6ZZ9atd+0UlJydr//69kqRt235U6dJl5e2d5/EeIAAg0xC6AADZXkJCvEaMGKLNmzdq5sx58vUtZtXerFlLbdp0+xLD775be9co1+HDh9So0UuWry+//FzFihXXzJnz9NJL9eXo6KgiRV5Q587d9eOPm63Wtbe3V5Mm/7uE8bvv1srf/8GjaACArIWJNAAA2drFixcUFNRXPj75NH/+Ynl4eNzVp3HjVzVr1nSFhZ3Qjh3bFBDQ16q9QoVK2rJlh9WyQ4cO6I8/jqhTpy6WZSkpycqRw+mu7Tdr1lI9eryj8PAwnTlzSnXqvKSrV688ngMEAGQ6RroAANnW9evX1bdvL5UrV0EffzzjnoFLktzdPVS79osaO3aUKleuet9+f+fs7KwFC+Zo8+ZNMplMOnXqpL74Yr5atnztrr6+vsX0/PMvaMyYEWrcuJns7fmbKAA8S/hUBwDYXNECT+b+pIzuZ8OGtYqMjNCPP27RTz/9YNX20UefWL1u1qylgoMH3DXKdT8lS5bWhx+O1xdfzNfkySFydXVTixat9fbb796zv79/C33yyWSNGTMxQ8cAAHj6Gcxmc/qeHgmLqKgb4l0DgP9JSUlWdPRleXnll4PD/x4EbDQa5OHhIju7J3dhRVqaSXFxiel+ODIe7n7nFwCedvb2Rnl65tSbfT/W8ZMXH9q/pG9BfRU6ULGxCUpNNT2wr8EgeXu7pa+OdPUCAOARmExmxcUlymg0PNF9ErgAAE8TQhcAwKYIQQCA7I6JNAAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANsSU8QAAmzIaDTynCwCQrRG6AAA2YzQa5OHhIju7J3dhRVqaSXFxiQQvAMBTg9AFALAZo9EgOzujhk9eqtPnI22+vxcK+ShkcEcZjYZ0h66tWzdrzJiRcnR0tCyrW7e+/P1bqW/fXsqTJ69WrVovo9E6OAYHD9DOnTsUGvqZKleues9t79u3R7Nnf6oLF87Lzc1NzZu3UufO3WQwGLRhwzqNH/+hypQppzlzvrhr3Xfe+Y9OngzTihVrlT9/gQy8CwCApw2hCwBgc6fPR+r4yYuZXcY9HTv2p5o0aaZhw0ZbLT94cL8kKSUlWfv27VGNGrUsbTEx0fr99yMP3O61a3EaOnSQRo0ap7p16+vMmdPq06eH8ucvoFdf9Zckubq66sSJYzp37owKFy5iWff48T8VEXHpMR0hACCzMZEGACBbO378T5UoUeq+7Y0aNdXGjeutlm3cuF7167/8wO1GREQoKSlJZrNJZvPtUTeDwSAnJydLH1dXN9WqVUcbN35nte769WvVsGHjjB4KAOApRegCAGRbJpNJJ04c165dv6ht2+Z67bVm+uijEF2/ft3Sp1mzFtqx42fFx8dblm3YsE7Nm7d64Lb9/EqoQYNXNHz4ENWvX1NvvdVeDRs2Uv36Da36NW3aQt9/v0Emk0mSdOvWLf388w9q2rT5YztOAEDmInQBALKtuLhY+fmVUP36DbV06UrNnv25Llw4p7FjR1r6FC/up8KFn9fWrZslSUeO/Caj0ajSpcs+cNvJyclyd3fX2LETtXXrTs2evUA//LBZ69d/Y9Wvdu0XlZycrP3790qStm37UaVLl5W3d57He7AAgExD6AIAZFu5c3tp5sx5at68lZycnJQvXz4FBvbV7t2/KjEx0dKvWbOW2rTp9iWG33239q5RrsOHD6lRo5csX19++blWr16hS5cuqUGDV2Rvb69y5Sqoffs3tHr1Sqt17e3t1aTJ/y5h/O67tfL3f/AoGgAgayF0AQCyrfDwMM2e/anlnitJSk5OkdFolIODg2VZ48av6vjxYwoLO6EdO7apSRN/q+1UqFBJW7bssHy9/fa7ioyMUEpKslU/e3t7q+3e0axZS23f/pPCw8N05swp1anz0mM+UgBAZmL2QgCAzb1QyOep3E+uXLm0evVy5cqVSx06dFRUVJRmzZqupk2bW4Ujd3cP1a79osaOHaXKlavKw8PjoduuU+clrVmzQhs3rterr/orPDxMK1d+rbfe6nxXX1/fYnr++Rc0ZswINW7cTPb2/HgGgGcJn+oAAJsxmcxKSzMpZHDHJ7bPtDRTup/RlTevjyZNmqY5c2Zq0aLP5ejoqFdeaayAgL46evR3q77NmrVUcPAABQT0Tde2q1WroVGjxurLL7/QJ59MVu7cufXGGx3Vpk37e/b392+hTz6ZrDFjJqZr+wCArMNg/vs1FUiXqKgb4l0DgP9JSUlWdPRleXnll4ODo1Wb0WiQ0Wh4YrWYTOZ0hy6kz4POLwA8zeztjfL0zKk3+36crudFlvQtqK9CByo2NkGpqaYH9jUYJG9vt/TVka5eAAA8IkIQACC7YyINAAAAALAhQhcAAAAA2BChCwAAAABsiNAFAHhsmJvp2cR5BYB/J8OhKzk5WVu2bNHChQt18+ZNHT9+3BZ1AQCyEDs7O0lScvKtTK4EtnDnvNrZMf8WADyKDH16njt3Tu+++65SUlJ0/fp11atXT23bttWMGTPUoEEDW9UIAHjKGY12cnZ2VXx8rCTJ0TGHDIYnN008bMNsNis5+Zbi42Pl7Owqo5ELZADgUWQodIWEhKhNmzYKCAhQ9erV9cILL2jcuHEKDQ0ldAFANpcrV25JsgQvPDucnV0t5xcAkHEZCl2//fabPv30UxkMBstfMFu1aqWQkBCbFAcAyDoMBoPc3b3k5uaptLTUzC4Hj4mdnT0jXADwL2UodLm5uSkqKkoFChSwLLt69arc3d0fe2EAgKzJaDTKaHTM7DIAAHhqZOhPVy1atFCfPn20c+dOmUwmHTlyREFBQfL397dVfQAAAACQpWVopCswMFBJSUnq06ePbt68qU6dOqldu3bq06ePreoDAAAAgCwtQ6HLwcFBwcHBCg4OVkxMjDw9PZmdCgAAAAAeIEOha8aMGfdc7ujoKE9PT9WuXVsFCxZ8LIUBAAAAwLMgQ6Hrr7/+0ubNm1WuXDkVKlRIly5d0m+//aZy5copLS1NISEhmj17tmrVqmWregEAAAAgS8lQ6LK3t9eoUaP05ptvWpatWrVKe/bs0aRJk7RhwwZ9/PHHWrFixWMvFAAAAACyogzNXvjrr7+qQ4cOVstat26tbdu2SZKaNm2qU6dOPb7qAAAAACCLy1DocnFx0R9//GG17M8//5Sj4+3nsURHR8vZ2fnxVQcAAAAAWVyGLi/s3LmzevTooTfeeEMFCxbUxYsXtWLFCnXt2lWXLl1Sr169eGYXAAAAAPxNhkLX22+/LS8vL61atUqbN29WgQIF9MEHH6hx48Y6fvy42rRpo06dOtmqVgAAAADIcjIUuiTJ39//nqNZJUuWVMmSJR9LUQAAAADwrMhQ6IqNjdXixYsVGRkpk8kkSUpJSdFff/2ltWvX2qRAAAAA4HEyGg0yGg0ZWsdkMstkMtuoIjzrMhS6hg4dqjNnzih37tyKj49XgQIF9Msvv6hjx462qg8AAAB4bIxGgzw8XGRnl6H55JSWZlJcXCLBC48kQ6Fr37592rBhgyIjIzV37lzNmDFD3377rdavX2+r+gAAAIDHxmg0yM7OqOCZX+vUpavpWqdogTz6qHcHGY0GQhceSYYfjuzj4yNnZ2edOHFC0u17vCZNmmST4gAAAABbOHXpqo6duZTZZSCbyNC4asGCBfXHH38oV65cSkhIUExMjBITE5WUlGSr+gAAAAAgS8vQSNebb76pTp066bvvvlPz5s31zjvvyN7eXtWqVbNVfQAAAACQpWUodLVr105+fn7y9vbW4MGD9cUXXyghIUFdu3a1VX0AAAAAkKVl6PLCcePGqXz58nJ0dJSDg4N69OihAQMGaNy4cbaqDwAAAACytIeOdEVGRmrXrl2SpBUrVqhs2bJW7Tdu3NCWLVtsUx0AAAAAZHEPDV2enp5asmSJYmJilJycrNDQUKv2HDlyqE+fPjYrEAAAAACysoeGLkdHR61cuVKS1LVrVy1YsMDmRQEAAADAsyJDE2ksWLBACQkJ2rZtmy5evKi8efOqQYMGypUrl63qAwAAAIAsLUOh6+zZs+rcubNSUlJUoEABXbp0SR999JEWLVqk4sWL26pGAAAAAMiyMjR74YQJE/Tqq69q+/btWr58ubZv365WrVpp4sSJtqoPAAAAALK0DIWuw4cPa8CAATIab69mNBrVr18/HT582CbFAQAAAEBWl6HQZWdnp/j4eKtl8fHxcnZ2fqxFAQAAAMCzIkOhq0GDBho0aJBOnTql5ORknTx5UoMHD1aDBg0yvONdu3apffv2qly5surUqaOxY8cqKSlJ0u0Rtfbt26tSpUp6+eWXtWLFCqt116xZo0aNGqlixYpq06aNDh06ZGlLS0vTRx99pNq1a6tSpUoKCAjQlStXLO3R0dEKDAxU1apVVaNGDYWEhCg1NTXD9QMAAABAemQodA0aNEipqalq1qyZKlSoIH9/fzk6OiooKChDO42JiVHPnj31n//8R/v379eaNWu0d+9ezZ07V9euXVOPHj3UunVr7du3TyEhIZowYYKOHDkiSdqzZ4/Gjh2riRMnat++fWrZsqUCAgJ08+ZNSdLs2bO1c+dOrVq1Sjt27JCTk5NGjBhh2Xf//v3l4uKiHTt2aOXKldq1a5cWLlyYofoBAAAAIL0yNHuhh4eHFi9erPPnzys6OloFCxZUnjx5MrzT3Llz69dff5Wrq6vMZrPi4uJ069Yt5c6dW5s3b5aHh4c6duwoSapVq5ZatGihpUuXqnz58lqxYoX8/f1VpUoVSVLnzp319ddfa8OGDWrbtq1WrFihoKAg5c+fX5I0fPhwvfjiizp//rxMJpP27t2r7du3y9nZWYUKFVJgYKAmT56sbt26Zfg4AAAAAOBhMhS6JOmPP/7QypUrdfHiReXJk0dt2rRR1apVM7xjV1dXSVK9evUUGRmpqlWrqk2bNpo2bZr8/Pys+hYrVszygObw8HC1bdv2rvbjx4/rxo0bioiIsFrf29tb7u7uOnHihKTbwdHHx8fS7uvrq0uXLun69evpft6YwZDhwwUAAE85o9EgQwZ/yJvNZplMZhtVhKcRvwdmHw871xn5XshQ6Prll18UGBiol19+WSVKlNC5c+fUpUsXffLJJ3rllVcysimLzZs369q1awoKClLfvn3l4+Nz18QcTk5OSkxMlCQlJCTctz0hIUGS5OLiclf7nbZ/rnvndWJiYrpDl5eXWzqPDgAAZBVpJpPsjBm68+KR1kHW5emZM7NLwBPyuM91hkJXaGioPvroIzVt2tSybOPGjZo1a9Yjhy4nJyc5OTlp8ODBat++vTp16qQbN25Y9UlKSlLOnLcP3NnZ2TLhxt/bPT09LQHqzv1d/1zfbDbf1Xbn9Z3tp0d09A2Z+aMWAADPDDs7ozw9c2rowpU6FRGVrnWK5vPWhM7tFBuboLQ0k40rxONy51w/Cs511vOo5zs959pgSP9gTIZC1+nTp9WkSROrZU2aNNHw4cMzshkdPHhQw4YN09q1a+Xo6ChJSk5OloODg4oVK6adO3da9Q8PD1fx4sUlScWLF1dYWNhd7XXr1pW7u7t8fHwUHh5uucTw6tWriouLk5+fn0wmk+Li4hQVFSVvb29J0smTJ5UvXz65uaV/9MpsFqELAIBn0KmIKB2/cDnD6/F7QfbBuc4+Hue5ztB4uIeHh/766y+rZcePH8/wZBolSpRQUlKSpk6dquTkZF28eFEfffSR2rVrpyZNmigqKkoLFy5USkqKdu/erXXr1lnu42rXrp3WrVun3bt3KyUlRQsXLlR0dLQaNWokSWrTpo1mz56t8+fPKz4+XuPHj1f16tVVuHBhFSlSRFWqVNH48eMVHx+v8+fPa9asWWrXrl2G6gcAAACA9MrQSFf79u0VEBCgnj176rnnntO5c+c0b948vfnmmxnaac6cOTV//nyNHz9ederUkZubm1q0aKHevXvL0dFRn3/+uUJCQhQaGqrcuXNrxIgRqlmzpqTbsxmOHj1aH3zwgSIjI1WsWDHNmzdPHh4ekqTevXsrNTVVHTt2VEJCgmrUqKFp06ZZ9h0aGqoxY8aoYcOGMhqNat26tQIDAzNUPwAAAACkV4ZCV/fu3XXr1i3NmTNHUVFRKliwoN566y116dIlwzsuVqyYPv/883u2lStXTsuWLbvvuq1atVKrVq3u2ebg4KCgoKD7PjvM29tboaGhGa4XAAAAAB5FhkKXwWDQe++9p/fee89W9QAAAADAMyVd93T9fbZCSTp16pRNigEAAACAZ026QldERITV6zfeeMMmxQAAAADAsyZdoeufT2c3M1cmAAAAAKTLIz1C/Z8hDAAAAABwb48UugAAAAAA6ZOu2QuTk5M1Y8YMy+ukpCSr15LUp0+fx1sZAAAAADwD0hW6KlWqpD179lheV6hQweo1lxsCAAAAwL2lK3QtXrzY1nUAAAAAwDOJe7oAAAAAwIYIXQAAAABgQ4QuAAAAALAhQhcAAAAA2FCGQ1dMTIwWLlyokJAQxcfH66effrJFXQAAAADwTMhQ6Dp69KheffVVbdq0SStXrlRsbKz69eunVatW2ao+AAAAAMjSMhS6JkyYoPfff1/Lli2Tvb29ChUqpJkzZ2rBggW2qg8AAAAAsrQMha6//vpLrVq1kvS/ByK/9NJLioyMfPyVAQAAAMAzIEOhK3fu3Dp16pTVslOnTsnb2/uxFgUAAAAAz4oMha4333xTPXv21PLly5WamqoNGzaoX79+6tChg63qAwAAAIAszT4jnd9++23Z2dlp0aJFMplMCg0N1euvv67OnTvbqDwAAAAAyNoyFLrmz5+vN998Ux07drRVPQAAAADwTMnQ5YVz585Vjhw5bFULAAAAADxzMhS6XnrpJc2bN09XrlyxVT0AAAAA8EzJ0OWFBw4c0Hfffafp06ff1Xbs2LHHVhQAAAAAPCsyFLomTZpkqzoAAAAA4JmUodBVvXr1ey6PiYl5LMUAAAAAwLMmQ6HryJEjmjRpkiIjI2UymSRJKSkpiomJ0R9//GGTAgEAAAAgK8vQRBpjxoxRnjx59OKLL+qFF17QW2+9JTs7Ow0aNMhW9QEAAABAlpah0BUWFqYJEyaoY8eOSktLU5cuXfTJJ59o3bp1tqoPAAAAALK0DIWuXLlyycnJSYUKFVJYWJgkqWLFirp48aJNigMAAACArC5Doato0aL673//qxw5csjFxUXHjh3TyZMnZTAYbFUfAAAAAGRpGZpIo1+/fgoICFCdOnXUtWtXvf7667Kzs9N//vMfW9UHAAAAAFlahkJX5cqVtX37djk4OKhDhw4qVaqUbty4oTp16tiqPgAAAADI0jIUui5dumT12tvbW97e3rp06ZIKFCjwWAsDAAAAgGdBhkLXyy+/fN/7t44dO/ZYCgIAAACAZ0mGQtfWrVutXsfExGj+/Plq2LDhYy0KAAAAAJ4VGQpdBQsWvOv1uHHj9Nprr6lly5aPtTAAAAAAeBZkKHTdz/Xr1x/HZgAAeOoYjQYZjel/NIrJZJbJZLZhRQCArCZDoWvGjBlWr1NSUrRjxw5VrFjxcdYEAMBTwWg0yMPDRXZ26X+sZVqaSXFxiQQvAIBFhkLXnj17rF7b2dmpUqVK6tmz52MtCgCAp4HRaJCdnVFjV6zR2atRD+3/fB5vjWz/moxGA6ELAGCRodC1ePFiW9UBAMBT6+zVKIVdjsjsMgAAWVSGQtc333yTrn6tW7d+hFIAAAAA4NmTodC1YsUKHTp0SB4eHipUqJAiIyMVGRmpvHnzys7OTpJkMBgIXQAAAADw/zIUukqUKKHy5csrKCjIErLmzJmjy5cv64MPPrBFfQAAAACQpaV/OiZJ69at04ABAyyBS5K6du2q77///rEXBgAAAADPggyFLicnJ506dcpq2R9//CF3d/fHWhQAAAAAPCsydHlhx44d1bVrV7Vv314FChTQ+fPntXz5cg0bNsxW9QEAAABAlpah0NWrVy95eXlp7dq12rx5swoVKqRJkyapXr16tqoPAAAAALK0DIUuSWrfvr3at29vi1oAAAAA4JmT7nu69u/frx9//FGSdPPmTQUHB6tFixaaMWOGzYoDAAAAgKwuXaFr27Zt6tKli06cOCFJ+uijj7Rnzx516NBBP/zwgxYvXmzTIgEAAAAgq0pX6Jo3b57Gjh2rgIAApaamau3atRoyZIjeeustTZw4UcuXL7d1nQAAAACQJaUrdJ04cULNmzeXJB0/flw3b95UrVq1JEnFixfXhQsXbFchAAAAAGRh6QpdaWlpsre/PefG4cOHVbhwYXl6ekq6fX+X0Zihx30BAAAAQLaRrrRUpEgRHTlyRJL0008/WUa5pNsTbBQpUsQmxQEAAABAVpeuKeM7duyowMBAlSxZUrt379bq1aslSV999ZVmz56tXr162bRIAAAAAMiq0hW62rZtK0dHRx08eFDdunWTn5+fpNsTbLRp00YdO3a0aZEAAAAAkFWl++HILVq0UIsWLayW/fTTT4+9IAAAAAB4ljADBgAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbStdEGjNmzHhonz59+vzrYgAAAADgWZOu0LVnz54HthsMhsdSDAAAAAA8a9IVuhYvXmzrOgAAAADgmZTu53TdsXv3bkVGRspsNkuSUlJSdOLECY0YMeKxFwcAAAAAWV2GQte4ceO0bNky5cyZU5KUlpamhIQEvfTSSzYpDgAAAACyugyFro0bN2rJkiW6efOm1q5dq/Hjx+ujjz5SYmKireoDAAAAgCwtQ6Hr5s2bqlixoq5evaqjR4/KYDCoT58+atasma3qAwAAAIAsLUPP6cqXL5+io6OVJ08eRUREKCUlRU5OToqPj7dVfQAAAACQpWVopKtevXrq3LmzFi1apGrVqmnYsGHKkSOHihQpYqPyAAAAACBry9BI18CBA9WqVSs5ODho1KhRio2NVXh4uMaNG2er+gAAAAAgS8vQSNcPP/ygbt26SZLc3Nw0f/58SdLXX3+t0qVLP/7qAAAAACCLe2jounnzpmJjYyVJw4YNU8WKFS3P6JKkGzduaOLEierQoYPtqgQAAACALOqhoSs+Pl7+/v5KSkqSJL388suWNrPZLIPBoFdeecV2FQIAAABAFvbQ0JUnTx798MMPunnzplq0aKH169dbtefIkUPe3t42KxAAAAAAsrJ0TaTh5eWl5557TgcOHFDBggXl5OSk6OhoGY3GRwpcx48fV5cuXVS9enXVqVNHQ4YMUUxMjCTp8OHDat++vSpVqqSXX35ZK1assFp3zZo1atSokSpWrKg2bdro0KFDlra0tDR99NFHql27tipVqqSAgABduXLF0h4dHa3AwEBVrVpVNWrUUEhIiFJTUzNcPwAAAACkV4ZmL0xMTFRgYKDq1Kmj119/XS+//LLeffddXb9+Pd3bSEpKUrdu3VSpUiX98ssvWr9+veLi4jRs2DBdu3ZNPXr0UOvWrbVv3z6FhIRowoQJOnLkiCRpz549Gjt2rCZOnKh9+/apZcuWCggI0M2bNyVJs2fP1s6dO7Vq1Srt2LFDTk5OGjFihGXf/fv3l4uLi3bs2KGVK1dq165dWrhwYUbeAgAAAADIkAyFrqlTpyoxMVHfffedDh8+rG+//VYmk0mTJ09O9zYuXbqkkiVLqnfv3nJ0dJSnp6c6dOigffv2afPmzfLw8FDHjh1lb2+vWrVqqUWLFlq6dKkkacWKFfL391eVKlXk4OCgzp07y9PTUxs2bLC0d+/eXfnz55erq6uGDx+u7du36/z58zp79qz27t2rwYMHy9nZWYUKFVJgYKBl2wAAAABgCxkKXT/99JOmTp0qX19f5ciRQ35+fpo8ebJ++OGHdG+jaNGimj9/vuzs7CzLvv/+e5UpU0ZhYWHy8/Oz6l+sWDEdP35ckhQeHn7f9hs3bigiIsKq3dvbW+7u7jpx4oTCwsLk4eEhHx8fS7uvr68uXbqUoZE6AAAAAMiIDD2n6+bNm3Jzc7NalitXLplMpkfaudls1rRp0/TTTz9pyZIl+vLLL+Xs7GzVx8nJSYmJiZKkhISE+7YnJCRIklxcXO5qv9P2z3XvvE5MTFSuXLnSXbfBkO6uAIBsip8V2QvnO/vgXGcfDzvXGfleyFDoqlChgqZPn66goCAZDAaZzWZNnz5d5cqVy8hmJN2ein7o0KE6evSolixZohIlSsjZ2Vk3btyw6peUlKScOXNKuh2S7kxd//d2T09PS4C6c3/XP9c3m813td15fWf76eXl5fbwTgCAbMvTM2M/V5C1cb6zD8519vG4z3W6QteBAwdUpUoVDRo0SG+//bbWrl2rggUL6uLFizIYDPriiy8ytNNz586pe/fuKlCggFauXKncuXNLkvz8/LRz506rvuHh4SpevLgkqXjx4goLC7urvW7dunJ3d5ePj4/VJYhXr15VXFyc/Pz8ZDKZFBcXp6ioKMuMiydPnlS+fPnuGr17mOjoG/rb86EBAM8oOzvjI/3gjY1NUFrao10FgszxqOda4nxnNZzr7MWWn+MGQ/oHY9IVurp3766DBw+qRIkS+v7777V161ZFR0erYMGCqlevnlxdXdO1M0m6du2a3nnnHdWsWVMhISEyGv93W1mjRo00efJkLVy4UB07dtSBAwe0bt06zZo1S5LUrl079e7dW02bNlWVKlW0dOlSRUdHq1GjRpKkNm3aaPbs2SpXrpw8PT01fvx4Va9eXYULF5YkValSRePHj9eYMWMUGxurWbNmqV27dumu/Q6zWYQuAMAD8XMie+F8Zx+c6+zjcZ7rdIUu89/26OHhobZt2z7yDlevXq1Lly5p48aN2rRpk1XboUOH9PnnnyskJEShoaHKnTu3RowYoZo1a0qSatWqpdGjR+uDDz5QZGSkihUrpnnz5snDw0OS1Lt3b6Wmpqpjx45KSEhQjRo1NG3aNMv2Q0NDNWbMGDVs2FBGo1GtW7dWYGDgIx8LAAAAADxMukKX4THeMdilSxd16dLlvu3lypXTsmXL7tveqlUrtWrV6p5tDg4OCgoKUlBQ0D3bvb29FRoamrGCAQAAAOBfSFfounnzpho2bPjAPlu3bn0sBQEAAADAsyRdocvBwUF9+vSxdS0AAAAA8MxJV+iyt7fXa6+9ZutaAAAAAOCZY3x4F+uJNAAAAAAA6Zeu0NWyZUtb1wEAAAAAz6R0ha4PP/zQ1nUAAAAAwDMpXaELAAAAAPBoCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABuyz+wCACCrMRoNMhoNGVrHZDLLZDLbqCIAAPA0I3QBQAYYjQZ5eLrIzpixCwXSTCbFxSYSvAAAyIYIXQCQAUajQXZGo6ZtXKsLMdHpWue53F7q37SljEYDoQsAgGyI0AUAj+BCTLROX4nM7DIAAEAWwEQaAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYkH1mFwA8K4xGg4xGQ4bWMZnMMpnMNqoIAAAATwNCF/AYGI0GeXi6yM6YscHjNJNJcbGJBC8AAIBnGKELeAyMRoPsjEYt3LFREddi0rVOPvfc6vxSUxmNBkIXAADAM4zQBTxGEddidD7mSmaXAQAAgKcIE2kAAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbss/sAp51RqNBRqMh3f1NJrNMJrMNKwIAAADwJBG6bMhoNMjT00VGY/oHFE0mk2JjEwleAAAAwDOC0GVDt0e5jFr/2xZFx8c8tL+Xa241r9hIRqOB0AUAAAA8IwhdT0B0fIwir0dldhkAAAAAMgETaQAAAACADWV66IqJiVGjRo20Z88ey7LDhw+rffv2qlSpkl5++WWtWLHCap01a9aoUaNGqlixotq0aaNDhw5Z2tLS0vTRRx+pdu3aqlSpkgICAnTlyhVLe3R0tAIDA1W1alXVqFFDISEhSk1Ntf2BAgAAAMiWMjV0HThwQB06dNC5c+csy65du6YePXqodevW2rdvn0JCQjRhwgQdOXJEkrRnzx6NHTtWEydO1L59+9SyZUsFBATo5s2bkqTZs2dr586dWrVqlXbs2CEnJyeNGDHCsv3+/fvLxcVFO3bs0MqVK7Vr1y4tXLjwiR43AAAAgOwj00LXmjVrFBQUpAEDBlgt37x5szw8PNSxY0fZ29urVq1aatGihZYuXSpJWrFihfz9/VWlShU5ODioc+fO8vT01IYNGyzt3bt3V/78+eXq6qrhw4dr+/btOn/+vM6ePau9e/dq8ODBcnZ2VqFChRQYGGjZNgAAAAA8bpk2kcaLL76oFi1ayN7e3ip4hYWFyc/Pz6pvsWLFtHLlSklSeHi42rZte1f78ePHdePGDUVERFit7+3tLXd3d504cUKS5OHhIR8fH0u7r6+vLl26pOvXrytXrlzpqt2Q/sduPbInsQ88PTjf2QfnOvvgXGcvnO/sg3OdfTzsXGfkeyHTQleePHnuuTwhIUHOzs5Wy5ycnJSYmPjQ9oSEBEmSi4vLXe132v657p3XiYmJ6Q5dXl5u6er3qDw9c9p0+3i6cL6zD8519sG5zl4439kH5zr7eNzn+qmbMt7Z2Vk3btywWpaUlKScOXNa2pOSku5q9/T0tASoO/d3/XN9s9l8V9ud13e2nx7R0TdkTsdjtOzsjI90wmJjE5SWZsrwesg8j3quJc53VsO5zl74HM8++L+dfXCusxdbfo4bDOkfjHnqQpefn5927txptSw8PFzFixeXJBUvXlxhYWF3tdetW1fu7u7y8fFReHi45RLDq1evKi4uTn5+fjKZTIqLi1NUVJS8vb0lSSdPnlS+fPnk5pb+0SuzWekKXf+GrbePpwvnO/vgXGcfnOvshfOdfXCus4/Hea4zfcr4f2rUqJGioqK0cOFCpaSkaPfu3Vq3bp3lPq527dpp3bp12r17t1JSUrRw4UJFR0erUaNGkqQ2bdpo9uzZOn/+vOLj4zV+/HhVr15dhQsXVpEiRVSlShWNHz9e8fHxOn/+vGbNmqV27dpl5iEDAAAAeIY9dSNdnp6e+vzzzxUSEqLQ0FDlzp1bI0aMUM2aNSVJtWrV0ujRo/XBBx8oMjJSxYoV07x58+Th4SFJ6t27t1JTU9WxY0clJCSoRo0amjZtmmX7oaGhGjNmjBo2bCij0ajWrVsrMDAwE44UAAAAQHbwVISuOzML3lGuXDktW7bsvv1btWqlVq1a3bPNwcFBQUFBCgoKume7t7e3QkNDH71YAAAAAMiAp+7yQgAAAAB4lhC6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANhQtgxd0dHRCgwMVNWqVVWjRg2FhIQoNTU1s8sCAAAA8AzKlqGrf//+cnFx0Y4dO7Ry5Urt2rVLCxcuzOyyAAAAADyDsl3oOnv2rPbu3avBgwfL2dlZhQoVUmBgoJYuXZrZpQEAAAB4BtlndgFPWlhYmDw8POTj42NZ5uvrq0uXLun69evKlSvXQ7dhNEpmc/r36ZMrjxzsHv5W587pabUPZD2FcueVo336/lv55Mpt+TfnO+spmtdHOewd0tW3YG7OdVZXPH8+OTk8/HwX8vay/JtznTWVKpRPzo7p+79dxIfznZWVej6/nHOk81zn87b8m3OdNZX0LShnJ8eH9nu+YB7Lvx92rg2G9O/fYDZnJD5kfd9++60++eQT/fzzz5Zl586dU6NGjbRt2zbly5cv84oDAAAA8MzJdlndxcVFN2/etFp253XOnDkzoyQAAAAAz7BsF7qKFy+uuLg4RUVFWZadPHlS+fLlk5ubWyZWBgAAAOBZlO1CV5EiRVSlShWNHz9e8fHxOn/+vGbNmqV27dpldmkAAAAAnkHZ7p4uSYqKitKYMWO0Z88eGY1GtW7dWkFBQbKzs8vs0gAAAAA8Y7Jl6AIAAACAJyXbXV4IAAAAAE8SoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG68Fjt2rUrs0sAgKfaX3/9pZSUlMwuA3hmmUymzC4Bj+hZPneELjw248eP1/z58zO7DDwGFy9ezOwSkEFjx47VL7/8ktll4CFGjRqlN954Q7t371Zqampml4MHCA8Pz+wS8Aj69++vUaNG8f8rC3rWzx2hC4/NtWvX5OvrK0lKS0vL5GrwqIKCgvT1119ndhnIgLCwMH333XcqWbJkZpeCB0hOTtaVK1eUmJiosWPH6tdff32m/6qblQUHB6t58+ZcvZHFnD59Wps2bdLKlSs1ceJE/n9lIdnh3BG68K/duUwmKipKXl5ekiQ7O7vMLAn/wunTp1W+fHlJEs9OzxoSExNlNps5X08xs9ksR0dHBQUFqUWLFsqTJ48GDhyoHTt2cN6eQsnJyZKkfv366eeff87cYpBuL7zwgvr166dq1app1apVGjx4cGaXhHTKDueO0IV/JS0tTQ4ODpKk+Ph45ciRQ5Kshoafxb9WPIvMZrPi4+MVGRlpOY8GgyGTq0J6ODg4yMfHRzlz5pR0+/8c/++eHiaTSQaDQWazWW5ubjKZTAoODlbHjh3Vv39/bd++neD1lLjz/6Z79+567bXXVLduXfXp00dbt27N5MrwIH//o1Px4sWVJ08effHFF9q7d68GDRqUydXhQbLTuSN04ZHNnTtXAwcOtPxF0M3NTZGRkTpx4oTOnDmjmzdvKjk5WUajkcsNs4A7vxQaDAa5uLhIsg7P/FL4dPnpp58UGRkpSYqMjJSzs7OlzWg0ymjk4/1pcOczULr9f8zHx0cVKlTQmDFjNGDAALVu3ZoRr6fInXPl7e2ts2fPql69egoKClK/fv30448/ZnJ1uB+DwWD5I+Err7yiy5cva8+ePZo3b55++eUXDRkyJJMrxP1kp3PHT2U8kpSUFDk6Oio6Olpjx45VUlKSEhIStGnTJnXq1Emvv/66GjVqpEaNGql169YaP378M3tjZFa3cOFCfffdd5Juj5jkyZNHkpSUlGQ1WsKo19Pjxx9/VEhIiFavXq34+HiZTCYdOXJEffv21aBBgzRhwgStXr1a27Zt0w8//KCEhITMLjlb6tOnj5o3b67169fr999/tyx/4403VKRIER04cECjR49W06ZN1aNHD+4fykQxMTFWr/PmzasuXbpo2bJlatasmd5991317duXSw2fMhMmTNCnn36q2NhY3bp1y7I8MDBQ586dk5+fn+bOnasdO3aod+/emVgp/ik7njv7zC4AWY/JZJKDg4PefPNNubu7a/ny5Ro2bJjOnTun8ePHq2jRokpOTtapU6d05swZxcTEqHXr1rK359vtaRMbG6tNmzbJw8NDLi4uKl68uMLCwjRixAjFxsYqX7588vLykru7u3Lnzq3KlSurWbNmmV12tvfyyy/rzz//1NatW+Xk5CRJyp07t6pVq6aDBw/q4sWL2r59u86fP6+cOXNq9erVlksP8WT89ddf2rdvn65du6bt27crLCxMderUUcuWLeXn56dChQpp7ty5mjNnjsaNGycnJyfly5cvs8vOloKCgrR79269//778vX1ValSpSRJFSpUUL58+XTx4kUNHDhQaWlp6tWrl+bOnau6detmctVYuXKlFi1aJEk6d+6cjEajAgICVKRIEZUuXVpTp07Vpk2b1KxZM82YMUNDhgxRZGSkfHx8MrlyrF69OlueO4OZ6xmQAbNmzdLly5dVsGBBVa1aVVWrVtU333yj5cuX6/jx41qzZo2ef/75zC4TGXD+/HlNmDBBBoNBlStX1sKFCzVy5EglJiYqKSlJv//+uyIiIhQbG6uJEyfKz88vs0vOts6ePasbN26obNmykqQFCxbo+++/182bN1WhQgWNGzdOJpNJRqNRCQkJunHjhuzs7Cyjl3hykpOTtWfPHn344Yd6/vnn1b9/f4WEhMjBwUEFChRQt27dFBwcrMGDB6tWrVqZXW62dfToUb333nu6dOmSKlSoIE9PT3l5eal3794qUKCA5s2bpy1btmj58uWSpBkzZqhp06aWmXqROUwmk06fPq2vv/5aW7ZsUb169eTs7KyVK1eqdevWatKkiW7cuKHly5fro48+Uq5cuXTr1i3L/crIXMePH9fKlSu1devWbHXuCF1It969eysiIkL169fXkSNHdO3aNdWvX1+BgYFat26dZsyYoapVq2rMmDGys7NTamoqo1tPqe+++043btxQsWLFVLVqVUVHR2vEiBEKDw+Xq6ur1qxZc9c6SUlJllEVPHl9+/bVpUuXdP78eZUtW1bt2rVT06ZN9dVXX2nGjBkqVaqUJk6caAlYd8IXnqyYmBjlzp1b0u3LsH/99VcNGDBAnTp10oABA3T48GF9/PHHunbtmo4fP6733nvvmbl0JitKTk7W9u3btXTpUiUkJGjAgAGaNWuWUlJSVLBgQXXu3FmfffaZevbsaZnVFZlr7Nixql27tho2bKgTJ05o2bJl+uWXXzRnzhzFxcVZQnKxYsV07tw5/fe//1WRIkUyu2zo9tU1OXPmlKOjo06dOqUvv/xSO3fuzDbnjt+IkS579uzR5cuXtWLFCtnZ2SkmJkabNm3SokWLlJqaqr59+yo1NVXffPONgoKCNGnSJMushni6BAQE6MKFC8qfP79CQ0NVt25dderUSZMmTdKIESN06NAhbd68WY0bN5Z0+xdHBweHZ+KvTFnV2LFjFRERoTlz5ujmzZuaPXu2vvrqK50/f149evSQwWDQypUrtW7dOvn7+8vHx4fAlQkWLFigffv2afjw4SpUqJAcHBz04osv6pNPPlH//v117do1ffDBB1q0aJF+/fVXHTx4UE2aNMnssrOlbdu2SZJcXV31yiuvyGAwaMaMGdq4caMWL16s/fv3a9myZerZs6diYmLk6+tL6HoKBAQE6PLlyxo5cqQkqUSJEnrzzTcVHx+vXr16KTQ0VMHBwWrfvr2++uor3bp1i8/Cp8SoUaN08eJFJSUlqV+/fqpevbr+85//KDExMfucOzOQDlu2bDG3aNHCatn169fNX3/9tbl169bm7777zpyammr+8ssvzT169DBHRkZmUqV4kGXLlpnbtWtneb1//35zQECAuXv37ubffvvNHBcXZw4ICDD36dPHvH79+kysFHckJSWZ+/TpY961a5fVsunTp5vfeust8/Lly81ms9n82WefmRs3bmxesGCBOTU1NbPKzdaWLFliLlGihLlPnz7mixcvWpanpaWZf/75Z3PlypXNw4cPtyw3mUyZUWa216dPH3O7du3MrVq1Mjdt2tS8YsUKs9l8++ecv7+/eciQIZa+u3btMs+YMcMcFhaWWeXi//Xo0cPcsWNHy+uYmBhzamqq2WQyma9evWoeNGiQ+ZVXXjEfOHDAbDbf/py8efNmZpWLv3nvvffMr7/+uvnIkSPmxo0bm+fMmWNpu3z5crY5d89YhIStlCtXTnFxcVq2bJllmZubmxo3bqwqVapo586dsrOz0+uvv67Jkycrb968mVgt7ufKlSuWofq0tDRVqVJFvXr1kpOTkxYtWiSDwWCZRINZ754OOXLkUGJiojZt2mS1rEePHipRooS+/fZbpaSkqGfPnurQoYMaN27Mw8mfMPP/X6UfHx+vTp066fDhwxoxYoQuX74s6fY05HdGvFauXKlx48ZJYkbQzPDBBx/o6tWrWrFihT799FPVq1fPMur14osvqn///jp27Jjl+UA1a9ZUQECAihUrlpllZ3urV6/W3r17NXXqVEnSl19+qaFDh6pjx47q27evnJycNGzYMFWtWlW9evXSkSNHlCNHDi6Jfwr8+eefiouL09KlS1WuXDlVq1ZN+/btU58+fTRt2jTlypVLwcHB2eLcEbpwX0eOHNGZM2d04cIF+fj46LXXXtP333+vjRs3Wvp4eHiofPnyOnbsmOXhyLly5crEqvEgL7zwgs6dO6ewsDDLL+bly5dXly5d9Oeff+rHH39UgQIFNHnyZA0ZMoQZ7zKR+W+32zZo0EBnz57Vzp07LcudnJwUFBSkv/76S+vWrZMkvfvuu3ruuecypd7s7E542rNnjypVqqS1a9cqPDzcKnjZ2dmpTp06+vzzz/Xmm29mZrnZVnJysq5evarg4GBJUqFChVSmTBkdOnRI169fl5OTk+rWrau+ffvqwIEDGjp0qCQ9e5c4ZUH58+dX5cqVdeLECS1ZskTz589XmzZt1KxZMyUmJqpbt25yc3NTt27d1KJFC7m7u2d2yfh/iYmJ+uuvv/Tbb79p8uTJWrdunV5++WV5eXnpwIEDGj58uHLnzq2uXbs+8+eOe7pwT71799b58+eVmpoqR0dHdevWTW+99ZamTJmilStX6tatW2rdurUk6erVq8qbNy/3cD2lYmJi5OrqKkdHR1WoUEGLFy/Wt99+q7feekv58uWT2WxWpUqVVK1aNW3btk0tWrRQ/vz5M7vsbO3OLKHPPfecqlatqg4dOuiXX37R/PnzZW9vrxo1aki6HbyqVq3KyPJTICkpSe+8847q1asnSVqzZo1ee+01DR8+XCEhIcqfP7/s7OxUu3btTK40+0pOTtbRo0d14MABVapUSdLtKzZ8fHyUK1cumUwmOTo66pVXXlGOHDmeqRv4s7r/a+9OA6K6soUNv1XFoFAqg4ii0CqOGLyJQhslIeKUaItjjLPGKU6IMqnRXDF2cJ4RwSnYjoCgRtvhkqRVNKItJiYaFdSoKCqIIIMgFFX1/fDjtHTS3fa9rQWynj9Sp04Vi+ycqr3O3nvtjh07cv78eYKDg/Hw8GDjxo20atUKeFbaf+7cuaSnp+Pq6sqsWbOwsLAwccSinIeHB02bNiU4OJhHjx6xbds25fpLTEwkIiKCzMxMmjVr9tq3nSRd4lcWLVrEo0eP2LdvH1evXuWHH34gODiY//7v/8bf35/o6GgiIyOJjY2lSZMmHDt2jC1btkihhUpo1qxZ3L9/n0ePHtGtWzcGDx5MQEAAn376KRqNhgEDBigl/i0tLalTp45MTTOx56uEpqSk8M0339CrVy/Wrl3L5MmTiYqKIjU1FR8fH06cOMGFCxeUO/LCdGrUqIGXlxcAJSUl2Nvbs3//fj788EP8/f1Zt25dld9jpqrTarV8+umnFUaR7927h16vB56NaO3atYuaNWvSv39/U4Up/k55JVY/Pz9u3rzJtWvXsLW1xWg0olKp+N3vfoe5uTllZWUAr3Wnvaopb6ONGzdy7tw5EhMTK8zGeOutt1Cr1crmyK9720nSJX4lOzubwYMHo9FoaNOmDW3atKFOnTrKdLPPPvuMixcvcvjwYZydnRk/fjxNmzY1ddji7wQHB5Oens6iRYs4fvw4ly9fZuLEiaxdu5awsDAWLVpEeno6DRs2xMrKigMHDrBjxw5Th12t/aMqoVu3bkWv1xMZGcnatWs5ePAge/fuxczMjE2bNuHs7Gzq0Ks1vV6PRqNRtsiwtLSkrKwMOzs74uLiGD16tNKxF6bl7e1NzZo1lceFhYVKJ3Dr1q2sW7eObdu2mSo88RvUajWlpaVYWFgwa9Ys8vPzK9zAOHLkCCUlJdStW9eEUYrfolKpMBgMaLVafHx8OH/+PJs2bWL27Nmo1Wr+8pe/oFKpsLW1NXWor4QkXUKh1+vR6/U8fPiQmzdvAn9bV+Lr60tRURHLly+nWbNmuLu74+7ubspwxT+Rl5dHdnY2K1aswNnZGVdXV65evcr27duZOnUqGzZsYNmyZRw7doyUlBQaNWrEtm3bZONjEysoKKCsrEwZbbSzs8PX1xczMzN27dqFi4sLwcHBFBYW8uTJE6ytrdFqtSaOunqJiIigZ8+eNGnSBJVKpSRcANHR0XTs2JFWrVphZmZGWVkZdevW5eDBg7IuqBLQ6/UVEi6A9PR03njjDQ4cOEBERATbtm3Dzc3NRBEKgEePHmFvb6881uv1ygjIjRs3aN26NTt37mTHjh24u7tz8uRJNm/eXOE1wjR+q+3KPx9PnTpF7dq1+frrr+nevTtvvvkmycnJbN68GRsbGxNF/GrJt4BQaDQaLCws+Oijj9iyZQsnTpxQFogbjUa6du2Ko6Mj9+7dM3Gk4p8xGo0UFRVx6dIlfvnlF+V4q1atGD16NO7u7qxZs4amTZsyefJkNm/ezLx585T58cJ03N3dycvL+80qoR4eHiQlJQHPpkk5OjpKwvWKJSYmKpt1ln82lncoZs6cycGDB2nevLlyfvnIl1QpfPVOnz5NYWGh8vj5mxnbt2/n0qVLyvF169axZMkSoqOjJeEysZkzZxIQEKDc+IW/XWOBgYFs374da2trOnbsSI8ePfD09CQmJoY2bdqYKmTx//2ztgsICGDfvn0MGzaMGTNm0Lt3bzw8PNi9e3e1uuYk6RIkJCSQnJysPO7evTujRo0iNDSUpKQkVCoVKpWKunXrYmNjw9OnT00YrfhXVCoVDRo0oFevXmzdupX09HTluRYtWtC1a1d++OEHsrOzlfNlHZfpfPvttxw6dIiUlBQcHR3p168fiYmJFUrEl1cJvXz5MsXFxSaMtnrT6/XY2Nig1+srrAsKDg7mwoULxMbGotFoMBgMFV4nSdertWTJEsaOHcuBAweUbS/KE+CQkBDi4uKUm0zNmjXDzs6OrVu38sYbb5gsZgGZmZmcOXOGv/71r6xcuZLbt28rz02bNo1r166xevVqzM3Nadq0KQEBAQwaNEhZlyxM51+13fXr11m4cCFarRYvLy8CAgIYOnRotWs7SbqqMaPRSGFhIRs2bCAmJoaUlBTg2XqEoUOH0r17d2bMmEFcXBw//fQTO3fu5Oeff1aqzojKZffu3Wzbto19+/ZhMBj44IMPsLCwYNOmTdy5c0c5r2vXrtja2lJQUGDCaAXA5MmTWbFiBbt27VJGkPv06YODgwN79uxh//79yrnlVUJlmpppNWjQAHNz8wqJVffu3Tl06JCymF/ayLTKp6ItXbqUuLg45UZhaGgo33//vbIeEqBTp07ExMRUGKEUpuHo6EhISAgdOnTgr3/9K7Nnz+bOnTvcv38fOzs7EhISsLCwUApmiMrjRdrO0tISnU5n6lBNSmV8/nadqFYMBgNFRUX06tWLWrVq4e7uzocffoiHhwcAubm5HD58mA0bNuDi4kJZWRnz5s2rVkPBVcWkSZN4/PgxNWvWJDs7m+3bt2NjY8ORI0fYs2cPWq2WKVOm0KpVK3bu3El0dDSxsbEyB96EVq1aRXJyMnFxccCztQoAVlZWWFhYEBkZyalTp7C1ta1QJVSuv1frp59+ok2bNmg0GiIjI/nxxx+Jior6zXPLysqUzrx49corpRUWFrJ69WqKiorYu3cvAQEBDBs2jHPnzuHt7Y2ZmRk6nU62OakkDAaDMqPmypUrxMbGMmzYMGbOnEmNGjVYsmSJMiIi7Va5SNv9e+TboRpTq9U8ffoUV1dXBg4cyO7du4mJicFoNOLp6YmtrS3Dhw/ngw8+oGbNmuj1emrVqmXqsMXfWb16NdnZ2cTHx5Obm8uoUaM4cuQIOp2Ofv36YWdnR0xMDAMGDKBjx47cvHmT8PBwSbhMLDMzk759+wKwbt06jh49ilqt5v79+4SEhChVQg8dOoSLi4tUCTWBXbt2ER8fz9ixY+nduzcWFhbcuHGD0NBQGjduTO3atWnSpAlOTk48fvxY1kWaWHmlNHhWlMbLy4uePXsyYcIE1Go1o0aNwszMDL1eX+07f5XJ8yPDrVu3Jicnhz179rB371569uzJ7NmzWbp0Kc7OztJulYy03b9Hkq5q7vr169SrV4/evXvTqFEjli9fTmxsLCqVShnxsrW1lekyldidO3cYPnw4ABs2bCAjI4MTJ05w8+ZNNm/ezMGDB1m1ahUpKSnUrl0bGxsb2UzXhAwGAwaDgXv37tGkSRNu3brFwYMH2bBhAyqViosXLxIcHIyDgwM+Pj5SJdSEevTowdmzZ4mPj8fS0pKCggKKi4spKioiPj6e7OxszMzMyMnJoW7dunz11VfY2dmZOuxqJyMjg4YNGwLPOoFarZYhQ4YQEhJCbGwsy5YtIyQkBJVKxYgRI6hRo4aJIxYAQUFBSvGuxo0bK2XDQ0JCCAsLIz8/n7179zJw4EBlj8Ln93gSphMYGIilpaW03b9Jkq5q7u2331bWaL355psEBgaycuVK9uzZQ1lZGW+//bYkXFVAeUevqKiIPXv24OrqSllZGePHj2f58uV8/vnnShItTEutVqNWq+nTpw/h4eFkZmYyatQoGjduTGlpKS4uLuzdu5fr16/j4+Nj6nCrpcLCQoqLi3FwcOCPf/wj8+fPJyYmhszMTAYPHsy0adMoKipCp9ORn5/PnTt3cHFxkYTLBPz9/UlMTCQwMJDGjRvTo0cP4Nmmq126dOHkyZP069eP0tJS5s6di7m5OaNHjzZx1OLEiRMcOnQIeDZCeePGDWbMmEGLFi1wdnZGpVIRHx/P+PHjiY+PZ9SoUSaOWJRLSUnh8OHDgLTdv0t609VY+TQMCwsLDAYDRqORdu3aERQUxJUrVzh8+LBUKqwCVqxYwXvvvQfAggULcHV1pbS0FDMzM9zd3WVhfyXl7e1N165d2b9/v1LpydzcHJVKhZWVlUzFMJGZM2fi5+dHnz59WLlyJVlZWYSFheHg4MCdO3fIz8/HaDRiZWVFnTp1cHZ2plOnTnIX1wQyMzPJysoC4NKlS8TExDB69GiSk5MpKiqiffv2REZGUlRUxMCBA1m2bBleXl4mjlro9XpcXV0JCwvDzMwMGxsbfH19mTt3Lp999hn79+9n1KhRHDp0iNu3b6PVaklISJBrrBJYs2YNOp2OkJAQzMzMsLe3l7b7N8hIVzVx584dnJ2dlcfPb1j36NGjCju5v/XWW3zxxRfY29vLNIwqoHzx+POL+Murd5mZmVGnTp0Ki12F6RmNRurVq8fAgQPJy8tj165dtG3bFhcXFy5fvsy5c+cICgoydZjVTnBwMOnp6SxYsIDr168TGxtLamoqI0eOZMGCBahUKtLS0khMTKR79+5yM8OESktLcXR05I9//CMLFy7k0qVLbN26lS1btrB+/XqKioqYNWsW9erVIzExkb59++Lr62vqsKu9hQsXkpGRwePHj3nnnXeYN28e8+bNY9euXcTFxfH111+zaNEiWrVqRWpqKrdu3ap2ZcUrq4kTJ1JQUMD06dNp27YtT548Yf369ezYsUPa7gVJ9cJq4NNPP8XS0pL58+cDFROuoKAgdDoda9euNWGE4kU9ffq0QiL8fFvq9XrlrnyXLl1IT09n9+7d7Ny5k2bNmpkq5GovIiKCnj170qRJE1QqVYU227lzJ7Vr1+bKlSvs3LkTV1dXrKysmDt3Lq1btzZx5NVLTk4OQUFBLF68GEdHRwBSU1PZsmULubm5TJs2jaZNmxIaGsqtW7f45JNPeP/9900cdfW0atUqLCwsGDNmDFZWVty4cYOAgABq1arFzp07ycnJITo6muPHj3Pt2jV69erF8uXLJUk2MX9/f3JzcxkyZAg3b95kx44dhIWFcfHiRaKiooiKiqJz587k5OSQmJjI8ePHmTVrFk2aNDF16NXelClTyM3NZffu3cqxwsJCdu/ezYoVK4iIiKBr167Sdv+CJF3VwJAhQxg4cCCDBg2qcHzmzJlcvXqVhIQEmcpUBXz66ad4eHgwcOBAoGLCFRYWhrOzM97e3ixevBidToe1tTVTp06lZcuWpgy7WktMTGTBggUkJSX9qsMXFBTErVu3SEhIAJ5NldJqtRiNRrRarSnCrdby8/Pp06cPkyZNYsiQIcrxtLQ0VqxYgYODA1988QWPHj1ixYoV+Pn54eTkZMKIq685c+Zw4MABpk+fzujRo5WqktOnT8fCwoKEhARUKhXXrl3j2rVrtGzZEldXV1OHXa2dOHGCNWvWsHfvXgDy8vKYOHEio0aN4v3332ft2rVs2LCBtWvX0qNHD6XgkGzBYHrr1q1j/fr1XL58GYC4uDguX75MTk4Obdq0wdLSksWLF7Nq1Sp69uwpbfdPyG2f15hOp6O0tJTc3Fxq165d4bnjx4+TlpamJFyy2WDllp+fT3JyMm3atFGOlSdcs2bN4rvvvmPEiBE0btyYqKgoNm3axMqVKyXhMjG9Xo+NjQ16vZ7n728FBwdz8eJF5a5hWVkZjo6OWFtbS8JlIlqtlq5du/Ljjz8qe6YBtGjRggkTJrB//35+/vln7O3t+eKLLyThMoHya0iv1/Pee++xYsUKNm7cSGlpKa6urqxZs4aysjIGDBiA0WikefPm9OrVSxKuSiA3NxcrKyvg2dTQOnXqAJCVlYVGo+GTTz5h4sSJ+Pv7880336BWq6XTXgkYDAYaNWqEt7c3qampbNq0icjISOzs7KhXrx5r167l4cOHzJkzh4CAAI4dOyZt90/If5XXmLm5eYViGfC3zTs7d+6Ml5eXknDJBVK55eXlkZeXpyRa5f70pz+RnJzMt99+i1qtprS0FAsLC6VCnjC9Bg0aYG5uXmFksnv37ixatEiuPxNLSEggOzubtm3b0rx5c4YOHYq/v7+ywWfjxo2BZ+tc27Vrp0ztlWvLNMrXrqalpREWFkavXr0ICgpCpVIxYcIEXF1dWb16NePGjWP48OHs2rVLWfMqTMvV1ZWsrCzu3btH/fr1gWdJdPlnn7W1NT4+PjRq1EimpFUiarUab29vTp48yeLFi7G0tGTz5s3KjYy2bduyefNm1qxZg5+fHy4uLiaOuHKTb/rXUEREBDVq1GDcuHGo1Wqsra3Jy8ujrKyMkpIS5UOufEqhdPgqP41Gg62trbI5dXlHfcCAAQwbNkzpvJcn18J0fvrpJ9q0aYNGo+HWrVtKovV8wly+FkgSLtOZPHkymZmZ2Nvbc+zYMTQaDXPmzGHJkiUEBgZSUlJCt27dePfdd9m9ezd379791YwB8eqVlJQwZMgQ3NzccHNzw2AwEBISgtFo5JNPPqFp06ZER0cr15skXJWDu7s769atw8nJCYPBgE6n4+nTp8qG4tu2bWPx4sWcPHkSe3t7E0crnmdnZ8fUqVMZPnw47dq1w9HREZ1Oh7m5OQ4ODlhZWdGgQQP8/PxMHWqlJ9/2r5mcnBwePnzIpUuXsLKy4sMPPyQjI4OlS5eyfPlyAOrXr0+dOnWoWbMmXbp0oX///vLFVAnt378fV1dX3N3dKSoqUqZjwN8S5fIk7PljwnR27dpFfHw8Y8eOpXfv3spak9DQUBo3bkzt2rVp0qQJTk5OPH78WOlwiFdr3759PHjwgH379gFw+fJlEhISmDZtGmvWrCE8PJyIiAjmzp1Lo0aNyMrKIjw8HAcHBxNHLqytrRkwYADw7KaFr68vKpWK2bNn8/TpU/z9/ZURSlG5tGjRAng2ZS03N5cHDx7QrFkz9uzZw/r164mLi5OEq5Jq2rQp4eHhGAyGClPgb9y4gVqtliUqL0h6aa8ZOzs7JkyYQExMDAkJCTx48AArKyvCwsIoLS2loKCAe/fuceXKFQoKCmjTpo0kXJXQzz//TEREBF5eXlhbW1NcXMyVK1eYNm0aBoOB+vXr4+rqio2NDZaWlnTs2JGmTZuaOuxqr0ePHpw9e5b4+HgsLS0pKCiguLiYoqIi4uPjyc7OxszMjJycHOrWrctXX30lG+qaQEFBgdIx1+v1uLm5odVqUavVhIaGsmbNGpYsWcL9+/cpKSmhXr16FbbVEKZVPktDo9FgNBrp3bs3paWlLF68mLFjx8o1VcmZmZlhbm5OkyZNWLVqFYcOHWLr1q288cYbpg5N/BMeHh6UlJSwdu1aHjx4gKWlJYcPHyY6OlrWIr8gqV74mkhISODhw4f813/9F82aNcPKyorIyEiOHTvGkydPOH78+K9eI1ObKrejR48SHR3Nm2++iZOTE5s2bSIgIICrV69SVFTE7du3SU9PR6VSER0dLUmXCRUWFlJcXIyDgwP5+fnMnz+fvLw8MjMzef/995k2bRpFRUXodDry8/O5c+cOLi4usmHkK1ZWVoZOp+PSpUtMmzaNrVu3VhhtTEtLIzw8nN///veMHDnShJGKF1XehVGpVBQWFkrnr4rIysrC29sba2trdu7cKaP+VYROp+Pbb79l3759NG/enH79+smWNP8GSbpeA8+vTSgoKECj0TB9+nTefPNNVq9ezb59+/Dz82P48OGAJFuV2ffff09BQQEdO3bEwsKCkydPEh4eTmFhIS4uLkRFRSnnGgwGjEYjhYWFFaYeildr5syZZGVlkZqayqBBg+jTpw8NGzbk888/58iRI3z00UfMmTNHRpRNLDQ0lF9++QW9Xs+MGTOIiYnBYDAwZcoUWrRooRRcmD9/PpmZmURGRpo6ZPGCyttOimZUHWVlZSxbtoyPPvpIqkuKakN63lVc+RTC59cm7N27l9mzZxMWFsaMGTNQqVT8+c9/pqSkhLFjx0rCVUlNnTqVO3fuUFxcjFqtZsCAAYwYMYJZs2Yxf/58MjIyuHLlirJprl6vx9zcXBIuEwoODiY9PZ0FCxZw/fp1YmNjSU1NZeTIkSxYsACVSkVaWhqJiYl0795dqt6ZiL+/P1lZWUyYMIF69erh7u5Ofn4+R44cYdOmTYwbN065025ra4tarcZgMEh7VRHliZYkXFWHmZkZISEh0h8R1Yr8317FFRUVKeVVn1+boFKpWLZsGcuWLWP06NE8ffqUpKQkPvzwQ6nAVQmV73WxZ88eLCwsiI6O5tixY2RkZBAcHExoaChLlixh3759lJWV4e7uLhtam1hOTg6PHj0iPDwcR0dHWrVqRfPmzdmyZQt/+tOfqF27NnPnziU0NJSNGzcCf6taKF6dn3/+mfT0dOLi4rCwsGDv3r0kJCRQVFTEgwcPcHV1JTg4GC8vL9RqNQkJCWzbtk0SLiFeMkm4RHUj3ypV1KRJk/j6669xcXHhu+++4+rVq0qJXBcXFwYNGkTDhg05ffo09erVY8yYMaxYsUISrkrIaDTy4MED+vbti6WlJSqVirFjx9K/f3/S09PZsmULHh4eTJw4kaSkJA4dOkRpaampw672zMzMuHnzJseOHVOOtWzZkvHjx6NWq4mLi0Or1TJnzhxatmyJu7u7CaOtvvR6PXq9HgsLC7Zs2cLq1atxcHDA3t6ey5cv8/jxY6ZMmUJGRgYGg4EdO3bI+hIhhBD/cXKboQoKCQnh+PHjdOjQgSFDhtCpUyeioqLw8/OjWbNmGI1GWrRogb29Pd999x0jR46UBfuVmEqlQqvVcvLkSfr06aOUgR8wYABFRUXExMTQr18/unXrhkajoXnz5rIfVyWg1Wrp2rUrP/74I56ensq6hBYtWjBhwgQ+/vhjhg4dSps2bfjiiy9k5MREbG1tuXv3LjExMTx48IDo6Gilrdzd3Vm+fDkLFizggw8+kDYSQgjx0sg3TBUzefJksrKymDJlCqmpqdSsWZMPPviAoqIiNmzYQFpamjKv3dbWFicnJ/R6vYmjFr/l+dEqLy8vcnJy+OabbyguLlaOjxgxAo1Gw1dffQWAj4+PJNAmlJCQwIYNG0hOTiYnJ4ehQ4fy448/Ehsby61bt5Tz3nrrLdq1a0eNGjUApDNvQs7OzkyZMoW4uDjOnDlDrVq10Ol0ADRq1AhbW1tZvyWEEOKlk5GuKmTcuHE8efKEmJgYjhw5QlJSEvBsnYjBYODIkSMEBgby7rvvAihrE8qnHYrKY+HChdy/fx8LCwu8vb3p27cvFy5cYPPmzZiZmdGlSxesra2BZyMnDRs2NHHE4vkqoceOHUOj0TBnzhyWLFlCYGAgJSUldOvWjXfffZfdu3dz9+5dmc5bSQwYMIDbt28THx/P+fPn6dmzJ/Cs8JAkXEIIIV4FSbqqiIMHD1JaWkpMTAzwrCOek5PDuXPn8PT0pGfPnjRr1oyzZ89y5swZGjZsyI4dO5Qd4EXl4e/vz7179xg/fjwnTpwgPj6epKQkli9fjk6n48svv+Ty5ct4enqSnp5OUlISU6ZMMXXY1dq+fft+VSU0ISGBadOmsWbNGsLDw4mIiGDu3Lk0atSIrKwswsPDcXBwMHHkAsDe3p6AgABUKhWBgYFER0fj4OCgbEJuY2Nj6hCFEEK85mSfririyZMnyshHaWkphYWFjB8/nsGDBzN48GATRyde1I0bN/j000/58ssv0Wq1GAwGjh8/zsaNG6lfvz6rV68mISGBkydPcvv2bRwcHJgxYwZubm6mDr1a27ZtGxcuXGDlypXo9Xo0Gg3p6els376d8+fPs2bNGuzt7bl//z4lJSXUq1ePunXrmjps8XdKSko4f/48Z86cwcXFhd///ve4uLiYOiwhhBDVgIx0VRHlCZfRaMTCwgI7Ozt8fX3ZsGEDnTp1wtnZWTaGrALy8/PJyMhQ1pSo1Wq8vb3RaDRs2rSJqKgoJk2aRP/+/SkqKsLMzExZFyRMx9XVlfXr13P16lWlsl15ldAHDx5w/PhxRo4cKZt8VnKWlpZ06tSJTp06mToUIYQQ1YxMZK9ink+qfHx8aNGiBUlJSZSUlEjCVYmVlJQAzwosNGrUiIiICMoHmc3MzHjnnXfw9vbm9OnTlJaWolar0Wq1knCZ0PLly5k1axbz5s1DrVbzzjvvEBUVRVpaGkCFKqGnT582cbRCCCGEqMwk6arCGjduzBtvvEFkZCQXL140dTjiH1i1ahVbtmwhPz8fgP79+5OWlsbmzZsxGAwAaDQavL29yc3NJS8vz5ThCmDq1KmkpKTQqlUrTpw4gbm5Ob6+vsqI5NWrVytUCW3QoIHSlkIIIYQQf0+mF1ZR5VMJ/fz8SE9PlwX7ldjDhw85cOAA5ubmTJgwgd69e5ORkcGpU6coLCwkICAAgHPnzlGjRg1q1qxp4oirt0OHDpGVlcWePXsASExMJCYmBo1GQ1ZWFm5ubgQHB+Pl5YVarVaqhEoFPCGEEEL8I5J0VVEqlUopdbx06VJThyN+Q3lirNfree+991ixYgUlJSX4+fnxySefEBsby9dff80777xD+/btOX/+PBs2bECr1Zo69Grtl19+wdHREYDIyEh++uknvLy8KCgo4OjRozg6OjJp0iSOHj0qVUKFEEII8UKkeqEQL1FZWRmDBg0iLCyMmzdvEhQUhJ+fH35+fuh0OqUj7+TkhKurK87OzqYOudpLTk6muLiYLl26cPbsWezt7WnWrBnwbOuG6Ohodu/ejbm5uYxuCSGEEOKFyEiXEC9RSUkJQ4YMwc3NDTc3NwwGAyEhIQCMHz8eOzs7hg0bZuIoxfM6duwIPEuYO3ToAIBOp8Pc3BwbGxtq1KiB0WiUhEsIIYQQL0ySLiFeImtrawYMGAA868T7+vqiUqmYPXs2JSUlTJ06VSoUVlIajQaouEfe3bt3qVWrFnq93pShCSGEEKKKkaRLiJfM3NwceNaJNxqN9O7dm9LSUhYvXsyYMWMk6aqkVCoV2dnZjBkzBicnJ+rUqcPJkyf58ssvlSRMCCGEEOJFyJouIV6h8stNpVJRWFgoRTMqubKyMk6cOEFycjKOjo507dqVpk2bmjosIYQQQlQxknQJ8YqVVzUs/1cIIYQQQrzeJOkSQgghhBBCiJdIym8JIYQQQgghxEskSZcQQgghhBBCvESSdAkhhBBCCCHESyRJlxBCCCGEEEK8RJJ0CSGEEEIIIcRLJEmXEEIIIYQQQrxEZqYOQAghhPhXunTpwsOHDzEze/a1ZTQa0Wq1+Pr6EhISglr963uI9+7d4w9/+AOHDh3CycnpPxbL2bNnGTVqFFZWVsoxg8FArVq18PHx4bPPPsPS0vI/9vuEEEJUfZJ0CSGEqBI+//xzBgwYoDxOTU3l448/pmbNmvj7+//qfCcnJ3744YeXFs/z720wGLhw4QKTJ0/G3t6eGTNmvLTfK4QQouqR6YVCCCGqpJYtW+Lp6cnly5cBGDlyJLNnz8bHx4fOnTuTmppKy5YtuXv3LgB37txh0qRJtG/fno4dOzJ//nxKS0sBSE9PZ9KkSXTo0AEfHx9WrVqlPPci1Go17dq1o0OHDly5cgV4Nhq3ceNGfH198fDwwNPTk6CgIJ4+fQrA7NmzmTdvHpMmTeKtt96ia9eubNu2TXnP3NxcAgICaN++PV27dmX79u24ubkpf8//NWYhhBCvjiRdQgghqhydTsfZs2c5c+YMXl5eyvHTp08TExPDgQMHsLa2Vo6XlZUxbtw4HBwcSEpK4s9//jMXLlwgPDycoqIiPv74Y5o3b05SUhK7du3i9OnThIeHv3A8er2e5ORkTp8+jbe3NwBHjhxh27ZthIeHk5KSQkxMDKdOneLgwYPK6/bu3cvIkSM5d+4cEyZMYPHixWRmZgIQHBxMQUEB3377LXv27OHYsWPo9XqA/0jMQgghXh2ZXiiEEKJK+Pzzz1m4cKHyuH79+owZM4YRI0Yox7y9vXF0dAQgPz9fOf7999+TkZHBnDlzqFmzJtbW1qxbtw6DwcDx48cpLS0lMDAQlUpFgwYNmD59Ov7+/gQFBf3DeDw8PAAoLS1Fp9Ph6enJnDlzlCmQ3t7etGvXjvr165OTk0Nubi42NjZKUgXQoUMHJWkcOHAgoaGhpKenA3Dq1CmOHDmCjY0NAHPmzOEPf/gDwP86ZiGEEKYhSZcQQogqITQ0tMKart9Sr1693zz+8OFDbG1tqVmzpnKsUaNGAPzP//wPOTk5eHp6Ks8ZjUZ0Oh2PHj3C3t7+N98zJSUFgPv37zNz5kxKS0vp0aNHhfdYtWoVx44dw87OjtatW6PT6TAajco5Dg4Oys/m5ubAs/Vh9+/frxAjgLOzs/JzRkbG/ypmIYQQpiFJlxBCiNeGSqX6zeP169cnNzeX4uJiJfFKSUnh0qVL1K9fHxcXF44ePaqcX1hYyKNHj7Czs/uXv7NBgwZERkYycOBApkyZQnR0NBqNhuXLl3Pv3j3+8pe/oNVqAfD19X2hv6O82mJGRgZNmjRRfn7+7/m/xCyEEOLVkjVdQgghXntt27alcePGLFmyhOLiYrKzs1m0aBE5OTn4+Pjw5MkTNm/eTGlpKfn5+cyaNYuAgIB/mMT9Pa1Wy+rVq/n++++JjIwEniVBlpaWaDQaSkpK+PLLL0lLS0On0/3L96tXrx4+Pj4sW7aMvLw88vLyWLp0qfL8fyJmIYQQr44kXUIIIV575ubmREVFkZmZSefOnenbty+enp74+/uj1WrZunUrZ8+exdvbm27duqFWq5Xk6UW1bt2awMBA1q9fzw8//MCMGTN4+vQpnTp1okuXLly4cIG+ffuSlpb2Qu8XFhaGSqWic+fO9O/fHzc3N+Vv+U/FLIQQ4tVQGZ+fXC6EEEKISuG7776jffv21KhRA3i2L1m/fv24cOGCbL4shBBVjIx0CSGEEJXQkiVLiIyMpKysjMLCQiIjI+nUqZMkXEIIUQVJ0iWEEEJUQitWrODChQu8/fbbdOnSBY1GU2FdlxBCiKpDphcKIYQQQgghxEskI11CCCGEEEII8RJJ0iWEEEIIIYQQL5EkXUIIIYQQQgjxEknSJYQQQgghhBAvkSRdQgghhBBCCPESSdIlhBBCCCGEEC+RJF1CCCGEEEII8RJJ0iWEEEIIIYQQL5EkXUIIIYQQQgjxEv0/71BheM6DafAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "# Set the style of seaborn\n", + "sns.set_style(\"darkgrid\")\n", + "\n", + "# Create a bar plot\n", + "plt.figure(figsize=(10, 6))\n", + "sns.barplot(x=\"price_range\", y=\"total_sqft\", data=housing_data, errorbar=None, hue=\"price_range\", palette=\"crest\")\n", + "plt.title(\"Total Square Footage by Price Range.\")\n", + "plt.xlabel(\"Price Range\")\n", + "plt.ylabel(\"Total Square Footage\")\n", + "plt.xticks(rotation=45) # Rotate x-axis labels for better readability\n", + "plt.show();\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "The bar plot illustrates the relationship between price range and total square footage. Each bar represents the total square footage of houses within different price range categories. \n", + "From the graph, it is evident that there is a positive association between house size and price. Specifically, larger houses, as indicated by higher total square footage, tend to command higher prices. \n", + "
This suggests that there is a tendency for bigger houses to have a higher price, indicating a positive correlation between the size of the property and its price.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**#Relationship between bedrooms, bathrooms, and house price**\n", + "\n", + "Created a scatter plot to visualize the relationship.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwMAAAIdCAYAAABhiaF8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADluUlEQVR4nOzdd3gUZdfA4d/MtvRCCqEpIIQOUgTpRUFEBQuKiij2AnYR1A/k9bUjUgWx+yI2bKAgihWVJgoKCCJILwnpPVvm+f7YZCEkgSQk2Uxy7utaMVtmz8wzOzNnnqYppRRCCCGEEEKIOkf3dwBCCCGEEEII/5BkQAghhBBCiDpKkgEhhBBCCCHqKEkGhBBCCCGEqKMkGRBCCCGEEKKOkmRACCGEEEKIOkqSASGEEEIIIeooSQaEEEIIIYSooyQZEH4lc96dPtmGorrIviaEELWPJAN10JgxY2jVqlWRR+vWrenatStXXnkly5YtK/cyJ02axKBBg8r1mZ07d3LNNdcUea5Vq1bMmTOn3N9/uubMmUOrVq1O+p5169bRqlUr1q1bd1rfVZFtVZr58+fz+uuvV8qy/OXEfbFt27b06tWLBx54gIMHD1bKd1RW2ZnFpEmTim3XLl26MGrUKL7++utyLy8jI4OJEyeyYcMG33NjxoxhzJgxlRm2OMGgQYOYNGlSqa8fOHCAVq1a8cknn5T4uhn3+08++aTYvtumTRvOOeccbrrpJn777bdTLkP2TSHKx+rvAIR/tG3blscff9z3t8fj4ciRI7z11ls88MADhIaG0q9fvyqN4csvv2Tjxo1Fnvvggw+Ii4ur0u+tqHbt2vHBBx/QokULf4fiM3PmTMaPH+/vME7byJEjufLKKwFwuVwcPHiQ+fPnM3bsWJYtW4bdbvdzhOYTExPD3LlzATAMg/T0dL744gvuueceXn/9dXr37l3mZW3bto3PPvuMyy+/vKrCFaKIuXPnEhMTA3j336SkJF566SVuuOEGPvroI1q3bl3qZ48/twkhTk2SgToqJCSEs88+u9jz/fv3p2fPnnz88cdVngyUpKSYaorStpk4fXFxcUW27TnnnENcXBw33HADq1evZsCAAX6Lzazsdnux/XXAgAFs3LiRDz74oFzJgBDVrU2bNjRu3LjIc23btmXw4MG8++67PPHEE6V+tibdsBHCDKSZkCjCbrdjs9mKPb948WIuuugi2rdvz4ABA5gzZw5ut7vU5eTl5TF9+nSGDBlC+/bt6dKlCzfeeCPbtm0DvM1yCu9aHt806MRmQomJiTzyyCP079+fjh07MnLkSL799tsi39WqVSsWLVrEY489Rvfu3encuTP33HMPSUlJvvfs37+fO++8kx49etCpUydGjRrFjz/+WCzuH374geHDh9OhQwcuuOACPvvsM99rJ1a5z5kzh0GDBvH9998zdOhQOnXqxJVXXsmaNWtOtZkBby3IgAED6NixIzfccAN//fVXkdcPHTrEAw88QPfu3enUqVOx9xQ2a5o7dy6tWrXi7bffpk2bNqSmpvre8/LLL9OqVSt++ukn33M//vgjrVq1Yv/+/QDs2LGD22+/nS5dutClSxfGjRvne61QWloaU6ZMoVevXnTo0IGrrrqq2HqWpRzKIyIiAgBN03zPGYbBK6+8wuDBg2nfvj0XXHABCxcuLPbZ999/nwsuuICOHTty3XXXcejQoSKvf/LJJ7Rt25bFixfTp08f+vXrxz///APA8uXLufzyy+ncuTO9e/dmypQppKenF/n85s2bufnmm+nRowddunThjjvu8H0eju0ra9asYcyYMXTs2JEBAwawePFiEhMTGT9+PJ07d6Z///689dZbRZa9cOFChg4dSocOHejbty9Tp04lKyurQtvwRJqmERYWVmSbgvf3ffnll3P22WfTsWNHRowYwfLly33rcv311wNw/fXXF2l+oZTi1Vdf9e3Ho0aNYvPmzb7X58yZw+DBg5k7dy49evTg/PPPJzU1FY/Hw6JFi7jkkkt82+aFF14gPz+/SFy//PIL1157LV27dqVHjx48+OCDHD582Pf6J598QocOHfjtt9+44oorfL/b7777jn///ZcbbriBTp06MXjw4CLNHw3DYNasWQwaNIj27dszaNAgXnzxRVwuV7m256mOc+BtsjV27Fg+/vhjLrjgAtq3b8/w4cOLHX+2b9/OjTfeSOfOnRk4cCBLly4tVyxlVdZj6onNNU9sSpmSksJDDz1E79696dChAyNGjChyvIRTH8PKq3HjxkRGRvp+z6X9jk9sJuRyuXjppZc4//zz6dixIxdddBEff/xxkWV/8803XH755XTo0IHevXvz5JNPkpOTU+FYhTATSQbqKKUUbrfb98jPz2fv3r383//9H9nZ2YwYMcL33gULFjB58mR69uzJyy+/zOjRo3n11VeZMmVKqct/+OGH+eijj7jtttt44403mDRpEjt27OD+++9HKcWVV17JyJEjAe9FcWETkeMlJSUxcuRI1q9fz/3338+cOXNo1KgR48aNK3ainDFjBoZh8OKLL/Lwww/zww8/8PTTTwPeE//tt99OTk4Ozz//PPPmzSMiIoK77rqLvXv3FlnOlClTGDt2LPPnzyc2NpZJkyaxffv2UtczJSWFiRMncu211zJr1iwCAwO59dZb2bJly0m3/5EjR5gzZw733XcfL774Iunp6Vx//fWkpKT4lnv11VezdetWJk+ezPTp0zEMg9GjR7Nr1y7fdgNvE5sPPviAgQMHYhgGa9eu9X1P4f//+uuvvud++uknWrZsSZMmTdi9ezdXX301ycnJPPvsszz11FPs37+fa665huTkZADy8/O54YYb+Pbbb7n//vuZO3cucXFx3HLLLcUSgpOVw8kYhuHbF51OJ7t372b69Ok0b96cnj17+t43depUZs+ezfDhw3n55ZcZOnQoTz/9NC+99JLvPe+88w6PP/44ffv2Zd68eXTq1InJkycX+06Px8PLL7/Mk08+yX333UeLFi2YN28e999/P506dWL27NmMGzeOr776ijFjxpCXl+fbptdccw2GYfDUU0/x5JNPcvjwYa6++mpf2RR64IEHGDRoEC+//DJNmzbl8ccf5/rrryc+Pp7Zs2fTrl07nnnmGf78808Ali1bxnPPPcfo0aN5/fXXGTduHEuWLOHJJ5885TYsSeE2dblcpKamsnDhQnbs2FGkr86iRYuYMmUK5513HgsWLGDatGnYbDYmTJjAoUOHaNeune+3PmXKlCJNMH777TdWrlzJ5MmTee6550hISOCOO+4ocqPg0KFDrFy5khdffJH77ruPyMhIpkyZwtNPP82gQYOYP38+o0eP5p133uGuu+7ydVJesmQJN910E/Xr1+fFF1/kkUceYePGjYwaNcq3bxau4wMPPMDVV1/NvHnzcDgcPPTQQ9xxxx0MGDCAWbNmERMTw8SJEzly5AgAr776KosWLWLcuHG88cYbXHPNNbz22mu8/PLL5dq+pzrOFdqyZQuvv/4699xzDy+99BJWq5V77rnHl2QmJCRw3XXXkZ6ezrRp07j33nt54YUXSEhIKFMcx/9+jn8YhlHkfeU5pp7KhAkT2LlzJ//5z3945ZVXaNu2LRMnTvTdLCnLMay8UlNTSU1N5YwzzvA9V9Lv+EQTJ07klVdeYeTIkSxYsID+/fvz6KOP+pKXzz//nHHjxtG8eXNeeuklxo8fz9KlS4vsj0LUakrUOdddd52Kj48v9mjVqpW65JJL1Jdfful7b0ZGhurUqZOaMmVKkWV8+OGHKj4+Xu3YsUMppdTEiRPVwIEDlVJK5efnq5tuukktW7asyGfeeOMNFR8frxISEpRSSs2ePVvFx8cXeU98fLyaPXu2Ukqp559/XrVr107t27evyHtuuOEG1bt3b+XxeHyfueaaa4q8Z9KkSerss89WSimVmJio4uPj1ZIlS4qs19NPP63+/vvvIrH8+OOPvvfs2bNHxcfHq7ffflsppdTatWtVfHy8Wrt2bZHPfPrpp77P5Obmqt69e6u77767hC2vfNsqPj5ebdy40fdcYmKi6tixo5o+fbpSSqkXX3xRdejQQR04cMD3nvz8fHXeeecVWfbx20sppS644AI1efJk3/s7dOigLrvsMjVq1CjfewYPHqxeeOEFpZRSDzzwgOrZs6fKzMz0vZ6amqq6du2qnn32WaWUUh988IGKj49XmzZt8r3HMAw1evRodfnllxeJ5WTlUJqS9sX4+HjVvn17tWbNGt/7/v33X9WqVSu1YMGCIp+fMWOG6tChg0pJSVGGYaiePXsW2/5TpkwpUnYff/yxio+PVx9++KHvPWlpaap9+/bqscceK/LZX3/9VcXHx6tFixYppZQaOXKkGjp0qHK73b73pKenq+7du6t7771XKXVsX5k2bZrvPRs3blTx8fFqwoQJvudSUlJUfHy8evPNN5VSSk2ePFkNGTLEt28rpdSSJUvUW2+9ddJteKLCfaykx+OPP15k+c8884x6/vnni3x+y5YtKj4+Xn3++edF1qdw+ynlPY507NhRpaam+p4rPC5s27ZNKXXsN/LLL7/43vPPP/+o+Ph4NW/evCLf+dlnn6n4+Hj1ww8/KI/Ho3r37q3Gjh1b5D179+5V7dq188VbWI7vvvuu7z1ffPGFio+PVzNnzvQ9t3nzZhUfH69WrlyplFLqpptuKrbshQsXFvktn0pZj3OFZbF3717fe9avX6/i4+PVihUrlFJKPfvss6pTp04qKSnJ955Nmzap+Ph4NXHixFJj2L9/f6nlfPyjsNzKc0w9/riiVPHjdfv27YuUocfjUc8++6z69ddflVJlP4adqLBM9+7dq1wul3K5XCorK0tt3bpVjR07VrVt21Zt3769yHuP/x0r5d03r7vuOqWUUjt27ChyHC907733qkmTJinDMFS/fv3UzTffXOT11atXq/j4ePX999+XGqsQtYX0Gaij2rVrx3/+8x/Ae1dq1qxZuFwuZsyYwVlnneV738aNG8nNzWXQoEFF7vYVjobzyy+/0LJlyyLLttvtvhFuEhMT2bt3L//++y/ff/89QJmr4tevX0/nzp1p0qRJkeeHDx/OI488wr///uu7C3Ri2+i4uDhyc3MBiI6OpkWLFkyePJnVq1fTr18/+vTpwyOPPFLsO7t16+b7/8LvzcjIKDVGi8XCRRdd5Ps7ICCAfv36ldgE6XgNGzYsEnNMTAxnn302q1ev5oEHHmDNmjW0adOG+vXr+7a7ruv069fvpHfwBgwYwDfffAN479rqus4NN9zAY489Rm5urq88Bg4cCHjvcvfo0YOAgADf94SEhNCtWzdWr14NwJo1a4iJiaFdu3ZF9oGBAwfy/PPPk56eTnh4OHDycjiZq666iquuugrw3uU8evQoixcv5pZbbuGll16if//+rF27FqVUifvi/Pnz+e2332jWrBnJycmcd955RZZ/4YUX8v777xf73vj4eN//b9q0CafTySWXXFLkPd26daNRo0asW7eOSy+9lM2bNzNu3DgsFovvPWFhYQwcOLBYuXfu3Nn3/9HR0QB06tTJ91xkZCQAmZmZAJx77rl88MEHXH755QwZMoQBAwZwySWXFGvWUxYxMTHMnz/f93dWVhYbNmzglVdeISsrixdeeAHAN1pNZmYme/bsYc+ePb4an1P9Vlu0aOFrzgX42ngXrk+h47fz+vXrAYpt54suuohHHnmEdevW0bhxY44ePcoDDzxQ5D1nnHEGnTt3LjY6Tknb+fh9sTDGwt9yjx49mD59Otdeey2DBw+mX79+XHfddSdd1xOV5zhXr169InezCwdJKPxt/Pbbb5x99tlERUX53tOpUycaNmxYpljGjx9fYr+arVu3FqnJKc8x9VR69OjBnDlz2L59O/3796dfv35MnDjR93pFj2GFBg8eXOy5Ro0aMW3atGIjvx2/f52ocASsE5c3c+ZMAHbt2sWRI0e4/fbbixxXzjnnHEJCQvjll1+kz5Ko9SQZqKOCg4Pp0KEDAB06dKBz586MGDGCm266iU8//ZR69eoB3rbiALfddluJy0lMTCzx+Z9++omnn36af//9l+DgYFq1akVwcDBQ9rHK09PTi3Ugg2Mn++Mv0gMDA4u8R9d13/domsYbb7zB/PnzWblyJZ9++ik2m43zzz+fqVOnFrmYCQoKKrKMU8Vbr169Yn0soqKiirUxL20dTvxcYXvotLQ09u7dS7t27Ur8fG5ubrF1Bm8H8DfffJP9+/ezdu1aunTpQp8+fXC5XPz+++/s2rWLyMhI34VSWloay5cv97UPP3HdCt9z9OjRUmM5evSoLxk4WTmcTGxsrG9/LDRw4EAuuugiXnjhBfr37+/bF49Pvo6XkJDgi7nw30KFo5Kc6PiLr8IyK6lsoqOjyczMJDMzE6XUSd9zvJCQkGLvK6ncCg0bNgzDMHj33XeZO3cus2bNolGjRjz44IOlrndp7HZ7sW3as2dPrFYrM2fO5MYbb6Rdu3bs27ePKVOmsHbtWqxWK82bN/ddbJ2q7I7/vcCx38yJzVOO316F2/nEMrFarURGRpKZmekr69K284ntzkvazgEBAaXGfcsttxAcHMzHH3/Mc889x7PPPkt8fDyPPvpokWZpp1LW49yJZV6Y3BVup9KOdaXttydq1KhRsbIGirV5L88x9VRmzJjByy+/zJdffsmKFSvQdZ1evXoxdepUmjRpUuFjWKH58+f71t9msxEZGUn9+vVLfO/xv+MTFe5Lpb2n8PX//Oc/vhtkxyvtHCdql5SUFEaNGsWTTz5Jjx49yvSZr776ijlz5nDgwAFiYmK4/fbbfc2fzUaSAQF4D5RTpkzh7rvv5qmnnmL69OmA944nwAsvvEDTpk2Lfa6kk/W+ffsYN26crw1y4R2xRYsWFenIeirh4eEldj49evQocOyualnUr1+fqVOn8vjjj7N9+3ZWrFjBq6++Snh4eIkngLJKS0tDKVXkzm1SUtJJT05Q8kn36NGjvovY0NBQunfvzsMPP1zi50sbarNbt26EhISwZs0a1q5dy8CBA4mKiqJFixasX7+erVu3MmDAAN9FW2hoKL169eLGG28stiyr1ep7T9OmTX13kk9U0sVFZbBYLMTHx/PDDz8Ax/bFt99+23fBdbyGDRv6tuvxbcrh2An/ZAoTmqSkpCK1Y+AtmyZNmhAaGoqmaaXul8cnlhV18cUXc/HFF5OZmcnPP//Mq6++yoQJE+jWrVupF0Pl0aZNGwD27t1LmzZtuO2227DZbHz44Ye0bdsWq9XKzp07q6wDa+F2Pnr0aJF9p7BfQ2RkpG87lrady/PbL4mu64wePZrRo0eTnJzMjz/+yMsvv8zdd9/N6tWryzSUbWUd58B7LCtpXcuy35ZHeY6pHo+nyHtOTCxCQ0OZMGECEyZM4N9//+Xbb79l3rx5/Oc//+G1116r8DGsUHx8fKUcWwqPGykpKUWGrf73339JSUnx7Y8PP/ww3bt3L/b5wtdF7fXbb78xadIk9u3bV+bPrF27lkmTJjFz5kz69evHunXruPXWW4mPj6djx45VGG3VkA7EwmfIkCH07duXL774wlcN36lTJ2w2GwkJCXTo0MH3sNlsTJ8+nQMHDhRbzpYtW8jPz+f2228vUjVeeIIsvGNWeEFamnPOOYeNGzcWG9lm6dKlxMTEcOaZZ5ZpvTZu3EivXr34888/0TSNNm3acP/99xMfH+/rUFhRLperyIk/Ly+PVatWnfLu4t69e4t0Xj58+DAbN2703ZHo3r07u3fvplmzZkW2+9KlS1m8eLGvicqJ29Bms9G7d2++++47tm7d6lveueeey08//cSvv/7qayJU+D07d+6kTZs2vu9o3749b731FitXrvS95/Dhw0RFRRWJZc2aNbz22mtFmstUJpfLxdatW33lfM455wDeToTHx5GWlsbMmTNJS0ujadOmNGjQgBUrVhRZVmHTjZPp1KkTdrudzz//vMjzGzZs4NChQ3Tp0oWgoCDat2/P8uXLi1wsZWZm8sMPP9C1a9fTWuf77rvPN29EaGgoF154IXfddRcej6fS7lAWzu1x5plnkpqayu7duxk5ciQdO3b0JYCrVq0Cjt25rswyLrzgOnE7L1u2DI/HQ9euXWnWrBkxMTHF3rN//342bdpEly5dTiuGq6++2tcpOyoqissvv5zRo0eTmZlZ5pGbynqcK4tzzz2XjRs3FukwvHPnzmLHvtNV1mNqSEhIsWPj77//7vv/gwcP0r9/f9/vrHnz5tx666306tXL97myHsOqWuFvsrD5ZKEZM2bw3//+l+bNmxMVFcWBAweKxBkXF8f06dNPa/QjUfN9+umnPPTQQ9x///3FXlu9ejUjR46kW7duXHTRRUVukLz11ltcf/319O/fH03TOPfcc/n444+LHAvMRGoGRBGPPvoow4cP58knn+TTTz8lMjKSW265hVmzZpGVlUWPHj18fQw0TStx4pd27dphtVqZNm0aN910E06nk08++cR3h7fwDlPhHZsvvviCTp06FWvHeuONN7J06VJuvPFGxo8fT2RkJJ999hlr167l6aefPmUyUaht27YEBATw8MMPc/fddxMdHc3q1avZtm2bb8jE0/Hoo49y3333ERUVxeuvv05OTg533nnnST/jcDi46667uP/++/F4PMyaNYuIiAhuuOEGAMaOHcuSJUsYO3YsN910E5GRkSxfvpwPP/ywSF+HsLAwNm7cyK+//kq3bt3QNM03UkZQUJCv6UCPHj145513fMlCobvuuourr76a22+/nWuuuQaHw8EHH3zAN998w+zZswG4/PLLeeedd7jxxhu54447aNCgAatXr+bVV1/luuuuK3Eo2vI6cuQImzZt8v2dkZHBokWLOHDggK9GIj4+nuHDhzN58mQOHjxI+/bt2b17NzNmzKBx48Y0bdoUTdN46KGHePDBB/m///s/hg4dyqZNm3jvvfdOGUNERAS33XYbc+fOxWazcd5553HgwAFmzZpFixYtfBNuPfjgg9x8883ccsstXHfddbhcLl555RWcTudpTwB37rnn8vjjj/Pcc8/Rr18/MjIymDt3Lk2bNvX91vbt20dKSsop57xwOp1Ftqnb7ebXX3/l9ddfp0+fPr7mG40aNWLRokXExcURFhbGzz//zNtvvw0ca9MeGhoKeIfeDQ8PP+mET6fSokULLrvsMubOnUteXh49evRg27ZtvuFH+/bti67rPPDAAzzyyCPcf//9XHrppaSmpjJ37lzCw8NLrMkqj3POOYc33niD6OhoOnfuTEJCAm+++Sbdu3f31c7t3LkTp9NJ27ZtS1xGWY9zZVE4kdbNN9/M3XffjcfjYebMmZXy2zpeWY+pAwYMYNmyZXTs2JFmzZrx6aefFrl50ahRI+Li4njyySfJysrijDPOYMuWLfz444/cfvvtQNmPYVWtdevWDB06lBdeeIG8vDzatWvHzz//zMqVK5k5cyYWi4X777+fKVOmYLFYGDhwIBkZGcybN4+EhIRSmzmJ2qFPnz5ccsklWK3WIgnB9u3bufPOO5k2bRrnnXcef/zxB3fddReRkZH07duXP//8kx49enDbbbfxxx9/EBcXx913333S/is1mSQDoojmzZszZswY3njjDd555x3Gjh3LfffdR0xMDO+++y6vvfYa4eHh9OzZ0zdT8YnOPPNMpk+fzty5c7nzzjsJDw/n7LPPZuHChYwZM4YNGzbQqlUrhgwZwpIlS5g0aRIjR45k6tSpRZYTExPDe++9x/Tp03nqqadwuVy0bt2aefPmFesgejIOh4M33njDt5yMjAyaNm3KE088USkzqk6dOpWnn36alJQUunTpwnvvvXfKWotWrVpx0UUXMXXqVDIzM+nZsyePPvqo70Kkfv36vP/++0yfPp2pU6eSn59P06ZNeeqpp4q0SbzjjjuYN28et956K8uXL6dhw4a+OxVdunTx3ent3r07mqbRvXv3Iu2rW7duzaJFi5gxYwYPP/wwSini4+N56aWXfNs4KCiIRYsWMX36dKZNm0ZmZqavHftNN9102tsP4KOPPuKjjz4CvO2pg4ODiY+PZ+bMmVx44YW+9z3zzDMsWLCA999/nyNHjhAVFcWwYcO47777fHcaL774YnRdZ968eSxZsoT4+HieeOKJYp1RS1KYLL7zzjssXryYiIgIhg4dyn333edr39yzZ0/efPNNZs+ezQMPPIDdbqdbt24899xzxTrTl9fVV1+Ny+Xi/fff59133yUgIICePXsyYcIE34XhvHnz+PTTT/n7779PuqyjR48yatQo3982m41GjRpx/fXXM27cON/z8+bN46mnnmLSpEnY7XZatGjB/Pnzefrpp9mwYQNjxoyhZcuWXHzxxb4mMF988cVpredTTz3FmWeeyccff8zrr79ObGwsY8aMYdy4cb4L0ssvv5zg4GAWLFjAuHHjCAkJoW/fvjzwwANlbktfmnvvvRe73c7HH3/MSy+9RGhoKIMGDeLBBx/0vec///kPBw8e5LvvvitxGWU9zpVFZGQk7733nq8cgoODueWWW0rsy3M6ynpMfeSRR3C73UybNg2r1cqwYcN8CXahuXPn8uKLLzJr1ixSU1Np0KAB48eP9/UvK+sxrDpMmzaNuXPnsnDhQlJTU2nWrBkzZ85k6NChAFx55ZUEBwfz2muv8cEHHxAUFESXLl144YUXit2kErVLaceS999/n/POO48hQ4YA0KVLF6666ioWLVpE3759SU9P5/XXX2fOnDl06NCB7777jvvvv5933nmnyCARZqGp8tRlCiF8CidOO9VFmRCVbciQIXz99df+DqNWczqdXH755aed+AghzKFVq1b873//o0ePHtx6662sXbsWh8Phe93j8XDGGWewZMkSOnfuzPXXX1+kNuG2226jRYsWpfaTqcmkZkAIIUzkww8/LPPwj6LiXnrppXKNLCSEqD3i4uK47LLLeOKJJ3zPJSYm+voCnXXWWTidziKf8Xg8pp2kTjoQCyGEiXTr1s032peoOsOGDSsybr4Qou4YOXIkX3zxBT///DOGYbBnzx6uu+463njjDQCuueYa3nvvPVavXo1hGHz11VesW7eOiy++2M+RV4w0ExJCCCGEEHXa8c2EwDtgwuzZs9m7dy+BgYFcfPHFvn5i4B2J6I033uDAgQM0atSIe++9t8TJ8sxAkgEhhBBCCCHqKGkmJIQQQgghRB0lyYAQQgghhBB1lCQDQgghhBBC1FGSDAghhBBCiDolw8j3dwg1hmk7ECcnZ2LOyGseTYOoqFDZpiYl5Wd+UobmJ2VoblJ+la9wm9ZkT+b8QJ5yV+oyAzQr/xc0oFKXWdVMO+mYUsgPtpLJNjU3KT/zkzI0PylDc5Pyq1vylJt8PJW7UBPuP6ZNBoQQQgghhKgwpQFaJS+0spdX9aTPgBBCCCGEEHWUJANCCCGEEELUUZIMCCGEEEIIUUdJnwEhhBBCCFH3mLCzb1WQmgEhhBBCCCHqKEkGhBBCCCGEqKMkGRBCCCGEEKKOkj4DQgghhBCi7pF5BgCpGRBCCCGEEKLOkmRACCGEEEKIOkqaCQkhhBBCiLpHhhYFJBkQQgi/UiiyNCd27CgUZmxveip5TkW+SxHk0LBZa9/6CSGEmUkyIIQQfqBQbLIm8IttP7utqTiwUT8wiF7OJnR1N0CvBUnB4RQPP21z8vsuF/kuRWiQxrnxdvq2tRMaKK1UhRCiJvBLMrB161aefvpp/v77bwICAhg6dCgPP/wwdrvdH+EIIUS1Uii+tv/LZ46/cWMQpQJxYGWr5Sh/BSZxJD+Li50t0UycEOw96uHVldnsP2oQFaoR6NBIzVJ88HMe2w64ueX8IMKDJSEQQgh/q/YjsWEY3H777VxwwQWsX7+ejz76iJ9//plXX321ukMRQgi/2KdnsMy+k0BlpaWnHlEqkGiCaGnUI8xwsMKxi52WVH+HWWGGofhkTS6Hkj20aWwhLtJCRLBOk2gLLRtY+HOPm+825/s7TCFEXaeq6GEy1Z4MpKenc/ToUQzDQCnvFtN1ncDAwOoORQgh/GKj9QgZej71jeBir8WoIHJw8bv1sB8iqxy7Ez3sOOSmcbQFXS9au2G3adQL1Vi3w0VWnuGnCIUQQhSq9mZCkZGRjB07lueee47nn38ej8fDeeedx9ixY8u1HM28tec1TuG2lG1qTlJ+5nPYkkmAsqCXUGiaBsHYOGjJNG2ZpmQZ5LsgNKDk+00RQTqJ6R7SsxWhteQ+kPwOzU3Kr/KZY1vKpGPgh2TAMAwCAgKYPHkyI0eOZO/evYwfP57Zs2dz3333lXk5UVGhVRdkHSXb1Nyk/MwjhhAsJBGEo8jzQUHevzV0ogkhOticZRqbkkdAgBO7w4bVUvzEmG94CAm2EBcbQnS92jWOhfwOzU3Kr44xYZOeqlDtR+GVK1fy1VdfsWLFCgBatmzJuHHjeOqpp8qVDCQnZ6KkECuFpnkPgLJNzUnKz3yaWsPID3CRamTjKDgMBwU5yMnJx4mHbEs+LfLCSXJl+jnSiokONAgPMNh9KI9GUZYiryml2HPEQ6emViyeHJKSzHcXrSTyOzQ3Kb/KV7hNRc1X7cnA4cOHcTqdRYOwWrHZbOVajlLID7aSyTY1Nyk/82jviqWtNYY/bImc4QklFO9Ialk42aOn09YdQ0dnfdPetAoO0BnY3s7i1XkcTvUQG66j6xout+JAsocgh8bADg5Aq3X7rPwOzU3KT9RF1d6BuE+fPhw9epSXX34Zj8fD/v37mT9/Ppdcckl1hyKEEH4RgJUb8jrR3dWAZD2P7ZZktpBAop5DF3ccY3M7EYK5h1o+r5ODy3oEoGnw90EP2w+4+TfBQ1SozpgBgbQ/o3w3gIQQQlSNaq8ZaNGiBQsWLGDmzJm89tprhIaGMnz4cMaNG1fdoQghhN9EqUDuzO3Gbksa+yzphDsCCc21cpa7Xq2YcMyiawzrFsC5re1s2+8mz6kIC9Zo28RGsMP86yeEqAWUdCAGP0061qtXL3r16uWPrxZCiBpDR+MsTyQtjEiiCSXJk2napkGlqRei07uNuWs5hBCiNpPpH4UQQgghhKijJBkQQgghhBCijqpdAzwLIYTJKKXIwoXdyC+Yld187U2FEMK0KrttpgkP4ZIMCCGEHyil2KSS+MU4xG7ScaTbqO8JpJfWgK5abImzEwshhBCVTZIBIYSoZkopvjb28ZmxC7emiCIAh2Zhq0rmL5XCES2bi/VmaJIQCCGEqGKSDAghRDXbRybLjD0EYiOOIDQNgnQ7QZqFRCOXFWovrfV6tCTC36EKIUTtpbSC4UUrk/lu4kgHYiGEqGYbjaNkkE99Aou9FqMFkoOb341EP0QmhBCirpFkQAghqtkhlY0Da6nNgIKwckBlVXNUQggh6iJJBoQQopoFalbcGKW+7sQgSFpxCiGEqAaSDAghRDVrr0WhAfnKU+w1p/LgxqCjHl39gQkhRF2iquhhMpIMCCFENeugRdFWq8dO0shUzoL5BSBLufiHNFprkXTSYvwcpRBCiLpA6qGFEKKaBWhWbrC05X3P32xVKRwkC4fLBhh00WK52hJPiGbzd5hCCCGq0NKlS3n88ceLPOdyuQDYsmVLtcUhyYAQQvhBlBbAnZaO7CadfWQSHhxEqEfnLCJkwjEhhKgOfh5adPjw4QwfPtz3d0JCAldccQUTJkyo5JhOTpIBIYTwE13TOIsIWmgRRAeEkpSViTJhe1MhhBCnRynFhAkTGDBgACNGjKjW75ZkQAghhBBC1D1V2OE3K6vo8NB2ux273V7q+5csWcLOnTuZN29e1QR0EpIMCCGEEEIIUYn69etHdna27+/x48dz9913l/hewzCYP38+d9xxByEhIdUVoo8kA0IIIYQolVKQnQOGB0JCQJdxCIU4pVWrVhX5+2S1AuvWrSMxMZGRI0dWdVglkmRACCGEECXauk3j5zUaO3bqGAoaxil6n2vQo5vCYvF3dELUXOW5w//VV18xePBggoKCqjCi0kkyIIQQQohiflmr8f5HFnJyIaqewm6Bnf9q7NhpYd9+gysvMyQhEOZWQyYJ++2337j++uv99v2SDAghhBCiiKNJ8OnnFtAUrVoeez4yQpGWDt+t0mnTStGpQw24khLC5A4cOEBsbKzfvl+SASGEEEIU8ecWnaRkaB1f/LWIcEg4Cut/0yQZECanUZ55Acq+zPLZuHFjJcdQPpIMCCGEEKKIo0nejsKldRYODVbsPyiT4wmTqyHNhPxNxgQQQgghRBEOByij9NddLo2gwOqLRwhRdSQZEEIIIUQRrVoq7A44bph0H4/HO9Ro17PllqoQtYEkA0IIIYQoIr6FolMHg737NdLSvXMNAOTkwj87NZqdqeja+SRVB0II05A+A0IIIYQowmqFMaMM7DbYtFnn0GFv/wGbDdq0Vlw90kO9SH9HKcRpkj4DgCQDQgghhChBaCjcfL3BvgMGu/doGAbE1ffWGljl6kGIWkN+zkIIIYQokabBmU3gzCZy+1TURjVjaFF/kz4DQgghhBBC1FFSMyCEEEIIIeoe6TMASM2AEEIIIYQQdZYkA0IIIYQQQtRR0kxICCGEEELUPdJMCJCaASGEEEIIIeosqRkQQgghhBB1kAwtClIzIIQQQgghRJ0lNQNCCCGEEKLukT4DgNQMCCGEEEIIUWdJMiCEEEIIIUQdJc2EhBBCCCFE3SPNhACpGRBCCCGEEKLOkpoBIYQQQghRB8nQoiA1A0IIIYQQQtRZUjMghBBCCCHqHukzAEjNgBBCCCGEEHWWJANCCCGEEELUUdXeTGjp0qU8/vjjRZ5zuVwAbNmypbrDEUIIIYQQos6q9mRg+PDhDB8+3Pd3QkICV1xxBRMmTKjuUIQQQgghRF0lfQYAPzcTUkoxYcIEBgwYwIgRI/wZihBCCCGEEHWOX0cTWrJkCTt37mTevHnl/qxmvmFca6zCbSnb1Jyk/MxPytD8pAzNTcqv8sm2NA+/JQOGYTB//nzuuOMOQkJCyv35qKjQKoiqbpNtam5SfuYnZWh+UobmJuVXxyjN+6hU5suC/JYMrFu3jsTEREaOHFmhzycnZ6KknVel0DTvAVC2qTlJ+ZmflKH5SRmam5Rf5SvcpqLm81sy8NVXXzF48GCCgoIq9HmlkB9sJZNtam5SfuYnZWh+UobmJuUn6iK/dSD+7bffOOecc/z19UIIIYQQQtR5fqsZOHDgALGxsf76eiGEEEIIUZfJ0KKAH5OBjRs3+uurhRBCCCGEEPh5aFEhhBBCCCH8Q6PyR/8x32hCfp10TAghhBBCCOE/UjMghKjRXIZBjtuD3aITaLH4OxxRAXn5kJ8PQYFgs/k7GiGEKCB9BgBJBoQQNVSW283qpDTWJKWT5nRh0zU6R4bRNyaSxkEB/g5PlMHhBPhpPfy+2ZsMhIbCuV2gb3cILf9ck0IIIaqAJANCiBony+3mjX8P8ntqJiFWC2FWC/mGwYojyfyZlsnNzRvTIrRic5SI6rH3ALz6Luw/BFEREBgAqWnwwVLY9g/ccg2Eh/k7SiGEENJnQAhR4/yYmMpvKZk0Dw7kjKAAIuw26gc4aBMaRGK+k4/2J+A2DH+HKUphGPDJcjh0BNq0gLhYiAiHJg2hZVP48y/47hd/RymEqPNUFT1MRpIBIUSNkufxsCYpjXCbhQBL0UOUrmk0CQzg3+wcdmTm+ClCcSq798GO3dC4AegnnGXsdqgXAes2QpYUoRBC+J0kA0KIGiXD5SHD5SbcVnIrxiCrBbdSpDhd1RyZKKvkNG8fgZDgkl8PD4OMLEhLr9awhBDiBFoVPcxFkgEhRI1i1zWsuobTKLmu1aO8z9tOvOUsagy7DTQN3O6SX3e6wGqRkYWEEKImkLOpEKJGCbdZaR0WwlGnE6WKJwRH853Us9mIlw7ENVaLphATBQlJxV9TChKToGUziI2q9tCEEKKoOt5fACQZEELUMJqmMSA2kgiblX+z83AWdBQ2lCIxz0m6y02/2Egi7XJbuaYKCYZBvSEnB44kejsUA7hcsOeAd76Bgb29tQdCCCH8S4YWFULUOPGhwdzQrBGf7E9gT3YuhvLecIm0WxneKJYLG0T7O0RxCuf18TYT+vZn+HuX98Jf06BBLIwYCu1b+TtCIYQQIMmAEKKG6hQRSnxoEH+lZ5PmcuHQdVqFBRPjsPs7NFEGFgsMOw/O7eqdVyAvD8LCoG1LCJYWXkKImqAqmvaYsKmQJANCiBor0GKhaz2ZmcrM6kVA73P8HYUQQojSSDIghBBCCCHqoKoYCtR8naGkA7EQQgghhBB1lCQDQogazeVWpGcb5DpN2BCzDJRSZGYrMrJUiUOpCiGEqCKVPaxoBfogpKWl8fDDD9OjRw/OOecc7rrrLhITE0971cpDmgkJIWqkrDyD1dtcrPnbSVq2gc2i0bm5lb5tHTSOtvg7vNOmlGLTdsUvvyt2H1A4HNnUjzLo1Vmja1sNXTdfVbMQQojyufvuuwkPD2flypXous4jjzzC5MmTWbBgQbXFIMmAEKLGycozeGNlDr//6yIkQCcsSCPfpVix0cmfe9zcPDiIFg3Me/hSSvH1LwaffaNweyAqAhx22PqP4q+diiMDNC4eoKPJQPxCCFFrbdmyhT/++IPVq1cTEhICwH//+1+OHj1arXGY92wqhKi1ftzi5Lddbs6KsxJgP3ZBHBOu+OeQh49W5/LQpSFYLea8WN53GJb9qAgMhLhoDQ0ICtIJcmgkpipW/Kxo3RxanunvSIUQQlREVlZWkb/tdjt2e9Ghsf/8809atGjBhx9+yHvvvUdubi59+/Zl4sSJ1Rmq9BkQQtQseU7Fmr+dhAdrRRIBAF3TaBJt4d8jHnYccvspwtO3cZtBRhbUjyr+WkykRk4u/P6XUf2BCSFEXVKFfQb69etH165dfY+Smv2kp6fz999/s2fPHj799FM+++wzEhISqj0ZkJoBIUSNkpFrkJGtCA8u+a5/kEPDbUBKpnk72x5KBIeDUpsBBQXCgYRqDkoIIeqcqhtadNWqVUWePbFW4PjnHnvsMRwOByEhIdx3331cddVVZGdnExwcXMmxlUySASFEjWK3algt4Czlxr/HUKDAZuKjV2AAuE9SseF0QZCj+uIRQghRuQr7AJxMixYtMAwDl8uFw+E96BuGt1a4OkeXk2ZCQogaJTxIo3VjG0fTPSUeDI9mGNQL0YhvaN5soH1Lbz+B/BKGS3W6FG43dGxlzv4QQghhGn4eWrRXr140adKERx99lOzsbFJSUpgxYwbnn39+mZKJyiLJgBCiRtE0jQHt7UQE6/yb4MHp9h5ZDaVITPOQnq3o195OZIh5D18dWmq0baGxcx9kZh+bXyArR/HPXmjdXKNTa0kGhBCiNrPZbCxcuBCLxcIFF1zABRdcQFxcHE8//XS1xmHeW2tCiForvpGVGwYF8cnaPPYkejAMUCgig3WGd3dwYZcAf4d4WgIcGjdcqvP+coOtOxUHE8Bh9wDQpa3G1cN0QoIkGRBCiNqufv36zJgxw68xSDIghKiROjWzEd/Iyl/73aRlGThsGq0aW4kJM2+NwPGiIjTuvFpn9wHYd1gRHu4gNFBxVhNkwjEhhBDVRpIBIUSNFWjX6HqWzd9hVBld1zjrDGhxpkZ0tJ2kpHyqsc+YEELUbeVs41/mZZpM7bjFJoQQQgghhCg3qRkQQgghhBB1UNXNM2AmkgwIIWq0HKdBcrabEIdOZJAcsoQQQlQSaSYESDIghKihEjLdvLUujW93ZpGZ78Gqa3RtHMjorhGcc0agv8MTQgghagVJBoQQNU5Cppt7PjnCX4l5BFgh2KbjNOCbndlsOpjH5CExnBdffROyCCGEELWVdCAWQtQ4C35JYWtCLg1DrTQMsxMeaCUm2EqzCCupeR5mrkomz2X4O0whhBDC9CQZEELUKGm5bn74N4cgm06AreghStd1YkOsHEh38c2ObD9FKIQQolZQVfQwGUkGhBA1yqF0N1n5HkIdJR+egmw6HgP2p7mqOTIhhBCi9pE+A0KIGiXYrmPRNVyekm+veAxv86AAq9zLEEIIcbrMNxRoZZOzqRCiRmkSYaVVjIO0PANlFO8XkJJrEOrQGdAiyA/RCSGEELWLJANCiBpF13Wu7RJOsF1nf4YHp9ubEBiGQVK2m2ynwXktQmgWZfdzpEIIIUxN+gwA0kxICFEDDWkdQnqewStrUjic6cYoOLgG23UuaRPKpPOj/RugEEIIUUtIMiCEqJGuPDuM8+ODWP5XFkcyPAQ5NAa2CKZ1fYe/QxNCCCFqDUkGhBA1VmSQldHdIvwdhhBCiNqoKpr1mLCZkPQZEEIIIYQQoo6SmgEhhBBCCFEHaVT+0KLmG6pUkgEhRI2WlOlm12E3seEWmtW3+TucSqeUIsvjxu5yoZTCjCeSus5jKLLzFIHBxYfCFUKImk6SASFEjbR1fz6PvJHDH5t1XPk6mu6k8ZlZjLvczvUDgv0d3mlTSrEpK51f0pPZnZeN47CN+tjpFVaPrqER6JokBTVdnlOxeruLNducJGcYBAc7aRmn6NPWRvM4Ob0KUeNJnwHAT8lAWloaTz/9ND/++COGYXDOOecwdepUYmNj/RGOEKKG2bo/nysezSX1qA3dorDYDQyPxp5/bDw2y83RjEweHB7q7zArTCnF1ymJfJZ0CLdSRNnsOHQLWzMz+Cs7gyPOOC6OikOThKDGyncp/vddLmu3uwiwa0QEe8vq+z+c/PGvi7HnB9Khae2ryRJC1D5+6UB89913k5OTw8qVK/n++++xWCxMnjzZH6EIIWqgB17OIfWolYAQD0FhBo4ACAxWBIV5cObrvLTIQ1q2x99hVti+/FyWpRwh0GKhZVAIUTY70XYHLQODCbNYWZGSwM7cbH+HKU5i7d8u1m530STGQtP6FiJDdOIiLbRpYiErV7H453xy8k14i1AIUedUe83Ali1b+OOPP1i9ejUhISEA/Pe//+Xo0aPVHYoQogbad9TFtm06utXAesKNVV2HgECDnEwLsz7P4vGrw/0T5GnamJlGhttNm6CQYq/F2B1sy87k98w0WpbwuvA/w1Cs3ubCYdMIDihae6NpGk1iLew+4uGvfW66tZTaASFqLGkmBPghGfjzzz9p0aIFH374Ie+99x65ubn07duXiRMnlms5UnteeQq3pWxTc6pt5bd5vwuXU8dmL7kzptUO+TkaOw8p067zYWceAbp+rF9A4XpooCkItlg46Mw17frVdrkuSMrwEB6sHevufVwZOqzeP1IyDSlDk6htx9GaQLaleVR7MpCens7ff/9N+/bt+fTTT8nLy+Phhx9m4sSJLFiwoMzLiYoyb3vhmkq2qbnVlvJr3khH19MxDA29hJOJx1CgKSLDbERHm3OdYzKDsDizCQoqOptyUKD3b82TT3RokGnXr7YLdSpCg/NxuRVBQUVPo0GBdpRSWG0QHRVEdHSQn6IUFVFbjqNClEe1JwN2ux2Axx57DIfDQUhICPfddx9XXXUV2dnZBAeXbZSQ5ORMlAmrYmoiTfMeAGWbmlNtK7/4aA/1YtwkHrJicxjoJ/RsysvWsFgVV/bRSUrK9E+Qp6mpcpCf7yJVy8GhW0DzJgI5ufk4PQbZ+U5aaAGmXb+6oE0jxZcbnIQHeLwdvTVvIpCT6yQlwyDAoogLdZKUZN6+LXVJbTuO1gSF21TUfNWeDLRo0QLDMHC5XDgc3rtghuFtDqDK8QtUCvnBVjLZpuZWW8rPYrEw+iILs99S5GbpBAR7sFg0DAPyczUMt0b7Tm76tg4z7fq2Dw6jbVAof2RncIYjkFCLBYAst5s9ebm0DQqlY0i4adevLujV2s7GXW52HPJwZqyFAJuGUorkdIMjaQZDuthpEKlLGZpMbTmOijJSmvdR2cs0mWofTahXr140adKERx99lOzsbFJSUpgxYwbnn3++r0OxEKJum3R5GKMvV9gDDPIyLWSl6eRmeA9XbTu6eP8xc99tCtAt3NDgTLqHRpDsdrI9N4stGWkkupx0CY1gbIMzCbHIOPU1WZMYCzeeH0jTWAt7Ew22HXCzeY+LPJfigi52Lu8ZIEPDCiFMQVPluR1fSRISEnj22Wf59ddfyc/PZ9CgQTz22GOEhYWVeRlJSVKVV1k0DaKjQ2WbmlRtLr/dCS5eXJLNgURFSJDGtQPsXNil9rTBNpRid142+/JzCQ8LJDQfzgoIlgnHTCTfpdh+wE1ShkFMVDD1Q/KpH2Hxd1iinGrzcdRfCrdpTfZ/f/xOvlG5M4c7dJ0nO3Wp1GVWNb/ceqpfvz4zZszwx1cLIUykWX0bc26L8HcYVUbXNM4KDKFFUIhciJiUw6bRqZmt4MInkKQkt5ShEMJUpB5aCCGEEELUPTLPACDJgBBCCCGEqJM0jk0SUpnLNJdq70AshKhcOfmKtEwDt8eEtyPKIMflYX+6k9Rct79DERWUlw/pGeBy+TsSIYQQJ5KaASFMam+Ch583u/jjXzcWm5NAm5tebW30amcjyGG+OxMnSsh28daGVL7dkkdmNlgt0LWlldHdwjmnYdnmIxH+dfgI/LRW5/dNkO/UCA1VnNtN0fdcRWjN7lcohKgLpJkQIDUDQpjS9v1u5i3NY+VGF4aCIIdGYqrBom/zeeurPHLyTXg0Ok5Ctot7Pj7CO9/lkZoODjt4DPhmg4cJHyTz7b8Z/g5RnMLe/fDS6zrLvtZwujQCAyE1TeODT3VeeVsnXYpQCCFqBEkGhDAZp0vx0Y9OkjMVbZro1I/UqRdm4cz6FprW1/n1bze/bDF3e4wFa5PZulPRsD40jNUID9GIidRo1hhS02HmN+nkuWVm15rKMOCTz3UOHdZoEw9x9SEiHJo0gpbN4c+tGt+tktOPEELUBHI0FsJktu/3sCfR4IwYrdikRoEOjeAAWL3VhcttztqBtDw3P2x1EhSkCLAXXT9dh9gYOHBE8c2/WX6KUJzK7r2wY5dG40beMjue3Q71ImHdbxpZ2f6JTwghxDGSDAhhMskZCsMofqFcKCxYIzVLkZlrzmTgUKaLrGwIDSp5/YIcGh4D9qeZu/ajNktO1cjPh5BSunaEh0NGJqSlV29cQghRhKqih8lIMiCEyditoJR39tqSuNxg1cFuNWcn4mCbjsXiXY+SeApaBwWYdP3qArvNO/uou5QydDrBagWbrXrjEkIIUZwkA0KYTMvGFiJDNJLSiycDSimS0hXtm1kJCTTnxXKTMButztBJywBVwizxKRmK0GAY0Dyk+oMTZdKimSImWpFwtPhrSkFiIrRsroiNrv7YhBDiGK2KHuYiyYAQJhMbodO7vY2UDMXRNAPD8CYFTpdi12FFdJhOv47mveWq6zrXdgsjOAj2JyicLu/6GQYkpSqys+G8s+00i3D4OVJRmpAQGNRXkZMDRxK8ZQfeeQb27IOgYBjYV6GZ75wphBC1jswzIIQJXXKuHYCfN7vYvt8gMMCJ02nQOEZnZD8HzRtY/Bzh6RnSIoz0izy88n0mhxOPNYkKDoJLetqZNCDGzxGKUzmvv8LtNvh2lc7fOwvul2nQIE4xYpiifRsTNqwVQtQuMs8AIMmAEKZkt2lc0ddBn/Y2/jnoISAwECt5tG5iKbVjsdlc2S6S85uHsvyfDI6kuwly6AxsHkLr6AB/hybKwGKBYUMU557jYdsOjbw8CAuDtq0UwUH+jk4IIUQhSQaEMLH6kTpx9XSiowNJSnJTSp9i04oMtDK6Yz1/hyFOQ71I6N2jlu2YQghRi0gyIIQQQggh6h5pJgRIB2IhhBBCCCHqLKkZEMLk/jnkYntCDnEhbsKDat9POinLza6jLmJDdZpFywhCZpSXr8h3QlAg2GR+CCFEjVEVQ4Ga7xhX+64chKgjXv06i1e+zOfQEVAqE7tdcXZrnWk3htCygXmHFi209XAejyxK549NFly5FjSLovFZaYwbHsD1PcP9HZ4og8NHFT/9ZvD7X4p8pyI0ROPcjhp9u+qEBpvvhCmEELWRJANCmNCTizN5+RMnLqeGxabQLYq8PI21vytG7E1nydRwUycEWw/nccV/MkndH4huN7A4PBhujT1/BvLYbjdHM1J58IJIf4cpTmLvIcWrH3nYf0QRFQGBAZCaofhghWLbv4pbrrAQHioJgRDCz0zYxr+ySZ8BIUzmSKqL175w4nZBUIgiMBACAzSCgxWOQIOUZJ2H3sjyd5in5YE300nd7yCgnougSDeOIEVgmEFQjBNntoWX3veQlu3xd5iiFIah+GSlh0OJijbNIS5aIyJMo0mcRssz4c8diu/WlTC9tBBCiGonyYAQJjNjaS55ORqOQIV+wi/YatXQdNi03UNShts/AZ6mfckutm2xoTs8WG1Fb9noOgSEu8lJtjFrZbqfIhSnsvsA7NiraBwHul707r/dplEvHNZtVmTlyC05IYTwN0kGhDCZf4+4QXkv/EtisSlcTp0t+8yZDPx5KB9Xno4toOQ7x1a7AgU7j5hz/eqC5HRvh+GQoJL30fBQyMhSpGVWc2BCCHE8VUWPcli+fDlt27alc+fOvseECRNOe9XKQ/oMCGEyQQ4NUBgGxWoGAAwDNE1RL8ScuX69IB1NU3g8GrYSjqpGQY4Q6JD25jWV3QaaBm63KjFpdbrAagWbnIGEEHXc5s2bGTFiBM8884zfYjDn1YIQddiVfQLQrZCfX/w1wwCPUyc2VtGxqb36g6sE3c90ENXIhTvb4rvwP15+lo4lwOC6PkHVH5wokxZnaMTU00hILv6aUorEJGh5hkasTC4thPArrYoekJWVVeThdDpLjGDz5s20b9++itavbCQZEMJkLu4WSIszFYZLIzf32J1yj1uRmwM2u8FNQwP8G+RpsFotjB5qw+IwyE214SloDWQYkJuhY+RbadPJSb+Wwf4NVJQqJEhjUA+NnFw4kqQwDG8Nj8ut2HMIgoJgYA8dTZPaHSFE7dSvXz+6du3qeyxYsKDYewzDYOvWrfzwww8MHDiQfv36MXnyZNLTq7dPXLkraZOSkoiOjsbpdPLRRx8RGRnJhRdeWBWxCSFK8eGkMK56NoOdezRysyi4EaHjCDQYM9TO3cNC/Bzh6Zk0LJLkzCQ+WGqQl2pDKQ0N0B0e2p6Ty/v3Rfk7RHEK5/XQcbvh27UGf+8BDYWmQYMYjRGDdNq3kHtRQgg/q0Ab/zItE1i1alWRp+324rX1KSkptG3blgsuuIDZs2eTmprKxIkTmTBhAq+88kolB1Y6TSlV5s2wePFinnrqKTZt2sRTTz3F8uXL0TSNa6+9lrvuuqsq4ywmKSmTskcuTkbTIDo6VLapCS1dn8uHP+XhUhYaRhjcPyKYM2LMO7/AiXYn5fPil5kcSDIICYRr+wRxYXtzJzolqc2/wZR077wCefkQFgJtz9IIDqx9NQK1uQzrAim/yle4TWuy/1v/J/meyh3m2GHRebJ7xwp//s8//+Sqq65iw4YNhIRUz/muXDUD77zzDi+99BIej4dPPvmEV199lZiYGMaMGVPtyYAQAoZ3D2REj8BaexJrFu1gzhiHv8MQp6FeuEbvzrXv4l8IIU7X9u3b+eKLL3jwwQd9zSadTie6rpdYk1BVypUMHD58mN69e/P7779jtVrp0qULABkZGVUSnBBCCCGEELVRREQEixYtIjw8nBtvvJHExESmTZvGZZddVq3JQLkabYaHh7N3716++uorunfvDsDatWuJiYmpkuCEEEIIIYSoEn6eZyAuLo4FCxbw7bff0r17d6644go6dOjAlClTKmX1yqpcNQM33ngjl1xyCQALFy7kt99+4/bbb+fxxx+vkuCEEKe2eaeLvL9zaRbrIiqi9vQXKJSU5WJXopvYUJ1mMbWvyZDHo/h3HxxN8VAvXBWbsVcIUfXynYq0DAOnS2ErZUJHURsdGwq0cpdZdt27d+f999+v5BjKp1zJwLXXXkvfvn2xWq00aNCAlJQUFi1a5PfxUYWoi557J5c3l7lITddA5WGxKlo2yWfugw46nGX+pGDroTweWZzCH7sMXC5vZ7TG9TXGDQnm+p4R/g7vtHk8ihde1liyUpGQqtC0LKLC4KKBMGkc2O1yQSJEVUtKVfz8m8H6zaDIwaIZdO8Ifbrq1AuX36CoG8o1mhB4+w0cPHiQEz92zjnnVGpgp1IbO0v6i4yiYD73z8rhva/dGB4NNIWmaaiCARGCghSfTws0dUKw9VAeV8xIIjVdQ9cVFgsYCjwuDbtDcd+IIB4cbN4Zqzwexe0TYeVaA6UgwK6haZCb7x1+s29nnbdngsUiFyNmIcdR80lIUrzyocHOfYp64VAv0kZyiovUDGjVTOPWK3Vi6slvsKJMMZrQ2s1VM5rQuR0qdZlVrVw1A/Pnz2fWrFnFntc0jW3btlVaUEKI0u1PcPHBN24MA6w20DXvhaRS4DEgJ0dj3Av5rJpv3mTggXdTSE3XCAhQWI87Shl2RU6OxkvLcri5VygRweZcx6Vfw3frDaw6hId4u25ZLBrBAYqMHIOfNxm887HODVf5OVAhaimlFEu/9yYCrZqBzaoRFKQTYNOIraf4e7di+SqDGy61+DtUIapcuToQv/XWW7z00kts27aN7du3+x6SCAhRfaa+5sLt1rBYNE5sXm4p+EX/s9/gcLKr+oOrBPtS8tm210DXiyYCALoOAQ5FTq7GrG/NO4rZB5+D0wOhQcXvOoYF6Xg8ik9W+CEwIeqIhCTYskPRMAasJ9TAWa0a9aNg0zbF0RSp5hG1X7mSAavVyoABA2QKeSH8aE+CAerYhf+JNB0Mj8aGv8x5EvvzoBOXC2yl3PS32gAFOxPd1RpXZTpwRGHRKLWzsMWicTDRnOUnhBkkpUFWDoSV0oolPNT7ekp6tYYlhF+UKxkYPXo0M2bMICsrq6riEUKcQmDB0MNGKdeKCkCDGJM2qa8XZEHTvE2eSmIUPB9ozhZCAAQGaBgnaVhuGBBQfUNMC1Hn2G1gtYKrlApUpwusltJvSohaws9Di9YU5UoGmjdvzptvvsk555xDmzZtijyEENXjmiE2NB3cnuJHHEMBHggLUZzbzpxXk93PtBMVCW6X5rvwP16+EyxWxXW9qmea9qrQ9xzQ0HC6ipehy61QyjuaiRCiajRtBI1iNY4klfx6QhKc0UDjjLjqjUsIfyhXB+Jnn32Wm266iV69emGxSKcaIfxh9BAHz7/j5HCihtPtvXtlKbiT7vEodAtcd4F5b2dZrVZG9w1i9tIccnMhIADvaEKGNxEw3NC+hU6/lsH+DrXCbh8Dn3+rczjVIDQAHDZv06DcfEVmniImXOP26xSVP/61EALAbtM4r6fGwiWKA0cUDWO9z7s9ikMJ3pFwBvXUsMqcA7Wc/+cZqAnKlQxkZmby4IMPVlUsQogy+mJaABdPyOPIUXC7oLD1vMUKl/az8vjNgX6N73RNurAeyVkePvgpn7xcb62rhoZuUbRtrvH+Xeae9bx+tMb8pxT3TtU4mKTIygPwoOvQKErjhUc1mp1pvhOKEGbSq7OG06WzYpVixx6Fw+EhPx9iozSG9dfo3kF+g7VeVTTrMWEzoXLNMzBp0iTOO+88Bg8eXJUxlYmM5Vx5ZHxs81q4PI93v3Hj8lhoGKWYPNZGyzPMWytwot1H83lxZToHUjyEBOhce24QF7av2eNWl4fTqVj8Baz9XSMgwEa7lk6uvUwmHDMjOY6aV3qmYtu/CqstEI87l7ZnaYQGy2/wdJlinoHVW6pmnoFe5pqMt1zJwH333cfXX3/NWWedRURERJFRhf73v/9VSYClkQNu5ZGTmLlJ+ZmflKH5SRmam5Rf5ZNkwDzK1UyoRYsWtGjRoqpiEUIIIYQQQlSjciUD48eP9/1/cnIy4eHhWE+cFUgIIYQQQoiaTvoMAOVMBlwuF9OmTWPx4sXk5eVht9sZPnw4kydPxm435zCGQpjdT384Sc/L5OymThrF1r7f4b4EJ5t2Kc6I0Ti7Ze1bP5fLYP1mg/DwfFqfaWC1ypCiZuPxQHYOBAaa8CpACFHnlSsZmDdvHuvWrWPmzJk0btyYffv2MWPGDGbOnMnDDz9cVTEKIUpw9/QcPvkKXFlWUE6wKKLjslkw2UbfTua/aP5pcz73vODkUMKxGy0hQXmMHWFlyg1Bfo2tMrhcBjdPcfPjOsjL0YAc7IEeenbReetJC0GBkhTUdHn5sHqdxpr1OskpGsHBblo21+lzrqJ5M0kMhKj5ZGhRKGcH4vPPP58333yTJk2a+J7bt28fo0eP5qeffirzly5fvpyHHnoIh8NRZNnTpk0r8zKkk0/lkY5T5jPykWxWrbKCWwfd8B57DA2Uhh7kZvFMi6kTgp825zNqkhO3QdEqV83798ghGvMeMO+kYy6XwYCxTv75xwoGaFYFGii3hgY0aephzbs2bDZJCGqq/Hx4+z2dtb/qBARARJjCYrFx4KCbevVg7LUeOrSTA6pZyHmw8pmiA/EvW6umA3HvdpW6zKpWrjNNeno6DRo0KPJcgwYNyMvLK9eXbt68mREjRrBx40bfozyJgBB12d97nKz62QoeHewesIFmA+wKbB6MHCu3/dfl7zBPyx3P5BckAgpd13yPwszgk5WKI6lOv8Z4Ol78n4edO62ggz3YwOZQ2B1gDzJQVsW+vRYmz/H4O0xxEms3aKz9VadJY0XTMxSRERBXX6NNK0VWNiz+TCcn199RCiFOSlXRw2TKlQy0atWK999/v8hz77//PvHx8eX60s2bN9O+vbmGXRKiprjnRRe4dLB6vLdejqdroCmSj1j595A5L5a37HGSlKKBAl0veojSNR1QGAoefsmc6wfwwXIPyqNhtRe/I2W3KzDg8x8q926VqDyGAavX6TjsEHxCizVNgyaNFQcPa/y13XzNBYQQdU+5+gzcd9993HTTTSxdupQmTZqwb98+du7cyeuvv17mZRiGwdatWwkMDOS1117D4/HQv39/HnroIcLDw8u8nBOvgUTFFW5L2abmcChRee886KUUmK7Ao/H9bwZnNarW0CrFL5s9BTdWvPMOn0jXdQxD8e9BZdp9NiVNA12VWoTokJGhmXb9arvcPEhK1ggPU8f2UO3Yv46Cef9SUjU0zYS3CesgOQ9WPtmW5lGuZKBbt2589tlnfPHFFyQlJTF48GBmzpxJo0Zlv+JISUmhbdu2XHDBBcyePZvU1FQmTpzIhAkTeOWVV8q8nKiomt0OzYxkm5pDYEBB2wOl0I67miw88CoADVo1DyI6Orja4ztdLZsAZAJaid2wPAUNekODLTW+PWppHA4nORlakYkbgWN/K7Daan5727oqNFQRGurB5VQEBRUtw6BAO0oprFaIjrIQHS39PsxEzoN1jAwtCpQzGQBo2rQpAwYM4MCBA8TGxhbrQ3Aq0dHRLFq0yPd3YGAgEyZM4KqrriIrK4uQkLJ1CkxOlk4+lUXTvAdA2abmMGoIPPe39+6/Ou5ullJ4/+OxYA110be9QVJSpl9jrYi+7Vw4bJDvAo8yCpoGHadgH73xEt2U6wdwdhuN7xPB7TawWLyFqGkaSik8HkDptGuBadevLmgTr/PlSt1bO1AwIElQoJ2cXCcpKRDg0IiLzSMpyd+RirKQ82DlK9ymouYrVzJw9OhR7rjjDv7++2/Cw8NJTU2ladOmvPHGG8TFxZVpGdu3b+eLL77gwQcf9N0Fczqd6LperrkKlEJ+sJVMtqk5PHhtILPfySY32Q4YYFHHsgGXBSwGw85Tpi1Lm83G0H75LPlWgdIw8CYEhjIozH6iIhRX9Q8w7To+eY/OoN885GdZUXYPuhUsGrhdYDgt2II9TB1nMe361QW9ehhs/ENjxy6NM5soAhyglCI5GY4kagwZZNAgTo6pZiPnQVEXlav+8rnnnqNp06asW7eOX375hXXr1tGmTRueeeaZMi8jIiKCRYsW8dprr+F2uzl06BDTpk3jsssuk4nLhCijr+fZCIxyei+OnRZUvg5OC1gNup/r5rVHzNc86HivTgihT9eCZkJKwzCO9R+oF674alaAP8M7bS3PtDD7/ywEhrkx3DruHAv5WTqGW8cR6ubZBzS6tbf4O0xxEk0awY3XGTRtoti7X2PbDo3Nf0FevsYF5xlcPtyQNtNCCFMo1zwDffr0YcWKFUWa8mRmZnLeeeexfv36Mn/p+vXrefHFF9mxYwcOh4OLLrqICRMmFJl34FRkLODKI+Mrm9dzC3N5f4WBy61RP0ox7V4bXVrVnqR60z9OHnslnyPJEOiAsZdYuWVYoL/DqjQ5uQZPv+ph9UYDm81Cp1YGU++yyoRjJpKfD9t3aCSlaMREB1I/Jpv6sf6OSpSXnAcrnynmGVj1V9XMM9CvbaUus6qVq5mQYRgldniz2Wzl+tLu3bsXG6JUCFF+E8cEMun62nsSO7ulnWXTak9yc6KgQJ0n79HlQsTEHA7o1EGhaYroaJ2kJGlmIoSoPikpKdSrV++0llGu2089evRg6tSp5OTkAJCdnc3UqVPp3r37aQUhhBBCCCGEODW3282MGTPo2rUrgwYNYv/+/VxxxRUkJiZWaHnlSgYmTJjAn3/+Sffu3enTpw89evRg586dTJo0qUJfLoQQQgghhF+YdAbiOXPmsHbtWmbNmoXNZiMqKoq4uDieeuqpCi2vXM2EPB4Py5Yt49dffyUlJYVGjRrRoUMHLBbp6CaEv/y00Ul6biZnt3DRKKZ8TfbM4PedOXz5u5O2TWxc1tPcHaNL4vF4+Peoh6N5edSzedD12nc8TctSZGYrosI0ggKlV60QQpyOzz//nPfee4/69eujaRpBQUE888wzDB48uELLK1cyMGrUKL7++mt69uxZoS8TQlSeu1/M4ZNVTlx5Oqh8sBhER8KCCYH0Pdv87exf+zqTyYsz8BgUDCmquP3VVM5tYWfpo+bvoenxeHhheRZL1ueSkG6g6UlEhehc1DWASReHYreZPynY9I+HhV/n8+s/blxug+AAnf7tbdx8kYOGMdJJWgjhbwWThFT6MqtWTk6Or59A4ThAAQEB6HrFjqvl+lRERAQJCQkV+iIhROUZ+VgWH3ztxpVVkM9rCtw6SYkWrpycy0+bnP4N8DS99nUmj76fgcejFVS5qoJ/ddbudNFzkrmPQx6Ph9tfT2XeV1kcSPFg0cGiaRxO9fD6tznc9EoKHo/H32GeltWb3TzwcjZfbcrH5TFw2DQycgw++CWP8bNz2J9QuSN4CCFEXXH22Wczd+5c4NjM9QsXLqRDhw4VWl65agZatmzJVVddxdlnn01sbNE7c+WZa0AIUXF/73WxaqMHPDo4PKB5x+NXKDAMjDwLtz2fy7Z3zVs78OgH6YDuHZZFL5xmGTC8E6ztSnSzZU8O7ZsG+TPMClu6MY/vNudjtWiEB3nXz6LrBAdARo7i521O3vklhxv61exh+UrjditeXJxHUqaHZtEW9IIyDA8Cp0ux44iL+Z/l8/TttWeYWCGECVVFG/9q6DPw2GOPccMNN/Dpp5+SnZ3NsGHDyM7O5s0336zQ8sqVDAQFBTFkyJAKfZEQonLcMzPfO9OwzZsIFKFroCuS0zT+PeiieSPz9SFYviHb1yzIlwgU0jVfQnDdnAw2TTdnMvDBmhycBkSXEH5YkMbRDMUn63NNmwz89IeH3UfdxIbqvkSgkN2mEerQ+GWbk4QUB/XrSXMhIYQojyZNmrBs2TJ++OEHDh48SFxcHAMGDCgyD1h5lCsZkLv/QvjfoWQD0ItfKBfSFHg0vvvVY8pk4LN1+YDmrRUoaRV1b9Oh5CzzNjM5kOTBAsUulAtZdDiYYt5mQvsSDFweRXBAyf0eQgJ1UrMM9iUo6p/e8NhCCFHnOJ1OXn75ZUaOHMmFF17I22+/zWuvvcY999xToX4D5Z50bMWKFezbtw+3213ktfHjx5f7y4UQ5Wcv/NUaJdw5B28VpQYNYsw5akvDyOOaBZXE8CYJFot57ygH2jVOlsoYBgTYzFl+AIEOb9M1t0dhtRRfD5dbYdEhqOyTzgshhCjwzDPPsGnTJkaNGgVAu3btePbZZ3E6nTz88MPlXl65zqaPP/44jz32GD/88APr1q3zPdavX1/uLxZCVMw159lBV2CUlAgoMHSsDoOLepvzSmvCCAe+jMYovfHltT0Dqi2myta3rQMNcLqLr5/LrVBAn9bm7fPR72wLEUEWkjOLpzxKKVKzDZrFWmnT1LwJnRCiFjDpPANff/01r7/+Og0bNgSgW7duvPzyyyxdurRCyytXzcCXX37JRx99xFlnnVWhLxNCnL6HRgcw55M8cjOsgOFNDHQNPN4RhbAYDOtpvuZBhYKDgzgzKpO9yZ5jnYb14xIDDdAUT4+J9GeYp+X2QSF8/msuh9MMQgPAYfM2Dcp1KjLzFDGhOrefV7G2nzVBXJTOsG523vspl8QMD9Eh3r4DLo8iId1DgE3jmoGOUptJCSFE9TDn0KL5+fkEBRXtdBYSElKs1U5Zleu2TGhoKM2aNavQFwkhKs/XLwYTGOb2drR1WVD5OrgtYFN076Dz2iRzdqwt9Ou0+kSF6MeO0wUVBWgaaIoVj5i7oXn9cCvzb6nHmdEWcp2K5CzFkTQ3OfmKRpEWZt8YQbNY89YMANw/ysEVPQPQ0NiT5O1QfDDFQ3ighXEXBzGin3kTViGE8Kdu3brxzDPP4HR6hxHPz8/n+eefp0uXLhVanqYKZysog+nTpxMeHs4tt9xSoS+rTElJmZQ9cnEymgbR0aGyTU3ouf/l8v73LlwejfrhMG1cAF1a156LrE/XZDPhnUxynB4susYlnQKYd5e5E4HjOV0eFq/PZe3OfAICbLRroHFtz6BaMeFYoV0HDb751UVWLsREaFzY00pMRO1rHiTHUXOT8qt8hdu0Jvu/77aT76ncwSgcFp0nB7Wu1GWeaP/+/dxyyy0cPHiQyMhIUlNTadasGS+//DKNGjUq9/LKlAwMGjQITdNwu90kJCQQGhpKWFhYkfd8++235f7y0yE/2MojB0Fzk/IzPylD85MyNDcpv8onyUDV8ng8/PbbbyQlJREXF0fHjh2xWsvV+t+nTJ+6++67K7RwIYQQQgghxOk7cuQIcXFxHDp0CIDGjRvTuHFjABITEwF8nYrLo0zJwGWXXQbA66+/zs0331zs9ZkzZ5b7i4UQQgghhBBlM2zYMH7//Xdfi53jKaXQNI1t27aVe7mnTAZSUlLYtWsXAHPmzKFTp04c37IoMzOTt99+m/vuu6/cXy5EVcvJdfPrdgOHQ6NrSw2brWJVaDXZpfensedQJndc6eH2KyL8HU6lmzIvjQ++gVZNDJbOqj39BQolJTm590mFw+Zh2iQPUVHm7jhckoRkg+Q0RaP6OuEhMoKQ2RiG4mgKuN1QPxqsVilDUUtUxVCgVdjMbNmyZQAsXbqU4ODgSlvuKfsMZGVlMXjwYFJTU0t83W63M2rUKB577LFKC6ospF1f5amNbSVzct2MeTqX9VsNnHneE1dgsOK8bhZefiCgViQFsf2zINcOhqVgtB0FNg+9z83l0xkR/g7vtPW6IZmd2Qoi88Du8c6rkOaAFAeJX0X4O7zTlpTkpO35Fsizgrtgf7R6IMDNqvfdtDbxPAOFvlnnZu47ir/+0vC4NRwBiu7dDB69zUL8mbWnkzTUzuMowNJvDD5eofhnn0IpqB+lMay/ztgrwG6vPUlBbS0/fzJFn4Fvq6jPwHlV22dg0KBBLF26lJCQyhmC+pRXRCEhIaxZswaAoUOHsmLFikr5YiGqSk6um17jszl8QEdpOprFe2TPydD5/HvF7sM5fDcz7BRLqdli++RAXoD3AlkHKJiELN/KL78Ec9n9aaZOCHrdkMxOLR+a5HnnTnDqYFEQlw3h+cQOVSSuMO88A0lJTtr2t3rLEOVN5ABcFnBZ6HeFxl8/OomONm9C8On3Lh59RiMzw4IjQGG1KXJzNb751sqWvzz87wVoe1btSghqmwXvGrz+kUG+C8KCQbfAvsMG894z2LZT57mJeq1KCERdZM55BgByc3OrLxk4XmmJQEpKCvXq1b7qe2FOkxbkc+igjmZV2O3H3eKxK5z5Glt3wPxPc7nzskD/BXka/m92GuSFeOcY0NRxxzLlrSFw6/yy1pzrVmhntuFNBLJsYBQMQ+kG8i0Q6oJGOcxYpHH/6Ah/hllh54zQIc/hLT/L8bchFXg0yLPTaZjBQZNO7u50Kp6eC1mZOtExBnpBEQYHK1wuxZHDFqbO9fDhDEkGaqrtuxT/W2KABk0bHbu4iQjVSM9U/LBBseQbxZXDJBkQJmayZkKFevTowZVXXkm/fv2IjY0t8tr48ePLvbxyJQN//vknzz//PAkJCRiGt1rF5XKRkpLCli1byv3lQlSFr391g6FjCyz+i7TaFO5cC2+ucJo2GXjlQ4c3EUAVnzaw8LzssvD862k8fHNE9QZXCUZNSoWoPHDpxxIBHw1yrBDi5Jl3grh/tF9CPG3ZaQVNu3SDYneRLApcOq4s814oL/7GTWKChZCwY4lAIZsNHA7FH39q7D5o0KxR7ZtzoDZY9p0iI1vRtGHxi/3wUI3UTMXyHxRXDvNDcELUcQcOHKBJkybs3r2b3bt3+54/sVNxWZUrGXjiiSdo0qQJLVu2ZP/+/fTu3Zv//e9/PPjggxX6ciGqQmY2J9xtPUbXAV2Rkl6tIVUuQ/deSJZ2ragpUBqvfqbzcPHBv2q8n/7UoLnH22SmJJ6CmYkdJm7YW7gOeikHbk15+4Lgqc6oKs3OfWB4IDCg5NcDAhXZWTp/7ZZkoKbaf0ShaaCXso8GOmB/gol/g0KY2MKFCyt1eeU6Cv/zzz8888wzjB49Go/Hw4033siMGTP4/PPPKzUoIU6HxVLQfr40SsPc/YcLTsCl9XkquDMQG1O5naKqS5DDm8ygl3ahoYr8Y0oaBbU7pVBQegHXfEEB3t3QU0ou43aDrivCgqo3LlF2QQGcdB91uxWB0l9AiGo3d+5c7rzzThYtWlRpyyxXMhAWFkZAQABNmjThn3/+AeDss8/m4MGDlRaQEKer1Zne3doo4ULE4wZQ9Ghr3ruRASGugn4CJZyIjYKHxcMvb0RUb2CV5KvpGmTYweGhxCt+hwecOiEnu5iu6RyeghqcEtbPUIDmHUHJpC4/30JgoEFmZvEyMhTk5GjUjzPo1cm8TaFqu15dNCwWRU5O8X3U41Hku6BvNxP/BoWAY30GKvtRRZ5//nneffddbDYbs2fP5pVXXqmU5Zbriqh58+a89957OBwOgoKC2LZtG7t27apwGyUhqsL/jQnAGmDgzrPgdnufMwxwu8CTb8ERYvDfW8zZXwBg39eh3iEoFd47d4U3kA2AgjvqAU7/BXiazmoeAUkB3j4Dwe5jI+2gwOEGuwFHg/h3qXlHE3roTre3DN269+rYKKztUeCxgM3DFZe4/RvkaTirsU7/vgZuF6SnaxR0McPthrRkHZsVRl8OFoucO2qq8/totDtL50iyIj1LoQr20Zw8xb7D0CBa44qhUn5CVKcvvviCt99+m9mzZzN79uxKa5lTrmTg3nvvZebMmezbt4+bb76Zq666iiuuuMI3Q7EQNUH/znaeuNWBI8SN4dJx5lhw5+oYHp3gcDevTwqgSayp2wlx2+icogmBp2BIIU1BgIvEVZUz3Ji/JH4ZCXvDvGPwB7sg1Ol9aMDBEO4YaPN3iKfl4dvttO6UD3ZvZ3c8loIO0xawu2ncIo/5T5l3WFGAWZNsDBrgrd1ITtI5mqiTlqITEGQwdrTB+KvNXYa1XYBD4/lJOud00MnOgd2HFLsPGiSlKpo31njyPgtnnSnJgDA7rYoe5efxeBgzZgyTJk0q9T2ZmZm0bNkSgK5du5KQkFCh7zpRua6IunTpwqpVq7DZbIwaNYo2bdqQmZlJ7969KyUYISrLLRcHcGV/K1PfzmfTPx50Hfp1svLo6MBaMeHYk/dE8OQ90Pi8TJy5Nl8b+0vOy+P1JyL8HV6lSPwikuH3Ktb+C9i9Q27aXDoHl0X4O7RKsepDG9u353P+9S6ced7mMlaHwXcLPbViwrHAAI23nrbz+3YPH37pISNLERerccNwC2c2MG8zvbqkYazGa0/rrN0IGzYr3G6Ib+atNQhwSCIgRGWaO3cuGzZsoFGjRqW+Rz9ueDartfKuZcq9JIfDAUBiYiKHDh2iQ4cOlRaMEJUpPNTKjPHmv/A/mQPfhp4wc2Ypw7eY1NJZtXv+ktat7RxYf+Lsp7WrHX2X1ha6tK5d61SX6LpGr67Qq6tc/ItaqgYMRrFmzRq+/vprhgwZctL3qSqaHrtMV0pZWVk89dRTbNmyhQsuuIBhw4Zx1VVXkZWVRWBgIAsWLKB79+5VEqAQQgghhBBmkpWVVeRvu92O3V681jc5OZnHHnuMefPm8dZbb510mW63m88++8z3t8vlKvI3wKWXXlruWMuUDPznP/9h7969jBo1ipUrV/LJJ59wxRVXcM899/DWW28xZ86cSh/zVAghhBBCCDPq168f2dnZvr/Hjx/P3XffXeQ9hmEwYcIEbrzxRlq3bn3KZUZHRzN79mzf35GRkUX+1jSt6pKBX375hS+++IJ69epxwQUX0LdvX+655x6Cg4O59dZbT5nJCOEvWdkeVm32EGCDPh0s2O21r7lC/9tSOZCcyq0Xa0wcG+HvcCrda4uzWbhc0TFeY84jwf4Op9Ll5Tn5bJVBaCic38WJw2H+/gInSstSZGYrosI0ggKluYkQooaoiqFAC5a3atWqIk+XVCuwYMEC7HY7Y8aMKdOiv/vuu9MOryRlSgZyc3OpV8/bdjcmJobAwECCg70nZbvdjmGYd3IcUTtlZXu49KkMtmZl4AlwAhq2Nx2cGxvKe5NCa0VSEDssBUJdYFMQANNXwvQvjtI2ysoPC8w77GahKx/I5sf1Oni8HaS3bYMPvsjDHuTmwEpzj5YE3iRg4N157DrqAd0AskFpNIm08u2MACLCzZ8UbNrhYeEyN7/+AS4XBAdB/x4aN19qpWG0dCIWQtReISGnPk8tWbKExMREunXrBkBeXh4A33zzDRs2bKjS+I5XpqPxifMI2GxFh4Srqg4NQlREVraHLg8f5U+O4gnJ985GbIArPIefchPpPSnV3yGettjhKVDP5R1lh4LJqzQg0MNfGU4G3G7udbzygWx+XGsFl/W42aQVuC04M+3EDsg+6edrurw8J62vz2FXigssxrG7U7pif7qLDjdlk5dn3rkiAFb/6eaB59189YOGyw0OO2RkanzwOYx/xsX+BLmJJITwN/8OLbpixQp+//13NmzYwIYNG7j44ou5+OKLqzURgDImA0opDh8+zKFDhzh06BCGYRT5W5IBUZPcNTebtLAMcOroOXZ0t9X7yHaAR2OvLZVn383xd5gVdsd/U701ApoCD6B0QD82AZlV8VeKeSesAvhxnQ4e3TuBmkV5/9Xx/qs0yLfy4XLzJgR3vuAix1MwT4RRePLQvf+vIB+Dqx83bzLgdite/J+HpCSNZmcoYqMhPBwaxCmaNFLs+Edj/mKXv8MUQghBOZoJDRo0yPe3Usr3t1JKZiAWNcqqfZkQodDdJeze+VYIzWfhmkwmXRtU/cFVgk82GBCmvBf+xX57mreWwO5h4qw0nrs3wg8Rnp6HZ2R7mwZB8RssGgUJgc74ZzWuGlbd0VWOlRudBcmcVnwdC+aMWLfDvBfLP23ysHuvRmysgX7CLMN2O4SGKn7ZAAkpBvXrSXMhIYSfVGGfgYp49tlnKy+OcihTMvDtt99WdRxCVJo8mwvcJV9g6JqGYehkGOa90MJaeKQpJQlXCjSNd78zeO7eaouq0iz9vuBOuV7KEVXDmwhVcJbHmsDpASxaCclcAaXwmLjGdd8RVdBHoOT1CwmG1DSNfUckGRBCiIpwOp38+OOPHDx4kFGjRrF3794yjUhUkjIlAyebDU2Imkbz6N6mJaW+QWEtWwu5mqlw1Qou+ospeCoiyJwXk/XCDVIS8a5nSdeS6oR/TUhDobTSVpCCcjVvshPo8K6C2w0lTZLpcoPFAkEB5l1HIYTwl3379nHTTTfhcrnIyMigf//+XHHFFcydO5eBAweWe3kmviISomRn2oJAVxglXC0amgFodIoxZxMhAC3f4utsWkxhguDW2PxeVLXHVhk+fl4D3eNtLlPSBX/BNfSZjT3VHVqlaVzPivdiv5QyRBETat4Rr/p1sRARoUhOKX6xrwxvrUCzMxRtmsopSAghyuupp57i8ssv54cffsBqtdKsWTOefPLJInMOlIcciUWtM+WqMLQsB4Q4MXTviCWGUhgWDwQ7sWQE8OJt5h2aMmFZJDh170W/ZhRcPAIosHj/IbNMlX41UoMGwWAzCpoDaUVrAgy8SYLFza/vmbcMX7rf25ndV4N1fJMgqwKPzjO3OvwTXCWIi9IZ1h/y8iAxCYyCvM3lgoOHIcAB1wyzoOtSMyCE8CNVRY8qtmnTJm655RY0TfP12x0xYgT79++v0PLKlAz8+OOPFVq4EP4w7Fw7E3vFYskIgAA3Rkg+hDrB7sGWFsy8kfVp3tC8F8sAl3ewQb4OaN4EoHC0HQPItJG4zJy1AoUSfwwCe8GISYbmvXAuHHXH5ubp+8w9LOW5HRw8fGUguC3esrMqsHi8/+/RuePCAIb3M28yAHD/aDtXXOjN6fbs19i9R+PgQY3wMBg3RmNEf3P/BoUQtYF/hxatqNDQUJKSkoo8d/ToUcLDwyu0PE2VYVzQc845h19//ZUhQ4bw9ddfV+iLKltSUiYm7l9Xo2gaREeH1rptmpLm4cFXs9l8yImuQe8WATx3S2CtmHCsUOywVAj0eC+a3Tq9Wuh89oL5JxwrdPcz2XzwpeatDdAgOlLx1xLzNvE6UVq6k1uedfLHHg8WXSO+kc7/HrPXignHCu06aPDNOg9ZOYqYehoX9rIQE1H7KqVr63G0rpDyq3yF27Qm+78VO8l3V+7NJYdV58mhLSp1mSeaNWsWP/74Iw8++CD33nsvb7zxBtOmTaNz58488MAD5V5emZKBXr16cdFFF/Hee+9xxx13lPie8ePHl/vLT4f8YCuPHATNTcrP/KQMzU/K0Nyk/CqfKZKBL6soGbiwapMBl8vFiy++yPvvv09ubi4Oh4ORI0cyceJE7Pby30wqUz3t5MmTWbx4MUop1q1bV+x1mWdACCGEEEKIqmez2Zg4cSITJ04kJSWFyMjI07oWL1MycOGFF3LhhRdy5ZVXsnDhwgp/mRBCCCGEEKLisrOzWbx4MWPHjiUlJYXbb7+devXq8cQTT1C/fv1yL69cDTcXL15MdnY2y5cv59VXX2XJkiVkZGSU+0uFqC6JiS6ef83JS4ucZGebeKKxk2g+OAmt3X7GPpbs71CqxK3/l07D/pl0vzLd36FUiexsFy++7uLpudm1dh/951/Ftz8pDifWzvYXTpdif6KHxDS3v0OpEkopsnIVGVkKw6idZSiEmfz3v//l008/BWDq1Kk0bNiQ8PBwpk6dWqHllanPQKG9e/cyduxYXC4XDRs25NChQxiGwdtvv03Lli0rFEBFSbu+ylMb20omJrrofrUiJ7NgxB0AFFHRHjZ8pBMcbPNneJUidkAm3qGEjq0fuiLUmsuur6P9GFnliB+WRlqmA1wW70hCGmBzg3KT+EvNbodaFtnZLjqPgLRsw9tBGkBThAborPkAYmPNv4++8j/F7NcsJCVpKENDtyjOaKKYPtVDn3PN37w0Ldvgze9yWLkth9Q8N3aLTttYB6PODWZAh9rRCXzrLoOfN3rYsVdhKGgYo9H7bJ0e7XUsFvOXYaHaeB70N1P0GVheRX0GhlVtn4FBgwbxySefoGkaPXv25PvvvyciIoI+ffrw66+/lnt55aoZeOaZZxg6dCirVq3iww8/ZNWqVYwYMYJnn3223F8M4PF4GDNmDJMmTarQ54UoSWKii/aXQE6G5dhFFgAayUlW4i/wW2iVJnZgYSJwPO/wm5nOIM4aklTSx0wjflgaaWkBkGsDj+4dLUkBeTZwO4jtk+3vEE9LdraL5ucr0rIouo8qjcxcRfvhhulrCZ6bo3j8WSuJCRqGAWgKjxt279a4+jYr3/5k7iuujByD+95O4831aSRku3DoOmjwy74sHv00iU/W5Pk7xNP2yyYPLy92sX6LgcUCAXbYud/gzSVuFq/04PGYuwyFMKvs7GwiIiJYs2YNTZo0oX79+kXmHCivciUDf/zxB/fffz+67v2Yruvce++9/PHHHxX68rlz57Jhw4YKfVaI0gy5xQDDe2KmsGKg8KHAla8z8p58v8Z4OgbclAyqMBE48Yfv/TvTHVitMVW2tAwHOK1g9YDV8JajRXn/NnRwW5n4gnmbDV12l0Kpgh2yxCGqNQaN8WOApyknRzH3NSseD1htYLdr2GwadoeGxQrOfHhwirmH+H37+1x+P5xD/UAbjUPtRARYiA220zTMQa7bYN736SRnmHc+jKOpik+/84Cm0aqpTnSERmSYxlmNdWIiNb771WDLLkkGhNmZc56Bli1bMm/ePN566y0GDhxIVlYWzz//PO3atavQ8sqVDFgsFrKysoo8l5WVRWBg+S881qxZw9dff82QIUPK/VkhTubQkYLduqTfY8Fzq9abt3r7r912Tn7A8dYQjLjXnH0I+l2f7m0apClvPfPxNA10D3gsvLnUvJNWbfr7VNNUauw+ZN4LradnaeTnaegWis0ybLF4m3wdSdDYsMmc6+j2KL76KxubrhFkL3oa1TWNuGA7R3NdfPm7eW86/LnDIClN0Sim+GsRoRoeQ7F+i6f6AxOiMpl0BuKpU6eyZs0aQkJCGD9+PH/99Rfr1q1jypQpFVpeuc6mAwcO5MEHH2Ty5Mk0btyY/fv38+STTzJw4MByfWlycjKPPfaYL6upCBnNtPIUbstas02V5v0xlpYMGIChmXd9NR1vo9aTrYDGmo02U67j9t26twx1gxLXUdfAAygTl2FhMqeVdtbwPm/W9ft7l7fWw2oteQUsOng8Gqs3wDmdqze2ypCSpUjJdRNs1Y/todqxfx0FbekPpLhNW4ZH0xQWC6X2CwgL1jiQoEy7fieqdefBGkC2ZdVp0aJFkdE9u3fvzueff17h5ZUrGXjwwQe5++67GTZsmK9dUv/+/XnooYfKvAzDMJgwYQI33ngjrVu3Ll+0x4mKqtmdUsyo9mzT1JO/XHAdVtM7NpWubO3lLVa3KdfRqmfihhP6exynsHefqcswmVPVDKAp065fZHgeYGAY3gv/Eym8idwZjQKIjjZfR1t7oAeHzYLbo7DZijZ3slktGMpA06FeeIBpyzAmKherNZ+goJIvE3SLh6hIC9HRIdUcWdWqPedBUZvNnTu31NcqMglwuZKBiIgIFi5cyP79+0lOTqZRo0bExJRQh3gSCxYswG63M2bM6TWITU6WHv+VRdO8B8Dask1tAQauXEvJtQMFVXiREYqkpEw/RFcJ3B7QTzbSjLcQj3xfz5TruGKOwfl3uMFp8zYJOvH2kqGDrgCPKdcPIDTQ21G41H0UCLBh2vW7ebRi6ZdW3G6Fbi+6goahMDwQGAgXD84jKcmcTWk6N3CwcmcmkQ4dXfM2fbJZLbjcHlJz3Dh0nW5NzVuGDaMM78hdyR5CAouWocejSElTDO1p4uPoCWrbebAmKNymovKdOAFwWloau3btYujQoRVaXoUa3TZp0oQmTZpU6AuXLFlCYmIi3bp1AyAvzzviwjfffFOuzsRKIT/YSlZbtum9N8ALCwqusgovto5fL03xxjOaadc1cVUYsQNyCv4q5UoSt2nXr2PHcLBkey/4PTpYDO9ZRSlvImBoEOAkcVWoaddxzhQY+0jhPlrw7/HtTTTFlHHm3Ud7dNFo0UyxY6eG06mwWr19BzwehcftrRUYNtiD1Wredby6ZzC/HchjX4aTuGAbAVYdQxmk5LhJzXczqHkoZzezmnb9Wp6h0amVzvrNBg1jIDwENE0jJ0+x77CiaQONrm10065faWrLeVCUUVW08a+G/aekCYCXLFlSLEkoq3J1IK4MK1as4Pfff2fDhg1s2LCBiy++mIsvvlhGFRKV5uFb7AzuZ+D7RRb5YRrcNcagdxdzj+HetnnucX+d0GtJ95D4Q5gfoqo8iT8FQ4DTO4KQxwIuHdwFzTECnIwYYO5hN4cNtDH64sI+AwVZQGERagaX9NG4ZZS599Fl73po1kyhoeF2gTPfO7SoxaLo39fD/GnmvuLq3srGI8MiaRBi40i2i3/T89mVmo/TUJx3Vij/GRVWrPO0mVgtGmOGWenTWScjW7Ftt2L7boPDRxVtmuvcdKmVeuHmXT8hapsRI0bw7bffVuiz5h2OQ4iTWDTdzu59Lq6410PCUR1QtGgKyxdoBAebr43yiX54IwqA2H4ZYC24SFaKuIg8/vzU/BOOASSuCqb7lensSbAV9B9QgEHiT7WjjfKM/7PzyG0uLhsPew55k4JG0YovXtFrxYRj4eEa61YYfP61hwVvWcjKhthYxSP3GHTuUDsuIod2cdCrdQxfbcxnX5KHqEgHXc+ADk3NX34AocEaN19qZd8Rxe6DCsOAuGiN+DM1rLVowjFR19WOfXn9+vUEBQVV6LPlmoF42bJlDB48GLvd/xdTMktg5ZGZF81Nys/8pAzNT8rQ3KT8Kp8pZiD+Yhf57sotcIdV48mLz6rUZZ5o0KBBRSYYc7lcJCUlceedd3L33XeXe3nlqhn4z3/+I/MCCCGEEEII8zNpn4ETL/h1Xeess86iffv2FVpeuZKBDh06sHz5ckaMGFGhLxNCCCGEEEJU3GWXXQZ45+06ePAgMTExNGjQoMLLK1cykJaWxsSJE5k8eTLR0dFFqigq2mlBiKq0Z4+H5xdAcBA8djdERFhO/SGTiel7FIxkurY2+PK18g31awbjHs9g6S9wZn3Fz4vC/R1OpcvM9PDiaxAclMUdoz2EhNS+fTQtQ5GZBVEREBRUO9rnHs/jgewcCAyS9iVCiKqXlZXFxIkT+e6771BKoWkaPXv2ZObMmYSFlX8AkXIlA9ddd125v0AIf9izx0OPi62ofDveQbMUb/9PYQv2sPUHT61ICmLPT4d6TmjhBE3xm8tC7IgUSPWQuMr8SUGbi9NJzrCDbgUNdhyC2H45YCgSfw72d3inLTPTQ/vzdXKzLQX91xTPz7HgCFCsW2rQsKH599FNWxULP9L4dZOGy6URHKzo3xNuvlrRMM78SUFePqzeAGs2QHIqBAfn07IZ9DkHmp/p7+iEEKdk0mZC06dPJzs7my+++ILGjRuzd+9enn76aaZNm8Z///vfci+vXB2Ij5eSkkK9evUq8tFKIZ18Kk9t6zi1Z4+H7kPspc9gazNI/Muo3qAqWeyQNGicDXYDnJp3Xa0KdAMyHHBQN3VC0ObidJIzbWCh4GCtCmaOLpg7wq28w4+aVGamh7N668f2Ud+syoVzYyh2rTYIDTVvQrB6g+L/ntNITNIIDQGHHXJyvY/4sxSznlA0aWjehCDfCW8vhrW/QYADIsLBYrFx4JCLehEw9iro0MbfUYqyqm3nwZrAFB2Il1ZRB+LhVduBeMCAAXz88cdERUX5njt69CjDhw9nzZo15V5eueYZcLvdzJgxg65duzJo0CD279/PFVdcwdGjR8v9xUJUlf5XWI5dZGknPABcFrpf5PFPcJWg44ij0CAXbAZkW8Bt9Y7Fn2+FPCuE5UM9815EAiSnFyQChiooSx2U7v1bAywak2dk+DnKihsyWiuarGrasZmWNe9/eo6o9mlgKo3brXhxgUZSskazMyA2GsLDoEF9aNIQduzSmP+2eRMBgLW/exOBJg2haROIDIe4WI02LSErGxZ/4U18hBA12YkXCZX1qFq5ubmEhhZNtMLCwjCMit3oLNfZZs6cOaxdu5ZZs2Zhs9mIiooiLi6OJ598skJfLkRVyM0suBAu9feo2LPTvOOAH3HawOGGXAtoJ/yEle6dpTc8j15XmTNJP//G9IIaAUXxQ1RBQqDDgk/MO03Krt0n1AiUIDGxmoKpAj+tg937NGJjQD+hCO12CA2GX36FhCRz3oI1DG/zIIfd2x/peJoGTRrBwSPw1w7/xCeEqN06derErFmzKGzco5Ri1qxZdOjQoULLK9fZ9PPPP+e9996jfv36aJpGUFAQzzzzDIMHD67QlwtRJUprHgTeBEGd4j01nc0oSHRKyeXdGtgMdv5rzovlP/+xgB0o9QaHtw8ImonLsHDi4dLWQYGZJ8LZdwhcruIXyoVCgiE1XWPfAUV9E86Rl5MHSckQVkoLCLvNW4TJqdUalhCivEzaZ+Chhx5izJgxLF26lEaNGnHw4EE0TePNN9+s0PLKdbWQk5Pj6ydQmI0EBASgn3jrRwi/KrzSqqUKZ+NVRvGaAShIeDRQ5mwKZbMbuJR+LHErxgC0ajngVpnCdSttN9UoqDUw534cGODNc9xusJZwlnG5wWKBoMDqj60y2Kze9XK5Sn5dKW/tgc28FZBCiBosPj6er776im+++YaUlBQaNWpE//79CQkJqdDyynUVf/bZZzN37lwA37CiCxcurHC1hBBVwlZwS7mki8WC5yyBJu5AnKl5+wjYSlgHZXifz7SR+LMJb7kCX80GPIVt6EtYx4ILaYu1lCsxE3A4OO6C/wQFz1n8P9F7hfXrARHhiuSU4q8pA1LTodkZijYtqz+2yuCwQ5f2kJxWchGmpkNYCLSq2j6EQog6LCIigpEjR3Lbbbdx0UUXVTgRgHLWDDz22GPccMMNfPrpp2RnZzNs2DCys7MrXC0hRFUYOcLNRx8V9BsovLla5IStmP+sG2/DdPNJ/CGC2CtcEJ0HeMClFdQQGBDoAZcOqQ5/h1lh7duHgZHtrd3QNe8tVgrWr7BpjQsO/1T+sZRrihenGoybZCkYPej4kYSUb0Shh283MOs+GherMWwQvPcZJCZBdD1v3wGXCxKOekffueZSha6bs+YDoNc5sHEr/LMbzmwEAQHeGvPkVDiSCEMGQMP6/o5SCHFSJmsmNGjQoCJzfJWkIvN+lSsZaNKkCcuWLeOHH37g4MGDxMXFMWDAgNPKRoSobPOesfDntnx2bLVTvDmJYuiwfC690Jzt6QvFueFIUgBE5EOQB19zknwLHA4icaW5J+dK/DmY2L453mth/bg2NQpwwZWD3P4N8DRdebGFL3/w8MUKi+/i37uK3v/v18vg/tvNmQgUuv82hdMFX36vsWf/sTwuKlIxdpRixAXmTQTAO4rQjaNg8eew54C3X7vNqggMgAsGwmVDzd2tRQhR89x9992A98bDE088weOPP14pyy33PAOGYfDnn3+SkJBAo0aNaN++faUEUl4yFnDlqa3jK2/608OImyzk5nhbw9WL8rD2c6NWTDhWKLZ/GoQr0BS4dOz5Lg58a975BU7UZ3Q6O/bZjzWdVx4Sf6o9Nx8OHfIw7AadIwUDP0VFwspFtWPCsUK79iq+WaWRlQ0xUYoLz4OYerXnKjnfCdt3QlIKxEQHUj8ql/q15ydYZ9TW86A/mWKegc92V808A5c2q9RllqR79+6sX7++UpZVrtuje/fu5fbbb+fAgQNERESQmppK27Zteemll4iNja2UgISoLGd3tLB3Axxrd65h1mYXpUn8MaJWn8R+XmTuGo5TadjQwqaVJ16I1K599KwzNc4aU/hX7UkCCjns0KltYRlaSUo66YixQghR45SrA/F///tfzj33XDZs2MDPP//MunXraNGiBU888URVxSeEEEIIIUTlU1X0MJly1Qxs3ryZefPmYbd7h7kICQlhypQpDBgwoCpiE0IIIYQQQlShciUDjRo1Yt++fbRo0cL33JEjR4iIiKjsuEQ1cTohLx9CQkyYypZBnwsy2LHbCkpx3SUeXnzRvCPQlCYmPg1sOZCZSeLe2jd8SWzzVAgOgNw8EndG+jucSpea6uKxaRAQlMGU8W4iImrf4PT/7DbYd0jRtqVGg9jaNy+Nx6PIzlcEBpt4yGIhRI332Wef+f7f5XIV+bvQpZdeWu7llqkDceGXbdmyhW+//Zabb76ZRo0akZiYyBtvvMH555/PhAkTyv3lp6M2to+uTukZ8PMajTUbNLKzNSIibHRo46T3uUat6PzW54IMdhwO8Y65by3YUVw6uOG687NrRVIQe7YTrHrRZtgKyMwi8e8IP0VVeWJbp0OcDRwe0JV33Zw6ZFhJ3BDg7/BOW2qqizZDNQzNONZg0wDN0FjzPjRvbv6k4JV3Pcx+UyMp1duOXtfhjIaK6ZM1+nQzf1KQ51Ss/svFmr/cJGcYBAfZadnAoE97G80b1K6+H7Vdbe575S+m6ED8aRV1IL6sajoQDxo06KSva5pWoaFFy5QMVNWXnw75wVZcahq8+j+dv7ZrhIVBSDCgbBw84qJpE8WtNxg0bujvKCuuzwUZ7DgSAkEFw096NO8Fs14wPGWOhcQ/zH0hEtvFBZaTdMbMMHdCENs6HZroYDe8/b8NzXvBrCkwdEixkbjevAlBaqqLVkMU2KDoVMSFiavG319rREaaNyF47mWDma+Bp2AmZU1TqILZs+02jbenK87rbd4L5nyX4u2V+az9y0WAAyKCNSxWOwcS8qkXpjF2SAAdmpl7COO6RJKBymeKZOCTKkoGLq/60YQqU5mOVN99911VxyGq0crvdbZu02jZAuw272VIUJBGWCj8vVPjs2U6424xTDtG9o7DwRDs9iYBxnEX/R7A6p2YK7adInGrOS9EYpsnQFTUcc+cWDUAhJp8+M04C9g84NbwrZ+Bd/WsBkS4iG2Ra9pmQ71GUpAI4J1czacgcbVB50tgz8/VH1tlyMkxmPtWwU/OUjBVREE5ehQ4XYoH/6uxaYUfgzxNa7e5WfuXiyaxOsEBWsFx1EKoQ2fXYcXiVfmc1dBCkMOkB1Ih6oSq+H2a7zdf7tsWGzZs4ODBg5xYoVCRNkqi+qVnwK8bNaKjvYnA8SwWaNQQtu/Q2HcAzmzinxhPm473t2iUcPffrXnvNpszD/CKrHfcHycedAom6NIg9swEU/YhiD0rFVpaCy6ST1g/TTuW1MUE+iO8SpGcocCmTkgECihAU+Q4zXdCKfT0PMh3ga4p9BPuKlg0DQ9wJAk2/GHQrZP5aukMQ7F6qwuHHYIDiq6fpmk0iYXdhw3+2uuhW7zUDggharZyHaUef/xxPvroI2JjY4tMh6xpmiQDJpGSCplZ0LBBya+HhsChw5CconFmE5PWlVqVt1lJiQpmezVzMuD77Z3iYjHMpP0iwgJAdx2bHqKYgoTHatL9E8q2/+nmXb+/dwEorKU0ZbNoCg8av/wO3TpVa2iVIicfkjIMwoJKXj+7VUMByRnSoViIGq0qhgI14aG7XMnA8uXL+eCDD/w267A4fXY7/H97dx4fVXU+fvxz7iyZLJAQkssSdtncRdkUBLGireKGWrpZ99rWpV/94q6t359Lta1abWu1pe62dW/d970I4l5QRBAMEGCykEDWmbn3/P64M9kTAsxkcpLn/XoNSWbC5Dlz7tw5zz2b3++tIhTKaPt4NOZN8guYO1S58cpqh+JtSfM1H2vejlis2yJJKofO6yfRK2lyHZocexdkxzttXN22ZwC8PE8B+blmvhABP/h9imgHY4211riu93tCCNHT7VT/bL9+/Rg/fnyqYhHdYMggGD1Cs6W0/ce3hGHwIM0eo838kAYgllhhp50yqPiqNB32HBgg4nTyYFNDOfxFz5641ZEj96v3Vg3y6fa3cvXhDa/Z3u2hJY1qb3hQawYfoz89FSyliLVTBld7E4lDAfjesWaWMSOgOHCsj/Ltus2QWYCt1Zr+WYoJw0zughRC9BU7lQz87Gc/46qrrmLlypWUlJS0uAkzWBZ8a7YmIwjfFHs9AeCtk12yGerr4VuzNFnmDseGunhjMug26yHQ3rCLgOs9tr06rSHujvBnGc3ynOZ9nM0aJY65wxMeemgAVPu9xnDzhEDH61ABdRbhT809SK89D698Srfs3FHEE1bFmSemKbgkmD7JYuxIr+4iMS8BAG9loZjjjXQ7+lsQCJg3XyDhkL0DDBlg8dVGTUPUK5/WmvJtLpsrNNP39DN0oLnlE0L0HTvVidnQ0MDzzz/Ps88+23if1hqlFF988UXSgxOpsf8+mh+d4vLMi4qv1yq0howg5OTAyce7zJ5hcK8AEF6Vhb2XAzqREMQfcIF6H1RHCa81dDx9QkU55A9s1pBsVmeuJvxxMB1RJU14aQj7EA39Yt5k4fikaFwFtRYUR9Md4m752WkBnn0jyrKVNC2ZCoACVzFxuOKmK0weqwfP3aM48seadRsh5tKY1PmU4tCp8OfrzW4oDy/0ccZRIR57u4F1W1xc7RIIRMn0w1GTA5w4I6PF3DohRA8kcwaALu4zkHDIIYdwwQUXMHPmTCyr5Ym8qKgo6cF1RtYC3n3VNfD5l4rt1TBkUBZDB9eQl5vuqJJn2P7biLjZ3nr8GnDgR0dW94oNxxLs/RogGB+K4Gqo3kp4lZ3eoJLIHrsVBmeCz/USgWoIf2xuj0BrX38d5YjTobre+zkzAG882Ds2HEt45lWHux9WVNeAXQBXnA+T9jI7EWiuIapZWexQts2lcGAWg/pFGDSg95Svr5B9BpLPiH0GHl+Xmn0GTh6V1OdMtZ1KBqZNm8bSpUtTGU+XyRs2eeQkaDapP/NJHZpP6tBsUn/JZ0Yy8E2KkoGRSX3OVNupyxfz58/ngQceSFUsQgghhBBCdA+dopthdmrOwGeffca9997L7bffTm5ubovxkK+99lrSgxNCCCGEEEKkzk4lAyeffDInn3xyqmIRabD8C4dln8EhUxqYuEe6o0k+e3w51OcALlP2reW55wamO6SkKxy7FQJ1UFtBeF33zt3pDvZ+leBmQLSB8Jd56Q4n6aqrHf54P2RnVnPmAofs7N63HGV9AzQ0QFam4XuYdMBxoKYGMjMNvCQohEir9957j1tvvZU1a9aQmZnJt7/9bS655BJCoVC3xbBTcwZ6EhnXt3vuecTh2t/4qK+LjxTTEMjQnPWjGP9vofmNEXt8OcQGeeluogNLAzHNlD3DvSIpsPeLgeMHxwIUKBcCGuq2Ev5qQLrD2232xCrw5TbbcRlvRRrlEF5u/jFaXe2w37e9ibWNZdSarBAseUozeLD5Zdy0Gd5ZbPHRJxYNDdCvP0yf4nLowS79evZQ4i6pb4DFSyzee19RXq7IzgkwbkyEmQe7jDF5r5Y+SOYMJJ8RcwYeS9GcgVO6NmegoqKCww47jGuvvZYTTjiBsrIyzjrrLObOncuFF16Y1Lg6s1M9A6eeemqHS6XJXAJz/PF+h/93c/zyXLNNbKMRxV33BCgtj/HnX5u7GoY9vhz0IGi8Ahl/oysFAVi2chBg6O68cfZ+LkSDTWvV461NT0RBYAD2OLMTAi8RyPNmNWnddJxaCrQfe2+H8Apzj9Hqaocxs5RXZ+gWY0xr6xX7HQ1fv+2Qk2NuQvDNesVf7/OxfoNiYL4mMxO2VsIjT/j44kvF2ac55Bq8sFdDAzzwdx9LllmEMiAv16vHN95RfLrcx+k/dNh3b2lVCtGjpXlp0fz8fBYvXkxOTg5aayorK2loaCA/Pz/JQXVupz5Np02bxtSpUxtv48aNY82aNUyePDlV8YkUuOHWZjlg/KJy45Gg4Yln/NTXd7bLbQ8Xtb3NqRrfkYoWOzv5wR7V/WEli73HRoj64g1k7dVd4gbgWpBpbiIAgJXrlceNZwEqXoduYpMuH0OnVKYzwt1yzOnQeEwq1XSINvYQKA492dw16l0Xnvy3RUkJ7DlBM3gQ5OXB8CIYt4fms+UWr79pbjIHsGSZxZJliuFFmlEjNQPyYPAgxZ7joboaHnvKR21duqMUQqRLdXV1i1skEmn393JycgCYPXs2xx57LIWFhcyfP787Q925noHzzz+/zX3z58/nN7/5TdICEql1zyMOTjTgNSRbfxY325zrZ1dY3HtbNweXLP4uNKL8foztHcge7PUAQNs6tPA2V4sq7NEbCK81bw6BPaESAgPiQ4Ja1aVqSghideZeVv5iTSfHaLyzYOOWbgsn6dauU6xabTFsmKbVljQEg5A/QLP0A4u533LJyU5PjLvDdWHxUkVGUJGd3fIyoFIwfDisXQefr1RMniS9A0L0XKm46OI956xZs6ipqWm89/zzz+eCCy7o8H+9/PLLVFVVsXDhQi688EIWLVqUgtjat1PJQHv23ntvli9fnoxYRDd47Z34J3Nnx7+Gz1d1SzipoaDF+Kc2D7bTyDSJjnfnWJ00MrQFmYbOiwjEW4cdVmH8Srpr9pVlIDWfQz1A+VZvGE1HDf3c/hAuVVRWdvw7PVltHZSVK/r3b/89GAx4uWx5efx8I4Toc95+++0WPweDwU5/PxQKEQqFuOSSSzjllFOoqqoiN7d7doLdqWSgpKSkxc/RaJTnnnuOIUOGJDUokToD8rrwwaQgs/ds8tqO3tAC014PQIftYQ1uFOi+1QiSJwZ0ctJs7DHoKFsQ6RYMgFKaWCzeCddKJAp+vybQ+WdjjxXwe+WKRtt/XGtwXdUrV04SoldJ4ZyBxPCfznz00UdceeWVPP30043JQiQSIRAIkNmNDbGdSgYOP/zwFhOItdbk5uZy/fXXJz0wkRrXL9Q8+hQdH/zx9tXV/+MChk5edIgPFWqvsRi/z+ApEego3lu3nUp08Sal+hzCn/fsVRw68ovvN3D737O8ycJue0OFiFdjA2YmO5AVgtp6Oj5E8Rqcpho7RlNYCFvCUDS05WNaQzgM+++jsQvSE9/uysiAA/d3ef4VH4Ns3eYQ3VoJ/ftpJoxz0xKfEMIMEyZMoL6+nltuuYX//d//pbS0lJtvvpmTTz55hz0JybRTHzetNxbz+XwMHDiQgFz+MEZeno+xezisXu1rOb82kR0r6J/ncsRMQxMBgGgN+LJbXT1uVlgNRLcAZg6jCS8PYu/teEuKJtoaibkC4A0fCsRIwijAtLjqqjxu/7sD2hevunhCoBOTh70kIfy5mYkAwO+v1fzkcmg8HuPfNuV3mit/bu7wkpwcOHyWy2NPWWzeAnYhWJZ3JX1DiSIrSzNntmv0aL1Dprl8/KnFV2tg5HAIZXgXyMorYHNYceThDkOl01wI0Yns7GwWLVrEjTfeyIwZM+jXrx/HHnss5513XrfGIfsM9EH19Q7T5vnYVGK1uTKZlePwycsueXkGJwPEVwsK+uPLbjbbaEArqK8jXGx2AmvvsRFCReD4aCyX0t4tECP8mdn1B2Dv02qWe6Kx7GrwVxL+LC89gSXJz65yeOL5VitdAaCZO1Pz8B/MrkPHgZdetXjtLYuKrSo+1UMzZDAcP89hyoHmn8C//Erx2JMW64oVrlYEAn4yQ1GmTXY58TiXUEa6IxRdJfsMJJ8R+ww8UkxDNMn7DAQU1y8YkdTnTLUuJQOthwe1eRKlePXVV5Ma2I7IG3b3Pf2yw7W3+Ni2XZGVpTj3x1HO+7HZDZDm7BHl4LO94SYArsuUvUp7xYZjCfY+EVCBeC+IA3XlhL+y0x1W0tgTKsGfS9MynFHCy81O5JrbvNnh2LMVGzYBlmJQvubF+3vHhmMJFVvhiy8t6uuhf3/NXhM12Vnpjip5Ghpg5SpFWbmisCCTQXYNg3rPW7DPkGQg+SQZMEeXkoGnnnqq3fs/+eQTHnnkEfbaay+efPLJpAfXGXnDJo+cBM0m9Wc+qUPzSR2aTeov+cxIBtanKBkYntTnTLUuDSo+8cQT29x3zz338MQTT/D973+fK664IumBCSGEEEIIIVJrp2cYbtu2jcsuu4wPPviA3/72t3znO99JRVxCCCGEEEKkTgqXFjXJTu3a88knn3D88cezZcsWnnzySUkEeoFX33S59P9cHn6sLt2hpIQ9djv2iAbsEfXMmrU93eGkROGIKlRuOYVDq9IdSkrYI6qwR0exR/TO8q1YEWPMgTHyRlWxYoWhu2LvwJYKl89XO1RtN/BTsgsiEVi/AcKlvXMpUdfVbCnVbNykicV6Zx02RKCyShOJpDuS1HBd2LYdqmuQYVCijS6vJrRo0SJuv/12FixYwKWXXtqt65+2R8b17Z7L/s/l3of9eBMzm9Y0nDUjyuP3mr+zqz12O1h5TUtRAt5GXJqJQ6p4++2ePY6xK+wJGnxWUxW6eNVYW0n4m+7ZtTCV7BE1EMgFt9mKO8oF5RBeY/6bf8WKGHNOyGhZPjRYmj/e2MB3TzFzadjmXl0S449PNvB5uAFHazIsi6mjQlx5WgbjR5l/nqmsgnsfsnjlTYutlYpgULHXeIcFJ7kcNtP8YxTg6Zc1T7wAX631GpGDCuDow+H0UyAYNHht2LiyCnh3qeL9j0ATxKciTD0QZk7T5A9Id3S7LxqFpR8oFr+v2LRF4bNgwjjNoQdrJo5P7TFqxJyBf6ZozsD3zJoz0KVk4Kc//SlvvfUWP/rRjzjyyCPb/Z0pU6Z0+Y++99573HrrraxZs4bMzEy+/e1vc8kllxAKdX3dcEkGdt15l7o89q8AbZY0jK/jvvdeMd74l7kneXvsdvDlNbunWUMLb7368CqTdx0De0+8VZJarE0fp4EasxMCe0QN+PPAtYD4kqkA2oovoRoj/LW5V2FXrIgx57hQ05KwOpHsNO2L8cbT9ey9t7kJwVOvO1z5wDa26ygZyodfKSKuSxSXwRkZPHBpDnuNNXfVpG3b4cLLfHz0qUUgAP2yNVortlZ6+ywsPD/G/OPM/pC6+0HN3x7xrpr3z/H2ithe7a3uO+dguPlKsxOCLWH4y4OK1WsV+XmQPyBAeUWUrVUwYazmnFM1hQYvPheLwT+fsHjzXYXfDwPyIOZAeQXkZMMPTnGZPjl1x6gRycA/UpQMfL8XJgMTJ07s/EmU4osvvujSH6yoqOCwww7j2muv5YQTTqCsrIyzzjqLuXPncuGFF3YtaiQZ2B32eB9t1zZvTrPmwyj9+pl55c4eZ3mfWp2JmXt12R5WCf0HdF6FLoS/MLN8APYYP7g+wG1aGha8VgjK21jNLSO8zsyExx6vwPF3ugMx/hjhVWbWYSSimXH+djY3NDAwEMBqtjR11NFsdSIcUpTDozeau8boH+62+OsDPgYVaLKyvWoMBHw0NDisL1EMHKB55N4YA/PTHemuWblac9Yl3pXlIa2WSq3a7t2uPB9OmWdmMqA1LHpI8e77igljIeCDrKwgtbURojH4cjUcfqjmtAVmvgcBPvhYcfd9FoMKoX+zNrnWULzBSwguv8hhQF5q/r4kA+bo0mWnlStXJu0P5ufns3jxYnJyctBaU1lZSUNDA/n5hp4xDXPZ/7nAjq7GKY78rsV7L3RHRClgNd95uD3x4TUY2jvQL6/zRABAgV1URXijeY1le0QV+Avxhsy0Kqjl7T6MVuDLx9g6dDp5D6rmv2PmHILHXnEIN0TIsfwtEgGAgE+R4Vh8WlLP2g0hRg8z76JDLAYvvW4R8ENWdsvHLAsG25qSTYoXXlH8yNDG5HOvwrZqGFXU9rHcfrC1Cp5/HU6Z1/2xJcOWUli+UjF0EPhbvR39fhhkwyfLFUcfYW7vwNIPvB3O+7dqjysFw4bCqtXw2QrF7BlmHqPJkYpk1rwEOS190Dk5OQDMnj2bLVu2MHnyZObPn79Tz2HyNvbp9Pp/LHZ8oGo2blIoZfIJorMyekMzjD2GVAfDg5qzgMxsM8sY7B9v43eQ0FmqcZy9keVL2EG+ijL3PLd6o4OLJtPffkM/ZPmocR2+WOsyZrh5yUBFJVRsVWRn63arMCM+pW7DRnPPo+s3e6cRXwd5a1YINmwy9xgt3+pNph1it5paFh+5l9cf1hXD1kqwC9IX567SGjaUKPr3b7+O/PEpgxUVqTtGTT02+qK0Dkh9+eWXqaqqYuHChVx44YUsWrSoy/934MCe3fXUUw0cUMM363b0W4qMoKKgIKcbIkqF2h087p34enr3ZYd09Y6XLtOAjlJQYOAMOKcCyOi4oezq+GPa3DqkrksXj0wtX2G+QqntoBS+1r07gOtofEoxfGgWBQUZaYhw9wSDLhkZUWIxCARaJjOBgA/XdVFKkZ+fQUGBmfM+Bg6oAyvWpnwJrnbpl2NRUJDd7uM93SDbJSc7ij+gyAw1HaNZmV4mV1Ojyc7WDLIDFBSYl7AC5A+IES7TZGW1f7IJBlwKCnwUFJg7d2e3ydKiQJqTgVAoRCgU4pJLLuGUU06hqqqK3NyuDWsoL5c5A7vi3t+77D87EP+p48uSl18Yo6zM0KU4ta/ZRMyOfgdzyxdzIMPf8QknvrJQ6deZRpZx3pxann0zy7v6r9sZKpT40W2grMzQYUKWL14+2p8zEF9gyMT6A/j2NJfbn7WobIiQFwy0eMzVmmonyrDMDPYe3UBZmZlrOU7a18crb1oMyHUapygFAj6iUYetlZCRAZMn1VNWZuYH1aR9NE++AJWVDtmt2vuxGNTWw/RJjrHHaG4ODMxXfL1OMXoEoLxEoLYuAhrWfgMjhmtysiKUlaU72l2z956KFU9aDBzQtodn+3ZvSNuQQQ0pK59ScuHWFN2e7n700Ud8+9vfJtJsMd9IJEIgECAzM7PLz6O13HblNmSIRVaOS6fjEyzNWT+y0h7rrt6or20qS3vlA6itTHucu3oLf+XzlhHt8M0BOG7a49zV2z335IJy4g3i+BwBiM8V0N6xq1zCa/1pj3VXbwcc0OBVVGK4l25Wd4lej0H1aY9zV29jhlvMHptFDE1VNIarvQLGHE1lNEYAix8elollqbTHuqu37813yc/TFG9Q1DfED1HX9YYQVSqmT3Y5YF+d9jh39XbEDNh7HGwug8pt3jr1WkNNHRSXwJBCOOmY9Me5q7dAAL51qFeu9SXgxKfnxGJQvNF7Hx5+qMbnS3+su3qbcqBmxHDNqtVQW+vd57re0KfiDTBpf82YUamNQZih25OBCRMmUF9fzy233EIkEmHjxo3cfPPNnHzyyWnfu6Cv+O9bDoGgA42tEO19QYNy+eR1MyctJoSLMyDavLWcKGdcXT3hDYZfrdi2lRZXlZuvnupqwl+aPVgzvMYFK3HVP34FPXG5XLkQK09fcEnw8mN+yIgnBNAqN9fgi/D5f8wcXpJw+8IMDh/tDTUsj0YpjUSodCKELB+nz8jh/O8FdvAMPdvUyZorLnYYMkizeYvi628Ua9YqIhHFt2a5/N+Vzg4XNevJQiHFb66GKQdATS2sXe/dyipgzAi4/hLYY6TZ55lDpmgWnKjJDGlWfQ3LV7p89TVkZ2m+P18zdVK6I9w9hQPhzB+5jB+n2bgJVq7ybturYdYMzQ9Odo0+RkXydHnTsWRavXo1N954I//973/p168fxx57LOedd95OJQOytOjuu+1Ol1vu8hGNKXw+zfyjHf54c+85M9jDtkNmbtMsJlczcWjv2HAswR7vgC/eaNRA7VbCxXnpDCmp7BFVEMinadOxKOHVZjdAmnv0sRjnXxWIL6MKWA5/vCHaKzYcS/joC4dHX4mxrRYG58Np8wKMHNp7zjPbtsNLrymK1ysGDszgoP3r2HfvdEeVPK6rWfIRfPCpN0Jx/Bg4YqaXLPQWVdvgi6/A78/CcWrZazz0M3XKXDuiUfhytSIc9kYo7jFaM2xo6if4GrG06MMbUrO06A+HJfU5Uy0tyUAySDKQPIk3rLymZpL6M5/UofmkDs0m9Zd8kgyYo/dcfhJCCCGEEKLLZJ8BkGRACCGEEEL0Ra2mFCbtOQ3TewZuil3y0COak3/scuOtdekOJSXsYdXYIxuwR9Zhj6hOdzgpUTi8CtWvnMIhlekOJSXsYXXYY6LYw3vnMVpcHGH68REmztpKcbGZy2zuSOU2WL/RW9GkN6qr03y+SrO22OzFF4QQfZPMGeijTjnN5a33AmBpLyV0vduoEQ7vv2peF1dr9rBqCOaBjq9AAyRWSyJWRbjY/Nlh9jggFgCdyOk1+FyIlhMuzk1naElhj6jFW+A8UYfxSziOS3iV+cdocXGEyfMt6NcAoXgjst4P1UGe/L1m5gzzV1f7ZDk8+KjFso8hGlVkZ2lmz9Cc9UPN0MHpjm73bSnVXP8HzVtLoKZW4fPB6BGa00+G7x8v19pMInMGks+IOQMPbUzNnIEfFSX1OVNNzlZ90NHfdXlriR/82ksGdPyrH9Zt8DFxqtkNLXtYNQQGNGskJyjQPvAbuCtvK/ZYC6JBr4yNK8QqcHzgK/BW4TGYlwjktEx0wPvZ8mFPSFtoSVFcHGHyd10YVA1ZUW8DMld539u1zL/ENb6XYPEyuPgai5deV0RjiowgbNuueOQpi/Mvt1i/Md0R7p7SCs2C8zT/ekmxrRr8fu8Y/fxLxdW/g9//rbPNQIQQoueQZKAP+uATP/iI7woSv+qqE7u9QkWVorzc4EsjgVyalqJUTReWGzsIFPZocxMee3glOM2WE7Wa3cBrMAcGpiW2pMnK9o5J1eo4TOwsbVlGDxuafKKC/AZwLGjwe18bv1cwoIHJJ6Q7yl0Xi8Gtf7IoK1eMHgl2AeTmwpDBMLwIVq1W/Plesz9+bvwjrPlG0S9Hk5+nyM5S5PZXDMzXxKLwl4dhw2aDz6NC9AU6RTfDmH02FjvtlNPcpkSgzYz3eELg00yda/KhEY+9s/a+MnjufMaApiSunc4PbwdiC7uosttDSwZ7eF08ievgjJpICLK7vmN5j5PheL1xsXYO0pjlPZZp7vjzd5bA2mKFXUCbTY2CQeiXDf9ZCltK0xPf7opENK8v1vgsTSijZR1alqJ/f6iugfseM7BVIIToc0xu8YldsOxTX8eNrEaK7dUGHxqdJgHxr0Z/Rnch2UFBpqHzIjIz2OHSbJrU75iTSkGn1XyWVlwFIXMP0uINimg0PuWjHTk53hj74g3dG1eybNzsNfY72icz4FdoYN36bg1LCLHTVIpuZjG4xSd2RVaoK7+lsSxzGyJmN/R3QkdDkhPnoaihY85jThd+yfBKdjrp+QDvsa68DD1UZsjL1WIddG5Eo+DzQZahnTs5OeCzFI7b/oe+63pDMDO7dL4VQoj0kmSgj/nXA67XEOkoc1WAqzj7VINbIp1d/U/ct8PekZ4s2vFDiQRBuYS/yeqWaJJtaP9Ys/ksHVBApJPXoaerD3hf2zsOE/fVBrovniSbdYgmL1dTXt72Me3C1ioYPVKz5/jujy0ZCvMVe47TNDTEG/6t1NZBIADHHG7eFUIh+hSZMwBIMtDnjB8fTwSUjjc6Ekdt4mcFLlx/lcEfYk51U4OqWfGa3qAaIpXdHlayhFdb3hKpifkBiQRA01SnfnMbyp98kum1GBPla00DWhNeY+68jxPmaKgLxOcOuDQW1NIQcqDezwHj0hribhlsw9FzNfURCJeBGz9GoxHYuAlCGfD9+W6b+QQmOed7iuxMTUUlROJLE7quZnu1prZOsdd4zdxD0xujEEJ0hcGnYrGrvlgc8yYpuqrZajvxFYViinefNbhXAAh/kwE6RtNylM0f1aBrCW8wdDx9QqzUSwigbaPZHyP8VTqCSp7wlwBOs+0FVLyM8Tuqzd696i+/CdI/4ofqAATiCUAoBgEXqgNkbA/y8sNm7zNw0U81J81zUcC6Yli7zksEcvtrzjvb5fjvpDvC3TPvCMWlP4Pcft6SqaXlmtIycFzFpH00f/uNwucz+KKKEKLPkE3H+rALL9P881/+xobk5AOiPP9o78kPvf0GckHFy6QdcLb1ig3HEuyxLhCIL8PpQqSCcHFeusNKGnt4HeQ0G+7kOIRX9Z5j9N3/RJh/oQJ/4tK54sk/0Cs2HEtYsw5efVNRXQuFBfCdb2kKDV/5trnSCs0Dj2vWFMOAvABHHBJlziG95xjtK2TTseQzYtOx+0tSs+nYaUOT+pypJsmAkJOg4aT+zCd1aD6pQ7NJ/SWfJAPmMHfQrRBCCCGEELssFUP5zBseKH2ZQgghhBBC9FGSDOxAaRms3wARQ5ds3xF7aB2FQx1UIJzuUFLCHrwVe1gEe1g99pCt6Q4nJQqLtqGytlI4pCzdoaSEPXQ79sgYdtH2dIeSEhs2aGbN0+w3YxsbNvTO8Qn19VBV5e0v0Bs5DlRtg5qa3ll/QvRasrQoIMOEOvTaW4pHHvex4gsL14WB+ZqjjnA440cuOb1g/qld5IA/09tCUwE6k8KRgBMh3At2zbQHb4UMGzIGN93py8Ue6UCklPCmAekLLknsURYoPwQKvDsysrBHa4iWE97QP73BJYE9rBaCuZA50DtG/VnYYzQ4McLfGHi2bWXDBs2Bh/njK3v5AJg00wXL4emHY0yfbl5Xc2ubNineWWzx0UcWDQ2Kfv0106e6HDrDoV/PHkrcJfUNsHgZvPeBorwCsrMjjButmDlVM2ZUuqMTQoiukZ6BdvzzCYur/y/Ae+9bKKXJCGo2bVYsus/PRZf7qa5Od4S7xx7mQiDTq/1EeyOxD5kviD3C7MPCSwQGN60i1IIPgoO6PaZks0f5vUQAWl2NUBAowB62LX3BJYE9rBYy8rwZaNBsszgF/gD2KF+6QkuKDRs0Bx4agIYAuBaNFegoiPo57vsB43sJvilW/OluP8897yMSUWRmarZu9S6y/OVvfqqq0h3h7mmIwAOPKh56XHl7J8R3G37jP/CnexX//Ty98QkhRFeZ3epLgc1b4O6/+Who8HbIHDgQcvNg2DBNQYHm/Q8t/v644S+bP9Tx/BYFWH5mzarrzoiSK6PQ+xrfQ63FDQCFPdLcq652UVmz5VJpWb5E+zFg+NqNwdzOH/f5sIeaO2zooCN84Pi9TeIsWt4AHD8HzjE34XFdePIpHyUlij0nagYP1uTlwfBhmnF7aD77r8Xrb5pbPoAlH8CSD2H4UBg1HAbkwmBbsec4qK6Bx55R1Bp8GhWiT5BhQoAkA20895JFebliyBDd5sJyTg5YFrzwsq9xR03T2EXOjie6K1i5zuSxUPFGRqflDHRHIKkRjA99SiQCzTUmBMpLGgxkF21v6hHoTMjcoV66wer4AyPRURAzt7G8dp1i1WqLYUW6zS7DwSDk58PS9y2qa9IT3+5yXVi8TJERhOyslo8pBcOLvA3WPl+VnviEEGJnSDLQysZNXiPE38FsiuwsTWmpMvZDDF8XNzNS5jZEOqXafGMg1eJLh/yGNpb9OV2sHoPrUKumXoH2KO39jqHKKxQNDXQ4vyq3v2bbdkVlpZllrK2Dsgro38G8h2DAy+fKK7o1LCHETms9fCBZN7NIMtBKKEOjNegOrvzHYopAQBPK6N64kqer/VcG9nP1NTuqIm3q0i1OugPoHjts7Jv7HgwGvCvksVj7j0ci3gWXQMDMMgYCXvwdrY6ktdd7EDC4A1II0XdIMtDKjOmaUAi2tTMc2XWhploxbYom2MUL7D2OrulCIxKImjwBVbf40uYhBWDoOC8A3dDJYzRelAgXh7olnKRz6rrWDnbqUx5Kyvhc7+p/e4dh4j6fmQ1lgLF7uBQWaraE2yY8WkO4VDFuDxe7MA3BJUFGEA7cF8oraXe32q2VXq/BhD26OzIhxE6ROQOAJANtHDxVc9CBLuXliq1bm3oI6uuhuFgxsMDleyebe+UyvD6zS8lAuCSzW+JJCafZck+62dfm30fN3VchvC7+tk3MD2herkTbS3dwSdYA4Q39wN3B3BatCX9j7lC2754cAys+FMilKQFw8e6zNFOnmNqz4w0POvwwh9pa2LxZNc6xikZh3TeKrCyYM8fp0tSQnuqQKZohhfDVWmiI5+daa8orYHMpTD8Ihg7u/DmEEKInkGSgFcuCG34ZY/Ysl4YGxbpvFGvXKrZsUQwr0lxzeYwD9jUw7Wtm4siqjrNXF3DNXvMvvCEINNslrnU5nRrCJYaOp0+IlHhfmw9PbGxYuYTXGdzzAYTXOrQ7S1/hXYqtN3sw9h9vVuQPagCfQ2MluvGvfpfMvAjP/tPgljLwrTkuJx7voCzNl6sUK79UfL1WMTBfc+oPY+yzl9nn0eFFcMb3NaOGwTcb4Iuv4L9faOob4Kg5MP8YbXSyI4ToO5TW7XVy9nxlZdvb7Z5NFteFT/+rePc9RTQGI4drjvqW7hUbjiXYRXUQyG26ohyrJ7yh9+SH3n4DhTRbrxEiZb1iw7EEe5QG1WzMWmQz4Y2GLyvajF20HTLym+5wIoS/6T0trCVLNMf92O/tLwCgXJ5+yOkVG44lVGyFL76wqK+H/rmw155umxV4TNYQgZVfeROKCwuyGFRQyyBDhz/1ZUpBQUG/lLct+pLEa9qTXX3PZhqiya3wjIDi+jPN6haUZEDISdBwUn/mkzo0n9Sh2aT+ks+IZOBvKUoGzjIrGehgAU0hhBBCCCF6s1T0wprXs9t7xoQIIYQQQgghdor0DOzAylVQVQV779nxBjoms4dH8HLCSko3mLs6S0fswVUQyPKWhYrVE96cm+6Qkq5w2HawohCpJ7ypZ3fJ7gp7fB3E/ODGCK8zeJWrDlRVOVx/G2Rm1LLwPIf+/Xvf+3BLKZSXQ9EQyO19b0EhhKlSsRSogcPMJBnowC13WDz4Tx+lpRYayAhqpk1x+f3NMQYPSnd0u88eHgN/JviDjUtUFo7U4EYJF6c7ut1nD67yJg9nFjb12AX6YY/Q3iTiXpAU2GMUaD/4BwIKQtnYe7gQ2Up4vflJgT2yDjJyINYfXAvQ2GMdsBzCq9Id3e6rqnLYa0aAaG0gXj64668WvpDD0hejjBhhflLw6tvwx79afP6lwnEUGRmaqQdprrzIZfyYdEcnhBACZJhQuy66zMctfwiwabPlLfltQV2D4s13fBx1QoDNW9Id4e6xhzvgz/Jm9yTWqleApcAXxB5h9mFhD67ykoDWbSkF+BWEzF/qwx7jAx2g2cYC3hfXAn8+9vB2ds0ziD2yDvz9IeKPL7kZL1/MD9Eg9vi0hrfbqqocxh0UJFodiO9EHL88pRVOnZ/Jc4JUVZm7nwnAU8/BBZf5+OATC8dV+P1QV6d49U2LH/zEx+cr0x2hEEIIkGSgjc+Ww+P/8uO6kJUFmRnebpPZmRAMwJawxeW/MrxDxRdqSgKgZXtSAT4/t9wSafe/GiFY0M7a+81YYA83b4JPgl20HXRnV40VBA1fPjWYA47l7dJr0XRT8Y26YgH2mFSX5iB33ezj/V5ig44n4vFb4n3p+Jk819zzTCQCN97mo7paUZAPuf0gOwsG5MGAXNi8RXHtb+XjRwghegI5G7dy+5/9RGOQGfIulDcXCHhf311sETN0g1d7eIzGnXBat4eb9RLcfLvBY7N9XWjo+wKpjyNVQnk7/h3Xwh5iZu+AParOSwQSDeXmFF5C4FpsrzN3sfqS9Z2ceuMPVZWZO0zosachXKbIyfF6VpsLBLwLLJ/+V7H2m/TEJ4QQQNOcgWTfdsLKlSs544wzmDp1KjNmzODSSy+loqJ7N9aUZKCVDRu9emz9AZZg+aCuXrGltFvDSh6V0bJXoCMdvQC9hbkdA3QteAUZhjaWgxmNY+jb1diTZfAxquPJTodFSHTTmWn1WgvX8S6qtCcUgoaI4vNeMPdDCCF2VX19PWeffTaTJk3i3Xff5dlnn6WyspIrr7yyW+Mw+NM0NUIZ3le3g8ay1l6PQa6x8zO7mLLKris9WFcaiRocQ4d6xXYwVl63+cZAZjf2dyQr0+uAdDqoypjjXW/ob+x5VAjRO6gU3bqmpKSEiRMnct555xEMBhkwYAALFixg2bJlySleF0ky0Mp3jnSxFESjbR9zXXAdGD3KNXaZ0TmH13fehkr0Gri13RRRCnSljeimPIrUcSLs+GSjCa83c6jX5efHwOcAqv261PF/YoYmO4Av5AK6/eMwfp8KmHuQzj/GJTOk2V7d9jFXQ20tDLI1h0zp/tiEEKJRCocJVVdXt7hFIm0/s8aMGcOiRYvw+ZqGhb700kvsvffeKShsxyQZaOXs01yGDHKJRqE+0tRDEHOgtt6bRHz+uYZOGAAeuS/oXfVvtQhNi0aXqwmvD3ZzZEnk1HSeEGggYuo4LwivU+wwm1HmHqMXX5wJvnj8zcdfauLFVhBwCK8xd4LtTb+MghXvHXBpqs5E+SzN+Webm+zsMRpmz9DEYlC13buQAhCLQWUlBPzww5NdfOZOixBCiE7NmjWLgw46qPF29913d/r7Wmtuu+023njjDa666qpuitJj7qdpivj98MgDUX5wRoCNJRZ1saYO/ayQ5vxzY3x3vsnDE+CyC2q4+Q/ZTUuLQlOPgNbMmVMDmJsMhNcHsIdHwR9oewFdA7FawpsM32cgUgHBfLx8vtXxaDmE15h9jIZXgT0hAlG/N3+geXECMVDVgJk9HwCnfc/Hc6/V8+Zroab5EYmEwHI5cEoD11xidkv59htdfnYJvLPEonwr3nxwBVlZmh+crDn/bLOPUSGE6Mzbb7/d4udgsON2VXV1NVdccQUrVqzgoYceYsKECakOrwWltZmDw8vKtqd0WHssBo89pfj3cz6iURg72uWiC9xeseFYgj08Ar54UqA1OPWE15vdAGnOHlzlLTOaWBbKdSBS0Ss2HEuwRwNWAG+NeiDaOzYcS7BH1UEwC7C8xM6NEv6q93RoFhc7HLnAT0W5V6b+uS6vPxHrFRuOJXz0GTz6lMW2ahg8CE77nsvIYemOKvmUgoKCfin/bBKpIfWXfInXtCe7+i9hGqLJrfCMgOL6n9hd/v3i4mLOOecchg4dyi233EJ+fn5S4+kKSQaEnAQNJ/VnPqlD80kdmk3qL/mMSAbuTlEycG7XkoGqqipOOOEEpk+fzg033ICVppUcZZiQEEIIIYQQ3ezJJ5+kpKSEF154gRdffLHFYx9//HG3xSHJgBBCCCGE6INSscRz15/zjDPO4IwzzkhBDDun9wy+TZH3lsDTz0M3bwbXbezBLoVDXZTPzN1qd8QeXItdFMEuqscebPByqZ0oHBJBhSopHGTu6jOdGTbRxS5ysYebu9RmZ8JhmP8jOOLYWsLhdEcjRN/UEIHKKk07qz8K0etJz0AHfn6hn2df8FMfPzEoC8aM0Dx8XwNjRqc3tmSwi1wIhLwFWeIrCRWOApwo4WLzB0zag2shOACCoaaVknx4DcpoJeHNhu7O24w93AcEwBdfVSegsYdrcLYTLjF3NagEe1j8GNU0Lm5ljwK0Q/ibHWxMZoBwGPaZHgBHNa4otPdrfvC5vP50lH32SXOAQvQBZRXw7lLF+x+BJopPKaYeCDOnafIHpDs6kXLNl69O5nMaJi09AytXruSMM85g6tSpzJgxg0svvZSKHnTp/fiTgjz+76ZEAEC7sGatYvaRIb5em77YksEe5nqN5ETtJw5cBfgC2CPNXsnEHlwLgXwau+qal09Z8SU5zWYPDwCBVvfGdz709cceavblLXuYC/6Q90PzHlcFKB/2SLOvY4TDsM+UAER9oBvX9Y0vfevj8GMC0ksgRIptCcOf71U89Zyirk6RFYLqGsUTzyruul9RWp7uCIXoHt2eDNTX13P22WczadIk3n33XZ599lkqKyu58soruzuUdr3+Frz3QfxlUWBZTTcUNDTAGT8x/KproNnV8ua7Zyd+tnzss4/BQzICeS33T2i9O7gCu8jcEXL24AiQSNhaj02M/+zr2Ss47JAv1PGwy3hSt/dkc4/Rg2b7wPXhLb6PdyaOn2PQGlwf+880O+ERoifTGp5+SbF6nWLCOBg6GPIHKIqGwISx8OVqxfOvpmI8uRA9T7e3iEpKSpg4cSLnnXcewWCQAQMGsGDBApYtW9bdobTr+l8HGxvFVqvzQCIh+HK1Zey4QrvIbdnwb67Z/eHtra86m8RqmwC05jO4fIHs+DedtpbjSYN57BHujudfKSgtNTcpb6jt5NQbf8hpMDdhFaKn21IKy1cqhg4Cf6vOcL8fBtnwyXLpHegTdJJvBur2S09jxoxh0aJFLe576aWX2HvvvXfqeVSKEvbSMtVuItCc68K6ddDNG8Qlh7+LjWDLQilDx2V3lOw0f0yrlB1DqdeVRqKCQMDQMvq6thiDsgwtHzQWsNOqNPkY7XsSdSV1ZobyrVBdA0Ps+LuxWW+y0pDXH9YVw9ZKsAvSF6fJ5L1gjrT2Q2ut+f3vf88bb7zBQw89tFP/d+DA1AyDyMiIARqtO04IFLDnnpnk55vYjd/FFXW07vGbhXQs2vnD8YTA3PJ18Yq/jlFQYOD8CGdb0yioTpl8jDZ04XdMLl/flarPJpFcg2yXnOwo/oAiM9T0YZ+V6fU41tRosrM1g+wABQXSS9d7pXdp0Z4iba3Z6upqrrjiClasWMFDDz3EhJ28zF5enppdAr81x8+9D/rROj6vrxk3/vf69wPXraOsLPl/P+UcF6wdXHnVQH2EsrJYd0WVZPGJp+31Duimb8rKTF5ONbOTx7xClm4MGFnG/7ta86ub2fH5NBahrGwHiV9P5Qt4JxSXtr0DLoAGy/RjtG9RyksEUvXZJJIrNwcG5iu+XqcYPQJQXiJQWxcBDWu/gRHDNTlZETM/63uAxHtC9HxpSQaKi4s555xzGDp0KI8//jj5+Tt/9VJrUnLCve6XMf75qJ+6Bm84UGLIkNtsLNi5Z0aMPdmHN1jYo5u1khPfNl9xx4HwZsvYMnpXlvu3HC7UvHwacLaitZnLi4bX4y0hCnSc7USNrb+f/cziVze53spPHXEhvEEZW8bzz43yxzszwFVNVxks4omAAktzzFHm1mFflqrPJpFcgQB861B48FFYXwJDB3n3x2JQshlQcPihGp9P6rNXk6VFgTRMIK6qquK0007jwAMP5G9/+9suJQKpFAzC4/+oJyt+cRkdTwq0l+WefHyMhRebu4oJgJ3dEP/Eou2qOy7g1KcttmQIbwyCE2n5hkyUUwNONeESMxOBRtFtzX5oPXPJIbze0PkeceFvYt4br72TqgvBTLOP0V9eBqP3aAArfsUB5SUG8UTAHtzAvXelOUgherlDpmgWnKjJDGlWfQ3LV7p89TVkZ2m+P18zdVK6IxSieyituzfnvffee7npppvIzMxEtZpd8vHHH3f5ecrKUtsVG4nArbdb/PvZANEYjBzh8tsbo71iw7EEe4gLoQwaL5dHGwhv6D1jI739BvKarjC7MYht6xUbjiXYwxWNO3KhIVZNeJO5q+y0Zg93wZfhZeIacHvHpngJy5fDkSf5iUW8c6Hl17z6VEw2HDOQUt48pFR/Nonkq9oGX3wFfn8WjlPLXuOhX066ozJf4j3Rk1395zIaIsl9w2YEFdf/zKxZ592eDCSLnHCTRz7EzCb1Zz6pQ/NJHZpN6i/5jEgG7kxRMvBzs5KB3nMZWAghhBBCCLFTTFwbUwghhBBCiN0kS4uCJAM7tHIVVFXC3ntBTi8cQ2gPjoFPgVtJ6eYuLe5uFHtQbXy3YRcch/CW3jNfIKFwcD34HIhFCW8O7fg/GMYeGW2c3B4uNnjn6A5UVsKvfgOZGbVc8T+Qm5vuiIQQQvQlkgx04JbbfTz4Tx+lZd7yhRkZMG2yw+9/E2PwoHRHt/vsIgcCIchqalwVjgRiDuENZq+WBPEkIDjAK2Niw4iAxh7hQkNlr0gK7FE+0H6vjAAZ2ls2tn4b4U3mJwX28ChkhSDTaqxDe4KGqEv46zQHlwSVlbDnwT6cqGocsHnPg34sn2bJSw6jRqUzOiGE6ANkaVFA5gy066LLfNzyBz+btig0YFlQVwdvvuPjqOODbN6S7gh3j13kQjDUVPuJA9cHBH3YI8zuIbAH1UIgH1zLW66xceVNBTEfZAxId4i7zR7l9xKB5jvjaQWOgmAu9hCzl960h0chO8P7QcdXu1IACoIW9lizT12VlTB+sg/HUaB00zGqNK5WTD3CR2VlemMUQgjRN5j9iZoCny2Hx//lx3UhKxMyQ16vQHY2BAOwJay4/BrDO1QCGV7NawDlTflHxTc8AnwW9hBTdx8GMvKakgCr2S3RbnYs7GHmHvr24HrQvpYbqSVuxMsd6p+u8JIjM8NLAlQ8CWhchji+Nbgf7NGG7j4MzDza8nYzTLwHGyWOW8WBc8xOyoUQQpjB3BZRitx+p59o1EsCrFavTiC+fPu7S3zEDG0r20VOUyOk1T4PjWu5WzQNPTGRa3ntq46Obg1g8NjzUGLyimo7TymRELjKSxoMZI+INqu7do5RFU8IfBndHVrShMM7nmBWvb0bAhFCCNHnSTLQyoaN8aFBHVyUs3zekKEtpd0aVvL4MpqGJXSkvUTBNB2Vr6NGpklUfAx9Z0XQyusBMpHPh5fodFSJ8YJbBtdhl44/k8snhBAG0Cm6GUaSgVZC8faT28EcWq29HoPcnr2PRie6eJT25nZIryjbDhI6ACfSLZEknXbiXzt6XLf8aiSTYxdCiN5CpehmFkkGWvnOUQ6Wgmg7w5Fd17uNHqnNXWY02uDNDejoWE3c31DXTQGlgKUbl6JsI3Ffh1edDeBE6LACG+cRaMIlZvYMnHsqxLun2m/wq3ivSLShewNLoo56Hlv+UsrDEEIIIeTjprWzT3MZMkgTjUF9fVMPQSwGtXXeJOLzzzV34mJ4k79ZMqBbXWWNN8Cc+O+ZKlbdNPE00fh3aZkIRLemJ7YkCBcTT2Z0yy5JHf9HaVCGTmoBrrsuADGaTYhu1ROgAVcTXmfuvI/rr3Ia325txBdPOvd0c+tQCCGMIMOEAEkG2vD74ZEHI4wo0mjXmx9QXQMNEW91of/5eYzvnmRgTTcXqfMaW9CUFFjxHxztPW6wcEkAiDRd/W/eQ2BpcKsJbzZ8n4GGqmYNSd0sEQCUQ3idk7bQkiG82vWORZXoIYCmAmtoMLdXAODsH8MhU2NNiXnzmwv7TnS47sq0hiiEEKKPMPjyb+qM2wPeeyPCY08p/v2sj2gUxo7RXHSB0ys2HPOu+kexh8YgkNl4JZJYPeGNFr3hsAhvcLEHVXjLjCYakdqByLZeseGYt9NwA/YIFd9hOd7L07C9V2w4BhD+yvVWFsrIaJrQHokSXmth9GpQcf96GNatizH3JB9V273yZWdp3viXbDgmhBCi+5jf6ksRvx++f4rm+6f03q76cImXFCgFBQX9KCuLmj0nsxWv0d96Eq35iUBz4WKNUpF4/W1H696RCCSEiwO06tpJVygpMWoUfPWh0+w9uL1XvQeFEEL0fJIMCCGEEEKIvicVY/wNvKDTuy6zCSGEEEIIIbpMegZ24IGHYf16+MECGD063dEknz3E9VJCt4rSzb0vN7TtOrD8gLcubDicme6Qkq5wcAyoBK0Jb+59b+lzfqZ57jUYVgTvv2He+s07EonAW+9A/9wYB+4PAfOnQ7RRuQ22b4OB+ZDVu0bqCSGM1/s+V3ZW72s5JMnBhwVYsyax06vi9j9pghmaRx5oYMYh6Y5u99lFLgQzIFM1LnFYOEpDNEp4Q7qj2322XQehXMhquda+PVxDQ1WvSArsoQHA3zS5VmnsoYDebvbSsHHjJ2kqa33g0xCAdWGwJwIRCH9tYD9sK5EInPLDAMs+9BGLAWh8/hD77evwxMNRc/cyaeaTzxQP/tPHsg8solFFdrZm9qEOZ53mMHRwuqMTQggBMkyoXeP3y2DNGj/o+MsTn9EXaVCcuCCD/yxOY3BJYBe53gotjUs20rR0YzCIPcLsw8K26yArD6x2sn2fgsy87g4p6eyiDLxcXjVb2zi+NqXqhz3E7Inv4ydpKustCMSXvU2U0Q+EwN7D7Cs5kQhMmZnBe0t9xKI0LivqROHjj31MmZlBxNANpBMWL1VcfEWAl17xVmTLyNBs2waPPO7n/IsDrO8FFx2EEIaTfQYASQba+NNfoHJrYq1N3bT2NzQ2uH5whpk7uzYKZsQbjrTdPVsDfh/20Pa27zVERm7njyuwi7qyBWzPZA+JNUtUaVmHiaRO9UtXeElRWWuBj5abxRH/3gIy4LKrDDzjxl17vZ9Nm703neXz8laf1bQzcXmF4sL/Nbd3JxaDW+/wU1aqGD1KY9uQmwtDhsDwYZpVqyz+/FdzyyeEEL2JJAOt/PbWeEO/vd1B4w2uulpFTU03B5YkdpHbbFhJqwcbEwJl9sBlXxeuGvsNbohY2Xg9Aqr9Ooy3ke3BZvYOzDpaez0AHbX14wnBvY+am9A9+e947O2cga34fS+/Zm753lmsWLvOwi7UjeVJCAahXz/Nf5ZYbAmnJz4hhBBNJBlopb6B9htZCfEOgyUfdGNQyeQPdK0Lq/UneG9j8iiTRK9Ap2VQoMxsTK78Mv7Njo5Tg+twe3W8V6CT36mrM7eAxestolHI7mDeQ04O1NQoijeYW0YhRC8gw4QASQbasJoPl+mIgjEjuiOaFOjqjkay81HPt8MqcrojiqSzupzDmNuQ9Pl2/P4yOR/PDGmU0vGJ0W1Fo+DzQVamnGeEECLdDP64SY09Jzqd9wqgQGlzlxmNxUDt4ANYgdGzF7vSvnANboTo+k4eI378amNXFHrpMZrmBnREA9rMYVAAe+7pTYRob2ZO4r49xpg7b2fWTJe8PCgva/uYdmFrpWL0KJc9J3R7aEII0YxK0c0skgy08vRjMSA+rr55d0+zRODw2dG0xbe7wiVWyzK1/l7hrVdfYvCh0VDdhd+pSn0cKRLe1Gxye+s6VIk7zG0o77+/gijtz9sB76wVg/BX5p1wE275dRRffIK0q5sSAFd791kW3PArcxPywYPg6KMc6hsgHAY3XsBoBDaWKEIZ8P1TYkb3fgghRG8hp+JWsrPhjlsbQMUTAtVsoqbS7LGHwz8fNPeKHQANDXgJT/znRGMyngh4j5srvDkA0U4aw/W1hLcYvs+A3k6b1a4av7qES8xNWAHCqzVEmvbAwIrfFBCF4w83+z24z17wmxvqvXns8QTAcbzvfX645ooGDp2Z5iB300XnO5x0goOyYN03irVrFRtLIDdXc95PYxw/z+DeOSFE7yBzBgBQWps5OLysbHtKh7XX1MBpP7FYsjSA1tC/v2bRnyK9YsOxBG/jsWA84dEQiRDe2HvyQ9uu85YZTUwEcVyIbOsVG44l2EMsUPEVsJQGt9rY4UHtmTpHs26j3yubBhyH8BpzewRaq66Gy3/pZ+kyC7/PYt+9Y9x6c6xXbDiWsGYtvPq6j+oaKCyE78x1KCxId1TJpxQUFPRL+WeTSA2pv+RLvKY92dW3baUhyZ2wGUG4/qIByX3SFJNkQMhJ0HBSf+aTOjSf1KHZpP6ST5IBc/SeS4hCCCGEEEJ0VSqG9RiYTPaeMSFCCCGEEEKInSI9AztQWq6pb4BBBRAM9p6xygkVFbClFMaPdYzelLcj9fWa5SshGIC9JoDf3/vqUAghhBC7QtoEIMlAh157Fx75N6xYaeG6MDBfc9ThcMZ3NTnZ5h88n6+Em271s+xDRaTBIhB02GevAL/4eZRDe8Ek6fp6zYVXK954X1MT8frs8rIsjj0MbrhSS1IghBBCCIEkA+365781t//ForpGkdtfkxHUbNqsWPSA4rMVLrf9n9kJwSf/hTN/FqA0bOEPaIIBTSymWPK+xecrA/z2xhjHHGngoLe4+nrNUT+AVSUxNOBTXl2V1zo88DysKQ7w+CJzyyeEEEKIJJA5A4DMGWhjc6nm7gcsGhpg9EiXgfmQm6sYVgQFBS7vf6T4+1PpjnL3XHtDgHDYIm+AZsAAyM6BAXmKgQM127db3HCz31vz3FA3/0HxZYmDpRTZAR8hv0XIb5ET8AGKxctj/ONJA9+tQgghhBBJJslAK8+9CuXliiGDNUq1vPqfk62wFLzwusJ1zWxMfr4SVnyhCIU0gUDLx3w+yM7WlGyyePp5c3s+nnldozWE/G0P75Bf4aC577E0BCaEEEII0cNIMtDKxs1eI7ijMeXZOVBapqiu7c6okmfFF4pIRBEKtf94KASOo/lylbmHRkW1xlLt15+lFArYUta9MQkhhBBC9ETmtvhSJJThbcbb0V5ssSgEAhAKdnNgSdIvx9uQNxZr/3FveJAiK8vMng+AgAW6k0F7Gm/jZSGEEEL0YTpFN8NIMtDKjKmaUEizbVvbx1xXU1MD0w7Sxi4zevhszcACl9oOejaqqyEnx2X+cW73BpZEB0z0odG47SR0MUejgEMnm1l/QgghhEgWlaKbWSQZaOXgA+GgAzTl5RZbK3VjD0F9g6Z4vcXAgfC94w1M++KCQVhwkovPUlRU0DhR2HE0VZXez0fMcRlWlNYwd8slP3PJ8vuojTlEHa+uXK2JOJp616V/yOKSn5tbh0IIIYQQySLJQCuWpbjhcs3sQ10aGhTr1lmsXQdbtlgMG+pyzcWaA/Y2L+tr7uLzHX74/RihDE1FBZSWKsrKwfLBkUe43HKjwUsJAZMPUPz2ckX/oI+I61IddaiLucRcl4IsH/f9VjF4kNl1KIQQQojd1IOGCVVUVDB37lyWLl26y8XZVbLPQDsGDlDccZ3m08817y5TRKMwssjlqMMwen+BBJ8Prr/G4awfOzzwdx9bShWD7QDHz6tj/33SHV1ynDxP8e3D4Pd/9fPxcoVlwazpmp+dJhuOCSGEEKLn+PDDD7n88sspLi5Oy9+XZKADlqWYtA9Mamwc974G5OiR8KsrHJSCgoJMysq8ydO9RU6O4uqLoGWa3vvqUQghhBBmeuqpp7jjjju45JJLuOiii9ISgwwTEkIIIYQQIomqq6tb3CKRSLu/N3PmTF555RWOPvrobo6wifQMCCGEEEKIvicVS4HGn2/WrFnU1NQ03n3++edzwQUXtPn1wsLCJAew8yQZ2AHbBizoPwBWf5HuaJLPtl2vf8itorS093UU2bbTNDJIQzjsS2s8qVBou2BtA1cT3tL76vB/r3J58l+wxx7w6tO9r3yRiOatxdC/f5QD99UEAr1vKFt9PTQ0QFYWbXY+F0KI3ujtt99u8XOwB29wJMlAB+yiAOCH+AfXtm1gD9MQqye8Oa2hJYU92IVAJmTiNZY1FA4HojHCm8xeTQjiSUAgC4LN1/zV2EUaorW9IinwjlEfJM4vGuxheOXrBUnBAQe7lGzMBNerw88+ir8HfVHC35h/jEYimlPO8LHss8QmgFF8Ph/77QlP3OuQk2N+UrBpk+KdxRYffWzR0KDo108zfZrLoYc49OuX7uiEECJ159mcnJyUPXeypbXFkM5llDpjF2XQbp6kFfgysQd3e0hJZQ/WkJEJPpreBwrvaAj6sYeafenOth0IZoOKH96N3YDxQgay0xdckthFGaB8Ld/BibzHn4U9yNxN4yCeCKzPAsfy3neNS7YpcALYI8y+jhGJaKbM9fHeh813A9c4Dny8HKYc6SMSMXs2/zfFij/d7ee5F3xEIorMTM3WSsUjj/n4yz1+qqrSHaEQos/rQUuLplPakoEPP/yQBQsWpG0ZpY7YNrR4WdrbUM6f0a0xJV0w1HEyrICA5Q0fMlUgq6kBiWpbf0phDzG3MWkPckGpZmVqdZBaeK+BwUrWZ3p1CG3fg1qB6+eG35h7jF57s2JTGFDeymWWpfD5vK8A5VvhwivM7d1xXXjyXz5KShR7TtQMHqzJy4PhwzTjxmo++6/F62+a3zsnhBC9QVo+bZ566ikWLlyYtiWUOhVs1tBv3WBubIxYXHlldwWUXPZgd8e9YgoIhLojnNRQ7SQArVnmJgP4M1slAs01/Wxq78C877k0lqPD96Di9j+Ym5Q/+Vz81NvOMZpICF5+y9xhQmvXKVatthg2TGO1+pQJBiE/H5Yus6iuaf//CyFE91Apuu2aL7/8kmnTpu3y/99VaWkRzZw5k2OPPRa/37/LCYFK2edkB42QVhbdA7/+dapiSCFfJ70CzVkqha9xN9C0X07V9Jix5WsMvJMCKMCyjCzj++9b7LBsAMrM8gFsrwF0U8O/PXV15h6jFVsVDQ3Qr4Mhs3n9NeFSRVWVol+OgX3q7UjUlal11tdJ/SWfvJbmSEsykIxllAYOTNXss6j3paPGZFzhIB8FBQYOxdD1dCkb0FBQYOoMv2jnD8eLb375dnCQoiko6N8N8SRXduZ2atpfjtmj4/8obWwd+v21RGO6zYdl858tnzK2fHahJhRyCQZpd8fvhgZNTg4MHhSkoKB3tRhS99kkuoPUXx+TwqVFTWLsWIny8u2p2S3XDYDq4GVp9vc+/8yhrGx7CgJIsVh8FSHouB2pgUgdZWUN3RVVculQix6Alo/F79PazPoDcFQn81biB6kLpZuVkWV88UmXQ78Vr6gOe3gUGVn1lJV1ljX0XHuOtfhoOTiObuwdUMrbAdx1vTrcY4S5x2jBQMjtH2DtOkXR0JYnaq1hXbFi/31dfL4YZWVpCjLJlPIakin7bBIpJfWXfInXVPR8xiYDWpOSN+zZp0dZdH/8ZUk8v6Jlpqejxp4swmELezjeSkIdcb3fM7WMxGq8FYNUs8Zk87rEW15UazMnMIY3aewi4jN+2jlINYBjbP1NmGCBFfMSc7Q3YbjFe9C7lLP+C3OP0d9d5zD3JB+OG2/8K/Ap1ZgIWBbccJWD1mZeNc/OhjmzHR57ws+mzQrb9uYORKOwYaMiKwvmHOYtD2tqHXYkVZ9NontI/Ym+yNzlKlLkxhuBaF3LO1ucGGKES2IYraEOHNp2ZWm8+xvq2v4fg4S3+MCJ0aKAjW2qXrLPQKwWWswPbpYIaE144w6GSvVw4eKYlxAAXkIQ/6oApTn1NLOP0X0mKn7zSwd/4nKM9noJAHw+uOYil0MPNjMRSPjWHJcTj3dQSvPlKsXKLxVfr1UMzNec+oMY++wlLS4hhOgJjO0ZSKVwGK68so5F9/mbVp3RLjiRXrHhWDhsAQ3eajPBzKarrtF6wpsTGw6YLbwphm03NC0zCoALkTrzEwGIbypWjz3UAqvZroa9ZMMxgHBxlCOOa+CzT0NNdeivJ/w19IZj9NQFihOPcbj8eoulH1n4LcW+ezrcep3bKzYc8/ng6G87TJ/m8MVKi/p66N8f9trTJdvA6VZCiF5I5gwAoLQ2s0OsrEzG9SWLUt5kWnlNzST1Zz6pQ/NJHZpN6i/5Eq9pT3b1r6tpSPLUs4wgXH+FObsPQ2+4vCaEEEIIIYTYJTJMSAghhBBC9E3SEyQ9Aztyyvfg4Jnw7PPpjiQ1fnsrzDgMfnq+ocuI7sC6dfDzX8AlV0BlZbqjSY3ycvjmG5f6+nRHIoQQQgjTSM9AB+yhGaCsxlVozjwH0HDxxXVcvjCtoSXFzDmwalWoMR1c9RXc/dcQ/fpFWfOFk97gkmDdOpg2J4hWGnxe2n//I4qABSs+iJKXl9bwkmLxEsU/HvXxyX8tNDFysoJ86zCHM3/sMHBguqMTQgghhAmkZ6Ad9tBMb6Hv5gt6xBfZufW2TG76XboiS44DD4ZVX4Va1r7ybturAxSNCaQrtKRYtw6mzgmi/drbTyGxWoBPE1Wa8ZOCnT+BAV54yeLyXwZ48z8WroZQBpRthQf/6ePCSwKUl6c7QiGEEEKYQJKBVo46ho535sV77NZbMrsrnJTYsD7UaRmjER8lJd0XT7LNPioAfje+eww0ZjqNy1O6TJ1l7vKi1dVwx5/9bKuG0SOgcCAMyFMMGwJDBsF/Vyj+dr+55RNCCCG6hU7RzTCSDLTy8UeZnScDABZs3Ngt4STdzDnsuHwKDjrY3KvndZFEAdspaPxNuq7Y3EP/pVcsNoVhkO2NZGsulAkZGfDqmz5qa9MTnxBCCCHMYW6LKFW6stePgj/9OeWRpMRXa7rWyHccgw8Nq7O0PF7BlrmbOq0vUbiuNzSoPdnZsG07bOoFG+QJIYQQqaNSdDOLTCDeFRoOOSTdQeyaQIYm0pVVZ0zedaUroRtcvMx4EuC63tSW1mJRb/fX7OzujUsIIYQwiuxADEjPQBvK17WVdOYdneJAUuRf/4ju+EDVcPQxBi81mpgb0G5BNaDwGXzkH3qoS3YWVGxt+5h2vV6BffZyGTyo+2MTQgghhFkMbhKlxkdLIp03ljVkhKLdFk+yTZ7chV/ScN9fUh5Kypx8XARcFe+pS1RmPP1XgAN/vjXJ+493o70maGbNcNle7e0x4Lre/ZEIrN8I/fvDD75r/vKwQgghhEg9SQZaKSqCo+bWdXxRWbusXxPr7rCS6pP36zvuGnPh+X+bvXvVnbfD+FEuOPGEQOmmYXyO4tuHRznh+DQHuZuuuSzGd+a6OC6sK4bVazUbN0NhAVzyixizZxrYTymEEEKIbidzBtrx4H2wcWMd02b4iUQSa+5rLr64vldsODZ0KIQ31DP/e/Duu6HG+4cNr+ej99IYWBK9+5rDJ586HL8gQF2DN2woP9dhyZuxXrHhWE4O3HxdjBVfKN5+xwKVQf6Aeo6a65KXm+7ohBBCCAPInAFAkoEOFRXBhnUxwOxegM48+U+AepSCgoJ+lJXVGz1vuLUD9odvVpo7pKsr9t5Ts89eDgUFPsrK3F5Vf0IIIYRIPUkGhBBCCCFEH2TeMqCpIHMGhBBCCCGE6KOkZ2AHamq9ddtzcry123ub6mqorAS/X8aXCCGEEKIPkTkDgCQDHVq9WvHOf3ys+NzCccAu1BxysMPB012CXdvEt0dbvx7uuTfIW+/4qKtVZGZqpk4JcuqpUfbey8AjWQghhBBC7DRJBtrx8ScWDzzkp7JKUTBQEwppijcovnoowJo1Dj/6YczohGDtWvif/w3x9WqLzGxNVpYmElE8+7yfDz/yceMNDUyZ7KY7TCGEEEIIkWIyZ6CV6mp4/AkfdXUwcYJLYaFmwAAYPUozrMhl8RKLDz40+2X745+CrFltMWyEZshgyMuFIUMUo0ZqtmxW3HpboHEjKyGEEEKIXkmn6GYYs1u1KbB8hcWmzRYjRmhUq0nmiXkDi5dYxi7huH49LH3fR25/TTDQ8jG/HwoKNatX+1iyVA4NIYQQQojeTlp8rZRXeBmAv4MBVP1zYcsWi0ikG4NKonXfWNTWKnL6tf94Tg40NMA338ihIYQQQojeTKXoZhZp8bUSDIDWdHjlPxqBYEB3mCz0dFlZXu9GtIO91KIxUApCmYZ2fQghhBBCiC6TZKCVceNcsrM1VVVtH3NdbxnOgw50jV1mdP/9XIYPd6kob//x8jIYOFAz61CnewMTQgghhOhOMmcAkGSgjZEjNFMmu5SUWFRUNPUQ1NfDV6sthg7VHDzd3Nm1fj98b0GMQECxcaMiFu8hiMU0W7ZAJKI4dl6MgfnpjVMIIYQQQqSeoYNdUkcpOOXkGD4fvP+BxZYtCqU0Ph+MGe2y4OQYQ4YYmPY1c/JJMbZvh4ceDrBhg0Jr8FmQnQMLFkS54PxoukMUQgghhBDdQJKBdmRlwg+/H+PwwxRfrVY4jqKgQDNxQu/YcMyy4KwzY8ybF+PFF/2UlSmGDMngkIPrGDUq3dEJIYQQQnQD2YEYkGSgQ0rB0KGaoUMNrNUuGmTDaT+OoRQUFIQoK+t44rQQQgghhOh9JBkQQgghhBB9kHnLgKaCTCAWQgghhBCij5KeASGEEEII0ffInAFAegaEEEIIIYTosyQZEEIIIYQQoo+SZEAIIYQQQog+SuYMCCGEEEKIvkfmDADSMyCEEEIIIUSfJT0DQgghhBCiD5J9BkCSASGEEEII0RfJMCFAhgkJIYQQQgjRZ0kyIIQQQgghRB8lyYAQQgghhBB9lMwZEEIIIYQQfY/MGQAMTgaUTABPmsRrKa+pmaT+zCd1aD6pQ7NJ/SWfCa9lKGTGc6aa0lobmMMIIYQQQgghdpfMGRBCCCGEEKKPkmRACCGEEEKIPkqSASGEEEIIIfooSQaEEEIIIYTooyQZEEIIIYQQoo+SZEAIIYQQQog+SpIBIYQQQggh+ihJBoQQQgghhOijJBkQQgghhBCij5JkoA9buXIlZ5xxBlOnTmXGjBlceumlVFRUpDsssQscx+HUU0/l8ssvT3coYidVVlZy6aWXMm3aNKZMmcLPf/5zwuFwusMSXbRixQp++MMfMnnyZGbOnMn1119PJBJJd1iiCyoqKpg7dy5Lly5tvO/TTz/llFNOYdKkSRx++OE89thjaYxQiO4hyUAfVV9fz9lnn82kSZN49913efbZZ6msrOTKK69Md2hiF/zxj3/kgw8+SHcYYhdccMEF1NbW8sorr/DGG2/g8/m45ppr0h2W6ALXdTn33HM56qijeP/993n88cd59913+etf/5ru0MQOfPjhhyxYsIDi4uLG+6qqqvjJT37CCSecwLJly7jhhhv49a9/zWeffZbGSIVIPUkG+qiSkhImTpzIeeedRzAYZMCAASxYsIBly5alOzSxk9577z1efvlljjzyyHSHInbS8uXL+fTTT7npppvo378/OTk5XHfddSxcuDDdoYkuqKqqorS0FNd10VoDYFkWmZmZaY5MdOapp55i4cKFXHTRRS3uf/nll8nLy+OHP/whfr+fgw8+mGOPPZaHH344TZEK0T0kGeijxowZw6JFi/D5fI33vfTSS+y9995pjErsrPLycq666ipuueUWaYAY6LPPPmPs2LE8+uijzJ07l5kzZ3LzzTdTWFiY7tBEFwwYMIDTTz+dm2++mX333ZfZs2czatQoTj/99HSHJjoxc+ZMXnnlFY4++ugW93/11VeMHz++xX1jx45l5cqV3RmeEN1OkgGB1prbbruNN954g6uuuird4Ygucl2XSy65hDPOOIOJEyemOxyxC6qqqvjyyy9Zt24dTz31FP/617/YsmULl112WbpDE13gui6hUIhrrrmGTz75hGeffZY1a9Zwxx13pDs00YnCwkL8fn+b+2tqatpcVAmFQtTW1nZXaEKkhSQDfVx1dTUXXnghzzzzDA899BATJkxId0iii+6++26CwSCnnnpqukMRuygYDAJw1VVXkZOTQ0FBAf/zP//DW2+9RU1NTZqjEzvyyiuv8NJLL/GDH/yAYDDIuHHjOO+88/jHP/6R7tDELsjMzKS+vr7FffX19WRnZ6cpIiG6R9vUWPQZxcXFnHPOOQwdOpTHH3+c/Pz8dIckdsK///1vwuEwkydPBmj8EHv11VdlMrEhxo4di+u6RKNRMjIyAO9qM9A4Bl30XJs2bWqzcpDf7ycQCKQpIrE7xo8fz3/+858W961evZpx48alKSIhuof0DPRRVVVVnHbaaRx44IH87W9/k0TAQC+++CIfffQRH3zwAR988AHz5s1j3rx5kggY5JBDDmH48OFceeWV1NTUUFFRwW233cYRRxxBTk5OusMTOzBz5kxKS0u56667cByH9evX8+c//5ljjz023aGJXTB37lzKysq47777iEajLFmyhGeeeYaTTjop3aEJkVKSDPRRTz75JCUlJbzwwgscdNBBTJo0qfEmhOgegUCABx98EJ/Px1FHHcVRRx3F4MGDufHGG9MdmuiCsWPHcvfdd/P6668zbdo0fvzjH3P44Ye3WaVGmGHAgAHcc889vPjii0ybNo2rr76aq6++munTp6c7NCFSSmnpixZCCCGEEKJPkp4BIYQQQggh+ihJBoQQQgghhOijJBkQQgghhBCij5JkQAghhBBCiD5KkgEhhBBCCCH6KEkGhBBCCCGE6KMkGRBCCCGEEKKPkmRACCGEEEKIPkqSASFE2k2YMIGf/OQntN4D8cknn+Twww9Pyd88/PDDefLJJ1Py3F3x/PPPc/DBB3PQQQfxxhtvtHhsw4YNTJgwgQMOOIBJkyax//77M336dBYuXMi2bdt2+W9efvnlXH755bsbuhBCiF5EkgEhRI/w1ltvsWjRonSH0W0ee+wxjjnmGD788EPmzJnT7u88++yzfPzxx3z66ac8++yzfPPNN9xwww3dHKkQQojeTJIBIUSPcOqpp3L77bfz0Ucftft44mr5hg0bGu/7wx/+wKmnngp4vQg/+MEPuPnmm5k6dSrTp0/nwQcf5NFHH2XOnDkcdNBB/PKXv2zxnCtWrGD+/PlMnTqVs846i3Xr1jU+VlxczE9/+lOmTZvGnDlzuO2224hEIo1/a/78+Zx55plMnjyZZ555pk28W7du5ZprrmHmzJlMmzaNc889t/H5Tz75ZJYsWcI///lPjjjiiC69PgUFBRx33HEsX7688b6ysjIWLlzIjBkzmDlzJr/85S+prq5ufPy1117jmGOO4YADDuDcc89l69atLV67M888k5NOOompU6eybNmyTmMG+PLLLznnnHOYOnUqs2bN4tprr2X79u279Pq/9NJLHHPMMRx00EF85zvf4c477+zS6yCEECK5JBkQQvQIc+fOZcGCBVx88cVUVlbu0nN8+OGHDBo0iCVLlnDhhRfy61//mqVLl/L8889z33338fjjj7Ns2bLG33/11Vf59a9/zTvvvMOwYcM499xzicVi1NbWcvrppzNu3Djefvtt/v73v7N48WL+8Ic/NP7fFStWcOyxx7J48WLmzp3bJpYLL7yQ4uJinnrqKd566y3GjBnD6aefTnV1NY8//jiTJ0/m3HPP5dVXX+1S2UpLS3nllVc48sgjAXBdl5///OdYlsVLL73EM888Qzgcbmxwf/311/ziF7/g3HPP5YMPPuCUU07hnXfeafGc7733HgsXLuSNN95g0qRJnca8detWfvzjHzN27FjefvttnnjiCdauXcull166069/fX09l1xyCb/85S/58MMPueWWW/jrX//KZ5991vXKFkIIkRSSDAgheozLLruM/Px8Lr/88jbzB7oiKyuL0047DcuymDlzJo7jcNZZZ5GZmcm+++6Lbdts3Lix8ffPPPNMJkyYQEZGBpdffjkbNmzgs88+48033yQSiXDxxReTkZHBkCFD+MUvfsHDDz/c+H8DgQDHH388wWCQUCjUIo7169fz/vvvc80111BYWEgoFGLhwoXEYjHeeuutLpfnuOOOY/LkyUyaNImZM2dSXFzMvHnzAFi+fDkrVqzgV7/6FTk5OQwYMIDLLruM5557jq1bt/L888+zzz77cNxxx+H3+zniiCPaDEcaPnw4Bx98MNnZ2WzatKnTmF977TUCgQALFy4kFApRWFjINddcw+uvv05paelOv/6hUIjHH3+c9957jz322IMPP/yQ/fbbb+cqXAghxG7zpzsAIYRICAaD/P73v+fEE0/knnvuYcCAATv1//Py8lBKAWBZ3rWO/v37Nz5uWRau6zb+PGzYsMbvMzMzycvLY8uWLWzcuJGKigqmTJnS+LjWmmg0Snl5OQCFhYWNf6O1srIywGtsJ/h8PoYMGdIiGdmRp59+ujHG6upq7rjjDr773e/y/PPPs2HDBhzHYfbs2S3+TzAYZP369WzZsoWhQ4e2eGzEiBEthgrZtt3lmLXWDB06FJ/P1/h4IrZEmbr6+odCIf7xj39w55138r//+79UV1dz1FFHcfXVV5Obm9vl10cIIcTuk2RACNGjjBgxguuuu45LL72U+fPnN96faIRGo9HG+5o3bIHGhmhXhcPhxu8TQ2GKioqIxWKMGDGCF198scXj5eXl5Ofn7/BvFRUVAd68g3HjxgHgOA4lJSUUFhbuVIwJOTk5XHjhhdx///18+OGHDB48mFAoxNKlSxtfm0gkwvr16xk5ciSDBw/mzTffbPEcmzdvJiMjo/Hn5mXYUcyBQICSkhIcx2n8e8XFxYCXGH399dddfv2rq6sJh8PccsstAHzxxRdcfPHF3HXXXVx22WW78OoIIYTYVTJMSAjR4xx99NGcdNJJPPLII433DRw4kNzcXJ577jm01qxYsaJFY31X3HPPPXz99dfU1dVxww03sOeee7LPPvswZ84campqWLRoEZFIhG3btnHZZZdx0UUXdanBa9s2s2fP5vrrr6e0tJT6+np+97vf4ThOhysH7UhDQwP3338/oVCIfffdl/3224+RI0dy0003UVNTQ319PTfeeCOnn346juNw3HHHsWrVKh599FFisRjvvvsur7zyyi7HnOiB+N3vfkd9fT2lpaXccMMNTJ8+vTGR6KqamhrOOeccnnnmGbTW2LaNZVk73RMkhBBi90kyIIToka688kr23HPPxp+DwSDXXXcdL7zwAgceeCA33XQT3/3ud3frbxxxxBH89Kc/ZdasWVRVVXHnnXdiWRY5OTncd999LF26lFmzZnHEEUdgWRZ//vOfu/zcv/nNbxg+fDgnnngihxxyCF9++SX3338/eXl5XX6OefPmMWnSJCZNmsQhhxzC4sWLueuuuxg+fDh+v5+7776bsrIyjjzyyMY5Bffeey8ZGRkMHz6cu+66i4cffpiDDjqIO++8s92Jzl2NuV+/ftx7772sWrWK2bNnM2/ePIqKirj99tu7XJ6EQYMGcccdd/DXv/6VAw88kHnz5jF9+nROP/30nX4uIYQQu0fpXZmlJ4QQQgghhDCe9AwIIYQQQgjRR0kyIIQQQgghRB8lyYAQQgghhBB9lCQDQgghhBBC9FGSDAghhBBCCNFHSTIghBBCCCFEHyXJgBBCCCGEEH2UJANCCCGEEEL0UZIMCCGEEEII0UdJMiCEEEIIIUQfJcmAEEIIIYQQfdT/B/TOw/BZGSxHAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot for the relationship between bedrooms, bathrooms, and house price\n", + "plt.figure(figsize=(10, 6))\n", + "plt.scatter(housing_data['bedrooms'], housing_data['bathrooms'], c=housing_data['price'], cmap='winter', alpha=0.5)\n", + "plt.colorbar(label='House Price')\n", + "plt.xlabel('Number of Bedrooms')\n", + "plt.ylabel('Number of Bathrooms')\n", + "plt.title('Relationship between Bedrooms, Bathrooms, and House Price')\n", + "plt.grid(True)\n", + "plt.show();\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The scatter plot reveals a clear relationship between the number of bedrooms, bathrooms, and house prices. It indicates that houses with more bedrooms and bathrooms tend to command higher prices, reflecting buyer preferences for space and convenience. However, there's a diminishing return on the value added by additional bedrooms beyond a certain point. Understanding this relationship is crucial for both the real estate companies(sellers) and buyers in the real estate market, allowing them to make informed decisions based on their needs and market dynamics.\n", + "A house with a good balance of bedrooms and bathrooms tends to attract a wider range of potential buyers." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**#House age and house price**" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAIdCAYAAABSsr51AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0AklEQVR4nOy9eZxT9fX//7rZM5PZhxlg2GdBZBGKgFiVAlJaF0C02rpU2mo/LrW1bri11brVVqvFBT/Sxe+nv1aLWgUr7uOugFpwBRn2YZ3J7JOZ7Pf3x73vm5vkJrk3uVkmOc/Ho4/KZLtJbu69r/d5ndfheJ7nQRAEQRAEQRAEQWQcQ7Y3gCAIgiAIgiAIolAhQUYQBEEQBEEQBJElSJARBEEQBEEQBEFkCRJkBEEQBEEQBEEQWYIEGUEQBEEQBEEQRJYgQUYQBEEQBEEQBJElSJARBEEQBEEQBEFkCRJkBEEQBEEQBEEQWYIEGUEQBEEQBEEQRJYgQUYQBKEjN9xwAyZOnIjHH38825uSUQ4cOICJEyfi3//+t+LtmzZtwsSJE7Fp06YMb1ny/Pvf/8bEiRPD/jdp0iTMmjULP/7xj/HJJ58kfI6LLroIF110Udq3dcGCBbjxxht1f172GRw4cEDx9oceeggTJ07U/XUzwTPPPIOJEyfikksuyfamEARR4JiyvQEEQRD5Qn9/P1599VU0NTVh7dq1uPTSS8FxXLY3i0iRhx9+GMOGDQMABINBOJ1OPPLII7j44ovxzDPP4Jhjjon52N/85jeZ2kxCI88++yyamprw/vvvo7W1FaNHj872JhEEUaBQhYwgCEInXnzxRQQCAdx6661obW3Fe++9l+1NInRg0qRJmD59OqZPn45vfOMb+Pa3v41HHnkEgUAA//znP+M+tqGhAQ0NDRnaUkIte/bswX//+19cd911KCkpwdq1a7O9SQRBFDAkyAiCIHTi2WefxZw5czBnzhyMHz8eTz31lHTbj3/8YyxbtizqMVdffTVOP/106d8ff/wxLrzwQhx33HGYPXs2Vq5cic7OTun2f//73zj22GPx9NNP46STTsIpp5yClpYWBAIBPP744zjjjDMwbdo0TJ8+Hd///vfx4Ycfhr3eW2+9heXLl2PatGlYvHgx/vOf/2DRokV46KGHpPt0d3fj17/+NU488URMnToV5557btTz6EFbWxtuuukmzJs3D9OmTcM555yDN954I+w+EydODNs2INom19nZieuuuw7f/OY3MXXqVCxduhTPP/982GMOHTqEa665BrNnz8Zxxx2Hiy++GF999VXS2z5q1ChUVFTg0KFDAGJ/L5GWRZ/Ph0ceeQSnnnoqpk2bhtNPPx3PPvts2HO//vrrWL58OaZOnYpvfvObuPPOOzEwMJBwm3w+H+68807MmjULs2bNCtt33nrrLUycODFqkWDr1q2YOHEiNm/enPRnEcnnn3+On/zkJ5gzZw6+8Y1v4LLLLkNLS4t0eyz7auRn9eWXX+Liiy/GzJkzMWPGDKxYsQKffvpp2GMS/V5i8eyzz6KkpARz587Fd77zHTz77LPwer1R98ul3wtBEPkLCTKCIAgd2LVrFz799FOcddZZAIDly5fjzTffxNGjRwEAS5cuxbZt27B7927pMS6XC2+++SaWLl0KAPjoo4+wYsUK2Gw2PPjgg7j55puxefNm/PCHP4Tb7ZYeFwgE8Nhjj+HOO+/E1VdfjYaGBtx333145JFHcN555+HPf/4zfvvb36Krqwu/+MUvpIv5jRs34oorrsCIESPw0EMP4YILLsBvfvMbHD58WHpuj8eDiy++GG+88QZ++ctf4uGHH8bw4cNxySWXqLrIDAaD8Pv9Uf8LBoNh93M6nTjnnHOwefNm/PKXv8RDDz2Euro6XHnllVi/fr2mz/7666/Hzp07cfvtt+Pxxx/Hsccei5UrV0oX/J2dnfj+97+PL7/8Er/61a9w//33IxgM4oILLsCuXbs0vRajq6sLXV1dGDNmjPQ3pe8lkpUrV+Lxxx/HOeecg//93//FvHnzcPPNN0sC8oUXXsCVV16JCRMm4JFHHsHPfvYzrF+/HldccQV4no+7TS+99BK++OIL/O53v8MNN9yAt956C1dccQUA4OSTT0ZtbS3WrVsX9pjnnnsOo0ePxqxZs+I+t9rvdePGjfjBD36AYDCIu+66C3feeScOHz6M73//+5o+6/7+flxyySWoqKjAqlWr8MADD2BwcBA/+clP0NfXB0D97yWSQCCAdevW4bTTToPFYsHy5cvR0dGB119/Peq9pPv3QhAEAVAPGUEQhC4888wzKC0txamnngoAWLZsGR588EE8/fTT+NnPfoZFixahqKgIGzZswM9+9jMAwGuvvQaPx4MzzzwTAHD//fdj/Pjx+N///V8YjUYAwHHHHSdVUS644ALp9S677DJ861vfkv7d1taGX/7yl2EVBpvNhquuugpff/01ZsyYgYceeggNDQ14+OGHpd62qqoqXHPNNdJj1q1bh+3bt2Pt2rU47rjjAACnnHIKLrroItx3331R1ZxIbrnlFtxyyy0JP6+//e1v6OzsxEsvvST17sybNw8rVqzA73//e5xxxhkwGNStGW7evBlXXHGF9NnPmTMH5eXl0mf4//7f/0N3dzeefPJJ1NXVSe/ptNNOw5/+9CesWrUq7vMzMQIIF+D79u3DH/7wBxgMBpx33nlh9438XuS0tLTgxRdfxC233IIf/vCHAIC5c+fi0KFD2LRpE5YuXYr77rsPJ598Mu677z7pcePGjcOKFSvw9ttvx3xuACgtLcWf//xnOBwOAEBFRQWuvPJKvPfeezjppJOwbNky/P3vf4fL5UJxcTG8Xi9eeuklXHzxxQl7HRctWhT3dsb999+P0aNH489//rP0+Z900klSVenBBx9U9Tw7d+5EZ2cnLrroIsycORMAMGHCBDz11FPo7+9HSUmJpt+LnHfeeQdtbW04++yzAQDTp09HQ0MDnnzySZx22mnS/TLxeyEIggBIkBEEQaSM3+/H+vXrceqpp8Lj8cDj8cBms2HOnDl4+umncfnll6OoqAiLFi0KE2QvvvgiZs+ejREjRmBwcBCffvopfvKTn4DneUkAjB49GvX19Xj//ffDLjCbmprCtuH+++8HIFSD9u3bhz179qC5uRmAYGXzer3YsmULrrzyyrCL78WLF8NkCp0KPvzwQwwbNgyTJ0+WtgEA5s+fj9///vfo6elBWVlZzM/iZz/7maJo+PLLL8MCLjZv3owZM2ZEBSksWbIEN910E3bv3q2692rOnDl46KGHsH37dsybNw+nnHIKVq5cGfaeJk2ahNraWuk9GQwGnHLKKaqqcUpipK6uDn/4wx+iEgYjvxc5H3/8seLzMZGya9cuHDlyBP/zP/8T9tnPmjULDocD77//flxBNm/ePEmMAULyotlsxgcffICTTjoJZ599Nh5//HG89tprWLZsGV5//XX09vYqWmkjWb16tRRsImft2rVS/9XAwAA+//xzXHnllZJAAgShOH/+fLz99tsJX4fR2NiIyspKXH755fjud7+LefPmYe7cubjhhhsAQPPvRc6zzz6LsWPHYvz48ejt7QUAfPe738VDDz2EXbt2ob6+PmO/F4IgCIAEGUEQRMq89dZbcDqd+Pe//60Y+/7mm2/i1FNPxbJly6QV9ZqaGnzwwQf47W9/CwDo7e1FMBjEmjVrsGbNmqjnsFqtYf+uqqoK+/fnn3+O22+/HZ9//jlsNhsaGhqkahDP8+ju7kYgEIh6nMlkQkVFhfTv7u5utLe3Y/LkyYrvtb29Pe4FZl1dHaZOnRr198geqJ6eHowaNSrqftXV1QAgXSir4YEHHsBjjz2Gl156CS+//DIMBgNOPPFE3HbbbRg9ejS6u7uxb9++mO9pcHAQdrs95vPLxYjZbEZFRQVqa2sV7xv5+crp7u6Oex92++23347bb7896va2traYzw2EPjuGwWBAeXm59FmOHTsWs2bNwvPPP49ly5bh+eefxwknnCDtJ/FoampS/L7eeust6b/7+vrA83zUdrBtY1ZDNRQXF+Mf//gHVq9ejQ0bNuCpp56C3W7HkiVLcMstt2j+vTA6Ozvx1ltvwefzKdo0//Wvf+Hmm2/O2O+FIAgCIEFGEASRMs888wzq6upwzz33RN3285//HE899RROPfVUnHDCCaitrcVLL72E2tpamEwmLF68GIBwAcpxHFasWBEW8sGIJxhYv83EiRPxn//8B/X19TAYDHj77bfxyiuvABBEgNlsRkdHR9hjg8Egurq6pH+XlJRg3LhxYZY5OUoX5clQVlYGp9MZ9ff29nYACLvoDQQCYfeJFHclJSW4/vrrcf3112P37t1444038Oijj+L222/Hn//8Z5SUlGD27NlSdSUSi8USd1tjiRGtlJaWAhBEwfDhw6W/7969G52dndKF+w033IDZs2dHPT7RhX2kiA0EAujq6goTFWeffTZuuukm7NmzB++//77iPpssJSUl4Dgu5vdaXl4OAFLFKbL/jFkpGRMmTMAf/vAHBAIBfPbZZ1i3bh2efPJJjBo1Cueff35Sv5d169bB5/Ph4Ycflr4PxiOPPILnn38e11xzTc79XgiCyG8o1IMgCCIFnE4n3n33XZx++ulSwqL8f6eddpo058hgMOCMM87AG2+8gZdffhkLFy6ULGYOhwPHHnssdu/ejalTp0r/a2xsxMMPPxx3oPLu3bvR3d2NH/7wh2hsbJR6r9555x0AwkWk0WjEN77xjajggubm5jCr1ezZs3H48GFUVVWFbceHH34Y1heUKrNmzcKWLVvQ2toa9vf169dj2LBhGDt2rPS5HDlyJOw+//3vf6X/PnjwIObNm4eXX34ZgHARf+mll+LEE0+UHjd79mzs2bMH48ePD3tP69evx9NPP63be0oE64WK/A4eeOAB3HHHHZgwYQKqqqpw4MCBsO0cPnw47r///oSpkB988EHYd/nKK6/A7/djzpw50t8WL16MoqIi/PrXv4bNZsO3v/1t3d5fUVERpkyZgg0bNoSJ6L6+Prz11lvS+2f7vDwco6enJyz04+WXX8YJJ5yA9vZ2GI1GzJgxA7fddhtKS0tx5MiRpH8v//73vzF9+nQsWrQo6rf6gx/8AD09PXjppZdy7vdCEER+QxUygiCIFHjuuefg9/sVV+kB4KyzzsI///lPrF27Ftdeey2WLVuGv/zlLzAajVi9enXYfa+55hr89Kc/xbXXXoslS5YgEAjgr3/9Kz799FNcfvnlMbdh/PjxcDgceOyxx2AymWAymfDKK6/gmWeeASBY8gChWnfRRRfh5z//Oc455xwcOnQIf/rTnwCEqhbLly/H//f//X/40Y9+hMsuuwwjRozABx98gDVr1uDCCy+E2WxO+TMDgB/96EdYv349fvSjH+FnP/sZKioq8Pzzz2Pjxo24++67JVH5rW99Cy+++CKmTZuG8ePH47nnnsO+ffuk56mrq8Pw4cNx5513or+/H2PGjMEXX3yBt99+G//zP/8DAFixYgXWrVuHFStW4Mc//jEqKiqwYcMGrF27FjfddJMu70cNxxxzDL7zne/gvvvug9vtxuTJk/Hee+/htddew4MPPgij0Yhf/vKX+PWvfw2j0Yj58+ejt7cXjz76KI4ePRrTFsdwOp246qqrcNFFF2Hv3r344x//iG9+85uYO3eudB+73Y7TTz8d//rXv3DuuefCZrPp+h6vvfZa/OQnP8Ell1yCCy+8ED6fD48//ji8Xq/UOzlx4kSMGDECDz/8MEpKSmAwGPD444+HVbW+8Y1vIBgM4sorr8RPf/pTFBcX46WXXkJfX58kIrX+Xj777DPs2LEjZujMwoULUVZWhqeeegpnnXWWrr+X/fv3o7OzE9OnT9ftsyYIIo/gCYIgiKT57ne/y59++ulx7/Od73yHnzt3Lu/xeHie5/mlS5fyJ5xwAu/z+aLu+8EHH/Dnn38+P23aNH7mzJn8D3/4Q/6jjz6Sbn/22Wf5pqYmvrW1NexxGzdu5JcvX85PmzaNnzt3Lv/jH/+Y//jjj/kZM2bw9957r3S/1157jT/jjDP4yZMn89/+9rf5F198kW9qauL/+te/SvdxOp38TTfdxM+dO5efMmUKv3jxYn7NmjV8IBCI+R5bW1v5pqYm/tlnn1W8fePGjXxTUxO/ceNG6W/79+/nf/GLX/DHH388f9xxx/HnnXce//rrr4c9rr29nf/5z3/OT58+nT/++OP5X//61/zatWv5pqYm6T5tbW38jTfeyJ900kn85MmT+VNPPZVfvXp12Pbu27eP//nPf87PmjWLnzZtGr9kyRL+6aefjvl+4n3WWu574YUX8hdeeKH0b4/Hw99///38Kaecwk+dOpVfsmQJ/9JLL4U95sUXX+TPOussfsqUKfzs2bP5yy67jN++fXvc158/fz5/55138rfeeis/ffp0fvbs2fxtt93Gu1yuqPs2NzfzTU1N/H//+9+k3xdj1apVYd8FzwvfNduHjz/+eP6yyy7jd+zYEXafTz/9lD/vvPP4KVOm8N/61rf4v/3tb/yvfvWrsM/q008/5X/84x/zs2fP5qdOncovX76cf/XVV8OeJ9HvRc6vf/1rftKkSXx7e3vM9/vrX/+ab2pq4r/66iue5/X7vaxcuTLqcyIIgmBwPJ9gsAlBEASRF7zxxhsYPnx4WKWlpaUFZ5xxBh599FEsXLgwi1tHZIrbbrsNn3zyCV544YVsb0pOQ78XgiAyBVkWCYIgCoT33nsPGzZswHXXXYfx48fjyJEjWL16NSZMmICTTjop25tHpJn/+7//w+7du/Gvf/1L1zCPfIV+LwRBZAoSZARBEAXCypUrYbPZsHr1arS1taG8vBwnn3wyrr322pgx4UT+8PHHH+Pdd9/FRRddpGr2WKFDvxeCIDIFWRYJgiAIgiAIgiCyBMXeEwRBEARBEARBZAkSZARBEARBEARBEFmCBBlBEARBEARBEESWIEFGEARBEARBEASRJUiQEQRBEARBEARBZAmKvU8DHR19oOzK3IHjgKqqEvpeCgD6rgsD+p4LB/quCwf6rguDQvue2ftNBAmyNMDzKIidbKhB30vhQN91YUDfc+FA33XhQN91YUDfczhkWSQIgiAIgiAIgsgSJMgIgiAIgiAIgiCyBAkygiAIgiAIgiCILEGCjCAIgiAIgiAIIkuQICMIgiAIgiAIgsgSJMgIgiAIgiAIgiCyBAkygiAIgiAIgiCILEGCjCAIgiAIgiAIIkuQICMIgiAIgiAIgsgSJMgIgiAIgiAIgiCyBAkygiAIgiAIgiCILEGCjCAIgiAIgiAIIkuQICMIgiAIgiAIgsgSpmxvAEEQBEEQBBGbQJDH1oM9cPZ7Ue2wYHpdGYwGLtubRRCETpAgIwiCIAiCyFGaW5y4v3kn2vq90t9qHBZcu6ABCxqrs7hlBEHoBVkWCYIgCIIgcpDmFidWrv8qTIwBQFu/FyvXf4XmFmeWtowgCD0hQUYQBEEQBJFjBII87m/eGfc+f3xzFwJBPkNbRBBEuiBBRhAEQRAEkWNsPdgTVRmL5GifB1sP9mRoiwiCSBfUQ5aHUPMvQRAEQQxtnAnEmNb7EQSRu5AgyzOo+ZcgCIIghj7VDouu9yMIInchy2IeQc2/BEEQBJEfTK8rQ00CsVVbYsX0urIMbRFBEOmCBFmeQM2/BEEQBJE/GA0crl3QEPc+18yvp5YEgsgDSJDlCdT8SxAEQRD5xYLGaty75NioSlltiRX3LjmWWhEIIk8gQZYnUPMvQRAEQeQfCxqrsf7SOagrswEAvj2xGusumU1ijCDyCBJkeQI1/xIEQRBEfmI0cLAYhUu2aoeVbIoEkWeQIMsTqPmXIAiCIPIXXzAIAPAHqBecIPINEmR5AjX/EgRBEET+4vWLgozCuQgi7yBBlkdQ8y9BEARB5CdMiPnFShlBEPkDDYbOMxY0VmNefRV+/uzn2Ly/G8unDccNCxupMkYQBEEQQxifaFX0kWWRIPIOqpDlIUYDhwnVxQCAEpuZxBhBEARBDHG8AbIsEkS+QoIsTym1CcXPXrcvy1tCEARBEESq+EmQEUTeQoIsTymTBJk/y1tCEARBEEQqBII8mFORCTOCIPIHEmR5SqnNDADoIUFGEARBEEMan0yEUYWMIPIPEmR5SpldrJANkmWRIAiCIIYychFGgowg8g8SZHkKVcgIgiAIIj8Iq5CRZZEg8g4SZHlKGYV6EARBEERe4A1QhYwg8hkSZHkKS1kc9AXh9dNqGkEQBEEMVaiHjCDyGxJkeYrDagIbP9brIdsiQRAEQQxV/FQhI4i8hgRZnmLgOJRYhSpZDwV7EARBEMSQxRvWQ0aCjCDyDRJkeUyZXQj2oFlkBEEQBDF08YWlLFIbAkHkGyTI8phSCvYgCIIgiCGPPFnRRxUygsg7SJDlMUyQUfQ9QRAEQQxdvBTqQRB5DQmyPKbMRpZFgiAIghjq+CjUgyDyGlO2N4BIH1KFjEI9dCEQ5LH1YA+c/V5UOyyYXlcGI4uyJAiCIIg0ES7IqIeMIPINEmR5DFXI9KO5xYn7m3eird8r/a3GYcG1CxqwoLE6i1tGEARB5Ds+SlkkhhC0gK0dEmR5DIV66ENzixMr138V9fe2fi9Wrv8K9y45lkQZQRAEkTZ8QeohI4YGtICdHNRDlsew2HsK9UieQJDH/c07497nj2/uQoBOkARBEESaiOwh43k65xC5B1vAlosxILSA3dzizNKW5T4kyPIY6iFLna0He6IOLJEc7fNg68GeDG0RQRAEUWjILYsAaBGQyDloATs1SJDlMWWSZZEqZMniTCDGtN6PIAiCILQSOXuMbItErqF2AXvLAVrAVoIEWR5TSqEeKVPtsOh6P4IgCILQSmSFjAQZkWuoXsB20QK2EiTI8pgyu1AhG/AFog7mhDqm15WhJoHYqi2xYnpdWYa2iCAIgig0oipklLRI5BiqF7CLaQFbCRJkeYzDagILGaVgj+QwGjhcu6Ah7n2umV9Pca4EQRBE2oiukNEiK5FbqF3AnjGKFrCVIEGWxxg4jqLvdWBBYzXuXXIsHBZj2N9rS6wUeU8QBEGkHS/1kBE5Di1gpwYJsjxHEmSDVCFLhQWN1fjBzDrp32dOrsW6S2aTGCMIgiDSTmRFLNLCSBC5AFvALjLTArZWaDB0nlNmN6O1202WRR2QnwCNBo5WeQiCIIiMQCmLxFBhQWM13m5px4Zt7QCAW7/diDMmD6drpgRQhSzPIcuifnj8oRXKo32eLG4JQRAEUUh4qYeMGEJ0DISuOSdUFZMYUwEJsjyHRd9ThSx13P6A9N9t/STICIIgiMzgp9h7YgjR4QoJskFfIM49CQYJsjynjCpkukEVMoIgCCIbUOw9MZSQzxob9FE1Vw0kyPKckGWRKmSpIhdk/Z4AXF76TAmCIIj0E21ZJEFG5Ca+QBDdg6EigJsqZKogQZbnlDHLIqUspow7YpWHqmQEQRBEJogUYJFzyQgiV+gcCHdkyds9iNiQIMtzSu1ChayHLIsp44k4qLSRICMIgiAyQPRgaKqQEbmJ3K4IkGVRLSTI8hwW6kGWxdRxi5ZFlhVEFTKCIAgiE9BgaGKo0BElyKhCpgYSZHkOhXroB+shG1FqBUCCjCAIgsgMlLJIDBUiK2TUQ6YOEmR5ThlVyHSDCbIxFUUASJARBEEQmSE6ZZFsYERuElkhc/tpX1UDCbI8h6UsurwBOoCnCFvlGVtpB0CCjCAIgsgMLGXRKHrmqUJG5CpMkLFh0GRZVAcJsjzHYTVJPU80HDo1QhUyQZC19Xnj3Z0gCIIgdIEJMLvFGPZvgsg1mCAbKbZ3UKiHOkiQ5TlGA4cSmkWmC+4IQXa0zwOep5MiQRAEkV5YyqLdLAoycrwQOQrrIasrF66VqIdMHSTICgAK9kgdnuelCtloUZAN+ALo99CBhiAIgkgvLGVREmRUISNyFFYhGy0JMlo8UAMJsgKARd+TZTF5PLKm1HK7WRK51EdGEARBpBtWESsiQUbkMDzPSxWyUeU2ANRDphYSZAUAC/boGaQKWbLIU4KsJiNqSsTo+34SZARBEER68UkVMuGyzR8gQUbkHn0ev7Sv1pWRINMCCbICoJR6yFKGVchMBg4mA4faEppFRhAEQWQGlrJoowoZkcOw6lipzSS5syj2Xh0kyAqAcjubRUYVsmRhgsxqEn4yJMgIgiCITMDzvCTAiqSURbrIJXIP1j9WVWSRqrkU6qEOEmQFgGRZpApZ0rADCgkygiAIIpPIq2GsQhY5KJogcgFWIatyWKR9lWLv1UGCrABgZWOyLCYPq5CxAwwJMoIgCCITeGUR9xTqQeQyHS7BiVVVZJYSQamHTB0kyAoACvVIHbdfuULWRoKMIAiCSCPyapgU6kGCjMhBnP1Chay62AqbKbSv0ty8xJAgKwDKqEKWMlKFTMGySMOhCYIgiHTBLmaNHGAxGsL+RhC5RMeAaFksDlXIAAr2UAMJsgKgzE6DoVMlUpANc1ilv1NvHkEQBJEu2FBok9EAk5EDQBUyIjdhPWTVDgvMRg7i7kq2RRWQICsAaDB06rBJ81aTUfx/AyrE9ErqIyMIgiDShU+shpmNHEwGsiwSuYs8ZZHjOAr20AAJsgKA9ZC5vAGyOSSJR+whs5lDPxnqIyMIgiDSDeshsxgNMBk48W90Lidyjw5ZhQyATJBRhSwRJMgKgBKrCWLVGL0eqpIlgztiDhlASYsEQRBE+vGJM8dMBg5m0QMWoAoZkWN4/UEpq6CqSBBkNItMPSTICgCjgUOJWCXrHSRBlgyRg6EBEmQEQRBE+mEVMrOsQkaWRSLXYIEeZiMnObNYsIebLIsJIUFWIISGQ1OwRzK4pVCPUGoQCTKCIAgi3TB7omBZpB4yIjdhkfesfwwIXTORZTExJMgKBAr2SA1WbpdXyGpIkBEEQRBphgkyk5ELpSwGSJARuUVk/xgQ6rsf9JMgS4Qp2xtAZAZWIaPo++SIZ1ls6ydBRhAEQaQHZcsiWcCI5AgEeWw92ANnvxfVDgum15XBaOASPzABUuR9cUiQkWVRPRmvkK1fvx4zZswI+9+UKVMwZcoUAMCnn36K733ve5gxYwYWLFiAp59+Ouzxzz33HBYtWoTp06dj+fLl2LJli3RbIBDAvffeixNPPBEzZszA5Zdfjra2Nun2jo4OXHHFFTj++OMxZ84c3HXXXfD7QxWjRK89lCmTBBlVyJJBmkNmjrYsttFwaIIgCCJNhCyLHPWQESnR3OLEkjWbcNnaz3Drhu24bO1nWLJmE5pbnCk/txR5HybIxAoZWRYTknFBtmTJEmzZskX638svv4zy8nLcdddd6OnpwU9/+lMsW7YMH330Ee666y7cc889+OyzzwAAmzZtwh133IHf/e53+Oijj7BkyRJcfvnlGBwcBACsXr0a77//Pp599lm8++67sNlsuPXWW6XXvvrqq1FUVIR3330XzzzzDD788EM88cQTAJDwtYc6ZWRZTInQHDKZZdFhAQdhaGfXIFUeCYIgCP3xyQZDG8UeMh9ZFgmNNLc4sXL9V2gTe70Ybf1erFz/VcqizKkgyGxUIVNNVnvIeJ7H9ddfj29961tYunQpXn31VZSXl+OCCy6AyWTC3LlzceaZZ+If//gHAODpp5/G6aefjpkzZ8JsNmPFihWoqKjAhg0bpNsvvfRSjBgxAg6HA7fccgveeecdtLa2Yt++fdi8eTOuv/562O12jB49GldccYX03Ilee6gjWRZJOCSFNIdMJshMRoN04KE+MoIgCCIdsNh7syz2nipkhBYCQR73N++Me58/vrkrpXEKShUyds1EFbLEZLWHbN26ddi5cyceffRRAEBLSwuamprC7tPQ0IBnnnkGALBz506cffbZUbdv374dfX19OHLkSNjjq6urUVZWhq+//hoAUF5ejtraWun2+vp6HDp0CL29vQlfWwtc6lZc3Smzhypkubh96YS931TetyfALIuGsOepKbHC6fKird+DY4eXpLCVhB7o8V0TuQ99z4UDfdeywdAmg0yQBfPuM6HvOn1sPdgTVRmL5GifB1sP9uD4MeVJvQYTZMMcFuk7LLIIFTKPPxj1/RbK96z2fWZNkAWDQaxevRqXXXYZHA4HAMDlcsFut4fdz2azYWBgIOHtLpcLAFBUVBR1O7st8rHs3+zx8V5bC1VVuXdhPqpG+IzdQR7V1bm3fZkgle8lII7WHlZZHPb5jakqxldH+uAKcgX7ueYiufgbJPSHvufCoZC/a6u9AwDgsFtQVVEMAOC5/D3nFPJ3nS48B3rV3c9gSHq/6hJbYupHlkvPUVUmXFfzxujnpe85nKwJsk2bNqGtrQ3nnHOO9De73Y6+vr6w+7ndbhQXF0u3u93uqNsrKiokMcX6ySIfz/N81G3s38XFxQlfWwsdHX3ItYwHTiwXO3vdcDr7Etw7v+A44YefyvfSL1o9vYPesM+vwiqs/uw63FNwn2suosd3TeQ+9D0XDvRdA129wrVK0B+Aq1+4BvJ4A3l3zqHvOn1YVaZyWoPBpParIM+jTWzdMPn90nMEfYJI6+oLXXsW2vfM3m8isibIXnnlFSxatCisotXU1IT3338/7H47d+5EY2MjAKCxsREtLS1Rt59yyikoKytDbW0tdu7cKVkP29vb0d3djaamJgSDQXR3d8PpdKK6uhoAsGvXLgwfPhwlJSUJX1sLPI+c28lKrWwwtD/nti1TpPK9sDlkFqMh7Dnks8gK9XPNRXLxN0joD33PhUMhf9deMeXXbORg5EI9ZPn6eRTyd50upteVocZhiWtbrC2xYnpdWVKffc+AX+o/q7CbpeewSoOhg1HPS99zOFkL9fjkk08wa9assL8tWrQITqcTTzzxBHw+HzZu3IgXXnhB6hs755xz8MILL2Djxo3w+Xx44okn0NHRgUWLFgEAli9fjtWrV6O1tRX9/f24++67MXv2bIwZMwbjxo3DzJkzcffdd6O/vx+tra149NFHpQpdotce6rBQjx4K9UgKpdh7IBR9T6EeBEEQRDrwK8whY1H4BKEGo4HDtQsa4t7nmvn1Sc8jYwmL5XYzzMaQtGCx924K9UhI1ipkBw4cQE1NTdjfKioq8Ne//hV33XUXVq1ahcrKStx666044YQTAABz587Fb37zG9x22204evQoGhoasGbNGpSXlwMArrzySvj9flxwwQVwuVyYM2cOHnzwQen5V61ahd/+9rdYuHAhDAYDli1bhiuuuELVaw91WOy9yxuAPxCEyZjVgM0hh9JgaECIvgcgleoJgiAIQk9YyqLJwEkXu6mk4RGFyYLGaty75Fjc/MJXkE9NqC2x4pr59VjQWJ30c4cSFs1hf7fLKmREfLImyOQDneVMnToVTz31VMzHLV26FEuXLlW8zWw247rrrsN1112neHt1dTVWrVoV87kTvfZQpsQW+qr7PH5UFFni3JuIxK0Qew/IhkP3exHkeRgKJTaIIAiCyAhev5iyKKuQUew9kQyTh5eEibHJwx34yw9mJF0ZY7AKWXVx+LWlnc0h81OFLBFUJikQjAYOJbI+MkI9PM+HLIsRgqzaYYWBE06Ona74kbIEQRAEoRV/MNRDZqI5ZEQKfLS/K+zfFqMhZTEGKM8gA4RRQQDNIVMDCbICQhoOTYJME74Aj2BEgyrDZOCkFSHqIyMIgiD0xqfQQ+anHjIiCT7a3w0AmCiOQhrQyUoYq0LG+u7dZFlMCAmyAoKCPZKDVceA6B4yAKgtsQEAjiYYukgQBEEQWvEGWIUsJMgCvBA1ThBq4XleEmTz6qsA6Fe5ilUhY5ZFqpAlhgRZAVFmF5otqUKmDY/ofTZwgmUkkhqH8Lm+vdOJT1q7qdmaIAiC0A1fQGZZNIQu2/wBOtcQ6tnXOYj2fi8sRg5zxlUAAAa8+gil2D1koZRFnhYQ4pK1UA8i85SxCpk7vEIWCPLYerAHzn4vqh0WTK8r08VTnC+4ZQmLXERoR3OLEx/uFTzZG75qw4av2lDjsODaBQ0pJRYRBEEQBBDqFzMbDWGLgv4gD4rnItSyWayOTasrQ4W4QJ/uCplNbPMI8IL11mKia8tYkCArIEpt0RWy5hYn7m/eGTYskARFOG4p0CO8f6y5xYmV67+Kun9bvxcr13+Fe5ccS58hQRAEkRLSYGgDJ1kWARb2YYzxKIIIhwV6zB5TDrtF2G8GvELlKnKxWSvOmJbFUEXX7Q/AotD2QQjQJ1NARPaQMUERObmdCYrmFmfGtzEXUZpBFgjyuL95Z9zH/fHNXWRfJAiCIFLCJ6uQGQ3hFTKCUEMgyOOT1h4AwKwx5SgSe7t4hPfJJ4PbF4BLtD5GWhZNsr5HmkUWHxJkBYS8h4wEhXrYhHm5INt6sCdKyEZytM+DrQd70rptBEEQRH7jl/WQcRwniTLqISPU8nVbP/o8fhRbjDimtkSKoweAgRRti6w6ZjUZUGyJrthSsIc6SJAVEGWy2HsSFOqRZpCZQwcap8pERbX3IwiCIAglvLLYewA0HJrQDEtXnDm6HCYDBwPHSXbCVIM95P1jStZHmyzYg4gNCbIColQW6kGCQj1uBctitUNdK7Xa+xEEQRCEEvKURYAEGaGdzfuE/rFZY8qlv+lVueqIkbAY+To0iyw+JMgKCIdFEGRHej3oGFAntEhQhGLvbTJBNr2uDDUJPpvaEium15WlddsIgiCI/MYXo0Lmo+HQhAo8/iA+PdQLIFyQFcmCPVIhVqAHg107DfqpQhYPEmQFQnOLEze+ICQCdg368MBbuxM+hgSFgMcXXSEzGjhcu6Ah7uOumV9P4wMIgiCIlIiskDFhRhUyQg2fH+qFxx9EVbEFE6qKpL/rVblSWyGjUI/4kCArAFiaYseAL/GdZZCgEAhZFsObVRc0VuPeJcdGVcpqS6wUeU8QBEHogpSyaKAeMkI9QrJiN5767wEAwMxRpWE9XixpUa9Qj6pis+Lt1EOmDppDlueoSVM0cID8uF5bYsU18+tJUIiEQj2i1y8WNFZjXn0Vnti0H499sA9jKmxYu2IWCVmCIAhCF1iFzMIsi0aWskgVB0IZpRmzH+7tRnOLU7q2Y7PIUu8hExb7E1fISJDFgypkeY6aNMUgDxw3shQAcNqkGqy7ZDaJMRmsh8waY6Ch0cBhYdMwAICz3wfSYgRBEIResB4yE4V6ECqINWO2z+MPmzErVchS6CELBHns7xoAAHQN+BRHJdko1EMVJMjyHLUpiSyBsbzITNWdCNwKPWSRjCq3wWjgMOALoJ2SKQmCIAidCPWQMcsi9ZARymiZMZtqhay5xYklazahtdsNAHjkvb1YsmaTJPgYUqhHEq/DbJevbGvDJ63deT0blyyLeY7alEQ2NDrVie35iNIcskhMRgNGldmwr2sQezsHUFNizdTmEQRBEHlMyLIYUSGjwdBEBFpmzKZSIWNVuEja+r1Yuf6rsD76ZEM9lGyXNQ4Lrl3QkJcuLqqQ5Tlq49nHVdoBkMdXCbdC7L0SYyuF9KK9nYNp3yaCIAgi/+F5XmZZFM5BLG3RH6QFVCIcLTNm7UmGemipwgGQBlBrCfWIZbtkgi+yCpcPkCDLc9TGsxeLM8ooljQaj8JgaCWYqN3XOZD2bSIIgiDynwAPsDqY2UA9ZER81Lqiqh0WFFmSsxJqqcIBsh4ylXPItAq+fIEEWQGgJp6dYkljI1kWVVbI9nWRICMIgiBSRz782SKeg4xsDhlZFokI1LqipteVhSpkGi2LWqpwQEiQqV3w1yr48gXqISsQWDz71oM9cPZ7Ue2wYHpdmRTgERoQSIIsklCoR+weMgAYWyFUyMiySBAEQeiBXJBRhYxIBHNFKfV3MdiM2WR7u7RU4QDArjHUQ6vgyxeoQlZAGA0cZo4ux+JJNZg5ujwsTTFUUibLYiQs9l5pDpkcViE72udJKUaWIAiCIIBQ5D0A6ZwdEmR0viaiYa6oEmt4zUXuigKSHwytpQoHaF/w1yr48gUSZASA1GJJ8x23yh6ycrsZFWJa5X6yLRIEQRApIk9Y5LhwQeYjyyIRgwWN1ThzSi0A4ISx5Xjs3GlRM2al2HuNC8hqswnYAoLWBX+tgi9fIEFGAEg+lrQQcEs9ZPEti4A82INsiwRBEERqMNHFZpDJ/5ssi0Q8WruE65CT66ujXFFA8hUyQBB87HpHTmQVDgi5i9Qu+GsVfPkC9ZARAEChHnFQm7IIAGMqi7DlYC/2UtIiQRAEkSI+0ZZokl18Ug8ZoYZ9oiAbqyCcgOQrZIDQmsH65e8+YxKCQT4qm0B6nSQW/JntMnIOWW2JFdfMr8/LOWQkyAgAMo8v9ZBFwUSqGkE2jmaREQRBEDrh8wuiyyI7/4QGQ9P5mlDGHwjiYI8bQChwLJIiSShpF2Rv7GgHAEyvK8WiicPi3jeZOWRAKIxu4cPvw+ULYtaYcjx09tS8q4wxyLJIAADsoh3P4w8iyNOqmxwp9t6swbJIPWQEQRBEirAKmVleITNShYyIz8EeNwJBHjaTATUlVsX7MKGUjGXx1e2CIFs0sSbhfUOhHtoXEIwGDqxV0mYy5K0YA0iQESLyBMFkfjT5jBbLIquQ7e8aJGFLEARBpATrITMZ5RUy6iEj4sPsiqMr7DBwyiKmSLQs+gJ82HiFRBzsGcSXR/pg4ICFTYmtg/LQOF7jdRHP89I1mCvP06tJkBEAwsUGJS2G8Ad56aSnRpCNKLXBbOTg8QdxpNeT7s0jCIIg8hivlLKoYFkkQUbEYD/rH6soinkfu8z1o+W67/WvnQCAb4wuR1Vx4uh55i7iEVrgVos/yIPt5STIiIKA4zhpFcPtz++dXgse2WdhUyHIjAYOo8vZgGiyLRIEQRDJ45dSFqNDPbRUNYjCYp94/REr0AMQ0jrZfqVlduqr29sAIGHvGEMu/LQ6sOQCbsDr1/TYoQYJMkKCou+jkR881FTIAHmwBwkygiAIInmY6GI2RSAkzgJUISNiwCyLY2IEejCKNF737escwI52F4wGDgsa1CUdGg0cLOI+q3XB3ytbdMj3ChmlLBISdrMBXYOAhyyLEvL+MS6GDzuSsTSLjCAIgtABybJoklfIcqOHLBDksfVgD5z93piR50R2kCyLlbEti4CwEN/j9qsO9njtayHMY/aYcpQXmVVvj81shDfg17zg7/WTICMKECtVyKKQEhZVVseAUIWMkhYJgiAKg3SJEya6zLIKmZSyGMieIGtucUbNiKpxWHDtgoa8nBE1lOj3+NHhEr6XWJH3DLWzyNj+/dxnhwGoC/OQYzMZ0AvtGQXyUUwefxC+QDBsSHo+QYKMkLCnMJMiX2HldbV2RSC0IkWzyAiCIPKfdIoTybKo0EPmD2Zn8bS5xYmV67+K+ntbvxcr13+Fe5ccS6IsizC7YmWRGQ5r/Mt8ZlmMVyFT2r//9/19KLGZVX/PyV5feiNCQFzeAMrt+SnI8vNdEUkRCvWgChnD41M/g4zBVqQ6XF70ufO7CZUgCKKQYeJEfrEKhMRJc4szpef3ilUwecqiMYspi4Egj/ubd8a9zx/f3EX9bVlkfxcL9IhvVwQSV8hi7d/tLm37tzSLTOP1pTciuEZL+MhQgwQZIUEVsmiSqZA5rCZUi1GwZFskCILITzIhTliFLDxl0SDelnnRs/VgT9TFeSRH+zzYerAnQ1tERML61xPZFQF5qEf0dZ+e+zebdevWeH0ZGZPvyuOkRRJkhIQ9yR9MPpNMDxkAjKNgD4IgiLwmE+IkFHsfnbKYjQqZM8H71Xo/Qn/YdUeihEUgdN2nZFnUc/+2JWtZjKiQuTz5e31KgoyQYKEeWudE5DPylEUtjKXoe4IgiLwmE+LEq1ghU9dDFgjy+KS1G69sa8Mnrd262AirHYkHAWu5H6E/WiyLRZbYQknP/TvZsUoeX3QPWb5CoR6EhF0UHWRZDMHEqdWkvocMoFlkBEEQ+U4mxIkvyZTFdAWNTK8rQ43DErdyUltixfS6sqRfg0ieIM+HIu9VVcjEUA9vtFDSc/9O1oEVVSEjyyJRCNiSbLrMZ9hnwfzPatFzFlk6VjkJgiCI1GDiJB6pihOfn1XIZIIswRyydAaNGA0crl3QEPc+18yvp3lkWaK93wu3PwijgUNdmS3h/eP1kOm5f9tMyTmwonvI8rdgQIKMkGArGFQhC+FJItQDCFXIWrsHU/L5N7c4sWTNJly29jPcumE7Llv7GZas2ZRychdBEASRGpkQJ1KFTNGyGH1uyUTQyILGaty75FgYI95WjcNCkfdZZp/oyqkrs8GkYl4Xsywq9ZDpuX/bkry+jK6Q5e/1KQkyQkKKJSVBJuFOsoestsQKq8kAf5DHoR53Uq+d7jhlgiAIIjWYOCm2RNvaL/vmWN3mkCkJMl8gutqQqRTEmaPKwByTbNvuWzqZxFiW2afBrgjIertiCB22f1sjxF1tiVWT+E42xTuqQuYhyyJRALA+KbIshgilLGrrITNwnJRwlEwfGc16IQiCGBosaKzGWdNGAABOHF+BkydUAgA+Pdib8nOHBJm6lMVMpSB+eaQPADC63IbjRpYCAFqcrpSek0gdqX9MRaAHEL9CxljQWI1jhzsAAOdOH4nHzp2GdZfM1iS+k51DRpZFoiAhy2I0rFqotUIGhFaoXt2uvfeLZr0QBEEMHdjA2ikjSnHN/HoYOODDvV34+mh/Ss/rU4i9j9dDlqkUxC8PC4Js8ohSNNUIF+s72lJ7r0TqMMuimsh7IHGFjNEnxs2fUl+FmaPLNdtw2eggzaEefhoMTRQgtizE3ud6YIUnyVCP5hYnPtzbBQB4ZXu75t4vmvVCEAQxdOgTrVQlVhNGlduxaOIwAMATm/en9LySIDNEWxaVzpeZCBoBgC+OCNW/qSNK0DSMBFmuIFkWK9UJMhbqEa9CBgC9bh8AoNSeXDh7srH3kWMf8jllkWLvCYlMV8jSFcurJ6E5ZOoti6z3KxLW+6XGd02zXgiCIIYOckEGACtmj8Er29vx+g4nTvryCEwGA6odFkyvK9NUXZAsiyal2Pvoi1sWxKB0DmKkGjTC83xYhYz1F+1odyHI8zBwlLCYDbz+IA6LPetjK9RZFu1x5pDJ6XEL+3epLTnZkGyoB7sGq7Cb0dbvRT9VyIhCwJ7BCtlQCazQGuqhV+9XplY5CYIgiNTpFwWZQxRkDcOKMalWqBzd9vKOpFNyfeLwZ6UKWawEXxbEYDenFsQQi9ZuN3rcfliMHJqGFWNcpR0WIweXN5B0iBWROq3dg+ABFFuMqCwyq3qMVCGLI3Q8/qAkjEqt6p43kmR7yFiFrKpYuB5yeUiQEQWA5PH1p3eHH0qBFSz23qZSkOnV+0WzXgiCIIYOfWIFocQmXHg2tzixTaF/TOuio9YeMsaCxmp8d1KN9O+zjxuhOYghFl8cFuyKE2scMBsNMBkNqK8uBkC2xWyyTxbowamsUtotiStXfaJd0cABxVZtAWeMlCtkosDMZ8siCTJCwpakx1crQymwwqOxQqZn7xdb5Sy1hlsE9FrlJAiCIPRBblnUc9GRWRYtirH38R/vibhdrwU8ZlecMqJU+hvrI/uaBFnW2C8GeqiNvAfkg6GDCPLK+xOzK5ZYTUnbUZMdq+SVWRYBCvUgCgS2gpHuOWRDKbCC2TeZWE2E3r1fCxqrsfy44dK/zQZOt1VOgiAIQh/6ZYJMz0VHJrrkQ36lHrJg/MVTeUIdi0PXgy+OMEFWIv1NSlpsp+j7bKE10AMICSUgdrtKryjIyuzJ2RWB5Bf8QxUy0bJIgowoBOQe31grJXowlAIrtFbI0tH7daA75Mn3BfmoyfUEQRBE9nD7AvCKwqnEZtJ10THeYOh4lkUgXJAd6NZHkHn8QcmWOFkmyCbWCJZFqpBlj32dwnc8RmWgByBc27A9K1bSopSwmGSgBxAKjdNcIRP3/0qZZZFP4/VpNiFBRkjIV0oih/HpyVAKrHBr7CFLR+/XvoiVzc6B7FcOCYIgCAFWHTNwggVMz0VHViGzhFXIxB6yRJZF2Xn8SK9Hl/P612398Ad5VNjNGFlqk/7eMKwYHID2fi+do7LE/i7tlkWO46Th0LFmkaWasAgANlNyC/5sUaFSrJAFee3BIEMFEmSEhLwKlE7bYiqiJdNzy6Q5ZBpi71nvV6ToTKb3i+d5tIqCjC2Qdg34VD+eIAiCSC9saG6J1QSO43RddGQpiyaFlEUeyrPIGB6Zm4IHcLAn9SoZC/SYMqIkLDii2GLCaFEIULBH5uke9EnCSe1QaIY9wSyyXnf4SIdkCFvw12BbZH2QpTYT2E8gX22LJMgICQPHSaIs3cEeTLSURCT21DgsMUVLc4sTS9ZswmVrP0s6QlgrWi2LjAWN1Vh/6RxcedI4AEBdmS2p3q/2fi/c/iCMBg4TxBSrThJkBEEQOUNfROS9nk4J5ZTF0OPi2RYjK2KtOvSRKQV6MEIDoqmPLJMEgjxe2dYGQAi/kO8rakhUIWMpi2W2VHrIQtukJWmRJV1bTQZpO12e/ExaJEFGhBGapp7+FYgFjdW4ePbosL/d9p2JMcVYNuaWsUqh1az9p2I0cDiloQoA0OP2JZVwxRqx68psqHFYAQBdZAchCILIGSKHQgP6OSVCKYvKgswXp6eY2b3KxTCG1u7UZ4SxCpm8f4zRRH1kGYctVN/35i4AQNegT/NCdaIKmR6WRfmCvxbLoVe2KF5sEV6fKmREQWBL4geTCpGVOKW5LdmaWxbkealRW20PWSQjRI99vycgzanRAvOEj6mwS3M4Mlkhy7RFlCAIYqjRLx7bHREXrMwpMXtMOYDkZoGFUhZDIkxeAYlfIRMuXBuqhZCHVCtknQNeHOr1gAMweXi0IJsoJS2SIMsEei1UFyWYEcYsi6UppCwCoesobRUycUHCZEAxq5Dl6Syy5OUukZckOysiWdhMCavJAI8/KMXpytESITxzdLlu2ya3e1g19JDJsZuNKLeb0T3ow+FeN0psDk2PZ4EeYyrs0qpopnrImlucuL95Z9hnX+Ow4NoFDRS7TxAEIaJUIWMYDRzGVxVh8/5ulNpMmp0SSimLRgMHDkJfmBrLYn11MT5u7cH+FJMWvxDtiuOqiiR7phwWfb+vcxCDvkBY3xChL2oXqufVVyXc5+yi0Ik146tXsiymJhnsZiN63H5NgowtiodVyDxUISMKgNAsssxUyNgBYMYoobn5S9EOISdbc8vkjadae8jkjCgVrIaHe7XbRfbLBBmbw5GJBKtsWUQJgiCGGiFBpixAWO9Nz6D2lX0lyyIgm0UWx7LIBFmD2H98IMUKGTs/T1GojgFAdbEFVcUW8AB20jyytKLnrLuiBK0qvTpYFgH5gr92y6LFGKqQxbJWDnVIkBFh2DLYQwaEvMDHjy6HkRMu+Nv6PGH3ydbcMhZ5bzZySfV/MZht8XCvJ8E9o5ELMjaHI90VsmxZRAmCIIYi/RGhHpGwC1lWaVBLIMiDJdubDRGCTMUsMjbDqWGYIMiO9qUWff/F4eiB0JE0DaM+skyg50K11EOWMPY+RctiErPI5KEexeKCRz9VyIhCwJ7AS6w3Az7hh15ZZJZSBCNti9maW+ZOMmExkpAg01Yh8wd5HOwRHjOmokjqIesaTK8g03PljSAIIt+JZ1kEgFK78PcejX3EcrEl7yEDAJMo0GIJMp7nJfFVW2KFw2oEj+QHRAd5Hl+K5+bJCgmLjCbqI8sIei5USymLMcS6NBg6hdh7QL7gr25RwC9bkJBXyPK1h4wEGRGGfHhfJmArMsUWo7Tq9sWhcNtiOoYtqyGZGWRKMMvioR5tguxwjxuBIA+ryYBhDgsq7cyymF5Bli2LKEEQxFCkzx2aQ6YEsyz2ahRk8gTFKMsiq5DFGA4dCPJgWs1qMmB0uTCbKplgj0CQx4tfHoXLG4DZwGFcZVHM+7Jgj68p+j6t6LlQLaVrK1TIAkFeqkixhYVk0brg7/WHt41QyiJRUNiTKCmnAvthFVmMmDJcWHVTCvZY0FiNs6eNiPp7MsOW1ZLsDLJIRpQJFbIjGi2LcruigeOkCln3gFfTpHutZMsiShAEMRTp8wiLZCUxemzKkrQsygVZZIWMhXz4g8qLp/JFVYtRJsg0VshYrPpvX9khbFOQx/K/bI7ZR8wsi7ucrrh2SiI19FyoLorTm9Unm/mVaoVM61gluSCz0BwyotCwJdF0mQoDkiAzSXNNth3pUzyQt7uEisxxIwXhVmozJTVsWS3SDLKULYvJhXrsk0XeA5AEWYDXvtKqhWxZRAmCIIYifZ74FbLSJEM9WOS90cDBwEVaFuP3kHkD4dWF0RXaBVky4U6jK+ywm4XU5H2dA6pfi9DOgsZq/OKU8VF/17pQHa9Cxq41ii1GmDQOnI5Eur5U6cDyyBJGDRxHoR5EYcHseRnrIZNVyMZXFaHYYoTbH8RuZ7jdwe0LYNO+LgDA/3xzLADhQJHOFTjJsphidC/rIetx+zV5n+UVMkCYPcOaw9MZ7JEtiyhBEMRQpD9RD5l43B7wBeIOco7EKyUsRh9r2cVxLMtiKJ2OA8dxmi2LyYY7GTgOjcOojyxTsGugqSNKcOdpx+Cxc6dpXqguijMYWuofSzFhEZDNuVV5fenxhyeMFlsp9p4oIDIf6hHqITNwHI4V43QjbYub93fD4w9ieIkVx48ul7bzaJ/25EK16BXq4bCapIOZlqTFSEEGABV2Nhw6vf1bCxqrce+SY6MOwum0iBIEQQxF+mIMhmaU2ExgkkqLu4GJLbNCZcKYoEIWOn8JF9usQrZfpSBLJdyJ2RZf2daOT1q7KZE3jXy4V1io/s6kWiyeVIOZo8s1L5ayOWRK1316JSwCcsuiukUJb8Q1mINCPYhCQmtJORX8wVAKFFuhYcEekfPI3t3VAQA4pb4KHMdheJLJhVpgcau2FAUZAAwvEW2LGoI9WiVBFmqgzlT0PSCIsh/NGS39+5T6yrRaRAmCIIYaPM8nTFk0cJws+l79xSSrkJkULrBDlkXlc7VUIRPPX2PECllbv1dVhSLZcKfmFide2d4OAHh/TycuW/sZlqzZlLHZlYEgj09au/HKtra8F4Murx+fiiFoJ46vSPp5iuLE3utZIdO64O+JmMEn9ZDlaahH6p8wkVdkMtRjQLbKwbzBk1mwx+FQhSzI83h3dycA4OT6SgBCX9aejgFNAkcreoV6AMDIMht2tLtUV8jcvgCOiNU/diIFIBsOnX5BBoRWfgHhooJsigRBECE8/qBUpYolyADhgrbH7UePhrElPvF5IxMWgcQ9ZJHnrzK7CQ6rEf2eAA70uKVh0bFIJtyJ9ZxFwnrO0u2uaG5x4v7mnWGVvRqHBdcuaMjLhcSP9/cgEOQxqtyGUbLrBK3YLbGFUu+gPkOhAflgaG2hHmwfppRFoqDIZOw9W42xGDnJD88qZHs6BiRf/raj/ehweVFsMeIbo8oByGZ7pdOy6NNPkGmt6B3oFu5XajOhTBY1K80iS7NlkSGfm5OJqhxBEMRQglXHjFxoQVMJKdhDk2UxFGoQCZtD5ovVQyY+1iqeW7X2kWkNd0q250wvkgkgGeps3CssVJ8wNvnqGJCgQubRT5BZTclZFi2SIMvvChkJMiIMWwZ7yFyyhEVGVbEFI0ut4AF8JfaRvSPaFU8YVyH9MCVBloEKWaqhHkAoafGISkG2X5awyMnStSozNBya0S17nXT3rREEQQw1mCBzWE1hx+pISpOIvpcsiwoVslDsfaIestBjWT+ymuHQWsOdUuk5S5Vsi8FssVEMOjthXGVKzxOvt6tX1x4ybQ6syH242Eqx90QBobXpMhXkCYtyJo8QbItfioJM3j/G0CpwkkHPHrKRooA8pNKyuE8h0APIvGWxJ0yQUYWMIAhCDrN1x5pBxiizax8Ozapf8S2L6nrIAEgVMrXBHizcyRZR+VMKd0q250wPsikGs0Vr1yAOdLthMnA4fkxqI2jkc8j4iBmnbAGhTEfL4qBfpWUxooeMWRbdMptwPqH5SrOzsxNPPPEE7rrrLvT39+PNN99Mx3YRWcKW0R6yUMKiHGZb/OJwHw73utHS7oKBA04cH1oFGqFR4CRDZEpVKrDtVV8hUxZklVm0LLq8gYwNDCcIghgK9CeYQcZIZji0T0pZVIq9FwVZDMuiR0mQJTGLbEFjtTT786ypw2PGqifTc6YX2RSD2YKlKx5XVyoJlWRhQikQ5KMssKEKmZ49ZKlZFoHwDIJ8QZMg+/LLL/Gd73wHL7/8Mp555hl0dXXhF7/4BZ599tl0bR+RYbQ2XaaCS3yNoghL4GQWfX+4V6qOHTeyFOX2UMl8RJkgcNr7PZLPXm8ky6IOFbIRZUJFr3PAp+qzVUpYBEI9ZJmqVnVHWCMzZZUkCIIYCvR6hGOiI4EgYxe0WnrIfFIPmVKFTJxDFmswtML5S+ssMgarPi1sGhYzVl1rz5meZFMMZgu9+seA0HUfED2LrGdQP8ui1pYYlrLI9mGz0SDN5FPqdxvqaLrSvOeee3DjjTfiqaeegslkwujRo/HII4/gL3/5S7q2j8gwmQ31EH7okZbFiTUOGDhBdDyxqRUA8M0J4R7pyiIzLEYOQR442p+eKhkTTnqEepRYTdLqjpqkRalCFpGcVGkXTiiZCNjgeV6yLLIF2k5X/qwwEgRBpEqfW12FTAr1GNQgyEQ7ojlu7H38HjK53ZFVyNRG3wPCeeCoeM6qFVsFlNDac6Yn2RSDqZBsRL8vEMTHrd0AgLkp9o8BwnfHrnMixZKug6GTnEMm34dZNbC/0AXZjh07sHTpUgCQmldPPvlkHD16VP8tI7JCJkM9YlkWP9jbBYO4f7WLAuDJTw6GpSQZZLPIjqTJthgK9UhdkHEcFwoiSWBb7HX7pErU6KgeMuGk3ufxS6un6WLQF4RXtC+w7eigPjKCIAiJ/gQzyBgsLTc5y2LsHrJY5wEpZVG2oFhmM0nbyZJ8E9HvCUhVEzZPMxas50xJHJkNHKaJ1ke9yaYYTJbmFieWrNmEy9Z+hls3bNc0r+3Tg70Y9AVRWWRGY0388QVqiZW0qK9lUVtLjJLtNp+DPTRdaVZWVmL37t1hf9u9ezeqq/NvvkOhIvf4RjZ36o1LIdSDRddGrvp1DPiiomtZsMehNCUtKqVUpQLb3kSCjNlJhjksUdXDEptJOqmku0rWI144WIwc6soEQUYVMoIgiBDylMV4sAqZtlCP2LH37G+xqipKoR4cx0mLa/tV9pEd6RPOV2U2k6rE4QWN1Vh/6Rw8du403HnaMVj9vamYPNwBX5DHXzfuV/WactRWkZgYjByirRRAkm1Sjehn/WMnjKuQFq9TxW5h1auQWOJ5XhZ7r0fKojYHVuQcMiAkHPMx+l6T5D3//PPxP//zP7jsssvg9/uxYcMGrF69Guedd166to/IMKwaxENYndAj8j0WAxGx92qja+fVV8FoSH+FTM9QD0AW1Z9ge2MlLAJCZbDCbobT5UXXgA81CVYsU4H1j5XZzVKYCCUtEgRBhOhTOaepTOoh06tCFr+HLFZK8OhyG7460qe6j+yoOOuzVsO5xmjgMHN0ufTvq07hcNnaz/Dsp4cwbWQJOHCodlgwva4sbtVK66DnBY3VKDIb0CsGrdyyqBFnThmeU5Uxrdc5kY/derAHr25vAwDMHluu23YpVcgGfAFJAOuRssj2RY8/qMqe6QkoWBat+TscWtMn/MMf/hBGoxH/7//9PwSDQaxatQrnnnsuVqxYkabNIzKNTSY+3L5MCTLhNbRE184cXS5FyasdtqwVj0+/UA8gFESSaHZarIRFRkWRIMg6B9NbrWL9Y+V2MyqLWdw+VcgIgiAY/VmqkCVOWVSOzJeCPdRWyMQFRLYAmgwzR5ejaVgxdrS78KsNX0t/jyeuWBUpElZFUqp69bn9khgDgPFVRTklxgDt1zkMJXH68Dt7YTebdKn+hUYehT4/tq9ajJwuTiF5eIiathilChlrcSn4lEUAOPPMM/Hvf/8bW7duxSOPPIKzzjoLBgONM8sXjAZOSrFROysiWVjKYrH4I9UaXTtcpQUwWdzi+7fq0EMGyC2L8StkbOVydLmyIAtF36fZsig2n5fZTFQhIwiCUCA0hyz+4iWroLm8AdXJwGp6yGLNIWMVssgLaSn6Po0VskiaW5zY0e6K+nssi16yg54P9IS/p0z0wmslmYj+WBZHp0udxVENRRZhP5GnLPbKEhbjDT1Xi9VkAHsWNYJKmkOmIMjysUKm6Upz48aNmDdvHrZt2wYAeOGFF7B48WJ89tlnadk4IjtonRWRLJEVMq3RtSNVWgCTJRR7r7dlUW2FrEjx9kwNhw63LFKFjCAIIpI+laEeJVaTdDHaqzKQQKqQKVR5jAlSFpUuZoGQ80J1hUwUZIkCPWKRjLjaciC5Qc+RQSUDab6GSQat1znJilOtSBUymdDp0TFhERB6GKVZt97E343UNqKQsujyFLgg+8Mf/oCbb74Z06dPBwBcffXVWLlyJe6+++50bBuRJWwKpet0EBl7rzW6llXIjvR5Uj4YKeHROdSDCUinyys9dyQ8z0uCbGwMy2KmhkOzg3G5vIfMRRUygiAIhtqURaOBQwkbDq0y+t4XTNxDFjnIlxHr/DVKdF6093tVneNTrZBpsegxnCrDoyKrTQciRGYm5qlqRet1TjKfXzIwQSYXsXomLDLYAveAT0WFTCllUbxe7C90y+LevXvxve99L+xvy5cvx86d8dU7MbRgPVPuNFsWI2PvtUbXDnNYYTRwCAR51QdwLeg5hwwQYo/ZZ8tOcnICQR5vtjgx4AuAQ0hwRlJhz4x9sFtuWaQeMoIgiCj6xJX6RD1kgHw4tLpjd7zB0KyvLHaoh7IgK7ebUSJGh6/dcjDh/KujoqMj1vkoEclY9KqLkxv0fDCiQpaLlkWt1znJfH7JwBbG5RUyPRMWGSz6Xs1gZ0VBZlWO588HNF1pVlVVRdkTv/jiC4q9zzPsGof3JYtS7H2sOSZK0bVGAyet2iUKykgGPeeQAeIsshjBHmwmycoXBDswD+Dsv36k6A1n9sH095CFLItVYoWsx+1X3f9AEASRz/A8r9qyCMiGQ6sM9gj1kMUbDB2rhyw6oQ4QzjXs3P7wu3vjzr8KBHmpOpNshUyrRQ8AZoxKbtAz6yFjn1euXrQvaKzG+d+oi/q7w2qMus5J5vNLhlCFTN5Dpq9lEZA5sFR8Nyxl0WZSsCzm6HebCpo+5QsuuAA//elPcd5556Gurg6HDh3C2rVr8bOf/Sxd20dkAZvG4X3JEhl7z1jQWI159VXYerAHzn5v3HjckaVWHOpx43CfG9NRFnV7svA8L1th1C9pckSpFXs6BsL6yLSmSVVIARvprVZ1y1IWy+xmGDggyANdgz4Mc6Qvbp8gCGIoMOgLxXeXqLhoZdHhaodDx01ZNMRPWVQaDK31XNM54IU/yMPAAdVJHvOZRS+e7S5SXLEqktK2MpQGPbMesnGVRWhpd6W9Dz4lxE0/pb4SpVYT/vNVGyZUFkUlJibz+SVDUZyURT0FmVKvWiy8CosKoVCPArcsXnzxxbjhhhuwZcsW/O1vf8Nnn32Gm2++Geeff366to/IArZMhXpEpCzKYXNMFk+qwczR5TGja1kU7+EefYM9vAEe7DSnV+w9EB3skUzDbsZSFsWDsSDGOJTbqY+MIAiCwapjRgOn6jxRKgkybaEekVUuADAZE80hCxdkyZxrmLW+utgSNXBZLVoteowFjdX41eKmqPvGGvTs9QfRJm5v47BiAOHVnlzji8N9AIAFjcNw2UnjAQCfH+6Lar9I9vPTitJgaLafluloWWQL/mq+G0+cHrJ8DPXQLHuXL1+O5cuXp2NbiBxBaR6F3vA8r2hZ1MqINEXfe2T9c3oKMhbscUhMhkxmJglLWewa9IHneV3iaJWQ5pCJFxFVxRZ0DvjQQX1kBEEQYXZFNcdhdmHLjq2JYJZFU9zYe3WCLJlzjR4zyIBQK0LkHK2qYgtuWKg8hwwARpWHv+43x1Xg/rOmKIqPQ71u8BB6lOrE1oBM95Cxwc2JnD3+QBBft/UDACaPKEFtiRVTRpTgi8N9eGenE8uPGxl2//kNVagutkSJtdoSK66ZX6/LHLIihd4uvVMWAXmFTH3svWLKYqFaFm+77TbcdtttuOmmm2Le55577tFto4jsEgr1SF+FzBvgpZW41ARZeoZDs+qgkVM+GSaLlAwpbm8yDbvMsujxBzHgC0gHKL2Rx94DmavMEQRBDAX62Qwyq7pzWCjUQ2PKosJFfSJBFhmIkMy5Ro8ZZAx5K8JtL32NI30e3HhqA77VEFtM7O0UesJYeFePxx+zEsQCPUaV2zOyqByJ0uDmWIOvdzpd8PiDKLGapDEE8xuq8cXhPrzZ0hElyLYe7IXT5YXNxOGeM4+FyxOIK/iSIV6FLC0pi2p6yOKGehSoZZHn9Y8UJ3KXTBzM5D8mfQSZvpbFUKCHfv1jADBSXLk7JIZ6JNOwazcbpaSidIkjty8gCfJySZBR0iJBEASDVcjUJCwCQKl4LNXDssj6ynwxQpYie6CTOdekOoMsEtaKMG1kKQBgf2f8WWj7OgcAALPHlAMAdjsHEIxxPcoi7+vKbBkLJmPEGtwca/A1sytOHl4Cg1hZ/ZYo2j5q7Y7qMVz3+WEAwOJjanHShKqErRzJwHrIBmTzwdLTQybsy2quL70KSaEFXyG7/fbbAQD19fX4wQ9+gOLi4pRetLu7G3fffTfefvttBINBzJo1C7fddhtqamrw6aef4s4778TOnTtRUVGByy+/PCxq/7nnnsOjjz6K9vZ2TJgwAb/61a8wY8YMAEAgEMB9992HdevWYXBwECeccAJuv/121NTUAAA6Ojrwq1/9Cps3b4bRaMSSJUuwcuVKmEzCx5DotQuFTIR6sB+T3WyQDkjJMKIsVHEK8nxKzyVH7xlkjOGyWWS+QDDpht2KIgsGe9zoHPBJc2X0hK3gGg2c5NlmlbkO6iEjCIKQBJnaC9ZkQz1MiqEe8XvIIu1eyZxr9KyQyRlXVQQA2CMKrljsEwXbSROq8HFrNwZ8ARzp9UgLm3IO9GSnQqa2N29efZUkoL44IgqyESXSfcZU2FFfXYRdzgG8t7sTpx1bC0CYc/f6DkHQLZk6PB1vAYDyQnyvZFnUs4dMQ6iHwnDzImkOWSCtLRvZQNPV5uOPPw6bLTUvMQBcddVVGBgYwGuvvYY333wTRqMRv/rVr9DT04Of/vSnWLZsGT766CPcdddduOeee6So/U2bNuGOO+7A7373O3z00UdYsmQJLr/8cgwOCj/a1atX4/3338ezzz6Ld999FzabDbfeeqv0uldffTWKiorw7rvv4plnnsGHH36IJ554AgASvnYhkYlQj1gJi1qpdVhh4AQLpNJcrkCQx8f7u7Fu60F8vD/+vBU5bAab3oKsqsgMq8mAIC+c7JJt2E33cGgp8t4W6o2oogoZQRCEhNqh0IxQD5nW2PvUe8iSOdccSXEGWSzGVwqCbG8CQcZubxhWhHHiY3Y5XYr3ZRWyUeW2kP0uA1WUZAY3f3m4F4BQIZMzX7RvvimrqL2yvQ0efxDjq4owdUT4/fWECZ2BtKcsqp9DJu3DCimLgWAoCTtf0HS1efLJJ2PNmjVoa2tL+gW/+OILfPrpp/jd736H0tJSOBwO3HHHHbjuuuvw6quvory8HBdccAFMJhPmzp2LM888E//4xz8AAE8//TROP/10zJw5E2azGStWrEBFRQU2bNgg3X7ppZdixIgRcDgcuOWWW/DOO++gtbUV+/btw+bNm3H99dfDbrdj9OjRuOKKK6TnTvTahYTdpL6knCyRQ6GTxWQ0SBHsR3qVZ3tdtvYz/OKprXHnrUQiWRZ1jLwHhFlkzP7BGqYbqouhtMYTK00KSP9w6Mj+MQCoLKYeMoIgCIZmy2KSFTKLUoVM/FsggWVRXl3QMucTSGOFTBRXezoGYrbEePxBydo/rrIIE6riCzKph6zMrskWlypae/P63H6pN25KhMCaL37+H+7tkrZ93edHAABLpwxPazUoMo7e4w9KbQv6piym1kMmb3HJN9uiJtn7ySef4MUXX8Sf/vSnqNu2bdum6jk+++wzNDQ0YO3atXjyyScxODiIk08+GStXrkRLSwuamsJjThsaGvDMM88AAHbu3Imzzz476vbt27ejr68PR44cCXt8dXU1ysrK8PXXXwMAysvLUVtbK91eX1+PQ4cOobe3N+Fra2GoV1DZ6pLbH0zbe2GrMEUWY8qvMaLUiqN9HhzudWOq6E1v3hF/3srvlxyLBU2xm4mllRmzQffPYESZDfu6BnG41w2OA/68cR94ACeNr8CFs0bD6fKiutiCGaNiN+xWFoeSFtPxHbGVsQq7WXr+quJQhSxX93G2Xbm6fYQ+0PdcOOTyd90vRm+X2Eyqtq/MHgr1UHN/KdTDGH0eYoLMH+SjbgsEealyZos4hy1sqsa3Gqrw5CcH8ODbe1BdbMb6S2dHnWu8/qC04Dei1Kbr5z+20g4DJ1xQdwx4pUVV+Xd9oHsQPAQRW1lkRsOwYryyvR27OlxR2xLkeRwUh0KPqrBJ4mfQF0j7fqOlN4/jgK+OCnbFujKbdB5nNNUUo67MhoM9bny4txOjyu3YdrQfJgOH0yfXpPW9FMsqZBwH9HuE797AAQ5b6tdpjCLJgRX/uwnbh02hfdjICW0ULm8gI9+vHqjdRk2C7Pe//30y2xJGT08Pvv76a0yZMgXPPfcc3G43brjhBqxcuRLV1dWw28P7YWw2GwYGhLK1y+WKebvLJayaFBUVRd3Obot8LPs3e3y819ZCVVX6ysqZYFiF8BkGOQ7V1el5L8ZDwkGprMiS8muMG+bA1oO96A0A1dUlCAR5PPD25pj35wA88PZunH3CuJiCx3JYiKQtsZt1/wzG15Rg494udPt5dAc5vLJNqDivPH0ypo5SN9yxrkro4xwMIi3fkd/UCQAYVmaTnn+CRxCpXW5/2vYLvRjqv0FCHfQ9Fw65+F37RG/D8MpiVcdEo10QHi5vAGUVxYpWRDm8+PzVCs9f5RQDMQyGqNvkoVkja0sVWwN+eEoDHnx7D5wuH4pK7SiJqILs6xCum6wmA+pHV+henRlTWYS9HQPo8gOTIt9bVQk2HhTOwfU1DgwbVooZ46uBd/dib5c76v0e7hmEN8DDZOAwZXw1vhZFjyfAp/1ctajSgRGv7MCRHjeUan0cgOFlNiyaPgpGA4e9nwkVr2+Mq1TcttOPG4nH39mN9V+2wSBenyw6tgaNY6rS+C5C+6bHH0RFpQOdYvGpzG5GzbBS3V6nSry+HPD64/6m5XbTkcPD9+ESmxkubwDmImvOX4toQbUg6+/vh8PhQENDAywWdSsCSrDH3nLLLbBarXA4HLj66qtx7rnnYvny5XC7w21nbrdbChGx2+2Kt1dUVEhiivWTRT6e5/mo29i/i4uLYbfb0dfXF/O1tdDR0YehHEzpE+0UPS4PnM6+BPdOjiMdwsHWwiHl16i0CSsuOw/1wOnsw8f7u3G4J3YMPg/gcI8br209gOPF9KZI2ruEk5GB53X/DMrMwkH23a+P4sMdbQjywCn1VRhhM6h+LRsn7GCHOl1p+Y4OtgvPaTdw0vMbvMJ+0dnvQVt7r24BKnrCccLJfKj/Bon40PdcOOTyd90mVmUM/oCq47C8h3nvwS5ppmQs2KymwX531PO7+oVz3KDHH3Vbt8xW3tc9gIEYC48s5GPT10ejgqO27e8GINgVO8TztZ6MLrdhb8cAtu7pQFN5qELGvuvP93UAAEaVWOF09mGYRXgPu9r7ceRoT9g4ms9ahW0dXmpFd5cLHpdgtXQpfDbp4JfzJuAGBUcOIFxv/HLeBHR1Cp/hpl1Cy0RjpU1x28y8sPD5/q4O6W8f7urA2g/2xHX1pIpX1o/Vergb+9qFayCHxajrZxgQK28D3kDc37R8Vl9vxD5sMwn/feBoL4Zb9e3zTwdsv06EKkH2+eef48c//jH6+/tRW1uLNWvWoLGxMakNa2hoQDAYhM/ng9Uq/AiDQWFHmDRpEv75z3+G3X/nzp3SazU2NqKlpSXq9lNOOQVlZWWora3Fzp07Jethe3s7uru70dTUhGAwiO7ubjidTlRXCzv1rl27MHz4cJSUlKCpqQnvv/9+zNfWAs8j504cWmB9U25/MG3vg01ZL7IYU36N4SWh6Hue1+bpjvXaLC7Xakp9++Q0tzjxz08OAgC2HOiV/j6jrlTT61TYmX3Ql5bvqFtsOi+zm6XnZ31rAV444Se6mMgmQ/03SKiDvufCIRe/a3kPmZptM3AcSqwm9Hn86B7wo9we/xgqpSwauKjnD4V6RJ+nWe+PycDBwEU/ltFU40Bbfye+PurCcSPDBRnrca4tsablcx9fWYR3d3WKfWTht/F8aAbZ2Moi8LyQUGw3GzDoC2J/lxvjq0JuqANdof4xng/vgw8G05/EN1/szbvxha/C3ku53YSbFjVhfmO1uP/y+FKKvI8+5ze3OPHIu3ujnr970I8b1n8Vs6dcD0wGTpr3NuANSIKo1GbW9fuXvhtvIO5vWpoFa+BgjNiHWfR9vyeQc8eEVFAlLe+55x4sW7YM69evx4knnog//vGPSb/giSeeiNGjR+Pmm2+Gy+VCZ2cnHnjgAZx66qk444wz4HQ68cQTT8Dn82Hjxo144YUXpL6xc845By+88AI2btwIn8+HJ554Ah0dHVi0aBEAYPny5Vi9ejVaW1vR39+Pu+++G7Nnz8aYMWMwbtw4zJw5E3fffTf6+/vR2tqKRx99FOeccw4AYNGiRXFfu5DIRENsKGUx9dCMkWKU/KHe5Gd7RRIK9dBv9YXNKlGaQfOnd/aoChthVKQ5ZbFblrLIMBkN0r/TFSZCEAQxVAgNhlbf/REaDp34GOoVUxZNGlMW1Y5taRwmOIB2tEdXwI7qPIMskrGV8aPv2QyycZWC+8nAcZggWvUjgz0OiJXKunLhWoAFRwT50GeYbubVV4F5FqfXCRa/qSNKwwTU4V4POgd8MBo4NA0Ld1+pjc9XmxStFY7jZLPIAmlJWATUh3pEjm2QE+p3y6/h0KquNrdv344bbrgBjY2NuPbaa/H5558n/YJmsxl///vfYTQasXjxYixevBjDhw/H3XffjYqKCvz1r3/Fyy+/jDlz5uDWW2/FrbfeihNOOAEAMHfuXPzmN7/BbbfdhtmzZ+PFF1/EmjVrUF5eDgC48sorMW/ePFxwwQWYN28ePB4PHnzwQem1V61aBb/fj4ULF+Lcc8/FySefjCuuuAIAEr52IWHLwFBFSZCZU/+xs0jeI71u8DwvzVuJh9JsLzken76x93ofbEOx9+kRRmx1rNwe3ldAw6EJgigEAkEen7R245VtbfikVXlkSqhCpn5hMZS0mPhi0h9nMDQTaX4FwaE0UFeJpmEOAEBLe3Ry4ZE+YYFT74RFhhR93xEtyHielyLvmXADgPpq5aTFA2LCYp04n4wlBgKZib4HBIHNQ+gZW7lQcFZ9sKcTTlfoXPmFGHffNKxYus5iJBOfrzfyxfj0CTJ1c26VEhYZxeICCHNa5QuqP2mzWbgwq6qqgsfjSelFa2tr8cADDyjeNnXqVDz11FMxH7t06VIsXbo05jZed911uO666xRvr66uxqpVq2I+d6LXLhTsGRgMzVIWU429B0LDlgd9QfQM+lFeZMa1CxoUUxYZSrO95DDLR+RBM1m0HGxnji5P+HzMLtg96EMgyMd9L8mgFHsPCNH3ezqBThoOTRBEntLc4sT9zTvDjtk1DguuXdAQVvGQ5pBpuGhlx1Q1giw0h0xpMHScClkcISenqUYQZLucLviDvPScgKxCpvMMMgazHDpdXvR7/GGjA9r6vRj0BWE0cBglGwJdXy1WyCJEXGgGmVBNMxo4WE0GePxBDPoDKId+se2xYOfEMruQCDllRAm+ONyHl746iotmjQYAfMkGQg+P7ifSGp+fDuSzyNhoBj0j74FQxavD5cXH+7sxvU45TVqqkCkIMrad+RZ7n9Tyfz5NxiaikXrI0lghc+loWbSaDFIk+2FxVW9+Q5VilazCblblw1Zr+VCL3gdbVrkK8upn2mihR7xYiKyQsd61DqqQEQSRhzBreeQCGhuZwqzlPM9LFTItlsUyTZbFUC9YJPEti+ocHqPKhb4sjz+I1q7w0DN5D1k6cFhNqBbP25EDotm/R5XZwuya9TEsi2xe2ajykHizZWCeqhx2TmTulTOnDAcAvPDlUWnWGusfmzIiOrVQj1aLVAnNIgtK1wB6VsiaW5y49vkvAQgunHizYeNVeR2SICtAyyJRWEgVMn8g5tDGVNGzhwwARoqreCxd8cO9XWjr96LIbMADZ03GseIAxp+eOEZVU6xbZ8ui3gdbk4FLaz9Xj0IPGQBU0XBogiDyFC3W8gFfAEwLaeshE46hPQkqZDwfmsOkZNtigsynMBjaG8fuJcfAcWioFqpkO9rC+8hCPWS2qMfpxbiq0IBoOczGOK4yfIxRvdh3daB7UDpH97n90mdZVxYaXcSuLTJlWWTnRCbIvj1xGKwmA/Z0DODLI33wB4LYLn7Gk0dEV8j0aLVIlfAKmSjI7PpUyNhCR0fEtUPkQgeDuZSUqrzMWZVvlkVVV5uDg4NYuHCh9L++vr6wfy9cuDDd20lkkEw0xLI5KXpYFoGQbfGwuKr3pJhkuGzaCJxcX4WTG4cBCCU3JULvUI90HGxZP5fe4sgXCEoVzCjLIvWQEQSRp2ixlveJF6wm0R6nFqmHbDD+cVte+TIbop+fzTCLF+qh5vzVVBMd7NHv8UvngNo0WRYBYFyFIKCiK2ShhEU5VUVmlNlMCPLAPvE+LNCjssgctsCbiV54OZ1ShUw4RzqsJmnx94UvjmKn0wWPPwiH1YgxFfaoxxsNHK5d0BD3NRK1WqRKqEIWsiyWalhsiEUyPfTxFhVYyqIrQ9XPTKHqk7777rvTvR1EDiHvmxr0BXSrEsnR07IIACNYhazXjZ1OFzbu64KBA86bUQcAaGBeeYUGYiUky6JOPWTsYJtKX1skFUViP5fO4oitNhq46JVftvpHKYsEQeQbWqzlrLem1GbS1MahtofMK6t8ae4hU1khAyCl/e2QBXscEatjZTZTWECG3oyPUSHb1xWesMjgOA711cX474Ee7OpwYWKtQwr0YP1jDLbdA5myLIo9ZJXFoYXXM6fU4qVtbXh521GwXWR0uU2IalfYZRaI8fmR/Yu1JVZcM78+bZH3jCKzQoVMB8tiMj30oZTF6A9K6iHz5JdlUdUnfdZZZ6V7O4gcwmTgYDZy8AV4wRagU8lajt6WxRGyCtmTnxwAIMwGGSk2BDfVChaB3c7oNCkl3Dr3kAH6H2zTlbTIAj1KrKYogcjCRDpcVCEjCCK/0GItl88g00KZypRFn8ydYlZMWRSOzYEgD54Pn7WlpQeaBXvILYtHRadJTZr6xxjMkhhZIQtF3hdFPUYSZOK5PBToEW6tLMpAOJmcrogeMgCYObocFXYTugb9ePbTwwCAbUddWLJmU1RADGNBYzXm1Vdh68EeOPu9qHZYYgZf6I2d2Tx1FmTJ9NCH9uHoa8Ria36GeuibZ0nkDTaTEb6AP23BHlLKog6x90Co8fjTgz1So+cPvlEn3c4qZJ0DPnQP+qLCKiJhTdF6ziED9D3YMnHUmcD6opVYkfdAqIeMKmQEQeQbzFoebzWfWcvf39MJQFv/GKB+DhmLvDdwUDw/yIM+AkFeEmhAqLqQKGUREAQOB+GY7nR5UV1swVExHCtdM8gYrEJ2sMcNrz8Iq9mAfo8fR/uEz39sZbS1LxR9L4i2g92hodBy1M670ovOiB4yAHhrZwe6BqOFN+ubihUwZjRwqtKW9UZpDpkeKYvJ9NCrsizmmSCjUA9CEXmwRzrQs0LW3OLEna/uACDY7fxB4WQlr+IUW02SrTHSHqFEOgZDM9jBdvGkGswcXZ70yle6hkP3xIi8B+R9a960Bb4QBEFkAy19PH1JDIUG1Id6eKXIe+VzkEnWVxZpW9RSIbObQz1NLWIfGbMspithkVFdbEGxxYggD+wXK117ROtkZZFZ+qzkRCYtRg6FZjBxMejPTg9Ztgc9JwOrkPV7/FIFuNSe+qJ5Mj30HlWhHvllWSRBRiiSzoZYnud1E2QsuSeyYuMP8lj5wraw5J4J4oF8d0di2yKrDOrVQ5YO0mZZjBF5L39Nb4DPu9UpgiCIBY3VmKKQgldbYg2raCRrWQwNho5/3GbpiUr9Y0B4hSwVQQbIbYvCuTE0gyx9CYuA0BM2LmJA9C5RFEYGejAmiBWyI30e9Hv8CXvIMmVZjKyQ5cKgZ60wESvfbj1CPZIJLAnNIYve/x1ihSxT/YGZggQZoUg6Z3gM+oJgp49UUha1rkCxA/luZ3YrZHohWRZ1FmSxIu8BQaiz70ypjywQ5PFJazde2daGT1q7pc8+1t8JgiByiUCQx35xJtdxI4V5UTNHl2HdJbPD7GXSDDKbtnNYuVj16fcEFAM5GD7xNqWERQBhFsXI6Pt41QUlGsVgD6lCluYZZHKk6PvOcEEWGejBKLWZpWrL1239aBPFY11ZuHi0iS6fTFgWeZ4PVcjEUI9cGPSsFSZij/QKIrfYYgybA5cKrIc+slIWudDBiBdMU5Snsfeape/atWvx97//HW1tbXjuuefwu9/9Dvfccw+Ki4vTsX1ElpBWl9JQ7meR9wYutdAMtStQWw704Ds1pagXD/y7OxMLMrfKwZrZpNKeHstid5weMkCwSrq8AXQO+DC2MvT35hZnVGBJjcOCxcfU4JXtbVF/j9XUTBAEkS22H+1Dr9sPh9WIH84ejWuf/xKdA74oa3l/EkOhAcAhW+jqc/ukhbVIElXIDBwHIwcE+OgKmTdOIIISMStkGRBk4yMqZLtFy6JSoAdjQnUx2vq9eGdXB3gILRby3i1ANocsA1UUlzcghbBUiOfNXBj0rBXWqsK+f637diJYD/0lT27FF0f6cNGsUbjypPGKbRuhClnsUI8BXwCBIJ+RwJNMoOlq84knnsBf/vIXXHTRRQgEAiguLkZbWxvuueeedG0fkSVsaUwokkfea4kLjkT1CpRYyRnPLIsqkhZDFbLctSxWpCmCnvU2KPWQAeF9ZAxmHY0UyG39Xvz94wOKf1caBkkQBJFNNu3rBgAcP7ocx4hCZX/ngHROYLAeMq2WRZOBg0O8oIzXR+ZL0EMGQKpexLYsqju/suj7fV0DGPQFpAvydM4gY0QmLSayLAKhPrJ3dnUAEOyKkdcS0kytDAgy5hYpthildo9cGPSsFSZie3RMWIzEaOCkfr9hDktMMRW/hyy0XZn4fjOFJkH25JNP4tFHH8W5554Lg8GAsrIyrFq1Cm+++Wa6to/IEun0XzPfb1GK/VmqV6BECwFLdGJJi/HQ6sHPBkwYubyBqIuFVIhnWRReVxBqHaIQVGMdjUWuNTUTBFHYbNrXBQCYM7YCwxwWlNpMCPChCg6jL8kKGRAK9ogXfZ+oQgbIZpEFIgRZnOqCEtXFFlTYzQjywEf7u+EP8jBwwLDi9Fdv2Hl5X9cg/IGgtGAay7IIhJIWWf9YpF0RkAuy9Id6KCUs5sKgZ61EzpwrTcPII0AIWQME224s4i0qWIyctO/nUy+7pqvNrq4ujB8/HgCkhLWqqir4/fmVdEKkN9SDebrlqxzJoHYFasYoYQWqyGLESHHFL1GwBxOirFKYizisRumgpKdtMV7sPQBUiSfpTnFVUI11NBa51tRMEEThMuAN4LNDvQAEQcZxHBqqhWrMzghnRbKWRUA+iyz2wmBIkMWpkMUYDh0vMlwJjuPQVCO8z3fFqlN1sUW3/qF4jCyzwWzk4PEH8d8DPUL8vcmA4SWxA0Xqq8NbZCIDPYCQ/S4TFRR2/o20n2rtm8o2kYvksRZlU0VNSqI3ToWM47jQc3jzR39o+rUdc8wx+Ne//gUAUnl4w4YNaGxs1H/LiKySzlAPl04Ji8msQE0QD+Txou/9gSDYgmMuV8g4jkOFGEm74aujuoVldMeJvQdCq4BsVTDVpuRcamomCKJw2XKgB/4gj5GlVmnQcCjwIlyQ9Ymr+44kLlrLVFXIElsWjZIgUw710HL+ahwm2DPf2y3MV6uNI4j0xGTgMFoUVG+2CGJwTIU9buWIVdUYgWAw6tyXUcuiQoWMsaCxGusvnYPHzp2GO087Bo+dOy0qICZXsEdck6XDsgjIBFmc6pY0Sy/GPlych8Eemj7tlStXYsWKFVi3bh0GBgZw6aWXYuvWrfjzn/+cru0jskR6Qz30m0HGVqAiwyRqS6y4Zn591EFvfGUR3tvdGTdpUf6e1Vo+skFzi1MaOrn6/X0A9AnL6IkTew/I0x2FzzvVpuRcamomCKJwYXbF2WJ1DAhVY3Y6+8Pum5plUXhMPOt8KGUxsWXRF2FZlAIRNFS4WIWM9VxnImGRMb6qCLs7BvD2TqGneGxFbLsiAHy4t0sKNAGAJ/97CG/scIad+zJqWRQ/s6oYFs9sDXrWSmSFTGkOnB6wvst4gixR0rVge/TkVYVM05Fk8uTJ+M9//oMXXngBkyZNwvDhw3H77bdj5MiR6do+IkukM9SDpSymEnkvhyX3bD3YA2e/F9UOC6bXlSmusEnR93Esi0yQcRC8yrkIC9GIhIVlJGuH8Ad5qVm9LMZAyKqIChmzjiZjW8y1pmaCIAoXef8Yg1XIdkYs4jHLYjJzmkKzyOJUyMTzkDlOlcscI9TDnUSFrEmskDGGZyDQg8GCPdg5JF7CotpznyTIMtBj1CUK64o09VxliqgKmc4piwyHbAB1LFRXyBS+30CQV3U9mGto/rSrq6txySWXgOd5vPPOO3A6nSTI8pBQqIf+q0t6WRblqF2BCg2Hjl0h88gi71NJgUwXauevzauv0nwQ6nP7pBlxsVbHKiMqZMw6qnSSTESuNTUTBFGYtPV5sLtjAByA48eUS3+fUFUMDkKSXueAF5VFFgT50MJVMpZFFpYQV5CJNkQ1FbJIy6LWHjJASDU0GwB2yvf6gxmLFB8fIcDGVSkLMi3nPnsGY+9ZymJlBkJQ0kl0hSxNlkUNFbJYs/RYBkHkc8QavzMUxuxoapBpbm7GySefDABYvXo1rrrqKlx00UVYu3ZtWjaOyB62NPqvJctiiimLyRCWtBgjLp6J0FztH1M7fy2ZsIyewZANxxTjRFwphXqEPr8FjdU457gRUfetLbHiouNHDZmmZoIgCpPN+4Xq2DG1jjC7dpHFKPWT7RT7yAa8AWnhKn2hHmpi72OkLCZRIRNmeoWO+Wu3HsKSNZsyMpoksiI24PUr9kNrOfdlMtSDuUWqFHrIhhKRIWZpS1lUUyFLsA8XKVTI4o3fGQpjdjRdca5evRpXX301gsEg/v73v+Ohhx7CP/7xD6xZsyZd20dkiXSGekix9ymmLCaD3SxLWuxUti1K3uUsCEY1qJ6/loSFMBToEfu7YY3LA75AmKX1iDi75swptWHNyz+fNwHrL52D+5YeK933XxfPJDFGEETOwOaPye2KjPqIpEXWP2Yxckkt3LFQD7YApgRLWYxnmzcZlC2LiS5mI2EXspHPk6kLWTaDjHH3azsVxaCWc19RBkM9YqUsDjUMHCcJWSB9KYtaesgSh3oIvyG11dNcHrOj6Uiyf/9+nHvuudi+fTvcbje++c1vYsqUKXA6c1t1EtpJZ6iHS4q9z47gYUmLsYI9mOfcHwzqllyoJ6rnryURltHjjh95DwjfG7tIYCuD/R6/1H9x4fGjsHhSDWaOLpfsLkYDh1PqqySh36HzMGuCIIhk4XkemxX6xxhSH5lYIUt2KDSDWcF6VFTI4kXPx4q9Z7b7WHYvOdm+kG1uceLWDduj/q4kBrWc+9iCqjfAR30+eqM0h2yoIp9Flu6URTU9ZLEWFSIti+l0DmUKTYLMbrejo6MDzc3NmDlzJkwmE7Zv346KiugDGDG0YRfO6Qn10L+HTAsTqliwR7Qga25x4sb/CL1QHS4fLlv7WcZsG2pRO38tmbAMqUIWJ12J47ioPrIP9nTCF+AxtsIe1Q8gf1yNmNzVJlbTCIIgss1OpwudAz7YTAZMG1kadXuDGHgRWSFLxq4IqAz1CGjoIQtExN6LYk5NhSybF7JaxaCWc59cWKTjOkb+3EwUxEpZHErIr8vSlbLIesgGvAEEeWWxLFV5Y/WQWcPnkKXTOZQpNAmys88+G8uWLcOaNWtw0UUX4YsvvsCKFSvw/e9/P13bR2SJdEbGZl+QsVlk4ZZFZtvojrCR5Jr/OJn5a2phFpryOJZFINRH1iH2kb0pfjbzG6vjBqGwKOWjJMgIgsgygSCPT1q78X8fHQAATK8rVbRINVaHwqACQT40FDrJCoKWOWTxgjnMxgQVMhWCLJsXslrFoJZzn8XIgbk902lbZAmLZiOXNdePnsiFbNosi+LnxCP2d+NWaVlk15PpdA5lCk2f9lVXXYVZs2bBZrNh+vTpOHz4MH7729/i29/+drq2j8gSUuy9P/dj77UyXqFCls7kwnTA5q/d+3qLZJcAYs9fUwuz0MQaCs0IDYf2wu0L4P09wjDR+QleN5cE2VCNxiUIInWU0ti+ONyH5hZn1PGzrtwGm8kAtz+I1u5BqUKWrGWR9ej2efwxkwxZymKscCXhtvg9ZLFmOMnJ5oVsMmJQ7exRjuNgMxvh8gaki/Z0wGaQVRZZcjKVWSus986cZH+kGqwmA0wGDv4gD5cnINkP5Uix9zFTFsNDPdSM38n1MTuajyYnnHCC9N8jRozAiBHRyWrE0MeWxgpZOmLvtRCZtFheZNa0UpcrAx4XNFbjmBoHlv55MzgOePScqZgxqjwlUcEsi/F6yICQIOsa8GHTvi4M+oKoLbFiUq0j7uMky2J/dgXZUI7GJQgiNWLNsur3BhTnOBo4DvXVxfjySB92trvQ5xHOYclaFktkVrA+tx/lCr1HXn9yKYs8z8OrorrGyOaFbLJiUO3s0SKLIMjSMb6HkU/9Y0BoMd5qMuC/B3rSslDJcRwcNhO6B3zo9/pRg+iZd4mCaaQeMnFxxGjg8PNTJij2IzJyfcyOpqPJMcccE3MFYNu2bbpsEJEbhOaQ6b+y5Mpi7D0gJi2W2XCox41dHS7MLCofsv5jdhLgeeCY2pKUDzbMspjIqiDvIdvfIlQaE9kVgdyokKVrqDZBELlPsm6IhmGCIGtxumASj3PJCjKTQbC3ubwB9Lh9ioKMzRaLn7IYPYfMIwviUlPhUDNHMl0XsqmIQTWzR+0ZSFpkfdSVQzxhERDOjVsP9gIA+j0BXLb2s7QtVDqsgiBzeaK/G/miQkxBJvaQ9cuqn2wfNXCAvGicqnMoU2g6mvzf//1f2L87Ozvx97//HUuXLtV1o4jsIw/14Hle11L8gJSymPnYe8aEqiIc6nFjT8cAZo4uH7L+Y5vZCKvJAI8/iB63L2kLDSMUe5+gQib2kB3t8+CTVsHfP7+xKuHzZ1uQDTVrKkEQ+pKsG6JB7CPb1e7CyDJhLlkqx9symwkubyBmH1myKYteWcBHrECESNTaAPUm3WKQXccMpFWQ5UeFLNMLlUKVeFAK5ZDjlVV8Y1V52YK+3I768rY2AELS84njK4dcO4Kmo8ns2bOj/jZz5kysWLEC5557rm4bRWQftrIU4IUTg8WkoyDzZdeyCAiC7L3dnVIfmZDKZIhr0cxV/3GZzYS2fi96Bv1IdfPUxN4DoQGYG/d2we0PosJuxnEjE794rSO7KYtD0ZpKEIR+JOuGYNH3LU6XFOZRYk3+HFZmN+NQryemIPOqSFlkF5k+2QUsq5AZufhiLhK1NkC9SacYZNcY6UxZZIJsKM8gy8ZCZUmcWWQeWXZB7JTF8Mf3DPqkXvbTjq2VZgcOJVIuUZSWluLo0aN6bAuRQ8iHA7r9AVVedDX4g7x0wsiuIBN+rJ8e7MEr29rQ1u9O2C+Xq/7jUpsZbf1e9MaZaaOWbsmyGF+QMcHGkpBOqa9U9dmwClmP2w+3L5Dx4dtD1ZpKEIQ+JOuGYBd4h3rcUoUs2ZRFIPEsMmkwdNyUxehQj0QDdeOhxgaYDuRi0GMwwBoM6iIG2fklrRUyMdSjqnjoVsiysVDpEPd/pVlkrH/MwCHmPuCwhMfev7GjHf4gj6ZhxUNSjAEaBdnzzz8f9m+fz4c33ngDkyZN0nObiBzAZDTAaOAQCPIY9AVRatPneQdk5elsRsR2iL7vHe2usCbQpmHF6B70ZdS2kSossatnMHaEshqCPC+Junix980tTtz7ekvY397e1YETFdLJInFYjVIl8kifB+NizCxLF0PVmkoQhD4k27dUbjdLj/vikNBnk2wPGRCa8dQTo0LGRBZLUlQiXg+Z1TS0ItiNBg7HjylHdXUJnM4+xBhPpYmiNIaTMToHmWVx6J4zsrFQ6YhXIZMlLMZql2EtL74AD68/KNkVvzOpRrdtzDSajiarVq0K+7fRaER9fT1+85vf6LpRRG5gNxvQ7wnoWu5nfl+zkYubHpVOmluceOidPYq37Wh34Z4zJ6HCbh4y/uNEJ3Y58aLe+z1+qRE2Vg9ZLJ9596Bflc+c4zjUllixt3MQbVkQZPkQjUsQRPKk0rdUX12Mtn6v5AzQo0LWO6hcIWNVArOaUI9AdA9ZvDCQQoE5fdJqWRQrZBVDuIcsGwuV7LejFOrBEkbjhdLIHVY7nS5sOdgLDsDiYwpEkDU3N6drO4gcxGYyioJMv9WlbCcsqvFKP/jWbqy7ZHZOizA5ZQmsL4xEUe/MrlhsMSqKZb185kyQZSPYI5uJYgRB5Aasb+nuV3eELWQlckM0DivGh3u7pH+nUiFjx+2YoR7i6lisOUxAqEcszLLoix8XXkjYFIIf9Ib1kFUN4QpZNhYqJcuiUqhHgsh7QDiXs9mA//7sMABg5phyabTOUETzL/aLL77AbbfdhksvvRQ333wzPv7443RsF5EDsNUlPSNjQwmL2RFkWrzSQwVWzYp1YgdCla3I984SlJpbnOhhCYsxVn31+uxqHNmdRcYuxhwRDfm1JVaKvCeIAmFBYzUumjUKADBlRAkeO3ca1l0yO+7vv2FYeG9KSimLduZsUF5I8wc0VMjkgiwwNC2L6SDdlkV/kJfOm5VDuIeMLVTGQ++FSinUQ6FC5hZDPRL1QbJgj1dEu+J3h3B1DNAoyN577z2cf/756O7uxsSJE9Hf348f/ehHeP3119O1fUQWYatLbr/+gqwoS5H3+RjqIFXIYlhf1Fa22DyVWHZFvT67dEXfB4I8Pt7fjXVbD+Lj/d0IBGM3ISxorMYZk2ulf58wriLhxRhBEPlFa5cbADB3XAVmji5PeMHZWB0++H630xX3OBOPUKhHrJTF5GLvUwn1yDfSPYese9AHHkL4RKIgrFyHLVTWRNgS07VQGeohU4q9D/WQxSIQ5MHWKtz+IMwGYEHT0D5/a+4hu/fee/Hd735X+ttLL72ERx99FKeeeqruG0dkF5tJ++pSvB4lAHBlOfI+H0Md2IkgVoVMbWXrc7FRPZYg0+uzS4cgS2THVEIuHK1iiA1BEIXDvi5h7MnYCnW9rHs6XWH/XvnCtqQH55YmOG77VPSCmaTY+9A5Wo3dq1CwW9IryFj/WLndnBfnj0yOPigR9/9+BTtpoh4ypfO9wWDA5v3dQ3pRVdMvds+ePVi8eHHY3xYvXoy9e/fquU1EjiA1xKqskDW3OLFkzSZctvYz3LphOy5b+xmWrNmE5handB+WspgtQca80vEYaqEOieKT1Va2jor3i2VZ1OuzYx7vtj59qpBq7JhKyAWhHiMDCIIYWuztHAQAVeFCzS1O3Pyf7VF/T3SciUWJeA480uvGJ63RFX1W9TLHSVlUir1n1QW1Q6HzmXS0XcjpkmaQDe3qmBw2+mDxpBpVVeNkccQJ9QjZbqP34Vjne48/mNTvMJfQ9IstLy/Hjh07wv62fft2DBs2TNeNInIDmwb/tdqL4mz3kGXDK51uEvWQqa1s8WLOcKyh0Hp9dnpWyNTaMZVsRUfkgkxhFgpBEPlL96AP3aLNe0ylPe59UznOKNHc4sRN/9kGQAiFUFq8ZJUuk8YeMjdVyCTSbVlk43OGcuR9tmA9ZPFCPSIti3r/DnMNTb/Y733ve7j88svx1FNP4b333sM///lPXHnllTjnnHPStX1EFlEbGavlR5LtlEUg817pdFOaoIdMbWXLJp7AY1kWAX0+OybI+jz+lNOvkg0a8QeCYZXDPhUjAwiCyB/2dQp2xdoSq3ThHgs9w6DY4mXHQPjxOnLxUl3KIou9j7YsUg+ZXJClJ9SDJSxW5lGFLFOEKmTR515PjFCPfAxlk6Oph+zSSy+Fx+PB//7v/8LpdKKurg4XXnghfvSjH6Vr+4gsIoV6JDiYafmRhEI9spsAlUmvdLqRV8iCPA9DxCBFtVHvbLBirAoZI9XPzmE1odhihMsbEGaRVSU/iyzZoJF2lxfyNTQ1M9wIgsgf9nUJdsWxFfGrY4B+gUZaRodoSVkMKIR6UIUsE5ZFqpAlC+shUxwMHaOHLB9D2eRoEmQcx+Gqq67CVVddla7tIXIIVjFJdDDT8iPJtmVRDvNKD3VYzxcPodKjVOFila3fbNguWVoYI0qtOGVCJf7134NhzxePVD+7mhIr9nQM4GiKgizZoJEjvYJdscxmQo/bD48/CK8/SKvKBFEgsAqZmv4xvQKNtCxeJpuySKEeIdJvWaQKWbKwlMUBbyBqITlWymI+hrLJUSXInn/++YT3WbZsWYqbQuQaag9mWn4koZTF7MTe5yNmowFFZiMGfAH0xhBkgCDKnh1Zgs37e3D2tBGYPbYcd726A4d7Pfjrpv043CtEQB/t8wiRsmmsFtY6REGW4iyyZAdasv61+upibDnQAx5CH1m1aWgeyAmC0MY+MdBjbIL+MUC/wblaFi99KqK/TWLghy9APWRK2NM8GFqqkBXTeUMrJbKF5AFvIGymX6xFhWwMsM4kqq6KV61aJf33kSNHMHz48LDbOY4jQZaH2KSUxfiWRS0/kn9tOQQg+5bFfKPUZsKAL4Aetw+jEfsCo2tQsObNa6zC3HGV8AZ4/GrDdqz5cL90n1Xv7MFT/z2YVJSzWvQK9lBrx4wUl0dE8Tm81IoSmwm9bj963T5U04mVIAqCvWKFbKyKClmyx5lItCxeSimL8SyLrIcsKOshUyHkCgW7yraLZOl0UYUsWawmYdQMyxaQC7JYKYt6/Q5zFVW/2ObmZul/xcXFYf9ubm7GG2+8ke7tJLJA6GAWf3XJaOBw0oSquPdhPxIWe58LlsV8glXFEvVCdbjCPe+xZtwkG+WsFj2TFpkdM/IgHC9ohL3u8BKrFIpCwR4EURj4A0Ec6BEWZdT0kAH6BBqpDVg6bmSpVCUwx7m4VB4MrRyIUIjI55CxFGE96aQesqThOA4Oq/D9RA6HjpWyCORfKJsczb4xjhuaypPQjtpQD18giA/2dAIAHFYj+mVzJWpLrLhmfr30IxnIgZTFfCRR0iIgNH6zmOeqIrPQYP7mrrjPyxrM9V5xqikRDqZtOg2H/lZDFYwcwPa8MRU2rF0xK+Z2M0FWW2KV4ndjjQ0giHwiEOTzIswoFQ70uBEI8rCbDdJcRDWkGmikdoUfHCeFDpnjpiyKc8gC0T1kNhJkUqgHDyHsxKbjdQfP85SymCIOiwk9g/6oWWSeBEmh+RTKJocaeYiYqA31WP/FERzp86C62IJnfzwLj72/B0/+9xCOrXXgr+fPCPuRuHIkZTHfKLPFn0UGCIOjgzzAASgvsmhqMNc7/ETPChkgCDuv7KKkw+VDvGMzm0FWW2qTxCwJMiLfaW5x4v7mnWG/+xqHJa325FyE9Y+NqSiKSqVNRKqBRmyFP973IHelxBVkihUysiwybKbQdcagL6CrIOvz+KXPvYIqZEnBnFKRs8jUBNPkSyibHPrFEjFRM8PD6w/ib5taAQArZo9GkcWIhU3CoHCnyxu1YpFLKYv5RJk9cYWM+d3L7GaYDFxWI2RrS2wA9BNkrd3CBdbwEis4ThD+3XE+izZZhayUiVkaDk3kMWz+VeQiTLrtyblIKGFRnV1RbxY0VmP9pXOw+ntTYRVt4w+cNUUSxV7ZXLFYtnIgviCjUA/hop19DgMxFpYDQR6ftHbjlW1t+KS1W/VQYXY+dViN9FknSTGzLEZWyGL0kOU7VCEjYhIK9Yg+kDHby4tfHsXRPg+GFZuxbNoIAEJyHSCc6HsGfWGpfwOUspgWylRUeTokv7vwfWQzQpZZFl3eAPo9/rCG3mRoFWcKNQwrhsHA4VCPG63dbsWVy0FfQOq1C+8hiy3gCGIoo2X+1VC3/ahhX5cY6FGR/MiNVDEaOBw/pgJNNSX4/HAv9nQMoKnGASA8NTHe98EEmS+gEOpRYBezsbCbjfD4g4oLy6lUjDsHqX8sVRzidaCWHrJ8RtVV0IIFC6Tesb6+PixcuDDqPhTskX/YTcqhHkoHsUF/EO/v6cSCxmo4rCaMLLXiUK8HO50uqazM8zxZFtMEq/L0xBEVnRERvdmMkC22mKR+w7Z+T8qCbH+X0KA/usKOAARBdqB7ENNGlkbd96g4g6zYYoTDasrLHjLqEyLkZNOenIvs1RB5n24ahhXh88O92NXhkv7mkw2Fjte3z+yMShUy6iETKDIb0D2ofB2j1MvHKsaJAiIoYTF1pApZxFiCQl1UUHUVRIOgCxMpZVEWex/rINbvCYQdxBqGOQRB1h4SZN4AL9kByLKoL5JlMY6oYCeQKvEEku0I2doSK/o9wnDoCVXFKT0XsyyOKbcDRgM+3N2B/WLVLBJ5oAeAvOshoz4hIpJs2pNzkX0aIu/TTYPoKNnZLhdkwnkyUYUgbg9ZgV3MxsKmMItMj4oxJSymTrFYIeuPaBeQZulRhSyas846K93bQeQgVnN4qIeWg1hDdRHe2dWBFmfoJDMgK0vbKWVRV6QKWbweMoUTSKwG88h0zHRQ47Bil3NAl6RFZlkcXWGDQTzIH+hWFmRH+kIzyICQIOvLgx6yVFd9ifwkm/bkXKN7wCctXKmNvE8nzOK/S3au9IlzxUwJFsOkOWQyyyL1kIVTZInuhdejYswSFiuoQpY0zBkTVSEr0EUFauQhYhIZ6qHlINYwTPDCy08y7EdnEwcCEvqhrodM2WKRrQhZvZIWA0EeB3pEQVZuh8km7K+t3W7F+0dWyEokMTu0BRn1CRGxyKY9Oddg/WPDS6y6pu4lCxNkh3o9cHn9KLaY4POzodDaK2Q0GDocmzk0i4yhR8WYLXBWUYUsaZhTKjLUQ03KYj5SWO+W0ATzoAeCPPyBoKaDWINs1S8oDmQcoP6xtFGmpofMFd5DJodFyC6eVIOZo8szcsHO5v+09aVmkzra54EvwMNs5DC81IZx1YINKVaFLFKQlUkVsqEd6qFlwYQoLJg9OR7ptCfnEnulhMXs2xUBoNxuRrV4TN7tFLaNVcjiJSwCgMkQOkczQj1kdJ4FQjNP5YJMj4pxF1vgLKYKWbJIgiwi1KNQUxYL690SmpDbCgd9QU0HsdEVdliMHAZ9QRzqESoVFHmfPlgPWb8nELZaKodZLHJlRU+vChmzK9aV2WA0cBgjXmj1uv2K0fdHxFCP4WL0fr6EelCfEBGPBY3VOGFsedTfa0usBWVl3ZdDgR6MenERaafoKGE9ZKZkKmQFaveKhd0cPU+VVYzjkahi3OFilsXcOJ8ORYqtoesWOYWaslhY75bQhNnIgS3Quf0BTK8rS+iXZgcxk4GTghpaxGZlF0Xepw1muwNix7eHUhZzY0VPL0G2vztkVwSE/WuYeLJVqpLFC/XgeXUzaHIR6hMi4uEP8vi6TTgWnzShAgAwvrII6y6ZXTBiDAhVyHIh0IMR2UfmlaUsxoP1kMlj790FaveKhZJlUY+KcciymBvn06GIwxqjQlagiwqa3+3atWtx5plnYs6cOTh06BB+/vOfw+VyJX4gMeTgOE52MAuC4wBHguqW/CBWPyw8PYosi+nDZOCkg5tSL1SQ56UKWa6kQtU6RMtivz4VstGyBn0mzlojBBnP8wqCTDih+oN8WKLoUEOPVV8if9lyoBtdgz6U2Uy4eNYYAMJFaiHYFOXsE48XuRDowWiIEGR+lSmL5ogKGc/zVCGLoMgcHeoBhAKtmGWdobZi3JVj59OhCJtD1h8j9r7QUhY1vdsnnngCf/nLX3DRRRchEAiguLgYbW1tuOeee9K1fUSWka8u/efLo2jtdsNqMkied4bSQayRxfk6mSAThAJZFtNDvFlkvW6/1GeQK3NTasWUQzYcOlmkyHu5IBP/+0BXeLBHj9sviS7Ww2Y3h0JmhrJtkfqEiHi8/rUTAPCtxmqMKBPsuu0ub1j/Ub7jCwRxUDxe5EoPGRCqkO10DoDneanixXrEYsFuD/LCopsvwIN9m4V2MRsLybIYcdEPCKLsRyeMkf5dZjOpqhi7fQEMiBU3SllMnlCoh3KFjCV9FwqavGNPPvkkHn30UdTX1+O+++5DWVkZVq1aRbH4eUogyIMTD+8f7u3EPz8+AAC47Jvj8INv1CVM5WuIEGTSUOgcSLbKR8psJhzqUZ5FxuwVpTZTwuSuTGE3G1FqM6HX7ceRPg8akhwOzeaNsaqY8N/CBWdkhYxVxyqLzJKlh+M4lFpN6Br0odftkypnQxG26nvHy19HrTqW2kw4cVxFlraMyCb+II/mFkGQLWoahqpiCwyccIzvGvCi2jF093ktHOx2I8AL56BhOWTdnVBVBA5A96APnQM+zZZFQKiqeWXWRbIsCtgVLIty2HxOQDh3+gJBGA3xr1E6xPOp1WSgBeYUKFaIvQ+r8ubItUqm0PRuu7q6MH78eACQei2qqqrg9w/dVWVCmeYWJ5as2QSneLB65N296Br0Y5jDgvNmjFSVytcgWhZbuwaFFSWyLKYVlrTYq1AhYyedXKmOMWqYbTHJPjJ/kMdBMTRGXiEbFcOyyAI9IkVXPg2HXtBYjW81VEn/versKahxWNDr9uPprYeyvHVENvhvaze6RbvizDHlMBk4yeVwtIBCXkL9Y3ZwXO5Uim1mo1TV3+l0SRZEtYOhgXDLNYfEYq5QSCTInK7wc8/h3vjnokCQx4d7OgEIwr6ACsy645BSFgNSGrc/KKvyFtiigqZ3e8wxx+Bf//oXAEgHsw0bNqCxsVH/LSOyBhsuqxSh3d7vxbu7O1U9T1WxBZVFZvAAdnUMkCBLMyxpUamHTGkodC6QarDHkV43AkEeVpNBsiACIXHG+ssYkf1jDGk4dB4IMgDYJ1o1T504DHPHVeKyb44DAPxt0368u6sDr2xrwyet3QVlVytkXt/RDgCY31gtXcSz30u7DoPZhwqsf2xMDvWPMSZUCRbKXU5XyLKYMPZeLsiCYf1juSQ4s0nkPNVIIlNnD/Yoj0sBQgvV976xCwDQNejDkjWbpOozoY1imSuGXR96ZH3cVCGLw8qVK/HHP/4R3//+9zEwMIBLL70Uv/3tb3H99dena/uIDKN2uKzaCznJG9/eL3muqcSfHkrjVMg6crQBubYktQrZflnkvUF2AcIqZD1uf9jnEUuQleRRhYzneakSMF7skznt2FrUOCzo8wRwzfNf4tYN23HZ2s/oYqIA8Ad5vNnSAQA4tWmY9PdhOoXqDCVybQaZHHmwhzegbjC03JniC/AFO1A3HnZL/ApZuzifk40/OdjtVrxfrIXqtn4vVq7/io6jSWAxctKiAusj9xRwlVfTr3by5Mn4z3/+g4ULF+J73/sejj/+eKxbtw7HHXdcuraPyDB6D5dtHBZqVpZ6yCj2Pi2wtCjFHjLxpFOVI5H3jJoS0TaVpCBrjbHiXWQxoqqYRd+HTrBH+4T/Hl5qC7u/JGZTCBfRg0CQxyet3SlVsDoHfOjz+GHgQuEmb+/qUPxd08VE/vNJhF2RwRI5j6Y4mF0LeuzfqRCaQZaDgkx2rmQVskSDoTmOC5tF5iFBFoXSHDI5rEJ2XF0pAEgWeDl6L1QTAhzHyYZDC98P64MsxCqv5ivj2tpaXHrppenYFiIH0Hu4rLxCxoQYWRbTQ6ldTFmMY1nMtUSoVC2Lrd3RgR6M0eU2dLi8aO0axLHDS8JeJ8qyaGWWReUZbpmgucWJ+5t3hgmnGocF1y5o0DQnilUBRpbZYDUZVF9MzKuvogTGPCIQ5LH1YA+e2LQfAPCthqowi5tUnc5QhUyv/TsZAkEeWw50Y6ezHwAwptyW4BGZp16c27nb6YLXL/SAJhoMDQi2RX+Qhz8YhCdQmGEI8YjXQ+b2BdAnLsIdN7IU7+3uVBRkWhaqZ44uT32jCwiH1YQet18SZIW8qKBJkB1zzDGKitVkMqGyshLz58/HjTfeCJst9w52hDr0Hi7LKmQt7S7pv4spZTEthCpkCqEeOWpZrEnRNrVfYQYZY1S5HVsP9oYFe7BQj+ExLItK1cVMwOwwkbAKlpq5OIxIWxZdTBQeSuLn7V2dOLHFKe1H7LfXngFBpuf+ncxrR34Wv3z+S1yXASGohVEVdliMHNz+IPaKxzWzigUSk5ED/ELKoscvXNQW4sVsLJggG1CIvXe6QmmJE2sdAJR7yPReqCZChCpkwrm3UBMWAY2WxRtvvBHHHHMMHnvsMbz44ot4/PHHMXXqVFx88cW47bbbsGvXLtx3333p2lYiA+g9XHZ8ZREMnHChyy6eqUKWHsrsrIcsWlR0uHI/1IMlt2pBaQYZg/3tgHifQJCXLj5zKdRDbzvMXmbLqhAEGV1MFBaxel26B31h9tRhol042f5NtWTT7hXrs2jPQauuycBhvFgl2360D4C6i1I2i8wf5OH1C58hCbIQTJC5/dGhHuyYV11sQV2ZcL442O2OOhfpvVBNhGDBHv2e8ApZIQ421/SO165di0cffRTz5s3DhAkTcPLJJ+Ohhx5Cc3Mz5s+fjwcffBAvv/xyuraVyAB6D5e1mY2SnYydFEmQpQepQjYYu0KWaz1kTBgN+oJY9/kRTX0l/kAQh0V7iZJlMRR9L9ynw+VFgBf28aqIweZS7H0Wesj07tvc2yEGelQJ758uJgoHLeInVJ32JrUYoha992+1DMW+n/pqYRFlj/gbTpSyCCCih4wqZJHE6yFjFbLqYgtGlFrBQRBu7HzJ0HuhmggRORya9ZAV4mBzTe/46NGjqKysDPtbWVkZDh8+DACorKyE262cUEMMHdhw2cgDUG2JNSlrCbMqMihlMT2E5pCFiwqeF4a/ArlXIftgbxfYJcddr7VoSv472CMMebWZDIpDXqXh0GJl9ohYCahxWKIWFEqssauL6UbvClakZZEuJgoHLeKHpSx6/MG0WnWzVaHNlhBMBZa0yDRiopRFQCbIAtRDpgSrkPkCPPyB8CoZS1gc5rDAbDRIC4SRfWR6L1QTIRwRw6ELuYdM0zueMWMG7rjjDng8woWNx+PBvffei+nTp4PnefzrX/9CfX19WjaUyCwLGqux/tI5eOzcabjztGPw2LnTsO6S2Ul57lmwB4NSFtMDq/IM+AJSShcgHOhYjHIuDYZmdqLI9Wm1yX9SoEeF8pBXViHrGvSh3+OPGegBhKqL2Qj10LOCNeANSMKTJcnRxUThoEX8WE0GVIg253TaFrNVoR2KVt3Ic2WilEUgFA3uD/Lw+ArX7hULuSMnchaZZFkUFyfqxEU8pT4ytlBdYg2/fkl2oZoQiNlDVoD7sKZ3fPvtt2Pr1q2YOXMmTj75ZMycORNbtmzBbbfdhk2bNuGBBx7AypUr07WtRIYxGjjMHF2OxZNqMHN0edIXbJEVMrIspocSm0mqNslXvFn/WLHFCFuOBKroYSeSAj0U7IqAsPLGBOiB7sG4giybc8j0rGDt7xKqYxV2M8rtIfGtd9WbyE20ih9WWW5PoyjJVoV2KFp1IwWZugqZrIdMXIizFeDFbCzMRoN07TIQYVt0uoRzQrVoYa8rEwVZjFlkCxqr8e2JwrHypPGVKS1UEwLFlvAeMnnsfaGhqVRRV1eH9evXY8uWLTh69ChGjhyJ4447DhzHYfjw4fjwww9hMBTeh0jEpyFCkO1o60fF2ApakdcZA8eh1CZEyPYM+qSTTChhMXeqY3ok/7XGSVhkjCq3o3PAh9ZuN470CifZ2pLoFFgp1MPjR5Dnw4ZMpxtWwVJKoWOorWDtYXbFqug5SwsaqzGvvgrPfXYI976xC5VFZqy7ZDb9DvMIJn7i/bbk4qemxIod7S4cTWPSop77txa0fha5QI3DghKrSYpiN6lNWQRLWSzci9l42M0G9HsCUX1kbCGCLUxIwR4K0feMXWJ/37cnDaNUWh1wWMMrZCx8hXrIVODxeFBXV4fp06ejpqYG+/fvx2uvvQar1UpijFBk+9F+yE8rv/j3F6r7hAhtKCUtduZg/5gediIpYTFGhQwI9ZElrJCJNpQgrxyPnG4WNFbjju8eE/V3s5HTGHkvfCbjKpU/E6OBwwnjhD5gty9IYizP0GpPlWaRpTlpkVVoI/tC0lmhHYpWXY7j0FAdWkxRl7JIg6ETURRjFpk81AOQVchiCDKe59HS7gIANFY70rKthQarkEmDoQt4UUHTO3722Wcxd+5czJ8/HwsXLsTChQvxne98B7fffnu6to8Y4jS3OHHjC9uS7hMitFGqkLTY4RIrZMW5I8j0sBOprZABgr2RCbLhpdGCzGY2Shcx2bAtAsCIMmG7ymwmXDtf6MX1BXhMFodaq4ElLLJADyVY+MuALyBdwA0lAkEeH+/vxrqtB/HxfvWpnIUCEz+R7UdK4kdKWkyzIGPbNW1EaF+++dTGtNu9hqJVd7ysun2oZzDh/h0SZMGQ3asAqwvxsMUSZFIPmSjIWA9Zd3QPGSAEQ7m8AZgMHMbGWPQitCFVyCIsi4W4qKDJsvjYY4/h6quvRnFxMT766CNcfPHF+MMf/oBvfvOb6do+Ygijtk9oXn1VTq1SDmWUkhZDFbLcsSymaify+oNSeEU8Qcb6yxJVyAChSubxe9Hr9mFkWeaH228/2g8AmDqyFN//Rh2ad7Rjy8FevLKtDT+cPVrVc0QmLCrhsBph5IAALwj3mhifRy6iNOS3xmHBtTk25DfbfHN8JViS/fUL6lFfXYzpdWVRx9lM9JDJ6ZYdl0aUWTNy3GdW3W+v/hC9bj9uWdSIM6cMz8lzTnOLE6993S79+5//PYTXdzjj7t/KFbLc6BXOFUIVstAClNsXkKyhw4rFUA/xuN/e74XHH4wSBaw6Nr6qSFV/H5EYFurRL1oWPWRZVEd7ezsuvvhizJ07F/v378fkyZNx99134+mnn07X9hFDmKEYOzzUkSpksrRAJsiqcsiymKqd6GCPG0FeONFWxRGaTKzt6RiQeuliCbLSLAZ7AMD2NkGQTawRrDDfPbYWALBh21FVc6L8QV4KOoknyDiOk6ytPVlIlUyWWEN+qdoezb7OAQQhLDJ8b/rImKFMTIyns4dMTresct89mLnfmdHAwS8mzaYSUJVO2P7d5wmv4iTav43ihasvIBdkuff+sok0i0xmR2d2RavJIFVpyu1mFJmN4AEc7o22Le4UBVlDRPgKkTxS7L2HLIua3nFVVRV8Ph9GjBiBPXv2AABGjhyJjo6OtGwcMbQZirHDQ53QhbasQiZZFnOnQgakZifa3xU/8p4xSrSgsM/DZjJIEfeRyIM9ssHXoiA7RhRkpzYNg8XIYZdzADvEC4F4HOpxwx/kYTUZFG2Zcth+0q0wRDwXGYpDfrPJrg5hf6mvLor7+6jNoGWR5/mw/a0rg/sez/OSXY1dnOcSqezfZpllkSpkyihZFiW7YrFF+o1wHCeLvo8WZFL/2DASZHoRGXsvBdNQhSw+06ZNw69//Wu43W6MGzcOTz75JJ577jmUl5enafOIocxQjB0e6ij1kOViqAeDzbtjVpErTxqnqq9EmkFWHt9aWGozhwmw2hJrzAtUFuyRjQqZxx/EbrH/65haQZCV2Ew4ub4KALDhq6MJn2OP+PixFfaEKZHlkiDLjvjUClXbtbHbKewLkTHqkQwrEY4JLm9AuiBKFy5vAL5ASFBkcjHA4w9Kfcz2HBy7ksr+HRoMzRd0dSEebNROmCBzhScsMuJF3+90CotmkcnRRPJEhXoECrfKq+lXe9NNN6GzsxMulwvXX3897r//fvzqV7/C1VdfnabNI4Yy2Zo/U8go9ZB15GDsvRyjgZNWHIssxoR2okCQx5YD3QCEyOdEVRF5j1ksuyIAlCokVGaKXU4XAkEeZTZT2DZ+d1INAOCV7e3wJ3if+8T+sfEKkfeRMEHWM0QqZFRt18Yup7CSPyHBvlBsMUkr1O196f3sIgVY90Dm9j23rHfIloPVo1T2b5MxNIeMUhaVsSn0kLVHJCwyRpYpD4d2+wKSM6ORLIu6USzF3gcQKPA+SE2/2o8++ggPPfQQampqcPzxx2Pjxo346KOPcOaZZ6Zr+4ghzFCMHR7qlCn1kIknnqocSlmMZGSCuGFGc4sTS9Zswju7OgEAL29rTzhCYZQsoMNkiC3gSrNYIWP9Y8fUOsIqeCeOr0SZzYQOlxcf7++K+xws0GNsnP4xBttPhoplkart2mCzkhJVyIDM9ZF1RQiwTFoW2UBgq8mQk+ebVPbvsFCPQOEGIsRDKfbeKe7v1Y7wRTo2i+xQxLloT+cAgrywmJXL59KhhsMScrAM+gIFPRha0zu+/fbbw2aNmUwm2O0U/UnEZijGDg9lyuzhomLAG5AGLeaiZZEhDeRUsIkwkgl1aG5x4t3dndK/P9jbFVPAlUg9ZJkXKV8fZYEe4RH3ZqMBiyYOAwD8/aMDeGVbGz5pVY56Z4JsvApBVj7Eesio2q6eQV9AuphMVCEDMtdHFlUhy+C+xy7EbTl6kZfK/q2UsliIF7PxkEI9lCyLEeIqVg9ZS5sY6DGsOG5fJqENi8kAszijo9/jD9luC3BRQVPs/dSpU7FhwwYsXbo0XdtD5CEsdnjrwR44+72odlgUI5iJ1Cm1hVvRWP+YzWSQfPS5CDsJHlJItgLUN71/q6FK+jcTcJEwARe5IJArFbJImIVx8/5ubN7fDSA66p3nedlQaA2WxSwlSmqFVduVvk8GVdsFWC9iZZEZFSoWYWrEPrK2dFfIxGOS1WSAxx/MsGVRuBDP1WNgKvs3E2S+QFC6mCXLYjhKoR7tETPIGKyH7FCPGzzPS+KrxckGQpNdUW+KLSZ0D/rgki0gUw9ZArq7u7Fy5UpMmzYNCxYskIZDL1y4MF3bR+QJRgOHmaPLsXhSTc7GDucDrELGLrQ7xFXAXBoKrYS8kVop4l1t0/uWA0LTezKpZaX27AgyfyCIne3hCYuM5hYnHnlvb9RjIquCHQM+9Hn8MHDx57Ix2H4yVCpkgLCw87OTx0X93WoyULVdhtQ/pvLCcZhYIUv3LDImwNiCQSYti6x3iF2Y5yLJuknMSj1kBVhdiAezLA54lVMW5YwotYGD0NPUIws9YsdoCvTQH2kWmbxCVoCLCpoqZBdeeGG6toMgCB1goR4efxBuX0CavRVvVlcuMKJUEGQDvgC6B31RK/uqm95FAbrlgPrUspmjywEApVbhM+rLsCDb0zkAb4BHscUoVQoBbYPVWaDHyDKbqtXxoRbqwWCiYdaYMpxyTC3uf3UHTAbglPqqBI8sHJggq1dhVwRkPWQZsiyOq7Tj67Z+9Lp9CAT5jCzODUiR97kryIDk3CRyy2Iooa7wLmbjwSyL8nCXUMpieA+Z1WTAMIcFbf1eHOwZRHmRGTzPS5H3TSTIdEeaReYNyPbh3P6tpgNNguyss86S/ruzsxOVlZW6bxBBEMlTbDHCyAEBXqiS5XLkvRyryYAa6STojhJkqpvexdVOdrJNhFzolUiDoTMrUtj8saYaR1hcvZYobBZ5r8auCAxNQeYPBPHq9nYAwIXHj8YZx4/Bmnd2o9ftx/ajfZgyojTLW5gb7NYQ6AFkroesazC8QhbkhcWP8gwsFrlzeAZZJMxNohaTMRR7Tz1kytgjYu/dvoA0bzKyQgYAdeV26Vw0eUQpnC4vetyCA2F8FQkyvQnNIgsUdJVX0zv2+/144IEHMHPmTCxYsACtra04++yz0d7enq7tIwhCAxzHSX1kvW5fzg6FViLe/Be1Te8zRglN70onWSXkQo/NcOvN8GDo7UeV7YpaorBZoIdaQcYqqUNlDhkAbNrXja5BHyrsZswZVwGjgcPx4oXr5n3dWd22XGK3ysh7RqiHLDOx99XFFmnmX6Yss4NDpEKWDCbFwdCFdzEbD7spXJCxBTuryQCHNXqfqItI/WXVsbEVRfTZpgFJkHn8spTFwmtr0bRnPfTQQ9i4cSP+9Kc/wWw2o6qqCsOHD8edd96Zru0jCEIjUh/ZoB8dQ6RCBgAjy8W4YYVgD60jFGaM0p5axgRZvyeQcLaZnnwdI9BDSxR2SJCpS71lFbIBX2hFMtd5aZswHPvbxwyTLkJnjy0HAGxOMBKgUOhz+yVhpbZCxixb3YO+tO4LLPa+osiMCrEqlqk+MtZDls+CLBDkKdQjBqEKmfD5sMWuYQ6LYmLiyIjFwZ3toYRFQn+KxQWaflmFrBBTFjW94xdeeAGrVq3CSSedBI7jUFRUhHvuuQcbN25M1/YRBKGRsAqZNBQ69wVZvAoZIPRX3HX6MVF/V2p6T2YGHktZBCDZWdJNkOclQTYxokKmJQpbS8IiADisgrUVGBq2RZfXj7d2dgAAvntsrfT3OWMrAACfHeoNS1ArVHZ3CBeOtSVWqS8jEWU2k3QB357GpEVWDSu3m6UKbeYE2dCxLGrFJI4i8gV4ePyheWtECCbEWS9hrKHQjLqI4dBSwiIJsrTgkFfICnhRQdM7HhgYkPrGWBKazWYLm01GEER2kYb+uv2yodBDyLIongSVYEOPi80G3HHaRDx27jSsu2S2YgKZ1tQyk9EgpXFlKthjf9cgBn1BWE2GqIHOakTlVSePh8cflAIZ1AoyjuNQJkXf574ge6ulAx5/EGMq7DhWVkkcVW7DiFIrfAEeWw/2ZHELcwMp0KNa3X4ACPsC+42kM/peLshYhYwsi6nDesg8/gACYmG/EKsL8QiFeoRbFquLrYr3j7QsShUyirxPC8WyUI+Q7Tb/fquJ0BTqMX36dDz88MP45S9/KZV5//73v2Pq1Klp2TiCILRTKl5o9w76pFCPihxPWQSiT4JKsAvOptoSfGdSbcz7MbSmlpXYTBjwBTLWR8YGQjcNK5asR3KYqLy/eWdYj4+BE0IRPj3UA5dX2NYSq1F1VQQAyuxmdA74hkT0PbMrfndSTZjFiOM4zB5TgXVfHMHmfd2YO66wg6Z2OQXr6gSNwQM1JVa0drvR1peePjKvPwiXGDleUWRGORu7kKFZZIVgWXTJIt0LsboQD3tE7L1TXHiIZQuvE+3zR/s8GPAGsEe0hFOFLD2EQj0Ku4dMkyC7+eabsWLFCjz33HNwuVw47bTT4HK58Le//S1d20cQhEZYhUxIWRx6lsWjfR74A0GYFFZ5tUZ6A9pSy0ptJhzt82QsaXF7DLuiHCVR6fYHcPW/v8TTWw9L9+vzBLBkzaawgdHxYH1kuRrsEQgKVa/dHS4ptOM7k2qi7jd7bLkoyKiPbFeH9goZANRIs8jSUyFjot9o4FBiNaHcLhyPMm9ZzENBJh4n5YKMUhbDYd+72x9EkOdDkfcxLItVRWZpgPnGvZ0IBHk4rEbUlihX1IjUKLaE+re9lLKojjFjxuDFF1/EjTfeiF/+8pe44oor8OKLL2LChAmaXnTDhg049thjMWPGDOl/119/PQDg008/xfe+9z3MmDEDCxYswNNPPx322Oeeew6LFi3C9OnTsXz5cmzZskW6LRAI4N5778WJJ56IGTNm4PLLL0dbW5t0e0dHB6644gocf/zxmDNnDu666y74/aGLkUSvTRBDAdaf0d7vkU7SVUNAkFUVW2A1GRDkgSMxIrhZBUBtYIFWWLBHpiyLsfrHIokcrO7xK4eORA6Mjock3HOwQtbc4sSSNZtw2drP8Ps3doEHYDZw2CFah+QcP6YcALCj3YWugfQmBeY6u5P8fbBgj3TNIuuS2RU5jsu8ZVE8DtrysodMqCSw6o/ZyIWNzyCAIktIiHv8QWmeYawKGcdx0gIh611trC5WDAAhUoclXfa4fSHbbQEuKmh6x3fccQf27duH0047DZdccgnOOOMMOBzxLySU+Pzzz7F06VJs2bJF+t8f/vAH9PT04Kc//SmWLVuGjz76CHfddRfuuecefPbZZwCATZs24Y477sDvfvc7fPTRR1iyZAkuv/xyDA4KPSerV6/G+++/j2effRbvvvsubDYbbr31Vul1r776ahQVFeHdd9/FM888gw8//BBPPPEEACR8bYIYKrCURTabymzkFKN9cw2O46LSrSIJ9cikR5CxOO7eDAgyXhboEZmwGA+1A6MTJUWGKmS5JciaW5xYuf6rqBh2X5BXFJuVRRbJSvTR/u5MbWbO0TngRdegDxyA8Sp7CRm1aY6+Z9ZEZlXMvGUxjytkkmVROGaRXTEa+Wcy4A1IKYvxxqMwQfbe7k4AQMMw7de6hDpYhaxTdjwoxD5ITe+4o6MD5513HpYvX44nn3wSfX19Sb3o559/jilTpkT9/dVXX0V5eTkuuOACmEwmzJ07F2eeeSb+8Y9/AACefvppnH766Zg5cybMZjNWrFiBiooKbNiwQbr90ksvxYgRI+BwOHDLLbfgnXfeQWtrK/bt24fNmzfj+uuvh91ux+jRo3HFFVdIz53otQliqMBSFvd1CQsVlUXK0b65SLxgj36PX6qcqZ2xpBVpFlkGBNnhXg963X6YDJymnh8tA6PjkYuCLFmxOUuskhXyPDK2WFFXboNNo/CoSfNwaLaPVYj7XIVoWcxYhUy0QRXltSATRGchXsgmwsBxsImibNAXCFkWHbEtiKyPjCXuUuR9+mALxl0yQVaICwuaesgefPBB9PX14YUXXsBzzz2He++9F4sXL8Y555yDWbNmqXqOYDCIL7/8Ena7HX/+858RCAQwb948XHfddWhpaUFTU1PY/RsaGvDMM88AAHbu3Imzzz476vbt27ejr68PR44cCXt8dXU1ysrK8PXXXwMAysvLUVsbCgKor6/HoUOH0Nvbm/C1tTBErn0LBvZ9FMr3wlafWVpRVZF5yLx3JsgO9Xqitpk1Vg9zWFAeI6Qk1e+a2T37PP6o5wgEeWw50AOny4vqYgtmjIodDpKIQJDHhq+EoIoRpVaYjJzqbWYXE2ruF+85mSDrdUe/12yhRWwurimVtnvO2Ar885OD2LSvCwA/ZBYg9GR3R8iuqPXt15aGesjS8dF1u9kMMgs4DmFzyBK9nh7Hb5auZ7cYc2Zf1wuzmLLo8oi2TJNhyL7HdJ6riyxGuP1B9Lh9ksiqKbHEfK2RZeFirbG6aMh+rrlG5PcsWRbFBRqLkYMhyXNrLqJ2v9EkyACgpKQE559/Ps4//3x8+OGHuOWWW7B+/Xps27ZN1eM7Oztx7LHHYvHixVi1ahW6urqwcuVKXH/99Rg2bBjs9vDBpjabDQMDwonG5XLFvN3lElYHi4qKom5nt0U+lv2bPT7ea2uhqqpE82OI9FMo38tYb/hw1+EVRaiuHhrvvamuHNhyCM5Bf9Q2H90thDZMGlmW8P0k+10PFytVXiDsNV7+4jBuf+ErHJYlQI4os+E3Zx6L70wZoek1Ip+rtduNZX/5SPVz1Y9UJ8jqR5bH/ZxG1Qi3uQJ8zuwfngO9qu7n5oTVU/Y9n1pih3ndlzjS54GLM2JcAcZTH+wXLmamjq7Q/H0eYxEEktPlRXlFsWKgTip4IFyRsGPRBINwAdY96ENVlUOVgE7l+O0VK6rDqx05s6/rRWW5YHtmM7bsVtOQf4/pOFcX20xCqqxofrCZDRg7slxx33v5i8P426bWsL/d9OJ23L5ksubjPREb9j2PFo/nzPfw/7d359FN1fn/+J9ZmqV7S6GFCqhtWVzZFzek2OHzUUQGUfzIMOL8xg10VGRRYUZcUJgZFRmVYQBBvzjOETeWUUEtKAcpUBBQEWgrSynQNt3TNm2W+/sjubdJtyRN0twkz8c5c86Y3CY3eSchr7xfizZKFfKv4a7wOiCrr6/Hl19+ic8++wxHjx7FzTffjBdffNHjv09JSXFJA9Tr9Zg/fz7uvvtuTJ06FSaTa+2IyWRCTEyMdGx71yclJUnBlFhP1vrvBUFoc5343zExMdDr9W1SMJ3v2xsVFXUQOi/foG6kUNjf+JGyLoLJ9Qt7rFoBg6Fr6cXdLdHR6vbXsro253zktL24ul+8tsPH4+taq6z2LzVl1Y3SfeSeNGDBlmNtjr1QY8LDGw/hr5OvQPYA910N/XVbl8dFoVesptOdpNQ4LS6Pi+p03dWOhkblNY2yeX1obTb3BwHQCfbjnNf56t7xOHSuBqtzT+LK3vE+72KGmp/PVQMA0qLVXq+nYBOgUipgtQk4cbbS793kShzdH3UKAQZDHQRHel2TxYZzF2qg13ScSuiPz2+j45f35oYm2bzW/aWx3vU7kVoROp/3rQXy32qtY17uz2ftNWEpMRpUVBjbHNfRZ3RpbZPXn/fUvtbr3NyqGZNGGbqv4faIj9cdrwKyp556Crm5uUhLS8Ndd92FN954A8nJyaisrPT4No4fP45t27bhqaeekn6ZaG5uhlKpxDXXXIN3333X5fjCwkJkZWUBALKyslBQUNDm+ptuugkJCQlITU1FYWGhlHpYXl6O6upqDBgwADabDdXV1TAYDEhJsb+ZioqKkJaWhri4OAwYMAB79uzp8L69IQiIiC/+oSZS1kWsIRMlR2tC5nH3cZpF1vqcC6UZS9FuH09X19q5qYcg2FML/+6mpunVnUW4KaOH2y/+/rotpcI+MHphO18aRHPHZ0CpUHT6HIivk5pGs2xeH0PSEzwKNoekJwBwXecejgL9Dw6dB3AeANArVuPxGIBQJggCfhVb3veI8Xo9lQoFesZocLGuCaW1TVJNmb+0NPWwfxbp1EpoVAo0WwVUNpjRx4PaLl8+v8U5ZLoolWxe6/7S+rNCo1KG/GMMxL/V4nDos47a6p4xbf9d9OfnPbknrnN0lGsoolGH/mu4K7zKS1Cr1VizZg2++OIL/OEPf0BNTQ3+8pe/IDs72+PbSExMxPvvv4+1a9fCYrHg/Pnz+Nvf/obf/va3mDhxIgwGAzZs2ACz2Yy8vDxs3bpVqhubNm0atm7diry8PJjNZmzYsAEVFRXIyckBAEydOhWrVq1CcXExjEYjXn75ZYwaNQr9+vXDpZdeiuHDh+Pll1+G0WhEcXEx3n77bUybNg0AkJOT0+l9E4UKnVop1RUAQHInnaTkpk+8PSCrNVnatJ7/NcAdFgGntveOGgN/NdDw922JA6N7tWrbnBqnxfLJV4TsHDKV0h5sdmbu+Iw2X4ZyCwz46kR5m2O9GQMQysqMzTA2WaFSKtA/We/+D9rRKy5ws8ha2t7b318KhaJbm8q0dFkMv0YBrQfKa8PwMfqD2Oim2NHBt0dM2x8d/PkZTZ7TOH6gEUViQw/Ayx2y5cuXAwDy8/Oxbt06fPvtt8jKypJmiHkiLS0Nq1evxmuvvYZVq1ZBq9Xitttuw/z586HVavHOO+9g6dKlWLlyJZKTk7F48WKMGTMGADB27Fg899xzWLJkCUpLS5GZmYk1a9YgMTERADBnzhxYLBbMmDED9fX1GD16NFasWCHd98qVK/HCCy9gwoQJUCqVmDJlCmbPng0ASEpK6vS+iUKFQqFAgi5Kav7Qo4MGGHIUrVEhOToKlQ1mnK8xYaDO3mq4sqEZlQ2Olt4B6rAIAHFOu0YApPbI7nhynD9vC2h/YPSQdM9T9MQvxA1m+zBOucx9EYPNZV8VuAwOTo3TYu74jDbBpqedGceF8a/aYofFfkl6RHWx/ksM7ksD0Ppe3CFLcvosSoq274QGeji0TRBgcjQ4Cs+2967rHYkDdT0hdtg8W9XSHKo1f39Gk+diNGo0S009IvM17HFAZrPZ8OWXX2L9+vUoKCiAxWLB6tWrceONN3p9p6NGjcJ//vOfdq+7+uqrO7wOAO644w7ccccd7V4XFRWFefPmYd68ee1en5KSgpUrV3Z42+7umyhUxOvUUkCWHAJDoZ2lJ+hQ2WBGSU0jBjrmczm39A7kl6qEVjtkHQ0Obc2T4/x5WyJxYHRXxGpVUCkAq2AfyNlZC+julp2VArPVhsX/PY5+iXo8+5usDoNNb37V7upzJWdWm4BvC+07gEl6NayOejBviTtkgWh939L2vuW13V2zyEzmlrrE8AzIWu2QyeSHFbkRh4IbHd0o25tBFojPaPJMjFYl/TgTqa9hjx71u+++i5ycHPztb39DTk4Odu3ahdjY2DZt4olIHhL0Lb9EJ8eEzg4Z4FpHJipy1I9leDGvqyvEGrJGsw1mq02qaeqMc01TZ/x5W/6gUCik14mcZpGJxMBgcFoshvdN7DDIiORftXMLDJi8Zh8+OXoRAHDoXC0mr9nXpRTNQM0iswkCahxt753HVXRXyqKYrqhAeH7Rc05PByCbnW65iW7VOKa9oEpun9GRRBwODUTua9ijR/3KK69g3Lhx2L59Ox588EEpRZCI5Cle2/KPT3FVY5tBunKW3m5AJtaPBS5dEQBitS3/KNSaLB7VNN14eTIA4GBxNbb/UoaDxdXtPt9drY8KJDkHZKWOwMBdx79I/VU7t8CAhVuOtdkd7GrdnPj8nCgzdvga7oraRgvEm0rUtby/xIAs0CmLYkCmi1JCGYaDpJiy6JnWu6PtpSzK8TM6UsQ6fWeJ1JRFjx71n//8Z+zbtw/jxo3D66+/jtLS0ogcvEkUCnILDNh3plr673mbj3X5V/NgSE+wNyVod4cswPOlVEqFtEsmNhXJzkrB0tsGtTlW/Adky0+luO1feXj4w6NY/PlxPPzh0Q6f7+ysFEy+KrXN5d404/An8QtyjYwae4haAjJdp8dF4q/antbNeRpU5RYY8GpuEQDgTFVjp69hb4nBfpxW7TLfTKwnC3TKYktDj/BLVwQAlYopi57QtVr/lHaaegD+aZhE3nPeIYvU17BHNWQzZszAjBkzsHfvXmzcuBE5OTmwWq3Yu3cvbr/9dqhU4flBRxRqxF/NWxN/NQ+Ff1DSE+1fwM87AjKXlt7dMPA3TqdGXZMFtU0tQYrYUj1Oq8L8CZnoFavF1b3j8bv/dxCnKhtRUe86P6uz57vS8QV06jVpGHZJotfNOPxJzjtkF2vtAVlafOc7ZOKv2u7GAITTr9r+rJsL9GeGuAOW1Kq5UFK3pSyGb0MPoG0NWaSme7kT7cEOmcjXhknkvRinlNJIDci8etRjx47FW2+9hS+++AKzZs3CsmXLcOONN2LZsmWBOj8i8pC/fzUPFjFl8XyNCVabgNK6JtQ3W6FWKtAvqWstvb0RL80ia/mimHe6CgBw/eU98L+DU6WaplpHgXhHWj/fzRYb8s9WAwDuvLYPJg7u1Wl9VKB1Z+txb4k7ZGkeDCmOtF+1/VU31x2fGWJAltBqPmJ3pyxGSkAWqV9m3XEeeaBTK10CgPaIDZOC/RkdKZzXgymLXkhPT8f8+fPx3XffYe7cudi/f7+/z4uIvBQuM1R6xmqhVipgsQkoNzZJ6Yr9k7ve0tsb4iyyWqc5aPvO2AOyMf2TpMsOl9Sgot675/vo+VqYLDYkR0chs2fgd/vcEXfIakzySlk0ma3SF3V3NWSi7KwUbHlgNFLj7EHZn266DJv/OCqowZjVJritLewKf9XNdcdnRnWD/fZb75CJDT4C/WOAKYxnkAEMyDzlHJCnxGpYdiMzzvXbkbrL69UcstY0Gg2mTZsmDVcmouAJl25zKqUCveO1KK42oaTG1NLQI8AdFkXScGhHkFLdYMbxUiMAYHT/ROm4rjzfeWJgd2mSLBoMyHWHTNwd00cppfXwhEqpwGU9YlBa14wEXVRQf9W212UVugQ8vWI1eCo70+cgUayb6yyY8qRurjs+M8TB40n61imLGsf1gX3tNUhNPcJzh6z1j1QMyNrnHJD1bKflPQUXUxa7uENGRPITTt3mnBt7FBq6r34MsNeQAS07ZPvPVkEAkJkSgxSnWV1deb73OVIfRzvttAWTNAtKZgHZRSldUef1L9m9HTVnF2pNbo4MHH93QGzNX93guuMzQ0pZ1LdOWWx5n1mstjZ/5y9iDVnrGqJw0aaGLELTvdxx3SGTz8xFsovRsqlHZD5qojAUTt3mxMYeLjtkAW55L4p31LqITT3EdMXWQZS3z3dVQzOOl9l32kbJJCAT63pqZBaQedryvj1pjq6MFwIw4NgT3VXLmZ2Vgpdubdv905u6ue74zKjqIGUxXhcFMZQIZMqsyantfThSs8uiR7TqlufJahNkX0sdaVhDxoCMKGyE0wwVsbFHcVUjTld2T8t7UbzU9t4MQRCkhh5jLk10Oc7b51scRZDVMwYpMkmZEVMWZReQOTosprrpsNgesStjaZB2yLqzlvMSR5ObOK0KL906CP+8+xqv6ua64zOjpoOURZVSIaWjBrKxR/g39WDKoju5BQYs+u9xl/8OpVEwkSCWO2QMyIjCSbh0mxMDsgNnq9FsFaBVK9EnofN5VP4ipizWmCw4XdmIMmMzNCpFu7sEHT3fsVpVm+dbrB8be6k8dscA5xoyeTX1uFhnD6Y86bDYWu94xw5ZbXB2yLqzlrOw3L7jOjg1rsvd4Dp6DQPAqH6JPn9miMFWYqsdMqB7ZpE1NEdW2/tI/TLbETF9uLLVa8xf6cPkH9wh87GpBxHJTzjMUBGDL7G26fIe0d3WBCPBqamHmK44JD2hw6YAzs/3F8fKsPmni4jTqDAuo4d0jCAIsqsfA4AERx1Pg9mKZotNNt2tfEpZFHfI6ppgE4Rub57SnbWcBeX2dF5fO3a2/syobjTj7zuLcLC4GsVVjejrw7gJMWUxUd9OQKaPwmk0BrSGUeqy6KbNeahSKRVQABAT8OTyHpYDT9OHx2X0CKl/H8NRrIZdFiPzUROFuVCfoSI29RBldlO6IuDU1KOpJSAb42ZXS3y+52VnIEGnxoW6ZuwuqpCuL6pogKG+GVq1EtfKqIYvVquGWIJSY5JP2qKnQ6Hb0zNWC5UCsNgEt2MJ/MW5vb3NJrQbfDjzVy2n2PAmyw8jFJw/M6YPS8d1lyXBKgBr9p7p8m0KgiDVh7VOWQRaGn10S8piGH/Jc64j4w5Zi3AZBRMJnGs8xRmkkYY7ZEQkO3E6NeK0KtQ5Bi9r1EpYbUK3BJbxWvuXxMr6Zlx01CF5uquli1JhyjW98e7+YvznhxLc7Ej3EuvQhvdNkNUXJqVCgQR9FCobzKhuNKOnDLqPCYLg0mXRW2qlAj1jtbhY14QLtU0Bf0zttbd3xx+1nIIgoNCxQ5aVEuvTbbXn4esvxfenqvDFL2UY2S8RGpXS6932RrMNTRZ7ymDrph7OlwVyh0zsshiuKYsAEKVUwmy1f1ZqIzTdqz3hMgom3OUWGPC3b1p2MjfsL8bnx0r9MiIklPCdS0Syk1tgkL5IAcDHRy50WxF2vL6lhqzR7P0Q52nX9oZKARwsrkGBo8ZHjumKopZOi/KoI6sxWaQv8b26kLIItLS+vxjgxh4dtbcXtTdDrVesxiWdtasM9c2oMVmgUgCX9vB/B9LBqXG4qnccAOCF7Sex+PPjePjDo169D6sa7c+LVq2Erp0fIqQaxgDWkIV7Uw/AdYcsUtO92hNOo2DClfgZaqgPzIiQUMJ3LhHJivgBbWmVstBdH9Ct5xWN6pfoVR1SWrwO47N6AgD+c6gEJrMVPzhSYtylPgaD3GaRiR0Wk6OjurybmOpo7HExgI09PKlP0amVeGva1Xjp1kF4fcqViNOqUGZsxpe/lPl8/2L9WL/k6IDsuuYWGPDThbo2l3vzPhQDrUR9VLvz5BK7M2UxTGvIANfGHlp1+D5Ob4XTKJhw1F0jQkIFAzIiko1gf0DnFhhw73sHXS77/nSV10HgPcP6AAC+OFaK9fvOosliQ6JOjX6JXW+OECgJ+sCnjXlD7LDYlYYeou4YDu1JfUqZsRkqpQITB/fCDRk9MGtUPwDAv74/DbOPw5DFdMVA1Ff6631Y3UHLe1H3pCyKO2Th+3XHOSDTqEKrXjiQwmkUTDj64Rxr/JyF7ycUEYWcYBZhd5R+VmuyeL0zd02feKQn6GC2Ae/sKwYAVJssuGPtftmlYIgBmVyaevjSYVGUJu6QBXA4dFfqU+4e2gc9YjQ4X9uEld/9iu2/lOFgcXWXfmAo8GNDj9b89T4UUxbba3kPOI9dCGSXxfCvIXMOyHTcIXMRLqNgwlHrNMUOj4uQGj829SAi2QhWEba/2yPvLKxASU3b3Rkx3UtOXwTkNouspcNi1+fOifPLApmy2JX6FF2UCjdenozPfryI/xw6D+A8AHtdmbcF7IHcIfPX+7DKKWWxPeLOWVUg55A5dsg6GlsRDtROjTxYQ9ZWOIyCCUcpMazxc8Z3LhHJRrCKsP25MxfstEtvdccuhTdaOiz6krIoDocOXMpiV+pTcgsM+OzHi22O87Y+0my14VRlA4DA7JD5633oLmXR+bUnCIF5P4hzyFrXhoYTl5RFBmTtCvVRMOFo6CWs8XPGdy4RyUawirD9uTMXarNvxKYeNTIJyMSUxa7MIBOJf1vfbEWdKTA7f97Wp/gzUD9d2QCrTUCsVuVTamdH/PU+rHakLLbX8h5oCcgsNgH1zdYunKl7kVRDplIqXIIzIjljjZ+r8P2EIqKQE6wPaH/uzIXa7Bux7b1sdshqfW/qoY9SIcHRcl5sEhII2VkpeOnWQW0ub68+xZ+BujQQOiWm3e6FvvLX+1BMRUzoYIdMF6WSAqVAvP4sNgHNVkG6r3Alpiy2N1qASM5Y49eCNWREJCviB3TrYbupcVrMHZ8RkA9ocUegsy/Mnu7MhdrsG3GXQg47ZBabIBV6+5KyCNjTFmtMRlyobUJWT/8PThaJuz+JOjWeys5Az1htu/Up/gzUpfqxAD6ujt6HPWM1mOdhvZsYZHWUsgjYX3+N5iZUNZhxiZ+7kIrpikBkNPXQcCg0hSDW+NkxICMi2enuD2hxR2DhlmMdHuPpzpw/g7vuIAVkAUrt84bB2ASbYP+CmexhwXdH0uK1OF5mDPhw6PziagDAdZcn438Gp3Z4nD8D9QIpIPN//Zgz5/fh01uPobrRgpf+dxCG9Uv06O89Dcgu1DYFZBaZmK6oUoR3O3gxIAvEPDqi7iDW+EUyvnuJSJa6uwjbX6kToZYXn+CoIatvtqLZ4ttsLF+JXRF7xWm9Gsbdnt7dMBwaAPLP2lMMR7j5MuHP+kgxZTEQHRZbE9+Hg3rFAQCKaxo9/lsxyOqoyyIQ2FlkjY6W97ooVUBSO+VC2iFjQEYUsrhDRkTk4K+duWCkXXZVrFYNlQKwCvZZZD1j/d8kwlP+6LAoSpOGQwcuIKtvtuDYxVoAwAg3u0b+2oWtbjCj3PGaykiJ9u6EfdA/WY+8M1U4XelZQGa22mBssu9QdTSHDHDqtBiA1vctDT3CN10RAKIcqYrcISMKXQzIiIic+Ct1IlTy4pUKBRL0UahsMKOm0RLcgMyRXuhLh0VRy3DowKUsHi6phVUA+iTopB25znQUqAPA4zdd5lGgLu6OpSfoEKPpvn/C+yXZg78zjnb77og1iSoFEK/r+DzFgCwgKYvN4d9hEWDKIlE4YEBGRBQgoZIXn6CzB2TB7rQotrz3Ryv33vGBHw598Gw1AGCkF2vcOlD/5Oh5HDpX63FAUiB2WAxw/Vhr/ZPtDTfOVHm2QyY+ngR9VKfpp4Gcg9doiYwdMrWKTT2IQh3fvUREEU6cRRbsgMyvKYuO2zDUNwesNk5s6DG8n3cNWpzrI6cPTQcAfHWi3KPhyIXlRgDdUz/m7NJk+w5ZSY0JFqv759Ndy3tRUiADMkcNWdgHZNwhIwp5fPcSEUW4BKnTokx2yDxI/3MnUR8lfUEVb9ef6kwWnCizB0fuGnp05rrLkhEdpcKF2ib8dKHO7fGFBnvKYHfvkPWK1UAfpYTVJuBcjfs0UE86LAKBbephipAaMrGBZHWjGQeLqz0aLk5E8sKAjIgowiX4cZfCahNwsLga238p8/rLoT9TFhUKRUvaYgDqyA6dq4FNAPon6X2qu9NFqXBTZg8AwI4T5Z0ea7UJKDIEfgZZexQKhVd1ZFJA1klDD8CphiwATT0aHDVkujCuIcstMCC3oAIA8EupEQ9/eBST1+xDboEhyGdGRN4I308pIiLySEsdj2+zyHILDJi8Zh8e/vAoFn9+3Ksvh/XNFtQ6ZqH5I2URaGnsEYhOi2K6orvuip74zcCeAICvT5R3GsCeq25Ek8UGnVqJ9ATfdxG91T/JUUfmQadFMcDqrOW98/WBSVm0B2TRmvDcIcstMGDhlmMwtUrJLTM2Y+GWYwzKiEIIAzIiogjnjy/F4pfD1t0DPf1yKO6OxWpViNX6p9+UGNgFYjj0QbF+zA9NW8ZcmoQ4rRqG+mYcLqnp8Dixw+LlKTFB6dbZ0tjD/Q6ZJzPIgJYdtEDMwTOFcQ2Z1Sbg1dzCTo95bWcR0xeJQgQDMiKiCJfgaEte08WAzB9fDkulhh7+2/kJ1HDoqoZmFJTbg6Phfb1r6NGeKJUS47PsaYtfdZC2aLUJ+K7QnpqWpFMH5Yu22NjDkx2yGg9ryMQ5eID/d8kaHDtkOnX4BWSHS2ra/PjRWmldU6cBPhHJBwMyIqII5+sOmT++HIpBkz/qx0TScGgvm3q4q4M7dM7+ODJSopEcrfHLuf5mYC8AwDcnDbC0uj8xFfTzX8oAAHtOVwWlTqi/WEPmQet7T3fIxDl4zn/jLy2DocPvq47BzfvN2+OIKLg4h4yIKMKJX5q7ukPmjy+HUst7PwyFFqXFe5+ymFtgaDO4uVesBk9lZ0qDm/Md88d86a7Y2vB+iUjSR6Gq0YwPDhajV6wOKbEaVDWY8cy2X9ocL6aCLp98hUcDpf2hnyNlsbrRPrOus2BLqiFz09QDsL/+AjEHzxTGNWQpsZ79EODpcUQUXAzIiIgiXEvb+6419fDHl0N/dlgUiSmLpXVNsAlCpwOKgZY6uNbE4OeV2wcjSR+FXYX2nalhl/ierihSKxUY2CsGeWeqsfK709Ll7krFXttZhHEZPbqlpkwfpUKvWA3KjM04U9mAxPSOH7+nbe8BRx1ZBVDt506L4hwyXRjWkA1JT5DWoiOpcVoM6WSNiEg+wm8fn4iIvCIOhu5qYwXxy2Fn3H05LHXsYvkzIOsZq4VSAZitAirrO9/F86QObtG2X/Dwh0dhqLcHDn/PLfJb2mBugQF5Z6rbXO6uVKy764T6J7tPW7QJQksNmQc7ZIEaDt0QximLKqUCT2VndnrM3PEZQWn+QkTeC79PKSIi8opzY4WuDIf2x5fDQKQsqpUKaUaYu9b3ntTBtQ6Oyuv9017ck2CwM91ZJ+RJY4/qBjOsjueqyFDvtgFJvKOpTH5xtV8HG4f7YOjsrBQsn3xFmx9DUuO03ZrKSkS+Y8oiEVGEUyoUiNfZ65dqGi1dGnScnZWC5/93IJ774kSb6walxnb65dAmCCgLQJdFAOgdr0VpXRMu1JpwdZ/4Do/zJajxNW3Qk2CwM91ZJyTOIjvbQev73AID/vp1gfTfj338U5savNbHbz9u7yy5q7ACuworOj3eG41h3PZelJ2VgnEZPXC4pAYGYzNSYjUYkp7AnTGiEMMdMiIiklrff3Wi/c6CnhDTDZP0UXjp1kFY8j8DoARwvNQoze1qT1WDGc1WAQrAbeqjt9Kc6sg640tQ42vaoC/BYHfXCUmzyNrZIRNr8Cpa1YJ1NItOPL6+2erR8d5qDPMdMpFKqcDwvomYOLgXhvdNZDBGFIIYkBERRbjcAgNKauw1XO/sK8bDHx7tUlv146VGAMC16fGYOLgXbrsyDVOv7Q0AeOPbX5F/tqrdVvJiumJKrAZqlX//Weod71nKoid1cJ3xJajyJRjs7johsYasuLrRpT2/t7PoumOwcTi3vSei8MJPKSKiCCbuUphbffHtyi7FL6V1AIDBqXHSZX8c2x8alRK/lBrxyKYfsfjz4y4Bn9Um4Ptf7QOPYzUqvw88TosTA7LOW997UgfXGV+CKk+CwdYxV7DqhFLjtNCqlbDYBJyvaXlOvZ1F5+nxP5zr+s6jGJCFY5dFIgovrCEjIopQnu5SeFofJe6QDUqNlS47cr4Wzda2nRvFgC9Bp5ba7Z+qbMTkNfv8Uj8k8jRlEbDX4wzrm4BDxa5BgFLRebdDX9MGxWCwvZb7oqWT7C33g10npFQo0C9Jj4LyepypbEA/R02Zt7PoPD7eTXfMzog1ZNEMyIhI5hiQERFFKG92NYa7GYJc32zBWUcr9MGOgMyTgK/17DN/DzwWZ5G52yEDALPVhoKyegDAU+MzkKSP6nQ4s8gfaYNix7zWQ6lT47SYOz5DVh3z+idF2wOyqkbc6LjM21l0Hh8f07WdR7PVJu22hnsNGRGFPgZkREQRyttdjc6cKDNCgD2ASIq2f4n2pXugvwYei230jU1WGJssiNV2/M/egbPVqGuyoEeMBncN6eNy30qlIuDBUqh0zGtp7NHSadHbQcWeHj+0i8O3G5wahbCGjIjkjgEZEVGE8nZXozNiuuJgp3RFXxpdeLoz544+SoV4rQq1TVZ8fOQCruod12GQk3vSXi83PrNtINhdwZLYMU/OpIDMaTi0SqnAkzdfjme2He/w75x3Ej1J0/Rl51GsH1MrFX5vFENE5G8MyIiIIpS3uxqdEQOygb1aAjJf52P5Y+BxboEBDY5aojd3nwKAdudcWaw27Cq0B2QTBvRs97ZCIVjqDv2TxOHQrrPIlEp74KNQAIJTzV1HO4mBTNM0ifVjGqYrEpH8MSAjIopQ/tylaNkha+mw6EnA1xlfAzqxg2Rr7dWpHTxXgxqTBUn6KAzpYppcpBB3yCobzKgzWRDnmGH38eHzAICZIy7BdZcle7STKO48Tlm3Hxdrm/DEuMtwz7BLfN55bLQ4OiyquTtGRPLHTyoioggm7lK013Y9LU6LMf2TcLC4ut35YaKGZitOO3ZLnDss+tJK3tfOhd7OuRLTFW/O6gG1zGq25CZGo0ZPx+vlTJV93c9WNWL/2WooANx5bR+vBhWrlAqkxtpr/XrH6/ySBirWkLGhBxGFAu6QERFFuNb1URq1Aq98VYCLdU3433/mocHc0iChvXS/k46GHr1iNejRqiteR2lpzu3u2+Nr50JvOkgOSU/ATse8tQlZ7acrkqv+SXqUG5txprIRV/WOxydHLgAArrssGX0SdF7fXrxjl62z14Q3xJRFBmREFAoYkBERUZv6qJ8vGvHu/mKXYAxoP93vlzJx/lgc2tNRQ4xviyoC1rnQmw6Sh0tqUNVoRoJOjeF9ma7oif7J0cgvrsGZqgY0WWzY9vNFAMDUa3t36fbi9VEAgFo/BWRiUw89a8iIKAQwICMiIhdWm4AvjpV2eoxzW/rjpXUAXNMVW2uvIUYgOxd600Hy6xPlAIBxmT3Ykc9D4kDo05WN+OZkOWpMFqTGaXH9Zcldur0Exw5Zrcnsl/OTAjK2vCeiEMCAjIiIXHg7MPqXdlreeypQnQs9aSjSK1YDs9WGL4+XAQBultHwZbkTA7KfL9TidIW9juy316R1OZj2d8piS0DGHTIikj/+dERERC68SfdrNFul9ueDenkfkAWKJw1FjM1WPPbxTzA22b+8L/uqALmOWjLqWG6BAS/tOAnAnsJ6yrH+KdFd74oZr/N3yqK9hkzHgIyIQgADMiIicuFNut/JMiNsApASo0GKo1OeXHTUQVLsoih24hOJ9XEMyjomjhKoqG+bWviSDwFtvNa+Q1bn55TFaAZkRBQCmLJIREQuvBkY/ZFj9lRn9WPB1LpOLTk6Cs99eQLlnTw25/o4auHpKIGuPHfx+kClLPJ3ZyKSP35SERGRC0/S/cS29GKHxa7Uj3UXsU5t4uBeUCoVnQZjQEt9HLnyprbQW/5PWXQMhuYOGRGFAAZkRETURmcDox+6rr/Ulr6lw2L7Le/lxpv6OHIVyOfO/10WOYeMiEIHUxaJiKhdrdP9vjpRjm+LKvD9qSr8f2P6ocliwylHhz0575A586Y+jlwF8rkTuyw2mm1ottigUfv2e7FJqiHj785EJH8MyIiIqEPObemH901A3pkq/HihFrt/rUSiPgo2AegRo0FPmTX06Ig39XHkKpDPXaxWDQUAAUBtkwUpat8CYqYsElEo4U9HRETkkZRYLe4Zlg4AeHv3KWz/xT6/q3e8FlabEMxT85g39XHkKpDPnVKhQJxO7LToex1ZQzNTFokodDAgIyIij/1+5CXQqZUoqmjAh44Oiz9dqMPkNftCpl18R/VxqXFaLJ98hVQfR20F8rmL92MdmcnCtvdEFDqYskhERB7LL66ByWJrc7k4wytUAprW9XEpsRoMSU/gzpgHAvXc2TstmvzS+r4lZZG/OxOR/DEgIyIijwRyDlUwONfHkXcC8dz5c4eMXRaJKJTwpyMiIvJIIOdQEbW0vvfDDlmzOBiaARkRyR8DMiIi8ghneFEgicOhfU1ZFARBSlnUaxiQEZH8MSAjIiKPcIYXBZK/uiw2WWwQe37qWUNGRCGAn1REROQRcQ5VZzjDi7oqwU81ZCZzS9MZnZo7ZEQkfwzIiIjII5zhRYEkNvXwNWWxwZGuqFUr+VokopDAgIyIiDzGGV4UKGINma9NPaT6MTb0IKIQwbb3RETkFc7wokDwX8qiGJDxN2ciCg0MyIiIyGuc4UX+5r8dMnsNmY47ZEQUIvjzEREREQWdc5dFmyC4ObpjDUxZJKIQw4CMiIiIgi5eaw/IBADGpq7vkokpi9FMWSSiEMFPKyIiIgo6jVop1X35krYoNvVgyiIRhQoGZERERCQLYh2ZL63vxRoypiwSUahgQEZERESyEO+HTouN7LJIRCGGn1ZEREQkC1JA1uh7yiJ3yIgoVDAgIyIiIlmQWt/70NSDKYtEFGoYkBEREZEs+DdlkQEZEYUGBmREREQkCwlSQObDDlmz2GWRX3GIKDTw04qIiIhkwT9dFsU5ZNwhI6LQwICMiIiIZKGlqYcPKYsW1pARUWhhQEZERESyIAZkdT409TBxMDQRhRgGZERERCQLYkDmS8piQzPnkBFRaAnqp5XVasXMmTPx9NNPS5cdOXIEd911F4YOHYrs7Gxs2rTJ5W8+/fRT5OTkYMiQIZg6dSp++OEHl9tbvnw5rrvuOgwdOhSPPPIIysrKpOsrKiowe/ZsjBgxAqNHj8bSpUthsVg8vm8iIiIKHKntvQ8BmbhDFq3hDhkRhYagBmRvvvkm8vPzpf+uqanBgw8+iClTpuDAgQNYunQpXnnlFRw9ehQAsG/fPrz44otYtmwZDhw4gMmTJ+ORRx5BY2MjAGDVqlXYs2cPPv74Y+zevRs6nQ6LFy+Wbv+JJ55AdHQ0du/ejY8++gh79+7Fhg0bPLpvIiIiCqwEp7b3giB06TbEOWRMWSSiUBG0gGzv3r3YsWMHfvOb30iX7dixA4mJiZgxYwbUajXGjh2L22+/He+//z4AYNOmTbjtttswfPhwREVFYdasWUhKSsLnn38uXf/AAw+gd+/eiI2NxaJFi/Ddd9+huLgYZ86cwf79+zF//nzo9Xr07dsXs2fPlm7b3X0TERFRYIk7ZGarAJOjOYe3WuaQMWWRiEKDOhh3WlFRgUWLFuHtt9+WdqgAoKCgAAMGDHA5NjMzEx999BEAoLCwEHfeeWeb648fP466ujpcvHjR5e9TUlKQkJCAEydOAAASExORmpoqXZ+RkYHz58+jtrbW7X17Q6Hw+k8ogMT14LqEP651ZOA6h69ojRJqpQIWm4BakxkxWvsul6drbRNaArnoKBVfIyGE7+vIEGnr7Onj7PaAzGazYf78+bj//vsxaNAgl+vq6+uh1+tdLtPpdGhoaHB7fX19PQAgOjq6zfXida3/Vvxv8e87u29v9OgR5/XfUOBxXSIH1zoycJ3DU2J0FAzGZqj0WmmNPV3reqfujH17J0LPOrKQw/d1ZOA6u+r2gGz16tXQaDSYOXNmm+v0ej3q6upcLjOZTIiJiZGuN5lMba5PSkqSgimxnqz13wuC0OY68b9jYmLc3rc3Kirq0MXUdwoAhcL+xue6hD+udWTgOoe3WI0KBgBnLtSgl0bh1VpX1DcDABQAjDX1qI+Un+HDAN/XkSHS1ll8vO50e0C2efNmlJWVYcSIEQAgBVhff/01FixYgD179rgcX1hYiKysLABAVlYWCgoK2lx/0003ISEhAampqSgsLJRSD8vLy1FdXY0BAwbAZrOhuroaBoMBKSkpAICioiKkpaUhLi4OAwYM6PS+vSEIiIgXWajhukQOrnVk4DqHJ3sdWSNqTBZpfT1da7HlvS5KCUDB10cI4vs6MnCdXXV7xeuXX36JQ4cOIT8/H/n5+Zg0aRImTZqE/Px85OTkwGAwYMOGDTCbzcjLy8PWrVulurFp06Zh69atyMvLg9lsxoYNG1BRUYGcnBwAwNSpU7Fq1SoUFxfDaDTi5ZdfxqhRo9CvXz9ceumlGD58OF5++WUYjUYUFxfj7bffxrRp0wDA7X0TERFR4ImzyGobzV7/bUtDD6YqElHoCEpTj44kJSXhnXfewdKlS7Fy5UokJydj8eLFGDNmDABg7NixeO6557BkyRKUlpYiMzMTa9asQWJiIgBgzpw5sFgsmDFjBurr6zF69GisWLFCuv2VK1fihRdewIQJE6BUKjFlyhTMnj3bo/smIiKiwGtpfe/9LDKx5T0DMiIKJQqhq4M+qEMGQ2TkxYYKhQJISYnjukQArnVk4DqHt9d2FuGDQyX4/ci++NO4y7xa631nqvDoRz8iMyUGH9w3PPAnS37D93VkiLR1Fh+vOxzSQURERLIR59ghq2vyPmXRxBlkRBSC+IlFREREsuFLymKDWWzqwZRFIgodDMiIiIhINuxdFoEaH2rIohmQEVEIYUBGREREsuFLl0WT2bntPRFRaOAnFhEREcmGTymLzWx7T0ShhwEZERERyYaYssi290QUKRiQERERkWyIXRYbzFZYrDav/lbqsqhhQEZEoYMBGREREclGnFYt/X9vdsmsNgHF1Y0AgEpjE6y2CBhyRERhgQEZERERyYZKqZCCMk8DstwCAyav2Ye9p6sAAJ/9VIrJa/Yht8AQsPMkIvIXBmREREQkK2KnxRqT+06LuQUGLNxyDGXGZpfLy4zNWLjlGIMyIpI9BmREREQkK/Eedlq02gS8mlvY6TGv7Sxi+iIRyRoDMiIiIpKVBA+HQx8uqWmzM9ZaaV0TDpfU+O3ciIj8jQEZERERyYrYabHOTUBmcBOMeXscEVEwMCAjIiIiWWlJWey8hiwlVuPR7Xl6HBFRMDAgIyIiIllJkJp6dL5DNiQ9Ab3cBFupcVoMSU/w27kREfkbAzIiIiKSlXhHDZm7HTKVUoGnsjM7PWbu+AyolAq/nRsRkb8xICMiIiJZkVIWG93PIcvOSsHyyVcgRqNyuTw1Tovlk69AdlZKQM6RiMhf1ME+ASIiIiJn8R6mLIqys1LwzYky7DhhwMSBPfHba3tjSHoCd8aIKCQwICMiIiJZEVMW65o8C8gAoLjaBAC4ZWBPDO+bGIjTIiIKCKYsEhERkay07JB1XkMmEgQBZ6saAQB9k/QBOy8iokBgQEZERESykuA0h8xmE9weX9VoRn2zFQoAlyQyICOi0MKAjIiIiGQlzpGyaBM8S1ssduyOpcVroVXzqw0RhRZ+ahEREZGsaNVK6ByBVU2D+7TFM2K6InfHiCgEMSAjIiIi2RHryKobm90eK+6Q9WP9GBGFIAZkREREJDtip8WaRvc7ZGzoQUShjAEZERERyY60Q+ZBymJxtT0g658UHdBzIiIKBAZkREREJDstKYudB2Q2trwnohDHgIyIiIhkJ0FMWWzovIas3NiMJosNKqUCfeK13XFqRER+xYCMiIiIZMfTlEWxoUd6gg5qFb/WEFHo4ScXERERyU6chymLZ6saALDlPRGFLgZkREREJDtxWhUA4PjFWuSfrYbVJrR73NkqEwC2vCei0MWAjIiIiGQlt8CAf+45AwD4qaQWD394FJPX7ENugaHNsdIOGQMyIgpRDMiIiIhINnILDFi45RhqTBaXy8uMzVi45ViboExsec8dMiIKVQzIiIiISBasNgGv5hZ2esxrO4uk9EWLTcC5aqYsElFoY0BGREREsnC4pAZlxs7b3JfWNeFwSQ0A4GKtCRabAI1KgdQ4trwnotDEgIyIiIhkweAmGGt9nJiueEmiHkqFImDnRUQUSAzIiIiISBZSYjVeHXe2kvVjRBT6GJARERGRLAxJT0AvN0FZapwWQ9ITALChBxGFBwZkREREJAsqpQJPZWd2eszc8RlQKe3piWeqGJARUehjQEZERESykZ2VguWTr2izUxarVWH55CuQnZUiXVbsCMg4g4yIQpk62CdARERE5Cw7KwXjMnrgcEkNvvm1Epvyz+GSBJ1LMGa22nCh1tHyPpEBGRGFLu6QERERkeyolAqM6JeIhf8zCEoFcLysHuccNWMAUFJtgk0AoqNU6BHjWTMQIiI5YkBGREREspUSq8XwvokAgNyTBunys9Ut6YoKtrwnohDGgIyIiIhk7ZaB9lTFr0+WS5edZUMPIgoTDMiIiIhI1rKzUqBUAL+UGqW0RTb0IKJwwYCMiIiIZC0pWiOlLX7jSFs8W9UAAOjPgIyIQhwDMiIiIpK9Wwb2BAB840hbFFMW+7LDIhGFOAZkREREJHvjM3tA5UhbLDTUo8zYDIA1ZEQU+hiQERERkew5py1u2HcWAJCgUyNBHxXEsyIi8h0DMiIiIgoJExxpizuO29MWk6OjYLUJwTwlIiKfMSAjIiKikBCltM8bE0OwU5WNmLxmH3ILDB3/ERGRzDEgIyIiItnLLTDghe0n21xeZmzGwi3HGJQRUchiQEZERESyZrUJeDW3sNNjXttZxPRFIgpJDMiIiIhI1n44VyN1VexIaV0TDpfUdNMZERH5DwMyIiIikjVDfefBmHScm6CNiEiOGJARERGRrKXEaDw7Ltaz44iI5IQBGREREcna0EsS0MtNsJUap8WQ9IRuOiMiIv9hQEZERESyplIq8FR2ZqfHzB2fAZWjLT4RUShhQEZERESyl52VguWTr2izU5Yap8XyyVcgOyslSGdGROQbdbBPgIiIiMgT2VkpGJfRA4dLamAwNiMlVoMh6QncGSOikMaAjIiIiEKGSqnA8L6JwT4NIiK/YcoiERERERFRkDAgIyIiIiIiChIGZEREREREREHCgIyIiIiIiChIGJAREREREREFCQMyIiIiIiKiIGFARkREREREFCQMyIiIiIiIiIKEARkREREREVGQMCAjIiIiIiIKEgZkREREREREQcKAjIiIiIiIKEgYkBEREREREQWJOtgnEI4UimCfATkT14PrEv641pGB6xw5uNaRg2sdGSJtnT19nApBEITAngoRERERERG1hymLREREREREQcKAjIiIiIiIKEgYkBEREREREQUJAzIiIiIiIqIgYUBGREREREQUJAzIiIiIiIiIgoQBGRERERERUZAwICMiIiIiIgoSBmRERERERERBwoCMwsrx48dx//33Y9SoUbj++uuxYMECVFZWAgCOHDmCu+66C0OHDkV2djY2bdoU5LMlX1mtVsycORNPP/20dBnXObxUV1djwYIFGD16NEaOHInZs2ejrKwMANc63Pz888+YMWMGRowYgRtuuAEvvfQSmpubAXCtw0FlZSVycnKwb98+6TJ36/rpp58iJycHQ4YMwdSpU/HDDz9092lTF7S31tu3b8cdd9yBYcOGITs7G2+++SZsNpt0fcSvtUAUJhobG4Xrr79eeOONN4SmpiahsrJSeOCBB4SHHnpIqK6uFkaNGiVs3LhRMJvNwvfffy8MHTpUOHLkSLBPm3ywYsUKYdCgQcLChQsFQRC4zmHod7/7nTBnzhyhpqZGqKurEx599FHhwQcf5FqHGavVKlx//fXCu+++K1itVuHChQvCxIkThTfffJNrHQby8/OFW265RRgwYICQl5cnCIL7z+u8vDxh6NChQn5+vtDc3CysX79eGD16tNDQ0BDMh0JutLfWP/74o3DNNdcIubm5gtVqFQoLC4Xx48cL69atEwSBay0IgsAdMgob58+fx6BBgzBnzhxoNBokJSVh+vTpOHDgAHbs2IHExETMmDEDarUaY8eOxe233473338/2KdNXbR3717s2LEDv/nNb6TLuM7h5aeffsKRI0ewbNkyxMfHIzY2Fi+++CLmzZvHtQ4zNTU1KC8vh81mgyAIAAClUgm9Xs+1DnGffvop5s2bhyeffNLlcnfrumnTJtx2220YPnw4oqKiMGvWLCQlJeHzzz8PxsMgD3S01iUlJbjnnnswfvx4KJVKZGRkICcnBwcOHADAtQaYskhh5PLLL8fatWuhUqmky7Zv344rr7wSBQUFGDBggMvxmZmZOH78eHefJvlBRUUFFi1ahFdffRV6vV66nOscXo4ePYrMzEx8+OGHyMnJwQ033IDly5ejZ8+eXOswk5SUhFmzZmH58uW4+uqrMW7cOFx66aWYNWsW1zrE3XDDDfjqq69w6623ulzubl0LCwu57iGmo7WeOHEinnnmGem/TSYTdu3ahSuvvBIA1xpgQEZhShAEvP7669i5cycWLVqE+vp6ly/uAKDT6dDQ0BCkM6SustlsmD9/Pu6//34MGjTI5Tquc3ipqanBiRMncPr0aXz66af47LPPUFpaioULF3Ktw4zNZoNOp8Of//xnHD58GNu2bUNRURFWrlzJtQ5xPXv2hFqtbnO5u3XluoeejtbamdFoxJw5c6DT6TBr1iwAXGuAARmFIaPRiD/96U/YunUrNm7ciIEDB0Kv18NkMrkcZzKZEBMTE6SzpK5avXo1NBoNZs6c2eY6rnN40Wg0AIBFixYhNjYWKSkpeOKJJ/Dtt99CEASudRj56quvsH37dtx7773QaDTIysrCnDlz8MEHH/B9HabcrSvXPfz8+uuvuOeee2CxWPDee+8hNjYWANcaYEBGYebs2bO48847YTQa8dFHH2HgwIEAgAEDBqCgoMDl2MLCQmRlZQXjNMkHmzdvxv79+zFixAiMGDEC27Ztw7Zt2zBixAiuc5jJzMyEzWaD2WyWLhO7cg0ePJhrHUYuXLggdVQUqdVqREVF8X0dptyta1ZWFtc9jHz77be46667cOONN2LdunVISEiQruNaMyCjMFJTU4P77rsPw4YNw7p165CcnCxdl5OTA4PBgA0bNsBsNiMvLw9bt27FnXfeGcQzpq748ssvcejQIeTn5yM/Px+TJk3CpEmTkJ+fz3UOM9dddx369u2LZ599FvX19aisrMTrr7+OW265BZMmTeJah5EbbrgB5eXl+Oc//wmr1Yri4mKsWrUKt99+O9/XYcrduk6bNg1bt25FXl4ezGYzNmzYgIqKCuTk5AT5zMlbhw8fxpw5c/DMM89g4cKFbdIaudaAQhDbGRGFuPXr12PZsmXQ6/VQKBQu1/3www/48ccfsXTpUpw8eRLJycmYPXs2pk6dGqSzJX8RZ5AtW7YMALjOYaa0tBTLli3DgQMH0NTUhOzsbCxatAjx8fFc6zDz/fffY8WKFfj1118RFxeHyZMnS11zudbhYeDAgXjvvfcwevRoAO4/rzdv3oxVq1ahtLQUmZmZWLx4Ma699tpgnT55wXmtH374YezatatNndjw4cOxdu1aAFxrBmRERERERERBwpRFIiIiIiKiIGFARkREREREFCQMyIiIiIiIiIKEARkREREREVGQMCAjIiIiIiIKEgZkREREREREQcKAjIiIiIiIKEgYkBEREREREQUJAzIiIupW2dnZ+OSTT9pc/sknnyA7OzsIZ+ReQUEBBg0ahEceeaRb7u/IkSN48MEHcebMGQwbNgxvvvlmm2N27tyJq666CocOHeqWcwKArVu34qWXXuq2+yMiigQMyIiIiNzYuHEjpk6dij179uDUqVMBva/m5mYsXLgQCxcuRP/+/fHCCy/g7bffdgm8ysrK8Mwzz+Cpp57CsGHDAno+zm6//XYcO3YMe/fu7bb7JCIKdwzIiIhIlk6cOIEHHngAo0aNwk033YQlS5agrq4OQPu7aTNnzsQ//vEPAPYdrRkzZmDkyJEYP348Fi5cCKPRCMAe8LzxxhuYMGECRo0ahQceeABnzpzp8Dzq6uqwZcsWzJgxAzk5OVi/fr3L9VarFStWrMD111+P6667Ds899xzuueceaRfQaDTihRdewLhx4zB27Fg8+eSTMBgMHd7fpk2bcMkllyAjIwMAMGnSJPz2t7/FvHnzYDQaIQgCFi5ciJEjR+L++++HIAh47733MHHiRIwYMQL33nsvfvrpJ+n2ioqK8NBDD+Hmm2/GNddcg1tvvRU7d+4EAJw7dw4DBw7EsmXLMHLkSDz//PMoLS3FH//4R+l5f/TRR1FWVibd3u9+9zu8+uqrnS8eERF5jAEZERF1u+effx4jRoxw+d/zzz8vXV9VVYXf//73yMzMxHfffYePP/4Yp06dwoIFCzy+/bFjx2L//v34+OOPcezYMWzatAkA8Prrr2PXrl3YsGEDdu/ejWuvvRZ/+MMf0NTU1O5tffzxxxgwYACuvPJKzJw5E5s3b0ZlZaV0/bp167Blyxa8++672LVrF+Lj4/HDDz9I1z/77LM4c+YMPvnkE3z99deIjY3Fo48+CkEQ2r2/f//735g0aZLLZYsXL4Zer8df//pXbNy4ESUlJXjllVek49evX4833ngDe/fuxdSpU3H//fdLQd9jjz2GAQMG4KuvvkJ+fj5uuOEGLFmyxOX26+vrsWfPHjz55JN47bXXkJaWhj179uDzzz9HQ0MD/vWvf0nHZmdno6ioCD/++KNHa0FERJ1jQEZERN3uueeeQ35+vsv/nnvuOen6b775BlFRUZg3bx50Oh169uyJP//5z8jNzUV5ebnb29dqtdi9eze+/PJLKJVKbN68WdpN+s9//oO5c+eib9++0Gq1mDNnDsxmM3bt2tXmdgRBwAcffID77rsPADBkyBAMHDgQ//73v6VjPvroIzz44IPIzMyERqPBE088gZ49ewIAKioqsH37dixatAg9evRATEwMnn32Wfz444/4+eef29yfwWBAYWFhmzREvV6PFStWYMuWLfjHP/6BlStXIjY2FgDw/vvv46GHHsKgQYMQFRWFadOmISMjA1u2bAEArF69Go899hgEQUBJSQni4+NRWlrqcvtTpkyBRqNBfHw8tFotDh48iP/+97+or6/H2rVrsXjxYulYnU6HQYMGMW2RiMhP1ME+ASIiotYqKirQp08fqFQq6bJLLrkEAFBSUuL271esWIF//OMfeP311zF37lwMGzYMS5YsQXJyMhoaGvD4449DqWz5TdJsNrd7u9999x1Onz6NJUuWSDt4JpMJxcXFeOCBB6DVanHhwgWkp6dLf6NSqdCnTx+Xc7377rtdblelUuHcuXO46qqrXC4/f/48ACA1NbXNuWRlZSEnJwcAMGjQIOnykpISLF++HH//+9+lyywWi3Tbx48fx+zZs1FeXo6MjAwkJye32Z3r1auX9P8XL16M1atXY926dXj66acxaNAgLF68GCNGjJCOSUtLw8WLF9ucIxEReY8BGRERyU56ejrOnz8Pq9UqBWVnz54FAPTs2ROnT59Gc3Ozy99UVVUBAGw2G44dO4bHHnsMzz77LC5cuIBXXnkFTz/9NDZt2gStVot33nkHQ4YMkf72119/bTcIev/99zF9+nTMnj1busxsNmPq1Kn47LPPMH36dPTp00cKpAD7rtqFCxcAtARWX3zxhbRrBgCFhYXo27dvm/sTg0Sbzdbu8+IcoIrS0tLwpz/9Cbfddpt02dmzZ5GYmIjS0lI8/vjjePPNN6Wau+3bt2PHjh0ut6FQKKT/f+zYMUyfPh2PPfYYKisr8dZbb+HRRx9FXl6edIzVanUJaImIqOv4aUpERLIzbtw4AMDf//53mEwmlJeXY+nSpRgzZgzS09ORkZEBg8GAvLw8CIKAzZs3o6ioCIA9qHnppZewYsUKNDU1ITk5GVqtFklJSVAqlZg2bRpeffVVXLx4ETabDZ9++ikmTZrUprHH2bNn8d133+H//u//kJaWJv2vb9++uOOOO7B+/XoIgoDp06fjnXfewalTp9Dc3Iy33npLaoKRmpqKm2++GUuXLkVVVRXMZjNWrVqFadOmoba2ts3jFnfWWqcUdubuu+/GqlWrpMe/e/du3HbbbThw4ADq6+thtVqh1+sB2APBt956CwDaBLSif/7zn3jxxRdhNBoRHx8PvV6PpKQkl2PKysqkcyUiIt8wICMiItmJi4vD+vXrcfLkSYwbNw6TJk1Ceno63njjDQDA1VdfjUceeQRPP/00Ro0ahby8PEycOFH6+xUrVqCoqAg33HADrrvuOtTV1eHFF18EACxcuBDXXnst7r33XowYMQIbNmzAypUrccUVV7icw/vvv4+BAwdi8ODBbc5v+vTpOHXqFHJzc3HfffchOzsb99xzD26++WZUV1cjLS0NUVFRAIC//vWviI+Px5QpUzBmzBh8++23WLt2rcuOmSg5ORlXXHEFDh486PFzNWvWLEyZMgWzZ8/G0KFDsXTpUvzlL3/BhAkTcPnll2PBggWYP38+hg8fjscffxx33nknoqKicPLkyXZv74UXXoDNZsOECRMwcuRIHDlyRHreAaCpqQk///wzbrzxRo/PkYiIOqYQOmrzRERERG4dOXIE6enpSElJAWBPWRwzZgxee+01XH/99V7f3saNG7Fr1y6sXbvW36fqF9u2bcN7772HDz/8MNinQkQUFrhDRkRE5IOtW7diwYIFqKurg8VikeaUOdeoeePuu+/GmTNnUFhY6Mez9J/33nsPc+fODfZpEBGFDQZkREREPnjiiSeQkpKCnJwcjBo1Cjt37sS6desQExPTpdvTaDRYvnw5li9f7ucz9d3mzZtx5ZVXYsyYMcE+FSKisMGURSIiIiIioiDhDhkREREREVGQMCAjIiIiIiIKEgZkREREREREQcKAjIiIiIiIKEgYkBEREREREQUJAzIiIiIiIqIgYUBGREREREQUJAzIiIiIiIiIguT/B8IXCigIYXTBAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Line plot for house age vs. average house price\n", + "average_price_by_age = housing_data.groupby('house_age')['price'].mean()\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(average_price_by_age.index, average_price_by_age.values, marker='o', linestyle='-')\n", + "plt.xlabel('House Age (Years)')\n", + "plt.ylabel('Average House Price')\n", + "plt.title('Average House Price by House Age.')\n", + "plt.grid(True)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The scatter plot depicts the relationship between house age and prices; and reveals a lack of a clear linear trend. Instead, prices exhibit significant variation across different house ages. While the graph provides insights into how house prices fluctuate based on their age, no discernible pattern emerges. \n", + "In summary, the graph shows how house prices fluctuate based on their age, but no specific pattern emerges. This suggests that other factors beyond house age play a more influential role in determining house prices." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**#Prices of houses in relation to their respective Condition and Grade**" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAJOCAYAAADMCCWlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVkUlEQVR4nO3dd5hcZd0//vdMNksamJCAiaEpgfCTlkAgSJASQBAITRA18mCQjlIeWgAFEamC1IcakFBUkN4UVB5BBUKRJj4oIkhIIJBKTdns/P7IN0uWBEhgd+fszut1XbmuMzNnznw+Z252b9575p5SpVKpBAAAAACAQihXuwAAAAAAAN4ntAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AG2gUqlUuwQAAACgnRDaAu3WM888k6OOOiqbb7551llnnWy55Zb5wQ9+kPHjx7dpHXvuuWf23HPPptvDhw/P6NGjm25ffPHFueKKK5puX3DBBRk4cGCb1tjaRo8enYEDBzb7t+aaa2aTTTbJUUcdlVdfffVjjzFw4MBccMEFbVAtAEAxvfDCCzn55JOzzTbbZN11183666+fPfbYI9ddd13mzJnTqq89evToDB8+vFVfoyUNHz58ofnn2muvna233jpnn312Zs2a9ZHPHzduXAYOHJhx48a1UcUAS6au2gUAfBLXXXddTj311AwdOjRHHHFEll9++bz88ssZM2ZM7r333vz85z/PmmuuWZXaLrzwwvTo0aPp9rnnnpvvfe97Tbd33333fPnLX65Gaa1queWWy4UXXth0u6GhIS+++GLOOuusPPHEE7nzzjvTpUuXD33+9ddfn759+7ZFqQAAhXP33Xfn2GOPzRe+8IWMGjUqn//85zNz5szcf//9Oe200/LAAw/kkksuSalUqnaphbHZZpvloIMOaro9a9asjBs3LhdddFEmTJiQn/3sZx/63DXXXDPXX399BgwY0BalAiwxoS3Q7jz++OM55ZRTMnLkyBx//PFN9w8dOjRbbrlldt111xx77LG5/fbbq1LfF7/4xY98vG/fvh0ynKyvr8+gQYOa3TdkyJB07tw5xxxzTP7whz9k++23/9Dnf/C5AAC14oUXXsixxx6bjTfeOBdccEHq6t7/X/XNNtssQ4cOzSGHHJK77rorO+ywQxUrLZZll112oTnk0KFD89prr+Xmm2/O6NGjs/zyyy/yuT169DD/BArN8ghAu3PFFVdk6aWXzn//938v9Niyyy6b0aNH5ytf+Urefvvtpvvvvvvu7Lrrrhk8eHCGDRuWE044ITNmzGh6/IILLsjWW2+dP/7xjxkxYkTWWmutbLPNNrnllluaHX/ixIn53ve+l/XXXz/Dhg3Lz3/+84VqWHB5hPnLIFx44YVN24taHqGl6lvQHXfckYEDB+a5555rdv/999+fgQMH5umnn06SXHPNNdl2222z9tpr58tf/nJ+9KMfNTt3n9baa6+dJJkwYUKSeR+922uvvXLiiSdmyJAh2WWXXdLQ0LDQ8ghTpkzJcccdl4033jiDBw/OyJEj8/jjjzc93tjYmMsuuyxbb7110/m45pprWqxuAIC2MmbMmJTL5fzkJz9pFtjOt80222TnnXdOufz+/8IPHDgwF154Yb72ta9l/fXXz0UXXZQkefTRR/Pd7343G2ywQdZaa60MHz48F1xwQRobG5ueO2PGjBx77LEZOnRoNthgg/z0pz9t9vh8v//977Prrrtm7bXXzrBhw/KTn/wk77777of28cMf/jAbbbRRGhoamt3/05/+NBtuuGFmz56dWbNm5aSTTsqmm26atdZaK9tuu22uvPLKJT5nH2WttdZKpVJpWqJr+PDhOfXUU7PXXntlvfXWywknnLDI5RH+9re/ZZ999sn666+fjTbaKIcffnizZb6mT5+eE044IRtvvHHWXnvtfP3rX89DDz3UorUDzOdKW6BdqVQq+fOf/5zhw4ena9eui9xn2223bXb7oosuynnnnZdvfetbOfzwwzN+/Picd955efLJJ3PDDTc0fWT/jTfeyI9//OMceOCB6d+/f6644oqMHj0666yzTlZdddW8++67+fa3v51yuZwf//jHqaury3nnnZeXX345gwcPXmQt119/ffbYY4/stttu2X333Re5T0vV90Fbb711unfvnrvuuitrrLFG0/133nlnPv/5z2edddbJXXfdlTPOOCPHHHNMBg4cmH//+98544wzMnPmzJx++ukf/4YshhdffDFJstJKKzXd99hjj6VUKuWCCy7IO++8s9D/nLz77rv5xje+kTlz5uSII45I3759M3bs2Oyzzz658cYbs+qqq+ZHP/pRbr755uy///4ZPHhwHn300Zx66ql58803c/DBB7dI7QAAbeEPf/hDNtpoo/Tu3ftD9znjjDMWuu/iiy/OoYcemoEDB6Zv37557rnn8p3vfCfbbrttzjnnnFQqldx222258MILs8oqq2TEiBFpbGzMPvvsk1deeSVHHnlkevfunTFjxuTpp59udlXqHXfckSOPPDIjRozIYYcdlgkTJuScc87Jv/71r/z85z9f5DINO+20U2644YY89NBDTcuBVSqV3H333dl2221TX1+fE044IX/+859zzDHHpE+fPnnggQdyxhlnpGfPntl1111b4Gy+P/9cccUVm+677rrrMnLkyOy3337p0qXLQsHyc889l29+85tZZ511cvrpp6dSqeTss8/O3nvvndtvvz2NjY3Za6+9Mnny5Bx++OFZfvnlc9NNN2WfffbJmDFj8qUvfalFageYT2gLtCvTpk3LrFmzssIKKyzW/jNmzMjFF1+c3XffPSeeeGLT/auvvnpGjhyZm2++Od/61reSJO+9915OOeWUpgnXKquski222CL3339/Vl111dxyyy2ZOHFibrvttqYrZddZZ51svfXWH/r68z9y1bdv30V+/Kol6/ugLl26ZJtttsndd9+dI444Ikkyc+bM/OEPf8i+++6bZN4XMPTv3z8jR45MuVzOhhtumG7dumXatGmLdX4/aMHJ79tvv51nnnkmp512Wvr375/NNtus2X4nnXRSVl555UUe55Zbbsn48eNz6623NgXOQ4YMyc4775xHH3005XI5N9xwQ/77v/87++23X5Jkk002SalUyqWXXppvfetb6dWr1yfqAQCgLc2YMSMzZszIKqusstBjHwwWS6VSOnXq1HR7nXXWaZoLJcmtt96ajTfeOD/96U+brsodNmxY/vjHP+bRRx/NiBEj8sADD+Tpp5/OpZdems033zxJstFGGzX7ErJKpZKzzjorX/7yl3PWWWc13b/KKqvkO9/5Tu6///6m5y5o/fXXzworrJC77767KbR9/PHHM3HixOy0005JkkceeSQbb7xx07JZQ4cOTbdu3T7R3K1SqTQ7R1OmTMkDDzyQX/3qV/nqV7+aZZddtumx5ZdfPqNHj246Lx/8ArKLLroon/nMZ3LllVdmqaWWSjJvDn/YYYflH//4R/7+97/nueeeyw033JB11103SbLppptmzz33zFlnnZWbbrppiesH+ChCW6BdmT/Jmjt37mLt/+STT2b27NkZMWJEs/uHDBmS/v37Z9y4cU2haNJ8XdX5687O/wjYY489lhVXXLHZ0gb9+vX7VGthtWR9i7Ljjjvm5ptvzlNPPZV111039913X959992m19too41y/fXXZ9ddd81XvvKVbL755hkxYsQn+oKLCRMmLPLL39Zdd938+Mc/bnZldJcuXZpdeftBjz32WFZYYYVmVwgvtdRS+c1vfpMk+eUvf5lKpZLhw4c3m6gPHz48F198cR5//PFstdVWS9wDAEBbW9SyBEnyn//8J1/5ylea3de/f//cd999TbdXX331Zo/vvPPO2XnnnTNr1qy8/PLL+c9//pNnn302c+fOzZw5c5LMm2d17tw5m266adPzunXrls022yyPPvpokuTf//53Xnvttey///7N5lobbLBBevTokb/85S+LDG1LpVJ23HHHXHPNNTnppJNSX1+fO++8MyuuuGLWX3/9JPNC2l/96leZNGlStthii2y22Waf+FNSt956a2699dZm99XV1WXrrbfOj370o2b3r7rqqs2Wl/igxx9/PJtttllTYJvMC8Xnn+8rrrgiyy23XNZcc81m52SLLbbImWeemRkzZuQzn/nMJ+oDYFE6RGg7derU7LHHHvnJT36SoUOHLtZz7rnnnlxwwQV55ZVXstxyy2X//ffPbrvt1sqVAp9Wz549071790ycOPFD93n33Xcze/bs9OzZs2ld2D59+iy0X58+ffLWW281u2/BYHH+pK5SqSSZdxXEgn+tn2+55ZbL5MmTl7yZ/3fMlqpvUTbaaKP069cvd911V9Zdd93ceeedGTJkSNOVytttt10aGxvzi1/8IhdeeGHOO++89O/fP0ccccRHfmnYoiy33HK5+OKLm27X19enb9++i5y89u7d+yOD4enTp3/kxwOnT5+eJB9a46RJkxazagCA6urVq1e6devWtP7/fP369cuNN97YdPt//ud/8s9//rPZPh+cQ86cOTMnn3xybrvttjQ0NGSFFVbI4MGDU1dX12xO27Nnz4UCzOWWW65pe/5c66STTspJJ520UM2vv/76h/az884756KLLsoDDzyQzTffPL/97W+bXYRw/PHHp2/fvrn99tubjj148OCccMIJH/uFvh+0xRZbNAW+pVIpXbt2Tf/+/ZuWF1vQoubbC1qc+ecbb7yxyIsUknlLmQltgZbU7kPbxx9/PKNHj87LL7+82M95+OGHM3r06Jx77rnZdNNNM27cuOy7775ZffXVs84667RitUBL2GSTTTJu3LjMmjWr2V/C57v55ptzyimn5Be/+EXTxGny5MkLLSHwxhtvNFvn6uP06tUr//nPfxa6f/6k9pNoyfoWpVQqZcSIEbntttty8MEH54EHHmi2DEOS7LDDDtlhhx3y1ltv5c9//nMuv/zyHHXUURkyZEg++9nPLvZr1dfXN33p2Ke19NJL55VXXlno/ieeeCI9evTIMssskyQZO3ZsunfvvtB+n/vc51qkDgCAtrDlllvmvvvuy9tvv50ePXokWXhu1bNnz489zimnnJJ77rkn5557bjbeeON069YtSZqtt9qrV69MmzYtc+fObbbUwoJz2vlzraOPPjobbrjhQq/zUeHkyiuvnEGDBuU3v/lNOnfunGnTpmXHHXdsery+vj4HHnhgDjzwwEycODH/+7//m4suuihHHHFE06eqFlfPnj1bdP45derUhe6///77s8Yaa2TppZfOKqus0my5iAUt7vJtAIvrwz8b0A7ccsstOfLII3P44Ycv9NiDDz6Y3XbbLUOGDMn222+f22+/vemxq666Kv/1X/+VzTbbLKVSKRtttFFuuummj/yoLlAce++9d6ZPn55zzjlnocemTJmSMWPGNE0W11133dTX1+eOO+5ott9jjz2WiRMnZr311lvs191oo43yyiuv5Jlnnmm6b+rUqXnyySc/8nkf9TGslqzvw+y0006ZNGlSLrjggpRKpWZf1HbYYYfle9/7XpJ5E9WvfvWrOeiggzJ37tyPvIKitQ0ZMiTjx4/PP/7xj6b7Zs+ene9///u54YYbssEGGySZt8bx2muv3fRv+vTpOffccz9VkA4A0Nb233//zJ07N8cdd1xmz5690OMzZ87M+PHjP/Y4jz/+eIYOHZqtttqqKbD929/+lqlTpzYtw/ClL30pDQ0N+f3vf9/0vNmzZ+cvf/lL0+0vfOEL6d27d1555ZVmc62+ffvm7LPPzt///vePrGPHHXfMAw88kDvvvDODBg1qWq935syZ2WabbXLllVcmmfeH9pEjR2b77bfPa6+99rH9taYhQ4bkT3/6U7Pz/49//CP77bdfnnnmmWy44YZ59dVX07t372bn5KGHHsqYMWOaBeAALaFdX2m7ySabZMSIEamrq2sW3D733HM58MAD89Of/jRbbrllnnrqqRx00EHp1atXvvzlL+fpp5/O0KFDs99+++Wpp55K37598/3vf3+h9YCAYho0aFAOPfTQnHvuuXnhhReyyy67pFevXnn++edz5ZVX5p133slll12WUqmUnj17Zr/99suFF16Yzp07Z8stt8wrr7yS8847LwMGDFiib6jdaaedcvXVV+d73/teDj/88PTo0SMXX3zxh65DNt8yyyyTJ554Io8++miGDBnS7LGWrO/DDBgwIGuuuWZ+8YtfZOutt87SSy/d9NhGG22UE088MWeccUY23XTTvPnmm03fLjx/PdmXX345U6dO/VRr9y6pXXfdNddcc00OPPDAHHrooVl22WVz3XXXZebMmdlzzz2z0korZccdd8wPf/jDTJgwIWuttVZefPHFnHPOOVlhhRUW+UUeAABFtdpqq+Xss8/OMccck5133jlf//rXM3DgwDQ0NOSJJ57IjTfemMmTJ2efffb5yOOss846+c1vfpNf/vKXWXXVVfPcc8/l4osvTqlUynvvvZdkXmi7ySab5Ac/+EGmTJmS/v375+qrr87UqVOblgfo1KlTDj/88Jxwwgnp1KlTtthii7z55pu56KKLMmnSpA9dImC+7bffPqeddlruuuuuHH/88U33d+nSJWuuuWbT3HfgwIF58cUXc8stt2SbbbZp2u/vf/976uvrM2DAgE96SpfYQQcdlD322CP77rtv9tprr8yePTvnnXde1lxzzWy66aZpaGjItddem1GjRuWAAw5Iv3798uCDD+byyy/Pt7/97XTu3LnNagVqQ7sObRdcc2dBv/rVr7Lllls2Ldq+3nrr5etf/3quu+66fPnLX86MGTNyxRVX5IILLsjaa6+d++67L4cffniuvfbapm+BBIrtwAMPzBe/+MVcd911Oe200zJ9+vT07ds3m266aQ444IBmH4///ve/nz59+uTaa6/Nr3/96/Ts2TPbbrttDjvssGZrxH6c+vr6jB07NqeeempOOeWUlEqlfP3rX8+KK66YKVOmfOjzDjjggFx00UXZd999c/fddy/0eEvV91F22mmnPPvss80+mpYk3/jGNzJnzpz86le/yi9+8Yt06dIlX/rSl3LUUUc1TTwvuuii3HLLLc2uem1tPXr0yLXXXpszzzwzp5xyShoaGrLuuuvmmmuuafpUxGmnnZZLL700v/rVr/Laa6+ld+/e2W677XLYYYe50gEAaHe22mqr3H777fnlL3+ZG2+8MRMmTEilUsmKK66Y7bbbLt/4xjc+9g/To0ePzpw5c3Luuedm9uzZWWGFFXLggQfmX//6V+67776mJREuvPDCnHXWWTn//PMza9asbLfddvn617+eP/zhD03H2n333dO9e/eMGTMm119/fbp165b11lsvZ5111scu4dWzZ89sttlmuf/++7Pddts1e+zHP/5xzj333Fx55ZV544030rt37+y222459NBDm/b53ve+l/79++eaa65Z8hP5CX3xi1/MNddck7PPPjuHH354unfvns022yxHHnlk6uvrU19fn+uuuy5nn312fvrTn+att95q+i6Ivffeu83qBGpHqfJR32DTjgwcODBXX311hg4dmn333TcPP/xws7Uu586dm5VWWim33XZbBg8enP/6r/9qdnXufvvtlwEDBuToo4+uRvkAAAAAAEna+ZW2H6Zv377ZZZdd8uMf/7jpvtdff73p2zJXXXXVhdYJmjt37kd+AzsAAAAAQFto119E9mF222233Hnnnfnzn/+cxsbGvPTSS/n2t7/dtNj5N7/5zfzyl7/Mgw8+mMbGxtxzzz0ZN25cdthhhypXDgAAAADUug55pe26666bn/3sZ/nZz36WQw89NF27ds0OO+yQ//7v/06SfO1rX0u5XM5pp52WV155Jf37988555zzsYupAwAAAAC0tg6zpi0AAAAAQEfQIZdHAAAAAABor4S2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIHUVbuAT2rKlLdSq1+hViolvXsvXdPnAOOA9xkLJMYB8xgH75+DImjL96HW3vta6levHZNeO65a6levHZNe2+51P067DW0rlXT4wfNxnAMS44D3GQskxgHzGAfFUI33odbe+1rqV68dk147rlrqV68dk16rz/IIAAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKpK7aBQAAAAAAtJWJEyfkqqsuT319XUaOHJV+/fpXu6SFCG0BAAAAgJoxduwVefrpJ5MkDQ2NGT36hOoWtAiWRwAAAAAAasaECeMXuV0kQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUSFVD27lz52bPPffM6NGjq1kGAAAAAEBhVDW0vfDCC/PYY49VswQAAAAAgEKpWmj70EMP5d57781XvvKVapUAAAAAAFA4ddV40SlTpuT444/PRRddlKuuuuoTHaNUatma2pP5vdfyOcA44H3GAolxwDzGQbF6b8taau29r6V+9dox6bXjqqV+9dox1UqvH+yvGvO2j9PmoW1jY2OOOuqojBo1KmusscYnPk7v3ku3YFXtk3NAYhzwPmOBxDhgHuOgGKrxPtTae19L/eq1Y9Jrx1VL/eq1Y+rovZbL5WbbffoUr982D20vvfTS1NfXZ8899/xUx5ky5a1UKi1UVDtTKs37j6eWzwHGAe8zFkiMA+YxDt4/B0XQlu9Drb33tdSvXjsmvXZctdSvXjumWum1sbGx2fbkyW+12Wsv7ny1zUPb2267La+//nqGDBmSJJk5c2aS5Pe///0SfSlZpZIOPXgWh3NAYhzwPmOBxDhgHuOgGKrxPtTae19L/eq1Y9Jrx1VL/eq1Y+rovX6wtyL22uah7W9/+9tmt0ePHp0kOf3009u6FAAAAACAwil//C4AAAAAALSVNr/S9oNcYQsAAAAA8D5X2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgddUuAAAAAABgUcrlUsrlUoses1Ra8Hil1NW1znWtjY2VNDZWPtFzhbYAAAAAQOGUy6X06tU15XKnFj9u89fo3qLHn6+xcW6mTXvvEwW3QlsAAAAAoHDmXWXbKU/968S8/d5LLXbcWbMnN9v+yzN7tdix5+vRdZWsO+CklMsloS0AAAAA0LG8/d5LefPdf7bY8RorXTL/q74aK3Na9NgtxReRAQAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECqEto+9NBD2X333bPeeutl2LBhOfnkkzNz5sxqlAIAAAAAUChtHtpOnTo1+++/f775zW/mscceyy233JJHHnkkl112WVuXAgAAAABQOHVt/YLLLrtsHnzwwfTo0SOVSiXTp0/PrFmzsuyyy7Z1KQAAAAAAhdPmoW2S9OjRI0my2WabZdKkSRkyZEh23XXXapQCAAAAAFAoVQlt57v33nszY8aMHHnkkTnkkEMyZsyYxX5uqdSKhRXc/N5r+RxgHPA+Y4HEOGAe46BYvbdlLbX23tdSv3rtmPTacdVSv3rtmGqp17a04Plc3HNbqlQqldYpZ/E9/fTT2X333fPII4/kM5/5TLXLAQAAAAAK4i/P7JU33/1nix3vsjO75M3p877qa5mejdnv6Jktduz5lum2eoatPfYTP7/Nr7T961//muOOOy6333576uvrkySzZ89O586d07Vr18U+zpQpb6X6cXN1lEpJ795L1/Q5wDjgfcYCiXHAPMbB++egCNryfai1976W+tVrx6TXjquW+tVrx1S0Xjt1KqdXr+7VLuNTmTbtncyd29h0e3Hnq20e2g4cODAzZ87M2WefnSOOOCJvvPFGzjjjjOy2225NIe7iqFRSiMFTTc4BiXHA+4wFEuOAeYyDYqjG+1Br730t9avXjkmvHVct9avXjqmWem0Ln+Rcllu+jI/WvXv3jBkzJs8//3yGDRuWPffcMxtvvHGOO+64ti4FAAAAAKBwqvJFZAMGDMiVV15ZjZcGAAAAACi0Nr/SFgAAAACADye0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAAGrGsstXmrZ7L7BdJHXVLgAAAAAAoK0M33527qvUJ0m22H52latZNKEtAAAAAFAzll2ukt1Gzap2GR/J8ggAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABfKpQtupU6e2VB0AAAAAAOQThLYNDQ0555xzsv7662f48OEZP358vva1r+X1119vjfoAAKBq/v73v+fee+/N7NmzM2XKlGqXAwBAjVji0PaCCy7Iww8/nPPOOy+dO3dO796907dv35xyyimtUR8AALS5KVOm5Bvf+Ea+/vWv55hjjsn48eOz1VZb5Yknnqh2aQAA1IAlDm3vuOOOnH/++dlkk01SKpXSrVu3nHbaaXn44Ydboz4AAGhzp556alZfffU8+uijqaury6qrrpr99tsvZ555ZrVLAwCgBixxaPvuu+9m2WWXTZJUKpUkSZcuXVIu+04zAAA6hocffjjHHntsunbtmlKplCTZZ5998q9//avKlQEAUAuWOGkdNGhQLrzwwiRpmsBec801WXvttVu2MgAAqJLOnTtn5syZSd6/UOGdd95J9+7dq1kWAAA1YolD2+OPPz533HFHNt1007zzzjvZbrvtcvXVV2f06NGtUR8AALS54cOH56ijjspLL72UUqmUKVOm5KSTTspmm21W7dIAAKgBdUv6hBVXXDF33XVX/vjHP2bChAnp27dvNt988/To0aM16gMAgDZ3xBFH5Nhjj822226bJNlkk02y2Wab5cc//nGVKwMAoBYscWg7e/bsXHLJJdltt93y1a9+NWPHjs2YMWNyyCGHWNcWAIAOoXv37jn//PMzderUvPLKK/nsZz+bz372s9UuCwCAGrHEKetpp52WBx54IJ06dUqSrLnmmvnzn/+cs846q8WLAwCAapg4cWK+8Y1v5NVXX80666yTq666Kt/85jfzxhtvVLs0AABqwBKHtvfee2+uuOKKfO5zn0uSDBkyJJdcckluv/32Fi8OAACq4aSTTsoXvvCFrLzyykmSfffdNwMGDMjJJ59c5coAAKgFS7w8wqxZs9KtW7dm9/Xo0SMNDQ0tVhQAAFTTE088kb/85S/p3LlzkmTZZZfND37wg2y66aZVrgwAgFqwxFfaDhkyJKeddlpmz56dZF6Ie+aZZ2a99dZr8eIAAKAa6urqMnXq1Gb3zZgxI126dKlSRQAA1JIlvtL2+OOPzz777JP11lsvvXr1yrRp0/L5z38+l1xySWvUBwAAbW7bbbfNIYccksMOOyz9+vXLq6++mvPPPz/bbLNNtUsDAKAGLHFou+KKK+buu+/O448/nsmTJ6dv375ZZ511Ule3xIcCAIBCOuqoo3LSSSdl//33z+zZs1NfX5+dd945hx12WLVLAwCgBix20vraa6+lb9++mThxYpJkhRVWyAorrJAkef3115Ok6cvJAACgPevatWtOP/30nHzyyZkxY0Z69+6dUqlU7bIAAKgRix3abrfddvnrX/+a4cOHLzRhrVQqKZVK+b//+78WLxAAANrKnXfemR122CG33nrrh+6z8847t1k9AABtZeLECbnqqstTX1+XkSNHpV+//tUuqaYtdmh71113JUluv/32dO/evdUKAgCAarnkkkuyww475Pzzz1/k46VSSWgLAHRIY8dekaeffjJJ0tDQmNGjT6huQTVusUPbfv36JUkOOOCA3H777enRo0erFQUAANVw5513JknOPPPMDB48OJ06dapyRQAAbWPChPGL3KY6yp/kSe+9915L1wEAAIVx8MEHZ/bs2dUuAwCAGrXYV9rON3To0Oy+++7ZdNNNs/zyyzd77Hvf+16LFQYAANWy4oor5plnnsmGG25Y7VIAAKhBSxzavvLKK1lxxRXz4osv5sUXX2y637fpAgDQUXzmM5/JqFGjssIKK2T55ZdvNte9+uqrq1gZAAC1YIlC2wsvvDA9evTIJptskpEjR7ZWTQAAUFWDBw/O4MGDM3v27MyYMSO9evVKXd0SX+8AAACfyGKvaXvmmWfmF7/4RTp37pzzzz8/l112WWvWBQAAVfOd73wnL7/8cq666qpcf/31GTt2bKZMmZL99tuv2qUBAFADFju0vfPOOzN27Nicf/75Of/883PHHXe0Zl0AAFA1J598cv7zn//k4osvzt13351zzz03zzzzTM4666xqlwYAQA1Y7M94vfXWW1lttdWSJOuvv34mTZrUakUBAEA13Xffffntb3+b3r17J0m+8IUvZI011shOO+2U4447rsrVAQDQ0S32lbbl8vu7Ws8LAICObKmllkqnTp2a3de9e/d07dq1ShUBAFBLFju0rVQqrVkHAAAUxgEHHJBDDjkkzz33XN5777289NJLOfbYY7Pddttl4sSJTf8AAKA1LPYlsw0NDbn11lubbs+ZM6fZ7STZeeedW6gsAAConp/85CdJ5s1vS6VSswsYrrzyylQqlZRKpfzf//1ftUoEAKADW+zQtk+fPjn//PObbvfq1avZ7VKpJLQFAKBD+MMf/lDtEgAAqGGLHdred999rVkHAAAURv/+/atdAgAANWyx17QFAAAAAKD1CW0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKJC6ahcAAAAAACy+crmUcrnUoscslRY8Xil1da1zrWdjYyWNjZVWOXZHIrQFAAAAgHaiXC6lV6+uKZc7tfhxm79G9xY9/nyNjXMzbdp7gtuPIbQFAAAAgHZi3lW2nfKbf16Qqe9OaLHjvjN7WrPt654c3WLHnm/Zbv3z1dW/n3K5JLT9GEJbAAAAAGhnpr47IW+882KLHW9upaHZdksemyXni8gAAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFUpXQ9rnnnsuoUaOy4YYbZtiwYTn66KMzderUapQCAAAAAFAobR7azpw5M/vss08GDx6cP//5z7nzzjszffr0HHfccW1dCgAAAABA4bR5aDtx4sSsscYaOfjgg1NfX59evXpljz32yKOPPtrWpQAAAAAAFE5dW7/gF77whYwZM6bZfffcc0/WXHPNJTpOqdSSVbUv83uv5XOAccD7jAUS44B5jINi9d6WtdTae19L/eq1Y9Jrx1VL/eqVT6uWzueCvS5u320e2i6oUqnk3HPPzf/+7//m2muvXaLn9u69dCtV1X44ByTGAe8zFkiMA+YxDoqhGu9Drb33tdSvXjsmvXZctdSvXjuOHn065b3pjUmSpZfr1Kqv1atX91Y9fpF80l6rFtq+/fbbOfbYY/Pss8/m2muvzcCBA5fo+VOmvJVKpZWKK7hSad4Pilo+BxgHvM9YIDEOmMc4eP8cFEFbvg+19t7XUr967Zj02nHVUr96rZ5OncqtEnqutV33/O2ud5Ika361dUPVadPeydy5jR+7X2v12pY+2OvizlerEtq+/PLL2XffffO5z30uN954Y5ZddtklPkalkkL8h1JNzgGJccD7jAUS44B5jINiqMb7UGvvfS31q9eOSa8dVy31q9eOo0efumy012fa7PU68rn8oE/Sa5t/EdmMGTOy1157Zb311ssVV1zxiQJbAAAAAICOqs2vtL355pszceLE/OY3v8lvf/vbZo898cQTbV0OAAAAAEChtHloO2rUqIwaNaqtXxYAAAAAoF1o8+URAAAAAAD4cEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKJC6ahcAAAAAAEU0ceKEXHXV5amvr8vIkaPSr1//apdEjRDaAgAAAMAijB17RZ5++skkSUNDY0aPPqG6BVEzLI8AAAAAAIswYcL4RW5DaxPaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgdRVuwAAAAAA+DTK5VLK5VKLH7dUWvCYpdTVtc71j42NlTQ2Vlrl2LRPQlsAAAAA2q1yuZSevbqmU7lTqxx7we1evbq3+GskydzGuZk+7T3BLU2EtgAAAAC0W+VyKZ3KnTL2b1fntXcnteixZ8ya0Wz7jEd+2qLHT5K+3T6bvdb6r5TLJaEtTYS2AAAAALR7r707Ka+89UqLHnNuZW6z7ZY+PnwYX0QGAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAALAI9b2Xatpeqs9SH7EntCyhLQAAAAAsQt+t+6X753uk++d75LNb9at2OdSQumoXAAAAAABFtFTvpbLyN1epdhnUIFfaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgdRVuwAAAAAA2o+JEyfkqqsuT319XUaOHJV+/fpXuyTocIS2AAAAACy2sWOvyNNPP5kkaWhozOjRJ1S3IOiALI8AAAAAwGKbMGH8IreBliO0BQAAAAAoEMsjAAAAAHRA5XIp5XKpxY9bKi14zFLq6lr+msDGxkoaGystflxoL4S2AAAAAB1MuVxKz17d0qnc8oHqgkFwuVxKr17dW/w15jY2Zvq0dwW31CyhLQAAAEAHUy6X0qlczukPXZ+X33y9RY895b03m20fdM8FLXr8lZZZPqO/tEfK5ZLQlpoltAUAAADooF5+8/X8a9rEFj3m3GXqkzffS5I0fKa+xY8PVPmLyKZOnZqtt94648aNq2YZAAAAACym8pdWSvovk/RfJuWNVqp2OdAhVe1K28cffzyjR4/Oyy+/XK0SAAAAAFhCpZ5d02m7NapdBnRoVbnS9pZbbsmRRx6Zww8/vBovDwAAAABQWFW50naTTTbJiBEjUldX94mD21Lp4/fpqOb3XsvnAOOA9xkLJMYB8xgHxeq9LWuptfe+lvrVa8ek146r1vptC7V2Lmup31rtdXH7rkpou9xyy33qY/TuvXQLVNK+OQckxgHvMxZIjAPmMQ6KoRrvQ62997XUr147Jr12XLXWb2vp1at7tUtoU7XUr14/XtXWtP20pkx5K5VKtauojlJp3i+AWj4HGAe8z1ggMQ6Yxzh4/xwUQVu+D7X23tdSv3rtmPTacRWp306dyu0+GJs27Z3Mndv4sft1hF6T2uq3lntd3Plquw1tK5VU/QdgtTkHJMYB7zMWSIwD5jEOiqEa70Otvfe11K9eOya9dly11m9rqrXzWEv96vWjVeWLyAAAAAAAWDShLQAAAABAgVR9eYR//OMf1S4BAAAAAKAwXGkLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAokLpqFwAAAADQ3k2cOCFXXXV56uvrMnLkqPTr17/aJQHtmNAWAAAA4FMaO/aKPP30k0mShobGjB59QnULAto1yyMAAAAAfEoTJoxf5DbAJ+FKWwAAAKBmlMullMulFj9uqbTgMUupq2v56+QaGytpbKy0+HGB4hHaAgAAADWhXC6lZ69u6VRu+UB1wSC4XC6lV6/uLf4acxsbM33au4JbqAFCWwAAAKAmlMuldCqXc/zvbsyLU99o0WNPq19wu5RvXX9xix7/88sul1O23i3lckloCzVAaAsAAADUlBenvpHnJr/aoscsr/G5dJs1K0kyY41+mdTCxwdqi9AWAAAA4FNqXLpb3t5kzWqXAXQQLb+ICwAAAAAAn5jQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACqat2AQAAfHoTJ07IVVddnvr6uowcOSr9+vWvdkkAAMAnJLQFAOgAxo69Ik8//WSSpKGhMaNHn1DdggAAgE/M8ggAAB3AhAnjF7kNAAC0P660BQBqWrlcSrlcqnYZn1qptGAPpdTVdYy/zTc2VtLYWKl2GQAA0KaEtgBAzSqXS+nVq2vK5U7VLuVTWzB4ntdX9ypW03IaG+dm2rT3BLcAANQUoS0AULPmXWXbKb/55wWZ+u6Eapfzqbwze1qz7eueHF3FalrGst3656urfz/lckloCwBATRHaAgA1b+q7E/LGOy9Wu4xPpWvvSt7+f7lttz6Vdt8PAADUso6x2BkAQI1ba7vuWW7Vzllu1c5Z86sdY2kEAACoVa60BQDoAHr0qctGe32m2mUAAAAtQGgL0I5NnDghV111eerr6zJy5Kj069e/2iUBAEASc1WAT0NoC9SkeV8+VPr4HQvu6quvyNNPP5kkmTu3kuOPP7G6BbWQxsaKLx0CAGhDrTE/bqu5qrkj0BEJbYGaUy6X0rNnt3Tq1P6X9X711fe/7X7ixFfSq1fHWMdy7tzGTJ/+rsn3YnIVCwDwabTW/Lit5qrmjkBHJLQFak65XEqnTuUcd+tN+ffkydUu51OZvsDVENPKpXxjzKVVrKZlfKFPn5y689dSLpdMvBfT2LHvX8XS0NCY0aNPqG5BAEC70lrz47aYq5o7Ah2V0BaoWf+ePDnPvfZqtcv4VMor9U/3mTOTJNNW6p9X23k/ba2jLJMxceIrTdsTJrySurr2fxV54qOOANDWWnp+bK4K8MkJbQHascZu3fLWoLWrXUa7VC6X0rNXt3Qqt/+Ac8HguVwudZxlMhobM32ajzoCQHtlrgrwyQltAahJ5XIpncrlnP7Q9Xn5zderXc6n8na390PNt7snB91zQRWraRkrLbN8Rn9pDx91BAAAapLQFoCa9vKbr+df0yZWu4xPpTLks8nseR89fG/95dt9PwAAALVOaAsA7VypZ9d02m6NapcBAABAC2n/C/kBAAAAAHQgrrRtZyZOnJCrrro89fV1GTlyVPr161/tkgAAAACAFiS0bWfGjr0iTz/9ZJKkoaExo0efUN2CAAAAAIAWZXmEdmbChPGL3AYAAAAAOgahLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgvogMAAAAFqFcLqVcLrXa8Tt1ar3rqBobK2lsrLTa8QFoXUJbAAAA+IByuZSePbu1arDaq1f3Vjv23LmNmT79XcEtQDsltAUAAIAPKJdL6dSpnB/+4pa89PrkapezRFZZvk9O/tYuKZdLQluAdkpoC+3QxIkTctVVl6e+vi4jR45Kv379q10SAAB0SC+9Pjn/mPBatcsAoMYIbaEdGjv2ijz99JNJkoaGxowefUJ1CwIAAACgxbTe4jxAq5kwYfwitwEAAABo/4S2AAAAAAAFUjPLI5TLpZTLpWqX8amVSgv2UEpdXcfI3RsbKxbIBwAAAIDUSGhbLpfSs2e3dOrU/gPOBYPncrmUXr26V7GaljN3bmOmT3+31YNb4X2xCe8BAAAAaii07dSpnLNOvT7jX36j2uV8KlOnvNVs+9ADLqxiNS1jxZWWy5HH7ZFyudSqgZ3wvvjaKrwHAKBYJk6ckKuuujz19XUZOXJU+vXrX+2SAKCqaiK0nW/8y2/khecnVruMT6UhDe9vNzS0+37a0vzw/sdX3JL/vDq52uV8KpNnvNVs+7s/ubyK1bSMlfv1yQnf3aXVw3sAAD651vrk2tVXX5Gnn34ySTJ3biXHH39ii79G4pNdALQfNRXaQpL859XJ+ef416pdxqfSuWFu5k+VGxrmtvt+AAAovtb85Nqrr05o2p448ZVW+ySZT3YB0F4IbQEAAPhYrfnJtTfnlJttt8YnyXyyC4D2RGgL7VClvntKDbOatgEA6HiKus5rq3xyrceKqXtvZpJkRo8VM8MnyQCocUJbaIca+gxI3RvPN20DANDxjB37/jqvDQ2NGT36hOoW1Jrqu6Wh/7rVrgIACkNoC+2RSS0AtEut9SVO87XGWqPzFeULnIp69WlrmDBh/CK3AYCOT2gLAABtYN6XOHVNp06dWu01WuvLm5Jk7ty5mT79vaoHt0W8+rS1wvhSacFjllJX1/KhfFHCeACgOaFtO1NK11Qyu2kbAID2Yd6XOHXKmUdfkZdfeLXa5SyRlVbtl6PP/G4hvsCpaFefzgvju7XKVc4LBsHlcqlVQvm5cxszffq7VX9fAYDmhLbtTOesnDn5T9M2AADty8svvJoX/q/6YSMtY14YX87pF9yclydMbtFjvz2ztMB2OQeNvqxFj79S/z4Z/f1dCxHGAwDNCW3bmXK6ZqmsUe0yAACABbw8YXL+9eJrLXrMSmnFpPOsJMl7pRVa/PgAQHEJbQEAgBZnnddPr1TXLZ0+s061ywAAqkBoCwAAtCjrvAIAfDpCWwAAoEXNX+f1rFOvz/iX32jRY0+d8laz7UMPuLBFj7/iSsvlyOP2sM4rAFBVQlsAAKBVjH/5jbzw/MQWPWZDGt7fbmho8eMDABRBy39eCQAAoJWU0nWR2wAAHYnQFgAAaDc6Z+WU85mU85l0zsrVLgcAoFVYHgEAAGg3yumapbJGtcsAAGhVrrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAAqkKqHtlClTctBBB2XIkCEZOnRoTjnllDQ0NFSjFAAAAACAQqlKaHvYYYelW7du+dOf/pQbb7wxDz30UK666qpqlAIAAAAAUChtHtr+5z//ySOPPJKjjjoqXbt2zYorrpiDDjoo1113XVuXAgAAAABQOG0e2j7//PPp2bNnPvvZzzbdt+qqq2bixIl5880327ocAAAAAIBCqWvrF3znnXfStWvXZvfNv/3uu+9mmWWWWazjlMtJpbJkr73qgH5ZqkvnJXsSrW6FFfo0bZfb4M8Iq63UN13qjYOiWbFv76btthgHSfL/9e2brp2NhaJZpXfbjoUBvT6XLp2Mg6JZYZnlmrbbYhws32OV1JWXav0XYoks261f0/bijoNSqZWK+QQ+bL464IsrpUvX+rYv6FNY4fN9m7aX5L/J9jj//qRz0wGr9E2XpdpZr/0+2e/c9jqf/qTzzYGfa3/9rtznk/XaHufHn3TuuMZy/dK1rn31unKvT/jzqR3Odz/pXHDFHiukvty+fscmyWe7Ld+0vST9tsc57CeZ3yXJMt0GplO5SytU1Hq6d1m5aXvBXhd3vlqqVJY0+vx0fve73+UHP/hBxo0b13TfP/7xj+y444557LHHsvTSS7dlOQAAAAAAhdLmyyOsttpqmT59eiZPntx03wsvvJC+ffsKbAEAAACAmtfmoe0qq6yS9ddfP6eeemrefvvtjB8/PhdddFF22223ti4FAAAAAKBw2nx5hCSZPHlyfvzjH2fcuHEpl8vZeeedc+SRR6ZTp05tXQoAAAAAQKFUJbQFAAAAAGDR2nx5BAAAAAAAPpzQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoW3BTZ06NVtvvXXGjRv3ofvcf//9GTFiRAYNGpSvfvWr+d///d82rJDW9Nxzz2XUqFHZcMMNM2zYsBx99NGZOnXqIvc1Djq2hx56KLvvvnvWW2+9DBs2LCeffHJmzpy5yH2NhY5t7ty52XPPPTN69OgP3ccY6NjuvvvufPGLX8zgwYOb/h111FGL3NdY6JhqYX5Ya3OgWvs9Xyu/y2rp5/X06dNz9NFHZ+jQodlggw1y0EEH5fXXX1/kvu2919tvv73Zezp48OCstdZaWWuttRa5f3vv99lnn83IkSMzZMiQbLLJJvnJT36S2bNnL3Lf9t7rCy+8kO9+97sZMmRINt9881x88cVpbGxc5L7ttddFzSGeeuqp7L777hk8eHCGDx+eX//61x95jMsvvzybbrppBg0alD333DP//ve/W7vsT+zD5kxPPPFE1l577Y99ftV7rVBYjz32WGWrrbaqrL766pWHH354kfu8+OKLlbXXXrvyu9/9rjJnzpzKXXfdVVlnnXUqr732WhtXS0t77733KsOGDaucd955lVmzZlWmTp1a2XfffSv777//QvsaBx3blClTKmuvvXblpptuqsydO7cyadKkyg477FA577zzFtrXWOj4zj333Moaa6xROeaYYxb5uDHQ8Z1++umV0aNHf+x+xkLHVAvzw1qbA9Xi7/la+V1WSz+vv/3tb1cOPvjgyowZMypvvfVW5Xvf+15lv/32W2i/jtDrB7322muVYcOGVW699daFHmvv/c6dO7cybNiwytixYytz586tvPrqq5VtttmmcuGFFy60b3vv9e23365svvnmleOPP77yzjvvVF555ZXKDjvsULngggsW2re99rqoOcT06dMrG264YeXaa6+tzJkzp/Lggw9WBg8eXHnqqacWeYybb7658uUvf7nyz3/+szJz5szKaaedVtl+++0rjY2NbdnKYllUv42NjZVf//rXlUGDBlVWX331j3x+EXp1pW1B3XLLLTnyyCNz+OGHf+x+Q4YMyVZbbZW6urpst9122WCDDXL99de3UaW0lokTJ2aNNdbIwQcfnPr6+vTq1St77LFHHn300YX2NQ46tmWXXTYPPvhgdt1115RKpUyfPj2zZs3Ksssuu9C+xkLH9tBDD+Xee+/NV77ylQ/dxxjo+J555pkPvZpnQcZCx1Mr88NamwPV2u/5WvpdVis/r//2t7/lqaeeyumnn55lllkmPXr0yMknn5wjjzxyoX3be68fVKlUctRRR2XzzTfPTjvttNDj7b3fGTNm5I033khjY2MqlUqSpFwup2vXrgvt2957ffzxxzNlypSccMIJ6datW/r3758DDzwwv/zlL5t6n6899vphc4h77703PXv2zMiRI1NXV5cvfelLGTFiRK677rpFHueGG27It771ray22mpZaqmlcsQRR2TixIkf+emfaviwfo877rj8+te/ziGHHPKxxyhCr0Lbgtpkk03yu9/9Ltttt91H7vevf/0rq6++erP7BgwYkOeee641y6MNfOELX8iYMWPSqVOnpvvuueeerLnmmgvtaxx0fD169EiSbLbZZhkxYkSWW2657LrrrgvtZyx0XFOmTMnxxx+fs88+e5ET5fmMgY6tsbExzz77bP74xz9miy22yKabbpof/vCHmTFjxkL7GgsdT63MD2txDlQrv+dr6XdZLf28fvrppzNgwIDccMMN2XrrrbPJJpvkjDPOyHLLLbfQvu291w+67bbb8q9//etDl/po7/326tUr3/nOd3LGGWdk7bXXzmabbZZVVlkl3/nOdxbat7332tjYmM6dO6dz585N95VKpUyePDlvvvlms33bY68fNod4/vnnl6iXD/beuXPnrLLKKoXr/cP6PfTQQ3P99dfni1/84sceowi9Cm0LarnllktdXd3H7vfOO+8sNOHp0qVL3n333dYqjSqoVCo555xz8r//+785/vjjF3rcOKgd9957bx544IGUy+VF/nXQWOiYGhsbc9RRR2XUqFFZY401PnJfY6Bjmzp1ar74xS9mm222yd13351f/epXeemllxa5RqKx0PHU4vyw1uZAHfn3fK39Lquln9czZszIP/7xj7z00ku55ZZbcuutt2bSpEk55phjFtq3vfe6oMbGxlx88cU54IADmv7w8kHtvd/GxsZ06dIlP/zhD/Pkk0/mzjvvzAsvvJDzzz9/oX3be6/rrbdeunTpkrPPPjvvvfdeJkyYkCuuuCJJFlpjvD32+mFziCXtpb30/mH99u3bd7GPUYRehbbtXNeuXRf6ATJz5sx07969ShXR0t5+++0ccsghueOOO3Lttddm4MCBC+1jHNSOLl265LOf/WyOOuqo/OlPf1roag1joWO69NJLU19fnz333PNj9zUGOrY+ffrkuuuuy2677ZauXbvmc5/7XI466qg88MADefvtt5vtayzUro7y3tfiHKgj/56vtd9ltfTzur6+Pkly/PHHp0ePHunTp08OO+yw3H///XnnnXea7dvee13QuHHj8vrrr2e33Xb70H3ae7+/+93vcs899+Rb3/pW6uvrs9pqq+Xggw/OL3/5y4X2be+9LrPMMrn88svz1FNPZfPNN89hhx2WnXfeuemxBbX3Xhe0pL10pN4/ThF6Fdq2c6uvvnqef/75Zvf961//ymqrrValimhJL7/8cr72ta/l7bffzo033rjI/1lJjIOO7q9//Wu23XbbZt/SOnv27HTu3Hmhv/wZCx3TbbfdlkceeSRDhgzJkCFDcuedd+bOO+/MkCFDFtrXGOjYnnvuuZx11lnN1labPXt2yuVy0/80z2cs1K6O8N7X0hyoVn7P19rvslr6eT1gwIA0NjZmzpw5Tfc1NjYmyUJrgbb3Xhd0zz33ZOutt063bt0+dJ/23u+rr77a7GdTktTV1TVbQmC+9t7r7Nmz09DQkKuvvjrjxo3Lr3/965TL5QwYMKBD/Sz+oCXtZbXVVmu2/5w5c/LSSy8ttMRCR1CEXoW27dyOO+6YRx55JHfffXcaGhpy991355FHHlnkIui0LzNmzMhee+2V9dZbL1dcccUiv4xiPuOgYxs4cGBmzpyZs88+O7Nnz86ECRNyxhlnZLfddlto0m8sdEy//e1v89e//jWPPfZYHnvsseywww7ZYYcd8thjjy20rzHQsfXs2TPXXXddxowZk4aGhkycODE//elPs8suu/h5QJP2/t7X2hyoVn7P19rvslr6eb3xxhtnxRVXzHHHHZd33nknU6dOzTnnnJOtttpqoWUD2nuvC3r88cezwQYbfOQ+7b3fTTbZJG+88UYuueSSzJ07N+PHj8/FF1+cESNGLLRve+81Sb773e/mxhtvTKVSyd/+9rdccskl2WuvvRbaryP0Ot/WW2+dyZMn56qrrsqcOXPy8MMP54477sjXvva1Re7/ta99Lddee22ee+65zJo1K2effXb69OmzyD/AtXeF6LVC4a2++uqVhx9+uOn2oEGDKrfddlvT7QceeKCy4447VgYNGlTZfvvtK3/84x+rUSYt7Morr6ysvvrqlXXXXbcyaNCgZv8qFeOg1jz//POVUaNGVYYMGVLZYostKj/72c8qs2bNqlQqxkItOuaYYyrHHHNM021joLaMGzeusscee1QGDx5c2WijjSonn3xyZebMmZVKxVioJR15fliLc6Ba/D1fC7/Launn9WuvvVY57LDDKsOGDasMGTKkcvTRR1dmzJhRqVQ6Xq/zDRo0aJG1d7R+//KXv1R23333yvrrr1/ZfPPNO/TPp0ceeaSyyy67VAYNGlTZcsstK1dffXXTYx2p1w/OIZ5++ummn1Vbbrll5aabbmp67NFHH60MGjSoMmHChEqlUqk0NjZWrrjiisrw4cMrgwYNquy5556Vf//7323ew5L4YL+VSqXy8MMPV1ZfffVm9xWx11Kl8oHPKwAAAAAAUDWWRwAAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2ADXgpZdeqnYJAAAAwGIS2gK0khdffDHHHHNMNt100wwePDhbbbVVzjrrrLzzzjut8nrDhw/PzTffnCTZZ599cskllyRJ7rvvvnz3u99t2m/BxwAA4ONMnDgxJ554YoYPH55BgwZlww03zHe/+9385S9/abHXuPnmmzN8+PAWOx5Aeye0BWgFf/3rX7PLLrukf//+ufXWW/PEE0/k8ssvz1NPPZW99947c+fObdXXHzNmTA444IAkyfTp01OpVBb5GAAAfJR//vOf2XHHHTN79uxcfvnlefzxx3Pvvfdmxx13zMEHH5z777+/2iUCdEhCW4BWcMIJJ2TnnXfOIYcckmWXXTZJ8vnPfz7nnHNOevfunfHjx2fChAk57LDD8qUvfSnDhg3LEUcckddffz1JMm7cuAwfPjwXX3xxvvzlL2fDDTfM97///bz99ttJkkqlkksuuSSbbLJJhgwZkjPOOKNZELznnnvmggsuyLhx43LiiSdm4sSJGTx4cCZNmtT0WJI0Njbmsssuy1ZbbZX1118/u+22W/70pz81HWf48OG59NJLs/POO2fw4MHZeeed8/DDD7fVaQQAoMpOOOGEDBs2LKeddlpWXXXVdOrUKT179sxOO+2UE088MXPmzMnNN9+cXXfdNXvvvXeGDBmSO+64I5MmTcphhx2W4cOHZ911182WW26ZG2+8sem4L7zwQvbcc88MHjw4I0aMyN///vdmr/vss89mzz33zAYbbJCvfOUrueqqq5pdiADQ0QltAVrYyy+/nOeffz477LDDQo/16dMnF110Ufr375+99947nTp1yr333pvf/OY3SZIDDjggDQ0NSZIJEyZk0qRJ+d3vfpdf//rXeeKJJ/KLX/wiSXLTTTdl7NixufTSS/Pggw+mc+fOee211xZ6vaFDh+akk07K5z73uTzxxBP57Gc/2+zx//mf/8l1112X8847L+PGjcvee++dgw46KE8//XTTPjfddFPOO++8PPjgg1ljjTXyox/9qKVOFQAABfbaa6/liSeeyDe+8Y1FPr7LLrtkq622SjIvZB0xYkQefPDBbL311vnBD36Qzp0756677spf//rXfPvb387JJ5+cd955J3PmzMn++++f1VZbLQ8//HB+9rOf5fe//33TcSdNmpS99tor2267bR588MFcdNFF+cUvfpHrr7++TfoGKAKhLUALmzp1apJ5Ae2HeeyxxzJ+/PicdNJJWXrppbPMMsvkpJNOynPPPZe//e1vTfsdfPDB6dKlS1ZeeeUMHTo0L774YpLktttuy9e//vWsueaaqa+vz6GHHppevXotca033XRT9ttvv6y55pqpq6vLdtttl+HDhze7CmK33XbLyiuvnK5du2bEiBG+1AwAoEbMvyigb9++Tfc99NBDGTJkSIYMGZLBgwdnm222SZJ07tw5O+20U+rr69OlS5f85Cc/yYknnpjOnTtn4sSJ6d69e2bOnJkZM2bkiSeeyKuvvpqjjz46Sy21VFZbbbWMGjWq6TVuv/32rLrqqhk5cmQ6d+6cAQMG5Lvf/W6uu+66tj0BAFVUV+0CADqa5ZZbLknyxhtvZJVVVlno8cmTJ2fKlCnp1atXevTo0XR/jx490rNnz0yYMKEp8J1/rGTeRHj+R8Jef/319OvXr+mxTp065XOf+9wS1zp58uSsuOKKze5bYYUV8txzzzXdXjB8rqur87E0AIAaMX8uOmnSpHz+859PknzpS1/KY489lmTel4ddeOGFTfuWy+9fFzZ+/PiceeaZeemll7LKKqtk5ZVXTjJvea5JkyalV69e6dKlS9P+K620UtP2hAkT8uyzz2bIkCFN9zU2NqZTp06t1ClA8bjSFqCF9e/fP6uvvnruvvvuhR6bMmVKtthii0yYMCHTpk1rWqM2Sd56661MmzatWVD7Yfr27Zvx48c33a5UKk3r4S5prQseJ5k3wV5++eWX+FgAAHQs/fv3z9prr51f//rXH7tvqVRq2p6//MFOO+2UcePG5YYbbshee+3V9Hi/fv0yderUvPPOO033LbjUV9++fTN06NA89thjTf/+8Ic/5JZbbmmhzgCKT2gL0Ap++MMf5qabbsqFF16YadOmpVKp5P/+7/9ywAEHZM0118zee++dAQMG5MQTT8xbb72Vt956Kz/60Y+y0korZb311vvY4+++++654YYb8sQTT2TOnDm5+OKL88Ybbyxy36WWWirvvfde01q5HzzOZZddlmeffTZz587Nb37zm9x3333ZZZddPvU5AACg/Tv11FPzpz/9KT/84Q/z4osvplKp5O23386tt96aCy64YJF/7J8zZ05mzpyZLl26pFQqZeLEifnpT3/a9NjgwYPz+c9/Pj/5yU/y3nvv5T//+U+uvPLKpuePGDEiTz75ZG6//fY0NDTk9ddfzwEHHJDTTz+9zfoGqDahLUAr2HDDDXPttdfm73//e7bffvust956OeSQQ7LRRhtlzJgx6dy5cy699NI0NDRkm222yRZbbJE5c+bk5z//eerqPn7lmh122CGHHHJIDj/88Gy44YYZP358Bg4cuMh9N9hgg/Tu3TsbbLBB/vGPfzR7bNSoURk5cmQOP/zwDBkyJJdeeml+9rOfZcMNN2yR8wAAQPu2+uqr584770yXLl1ywAEHZP31189mm22WG264Ifvss0+uvvrqhZ7TrVu3nHrqqfmf//mfDB48OP/1X/+VYcOGpU+fPvnnP/+ZTp065bLLLsvrr7+ejTfeOPvss0+23HLLpuf3798/Y8aMyfXXX5+NN944O+20U77whS8IbYGaUqpYnBAAAAAAoDBcaQsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQP5/+1lQDJ6FW80AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(14, 6), sharey=True)\n", + "\n", + "# Bar plot for condition vs. price\n", + "sns.barplot(x='condition', y='price', data=housing_data, ax=axes[0], palette='viridis')\n", + "axes[0].set_title('Condition vs. Price')\n", + "axes[0].set_xlabel('Condition')\n", + "axes[0].set_ylabel('Price')\n", + "axes[0].grid(True)\n", + "\n", + "# Bar plot for grade vs. price\n", + "sns.barplot(x='grade', y='price', data=housing_data, ax=axes[1], palette='viridis')\n", + "axes[1].set_title('Grade vs. Price')\n", + "axes[1].set_xlabel('Grade')\n", + "axes[1].grid(True)\n", + "\n", + "# Adjust layout\n", + "plt.tight_layout()\n", + "\n", + "# Show plots\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "The visualization presents comparisons between house prices and their condition and grade ratings. On the left, the condition of houses, rated from 1 to 5, shows relatively consistent prices across different condition levels, with no significant price increase observed for better conditions. Conversely, on the right, the grade of houses, ranging from 1 to 11, demonstrates a clear positive correlation with prices, indicating that higher-grade properties command higher prices." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### c.) Multivariate Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### **#Correlation matrix**" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABckAAAaWCAYAAABmmTVfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hT1R/H8U/Svdhll7K3yAaRJUOmWAEBEZD1A2UjouJAxIHKUBEZMmUoQxEBQWXKENkiyJ4FyiwU6F75/VGphlZtNDdJzfv1PHk0557cfk6e28vtNyfnmiwWi0UAAAAAAAAAALghs7MDAAAAAAAAAADgLBTJAQAAAAAAAABuiyI5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3BZFcgAAAAAAAACA26JIDgAA4MYsFouzIxjmvzw2AAAAAPZDkRwAACALDh48qJEjR6px48aqUqWKmjZtqldeeUXnz593djRJUrly5fTRRx/Z9Jply5bp3XffTX++fPlylStXThcuXLB3vAzu/qxy5crpzJkzmfbZsmVLeh9b3L59Wy+88IL27Nnzl/0uXLigcuXKafny5TbtHwAAAMB/C0VyAACAv7Fo0SJ16dJFkZGRGjFihGbOnKmnn35au3fvVocOHfTrr786O+I/Mm3aNEVFRaU/b9y4sZYsWaL8+fM7LIPZbNbatWsz3bZmzZp/tM8jR45oxYoVSk1N/ct++fPn15IlS9S4ceN/9HMAAAAA/DdQJAcAAPgLe/fu1VtvvaWuXbtqzpw5euSRR1SnTh09/vjj+vzzz+Xv769Ro0Y5O6Zd5MmTR1WrVpW3t7fDfmb16tUzLZInJiZq/fr1qlChgmE/29vbW1WrVlWePHkM+xkAAAAAXB9FcgAAgL8we/ZsBQUF6dlnn82wLU+ePHrxxRf18MMPKzo6Or19zZo1at++vapVq6YHH3xQo0eP1q1bt9K3f/TRR2revLmmTJmiOnXqqFmzZrp586aaNGmit99+W0899ZSqV6+u0aNHS5KioqI0evRo1atXT/fdd586deqkHTt2/GXuo0ePatCgQapbt64qVaqkBg0a6M0331R8fLwkqUmTJrp48aK++uqr9CVWMltuZfv27eratatq1KihOnXqaMSIEbp06VL69uXLl6tixYo6cOCAOnfurPvuu0+NGzfWzJkzs/T+tm7dWsePH9epU6es2rds2SKTyaSGDRtmeM2yZcvUvn17Va1aVVWqVNGjjz6aPut8586d6tGjhySpR48e6t69uySpe/fueu655zRkyBBVr15d/fr1s1puJSUlRR07dlTdunV148aN9J/18ssvq0qVKjp58mSWxgMAAAAg+6FIDgAA8CcsFou2bdumBx54QH5+fpn2admypQYNGqTAwEBJ0tSpUzV8+HDdf//9mjx5sgYOHKjvvvtO3bt3Ty9QS1JERITWrVunSZMmadiwYcqdO7ektKVd7q4v/uijjyohIUFPPfWUNmzYoOHDh2vKlCkqWLCg+vbt+6eF8qtXr+rJJ59UXFyc3nnnHc2cOVOtWrXSggULNG/ePEnSlClTFBwcrEaNGv3pEitff/21evfurQIFCmjSpEkaNWqU9u/fr86dOysyMjK9X2pqqoYNG6bWrVvrk08+UY0aNTRhwgRt3br1b9/jBx98UDlz5swwm3zNmjVq3ry5vLy8rNoXLVqk0aNHq2nTppoxY4bGjx8vLy8vjRw5UhEREapUqVL6hwujR4/Wa6+9lv7atWvXysvLSx9//HF6If0uDw8Pvfvuu4qNjU1fp33z5s364osvNHLkSJUuXfpvxwIAAAAge/J0dgAAAABXdfPmTSUkJKho0aJZ6n/r1i1NmzZNjz/+uFVxtmzZsnryySe1fPlyde3aVZKUnJysF154QfXq1bPaR/78+fXiiy/KbE6by7B06VIdPXpUS5cu1f333y9Jatiwobp3764JEyboyy+/zJDj+PHjqlChgj788MP04n29evW0Y8cO7d69W08//bQqVqwob2/v9CVW7pWamqrx48erXr16ev/999Pbq1evrtatW2vOnDkaOXKkpLQPEwYMGKDHH39cklSjRg2tW7dOmzdvVoMGDf7yPfP09FSzZs303XffadCgQZKkuLg4bdq0SR9//LH27t1r1f/8+fPq3bu3Bg4cmN5WtGhRtW/fXvv27VPbtm3TC9qlS5e2Km6bzWa98cYb8vf3l6QMNygtVaqUhg4dqvfee0/NmjXT66+/rgYNGqhbt25/OQYAAAAA2RszyQEAAP7E3UJ1SkpKlvr//PPPSkxM1COPPGLVXrNmTRUpUkQ7d+60ai9btmyGfZQqVSr950rSjh07FBwcrEqVKik5OVnJyclKSUnRQw89pEOHDlkt43JX/fr1tXDhQvn4+OjMmTPatGmTpk+frhs3bigxMTFLYzlz5oyuXbuWYSzFihVTtWrVMoylWrVq6f9/t/geGxubpZ9175IrmzZtkr+/v+rUqZOh74svvqiRI0fqzp07OnjwoFatWqVFixZJkpKSkv7y5xQtWjS9QP5nevXqperVq2vIkCFKTk7WuHHjZDKZsjQOAAAAANkTM8kBAAD+RK5cuRQQEKCIiIg/7RMbG6vExETlypUrvWCdL1++DP3y5cunO3fuZGjLrN8fRUVF6dq1a6pUqVKmP//atWvKmTOnVVtqaqomTZqkRYsWKTY2VoUKFVKVKlXk4+Pzp+O4V1RU1F9mPHz4sFWbr6+v1XOz2SyLxZKln1W3bl3lzp1ba9eu1aBBg7RmzRq1bNlSHh4eGfqGh4dr9OjR+umnn+Tp6amSJUuqXLlykvS3Py+zsdzLbDarXbt22rdvnypXrqzg4OAsjQEAAABA9kWRHAAA4C/Ur19fO3fuVEJCQqZF5uXLl+utt97SZ599ll6svn79ukqVKmXV79q1awoJCbH55wcFBal48eKaMGFCptszWwrmk08+0bx58zRmzBi1aNFCQUFBkqSOHTtm+efmypVLUtpY7nXt2rX0NdTtwdPTUw8//LC+/fZb9ezZU1u2bElfO/2PUlNT1a9fP3l5eWnp0qWqWLGiPD09dfLkSa1cudIuWa5fv64PP/xQFSpU0NatW7Vq1aoMs+kBAAAA/Lew3AoAAMBf6N27t6KioqzW5b4rMjJSs2bNUmhoqKpWrar7779f3t7eWrVqlVW/PXv2KCIiQtWrV7f559euXVuXLl1S3rx5dd9996U/duzYoVmzZmU623rv3r0qXbq0OnbsmF4gv3Llio4fP67U1NT0fn9c1uVeJUqUUHBwcIaxnD9/Xj///PM/Gstfad26tU6cOKFZs2YpX758Vsu33HXz5k2dOXNGHTt2VJUqVeTpmTbfY8uWLZKUPrbM3pOsuruW/Jw5c9SiRQu9+eabunr16j/eHwAAAADXx0xyAACAv1C1alUNHTpUH3zwgU6dOqXHHntMuXPn1okTJzRnzhzFxMTok08+kclkUq5cudSvXz9NmTJFXl5eatq0qS5cuKAPP/xQpUuXVvv27W3++e3bt9fChQvVq1cvPf300ypUqJB+/PFHzZw5U926dZOXl1eG11SpUkVTp07VJ598oqpVq+rcuXOaMWOGEhMTFRcXl94vR44cOnz4sHbt2qUqVapY7cNsNuvZZ5/VqFGjNHz4cIWFhenmzZuaMmWKcubMqV69etn+Zv6F2rVrKzg4WLNmzVLPnj0zXQc8b968KlKkiBYtWqSCBQsqR44c2rZtmz799FNJSh/b3Q8GNm/erJw5c6p8+fJZyrBixQqtX79eEyZMUJ48efTyyy+rTZs2evXVVzVjxgw7jRQAAACAq6FIDgAA8DeeeeYZVaxYUYsWLdK4ceMUFRWlggULqmHDhnr66adVuHDh9L6DBw9Wvnz5tHDhQi1btky5cuVSy5YtNWzYMPn5+dn8s/39/bVo0SJNnDhR48eP1507d1SkSBGNGDFCvXv3zvQ1/fv3182bNzV//nx9/PHHKlSokB599FGZTCbNmDFDt27dUs6cOdW7d2+9/fbb6tOnj+bOnZthP+3bt1dAQIBmzJihgQMHKjAwUA0aNNCzzz5r97W6zWazWrRooYULF6pNmzZ/2m/q1Kl666239OKLL8rb21ulS5fWtGnT9Pbbb2vPnj3q3r27ypQpo7Zt22rRokXaunWrVq9e/bc//8qVK3rrrbfUsGHD9OVVChQooGeffVavv/66vvzyS3Xo0MFu4wUAAADgOkyWrN5RCQAAAAAAAACA/xjWJAcAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAAAMcePGDTVv3lw7d+780z4//PCDHnnkEVWtWlWtWrXSpk2brLbPnDlTDRs2VNWqVdW9e3edPn3arhkpkgMAAAAAAAAA7G7v3r3q3LmzwsPD/7TP2bNnNXjwYA0dOlR79uzR4MGDNWzYMF25ckWS9NVXX2nBggWaPXu2du7cqUqVKmnIkCGyWCx2y0mRHAAAAAAAAABgV1999ZWee+45DR8+/G/71axZU82aNZOnp6dat26tWrVqacmSJZKkpUuXqmvXripTpox8fHw0YsQIRURE/OXMdFtRJAcAAAAAAAAA/K3ExERFR0dbPRITEzPtW79+fa1bt06tW7f+y32ePHlSZcuWtWorXbq0jh49mul2Ly8vFS9ePH27PXjabU8AAAAAAAAAkE1841XO2RGyndOTBmnKlClWbYMGDdLgwYMz9A0ODs7SPmNiYuTn52fV5uvrq9jY2CxttweXKJJzQFprk3RM8evmOTuGS/Ft3lPRHz/v7BguJXDge7owuJOzY7iUoh8t1ZUje50dw6UUqFBDsdu/dHYMl+H/YAfFblnq7Bguxb9hJ4WfOOLsGC6lWJkKujyym7NjuJSC4xfqxpv9nR3DpeR5ZYbiv5/r7BguxffhXrpw/JCzY7iUomUr69qv9vsa8H9BcKU6ujlugLNjuJTco6bq8tH9zo7hMgqWr6Yjpy46O4ZLqVCqCMfIPQqWr6brh3Y4O4ZLyVf5AWdHgJvo37+/evXqZdXm7e39r/bp5+en+Ph4q7b4+HgFBARkabs9sNwKAAAAAAAAAOBveXt7KzAw0Orxb4vkZcuW1YkTJ6zaTp48qTJlykiSypQpY7U9KSlJZ8+ezbBEy79BkRwAAAAAAAAA4BTt2rXTrl27tGbNGiUnJ2vNmjXatWuXHn30UUlShw4dtHDhQh09elQJCQmaOHGi8uXLp5o1a9otA0VyAAAAAAAAAIDDVKtWTStXrpQklSpVSh9//LFmzJihWrVqaerUqfroo49UokQJSVLHjh3Vs2dPDRw4UHXr1tXhw4c1Y8YMeXl52S2PS6xJDgAAAAAAAAD4bzp27JjV8/37re+10KBBAzVo0CDT15pMJvXu3Vu9e/c2LB9FcgAAAAAAAABux+RlcnYEuAiWWwEAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADcFkVyAAAAAAAAAIDb8nR2AAAAAAAAAABwNLOnydkR4CKYSQ4AAAAAAAAAcFsUyQEAAAAAAAAAbosiOQAAAAAAAADAbVEkBwAAAAAAAAC4LYrkAAAAAAAAAAC35ensAAAAAAAAAADgaCYv5g8jDUcCAAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3JanswMAAAAAAAAAgKOZPU3OjgAXwUxyAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG1RJAcAAAAAAAAAuC3Pf/rCw4cP68KFC2rcuLHu3LmjvHnz2jMXAAAAAAAAABjG5GVydgS4CJtnkkdGRqpLly7q1KmTXnjhBZ0/f17NmjXT/v37jcgHAAAAAAAAAIBhbC6Sv/322ypbtqx2794tT09PlSpVSv369dN7771nRD4AAAAAAAAAAAxjc5H8p59+0qhRo+Tn5yeTKe0rCX379tXJkyftHg4AAAAAAAAAACPZXCT38vJSfHy8JMlisUiSYmJiFBAQYN9kAAAAAAAAAAAYzOYieZMmTTRy5EidPXtWJpNJkZGRev3119WoUSMj8gEAAAAAAAAAYBhPW18wYsQIjRo1Si1btpQk1a9fX40aNdLYsWPtHg4AAAAAAAAAjGD2NDk7AlyEzUXygIAATZ48WTdu3NCFCxdUoEABFShQwIhsduOdL7fqbV2iX/q/ohtbdmXaJ7hlQ5Uf95z8S4QoPvySjrz4nq6u2Zy+veSIvio+qLu8cufQrT0HdXDAa4o5fsZBI7CfyDsxeuPztdpzIlweZrPa1KqkZx9rKk8P6y8VpKZaNGPtNn2144Bux8arSN5c6tfqQbWoXkGSlJCUrA+/3qR1Px9TbHyiihfIo6GPPqTaZUOdMax/7EZsgt7c+LP2XrguD7NZrcsX1bD6leRpzvgli8Ff79CeC9flYf79BPpeq1qqV7yAbscn6r0fDurHc1eVnJKqigVyaXiDyioXnNORw7ELc2AO5X6iv3xKV5QlNUWxu7fq1ooFUmqqVb98z4ySd6kK1q/18VX0tnWKWjJTkhTYtJ0CG7WS2T9ASeGndHPxJ0q+eslhY7GXm1G3NH7qLP186Ig8PMxq3qi+BvR6Up4eHhn67tizX9PnL9alK1eVPzivBjzVVfVqVZckJSYlafZnX2j9lu2Ki49XtcoVNaTvUyoQnNfRQ/rXbtyO1huffqU9R8/I08Os1nWranjnVpm+J8s27dSi77frWtRt5csVpCebP6hOTeqmb1+66Sct/G6brt+KVpF8uTW4Qws1rFrekcOxixu3o/XGgq+159jZtPekzv0a/niLzN+Tzbu0aP2PuhZ1R/lyBunJZg+o00N1JEn1Br1h1ddisSg+MUlv931crepUcchY7OVmVJQ+mDJVBw4ekoeHh5o2bqT+fXrJI5P3ZOfuPZo1b74uX76i4OBg9ev9lOrWrpWh35rv1un9jz7WutUrHDAC+zMH5FCOjr3Tzp+pqYrbt113Vn+W4RwrSV4lyyuoTRd5FigqS1yMYn9cr5hNqyRJ+d+cZdXXZDLJ5O2jqEUfK/7nHQ4Zi72Y/IMU0KabPEPLSqmpSjy4U7Hrv5AsGd8Tz2Jl5N+0gzyCCyk1PlYJe35Q/I/fZujn/3AnmXz8FLPqU0cMwe7Srte+1Z6Tf7heC2uS+fXat9v01Y5ffr9ea1kv/Xrtdmy8xi1bpx+PnFZSSooqFSukEY81Ufmirn3tfq+bUbc0aco0HTj0qzzMHmr2UEM93fupzM8le/Zq5ryFunT5ivIH51O/Xj30QO2akqTU1FQ90rm7ZLFIpt+v575YMFt+vr4OG4893Iy6rfemz9H+Q0fl4WHWww3raWDPJzL9N+euzTt26+P5i7Vs2sT0toTERE1fsFSbd+xWbHy8ihUppGe6dVL1+yo6Yhh2ZfIPlH+rJ+VZrEzaueTXXYrbsDzTc0lgp4G/nXNS0tuiv5ql5NOHJQ9P+TVoK+9KtSQvHyWHH1fsumWy3LnpyOHYxc2oW5owdaZ+PnRYHmYPNW9cX8/06pbpcfLTnv2aPv8zXbqcdg37TM8nVa9WDUlSQkKipsyer207dysxKVllSxXXoD49VKp49vrb74/27P5J8+fM1JXLlxScP7+e6t1fteo8kGnflJQULZg3U5s2rFNCQryq3F9NTw8arjx50q7ht/2wSZPGvyVvb+/019R5oL6Gj3zJIWP5tzhOMrp567benTZX+389Kg8PDz3c8AENeqrLX55jN+3Yranzl2rZtPHpbQmJiZq2cJk279ij2Ph4hRYppKeffFw17qvwp/sB4Dw2L7cSERGhLl266NKlS6pSpYrmzZunJ554QteuXTMi37+Wu1511du6RAGl//zE7F86VDWWfqTjr32o7/PW1PGxH6n65x/Ip3B+SVKR7mEqPqi7drXpo3UF6ujWvl9VY8lkRw3Brp6fs0J+Pt5a99ZgLRr5lH46dlYLN2X84GDxlr1ateuQZg99Uj9Nek5D2jXSi3O/1vlraReHH369ST+fvqAFI3poy3vD1L5eVQ2evkyXbtxy9JD+lRfX7pG/l6e+7dNC8zs31K7wa/ps/6lM+x6+EqUpjz6gbc+0TX/UK572R+YbG35WTGKyvn6qmTb0a6VKBXLr2dU7HTkUu8nTa5hSE+J16ZX+ujrhJfmWu0+BD7XJ0O/6tHGKeK5H+iPqi7lKvnFdt9cukyT5126kwEatdH3qW4p4sY8Sz59W3j4jHD0cuxgz4SP5+flq+dyPNWP8G9r7yyEtW7kmQ7/zEZf06nsfqG/Xjlrz2Sz17tJRr42frGuRNyRJnyxYrC07dmnCay/q63nTVbRQQY0Y87aSkpIdPaR/7YXpn8vfx0ffT3pRC14ZoJ1HTmrR99sz9Nu077A++vI7je3bUdumvqaxfR7XlOXfa/2eQ5Kkldv36ZOvN+rtfp21fepr6t2msZ6bukhXb9529JD+tRc+WSp/H299P36kFrzUXzuPnNKi9RmLlZv2H9ZHX63T2F4dtO2jVzS2d3tNWbFe6/f+Kkn6ccqrVo+m1SuqXqXSal6zkqOH9K+99e4E+fn6afGnczVl0njt//kXfbliZYZ+Fy5GaOy499SzW1etWPqZnnqyi958d7yuX4+06nf2XLimz5rtqPiGyNltkCyJCbr6xmBFTh4t7zKV5N+gVYZ+HsGFlLvPc4r9cYOuvtJXN+dMUECj1vK5L+2Dg6uv9LV6xB/cpYRjvyj+l+z3b09g+//JkpigqA+e1+054+RZorx86zTL0M+ct4CCugxW/N7NuvneUEUvniLfus3lVb56eh+TX4ACHu0t39pNHTkEu3t+7tdp12tvDtKi5+5er+3O0G/x1t+u14Z01U8TR6Rdr81bmX69NuazNYqJT9Cq0f31wztDVTm0kIZ98qWjh/OvvfHeRPn5+WnpvFn6eNI72vfzL/ri61UZ+l2IiNCYcRPU88kuWrlkgZ7q2llvvDtR1yLTziXnzl9QSnKyVnz+qb5Ztij9kd0K5JI0etLH8vP11YrZH+qTd8dozy+/aumqjB8YSVJycrIWffWNXps0VZZUi9W26QuW6uDRE5r+zmit+XSaHmnWSM+/PUmXr113xDDsKiCsryyJCbr10Sjd+fRdeRUvL5/aTTLt61GomKIXT1HUxGfTH8mnD0uS/Bo/Kq/yVXVnyRTdmvyCUm9eU9ATgyXznxfHXNWY8R/Kz9dXX86dpukT3tTeAwe17OuM17AXIi7p1XcnqU/XTvrm8znq9cTjGvPeh+nXsHMXL9P5iEv6dMpErfh0hkoVD9Ur4yZm2E92EXHxgt57a4y6du+lz75YpS5P9tT4d8Yq8nrmNY1lixfq5317NOHDaZqzYKm8vX308YcT0refOHFUjZs01+Lla9If2aVALnGcZObViVPl5+err2d9oJnvjNaeXw5ryarvMu2bnJysRSvW6LX3pyv1ng/lpi1cpoNHT2rGuFe0dt7HeqRpQz0/7n1dvhaZ6b4AOJfNRfLXX39dJUuWVGhoWtH5f//7n0qXLq033njjb17peEW6h6nq/Ak6Nvr9v+xXtPtjurFtj66s3CBLSooufbFWkVt2q1jfzpKkYn066dz0zxR9+KRSExJ19KWJ8i1WWHkb1XHEMOwm/NoN7TkRruGPPiQ/by8VzZdb/Vo+qMU/7M3Qt0vDGvripT4KCc6txKRk3YyOk5+Pl3y9vSRJ8UnJGtCmoQrmziEPs1kdHqwqb08PHT5/2dHD+sfOR0Vr78XrGvpgRfl5eapozgD1rV1OS37J+A2Bi7didDshUeXzZz4z/O2WNfVOq5oK8vFSXFKy7iQmKbefd6Z9XZlHvgLyLVtZt1YslCUpUSmRV3X7uy8V2LDlX77OM38h5Xq8t27Mn6zU21GSpIB6TRWz7XslX74gJSfp1tefySN3PvmUyV6FvguXLmv/ocN65qmu8vXxUeGCBdSj02NavmZdhr7fbtqqKhXKq0HdWvL08FCT+nVVtXIFrfp+oyRp/ZYf9VTnx1SiWFF5eXmqX/cuuhZ5Q3t/OeToYf0r4VcitefoGQ19vKX8fLxVNH8e/e+RJlq88acMfa9F3Vav1o1UpVQxmUwm3V+6mGqVL6l9v30TZ8G3WzXgseaqXDJEJpNJrerer09fflqBfj6OHta/En41UnuOndHQji3S3pPgPPpf28Z/8p7cUa+WDVSlVNqY7y9VTLXKldC+E2cz9F25fZ92Hjmlt/o+/pczV1zRxYhLOnDwkPr2ekq+vj4qVLCgnuzSSV+vzvhH17qNm1S5UgU9+EBdeXh4qFGD+qpSubK++e779D7x8Ql6670JeqzdI44chl155C0gn9IVdeebz6WkRKXcuKaY9SsU8GDzDH396zVXwqG9it+7VZKUfOm8Iqe8rqSzxzP09avZQN5l7lPUZ1MznZHuysy5g+VVvJxiN3wpJScpNeq64retkU+txhn6+tZ8SInHf1biL2m/VylXL+r2vHeVfP5kWgcvH+V8Zqws8bFKPJLx2ia7CL92M+16Lazxb9drudSvxYNavCWT67UGNfTFqD9er8VaXa+92+tRje8dphz+vopLSNKduATlDvR39JD+lbRzya/q17O7fH19VLhgQXXr8rhWrF6boe/3GzbrvooVVP+BOvLw8FDjBg+qSuVK+ubbtH+zj504qZLFQ+Xl5eXoYdjVhUtXtP/QEQ3o0Vm+Pj4qUjC/ej7+qL5csz7T/sPHjte+Q0fU7bGMkx4SEpPU54n2KpAvrzw8zGrX/CF5eXnp2KmzBo/Cvsy5g+UVWlZxm7767VwSqbjta+VTI+N9s8w588rkG6DkK+GZ7su7Yk3Fb1ur1OuXpNQUxW1eIXNQLnkWL2f0MOzqwqXL+vnQYT1tdQ3bXl+tyVjo+3bjFlWp+Mdr2Ad0f+UKWvXdBknSufMRslhSZbFYZJFFHmazfHyy17XaH21a/50qVLpPdevVl4eHh+o3bKzKle/X999+k2n/dd+t0WMdn1BwcH75+weob/+B2rdnly5fipAknTx+TKXLZK/j4y6Ok4wuXLqi/b8e1YDunf5wjm2nL9duyLT/sLETfjvHts6wLTExSX27PPaHc2zjtHPs6bMGjwLAP2Hzciv79+/X9u3b0y8u8+TJo1deeUUNGza0e7h/6/r32xTx2SpZUlKkzz74035BFUvrziHrPzqjj5xUjirl07efGj8zfZslOVmxJ88q6P7yivwh+8zYOnXpunL6+yp/rqD0tlIF8+nSzdu6HRuvHP6/z6Ixm03y9/HWj0dOa+DUpbLIopHtmyk4Z6AkafQT1rPedh47q+i4BJUrkn2+vnsq8o5y+nopONAvva1EniBdvhOnOwlJCvL5/Q+oX69Eyd/LU6PW7tGvV6KU199HT1YrpUcrpX1Y5PXb158//vGw5u45IX9vT33Yrq6yG69CIUqJuaPU279/nTTp0gV55gmWyc9flrjYTF+Xq1Nfxe78QYmnjv5hX0V1Z/3Xv3dKTVHytcvyKhKqhBO/GjYGezsTfkE5ggKVL0/u9LbiRYvoyrXruhMdo6DAgPT2s+EXVDI0xOr1oUWL6OSZc5KklNRU+fr8/nuW9k1vk8IvRqhujapGDsOuTkVcUc4AP+XPnSO9rWTh/LocGaU7sXEK8v/9d+qPy6pIaUuS7Dt+Vs92bq24hESdirgqs9mk3u98otMXryi0YLCGPt5C/r7Z64L6VMTVtPck1x/ek0LBunzjVsb35CHrD1hv3I7WvhPn9Ozj1h9G3YmN16Rl32rUk48oVzYraknSufBwBQUFKV/ePOltocWK6uq1a4qOjlZgYODvfc+Fq0So9Te+ioUU1ekzv39o+dH0Gapbq5aq319Fny1ZZvwADOBZsIhSY+6kf5goSclXLsojdz6ZfP1lif/9HOtVrKQST/yqnF0HyqdsZaVG31bM1m8Vt3OT1T5Nvn4KattVt7+aJ0tstKOGYjcewYWVGhstS/Tv30RLuRYhj5x5ZfLxkyUhLr3ds3BxJZ05ooDH+sirREVZYu8ofucGJexP+yBByUm6NWOMLDF3FPDIU44eit2cunQt7Xot5x+u1wrl/ZvrtTMaOO3u9VrT9Os1Lw8PyUP6aNUPmr1uhwJ8fPTR0x0dPqZ/42z4eQUFBVqfS0KK6uq164qOjlGg1b/D51WieDGr14cWK6pTZ85Kko4dP6mExEQNGP68Ll+9pmIhRfS/p7qpUoXstcTXmfMXlCMwwPraJKSIrlyP1J2YGAUFBFj1f3VIf+XPl0drNm7NsK/nn+ll9XzvwcOKiY1VmRLZa3kEj3yFlBp3z7nk+qVMzyUehUJlSYxXYFiftP+PuaP4XRuU+Mtv3/4ym2VJSvh955a0h0fegumzzbODs3evYe/53cnsGvZM+AWVDLX+3SkeUlSnzqZdw3YOa6PR77yvdt3/Jw+zWTlzBOn9N0c7ZiAGCA8/q9DiJa3aihYL1ZnTGb9RHBMTrcjr1xRavER6W67ceRQYGKSzZ04rf4GCOnXqhHx8ffXVF4uVmpqq6rXq6Kle/RQYFJRhf66G4ySjM+cvKkdggIL/cI4tUbTwn55jRw/tp/x58+ibzM6xT/e0ep5+jr3n3yoArsHmmeSenp66ceOGVdutW7fk64JfU0y4cj2tQP43PIMClBITZ9WWEhsvz9+KEh5/tj0gexUtYuIT5edjPbv57kyjuITETF9Ts3Qx7f7gec0Y9ISmrN6ib/dmvDD85cxFjZz9lZ5uXV9F8+Wye26jxCYly9fT+nMiX8+0mZqxidbLXySlpKpKoTwa8EAFfdunhYY3qKwJWw5q3YmLVv361C6nHwe0Vb/a5TT46x26cCvG2EHYmdnHT5aEBKs2S1Lib9sy/x33LllO3sXLpC+zcpfJx0+WxPh79pUg05/sx1XFxcXL954ZEHefx8Vbjy82Lk5+vvf29U7v1+iB2lrwxQpdvHRFCYmJmv3ZMiUmJirhT37/XFVsfMKfnkti4/98LNdv3dGg9+epQmgRtap7v+7ExslisWj+t1v1cvdHte79UWpV934Nev9TRVzPXut+Zv6eeP+27W/ekw8XqEKxwhnWG/984w4VzptbD9esbP/ADhAbFyffe34ffP7id+fe6whfHx/FxaX1W79ps8LPX1DP7l0NTGy8tPNi5ufYe8+NZr9A+T/4sOL3bdfVsQN168s5CmrbNX25lbv867dQys3rij+QfT60/yOTt2/6e3CXJfm3597Wx4/Jz1++tZoo8eBORb0/UjFrFsm/WYffl1uxpMoSc8cRsQ0Vk5DJ9ZrX312vhWj3+yM1Y2AXTVm9Vd/uPWK1/X8t6mnXxOfUv9WDGjB1qS5cjzIkuxFi4+Lk55Px/CBlPJfExcVl+m92/G/9vH28Vb5cGb3+ygv6fM501atdSy+89oYuXb5i4AjsLzYuPsP51fe3YyYuLiFD//z58mRoy8yhYyf16viP1LvTYypcIPjfB3Ugk7evlHjP70fSn5xLPD2VcvGM4n5YqVsfjVLshi/l3+xxeZWvlvayoz/Lt15LmXPlkzw85dvwEcnLSybP7PUNhNhMfx9+O06y9Lvjnf7vcEpKihrWq60v5kzV6kWzVb9OLb389ngl3PueZxNxmVx3+Pj4KD4+LtO+kjL09/6t/+1bUSpZsrTq1W+kKTPm6Z2JH+lSxEW9P+Ft4wZgRxwnGcXGxWf4m+73a9hMzrF5s3iOPX5Sr0z4WL07hWW7cyzgLmwukrds2VJDhgzRjh07dPbsWe3YsUNDhw5VixYtjMjnEMkxcfLwt/5Hz8PfV8l30gqcKX+2PTp7FUD9fLwUn5hk1Xb3ub9v5kuDeHt5ytPDrDrliqtt7Upau8e6SL78x5/V76PP1bfFg+rfqr4xwQ3i6+Wh+GTrD1HuPvf3ti6et6kQoo8efUDl8+eSl4dZD4TmV5vyIVp33LpI7uvpIW9PD3WrXloFA/30w+nss/yMJKUmxsvkbX0smLzSnqdmctEoSQEPNlfc/h1KvWO9Hr0lMUEmr3v+KPHykeVP9uOqfH19lHDPBwfxvz339/O7p6+v4u8pYMQnJKb3G9jrSVUuX0aDXx6rbgOfk7eXl0qGhljN0MgO/Ly9/+JckvkM8F9Ohavb2KkKLZhPHwzpLk8PD3n99iFVtxb1VapIAXl5eqpL0wdUKG8ubfvlmLGDsLPM35O0Y+HP35Pz6vbWdIUWzKsPBlnfCNZiseirrXvVpWldmUzZ827rvj6+GX53Ev7idyez3zN/Pz+dv3BRs+ct0EsjR2R6k77sxJKYINO9xZrfzrF/nOUoSZaUJCUc3qeEoz9LqalKOnNMcfu2yfd+629n+NdurJht3yu7siQlpL8Hd5k8f3t+7wetyclKPH5ASScPSZZUJYefUMLBnfKuWMNRcR3CzzuT67UkG67XalXS2r3W39jy9faSt5enejSprUJ5cmjTLxmX7XFVfr6+6f/u3nX3uZ/fPcVzX98MHzzHJyTI77dzzjN9emrkkIEKzptXPj4+6tT+UeXPl08792Sv5Xl8fXwyGedv/+b4/bPJCKvWbdbw199Vj47t1LNT2L+N6HCWpATpnnPJ3ef3TtpIPLRL0Us/VsqVC1JqqpLPHFHCoZ3yrpB2Lond+KWSL55WULdnlaP/a1JKklKuRig1PvNvVLqqvz5O7v132EcJiff+niXKz89PycnJeu29D9SqaWMF580jf38/De3XU9cjb2rPzweNHYSdLFuySF3at05/WCwWJSRYHxcJfzhX/NHdb4Hee52SmJAgPz9/5cqdR2+P/1DNHm4lH19fBecvoKd699O+PbsUF+v6xwzHSUa+vj4Z/qZLv4b9h5NDV67/QcNeH6+nOjyiXo8/+q8zwr5MXiYeNj7+q2wuko8cOVIlSpRQ//791bJlS/Xv319lypTRsGHDDIjnGNG/HldgxTJWbYEVSuvOryckSXd+PWG13eTpKf/SxTMs0eLqShcKVlRMnCJv/17cP3X5ugrkClLQPRfUE5Zv0ITl1mtuJSanpH/FNyU1VWM/X6vJKzfrg34d1KNpbeMHYGel8+bQrfhERcb+foF05sYdFQj0tVpqRZK+/vVchlnjiSmp8vlt5nmvpVu0/kREhu05fLPXjJPkS+flEZhD5qDf1173KlRUyTevZ17cNpvld19Nxe7ekmFT0qVweRX6w9IjZg95BhdU0qXzRkQ3TIliRXXrTrRuRP3+IcDZCxcVnDePAu/5NknJYkV19vwFq7ZzFy6qRLGikqTrkTfV4/HHtHzOx1o2c7Lat3lY5y5GqFxp6697urpSRQsoKjpWkbd+n7F5OuKqCuTOqSD/jBeOK7buUf/xs9W1eT2N699F3l5pxfHcQQHKkyMgw41LU1PT1jLMTkoV+e09uf37chenL11Tgdw5Mn9Ptu1V/0lz1bVZPY37X6f09+SuX89e1M07MWpeI3ut4f9HxUOL6fbtO7p5Myq97Vz4BQXny6uAe76mWjy0mM6FW58bws9fUPHQYtqy/UdFR0frmaHDFda5q14Z+5YkKaxzV23c/IPh47Cn5MvnZQ4Ikjnw92V5PAsUUUpUZIZzbPKVCJk8rI8Lk8msP16SeoWUlDkwR7a8WeddKVcjZPYPlCng96+kewQXVsrtG7LcU8BIuX4pw3sik0km/bcu1DO9XrsUaeP1Wlpho8ekBVq3/2iG7TkDMhaCXFXx0BDdvnNHN/54Ljmfdi4JvPdcUixEZ+85l5wLv6ASvy0PMHv+Ip04ddpqe1Jysry9s9d9ZEpmdm1y/qLyZ3Jt8ndSUlL13rS5mrFomd5+Yai6tMt4I+HsIOXab+cS/z+cS/IVSltC8J5ziXeVB9Jnjd9l8vCUJTntwyhzUC7Fb/9Wt6a8pNtTX1XC3s3yyFtAKZczX8PcVZUMDdGtO3d0Iyoqve3c+QuZXsOWKBaiM+HW17Bnz19QydCiiouP153oGCUl/f7hndlslslkSp/w4Ooe7/yk1U01y5WvqPPnzln1uRB+TsVCS2R4bWBQkPLmzafz586mt928cUN37txWseLFdfbMKc2f+4nVtWtSUpJMJpM8vVz//eE4yahkSJEM59gzFyL++Tl2+jzNWPSFxj0/RF3a/fW9vgA4l81Fcj8/P73zzjvau3evtm3bpgMHDmjs2LHy989eS4/80YVFK5W3UW0V6thKJg8PFerYSnkb1dbFRWnrKV+Y96WKD+ymoCrlZPbxVvm3RyjxynXd2LrHycltE5o/j6qVKqr3vlynmPgEXbgepU++3a7HHrg/Q98apUO0bNt+7T0ZrtRUizYfPKFv9x5RhwerSpLGf7le2w+f1mfP91Ld8hkvJrKDYrkCVbVwHk3cckgxiUm6eCtGs3Yd06MVM67BGJ2YrPc2H9TRq1FKtVi09cxlfXv8otpXLi5Jqlwwt2bsPKpLt2OVmJyi6T8dVVJKqhqVKOjgUf07ydcuK+HUEeXq0FMmH1955A1WjhYdFLtjU6b9vQqHyuTtrYTTGT8witmxSQENW8qrSKjk6aWcj3ZVyp1bSjh5JJM9ua6QwoVUpUI5fTR7vmLj4hRx5armL/1KbZo1ztD34cb1tf/QYW3c9pOSU1K0cdtP2n/osFo0biBJWrpqjcZNnq7YuHjdiY7WpBlzVa5UCVUoU8rBo/p3QgvkU7UyoRr/+TeKiUvQxWs3NHPVRoU1yDibc/2eQ3p7wdeaOOhJ9WjZIMP2jo3r6JNVG3UsPELJKSn6bN2Punrzth6qXtERQ7Gb0AJ5Va10qMYvXqOY+ARdvHZTM1dvVlj9TN6Tvb/q7UWrNPGZJ9Tj4Qcz3d/+E+dUIbRwhiUXspOiRQqrcsUKmjpztmJj43Tp8hUtWrxULZs3y9C32UONdeDgIf2wdZtSUlL0w9ZtOnDwkJo1aawnOz+uVV8u0Yoln2nFks/05uiXJUkrlnymJo0z3pDNlaVcv6LE08cU1K572jk2d7ACmoUpblfGYn/cjg3yqVxDvtXTjhGvEuXkW62e4vZtT+/jVaKcki6c+X1JgWwo9eZVJYWfkP/DnSRvH5lz5ZVv/dZK/Hl7hr4J+7bIq1xVeVdOW9ffs1gZ+VSuo4SDGW+Qm52F5s+jaiWL6r0v1/9+vfbddj32QJUMfWuUDtGy7T9bX6/tO6IO9dKu7e4LLaSpa7Yp4sYtJSYla+o3W5WYnKLG95XJsC9XVbTwb+eSWXPSzyULFy9Tq+ZNM/Rt/lAjHTj0qzZv3a6UlBRt3rpdBw79qmYPpZ0rzoaf18cz5+jGzZtKTErS/M+XKjY2VvUfqJNhX64spHBBValQVh/OWfTbtck1zVv2tdo0tf0eUR/NXaSf9h/QrPdeV637s+fyXpKUevOaks6flH/zjmnnkpx55fdgKyUc+DFDX5OPn/wf7iyPAkUlmeRZqrK8K9VS4v5tkiTfWk0U0La75OUjk6+f/Ft0UcrlcKVcOpdhX66saOFCuq9iOX00a37a786Vq5q/dLnaNH8oQ9+HH2qgnw8d1sZtO367ht2hnw8d1sONGygoMFD3VSynGZ9+pptRt5SQmKgZn36mnDmCdF/F7HmzysZNmuvQwZ+1bctmpaSkaNuWzTp08Gc1bpLxRtqS1KR5Sy1dvFBXLl9SXGysZn/ysSrdd78KFSqiwKAcWrNqhb76YolSUlJ07eoVfTp7hpo0aymve7/d4II4TjL6/Rz7mWLSz7Er1bZpxr9l/s7keZ/pp/2/aPa7r6nW/dl38gvgLkyWLE7XW716tdq2basVK1b8aZ+wsLB/FOIbL+NPmm2SjmlH0+66sWWXJKnFzX06OOA1RXy+SpKUr3l9lR/3nAJKFlPcuYs6Mmq8rn37++zYEsN6qfgzT8o7OI+i9hzUoYGvKebEWcOyxq+bZ8i+I2/HaNyy77X7+DmZTCY9UruyhoU9JA+zWXWfnaBXn2ipNrXSLpC/2nFAc77foRt3YhWaP7cGtm2kByuW1M3oWDUZNVlmsynthlB/8MfX25Nv856K/vh5u+83MjZe724+qD0XrstsktqUD9GQByvJw2xS/Wmr9dJD96t1+RBZLBbN3n1cK349pxtxiSqaw1/96pRXszKFJaXNyvp4xxF9e/yCklIsuq9gbj3boLJCcwf+TYJ/LnDge7owuJPd92sOyqlcj/eWT5lKksWi2F1bdOvrhZLFosIT5uvm4k8Utyftjwi/qnWU6/E+uvRyv8wzNmmrwAYtZA7MocTwU4paPFPJ1y7ZPfNdRT9aqitH7P+V6RtRt/TBJ3O1/+BhmcxmtWjcQE/3eEIeHma16NJLI57po4cbpS03tGv/AU3/dLEuXr6igvnz6ekeT+iBmmmzlWJiYzVx2hzt+vkXSVLtalU0tO9TypnDuJv6FKhQQ7Hbv7T7fiNv3dE7i1Zpz9HTMplMaluvmoY+3lIeZrPqPTNGr/QIU+sHqqrT6Mk6dfGKfLytv1XR+oGqeqVHmFJTU7Xw++1a/sNuXY26rRKFgjWiS2tVL2vMh2/+D3ZQ7Jalhuw78na03vlstfYcO5P2njxQVUM7PJz2ngx6Q690a6fWde9XpzFTdCriasb3pM79eqV7O0nSO5+t1s07MXq3f2dDsv6Rf8NOCj9hzIdXN29G6aPpn+jAwYMym8xq1qSx+vbsIQ8PDz3SsYuGDXxGTX8rXu3eu1+z5n2qS5cvq0BwfvXt1UN1atXMsM8DvxzUcy+9qnWrVxiSWZKKlamgyyO7GbJvc2AO5Qh7St6lK8piSVX83m26881iyWJR/jdn6faXcxS/P62o412uioJadJRHcCGlxtxWzOZvFPfTxvR9BYX1kDkgh24tmmJI1j8qOH6hbrzZ35B9mwKCFNDiCXkWLydZUpXwy0+K27hcsliU+/kPFbNmkRIPpV2/eZWqJL9G7eSRt4BSY6MVv+M7JezLeKOsuzfujFn1qSGZJSnPKzMU//1cQ/adfr12Ivz367VHG6ddr42YqFe7tFSbWml/bH+144DmrPvpD9drDfVghbRvKCUmJeuj1Vu0ds9hJaWk6L7ihfVc+6Yqnj9r66fayvfhXrpw/JDd93vjZpQ+mjFLP/9ySGazSc0faqz/9ewmDw8PtXn8SQ0f2F/NGqcViHfv26+Z8xYq4vJlFQgOVr9e3VWnZtoHlrfv3NH02Z9q5959io9PUPmypTWgby+VKlHc7pnvKlq2sq79av9ve9yIuqVJM+dr/6EjMplMatm4vp7p3lkeHmY17/o/jezfSw83qmf1mjUbt2rOkq/0xYxJkqSo23fUrvcgmc3mDDM9M3u9vQRXqqOb4wbYfb8m/yD5P9xZnqFlJYtFiYd2Km7TV5LFolwjJin228+V+OtuSZJvvZbyvv9BmQOClBp1XXFbv1HSsf1pO/L2VUDLJ+RZsoIkKen0YcWtWyZLnHFLbeYeNVWXj+63+35vREXpgxlz9fPBwzKZTWrxUAP17/GkPDzMatn5KY145n9q3vi3a9h9BzRj/me6eOm3a9innlTd365hb0RFadrcRdrz8y9KTklRxbJlNKhPd4UUKWz3zJJUsHw1HTl18e87/gv79+7Wp3M/0eVLEcqfv4B69O6nmrXSljT7YdN6TftokhYvXyNJSk5O1mcL5uiHjesVFxenylWqasCQZ5UrV9qNHQ8dPKAF82Yq/OxZeXt7q36jh/RU7/52/ZZKhVJFDDlGpOx9nFw/tMOQfd+IuqVJsxZo36GjMplMatX4QT3TrZM8PMxq9mR/jez/lFo0tD5HfrNxq+YsXaEvp0+UlHaOfaTPkD85x2Z8vT3kq/yA3ffpDjaVyThxFH/toRMHnB3BEFkukrdt21arV69WkyZNMt+RyaQNGzZkuu3vOKJInp0YWSTProwqkmdnRhXJszOjiuTZmVFF8uzKyCJ5dmVkkTy7MrJInl0ZWSTProwskmdXRhXJszOjiuTZmVFF8uzMqCJ5duWIInl2Y2SRPLsyskieXVEk/2coktvuv1okz/LiUKtXr5Ykvffee6pWrVq2v3kWAAAAAAAAAAA230Fh4MCB2rx5c6Z3fgYAAAAAAACA7MDs+d+6CTz+OZtv3BkSEqKDBw8akQUAAAAAAAAAAIeyeSZ5zpw51atXLxUtWlT58+eXyfT7Jy7z58+3azgAAAAAAAAAAIxkc5G8WrVqqlatmhITE3Xr1i3lzp1bnp427wYAAAAAAAAAAKezubrds2dPjR07Vt9++60SExPl5+ensLAwjRo1yoh8AAAAAAAAAAAYxuY1yd944w2dO3dO06ZN05o1a/TBBx/o4MGDmjBhghH5AAAAAAAAAAAwjM0zyTdu3Khvv/1WefPmlSSVLFlS5cuX16OPPqqXXnrJ7gEBAAAAAAAAwN5MHqa/7wS3YPNMch8fH3l4eFi1BQQEyM/Pz26hAAAAAAAAAABwBJuL5E8//bSGDBmio0ePKi4uTmfPntWoUaPUunVrRUREpD8AAAAAAAAAAHB1Ni+38uabb0qSwsLCZDKZZLFY0rfNmTNHFotFJpNJR44csV9KAAAAAAAAAAAMYHORfMOGDUbkAAAAAAAAAADA4WwukhcpUsSIHAAAAAAAAAAAOJzNRXIAAAAAAAAAyO7MHiZnR4CLsPnGnQAAAAAAAAAA/FdQJAcAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADclqezAwAAAAAAAACAo5nMJmdHgItgJjkAAAAAAAAAwG1RJAcAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADclqezAwAAAAAAAACAo5k8mD+MNBwJAAAAAAAAAAC3RZEcAAAAAAAAAOC2KJIDAAAAAAAAANwWRXIAAAAAAAAAgNuiSA4AAAAAAAAAcFuezg4AAAAAAAAAAI5m9jA5OwJcBDPJAQAAAAAAAABuiyI5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LY8nR0AAAAAAAAAABzNZDY5OwJcBDPJAQAAAAAAAABuy2SxWCzODgEAAAAAAAAAjrTzgTrOjpDt1Nmx09kRDOESy63Er5vn7Aguxbd5T33jVc7ZMVxKm6Rjiv74eWfHcCmBA9/TzXEDnB3DpeQeNVXhJ444O4ZLKVamgm7vW+fsGC4jR/XmOn3qlLNjuJSSpUrp7Mnjzo7hUoqXLqv41dOcHcOl+LZ9RjEzX3F2DJcS8L83Fb9hvrNjuBTfpj0U9fNmZ8dwKbmqNuYce4/ipcsq/sv3nR3Dpfh2GM417B8UK1NBO47cdnYMl/JAhRw6dfq0s2O4lFIlS+ri8YPOjuFSipS9z9kRgGyN5VYAAAAAAAAAAG6LIjkAAAAAAAAAwG25xHIrAAAAAAAAAOBIZg+TsyPARTCTHAAAAAAAAADgtiiSAwAAAAAAAADcFkVyAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG7L09kBAAAAAAAAAMDRTB4mZ0eAi2AmOQAAAAAAAADAbVEkBwAAAAAAAAC4LYrkAAAAAAAAAAC39a+L5KdOndKVK1fskQUAAAAAAAAAAIeyuUi+b98+hYWFSZIWL16sNm3aqGnTplq/fr29swEAAAAAAAAAYChPW18wceJENW7cWBaLRTNmzNA777yjXLlyaeLEiWrWrJkRGQEAAAAAAADArkxmVqJGGpuPhNOnT2vo0KE6ffq0rl+/rtatW6tx48a6cOGCEfkAAAAAAAAAADCMzUVyDw8PxcTEaMuWLapataq8vb118eJFBQYGGpEPAAAAAAAAAADD2LzcSrNmzdStWzddvHhRr7zyik6ePKmBAweqbdu2RuQDAAAAAAAAAMAwNhfJX331Va1YsUJ+fn5q3bq1zp49qy5duqhHjx5G5AMAAAAAAAAAwDA2F8k9PDzUoUOH9OfFixdXr1697BoKAAAAAAAAAABHsLlI/sMPP+jNN9/UxYsXZbFYrLYdOXLEbsEAAAAAAAAAwCgms8nZEeAibC6Sjx07Vg8//LAaNWoks9nm+34CAAAAAAAAAOAybC6SR0VF6bnnnpOHh4cReQAAAAAAAAAAcBibp4I/9NBD+uGHH4zIAgAAAAAAAACAQ9k8k7xHjx7q2rWrSpcurRw5clhtmz9/vt2CAQAAAAAAAABgNJuL5KNHj1a1atVUs2ZNllwBAAAAAAAAAGRrNhfJz507p127dsnLy8uIPAAAAAAAAABgOLOHydkR4CJsXpO8QoUKOn/+vBFZAAAAAAAAAABwKJtnkj/wwAPq0aOHWrZsqVy5clltGzRokL1yAQAAAAAAAABgOJuL5Lt27VKJEiV07Ngxq3aTia8nAAAAAAAAAACyF5uL5AsWLDAiBwAAAAAAAAAADmdzkVyS1q9fryVLlujixYsKDg5Wx44d9cgjj9g7GwAAAAAAAAAAhrK5SL5q1Sq9/vrr6ty5s5o0aaLw8HCNGTNG8fHxevzxx43ICAAAAAAAAAB2ZTKzfDTS2FwknzlzpqZMmaK6deumtzVq1Ehjx46lSA4AAAAAAAAAyFbMtr4gIiJCderUsWqrXbu2Ll++bLdQAAAAAAAAAAA4gs1F8oIFC2r37t1Wbbt371bhwoXtFgoAAAAAAAAAAEewebmVp556SgMHDlTnzp0VEhKi8PBwLVmyRKNGjTIiHwAAAAAAAAAAhrG5SP7444/Lw8NDy5cv1/r161WkSBG9+eabatmypRH5AAAAAAAAAAAwjM1Fcklq37692rdvr8jISOXMmVOenv9oNwAAAAAAAADgFCazzStR4z/K5iMhMTFRb7/9tqpVq6b69eurRo0aevXVV5WYmGhEPgAAAAAAAAAADGNzkXzatGnauXOnPvjgA61evVoffPCBDhw4oA8++MCAeAAAAAAAAAAAGMfmdVJWrVqluXPnKiQkRJJUqlQplSpVSk8++aSef/55uwcEAAAAAAAAAMAoNs8kv3XrlgoVKmTVVqhQIcXHx9stFAAAAAAAAAAAjmBzkbxcuXJavHixVdvixYtVtmxZu4UCAAAAAAAAAMARbF5uZdiwYerdu7dWrlypkJAQhYeH6+TJk5o9e7YR+QAAAAAAAADA7kxmk7MjwEXYPJO8Zs2a+vrrr1W/fn0FBASoefPmWr16tapXr25EPgAAAAAAAAAADGPzTPL27dtr/vz5GjJkiBF5AAAAAAAAAABwGJtnkl+9etWIHAAAAAAAAAAAOJzNM8mbNm2qHj16qEWLFsqfP79Mpt/X7gkLC7NnNgAAAAAAAAAADGVzkXzr1q2SpCVLlli1m0wmiuQAAAAAAAAAgGzF5iL5xo0bjcgBAAAAAAAAAIDDZblIvnv37r/tU6tWrX8VBgAAAAAAAAAcwexh+vtOcAtZLpJ3795dkqzWIM+ZM6fu3Lmj1NRU5cqVSzt27LB/QgAAAAAAAAAADJLlIvnRo0clSbNnz9bx48f1yiuvKCgoSLGxsXrnnXeUM2dOw0ICAAAAAAAAAGAEs60vmD17tl5//XUFBQVJkvz9/fXyyy9r6dKldg8HAAAAAAAAAICRbC6Sp6amKjIy0qrtwoUL8vDwsFsoAAAAAAAAAAAcIcvLrdz16KOPqk+fPurbt68KFSqk8+fPa9asWerSpYsR+QAAAAAAAAAAMIzNRfKRI0fK399f06ZN05UrV1SoUCF16tRJ//vf/4zIBwAAAAAAAAB2ZzKbnB0BLsLmIrmnp6eGDh2qoUOHGpEHAAAAAAAAAACHsXlNcknavn27nnnmGbVv317Xrl3Tu+++q+TkZHtnAwAAAAAAAADAUDYXyVetWqWRI0eqbNmyOnfunCRp48aNmjRpkt3DAQAAAAAAAABgJJuL5J988ommTp2q4cOHy2w2Kzg4WDNmzNDq1auNyAcAAAAAAAAAgGFsLpJfvnxZ999/vyTJZEpb3D40NFSxsbH2TQYAAAAAAAAAgMFsvnFn8eLFtWHDBjVr1iy97ccff1RoaKhdgwEAAAAAAACAUUzmf3S7RvwH2VwkHz58uAYMGKCmTZsqPj5eY8aM0apVq1iTHAAAAAAAAACQ7dj8cUm9evW0ePFi5ciRQ3Xr1lVqaqrmzp2rRo0aGZEPAAAAAAAAAADD2DyTPCYmRgsXLtTKlSuVmJgof39/BQYGqnz58vL29jYiIwAAAAAAAAAAhrB5Jvk777yjEydOaNq0aVqzZo3ef/99/fTTT3r//feNyAcAAAAAAAAAgGFsnkm+adMmrVy5Unny5JEklSxZUuXKlVPHjh31wgsv2D0gAAAAAAAAAABGsblI7ufnJw8PD6s2f39/paam2i0UAAAAAAAAABjJZDY5OwJcRJaXW4mIiFBERITCwsI0fPhwHT9+XDExMTpz5oxefPFF9ezZ08CYAAAAAAAAAADYX5Znkjdp0kQmk0kWi0WS1K5dO5lMaZ+2WCwWbdq0Sf369TMmJQAAAAAAAAAABshykXzDhg1G5gAAAAAAAAAAwOGyXCQvUqSIkTkAAAAAAAAAAHC4LK9JDgAAAAAAAADAf02WZ5IDAAAAAAAAwH+FyWxydgS4CGaSAwAAAAAAAADcFkVyAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG15OjsAAAAAAAAAADiayWxydgS4CGaSAwAAAAAAAADclslisVicHQIAAAAAAAAAHOn4Ey2dHSHbKfv5t86OYAiXWG4l+uPnnR3BpQQOfI/35B6BA9/TN17lnB3DpbRJOqbTPds6O4ZLKTlvta4c2evsGC6lQIUaipnxsrNjuIyA/m8p4tgvzo7hUgqXq6I9x246O4ZLqVkuty6P7ObsGC6l4PiFihj+hLNjuJTC73+uuM2fOzuGS/Fr/ISip49ydgyXEvj0OF04fsjZMVxK0bKVdWvCUGfHcCk5n/uQa9g/KFChhiYsT3V2DJfyXHuzzpw66ewYLqVEqdK6fmiHs2O4lHyVH3B2BCBbY7kVAAAAAAAAAIDbokgOAAAAAAAAAHBbLrHcCgAAAAAAAAA4ksnM/GGk4UgAAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3BZFcgAAAAAAAACA2/J0dgAAAAAAAAAAcDSzh8nZEeAimEkOAAAAAAAAAHBb/7pIHh0drcTERHtkAQAAAAAAAADAoWwukp86dUoDBw6UJK1bt05169ZVgwYNtHfvXruHAwAAAAAAAADASDavSf72228rf/78slgsmjRpkoYMGaKAgAC98847WrZsmREZAQAAAAAAAAAwhM1F8mPHjmn69Om6ePGiwsPD1bVrVwUEBGjixIlG5AMAAAAAAAAAwDA2F8mTk5NlsVi0fft2VapUSYGBgbpx44Z8fHyMyAcAAAAAAAAAdmcym5wdAS7C5iJ5vXr1NHjwYB09elR9+vTR+fPn9fzzz6tx48YGxAMAAAAAAAAAZDeRkZF69dVXtWvXLnl4eKhdu3Z64YUX5OlpXZLu27dvhvtdxsbGqnPnzho7dqxSU1NVo0YNWSwWmUy/f7Cxfft2+fv72yWrzUXyN954Q3PmzFGNGjXUo0cPHT16VJUqVdKzzz5rl0AAAAAAAAAAgOxt2LBhKlCggLZu3arr16/rmWee0bx589S3b1+rfrNmzbJ6/sUXX2jKlCkaNGiQJOnkyZNKSkrSvn375O3tbUhWm4vkAQEBGjx4cPrz8uXL65VXXrFrKAAAAAAAAABA9nTu3Dnt2rVLW7ZskZ+fn0JCQjRgwACNHz8+Q5H8j06fPq033nhDs2fPVv78+SVJBw8eVLly5QwrkEv/oEh+8OBBTZw4URcvXlRqaqrVtg0bNtgtGAAAAAAAAAAg+zlx4oRy5cqlAgUKpLeVKlVKERERun37tnLkyJHp615//XWFhYWpZs2a6W0HDx5UQkKCOnTooIsXL6pUqVIaMWKEqlevbre8NhfJR40apTJlyuiRRx6R2Wy2WxAAAAAAAAAAgOtKTExUYmKiVZu3t3eGWd4xMTHy8/Ozarv7PDY2NtMi+Z49e3TgwAFNmDDBqt3X11dVqlTR0KFDlTNnTi1atEh9+vTRypUrFRISYo9h2V4kv3jxor766it5eXnZJQAAAAAAAAAAOJqJCcA2mzFjhqZMmWLVNmjQIKvluSXJ399fcXFxVm13nwcEBGS67yVLlqhVq1YKDg62an/xxRetnvfp00fLly/XDz/8oG7duv2jcdzL5iJ5rVq1dOTIEVWpUsUuAQAAAAAAAAAArq9///7q1auXVVtma4WXKVNGUVFRun79uvLlyydJOnXqlAoWLKigoKAM/ZOTk7VhwwZ9/PHHGba9//77atGihSpWrJjelpiYKB8fn387nHQ2F8mHDRumHj16qE6dOhmmxY8bN85uwQAAAAAAAAAAriOzpVUyU7x4cdWoUUNvv/22xo4dq5s3b2rq1Knq2LFjpv2PHTumhISETNcZP378uPbs2aMPPvhAOXPm1CeffKLo6Gg1b978X4/nLpu/U/DWW28pb968fzotHgAAAAAAAADg3iZPnqzk5GQ1bdpUnTp1UoMGDTRgwABJUrVq1bRy5cr0vufPn1fOnDkznR0+btw4FStWTI8++qjq1KmjXbt2ae7cucqVK5fdsto8k/zXX3/V9u3bKZIDAAAAAAAAADKVL18+TZ48OdNt+/fvt3resmVLtWzZMtO+uXLlMnwFE5tnkoeGhiomJsaILAAAAAAAAAAAOJTNM8kfe+wx9e7dWx06dFCuXLlkMpnSt4WFhdkzGwAAAAAAAAAYwmQ2/X0nuAWbi+Tz58+XJC1YsMCq3WQyUSQHAAAAAAAAAGQrNhfJN27caEQOAAAAAAAAAAAczuYiuSQdOnRIX3zxhS5evKjg4GC1b99eNWvWtHc2AAAAAAAAAAAMZfONO7dt26auXbsqKipK5cqVU3R0tHr16qX169cbkQ8AAAAAAAAAAMPYPJN88uTJevfdd9WqVav0trVr12rq1Klq1qyZXcMBAAAAAAAAAGAkm4vkZ86cUYsWLazaWrRooZdfftluoQAAAAAAAADASCazydkR4CJsXm4lV65cOn78uFXb0aNHFRwcbLdQAAAAAAAAAAA4gs0zyR9//HE988wz6t+/v4oWLarw8HDNnDlTXbt2NSIfAAAAAAAAAACGsblI/r///U8JCQmaMWOGrl+/riJFiqhbt27q1auXEfkAAAAAAAAAADCMzUVyk8mkwYMHa/DgwUbkAQAAAAAAAADAYWxek9xisejTTz9V69atdf/996tZs2aaPn26LBaLEfkAAAAAAAAAADCMzTPJ58+fr7lz56pfv37pa5LPmjVLZrNZ/fr1MyIjAAAAAAAAANiVyWzz/GH8R9lcJF+8eLGmTp2qihUrprdVr15dgwcPpkgOAAAAAAAAAMhWbP645OrVqypfvrxVW/ny5RUVFWWvTAAAAAAAAAAAOITNRfLQ0FCtW7fOqm3dunUKDQ21WygAAAAAAAAAABzB5uVWBgwYoGHDhunbb79VSEiIwsPDtWHDBk2ePNmIfAAAAAAAAAAAGMbmmeTNmjXTrFmz5O3trV9//VU5cuTQokWL9NBDDxmRDwAAAAAAAAAAw9g8k/yZZ57R+PHjVbduXSPyAAAAAAAAAIDhTGaTsyPARdg8k3z//v3y9vY2IgsAAAAAAAAAAA5l80zytm3basiQIXrkkUcUHBwsk+n3T1xq1apl13AAAAAAAAAAABjJ5iL5woULJUmbN2+2ajeZTDpy5IhdQgEAAAAAAAAA4Ag2F8mPHj1qRA4AAAAAAAAAABzO5iK5JKWkpOj69etKSUmxai9cuLBdQgEAAAAAAAAA4Ag2F8m/++47jRo1SnFxcbJYLDKZTOn/ZbkVAAAAAAAAANmByWx2dgS4CJuL5BMmTFDfvn3VunVreXl5GZEJAAAAAAAAAACHsLlIfuvWLQ0YMMCILAAAAAAAAAAAOJTN3ym47777uHknAAAAAAAAAOA/IcszyadMmSJJypMnj/r06aNWrVopV65cVn0GDRpk13AAAAAAAAAAABgpy0XynTt3pv9/yZIldezYMavtJpPJfqkAAAAAAAAAAHCALBfJFyxYIEm6du2agoODM2w/ceKE/VIBAAAAAAAAgJGY9Ivf2LwmeYsWLTK0paSkqHPnznYJBAAAAAAAAACAo2RpJvm5c+fUp08fWSwWxcXFqWnTplbb4+PjVaRIEUMCAgAAAAAAAABglCwVyUNDQ/Xyyy/r5s2bGjNmTIYbdPr4+KhWrVqGBAQAAAAAAAAAwChZXpP8oYcekiQVLVpUtWvXNiwQAAAAAAAAAACOkuUi+V1Vq1bVl19+qStXrig1NVWSlJSUpOPHj2vatGl2DwgAAAAAAAAAgFFsLpK/9NJL2rp1q3Lnzq2kpCT5+/vrxIkTCgsLMyAeAAAAAAAAANifyWxydgS4CJuL5Fu3btXnn3+uGzdu6PPPP9fEiRM1Z84c/fLLL0bkAwAAAAAAAADAMGZbX5CamqqSJUuqZMmSOnLkiCTpySef1J49e+weDgAAAAAAAAAAI9lcJC9YsKDOnz+vPHnyKDIyUrGxsbJYLIqJiTEiHwAAAAAAAAAAhrF5uZVHHnlEXbt21RdffKHGjRvrmWeekY+PjypXrmxEPgAAAAAAAAAADGNzkbxfv34KCQlRQECAhg0bphkzZig6OlqvvvqqEfkAAAAAAAAAADCMzUXymJgYbdu2TS+++KISExPl5+enzp07q0CBAkbkAwAAAAAAAAC7M5ltXoka/1E2HwnvvPOOTp48qalTp+qbb77R+++/r507d+r99983Ih8AAAAAAAAAAIaxeSb5pk2btHLlSuXJk0eSVLJkSZUrV04dO3bUCy+8YPeAAAAAAAAAAAAYxeaZ5H5+fvLw8LBq8/f3V2pqqt1CAQAAAAAAAADgCFkukkdERCgiIkJhYWEaPny4jh8/rpiYGJ05c0YvvviievbsaWBMAAAAAAAAAADsL8vLrTRp0kQmk0kWi0WS1K5dO5lMJkmSxWLRpk2b1K9fP2NSAgAAAAAAAABggCwXyTds2GBkDgAAAAAAAABwGJPZ5OwIcBFZLpIXKVLEyBwAAAAAAAAAADiczTfuBAAAAAAAAADgv4IiOQAAAAAAAADAbVEkBwAAAAAAAAC4LYrkAAAAAAAAAAC3leUbdwIAAAAAAADAf4XJzPxhpOFIAAAAAAAAAAC4LYrkAAAAAAAAAAC3RZEcAAAAAAAAAOC2TBaLxeLsEAAAAAAAAADgSJdHdnN2hGyn4PiFzo5gCJe4ceeFwZ2cHcGlFP1oqW6OG+DsGC4l96ipOt2zrbNjuJSS81brG69yzo7hUtokHdOtfeudHcOl5KzeTPHfTHd2DJfh2+ZpXTu8y9kxXEpwxdo6fDLC2TFcSsXShXWqRxtnx3AppeZ/o9316zo7hkupte0nxX/+rrNjuBTfJ15Q/Lp5zo7hUnyb99SF44ecHcOlFC1bmev6e5Sct1q3961zdgyXkaN6cy3flersGC6lfW2zzp085uwYLiW0dDnd2fWNs2O4lKDaXL8C/4ZLFMkBAAAAAAAAwJFMZpOzI8BFsCY5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3JanswMAAAAAAAAAgKOZzCZnR4CLYCY5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3JanrS/YvXt3pu1eXl7KkyePihUr9q9DAQAAAAAAAIChzMwfRhqbi+QvvviiIiIiZDablTt3bt28eVOpqakym81KSUlRyZIlNWPGDIWEhBiRFwAAAAAAAAAAu7H545J27dqpXbt22rVrl7Zt26bdu3erY8eOGjRokPbu3av69evrrbfeMiIrAAAAAAAAAAB2ZXORfMWKFRozZowCAgIkSf7+/nrppZe0ZMkSBQQEaMSIEdq3b5/dgwIAAAAAAAAAYG82F8ljY2N1+/Ztq7Y7d+4oOjo6/bnJZPr3yQAAAAAAAAAAMJjNRfKWLVtq4MCB+vHHH3X27Fn9+OOPGjJkiB5++GFFR0frtddeU82aNY3ICgAAAAAAAACAXdl8486XXnpJb731lgYOHKi4uDj5+vqqY8eOGjFihH799Vfdvn1bY8aMMSAqAAAAAAAAANgHq2HgLpuL5D4+Pho7dqxGjx6tqKgo5c2bN/2AqlmzJrPIAQAAAAAAAADZhs1Fckn65ZdfdObMGVksFqv2sLAwe2QCAAAAAAAAAMAhbC6ST5o0STNnzlRwcLA8PX9/uclkokgOAAAAAAAAAMhWbC6Sr1y5UtOnT1ejRo2MyAMAAAAAAAAAgMOYbX1BTEyMGjZsaEQWAAAAAAAAAAAcyuaZ5I0bN9aqVavUrl07I/IAAAAAAAAAgOFMZpvnD+M/yuYieUJCgl588UVNnz5d+fLls9o2f/58uwUDAAAAAAAAAMBoNhfJy5Ytq7JlyxqRBQAAAAAAAAAAh7K5SD5o0CAjcgAAAAAAAAAA4HBZLpKPGTNGY8aM0ahRo/60z7hx4+wSCgAAAAAAAAAAR8jy6vQWi8XqvwAAAAAAAAAAZHdZnkn++uuvS5Kee+65DDfsBAAAAAAAAIDsxGQ2OTsCXESWZ5Lf1bhxYw0cOFCbNm1SamqqEZkAAAAAAAAAAHAIm4vkX3/9tUqUKKHXXntNjRo10qRJkxQeHm5ENgAAAAAAAAAADGVzkbxUqVJ67rnntHnzZr311lu6ePGiHnvsMfXo0cOIfAAAAAAAAAAAGMbmInn6C81m+fr6yt/fX97e3kpKSrJnLgAAAAAAAAAADJflG3fedfbsWa1YsUIrV65UXFyc2rVrpwULFqh06dJG5AMAAAAAAAAAwDA2F8lbtWqlunXrasSIEWrevLm8vb2NyAUAAAAAAAAAxjH/40U28B9jc5H8+++/V0hIiBFZAAAAAAAAAABwqCwXyT/55BP169dPX3/99Z/2GTRokF1CAQAAAAAAAADgCFkuku/evVv9+vXTzp07M91uMpnsFgoAAAAAAAAAAEfIcpF85syZkqQFCxYYFgYAAAAAAAAAAEfKcpF8xYoVf9snLCzsX0QBAAAAAAAAAMCxslwknzx58l9uN5lMFMkBAAAAAAAAZAsmM8tHI02Wi+QbN27M8k5Xr16ttm3b/qNAAAAAAAAAAAA4itmInY4ePdqI3QIAAAAAAAAAYFeGFMktFosRuwUAAAAAAAAAwK4MKZKbTKznAwAAAAAAAABwfYYUyQEAAAAAAAAAyA6yfONOAAAAAAAAAPivMJmYP4w0HAkAAAAAAAAAALfFjTsBAAAAAAAAAG7L5iL5gQMHMm3fsmVL+v8/+OCD/zwRAAAAAAAAAAAOYnORvFevXhnaoqOjNXTo0PTnU6ZM+XepAAAAAAAAAABwgCzduPPcuXNq06aNUlJSZLFYVKFChQx9qlevbvdwAAAAAAAAAAAYKUtF8tDQUC1btky3b99Wv379NHPmTKvtPj4+Klu2rCEBAQAAAAAAAMDuzCZnJ4CLyFKRXJIGDx6s9evXq0WLFqpdu7aRmQAAAAAAAAAAcIgsF8kjIyN15MgRrVu3TpcuXZLFYsnQp3DhwnYNBwAAAAAAAACAkbJcJG/SpIkee+wxmUwmNWnSxGqbxWKRyWTSkSNH7B4QAAAAAAAAAACjZLlIPnHiRD3//PNq2bKlVq9ebWQmAAAAAAAAAAAcIstFckkqUKCAPvvsMxUpUsSoPAAAAAAAAAAAOIxNRXJJmj9/fpb6jRs3zuYwAAAAAAAAAOAIJrPZ2RHgImw+Enx8fLRq1SrduXNH+fLlU3Jysr755htdvXrViHwAAAAAAAAAABjG5pnk58+f18SJE9WiRYv0tscee0yzZ89m9jgAAAAAAAAAIFuxeSb5vn371Lx5c6u2OnXq6ODBg3YLBQAAAAAAAACAI9hcJC9SpIjWrl1r1bZ8+XKVLFnSbqEAAAAAAAAAAHAEm5dbGT58uIYOHapFixapUKFCOn/+vM6cOaO5c+cakQ8AAAAAAAAAAMPYXCRv2rSpli9fru+++06RkZFq1KiRnn/+eVWuXNmIfAAAAAAAAABgdyazydkR4CJsXm5l48aN6tmzpwYPHqz8+fNrxowZ6tOnj5YuXWpEPgAAAAAAAAAADGNzkXzatGkaNmyYUlNTtXDhQk2ZMkWLFi3SzJkzjcgHAAAAAAAAAIBhbF5uJTw8XJ06ddLhw4cVFxenevXqydPTU9evXzciHwAAAAAAAAAAhrF5Jrmfn58iIyO1ceNG1ahRQ56enjp69Khy585tRD4AAAAAAAAAAAxj80zyDh06KCwsTLdv39bkyZN16NAh9e3bV7179zYiHwAAAAAAAAAAhrG5SD548GDVrl1bPj4+qlq1qi5duqSxY8fq4YcfNiIfAAAAAAAAANifyeZFNvAfZXORXJLq1KmT/v+FChVSoUKF7BYIAAAAAAAAAABH4eMSAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG39oxt3AgAAAAAAAEB2ZjKbnB0BLoKZ5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADcFkVyAAAAAAAAAIDbMlksFouzQwAAAAAAAACAI92eNMzZEbKdHM9+4OwIhvB0dgBJunJkr7MjuJQCFWoo/MQRZ8dwKcXKVOA4uUeBCjV0a996Z8dwKTmrN9M3XuWcHcOltEk6plOnTzs7hssoVbKkzp487uwYLqV46bI6eeqMs2O4lNKlSujarzudHcOlBFeqo9v71jk7hkvJUb25zpw66ewYLqVEqdK6cPyQs2O4lKJlK+v0qVPOjuFSSpYqpRu/bHV2DJeSp0oDhT/d3tkxXEax6ct15NRFZ8dwKRVKFeHfnHuUKFWav/3u0SbpmLMjZE9mFtlAGo4EAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG1RJAcAAAAAAAAAuC1PZwcAAAAAAAAAAEczmUzOjgAXwUxyAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG1RJAcAAAAAAAAAuC1PZwcAAAAAAAAAAIczM38YaTgSAAAAAAAAAABuiyI5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LY8nR0AAAAAAAAAABzNZDY5OwJcBDPJAQAAAAAAAABuiyI5AAAAAAAAAMBtUSQHAAAAAAAAALgtm4vkzzzzTKbt3bp1+9dhAAAAAAAAAABwpCzduPPChQtasWKFJGnbtm2aMmWK1fbo6GgdO3bM7uEAAAAAAAAAADBSlorkhQsX1okTJ3Tjxg2lpKRo586dVtt9fHz02muvGRIQAAAAAAAAAOzOxErUSJOlIrnZbNaHH34oSXrllVf05ptvGhoKAAAAAAAAAABHyFKR/I/efPNNXb58WatWrdLFixeVP39+tW3bVsWKFTMiHwAAAAAAAAAAhrH5OwUHDx5UmzZt9P333+vWrVvasGGD2rVrp7179xqRDwAAAAAAAAAAw9g8k3z8+PEaOnSoevTokd726aefasKECfr888/tGg4AAAAAAAAAACPZPJP82LFj6tq1q1Vb165ddfz4cbuFAgAAAAAAAADAEWyeSe7n56dLly4pJCQkve3SpUvKmTOnXYMBAAAAAAAAgGHMJmcngIuweSZ569atNXjwYG3dulVnzpzRDz/8oCFDhqh169ZG5AMAAAAAAAAAwDA2zyQfOnSobty4oQEDBigpKUk+Pj7q0KGDBg0aZEQ+AAAAAAAAAAAMY3OR3MfHR++8847Gjh2rW7duKV++fDKZ+GoCAAAAAAAAACD7yXKRfMWKFX/bJyws7F9EAQAAAAAAAADAsbJcJJ88efJfbjeZTBTJAQAAAAAAAADZSpaL5Bs3bszyTlevXq22bdv+o0AAAAAAAAAAYDSTyezsCHARhhwJo0ePNmK3AAAAAAAAAADYlSFFcovFYsRuAQAAAAAAAADZQGRkpAYMGKCaNWuqTp06euutt5ScnJxp3759++q+++5TtWrV0h9btmxJ3z5z5kw1bNhQVatWVffu3XX69Gm7ZjWkSG4ymYzYLQAAAAAAAAAgGxg2bJj8/f21detWffHFF9qxY4fmzZuXad9Dhw5p9uzZ2r9/f/qjYcOGkqSvvvpKCxYs0OzZs7Vz505VqlRJQ4YMsetEbRbeAQAAAAAAAADYzblz57Rr1y6NHDlSfn5+CgkJ0YABA7Ro0aIMfc+fP69bt26pYsWKme5r6dKl6tq1q8qUKSMfHx+NGDFCERER2rlzp93yUiQHAAAAAAAAAPytxMRERUdHWz0SExMz9Dtx4oRy5cqlAgUKpLeVKlVKERERun37tlXfgwcPKiAgQMOHD1fdunXVtm1bffHFF+nbT548qbJly6Y/9/LyUvHixXX06FG7jcvTbnsCAAAAAAAAgOzCzJLRtpoxY4amTJli1TZo0CANHjzYqi0mJkZ+fn5WbXefx8bGKkeOHOntiYmJqlq1qoYPH64yZcpo586dGjx4sAICAtSqVatM9+Xr66vY2Fi7jcuQIjk37gQAAAAAAACA/5b+/furV69eVm3e3t4Z+vn7+ysuLs6q7e7zgIAAq/awsDCFhYWlP69fv77CwsK0du1atWrVSn5+foqPj7d6TXx8fIb9/Bs2L7dy4MCBTNv/eLfRBx988J8nAgAAAAAAAAC4HG9vbwUGBlo9MiuSlylTRlFRUbp+/Xp626lTp1SwYEEFBQVZ9f3iiy+0du1aq7bExET5+Pik7+vEiRPp25KSknT27FmrJVj+LZuL5Pd+UiBJ0dHRGjp0aPrze6fcAwAAAAAAAADcQ/HixVWjRg29/fbbio6O1vnz5zV16lR17NgxQ9/o6Gi98cYbOnz4sFJTU7V582atXr1anTt3liR16NBBCxcu1NGjR5WQkKCJEycqX758qlmzpt3yZmm5lXPnzqlNmzZKSUmRxWJRhQoVMvSpXr263UIBAAAAAAAAALKvyZMna+zYsWratKnMZrPCwsI0YMAASVK1atX0+uuvq127dnrqqacUGxurQYMGKTIyUiEhIXr33XfTi+AdO3bUnTt3NHDgQN24cUP33XefZsyYIS8vL7tlzVKRPDQ0VMuWLdPt27fVr18/zZw502q7j4+PXae3AwAAAAAAAACyr3z58mny5MmZbtu/f3/6/5tMJg0YMCC9gH4vk8mk3r17q3fv3obklGy4cefgwYO1fv16tWjRQrVr1zYsEAAAAAAAAAAYzWS2eSVq/EdluUgeGRmpI0eOaN26dbp06ZIsFkuGPoULF7ZrOAAAAAAAAAAAjJTlInmTJk302GOPyWQyqUmTJlbbLBaLTCaTjhw5YveAAAAAAAAAAAAYJctF8okTJ+r5559Xy5YttXr1aiMzAQAAAAAAAADgEFkukktSgQIF9Nlnn6lIkSJG5QEAAAAAAAAAwGFsKpJL0vz587PUb9y4cTaHAQAAAAAAAADAkWy+hauPj49WrVqlO3fuKF++fEpOTtY333yjq1evGpEPAAAAAAAAAOzPZOJh6+M/yuaZ5OfPn9fEiRPVokWL9LbHHntMs2fPZvY4AAAAAAAAACBbsXkm+b59+9S8eXOrtjp16ujgwYN2CwUAAAAAAAAAgCPYXCQvUqSI1q5da9W2fPlylSxZ0m6hAAAAAAAAAABwBJuXWxk+fLiGDh2qRYsWqVChQjp//rzOnDmjuXPnGpEPAAAAAAAAAADD2DyTvGnTplq+fLkeeOABBQUFqVGjRpo2bZoqV65sRD4AAAAAAAAAAAxjc5F848aN6tmzpwYPHqz8+fNrxowZ6tOnj5YuXWpEPgAAAAAAAACwP7OZh62P/yibRzZt2jQNGzZMqampWrhwoaZMmaJFixZp5syZRuQDAAAAAAAAAMAwNq9JHh4erk6dOunw4cOKi4tTvXr15OnpqevXrxuRDwAAAAAAAAAAw9g8k9zPz0+RkZHauHGjatSoIU9PTx09elS5c+c2Ih8AAAAAAAAAAIaxeSZ5hw4dFBYWptu3b2vy5Mk6dOiQ+vbtq969exuRDwAAAAAAAAAAw9hcJB88eLBq164tHx8fVa1aVZcuXdLYsWP18MMPG5EPAAAAAAAAAADD2Fwkl6Q6deqk/3+hQoVUqFAhuwUCAAAAAAAAAMOZTM5OABdh85rkAAAAAAAAAAD8V1AkBwAAAAAAAAC4LYrkAAAAAAAAAAC3RZEcAAAAAAAAAOC2KJIDAAAAAAAAANyWp7MDAAAAAAAAAICjmczMH0YajgQAAAAAAAAAgNuiSA4AAAAAAAAAcFsUyQEAAAAAAAAAbosiOQAAAAAAAADAbVEkBwAAAAAAAAC4LU9nBwAAAAAAAAAAhzMxfxhpOBIAAAAAAAAAAG6LIjkAAAAAAAAAwG1RJAcAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtjydHQAAAAAAAAAAHM5scnYCuAiTxWKxODsEAAAAAAAAADhS3GfjnB0h2/HrOsrZEQzhEjPJY7d/6ewILsX/wQ66vW+ds2O4lBzVmytmxsvOjuFSAvq/pfhvpjs7hkvxbfO0Tp0+7ewYLqVUyZL6xqucs2O4jDZJx3T25HFnx3ApxUuX1dr9Sc6O4VJaVfNS3II3nR3Dpfh1f0XRHz/v7BguJXDge/r+QKKzY7iUh+/3Vuzs0c6O4VL8+4zV6VOnnB3DpZQsVUqxPyx2dgyX4t+oi06eOuPsGC6jdKkS+mAlc/n+aFg7E3/n3KNUyZI6c+qks2O4lBKlSjs7ApCtsSY5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALflEmuSAwAAAAAAAIAjmUzMH0YajgQAAAAAAAAAgNuiSA4AAAAAAAAAcFsUyQEAAAAAAAAAbosiOQAAAAAAAADAbVEkBwAAAAAAAAC4LU9nBwAAAAAAAAAAhzObnJ0ALoKZ5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADcFkVyAAAAAAAAAIDbokgOAAAAAAAAAHBbns4OAAAAAAAAAAAOZ2L+MNJwJAAAAAAAAAAA3BZFcgAAAAAAAACA26JIDgAAAAAAAABwWxTJAQAAAAAAAABuiyI5AAAAAAAAAMBteTo7AAAAAAAAAAA4nMnk7ARwEcwkBwAAAAAAAAC4LYrkAAAAAAAAAAC3RZEcAAAAAAAAAOC2KJIDAAAAAAAAANzWPyqSHzp0SJJ0+/ZtjR8/XrNnz1ZycrJdgwEAAAAAAAAAYDRPW18wbdo0zZo1S3v37tWbb76pQ4cOyWw26/Lly3r55ZeNyAgAAAAAAAAA9mVmkQ2ksflIWL16tRYtWqTExER99913mjRpkj799FOtWbPGiHwAAAAAAAAAABjG5pnkV69eVfny5bVjxw4FBQWpfPnykqS4uDi7hwMAAAAAAAAAwEg2zyQvUKCAdu/erRUrVuiBBx6QlDa7PCQkxO7hAAAAAAAAAAAwks0zyQcPHqy+ffvK19dXn3/+uXbs2KFRo0bpo48+MiIfAAAAAAAAAACGsblInjdvXv3444/y9PSUj4+P8ufPrw0bNih//vxG5AMAAAAAAAAAwDA2F8kHDhyozZs3y8fHR5IUGBiowMBAuwcDAAAAAAAAAMOYbF6JGv9RNh8JISEhOnjwoBFZAAAAAAAAAABwKJtnkufMmVO9evVS0aJFlT9/fplMpvRt8+fPt2s4AAAAAAAAAACMZHORvFq1aqpWrZoRWQAAAAAAAAAAcCibi+SDBg1K///IyEjlzJlTnp427wYAAAAAAAAAAKezeU3ypKQkvf3226pWrZrq16+vGjVq6NVXX1ViYqIR+QAAAAAAAAAAMIzNU8CnTp2qnTt36oMPPlDRokUVHh6u999/Xx988IGef/55IzICAAAAAAAAgH2ZTX/fB27B5iL5qlWrNHfuXIWEhEiSSpUqpVKlSunJJ5+kSA4AAAAAAAAAyFZsXm7l1q1bKlSokFVboUKFFB8fb7dQAAAAAAAAAAA4gs1F8nLlymnx4sVWbYsXL1bZsmXtFgoAAAAAAAAAAEewebmVYcOGqXfv3lq5cqVCQkIUHh6ukydPavbs2UbkAwAAAAAAAADAMDbPJK9Zs6ZWrFih+vXrKyAgQM2bN9fq1atVvXp1I/IBAAAAAAAAAGAYm2eSS1Lx4sXVuHFjXbhwQfnz58+wRjkAAAAAAAAAuDSTzfOH8R9lc5H82rVrevrpp3Xs2DHlzJlTN2/eVPHixTVnzhwVLFjQiIwAAAAAAAAAABjC5o9L3n33XRUvXlw7d+7U9u3btXPnTlWoUEHjxo0zIh8AAAAAAAAAAIaxeSb5Tz/9pG+//VYBAQGSpKCgII0ZM0ZNmza1ezgAAAAAAAAAAIxk80zy1NRUmUwmqzaTySQvLy+7hQIAAAAAAAAAwBFsLpLXqVNHY8aMUWxsrCQpJiZGY8aMUe3ate0eDgAAAAAAAAAAI9m83MrIkSPVq1cv1a5dW7ly5VJUVJRKly6tGTNmGJEPAAAAAAAAAOzvntUy4L5sLpIXLlxY33zzjXbv3q0bN26oSJEiuu++++Th4WFEPgAAAAAAAAAADJPlInlERITV89DQUIWGhkqSrly5IimtgA4A/2fvzsOtKgv9gX83Mjqi4gCIAyCOmTNa1wnDISccG9QuikMioJmamkOKRpZaEuKAhGFmDjlrmVNU9zpQmEPhhKgkhhOmByFA9u8Pf3E76r2dZXudvfF8Ps+zHvd+37UW33OeDeL3vL4LAAAAAJYULS7JBwwYsPiBndVqNUmava9UKpk6dWoJEQEAAAAAoBwtLsmXXXbZ3HrrrRk4cGDuu+++xUU5AAAAAAAsqVpcknfs2DFXXXVVllpqqdx8880fWZIPGzaspuEAAAAAAKBMLS7JzzjjjNxwww1ZtGhRHnrooQ/NVzwNFgAAAABYUrRrV+8ENIgWl+S77757dt999xx44IG5+uqry8wEAAAAAACtovCPS2644YYycgAAAAAAQKvz/xQAAAAAANBmKckBAAAAAGizlOQAAAAAALRZLX5wJwAAAADAJ0alUu8ENAgryQEAAAAAaLOU5AAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbZaSHAAAAACANqt9vQMAAAAAALS6ivXDvM8nAQAAAACANktJDgAAAABAm6UkBwAAAACgzVKSAwAAAADQZinJAQAAAABos9rXOwAAAAAAQKtrZ/0w7/NJAAAAAACgzVKSAwAAAADQZinJAQAAAABos5TkAAAAAAC0WUpyAAAAAADarPb1DgAAAAAA0OoqlXonoEFYSQ4AAAAAQJtVqVar1XqHAAAAAABoTfPuHl/vCEuczrsOqXeEUjTEdivv/ub6ekdoKEtvf1Cenzat3jEaSu8+fTLz6cfrHaOh9Fhvk7z250fqHaOhrLLh1nnhuWfqHaOhrN23n+/JP1m7b7/c2WG9esdoKHsseNpn5APW7tsvf33q0XrHaCirr79ZXnnqj/WO0VC6r7+pz8kHrL7+Znlm2kv1jtFQ+vVZ099hP6DHepv4vfMBq6+/WV587ul6x2gYa/Vdz/fjA9bqu57fNx/g982HrdXXf+fAv8N2KwAAAAAAtFlKcgAAAAAA2qyG2G4FAAAAAKBVVawf5n0+CQAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbZaSHAAAAACANktJDgAAAABAm6UkBwAAAACgzWpf7wAAAAAAAK2uUql3AhqEleQAAAAAALRZSnIAAAAAANqsQiX5Mccc85HjhxxySE3CAAAAAABAa/qXe5L/5S9/yS233JIk+d3vfpcxY8Y0m29qasrTTz9dSjgAAAAAACjTvyzJe/TokWeffTZvvvlm3nvvvTz88MPN5jt16pSzzjqrtIAAAAAAAFCWf1mSt2vXLhdffHGS5PTTT8+5555beigAAAAAgFK187hG3vcvS/J/du6552b+/Pl58803s2jRomZzPXr0qGkwAAAAAAAoW6GS/Je//GXOOOOMNDU1LR6rVqupVCqZOnVqzcMBAAAAAECZCpXko0ePzsEHH5x999037dsXuhQAAAAAABpOoab7lVdeybBhwxTkAAAAAAB8IhTanX6jjTbKc889V1YWAAAAAABoVYWWhG+++eYZPHhwdtttt3Tr1q3Z3LBhw2oaDAAAAACgLNVKpd4RaBCFSvJHH3006667bqZNm5Zp06YtHq/4QAEAAAAAsAQqVJJfffXVZeUAAAAAAIBWV/gJnPfee2+uu+66vPzyy1lllVVywAEHZK+99iojGwAAAAAAlKrQgztvv/32nHLKKenXr18OPfTQbLjhhvnWt76VG264oax8AAAAAABQmkIryceNG5cxY8Zkm222WTy2ww475JxzzsmBBx5Y83AAAAAAAFCmQiX5zJkz079//2ZjW2+9df7617/WNBQAAAAAQKkqhTbZ4BOs0Cdh9dVXz+TJk5uNTZ48OT169KhpKAAAAAAAaA2FVpL/53/+Z4499th84QtfSK9evfLSSy/luuuuy6mnnlpWPgAAAAAAKE2hkvzAAw/MUkstlZtuuin33ntvevbsmXPPPTe77bZbWfkAAAAAAKA0hUrykSNH5mtf+1r222+/svIAAAAAAECrKbQn+e23354uXbqUlQUAAAAAAFpVoZXk+++/f84+++zsu+++WXXVVVOpVBbPeXgnAAAAALDEqBRaP8wnWKGSfMKECUmS66+/fnFBXq1WU6lUMnXq1NqnAwAAAACAErWoJJ80aVJ22GGH3HfffWXnAQAAAACAVtOikvzEE0/M5MmTc9hhh+VXv/pV2ZkAAAAAAKBVtKgk79ChQ84777zMnDkzY8aM+chzhg0bVtNgAAAAAABQthaV5GeccUZuuOGGLFq0KA8//PCH5v/5AZ4AAAAAALCkaFFJvvvuu2f33XfPvvvum6uvvrrsTAAAAAAApapa+Mv/167IyX/729/S1NRUVhYAAAAAAGhVhUryJJk7d24ZOQAAAAAAoNW1aLuVf+jfv38OPPDAbL/99ll11VWbzXlwJwAAAAAAS5pCJflf/vKX9OrVK9OnT8/06dMXj3twJwAAAAAAS6JCJbmHdgIAAAAA8ElSqCRPkmnTpuXaa6/NX//614wcOTJ33nlnDjnkkDKyAQAAAACUo1L4cY18QhX6JPzXf/1XDjzwwMyePTv//d//nXnz5uWSSy7JFVdcUVY+AAAAAAAoTaGS/KKLLsr3v//9XHjhhVlqqaXSvXv3XHHFFbnuuuvKygcAAAAAAKUpVJK/+OKL2X777ZP8z8M6P/WpT+Vvf/tb7ZMBAAAAAEDJCpXkPXr0yJQpU5qNPfHEE+nevXtNQwEAAAAAQGso9ODOo48+Osccc0y+9KUvZcGCBRk3blyuvvrqnHDCCWXlAwAAAACA0hQqyffYY48su+yyueaaa9KjR4889NBD+eY3v5ldd921rHwAAAAAALX3/7eThkIl+S9+8Yvsvvvu2WGHHZqNX3fddfnCF75Q02AAAAAAAFC2f1mSz507N7Nnz06SnHbaadl0001TrVYXz7/zzjv5zne+oyQHAAAAAGCJ8y9L8qampuyxxx6ZN29ekmTAgAGpVqupVCqL//m5z32u9KAAAAAAAFBr/7IkX2WVVXLvvfdm7ty52WuvvXLHHXc0m+/UqVO6detWWkAAAAAAAChLi/YkX3nllZMkf/jDH9KuXbsPzS9cuDDt2xfa3hwAAAAAAOquULP9l7/8JZdccklmzZqVRYsWJUkWLFiQ6dOn56GHHiolIAAAAABAzX3EYmDapkIl+Te/+c1Uq9WsuOKKeeONN7LhhhvmlltuyeDBg0uKBwAAAADAkuaNN97IGWeckUceeSRLLbVU9t5773zjG9/4yB1Jrr322lx11VV59dVXs+qqq+YrX/lKDj744CTJokWLssUWWyx+PuY//Nd//VeWXnrpmmQtVJI/+eST+fWvf52ZM2fmBz/4QU4//fRsv/32ufzyyzNs2LCaBAIAAAAAYMl2/PHHZ7XVVstvf/vbvP766znmmGNy1VVX5Ygjjmh23r333puLLroo48aNy6c//en88Y9/zFFHHZVu3bpl1113zXPPPZcFCxZkypQp6dixYylZC/0/BV26dMkKK6yQNddcM88880ySZPvtt8/zzz9fSjgAAAAAAJYsL774Yh555JGcdNJJ6dKlS3r16pWhQ4fmmmuu+dC5s2bNypFHHplNN900lUolm222Wfr375/JkycnSZ544omst956pRXkScGSfM0118ykSZOyzDLLZNGiRZkxY0ZmzZqVhQsXlpUPAAAAAIAlyLPPPpuuXbtmtdVWWzzWp0+fzJw5M2+//Xazcw8++OAcddRRi9+/8cYbmTx5cjbeeOMk75fkf//737P//vtnm222ycEHH5wpU6bUNG+hkvzoo4/OiBEjMmPGjHzhC1/IF7/4xRx44IHZeeedaxoKAAAAAIDGMn/+/DQ1NTU75s+f/6Hz5syZky5dujQb+8f7d99993+9/2uvvZYjjzwyG2+8cfbcc88kSefOnbPJJptk7Nix+fWvf50BAwZkyJAhmTFjRs2+rkJ7ko8fPz7HHHNMOnTokKFDh2bttddOU1NTBg0aVLNAAAAAAABlq/7TQyBpmcsvvzxjxoxpNjZs2LAMHz682djSSy+duXPnNhv7x/tlllnmI+/9xz/+Mccdd1y23HLLjBo1avEDPk855ZRm5w0ZMiQ33XRTJk2alEMOOeTf+nr+oVBJvvvuu+f+++/PJZdckvXXXz8DBw7MLrvsUup+MAAAAAAA1N/RRx+dww47rNnYR3XD6667bt566628/vrr6datW5Jk2rRpWX311bPccst96Pwbb7wx5557bkaMGJHDDz+82dz3v//97Lrrrtlwww0Xj82fPz+dOnWqxZeUpOB2KwcffHDGjx+fBx98MIcddlieffbZ7Lvvvtlrr71qFggAAAAAgMbTsWPHLLvsss2OjyrJ11577WyxxRb59re/naampsyYMSNjx47NAQcc8KFz77777nzrW9/KD3/4ww8V5EnyzDPP5Lzzzstrr72W+fPnZ8yYMWlqasrAgQNr9nUVKsmTpKmpKQ899FAmT56cxx9/PO+9915WWWWVmgUCAAAAAGDJNnr06CxcuDA777xzDjrooGy33XYZOnRokmSzzTbLbbfdliQZM2ZM3nvvvYwYMSKbbbbZ4uPMM89MkowaNSprrrlm9tlnn/Tv3z+PPPJIJkyYkK5du9Ysa6HtVg466KBMnTo1ffv2Tf/+/XP66adn6623runSdgAAAAAAlmzdunXL6NGjP3Lu0UcfXfz69ttv/z/v07Vr14waNaqm2T6o0EryTp06pUOHDllhhRWy8sorp1u3bgpyAAAAAACWWIVWkl999dV5991389BDD+W3v/1tvva1r+Wdd97JZz7zmXzve98rKyMAAAAAQG1VCu9EzSdUoZI8SZZeeul89rOfzVJLLZV27drlrrvuysMPP1xGNgAAAAAAKFWhknzixIn5zW9+k8mTJ6d79+753Oc+l0svvTSbbrppSfEAAAAAAKA8hUryW2+9NQMHDswpp5ySvn37lpUJAAAAAABaRaGS/Oc//3lZOQAAAAAAoNXZnR4AAAAAgDar8IM7AQAAAACWdNWK9cO8zycBAAAAAIA2S0kOAAAAAECbpSQHAAAAAKDNUpIDAAAAANBmKckBAAAAAGiz2tc7AAAAAABAq6tU6p2ABmElOQAAAAAAbZaSHAAAAACANqtSrVar9Q4BAAAAANCamh6+vd4RljjL9t+r3hFK0RB7kr/07NR6R2goa667QV547pl6x2goa/ftl98/PbveMRrKluutmD8/N7PeMRrKhn175Llp0+sdo6H07bNOfvHognrHaBi7b9bBn68fsHbffrmzw3r1jtFQ9ljwdB566m/1jtFQtll/hTw49e16x2go226wfN569P56x2goXTcbkJ/+zvqbf/bl/6j4+9oHbNi3Rx5/9tV6x2gom6y7aqY9/3y9YzSMPr17Z94dl9Y7RkPpvOcxeXbai/WO0VDW7bOW//b7gL591ql3BFii2W4FAAAAAIA2qyFWkgMAAAAAtKZqxfph3ueTAAAAAABAm6UkBwAAAACgzVKSAwAAAADQZinJAQAAAABos5TkAAAAAAC0We3rHQAAAAAAoNVVKvVOQIOwkhwAAAAAgDZLSQ4AAAAAQJulJAcAAAAAoM1SkgMAAAAA0GYpyQEAAAAAaLPa1zsAAAAAAECrq1g/zPt8EgAAAAAAaLOU5AAAAAAAtFmFt1uZNWtWLr300rzwwgtZtGhRs7mJEyfWLBgAAAAAAJStcEl+6qmn5vXXX89OO+2UDh06lJEJAAAAAABaReGS/Iknnsjdd9+dlVZaqYw8AAAAAADQagqX5Mstt1w6duxYRhYAAAAAgFZRrVTqHYEGUbgkHzp0aE499dQceeSR6datW7O5Hj161CwYAAAAAACUrXBJfvrppydJ7rnnniRJpVJJtVpNpVLJ1KlTa5sOAAAAAABKVLgkv++++8rIAQAAAAAAra5wSd6zZ8/MmTMnkyZNyssvv5xVV101O+20U5Zffvky8gEAAAAAQGkKl+QvvvhiBg8enAULFqRHjx6ZOXNmzj///Pz4xz/OuuuuW0ZGAAAAAAAoReGSfNSoUdltt91y0kknpV27dlm0aFG+973v5Tvf+U7Gjx9fRkYAAAAAgNqqtKt3AhpE4U/CY489lq997Wtp1+79S9u1a5fjjjsujz32WM3DAQAAAABAmQqX5EsttVSampqajTU1NaVLly41CwUAAAAAAK2hcEm+00475etf/3qef/75zJ8/P9OmTctJJ52UnXbaqYx8AAAAAABQmsIl+de//vUsXLgwn//85/PpT386e+65Zzp27JgTTzyxjHwAAAAAAFCawg/u7Nq1a66++urMmDEjb7zxRnr27JlVVlmljGwAAAAAAFCqFpfkf/jDH7LFFltk8uTJzcZfeOGFvPDCC0mSrbbaqqbhAAAAAADKUE2l3hFoEC0uyY888shMmTIlhx566EfOVyqVTJ06tWbBAAAAAACgbC0uyadMmZIkeeqpp0oLAwAAAAAAranwgzsHDRr0keMDBgz4d7MAAAAAAECratFK8pdeeimXXnppkuS5557Lqaee2my+qakp8+bNq306AAAAAAAoUYtWkq+55ppZccUV/9f5lVZaKd///vdrFgoAAAAAAFpDi/ckP/nkk5MkvXr1ytChQ0sLBAAAAABQtmql8E7UfEK1uCT/wx/+kC222CJbbbVVJk+e/JHnbLXVVjULBgAAAAAAZWtxSX7kkUdmypQpOfTQQz9yvlKpZOrUqTULBgAAAAAAZWtxST5lypQkyVNPPVVaGAAAAAAAaE0tLslnzpz5L8/p0aPHvxUGAAAAAABaU4tL8gEDBqRSqTQbq1arzcZstwIAAAAAwJKkxSX5fffdlyS59dZb84c//CEnnXRS1lxzzbzyyiu54IILsummm5aVEQAAAACgtirt6p2ABtHikrxnz55Jkuuuuy633XZbVlhhhSRJnz598t3vfje77bZbjj766HJSAgAAAABACQr/uGTOnDlZtGhRs7F33303CxYsqFkoAAAAAABoDYVL8p133jlDhw7Ngw8+mBdeeCG//e1vc+yxx2bPPfcsIx8AAAAAAJSmxdut/MOZZ56Zs88+O0cffXTmz5+fTp06ZZ999skpp5xSRj4AAAAAAChN4ZJ8mWWWyXe/+92ce+65eeutt7LiiiumQ4cOZWQDAAAAAIBSFS7Jk+Txxx/P9OnTU61Wm40PGjSoFpkAAAAAAEpVrVTqHYEGUbgkv+iiizJu3Lisssoqad/+fy6vVCpKcgAAAAAAliiFS/Lbbrstl112WXbYYYcy8gAAAAAAQKtpV/SCOXPmZPvtty8jCwAAAAAAtKrCJfmOO+6Y22+/vYwsAAAAAADQqgpvt/L3v/89p5xySi677LJ069at2dzEiRNrFgwAAAAAAMpWuCTv169f+vXrV0YWAAAAAIBWUa0U3mSDT6jCJfmwYcMWv37jjTeywgorpH37wrcBAAAAAIC6K/zjkgULFuTb3/52Nttss/zHf/xHtthii5xxxhmZP39+GfkAAAAAAKA0hUvysWPH5uGHH84PfvCD3HHHHfnBD36Qxx57LD/4wQ9KiAcAAAAAAOUpvE/K7bffngkTJqRXr15Jkj59+qRPnz45+OCDc/LJJ9c8IAAAAAAAlKXwSvK//e1v6d69e7Ox7t27Z968eTULBQAAAAAAraFwSb7eeuvlZz/7WbOxn/3sZ+nXr1/NQgEAAAAAlKpScRQ9PqEKb7dy/PHH5/DDD89tt92WXr165aWXXspzzz2X8ePHl5EPAAAAAABKU7gk33LLLfPNb34zjz32WNq3b5+ddtopBx10UDbffPMy8gEAAAAAQGkKl+SjR4/OzTffnAkTJmTttdfOfffdl29/+9v529/+liOOOKKMjAAAAAAAUIrCe5LfeOONmThxYtZee+0kyc4775wJEybkmmuuqXU2AAAAAAAoVeGSvKmpKd27d2821r1797z77rs1CwUAAAAAAK2hcEm+0UYb5Yorrmg29qMf/Sjrr79+zUIBAAAAAJSpWmnnKHh8UhXek/yUU07J4Ycfnuuvvz6rr756/vrXv2bhwoW58sory8gHAAAAAAClKVySb7TRRvnVr36VBx54IK+++mq6d++eHXfcMcstt1wZ+QAAAAAAoDSFS/IkWWGFFTJo0KAaRwEAAAAAgNb1yd1IBgAAAAAA/gUlOQAAAAAAbdbH2m4FAAAAAGBJVk2l3hFoEFaSAwAAAADQZinJAQAAAABos5TkAAAAAAC0WUpyAAAAAADaLCU5AAAAAABtVvt6BwAAAAAAaG3VivXDvM8nAQAAAACANktJDgAAAABAm6UkBwAAAACgzVKSAwAAAADQZlWq1Wq13iEAAAAAAFrTa396uN4RljirbNS/3hFK0b7eAZLkrycdUu8IDWX17/0k8+64tN4xGkrnPY/xOfmA1b/3k0z7yh71jtFQ+ky807/gPmCVjfpn7tXn1jtGw+hy6On561OP1jtGQ1l9/c3y0FN/q3eMhrLN+ivkzg7r1TtGQ9ljwdN5fvCe9Y7RUHpfdUfeevT+esdoKF03G5C5P/l2vWM0lC6HnJYXnnum3jEaytp9+2XG0P3rHaOh9Br787z+5IP1jtEwum28bS79Zb1TNJZjdkuemza93jEaSt8+6+TNx39b7xgNZaVNtqt3hCVTpVLvBDQI260AAAAAANBmKckBAAAAAGizlOQAAAAAALRZSnIAAAAAANosJTkAAAAAAG1W+3oHAAAAAABobVXrh/n/fBIAAAAAAGizlOQAAAAAALRZSnIAAAAAANosJTkAAAAAAG2WkhwAAAAAgDarfb0DAAAAAAC0tmqlUu8INAgryQEAAAAAaLOU5AAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbZaSHAAAAACANqt9vQMAAAAAALS2asX6Yd7nkwAAAAAAQJulJAcAAAAAoM1SkgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFnt6x0AAAAAAKC1VVOpdwQahJXkAAAAAAC0WR+rJL/++uuz1157pX///pk5c2ZGjBiROXPm1DobAAAAAACUqnBJftVVV2X8+PE59NBD895772WZZZbJq6++mlGjRpWRDwAAAAAASlO4JL/22mszduzYHHTQQWnXrl1WWGGFjB49Og888EAZ+QAAAAAAoDSFS/LZs2dnnXXWSZJUq9Ukycorr5yFCxfWNhkAAAAAAJSsfdEL1l9//Vx33XX50pe+lErl/SfA3nXXXVl33XVrHg4AAAAAoAzVysd6XCOfQIVL8m984xsZPHhwbr311rz77rs58sgj88c//jFXXnllGfkAAAAAAKA0hUvyjTbaKHfccUduu+22bLDBBll99dVz9tlnp0ePHmXkAwAAAACA0hQuyZNktdVWy5FHHlnrLAAAAAAA0KpaXJIPGDBg8R7k/5v77rvv3w4EAAAAAACtpcUl+fDhw5Mkf/rTn3LfffflsMMOy5prrplXXnklEyZMyM4771xaSAAAAAAAKEOLS/J99903STJhwoRceeWV6dOnz+K5z3zmMznqqKPyjW98o/YJAQAAAABqrPovds2g7WhX9IIZM2ZkzTXXbDa22mqr5dVXX61ZKAAAAAAAaA2FS/KNN944559/fubPn58kmTt3bkaOHJktttii5uEAAAAAAKBMLd5u5R/OPvvsHH300fnZz36WFVdcMbNnz84666yTK664oox8AAAAAABQmsIlee/evfOLX/wiU6ZMyauvvprVV189m2++edq1K7woHQAAAAAA6qpwSZ4kCxYsyJprrpk11lgjyfv7lD/zzDMZOHBgTcMBAAAAAECZCpfkP//5zzNy5Mj8/e9/bza+8sorK8kBAAAAgCVCNZV6R6BBFC7JL7vsshx//PFZZpllMnny5Pznf/5nvve97+Wzn/1sGfkAAAAAAKA0hTcSf+211/Kf//mf2XbbbfPSSy9lo402yre//e3ccMMNZeQDAAAAAIDSFC7JV1555SxYsCDdu3fP9OnTkyQ9evTIG2+8UfNwAAAAAABQpsIl+SabbJIzzzwz8+bNy9prr51rr702N998c7p27VpCPAAAAAAAKE/hPclPPfXUnH766ZkzZ05OOumkfPWrX828efMyatSoMvIBAAAAAEBpCpfkkydPzg9/+MN06tQpq666ah566KEsWLAgXbp0KSMfAAAAAEDNVSuFN9ngE6rwJ+Hss89Ou3b/c1n79u0V5AAAAAAALJEKl+Sf+tSnctddd5WRBQAAAAAAWlXh7VbeeuutfOMb38gZZ5yRbt26pVKpLJ677777ahoOAAAAAADKVLgkP+SQQz5y/J/LcgAAAAAAWBIULsl/+MMffmQh3qFDh1x//fXZaaedMmTIkGb7lgMAAAAAQCMqXJIfdNBBuf7663PEEUekV69eefnll/OjH/0on/nMZ9K7d+/89Kc/zbx58zJ8+PAy8gIAAAAA/NuqsTMG7ytckt999925/PLLs+666y4e23rrrXPiiSfmzDPPzI477phDDz1USQ4AAAAAQMMrvCfKiy++mLXXXrvZWK9evTJ9+vQkyRprrJG33367JuEAAAAAAKBMhUvy9ddfP5dffnmzsR/96Efp27dvkuQ3v/lNevbsWZt0AAAAAABQosLbrZx++uk58sgjc8MNN6R79+555ZVXsmjRolx66aWZMmVKjj322Fx88cVlZAUAAAAAgJoqXJJvuOGGufvuu/PAAw/klVdeSc+ePTNgwIB06dIlb731Vn79619n5ZVXLiMrAAAAAADUVOGSPEmWXXbZ7LXXXh8a79q167+bBwAAAACgdNVK4Z2o+YTySQAAAAAAoM1SkgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFlKcgAAAAAA2qz29Q4AAAAAANDaqqnUOwINwkpyAAAAAADaLCU5AAAAAABtlpIcAAAAAIA2S0kOAAAAAECbpSQHAAAAAKDNal/vAAAAAAAAra1asX6Y9/kkAAAAAADQZinJAQAAAABos5TkAAAAAAC0WUpyAAAAAADaLCU5AAAAAABtVvt6BwAAAAAAaG3VVOodgQZhJTkAAAAAAG2WkhwAAAAAgJp64403MnTo0Gy55Zbp379/zjvvvCxcuPAjz500aVL22muvbLrpptl9993zwAMPNJsfN25ctt9++2y66aY59NBD8/zzz9c0q5IcAAAAAICaOv7447P00kvnt7/9bW688cY8+OCDueqqqz503gsvvJDhw4fnuOOOy+9///sMHz48xx9/fGbNmpUkufnmm3P11Vdn/Pjxefjhh7PRRhtlxIgRqVarNcuqJAcAAAAAoGZefPHFPPLIIznppJPSpUuX9OrVK0OHDs0111zzoXNvvvnmbLnllvnc5z6X9u3b5/Of/3y22mqrXHfddUmS66+/Pl/+8pez7rrrplOnTvn617+emTNn5uGHH65ZXiU5AAAAAAD/0vz589PU1NTsmD9//ofOe/bZZ9O1a9esttpqi8f69OmTmTNn5u2332527nPPPZd+/fo1G+vbt2+eeuqpj5zv0KFD1l577cXztdC+Znf6N6z+vZ/UO0LD6bznMfWO0HB8Tj6sz8Q76x2h4ayyUf96R2g4XQ49vd4RGsrq629W7wgNZ5v1V6h3hIazx4Kn6x2h4fS+6o56R2g4XTcbUO8IDafLIafVO0LDWbtvv399UhvTa+zP6x2h4XTbeNt6R2gox+xW7wSNp2+fdeodoeGstMl29Y7AJ0C1Uql3hCXO5ZdfnjFjxjQbGzZsWIYPH95sbM6cOenSpUuzsX+8f/fdd7P88sv/n+d27tw57777bovma6EhSvI3zz263hEaykqnX54545Ra/2yZI8/NzK99qd4xGkqP71+byf+xTb1jNJStfvdQ3p5yT71jNJTlNx+YpktOrneMhrHssd/NK0/9sd4xGkr39TfNg1Pf/tcntiHbbrB8nh+8Z71jNJTeV92ROzusV+8YDWWPBU9n6rSX6x2joWzQp2fmXffdesdoKJ2/cHJeeO6ZesdoKGv37ZcXjxpU7xgNZa0rbsk7v/9lvWM0jOW23C3j7q13isZy5OeS6dOeq3eMhrJOn75pevj2esdoKMv236veEWgjjj766Bx22GHNxjp27Pih85ZeeunMnTu32dg/3i+zzDLNxrt06ZJ58+Y1G5s3b97i8/7VfC3YbgUAAAAAgH+pY8eOWXbZZZsdH1WSr7vuunnrrbfy+uuvLx6bNm1aVl999Sy33HLNzu3Xr1+effbZZmPPPfdc1l133cX3+uf5BQsW5IUXXvjQFi3/DiU5AAAAAAA1s/baa2eLLbbIt7/97TQ1NWXGjBkZO3ZsDjjggA+du/fee+eRRx7JXXfdlYULF+auu+7KI488kn322SdJsv/+++cnP/lJnnrqqfz973/PhRdemG7dumXLLbesWV4lOQAAAAAANTV69OgsXLgwO++8cw466KBst912GTp0aJJks802y2233Zbk/Qd6XnLJJbn88suz1VZbZezYsfnhD3+YddZ5/3kMBxxwQAYPHpxjjz0222yzTf785z/n8ssvT4cOHWqWtSH2JAcAAAAA4JOjW7duGT169EfOPfroo83eb7fddtluu49+IG+lUsnhhx+eww8/vOYZ/0FJDgAAAAC0OdVqpd4RaBC2WwEAAAAAoM1SkgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFkfqyR/8803c9VVV+W8885LU1NTHnjggVrnAgAAAACA0hUuyf/0pz9lt912yy9/+cvceOONmT17do477rj8/Oc/LyMfAAAAAEDNVdPOUfD4pCr8lY0aNSqnnHJKfvazn6V9+/bp1atXLrnkkowfP76MfAAAAAAAUJrCJfkzzzyTffbZJ0lSqVSSJNttt11mzZpV22QAAAAAAFCywiX5SiutlOeff77Z2PPPP59u3brVLBQAAAAAALSGwiX5l7/85Rx99NG5/vrrs3Dhwtx111057rjj8oUvfKGMfAAAAAAAUJr2RS/4yle+kqWWWio//vGPs2jRoowePToHHXRQBg8eXEI8AAAAAAAoT+GS/PXXX8/BBx+cgw8+uIw8AAAAAAClq6ZS7wg0iMLbrey4444ZOnRoHnjggSxatKiMTAAAAAAA0CoKl+S33nprevfunbPOOis77LBDLrroorz00ktlZAMAAAAAgFIVLsn79OmTE088Mb/+9a9z3nnn5eWXX86+++6br3zlK2XkAwAAAACA0hQuyRdf2K5dOnfunKWXXjodO3bMggULapkLAAAAAABKV/jBnS+88EJuueWW3HbbbZk7d2723nvvXH311enbt28Z+QAAAAAAoDSFS/Ldd98922yzTb7+9a9n4MCB6dixYxm5AAAAAABKU02l3hFoEIVL8l/96lfp1atXGVkAAAAAAKBVFd6TvFevXvnxj3+cz3/+8/n0pz+dz33uc7nssstSrVbLyAcAAAAAAKUpvJL8xz/+cSZMmJCjjjoqa6yxRl566aVceeWVadeuXY466qgyMgIAAAAAQCkKl+Q/+9nPMnbs2Gy44YaLxzbffPMMHz5cSQ4AAAAAwBKl8HYrr776atZff/1mY+uvv37eeuutWmUCAAAAAIBWUbgkX2uttXLPPfc0G7vnnnuy1lpr1SwUAAAAAECZqqk4Ch6fVIW3Wxk6dGiOP/74/PKXv0yvXr3y0ksv5b777svo0aPLyAcAAAAAAKUpvJL8c5/7XK688sp07Ngxf/rTn7L88svnmmuuyU477VRGPgAAAAAAKE3hleRJss0222SbbbbJ7Nmzs+KKK9Y6EwAAAAAAtIrCK8mbmppy+umn59Of/nQ+85nPZPPNN893v/vdzJ8/v4x8AAAAAABQmsIl+fnnn59nn302Y8eOzZ133pnvf//7eeihh/L973+/jHwAAAAAAFCawtutPPDAA7ntttuy0korJUl69+6d9dZbLwcccEC+8Y1v1DwgAAAAAECtVVOpdwQaROGV5F26dMlSSy3VbGzppZfOokWLahYKAAAAAABaQ4tL8pkzZ2bmzJkZNGhQvva1r+WZZ57JnDlzMn369JxyyikZPHhwiTEBAAAAAKD2WrzdyoABA1KpVFKtVpMke++9dyqV9/+XhGq1mgceeCBHHXVUOSkBAAAAAKAELS7J77vvvjJzAAAAAABAq2txSd6zZ8//dW7hwoV55pln/s9zAAAAAACg0bS4JP+HX//61zn77LMza9asxVuvJEn79u3zxBNP1DQcAAAAAEAZqtVKvSPQIAqX5BdccEF22WWXLL/88nn66aez55575pJLLskBBxxQRj4AAAAAAChNu6IXzJgxIyeddFL22GOPzJ49O7vssksuvPDCXH/99WXkAwAAAACA0hQuyVdaaaW0a9cuPXr0yLRp05Ikffv2zV//+teahwMAAAAAgDIVLsnXW2+9XHzxxUmSlVdeOZMmTcrDDz+cTp061TwcAAAAAACUqXBJftJJJ+Xee+/Na6+9lhEjRmTo0KEZPHhwhgwZUkY+AAAAAAAoTeEHd/bp0yd33nlnkqRnz5554IEHMmfOnKyzzjqLz7njjjuy55571i4lAAAAAEANVVOpdwQaROGV5B+06qqrNivIk+TMM8/8d28LAAAAAACl+7dL8o9SrVbLuC0AAAAAANRUKSV5peJ/VQAAAAAAoPGVUpIDAAAAAMCSQEkOAAAAAECb1b7eAQAAAAAAWls1tozmfR7cCQAAAABAm1W4JH/sscc+cvw3v/nN4tef/exnP34iAAAAAABoJYVL8sMOO+xDY01NTTnuuOMWvx8zZsy/lwoAAAAAAFpBi/Ykf/HFF7PHHnvkvffeS7VazQYbbPChczbffPOahwMAAAAAgDK1qCRfa621csMNN+Ttt9/OUUcdlXHjxjWb79SpU/r161dKQAAAAAAAKEuLSvIkGT58eO69997suuuu2XrrrcvMBAAAAABQqmoq9Y5Ag2hxSf7GG29k6tSpueeee/LKK6+kWq1+6JwePXrUNBwAAAAAAJSpxSX5gAEDsu+++6ZSqWTAgAHN5qrVaiqVSqZOnVrzgAAAAAAAUJYWl+QXXnhhTj755Oy222654447yswEAAAAAACtosUleZKsttpq+elPf5qePXuWlQcAAAAAAFpNoZI8SSZOnNii80aNGlU4DAAAAAAAtKZ2RS/o1KlTbr/99rzzzjvp1q1bFi5cmDvvvDOvvvpqGfkAAAAAAGquWq04Ch6fVIVXks+YMSMXXnhhdt1118Vj++67b8aPH2/1OAAAAAAAS5TCK8mnTJmSgQMHNhvr379/nnjiiZqFAgAAAACA1lC4JO/Zs2d+8YtfNBu76aab0rt375qFAgAAAACA1lB4u5Wvfe1rOe6443LNNdeke/fumTFjRqZPn54JEyaUkQ8AAAAAAEpTeCX5zjvvnJtuuinbbrttlltuueywww659NJLs/HGG5eRDwAAAAAASlO4JL///vszePDgDB8+PKuuumouv/zyDBkyJNdff30Z+QAAAAAAam5RKo6CxydV4ZL80ksvzfHHH59FixblJz/5ScaMGZNrrrkm48aNKyMfAAAAAACUpvCe5C+99FIOOuig/PnPf87cuXPzmc98Ju3bt8/rr79eRj4AAAAAAChN4ZXkXbp0yRtvvJH7778/W2yxRdq3b5+nnnoqK664Yhn5AAAAAACgNIVXku+///4ZNGhQ3n777YwePTpPPvlkjjjiiBx++OFl5AMAAAAAgNIULsmHDx+erbfeOp06dcqmm26aV155Jeecc0522WWXMvIBAAAAAEBpCpfkSdK/f//Fr7t3757u3bvXLBAAAAAAQNmqqdQ7Ag2i8J7kAAAAAADwSaEkBwAAAACgzVKSAwAAAADQZinJAQAAAABos5TkAAAAAAC0We1rdaOmpqYsu+yytbodAAAAAEBpqtVKvSPQIAqvJN96660/cnzHHXf8d7MAAAAAAECrqlSr1eq/OunFF1/MmWeemWq1mt///vfZcsstm803NTXlrbfeyv33319aUAAAAACAWpnyzBv1jrDE2bzfyvWOUIoWbbey1lprZZdddsns2bMzZcqUD60m79ixYwYMGPCxQ8z71YSPfe0nUeddDsu8+ybWO0ZD6bzzVzL319fWO0ZD6bLjlzLv2vPrHaOhdP7SNzJ92nP1jtFQ1unTN796bH69YzSMXT7dMX996tF6x2goq6+/Wd561A+5/1nXzQb4nnxA180GZOq0l+sdo6Fs0Kdn7uywXr1jNJQ9FjydyU+/Ve8YDWWr9bpm5tOP1ztGQ+mx3iZ55/e/rHeMhrLclrvlheeeqXeMhrF2335584nf1TtGQ1npU/+Rl56dWu8YDWXNdTfwPfmANdfdoN4RYInW4j3JDz744CTJGmuskUGDBpWVBwAAAAAAWk3hB3cOGjQojz/+eKZPn54P7tSiPAcAAAAAYElSuCS/6KKLMm7cuKyyyipp3/5/Lq9UKkpyAAAAAGCJUE2l3hFoEIVL8ltvvTWXXXZZdthhhzLyAAAAAABAq2lX9IJ3330322+/fRlZAAAAAACgVRUuyXfcccfcfvvtZWQBAAAAAIBWVXi7lb///e855ZRTctlll6Vbt27N5iZOnFizYAAAAAAAULbCJXm/fv3Sr1+/MrIAAAAAAECrKlySDxs2rIwcAAAAAACtplqt1DsCDaLwnuRJcv3112evvfZK//79M3PmzIwYMSJz5sypdTYAAAAAAChV4ZL8qquuyvjx43PooYfmvffeyzLLLJNZs2Zl1KhRZeQDAAAAAIDSFC7Jr7322owdOzYHHXRQ2rVrlxVWWCE//OEP88ADD5SRDwAAAAAASlO4JJ89e3bWWWedJEm1Wk2SrLzyylm4cGFtkwEAAAAAQMkKl+Trr79+rrvuuiRJpfL+5vZ33XVX1l133domAwAAAACAkrUvesE3vvGNDB48OLfeemvefffdHHnkkfnjH/+YK6+8sox8AAAAAAA1V02l3hFoEIVL8o022ih33HFHbrvttmywwQZZffXVc/bZZ6dHjx5l5AMAAAAAgNIULsmTZLXVVsuRRx5Z6ywAAAAAANCqCpfkkyZNyrnnnpuXX3558YM7/2Hq1Kk1CwYAAAAAAGUrXJKfc8452WWXXbLDDjukXbvCz/0EAAAAAICGUbgkf+utt3LiiSdmqaWWKiMPAAAAAAC0msIl+U477ZRJkyZlwIABZeQBAAAAAChdtVqpdwQaROGS/Ctf+Uq+/OUvp2/fvll++eWbzU2cOLFmwQAAAAAAoGyFS/Izzzwzm222WbbccktbrgAAAAAAsEQrXJK/+OKLeeSRR9KhQ4cy8gAAAAAAQKtpV/SCDTbYIDNmzCgjCwAAAAAAtKrCK8m33XbbfOUrX8luu+2Wrl27NpsbNmxYrXIBAAAAAEDpCpfkjzzySNZZZ508/fTTzcYrFU+DBQAAAACWDIvqHYCGUbgkv/rqq8vIAQAAAAAAra7wnuRJMm3atJx77rkZNmxYZs+enZ/85Ce1zgUAAAAAAKUrXJL/13/9Vw488MDMnj07//3f/5158+blkksuyRVXXFFGPgAAAAAAKE3hkvyiiy7K97///Vx44YVZaqml0r1791xxxRW57rrrysgHAAAAAAClKVySv/jii9l+++2T/M/DOj/1qU/lb3/7W22TAQAAAABAyQo/uLNHjx6ZMmVKtthii8VjTzzxRLp3717TYAAAAAAAZalWK/WOQIMoXJIfffTROeaYY/KlL30pCxYsyLhx43L11VfnhBNOKCMfAAAAAACUpnBJvscee2TZZZfNNddckx49euShhx7KN7/5zey6665l5AMAAAAAgNIULsmTZIcddsgOO+yQJGlqakrHjh1rGgoAAAAAAFpD4Qd3Tps2Lccee2yS5J577sk222yT7bbbLn/4wx9qHg4AAAAAAMpUeCX5t7/97ay66qqpVqu58MILM2LEiCyzzDL5zne+kxtuuKGMjAAAAAAAUIrCJfnTTz+dyy67LC+//HJmzJiRL3/5y1lmmWVy4YUXlpEPAAAAAKDmqqnUOwINovB2KwsXLky1Ws1//dd/ZaONNsqyyy6b2bNnp1OnTmXkAwAAAACA0hReSf6Zz3wmw4cPz1NPPZUhQ4ZkxowZOfnkk7PjjjuWEA8AAAAAAMpTeCX5yJEjs/HGG+fggw/OV77ylcyZMycbbbRRzjjjjDLyAQAAAABAaQqvJF9mmWUyfPjwxe/XX3/9nH766Vm4cGFNgwEAAAAAQNkKl+QvvfRSLrnkksyaNSuLFi1KkixYsCDTp0/PQw89VPOAAAAAAABQlsIl+Te/+c1Uq9WsuOKKeeONN7LhhhvmlltuyeDBg0uIBwAAAABQe9Vqpd4RaBCF9yR/8sknc8kll2To0KFZbrnlcvrpp+eiiy7Kgw8+WEY+AAAAAAAoTeGSvEuXLllhhRWy5ppr5plnnkmSbL/99nn++edrHg4AAAAAAMpUuCRfc801M2nSpCyzzDJZtGhRZsyYkVmzZnlwJwAAAAAAS5zCe5IfddRRGTFiRO6444584QtfyBe/+MUstdRS2XnnncvIBwAAAAAApSlckg8YMCC/+tWvsvLKK2fo0KFZe+2109TUlEGDBpUQDwAAAAAAylO4JE+SVVZZJY8//nhmzZqVNddcMxtvvHGtcwEAAAAAQOkKl+Qvvvhijj766PzlL39J165dM3v27Gy00UYZM2ZMVl111TIyAgAAAADUVDWVekegQRR+cOfIkSOzzTbb5Pe//31+97vf5eGHH06fPn1yzjnnlJEPAAAAAABKU3gl+RNPPJGxY8emY8eOSZJll102Z555ZnbcccdaZwMAAAAAgFIVXknes2fPvPTSS83G/vrXv6Zr1661ygQAAAAAAK2ixSvJb7nlliTJ5ptvniOPPDJDhgxJz5498+qrr+ZHP/pRPve5z5WVEQAAAAAAStHiknz06NGLX1cqlfzoRz9qNv/LX/4yJ510Uu2SAQAAAABAyVpckt9///0tvukdd9yRPffc82MFAgAAAAAo26JqvRPQKArvSd4SZ555Zhm3BQAAAACAmiqlJK9W/RgGAAAAAIDGV0pJXqlUyrgtAAAAAADUVCklOQAAAAAALAmU5AAAAAAAtFnt6x0AAAAAAKC1VWPLaN7nwZ0AAAAAALRZhUvyxx577CPHf/Ob3yx+/dnPfvbjJwIAAAAAgFZSuCQ/7LDDPjTW1NSU4447bvH7MWPG/HupAAAAAACgFbRoT/IXX3wxe+yxR957771Uq9VssMEGHzpn8803r3k4AAAAAAAoU4tK8rXWWis33HBD3n777Rx11FEZN25cs/lOnTqlX79+pQQEAAAAAICytKgkT5Lhw4fn3nvvza677pqtt966zEwAAAAAAKWqViv1jkCDaHFJ/sYbb2Tq1Km555578sorr6RarX7onB49etQ0HAAAAAAAlKnFJfmAAQOy7777plKpZMCAAc3mqtVqKpVKpk6dWvOAAAAAAABQlhaX5BdeeGFOPvnk7LbbbrnjjjvKzAQAAAAAAK2ixSV5kqy22mr56U9/mp49e5aVBwAAAAAAWk2hkjxJJk6c2KLzRo0aVTgMAAAAAAC0pnZFL+jUqVNuv/32vPPOO+nWrVsWLlyYO++8M6+++moZ+QAAAAAAaq5adRQ9PqkKrySfMWNGLrzwwuy6666Lx/bdd9+MHz/e6nEAAAAAAJYohVeST5kyJQMHDmw21r9//zzxxBM1CwUAAAAAAK2hcEnes2fP/OIXv2g2dtNNN6V37941CwUAAAAAAK2h8HYrX/va13LcccflmmuuSffu3TNjxoxMnz49EyZMKCMfAAAAAACUpvBK8p133jk33XRTtt122yy33HLZYYcdcumll2bjjTcuIx8AAAAAAJSmcEl+//33Z/DgwRk+fHhWXXXVXH755RkyZEiuv/76MvIBAAAAANTcolQcBY9PqsIl+aWXXprjjz8+ixYtyk9+8pOMGTMm11xzTcaNG1dGPgAAAAAAKE2lWq1Wi1zQv3//PPzww/nzn/+cgw8+OJMnT0779u2z2Wab5dFHHy0rJwAAAABAzdz3xLx6R1ji7PypzvWOUIrCD+7s0qVL3njjjdx///3ZYost0r59+zz11FNZccUVP3aIvzzz5Me+9pNojX4b560//rreMRpK1013TNNlp9Y7RkNZ9qujMu+eq+odo6F0HjjYnycfsEa/jfPu+DPrHaNhLD3knDwz7aV6x2go/fqsmZ/+rtDPyz/xvvwflcz9ybfrHaOhdDnktMy77rv1jtFQOn/h5Ex++q16x2goW63XNXd2WK/eMRrKHguezqQ/vVvvGA1lh42WzrxfTah3jIbSeZfD8spTf6x3jIbRff1N8x97Tap3jIbyu9t3yG/+NKfeMRrK9hstk5lPP17vGA2lx3qb1DsCLNEKl+T7779/Bg0alLfffjujR4/Ok08+mSOOOCKHH354GfkAAAAAAKA0hUvy4cOHZ+utt06nTp2y6aab5pVXXsk555yTXXbZpYx8AAAAAABQmsIlefL+vuT/0L1793Tv3r1mgQAAAAAAylatVuodgQbRrt4BAAAAAACgXpTkAAAAAAC0WUpyAAAAAADaLCU5AAAAAABtlpIcAAAAAIA2q329AwAAAAAAtLZqtd4JaBRWkgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbVb7egcAAAAAAGht1VTqHYEGoSQHAAAAAKDVvPvuuxk5cmTuv//+LFy4MDvvvHPOOuusLLPMMh95/t13352xY8dmxowZ6dq1a/bbb78MHTo07dq9v1HK7rvvnpkzZy5+nyQ33nhj+vTp06I8SnIAAAAAAFrNyJEj88orr+Tuu+/Oe++9l+OPPz4XXHBBzjrrrA+d++STT+bkk0/OD37wg+ywww6ZPn16jjzyyCy99NI5/PDD09TUlOnTp+e+++5Lz549P1Yee5IDAAAAANAq5s6dm9tvvz0jRoxI165ds/LKK+fEE0/MTTfdlLlz537o/Jdffjlf/OIXs9NOO6Vdu3bp06dPBg4cmMmTJyd5v0Tv2rXrxy7IEyvJAQAAAACooXnz5mXWrFkfOTd37twsWLAg/fr1WzzWp0+fzJs3Ly+88EI22GCDZufvuuuu2XXXXZvd+9e//nX22muvJMkTTzyRLl265JBDDsmzzz6bnj17Zvjw4dlpp51anFdJDgAAAADAvzR//vzMnz+/2VjHjh3TsWPHZmOPPfZYvvKVr3zkPY477rgkydJLL714rEuXLkmSOXPm/J+/flNTU4477rh07tw5gwcPTpJUKpV86lOfygknnJAePXrkl7/8ZYYPH56f/OQn2XTTTVv0dSnJAQAAAIA2Z1G13gmWPJdffnnGjBnTbGzYsGEZPnx4s7H+/fvn6aef/sh7/PnPf87FF1+cuXPnLn5Q5z+2WVl22WX/11/7+eefz4gRI7Lyyitn4sSJi8894ogjmp23995754477sjdd9/d4pK88J7kxxxzzEeOH3LIIUVvBQAAAADAEuLoo4/OH/7wh2bH0UcfXege66yzTjp06JDnnntu8di0adPSoUOHrL322h95zaRJk3LggQdmu+22y/jx47PCCissnhs/fnwefPDBZufPnz8/nTp1anGmFq0k/8tf/pJbbrklSfK73/3uQz8taGpq+l9/MgAAAAAAwJLvo7ZWKapLly7Zfffdc8EFF+Tiiy9OklxwwQXZc88907lz5w+d/8c//jHHHntsvvWtb+WAAw740Pwrr7ySG264IePGjUv37t1zyy235NFHH83ZZ5/d4kwtKsl79OiRZ599Nm+++Wbee++9PPzww83mO3XqlLPOOqvFvygAAAAAAG3TWWedlfPPPz977bVXFixYkJ133jlnnHHG4vk99tgje+21V7761a/msssuy8KFC3PeeeflvPPOW3zOFltskSuvvDInn3xy2rVrly9/+ct555130rdv31xxxRVZa621WpynRSV5u3btFrf6p59+es4999wW/wIAAAAAAPAPyy67bEaOHJmRI0d+5Pydd965+PVll132f96rY8eOOe2003Laaad97DwtfnDnzJkzkyRDhw5d/PqDevTo8bGDAAAAAABAa2txST5gwIBUKpUkSbX6P49+rVQqqVarqVQqmTp1au0TAgAAAADUWLVaqXcEGkSLS/L77ruvzBwAAAAAANDqWlyS9+zZs8wcAAAAAADQ6lpckm+++eaZMmVK1l9//cXbrnyQ7VYAAAAAAFiStLgkv+KKK5IkP/7xj//XkhwAAAAAAJYkLS7Jt9xyyyRJ//79SwsDAAAAAACtqcUl+T8MGDDgf11J7uGeAAAAAMCSoFqtdwIaReGSfPjw4c3ev/nmm/n5z3+eAw88sGahAAAAAACgNRQuyffdd98PjQ0cODAnnHBCDjvssJqEAgAAAACA1tCuFjfp2bNnXnjhhVrcCgAAAAAAWk3hleSTJ09u9n7BggX55S9/mbXXXrtWmQAAAAAAoFUULskPPfTQZu/btWuXPn365KyzzqpZKAAAAAAAaA2FS/KnnnqqjBwAAAAAAK1mUSr1jkCDKFySJ0lTU1MmTZqUWbNmZY011sj222+fzp071zobAAAAAACUqnBJ/sQTT+SII45I586ds/rqq+fll19Ox44dc+WVV6Z3795lZAQAAAAAgFK0K3rBqFGjcthhh2XSpEm57rrr8tvf/jb77LNPzjnnnDLyAQAAAABAaQqX5M8991yOPPLIxe8rlUqGDh2aJ598sqbBAAAAAACgbIVL8vXWWy9//OMfm41NnTo1vXr1qlUmAAAAAABoFS3ek3zMmDFJku7du+foo4/OAQcckDXWWCOvvvpqbrzxxuyyyy6lhQQAAAAAqKVqtd4JaBQtLskffvjhxa832GCD/OlPf8qf/vSnJEmfPn3y/PPP1z4dAAAAAACUqMUl+dVXX93im15xxRU56qijPlYgAAAAAABoLYX3JG+Jyy67rIzbAgAAAABATZVSkldt6AMAAAAAwBKglJK8UqmUcVsAAAAAAKipFu9JDgAAAADwSVGtWujL+0pZSQ4AAAAAAEsCJTkAAAAAAG2WB3cCAAAAANBmFS7JR44cmaampv/znAMPPPBjBwIAAAAAgNZSuCS//fbb07lz5//znNNOO+1jBwIAAAAAgNbSvugF+++/f84555zst99+WWWVVVKp/M9TYHv06FHTcAAAAAAAZVhkx2j+v8Il+YQJE5Ik119/fZKkUqmkWq2mUqlk6tSptU0HAAAAAAAlKlyS77PPPtlmm22y1VZbNVtFDgAAAAAAS5rCJfmyyy6b888/P8stt1z222+/7LfffllttdXKyAYAAAAAAKUq/ODOM844I7/97W9z0kkn5fHHH8/AgQMzZMiQ3HXXXZk/f34ZGQEAAAAAoBSFS/Ik6dChQ3bZZZdceumlmThxYmbPnp0TTjgh2223Xc4///y88847tc4JAAAAAAA197FK8tdeey0TJkzIoEGDcuihh6ZHjx4ZO3ZsfvzjH2f69Ok55phjap0TAAAAAKBmqlVH0eOTqvCe5EOGDMlDDz2U3r17Z7/99ss+++yTlVZaafH8CSeckC984Qs1DQkAAAAAAGUoXJKvscYaufbaa7PJJpt85HzPnj1z4403/tvBAAAAAACgbIVL8rPPPvv/nF9mmWXSp0+fjx0IAAAAAABay8fakxwAAAAAAD4JlOQAAAAAALRZhbdbAQAAAABY0lVTqXcEGoSV5AAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbZaSHAAAAACANktJDgAAAABAm9W+3gEAAAAAAFrbomq9E9AorCQHAAAAAKDNUpIDAAAAANBmKckBAAAAAGizlOQAAAAAALRZSnIAAAAAANqs9vUOAAAAAADQ2qrVeiegUVhJDgAAAABAm6UkBwAAAACgzVKSAwAAAADQZlWqVbvvAAAAAABtyw0PLap3hCXOgdt8MtdcN8SDO1/708P1jtBQVtmof1547pl6x2goa/ftl78882S9YzSUNfpt7HvyAWv02zjPT5tW7xgNpXefPr4n/6R3nz6Z+fTj9Y7RUHqst0n+/NzMesdoKBv27eHfwx+wdt9+vicfsHbffv48+YAe622SSX96t94xGsoOGy2dOzusV+8YDWWPBU/7u8kH+Ptac7379Mk7v/9lvWM0lOW23C2/32HbesdoKFtOetDvmw/o3adPvSPAEq0hSnIAAAAAgNZkfw3+4ZO5Ph4AAAAAAFqgxSvJb7nlln95zqBBg/6NKAAAAAAA0LpaXJKPHj06SbJo0aLMmjUrXbt2TY8ePfLqq6/m9ddfz3rrrackBwAAAABgidLikvz+++9Pkpx//vnp2LFjjjvuuLRr9/5uLWPHjs1f/vKXchICAAAAAEBJCu9J/vOf/zzDhg1bXJAnyVFHHZW77767psEAAAAAAKBsLV5J/g+dOnXKtGnTsv766y8ee/LJJ7P88svXNBgAAAAAQFkWVSv1jkCDKFySH3zwwRkyZEgOPPDA9OjRIzNmzMj111+fESNGlJEPAAAAAABKU7gk/+pXv5pu3brltttuyy9+8Yt07949Z555ZvbYY48y8gEAAAAAQGkKl+RJcsABB+SAAw6odRYAAAAAAGhVhR/cmSTXX3999t577/Tv3z8zZ87MiBEjMmfOnFpnAwAAAACAUhUuya+66qqMHz8+hxxySN57770ss8wymTVrVkaNGlVGPgAAAAAAKE3hkvzaa6/N2LFjc9BBB6Vdu3ZZYYUV8sMf/jAPPPBAGfkAAAAAAGquWnUUPT6pCpfks2fPzjrrrJMkqf7/78zKK6+chQsX1jYZAAAAAACUrHBJvv766+e6665LklQqlSTJXXfdlXXXXbe2yQAAAAAAoGTti17wjW98I4MHD86tt96ad999N0ceeWT++Mc/5sorrywjHwAAAAAAlKZwSb7RRhvlzjvvzG233ZYNNtggq6++es4+++z06NGjjHwAAAAAAFCawiX5ueeem9NPPz1HHHFEs/GTTz453/3ud2sWDAAAAAAAytaiknzWrFl58MEHkyQ33HBDNt5442bz77zzTu65557apwMAAAAAKEG1Wu8ENIoWleQrrrhifvKTn+TNN9/M/PnzM3r06GbznTp1yrBhw0oJCAAAAAAAZWlRSd6xY8fceOONSZIhQ4Zk/PjxpYYCAAAAAIDW0K7oBR9VkC9cuDB//vOfaxIIAAAAAABaS+EHd06aNCnf+ta3MmvWrFT/aeOe9u3b54knnqhpOAAAAAAAKFPhkvx73/tedtlllyy//PJ5+umns+eee+aSSy7JAQccUEY+AAAAAAAoTeGSfMaMGTnppJPyl7/8JQ899FB22WWX9O7dO1/72tdy6KGHlpERAAAAAKCmFlX/9Tm0DYX3JF9ppZXSrl279OjRI9OmTUuS9O3bN3/9619rHg4AAAAAAMpUuCRfb731cvHFFydJVl555UyaNCkPP/xwOnXqVPNwAAAAAABQpsIl+UknnZR77703r732WkaMGJGhQ4dm8ODBGTJkSBn5AAAAAACgNIX3JO/Tp0/uvPPOJEnPnj3zwAMPZM6cOVlnnXVqHg4AAAAAAMpUeCX5XnvtlR//+MeZPXt2kmTVVVdVkAMAAAAAsEQqXJJ/6Utfyp133pkddtghxx9/fH73u9+VkQsAAAAAoDTVasVR8PikKlySf/nLX87111+fm2++OT179sw3v/nNDBgwIGPGjCkjHwAAAAAAlKZwSf4Pffr0ybBhw3LCCSckScaPH1+zUAAAAAAA0BoKP7gzSR588MHccsstueeee7L22mtnyJAh2XvvvWudDQAAAAAASlW4JN9hhx0yZ86cfP7zn8/EiROz8cYbl5ELAAAAAABKV7gkHzFiRD7/+c+nS5cuZeQBAAAAAIBWU7gk33///fPkk0/mxhtvzMsvv5xVVlkl++23X7bccssy8gEAAAAA1Fy1Wu8ENIrCD+783e9+ly9/+ct56623st5666WpqSmHHXZY7r333jLyAQAAAABAaQqvJB89enTOP//87L777ovHfvGLX2Ts2LH53Oc+V9NwAAAAAABQpsIryadPn55dd9212diuu+6aF154oVaZAAAAAACgVRQuybt27Zpnnnmm2dhTTz2VVVZZpWahAAAAAACgNRTebuXAAw/MMccck6OPPjprrLFGXnrppYwbNy5f/vKXy8gHAAAAAAClKVySH3nkkfn73/+eyy+/PK+//np69uyZQw45JIcddlgZ+QAAAAAAam5Rtd4JaBSFS/JKpZLhw4dn+PDhZeQBAAAAAIBWU7gkf++993L33XfnhRdeyKJFi5rNDRs2rGbBAAAAAACgbIVL8rPOOit33nln1l9//bRv/z+XVyqVmgYDAAAAAICyFS7JH3jggUycODGf+tSnysgDAAAAAACtpl3RCxYtWpQNN9ywjCwAAAAAANCqCpfke+65Z8aPH19GFgAAAACAVlGtOooen1SFt1v505/+lClTpuTSSy/NSiut1Gzuvvvuq1kwAAAAAAAoW+GS/MADD8yBBx5YRhYAAAAAAGhVhUvyfffdd/HrN99880OryQEAAAAAYElReE/yhQsX5vvf/3622GKLDBgwIDNmzMj++++f1157rYx8AAAAAABQmsIl+Q9/+MM89NBDufjii9OhQ4esvPLKWX311XPuueeWkQ8AAAAAAEpTeLuV22+/Pddee21WW221VCqVLL300hk1alQGDhxYRj4AAAAAgJqrVuudgEZReCX5u+++u3gf8ur//yR17tw57doVvhUAAAAAANRV4WZ70003zZgxY5IklUolSXL11VfnU5/6VG2TAQAAAABAyQpvt3Laaadl8ODBufnmmzNnzpx8/vOfz5w5czJhwoQy8gEAAAAAQGkKl+TdunXLnXfemV//+td5+eWXs/rqq2fHHXfMsssuW0Y+AAAAAAAoTeGSfM8998xtt92W3XffvYw8AAAAAADQagqX5Ekyd+5cK8cBAAAAgCXWomq9E9AoCpfk/fv3z4EHHpjtt98+q666arO5YcOG1SwYAAAAAACUrXBJ/pe//CW9evXK9OnTM3369MXjlUqlpsEAAAAAAKBshUvyq6+++l+ec8UVV+Soo476WIEAAAAAAKC1tCvjppdddlkZtwUAAAAAgJoqpSSvVu16DwAAAABA4yu83UpL2J8cAAAAAGhk1vnyD6WsJAcAAAAAgCWBkhwAAAAAgDZLSQ4AAAAAQJvlwZ0AAAAAALRZhUvykSNHpqmp6f8858ADD/zYgQAAAAAAoLUULslvv/32dO7c+f8857TTTvvYgQAAAAAAyrZokaPo8UnVvugF+++/f84555zst99+WWWVVVKpVBbP9ejRo6bhAAAAAACgTIVL8gkTJiRJrr/++iRJpVJJtVpNpVLJ1KlTa5sOAAAAAABKVLgk32effbLNNttkq622araKHAAAAAAAljSFS/Jll102559/fpZbbrnst99+2W+//bLaaquVkQ0AAAAAAEpV+MGdZ5xxRn7729/mpJNOyuOPP56BAwdmyJAhueuuuzJ//vwyMgIAAAAAQCkKl+RJ0qFDh+yyyy659NJLM3HixMyePTsnnHBCtttuu5x//vl55513ap0TAAAAAKBmqlVH0eOT6mOV5K+99lomTJiQQYMG5dBDD02PHj0yduzY/PjHP8706dNzzDHH1DonAAAAAADUXOE9yYcMGZKHHnoovXv3zn777Zd99tknK6200uL5E044IV/4whdqGhIAAAAAAMpQuCRfY401cu2112aTTTb5yPmePXvmxhtv/LeDAQAAAABA2QqX5Gefffb/Ob/MMsukT58+HzsQAAAAAAC0lkq1+knech0AAAAA4MMuu7veCZY8X9213gnKUXgleRlmjxpa7wgNZcVTx2bez79f7xgNpfP+X8vfLjiu3jEaygonXpznB+9Z7xgNpfdVd+TNx39b7xgNZaVNtsu7k35W7xgNY+kdvpi/PvVovWM0lNXX3yyPP/tqvWM0lE3WXTUzhu5f7xgNpdfYn+fFowbVO0ZDWeuKW/LO739Z7xgNZbktd8u8X02od4yG0nmXw/L8tGn1jtFQevfpkzs7rFfvGA1ljwVP5+0p99Q7RsNYfvOBufHhRfWO0VAO6N8u055/vt4xGkqf3r3ztyn31jtGQ1lh88/VO8ISydJh/qFdvQMAAAAAAEC9KMkBAAAAAGizlOQAAAAAALRZSnIAAAAAANosJTkAAAAAAG1Wi0vyH/zgB4tfz58/PyNHjsy2226bnXbaKZdffnkZ2QAAAAAASrGo6ih6fFK1uCSfOHHi4tcXX3xxHnnkkZx11lk5/vjjc9NNN2Xs2LGlBAQAAAAAgLK0b+mJ1er//Kjg7rvvzhVXXJHevXsnSTbccMMceeSRGTp0aO0TAgAAAABASVq8krxSqSx+/fe//z29evVa/L5v377529/+VttkAAAAAABQshaX5PPnz8/YsWMzadKkfPrTn85vf/vbxXN33XVX1lprrVICAgAAAABAWVq83cqIESPy5JNP5sYbb8zMmTPzt7/9LQMGDMgVV1yRH/7wh/n+979fZk4AAAAAAKi5FpfkRx111OLXb775Zl577bUkyWabbZZrr702G2+8ce3TAQAAAACU4J+fwUhLVf71KUugFpfk/2yllVbKSiutlCTZaqutahoIAAAAAABaS4v3JAcAAAAAgE+aFq8kv+WWW/7lOYMGDfo3ogAAAAAAQOtqcUn+s5/9LI899li6d+/+kfOVSkVJDgAAAADAEqXFJfmECRNyyCGHZL/99svBBx9cZiYAAAAAAGgVLd6TvEuXLvnOd76TSy+9NPPnzy8zEwAAAABAqapVR9Hjk6rQgzvXXXfdXHDBBZk7d25ZeQAAAAAAoNW0eLuVf9hmm23KyAEAAAAAAK2ucEk+efLkjxzv0KFDVlpppay55pr/digAAAAAAGgNhUvyU045JTNnzky7du2y4oorZvbs2Vm0aFHatWuX9957L717987ll1+eXr16lZEXAAAAAABqptCe5Emy9957Z++9984jjzyS3/3ud5k8eXIOOOCADBs2LH/4wx/yH//xHznvvPPKyAoAAAAAADVVeCX5LbfckrvuuitdunRJkiy99NI57bTTsvvuu+eYY47J17/+9Wy33XY1DwoAAAAAUCuLFtU7AY2i8Eryd999N2+//XazsXfeeSdNTU2L31cqlX8/GQAAAAAAlKxwSb7bbrvl2GOPzX//93/nhRdeyH//939nxIgR2WWXXdLU1JSzzjorW265ZRlZAQAAAACgpgpvt3LaaaflvPPOy7HHHpu5c+emc+fOOeCAA/L1r389f/rTn/L222/nW9/6VglRAQAAAACgtgqX5J06dco555yTM888M2+99VZWXnnlxdurbLnlllaRAwAAAACwxChckifJ448/nunTp6darTYbHzRoUC0yAQAAAABAqyhckl900UUZN25cVllllbRv/z+XVyoVJTkAAAAAsET4wPpf2rDCJfltt92Wyy67LDvssEMZeQAAAAAAoNW0K3rBnDlzsv3225eRBQAAAAAAWlXhknzHHXfM7bffXkYWAAAAAABoVYW3W/n73/+eU045JZdddlm6devWbG7ixIk1CwYAAAAAAGUrXJL369cv/fr1KyMLAAAAAAC0qsIl+bBhw8rIAQAAAADQahZV652ARtHikvxb3/pWvvWtb+XUU0/9X88ZNWpUTUIBAAAAAEBraPGDO6vVarN/AgAAAABAUe+++25OPfXU9O/fP1tssUVOPvnkzJkz5389/6yzzsrGG2+czTbbbPFx3XXXLZ6/+eabM3DgwGy66abZb7/98uijjxbK0+KV5GeffXaS5MQTT/zQAzsBAAAAAKAlRo4cmVdeeSV333133nvvvRx//PG54IILctZZZ33k+U888URGjhyZfffd90NzDz/8cEaOHJlx48Zlk002yTXXXJNjjjkmDzzwQLp06dKiPC1eSf4PO+64Y4499tg88MADWbRoUdHLAQAAAABoo+bOnZvbb789I0aMSNeuXbPyyivnxBNPzE033ZS5c+d+6Pz58+fnmWeeycYbb/yR97vhhhuyxx57ZIsttkiHDh0yePDgrLjiirnrrrtanKnwgztvvfXW3HzzzTnrrLNSrVaz77775oADDsiaa65Z9FYAAAAAACwh5s+fn/nz5zcb69ixYzp27NhsbN68eZk1a9ZH3mPu3LlZsGBB+vXrt3isT58+mTdvXl544YVssMEGzc5/6qmnsnDhwowePTp/+MMfstxyy2X//ffPEUcckXbt2uW5557L/vvv3+yavn375qmnnmrx11W4JO/Tp09OPPHEnHDCCfnd736XW2+9Nfvuu2822mijTJw4sejtAAAAAABanUcvFnf55ZdnzJgxzcaGDRuW4cOHNxt77LHH8pWvfOUj73HcccclSZZeeunFY//YFuWj9iV/5513svXWW+fQQw/NRRddlKlTp+bYY49Nu3btcsQRR2TOnDkf2lalc+fOeffdd1v8dRUuyf+hXbt26dy5c5Zeeul07NgxCxYs+Li3AgAAAACgwR199NE57LDDmo19cBV5kvTv3z9PP/30R97jz3/+cy6++OLMnTs3yyyzTJIs3mZl2WWX/dD5n/3sZ/PZz3528ftNNtkk//mf/5m77rorRxxxRLp06ZJ58+Y1u2bevHlZccUVW/x1FS7JX3jhhdxyyy257bbbMnfu3Oy99965+uqr07dv36K3AgAAAABgCfFRW6sUtc4666RDhw557rnn8ulPfzpJMm3atHTo0CFrr732h86/99578/rrr+eLX/zi4rH58+enc+fOSZJ11103zz77bLNrnnvuuWy//fYtzlT4wZ277757HnvssXz961/PpEmTcuqppyrIAQAAAAD4l7p06ZLdd989F1xwQd588828+eabueCCC7LnnnsuLr7/WbVazahRo/Lggw+mWq3m0UcfzcSJE/OFL3whSXLAAQfk9ttvz0MPPZQFCxbkqquuyhtvvJGBAwe2OFPhleS/+tWv0qtXr6KXAQAAAABAzjrrrJx//vnZa6+9smDBguy8884544wzFs/vscce2WuvvfLVr341AwcOzKmnnppvfetbmTVrVrp165bhw4dnn332SZJsu+22OeussxbP9+3bN+PGjUvXrl1bnKfFJfkVV1yRo446Krfeeuv/es6wYcNa/AsDAAAAAND2LLvsshk5cmRGjhz5kfN33nlns/df/OIXm2238kH77LPP4tL842hxST558uQcddRRefjhhz9yvlKpfOwQAAAAAACtqbqoWu8IS6BPZgfc4pJ83LhxSZKrr766tDAAAAAAANCaWlyS33LLLf/ynEGDBv0bUQAAAAAAoHW1uCQfPXr0/zlfqVSU5AAAAAAALFFaXJLff//9Lb7pHXfckT333PNjBQIAAAAAgNbSroybnnnmmWXcFgAAAAAAaqrFK8mLqFY9GRYAAAAAaFyLVJj8f6WsJK9UKmXcFgAAAAAAaqqUkhwAAAAAAJYESnIAAAAAANosJTkAAAAAAG1WKSW5B3cCAAAAALAkKFySP/bYYx85/pvf/Gbx689+9rMfPxEAAAAAQMmqVUfR45OqcEl+2GGHfWisqakpxx133OL3Y8aM+fdSAQAAAABAK2jfkpNefPHF7LHHHnnvvfdSrVazwQYbfOiczTffvObhAAAAAACgTC0qyddaa63ccMMNefvtt3PUUUdl3LhxzeY7deqUfv36lRIQAAAAAADK0qKSPEmGDx+ee++9N7vuumu23nrrMjMBAAAAAECraHFJ/sYbb2Tq1Km555578sorr6T6ETu19+jRo6bhAAAAAACgTC0uyQcMGJB99903lUolAwYMaDZXrVZTqVQyderUmgcEAAAAAKi1RYs+vAiYtqnFJfmFF16Yk08+ObvttlvuuOOOMjMBAAAAAECraHFJniSrrbZafvrTn6Znz55l5QEAAAAAgFZTqCRPkokTJ7bovFGjRhUOAwAAAAAArald0Qs6deqU22+/Pe+88066deuWhQsX5s4778yrr75aRj4AAAAAAChN4ZXkM2bMyIUXXphdd9118di+++6b8ePHWz0OAAAAAMASpfBK8ilTpmTgwIHNxvr3758nnniiZqEAAAAAAMpUrTqKHp9UhUvynj175he/+EWzsZtuuim9e/euWSgAAAAAAGgNhbdb+drXvpbjjjsu11xzTbp3754ZM2Zk+vTpmTBhQhn5AAAAAACgNIVXku+888656aabsu2222a55ZbLDjvskEsvvTQbb7xxGfkAAAAAAKA0hUvy+++/P4MHD87w4cOz6qqr5vLLL8+QIUNy/fXXl5EPAAAAAABKU7gkv/TSS3P88cdn0aJF+clPfpIxY8bkmmuuybhx48rIBwAAAAAApSm8J/lLL72Ugw46KH/+858zd+7cfOYzn0n79u3z+uuvl5EPAAAAAKDmqtV6J6BRFF5J3qVLl7zxxhu5//77s8UWW6R9+/Z56qmnsuKKK5aRDwAAAAAASlN4Jfn++++fQYMG5e23387o0aPz5JNP5ogjjsjhhx9eRj4AAAAAAChN4ZJ8+PDh2XrrrdOpU6dsuummeeWVV3LOOedkl112KSMfAAAAAACUpnBJniT9+/df/Lp79+7p3r17zQIBAAAAAEBrKbwnOQAAAAAAfFJ8rJXkAAAAAABLskXVar0j0CAq1apPAwAAAADQtoy8dmG9IyxxzvjSJ3PNdUN8VX996tF6R2goq6+/WV56dmq9YzSUNdfdILOm/qHeMRrKahtskben3FPvGA1l+c0H5qWv7lfvGA1lzctuynPTptc7RsPo22edvPjc0/WO0VDW6rtepj3/fL1jNJQ+vXvn9ScfrHeMhtJt423zzu9/We8YDWW5LXfLC889U+8YDWXtvv3yylN/rHeMhtJ9/U3z/LRp9Y7RUHr36ePvsB+w/OYDc2eH9eodo2HsseDpPPncX+sdo6Fs3Hd1f5Z8QO8+ffy33wesedlN9Y4ASzR7kgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFkNsSc5AAAAAEBrqi6qdwIahZXkAAAAAAC0WUpyAAAAAADaLCU5AAAAAABtlpIcAAAAAIA2S0kOAAAAAECb1b7eAQAAAAAAWlu1Wq13BBqEleQAAAAAALRZSnIAAAAAANosJTkAAAAAAG1Wi0vyG264odn7H/3oRznggANyyCGH5I477qh5MAAAAAAAKFuLS/JRo0Ytfj1u3LhcddVV2X333fOZz3wm5513Xn72s5+VEhAAAAAAAMrSvqUn/vPTXn/+859nzJgx2WSTTZIk2267bb7xjW/ki1/8Yu0TAgAAAADU2KJF9U5Ao2jxSvJKpbL49TvvvJONNtpo8fvNNtssr732Wm2TAQAAAABAyVpcki9YsCC33nprpk2bli222CKPPvro4rmHHnooq622WikBAQAAAACgLC3ebmW//fbLxIkT88wzz2ThwoV5++23c9VVV+W6667Ld77znZx66qll5gQAAAAAgJprcUl+9tlnJ0nmz5+fp556Kk1NTUmSlVde+f+xd+fhMZ3//8dfk0ZiqY+tliTUWqWW2iKo2mpt8LEk9EOppY1Su1bt1FJarX1XtGhRakvsW7UoUrrYlSIIUYkikTSRmd8ffuZrJG0zbSZnOM/HdfW6kvtMxqtzJWfOvM99v29NnDhR9evXd01CAAAAAAAAAABcJM1F8vu8vLzsG3ZKojgOAAAAAAAAAHhkOV0kBwAAAAAAAIBHnc1mMzoC3ESai+Th4eF/+xh/f/9/FQYAAAAAAAAAgIyU5iL50KFDdfHixT+9w2KxWHTixIl0CwYAAAAAAAAAgKuluUi+fPlyvfLKK+rXr5+aNGniykwAAAAAAAAAAGQIj7Q+MHfu3Bo/frwmTpwoq9XqykwAAAAAAAAAAGSINBfJJaly5crq3bu3bty44ao8AAAAAAAAAABkmDS3W7mvRYsWLogBAAAAAAAAABnHmvrWizAhp2aSS1L37t1THX/11Vf/dRgAAAAAAAAAADJSmmaSX7p0SWvXrpUk7dmzRzNmzHA4Hhsbq1OnTqV7OAAAAAAAAAAAXClNRXJfX1/98ssviomJUXJysg4cOOBw3NvbWyNHjnRJQAAAAAAAAAAAXCVNRXIPDw9NnTpVkjRs2DCNHTvWpaEAAAAAAAAAAMgITm/cOXbsWF29elWhoaG6fPmy8uXLp6ZNm+rpp592RT4AAAAAAAAAAFzG6SL5kSNH1KlTJxUrVkwFCxbUkSNHNG/ePC1YsECVK1d2RUYAAAAAAAAASFc2q83oCHATThfJJ06cqD59+qhjx472sc8++0wfffSRli1blq7hAAAAAAAAAABwJQ9nf+DUqVNq166dw1i7du10+vTpdAsFAAAAAAAAAEBGcLpIniVLFl25csVh7MqVK8qRI0e6hQIAAAAAAAAAICM4XSR/+eWX1atXL3377bc6d+6cdu/erd69e+vll192RT4AAAAAAAAAAFzG6Z7kffr0UUxMjHr06KGkpCR5e3urdevW6tmzpyvyAQAAAAAAAADgMk4Xyb29vTVhwgSNHj1aN2/e1FNPPSWLxeKKbAAAAAAAAADgEjab0QngLtJcJF+7du3fPqZFixb/IgoAAAAAAAAAABkrzUXyadOm/eVxi8VCkRwAAAAAAAAA8EhJc5F8586daX7SsLAwNW3a9B8FAgAAAAAAAAAgo3i44klHjBjhiqcFAAAAAAAAACBduaRIbqPrPQAAAAAAAADgEZDmdivOsFgsrnhaAAAAAAAAAEgXVisTfXGPS2aSAwAAAAAAAADwKKBIDgAAAAAAAAAwLYrkAAAAAAAAAADTYuNOAAAAAAAAAIBpOV0k/+mnn1Id/+abb+xfv/DCC/88EQAAAAAAAAAAGcTpInnnzp1TjMXGxqpPnz7272fMmPHvUgEAAAAAAACAC9lsNv5z8r/HlWdaHnThwgUFBgYqOTlZNptNpUuXTvGYSpUqpXs4AAAAAAAAAABcKU1F8sKFC2vlypW6deuWQkJCNH/+fIfj3t7eKlmypEsCAgAAAAAAAADgKmkqkktSr169tH37djVq1EhVq1Z1ZSYAAAAAAAAAADJEmovk0dHROnHihLZt26YrV66k2oPG19c3XcMBAAAAAAAAAOBKaS6S16tXTy1btpTFYlG9evUcjtlsNlksFp04cSLdAwIAAAAAAAAA4CppLpJ//PHHGjhwoBo3bqywsDBXZgIAAAAAAAAAl7JZjU4Ad5HmIrkk5c+fX1988YX8/PxclQcAAAAAAAAAgAzjVJFckhYvXpymx40fP97pMAAAAAAAAAAAZCQPZ3/A29tboaGhun37tp566indvXtXGzZs0LVr11yRDwAAAAAAAAAAl3F6JvnFixf18ccfq1GjRvaxli1basGCBcweBwAAAAAAAAA8UpyeSX748GE1aNDAYSwgIEBHjhxJt1AAAAAAAAAAAGQEp2eS+/n5adOmTQoMDLSPrV69WsWKFUvXYAAAAAAAAADgKlabzegIcBNOF8n79eunPn366PPPP5ePj48uXryoc+fOadGiRa7IBwAAAAAAAACAyzjdbuWll17S6tWrVb16dWXPnl21a9fW7NmzVbZsWVfkAwAAAAAAAADAZZwuku/cuVOdOnVSr169lC9fPs2dO1ddu3bVl19+6Yp8AAAAAAAAAAC4jNNF8tmzZ6tv376yWq1aunSpZsyYoc8//1zz5893RT4AAAAAAAAAAFzG6Z7kERERatOmjY4fP674+HjVqFFDnp6eun79uivyAQAAAAAAAADgMk4XybNkyaLo6Gjt3LlTlStXlqenp06ePKlcuXK5Ih8AAAAAAAAApDubzWZ0BLgJp4vkrVu3VosWLXTr1i1NmzZNR48e1euvv64uXbq4Ih8AAAAAAAAAAC7jdJG8V69eqlq1qry9vVWhQgVduXJFo0ePVsOGDV2RDwAAAAAAAAAAl3G6SC5JAQEB9q99fHzk4+OTboEAAAAAAAAAAMgoHkYHAAAAAAAAAADAKBTJAQAAAAAAAACm9Y/arQAAAAAAAADAo8xqtRkdAW6CmeQAAAAAAAAAANOiSA4AAAAAAAAAMC2K5AAAAAAAAAAA06JIDgAAAAAAAAAwLYrkAAAAAAAAAADT8jQ6AAAAAAAAAABkNJvN6ARwF8wkBwAAAAAAAACYlsVm454JAAAAAAAAAHPpOz3W6AiPnCm9njQ6gku4RbuVE2cvGx3BrZQu7qfvTtwyOoZbqV76P/potdXoGG7l7VYeWn2Q1+RBrap6cD55SOnifpqynnuh9/VtbtGFM6eMjuFWCpd4Vglhs42O4VYyN+2u2ZuNTuFeujeW5m83OoV7eaO+FHNkj9Ex3ErucjVVs9luo2O4lT2htXX7e04oD8pepbFWHeAa9kFBAR46euaq0THcRtkSBbQh07NGx3ArgUmndOvQFqNjuJX/VG6kY2euGB3DrZQp4WN0BOCRRrsVAAAAAAAAAIBpUSQHAAAAAAAAAJiWW7RbAQAAAAAAAICMZLPSnhT3MJMcAAAAAAAAAGBaFMkBAAAAAAAAAKZFkRwAAAAAAAAAYFoUyQEAAAAAAAAApkWRHAAAAAAAAABgWhTJAQAAAAAAAACm5flPf/DmzZu6ePGinnvuOd29e1deXl7pmQsAAAAAAAAAXMZqsxkdAW7C6ZnkcXFxGjBggAICAvTqq6/q/PnzatCggX799VdX5AMAAAAAAAAAwGWcLpJ/+OGHunPnjjZt2qRMmTKpUKFCqlu3rsaNG+eKfAAAAAAAAAAAuIzT7VZ27dql0NBQ5ciRQxaLRZkyZdKgQYNUq1YtV+QDAAAAAAAAAMBlnJ5JbrVa7f3Hbf+/b8+DYwAAAAAAAAAAPCqcLpJXq1ZNo0ePVnx8vCwWiyRpypQpqlq1arqHAwAAAAAAAADAlZxutzJ48GB1795d/v7+Sk5OVsWKFVWkSBHNmTPHFfkAAAAAAAAAIN3ZrDajI8BNOF0kz5Mnj1asWKEjR47o8uXLKlCggMqXL68nnnjCFfkAAAAAAAAAAHAZp4vk4eHh9q+feuop3b17V4cPH1amTJmUO3duPf300+kaEAAAAAAAAAAAV3G6SD5o0CBFRkbKw8NDuXLl0o0bN2S1WuXh4aHk5GQVK1ZMc+fOVaFChVyRFwAAAAAAAACAdOP0xp3NmzdX8+bNdfDgQe3Zs0fh4eEKCgpSz549dejQIdWsWVPjxo1zRVYAAAAAAAAAANKV00XytWvXatSoUcqWLZskKWvWrBoyZIhWrFihbNmyacCAATp8+HC6BwUAAAAAAAAAIL053W7lzp07unXrlrJkyWIfu337tmJjY+3fWyyW9EkHAAAAAAAAAC5gs9qMjgA34fRM8saNG+utt97Svn37dP78ee3bt0+9e/dWw4YNFRsbq5EjR6pKlSquyAoAAAAAAAAAQLpyeib5kCFDNG7cOL311luKj49X5syZFRQUpAEDBujYsWO6deuWRo0a5YKoAAAAAAAAAACkL6eL5N7e3ho9erRGjBih33//XXny5LG3V6lSpQqzyAEAAAAAAAAAjwyni+SStH//fkVFRclmu9e3JykpSadOndKwYcPSNRwAAAAAAAAAAK7kdJF87NixWr58ubJlyyZJSk5OVlxcnF588cV0DwcAAAAAAAAAgCs5XSTftGmTli5dqvj4eK1fv17vv/++PvjgA925c8cV+QAAAAAAAAAg3VltRieAu3C6SB4fH68KFSrot99+07Fjx2SxWNSzZ0+9/PLLrsgHAAAAAAAAAIDLeDj7AwUKFFB0dLTy5s2rq1evKikpSZkzZ1ZsbKwr8gEAAAAAAAAA4DJOzySvXbu2OnXqpM8++0z+/v4aMmSIvL29VaRIERfEAwAAAAAAAADAdZyeSd6/f3/997//VaZMmTRixAj9/vvvOnPmjMaOHeuKfAAAAAAAAAAAuIzTM8kzZcqk119/XZKUPXt2zZ8/P8VjQkJCNG/evH+fDgAAAAAAAAAAF3K6SJ4W33//vSueFgAAAAAAAADShc1qMzoC3ITT7VYAAAAAAAAAAHhcUCQHAAAAAAAAAJgWRXIAAAAAAAAAgGlRJAcAAAAAAAAAmBZFcgAAAAAAAACAaXm64kltNnaGBQAAAAAAAOC+qGHivn88k/zmzZs6evSorFarEhMTHY598MEH/zoYAAAAAAAAAACu5nSRPC4uTgMGDFBAQIBeffVVnT9/Xg0aNNCvv/5qf0zDhg3TNSQAAAAAAAAAAK7gdJH8ww8/1J07d7Rp0yZlypRJhQoVUt26dTVu3DhX5AMAAAAAAAAAwGWc7km+a9cuhYaGKkeOHLJYLMqUKZMGDRqkWrVquSIfAAAAAAAAAAAu4/RMcqvVKi8vL0n/19z+wTEAAAAAAAAAAB4VTs8kr1atmkaPHq0RI0bIYrFIkqZMmaKqVaumezgAAAAAAAAAcAWr1WZ0BLgJp2eSDx48WGfPnpW/v79u376tihUrKjw8XO+++64r8gEAAAAAAAAA4DJOzyTPkyePVqxYoSNHjujy5csqUKCAypcvryeeeMIV+QAAAAAAAAAAcBmnZ5JL0rFjx1S+fHm98MIL2r59uz799FPdvXs3vbMBAAAAAAAAAOBSTs8knz17tj755BMdOnRIY8eO1dGjR+Xh4aGrV69q6NChrsgIAAAAAAAAAIBLOD2TPCwsTJ9//rkSExO1ZcsWTZo0SZ999pk2btzoinwAAAAAAAAAALiM0zPJr127plKlSum7775T9uzZVapUKUlSfHx8uocDAAAAAAAAAFew2WxGR4CbcHomef78+RUeHq61a9eqevXqku7NLi9UqFC6hwMAAAAAAAAAwJWcnkneq1cvvf7668qcObOWLVum7777ToMHD9b06dNdkQ8AAAAAAAAAAJdxukjeqFEj1alTR5Lk7e2tfPnyaceOHcqXL196ZwMAAAAAAAAAwKWcLpKHh4enOn7hwgX5+/v/60AAAAAAAAAAAGQUp4vkHTp0SDHm4eEhHx8f7dixI11CAQAAAAAAAACQEZwukp88edLh+5iYGM2cOVN+fn7pFgoAAAAAAAAAXMlmtRkdAW7C6SL5w3Lnzq133nlHjRo1UpcuXdIjEwAAAAAAAADgMXXnzh2NGTNGO3fu1N27d/XSSy9p5MiRypYtW4rHjhgxQqGhoQ5jCQkJqlGjhhYsWCBJatKkiSIjI+Xh4WF/zKpVq1S8ePE05fH4+4f8vZs3b+qPP/5Ij6cCAAAAAAAAADzGxowZoytXrmjLli3aunWrrly5oo8++ijVx44ePVo//PCD/b/p06frP//5jwYNGiRJio2N1blz57Rx40aHx6W1QC79g5nkgwcPdvg+KSlJhw4dUo0aNZx9KgAAAAAAAACAicTHxys0NFSLFy9Wzpw5JUlvv/22OnbsqIEDBypLlix/+rMxMTF6++23NXToUD3zzDOSpKNHjypnzpz/qh34v2634u3trQ4dOqht27b/9qkAAAAAAAAAAI+4hIQERUVFpXosPj5eSUlJKlmypH2sePHiSkhI0Pnz51W6dOk/fd6PPvpIZcuWVfPmze1jR44cUZYsWfTqq6/ql19+kZ+fn3r16qW6deumOa/TRfLx48c7+yMAAAAAAAAAgEdcYmKiEhMTHca8vLzk5eXlMPbTTz+pY8eOqT5Hnz59JElZs2a1j92fPR4XF/en//bFixe1fv16rVy50mHcYrGoXLly6t+/v3x9fbV582b16tVLS5cuVYUKFdL0//WPZpJ/9tlnWrFihS5fvqy8efMqKChI3bp1k8Vi+SdPBwAAAAAAAAAZyma1GR3hkTN37lzNmDHDYaxnz57q1auXw1hAQIBOnTqV6nMcP35cU6dOVXx8vH2jzvj4eEnSk08++af/9ldffaWKFSummGn++uuvO3zfvHlzhYWFacuWLa4rkn/22WdatGiRQkJCVLBgQUVEROiTTz6Rh4eHQkJCnH06AAAAAAAAAMAjoFu3burcubPD2MOzyP9O0aJFlSlTJp05c0bPP/+8JOns2bPKlCmTihQp8qc/t3XrVnXp0iXF+IIFC/Tcc8+pevXq9rHExER5e3unOZPTRfLly5dr1qxZeu655+xjlSpVUq9evSiSAwAAAAAAAMBjKrXWKs7KkiWLmjRpoo8++khTp06VdK/XeNOmTZU5c+ZUf+bGjRs6e/as/P39Uxy7cuWKVq5cqfnz58vHx0dr167VDz/8oPfeey/NmZwukl+7dk2lSpVyGCtVqpR+//13Z58KAAAAAAAAAGAyI0eO1AcffKBmzZopKSlJL730koYPH24/HhgYqGbNmunNN9+UJF26dEmSlD9//hTPNXDgQHl4eKhdu3a6ffu2SpQooXnz5qlw4cJpzuN0kbxw4cLatm2bGjVqZB/btm2bU/8oAAAAAAAAAMCcnnzySY0ZM0ZjxoxJ9fiGDRscvi9Xrtyf9jj38vLSkCFDNGTIkH+cx+kieY8ePdS3b19t3rxZhQoV0oULF7Rz505NmzbtH4cAAAAAAAAAAMAIThfJ69evrwULFmj16tU6fvy4/Pz89Pnnn6t8+fKuyAcAAAAAAAAA6c5qsxkdAW7iH/Uk37hxo65du6a7d+/q3Llz+uijjyRJixcvTveAAAAAAAAAAAC4itNF8nfffVc3b97Uiy++qEyZMrkiEwAAAAAAAAAAGcLpIvmPP/6ob775RtmzZ3dFHgAAAAAAAAAAMoyHsz/g4+MjDw+nfwwAAAAAAAAAALeT5pnkkZGRkqTmzZtr8ODB6t69u3LkyOHwGF9f3/RNBwAAAAAAAACAC6W5SF6vXj1ZLBbZ/v+ur1u3bpXFYpEk2Ww2WSwWnThxwjUpAQAAAAAAACAd2aw2oyPATaS5SL5jxw5X5gAAAAAAAAAAIMOluUju5+fnyhwAAAAAAAAAAGQ4duAEAAAAAAAAAJgWRXIAAAAAAAAAgGlRJAcAAAAAAAAAmFaae5I/KDExUbt379bly5fVtm1bXbhwQaVKlUrvbAAAAAAAAADgEjabzegIcBNOF8kjIiLUpUsXJSUl6datW6pdu7Zat26tGTNmqG7duq7ICAAAAAAAAACASzjdbmXcuHFq1aqVvv76a3l6eqpo0aIaO3aspk2b5op8AAAAAAAAAAC4jMXm5LqCgIAAffvtt/Ly8lLVqlV18OBBWa1WVa1aVd9//72rcgIAAAAAAABAuuk4/IrRER45i8f4GB3BJZxut5I9e3Zdv35dvr6+9rHffvtNOXLk+Mchrp784R//7OOoQKmKOvvrr0bHcCvFixXTubNnjI7hVooWL6ELZ04ZHcOtFC7xLL8nDylavATnkwcUL1aM95yHFChVUb+cvWB0DLfyTPHCOnP2nNEx3EqJ4kU5vz6kaPESivjlhNEx3MrTz5TWN8fijI7hVmqVyabva1c3OoZbqbL7O65NHlK8WDH9evas0THcRrHixXXr0BajY7iV/1RupA2ZnjU6hlsJTDrFtclDihYvYXQE4JHmdLuVZs2aqWfPntq7d6+sVqt+/vlnvf322woMDHRFPgAAAAAAAAAAXMbpmeQ9evRQQkKCevbsqfj4eHXo0EFBQUHq2bOnK/IBAAAAAAAAQLqzWp3qQo3HmNNF8kyZMundd9/Vu+++q5iYGOXKlUsWi8UV2QAAAAAAAAAAcCmni+QzZsxIddzLy0u5cuVSjRo15Ofn96+DAQAAAAAAAADgak4XyU+fPq2tW7eqXLlyKlSokCIjI/Xjjz+qXLlySk5O1rhx4zR79mxVr84GNQAAAAAAAAAA9+Z0kdzT01MjRoxQu3bt7GNfffWVDhw4oA8//FAbN27UpEmTtHLlynQNCgAAAAAAAABAevNw9gf27duntm3bOoy1aNFCu3fvliQ1adJEv/76a/qkAwAAAAAAAADAhZyeSZ41a1YdPXpUzz//vH3s+PHj8vLykiRFR0crS5Ys6ZcQAAAAAAAAANKZzWozOgLchNNF8k6dOikkJESvvPKK/Pz8dPnyZa1cuVJdu3ZVZGSk3nzzTQUGBroiKwAAAAAAAAAA6crpInnHjh2VJ08effXVV9q6dat8fX01atQoNWzYUCdPnlSrVq3UoUMHV2QFAAAAAAAAACBdOV0kl6TAwMBUZ4uXKlVKpUqV+tehAAAAAAAAAADICE4XyW/cuKElS5YoKipKVqtVkpSUlKTTp09r/fr16R4QAAAAAAAAAABXcbpIPnjwYJ0/f165c+dWbGysfH19tWfPHrVv394V+QAAAAAAAAAAcBmni+Th4eHauHGjoqKiNG/ePM2YMUPr1q1TWFiYK/IBAAAAAAAAQLqz2WxGR4Cb8HD2Bzw9PZU/f34VKVJEp06dknSvR/nx48fTPRwAAAAAAAAAAK7kdJHcz89PR48e1X/+8x/FxcUpJiZGd+7cUUJCgivyAQAAAAAAAADgMk63W2nXrp06dOigDRs2qGnTpnrttdfk6ekpf39/V+QDAAAAAAAAAMBlnC6SBwUFqWTJknrqqaf0zjvvaNGiRYqLi1OXLl1ckQ8AAAAAAAAAAJdxukguSeXLl7d/HRISkuJ4pUqVdPjw4X+eCgAAAAAAAACADPCPiuR/h51hAQAAAAAAALgzm9VqdAS4Cac37kwLi8XiiqcFAAAAAAAAACBduaRIDgAAAAAAAADAo4AiOQAAAAAAAADAtCiSAwAAAAAAAABMiyI5AAAAAAAAAMC0PF3xpDabzRVPCwAAAAAAAADpwmqlhol7/lGRPDExUTExMbJarQ7jvr6+kqQdO3b8+2QAAAAAAAAAALiY00XyTZs2aeTIkbp9+7Z9zGazyWKx6MSJE5Kk3Llzp19CAAAAAAAAAABcxOki+fTp09WuXTu1bNlSnp4u6dYCAAAAAAAAAECGcLrKfeXKFfXs2ZMCOQAAAAAAAADgkefh7A+UKVNGZ86ccUUWAAAAAAAAAAAylNPTwStVqqROnTqpcePGeuqppxyO9ezZM92CAQAAAAAAAICr2Gw2oyPATThdJP/hhx/0zDPP6OzZszp79qx93GKxpGswAAAAAAAAAABczeki+ZIlS1yRAwAAAAAAAACADPePdt/cvn27VqxYocuXLytv3rwKCgpSs2bN0jsbAAAAAAAAAAAu5fTGnaGhoRo0aJBKliypDh066LnnntOoUaO0cuVKV+QDAAAAAAAAAMBlnJ5JPn/+fM2YMUPVqlWzj9WuXVujR49WcHBwuoYDAAAAAAAAAMCVnC6SR0ZGKiAgwGGsatWqunr1arqFAgAAAAAAAABXslltRkeAm3C63UqBAgUUHh7uMBYeHi5fX990CwUAAAAAAAAAQEZweib5a6+9prfeektt27ZVoUKFFBERoRUrVmjw4MGuyAcAAAAAAAAAgMs4XSQPDg7WE088odWrV2v79u3y8/PT2LFj1bhxY1fkAwAAAAAAAADAZZwukktSq1at1KpVq/TOAgAAAAAAAABAhkpzkXzUqFEaNWrUX7ZVGT9+fLqEAgAAAAAAAAAgI6S5SG6zsdsrAAAAAAAAgMeDzUq9E/ekuUj+3nvvSZJeeeUVPf/88ymOf/PNN+mXCgAAAAAAAACADODh7A907tw5xVhsbKz69OmTLoEAAAAAAAAAAMgoaZpJfuHCBQUGBio5OVk2m02lS5dO8ZhKlSqlezgAAAAAAAAAAFwpTUXywoULa+XKlbp165ZCQkI0f/58h+Pe3t4qWbKkSwICAAAAAAAAAOAqae5Jfn/2eFhYmAoVKuSyQAAAAAAAAAAAZJQ0F8nve/LJJzVt2jRFRUXJarVKkpKSknT69GmtX78+3QMCAAAAAAAAQHqz2qxGR4CbcLpIPnjwYJ0/f165c+dWXFycfHx8tGfPHrVv394V+QAAAAAAAAAAcBmni+Th4eHauHGjoqKiNG/ePM2YMUPr1q1TWFiYK/IBAAAAAAAAAOAyHs7+gKenp/Lnz68iRYro1KlTkqTAwEAdP3483cMBAAAAAAAAAOBKThfJ/fz8dPToUf3nP/9RXFycYmJidOfOHSUkJLgiHwAAAAAAAAAALuN0u5V27dqpQ4cO2rBhg5o2barXXntNnp6e8vf3d0U+AAAAAAAAAABcxukieVBQkEqWLKmnnnpK77zzjhYtWqS4uDh16dLFFfkAAAAAAAAAIN3ZrDajI8BNOF0kX7hwoVq0aCEvLy9JUkhISLqHAgAAAAAAAAAgIzjdk3zz5s2qXbu2evXqpW+++UY2G3dcAAAAAAAAAACPJqdnkn/55Zc6e/asVq9erWHDhsnDw0MtW7ZU69atVbBgQVdkBAAAAAAAAADAJZyeSS5JxYsX1zvvvKOvv/5aw4cP17p169SwYcP0zgYAAAAAAAAAgEs5PZP8vv3792vdunXasmWLihUrpjfffDM9cwEAAAAAAAAA4HJOF8knT56s0NBQxcbGqlmzZvriiy9UqlQpV2QDAAAAAAAAAJewWdlrEfc4XSQ/dOiQ+vTpo8aNG8vb29sVmQAAAAAAAAAAyBBOF8mXLl0qq9Wqo0eP6tKlS8qXL58qVaokD49/1N4cAAAAAAAAAADDOF0kv379urp166aTJ08qZ86cunHjhooUKaKFCxeqQIECrsgIAAAAAAAAAIBLOD39e8KECSpSpIgOHjyovXv36sCBAypdurTGjx/vinwAAAAAAAAAALiM0zPJ9+/fr82bNytbtmySpOzZs2vUqFF66aWX0j0cAAAAAAAAAACu5HSR3Gq1ymKxOIxZLBZlypQp3UIBAAAAAAAAgCvZbDajI8BNON1uJSAgQKNGjdKdO3ckSXFxcRo1apSqVq2a7uEAAAAAAAAAAHAlp2eSv/POO+rcubOqVq2qnDlz6vfff1eJEiU0d+5cV+QDAAAAAAAAAMBlnC6S+/r6asOGDQoPD1dMTIz8/PxUrlw5PfHEE67IBwAAAAAAAACAyzhdJJfu9SUvWrSoChcuLEmKioqSdK+ADgAAAAAAAADAo8LpIvmmTZs0YsQIxcbG2sdsNpssFotOnDiRruEAAAAAAAAAAHAlp4vk06dPV/v27dWyZUt5ev6jiegAAAAAAAAAYCir1Wp0BLgJp6vcV65cUc+ePSmQAwAAAAAAAAAeeR7O/kCZMmV05swZV2QBAAAAAAAAACBDOT0dvFKlSurUqZMaN26sp556yuFYz5490y0YAAAAAAAAAACu5nSR/IcfftAzzzyjs2fP6uzZs/Zxi8WSrsEAAAAAAAAAAHA1p4vkS5YscUUOAAAAAAAAAAAy3D/affPs2bNatmyZrl69qjFjxmjDhg169dVX0zsbAAAAAAAAALiEzWozOgLchNMbd+7du1fBwcG6ceOG9u3bp4SEBM2cOVPz5s1zRT4AAAAAAAAAAFzG6SL5pEmTNHnyZH388cd64okn5OPjo3nz5mnFihWuyAcAAAAAAAAAgMs4XSS/cOGCatWqJen/NussV66cbt68mb7JAAAAAAAAAABwMaeL5L6+vjp8+LDD2JEjR+Tj45NuoQAAAAAAAAAAyAgWm83mVIf6jRs3atSoUfrf//6nxYsXq0ePHlqyZIn69++vFi1auCgmAAAAAAAAAKSfpm8cNzrCIyds/nNGR3AJT2d/4NChQxoxYoTWr18vX19f7d+/X0OHDlWjRo3+cYjrR7/7xz/7OHqqbHVdPn3E6Bhuxa9kOX5PHvJU2eq6fXCD0THcSvaqgdqQ6VmjY7iVwKRTOnf2jNEx3EbR4iV04cwpo2O4lcIlntWZs+eMjuFWShQvqpifvzU6hlvJXf5FxR4INTqGW3kyoJkifjlhdAy38vQzpRV56mejY7gV32fL69ezZ42O4VaKFS+um4e3Gx3DreSoVF8Rb7YyOobbeHrOah07c8XoGG6lTAkfrukfUrR4CT77PSQwic85/4TNZjU6AtyE00Xy0NBQDR48WE2bNnVFHgAAAAAAAAAAMozTRfLWrVtrzJgxatmypfLmzWvfvFO6168cAAAAAAAAAIBHhdNF8kWLFkmSVqxYIUmyWCyy2WyyWCw6cYIlpwAAAAAAAACAR4fTRfIdO3a4IgcAAAAAAAAAABnO6SK5n5+fK3IAAAAAAAAAAJDhnC6SAwAAAAAAAMCjzma1GR0BbsLD6AAAAAAAAAAAABiFIjkAAAAAAAAAwLQokgMAAAAAAAAATIsiOQAAAAAAAADAtCiSAwAAAAAAAABMy9PoAAAAAAAAAACQ0WxWm9ER4CaYSQ4AAAAAAAAAMC2K5AAAAAAAAAAA03K6SL5p06ZUx1esWPGvwwAAAAAAAAAAkJHS1JM8Pj5eN27ckCQNGTJEFSpUkM32fz17bt++rQkTJqht27auSQkAAAAAAAAAgAukqUgeGxurwMBAJSQkyGazqV69evZjNptNFotF9evXd1lIAAAAAAAAAABcIU1F8rx582r79u2Kj49Xs2bNFBYW5nDc29tbTz31lEsCAgAAAAAAAEB6s9qsRkeAm0hTkVySAgMDtX//fjVo0EB+fn6uzAQAAAAAAAAAQIZIc5E8MTFR27dv19atW9WmTRuHnuT3+fv7p2s4AAAAAAAAAABcKc1F8rZt26pv375KTk7Wq6++muK4xWLRiRMn0jUcAAAAAAAAAACulOYi+bvvvqt3331XFStW1A8//ODKTAAAAAAAAAAAZAgPZ39g165drsgBAAAAAAAAAECGS/NM8vt69eoli8Xyt49bvHjxPwoEAAAAAAAAAK5ms6bccxHm5HSRvGLFivriiy/UunVrFS1aVFevXtWKFStUvXp1FStWzBUZAQAAAAAAAABwCaeL5AcOHNCsWbNUtWpV+1iDBg00evRoTZo0KV3DAQAAAAAAAADgSk73JD99+rQqV67sMFayZEmdP38+vTIBAAAAAAAAAJAhnC6SFy9eXIsWLXIYmz17tsqWLZtuoQAAAAAAAAAAyAhOt1sZPHiwunfvrqVLl6pAgQKKjIyUl5eXFi5c6Ip8AAAAAAAAAAC4jNNF8sqVK2vLli3atWuXoqOjVahQIdWpU0eZM2d2RT4AAAAAAAAASHc2q9XoCHATTrdbkaTk5GS1atVKr732mmJiYvT111+ncywAAAAAAAAAAFzP6ZnkK1eu1Lhx4/Tjjz9q4sSJ2rhxoywWi3799Vf16NHDFRkBAAAAAAAAAHAJp2eSL126VDNnzlRycrJWr16t6dOna9myZfryyy9dkQ8AAAAAAAAAAJdxeib5lStX9MILL+jw4cPy9PRUpUqVJEm3bt1K93AAAAAAAAAAALiS0zPJc+TIoQsXLmjLli2qWrWqJGn//v3KmzdvuocDAAAAAAAAAMCVnJ5J3rlzZzVr1kyStGTJEh06dEjdunXTyJEj0z0cAAAAAAAAALiCzWozOgLchNNF8nbt2unFF1+Up6enfHx8FBMTo88//1xly5a1P+bQoUOqXLlyugYFAAAAAAAAACC9OV0kl6RChQrZv86dO7dy587tcPyNN97Q4cOH/10yAAAAAAAAAABczOme5Glhs7FUAQAAAAAAAADg/lxSJLdYLK54WgAAAAAAAAAA0pVLiuQAAAAAAAAAADwK/lFPcgAAAAAAAAB4lNlsVqMjwE0wkxwAAAAAAAAAYFoUyQEAAAAAAAAApuWSInmRIkVc8bQAAAAAAAAAAKSrNPckX7t27d8+pkWLFpKk1atX/9M8AAAAAAAAAABkmDQXyadNm/aXxy0Wi71IDgAAAAAAAADAoyDNRfKdO3e6MgcAAAAAAAAAZBir1WZ0BLiJNBfJH3Tx4kVFRUXJZrv3i5SUlKTTp0+rU6dO6ZkNAAAAAAAAAACXcrpIPnfuXE2ePFkWi0WSZLPZZLFYVLp0aYrkAAAAAAAAAIBHitNF8i+++ELTpk2Tl5eXdu7cqf79+2vMmDHy8fFxRT4AAAAAAAAAAFzGw9kfuHXrlho2bKhSpUrp6NGjypkzp4YOHaqNGze6Ih8AAAAAAAAAAC7jdJE8X758io2NVf78+XXp0iXZbDblzp1bN2/edEU+AAAAAAAAAABcxul2K/7+/urdu7emTJmi5557TpMmTZK3t7fy58/vinwAAAAAAAAAkO5sVqvREeAmnJ5JPmjQIBUuXFh3797V0KFDtWPHDn355ZcaOnSoK/IBAAAAAAAAAOAyTs8kP3v2rEaOHClJyp07t70X+TfffJO+yQAAAAAAAAAAcDGnZ5J37tw5xVhsbKz69OmTLoEAAAAAAAAAAMgoaZpJfuHCBQUGBio5OVk2m02lS5dO8ZhKlSqlezgAAAAAAAAAAFwpTUXywoULa+XKlbp165ZCQkI0f/582Ww2WSwWSZK3t7dKlizp0qAAAAAAAAAAAKS3NPckvz97PCwsTIUKFZIkRUdHK0eOHPL0dLq1OQAAAAAAAAAYxma1GR0BbsLpnuQFChTQyrlD8QAAWyNJREFU+++/r4oVK6pmzZqqXLmyhg8frsTERFfkAwAAAAAAAADAZZwuks+aNUsHDhzQlClTFBYWpilTpuinn37SlClTXBAPAAAAAAAAAADXcbpPSmhoqBYtWmRvuVK8eHEVL15c7du318CBA9M9IAAAAAAAAAAAruL0TPKbN2/Kx8fHYczHx0cJCQnpFgoAAAAAAAAAgIzgdJH82Wef1fLlyx3Gli9frpIlS6ZbKAAAAAAAAAAAMoLT7Vb69u2rLl26aP369SpUqJAiIiJ05swZLViwwBX5AAAAAAAAACDd2WxWoyPATTg9k3zz5s1at26datasqWzZsqlBgwYKCwtLMbscAAAAAAAAAAB3l6aZ5FFRUfruu+8kSStXrlTZsmX19NNP6+mnn5Yk7dy5U9u2bXNdSgAAAAAAAAAAXCBNRfJcuXJp6dKliomJUWJioqZNm+Zw3NvbWz179nRJQAAAAAAAAAAAXCVNRXIvLy+tWrVKktS1a1f6jwMAAAAAAAAAHgtO9ySnQA4AAAAAAAAAeFykaSY5AAAAAAAAADxObFab0RHgJpyeSQ4AAAAAAAAAwOOCIjkAAAAAAAAAwLQokgMAAAAAAAAATIsiOQAAAAAAAADAtCiSAwAAAAAAAABMy9PoAAAAAAAAAACQ0WxWq9ER4CaYSQ4AAAAAAAAAMC2K5AAAAAAAAACADBcfH6+2bdtq9erVf/m4n376ScHBwapYsaLq1aunlStXOhxfs2aNGjRooAoVKqhVq1b64YcfnMpBkRwAAAAAAAAAkKF++eUXtW/fXj/++ONfPu7mzZsKCQlRixYtFB4ernHjxmn8+PH6+eefJUkHDhzQmDFjNGHCBIWHh6t58+bq3r274uPj05yFIjkAAAAAAAAAIMN89913eu2119SyZUv5+vr+5WO3bt2qnDlzqn379vL09FT16tXVrFkzff7555KklStXKjAwUJUrV1amTJnUqVMn5cqVSxs3bkxzHjbuBAAAAAAAAAD8rcTERCUmJjqMeXl5ycvLy2EsISFBUVFRqT5H3rx5VapUKe3atUve3t5atGjRX/6bv/zyi0qWLOkwVqJECa1atUqSdObMGbVu3TrF8ZMnT6bp/0lykyL5U2WrGx3B7fiVLGd0BLfD70lK2asGGh3B7QQmnTI6gtspWryE0RHcSuESzxodwe2UKF7U6AhuJ3f5F42O4HaeDGhmdAS38/QzpY2O4HZ8ny1vdAS3U6x4caMjuJ0cleobHcHtPD3nr/uwmk2ZEj5GR3A7XNOnxGc/pIc9obWNjvDImT59umbMmOEw1rNnT/Xq1cth7KefflLHjh1TfY6ZM2eqfv20Xw/ExcUpS5YsDmOZM2fWnTt30nQ8LdyiSA4AAAAAAAAAcG/dunVT586dHcYenkUuSQEBATp1Kn1uZmXJkkW3b992GEtISFC2bNnsxxMSElIcz5UrV5r/DYrkAAAAAAAAAIC/lVprFVcrWbKk9u7d6zB25swZPfPMM5KkZ555Rr/88kuK47Vq1Urzv8HGnQAAAAAAAAAAt9SgQQNdv35dn376qZKSkrR//36Fhoba+5AHBQUpNDRU+/fvV1JSkj799FNFR0erQYMGaf43KJIDAAAAAAAAANxGYGCg5syZI0nKlSuXFi5cqM2bNysgIEDDhg3TsGHDVK1aNUlS9erVNXLkSI0aNUpVq1bVhg0bNH/+fOXMmTPN/57FZrPZXPE/AgAAAAAAAACAu2MmOQAAAAAAAADAtCiSAwAAAAAAAABMiyI5AAAAAAAAAMC0KJIDAAAAAAAAAEyLIjkAAAAAAAAAwLQokgMAAACPuNjYWKMjAAAAAI8s0xfJjx8/rq1btyoxMVHR0dFGx3ErZ8+eVVRUlNEx3EpsbKwSExONjmGo8PDwVP/78ccfFRERYXQ8Q3Tv3j3V8VdffTWDk7iPo0ePSpJu3bqliRMnasGCBbp7967BqYzD7wjwz8XExOjTTz/VuHHjFBsbq127dhkdyVBVq1ZNdbxOnToZG8SNcI79P2vXrv3b/wD8vZs3b+ro0aOyWq2m//wnSYmJidq2bZs+/fRTxcfH6+TJk0ZHMsymTZtSHV+xYkUGJwGQ3jyNDmCU6OhovfXWWzp69KgyZcqkVatWKSgoSAsXLlTFihWNjmeIw4cPa/To0Vq7dq2WL1+uUaNGydPTU1OmTFH9+vWNjmeIs2fPatKkSZo5c6a2bdumfv36KVu2bJo1a5YqV65sdDxDDBo0SJGRkfLw8FCuXLl048YNWa1WeXh4KDk5WcWKFdPcuXNVqFAho6O61KVLl+wfNPfs2aMZM2Y4HI+NjdWpU6cMSGa82bNn65NPPtGhQ4c0duxYHT16VB4eHrp69aqGDh1qdLwMw+/IX4uKitLs2bN1/vx5Wa1Wh2OLFy82KJXxvvzySy1ZskTXrl3TmjVrNGHCBI0fP17ZsmUzOpohjh07ps6dO6tYsWI6deqUOnbsqD59+mjkyJFq3bq10fEyzIULFzRixAjZbDbFxsaqY8eODsdjY2P1n//8x6B0xuAcm7pp06ZJkqxWq6KiopQzZ075+vrq2rVrun79up599lm1aNHC2JAZbMqUKerbt6+ke4W+Dz74QBs3blTmzJn1yiuvqFu3bsYGNMDKlSsVHBxs/37hwoUOr0nTpk0NTGesuLg4jRgxQhs2bFDmzJm1evVqde7cWYsWLVKxYsWMjmeIiIgIdenSRUlJSbp165Zq166t1q1ba8aMGapbt67R8TJEfHy8bty4IUkaMmSIKlSoIJvNZj9++/ZtTZgwQW3btjUqIoB0YNoi+fvvv6+SJUtq0aJFqlWrlooXL66QkBB9+OGHWrZsmdHxDPHxxx+rTp06stlsmjt3riZMmKCcOXPq448/Nm2R/P3331e+fPlks9k0adIk9e7dW9myZdOECRO0cuVKo+MZonnz5oqMjNSIESOULVs23blzR+PHj5evr686duyoqVOnaty4cZozZ47RUV3K19dXv/zyi2JiYpScnKwDBw44HPf29tbIkSMNSmessLAwff7550pMTNSWLVu0YsUK5c2bV82bNzdVkZzfkb82ePBgXb9+XXXr1lWmTJmMjuMWPv30Uy1btkxdu3bVhx9+qGzZsunatWsaP368xo4da3Q8Q4wfP16DBg1Sq1at5O/vr0KFCmnmzJkaP368qYrkhQsXVsOGDXXjxg0dPnw4xWxyLy8v1atXz6B0xuAcm7qdO3dKkj744AN5eXmpT58+8vC4t3h41qxZunTpkpHxDLF48WJ7kXzq1Kk6ePCgRo4cqT/++EOzZs1ScnKyevToYWzIDDZ+/Hh7kXz+/PlasmSJXnvtNf3xxx/2VTuvvPKKwSmN8eGHH+rOnTvatGmT2rRpo0KFCqlu3boaN26cFixYYHQ8Q4wbN06tWrVS9+7dVbVqVRUtWlRjx47VtGnTTFMkj42NVWBgoBISEmSz2Rzec202mywWi2lrJsBjxWZSNWrUsN25c8dms9ls/v7+NpvNZktMTLRVqVLFyFiGqlatms1qtdrOnDljK1u2rO2PP/6w2Ww2W4UKFQxOZpwXXnjBlpiYaLt48aLtueees92+fdtmtVptFStWNDqaYerUqWP/27nvzp07ttq1a9tsNpstISHB/jdlFkOHDjU6glu5fx7dt2+f7YUXXrCPm/nvht+RlKpUqWKLjo42OoZbadiwoe3MmTM2m+3/rk2ioqJsNWrUMDKWofz9/W137961f31fpUqVjIpkuDVr1hgdwe1wjk3J39/flpiY6DCWlJRkyr+dBz/LvPTSS7azZ8/avz99+rT9GtZMHnxNGjVqZPvpp5/s3x8+fNjWoEEDI2K5hRdffNH2+++/22y2/3vfiY+PN93nmwdVrVrVXhu4/zokJyfbKleubGSsDHf9+nXbxYsXbRUqVLBdunTJ4b/ffvvN6HgA0oFpZ5JnypRJCQkJypIli32ZTFxcnGmXM0vSE088obi4OH3zzTeqUKGCvLy8dPnyZT355JNGRzPM3bt3ZbPZtHfvXpUpU0ZPPvmkYmJi5O3tbXQ0w9y5c0e3bt1SlixZ7GO3b9922DDMYrEYEc0wY8eO1dWrVxUaGqrLly8rX758atq0qZ5++mmjoxkif/78Cg8P19q1a1W9enVJ92aXP+4teP7K2LFjlZiYqJiYmBStRXx9fQ1KZazs2bPLy8vL6Bhu5caNGypatKgk2a9N8uTJY+p+/rlz59avv/6qZ555xj7266+/6qmnnjIwlbFatGihn3/+WefOnXNY6n3/mJlERkZKknr06GH/+mFmPcd6e3vr7NmzKlWqlH3s6NGjpmvLIzlel/7xxx8O1yMlSpTQzZs3jYhlqAdfk9u3b6tMmTL27ytWrKjffvvNiFhuwWq12q9P7p9jHxwzo+zZs+v69esO59PffvtNOXLkMDBVxgsMDNT+/fvVoEED+fn5GR0HgAuYtkher149vfPOOxo2bJgsFouio6M1duxY1a5d2+hohqlfv75effVVXb58WcOGDdOZM2f01ltvmbonXY0aNdSrVy+dPHlSXbt21cWLFzVw4EBTb47VuHFjvfXWW+rfv798fX0VGRmpadOmqWHDhoqNjdXYsWNVpUoVo2NmqCNHjqhTp04qVqyYChYsqCNHjmjevHlasGCBKXvX9+rVS6+//royZ86sZcuW6bvvvtPgwYM1ffp0o6MZZvPmzRo+fLjDzSTb/1+aeeLECQOTGadHjx4aPHiw3njjjRQFT7MWtUqVKqUVK1bof//7n72AsXHjRocCsdm0a9dO3bp105tvvqm7d+9q48aNmj17tql7fk6aNEnz589X3rx55en5f5fyFovFdEXyevXq2f9WHrxhYLFYTH+Obd++vbp27arg4GD5+vrq4sWL+vLLL9W7d2+jo2W4xMREzZo1S2XKlNHzzz+vb7/91t4qYePGjSpcuLDBCTNeUlKS1q1bp7Jly6py5cr64Ycf7Nfv+/fvV/78+Q1OaJxq1app9OjRGjFihP38MmXKlD/dNNkMmjVrpp49e2rAgAGyWq36+eefNXHiRAUGBhodLUMlJiZq+/bt2rp1q9q0aZPiRrUk+fv7G5AMQHqx2FL7yzaBuLg4DR48WFu3bpV072K6du3amjhxorJnz25wOmMkJydr7dq1ypIli15++WWdP39eu3btUseOHfXEE08YHc8QcXFxWrhwoby9vRUSEqKTJ09q1apV6t+/v7JmzWp0PEPc71UYGhqq+Ph4Zc6cWUFBQRowYICOHTumhQsXatSoUcqXL5/RUTNMx44dVb9+fYeN1D777DNt3rzZlHscfP/99ypdurQ8PT3l7e2t2NhY3blzx1S/Ew97+eWX1bBhQ7Vs2dKhqCXJtDNRHpzdKFHUku5tUtmpUycVL15cR48eVfXq1fXjjz/qk08+0fPPP290PMN8/vnn+uKLL3T58mUVKFBAbdq0UadOnex9ls2mdu3aGj16tKkndtx3+fLlv32MWc+xkrRq1SqtX79eUVFR8vHxUXBwsOmKWpI0b948HT16VEePHlVkZKT8/f21ZMkSzZs3T9OnT9fkyZNN10t45MiROnr0qE6fPq27d+8qICBAn376qVasWKEJEyZo8ODBatOmjdExDREdHa3u3bvr+PHjSk5OVubMmVWkSBHNmTPHtDcPkpKSNGnSJC1fvlzx8fHy9vZWUFCQ3n33XVPNsP/ggw+0ZMkSJScnp1ogN/M1LPC4MG2R/L6YmBhdunRJ+fPnN+2bHvBP3L17V7///rvy5MljuvYqDwsICNDevXsdip9JSUmqVq2aDh06ZGAyYwQEBOjrr792aMljdhUrVlR4eHiKArmZ/VVxy8xFraioKK1fv16RkZEqUKCAmjVrZtqZ9ZJ0/fp1U7dWSY2/v78OHjxo+vde4J+IiYnRb7/9pmeffVbh4eHKkiWLypYta3QswyQmJurkyZOKjY1VjRo1tH37dkky3U2Dh9lsNh05csR+c7Z8+fKmnTT2sJiYGOXKlcvU70EVK1bUDz/8YHQMAC5g2k/rkZGR6t+/v4YPH67y5cvrgw8+0I8//qhp06Ypb968RsczxO7duzV27Fhdvnw5xZ1Rs94RPXLkiD7++GNdvnw5RR/hHTt2GJTKePRCdZQlSxZduXLFocfllStXTNen775ChQrpyJEjpl6W+rAyZcrozJkzKWZPm5mfn5/i4uK0e/duey//unXrmrJf7oPy58+vN954w+gYbqNOnTqqVauWgoODVbt2bdPOHn9QnTp1FBoaqubNmxsdxXCVKlXS4cOHVapUqT8t2Jj1GlaSvvzySy1dulRRUVFas2aNJkyYoPHjx5t6D6bcuXMrd+7ckmiLIEleXl4qX768/XuzF8clKTw83P71U089pbt37+rw4cPKlCmTcufObco9h2bMmJHquJeXl3LlyqUaNWqYaoLDrl27jI4AwEVMO5O8W7duypMnj4YMGWLfjHHy5Mm6efOmpk2bZnQ8Q7z00ktq2LBhqh9CzVrsatq0qZ555hnVrFkzxWvSsmVLg1IZ6696oZr1xsGHH36offv2acCAASpYsKAiIiI0efJk1axZU2+//bbR8TJc165dtX//fhUsWFD58uVzKFwsXrzYwGTGmTRpkr788ks1btw4xazYnj17GpTKWBcuXFCnTp2UlJRk39/AarXqs88+M10P7gf7Kv8Zs55fz549qzVr1mj9+vWy2Wxq2bKlgoKCTFmkuK93797avn27ihQpkuJ8YrZz7Pfff68qVarowIEDf/o3ZNZr2E8//VTLli1T165d9eGHH2rHjh0KCQnRM888o7FjxxodD3BbL730kiIjI+Xh4aFcuXLpxo0bslqt8vDwUHJysooVK6a5c+eaakP63r17a+vWrSpXrpwKFSqkyMhI/fjjjypXrpySk5P166+/avbs2apevbrRUTNEhw4d0jST3mzvycDjwLRF8qpVq2rv3r3KlCmTfeyPP/5QrVq1dODAAQOTGady5co6ePAgS8keULFiRR08eNDh98Ts6tSpo/fee49eqA/4448/NHLkSG3YsEFJSUny9vZW69atNXDgQGXOnNnoeBnuz2abSOYtCHfo0CHVcYvFYtoL6DfffFNFixbVO++8Iw8PD1mtVk2cOFGnT5/WggULjI6XodasWSPpXk/yHTt2qHPnznr66ad15coVLVq0SC+99JLeffddg1May2q1as+ePVq3bp2+/vprlSlTxrR/O5xjkRaNGjXSrFmzVLx4cVWtWlUHDx7UtWvX1LJlS+3du9foeBlq7dq1f/sYs62GfHC29J8x60z7qVOnKjIyUiNGjFC2bNl0584djR8/Xr6+vurYsaOmTp2qiIgIzZkzx+ioGaZ///6qUqWK2rVrZx/76quvdODAAX344YfauHGjFi1apJUrVxqYMuNMmjRJX3zxhVq3bq2iRYvq6tWrWrFihapXr65ixYrZH8d7MvDoMW2RvEaNGlqzZo1DH/Jr164pODhYu3fvNjCZcd5++229/PLL9t3eIYWEhKhnz54OyxDNjl6ofy4xMVE3b97UU089xevz/0VHRytHjhz04kYK1atX1+7dux02fEpISFDNmjX1/fffG5jMOM2bN9fkyZNVvHhx+9iFCxcUEhKiLVu2GJjMPRw8eFChoaH2WdRm3BgZqfur1RhmXYVRtWpV7d+/Xx4eHvL391d4eLiSk5NVo0YN000IeuWVV/TTTz/Jx8cn1eNmXA3ZsGFDXbx4MdXNByVzb0BYt25dbdy40WFvnfj4eDVp0kRff/21/vjjD7344os6ePCggSkzVrVq1bR3716HyXQPnk9sNpuqVKlimr2Y2rZtqwEDBjisVDp27JhGjx6tFStWGJgMwL9l2qpF48aN1bt3b/Xt21c+Pj66cuWKpk2bpkaNGhkdzTAdO3ZUu3btVKJEiRQ9Yc06W6tv377q2LGjAgICUrwm48ePNyiVseiF+n+YmZS6pKQkTZw4UStXrlRCQoK8vLzUvHlzDR8+3KEgajbbt2/XihUrdPnyZeXNm1dBQUFq1qyZ0bEM88QTTyg2NtbeG1aSYmNjTb3h68WLF1O0EcmfP7+uXbtmUCLjnT9/XmvXrtX69esVHx+v5s2ba8mSJSpRooTR0Qz15ZdfasmSJbp27Rq9piX16tXL4fuYmBh99dVXCg4ONiiR8UqVKqUVK1bof//7n/0GwsaNG03XzkqSFi1apFdffVWtWrVS+/btjY7jFpYvX65XXnlF/fr1U5MmTYyO41bu3LmjW7duOVyP3L59W7GxsfbvzTYZJmvWrDp69Kief/55+9jx48ft1/XR0dGmun47ffq0Kleu7DBWsmRJnT9/3phAANKNaYvk77zzjt577z1169ZNiYmJ8vLyUosWLdS3b1+joxlmxIgRqlixoqpUqULLlf9v3LhxypMnj2k/dKbmjz/+0KBBgzRnzhzT90L9u/0LLBaLKYvks2bN0oEDBzRlyhSHHu1TpkzRwIEDjY5niNDQUL333ntq27at6tWrp4iICI0aNUoJCQmmLeLUrVtXAwYM0PDhw1WwYEFdvHhRY8eOVd26dY2OZpiyZcvqgw8+0MCBA+Xl5aX4+HiNHTs2xQcxM2nSpImqVaumAQMGqEGDBqa+0Xbfw72ms2XLpqioKI0fP960vaZT2yemQYMG6t+/vzp37mxAIuO9++676tSpk9atW6c7d+7ojTfe0I8//qhPPvnE6GgZLkuWLJowYYI6d+6s4OBgziO6t4Hp+PHj9c4776hRo0ZsivyAxo0b66233lL//v3te6ZMmzZNDRs2VGxsrMaOHasqVaoYHTNDderUSSEhIXrllVfk5+eny5cva+XKleratasiIyP15ptvKjAw0OiYGaZ48eJatGiRXn/9dfvY7NmzVbZsWQNTAUgPpm23cl9SUpJu3rypPHnymO6O8MPov51ShQoVtHfvXorkD6AX6j8TFhampk2bGh0jQ9SvX1+LFi1y2NAoIiJC7du317fffmtgMuM0b95cQ4YMUbVq1exj+/fv1+jRo7Vx40YDkxnn999/V69evRQeHm5//61Vq5YmTpyYYuWOWfz666/q1q2brly5Yt8srGjRopo3b96ftgl43F28eNFUm6OlBb2m0yY5OVkBAQGmbd8k3WsluX79el2+fFkFChRQs2bN5Ovra3Qsw+zfv1+lS5dWjhw5jI7iNtauXasXX3xRefLkMTqK2/jjjz80btw4hYaGKj4+XpkzZ1ZQUJAGDBigY8eOaeHChRo1apTy5ctndNQMtWHDBn311Ve6cuWKfH191bZtWzVs2FAnT57U/v371aFDB9NMtDt06JC6d++urFmzqkCBAoqMjJSXl5cWLlxo6o3FgceB6Yrk9wtVf9UmwYwzPyWpXbt2Gjt2rMNmE2b33//+V/PnzzfdRRDSX6VKlXT48GGjY2QIf39/fffddw59yJOSklSjRo00bRT1OKpSpYpDMVi6txFhlSpVTPN78WcuXryo6Oho+fn5KW/evEbHMdzdu3d1+PBhXbt2TQUKFFClSpVMP8Pvs88+S9GqqFu3bqad3ECv6ZQefm9JSkrS5s2bdfz4ca1atcqgVMYaO3ashg0blmJ84MCB+vDDDw1IBDxa7t69q99//53JdEjVjRs3tGvXLkVHR6tQoUKqU6eOMmfObHQsAP+S6dqtzJkzR02bNv3TNglmbY8g3dtErWPHjmrcuLFy5szpcMysM4RbtmypLl26qHXr1sqZM6fDBZLZfk9GjRqlUaNGafDgwX/6GLP2aU8LM92PfPbZZ7V8+XK9+uqr9rHly5erZMmSBqYyVoECBRQeHu6wwU94eLgpZ/QdOnRIlStXTlHUOn/+vL2Xo7+/vwHJ3ENSUpKefvppFSxYUNK9mwinT59WgwYNDE5mjM8++0yLFi1SSEiIvX3TJ598Ig8PD4WEhBgdzxD0mk6pQ4cODt97eHioePHiGjlypEGJjBEVFaXvvvtOkrRy5coUS/9v376tbdu2GRHNLfzZjfpMmTIpd+7cppwB2r17d82ePTvF+KuvvqqlS5cakMg97N+/X1FRUfbr96SkJJ06dSrVG09mcOPGDS1ZskRRUVGyWq2S7r0mp0+f1vr16w1OZ4zk5GS1atVKiYmJWrVqlb7++ms1btzY6FgA/iXTFcnDwsIkSR9++KEqVqxomiVBaXHw4EEVLVpUp06dchg3853z+z22lyxZ4jBuxpsp9y8SbTabqX8n/ikzvWZ9+/ZVly5dtH79ehUqVEgRERE6c+aMFixYYHQ0w7z22mt666231LZtW/trsmLFir+86fS4euONN3T48OEURa37LBaLTpw4kcGp3MNXX32lMWPG6I8//nAYz5Mnj2mL5MuXL9esWbP03HPP2ccqVaqkXr16mbZITq/plE6ePGl0BLeQK1cuLV26VDExMUpMTEwxKcjb29u0E18kadCgQYqMjJSHh4e9pZXVapWHh4eSk5NVrFgxzZ0797Fv8XTp0iX7quo9e/akaKUYGxub4vOgmYwdO1bLly+3t9tMTk5WXFycXnzxRYOTGWfw4ME6f/68cufOrdjYWPn6+mrPnj2m3Qh35cqVGjdunH788UdNnDhRGzdulMVi0a+//qoePXoYHQ/Av2C6div3BQQE6OuvvzbVLsxAerh+/XqKDTvx98zUbkW611s5LCxM169fV8GCBRUYGCg/Pz+jYxlq9erVWr16ta5fvy4/Pz8FBwcz4wQOGjRooPbt2ytbtmwKDw/Xa6+9pokTJ+qFF17QG2+8YXQ8Q9xfdfBgyxmr1Sp/f38dOnTIwGTGioqK0vr16xUZGUmv6f8vNjZWu3fvVlRUlAoWLKhatWqZeul7165dTX1zOjVTp05VZGSkRowYoWzZsunOnTsaP368fH191bFjR02dOlURERGaM2eO0VFdymq1ql+/foqJibGv7nqQt7e3WrRoYZq9dB72wgsvaObMmYqPj9f69ev1/vvv64MPPtCdO3c0evRoo+MZonLlytq4caOioqI0b948zZgxQ+vWrVNYWJjmz59vdLwM99///lcDBw5UtWrVVLVqVc2fP1958+ZVhw4d9PXXXxsdD8C/YLqZ5PcVKlRIR44ccVj6Dmn79u0p+n42a9bM6FiGOnr0qFatWmV/TVq1amW6Hc0fVKdOHdWuXVtBQUGqXbu26XvlInVFihRRnTp1dOnSJeXLl8+0mw7eN2bMGPXr10+tWrUyOorbaNGiRar7g9SrV087d+7M+EBu4LffftNrr72my5cv66uvvlKZMmX0/vvvq1OnTqYtkhcuXFjbtm1To0aN7GPbtm1T4cKFDUxlvPz585v2dyI1R44c0euvv67MmTOrQIECunz5sry8vPTJJ5+Ydq+d1Arkd+/e1enTpx1WZpjJ2rVrtXHjRvskqaxZs2rIkCFq0qSJunfvrgEDBphitrCHh4emTp0qSRo2bJjGjh1rcCL3Eh8frwoVKui3337TsWPHZLFY1LNnT7388stGRzOMp6en8ufPryxZsthXGQQGBpp2f4MrV67ohRde0OHDh+Xp6alKlSpJkm7dumVwMgD/lmmL5Dly5FDnzp1VsGBB5cuXz6EVwv0WG2YTGhqq9957T23btlW9evUUERGhUaNGKSEhQcHBwUbHM8SePXvUo0cP1atXT88++6wiIiLUuXNnTZ48WfXr1zc6niHWrVunNWvWaOTIkbLZbGrZsqWCgoJM2ccRqfvtt9/05ptv6tSpU8qRI4du3LihIkWKaOHChSpQoIDR8QwRGhqqIUOGGB3DcBEREfbep2fOnEnRbiY2NlYJCQlGRHMLefLkUVJSknx8fHTu3DlJkq+vr6Kjow1OZpwePXqob9++2rx5s71V0Y4dO/50bxkz2L17t8aOHavLly+n2O/CrK2Kxo8fr86dO+vNN9+UdK813LRp0zR69Gh9+umnxoYzyO7duzVq1CiHvsrSvWLXkSNHDExmnDt37ujWrVsOK4lv376t2NhY+/dmao8n3WstcvXqVYWGhury5cvKly+fmjZtaurr+gIFCig6Olp58+bV1atXlZSUpMyZMzv8npiNn5+fjh49qrJlyyouLk4xMTHy9PQ07TVbjhw5dOHCBW3ZssU+6XL//v1sQA88BkxbJK9YsaIqVqyoxMRE3bx5U7ly5ZKnp2lfDknS/PnzNWPGDFWrVs0+Vrt2bY0ePdq0RfJp06bpgw8+UJMmTexjmzZt0qxZs0xbJC9evLjefvtt9e/fX3v27NG6devUsmVLlSlTxrQ3mNLCTJ2tPvjgAxUpUkSLFy9WtmzZdPv2bY0aNUrjx4+3z1wym9atW+u9995Ty5YtU9yYNVOLhKefftreBzY1uXPn1uTJkzM4lfsoX768RowYoeHDh6tIkSJatmyZMmfOnGIzbTOpX7++PvnkE61Zs0bHjh2Tn5+fPv/8c5UvX97oaIYZPXq0GjZsyGquB5w5c8Zh/xiLxaIePXqoevXqBqYy1sSJE9WwYUP95z//0alTp9S0aVPNnDlTQUFBRkczTOPGjfXWW2+pf//+8vX1VWRkpKZNm6aGDRsqNjZWY8eONd1q0SNHjqhTp04qVqyYChYsqCNHjmjevHlasGBBijYsZlG7dm116tRJn332mfz9/TVkyBB5e3urSJEiRkczTLt27dShQwdt2LBBTZs21WuvvSZPT0/TbrTeuXNn+2r7JUuW6NChQ+rWrZvpNosGHkem7UkeGxur0aNHa/PmzUpMTFSWLFnUokULDR48WF5eXkbHM0SVKlUUHh7uULyxWq2qUqWKqXopP8jf318HDhxI0QvVzK/Jgw4ePKjQ0FBt377dXtAxo59++knPP/98ivFvvvlGtWrVkiT17NkzxcZIj6uaNWtq8+bNevLJJ+1jt2/f1ksvvaSDBw8amMw4pUqVsn99/xx7fxNcs878nDVrFpsbPeTatWv2pe8RERF68803lZCQoPHjx5u+9Zkk3bhxQ7ly5TI6huEqV66sgwcPsvn8Azp06KC+ffs6FPV+/vlnjRw5UmvWrDEwmXGef/55HTp0SJcuXdLw4cO1ZMkSnTlzRv369VNoaKjR8Qzxxx9/aNy4cQoNDVV8fLwyZ86soKAgDRgwQMeOHdPChQs1atQo5cuXz+ioGaZjx46qX7++OnbsaB/77LPPtHnzZtNe1yclJemzzz5T27ZtdefOHQ0bNky3b9/WiBEjTNuqSLp3Ti1VqpQsFosWLVqkuLg4denSRTly5DA6miEuXrwoT09P+fj4KCYmRpGRkSpbtqz9eGr9/gG4P9MWyd99912dP39evXv3lo+Pjy5evKjp06erUqVKpl0S37RpU40YMcKhT/uBAwc0ZswYhYWFGZjMOA0aNND06dMdClzHjx9Xv379tGXLFgOTGef8+fNau3at1q9fr/j4eDVv3lzBwcEqUaKE0dEMk9qmnLGxsXrxxRf1ww8/GJTKODVq1NC2bduULVs2+1hsbKwaNWqkvXv3Gpgs4+3evVu1a9fW5cuX//QxZtvQ9P6HhvDw8D99jFlnJm3YsEH169eXt7e3pHv9g5OSkky9yXhsbKwmTJig0NBQ+6SGV155RX379jXtpIa3335bL7/8surVq2d0FMPdv/kcERGhnTt3KigoSAULFtS1a9e0atUqNWzYUKNGjTI2pEHq1q2rHTt26O7du6pTp4727dsn6d759a/Ov2Zw9+5d/f7778qTJ4/p2qs8LCAgQHv37nVYUZ2UlKRq1aqZenPkvxMSEqJ58+YZHcOtpPZ5yMx4PYBHk2n7i+zcuVObN29Wnjx5JEnFihVTqVKl9N///te0RfLXXntNb731ltq2bWvv+7lixYoUPWPNJDg4WN27d1e3bt1UsGBBRUREaP78+WrXrp3R0QzTpEkTVatWTQMGDFCDBg1MW6S4cOGCAgMDlZycLJvNptKlS6d4zP1NXMwmICBAo0aN0nvvvaesWbMqLi5Oo0aNMuVGyW+//bbCw8PVuXNnbd261eg4buGNN97Q4cOH1aFDh1SPm3l2/XvvvaeGDRvav/f09DR9K7gPPvhAv/zyi2bNmmWf1DB16lRNnjxZ7777rtHxDNGxY0e1a9dOJUqU0H/+8x+HY2Zre3bgwAH716VLl9axY8d07NgxSffaw/36669GRTPcs88+q6lTp+qtt95Snjx5tHv3bmXOnNl+E86sfv75Z507dy5FG7wWLVoYE8hgWbJk0ZUrV1SoUCH72JUrV0w7Ozitvv/+e6MjuB2Tzr38U7wewKPJtJ+8vL29UyxTzZYtm6lnawUHB+uJJ57Q6tWrtX37dvn5+Wns2LFq3Lix0dEM88Ybb+iPP/7Q3Llzdf36dfn5+enVV19V586djY5mmK1btzpcSJtV4cKFtXLlSt26dUshISGaP3++w3Fvb2+VLFnSoHTGeuedd9S5c2dVrVpVOXPm1O+//64SJUpo7ty5RkfLcJkyZdK4ceMUGRn5p+12evbsmcGpjHV/Vs3JkycNTuJ+ypUrp40bN+q///2v0VHcxq5du7R+/Xrlzp1b0r1JDc8++6yCgoJMWyQfMWKEKlasqCpVqpi+5cqDfcj/zrx58xQSEuLCNO7lnXfeUe/evdWmTRv17t1bPXr0kNVq1cCBA42OZphJkyZp/vz5yps3r8MNSIvFYtoi+csvv6xevXppwIAB9glBkydP1ssvv2x0NDxizL4q42G8HsCjybTtVpYuXaqtW7dqyJAhKly4sKKiovTxxx/r6aefVvv27e2PM9OGag+Kjo5Wjhw5TD+DDf/n/ofLv+qrbbZiX/369bV9+3YNHDhQH374odFx3Mrdu3cVHh6umJgY+fn5qVy5cqYs5mzatEkrV67U/v37U+1LaLFYTDfzMzIy8m8fY9b33tatW+vYsWPy8vLSU0895fABa8eOHQYmM06DBg20atUqh1mNt27dUuPGje3tI8ymYsWKOnjwoDJlymR0lEeK2Ze+X7t2TXFxcSpatKjRUQxTp04dvffee6pdu7bRUdzGH3/8oZEjR2rDhg1KSkqSt7e3WrdurYEDBypz5sxGx3NbZj+fpIbXxBGvB/BoMm0FdOzYsZLuLa2zWCwOy2EWLlxoyg3VEhMT9dFHH2nlypVKSEiQl5eXmjdvruHDh5u2pYbNZtPixYu1YsUKXb58WXnz5lVQUJC6detmurvD4eHhCgkJcVja/CCzvR7SvZtJJ06c0LZt23TlypVUl9WZqdj3cPGzcOHCKly4sCQpKipKkrleD+lee6ImTZqoZcuWTs14fJzVq1cvxfni/nvufWZ6733Qq6++muq4Gc+v988nLVq0UL9+/TRo0CD5+fnp2rVrmjhxojp16mRsQAOVLl1aFy9eVLFixYyO8kgx27ygZs2aKSgoSM2bN1euXLlMtRnln4mLi7NvqI57vL29NWHCBI0ePVo3b95McYMWAAAzMW2R3Kwzsv7K7NmzdeDAAU2ZMsVhud2UKVNMuzRz8eLFWrRokUJCQuyvySeffCIPDw9TLdmVZG8nQqHv/9SrV08tW7aUxWJJsYGaGW+0PVj8vF+MePB7s70eD7p586ZiY2P15JNPGh3FcPfff9etW6dDhw7pnXfe0dNPP60rV67oo48+UoUKFYwNaKDp06enWpzIlCmTvvzyS9WtW1ddu3aVh4eHAeky1v3zyf1zSfPmzR3OJ7t27TLd+/B91atXV8eOHdW4cWPlzJnT4ZjZVnQ5w2yFv//9739au3atPv74Y9WrV09BQUGqWbOm0bEMVadOHYWGhqp58+ZGRzHc2rVr//YxZm1BAwAwL9O2W0FK9evX16JFixz6TUdERKh9+/b69ttvDUxmnCZNmujjjz/Wc889Zx87fvy4evXqZbobLVxMpy4qKkqNGzdWWFhYqsf9/PwyOJFxqlSponXr1qlBgwbavn17qrP2zPR6PKhevXpasWKF8ubNa3QUt1G7dm2tX7/eoY3G7du31bhxY+3du9fAZMaZM2eOvvzyS73++usqVKiQLl++rIULF6pmzZoqVqyYvvjiCzVp0kS9evUyOqrLXb58+W8fY9bzyV9temu29k3OMOvS97Nnz2r16tUKCwvTE088oVatWpn2Zkrv3r21fft2FSlSRE899ZTDMbP97Tw8ueNhFovFdJ91nGHW88lf4TVxxOsBPJpMO5McKd28eVM+Pj4OYz4+PkpISDAokfGuXbumUqVKOYyVKlVKv//+uzGBDDRt2rS/PG7WTY/y58+vL774wrTFmgd5eXnp008/1RNPPKE1a9akWiQ36wfzgIAABQcHq1atWimWvJv1NYmLi5PVanUYu3PnjpKSkgxKZLwtW7Zo7ty5euaZZ+xjVatW1dtvv60RI0aoTp066tChgymK5H91Tr17965Onz5t2vMuK7rgjOLFi6tnz54qWbKkpk6dqgULFpj2fadkyZKm3VT9YTt37kzzY8PCwtS0aVMXpnn0MM8wJV4TR0WKFDE6AoB/gCI57J599lktX77coSfq8uXLTX0xWbhwYW3btk2NGjWyj23bts3eZ9lMuJj+c2mdfTR+/HgXJzHW8OHDtXLlSlmtVu3fvz/FcbMtdX/QpUuXVKhQIZ07d07nzp2zj5v5NXnppZfUo0cP9e7dWz4+Prp48aKmTp1qqnPHwy5cuJDiQ9X93xtJKliwoG7dumVAMuN8/fXXeu+99xQVFeXwAdzT01NHjhwxMJmxzp49q2XLlunq1asaM2aMNmzY8Kc97WFe3333ndauXatt27apSJEi6tq1q6lbjZj15sC/NWLECFO+N9+8eVMXL17Uc889p7t37zrs0fXBBx8YmMwYiYmJiomJSTHB4f5+Q2ZYeeDMyurVq1e7NgwAl6BIDru+ffuqS5cuWr9+vQoVKqSIiAidOXNGCxYsMDqaYXr06KG+fftq8+bN9tdkx44dfzur2uzMdjHt7e2tVatWqU6dOipatKiuXr2qLVu2yN/f31QbZd3fpDI4OJiZjg/h9UhpxIgReu+999StWzclJibK29tb//3vfzVo0CCjoxmmVKlSmjt3rkMhZ+HChSpRooQk6ZtvvjHd7OmPPvpIDRs21H/+8x+dOnVKTZs21cyZMxUUFGR0NMPs3btXvXr1Ut26dbVv3z4lJCRo5syZunPnjmn7tKeF2WY51q5dW3FxcXr55Ze1ePFilS1b1uhIhhk1apRGjRqlwYMH/+ljHveJDP+G2f524uLiNGLECG3YsEGZM2fW6tWr1blzZy1atMi+YXLDhg0NTpmxNm3apJEjR+r27dv2sYf3G8qdO7dR8TIMK6uBxx89yeHg3LlzCg0N1fXr11WwYEEFBgaa7gP5w/bv3681a9bo+vXr8vPzU1BQkMqXL290LLdWsWJF/fDDD0bHyDBdu3ZVmzZtHFYc7Nu3TwsWLDD1TSY4YuZn6hITE/X7778rV65cypQpk9FxDHX8+HG98cYb8vT0lI+Pj65cuSKr1arZs2crMTFRr732mqZOnfq3vWQfJ88//7wOHTqkS5cuafjw4VqyZInOnDmjfv36KTQ01Oh4hmjdurV69+6t2rVry9/fX+Hh4Tpy5Ij69u1ripl8qRkzZoz69ev3l5sjv//++xoyZEgGpjLWV199pZdffllZsmQxOorhRo4cqffee0+DBg360xVcFMn/nNl6K48cOVLXrl3TwIED1aZNG+3bt0/jxo3TxYsXTXtd//LLL6thw4Zq2bKlPD0d51mavVYA4PFCkRx2rVq10uLFi//yA4bZdO/eXRMnTuQ1cZLZLqYrVqyoQ4cOycPDwz6WnJys6tWr6+DBgwYmg7t4cObnrl27tGHDBrVq1UqdO3c29czPn3/+WefOnUsxS83Ms3BiY2O1a9cuXblyRX5+fqpXr56yZMmi33//XcnJycqTJ4/RETNU3bp1tWPHDt29e1d16tTRvn37JMleHDajKlWqKDw8XBaLRVWrVrW/z1SpUkXff/+9wemMUbVqVe3bty9F8cbsjh49qlWrVuny5cvKmzevWrVqpSpVqhgdyzDXr19PsWEn/p7Zrutr1aql0NBQ5ciRw36OTUhIUK1atUx7XV+xYkWFh4dzjn3AxYsXHVrBJSUl6fTp0+rUqZOxwQD8K5zlYHft2jWjI7idH374waH/HJAaPz8/bdq0SYGBgfax1atX25dkApMmTdLkyZPtMz99fHw0b9489e3b17RF8kmTJmn+/PnKmzevw4cusy9VffLJJ9WsWbMU4zlz5sz4MG7g2Wef1dSpU/XWW28pT5482r17tzJnzixvb2+joxnG19dXhw8fVuXKle1jR44cSbH5upm0bt1ao0ePVqtWrZQ3b16H2cL3++WazZ49e9SjRw/Vq1dPzz77rCIiItS5c2dNnjxZ9evXNzqeIerUqaPatWsrKChItWvXdpjcANxntVrtn//uF0AfHDOjMmXK6MyZMypVqpTRUdzC3LlzNXnyZPt7zf3WM6VLl6ZIDjziKJLD7qWXXlLHjh3VqFEj5cuXz+EDhlkLFk2bNlXv3r3VrFmzFB+6/P39DUwGd9KvXz/16dNHn3/+uX0DwnPnzmnRokVGR4ObuHDhgmrVqiXp/zbrLFeunG7evGlkLEOtX79ec+bMUe3atY2OAjf2zjvvqHfv3mrTpo169+6tHj16yGq1auDAgUZHM0y3bt3UvXt3/e9//1NSUpLmz5+vJUuWqH///kZHM8z999svv/xS0r3z7MP9cs1m2rRp+uCDD9SkSRP72KZNmzRr1izTFsnXrVunNWvWaOTIkbLZbGrZsqWCgoL09NNPGx0NbqRatWoaPXq0RowYYb9mmzJliqpWrWpwMuNUqlRJnTp1UuPGjVOsxjDjhrhffPGFpk2bJi8vL+3cuVP9+/fXmDFjTH2zGnhc0G4Fdn/W49RisZi2x+Wf3S0384eutDDbskxJOn36tLZs2aLo6GjlzZtXAQEBpl7SDEfNmzfXyJEjVblyZfvS3SNHjmjIkCGm7avs7++vgwcP/ml/WCA1165dU1xcnIoWLWofCwsLM9Vm0ZK0e/duff7557p8+bIKFCiQYl8Ms3n33XdVrVo1+fv7pzinmLVfrr+/vw4cOOAwW9pqtapKlSqmu0Z7mNVq1Z49e7Ru3Tp9/fXXKlOmjBYvXmx0LLdltr2GoqOj1b17dx0/flzJycnKnDmzihQpojlz5ih//vxGxzNEhw4dUh23WCym/Nu5/zdx9epV9ejRQ6tXr1ZMTIyCgoK0c+dOo+MB+BeYSQ47TugpnTx50ugIjySz3XvbuXOnhg0bpn379mnWrFmaM2eO5s2bp6FDh6pNmzZGx4MbYOZnSnXq1FFoaKiaN29udBQ8QvLly5dibMSIEaYrkteuXdu+CiM2NtbUbQCke22KPvjgA2XPnl2tWrVSq1atTFvMui9nzpw6ffq0w4SPkydPKm/evAamcg8eHh7KnDmzsmbNKi8vLyUlJRkdyTA//fSTnn/++RTj33zzjX0F3AsvvJDRsQyVJ08erVixQkeOHLHfiCxfvryeeOIJo6MZZsmSJUZHcCv58uVTbGys8ufPr0uXLslmsyl37tymXiEKPC6YSY40bXxl5tYiycnJun79upKTkx3GzdrjMi0X0z179tSMGTMyOpphgoODFRwcrKCgINWsWVMTJkxQ7ty51a9fP23bts3oeHATzPx01Lt3b23fvl1FihRJsXTXjLOS8M+ZbZbj2bNnNWnSJM2cOVPbtm1Tv379lC1bNs2aNcuhT7nZJCUladeuXVqzZo327t0rf39/tW7dWvXr1zflTYR58+Zp2bJl6tatmwoWLKiIiAjNnz9f7dq10xtvvGF0PEOcP39ea9eu1fr16xUfH6/mzZsrODhYJUqUMDqaYVJb/RkbG6sXX3zRVOfVhx09elRly5bVrVu3NHfuXOXOnVuvvfaaqTeu3L59u1asWGHfCDgoKCjVPVTMYNiwYYqMjNSUKVPUu3dvlStXTt7e3tq4caM2btxodDwA/wJFcthnmDy4PDVHjhy6ffu2rFarcubMqe+++86oeIbasmWLBg8erPj4eHtvS7P3uORiOqWAgAAdOHBAx48fV/v27e27v5utcIM/t2nTJoe+sPetWLFCbdu2NSCR8f7qRpoZ+1vinzNbi6+uXbsqX758ev/999WkSRO1atVK2bJl09q1a7Vy5Uqj47mFH3/8UaNHj9bx48eVI0cOtWrVSj169FD27NmNjpZhbDabZsyYodWrV+v69evy8/NTcHCwOnfubNoNK0uXLq1q1aopKChIDRo0MOXNE+nePimBgYFKTk62f655WKVKlfT5558bkM54s2fP1ieffKJDhw5p4MCBOnr0qDw8PFS9enUNHTrU6HiGCA0N1Xvvvae2bdvab7p9+eWXGjRokIKDg42Ol+FiY2P18ccfq1evXoqOjlafPn0UGxur8ePHm27lBfC4oUgOuwULFuj06dMaNmyYsmfPrjt37mjChAnKkSOHBgwYYHQ8QzRo0EAtW7bUyy+/rEyZMjkcM1OPSy6m/1qdOnX01VdfadmyZfrxxx/1ySef6OTJk+rRowdtjEwsPj5eN27ckCQFBgZq48aNDq2Ibt++rVdeeYUbKbrX/zNHjhymnqGFf85sRfKaNWtq165dioqKUqNGjXTgwAFly5ZNlStXNtXr8LDffvtNYWFhWrdunc6ePavatWurVatW8vX11ZQpUxQbG6ulS5caHRMGunjxogoVKmR0DLdw4sQJ3bp1SyEhIZo/f77DMW9vb5UsWVJZsmQxKJ2xAgMD9fHHH6tYsWLy9/fXihUrlDdvXjVv3lx79+41Op4hmjdvriFDhqhatWr2sf3792v06NGmnDmdlpXVAB5NfBqF3YIFC7Rz505lzpxZkpQ1a1YNHTpUtWrVMm2R/ObNm+rRo4fRMQxXuHBhrVy58m8vps2qdevWatGihW7duqVp06bp6NGjev3119WlSxejo8FAsbGxCgwMVEJCgqR7myM/vCKlfv36Bqc0TlJSkiZOnKiVK1cqISFBXl5eat68uYYPH27a2X1AWty9e1c2m0179+5VmTJl9OSTTyomJkbe3t5GRzNM165dtX//fhUrVkytWrXSf//7X+XOndt+vH///qZbtZOcnKwtW7bo/PnzslqtDsfMtlpn3rx5CgkJ0bp16/70MWZ7TXr16qXt27erUaNGqlq1qtFx3Mq1a9dUqlQpfffdd8qePbt91XV8fLzByYwTGRmpgIAAh7GqVavq6tWrBiUyVufOnVNdWd2nTx8mvwCPOIrksLNarYqOjnaYIX3p0iVTb1JSrlw5nTx50mHTI7PiYvrP9erVS1WrVpW3t7cqVKigK1euaPTo0WrYsKHR0WCgvHnzavv27YqPj1ezZs0UFhbmcNzb2ztFL24zmTVrlg4cOKApU6bYl+5OnjxZU6ZM0cCBA42OB7itGjVqqFevXjp58qS6du2qixcvauDAgapTp47R0QxTsGBBLVu2TOXLl0/1uJ+fn1atWpXBqYw1cuRIbdiwQaVKlXJYpZPaasDHXXh4uEJCQnTgwIFUj5vxNYmOjtaJEye0bds2XblyRaktLjfr/kv58+dXeHi41q5dq+rVq0uSwsLCTL0KoUCBAgoPD3f4DBgeHm6q35GHV1aXLl06xWMqVapkQDIA6Yl2K7AbP368du/erddff10+Pj66ePGiPvnkEzVv3ly9e/c2Ol6Gut8r98KFC9q3b5+aNGminDlzOjzGbDNOKlasqC+++ELt2rVL0TbiPjNdKAHOsFqtqfaAvXv3rmlbjNSvX1+LFi1y+NAZERGh9u3b69tvvzUwGR41Ztv/IS4uTgsXLpS3t7dCQkJ08uRJrVq1Sv3791fWrFmNjgc38cILL2jOnDkqV66c0VHghgYMGKANGzakeoPA7PsvbdmyRQMHDlTmzJm1bNkyRUVFKSQkRNOnTzftzciVK1fqww8/VNu2bVWoUCFFRERoxYoVGjx4sFq3bm10vAzzcJuiB9uQmr1NEfC4oEgOu7t372rmzJlav369oqKi5OPjo+DgYL3xxhumm2HRoUOHvzxusVi0ePHiDErjHriYBv65iIgIzZw5U1FRUfZl70lJSTp37pz2799vcDpj+Pv767vvvnO4SZCUlKQaNWooPDzcwGRwJ2np+9mzZ8+/3AjWLMx80w0pVa9eXXv27DH1itD71q5d+7ePadGihctzuJuoqCg1btw4xUq3+8y0/9LD/vjjD0n3Cp+xsbG6c+eO8uXLZ3AqY61evTrFRsCNGzc2OpYhHtzfgH11gMcLRXLgL/z222/KmzdvivFffvlFzzzzjAGJjMXFNPDPdOjQQTabTbly5VJ0dLSee+45rV27Vp06dTLdqpT7Xn31VTVu3FivvvqqfWzJkiXavHmzaTcBRkqpbcoZGxurF1980VSzxx/ETTekxbhx45Q3b16FhIQYHcVw9erV+8vjFotFO3bsyKA07uXEiROpto0ws7+6Ue/v75+BSeCu2FcHeHxRJIeDvXv3aunSpYqKitLcuXO1cOFCDRgwwLR3RlP7cJ6cnCx/f/8U42bBxTTgvIoVK+rrr79WZGSkpkyZorlz5+qbb77R3LlzTVsQ/v7779WlSxeVKlXKvnT3zJkzWrBgAT0dTe7hvp+prWCqVKmSaf92uOmGtGjXrp0OHz6sLFmyOGxiKsm0BeG0CAsLU9OmTY2OkWEGDx6cpseNHz/exUncR2p7UXl4eMjHx8d0fzujRo3SqFGj/vL3xEy/G/dNnTpVO3fuVP/+/R321alZsyb76gCPOHNWPpGq0NBQjR8/XsHBwTp48KAkaefOnbJYLKY62V+4cEFdu3aVzWZTfHy8XnrpJYfjCQkJpp4xndY2M2a8YAL+TJYsWexLMU+fPi1JqlWrlt59912DkxmnSpUqGjp0qH766Sd5enqqbt26atOmDQVyqHDhwlq5cqVD388H3e/7aVZHjx51uOk2bNgw1apVS3PnzqVIDrvg4GAFBwcbHeORM2LECFMVyb29vbVq1SrVqVNHRYsW1dWrV7Vlyxb5+/ubtr3IyZMnHb6PiYnRzJkzTfn5j/mUqQsNDXXYV6d48eIqXry42rdvb6q6CfA4okgOu3nz5mnWrFmqUKGCvvjiC+XNm1dz585Vx44dTXWyL1y4sIYOHaobN25o1KhRKT5went7m3qpHRfTgPOefvpp7d69W7Vr15bVatXFixfl5eWlu3fvGh3NMNOmTdOaNWu0aNEiFSlSRDt27ND777+vmzdv6vXXXzc6HgzWq1cvbd++XY0aNVLVqlWNjuNWuOmGtGjZsqX965iYmBSzyZE6sxUFL168qI8//liNGjWyj7Vs2VILFixgwsv/lzt3br3zzjtq1KiRunTpYnScDPXee+9Jkl555ZU/3R/EjG7evCkfHx+HMR8fHyUkJBiUCEB6oUgOu6tXr9rf/O4vbS5cuLDu3LljZCxD1K1bV5JUsGBBPpw/hItpwHndunVT7969FRYWprZt2+qVV17RE088kWKlipmsWrVKn3/+uX0WzksvvaRnnnlGr732GkVyKDo6WidOnNC2bdt05cqVVAtXvr6+BiQzHjfdkBZ3797V9OnTtXTpUiUnJys0NFR9+/bVnDlzUt1vB/ek1t7pcXb48OEUq3UCAgLUt29fYwK5qZs3b9o38zSjzp07p7o/SJ8+fUy5P8izzz6r5cuXO+yrs3z5clOvcgMeFxTJYXd/Jl/9+vXtY/v27VPhwoUNTGWsChUq6KuvvkqxOdbp06c1e/Zsg9MZg4tpwHkLFixQ9+7dlSlTJvXo0UNFihRRbGysWrRoYXQ0w8TGxqY6C8eMN2aRUr169dSyZUtZLJYUm+7d71N+4sQJg9IZKyQkhJtu+FvTp0/X/v37NXXqVPXr10958uRRgQIFNHbsWE2dOtXoeHATfn5+2rRpkwIDA+1jq1evVrFixQxMZayH+28nJSXp0KFDqlGjhkGJjPHw/iCp7Ull1hZ5ffv2VZcuXbR+/foU++oAeLRRJIddv3791KNHD7300ktKSEjQqFGjFBoaqkmTJhkdzTBDhgzRt99+q1y5cikpKUlZs2bVL7/8YurCFhfTgPOaNGminTt3aubMmSpVqpQaNGighg0bysvLy+hohilTpozmzZunHj162McWLlyY6oZZMJ+PP/5YAwcOVOPGjRUWFmZ0HLdSr149bd26VXny5OGmG/5UaGioli1bpvz588tisShr1qwaP368GjRoYHQ0uJF+/fqpT58++vzzz+Xj46OLFy/q3LlzWrRokdHR3Ia3t7c6dOigtm3bGh0lQ7E/yJ/bvHmz1q1bp9DQUF2/fl0NGjTQlClTNHXqVNPeOAAeFxab2Rqv4S+dPHlSK1as0OXLl1WgQAEFBQWpfPnyRscyTEBAgJYtW6aYmBgtW7ZMH3/8sRYuXKiff/5ZU6ZMMTqeIXbs2KE+ffqofPnyKS6my5Yta3Q8wK3Fxsbqm2++0a5du7R9+3YVLFhQoaGhRscyxLFjx9SlSxdlyZJFBQoU0NWrV3X37l198sknFMphd+LEiVRnr5md1WrVzz//rKioKPn5+fH+ixSqVaumb7/9VpkyZZK/v7/Cw8OVmJio2rVr67vvvjM6ntuqVKlSirYSj7vTp09ry5Ytio6OVt68eRUQEKAqVaoYHQtu5OLFi/b2eGYVFRVlP3eOHDnS3q/9vtu3b2vSpEmmbD8DPE6YSQ67uLg4LV26VOvXr1diYqKyZs2qJ598UqVKlTLtbEer1apixYopZ86c9mXd7du318KFCw1OZpyXXnpJq1evtl9M165dWwMHDuQDOvA3YmNjtX//foWHh+vnn39WcnKyqfvClilTRlu3btWuXbt07do1+fj4qE6dOsqePbvR0eBGFi9enKbHmWlPjAsXLqhbt266dOmScubMqRs3bqhMmTKaMWMGG2jDrkKFCpoxY4b69etn77O9ZMkSlStXzuBk7s1s88d27typYcOGad++fZo1a5bmzJmjefPmaejQoWrTpo3R8Qzz2Wef2SeO5c2bV0FBQerWrZvpetbf9+STT2ratGmptiBdv369wekyRq5cubR06VLFxMQoMTFR06ZNczju7e2tnj17GpQOQHqhSA67CRMm6JdfftHs2bPtM4SnTp2qyZMn69133zU6niEKFChgv3MeHR2tO3fuyMPDQ3FxcUZHMwwX04Dz2rRpoxMnTqhEiRIKCAjQsGHDVLVqVXl7exsdzVA5cuSgRQT+kre3t1atWqU6deqoaNGiunr1qrZs2SJ/f3/TFoTHjBmjatWqadCgQcqcObNiY2M1btw4jR49WjNmzDA6HtzEkCFD1KlTJ61Zs0ZxcXF6+eWXFRcXZ+o2Gj/99JOef/75FOPffPONatWqJUl64YUXMjqWoWbPnq2+ffvKarVq6dKlmjFjhnLnzq1+/fqZ9rr+s88+06JFixQSEqKCBQsqIiJCn3zyiTw8PBQSEmJ0PEMMHjxY58+fV+7cuRUXFycfHx/t2bNH7du3NzpahvHy8tKqVaskSV27dqX/OPCYot0K7GrWrKn169crd+7c9rGrV68qKChIe/bsMTCZcebNm6clS5Zo1apVmjRpkq5evSpvb2/Fx8dryZIlRsczRHBwsIKDgxUUFKSaNWtqwoQJ9ovpbdu2GR0PcEsdOnTQsWPHVL58eb3wwguqWbMmLSSANOjatavatGmjRo0a2cf27dunBQsWmPYDakBAgL799luHVX7x8fGqU6eODhw4YGAyuJM7d+7IYrHo66+/trdRrFOnjp588kmjoxkmtVYqsbGxevHFF03bIiEgIEAHDhzQ8ePH1b59e4WHh8vT01MVK1Y07WvSpEkTffzxx3ruuefsY8ePH1evXr20Y8cOA5MZp3Llytq4caOioqI0b948zZgxQ+vWrVNYWFiKXuUA8ChjJjnssmTJoieeeMJhLGvWrPYlVWYUEhKiQoUKKVu2bOrbt6/mzp2r2NhYDR8+3OhohomIiFCbNm10/PhxxcfHq0aNGvL09NT169eNjga4rSVLlujOnTvav3+/vv32W/Xr10+3b99WjRo1NHHiRKPjAW7r8OHDKT6ABwQEqG/fvsYEcgN+fn6KiIhQiRIl7GNXr15Vzpw5jQsFt9O0aVOtX79eTZo0MTqKoS5cuKDAwEAlJyfLZrOleoPazBvtZcmSRdHR0dq5c6cqV64sT09PnTx5Urly5TI6mmGuXbuWYm+UUqVK6ffffzcmkBvw9PRU/vz5lSVLFp06dUqSFBgYqA8//NDgZACQviiSQ5GRkZKkFi1aqF+/fho0aJD8/Px07do1TZw4UZ06dTI2oIHi4uK0Z88eDRo0SImJicqSJYvatm2r/PnzGx3NMFxMA/9M1qxZ9cILL+iJJ56Qh4eHNm7cyKxP4G/4+flp06ZNCgwMtI+tXr1axYoVMzCVMdauXSvpXkHvjTfeUNeuXe3XawsXLlT9+vWNDQi3Ex8fb+qZ45JUuHBhrVy5Urdu3VJISEiKm27e3t4qWbKkQemM17p1a7Vo0UK3bt3StGnTdPToUb3++uvq0qWL0dEMU7hwYW3bts1hBdO2bdtUuHBhA1MZy8/PT0ePHlXZsmUVFxenmJgYeXp6KiEhwehoAJCuaLcClSpVShaLxWGjmvubkthsNlksFvumlWYzfPhwnT59Wr1793bo0x4QEGDaPu3Tp0/Xl19+ab+YzpMnj/1i2qx9+oC/s3jxYn3zzTcKDw+Xj4+P6tevr/r166tChQpGRwPc2o4dO9SnTx+VL1/e/j587tw5LVq0yHQbRterV+8vj1ssFtO2AkBKgwcP1nfffadatWql6N9vts3l6tevr+3bt2vgwIHMfE3FgQMH5O3trQoVKujKlSs6cuSIGjZsaHQsw2zfvl19+/ZVgwYNVKhQIV24cEE7d+7UtGnTVLduXaPjGWLVqlUaN26cNmzYoE8//VTfffedfXb5nDlzjI4HAOmGIjl0+fLlv32Mn59fBiRxP/RpTx0X04BzWrdurQYNGqh+/foOLRIA/L3Tp09ry5Ytio6OVt68eRUQEKAqVaoYHcuthYWFqWnTpkbHgIE6dOiQ6rjFYtHixYszOI2xKlasqC+++ELt2rXTxo0bldrHX19fXwOSwV0dOHBAq1evVnR0tPz8/NS6dWuVL1/e6FiG+vnnn+2T6xYtWqS4uDh16dJFOXLkMDoaAKQbiuTAX2jQoIFWrVrl8OZ/69YtNW7cWPv27TMwGQAAj7+dO3dq2LBh2rdvn2bNmqU5c+bIYrFo6NChatOmjdHx3FZqGxQCD5s3b54pVgEOGDBAGzZssK+UfZDZV80ipWvXrmnmzJmKiIjQ3bt3HX5vzHaD6b6FCxeqRYsWDhPHAOBxRJEcSMX9Pu1r1qzRoUOHUvRpr1Chgik+VAAAYKTg4GAFBwcrKChINWvW1IQJE5Q7d27169dP27ZtMzqe26pYsaJ++OEHo2PAzZnpZkpUVJQaN26ssLCwVI+bddUsUurcubNu3rypF198UZkyZXI4ZrZWRfe1adNGJ06cUJ06dRQcHKwXX3wx1ZtOAPCoo0gOpII+7QAAGC8gIEAHDhzQ8ePH1b59e4WHh8vT05Mi8N8wU/ET/5zZ/o5OnDih0qVLGx0Dbq5ixYr65ptvlD17dqOjuJWzZ89q9erVCg0NlYeHh1q2bKnWrVurYMGCRkcDgHTjaXQAwB2x8RUAAMbLkiWLoqOjtXPnTlWuXFmenp46efKkcuXKZXQ04JFntpmgaW2VMX78eBcngTvz8fGRh4eH0THcTvHixfXOO+9owIAB2rVrl8aNG6e5c+fq+PHjRkcDgHRDkRxIBUsuAQAwXuvWrdWiRQvdunVL06ZN09GjR/X666+rS5cuRkcD8Ijx9vbWqlWrVKdOHRUtWlRXr17Vli1b5O/vr3z58hkdDwa7326zefPmGjx4sLp3755iU0qzb/C6f/9+rVu37v+1d2+hTd99HMc/sdlCPTBPrbbZxVZkVGi7HmyrbnPDSVsoYhtpRFRwtqiUigf0wgNSDzh64dzUzRNdwUXGSnF4wFq0FQSDdTg2KqYIIraWKDZWaz2gNt3FIDx96p7JQ+zvn+T9uvP3z8X7Qnrxze//jZqampSSkqKVK1eaTgKAsGLdCgAAACyrtbVVDodDmZmZ8vv9amtrU0FBgeksS2PdCt5ErP0/KS8vl9vtVmFhYejM6/WqtrZWtbW1BstgBazb/Gd79uzRqVOn1NfXp7lz56qsrEypqammswAg7BiSAwAAAFEk1nZN4/8Ta0PyrKwsXb16ddAqjf7+fs2YMUNXrlwxWAYr6Orq+tfPxOrbxosXL1ZZWZmKiorkcDhM5wDAW8O6FQAAACBC/Pnnn/r444+HnF+8eFGzZs2SJH3yySfDnYUIFGt3pZxOpxobG1VcXBw6O378uFJSUgxWwSpidQD+Jjwej4LBoK5du6Y7d+4oMTFR2dnZ7G4HEHW4SQ4AAABEiNfd/u3r69Nnn33G7XGE7NixQ2vXrtXo0aP/8TO7du3Spk2bhrHKrObmZq1evVoZGRlKSkpSZ2enbt26pbq6OqWlpZnOAyyru7tbK1asUHt7u8aOHauenh598MEH+vHHHzV58mTTeQAQNgzJAQAAAAu7ffu2iouL1d/fH9qN+9+ys7N17NgxA3Wwory8PHm9XtntvDj8n27cuKGmpiYFAgElJCQoPz9f06ZNM50FWNr69es1MDCg7du3a9SoUXr8+LGqq6v16tUrfffdd6bzACBsGJIDAAAAFufz+dTb26vly5fryJEjg545HA599NFHio+PN1QHq6mpqdGTJ0/kcrmUkJAw6IuV5ORkg2XmtLS0aMuWLfJ6vfrhhx908OBB2Ww2bd68WW6323QeYFmffvqpzp49O+jNlMePH+vLL79knz+AqMLVAgAAAMDiVq1apfPnz6uwsFB5eXmmc2BxdXV1kqT6+npJks1mC72F4PP5TKYZc+DAAa1Zs0bBYFAej0f79+/X+PHjtXbtWobkwP8QDAaHvMFks9n0zjvvGCoCgLeDITkAAABgcYFAQD6fT+fOnZPf73/tjy7G6g1hDDVv3jxNnz5dubm5r13PE4s6Ojrkdrt1/fp1PXv2TDNnzpTdbld3d7fpNMDS8vPzVV1drW3btmnkyJF68uSJqqur+cIWQNRhSA4AAABY3OzZs1VaWiqbzabZs2cPehbrN4Qx1OjRo1VTU6MxY8bI5XLJ5XJp0qRJprOMio+PVyAQUEtLi3JycmS329Xe3q5x48aZTgMsbcOGDfrqq6+Ul5ensWPH6uHDh5oyZYoOHTpkOg0Awoqd5AAAAEAEuHfvnoqKinT69OnXPnc6ncNcBCt7+fKlLly4oF9//VWXLl1Sbm6u5s+frzlz5ujdd981nTfs9u3bp/r6evX29mrv3r2aMGGCKioqtGzZMi1fvtx0HmBpr1690m+//aYHDx7I6XQqPT1dcXFxprMAIKwYkgMAAAARwufzaerUqaYzEGH++OMPbd++XdevX9d7770nl8ulyspKjRkzxnTasGptbZXD4VBmZqb8fr/a2tpUUFBgOguwvBcvXujBgwcKBoODzlnzBSCaMCQHAAAAIsTGjRvf6HNff/31Wy6B1d2/f1+nT5/WiRMndPPmTX3++edyuVxKTk7Wt99+q76+Pnk8HtOZACyusbFRW7duVV9fX+iMNV8AohE7yQEAAIAI4XA41NDQoC+++EIffvih7t69q6amJuXm5ioxMdF0HiyivLxcly9fVkpKilwul+bNm6fx48eHnq9bt04LFiwwWAggUuzbt0+LFi1SaWmp7HZGSACiF3/hAAAAgAjR2dmp3bt3q7CwMHRWWlqq2tpabo8j5P3339fPP/+sjIyM1z53Op1qaGgY5ioAkcjv96uqqooBOYCox7oVAAAAIEJkZWXp6tWrGjFiROisv79fM2bM0JUrVwyWAQCi0eLFi7VlyxalpqaaTgGAt4qvAgEAAIAI4XQ61djYqOLi4tDZ8ePHlZKSYrAKABCtsrOztXTpUhUVFWnixImDnlVVVRmqAoDw4yY5AAAAECGam5u1evVqZWRkKCkpSZ2dnbp165bq6uqUlpZmOg8AEGWWLFny2nObzaajR48Ocw0AvD0MyQEAAIAIcuPGDTU1NSkQCCghIUH5+fmaNm2a6SwAAAAgYo34948AAAAAsIKWlhYtXbpUq1atUmJiog4dOqTy8nLV19ebTgMARKmbN29q586dqqqqUk9Pjzwej+kkAAg7huQAAABAhDhw4IDWrFmjYDAoj8ej/fv369ixYzpy5IjpNABAFLp06ZLKysrU09Mjr9er58+f6/vvv9fhw4dNpwFAWDEkBwAAACJER0eH3G632tvb9ezZM82cOVNpaWnq7u42nQYAiELffPON9uzZo927dysuLk5JSUk6fPiwfvnlF9NpABBWDMkBAACACBEfH69AIKCWlhbl5OTIbrervb1d48aNM50GAIhCt2/f1qxZsyT9/WOdkpSenq5Hjx6ZzAKAsLObDgAAAADwZubPn6+SkhL19vZq7969unbtmioqKrRs2TLTaQCAKJScnKzff/9dOTk5obO2tjYlJSUZrAKA8LMNDAwMmI4AAAAA8GZaW1vlcDiUmZkpv9+vtrY2FRQUmM4CAEShM2fOqLq6WgsXLtTRo0dVWVmpn376SevWrVNJSYnpPAAIG4bkAAAAAAAAGGLHjh3KysrSyZMn1dXVpcmTJ8vtdquwsNB0GgCEFUNyAAAAAAAADJGXlyev1yu7nW29AKIbQ3IAAAAAAAAMUVNTo6dPn6q0tFQJCQmhH++U/t5XDgDRgiE5AAAAAAAAhkhNTR30b5vNpoGBAdlsNvl8PkNVABB+DMkBAAAAAAAwRFdX1z8+czqdw1gCAG8XQ3IAAAAAAAAAQMwaYToAAAAAAAAAAABTGJIDAAAAAAAAAGIWQ3IAAAAAAAAAQMxiSA4AAAAAAAAAiFkMyQEAAAAAAAAAMYshOQAAAAAAAAAgZjEkBwAAAAAAAADELIbkAAAAAAAAAICY9RfrwAZ7Iy79FQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Exclude the 'id', date and 'price_range' column from the correlation matrix\n", + "correlation_matrix = housing_data.drop(columns=['id', 'price_range', 'date']).corr()\n", + "\n", + "# Set up the matplotlib figure\n", + "plt.figure(figsize=(20, 20))\n", + "\n", + "# Create a heatmap using seaborn\n", + "sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5)\n", + "\n", + "# Add a title\n", + "plt.title('Correlation Matrix')\n", + "\n", + "# Show the plot\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Price has a moderate positive correlation with sqft living (0.70), grade (0.67), sqft above (0.61). This means that as the values of these features increase, the price of the house also tends to increase." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4.STATISTICAL ANALYSIS.\n", + "\n", + "Statistical analysis plays a crucial role in understanding relationships within datasets, identifying patterns, and gaining insights. In this regression modeling project aimed at predicting property values, several key steps in statistical analysis are essential:\n", + "\n", + "\n", + "1. Descriptive Statistics\n", + "2. Correlation matrix\n", + "3. Distribution Analysis\n", + "4. Inferential Statistics using Hypothesis Testing and Analysis of Variance\n", + "5. MultiColinierity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### **a.) Descriptive Statistics**\n", + "\n", + "Initial insights into the central tendency, dispersion, and shape of the data distribution.\n", + "
Understanding the characteristics of the data." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontconditiongradesqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15house_agerenovation_agetotal_sqft
count2.114200e+04211422.114200e+0421142.00000021142.00000021142.0000002.114200e+0421142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.0000002.114200e+04
mean4.581107e+092014-10-29 08:57:27.7722068485.405060e+053.3711572.1160962080.9425311.508757e+041.4936150.0067163.4098485.6583101789.104437291.8380951971.02435968.2597201987.30247812739.32220252.9756410.9556811.924945e+04
min1.000102e+062014-05-02 00:00:007.800000e+041.0000000.500000370.0000005.200000e+021.0000000.0000001.0000001.000000370.0000000.0000001900.0000000.000000399.000000651.0000009.0000000.0000002.013000e+03
25%2.123049e+092014-07-22 00:00:003.220000e+053.0000001.7500001430.0000005.043000e+031.0000000.0000003.0000005.0000001200.0000000.0000001952.0000000.0000001490.0000005100.00000027.0000000.0000008.820000e+03
50%3.904940e+092014-10-16 00:00:004.500000e+053.0000002.2500001910.0000007.620000e+031.5000000.0000003.0000005.0000001560.0000000.0000001975.0000000.0000001840.0000007626.00000049.0000000.0000001.159350e+04
75%7.309100e+092015-02-18 00:00:006.450000e+054.0000002.5000002550.0000001.069575e+042.0000000.0000004.0000006.0000002210.000000560.0000001997.0000000.0000002360.00000010087.00000072.0000000.0000001.546000e+04
max9.900000e+092015-05-27 00:00:007.700000e+0611.0000008.00000013540.0000001.651359e+063.5000001.0000005.00000011.0000009410.0000004820.0000002015.0000002015.0000006210.000000871200.000000124.00000090.0000001.653959e+06
std2.876357e+09NaN3.680831e+050.9022130.768545918.5638164.121013e+040.5392520.0816800.6504221.174272828.413341442.50436429.322166362.774103685.67165527169.85997129.3221665.8246594.156724e+04
\n", + "
" + ], + "text/plain": [ + " id date price \\\n", + "count 2.114200e+04 21142 2.114200e+04 \n", + "mean 4.581107e+09 2014-10-29 08:57:27.772206848 5.405060e+05 \n", + "min 1.000102e+06 2014-05-02 00:00:00 7.800000e+04 \n", + "25% 2.123049e+09 2014-07-22 00:00:00 3.220000e+05 \n", + "50% 3.904940e+09 2014-10-16 00:00:00 4.500000e+05 \n", + "75% 7.309100e+09 2015-02-18 00:00:00 6.450000e+05 \n", + "max 9.900000e+09 2015-05-27 00:00:00 7.700000e+06 \n", + "std 2.876357e+09 NaN 3.680831e+05 \n", + "\n", + " bedrooms bathrooms sqft_living sqft_lot floors \\\n", + "count 21142.000000 21142.000000 21142.000000 2.114200e+04 21142.000000 \n", + "mean 3.371157 2.116096 2080.942531 1.508757e+04 1.493615 \n", + "min 1.000000 0.500000 370.000000 5.200000e+02 1.000000 \n", + "25% 3.000000 1.750000 1430.000000 5.043000e+03 1.000000 \n", + "50% 3.000000 2.250000 1910.000000 7.620000e+03 1.500000 \n", + "75% 4.000000 2.500000 2550.000000 1.069575e+04 2.000000 \n", + "max 11.000000 8.000000 13540.000000 1.651359e+06 3.500000 \n", + "std 0.902213 0.768545 918.563816 4.121013e+04 0.539252 \n", + "\n", + " waterfront condition grade sqft_above sqft_basement \\\n", + "count 21142.000000 21142.000000 21142.000000 21142.000000 21142.000000 \n", + "mean 0.006716 3.409848 5.658310 1789.104437 291.838095 \n", + "min 0.000000 1.000000 1.000000 370.000000 0.000000 \n", + "25% 0.000000 3.000000 5.000000 1200.000000 0.000000 \n", + "50% 0.000000 3.000000 5.000000 1560.000000 0.000000 \n", + "75% 0.000000 4.000000 6.000000 2210.000000 560.000000 \n", + "max 1.000000 5.000000 11.000000 9410.000000 4820.000000 \n", + "std 0.081680 0.650422 1.174272 828.413341 442.504364 \n", + "\n", + " yr_built yr_renovated sqft_living15 sqft_lot15 house_age \\\n", + "count 21142.000000 21142.000000 21142.000000 21142.000000 21142.000000 \n", + "mean 1971.024359 68.259720 1987.302478 12739.322202 52.975641 \n", + "min 1900.000000 0.000000 399.000000 651.000000 9.000000 \n", + "25% 1952.000000 0.000000 1490.000000 5100.000000 27.000000 \n", + "50% 1975.000000 0.000000 1840.000000 7626.000000 49.000000 \n", + "75% 1997.000000 0.000000 2360.000000 10087.000000 72.000000 \n", + "max 2015.000000 2015.000000 6210.000000 871200.000000 124.000000 \n", + "std 29.322166 362.774103 685.671655 27169.859971 29.322166 \n", + "\n", + " renovation_age total_sqft \n", + "count 21142.000000 2.114200e+04 \n", + "mean 0.955681 1.924945e+04 \n", + "min 0.000000 2.013000e+03 \n", + "25% 0.000000 8.820000e+03 \n", + "50% 0.000000 1.159350e+04 \n", + "75% 0.000000 1.546000e+04 \n", + "max 90.000000 1.653959e+06 \n", + "std 5.824659 4.156724e+04 " + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "housing_data.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Price Distribution:**\n", + "\n", + "The price of houses in the dataset varies widely, ranging from $78,000 to $7,700,000, with an average price of $540,506. The standard deviation of $368,083.1 indicates a significant dispersion around the mean, suggesting a diverse range of housing prices.\n", + "\n", + "**Bedrooms and Bathrooms:** \n", + "\n", + "The average number of bedrooms is approximately 3.37, while the average number of bathrooms is about 2.12. The standard deviations for both variables are relatively small, indicating less variability compared to other features.\n", + "\n", + "**Square Footage:**\n", + "\n", + " The average square footage of living space is around 2,080, with a standard deviation of 918.56. Similarly, the average lot size is approximately 15,087 square feet, with a larger standard deviation of 41,210.13, suggesting more variability in lot sizes compared to living space.\n", + "\n", + "**Floors:**\n", + "\n", + "On average, houses have 1.49 floors, with a standard deviation of 0.54. This indicates some variability in the number of floors, although most houses seem to have either one or two floors.\n", + "\n", + "**Waterfront Property:**\n", + "\n", + " Only a small percentage (0.7%) of the houses are waterfront properties, based on the average value. This feature is likely represented as a binary variable (0 for no waterfront, 1 for waterfront), with most houses being non-waterfront properties.\n", + "\n", + "**Condition and Grade:**\n", + "\n", + "The average condition of houses is approximately 3.41, with a standard deviation of 0.65, suggesting some variability in the condition ratings. Similarly, the average grade is around 5.66, with a standard deviation of 1.17, indicating variations in the overall quality of houses.\n", + "\n", + "**Year Built and Year Renovated:**\n", + "\n", + "The houses in the dataset span a wide range of construction years, from 1900 to 2015, with an average year of construction around 1971. The standard deviation of 29.32 indicates some variability in the construction years. Additionally, the average year of renovation is approximately 68.26, with a standard deviation of 443.5, suggesting that most houses have not been renovated." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### **b.) Correlation Analysis with House Prices**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Correlation analysis was performed to examine the relationship between various features and the target variable, 'price'. \n", + "
Here are the correlation coefficients between each feature and the price:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "price 1.000000\n", + "bedrooms 0.316573\n", + "bathrooms 0.525899\n", + "sqft_living 0.702340\n", + "sqft_lot 0.087940\n", + "floors 0.256372\n", + "waterfront 0.265970\n", + "condition 0.035264\n", + "grade 0.667751\n", + "sqft_above 0.605167\n", + "sqft_basement 0.325003\n", + "yr_built 0.054471\n", + "yr_renovated 0.116721\n", + "sqft_living15 0.586441\n", + "sqft_lot15 0.083196\n", + "house_age -0.054471\n", + "renovation_age 0.082356\n", + "total_sqft 0.118225\n", + "dtype: float64" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "drop_var = ['id', 'price_range', 'date']\n", + "\n", + "correlation = housing_data.drop(drop_var, axis=1).corrwith(housing_data['price'])\n", + "correlation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These correlation coefficients indicate the strength and direction of the linear relationship between each feature and the price of the houses.\n", + "
Features with higher positive correlation coefficients, such as 'sqft_living', 'grade', 'bathrooms', and 'sqft_above', have a stronger positive linear relationship with the price, indicating that as these feature values increase, the price tends to increase as well. Conversely, features with low or negative correlation coefficients, such as 'condition', 'yr_built', 'sqft_lot', and 'house_age', have weaker or negative linear relationships with the price.\n", + "
However, it's imperative to underscore that correlation does not imply causation. There could be an underlying third factor driving changes in both features, underscoring the need for thorough investigation beyond correlation analysis." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### **c.) Distribution Analysis**\n", + "\n", + "Distribution analysis involves understanding the distribution of data, such as whether it follows a normal distribution and skewed distribution" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontcondition...sqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15house_agerenovation_agetotal_sqftprice_range
071293005202014-10-1312.3099871.3862940.6931477.0741178.6395880.6931470.01.386294...7.0741170.00000019550.0000007.2011718.639588690.0000008.988571100K-300K
164141001922014-12-0913.1956161.3862941.1786557.8520508.8877911.0986120.01.386294...7.6829435.99396119517.5968947.4330758.941153733.5263619.424080300K-600K
256315004002015-02-2512.1007181.0986120.6931476.6476889.2104400.6931470.01.386294...6.6476880.00000019330.0000007.9087558.995041910.0000009.353661100K-300K
324872008752014-12-0913.3113311.6094381.3862947.5812108.5173930.6931470.01.791759...6.9574976.81454319650.0000007.2159758.517393590.0000009.096163600K-1M
419544005102015-02-1813.1421681.3862941.0986127.4271448.9972710.6931470.01.386294...7.4271440.00000019870.0000007.4960978.923191370.0000009.344959300K-600K
\n", + "

5 rows × 21 columns

\n", + "
" + ], + "text/plain": [ + " id date price bedrooms bathrooms sqft_living \\\n", + "0 7129300520 2014-10-13 12.309987 1.386294 0.693147 7.074117 \n", + "1 6414100192 2014-12-09 13.195616 1.386294 1.178655 7.852050 \n", + "2 5631500400 2015-02-25 12.100718 1.098612 0.693147 6.647688 \n", + "3 2487200875 2014-12-09 13.311331 1.609438 1.386294 7.581210 \n", + "4 1954400510 2015-02-18 13.142168 1.386294 1.098612 7.427144 \n", + "\n", + " sqft_lot floors waterfront condition ... sqft_above sqft_basement \\\n", + "0 8.639588 0.693147 0.0 1.386294 ... 7.074117 0.000000 \n", + "1 8.887791 1.098612 0.0 1.386294 ... 7.682943 5.993961 \n", + "2 9.210440 0.693147 0.0 1.386294 ... 6.647688 0.000000 \n", + "3 8.517393 0.693147 0.0 1.791759 ... 6.957497 6.814543 \n", + "4 8.997271 0.693147 0.0 1.386294 ... 7.427144 0.000000 \n", + "\n", + " yr_built yr_renovated sqft_living15 sqft_lot15 house_age \\\n", + "0 1955 0.000000 7.201171 8.639588 69 \n", + "1 1951 7.596894 7.433075 8.941153 73 \n", + "2 1933 0.000000 7.908755 8.995041 91 \n", + "3 1965 0.000000 7.215975 8.517393 59 \n", + "4 1987 0.000000 7.496097 8.923191 37 \n", + "\n", + " renovation_age total_sqft price_range \n", + "0 0.000000 8.988571 100K-300K \n", + "1 3.526361 9.424080 300K-600K \n", + "2 0.000000 9.353661 100K-300K \n", + "3 0.000000 9.096163 600K-1M \n", + "4 0.000000 9.344959 300K-600K \n", + "\n", + "[5 rows x 21 columns]" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from scipy.stats import skew\n", + "\n", + "# Select numerical variables only\n", + "numerical_data = housing_data.select_dtypes(include=['number'])\n", + "\n", + "# Compute skewness for each numerical variable\n", + "skewness = numerical_data.apply(lambda x: skew(x.dropna()))\n", + "\n", + "# Select variables with skewness above a certain threshold (e.g., 0.5)\n", + "skewed_variables = skewness[abs(skewness) > 0.5].index\n", + "\n", + "# Log transformation for skewed variables\n", + "df_log = housing_data.copy() # Create a copy of the original DataFrame to preserve the original data\n", + "df_log[skewed_variables] = housing_data[skewed_variables].apply(lambda x: np.log1p(x))\n", + "\n", + "# Check the distributions before and after transformation if needed\n", + "# For example, you can use histograms or density plots to visualize the distributions\n", + "\n", + "# Print the first few rows of the transformed data to verify\n", + "df_log.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n", + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", + " with pd.option_context('mode.use_inf_as_na', True):\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAArmCAYAAACgTmnUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXyU5b3//9dsyUwWshD2RcUEV6iIsonQUlPbImBZtL9DrdhaeijW4zlFXICv9GtB1LZayldqsRRrabFgaUulim09Lig0WgTFQokiRiAhC9kmM8lsvz8mMxATkplk9ryfj0cekLm367pnuG/uz3yuz2Xw+Xw+REREREREREREYsgY7waIiIiIiIiIiEjvo6CUiIiIiIiIiIjEnIJSIiIiIiIiIiIScwpKiYiIiIiIiIhIzCkoJSIiIiIiIiIiMaeglIiIiIiIiIiIxJyCUiIiIiIiIiIiEnMKSomIiIiIiIiISMwpKCUiIiIiIiIiIjGnoJRInE2bNo177733nMvvvfdepk2bFsMWiYhIIrnooov46U9/Gu9miIhIq67+/56o+xZJROZ4N0Ckt1u3bh1ZWVnxboaIiCSoZ599loEDB8a7GSIiIiIRp6CUSJxdeuml8W6CiIgksCuuuCLeTRARERGJCg3fE4mzs1N06+rquO+++xg/fjxXX301jz76KF6vN84tFBGRSJg2bRqPPfYYDz30EOPGjWPcuHHcfffdnD59GvAP17711lt54IEHuOqqq/jKV76C2+1uN3yvurqa+++/n0mTJjFmzBjmz5/P22+/HVzu9Xr5+c9/TnFxMZdffjnXX389zzzzTMz7KyKSylwuFz/4wQ+4+uqrufrqq7nnnnuoqakJLn/rrbf42te+xmc+8xnGjRvXbjnAoUOHuO222xgzZgyf+9zn+NOf/tTuOBdddBHr1q1jzpw5jB07lieeeAKAjz76iDvvvJNrrrmGK664gltuuaXNvQCgoaGBhx56iOuuu45Ro0Zxww03sG3btjbrTJs2jXXr1vHQQw8xfvx4xowZw/e+9z3sdjs///nPmTJlCmPHjuW73/1u8H4FcPDgQW699VbGjh3LmDFjWLBgAfv37+/xeZXeR5lSIgnC6/Vy++2388knn7BkyRL69u3LU089xYEDB+jfv3+8myciIhHwm9/8hvPOO4/Vq1dTU1PDj370Iz788EO2bt0K+B9iDAYDP/3pT7Hb7ZjNbf+r1tTUxFe/+lVcLhff+973GDhwIE8//TS3334727Zt48ILL2TlypX8/ve/59vf/jZjxoyhpKSE1atXU19fz+LFi+PRbRGRlPOXv/yF0aNHs2bNGmpqavjhD3/IsWPH2LJlCyUlJdx2221MmDCBxx9/nLq6On7yk5/w9a9/nW3btmG1WqmoqOBrX/saw4cP59FHH6WxsZEf/vCHVFdXtzvW+vXr+a//+i8uuugiBg4cSGlpKTfddBPnnXcey5cvx2Kx8Ktf/Ypbb72VjRs3Mm7cOJxOJ//xH/9BVVUV3/3udxk2bBh//etfWbZsGVVVVfznf/5ncP+//OUvmTRpEo899hjvvvsuP/7xjzl48CADBgzgwQcf5OjRozzyyCMUFBTwwAMP0NjYyO2338748eNZu3YtLpeL9evX881vfpOXX36Z7OzsWL4VkuQUlBJJEK+++ioHDhzgySef5LOf/SwAEyZMUJFzEZEUYjAY+OUvfxn8D3t+fj6LFy/m1VdfBcDtdvP973+f8847r8Ptt2/fTllZGX/4wx+4+OKLAbjqqqu48cYbKSkpwWg08rvf/Y7/+Z//YeHChQBMnjwZg8HAk08+yX/8x3+Ql5cXg56KiKS2Pn368NRTTwVrw+bl5bF48WJef/111q1bxwUXXMCTTz6JyWQC4DOf+QzTp0/nueeeY/78+WzatAm3282GDRvo27cvABdccAE33XRTu2ONHj06eE0HuOuuu4KBqMD95LOf/Sw33HADjz76KFu3buX3v/89//73v/nNb37D2LFjAbj22mtxu9088cQTfPWrXyU3NxeAzMxMHnvsMcxmM5MmTWL79u2cOnWKrVu3kp2dzdSpU9mzZw///Oc/ASgtLaWmpoZbbrkluO8RI0awZcsWGhsbFZSSsGj4nkiCeOutt7BYLEyZMiX4WkZGBlOnTo1jq0REJJI+97nPtfnP+rRp07BYLLz11lsAWK1Whg8ffs7t33rrLYYOHRoMSAGkp6fzl7/8ha9+9avs2bMHn8/HtGnTcLvdwZ9p06bR3NzcbmiHiIh0z9SpU9tMVhS4nr/xxhvs37+fqVOn4vP5gtfhYcOGceGFF7J7924A3n77ba644opgQAr8gavBgwe3O9bIkSPb/P6Pf/yj3f3EbDYzffp03n33Xex2O//4xz8YMmRIMGgUMHPmTJqbm9sMtRs9enSbzNx+/foxYsSINvvPzc2loaEBgKKiIvLz81m0aBEPPPAAf//73+nXrx9Lly5l0KBBYZ1HEWVKiSSIuro6cnNzMRrbxor79esXpxaJiEikfXo4ttFoJDc3l/r6egD69u2LwWA45/a1tbVtHmA6Wg4wffr0DpdXVFSE2WIREelIQUFBm9/Pvp57vV42bNjAhg0b2m2Xnp4O+P/vP3To0HbLO/q//6ePVVdX1+61wHo+n4/GxsZO1wGC9x2gw5nAbTZbu9cCMjMz2bx5M+vXr2fnzp1s2bIFm83GzJkzWbZsWbCPIqFQUEokQeTl5XH69Gk8Hk8wzRfOPGCIiEjy+/Q13ePxcPr0afLz8ykvL+9y++zsbD755JN2r+/bt4+srCz69OkDwNNPP01mZma79Tr6Bl5ERMJ3dlAHzlzPs7KyMBgMLFiwoMMvCALBnry8PKqqqtotD+X//jk5OR1uW1lZGdx3Tk4Ox44d63SdnhgxYgSPPvooHo+HAwcO8Mc//pHf/va3DB06tM1QQ5GuaPieSIKYOHEibrebv/71r8HXWlpagim+IiKS/F577TVaWlqCv//tb3/D7XYzceLEkLa/6qqrKCsr4/Dhw8HXWlpa+O53v8vvfvc7rr76agBOnz7NqFGjgj+1tbU8/vjj+qJDRCRC3njjDdxud/D3F198EbfbzZQpU7j00kv58MMP21yHi4qKWLduHXv37gX8tWP37dvXJoO1tLSUsrKyLo999dVX8/LLLweH04E/KPb8888zatQo0tLSuPrqqzl+/Hi7Ydt/+tOfsFgsjB49utt9f+GFF5gwYQKVlZWYTCbGjBnDypUr6dOnT0hfsIicTZlSIgli4sSJTJ48meXLl1NdXc2QIUP41a9+RU1NTadDNUREJHmUl5ezaNEivv71r3Py5El+/OMfM3nyZMaPH8/27du73H727Nk888wzLFq0iP/6r/8iPz+fzZs343Q6ueWWWxg+fDgzZ85kxYoVHD9+nMsvv5yjR4/y2GOPMXToUM4///zod1JEpBcIzGp3yy238NFHH/HjH/+Ya665hokTJwYnm/je977HzJkz8Xg8bNy4kf3797No0SIAbr31VrZt28Y3v/lNvvvd7+LxeHj88cexWCxdHvuOO+7g1Vdf5etf/zoLFy4kLS2NX//615SVlfHUU08B/vvFb37zG+644w7uvPNOhg0bxt///neee+457rjjjmBmbXdceeWVeL1eFi9ezMKFC8nMzOQvf/kLDQ0NfOELX+j2fqV3UlBKJIGsW7eOH/7wh6xdu5bm5ma+/OUvc9NNN/G3v/0t3k0TEZEImD59On369OGuu+4iIyODr3zlK/z3f/93yNtnZWXx61//mkceeYRVq1bhdrv5zGc+wzPPPBMskP7QQw/x5JNPsmXLFsrLy+nbty9f/vKXueuuu9oMDxcRke676aabcDqdLF68mLS0NGbMmMHdd9+NwWBg8uTJ/OIXv2DdunXceeedWCwWLrvsMn75y19yxRVXAP7hc7/97W9ZtWoV9957L5mZmdx+++3s3Lmzy2MXFRXxm9/8hh//+Mfcf//9GAwGRo8eza9+9SuuuuoqwD9M8JlnnuFHP/oRa9eupbGxkREjRrBq1Srmzp3bo77379+fp556ip/85CcsW7YMh8NBUVERP/3pT5kwYUKP9i29j8Hn8/ni3QgRERGRVDdt2jTGjRvHmjVr4t0UERERkYSgmlIiIiIiIiIiIhJzCkqJiIiIiIiIiEjMafieiIiIiIiIiIjEnDKlREREREREREQk5hSUEhERERERERGRmFNQSkREREREREREYk5BKRERERERERERiTkFpUREREREJOHV1NRQXFzM3r17g6/t37+fefPmMWbMGKZNm8bWrVvbbLN9+3aKi4u54oormD17Nvv27Qsu83g8PPzww0yaNIkxY8awaNEiTp06FVxeXV3Nd77zHa666irGjx/PqlWrcLvd0e+oiEgvYo53A5JRdXUD4cxZaDBA377ZYW+XTNTH5Jfq/QP18VzrSmSE+rnqDZ/DntI5Co3OU2h0nrp29jmCxLw3vP3229x77718/PHHwdfq6upYuHAhd955JzfffDMlJSUsXryYiy66iNGjR7N3714efPBBNmzYwOjRo9m8eTOLFi3i5ZdfxmazsX79enbv3s1zzz1HdnY2K1asYPny5fz85z8H4K677mLAgAG89tprVFVVsWjRIjZt2sTtt98eVtsT/bOX6v9G1L/klur9g+TpY7SeHRSU6gafj259WLq7XTJRH5NfqvcP1EeJjnDPud6jrukchUbnKTQ6T11L1POzfft21q5dy913381///d/B1/ftWsXubm5zJ8/H4CJEycyY8YMNm/ezOjRo9m6dSvTp09n7NixACxYsIBnn32WnTt3MmfOHLZu3cqSJUsYNGgQAMuWLWPy5MmUlZXh9Xr5xz/+wauvvorNZmPYsGF85zvf4dFHHw07KJUsn71kaWd3qX/JLdX7B72jjx1RUEpERERERBLW5MmTmTFjBmazuU1Q6siRI4wcObLNuoWFhWzbtg2A0tJS5syZ0275oUOHaGhooLy8vM32BQUF5OTkcPjwYQByc3MZMGBAcPmFF17IiRMnqK+vp0+fPiG332AIva/xEGhforezu9S/5Jbq/YPk6WO02qeglIiIiIiIJKx+/fp1+Lrdbsdms7V5zWq10tTU1OVyu90OQEZGRrvlgWWf3jbwe1NTU1hBqUQcDtmRZGlnd6l/yS3V+we9o48dUVBKRERERESSjs1mo6Ghoc1rTqeTzMzM4HKn09lueV5eXjDA5HA4Otze5/O1Wxb4PbD/UCVLnZhEb2d3qX/JLdX7B8nTR9WUEhERERERaTVy5Eh2797d5rXS0lKKiooAKCoq4siRI+2WT5kyhZycHAYMGEBpaWlwCF9lZSW1tbWMHDkSr9dLbW0tVVVVFBQUAPDBBx8wcOBAsrPDeyhLljoxydLO7lL/kluq9w96Rx87Yox3A0RERERERMJVXFxMVVUVmzZtwuVysWfPHnbs2BGsIzV37lx27NjBnj17cLlcbNq0ierqaoqLiwGYPXs269evp6ysjMbGRlavXs24ceMYPnw4559/PmPHjmX16tU0NjZSVlbGE088wdy5c+PZZRGRlKNMKRERERERSTp5eXls3LiRVatWsXbtWvLz81m+fDkTJkwA/LPxPfDAA6xcuZKKigoKCwvZsGEDubm5ACxevBi32838+fOx2+2MHz+exx9/PLj/tWvX8n//7//l85//PEajkRtvvJHvfOc7ceipiEjqMvh8vTFBrGeqqsIb62kwQEFBdtjbJRP1Mfmlev9AfTzXuhIZoX6uesPnsKd0jkKj8xQanaeunX2OQPeGSEv0z16q/xtR/5JbqvcPkqeP0Xp20PA9ERERERERERGJOQWlREREREREREQk5hSUEhERERERERGRmFNQSkREREREREREYk5BKRERERERERERiTkFpURERBKYz+ejqakJTZYrIiLJzOv1curUKU6dOoXX6413c0QkQZjj3QCRaJo8ZQLlJ092ud7AQYN4/dU9MWiRiEh4HA4H617azx3FnyEjIyPezREREemWqqoqnvzbfgC+/fnP0L9//zi3SEQSgYJSktLKT55k6dOvdLneI7dOjUFrRES6x5JujXcTREREeiwzJz/eTRCRBKPheyIiIiIiIiIiEnMKSomIiIiIiIiISMwpKCUiIiIiIiIiIjGnoJSIiIiIiIiIiMScglIiIiIiIiIiIhJzCkqJiIiIiIiIiEjMJXRQqqamhuLiYvbu3Rt87cUXX2TWrFlceeWVTJs2jXXr1uH1eoPLt2/fTnFxMVdccQWzZ89m3759wWUej4eHH36YSZMmMWbMGBYtWsSpU6di2icREREREREREQFzvBtwLm+//Tb33nsvH3/8cfC19957j6VLl/L4448zdepUjh49yre+9S0yMjL4xje+wd69e3nwwQfZsGEDo0ePZvPmzSxatIiXX34Zm83G+vXr2b17N8899xzZ2dmsWLGC5cuX8/Of/zyOPZWAyVMmUH7yZJfrDRw0iNdf3RODFomIiIiIiIhItCRkUGr79u2sXbuWu+++m//+7/8Ovn78+HG++tWv8rnPfQ6ACy+8kOLiYkpKSvjGN77B1q1bmT59OmPHjgVgwYIFPPvss+zcuZM5c+awdetWlixZwqBBgwBYtmwZkydPpqysjGHDhsW+o9JG+cmTLH36lS7Xe+TWqTFojYiIiIiIiIhEU0IO35s8eTIvvfQSX/7yl9u8fv3113PfffcFf3c6nfzv//4vl112GQClpaWMHDmyzTaFhYUcOnSIhoYGysvL2ywvKCggJyeHw4cPR7E3IiISSR0N7d6/fz/z5s1jzJgxTJs2ja1bt7bZRkO7RUREREQST0IGpfr164fZ3HkSV2NjI4sXL8ZqtbJgwQIA7HY7NputzXpWq5WmpibsdjsAGRkZ7ZYHloXKYAj/p7vbJdNPT/sYjfcg0vtM9fcx1funPna8bjJ5++23ufnmm9sM7a6rq2PhwoXceOONlJSUsGrVKh566CEOHDgAEBzavWbNGkpKSpg5cyaLFi3C4XAAtBna/dprr2G1Wlm+fHlc+hfg8/loamrC5/PFtR0iIiIiItGUkMP3uvLhhx9y55130rdvX371q1+RlZUFgM1mw+l0tlnX6XSSl5cXDFYFHkLOXp6ZmRnW8fv2ze5Wu7u7XU9devkoTpw4EdK6gwcP5v333u32sXrSR4PRQEZGekjrFRSEdpxo7DNe72OsJHv/Qv289/SznuiS/X3syLmGdu/atYvc3Fzmz58PwMSJE5kxYwabN29m9OjRSTm02+Fw8NNd73D7tSOxWm1dbyAiIiIikoSSLij1yiuv8D//8z/cdNNNfO9732uTUVVUVMSRI0farF9aWsqUKVPIyclhwIABbYb4VVZWUltb227IX1eqqxsI58trg8H/gBjudpFy/JPjIdVqAn+9pqqqhrCPEYk++rw+mpqaQ1ov1DZGcp/xfh+jLVX619nn3WAAmy0dh6OZh7/evc96ogvnfQysmywmT57MjBkzMJvNbYJSR44c6XDo9rZt2wD/fWDOnDntlocytDucoFSomWdnZ7N1to7BYODJl9/nP6ddetZrITcnqYVyjkTnKVQ6T13TORIRkXhJqqDUO++8w+LFi1m5ciVz585tt3zu3LksXryYL33pS4wdO5bNmzdTXV1NcXExALNnz2b9+vWMGjWKvLw8Vq9ezbhx4xg+fHhY7fD56NZDe3e3i7WetDFWfYzGMULdZ7K8j92Vyv0L9OvTf6aiVHwf+/Xr1+HrnQ3d7mp5JId2hxvg62z9piYTVlsaxswM+vbNxmZLo6AgG5vNhsPhwGazYegFT4/JFDSNJ52n0Og8dU3nSEREYi2pglI/+9nPcLvdrFq1ilWrVgVfHzt2LE899RQTJ07kgQceYOXKlVRUVFBYWMiGDRvIzc0FYPHixbjdbubPn4/dbmf8+PE8/vjj8emMiIhEhM1mo6Ghbdbb2UOzYzW0O9Qsw1Cy2ZqamnA6WjAYPVRXN+BwtLRm9jXw0137+e4XPtMukJZKUiVzM9p0nkKj89S1s88RKDglIiKxk/BBqbNnxvvZz37W5fqzZs1i1qxZHS6zWCwsWbKEJUuWRKx9IiISXyNHjmT37t1tXistLaWoqAiI3dDucLPTOlv/7Nc/ndlnSbemZCZcR3pLP3tK5yk0Ok9d0/kREZFYS8jZ90REREJVXFxMVVUVmzZtwuVysWfPHnbs2BGsIzV37lx27NjBnj17cLlcbNq0qcOh3WVlZTQ2NnZ7aLeIiIiIiIQn4TOlREREOpOXl8fGjRtZtWoVa9euJT8/n+XLlzNhwgQADe0WEREREUlQCkqJiEjSOXtoN8CoUaPYsmXLOdfX0G4RERERkcSj4XsiIiIiIiIiIhJzCkqJiIiIiIiIiEjMKSglIiKSoHw+Hw6HQzNiiYiIiEhKUlBKREQkQblbmvnFq//C43bFuykiIiIiIhGnoJSIiEgCs6RZ490EEREREZGoUFBKREQkgZ1sgr0nWzhd34hP4/hEREREJIUoKCUiIpKgfD7YXwPHGrx8/y+HcDod8W6SiIiIiEjEKCglIiKSoE63gMPj/3uD1xTfxoiIiIiIRJiCUiIiIgnqRNOZv9c2e+PXEBERERGRKFBQSkREJAH5fL42Qam6Zp9qSomIiIhISjHHuwEiIiLSnt3t/wl8e+TyQkWjK65tEhERERGJJGVKiYiIJKBmjz8rymqG7DT/ax/WOOPYIhERERGRyFJQSnodn8+Hx6shMCKS2FytJaQsBsix+P/+gYJSIiIiIpJCNHxPegWny8P7FY18UGWnzuEGIC/DwsUDsrhkQFacWyci0l4gKGU2Qk4aYIejp5s5PzuuzRIRERERiRgFpSTFGTh4soG3ympp8bTNjqppcvHG0dOUVtoxpGXEqX0iIh1znxWUymrNlKpodHF+tiV+jRIRERERiSAFpSRl1TpcZH35e7zx0WkA8jMsjBqczeA+VgA+qnHwVlktpxpbyPry93C4PNgspng2WUQkyNU6zNhiAGvrpanG4QYUlBIRERGR1KCaUpKSjtU08Y3f7MMy/DOYDAYmnZ/HV0YPZGS/LLLSzWSlm7l8UDYzLxtAmsmAeeBIfvzyB/FutohI0NnD9wJBqVqHG69PNfFEREREJDUoU0pSzttltSz90/vUO9146iuZM3kU+ZlpHa6bn5lG8UX9eP79U/zh3XJuuGwAnxmSE+MWS28zecoEyk+eDGndgYMG8fqre6LcIklEgeF7FiOkG8EA+ACnW0EpEREREUkNCkpJSnn+YAU/2PVv3F4flw/K5vWnF5N//Y5OtxmcY6X5X6+QfslUHv5bKb++5UqMBkOMWiy9UfnJkyx9+pWQ1n3k1qlRbo0kqsDwPbMBDAawmsHhBoeCUiIiIiKSIjR8T1KC1+fjidePsvKFw7i9Pq4bWcD6eaPxOepD2t6xZwuZaSaOVNp542hNlFsrItI111mZUgA2kz9Y7nApKCUiIiIiqUFBKUl6jc1ulvzhIL/cWwbAgnHDWHXDJVjDKFrua27kK6MHAbD5rU+i0k4RkXCcPfsegNXcGpQKLBARERERSXIKSklS+6DKzjd+8w6vfVhDutnI//3yRSy+9oJuDb+7ecxgTEYDb5XVcaiiIQqtFREJ3aczpaytA+6VKSUiIiIiqUI1pSQpub0+nikpY8Obx3B5fPTPSuPRWZdx6cDsbu2vscnO5LEXkfn575BWNJF59zyMY/cz7dYbMnQIr/7vGz1tvohIl86uKQWQjj9KZW/xxKtJIiIiIiIRpaCUJB3z4Iv5xm/28a+KRgAmj8hn2RdGUnCOGfZC4fN6Wfr0K3x82sGLhyrJu/KLLP7WN9tlXD1622d70HIRkdC5P50p1Toi2elRppSIiIiIpAYFpSQp+Hw+yuubefuTOrJnLuNfFY1kpZv43ucuZPqlAzBEaLa8ITlW0s1GHC4vJ+uaGZJrjch+RUTC5WpXU8r/p2bfExEREZFUoaCUJDSHy8ORSjuHTzVS63AD4PO4uWnscL4xfhgFWekRPZ7JaOCCvhkcqmiktMquoJSIxIXP5ztTU6o15h7MlFJQSkRERERShIJSknB8Ph/H65wcOmXnWE0TrWVVMBsNFPbLZM+Pbmfp0n9G7fgXtgalPj7twOfztcnCamxs5MLC80Laz8BBg3j91T3RaqaIpDDnWTPsmdsN3/PX1RMRERERSXYKSkmnTtQ5OVrTRLPLQ47NwkX9s8hKj9LHxpzO++UNvHuygXqnO/hyQWYaFw/I5MK+maSZjbzZWB2d47cakJ2OxWjA6fZSbXdRkHWmVpW3tfZUKB65dWq0migiKa7prGLmpta4uNHtxEA6PgzUNLnokxWnxomIJJCDBw+yevVqDh8+jNVq5Ytf/CJLly4lLS2N/fv384Mf/IDS0lLy8vJYtGgR8+bNC267fft2nnjiCSorKxkxYgQrVqxgzJgxAHg8Hn74wx/yxz/+EYfDwYQJE/j+979P//7949VVEZGUpKCUdOjvR6p4+h9lvF/e0OZ1A/CZIX2YeflArruoHzaLqcfHOtXQzO/eOUHO1x5n99HTAKSZDBQWZHLxgCz69qCAeXeYjAYG51g5dtpBWa2jTVBKRCQW7C3+TCmLEQLJmgYDpBmh2Qt1ZwXuRUR6K6/Xy7e//W0WLlzIM888w6lTp1iwYAF5eXl87WtfY+HChdx5553cfPPNlJSUsHjxYi666CJGjx7N3r17efDBB9mwYQOjR49m8+bNLFq0iJdffhmbzcb69evZvXs3zz33HNnZ2axYsYLly5fz85//PN7dFhFJKQpKSRt2l4fPfOeHpF04DvDXb/LUnoAWB4bMfEx9+vHO8XreOV7Pj17+gC9fOoCbxwzm/L4ZYR/rUEUDv3n7OLsOV+Lx+jBas+iTbubyQdmM7J+JxWSMdPdCNjTXH5T6pNbJmKE5cWuHiPRO9hZ/0Mn8qTkcAkGpBgWlRESoq6ujsrISr9eLz+cf1mw0GrHZbOzatYvc3Fzmz58PwMSJE5kxYwabN29m9OjRbN26lenTpzN27FgAFixYwLPPPsvOnTuZM2cOW7duZcmSJQwaNAiAZcuWMXnyZMrKyhg2bFh8OiwikoIUlJKgFreXgq8sJ23opRgM8JnBfbh8UDY2y4jgOo3Nbkqr7Ox599/Ycwaw9Z0TbH3nBJMuyOPbnyvikrx0DJx7Jjyny8Nf/13JHw6Us/9EffD1MUNzeO2p7/PNlT/CGKGZ9HpiaK4NOE1FYzMtbi9p5vgFyESkd/H5fNQ0NgH+TKmzBX6vb1ZQSkQkLy+PBQsW8PDDD/PII4/g8Xj4/Oc/z4IFC1izZg0jR45ss35hYSHbtm0DoLS0lDlz5rRbfujQIRoaGigvL2+zfUFBATk5ORw+fDjsoFQC/Ne2U2dn5MbiOIG/x+q8xKp/8aL+Jb9k6WO02qeglADg9fn467+rsA69lDSTgS9e0p8B2e1ntstKN3PFkBx23X83m/+6j2f/eZzXP6zhjaOneePoPxjcJ51rL+zL6MF9GJxjxWo2Ud/s4qPqJv75SR27j9bQ2OyvlWIyGrhuZAH/MXYolw7MpnD52wkRkALoYzXTx2qm3ummvKGZ4Xm2eDdJRHoJh8PBH94+Cpj4dDzcYvQBBuqbPR1tKiLSq3i9XqxWKytWrGDu3LkcO3aMO+64g7Vr12K327HZ2v7/zWq10tTkD/p3ttxutwOQkZHRbnlgWTj69s0Oe5t4iHY7PZ4mbLa01mNlUVAQ2/OSLO9Dd6l/ya839LEjCkoJAG+X1XG8zonX5WT6qPNDqKPkY/x5eYw/L4+y0w62vnOCHQcrOFHfzLP7TvDsvhPn3HJwjpUbRw3khssG0C+rfeArUQzMTqfe6aZCQSkRiTGfKQ3wYOlg+B5o+J6ICMBLL73Eiy++yAsvvABAUVERixcvZtWqVcyYMYOGhra1UZ1OJ5mZmQDYbDacTme75Xl5ecFglcPhOOf24aiubsCXwJOmGgz+h+Fot7O6uhGHoyX4d5Mp/PIf3RGr/sWL+pf8kqWPgXZGmoJSQkVDM+8c9w+lq3lhHQVT1oa1/bA8G9+bdiErbrycnW+Xseej0xw+1UhlYwvNbi+Z6SaG5tq4dEAWE8/PZ/SQPgmTEdWZAdnp/LvSTnl9c7ybIiK9jMvr/x9J+0wp/58aviciAidPnqSlpaXNa2azGYvFwsiRI9m9e3ebZaWlpRQVFQH+ANaRI0faLZ8yZQo5OTkMGDCA0tLS4BC+yspKamtr2w0JDIXPR0I/aAZEu51n7zse5yRZ3ofuUv+SX2/oY0cUlOrlvF4fr31QA8DIfpl8fPj1bu8rI83MZ4sKmFpYEHxt8pQJfHjyJO8Cf+li+0Z7Y7ePHQ0D+/izuCobW/B4fZiMiR9IE5HU4PJPvtdBTSn//1QanBq+JyIyefJkfvSjH/Gzn/2Mb33rW5w4cYL169czY8YMiouLefTRR9m0aRPz58/n7bffZseOHTzxxBMAzJ07l8WLF/OlL32JsWPHsnnzZqqrqykuLgZg9uzZrF+/nlGjRpGXl8fq1asZN24cw4cPj2eXRURSjoJSvdzBigZOO1ykm42MPy+Xv0Z4/+UnT7L06VdCWnfFnCsjfPSeybGaSTcbaXZ7qba30L+DGlsiItHgbg1KfTpTKk2ZUiIiQYWFhTz55JM8/vjjPPXUU2RnZzNz5kwWL15MWloaGzduZNWqVaxdu5b8/HyWL1/OhAkTAP9sfA888AArV66koqKCwsJCNmzYQG5uLgCLFy/G7XYzf/587HY748eP5/HHH49fZ0VEUpSCUr2Yy+PlnU/8w/auHp6L1WKKc4sSi8FgYEB2Oh+fdlDe0KyglIjETDAo9akEzUCNqQYFpUREAJg0aRKTJk3qcNmoUaPYsmXLObedNWsWs2bN6nCZxWJhyZIlLFmyJCLtFBGRjiX0PPc1NTUUFxezd+/e4Gv79+9n3rx5jBkzhmnTprF169Y222zfvp3i4mKuuOIKZs+ezb59+4LLPB4PDz/8MJMmTWLMmDEsWrSIU6dOxaw/iea9kw043V76pJu5qF/4RRt7gwHZ/oLvpxpUV0pEYsfTWlDg06OGgzWlNHxPRERERFJAwgal3n77bW6++WY+/vjj4Gt1dXUsXLiQG2+8kZKSElatWsVDDz3EgQMHANi7dy8PPvgga9asoaSkhJkzZ7Jo0aLgzBnr169n9+7dPPfcc7z22mtYrVaWL18el/7Fm8vj5d2T/hlJxg7Lwah6SR3ql+nPjqqyu+LcEhHpTVrrnLcLSqW11pTS8D0RERERSQUJGZTavn07S5Ys4b//+7/bvL5r1y5yc3OZP38+ZrOZiRMnMmPGDDZv3gzA1q1bmT59OmPHjsVisbBgwQLy8vLYuXNncPm3vvUtBg0aRFZWFsuWLePVV1+lrKws5n2MtyOVdprdXrLTzYwoiM10rMmob6YF8A+VaQ6MpxERiTJPa1DKdM5MKQWlRERERCT5JWRQavLkybz00kt8+ctfbvP6kSNH2k3DWlhYyKFDhwDaTNv66eUNDQ2Ul5e3WV5QUEBOTg6HDx8Oq30GQ/g/3d0uEj+f5vP5gllSlw/KxtjRSt04D+d6LRq62/dwWS0mstL9tbaqm1qCx450OxPlJxnbHM57fnYf49nXcEXzfZTEFMyU+tTrgaBUi8eH06UhfCIiIiKS3BKy0Hm/fv06fN1ut2Oz2dq8ZrVaaWpq6nK53W4HICMjo93ywLJQ9e2bHdb6Pd2upwxGAxkZZ4p0H62yU+90k242csV5+aR9anqns9ftbJ8FBe378+k+fvrYXenJsc+1bqjHP9d6A/vYKK1spK7Znylls4W2v3DamUji9TmNlFDec5stPa7vTzify+62M9nfx97uXMP3zAYwAD782VKaoEJEREREkllCBqXOxWaz0dDQ0OY1p9NJZmZmcLnT6Wy3PC8vLxisCtSX6mj7UFVXN9BagzYkBoP/ATHc7SLF5/XR1HSmUPf+j08DUNQvE3eLC3dL2/XPXrezfVZVnXkvztXHTx+7K905dlfrhnr8c62Xa/U/9J2s9Qc/HY7mkN7HcNqZCOL9OY2Uzt5zg8EfkHI4muP6/oTzuQy3neG8j4F1JfGca/iewQBpJmj2+INSmhVURERERJJZUgWlRo4cye7du9u8VlpaSlFREQBFRUUcOXKk3fIpU6aQk5PDgAED2gzxq6yspLa2tt2Qv674fHTrob2720WSvcXNx6f9gbmL+2f1aF8d9SVWfYzleSzI9M/AV9XYEvax4/1+d0cifE6jJdCvT/+Z6JL1eiPdd65MKYA0o4Fmj486pyZgEBEREZHklpA1pc6luLiYqqoqNm3ahMvlYs+ePezYsYM5c+YAMHfuXHbs2MGePXtwuVxs2rSJ6upqiouLAZg9ezbr16+nrKyMxsZGVq9ezbhx4xg+fHg8uxVT/z5lxwcMyE4nL8MS7+YkhYIsf1CqzunGYLHGuTUi0ht4WyOKHQalWkfsqdi5iIiIiCS7pMqUysvLY+PGjaxatYq1a9eSn5/P8uXLmTBhAgATJ07kgQceYOXKlVRUVFBYWMiGDRvIzc0FYPHixbjdbubPn4/dbmf8+PE8/vjj8etQjPl8Pv5d6a+fdXH/8IYs9mY2iwmbxYjD5cXSd1i8myMivYCns0wpk7+qVL0ypUREREQkySV8UOrTM+ONGjWKLVu2nHP9WbNmMWvWrA6XWSwWlixZwpIlSyLaxmRRZW+h3unGZDRwft+MrjeQoLwMC466ZiwFvSerTkTip9Phe8qUEhEREZEUkVTD96RnjrRmSZ2fZyPNpLc+HPk2/xA+BaVEJBaChc47WJbWGqmqdSgoJSIiIiLJTZGJXsLr8/FhtX/2uMJ+GroXrkD9LUtfBaVEJPo6z5Tyv9jYrKCUiIiIiCQ3BaV6iZP1zThcXtLNRobmqFh3uIJBKWVKiSSsgwcPMn/+fK666iomT57MD37wA1pa/LNm7t+/n3nz5jFmzBimTZvG1q1b22y7fft2iouLueKKK5g9ezb79u2LRxeCOgtKWVrv3Bq+JyIiIiLJTkGpXuKj1iyp8/NtGDt6ypFO5dn8QSlzdl+cLk+cWyMin+b1evn2t7/N9ddfzz/+8Q+2bdvG66+/zoYNG6irq2PhwoXceOONlJSUsGrVKh566CEOHDgAwN69e3nwwQdZs2YNJSUlzJw5k0WLFuFwOOLWn64LnStTSkRERESSn4JSvYKBj2r8D1cX5KvAeXekmY1ktVYXPu3QjFciiaauro7Kykq8Xi8+nz+iYzQasdls7Nq1i9zcXObPn4/ZbGbixInMmDGDzZs3A7B161amT5/O2LFjsVgsLFiwgLy8PHbu3BmXvnh9PlpjUpg6Ckq13rkbFJQSERERkSSnoFQvYBpYSJPLg8VkYLCG7nVbYAjf6SYFpUQSTV5eHgsWLODhhx9m1KhRTJ06lfPPP58FCxZw5MgRRo4c2Wb9wsJCDh06BEBpaWmny0NlMIT+09n67sDYPdpnShkMYGl9saHZHdYxk+0n3HPaW390nnSeonGOREREYsUc7wZI9KVdcBUA5+XZMEVo6F5jk53CovPavGYwGvCd9TAF0GhvjMjxEkGuzUJZrZNaZUqJJByv14vVamXFihXMnTuXY8eOcccdd7B27Vrsdjs2m63N+larlaYm/7DmrpaHqm/f7Iis7zGeuY5m2tKC122z0QcmEwZjGtCCvcVDQUF4x0w24Z7T3krnKTQ6T13TORIRkVhTUCrF+Xw+LCOuBuD8CA7d83m9LH36lTavZWSk09TU3Oa1FXOujNgx4y23ta5UnaZhF0k4L730Ei+++CIvvPACAEVFRSxevJhVq1YxY8YMGhoa2qzvdDrJzPTPRGqz2XA6ne2W5+XlhdWG6uoGfL6u1zMY/A9+51q/vKo++PdmZ0swa8HV0ozBZMZnCVyLXFRW1mNIwbSGrs6R+Ok8hUbnqWtnnyNQcEpERGJHQakUd+hUI6bsfpiNBoblauheT+TY/P9cap3KlBJJNCdPngzOtBdgNpuxWCyMHDmS3bt3t1lWWlpKUVER4A9gHTlypN3yKVOmhNUGn4+wHnjPtX5La5VzI+2H0fh8YPGXt8Pt9eFwebEFXkhB4Z7T3krnKTQ6T13T+RERkVhTTakU9/KRKgCG5Voxm/R290QgU6qx2YPb441za0TkbJMnT6ayspKf/exneDweysrKWL9+PTNmzKC4uJiqqio2bdqEy+Viz5497Nixgzlz5gAwd+5cduzYwZ49e3C5XGzatInq6mqKi4vj0peW1uvLuUZbmw1nCqA3OJW5KSIiIiLJS5lSKS4QlIrk0L3eymo24nU2YrRmUe90k5+ZFu8miUirwsJCnnzySR5//HGeeuopsrOzmTlzJosXLyYtLY2NGzeyatUq1q5dS35+PsuXL2fChAkATJw4kQceeICVK1dSUVFBYWEhGzZsIDc3Ny59cQUypc4RlDIYDGSlm6lzumlodtM/Oz2GrRMRERERiRwFpVLYsZomPqpx4PO4GZ5n63oD6ZTBYMBVc5z0wRdRq6CUSMKZNGkSkyZN6nDZqFGj2LJlyzm3nTVrFrNmzYpW08Li6iJTCiAr3eQPSilTSkRERESSmMZzpbDXP6wBwH3yEGlmvdWR4Dp9HEAz8CUYn89Htb0Fp8sT76aI9FigppSps6BUmr+OVEOzglIiIiIikryUKZXCXvuwGgDXsX3Al+PbmBThrjkB+Ge9ksTw71ONPPr3Ut457p+xLOvLS3C4PCld/FlSW1c1pQCy0/23bwWlRERERCSZKX0mRdU7XbzzSR0Aro/2xbk1qcNV8wkAdQ49CCaCf1U08I3fvhMMSAFYhn+G7QfKadTDuiQp11mz751LVro/6KrPuYiIiIgkMwWlUtSbR0/j8cEFfTPwNlTGuzkpw336JAD1ehCMuyp7C0v+cJBmt5erhuWw41vj+O2tY/HUnsTe4uHVD2rwaW5rSUIh1ZRqHb5Xr5pSIiIiIpLEFJRKUYGhe9eOyI9zS1KLu64CgGa3l2a3N86t6d1+8sqHnGps4YL8DB6ddRkD+1gpLMik8S8/xmQwcLzOyaFT9ng3UyRsLV3MvgdnMqU0fE9EREREkpmCUinI7fXxxtHTAFw7om+cW5NafC4nNov/n41mvYqfgyfreeFfpzAA//fLF5GVfqY8nreunKuG5wDwz7I6PF5lS0lycYVQ6DxQU0rD90REREQkmSkolYL2H6+jodlNjtXMqMF94t2clBN4GNQQvvj5yatHAZh+2QAuHpDdbvllA7PJsJhocnkorVK2lCQXDd8TERERkd5CQakU9NoHNQBcMyIfU2dPNdItfaytQSk9DMbFwfIG9n1Sh9lo4D+vOb/DdUxGA6MG+4NV+4/Xq7aUJBWXN/The8qUEhEREZFkpqBUCjpTT0pD96IhEJTS8L342PLP4wB84eJ+DMhOP+d6F/fPwmIyUOd0U17fHKvmifSY3en/vIYyfK+h2ROLJomIiIiIRIWCUinmWE0TH592YDIamHB+Xrybk5LODN9zxbklvU9lYzMvHfbPJvnVK4d0um6a2ciIvhkAHNEQPkkigZpSnd2gA8P3Gpy6DomIiIhI8lJQKsW8/qF/6N6VQ3PaFH+WyMlWplTc7Hz/FB6vj9GD+3BJB7WkPq2oIBOAD6ubcKvguSSJkGpKBWffU6aUiIiIiCQvBaVSTHDo3oUauhctgeF7jc0evAp0xIzP5+P5gxUAzLx8QEjbDOyTTmaaCZfHx8enHdFsnkjEhFJT6uzZ97yqmSYiIiIiSUpBqRRS73Txzid1AFw7Ij/OrUldGRYTJoMBH9DYomypWPlXRSNHa5pINxv5/Mh+IW1jMBgobM2WOlrdFM3miURMcPheJ0GpzNbhez7ArmwpERGRDnm9Xk6dOkVFRQVerzfezRGRDigolULePHoajw8u6JvB0FxbvJuTsgwGQ3AIn2bgi52d7/uzpD5b2Desoann5fv/LXxS68CjzDZJAoFMqc4KnaebjaSb/bfwBs3AJyIi0qGqqip+9tf9/OiPJVRVVcW7OSLSARUdSiG9Zda9xiY7hUXnhbauvTEqbehjNVHrcOlhMEa8Ph9/+7f/PxJfvKR/WNv2z0rDZjHicHkpb2gmO8sajSaKRExLCJlSPp+PrDQTzW6vrkMiIiKdyMzJx2ZLi3czROQcFJRKEW6vjzeOngZgyoWpPXTP5/Wy9OlXQlp3xZwro9KG4Ax8ypSKiXdP1FNlbyEzzcS44eHNKmkwGBiWa+PflXaO1TRRNCgnSq0UiYxQhu85nQ5aXP6Z9xoVlBIRERGRJKXheyli//E6Gprd5FjNXD6oT7ybk/L6WC2AZuCLlb8f8WdJTR6RT5o5/MtWYAjfx6cd+FQUWhJccPa9LtYLDN9TcFxEREREkpUypVLEax/UAHDNiHxMnX29LhERrCmlDIUemTxlAuUnT3a5Xt7XfwIZ+UwLscD5pw3JsWI0QEOzhzqHCyVwSyILZfY9gLTWolMaviciIiIiyUpBqRTRW+pJJYo+Zw3f8/l8GAwKBHZH+cmTXQ7FrLa38PsD5aSbjUw6P7yhewEWk5H+WemUNzTzyWkHI/JUV0oSV2D4XmeFzgEsrSto+J6IiIiIJCsN30sBx2qa+Pi0A7PRwIRuPrRLeLLT/dOxuzw+mt2aXjaaymqdAFw9PBerxdTt/QzO8QeiymqaItIukWgJpaYUQFrrChq+JyIiIiLJSkGpFPD6h/6he1cOzSErXclvsWA2GcloDZBo6Ex0fVLrAGDi+T0r4D8kJx2AMtWVkgQX7vA9ZUqJiIiISLJSUCoFBIbuTb5QQ/diKVhXSlkKUdPi9lLe0AzApAt6lgXYLysds9GAw+WhpskVieaJREXIw/da7+C6BomIiIhIslJQKsnVO12880kdANeO6FkmiYSnj4JSUXe8zonPB57akwzNtfVoXyajgYF9/NlSJ+qckWieSFR0lSnl8/lwOByYfB4AapuaY9U0EREREZGIUlAqyb159DQeH1zQN6PHD+0SnrOLnUt0lLUO3XOVHYjI/oa01pU6rqCUJDCXx1+n7lw3aHdLM7949V/BoFS9o4WmJtVKExEREZHko6BUktOse/ETGL6nei7R4fP5+KS1yLnr4/0R2Weg2Hl5fTMYu180XSSaQil0bkmzBofv2Vs02YKIiIiIJCcFpZKY2+vjjaOnAZhyoYbuxVpW6wx8jc2eOLckNZ1ucmFv8WAyGHCfOBSRffbNsGC1GHF5fZj6XRCRfYpEWmD4Xqg1pRpbdA0SERERkeSkoFQS23+8joZmNzlWM5cP6hPv5vQ6gZkOG1vcms0tCspas6QG56SDJzKFyQ0GA0PzMgCwDLksIvsUibRQMqWgbVBK1yARERERSUbmeDegOw4ePMjq1as5fPgwVquVL37xiyxdupS0tDT279/PD37wA0pLS8nLy2PRokXMmzcvuO327dt54oknqKysZMSIEaxYsYIxY8ZEvc2XXj6K458c73K9gYMG8fqre0La52sf1ABwzYh8TF09vUjEZVpMGACvDxwuLxlpGg4WSYF6UkNzbUSmopTfsDwbpacaMQ+5NIJ7FYmcUINSaa1BKafbR2NTE5mZmVFumYiIiIhIZCVdUMrr9fLtb3+bhQsX8swzz3Dq1CkWLFhAXl4eX/va11i4cCF33nknN998MyUlJSxevJiLLrqI0aNHs3fvXh588EE2bNjA6NGj2bx5M4sWLeLll1/GZotukfATJ06w9OlXulzvkVunhrxP1ZOKL6PRQEaaCXuLh4Zmt4JSEeT2eKlo8M8oNizXGtF9D2vNlDIPKKTZ7SXdrIRRSRw+n6/L2fcCzv7oNrZ4GBDFdomIiIiIREPSPY3V1dVRWVmJ1+sNDlcwGo3YbDZ27dpFbm4u8+fPx2w2M3HiRGbMmMHmzZsB2Lp1K9OnT2fs2LFYLJZgMGvnzp3x7FK3HKtp4uPTDsxGAxPOz4t3c3qt4BA+FTuPqIqGFrw+yEwz0cca2dh5boYFm8WIwZzGwfL6iO5bpKc83jPD8Lq6QRsNYG4NXNlVV0pEREREklDSZUrl5eWxYMECHn74YR555BE8Hg+f//znWbBgAWvWrGHkyJFt1i8sLGTbtm0AlJaWMmfOnHbLDx0Kr4iyIcyRcoH1DQYIpexHKPt//ah/6N6Vw3KCs8DFU7h9TEYd9TE73URFw7mLnYf7WYmns/sXbyfq/fWkBvVJx2Aw0Nhkp7DovJC2bbQ3nnOZweCvKzWoj5UPq5vY90kdY4flRqLJURXOexLO+5gI77W05T47KBXC+2MxgtsDjZqBT0RERESSUPyjGWHyer1YrVZWrFjB3LlzOXbsGHfccQdr167Fbre3G4ZntVppamoC6HJ5qPr2ze5W22229C7XMRgNFBR0vf89H9cC8KXRg7tc32A0kJHR9bEDQl23o/U66mOsjh2rfZ7dx7ysdKhqwun1tds+1Pcy0XT3890d5/pslje0AHBBv2wyMtLxeb2s3BparbXvfemyLt/L8woy+bC6iQPljXF5j8L5N9ndz1Es30eJnEA9KQg9KOXwKFNKRERERJJT0gWlXnrpJV588UVeeOEFAIqKili8eDGrVq1ixowZNDQ0tFnf6XQGi7/abDacTme75Xl54Q1/q65uCCsbKJCN4HA0d7mdz+ujqqqh03XqnS5KWjOlxgzI7HJ9n9dHU1NzyO0Ndd2z1zMY/MGajvoY7WPHap8dvY/prU+NtfbmdtuH8l4mEoPBH8gI9/PdEx19Nls8XipaM6X62kzB5ZF4zwOf0wKb/9L39rHTnCivIy3GdaXC+TcZ7uconPcxsK4kDrf3TMZTKIlswRn4zpGtKSKS6mpra1m9ejWvvPIKXq+Xq6++mpUrV9K/f/8eTYDk8Xj44Q9/yB//+EccDgcTJkzg+9//Pv37949XV0VEUlLS1ZQ6efIkLS0tbV4zm81YLBZGjhzJkSNH2iwrLS2lqKgI8AewOlseKp8v/J/AdpHY/xsfnsbjgwv6ZjAkxxbSsaMt3D4mo476mNVa3PxcD4Td+azE8yfWbe5IRX0zPvxDI7PTIxs3Dxwzx2rG21RHs9vLwZMNcTnP4bY7Wu+jJJZAppSB0IZXBoNSGr4nIr3Ud7/7XZqamnjppZd4+eWXMZlMrFixgrq6OhYuXMiNN95ISUkJq1at4qGHHuLAAf+cvoEJkNasWUNJSQkzZ85k0aJFOBz+2X/Xr1/P7t27ee6553jttdewWq0sX748nl0VEUlJSReUmjx5MpWVlfzsZz/D4/FQVlbG+vXrmTFjBsXFxVRVVbFp0yZcLhd79uxhx44dwTpSc+fOZceOHezZsweXy8WmTZuorq6muLg4zr0Kj2bdSxyBQucNKnQeMWfqSUV21r2zGQwG3Cf9teTe/qQ2ascRCZc7xJn3AtJa7+IavicivdF7773H/v37WbNmDX369CErK4sHH3yQJUuW9HgCpK1bt/Ktb32LQYMGkZWVxbJly3j11VcpKyuLZ5dFRFJO0g3fKyws5Mknn+Txxx/nqaeeIjs7m5kzZ7J48WLS0tLYuHEjq1atYu3ateTn57N8+XImTJgAwMSJE3nggQdYuXIlFRUVFBYWsmHDBnJzc+PbqTC4vT7eOHoagCkX5se5NZKV7s+Ucnl8NLu9pMd4GFgqOlHnH9Y2OCd6QSkA94l/kXbheN4uq+ObE8693uQpEyg/eTKkfQ4cNIjXXw2t9pVIR4JBqRDXD2RKNSgoJSK90IEDBygsLOR3v/sdv/3tb3E4HFx77bXcc889HDlypNsTIDU0NFBeXt5m+4KCAnJycjh8+DDDhg0Lq52JPrFIrCa7OXv//slnonu8Tx8nVseMtUSarCgaUr1/kDx9jFb7Ih6U2rt3L+PHj4/0btuYNGkSkyZN6nDZqFGj2LJlyzm3nTVrFrNmzYpW06Ju//E6Gprd5NosXD6oT7yb0+tZTEasZiNOt5fGZjfp5rR4NympNbu9VNv9w3MH9wm9mH13uE74M6UOnKjH5fFiMXUcBig/eZKlT78S0j4fuXVqxNqXamJxb0gFLo9/GF6oN31LMFNKw/dEJDFF8/pfV1fH4cOHufzyy9m+fTtOp5OlS5dyzz33UFBQ0O0JkOx2OwAZGRntlgeWhSNZ6jdGu50eTxM2W1rrsbJiMtmMx9OE1eo/Zn5+bI4ZL8nyOeuuVO8f9I4+diTiQak777yT7OxsvvKVr/CVr3yFwYMHR/oQvdprH/gLnF9zQR6mUMd3SFRlpZtxultobHbTN1NBqZ4or3fiw1/zKTPC9aQ+zXv6OLk2C7UOF++XN/CZITlRPV5vp3tDaMIdvnemppQypUQkMUXz+p+W5v9/17Jly0hPTycrK4u77rqLm266idmzZ3c4wVEoEyAFglWB+lIdbR+OWE4i0x2xmuymuroRh6Ml+HeTKaOLLSJzTKezBas1jZqa2Bwz1uIxWVEspXr/IHn6GK1JkiI+1uj111/n7rvv5r333uP666/nG9/4Bn/+85/bFSeX7gnUk5qselIJIzCET7Nf9dyJev/QvUFRHroXcOVQfyDq7bK6mByvN9O9ITTu1kypcIfv6fojIokqmtf/wsJCvF4vLpcr+Jq3dRbTSy65pNsTIOXk5DBgwABKS0uDyyorK6mtrW03JDAU8Z7IJpEmu4nXOUmW90H96539S6Y+RkPEg1IWi4Xrr7+e9evX88orr3DdddexceNGJk+ezPe//30OHToU6UP2Gsdqmvj4tAOz0cCE8/Pi3RxpFSh23qhi5z12os7/jWW0h+4FjB2WC0BJWW1Mjteb6d4QmkCmlIbviUiqiOb1f9KkSQwbNoz7778fu91OTU0Njz32GNdddx033HBDjyZAmj17NuvXr6esrIzGxkZWr17NuHHjGD58eETOi4iI+EWtKnN1dTU7duzgD3/4A6WlpYwfP5709HQWLFjAz372s2gdNqW9/qF/6N6VQ3OCgRCJv0CmlAoN94zT5aGmyf9NZzRn3jvbuPNyAX+tNqdL718s6N7QOZfHH5QKd/Y9Dd8TkUQXjeu/xWLhmWeewWQycf3113P99dczcOBAVq9eTV5eHhs3buSFF15g/PjxLF++/JwTII0bN47nn3++zQRIixcvZurUqcyfP5+pU6fS3NzM448/HqGzISIiARGPbDz//PP88Y9/5I033mDEiBHMnj2bn/3sZ+Tn+2eKmzp1KosXL+Y///M/I33olBcYunfthRq6l0iy0pQpFQknW4fu5dosZKSZYnLM8/Js9M9K41RjC/uP1zNeGYhRo3tDaNzebg7fU1BKRBJUtK//AwYM4LHHHutwWU8mQLJYLCxZsoQlS5Z0q10iIhKaiAelvv/97zN9+nS2bNnC5Zdf3m75BRdcwIIFCyJ92JRX73Txzif+ujeTR+THuTVytmwN34uIWA/dAzAYDIw7L48/H6xg77HTCkpFke4NoQk3U+rs4Xs+nw9Dos8lLCK9jq7/IiLSmYgHpV5//XXKysoYMGAAAO+88w7Z2dlceOGFAAwcOJA777wz0odNeW8ePY3HBxf0zWBorq3rDSRmAsP3HC4vbq8Ps2ZF7JZAkfPBMSpyHjDuvFz+fLCCf3xcG9Pj9ja6N4SmuzWlXF4fzW4vVktssgxFREKl67+IiHQm4jWl/va3v3HjjTfy0UcfAbBv3z7mzZvHK6+8EulD9SrBoXuadS/hpJuNwUCUXdlS3dLU4qHWEagnFbtMKYCrh/uzow6faqTarpngokX3htAEglKh3pzNZwWvlK0pIolI138REelMxINS69at44knngim595222385Cc/4Uc/+lGkD9VruL0+3jh6GoApF2roXqIxGAzBbClNy949J+v9Q/fyMywxz/QoyEzjkgFZALxxtCamx+5NdG8IjcvTWlMqxEwpg+FMtlS9glIikoB0/RcRkc5EPCh18uRJrr322javTZ48mRMnTkT6UL3GwZP1NDS7ybGauXxQn3g3RzoQmA2xQQ+F3XKiLj5D9wKuucAf7A3McBlpLo+XFrc3KvtOFro3hCbc4XtwZga+BqeuPyKSeHT9FxGRzkQ8KDVkyBBee+21Nq+9+eabDB48ONKH6jXe/MifJTXuvDxMqleUkLJU7LxHTtTHvsj52QKTB+w9djqYqRIJ//yklu9ue5fP/nQ3k3/yOnM2lrDz/YqI7T+Z6N4QGrcnvNn34KwZ+JSpKSIJSNd/ERHpTMQLnS9cuJDFixfzhS98gSFDhnDixAleeuklHn744UgfqtcIBKUmfmpmsMlTJlB+8mSX2zfaG6PSLjkjOzB8T9Oyh83e7Kbe6cYADOwTn0ypSwZmk59hoabJxb5P6hh3Xs9m4XN7ffz45Q/Y+k7bb4E/Pu3ggb8cJvO6xXh9Poy9aKa0WNwbamtrWb16Na+88gper5err76alStX0r9/f/bv388PfvADSktLycvLY9GiRcybNy+47fbt23niiSeorKxkxIgRrFixgjFjxkSsbaEK1pQK46NxZvieKwotEhHpGT0biIhIZyIelJoxYwb9+/fnD3/4AwcPHmTQoEFs3LiRK6+8MtKH6hVqm1z8q7wBgAmfCkqVnzzJ0qe7LhK5Yo7OfbRlpSlTqrsCs+71zUwj3Rzx5M2QGA0GJo/I50/vVfD3I1U9Cko1u73c/+d/8eoH/skJvjJ6IP/flUPpYzWz471yfv7mMSicwD+O1bb7N53KYnFv+O53v0tOTg4vvfQSRqOR++67jxUrVvDII4+wcOFC7rzzTm6++WZKSkpYvHgxF110EaNHj2bv3r08+OCDbNiwgdGjR7N582YWLVrEyy+/jM0W29lOXZ7uB6UanAqKi0ji0bOBiIh0JuJBKYDx48czfvz4aOy619l77DQ+oKhfJv2y4jO0Sbp2ptC5glLhOlHXOnQvJ76f7+KL+vGn9yr427+rWPK5CzGbuhcge+ivR3j1g2rSzUZWTb+YqYUFwWULxg9ncI6VZc8f4t2TDQzJsTIsL7ZBj3iK5r3hvffeY//+/bzxxhtkZfkL1z/44INUVlaya9cucnNzmT9/PgATJ05kxowZbN68mdGjR7N161amT5/O2LFjAViwYAHPPvssO3fuZM6cOVFp77kEa0qFsc2Z4Xu6/ohIYtKzgYiInEvEg1IVFRWsX7+ejz76CK+3bW2WX/3qV5E+XMp785h/6N6EHg4nkugK1pRq8fS6YVk9daaeVHyG7gVcNTyPPJuF0w4XJWW1TDw//Jku0y//As8frMBogB/OupQJHezjCxf353urH8P6mS+x59hphuRYMfaCWnHRvjccOHCAwsJCfve73/Hb3/4Wh8PBtddeyz333MORI0cYOXJkm/ULCwvZtm0bAKWlpe2CT4WFhRw6dKjH7QpXuLPvAVgMPsBAvVPD90Qk8ejZQEREOhPxoNR9991HVVUVn/vc57BYLJHefcprbLJTWHRe8PecW36KMTOXJ/7PYtaeeL/tuqoVlTAy0kwYDODzQVOLJxikks4ZswtobPZgAAbEqch5gNlo4PMjC9i2/yQvHqoMOyh1vM6JbdJ/AHDnlBEdBqQCHG9vJ3fsdGodbv51qpHLBmb3qO3JINr3hrq6Og4fPszll1/O9u3bcTqdLF26lHvuuYeCgoJ2w/CsVitNTU0A2O32TpeHKtRYdGC9jtb3dFFTqqNtTD43YKG2qTmsWfsSWWfnSM7QeQqNzlPXonmO9GwgIiKdifiT87vvvsuLL75Ifn74WQYCPq83WCeq2t7C7w+UYzYa+K9VT7SbeU+1ohKH0WAgM81EY7MHu4JSITMPvgSAfllppHVzuFwkffGS/mzbf5K/Ha7kfz47gj7W0P7z3OB087d/V2EwmvjSJf35j7FDOt+gxcGVw3J44+hp3j3RwKUDsjCk+NNStO8NaWlpACxbtoz09HSysrK46667uOmmm5g9ezZOp7PN+k6nk8zMTABsNluHy/PywstQ7ds3vOBiR+ub0/2fOYvZhM3W9jpiNvrAZMJibvu5zEj3QSO4MFBQkFoBznDPaW+l8xQanaeuReMc6dlAREQ6E/En5+zs7ODDgfRMWe2ZWjufDkhJ4slON9PY7KGh2c2AbNX/CoV58KUADM6J79C9gNGD+1DUL5MjlXb+9F4FX7tqaJfbuDxedh2upNntxX3qQ+6/85qQAkwX9cvkrY9raWh2U1brZHiK15aK9r2hsLAQr9eLy+UiPd3/7y8wTOSSSy7hN7/5TZv1S0tLKSoqAqCoqIgjR460Wz5lypSw2lBd3YDP1/V6BoP/wa+j9Rsa/dd9r8eDw9G2cLmrpRmDyYzb1Hb4Cx4XkEZVvZOqqoaw2pyoOjtHcobOU2h0nrp29jmCyAan9GwgIiKdiXhqwne+8x3uu+8+Dhw4wIkTJ9r8SHg+qXUAMDQntR9WU0WwrpSKDYfE5/NhGeLPlBoU56F7AQaDgZuuGAzA1n3Hg0OpzsXn8/HqBzXUNLmwWYw0vvgTrBZTSMcym4yM7O8vyP1+eWoEEjoT7XvDpEmTGDZsGPfffz92u52amhoee+wxrrvuOm644QaqqqrYtGkTLpeLPXv2sGPHjmAdqblz57Jjxw727NmDy+Vi06ZNVFdXU1xcHFYbfL7Qf861vruL4XsdPVCbW9dtbPaE1YZE/wn3nPbWH50nnadonKNI0rOBiIh0JuKZUsuXLwfgpZdeAvwPeT6fD4PBwL/+9a9IHy5lub0+TjU0AzAkNzGySKRzWWmBGfg0LXsoPj7twJjVF6MBBiZQZtkXL+nPuteOcqK+mecPVnS67v4T9XxY3YTBAJ8fWcAz9pqwjnXpgCzeO9lAWa2TphYPGWmhBbSSUbTvDRaLhWeeeYY1a9Zw/fXX09zczLRp01i2bBl9+vRh48aNrFq1irVr15Kfn8/y5cuZMGEC4J+N74EHHmDlypVUVFRQWFjIhg0byM3N7XG7wuXy+J8Gw/nGKM3o36axRdceEUk8ejYQEZHORDwo9be//S3Su+yVKhub8fjAZjGSY1V9omSgTKnw/OPjWgAGZKdjToB6UgFWi4kF44fzk1c+5P+9fhTSOs5U/KDKTsnHdQBMOj+PQd2YPTDHZqF/VhqnGlv4qKaJS1O44Hks7g0DBgzgscce63DZqFGj2LJlyzm3nTVrFrNmzYpW00Lmbh1yGE6JsUCmVIOuPSKSgPRsICIinYn4k+CQIUMYMmQIdXV1HDx4kH79+mG1WhkypIvCv9LGyXp/ltSgPtaUL4CcKrLS/VkuDcqUCsk/jp0GYEiC1JM6281jBnNeno2aJhcZ13wd36fGMhyraeJ/S6sBf7bTJQOyun2sC/pmAPBhdXgzvSUb3RtCE8yUCuOyb2nNlLK3ePBGetyNiEgP6fovIiKdiXhQqrq6mq9+9avcdNNN3HPPPZSVlXHdddexb9++SB8qpZW3BqUGJkitHena2ZlSnw5iSFser4+3y/xZRokYlLKYjCz9fCFGA6RfNJndR0/T4vbi8nj5Z1kdLx2uwuuDC/JtTLwgr0eB4/Pz/UGp8vpmHK7UDWjq3hCaYE2pMLaxtK7s9UGThvCJSILR9V9ERDoT8aDU6tWrGTlyJCUlJZjNZi688EIWLlzII488EulDpSyv10dFaz2pQQlUa0c6FwhKub0+mt3eLtbu3Q6daqSh2Y2vuYmCrMSckWfceXks+8JIAP5V0civ3/qEp0s+4e1P6vABF/XPZFpRAcYeZjL2sZrpm2nBBxyrcfS84QlK94bQuDz+a0c4mVImw5n1NXxYRBKNrv8iItKZiAel9uzZw3333YfNZgtmD9x+++2UlpZG+lApq8regtvrI91kJC/DEu/mSIjMRgO21pQFDeHrXEnr0D3XiX/1OKgTTTMvH0jjiz8hx2rG0zojUZ90M58r7Mu1I/IxhhM56MR5ef66VcfrnBHZXyLSvSE0gUypcD9ZgWypeqeCUiKSWHT9FxGRzkS8grbFYsHpdGKz2YJDmOx2O5mZmZE+VMoqbzgzdE/1pJJLdroZh6tF2QpdCBQ5d3/yHvCVuLalK66jbzH3ikE0ON2YjAYy00wR/3c5JMfGPz+p53idMzgjUarRvSE07m7UlAJ/UKrZo2LnIpJ4dP0XEZHORDxTatq0adx999189NFHGAwGqqur+f73v8/UqVMjfaiUdVL1pJJWYAifHgzPzenysP+4v56U6/jBOLcmNEaDgRybhax0c1QCRv2z0rAYDTS7vVQ3uSK+/0Sge0NoArPvdScoBRq+JyKJR9d/ERHpTMSDUt/73vfIyMjgi1/8IvX19UyePBmHw8GSJUsifagUZaC83j+EZ5CCUkkn+6xi59KxAyfqafH46JeVhrf2ZLybkxCMRkMwCH28NjWH8OneEBpXN4fvpbVGsTR8T0QSja7/IiLSmYgP38vMzGTt2rXU1NTwySefMHDgQPr37x/pw6QsS8FwWjw+LEYDfTMTswC0nFtWugmARtWUOqfA0L1xw3P5d3ybklCG5Fopq3VyvM7JZ4b0iXdzIk73htC0tM7A6PN6AFPI2wUypZSlKSKJRtd/ERHpTMSDUiUlJW1+P3bsGMeOHQPg6quvjvThUk76sMsBGJCdntAFoKVj2Rq+16V/tBY5v3p4Hr+Oc1sSyeA+VgAqGprx+nwp9+9f94bQBAuda/ieiKQIXf9FRKQzEQ9K3XLLLe1eMxqNDBo0iL/97W+RPlzKSR96KaB6UskqK8rD9yZPmUD5ya6HvA0cNIjXX90TlTb0RJW9hX9VNAIw/vy8OLcmseRlWLCYDLg8PmqaXBSkWKak7g2hcXt6VlNKw/dEJNHo+i8iIp2JeFDq0KFDbX6vqanh//2//8eQIUMifaiUlD5oJODPlJLkExi+1+LxYUjLiPj+y0+eZOnTr3S53iO3Jmbx0DeP1gBwyYCslAu69JTRYKB/VjrH65ycamhOufOje0NogplS+MLazmI0AD5lSolIwtH1X0REOhPxQueflp+fz913383TTz8d7UMlvaYWD+Y+/QAoyEqtB9LewmIyYjX7/1kZswvi3JrE80ZrUOqaC/Lj3JLENCDb/+++oqE5zi2JPt0bOhYodN7dTKkG1bMTkQSn67+IiJwt4plSHamrq6O5OfUfsnrqVKP/HOXZLKSZoh4vlCjJSjfjdLdgzOob76bExTmHGBpN5N76BIb0DH689Bs8euoDGu2NsW9gAuvfmiFZ0dAS55bEhu4N7XkCQakwt0trrYne4HRFtkEiIlGg67+IiAREPCh13333tfnd5XLx9ttvM2nSpEgfKuWcan0Q7Z+tLKlklp1uosoOxux+8W5KXJxriOHJOid/fv8UVrOR2x/5BQaDgRVzroxDCxNX/yx/UKqh2U1Ti4eMtNBnX0t0ujeExuXpWaFzZUqJSKLR9V9ERDoT9Uyp9PR0brnlFm6++eZoHyrpBTKlAg+mkpwCxc6N2b0zU+pcPq51ADA014ohxWaWi5R0s5E8m4XTDheVjc2clx/5umSJQveGjrm7mSllaR3vp5k/RSTR6fovIiJni3hQ6qGHHor0LnsFr89Hld2fKdVP9aSS2pmgVO/MlDqXstNOAIbn2eLcksRWkJXGaYeLKntLSgWldG8IjaeHNaVU6FxEEo2u/yIi0pmIB6XWrVsX0np33HFHpA+d1OqdblweH16Xk7wMS7ybIz2Q3ToDnwqdn9HQ7Oa0w4UBGJqroFRnCjLTOFJpp8qeWrWBdG8ITaDQeXeH79lbPLi9PszhRrVERKJE138REelMxINSR44cYdeuXVx88cVccMEFlJeX889//pNLL72UzMxMAA3d6UAgS8pV+RFGw8g4t0Z6IpgplaWgVEDZaf/Qvf7Z6aSbVcS/MwWZ/qB0tT21ip3r3tA1n8/Xg+F7Z/7e2Owm16YvN0QkMej6LyIinYl4UMpoNHLffffx9a9/PfjaH//4R15++WUef/zxiByjtraW1atX88orr+D1ern66qtZuXIl/fv3Z//+/fzgBz+gtLSUvLw8Fi1axLx584Lbbt++nSeeeILKykpGjBjBihUrGDNmTETa1ROBB9CWU0fj3BLpqexAUMqWnXLFqrvrWI0/KDU8zxrnliS+/Ez/8F17i4emltQpWh2Le0OyCwzdg/AzpYwGAzaLEYfLq6CUiCQUXf9FRKQzEU9ZeOWVV5g/f36b12644QbefPPNiB3ju9/9Lk1NTbz00ku8/PLLmEwmVqxYQV1dHQsXLuTGG2+kpKSEVatW8dBDD3HgwAEA9u7dy4MPPsiaNWsoKSlh5syZLFq0CIfDEbG2dVd161CdlooP49wS6ak0s5E0k/+J8mS9M86tiT+ny8Px1vNwfgrVSIqWNJORHKs/sJlK2VKxuDckO/dZQanu3JyzWgPg9U7VlRKRxKHrv4iIdCbiQan8/HxKSkravPbaa68xcODAiOz/vffeY//+/axZs4Y+ffqQlZXFgw8+yJIlS9i1axe5ubnMnz8fs9nMxIkTmTFjBps3bwZg69atTJ8+nbFjx2KxWFiwYAF5eXns3LkzIm3rLp/PF3z4dFUqUyoVBLKlFJSCj2oc+HyQn2FR9kaIClqzpapSKCgV7XtDKnB5zgpKdWMkS5/WYGaDglIikkB0/RcRkc5EfPjet7/9bRYuXMj111/P4MGDKSsr4+WXX+anP/1pRPZ/4MABCgsL+d3vfsdvf/tbHA4H1157Lffccw9Hjhxh5Mi29ZgKCwvZtm0bAKWlpcyZM6fd8kOHDkWkbd3V1OLB6fZiAFxVH8e1LRIZWelmqptcnKxvjndT4u5odRMAI/oqSypUBVlpfFDdlFKZUtG+N6QCt9cb/Ht3qqsEJlmoc6ZWkXwRSW66/ouISGciHpSaN28eQ4YM4U9/+hPvv/8+w4YNY8uWLVx00UUR2X9dXR2HDx/m8ssvZ/v27TidTpYuXco999xDQUEBNlvbmb2sVitNTf6HYrvd3unyUIVb6yOwvsEAPl/75VVN/geIXJuFY+7kfAjtqo+pIJw+np0pFa/anT35nEbK2UP3LkiAoNSn+xiN9yYS+8xvnYGzpvXaEM4+w+lbLD+b0b43pIJAppQBX7fem8B1R8P3RCSR6PovIiKdiXhQCmDSpElMmjSJmpoa8vPzI7rvtDT/sJZly5aRnp5OVlYWd911FzfddBOzZ8/G6Ww7XMrpdAZn9rDZbB0uz8vLC6sNfftmd6vtNlt6h683VNgBGJDjLwKdkdHxeh0Jdd1Y7bOjPiZzfzpyrvfxbHnZ6VDeQI3TQ0FB9z4vHTEYDSG102A0dPu43f18n33sQBs/PFGHz+fP/BncN6vD9ePxntts6SGfo1DPeWDdSOxziMkEVFLvdGOwpHXrvezp+xgN0bw3pILgzHvdDBb2UVBKRBKUrv8iInIuEQ9KuVwu1q1bx69//Ws8Hg87duzgrrvuYv369fTv37/H+y8sLMTr9eJyuUhP9z/UeVuHPFxyySX85je/abN+aWkpRUVFABQVFXHkyJF2y6dMmRJWG6qrG8LKBgp84+1wNHe43claf6ZWTuvQi6am0Id8hbputPdpMPgf9DvqYzL2pyNdvY9ns7ZWazta2UhVVUNIxw+Fz+sLqT8+ry/s4xoM/kBGuJ/vjo4daOPhE/UAnJ9nO2e7Y/met/mchniOQj3ngXUjsk+fj3SzkWa3F2PO4LDey3Dex8C6sRDte0MqcHn897LuJrAFhu8pKCUiiUTXfxER6UzEC52vW7eOPXv28JOf/ASLxULfvn0ZOHAgq1atisj+J02axLBhw7j//vux2+3U1NTw2GOPcd1113HDDTdQVVXFpk2bcLlc7Nmzhx07dgTrSM2dO5cdO3awZ88eXC4XmzZtorq6muLi4rDa4POF/xPYriOBmff6thY3TkZd9TEVhNPHwDCa47WObn1eOvschdPe7n5OI9HGRBu6B+3fw0if80jt02AwBIfwmfoOi+r7GCvRvjekgp5mSmVbA5lSqiklIolD138REelMxDOlduzYwW9/+1sGDBiAwWAgIyODhx56KOzAz7lYLBaeeeYZ1qxZw/XXX09zczPTpk1j2bJl9OnTh40bN7Jq1SrWrl1Lfn4+y5cvZ8KECQBMnDiRBx54gJUrV1JRUUFhYSEbNmwgNzc3Im3rjha3l4Zm/7fafTM0M1mqCMyCVed00+B0Bx8We5PeOOteY5OdwqLzul7P3tjlOvkZFk7WN2PKGxqJpsVdtO8NqaAnQSmfz4fV4AH81x0RkUSh67+IiHQm4k/KTU1NwbHivtav4a1WK0Zj5JKyBgwYwGOPPdbhslGjRrFly5Zzbjtr1ixmzZoVsbb0VGB2raw0E1aLKc6tkUixmIx4m+owZuRwvM7BxdbEq+8Tbf+u9NdKu7AgMbKkYsHn9bL06Ve6XG/FnCu7XCc/w585aeqbGkGpWNwbkp27B8P33K5mdh/6GEijLoyhriIi0abrv4iIdCbid4MrrriCdevWAf4hKADPPPMMo0aNivShUkJ1kz8olcxD96Rj3vpTAByvc3axZuqpc7ioaGjGABT1y4x3c5JSXmD4Xv6wOLckMnRv6FpPh+/ZWicCqXO4gg9+IiLxpuu/iIh0JuKZUvfffz8LFixg+/bt2O12vvzlL2O32/nlL38Z6UOlhKpgPaneMbypN/HUn8I8sIjjtb0vKBXIkhqaayUzrfcNXYyEQFDKmJlHrcOV9EMgdW/omsvTGpTq5vZprRuWNzTjcDjIyOg9WYoikrh0/RcRkc5E/GmxoKCA559/nv/93//l+PHjDBw4kM9+9rNkZXU8HXxvFxi+p0yp1BPIlPqkzhHnlsSYwci/T/mDUsqS6r40k5HMNBP2Fg/HaprIHZIT7yb1iO4NXXO3ziRr6GamlKU1KOXyRqhBIiIRoOu/iIh0JuJBqRtuuIE//elPfOlLX4r0rlOO1+ej1tGaKZWhoFSqCQ7f62WZUpbzr6TJ5cFmMXJ+vjI1eiLXZsHe4uGjmiY+k+RBKd0buhbMlOpmUCqttSyhxwfNbi/61yciiUDXfxER6UxUKgw6HL0sM6Sb6p1uvD4wGw1kpavIearprTWl0i/7PAAX9c/C1N2nawEg1+b/3uBYTWpcU3Vv6FywplQ3tzcbzhRJD8zqKiKSCHT9FxGRc4l4ptT48eOZN28eU6ZMoX///m2W3XHHHZE+XFI73eTPksq1WYKFHyV1eBoqASivd+L2eDGbUn+WmY+qm7AMvRyAiwcoLb+nclrrSH1U0xTnlvSc7g1dc7XOvtfdWK7B4B/C1+KFeqcngi0TEek+Xf9FRKQzEQ9KffLJJwwbNoyjR49y9OjR4OsKurR3unXoXqCgsaQWn72WdLORZreX8oZmhuba4t2kqNv89icAnJdnIztdBc57KlDc/Njp5P+GWfeGrgUypXpyRgJBKWVKiUii0PVfREQ6E7Gnxm9+85v84he/4JlnngHA6XRitVojtfuUVNuaKZWX5LNqybn4GJpr5YOqJo6ddqR8UKra3sLO9ysAGDU4O86tSQ25Vv8l+nitA5fHiyUJs+10bwhdcPheD57T0oxgR0EpEYk/Xf9FRCQUEXvC2bdvX5vfp0yZEqldp6xAplSuMqVS1vA8f6nhj1Mg06Urv9t3nBaPD3dFKQOz0+PdnJSQkWbC1+LA44NPkrRgvu4NoXP3cPge+INSAPXNGr4nIvGl67+IiIQial+7+3y+aO06JXh9PuocypRKdcPz/NlRH6dATaDO1DlcPLvvBADOd55XSn6EGAwGPLUngdSoKwW6N3QmOPse3T9Hlta7ujKlRCTR6PovIiIdiVpQSg+lnWtwuvH4wKSZ91LaeYGgVIpnSv3mn8ext3go6peJ6+jb8W5OSgkEpY6lSFBK94ZzC9aU6kmmVOvtpEGFzkUkwUT7+u/xeLjlllu49957g6/t37+fefPmMWbMGKZNm8bWrVvbbLN9+3aKi4u54oormD17dpvsLo/Hw8MPP8ykSZMYM2YMixYt4tSpU1Htg4hIb5R8BUpSRHDons2MUQ9pKWt4LwhKnW5q4dl/Hgfg9onnQQ+yPKQ9byBTKoU/Q+LX09n34Ozhe8qUEpHeZd26dbz11lvB3+vq6li4cCE33ngjJSUlrFq1ioceeogDBw4AsHfvXh588EHWrFlDSUkJM2fOZNGiRTgc/vvt+vXr2b17N8899xyvvfYaVquV5cuXx6VvIiKpLGKFzt1uN3/4wx+Cv7tcrja/A9x4442ROlzSq9XQvV7hvNaaUuUNzThdHqyW1MuK2/Dmx9hbPFzcP4vPFvaNd3NSTrJnSuneEDpXoNB5D/YRCErVORWUEpH4iuX1/80332TXrl184QtfCL62a9cucnNzmT9/PgATJ05kxowZbN68mdGjR7N161amT5/O2LFjAViwYAHPPvssO3fuZM6cOWzdupUlS5YwaNAgAJYtW8bkyZMpKytj2LBhEWm3iIhEMChVUFDA2rVrg7/n5eW1+d1gMOjB4yynAzPvqch5SsuxmeljNVPvdFNW66CoX1a8mxRRH1U38fv9/lpS/zV1hLL+osBT6z+/H9U04fP5km74m+4NoYtEofPAaPBah4JSIhJfsbr+V1dXs2zZMp544gk2bdoUfP3IkSOMHDmyzbqFhYVs27YNgNLSUubMmdNu+aFDh2hoaKC8vLzN9gUFBeTk5HD48GEFpUREIihiQam///3vkdpVr3Bm+J6CUqnMYDAwPM/Geycb+Ph09IJSTS0e3j1ZT43dhdfnwzpmBpWNzfTLit4seD6fj0f/XorHB9eOyOeq4blRO1Zv5q2rwAA0NnuoaXLRNzMt3k0Ki+4NoQsWOo/A8L1ANq6ISLzE4vrv9Xq5++67ue2227j44ovbLLPb7dhstjavWa1Wmpqaulxut9sByMjIaLc8sCwcif59UqB90W7n2fs3GGJzXs4+TqyOGWuxev/iJdX7B8nTx2i1L2JBKQmd1+ejtsn/LbaG76W+QFDqWE10agIdrW7ildLq4NAfANv4m5j3y7e4c+oIvjJqYFSya3YdquQfH9eSZjLwP5+7MOL7l1YeF4NyrJyoc/JRTVPSBaUkdJEYvhfIlDqtTCkR6QWefPJJ0tLSuOWWW9ots9lsNDQ0tHnN6XSSmZkZXO50Otstz8vLCwarAvWlOto+HH37Zoe9TTxEu50eTxM2W1rrsbIoKIj+efF4mrBa/cfMz4/NMeMlWT5n3ZXq/YPe0ceOKCgVB43NHjw+HyYDZFv1FqS68/P937IdjUJNoI9qmvjbv6vwAQWZaVwyIAuvz8cre9/C3v9CHnrpCEdONbJkWiGmnqRffMrpphZ+/L8fAPCNCcMZmmvrYgvpifPzbZyoc3Kspomxw3Lj3RyJkkgUOg8EpeqdbjxeX0T/3YuIJJo//vGPnDp1iquuugogGGT661//ytKlS9m9e3eb9UtLSykqKgKgqKiII0eOtFs+ZcoUcnJyGDBgAKWlpcEhfJWVldTW1rYbEhiK6uoGfAk8D4zB4H8YjnY7q6sbcThagn83mTK62CIyx3Q6W7Ba06ipic0xYy1W71+8pHr/IHn6GGhnpCkiEgeBoXs5Notq8PQCI/r6v1H7sCr8dO/O1Dlc/P1INT6gsCCDqYV9g5+nP2//Pv/n16+x7rWjbNt/EnuLh5VfuqjDz9vkKRMoP+kvpm0wGvB5O74SDhw0iNdf3YPP52P1S0eoaXJxYUEGt1ylugrRdn5+Bm8cPc0xzcCX0twRHL7nA+qcLvIzlFknIqnrhRdeaPP7vffeC8CaNWs4ffo0jz76KJs2bWL+/Pm8/fbb7NixgyeeeAKAuXPnsnjxYr70pS8xduxYNm/eTHV1NcXFxQDMnj2b9evXM2rUKPLy8li9ejXjxo1j+PDhYbfT5yOhHzQDot3Os/cdq3Ny9nGS5X3oLvUv+fWGPnZEQak4CBY519C9XuHCAv83Mh/VNOH2+jBHIHPB6/Pxygc1eLw+BvVJbxOQAsDn4+vjhjE4x8rynYf4y79OYbOYuPe6wnZD+cpPnmTp068AkJGRTlNTc4fHfOTWqQBsf7ec/y2txmw08P0vXUyauSeDjSQU5+Wf+QxJ6nJ5/ZlSPblCGA3+wFSL13+vUVBKRHqrvLw8Nm7cyKpVq1i7di35+fksX76cCRMmAP7Z+B544AFWrlxJRUUFhYWFbNiwgdzcXAAWL16M2+1m/vz52O12xo8fz+OPPx6/DomIpCgFpeIgUIA2VzPv9QqDc6xYzUacbi+f1DqCw/l64t+n7FQ0NGMxGtoHpM5y3UX98Pp8LH/+EL8/cBKrxchdU0d0u8bUvyoa+OHfSwFYdM35XNQ/tWYTTFTn5fmHR34UpbpkkhgiUegcIN1soKXFF/wCRESkt1izZk2b30eNGsWWLVvOuf6sWbOYNWtWh8ssFgtLlixhyZIlEW2jiIi0pRSHOAgEpZQp1TsYDQYu6OsPREViCJ/b4+Wfn9QBMHZ4DtnpnceWv3Bxf5Zf769/8Ju3j/PkG8e6dVxDZh5L/nAQl8fH1Av7csvVQ7u1HwlfIChVXu+kxe2Nc2skWiJRUwrA2lpXqqappYctEhERERGJLgWlYszn81EXrCmlRLXe4sICf12pD6p7Pvzq/YpG7C0eMtNMXDogtEJzMy8fyN3T/DPk/WLPxzz9j7Kwjul0ecj+8t2camzhgr4ZPPDFi6Iyo590rG9mGjaLEa8PTtQ7u96gl/N4PNxyyy3B2iIA+/fvZ968eYwZM4Zp06axdevWNtts376d4uJirrjiCmbPns2+ffti3WzcEZh9DyDd5P+3GfgCREREREQkUSkoFWNOt5eW1iEafbrIcJHUEQhK9ThTymji3RP+6Y2vHJoT1sxaN40Zwh3XXgDAuteO8rt9x0ParqnFw58PnsLUdxh9M9P4yezLNWtkjBkMhuAMh2Uqdt6ldevW8dZbbwV/r6urY+HChdx4442UlJSwatUqHnroIQ4cOADA3r17efDBB1mzZg0lJSXMnDmTRYsWtZsKPNoilSkVCErVaPieiIiIiCQ4BaViLJAllZVuwmzS6e8tAsXOP6jqWaaU5bwxNLk82CxGivplhr39reOG8Y0J/lljHv37Bzzx+lH/3J7ncKqhmT+8W85phwuv/TQ/mzeaQX2s3W6/dN/w1iF8ZbUKSnXmzTffZNeuXXzhC18IvrZr1y5yc3OZP38+ZrOZiRMnMmPGDDZv3gzA1q1bmT59OmPHjsVisbBgwQLy8vLYuXNnTNt+pqZUz6ZdSW8dvqdMKRERERFJdIqKxFid0w1AjlX1pHqTwtZMqY9PN+F0ebq9n/TLPg/ARf2zwsqSOtt/TjqPW8cNA+CXe8vIvvEBTtY58Z01/2hDs5s3jtbwp/cqsLd4yLGaafjTKs7v2/Mi7dI9gUypT2o1fO9cqqurWbZsGT/60Y+w2WzB148cOcLIkSPbrFtYWMihQ4cAKC0t7XR5qAyG0H86Wj84fM9w7lhxKK+nm89kSoXTpkT7Cfec9tYfnSedp2icIxERkVjRGJwYq1U9qV6pIDONvplpVNtb+HelndGD+4S9j4+qm7AMvRwDcPGA7s96ZzAYuOPaCygsyOShl47QNOBC/vz+KTLTTORmpNHU7Ob0WRkWI/pmcO2IfB6vq+j2MaXnhuX6M9Q0fK9jXq+Xu+++m9tuu42LL764zTK73d4mSAVgtVppamoKaXmo+vYNrcbbudb3tT4JpqdbsFrBYm775YXZ6AOTqcvX+2AC3DS6PBQUhNemRBPuOe2tdJ5Co/PUNZ0jERGJNUVGYqzOoUyp3shgMHDJgCxe/7CG98sbuhWUeu7AScA/jKurGfdC8cVL+nPVsBym/dcaMi+fhr3Fg73lTMBjUJ90rhjSJ5ihI/E1TMP3OvXkk0+SlpbGLbfc0m6ZzWajoaGhzWtOp5PMzMzgcqfT2W55Xl5eWG2orm7AF8LIO4PB/+D36fUdzf77g6fFhdPgw21qO9Oiq6UZg8nc5esGTxoAp+qdVFW17XeyONc5krZ0nkKj89S1s88RKDglIiKxo6BUjAWG7+UqU6rXuXRgdjAoFS6Hy8OfD5YDcEkPsqQ+rSArnaZXN/KfC27hVGMLXqMRn9tDfoaFTBXiTyjDWoODJ+uduDxeLKpJ18Yf//hHTp06xVVXXQUQDDL99a9/ZenSpezevbvN+qWlpRQVFQFQVFTEkSNH2i2fMmVKWG3w+QjrgffT6wcKnRsM595PKK8HakqdbnIl/QN4uOe0t9J5Co3OU9d0fkREJNb0VBNDXp+Pemfr8D1lSvU6lw70f+v4r4rwg1K7Dp2isdmDp66CobmRLzRuNhkZnGNl5IBshuXZFJBKQAWZaVjNRrw+OFGnulKf9sILL/DPf/6Tt956i7feeosbbriBG264gbfeeovi4mKqqqrYtGkTLpeLPXv2sGPHDubMmQPA3Llz2bFjB3v27MHlcrFp0yaqq6spLi6OaR9cgZpSPdyPtbWmVL3THQx0iYiIiIgkIgWlYqix2YPXByYDZAa+ypZe49LWDKdjNQ4aW4fphMLn87H1Hf/Qveb3/45BFUh7JYPBEBzCp2Ln4cnLy2Pjxo288MILjB8/nuXLl7N8+XImTJgAwMSJE3nggQdYuXIl48aN4/nnn2fDhg3k5ubGtJ3u1gBSN+cwCEozgrl1J9X2lp42S0REREQkapQOEUN1rcWj+1gtGBVY6HXyMtIY1Cedk/XNHKpo5KrhuSFtd7C8gcOnGkkzGag99CpwT1TbKYlraK6NI5V21ZUKwZo1a9r8PmrUKLZs2XLO9WfNmsWsWbOi3axOuTxnZt/rCYPBQL7NzCm7i7Kqegb2iXx2pYiIiIhIJChTKoYC9aQ0817vddlAf4Hzd47XhbzNtndOAFB8UT98zY1RaZckB83Al9pc3tZMqQjsq2+G/z5T3eTqYk0RERERkfhRUCqGAplSqifVe109PAeAko9rQ1q/1uHipcOVAMy9YnC0miVJIlDsXJlSqSlSmVJwJihVZVdQSkREREQSl4JSMaRMKbl6uH+K+QMn6nG4PF2uv+O9clo8Pi7un8VlAzU9c293pqaUglKpKFI1pQDyM/xfflSpppSIiIiIJDAFpWJImVIyNNfKwOx03F5fl0P4vD4fz+33Fzife8UgFTgXhrZmSp2ocwYDGJIaPF4frYlSEbkxFyhTSkRERESSgIJSsWKy0Njiz4xRplTvZTAYuLq1wHnJsdpO133zo9Mcr3OSlW7i+ov7R79xkvD6ZaWRbjbi8cHJ+uZ4N0ciyO31Bf8eifhzfiAo1aRMKRERERFJXApKxYixzwAA0kwGrGad9t5s3Hn+IXyvH63B5/Odc73Nb30CwIzLBmK1mGLSNklsRoOBoYFi5xrCl1JcZ2W+9XT4ns/nI9vk358ypUREREQkkSk6EiOm3IEA5NosGobVy11zQT5pJgNHq5s4fKrj2fQOVTRQ8nEtJgP8f2OHxLiFksiCxc41A19KcXvOBKh7emN2tzTz8sFjAFQrKCUiIiIiCUxBqRgx5gwCoI9VQ/d6u2yrmamFBQA8//6pDtd5+h/+LKnrLurHoD7WmLVNEp9m4EtNLq8/s8lkNERk+F6WNR2AxhZPSJMqiIiIiIjEg4JSMWLK8WdK5dhU5Fxg+qX+4Zwv/utUu4LV756o56//rgTg61cPi3nbJLENDc7A54xzSySSXK2ZUuZITL0HmA1gat1VZaPqSomIiIhIYkraoJTH4+GWW27h3nvvDb62f/9+5s2bx5gxY5g2bRpbt25ts8327dspLi7miiuuYPbs2ezbty9m7TUGglLKlBJg/Pl59M1M47TDxe/eORF83evz8aOXPwBgxmUDGNk/K15NlAQ1TDWlUlKgppQlQkEpgwFsraXoKhtVFF9EREREElPSBqXWrVvHW2+9Ffy9rq6OhQsXcuONN1JSUsKqVat46KGHOHDgAAB79+7lwQcfZM2aNZSUlDBz5kwWLVqEwxGbBzvjWTWlRMxGA/856TwAntx9jIoG/0Pj2leOcrC8gQyLie9ce0E8mygJKjB873ids82MbZLcXN7IZkoBWFuDUlXKlBIRERGRBJWUaTtvvvkmu3bt4gtf+ELwtV27dpGbm8v8+fMBmDhxIjNmzGDz5s2MHj2arVu3Mn36dMaOHQvAggULePbZZ9m5cydz5syJantrHS6M1mxANaXkjJmjBvKn9yp492Q9Czbvo6hfJm9+dBqAe64rpCAzrdv7bmyyU1h0Xmjr2jsuti6JqX92OmkmAy0eH+X1Toa2BqkkuQWG8VpMkQtK2cxAM5xSppSIiIiIJKiki5BUV1ezbNkynnjiCTZt2hR8/ciRI4wcObLNuoWFhWzbtg2A0tLSdsGnwsJCDh06FHYbwi1CG5glKzPNhMWUtMlpnQqcE4MBfCmavNGdPnb2WTEZDKz80kju+v17lNU6qbL7sxnumjqC6ZcN6FFbfV4vS59+JaR1V8y5sk1bO+tfsk8ceXYfz/4z0Z3dTpPBwNBcGx9WN/FJrYNhebYO1w2lb8nS/94g0jWl4MzwvUAmpoiIiIhIokmqoJTX6+Xuu+/mtttu4+KLL26zzG63Y7O1fTizWq00NTWFtDwcfftmh7V+9bE6APIy08jISO9y/VDWCXfdWO3TZmv/WjL3pyMd9bEjBqOBgoLOPysFBdm89L0Ctr5VRr3TTfGlAxg54NzbGIyGqJ+jc/UvlP4E1kv099xmS0+a/nTUzgsHZPNhdROn3b5z9iHc65TEV2D2vUh+cZHReoc/Wa+glIiIiIgkpqQKSj355JOkpaVxyy23tFtms9loaGho85rT6SQzMzO43Ol0tluel5cXdjuqqxvCygZ6v6wGgOw0E01NXT8chLJOuOtGe58Gg/9B3+FobndukrE/HQlklXTUx474vD6qqhq6XhH4UlHf4N8728bn9UXtHHX2HgaOHUp/wmljOO2MxD7P7mNDYyM5ufld7qvR3hjX/nR03gdk+GvT/euT2nbLDAZ/QCqU61RgXYm/aGRKWU0+wEB5vWZqFBEREZHElFRBqT/+8Y+cOnWKq666CiAYZPrrX//K0qVL2b17d5v1S0tLKSoqAqCoqIgjR460Wz5lypSw2+HzhTdE7ViNf/heji2pTndYAucjVYfuQff6mEznI5T+JVN/OnJ2H0Md4hgY3hgvjU12LixsWx8s7dJpZE65jad//2ee+NaPARg4aBCvv7onuE641ymJL3drUCqSNaXSfC1AuoJSIiIiIpKwkipK8sILL7T5/d577wVgzZo1nD59mkcffZRNmzYxf/583n77bXbs2METTzwBwNy5c1m8eDFf+tKXGDt2LJs3b6a6upri4uKotzsYlLJq5j1pb/KUCZSfPBnSuipK3vt0FDw7Xudk5/un6HfR1Sz+qn/ZI7dOjUfzJEJcrYXOI1tTyh/oqm/20NTiISPNFLF9i4iIiIhEQlIFpTqTl5fHxo0bWbVqFWvXriU/P5/ly5czYcIEwD8b3wMPPMDKlSupqKigsLCQDRs2kJubG/W21TT5C1jn2hSUkvbKT54Muyi59G6BWTwbmt14fT6Mqlie9FzeyGdKWYz+H5fXX+z8gr4ZEdu3iIiIiEgkJHVQas2aNW1+HzVqFFu2bDnn+rNmzWLWrFnRblY7/zV1BEtX/B/6TLwv5scWkdSTmWbCaACvDxqbPcEglSSvM5lSkZ2h1WbyB6XKG5wKSomIiIhIwons/36lQ9MvG0Dzey/GuxkikiKMBkMwEFXvdMW5NRIJ0agpBWAz+/dXrhn4RERERCQBKSglIpKE+rTWqKt3uuPcEokElzfyNaUAMlqT6MobFJQSERERkcSjoJSISBIKZErVKSiVElxRzpQ6XmPHp+kYRURERCTBKCglIpKEcoLD9xSUSgXu1kLnka4pFciU+mdZDQ6HI6L7FhERERHpKQWlRESSkGpKpZZAoXNLhIfvBTKlHIpdioiIiEgCUlBKRCQJnV1TyqthWUkvUOjcHOHhe4FMqSa3T58TEREREUk4mkdcRCQJZaWbMBrA6wN7iyfezZEeChQ6txgNRDKpKd3oC35OappcZGVGcOciIpLUvF4vVVVVGAyQn68bhIjEh4JSIiJJyGgwkJ1ups7pVl2pFBAodI7PQyQTmrzuFtIMJpw+AxUNLQzvF7l9i4hIcquqquLJv+0HYFnfLEymjDi3SER6Iw3fExFJUsEZ+ByqK5XsAjWlDnxciccT2fczw+IfEljR2BLR/YqISPLLzMknMyc/3s0QkV5MQSkRkSSVYztTV0qSW2D2PYs58gnMGSb/n6cUlBIRERGRBKPheyISksYmO4VF53W9nr0xBq0ROHsGPgWlkl0gUyrCk+8BYGu90ytTSkREREQSjYJSIhISn9fL0qdf6XK9FXOujEFrBCAnMHxPQamkF6gpFY305cAMfKcaFJQSERERkcSi4XsiIkmqj9U/fK/B6QKikGIjMRMMSkXhbQwM31OmlIiIiIgkGgWlRESSVFa6CYMBPD4wZObFuznSA25vYPhe5KNSgeF7qiklIiIiIolGQSkRkSRlNBjok+6POJhyBsa5NdITUc2Uag1K1TndOFyeyB9ARERERKSbFJQSEUligWLnxpwBcW6J9EQ0C51bjP4fgIr65sgfQERERESkmxSUEhFJYoGglElBqaTm8kYvUwogw+zfcXmDMzoHEBERERHpBgWlRESSWE5rsXNlSiU3dxQzpQAyLK1BKWVKiYiIiEgCUVBKRCSJBTOl+igolcyCNaWitP9AptTJBgWlRERERCRxKCglIpLEcmz+TClDRm58GyI90hyjTKmKeg3fExEREZHEoaCUiEgS62M1c/XwHBz/2BrvpkgPNLv9QSlT1GtKKVNKRETia19FC//1/Ec0ON3xboqIJAAFpUREktwVQ3Jo+dfL8W6G9EAwKBWlVKlgUEo1pUREJI7sLi+Ha1yU1jgp+fh0vJsjIglAQSkREZE4a3Z7gChmSgWG7zU04/X5onMQERGRLnxQ6yZwFzpSaY9rW0QkMSgoJSIiEmctUR6+ZzP761W5vT6OV9XhU2BKRERizOP18WHtmSF7pVUKSomIglIiIiJx5fX5aGmdfc8Upbuy0WCgb4a/KP66vx/E4XBE50AiIjF26NAhbrvtNsaNG8c111zD0qVLqampAWD//v3MmzePMWPGMG3aNLZubVt/cfv27RQXF3PFFVcwe/Zs9u3bF1zm8Xh4+OGHmTRpEmPGjGHRokWcOnUqpn1LNf+qdOBwn/lSREEpEQEFpUREROIqkCUF0cuUAhiQneY/HpboHUREJIacTie33347Y8aM4fXXX+fPf/4ztbW13H///dTV1bFw4UJuvPFGSkpKWLVqFQ899BAHDhwAYO/evTz44IOsWbOGkpISZs6cyaJFi4JB+/Xr17N7926ee+45XnvtNaxWK8uXL49nd5NeRaMLgNx0/yPoJ7VOmlo88WySiCQABaVERETiyBmjoFT/LH9QqtGloXsikhpOnDjBxRdfzOLFi0lLSyMvL4+bb76ZkpISdu3aRW5uLvPnz8dsNjNx4kRmzJjB5s2bAdi6dSvTp09n7NixWCwWFixYQF5eHjt37gwu/9a3vsWgQYPIyspi2bJlvPrqq5SVlcWzy0mtusk/dC/XaiTfZgbgA2VLifR6CkqJiIjEUWDmPbPRgMEQvahUX6v/lm9v1hTcIpIaRowYwVNPPYXJZAq+9uKLL3LZZZdx5MgRRo4c2Wb9wsJCDh06BEBpaek5lzc0NFBeXt5meUFBATk5ORw+fDiKPUpt1Q5/plSG2cD5uemAhvCJCJjj3QAREZHeLBCUSjdH93uifpn+YXt2ZUqJSAry+Xw8/vjjvPzyy/z617/mV7/6FTabrc06VquVpqYmAOx2+zmX2+3+QElGRka75YFl4Yji9w09EmjXp/+MlkCmVIbZwHl56fzzpJ3SKntUj2swtO1for4XPRGr9y9eUr1/kDx9jFb7FJQSERGJo2a3v55GejTH7gGDshWUEpHU1NjYyH333cfBgwf59a9/zUUXXYTNZqOhoaHNek6nk8zMTABsNhtOp7Pd8ry8vGCw6tOTQpy9fTj69s0Oe5tY8HiasNnSgr9Hu521Lf4vYXIyLRQNyob3a6hxuikoiN5xPZ4mrFZ/H/Pzs6J6rHhL1M9ZpKR6/6B39LEjCkqJiEhKOHToEA8//DAHDx7EYrFwzTXXcO+995Kfn8/+/fv5wQ9+QGlpKXl5eSxatIh58+YFt92+fTtPPPEElZWVjBgxghUrVjBmzJiYtDuQKWUxGfBFMV40sLXQud3lwxfNA4mIxNDHH3/Mt771LQYPHsy2bdvIz88HYOTIkezevbvNuqWlpRQVFQFQVFTEkSNH2i2fMmUKOTk5DBgwoM0Qv8rKSmpra9sN+QtFdXVDVK/v3VVd3YjD0RLMfoh2OyvqWwAweT1YPP6sqZOnHVRVNXS2WY9UVzfidLZgtaZRU9OIyZTR9UZJxmDwBzMS9XPWU6neP0iePgbaGWmqKSUiIkkvmjMwRVsgKNXkbMHjdkXtOANah++5fVDrUF0pEUl+dXV13HrrrVx55ZX84he/CAakAIqLi6mqqmLTpk24XC727NnDjh07mDNnDgBz585lx44d7NmzB5fLxaZNm6iurqa4uBiA2bNns379esrKymhsbGT16tWMGzeO4cOHh91Ony9xfwLti3Y7XR4ftc4zw/dyrf7ciJqmlpj2M1V/1L/k/0mWPkaDglIiIpL0ojkDU7QFZt8zRXn4XprZSOtkR5yob47qsUREYuH3v/89J06c4C9/+Qtjx45lzJgxwZ+8vDw2btzICy+8wPjx41m+fDnLly9nwoQJAEycOJEHHniAlStXMm7cOJ5//nk2bNhAbm4uAIsXL2bq1KnMnz+fqVOn0tzczOOPPx6/zia5ansLXh8YgHSzgVyrvzh9TZMLZe+K9G4aviciIkkvMAPT2bqagWnbtm2Af7hG4Jvzs5cHZmgKVajFHz9dzLIlEJQyGABfp/vqyesGA2SaDTjcPk42NCd0Mc1kKfgZbzpPodF56lqynqPbbruN22677ZzLR40axZYtW865fNasWcyaNavDZRaLhSVLlrBkyZIet1OgstH/ZYjNbMBoMJDb+i1Js9uLvcVDVroeS0V6K/3rFxGRlBLJGZjCEe4Y+8D6aWX1gL+mlM2WhtnoA5MJi9nSZv2evG5OS8NmM5FjM1HldFPnJimKvfbWgp/h0nkKjc5T13SOJFpONbQGpSz+yKfVbCTDYqLJ5aGmyaWglEgvpn/9IiKSMiI9A1M4Qi1O+elillW1/unFDT4fDkczrpZmDCYzbpO3zXY9et3RzCPbS0jzWgEoLa+PamHZnkqWgp/xpvMUGp2nrp19jkDBKYm8U43+IucZ5jPpePmZFppqPdTYWxieZzvXpiKS4hSUEhGRlBCNGZjCEW4ByMD6za7W4XvGtsvOtU13X7ekWclsraN+or45KR7Oo1lUM5XoPIVG56lrOj8SLWcP3wvIs6XxSa2TmqaWeDVLRBKACp2LiEjSi+YMTNHWHKwpFf1jZQYLnesBQEREYieQKRUYvgfQt3VW2Oqm6M08KyKJT5lSIiKS9M6egemFF15os2zfvn1s3LiRVatWsXbtWvLz8885A1NFRQWFhYVtZmCKNmcHhc6jJRCUqmxsocXtJc2s76ZERCT6auytQamzvoHJz0hrs0xEeqekC0odOnSIhx9+mIMHD2KxWLjmmmu49957yc/PZ//+/fzgBz+gtLSUvLw8Fi1axLx584Lbbt++nSeeeILKykpGjBjBihUrGDNmTBx7IyIikRDNGZiiLZaZUmlGMBvB7YXjdU4u6JsR/YOKiEivV+vwZ0Oln11TKsOfKVWjTCmRXi2pviJ1Op3cfvvtjBkzhtdff50///nP1NbWcv/991NXV8fChQu58cYbKSkpYdWqVTz00EMcOHAAgL179/Lggw+yZs0aSkpKmDlzJosWLcLhcMS5VyIi0psFg1IxuCMbDJDdOnTiWE14swuKiIh0VzAodXamVGZrppRqSon0akkVlDpx4gQXX3wxixcvJi0tjby8PG6++WZKSkrYtWsXubm5zJ8/H7PZzMSJE5kxYwabN28GYOvWrUyfPp2xY8disVhYsGABeXl57Ny5M869EhGR3qzZ7QFikykFkJ3mP9BHCkqJiEgM+Hy+DoNSfWOYKRX4AkhEEk9SBaVGjBjBU089hclkCr724osvctlll3HkyBFGjhzZZv3CwkIOHToE+GdS6my5iIhIPMRy+B5AptF/vA+rGmJzQBER6dWaXB5aPP6aiVZzBzWlopgp5fP5+MfJZjYfqOPNj6N/3/N6vZw6dYpTp07h9SoQJhKKpApKnc3n8/HYY4/x8ssvs2zZMux2Ozabrc06VquVpib/N8FdLQ+HwRD+T2C7VKU+nnubUD4biUDvYfL79PUmmT5/vVmsg1JZ/i+mKat1xuaAIiLSq51uzYRKMxna3OuCw/fs0cuUevbdaj6odQPwv0fro3acgKqqKp78236e/Nt+qqqqon48kVSQdIXOARobG7nvvvs4ePAgv/71r7nooouw2Ww0NLSNfjudTjIzMwGw2Ww4nc52y/Py8sI+ft++2d1qt82WHtJ6GRmhrRfOurHaZ0d9TOb+dCTU99FgNFBQ0PVnxWA0JNQ56qx/yfD+hLJuoI+p0h9o/3nr7nVKYu9MTanYRKXOBKWaY3I8ERHp3epah+7lpJswnPWNWKDQeZPLg9PlwWoxdbh9dzW1ePjNgTOBoQ9qYvNlTGZOfkyOI5Iqki4o9fHHH/Otb32LwYMHs23bNvLz/f/oR44cye7du9usW1paSlFREQBFRUUcOXKk3fIpU6aE3Ybq6gZ8YczaHbj2OhzNIW3X1BT6g0Ko60Z7nwaD/0G/oz4mY386Eu776PP6qApheIzP60uIc9TZexjtY8dqn2f3MdbHjvY+A583g8EfkArlOhVYV+LLGetMqdY7f53TTa3DRa7NEpsDi4hIr3S6NSjVx9o26JSZZiLNZKDF4+O0w8WgCAeljtY04fGB0QBeH5xocHG6qYW81mGDIpIYkmr4Xl1dHbfeeitXXnklv/jFL4IBKYDi4mKqqqrYtGkTLpeLPXv2sGPHDubMmQPA3Llz2bFjB3v27MHlcrFp0yaqq6spLi4Oux0+X/g/ge1Slfp47m1C+WwkAr2Hye/T15tk+vz1Zs2u2AalzEawtQamNAOfiIhEW20wU6ptPoTBYAh+MXI6CsXOP6r23+MKbEZyrf7H3gMnVE9RJNEkVabU73//e06cOMFf/vIXXnjhhTbL9u3bx8aNG1m1ahVr164lPz+f5cuXM2HCBAAmTpzIAw88wMqVK6moqKCwsJANGzaQm5sbh578/+zdeXxU1f3/8ddMZpKZLGQhCC5YlwStChJBNlFbNFJFCGXRtvnZYr+KxajVFtxAxSKIX+tSSkG+KMW2VFqwaFFkqbsoEBRBacHEyqIs2UhIJpkkM3N/f0xmICaQTDLJLHk/H+aR5J67fM4N3nPvZ845V0RExKvO3blJKYAkq4kal8HesmouPj258w4sIiJdji/h5O0p5W5UlmK3UlRV5+9NFUxfNXzw0i3WjDnGTLmzjh0HjnJlRvegH0tE2i6iklI333wzN9988wnL+/bty/Lly09YnpOTQ05OTkeEJiIi0ia1Lu8Nekwn9l1OtBgUAQVFR4FTO+/AIiLS5ZQfN6fUt5NSqQ3zSlV0QFLK11MqOc6M3Wbhi9I6PjtQEfTjiEj7RNTwPRERkWjT2W/fq69zEm/2PhTs6aRJX0VEpOsqP8GcUkCHDt/z95SKM5Nu9x77v6Uati4SbpSUEhERCaFjSanOG7+XZPVOKLbnSE2nHVNERLomX8Lp23NKwXFJqSD3lKpzefi63NvGdYs1kRjnTUpVOF1U17lPtqmIdDIlpUREREKos3tKASQ1PBccqqzDUefqvAOLiEiXU17jbWeSm+kp5Ru+Vx7kpNS+8ho8BsRbzdgtJmJjTCTGeh99Dx5VL2GRcKKklIiISAg5fUmpTmyRY2PA92zwlYYyiIhIByqvqQOgW1wzSamGnlLlQR6+55tPqndyLKaGnsinJHiPdehobVCPJSLto6SUiIhIiLg8Bm6PdyhdZ/aUAu/ErwBfljg698AiItKl+IbmNddTqqOG7+1rGJ5+RrdY/zJfUko9pUTCi5JSIiIiIeJ78x50flKqW6z3gJr0VUREOorL7aGq1tvWJduamVOqg4bvHar0Jp56Jlr9y3okWBrK1FNKJJwoKSUiIhIivvmkAMyd3lOqISlVoqSUiIh0DF+yyWzCP6fT8VLtsY3WC5aDDUP0eiQcS0qdkugbvqeeUiLhREkpERGREPElpWJjTP45LzpLcsPDQWGJg+rqagzD6NTji4hI9CttmCsqxW7F3Ew7l2L39l466nThcnualLeVL/F0yvFJKf/wPfWUEgknSkqJiIiESG299wY8ztL5zXFSLJiAEkcdT639lJqamk6PQUREoltZtXeS8+4Jsc2Wd7NZ8aWqyp3BeRusYRj+xNMp6iklEvaUlBIREQkRX0+pUCSlTK464i3e3lGVbmsLa4uIiASuzOHtKZUW33w7E2M2kWwP7rxSFTUuf/vqm0cKjiWoiqvqqA9irywRaR8lpURERELE2TDReVxMaJrj5IbJzsuC/CpuERERONZTKjW++Z5ScGwIX3mQ2qKDDZOcd0+IxXpc+5piiyHOYsYADmuyc5GwoaSUiIhIiPjeSJQQ2/Q12Z0hueGD6/JafWIsIiLB5/vQ40Q9pQBSG3pKHQlSTynf0L1Tu8U1Wm4ymeiZ5F2mpJRI+FBSSkREJESO1npvwJNsIUpKNXxwXV6rSc5FRCT4/HNKnaynVHxw38DnmzOqV5KtSVmvhqTUQc0rJRI2lJQSEREJkaM13kldk+IsLazZMXxJqaN1BnWaX0NERILMP6dUwol7Svl6UZU56oJyzEMNPaV6faunFMCp3byJKr2BTyR8KCklIiISIkdrfUmp0PSUsseA1QwGsPeIPjUWEZHgKm3FnFK+N/OVBCkp5esF9e3he3AsUaU38ImEDyWlREREQqTSGdqeUiYTpDQ8J+wqcoQkBhERiV5HGuaU6n6SOaV6BDkpdaynVNPhe+opJRJ+QnMXLNIFVFU7yMj8TsvrOao6IRoRCUfH95QqqwxNDGmxUOyEnYd1LRIRkeDxGAZHGnpKpcXHQk1Ns+ulJ3qTUsVVQUpKVR430blR3ahMPaVEwo+SUiIdxPB4uPfFd1tc76Hxl3RCNCISjo7vKVUWohjSbMBR2HlIPaVERCR4jta4cDe8RyM13sqR5nNS9EjwJoqC0VOqpt7tnzC9V5KNmqONk1K+nlKHK2vxGAZmk6ndxxSR9tHwPRERkRA56mx4+16I5pQCb08pgH3lTsqrg/PmIxEREd98Ut1sFqwxJ37s7N7QU6rMUYfL0763wfqG7iXExpBka9r/4pTEWMwmqHMblKnNEwkLSkqJiIiEyNEQzykFEBsD3WK9nxTvOHg0ZHGIiEh0KfMP3TvxfFIAqXYrMSbvSzd8w/3a6tgk503nkwKwxJhJb5jDSkP4RMKDklIiIiIhUtkwp5SVeoz2fTjcLt1t3tuBHQeUlBIRkeDwTXKedpI37wHEmE3+N/C1d14p33xSvZp5856PJjsXCS9KSomIiISIr6fUP7cW4naFbhhBd7u3p9SWvUdCFoOIiESXUn9S6uQ9pQB/Uqq980r5ej/1SjpxUkqTnYuEFyWlREREQqDW5aHW5QEgwXbim+fOcFpCDGYT/OdwFV+X12AYBtXV1f7v1dXVLe9EREQiUq3L8H9IEkwlVd6eSL6E08n0SIxrtE1b+Xo/nWj43vFlh9RTSiQsKCklIiISApUNk5ybTWAJcWtss5jo1ysegA27i6mpqWH+hu3UnOD13SIiEh2+qXTxamE1Nyz9POg9hw5UePd3WvKJE0Q+6cHuKXXS4XvesgPqKSUSFpSUEhERCQHfp9KJsTGYwuCV1MNO9yal1v/nMADWuJYfIkREJHJtP+Tg/a9rcRtwpMbF9Nd3tfvtd8f7xpeUOkmvJZ/0xCDNKXXUN6fUiY/ZO9UOwP4j+uBFJBwoKSUiIhICR2tD/+a94w05Ix4TUFhaw3ZNeC4iEvVW/bsMAzg1IYaE2Bi2f3OU1z4/FLT9+4fSdVJPKZfHoLjKN3zvxD2leqd4k1JfVziDmoQTkbZRUkpERCQEKn09peJiQhyJV1JcDN9J9P78u/f34Qnl6wBFRKRDHamu4+MDDgAu6RnLzy7tBcC63cVB2X91nZvyGu8w9dNbkZTq0dBTqqQdPaWKq7y9vizHvc2vOackxRFnMeP2GBys0BA+kVBTUkpERCQEKhqSUt1s4dFTCuCCFLCa4csyJ9sP1ykxJSISpTbsLsZjQJrNTLc4M1f3SQPgk/3llFW3bwgdHJuvqZvNQmIregT7Jjo/2I55nnzb9kyKw3ySYfFmk4kzG4bw7dMQPpGQU1JKREQkBHw9pZLCpKcUQFwM9Ev3Pjz8p7SOKf/4D89v/oYt+yqoa3hToIiIRL43/lMEwFnJ3mv+6SlxnN8zEY8B7xSWtnv/vknOT/YWvOP5kkQVThfl1fVtOuZXpd43xX4nzd7q4+09orfLioSaklIiIiIhcLTh7Xv2GAinDknnplj41WWnYTbBrqJq/vzJQaa9XsDEP27h3V0HcDgcGOEUsIiIBKTEUcfnBysBODPp2AcjV/dJB+DNIAzhC+TNewB2a4x/Hqi2JooKi73DETPSE1pcVz2lRMKHklIiIiIhUNkw0XnBgVLcrrZ9KtxRrslMYXRGAtOu/A4j+3Qn1RbDgaN1TH29kDv+9jHV1d4Hhurqav/PIiISGTbtKQMgI82G3XrscfD7md6k1CdfV+Coc7XrGL6hdK15857Pd9K8b4H19XgK1JcN250bQFJKb+ATCT0lpURERELA5fb2NooPg7fvGYZBTU1Nox5bCbFmrr+gBw+MOIs/XHcGZyd55+f4/AjM37gft95YJCISkTb+9wgAA09vnLz5Tlo8vVNsuDwG+XvL23WMYz2lTvwWvG87qyEptacs8ESRYRh8WeLtKdWapJTvDXzB7il1sLKOz4rr2Hygln8X6UMbkdZQUkpERCQEfnTJ6fwkqxffSQp9U+yqq+XFjbtxuRt/Mm4YBkeOlLHso91cnGpwUYp3+crPinjwtf9Q6/JgGAbV1dUa0iciEgFcHoNNe709pQaentikfNjZ3gnPN35V1q7jfBPg8D2As9LaPs9TcVUdR50uYkzHklsn851U7zqHKmtx1rsDPl5zShx1TF27l89L6vlvhYuH3/ya3UVVQdm3SDQL/Z2wiIhIF3RW93huG3IGsTEnfkNQZ7LGNv002+ms4fl3dmIyWzCZIDMZhvSyYjGbeKughF+v/oLiiirmb9hOTY2GQIiIhLsdByqoqnWTbLPQp3vThJEvKfXhV2Vt/rDB5fb4h8WdkdzypOM+x3pKBZ6U+rLU20uqd6qdOEvLj7jJdgtp8VaAoCSOPIbBQ2t2Ue500y3WRHe7mRqXh3tWfU5VbfuGQopEOyWlREREQsA7ZK46rCY5P55vSJ/F2jhZ1TvJzGNX9yYhNobPDlXxqzVfUWuK9W/j6zWlHlQiIuHnnQLvm/WGnZ1GjLnphyKXnJFMnMVMUVUdXzRMHB6oghIHTpeHpDgLZ7biTXg+vjmlDlQ4qQ3wja+BTHIOYDKZuPj0ZAC2fV0R0LGas/Y/RWzdV47NYuLyM2x8r7eN05KsFFfV8dIn37R7/yfi8XgoKiri8OHDeDx6S65EJiWlREREQqCmpobn3vws7CY593HV1fLCe//B7a5vsvyDz75gQLdqbGaD/RV1rP2vg/f+e4Samhrmb9hOdXU1ZWWl/H79sR5USlKJiISWYRi8VVACwFUNb9r7Nps1hqFnpQLwrza+hW/HN0cB6HtaEmZT63sDd4+3khRnwWMEPgF5QUNS6pxWJqUA+p/eDYBPG+JtK5fbw+KP9gJwY990usWZiY0x8dP+PQBYtvVrKmo6pq0vKSnhuX9t56lX8ykpKemQY4h0NCWlREREQsQa1/q5NjrL8ZOeW2Obj88aa6N7QhzfO9XEuamx1LnhoXVfcveru9lfE8Oug0f43frPMJnN/mRUdXW1hvmJiITQvw9VcriyFrvVzODvpJ5wvezzvMmU9buL2/RBwvYD3iRPv9O6BbSdyWTinO7e3lKfHWx9oshjGGze6528vd+prT9m1hnenlLbD1S06+Udq3ce5utyJ2nxVsacd+y8XvadJDJ7JOCoc/PnrV+3ef8tSUhOIzElrcP2L9LRlJQSERERP38PqVb04LJb4PGrTuOC9FisZhPbDlSy6Rsnv3j1v7xxIIaVBbX8dPnn3LzsE17beRB3TNNhfiIi0phvSFZRUVFQh2S9+YW3J83wc7pjs8accL0rzu2O3WrmQIWTnYcqAz7Ojoak1MWnJQe87dCzvUmd978sbfU2/z5USVl1PQmxMVzSu/XHzOyRSLw1hqpat//NfYGqdXl4vqGX1KTBZ2KzHnu8NptM/OKyswD42yffUOqoa9MxRKKdklIiIiLSyIl6SDW7boyJ/j3jeGFcBn2SPKTZTCTGem8vDGBfeS3/Perht+8f4JXdDma88QVv7zrI79d/qqF9IiLNKCkpYdGb21n05vagDcmqrnPzz88PAXB1Q0+oE7FZY7ji3O4AvL7zcEDHOXTUyeHKWmJMcEGvpIDj9B13y77yVr8V772GBNbQs9KwxrT+8dZiNtH3NG+MH7dxXqlXdhykqKqOUxJjGdfv1Cbll5+TxoW9knC6PCzdsr9NxxCJdl0uKVVaWsrtt9/OwIEDGTx4MLNnz8bl0hsRRES6OrUP7XNKopWLe8ZxVe9Y/u8HpzCmN1x/dhyPjOhNnxQz3SwePMD7e45y35pC1ux189t397Bk016Wbizg1yu38d7uQ5RWVOLxeJSkEpGwEKq2ISE5jYTk4A3JWrXjIBVOF2ek2PyJn5MZc1EvAF79/BCHjjpbfZx3Cr0JosweicTHnrg31olkpCdwarc4al0eNu8tb9U2739ZBsAVGYGfr6FnebdZtf0gngDbnPKaepZs3gfA/ww5s9m3/plMJqY09JZa8emBoLzpTyTadLmk1N133018fDzvv/8+K1eu5KOPPmLp0qWhDktEREJM7UPgfPNPeTzH5qFy1dXy4sbdeDwu7Bbo38NCv+4xXHW6mSvSazmnm7cnVbXLYPW/S1i4cS8LNh9ia7Gbqa8XcO3z2/j1P7bzyz9/hKO6utGxjk9UNde7qjXriIgEIhrahqpaF39pmNPoZ5f2xtLMW/e+7dIzUxjYO5l6t8GiD/e26ji1Lg9/yvf2Bhrbr1ebYjWZTFx+jjdptvY/RS2uv3nPEQpLHMSYYNhZgSelcvr2IjEuhq/KqgMaMmgYBrPXf0FZdT1npdkZfdGJ6zv4rFRGZKbj9hg8unY39e7gviWv3mNQ5zYCTqqJhAtLqAPoTHv37mXLli2899572O12evfuze23386TTz7JLbfcEurwREQkRNQ+tI2rvpYXP/qS+PgEXnivxD/szxob5y1vmJ/Kt7yb1aBfopkfDzyDeR8d5szuiRypNdixr4R6j0GVy0SN28T7e7xzmPz7r58z/uLT+G7PJEqOOlie/xWnpCbz37IaDh6txTAMTk+20TvFxtnpidhjDDYXHuT73z2DOIsZa4yJNz/fx9gB53BaahK9usXRzWbB1Iq3QfkSbjabDafT6f9ut9tbtb2IRL5QtA1uj8HLO0vZUVRHvNXEFyU1pKR5iG2mF05r1Ls9TPvnvylx1HFqtzhGXdizVduZTCbyLj+bm//6Ka/tPMyFvZKY0P+0k27z923fUNwwlG30hW1LSgFcd2FPVnx6gH99UUz2F+mM6NP8cENHnYvZG74AYEL/00i2WwM+VmKchQkXn8bSLftZuHEP/U9PbnE/Lo/Bs+98yTuFpVhjTDx23XdbHDZ471UZfLy/nIJiB79+ZSdPjLkA+0nm9ToZZ72bD/cc4e2CEj7eW0ZxtQuo5uV/H+WiUw9zxbnd+X5mOj2T4tq0f5HO1qWSUgUFBaSkpNCz57GL8bnnnsuBAwc4evQo3boF9oYIERGJDmof2s6XgDrZm/qO56qv5c8bd3NKrI2a8hpuG3oOSx1FuA0DS4yFo/XwZYWLA04L31TUMu+9rxptv7PsSKPf9xxxsueIk/e/Kvcv+/T9fY3W+fD1Av/PdquZnomxJMfHYng8eDweku1WeiTZSYu34vJAqaOWvaVVfFlSjclsps7tIcVmoc7l4ozUBBKsMcTHmulmj/MOT/G4sZhNxMXFYjGZiDGDx+3CHhdHjBlMHjdJdhs2q5k4Sww2qxmL2URNvRtHnRtHrYtyhxOzCRJsccRaYrDGmLCYTRjuehLtNqwWM1azN9HmS4qZTFBUZ1Be7sAwvL/7mGj0S3M/YhjeB+B6t4dqpxNrbCwxZjMxJjCbTZgxgQnMpob9ef/DbGrYe8PvJ0vSnayXWouf6Z9khZa2NY5bwwQcccORIw4MvPXumJhOUtcWdnzS4jYeE6B7Qiw9EvVg2lahaBt2F1Wx5JNi/+/5b+zFsm4f56Yn8N2eiXy3ZyK9utlIiI0hPjYGczP//7k8BhU19RQUO/jHjoPsO1JDvDWGJ8dcGNCcSxed2o2fXtqbP+Xv54k3C9m89wjfz0zn9GQb1hjvdcxtGBRX1fFuYQn//Nw7/9TNg89scxIN4MJeSfx0UG9e3LKfR97Yzc5DVQw8M5mkOAtuj4HLY/Df0mqWbf2ag0drOa1bHLcPP7vNx/vRJaezasdBviyp5ucvfcqNWadzVpqdhNgYbNYY3B6DOreHyloXhcUOXv/3Yb4s8fbk/dX3zuW8noktHqN7QiyzR32XX7+6k4/2HGHCknxy+vbiuz2T6GazYLPGEBdjxgDchoFhGHgM75sFK50uiqpqOVxZy+cHK9m6rxynq2lvq5p6D/n7ysnfV85Tb3/Jd3smcskZKfROtdEjMY7u8VYsZjNms/e6HWMyYTZ5LzEew8Dj8R7b+7OB26Dhu7f+dS6DOpeb0vIK6t0GCYmJxB7XNlka/k1YY0yNlnnbs7b/ezAMD1+VlFFeXk1KSirmduyrvTqq57XJBEcNE0eOVLfYXgRDnMVMr27h8wboLpWUcjgc2O32Rst8v1dXV7e6YTGbW765OJ7JBElJScRZzS1ul5SU1OqLeGvX7Yx9mkwQG2PG/a06Rmp9mhPI3zHYx+6MfZ7ob9gZx+6sfR5fx2ioz7fX895keH9vzXVKnT2OCUb70Nq24djfyITZ4yKGxnOTeHB7bxa/tV24LW/PviyxFsAFJlj63k7Am5CymCAtFtJOAVuCnRS7jVf+c4R6zJySGIfL5eLys5LZ+dV+EmJjMJljqKp1UWuKpareoN7lwYixYHgMDLMZt9uAGAuJcTEcqqyn3vD+v1RS7aKk+rjzXl4HB5u+eSnG4r1NspnNON2AycK+8trj1tDcIBLezCZY8pP+nN09/qTrHd92yDGheHY4v1ci91x2Kut2HqLaY6LGE4Oj3uCbCiffVDj51xeBT3x+ardY7h56KumWGkpLa/zLy8uP4K7xvimvtLSUmBhHkzh/fEECuE7hH/8uY+v+CrbuP/GE4IlxFsZ8N5Urz7BQWlrcpPz445WXHyEm5sQ3IhPPT+CLQ0l8driGf+w4yD92HGx2vTOT4/j15adRU1lGTTPlvmPWe2IpL4/FfIKhi7+99js89vbXlFbXs3DjnhPG5ZOeEMsdQ3oypLe1UV1PVseMJHhi5Jk8/cFBypxuXvrkQIvHaY4lxsxZSVaGnJlEZqKbnV+XYIuNpf8ZKeytsbJpfxVflDjZX+5kf/mhNh2jdYIzCX9g9rW8irTKlOHf4UeXnB7QNh317GAyutBECxs2bGDGjBls3rzZv2z37t2MGTOGrVu3kpQU+BsiREQk8ql9EBGRb1PbICLS8brU5yGZmZmUl5c3erXql19+Sa9evdSoiIh0YWofRETk29Q2iIh0vC6VlDrrrLMYMGAAc+bMoaqqiv3797NgwQImTJgQ6tBERCSE1D6IiMi3qW0QEel4XWr4HkBJSQm/+c1v2Lx5M2azmbFjxzJ16lRiYtr29gMREYkOah9EROTb1DaIiHSsLpeUEhERERERERGR0OtSw/dERERERERERCQ8KCklIiIiIiIiIiKdTkkpERERERERERHpdEpKiYiIiIiIiIhIp1NSSkREREREREREOp2SUkFSWlrK7bffzsCBAxk8eDCzZ8/G5XI1u+67777L6NGj6d+/P9deey1vv/12J0fbNoHU8aWXXmLkyJFkZWUxcuRIli1b1snRBi6Q+vl88cUXXHzxxWzevLmTomyfQOq4ZcsWJk6cSFZWFldeeSWLFi3q5GjbJpA6vvjii4wYMYJLLrmE0aNHs27duk6Otn3KysrIzs4+6b+/SL3eRKO2XGO6ol27dnHzzTczaNAgLrvsMu69917KyspCHVZYcrvd3HTTTdx///2hDiUslZeXc++99zJ48GAuvfRSbr/9doqKikIdVtjZuXMnubm5DBw4kOHDh/PYY49RV1cX6rCkE3SV6200Xyuj/ToXrden5u7ht2/f7n/2GjFiBCtWrAhhhJ1LSakgufvuu4mPj+f9999n5cqVfPTRRyxdurTJenv27OHOO+/kl7/8JVu3buXOO+/k7rvv5vDhw50fdIBaW8d//etfPP300zzxxBN88sknzJ07l2effTbsH/hbWz+fmpoafv3rX+N0OjsvyHZqbR2//PJLJk+ezE9+8hM++eQTFi1axJIlS1i7dm3nBx2g1tbx3XffZdGiRTz//PN88skn3HHHHdx99918/fXXnR90G3z88cfceOON7Nu374TrRPL1JhoFeo3pipxOJ7fccgtZWVl88MEHvPbaa5SXl/Pggw+GOrSwNH/+fLZu3RrqMMLWnXfeSXV1NRs2bODtt98mJiaGhx56KNRhhRWPx8Ntt93GyJEj2bJlCytXruSDDz5g8eLFoQ5NOlhXut5G87Uymq9z0Xp9au4evqKigsmTJzN27Fjy8/OZPXs2jz/+ODt27AhhpJ1HSakg2Lt3L1u2bGHatGnY7XZ69+7N7bff3mzvoFWrVjFw4ECuvvpqLBYL1113HZdeeil/+9vfQhB56wVSx8OHD3PrrbfSv39/TCYTWVlZDB48mPz8/BBE3jqB1M/n0Ucf5eqrr+7EKNsnkDr+9a9/5aqrruKHP/whJpOJ888/n+XLlzNgwIAQRN56gdTxv//9L4Zh+L9iYmKwWq1YLJYQRB6YVatWMXXqVO65554W14vE6000ass1pis6cOAA559/Pnl5ecTGxpKamsqNN94Y1u1HqHz00UesX7+ea665JtShhKXPP/+c7du3M3fuXLp160ZiYiKzZs1i6tSpoQ4trFRUVFBcXIzH48EwDADMZjN2uz3EkUlH6yrX22i+Vkb7dS4ar08nuodfv349KSkp5ObmYrFYGDp0KKNHj+4y94lKSgVBQUEBKSkp9OzZ07/s3HPP5cCBAxw9erTRuoWFhfTp06fRsoyMDHbt2tUpsbZVIHXMzc1l8uTJ/t9LS0vJz8/noosu6rR4AxVI/QBeeeUV9u7dyx133NGZYbZLIHXcsWMHZ5xxBr/61a8YPHgw1157LVu2bKFHjx6dHXZAAqnjqFGjSE9P57rrruPCCy/kl7/8JXPnzqVXr16dHXbAhg8fzoYNG7juuutOul6kXm+iUaDXmK7qnHPO4fnnnycmJsa/bN26dVx44YUhjCr8lJaWMn36dJ566qmIvjnvSDt27CAjI4O///3vZGdnM3z4cJ544omwb8c6W2pqKpMmTeKJJ56gb9++XHnllZx11llMmjQp1KFJB+sK19tov1ZG+3UuGq9PJ7qHLygo6NL37EpKBYHD4WhyofP9Xl1d3eK6NputyXrhJpA6Hq+4uJhbb72Viy66iOuvv75DY2yPQOr35Zdf8swzz/DUU081asjDXSB1rKio4E9/+hNjxoxh48aN/OY3v+GJJ54I++F7gdSxvr6e888/nxUrVvDpp5/ym9/8hunTp7N79+5Oi7etevTo0aoeXZF6vYlGbb2GdmWGYfDMM8/w9ttvM3369FCHEzY8Hg/Tpk3j5ptv5vzzzw91OGGroqKC3bt3s2fPHlatWsUrr7zC4cOHue+++0IdWljxeDzYbDYeeughPv30U1577TW+/PJL5s2bF+rQpBNF4/W2K1wro/06F43XpxPdw3f1e3YlpYIgPj6empqaRst8vyckJDRabrfbm8xB5HQ6m6wXbgKpo8+nn37KhAkTOPvss1m4cGFYD4tqbf1qa2u55557ePDBBznttNM6Ncb2CuRvGBsby1VXXcX3vvc9LBYLl156KTk5ObzxxhudFm9bBFLHWbNmkZmZSb9+/YiNjWX8+PH079+fVatWdVq8HS1SrzfRqC3X0K6sqqqKu+66i9WrV/OXv/yF8847L9QhhY1FixYRGxvLTTfdFOpQwlpsbCwA06dPJzExkfT0dO6++27effddHA5HiKMLHxs2bGDdunX85Cc/ITY2lszMTPLy8njppZdCHZp0kmi93naFa2W0X+e60vWpq9+zKykVBJmZmZSXl1NSUuJf9uWXX9KrVy+SkpIardunTx8KCgoaLSssLCQzM7NTYm2rQOoIsHLlSiZNmsTPfvYznnrqKf9FM1y1tn6fffYZe/bsYfr06QwcOJCBAwcC8Itf/IKZM2d2dtgBCeRveO655zZ5s4Xb7faP5w5XgdTxwIEDTeposViwWq2dEmtniNTrTTQK9Brale3bt4/x48dTVVXFypUro+YBKVheffVVtmzZ4m+DXnvtNV577TV/eyReGRkZeDwe6uvr/cs8Hg9A2LdlnengwYNR3xbKiUXz9bYrXCuj/TrXla5PXf2eXUmpIDjrrLMYMGAAc+bMoaqqiv3797NgwQImTJjQZN0xY8awZcsW1qxZg8vlYs2aNWzZsoWcnJwQRN56gdRx3bp1zJw5k9///vf8/Oc/D0G0gWtt/QYOHMiOHTvYunWr/wvgueeeC/ukVCB/wx/96Ee8+eabvPrqqxiGQX5+PqtXr46qf6cjRozgL3/5Czt37sTj8bB27Vo2b97c4jxNkSRSrzfRKJB/m11ZRUUFP/vZz7jkkkt44YUXSEtLC3VIYWft2rV88skn/jbo+uuv5/rrr4/aN0u11bBhw+jduzcPPvggDoeDsrIynnnmGa6++moSExNDHV7YGD58OMXFxTz33HO43W7279/PwoULGT16dKhDkw4W7dfbrnCtjPbrXFe6PmVnZ1NSUsLSpUupr69n06ZNrF69mvHjx4c6tE6hpFSQzJs3D5fLxVVXXcUNN9zA5Zdfzu233w5AVlYW//znPwFvD5Q//OEPLFq0iEsvvZQFCxbw+9//nrPPPjuU4bdKa+s4f/583G43d911F1lZWf6vhx9+OJTht6i19Ytkra3j0KFDWbBgAX/6058YMGAADzzwAPfddx9XXXVVKMNvldbW8Y477iA3N5c777yTSy+9lP/7v//jD3/4A9/97ndDGX67Rcv1Jhqd7N+meP3jH//gwIEDvPHGGwwYMKBRGyISCKvVyp///GdiYmIYOXIkI0eOpFevXsyZMyfUoYWVjIwMFi1axFtvvcXgwYP56U9/yogRI1p8u6tEPl1vI1+0X+e60vUpNTWVJUuWsHbtWgYPHsyMGTOYMWMGQ4YMCXVoncJkREPfPhERERERERERiSjqKSUiIiIiIiIiIp1OSSkREREREREREel0SkqJiIiIiIiIiEinU1JKREREREREREQ6nZJSIiIiIiIiIiLS6ZSUEhERERERERGRTqeklIhImCkrKyM7O5vNmzcHvO0f//hHbrrppkbL3G43TzzxBMOGDSMrK4spU6ZQVFQUrHBFRCQMtKXtWLduHddffz39+/cnOzublStXdmCEIiIiTSkpJSISRj7++GNuvPFG9u3bF9B21dXVzJ07l7lz5zYpW7hwIRs3buTll1/m/fffx2azMWPGjGCFLCIiIdaWtmPTpk3cf//9TJs2jW3btjFr1iweffRRduzY0YGRioiINKaklIhImFi1ahVTp07lnnvuaVL24YcfMmHCBAYOHMioUaP45z//2ag8JyeH4uJifvzjHzfZdsWKFdx6662ceuqpJCYmMn36dN577z3279/fYXUREZHO0da2Y+nSpfz0pz/lyiuvxGQyMWTIEF5++WXOPPPMzgxfRES6OCWlRETCxPDhw9mwYQPXXXddo+W7du1iypQpTJ48mc2bNzNr1izmzJnD+++/71/nz3/+M0899RTdu3dvtG1lZSWHDh2iT58+/mXp6ekkJyeze/fujq2QiIh0uLa2HTt27CAlJYXJkyczePBgcnJy2LdvHykpKSGohYiIdFVKSomIhIkePXpgsViaLF++fDlXXXUV11xzDTExMVxyySXccMMNLFu2zL9Or169mt2nw+EAID4+vtFym83mLxMRkcjV1rajoqKCF154gSlTprBx40by8vK455572L59e2dXQUREurCmLZiIiISVb775hk2bNjFw4ED/Mrfb3aohFna7HYCamppGy51OJwkJCcENVEREwkZLbUdsbCzjx48nKysLgGuuuYahQ4eybt06Lr744pDELCIiXY+SUiIiYa5Xr1788Ic/5De/+Y1/WVFREYZhtLhtcnIyPXv2pLCw0D+Er7i4mPLy8kZD+kREJLq01Hace+651NXVNdrG7Xa3qm0REREJFg3fExEJcxMmTOC1117jgw8+wOPxsGfPHv7f//t/LFmypFXbjxs3joULF7J//36qqqqYM2cOgwYN0mS2IiJRrKW248c//jEvvfQSH374IR6Ph3Xr1rF582auv/76EEcuIiJdiXpKiYiEuYsvvpinn36ap59+ml/+8pfY7Xauv/56fvWrX7Vq+7y8PFwuF7m5uTgcDgYPHsyzzz7bsUGLiEhItdR2jB8/HrPZzOOPP87XX3/N6aefzjPPPMOFF14Y4shFRKQrMRnqoysiIiIiIiIiIp1Mw/dERERERERERKTTKSklIiIiIiIiIiKdTkkpERERERERERHpdEpKiYiIiIiIiIhIp1NSSkREREREREREOp2SUiIiIiIiIiIi0umUlBIRERERERERkU6npJSIiIiIiIiIiHQ6JaVERERERERERKTTKSklIiIiIiIiIiKdTkkpERERERERERHpdEpKiYiIiIiIiIhIp1NSSkREREREREREOp2SUiIiIiIiIiIi0umUlBIRERERERERkU6npJSIiIiIiIiIiHQ6JaVEgsQwjFCHICIiEUJthoiItEdntiNqs6QjKSklXdqIESO4//7727WPo0ePct9997F161b/sptuuombbrqpveGJiEgUWLNmDd///vfp27cvDz/8MIWFhfz4xz8OeD/3338/I0aM8P8eaBumtklEJDJ1VDvSGm09lkhrWUIdgEik+89//sMrr7zCuHHjQh2KiIiEoUcffZSzzjqLuXPn0rNnT1avXs22bdvavd/58+eTmJjY6vUfeeSRdh9TREQ6X0e1I63xxhtvdNqxpGtSUkpERESkA5WXl3PZZZcxePDgoO73ggsuCGj9jIyMoB5fREQ6R0e1IyLhQMP3pMurr6/nscce49JLL+XSSy/lvvvuo6yszF++YsUKxo0bR//+/enXrx85OTmsWbMGgM2bN/PTn/4UgJ/+9KeNhkUYhsHixYv53ve+R79+/bjxxhv57LPP/OW///3vyc7OZv78+QwePJirr76aI0eO4Ha7WbZsGaNHj6Zfv35873vf47e//S21tbWN4t64cSM/+clPGDBgAIMHD+bXv/41Bw8e9Jf/4x//oG/fvnz88ceMHz+evn37MnLkSN566y3++9//8rOf/YyLL76Y7OxsXn/9df92Ho+H3/3ud4wYMYKLLrqIESNG8PTTT1NfXx/cEy8iEgF27tzJz372MwYMGEBWVhaTJk1i+/bt/vK1a9cyZswY+vXrx9ixY9m2bRsXXHAB//jHP9i8eTPnnXceAH/4wx8477zzuP/++5k/fz4A5513Hr///e/bHNvxw/dGjhxJXl5ek3UmTpzI5MmTgabD98477zyWLVvG9OnTGTRoEFlZWdx1112UlJQ02scLL7zAVVddRb9+/fjRj37EW2+9xXnnncfmzZvbHLuISFcRzu1IS88dv//974N2LJETUVJKurw33niDzz//nLlz53LvvffyzjvvcPvttwOwbNkyHn74Ya666ioWLVrEk08+idVqZdq0aRw4cIALL7yQhx9+GICHH3640dCIjz/+mA0bNvDQQw/xxBNPcPjwYX7xi1/gcrn86xw4cIANGzbw9NNPc/fdd5OamsrDDz/MnDlzGDFiBAsXLiQ3N5e//OUv3H777f5JBl999VV+/vOf07NnT55++mkeeOABtm3bxo033khpaal//y6Xi1/96lf86Ec/YsGCBcTFxTF16lR+8Ytf8L3vfY/f/e539OjRg/vuu49Dhw4BsHjxYpYtW0ZeXh5Llizhxz/+Mc8//zzPPfdch/8tRETCSVVVFbfccgupqanMmzePZ555hpqaGv7nf/6HyspK3nzzTX75y1+SmZnJ/Pnzueaaa5gyZQoejweACy+8kL/97W8ATJgwgb/97W/ceeedTJgwAYC//e1vTJw4MSix5uTk8N5771FVVeVftm/fPnbs2EFOTs4Jt3vmmWfweDw8/fTT/jZwzpw5/vL58+fz29/+lmuvvZYFCxZw8cUXc8899wQlZhGRaBfu7UhLzx0TJ07skDZL5HgaviddXrdu3Xj++ef983KkpqaSl5fHBx98wP79+/n5z3/e6NPnM844g3HjxvHJJ59w/fXX+4dDZGRkNBoaERsby//93/+RkpICeBulGTNmUFhYyPnnnw94k0b33Xcfw4YNA7wTCa5cuZK7776bKVOmAHDZZZdxyimncO+99/Lee+9x+eWX8+STTzJs2DCeeeYZ//EuueQSrrvuOpYsWcK0adMAb6+nX/ziF/4G5OjRo/zqV7/iZz/7GTfffDMA6enpjB8/ns8//5xevXqxZcsWLrzwQsaPHw/AoEGDsNvtAc1bIiISDQoLCykrK+Omm25iwIABAJxzzjksX76cqqoq/vCHP3DRRRfx1FNPAXDFFVdgMpl49tlnAUhMTKR///4A9OrVq9HPgP/3YBgzZgzz5s1jw4YN/PCHPwRg9erVJCQkcNVVV51wuz59+vD444/7f9+xYwdr164FoLq6msWLF5Obm8vUqVMBGD58ODU1Nf6HJBERObFwbkda89xx5ZVXdkibJXI89ZSSLu/KK69slHAZMWIEVquVDz/8kPvvv59p06ZRWVnJZ599xurVq1m2bBlAi8PZMjIy/Akp8CazACorKxut16dPH//PW7ZsAWD06NGN1hk1ahQxMTFs3ryZr776iuLi4ibrnHnmmWRlZTUZTpGVleX/OT09HWjcqPhiPHr0KACDBw/mww8/5Cc/+Ql//OMf+fLLL/l//+//MXbs2JPWV0Qk2mRmZpKWlsaUKVN45JFHeOutt+jRowf33nsvKSkp7Ny5s0nCZ8yYMSGJ9YwzzmDAgAGNhmO//vrrjBw5EpvNdsLtvv2Q0atXL2pqagD49NNPcTqd/OAHP2i0zvXXXx+8wEVEolg4tyOtee4Q6QxKSkmX50vU+JjNZlJSUjh69Cj79u1j0qRJXHrppfz4xz9m8eLF/mSUbyjdicTHxzfZL+Dvjtvc8SsqKgDo0aNHo3UsFgupqalUVlZSXl7ebNy+Zd9OejXXw+lkDyi33HILDz/8ME6nkyeeeILrrruO0aNH89FHH51wGxGRaJSQkMCyZcu48sorWbNmDVOmTGHo0KE8/PDD/kR+Wlpao2169uwZilABGDt2LB999BFHjhzhP//5D19++eVJh+4B2O32Rr+bzWZ/++abX/HbdWyu/RERkabCuR1pzXOHSGfQ8D3p8nwNgo/b7ebIkSOkpqYyefJkrFYrf//737nggguwWCwUFhbyz3/+s0NiSU5OBqC4uNjfswq8vbJ8Mfl6Nn17Ilrfdqmpqe2KwWw2k5ubS25uLqWlpbz77rs899xz3HnnnXz44YfExsa2a/8iIpHknHPO4cknn8TtdrNjxw5effVVXnrpJU455RTMZnOTa7Hvg4NQ+MEPfsCsWbPYsGEDe/fu5dRTT2XQoEFt3p9vyEZZWRnnnHOOf/nxLwMREZGTC9d2pDXPHSKdQT2lpMv78MMPG00+vm7dOlwuF9/97nf56quvmDBhAv369cNi8eZw33vvPeBYj6eYmJigxeJ7eFi9enWj5a+//jput5sBAwZw9tln06NHjybr7N+/n08//ZRLLrmkXTH86Ec/4rHHHgOge/fujBs3jtzcXCorKxtNoCsiEu3Wrl3LkCFDKC4uJiYmhqysLGbOnEm3bt0oKysjKyuLdevWNeoB+/bbb7e4X1/P2WBLSkri+9//Pm+++SZr165l9OjR7TrW+eefT1JSEuvXr2+0fN26de0NVUSkSwjndqQ1zx3BOpbIyainlHR5JSUl3Hnnndx0003s2bOHp59+mssuu4xrr72W3/72tyxbtoxevXrRrVs3PvjgA1588UUA/5wbSUlJALzzzjskJyf7JzFvi4yMDH74wx8yf/58nE4ngwcP5j//+Q/z589n8ODBXH755ZjNZn71q1/xwAMPcM899zB27FiOHDnC/PnzSU5O9k9g3laXXnopS5YsIT09naysLA4fPswf//hHBg0a1KR7sYhINLvkkkvweDzk5eUxefJkEhISeOONN6isrOSaa67huuuuY9KkSdx+++38+Mc/Zt++ffzud79rcb/dunUD4LXXXuPiiy+md+/eQYt57Nix5OXl4Xa72z0vSWJiIrfccgvz5s3DbrczaNAgtmzZwksvvQToQUVEpCXh3I605rkjWMcSORndTUiXd8MNN5Cenk5eXh6/+93vGD16NPPnz8dkMrFgwQJ69uzJ/fffz913382nn37KwoULOeecc9i6dSvgncDw+uuvZ9myZf63E7XH7NmzueOOO3j99deZPHkyy5Yt46abbmLx4sX+B4Bx48Yxb9489u7dS15eHnPnziUrK4uVK1c2GRceqF/+8pf84he/4OWXX+aWW25h7ty5DB8+nHnz5rW7biIikeSUU07h+eefJykpienTp3Pbbbexc+dOfv/73zNkyBAGDhzICy+8QElJCXl5eSxfvpz77ruvxf1ec8019O3bl/vvv58XXnghqDFffvnlJCcnc8EFF5CZmdnu/d12223ccccdvPLKK9x2221s3brV39Z9e+5EERFpLNzbkdY8d3RkmyUCYDJamq1ZRERERFrl66+/5qqrruLxxx9n3LhxoQ6nXVwuF6+99hqDBw/m1FNP9S9ftmwZjz32GJs3b/Z/gi4iIsERTe2ISGto+J6IiIhIiBiGgdvtbnG9mJgYTCZTJ0R0jMViYfHixbz44otMmTKF1NRUdu3axe9+9zvGjh2rhJSISBgI53ZEpDWUlBIREREJkVWrVvHAAw+0uF6oPjF/7rnnePrpp5k5cyZHjx7ltNNOY9KkSdx2222dHouIiDQV7u2ISEs0fE9EREQkRI4cOcLXX3/d4npnnHGGXs8tIiJNqB2RSKeklIiIiIiIiIiIdDq9fU9ERERERERERDqdklIiIiIiIiIiItLplJQSEREREREREZFOp6SUiIiIiIiIiIh0OkuoA4hEpaWVaHr4Y0wm6N49SeelFXSuWk/nqvXaeq5820lwNHf+o/HfseoUGaKxThCd9Qq3OqltCL62ts/h8m8iGuicBp/OafCF+zntqPZBSak2MAzC8h9JqOm8tJ7OVevpXLWezlVonez8R+PfRnWKDNFYJ4jOekVjnTpbWVkZN954I4899hiDBw8GYN26dSxYsID9+/eTkpLCuHHjuP322zGbvQNGVq1axYIFCyguLuacc87hoYceIisrCwC3281vf/tbXn31VWpqahgyZAiPPvoop5xySkBxtfVvq38TwadzGnw6p8HX1c6phu+JiIiIiEhE+/jjj7nxxhvZt2+ff9nnn3/Ovffey913383WrVtZvHgx//jHP1i6dCkAmzdvZtasWcydO5f8/HzGjBnDlClTqKmpAWDhwoVs3LiRl19+mffffx+bzcaMGTNCUT0RkailpJSIiIiIiESsVatWMXXqVO65555Gy7/55ht+9KMf8f3vfx+z2cy5555LdnY2+fn5AKxYsYJRo0YxYMAArFYrkyZNIjU1lTVr1vjLb731Vk499VQSExOZPn067733Hvv37+/0OoqIRCslpUREREREJGINHz6cDRs2cN111zVaPnLkSB544AH/706nk3feeYcLL7wQgMLCQvr06dNom4yMDHbt2kVlZSWHDh1qVJ6enk5ycjK7d+/uwNqIiHQtmlNKREREREQiVo8ePVpcp6qqil/+8pfYbDYmTZoEgMPhwG63N1rPZrNRXV2Nw+EAID4+vkm5r6y1TKaAVvevH+h2cmI6p8Gncxp84X5OOyouJaVERERERCRq/fe//+Wuu+6ie/fu/OlPfyIxMREAu92O0+lstK7T6SQ1NdWfrPLNL3V8eUJCQkDHb+vbqvQWxODTOQ0+ndPg62rnVEkpERERERGJSu+++y6/+tWvuOGGG/j1r3+NxXLs8SczM5OCgoJG6xcWFnLFFVeQnJxMz549Gw3xKy4upry8vMmQv5YE+nr3cH8tfCTSOQ0+ndPgC/dz6osv2JSUEhERERGRqPPpp5+Sl5fHzJkzmTBhQpPyCRMmkJeXx7XXXsuAAQNYtmwZpaWlZGdnAzBu3DgWLlxI3759SU1NZc6cOQwaNIgzzzwzoDja+nr3rvZa+M6gcxp8OqfB19XOqZJSIiIiIiISdZ577jlcLhezZ89m9uzZ/uUDBgzg+eefZ+jQoTzyyCPMnDmTw4cPk5GRweLFi0lJSQEgLy8Pl8tFbm4uDoeDwYMH8+yzz4amMiIiUUpJKRERERERiQrHvxnvueeea3H9nJwccnJymi2zWq1MnTqVqVOnBi0+ERFpzBzqAEREREREREREpOtRUkpERERERERERDqdklIiIiIiIiIiItLpNKeUhBWPx0NJSQkA6enpmM3Km4qItJZhGJSVlQGQlpaGyWQKcUQiIiIiIiemJ34JKyUlJSx6czuL3tzuT06JiEjrlJWV8dxbO3jurR3+5JSIiEQewzAwutI74UWky1JPKQk7CclpoQ5BRCRixSelhDoEEREREZFWUU8pERERERERERHpdEpKiYiIiIiIiIhIp1NSSkREREREREREOp2SUiIiIiIiIiIi0umUlBIRERERERERkU6npJSIiIiIiIiIiHQ6JaVERERERERERKTTWUIdgIiIiASXYRgcOVIGQFpaGiaTKcQRiYiIiIg0FZY9pdasWcMFF1xAVlaW/2vatGkAbN++nYkTJ5KVlcWIESNYsWJFo21XrVpFdnY2/fv3Z9y4cWzbts1f5na7eeKJJxg2bBhZWVlMmTKFoqKiTq2biIhIR6upquDFD7/kubd2UFZWFupwRERERESaFZZJqc8++4ycnBy2bdvm/3ryySepqKhg8uTJjB07lvz8fGbPns3jjz/Ojh07ANi8eTOzZs1i7ty55OfnM2bMGKZMmUJNTQ0ACxcuZOPGjbz88su8//772Gw2ZsyYEcqqioiIdAh7YjLxSSmhDkNERERE5ITCNil10UUXNVm+fv16UlJSyM3NxWKxMHToUEaPHs2yZcsAWLFiBaNGjWLAgAFYrVYmTZpEamoqa9as8ZffeuutnHrqqSQmJjJ9+nTee+899u/f36n1ExERERERERHp6sIuKeXxeNi5cyfvvPMO3//+97niiit46KGHqKiooKCggD59+jRaPyMjg127dgFQWFh4wvLKykoOHTrUqDw9PZ3k5GR2797d8RUTERERERERERG/sJvovKysjAsuuICRI0cyb948jhw5wn333ce0adPo0aMHdru90fo2m43q6moAHA7HCcsdDgcA8fHxTcp9Za2l+WIb852PYJyX4/dhMkXfuQ7muYp2Olet19ZzpXMrIiIiIiKhFHZJqfT0dP9wPAC73c60adO44YYbGDduHE6ns9H6TqeThIQE/7rNlaempvqTVb75pZrbvrW6d08KaP2uIhjnxe2uxm6PbdhfIunp0Xmu9W+o9XSuWk/nSkREREREIknYJaV27drFa6+9xq9//Wv/K6zr6uowm83069ePF198sdH6hYWFZGZmApCZmUlBQUGT8iuuuILk5GR69uzZaIhfcXEx5eXlTYb8taS0tBLDaGsNo4/J5H0YDsZ5KS2toqamzv9zTEx8C1tElmCeq2inc9V6bT1Xvu0kehmGwZEjZaSlpfnbVBERERGRcBF2c0qlpKSwbNkynn/+eVwuFwcOHODJJ5/khz/8ISNHjqSkpISlS5dSX1/Ppk2bWL16NePHjwdgwoQJrF69mk2bNlFfX8/SpUspLS0lOzsbgHHjxrFw4UL2799PVVUVc+bMYdCgQZx55pkBxWgY+vr2VzDPS7Sf52ium85V5J0riW6OygpmrNnNP7ftwdAfXERERETCTNj1lOrVqxeLFi3i6aefZuHChcTFxTFq1CimTZtGXFwcS5YsYfbs2cybN4+0tDRmzJjBkCFDABg6dCiPPPIIM2fO5PDhw2RkZLB48WJSUlIAyMvLw+VykZubi8PhYPDgwTz77LOhq6yIiEgHMQyDT8tM7KvvxmNv7+e1XWU8M74fiXHWUIcmIiIiIgKEYVIKYNCgQSxfvrzZsr59+56wDCAnJ4ecnJxmy6xWK1OnTmXq1KlBiVNERCRcfXnUwz6HGTAwA58edLBkYyF3jfhuqEMTEREREQHCcPieiIiItN+eSg8A51gqGdDD+xnUqp1lVNW6QhmWiIiIiIifklIiIiJRxuGCynowYdDLUs3pCSa6xZqpqnOz4tMDoQ5PRERERARQUkpERCTqHKr2vmmvexxYTQYmk4nvpnvnklrz+UFKSko08bmIiIiIhJySUiIiIlHmUI03KdXLfizx1N1UDRjsKa9l5vJ3KCsrC1F0IiIiIiJeSkqJiIhEEZfHoKTW+/PxSanYGEiL8zb7lZbkUIQmIiIiItKIklIiIiJR5GitBwMTsWZItDYu6xXv7UFVXBcTgshERERERBpTUkpERCSKlNd637rXLdbUpKyX3dvsl9bHUOfydGpcIiIiIiLfpqSUiIhIFKlwepNNSdamSalusRBrNvBgorDM2dmhiYhIKxmGoRdSiEiXoKSUiIhIFKmodQPeBNS3mUwmUhuWf1FS04lRiYiIiIg0paSUiIhIFKnwDd9rpqcUQFqc95P3XcVKSomIiIhIaCkpJSIiEiVq6t046r1Jp6Rm5pQCSI31lu8uqe60uEREREREmqOklIiISJTYX1EHeOeNiotpPimVEuf9frCynvLq+s4KTURERESkCSWlREREosTe8loAullPvE6sGRJivEP8dh6q7IywRERERESapaSUiIhIlDhw1JuUSrSe/I1NyRbvZOg7Dx3t8JhERCQwvjfv6e17ItIVKCklIiISJYodLgDsMSdfL8ni7SlVUOzo6JBERKQNnl63K9QhiIh0CiWlREREokRJwxxRdsvJ1+vWMHzvi6Kqjg5JRETawtT8vIAiItFGSSkREZEoUexoSErFnHzIh6+n1IGjtVQ6XR0el4iIiIhIc5SUEhERiQKGYRzrKdXC8D2rGU5J8M6GXlCi3lIiIiIiEhpKSomIiESBo04XtS5vD6mWklIA56TZACgo0rxSIiIiIhIaSkqJiIhEOMMw+OLrIgDiYkzEtKJ19yWlvihWTykRiQ5lZWVkZ2ezefNm/7Lt27czceJEsrKyGDFiBCtWrGi0zapVq8jOzqZ///6MGzeObdu2+cvcbjdPPPEEw4YNIysriylTplBUVNRp9RER6QqUlBIREYlwZWVl/OmjLwCwtTCflI8/KaWeUiISBT7++GNuvPFG9u3b519WUVHB5MmTGTt2LPn5+cyePZvHH3+cHTt2ALB582ZmzZrF3Llzyc/PZ8yYMUyZMoWamhoAFi5cyMaNG3n55Zd5//33sdlszJgxIyT1ExGJVkpKiYhIVNi5cye5ubkMHDiQ4cOH89hjj1FXVwe075PySOG2xANgt7T8xibDMEiPcQLw31IHLrenQ2MTEelIq1atYurUqdxzzz2Nlq9fv56UlBRyc3OxWCwMHTqU0aNHs2zZMgBWrFjBqFGjGDBgAFarlUmTJpGamsqaNWv85bfeeiunnnoqiYmJTJ8+nffee4/9+/d3eh1FRKKVklIiIhLxPB4Pt912GyNHjmTLli2sXLmSDz74gMWLF7f7k/JIUV3vm0+q5aRUbXUlb3y6F4vJoM5tsOdIZNVVROR4w4cPZ8OGDVx33XWNlhcUFNCnT59GyzIyMti1axcAhYWFJyyvrKzk0KFDjcrT09NJTk5m9+7dHVQTEZGuR0kpERGJeBUVFRQXF+PxeDAMb3LGbDZjt9vb/Ul5pKh2eXs72S2tWz8+KZnUhpULNK+UiESwHj16YLE0vfg5HA7sdnujZTabjerq6hbLHQ7v0Ob4+Pgm5b6y1jKZAv9q63b60jnVOY3sr3A/px2hlbeuIiIi4Ss1NZVJkybxxBNP8L//+7+43W6uuuoqJk2axNy5c5v9JHzlypWA95Py8ePHNyn3fZLeWs011MffXHQkk+lYT6n4huF7JhMYAKZjP397WYrNTHG1m4IiB9dd0PpjHf89GqhOkSMa6xVudQqXOILBbrdTWVnZaJnT6SQhIcFf7nQ6m5Snpqb6k1Xf7jV7/Pat1b17UkDr+z5c6d49iZiYVrxOVVot0L+FtEznNPi62jlVUkpERCKex+PBZrPx0EMPMWHCBPbu3csdd9zBvHnz2vVJeSBOdgPR8TcXtThd3oeY5AQLtlgwW6146j3Y4qzY7N6fv72sp9tEQVk9X5U7SU8PLMZovGFSnSJHNNYrGusUan369GHjxo2NlhUWFpKZmQlAZmYmBQUFTcqvuOIKkpOT6dmzZ6MhfsXFxZSXlzf5oKMlpaWVGK17B0UDw7+d2aykVDCYTN7/xwL/W8iJ6JwGX7ifU198waaklIiIRLwNGzawbt061q5dC3gfNPLy8pg9ezajR49u8yflgWjuBqKzbi5KS6uorvcO3zO73Dg9dZhdZjyuOpy19Thr6vG4mi5LiLECsPObCoqLj2JqRReJcL9hagvVKXJEY73CrU4d9dARCtnZ2Tz55JMsXbqU3NxcPv74Y1avXs2CBQsAmDBhAnl5eVx77bUMGDCAZcuWUVpaSnZ2NgDjxo1j4cKF9O3bl9TUVObMmcOgQYM488wzA4rDMGjT37at28mJ6ZwGn85p8HW1c6qklIiIRLyDBw/637TnY7FYsFqt7fqkPBAnu4Ho6JuLWpeHhpwUseZjx/T+cOznby9Ltpkxm+BITT3FVXX0SIxr9TGj8YZJdYoc0VivaKxTqKWmprJkyRJmz57NvHnzSEtLY8aMGQwZMgSAoUOH8sgjjzBz5kwOHz5MRkYGixcvJiUlBYC8vDxcLhe5ubk4HA4GDx7Ms88+G7oKiYhEISWlREQk4g0fPpynnnqK5557jltvvZUDBw6wcOFCRo8e3e5PyiNBhdMNgAkDqxnwtG47i9nEGd3i2FdRyxfFjoCSUiIi4ejbb8br27cvy5cvP+H6OTk55OTkNFtmtVqZOnUqU6dODWqMIiJyjJJSIiIS8TIyMli0aBHPPvsszz//PElJSYwZM4a8vDxiY2Pb9Ul5JKhwugCIiwGTyUQgnS3OSbN5k1JFVVx2dlrHBCgiIiIi0gwlpUREJCoMGzaMYcOGNVvWnk/KI0F5Q08p39C9QJybZuOdryooKA7sFeciIiIiIu3VhttXERERCSfH95QK1NlpNgC+KKoKZkgiIiIiIi1SUkpERCTClfuSUubAZ0k+tyEpte9IDTX17qDGJSIiIiJyMkpKiYiIRLiKmobhe23oKZVqt5AWb8UAvizRED4RERER6TxKSomIiES48lpfT6m2bd/nlERAQ/hEREREpHMpKSUiIhLhKmraPqcUQJ8eDUkpTXYuIiIiIp1ISSkREZEIV9Hw9r1A55QyDIMjR8o41e7drqDYQWlpKYYR+NxUIiIiIiKBUlJKREQkwvkmOg90Tqmaqgpe/PBLtnyxF4Avi6t4+pUPKCsrC3aIIiIiIiJNKCklIiIS4cr9PaUC39aemMwpqcmYTeCo92CydwtydCIiIiIizVNSSkREJILV1LlwujxA2+eUijGbOKNbHABH64MVmYiItJVhGBpKLSJdgpJSIiIiEeyrg8WAt0G3mNq+nzNTfEmpduxERERERCQASkqJiIhEMP8k5zFgakc+6axUb1Kq0hWMqEREREREWqaklIiISASraOMk58czDIN0q3fc3tE69ZQSERERkc5hCXUAIiIi0naVtd6eUrHmtieTaqoq2HqwDrBTWQ8ezWMiIiIiIp1APaVEREQiWGVdQ1KqHT2lALonJ2HGwI2JoirNdi4iIiIiHU9JKRERkQjm6yllbUdPKQCzyURCQ//pA5V17Q1LRERERKRFSkqJiIhEsCr/8L327yvB6v3+zVElpURERESk4ykpJSIiEsF8w/eswUhKWbxzSR04Wtv+nYmIiIiItEBJKRERkQjm7ykV0/635iX6hu+pp5SIiIiIdIKwTUq53W5uuukm7r//fv+y7du3M3HiRLKyshgxYgQrVqxotM2qVavIzs6mf//+jBs3jm3btjXa3xNPPMGwYcPIyspiypQpFBUVdVp9REREOkIwe0olWr09pTR8T0REREQ6Q9gmpebPn8/WrVv9v1dUVDB58mTGjh1Lfn4+s2fP5vHHH2fHjh0AbN68mVmzZjF37lzy8/MZM2YMU6ZMoaamBoCFCxeyceNGXn75Zd5//31sNhszZswISd1ERESCparWAwRpTqmGnlKHqupxeYz271BERERE5CTCMin10UcfsX79eq655hr/svXr15OSkkJubi4Wi4WhQ4cyevRoli1bBsCKFSsYNWoUAwYMwGq1MmnSJFJTU1mzZo2//NZbb+XUU08lMTGR6dOn895777F///6Q1FFERCQYKv0Tnbd/+J49BswYuDwGh446270/EREREZGTCbukVGlpKdOnT+epp57Cbrf7lxcUFNCnT59G62ZkZLBr1y4ACgsLT1heWVnJoUOHGpWnp6eTnJzM7t27A47RZNLXt7+CeV6i/TxHc910riLvXElkMwyDKt/wvZj2789kAnuMt4fU1+U17d+hiIiIiMhJWEIdwPE8Hg/Tpk3j5ptv5vzzz29U5nA4GiWpAGw2G9XV1S2WOxwOAOLj45uU+8oC0b17UsDbdAXBOC9udzV2e2zD/hJJT4/Oc61/Q62nc9V6Olddj9Plob5hmF2sGQjCiLuEGA8Ot5l9R5wMOav9+xMREREROZGwSkotWrSI2NhYbrrppiZldrudysrKRsucTicJCQn+cqfT2aQ8NTXVn6zyzS/V3PaBKC2txNBUG34mk/dhOBjnpbS0ipqaOv/PMTHxLWwRWYJ5rqKdzlXrtfVc+baTyFVRUw+ACYMYE0FJSsXHeOeo2q+eUiIiIiLSwcIqKfXqq69SVFTEwIEDAfxJpn/961/ce++9bNy4sdH6hYWFZGZmApCZmUlBQUGT8iuuuILk5GR69uzZaIhfcXEx5eXlTYb8tYZhoIfkZgTjvBy/fTSf52iuW7DpXLWezlXXU1nrAsBqMjCZTMHISWE3e/dyoEJzSomIiIhIxwqrOaXWrl3LJ598wtatW9m6dSvXX389119/PVu3biU7O5uSkhKWLl1KfX09mzZtYvXq1YwfPx6ACRMmsHr1ajZt2kR9fT1Lly6ltLSU7OxsAMaNG8fChQvZv38/VVVVzJkzh0GDBnHmmWeGssoiIiJtdtR5LCkVLL45pZSUEhEREZGOFlY9pU4mNTWVJUuWMHv2bObNm0daWhozZsxgyJAhAAwdOpRHHnmEmTNncvjwYTIyMli8eDEpKSkA5OXl4XK5yM3NxeFwMHjwYJ599tnQVUhERKSdOiIpFW/2Dt87UOHEMLw9sEREREREOkJYJ6Xmzp3b6Pe+ffuyfPnyE66fk5NDTk5Os2VWq5WpU6cyderUoMYoIiISKked3jmlrA2JpGCwNfSUqq53U15TT2p8bND2LSIirWMYBobG5ItIFxBWw/dERESk9Xw9pSxB7CkVY4L0eO9nVhrCJyIiIiIdSUkpERGRCNURw/cAeiZ6e0d9o6SUiIiIiHQgJaVEREQi1PFv3wumXklWQD2lRERERKRjKSklIiISoSpqgp+UMgyDFIsbUE8pEREREelYYT3RuYiIiJyYf6LzICalaqsrOXjACsSxt6QyaPsVEREREfk29ZQSERGJUP7he0F8+x5ASkI8AIeq6oO6XxERaZn3rXt6856IdA1KSomIiESoig6a6DzBagKgqKoOt0cPRiIinc0wjIbklIhIdFNSSkREJEJVNiSlLEFOStliwGwCtwFFVbVB3beIiIiIiI+SUhHE4/FQVFREUVERHk9wh2qIiEhkcXuMDnv7nslk8veW0hv4RERERKSjKCkVQUpKSlj05nYWvbmdkpKSUIcjIiIhVNWQkILgJ6UAEmO9twjflCspJSIiIiIdQ2/fizAJyWmhDkFERMLA0Yahe3aLGbMp+PtPsJoBN98cVVJKRERERDqGekqJiIhEoKMNPaUS42I6ZP+JsRq+JyIiIiIdS0kpERGRCHTUWQ9AUmwHJaWsGr4nIiIiIh1LSSkREZEI5HvzXlKH9ZTy3iIc0PA9EYlgO3fuJDc3l4EDBzJ8+HAee+wx6urqANi+fTsTJ04kKyuLESNGsGLFikbbrlq1iuzsbPr378+4cePYtm1bp8VtGAaGEfz5AkVEwo2SUiIiIhGowukbvtcxTXlCQ0+pUkcdNXUuSktLKS0t1UOSiEQMj8fDbbfdxsiRI9myZQsrV67kgw8+YPHixVRUVDB58mTGjh1Lfn4+s2fP5vHHH2fHjh0AbN68mVmzZjF37lzy8/MZM2YMU6ZMoaamJsS1EhGJLkpKiYiIRKCOHr4XG3MsMbVrfxHPvbWD597aQVlZWYccT0Qk2CoqKiguLsbj8fgT6mazGbvdzvr160lJSSE3NxeLxcLQoUMZPXo0y5YtA2DFihWMGjWKAQMGYLVamTRpEqmpqaxZsyaUVRIRiTpKSomIiESgo86OnegcID3ee5twsLKW+KQU4pNSOuxYIiLBlpqayqRJk3jiiSfo27cvV155JWeddRaTJk2ioKCAPn36NFo/IyODXbt2AVBYWHjSchERCQ5LqAMQERGRwPmSUkmxMVR2wP5rqipw1hiAha+KKjrgCCIiHcvj8WCz2XjooYeYMGECe/fu5Y477mDevHk4HA7sdnuj9W02G9XV1QAtlgfCZGpb/CZT27eVxnznUeczeHROgy/cz2lHxaWklIiISASq7ISeUkm2WA7XeSiqdpNiU+dqEYksGzZsYN26daxduxaAzMxM8vLymD17NqNHj6aysnFK3+l0kpCQAIDdbsfpdDYpT01NDTiO7t2TAlrfN9wwLS0Rm80W8PHkxAL9W0jLdE6Dr6udUyWlREREIpB/TqkOTEolWL3fixwuUmyxHXYcEZGOcPDgQf+b9nwsFgtWq5U+ffqwcePGRmWFhYVkZmYC3gRWQUFBk/Irrrgi4DhKSysJ5B0RhuHxbxcXVx/w8aQpk8n7oB/o30JOTOc0+ML9nPriCzZ97CkiIhKBjtYeG77XUeIt3n7axdXuDjuGiEhHGT58OMXFxTz33HO43W7279/PwoULGT16NNnZ2ZSUlLB06VLq6+vZtGkTq1evZvz48QBMmDCB1atXs2nTJurr61m6dCmlpaVkZ2cHHIdhBP7V1u30pXOqcxrZX+F+TjuCekqJiIhEoM6Y6NyXlCqqdmMYBqZwneRARKQZGRkZLFq0iGeffZbnn3+epKQkxowZQ15eHrGxsSxZsoTZs2czb9480tLSmDFjBkOGDAFg6NChPPLII8ycOZPDhw+TkZHB4sWLSUlJCW2lRESijJJSIiIiEciXlDKcHdfFO6HhLqHGZVDnhjjdNYhIhBk2bBjDhg1rtqxv374sX778hNvm5OSQk5PTUaGJiAgaviciIhJxnPVual3eOUdeyf+C2lpnC1u0TYzZhL2ht1RVvadDjiEiIiIiXZeSUiIiIhGmsmE+KROQlNStQ4+VYPUmpRx1SkqJiIiISHApKSUiIhJhqmq9E49bY7xvQulIibHeW4UqJaVEREREJMiUlBIREYkwvp5SVnPHTzzuT0rVd9DEVSIiIiLSZSkpJSIiEmGqGpJSsTEdn5RKsKqnlIiIiIh0DCWlREQkKpSXl3PvvfcyePBgLr30Um6//XaKiooA2L59OxMnTiQrK4sRI0awYsWKRtuuWrWK7Oxs+vfvz7hx49i2bVsoqtBqVZ3aU0oTnYuIiIhIx1BSSkREosKdd95JdXU1GzZs4O233yYmJoaHHnqIiooKJk+ezNixY8nPz2f27Nk8/vjj7NixA4DNmzcza9Ys5s6dS35+PmPGjGHKlCnU1NSEuEYn1pk9pZIahu856gw8hobwiYiIiEjwKCklIiIR7/PPP2f79u3MnTuXbt26kZiYyKxZs5g6dSrr168nJSWF3NxcLBYLQ4cOZfTo0SxbtgyAFStWMGrUKAYMGIDVamXSpEmkpqayZs2aENfqxCqPm+i8o9ktJqxmMIBqzSslIiIiIkFkCXUAIiIi7bVjxw4yMjL4+9//zksvvURNTQ2XX3459913HwUFBfTp06fR+hkZGaxcuRKAwsJCxo8f36R8165dAcXQ3FvwfMuC/YY8R11DTynf8D2T9xgGTb83VxbI+iaTiVMSLHxT6aKqztNhdQol1SlyRGO9wq1O4RKHiIh0DUpKiYhIxKuoqGD37t1cdNFFrFq1CqfTyb333st9991Heno6dru90fo2m43q6moAHA7HSctbq3v3pDaVtUV9w1NjfJwFmy0WW5wVm92Kp96D2dr4e3Nlgaxvt8dyRoqbbypd1GImLS2xQ+oUDlSnyBGN9YrGOomIiLRESSkREYl4sbGxAEyfPp24uDgSExO5++67ueGGGxg3bhxOp7PR+k6nk4SEBADsdnuz5ampqQHFUFpaybenXDKZvA+azZW1R0mFd74rk8eD01mHs7YeZ009HlcdZpe50ffmygJZH2JItXqPW1ZVR1lZFenp6UGvUyh11N8plKKxThCd9Qq3OvniERER6QxKSomISMTLyMjA4/FQX19PXFwcAB6P921x3/3ud/nrX//aaP3CwkIyMzMByMzMpKCgoEn5FVdcEVAMhsEJHyhPVtYWlU7fnFIN42yO2/+3vzdXFuj6PeO9twtVdUajsnB4gA4m1SlyRGO9orFOIiIiLdFE5yIiEvGGDRtG7969efDBB3E4HJSVlfHMM89w9dVXc/3111NSUsLSpUupr69n06ZNrF692j+P1IQJE1i9ejWbNm2ivr6epUuXUlpaSnZ2dohrdWK+t+91xkTnhmGQgLdnVmW9p+MPKCIiIiJdhpJSIiIS8axWK3/+85+JiYlh5MiRjBw5kl69ejFnzhxSU1NZsmQJa9euZfDgwcyYMYMZM2YwZMgQAIYOHcojjzzCzJkzGTRoEK+//jqLFy8mJSUltJU6icrab0103oFqqir4YIe3J1lVnQdDXTlEREREJEiCPnxv8+bNDB48ONi7FRGRKBaMtqNnz54888wzzZb17duX5cuXn3DbnJwccnJy2nX8znSsp5QJXB1/vOT4OHCCywMVDUMHRUSCQc8OIiJdW9B7St11111cffXV/OEPf+DAgQPB3r2IiEQhtR2Bqar1JoY6o6cUgNkE9oahggcq6zrlmCLSNej6LyLStQU9KfXBBx8wbdo0Pv/8c0aOHMnPf/5zXnvtNerqdBMrIiLNU9vRei6PQXW9b6LzzjtugtWbADuopJSIBJGu/yIiXVvQk1JWq5WRI0eycOFC3n33Xa6++mqWLFnC8OHDefTRR9m1a1ewDykiIhFObUfrOWqPjdezdlJPKYCEhgH/B4/qQVFEgkfXfxGRrq3DJjovLS1l9erVvPLKKxQWFjJ48GDi4uKYNGkSzz33XEcdVkREIpjajpb5JzmPAbOpE5NSDT2lNHxPRDqCrv/HGIaB3ikhIl1F0Cc6f/3113n11Vf58MMPOeeccxg3bhzPPfccaWlpAFx55ZXk5eXxi1/8ItiHFhGRCKW2o/W+KSoFwOTx4KxxdtpxEywaviciwafrv4hI1xb0pNSjjz7KqFGjWL58ORdddFGT8rPPPptJkyYF+7AiIhLB1Ha0nqPOAzS8ea8TJVi93w9V1nfqcUUkuun6LyLStQU9KfXBBx+wf/9+evbsCcCnn35KUlIS5557LgC9evXirrvuCvZhRUQkgqntaD3/JOcdNgC/eb6eUmU1LqrrXC2sLSLSOrr+i4h0bUG/pX3zzTcZO3Yse/bsAWDbtm1MnDiRd999N9iHEhGRKKG2o/WqfD2lOjkpFRtjIrbhmDu+PIChCU9EJAh0/W+ed14pXWdFJPoF/ZZ2/vz5LFiwwN/99uabb+Z3v/sdTz31VLAPJSIiUUJtR+s56nw9pTr/YSXe4j3mHzbspKysrNOPLyLRR9d/EZGuLehJqYMHD3L55Zc3WjZ8+HAOHDgQ7EOJiEiUUNvReseSUp1/7ISGpFSt2db5BxeRqKTrv4hI1xb0W9rTTz+d999/v9Gyjz76iNNOOy3YhxIRkSihtqP1HPXe4XuWzp3nHICEhpkoj9a6O//gIhKVdP1vnobviUhXEfSJzidPnkxeXh7XXHMNp59+OgcOHGDDhg088cQTrd7HRx99xNNPP82XX36J3W7nBz/4AdOmTcNms7F9+3Yee+wxCgsLSU1NZcqUKUycONG/7apVq1iwYAHFxcWcc845PPTQQ2RlZQHgdrv57W9/y6uvvkpNTQ1Dhgzh0Ucf5ZRTTgn2aRARkQAEo+3oKqpC2FMqvuGuoarW0/kHF5GopOu/iEjXFvRb2tGjR7N48WKsVis7d+7EZrOxZMkSRo4c2arty8rKuO222/jxj3/M1q1bWbVqFVu2bOH//u//qKioYPLkyYwdO5b8/Hxmz57N448/zo4dOwDYvHkzs2bNYu7cueTn5zNmzBimTJlCTU0NAAsXLmTjxo28/PLLvP/++9hsNmbMmBHsUyAiIgFqb9vRlVSHaKJzODZ8r1I9pUQkSHT9FxHp2oLeUwpg8ODBDB48uE3bpqWl8eGHH5KYmIhhGJSXl1NbW0taWhrr168nJSWF3NxcAIYOHcro0aNZtmwZ/fr1Y8WKFYwaNYoBAwYAMGnSJP72t7+xZs0axo8fz4oVK5g6dSqnnnoqANOnT2f48OHs37+f3r17B6fyIiLSJu1pO7oCwzAoKyuj3OEEQttTqrLOg0fDSkQkSHT9FxHpuoKelDp8+DALFy5kz549eDyNu/f/6U9/atU+EhMTAbjyyis5fPgwAwcOZNy4cTz77LP06dOn0boZGRmsXLkSgMLCQsaPH9+kfNeuXVRWVnLo0KFG26enp5OcnMzu3bsDSkqZQjCPx7ePazKFLo5v88URjHjCtY7BEsxzFe10rlqvrecqnM5tMNqOaFdWVsZzb+1g3xEDsITk7Xv2GDABHgPKql2kd+/0EEQkyuj6LyLStQU9KfXAAw9QUlLC97//faxWa7v2tX79eioqKpg6dSp33XUXPXv2xG63N1rHZrNRXV0NgMPhOGG5w+EAID4+vkm5r6y1undPCrQqQeF2V2O3xzbEkEh6esfH4fF4KC4uBqBHjx6YzSf+aD4Y5yUUdQyFUP0bikQ6V60XyecqmG1HNItPSsFtOgqANQRJRbMJ7BaodsGhqjr6tLyJiMhJ6fovItK1BT0p9dlnn7Fu3TrS0tLavS+bzYbNZmPatGlMnDiRm266icrKykbrOJ1OEhISALDb7Tidziblqamp/mSVb36p5rZvrdLSSkIxaqG0tIqamjr/zzEx8S1s0X5FRUU896/tAPzi6oubnRTeZPI+DAfjvISijp0pmOcq2ulctV5bz5Vvu3AQzLYj2jW8fA9LCIbvASRYTFS7DA5W1ocmABGJKrr+i4h0bUG/pU1KSiI2NrbN23/yySf84Ac/oK6uzr+srq4Oq9VKRkYGBQUFjdYvLCwkMzMTgMzMzBOWJycn07NnTwoLC/1lxcXFlJeXNxkS2BLDCN1XKGJISE4jITmtxbgiuY6d/TcMdQyR8qVz1fHnKly0t+3oKgzD8CelQjGnFEB8Q0eGw5V1J19RRKQVdP1vnsfjaTKcUUQkGgX9lvb222/ngQceYMeOHRw4cKDRV2ucd955OJ1OnnrqKerq6vjmm2944oknmDBhAiNHjqSkpISlS5dSX1/Ppk2bWL16tX8eqQkTJrB69Wo2bdpEfX09S5cupbS0lOzsbADGjRvHwoUL2b9/P1VVVcyZM4dBgwZx5plnBvs0iIhIANrbdnQVbgMMvOP2QpWUSrB4j3+oSj2lRKT9dP0XEenagj58b8aMGQBs2LABAJPJhGEYmEwm/vOf/7S4fUJCAs8//zxz5szhsssuIykpidGjR5OXl0dsbCxLlixh9uzZzJs3j7S0NGbMmMGQIUMA79v4HnnkEWbOnMnhw4fJyMhg8eLFpKSkAJCXl4fL5SI3NxeHw8HgwYN59tlng30KREQkQO1tO7qKevex7m2WEE1Un9AwmdUh9ZQSkSDQ9V9EpGsLelLqzTffbPc+MjIyWLJkSbNlffv2Zfny5SfcNicnh5ycnGbLrFYrU6dOZerUqe2OUUREgicYbUdXUOfxJqWs5tC9PTGh4c7hoJJSIhIEuv6LiHRtQe/8f/rpp3P66adTUVHBzp076dGjBzabjdNPPz3YhxIRkSihtqN16t3e76EaugcQ39BFq7TaRZ1L852ISPvo+i8i0rUF/ba2tLSUH/3oR9xwww3cd9997N+/n6uvvppt27YF+1AiIhIl1Ha0zvE9pUIlLsb75j8DOFRZG7pARCQq6PovItK1Bf22ds6cOfTp04f8/HwsFgvnnnsukydP5n//93+DfSgREYkSajtaxzenlMUcorF7eOd7SYyNAeBARU3I4hCR6KDrv4hI1xb0pNSmTZt44IEHsNvtmBomvLjlllsoLCwM9qFERCRKqO1oHV9SKpQ9pQCS4rwBfFPhDG0gIhLxdP0XEenagn5ba7VacTq9N6mG4b15djgcJCQkBPtQIiISJdR2tE5dwxROoU9K+XpKKSklIu2j67+ISNcW9NvaESNGMG3aNPbs2YPJZKK0tJRHH32UK6+8MtiHEhGRKKG2o3WO9ZQK3fA9gKRY7+2DklIi0l66/ouIdG1BT0r9+te/Jj4+nh/84AccPXqU4cOHU1NTw9SpU4N9KBERiRJqO1onHCY6B0hs6Cml4Xsi0l66/ouIdG2WYO8wISGBefPmUVZWxtdff02vXr045ZRTgn0YERGJImo7Widc5pTqFqeeUiISHB19/S8vL2fOnDm8++67eDweLr30UmbOnMkpp5zC9u3beeyxxygsLCQ1NZUpU6YwceJE/7arVq1iwYIFFBcXc8455/DQQw+RlZUVtNhERKQDklL5+fmNft+7dy979+4F4NJLLw324UREJAqo7WidujAZvufrKVXhdFFV6yIxLui3EyLSRXT09f/OO+8kOTmZDRs2YDabeeCBB3jooYf43//9XyZPnsxdd93FjTfeSH5+Pnl5eZx33nn069ePzZs3M2vWLBYvXky/fv1YtmwZU6ZM4e2338Zut7c7LhER8Qr6XeRNN93UZJnZbObUU0/lzTffDPbhREQkCqjtaJ36MJnoPDbGRLe4GI7WujlQ4aTPKYmhDUhEIlZHXv8///xztm/fzocffkhiovc6NWvWLIqLi1m/fj0pKSnk5uYCMHToUEaPHs2yZcvo168fK1asYNSoUQwYMACASZMm8be//Y01a9Ywfvz4dsUlIiLHBD0ptWvXrka/l5WV8Yc//IHTTz892IcSEZEoobajdcJl+B5ArySrklIi0m4def3fsWMHGRkZ/P3vf+ell16ipqaGyy+/nPvuu4+CggL69OnTaP2MjAxWrlwJQGFhYZPkU0ZGRpN4RUSkfTr8tjYtLY1p06bx4osvdvShREQkSqjtaJ5vonNLiJNShmGQFuf9+euKmtAGIyJRJZjX/4qKCnbv3s2ePXtYtWoVr7zyCocPH+a+++7D4XA0GYZns9morq4GaLE8ECZT4F9t3U5fOqc6p5H9Fe7ntCN0yiQQFRUV1NbWdsahREQkSqjtaMrfU6qj7gpaqbqygqIjTsDKV4crgN4hjUdEokuwrv+xsbEATJ8+nbi4OBITE7n77ru54YYbGDduHE5n45c1OJ1OEhISALDb7c2Wp6amBhxH9+5JAa3vdrv92/mGHUpwBPq3kJbpnAZfVzunQU9KPfDAA41+r6+v5+OPP2bYsGHBPpSIiEQJtR0t8xhG2MwpBdAtPg6qPRyqqgt1KCISwTry+p+RkYHH46G+vp64OG/3To/HeyH97ne/y1//+tdG6xcWFpKZmQlAZmYmBQUFTcqvuOKKgOMoLa3EMFq/vsfj9m/ndAawoZyQyeR90A/0byEnpnMafOF+Tn3xBVuH39bGxcVx0003MWvWrI4+lIiIRAm1HU05XR7/z6EevgeQYPH21jpUVR/iSEQkmgTz+j9s2DB69+7Ngw8+iMPhoKysjGeeeYarr76a66+/npKSEpYuXUp9fT2bNm1i9erV/nmkJkyYwOrVq9m0aRP19fUsXbqU0tJSsrOzA47DMAL/aut2+tI51TmN7K9wP6cdIeg9pR5//PFg71JERKKc2o6WVdd5k1ImDGJMQAfdGLRWgtWblDpcWYdhGJhCPKRQRCJTR17/rVYrf/7zn5k7dy4jR46ktraWESNGMH36dLp168aSJUuYPXs28+bNIy0tjRkzZjBkyBDA+za+Rx55hJkzZ3L48GEyMjJYvHgxKSkpHRaviEhXFPSk1Pz581u13h133BHsQ4uISIRS29Gy6oaxexYzmEymUOekiG+4g6h1G5RW15OeEBvagEQkInX09b9nz54888wzzZb17duX5cuXn3DbnJwccnJy2nRcERFpnaAnpQoKCli/fj3nn38+Z599NocOHeKTTz7hggsu8E8cqE9TRUTkeGo7WlZd751jxBImp8FsMhFvNVFdb3CgwqmklIi0ia7/IiJdW9CTUmazmQceeICf/vSn/mWvvvoqb7/9Ns8++2ywDyciIlFAbUfLfD2lwmGSc59Eq5nqejcHKpz0O61bqMMRkQik67+ISNcW9Fvbd999l9zc3EbLrr/+ej766KNgH0pERKKE2o6W+eaUCodJzn0SY729F76pqAlxJCISqXT9FxHp2oJ+a5uWlkZ+fn6jZe+//z69evUK9qFERCRKqO1omW/4njWMRrEkNHTbOlDhDHEkIhKpdP0XEenagj5877bbbmPy5MmMHDmS0047jf379/P222/z+9//PtiHEhGRKKG2o2XHJjoP9RTnxyTGKiklIu2j67+ISNcW9KTUxIkTOf300/nnP//Jv//9b3r37s3y5cs577zzgn0oERGJEmo7WuYIs4nOARIaum0pKSUibaXrv4hI1xb0pBTAsGHDGDZsGGVlZaSlpXXEIUREJMqo7Tg535xS4TTRuS8pdaiyFpfbgyUmjIITkYih639jhmEA4dMrVkSkIwX97rG+vp5nnnmGAQMGMGLECPbv38/48eMpKioK9qFERCRKqO1o2bHheyEO5HjOSkwYeAxvYkpEJFC6/jfPMIyG5JSISHQL+q3t/Pnz2bRpE7/73e+wWq10796dXr16MXv27GAfSkREooTajpaF40TnJhPEx3gfmjSET0TaQtd/EZGuLejD91avXs1LL71Ez549MZlMxMfH8/jjj5OdnR3sQ4mISJRQ29GysOwpBdjNHhxus5JSItImuv6LiHRtQb+1ra6u9o8F93U5tdlsmM1hdhctIiJhQ21Hy3xzSoXT2/cA7A09pb5RUkpE2kDX/+Zp+J6IdBVBv9r379+f+fPnA2AyeccY/PnPf6Zv377BPpSIiEQJtR0tC8fhe+DtKQUavicibaPrv4hI1xb04XsPPvggkyZNYtWqVTgcDq677jocDgd//OMfg30oERGJEmo7Wha2w/d8c0odVVJKRAKn67+ISNcW9KRUeno6r7/+Ou+88w7ffPMNvXr14nvf+x6JiYnBPpSIiEQJtR0t8yWlrGGWlNJE5yLSHrr+i4h0bUFPSl1//fX885//5Nprrw32rkVEJEqp7Tg5wzCorvMO37OE6fC9sup6quvcxMfGhDgiEYkkuv6LiHRtHfJ5a01NTUfsVkREopjajhOrdXlwN8x3G27D96xmSIz1BqUhfCLSFrr+i4h0XUHvKTV48GAmTpzIFVdcwSmnnNKo7I477gj24UREJAqo7Tg5R0MvKQi/nlIAPRNjqSpzcqDCSUZ6QqjDEZEIouu/iEjXFvSk1Ndff03v3r356quv+Oqrr/zLfW/TEBER+bZgth1ut5tJkyZx+umnM3fuXAC2b9/OY489RmFhIampqUyZMoWJEyf6t1m1ahULFiyguLiYc845h4ceeoisrKz2VyxIfEkpqxnCsTntlWTly4aklIhIIPTsICLStQUtKfU///M/vPDCC/z5z38GwOl0YrPZgrV7ERGJQh3RdsyfP5+tW7dy+umnA1BRUcHkyZO56667uPHGG8nPzycvL4/zzjuPfv36sXnzZmbNmsXixYvp168fy5YtY8qUKbz99tvY7fZ21zEYHHUuAKzm8HxI65UYC8A3SkqJSCvp2UFERCCIc0pt27at0e9XXHFFsHYtIiJRKthtx0cffcT69eu55ppr/MvWr19PSkoKubm5WCwWhg4dyujRo1m2bBkAK1asYNSoUQwYMACr1cqkSZNITU1lzZo17YolmBy1DT2lYsI0KZXkTUqpp5SItJaeHUREBDpoonPwvilIREQkEO1pO0pLS5k+fTpPPfVUox5OBQUF9OnTp9G6GRkZ7Nq1C4DCwsKTlocDX0+pcJvkHLx/s0S8yagDFZqsWETaRs8OIiJdU9DnlPLROHAREQlUW9sOj8fDtGnTuPnmmzn//PMblTkcjibD8Gw2G9XV1a0qb63mQvcta2+TeGxOKZN/f8Zx3zE1XXaysvas/221NZV8+MUBwM435U7AiLh7gGD9ncJJNNYJorNe4VanUMURadcNEREJjg5LSomIiHSWRYsWERsby0033dSkzG63U1lZ2WiZ0+kkISHBX+50OpuUp6amBhRD9+5JbSprDVNsKQC22BhstljMViueeo//uy3Ois3eeNnJytq/fq3/d1uclZSeaVBWQ43LQ0y8jbSE2HbVN1Ta+3cKR9FYJ4jOekVjnURERFoStKSUy+XilVde8f9eX1/f6HeAsWPHButwIiISBYLVdrz66qsUFRUxcOBAAH+S6V//+hf33nsvGzdubLR+YWEhmZmZAGRmZlJQUNCkPND5TUpLK/n26BOTyfug2VxZIA6XOQAwGwZOZx1mlxmP69h3Z209zpr6RstOVtbe9WMt+H931tZTX+vCbjFR4zLY8d9iLjq1W9srGwLB+juFk2isE0RnvcKtTr54OpqeHUREBIKYlEpPT2fevHn+31NTUxv9bjKZ1LCIiEgjwWo71q5d2+j3+++/H4C5c+dy5MgRnnzySZYuXUpubi4ff/wxq1evZsGCBQBMmDCBvLw8rr32WgYMGMCyZcsoLS0lOzs7oLoYBid8oDxZWWtU+SY6Nx/b3/HfMZouO1lZe9ZvoqEsMdZMjcvNN+VOLuwVWUkpn/b+ncJRNNYJorNe0Vink9Gzg4iIQBCTUm+99VawdiUiIl1EZ7QdqampLFmyhNmzZzNv3jzS0tKYMWMGQ4YMAWDo0KE88sgjzJw5k8OHD5ORkcHixYtJSUnp8Nhay1Hrneg8XN++B5BgNVGM3sAnIq2jZwcREQHNKSUiIlFo7ty5jX7v27cvy5cvP+H6OTk55OTkdHRYbfbtic7DUWKstxvXN0pKiYiIiEgrheHLpUVEROR4jjpvTylLGLfavqTU/vKaEEciIiIiIpEijG9vRUREBKDc0dD7yOUKbSAnkRznvaX4qrQ6xJGIiIiISKRQUkpERCTMVdd7gPDuKdWtoadUWXU9R531IY5GRERERCJBGN/eioiICEB1nTcpZQ3jVtsaYyI93jtV5Z4yDeETEWkrwzC61JsYRaRrC+PbWxEREQGorvdOdG4J44nODcOgV4JvCJ8jxNGIiIiISCQIy6TUrl27uPnmmxk0aBCXXXYZ9957L2VlZQBs376diRMnkpWVxYgRI1ixYkWjbVetWkV2djb9+/dn3LhxbNu2zV/mdrt54oknGDZsGFlZWUyZMoWioqJOrZuIiEigfMP3rOGbk6KmqoKjVd5k1K4DZSGORkREREQiQdglpZxOJ7fccgtZWVl88MEHvPbaa5SXl/Pggw9SUVHB5MmTGTt2LPn5+cyePZvHH3+cHTt2ALB582ZmzZrF3Llzyc/PZ8yYMUyZMoWaGu8wgoULF7Jx40Zefvll3n//fWw2GzNmzAhldUVERE6q3u2hzu0dxxHOc0oBpMbHAbC/vDbEkYiIiIhIJAi729sDBw5w/vnnk5eXR2xsLKmpqdx4443k5+ezfv16UlJSyM3NxWKxMHToUEaPHs2yZcsAWLFiBaNGjWLAgAFYrVYmTZpEamoqa9as8ZffeuutnHrqqSQmJjJ9+nTee+899u/fH8oqdwkej4eioiKKiorweDyhDkdEJGI46tz+n8N5TimApIauXPsq6kIciYhIZCuqqueN3aWhDkNEpMNZQh3At51zzjk8//zzjZatW7eOCy+8kIKCAvr06dOoLCMjg5UrVwJQWFjI+PHjm5Tv2rWLyspKDh061Gj79PR0kpOT2b17N7179251jKYQDZ84/rgmU+fE0Zpj+padLJ7S0hIWvbkdgF9cfTGnnHJKm48Xkevl/QABAABJREFUyVpzrsRL56r12nqudG4jg6POBUAMBiaTiXCe+9aXlDpcVUety0NcuHftEhEJUxv3VrL2iwqGnNuLM1PtoQ5HRKTDhF1S6niGYfDss8/y9ttv85e//IU//elP2O2NL8o2m43q6moAHA7HCcsdDu88F/Hx8U3KfWWt1b17UqBVCQq3uxq7PbYhhkTS0zs+jkCOebLz4nZXk96rV4v7CUUdQyFU/4Yikc5V6+lcRSdHbcMk56ZwTkd5xcVAXIyJWrfBV6UOzu+pf5MiIm1R6/Je8yud9YCSUiISvcI2KVVVVcUDDzzAzp07+ctf/sJ5552H3W6nsrKy0XpOp5OEhAQA7HY7TqezSXlqaqo/WeWbX6q57VurtLQyJK9pLS2toqamzv9zTEx8C1t0zjFNJu/D8MnOS2tjD0UdO1NrzpV46Vy1XlvPlW87CW++4XuRkJQymUyk2MwcdrjZXVSlpJSISBt5Ghp0lyf8r/0iIu0Rlkmpffv2ceutt3LaaaexcuVK0tLSAOjTpw8bN25stG5hYSGZmZkAZGZmUlBQ0KT8iiuuIDk5mZ49e1JYWOgfwldcXEx5eXmTIYEtMQxC8pB8/DE7K4ZAjnmy8tbuJxR1DIVorluw6Vy1ns5VdPIP34uApBRAakNS6ouiwHohi4iIl2EYuBumYFVSSkSiXdhN9lBRUcHPfvYzLrnkEl544QV/QgogOzubkpISli5dSn19PZs2bWL16tX+eaQmTJjA6tWr2bRpE/X19SxdupTS0lKys7MBGDduHAsXLmT//v1UVVUxZ84cBg0axJlnnhmSuoqIiLQkkobvAaTaYgDYXVRFaWkphjKlIiIBcXsM//yBSkqJSLQLu55S//jHPzhw4ABvvPEGa9eubVS2bds2lixZwuzZs5k3bx5paWnMmDGDIUOGADB06FAeeeQRZs6cyeHDh8nIyGDx4sWkpKQAkJeXh8vlIjc3F4fDweDBg3n22Wc7uYYiIiKtV9XQUypyklLez7u+KKri6Vc+4Fdjh9O9e/cQRyUiEjlq3ceu90pKiUi0C7uk1M0338zNN998wvK+ffuyfPnyE5bn5OSQk5PTbJnVamXq1KlMnTq13XGKiIh0hkjrKdUtzozVbKLG5cFj6xbqcEREIk6dy+P/2eWOjGu/iEhbhd3wPYksHo+HoqIiDh8+jMfjaXkDEREJiCPCekqZTSbOSo0DoKI+xMGIiESg2uOSUm7dX4tIlFNSStqlpKSE5/61nadezaekpCTU4YiIRJ1IevueT0Z37xtvy+tMIY5ERMTL7XZz0003cf/99/uXbd++nYkTJ5KVlcWIESNYsWJFo21WrVpFdnY2/fv3Z9y4cWzbtq1TYq1zH9dTSsP3RCTKKSkl7ZaQnEZiSlrLK4qISMCqIjAp1Sfdm5Q6oqSUiISJ+fPns3XrVv/vFRUVTJ48mbFjx5Kfn8/s2bN5/PHH2bFjBwCbN29m1qxZzJ07l/z8fMaMGcOUKVOoqanp8FgbDd9TUkpEopySUiIiImHMURtZw/cAzu/h6ynlfYuUiEgoffTRR6xfv55rrrnGv2z9+vWkpKSQm5uLxWJh6NChjB49mmXLlgGwYsUKRo0axYABA7BarUyaNInU1FTWrFnT4fHWak4pEelClJQSEREJY77hezERlJQ6MzkOu8WMyzCxr6I21OGISBdWWlrK9OnTeeqpp7Db7f7lBQUF9OnTp9G6GRkZ7Nq1C4DCwsKTlnek2kbD9zSnlIhEt7B7+56IiIgc459TKsRxBCLGbKJPup3thxzsKq5hYEaoIxKRrsjj8TBt2jRuvvlmzj///EZlDoejUZIKwGazUV1d3aryQJgCHMlcf1xSym0Evr005TuHOpfBo3MafOF+Tjsqrki6xxUREelyqhqG71kjpKeUYRgcOVLGd5Jg+yHYXRz4A5yISDAsWrSI2NhYbrrppiZldrudysrKRsucTicJCQn+cqfT2aQ8NTU14Di6d08KaP24AxXHfrbHkp4e2PZyYoH+LaRlOqfB19XOqZJSIiIiYcyXlIqU4Xs1VRW8+GERh2o8QCK7ijt+UmARkea8+uqrFBUVMXDgQAB/kulf//oX9957Lxs3bmy0fmFhIZmZmQBkZmZSUFDQpPyKK64IOI7S0kqMAC7hJUeOJfMrjtZQUlJ5krWlNUwm74N+oH8LOTGd0+AL93Pqiy/YlJQSEREJY77he5HSUwrAnphMr1gnVMHe8locdS4SYnXLISKda+3atY1+v//++wGYO3cuR44c4cknn2Tp0qXk5uby8ccfs3r1ahYsWADAhAkTyMvL49prr2XAgAEsW7aM0tJSsrOzA47DMAjoAbP2W2/fC8eH00gV6N9CWqZzGnxd7ZzqDlFERCRM1bs9/oeTSHr7HoAtBmxmD06Pmf8cqmLgmSmhDklExC81NZUlS5Ywe/Zs5s2bR1paGjNmzGDIkCEADB06lEceeYSZM2dy+PBhMjIyWLx4MSkpKR0eW53eviciXYiSUiIiImHKUev2/xxpSSmAZIsHZ52Zzw8eVVJKREJu7ty5jX7v27cvy5cvP+H6OTk55OTkdHRYTejteyLSlZhDHYCIiIg0r6rOO5+U3WIO2zexnEyKxZtU+/yg5kMREWmtum8N3xMRiWZKSomIiIQp3yTn8bGR2VwnW70PVp8fqsToSpMjiIi0Q91xQ/aUlBKRaBeZd7kiIiJdQFXD8L0Ea0yII2mbbhYPMSYoddRxuLI21OGIiESE43tKuZWUEpEop6SUiIhImHLURXZPqRgTnJ1mAzSET0SktercGr4nIl1HZN7lioiIdAGR3lMK4Px0OwD5XxVRWlqqYXwiIi1olJTS2/dEJMopKSUiIhKmIn1OKYDzesQD8E5hCc+9tYOysrIQRyQiEt5qXcfPKaW374lIdIvcu1wREZEoV9mQlLIY9URqB6Pze3h7SlXUmbAlJoc4GhGR8Fert++JSBeipJSIiEiYKqmoAuCrw0eorXWGOJrAGYZBvLuKBKsJtwHlTn3iLyLSEs0pJSJdiZJSIiIiYaq63vtgYouLDXEkbVNbXcmfP/ovNqMOgNIad4gjEhEJf3r7noh0JUpKiYiIhKnqOm8SxxrBrbU9MZn0eO9E7SXVSkqJiLREPaVEpCuJ4NtcERGR6OZo6CllMYU4kHZKjfM+VJXWaPieiEhL6o6f6Fxv3xORKKeklIiISJhy+HtKRfZDSWrD6MOjdR4qa9VbSkTkZBr3lFIyX0Sim5JSIiIiYco3p1QkD98DiIuBBIv35y9KakIbjIhImKvV8D0R6UIi/DZXREQkejmiYE4pn7Q47xjEXcXVIY5ERCS8HT/RuZJSIhLtouA2V0REJDpVR8mcUgCpvqSUekqJiJxUnVtzSolI16GklIiISBhye4yoGb4HkGrzJqV2F9dgGHrIEhE5kVqX5pQSka4jCm5zJVAej4eioiKKiorwqKETEQlL1XXHJgS3REFrnRxrwmyCo7VuvqlwhjocEZGwdfzwPbeG74lIlIuC21wJVElJCYve3M6iN7dTUlIS6nBERKQZjjoXAGYTxETB8L0Yk4mUOO9tx67DVSGORkQkPHkMg/rjElGaU0pEop2SUl1UQnIaCclpoQ5DREROoKrW21Mq1hwFGakGafYYAHYVKSklItKc43tJgZJSIhL9lJQSEREJQ1W13p5SlpgQBxJEqTbvbcdu9ZQSEWlWnftbSSlNdC4iUU5JKRERkTBU1TB8L1p7SmmycxGRptRTSkS6GiWlREREwpCjYfieNRomlGqQHGsixgTlNfUcrqwNdTgiImGn9ts9pZSUEpEop6SUiIhImDEMg8NlFQBYo6inVF31UWzUA7Bb80qJiDRR52qchHLpTdkiEuWUlBIREQkzZWVlvLnrGwDMhjvE0QRXSqz3u97AJyLSVK2r8TXfrZ5SIhLllJQSEREJRxYbEF09pQCSLN5P/fUGPhGRpmob5pSyNDylafieiEQ7JaVERETCUH3DG5csUdZSd2tISmn4nohIU76371kaPpDwGODRiyFEJIpF2a2uiIhIdKhv+HTcGmUtdZLFgwkorqqjxFEX6nBERMKKb06p43vJutxKSolI9IqyW10REZHocCwpFV3D9ywm6J0cB8DWwgOUlpZiqBeAiAgAGT0S6B5v5Yxkq3+ZhvCJSDRTUkpERCQM1TfMdWuJrpwUAOd2986X9df8PTz31g7KyspCHJGISHjomRTHqz/Pov+pdv8yvYFPRKKZklIiIiJhqC5Kh+8BZDQkpSo9scQnpYQ2GBGRMGMymTj+8wj1lBKRaBaFt7oiItIV7dq1i5tvvplBgwZx2WWXce+99/p74Gzfvp2JEyeSlZXFiBEjWLFiRaNtV61aRXZ2Nv3792fcuHFs27YtFFVoxDfReVQmpdK8PQDKnO4W1hQR6ZqOT0y5lZQSkSgWhbe6IiLS1TidTm655RaysrL44IMPeO211ygvL+fBBx+koqKCyZMnM3bsWPLz85k9ezaPP/44O3bsAGDz5s3MmjWLuXPnkp+fz5gxY5gyZQo1NTUhrZNvTilLlM0pBd6eUiagut6gxqVhKSIizfFd/tVTSkSimZJSElE8Hg9FRUUUFRXh0fh6EWlw4MABzj//fPLy8oiNjSU1NZUbb7yR/Px81q9fT0pKCrm5uVgsFoYOHcro0aNZtmwZACtWrGDUqFEMGDAAq9XKpEmTSE1NZc2aNSGrj2EY/jmloq2nlGEY1DkqOCPJAkBJtXpLiYg0x2TyZqX09j0RiWZRdqsr0a6kpIRFb25n0ZvbKSkpCXU4IhImzjnnHJ5//nliYmL8y9atW8eFF15IQUEBffr0abR+RkYGu3btAqCwsPCk5aFQ6zLwPYJEW1KqtrqSFz/8EqPOASgpJSJyIuopJSJdgSXUAYj4VDpd3L1mDy6XiyGnxZ1wvYTktE6MSkQijWEYPPvss7z99tv85S9/4U9/+hN2u73ROjabjerqagAcDsdJy1vL1MwoO9+y5spOptrlTdSYMLCYwXADJu9+DJp+D7SsPes3rWTg+4pPSqaHu5ava6GkxoPJFPg5Cqa2/p3CWTTWCaKzXuFWp3CJoyszDAMwjktKaXSAiEQvJaUkbPxjx0EKSp0AnJemf5oiEriqqioeeOABdu7cyV/+8hfOO+887HY7lZWVjdZzOp0kJCQAYLfbcTqdTcpTU1MDOnb37kltKmvOntJyAKxmE/b4WDz1BrY4Kza7FU+9B7O18fdAy9q/fq3/97bu61SPm21lHspq3HRLiSc9PbBz1BEC/TtFgmisE0RnvaKxTtI+ZpMJMNRTSkSimp78JSzUuz38bds3/t8Lj7hCGI2IRKJ9+/Zx6623ctppp7Fy5UrS0ry9Kvv06cPGjRsbrVtYWEhmZiYAmZmZFBQUNCm/4oorAjp+aWklxreeG0wm74Nmc2Un802xN4kWYzJw1tTjcdXhrK33/2z+/+zdeXhU5fn/8fdM9o0sBMIiiBKCVUACSABRFI1UkKUs2hZpsSoW0vpFG1QEqxWDUqtSRNCiiFZ+agFRURRtq4JAWCyCG0hQIRqWLCRkT2bm/P4YZmAgCZlsM5n5vK4rF8x5zjm5nzOTeebc8ywWs8u/7pY1dv/gQBocl2NbkLWaYHMAVTbYvj+PywPCznFVmk9Dnydv5ot1At+sl7fVyRGPeI5hGBjGacP3NKeUiPgwr56poqCggNTUVLZt2+bc1phlva1WKwsWLGDIkCEkJyczffp0jh071mL1kdr9+9tcckuqCA6wt74/FFkordI8IyJSP0VFRfz2t7+lX79+vPDCC86EFEBqaip5eXmsWLGC6upqMjMzWbduHRMmTABg4sSJrFu3jszMTKqrq1mxYgX5+fmkpqa6FYNh1PxTV1ltPyWV9qEaQeZT5+CM853+r7tljdn/7Io37FwmE8SF2N/zvzxS5vY1auqfhjxP3v7ji3Xy1Xp5W53EsxzD9xwjKdVTSkR8mdcmpT777DNuuukmDh065NzW2GW9ly5dyubNm1mzZg2bNm0iNDSUuXPneqR+4mrzdwUAjL84jjbBJiwG7Pyp1MNRiUhr8cYbb5CTk8N7771H//79SU5Odv7ExsayfPly3n//fVJSUpg7dy5z585l0KBBAAwePJgHH3yQhx56iIEDB/Luu++ybNkyYmJiPFaf0pNL7/naJOdnig+z33J9fkTv9yIiZzKfnODLqqSUiPgwrxy+t3btWhYtWsSsWbO46667nNtPX9YbcFnWu0+fPi7LegNMnTqV119/nfXr1zNhwgRWrVpFeno6HTt2BGDOnDkMHTqU7OxsunTp0vIVFaesPPsNSc/4MLYfCuBElYXsE5UejkpEWotbbrmFW265pdby3r1789prr9VaPnbsWMaOHdscoTVIaZW9p1Sgj0843D7UDNj48kgZFquNwAAfz8KJiLhBE52LiD/wyk9/Q4cO5cMPP2TkyJEu2xuzrHdxcTFHjhxxKY+Pjyc6Opp9+/Y1U02kPqqtNn4osPdmuyA2hDYh9pdldlGVJ8MSEfGYMmdPKd/+drxNMIQEmCi32PjqSPG5DxAR8SMmZ1LKt9sCEfFvXtlTql27djVuP9ey3XWVl5bae+KEh4efVe4oqy9PLZV7+u9tzPLZ7pznXPuevq2uc9V1noPHy7DaDCJDAmgXEUj0yTlGfiyqqvH31Td2b+Rtyz57M12r+mvotdK19V5lVafmlPJlJpOJ9hEBZJ+wsDO7kEs7R3s6JBERr+EYvqeJzkXEl3llUqo2jVnW25GscswvVdPx9eWpFUms1jLCwoJPxhDZ4OWz3TnPufa1WssIDbWXx8XVfq66zvNp9gkAftaxDfHxUbRrEwJUklNcRWxcJAFmU73O05poVZv607WqP10r3+FY6CHQx5NSAAnh9qTU1gN5/C6lKyZlS0VEgNOH7ykpJSK+q1UlpRqzrHd0dDQJCQkuQ/xyc3MpLCw8a8jfuXhqyd78/BLKy6uc/w8ICD/HEY0/z7n2zc8voaKiitDQYAoKaj9XXef533d5AHSLCbWXWS0EmKDKarDnQC5dYsPqdZ7WwNuWffZmulb119BrpWW/vVfJyZ5SwX6QlIoxlQEBfHGkhMPH8uiUUHNvaRGRhti7dy8LFizgq6++IigoiMsvv5z77ruPuLg4du/ezSOPPEJWVhaxsbFMnz6dSZMmOY9du3YtS5YsITc3lwsvvJAHHniA5OTkFotdq++JiD9oVR93G7us9/jx41m6dCnZ2dmUlJQwf/58Bg4cSNeuXd2KwxuW6G3J89Rn3/qcq7bzOCY57x4fgWHYuypHnbwT+z7/7GXCveF5aOy193QMreVH16r5r5V4p+Iq/1h9DyAiEEIDwIaJr4+VeTocEfEhFRUV3HbbbSQnJ/Ppp5/yzjvvUFhYyP3339/oVb1bgiY6FxF/0Ko+7jZ2We+0tDSGDRvG5MmTGTZsGJWVlSxcuNBzFRIAsnLtSanE+FPDKNucnFfqhwLdoIiI/ymutCelgn18onOw99hrF2Z/z999xL05HkVE6pKTk8NFF11EWloawcHBxMbGctNNN7Fjxw6XVb0DAwNdVvUGXFb1DgoKYurUqcTGxrJ+/foWi98xnNmqnlIi4sO8fvjemSvjNWZZ76CgINLT00lPT2/SGKXhSiotHCuxD8frHh9BWVElAG2CzYBVSSkR8Usllf7TUwqgXaiZ7BIrn+coKSUiTefCCy/k+eefd9m2YcMGLrnkklpX9V69ejVgnwLEMRrj9HLHqt8tQXNKiYg/8PqklPi2g8ftXaDbRgQTGRKIIwXV5uTwvYMFLddFWkTEW5zqKeXhQFqIo6fUt/nllFRaiAzRxxMRaVqGYbBw4UI++ugjXnnlFV5++eUGr+rtroaujutoAiw2QyvmNpJWdW56uqZNz9uvaXPFpU994lEHT/aEOj/WtdGPDLa/4g+fqDjrGBERX2YYhl/NKQUQHmgiKthEcZXBjkOFXN0j3tMhiYgPKSkpYfbs2Xz11Ve88sor9OzZs1GrervL3UVFysoCAAgKCgCqCQ0LbrUrTnsbLfDS9HRNm56/XVMlpcSjHD2lzo9zTUpFnLwTyy2pospiI9gf1kUXEQHKq23OoRr+0lMKoFNkIPsKqtn8XYGSUiLSZA4dOsTtt99Op06dWL16NXFxcUDjVvV2l7ur45aX27+0tVntE5wXnqggL6+4rkPkHLSqc9PTNW163n5Nm2vlbj/6uCve6JCzp1S4y/aQAAgJMGEAR4orPRCZiIhnnKioBuxziQR4afft5tApyv492ebvCzC88ZOYiLQ6RUVF/Pa3v6Vfv3688MILzoQUNH5Vb3c0dHXc01ff8/Qqv77w09DnQj+6prqmrvE1NfWUEo+qraeUyWQiITKIQ0VVHC6qoOsZw/tERHxVUYUFgOAAk9fOKdAc2oWZCQkwkVdaxb5jJVyU4F9d10Wk6b3xxhvk5OTw3nvv8f7777uU7dq1i+XLl5ORkcGiRYuIi4urdVXvo0ePkpiY6LKqd0swn2wELNZmuhMUEfECSkqJx9gMg0Mnk1Jdz+gpBdD+ZFIqR/NKiYgfcfSUCvGnblJAVdkJIo1qKgll03cFSkqJSKPdcsst3HLLLbWWN2ZV75ZgHzMA1ubqniAi4gU0fE885mhxJZUWG4FmE52iQ88q7xAZBEBOkZJSIuI/TpzWU8rfdAy31/mj/XkejkRExPNM6iklIn5ASalWpKDcwv7j1VT7SMPkWHnvvJhQAs1n33y1j7AnpbQCn4j4E39OSrULthBggv25pfxQ4P6y6yIivuTUnFK+8dlfRKQmSkq1Ist2HGXnkSr+e6iC4kqrp8NptO8L7EP3usWdPXQPIEE9pUTED51KSnk4EA8INkO/TpEA/OfbXA9HIyLiWUpKiYg/UFKqlSirsrLtxxIACips/PXTHA9H1HjfHrPXp0e7iBrLEyKDAcg54f7qezabjWPHjnHs2DFsNlvDgxQRaWGOOaX8sacUwBXd2gDw4T4lpUTEv5mwtwPVVn2WFRHfpaRUK/Hpd/lUWg1CTn5z/vnhUiqqW3dvKUdSKqldZI3ljp5S+aVVbtc1Ly+P5/6zm+f+s5u8vIbPTaLkloi0NMfqe/420bnD4K5tCAowcSCvjL1Hiz0djoiIxziagSolpUTEhykp1Uo4vjHuHhNEWKAJmwHfHC3xcFQNV2218V2+fb6QpPY1J6Wigs1EnBy/crgBvaUiouOIiI5reJA0XXJLRKS+/HlOKcMwsJQVMaSLfeW913f8gKFVp0TETwWcvFMrr1ZSSkR8l5JSrUCVxcbWH44D0LVNAG3D7E/bl4dPeDKsRvk+vwyLzSAyJICObUJq3MdkMtH55Kp8PxaWt2R4LpoiuSUiUl/+PHyvsqyYl7YcoDT/JwDe/7aAnKP6QkBE/JNjIaDWPjpCRKQuSkq1Aj8UlFFpsREZbCYmxEz8yaTUF4db77CGb3NPDd1zLHdbky6xYQBkezApJSLSkk74+fC9sMhoOseEExEIFsPEx98XeTokERGPcCalLOopJSK+S0mpVuBAfikA58eEYDKZaBtmH9L2Rc6JZh3WUFJp4ZXdufxUbGny3/PtMXudahu653BejD0p9WOhVuATEf9QVO6/PaUcTCboFmX/iPLG1/kawicifinAZH/vU08pEfFlSkq1Agfy7HMvnR9jH+YWF2rGbIK80iqOFrs/11J9PfnRAV7dk8/GHyvZ+GMl1iZcjnafc5LzmlfeczjPC4bviYi0JH/vKeVwQRszgWY4VFjJlpND2EVE/EmAyTF8Tz2lRMR3KSnVChzIO9VTCuxdebud/P/eZprsfPdPRaz76igAZhPklFjZkt00wwXLqqzsybHPh9W7Y5s693UM31NSSkT8QUW11TlMw597SgEEmU0kxtpXYX1l548ejkZEpOU5hu+Vq6eUiPgwJaVage/OSEoBdIm2///Q8eZJ1jyz6XsAUrtHc3Fb+03Bm980zTfV/ztcisVm0DU2jPPjwurc1zF8L+dEJRYthysiPi6/rAqwJ6SC1EKTFBdEgAl2Hipk79HWO4+iiEhDOFbf05xSIuLL9JHXy5VVWck5YR+i1zU62Ln9vDb2/x88XtbkvzOvtIrPf7L3ZLr50ngSYwMxm2BvbnmTrPi3/Ud7764rLmxb5yTnAO0igwkJNGO1GRxpxqGKIiLeIL/UPp9UTGjgOd8f/YG5spi2ZvuXL+otJSL+JtCknlIi4vuUlPJy35+c5LxtRDDRoYHO7Z1OJqWao6fUpgP5GMDFHaKIjwgiLNDM+W3sv3vN7sONOrfNMNjxk71OV3SPO+f+ZpOJzs0wr5TNZuPYsWMcO3YMm03fPomIdygotfeUigsLPMee/uPCSPt8hh/uy+UnDeUWET/i6ClVabFh04IPIuKjlJTyco5Jzru3DXfZ3rkZk1IbD+QDMKx7W+e27jH2G6T/fpvXqBVAckqsnKi00iY0kEs7R9frmC4nh/BlN+EKfHl5eTz3n90895/d5OXlNdl5RUQawzF8L0ZJKaeQqiLaBlmxGfCPTVmeDkdEpMU45pQCe2JKRMQXKSnl5X4osCelLjgrKWWf56mgrJrikys1NYWyKivbD9rnjroy8VRSKj7MTEJkEGXVVj7Oym/QuW2GwZ5c+w3XuN4dXRraujjmlTpY0LRDFSOi44iIPndvLRGRllJwcvherJJSLi6Ot38R80FWIYdPNN0XFCIi3sxknEpENeZLYRERb6aklJfLPjlUoWus64Tg4UEBxEc4eks1XbJm28HjVFkNOkWHuvTOMplMDL/QvlLeuydX5XPXD0UWiioNIoPN/HbgefU+LrGdPY5vc0sb9HtFRFoLR08pJaVcxYea6RARgMVm8OK2Q54OR0SkWRmGgWHYP387VmItr1ZPKRHxTUpKebmDJ4fndYk9e5U6x8p1B5twCN8npw3dO3OS3WsujMYEZB487vYqSEUVFj4/Zr/ZurFXW9qEBtX72IvaRwHw7bESjacXEZ+WX6qkVG16tbN/EfP2l0fVW0pE/EZYUAAAFRb1lBIR36SklBez2gznpK5n9pQ6fVtTJaUsNoNPHUmp04buOXSMCua6i9oB8NyWg26de+n2o1RaISbEzJiL3Bsy161tOCGBZkqrrBwprnbrWBGR1sSx+l5sqJJSZ2ofEUhyxwis6i0lIn7CMAxCAu1fEleop5SI+CglpbzY0eJKqqwGQQEmOkSFnlXeNdY+rO1QQdMkpfbkFFFUYSG6jknIpw3pRoAJPv2ugH/t+gmjHj2X/rs/j00HizEBKR2DCQpwb5nzQLOJxPgIAA4U6NtxEfFdBRq+V6fJfe1fjLz9xRF2f5dTrzZIRKQ1Cw2095Qq15xSIuKjlJTyYo65os6LDiOghknBz3f2lGqaOaU+3m/vJXX5hXG1TkLeNTaMm/p1BuDx/x5gypos/nOwnN1HyjlRcXZjWVRezYJ/7wfgZ22DiAsLaFBsFyVEApClpJSI+DAN36udYRh0Dq6kb0IIVgPmvLefgoICT4clItKsQgPtt2sVWn1PRHyUklJe7NBxewKmpvmk4NTwvezj5Y2ea6nKYmP91/YJzIf3aFfnvjOHXcj/DbuQQLOJ4+VWjpXZ+Cyngj+++z1fHzk115RhGDz27ywKyqrpEh1Mr/j6zyN1pqT29qTUdwWVDT6HiIg3K6uyOm86YhuYwPdl5SVFvLTlAJEVxzABRytMbMt2b35DEZHWxDCMU0kp9ZQSER+lpJQXc/SUqmk+KYDO0aEEmE1UWGwcK25csua/+/MoqrDQPjKYyy+se84nk8nEzQPO44Ppg1k48nwGdAimTYiZ3FIL017fzZbv7d9cv/PVUf79bS4BJrh7SMcae3vV10Unk1L788s1XENEfJKjl1RYkJmKkiL0Vne2sMho4qMj6R5t//jy9y05FJZrrkER8V0hzqSUekqJiG9SUsqLZRfWvvIeQGCAmc7R9rmmDjVysvM1u3MA+EWfjrUO3TtTVGggPdqG0SM2iDEXtaF/pwgqLTbuXvslt776OQ9v+BaA24ecT1J8zXWorx7tIogIDqC4ykZ+hRplEfE9jvmkYkIDePa9bVSUa7hybS6OMdMm2ExBuYWMD77Vyqwi4rNCg+y3a5pTSkR8lZJSXsyRaOoaU3tCx9GLqjFJqfe+OcrnP50gwGxibO8ODTpHcICJP199Htf/rD1WA/bknABg4qUd+e3Arg2OzSEowMzlF9h7cP1YrEZZRHzP6fNJhUZEeTga7xZgNjG4cwgBJvg4K5/FG7/3dEgiIk3OMAxCTi4QpDmlRMRXaSZVL1VRbeWnQvu35Be0Da91v67Oyc4blpTKOVHFgn8fBOB3KV1oFxnSoPMABAWYeHjkRfxmYBd2HCrk4oTIWlfxa4hhiW35YF8uPxZb6Ns+uMnOKyLiDXJLTpvkXCPSzinMWkKPwGL2Vsfwz50/YrZW8atL2xEXF4fJ1PDh4iIi3iRMPaVExMepp5SXOni8HAOIDg0kLrz2CcLPj7MnrA41YAW+E5U27vvwEKVVVnp3bMPvBp3f0HBdJMZH8Kt+nZs0IQUw5II4As1QXGVwolLfFomIb/mxyP5FRIdIJd3r6/zoIH7Xvz0AL+06xv+98QX5+fkYhuH8V0SktTIMg+AAzSklIr5NSSkv9X2+Pcl0QdvwOr/xPb+Bw/cqLQYfHaogv8zCBXHh/HXMz+o9l5SnRIYEcmmHCACyCtWNQER8y48n5xHs1EZJKXfc2Lsdtw5IAGDfCTMvfnaM/Px8nnrrUwoKCjwcnYhIwxmGwb7cEgAqLeopJSK+SUkpL/V9filQ99A9ODV8L6eogqp6jjW3GQZbcyopsxh0igriuZv6EN+IYXstacxFsQBkHbdQVGHxcDQiIk3HkZTqGKWkVH0ZhsHx4wVc29lMvwR7O/avL/N44+t8wiLbeDg6EZHGCzSfGr5nGIZ6gIqIz1FSykt9d7Kn1IVtI+rcLz4imIjgAGwGHKznEL6NPxRzuNRKgAlmX9mZ2PDWcwPUv1MEsaFmrAa8vfe4p8MREWkSVpvBTyeH73VSUqreKsuKeWnLAVZs+przw230TbBfu+d3HCXH/VHtIiJeJ8BkT0Jp+J6I+ColpbzU6cP36mIymejRzp642p9bes7z2gyDf32RB8DFbYO4MC60kZG2LJPJxCVt7XNsrf26gKPFlR6OSESk8XJLKqm2GgSaTbSLqH0eQTlbWGS0s1fU+cHldAmtxgD+V2DmSHGVZ4MTEWmkk4vvaaJzEfFZSkp5oSqLzTmM48JzJKUAerSLBODbY+dOSn2Slc/BoiqCzJAU1zpvfM6LCqBdmJlKq8HCj7/zdDgiIo3248nVVjtFhxLg5fP7eTOTCfp1CCM22MBimMj4OLveQ9tFRLxRwMm5ZSv0XiYiPkpJKS906Hg5VgMiQwKIjzj3MI4kZ0+pknPu++pnP9qPiQ0iOKB13viYTCb6dwjGbIJ/f5vL5u81ka2ItG7ZJ7+IOC+mdfVe9UZmk4nL4m0EmQz251ewaKO+vBCR1svxcb1CPaVExEcpKeWF9h4rBqB724g6V95z6NH+ZE+p3NI6Jz88WFDGrp9OYDZBYmxg0wTrIbGhAc5JzzM++JYTFVqNT0RaL0dPqS4xYR6OxDeEB0LvKPvw7td35fCfb3M9HJGISMOYOTmnlHpKiYiPUlLKC+3JOQFA7071Wzmoe9twzCYoLK8mr7T2+TPe+eooAP06RRAe1Pqf+il929E1Nozckioeem8fFptWIxGR1skxZLuzklJNpl2wlUm92gIwb8O3zmssItKaBJ78yK45pUTEV7X+zIQP+iLH3lOqTz2TUqFBAZwfa5976ttaJju32gze/dqelLque3QTROl5oYFm/nJ9T4IDTGz6roBHNuyjrEoNtoi0Po7VU8+L1vC9pvTbfglc2rkNpVVWZq7ZQ2GZJj4Xkdbl1PA99ZQSEd+kpJSXKam0cCDPnliqb08pwLkC37fHap5XKvPgcXJLqogODWTgeVGND9RL9OrYhnmjfoYJePfrY/zihe3ct+5rXvjsGN8WVFNcpQZcRLxbcYWF7/LsSakOwdUcP15AHSOxpZ4Mw6C46DjTLgklNMDgYGElaa9/RnmVxdOhiYjUm1mr74mIj1NSyst8efgEBvYVmOozybmDo1fV9oPHayxf9+URAK6/OIGgVjrBeW2G94jnqfG96BwdSkFZNf/5No83vi7gs6NVvHOgnAf+k+1M9LnDMAy+P17BvoJqvius5rCWFheRZrDH8b4fFcy/Mr9hxaavqays8HRYrV5lWTEvbTnA2zv3cXmHIIJMBt8WVJO+dg8Wq76wEJHWIUBzSomIj2vds137IHeH7jkMuSAOPjrArp9OUFJpITLk1FNbWFbNJ1n5AIy+JAEoa7J4vcXlF8Rx2dQBfPZjId/llXEwt5AtPxRyrMzG/3JK+fXLn/GLPh35ZXJnurUNxzAMqqwGZdX21ZmsoRXEhgURGhRARbWVT78r4OUd2Xxz9FTPs51vfcdtg61MTelK4BlLtttsNvLy8gCIj4/HbFa+V0Tq5/MfiwDolRBOeEgIABXlSko1hbDIaAxrBaYAE4Pa29h81Mz2H0uY/c43PDLqZ4QE6r1aRLxbgMnAbLJPxfFTUQWd2tjbifoshiQi0hooKeVlMk/2dHI3KdUlNowuMaFkF1aw41AhV/eId5a9+/VRLDaDi9pHktQ+kmPHfC8pBRAcaGZwtzgGd4vj2LFgQo1Kiqts5FcFsDW7hDW7D7Nm92HCgwKw2mxUWu3fPL33/Q/AD4B9nioDqDz5bVSQ2UR8mJkqm0F+uY3nthzkx8Jy/vzznphP+zCQl5fHc//ZDcAd11xK+/btXWJzJK1MJoiLi2juSyEircjun+xJqUsSwjlaWOzhaHxX2xDo26aSL0rC+Dgrnxmr9jBv5EV00jxeIuLFzBj06RDJ54dL+Hh/Hr/u39nTIYmINCl9RehFfiwsZ0/OCcwmuDqxrdvHD7kgDoAt3xc4t1VabKz87EcAxl/asWkCbUWigs3Mveo8nr2xD0MvjCPAbKKs2upMSAUHQNuwQOeQxgqLjUqLjfaRwfwupQsvTejOVV1DST0/lLuHdCTAZJ+76smPDmCcMelLRHQcEdFxNcbhSFo9++/d5OZqaXIRsauy2PjqiD0R1Ssh3MPR+L74IAv3DY4lPMjMnpwT/HLFTpZ8+j25xZXk5eWd9b4uIuJphmFw+fn2+WD/s1/vUyLie9RTyou89/UxAAZ2jSU+MsTt4wdfEMfru3LYeCCfu6uthAUFsO7LI+SWVNE+MphRFyc0dcitRv8uMfTvEkNJpYXC8mry8/PZ8M0RAs0mbh7QhXbt2lFaZaWwvBqL1eD8uDBMJhPHjtmfE5PJxDXdo4mNiebP6/fy+q4cIkICmX55t3rHUFvCqqE0ZFCk9duRXUiV1SAmNIAwS4kmOG9mlWXF7Pj2R/qHV/NlWSTHq+HFbdms2JZNTJCVYYntSO7Wju5tI0iICiE6zP4xqaCggLi4OA2XERGPyC4oxQR8ebiYoycq6BijLzFExHcoKeUlbIbBe98cBeD6i9ufY++aXdYlhk5tQsg5UcnyzEOM69OBZVsPAvDbgV0I1twZRIYEEhkSSHBVsMu8UCaTyVlWl5//rD0llRYW/CeL5ZmHqKi28n/DLmyy+E5PNEHdyaZzDRkUEe/32v9+AiAuqJqXPv2G8Gj9HTe3sMhoQq0VDIsNIc8SSG6ZlX0F1RyvDuDNbwp485tTvY2DzCbiwsxUVVaQ3DWe3ufFcX4kJLYNpUO7eJcklWEYFBTYj1UCS0SaUoDNwiUJEXx5tJRZb3/DI6N6ckF8y66m7eihpfc2EWlqfpeUys/P54EHHmD79u0EBAQwZswY7r33XgIDPXcpbDYbL366n+zCCsKDA1zmg3JHcKCZu69OJP2tr/jnzh9564sjHC+vJjE+gjG9OjRx1P5rYt9OVFpsLPzkO/7fZz/xzZFibu4di2EYjW6oHYmmiOg4SosKzplsaureVyL+rKXbh+/yS8n84TgmoFeHKMyV6ibVkkwmE/HmUiIDKukQU0WxKYKE2Gi+K6zmh8IqKm0mqm0GR0utQBD//a6I/35nn//LjEH32GD6d2vHxR2iaGOuIsxayrtfHsZsht8P70Pbtu4PwxcR7+MN9w6GYdAhIoCDIQF8m1fG71d9yQu/6st5MWEtFoOISHPxu6TUzJkzSUhIYNOmTeTl5TF9+nRWrFjBbbfd5rGY/pf1E8t2HgFM/LZvPGFBAQ0+15Xd40jt2Y4P9+VyvLyajm1CWDShF6GNOKecbfKA84iPCGbeB9+y66cT7PrpBFHBJtqHB9D220L6W0OJjwgm5uSKfjbDwGozsAEV1VYi6ng6IqLjiIzRzYxIS2vp9sExZHtAxxAigsyUVzbLr5FzcPScCi0+DiXVdKOSi89vj8VSQaURQllVJUVl1VzcpR0HjlfxRW4VlVbYf7ya/cdzXM4VYAogKtjMiY0/0vf8Ci5qH0H7wGpCg8zqPSXSSnnDvYNhGMSFmHl61PnMfPcHCsqqmbFqD0+Nu5ju7Vq2x5SISFPzq6TUwYMH2b59Oxs3biQsLIwuXbowY8YMHn/8cY8kpUqrLKz/+hhPf3IQq2GifbiZkUkxjTqnyWTikVEX8at+nTlSXEly5zYNmp9Kzm3Ez9pzaec2PLv5Bz7Ym0txlUFxlYXF247AtiPO/cwmsJ3WAWL1vl1EBAfQPjKEdpHBtI8KoX1kMG1CgygvKyHreDVhVSVUlVvY9MMJ4orsKwJWWWxUWqxUWmxUVNsoKCpmb341IYHwv5xSegaU0bFNiDMBqTmnROrPE+1Dj2gzbUMMgsuOURHasB6y0rTCIqOxWSoACDBBRKCJcDMEFB+nKM9GW2sl13dpR0llJUeLq+nULo6DJywcKqqmzGLDapgorLS59KoCg/BA6Nkukk5tgmkTEkC7mCjCgwOoKi8jwARms4m46DaEBwdgVJYRGWzmvIR4okKDXIaa14djGKHJBG3bRjbxFRLxL95y72AYBtXVVbzx+Y8M7hjC5/kWDp+o5JZXd/O7lK6MvDiBdpHBSnyLSKvkV0mp/fv3ExMTQ0LCqQm/u3fvTk5ODidOnKBNmzbN8nt/Kipn56FCiiutlFRaOFZcyQ8FZew7VkLVyVXg2oebGdI5FHMjGpPTkxCXdIind6fmqY+c0qFNKA9dfxFTe0fz908PUVBhIyQ4iJ+KLRSUVWOxGS4JKYfSKivfF5TxfUFZLWe2z0uSmZMD5NSyzymZOdlANgCxYUF0aBNCqNnG4ePFBJigV+c4oiMjMJnAbDKd/LHfCJkwqCgvByAyIhyz2YwJ+34mE87/g0FZWSkmTERGRmAymew/2PcBg9LSUgCiIiNPnhs4bR/7+ewnPf2x42Vv/zUGxcUlmE3QuXN7SksqnWU1ne/czr1Tfc5zrl3qdw73/74Nzn4BnTkZtskEQ0OCG3B2cfBE+9C/cyQjEttQVmxr8nNL0wuLjMawVtjnIAyCautxTCU2zjcq+VkXe8+qclsIVeZA2pgt7DxazfFKg0rDTJkFdh0uZdfh0pNny6vhN/x0xuMs++8NMhMZbMZsMmEY9jkoDezvAwb25JnZZCLADAEmExg2TlRUYwLOa/sDIYGBBGIlNNBMgNmEmZPvpyfbgdCQEKqqqjCbICo8jKhQ+/yKUSGBRAQHnGwL7Ps63ucMw36TXFxSgmEYREWd6qlhGGA7+Z/T4zQMg9LSEkxAVGQUppNthGHY20mbYWAzDE4U2yf8D4+IOHnsqbYlIiKCsrJSoiJDMYzAk/U++WPCXr+T205/Tz79PdPl7dNl+6kHte7Pme+/dR/juEZRkZH2i3fGm/fpj6JySiguLndeL047R03qjBH7SUpKSriwQxz9usQoWdFAnrp3qI0JE0EmG5e2NWOxmskts/HMpz/wzKc/EB4UQFRIAOHBAYQHBRAWHEBE8MnHwYGEBZoJCQogJNBMgMmE2Wz/u7b/HzDAevLv0Wqz9/Cvthr8VFTOoePl5JVW0bFNCBfEhdM5JoygADNBASYCTCYCA05+NnPzdVbX7nV9ZnKUOP5uHfvWeT4TREUVO//OTm0/9++p7XzuHlNXgLWVNCSGuo6q+5q7d4wJiM4rp+hE+dlvRHWcsMmvaxPyxEQKrq9HaJNfzokT5Wd93m9KIYFmLu3UhsAA7+i04FdJqdLSUsLCXMdeOx6XlZXVu2Exm8++KazLPW9/TU7R2eMyggMDOD82iKGdgiguOo65uprCwuMEBNT8Z1dYeBxr+Qnn/8/cLz+/gP+3+WsAfn35xbRtW/N8Q+c6jzv7OsqrbcEUFgZjruUb3fr+zvr+Pm85j0NV2Qk6BZXRKQjG9o6jbds4DMOgrNqgymJwoug4739zBLMJfjX4QoqqA8kvtVBQbqGgzEJ+uYWyahtlFRVkF1ZgDgjCYrHQNjwYAux/psGBJoJMJkICzYQEmrFWVZKVX0aVzURIUCDHq6C82ka1zSC7sOJkZCFgwObsUqC0xthdFZ17F8CRNKtdfj3Pcy7Hmug8vu/8bdn88+a+br036R7llKZoH2pqGxzXuKaygAAT1ooSjKpyTIFWDEuV81+ztQqqS8+5raFljdnfsFmxWW0YVnOL/+7mqjeWKrBUYFS5d66wkEBsFhtUl2K2VBEVaMVWXUXuTz8w+PwkbJYqqk3BlFZZOZpfQFBMJ6psVqotBhabgTkoBJvNRnV1NQQEYjXAagrEapiwGKf+QMstUNtH5WpOLzv5rzkIgIPHK4FzjQstOe3/xefYtzaH3dz/yLl3kSZylGW/7ENS+/r3mlPbcIqn7h3MZvvnPWuQ2WXOUsNsTxKHAsPOCyan1OBgsY2ik3MSllbbKK224XhnaGrFuWV8m1vbF6oi0prcfFlnbh98vlvHNFf74FdJqfDwcMpP9ghxcDyOiIio93ni4twbu/3B3Ve5tX/tLuTyy89VPqAJzuPu72yK87T072vpuGHE1fU5j4h4QlO0D3W1DTWVtW0bxYIe7n0YEBGRluOpe4e2baN46KaEc+8oIuIDvKO/Vgvp0aMHhYWFziFuAAcOHKBDhw4uXc9FRMS/qH0QEZEzqW0QEWl+fpWU6tatG/3792f+/PmUlJSQnZ3NkiVLmDhxoqdDExERD1L7ICIiZ1LbICLS/ExGbTMo+qi8vDwefvhhtm3bhtlsZty4caSnpxMQEODp0ERExIPUPoiIyJnUNoiINC+/S0qJiIiIiIiIiIjn+dXwPRERERERERER8Q5KSomIiIiIiIiISItTUkpERERERERERFqcklIiIiIiIiIiItLilJSSRtm7dy+33HILAwcO5PLLL+eee+6hoKDA02F5LavVypQpU7jvvvs8HYpXKyws5J577iElJYXLLruMGTNmcOzYMU+H5ZW++uorJk+ezIABAxg6dCiPPPIIVVVVng7L7+Xn5zNjxgwGDBhASkoKGRkZWCwWT4d1lrrewx988EF69epFcnKy8+f11193Hrt27VpSU1Pp27cv48ePZ9euXc4yq9XKggULGDJkCMnJyUyfPr3F/obXr1/PxRdf7BL3rFmzANi9ezeTJk0iOTmZ4cOHs2rVKpdjvbVOb7/9tkt9kpOT6dWrF7169QJa33NVUFBAamoq27Ztc25rzuemJf4ea6rThg0bGDt2LP369WP48OEsXrwYm83mLL/++uu59NJLXZ63AwcOeE2dpHm58xx+8sknjB49mr59+3L99dfz0UcftXC0rYM71/S2226jd+/eLn9/GzdubOGIW4+a3uPOpNepe+pzTf3mdWqINFB5eblx+eWXG3//+9+NyspKo6CgwLj99tuNO+64w9Ohea2FCxcaF110kXHvvfd6OhSvdvPNNxtpaWlGUVGRUVxcbPzhD38wpk2b5umwvI7VajUuv/xy46WXXjKsVqtx+PBhY8SIEcbixYs9HZrfu/nmm40//elPRllZmXHo0CFj1KhRxrJlyzwdlotzvYf/4he/MN54440aj83MzDSSk5ONnTt3GlVVVcaLL75opKSkGGVlZYZhGMbTTz9tjB492sjJyTGKi4uNmTNnGrfffnuL1Ouxxx4z7rvvvrO2FxYWGgMHDjReeeUVo7q62tiyZYuRnJxs7N692+vrdKYjR44Yl19+ufHmm28ahtG6nqudO3ca1157rZGUlGRkZmYahtH8z01z/z3WVKcvvvjC6NOnj/Hf//7XsFqtRlZWlnH11VcbL7zwgmEYhlFcXGz07NnT+PHHH2s8p6frJM2vvs/h999/b/Tu3dv48MMPjerqauPdd981+vTpYxw5csQDUXs3d/4uUlJSjG3btrVwhK1TTe9xZ9Lr1D31uaaG4T+vUyWlpMEOHDhg3HrrrYbFYnFu+/e//23069fPg1F5ry1bthgjR4407rzzTiWl6vDFF18YvXv3NoqLi53bjh8/bnz77bcejMo7FRQUGElJScaLL75oWCwW4/Dhw8b111/vvOkRz/jhhx+MpKQklw9i7777rnHVVVd5MKqz1fUeXllZaVxyySW1/t396U9/MubOneuy7ec//7mxevVqwzAM48orrzTefvttZ1lubq7Rs2dP49ChQ81QE1eTJ082XnnllbO2/+tf/zKuu+46l21//vOfjXvuuccwDO+u0+lsNpsxZcoUY86cOYZhGK3quXrjjTeMq666ynj33XddPog353PT3H+PtdXp/fffN+bPn++y7/z5843f//73hmEYxtatW42UlJRaz+vJOknzc+c5fPLJJ41bbrnFZdutt95q/P3vf2/2OFsTd67poUOHjIsuusjls6bUrLb3uDPpdVp/9b2m/vQ61fA9abALL7yQ559/noCAAOe2DRs2cMkll3gwKu+Un5/PnDlzeOKJJwgLC/N0OF5tz549JCYm8q9//YvU1FSGDh3KggULaNeunadD8zqxsbFMnTqVBQsW0Lt3b4YNG0a3bt2YOnWqp0Pza/v37ycmJoaEhATntu7du5OTk8OJEyc8GJmrut7D9+7di8ViYdGiRQwZMoQRI0bwj3/8wzn0KCsri6SkJJfzJSYmsnfvXoqLizly5IhLeXx8PNHR0ezbt69Z62Sz2fjqq6/4+OOPufrqq7nyyit54IEHKCoqYv/+/bXG7M11OtNbb71FVlaWcxh4a3quhg4dyocffsjIkSNdtjfnc9Pcf4+11WnEiBHMnj3b+biiooKPP/7Y+Rnpiy++ICwsjJtvvpmUlBTGjx/vHOri6TpJ83PnOazr9S+nuHNNv/jiCyIiIrjrrrsYNGgQN9xwA6tXr27pkFuF2t7jzqTXaf3V95r60+tUSSlpEoZh8NRTT/HRRx8xZ84cT4fjVWw2G7NmzeKWW27hoosu8nQ4Xq+oqIh9+/bxww8/sHbtWt58802OHj3Kvffe6+nQvI7NZiM0NJQHHniAzz//nHfeeYcDBw6waNEiT4fm10pLS89KPjsel5WVeSKkczrzPby4uJiBAwcyZcoUPvnkEx5//HH++c9/snz5cqDmOoaGhlJWVkZpaSkA4eHhZ5U7yppLQUEBF198MSNGjGD9+vW89tpr/PDDD8yaNavOmMF763Q6m83G0qVL+f3vf09kZCRAq3qu2rVrR2Bg4Fnbm/O5ae6/x9rqdLqSkhLS0tIIDQ11fmlgMpno3bs3jzzyCJs2bWLq1Kn88Y9/5PPPP/d4naT5ufMcnuvvQ+zcuaZVVVX07duXu+66i02bNnHfffeRkZHBe++912Lxthb1eY8DvU7dUd9r6k+vUyWlpNFKSkq48847WbduHa+88go9e/b0dEhe5bnnniM4OJgpU6Z4OpRWITg4GIA5c+YQGRlJfHw8M2fO5JNPPmnRm7/W4MMPP2TDhg38+te/Jjg4mB49epCWlsarr77q6dD8Wnh4OOXl5S7bHI8jIiI8EVKdanoPv/zyy3n55ZcZOHAgQUFB9OnTh9/+9resX78esH/Qr6iocDlPRUUFERERzg+lZ14DR3lzio+PZ+XKlUycOJGwsDA6derErFmz2LhxI4Zh1BozeG+dTrdt2zaOHTvGxIkTndta63N1urpiPFf5uerg6b/H7777jl/+8pdYLBZefvllZzLxtttuY9GiRXTr1o3g4GDGjBnDkCFD2LBhg9fXSRrPnefwXH8fYufONR03bhzPP/88F198MUFBQQwdOpRx48b55M1+S9HrtOn50+tUSSlplEOHDjFhwgRKSkpYvXq1ElI1eOutt9i+fTsDBgxgwIABvPPOO7zzzjsMGDDA06F5pcTERGw2G9XV1c5tjmEohmF4KiyvdPjw4bNW2gsMDCQoKMhDEQlAjx49KCwsJC8vz7ntwIEDdOjQgaioKA9Gdrba3sP//e9/89prr7nsW1VVRWhoKGCv4/79+13Ks7Ky6NGjB9HR0SQkJJCVleUsy83NpbCw8Kyu/U1t7969/O1vf3N5r6iqqsJsNtOnT59aYwbvrdPpNmzYQGpqqksPmtb6XJ0uKSmp2Z4bT/49fvLJJ0yaNIkrrriCF154gejoaGfZCy+8wNatW132r6qqIiQkxKvrJE3DnefwXH8fYufONV29evVZN/aOvz9pGL1Om54/vU6VlJIGKyoq4re//S39+vXjhRdeIC4uztMheaX333+f//3vf+zcuZOdO3dyww03cMMNN7Bz505Ph+aVhgwZQpcuXbj//vspLS2loKCAp556imuvvdb5DbPYDR06lNzcXJ599lmsVivZ2dksXbqU0aNHezo0v9atWzf69+/P/PnzKSkpITs7myVLlrj0bvEGdb2HG4bBo48+ytatWzEMg127dvHyyy9z0003ATBx4kTWrVtHZmYm1dXVrFixgvz8fFJTUwEYP348S5cuJTs7m5KSEubPn8/AgQPp2rVrs9YpJiaGlStX8vzzz2OxWMjJyeHxxx/nF7/4BSNGjCAvL48VK1ZQXV1NZmYm69atY8KECV5dp9N99tlnXHbZZS7bWutzdbrU1NRme2489ff4+eefk5aWxuzZs7n33nvPGqpx+PBh/vKXv5CdnY3FYmH16tXs2rWLX/ziF15bJ2k67jyHY8aMYfv27axfvx6LxcL69evZvn07Y8eO9UDk3suda1pSUsK8efP4+uuvsdlsfPzxx7zzzjvO901xn16nTc+vXqcem2JdWr3ly5cbSUlJxqWXXmr07dvX5Udqd++992r1vXM4cuSIMXPmTOPyyy83BgwYYNxzzz1GUVGRp8PySps3bzYmTZpk9O/f37jqqquMJ5980qisrPR0WH4vNzfX+OMf/2gMHDjQGDRokPHYY4+5rHLnDc71Hv7qq68a1113nXHppZca11xzzVkr2r355pvGiBEjjL59+xoTJ040Pv/8c2dZVVWV8fjjjxtXXHGF0a9fP2P69OlGXl5ei9Rr27Ztxk033WQkJycbgwYNMubNm2dUVFQYhmEYe/bscZZdc801xpo1a1pFnRz69u1rfPzxx2dtb43P1ZkrDjXnc9NSf4+n1+mOO+4wevbsedbf1q233moYhn3VxIyMDGPo0KHGpZdeakyYMMHlenhLnaT51PUc9u3b13jrrbec+27cuNEYM2aM0bdvX2PUqFE1vg9I/a+pzWYznnnmGePqq682+vTpY4waNcp47733PBl6q3Dm+7Zep41X1zX1p9epyTA0HkZERERERERERFqWhu+JiIiIiIiIiEiLU1JKRERERERERERanJJSIiIiIiIiIiLS4pSUEhERERERERGRFqeklIiIiIiIiIiItDglpUREREREREREpMUpKSUiIiIiIiIiIi1OSSkRERERERERER9TUFBAamoq27Ztq/cxGzZs4IYbbqBv376kpqayevXqZowQApv17CIiIiIiIiIi0qI+++wz7rvvPg4dOlTvYzIzM7nvvvtYuHAhV155Jdu2beP2228nKSmJPn36NEuc6iklIiIiIiIiIuIj1q5dS3p6OnfddddZZVu2bGHixIkMGDCAUaNG8fbbbzvLVqxYwW9+8xuGDRuGyWRi0KBBrFmzhq5duzZbrEpKiYiIiIiIiIj4iKFDh/Lhhx8ycuRIl+179+5l+vTpTJs2jW3btjFv3jzmz5/Ppk2bANizZw8xMTFMmzaNlJQUxo4dy6FDh4iJiWm2WJWUEhERERERERHxEe3atSMw8OzZml577TWuueYarrvuOgICAujXrx833ngjK1euBKCoqIgXXniB6dOns3nzZtLS0rjrrrvYvXt3s8WqOaVERERERERERHzcTz/9RGZmJgMGDHBus1qtzuF5wcHBTJgwgeTkZACuu+46Bg8ezIYNG7j00kubJSYlpUREREREREREfFyHDh34xS9+wcMPP+zcduzYMQzDAKB79+5UVVW5HGO1Wp3lzUHD90REREREREREfNzEiRN55513+PTTT7HZbPzwww/cfPPNLF++HIBf/epXvPrqq2zZsgWbzcaGDRvYtm0bN9xwQ7PFpJ5SIiIiIiIiIiI+7tJLL+XJJ5/kySef5P/+7/8ICwvjhhtu4O677wZgwoQJmM1mHn30UX788Uc6d+7MU089xSWXXNJsMZmM5uyHJSIiIiIiIiIiUgMN3xMRERERERERkRanpJSIiIiIiIiIiLQ4JaVERERERERERKTFKSklIiIiIiIiIiItTkkpERERERERERFpcUpKiYiIiIiIiIhIi1NSSkREREREREREWpySUiIiIiIiIiIi0uKUlBIRERERERERkRanpJSIiIiIiIiIiLQ4JaVERERERERERKTFKSklIiIiIiIiIiItTkkpERERERERERFpcUpKiYiIiIiIiIhIi1NSSkREREREREREWpySUiIiIiIiIiIi0uKUlBIRERFpQYZheDqERvOFOoiI+Au9Z4s3U1JKpIkcOXKEm2++md69ezN48GB69uzJtm3bPB2WiIh4kaysLH71q1812fm2bdvGiBEj6NWrF7feemuTnbc2J06c4N5772Xnzp3N/rtEROTc7rvvPoYPH+58PGXKFKZMmeJ8vGrVKhYsWOB8/MYbb9CzZ09+/PHHFo1TpDaBng5AxFe89NJL7Nq1i8cff5yDBw+ycOFCT4ckIiJe5r333mPXrl1Ndr4FCxZgs9n4xz/+Qdu2bZvsvLX55ptvePPNNxk/fnyz/y4REXHfgw8+6PJ46dKlDBw40Pn4qquu4vXXX6d9+/YtHZpIjZSUEmkihYWFtG/fnpEjR6qHlIiItIjCwkIuu+wyhgwZ4ulQRETECyQmJtZZHhcXR1xcXAtFI3JuGr4n0gSGDx/OG2+8QU5ODj179mTx4sVn7fPFF19w6623kpKSQr9+/fj973/P/v37XfY5duwYs2fPZtiwYfTp04eJEyfyn//8x2Ufx/knTJhA//79WbJkCTabjb///e8MHz6cXr16MXz4cJ588kmqq6ubtd4iIr5s3LhxTJ8+3WXbiBEjGDp0qMu2mTNncvPNN1NRUcETTzzBddddR69evejXrx+33HIL33zzDQBPP/20s33o2bMnTz/9NICzp1Nqaiq9evVixIgR/POf/3T5HVOmTCE9PZ0777yTfv36MW3aNHr27MlPP/3Em2++6Rwy/vTTT5OamsrixYtJSUnh2muv5fjx41itVlauXMno0aPp06cPV111FX/729+orKx0/o777ruPqVOnsmbNGueQwDFjxvDJJ58A9qGCv/nNbwD4zW9+4zI8RETEnxmGwcqVKxk1ahR9+vQhNTWVZcuWOedy2rx5M7/+9a/p378/KSkp/OlPf+Lw4cPO49944w0uvvhidu/ezU033UTv3r256qqrWLZsmcvvKSoqYvbs2aSkpHDZZZfx+OOPY7PZXPY5ffje8OHD+emnn1i7dq1zyF5Nw/eaKj6RhlBSSqQJLF68mGHDhtGuXTtef/11Jk6c6FKemZnJr371K2w2GxkZGTzyyCMcPnyYX/7ylxw4cACAvLw8Jk6cyPbt27nrrrt4+umn6dy5M2lpabz99tsu51u6dCkjRozgySef5JprrmHZsmWsXLmStLQ0li9fzq9+9Suef/55nn322Ra7BiIivuaqq65i+/btWK1WwD534A8//EBubi7ff/89AFarlS1btnD11Vdzzz33sHr1aqZNm8by5cu57777+Pbbb7nrrrswDINJkyY524fXX3+dSZMmAfDQQw+xaNEixowZw7PPPsvPf/5z5s+fzzPPPOMSz3vvvUdQUBDPPPMMU6ZM4fXXX6ddu3YMGzaM119/nUsuuQSAnJwcPvzwQ5588klmzpxJbGwsf/7zn5k/fz7Dhw9n6dKlTJ48mVdeeYUZM2a4TID75Zdf8sILL3DnnXfyzDPPEBgYyJ133klRURGXXHIJf/7znwH485//fNYQERERf/Xkk0+SkZHBsGHDWLp0KZMmTeKpp55iyZIlvPXWW/zud78jISGBJ598ktmzZ7Nr1y5uuukm8vPzneew2WzMnDmTkSNH8o9//IP+/fvzt7/9jU2bNjnLb7vtNj7++GPS09NZsGABu3btYv369bXGtXjxYpd2oqYhe00Vn0hDafieSBO4+OKLiYuLIzg4mL59+7p88wzwxBNP0KVLF55//nkCAgIAGDp0KKmpqTz99NMsXLiQF198kYKCAt577z26dOkCwLBhw5g6dSp//etfueGGGzCb7XnkPn36MG3aNOf5//rXv3LJJZcwYcIEAAYOHEhYWBiRkZEtUX0REZ901VVXsXTpUvbs2UNycjJbt26lS5cunDhxgu3bt3PBBRfw+eefU1RUxNVXX82WLVt44IEHGDlyJGB/Ly4tLeWxxx4jNzeXDh060KFDBwD69u0LwPfff8+//vUv7r77buf7+tChQzGZTDz33HP8+te/JjY2FgCz2cy8efMIDw93xhgcHExcXJzzfAAWi4V7773XOaQvKyuL1atXM3PmTGfPr8svv5z27dtzzz33sHHjRoYNGwZAcXExb7zxBl27dgUgPDycm2++mczMTEaMGOEcFpKYmHjOISIiIv7gxIkTvPjii0yZMoV77rkHsL/HFhQU8Nlnn/Hqq68yZMgQnnrqKecx/fr1Y+TIkSxfvpxZs2YB9t5WM2bMcH5h0b9/fz788EM+/vhjrrjiCjZu3MiePXt47rnnuOqqqwAYNGiQyyTnZ7r44otrbCccbDYbjz/+eJPEJ9JQ6ikl0szKysr44osvGDlypDMhBdCmTRuuvvpq5/xT27dvJzk52ZmQchgzZgy5ubl89913zm1JSUku+6SkpLBlyxZ+/etf8+KLL3LgwAFuvvlmxo0b13wVExHxcX369CE2NpYtW7YAsHXrVgYNGsSll17K9u3bAdi4cSPdunXjwgsv5IUXXmDkyJEcO3aMHTt28Prrr/PRRx8B1DqcOjMzE8MwGD58OBaLxfkzfPhwKisr+eyzz5z7nnfeeS4Jqbqc3k44Yh09erTLPqNGjSIgIMBlHsS4uDhnQgpwJtHKy8vr9XtFRPzN559/TnV1NampqS7b77vvPubMmUNubu5Z779du3YlOTn5rHlok5OTnf93JJPKysoA2LlzJ0FBQVx55ZXOfcLDw51fKjTE999/32TxiTSUklIizay4uBjDMIiPjz+rLD4+nuLiYsA+Rry2fcD+LcyZ2xxuu+02/vznP1NRUcGCBQsYOXIko0ePZuvWrU1ZFRERv2I2m7nyyiud76WZmZmkpKQwcOBAduzYAdiTUldffTUAmzZt4vrrr+eKK67gjjvu4M033yQ4OBjAZYjc6QoLCwF7guiSSy5x/ji+iT569Khz35raiNqcvm9RUREA7dq1c9knMDCQ2NhYZzsEEBYW5rKPyWQCOGvOEhERsXO8j9c0ebij7Fz3AQ6hoaEuj81ms7P9KCoqIiYmxjlywuHM93Z3NGV8Ig2l4XsizSwqKgqTyUReXt5ZZbm5ucTExAAQHR1d6z6Ac/hGTcxmM5MnT2by5Mnk5+fzySef8Oyzz/LHP/6RLVu2OG+KRETEPVdddRX33HMPX331FUePHmXgwIEcPXqUv/3tb+zcuZNvvvmG++67j0OHDpGWlsY111zDc8895+xttHLlyjrn22jTpg0AL730EhEREWeVd+rUqdF1iI6OBuztyXnnnefcXl1dzfHjx+tsX0REpG6O9/GCggIuvPBC5/bDhw+zb98+gFo/47vz/hsbG+tcuOL00ReOxFJDOO5DmiI+kYZSTymRZhYeHk6vXr1Yv369c7JcsPeg+vjjj+nfvz8Al112Gbt27SI7O9vl+Lfffpt27dpx/vnn1/o7fvnLX/LII48A0LZtW8aPH8/kyZMpLi6mpKSkGWolIuIfhg4dimEYLF26lG7dupGQkMAll1xCVFQUTzzxBFFRUfTv358vv/ySyspK7rjjDpfhb46ElOOb5DO/4b7ssssAOH78OL1793b+FBYWsnDhwkbdbDgMHDgQgHXr1rlsf/fdd7Farc52qD5OvxESERH7UO+goKCzVsx+6aWXWLhwIe3atTvr/Tc7O5vPP/+cfv361fv3DB48GIvFwr///W/ntqqqKjZv3lzncWe2O6e74IILmiw+kYZSTymRFvCnP/2JW2+9ldtuu42bb76Z6upq/vGPf1BVVcUf/vAHAG655RbefvttbrnlFv7whz8QGxvLm2++SWZmJvPnz6+zQbnssstYvnw58fHxJCcnc/ToUV588UUGDhxYY1diERGpnzZt2pCcnMyHH37ITTfdBNgTMwMGDOCjjz7ihhtuIDAwkEsuuYTAwEAef/xxfve731FVVcUbb7zBxx9/DOCcc8Pxjfo777zDpZdeSlJSEmPGjOGBBx7gp59+olevXnz//fc89dRTnHfeeXTr1q3RdUhMTOQXv/gFixcvpqKigpSUFL755hsWL15MSkqKWxPURkVFAfDxxx8THR3NRRdd1Oj4RERas7i4OH7zm9/w0ksvERwczKBBg/jiiy945ZVXuPvuu4mJiWH27NncddddjBs3juPHj7N48WKio6O55ZZb6v17Bg8ezNChQ5k7dy75+fl07tyZl19+mYKCAtq2bVvrcW3atOHrr79m+/bt9OnTx6XMbDZz9913N0l8Ig2lpJRICxg8eDAvvvgiixYt4u677yY4OJgBAwawYMECevToAdjHg7/66qs88cQTZGRkUF1dzUUXXcSSJUu45ppr6jz///3f/xEcHMyaNWt45plniIqKYvjw4fzpT39qieqJiPi0YcOGsWPHDlJSUpzbBg0axEcffeRcAen888/niSeeYPHixUyfPp3o6Gj69u3LP//5T6ZMmcLOnTvp2bMn1113HW+99Rb33XcfEydO5KGHHuLRRx/lueee47XXXuPIkSO0bduWkSNHMnPmzCbrmZSRkcH555/PmjVreOGFF2jfvj1TpkwhLS2tzi89ztSjRw9uuOEG57DEd955p0niExFpzWbNmkV8fDyvvvoqy5cv57zzzuP+++/n17/+NQARERE899xzpKWlERkZyRVXXMHdd9/t9nxQixcv5m9/+xuLFi2isrKSkSNHcuONN57VS+t0v/vd75g/fz633norL7744lnl48ePb7L4RBrCZGhmMhERERERERERaWGaU0pERERERERERFqcklIiIiIiIiIiItLilJQSEREREREREZEWp6SUiIiIiIiIiIi0OCWlRERERERERESkxSkpJSIiIiIiIiIiLU5JKRERERERERERaXFKSomIiIiIiIiISIsL9HQArVF+fjGGUf/9TSZo2zbK7eNaC9Wv9fP1Oqp+dR8nTUNtw9l8vY6qX+um+tV9nDQdtQ9NQ9elZrouNdN1qZ23tQ9KSjWAYdCgF3ZDj2stVL/Wz9frqPpJc1LbUDtfr6Pq17qpftLc1D40LV2Xmum61EzXpXbecm00fE9ERERERERERFqcklIiIiIiIiIiItLilJQSERERERGvV1BQQGpqKtu2bTur7NixYwwZMoQ33njDZfvatWtJTU2lb9++jB8/nl27djnLrFYrCxYsYMiQISQnJzN9+nSOHTvmLM/Pz2fGjBkMGDCAlJQUMjIysFgszVdBERE/pKSUiIiIiIh4tc8++4ybbrqJQ4cOnVVms9lIT0/n+PHjLtu3bdvGvHnzeOyxx9ixYwdjxoxh+vTplJeXA7B06VI2b97MmjVr2LRpE6GhocydO9d5/MyZMwkPD2fTpk2sXr2arVu3smLFimatp4iIv1FSSkREREREvNbatWtJT0/nrrvuqrH8mWeeoUOHDnTs2NFl+6pVqxg1ahT9+/cnKCiIqVOnEhsby/r1653lt99+Ox07diQyMpI5c+awceNGsrOzOXjwINu3b2fWrFmEhYXRpUsXZsyYwcqVK5u9viIi/kSr74mIiIiIiNcaOnQoo0ePJjAw8KzEVGZmJu+++y5r1qxh9OjRLmVZWVlMmDDBZVtiYiJ79+6luLiYI0eOkJSU5CyLj48nOjqaffv2ARATE0NCQoKzvHv37uTk5HDixAnatGlT7/hNpnrv6rK/u8f5Ol2Xmum61EzXpXYNvTbNdS2VlBIREREREa/Vrl27Grfn5+dz//33s2jRIiIiIs4qLy0tJSwszGVbaGgoZWVllJaWAhAeHn5WuaPszGMdj8vKytxKSrVtG1XvfZviOF+n61IzXZea6brUzluujZJSIiIiIiLSqhiGwT333MOUKVPo1atXjfuEhYVRUVHhsq2iooLY2Fhngskxv9Tp5RERERiGcVaZ43FNCbC65OcXYxj1399kst8sunucr9N1qZmuS810XWrX0GvjOK6pKSklIiIiIiKtyuHDh9m+fTu7d+/mmWeeAaCkpIS//OUvbNiwgeeee44ePXqwf/9+l+OysrK48soriY6OJiEhgaysLOcQvtzcXAoLC0lKSsJms1FYWEheXh7x8fEAHDhwgA4dOhAV5d5NmWHQoJvihh7n63RdaqbrUjNdl9p5y7XRROciIiIiItKqdOrUiS+++IKdO3c6fzp16sSDDz7Ic889B8DEiRNZt24dmZmZVFdXs2LFCvLz80lNTQVg/PjxLF26lOzsbEpKSpg/fz4DBw6ka9eudOvWjf79+zN//nxKSkrIzs5myZIlTJw40ZPVFhHxOeopJSIiIiIiPmfw4ME8+OCDPPTQQxw9epTExESWLVtGTEwMAGlpaVgsFiZPnkxpaSkpKSksXLjQefyiRYt4+OGHueaaazCbzYwbN44ZM2Z4pjIiIj5KSSkREREPOFZcyXv787nq/BhCgwI8HY6ISKvgWBmvJv/973/P2jZ27FjGjh1b4/5BQUGkp6eTnp5eY3l8fDyLFi1qWKAiIlIvSkqJiIh4wIvbsln1eQ73p/bgF306ejocERERaYUqKyvZuvVLCgtLXeYH6tOnLyEhIZ4LTKSelJRqIeMm3shPR/JqLY+PjeXl5StaLiAREfEo68lPjvmlVR6ORERERFqrPXs+58UNW4nteIFz29GD+5kGXHZZiucCE6knJaVayLG844yb9fday998/P9aMBoREfG08JND9sqqrR6ORERERFqzjhck0b7bxZ4OQ6RBtPqeiIiIB4QF2Zvg8iolpURERETEPykpJSIi4gHhweopJSIiIiL+TUkpERERDwg7OXyvXEkpEREREfFTSkqJiIh4gLOnlIbviYiIiIifUlJKRETEA8KdPaVsHo5ERERERMQzlJQSERHxgDD1lBIRERERP+fRpFRBQQGpqals27bNuW337t1MmjSJ5ORkhg8fzqpVq1yOWbt2LampqfTt25fx48eza9cuZ5nVamXBggUMGTKE5ORkpk+fzrFjx5zl+fn5zJgxgwEDBpCSkkJGRgYWi6X5KyoiInIGR0+psiq1QyIiIiLinzyWlPrss8+46aabOHTokHNbUVER06ZNY9y4cezYsYOMjAweffRR9uzZA8C2bduYN28ejz32GDt27GDMmDFMnz6d8vJyAJYuXcrmzZtZs2YNmzZtIjQ0lLlz5zrPP3PmTMLDw9m0aROrV69m69atrFixokXrLSIiAqcmOi/T8D0RERER8VMeSUqtXbuW9PR07rrrLpftH3zwATExMUyePJnAwEAGDx7M6NGjWblyJQCrVq1i1KhR9O/fn6CgIKZOnUpsbCzr1693lt9+++107NiRyMhI5syZw8aNG8nOzubgwYNs376dWbNmERYWRpcuXZgxY4bz3CIiIi0pIlir74mIiIiIf/NIUmro0KF8+OGHjBw50mX7/v37SUpKctmWmJjI3r17AcjKyqq1vLi4mCNHjriUx8fHEx0dzb59+9i/fz8xMTEkJCQ4y7t3705OTg4nTpxo6iqKiIjUyTGnVKXFhsVmeDgaEREREZGWF+iJX9quXbsat5eWlhIWFuayLTQ0lLKysnOWl5aWAhAeHn5WuaPszGMdj8vKymjTpk294zeZ6r2ry/4mExh13He4e15vcXr9fJGv1w98v46qX93HiWc45pQCqKi2EhnikSZZRERERMRjvOoTcFhYGMXFxS7bKioqiIiIcJZXVFScVR4bG+tMMDnmlzrzeMMwzipzPHacv77ato1ya3+HsLCQWsuCAgOIj2/Yeb1FQ69La+Hr9QPfr6PqJ94kKMBEoNmExWZQVqWklIiIiIj4H6/6BJyUlMTmzZtdtmVlZdGjRw8AevTowf79+88qv/LKK4mOjiYhIcFliF9ubi6FhYUkJSVhs9koLCwkLy+P+Ph4AA4cOECHDh2IinLvRi4/v7jOHk9ncvRGKC+vrPW4aouVvLzimgu9nMlkvxl297q0Fr5eP/D9Oqp+dR8nnmEymQgPDuBEhYUyzSslIiIiIn7IY6vv1SQ1NZW8vDxWrFhBdXU1mZmZrFu3jgkTJgAwceJE1q1bR2ZmJtXV1axYsYL8/HxSU1MBGD9+PEuXLiU7O5uSkhLmz5/PwIED6dq1K926daN///7Mnz+fkpISsrOzWbJkCRMnTnQ7TsNw/8dxXFOf11t+Wnv8/l4/f6ij6lf7ceI5ESd7R2mycxERERHxR17VUyo2Npbly5eTkZHBokWLiIuLY+7cuQwaNAiAwYMH8+CDD/LQQw9x9OhREhMTWbZsGTExMQCkpaVhsViYPHkypaWlpKSksHDhQuf5Fy1axMMPP8w111yD2Wxm3LhxzJgxwwM1FRERgfCTk52XVSkpJSIiIiL+x+NJqX379rk87t27N6+99lqt+48dO5axY8fWWBYUFER6ejrp6ek1lsfHx7No0aKGBysiItKE1FNKRERERPyZVw3fExER8SfqKSUiIiIi/kxJKREREQ+JCFZPKRERERHxX0pKiYiIeEj4yeF7ZdU2D0ciIiIiItLylJQSERHxkMgQx/A9i4cjERERERFpeUpKiYiIeEj4yeF7ZVXqKSUiIiIi/kdJKREREQ+JODnRueaUEhERERF/pKSUiIiIh5yaU0pJKRERERHxP0pKiYiIeIizp1SVklIiIiIi4n+UlBIREfEQ55xS6iklIiIiIn5ISSkREREPiQhRTykRERER8V9KSomIiHiIekqJiIiIiD9TUkpERMRDwrX6noiIiIj4MSWlREREPCQwwN4MW6yGhyMREREREWl5SkqJiIh4SKDZBIDVUFJKRERERPyPklIiIiIeEqSeUiIiIiLix5SUEhER8ZDAAHtPKYtNSSkRERER8T9KSomIiHhIkPlkTymbzcORiIh4v4KCAlJTU9m2bZtz24YNGxg7diz9+vVj+PDhLF68GNtp76lr164lNTWVvn37Mn78eHbt2uUss1qtLFiwgCFDhpCcnMz06dM5duyYszw/P58ZM2YwYMAAUlJSyMjIwGKxtExlRUT8hJJSIiIiHqKeUiIi9fPZZ59x0003cejQIee2L7/8knvuuYeZM2eyc+dOli1bxhtvvMGKFSsA2LZtG/PmzeOxxx5jx44djBkzhunTp1NeXg7A0qVL2bx5M2vWrGHTpk2EhoYyd+5c5/lnzpxJeHg4mzZtYvXq1WzdutV5bhERaRpKSomIiHiIMymlOaVERGq1du1a0tPTueuuu1y2//TTT/zyl7/k6quvxmw20717d1JTU9mxYwcAq1atYtSoUfTv35+goCCmTp1KbGws69evd5bffvvtdOzYkcjISObMmcPGjRvJzs7m4MGDbN++nVmzZhEWFkaXLl2YMWMGK1eubPH6i4j4skBPByAiIuKvHMP3DMBqMwg4uRqfiIicMnToUEaPHk1gYKBLYmrEiBGMGDHC+biiooKPP/6Y0aNHA5CVlcWECRNczpWYmMjevXspLi7myJEjJCUlOcvi4+OJjo5m3759AMTExJCQkOAs7969Ozk5OZw4cYI2bdrUO36Tm2/tjv3dPc7X6brU7PTrcvpiviaTf18rvV5q19Br01zXUkkpERERD3H0lAL7ED4lpUREztauXbtz7lNSUsL//d//ERoaytSpUwEoLS0lLCzMZb/Q0FDKysooLS0FIDw8/KxyR9mZxzoel5WVuZWUats2qt77NsVxvk7XxVV0dASQT1hYiHNbaGgQMTERxMfrWun1UjtvuTZKSomIiHhIUMCpUfQWm40QjaoXEXHbd999x5133knbtm15+eWXiYyMBOxJpIqKCpd9KyoqiI2NdSaYHPNLnV4eERGBYRhnlTkeR0REuBVffn6xSw+WczGZ7DeL7h7n63RdalZUZE+ilpdXOq9LRUU1hYWl5OUVezAyz9LrpXYNvTaO45qaklIiIiIeEnhazyjNKyUi4r5PPvmEu+++mxtvvJE//elPBAaeur3p0aMH+/fvd9k/KyuLK6+8kujoaBISEsjKynIO4cvNzaWwsJCkpCRsNhuFhYXk5eURHx8PwIEDB+jQoQNRUe7dlBkGDbopbuhxvk7XxZXjWpx5TXSd7HQdauct10ZfyYqIiFexWq1MmTKF++67z7lt9+7dTJo0ieTkZIYPH86qVatcjmmtS36fPlxPK/CJiLjn888/Jy0tjdmzZ3Pvvfe6JKQAJk6cyLp168jMzKS6upoVK1aQn59PamoqAOPHj2fp0qVkZ2dTUlLC/PnzGThwIF27dqVbt27079+f+fPnU1JSQnZ2NkuWLGHixImeqKqIiM9SUkpERLzK4sWL2blzp/NxUVER06ZNY9y4cezYsYOMjAweffRR9uzZA7TuJb9NJpMzMaWklIiIe5599lksFgsZGRkkJyc7f2677TYABg8ezIMPPshDDz3EwIEDeffdd1m2bBkxMTEApKWlMWzYMCZPnsywYcOorKxk4cKFzvMvWrQIi8XCNddcw4033sgVV1zBjBkzPFBTERHfpeF7IiLiNbZu3coHH3zAdddd59z2wQcfEBMTw+TJkwH7Tcbo0aNZuXIlffr0cVnyG2Dq1Km8/vrrrF+/ngkTJrBq1SrS09Pp2LEjAHPmzGHo0KFkZ2djs9nYvn07GzdudFny+/HHH3fe1DS3QLMJq83AYrO1yO8TEWnNHCvjgT0pdS5jx45l7NixNZYFBQWRnp5Oenp6jeXx8fEsWrSoYYGKiEi9KCklIiJeIT8/nzlz5rBkyRKXnkr79+93WbIb7Et6r169Gmj9S34Hmk1UAlab4XPLFvv6csyqX+um+tV9nIiISEtQUkpERDzOZrMxa9YsbrnlFi666CKXsrqW9D5XeWtY8js40ExplZWo6HCfXbrZW5Ycbi6qX+um+omIiHiOklIiIuJxzz33HMHBwUyZMuWssrCwMIqLXZc0dizZ7ShvzUt+m092S8jLLyEuwK1f6fV8fTlm1a91U/3qPk5ERKQlKCklIiIe99Zbb3Hs2DEGDBgA4Ewy/fvf/+aee+5h8+bNLvtnZWXRo0cPoPUv+R14cqLzaqvhkzfG4D1LDjcX1a91U/1EREQ8R6vviYiIx73//vv873//Y+fOnezcuZMbbriBG264gZ07d5KamkpeXh4rVqygurqazMxM1q1b55xHqrUv+R2o1fdERERExE+pp5SIiHi12NhYli9fTkZGBosWLSIuLo65c+cyaNAgwHXJ76NHj5KYmHjWkt8Wi4XJkydTWlpKSkrKWUt+P/zww1xzzTWYzWbGjRvXokt+BwY4klJafU9ERERE/IuSUiIi4nUee+wxl8e9e/fmtddeq3X/1rzkt7OnlFU9pURERETEv2j4noiIiAcFmu1NsYbviYiIiIi/UVJKRETEgzSnlIiIiIj4KyWlREREPOjUnFJKSomIiIiIf1FSSkRExINOzSmlic5FRERExL8oKSUiIuJBGr4nIiIiIv5KSSkREREP0kTnIiIiIuKvlJQSERHxoAD1lBIRERERP6WklIiIiAedmlNKSSkRERER8S9KSomIiHjQqdX3NNG5iIiIiPgXJaVEREQ8yNFTyqrheyIiIiLiZ5SUEhER8SCtviciIiIi/kpJKREREQ8KDNDqeyIiIiLin5SUEhER8SD1lBIRERERf6WklIiIiAdp9T0RERER8VdKSomIiHjQqZ5SWn1PRERERPyLklIiIiIeFBig1fdERERExD8pKSUiIuJBgWZNdC4iIiIi/skrk1JfffUVkydPZsCAAQwdOpRHHnmEqqoqAHbv3s2kSZNITk5m+PDhrFq1yuXYtWvXkpqaSt++fRk/fjy7du1yllmtVhYsWMCQIUNITk5m+vTpHDt2rEXrJiIicjrNKSUiIiIi/srrklI2m4077riDESNGsH37dlavXs2nn37KsmXLKCoqYtq0aYwbN44dO3aQkZHBo48+yp49ewDYtm0b8+bN47HHHmPHjh2MGTOG6dOnU15eDsDSpUvZvHkza9asYdOmTYSGhjJ37lxPVldERPyc5pQSEREREX8V6OkAzlRUVERubi42mw3DsH9rbDabCQsL44MPPiAmJobJkycDMHjwYEaPHs3KlSvp06cPq1atYtSoUfTv3x+AqVOn8vrrr7N+/XomTJjAqlWrSE9Pp2PHjgDMmTOHoUOHkp2dTZcuXTxTYWkVxk28kZ+O5NVaHh8by8vLV7RcQCLiMxxzSmn4noiIiIj4G69LSsXGxjJ16lQWLFjAX//6V6xWK9dccw1Tp07lscceIykpyWX/xMREVq9eDUBWVhYTJkw4q3zv3r0UFxdz5MgRl+Pj4+OJjo5m3759biWlTCb36uTY32QCo457DnfP6y1Or58vMpngWN5xfnHP32t9/t58/P9adf394Tk8/V9f09D6+er1aG00p5SIiIiI+CuvS0rZbDZCQ0N54IEHmDhxIgcPHuQPf/gDixYtorS0lLCwMJf9Q0NDKSsrA6izvLS0FIDw8PCzyh1l9dW2bZS71QIgLCyk1rKgwADi4xt2Xm/R0OvSWvj68we+/xyqfuKNAk4OpNecUiIiIiLib7wuKfXhhx+yYcMG3n//fQB69OhBWloaGRkZjB49muLiYpf9KyoqiIiIACAsLIyKioqzymNjY53JKsf8UjUdX1/5+cV19ng6k6M3Qnl5Za3HVVus5OUV11zo5Uwm+82wu9eltfD15w/84zlU/Wo/TjxLPaVERERExF95XVLq8OHDzpX2HAIDAwkKCiIpKYnNmze7lGVlZdGjRw/AnsDav3//WeVXXnkl0dHRJCQkkJWV5RzCl5ubS2Fh4VlDAs/FMOoehlfXcY0p93YNvS6tha8/f+Afz6HqJ95GE52LiIiIiL/yutX3hg4dSm5uLs8++yxWq5Xs7GyWLl3K6NGjSU1NJS8vjxUrVlBdXU1mZibr1q1zziM1ceJE1q1bR2ZmJtXV1axYsYL8/HxSU1MBGD9+PEuXLiU7O5uSkhLmz5/PwIED6dq1qyerLCIifswx0blVPaVERERExM94XU+pxMREnnvuORYuXMjzzz9PVFQUY8aMIS0tjeDgYJYvX05GRgaLFi0iLi6OuXPnMmjQIMC+Gt+DDz7IQw89xNGjR0lMTGTZsmXExMQAkJaWhsViYfLkyZSWlpKSksLChQs9V1kREfF7p3pKKSklIiIiIv7F65JSAEOGDGHIkCE1lvXu3ZvXXnut1mPHjh3L2LFjaywLCgoiPT2d9PT0JolTRESksTSnlIiIiIj4K68bviciIuJPnD2ltPqeiIiIiPgZJaVEREQ8yDGnlHpKiYjUraCggNTUVLZt2+bctnv3biZNmkRycjLDhw9n1apVLsesXbuW1NRU+vbty/jx49m1a5ezzGq1smDBAoYMGUJycjLTp0/n2LFjzvL8/HxmzJjBgAEDSElJISMjA4vF0vwVFRHxI0pKiYiIeJBW3xMRObfPPvuMm266iUOHDjm3FRUVMW3aNMaNG8eOHTvIyMjg0UcfZc+ePQBs27aNefPm8dhjj7Fjxw7GjBnD9OnTKS8vB2Dp0qVs3ryZNWvWsGnTJkJDQ5k7d67z/DNnziQ8PJxNmzaxevVqtm7dyooVK1q03iIivk5JKREREQ/SROciInVbu3Yt6enp3HXXXS7bP/jgA2JiYpg8eTKBgYEMHjyY0aNHs3LlSgBWrVrFqFGj6N+/P0FBQUydOpXY2FjWr1/vLL/99tvp2LEjkZGRzJkzh40bN5Kdnc3BgwfZvn07s2bNIiwsjC5dujBjxgznuUVEpGl45UTnIiIi/sI50bnmlBIRqdHQoUMZPXo0gYGBLomp/fv3k5SU5LJvYmIiq1evBiArK4sJEyacVb53716Ki4s5cuSIy/Hx8fFER0ezb98+AGJiYkhISHCWd+/enZycHE6cOEGbNm3qHb/JVP+6nr6/u8f5Ol2Xmp1+XQzDdbs/Xyu9XmrX0GvTXNdSSSkREREP0pxSIiJ1a9euXY3bS0tLCQsLc9kWGhpKWVnZOctLS0sBCA8PP6vcUXbmsY7HZWVlbiWl2raNqve+TXGcr9N1cRUdHQHkExYW4twWGhpETEwE8fG6Vnq91M5bro2SUiIiIh6k4XsiIg0TFhZGcXGxy7aKigoiIiKc5RUVFWeVx8bGOhNMjvmlzjzeMIyzyhyPHeevr/z8YpceLOdiMtlvFt09ztfputSsqMieRC0vr3Rel4qKagoLS8nLK67jSN+m10vtGnptHMc1NSWlREREPEgTnYuINExSUhKbN2922ZaVlUWPHj0A6NGjB/v37z+r/MorryQ6OpqEhASysrKcQ/hyc3MpLCwkKSkJm81GYWEheXl5xMfHA3DgwAE6dOhAVJR7N2WGQYNuiht6nK/TdXHluBZnXhNdJztdh9p5y7XRROciIiIe5ExKaU4pERG3pKamkpeXx4oVK6iuriYzM5N169Y555GaOHEi69atIzMzk+rqalasWEF+fj6pqakAjB8/nqVLl5KdnU1JSQnz589n4MCBdO3alW7dutG/f3/mz59PSUkJ2dnZLFmyhIkTJ3qyyiIiPkc9pURERDwoQMP3REQaJDY2luXLl5ORkcGiRYuIi4tj7ty5DBo0CIDBgwfz4IMP8tBDD3H06FESExNZtmwZMTExAKSlpWGxWJg8eTKlpaWkpKSwcOFC5/kXLVrEww8/zDXXXIPZbGbcuHHMmDHDAzUVEfFdSkqJiIh4UGDAydX3bAaGYWDSMjEiIrVyrIzn0Lt3b1577bVa9x87dixjx46tsSwoKIj09HTS09NrLI+Pj2fRokUND1ZERM5Jw/dEREQ8yDF8D0Aj+ERERETEnygpJSIi4kEuSSkN4RMRERERP6KklIiIiAednpTSCnwiIiIi4k+UlBIREfEgx5xSoBX4RERERMS/KCklIiLiQQGnzWuuFfhERERExJ8oKSUiIuJBJpPJOYRPSSkRERER8SdKSomIiHjYqaSU5pQSEREREf+hpJSIiIiHBZ4cw6c5pURERETEnygpJSIi4mGBZntzrOF7IiIiIuJPlJQSERHxMM0pJSIiIiL+SEkpERERD1NSSkRERET8kZJSIiIiHnZqTilNdC4iIiIi/kNJKREREQ9TTykRERER8UdKSomIiHhYgJJSIiIiIuKHlJQSERHxMMfqe1YlpURERETEjygpJSIi4mGO4XtKSomIiIiIP1FSSkRExMM0fE9ERERE/JGSUiIiIh6mnlIiIiIi4o+UlBIREa+wdetWJk2aRL9+/bj88suZN28eFRUVAOzevZtJkyaRnJzM8OHDWbVqlcuxa9euJTU1lb59+zJ+/Hh27drlLLNarSxYsIAhQ4aQnJzM9OnTOXbsmLM8Pz+fGTNmMGDAAFJSUsjIyMBisbRMpU9STykRERER8UdKSomIiMcVFBRwxx138Ktf/YqdO3eydu1atm/fzj/+8Q+KioqYNm0a48aNY8eOHWRkZPDoo4+yZ88eALZt28a8efN47LHH2LFjB2PGjGH69OmUl5cDsHTpUjZv3syaNWvYtGkToaGhzJ071/m7Z86cSXh4OJs2bWL16tVs3bqVFStWtGj9A9RTSkRERET8kJJSIiLicXFxcWzZsoXx48djMpkoLCyksrKSuLg4PvjgA2JiYpg8eTKBgYEMHjyY0aNHs3LlSgBWrVrFqFGj6N+/P0FBQUydOpXY2FjWr1/vLL/99tvp2LEjkZGRzJkzh40bN5Kdnc3BgwfZvn07s2bNIiwsjC5dujBjxgznuVuKhu+JiIiIiD8K9HQAIiIiAJGRkQAMGzaMo0ePMmDAAMaPH8/ChQtJSkpy2TcxMZHVq1cDkJWVxYQJE84q37t3L8XFxRw5csTl+Pj4eKKjo9m3bx8AMTExJCQkOMu7d+9OTk4OJ06coE2bNvWO32Ryr76O/U2mU0kpi2Fz+zze7PQ6+iLVr3VT/eo+TkREpCUoKSUiIl7lgw8+oKioiPT0dO68804SEhIICwtz2Sc0NJSysjIASktLay0vLS0FIDw8/KxyR9mZxzoel5WVuZWUats2qt77nnlcRFiw/XeHhxAf37DzeLOGXpvWQvVr3VQ/ERERz1FSSkREvEpoaCihoaHMmjWLSZMmMWXKFIqLi132qaioICIiArAnkRwTop9eHhsb60wwOeaXOvN4wzDOKnM8dpy/vvLzizHcGH1nMtlvFvPzi7FU2ydWLzxRTl5e8TmObD1Or6M716a1UP1aN9Wv7uNERERaguaUEhERj/vf//7Hz3/+c6qqqpzbqqqqCAoKIjExkf3797vsn5WVRY8ePQDo0aNHreXR0dEkJCSQlZXlLMvNzaWwsJCkpCR69OhBYWEheXl5zvIDBw7QoUMHoqLcuykzDPd/HMc5V9+zGg06jzf/NPTatJYf1a91/6h+tR8nIiLSEpSUEhERj+vZsycVFRU88cQTVFVV8dNPP7FgwQImTpzIiBEjyMvLY8WKFVRXV5OZmcm6deuc80hNnDiRdevWkZmZSXV1NStWrCA/P5/U1FQAxo8fz9KlS8nOzqakpIT58+czcOBAunbtSrdu3ejfvz/z58+npKSE7OxslixZwsSJE1u0/proXERERET8kYbviYiIx0VERPD8888zf/58Lr/8cqKiohg9ejRpaWkEBwezfPlyMjIyWLRoEXFxccydO5dBgwYBMHjwYB588EEeeughjh49SmJiIsuWLSMmJgaAtLQ0LBYLkydPprS0lJSUFBYuXOj83YsWLeLhhx/mmmuuwWw2M27cOGbMmNGi9Xf2lFJSSkRERET8iNtJqW3btpGSktIcsYiISCvVFG1DYmIiy5cvr7Gsd+/evPbaa7UeO3bsWMaOHVtjWVBQEOnp6aSnp9dYHh8fz6JFi9wPuAkFmu0dl9VTSkR8je4dRESkLm4P37vzzju59tpreeaZZ8jJyWmOmEREpJVR29A46iklIr5K7YOIiNTF7aTUp59+yqxZs/jyyy8ZMWIEv/vd73jnnXdcJqcVERH/orahcQJMmlNKRHyT2gcREamL20mpoKAgRowYwdKlS/nkk0+49tprWb58OUOHDuUvf/kLe/fubY44RUTEi6ltaJzAgJNJKS17JSI+Ru2DiIjUpcGr7+Xn57Nu3TrefPNNsrKySElJISQkhKlTp/Lss882ZYwiItJKqG1oGOfwPauSUiLim9Q+iIhITdye6Pzdd9/lrbfeYsuWLVx44YWMHz+eZ599lri4OACGDRtGWloav//975s8WBER8U5qGxon0KyeUiLim9Q+iIhIXdxOSv3lL39h1KhRvPbaa/Tq1eus8gsuuICpU6c2RWwiItJKqG1onED1lBIRH6X2QURE6uJ2UurTTz8lOzubhIQEAD7//HOioqLo3r07AB06dODOO+9s2ihFRMSrqW1oHMdE5xb1lBIRH6P2QURE6uL2nFL/+c9/GDduHD/88AMAu3btYtKkSXzyySdNHZuIiLQSahsaxznRuVbfExEf09ztw1dffcXkyZMZMGAAQ4cO5ZFHHnGu7Ld7924mTZpEcnIyw4cPZ9WqVS7Hrl27ltTUVPr27cv48ePZtWuXs8xqtbJgwQKGDBlCcnIy06dP59ixY00Ss4iInOJ2Umrx4sUsWbLE2f32lltu4e9//ztPPPFEkwcnIiKtg9qGxnH2lNLwPRHxMc3ZPthsNu644w5GjBjB9u3bWb16NZ9++inLli2jqKiIadOmMW7cOHbs2EFGRgaPPvooe/bsAWDbtm3MmzePxx57jB07djBmzBimT59OeXk5AEuXLmXz5s2sWbOGTZs2ERoayty5cxsds4iIuHI7KXX48GGuuOIKl21Dhw4lJyenyYISEZHWRW1D4zh7Smn4noj4mOZsH4qKisjNzcVms2GcfP80m82EhYXxwQcfEBMTw+TJkwkMDGTw4MGMHj2alStXArBq1SpGjRpF//79CQoKYurUqcTGxrJ+/Xpn+e23307Hjh2JjIxkzpw5bNy4kezs7EbHLSIip7idlOrcuTObNm1y2bZ161Y6derUZEEVFhZyzz33kJKSwmWXXcaMGTOc3WXVDVdExPu0RNvgy071lLJ5OBIRkabVnO1DbGwsU6dOZcGCBfTu3Zthw4bRrVs3pk6dyv79+0lKSnLZPzExkb179wKQlZVVa3lxcTFHjhxxKY+Pjyc6Opp9+/a5HafJ5P5PQ4/z9R9dl7qvS2Nfd772o+vQ9NemObg90fm0adNIS0vjuuuuo3PnzuTk5PDhhx+yYMGCJgvqj3/8I9HR0Xz44YeYzWZmz57NAw88wF//+lemTZvGnXfeyU033cSOHTtIS0ujZ8+e9OnTx9kNd9myZfTp04eVK1cyffp0PvroI8LCwly64UZFRfHAAw8wd+5c/vGPfzRZ7CIi/qgl2gZfFnBy9T31lBIRX9Oc7YPNZiM0NJQHHniAiRMncvDgQf7whz+waNEiSktLCQsLc9k/NDSUsrIygDrLS0tLAQgPDz+r3FHmjrZto9w+pjHH+TpdF1fR0RFAPmFhIc5toaFBxMREEB+va6XXS+285dq4nZQaPXo07du358033+Srr76iY8eOLF++nH79+jVJQF9++SW7d+9my5YtREZGAjBv3jxyc3NduuECLt1w+/Tp49INF2Dq1Km8/vrrrF+/ngkTJrBq1SrS09Pp2LEjAHPmzGHo0KFkZ2fTpUuXJolfRMQfNXfb4Os00bmI+KrmbB8+/PBDNmzYwPvvvw9Ajx49SEtLIyMjg9GjR1NcXOyyf0VFBREREQCEhYVRUVFxVnlsbKwzWeWYX6qm492Rn1+MO985mEz2m0V3j/N1ui41KyqyJ0rLyyud16WioprCwlLy8orrONK36fVSu4ZeG8dxTc3tpBRASkoKKSkpTR0LAHv27CExMZF//etfvPrqq5SXl3PFFVdw77331toNd/Xq1YC9G+6ECRPOKq9PN1x3klLudls7vXtcXU96c3WHa26n188X+frzB/71HPqihtavqa9Hc7YNvs45fE9JKRHxQc3VPhw+fNi50p5DYGAgQUFBJCUlsXnzZpeyrKwsevToAdgTWPv37z+r/MorryQ6OpqEhASXIX65ubkUFhaedS9SH4ZR92fIpj7O1+m6uHJcizOvia6Tna5D7bzl2ridlDp69ChLly7lhx9+wGZznfvi5ZdfbnRARUVF7Nu3j169erF27VoqKiq45557uPfee4mPj/eKbrgNzQ6e3qXyTEGBAa2+e6W3dP9rLr7+/IHvP4eqX/Np7rbB1wUG2Kd4VE8pEfE1zdk+DB06lCeeeIJnn32W22+/nZycHJYuXcro0aNJTU3l8ccfZ8WKFUyePJnPPvuMdevWsWTJEgAmTpxIWloa119/Pf3792flypXk5+eTmpoKwPjx41m6dCm9e/cmNjaW+fPnM3DgQLp27dqomEVExJXbSanZs2eTl5fH1VdfTVBQUJMHFBwcDNiH1oWEhBAZGcnMmTO58cYbGT9+fI3dbFu6G25DurnZf3dlrcdVW6yttnulr3eN9PXnD/zjOVT9aj+uKTR32+Dr1FNKRHxVc7YPiYmJPPfccyxcuJDnn3+eqKgoxowZQ1paGsHBwSxfvpyMjAwWLVpEXFwcc+fOZdCgQYB9GpAHH3yQhx56iKNHj5KYmMiyZcuIiYkBIC0tDYvFwuTJkyktLSUlJYWFCxc2afwiItKApNQXX3zBhg0biIuLa454SExMxGazUV1dTUiIvWeK41uVn/3sZ/y///f/XPb3RDfcxnTBbUy5t/OW7n/NxdefP/CP51D1ax7N3Tb4ukCz5pQSEd/U3O3DkCFDGDJkSI1lvXv35rXXXqv12LFjxzJ27Ngay4KCgkhPTyc9Pb1J4hQRkZqZ3T0gKirK2ZupOQwZMoQuXbpw//33U1paSkFBAU899RTXXnstN9xwA3l5eaxYsYLq6moyMzNZt26dcx6piRMnsm7dOjIzM6murmbFihU1dsPNzs6mpKRE3XBFRJpIc7cNvs6RlFJPKRHxNWofRESkLm73lJoxYwazZ8/m9ttvJz4+3qWsU6dOjQ4oKCiIf/7znzz22GOMGDGCyspKhg8fzpw5c2jTpo264YqIeKHmbht8XYCSUiLio9Q+iIhIXdxOSs2dOxewL8EKYDKZMAwDk8nEN9980yRBJSQk8NRTT9VYpm64IiLepyXaBl+m4Xsi4qvUPoiISF3cTkr95z//aY44RESkFVPb0DjqKSUivkrtg4iI1MXtOaU6d+5M586dKSoq4quvvqJdu3aEhobSuXPn5ohPRERaAbUNjROgnlIi4qPUPoiISF3cTkrl5+fzy1/+khtvvJF7772X7Oxsrr32Wnbt2tUc8YmISCugtqFxNHxPRHyV2gcREamL20mp+fPnk5SUxI4dOwgMDKR79+5MmzaNv/71r80Rn4iItAJqGxpHw/dExFepfRARkbq4nZTKzMxk9uzZhIWFYTLZP0TfdtttZGVlNXlwIiLSOqhtaBz1lBIRX6X2QURE6uJ2UiooKIiKigoADMP+4bm0tJSIiIimjUxERFoNtQ2Nc6qnlM3DkYiINC21DyIiUhe3k1LDhw9n1qxZ/PDDD5hMJvLz8/nLX/7CsGHDmiM+ERFpBdQ2NI56SomIr1L7ICIidXE7KfWnP/2J8PBwfv7zn3PixAmGDh1KeXk56enpzRGfiIi0AmobGkdJKRHxVWofRESkLoHuHhAREcGiRYsoKCjgxx9/pEOHDrRv3745YhMRkVZCbUPjOIbvWQ378BbHvCsiIq2d2gcREamL20mpHTt2uDw+ePAgBw8eBOCyyy5rmqhERKRVUdvQOIHmUx2XrTaDwAAlpUTEN6h9EBGRuridlJoyZcpZ28xmMx07duQ///lPkwQlIiKti9qGxnH0lAKw2AwCAzwYjIhIE1L7ICIidXE7KbV3716XxwUFBTzzzDN07ty5yYISEZHWRW1D45yZlBIR8RVqH0REpC5uT3R+pri4OGbNmsVLL73UFPGIiIgPUNvgnsDTklKa7FxEfJnaBxEROV2jk1IARUVFVFZWNsWpRETER6htqL/TclLqKSUiPk/tg4iIOLg9fG/27Nkuj6urq/nss88YMmRIkwUlIiKti9qGxjGZTASaTVhshnpKiYhPUfsgIiJ1cTspdaaQkBCmTJnCTTfd1BTxiIiID1Db4L6Ak0kp9ZQSEV+m9kFERE7ndlLq0UcfbY44RESkFVPb0HiBZhOVaE4pEfEtah9ERKQubielFi9eXK/9/vCHP7gdjIiItE5qGxrPMdm5klIi4kvUPoiISF3cTkrt37+fDz74gIsuuogLLriAI0eO8L///Y+LL76YiIgIwD43hoiI+A+1DY0XcDIppeF7IuJL1D6IiEhd3E5Kmc1mZs+ezW9+8xvntrfeeouPPvqIhQsXNmVsIiLSSqhtaDz1lBIRX6T2QURE6mJ294BPPvmEyZMnu2y74YYb2Lp1a5MFJSIirYvahsY71VPK5uFIRESajtoHERGpi9tJqbi4OHbs2OGybdOmTXTo0KHJghIRkdZFbUPjafieiPgitQ8iIlIXt4fv3XHHHUybNo0RI0bQqVMnsrOz+eijj3j66aebIz4REWkF1DY0nnP4nqGklIj4DrUPIiJSF7eTUpMmTaJz5868/fbbfP3113Tp0oXXXnuNnj17Nkd8IiLSCqhtaDxnTymrklIi4jvUPoiISF3cTkoBDBkyhCFDhlBQUEBcXFxTxyQiIq2Q2obGCTTbR9Srp5SI+Bq1DyIiUhu355Sqrq7mqaeeon///gwfPpzs7GwmTJjAsWPHmiM+ERFpBdQ2NJ56SomIL1L7ICIidXE7KbV48WIyMzP5+9//TlBQEG3btqVDhw5kZGQ0R3wiItIKqG1ovADTyTmlNNG5iPgQtQ8iIlIXt4fvrVu3jldffZWEhARMJhPh4eE8+uijpKamNkd8IiLSCqhtaLzAAE10LiK+R+2DiIjUxe2eUmVlZc6x4MbJD86hoaGYzW6fSkREfITahsbT8D0R8UVqH0REpC5utwZ9+/Zl8eLFAJhODjX45z//Se/evZs2MhERaTXUNjReoFk9pUTE96h9EBGRurg9fO/+++9n6tSprF27ltLSUkaOHElpaSkvvvhic8QnIiKtgNqGxgtUTykR8UFqH0REpC5uJ6Xi4+N59913+fjjj/npp5/o0KEDV111FZGRkc0Rn4iItAJqGxrPMdG5RT2lRMSHqH0QEZG6uJ2UuuGGG3j77be5/vrrmyMeERFphdQ2NMyhQ4fYv/8gACXFZfZt2dns4ahb54mLa8t553Vp8vhERBqruduHwsJC5s+fzyeffILNZuOyyy7joYceon379uzevZtHHnmErKwsYmNjmT59OpMmTXIeu3btWpYsWUJubi4XXnghDzzwAMnJyQBYrVb+9re/8dZbb1FeXs6gQYP4y1/+Qvv27ZulHiIi/srtpBRAeXm5vt0QEREXahvc8+OP2Qy5/DLKy+zJqPjRs4i4eBhPL17E/M/edutcoWHhbNm8Q4kpEfFKzdk+/PGPfyQ6OpoPP/wQs9nM7NmzeeCBB/jrX//KtGnTuPPOO7npppvYsWMHaWlp9OzZkz59+rBt2zbmzZvHsmXL6NOnDytXrmT69Ol89NFHhIWFsXTpUjZv3syaNWuIiorigQceYO7cufzjH/9olnqIiPgrt5NSKSkpTJo0iSuvvPKsbwr+8Ic/NFlgIiLSeqhtcF9+fj7lZWVMvOtR2p93AZ+fCOGnCrh83G+58Ne/rvd5jv34Paufmk1BQb6SUiLidZqzffjyyy/ZvXs3W7ZscSa95s2bR25uLh988AExMTFMnjwZgMGDBzN69GhWrlxJnz59WLVqFaNGjaJ///4ATJ06lddff53169czYcIEVq1aRXp6Oh07dgRgzpw5DB06lOzsbLp00XutiEhTcTsp9eOPP9KlSxe+//57vv/+e+d2x2oaIiLif9Q2NFz78y6gU/eL2Z+VDxWlRMa1p1PnaE+HJSLSJJqzfdizZw+JiYn861//4tVXX6W8vJwrrriCe++9l/3795OUlOSyf2JiIqtXrwYgKyuLCRMmnFW+d+9eiouLOXLkiMvx8fHxREdHs2/fPiWlRESaUL2TUrfeeisvvPAC//znPwGoqKggNDS02QITERHv15Rtw969e1mwYAFfffUVQUFBXH755dx3333ExcU167wg+fn5PPDAA2zfvp2AgADGjBnDvffeS2Bgg0a4N9jJxfewaZ5zEfEBLXHvUFRUxL59++jVqxdr166loqKCe+65h3vvvZf4+HjCwsJc9g8NDaXs5JDp0tLSWstLS0sBCA8PP6vcUeYOd/Nvjv31vY4rXZeanX5dTl8rxWTy72ul10vtGnptmuta1vsT965du1weX3nllWzfvr3JAxIRkdajqdqGiooKbrvtNm688Uaee+45SktLuffee7n//vtZsGBBs84LMnPmTBISEti0aRN5eXlMnz6dFStWcNtttzXJNaov88mW3tDqeyLiA1ri3iE4OBiwD60LCQkhMjKSmTNncuONNzJ+/HgqKipc9q+oqCAiIgKAsLCwGstjY2Odyary8vJaj3dH27ZRbh/TmON8na6Lq+joCCCfsLAQ57bQ0CBiYiKIj9e10uuldt5ybRr8NbA+NIuIyJka2jbk5ORw0UUXkZaWRkBAAMHBwdx0003cc889zToviM1mY/v27WzcuJGwsDC6dOnCjBkzePzxx1s8KWVSTykR8WHNce+QmJiIzWajurqakBD7DbnNZgPgZz/7Gf/v//0/l/2zsrLo0aMHAD169GD//v1nlV955ZVER0eTkJBAVlaWcwhfbm4uhYWFZw0JrI/8/GLcqb7JZL9ZdPc4X6frUrOiInvvvfLySud1qaioprCwlLy8Yg9G5ll6vdSuodfGcVxTMzf0QM0TIiIiZ2po23DhhRfy/PPPExAQ4Ny2YcMGLrnkklrnBdm7dy+Ay03DmeXnmhdk//79xMTEkJCQ4Czv3r07OTk5nDhxwq06OLrJu/NjP9D+j6OnlK0Rn5waEkNz/3hrXKqf6qf61X1cU2uOe4chQ4bQpUsX7r//fkpLSykoKOCpp57i2muv5YYbbiAvL48VK1ZQXV1NZmYm69atc84jNXHiRNatW0dmZibV1dWsWLGC/Px8UlNTARg/fjxLly4lOzubkpIS5s+fz8CBA+natavbcRqG+z8NPc7Xf3Rd6r4ujX3d+dqPrkPTX5vm0LITZoiIiJyDYRgsXLiQjz76iFdeeYWXX365WecFOfNYx+OysjLatGlT77jd/eYoJsY+BCQ0JJjw8BCCg+1NckBAAOHhIXUd6iI01D58JTbWe7vpe0v38Oai+rVuql/rFRQUxD//+U8ee+wxRowYQWVlJcOHD2fOnDm0adOG5cuXk5GRwaJFi4iLi2Pu3LkMGjQIsPe6ffDBB3nooYc4evQoiYmJLFu2jJiYGADS0tKwWCxMnjyZ0tJSUlJSWLhwoecqKyLio+qdlLJYLLz55pvOx9XV1S6PAcaNG9dEYYmISGvQ1G1DSUkJs2fP5quvvuKVV16hZ8+ehIWFUVzs2v28qeYFMQzjrDLHY3fnDXG3C3RhoT0pVlFZRVlZJVaLFYCqagtlZZX1Pk9FRRUAx497Xzd9k8m3u86rfq2b6lf3cY3VUvcOCQkJPPXUUzWW9e7dm9dee63WY8eOHcvYsWNrLAsKCiI9PZ309PRGxygiIrWrd1IqPj6eRYsWOR/Hxsa6PDaZTEpKiYj4maZsGw4dOsTtt99Op06dWL16NXFxcQAkJSWxefNml32bal4Qm81GYWEheXl5xMfHA3DgwAE6dOhAVJR7N2Xudmt27nvy31PD99z6tTWf08s0Z5dvb6D6tW6qX/PQvYOIiNRHvZNS//3vf5szDhERaYWaqm0oKirit7/9LYMGDSIjIwOz+dSUh6mpqTz++OOsWLGCyZMn89lnn7Fu3TqWLFkC2OcFSUtL4/rrr6d///6sXLmyxnlBevfuTWxs7FnzgvTv35/58+fz8MMPc/z4cZYsWcLEiRObpF7uMJ+cbqUxc0qJiHgL3TuIiEh9aE4pERHxuDfeeIOcnBzee+893n//fZeyXbt2Neu8IIsWLeLhhx/mmmuuwWw2M27cOGbMmNFSVXdy9JRSTkpERERE/IWSUiIi4nG33HILt9xyS63lzTkvyJlDTDzFpJ5SIiIiIk2isrKSrVu/pLCw1OULvz59+hISUv8FZaT5KSklIiLiBZpiTikRERERgT17PufFDVuJ7XiBc9vRg/uZBlx2WYrnApOzKCklIiLiBTSnlIiIiEjT6XhBEu27XezpMOQczOfeRURERJqbekqJiIiIiL/x2qSU1WplypQp3Hfffc5tu3fvZtKkSSQnJzN8+HBWrVrlcszatWtJTU2lb9++jB8/nl27drmcb8GCBQwZMoTk5GSmT5/OsWPHWqw+IiIidXEsOKieUiIiIiLiL7w2KbV48WJ27tzpfFxUVMS0adMYN24cO3bsICMjg0cffZQ9e/YAsG3bNubNm8djjz3Gjh07GDNmDNOnT6e8vByApUuXsnnzZtasWcOmTZsIDQ1l7ty5LVIXm2FgmAJa5HeJiEjrFODoKaWuUiIiIiLiJ7wyKbV161Y++OADrrvuOue2Dz74gJiYGCZPnkxgYCCDBw9m9OjRrFy5EoBVq1YxatQo+vfvT1BQEFOnTiU2Npb169c7y2+//XY6duxIZGQkc+bMYePGjWRnZzd7faa9tpujfadSVF7d7L9LRERaJ8fwPatyUiIiIiLiJ7wuKZWfn8+cOXN44oknCAsLc27fv38/SUlJLvsmJiayd+9eALKysmotLy4u5siRIy7l8fHxREdHs2/fPrdjNJnc+wkNCsAWEsWH+/Kostia7Lze9NPa469v/ZrydeFtP75QB9WvYceJd9BE5yIiIiLib7xq9T2bzcasWbO45ZZbuOiii1zKSktLXZJUAKGhoZSV/X/27jw8qvJsA/g9WzKTdSYJhKAgQhJwCSQEE0BEBePGEgxR7Bf9jK1gIda6RKQFhMoXllorojVa1FILFQtILRZB2mpBlBAwgKJgIhACIfs2M8ns5/tjFhgSIJNMZr1/15ULcrZ53zmTmXOeed7nbb/ieq1WCwAICwvrtN6+zhWxsZEubf/q/4zGuKUfoRkR+L6hHeOGxnbaRiaVIC7OteP6GlefF3+jUIRecl0gnD8g8M8h+0e+TGyLSjEoRURERETBwqeCUm+99RZCQkLw8MMPd1qnUCigVqudlul0OoSHhzvW63S6TutVKpUjWGWvL9XV/q5obFTDlXsGqQiIOr0XLYl34USdBqMGRHTaxmgyo6FB3cXevk8kst4Mu/q8+At7NklHh/6S/fPn8wcExzlk/y69H/mG8zWlvNwQIiIiIiIP8amg1EcffYS6ujqMGTMGABxBpn/961+YP38+9u7d67R9RUUFkpKSAABJSUkoLy/vtH7ixImIjo5GfHy80xC/+vp6tLS0dBry1x2CAJdvbENbKwEADVoDOoxmKGSdC5/7+81yT54Xf3KlvgVC34PhHLJ/5Kvsw/fMPIlEREREFCR8qqbUjh078PXXX+PAgQM4cOAApk6diqlTp+LAgQPIyspCQ0MD1q1bB6PRiH379mHbtm2YOXMmACA3Nxfbtm3Dvn37YDQasW7dOjQ2NiIrKwsAkJOTg+LiYlRVVUGj0WD58uXIyMjA4MGDPdI3ibEdseEyAMCZFt0VtiYiomBjL3TO4XtEREREFCx8KlPqclQqFd59910UFRVhzZo1iImJwaJFizB27FgAwLhx47BkyRIsXboUtbW1SExMxNq1a6FUKgEABQUFMJlMyMvLg1arRWZmJlavXu3RPlwdrUCj1ogzLR1I6uf6sEEiIgpcEjGH7xERERFRcPHpoNTKlSudfk9JScHGjRsvuX12djays7O7XCeTyVBYWIjCwkK3ttEVg5RyHK5uw9lWZkoREZEzEWffIyIiIqIg41PD9wJdv4gQiAB0GC1oN5i93RwiIvIh9kLnrClFRERERMGCQSkPkkrEiJJbk9Oa2g1ebg0REfkSsX34HmNSRERERBQkGJTysJgwa7Hzpnajl1tCRES+xJ4pZWFUioiIiIiCBINSHhYTFgKAQSkiInJmS5SCANaVIiIiIqLgwKCUh8WE2zOlOHyPiIjOE9srnYND+IiIiIgoODAo5WH24Xst7UZ+E05ERA72mlIAM6WIiIiIKDgwKOVhkaFSSMUimAWgtcPk7eYQEZGPuCAmxbpSRERERBQUGJTyMJFIdEGxcw7hIyIiK7FIBHtcijEpIiIiIgoGDEp5QbTCGpRq0zFTioiIzrPXlTJz+B4RERERBQEGpbwgKlQKgEEpIiJyJrZ9KnP4HhEREREFAwalvCBKzqAUERF1Zs+UYkyKiIiIiIIBg1JeYA9KqfUMShER0XkSR1CKUSkiIiIiCnwMSnmBPSilNZhhMlu83BoiIvIVjuF7DEoRERFRN1gEgRnW5NcYlPKCUKkYIRLrt+FtzJYiIiIbR6Fzfl9BREREV7Dz+zr8co8B22oi8K8fGrzdHKIeYVDKC0QiEaLknIGPiIiciTl8j4iIiLppy+FqmGyXDCcb26E18N6S/A+DUl7CYudERHQxWxItzAxKERER0WWodSYcqW4DAISKrSnWZ1p03mwSUY8wKOUljmLnDEoREZGNWMzZ94iIiOjKSiqbYRaAAWEiDAmz3lNWNXd4uVVErmNQykvsQalWBqWIiMjGMXyPUSkiIiK6jC9PNgEAblCJ0T/Uek95tlXHawjyOwxKeUlkqDUopWGhcyIisrElSrGmFBGRi8xmMx5++GEsWLDAsezw4cO4//77kZaWhkmTJmHTpk1O+2zduhVZWVlITU1FTk4OysrKnI63atUqjB8/HmlpaZg7dy7q6uo81h+iyxEEAV+dagYA3BArhkpmgVwqhsEsoFaj93LriFzDoJSXRIRKAAAagxkCbz582sGqFqgHjsGppnZvN4WIApzEPvsePxeIiFzy+uuv48CBA47fW1tbMWfOHMyYMQOlpaUoKirCihUrcOTIEQBASUkJli1bhpUrV6K0tBTTp0/H3Llz0dFhHf5UXFyMvXv3YsuWLdizZw/kcjkWLVrklb4RXayp3YgGrQEiAMOiRBCJgPjIUABAo9bo3cYRuYhBKS8JD7FmSpktAvQmzv3tqz74+iwe/+AI1IMnYNfxBtTzmwci6kOOmlL8WCAi6ravvvoKn376Ke68807Hsk8//RRKpRJ5eXmQSqUYN24cpk2bhg0bNgAANm3ahClTpiA9PR0ymQz5+flQqVTYvn27Y/3s2bORkJCAiIgILFy4ELt370ZVVZVX+kh0ocpm65flCdFyhNhmSVEqrLO7t3YwKEX+hUEpL5GIRVDIrE+/Rm/2cmuoKzqjGe/sOw0AEOvVAIAvTzYzs42I+gyH7xERuaaxsRELFy7Eyy+/DIVC4VheXl6O5ORkp20TExNx7NgxAEBFRcUl16vVatTU1Ditj4uLQ3R0NI4fP96HvSHqnlNN1oy+a1TnX/NKhTXpoUXHoBT5F6m3GxDMIkKl6DAaoDGwrpQv+vDIOTR3GHFVtBzGz95B85jHUKcx4GRTB4bGhnm7eUQUgOzD9xiUIiK6MovFgueeew6PPvooRowY4bROq9U6BakAQC6Xo729/YrrtVotACAsLKzTevs6V9je2l3e3tX9Ah2fl/NO28qKDIkNg0hk/b8yzJ4pZQLCrc9TMD9XF75eLrysCvbnBej531JfPW8MSnlRRIgE9WCxc18kCAI+KKsGAORnDsKfdqpx/YBIHK5uw8nGdgaliKhPOIbvMSZFRHRFb731FkJCQvDwww93WqdQKKBWq52W6XQ6hIeHO9brdLpO61UqlSNYZa8v1dX+roiNjXR5n97sF+j4vADVGgMA4IZBKkQLHQAaMUBlfW1qDWZIVTIoleGIiwve5yo6OhxAIxSKUMcyuZzPy4V85W+JQSkvinDMwMfhe76mqkWH6lYdZBIR7h7RH38CcE2MAoer23CmpQMWQXBM3U5E5C724XtmRqWIiK7oo48+Ql1dHcaMGQMAjiDTv/71L8yfPx979+512r6iogJJSUkAgKSkJJSXl3daP3HiRERHRyM+Pt5piF99fT1aWlo6DfnrjsZGNVxJgBWJrDeLru4X6Pi8nFdeaw24xoWI0Vpnzd4TTCYoZGJ0GC1oaregpUWLhgb15Q4T0Fpbrc9LR4fe8XrR6YxB/7wAPf9bsu/nbgxKedH5oBQzpXxNSaV1itWRA6OgCLHOlNgvIgShUjH0Jgtq1XokRMm92UQiCkBiDt8jIuq2HTt2OP2+YMECAMDKlSvR3NyMl156CevWrUNeXh4OHjyIbdu24Y033gAA5ObmoqCgAPfccw/S09OxYcMGNDY2IisrCwCQk5OD4uJipKSkQKVSYfny5cjIyMDgwYNdbqcgoEdBlJ7uF+iC/XkxmCyobrUGYK9RKXCq1rpcEIBouQwdRj00FnHQP0/2vl/8HAT783IhX3kuGJTyoohQa7BDY2CmlK/ZbwtKZV6jciwTi0QYpJSjoqEdp5s7GJQiIrc7X1PKyw0hIvJzKpUK7777LoqKirBmzRrExMRg0aJFGDt2LABg3LhxWLJkCZYuXYra2lokJiZi7dq1UCqVAICCggKYTCbk5eVBq9UiMzMTq1ev9l6HiGyqWjpgEYDwEAliw0Nw6oJ1SoUUNWo92s0SbzWPyGUMSnlRRMj5TKkIL7eFzjNZBByoagEAZAxWOq0bpFKgoqEdZ1p0yLzG820josAmts2Ja2FUiojIZStXrnT6PSUlBRs3brzk9tnZ2cjOzu5ynUwmQ2FhIQoLC93aRqLeqrQXOY8Jg+iiciLRCmuxcy2DUuRHxN5uQDCzZ0p1GC0QRHzj8BXHatXQ6M2IDJViRLzzmNmEKGuhvOZ2I4xmizeaR0QBzD58z+wLudRERETkc87ahu5drew8aiNabk16aLfwNp/8B1+tXhQqFUNin2kplLlSvuLoOWvhu1FXRTnOj114iBRhMgkEAI1aoxdaR0SBTMzhe0RERHQZNW16AOiylIi9ZrGOQSnyI3y1epFIJEKErYi2OTTKy60hu2N1GgDAiP5dBwr7RYQAAOq1eo+1iYiCg8T2qczZ94iIiKgrNWrrPcgA2wiOC4Xb7i0NghgGM68lyD8wKOVl9mi2hUEpn3HcHpSK7zooFWcLSjVoDB5rExEFB86+R0RERJdT02YdvjcgsnOmVKhUDKltpEeLgdcS5B8YlPIye10pc2jkFbYkT9CbLDjRoAUADL9UplS4LVOKQSkicjMO3yMiIqLLqbVlSsV3kSklEokc95dNOo82i6jHGJTyMmZK+ZaKBi3MAqBUyBAf2fmNHjg/fK9VZ4LBxGLnROQ+9jJ2zJQiIiKii7UbzGjVmQAAAy5xr2Kf4b1Zz2sJ8g8MSnnZ+ZpSzJTyBcdrrUXOR/SP6DTFqp1cJnF8A9GgZbYUEbmPY/ILBqWIiIjoIvYsqYhQiSO54WKOTCkGpchPMCjlZcyU8i32IufDL1FPyi4mzJot1dzOGfiIyH3sw/fMTMIkIiKii9SoL11Pyi7cdn/ZpGNQivwDg1JedmFNKYHfjHvdjw3tAIDkfuGX3S4mTAYAaO5gUIqI3IfD94iIiOhSatouPfOenf3+ksP3yF8wKOVl4bYxv5DI0MIAh9dVNlmDUtfEhF12O5XCFpRiphQRuRFn3yMiIqJLqbEXOb9EPSngfE2pJr1HmkTUawxKeZlELIJCZj0N9jcZ8o6WdqOjcOA1KsVlt1VdkCnFDDcichdHTSkO3yMiIqKL1LbZh+9dLlPqfKFz3qeQP2BQygfY3zjs6ZjkHadsWVIDIkMhl0kuu220QgYRAL3Jgg4j7x6JyD3sw/fMvIgkIiKii9iTGAZEXaamVIgEgACjBRyJQ36BQSkfYJ+Bj5lS3lXZbA1KDbnC0D0AkIpFiJTbvoXgED4ichMO3yMiIqJLsc++1z8y5JLbSMQihIgEp+2JfBmDUj7gfKaUzsstCW6VTR0AgGtiLj90z85RV6rD0GdtIqLgwuF7RERE1BVBEFCvsd539I+49PA9AJCLrRcSdRrep5DvY1DKB3D4nm+wD98brLpyphRwQV0pZkoRuVVTUxOysrJQUlLiWHb48GHcf//9SEtLw6RJk7Bp0yanfbZu3YqsrCykpqYiJycHZWVljnVmsxmrVq3C+PHjkZaWhrlz56Kurs6xvrGxEfPmzcOYMWOQmZmJoqIimEymvu9oFzj7HhEREXVFrTdBb7IGm+LCL50pBQChtqBUvYb3l+T7GJTyAfZpOzl8z7sqm62ZUkNczpTyzs0rUSA6ePAgZs2ahdOnTzuWtba2Ys6cOZgxYwZKS0tRVFSEFStW4MiRIwCAkpISLFu2DCtXrkRpaSmmT5+OuXPnoqPD+jddXFyMvXv3YsuWLdizZw/kcjkWLVrkOP5TTz2FsLAw7NmzB5s3b8ZXX32FdevWebTfdvbhe6wpRURERBeyZz1Fy6VXrH8rtw3fY6YU+QMGpXwAh+95n9FswdkW+/C97mVKRduCUq0sIEjkFlu3bkVhYSGefvppp+WffvoplEol8vLyIJVKMW7cOEybNg0bNmwAAGzatAlTpkxBeno6ZDIZ8vPzoVKpsH37dsf62bNnIyEhAREREVi4cCF2796NqqoqVFZWYv/+/XjuueegUCgwaNAgzJs3z3FsTztfU8orD09EREQ+yp711O8KQ/eACzKlmPRAfoBBKR9gL3Te1G6Ezmj2cmuC09kWHcwCoJCJ0T/i8umwdkqFNZioM1lgkV56Bgwi6p4JEyZg165duPfee52Wl5eXIzk52WlZYmIijh07BgCoqKi45Hq1Wo2amhqn9XFxcYiOjsbx48dRXl4OpVKJ+Ph4x/phw4ahuroabW1t7u7iFUlsn8ocvkdEREQXqldbs576deNexV5Tql7LTCnyfVJvN4CAUKkYMBsASQjqNAYMVnVv+Bi5j33mvWtUYRDZMhWuRCYRIzxEAq3BDLNC1ZfNIwoK/fr163K5VquFQuH8viiXy9He3n7F9VqtFgAQFhbWab193cX72n9vb29HVFRUt9vfzbeOzttfsJ8jU6qHqVKutqGv2dvja+1yF/bPv7F/l9+PiHxLnS1T6kpFzgHWlCL/wqCUDxCJRJDo1TCHxeJcm45BKS845eLMe3bRCqktKBXTF80iIliDRGq12mmZTqdDeHi4Y71Op+u0XqVSOQJM9vpSF+8vCEKndfbf7cfvrtjYSJe2Vyqtx5eHhiAszHqBKUismbNmAVAoQroVJJfLrd+YqlThiItzrQ2e4upz42/YP//G/hGRP7DPvOdSphRrSpEfYFDKR4j1bTCHxaKWM/B5RaVt5r3u1pOyU8plqG7Vw8SgFFGfSU5Oxt69e52WVVRUICkpCQCQlJSE8vLyTusnTpyI6OhoxMfHOw3xq6+vR0tLC5KTk2GxWNDS0oKGhgbExcUBAH788UcMGDAAkZGu3cg1Nqrhyqi7lhZrppZOb0B7u/W9X3/BEG5tu96ROXU5Op31grO5WYuGBvUVtvYskch6Q+zqc+Mv2D//xv5dfj8i8i32TKl+kd3IlLIVOm/TmaAzmq9YGJ3Im3yyptSxY8fw6KOPIiMjAzfffDPmz5+PpqYmAH07Lbg3SXTW2iXnWOzcKxyZUi5mqdmLnZvDOHyPqK9kZWWhoaEB69atg9FoxL59+7Bt2zbMnDkTAJCbm4tt27Zh3759MBqNWLduHRobG5GVlQUAyMnJQXFxMaqqqqDRaLB8+XJkZGRg8ODBGDJkCNLT07F8+XJoNBpUVVXhjTfeQG5ursvtFATXf6w7nj+GRHw+CNWTIXw9aUNf//hqu9g/9o/9u/x+RORb7FlP3al/KxUJCBE770fkq3wuKKXT6fDYY48hLS0NX3zxBT7++GO0tLTg17/+dZ9PC+5NYr312+0azpDgFadtNaWGuJopZSt2zuF7RH1HpVLh3XffxY4dO5CZmYlFixZh0aJFGDt2LABg3LhxWLJkCZYuXYqMjAz885//xNq1a6FUKgEABQUFuPXWW5GXl4dbb70Ver0eq1evdhx/zZo1MJlMmDx5Mh544AHccsstmDdvnhd6CqfMKM7AR0RERHauzL4nEgHKUOs1RR3rSpGP87nhe9XV1RgxYgQKCgogkUgQEhKCWbNmYf78+U7TggNwmhZ85MiRTtOCA0B+fj4++OADbN++HTNnzsSmTZtQWFiIhIQEAMDChQsxYcIEVFVVYdCgQV7rMwBI9NZMqRpmSnlcS7sRrToTALhcz0tpz5SSK2EyWyCV+Fycl8gvHT9+3On3lJQUbNy48ZLbZ2dnIzs7u8t1MpkMhYWFKCws7HJ9XFwc1qxZ0/PGutEFiVIwM12BiIiIABjNFjS1GwF0L1MKAKJDgLoOZkqR7/O5O+ihQ4fi7bffhkRyftzrzp07ccMNN/TptODeJrYHpZgp5XGnbPWkEqJCXR5vHR4isQ63EUtwtpUBRSLqHZFIBIktMGVmqhQREREBaNBaA0syicjxpfiV2DOlOAMf+Tqfy5S6kCAIWL16NT777DOsX78e7733Xp9OC95dPZ1aVyS69Dh9e6ZUrVoPAUK3itv6Cn+fUrmy5XyR8676cLnzJxKJoJRL0dhuxOmWDgyJdW34n6/w93N4Jezf5fcj3yIVi2E2W2BiUIqIiIgA1NkSF/qFd29mXgBQhtiH7zFTinybzwalNBoNfvWrX+Ho0aNYv349hg8f3qfTgruipzOSKBSXHv8batFBLAKMZgEIDUFclLxHj+FN/jpTS13HGQDAiIHRl51O/VLnLzYiFI3tRtTrzD47HXt3+es57C72j/yBRCwCzGBQioiIiACcH4LXnXpSdspQ+77MlCLf5pNBqdOnT2P27NkYOHAgNm/ejJgYaxHpvpwW3BU9mVoXADo69Jfcz2Q0ol9EKGrVenxX2QhxQpRLbfImf59S+fuzLQCAeIW0y+nUr3T+ImxTW3x3psXnpmPvLn8/h1fC/l1+P/ItUokIMAImcwC+WImIiMhldY4i592rJwVckCmlZqYU+TafqynV2tqKRx55BKNHj8Y777zjCEgBfTstuCt6MyXv5QyItIazq1v1Xp9C2FNTDvvCT2WTNXtusErRo/MXbRvXfaqx3et9CdZzyP717r2JfIvUVu3cZLF4uSVERETkC3qWKcWaUuQffC5T6sMPP0R1dTU++eQT7Nixw2ldWVkZ3n33XRQVFWHNmjWIiYm55LTgtbW1SExM7DQtuMlkQl5eHrRaLTIzM52mBfe2AVGhOFztnzPwzch9AGdrGi65Pk6lwnvvrvNcg7rJaLbgbIs1KDUkpmf1oOzFBiubO66wJRHRlZ0PSjFqSEREROcDS65kSkXbMqXqtQZYBP+qWUzBxeeCUo8++igeffTRS67vy2nBvW2ArY5UTZv/RbPrGpox47lXL7n+7y/90oOt6b6zLTqYBSBMJnHpTf5C0XLrn1FLhxEtHcZuz4hBRNQVBqWIiIjoQvZMqf4uZEpFhwAiWGfzbW43Ija8Z/c6RH3N54bvBTP78L0atf8FpfzVqSb7zHuKbs9kcTGZRAyx3lpLqtJ2PCKinpJKbEEp1pQiIiIiXJApFdn9wJJELEKMLRDFIXzkyxiU8iEJjkwp/xu+56/sQ+4GqxS9Oo6kvcnpeEREPSUVWz+amSlFREREgiCgrgeZUtbtrUEp+/5EvohBKR8SH8VMKU+zZzb1tJ6UnaSjyel4REQ9xeF7REREZKfWm6A3WSc/iXNxCJ69MDozpciXMSjlQ+zD99p0JmgNJi+3Jjicss28d00vg1JSR1CKmVJE1Dv2oJSZs+8REREFPXuWU7RcCrlM4tK+/ZgpRX6AQSkfEhEqRWSotWi2PxY79zeCIKCy2VZTqrfD9zqaAZyvUUVE1FPMlCIi6r5jx47h0UcfRUZGBm6++WbMnz8fTU3WLwsPHz6M+++/H2lpaZg0aRI2bdrktO/WrVuRlZWF1NRU5OTkoKyszLHObDZj1apVGD9+PNLS0jB37lzU1dV5tG9EwIUz77k2dA84P9yvniNxyIcxKOVjBnAIn8e0dBjRpjNBBPfVlDrTqoPJzOwGIuo5FjonIuoenU6Hxx57DGlpafjiiy/w8ccfo6WlBb/+9a/R2tqKOXPmYMaMGSgtLUVRURFWrFiBI0eOAABKSkqwbNkyrFy5EqWlpZg+fTrmzp2Ljg5r1ntxcTH27t2LLVu2YM+ePZDL5Vi0aJE3u0tBql5tzXLqyUzh9n3qmSlFPoxBKR9jH8J3rpXFzvuafajdgKhQl1NhLyY2qCGXimG2CDjDc0dEvSBhoXMiom6prq7GiBEjUFBQgJCQEKhUKsyaNQulpaX49NNPoVQqkZeXB6lUinHjxmHatGnYsGEDAGDTpk2YMmUK0tPTIZPJkJ+fD5VKhe3btzvWz549GwkJCYiIiMDChQuxe/duVFVVebPLFITqbJlSrhY5v3CfOtaUIh/GoJSPuUppzdg5y8BGn3MM3etlPSkAEF1wHNaVIqLe4PA9IqLuGTp0KN5++21IJOe/XNy5cyduuOEGlJeXIzk52Wn7xMREHDt2DABQUVFxyfVqtRo1NTVO6+Pi4hAdHY3jx4/3YY+IOrNnOfUoUyqSmVLk+6TebgA5uzpaDgA408LARl9zFDnv5dA9u2tUChyv09hm4It1yzGJKPgwKEVE5DpBELB69Wp89tlnWL9+Pd577z0oFM7XeHK5HO3t1i8ltVrtJddrtVoAQFhYWKf19nWuEIl6tr2r+wW6YH1e7FlO8VGhXfb9wudFEJyXx9tG4aj1JnQYzQgL6d3oEH9yuecl2F5DF+vp31JfPW8MSvmYq5kp5TGVTe7LlAKAIfZMqWYWOyeinjsflGJ9OiKi7tBoNPjVr36Fo0ePYv369Rg+fDgUCgXUarXTdjqdDuHh4QAAhUIBnU7Xab1KpXIEq+z1pbra3xWxsZEu79Ob/QJdsD0vDe1GAEDy1SrExXXue3R0OIBGKBTnh/fJ5TIoleEYcpUKkXIp1DoTDFIJBnexf6C63PPS1fMYjHzlb4lBKR9zlfJ8ppQgCBAFexi3D1U2Wy80hsS4KVPKdpxTHL5HRL3AQudERN13+vRpzJ49GwMHDsTmzZsRExMDAEhOTsbevXudtq2oqEBSUhIAICkpCeXl5Z3WT5w4EdHR0YiPj3ca4ldfX4+WlpZOQ/66o7FR7ZSpcSUikfVm0dX9Al2wPi9nbF94hwkWNDSoO61vbbVm73V06B3Pi05nREuLFg0NasRHhEKtM+H7yiYog6h4z5Wel2DW078l+37uFkQvS/8wMEoOEYAOowVNtqg4uZ/RbMHZFvvwPfdkSp2vKcVMKSLqOQ7fIyLqntbWVjzyyCMYPXo03nnnHUdACgCysrLQ0NCAdevWwWg0Yt++fdi2bRtmzpwJAMjNzcW2bduwb98+GI1GrFu3Do2NjcjKygIA5OTkoLi4GFVVVdBoNFi+fDkyMjIwePBgl9spCK7/9HS/QP8JtudFrTNBozcDsBYtv9Lz0tXrzj67+7k2vdf7463XS2//HgPxpzfvTe7GTCkfEyIVIz4yFDVqPc60dCA23PWCdnRlZ1t0MAtAmEzSo6KBXRlsq03VqjOhpd0IZZjMLcclouDCoBQRUfd8+OGHqK6uxieffIIdO3Y4rSsrK8O7776LoqIirFmzBjExMVi0aBHGjh0LABg3bhyWLFmCpUuXora2FomJiVi7di2USiUAoKCgACaTCXl5edBqtcjMzMTq1as93EMKdjVqaz2paLm0x/Wg7HWl7McKFt80mnGqXYpIoxmKXs60Tn2LQSkfdLVSjhq1HmdbdRh1VbS3mxOQTjnqSSncNkRSIZNggC2gWNncDmUYzx0RuU4qtiYxmxmUIiK6rEcffRSPPvroJdenpKRg48aNl1yfnZ2N7OzsLtfJZDIUFhaisLCw1+0k6qnaNluR88jQK2x5aQNs+9a2BU/N4n98U4M3vjUBkOObg2eRNbyfI4GAfA+H7/mgq2zFzjkDX9850WgNSg1xU5FzO3tdqUrWlSKiHmJNKSIiIgKAGrU1kDQgSt7jY9j3DZZMqa/PtKBo1w8AALnYAosA7D3RBJOZE8j4KmZK+aCro+3FzoMnmu1pJxqthe+Gxro5KKUKQ0lliyMTi4jIVRy+R0RERABQq+59ppR939ogCUr9eX8VLAIwpr8Y8WINPm+KhsZgxpFqNeK83Tgv0Ov1OHLkkNMykQiYNOkW7zSoCwxK+aCrmSnV5+yZUsPiXJ/W93Icxc6bee6IqGfsQSmzIICzsBIREQWvGtvwvQG9Gb4XdT4oZREEiAP4uuJ0cwe+PNkMEYBpQ6T4ugrIvEaJ/5Q34ptzbbjV/RPH+bwjRw7hjx/vQfw1SY5ltZXlUCrDkZR0oxdbdh6DUj5okG28a2VzB29I+oDJIjgymYbG9c3wPWZKEVFP2YNSgPX9SibhZwAREVEwsg+5sweWeqJfeAjEIsBoFtDUbkRcAE+ktelQNQBg/LUx6K84PzKmpLIFWoMZ9cbgnIgq/pokDB4xytvNuCTWlPJB16gUEAFo05nQ3GH0dnMCzpmWDhjNAuRSMRJ6MT67K/YaVWdbdRy3TEQ9IrkoKEVERETByV6cvDfD96QSsSMQFcjFzs0WATu+rwMA3J820LFcJBI5SrbUGAI3IOfPGJTyQXKZBAm2ulInG5lx424nGqxR82tjw9yevto/IgQKmRhmi8CaYETUIyKRyBGYYlCKiIgoOJktAmo1BgC9K3R+4f7n2gK3rtS359rQ0mFEZKgUmYOVTuvsJVvqjDLoTLy28jUMSvmoIY5Z3BiUcrcfG+1D99xbTwqw3kxeo7JG4k/y3BFRDzmKnXMGPiIioqBUr9HDbBEgFYt6PeQuwTb871wAZ0rt/rERADD+WhWkEucwR1y4DFFyKSwQ4WgzR7P4GgalfJR9GNjJJhbMdrcTDbYi526eec8usZ812FVRr+2T4xNR4OMMfERERMGtyjbp1cBoudPQ/p6wT6RVFcATadmDUhOHxXZaJxKJMNhWt/kYg1I+h0EpH3WtLSjFgtnuV9GgAdA3mVIAkGQLSv1Qr+mT4xNR4DsflOKFExERUTCqspUCGWQLKPXGIEdQKjAzpaqaO3CqqQMSsQjjhsR0uc1VtvI4x1p4beVrGJTyUdfasnhOsaaUW7UbzKi0ZZ+N6B/RJ48x3HbcH+oYlCKinmGmFBERUXA7a8tqulrZ+4mZ7Mc4G6CZUvsqmwEAowZGIVIu7XKbhKhQiCCgUWed+Ip8B4NSPuoaW6ZUjVqPdoPZy60JHOX1GggA4sJDENtH06HaM6Wq2/RQ60x98hhEFNikEtaUIiIiCmb2rKar3ZApZT9GTZseBlPgZQrttwWlMq9RXXIbmUQMpdTktD35BgalfJRSIYNKIQPAIXzudLzOWudpeB9lSQFAlFzmKCZY3sBsKSJynVRs/Xg2M1OKiIgoKNmzedwxfC8mTIYwmQQCgOoAK3Zutgg4WNUKALjpoln3LhZrD0qdbunjVpErGJTyYcNsGTflrE3kNsfr1ACA4fF9F5QCgOR+9iF8LHZORK7j8D0iIqLgJQiCIyjljuF7IpEIV9mOE2hD147XaaDWmxAeIsF1AyIvu22szAgAKD3dwi/+fAiDUj5suC2wcZyBDbfxRKYUACT3D7c9HgOKROQ6BqWIiIiCV2O7ER1GC8Qi6+x77hCoxc5LbVlPYwYpHddPlxIlMUMuAdp0Jt6n+RAGpXzY8HgGNtzJaLbgxwZ7UKpvZt6zswe9vq9V9+njEFFgknD2PSIioqBlL0g+IDIUMol7btkDtdi5vT7UlYbuAYBYBCQrrc9nCetK+QwGpXzYiP7W9MPyeg3TC92gokELk0VAZKgUA6Pc843DpdyYEAUAONHQDo2exc6JyDUyW6Fzg4nv/URERMGmyjF0r/f1pOyudmRKBU5QSmc049BZaz2pjMsUOb/QdSprCIR1pXwHg1I+bLBKAblUjA6jJaDePLzlyNk2AMCNCZEQiS6f2tlbseEhGBgthwDgaA2zpYjINQqZBACgM3H2VSIiomBzqslW5FzlvqDUYNuxTjUGziRah8+2wWAW0D8iBENiuvdcjVCKbPu2QmfkdZYvYFDKh0nEIiTZip3/4IND+CyCgE++r8VvPjmOxuHZOFjVitYOo7ebdUmHq61BqVFXRXnk8VISrJlu39gel4iou+xBqQ4jh+8REREFm4p6a8kR+72gOwyLsx6ruk0fMCM59p+2DsHLuEbV7aSD/goR4iNDYTQLOHyW92m+gEEpH5dsq010rNa3glJnWjrwv+vL8ML249h2tBZ61bX4+kwrNh8+h2+q2yAIvjfk5LAttXPUwGiPPF6KbQjft+eYKUVErpHLrB/P/AaPiIgo+NhnX0+Mc19QSqmQoX9ECAA46uz6u5LKFgBAxjXKbu8jEomQYas/ZQ9qkXcxKOXjro+3Ztt8e853orgVDVo8tvEwjtdpEBEqwaOZgxB98jMMjAqFRQD2VbZgX2WLTwWmatp0qNMYIBEBNyRcfqpQd7lxoD0o5ZtBOiLyXeczpRiUIiIiCiatHUbUaQwAzmc3uUuiLfOqIgCCUs3tBseEYBmDu1dPyu4mWxBrvy2oRd7FoJSPS73amtXzbY0aepP3h3E0ag345ZZv0Kg1IDEuHJvyx6DglmsRXnsY917fH+OGWN8Qvj2nxiEfSoe0p2Ym949w3Oz1teR+4QiVitGqM+FkU+CM3SaivqewZUpx+B4REVFwsQeMBkaFIiJU6tZjJ8ZZR+GU1/t/UKrUVqg8MS4cseEhLu17ky2IdbxOg5Z23y0/EywYlPJxg5RyxIaHwGgWcLTGu0Eek9mCBdu+Q53GgGtUCrz5wEjERYQ61otEItyYEOkITB2oasXZFp23muukzDZ0b+RAz9STAgCZRIxRtsdjFJ6IXCG3Bc9NFgFGMwNTREREwcI+tC6xX4Tbj53YL8zpMfzZ/h4M3bOLCw/BsLgwCAAOVLW4s1nUA+4NvZLbiUQipF0VjX/9UI+yM60YfbXSa235c2kVDp1tQ3iIBL+bcQOiFbIut7sxIRLN7QYcq9Pis4oG5IxM8HBLnQmCgH2nrOOFb3IxtbO3xg5RYf/pFpRUNuPB0Vd59LHJ2YzcB3C2puGS6+NUKrz37jrPNYjoMmRiESQiEcyCAJ3RApmE3yEREREFA3sWU2JcmNuPnXRBppQgCH0+I3lfEQQBJZXni5z3RMZgFX5saMdXp5pwx/B+7mweuYhBKT+QdrU1KHXojPcypcrrNXj7q9MAgOfvSMSQmMu/SY4bokKdxoCmdiP2nmyCNysqnW7uwNlWHaRiEW6yFbXzlMxrVABO4mBVC4xm3lh6U11DM2Y89+ol1//9pV96sDVElycSiaCQiaExmNFhNCNSzo9rIiKiYFDRh5lS18QoIBWLoDWYca5Nj4HRcrc/hidUtehQo9ZDJhFh9NU9m8Tq5qExeP/rs/jiRBMsggCxnwboAgHvkP2A/Q/tcHUrTF4YxmEyW/CbHT/AZBFw67BY3D2i/xX3kUrEuC0xFiIRcKqpA/q4ZA+0tGtf2bKkUq+ORliIZ+pJ2SX2C0dMmAwdRguOVPtOjS0i8n32IXwdPlBPkIiIiPqezmh2FO8e3t/9QSmZROyY0c+XJtJylX0UzMiBUT2uFzz66miEh0jQ1G7E9z42032wYVDKDwyNC3MENg5WtXr88dftr8LxOg2i5VIsyErqdppnbHgI0q6y1lTSDJuMpnZDXzbzkr482QQAGD/Es0P3AEAsEjlSSr88ySlHiaj77MXOdZyBj4iIKCgcrVHDaBYQFx6CQcq+yWJKsyU8fH3G8/eV7vJ5hbUkx/ghMT0+hkwixljb/eGeHxvd0i7qGQal/IBYJMLEYbEAzv8BekpFvRbv7LMO2yuclIg4F2c2SL0qGjFhMgiyMLz074q+aOJlafQmxxvu+Gt7/qbVG/Zz968f6iEI3hzISET+xP7NXweDUkREREHha1sCwuiro/us3pMjKOWFZAd3aG434GtbcfJJyXG9OtaEodb7w2AJSpktAmra9DirD0Gb3ncy8RmU8hO3JVr/4P77YyMsHgpsmCwCXtx53DFs764RrheAk4hFuHVYLCBY8K8fGvCv4/V90NJL+095A/QmC4bEKDA01v3FArvjlqExUMjEqG7V4dtzaq+0gYj8j9yWKdVh9J2LBiIiIuo7X9tmDB89qGd1kroj7SrrsU82tXttJEtv/LeiEWbBOrzxaqWiV8eacG0sJCLgh3otTjW1u6mFvqmquQObDp3DtqO1+LY9HNsqdN5ukgODUn7ipsFKhIdIUK8x4LsazwQ2/lJahe9rNYiSS7HgjsQeR+vjIkIQVlUCAPjtvyvQ7ME3v+3f1QIA7r0+3muzS8hlEke21KceDsoRkf+yZ0px+B4REVHgM5ot+MZWgzath8W7u0MZJsMw28x+h/xwCN9/yq0jhyYl9S5LCrA+F2NtQwA/sd03BqIqfQh2HKuHWm9CqFSM/jIDbhsc6u1mOTAo5SdCpGLH8LPt39X1+eOdaNRi7VeVAIBnbhuGuIjevWjDqkowLC4MzR1GvPSfH93RxCs616Zz1OC657orF2fvS3fZisN/eqwOBhYtJqJuOD98j+8ZREREge6bc23QmyxQKWS49goznffW6KuVAIDS0y19+jjuVtOmQ0mltU7v5F4O3bO793rrfdon39d5bESSJx2sN+O7duvraUT/CDw4eiDSIrS4KtKzE4BdDoNSfiQ7ZQAA4J9Ha6HRm/rscYxmC5Z+chxGs4Cbr41x/KH2hkgwY8ndwyERAbuO1+M/P/R9xtCWw+cAAOmDojEgyrvTnY4dokK/iBA0tRux41jfBxWJyP8pHMP3mClFREQU6D49Zr0/Gn+tqs9HeNxsS3b4T3kDTBb/CcRs/aYGFsF6f3eNmwJ3E4fFIjxEgnNtepT5YebY5Xx1qgnrjpkAiDCifwQmDFUhROJ7ISDfaxFdUsZgJYbEKNBuNOOfR/suvfC13Scdw/Z+5cJse1dyXXwkHskYBABYvqsc1a19N461tcOITWXVAICfjL6qzx6nu2QSsaMd6w+cCcgovC8yWwTUa/SoqNfCJFfCaGbGCfkPe6aU1mDmJAlEREQBzGi2OGrv3nNdfJ8/XuY1SqgUMjS1G7G/0j9mCDeZLfjomxoAQO6ogW47rlwmwZ222snrD5xx23G97Uh1G+Z/9B3MAjBAZsDNQ/s+2NlTDEr5EZFIhPtTrYGNv359Fvo+GAa2/btavP/1WQDAkruHIz7SvWNNfzb2GlwXH4FWnQnP/+O7PquVsvHrs2g3mpHULxy32Oo5edt9IxMQHiLBycZ2fFbu2VkUg4laZ8KHR87hF1u+weQ/fIl73yrBg38+iLrUfKzbfwYflFXjy5NNqFXreaNPPi1aLoVYBOhNFrTp+i47loiIiLzry5PNaNWZEBsegjGDlX3+eFKJ2BGI+eR7/xjFsf27OjRqDYgND8Ftie69v3tozCCIRcAXJ5rwQ53Grcf2hop6LZ768FvoTBZcpxIhJVwLsY8GpAAGpfzO1Bvi0S8iBNWtOqw/UOXWYx843YJlO38AAPzvTYMcxbndKUQqxm+nXw+lQoZjdRr86uPvYXJz9srp5g78xRblfjRzsM/8AUaESvGgLVvq95/92KdDMINRvUaPV/97AlP/WIIVu8qx71QztAYzJCJApZBBZNIDANp0Jhyt0eAf39bi79/U4od6Dcx+lLZMwUMqEaOfrZ5fjVrv5dYQERFRX9l6xFp25K4R/SARe+bexV5z9/PyBjRqfXsWvg6jGcV7TwEAHhpzNaRuHoI2WKXA5GRrkM5eV9lfnWnpwBNbvoFab0JKQhTmXC+Dh15SPcaglJ8JC5HglxOHAgD+VFLltqkrSyqb8dTWb2GyCJiUFIeCW4a45bhdGRAlx++yr0eoVIwvTjTh1/885rasL5NFwIs7jkNvsuCmwUq3FcBzl/yMQbhaKUedxoBX/3uCmTpuUNXcgaJPf0D22/ux/sAZtBvNGBobhiduuRYbHh6NL566BbsKxiHhQDEeHnMVsobHITEuDBIR0KA14L8VTfigrBrtA9PRbmDtHvItCVHWoNS5NgaliIiIAtGB0y3Ye7IJEhGQMzLBY497/YBIXD8gEjqTBX/80rcDMetKTqNBa8DAaDkeSHXf0L0L/TRzMCQi4POKRscMf/7mTEsHCjYdQaPWgMS4cKzOuQGhEh+PSAGQersBntbY2IjFixdj//79kEgkmD59Op5//nlIpf7zVNw5oh/+/m0NDpxuwVMffos//U8qVGEhPTqWIAjYdKgar3x+AiaLgPHXqvCbe4b3eXbRqKuisWra9XjuH0fxWXkD5m06gqIpI3pVkNwiCPi/ncdxuLoNYTIJFt+V7DNZUnZymQQL7kjCE5u/wd+/qcFglQIP3zTI280CAMzIfQBnay79BhynUuG9d9d5rkFX8O25Nmw4cBb/Ka+HPdEp9aooPJIxCDdfG9PlmGm5TIIhMWEYEhOGsUPMOF6nwdFzGmgNZmDobZi2tgQPpA7ErLSroAyTebhH5G2++PkwICoUOGudbYaIiDzPFz8bgpVer8dXX32LlhYtLvxed+TIVISG+s709q4wmi145XPrzOQ5owa6rXh3d4hEIjx161DM+eAw/v7NOeSMSsDw/hEee/zu2nuiCX8qsY4QenLitQiR9k1eTWK/cPxvxiD8qaQKq/5VjuviI5Dg5cmyXHGsVo1n/34UdRoDBinleG3mjYiS+8f9TNC9mz711FOIj4/Hnj170NDQgLlz52LdunV47LHHvN20bhOJRCiaMgKPbijD2VYdHtt4GKumXY/EfuEuHae8XoNXPj/hmAo0a3g/LL17eJ/9oV/s5qExeG1mCgo/Oooj1W34yXsHMWf8EMwcmeByG1o6jFi+qxyflTdAIgJ+c89wn30TybxGhaduHYrV/z2BNbtPol5jwC8mXguZh2dCMJgsaNAaYDBZYIGAs1oxJv/iZcgkIoRIxZ0Cen9/6ZcebV9XNHoT/lvRiE2HqnG0Ru1YPmFoDB65aRBSr47u9rEUMglSr4pGSkIUyuu1+PJoBdoQg7f3ncb6A2cw7cYBuOe6/rgxIdJniwKSe/ni50N8ZChEANR6MzR6EyJCg+5jm4hcJAgCvqtR44d6LZTRLbj9mmgA/BzrKV/8bAhWR44cwp92fgVVwrWOZbWV5ZgD4KabMr3XsB4yWwQs+eQ4fqjXIiJUgtnjBnu8DWlXR+P2pDh8Vt6AZ7Z+i3d+kur1Wcsv9NWpJiz85/cQYM0isw+x6yuPjb0Ge35sQkWDFj//2xH8ITcFVysVffqYvWUyW/C3Q9X4w56TMJgFXBsbhjdyUxAX4T+B2qC6uq2srMT+/fuxe/duKBQKDBo0CPPmzcNLL73kdx8sMWEheDUnBQWbj+B0cwceXv81pt4Qj6k3xOOGhChIuxg4KggCzrbqUHq6BbuO1zuCUSESEQpuuRY/GX2Vx2++0wcp8V7eaLzwyTF8e06N33/2I9aVnMa918djwtAYjIiPQHhI1y9TQRDwY2M7/nW8HpsPVaNVZ4JELMJv7h6O25J8a9jexfLGXA2N3oS3953G+1+fxX8rGvA/6VdjcnKcW95A9CYL6jV61KqtP3X2fzUGx+/NHUbnnUY9jI22GQtFsA4VDQ+RICJUiogQCToS0vDfigYMiJQjPioU0XJpn79e2g1mlNdr8F2tBl+ebMKB0y2OaWtlEhHuHNEfeelXIalfz7/VkYhFGBEfge/fW4fCVWuxrqQKx+o02HSoGpsOVSMhKhQTh8Vi5MAo3JgQhYSoUAapApCvfj6ESMSIiwhBvcaA0tMtuC0xlq8/IurSmZYO7Pi+Dtu/q0VVy/nsynV5qbhhQJQXW+a/fPWzIZBZBAFtHSY0aA1o1Boc/za2G3DmnBH1MTeiXR6LUKkYYTIJRAYZTrVZMKhNh9jwEI9/ydsTgiDgWJ01OaDsTCukYhFWTL2uxyNfeuvXWUk41diOk03teGRDGX5561DckdzPY4kKXalq7sCGg2ew9cg5WAQgfVA0CicN6/PHDZGK8WrOjXj8b4dxpkWH/3nvIH6aORjZKQO8dn4upU6tx2flDdh0qBqVzR0AgFuGxmDpPcP9JkPKLqiCUuXl5VAqlYiPPz/N5rBhw1BdXY22tjZERfnXB/aQ2DCsf3g0Xtz5A7440YS/f1ODv39TgxCJCFdFKxAWIoFCJobJIqBBa0CDxgDdBbWbxCLY6kdd69UI8CCVAmsfTMW2b2vw9leVqNMYsP7AGceUnDFhMlytVEAuFUMqEcEiAK0dRlS1dECjP18D6NqYMLx473CMiI/0Vldc8vjNQzAiPgLLd5Wjuk2P3332I3732Y9IiArF1UoFYsNDEBMmQ4hEDLFYBKlIBLEYMJkF6E0Wx4/OZIbeZEFTuxHN7QY0tRutw9G6IVQqRqhUDIlIhNa2VohCwmEWBAiwTkOvNZhRp7EVPhw2CYUffefYVy4Vo39kKKLkUkSGSh3/hkjFkEnEkIlF1n8lIkjEIggCIACOOlr2tGujxQKd0YIOoxk6owUagwl1agPqNNbg2cVVt4bEKHD3df1x38gExLjxw0EEAZOT+2FSUhz2V7Zg29Ea7P6xEefa9PigrBof2AJ2CpkYAyLlGBBl7Xt4iBRhIRKEhUgQIhFDBEAkAsQikeNfscia4SiC/TkAAMHxHAjo/Nxc+PvFywSnZdbfskZehWvCg+ot3a18+fPhpsFKfPJdHSoa2tFhtGBAVCikYhEkttdYa4cUEan34PMqA8qFaq+181IiIuTQaAJ3+KGv9a+7pQq7W9EwIiIUGo3+Cse98tG6067utqk723WnZqNIBISFhUKrvXzNNnc+p67UkmxpbUFH+6VrhwoAOkwCGnUCKtvMOKc9f40XKgGSlBJkDI1Fci++uAl23vhsMJktePvLkzhV2wCj0QgxrNcRYhGQEB+PEJkUEpH12koiFjmuO4Dz1x7A+esO6/fU1uX2be3XFIDzNYljGTpfr11u2YWvavu1yYXHQxfLjGYBGr0JbToTNHoTWnVGNGqt17Gmy05AEwK0qy/4PQJlh4z47aH9AKwz18ZFhCA2LASx4SEID5FALpNALhVDLpM4PWf25+j8c2i/Zrvwuuv882O56Dm4+DmxdHGNduF2WoMZtWo9jtVqcLbV+rkhl4qx5O7hGDsk5jJ97ltKhQyv5abgF5u/wcmmdiz55Dhe+k8FbhgQiauiFYgIlSIyVOIIUl3utWURbH0XBMfz5XhuLniOLlwmQIBZAJrbDTjXpseZlg6cuSCwnn3jAMyfnOixgGP/yFAU3z8Si7cfw6GzbfjDF6fw5t5TGBYXjsGqMMSEyaC036OJrF9wW6/3ra+fi183l/q76s7f1IWvo3aDGS0dRjS1G3GyqR3Vreefo2i5FHMnDMF9IxN8rnxNdwTVHYxWq4VC4Rx8sf/e3t7e7Q8Wsbj7FyiA/aInDKEy8SX3Cw8Lg7gHf2exESF4deaNOHK2DX//5hxKKlug0ZtRrzUAWudtpRIxVCESJPePwLghKkxOisNAZe/TM93RvxCxCDNTE5CdEo8vTzXjvxUNKKtqQ2O7EQazgBONXV2UiRATHoK0gVG4+/r+mJgY22WGWG/15fm7PTkO465V4eOjdfjXD/X4vkYDtd6M72t7PhWpSCRChC041D8iBP0jQtEvQoZ+kaHoFx6K+MgQ9IsIRb+IEETZsp1EIuCBhx7C3U8sh8kswGCyBofaDRZo9SZojGZUHD2Eodenoq5Nh+YO68yBTe3WN8a+Eh4qRVy4DEn9IpAyMAoThsbgmhjXA6iunUMRxg1VYdxQFXRGM0oqW3DoTCuO1mpQUa+F2SKgXmuw/o35kA++Oo5/F97p8nsTWbnj88HVzwapVILIyEho6s+i6RIZoQCgAHBTrBTfaeRo1ZnQqrt45s4IXDP9l9h60gScPNX9BhBRABEjXCZAd+Yo2r/bjeaKEpwz6lAaFob7dn2OgQOv6vaR+NlwnjfuHU7Ut+ODw7X2PZ1X1td17yB+TC6TAADCpEBUiAhRMiAqVIRIKdDW0oizbXqERihhsIhgFETQ6gwQy+TQCVKYBcAsALVqA2rVvnWddjGlXIobY8WYNkSCmI5KHDrU80LjJ05UoKW6FSLh/OusrfY0ToRrILM9n93x3CgBn58JwRc1FrQZgKM1Ghyt6fk9SW9EhUqRpBThjqslSFS24btvv3b5GL19XuYOF3BAFYovzllQpRFQ3aZHtQ9NPBMZKsWgCBHG9BdjTH8xFEI1jhzu/OXkiRMVaKttQl3I+eyptrrTkEiSexTX6AsiIYim/9q1axcWLVqEkpISx7Ljx49j+vTpOHDgACIj/SPDhoiI3IufD0REdDF+NhAR9T3fH3TrRklJSWhpaUFDw/kZxn788UcMGDCAHypEREGMnw9ERHQxfjYQEfW9oApKDRkyBOnp6Vi+fDk0Gg2qqqrwxhtvIDc319tNIyIiL+LnAxERXYyfDUREfS+ohu8BQENDA1588UWUlJRALBZjxowZKCwshETS/fG2REQUePj5QEREF+NnAxFR3wq6oBQREREREREREXlfUA3fIyIiIiIiIiIi38CgFBEREREREREReRyDUkRERERERERE5HEMShERERERERERkccxKOVmTU1NyMrKQklJySW3+e9//4tp06YhNTUV99xzDz777DMPtrB3utO/xx57DCkpKUhLS3P87N6924OtdN2xY8fw6KOPIiMjAzfffDPmz5+PpqamLrf1x/PnSv/88fwBwFdffYX7778fo0ePxs0334xly5ZBp9N1ua0/nkNX+uev5zAQNTY2Yt68eRgzZgwyMzNRVFQEk8nU5bb++LoEXOvj+++/j7vuugtpaWm46667sGHDBg+31nWu9M/uhx9+wKhRoy77WekrXOnf/v37cf/99yMtLQ233nor3nrrLQ+31nWu9O/Pf/4zJk2ahNGjR2PatGnYuXOnh1vbc4F+/RlsunM+g40r17LBxJXrw2BkNpvx8MMPY8GCBd5uik/Yvn07rr/+eqd7hOeee87bzQIEcpsDBw4Id9xxh5CcnCzs27evy21OnjwppKSkCLt27RKMRqPwz3/+Uxg5cqRQU1Pj4da6rjv9EwRByMzMFEpKSjzYst7p6OgQbr75ZuHVV18V9Hq90NTUJMyePVt4/PHHO23rj+fPlf4Jgv+dP0EQhMbGRiElJUXYsmWLYDabhdraWmHq1KnCq6++2mlbfzyHrvRPEPzzHAaqhx56SHj22WeF9vZ24fTp08KUKVOEtWvXdtrOH1+Xdt3t465du4QxY8YIZWVlgsViEb7++mthzJgxwo4dO7zQ6u7rbv/s2tvbhalTp17xs9JXdLd/FRUVwqhRo4QPP/xQsFgswvfffy9kZGQIn3zyiRda3X3d7d/nn38ujBs3Tvjxxx8FQRCEHTt2CCNGjBCqqqo83WSXBfr1Z7Dp7vV2MHH1WjZYuHp9GIxWr14tjBgxQnj++ee93RSfsHLlSmHBggXebkYnzJRyk61bt6KwsBBPP/30FbcbM2YM7rjjDkilUtx777246aab8MEHH3iopT3T3f5VVVWhtbUV119/vYda1nvV1dUYMWIECgoKEBISApVKhVmzZqG0tLTTtv54/lzpnz+ePwCIiYnBl19+iZycHIhEIrS0tECv1yMmJqbTtv54Dl3pn7+ew0BUWVmJ/fv347nnnoNCocCgQYMwb968LrOD/PF1CbjWx9raWsyePRupqakQiURIS0tDZmZml+9FvsKV/tn95je/wR133OHBVvacK/3761//ismTJ+O+++6DSCTCiBEjsHHjRqSnp3uh5d3jSv9OnDgBQRAcPxKJBDKZDFKp1Ast775Av/4MNt09n8HGlWvZYOLK9WEw+uqrr/Dpp5/izjvv9HZTfMY333yDG2+80dvN6IRBKTeZMGECdu3ahXvvvfey21VUVCA5OdlpWWJiIo4dO9aXzeu17vbvm2++QXh4OJ5++mmMHTsWU6dOxebNmz3Uyp4ZOnQo3n77bUgkEseynTt34oYbbui0rT+eP1f654/nzy4iIgIAcOutt2LatGno168fcnJyOm3nj+cQ6H7//PkcBpry8nIolUrEx8c7lg0bNgzV1dVoa2tz2tZfX5eu9DEvLw9z5sxx/N7Y2IjS0lKfvDiyc6V/APD3v/8dlZWVeOKJJzzZzB5zpX9HjhzB1VdfjWeeeQaZmZm45557sH//fvTr18/Tze42V/o3ZcoUxMXF4d5778UNN9yAX/7yl1i5ciUGDBjg6Wa7JNCvP4NNd89nsHHlWjbYdPf6MNg0NjZi4cKFePnll6FQKLzdHJ9gsVhw9OhRfP7557j99tsxceJELF68GK2trd5uGoNS7tKvX79ufZum1Wo7/WHI5XK0t7f3VdPcorv9MxgMSE1NxdNPP409e/ZgwYIFKCoqwieffOKBVvaeIAh45ZVX8Nlnn2HhwoWd1vvr+bO7Uv/8/fwBwKeffordu3dDLBbjySef7LTe38/hlfoXCOcwUHT1WrP/fvHrzV9fl6708UL19fWYPXs2brzxRkydOrVP29gbrvTvxx9/xCuvvIKXX37Z6cbJl7nSv9bWVrz33nuYPn069u7dixdffBGrVq3Cjh07PNZeV7nSP6PRiBEjRmDTpk04dOgQXnzxRSxcuBDHjx/3WHt7ItCvP4NNd89nMLvStWywutL1YTCxWCx47rnn8Oijj2LEiBHebo7PaGpqwvXXX4+77roL27dvx8aNG3Hq1CmfqCnFoJSHKRSKTsXndDodwsPDvdQi95oxYwbefvttXH/99ZDJZJgwYQJmzJjhFzfEGo0GTz75JLZt24b169dj+PDhnbbx5/PXnf758/mzk8vliI+Px3PPPYc9e/Z0iv778zkErty/QDiHgSIsLAwdHR1Oy+y/X/x689fXpSt9tDt06BByc3Nx7bXXori42KdvwLrbP71ej6effhq//vWvMXDgQI+2sTdcOX8hISGYPHkybrvtNkilUtx0003Izs726fcWV/q3bNkyJCUlYeTIkQgJCcHMmTORmpqKrVu3eqy9fclf32OILtSda9lgdaXrw2Dy1ltvISQkBA8//LC3m+JT4uLisGHDBuTm5kKhUGDgwIF47rnnsHv3bmg0Gq+2jUEpD0tOTkZ5ebnTsoqKCiQlJXmpRe61efPmTheoBoMBoaGhXmpR95w+fRozZ86ERqPB5s2bL/kh56/nr7v989fz9/XXX+Puu++GwWBwLDMYDJDJZJ2+GfbHc+hK//z1HAaipKQktLS0oKGhwbHsxx9/xIABAxAZGem0rT++LgHX+ghYX5/5+fl45JFH8PLLLyMkJMSTzXVZd/v3zTff4NSpU1i4cCHGjBmDMWPGAAB+/vOfY+nSpZ5udre5cv6GDRvm9B4EWGc1EgTBI23tCVf6V11d3al/UqkUMpnMI23ta/76HkNk191r2WDiyvVhMPnoo4+wf/9+x+fxxx9/jI8//tjx2Rysjh07ht/97ndOn9sGgwFisdjr12MMSnnY9OnTsX//fmzfvh0mkwnbt2/H/v37kZ2d7e2muYVGo8GyZcvw3XffwWKx4PPPP8fHH3+MWbNmebtpl9Ta2opHHnkEo0ePxjvvvHPZ4oD+eP5c6Z8/nj8AGD58OHQ6HV5++WUYDAacPXsWq1atQm5ubqc3WX88h670z1/PYSAaMmQI0tPTsXz5cmg0GlRVVeGNN95Abm5up2398XUJuNbHnTt3YunSpXjttdfw05/+1AutdV13+zdmzBgcOXIEBw4ccPwAwJtvvunTQSlXzt+DDz6If//73/joo48gCAJKS0uxbds2n36NutK/SZMmYf369Th69CgsFgt27NiBkpKSgKnt46/vMUSAa9eywcSV68NgsmPHDnz99deOz+OpU6di6tSpjs/mYKVUKrFhwwa8/fbbMJlMqK6uxksvvYT77rvP+68Xr837F8AunsI1NTVV+Oijjxy/7969W5g+fbqQmpoqTJkyRfj888+90cweu1z/LBaL8Ic//EG4/fbbhZEjRwpTpkzx+emi3333XSE5OVkYNWqUkJqa6vQjCP5//lzpnz+eP7vy8nLh0UcfFcaMGSPcfvvtwu9//3tBr9cLguD/51AQut8/fz6Hgai+vl74xS9+IWRkZAhjx44VVq5cKZhMJkEQAuN1KQjd7+PUqVOFESNGdHofWrx4sTebf0WunMML+ct07q707/PPPxdycnKEtLQ0YfLkycL777/vrWZ3W3f7ZzQahTVr1gi33367MHr0aOG+++4Tdu/e7c2muyzQrz+Djb+8h3jCla5lg9nlrg/J6vnnnxeef/55bzfDJ5SUlAizZs0S0tLShLFjxwrLli0TdDqdt5sliATBh/OuiYiIiIiIiIgoIHH4HhEREREREREReRyDUkRERERERERE5HEMShERERERERERkccxKEVERERERERERB7HoBQREREREREREXkcg1JERERERERERORxDEoREREREREREZHHMShFREREREREREQex6AUERERERERERF5HINSRERERERERETkcQxKERERERERERGRxzEoRUREREREREREHsegFBEREREREREReRyDUkRERERERERE5HEMShERERERERERkccxKEVERERERERERB7HoBQREREREREREXkcg1JERERERERERORxDEoREREREREREZHHMShFREREREREREQex6AUERERERERERF5HINSRERERERERETkcQxKERERERERERGRxzEoRUREREREREREHsegFBEREREREREReRyDUkRERERERERE5HEMShERERERERERkccxKEVERERERERERB7HoBQREREREREREXkcg1JERERERERERORxDEoREREREREREZHHMShFREREREREREQex6AUERERERERERF5HINSRERERH1MEARvN4GIiPoQ3+fdh89lcGFQishPlZSUYPjw4SgpKfF2U4iI6ALbt2/H7bffjpSUFLzwwguoqKjAT37ykz55rA8//BDDhw/HmTNn+uT4RETUmbve5xcsWIBJkyb1QQv9V3FxMd555x1vN4M8iEEpIiIiIjf6zW9+g/79++Ptt9/GT3/6U3zyyScoKyvzdrOIiMhN+D7fd1avXo2Ojg5vN4M8SOrtBhAREREFkpaWFtx8883IzMz0dlOIiKgP8H2eyH2YKUXkJkajEb/73e8wceJEjBw5Ej/72c/w97//3TGsYsGCBXjkkUewZMkSjBkzBvfddx9MJhOamprwm9/8BrfffjtuvPFGZGRkoKCgoNNQjI0bN+Kuu+7CyJEj8dBDD6G6urpTG6qrq/HMM88gIyMDo0aNwiOPPILvvvvOU08BEZHfO3r0KB555BGkp6cjLS0N+fn5OHz4sGP9jh07MH36dIwcORIzZsxAWVkZrr/+enz44YeOYdUA8Ic//AHDhw/HggUL8PrrrwMAhg8fjtdee82l9mzatAk5OTlITU3FyJEjkZ2dje3bt3fa7uuvv8aMGTOQkpKCadOmddpGrVZjxYoVuOOOO5CSkoKpU6di8+bNjvWLFy/G2LFjYTKZnPZ76aWXkJGRAYPBAAD44Ycf8Pjjj2P06NEYPXo0CgoKUFVV5VKfiIi8ydfe5wHggw8+wG233YaRI0d2ef1eWlqKn/3sZ7jppptw4403YtKkSXjttddgsVgc22zfvt3R7rFjx6KwsBB1dXVOx9m0aROmTJmCG2+8Ebfddhtee+01p/f9BQsW4Gc/+xn+9re/4Y477sDIkSPx4IMP4uTJk/jss88wbdo0jBo1Cvfffz++//57p2MfOHAADz30EEaNGoWMjAw8//zzaGpqcqz/8MMPcf311+Pw4cOYNWsWUlJScNttt2Ht2rWObezP7euvv+74PwU+BqWI3OSFF17An//8Zzz00EP4wx/+gLi4OCxevNhpmwMHDqCyshKvvfYaCgoKIJFI8Pjjj2Pv3r149tln8c4772DevHn48ssv8cILLzj2W79+PZYsWYJbbrkFb7zxBkaNGtXp2E1NTXjwwQdx9OhRLF68GC+//DIsFgvy8vLw448/euQ5ICLyZxqNBo899hhUKhXWrFmDV155BR0dHfjZz34GtVqNf//73/jlL3+JpKQkvP7667jzzjsxd+5cx03BDTfcgA8++AAAkJubiw8++AC/+MUvkJubC8B603H//fd3uz0bNmzACy+8gMmTJ+Ott97CSy+9BJlMhueee67TFxOLFy/G3XffjT/84Q9ITEzE008/jS+++AIAoNPp8D//8z/4xz/+gZ/+9Kd44403kJ6ejoULF+LNN98EAGRnZ6O5uRlfffWV45iCIGD79u24++67ERISgpMnT+LBBx9EY2MjVq5ciaKiIlRVVeEnP/kJGhsbe/7EExF5iK+9zwNATU0NXnvtNTz11FP4/e9/j9bWVvzv//6vI6Bz7Ngx5OfnQ6lU4pVXXkFxcTFGjx6N119/Hf/85z8BAAcPHkRhYSHuvPNOrF27Fr/61a+wb98+PPvss47Heeutt7B48WKMGzcOb775JvLy8rB27Vqnew4AOHToEP7yl79gwYIFWL58OSoqKjBnzhysWLECjz/+OFasWIFz586hsLDQsU9paSny8/Mhl8uxevVq/PrXv8b+/fvxv//7v9DpdI7tLBYLnnrqKdx777344x//iPT0dPzud7/Dnj17HM/fhc8tBQmBiHqtsrJSGD58uPDuu+86Lf/pT38qJCcnC1VVVcLzzz8vJCcnC6dOnXKsr6mpER5++GGhtLTUab9ly5YJN9xwgyAIgmCxWIRx48YJv/jFL5y2eeGFF4Tk5GRh3759giAIwu9//3shJSVFOHPmjGMbvV4vTJ48udO+RETUWVlZmZCcnCwcOHDAsayyslJYtWqVUF1dLdx3331CTk6O0z5vvPGGkJycLGzZssWxLDk5WVizZo3j9zVr1gjJyckut2fFihXCb3/7W6dl3377rZCcnCxs27ZNEARB2LJli5CcnCy89dZbTtvNmDFDmDVrliAIgrBhw4ZO/RIEQfj1r38tpKSkCM3NzYLFYhEmTZokLFiwwLG+tLTUab9nnnlGGDdunKBWqx3bNDc3C+np6cLKlStd7h8Rkaf52vu8/f6grKzMsayurk4YOXKk8PLLLwuCIAhbt24VHnvsMcFsNju2MZvNQnp6urB48WJBEAThrbfeElJTUwWdTufY5vPPPxdee+01wWKxCG1tbcKoUaOEF154wenx//a3vwnJycnCDz/84NSeiooKxzaLFy8WkpOThS+//NKx7J133hGSk5OF1tZWQRAEYdasWcLUqVMFk8nk2ObEiRPCddddJ6xfv14QhPOfV3/7298c2+j1eiElJUV48cUXHcsufm4p8DFTisgNSkpKIAgC7r77bqflU6dOdfpdLpdj8ODBjt/j4+Px3nvvYcyYMaiursZXX32F9evX4+uvv4bRaAQAnDhxAo2NjZg8ebLTse655x6n37/66itcd911iI+Ph8lkgslkglgsxsSJE/Hll1+6s7tERAEpKSkJMTExmDt3LpYsWYL//Oc/6NevH+bPnw+lUomjR492ei+ePn16n7VnwYIFeO6556BWq/HNN99g27Zt2LBhAwA4PiPsLv5MuOOOO3Do0CFotVrs378fV111FdLT0zu1Xa/X4/DhwxCJRJg+fTp27drlGKr38ccfY9CgQY799u3bh8zMTMjlcsfnTEREBMaMGcPPGSLyC772Pg8AAwcORGpqquP3fv36ITU11fG+OmPGDKxduxZGoxHl5eX417/+hddeew1ms9nxWXDTTTdBp9Nh2rRpeOWVV3Dw4EFMmDABTzzxBEQiEcrKytDR0YFJkyY53r9NJpNj5r+9e/c6Hj86OhrDhg1zag8ApzYqlUoAQFtbGzo6OnD48GHceuutEATBcexBgwZh2LBhTscGgLS0NMf/Q0JCEBMTg/b29t4/keS3WOicyA3s6bWxsbFOy+Pi4px+j42NhUgkclr2j3/8A7///e9x7tw5KJVKjBgxAnK53LG+tbUVABATE+O0n/0Dwq6lpQWVlZW44YYbumxjR0cHFAqFC70iIgou4eHh2LBhA4qLi7F9+3Zs3LgRCoUC06dPR0FBAYDO78Xx8fF91p7Tp0/jhRdewL59+yCVSjF06FBHjQ1BEJy2vfgzITY2FoIgQKPRoLW1tdPnEXD+M6qtrQ2A9cbnjTfewO7du3Hbbbdhx44d+J//+R/H9i0tLdi+fXuXNa0ufl6IiHyRr73PA53vFwDre/i5c+cAWIdgL1u2DB999BFMJhOuvvpqpKWlQSqVOj4L0tLS8Mc//hHr1q3DO++8gzfffBP9+vXD7Nmz8cgjj6ClpQUAMGfOnC7bcGHtqYiIiC63udR9RFtbGywWC9auXetUH8ouNDTU6fcL73MAQCwWd/pMo+DCoBSRG9g/rBobG5GQkOBYfqUaGwcOHMDzzz+Phx56CD/72c8wYMAAAMBvf/tbHDx4EACgUqm6PJb9w8UuMjISGRkZmD9/fpePFRIS0v0OEREFqaFDh+Kll16C2WzGkSNH8NFHH+H9999H//79IRaL0dDQ4LT9xe/F7mKxWDBnzhzIZDL87W9/w/XXXw+pVIqKigr84x//6LR9a2ur04V+Q0MDJBIJoqOjER0djcrKyk771NfXAzj/OXPNNdcgNTUVn3zyCWQyGZqbm50yBCIjIzF+/Hg8+uijnY4llfKSkoj8g6+8z9vZvxi4UH19vSM4VlRUhJ07d2L16tUYP348wsLCAADjxo1z2ueWW27BLbfcgo6ODuzbtw/vvfceli9fjtTUVERFRQEAfve732HIkCGdHq+rwFh3hYeHQyQSIT8/H1OmTOm0nl+K05Vw+B6RG6Snp0MikeDTTz91Wn7x7xcrKyuDxWLBk08+6QhImc1mR7quxWLBkCFDkJCQgB07djjt+9lnnzn9npGRgZMnT+Laa69FSkqK4+cf//gHNm3aBIlE0ttuEhEFtB07dmDs2LGor6+HRCJBWloali5diqioKDQ1NSEtLQ07d+50mu3o4vfirojFrl9uNTc34+TJk8jNzcXIkSMdQZ/du3cDgFMbADiKxNrX7dixA6NGjYJcLsdNN92Es2fPOr7ssPvHP/4BmUyGkSNHOpZNnz4du3fvxscff4zU1FSnm5eMjAxUVFTguuuuc3zG3HjjjVi3bh127drlch+JiDzNl97n7SorK52+ODh37hzKysqQmZkJwFrEPDMzE3fccYcjIPXtt9+iqanJ0c5Vq1YhNzcXgiBAoVDg9ttvx/PPP+843qhRoyCTyVBbW+t0nyCTyfDyyy93mvXbFREREbj++utx4sQJp2Pbi8WXlJS4dLzePJfkn/i1FpEbDBo0CDNnzsTvf/97GI1GjBgxArt27XJ8iF3qzdV+I/Diiy9i5syZaGtrw/r163Hs2DEAQHt7OyIiIlBYWIhnn30WixYtwt13341Dhw7h/fffdzpWfn4+PvroI+Tn5+OnP/0pVCoVtm/fjr/97W/41a9+1Ye9JyIKDKNHj4bFYkFBQQHmzJmD8PBwfPLJJ1Cr1bjzzjtx7733Ij8/H/PmzcNPfvITnD59Gq+++uoVj2v/hvrjjz/GqFGjMGjQoCvuExsbi6uuugobNmzAgAEDEBUVhS+++AJ//vOfAViHZF9o9erVMJvNSEhIwPvvv4+TJ0/iT3/6EwAgJycHf/3rX/HEE0/gySefxKBBg/Cf//wHW7ZswRNPPOFoHwBMmTIFK1aswD//+U8sXLjQ6THmzZuHBx98EI8//jh+8pOfIDQ0FB988AH+9a9/Yc2aNVfsExGRt/nS+7xdaGgo5s2bh6effhpmsxmvvvoqlEolHnnkEQDW+4VPPvkE77//PoYNG4Zjx46huLgYIpHI8Vkwbtw4/OlPf8KCBQswffp0GI1GvP3221AqlRg7diyUSiUee+wxvPrqq9BoNMjMzERtbS1effVViEQijBgxogfP5nnPPPMM5syZg2effRbTp0+H2WzGu+++i8OHD2Pu3LkuHSsqKgplZWUoLS3FmDFjOpU+ocDDMCSRmyxevBgPPvgg3n33XcybNw81NTWON2H7txoXy8zMxAsvvICysjLMnj0bK1aswMCBA/H6668DgONb7alTp+KVV17BoUOHMHfuXHz22Wd48cUXnY4VHx+PjRs34qqrrsLSpUvx85//HEeOHEFRURHy8/P7ruNERAGif//+ePvttxEZGYmFCxfi8ccfx9GjR/Haa69h7NixGDNmDN555x00NDSgoKAAGzdudHwTfTl33nknUlJSsGDBArzzzjvdbs8bb7yB+Ph4LFiwAE899RQOHTqE4uJiDB06FAcOHHDatqioCO+99x7mzZuH2tparF27FhkZGQCsQyf+8pe/YNKkSVizZg3mzp2LgwcPoqioCL/4xS+cjqNUKnHrrbdCLBbj3nvvdVo3YsQIbNiwASKRCPPnz8eTTz6J+vp6/OEPf8Cdd97Z7X4REXmLr73PA8Dw4cPxwAMPYOnSpZg/fz4GDx6Mv/71r47hewsWLMAdd9yB1atX4/HHH8emTZswd+5cPPDAAygrK4PZbMbEiRPxu9/9DuXl5XjiiSfwzDPPQKFQ4L333nMUJX/qqaewYMEC7Nq1C7Nnz8ZLL72E9PR0rF+/HpGRkS4/lxeaMGEC3nnnHdTU1ODJJ5/E/PnzIZFI8Kc//cmpQHp3/PznP8c333yD2bNnO+pqUWATCawqRtRrLS0t2L17N2655RZHbQ7Amkr74Ycfupy2SkRE/uHMmTOYPHkyVqxYgZycHG83h4iI3Izv80R9i8P3iNxAoVCgqKgI1113HR555BGEhYXh66+/xl/+8hf8/Oc/93bziIjIRwiCALPZfMXtJBIJhywQEfkhvs8TuYZBKSI3CA0Nxbp167B69WosWLAAHR0dGDx4MBYsWIC8vDxvN4+IiHzE1q1bu1Xnj9/IExH5J77PE7mGw/eIiIiIPKS5ublbsxxdffXVTsPBiYjIP/B9nsg1DEoREREREREREZHHcfY9IiIiIiIiIiLyOAaliIiIiIiIiIjI4xiUIiIiIiIiIiIij2NQioiIiIiIiIiIPE7q7Qb4o8ZGNXy5PLxIBMTGRvp8O3sq0PsHBH4f2T/fYG8nuUdjoxqAf5x7d/OX17y7sd/sdyDiZ4P7ufqaCbbXGvsZOIKlr8Haz776fGBQqgcEAX7x4vOXdvZUoPcPCPw+sn8USC4818F67tnv4MJ+E3VPT18zwfJaYz8DT7D0lf10Dw7fIyIiIiIiIiIij2NQioiIiIiIiIiIPI5BKSIiIiIiIiIi8jgGpYiIyK80NTUhKysLJSUljmU7d+5EdnY2Ro8ejUmTJuH111+HxWJxrN+6dSuysrKQmpqKnJwclJWVOdaZzWasWrUK48ePR1paGubOnYu6ujqP9omIiIiIKBgxKEVERH7j4MGDmDVrFk6fPu1Y9u2332L+/Pl46qmncODAAaxduxYffvgh1q1bBwAoKSnBsmXLsHLlSpSWlmL69OmYO3cuOjo6AADFxcXYu3cvtmzZgj179kAul2PRokXe6B4RERERUVBhUIqIiPzC1q1bUVhYiKefftpp+dmzZ/Hggw/i9ttvh1gsxrBhw5CVlYXS0lIAwKZNmzBlyhSkp6dDJpMhPz8fKpUK27dvd6yfPXs2EhISEBERgYULF2L37t2oqqryeB+JiIiIiIIJg1JEROQXJkyYgF27duHee+91Wn7XXXfhV7/6leN3nU6Hzz//HDfccAMAoKKiAsnJyU77JCYm4tixY1Cr1aipqXFaHxcXh+joaBw/frwPe0NERERERFJvN4CIiKg7+vXrd8VtNBoNfvnLX0IulyM/Px8AoNVqoVAonLaTy+Vob2+HVqsFAISFhXVab1/XXSJR1/8PBvb+st/Bgf32bjv6WqD3j4iIfAuDUkREFBBOnDiBJ598ErGxsXjvvfcQEREBAFAoFNDpdE7b6nQ6qFQqR7DKXl/qwvXh4eEuPX5sbGSX/w8m7HdwYb+JiIiotxiUIiIiv/ff//4XzzzzDB544AE8++yzkErPf7wlJSWhvLzcafuKigpMnDgR0dHRiI+PdxriV19fj5aWlk5D/q6ksVENwHrD2tiohiD0slN+RCRiv9nvwBcs/bb3k4iIyBMYlCIiIr926NAhFBQUYOnSpcjNze20Pjc3FwUFBbjnnnuQnp6ODRs2oLGxEVlZWQCAnJwcFBcXIyUlBSqVCsuXL0dGRgYGDx7sUjsuvEkVBAT0TeulsN/Bhf0mIiKi3mJQiugyLBYLGhoaAFiLH4vFnBuAyNe8+eabMJlMKCoqQlFRkWN5eno63n77bYwbNw5LlizB0qVLUVtbi8TERKxduxZKpRIAUFBQAJPJhLy8PGi1WmRmZmL16tXe6YwHWCwW1NXVAgD694/n+xoRkY+xWCw4e/Ysmpo06N9/AN+niSigMShFdBkNDQ1469+HAQCPTx6F/v37e7lFRATAaWa8N99884rbZ2dnIzs7u8t1MpkMhYWFKCwsdFv7fFldXS3e3FUGAPh5VhoGDEjwcouIiOhCtbU1+NPub6HTGfHzrDQkJAz0dpOIiPoMg1JEVxAeHePtJhARuVWEKs7bTSAiosuIjOkPWYfe280gIupzzAUlIiIiIiIiIiKPY1CKiIiIiIiIiIg8jkEpIiIiIiIiIiLyOAaliIiIiIiIiIjI4xiUIiIiIiIiIiIij+Pse0RERAHGYrGgrq4WANC/fzzEYn4HRURERES+h1epREREAaaurhZv7irDm7vKHMEpIiIiIiJfw0wpIiKiABShivN2E4iIiIiILouZUkRERERERERE5HEMShERERERERERkccxKEVERERERERERB7HoBQREREREREREXkcg1JERERERERERORxDEoREREREREREZHHMShFREREREQ+r6mpCVlZWSgpKXEs27lzJ7KzszF69GhMmjQJr7/+OiwWi2P91q1bkZWVhdTUVOTk5KCsrMyxzmw2Y9WqVRg/fjzS0tIwd+5c1NXVOdY3NjZi3rx5GDNmDDIzM1FUVASTyeSZzhIRBQkGpYiIiAKUYLGgrq4WNTXnUFNzzulGjYjInxw8eBCzZs3C6dOnHcu+/fZbzJ8/H0899RQOHDiAtWvX4sMPP8S6desAACUlJVi2bBlWrlyJ0tJSTJ8+HXPnzkVHRwcAoLi4GHv37sWWLVuwZ88eyOVyLFq0yHH8p556CmFhYdizZw82b96Mr776ynFsIiJyDwaliIiIApSmtQnrv/oR6w9U4c1dZairq/V2k4iIXLZ161YUFhbi6aefdlp+9uxZPPjgg7j99tshFosxbNgwZGVlobS0FACwadMmTJkyBenp6ZDJZMjPz4dKpcL27dsd62fPno2EhARERERg4cKF2L17N6qqqlBZWYn9+/fjueeeg0KhwKBBgzBv3jxs2LDB4/0nIgpkUm83gIiIiPpOuDIGUTH9vd0MIqIemzBhAqZNmwapVOoUmLrrrrtw1113OX7X6XT4/PPPMW3aNABARUUFZs6c6XSsxMREHDt2DGq1GjU1NUhOTnasi4uLQ3R0NI4fPw4AUCqViI+Pd6wfNmwYqqur0dbWhqioqG63XyRyrb+O7UXW/7u6v7+w9ytQ+2cXLP0EgqevwdrPvuovg1JEREREROSz+vXrd8VtNBoNfvnLX0IulyM/Px8AoNVqoVAonLaTy+Vob2+HVqsFAISFhXVab1938b7239vb210KSsXGRnZ7WwDQ6yMA1EEuD0VMTATi4lzb39+4+vz4q2DpJxA8fWU/3YNBKSIiogB3vE6DH2sNuGmIDsPj5N5uDhGRW504cQJPPvkkYmNj8d577yEiIgKANYik0+mcttXpdFCpVI4Ak72+1IXrw8PDIQhCp3X238PDw11qX2OjGoLQ/e2bmzW2tujR1KRBaKjapcfzFyKR9WbX1efH3wRLP4Hg6Wuw9tP+u7sxKEVERBTADGZg74lmmAUBz+2sQv71cgiCAFGg55wTUVD473//i2eeeQYPPPAAnn32WUil529vkpKSUF5e7rR9RUUFJk6ciOjoaMTHx6OiosIxhK++vh4tLS1ITk6GxWJBS0sLGhoaEBcXBwD48ccfMWDAAERGunZTJghw6cbVsa3g+r7+KBj6CARPP4Hg6Sv76R4sdE5ERBTATmtFMAsCxBAgAPjgezXa29u93Swiol47dOgQCgoK8Ktf/QrPP/+8U0AKAHJzc7Ft2zbs27cPRqMR69atQ2NjI7KysgAAOTk5KC4uRlVVFTQaDZYvX46MjAwMHjwYQ4YMQXp6OpYvXw6NRoOqqiq88cYbyM3N9UZXiYgClk8GpY4ePYq8vDyMGTMGEyZMwP/93//BYDAAAA4fPoz7778faWlpmDRpEjZt2uS079atW5GVlYXU1FTk5OSgrKzMsc5sNmPVqlUYP3480tLSMHfuXNTV1Xm0b0RERJ5iEYBTWmtG1PAIA0QQ0C7IoDV5uWFERG7w5ptvwmQyoaioCGlpaY6fxx57DAAwbtw4LFmyBEuXLkVGRgb++c9/Yu3atVAqlQCAgoIC3HrrrcjLy8Ott94KvV6P1atXO46/Zs0amEwmTJ48GQ888ABuueUWzJs3zws9JSIKXD43fM9iseDxxx/HnDlz8Je//AV1dXWO6VsfeughzJkzB08++SRmzZqF0tJSFBQUYPjw4Rg5ciRKSkqwbNkyrF27FiNHjsSGDRswd+5cfPbZZ1AoFCguLsbevXuxZcsWREZGYvHixVi0aBH++Mc/ervbREREbtdslEBnFkEuFWOwwog6Ywga9UBthwj9o73dOiIi19lnxgOsQakryc7ORnZ2dpfrZDIZCgsLUVhY2OX6uLg4rFmzpmcNJSKibvG5TKnW1lbU19fDYrFAsA1cFIvFUCgU+PTTT6FUKpGXlwepVIpx48Zh2rRp2LBhAwBg06ZNmDJlCtLT0yGTyRzBrO3btzvWz549GwkJCYiIiMDChQuxe/duVFVVea2/REREfaXVZP2YHxAVCokIiJdbP1frdKwnRURERETe53NBKZVKhfz8fKxatQopKSm49dZbMWTIEOTn56O8vNxRiNAuMTERx44dAwCnQoUXr1er1aipqXFaHxcXh+joaKdvXLpDJPL9H39ppz/0z1vnnefQv6waTSEAAQAASURBVH/8pX8U2NS2oFRseAgAoL8tKNWoB4yWIKjMSUREREQ+zSeH78nlcixevBi5ubmorKzEE088gTVr1kCr1Tqmb7WTy+WOgq2XW6/VagEAYWFhndbb13VXX0yD2Bf8pZ095Yn+mc3tUChCbI8Xgbg4zz6nPIf+LdD7R76v1WgLSoXJAD0QIQNCxRboLWK06hmUIiIiIiLv8rmg1K5du7Bz507s2LEDgHUq14KCAhQVFWHatGlQq9VO2+t0OoSHhwMAFAoFdDpdp/UqlcoRrOro6Ljk/t3V2Kj26akfRSLrzbCvt7OnPNm/xkYNOjoMjv9LJGFX2MM9eA79m7/0z95OCkxmiwCt+XymVGuzdXmk1AK9QYxWvcWLrSMiIiIi8sGg1Llz5xwz7dlJpVLIZDIkJydj7969TusqKiqQlJQEwBrAKi8v77R+4sSJiI6ORnx8vNMQv/r6erS0tHQa8nclggCfvtG085d29pQn+nfh8b3xfPIc+rdA7x/5tlaDAAEiyMQCwkMkaLUtj5RY0ACghZlSRERERORlPldTasKECaivr8ebb74Js9mMqqoqFBcXY9q0acjKykJDQwPWrVsHo9GIffv2Ydu2bZg5cyYAIDc3F9u2bcO+fftgNBqxbt06NDY2IisrCwCQk5OD4uJiVFVVQaPRYPny5cjIyMDgwYO92WUiIiK3a9ZZM6GiZYDoggJikVLrcmZKEREREZG3+VymVGJiIt566y2sXr0ab7/9NiIjIzF9+nQUFBQgJCQE7777LoqKirBmzRrExMRg0aJFGDt2LABg3LhxWLJkCZYuXYra2lokJiZi7dq1UCqVAICCggKYTCbk5eVBq9UiMzMTq1ev9l5niYiI+og9EypK5pwRdT4oJThmuSUiIiIi8gafC0oBwPjx4zF+/Pgu16WkpGDjxo2X3Dc7OxvZ2dldrpPJZCgsLERhYaFb2klEROSrNAZrwClC5rw8QmqBCAIMFhGaOsxI8ELbiIiIiIgAHxy+R0RERL2nNVmDUgqJczaURASE276SOtWi93SziIiIiIgcGJQiIiIKMIIgoN1oD0p1Xh9pG9JX2WLovJKIiIiIyEMYlCIiIgowbXoLzLYEKUUXA/UjbMuq1QxKEREREZH3MChFREQUYOq1RgBAqNgCiajz+jBbUKpGY/Rgq4iIiIiInDEoRUREFGDqtCYAgFzc9ex64VLr8nNqBqWIiIiIyHsYlCIiIgow9e3WYJNCYulyvT1TqqHdBKO5622IiIiIiPoag1JEREQBxp4pdfHMe3ahYussfBYBONfGGfiIiIiIyDsYlCIiIgow9ppSiksM3xOJgAiZtdjUmZYOj7WLiIiIiOhCDEoREREFmHpHptSlh+ZFhNiDUjqPtImIiIiI6GIMShEREQUYx/C9S2RKAUC4LVPqbCszpYiIiIjIOxiUIiIiv9LU1ISsrCyUlJQ4lh0+fBj3338/0tLSMGnSJGzatMlpn61btyIrKwupqanIyclBWVmZY53ZbMaqVaswfvx4pKWlYe7cuairq/NYf9xNZzSjTW8GcIVMKRkzpYiIiIjIuxiUIiIiv3Hw4EHMmjULp0+fdixrbW3FnDlzMGPGDJSWlqKoqAgrVqzAkSNHAAAlJSVYtmwZVq5cidLSUkyfPh1z585FR4c1Q6i4uBh79+7Fli1bsGfPHsjlcixatMgr/XOHxnYDAGshc6no0tudH77HTCkiIiIi8g4GpYiIyC9s3boVhYWFePrpp52Wf/rpp1AqlcjLy4NUKsW4ceMwbdo0bNiwAQCwadMmTJkyBenp6ZDJZMjPz4dKpcL27dsd62fPno2EhARERERg4cKF2L17N6qqqjzex96yWCyoqKoBAIRKrAXNL8WeKVXdqoMgXHqYHxERERFRX5F6uwFERETdMWHCBEybNg1SqdQpMFVeXo7k5GSnbRMTE7F582YAQEVFBWbOnNlp/bFjx6BWq1FTU+O0f1xcHKKjo3H8+HEMGjSo2+27MAB0uWBQX6qvr8XGfT8AUEAmunygyV5vSmeyoKXDgJjw0B4/rr2/3uq3t7Df3m2HpwVLvwO9f0RE5FsYlCIiIr/Qr1+/LpdrtVooFAqnZXK5HO3t7Vdcr9VqAQBhYWGd1tvXdVdsbGSX//ckg0GNkCgV0KqDQiaCQh4CUUgIwsJCHf8XxGbrvwYtQkVS6AUxzjS3IPmaxF4/vrf67W3sd3AJ1n4TERH1BQaliIjIrykUCqjVaqdlOp0O4eHhjvU6na7TepVK5QhW2etLdbV/dzU2WtsQGxuJxkY1vDEirqlJA3WHdeY9GSzo0BkgtkjQ3q53/N9iOP+vQiaD3gBUVLdh5NXqKxz90kQi7/bbW9hv9jsQ2ftJRETkCQxKERGRX0tOTsbevXudllVUVCApKQkAkJSUhPLy8k7rJ06ciOjoaMTHx6OiosIxhK++vh4tLS2dhgReyYU3qYIAr9y0CgKgM1kfOERy5e0VEgEtEKFWY3RLe73Vb29jv4NLsPabiIioL7DQORER+bWsrCw0NDRg3bp1MBqN2LdvH7Zt2+aoI5Wbm4tt27Zh3759MBqNWLduHRobG5GVlQUAyMnJQXFxMaqqqqDRaLB8+XJkZGRg8ODB3uxWj+nM1rvl0G58witsgat6rakPW0RERERE1DVmShERkV9TqVR49913UVRUhDVr1iAmJgaLFi3C2LFjAQDjxo3DkiVLsHTpUtTW1iIxMRFr166FUqkEABQUFMBkMiEvLw9arRaZmZlYvXq19zrUS3qz9d/QbmRKhdmuAuq0xr5rEBERERHRJTAoRUREfuf48eNOv6ekpGDjxo2X3D47OxvZ2dldrpPJZCgsLERhYaFb2+gtjuF74iuPL1JIrNvUMVOKiIiIiLyAw/eIiIgCiN4+fK87NaVsX03VM1OKiIiIiLyAQSkiIqIAYbYI54fvuVBTSm2woN1g7ruGERERERF1gUEpIiKiANFmj0hBQEg3PuFlYusPAJxr0/VZu4iIiIiIusKgFBERUYBo0VmDUiEiASJR9/YJl1k3rGnT91WziIiIiIi6xKAUERFRgGjRWQuWd6fIuV2YLShVzUwpIiIiIvIwBqWIiIgCRKstUyrUhaBUuNSeKcWgFBERERF5FoNSREREAcIxfM+VoJQtU+och+8RERERkYcxKEVERBQg7IXOezJ8j5lSRERERORpDEoREREFCI3BAgCQdbPIOcBMKSIiIiLyHgaliIiIAoS6J5lStppSDVoDDCZLn7SLiIiIiKgrDEoREREFCI3BGpSSuRCUCpUAIRJrYKpWzWwpIvJdTU1NyMrKQklJiWPZ4cOHcf/99yMtLQ2TJk3Cpk2bnPbZunUrsrKykJqaipycHJSVlTnWmc1mrFq1CuPHj0daWhrmzp2Luro6x/rGxkbMmzcPY8aMQWZmJoqKimAymfq+o0REQYRBKSIiogChdgzf635QSiQSoX+4FABwjnWliMhHHTx4ELNmzcLp06cdy1pbWzFnzhzMmDEDpaWlKCoqwooVK3DkyBEAQElJCZYtW4aVK1eitLQU06dPx9y5c9HR0QEAKC4uxt69e7Flyxbs2bMHcrkcixYtchz/qaeeQlhYGPbs2YPNmzfjq6++wrp16zzabyKiQMegFBERUYCwD99zJVMKAPqHywAANawrRUQ+aOvWrSgsLMTTTz/ttPzTTz+FUqlEXl4epFIpxo0bh2nTpmHDhg0AgE2bNmHKlClIT0+HTCZDfn4+VCoVtm/f7lg/e/ZsJCQkICIiAgsXLsTu3btRVVWFyspK7N+/H8899xwUCgUGDRqEefPmOY5NRETuwaAUERFRgND2IFMKAPoxU4qIfNiECROwa9cu3HvvvU7Ly8vLkZyc7LQsMTERx44dAwBUVFRccr1arUZNTY3T+ri4OERHR+P48eMoLy+HUqlEfHy8Y/2wYcNQXV2NtrY2d3eRiChoSb3dACIiIuo9k0WA1mgNSrlS6Bw4nyl1jjWliMgH9evXr8vlWq0WCoXCaZlcLkd7e/sV12u1WgBAWFhYp/X2dRfva/+9vb0dUVFR3W6/yIUZUZ22F1n/7+r+/sLer0Dtn12w9BMInr4Gaz/7qr8MShEREQUAje588V2pixcN9ppSNcyUIiI/olAooFarnZbpdDqEh4c71ut0uk7rVSqVI8Bkry918f6CIHRaZ//dfvzuio2NdGl7vT4CQB3k8lDExEQgLs61/f2Nq8+PvwqWfgLB01f20z0YlCIiIgoArTojAEAmBsQuBqX62TOlWFOKiPxIcnIy9u7d67SsoqICSUlJAICkpCSUl5d3Wj9x4kRER0cjPj7eaYhffX09WlpakJycDIvFgpaWFjQ0NCAuLg4A8OOPP2LAgAGIjHTtBq2xUQ3BhQTW5mYNAECn06OpSYPQUPUV9vBPIpH1ZtfV58ffBEs/geDpa7D20/67u7GmFBERUQBos2VKhUhcz622Z0rVqvUwWwL46oqIAkpWVhYaGhqwbt06GI1G7Nu3D9u2bcPMmTMBALm5udi2bRv27dsHo9GIdevWobGxEVlZWQCAnJwcFBcXo6qqChqNBsuXL0dGRgYGDx6MIUOGID09HcuXL4dGo0FVVRXeeOMN5ObmutxOQXD9x7pjz/b1p5+ePj/+9hMs/QymvgZrP/sCM6WIiIgCgCMo1YOvm2IUUkjEIpgtAuo1egyIkru5dURE7qdSqfDuu++iqKgIa9asQUxMDBYtWoSxY8cCAMaNG4clS5Zg6dKlqK2tRWJiItauXQulUgkAKCgogMlkQl5eHrRaLTIzM7F69WrH8desWYMXX3wRkydPhlgsxowZMzBv3jwv9JSIKHAxKEVERBQA7MP3epIpJRGLEB8ZiupWHWraGJQiIt91/Phxp99TUlKwcePGS26fnZ2N7OzsLtfJZDIUFhaisLCwy/VxcXFYs2ZNzxtLRERXxOF7REREAeD88L2e7Z8QFQoAOKdmsXMiIiIi8gwGpYiIiPycxWJBdUMzgJ4N3wPgyI6qYbFzIiIiIvIQBqWIiIj8XF1dLb6qqAEAiCymHh0jIdKWKdXGTCkiIiIi8gwGpYiIiAKAILVmOvU0UyrBlil1jplSREREROQhDEoREREFAIPF+q+sx8P3rJlSNcyUIiIiIiIPYVCKiIgoAOjNAgBAJhZ6tP+FmVKC0LNjEBERERG5QurtBhAREVHvGczWf3uaKRVvqymlN1nQpDXAqGkCAPTvHw+xmN9hEREREZH7MShFREQUAIwWe6YUgB4kOoVIxYgLD0GD1oDvKqvx76+/BwD8PCsNAwYkuLGlRERERERWDEoREREFAKO9ppQIPQpKAUBCVCgatAbUaY2IUMW5rW1ERERERF1hPj4REZGfM5gtsCVKQdqLT/YBtrpS9VqTG1pFRERERHR5DEoRERH5uXZ7mhQESEU9P06CbQa+OgaliIiIiMgDGJQiIiLyc+0Ga1BKKgJEvQpKWTOl6rRGdzSLiIiIiOiyGJQiIiLyc1qjPSjVw2JSNgxKEREREZEnMShFRETk59rdFJQawOF7RERERORBnH2PiIjIz9mDUrIefNUkWCyoq6sFAIhtx9EaLDCaBcgkvRgLSERERER0BQxKERER+Tmt4cJMKdcCSZrWJqz/qgP9rzJA09yAyJAoqA0WaE0ClAxKEREREVEfYlCKiIjIz7UbzQB6FpQCgHBlDKJi+gMA+hkFqA16tBsFKEPd2UoiIiIiImesKUVEROTnzteU6v2x+odbv6/SGntXn4qIiIiI6EqYKUVEROTnHLPviXsXSBIsFkSIbXWlGJQiIiIioj7GoBQREZGfa7fVlJL1cvY9TWsTTrUAQATadEYAst42jYiIiIjoknxy+F5LSwvmz5+PzMxM3HTTTZg3bx7q6uoAAIcPH8b999+PtLQ0TJo0CZs2bXLad+vWrcjKykJqaipycnJQVlbmWGc2m7Fq1SqMHz8eaWlpmDt3ruO4RERE/krrxuF70ZEKAECHmUXOiYiIiKhv+WRQ6he/+AXa29uxa9cufPbZZ5BIJFi8eDFaW1sxZ84czJgxA6WlpSgqKsKKFStw5MgRAEBJSQmWLVuGlStXorS0FNOnT8fcuXPR0dEBACguLsbevXuxZcsW7NmzB3K5HIsWLfJmV4mIiHqtw3jh7Hu9o5DYjmnq9aGIiIiIiC7L54JS3377LQ4fPoyVK1ciKioKERERWLZsGQoLC/Hpp59CqVQiLy8PUqkU48aNw7Rp07BhwwYAwKZNmzBlyhSkp6dDJpMhPz8fKpUK27dvd6yfPXs2EhISEBERgYULF2L37t2oqqryZpeJiMgNjh49iry8PIwZMwYTJkzA//3f/8FgMADoXZatP3BXTSkACLMFpfQWEcwW1pUiIiIior7jc0GpI0eOIDExEX/729+QlZWFCRMmYNWqVejXrx/Ky8uRnJzstH1iYiKOHTsGAKioqLjkerVajZqaGqf1cXFxiI6OxvHjx11qo0jk+z/+0k5/6J+3zjvPoX//+Ev/AoXFYsHjjz+Ou+66C/v378fmzZvxxRdfYO3atb3OsvUH52tK9f5YMjEggTUY1W5iUIqIiIiI+o7PFTpvbW3F8ePHceONN2Lr1q3Q6XSYP38+nn/+ecTFxUGhUDhtL5fL0d7eDgDQarWXXK/VagEAYWFhndbb13VXbGykq93yCn9pZ095on9mczsUihDb40UgLs6zzynPoX8L9P75ktbWVtTX18NisUAQrIEUsVgMhULhlGULwCnLduTIkU5ZtgCQn5+PDz74ANu3b8fMmTO91idXtLtx+J5IBCgkFmjMEs7AR0RERER9yueCUiEh1gDAwoULERoaioiICDz11FN44IEHkJOTA51O57S9TqdDeHg4AEChUHS5XqVSOYJVF3/zfeH+3dXYqIbgw9fpIpH1ZtjX29lTnuxfY6MGHR0Gx/8lkrAr7OEePIf+zV/6Z29nIFCpVMjPz8eqVavw29/+FmazGZMnT0Z+fj5WrlzZZRbt5s2bAVizbC8OPl2YhdtdF2aeeToLrd1oBuCeoBQAKCQCNGZAaxS6lVV3YXZgMGG/vdsOTwuWfgd6/4iIyLf4XFAqMTERFosFRqMRoaGhAKzDMgDguuuuw1//+len7SsqKpCUlAQASEpKQnl5eaf1EydORHR0NOLj452G+NXX16OlpaXTzcqVCAJ8+kbTzl/a2VOe6N+Fx/fE41ksFjQ0NEAkAkymdohEcohEPjfK1m34GiV3sVgskMvlWLx4MXJzc1FZWYknnngCa9asuWwWLXD5LFtXXBjg82Swz2wR0GEbZhepkEEuD4EgNkMUcv7fsLBQKOQhTssut01EiAH1BsAAMWJiup8lGihBTlex38ElWPtNRETUF3wuKDV+/HgMGjQIv/71r7FixQro9Xq88soruOOOOzB16lSsWbMG69atQ15eHg4ePIht27bhjTfeAADk5uaioKAA99xzD9LT07FhwwY0NjYiKysLAJCTk4Pi4mKkpKRApVJh+fLlyMjIwODBg73ZZSKHhoYGvPXvwwiPjoFZr0H+hOvQr19/bzeLyOft2rULO3fuxI4dOwBYv6QoKChAUVERpk2bBrVa7bR9d7NsXdHYaH0MT2fJtemMjv+bDAboRBJYDAaILef/bW/Xo0PnvOxy24QIJgAStHaY0NSkQUiI+tINgP9kB7ob+81+B6JAyqIlIiLf53NBKZlMhr/85S9YuXIl7rrrLuj1ekyaNAkLFy5EVFQU3n33XRQVFWHNmjWIiYnBokWLMHbsWADWOiFLlizB0qVLUVtbi8TERKxduxZKpRIAUFBQAJPJhLy8PGi1WmRmZmL16tXe6yxRF8KjYxChjIVZH+LtphD5jXPnzjlm2rOTSqWQyWRITk7G3r17ndZ1N8vWFZ7OrLTT6K1D9yQiQOymYTcKia3QuVFwqS/Bmh3IfgeXYO03ERFRX/C5oBQAxMfH45VXXulyXUpKCjZu3HjJfbOzs5Gdnd3lOplMhsLCQhQWFrqlnURE5BsmTJiAl19+GW+++SZmz56N6upqFBcXY9q0acjKysJLL73U4yxbX6fRmwAAUjeO9FVIrMPmWeiciIiIiPqSTwaliIiIXJGYmIi33noLq1evxttvv43IyEhMnz4dBQUFCAkJ6VWWra+zZ0rJ3JUmBUAhtgajOkzWmlVERERERH2BQSkiIgoI48ePx/jx47tc15ssW1+nNVgzpWQS9x0zVCxADAEWiFDfbsJV7js0EREREZFD4E7rRUREFAT6IlNKJAIUtq+tajXGy29MRERERNRDDEoRERH5MXtNKZmbP9HDbEGpGgaliIiIiKiPMChFRETkx7QG92dKAUCYbQY+ZkoRERERUV9hUIqIiMiPOTKl3FhTCjifKcWgFBERERH1FQaliIiI/FjfDd+zZ0qZ3HtgIiIiIiIbBqWIiIj8mKbPhu9Z/2VNKSIiIiLqKwxKERER+TFtHxc6b9Wb0W4LfBER+ZqjR48iLy8PY8aMwYQJE/B///d/MBgMAIDDhw/j/vvvR1paGiZNmoRNmzY57bt161ZkZWUhNTUVOTk5KCsrc6wzm81YtWoVxo8fj7S0NMydOxd1dXUe7RsRUTBgUIqIiMiP9VWmlEwMhNiuEqpbdW49NhGRO1gsFjz++OO46667sH//fmzevBlffPEF1q5di9bWVsyZMwczZsxAaWkpioqKsGLFChw5cgQAUFJSgmXLlmHlypUoLS3F9OnTMXfuXHR0dAAAiouLsXfvXmzZsgV79uyBXC7HokWLvNldIqKAxKAUERGRH+urQucAEC6zBrrOMihFRD6otbUV9fX1sFgsEARrHTyxWAyFQoFPP/0USqUSeXl5kEqlGDduHKZNm4YNGzYAADZt2oQpU6YgPT0dMpkM+fn5UKlU2L59u2P97NmzkZCQgIiICCxcuBC7d+9GVVWV1/pLRBSIGJQiIiLyY9o+ypQCgIgQe1Cqw+3HJiLqLZVKhfz8fKxatQopKSm49dZbMWTIEOTn56O8vBzJyclO2ycmJuLYsWMAgIqKikuuV6vVqKmpcVofFxeH6OhoHD9+vO87RkQURKTebgARERH1nL2mVEgffM1kz5Ti8D0i8kUWiwVyuRyLFy9Gbm4uKisr8cQTT2DNmjXQarVQKBRO28vlcrS3twPAZddrtVoAQFhYWKf19nWuELn4nYFje5H1/67u7y/s/QrU/tkFSz+B4OlrsPazr/rr9qBUSUkJMjMz3X1YIiLyY/xs6BuCIDiG70nFIri7HDmH7xFRb/Xl+/+uXbuwc+dO7NixAwCQlJSEgoICFBUVYdq0aVCr1U7b63Q6hIeHAwAUCgV0Ol2n9SqVyhGssteX6mp/V8TGRrq0vV4fAaAOcnkoYmIiEBfn2v7+xtXnx18FSz+B4Okr++kebg9KPfnkk4iMjMR9992H++67DwMHDnT3QxARkZ/hZ0Pf0JksMFvLqEAmgduDUhHMlCKiXurL9/9z5845Ztqzk0qlkMlkSE5Oxt69e53WVVRUICkpCYA1gFVeXt5p/cSJExEdHY34+HinIX719fVoaWnpNOSvOxob1bCVvOqW5mYNAECn06OpSYPQUPUV9vBPIpH1ZtfV58ffBEs/geDpa7D20/67u7k92f+LL77Ac889h2+//RZ33XUXfvrTn+Ljjz/u9IFBRETBg58NfcM+dE8sAqR9kFJ94fA9IZCvuv6fvTuPj6q+9z/+mpnMZCYLWQiERVAxAVxAIsii1gWL2AriRdD2R23hXqUXUWtbXMFqqyjcarVIRUUttdBiUdGiVkHrioCgCEoFCQoJhOzrJJlklvP7YzIjgRASmMlkJu/n4zGPJGeZ8/lOkvM953O+i4iETTjP/xdccAElJSU8+eSTeL1e8vPzWbJkCRMnTmTcuHGUlpaybNky3G43GzduZM2aNVx99dUATJkyhTVr1rBx40bcbjfLli2jrKyMcePGATB58mSWLFlCfn4+TqeTBx98kJEjR9K/f/92x2kY7X/5dzy+faPpdbyfT7S9uko5u1JZu2o5wyHkLaWsVivjx49n/PjxlJeX8+abb/Lcc8/xu9/9jiuuuIJrr72WwYMHh/qwIiLSialuCA9ng79tlMNqxhSGjv4JVhMm/C2yyuvcdE+0hfwYIhLbwnn+z8rK4qmnnuKxxx7jmWeeITk5mSuvvJLZs2djs9l47rnnmD9/PosWLSI9PZ158+YxevRoAMaMGcO9997LfffdR1FREVlZWSxdupTU1FQAZs+ejcfjYdq0adTW1jJq1Cgee+yxEH0qIiISELaBzsvKynjttdd4/fXXyc3N5aKLLiI+Pp7p06czffp0/vd//zdchxYRkU5KdUNoORv9LaUSreGZTNdiMtE9IY7SOg8HqlxKSonIcQvX+f+8887jvPPOa3HdkCFDWLly5VH3nTRpEpMmTWpxndVqZc6cOcyZM+e44hIRkbYJeVLq9ddf59VXX+Xjjz9mwIABTJ48mSeffJL09HQALrroImbPnq0bDxGRLkR1Q3jUNrWUSghTUgqgV5KV0joPBVUuhvbpFrbjiEhs0vlfRERaE/Kk1G9/+1uuuOIKVq5cyVlnnXXE+lNPPZXp06eH+rAiItKJqW4Ij3C3lALITIrjy2I4UFV/7I1FRA6j87+IiLQm5Empjz76iPz8fDIzMwH4/PPPSU5O5rTTTgOgV69e3HLLLaE+rIiIdGKqG8LD2TTQucNqBnxhOUavJCugGfhE5Pjo/C8iIq0J+aPVd955h6uuuoq9e/cCsHXrVqZOncr7778f6kOJiEiUUN0QHoGBzhNtlrAdI7MpKXVASSkROQ46/4uISGtC3lJq8eLFPPHEE8HmuTNmzCArK4vf//73XHTRRaE+nIiIRAHVDeFR29R9L9xjSoFaSonI8dH5X0REWhPyq9iDBw/yve99r9myCy64gIKCglAfSkREooTqhvBwdsBA54GWUkU1DXi84ekiKCKxS+d/ERFpTcivYvv27cuHH37YbNmGDRvo06dPqA8lIiJRQnVDeATGlArnQOdpdgvxcWZ8BhTWNITtOCISm3T+FxGR1oS8+97MmTOZPXs2l112GX379qWgoIB169axcOHCUB9KRESihOqG8KhtbGopZTPTEKbedSaTiT7d7HxbXseBShcnpTrCcyARiUk6/4uISGtC/mh14sSJLF26FKvVyo4dO7Db7Tz33HOMHz8+1IcSEZEoobohPDqipRRA31Q7AAeqNa6UiLSPzv8iItKakLeUAhg1ahSjRo0Kx1uLiEiUUt0Qes7G8I8pBdCnW1NSqlJJKRFpP53/RUTkaEKelCoqKmLJkiXs3bsXn6/5gKjPP/98qA8nIiJRQHVDeARaSiVYLWE9TqCllGbgE5H20vlfRERaE/Kk1F133UVpaSmXXHIJVqs11G8vIiJRSHVDeATGlEq0dVBLqar6sB5HRGKPzv8iItKakCelvvjiC9566y3S09ND/dYiIhKlVDeER6CllCPc3fdS1FJKRI6Pzv8iItKakF/FJicnY7PZQv22IiISxVQ3hJ7H66PB4+8KE+6BzgNJqSqXJ5gIExFpC53/RUSkNSG/ir3xxhu566672L59OwUFBc1eIiLSNaluCL3AIOcQvoHODZ+P4uIinBUlpNj9jasPqLWUiLSDzv8iItKakHffmzdvHgDr1q0DwGQyYRgGJpOJr776KtSHExGRKKC6IfQO7bpnMZvCc4yqcpZvqCchoYBeiRlUuTwcqKxnUM+ksBxPRGKPzv8iItKakCel3nnnnVC/pYiIRDnVDaFX2xAY5DzkVXkzianpJCYm0rvByq4yF3kVGuxcRNpO538REWlNyNv79+3bl759+1JVVcWOHTvo0aMHdrudvn37hvpQIiISJVQ3hJ6z0d9SKine0iHH65PsnzVrf6W674lI2+n8LyIirQl5UqqsrIwf/ehHXHPNNdxxxx3k5+fz/e9/n61bt4b6UCIiEiVUN4Ses6mlVFJ8eFtKBfRuSkrlVaqllIi0nc7/IiLSmpAnpR588EEGDhzI5s2biYuL47TTTmPmzJn83//9X6gPJSIiUUJ1Q+jVNrWUSrR1TEup3sn+2bP2KyklIu2g87+IiLQm5EmpjRs3ctddd+FwODCZ/AOvXn/99eTm5ob6UCIiEiVUN4ReYKDzjmgpZfh8WBsqAShxNlLb4A77MUUkNuj8LyIirQl5UspqteJy+cebMAwDgNraWhITE0N9KBERiRKqG0KvtrGp+16YBzoH/yx8r2z5BlvTVcP2bw6E/ZgiEht0/hcRkdaEPCk1duxYbrvtNvbu3YvJZKKsrIzf/va3XHTRRaE+lIiIRAnVDaEXaCmV2EEDnSemppPi8Hfh27m/hMLCg/h8vg45tohEL53/RUSkNSFPSv36178mISGByy+/nOrqai644ALq6+uZM2dOqA8lIiJRQnVD6AUHOu+AllIB3Rz+Y725s4Qn122luLiow44tItFJ538REWlNyK9kExMTWbRoEeXl5ezfv59evXrRs2fPUB9GRESiiOqG0AsOdN5BLaUAUuz+ywa3NYGktIQOO66IRC+d/0VEpDUhT0pt3ry52c/79u1j3759AJx77rmhPpyIiEQB1Q2hF2wpFR8HGB1yzG52KwB1HlOHHE9Eop/O/yIi0pqQJ6Wuu+66I5aZzWZ69+7NO++8E+rDiYhIFOiIuqGyspIHH3yQ999/H5/Px7nnnst9991Hz5492bZtGw888AC5ubmkpaUxa9Yspk6dGtx39erVPPHEE5SUlDBgwADuuececnJyQhJXuARn37NZAE+HHLNbU0up2o45nIjEAN0biIhIa0KelNq5c2ezn8vLy/nTn/5E3759Q30oERGJEh1RN9x8882kpKSwbt06zGYzd911F/fccw//93//x8yZM7nlllu49tpr2bx5M7Nnz2bQoEEMHTqUTZs2cf/997N06VKGDh3KihUrmDVrFu+++y4OhyNk8YWaM9h9L46OSkoFuu+5vCY8vo5pnSUi0U33BiIi0pqQD3R+uPT0dG677Tb+8pe/hPtQIiISJUJdN3z55Zds27aNBQsW0K1bN5KSkrj//vuZM2cOa9euJTU1lWnTphEXF8eYMWOYOHEiK1asAGDVqlVcccUVDB8+HKvVyvTp00lLS+ONN94ISWzhUtus+17HiI8zE2fyJ6OcbiWlRKT9dG8gIiKHCntSCqCqqoqGhoaOOJSIiESJUNYN27dvJysri3/84x+MGzeOCy64gIULF9KjRw92797NwIEDm22flZUVfHqfm5vb6vrOxufzUVh4kBqXG4BEW8cNdG4ymUi0+ABwNiopJSLHR/cGIiISEPLHq3fddVezn91uN59++innnXdeqA8lIiJRItx1Q1VVFbt27eKss85i9erVuFwubr/9du644w4yMjKO6IZnt9upq6sDoLa2ttX1bWUytfx9qJWUFLFk7VZq3YmAiWR7HB53+I53uASLjyqPBafbwGQi+ILwlrszUrkjG0dH6yrlDnX5dG8gIiKtCXub//j4eK677jquvfbacB9KRESiRKjrBpvNBsDcuXOJj48nKSmJW2+9lWuuuYbJkyfjcrmabe9yuUhMTATA4XC0uD4tLa1dMXTvntzi96HW2FhDWq/eUFIDQLypnrpGJ3a7FY/dhslmwzB7m31NSIjHcZR17d0mJd7MwQao95lIT08iI6Njyt2ZqdxdS1ctd6jo3kBERA4V8qTUQw89FOq3FBGRKBfuuiErKwufz4fb7SY+Ph7wd3MDOP300/nb3/7WbPvc3Fyys7MByM7OZvfu3Uesv/DCC9sVQ1mZP0nUvXsyZWU1GGHq3VZe7qS6thEAEwZL3t5J8b7dJPXoi6+xEbPPcsTXuroG6l0tr2vvNjbDDViorPdSXu7EZqvBZAp/uTsjlVvljkWBcoaK7g1ERKQ1IU9KLV68uE3b3XTTTaE+tIiIdFLhrhvOO+88+vXrx913381DDz1EQ0MDjz76KN///veZMGECixYtYtmyZUybNo1PP/2UNWvW8MQTTwAwZcoUZs+ezQ9+8AOGDx/OihUrKCsrY9y4ce2K4dCbVMMgbDethgHuppnv4syQ0j0TZ2VZeA7WgsS4wJhSviPKGc5yd2Yqd9fSVct9vHRvICIirQl5Umr37t2sXbuWwYMHc+qpp1JYWMhnn33GGWecEewqYYr1zvgiItJMuOsGq9XKX//6VxYsWMD48eNpaGhg7NixzJ07l27duvHcc88xf/58Fi1aRHp6OvPmzWP06NEAjBkzhnvvvZf77ruPoqIisrKyWLp0KampqaEoeli4/XkhrBGoThOaBjqv84DL4+v4AEQkqujeQEREWhPypJTZbOauu+7ipz/9aXDZq6++yrvvvstjjz0W6sOJiEgU6Ii6ITMzk0cffbTFdUOGDGHlypVH3XfSpElMmjQpJHF0hENbSnU0mwmsZgO3z8SB6kZO6fgQRCSK6N5ARERaE/LL2ffff59p06Y1WzZhwgQ2bNgQ6kOJiEiUUN0QWm6v/2tcBBoXmEyQ3PRIK7+qseMDEJGoovO/iIi0JuRJqfT0dDZv3txs2YcffkivXr1CfSgREYkSqhtCK9BSyhqBllIASVb/8ZWUEpFj0flfRERaE/Luez//+c+ZOXMm48ePp0+fPuTn5/Puu+/y+OOPh/pQIiISJVQ3hFZgTKk4c2RGW04KtJSqVlJKRFoX7vN/ZWUlDz74IO+//z4+n49zzz2X++67j549e7Jt2zYeeOABcnNzSUtLY9asWUydOjW47+rVq3niiScoKSlhwIAB3HPPPeTk5ADg9Xp5+OGHefXVV6mvr2f06NH89re/pWfPniGJW0RE/EL+jHXq1Kk8+eSTWCwW/vOf/5CamsrKlSu54IILQn0oERGJEqobQivYUipCYwMnq6WUiLRRuM//N998M3V1daxbt453330Xi8XCPffcQ1VVFTNnzuSqq65i8+bNzJ8/n4ceeojt27cDsGnTJu6//34WLFjA5s2bufLKK5k1axb19fUALFmyhPXr1/PSSy/x4YcfYrfbmTdvXkhiFhGR74S8pRT4p+Y+77zzKC8vJz09PRyHEBGRKKO6IXSCY0pFqvte09XDwRo3bq8PW6QCEZGoEK7z/5dffsm2bdv4+OOPSUpKAuD++++npKSEtWvXkpqaGhzPasyYMUycOJEVK1YwdOhQVq1axRVXXMHw4cMBmD59Oi+88AJvvPEGV199NatWrWLOnDn07t0bgLlz53LBBReQn59Pv379QlYGEZGuLuRXkW63m0cffZThw4czduxY8vPzufrqqykuLg71oUREJEqobgitSM6+B2C3+I/tNSC/sj4yQYhIVAjn+X/79u1kZWXxj3/8g3HjxnHBBRewcOFCevTowe7duxk4cGCz7bOysti5cycAubm5R11fU1NDYWFhs/UZGRmkpKSwa9euE45bRES+E/LL2cWLF7Nx40b++Mc/YrVa6d69O7169WL+/Pnteh+v18t1113HnXfeGVy2bds2pk6dSk5ODmPHjmXVqlXN9lm9ejXjxo1j2LBhTJ48ma1btzZ7v4ULF3LeeeeRk5PDrFmzdDMkItJBQlU3iF9gTKlIdd8zmaCbzX/wvWV1kQlCRKJCOM//VVVV7Nq1i71797J69WpeeeUVioqKuOOOO6itrcXhcDTb3m63U1fnP2e1tr62thaAhISEI9YH1rWHydT+l3/H49s3ml7H+/lE26urlLMrlbWrljMcQt59b82aNfz9738nMzMTk8lEQkICDz30EOPGjWvX+yxevJgtW7bQt29fgGC/8FtuuYVrr72WzZs3M3v2bAYNGsTQoUOD/cKXLl3K0KFDWbFiBbNmzeLdd9/F4XA06xeenJzMPffcw7x583j66adD/RGIiMhhQlU3iN93A51HLoYUm5lyl5fc0louHdQjcoGISKcWzvO/zWYD/F3r4uPjSUpK4tZbb+Waa65h8uTJuFyuZtu7XC4SExMBcDgcLa5PS0sLJqsC40u1tH97dO+e3K7tGxqSgGLs9njS05PIyGjf/tGmvZ9PtOoq5YSuU1aVMzRCnpSqq6sL9hU3DH/3Arvdjtnc9ivnDRs2sHbtWi677LLgMvULFxGJXqGoG+Q7bm9T9z1TZGbfA0iJ9z8u213S/lYDItJ1hPP8n5WVhc/nw+12Ex8fD4DP58/an3766fztb39rtn1ubi7Z2dkAZGdns3v37iPWX3jhhaSkpJCZmdmsi19JSQmVlZVHdPlri7KyGox2nK4rKpwAuFwNlJc7iY+vafcxo4HJ5L/Zbe/nE226Sjmh65S1q5Yz8HOohfxuYNiwYSxevBgAU1P7rr/+9a8MGTKkTfuXlZUxd+5cHnnkkWZNatUvXEQkep1o3SDNBbvvRTCnl2b3/x6/VlJKRFoRzvP/eeedR79+/bj77rupra2lvLycRx99lO9///tMmDCB0tJSli1bhtvtZuPGjaxZs4arr74agClTprBmzRo2btyI2+1m2bJllJWVBVtwTZ48mSVLlpCfn4/T6eTBBx9k5MiR9O/fv91xGkb7X/4dj2/faHod7+cTba+uUs6uVNauWs5wCHlLqbvvvpvp06ezevVqamtr+eEPf0htbS1//vOfj7mvz+fjtttuY8aMGQwePLjZus7WL7wzO7TvZyzqyPIdeoxw9qM9/HiH99+NNfob7Rw6Mr4TqRvkSJEe6BwgNd5/8IIqF84GDxmRC0VEOrFwnv+tVit//etfWbBgAePHj6ehoYGxY8cyd+5cunXrxnPPPcf8+fNZtGgR6enpzJs3j9GjRwP+Xhf33nsv9913H0VFRWRlZbF06VJSU1MBmD17Nh6Ph2nTplFbW8uoUaN47LHHTjhmERFpLuRJqYyMDF5//XXee+89Dhw4QK9evbj44ouD07S25qmnnsJms3Hdddcdsc7hcFBT07zparT0C4+UaInzeHVE+bzeOhwOW9Pxwt+nP3A8hyOeGldNzI8joL/RruNE6gY5UqQHOgewWUxkJMRRWudhd0ktp/RNi1wwItJphfv8n5mZyaOPPtriuiFDhrBy5cqj7jtp0iQmTZrU4jqr1cqcOXOYM2dOSOIUEZGWhTwpNWHCBP75z3/ygx/8oN37vvrqqxQXFzNixAiAYJLp7bff5vbbb2f9+vXNto+WfuEdLdb7uHZk+crKnNTXNwa/t1gSjrFHaI4XZ28AoLw8/MeMBP2Ndg7h6hfekhOpG6S5Rq+PpoZSEW0pBTAgLZ7SOg9fFzvRkPUi0hKd/0VEpDVhuZw9vEVSW7355pt89tlnbNmyhS1btjBhwgQmTJjAli1bGDduXFT3C490389Ye3Vk+Tr69x44ln6H0f2KlvJ1pOOtG6S5ukAzKSAuwl1ET03zDyyscaVEpDU6/4uIyNGEvKXUqFGjmDp1KhdeeCE9e/Zstu6mm2467vdNS0tTv3ARkSgVrrqhK6pr9Cel4kxGxMctOzXN373562JnZAMRkU5L538REWlNyJNS+/fvp1+/fnz77bd8++23weWm47hyXrBgQbOf1S9cRCQ6hbJu6Opq3d8lpSLttHQ7ALtLanG5vRGORkQ6I53/RUSkNSFLSv3P//wPzz77LH/9618B/3hQdrs9VG8vIiJRSHVD6NV1oqRUZmIcaQ4rFfVu/nOwmv4JIX/WJSJRSud/ERFpi5CNKbV169ZmP1944YWhemsREYlSqhtCL5CUskZ4kHPwt3Q4s7d/sPzP8yojG4yIdCo6/4uISFuE7ZLW6OgRdEVEpNNT3XDiahs7T0spgLOaklJb8ysjG4iIdGo6/4uISEvClpRSP3ERETmc6oYT15m67wGc1asbAJ/nV0Q4EhHpzHT+FxGRlnSCxv8iIiLSVnVNA4rHdZL7uzN6+VtK5ZfXU1HXGOFoRERERCSahGxEUo/HwyuvvBL82e12N/sZ4KqrrgrV4UREJAqobgi94Ox75s7RUirZHsep6Ql8W17HtgPVXJSVEemQRKQT0PlfRETaImRJqYyMDBYtWhT8OS0trdnPJpNJFY+ISBejuiH06prGlLJ2ku57AOf0S+Hb8jo+3V+lpJSIADr/i4hI24QsKfXvf/87VG8lIiIxQnVD6AVbSkW4+57h81FcXATAOSd146VtB/m0abBz3yHrevbMxGzWaAEiXY3O/yIi0hYhS0qJiIhI+NV2kpZSzqpylm+oJyGhgB99bwgAu4trqap3U19VypPr/NPB/++4HHr16h3JUEVERESkk9KjSxERkSgSHOi8E4wplZiaTlJaBmmOOE7rkYgBfH6gCoCktAyS0tSVT0RERESOTkkpERGRKNJZWkoFBLrxDe3lAGBzXmVkAxIRERGRqKGklIiISBTpLGNKBTiryvnrx3uoqKkF4ONvSiMckYiIiIhECyWlREREokhdU1LK2gm67wUkpqYzqH9vTEB+VSPFte5IhyQiIiIiUUBJKRERkSjR6PHR6PUno+I6Sfe9ALvVQrrd33zrs4K6CEcjIiIiItFASSkREZEo4Wz0BL/vLN33DtU7yQLApwW1EY5ERERERKKBklIiIiJRwtngn3nPagZTZ0xKJfovK7YV1uE1OldLLhERERHpfJSUEhERiRLOBn9LKWsnrb3T4k2k2i3UewyK63yRDkdEREREOrlOelkrIiIih6sJJqU6YTMpwGQyMaZfEgD7a5SUEhEREZHWKSklIiISJWoDSSlLhANpxXlNSakDTi8+deETERERkVYoKSUiIhIlvhtTqnO2lAI4K9NBss1MgxdK6tVaSkRERESOTkkpERGRKFHTyceUMnw+ykuLGZrhb8qlLnwiIiIi0pq4SAcgIiIibRMc6NzSOVtKOavKWb6hnmqXAfRkf4268ImIiIjI0XXSZ60iIiJyOGejv/uerRPX3omp6fRJSyDOZODywq5SV6RDEhEREZFOqhNf1oqIiMihnJ189r0Aiwl62v0tpD7Oc0Y4GhERERHprJSUEhERiRLOKJh9L6B3gj8ptT7PqS58IiIiItIiJaVERESiRLS0lALoafcPyF5S52Hr/qpIhyMiIiIinZCSUiIiElO8Xi/XXXcdd955Z3DZtm3bmDp1Kjk5OYwdO5ZVq1Y122f16tWMGzeOYcOGMXnyZLZu3drRYbeJs6HzjykVYDFBv2R/k67XdhQFl/t8PgoLD1JYeBCfT7PziYiIiHRlUXBZKyIi0naLFy9my5YtwZ+rqqqYOXMmV111FZs3b2b+/Pk89NBDbN++HYBNmzZx//33s2DBAjZv3syVV17JrFmzqK+vj1QRjqqmk8++d7hTU/xJqXe+LqGuaZD24uIinly3lSfXbaW4uKi13UVEREQkxikpJSIiMWPDhg2sXbuWyy67LLhs7dq1pKamMm3aNOLi4hgzZgwTJ05kxYoVAKxatYorrriC4cOHY7VamT59OmlpabzxxhuRKsZRfdd9L8KBtFF3u4k+yVbq3T7W7SoOLk9KyyApLSOCkYmIiIhIZxAll7UiIiKtKysrY+7cuTzyyCM4HI7g8t27dzNw4MBm22ZlZbFz504AcnNzW13fWRiGgbOptVE0jCkFYDKZGJ+VAsCqzw9iaMBzERERETlEXKQDEBEROVE+n4/bbruNGTNmMHjw4GbramtrmyWpAOx2O3V1dW1a31YmU8vfh4rL7cPr8yd1rBbwhv4QJ6ylYo/L6sbfvihnV7GTLwtr6HnI4zCTKTyfVUcJxB7NZTgeKndk4wi3WC+fiIh0LkpKiYhI1Hvqqaew2Wxcd911R6xzOBzU1NQ0W+ZyuUhMTAyud7lcR6xPS0trVwzduye3+H2oFFX7Y7SYIDnBhqnBhslmIyEhHofd/71h9rb4tSO2AbAfts7hsHFK7xSuPLsPqz7dz0tfFjH34l44HP7t09OTyMgI/WfV0cLx+44GKreIiIicKCWlREQk6r366qsUFxczYsQIgGCS6e233+b2229n/fr1zbbPzc0lOzsbgOzsbHbv3n3E+gsvvLBdMZSV+RNf3bsnU1ZWQ6h7quWV+VtuJVjNuFxu6l2NmH0W6uoagt/7Glv+2hHbALhcjZgOWWaxWCkvd/JfZ/Zk1af7eWP7QSacbKO+vhGA8nInNlvNUcvc2ZlM4ft9d2Yqd2yXO1BOERGRjqAxpUREJOq9+eabfPbZZ2zZsoUtW7YwYcIEJkyYwJYtWxg3bhylpaUsW7YMt9vNxo0bWbNmDVdffTUAU6ZMYc2aNWzcuBG3282yZcsoKytj3Lhx7YrBMAjeqAa+D+WrxuUf5DzB1nmr7sPv0w2fj6KiIpK9NVyc1R0D+Pv2su/Wh+Fz6uhXrJRD5Va5Dy+niIhIR1BLKRERiWlpaWk899xzzJ8/n0WLFpGens68efMYPXo0AGPGjOHee+/lvvvuo6ioiKysLJYuXUpqampkAz9MtcsNgM3kI1oGDHdWlbN8Qz0JCQX81/AzeC+3jA/3ORl/io2U+M6bXBMRERGRjqGklIiIxJwFCxY0+3nIkCGsXLnyqNtPmjSJSZMmhTusE1JQ7G9hVO2so67OGuFo2i4xNZ3ExEQGpMdzcVZ33sst4z9lHsb0sUU6NBGJIV6vl+nTp9O3b99gHbBt2zYeeOABcnNzSUtLY9asWUydOjW4z+rVq3niiScoKSlhwIAB3HPPPeTk5ATf7+GHH+bVV1+lvr6e0aNH89vf/paePXtGpHwiIrFKjylFRESiQK3bB4DdGr3Pk64fczIAeTU+qhp8EY5GRGLJ4sWL2bJlS/DnqqoqZs6cyVVXXcXmzZuZP38+Dz30ENu3bwdg06ZN3H///SxYsIDNmzdz5ZVXMmvWLOrr6wFYsmQJ69ev56WXXuLDDz/Ebrczb968iJRNRCSWKSklIiISBWobvQDEmaOj615LBvVMYkw//6yHX5Z6IhyNiMSKDRs2sHbtWi677LLgsrVr15Kamsq0adOIi4tjzJgxTJw4kRUrVgCwatUqrrjiCoYPH47VamX69OmkpaXxxhtvBNffcMMN9O7dm6SkJObOncsHH3xAfn5+RMooIhKrlJQSERGJAoGWUnGm6E1KAfy/Id0B2O/0kVvminA0IhLtysrKmDt3Lo888ggOhyO4fPfu3QwcOLDZtllZWezcuRPwz7J6tPU1NTUUFhY2W5+RkUFKSgq7du1qd4wmU/tf/h2Pb99oeh3v5xNtr65Szq5U1q5aznCI3j4AIiIiXUhdU1LKGqYLgo5ySlo8Jyeb2Vfj4/ltZVxw5qmRDklEopTP5+O2225jxowZDB48uNm62traZkkqALvdTl1d3THX19bWApCQkHDE+sC69ujePbld2zc0JAHF2O3xpKcnkZHRvv2jTXs/n2jVVcoJXaesKmdoKCklIiISBWobm1pKRXH3vYCzMuLIq2lk68E6Ps2vZHi/1EiHJCJR6KmnnsJms3Hdddcdsc7hcFBTU9NsmcvlIjExMbje5XIdsT4tLS2YrAqML9XS/u1RVlZDeyZNrahwNh2vgfJyJ/HxNcfYIzqZTP6b3fZ+PtGmq5QTuk5Zu2o5Az+HmpJSIiIiUaA22FIq+q9+kmxmBqRa2FPp5U8f7uXZH5+NKVxtwkUkZr366qsUFxczYsQIgGCS6e233+b2229n/fr1zbbPzc0lOzsbgOzsbHbv3n3E+gsvvJCUlBQyMzObdfErKSmhsrLyiC5/bWEYtOvGNbit0f59o1FXKCN0nXJC1ymryhkaGlNKREQkCtQFBjqPgaQUwJnd47BZTHxxsJr135ZHOhwRiUJvvvkmn332GVu2bGHLli1MmDCBCRMmsGXLFsaNG0dpaSnLli3D7XazceNG1qxZw9VXXw3AlClTWLNmDRs3bsTtdrNs2TLKysoYN24cAJMnT2bJkiXk5+fjdDp58MEHGTlyJP37949kkUVEYo5aSomIiESB4EDnUfg4yfD5KC4uAqC4uAjDMHDEmZgwMJWXv6rguY35nH9qulpLiUjIpKWl8dxzzzF//nwWLVpEeno68+bNY/To0QCMGTOGe++9l/vuu4+ioiKysrJYunQpqampAMyePRuPx8O0adOora1l1KhRPPbYY5ErkIhIjFJSSkREJAoExpSKxu57zqpylm+op2ffRor2fk1Sj74kOBxckOlmzS5/a6nP9ldpbCkROSELFixo9vOQIUNYuXLlUbefNGkSkyZNanGd1Wplzpw5zJkzJ6QxiohIc1H4vFVEQsnn81FcXExxcTE+ny/S4YjIUQRm34vW7nuJqel0S+9JQko64E9UrfnsW3rHNwKwbFN+JMMTERERkQhQUkqkiystLeWpd7bx1DvbKC0tjXQ4ItICn2EEk1LWGKq5E1PTGdIrEbMJNu6r4D+FsTnDlIiIiIi0LIYubUXkeCWmpJPY1HpBRDqfukYvgfZR0dpS6mgS42BULysAf96UB/hbcBYWHqSw8KBacIqIiIjEMI0pJSIi0sk5GzwAmE1gibGxwJ1V5XidjUA67+eWsbe8DntjFU+u2wrA/47LoVev3pENUkRERETCQi2lREREOjlngxeIra57h+qZnkKfRDMGsGprAQBJaRkkpWVENjARERERCasYvbwVERGJHTVNLaWs5hhrJnWI7DQLAK/tKKLO7Y1wNCIiIiLSEZSUEhER6eQC3feslggHEkaZCWb6dbNR5/by9h4NeC4iXZPL7eXPn5VysMYT6VBERDqEklIiIiKdXKCllC2GW0qZTCauGJQCwLo9VRhGbA3oLiLSFruKnbz8VSWbDrgiHYqISIdQUkpERKSTq3E1JaViuKUUwEWnJBMfZ2ZvZSMVDUpKiUjXc3JaAgBVDT4avDoPikjsU1JKRESkk6vuAmNKGT4fdZWljOrrvyH7plJdV0Sk60lNsNKvmxWA0npfhKMREQk/JaVEREQ6ua7QUspZVc7yDXsweRsAyKv24vWplYCIdD2n93AAUFqvc6CIxD4lpURERDq5apcbiO0xpQASU9PJOqkXdrMPt2HigFOtBESk6zmjpx2AErWUEpEuQEkpERGRTq66C7SUCjCbTJxk95f32ypvhKMREel4ZzS1lKpwGTR4lJgSkdimpJSIiEgnF5x9zxLbLaUCTnL4W4YV1vkoqXVHOBoRkY7VKymOeIsJH5Bf3RjpcEREwkpJKRERkU4u2FKqi9TaCRaDdJt/LJX39tZEOBoRkY5lMplItPkfQlTWq8WoiMS2LnJ5KyIiEr0CSSlrF2kpBXBSoj8p9eE+JaVEpOtxxDUlpVxKSolIbOuUSamdO3cyY8YMRo4cyfnnn8/tt99OeXk5ANu2bWPq1Knk5OQwduxYVq1a1Wzf1atXM27cOIYNG8bkyZPZunVrcJ3X62XhwoWcd9555OTkMGvWLIqLizu0bCIiIu0V6L4X3wXGlAro5TAwA99WNPJtWV2kwxER6VD2OP9tmpJSIhLrOl1SyuVycf3115OTk8NHH33Ea6+9RmVlJXfffTdVVVXMnDmTq666is2bNzN//nweeughtm/fDsCmTZu4//77WbBgAZs3b+bKK69k1qxZ1NfXA7BkyRLWr1/PSy+9xIcffojdbmfevHmRLK6IiEirGjy+4EC31hiffe9QNjP0SvRfpqzdqQdIItK12IMtpTwRjkREJLw6XVKqoKCAwYMHM3v2bGw2G2lpaVx77bVs3ryZtWvXkpqayrRp04iLi2PMmDFMnDiRFStWALBq1SquuOIKhg8fjtVqZfr06aSlpfHGG28E199www307t2bpKQk5s6dywcffEB+fn4kiywiInJUNS7/QN9mE1g7Xa0dXv26+ZuGrd1VgmEYEY5GRKTjBLrvVamllIjEuLhIB3C4AQMG8MwzzzRb9tZbb3HmmWeye/duBg4c2GxdVlYWL774IgC5ublcffXVR6zfuXMnNTU1FBYWNts/IyODlJQUdu3aRb9+/doco6mTP6gOxNfZ4zwePp+P0tJSvN46zGY7JlN479AO/QxNpvB/pof/7jrymB11vEOPGYt/oxA95evs8YlfVdNT8kSrGVMX+6X1TTJjs5jIq6jn6+JaBmUmRTokEZEOYbdqTCkR6Ro6XVLqUIZh8Nhjj/Huu++yfPlynn/+eRwOR7Nt7HY7dXX+sSZqa2uPur62thaAhISEI9YH1rVV9+7J7S1KRERLnO1RVFTEnz/8CoBfTzqXzMzMsB7P663D4bAB0L17EhkZ4f1MA8dzOOKpcdWQnt5xx4SOKeOhYvFv9FCxXj7pGDVNSamkrjSgVBOr2cS5fRNZn+dk7a5iJaVEpMvQmFIi0lV02qSU0+nkrrvuYseOHSxfvpxBgwbhcDioqWk+C4/L5SIxMREAh8OBy+U6Yn1aWlowWRUYX6ql/duqrKyGztyLwGTy3wx39jiPR1mZkzh7Ena7jfJyJxZLwrF3OsHj1dc3Br/vqOPF2RsAYrKMENt/oxA95QvEKZ1bddMg50m2LtZ3r8mFJyf7k1I7S5j9vVMxd7HWYiLSNQVn32tQUkpEYlunTErl5eVxww030KdPH1588UXS09MBGDhwIOvXr2+2bW5uLtnZ2QBkZ2eze/fuI9ZfeOGFpKSkkJmZSW5ubrALX0lJCZWVlUd0CTwWw6BT32gGREuc7XFomTqifIe+f0ceL5bLePixY+1v9FCxXj7pGMGWUjYL4ItsMBEwvE8CCTYLhTUNvP/lt1x05imYzV0zQSciXUcgKVXT4MXrM7B0oYkuRKRr6XRXdVVVVfzsZz/jnHPO4dlnnw0mpADGjRtHaWkpy5Ytw+12s3HjRtasWRMcR2rKlCmsWbOGjRs34na7WbZsGWVlZYwbNw6AyZMns2TJEvLz83E6nTz44IOMHDmS/v37R6SsIiIix1LVNNB5chdtKRUfZ2ZUX38Lzic+/Ibi4qIIRyQiEn7xTUkpnwGV9e4IRyMiEj6drqXUyy+/TEFBAf/617948803m63bunUrzz33HPPnz2fRokWkp6czb948Ro8eDcCYMWO49957ue+++ygqKiIrK4ulS5eSmpoKwOzZs/F4PEybNo3a2lpGjRrFY4891sElFBERabtAS6lEmwXomlODX3hyMu9+W0Nhow2vT80PRST2mU0m4i3Q4IWKOjfdE22RDklEJCw6XVJqxowZzJgx46jrhwwZwsqVK4+6ftKkSUyaNKnFdVarlTlz5jBnzpwTjlNERKQj1Bw6plQXy0kZPh/FxUX0sRjYzODywpfF9fTtE+nIRETCL95iosFrUFbXSBbtGwNXRCRadM2+ACIiIlGiqtmYUl2Ls6qc5Rv28PePdtDL4R9P6/29NcfYS0QkNtibTvvldY2RDUREJIyUlBIREenEAt33kuO7ZpWdmJpOQko6fRP83fY+2ldDXaNmoxKR2GdvGleqok5jSolI7OqaV7giIiJRwOfzUVpTB4C3vgajC0/nmG6DJKuJeo/B21+XRDocEZGws1v8SamyWiWlRCR2KSklIiLSSRUXF5Ff4U9Krf/PXurq6iIcUeSYTHBqir8vyz+/KIxwNCIi4RffNPpvhbrviUgMU1JKRESkE3Mb/qq6W3JShCOJvFNTLJhNsK2gml3FzkiHIyISVvFmf0upwNiCIiKxSEkpERGRTsrjM3D7x/fGZu66XfcC7GaD4T39TQee+XA3Pp8vwhGJiIRPYH6Lape674lI7FJSSkREpJOqafhuQG+rKYKBdBLOqnKMav94Uu/vrebLb/dHOCIRkfCxNY0pVVWvllIiEruUlBIREemkqpuSUvFxZkxKSgHQq3s3+nSLx8DEC1+URzocEZGwiW9qKVWlllIiEsOUlBI5Bo/PIK/aw1cl9ZEORURasXPnTmbMmMHIkSM5//zzuf322ykv9ycttm3bxtSpU8nJyWHs2LGsWrWq2b6rV69m3LhxDBs2jMmTJ7N169ZIFOEIgaSUPU7V9aFG9E8FYN2ear4qqolsMCIiYWI7ZEyprjz7qojENl3lirTiP8V1vLK7jvUHGrh7XR5V9XpSJdIZuVwurr/+enJycvjoo4947bXXqKys5O6776aqqoqZM2dy1VVXsXnzZubPn89DDz3E9u3bAdi0aRP3338/CxYsYPPmzVx55ZXMmjWL+vrIJ6KDSSmrJcKRdC6ZyfH0TzZjAAvfzsXj1dhSIhJ7AmNKeX0GtY3e1jcWEYlSSkqJtGLdnqrgIMONXoMNeysiG5CItKigoIDBgwcze/ZsbDYbaWlpXHvttWzevJm1a9eSmprKtGnTiIuLY8yYMUycOJEVK1YAsGrVKq644gqGDx+O1Wpl+vTppKWl8cYbb0S4VFDtUkupozm7h5UEq5kdhTX86aO9kQ5HRCTk4sym78aVUhc+EYlRusoVacX2wjoAUuP9/yof7CmLZDgichQDBgzgmWeewWL5rkXRW2+9xZlnnsnu3bsZOHBgs+2zsrLYuXMnALm5ua2ubyuTieC4T4HvT/RV3ejPitut0VFdd+SwVwlWE7eOyQRg+Zb9rNy4C8Pwheyzb+sLOvZ4neWlcsf2SzqPbk0DS2mwcxGJVXGRDkCksyqsdlHodGMChvW08l5+Axv2luP2+rBaouMGUaQrMgyDxx57jHfffZfly5fz/PPP43A4mm1jt9upq/MnnWtra1td31bduye3+P2JaDT5zzXJDhsOw4bJZsMwe5t9TUiIx2FveV1HbuP/3DouDne9jQnDerHX6eVvnxXzh/WF9M1IYvKYwSH57NsjVL/vaKNyS2ewc+dOFi5cyI4dO7BarZx//vnceeedpKens23bNh544AFyc3NJS0tj1qxZTJ06Nbjv6tWreeKJJygpKWHAgAHcc8895OTkAOD1enn44Yd59dVXqa+vZ/To0fz2t7+lZ8+eHVq+JJuZ0jq1lBKR2KWklMhRfJpfBUCa3UxmooVUu4VKl5et+6sYeXJahKMTkZY4nU7uuusuduzYwfLlyxk0aBAOh4OamuaDYbtcLhITEwFwOBy4XK4j1qelte//vKzMf4zu3ZMpK6shFGPSFlf647JgUO9qxOyz4Gts/rWuruGo6zpyG//n1oipo+Kob6S83MmPTu/GR7tLyavxcddrezAaGvneGSdjNof/4YHJFNrfd7RQuWO73IFyRoPAeILXXHMNTz31FLW1tdxxxx3cfffdLFy4kJkzZ3LLLbcEu3PPnj2bQYMGMXTo0OB4gkuXLmXo0KGsWLGCWbNm8e677+JwOFiyZAnr16/npZdeIjk5mXvuuYd58+bx9NNPd2gZk5taSlWrpZSIxCg19xA5ii35lQBkJlowm0zk9PbfwG47UB3BqETkaPLy8rj66qtxOp28+OKLDBo0CICBAweye/fuZtvm5uaSnZ0NQHZ2dqvr28owCN6oBr4/0VdVcKDz6KiuO/o+3TDAhImRva1kWD00eOGut/axbuNWDh48yMGDB/F6fSH7fbT0CsTR1V4qd2y/okU4xxNctWoVN9xwA7179yYpKYm5c+fywQcfkJ+f36FlTLb5z/9qKSUisSo6rnJFImDbAX9LqZ4J/n+TU9PiAfimrH1dekQk/KqqqvjZz37GOeecw7PPPkt6enpw3bhx4ygtLWXZsmW43W42btzImjVruPrqqwGYMmUKa9asYePGjbjdbpYtW0ZZWRnjxo2LVHGCgrPvxWn2vcMZPh/FxUUUFxdhBs5JcZFiNWg0zNy/oZqlG/N4ct1WiouLIh2qiIRJuMYTrKmpobCwsNn6jIwMUlJS2LVrV7vjPO5xvUyHjCnl8kR8rDGN06ZyqqwqZzio+55ICxo9Pg5U+bvNpNn9Sal+Kf6k1LfltRGLS0Ra9vLLL1NQUMC//vUv3nzzzWbrtm7dynPPPcf8+fNZtGgR6enpzJs3j9GjRwMwZswY7r33Xu677z6KiorIyspi6dKlpKamRqAkzR06+56ekTfnrCpn+YZ6DHc9ST36EmeGkRk+1hebqPNa2FIKF2R2j3SYItJBQjmeYG2t/1ovISHhiPWBde3R3u6QDQ1JQDF2ezy2ODtQTSMmMjKio1tle0VLd9ET1VXKCV2nrCpnaCgpJdKCA1UufAY44szYm6biPTnVP5DvvvJ6PD6DOHOYUsUi0m4zZsxgxowZR10/ZMgQVq5cedT1kyZNYtKkSeEI7YQEW0pZLUpKtSAxNR1fY33w53gLjEip56OKBAqqGvjGrsscka4g1OMJBpJV9fX1R92/Pdo7DllFhbPpeA0kJloBKKqoo7S0prXdoo7J1LXGaYv1ckLXKWtXLWfg51DT1ZpIC/Iq/BchfbpZMTW1U+yRaMUeZ8bl8bG/sp5T0hNaewsRkRPicntp8PqvdOxxZmLrViR8kuIMBncz+E+ViW0lHqpcXnpFOigRCZu8vDxuuOEG+vTpw4svvhjsvj1w4EDWr1/fbNu2jCd44YUXkpKSQmZmZrMufiUlJVRWVh7R5a8t2jtWV3BbA5Jt/u57lfXumL35jbaxzI5XVykndJ2yqpyhoTGlRFqQX9mUlEq2BZeZTSZO7e5PRH2rcaVEJMwq6/1to8wmsFrUMrM9Tk0y6J5gxe2Dv2zeT2HhQXw+X6TDEpEQC+d4gpMnT2bJkiXk5+fjdDp58MEHGTlyJP379+/QMibZvhtTSkQkFqmllEgL8isOSUp5v2vafWr3BL4qcvJtWR2XtG9iLhGRdimv8yel4i0EW2xK25hMMPLkVP71VQlv5zXgefNzfnX5MHr16h3p0EQkhMI5nuDs2bPxeDxMmzaN2tpaRo0axWOPPdbBJYTk+KbZ9+rViVtEYpOSUiItyAu0lOpmo7DikKRUU5e9b8o02LmIhFdpbSMA9jglpI5H3xQ73a0eytxx5Hm6RTocEQmDcI4naLVamTNnDnPmzDnhOE9Et2BLKSWlRCQ2qfueSAu+ayllbbb81O7+wS2/Ufc9EQmzQFLKoa57x8VkMpGd6P8Mv632Ulanri8iEn2S4/1JKWeDF4+vCwxeIyJdjpJSIodxub0U1TQA0Lebrdm6k9P9s7Hsr6zH6Aqj2olIxJQ6/echtZQ6fuk2H+k2A58BL39VEelwRETaLclmJlALVKoLn4jEICWlRA6zv8rfXS8p3kK3pqdTAX262TEB9W4fZXW6MDgePp+P4uJiioqKNPCwSCuCLaXU0f6EZHfzn2fe3F1FeV1jhKMREWkfi9lEisPfcr9S154iEoOUlBI5TKDrXr9UxxGDC9vizPTqFg/AgaZxp6R9SktLefLtbTzy6mZKS0sjHY5Ip1XqDCSl1FLqRGTEQ7rdRKPX4G+fHoh0OCIi7ZaW4E9KKbEuIrFISSmRwwSSUv3THC2u75vqX54fhqSUYRjsrfLw+YFq9pQ3xmwXwcSUdJJS04+9oUgXpoHOQ8NkgjO6+5ubrfq8gNx9+yksPEhh4UG11hSRqJDelJSqUEspEYlBSkqJHCYw816/1JaTUv1S7QDsr3S1uP5EbD5Qy4aCBjbnVfL+3lo+2e8M+TFEJDp8131PSakT1SfRzCmpNuoavdz7r69YviWfJ9dtpbi4KNKhiYgcU5rDP8ZphcaUEpEYpKSUyGGC3feO0lLqpJTvBjsPtde/9g/Ea2uabev1rytDfgwR6fy8PoNyJaVCxmQycc2Z/taZe+vjsadkkJSWEeGoRETaJi3YUkrd90Qk9igpJXKYQLe8o3XfOyktkJQKbUupgioXnx6oBWBstv9m6dMDtRyo0thVIl1NZb0brwEm4LD5FuQ4ndc/ib7JVhp98J/CmkiHIyLSZt+NKaWWUiISe5SUEjlEvdtLSdPgwkfrvndSSqD7XmiTRa9+cRAD6JVopl+agz7JcRjAq18UhvQ4ItL5BQY5T7FbMJvUUioULGYT15zlby31+YFqXJ7YHLNPRGKPxpQSkVimpJTIIQJd91LsccHpdw93UlOyqsrlodoVuouDTfsqATglxT8gb3Z3//gBG/dWhOwYIhIdAuNJpTviIhxJbLn41GTS7CbcXoMvSj2RDkdEpE3Smq5JNaaUiMQiJaVEDhHoune08aQAEmwWuif6E0ah6sLX6PHxdYl/UPMMh7+vTq8k/wXIrmIntY26eRLpSkprGwBId6jvXiiZTSZyevjPrd9UefmqRN2jRaTzS0toGuhcY0qJSAxSUkrkEHkVrY8nFRDqLnxflzhxew26xVtIsvq76iTazGQmWfEZ8EVBdUiOIyLRIdCNOE0tpULC8PkoLi6iuLiIDIeJgT0SAXh8YzGNHl+EoxMRaZ3GlBKRWKaklMghgjPvHWU8qYBQD3b+5UH/oLsDM+yYDhk/5sye/uN8fkBJKZGuRN33QstZVc7yDXv46wdfUldXx6iTU7FbIL+6kT9vyot0eCIirQp036tt9CqRLiIxR0kpkUMca+a9gFC3lPryoD/pNCij+XHP7JkAwOcHqkJyHBGJDgeq/AnvzCQlpUIlMTWdhBT/QOd2q4VzMv03ecs+ySe3tDaSoYmItCrZHofF7H9oqXGlRCTWKCklcohA973WxpSC71pShSoptaNpevLBRySl/D9/ebAGt1dPxkS6ioKmpFRgbDkJvb4JMKxHHB6fwb2vfcmBggJ8Pp1nRaTzMZtM3w12rnGlRCTGKCkl0sTZ4An21T9m973UppZSVSfefa+yzh3sBjgww95sXb8UG93scTR4fOzRk3yRLsHrM4JJqUwlpcKmtrqChNoiLPj4uqyBu9fsoLi4KNJhiYi0SONKiUisUlJKpEmg1VN6gpWk+Na7zJzUlLQqcTbicntP6LiBVlInpzlIsjWfactkMnF6ZhIA/2naTkRiW7GzAY/PwGox0V1jSoVVenoqpyf7Wx3sqo2n0KmbPRHpnAItpSrVfU9EYoySUiJN8to4yDlAisNKclPi6kRbSwXGkzqrd3KL68/o5V/+n0LnCR1HRKLDgaaWk7272YNjiEj49LN7SLcZeA144pNiDMOIdEgiIkfonmgDvpudVUQkVigpJdIkMMj5scaTCgh24as4sXGlAjPvndm7W4vrT89sSkoVqaWUSFdwoMp/TumbYj/GlhIKJhMMTfNhNsHWg3W88Z/iSIckInKE3t3iAThYHZqZn0VEOgslpUSa5Fe0bea9gEAXvhNpKeUzjGD3vWO1lPqmtPaEuwqKSOcXmHlPSamOk2SFs7r7W78++t4eyjWQsIh0Mn2a6oSCEIxnKiLSmSgpJdIkr8Jfybel+55/u6aWUicwA19eRT01DR7i48xkZyS2uE3PJBvdE214DdhVrC58IrEu0H2vbxvPRRIaA1NN9Es2U+Xy8Pt3ciMdjohIM727+a871VJKRGKNklIiTfIq6oC2d9/rn5YAwN7yuuM+5o6mrnuDeyYRZ2n539FkMnFGYLDzIiWlRGKdWkpFRl11BZmeMsDg7a9LeW1HYaRDEhEJCrSUOljdoLHvRCSmKCklAlS73FS5PEDbW0qdluFPSuWW1B73xUFgkPMzj9J1L+D04GDnGldKJNYFklJ2j5Pi4iLdfHSgXt27cVZ3/wxXC9/OJbekNsIRiYj4ZSbHYzZBg8dHWZ1m4BOR2KGklAiwp9Tf2ikzOZ4Em6VN+5ySnoAJqHJ5KD/Oi4PvxpNqeZDzgDOUlBLpEsrrGqmsd2MCXv/kP/z1gy+pqzv+1pjSfoPTTJyRbsHl8TF71efsr9DnLyKRZ7WY6ZHUNNi5xpUSkRiipJQIsLvE3y0uu0fL4zq1xG61BLv67Slt/9N0l9vL101P4Y82yHnAmU0z8OVV1FPT1KJLRGJPYNy4Pt2spHbPICElPcIRdT111RWkNxTRzWaivN7Lz1/4nNzjOMeLiIRaH83AJyIxSEkpEQgmhwa2IykFMKB7Uxe+47hh2VXsxOszSE+w0is5vtVtUxOswQuRr4pC21rqs4JadpQ2kl/twetTNyGRSNrVNG7caWmtnxMkvFLT0phwVm+SrCaKaz38z98+588ffEXBwQJ8Pl+kwxORLkoz8IlILFJSSgSC44Zk9Uhq135ZTTPmfVPa/u4dga57Q3p3w2QyHXP7cHTh+8sn+dzzTj7bS9x8dKCBhz8qwKfxa0QiZlex/1w0QEmpiEuMj+P7J9sYmumgzu3lic0l/OSFXSx751Mlp0QkIgIz8BWopZSIxBAlpaTL8/qMYEun9nTfAzitKSm1p6z9LaW+bJp571iDnAec3tSF76sQzcD3xn+KWPzhtwD0TrRgBj7YV8NT6/eG5P1FpP12FfvPC6ela+a9ziDeYuJ3Y/tyw/AM4kxQ47WwZHs90174mr9t2E2jR4kpEek4vQMz8FU1RDgSEZHQUVJKolIoW/PkV9bT4PERH2du88x7Aacd0lKqPTEZhsEXBf6Z9441nlRAoKXUlwerT3g2rrpGL49/4E9IXXNWdy7ub2dkbxsAyz7JZ2957Azs6/P5KC4upri4WC0bpFNzNnjIr/Q//R6QrpZSnYXFbOLKwWlMOC2erIRG4kwGTq+ZP24s4sqln/DEe7lUuzQTloiE30mp/qRULF2niYgoKSVR5a3dlazJrWPZ1kpuf2sfeRX1J/yeuwNd9zISsZiP3Y3uUP3SHMTHmalze9lX3vZYDlS5KKxpIM5sOubMewFn9k4mzmyi2NkYvHE9Xs9vzqe0tpE+KXb+39DuAJyaamXkSUn4DGKqtVRpaSlPvbONp97ZRmlpaaTDETmqr5smXMhMjqdbfNtmAZXwMnw+iouLKC4uwmaGgUmNXNrbx5DuFlLjTZTWNvJ/b+7ih09u5KE3tvP13jwKCw8qAS4iYTG4ZzIWExTWNFCoLnwiEiOUlJKosWLLfhZtLMTp9rcS+rKonp/89VO+Lj6x7mw7i9o/816AP6nkb8G09UBVm/f7ZF8FAEP6dMNhbdvNp8NqYWgffwJrc15FOyP9TlW9m79/egCAWy48Favlu9PAz4ZlYALe/rqUnSEeUD2SElPSSdQsZtLJfVHg/58b3LN9Y9tJ+Dirylm+YQ9//eBL6ur8LROsZuhnqeLsuGJG9rKSZHbj8hi8/FUlP3vpG25/9UsOHDwY4chFJBYl2CwMbKojth2ojnA0zfl8Pg4eLOCgxtwTkXZSUkqiwpa8Sh57/xsATu9u5arTu3FGDwf1bh93vfYVtY2e43/v/EoAhvVNOa79zznJv9/W/W1PSm3O8x/z3P6p7TpWYPtP9lW2a79D/ePzAurcXrJ7JDI2O6PZulPS7Fx+ek8Ant2Yd9zHEJH2W/9NGQCnp5kpLi464W66EhqJqekktJDUTk5L5+xTe3NZX4Nzu3tJsnjxYOYrZzw3vZ7H+m/KIxCtiMS6wPVqex6GdoSiokKeXLeVJ9dtpaioMNLhiEgUUVJKOj2X28uD674GYHxWCsN62kh3WPjNJSfRM8lGXkU9j777zXG9d7XLzVdNs9m1N0EUkNOUlPosv7JNN5E+wwgmpUYeZ1Lq0/xKvL7237DWNXp54TN/K6npI/u1OOvfjFH9MQHv5Zaxp7T9A7iLSPtVu9xsbxpnbte3e5u1zJHOzWSCTAdckF7P0DQfdgsU1Li5dfWX/HL1l+SHoJu5iEjAsKbrzs/DnJRqreXT0dYlp2WQnJZx+FuJiLQqLtIBSHTz+XzBcXoyMjIwm0Of53xuUx75lS4yEm38z/CerN5eAEA3u4UHrjidmS9s49UvC5l4ViZnt7O106f5VRjAKekOeiYf38DCQ3p3w9I01lNBtYu+Ka0Plv51sZMql4cEq4Uze7VtkPOAM3slk2izUOXysKvYGRz8vK1Wbz9IlctDv1Q7lw7s0eI2p3ZP4JLsDP69u5Rln+Rz/w8Ht+sYItJ+G/dW4DWgX4qNnhl2aixqJRVtzCbon2hwWpqVOq+Jt/Ma+eibcjbureAH2Sn89/lZnJSWEOkwRSTKnd00lMOe0jqqXW662a1t2s/n8wVbMGVm9sJkMlFW20heZT0VtY3sLy6jzu0jKTkZk8lMdXUVG772P8g8b2AF3bp9d41dVV3F+l0F+ICzTynFkZCEt6GOXRUe4i0mviqpx57SSKrD2uIDUBGRQykpJSckMIg0wM8vPZuePXuG9P13lzh5fvN+AG67NItEW/MnNTknpTDprF68+mUhC9/J5fmfnENcOwYrD4ztNLJ/2nHHaLdaOCMzmS8OVvNZftUxk1Jrd5b4j3lyKnGW9iXx4ixmRp6cxru7S1m3q6RdSalGj4/lW/yf5c9G9mt1UPf/HtWff+8uZe3OYmaOOZl+ae2blfBoPF4fm/Jr2FHaSLLDoLTOTcupMZGu5aOmrl4j+yaCVy1rolmDs4LGunrOiXOzx5dBudfGml2VvP71Fi7JymBs/3jOynTQK7NXWB7kiEhs655o45R0B3vL63n1i0KuO7ffEdscmoACSOneg40781j28R6qPRYSk/I5UOOhttHbwhHKDvneP9vfzq1lhy0H8D/Mzf1PJVDZbM2mwgOw7gBJ8Rb6pTo4Oc1Bj3gv/VJs5AzoS58UO2UlRZhM0NCQhNWahMmk86FIV6WklJywcA0g7fUZPLhuN16fwcVZ3RmbnUFxcfER2930vVN5L7eU3SW1/GPrAf7f8JPa9P6GYbCpKSl1vF33AkaenMoXB6tZt6uEiWf1Oup2Hp/BG1/5yzDhzMzjOtYVZ/Tk3d2lvPGfImZ/79Q2J+Fe21FIaW0jPZNs/PCM1o89KDOJ809NZ/235fxlcz7zLht4XLEeanNeBff9axfFzsamJW42H/iG6851c8OYk9s986FIrKisc/Pv3f4Wp+f2TWRrnpJS0S4xNR1HYz09rRZ83Xrw2b4yiup8vLO7lHd2g93sY+LpZVwz8jROSVfrKRFpn+vO7cf9b33Nc5vymHhmL1ITvmst5TMMPv06jyc/2EWtOZGSWje13ly8BgSSTDQ0AP4WnnaTjzijEbvNRhxePB4PjoRE6murscYnEBdnoXeiBbvdERymoqHBRVGdD2+jC6/HTVJyN6qrKjHFJ+LBgscH5Q0GzgYvXxU5+arokEmJPigkzgx2k5c0h5W0uAb+94LTGDHwZLWqEumilJSSTuvFzwv48mANiTYLt43NOup2qQlWbvreqcxft5un1u/j+wN7tKkr3qf5VeRXurDHmRlxgkmpCWdm8uzGPDburaCw2kWvbvYWt9u0t4Ky2kbSHFbOP/X4knnnn5pOmsNKeZ2bjXvLuWBA92Pu42zw8NTH+wD/hYy1DS20Zozqx/pvy3l9RxHXjTiJk0/gxumvm/N5/INvMYBUu4VUGzg9UFrn5dmNeeSW1PLAFYOxt3EmQpFY8o/PD9Dg8TG4ZxJn9LCzVXMMxAyTCU5KdZDsiePM7lb+nd/IxwfduHxmVu2oYNWOLQzsHs+VQ/sy/vRMUh1t64YjIl3bFWdk8sJnB/i6pJZZq7Zz+ek9cTZ4+E9hDTsOVlPr9gEOwAf4r6262UwkWSE93sT3+to4s18PzPUVvLe/EWdlLSZrHIbbhcnqoM/JJ3Egdwcmqw/DXUttdS2Z3U7m4N6vMcXFY/M0cEZGXwx3Q9P2fTmQW/nd9rW1eKyNNFgSiE/rxYHiEhptKdT5zNS5odEHTiw4nT7ysXLja3n0TCrkggHduSirOyP6pWKLU8spka5CSSnplAqqXDzx0V4AZn/v1GMmma4c0ot/flnIFwdruO/NXTx+9ZBjtrx5Yau/n/wVZ2aSFH9i/wonpToY0S+FLflVrPmyiBvOO/mIbQzDCB7z8tN7trvrXkCcxczlp/fk758d4B9bC9qUlFq6YR/ldW76pzmYPLR3m45zdt8UxpySxoa9FSx4ezdPTB3a7idYPsPg8Q++DXYbnHRWL346pBsvfn4Au91Kj6QEHvv4IO/vKePGVdv5w1VnNXvaJxLrnA0e/rHVP07ez0b2w2Q6/plEpfNyVpXz3sF6TO56vt+7L4U1jeTVmin3xvN1WQMPv/sNj73/DWf0cHB2rwQuGtyXQZnJStSLSIssZhO3X3oat7z0JbmltSz+8Ntm6834SLGZOKl7N+KcxdjcNdi89XRL6Yvhruc/e2opbzA4uPdrkjP6HvN4SakZdOueSU1FKSarA8PdeovepNQMDHd9U8KqDymeimDCyumspd7jheRekJTO/nInJXVeip2NvLz9IC9vP4gjzsQ5fRIZmulgzMC+ZPdIOu7rZhHp/LpcUqqsrIx77rmHTz75BIvFwpVXXskdd9xBXFyX+yg6rbpGL3Ne3UGd28vQPt24+uxjJ1HMJhO/GT+I65Z/xua8Sp7duI+Z551y1O3zKur5YI+/b/w1OX1CEveVQ3qxJb+KF7cVMDWnzxFPvN/PLWPD3grizKY2lak1U4b1YdXnBWzYW8H7uWVclHX0xNSmvRXBGffmjD2tXU+ebr80ix/95VO25Fex6vMCrsk59oVLgMfr44F1u3l9RxEAt1x4Kted2y/YBdNkMnHxqd3I7tODX7+6gy8O1vA/Kz/n0f86i/4hGsMqUvxjORRRVuake/fwTAAgodfR9YNhGMxfu5sql4f+aQ4uyc6gpFjTaMeqxNR0fI31mE3Q2+6lbzcbKZl9+WzXN+TXmXH6rGwvqmd7UT1/3VaGxQR9utk4NdXGqWnxnNGvB31TEuidEk9yfJy6uYh0kM5w73DoGFGB2e6MkhLGJFdRZEqlrKaegT0SOSnJTHGdF0t9BRabgz4np3EgtwBTcnqzRNKhSaaOlpyWQZK7HpPVoE/fFE4yiin1VVDRaKKMZMo8Nuo9cazPc7I+z8mSzSXYLCZ6JMbRMyGOjIQ4//eJVgb1y6R3ip2eSfFt6gUgIp1Tl8vE3HrrrWRmZvLhhx9SWlrKrFmzWLZsGddff32kQ4tqgT7mJ6qq3s2dr33F7pJa0hOszL9iMOY2Xnif0j2B2y/N4ndvfc3SDXlYLWamj+x3xIW7y+1l7mtf4TNg9ClpDOieGJLYL83uwXPpeewtr2f+2q/5vyvPCB67oMrF7/+dC8B1555YVziA/mkOfjLiJJZ9ks/v/53L4MwkMltoTfZVUQ13vvYfvIa/i+GYU9rXZfCkVAf/e/4p/PH9b3jk3T1kJNoYe5RZ+w5VWO1i7us72V5QjcUE88YPZMKZLY+1NeykFJ750TB+8fIX5FXU899/28rcywZySfbxTymcX1HPx9+Ws2FvBTuLqimv82Axw8cHv2XYSZWMPiWNUSenkWwPzymwtLSUZR99hcvVGJYJACQ8Orp+eH1HEW9/XYLFBDeNSKeosIDS0pKQnU+l80uwWTg1wc1pqQ6q62op9zmocFuoagSn2yC/qpH8qkY+2OeEz78bZDjBaqZncjzpCVYcZp+/W7Tdwkk90uie6F+elmAjPcFKos2iBJbICegM9w5FRYU8uW4ryWkZwS50hqeB5Iy+jDm5Lwdyd1BbUU5+iX+ZEWX/8ilpGSQ31nOy1YavsZ5qHNTb0zlQVkO126DeY3Cg2s2BanfzHTc2PegE0hwWeiZaOSk9iV7J8STQQI9EK9l9e5KRbKd7glWtrUQ6qS6VlNq3bx+ffPIJH3zwAQ6Hg379+nHjjTfy+9//XkmpNqh3e/mmrI5vSmvZU1rHN2W17C6uoazOgwG8kruL3t3yOC0jgQEZiWQ1vfqm2o+ZWHK5vfx7dylPrd9LQXUDDquZ308686hjMx3NxLN6UVjdwNMb9vHER3vZklfJjFH9Gda3GyaTia9LnDz23jfsLHaS6rBy97jsE/hEmrPFmbn/h4OZ8bfPeS+3jJtf+oKrhvSmpLaRZZvyKK9zc1Kqnf8e1T8kx/vv0f1Zu6uEgioX//23rdw2NosLBqRjMZsodjbyzy8L+fOmPNxeg7P7dOOu7x9fWacN78ve8jpe/aKQO9Z8xdRhVUwb0bfFWQb3ltWxZkchL2wtoMHjIynewv0/HHzMLoandk/gz/8vh1+/soMdhTXc/s//cP6p6fz4nL6c0y/lmE+/AuMorP+2nI++KSev4shm5R4f7KtsYF9lIa9+WYjFBEP7dOO8U9M5f0A6WRmJIblxa/D4qHJ5sCalYljdeH1KMESDSNQPe4vKAIOze1h544MN/KupS0RSj7a3SJTYkRRn0M1m0L+xhjrqaTA14knuBYnp7C8qpdYN9T4zbizUuX3sLa9nb/nh57ryI97XajHRzWYhwWYmwWoi0WomwWoh0WomOd5Mt3gLqY44Tu6VQfeEeFIccdjjLMRZTNgsZuIsJrw+gwaPL/hq9PoocHkpKKrmYEkZXsMgIz0dW5wZm8WM1WLGajFhtZiJM0FVRRlWi4k+mZnEWy3EmU1KlElUiPS9g9HU8hogKbV7q13oAl3mop3JBKlWOKNfKr0aDvi7+5m8mLv1wp7ag4KDB6nHSr3bR50HXIYFAxPl9V7K673sLHUd9o4Hg9+lOuLonmAjyWqQZo+jR2oSibY4HFYzXlctDquZ3hnpJMVbSbBZcFj950KrxYTVfMh5zez/qkl6REKjSyWldu/eTWpqKpmZ3808dtppp1FQUEB1dTXdunULy3E3flvOv3cWgGFgdzgAE4Hb1MATccMAo+nnQ29h/cuN4Hr/wubLDMPAa4DX56Pe1YDPMEhKSqS+wY0JE2aTv3ub2eTvMnX4zxaTCVPTssBXt9dHvdtLvdtHibOBopoGyusOezpxGJfH4NvyOr4tr4Ovv2sObI/zP9HNSLSRlmANnszB31WvqKaB3SVOGv3TgtC7WzyPXHUm2T2SjuvzvuG8k0myx7H4g2/4JK+ST/IqAYgzm/A0JQji48wsmHg6vduZ9DqWwZnJ3DUum/97J5dN+yrZtK8yuC67RyKP/tdZIRsjxGG18OQ1Q7n5xS/YV1HPbf/8Dyb8ZXN5fMHtLjytO/dePvC4B4w0mUzc+f1s4swmXtp2kFWfF7Dq8wL6ptjpnWLHajZR2+hlf2V9s7+RnL7d+M3lgzgptW1d8bon2nj62rNZumEfz2/OZ/235az/thyH1cyp3RPJSLRhjzMTH2fG4zOod3upafCQV1FPSXBGP784s4lhff0Jp5MTfLyfW4zXB+f0T+ebGhMf7y3n27I6th6oZuuBav700V4SrBZ6p8TTu5udRJul2Y0VgNtr4Pb6cPv8Xxs9PurcXmobvDgbPTgbvNQ2enB7myehVu3ahcO6m6T4OJJscSTFW0hs+j4x3n9zduj/owmC/4eB/3+f0XRuMPzjdBn4v/p8BvUuF4YBY0/vzfcHqUXW8YpE/XD1GWlUOZ306JHJgT2VmG0OfI3Rf0MhJy4pLZ2ExnrMNujdN4UergPBvw8jzkGty0V1nZtGjwdTUjq2xFRKy8qod/to9IGbONyY8Rgm3F6DsnoPZcf80yo6wagPHnsTvgl+ZzWbiDObiLf6z7VmfFjNJv9yi/9roj0eW5wleCNos5iIswQSX6YWH3gFGhoaGNTV1X63ABMJCQn+E+wR+xjU1dUB+LcBapt+PrTlogmwO2yYTdYj3qelFo6HLgp86zvkWI7gNWHza0EMg/r6+u+2aW8C75D9T+6RyozR/dW16ThF6t4hwFlVzvINtcFWUSnH34g8ajXr7tczicTqRkxWS3DMKl+jE7fFQVLPvuzbt5fqejcuL3hsSdR7DFxecBsWDKCy3kNl/aFjN9a0cMQjZ/o+GhNgMfuvOy0mU9M1XdPPZrCYTMH1dlscPq8XyyH3Yv7rvUPuy/huucVsavrZvxz8pwL/daIpePzAcrPJf44LrKuvqwMMDj17mE3fnW9MmEhITGz2Xv5zYS0AiU3rDMOgrrY2eA4zmUz+dYe8c+AUFdjfbrficrlJSGj7A99Dj32s/Q7dNnDuNZlM7TreiTIBjgQb9XWNze7r21qGSDg0PqvZxLTRp9EntXPMANylklK1tbVNFwDfCfxcV1fX5orFbG5+oXEsj76XS3Ft4ATY0skvDIoOf0pw4pLi40ixm+mXEk//lHhOSrGSQgNb9pVgBi4amEmDJYH8qgbyqhrJq2wgv8qN22dQXuduNalli7PQK9nC5dmpXD4wlQRzPWUtXEFXVlbgra/G7bNRWWnDfJQnFJedbGPof53GyzvK2XzASU2DP0ljs5gY3ieRacMy6JXgpqyspNUyB44X+N5iOfbJ5fzeFpZMGsAr/ynnQHUjcRYT5/ZJ5NLTUolrrKas7Oj7Bo7nsVnwuGpbLSOADXjk8v688lU5//62imqXv5xJFjODMuyMz07heycn466tpKz2xMp4Q04qI3vZeOWrcr4sqqfK5aHK5Wy2TYo9jrN7JXBZVgrD+yZi8jopK2u+zbF+hz86I4kL+2Xx+s4KNuyvodrlI6+ivsXWTwFJ8XGkOyyc3SuR4X0TGZqZQILNfwFeVlaO3eOPYXByN84/JZ3rhiRT7HSz9WAtnxXU8kVRPY1eg6KaRopqGo96nGOJj7NwtDHz690+6t2NlBzl93Cicsu/5bLT25eU6mR1ZUSFon44dOiwttQTcXEWLK4qGmri8LlqMDweDE99i18basqOuk1r6zpyG1dVKb6GyMfRkZ9ZY00ZnroavD5Lh8VhivOQ4KknMcGB4XFjMlfTIy2Z4ppSTAmOpm38X2vrG2h0e7Cl9CKxewalRYX4LDY8Hh8eixW314fHZKXRCw0+8FlsuL1gmI6ewDAbPkz4sJgMTIaXOIsFk+HD6zMwx1lxuz0YJrP/oRlmDEz4TCag5ROOxwceX+BBigGHPpqrDvXA/85jb3LMbUJ5Em/Le9Wd0BE+3l/HRdkZnN6r7Q/6VDd8J1L3DhaLmcaacjyuGhzx8fgsPrz1VTRUl+Jx1WD2NOLzNGD2NLa4LBzrwnKcmlK8dVV4fJYTiiEurpFuvm70MCrITIr3r4tzN32Np0fvk9if9y019W7cHgNLt3QavOBye7AlJFPrrMUcn4DHZ+D2GZji4mlwezBMluC5zIfpmP8cXsBrgNvb9MN36QqoO/7ry7Zr7/mitXNQa+vaci5tz3aR3i8cOlMsLTNbvuW28We2uk3gTz5wDgtX/WAyutDgFevWrWPevHls2rQpuGzXrl1ceeWVbNmyheTk5AhGJyIikaL6QUREDqe6QUQk/LpUW97s7GwqKyspLf2ua9mePXvo1auXKhURkS5M9YOIiBxOdYOISPh1qaTUKaecwvDhw3nwwQdxOp3k5+fzxBNPMGXKlEiHJiIiEaT6QUREDqe6QUQk/LpU9z3wT9X+u9/9jk2bNmE2m7nqqquYM2cOFktoBp8WEZHopPpBREQOp7pBRCS8ulxSSkREREREREREIq9Ldd8TEREREREREZHOQUkpERERERERERHpcEpKiYiIiIiIiIhIh1NSSkREREREREREOpySUjFm586dzJgxg5EjR3L++edz++23U15eHumwQs7r9XLddddx5513RjqUkKqsrOT2229n1KhRnHvuudx4440UFxdHOqyQ2bFjB9OmTWPEiBFccMEFPPDAAzQ2NkY6rJAoLy9n3LhxbNq0Kbhs27ZtTJ06lZycHMaOHcuqVasiGKGEW1lZGTfeeCMjRoxg1KhRzJ8/H4/HE+mw2q21euRYf9OrV69m3LhxDBs2jMmTJ7N169bgOq/Xy8KFCznvvPPIyclh1qxZnfL81lL9Esvlbq3eieVyt1YfxXK5pXOLhXrkeK6Houl/qivVkRs2bGDq1Kmcc845nH/++dx///24XC4g9sraFer+N954gzPOOIOcnJzg67bbbgM6QVkNiRn19fXG+eefb/zxj380GhoajPLycuOGG24wfv7zn0c6tJB77LHHjMGDBxt33HFHpEMJqZ/85CfG7NmzjaqqKqOmpsa46aabjJkzZ0Y6rJDwer3G+eefb/zlL38xvF6vcfDgQWP8+PHG4sWLIx3aCduyZYvx/e9/3xg4cKCxceNGwzAMo7Ky0hg5cqSxfPlyw+12Gx9//LGRk5NjbNu2LcLRSrj85Cc/MX79618bdXV1Rl5ennHFFVcYS5cujXRY7dJaPXKsv+mNGzcaOTk5xpYtW4zGxkbjz3/+szFq1Cijrq7OMAzDePzxx42JEycaBQUFRk1NjXHrrbcaN9xwQySL26LD65dYL/fR6p1YLndr9VEsl1s6v2ivR47neiia/qe6Uh1ZVlZmDBkyxHjppZcMr9drFBUVGRMmTDD++Mc/xlxZDaNr1P0LFiww7rzzziOWd4ayKikVQ/bs2WP8z//8j+HxeILL3n77beOcc86JYFSh9/HHHxs//OEPjVtuuSWmklJffPGFMWTIEKOmpia4rKKiwvj6668jGFXolJeXGwMHDjT+/Oc/Gx6Pxzh48KDxgx/8wHj22WcjHdoJefnll42LL77YeP3115tdhP3jH/8wLrvssmbb/uY3vzFuv/32SIQpYbZ3715j4MCBRmFhYXDZ66+/blx88cURjKr9WqtHjvU3/etf/9qYN29es/WXX3658eKLLxqGYRgXXnih8c9//jO4rqSkxBg0aJCRl5cXruK0W0v1SyyXu7V6J5bL3Vp9FMvlls4t2uuR470eiqb/qa5WRwbqBp/PZ+zatcsYN26c8de//jXmytpV6v5p06YZy5cvP2J5Zyiruu/FkAEDBvDMM89gsViCy9566y3OPPPMCEYVWmVlZcydO5dHHnkEh8MR6XBCavv27WRlZfGPf/yDcePGccEFF7Bw4UJ69OgR6dBCIi0tjenTp7Nw4UKGDBnCRRddxCmnnML06dMjHdoJueCCC1i3bh0//OEPmy3fvXs3AwcObLYsKyuLnTt3dmR40kF2795NamoqmZmZwWWnnXYaBQUFVFdXRzCy9mmtHjnW33Rubu5R19fU1FBYWNhsfUZGBikpKezatSuMJWq7o9UvsVzu1uqdWC53a/VRLJdbOrdor0eO93oomv6nulodmZSUBMBFF13ExIkT6dGjB5MnT46psnaVut/n87Fjxw7ee+89LrnkEi688ELuueceqqqqOkVZlZSKUYZh8Oijj/Luu+8yd+7cSIcTEj6fj9tuu40ZM2YwePDgSIcTclVVVezatYu9e/eyevVqXnnlFYqKirjjjjsiHVpI+Hw+7HY799xzD59//jmvvfYae/bsYdGiRZEO7YT06NGDuLi4I5bX1tYekTi12+3U1dV1VGjSgVr6fQd+jtbf+eH1yLH+pltbX1tbC0BCQsIR6wPrIqm1+iWWy91avRPL5W6tPorlckvnFu31yPFeD0Xr/1RXqiPXrl3LBx98gNls5pZbbomZsnalur+8vJwzzjiD8ePH88Ybb7By5Ur27t3Lbbfd1inKqqRUDHI6ndxyyy2sWbOG5cuXM2jQoEiHFBJPPfUUNpuN6667LtKhhIXNZgNg7ty5JCUlkZGRwa233sr777/fKSqkE7Vu3Treeust/t//+3/YbDays7OZPXs2f//73yMdWlg4HI7gYJABLpeLxMTECEUk4ZSQkEB9fX2zZYGfo/F33lI9cqy/6dbWBy5mDv+MOsv/RGv1SyyXu7V6xzCMmC13a/VRLP++pXOLtXokIBb/p7paHWm328nMzOS2227jww8/jJmydqW6PyMjgxUrVjBlyhQcDgd9+vThtttu44MPPugU9b2SUjEmLy+Pq6++GqfTyYsvvhgzCSmAV199lU8++YQRI0YwYsQIXnvtNV577TVGjBgR6dBCIisrC5/Ph9vtDi7z+XyA/2lMtDt48OARM+3FxcVhtVojFFF4DRw4kN27dzdblpubS3Z2doQiknDKzs6msrKS0tLS4LI9e/bQq1cvkpOTIxhZ+x2tHjnW33R2dvZR16ekpJCZmUlubm5wXUlJCZWVlUc0CY+E1uqXWC53a/XO6aefHrPlbq0+iuXft3RusVSPHCrW/qe6Sh352Wefcfnllzc7VzY2NmK1WsnKyoqJsnalun/nzp08/PDDze4pGxsbMZvNDB06NPJlbfPoU9LpVVZWGhdffLFx5513Gl6vN9LhhN0dd9wRUwOdNzY2GuPGjTNuvvlmw+l0GmVlZcZPf/pTY/bs2ZEOLSR2795tnHXWWcaSJUsMj8dj5OXlGRMmTDAWLFgQ6dBC5tCBPcvLy40RI0YYf/7zn43GxkZjw4YNRk5OjrFhw4YIRynh8uMf/9j45S9/adTU1ARnTVq0aFGkw2qX1uqRY/1NB2Zr2bBhQ3B2lnPPPdeoqKgwDMMwHn30UWPChAlGXl5ecHaWn/zkJx1dxDY5tH6J5XK3Vu/Ecrlbq49iudzS+cVCPWIY7bseiqb/qa5URzqdTuOiiy4yHnzwQaOhocHYv3+/MWXKFOPee++NubIGxHLdf/DgQWPYsGHG008/bbjdbuPAgQPGNddcY9x9992doqxKSsWQ5557zhg4cKBx9tlnG8OGDWv2ikWxlpQyDMMoLCw0br31VuP88883RowYYdx+++1GVVVVpMMKmfXr1xtTp041hg8fblx88cXGH/7wB6OhoSHSYYXMoRdhhmEY27dvN6699lojJyfHuPTSS42XXnopgtFJuJWUlBg333yzMXLkSGP06NHGggULms3QEw2OVY8c62/6lVdeMcaPH28MGzbMmDJlivH5558H1zU2Nhq///3vje9973vGOeecY8yaNcsoLS3t0PK11eH1SyyXu7V6J5bL3Vp9FMvlls4tFuoRw2j/9VC0/E91tTpy9+7dxowZM4wRI0YYl1xyScyfJ2O97t+0aVOwPKNHjzbuv/9+w+VyGYYR+bKaDCMG+gWJiIiIiIiIiEhU0ZhSIiIiIiIiIiLS4ZSUEhERERERERGRDqeklIiIiIiIiIiIdDglpUREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHU1JKREREREREREQ6nJJSIiIiIiIiIiLS4ZSUEhERERERERGRDqeklIiIiIiIiIiIdDglpUREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHU1JKREREREREREQ6nJJSIiIiIiIiIiLS4ZSUEhERERERERGRDqeklIiIiIiIiIiIdDglpUREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHU1JKREREREREREQ6nJJSIiIiIiIiIiLS4ZSUEhERERERERGRDqeklIiIiIiIiIiIdDglpUREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHU1JKREREREREREQ6nJJSIiIiIiIiIiLS4ZSUEumiDMOIdAgiItKJqZ4QEQkdnVNFWqaklEgn8fjjjzNo0KCQvNfYsWO58847Adi/fz+DBg3i5ZdfBqC6upo77riDLVu2hORYIiISWwoLC/n5z3/OgQMHTvi9Dq+DRES6gjfeeINLLrmEIUOG8Jvf/Ibc3Fx+/OMft/t97rzzTsaOHRv8+dBr/La47rrruO6669p93Pa66aabWozr73//O4MGDTri9Zvf/CbsMUn0iIt0ACISeosXLyYpKanFdV999RWvvPIKkydP7uCoREQkGnz88ce899573HPPPZEORUQkKv32t7/llFNOYcGCBWRmZrJmzRq2bt16wu/b2jV+S+69994TPmZrvF4vDz74IOvWreO//uu/jlj/1VdfkZWVxfz585st7969e1jjkuiipJRIDDrjjDMiHYKIiIiISJdUWVnJ+eefz6hRo0L6vu29xs/Kygrp8Q+1c+dO7r//fr788kvsdvtRtxk6dCjDhg0LWxwS/dR9T6QdFi5cyNChQ6mpqWm2/OmnnyYnJ4eFCxcybtw4Fi9ezKhRo/j+979PRUVFu47x9ttvM378eIYMGcLUqVPZsGFDcN2mTZsYNGgQmzZtarbP4U1zj9a0d9OmTfz0pz8F4Kc//WmHNOcVEekswnkOf/zxx4+676pVq7jiiis466yzuPjii3n88cfxeDzBfe+8806mT5/OSy+9xPjx4znrrLO48soref/995sdY+/evdxyyy2cf/75DBs2jOuuu45PP/00uH78+PHMnj37iNimTp3KzJkzAf9T7aeffpoJEyYEbxR+9KMfBeual19+mbvuuguASy+9tFldcqxyAKxdu5Yrr7ySoUOH8l//9V/s3LmzTZ+fiEhnsWPHDn72s58xfPhwcnJymD59Otu2bQuuf/PNN4PnuauuuoqtW7dyxhln8PLLLwev1QH+9Kc/MWjQIO68804WL14MwKBBg3j88cePO7ZDr/Hbcs4//B5h0KBBrFixgrlz5zJy5EhycnK45ZZbKC0tbfYezz77LJdeeilDhw7lRz/6Ef/+97+PuAe544478Pl8vPDCCy22fPL5fHz99dcMHjz4uMsrXYOSUiLtMGXKFBoaGnjzzTebLX/llVe4/PLLSUhIoKCggHXr1vGHP/yBW2+9lbS0tHYd4+677+anP/0pjz/+OImJidxwww3k5uaGJP4zzzwz2If7N7/5Tdib9IqIdCbhPoe3tO9TTz3FPffcw5gxY3jyySeZNm0aS5cuPWI8jS+//JJnn32WW265hT/96U/ExcVxyy23UFVVBUBubi6TJ08mPz+fefPm8fDDD2MymfjZz37GJ598AsCkSZP44IMPcDqdwffNy8tj+/btTJo0CYCHH36YP/3pT1x77bU888wz/O53v6OiooJf/OIX1NXVcfHFFzNr1izA303kxhtvBGhTOf79739zyy23kJ2dzeLFi/nBD37Abbfd1ubPT0Qk0pxOJ9dffz1paWksWrSIRx99lPr6ev7nf/6Hmpoa3nnnHX7xi18Ez3OXXXYZs2bNwufzAf5r7RdeeAHw1zkvvPACN998M1OmTAHghRdeYOrUqSGJtS3n/JY8+uij+Hw+/vCHP3D77bfz3nvv8eCDDwbXL168mIcffpgf/OAHPPHEE5x99tn88pe/POJ9Fi5cyN///vejJp2+/fZb6uvr2bZtG+PHj+fMM89k/PjxvPLKK8dfaIlJ6r4n0g6nnXYaOTk5vPrqq8EKZfv27ezZs4ff/e53bNiwAY/Hwx133MF55513XMe49957ueKKKwAYM2YMl156KUuWLOGRRx454fiTkpKCzXizsrLC2qRXRKSzCfc5/PB9a2pqWLJkCddeey3z5s0D4IILLiA1NZV58+YxY8YMsrOzg9u+/PLL9O/fH4CEhAR+8pOfsHHjRsaPH8/ixYuxWq08//zzJCcnA3DxxRczYcIEfv/737Nq1SquvPJKFi1a1GxsjzVr1pCYmMill14KQHFxMb/85S+bPTm32+3cfPPN7Nq1i5ycnGAMp59+OieddFKby/GnP/2JM888M1hfXXjhhQAhqb9ERDpCbm4u5eXlXHfddQwfPhyAAQMGsHLlSpxOJ3/6058466yzmp3nTCYTjz32GOC/1g50VevVq1ez74GQdmNryzm/JQMHDuShhx4K/rx9+/bgw5q6ujqWLl3KtGnTmDNnDuA/39fX1weTbQHHagEVaClbUFDAnXfeSVxcHK+88gp33HEHjY2NXHPNNe0vtMQktZQSaaerr76aLVu2sH//foDgTcSIESOC2wwcOPC43ttisXDZZZcFf46Pj+fCCy/k448/PrGgRUQECO85/PB9t27dSn19PWPHjsXj8QRfgZmU1q9fH9w2PT09mAyC725g6uvrAfjkk0+45JJLggkpgLi4OK644gq++OILamtrOemkkxg+fDivv/56cJvXX3+d8ePHB8f7eOSRR5g+fTrl5eVs3bqVl19+mX/+858AuN3uFsvUlnK4XC527NhxxI3QD37wg3Z+giIikZOdnU16ejqzZs3i3nvv5d///jc9evTg9ttvJzU1tcXz3JVXXhmRWNtyzm/J4YmxXr16Beuazz//HJfLxeWXX95smwkTJrQ7vlGjRvH000+zbNkyLrnkEr73ve/xyCOPcN5557Fo0SIMw2j3e0psUlJKpJ1++MMf4nA4+Oc//0ljYyP/+te/jphtIiMj47jeOzU1FavV2mxZ9+7dqa6uPu54RUTkO+E8hx++b2VlJQAzZ87kzDPPDL4CLamKi4uD2zocjmbvYzKZAIJdQqqqqlqMKyMjA8Mwgt03rrrqKjZs2EBFRQVfffUVe/bsadaN44svvmDKlCmMGTOG6dOns2LFCsxm/+Xg0W4Q2lKOqqoqDMMgPT292b49e/Zs5dMSEelcEhMTWbFiBRdddBFvvPEGs2bNYsyYMfzmN78JXo8ffp7LzMyMRKjAsc/5LTm8vjGbzcHzf3l5OXBkGY+nXszIyOCiiy46IkF20UUXUVJScsQ4VtJ1qfueSDslJiZy+eWX869//YvTTz+d6upqrrrqqpC8d01NDYZhBG9GAEpLS4MVw+E3KQG1tbUkJiaGJAYRkVgWznP44bp16wb4x3E65ZRTjljfnov8lJSUFi/gS0pKAIJjX11++eXcf//9rFu3jn379tG7d29GjhwJfDdWyqBBg3jttdc47bTTMJvNvP/++7z11lsnVI7U1FTMZvMRMQYSWiIi0WLAgAH8/ve/x+v1sn37dl599VX+/ve/07Nnz053nmvtnH88Aq10y8vLGTBgQHB5IFnVHp988gkFBQVH1LENDQ1YLBZSUlKOO06JLWopJXIcpkyZwtdff81zzz3H6NGj6dOnT0jet7GxkY0bNwZ/rq2t5b333gtOJ5uUlATAwYMHg9tUVVWxZ8+eNh/DYrGEJFYRkWgVrnP44c4++2ysVitFRUUMGTIk+LJarTzyyCPBLoRtce655/Luu+82mznQ6/Xy+uuvM2TIEGw2GwDJyclccsklvPPOO7z55ptMnDgx2BLqm2++obKykp/+9KdkZ2cHl3/wwQfAdw88AsvbU474+HhycnJYu3ZtsxZX//73v4/jkxMRiYw333yT0aNHU1JSgsViIScnh/vuu49u3bpRXl5OTk4Ob731VrMHxO++++4x3/fw82qotHbOPx6DBw8mOTmZtWvXNlve2oOLo9mwYQN33nkn+/btCy7z+Xy89dZbnH322cF6S0QtpUSOw/DhwxkwYACffPIJDz/8cMje12q1cvfdd/OrX/2KpKQknn76aVwuV3D2o0GDBtG7d28WL15McnIyZrOZp59++ohmuK0JjEfy3nvvkZKSomlaRaTLCdc5/HBpaWlcf/31/PGPf8TpdDJq1CiKior44x//iMlkatf596abbuKDDz7gpz/9KTNnzsRms7F8+XLy8/N55plnmm171VVXMXv2bLxeb7OxTk499VSSkpJ48skniYuLIy4ujrfeeosXX3wR+G78qkDLqHXr1nHhhRdy2mmntakcv/rVr/jZz37GTTfdxLXXXsvevXtZsmTJCX2GIiId6ZxzzsHn8zF79mxmzpxJYmIi//rXv6ipqeGyyy7jhz/8IdOnT+fGG2/kxz/+MXl5efzxj3885vsGzquvvfYaZ599Nv369QtZzEc75x+PpKQkrr/+ehYtWoTD4WDkyJF88skn/P3vfwfal1z78Y9/zAsvvMD//u//cvPNN+NwOFixYgVff/01zz///AnFKbFFLaVEjtPFF19McnIy48aNC9l7pqSkcNttt/Hoo49yyy23YLFYWL58ebD5rMViYdGiRfTs2ZNf/epXPPDAA/zgBz9oNjj6sWRnZzNhwgRWrFgRnFVDRKSrCcc5vCW33nord955J+vWreOGG27g97//PcOHD2f58uXNBi0/luzsbP72t7+RkZHB3XffzW233YZhGDz//PNHzBT4ve99j5SUFM4444zg7H7gfyjxxBNPYBgGv/jFL7j99tspKChg+fLlJCYmsmXLFsA/OO15553HI488wsKFC9tcjhEjRrB06VKKioq46aabWLlyZbNpxkVEOruePXvyzDPPkJyczNy5c/n5z3/Ojh07ePzxxxk9ejQjRozg2WefpbS0lNmzZ7Ny5UruuOOOY77vZZddxpAhQ7jzzjt59tlnQxrz0c75x+vnP/85N910E6+88go///nP2bJlS/CeISEhoc3v07NnT/72t7+RnZ3NAw88wK233orL5WLZsmWcc845JxynxA6ToWHvRdrNMAwmTpzIqFGjuOeeeyIdjoiItIPO4SIiEir79+/n0ksv5aGHHmLy5MmRDueEeDweXnvtNUaNGkXv3r2Dy1esWMEDDzzApk2bgq2+REJF3fdE2sHpdLJs2TK++OIL9u7dyxNPPNHq9oZh4PV6j/m+ZrM5bH3NRUTET+dwERGJtLbWLRaLpdnkRx0hLi6OpUuX8pe//IVZs2aRlpbGzp07+eMf/8hVV12lhJSEhZJSIu1gt9tZuXIlPp+P+fPn079//1a3/+STT/jpT396zPe96aabuPnmm0MVpoiItEDncBERibTVq1dz1113HXO7SLW8evLJJ/nDH/7AfffdR3V1NX369GH69On8/Oc/7/BYpGtQ9z2RMHI6nXz77bfH3K5nz55kZmZ2QEQiItJWOoeLiEioVVRUtGn21ZNOOom0tLQOiEgkspSUEhERERERERGRDqcBEEREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHi4t0ANGorKyG9gwPbzJB9+7J7d6vM1EZOodoL0O0xw+xVYby8hrS05MjHU7M6Ip1Qzjoc2mZPpcj6TNp2Yl+LoH9JXSi4W802v+fFH/kRXsZFH/bjxFqSkodB8PguH7Rx7tfZ6IydA7RXoZojx9ipwwSOl25bggHfS4t0+dyJH0mLdPn0nlE0+8immJtieKPvGgvg+LveOq+JyIiIiIiIiIiHU5JKRERERERERER6XBKSomIiIiIiIiISIdTUkpERERERERERDqcklIiIiIiIiIiItLhlJQSEREREREREZEOp6SUiIiIiIiIiIh0OCWlRERERERERESkwykpJSIiIiIiIiIiHU5JKRERERERERER6XBKSomIiIiIiIiISIdTUkpERCQCPj9Qxcznt1BY7Yp0KCIiIiHj9XrZu/fb4Mvr9UY6JBHpxOIiHYCISKz4759fT1l55VHXd09P5bmnnum4gKRTe3tXCWv/U0TfZBs3XnBqpMMREREJifz8PJ58awupPXpTWXKQ/x0Pp5yiek5EWqaklIhIiJSVV3LFLx8+6vrXH53TgdFIZ3daRiIAXxRURzgSERGR0Ert0Zv0XidFOgwRiQLqviciIhIBQ3p3A2BHYQ0enxHhaEREREREOp6SUiIiIhFwavcEkuLjqHf7+Ka0NtLhiIiIiIh0OHXfExERiQCL2cTgHna27Hfy5pb/4DrJdtzvlZ7enZNO6hfC6EREREREwk9JKRERkQjYvz+f91/+C4kjr2bJP17jgTceO+73sjsS+Hj9ZiWmRERERCSqKCklIiISAWVlZdTu+4LEkVfTa9glXHvp6ON6n+L93/Lio3dRXl6mpJSIiIiIRBUlpUREpFPYuXMnCxcuZMeOHVitVs4//3zuvPNO0tPT2bZtGw888AC5ubmkpaUxa9Yspk6dGtx39erVPPHEE5SUlDBgwADuuececnJyAPB6vTz88MO8+uqr1NfXM3r0aH7729/Ss2dPwJ8cuueee/jkk0+wWCxceeWV3HHHHcTFhb+K9FQXA+A2WelzmqbLFhEREZGuRQOdi4hIxLlcLq6//npycnL46KOPeO2116isrOTuu++mqqqKmTNnctVVV7F582bmz5/PQw89xPbt2wHYtGkT999/PwsWLGDz5s1ceeWVzJo1i/r6egCWLFnC+vXreemll/jwww+x2+3MmzcveOxbb72VhIQEPvzwQ1588UU2bNjAsmXLOqTc3vpqABo8PnyGZuATERERka5FSSkREYm4goICBg8ezOzZs7HZbKSlpXHttdeyefNm1q5dS2pqKtOmTSMuLo4xY8YwceJEVqxYAcCqVau44oorGD58OFarlenTp5OWlsYbb7wRXH/DDTfQu3dvkpKSmDt3Lh988AH5+fns27ePTz75hNtuuw2Hw0G/fv248cYbg+8dbr76muD3jR5fhxxTRERERKSzUPc9ERGJuAEDBvDMM880W/bWW29x5plnsnv3bgYOHNhsXVZWFi+++CIAubm5XH311Ues37lzJzU1NRQWFjbbPyMjg5SUFHbt2gVAamoqmZmZwfWnnXYaBQUFVFdX061btzaXwWRq86bfbe/zEmcy8BgmXB4fdqulfW9ygjF0RoEyxEJZQkmfy5H0mbTsRD8XfZ4iItKRlJQSEZFOxTAMHnvsMd59912WL1/O888/j8PhaLaN3W6nrq4OgNra2qOur62tBSAhIeGI9YF1h+8b+Lmurq5dSanu3ZPbvC1AamoiAPEW8HgAi4WEhPh2vQeA3W4DIC0tkYyM9sXQmbX38+wq9LkcSZ9Jy/S5iIhINFBSSkREOg2n08ldd93Fjh07WL58OYMGDcLhcFBTU9NsO5fLRWKiP6njcDhwuVxHrE9LSwsmmALjSx2+v2EYR6wL/Bx4/7YqK6uhPcNCVVb6k2JWfICFSqeLVFv7e9W7XI0AVFTUUlpac4ytOz+TyX8z3d7PM9bpczmSPpOWnejnEthfJNS8Xi/5+XnBn/v164/FcmIthEUk+nXqMaXKy8sZN24cmzZtCi576623mDRpEueccw5jx45l8eLF+HzfjcOxevVqxo0bx7Bhw5g8eTJbt24NrvN6vSxcuJDzzjuPnJwcZs2aRXFxcYeWSUREWpaXl8fVV1+N0+nkxRdfZNCgQQAMHDiQ3bt3N9s2NzeX7OxsALKzs4+6PiUlhczMTHJzc4PrSkpKqKysZODAgWRnZ1NZWUlpaWlw/Z49e+jVqxfJye27KTOM9r8ArGb/Nw0hGFPqeGLojK9YKos+F30m0fi5iIRDfn4eT761hZWfHeDJt7YEE1Rer5e9e78Nvrxeb4QjFZGO1GmTUp9++inXXnsteXnfZdO//PJLbr/9dm699Va2bNnC0qVLefnll4OzJJ3oDEwiIhIZVVVV/OxnP+Occ87h2WefJT09Pbhu3LhxlJaWsmzZMtxuNxs3bmTNmjXBcaSmTJnCmjVr2LhxI263m2XLllFWVsa4ceMAmDx5MkuWLCE/Px+n08mDDz7IyJEj6d+/P6eccgrDhw/nwQcfxOl0kp+fzxNPPMGUKVM6rOy2pqSUy62BzkVETkRLD7S3bdvG1KlTycnJYezYsaxatarZPnqg3bFSe/QmvddJpPboHVx2tGSViHQNnTIptXr1aubMmcMvf/nLZssPHDjAj370Iy655BLMZjOnnXYa48aNY/PmzcCJzcAkIhJuX3+9k0lTp7T4+u+fXx/p8CLq5ZdfpqCggH/9618MHz6cnJyc4CstLY3nnnuON998k1GjRjFv3jzmzZvH6NGjARgzZgz33nsv9913HyNHjuT1119n6dKlpKamAjB79mwuuugipk2bxkUXXURDQwOPPfZY8NiLFi3C4/Fw6aWXcs011/C9732PG2+8scPKbjM1JaU8ejIsInK8WnqgXVVVxcyZM7nqqqvYvHkz8+fP56GHHmL79u2AHmh3Ji0lq0Ska+iUY0pdcMEFTJw4kbi4uGaJqfHjxzN+/Pjgzy6Xi/fee4+JEycCJzYDU79+/cJcKhHp6jw+uOKXD7e47vVH53RwNJ3LjBkzmDFjxlHXDxkyhJUrVx51/aRJk5g0aVKL66xWK3PmzGHOnJY/44yMDBYtWtS+gENILaVERE7M6tWrWbRoEbfddluze4e1a9eSmprKtGnTAP9DjIkTJ7JixQqGDh3a7IE2wPTp03nhhRd44403uPrqq1m1ahVz5syhd29/omTu3LlccMEF5Ofn695BRCREOmVSqkePHsfcxul08otf/AK73c706dOBE5+Bqa2Oa9rv49ivM1EZOodoL0O0xw/hLUNHfS6x8HuIJaEcU0pEpCs62gPt3bt3N3sgDf4H1i+++CLQcQ+0o6G+DeW1weHvYTJ992rP8uM5ZjR81i2J9vgh+sug+Nt+jFDrlEmpY/nmm2+45ZZb6N69O88//zxJSUnAic3A1B7HOyNJLMxkojJ0DtFehmiPH1ouQ5zVQkJC/FH3MZk46vo4q4WMjI79XNLTo//3EAu+676npJSIyPE42gPt1h5YH2t9KB9oR9N1Tyhira5OwuGwkZAQT73DRnp6EhkZye1eHqn4Iyna44foL4Pi73hRl5R6//33+dWvfsU111zDr3/9a+LivivC0WZguvDCC5vNwBR44nHoDEzt0d4pdmNhymKVoXOI9jJEe/zQehk8bi91dQ1H3dcwOOp6j9tLaWlNKEM9qkAZystrlJjqBGxNozu63BpTSkQklBwOBzU1zevWQx9Id9QD7Wi47gnlNVp5uZP6+kbq6hqor2+kvNxJt2417V4eqfgjIdrjh+gvg+Jv+zFCLaqSUp9//jmzZ8/mvvvua3FmpClTpjB79mx+8IMfMHz4cFasWNHiDExDhgwhLS2t2QxM7XG80+XGwjS7KkPnEO1liPb4ITxl6OjPJNp/B7HCpu57IiJhMXDgQNavX99sWW5uLtnZ2UDHPdCOpuueUMR6+P6B92zv8uM9drR81i2J9vgh+sug+Dtep5x972iefPJJPB4P8+fPbzYz0/XX+2etOtEZmERERDqa1fRdUsoXbVcRIiKd2Lhx4ygtLWXZsmW43W42btzImjVrguNITZkyhTVr1rBx40bcbjfLli1r8YF2fn4+TqfzuB9oi4jI0XX6llK7du0Kfv/kk08ec/sTmYFJRESkowVaShlAo8eH3WqJbEAiIjEiLS2N5557jvnz57No0SLS09OZN28eo0ePBpo/0C4qKiIrK+uIB9oej4dp06ZRW1vLqFGj9EBbRCTEOn1SSkREJJaZTWC1mHB7DVxKSomInJBDH2gDDBkyhJUrVx51ez3QFhGJrKjqviciIhKL7HH+RJTGlRIRERGRrkQtpURERCIsPs5MTYOSUiIiErsKnR7eOeAjuaKYk+0aQ1FE/NRSSkREJMKsFhMAbq+SUiIiEntqXB4WfFxCZSPkV7r4qNBgW5Er0mGJSCegpJSIiEiEfZeU0pNjERGJPX/84BsO1HhwWODkNAcAf9leidenek+kq1NSSkREJMKsZn91rJZSIiISaxo8PtbtLAFgRA8TF56WjtUM+dVu1nxZGOHoRCTSlJQSERGJMKulKSmlJ8YiIhJjPi10Uef20iPBQg872K0WBqf6Wwiv+rwgwtGJSKQpKSUiIhJhGlNKRERikc/nZd3XZQCcnerFaHr2cnISWEzwdUkt+dXuCEYoIpGmpJSIiEiEaUwpERGJReWlJeyo8Ndthft243TWABBvMTGslx2AD/NqIxafiESeklIiIiIRFuy+p5ZSIiISQ6q8VgxMJMVbyEzr1mzd/2fvzuOjqu/F/7/OLJmZrDNJIAmbLCGgAooom4h1SbmKgLIUf+V6i17UIrW33uIOFy3icvVbLdeCiuVyW6lYtNRSKWBbrYqCERERDSQIJATIMtlmz2y/PyYzEJNAJpnJzCTv5+ORB2Q+c855n5PknDnv8/m8P1cNTAHgo3I7fr88lBGit5KklBBCCBFjZ5JS8qFcCCFEz9Hg1QKQm6Zr1XZ5nh6DVkW13UtDU3dHJoSIF5KUEkIIIWJMakoJIYToiRp8gaRUThtJKZ1GxRWDTACcdnRrWEKIOKKJdQBCiJ7ljrsXYa6tb7e9X242L734UvcFJEQCkJ5SQgghehqf3x/qKZWTpqOhuvV7rhxi4oMjZk7b5fonRG8lSSkhRESZa+uZft9z7bbvePHBboxGiMSgVTX3lPJJTykhhBA9Q53djRcVGsWPKVlLQxvvmTwkEwCzC5xub/cGKISICzJ8TwghhIgx6SklhBCip6m0uADI0HhRKUqb78lN1zMoPdCb6kS9s9tiE0LED0lKCSGEEDEWrCnVJDWlhBBC9BA1tkD18nTNua9tY3P1AJxokKSUEL2RJKWEEEKIGEtq7inl8fplWmwhhBA9Qq3dDUCa+tzD8kb3DSSlTjY45RooRC8kSSkhhBAixoI9pfyA1ycfyIUQQiQ2v99PXXNSKvU8PaVGZiWhAmxNXqyebghOCBFXJCklhBBCxJhGdabWRpPUlRJCCJHgbB7w+Pyo8JOsOvd1TadRkRnoLEWVoxuCE0LEFUlKCSGEEDGmKMqZGfikrpQQQogE1xAoJ0WKykM7Nc5b6KsPvKnaIQ9mhOhtJCklhBBCxIHQDHwyfE8IIUSCCyalUlUdG4/X1xD4t9oJPqkrJUSvIkkpIYQQcaW2tpbCwkL27NkDwH/9138xduzYFl8XXngh//7v/x5a5oYbbuCSSy5p8Z4jR44A4PV6eeaZZ5g8eTJjx45l8eLFVFVVhZY1m83cc889XH755UyYMIFVq1bh8XR/UYtgXSnpKSWEECLRNTQFEksdTUqZdKBVKTT54Fi9O5qhCSHijCSlhBBCxI29e/cyf/58ysrKQq/94he/YN++faGv//mf/yE9PZ2HHnoIAKvVytGjR9m2bVuL9w0bNgyAtWvXsmvXLt566y0+/PBD9Ho9y5YtC63/Zz/7GcnJyXz44Ye8+eabfPLJJ2zYsKFb9xvO6iklNaWEEEIkuMYwe0qpFIW8DB0AB6qc0QpLCBGHJCklhBAiLmzZsoWlS5dy3333tfue2tpali5dyqOPPsrw4cMB+OqrrzAajfTv37/NZTZv3sydd95JXl4eqampPProo3zwwQeUl5dz/PhxPv30U+6//34MBgMDBw7knnvuYePGjVHZx3ORnlJCCCF6ArfPH5pFL6WDSSmAfhmBaucHqlzRCEsIEac0sQ5ACCGEAJgyZQozZsxAo9G0m5h67rnnGDVqFDNnzgy9duDAAQwGA//6r/9KSUkJ/fv359577+Waa67BYrFw+vRpCgoKQu/Pzs4mIyODQ4cOAWA0GsnJyQm1Dxs2jJMnT9LY2Eh6enqH4+9IIdc239/875mkVOd7SoUbQzwK7kNP2JdIkuPSmhyTtnX1uMjxFF1V2ZyR0qoUkpSOP2jpnx5ISn1jdtHk8ZGkkf4TQvQGkpQSQggRF/r06XPO9vLycv785z+zefPmFq8risLo0aP5z//8T/r168f27du59957ee2118jNzQUgOTm5xTJ6vR6bzQaAwWBo0Rb83m63h5WUyspK6/B7AYzGlEAsuiSSk3Xok5ovyWoVycm6Dq9Hr08CwGRKITs7vBjiWbjHs7eQ49KaHJO2yXERsXKqOSmVYdC2m+T0+bxUVJwAoKLiBD4fZCVr0anA5fVz4FQj4wYauyliIUQsSVJKCCFEQnjrrbdCRc7PtmjRohbfz5w5k7/85S/s2LGDH//4xwA4HI4W73E6naSkpOD3+1u1Bb9PSUkJKz6z2UI4EwbV1weSYk5XE3a7C1XzsnaHG7u940MXnM5A4Y66Ohs1NZaOBxCnFCVwMx3u8ezp5Li0JsekbV09LsHlheisk5ZAofIMvQbauZw1mqt4/biVAUMUyg4dwJg3mGxFoY8BTtigqKxeklJC9BKSlBJCCJEQdu7cyR133NHq9d/85jdcdNFFTJo0KfRaU1MTOp2OjIwMcnJyKC0tDQ3hq66upr6+noKCAnw+H/X19dTU1JCdnQ3AkSNHyM3NJS0tvJsyv5+wbgBD723+NzR8z9f5mlI96cY83OPZW8hxaU2OSdvkuIhYORnqKdV+UgogPSuHzNwB1FefCr3W16BwwuanqKyeH18Z7UiFEPFABuoKIYSIe3V1dRw5coQrrriiVdupU6d4/PHHKS8vx+Px8Oabb7Jv3z5uueUWAGbPns3atWspLy/HarXy5JNPMn78eAYNGsTgwYMZN24cTz75JFarlfLyctasWcPcuXO7excjUlNKCCGEiLVQTymDNuxl+wbKSnHwtAVbU8eLpAshEpf0lBJCCBH3TpwI1J04uyB50AMPPIBKpeKHP/whFouF/Px8XnnlFS644AIAlixZgsfjYcGCBdhsNiZMmMALL7wQWn716tX84he/4LrrrkOlUnHzzTdzzz33dMt+nU2rDjwnktn3hBBCJLJQTSm9lnAHladoFXJSVFTavOw70cCUoVmRD1AIEVckKSWEECLuBGfGCxo9enSr14KSkpJ45JFHeOSRR9ps12q1LF26lKVLl7bZnp2dzerVq7sWcAScSUpJTykhhBCJyeL00OAKPFzJMGjCTkoBjOqjp9Jm49Pj9ZKUEqIXkOF7QgghRBzQqALD9zw+SUoJIYRITGV1dgD0akhSd+5Wc3TzGL6isvpIhSWEiGOSlBJCCCHiwJmklAzfE0IIkZjK6gMz2KaGX04qZFRfHQClNTZq7U2RCEsIEcckKSWEEFHi9fk5Ue/A3uSNdSgiAWiaC517ZPieEEKIBFVR7wQgtQtFYjJ0aob3SQHgM+ktJUSPJzWlhBAiChxuL+8eqqHSEpgLOT87GVBiG5SIazJ8TwghRKKraAgkpVK0XfvMc8UgIyXVNj4tq+f7I/tGIjQhRJySnlJCCBFhPr+fbV9XUWlx0dz5hdIaO7qLvhfTuER806gCl2RJSgkhhEhUoaRUF7s+XDHICEhdKSF6A0lKCSFEhJVU26i1u9FpVMy+JI8pQ00A6C+bRYPDHePoRLzSyvA9IYQQCa6iuaZUV5NSYwdkoFYpnGxwUtHgaNHm9Xo5duxo6MvrlTIJQiQySUoJIUQEeX1+Pi9vAODS/ukYDVpG9k2lf4YeRZPEV6c7Mzmy6A2k0LkQQohE5vL4qLIGCpOndKHQOUBKkoaLctIAQp+rgsrLy3hpx2ds+ryCl3Z8Rnl5Wdc2JoSIKUlKCSFEBB0x27A2eUnWqrkoJxUARVEY3S/wwepItV2GZ4k2BZNSXn9gCKgQQgiRSE41D90zaBSSInCXOW5gBgB7TzS0ajP2ySMzdwDGPnld35AQIqbiOilVW1tLYWEhe/bsCb22f/9+5s2bx9ixY7n22mvZvHlzi2W2bNlCYWEhl156KbNnz2bfvn2hNq/XyzPPPMPkyZMZO3Ysixcvpqqqqtv2RwjR8x2ptgNwYW4qGvWZU2z/DD0+Wx0ur4/jtfZYhSfiWDApBVJXSgghROIJ1pPqm6JBUbo+uUswKfV5eX2X1yWEiF9xm5Tau3cv8+fPp6zsTHfMhoYG7rrrLm6++WaKiopYtWoVTz31FF9++SUAe/bsYeXKlTz99NMUFRUxc+ZMFi9ejMMRGIe8du1adu3axVtvvcWHH36IXq9n2bJlMdk/IUTP49UaQh/IhmUlt2hTKQpNpbuBQM0pIb5LfXZSSupKCSGESDAnmutJ5XShoJTP56Wi4gTHjh0lw1OHWqVwqtHVqq6UEKLniMuk1JYtW1i6dCn33Xdfi9d37tyJ0WhkwYIFaDQaJk2axIwZM9i4cSMAmzdvZvr06YwbNw6tVsvChQsxmUxs27Yt1H7nnXeSl5dHamoqjz76KB988AHl5eXdvo9CiJ7HmTkcP9AnJYkMQ+tiCk3fFgFwssGJxyt1g0RLiqKcVVdKklJCCCESS/DBXFeSUo3mKl7fXcqmzyv4v79/zjBj4PPU3vLWQ/iEED1DXCalpkyZwrvvvsuNN97Y4vWSkhIKCgpavJafn09xcTEApaWl7bZbLBZOnz7doj07O5uMjAwOHToUpT0RQvQmjqx8AIZlJ7fZ7ms4TUqSGq8fTltc3RmaSBBS7FwIIUSiOpOUUndpPelZOaF6URf30QEyhE+InqyLk3VGR58+fdp83WazYTAYWrym1+ux2+3nbbfZAsNlkpOTW7UH2zoq3CHSwfdHYGh1zMg+xIdE34dEjx/a3wdbk4em1ECxzQsy205KQaC21OFqGxX1TgYYW56vuuu49ISfQ0+lUSvgkeF7QgghEs+pxjM1peoi0LHJ5/OSowRmLd5zzIzH40GjicvbVyFEFyTUX7XBYMBiaTmdutPpJCUlJdTudDpbtZtMplCyKlhfqq3lOyorKy3c0Lu0XDyRfYgP8bwPGq2a5GTdOd8Tz/F31Hf34YuvK0GlJsOgJTez7XOKosDQvmkcrrZx0uJqcZw0WjXZ2d17XDIzE//n0NNoVCrAK8P3hBBCJJxgUio7WUMkxqE0mqsot9pQGEqN3cveQ0eZcPHwCKxZCBFPEiopVVBQwK5du1q8VlpayvDhgZPT8OHDKSkpadU+depUMjIyyMnJaTHEr7q6mvr6+lZD/s7HbLYQzmzdihK4gQ13uXgi+xAfEmEfPG4vdnvbQ9OCPXPiOf7zae9nsPPASQD6peva3X+/H7INgS7tNdYmaurtJCcFvve4vdTUWNpcLtKC+1Bba5HEVJyRmlJCCCESkcXpweryAtAnuWvD985myupL36YkKi1NfF3tZELE1iyEiBdxWVOqPYWFhdTU1LBhwwbcbje7d+9m69atzJkzB4C5c+eydetWdu/ejdvtZsOGDZjNZgoLCwGYPXs2a9eupby8HKvVypNPPsn48eMZNGhQWHH4/eF/dXa5ePqSfYiPr3jfh/P97cR7/J39Gew+VgfAAKP+nMfAoFWTmRwo2ln5nbpSsdgHEV+CSSm3FMIXQgiRQIK9pDL0GvSayN5i5qUHPlsdrJZ6nEL0RAnVU8pkMrF+/XpWrVrF6tWryczMZNmyZUycOBGASZMmsWLFCh577DEqKyvJz89n3bp1GI1GAJYsWYLH42HBggXYbDYmTJjACy+8ELsdEkL0CKcbnZTVOcDvo1/6uZNSAH1TddTa3VRZXQzJar/+lOh9tOpAUsorPaWEEEIkkFONgYRRv4zzfw4KV166ji8q4GCNC788UROix4n7pNR3Z8YbPXo0mzZtavf9s2bNYtasWW22abVali5dytKlSyMaoxCid9tXEajmqbVVkaQZfN73901LorgKqixNUY5MJBoZvieEECIRnW7uKZXbgYdz4cpJ06EANXYvJxud532/ECKxJNTwPSGEiEf7KxoBSGo82aH3900NFDivsTXhkyd+4izq0PA9+b0QQohIOHjwIAsWLODyyy9nypQpPPHEEzQ1BR4K7d+/n3nz5jF27FiuvfZaNm/e3GLZLVu2UFhYyKWXXsrs2bPZt29fLHYhIQR7SuWln3uym87QqlVkNq92b3kEpvUTQsQVSUoJIUQXfdHcUyrJ0rGklNGgQatW8Pj81Nnd0QxNJBitOnBZlp5SQgjRdT6fj7vvvptp06bx6aef8uabb/LRRx+xbt06GhoauOuuu7j55pspKipi1apVPPXUU3z55ZcA7Nmzh5UrV/L0009TVFTEzJkzWbx4cauZvEXAaUv0ekoBZDev9vPy+qisXwgRO5KUEkKILmh0ujlSYwcgyXKqQ8soikKf1CQAqqwyhE+ccWb4nhQ6F0KIrmpoaKC6uhqfzxeqRaRSqTAYDOzcuROj0ciCBQvQaDRMmjSJGTNmsHHjRgA2b97M9OnTGTduHFqtloULF2Iymdi2bVssdyluhXpKpUW+pxRAH0Pg+ri3vEHqSgnRw0hSSgghuuDASQsAg0wG1J6OPz0NDuGrtspMMuKMUFJKhu8JIUSXmUwmFi5cyDPPPMPo0aO5+uqrGTx4MAsXLqSkpISCgoIW78/Pz6e4uBiA0tLSc7aHQ1ES46srsQZrSuVl6EPriqQsHagVOG1xUe3wtnl8E+lYR/r4x8tXou+DxN+xbURa3Bc6F0KIeBYcundJv3T2hrFcdkqgp5TZJsP3xBma5tn3ZPieEEJ0nc/nQ6/Xs3z5cubOncvx48f5yU9+wurVq7HZbBgMhhbv1+v12O2B3s/naw9HVlZa53eim3UmVqfbS21zOYJRQ7KoPe3AYEgiOVmHXq9FpdN2+f9pKTpG9lU4WOngmI3Q+h2GJDIzU0NxJ9Kxbkuixw+Jvw8Sf/eTpJQQQnTBwdOBnlKjwkxKZSZrAaizS7FzcYZGJTWlhBAiUt5991127NjB9u3bARg+fDhLlixh1apVzJgxA4vF0uL9TqeTlJQUAAwGA06ns1W7yWQKOw6z2UK8X+oVJXAz25lYj9cGEnXJWjVum5PaWisORxN2uwun043K7+7y/x2OJgqMKRyshM+ON5Cpagq9XltrJSPD0un440FXjn+8SPR9kPg7vo1Ik6SUEEJ0kt/v55vKwAfai3PCO0Gn6zVoVIFi5w0OTzTCEwlIakoJIUTknDp1KjTTXpBGo0Gr1VJQUMCuXbtatJWWljJ8+HAgkMAqKSlp1T516tSw4/D7SZib3M7EWmkJlCLom5YEKFHb1wuzdWw5ZOHrGhdT+p55/eyYE+lYtyXR44fE3weJv/tJTSkhhOik8nonVpeXJLXCsOzksJZVFCXUW8psl2LnIiA0fE9qSgkhRJdNmTKF6upqXnrpJbxeL+Xl5axdu5YZM2ZQWFhITU0NGzZswO12s3v3brZu3cqcOXMAmDt3Llu3bmX37t243W42bNiA2WymsLAwxnsVf6qbJ23pkxqdIudBI7J0qBSotHlxeOQ6KURPIT2lhBCik75pHrpX0DcVjTr8HH9mShJV1iZqpa6UaHamp5R82BZCiK7Kz8/n5Zdf5oUXXuDVV18lLS2NmTNnsmTJEpKSkli/fj2rVq1i9erVZGZmsmzZMiZOnAjApEmTWLFiBY899hiVlZXk5+ezbt06jEZjbHcqDgV7SiUrTRw7dpSKihNEo8NvslZFQZ9Uiqus1Dihf+Q3IYSIAUlKCSFEJ33dPHTvojCH7gVlNfeUqu1AT6k77l6Euba+/XVlGln/8qudiiPe1NbWMn/+fJ544gkmTJgAwIoVK3jrrbfQarWh9z300EPMnz8fgC1btrBmzRqqq6sZOnQoy5cvZ+zYsQB4vV6ee+453n77bRwOBxMnTuTxxx+nb99A33+z2czy5cv59NNPUavVzJw5kwcffBCNpvsvkVqpKSWEEBE1efJkJk+e3Gbb6NGj2bRpU7vLzpo1i1mzZkUrtB4j2FPq+MkqNn3upOzQAYx5g8mOwrbGDshoTkrJdVKInkKSUkL0QL0pgRFLwZ5SF+amdmr5rLNm4DOe573m2nqm3/dcu+3vPL+0UzHEm7179/LQQw9RVlbW4vUDBw6wcuVKbrnlllbL7Nmzh5UrV7Ju3TrGjBnDxo0bWbx4Me+99x4Gg4G1a9eya9cu3nrrLdLS0li+fDnLli3jlVdeAeBnP/sZOTk5fPjhh9TU1LB48WI2bNjAokWLumWfzybD94QQQiSKwJDIMo5V1QGQkZZKZu4A6qtPRW2bYwdk8PrnFdQ4z/9eIURikKSUED1Qb0lgxJLX56e4ygrARbmd6yllau4pZXd7SdfoIxZbotqyZQurV6/m/vvv57777gu93tTUxOHDhxk1alSby23evJnp06czbtw4ABYuXMgbb7zBtm3bmDNnDps3b2bp0qXk5eUB8OijjzJlyhTKy8vx+Xx8+umnfPDBBxgMBgYOHMg999zDs88+G5uklAzfE0IIkSDKy8t4acdnlDblBF5wO6K+zUv7pwPQ6Aan2xv17Qkhok8KnQshRCccq7XjcPswaFVcYAqvyHlQklpFapIaALch/Cmme5opU6bw7rvvcuONN7Z4vbi4GI/Hw+rVq5k8eTLTpk3jlVdewddcsKK0tJSCgoIWy+Tn51NcXIzFYuH06dMt2rOzs8nIyODQoUOUlJRgNBrJyckJtQ8bNoyTJ0/S2NgYxb1tWzAp5ZbZ94QQQiQAY588XP7AZxm9KvoPVEzJSQxIC/SrON1cy0oIkdikp5QQQnTC181D90bmpKFuTiR0hjFZi7XJi8eQGanQElafPn3afN1isTB+/Hhuu+02fvnLX/LNN9+wZMkSVCoVixYtwmazYTAYWiyj1+ux2+3YbDYAkpOTW7UH2767bPB7u91Oenp6h+NXwvw1CL3/rOW62lMq3BjiUXAfesK+RJIcl9bkmLStq8dFjqcIh8/vx+4OPEjRdUNSCuDCbB0nLB5ONbpIl47mQiQ8SUoJIUQnBJNSF+Z0rp5UkNGg5US9U5JS53DllVdy5ZVXhr4fM2YMP/rRj9i2bRuLFi3CYDDgdLYsLuF0OjGZTKEEk8PhaNWekpKC3+9v1Rb8PiUlJaw4s7LCG8ZpNAbWr9clkZwcmEZbpQ1clv1+0OmTOpTw1OsDtclMphSyszs3lDQehXs8ews5Lq3JMWmbHBfRHZzNI+gU/CQp3ZOUuqiPjneP2jjd6GKEJKWESHiSlBJCiE74+nSgntTFnawnFWQyBOpKSVKqfX/729+oqanh1ltvDb3W1NSEXh/4JDp8+HBKSkpaLFNaWsrUqVPJyMggJyenxRC/6upq6uvrKSgowOfzUV9fT01NDdnZgXmCjhw5Qm5uLmlp4f1szWYL/jA+j9fXB3pqOV1N2O2BIQjes3pINVqd6DTnH2XvdAZmPaqrs1FTYwkj4vikKIGb6XCPZ08nx6U1OSZt6+pxCS4vREc4PIF/dYqv23rZXZgVeJBjtjXh9knXPiESndSUEkKIMDV5fByuDiSlLszpYlKqudi5W5JS7fL7/Tz11FN88skn+P1+9u3bx29/+1vmz58PwNy5c9m6dSu7d+/G7XazYcMGzGYzhYWFAMyePZu1a9dSXl6O1WrlySefZPz48QwaNIjBgwczbtw4nnzySaxWK+Xl5axZs4a5c+d2Is7wvwILnlmHSjkzms/jDb+uVGdiiMevnrQvclzkmCTicRGio4I9pXRK9xUdz0rWkKIBP2CWWfiESHjSU0oIIcJ0uNKC2+snXa9hgLFr/caNzT2lfLo0rC4PqTo5LX9XYWEhDz/8MI899hiVlZVkZ2dz7733MmvWLAAmTZrEihUrQu35+fmsW7cOo9EIwJIlS/B4PCxYsACbzcaECRN44YUXQutfvXo1v/jFL7juuutQqVTcfPPN3HPPPTHYU1AUBY1Kwe3zywx8Qggh4t7ZPaW6U7YebFaoccq1UohEJ3c/QggRpv0n6oFAPSmli33VdRoVBq0Kh9vH8Vo7F+d1vLB2T3bo0KEW3996660thu9916xZs0JJqu/SarUsXbqUpUuXttmenZ3N6tWrOx9shGnUgaSUV5JSQggh4pzDG7hW6VTd11MKIFuvcNzqp0Z6SgmR8GT4nhBChOnAiQag60P3goJ1pb412yOyPpHY1F2cgU8IIYToLrHsKQVQ5wJXJ4a7CyHihySlhBAiTPubk1IXdbHIeVBwCN/xOsd53il6A40kpYQQQiQIR6imVPcmhlI0kKxV4wNKa5u6ddtCiMiS4XtCdNIddy/CXFvfbntWppH1L7/afQGJbuF0ezlcGZjh7MKc1IisM8MQOBWXS1JKABpV4HmRJKWEEELEu1BPKZUXUEdtOz6fl4qKEwBUVJzA74fcdB3fmu18U+PipqhtWQgRbZKUEqKTzLX1TL/vuXbb33m+7fo1IrEdrrbh9fnJStaSk6aLyDrT9YGeUuX1kpQSZ4bvSU0pIYQQ8czv94d6Sumj3FOq0VzF68etDBiiUHboAMa8weSlG/nWbOfrGldUty2EiC4ZvieEEGH4+nRzL6nctC4XOQ/K0AeeD5TVOfDJXNy9ngzfE0IIkQisbh/BS1WSEv1C5+lZOWTmDiA9sw8Q6CkFcNjchEfqSgmRsCQpJYQQYQgmpSJVTwogTacBvw+Xx0e1Veoi9HaSlBJCCJEIapu7Sek0KtSReU4XFpNBS5IKXF4/xVXW7g9ACBERkpQSQogwhJJSEaonBaBSKaidgeLpUldKnElKyVNfIYQQ8SuYlEpJil4tqXNRFIWs5ln4Pi9viEkMQoiuk6SUEEJ0kMXp4VhtIGl0cV7kekoBaJz1AJRJXaleL1hTyuOVnlJCCCHiV6yTUgDZ+sA1c98JSUoJkagkKSWEEB30dfOsewMzDZiSkyK67lBSqlaSUr2dRi2FzoUQQsQ/cxwkpfo095TaV9Eg100hEpQkpYQQooMOngokpS4daIr4uoNJKZmBT0hNKSGEEIngTE+p2E3onpEEeo2C1eXlUHOJBSFEYpGklBBCdNDB5g87lwzIiPi61cGklNSU6vUkKSWEECIRBJNSyTHsKaVSFEZkBWbhKzpWG7M4hBCdF7u0thBCxJk77l6Euba+zTY/UH35naAxMHaQMeLbDvaUOtHgwOvzh+oKid5Howo8L5KklBBCiHhW6zwzfM8dwzguzNaxv9LJp0drmV6QFcNIhBCdIUkpIYRoZq6tZ/p9z7XZZnV5eP3zk6hVChf3y8DaYI/ottUuK1q1gtvr57TFSf8MQ0TXLxJHMCEptTGEEELEs1BNKZ2a+hjGcVF2oKfUnqO1+P1+QB7sCZFIZPieEEJ0QJW1CYDhfVLQayPfTV3BzwBjIBElQ/h6tzPD93wxjkQIIYRom9vrw9oUuE4lR+FzUTiGmZJIUivUWF2UyWcoIRKOJKWEEKIDqiwuAEblpkVtG4Oak1Jldc6obUPEP6kpJYQQIt7V2gMD9hRAp4ntLWWSWmFUXjoA+040xDQWIUT4JCklhBAdUN3cU+rivOglpQaagkmpyA4NFIlFo25OSnklKSWEECI+1doDn4t0alCU2A+XG9s8Cc3nkpQSIuFIUkoIIc7D5/dTYwt8+Ao+iYuGYFKqvF66nvdmaukpJYQQIs7V2gI9pfSxHbkXEkxKSU8pIRKPJKWEEOI86uxuPD4/isfFBZnRK0B+gUlqSokzw/ek0LkQQoh4ZT6rp1Q8GNMvHbVK4VSji1ONUgZBiEQis+8JIRLKHXcvwlxb3257VqaR9S+/GtFtBouca22VqKLYRX1gc02pkw1OPF4fGrU8N+iNNKrAz116SgkhhIhXtc09yOOlp1RykppR/TPYX17PvhMN5F2kj3VIQogOkqSUECKhmGvrmX7fc+22v/P80ohvM1jkPMlaGfF1n61PahJ6jQqnx0dFg5MLMpOjuj0Rn6TQuRBCiHgXLHQeLz2lACYMyQwlpW68KCfW4QghOighH8MfPHiQBQsWcPnllzNlyhSeeOIJmpoC2fr9+/czb948xo4dy7XXXsvmzZtbLLtlyxYKCwu59NJLmT17Nvv27YvFLgghEsjpYFLKcjKq21EURepKCUlKCSGEiHtnCp3Hvsh50PjBmYDUlRIi0SRcUsrn83H33Xczbdo0Pv30U958800++ugj1q1bR0NDA3fddRc333wzRUVFrFq1iqeeeoovv/wSgD179rBy5UqefvppioqKmDlzJosXL8bhkJs/IUTb7E1eGp0eAJIsp6K+vf4Zge7mJxukHkJvpT6rppTfL4kpIYQQ8cdsj69C5wBXDM5EAY7XOUJJMyFE/Eu4pFRDQwPV1dX4fL7Qh3WVSoXBYGDnzp0YjUYWLFiARqNh0qRJzJgxg40bNwKwefNmpk+fzrhx49BqtSxcuBCTycS2bdtiuUtCiDgWLJaZlaxF5Y3+B5z+GYGeUhWSlOq1NGc9dZZi50IIIeJRsKZUPA3fy0jWMiw7BYAvpLeUEAkj4ZJSJpOJhQsX8swzzzB69GiuvvpqBg8ezMKFCykpKaGgoKDF+/Pz8ykuLgagtLT0nO0dpSjhf3V2uXj6kn1ova5o/K5EYh9iFdv5th2Jn0E0960tpxsDQ/dy03Xn3YeuUhQYYAz0lKpocEZ1v8/eFxFfgsP3QIbwCSGEiE+1cdhTCmDsgAwAPpeklBAJI+EKnft8PvR6PcuXL2fu3LkcP36cn/zkJ6xevRqbzYbB0HK6dr1ej91uBzhve0dlZaV1KvbOLhdPZB/O0GjVJCfrztmenR2d43W+fYhlbOfbNnTtZxDNfWtr3ZXNTwIv6JOKRasOxd7WPpwvNkWh3fZg3BcOMgW2a21qsR/R2O/MzMT/e+6JVIqCSgGfX5JSQggh4o/H56fBEX+FzgEuG5DB5i9OSl0pIRJIwiWl3n33XXbs2MH27dsBGD58OEuWLGHVqlXMmDEDi8XS4v1Op5OUlEA3ToPBgNPpbNVuMpnCisFsthBOmQ9FCdzAhrtcPJF9aM3j9mK3u87ZXlNjabf9fO64axE1tfUtX1RAo1FjTEtj/Suvxiy2czl7241OD8fr7Hi8frJTkhhgCvQC6srPIJr79t11O9xezNZAUsqUpMbj9mI2W9r9PTpfbH4/7bYH405TAis9brZRXd2I0tydKZL7HfxbqK21SGIqTqlVCj6vX5JSQggh4k69vQk/oAC6OBp34/V6yfYHklEl1TbqbS6MKed+UCqEiL2IJ6X27NnDhAkTIr3akFOnToVm2gvSaDRotVoKCgrYtWtXi7bS0lKGDx8OBBJYJSUlrdqnTp0aVgx+P526oe7scvFE9iH8bXVWTW090+97rtXryck6Nq+6t8v7EM1j4Pf72VvewL6KxhavZ6ckoTFkRf1nEKl1B+s6ZSZrSU5St1h3NPbB74fcND0K4HD7qLW7yUxOCmv5cLcXKdE+9/c2GpWC2+uXmlJCiB5Prh+JJ1jkPF2niqtSAMePH2fTP/eRqsnB6oF/fHmE2ZMuinVYQojziHhu+6c//SnXX389v/71rzl5MvLTp0+ZMoXq6mpeeuklvF4v5eXlrF27lhkzZlBYWEhNTQ0bNmzA7Xaze/dutm7dypw5cwCYO3cuW7duZffu3bjdbjZs2IDZbKawsDDicQoRSY1ON8WVVnYdreXNvSeoHLuQ63/9MVN+9RFTfvURN768m7ve2M8v3zvCrqO1+IndJwQ/8OG3taGEVF66jvzsZJLUCjW2JipHzGHP8bqYxReOivpAUmpA84x43SFJo6Jvmq7F9hNBJM/9tbW1FBYWsmfPntBrO3bsYNasWVx22WVce+21vPjii/h8vlD7DTfcwCWXXMLYsWNDX0eOHAECT06feeYZJk+ezNixY1m8eDFVVVWhZc1mM/fccw+XX345EyZMYNWqVXg8ni7tQ1dpVIHLs/SUEkL0dNG+dxCR5fV6+ebbMgBS1D58Mb5O+XxeKipOcOzYUcrKysjIzqWfKTBKptjcfg9zIUT8iHhPqY8++oh//OMf/OlPf+Kll17iiiuuYPbs2Xz/+98nKanjT/zbk5+fz8svv8wLL7zAq6++SlpaGjNnzmTJkiUkJSWxfv16Vq1axerVq8nMzGTZsmVMnDgRgEmTJrFixQoee+wxKisryc/PZ926dRiNxi7HJUSkeXTpFJXVc7zWQV3zuP0QXToNzjM3zdXWJqqtTew70cDrn1eguux2vjzZyMW5aaHp5buLo8+FnKqyoQBXDctkRN9UAOxNXt4vNVPRAD/741f8avYorhgU3tDZ7uT3+zkRTEoZDed5d2T1z9BTaXFR0eBkdL/0bt12Z0Xq3L93714eeughysrKQq999dVXPPDAA7zwwgtcffXVHD16lDvvvJPk5GTuuOMOrFYrR48e5e9//zv9+/dvtc61a9eya9cu3nrrLdLS0li+fDnLli3jlVdeAeBnP/sZOTk5fPjhh9TU1LB48WI2bNjAokWLun5gOilY7FySUkKIni7a9w4issrLy9jy2REgA6vVitUA2TGMp9FcxevHrQwYolB57GsMmQPIyTBxuNrGIXP0Z00WQnRdxJNSWq2WadOmMW3aNGpra9m+fTvr16/nF7/4BdOnT2f+/PmMHDmyS9uYPHkykydPbrNt9OjRbNq0qd1lZ82axaxZs7q0fSGiaX9FAxv3VlB16b9R1dzbSCEw+1uflCRyTcl8/of/4dfPPYNBq8bvhzp7E8frHOw70cA/S83Ukcqe4/UUV1q5riCbrJTu+VBX0eCgYfD3ABg3MCOUkAJITlIzbWQfXt/xTxzGodz/9te8euul5PdJ6ZbYwlXncGN3e1GrFHLSu7ceQf8MPZ+faKCiwdGt2+2KSJz7t2zZwurVq7n//vu57777Qq9XVFRw6623cs011wAwbNgwCgsLKSoq4o477uCrr77CaDS2mZAC2Lx5M0uXLiUvLw+ARx99lClTplBeXo7P5+PTTz/lgw8+wGAwMHDgQO655x6effZZSUoJIUQ36I57BxFZqmQjuPzNpQ28sQ6H9KwcMnMH4LTU0OSHnOYe56V1TXi8PjTqOCp8JYRoJWqFzs1mM3/5y1945513KC0t5eqrr0an07Fw4UIWLlzIj3/842htWoiEVNHg4Ff/PMp7JTWBFxQV/TP0FPRNYaDRgE4TuKAmJ+v44+fvc9+Pf9TmevSKGqfPiGnqbTQ4Pbx9oJLvDc9iaFZy6D2HDxcza97cdmPJyjSy/uX2C6m359cfHsOv1pKXruOS/q17+KhVCtnf7iR75gPsO9HIf/zxAOt/ODb04SGelNcFeknlpelCCYLu0t8YGC6YSMP3grpy7p8yZQozZsxAo9G0SEoFb1aCnE4n77//PjNmzADgwIEDGAwG/vVf/5WSkhL69+/PvffeyzXXXIPFYuH06dMUFBSEls/OziYjI4NDhw4BYDQaycnJCbUPGzaMkydP0tjYSHp6bHqqBXs4Sk0pIURvIfcOicPlDVybkhTfed4ZG0aDhiQVNHn9HKqycnFeYvQ6F6K3inhS6p133uHtt9/m448/ZujQocyePZuXXnqJzMxMAK6++mqWLFkiFxYhmnl8fv53dxkbPi2jyetHrcBNF+fy8cbnuPHHj7SzDG0WQQ969u6bmHvvA7xfaqa83sk/DtfgH57FsOyUDi3/zvNLw96Pg6caefdQNfj9TBpsQtVO5UvF7+W5WRfz769/wbFaBz/741esu/USUnXxNRno0Vo7ABdkdu/QPYD+GYFtBgutJ4JInPv79Olz3u1YrVb+4z/+A71ez8KFCwFQFIXRo0fzn//5n/Tr14/t27dz77338tprr5GbmwtAcnJyi/Xo9XpsNhsQmJn1bMHv7XZ7WEmpcIu9ht7fxnIadXNPKW94H/jjqeBsZwX3oSfsSyTJcWlNjknbunpcuvt4yr1D4nE1d44KJKXi7w9QURQydXDaAftPNkpSSog4F/G7wMcff5zp06ezadMmRo0a1ap9yJAhoRsJIXq7KouLZe98EyoKfsUgI/95zTDys1OY9Wptl9at16r5/sg+fHiklsPVNt4vNZOSpCE3SkPRXvr4OACGmm/ISrngnO/NMGj51ezR3PH6F5TW2Hjgz1/zq9mj0Hawe3WDw80Rs52TDU5sTV7UikJmipbhfVKIRL8Sq8tDtTVQh2BwZvJ53h15/ZsLqydSUqo7zv3ffvstP/3pT8nKyuK3v/0tqamB4aHfHWY3c+ZM/vKXv7Bjx47QTYzD0XIopNPpJCUlBb/f36ot+H1KSnhDS7Oy0sJ6v9EYWL9el0Rycsu/S502MNujSqNu1fZden1geK7JlEJ2dngxxLNwj2dvIcelNTkmbUuU4yL3DonH2SIppY5pLO3J0iucdvjZX9HID8fFOhohxLlEpdB5eXl5aCjEF198QVpaGsOGDQMgNzeXn/70p5HerBAJ59PjdSx7p5g6h5uUJDUPXz+c74/sgxLBR5QqReGqYZm4fX6Omu387XA1t4zOjdj6g0prbOw+VodKgbQTnwL/ct5l+mXoeeGWi7nrjf0UldXzwJ+/5qmbLkSvbf/DzbFaO3XDvs/mL061Sj7VOdwcqbGjvXgex2vtXNCFZFKwl1Rumq65XkL3Cg7fq7K4aPL4SNLEfy2EaJ/7//nPf/Kf//mf/OAHP+DnP/85Gs2Zy9dvfvMbLrroIiZNmhR6rampCZ1OR0ZGBjk5OZSWloaG8FVXV1NfX09BQQE+n4/6+npqamrIzg6Uaj1y5Ai5ubmkpYV3Q2c2W/CHkRWtrw/01HK6mrDbW84QpDSvyO50t2r7LqczkECtq7NRU2MJI+L4pCiBm+lwj2dPJ8elNTkmbevqcQku313k3iHxuJo78cZ1Uqr5ec7+k414PB5OnCgPtQ0cOAi1Oj7jFqI3ividzt///nduvvlmjh07BsC+ffuYN28e//znPyO9KSES1vZvqvjpH7+izuFmeJ8UfvuvlzHtwr4RTUgFqRSFq4dlkpmsxeH28c8jXeuB1ZZNeysA+F5+NhpXY4eXG5mTxn/PvAidRsVH39Zy9x++5JjZ3up9R2psLHvnG+Zv+AxHn5H4CfQmumpoJjdd3JdpI/twcW4qWpWCOy2Pf/3d53xwxNzp/fm2JhDDkKzu7yUFYDJoMWhV+IFTjYnRWyqa5/4vvviCJUuW8PDDD/Pggw+2SEgBnDp1iscff5zy8nI8Hg9vvvkm+/bt45ZbbgFg9uzZrF27lvLycqxWK08++STjx49n0KBBDB48mHHjxvHkk09itVopLy9nzZo1zJ3bfs219vj94X8FFmy9LnUnC513JoZ4/OpJ+yLHRY5JIh6X7iT3DomnZU+p+JSpA7UCZlsTew8d5aUdn7Hp8wpe2vEZ5eVl51+BEKLbRLyn1IsvvsiaNWtC3W9vv/128vPzefbZZ7n66qsjvTkhEs5fDp7m8e2HAfj+iD4sn1Zwzt5BkaBVq7iuIJs/fnmaigYnSSOmRmzdZlsTf/2mEoAfjuvPf/0uvOUnDs7kf+aM5ud/OsjXpy38f7/dy5ShmVyYk4bD7WVveQMHTp1JdOlrv+Vfrp5Mn9SWMwoOMhkY0y+dt97bgzNjIA+8fZD/+pcR3HhRznc3eU61tiaqrE0o0KI4fHdSFIX+GQZKa2xUNDi71Ouru0Tz3P/SSy/h8XhYtWoVq1atCr0+btw4Xn31VR544AFUKhU//OEPsVgs5Ofn88orr3DBBRcAsGTJEjweDwsWLMBmszFhwgReeOGF0HpWr17NL37xC6677jpUKhU333wz99xzT5di7iqNFDoXQvQScu+QWLx+/3dqSsUntUphqElLSW0Th8wujH3yyMwdEOuwhBBtiHhS6tSpU1x11VUtXpsyZUqLmZSE6K3+frialTsCCam5l+Rx/3X57RYEjzSjQcv4QUY+OVaHYdws7E3eiAxNe2v/SZq8fkblpTGmX+cKSY4dkMHv/+0ynvpbCR8freP9UjPvl57p6aRW4Or8bO6YMIgHfrKaPtO/1+Z6UnUasorf5rI7VvLOwUoe334IjUrh+yP7djiWbyqtAAzONMRk6F5Q/wx9KCmVCCJ97g/OjAeBpNS5JCUl8cgjj/DII21PDKDValm6dClLl7ZdwD87O5vVq1d3Ks5o0agCHZnD7SklhBCJRu4dEovVdSYRpY3jpBTAiKwkSmqbKK5xIaXOhYhfEU9K9e/fnw8//LDFxeWTTz6hX79+kd6UEAnl4KlGVvz1ED4/zBqdywPX5UdluN65XJybSmm1jWqgqKyeq/OzurQ+p9vLm1+cAuCH4wZ0aX9y0/X8avZoSqtt/KOkmipLE2qVwoi+KVw1LIs+qR0r0K74fayYVoBGpfD2gdP8118PodeqmTrs/PvqU2kpqQnU+bkwN7YFYoN1pSrqEyMpJef+yNJ0cvieEEIkGrl+JJb65m5Seo0KVfxNvNfCyCwdfymxcsjcxBVd+8grhIiiiCel7rrrLpYsWcL3v/99+vfvz8mTJ3n33Xd55plnIr0pIRJGja2Jn7/9NS6PjylDM3n4+uHdnpCCwLCwSUNM/PmrSg5X27goN7XDyZ62bP+mijqHm9w0HdcMz45IjPl9UsjvE96sZ9+lKAoPXz8cp9vLjuJqHtr6Nc/fPIoJg03nXM6Wdylur58MvYZ+UZqlsKPOzMDnOM8744Oc+yNLo25OSnnj+ym0EEJ0lVw/EkuDM3BdMkS59EQkjGiudl7e6OYSY5xn0IToxSJe6HzGjBmsW7cOrVbLwYMH0ev1rF+/nmnTpkV6U0LEtcOHi5k1by4z583l5qf/gNnWhMZupvSNJ5k9fx533L3o/CuJgpw0HU2lewD4+Ggd/k5WNPX7/fz+80CB8/mX9Q/17IgXapXCYzeM5Hv5Wbi9fn7+9kH2nWho9/1mWxPWfoE5g8cNzIhJ0vBs/TMMAAkzfE/O/ZGllppSQoheItrXj/r6eh544AEmTJjAFVdcwT333ENVVRUA+/fvZ968eYwdO5Zrr72WzZs3t1h2y5YtFBYWcumllzJ79mz27dsXkZgSWUNzTymDNv5nBjbq1Qww6vEDteeeyFYIEUMR7ykFMGHCBCZMmBCNVQuRMDw+mH7fc3x5spFTx+tRqxRunjQK03VjAXjn+bbr23QHx94/kVwwkSprE6U1doZ3omfSnuN1HDXbSdaquXl0boeXK/7ma2aeY2azrEwj619+Nex4goLJwCC/okY3Yjou42B+/Psi1t82novzWlYW8Pv9/PK9I/jVSfRJSYpZgfOzBXtKnWxwdjpx2N3k3B85MnxPCNGbRPP6ce+995KRkcG7776LSqXi4YcfZvny5fz3f/83d911Fz/96U+ZP38+RUVFLFmyhBEjRjBmzBj27NnDypUrWbduHWPGjGHjxo0sXryY9957D4PBEJVYE0H92T2lEiDRc0m/dE7UOzG75HoqRLyKeFKqsrKStWvXcuzYMXy+lsMOfvvb30Z6c0LEtQaHm8/KA71zJg02YUrWxjiiAL+jgbED0ikqa6CorJ4hmQY06vCeeL3e3EtqxqgcUnUdP5W4vX6m3/dcu+1dTdYFk4EtXvP62F5czalG+Okfv2LljSOZPCQTCCSkXt1dxs5D1eD3MWmIKea9pADympNStiYvDQ5PjKM5Pzn3R5YkpYQQvUU0rx9fffUV+/fv5+OPPyY1NRWAlStXUl1dzc6dOzEajSxYsACASZMmMWPGDDZu3MiYMWPYvHkz06dPZ9y4QC/qhQsX8sYbb7Bt2zbmzJnTpbgSWainVFJiJKXG9M/gna+rMCdGx3MheqWIJ6UefvhhampquOaaa9Bq4+MGXIhY+ejbWrw+P/0ydIzs27U6SZE2Ki+dbyqtWF1evjxl4bIBGR1e9pjZzsdH61CA+WP7Ry/ICNGoVXx/ZB9+//ciGsnjP/74FVOGZjI6L5295fV8WlYPQMbR98mZvLDd9Rw+XMzMuXPRaNV43N7W7UdKmB6hmHUaFX1Tk6iyNiVEXSk590eWRobvCSF6iWheP7788kvy8/P5wx/+wOuvv47D4eCqq67iwQcfpKSkhIKCghbvz8/P58033wSgtLS0VfIpPz+f4uLiiMaYaOoTaPgeBHpKQWD4ni9Bep4L0dtEPCl14MABduzYQWZmZqRXLURC0V4wlpONLtSKwlVDs+Ki983ZNCqF8YOM/KPEzP6KRkb2TSU5qWNFKzftC/SSumpYFgNNidGFPUmtIuubLXzvx6vY9HkFH31by0ff1ja3Kfz4ysG8ufurc64j2AsrOVmH3d768eDXd98U0Zj7Z+ibk1Lx/3hPzv2RpVEFPuxLTykhRE8XzetHQ0MDhw4dYtSoUWzZsgWn08kDDzzAgw8+SHZ2dqtheHq9HrvdDoDNZjtnezji7CNgm4Ixni/WeC103lb8igJDs5NJ0SrY3H7MNjfq5tfj7WfS0eMfzxJ9HyT+jm8j0iKelEpLSyMpKSnSqxUioXi8PgxXzAbgkv5ppOujUr6ty4ZmJfPVKQtV1iY+K69n6rDzz5fb4HDzl4OVAPxwXPz3kjqbyufh59cMY/aYPHYWV3HK4qJvahI3XZzLIJOBN2Md4Hf0MxrYV9GYEEkpOfdHllqG7wkheoloXj+C63300UfR6XSkpqbys5/9jB/84AfMnj0bp7Pl9dXpdJKSEujZbjAY2mw3mc49k29bsrLSOrkH3e98sVo9geuSMVWPt0GLSqclOVmHXh/b/xsMgZn2dM2vOwxJZGam0rdPOhfnJvNpuY1ap4dBza9nZ8fnzySRflfak+j7IPF3v4jfKd9zzz08/PDD3HnnnWRnt5wivl+/fpHenBBx6eBpK6rULFKS1KFuw/FIURQmDjbx568qOVRl4+LcNLJSzv3BcOPeE7g8Pob3SQlryF88GZKVzN1XDo51GOcVLHZeUR//SSk590eWRt2clPJKUkoI0bNF8/qRn5+Pz+fD7Xaj0wWSFsG6VRdeeCG///3vW7y/tLSU4cOHAzB8+HBKSkpatU+dOjXsOMxmC/E+ckxRAjezbcXq9XopLy8DoLox0FNc5fNic7pR+d3Y7S6cMf6/wxGIy+UKvG6zOfjyy2Jqa630xQbA8RobfYxN1NZaSU+3dN/B7YBzHf9Ekej7IPF3fBuRFvGk1LJlywB49913gcBNr9/vR1EUvvnmm0hvToi40+Txsf9kIwCXD8wIu4B4d8tJ0zEkK5mjZjsffVvLjFE57b63xuri9b2BoXt3Tbog7oYk9jShpFQC1JSSc39kSU0pIURvEc3rx+TJkxk4cCCPPPIITz31FC6Xi+eff57rr7+em266idWrV7NhwwYWLFjA3r172bp1K2vWrAFg7ty5LFmyhBtuuIFx48axceNGzGYzhYWFYcfh95MwN7ltxVpWVsZLOz4jIzuXxiY/KAoGrZp4SusEYw7+22iu4vXjVgYMUTjy7RHQDuNUoxN/Rnz/POI5to5K9H2Q+LtfxJNSf//73yO9SiESylenLbg8PrwNp8nvMzDW4XTIxAuMnKh3UGVt4uvT1nbf99LHx3F6fIzKS+Pq/PMP9RNdcyYp5STe039y7o+sM7Pv+c7zTiGESGzRvH5otVp+97vf8fTTTzNt2jRcLhfXXnstjz76KOnp6axfv55Vq1axevVqMjMzWbZsGRMnTgQCs/GtWLGCxx57jMrKSvLz81m3bh1GozFq8cYzY588krPy8B8LPJyMt5pSbUnPyiEzdwC5Vac4bPfT5IX6pnj/RCVE7xPxpFT//oEaM19//TUnTpzge9/7HhaLhawsuYEVPZ/b6+OrU4HnRs4v3kH1L+NjHFHHpOo0jB9kZNfROj49XocppW+r9+w6WsvbB04DcO/UIdJLqhv0NwYKrFZaXOQo8d3jTs79kRWsKeX1B2YLUsnfmxCih4r29SMnJ4fnn3++zbbRo0ezadOmdpedNWsWs2bNikgcPYHDHXhQolH8oetUIlApYNJ4qXFrqI7/ighC9DoRv8sxm83ceuut/OAHP+DBBx+kvLyc66+/nn379kV6U0LEnZJqGy6PjzSdBvexz2MdTlguzEllkMmA1w+1BTdxvPbM7DJHzXZ+sf0QALde1p/LBhhjFGXvkpWsRadR4fODNym+ixbKuT+yNGd92JchfEKInkyuH4nD4fYCkKQk3nXJpA3EXu1IvNiF6OkinpR68sknKSgooKioCI1Gw7Bhw7jrrrv47//+70hvSoi44vP7OXAy0EtqdF5awg3mVRSFa/KzMBo0+HSp/GjjPl795Dgb9pSxaNMX1Nrd5GensGTK4FiH2msoikK/5iF8Hn18F5WXc39knZ2Ukhn4hBA9mVw/EkcoKaVKvOtSZnNSqsYpD3uEiDcRT0rt3r2bhx9+GIPBEBres2jRIkpLSyO9KSHiyvFaB40uDzq1ioK+KbEOp1OSNCqmX5RDUmMFtiYvL398nF9/dIxGp4fReWmsnTcGfQLUEOhJgnWlvLr4ncUR5NwfaYqi0DwBn3x4FkL0aHL9SBzBpJROlXj1DtPUPpLUCh4/fFvfFOtwhBBniXhNKa1Wi9PpxGAw4G/uKWKz2UhJScybdCE66kBzLakLc1PRxvmMe+eSnKQm65st3L7sV3xyrA6318dVQzO58aIcSUjFQP8E6Skl5/7I06hUeL0+6SklhOjR5PqROII1pRKxp5SiQF66nuN1Dr6qdhH+HIpCiGiJ+J3ztddey/3338+xY8dQFAWz2czjjz/O1VdfHelNCRE3Ki0uKi0uVApcnBvftX86QvH7uGVMHv898yKev2UUsy/pJwmpGOmXID2l5NwfeerQDHyJ9+FfCCE6Sq4ficPelLg1peDMZ6qDVa4YRyKEOFvEk1I///nPSU5O5l/+5V9obGxkypQpOBwOli5dGulNCRE3Djb3ksrPTiE5SZI3InL6pQeTUvGd7JRzf+RpmsfvebyJ+eFfCCE6Qq4fiSORa0oB9EvXAVBsduH2Jt4QRCF6qogP30tJSWH16tXU1tZy4sQJcnNz6du39fTyQvQUTreXo80z1V3UA3pJifiSlyA9peTcH3nBYudSU0oI0ZPJ9SNxJPLwPQBTspYkFbi8fr46ZWHsgPgujSBEbxHxpFRRUVGL748fP87x48cBuOKKKyK9OSFirrTGjs8PWclaslO0sQ5H9DDBnlI+bTJury9u65XJuT/yNKHhe/I0VwjRc8n1I3GECp0n6PA9RVHoa4ATNth9rFaSUkLEiYgnpW677bZWr6lUKvLy8vj73/8e6c0JEVN+v5/iSisAI3JSQ7PGCBEpaXoNaToNFpcHi8tDZnJSrENqk5z7I09qSgkhegO5fiQGv9+f8D2lAHINCidsfnYdrWPxlCGxDkcIQRSSUsXFxS2+r62t5de//jX9+/eP9KaEiLlqaxN1DjdqRSE/O7xZYg4fLmbWvLnttx8pYXpXA0xAclxay0vXYan2YHF5yUyOdTRtk3N/5GkkKSWE6AXk+pEY3D4IXo4SOSmV0/w56lCVlWqriz6putgGJISIfFLquzIzM7n//vuZNm0ad9xxR7Q3J0S3OlQV6CU1JMuAThPesCqPD6bf91y77V/ffVOXYktUclxa65eh53C1DavTE+tQOkzO/V0nSSkhRG8k14/45AqM3EOND3UCDwzQqxWGmbQcqWvik6N1zBydG+uQhOj1uqU4SUNDAy6XTL0pehafSsuRmkCB85E5qTGORvRkwSmMLa7ESUqBnPu7Si2FzoUQvZRcP+KPszkplaQkfp3Dy3IDn6s+PlYb40iEEBCFnlIPP/xwi+/dbjd79+5l8uTJkd6UEDHlzMrH7fOTrteQmyZdf0X0BIudx3NSSs79kadpLmrv8UpSSgjRc8n1IzG4mnNRPSEpNTZXz+ZvGtl9rA6P1xe63gohYiPqw/d0Oh233XYb8+fPj/amhOhW9uwRABT0SZEC5yKq8pp7SlnjOCn1XXLu7zoZvieE6I3k+hGfelJPqWGmJIwGLfUON/tPNjJuoDHWIQnRq0U8KfXUU09FepVCxJ1qq4um9IEADAuzwLkQ4Qr1lAp+IoxDcu6PvDNJqcS/ARBCiPbI9SMxuJp77faEpJRKUZg02MRfv6ni46N1kpQSIsYinpR68cUXO/S+n/zkJ5HetBDd5t1D1aAo5KQlka6PeodD0cvlZQSGh7q8Ppo8PpLCLKrfHeTcH3lq6SklhOgF5PqRGEI9pVSJn5QCuHJIZnNSqpZ7pw5p0eb1eikvLwt9P3DgINRqdXeHKESvEfG76ZKSEnbu3MnIkSMZMmQIp0+f5vPPP+eiiy4iJSXQo0SGOolEt/2bKkB6SYnukZKkQeV24NMasLg8ZGmSYh1SK5E899fW1jJ//nyeeOIJJkyYAMD+/ft54oknKC0txWQysXjxYubNmxdaZsuWLaxZs4bq6mqGDh3K8uXLGTt2LBD4cPncc8/x9ttv43A4mDhxIo8//jh9+/YFwGw2s3z5cj799FPUajUzZ87kwQcfRKOJbcJZI4XOhRC9gNw7JAZXi+F78fdwLFwTBptQKVBaY+NUo5O85l7pAOXlZby04zOMffKorz7Fj6fB4MFDzrE2IURXRPwTt0ql4uGHH+bf/u3fQq+9/fbbvPfee7zwwguR3pwQ3e5YrZ1vKq3g9zE0KznW4YheQu1qPJOUSom/pFSkzv179+7loYceoqzszBPKhoYG7rrrLn76058yf/58ioqKWLJkCSNGjGDMmDHs2bOHlStXsm7dOsaMGcPGjRtZvHgx7733HgaDgbVr17Jr1y7eeust0tLSWL58OcuWLeOVV14B4Gc/+xk5OTl8+OGH1NTUsHjxYjZs2MCiRYsidnw6Q2pKCSF6A7l3SAw9LSllNGi5pH8G+0408H6pmf/vsv4t2/vkkZk7IEbRCdG7RPyM8s9//pMFCxa0eO2mm27ik08+ifSmhIiJHc29pHT1ZRi00pVXdA+1qxGI32LnkTj3b9myhaVLl3Lfffe1eH3nzp0YjUYWLFiARqNh0qRJzJgxg40bNwKwefNmpk+fzrhx49BqtSxcuBCTycS2bdtC7XfeeSd5eXmkpqby6KOP8sEHH1BeXs7x48f59NNPuf/++zEYDAwcOJB77rkntO5YkqSUEKI3kHuHxNBTCp37fF4qKk5w7NhRLskMXGffK6mJcVRC9G4RT0plZmZSVFTU4rUPP/yQ3NzciG2jvr6eBx54gAkTJnDFFVdwzz33UFUVSBTs37+fefPmMXbsWK699lo2b97cYtktW7ZQWFjIpZdeyuzZs9m3b1/E4hI9n9/vZ0dx4HfNUHMoxtGI3iSYlIrXYueROPdPmTKFd999lxtvvLHF6yUlJRQUFLR4LT8/n+LiYgBKS0vbbbdYLJw+fbpFe3Z2NhkZGRw6dIiSkhKMRiM5OTmh9mHDhnHy5EkaGxs7HDuAooT/FViw7fUFp6j2eDuelOpMDPH41ZP2RY6LHJNEPC7dqTvuHUTX+P3+7/SUSlyN5ipe313Kps8rKCktAeCLEw2YbU0xjkyI3iviw/fuvvtu7rrrLqZNm0a/fv0oLy/nvffe43/+538ito17772XjIwM3n333VCX3+XLl/Pf//3fXRriIcT5fH3aQnm9E71Ghb7u21iHI3oRTTApFac9pSJx7u/Tp0+br9tstlbnaL1ej91uP2+7zWYDIDk5uVV7sO27ywa/t9vtpKendzj+rKy0Dr8XwGgM1ErR65JITta1ak+2uwHwK7TZHqTXB4ZzmkwpZGeHF0M8C/d49hZyXFqTY9K2RDku3XHvILrG6fETfD6S6EkpgPSsnNDQvGH1ao7UufngiJlbxuTFODIheqeIJ6XmzZtH//79+fOf/8zXX3/NwIED2bRpEyNGjIjI+r/66iv279/Pxx9/TGpqKgArV66kurq6xRAPoMUQjzFjxrQY4gGwcOFC3njjDbZt28acOXMiEp/o2bYXVwNwdX4WBz5yxzga0Zuo4zwpFc1zv8FgwGKxtHjN6XSGCuAaDAacTmerdpPJFEowORyONpf3+/2t2oLfB9ffUWazBX8YI+3q6wNJMaerCbvd1ard6w48lm5y+9psD3I6A0936+ps1NRY2n1folCUwM10uMezp5Pj0pock7Z19bgEl+8u0b53EF1X39xNSqNS0Cg9649tQr9kjtQ18F5JjSSlhIiRqEwtNHnyZCZPnkxtbS2ZmZkRXfeXX35Jfn4+f/jDH3j99ddxOBxcddVVPPjgg+0O8XjzzTeBwBCP7yafzh4CIsS5eHx+djYP3Zs2si8HYhyPCN/hw8XMmje3/fYjJUzvxnjCoXYFkg0Wlwe/3088zkQUrXN/QUEBu3btavFaaWkpw4cPB2D48OGUlJS0ap86dSoZGRnk5OS0GOJXXV1NfX09BQUF+Hw+6uvrqampITs7G4AjR46Qm5tLWlp4N2V+P2HdAIbe284ynakp1ZNuzMM9nr2FHJfW5Ji0LZGOSzTvHUTXNTgDvaMM2sQvcP5d4/sb+P3BBorK6rG6PKTqYjvzrhC9UcTPLG63m+eff55x48Zx7bXXUl5ezpw5c0I1n7qqoaGBQ4cOcezYMbZs2cKf/vQnKisrefDBB7s0xCMcvbXmQW/fh73l9dTa3WToNUwaYgr/lzcCujMP0ZVjfK51nv1vd/P4YPp9z7X75XGfv15TNPfhXMc12FPK7fXT1E6Noc78LURKNM/9hYWF1NTUsGHDBtxuN7t372br1q2hhwxz585l69at7N69G7fbzYYNGzCbzRQWFgIwe/Zs1q5dS3l5OVarlSeffJLx48czaNAgBg8ezLhx43jyySexWq2Ul5ezZs0a5s5tP3nZXc4kpRJ/qIQQQrQn2vcOousamntK9cQJfvqnaRmSlYzH5+ejb2tjHY4QvVLEU8Evvvgiu3fv5le/+hX33XcfWVlZ5ObmsmrVKn71q191ef1JSYHaGY8++ig6nY7U1FR+9rOf8YMf/IDZs2e3OYSjI0M8wtHZLs2JMrb/XHrzPvzzvUANqZsu6UdeTgYarfqcdV4U5dx1YLrSHs11A2i06k7XpjnfcQEwGBL3uAVjb2sfurL+8x3zJLUfg1aNw+3FrSiYvrOezvzMMjMj9/cczXO/yWRi/fr1rFq1itWrV5OZmcmyZcuYOHEiEBiqvWLFCh577DEqKyvJz89n3bp1GI1GAJYsWYLH42HBggXYbDYmTJjQYprx1atX84tf/ILrrrsOlUrFzTffzD333NOlmCNBZt8TQvQG0b53EF1XH+oppYYeWL3imuHZHDWX8V5JDf9yYd9YhyNErxPxpNTWrVt5/fXXycnJQVEUkpOTeeqpp0JPrLsqPz8fn8+H2+1GpwvclPmanyJfeOGF/P73v2/x/o4O8QhHuGP0FSXxax709n1we31s/+o0AFMHG6mpseBxe89Z58XvJ+LtwaRINNZ9No/be87aNHfctYia2vo220qOlDCtnXUHe+Y4HK52fwbR3LdIrNvhcGEw6Nrch66s/3zH3OP2kqoLJKWq6x2kqpVW7R2tJxT8W6ittUQsMRXpc/+hQy1ntxw9ejSbNm1q9/2zZs1i1qxZbbZptVqWLl3K0qVL22zPzs5m9erVnYozmkJJKa8/bodsCiFEV0X73kF0XYueUj0wKXVtfjbrd5ex62gttqb4rN0pRE8W8aSU3W4PjQX3N9+x6fV6VKrIjBScPHkyAwcO5JFHHuGpp57C5XLx/PPPc/3113PTTTexevVqNmzYwIIFC9i7dy9bt25lzZo1QGCIx5IlS7jhhhsYN24cGzdubDHEo6M6O0Y/kcb2t6e37sOeY/VYXB6yUpK4pF9GzI5Bd273XNuqqa1n+n3Ptdn27N03nXedifw7FM19ON8603Qaqq1N7RY7DzemSO5DtM/9vZFGHTh2fsDnB7XkpIQQPZBcP+JfvTOYlOpZPxOfz0tFxQn69fOTl6rhlNXDP0vNXJR8/mWFEJET8TPLpZdeyosvvggQeqr7u9/9jtGjR0dk/Vqtlt/97neo1WqmTZvGtGnTyM3N5cknnwwN8di+fTsTJkxg2bJl7Q7xGD9+PO+8806LIR5CtOdvhwOz7l07PBu1Su4MRWykNRffjMcZ+KJ97u+NNGeda2QInxCip5LrR/xrcDUP30vqWTWlGs1VvL67lDf2nUTfVA/AX7+RWmZCdLeI95R65JFHWLhwIVu2bMFms3HjjTdis9n43//934htIycnh+eff77Ntq4M8RCiLW6vj3+WmgG4riA7xtGI3ixNH/gwaI3DpFR3nPt7G7VKQVECPdo8Xh86Tc96Qi2EECDXj0TQkwudp2flkJk7gAJ3OUdP+Pn0eB11FxvOv6AQImIinpTKzs7mnXfe4f3336eiooLc3Fy+973vkZqaGulNCdEtPj1+Zujepf0zYh2O6MWC0xRbnOefJbC7ybk/OjQqBbfXLz2lhBA9llw/4t+ZQucqHDGOJVpStQrDM7WU1DbxcXl4M7MLIbom4kmpm266iT//+c/ccMMNkV61EDEhQ/dEvDh7+F68Fb6Wc390SFJKCNHTyfUj/p3dU6qnJqUArhqYTEltEx+W27nUGOtohOg9ojIWwOHoyacr0ZvI0D0RT4I9pTw+Py6PL8bRtCbn/sjTNhf6laSUEKInk+tH/HK6vTg9gWtQcg8cvne2yQOSUStwpK4Ji1uuu0J0l4j3lJowYQLz5s1j6tSp9O3bt0XbT37yk0hvToiokqF7Ip5oVArJWjV2txeLy4M+jj4cyrk/OjTNU+55vPLhWAjRM8n1I76Z7U0AqBTQ9vBpYDP0asZfYOKTY3WUW/1cEOuAhOglIp6UOnHiBAMHDuTo0aMcPXo09Ho8DTMRoqNk6J6IN6m6YFLKS584Krch5/7oCM7A5/bFX884IYSIBLl+xLdamxsAvap3/ExuuKgvnxyr47gVrvTLAyEhukPEklL//u//zm9+8xt+97vfAeB0OtHr9ZFavRDdTobuiXiUptdQZW3C4oyPGfjk3B9dwaSUDN8TQvQ0cv1IDLXNPaV08dM5O6quyc/GoDmM3ePndKMLXawDEqIXiFhNqX379rX4furUqZFatRAx8WmZDN0T8efsYufxQM790SXD94QQPZVcPxKD2R7oKdVbklJ6rZrJA5IBOFRti3E0QvQOUSl0DuCX7o4iwf3tkAzdE/EnmJSyxklS6rvk3B9ZGil0LoToJeT6EZ9qbYGeUvpekpQCuGZwCgBHzXbccv0VIuqilpTqDWOORc8lQ/dEvIq3nlLfJef+yDozfE9qSgkheja5fsSn2l7WUwqgIDOJVG3ggVCFdJYSIuqilpQSIpHJ0D0Rr1KbPxVanF55qtwLyPA9IYQQsRSsKaXv4TPvnU1RFAanBvb3mEWuv0JEW8QKnXs8Hv70pz+Fvne73S2+B7j55psjtTkhokqG7ol4ldrcU8rr9+Nw+0hOiu2jSzn3R5cUOhdC9FRy/UgMweF7vamnFMCgVDhYB2YXnLK4GRzrgITowSKWlMrOzmb16tWh700mU4vvFUWRC4tICDJ0T8QztUohJUmNrcmLxeWJeVJKzv3RpW2uKSU1LYQQPY1cPxJDsNB5T68p5fN5qag4AUBFxQl0Khhg1FNe7+S94zYmjY5xgEL0YBFLSv3jH/+I1KqEiKkiGbon4lyqToOtyYvV5SEnLbaTFcu5P7rODN+TmlJCiJ5Frh+JITh8r6f3lGo0V/H6cSsDhiiUHTqAMW8wBX2zKK938s8yOw/6/DJ6QogokZpSQnzH+6U1AHwvP0suPiIupQXrSsVpsXMROTJ8TwghRKw0eXxYXV6g5/eUAkjPyiEzdwDpmX0AuMBkIEkFtQ4vn5bVxTg6IXouSUoJcRavzx8aundNvgzdE/EpNAOf0xvjSES0SVJKCCFErJibe0lpVKDthXeNapXCwNTA/7d+VRnbYITowSI2fE+IRHPH3Ysw19a3eM2VmkftqHkoHhdrn3qQCS+/EpvghDiHNH1zUkp6SvV4GnXgLkBm3xNCCNHdzM1Fzo16NYrSO69DF6QqHGn088/SGhqdbtL12liHJESPI0kp0WuZa+uZft9zLV7bfawO8ykLw3JN1H1WG6PIhDi3UE8pSUr1eNJTSgghRKyEklI6NdA7P3MYk+CCDC3HG9zsKK5m3qX9Yh2SED1OL+yIKUTb/H4/x2sdAFyQmRzjaIRoX2pzUsrq8uD3S7KiJzuTlJJC50IIIbrXmZ5SvfeWUVEUrrkgBYCtX52OcTRC9Ey99wwjxHfU2d00ujyoFRho1Mc6HCHalapTowA+P9ibpK5UTxZKSsnwPSGEEN3MbHMDgeF7vdmUQcmoVQrfVFoprbHFOhwhehxJSgnR7FhzL6n+RgNatfxpiPilUhRSmmfgs0pSqkfTqGX4nhBCRILX6+W2227joYceCr22f/9+5s2bx9ixY7n22mvZvHlzi2W2bNlCYWEhl156KbNnz2bfvn3dHXZM1TT3lDL18qRUhk7NVUMzAektJUQ0yJ23EM2O1dkBGJxpiHEkQpzfmRn4emeNh95Cowpcpt2SlBJCiC558cUX+eyzz0LfNzQ0cNddd3HzzTdTVFTEqlWreOqpp/jyyy8B2LNnDytXruTpp5+mqKiImTNnsnjxYhwOR6x2odudXei8t5sxKheA7d9U4fHKkHohIkkKnQtB4MbebHOjAINMkpQS3e/w4WJmzZvbfvuREqaf9X2grpRLip33cNrmnlJenx+/34+iKDGOSAghEs8nn3zCzp07+f73vx96befOnRiNRhYsWADApEmTmDFjBhs3bmTMmDFs3ryZ6dOnM27cOAAWLlzIG2+8wbZt25gzZ05M9qO7me3BQucqevv0P5OHZJKZrKXW7mbX0Vquzs+OdUhC9BiSlBKCM72kctN1GLTyNEh0P4+PVrNBnu3ru29q8X1a8/A9SUr1bMGaUhBITAWH8wkhhOgYs9nMo48+ypo1a9iwYUPo9ZKSEgoKClq8Nz8/nzfffBOA0tLSVsmn/Px8iouLox5zvJCeUmdoVAo3XpTDa5+dYOtXlZKUEiKCJCklBHDMHJx1T3pJicSQFpqBT2pK9WTqs5JSbp8fjdwXCCFEh/l8Pu6//35uv/12Ro4c2aLNZrNhMLT83KfX67Hb7R1qD0cidHINxhj81+/3h5JSJkP8X3y+G3+k160oMHNUICn10dFa6uxNZKYkRXQbZ/+biBJ9HyT+jm8j0iQpJXo9h9tLpcUFwGBTcoyjEaJjQjWleklPqT//+c+sWLGixWtud2BWoK+++ooVK1bw1ltvodVqQ+0PPfQQ8+fPBwLFatesWUN1dTVDhw5l+fLljB07FggUv33uued4++23cTgcTJw4kccff5y+fft20961T6UoqBUFr98vxc6FECJML7/8MklJSdx2222t2gwGAxaLpcVrTqeTlJSUULvT6WzVbjKZwo4jKyst7GViJRhrg91NU/PMr0Pz0vn4eB3JyTr0ei0qnTbu/m8w6ADQRXj9DkMSmZmpZGenkZ2dxiUDjewvr+eDsgYWXTU0asc/kSX6Pkj83U+SUqLXK6tz4AeyUrSk6c/8SYRb40eI7pSqD/aU8uD39/xkxcyZM5k5c2bo+8rKSubMmcP9998PwIEDB1i5ciW33HJLq2WDxWrXrVvHmDFj2LhxI4sXL+a9997DYDCwdu1adu3axVtvvUVaWhrLly9n2bJlvPLKK922f+eiUSt4PX483p7/cxZCiEh6++23qaqq4vLLLwcIJZn+9re/8cADD7Br164W7y8tLWX48OEADB8+nJKSklbtU6dODTsOs9lCvF+qFSVwMxuM9ag50CMsTafB2mjH4WjCbnfhdLpR+d1x93+HI/CA2eWK7PodjiZqa62kpwcSmDeMyGZ/eT2v7znOrJHZEav1+N3jn4gSfR8k/o5vI9IkKSV6veO1zUP3vtNLKtwaP0J0p5QkNQrg84O9qXcN4fP7/dx///1873vfY9asWTQ1NXH48GFGjRrV5vvPV6x28+bNLF26lLy8PAAeffRRpkyZQnl5OQMHDuy2/WqPRqXgAjw+me1HCCHCsX379hbfP/TQQwA8/fTT1NXV8eyzz7JhwwYWLFjA3r172bp1K2vWrAFg7ty5LFmyhBtuuIFx48axceNGzGYzhYWFYcfh95MwN7nBWGusgaF7WSnahIg9GGOkY/X5vJw4cSK03uvy+/H8+99ypMbON5VWLsyJ7A16Iv2utCfR90Hi736qWAcgRCx5fX5ONgSemg0y6WMcjRAdp1IUUkLFzntXUurtt9+mtLQ0dHNRXFyMx+Nh9erVTJ48mWnTpvHKK6/ga07ilJaWtlnMtri4GIvFwunTp1u0Z2dnk5GRwaFDh7pvp84hWOxcekoJIUTkmEwm1q9fz/bt25kwYQLLli1j2bLJs/SLAAEAAElEQVRlTJw4EQjMxrdixQoee+wxxo8fzzvvvMO6deswGo2xDbybBOtJZUWwblIiajRX8fruUjZ9XsFLOz6jvvokVw3NBODd4uoYRydEzyA9pUSvdtriwu3zY9CqyO7lF12ReNJ0GqwuL9ZeUlcKAkVr165dy49//GNSU1MBsFgsjB8/nttuu41f/vKXfPPNNyxZsgSVSsWiRYvOWazWZrMBkJyc3Ko92NZR4fbgD73/PMtpm2fc60hNqUQtznm2RC80Gi1yXFqTY9K2rh6Xnnw8n3766Rbfjx49mk2bNrX7/lmzZjFr1qxohxWXzPbmpFSyfD5Oz8ohM3dA6PvCEX342+Ea3j1Uzb1Th0RsCJ8QvZUkpUSvVlYXGLo30GiQC4pIOGk6Dadw9Zpi5xCoD1VVVcXcuWfqvV155ZVceeWVoe/HjBnDj370I7Zt28aiRYvOWaw2mKxyOByt2oPFbjsq3DH2RmNg/XpdEsnJunbfl6RRA25UGnWb79PrAzcMJlMK2dmJV9yyPYlYqLM7yHFpTY5J2+S4iK44M3xPklJBPp+XiooT9M/th16jcNri4sApC2P6pcc6NCESmiSlRK9WHkxKmQzneacQ8Se1l83AB7Bjxw4KCwtb9Gz629/+Rk1NDbfeemvotaamJvT6wJDccxWrzcjIICcnp8UQv+rqaurr61sN+TufcAtL1tcHemI5XYHise1pHr2HzdH2+5zOwI1DXZ2NmhpLq/ZEk+iFRqNFjktrckza1tXjEq1CtiKxBHtKBUYS9J7PGefSaK7i9eNWBgxRMGLnNAbePVQtSSkhukhqSoley6PLoMHpQVFgQIbUkxKJJ625ppS1F9WU2rt3L1dccUWL1/x+P0899RSffPIJfr+fffv28dvf/pb58+cDgWK1W7duZffu3bjdbjZs2NCiWO3s2bNZu3Yt5eXlWK1WnnzyScaPH8+gQYPCii1YWDKcr8CC516vtjkr5e7A8L3OxBCPXz1pX+S4yDFJxOMihNSUaltwKN+QrMDDsb8dqsbbgeuzEKJ90lNK9FpO4wUA5KbpSNJIflYknrSzekqlxjiW7nLixAn69u3b4rXCwkIefvhhHnvsMSorK8nOzubee+8N1QE5u1htZWUl+fn5LYrVLlmyBI/Hw4IFC7DZbEyYMIEXXnihm/esfVp14Pzk9srse0IIIbpHTXNSymOtpaK+BpkAtqUcAyRrFWpsTXxR0cC4gcZYhyREwpKklOi1XKYhAAySoXsiQaXqA6dwq8tDeNWPEte+ffvafP3WW29tMXzvu85VrFar1bJ06VKWLl0akRgjLVjo3C2z7wkhhOgm1ZZALcbdR2toOHoAY95gsmMcUzxRKwoT+hl477iNdw9VS1JKiC6Q7iGiV3K4vbjS+wOBIudCJKKUJDWKAj4/+LS9JS3V+wR7SnkkKSWEEKIbeLw+Gl2BrlG5ef1Iz+wT44ji0+QBgXuIfxyu6dAMuUKItklSSvRKn5XVg0pDqk6N0SAdBkViUikKqUmBulIenRTZ7Kk0oZpSMnZCCCFE9NXa3QAogF5KXLRrVF89GXoNdQ43e8vrYx2OEAlLzjKiV9pzvA6AAUYDiqLEOBohOi84A59XklI91pmaUvIUVgghRPQFZ97TqZHPye3w+bxUnqrgijwdADuLq2IckRCJS5JSolf6tKwekFn3ROILFjv36iUp1VOdqSklPaWEEEJEX3DmPb06xoHEsUZzFa/vLsXlsAPwj8PVeOQ6LUSnSFJK9DrVVhdHzXbw+8lL18U6HCG6JE16SvV4weF7Uq9CCCFEd5CkVMekZ+VQMHgAOjVYm3zsaX7oLYQIT8ImpbxeL7fddhsPPfRQ6LX9+/czb948xo4dy7XXXsvmzZtbLLNlyxYKCwu59NJLmT17druzOIme7dPj9QBobVXotXK1FYktVR+sKZUW40hEtMjwPSGEEN2pRpJSHaZSFPonB67PW/Z+y7FjR/F6vTGOSojEkrBJqRdffJHPPvss9H1DQwN33XUXN998M0VFRaxatYqnnnqKL7/8EoA9e/awcuVKnn76aYqKipg5cyaLFy/G4XDEahdEjHzaXE9K11Ae40iE6DrpKdXzyfA9IYQQ3clsCxQ6l6RUxxg9gXuLj8vtrNn+GeXlZTGOSIjEkpDTjn3yySfs3LmT73//+6HXdu7cidFoZMGCBQBMmjSJGTNmsHHjRsaMGcPmzZuZPn0648aNA2DhwoW88cYbbNu2jTlz5sRkP3qDO+5ehLm2vt32rEwj619+tdvi8fv9oXpSuga5YIjEl6HXAuBXaWMciYgWrSrw/EiG7wkhhOgOweF7Oo0UOe8Io8qNTvHh8qlwpuTGOhwhEk7CJaXMZjOPPvooa9asYcOGDaHXS0pKKCgoaPHe/Px83nzzTQBKS0tbJZ/y8/MpLi4OO4ZwJ6EIvj+RJ6/o7D6Ya+uZft9z7ba/8/zSqB6XO+5aRE0wKaaAPzWb6ot/CD4PZfs/BH4WvY1HQXf+DkVjW2f/HvkT9P463vYhOUnN9QXZfP72FhTlhg4t0xPOSb2J9JQSQgjRnaSmVHgUBXJ0HsqcSZywxcGHQyESTEIlpXw+H/fffz+33347I0eObNFms9kwGAwtXtPr9djt9g61hyMrq3O1Wzq7XDwJdx80WjXJye0XE9do1WRnR++41FsszHv0f0Lff1Fez6nD1QzKTudAk+ucsSkKcdse7W2f7+dyrp/r+dYNYDAk7nELxt7WPsQqtouTdRy2nwz7bykzM/HPSb3B2TWl/H6/TM8thBAiqqSmVPhykgJJqVN2cMlDJCHCklBJqZdffpmkpCRuu+22Vm0GgwGLxdLiNafTSUpKSqjd6XS2ajeZTGHHYTZbwuohoSiBZE64y8WTzu6Dx+3Fbneds72mxtJue1edvX1FgfLaQBIyNzWJL/2cMzZ/HLYHkyLR3vbXBw8y+XvT2m0vOVLCtHaWP9e6g/fSDoer3d+jaO5bJNbtcLgwGHRt7kMsYwvnbyn491xba5HEVALQNPeU8gNenz/0vRBCCBFpfr+famvg84ZBklIdlqHxkZqkxtrk5YvTTkYMi3VEQiSOhEpKvf3221RVVXH55ZcDhJJMf/vb33jggQfYtWtXi/eXlpYyfPhwAIYPH05JSUmr9qlTp4Ydh9/fuWE7nV0unkRjH7rrmHh9fk7UBQrb98/Qd89GI6y7jpXHxzmHXT57902dWm8w/kT+O4jnfQg3pnjcB9GaRnUmCeX2+dHITYIQQogoaXB4aGqe7dWQUHeKsaUoMDQrmS9PWdh1ws78WAckRAJJqNn3tm/fzueff85nn33GZ599xk033cRNN93EZ599RmFhITU1NWzYsAG3283u3bvZunVrqI7U3Llz2bp1K7t378btdrNhwwbMZjOFhYUx3ivRXaqtTTR5feg0KrJSpCi0ECIxqBQllJhyeyWTKIQQInoqm3tJZehUqGS4eFiGZicD8PkpJw63N8bRCJE4ekz+22QysX79elatWsXq1avJzMxk2bJlTJw4EQjMxrdixQoee+wxKisryc/PZ926dRiNxtgGLrpNRX2gZ12/DL3UZBFCJBStWsHj8+OROhVCCCGiqNoSSEplGtSAJFbCkZ2SRIoGbB4/75XUcONFObEOSYiEkNBJqaeffrrF96NHj2bTpk3tvn/WrFnMmjUr2mGJOFXREEhKJerQPSFE76VRqQAfbp/0lBJCCBE9wZ5SkpQKn6IoXJCq8HW9n7cPnJaklBAdlFDD94ToLLfXF7rISlJKCJFotOrg8D3pKSWEECJ6qiyBmfcyZeq9TrkgDRTg8xMNHK8Nf5Z3IXqjhO4pJeLDHXcvwlxb32bb4SMlTO/ecNp0qjEwU1q6XkO6Xn7thRCJ5UxSSnpKCSGEiJ6q5oe4Wcka3JJTCVuyRmFsro7PTzv581enuXfq0FiHJETck7tz0WXm2vp2Z2r7upOztEVacOjeoMzkGEcihBDh06oCHZs9MnxPCCFEFFUFa0rp1VRKUqpTrhucwuennfzlYCWLrxyMRi2Dk4Q4F/kLEb3Cyeak1EBJSgkhEpAM3xNCCNEdqq2B4XtZBhm+1xk+n5dcnxmjXkWt3c1bu7/B65XaXEKciySlRI9nb/JSa3cDMNAkSSkhROIJPmWV4XtCCCGiqbLF7HsiXI3mKv7w6RFydIGHSP9bdJLy8rIYRyVEfJOklIg4r89PtbWJOrsbVLEfIRrsJZWVosWQJBdYIUTi0aqkp5QQQojosro82JoCvXqkp1TnpWflcMmQPADMXh2VVk+MIxIivsU+YyB6DIfby97yBg5X2/A21z3JuPUZPj/RwJi8tJiNpw7Wk5JZ94QQiUob7CklNaWEEEJEyenmz8wpSWoMWum70BUZBi0DMvScaHDyTqmFCaNiHZEQ8UvONiIiTjU62fzFKb6ptOL1+dFpVGjVCkqSgb3lDbzzdRUuT/c/4fcjSSkhROLTNNeU8khPKSGEEFFS2Rj4zNw3VRfjSHqG0f3SAPjHMRsWp/SWEqI9kpQSXeYwDWVbc9IpM1nL9Iv6ctvl/fnRFQOw/fM36DQqqqxNvPN1ZbffUHn1RmxNXlQK5KbJBVYIkZjOFDqXnlJCCCGi41Tzg9y+aUkxjqRn6J+hJ10LLq+fLV+einU4QsQtSUqJLvmsrJ664Tfg88OQTAOzRuXQL0OPoigoioL76F5uuqgveo0Ks83Nx8fqujU+V8ZAIJCQkulYhRCJSquS4XtCCCGiK9hTqo/0lIoIRVEYnhF4qPTGvgqpCylEO+QuXXTa8Vo7S98+CCo1gzMNXFuQ3WbiJzMliWsLsgE4VGXjqNnebTEGk1L9jTJ0TwiRuM70lJIPtEIIIaLjVIMDgL4yuiBiBqaCUR8YNfLuoepYhyNEXJJC54I77l6Euba+3fasTCP/+8qrLV6zN3m5/89fY2vyktR4kmsmTEClKO2uo3+Gnkv7p/NFRSOfHKtjgFEfKtwbLV6fH1f6wND2hRAiUSU1ny+bJCklhBAiSk43uADom5oEuGIbTA+hVhRuGJbG6wcbeO2zE9xwYV+Uc9wzCdEbSVJKYK6tZ/p9z7Xb/s7zS1u99tw/SjlqttMnNQnV3m1opk0873bG9k+ntMaG1eVlf0Ujlw8ydiXs8yqutODX6EhSK2SlyNh4IRLdtm3bWLp0KTrdmSe4119/Pc8++yz79+/niSeeoLS0FJPJxOLFi5k3b17ofVu2bGHNmjVUV1czdOhQli9fztixYwHwer0899xzvP322zgcDiZOnMjjjz9O3759u30f25OkaU5KeWT4nhBCiOg43djcUypVhySlIqdwaApvH7ZSUm3jgyO1XJ2fFeuQhIgrMnxPhO0fh6vZerASlQKrpl+I2t2x4XgatYqJF5gAOHDKgsPtjWaY7D4eqF/VL0N/zl5cQojEcODAAWbNmsW+fftCX88++ywNDQ3cdddd3HzzzRQVFbFq1SqeeuopvvzySwD27NnDypUrefrppykqKmLmzJksXrwYhyPw4Xvt2rXs2rWLt956iw8//BC9Xs+yZctiuautBIfvSU8pIYQQ0XK6QWbfizSfz0tj9SkKhyQDsO6TY/j98oBJiLNJUkqEpcriYtW7JQD8aPxAxg7ICGv5wZkGslOS8Pj8fHmyMRohhuxuLqo+wGiI6naEEN3jwIEDjBo1qtXrO3fuxGg0smDBAjQaDZMmTWLGjBls3LgRgM2bNzN9+nTGjRuHVqtl4cKFmEwmtm3bFmq/8847ycvLIzU1lUcffZQPPviA8vLybt2/czl7+J58mBVCCBFpbq+PGmsTILPvRVKjuYrXd5fidVpR4+NQlY2Pvq2NdVhCxBVJSokO8/n8PPbXQzQ6PVyYk8pdky4Iex2KonDZwEAi6+vTVrya6NR6sjg9HGhOeg2QIudCJDyfz8fBgwd5//33ueaaa5g6dSrLly+noaGBkpISCgoKWrw/Pz+f4uJiAEpLS9ttt1gsnD59ukV7dnY2GRkZHDp0KPo71kHB4Xt+f6BenhBCCBFJ1c0JKY0K6itPUFFxAp9cbyIiPSuHvP4DGZYRuJav++S4PGAS4ixSU0p02G8+OsqnZfXoNSpW3jiyzZn2OmKQUU9WihazzY29b+teD5FQVFaH1w8aRy1pukFR2YYQovvU1tZy0UUXMW3aNFavXk1dXR0PPvgg999/P3369MFgaNkjUq/XY7cHhhbbbLZ22202GwDJycmt2oNtHRXuKOHQ+zuwnFaloAB+oMnrR6OOTAzxKLgPPWFfIkmOS2tyTNrW1eMix7N3qrIGakhp/B7e2HeSskMHMOYNJjvGcfUkBRkKx63wTaWVj4/WceXQzFiHJERckKSU6JDDVVae3RHoNXDfNcO4IDP5PEu0T1EURuel836pGVvuGDxeX6cTXO35pHnonq7+OHBpRNcthOh+2dnZoeF4AAaDgfvvv58f/OAHzJ49G6fT2eL9TqeTlJSU0HvbajeZTKFkVbC+VFvLd1RWVlpY7zcaA+vX65JITj5//Y4kjQqXx4dKqyE5+czQCr0+8H+TKYXs7PBiiGfhHs/eQo5La3JM2ibHRYSjyhJISqUmacjMHUB99akYR9Tz6NQK3x+awtYSCy9/fIzJQ0wyE58QSFJKdIBPpeHRvxTT5PVxdX4Wt4zO7fI6h2Yls+d4HQ5S+UdJDd8fGblZrvx+/1lJqbKIrVcIETvFxcX85S9/4ec//3noA1xTUxMqlYoxY8bwf//3fy3eX1payvDhwwEYPnw4JSUlrdqnTp1KRkYGOTk5LYb4VVdXU19f32rI3/mYzRbC6Y1fXx/oieV0NWG3n3+WI61KwQU0Wp3olTMbcjoDQy7q6mzU1FjCijkeKUrgZjrc49nTyXFpTY5J27p6XILLi96lqnn4nl7uDqNqVkEafztm45tKK29+8g1X9DPg9XpRqRQaG9OprbUyYMAg1Op2ukQL0QNJTSlxXo0XTOForZ2+aTqWfX94RDL6apXChTmpALyx72SX13e2o7V2Ki0udBoVusYTEV23ECI2jEYjGzdu5NVXX8Xj8XDy5EmeffZZbrnlFqZNm0ZNTQ0bNmzA7Xaze/dutm7dypw5cwCYO3cuW7duZffu3bjdbjZs2IDZbKawsBCA2bNns3btWsrLy7FarTz55JOMHz+eQYPCG/rr94f/FViwY+sP1pU61wx8nYkhHr960r7IcZFjkojHRfQ+wZ5SBklKRVWGXs38sf0BWLPnFK/vPcH/+8NO/t8fP2D9R0dZu/0zysvlobroXeS0I87pWK0de84YAH75g0sxJSdF7MPKhTlpfF5Wx5cnG/n6tIWLciPzVO6To3UAjB2QQZnfG5F1CiFiKzc3l5dffplf/vKXrF27Fp1Ox/Tp07n//vvR6XSsX7+eVatWsXr1ajIzM1m2bBkTJ04EYNKkSaxYsYLHHnuMyspK8vPzWbduHUajEYAlS5bg8XhYsGABNpuNCRMm8MILL8RuZ9uhDc3AJ3eMQgghIiuUlFLLcLJo8fm8VFSc4OqcfmxSg9WrpV6bSXpmH1S6FLLyBuJwNMU6TCG6nSSlRLusLg8fHAlMWXrbFQOYMjw7okNDkpPUGMwlOPqM5A/7KnjshpERWe/u5qF7kwabkOcMQvQc48ePZ9OmTW22jR49ut02gFmzZjFr1qw227RaLUuXLmXp0qURiTNakppvFJo87feUEkIIITrjVGMgKZUsd4dR02iu4vXjVgYMUchyVVKhyWFveQOXqWX4kujd5PdftMnj9fHuoRpcHh9aaxX3TBkcle2knN4PwM5D1dTau/5kwOn28vmJegAmDZYZLYQQPUdHhu8JIYQQnXG6MTAhiCSlois9K4fM3AHkZyhoFT8NTg+nPfpYhyVETMlppwe44+5FmGvr223PyjSy/uVXO7w+v9/PB0dqqbE1odOoyCjZhlY9NwKRtpZkq+Si3DS+Pm3hzwdOs3BCeDVcvquorJ4mr5+cNB2DMw3nX0AIIRJEUvPwPbckpYQQQkSQy+PDbHcDkpTqLhrFz2BDEyV2HUebUunnd5x/ISF6KDnt9ADm2nqm3/dcu+3vPB/ekJT9Jxs5YrajKHB9QTb7PmrsaojnNPeSPH5x2sIfvzzFbVcMRK3q/Fj290trALh6WJZMsSqE6FGCSakmj9SUEkIIETnBXlJ6jUKSjKPpNgP1bircydjdUOHSMCrWAQkRI3LaES2UVNsoKmsAYPJgE/0yot+dtHBEH9L1Gk41uvj4aG2n1+Px+UM1sL43PCtS4QkhRFxI0jTXlJKeUkIIISLoVHNSKidNKw91u5FagUsHpAPwrT1JekKLXkuSUiKktNrGP0vNAFycmxqx2fDOR69VM+PiXADe3H+y0+vZX9FAvcNNhl7D2AHGCEUnhBDxIdRTSj60CiGEiKBgkfPcVG2MI+l9RvZNRa94afKrOHCiIdbhCBETkpQS+IEvTzbyXqkZP1DQJ4VJg03dGsOcS/IA+ORoHSfqOzem+v3mhNqUYVloujAEUAgh4tGZ4XuSlBJCCBEZXq+X4vJKAFJw4ffLEPHupFYpDEmyAvDZ8TrcPjn+oveRmlK9XJ29ibrhN3LqeD0Q6CE1cbCpRdfdw4eLmTl3LhqtGo/b22odh4+UML2LcQw0GZg42MTuY3X8cf8pfnr10LCW9/j87CyuAuC64dldjEYIIeKPNjT7nnxgFUIIERnl5WV8XFoJGPi2/CTDs5LJyot1VL1LrsbJcXcadjccaZQH66L3kaRUL1Vvd7PlwCl+W1SOMysflQITLjBxcW5qq7HkHh9Mv+85kpN12O2uVuv6+u6bOh3H4cPFzJoXmNnPaRoCI2bw2iclvLvmEVQ+T4dnDiwqq6PWHhi61929vIQQojskqaWmlBBChKu4uJhnnnmGgwcPotVqufLKK3nooYfIzMxk//79PPHEE5SWlmIymVi8eDHz5s0LLbtlyxbWrFlDdXU1Q4cOZfny5YwdOzaGexMdHrUBPGBKS451KL2SSoGhyU18ZdVT0uDHIT2iRS8jSakE5/P7aUrN5YuKBursblweHypFQatW0KpVJKlVWPpdzh/2VeD2+qmyuiiutLL/ZCPe5u6hWlsV0yeOpk+qrtvjDya8gvvyh32nsGBg2PxHuSg3rcMzB277OtBL6vsj+6JRy6hUIUTPI8P3hBAiPE6nk0WLFvGDH/yAl19+GZvNxoMPPsgjjzzCM888w1133cVPf/pT5s+fT1FREUuWLGHEiBGMGTOGPXv2sHLlStatW8eYMWPYuHEjixcv5r333sNgMMR61yLK5gn8a1B5AXVMY+mtcpI8nDBoqXe42XnEyoX5sY5IiO4jd+8JyuPz86cvT3HLb4qoGfUDisoaKK2xU17v5Hidg9IaO980J58sgybz7D+O8MI/v+X3eyv4/EQDXp+fkX1TefyGEWQfeCMmCanvUikKo/MCxdUPnLLg6+CYdqvLw/slNQDceFHfqMUnhBCxlKSRQudCCBGOkydPMnLkSJYsWUJSUhImkymUgNq5cydGo5EFCxag0WiYNGkSM2bMYOPGjQBs3ryZ6dOnM27cOLRaLQsXLsRkMrFt27YY71VkeXx+HM3VOQxqub7EikqBK4ZkAvDnEguONkqmCNFTSU+pBHSi3sGj7xTz9WkLAIqnicE5RrKStRi0avyA2+vD7fXR5PFz5MvdTJ5yNRqVQlZKEoMzk7likJEBxsBTnpeJn/okBX1T2FveQKPTw7HajhU8//NXp3F6fAzJSubibpoxUAghuluwp5TPH7iJkAkdhBDi3IYOHcqrr7YsA7Fjxw4uvvhiSkpKKCgoaNGWn5/Pm2++CUBpaSlz5sxp1V5cXBx2HEocn65rnYHkh1oBneLHE8exnkvwGMfzsT4XRYGCnDQ+PlxJo8vHH788xb9ePiDWYYWlJ/wMzv430XRH/NFatySlEsQddy/CXFuPKy2P2hEz8Wt0KB4naSc+5eTuP3H9r95sd9naP/2dp59Z3I3Rdp5WreLivFQ+P9HI3vIGDJz7N9/r8/PGvpMA3HpZ/1b1sIQQoqfQqs+c35o8PjRJMsRCCCE6yu/388ILL/Dee+/x2muv8dvf/rbVMDy9Xo/dbgfAZrOdsz0cWVnx+9DUrmgBSDdoURTQ6bQkJ+vQ67WoEuj/BkNg1Ec8xQ+EtYxapTC6j4bdpzy89lkFP76uAL028a718fz73hESf/eTpFSCMNfWM/aOJ9heXI3f56dvahLXFfQj9aoCnn1/U6zDi6hReekcPGWl3uGG7IJzvveDI2ZONjjJ0Gu48UIZuieE6LmC9QLdXj9NXh/JUvdDCCE6xGq18vDDD3Pw4EFee+01RowYgcFgwGKxtHif0+kkJSUFAIPBgNPpbNVuMoU/oY7ZbKGDVSm6XUnzyIs0XeCa4nK5sdtdOJ1uVP7E+b/D4Yq7+IEOL6PGDUA/vZc+yWqqrS5efa+EWy/rD4DX66W8vCz0cxs4cBBqdXx9DlCUQEIknn/fz0Xi7/g2Ik1qSiUItyGTnYeq8fr8DDTqmX5RX1J1PTOnqNOoGNM/8MveOHAyVpenzfd5vD5+/eFRAGZfkpeQTxKEECIcuua6Ui4pdi6EEB1SVlbGnDlzsFqtvPnmm4wYMQKAgoICSkpKWry3tLSU4cOHAzB8+PBztofD74/fr0pr4HN2WvN9RSLejMOZuBM9fgWFW0akA/B/n5bjdPvw+wO/x2u3f8breytYu/0zysrKYv6709ZXcF8S9Uvi79g2Ik2SUgmg3uGmduRM3F4/uWk6Ckf06fEzzI3KTSNNp8GnS2PtR8fafM9b+09xvM6ByaDl364Y2L0BCiFEDOg1geS7U5JSQghxXg0NDfzoRz/isssu4ze/+Q2ZmZmhtsLCQmpqatiwYQNut5vdu3ezdevWUB2puXPnsnXrVnbv3o3b7WbDhg2YzWYKCwtjtTtRcbp56r10fc982J2IvndBCjlpOqqtTbx94FTodWOfPDJzB2DskxfD6ISIvJ6d2egB/H4/v9h+CK8unXS9hsIR2ah7QXFbjVrFVUMDHxz+8MVJdhZXtWgvqbby64+OAnD3lRf02F5jQghxtlBPKZmVRwghzuuPf/wjJ0+e5K9//Svjxo1j7NixoS+TycT69evZvn07EyZMYNmyZSxbtoyJEycCMGnSJFasWMFjjz3G+PHjeeedd1i3bh1GozG2OxVhVbaWPaVE7GnVCgvHBx64/2Z3GbamtkeNCNFTJNzZp7i4mGeeeYaDBw+i1Wq58soreeihh8jMzGT//v088cQTlJaWYjKZWLx4MfPmzQstu2XLFtasWUN1dTVDhw5l+fLljB07NoZ7c35v7T/Fh9/Wgs/D9QW5vWqIWn+jnpRT+7DljeWx7YdweXxMvziHr09beGjrNzjcPi4fZGTWaHlaIIToHfTaQFJKekoJIcT53X777dx+++3tto8ePZpNm9qvzTpr1ixmzZoVjdDigt/v57Q12FNKS8fmvRbdYdboXH6/9wTl9U5+W3SCG/rHOiIhoieheko5nU4WLVrE2LFj+eijj/jLX/5CfX09jzzyCA0NDdx1113cfPPNFBUVsWrVKp566im+/PJLAPbs2cPKlSt5+umnKSoqYubMmSxevBiHI35Pv9VWFy8210xKL9tFVkpSjCPqfunHP+K6gmzcXj+/2HGYqat3cfvvv6DS4mKQycAzMy6UadGFEL2GXmpKCSGEiJAGpweHJ1AkJljoXMQHrVrFT6YOBWDjZycwO6S3lOi5EiopdfLkSUaOHMmSJUtISkrCZDIxf/58ioqK2LlzJ0ajkQULFqDRaJg0aRIzZsxg48aNAGzevJnp06czbtw4tFotCxcuxGQysW3bthjvVft++d4RbE1eLs5NI+X0l7EOJyYU/Dxx40juvWoIyVp16EZs+sU5rLv1EtL12hhHKIQQ3UcXrCnllqSUEEKIrqmoDzyc16vp8fVqE9E1+Vlc0i8dl8fHG183xjocIaImoYbvDR06lFdffbXFazt27ODiiy+mpKSEgoKCFm35+fm8+eabQGC2jGDhwrPbi4uLoxt0J330rZm/Ha5BrcAjhcO5/09RKnWfADRqFf82fiDzxvbDbGsiOUlNZnLv6zUmhBBnhu9JTSkhhBBdU9HgBCA1oe4Iezafz0tFxYnQ9z+ZcgF3/uEA7x+zcV1/hcxzLCtEokrYU5Df7+eFF17gvffe47XXXuO3v/0tBoOhxXv0ej12ux0Am812zvZwKGGOFgu+/1zL3XHXImpq6wHwqTRUX/KvoEtHX7GX+5espuRISfsLhxFDV5dXlOhNBXm+bScnqUlOMpz7zR1YTyz2IVK6+nOMtZ70M4jHfejo70dHzkkiPsnwPSGEEJFyoj6QlEqRgQdxo9FcxevHrQwYolBffYofT7uc6wuy+dvhGvab/QweGGcfPoWIgIRMSlmtVh5++GEOHjzIa6+9xogRIzAYDFgslhbvczqdpKSkAGAwGHA6na3aTSZT2NvPykrrVNznWq7eYmHeo/8DwJ6jZk5/W0uaXsNtP/wBWvWt/OLfCklO1rW5rKLQbhuARqsmO7v9bWu06nMuryhgMATag/92dPvni62rsZ9PW/sW3IeuxhbL9kSODdr+PYqH2DrS3tm/hWjH1pm/lczMzv9tidjQy/A9IYQQEXK8LvBwPlUrT6niSXpWDpm5A0Lf/2TqEP5ZWkO1E47XOUiPYWxCREPCJaXKysq488476devH2+++SaZmYFOjAUFBezatavFe0tLSxk+fDgAw4cPp6SkpFX71KlTw47BbLaE1UNCUQIJqXMt53F7sdtdONxe9h6rA+CKgRm4XW7cBHpk2O2uNpc9V1tw3TU1lnO2n2t5vx8cDhcGgw6Hw9VqH7oSW1djP5+z9y2YUAjuQ1dji0V7cB/iMbaOtAV75rT1exTr2Dra3tm/hWjHFs7fSvCcVFtrkcRUgtHJ8D0hhBARcrw2UFMqTXpKxbX+GQZmFKTzx+JGdh+r57pc6S0lepaEqmjX0NDAj370Iy677DJ+85vfhBJSAIWFhdTU1LBhwwbcbje7d+9m69atoTpSc+fOZevWrezevRu3282GDRswm80UFhaGHUcwoRHO1/mWC/r8RANun5/slCSGZiV36Xh1NOaOLn/2v92pM8e7rX2L5T5ESiLHDj3rZxCP+9CZc5JILGcP3/PLD1AIIUQn+f3+s3pKxTgYcV43j0hDrwaLy0Op1DwXPUxC9ZT64x//yMmTJ/nrX//K9u3bW7Tt27eP9evXs2rVKlavXk1mZibLli1j4sSJAEyaNIkVK1bw2GOPUVlZSX5+PuvWrcNoNMZgT9rW4HDzTaUVgAkXGFGk4IsQQoizBJNSPj+4fX6S1HKdEEIIEb5auxury4uCFDqPV2cXPa+tPMnFRthrhuJ6P3UOL4NjGp0QkZNQp6Dbb7+d22+/vd320aNHs2nTpnbbZ82axaxZs6IR2nnNvXUBJ0/XtNt++EgJ+vIG/H4YYNTTL0PfjdEJIYRIBBq1CrWi4PX7cbp9JMkU3kIIIToh2EuqT7IatUp63sajs4uelx06gCl3MH1TM6myNvH7g/WMvTDWEQoRGQmVlEpkVeY6pt/3XLvthx7+Md+aAxeH8YOM3RSVEEKIRKPXqrA1eXF5vMhlXAghRGcE60n1S9MCTbENRrQrWPS8vvoUigKTBpt4+6tK3j9u5+BpCxfnSm1Qkfjk02yc0F1yIwDDspLJSkmK6LoPHy5m1ry57bcfKWF6RLcohBAiWnSaQFJKZuATQgjRWcGkVF6qBnySlEoUfdN0DEqFMiv8v38c4Tf/3yVS8kUkPElKxQGzrYmkCy4FYOyAjIiv3+PjnL20vr77pohvUwghIq24uJhnnnmGgwcPotVqufLKK3nooYfIzMxkxYoVvPXWW2i1Z6q1PvTQQ8yfPx+ALVu2sGbNGqqrqxk6dCjLly9n7NixAHi9Xp577jnefvttHA4HEydO5PHHH6dv374x2c/z0WvPFDsXQgghOiM4fK9/moa6hhgHI8IyyqRQ6YADpxrZUVzNv1wYn59XhOgoKUYRB/adCFwJhmYlY0qW6S+EEOK7nE4nixYtYuzYsXz00Uf85S9/ob6+nkceeQSAAwcOsHLlSvbt2xf6Ciak9uzZw8qVK3n66acpKipi5syZLF68GIcj8JR47dq17Nq1i7feeosPP/wQvV7PsmXLYrav56PXqAFwSlJKCCFEJ5XVnT18TyQSg0Zh9sh0AP7ng29xuL0xjkiIrpGkVIzV2po4WuvA7/cxdkB6rMMRQoi4dPLkSUaOHMmSJUtISkrCZDIxf/58ioqKaGpq4vDhw4waNarNZTdv3sz06dMZN24cWq2WhQsXYjKZ2LZtW6j9zjvvJC8vj9TUVB599FE++OADysvLu3MXO0zXPAOfUz6ECiGE6ASn28uJ+kBSaoAkpRKOz+flspQG+iSrqbI28X97ymIdkhBdIsP3YuzzikYA3Mf2kTl5cGyDSUB33L0Ic219u+1SL0uInmHo0KG8+uqrLV7bsWMHF198McXFxXg8HlavXs3evXtJS0tjzpw5LFq0CJVKRWlpKXPmzGmxbH5+PsXFxVgsFk6fPk1BQUGoLTs7m4yMDA4dOsTAgQM7HGO4JR1C7w9zOUPz8D1HGz2lekJZieA+9IR9iSQ5Lq3JMWlbV4+LHM+e71itHZ8fMvQajHrpo5BoGs1VvHncyrC++VTb4bdFJ5g1Jo+8dJm9XSQmSUrFUK29iaPNM+459/8VfnhLjCNKPObaeqmXJUQv4/f7eeGFF3jvvfd47bXXqKmpYfz48dx222388pe/5JtvvmHJkiWoVCoWLVqEzWbDYDC0WIder8dut2Oz2QBITk5u1R5s66isrPBmwDEaUwLb0iWRnKzr+HKpeqARl9dPcrIOvT4wOYbJlEJ2ds+ZhSfc49lbyHFpTY5J2+S4iPaU1gSub/l9UqRIdoJKz8rhgqEDONJYTrXTz5PvlrB69ij5eYqEJEmpGNp3ItBLakimgX31J2McjRBCxD+r1crDDz/MwYMHee211xgxYgQjRozgyiuvDL1nzJgx/OhHP2Lbtm0sWrQIg8GA0+lssR6n04nJZAolq4L1pc5uT0lJCSs2s9mC39/x99fXB24KnK4m7HZXh5fTENiIxRFYzukMzJpUV2ejpsbS8QDilKIEbqbDPZ49nRyX1uSYtK2rxyW4vOi5/n/27jw8qvLs4/h3MpnsewJhFyEBBUECyC4oNqIiSwOoLdKiVSxEqVRALCi2lK1uiAgqSnlbqSggKpUquILIpiIgCiQgEPYsJGRPZua8f4SMxIAkYZKZyfw+F3Nd5DxnuZ+TzDlz7nmWlPRzSamY6t3nxL2YTCY6RZv47ARsOXSGVTtPMLxTE1eHJVJtaq/pImcKSjl4rpVUbcy4JyJS3xw5coRhw4aRl5fHypUradu2LQAfffQRy5cvr7BuSUkJAQFlzdjj4+NJSUmpUJ6amkp8fDzh4eHExsaSmprqKEtPTyc7O7tCl76qMIzqv8o2rN55CPYrG+g8v6TymFI1icEdX/WpLjovOieeeF6kfks9l5SKNBVy7NhR7Hb90j1VmJ+JuzuEAzDv84N8f9Lzv5wS76OklIuUz7jXMiqQ6GA/F0cjIuLecnJy+P3vf0/nzp157bXXiIqKcpQZhsHs2bPZvHkzhmGwY8cO/vWvfzlm3xs+fDhr1qxhy5YtlJaWsnTpUjIzM0lMTAQgKSmJRYsWkZaWRl5eHrNmzaJbt260aNHCJXW9lPKkVGGpXQ8SIiJSbftPl/XW2Hcim2UbdpOXp0SGJ7uldQh9WkVRbLUz6d09nM4txmazcejQj46XzabJUcR9qfueC5wpKOXAuVZSndVKSkTkkt5++22OHz/O//73Pz744IMKZTt27OCxxx7jySef5NSpU8TExPDQQw8xZMgQAHr27Mn06dMd5XFxcSxevJiIiAgAkpOTsVqtjBw5kvz8fLp37868efPquIZVF+Drg48J7AYUaAY+ERGphuyCUrKLyibKuKJ5U9JyT7o4IrlcPiYTM267itHLdnD4TCFjV+xias9I3tqwg4gGjclOP8EfB0DLlle6OlSRC1JSygV2HCtrJXVFpFpJiYhUxT333MM999xz0fK77rqLu+6666LlQ4YMcSSpfs5isTBx4kQmTpx42XHWBZPJRJDFTF6J7YJd+ERERC6mfJDzYF+wmNVppr4I8ffluaHtGPPmtxw5U8jjnxTSJTqWqEbNXB2ayCXpSlTHzhSUciDjXCup5molJSIi1Rd0rgtfgZJSIiJSDT+cKuuqF67vxesd29nTtOEkgWY4XQQbTtrJL7a6OiyRS1JSqo6VjyV1RWQgMWolJSIiNfBLg52LiIhcTPlA2FH+JhdHIs5gt9s4duwohw79yLFjR4lt0JDBHZvgb7KRb/PhvT2nyCvV+JPi3pSUqkNZBSWOsaS6qJWUiIjUkFpKiYhITZQnpSL9XRyIOMXZzNO8sSWV5d8ccwxaHxbgS5fALAJ97OQV2/j8hMHhnBJXhypyUUpK1aEdR8tmutCMeyIicjmC/MqGhMwvUbN8ERGpmjMFJRw/WwwoKVWfhJ0bOyosqoFjWaCPnevCC4kKslBkg+mfp7P7+FkXRilycRrovI6UBERxRDPuVdv+/XsZMmL4xcsPpDCwDuMREXEHwee3lApwcTAiIuIRvj+ZB0CTEF8sPnYXRyO1zd/H4Pb2sfx311Gyiu0kr9zF00Pa0+2KSFeHJlKBklJ1JKfJdQBcqVZS1WK1w8AJT1+0/PsHbq/DaERE3EPQ+WNKKSklIiJVUN51r3WUH1Dk2mCkTvj7+nB9IxOHCv3ZebqICau/Y/agdvRtHe3q0EQc1H2vDqSk51EYGQdoxj0REbl85w90bmj8UhERqYI955JScZH6gtyb+GBnVMsiujUJpMRmMPm971m397SrwxJxUFKqDiz+8ggAraKDiArSTUBERC5PiH9ZQ2er3aDE0AxKIiLyy6x2g2+Plc0CflW0BpTyJmczT7Ni2wGa+hURay7AZjeY9v5eXvt0NzabJkwR11NSqg7sT88Dw0ZCszBXhyIiIvWAr4+JEP+y1lJ5ViWlRETkl+07nUd+iY1Qf1+uiLC4OhypY2HRscQ0bk77gFwakoMBvPTNGeat241dTa7FxZSUqgPPJ11Dox9WqpWUiIg4TURA2UNFvk23chER+WXfpGUDkNAsHLNJX2Z4K5MJOkaZ6dgkFIDl35/lkXf2kFNY6ljHZrNx6NCPjpdaU0lt0yfZOnBFVBB+hRmuDkNEROqR8MCyLnxKSomIyKV8dS4p1UXj23o9kwm6XxFJQpSBrwm+OJjFb5ZuY+uhTADS0o7w0odfsfybY7z04VekpR1xccRS32n2PREREQ8UHniupZRVSSkREbk4q93g26Nl40k1Nudz7Nhp7HYXByUuF1VymquMEn70bU56gY0HV+3h5rYNSGrtS0SDxkQ1aubqEMVLKCklIiLigcIDym7heWopJSIiv2D38bMUlNrxxc6WA6dJ27+biMYtiXF1YOJyjaMj6dyqGV/sPcqPubBuXzqfp5q4MtSgW4wyl1I39ElWRETEA0WcaylVYDOBSbdzERG5sM9Sy4YRaRLiQ3Tj5oRFNXBxROJO/H19uDbK4M8dID7Kj2Kbwd5sePOb4+zNNiiyKjkltUufYkVERDxQsJ8Zs48JAxO+EY1cHY6IiLghwzDYcKBsrKAmQRrgXC7sbOZpvth9gA5hpbQuPUKw2Uaxzc6eMwYPfnCCN745RvF5ySkNhi7OpKSUiIiIBzKZTI4ufJaopi6ORkRE3NHBzAKOZhdh8YHYQFdHI+4sLDqW6MbNaRnpT8/wQm6IiybYF3KK7Tz76QGSXtvG27tOYLXZNRi6OJXGlBIREfFQkYEWsgpK8WvYytWhiIiIG/o0pazrXoeGAfj6lLg4GvEUJhPENwgm0ppFg8gI3knJ53ReCbPXp/DapoPc1MhGSFSsBkMXp1BLKREREQ/VMNQfAP+mV7s4EhERcTd2w+D9708B0LNZkIujEU/kYzKR2CqEt//QjdEdI/Az2ThdYOONg/DRMTvHsotcHaLUA0pKiYiIeKjYUD8A/Jpehd0wXByNiIi4kx1HcziaXUSwn5keTdV3T2rO39eHgfGh3NrCl24tIrBgJ9/mw9ofTrP1tJ3MQqurQxQPpqSUiIiIh4oO8sOMgTkghBP5mh1HxNvZDYOMvGKKSjXosMB7350EILFtAwJ89dgn1We32zh27CiHDv3IsWNH8QGubRpGr+AMmgeUYAKO5sOEdSdZ/s0xbHZ9QSbVpzGlREREPJSPj4lwi42sUl9Ss/UQKlKfHD2aRlZWZpXW3ZtlZd3hEvaesVJ87lLQONiHAfERjO3fHh+TZl3zNhn5JXy8v2w8qcHXNIKSqv0tiZzvbOZp3jicR7MrTRzZt5uIxi2JAXxNBlcFl9C1TQs+33eSrGKDpz85wPqUTCbdcCVtG4a6OnTxIEpKiYiIeLAoi52sUjiQo6SUSH1x9GgavXpfR1FhwS+u5xMUQdTNYwlu27tS2Yl8O0u/zaJtdCq/6hRfW6GKm3p9+1GKrXY6NA7jmsahHD6spJTUTFh02YDm2eknKpXFBPtxQ2MTURHhvPF9LjvTsrn73zu4uW0D/ti7Jc0j1W1ULk1JKREREQ8WaSlLRn2XYcVmNzD7qEWEiKfLysqkqLCA4RNm07DZlRdcJ7vUh69yAii2+2DCoHmglRYBpYT62jH7+fHd4dPs2LiO6Jv+VMfRi6tlFZSwaudxAAa18uPw4UMcO3YUu3p5Sy0wmUwMaB3KsB5tWbT5CO/tPMG6fel8vD+d/vExDOvUhM7NwjGpxaZchJJSIiIiHizGz4at8Cw5hLH9yBl6tIxydUgi4iQNm11Jk9btKi0/kJHPltQsbIZBRKAv/eNjiA72c5QHBfljlJbw+ba3Mfs8XIcRiztYsOFHiqx2Wkf6seXbPexr2LhC1ysRZyofd6qZCZIan+Xk/gwOE8OpQli/P4P1+zNoHOLLgHaNuCG+AVfHhqhLsVSgpJSIiIgH8zFBwQ8bCe08kLXfn1ZSSqQeMwyDr9Ny2HHsLADNIwLoHx+DnwaxlnO2HznDmj2nMAH3XBvBjsPWi3a9EnGG88edOnXoe8KjmjG4TQu+/XYHhwt9yTKFcyLPytJtR1m67SiRAT5cd0UUXVtE0rV5BM0iAtSKysspKSUiIuLh8vZ8SmjngXyakkF+iZVgP93eReqbUpudz1IzOZRVCEDHxqFcd0WEWhyIQ0ZeMU/+bx8Aw65tTNtoX3YcdnFQ4hXKx50qys2g5NwEfGFmK9dG+9OkdTO279zDyWIzZ00hnCmys25fBuv2lQ3EHxlgJi7Kj9YRFrrFN6N9kzCigvx+4WhS3+hTq4iIiIcrOb6XRkE+nCyws2RLGg/1vfAYNCLimc4WlbJ+XwZZBaX4mOD6VlG0aRji6rDEjeQVW5n47vecziuhaagvg67w0ThS4hb8zD40thTRNCSY5nHN2X/oCMG+Jo4U+7M/s5gzRTa2Hy9k+/FCln//PQBh/r40CDLRMNiX2GBf4po0IDLIj4hACxGBFsICfAn0NZFx6hjmc4n55s1bYDabXVlVqSGvS0plZmby+OOPs23bNsxmM4MHD+bRRx/F19frToWIiJzH0+8PI+L9eWFnIcu+PsrA9g1pFR3s6pBE5DIZBnx/Mpeth7Ox2g0CLT4ktm1AbKi/q0PzGp5wbzh5tog/v7OHlPR8Qvx8aGE7yXu77RpHStyO2ceEf/5psvPyaHdlPEHH92CKuRLfyCYcyzhDsc1EehGcLbZythgOnCkt23Bf7kX36WsCH2xE+KcRGuhHiMVETJCZ2GALMUFmrrmyKc2jgokOsji6CdpsNtLSjjj20bx5C3x9ldByFfe5mtaRhx9+mNjYWDZu3EhGRgZjx45l6dKl3Hfffa4OTUREXMjT7w+dGlro0yqQLw5mMeHt73hxREeaRWgqZhFPZLMbBF11PRvPBJKbfgaARqH+3BgfTYi/1318dyl3vjcUltpYvesEL395mIISG+H+PtwXb+dgbgONIyVurby7X3b6CXwsdlo2CSM4cx95RXn0vCKO1NT9+EY1IyCqMceOHye/1I45IITC4lJ8fC0UWMF2rpug1QAwc7oITheVVD7Y9iwAAnx9aBIeQLOIQEJNxaQcOU5MZDj23HQeutmgbVyrOqu/VORVd7XDhw+zbds2NmzYQGBgIM2bN2fcuHE89dRTbnFjERER16gv94fHfhXPH9/aSVp2Eb97fQcjuzbl5rYNNYioiJsrKLGRll3Iwcx8vk7L4eO9eTQY8ii5VvAzm+jSPIJ2jTRjVV1zh3uDYRhY7QZFpXZyi62kZRdy5Ewhu4+f5YuDWeQWWwEI8ymhZwN/NnzznVpHiccKi46lYZPm5GWexMfPRssmYYRk7sMnLJiWbVpwcPd28vLyaHZlPIf27SYk9goatYznx73fYbcEEtXkCtJ+TKXYJxBzSCRnzuZhM0xkl0CR1c7BzAIOZhaUH439pwwghi3vHKVByGmaRATiby8hKtBMVKCZ5g1jCA2wEOxvJtjPl2A/M4EWM75mE74+5S8fx89mH1ONr9M2u0GpzU6pzaDUbsdmNygptXH02DHshoGvj4nWLZsTFuCHr7l+TW7hVUmplJQUIiIiiI2NdSxr3bo1x48f5+zZs4SFhVVpPz4+Zc2pq8pkgqCgQPwtPhfdLjQk5BdnTvml8svZtqrl/hYf/Mw+2C5QB1fHVtVyk4kKdXCn2KpaXl4Hd4ytKmUm009/T7XxXric2KpaXtP3Qm3HFhQUhE8V70/l90o92/zEGfeH6t4bfH3NhIaGkpd+jKzLGJg8N/0YoaGhHDp0ELPZzKTO/izaaSctz87rXx3j9a+OYfGBCD8Tof4mLD5lM/aZTCZ8ALMPlP8pmEwmjOpU4gIudx8mE1h8fSm12lweizP3U9/OiwGYMGFw4f38fPeXOtqlwvl5cdnxwddixlpqKys3zi//5R1W2t+5BVU9N5XWOH9BFfZhGFBihyIr5FsN8kt/tr6PmUBbNk39S7i6YRB+1kKyj14yrHPHh3w/P/LOXRvMZnOV7w/nwpdzXPHskF1YymNrfiDtTAElVoNSm8EvDQvVKtKf3g1sZKZnEREUQoG/H6V5Z8jPPElpfg4+pSVV+n9B1klK8rKxYqn2tu7wf3eMH6jyNmZrCXkZx7EW5GByk3Pqrr+DQP9A/C2+BPtbMBWcwZyfSUBRJj72QGLsERSVnMLHL5AmkSEczUghPz+PmMbNyco5S48ObbEHRHDwdDY/pBdRYg4gv8SODR8KS+0cSM8/9846120wJf/Cb7xfer9T9tnKx2SCsn9ln7PK/28yOZZZ7QZWe1lCqmrDv6UDYPExEWAxEWAu+7+vjwmL2YS/nxmb1e64Bxn8dO05//8Ws4nkG9pwbdOqXcPK1db9wWQ449Oah3j33Xd57rnn+OyzzxzLjhw5QmJiIp9//jmNGjVyXXAiIuIyuj+IiMjP6d4gIlL76le7r0sICgqisLCwwrLyn4ODNSCsiIi30v1BRER+TvcGEZHa51VJqfj4eLKzs8nIyHAsO3DgAI0aNSI0NNSFkYmIiCvp/iAiIj+ne4OISO3zqqRUy5Yt6dKlC7NmzSIvL4+0tDQWLlzI8OHDXR2aiIi4kO4PIiLyc7o3iIjUPq8aUwogIyODv/3tb2zduhUfHx+GDh3KxIkTMZvNrg5NRERcSPcHERH5Od0bRERql9clpURERERERERExPW8qvueiIiIiIiIiIi4ByWlRERERERERESkzikpJSIiIiIiIiIidU5JKRERERERERERqXNKStVQVlYWiYmJbN261bHs888/Z+jQoSQkJDB48GDWr19fYZvVq1eTmJhIp06dSEpKYseOHY4ym83G3Llz6dWrFwkJCYwdO5bTp0+7VR0Mw+DFF1+kf//+dO7cmUGDBvHBBx94VB3Ot2nTJq6++mqOHj3qcXX48MMPuf322+nUqROJiYmsXLnSo+pgt9t57rnn6Nu3L126dOGOO+5g27ZtdV6HvXv3cs8999CtWzd69+7N5MmTycrKAmDnzp2MGDGChIQE+vfvz4oVKyps6y7v55rWwR3fz94kMzOTcePG0bVrV7p3787MmTOxWq2uDqvWrV27lnbt2pGQkOB4TZo0Cbi895ynutC101OuPbXpQudl+vTpXHPNNRX+dt58801HeX09L/XhPiWu46nXmPrwd79582ZGjBhB586d6d27NzNmzKCoqMij6mCz2Rg1ahRTpkxxLPOU2Gvr80Zd1SE7O5vJkyfTvXt3rrvuOsaNG+c4jifEX22GVNtXX31l/OpXvzLatGljbNmyxTAMw/juu++M9u3bG2+99ZZRWlpqbN++3UhISHCUb9myxUhISDC++uoro6SkxPjnP/9pdO/e3SgoKDAMwzBeeOEFY9CgQcbx48eN3Nxc4+GHHzbuv/9+t6rDP//5T6N///5GamqqYbfbjY8//tjo0KGDsXPnTo+pQ7nTp08bvXv3Ntq0aWOkpaU5lntCHTZv3mx06tTJ+Oyzzwy73W5s3rzZuOaaazzq97Bs2TLjtttuM06ePGnYbDbjn//8p9GpUyejqKiozupQWFho9O7d23j++eeN4uJiIysry7j//vuNBx54wMjOzja6detmvP7660Zpaanx5ZdfGgkJCY5z7C7v58upg7u9n73N3XffbTzyyCNGQUGBceTIEWPgwIHG4sWLXR1WrZszZ44xZcqUSssv9z3niS507fSUa09tutB5MQzD+PWvf228/fbbF9ymvp6X+nCfEtfx1GtMffi7z8zMNDp06GCsWrXKsNlsxqlTp4zbb7/deP755z2mDoZhGPPmzTOuuuoq49FHHzUMwzP+fsrV1ueNuqrD3XffbSQnJxs5OTlGbm6u8eCDDxpjxozxmPirS0mpanr77beNG264wXj//fcrXOSfeuopY9SoURXWfeKJJ4w//elPhmEYxiOPPGJMmzatQvktt9xirFy50jAMw+jbt6/x3nvvOcrS09ONtm3bGkeOHHGbOjz//PPGqlWrKpQPHTrU+Oc//+kxdTAMw7DZbMbvfvc7Y968eZWSUp5QhwceeMB49tlnK5Tv27fPOHPmjMfUYcaMGcYtt9xiHD9+3LBarcbSpUuNHj16OJJSdVGHAwcOGH/4wx8Mq9XqWPbRRx8ZnTt3Nt566y3j5ptvrhT/5MmTDcNwn/fz5dTBnd7P3ubQoUNGmzZtjJMnTzqWvf/++8YNN9zgwqjqxsiRI43XX3+90vLLfc95motdOz3l2lNbLnZeiouLjfbt2xv79++/4Hb19bzUh/uUuIYnX2Pqy999bm6uYRiGYbfbjX379hmJiYnGv//9b4+pw5dffmncdtttxvjx4x1JKU+J3TBq7/NGXdRh9+7dRocOHRx/Q4ZhGGfOnDH279/vEfHXhLrvVVOfPn1Yv349t912W4XlNpuNoKCgCst8fHw4ePAgAKmpqbRp06ZCeVxcHHv37iU3N5eTJ09WKI+JiSE8PJx9+/a5TR3Gjx9PUlKSo+zAgQOkpKTQvn17j6kDwMKFC4mOjmbYsGEV1vOUOuzatYuIiAjGjBlD9+7dGTJkCEeOHCEiIsJj6nDXXXdRVFTEDTfcQIcOHZg3bx7z58/H39+/zurQqlUrXn31Vcxms2PZhx9+SPv27UlJSbno+xXc5/18OXVwp/ezt0lJSSEiIoLY2FjHstatW3P8+HHOnj3rwshql91uZ8+ePXz22WfceOON9O3bl8cff5ycnJzLes95ootdOz3l2lNbLnZe9u7di9VqZf78+fTq1YsBAwbwyiuvYLfbgfp7XurDfUpcw5OvMfXl7z4kJASAfv36MWjQIBo0aEBSUpJH1CEzM5OpU6fyzDPPEBgY6FjuCbFD7X3eqKs67Nq1i7i4ON566y0SExPp06cPc+fOpUGDBh4Rf00oKVVNDRo0wNfXt9LyxMREvvjiCz788EOsVitff/01a9eupbi4GID8/PwKb2qAgIAACgoKyM/PB6j0EB8QEOAoc4c6nO/HH3/k/vvvZ/DgwVx33XUeU4dt27bx3nvv8be//a3Stp5Sh5ycHF577TXGjh3Lpk2bSE5OZsKECezcudNj6lBaWkq3bt343//+xzfffMN9993H+PHjSU9Pr/M6QNn4Ss899xyffvopU6dO/cX3K7jX+7mmdTifq9/P3uZCv5vyny/0+6kvsrKyaNeuHQMGDGDt2rUsX76cQ4cOMWnSpMt6z3mii107PfHa40wXOy+5ubl069aNUaNG8fnnn/PUU0/x73//myVLlgD1/7xA/bhPSd2pL9eY+vB3v27dOjZs2ICPjw/jx493+zrY7XYmTZrEPffcw1VXXVWhzN1jL1dbnzfqqg45OTns27ePQ4cOsXr1at555x1OnTrFo48+6hHx14SSUk7SuXNn/vGPf7BgwQJ69+7Na6+9RlJSEmFhYUDZA0f54HblioqKCA4OdvzhFBYWXrC8rlyqDuU++eQT7rzzTm6++WZmzpwJ4BF1yMrKYsqUKTz11FOOby/O5wl1APDz82PYsGEkJCTg6+vLzTffTM+ePfnwww89pg6TJ0+mb9++tGrVioCAAJKTkwkNDeWDDz6o8zrk5eUxfvx41qxZw+uvv07btm1/8f0K7vd+rkkdyrnz+7m+CgoKqnRuy3+uz+c3JiaGZcuWMXz4cAIDA2nSpAmTJk1iw4YNGIZR4/dcfeJp15660rt3b/71r3/RrVs3LBYLHTt25Pe//z1r164F6v95qQ/3KXEPnvR3U1/+7gMCAoiNjWXSpEls3LjR7evw8ssv4+fnx6hRoyqVuXvs5Wrr80Zd1cHPzw+AqVOnEhISQkxMDA8//DCff/65R8RfE0pKOUl2djbx8fGsWbOGrVu3snDhQk6cOME111wDQHx8PCkpKRW2SU1NJT4+nvDwcGJjY0lNTXWUpaenk52dXan5nSvrAPDiiy/yyCOP8PjjjzNlyhRMJhOAR9Rh48aNZGZm8oc//IGuXbsyePBgAAYPHswrr7ziEXWAsm4+JSUlFbax2WwYhuExdTh+/HilOvj6+mKxWOq0DkeOHGHYsGHk5eWxcuVK2rZtC0CbNm0u+n4F93o/17QO4P7v5/oqPj6e7OxsMjIyHMsOHDhAo0aNCA0NdWFktWvv3r08/fTTGIbhWFZSUoKPjw8dO3as8XuuPvGka09d+uijj1i+fHmFZSUlJQQEBAD1+7zUh/uUuA9P+bvx9L/7b775hltuuaXCZ92SkhIsFgtxcXFuXYd3332Xbdu20bVrV7p27cp///tf/vvf/9K1a1ePOf+19XmjruoQFxeH3W6ntLTUsay8u/rVV1/t9vHXiKsGs6oPzh848NtvvzU6depk/PDDD0Zpaanx/vvvGx07dnQMylk+Mv7mzZsdI+Ffd911jsGpn3vuOeP22283jhw54hgJ/+6773arOixZssTo0qWLsWfPngvuyxPqcL60tLRKA517Qh1WrlxpXHvttcamTZsMm81mfPDBB0b79u2N7777zmPqMHHiRCMxMdE4cuSIUVJSYixdutTo2rWrY+DnuqhDdna2ccMNNxhTpkwxbDZbhbKsrCyja9euxj//+U+jpKTE2Lx5s+P9axju836+nDq46/vZW/zmN78xJkyYYOTm5jpm35s/f76rw6pVJ06cMDp16mS88sorRmlpqXHs2DHjjjvuMP7yl79c9nvOk51/7fSUa09dOP+8rFu3zujYsaPx5ZdfGna73fjmm2+M7t27G++8845hGPX3vNSH+5S4nqddY+rD331eXp7Rr18/Y9asWUZxcbFx9OhRY/jw4cb06dM9pg7lHn30UcdA554Se21+3qiLOpSUlBiJiYnGQw89ZOTl5RmZmZnG7373OyM5Odkj4q8JJaUuw8+nK/7Pf/5j3HjjjUanTp2MpKQk48svv6yw/jvvvGMMGDDA6NSpkzF8+HDj22+/dZSVlJQYTz31lHH99dcbnTt3NsaOHWtkZGS4TR3sdrvRpUsXo127dkanTp0qvBYtWuQRdfi5CyWlPKUOb7/9tnH77bcbnTp1MgYOHGisW7fOo+qQl5dnzJgxw7j++uuNrl27GiNHjnRMZVpXdViyZInRpk0b49prr630N20YhrFr1y7jzjvvNBISEoybbrqp0kx17vB+rmkd3Pn97C3S09ONhx56yOjWrZvRo0cPY86cORVmGqqvtm7d6vib7NGjhzFjxgzHrJuX857zZD+/dnrCtacu/Py8vPHGG8bNN99sXHvttcZNN91UaVal+nhe6sN9SlzP064x9eXvPiUlxbjnnnuMrl27GjfeeKPx7LPPGsXFxR5VB8OomJTypNhr6/NGXdXh5MmTxsMPP2z07t3b6Nq1qzF58mQjJyfHY+KvLpNhnNeuTUREREREREREpA5oTCkREREREREREalzSkqJiIiIiIiIiEidU1JKRERERERERETqnJJSIiIiIiIiIiJS55SUEhERERERERGROqeklIiIiIiIiIiI1DklpUREREREREREpM4pKSUiIiIiIiIiInVOSSkREREREREREalzSkqJiIiIiIiIiEidU1JKRERERERERETqnJJSIiIiIiIiIiJS55SUEhERERERERGROqeklIiIiIiIiIiI1DklpUREREREREREpM4pKSUiIiIiIiIiInVOSSkREREREREREalzSkqJiIiIiIiIiEidU1JKRERERERERETqnJJSIiIiIiIiIiJS55SUEhERERERERGROqeklIiIiIiIiIiI1DklpUREREREREREpM4pKSUiIiIiIiIiInVOSSkREREREREREalzSkqJiIiIiIiIiEidU1JKRERERERERETqnJJSIiIiIiIiIiJS55SUEhERERERERGROqeklIiIiIiIiIiI1DklpUREREREREREpM4pKSUiIiIiIiIiInVOSSkREREREREREalzSkqJ1AHDMOrlsUREREREpO7os77UN0pKiTjZ2rVrufHGG+nQoQNPPPEEqamp/OY3v6n2fqZMmUL//v2rtc2ljvXdd9/Rvn17jh49Wqmsd+/etG3bttIrPT292rGLiHiq/v37M2XKFFeHISIiUsnHH3/Mo48+6vh569attG3blq1bt7owKpHL4+vqAETqm7/+9a+0bNmSOXPmEBsby5o1a9ixY0edHPt///vfRY+1d+9eHnjgAaxWa6WyjIwMMjIyeOyxx+jUqVOFsoiIiFqIVEREREREqmPp0qUVfm7fvj1vvvkmcXFxrglIxAmUlBJxsuzsbHr37k337t1dHQoAJSUlvP766zz//PMEBARccJ3vv/8egMTERJo2bVqX4YmIiIiISA2EhIRU+kJZxNOo+57Iefbs2cPvf/97unTpQkJCAqNHj2bnzp2O8g8++IDBgwfTsWNHhg4dyo4dO2jXrh1vv/22o/kswIsvvkjbtm2ZMmUKCxYsAKBt27a88MILNY7NZrOxbNkyBg0aRMeOHbnhhht4+umnKS4uBuCFF1644LE2bNjAggUL+OMf/8jEiRMvuO+9e/cSFhamhJSICFBaWso//vEPevfuTadOnbj33ns5fPiwo3zTpk389re/pUuXLnTv3p1HHnmEEydOOMrffvtt2rZtW6mr9M+7Bn755ZfceeedJCQkcN111zFu3DgOHjxYYZuPPvqIpKQkOnToQO/evfn73/9OQUFBtet09OhRJk+eTJ8+fWjfvj09e/Zk8uTJnDlzpkK9n376afr27UvHjh35wx/+wDvvvFOpLl999RV333031157Ld26dePRRx8lKyur2jGJiNSV/v37M2vWLH7/+9/TuXNnnnjiCbKzs3niiSfo1asXHTp04I477mDz5s0Vtmvbti3Lli1j6tSpdOvWjYSEBMaPH09GRkaF9dauXUtSUhIJCQn07t2bJ554gpycHAC++eYb2rZty0cffVRhmwMHDtC2bVv+97//AZe+To8aNYpt27axbds2R5e9C3Xf2717N3/4wx/o3r07nTt35o9//CMpKSmO8vJtNm/ezL333su1115Lr169mDt37gV7VFzKihUrSEpKolOnTnTs2JEhQ4awdu3aCuvs2LGDkSNH0qlTJ2644Qb+7//+j9GjR1e4JxYXF/OPf/yDfv36cc011zBo0KBK+5H6SUkpkXPy8vK47777iIyMZP78+Tz33HMUFhbyhz/8gdzcXD7++GP+9Kc/ER8fz4IFC7j55psZO3Ysdrsd+Kn5LMDw4cN58803eeihhxg+fDgAb775JiNGjKhxfE888QSzZs2if//+LFq0iJEjR/L6668zbtw4DMNgxIgRFzxWhw4d+OSTTxg7dixms/mC+/7hhx8ICwvjwQcfdCTkJkyYwOnTp2scr4iIp1q7di0pKSnMmTOHJ554gt27dzNhwgQA3n33Xe69915iY2N59tlneeyxx9ixYwd33nknmZmZVT5GWloaY8eOpX379ixatIi///3vHDx4kDFjxjjuK2vWrCE5OZlWrVrx4osv8uCDD/Lee+85rvtVVVhYyO9+9zsOHDjA9OnTee2117j77rv573//y7PPPutY74knnuD//u//uPvuu3nxxReJiYnh8ccfr7Cv7du3M3r0aAICApg3bx5/+ctf2LZtG7/73e8oKiqqckwiInVt2bJlji9uhwwZwu9//3s+/vhjJkyYwIIFC2jUqBH33XdfpcTUc889h91u59lnn2Xy5Ml89tlnzJo1y1G+cOFCJkyYwLXXXsv8+fNJTk7mww8/ZNSoURQVFdG5c2euuOKKSgmWNWvWEBoaSv/+/at0nZ4+fTrt2rWjXbt2vPnmm7Rv375SHbds2cJvfvMb7HY7M2fO5O9//zsnTpzgrrvu4sCBAxXWnThxIl26dOGll15i0KBBLFmyhJUrV1b7nD7xxBPcdNNNvPzyyzz11FNYLBYmTZrE8ePHgbLk2+jRowF49tlneeihh3jllVf4+uuvHfsxDIPk5GSWL1/OPffcw6JFixzPI++88061YhLPo+57IuekpqaSlZXFqFGj6NKlCwCtWrVi+fLl5OXl8eKLL3LNNdfwzDPPANC3b19MJhPz5s0DKjafbdSoUYX/A5fVtDY1NZWVK1fy8MMPM3bsWKBsYPKGDRsyefJkNmzYQL9+/S54rNjY2Evu/4cffuDUqVPccccdjB49mgMHDjB//nxGjRrF6tWrCQoKqnHsIiKeJjY2loULF2KxWAA4fPgwL730Enl5eTz11FP06tWL5557zrF+586due2221iyZAmTJk2q0jF27dpFUVERDzzwgOM63bhxYz7++GMKCgoIDg7m6aef5vrrr+fpp592bNeyZUtGjx7N559/zg033FClYx06dIhGjRoxZ84cWrRoAUCPHj3YvXs327ZtA+DIkSOsXr2aRx99lHvuuQeA66+/noyMDL744gvHvp555hmuvPJKXn75ZccXHddeey0DBw5k1apVjBw5skoxiYjUtYYNGzJlyhR8fHx466232Lt3L2+99RbXXnstUPbZftSoUTz99NOsWrXKsV2bNm2YPXu24+ddu3bxwQcfAJCTk8OiRYsYMWIE06dPr7DNyJEjefvtt/ntb3/L4MGDee211ygsLCQwMBCA999/n1tuuQV/f39++OGHS16n4+LiCAkJAS7+XPHMM8/QvHlzXn31Vcc1uk+fPiQmJvLCCy84nlsARowYQXJyMgA9e/bko48+4rPPPuOuu+6q8jlNS0vj3nvvdewHoFmzZiQlJfHNN9/QpEkTXn75ZUJCQnj11VcddW/VqlWF43z55Zds3LiR5557jttuuw0ouwcVFhby9NNPc/vtt+Prq9RFfaWWUiLnxMfHExUVxdixY5k+fTqffPIJDRo0YPLkyURERLBnzx5uuummCtsMHjy4TmIrvxkNGjSowvKBAwdiNpsve8aN2bNn89Zbb/HAAw/QtWtX7rzzTubPn8+hQ4f07YSIeJ2OHTs6ElIAzZs3B8rG30tPT690LW7RogUJCQnVuhZfe+21+Pv7M3z4cGbPns2XX37JVVddxYQJEwgJCeHgwYOcPHmS/v37Y7VaHa/rrruOkJAQNm3aVOVjXX311fznP/+hWbNmpKWlsXHjRpYsWcLBgwcpLS0FyrpzGIbBLbfcUmHb22+/3fH/wsJCdu7cSb9+/TAMwxFT8+bNad26dbViEhGpa61bt8bHp+zxd/PmzTRo0ID27ds7rmU2m40bb7yR7777ztH1DiongBo1akRhYSEA3377LSUlJZXuC127dqVp06aO+8KQIUMoKCjg008/BcoSW0eOHGHIkCFA1a7Tl1JQUMDu3bu57bbbKvSOCAsL48Ybb6x0j0pISKhUr+p2D58yZQqTJk0iNzeX3bt3s2bNGpYtWwbgiHvLli3069fPkZAqP/b5w4Zs3rwZk8lEv379Ktzz+vfvT3p6eoXuh1L/KN0ock5wcDDLli1j0aJFrF27luXLlxMYGMjgwYMd2f+oqKgK21SlFZIzlN8YGzRoUGG5r68vkZGR5ObmXtb+f35TAujSpQuhoaHs3bv3svYtIuJpft46tPwhpvxDfkxMTKVtYmJiHJNGVEWzZs14/fXXeeWVV3jrrbdYunQpYWFh/Pa3v+VPf/oT2dnZQNmMrn/9618rbV/d7tX//Oc/efnllzlz5gwxMTG0b9+ewMBAx/2jfEyo6OjoSvUqd/bsWex2O4sXL2bx4sWVjuHv71+tmERE6tL517Ps7GzS09Mv2AUOID09nfDwcIAKyRQouyeUd6Eu/4x+sftC+TW2efPmdO7cmffff5/bbruNNWvW0LRpU7p27epY/1LX6UvJzc3FMIxLxlLu5xMgnV+vqjpy5AhPPPEEW7ZswdfXl1atWjnG2C3fV1ZWVqV7C1R8rsnOzsYwDDp37nzB45w+fZqrr766WrGJ51BSSuQ8rVq14qmnnsJms7Fr1y7effdd3njjDRo2bIiPj0+lQQ3LHxpqW/lNMT09nWbNmjmWl5aWcubMGSIjI2u877Nnz7Ju3To6depUYTpZwzAoLS29rH2LiNQnERERAJXuBVB2fS6/XppMJgDH2FDl8vPzK/zcsWNHFixYQElJCV9//TVvvvkmL730Em3btiU+Ph6AyZMn061bt0rHK78vVMWaNWuYM2cOjzzyCMOHD3d8wfKnP/2J3bt3Az99yZKZmUnjxo0d254/TlZwcDAmk4nRo0czcODASsf5+YObiIi7Cg0NpWXLlhW6R5/v/M/bv6T8WpyRkUHr1q0rlKWnpzta2kJZa6mZM2eSm5vL//73P4YNG+a4X1TlOl2VOplMpoveo8rvYc5it9sZM2YMFouFt956i3bt2uHr60tqairvvfeeY71GjRpdcMzFzMxMrrzySkfsQUFB/Otf/7rgsa644gqnxi7uRd33RM754IMP6NGjB+np6ZjNZhISEnjyyScJCwsjKyuLhIQEPvzwwwoPGeVNcH9J+Tfsl6P8gWTNmjUVlr///vvYbDbHGFg1OZbFYuGvf/0rr7zySoXlH3/8MUVFRXTv3r2GUYuI1C9+fn40aNCg0rU4LS2Nb7/91vENb/mYH+fPyHfw4MEKX2QsXbqU/v37U1JSgp+fHz179mTGjBmO7Vq1akV0dDRHjx6lQ4cOjlejRo145plnqtUq6+uvvyY0NJQxY8Y4HnTy8/P5+uuvHfe0Ll26YDabWbduXYVtz/85JCSEdu3acfDgwQoxlU8AcrldyUVE6kq3bt04ceIE0dHRFa5nmzdvrjAe06Vce+21+Pn5VbovfPXVVxw/frxCy59bb70VgOeff5709PQKw4BU5ToNv/xZPygoiGuuuYa1a9dis9kcy3Nzc/nss88czwvOcubMGX788UeGDx9Ox44dHWM+bdiwAfjpi5nrrruODRs2OGYMh7LxbM+f1bVbt24UFBRgGEaF30dKSgovvvhijWYFFM+hllIi53Tu3Bm73U5ycjJjxowhODiY//3vf+Tm5nLzzTdz2223MXr0aMaNG8dvfvMbjhw5wvPPP3/J/YaFhQHw3//+l2uvvbbCNyZVFRcXx69//WsWLFjgSBT98MMPLFiwgO7du3P99dfX+FiBgYHcd999LFy4kOjoaPr27cu+fft44YUXuOGGG+jVq1e14xURqY9MJhN//vOfeeyxx5gwYQJDhw7lzJkzLFiwgPDwcMcA4T169CAwMJA5c+bw8MMPk5+fz4IFCyp8S92jRw+efvppkpOTufvuuzGbzSxfvhw/Pz9uvPFGzGYzEyZM4IknnsBsNnPjjTdy9uxZFi5cyKlTpy7a5eRCOnbsyBtvvMGcOXO48cYbOX36NK+99hoZGRmOb/mbN2/OsGHDePbZZyktLeWqq65i/fr1ji9fyh+E/vznPzNmzBgeeeQRBg8ejM1mY8mSJezcudMxEYeIiLtLSkri9ddf55577uGPf/wjjRs35ssvv2Tx4sXcfffdFcYV/CURERGMGTOGBQsWYLFYuOmmmzh69CjPP/88cXFxJCUlOdYNDw/nxhtv5D//+Q8dOnSo0LKqKtdpKPusv2PHDjZv3ky7du0qxfPII4/whz/8gfvuu4+7776b0tJSXnnlFUpKSnjwwQcv44xVFh0dTdOmTVm2bBmNGjUiLCyML774gv/7v/8DcIy79cc//pG1a9dy3333ce+993L27Fmef/55TCaTo6VYv379uO666xg3bhzjxo2jdevW7Nq1ixdeeIE+ffpUGkJF6hclpUTOadiwIa+++irPP/88U6dOpbCwkPj4eF544QV69OgBwGuvvcZTTz1FcnIyV1xxBY8++ijTpk37xf3efPPNvPvuu0yZMoXhw4fz5JNP1ii+mTNncsUVV7Bq1Spee+01GjZsyKhRo0hOTnY8LNT0WA899BAxMTG88cYbLFu2jIiICO68807Gjx9fo1hFROqrpKQkgoODefnll0lOTiYkJITrr7+eP//5z47xMUJDQ5k/fz7PPPMMycnJNG3alAcffLDCxBFXXXUVL730Ei+++CJ//vOfsdlsXHPNNSxZsoRWrVoBZTMjBQcH8+qrr/Lmm28SFBRE586defrpp6v1Bcevf/1rjh49yqpVq/jPf/5DbGws/fr147e//S2PP/44qampxMXF8fjjjxMUFMSSJUvIy8ujZ8+ejB07lhdffNExzlafPn147bXXWLBgAePHj8disdC+fXv++c9/XtYssyIidSkoKIhly5bxzDPP8NRTT5Gbm0vTpk155JFHuPfee6u1r/LP0a+//jorVqwgIiKCW265hYcffrhSt+bBgwfz4YcfVposqarX6ZEjR/Ldd99x//33M3v2bBo2bFhhPz179uSf//wn8+fP589//jN+fn507dqVuXPnOrqFO9PChQuZOXMmU6ZMwc/Pj7i4OBYtWsSsWbP46quvGDVqFFdccQWvvfYa//jHPxg/fjzR0dE88MADLFq0iODgYKDsi49XXnmF559/npdffpnMzExiY2MZPXp0hZn9pH4yGdUdzUxEHI4ePcpNN93E7NmzK3wTIiIi4kmys7PZsGED119/fYWxBOfOncvbb7+trnkiIlIjmzdvxmKxVBjUPScnh969ezN58mR+97vfuTA6cQdqKSVShwzDqNDH+2LMZrOjOauIiMiF2Gy2S86UZDKZqjQ2SmBgIDNnzuTqq6/m97//PUFBQXzzzTf8+9//5o9//KOzQhYRETfn7OeVPXv2OFputW/fnjNnzrBkyRJCQ0O5/fbbnRGyeDglpUTq0OrVq3nssccuuZ5aXomIyKUkJiZy7NixX1ynadOmfPLJJ5fcl7+/P0uXLmXevHlMmTKFwsJCWrRowZQpUxg5cqSzQhYRETfn7OeVe++9l5KSEt544w1OnDhBUFAQ3bp1Y+7cuRorSgB13xOpU2fOnKkw08TFNGvWrEL3CRERkZ/bt28fJSUlv7iOn58fbdu2raOIRETE0+l5ReqaklIiIiIiIiIiIlLnfFwdgIiIiIiIiIiIeB8lpURERERExG1lZ2czefJkunfvznXXXce4ceM4ffo0ADt37mTEiBEkJCTQv39/VqxYUWHb1atXk5iYSKdOnUhKSmLHjh2OMpvNxty5c+nVqxcJCQmMHTvWsV+AzMxMxo0bR9euXenevTszZ87EarXWTaVFRLyEklIiIiIiIuK2HnroIQoKCli/fj2ffvopZrOZxx9/nJycHMaMGcPQoUPZvn07M2fOZPbs2ezatQuArVu3MmPGDObMmcP27dsZPHgwY8eOpbCwEIBFixaxadMmVq1axcaNGwkICGDatGmO4z788MMEBQWxceNGVq5cyebNm1m6dKkrToGISL2lMaVERERERMQtfffdd/z2t7/lyy+/JCQkBChrOZWens63337Lq6++yocffuhYf/r06RQVFTF37lwmTpxIYGAgM2bMcJTfeuut3HfffQwbNox+/foxceJEBg0aBEBGRgZ9+vRh/fr12O12br75ZjZs2EBsbCwAa9eu5amnnuLTTz+twzMgIlK/+bo6AE+UmZlLdVJ5JhNER4dWe7v6wtvrDzoH3l5/cM9zUB6TOIc7/W5/zh3//qpLdXAPqoN7qM06uNu9YdeuXcTFxfHWW2/xxhtvUFhYyPXXX8+jjz5KSkoKbdq0qbB+XFwcK1euBCA1NZVhw4ZVKt+7dy+5ubmcPHmywvYxMTGEh4ezb98+ACIiIhwJKYDWrVtz/Phxzp49S1hYWJXroGeHqvHWeoP31l319qx619b9QUmpGjAMavTHU9Pt6gtvrz/oHHh7/UHnoD7zhN+tJ8R4KaqDe1Ad3EN9qMOl5OTksG/fPq655hpWr15NUVERkydP5tFHHyUmJobAwMAK6wcEBFBQUABAfn7+Rcvz8/MBCAoKqlReXvbzbct/LigoqFZSSkRELk5JKRERERERcUt+fn4ATJ06FX9/f0JCQnj44Ye54447SEpKoqioqML6RUVFBAcHA2VJpAuVR0ZGOhJM5eNL/Xx7wzAqlZX/XL7/qqppywJ3arFWl7y13uC9dVe9vZuSUiIiIiIi4pbi4uKw2+2Ulpbi7+8PgN1uB+Dqq6/mP//5T4X1U1NTiY+PByA+Pp6UlJRK5X379iU8PJzY2FhSU1MdXfjS09PJzs6mTZs22O12srOzycjIICYmBoADBw7QqFEjQkOr9yCp7ntV4631Bu+tu+rtWfWure57mn1PRERERETcUq9evWjevDl/+ctfyM/PJysri+eee45f/epX3H777WRkZLB06VJKS0vZsmULa9ascYwjNXz4cNasWcOWLVsoLS1l6dKlZGZmkpiYCEBSUhKLFi0iLS2NvLw8Zs2aRbdu3WjRogUtW7akS5cuzJo1i7y8PNLS0li4cCHDhw+vdh3Ku1lW51XT7Tz95a319ua6q96e9aoNSkqJiIiIiIhbslgs/Pvf/8ZsNjNgwAAGDBhAo0aNmDVrFpGRkSxZsoQPPviA7t27M23aNKZNm0aPHj0A6NmzJ9OnT+fJJ5+kW7duvP/++yxevJiIiAgAkpOT6devHyNHjqRfv34UFxczb948x7Hnz5+P1Wrlpptu4o477uD6669n3LhxLjgLIiL1l8kwaivfVX9lZFS/CW5MTGi1t6svvL3+oHPg7fUH9zwH5TGJc7jT7/bn3PHvr7pUB/egOriH2qyD7g3Op2eHqvHWeoP31l319qx619b9QS2lRERERERERESkzikpJSIiIiIiIiIidU5JKRERERERERERqXNKSomIiIiIiIiISJ1TUkpEREREREREROqcklIiIiIiIiIiIlLnlJSqI4ZhOF4iIiIiIiI/l11Qyu9f38G/Nx9ydSgiInXC19UBeJOXNh7kgT6tXB2GiIh4iXsfuI/MrGwAfC1mrKW2CuXRUREseflVF0QmIiIXsudkLntO5rLi66PcGh/t6nBERGqdklJ1yWRydQQiIuJFMrOyGTjhaQCCgvwpKCiuUP7+cxNdEZaIiFyExVz2vFBcandxJCIidUPd90RERERERNyAv2/Z41mJTUkpEfEOSkqJiIiIiIi4AYu57PGs+GfdrUVE6islpeqQBjoXEREREZGL8TvXUqrYqpZSIuId3DoplZWVRWJiIlu3bnUs+/DDDxkyZAidO3emf//+LFiwALv9p4v26tWrSUxMpFOnTiQlJbFjxw5Hmc1mY+7cufTq1YuEhATGjh3L6dOn67ROIiIiIiIiF+JvVlJKRLyL2yalvv76a+68806OHDniWPbdd98xefJkHn74Yb766isWL17M22+/zdKlSwHYunUrM2bMYM6cOWzfvp3BgwczduxYCgsLAVi0aBGbNm1i1apVbNy4kYCAAKZNm+aK6omIiIiIiFTwU0spdd8TEe/glkmp1atXM3HiRCZMmFBh+bFjx7jrrru48cYb8fHxoXXr1iQmJrJ9+3YAVqxYwcCBA+nSpQsWi4XRo0cTGRnJ2rVrHeX3338/jRs3JiQkhKlTp7JhwwbS0tLqvI4iIiIiIiLnK28pVWozsGvYDxHxAm6ZlOrTpw/r16/ntttuq7B8wIABPPbYY46fi4qK+Oyzz2jfvj0AqamptGnTpsI2cXFx7N27l9zcXE6ePFmhPCYmhvDwcPbt21eLtREREREREbm08pZSACXqwiciXsDX1QFcSIMGDS65Tl5eHn/6058ICAhg9OjRAOTn5xMYGFhhvYCAAAoKCsjPzwcgKCioUnl5WVWZTNVa3bG+yfTTy5ucX39v5e3nwNvrD+55DtwpFhEREQE/80835xKbHX9fswujERGpfW6ZlLqUgwcPMn78eKKjo/nXv/5FSEgIAIGBgRQVFVVYt6ioiMjISEeyqnx8qfPLg4ODq3X86OjQasdsGAaBgf7ExITi4+OWDdRqXU3OW33j7efA2+sPOgciIiJycWYfEz4msBvnWkr5uzoiEZHa5XFJqc8//5w///nP3HHHHTzyyCP4+v5Uhfj4eFJSUiqsn5qaSt++fQkPDyc2NrZCF7/09HSys7Mrdfm7lMzMXKrTxdtkgqioEAoLi8nIyPW6pJTJVPYgXt3zVp94+znw9vqDe56D8phERETEPZhMJvzMPhRZ7ZqBT0S8gkclpb799luSk5N58sknGT58eKXy4cOHk5yczK233kqXLl1YtmwZmZmZJCYmApCUlMSiRYvo0KEDkZGRzJo1i27dutGiRYtqxWEY1Oihsnw7d3kgrWveXPdy3n4OvL3+oHMgIiIiv8zftywpVWrTBwYRqf88qsnOSy+9hNVqZebMmSQkJDhe9913HwA9e/Zk+vTpPPnkk3Tr1o3333+fxYsXExERAUBycjL9+vVj5MiR9OvXj+LiYubNm+e6ComISLVlZWWRmJjI1q1bHcs+/PBDhgwZQufOnenfvz8LFizAbv/pG+bVq1eTmJhIp06dSEpKYseOHY4ym83G3Llz6dWrFwkJCYwdO5bTp0/XaZ1ERETKlQ92XmxTSykRqf/cvqXU+TPjvfTSS5dcf8iQIQwZMuSCZRaLhYkTJzJx4kSnxSciInXn66+/ZsqUKRw5csSx7LvvvmPy5MnMmzePfv368eOPP3L//fcTFBTEvffey9atW5kxYwaLFy+mY8eOLFu2jLFjx/Lpp58SGBjIokWL2LRpE6tWrSI0NJTHH3+cadOm8corr7iwpiIi4q38zGVJKc2+JyLewO2TUiIiIlDW2mn+/PlMmjSJCRMmOJYfO3aMu+66ixtvvBGA1q1bk5iYyPbt27n33ntZsWIFAwcOpEuXLgCMHj2aN998k7Vr1zJs2DBWrFjBxIkTady4MQBTp06lT58+pKWl0bx587qvaDXc+8B9ZGZlX7R8/4EUBtZdOCIi4gTlSSmNKSUi3kBJKRER8Qh9+vRh0KBB+Pr6VkhKDRgwgAEDBjh+Lioq4rPPPmPQoEFA2YQXw4YNq7CvuLg49u7dS25uLidPnqww4UVMTAzh4eHs27fP7ZNSmVnZDJzw9EXLv3/g9jqMRkREnKG8+16Juu+JiBdQUkpERDxCgwYNLrlOXl4ef/rTnwgICGD06NEA5OfnExgYWGG9gIAACgoKyM/PByAoKKhSeXlZVZlM1Vq9TpXHZjJVHmjfneM+3/l18FSqg3tQHaq2b3Edf1913xMR76GklIiI1AsHDx5k/PjxREdH869//YuQkBAAAgMDKSoqqrBuUVERkZGRjmRVYWFhpfLg4OBqHT86OvQyoq8ZX4uZoCD/i5abTFQoDwysuK6vxUxMTN3HfTlccZ6dTXVwD6qDuCs/c1lmUC2lRMQbKCklIiIe7/PPP+fPf/4zd9xxB4888gi+vj/d3uLj40lJSamwfmpqKn379iU8PJzY2FhSU1MdXfjS09PJzs6u0KWvKjIzcyu1Qqpt1lIbBQXFFy03DCgoKMZkKktIFRYWV4jRWmojIyO3DiK9fCZT2QO4K86zs6gO7kF1qNq+xXX81FJKRLyIklIiIuLRvv32W5KTk3nyyScZPnx4pfLhw4eTnJzMrbfeSpcuXVi2bBmZmZkkJiYCkJSUxKJFi+jQoQORkZHMmjWLbt260aJFi2rFYRiVu8a5i/K4LhSfu8Z8Me58nqtKdXAPqoO4K8dA52opJSJeQEkpERHxaC+99BJWq5WZM2cyc+ZMx/IuXbrw6quv0rNnT6ZPn86TTz7JqVOniIuLY/HixURERACQnJyM1Wpl5MiR5Ofn0717d+bNm+eayoiIiNf7qaWUMo4iUv8pKSUiIh5n3759jv+/9NJLl1x/yJAhDBky5IJlFouFiRMnMnHiRKfFJyIiUlP+5S2l1H1PRLyAj6sDEBERERERkTLlLaVK1X1PRLyAklIiIiIiIiJuwtF9T0kpEfECSkqJiIiIiIi4CT913xMRL6KklIiIiIiIiJvwM5sAKFFSSkS8gJJSIiIiIiIibsL/XPe9YnXfExEvoKSUiIiIiIiIm9BA5yLiTZSUEhERERERcRM/jSlluDgSEZHap6SUiIiIiIiImyhPSmlMKRHxBkpKiYiIiIiIuIny7nsl6r4nIl5ASSkRERERERE34RjoXC2lRMQLKCklIiIiIiLiJhzd99RSSkS8gK+rAxARERFxpnsfuI/MrOyLlkdHRbDk5VfrLiARkWoobymlMaVExBsoKSUiIiL1SmZWNgMnPH3R8vefm1iH0YiIVI/GlBIRb6LueyIiIiIiIm7Cz2wC1FJKRLyDklJ1yDAMx0tERERERC5t7dq1tGvXjoSEBMdr0qRJAOzcuZMRI0aQkJBA//79WbFiRYVtV69eTWJiIp06dSIpKYkdO3Y4ymw2G3PnzqVXr14kJCQwduxYTp8+7SjPzMxk3LhxdO3ale7duzNz5kysVmut17d8TKlitZQSES+gpFQde2XTj64OQURERETEY+zevZshQ4awY8cOx+upp54iJyeHMWPGMHToULZv387MmTOZPXs2u3btAmDr1q3MmDGDOXPmsH37dgYPHszYsWMpLCwEYNGiRWzatIlVq1axceNGAgICmDZtmuO4Dz/8MEFBQWzcuJGVK1eyefNmli5dWuv19dOYUiLiRZSUqmsmk6sjEBERERHxGLt37+aaa66ptHzdunVEREQwcuRIfH196dmzJ4MGDWLZsmUArFixgoEDB9KlSxcsFgujR48mMjKStWvXOsrvv/9+GjduTEhICFOnTmXDhg2kpaVx+PBhtm3bxqRJkwgMDKR58+aMGzfOse/a5Bjo3KbeFSJS/2mgcxERERERcUt2u509e/YQGBjIq6++is1mo1+/fkycOJGUlBTatGlTYf24uDhWrlwJQGpqKsOGDatUvnfvXnJzczl58mSF7WNiYggPD2ffvn0AREREEBsb6yhv3bo1x48f5+zZs4SFhVW5DtX9Tro8KWWzG9gMA18f7/hSu/w8eeN3+N5ad9XbtXFUV23Fq6SUiIiIiIi4paysLNq1a8eAAQOYP38+Z86c4dFHH2XSpEk0aNCAwMDACusHBARQUFAAQH5+/kXL8/PzAQgKCqpUXl72823Lfy4oKKhWUio6OrTK6wIElfw0blVYRBBBft71yFbd81WfeGvdVW/v5l1XOBERERER8RgxMTEVuswFBgYyadIk7rjjDpKSkigqKqqwflFREcHBwY51L1QeGRnpSDCVjy/18+0Nw6hUVv5z+f6rKjMzl+rMc2Q7b+Xjp84SEWip1vE8lclU9pBe3fNVH3hr3VVvz6p3edzOpqSUiIiIiIi4pb179/Lf//6XRx55BNO5viMlJSX4+PjQsWNH/u///q/C+qmpqcTHxwMQHx9PSkpKpfK+ffsSHh5ObGwsqampji586enpZGdn06ZNG+x2O9nZ2WRkZBATEwPAgQMHaNSoEaGh1XsoMwyq9eBpNpnw9TFhtRsUl9oxAqp1OI9X3fNVn3hr3VVv76aBzkVERERExC1FRESwbNkyXn31VaxWK8ePH+epp57i17/+NQMGDCAjI4OlS5dSWlrKli1bWLNmjWMcqeHDh7NmzRq2bNlCaWkpS5cuJTMzk8TERACSkpJYtGgRaWlp5OXlMWvWLLp160aLFi1o2bIlXbp0YdasWeTl5ZGWlsbChQsZPnx4ndT7p8HONQOfiNRvailVhwzDADxsNDMRERERERdp1KgRL7/8Ms8++yyLFi3C39+fgQMHMmnSJPz9/VmyZAkzZ85k/vz5REVFMW3aNHr06AFAz549mT59Ok8++SSnTp0iLi6OxYsXExERAUBycjJWq5WRI0eSn59P9+7dmTdvnuPY8+fP529/+xs33XQTPj4+DB06lHHjxtVJvf0tZvJLbEpKiUi9p6SUiIiIiIi4rW7durF8+fILlnXo0OGiZQBDhgxhyJAhFyyzWCxMnDiRiRMnXrA8JiaG+fPnVz9gJ/Azn2spZVVSSkTqN3XfExERERERcSNmn7LeFTaNNyMi9ZySUiIiIiIiIm7EkZSyKyslIvWbklIiIiIiIiJupDwpZVdSSkTqOSWlRERERERE3MhP3feUlBKR+k1JKRERERERETfiq+57IuIllJQSERERERFxIz4mtZQSEe+gpJSIiIiIiIgb8TWXjynl4kBERGqZklIiIiIiIiJupLyllFXd90SknnPrpFRWVhaJiYls3brVsWznzp2MGDGChIQE+vfvz4oVKypss3r1ahITE+nUqRNJSUns2LHDUWaz2Zg7dy69evUiISGBsWPHcvr06Tqrj4iIiIiIyKX4aqBzEfESbpuU+vrrr7nzzjs5cuSIY1lOTg5jxoxh6NChbN++nZkzZzJ79mx27doFwNatW5kxYwZz5sxh+/btDB48mLFjx1JYWAjAokWL2LRpE6tWrWLjxo0EBAQwbdo0l9RPRESktpmCItl7Ko+M/BJXhyIiItXg41PefU9JKRGp39wyKbV69WomTpzIhAkTKixft24dERERjBw5El9fX3r27MmgQYNYtmwZACtWrGDgwIF06dIFi8XC6NGjiYyMZO3atY7y+++/n8aNGxMSEsLUqVPZsGEDaWlpdV5HERGR2rTz2FnC75jJxoNZvLv7JN+fOOvqkEREpIo0+56IeAu3TEr16dOH9evXc9ttt1VYnpKSQps2bSosi4uLY+/evQCkpqZetDw3N5eTJ09WKI+JiSE8PJx9+/bVUk1ERETq3uncYrYfyQYg1N8XuwHrvz/FsZwi1wYmIiJVYlb3PRHxEr6uDuBCGjRocMHl+fn5BAYGVlgWEBBAQUHBJcvz8/MBCAoKqlReXlZV58YdrPb6JlPFl7c4v/7eytvPgbfXH9zzHLhTLOI8dsPg8wOZGEDJwe3c+dskNhzIYn96PtuPZNPkmlhM+uWLiLg1s1pKiYiXcMuk1MUEBgaSm5tbYVlRURHBwcGO8qKiokrlkZGRjmRV+fhSF9q+qqKjQ6sbOoZhEBjoj4+PiZiYUK98IKjJeatvvP0ceHv9QedAat+x7CKyC634m33I2foWppHDuK5FBD9mFZCeV8LhM4W0jAq69I5ERMRlyrvv2dVSSkTqOY9KSrVp04ZNmzZVWJaamkp8fDwA8fHxpKSkVCrv27cv4eHhxMbGVujil56eTnZ2dqUuf5eSmZlLde4PJhNERYVQWFiMyeRDRkauVyWlTKayB/Hqnrf6xNvPgbfXH9zzHJTHJPXLvvSy1r9xDYI4VXyulbCfmU7NI9h+6Ay7j+cqKSUi4uZ8TGopJSLewS3HlLqYxMREMjIyWLp0KaWlpWzZsoU1a9YwbNgwAIYPH86aNWvYsmULpaWlLF26lMzMTBITEwFISkpi0aJFpKWlkZeXx6xZs+jWrRstWrSoVhyGUf1XTberLy9vr7/OgervrufAE2VlZZGYmMjWrVsdy3bu3MmIESNISEigf//+rFixosI2q1evJjExkU6dOpGUlMSOHTscZTabjblz59KrVy8SEhIYO3Ysp0+frrP6OFNRqY3DWWVd2ts2DKlQ1qFpOAAnc4vJK7bWeWwiIlJ1vubyMaVcHIiISC3zqKRUZGQkS5Ys4YMPPqB79+5MmzaNadOm0aNHDwB69uzJ9OnTefLJJ+nWrRvvv/8+ixcvJiIiAoDk5GT69evHyJEj6devH8XFxcybN891FRIRkWr5+uuvufPOOzly5IhjWU5ODmPGjGHo0KFs376dmTNnMnv2bHbt2gXA1q1bmTFjBnPmzGH79u0MHjyYsWPHOrpzL1q0iE2bNrFq1So2btxIQEAA06ZNc0n9LteBzALsBsQEW4gO9qtQFhpgoVGoPwAHMwtcEZ6IiFSRWkqJiLdw++57P58Zr0OHDixfvvyi6w8ZMoQhQ4ZcsMxisTBx4kQmTpzo1BhFRKT2rV69mvnz5zNp0iQmTJjgWL5u3ToiIiIYOXIkUPYFxaBBg1i2bBkdO3ZkxYoVDBw4kC5dugAwevRo3nzzTdauXcuwYcNYsWIFEydOpHHjxgBMnTqVPn36kJaWRvPmzeu+opfhaHZZou3K6AuPldg6JoiTucWkZuTTsUlYXYYmIiLV4KuBzkXES3hUSykREfFeffr0Yf369dx2220VlqekpFQaGzAuLo69e/cCVBhL8Oflubm5nDx5skJ5TEwM4eHhlb4UuZSfz7BaF6/z2ewGx3OKAWgeEVApNihLSpmAzPxSzhZZXRb35dS3uufFnX5f1amDO79UB/d41WYdxPXMPmWPaRroXETqO7dvKSUiIgLQoEGDCy7Pz893zLBaLiAggIKCgkuW5+efGwg8KKhSeXlZVbli0Hhfi5mgoLIuecfOFGK1GwRazDSLCcFkMmEy4SgHiAwLonF4AMdzikgvtOJrMRMT41mD3VflPJ9/Xi5W7sp614cJBlQH91Af6iAXZj7XdMCqllIiUs8pKSUiIh4tMDCQ3NzcCsuKiooIDg52lBcVFVUqj4yMdCSryseXutD2VeWKmRWtpTYKCspaRx04dRaAJmH+FBaWAGWD2RcUFGMyQWCgP4WFxTQO8+d4ThE/ns7FWmojIyP3ovt3JyZT1WewPP+8XKzcFfWuTh3clergHmqzDuX7FtdSSykR8RZKSomIiEdr06YNmzZtqrAsNTWV+Ph4AOLj40lJSalU3rdvX8LDw4mNja3QxS89PZ3s7OxKXf4uxdUzGh7LKUu8NftZ1z2oOPtjs/AAvk7L4VhOEdGYPO6h3Fnn2ZX1dvXfijOoDu6hPtRBLqy8pZTGlBKR+k5jSomIiEdLTEwkIyODpUuXUlpaypYtW1izZg3Dhg0DYPjw4axZs4YtW7ZQWlrK0qVLyczMJDExEYCkpCQWLVpEWloaeXl5zJo1i27dutGiRQtXVqtarDY76fllraMah1dOSp0vJsQPP7OJEptBaUhsXYQnIiLV5HuupZRNOSkRqefUUkpERDxaZGQkS5YsYebMmcyfP5+oqCimTZtGjx49gLLZ+KZPn86TTz7JqVOniIuLY/HixURERACQnJyM1Wpl5MiR5Ofn0717d+bNm+e6CtVARn4phgGBFh9C/My/uK6PyUTT8AB+zCqkONyzZhcUEfEWPudGnFdLKRGp75SUEhERj/PzmfE6dOjA8uXLL7r+kCFDGDJkyAXLLBYLEydOZOLEiU6NsS6dzisbP6lhiD+mKkyd1fhcUqoktElthyYiIjXga1ZSSkS8g7rviYiIeLj0vLKuew1D/aq0fqPQspnpSkIba2YnERE3ZPYpS0ppoHMRqe+UlBIREfFw5S2lGoT4V2n9yCALFrMJw+zHgfT82gxNRERqwKzueyLiJZSUEhER8WAFJTbyim0ANAiuWkspH5OJ2HOtpXYez6m12EREpGbKW0opKSUi9Z2SUiIiIh4s/VwrqchAC36+Vb+tlyelvj12tlbiEhGRmnMkpdR9T0TqOSWlREREPFhmQSkA0cGWam1XPq7UzmNqKSUi4m4cY0rZXRyIiEgtU1JKRETEg2Xllw1yHl3FrnvlGoT4gWHndF6Jo7WViIi4h/KklFUtpUSknlNSSkRExINlnWspFRVUvZZSFrMPvoVZAHx/MtfpcYmISM35akwpEfESSkrVIcMwAN1YRETEOew+vuQUWYHqt5QCsOSdApSUEhFxNz9139Ozg4jUb0pKiYiIeChrUDQAgRYfAi3mam/vl38agO9P5jk1LhERuTwa6FxEvIWvqwMQERHxVvc+cB+ZWdkXLY+OimDJy69etLw0KAaAqKDqt5KCn1pK/XAqF8MwMJlMNdqPiIg4l1nd90TESygpJSIi4iKZWdkMnPD0Rcvff27iL25fnpSq7sx75SwFGVjMJnKKrBzLKaJZRGCN9iM/uVSisUmjGF5a8FLdBSQiHslsUlJKRLyDklJ1xFDTWxERcTLrZbaUMhl24huE8P3JXL4/mauklBNcKtH44YJH6zAaEfFUjjGl9AghIvWcxpQSERHxUNbASAAiA2vWUgqgfaNQAPZosHMREbeh7nsi4i2UlBIREfFAZwpKsFuCAIgIrHnD53aNQgDNwCci4k7Kk1JW9bYQkXpOSak6ZhiGuvKJiMhl+zGrAIBQfzO+5prfztudaym191QeVn0jLyLiFnx9yq7rdl2XRaSeU1JKRETEAx3KLEtKRVxG1z2AKyKDCLKYKbLaHfsUERHXKv+uQd33RKS+U1JKRETEAx08l0C6nPGkoKyLyFWx6sInIuJOzOUtpdTDQkTqOSWlREREPNCP5S2lgi4vKQU/deH7/pSSUiIi7qC8pZS6VYtIfaeklIiIiAc6lOWc7nvwU1JqzwklpUTEPdlsNkaNGsWUKVMcy3bu3MmIESNISEigf//+rFixosI2q1evJjExkU6dOpGUlMSOHTsq7G/u3Ln06tWLhIQExo4dy+nTpx3lmZmZjBs3jq5du9K9e3dmzpyJ1Wqt/Yqe81NLqTo7pIiISygpJSIi4mHyiq2czisBLr/7Hvw0A19qRj4lVvtl709ExNkWLFjAV1995fg5JyeHMWPGMHToULZv387MmTOZPXs2u3btAmDr1q3MmDGDOXPmsH37dgYPHszYsWMpLCwEYNGiRWzatIlVq1axceNGAgICmDZtmmP/Dz/8MEFBQWzcuJGVK1eyefNmli5dWmf1NZvKZt/TmFIiUt8pKSUiIuJhDp8pe6jyKcnHz/fyb+VNwgIID/DFajdIzci/7P2JiDjT5s2bWbduHTfffLNj2bp164iIiGDkyJH4+vrSs2dPBg0axLJlywBYsWIFAwcOpEuXLlgsFkaPHk1kZCRr1651lN9///00btyYkJAQpk6dyoYNG0hLS+Pw4cNs27aNSZMmERgYSPPmzRk3bpxj33XB7KOklIh4B19XByAiIiLVk3YuKeVblO2U/ZlMJq6ODWXL4TP8cCrX0Z1P6pd7H7iPzKzsi5ZHR0Ww5OVX6y4gkSrIzMxk6tSpLFy4sEJLpZSUFNq0aVNh3bi4OFauXAlAamoqw4YNq1S+d+9ecnNzOXnyZIXtY2JiCA8PZ9++fQBEREQQGxvrKG/dujXHjx/n7NmzhIWFObualfiazyWlNNC5iNRzSkqJiIh4GGcnpaCsC9+Ww2f44WQeXOu03YobyczKZuCEpy9a/v5zE+swGpFLs9vtTJo0iXvuuYerrrqqQll+fj6BgYEVlgUEBFBQUHDJ8vz8shahQUFBlcrLy36+bfnPBQUF1U5KneuJV631fc7rvlfd7T1VeT29pb7n89a6q96ujaO6aiteJaVEREQ8zOEzZQ9dZicmpa6O1Qx8IuJeXn75Zfz8/Bg1alSlssDAQHJzK16vioqKCA4OdpQXFRVVKo+MjHQkmMrHl/r59oZhVCor/7l8/9URHV391qdHC7LL/mMyERPjXa1Xa3K+6gtvrbvq7d2UlBIREfEwadllD1q+hdlO2+fV57rsHczIp6jURoDF7LR9i4jUxLvvvsvp06fp2rUrgCPJ9NFHHzF58mQ2bdpUYf3U1FTi4+MBiI+PJyUlpVJ53759CQ8PJzY2ltTUVEcXvvT0dLKzs2nTpg12u53s7GwyMjKIiYkB4MCBAzRq1IjQ0Oo/RGZm5lKdXngm009jSpVabWRkeMeXBSZT2UN6dc9XfeCtdVe9Pave5XE7mwY6FxER8SCGYZzXfe+M0/bbMMSPqCALNgP2p2uwcxFxvQ8++IBvvvmGr776iq+++orbb7+d22+/na+++orExEQyMjJYunQppaWlbNmyhTVr1jjGkRo+fDhr1qxhy5YtlJaWsnTpUjIzM0lMTAQgKSmJRYsWkZaWRl5eHrNmzaJbt260aNGCli1b0qVLF2bNmkVeXh5paWksXLiQ4cOH16gehlH9l2Og8xps68mvmp6v+vDy1rqr3p71qg1qKSUiIuJBsgtLyS22AuBblOO0/ZpMJto1CuWLg1n8cDKXjk1qfyBfEZGaioyMZMmSJcycOZP58+cTFRXFtGnT6NGjBwA9e/Zk+vTpPPnkk5w6dYq4uDgWL15MREQEAMnJyVitVkaOHEl+fj7du3dn3rx5jv3Pnz+fv/3tb9x00034+PgwdOhQxo0bV2f10+x7IuItlJQSERHxIEfOtZKKDfXHZNicuu92seeSUhpXSkTc0Jw5cyr83KFDB5YvX37R9YcMGcKQIUMuWGaxWJg4cSITJ154gP+YmBjmz59f82Avk5JSIuIt1H1PRETEg6RllyWlmkcGXmLN6ru6UQgA35/Kc/q+RUSk6nzPJaXstdVfRkTETSgpJSIi4kHKW0pdUQtJqavOzcB3KLOA/BKr0/cvIiJV43Nu7nWrWkqJSD2n7nsiIiIepHyQ8+YRgWx28r5jgv1oGOLH6bwS7p38BEXH9l903eioCJa8/KqTIxAREQBfs1pKiYh3UFJKRETEg5S3lKqN7nsA7RqFcjo1kwx7MHdOePqi673/3IXHYRERkctnNmlMKRHxDuq+JyIi4iEMw3CMKdUiovaSUgAlIbG1sn8REbk0s2NMqbJrv4hIfeWRSak9e/YwcuRIunbtSp8+ffj73/9OSUkJADt37mTEiBEkJCTQv39/VqxYUWHb1atXk5iYSKdOnUhKSmLHjh2uqIKIiEi1ZeSXUFhqx8cETSMCauUY1zQuS0qVhjSqlf2LiMillSelAGzKSYlIPeZxSSm73c4DDzzAgAED2LZtGytXruSLL75g8eLF5OTkMGbMGIYOHcr27duZOXMms2fPZteuXQBs3bqVGTNmMGfOHLZv387gwYMZO3YshYWFLq6ViIjIpZV33WscFoDFXDu38HaNQvExgc0/TIOdi4i4SIWklLrwiUg95nFJqZycHNLT07Hb7Y6mrD4+PgQGBrJu3ToiIiIYOXIkvr6+9OzZk0GDBrFs2TIAVqxYwcCBA+nSpQsWi4XRo0cTGRnJ2rVrXVklERGRKqnt8aQAgv18aR0TDMDp3JJaO46IiFycr89Pj2ka7FxE6jOPS0pFRkYyevRo5s6dS4cOHejXrx8tW7Zk9OjRpKSk0KZNmwrrx8XFsXfvXgBSU1N/sbyqTKbqvy53e09/eWu9dQ5Uf3c/B+JZymfeu6IWk1IAHRqHAXA6r7hWjyMiIhd2Xk5KLaVEpF7zuNn37HY7AQEBPP744wwfPpzDhw/z4IMPMn/+fPLz8wkMrPhBPSAggIKCAoBLlldVdHRojeIOCvLDZPIhJiYUHx+Pywdetpqct/rG28+Bt9cfdA7k8pQPct68lgY5L3dN41De3nWiVltK3fvAfWRmZV+0PDoqgiUvv1prxxcRcWfnt5RSUkpE6jOPS0qtX7+eDz/8kA8++ACA+Ph4kpOTmTlzJoMGDSI3N7fC+kVFRQQHl3VDCAwMpKioqFJ5ZGRktWLIzMylOq1oTSaIjAymoKAEk8lERkauVyWlTKayB/Hqnrf6xNvPgbfXH9zzHJTHVF/s2bOHWbNmsW/fPgICArjllluYPHkyfn5+7Ny5k7///e+kpqYSGRnJ2LFjGTFihGPb1atXs3DhQtLT02nVqhWPP/44CQkJLqzNhdVF9z34qaVUel4JNrtRYWwTZ8nMymbghKcvWv7+cxOdfkwREU9x/mXX5i4fHEREaoHHJaVOnDjhmGmvnK+vLxaLhTZt2rBp06YKZampqcTHxwNlCayUlJRK5X379q1WDIbBZT1UXu72nspb630+bz8H3l5/0DmoLeWTYIwZM4Z///vfnD592jFu4N13382YMWMYP348d955J9u3byc5OZm2bdvSsWNHxyQYixcvpmPHjixbtoyxY8fy6aefVmpd60p2w+BYTtkXKy1qOSl1RVQgPqWF2CyBZOSXEBvqX6vHExGRikwmE2ZT2cx7drWUEpF6zOOa6/Tp04f09HReeuklbDYbaWlpLFq0iEGDBpGYmEhGRgZLly6ltLSULVu2sGbNGoYNGwbA8OHDWbNmDVu2bKG0tJSlS5eSmZlJYmKii2slIiKXwxsmwcjIK6HYasdsgka1nCQymUz4nT0GwImzGldKRMQVfM41l7IqKSUi9ZjHJaXi4uJ4+eWX+eSTT+jevTu/+93v6N+/PxMmTCAyMpIlS5bwwQcf0L17d6ZNm8a0adPo0aMHAD179mT69Ok8+eSTdOvWjffff5/FixcTERHh2kqJiMhlcYdJMGpbeSup2LAAfM21f/v2yz0OwMmzRZdYU0REaoP53IwkykmJSH3mcd33AHr16kWvXr0uWNahQweWL19+0W2HDBnCkCFDais0ERFxAXeYBKO2ZjMs3++xnLLxpJpFBFT7WOfP/vjz7qMX21d5S6lTucXYDQOfC6xY2zM4nr//8+vg7H3XFWfXoTZcKjZPqMOlqA5V27e4Xvl4fhroXETqM49MSomIiJzPHSbBqMmg8b4WM0FBF++K52sxExNTtt8zJWUtl1rHhjmWXWp7k4kK5YGBFdc9f/8/F1h6Bj+zDyU2O4V2Ew1Cq75tVVSn7uerynmu6b6d4VLHBtdNMODM81IfJklQHcTdKSklIt5ASSkREfF47jAJRk1mVrSW2igouPiYTdZSGxkZZQm1/SdyAIj2NzuWXWp7w4CCgmJMprKEVGFhcYUYz9//z9lKrcSG+pGWXcSBU2cJNoddNLaaqE7doXozWJaW2th7LJvjOUUUltpoGh7AldFBWM51e7zc2H/JL9WrvAXKL9Xh3jH3kZGVfdH9x0RFsOSVV50eW3n5pc6LO84kWl2qQ9X2La5X3n1Ps++JSH3m9KTU1q1b6d69u7N3KyIiHqy27w19+vThmWee4aWXXuL+++/n+PHjFSbBeOqpp1i6dCkjR47k66+/Zs2aNSxcuBAomwQjOTmZW2+9lS5durBs2bIaTYJRWzMrlu/zWHZZa65mEQHVPk75+hfa7pf21TQ8gLTsIo5lF9GxSVil8tp+TrpYvL903PS8YrKuGsqHe9Mdy1IzCthx7CwDrmpARKDlovuubef/HgyjrPVDkdVGqdXAarcTFmAhIyubgROevug+3n9uYq3GXtV914eZRFWHuqFng5rzUUspEfECTk9KjR8/ntDQUH7961/z61//miZNmjj7ECIi4mFq+95QPgnGvHnzePXVVwkNDWXw4MEkJyfj5+fHkiVLmDlzJvPnzycqKuqik2CcOnWKuLg4t5wEo3yg86bhAXV2zGYRgXA4mxNni7Ha7HUywPrlyC4oZdyKXRRHtMBsgviGIQT4+pCSns/ZIivvfXeKoR1iXRaf3TAoCG/JzHX7+fbYWdLOFFaaVcun832s3nWSBiF+NA7zp1GYP8F+atgunkvPBjXne+6Sa3f3zKOIyGVw+qecL774gk8++YR33nmHl156ieuuu46kpCRuvvlm/Pz8nH04ERHxAHVxb6jPk2Dkl1jJKigFziWK6khEoC/BfmbyS2yczC2u02NXV0GJjYdXf8ehrEJ8inNJ6t7G0SqqfaNQPtybTkZ+CZ/sz8TXVLfJNbthsP90Pt8czSE/biCrd52stI4JMAC7XxAZ+SVk5Jfww6k8ABqH+RPfIJgro4PqNG4RZ9CzQc2VTzChllIiUp85PSllsVgYMGAAAwYMICsriw8++IAlS5bwt7/9jYEDB3LnnXdy1VVXOfuwIiLixnRvuDzHz7WSCg/wJcS/7lrNmEwmmoYHsD89n6PZRW6blCqx2pn83h72nMwlPMAXv2/fIeKGqY7yID8ziW1jeHvnSdLzSwhpel2dxZZXbOWTlAxO5ZaNeeZTWsiIbq3pdkUk8Q2CiQy0YDH74GOCnCIrv/3jQ3QcPp5TucWcPFtMRn4JJ84Wc+JsMZsPncG/WXdyi6yEBqj1lHgGXf9rzjHQuXJSIlKP1donmszMTP773//y/vvvk5qaSr9+/fD392f06NGMHj2aP/7xj7V1aBERcVO6N9RM+XhSTeqw6165ZhFlSam07EJ6UL0ZCeuCzW4w/X972Xo4m0CLD88nXcNfPjtTab0Qf196t4rkk5RM8ht35nRuMQ1Df3mWvIu594H7yLzIYOT7D6Qw8Nz/M/NLWPv9aYqsdixmE12ahfPJ7D+x8evWbLzIvn88kMLQB6bQ6lyrqLxiKynp+aSk55NTZKW0WXeGvLqN0d2a89uuzfA999Aq4u50/a8+tZQSEW/g9KTU+++/z7vvvsuXX35Jq1atSEpK4qWXXiIqKgqAfv36kZycrBuPiIgX0b3h8hzNKR/kvO5bKjWPCMTHBNmFVs4UlBIZZHHq/g3DwGSqWWLFMAz+8XEqH+3PwNfHxFND2tO+ceUB2cu1ig5iz8k8TuXCS5sO8cQtbWt03MxfGIz8+wduL1snv4T3vz9NsdVOVJCFxLYxhAVY+LC09BcHMi/fvlyIvy8JzcLp1DSMH7MK+fzbfeQSzQsbf+Sj/ek8MaAtcQ2Ca1QPkbqg63/N+WqgcxHxAk5PSv31r39l4MCBLF++nGuuuaZS+ZVXXsno0aOdfVgREXFjujdcnmPZhUDdDnJezs/Xh2YRARw5U8SPmQVEBoVf1v4Mw2D7kWyy2tzG618dpbDUjr/Zh5gQP66MDiQ+JrjKA6q/9OVh3t51AhPw94FX0f2KX27JZTKZ6HFFBO9+d4r3vz/FvT1a1Eqir6DExod70ym22mkY4setVzfEz/fyxrEymUy0ig7i+13/4b7pLzDvs4P8cCqPUa9/w7g+Lbm7a7MaJ/dEapOu/zX3U/c9JaVEpP6qlYHO09LSiI0tm93m22+/JTQ0lNatWwPQqFEjxo8f7+zDioiIG9O94fL81FKq7pNSAFdGBZUlpbIK6Ny85kmpzPwSZq7bz8aDWRAVB6V2AIptdo7lFHEsp4iv03Lo2CQMu8/FP6IYhsGCjT/yr+1HAZjyqzhuatOgSjE0DPXHP/swxRFX8OaO4zxyY+sa1+eCTD58tD+D/BIb4QG+3OKEhFSF3WMw+JpG9GoZyaz1KWw8mMX8DT/yw6k8nhjQhgCL2WnHEnEGXf9rTt33RMQbOH36mY8//pihQ4dy6NAhAHbs2MGIESP4/PPPnX0oERHxELo3XJ7ygc6bhrtmoPErooIwmSCroJQz52YBrK7U9HxGvf4NGw9mYTGbCDq5k8HXxDKyS1OSOjaiW4sIQvzNFJba2Xo4m9MJ9/Dv7WmcLap4vNO5xTzyzh5HQupP/VqRdG31ppgPPrEDgPd2nySv2Fqj+lyMf4ebOZVbjMVs4uarGuDvxITU+WJC/HlmaHsevSkOs4+J9fvSGf/2d06vj8jl0vW/5spbStnVUkpE6jGnt5RasGABCxcudDTPveeee4iLi+Opp56iX79+zj6ciIh4AN0bas5mN35KSrmopZS/rw8tIgI5fKaQvafy6Hll9QY8//5kLg+u3E1usZUro4KYeftVTBz3PLGhg4Cy2fGig/3o0DiUlIx8vj16lrMEMn/Dj7z85WESmobTONyfM8U2vkjJwGo38PUx8div4hncoVH165NzhFbRQRzMLOCd3Se5u2uzau/jQjLzSwjoVDbMee8ro4gIdO74Wz9nMpkY3qkJV0YH8cg7e9hxNIeHVu1mwfAOBPtpdj5xD7r+15z5XI9ctZQSkfrM6V/fnThxguuvv77Csj59+nD8+HFnH0pERDyE7g01dzqv2JGEaRhSs9ninOHq2BAA9qfnYbXZq7zdj5kFjF9VlpDq2CSMxXddS3yDkAuu6+Njom3DEEYkNCbiwHriYoIpttrZcvgMq3ed5LN96VjtBh2bhPHvuzvXKCEFYAJ+26UpAMu/OYbVCQ98hmGw6ccsTD5mWkYFEhcTdNn7rKouzSN4+c5rCQ/w5bsTuTzyzh5KrFX/HYnUJl3/a+6nMaVcHIiISC1yelKqadOmbNxYcaLjzZs306RJ9ZrWi4hI/aF7Q80dyy5rJdUkPMDxgOIKzSICCPX3pcRmkJpRUKVtTp4t4sGVu8gpsnJ1bAjzh11DeBVaD/mYTASl/8B/fteZZaM689iv4hjT6wqmD2rHm6O78NpvOl32jHO3XB1LZKCFU7nFfLI//bL2BXAws4BTuSUYpcX0bBlZ54OOt20YwvxhHQj2M/N1Wg5zPkrBUJcfcQO6/tecxpQSEW/g9LbdY8aMITk5mZtvvpmmTZty/Phx1q9fz9y5c519KBER8RC6N9TcsRzXzbx3PpPJRLtGIWw9nM2OYzmEmn55QO0zBSU8uHI3p/NKaBkVyPyk6ncpM5lMtGkYQpuGIZhMEBMTSkZGLs7Itfj7+jCiUxNe2XyYZV8fI7Ftgxonkqw2O9sOZwNQ9N06QvomX36ANdCuUSizB13Nw29/x5o9p2jbMIQ7Ozd1SSwi5XT9rzlfHyWlRKT+c3pLqUGDBrF48WIsFgt79uwhICCAJUuWMGDAAGcfSkREPITuDTV3NLt8kHPXJqWgrAtfkMVMXrGN/EYdL7peXrGV8au+4/CZQmJD/XlhWAcigmp3fKWaGNapMX5mE9+fzGXX8bM13s/uE7nkldgI9jNT/N1HToyw+hbPnkzIjxsAePrj/dz2+7EMGTGcISOGs/9AiktjE++k63/NaaBzEfEGtTIKZvfu3enevXtt7FpERDyU7g01c8wxyLlrZt47n8XsQ9cW4Ww4kEVu024cyiygZXTFsZNyCkv509vfsfd0Hj6lBRgb/8UD67Mr7Wv/gRQG1jCOex+4j8ysyvus7r6jgvy45eqGvPfdKZZ/c4xrm4ZXO5b8EivfHitLaHVrEcFqW81mJ3SWzKxs7nh4JOv3ZXD4TCEl3UZx+7WN8fUx8f0Dt7s0NvFeuv7XTHn3PWeMeyci4q6cnpQ6deoUixYt4tChQ9jtFQfZ/Ne//uXsw4mIiAfQvaHmHEmpWmgptX//XoaMGH7hsoskduIbBLPvdD6ncmHCO9+xaERHGoWVxfbDqVwef38vh88UYiotZEjnVsT0nXbB/V9OgiQzK5uBE56+aHl19v2bzs1477tTfJKSwYmzRTQOq955/upIDla7QcMQP1rX4eDmv8RkMtG3dRSrdp4kp8jKjqM5XNciwtVhiZfS9b/mHC2llJQSkXrM6Umpxx57jIyMDG688UYsFvdrqi8iInVP94aaO5Hz00Dnzma1c9HkzsUSOz4mE4ltY3jji+85mg13LP2KG+JiyC4sZdvhM9gMaBDiB5teJ6bvX5wes7PFNQjmuhYRbD+SzVs7jvOnfq2qvG16Xgn70/MB6OGCwc1/SYDFTK8rI/lofwY7j52ldbR7JMzE++j6X3PmcwOt2NR9T0TqMacnpXbv3s2HH35IVFSUs3ctIiIeSveGmrH7WDhTWNYdrEk1W/DUpkCLmegf3qHxwIfYefws//vhtKPsV21iePSmeH7/0cVbMrmb33ZpyvYj2byz+wT397yCIL9fHsQdwDAMNh86A0BcTBCxof61HWa1XRkdRMuoQA5lFfLluVhF6pqu/zVndsy+5+JARERqkdOTUqGhofj5+Tl7tyIi4sF0b6gZm38oAKH+voQG1MowkDXmW5zDK3ddyxcHs/gxswAfE/RtHc0VUZ7XIqfXlVG0iAzkyJlC1nx3skoz1v2YVcip3GLMPia37hrX44pI0s4UcuJsMZYWnVwdjnghXf9rzqd89j21lBKReszps++NGzeOxx57jF27dnH8+PEKLxER8U66N9SMzT8MgMZh7tcKB8q68vVtHc3vuzVn1HXNPTIhBWX1+M25RNT/bU+jqNT2i+sbJjNbD5e1PLq2SSgh/u6VMDxfaIAvHZuU/R0FdBmiWbykzun6X3PlY0rZNKaUiNRjTv8UNW1a2YCm69evB8oG2zQMA5PJxA8//ODsw4mIiAfQvaFmypNStTGelFQ0+JpG/N+2NE7mFrPi2+OMuq75RdfNbd6dvGIbwX5mR8LHnXVsGsb3p/IoDo8lJT2ftg1DXB2SeBFd/2vO16SBzkWk/nN6Uurjjz929i5FRMTD6d5QM1YlpeqMn68PD/S+gr9+sJ+l29K4tV0sMcGVuxz9cCqXvMadAeh9ZSQWs9MbnTudn9mHTk3D2Ho4m2+O5hAXE+xogSFS23T9rzl13xMRb+D0T1JNmzaladOm5OTksGfPHho0aEBAQABNm156fAYREamfdG+oGUdLKTca5Lw+u/XqWNo2DOFskZW/f7gf42cPgtkFpUx573sw+dAqOsijuiu2iw3BXpBDXrGNAxn5rg5HvIiu/zWn7nsi4g2cnpTKzMzkrrvu4o477uDRRx8lLS2NX/3qV+zYscPZhxIREQ+he0PNOMaUUkupOmH2MfHXW9viZzax6ccsFmw85EhMZReUMvHdPRw/W4y5KIfeV0a6ONrq8TX7ULynrMXKzuNnKyXcRGqLrv81Zz7XoFFJKRGpz5yelJo1axZt2rRh+/bt+Pr60rp1a8aMGcM//vEPZx/KIxmGoQ+CIuJ1dG+oGWuAuu/VtdYxwfz5xtYA/Gt7GuNW7OL5zw8y8t9fs/P4WYIsZqL2rSHAYnZxpNVXvP8L/MwmsgutHMoqdHU44iV0/a+58pZSmqBAROozpyeltmzZwmOPPUZgYCCmc4Pz3XfffaSmpjr7UB5JSSkR8Ua6N1RfidWO4VuWjHLX2ffqq2HXNmHazfGYTfBVWg6vf3WU03klNIsI4LXfdsJSmOXqEGumtIh2jUIB2HMy18XBiLfQ9b/mfM6dL6vdxYGIiNQipw90brFYKCoqIjAw0JF8yc/PJzg42NmHEhERD6F7Q/XlFlsBCA/wJdjP6bdruYQhHRrTqWk4H+/P4MTZIq5tGsaN8TEe/7u4OjaEncfOcuJsMVkFJUQFVR7MXcSZdP2vOY0pJSLewOktpfr378+kSZM4dOgQJpOJzMxM/vrXv9KvXz9nH0pERDyE7g3VV56UUtc917kiKoh7e7Rg6s1tuL19I49PSAGE+PtyRVQgAD+czHNxNOINnHH937x5MyNGjKBz58707t2bGTNmUFRUBMDOnTsZMWIECQkJ9O/fnxUrVlTYdvXq1SQmJtKpUyeSkpIqjGVls9mYO3cuvXr1IiEhgbFjx3L69GlHeWZmJuPGjaNr1650796dmTNnYrVaL/OMVJ2vuu+JiBdwelLqkUceISgoiFtuuYWzZ8/Sp08fCgsLmThxorMPJSIiHkL3hurLU1JKakl5F76U9HxK1C9IatnlXv+zsrJ44IEH+M1vfsNXX33F6tWr2bZtG6+88go5OTmMGTOGoUOHsn37dmbOnMns2bPZtWsXAFu3bmXGjBnMmTOH7du3M3jwYMaOHUthYdmYaosWLWLTpk2sWrWKjRs3EhAQwLRp0xzHfvjhhwkKCmLjxo2sXLmSzZs3s3TpUqefo4sp776nllIiUp85/Su/4OBg5s+fT1ZWFkePHqVRo0Y0bNjQ2YcREREPontD9eUW2QBoEqaklDhXkzB/wgN8ySmykpKRT/tzSSqR2nC51/+oqCi+/PJLQkJCMAyD7OxsiouLiYqKYt26dURERDBy5EgAevbsyaBBg1i2bBkdO3ZkxYoVDBw4kC5dugAwevRo3nzzTdauXcuwYcNYsWIFEydOpHHjxgBMnTqVPn36kJaWht1uZ9u2bWzYsIHAwECaN2/OuHHjeOqpp7jvvvucf6IuwNF9Ty2lRKQec3pSavv27RV+Pnz4MIcPHwbguuuuc/bhRETEA+jeUH3l3fcaq6WUOJnJZKJdo1A2HzrD9ydzaRcb4hiAWsTZnHH9DwkJAaBfv36cOnWKrl27kpSUxLx582jTpk2FdePi4li5ciUAqampDBs2rFL53r17yc3N5eTJkxW2j4mJITw8nH379gEQERFBbGyso7x169YcP36cs2fPEhYWVqXYAar79ipf33yuT4vNblR7H56ovI7eUNef89a6q96ujaO6aitepyelRo0aVWmZj48PjRs35uOPP3b24URExAPo3lB9jjGl1FJKakGbBsFsP5JNdqGVE2eL1U1Uao0zr//r1q0jJyeHiRMnMn78eGJjYwkMDKywTkBAAAUFBUDZgOoXK8/PzwcgKCioUnl52c+3Lf+5oKCgWkmp6OiatUYMDSl7X1r8fImJ8Z4WjTU9X/WBt9Zd9fZuTk9K7d27t8LPWVlZvPjiizRt2tTZhxIREQ+he0P1GIbh9QOd79+/lyEjhldY5msxYy21sf9ACgNdFJerXei8VCiv4rnx8/WhdUwQ+07nsz8932v/zqT2OfP6HxAQQEBAAJMmTWLEiBGMGjWK3NzcCusUFRU5ZvYLDAx0DIh+fnlkZKQjwVQ+vtTPtzcMo1JZ+c/VnTkwMzOX6vTAM5nKHlZLikoByC8sISMj9xJbeb7yelf3fNUH3lp31duz6l0et7PV+jQyUVFRTJo0iQEDBnDvvffW9uHcnmEYjulwRUS8le4Nv6zEZlBqK7tXNA7zd3E0rmG1w8AJT1dYFhTkT0FBMd8/cLuLonK9C52X81Xn3LRpEMK+0/n8mFlA7ysjnRGeyCVV9/r/zTff8Je//IX33nsPPz8/AEpKSrBYLMTFxbFp06YK66emphIfHw9AfHw8KSkplcr79u1LeHg4sbGxpKamOrrwpaenk52dTZs2bbDb7WRnZ5ORkUFMTAwABw4coFGjRoSGVu+hzDCo0YOn+byBzr3p8aGm56s+8Na6q97ezemz711ITk4OxcXFdXEoERHxELo3XFxuUVkrKZ+SfAIsZhdHI/VVbKgfYQG+WO0GP2YWuDoc8SLVuf63bduWoqIinnnmGUpKSjh27Bhz585l+PDhDBgwgIyMDJYuXUppaSlbtmxhzZo1jnGkhg8fzpo1a9iyZQulpaUsXbqUzMxMEhMTAUhKSmLRokWkpaWRl5fHrFmz6NatGy1atKBly5Z06dKFWbNmkZeXR1paGgsXLmT48Iu3VHQ2x0Dnmn1PROoxp7eUeuyxxyr8XFpaytdff02vXr2cfSgREfEQujdUT3nXPXNx/e+uIa5jMpmIbxDM12k57E/Px8PGWxUPcbnX/+DgYF599VVmzZpF7969CQ0NZdCgQSQnJ+Pn58eSJUuYOXMm8+fPJyoqimnTptGjRw+gbDa+6dOn8+STT3Lq1Cni4uJYvHgxERERACQnJ2O1Whk5ciT5+fl0796defPmOY49f/58/va3v3HTTTfh4+PD0KFDGTdunFPOS1WUD3RuVVJKROqxWu++5+/vz6hRo7jzzjtr+1AiIuIhdG/4ZeVJKd/iHBdHIvVdeVLqxNliGvppwFWpfTW5/sfFxbFkyZILlnXo0IHly5dfdNshQ4YwZMiQC5ZZLBYmTpzIxIkTL1geExPD/Pnzqxyns6mllIh4A6cnpWbPnu3sXYqIiIfTvaF61FJK6kqovy+Nw/w5cbaYwgZXuTocqYd0/a853/IxpTTojIjUY05PSi1YsKBK6z344IM1PkZ2djazZs3i888/x263c9111/Hkk0/SsGFDdu7cyd///ndSU1OJjIxk7NixjBgxwrHt6tWrWbhwIenp6bRq1YrHH3+chISEGsdSVYZhYLfbNZCZiHilurg31Cd5jqTUWRdHIt6gTYNgTpwtpiDmagzDwGRSRz5xHl3/a04tpUTEGzg9KZWSksK6deu46qqruPLKKzl58iTffPMN7dq1c0yferkfdh566CHCw8NZv349Pj4+PPbYYzz++OP84x//YMyYMYwfP54777yT7du3k5ycTNu2benYsSNbt25lxowZLF68mI4dO7Js2TLGjh3Lp59+6pgWVkREnK8u7g31SW6RDVBSSurGldFBbPrxDNbACHafyKVjkzBXhyT1iK7/NaeklIh4A6cnpcqTRL/73e8cy959910+/fTTCgMH1tR3333Hzp07+fLLLwkJCQFgxowZpKens27dOiIiIhg5ciRQNrjhoEGDWLZsGR07dmTFihUMHDiQLl26ADB69GjefPNN1q5d65ilo7YYaiIlIl6stu8N9YlhGOeNKaWklNQ+i9mHllGBpGYUsH5fupJS4lS6/tecklIi4g18nL3Dzz//3JEUKnf77bezefNmp+x/165dxMXF8dZbb5GYmEifPn2YO3cuDRo0ICUlhTZt2lRYPy4ujr179wKQmpr6i+VVZTJV/3U529aHlzfXXedA9Xfnc1BXavveUJ8UWe2OmZY0ppTUlVYxZS1W1u9L1wOwOJWu/zVXnpSy2l0ciIhILXJ6S6moqCi2b9/umIoVYOPGjTRq1Mgp+8/JyWHfvn1cc801rF69mqKiIiZPnsyjjz5KTExMpW54AQEBFBQUAJCfn/+L5VUVHV392WmsViuBgRbARExMKBaLpdr78HQ1OW/1jbefA2+vP3jvOajtewN45niDF1I+nlSQxYzJsLkkBvE+zcIDMFmLyMyHHUdz6NoiwtUhST1RF9f/+koDnYuIN3B6UuqBBx5gzJgxDBgwgCZNmpCWlsann37KCy+84JT9+/n5ATB16lT8/f0JCQnh4Ycf5o477iApKYmioqIK6xcVFTn6qwcGBl6wPDIysloxZGbmVmvAcpMJwsMDKSgoASAjI9erklImU9mDeHXPW33i7efA2+sP7nkOymOqC7V9b4D6M97g2aKypFRogNNv0SIXZfYxEZiZSkHsNazbd1pJKXGaurj+11fqvici3sDpn3hHjBhB06ZNee+99/j+++9p3rw5y5cvp23btk7Zf1xcHHa7ndLSUvz9/QGw28vatF599dX85z//qbB+amoq8fHxAMTHx5OSklKpvG/fvtWKwTC4rIfKy93eU3lrvc/n7efA2+sP3nsOavve4KnjDV5IXnFZ66hQfzPVa8crcnkCM/dTEHsNn+zPYFL/OCxmp4/yIF6otq//9ZmSUiLiDWrla9hevXrRq1cvsrKyiIqKcvq+mzdvzl/+8hdmz55NcXExzz33HL/61a+4/fbbmT9/PkuXLmXkyJF8/fXXrFmzhoULFwIwfPhwkpOTufXWW+nSpQvLli0jMzOTxMREp8YoIiKV1ea94fzxBt944w0KCwu5/vrrefTRRy863uDKlSuBsi8nfp58qsl4g85SPsh5iL+vWyel9u/fy5ARwy9efiCFgXUYj1w+v7PHiAqykFVQyrbD2fRu5dz3qXiv2rz+12dKSomIN3B6Uqq0tJQFCxbw+uuvY7PZWLNmDQ8//DCLFi2iYcOGl71/i8XCv//9b+bMmcOAAQMoLi6mf//+TJ06lbCwMJYsWcLMmTOZP38+UVFRTJs2zdGHvWfPnkyfPp0nn3ySU6dOERcXx+LFi4mIiLjsuERE5OJq+97gDuMNOmvg+PKkVKi/L6edtN/zB9p3Vks9qx0GTnj6ouXfP3C7cw50zvl1cOb+6lJt/B6cyYTBr9o24K0dx1m37zR9WldOHjj79+AKqkPV9u0stX39r88cSSl3vGCIiDiJ05NSCxYsYMuWLTz//PNMmDCB6OhoGjVqxMyZM3n++eedcozY2Fiee+65C5Z16NCB5cuXX3TbIUOGMGTIEKfEISIiVVPb9wZ3GG+wJuNz+VrMBAX5V1iWX1LWfS8mPJDDFjMxMRff74W2P5/JRIXywED/XyyvapkrywMD/f+/vTuPj6o89D/+PTPZF0hCkE1ck0BdkAiCKIJFI5VFKUu5t9QWroo/QFu5RRSl17YWhGtvtUihVqWplaoFRUVRtBYVkSVQBJeiCcoiexISsmeW8/sjmSHDmkkmZ7bP+/WKZs76nCdhTs53nqXVx445S72ezZnq/Wznlk7+Ofizf2vWN6dexl99vv6+db8+KCpRSvskJcTaT7ltJEzawDVYw4png0gV4519j1AKQOQKeCi1cuVKvfDCC+rUqZMMw1BSUpIeffRRusgBQBRr63tDKIw32JJB7J0Ol6qr67yvTdPUsZqGllJxMuV0uFRcXNHs/U9kmlJ1dZ0MoyEIqamp8ymjZ/2Z9j3bsa1af+I1tObYX3z+ua65fuhp12dmpGnJn5457foz1fuZzu1pgXLiz6G5+7d2/dn2dTpc6p4Uo86p8TpYUafXCnbrhpyOJ11DqE3a4C+uoXnHDhSeDVrO7pl9j1AKQAQLeChVXV3t7StuNt4lExISZLMxWCYARKu2vjeEwniDgRjEvsbhlss0ZUhKjrN7j9tanmOE6wO4FNhrOFvXwzcfn9EmdRUOPwdDhvJ6dNRfN3+rd3Yc0ZDsjqfcLhImbeAarMGzQcsxphSAaBDwu0Hv3r21cOFCSZLRmO7/9a9/1eWXXx7oUwEAwkRb3xs84w3a7XYNHTpUQ4cOVefOnTV37lylp6dryZIlevvtt9W/f3/Nnj37tOMN9uvXT2+++WbQxhv0jCeVFGf3PowAVrupZ0MQ9dHXpaqqdwa5NAh3PBu0HKEUgGgQ8JZSDz74oCZOnKgVK1aoqqpKw4YNU1VVlf785z8H+lQAgDBhxb0hEsYbbDrIORAsPc5J0XnpidpztEYfFJVo2CWdgl0khDGeDVqOgc4BRIOA/9WbmZmpN998U++//7727dunzp076/rrr1dKSkqgTwUACBPcG5qn0hNKJRBKIXgMw9CNPTpqyYY9+udXxYRSaBXe/1suhpZSAKJAwP/qHTFihF5//XXdfPPNgT50RDBN09ufHgCiBfeG5qmo9bSUOvWMZ4BVbszJ1JINe7R+V0MXvuQ4glK0DO//LecZ6JzZ9wBEsjYZYbCmpqYtDgsACGPcG86uos4lie57CL6szGSdl56oepepj3aWBrs4CHO8/7cMY0oBiAYB/6u3f//+GjdunAYNGqRzzjnHZ93dd98d6NMBAMIA94bmYUwphArDMDQkO1P5m/bqvcJiDf3OOWffCTgF3v9bjlAKQDQI+F+93377rbp3765vvvlG33zzjXe5Z7YNAED04d5wdqZpeseUSmFMKYSAG3M6Kn/TXn38Tamq611KiqNbKfzH+3/LeUIpU5LbNGWjzgBEoID91Xv77bfr2Wef1V//+ldJUm1trRISEgJ1eABAGOLe0HzV9S65TcmQlMzDP0JAzjnJ6tY+QfvKa/XxN6W6sUfHYBcJYYT3/9bzDHQuSU6XqbgYQikAkSdgY0pt3brV5/WgQYMCdWgAQJji3tB8nq57KfF2Pg1HSDAMQzfkZEqS3vvqSJBLg3DD+3/r2ZvcC1xMlAQgQrXJQOeSmGHuBMy6BwDcG87EM8h5CuNJIYTckNPQOuqjr0tV63AFuTQIZ7z/+8/epKUU40oBiFRtFkrRTxwAcCLuDafHIOcIRd/plKIu7eJV63Tr411Hg10chDHe//3XNJRyEkoBiFBtFkoBAIDmq6htDKUY5BwhpGEWvobWUu99SRc+wEpNMilaSgGIWAH7y9fpdOrVV1/1vnY4HD6vJWnUqFGBOl3Y+feBCn3wzTFd0SUp2EUBAMtwb2i+SlpKIUTd2CNTS7d8Sxc++IX3/9YzDEN2myGX2ySUAhCxAvaXb2ZmphYsWOB9nZ6e7vPaMIyovvH8z8ov9O2xeu2vqNeDNwW7NABgDe4NzXe8+x4z7yG0XNo5VZ1S43Wook4bdh/V2C5pwS4SwgDv/4ER4wmlGJMLQIQKWCj1z3/+M1CHikjHahoeNtym5OamAiBKcG9oHrdpqrKegc4Rmhq68GXqhX/t03tfFmvs1RcGu0gIA7z/B4ZnBj5aSgGIVIwpZZErzm3n/b6ouDqIJQEAhJqqepdMs2H8kOQ4Wkoh9NyQkylJ+nBnieqcdOEDrOIZ7JyBzgFEKkIpqzSZcWTj7rLglQMAEHIqGwc5T4mPYYYqhKTLu7ZTx5Q4VdW79FFhcbCLA0QNTyhFSykAkYo+AhZxutze7zfuKdPt1wSxMACAkFLBIOcIcTbDkHvvNin9O/rp//1V7YvePWmbDhlpWvLUM0EoHRC5CKUARDr++rWIw3X8RkL3PQBAUwxyjrCw/3Mp/TtydL5U3xt+k/dh2ePNx2cEqWBA5LI3/jNjoHMAkYruexYwTVOOJi2lmgZUAABU1DHIOUJfXMUBJcbaVO9068Cx2mAXB4gKMbSUAhDhCKUs4mwSRDm4qQAAmqhoHFMqNYFQCqHLkKnz0xMlSbtLa4JcGiA60H0PQKQjlLKI0328pZTLbcqkCS4AoFElY0ohTJyfkSRJ2n20hr9lAAsw+x6ASEcoZRHnCV32+LQDACBJbrepqvqG7nuEUgh1XdsnKNZuqKrepeKq+mAXB4h4tJQCEOn469ciJ3bZc7hNxTCeLQBEvcp6l0xJdsNQYqzvZ0VffbVDt44be9p9v9pZqOFtXD6gqRibofM7JKvocKV2ldaoY0p8sIsERDS70RhK0TIRQIQilLKIs8lA5w2vTSk2SIUBAIQMz8x7KfF2GYbvbGZOtzR8+m9Pu+8Xd41o07IBp3Jxx4ZQandpja46Ly3YxQEiGi2lAEQ6uu9Z5MR+4E3HmAIARC8GOUe4uaBDsgxDOlrjUHmNI9jFASIas+8BiHSEUhY5cUwph4sbCwCAQc4RfhJi7erSrqHb3u6jzMIHtCVaSgGIdPwFbBHHCS2jmEEDACAd775HKIVg82cMswvSk7S/vE67SmvUq2s7awoIRCFm3wMQ6fgL2CIntpTixgIAkKSKuoaZ91Limf0CweXPGGbnZyTq411HdbiiTrUOlxJi+f0F2oK3+x4DnQOIUHTfs8iJIZTDxZhSAIDjY0q1Y0wphJGU+BilJ8bKlPRteW2wiwNELLrvAYh0hFIWOWn2PW4sABD1TMOuaoenpRShFMLLeemJkqS9jCsFtBm7QSgFILIRSlnEcdLse9xYACDaueJTJDV0z0iI4ZaM8NI9PUGStLesVm66FqEN7dixQ5MmTVK/fv107bXXaubMmSotLZUkbdu2TePGjVNubq6GDBmiZcuW+ey7YsUK5eXlqXfv3ho9erS2bt3qXedyuTR//nxdc801ys3N1ZQpU3T48GHv+pKSEk2dOlV9+/ZV//79NWfOHDmdTmsuuhEtpQBEOv4CtshJY0rRfQ8Aop4zvr2khkHOjcZPw4Fw0Sk1XnF2Q3VOt45U1ge7OIhQtbW1uuOOO5Sbm6uPPvpIb7zxhsrKyvTggw+qvLxckydP1qhRo1RQUKA5c+bo0Ucf1fbt2yVJGzdu1COPPKJ58+apoKBAt9xyi6ZMmaKamobWfYsXL9a6dev08ssva+3atUpISNDs2bO957733nuVlJSktWvXavny5Vq/fr3y8/Mtue49e/Zo27ZPVFlR3vD622+1ffsnfn19++1eS8oKAK1BXwGLOBtn37MbksukpRQAQHLFp0pikHOEJ5th6Ny0RH1dUk0XPrSZ/fv3q2fPnpo2bZrsdrvi4uI0fvx4zZw5U++8847S0tI0YcIESdKAAQM0cuRILV26VL169dKyZcs0fPhw9enTR5I0ceJEvfTSS1q1apXGjBmjZcuWacaMGerSpYsk6aGHHtLAgQO1d+9eud1ubdq0SR9++KESExPVvXt3TZ06VY899pjuuOOONr3mb7/dq2uuvUo11dXKHDlDyZdcrycXLtDcLa/7dZyExCR9vK5A557bvY1KCgCtRyhlEUdjS6kYmyGXyzyp5RQAIPq4PC2lGOQcYap7eoK+LqnWnrIaxQe7MIhIF110kZ555hmfZatXr9all16qwsJC5eTk+KzLysrS8uXLJUlFRUUaM2bMSet37NihiooKHTx40Gf/zMxMtW/fXl9++aUkKS0tTZ06dfKuv/jii7V//34dO3ZM7dq1a/Y1+NsQtrS0RDXV1Ro3/VHta9dT+2qla0f9RBf98IfNPsbhb7/R8sdnqbS0RN27h0co5amnaGw4HK3XznUHtxz+aqvy8lewBUzT9PYDj7EZqnOZcrjpvgcA0c7TUiqVQc4RprqnNQx2XlLlUKfY5CCXBpHONE098cQTWrNmjZ5//nk999xzSkxM9NkmISFB1dXVkqSqqqrTrq+qqpIkJSUlnbTes+7EfT2vq6ur/QqlOnRIbfa2kpSW1vBvqXtWD1U6OmjfgWPK6NRVWRdkNPsYCQlxkqT09GRlZvp3/mDzt74iSbReO9cd3fgr2AJNu+rZG0fxoqUUAMAZ3/BQQyiFcJUYa1fHlDgdqaxXbdr5wS4OIlhlZaVmzZqlzz//XM8//7x69OihxMREVVRU+GxXW1ur5OSGUCcxMVG1tbUnrU9PT/cGTJ7xpU7c3zTNk9Z5XnuO31wlJRXyZy6AsrKGUKy2rl5us2GG1rp6p6qr65p9jNrahnHejh6tUnFxxVm2Dg2G0fCQ7m99RYJovXauO7yu21PuQOOvYAs0DaViGmfQYEwpAICLUAoRoHtaoo5U1qsu7YJgFwURas+ePbrzzjvVtWtXLV++XBkZDS2GcnJytG7dOp9ti4qKlJ2dLUnKzs5WYWHhSesHDRqk9u3bq1OnTioqKvJ24Tty5IjKysqUk5Mjt9utsrIyFRcXKzMzU5K0c+dOde7cWamp/j2Umab8evD0bmvKOwlGa2a4DKeHXsn/+ook0XrtXHd0C9vZ91wul2677TY98MAD3mWtmRK2LTVtFeUJpei+BwDRrdbhkjuu4dN2BjpHOOueliBJqmt/Lh+6IeDKy8v1k5/8RFdeeaWeffZZbyAlSXl5eSouLlZ+fr4cDoc2bNiglStXeseRGjt2rFauXKkNGzbI4XAoPz9fJSUlysvLkySNHj1aixcv1t69e1VZWam5c+eqX79+Ou+883TBBReoT58+mjt3riorK7V3714tWrRIY8eOtfT6Gx8dxD8tAJEqbD+aXbhwoTZv3qxu3bpJkndK2J/+9KcaP368CgoKNG3aNPXo0UO9evXyTgn79NNPq1evXlq6dKmmTJmiNWvWnNRfPNCcTQIoe+OnHXTfA4DoduBYQzeMWLuh+Jiw/YwIUGZKnOLshuqVoH8frNDlXZs/1g5wNq+88or279+vt956S2+//bbPuq1bt2rJkiWaM2eOFixYoIyMDM2ePVtXX321pIbZ+B5++GH98pe/1KFDh5SVlaWnn35aaWlpkqRp06bJ6XRqwoQJqqqqUv/+/fXEE094j79gwQL9+te/1g033CCbzaZRo0Zp6tSpVl26pOMtpWhNASBShWUotX79er3zzju66aabvMtaOyVsW/J8amhIstl8lwEAotP+Yw3jnKTGx3gfOoBwZDMMdWufoG9Ka7Rx91FCKQTUpEmTNGnSpNOuv/zyy/Xiiy+edv2tt96qW2+99ZTrYmNjNWPGDM2YMeOU6zMzM7VgwQL/Chxgx1tK8ewAIDKF3UezJSUleuihh/R///d/Pi2cTjcl7I4dOyTJp7/4qdb7wzD8+/LMvGczjle40236fZxw/mpJvUXaV7TXQbRff6jWQSQKl+7dB8qPh1JAuOvWOAvfxt1Hg1wSILLYGm/WZFIAIlVY/SXsdrt13333adKkSerZs6fPujNN+dqc9f7wd8T5CrPhZmIzDMXG2iU5FJ8YF3bTs7YWU15SB9F+/RJ1YIVw6d69n1AKEaRb+4ZxpT7df0yVdU6l8HsNBITn8yNaSgGIVGH1F8NTTz2luLg43XbbbSeta82UsP7yd+rG4tKGaV0NQzJdDeNLlR+rCZvpWVvLMMJzystAivY6iPbrl0KzDjxliiTh1L3b04s7Izm2zc4BWKVdQozcxw5L7c7RmHtmKeHoNydt0yEjTUueeqZNzv9fd92hktKy065vy3MDbcnTUoopkgBEqrAKpV577TUdPnxYffv2lSRvyPSPf/xDM2fObPGUsP7yd+pGh6tJ973GG4vDZYbMg6lVmPKSOoj265eog7bk6d69aNEi5efne5efrnv38uXLJTXcC04Mn1rSvdvf7pB3XnOeVv3tj8ruP8W/HVugaffRcP39a3oNVp6vLY4ZKT+HE6/Bse/fim93jjoP+k9de1HGSfu++fiMNvv5lZSWafj03552fdNzW/271Bba8hrCuV4ikefnYYbrmwYAnEVYhVInzrjhGS9k3rx5Onr0qB577DHl5+drwoQJ2rJli1auXKlFixZJapgSdtq0abr55pvVp08fLV261GdK2LbkmX3PZhjeG0vTGfkAAK0TCt27/W11likptXK3UlISTruNYUhJSfEBW5+YGH/G9W157kCtT0yMb/Nzx8Taz9jFPibW3uJ6k07+Ofizf2vWB+LYnrKf6hqcB/6t+O8M1v6KulMe52z12hpn+pmc7tyR0FI0Eq4BZ+ZtKUUmBSBChVUodSbp6emtmhK2LTldTWbf84ZS3FkAIFBCoXt3S7pmOh0uVVfXnXa9aSog6z1hQk1NnU8Zz7R/oM4dqPUnXkNbnvuLzz/XNdcPPe36wp2FGtqCevN8MHXiz8GfsrVmfSCOXVNTd8rfJUlyHPhKhqSyaocOlVYpNcH3z0ynw9VmQxec7d9S03OHYndqf7XlNURi1+5wRkspAJEurEOpefPm+bxuzZSwbcnZdPa9Jt33AACBEQrdu0O5a6anXKFavuaw8hqcbp2xK9hjd41o0XEj/ufgqNU5qfE6VFGnfeW16pmQctr9g+HEc4fyv9nmioRrwJnRUgpApLMFuwDR4HgoZdBSCgDawNtvv61//etf2rx5szZv3qwRI0ZoxIgR2rx5s/Ly8lRcXKz8/Hw5HA5t2LBBK1eu9I4jNXbsWK1cuVIbNmyQw+FQfn6+Zd27gUjjmYVvX3ntWbYE0Bw2WkoBiHBh3VIqXHgCKMNo0n3PxZhSAGCFUO7eDUSabu0T9K9vy7WvvFamacpg1GygVQxaSgGIcIRSFvAEUD7d97izAECbCZfu3UCkOSclTrE2Q3VOt0qrHeqQHBfsIgFhzfOBtpuWUgAiFN33LOBo0n3P83kh3fcAAECksdkMdW7XMAseXfiA1js+0HlwywEAbYWWUhbwzL5no/seAACIcN3SErS3rFb7ymvVq2u7YBdHkvTVVzt067ix3tcxsXY5HS7v6w4ZaVry1DPBKBpwRrbGj7TdIpUCEJkIpSzgO/ue7zIAAIBI0q1dw2DnB4/VyeU2ZbcFf1ypE2dUTEqKV3V1nff1m4/PCEaxgLOipRSASEf3PQs43Z4xpQzvYIWe1lMAAACRJD0pVomxNjndpg5X1J19BwCnZWOgcwARjlDKAqeafc/hpvseAACIPIZhqGv7htZSjCsFtI7N21KKVApAZCKUsoB3TCk1HVOKGwsAAIhM3UIolHK43LJ3ylbRkSodqaxnFjOEFYOWUgAiHGNKWcDZZPY9TxNcxpQCAACRyhNKHamsV73TrbgY6z8HNU1Tnx+s1L++LVfqzdO1pqhEkpQSZ9fA7I46NzXW+8APhCrPB9qEqQAiFS2lLOA6Vfc9WkoBAIAIlRIfo3YJMTIlHThmfWspt2nq/aISrd91VHVOt9xVZeqUGq9Yu6HKepfe/vyg3i8q8f6NBoQqT3BKJgUgUhFKWaDpQOfHW0oxphQAAIhcwezC99HXpSoqrpYhacAF6Tq2fLZuuayTftSnm/qc216GIRUVV2v1jiO0XkdIo6UUgEhHKGUBT6somyF5GonzBxAAAIhkx0Mpa2fg++pIpb48XCVD0o09MnVZl1TJbPgwMMZu05Xd2+vWK7oq1mZoX3mt1hQWyxTd+BCabLSUAhDhGFPKAsfHlGKgcwAAEB26tIuXJJXVOFRd77LknJV1Tq37+qgk6cru7XVBRtIptzu/Q7LyenbU2/8+rF2lNUo5t99pj/lfd92hktKy067vkJGmJU8906pyA6fjiUvd4tkBQGQilLKA09Xw6ZxhGPKMp0n3PQAAEMkSYu3KTI5TcVW9ZV34Nuwuk9NtqlNqvHp3a3fGbbu1T9Cgizvo/aISVXbrp/W7SjXggoyTtispLdPw6b897XHefHxGq8sNnA4tpQBEOrrvWcCnpdQJywAAACKVleNKHSiv1TclDeNIXXthuvdh/kyyOybrO51SJMPQL97coYNBGJQdOBODMaUARDhCKQt4Qykx+x4AAIgeXds3dOHbX17bpp2PTEkFe8skST07pahDclyz9736gnTFVh5Wea1TD76xw9vCHQgFnnCVz7MBRCpCKQscbynVdPY97iwAACCydU6Nl92QqupdciWktdl56tt116GKetkNKffcM3fbO1GMzVB64Sqlxsfo0wPH9MyGPW1USsB/npZSJi2lAEQoQikLeAY1N5oOdM6YUgAAIMLF2G3qlNrQWqquffc2O09F40DlPTulKDnO/yFTY+qOaVZetiTpzxv3aNu+8oCWD2gpWkoBiHSEUhbwBFBNZ9+j+x4AAIgGXRvHlWqrUOqzA8dU366bbIZ0RVf/Wkk1ldejo4Zfco7cpvQ/q3aoss4ZwFICLWNjTCkAEY5QygJNu+8ZdN8DAABRxDPYeV27c+Vqg79//rZlnyTp4sxkJce3bmLpGUOy1LV9gvYfq9Nj/ywKRPGAVjnefS+45QCAtkIoZQFP972mLaVcbpO+4QAAIOJlpsQpzm7IjEnQFwcrAnrsg8dq9c+vjkiSLu+S2urjpcTH6Nc395DNkFZ9cVjv7Djc6mMCreHpvmeKcaUARCZCKQscbyl1PJRquhwAACBS2QxD3dISJUkff1Ma0GO/vO2AXKYUV77Xrxn3zuSKbu31X/3PkyTN+0eRXHEpATku0BKeUEpiXCkAkYlQygKe8MloMvte0+UAAACR7Ly0hi586wIYStU73Xrt04OSpOSD2wN2XEm6fcD5uqxLqirqnDp68U2M54OgsTf5QNvF7yGACEQoZYGmA50bTZcz2DkAAIgC5za2lPr3oUqVVNUH5JhrCot1tMahjilxSjj6dUCO6RFjM/Trm3sqMdam+vbnavv+YwE9PtBctibdLNpiTDYACDZCKQscH1PK8Om+52gMqwAAACJZUpxdsZWHJEnrdwWmtdTybfslSd+/vIsMBf5hvXt6omYMyZIkFewp156jNQE/B3A2DRMlNXxPKAUgErVuihI0i3dMKTV04bPbDLncJi2lAABA1Igv2yVHSid9uLNUIy7t3KpjFR2p0if7jsluSKN6ddYbASrjiUZe2kn/99wrqu50mf5ZWKxRl3dWWmKsX8f4r7vuUElp2WnXd8hI05KnnmllSRHJYgxDDtOkGymAiEQoZYHjY0o1vI7xhFJ82gEAAKJEwtGvVXluf63/plS1DpcSYu0tPpanldTgrEx1TIkPVBFPYhiG2u96X6lZfXSook6rdxzRqMs7Kz6m+Z0NSkrLNHz6b0+7/s3HZwSiqIhgNpsh8ewAIELRfc8Cx2ffa0ilYhv78DlcdN8DAADRIbbqiDqnxqvW6dbG3UdbfJyqeqfe+uKwJGls7y6BKt5pGaZbeT0ylRJn17Fap1bvOMzfcLCUvfEZgpE/AEQiQikLHA+lGl7bG7/h0w4AABAtDEmDszpIktYUlbT4OCs/O6Rqh0sXZCSqb/e0wBTuLBJj7bqpZ0fF2Q0dqqjX2/8+ononCQGs4Xl2YPY9AJGIUMoCTtfx2fekhu57EqEUAACILt/NzpQkrd1Z0qLWRm7T1N+37pMkjc/tJsMwzrJH4HRIjtOwS85RrN3QwYo6rfz8kCpqnZadH9HL3vjExkDnACIRY0pZ4PiYUo3d9+yNoRRNvwEAQBS5olt7dUiOU0lVvdbvOqpBF3fwa/91X5dqb1mtUuNjNPzSTgEr11df7dCt48aeet3OQg1v/L5jSrxGXtpJb/37sEqrHXpl+wEldciRaZqWBmSILt6WUoRSACIQoZQFPDcQz3TFdN8DAADRKMZmaGjPjvrbln1664tDzQ6lPDPYFfccJaWdJ/c3G/UfP/ydd33T4KglnG6ddjDyL+4a4fO6Q3KcRl3eWe99VazDlfWqz/6e7nhxm37U91wNvChDsXY6IiCwPGNK0X0PQCQilLJA04HOTdOk+x4AAIhaN3/nHP1tyz59uLNElXVOpcSf/c/RktIyDbhrrl7edlCGpJEjRio1/vve9ScGR20tJT5GIy/tpE/2H9O/dhVr+/5jmvn6F0qMtenSLu3UrV2CYhpbxpdddIP+8eUR1bncqneacrrdirHZlJoQo47JcXLGt7O07Ag/tJQCEMn4KMcCTpfvQOfHGscfYOYWAAAQbXqck6ILOySp3mXqnR2Hm73f5wcqJUnnZyQqtRlBVluz2QxdeW57nfPJc5rYr7sykmJV43Br854yvfbZQb287YBe3nZA1edcqm9Ka7S/vE7FVfUqq3GquKpe35RUa9OeMh3Onah7X/lMRUeqgn1JCFHellKEUgAiUPDv6FHAO6ZU42tPOEVLKQAAEG0Mw9Coyzvr8fe/1otb9+v7vbqcdTwmV2ySChtDm8u6pFpRzGazO6o07boLNWXgBSo8XKWvjlTqUEWdPH/lvfDiC+o1eLji7DbFxdgUYzPkcLlVVuPUvvJafXu0Wuu+KdW6nUfUbu/HSj6wVU1ro0NGmpY89UwwLg0h4vjse0EuCAC0AVpKWcAztIBngHOb4RnonDsLAACIPrdc1llJsfaG1kK7y866fWW3q+QyTZ2TEqfOqfFtX8AWsBmGenRK0cjLOuuOAefrzsav1P2bdUnnVGV1TNZ56Ynq2j5B52ck6Ypu7TTsknNUseJXOj89UbLZdez865Q84gHdfO9jGj79txo+/bcqKS0L9qWFjNLSUuXl5Wnjxo3eZdu2bdO4ceOUm5urIUOGaNmyZT77rFixQnl5eerdu7dGjx6trVu3ete5XC7Nnz9f11xzjXJzczVlyhQdPny89V5JSYmmTp2qvn37qn///pozZ46cTutnXKT7HoBIRihlgZk3ZOmBodlKiGmobk9LKQc3FgAAEIVS4mM08rKG2fOe3/ztGbc9cKxWVedcJknqe15axM1y5644orwemRp4UboMQyoqrtY/vyqWm0GtfWzZskXjx4/Xnj17vMvKy8s1efJkjRo1SgUFBZozZ44effRRbd++XZK0ceNGPfLII5o3b54KCgp0yy23aMqUKaqpqZEkLV68WOvWrdPLL7+stWvXKiEhQbNnz/Ye/95771VSUpLWrl2r5cuXa/369crPz7f0uqXjzw6EUgAiEaGUBYb27KifXN3d+9rTUooxpQAAQLT6jyu7yW4ztGH3UW3YVXra7X63Zqdks6tLu3h1a59gYQmtYxiGvtMpVXk5mbIZ0jelNdqw62iwixUyVqxYoRkzZmj69Ok+y9955x2lpaVpwoQJiomJ0YABAzRy5EgtXbpUkrRs2TINHz5cffr0UWxsrCZOnKj09HStWrXKu/7OO+9Uly5dlJKSooceekgffvih9u7dq927d2vTpk267777lJiYqO7du2vq1KneY1vpePc9QikAkYdQKggae/Gp1kkoBQAAotO5aYn6Qe+ukqQnPvj6lGNt/rOwWO8XlUhul665IN3qIlru/IwkfTc7U5L0+cFK7ThUGeQShYaBAwfq3Xff1bBhw3yWFxYWKicnx2dZVlaWduzYIUkqKio67fqKigodPHjQZ31mZqbat2+vL7/8UoWFhUpLS1OnTp286y+++GLt379fx44dC/QlnhHd9wBEsrALpXbs2KFJkyapX79+uvbaazVz5kyVljZ8utaaPuVWimm8sdQRSgEAgCh2x4Dz1D4hRjuLqxtaRDVRVFyl36z+SpKUsn+LMpLjglFEy13UIUl9u7eXJH2866gciRlBLlHwdezYUTExJ8/PVFVVpcTERJ9lCQkJqq6uPuv6qqqGgfOTkpJOWl9VVXXKfT2vPcdvLsPw/6thx4b/eWbfc7cwlGrJ+YP1FW7l5dq57mi77rYQVrPv1dbW6o477tAPfvADPfXUU6qqqtL999+vBx98UPPnz9fkyZP105/+VOPHj1dBQYGmTZumHj16qFevXt4+5U8//bR69eqlpUuXasqUKVqzZs1JN5xAM01TZpPmtp5PO+ocrjY9LwBEkx07dmj+/Pn6/PPPFRsbq2uvvVYPPPCAMjIytG3bNv3mN79RUVGR0tPTNWXKFI0bN86774oVK7Ro0SIdOXJEF110kX7xi18oNzc3iFcDRId2CbH6xdAc3ffaF1r2yX7ZbYZu63uu/n2oUvP+UaiKOqeu6NpOhzcWSBob7OJapne3djp4rE7fltfqaNb35HC5FWsPu8+S21xiYqIqKip8ltXW1io5Odm7vra29qT16enp3r//PeNLnbi/aZonrfO89hy/uTp08G/GyLS0huMnxMcpKSleCfENj2yG3aakpOYN9J+Q0BDipqcnKzMztGasPBt/6yuSROu1c93RLaxCqf3796tnz56aNm2a7Ha74uLiNH78eM2cOdOnT7kknz7lvXr18ulTLkkTJ07USy+9pFWrVmnMmDFtXvbH3/nS+72npRTd9wAgMML1QwsA0uCsTN0z6EIt+PAbvfivfXrxX/u86y7qkKT/G3WpfvxKdH2QZxiGrs/uoOWfHFBtcqb+vHGPJl9zQbCLFXJycnK0bt06n2VFRUXKzs6WJGVnZ6uwsPCk9YMGDVL79u3VqVMnny5+R44cUVlZmXJycuR2u1VWVqbi4mJlZjZ0qdy5c6c6d+6s1FT/HiRLSirkz3BQZWUNrbhq6+pVXV0nd+M4tHX1TlVX1zXrGLW19ZKko0erVFxccZatQ4NhNDyk+1tfkSBar53rDq/r9pQ70MLqI5eLLrpIzzzzjOx2u3fZ6tWrdemll7aqT7m/WtTMrUlbN09LqXqnO+jN72ieSB1w/dFdB5Gi6YcWcXFxSk9P9wZQrR0IF0Dbu+2q7nr8+5fqgoyGIDgx1qYfX9VdS37YW+0TY4NcuuBIjLXrmgvTJUlLNu7V1yVVQS5R6MnLy1NxcbHy8/PlcDi0YcMGrVy50vuB89ixY7Vy5Upt2LBBDodD+fn5KikpUV5eniRp9OjRWrx4sfbu3avKykrNnTtX/fr103nnnacLLrhAffr00dy5c1VZWam9e/dq0aJFGjvW/xZ7pun/V8OODf/zdN9ztfDhtSXnD9ZXuJWXa+e6o+2620JYtZRqyjRNPfHEE1qzZo2ef/55Pffccy3uU+4vf9NBl6vh072kpDi53aYS4ho+7TBi7WHXnLY1aJ5IHUT79UvUQVvxfGjR1Nk+tFi+fLmkhg8tTmwx29IPLQC03MCLOujaCzNk6vhMxdHuog5J+nhjgWozLtLja77WgjGXyaBuvNLT07VkyRLNmTNHCxYsUEZGhmbPnq2rr75aUkPPiYcffli//OUvdejQIWVlZenpp59WWlqaJGnatGlyOp2aMGGCqqqq1L9/fz3xxBPe4y9YsEC//vWvdcMNN8hms2nUqFGaOnWq5dfJQOcAIllYhlKVlZWaNWuWPv/8cz3//PPq0aNHq/qU+8vfZnZud0MoVV1dL7fbLbOxCe7RitqwaU7bGoYRns0TAyna6yDar18KzTrwlCnSBOtDi1B+TmzaUi9Ufv/81fQawlWk/Rxacg1n+/lZEbi0xc+hrYptGIZK3s9X8qiHtWH3UX1v8n1KKNslGVJMjF1pqala8qdnznoc/84Z0MMF3Jdffunz+vLLL9eLL7542u1vvfVW3XrrradcFxsbqxkzZmjGjBmnXJ+ZmakFCxa0vLAB4hlOjFAKQCQKu1Bqz549uvPOO9W1a1ctX75cGRkNM5K0pk+5v/xtunbitvbGm32dwx22f5S2RFs2+QsX0V4H0X79EnXQ1oL5oUVLAr6YWPsZB601DAV0fWJi/BnXt+W5A7U+MTE+ZMvWnH2lk38OoVK25qz3lP1U13C2/WNa0UK8Lf6tNL2G1tTb2a6rtWV3VhSrz4WZ2rL7qFy5YzT66vO9LWdW/O+9UdXqPlod777HHxAAIk9YhVLl5eX6yU9+oquvvlpz5syRzXZ8SKy8vDw99thjys/P14QJE7RlyxatXLlSixYtktTQp3zatGm6+eab1adPHy1dutSnT7mVvLPvMdA5AARMsD+0aEkrOKfDdcZBa01TAVnvCRNqaup8ynim/QN17kCtP/EaQqlszV3naYFy4s8hFMrW3PU1NXWn/F1qzv5Oh6vFLcQD+W/lVP8eWlNvZ7uuQJT9sk7J+mJ/ucprHCr4ulhXdGunxMR4OZ0tr9PTidRWtOGM7nsAIllYDXT+yiuvaP/+/XrrrbfUp08f5ebmer88fcrffvtt9e/fX7Nnzz5tn/J+/frpzTff9OlT3tZM05TZ+JeP3Tv7XnTNJAMAbcXzocWVV16pZ5991htISa0fCLe5QmWwyNOVren/wxHXEBpaew2hMLBqW/wc2rrscXab+p2XJkn617flqqlv/BsyjAayRcsRSgGIZGHVUmrSpEmaNGnSade3pk+5lWIMWkoBQCA1/dDi7bff9lm3devWVg2ECwChILtjsj47UKGSaoe27T+m77ZPCnaRYBG67wGIZGEVSkUKz2CFhFIAEBiR8qEFAJyOYRjqc16a3tlxRJ8frFS/i5z66qsdunXc2NPu0yEjTUueCuxA6LCezdtSKsgFAYA2QCgVBN7uew7uLAAAAGie89ISdE5KnA5X1qtgV6mcbmn49N+edvs3Hz/1rHIILzGNzw5uuu8BiECEUkFwvPseY0oBAACEs7O1VvpqZ6GGB+hchmGo73lpWvXFYX2275iMZP9mCUV4stF9D0AEI5QKguMDndNSCgAAIJydrbXSF3eNCOj5urVPUNd28dp/rE4JVwwL6LERmjxDfzDQOYBIFFaz70UKTxNcxpQCAACAv/o2zsQXl3W1jtU6g1sYtDnvQOeEUgAiEKFUEHg+7aClFAAAAPzVKTVe52ckybDZ9cm+8mAXB23M08uC7nsAIhHd94Kg6acdTpdbMXayQQAAENnONPYSs8T5r/9FGdpdWq2vjlSpd7f2apfAn/WRyhNKuU3JNE0Zjc8SABAJuHsFgefGIjW0lkohlAIAABHuTGMvMUuc/7q0T5Rj3xeK7XaJPtlXrkEXdwh2kdBG7E1CKJfbVIydUApA5CANCYKm9xHGlQIAAEBL1H6ySpL01ZEqVTC2VMRq+oG2ix58ACIMoVQQGIah+JiGqieUAgAAQEu4jnytbu0TZJpibKkI1iSTYrBzABGHUCpICKUAAADQWlee216S9OWRKlXU0VoqEhmG4e1pwWDnACINoVSQJDSGUrVOV5BLAgAAgHDVuV28uraPb2gt9e2xYBcHbcQ7Ax8tpQBEGEIpi5hNPtUwTfN4SykHLaUAAADQcp7WUl8dqaS1VIQilAIQqQilgsA0TcXb6b4HAACA1uvSLkFd28XLbUqf7KO1VCTyzMDnpvsegAhDKBUk8bF03wMAAEBgXNm9sbXU4UpV0loq4tgaW0o5aSkFIMIQSgUJA50DAAAgULq0S1AXWktFrJjGUMrNowOACEMoFSSe7nu1hFIAAAAIgD6emfhoLRVxbI3d95h9D0CkiQl2AaJR04HOaxnoHAAARLmvvtqhW8eNPf36nYUabmF5wlWX9g2tpQ4cq6O1VIRhoHMAkYpQKgjcbrfi7XZJUh1jSgEAgCjndEvDp//2tOu/uGuEhaUJb1ee215vfnFYXx6uVMe4lGAXBwHS2MmCUApAxKH7XpB8XVIliTGlAAAAEDhd2x8fW6qia99gFwcBYqf7HoAIRSgVJJ4muIwpBQAAgEC6snFsqepzLlVxZV2QS4NAoPsegEhFKBUknhk0aCkFAACAQOrSLl7ntk+QDJvKaxnwPBLENvbfq3cRSgGILIRSQWCaprcJLmNKAQAAIJAMw1Bej0yd88lfdHFmcrCLgwBIaJwkqc7BswOAyEIoFSSellLMvgcAAIBAi7HbFFPHDHyRIiG2ceZuelkAiDCEUkHimUGD7nsAAAAAziQhpmHm7hpaSgGIMIRSQXK8+x6hFAAAAIDT87SU4tkBQKQhlAoSe0MmddKnHaZpymSqVwAAAACNPC2lGPoDQKQhlAoSz6cdRyrrg1wSAAAAAKHs+JhSdN8DEFkIpYIkNa7h044Dx2rlctMyCgAAAMCpeWbfq3eZPDsAiCiEUkESb2+Ygc/pNnWksi7YxQEAAAAQouJjbGoc/YNxpQBEFEIpCzSMEeX7iYbNMNQ5NV6StK+8NgilAgAAABAODMNQfGNrqVpm4AMQQQilgqhrO0IpAAAAAGfnGVeqhpZSACIIoVSQuN1udWkXJ4lQCgAAAMCZHZ+Bj5ZSACIHoVQQ7T1aLUnaV1YT5JIAAAAACGWellKMKQUgkhBKBVFK4wx8+2kpBQAAAOAMPC2lahyEUgAiB6FUkJimqeS4hupv2n3P7XbL7eZGAwAAAOA4T0upWifd9wBEDkKpIEqKafh/abVD1fUNNxfTNL1fAAAAACA16b5HSykAEYRQKohiDCnebkiStu8v9y5/6qNvCKcAAAAAeHkHOmdMKQARhFAqiEzT1IUZCZKkpZv3SZKq6l06UFGn+iholkvoBgAAADSPp6WUp4cFAEQCQqkg69EhQXZD2rD7qP625VvdtvQTrf6qVKOe3axXtx8IdvEAAAAAhIAOSXGSpKM1DlXVO4NcGgAIjKgLpUpKSjR16lT17dtX/fv315w5c+R0Bu9NPdEuDb4oTZL0+Ptf68CxuoZyVjs09x9FevLDr1XvdMntdtOyCADaUKjdHwAAwRdK94akOLvOSWkIpnaX1gSlDAAQaFEXSt17771KSkrS2rVrtXz5cq1fv175+flBK49pmkoynLowLU6XdU7RyEsydWuP9vrxlZ0kSX/dvE//8Zct+tvmvfrtP74KWjkBINKF2v0BABB8oXZvOD8jSZK0q41CqeLKOu09WqPiqno+DAdgiZhgF8BKu3fv1qZNm/Thhx8qMTFR3bt319SpU/XYY4/pjjvuCFq5kuLs6tc1SXa7Tbdffa7+9PEu1dXW6upzk7SjpF57y2r1+7W7JUmfHKhUr67t1KVdvNonxKhdYqzaJ8QqNSFGsXab6pxu1dQ7VedyK85uV6zdUKzdphib0djSSrLZ1LhPrOJjTp9LNr0RGYbR6ut0uU2V1ThUXFmvPUerdaSyXjZDujgzRd/pnKLkuKj6dQQQQkL1/gAACJ5QvDdckJGogj1l2n+sVkerHUpPim3RcUzTVEm1Q98erdHnByv06YFj+nT/MR2urPdu0y4hRhdmJOmizCRd1CFZF3VIUkZSnGLshmJshlxuUw6XqXqXWw6X+4zfHykpVXlllZxuyWmacp8m70pIiFVtrcP72m5ICTGGEuyGEmKkjPbt1CGjg9ymZDZeh9uU3I3PLXF2m2LtNsXHGIqLsSmu8TnIkCEZks2Q93vP043bNOV2Sy7TlNs05XIfP2bD96ZcpuRu8r3nuUpqKIckxdoMxcbYGv5vtynObshmM9T0Kcr3lbyFMAzpcL2psrKqhuc1w1Cs/fg1NFxXw2tbAJ7LgFASVSlAYWGh0tLS1KlTJ++yiy++WPv379exY8fUrl27Zh3HZpP8+eDANKU4u6H4GJs36DGMhpDI8/+G4xrK37Tbu112RrwuTI/XnnKH9lc4dKTapf3H6rT/2JHmn/ws7Daj4c3ZaPh/w/cNb4SGpDqnqaRYmwzD95qPvwmbaloVpne92eT7huPX1LtOewOSpHYJdsXbbTIMQ3Zb41dj2Vrz3tuat+1AhHGeMthjbHI53WrOr06o32paUi32GLtcETKAf4s+ODQku90ul8ulZv0S+GlQVgf9pF93/4oU6r9oFgrE/cHfe4MkJSUlKe4MHw6kpqQEZL1hNPyh7oq1+ZTxTPsH6tyBWt/0GkKtbM1dZxgN6+NP+DmEQtmauz4+1nbK36VQKFtz15/q30OolK256z3XcLZ9k5KSZPOzXwT3huOC9ewQE2NXamqqKo/sU+kpPrTtkpyoCqddq3ccVrzNlM2Q7EbDCczG/zgdCcqe9if9av0xxRRsaFhnNvzt7pZ0rN7UqSbxS42PUXyMVOeU3Ka0s6RaO0uqJRU3/wJape4s60sbv6KXoYZ/p0bj900DNsn337BxitfHtzNOseyE1yec2xMGuhuf9dym7+920/095z3++ngk17RctsbGE4Z89/V57f3ez+dCQ5J59ve1sx3yxP3PtP1p153wPG23G3K5ji848S3idO8ZTZ/LT3VdzameWJv0kz6ddUOvC5qxte+524JhRlG7zNdee02PP/643n//fe+yPXv2KC8vTx988IE6d+4cvMIBAIKG+wMA4ETcGwCg7UXVmFJJSUmqqfHtf+15nZycHIwiAQBCAPcHAMCJuDcAQNuLqlAqOztbZWVlKi4+3vx0586d6ty5s1JTU4NYMgBAMHF/AACciHsDALS9qAqlLrjgAvXp00dz585VZWWl9u7dq0WLFmns2LHBLhoAIIi4PwAATsS9AQDaXlSNKSVJxcXF+vWvf62NGzfKZrNp1KhRmjFjhux2e7CLBgAIIu4PAIATcW8AgLYVdaEUAAAAAAAAgi+quu8BAAAAAAAgNBBKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRyjVxkpKSjR16lT17dtX/fv315w5c+R0OoNdrDPasWOHJk2apH79+unaa6/VzJkzVVpaKknatm2bxo0bp9zcXA0ZMkTLli3z2XfFihXKy8tT7969NXr0aG3dutW7zuVyaf78+brmmmuUm5urKVOm6PDhw971Z6urs5070Fwul2677TY98MADzS5DpFx/WVmZZs6cqf79++uqq67S1KlTvWWNhjr4/PPPNWHCBPXt21cDBw7Ub37zG9XX10fN9SO8teY9PJS05D04lLTmfTRUtOa9MNhKS0uVl5enjRs3epe15v3baqcq/+rVq3Xrrbfqyiuv1JAhQ7Rw4UK53W7v+lAqP1omHJ8bWipS7lUtFe73uJaIhPtiS4TzvdQyJtrUj370I/PnP/+5WV1dbe7Zs8ccPny4+fTTTwe7WKdVU1NjXnvttebvf/97s66uziwtLTXvvPNO86677jLLysrMfv36mc8//7zpcDjMjz/+2MzNzTW3bdtmmqZpbtiwwczNzTU3b95s1tfXm3/+85/N/v37m9XV1aZpmuaTTz5pjhw50ty/f79ZUVFh3nvvveadd97pPfeZ6ups524LTzzxhNmzZ0/z/vvvb1YZIun6f/SjH5nTpk0zy8vLzYqKCvPuu+82J0+eHBV14HK5zGuvvdb8y1/+YrpcLvPAgQPm0KFDzYULF0bF9SO8teY9PNT4+x4calr6PhoqWvNeGGybN282b7zxRjMnJ8fcsGGDaZqtv4cHu/yffvqp2atXL/Of//yn6XK5zKKiIvO73/2u+eyzz4Zc+dFy4fbc0FKRdK9qqXC/x7VEuN8XWyKc76VWIpRqQ7t27TJzcnLMgwcPepe9+eab5vXXXx/EUp3Zzp07zdtvv910Op3eZf/4xz/MK6+80vz73/9u3nTTTT7b/8///I85c+ZM0zRN8+c//7k5e/Zsn/Xf+973zOXLl5umaZqDBg0yX3/9de+6I0eOmD169DD37Nlz1ro627kD7eOPPzaHDRtm/vSnP/XeLKLl+j/99FPz8ssvNysqKrzLjh49an711VdRUQelpaVmTk6O+ec//9l0Op3mgQMHzJtvvtl89tlno+L6Ed5a8x4eSlryHhxKWvM+Gipa814YTK+88op5/fXXm2+++aZPqNPa92+rnK78b7/9tjl37lyfbefOnWv+v//3/0zTDJ3yo+XC8bmhpSLlXtVS4X6Pa4lIuC+2RLjeS61G9702VFhYqLS0NHXq1Mm77OKLL9b+/ft17NixIJbs9C666CI988wzstvt3mWrV6/WpZdeqsLCQuXk5Phsn5WVpR07dkiSioqKTru+oqJCBw8e9FmfmZmp9u3b68svvzxrXZ3t3IFUUlKihx56SP/3f/+nxMRE7/Jouf7t27crKytLf//735WXl6eBAwdq/vz56tixY1TUQXp6uiZOnKj58+fr8ssv1+DBg3XBBRdo4sSJUXH9CG+teQ8PFS19Dw4lrXkfDRWteS8MpoEDB+rdd9/VsGHDfJa35v3bSqcr/9ChQzVr1izv69raWr3//vu69NJLJYVO+dFy4fjc0FKRcK9qqUi4x7VEJNwXWyJc76VWI5RqQ1VVVT5vNpK8r6urq4NRJL+YpqnHH39ca9as0UMPPXTK60lISPBey5nWV1VVSZKSkpJOWl9VVXXWujrbuQPF7Xbrvvvu06RJk9SzZ0+fddFw/ZJUXl6uL7/8Urt27dKKFSv06quv6tChQ7r//vujog7cbrcSEhL0i1/8Qp988oneeOMN7dy5UwsWLIiK60fk8Pc9PBS05j04lLTmfTRUtOa9MJg6duyomJiYk5a35v3bSqcrf1OVlZWaNm2aEhISNHHiREmhU360XLg/N7RUON6rWipS7nEtEQn3xZYI13up1Qil2lBSUpJqamp8lnleJycnB6NIzVZZWamf/vSnWrlypZ5//nn16NFDiYmJqq2t9dmutrbWey1nWu/5B3difXjWn62uznbuQHnqqacUFxen22677aR10XD9khQXFydJeuihh5SSkqLMzEzde++9+uCDD2SaZsTXwbvvvqvVq1frhz/8oeLi4pSdna1p06bphRdeiJrfAYS/lryHh4LWvAeHkta8j4aK1rwXhqLWvH+Hkq+//lr/8R//IafTqeeee04pKSmSwqf8OL1wfm5oqXC9V7VUpNzjWiIS7ostEWn30rZCKNWGsrOzVVZWpuLiYu+ynTt3qnPnzkpNTQ1iyc5sz549GjNmjCorK7V8+XL16NFDkpSTk6PCwkKfbYuKipSdnS2p4XpPt759+/bq1KmTioqKvOuOHDmisrIy5eTknLWuznbuQHnttde0adMm9e3bV3379tUbb7yhN954Q3379o2K65camo263W45HA7vMs/sPt/5zncivg4OHDjgnRHDIyYmRrGxsVHzO4Dw1tL38FDQmvfgUNKa99FQ0Zr3wlDUmvfvUPHBBx9o3Lhxuu666/Tss8+qffv23nXhUH6cWbg+N7RUON+rWipS7nEtEQn3xZaItHtpmwnmgFbR4D//8z/N6dOnmxUVFd5ZNBYsWBDsYp1WWVmZef3115sPPPCA6XK5fNaVlpaaffv2Nf/85z+b9fX15vr1683c3Fxz/fr1pmma3hkD1q9f75355aqrrjKPHj1qmqZpPv744+aIESPMPXv2eGce+9GPfuQ9/pnq6mznbiv333+/dwDCaLn++vp6My8vz7znnnvMyspKs6SkxPzxj39sTps2LSrqoLCw0LzsssvMxYsXm06n09yzZ485YsQIc968eVFx/QhvrXkPD0X+vAeHkta8j4aK1rwXhoqmA4W39v072OXfunWreemll5rLli075bahWH74L9yeG1oq0u5VLRWu97iWiIT7YktEwr3UCoRSbezIkSPmPffcY/br18+8+uqrzXnz5vnMNBFqlixZYubk5JhXXHGF2bt3b58v0zTN7du3m+PHjzdzc3PNG264wXz55Zd99n/11VfNoUOHmr179zbHjh1rfvLJJ9519fX15mOPPWZed9115pVXXmlOmTLFLC4u9q4/W12d7dxtoenNojlliJTrP3jwoHnvvfea1157rdm3b19z5syZZnl5edTUwbp168xx48aZffr0Ma+//nrzd7/7nVlXVxc114/w1dr38FDj73twKGnN+2ioaM17YShoGuqYZuvev4Ohafnvuusus0ePHif9u7799tu924da+eG/cHtuaKlIu1e1VDjf41oiEu6LLRHu91IrGKZpmsFurQUAAAAAAIDowphSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSwGmYpmnJPqEmEq4BAAAAABD6CKWAU3jvvfd0//33+7XPsmXLNH/+fL/2+fbbb9WjRw+98sorfu0XKH/5y180cOBA9erVS4sWLdKWLVt01113BaUsAAAAAIDoQigFnEJ+fr4OHDjg1z6LFy9WWVlZ2xSoDVRWVmrevHm67LLL9Oyzz+r73/++li1bpqKiomAXDQAAAAAQBWKCXQAAwVFeXi632628vDxdddVVwS4OAAAAACDK0FIKOMFtt92mTZs2adOmTerRo4c2btyow4cPa9asWRo8eLB69eqlsWPH6r333vPuM2TIEO3bt08rVqxQjx499O2330qSCgoKdPvtt+uqq67SZZddpiFDhujJJ5+U2+1uVRk//vhjjR8/Xrm5ubrqqqs0depUff311z7b/O1vf9PQoUPVq1cvTZgwQR9//LH3el555RUNGTJEkvTggw+qR48eeuCBB7RixQrt27cvqF0KAQAAAADRgVAKOMHDDz+sSy65RJdccoleeuklnXvuuRo7dqw2bdqk6dOn68knn1S3bt00bdo0vf7665KkhQsXqmPHjho8eLBeeuklnXPOOdqxY4cmTpyotLQ0Pf7441q8eLGuvPJKLVy4UG+++WaLy7d3715NmTJFl156qRYvXqzf/OY3+vrrrzV58mRv2PXXv/5Vv/rVr3TdddfpD3/4gy6//HJNnz7de4zrr79eCxculCRNmTJFL730kqZOnarBgwerY8eOeumll3T99de3vBIBAAAAADgLuu8BJ8jKylJKSookqXfv3nrsscdUWlqqt956S927d5ckDR48WBMnTtT//u//asSIEbrkkksUFxenjIwM9e7dW5K0Y8cOXXPNNXrsscdkszXkv9dee63ef/99FRQUaOTIkS0q3/bt21VbW6u77rpLnTp1kiR16dJF7733nqqrq5WUlKTFixdr6NChmj17tiTpuuuuU2VlpZYtWyZJysjI0He+8x1J0nnnnectc0ZGhuLi4ryvAQAAAABoK4RSwFls2rRJubm53kDK45ZbbtGsWbP09ddfKysr66T9Ro0apVGjRqmurk579uzR7t279fnnn8vlcsnhcLS4PFdccYXi4+M1duxYDRs2TIMHD1bfvn3Vq1cvSdLOnTtVUlKiG2644aTyekIpAAAAAACCjVAKOIvy8nKde+65Jy3PzMyUJB07duyU+9XW1uqRRx7Ra6+9JqfTqXPPPVe5ubmKiYmRaZotLs+5556r559/Xn/605/097//Xfn5+WrXrp1++MMf6mc/+5l3BsCMjAyf/TytqgAAAAAACAWEUsBZtG/fXsXFxSctP3LkiCQpPT39lPvNmTNHq1ev1hNPPKFrrrlGSUlJkqQBAwa0uky9evXSwoULVV9fry1btuill17SH//4R/Xo0UM9e/aUpJPK7AmrAAAAAAAIBQx0DpyCZwwoSbrqqqu0detW7d2712eb119/XR07dtT5559/0j6StGXLFvXv31833nijN5D67LPPVFpa2qrZ9/Lz8zVkyBDV19crLi5OAwYM0COPPCJJOnDggC688EJ16dJFq1at8tnvn//851mPfeI1AAAAAADQVngCBU6hXbt2+uabb7R+/XrvDHqTJk3Sq6++qg8++EDTp0/Xhg0bNH36dG+Q065dO33xxRfatGmTamtr1atXL3300Ud64YUXtGnTJj333HO68847ZRiGampqWly2q6++WocPH9a0adP0wQcf6KOPPtKsWbMUFxen7373uzIMQzNnztTatWs1a9YsrV27VosWLdKSJUuadd3FxcX64IMPdPjw4RaXEQAAAACAsyGUAk5hwoQJio2N1Z133qmNGzfqhRde0GWXXaY5c+boZz/7mQ4cOKBFixZpzJgx3n3+67/+S8XFxbr99tv12Wef6YEHHtCNN96oJ554QnfddZeWLVumKVOm6Ac/+IG2bt0ql8vVorL17NlTf/zjH1VZWan//u//1t13362ysjItWbJEF110kSRp2LBh+v3vf69PP/1UU6ZM0Zo1a/Tzn//8rMcePXq0unXrpmnTpunVV19tUfkAAAAAAGgOw2zNiMsAwsbGjRv14x//WM8995z69+8f7OIAAAAAAKIcA50DIcLlcjVrVr6YGP7ZAgAAAADCH0+3QIiYOHGiNm3adNbtvvzySwtKAwAAAABA26L7HhAivv76a1VVVZ11u8svv9yC0gAAAAAA0LYIpQAAAAAAAGA5Zt8DAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5WKCXYBwVFJSIX/mLDQMqUOHVL/3w+lRp4FHnQZeqNepp3wAAAAAEAyEUi1gmmrRA2ZL98PpUaeBR50GHnUKAAAAACej+x4AAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALBcSIdSpaWlysvL08aNG73Ltm3bpnHjxik3N1dDhgzRsmXLfPZZsWKF8vLy1Lt3b40ePVpbt271rnO5XJo/f76uueYa5ebmasqUKTp8+LBl12OapkzTtOx8AAAAAAAAoSpkQ6ktW7Zo/Pjx2rNnj3dZeXm5Jk+erFGjRqmgoEBz5szRo48+qu3bt0uSNm7cqEceeUTz5s1TQUGBbrnlFk2ZMkU1NTWSpMWLF2vdunV6+eWXtXbtWiUkJGj27NlBuT4AAAAAAIBoFpKh1IoVKzRjxgxNnz7dZ/k777yjtLQ0TZgwQTExMRowYIBGjhyppUuXSpKWLVum4cOHq0+fPoqNjdXEiROVnp6uVatWedffeeed6tKli1JSUvTQQw/pww8/1N69ey2/RgAAAAAAgGgWkqHUwIED9e6772rYsGE+ywsLC5WTk+OzLCsrSzt27JAkFRUVnXZ9RUWFDh486LM+MzNT7du315dfftlGVwIAAAAAAIBTiQl2AU6lY8eOp1xeVVWlxMREn2UJCQmqrq4+6/qqqipJUlJS0knrPeuayzD82ty7/Yn/R8tRl4FHnQZeqNdpqJYLAAAAQHQIyVDqdBITE1VRUeGzrLa2VsnJyd71tbW1J61PT0/3hlWe8aVOtX9zdeiQ6m/RffYzeBIMmJb+LHB61GngUacAAAAAcLKwCqVycnK0bt06n2VFRUXKzs6WJGVnZ6uwsPCk9YMGDVL79u3VqVMnny5+R44cUVlZ2Uld/s6mpKRC/kyiZxgND6We/QilWu/EOkXrUaeBF+p16ikfAAAAAARDSI4pdTp5eXkqLi5Wfn6+HA6HNmzYoJUrV2rMmDGSpLFjx2rlypXasGGDHA6H8vPzVVJSory8PEnS6NGjtXjxYu3du1eVlZWaO3eu+vXrp/POO8+vcpim/18t3Y8v6pQ6De+vUK9TAAAAAAiWsGoplZ6eriVLlmjOnDlasGCBMjIyNHv2bF199dWSpAEDBujhhx/WL3/5Sx06dEhZWVl6+umnlZaWJkmaNm2anE6nJkyYoKqqKvXv319PPPGEZeU3TVOmSUspAAAAAAAAwzT5rNxfxcX+d9/LzEzV4cPlMk3JZgurBmohyVOn/v4scHrUaeCFep16ygcAAAAAwUA6AgAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALBdWs++Fs4aZ98yQHOwYAAAAAADAarSUstAf134d7CIAAAAAAACEBEIpKxlGsEsAAAAAAAAQEgilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5SykGcGPgAAAAAAgGhHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUpZxDTNYBcBAAAAAAAgZBBKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRyhlIdM0ZZpmsIsBAAAAAAAQdIRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAASyHwxgAAKX5JREFUAAAAACxHKGUR0zRlmmawiwEAAAAAABASCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYLy1Dq888/14QJE9S3b18NHDhQv/nNb1RfXy9J2rZtm8aNG6fc3FwNGTJEy5Yt89l3xYoVysvLU+/evTV69Ght3bo1GJcAAAAAAAAQ1cIulHK73brrrrs0dOhQbdq0ScuXL9dHH32kp59+WuXl5Zo8ebJGjRqlgoICzZkzR48++qi2b98uSdq4caMeeeQRzZs3TwUFBbrllls0ZcoU1dTUBPmqAAAAAAAAokvYhVLl5eU6cuSI3G63TNOUJNlsNiUmJuqdd95RWlqaJkyYoJiYGA0YMEAjR47U0qVLJUnLli3T8OHD1adPH8XGxmrixIlKT0/XqlWrgnlJAAAAAAAAUSfsQqn09HRNnDhR8+fP1+WXX67Bgwfrggsu0MSJE1VYWKicnByf7bOysrRjxw5JUlFR0RnXAwAAAAAAwBoxwS6Av9xutxISEvSLX/xCY8eO1e7du3X33XdrwYIFqqqqUmJios/2CQkJqq6ulqSzrm8uw/CvzJ7tDeP4F1qnaZ0iMKjTwAv1Og3VcgEAAACIDmEXSr377rtavXq13n77bUlSdna2pk2bpjlz5mjkyJGqqKjw2b62tlbJycmSpMTERNXW1p60Pj093a8ydOiQ6ne5XS6XEhPjlZmZqtjYWL/3x6m15GeBM6NOA486BQAAAICThV0odeDAAe9Mex4xMTGKjY1VTk6O1q1b57OuqKhI2dnZkhoCrMLCwpPWDxo0yK8ylJRUqHE4q2YxDCktLUk1NXUqLq4glAoAw2h40Pf3Z4HTo04DL9Tr1FM+AAAAAAiGsBtTauDAgTpy5Ij++Mc/yuVyae/evVq8eLFGjhypvLw8FRcXKz8/Xw6HQxs2bNDKlSs1ZswYSdLYsWO1cuVKbdiwQQ6HQ/n5+SopKVFeXp5fZTBN/79auh9f1Cl1Gt5foV6nAAAAABAshmmG32PJxx9/rCeeeEJff/21UlNTdcstt2jatGmKi4vTp59+qjlz5uirr75SRkaGpk6dqtGjR3v3fe2117R48WIdOnRIWVlZmj17tq644gq/zl9c7H9LqfT0JP3q5a36fwMvoqVUABiGlJmZ6vfPAqdHnQZeqNepp3wAAAAAEAxhGUoFG6FU8IX6w344ok4DL9TrlFAKAAAAQDCFXfc9AAAAAAAAhD9CKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKYuYpun9AgAAAAAAiHaEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRyhlEdM0ZZpmsIsBAAAAAAAQEgilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilLMRg5wAAAAAAAA0IpQAAAAAAAGA5QimL0EIKAAAAAADgOEIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYLeCi1cePGQB8SAAAAAAAAESbgodRPf/pT3XjjjfrDH/6g/fv3B/rwAAAAAAAAiAABD6U++ugj3Xffffrss880dOhQ/dd//ZfeeOMN1dfXB/pUAAAAAAAACFMBD6ViY2M1dOhQLV68WB988IFuvPFGLVmyRAMHDtSvfvUr7dixI9CnBAAAAAAAQJhps4HOS0pKtHLlSr366qsqKipS//79FR8fr4kTJ+qPf/xjW502ZJmmKdM0g10MAAAAAACAkBDwUOrNN9/U5MmTNXjwYL388ssaNmyY3n//fT355JN64IEH9Pjjj+tPf/pTq85RVlammTNnqn///rrqqqs0depUHT58WJK0bds2jRs3Trm5uRoyZIiWLVvms++KFSuUl5en3r17a/To0dq6dWurygIAAAAAAAD/BTyU+tWvfqVu3brpxRdf1Ouvv66JEycqIyPDu/7CCy/UxIkTW3WOe+65R9XV1Xr33Xe1Zs0a2e12/eIXv1B5ebkmT56sUaNGqaCgQHPmzNGjjz6q7du3S2qYGfCRRx7RvHnzVFBQoFtuuUVTpkxRTU1Nq8oDAAAAAAAA/8QE+oAfffSR9u7dq06dOkmSPvnkE6Wmpuriiy+WJHXu3Fk//elPW3z8zz77TNu2bdPHH3+slJQUSdIjjzyiI0eO6J133lFaWpomTJggSRowYIBGjhyppUuXqlevXlq2bJmGDx+uPn36SJImTpyol156SatWrdKYMWNac9kAAAAAAADwQ8BbSr333nsaNWqUdu3aJUnaunWrxo0bpw8++CAgx9++fbuysrL097//XXl5eRo4cKDmz5+vjh07qrCwUDk5OT7bZ2VleQdXLyoqOuN6AAAAAAAAWCPgLaUWLlyoRYsW6bLLLpMkTZo0SVlZWXrsscc0ePDgVh+/vLxcX375pS677DKtWLFCtbW1mjlzpu6//35lZmYqMTHRZ/uEhARVV1dLkqqqqs64vrkMw78ye7Y3jONfaJ2mdYrAoE4DL9TrNFTLBQAAACA6BDyUOnDggK677jqfZQMHDtT06dMDcvy4uDhJ0kMPPaT4+HilpKTo3nvv1Q9+8AONHj1atbW1PtvX1tYqOTlZkpSYmHjK9enp6X6VoUOHVL/LXVdXp8TEeGVmpio+Pt7v/XFqLflZ4Myo08CjTgEAAADgZAEPpbp166a1a9f6BFPr169X165dA3L8rKwsud1uORwOb7jjdrslSd/5znf0t7/9zWf7oqIiZWdnS5Kys7NVWFh40vpBgwb5VYaSkgqZZvO3NwwpJSVONTV1Ki6uUHx8vV/nw8kMo+FB39+fBU6POg28UK9TT/kAAAAAIBgCHkpNnjxZ06ZN00033aRu3bpp//79evfddzV//vyAHP+aa65R9+7d9eCDD+rRRx9VXV2dHn/8cd14440aMWKEFixYoPz8fE2YMEFbtmzRypUrtWjRIknS2LFjNW3aNN18883q06ePli5dqpKSEuXl5flVBtNUix4wPfuF4sNpuKI+A486DTzqFAAAAABOZphm4B+VNm7cqFdffVVHjhxRly5d9P3vf19XXnllwI5/6NAhzZs3TwUFBaqrq9OQIUP00EMPqV27dvr00081Z84cffXVV8rIyNDUqVM1evRo776vvfaaFi9erEOHDikrK0uzZ8/WFVdc4df5i4v9bymVmhqnX728VVMHZdF9LwAMQ8rMTPX7Z4HTo04DL9Tr1FM+AAAAAAiGNgmlIh2hVPCF+sN+OKJOAy/U65RQCgAAAEAwBbz73qFDh7R48WLt2rXLO9aTx3PPPRfo0wEAAAAAACAMBTyUmjVrloqLi/Xd735XsbGxgT48AAAAAAAAIkDAQ6lPP/1Uq1evVkZGRqAPHfZM0xS9JQEAAAAAACRboA+YmpqquLi4QB8WAAAAAAAAESTgLaWmTp2qWbNm6c4771RmZqbPuq5duwb6dAAAAAAAAAhDAQ+lZs+eLUl69913JUmGYcg0TRmGoX//+9+BPh0AAAAAAADCUMBDqffeey/QhwQAAAAAAECECfiYUt26dVO3bt1UXl6uzz//XB07dlRCQoK6desW6FMBAAAAAAAgTAU8lCopKdF//Md/6Ac/+IHuv/9+7d27VzfeeKO2bt0a6FMBAAAAAAAgTAU8lJo7d65ycnJUUFCgmJgYXXzxxZo8ebL+93//N9CnAgAAAAAAQJgKeCi1YcMGzZo1S4mJiTIMQ5J0xx13qKioKNCnCjumaco0zWAXAwAAAAAAIOgCHkrFxsaqtrZWkrwBTFVVlZKTkwN9qrBCGAUAAAAAAHBcwEOpIUOG6L777tOuXbtkGIZKSkr0q1/9SoMHDw70qQAAAAAAABCmAh5K/fznP1dSUpK+973v6dixYxo4cKBqamo0Y8aMQJ8KAAAAAAAAYSom0AdMTk7WggULVFpaqm+//VadO3fWOeecE+jTAAAAAAAAIIwFPJQqKCjweb17927t3r1bknTVVVcF+nQAAAAAAAAIQwEPpW677baTltlsNnXp0kXvvfdeoE8HAAAAAACAMBTwUGrHjh0+r0tLS/WHP/xB3bp1C/SpAAAAAAAAEKYCPtD5iTIyMnTffffpL3/5S1ufCgAAAAAAAGGizUMpSSovL1ddXZ0VpwIAAAAAAEAYCHj3vVmzZvm8djgc2rJli6655ppAnyqsmKYp0zSDXQwAAAAAAICQEPBQ6kTx8fG67bbbNH78+LY+VUgrq3Fo59E6VdY5lZgY7NIAAAAAAAAEV8BDqUcffTTQh4wIz2/cq837a/Ta50d0x7WpwS4OAAAAAABAUAU8lFq4cGGztrv77rsDfeqQdrTaIUkqr3UGuSQAAAAAAADBF/BQqrCwUO+884569uypCy+8UAcPHtS//vUvXXLJJUpOTpYkGYYR6NOGPJe7YTwph8sd5JIAAAAAAAAEX8BDKZvNplmzZunHP/6xd9lrr72mNWvW6Iknngj06cKGszGU8oRTAAAAAAAA0cwW6AN+8MEHmjBhgs+yESNGaP369YE+VVjxhFFOQikAAAAAAIDAh1IZGRkqKCjwWbZ27Vp17tw50KcKK97ue4RSAAAAAAAAge++d9ddd2ny5MkaOnSounbtqr1792rNmjV68sknA32qsEL3PQAAAAAAgOMCHkqNGzdO3bp10+uvv64vvvhC3bt314svvqgePXoE+lRh5fhA54RSAAAAAAAAAQ+lJOmaa67RNddco9LSUmVkZLTFKcIOY0oBAAAAAAAcF/AxpRwOhx5//HH16dNHQ4YM0d69ezVmzBgdPnw40KcKK05CKQAAAAAAAK+Ah1ILFy7Uhg0b9Pvf/16xsbHq0KGDOnfurDlz5gT6VGGFllIAAAAAAADHBbz73sqVK/XCCy+oU6dOMgxDSUlJevTRR5WXlxfoU4UVp3dMKXeQSwIAAAAAABB8AW8pVV1d7R1HyjQbgpiEhATZbAE/VVhh9j0AAAAAAIDjAp4U9e7dWwsXLpQkGYYhSfrrX/+qyy+/PNCnCive2fcIpQAAAAAAAALffe/BBx/UxIkTtWLFClVVVWnYsGGqqqrSn//850CfKqx4x5RyEUoBAAAAAAAEPJTKzMzUm2++qffff1/79u1T586ddf311yslJSXQpworzL4HAAAAAABwXMBDqREjRuj111/XzTffHOhDhzVm3wMAAAAAADiuTUYfr6mpaYvDhjVaSgEAAAAAABwX8JZS/fv317hx4zRo0CCdc845PuvuvvvuQJ8ubBwfU8od5JIAAAAAAAAEX8BDqW+//Vbdu3fXN998o2+++ca73DMTX7RyuRvCKFpKAQAAAAAABDCUuv322/Xss8/qr3/9qySptrZWCQkJgTp82POEUQ5CKQAAAAAAgMCNKbV161af14MGDQrUoSOC09UQRrkIpQAAAAAAANpmoHNJMk3Cl6Y8YZTDRb0AAAAAAAC0WSgV7WNIncgTSpmitRQAAAAAAECbhVLw1XSAcwcz8AEAAAAAgCgXsIHOnU6nXn31Ve9rh8Ph81qSRo0aFajThZ2mraOYgQ8AAAAAAES7gIVSmZmZWrBggfd1enq6z2vDMAilGjkZVwoAAAAAAES5gIVS//znPwN1qIjk9GkpRfc9AAAAAAAQ3RhTygJu01TTtlF03wMAAAAAANEubEMpl8ul2267TQ888IB32bZt2zRu3Djl5uZqyJAhWrZsmc8+K1asUF5ennr37q3Ro0dr69at1pT1hBDKQfc9AAAAAAAQ5cI2lFq4cKE2b97sfV1eXq7Jkydr1KhRKigo0Jw5c/Too49q+/btkqSNGzfqkUce0bx581RQUKBbbrlFU6ZMUU1NTZuX9cQxpGgpBQAAAAAAol1YhlLr16/XO++8o5tuusm77J133lFaWpomTJigmJgYDRgwQCNHjtTSpUslScuWLdPw4cPVp08fxcbGauLEiUpPT9eqVavavLwu88SWUowpBQAAAAAAolvABjq3SklJiR566CEtWrRI+fn53uWFhYXKycnx2TYrK0vLly+XJBUVFWnMmDEnrd+xY4ffZTAM/7Y/MZRymabfx4AvT/1Rj4FDnQZeqNdpqJYLAAAAQHQIq1DK7Xbrvvvu06RJk9SzZ0+fdVVVVUpMTPRZlpCQoOrq6mat90eHDql+bW9W1Pm8Tk5NUGamf8fAqfn7s8DZUaeBR50CAAAAwMnCKpR66qmnFBcXp9tuu+2kdYmJiaqoqPBZVltbq+TkZO/62trak9anp6f7XY6SkgqZfgwLVVzpG0oVl1apODnW7/PiOMNoeND392eB06NOAy/U69RTPgAAAAAIhrAKpV577TUdPnxYffv2lSRvyPSPf/xDM2fO1Lp163y2LyoqUnZ2tiQpOztbhYWFJ60fNGiQ3+UwTfn1gHniQOcOpxmSD6jhyN+fBc6OOg086hQAAAAAThZWA52//fbb+te//qXNmzdr8+bNGjFihEaMGKHNmzcrLy9PxcXFys/Pl8Ph0IYNG7Ry5UrvOFJjx47VypUrtWHDBjkcDuXn56ukpER5eXltXu4Tx5Ri9j0AAAAAABDtwqql1Jmkp6dryZIlmjNnjhYsWKCMjAzNnj1bV199tSRpwIABevjhh/XLX/5Shw4dUlZWlp5++mmlpaW1edlODKGYfQ8AAAAAAEQ7wzTpVOKv4mL/xof5uqRK4/O3eF8/OuI7urFHxzYoWfQwDCkzM9XvnwVOjzoNvFCvU0/5AAAAACAYwqr7Xrhyuem+BwAAAAAA0BShlAXovgcAAAAAAOCLUMoCtJQCAAAAAADwRShlgRNDKYeLUAoAAAAAAEQ3QikLnNgyyumm+x4AAAAAAIhuhFIWcJ0w7ZaTllIAAAAAACDKEUpZgDGlAAAAAAAAfBFKWeDkMaXovgcAAAAAAKIboZQFaCkFAAAAAADgi1DKAieGUMy+BwAAAAAAoh2hlAWYfQ8AAAAAAMAXoZQF6L4HAAAAAADgi1DKAieFUnTfAwAAAAAAUY5QygIuk+57AAAAAAAATRFKWeDEllIMdA4AAAAAAKIdoZQFGOgcAAAAAADAF6GUBWgpBQAAAAAA4ItQygLMvgcAAAAAAOCLUMoCnhDKbjS8drjovgcAAAAAAKIboZQFXI1jSNltDakULaUAAAAAAEC0I5SygNPl21LKyZhSAAAAAAAgyhFKWcBlnhBK0VIKAAAAAABEOUIpC3jHlGrsvseYUgAAAAAAINoRSlnAM/teDC2lAAAAAAAAJBFKWcITStkaa5tQCgAAAAAARDtCKQt4xpSKMei+BwAAAAAAIBFKWcLTUoqBzgEAAAAAABoQSlnAdcJA504XoRQAAAAAAIhuhFIWcNJSCgAAAAAAwAehlAWOt5RqeO1wM6YUAAAAAACIboRSFjjeUup49z3TpLUUAAAAAACIXoRSFjixpZQpiWGlAAAAAABANCOUsoDL9G0pJUlOF134AAAAAABA9CKUsoDrhIHOJQY7BwAAAAAA0Y1QygKnDKXovwcAAAAAAKIYoZQFPK2ibIZkeJfRfQ8AAAAAAEQvQikLeIaPMoyGYEqSHHTfAwAAAAAAUYxQygKegc4NSbbGwc7pvgcAAAAAAKIZoZQFXN7ue0aTllJ03wMAAAAAANGLUMoCnjGlaCkFAAAAAADQgFDKAp6WUowpBQAAAAAA0IBQygKuJrPveUIpp4vuewAAAAAAIHoRSlnA1aT7nuHpvkdLKQAAAAAAEMUIpSzgnX3Pp6UUoRQAAAAAAIhehFIW8LSKssnwDnTO7HsAAAAAACCaEUpZ4FQDndNSCgAAAAAARDNCKQsw+x4AAAAAAIAvQikLeMaUskne7ntOuu8BAAAAAIAoRihlAbrvAQAAAAAA+CKUskB8TEM1x9iaDnROKAUAAAAAAKIXoZQFHrm5hwZd1E7xdoOWUgAAAAAAAArDUGrHjh2aNGmS+vXrp2uvvVYzZ85UaWmpJGnbtm0aN26ccnNzNWTIEC1btsxn3xUrVigvL0+9e/fW6NGjtXXrVkvK3O/8NF2UkSCJMaUAAAAAAACkMAulamtrdccddyg3N1cfffSR3njjDZWVlenBBx9UeXm5Jk+erFGjRqmgoEBz5szRo48+qu3bt0uSNm7cqEceeUTz5s1TQUGBbrnlFk2ZMkU1NTWWXgMtpQAAAAAAAMIslNq/f7969uypadOmKS4uTunp6Ro/frwKCgr0zjvvKC0tTRMmTFBMTIwGDBigkSNHaunSpZKkZcuWafjw4erTp49iY2M1ceJEpaena9WqVZZegyeUctBSCgAAAAAARLGYYBfAHxdddJGeeeYZn2WrV6/WpZdeqsLCQuXk5Pisy8rK0vLlyyVJRUVFGjNmzEnrd+zY4Xc5Gnvg+b29YRz/3uU2/T4OjmtapwgM6jTwQr1OQ7VcAAAAAKJDWIVSTZmmqSeeeEJr1qzR888/r+eee06JiYk+2yQkJKi6ulqSVFVVdcb1/ujQIdWv7V0uV8P5EuMVF1svqU4x8bHKzPTvODiZvz8LnB11GnjUKQAAAACcLCxDqcrKSs2aNUuff/65nn/+efXo0UOJiYmqqKjw2a62tlbJycmSpMTERNXW1p60Pj093e/zl5RUyPRjSCi3uyGUqq2pk9vV0G2vorJOxcUVZ9oNZ2AYDQ/6/v4scHrUaeCFep16ygcAAAAAwRB2odSePXt05513qmvXrlq+fLkyMjIkSTk5OVq3bp3PtkVFRcrOzpYkZWdnq7Cw8KT1gwYN8rsMpim/HjA925rm8dn3HC53SD6khht/fxY4O+o08KhTAAAAADhZWA10Xl5erp/85Ce68sor9eyzz3oDKUnKy8tTcXGx8vPz5XA4tGHDBq1cudI7jtTYsWO1cuVKbdiwQQ6HQ/n5+SopKVFeXp6l1+Cdfc/NEyoAAAAAAIheYdVS6pVXXtH+/fv11ltv6e233/ZZt3XrVi1ZskRz5szRggULlJGRodmzZ+vqq6+WJA0YMEAPP/ywfvnLX+rQoUPKysrS008/rbS0NEuvwRtKuQilAAAAAABA9DJMk04l/iou9n9MqcVrC3WsvFLfVJjaerBGwy45R7+6uWfbFTLCGYaUmZnq988Cp0edBl6o16mnfAAAAAAQDGHVfS8SGI1jStFSCgAAAAAARDNCKYvZG7vvORhTCgAAAAAARDFCKYsZ3jGl3MEtCAAAAAAAQBARSlnM1phK0VIKAAAAAABEM0Ipi3ln3yOUAgAAAAAAUYxQymI270DndN8DAAAAAADRi1DKYkbjvPC0lAIAAAAAANGMUMoCpmlKagihPAOdO1yEUgAAAAAAIHoRSlns+JhSdN8DAAAAAADRi1DKYsfHlKKlFAAAAAAAiF6EUhbztJRyMKYUAAAAAACIYoRSFvN232P2PQAAAAAAEMUIpSzWmEkx+x4AAAAAAIhqhFIWOz7QOaEUAAAAAACIXoRSFvMMdO6g+x4AAAAAAIhihFIWM9TQQoqWUgAAAAAAIJoRSlnM8My+5zJlmgRTAAAAAAAgOhFKWczTfU+SXGRSAAAAAAAgShFKWaxphTsZVwoAAAAAAEQpQimL2Y43lGJcKQAAAAAAELUIpSzmGehcYgY+AAAAAAAQvQilLGYYhuyNraVoKQUAAAAAAKIVoZTFTNOUvbEPH6EUAAAAAACIVoRSQRDb2FTKwfR7AAAAAAAgShFKBcHxllKMKQUAAAAAAKIToVQQxNoaqp2WUgAAAAAAIFoRSgVBDGNKAQAAAACAKEcoZTGfgc5ddN8DAAAAAADRiVAqCGJpKQUAAAAAAKIcoVQQ2Btr3UFLKQAAAAAAEKUIpSxmmiYtpQAAAAAAQNQjlAqCkmqHJGbfAwAAAAAA0YtQKggaG0rRUgoAAAAAAEQtQqkg8HTfq6hzBrkkAAAAAAAAwUEoFQSJsQ3VXlJZH+SSAAAAAAAABAehVBAkxDS0lDpSVRfkkgAAAAAAAAQHoVQQJMY0VPsRWkoBAAAAAIAoRShlAdM0ZTYZ0zyxsaVUMaEUAAAAAACIUoRSQRBv93TfI5QCAAAAAADRiVAqCBLsDc2mSqvq5XSbZ9kaAAAAAAAg8hBKBUG83ZDdkEw1BFMAAAAAAADRhlAqCAzDUEZSrCSpmFAKAAAAAABEIUKpIHC73erQGEoxAx8AAAAAAIhGhFJBYJqmKuudkqTiqroglwYAAAAAAMB6hFJBkhRrlyQdqaiTaTLYOQAAAAAAiC6EUkGSFNtQ9Ycr6+RyuYJcGgAAAAAAAGvFBLsA0cg0TcUaDd/vKq2W2+0OboEAAAAAAAAsRkupIOmQYJMh6dMDlXp+8z668AEAAAAAgKhCKBUkyTFS327JkqQ/rt+rzXuOBrlEAAAAAAAA1iGUChLTNHVR+1hd0D5GpqSH3/pKZTWOYBcLAAAAAADAEoRSQdLQXc/UFeckKCXO0JGqev3Pqh1yuenGBwAAAAAAIl/UhVIlJSWaOnWq+vbtq/79+2vOnDlyOp1BKYvD4ZBdbl3VKU52Q1q/66ieeL+Igc8BAAAAAEDEi7pQ6t5771VSUpLWrl2r5cuXa/369crPzw9qmdLiberbOUGS9OLWA/rl21/q4LHaoJYJAAAAAACgLcUEuwBW2r17tzZt2qQPP/xQiYmJ6t69u6ZOnarHHntMd9xxR5ud19NV70y6JtuUe068Pjlcp7f+fURv//uIOreLV2ZynDokxykhxqa4GJviY2xqFx+jdomxSkuMVWp8jNolxCg5zq4Ym00xdkN2myG70fD/Oqdb1Q6Xqutdqql3qcrh0uFjtfr0wDE5XKYyk+PU+9z26twuQe3iY5QSb5fdZsjWuL/NMGQz1PB/myG7IRmG0WZ1BQAAAAAAokNUhVKFhYVKS0tTp06dvMsuvvhi7d+/X8eOHVO7du2adRybTTL9GPrJZjMUb7epPtYmUw0hVdNgx/O6Z0e7MpNj9FWpQyW1blXUuVRRV6NvSmuaf7IWeGvHEb+2N9RwTTY/A6ozbempTvOEijUMQ4Ykw5D3/x42w5Dbnx9Ec8rYirzNOOMVhgfD8O9328M8S+ga6gL8a+SjLX5PT+X6rEzdf2OWX/uQLwMAAAAIpqgKpaqqqpSYmOizzPO6urq62aFURkaq3+d+cHSG3/sAAAAAAABEqqgaUyopKUk1Nb6tjjyvk5OTg1EkAAAAAACAqBRVoVR2drbKyspUXFzsXbZz50517txZqan+t34CAAAAAABAy0RVKHXBBReoT58+mjt3riorK7V3714tWrRIY8eODXbRAAAAAAAAoophnjiydIQrLi7Wr3/9a23cuFE2m02jRo3SjBkzZLfbg100AAAAAACAqBF1oRQAAAAAAACCL6q67wEAAAAAACA0EEoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKBUgJSUlmjp1qvr27av+/ftrzpw5cjqdp9z2gw8+0MiRI9W7d2/dfPPNWrNmjcWlDQ/+1Okdd9yhyy+/XLm5ud6vDz/80OISh4/S0lLl5eVp48aNp92G31P/NKdO+T0FAAAAgOMIpQLk3nvvVVJSktauXavly5dr/fr1ys/PP2m7Xbt26Z577tHPfvYzbd68Wffcc4/uvfdeHTp0yPpCh7jm1qkkffbZZ3r22We1detW79egQYOsLXCY2LJli8aPH689e/acdht+T/3TnDqV+D0FAAAAgKYIpQJg9+7d2rRpk+677z4lJiaqe/fumjp1qpYuXXrStitWrFDfvn114403KiYmRsOGDdNVV12ll156KQglD13+1OnevXtVXl6uSy65JAglDS8rVqzQjBkzNH369LNux+9p8zS3Tvk9BQAAAABfhFIBUFhYqLS0NHXq1Mm77OKLL9b+/ft17Ngxn22LioqUk5PjsywrK0s7duywpKzhwp86/fTTT5WcnKzp06fr6quv1ogRI7R8+XKrixwWBg4cqHfffVfDhg0743b8njZfc+uU31MAAAAA8BUT7AJEgqqqKiUmJvos87yurq5Wu3btzrhtQkKCqqur276gYcSfOq2vr1fv3r01ffp0ZWdna+PGjbrnnnuUnJysm2++2dJyh7qOHTs2azt+T5uvuXXK7ykAAAAA+KKlVAAkJSWppqbGZ5nndXJyss/yxMRE1dbW+iyrra09abto50+djho1Ss8884wuueQSxcbGauDAgRo1apTeeusty8obafg9DTx+TwEAAADAF6FUAGRnZ6usrEzFxcXeZTt37lTnzp2Vmprqs21OTo4KCwt9lhUVFSk7O9uSsoYLf+p0+fLlJz3Y19fXKz4+3pKyRiJ+TwOP31MAAAAA8EUoFQAXXHCB+vTpo7lz56qyslJ79+7VokWLNHbs2JO2veWWW7Rp0yatWrVKTqdTq1at0qZNm3TrrbcGoeShy586rays1COPPKIvvvhCbrdb77//vt544w2NHz8+CCWPDPyeBh6/pwAAAADgi1AqQBYsWCCn06kbbrhBP/jBD3Tddddp6tSpkqTc3Fy9/vrrkhoG6/7DH/6gp556SldddZUWLVqkJ598UhdeeGEwix+SmlunP/nJT/SjH/1Id999t3Jzc/Xb3/5W8+fPV9++fYNZ/LDD72ng8XsKAAAAAKdnmKZpBrsQAAAAAAAAiC60lAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAgjpaWlysvL08aNG5u9z+rVqzVixAj17t1beXl5Wr58eRuWEAAAAACaJybYBQAANM+WLVv0wAMPaM+ePc3eZ8OGDXrggQf0xBNPaNCgQdq4caPuvPNO5eTkqFevXm1YWgAAAAA4M1pKAUAYWLFihWbMmKHp06eftO7jjz/W2LFj1bdvXw0fPlyvv/66d11+fr5+/OMfa/DgwTIMQ1dffbVefvllnXfeeVYWHwAAAABOQigFAGFg4MCBevfddzVs2DCf5Tt27NCUKVM0efJkbdy4UY888ojmzp2rtWvXSpK2b9+utLQ0TZ48Wf3799ett96qPXv2KC0tLQhXAQAAAADHEUoBQBjo2LGjYmJO7nH94osv6oYbbtBNN90ku92uK6+8Uj/4wQ+0dOlSSVJ5ebmeffZZTZkyRevWrdO0adM0ffp0bdu2zepLAAAAAAAfjCkFAGFs37592rBhg/r27etd5nK5vN3z4uLiNGbMGOXm5kqSbrrpJg0YMECrV6/WFVdcEZQyAwAAAIBEKAUAYa1z5876/ve/r1//+tfeZYcPH5ZpmpKkiy++WPX19T77uFwu73oAAAAACBa67wFAGBs7dqzeeOMNffTRR3K73dq1a5d+9KMfacmSJZKk//zP/9QLL7ygjz/+WG63W6tXr9bGjRs1YsSIIJccAAAAQLSjpRQAhLErrrhCv/vd7/S73/1OP/vZz5SYmKgRI0bov//7vyVJY8aMkc1m06OPPqpvv/1W3bp10+OPP65LL700yCUHAAAAEO0Mkz4cAAAAAAAAsBjd9wAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOX+Pztqrx2BxQUzAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Selecting numerical columns\n", + "numerical_columns = housing_data.select_dtypes(include=[np.number]).columns\n", + "\n", + "# Calculate the number of rows and columns for subplots\n", + "num_cols = len(numerical_columns)\n", + "num_rows = (num_cols + 2) // 3 # Calculate the number of rows needed, rounding up\n", + "\n", + "# Plot histograms for numerical variables\n", + "plt.figure(figsize=(12, num_rows * 4)) # Adjust the height based on the number of rows\n", + "for i, col in enumerate(numerical_columns, 1):\n", + " plt.subplot(num_rows, 3, i)\n", + " sns.histplot(housing_data[col], kde=True, edgecolor='black')\n", + " plt.title(col)\n", + " plt.xlabel('')\n", + " plt.ylabel('Frequency')\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Conclusion**\n", + "\n", + "In conclusion, the log transformation has effectively addressed skewness in the distribution of numerical variables within the dataset. Prior to transformation, variables such as house price, bedrooms, bathrooms, and various square footage measurements exhibited skewed distributions with long tails. However, after applying the log transformation, these distributions appear to be more symmetric and closer to a normal distribution. This transformation has enhanced the suitability of the data for statistical analysis by reducing skewness and improving the interpretability of the variables. It's important to acknowledge that while the log transformation has provided valuable improvements, it alters the scale and interpretation of the variables, necessitating careful consideration in subsequent analyses. Overall, the transformed variables are now better suited for further statistical modeling and analysis in the context of predicting property values and understanding real estate market trends." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### **d.) Inferential Statistics.**\n", + "\n", + "*We used one-way ANOVA approach*" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1. \u001b[1mbedrooms\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "2. \u001b[1mbathrooms\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "3. \u001b[1msqft_living\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "4. \u001b[1msqft_lot\u001b[0m: Fail to reject the null hypothesis. There is no statistically significant relationship.\n", + "5. \u001b[1mfloors\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "6. \u001b[1mwaterfront\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "7. \u001b[1mcondition\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "8. \u001b[1mgrade\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "9. \u001b[1msqft_above\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "10. \u001b[1msqft_basement\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "11. \u001b[1myr_built\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "12. \u001b[1myr_renovated\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "13. \u001b[1msqft_living15\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "14. \u001b[1msqft_lot15\u001b[0m: Fail to reject the null hypothesis. There is no statistically significant relationship.\n", + "15. \u001b[1mhouse_age\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "16. \u001b[1mrenovation_age\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", + "17. \u001b[1mtotal_sqft\u001b[0m: Fail to reject the null hypothesis. There is no statistically significant relationship.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
bedroomsbathroomssqft_livingsqft_lotfloorswaterfrontconditiongradesqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15house_agerenovation_agetotal_sqft
F-statistic1.841471e+003.7286677.7025890.7327131.662592e+001.787176e+001.0511117.293065.0981141.750817e+001.236748e+001.0467165.2099780.7098411.236748e+001.171737e+000.775778
P-value1.765957e-1390.0000000.0000001.0000001.808184e-951.258742e-1250.0262890.000000.0000001.406487e-1162.417229e-170.0379430.0000001.0000002.417229e-172.430304e-101.000000
\n", + "
" + ], + "text/plain": [ + " bedrooms bathrooms sqft_living sqft_lot floors \\\n", + "F-statistic 1.841471e+00 3.728667 7.702589 0.732713 1.662592e+00 \n", + "P-value 1.765957e-139 0.000000 0.000000 1.000000 1.808184e-95 \n", + "\n", + " waterfront condition grade sqft_above sqft_basement \\\n", + "F-statistic 1.787176e+00 1.051111 7.29306 5.098114 1.750817e+00 \n", + "P-value 1.258742e-125 0.026289 0.00000 0.000000 1.406487e-116 \n", + "\n", + " yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", + "F-statistic 1.236748e+00 1.046716 5.209978 0.709841 \n", + "P-value 2.417229e-17 0.037943 0.000000 1.000000 \n", + "\n", + " house_age renovation_age total_sqft \n", + "F-statistic 1.236748e+00 1.171737e+00 0.775778 \n", + "P-value 2.417229e-17 2.430304e-10 1.000000 " + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "from scipy.stats import f_oneway\n", + "\n", + "# List of features of interest\n", + "features_of_interest = ['bedrooms', 'bathrooms', 'sqft_living',\n", + " 'sqft_lot', 'floors', 'waterfront', 'condition', \n", + " 'grade', 'sqft_above', 'sqft_basement', 'yr_built', \n", + " 'yr_renovated', 'sqft_living15', 'sqft_lot15', \n", + " 'house_age', 'renovation_age', 'total_sqft']\n", + "\n", + "# Create an empty DataFrame to store ANOVA results\n", + "anova_results = pd.DataFrame(index=['F-statistic', 'P-value'])\n", + "\n", + "# Perform ANOVA for each feature\n", + "significant_features = []\n", + "\n", + "for i, column in enumerate(features_of_interest, 1):\n", + " groups = [housing_data[column][housing_data['price'] == category]\n", + " for category in housing_data['price'].unique()]\n", + "\n", + " # Perform ANOVA\n", + " f_statistic, p_value = f_oneway(*groups)\n", + "\n", + " # Store results in the DataFrame\n", + " anova_results[column] = [f_statistic, p_value]\n", + "\n", + " # Print interpretation\n", + " if p_value < 0.05:\n", + " significant_features.append(column)\n", + " print(f\"{i}. \\033[1m{column}\\033[0m: Reject the null hypothesis. There is a statistically significant relationship.\")\n", + " else:\n", + " print(f\"{i}. \\033[1m{column}\\033[0m: Fail to reject the null hypothesis. There is no statistically significant relationship.\")\n", + "\n", + "# Display ANOVA results\n", + "anova_results\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Conclusion**\n", + "\n", + "The features listed under \"Reject the Null Hypothesis\" have a statistically significant relationship with housing prices.\n", + "\n", + "These features are important predictors of housing prices in the given dataset.\n", + "\n", + "On the other hand, features listed under \"Fail to Reject the Null Hypothesis\" do not show a statistically significant relationship with housing prices based on the ANOVA test." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### **e.) Multicollinearity.**\n", + "\n", + "**Assessing Multicollinearity with Variance Inflation Factor (VIF)**\n", + "
In this analysis, we utilize the Variance Inflation Factor (VIF) to investigate multicollinearity among predictor variables in our regression model. Multicollinearity occurs when predictor variables are highly correlated with each other, which can lead to unreliable coefficient estimates. By computing the VIF for each predictor variable, we identify potential multicollinearity issues among property characteristics. \n", + "
High VIF values indicate a strong correlation between a predictor variable and the other variables in the model. Hence, it's crucial to examine the VIF values to ensure the reliability of our regression analysis and to address any multicollinearity detected.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\statsmodels\\stats\\outliers_influence.py:198: RuntimeWarning: divide by zero encountered in scalar divide\n", + " vif = 1. / (1. - r_squared_i)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\u001b[1mVariance Inflation Factor (VIF):\u001b[0m\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FeatureVIF
0bedrooms1.688154
1bathrooms3.366371
2sqft_livinginf
3sqft_lotinf
4floors1.934470
5waterfront1.028593
6condition1.218261
7grade3.235515
8sqft_aboveinf
9sqft_basementinf
10yr_built94.556823
11yr_renovated4.226966
12sqft_living152.763013
13sqft_lot152.130997
14house_age7.743224
15renovation_age4.109794
16total_sqftinf
\n", + "
" + ], + "text/plain": [ + " Feature VIF\n", + "0 bedrooms 1.688154\n", + "1 bathrooms 3.366371\n", + "2 sqft_living inf\n", + "3 sqft_lot inf\n", + "4 floors 1.934470\n", + "5 waterfront 1.028593\n", + "6 condition 1.218261\n", + "7 grade 3.235515\n", + "8 sqft_above inf\n", + "9 sqft_basement inf\n", + "10 yr_built 94.556823\n", + "11 yr_renovated 4.226966\n", + "12 sqft_living15 2.763013\n", + "13 sqft_lot15 2.130997\n", + "14 house_age 7.743224\n", + "15 renovation_age 4.109794\n", + "16 total_sqft inf" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from statsmodels.stats.outliers_influence import variance_inflation_factor\n", + "\n", + "# Compute Variance Inflation Factor (VIF) to detect multicollinearity\n", + "\n", + "X = housing_data[['bedrooms', 'bathrooms', 'sqft_living','sqft_lot', 'floors', 'waterfront', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15', 'sqft_lot15', 'house_age', 'renovation_age', 'total_sqft']]\n", + "# Calculate the correlation matrix\n", + "correlation_matrix = X.corr()\n", + "\n", + "# Calculate VIF for each feature\n", + "vif_data = pd.DataFrame()\n", + "vif_data[\"Feature\"] = X.columns\n", + "vif_data[\"VIF\"] = [variance_inflation_factor(X.values, i) for i in range(len(X.columns))]\n", + "\n", + "# Print VIF for each feature\n", + "print(\"\\n\\033[1mVariance Inflation Factor (VIF):\\033[0m\")\n", + "vif_data\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Variance Inflation Factor (VIF) Analysis**\n", + "
The Variance Inflation Factor (VIF) was calculated to assess multicollinearity among the features in the dataset. A VIF value greater than 5 is typically considered indicative of multicollinearity. The results revealed that most features exhibited low levels of multicollinearity, with VIF values below 5. \n", + "
However, 'yr_built' displayed a remarkably high VIF of 94.56, indicating strong multicollinearity with other features. Additionally, 'sqft_living', 'sqft_lot', 'sqft_above', 'sqft_basement', and 'total_sqft' exhibited infinite VIF values, suggesting perfect multicollinearity. \n", + "
Addressing multicollinearity in this case may require further investigation, such as feature selection, dimensionality reduction techniques or applying regularization methods to mitigate multicollinearity effects and improve model performance. \n", + "
Overall, understanding the VIF values can help refine the regression model and ensure the reliability of the coefficient estimates.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# MODELLING." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. Baseline model - simple linear model.\n", + "2. log transformation. \n", + "3. Multiple Linear Regression\n", + "4. Residual modelling.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Baseline model \n", + "\n", + " Baseline models provide a reference point for comparing the performance of more complex models. \n", + " Its purpose is to establish a benchmark against which the performance of more sophisticated models can be evaluated." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "FUNCTIONS TO BE USED." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "#use only numeric columns.\n", + "def numeric_col(housing_data):\n", + " '''returns a dataframe with only numeric values'''\n", + " for column in housing_data.columns:\n", + " if is_numeric_dtype(housing_data[column]) == False:\n", + " housing_data = housing_data.drop(column, axis=1)\n", + " else:\n", + " continue\n", + " return housing_data\n" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "#Set a function for the predictor and target variale.\n", + "def X_Y(housing_data, target):\n", + " '''Returns a series of target (y) values and a DataFrame of predictors (X)'''\n", + " y = housing_data[target] # target variable\n", + " X = housing_data.drop(target, axis=1) # predictor features\n", + " return y, X\n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "#A higher train score indicates that the model fits the training data well.\n", + "#A high test score suggests that the model is able to make accurate predictions on data it hasn't seen before, which is the ultimate goal in machine learning.\n", + "\n", + "def get_metrics(X_train, X_test, y_train, y_test):\n", + " ''' Parameters are X train, X test, y train, & y_test\n", + " Performs multiple regression on the split test and returns metrics'''\n", + "\n", + " # Initialize Linear Regression model\n", + " lr = LinearRegression()\n", + "\n", + " lr.fit(X_train, y_train)\n", + "\n", + " train_score = lr.score(X_train, y_train)\n", + " test_score = lr.score(X_test, y_test)\n", + "\n", + " y_hat_train = lr.predict(X_train)\n", + " y_hat_test = lr.predict(X_test)\n", + "\n", + " train_rmse = np.sqrt(mean_squared_error(y_train, y_hat_train))\n", + " test_rmse = np.sqrt(mean_squared_error(y_test, y_hat_test))\n", + "\n", + " return train_score, test_score, train_rmse, test_rmse\n", + "#These scores provide insights into how well the model is performing both on the data it was trained on and on new data.\n", + "# They help assess the model's overall effectiveness and whether it is overfitting or underfitting.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "def train_test(housing_data, size=0.20):\n", + " '''Takes in dataframe, and size of test for the split\n", + " Returns the train_set and test_set'''\n", + " train_set, test_set = train_test_split(housing_data, test_size=size, random_state=42)\n", + " return train_set, test_set\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# SIMPLE LINEAR REGRESSION." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "def simple_linear_regression(housing_data):\n", + " '''Creates a simple linear regression model with prices as the target variable \n", + " and the number of bedrooms as the predictor. Returns the model along with R-squared, \n", + " Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) for both train and test sets.'''\n", + " \n", + " # Extracting features and target variable\n", + " X = housing_data[['sqft_living']] # Predictor feature\n", + " y = housing_data['price'] # Target variable (prices)\n", + " \n", + " # Splitting the data into train and test sets\n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + " \n", + " # Create a linear regression model\n", + " model = LinearRegression()\n", + " \n", + " # Fit the model to the training data\n", + " model.fit(X_train, y_train)\n", + " \n", + " # Calculate predictions for train and test sets\n", + " y_train_pred = model.predict(X_train)\n", + " y_test_pred = model.predict(X_test)\n", + " \n", + " # Calculate R-squared for train and test sets\n", + " r2_train = r2_score(y_train, y_train_pred)\n", + " r2_test = r2_score(y_test, y_test_pred)\n", + " \n", + " # Calculate Mean Squared Error (MSE) for train and test sets\n", + " mse_train = mean_squared_error(y_train, y_train_pred)\n", + " mse_test = mean_squared_error(y_test, y_test_pred)\n", + " \n", + " # Calculate Root Mean Squared Error (RMSE) for train and test sets\n", + " rmse_train = np.sqrt(mse_train)\n", + " rmse_test = np.sqrt(mse_test)\n", + " \n", + " # Print coefficients, R-squared, MSE, and RMSE for train and test sets\n", + " print(\"Training set:\")\n", + " print(\"Intercept:\", model.intercept_)\n", + " print(\"Coefficient:\", model.coef_[0])\n", + " print(\"R-squared:\", r2_train)\n", + " print(\"Mean Squared Error:\", mse_train)\n", + " print(\"Root Mean Squared Error:\", rmse_train)\n", + " \n", + " print(\"\\nTest set:\")\n", + " print(\"R-squared:\", r2_test)\n", + " print(\"Mean Squared Error:\", mse_test)\n", + " print(\"Root Mean Squared Error:\", rmse_test)\n", + " \n", + " return model, r2_train, mse_train, rmse_train, r2_test, mse_test, rmse_test\n", + "\n", + "\n", + "# Example usage:\n", + "# Assuming housing_data is your dataset\n", + "# model, r2_train, mse_train, rmse_train, r2_test, mse_test, rmse_test = simple_linear_regression(housing_data)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set:\n", + "Intercept: -44593.95245340909\n", + "Coefficient: 281.4088930446383\n", + "R-squared: 0.49587806055811734\n", + "Mean Squared Error: 68601152192.940285\n", + "Root Mean Squared Error: 261918.21661148407\n", + "\n", + "Test set:\n", + "R-squared: 0.48264829402430887\n", + "Mean Squared Error: 68845100756.10751\n", + "Root Mean Squared Error: 262383.4993975565\n" + ] + }, + { + "data": { + "text/plain": [ + "(LinearRegression(),\n", + " 0.49587806055811734,\n", + " 68601152192.940285,\n", + " 261918.21661148407,\n", + " 0.48264829402430887,\n", + " 68845100756.10751,\n", + " 262383.4993975565)" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "simple_linear_regression(housing_data)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Intercept: This is like the starting point or baseline of our predictions. For example, if all other factors were zero, we'd expect the value to be around -44593.95. It's where our line would intersect the y-axis on a graph.\n", + "\n", + "\n", + "Coefficient: This tells us how much the predicted value changes for each unit increase in the independent variable. In this case, for every one-unit increase in the independent variable, we'd expect the dependent variable to increase by about 281.41.\n", + "\n", + "\n", + "R-squared: This is a measure of how well our model explains the variation in the data. An R-squared value of 0.49 means that about 49% of the variability in the dependent variable is explained by our model. So, it's doing a decent job, but there's still room for improvement.\n", + "\n", + "\n", + "Mean Squared Error (MSE): This tells us, on average, how much our predictions differ from the actual values in the training data. Here, the average squared difference is around 68601152192.94, which is quite large but it's relative to the scale of the dependent variable.\n", + "\n", + "\n", + "Root Mean Squared Error (RMSE): This is just the square root of the MSE. It gives us an idea of the average amount our predictions are off by. Here, it's around 261918.22, which is the typical difference between our predicted values and the actual values in the training data.\n", + "\n", + "\n", + "Test Set:\n", + "\n", + "R-squared: Similar to the training set, this tells us how well our model explains the variation in the test data. An R-squared value of 0.48 means that about 48% of the variability in the dependent variable is explained by our model when evaluated on the test data.\n", + "\n", + "\n", + "Mean Squared Error (MSE): This is the average squared difference between our predictions and the actual values in the test data. It's around 68845100756.11, similar to the MSE in the training set.\n", + "\n", + "\n", + "Root Mean Squared Error (RMSE): Again, this is just the square root of the MSE for the test data. It's around 262383.50, which is the typical difference between our predicted values and the actual values in the test data.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R-squared: 0.48264829402430875\n", + "Mean Squared Error: 68845100756.10753\n", + "Root Mean Squared Error: 262383.4993975565\n", + "Intercept: 540631.1560929463\n", + "Coefficients: [259767.82181675]\n" + ] + } + ], + "source": [ + "#STANDARDIZE OUR MODEL TO GET RID OF THE NEGATIVE INTERCEPT.\n", + "\n", + "\n", + "# Assuming you have your data loaded into X and y\n", + "# X should be your independent variables and y should be your dependent variable\n", + "\n", + "# Split data into training and test sets\n", + "X = housing_data[['sqft_living']] # Predictor feature\n", + "y = housing_data['price'] # Target variable (prices)\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "\n", + "# Initialize the StandardScaler\n", + "scaler = StandardScaler()\n", + "\n", + "# Fit and transform the scaler on the training data\n", + "X_train_scaled = scaler.fit_transform(X_train)\n", + "\n", + "# Transform the test data using the scaler fitted on the training data\n", + "X_test_scaled = scaler.transform(X_test)\n", + "\n", + "# Fit the linear regression model on the scaled training data\n", + "model = LinearRegression()\n", + "model.fit(X_train_scaled, y_train)\n", + "\n", + "# Predict on the scaled test data\n", + "y_pred = model.predict(X_test_scaled)\n", + "\n", + "# Calculate R-squared and mean squared error on the test set\n", + "r_squared = r2_score(y_test, y_pred)\n", + "mse = mean_squared_error(y_test, y_pred)\n", + "rmse = np.sqrt(mse)\n", + "\n", + "# Print the metrics\n", + "print(\"R-squared:\", r_squared)\n", + "print(\"Mean Squared Error:\", mse)\n", + "print(\"Root Mean Squared Error:\", rmse)\n", + "\n", + "# Print the intercept and coefficients of the model\n", + "print(\"Intercept:\", model.intercept_)\n", + "print(\"Coefficients:\", model.coef_)\n", + "\n", + "#This code will scale your data using StandardScaler, which standardizes features by removing the mean and scaling to unit variance. \n", + "#It ensures that the intercept is not negative" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "R-squared (0.48): This value indicates that approximately 48% of the variability in the dependent variable (the house prices) is explained by the independent (sqft living). In simpler terms, the model captures about 48% of the patterns in the data.\n", + "\n", + "\n", + "Mean Squared Error (MSE) (68845100756.11): This is the average squared difference between the actual values and the predicted values from the model. It's a measure of the model's accuracy, where lower values indicate better performance. In this case, the average squared difference is quite large, indicating that there's still room for improvement in the model's predictive accuracy.\n", + "\n", + "\n", + "Root Mean Squared Error (RMSE) (262383.50): This is the square root of the MSE and provides a measure of the typical deviation of the predicted values from the actual values. It's in the same units as the dependent variable. Here, the RMSE indicates that, on average, the predicted values differ from the actual values by approximately 262,383.50 units.\n", + "\n", + "\n", + "Intercept (540631.16): This is the estimated value of the dependent variable when all independent variables are set to zero. In this case, it suggests that when all other factors are zero, we would expect the dependent variable to be around 540,631.16.\n", + "\n", + "\n", + "Coefficient (259767.82): This represents the change in the house prices for a one-unit change in the sqft living, while holding other variables constant. In this case, for every one-unit increase in the sqft living, we'd expect the house prices to increase by approximately 259,767.82 units.\n", + "\n", + "\n", + "Overall, the model suggests that there is a positive relationship between the independent and dependent variables. However, given the moderate R-squared value and the relatively high MSE and RMSE, it's clear that there may be other factors influencing the dependent variable that are not captured by the model. Further investigation or refinement of the model may be needed to improve its predictive performance." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# MULTIPLE LINEAR REGRESSION." + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Squared Error: 47548419769.890594\n", + "R-squared: 0.6426869041626193\n", + " Feature Coefficient\n", + "0 const 0.000000\n", + "1 bathrooms 24855.944322\n", + "2 sqft_living 117349.853313\n", + "3 floors 20057.401179\n", + "4 waterfront 63378.047594\n", + "5 condition 11809.217548\n", + "6 grade 154829.185004\n", + "7 sqft_basement 14434.666872\n", + "8 yr_built -108064.021718\n", + "9 yr_renovated 7255.426167\n", + "10 sqft_living15 25765.797630\n" + ] + } + ], + "source": [ + "\n", + "\n", + "# Define a function to keep only numeric columns\n", + "def only_numeric(housing_data):\n", + " '''returns a DataFrame with only numeric values'''\n", + " numeric_columns = [column for column in housing_data.columns if is_numeric_dtype(housing_data[column])]\n", + " return housing_data[numeric_columns]\n", + "\n", + "# Sample features and target variable\n", + "features = ['bathrooms', 'sqft_living',\n", + " 'floors', 'waterfront', 'condition', 'grade',\n", + " 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15']\n", + "target = 'price'\n", + "\n", + "# Load your housing data (assuming it's already loaded into 'housing_data' DataFrame)\n", + "\n", + "# Keep only numeric columns\n", + "housing_data_numeric = only_numeric(housing_data)\n", + "\n", + "# Check if all features exist in the DataFrame\n", + "missing_features = [feature for feature in features if feature not in housing_data_numeric.columns]\n", + "if missing_features:\n", + " print(\"The following features are not present in the dataset:\", missing_features)\n", + "else:\n", + " # Extract features and target variable\n", + " X = sm.add_constant(housing_data_numeric[features])\n", + " y = housing_data_numeric[target]\n", + "\n", + " # Split the data into training and testing sets\n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "\n", + " # Standardize the features\n", + " scaler = StandardScaler()\n", + " X_train_scaled = scaler.fit_transform(X_train)\n", + " X_test_scaled = scaler.transform(X_test)\n", + "\n", + " # Build a basic linear regression model\n", + " model = LinearRegression()\n", + " model.fit(X_train_scaled, y_train)\n", + "\n", + " # Make predictions on the test set\n", + " y_pred = model.predict(X_test_scaled)\n", + "\n", + " # Evaluate the model\n", + " mse = mean_squared_error(y_test, y_pred)\n", + " r2 = r2_score(y_test, y_pred)\n", + "\n", + " # Display results\n", + " print(\"Mean Squared Error:\", mse)\n", + " print(\"R-squared:\", r2)\n", + "\n", + " # Display coefficients\n", + " coefficients = pd.DataFrame({\"Feature\": X.columns, \"Coefficient\": model.coef_})\n", + " print(coefficients)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mean Squared Error (MSE): The MSE is a measure of the average squared difference between the actual and predicted values. In this case, the MSE is approximately \n", + "4.75\n", + "×\n", + "1\n", + "0\n", + "10\n", + "4.75×10 \n", + "10\n", + "\n", + "\n", + " , which means, on average, the squared difference between the actual housing prices and the predicted prices is \n", + "4.75\n", + "×\n", + "1\n", + "0\n", + "10\n", + "4.75×10 \n", + "10\n", + " .\n", + "\n", + "\n", + "R-squared (\n", + "𝑅\n", + "2\n", + "R \n", + "2\n", + "\n", + "\n", + " ): The \n", + "𝑅\n", + "2\n", + "R \n", + "2\n", + " score measures the proportion of the variance in the target variable (housing prices) that is explained by the independent variables (features) in the model. \n", + " \n", + " An \n", + "𝑅\n", + "2\n", + "R \n", + "2\n", + " score of 0.643 means that approximately 64.3% of the variance in housing prices is explained by the features included in the model. In other words, the model accounts for 64.3% of the variability in housing prices.\n", + "\n", + "\n", + "Coefficients:\n", + "Intercept (const): The intercept represents the estimated housing price when all independent variables are zero.\n", + "\n", + "\n", + "bathrooms: For each additional bathroom, the predicted housing price increases by approximately $24,855.\n", + "\n", + "\n", + "sqft_living: For each additional square foot of living space, the predicted housing price increases by approximately $117,350.\n", + "\n", + "\n", + "floors: Houses with an additional floor have a predicted price increase of approximately $20,057.\n", + "\n", + "\n", + "waterfront: Properties with waterfront views have a predicted price increase of approximately $63,378 compared to those without.\n", + "\n", + "\n", + "condition: Better condition properties (on a scale from 1 to 5) tend to have a predicted price increase of approximately $11,809 for each unit increase in condition.\n", + "\n", + "grade: Higher grade properties (on a scale from 1 to 13) have a predicted price increase of approximately $154,829 for each unit increase in grade.\n", + "\n", + "\n", + "sqft_basement: For each additional square foot of basement space, the predicted price increases by approximately $14,435.\n", + "\n", + "\n", + "yr_built: Each additional year of age decreases the predicted price by approximately $108,064.\n", + "\n", + "\n", + "yr_renovated: For each year renovated, the predicted price increases by approximately $7,255.\n", + "\n", + "\n", + "sqft_living15: For each additional square foot of living space in the nearest 15 neighbors' homes, the predicted price increases by approximately $25,766.\n", + "\n", + "\n", + "These coefficients indicate the strength and direction of the relationship between each feature and the target variable, holding other features constant. For example, features like square footage of living space, grade, and whether the property has a waterfront view have a substantial positive impact on the predicted housing price, while the year the property was built has a negative impact.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: price R-squared: 0.641\n", + "Model: OLS Adj. R-squared: 0.641\n", + "Method: Least Squares F-statistic: 3768.\n", + "Date: Wed, 01 May 2024 Prob (F-statistic): 0.00\n", + "Time: 13:34:57 Log-Likelihood: -2.9014e+05\n", + "No. Observations: 21142 AIC: 5.803e+05\n", + "Df Residuals: 21131 BIC: 5.804e+05\n", + "Df Model: 10 \n", + "Covariance Type: nonrobust \n", + "=================================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "---------------------------------------------------------------------------------\n", + "const 6.604e+06 1.41e+05 46.979 0.000 6.33e+06 6.88e+06\n", + "bathrooms 3.47e+04 3547.740 9.781 0.000 2.77e+04 4.17e+04\n", + "sqft_living 129.1822 3.765 34.313 0.000 121.803 136.562\n", + "floors 3.576e+04 3886.909 9.201 0.000 2.81e+04 4.34e+04\n", + "waterfront 7.828e+05 1.88e+04 41.703 0.000 7.46e+05 8.2e+05\n", + "condition 1.788e+04 2568.771 6.961 0.000 1.28e+04 2.29e+04\n", + "grade 1.319e+05 2290.923 57.586 0.000 1.27e+05 1.36e+05\n", + "sqft_basement 27.2065 4.581 5.939 0.000 18.228 36.185\n", + "yr_built -3728.7602 71.951 -51.823 0.000 -3869.790 -3587.730\n", + "yr_renovated 18.3132 4.407 4.156 0.000 9.676 26.950\n", + "sqft_living15 34.6185 3.669 9.435 0.000 27.427 41.810\n", + "==============================================================================\n", + "Omnibus: 16539.863 Durbin-Watson: 1.978\n", + "Prob(Omnibus): 0.000 Jarque-Bera (JB): 1296266.479\n", + "Skew: 3.184 Prob(JB): 0.00\n", + "Kurtosis: 40.828 Cond. No. 3.35e+05\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", + "[2] The condition number is large, 3.35e+05. This might indicate that there are\n", + "strong multicollinearity or other numerical problems.\n" + ] + } + ], + "source": [ + "# Fit the OLS model\n", + "model = sm.OLS(y, X).fit()\n", + "\n", + "# Get the summary\n", + "summary = model.summary()\n", + "\n", + "# Print the summary\n", + "print(summary)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "R-squared (R²): The coefficient of determination is 0.641, indicating that approximately 64.1% of the variance in the housing prices is explained by the independent variables included in the model.\n", + "\n", + "\n", + "Adjusted R-squared: The adjusted R-squared is also 0.641, which adjusts for the number of predictors in the model. It's useful when comparing models with different numbers of predictors.\n", + "\n", + "\n", + "F-statistic: The F-statistic is 3768, with a p-value close to zero, indicating that the overall model is statistically significant.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The standard errors, condition number, and other diagnostic information are also provided. \n", + "The condition number being large (3.35e+05) suggests that there may be strong multicollinearity or other numerical issues in the model. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1765: FutureWarning: unique with argument that is not not a Series, Index, ExtensionArray, or np.ndarray is deprecated and will raise in a future version.\n", + " order = pd.unique(vector)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABd8AAAMDCAYAAABTumynAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADIuUlEQVR4nOzdd7SU1d024HsO9YAKKMaKr0bAErsosSSaKDbEihq7SewYXxM1iVFj751EjZoYLNgVY0tiV0QFRWLHiIoigkgv0s/5/uBlPo+AHA6PwoHrWou1mGc/5TfPnpkF9+zZu1RdXV0dAAAAAACgMBWLugAAAAAAAFjSCN8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwCA79DMmTMXdQkAAMB3oOGiLgAAYElx6KGHpl+/fllttdXy9NNPf2vHLK1m36sFscMOO+S66677lipaMFVVVbnrrrvy4Ycf5owzzljU5VALv//979OrV69sueWWue222+p0jo8++igPPvhg+vTpk88++yzjx4/Psssum5VWWilbbrlldt1112y66aYFVz7L7PfMZpttljvvvPNbucbcrLPOOt/Y3rhx4zRv3jyrr756tthii/zsZz/L//zP/9TpWg888EBOO+20JMnjjz9e5/MAAHwbhO8AAPAd+N3vfpeHHnooe++996Iuhe/IVVddlb/97W+ZPn16je2jR4/O6NGj8+677+aWW27JTjvtlIsuuijLLLPMIqr0uzVt2rRMmzYtY8aMyZtvvplbb701p59+eg466KBFXRoAQKGE7wAA1CurrrpqHnnkkVrt27Dh4vPP3eHDhy/qEvgO/fnPf85f/vKXJMnOO++cfffdN+uss06aN2+eL7/8MgMHDsw999yTJ598Mo8//njGjh2bHj16pEGDBou48uJ06dIl55xzzhzbZ86cmXHjxqV37965+uqrM27cuJxzzjlZa621stVWWy3QNZZZZpmsscYaSZJGjRoVUjcAQFEWn/+NAABALZRKpTRv3nxRlwHz9MUXX+TGG29Mkvz85z/P73//+xrts6ed2W677XLeeefl9ttvT79+/fLII49kzz33XBQlfysaNmw4z/fqcsstl4MOOijt27fPwQcfnCS55pprFjh832mnnbLTTjstdK0AAN8GC64CAAAUqE+fPpk6dWqS5Mgjj/zGfX//+99nueWWS5I89thj33pti5sOHTqkY8eOSZIBAwZk1KhRi7giAIDiGPkOALCYe/XVV3PnnXfmtddeyxdffJFmzZplrbXWyo477piDDz44zZo1m+OY2iy0+Kc//Sl//vOfkyRvv/32HFO0/POf/8yDDz6YN998M+PGjcsyyyyT73//+/npT3+aAw888Bvnp37uuedy3333ZcCAARk7dmyWWWaZ/OAHP8jee++dzp07p1QqLcQdWXgDBgxIz5498+qrr2bUqFGprKxM+/bt07lz53Tt2vUbp68YMGBAHnjggfTv3z8jRozIlClTsuyyy6Zt27bZcccdc8ABB6Rp06bl/Wcv2jlbr169yo/fe++9JAvXX3379s1hhx2WJHnzzTdzww035O6778748eOzyiqrpFu3btljjz3K5/nss8/So0eP9O7dO8OGDUupVEqbNm3yk5/8JEcccURatWo11+uPGzcut912W55++ul89NFHmTFjRlZYYYVsvPHG2XvvvbP99tvP77bP0/PPP59HHnkk//nPfzJy5MhMmzYtLVq0yLrrrpvddtste+655xyvz9kLba600kp5/vnn88Ybb+Tvf/97XnnllYwdOzYrrLBCtt566xx55JFZe+2153ntAQMGpEePHnnzzTczcuTIrLLKKtl9993nG5p/kxEjRpT//vX53r+uUaNG2X333fPOO+9k1VVXnes+06ZNyz/+8Y889dRTeeeddzJ27NhUVFRk+eWXzyabbJL99ttvgUeMJ0l1dXUeffTR/OMf/8jbb7+d8ePHp2XLltl4442z//77Z7vttlvgc9bF+uuvn759+yZJhg4dmhVWWCHJ/39fHHvssdl1111z7rnn5q233kplZWV+8IMf5C9/+UseeeSR+S64+vrrr+euu+7Ka6+9lmHDhqVRo0Zp3759unTpkv3333+e01PV9XPsjTfeSM+ePfPKK69kxIgRadKkSVZdddVss802OeSQQ7L66qsXcdsAgHpA+A4AsJiqqqrK2WefnbvvvrvG9nHjxuU///lP/vOf/+SOO+7I9ddfn3XXXbfQa//2t7/NP/7xjxrbxo4dm9deey2vvfZaevbsmVtvvbU81/Js06ZNy+9///s8+uijNbaPGTMmL7zwQl544YU88MAD6d69+yJZXLKqqiqXXnpp/v73v9fYPm3atLzyyit55ZVXcs899+Qvf/lLVlpppRr7zJw5M2effXbuueeeOc47evTo9OvXL/369cv999+fnj17Ztlll/1Wn8vcXHTRRbnjjjvKjwcPHpw2bdqUHz/66KM57bTTyqOyZ3vvvffy3nvv5a677sq1116bDh061GgfMmRIDjvssHz22Wc1tg8bNizDhg3Lv/71r3Tp0iWXXXbZAn2xMnny5Pz617/OM888M0fbyJEjy6+Zhx9+OH/961/nGZLee++9OeusszJz5szytuHDh+eBBx7II488khtuuCFbb731HMddd911ueaaa2psGzx4cP785z/n3//+d51D0q8e171795x//vnfOJf7WWedNc+2IUOG5Mgjj8zgwYPnaBs6dGiGDh2aRx99NCeccEJ+9atf1brG8ePH54QTTiiH3rN98cUXefLJJ/Pkk09mjz32yAUXXJDGjRvX+rx18dXXzNzu06effprDDjss48aNS5JMnTo1pVJpvnVVVVXlqquuKk8BNNvUqVPLn2UPP/xwbrrpphqfRwvzOXbvvffmj3/8Y6qqqsrbpk+fnv/+97/573//m549e+aaa67JT3/60/ncFQBgSWDaGQCAxdSFF15YDt5/+MMf5pZbbslLL72UJ554IqecckqaNWuWzz77LEcccUSGDRtW2HUfeeSRcvB++OGH56GHHsrLL7+cxx9/PCeffHIaNmyYYcOGzXUhxdNPP70cWO2///554IEH0q9fvzz22GPp1q1bGjVqlD59+uQ3v/lNqqurC6u5trp3714O3nfaaafccccd6du3b5588smcdtppWXbZZfPOO+/kmGOOmSOg7tGjRzl479y5c+6666706dMnTz/9dG688cZsuummSWYF2TfffHP5uHPPPTevvfZaNt988ySzFqGcHfwV7Y477shOO+2Uf/3rX3n66adz9tlnl+t68cUXc8opp2Tq1KlZd911c+211+bFF19M7969c9VVV2XNNdfM2LFjc/TRR88R9J599tn57LPP0rp161x66aV58skn89JLL+Xuu+8uj45++OGH5wgr5+eyyy4rB++HHHJIevXqVX6NX3PNNWnXrl2S5KWXXsqDDz4413OMHj06Z511VtZcc8386U9/yosvvpinnnoqv/rVr9KgQYNMmzYtZ5xxRo0wNJk1cn528L7FFlukZ8+eefnll/Pggw9m7733zvvvvz/XLwVqY/vtt0/Lli3L1+ncuXNuuOGGDBw4cIFe9zNnzswJJ5yQwYMHp1mzZjnttNPyz3/+My+//HIeeeSR/OEPfyhf57rrrsvHH39cq/NWVVWlW7du6du3bxo2bJijjjoqjzzySPr27Zt//OMfOfTQQ1MqlfLQQw/lggsuWNCnv8DeeuutJLPmiJ/byPVHHnkkM2fOzFVXXZUXX3wxPXr0yPHHHz/f8950003l4L1jx47lz9DHHnsshx56aJLktddem+OzrK6fY0OHDs0555yTqqqq/OhHP0rPnj3Tp0+fPPvss7niiivyve99L9OmTctpp52WiRMn1u1mAQD1ipHvAAAFGzp0aNZZZ52FOsd7772X22+/PUmy88475+qrr05FxaxxE8svv3yOOuqodOjQIYceemjGjBmTiy++eI4RvHX1+OOPJ0m22mqr/OEPfyhvb9WqVY4++uhMnz493bt3T58+fTJmzJjyNCUvv/xyHnrooSSzplr5+c9/Xj62RYsWOfHEE7P++uunW7duee655/Lkk0+mU6dOC1xfdXV1Jk2aNN/9Kisry/csST7++OPccMMNSWZNZ3HGGWeU21q2bJkjjjgiHTp0yP7775933303d955Z4444ogks8LK2aH9NttskyuuuKLGaN3VVlstW265ZXbaaaeMGDEivXv3zv/+7/8mSRo3bpzGjRuXR/R+0yKUC2v11VfPVVddVR4hfuCBByaZFeKeeeaZqaqqykYbbZTbb789TZo0KR+32267ZZtttsk+++yTTz/9NJdcckmuv/76JMnEiRPTp0+fJLN+EfHVBUGXX375XHvttenSpUs++uijPPLII9l9991rVeuECRPKX2bst99+OfPMM2ucd4011shmm22WTp06ZcqUKendu3e6du06x3mmT5+e1VdfPffcc0+NUcgnnHBCJk2alJtvvjlDhw7NO++8kw022CBJMmXKlFxxxRVJks022yw333xzeRR1q1atcvHFF2e55ZbLLbfcUqvn8nXNmjXLlVdemWOPPTbTpk3LRx99lCuvvDJXXnllWrZsmU033TRbbrlltt5662/81coLL7yQgQMHJknOOeecGtMHtWrVKu3atctqq62Wbt26paqqKi+88MJcw+uv69WrV/r165ckueqqq2osWNqyZcucccYZadOmTS688MLcdddd2X///fODH/ygTvdifvr06VOuZdttt53nL2J+//vfZ7fddkuSWk2x8/nnn+faa69NkvzkJz/JtddeW34PLr/88jnjjDNSKpVy66235pFHHsmJJ56YNm3aLNTn2LPPPpvp06enWbNmue6662qMzN99992z8sor5+CDD87YsWPz4osvWigWAJYCRr4DACyG7r333lRXV6dRo0Y566yzaoTIs2266ab52c9+lmRWYF7UQoXTpk1LMmt6mxkzZszRfuCBB+bGG2/Mo48+WmNqldlzla+22mo5/PDD53ruHXfcsTwC/OvT6dTWZ599ls0222y+f2bPpz7b3XffnaqqqlRWVubXv/71XM+9wQYbpHPnznPUN2nSpOy7777Zfffdc8wxx8x1apXKyspstNFGSWZNT7Eo7LDDDnOdmuWFF17Ip59+miQ5+eSTawTvs7Vo0SLHHntskuSZZ54pz1s+ffr08ujeub3GGjVqlEsvvTQ9e/bMueeeW+taJ0yYkCOOOCK77rprjYDzq773ve9lrbXWSvLN9/Sggw6aa2j71TnLZz//ZNYXRSNHjkwy637MbfqS3/zmN2nRokXtnsxcbLPNNunVq1e23HLLGtvHjh2bZ555Jpdcckn23HPPdOrUqfza/LrmzZvnsMMOS+fOncvB89fNXqw0qf3rbvZ7dYsttphnAHzIIYdktdVWS5K5TrVUGzNmzMikSZPm+DN69Oi88cYbufLKK3PcccclmfUl1bzel6VSKTvvvPMCXfvJJ58sT0/zhz/8Ya7T2Rx55JFZc8018+Mf/zijR49OsnCfY7N/LTNjxoy59kWHDh1y7bXXplevXtl2220X6PkAAPWTke8AAAVbddVV88gjj9Rq36OOOir9+/efY/srr7ySZFZYM3vxwbnZZZddctttt6Wqqir9+/cvZCRlhw4d8swzz+Sdd97J/vvvn65du+bHP/5xeR7r5Zdffq4LMc6uef3118/kyZPnef6NN944/fv3z4ABA1JdXf2dLb46e3Tt97///SSZ5+j5jTbaKA899FA+/PDD8sj+ZZdddp7BYDIrbHv33XfL4fTcvrT4Lqy33npz3f7Veb3bt28/z+c+e2R4dXV1BgwYkJ133jmtWrVK27ZtM2jQoFx++eX573//m5122ik//OEPy4v9zv7SYUGsuuqqOeWUU+bZPm3atLzxxhvl19I33dONN954rtu/+t6ZMmVK+e8vv/xyklkj1GeHqF/XtGnTbLvttgs8lc5XtW3bNrfddls++OCDPPnkk3nhhRfy+uuv15jS6JNPPskf//jH9OrVK3/9619rfInQoUOHOebf/6px48bl1VdfLT+uzetu4sSJeeedd5LMeq9+069INtxwwwwdOrTOUyQ9/PDDefjhh+e7X7NmzXLZZZfN81cAq666apZbbrkFuvZLL72UZNb7/etrU8y20kor5d///neNbQvzOTa7r6ZNm5auXbvmZz/7Wbbffvusv/765c+5HXfccYGeBwBQvwnfAQAKViqVaj2tyLwWYRw+fHiSZO211/7G47/a/vXFMOvq4IMPzr/+9a+8+eabefvtt/P2228nSdZaa61su+222WGHHdKxY8cao/EnTpxYDp6feOKJPPHEE/O9zsSJEzNhwoQFDtVWW221PP300wt0TDJr4cokefvtt7PZZpvV6pjhw4eXp9WZbcSIEenTp08+/PDDfPzxx/n444/z4Ycfln8xkGSRzGefpDz/99fNfu5J7absSFJjHYGzzz47Rx55ZKZMmZJevXqlV69eadSoUTbbbLNst9122WmnnWos7LqgPvnkk/Tt27fGPR08eHCNMPmb7unX+2i2r45o/+rI8tnPrU2bNt/45c/sL2oW1tprr5211147xxxzTPlLhZdffjlPPvlk3n333STJgAED8utf/zo33XTTXM/x+uuv5z//+U8GDx6cTz75JB999FE+++yzGvelNq+7oUOHlhemveWWW2o1tU6Ra0oks77YWG655dK2bdv88Ic/TNeuXb/xS8Z5va6/yeeff54ktZqGZ7aF/RzbaKONctBBB+WOO+7IiBEj0r1793Tv3j0rrLBCttlmm/zkJz/J9ttvX/7SCgBY8gnfAQAWQ7MX45tfSPPV9i+//LKQa1dWVuaOO+7Irbfemvvvvz8ffvhhkuSjjz7KRx99lNtuuy2rrbZazjrrrPII+NrMwT43EydOXODwva7qssDhV48ZP358LrnkkvzjH//I9OnTa+zXvHnzbLXVVvniiy/Ko4oXhblNJ5Ms/HPfYost8tBDD+Uvf/lLnnjiiUyYMCHTp09P375907dv31x66aX5yU9+kvPOOy8rrrhira8xbNiwXHTRRXniiSfmmHalZcuW6dixY955550aXx7Mzdym2vkmEyZMSDLrtf5N5jX/+MJo3LhxeUT7CSeckN69e+e3v/1tRo8eneeffz5vvPFGjV8SvPrqq7n44ovz5ptvznGu1VdfPdtuu23uuuuuWl9/YV8LC2LvvffOxRdfXKdjv2per+tvMm7cuCTz7+OvKuJz7KyzzkrHjh1z++23p3///qmqqsqoUaPy0EMP5aGHHkrz5s1z3HHH5aijjqrTtQCA+kX4DgCwGGrWrFnGjx8/30D9q6HYgo6m/Oo0HF/XuHHjHHnkkTnyyCMzePDg9OnTJy+++GJeeumlTJo0KUOHDk23bt1yxx13ZKONNkrTpk3Lxx599NE5+eSTF6iW70LTpk0zceLEdO7cOVdeeeUCHTtjxoz88pe/zBtvvJFk1nQgW2+9ddq3b5+11147a665ZioqKnLKKad8a+H7N/XX/MzunxVXXDEvvPBCnc7xP//zP7noooty7rnn5rXXXsuLL76YPn365K233kp1dXWeeeaZHHXUUXnggQfmukbB102cODGHHHJIPv3005RKpfz4xz/OFltsUb6ns0fSH3jggfMN3xfU7Lnc5/f++uqvGWrr888/z/33359Ro0Zlv/32+8YFVZPkRz/6US6++OIcffTRSVIjfH/zzTdzxBFHlBfx3HHHHbPxxhunbdu2ad++fZZffvnMmDFjgcL3r4bR55xzTnndiCXN7Nf8N00dM69jkoX7HNtll12yyy67ZPTo0eXPzj59+uTzzz/PpEmTcvnll6dRo0blBZ0BgCWX8B0AYDG06qqrZvz48fnggw++cb+vtq+66qrlv88OP79pDuixY8fWqpY111wza665Zg4++OBMmzYtd955Zy666KJMnz49d955ZzbaaKMst9xyad68eSZNmlRjYcu5+S7nef+qVVddNf/973/rVN+//vWvcvB+6qmn5sgjj5zrsXVdaLXI/pqb2a+N0aNH58svv1yoaS8aNWqUjh07pmPHjvn1r3+dYcOG5YwzzsgLL7yQd999N6+++uoci4zOTc+ePct9cdVVV2XXXXed637fxuK1q6yySpJZ093MnDlzntM/ze+1Mjfjx4/PNddck2TWlx3zC9+TWb8smO2r88FfffXVmT59epZddtncf//9c51CZUHvz8orr1z+++L6Xi3Cqquumvfee2++X9zccMMNadiwYTbffPNsvPHGhX6OLb/88unSpUu6dOmS6urq9OnTJ7/5zW8ybty43HrrrcJ3AFgKzH9ICgAA37nZC/e9+uqr5TmI52b2YoGlUimbbLJJefvs0a3fFMz95z//mWPb5MmT88tf/jLbbbddevbsOUd748aNc/jhh6d9+/ZJ/v+8yqVSqbxw5YsvvviNo02PPPLIbL311jniiCO+07nRZ9f39ttvl+fUn5s//vGP6dixY/bdd9/yLwsGDBhQbj/ooIPmetzkyZPL9/TrU6jMT137q7ZmP/eZM2fm2Wefned+Dz/8cDbddNN07ty5vJDns88+m/322y8dO3YsT9fyVausskqNEcKzXxPzM/uetmrVap7B+/DhwzN48OAkxc6j/6Mf/SjJrF8TzOuXAFVVVXX6lcD3v//98hzl99xzT61Gz3/yySflv7dt27b899kLnW699dbznLt89sKiSe3u0fLLL19eK+Lpp5+e5zFVVVXp3LlzfvSjH+XUU0+d73kXN7PXdRg0aNA818OYOHFiunfvnksvvTQvvvjiQn+OnX/++dl5553zm9/8Zo79S6VStt122+yxxx5JZq0dAQAs+YTvAACLof322y9JMn369JxzzjlzDXPfeOON3H333UmS7bbbLt/73vfKbbODuiFDhsx1GpRHHnkkgwYNmmN7ZWVlPv/88wwfPjx33313jVG4s40bN64cZq2xxhrl7fvvv3+SWSO0L7vssrk+ryeeeCIvvPBCRo0alTXWWOM7HVU7u74ZM2bknHPOKS86+VWvv/56evXqlbFjx6Zly5blOb+/Oo3K3O5bVVVVzj333HJY//U54ZP/Py/53Nrq2l+1tcMOO6R169ZJkssvvzyjR4+eY5/Ro0ene/fu+fLLLzNy5Mist956SZIVVlghb7zxRsaOHZs77rhjruefvWjoV5/L/My+p+PGjcsXX3wxR/vUqVNz+umnl4PNukwBMy9bbrlleVqbSy+9dK5zmvfo0SNDhw5d4HM3aNAgBx98cJJZi5v++te//sa5xKdMmZILL7wwyawFYLfddtsa50pmrbcwt8+AYcOG5fLLLy8/nttra25mvxc++OCD/O1vf5vrPrfeems++OCDjBgxosYXAvXFnnvumYYNG6a6ujqXXHLJXL9kuP766zNjxoyUSqXstttuSRbuc6yqqiqDBw/OM888k48//niO46qrq/Pee+8lqfnZCQAsuYTvAACLoXXXXTeHHnpoklmj23/xi1+kb9++GTNmTIYMGZK//e1v5bmgW7RokbPPPrvG8TvuuGP57yeccEKeeuqpjBo1Kh988EGuvPLK/O53vyvPe/11v/zlL5Mk7733Xn7+85+nd+/e+fzzz/P555/nueeeyy9+8YtMmDAhDRo0yIEHHljjmttvv32SWVOKHH/88Xn11VczZsyYfPjhh7nuuuvKI6RbtWqVbt26FXW7amX99dcv1/v000/nsMMOywsvvJDRo0fnk08+ye23356jjjoq06dPT5MmTWqM9v1qIHryySfnqaeeyogRIzJs2LA88cQTOeSQQ/LAAw+U95nbXOKzR0O/+uqrGTRoUI0AfGH6qzaaNGmS008/PcmsQLhr16558MEHy/36xBNP5NBDDy2PwD755JPTvHnzJMmGG25YnkbmmmuuySWXXJJ33303o0ePzkcffZQePXrkggsuSJJstNFGNRYL/SbbbLNNklmB5THHHJOXXnopo0aNypAhQ/KPf/wjXbt2rTHyvKgFhZNZofa5556bZNaXKQceeGCee+65jBkzJh988EEuuuiiXHrppfOcjmZ+jj322PJr5sknn8zOO++cP//5z3n99dczYsSIjB49OgMHDswtt9yS3XffPX379k3jxo1zwQUX1Ljm7Hv03//+N6ecckrefffdco1//etfs9dee9X4pUFtFww96KCDsv766ydJLrvssvzhD3/IW2+9lbFjx+a9997LxRdfXF4odc011yx/FtUnK620Uo455pgks6aNOu644zJgwICMGTMmAwcOzHnnnZebb745SXLAAQdkzTXXTLJwn2OHHnpoGjdunC+//DI///nP06tXr3zyyScZPXp0Xn/99Zx88snp169fkuSQQw75ju4EALAomfMdAGAx9fvf/z7Tpk3L3XffnZdeeqnG9BKztWnTJtdcc015DuvZtthii+y333659957M3To0Bx//PE12tdcc82cdNJJOemkk+Y45957753XX389d955Z/r37z/X+c0bNWqU8847L+uss055W6lUyhVXXJGTTz45zz77bJ566qk89dRTcxzbunXrXH/99VlppZVqeysKc/rpp2f69Om577778uqrr5a/aPiq5s2b58orr6wxV/d2222Xzp0759FHH80nn3wyx/1Mku9973vZYYcdcuedd2batGkZNmxYjX7p2LFjHnvssQwfPjydO3dOkjz11FNZffXVF6q/amu33XbL+PHjc/7552fo0KH53e9+N8c+pVIp3bp1K4/+ne2yyy7L4YcfnsGDB+fmm28uh5Zfr7F79+61rme//fbLP//5z7zyyit5++235zr/9VprrZUNN9wwDz30UIYNG5Zp06alcePGtb7GN9l6661zySWX5Iwzzsh///vf8oKns6222mrZcccdc8sttyzwuRs3bpw///nPufjii3Pvvffmiy++yJ/+9Kf86U9/muv+q622Ws4///x07NixxvZTTz01/fv3zxdffJFHH300jz766BzHbr/99hk7dmz+85//zHW09bzqu/HGG3P88cfnjTfeyP3335/7779/jv3WXHPN3HTTTQu1RsCidMIJJ2Ts2LHp2bNnnnnmmTzzzDNz7NOpU6fyF1PJwn2OrbXWWrngggvyhz/8IUOHDs3vf//7udb1s5/9bJ7TVwEASxbhOwDAYqphw4Y599xz06VLl9x1113p379/Ro4cmeWWWy5rrrlmOnfunL322qs8Qvnrzj///Gy99da555578vbbb2fatGlZffXVs+uuu+YXv/jFXKc3me3ss8/OT37yk9x333154403MmrUqDRq1CgrrbRStt566xx22GHlkaJftcwyy+SGG27Ik08+mQcffDCvv/56xowZk0aNGmWttdbKT3/60xx66KELNYp7YTRq1CgXXHBB9tprr9x1110ZMGBAvvjii1RUVKRNmzb50Y9+lMMPP7zGopSzXXHFFenYsWN69eqV//73v5k6dWqWWWaZrLXWWvnJT36Sn/3sZ5k8eXLuvvvuVFVV5fHHH8/hhx9ePn7//ffPyJEjc//99+eLL75Iy5YtM3z48Ky++upJFq6/autnP/tZttlmm9xyyy156aWX8tlnn2X69On53ve+lw4dOuSQQw6Z68j1lVdeOb169UrPnj3z1FNP5YMPPsiXX36ZZZddNmuvvXY6deqUAw88ME2aNKl1LY0bN87NN9+cW265JY899lg++uijTJ8+Pcstt1zatm2bXXbZJfvss0/efffdPPTQQ5kyZUqef/75Gr8SWFh77bVXNtxww/ztb39Lv3798vnnn6d169bZYYcdcsIJJ+See+6p87krKytzzjnn5LDDDsu//vWvvPzyyxk6dGjGjBmTmTNnpnXr1mnXrl123HHH7L777uV5/79q9dVXT69evXLDDTfkueeey7Bhw1IqlbLCCitk/fXXzz777JMdd9wxf/nLX/Kf//wnr732WkaNGpUVVlhhvvWtuOKKueuuu/Lwww/nkUceyTvvvJNx48aladOmadeuXXbeeecceOCBadq0aZ3vwaJWUVGRP/7xj9lll11yxx13pH///hkzZkwqKyvzgx/8IPvtt1/5i7CvWpjPsT322CPrrbdebrvttvTr1y/Dhg0r9/dmm22W/fbbL1tttdV38fQBgMVAqfq7XOUKAAAAAACWAuZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAAChYw0VdADWNGjUh1dWLugoAAAAAAOamVEpWWGHZ+e4nfF/MVFdH+A4AAAAAUM+ZdgYAAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAAChYw0VdAAunoqKUiorSoi6Dr6iqqk5VVfWiLgMAAAAAWISE7/VYRUUpLVs1TwPh+2JlZlV1xo6ZJIAHAAAAgKWY8L0eq6gopUFFKbc+Nz7Dx81c1OWQZOUWDXLYdsuloqIkfAcAAACApZjwfQkwfNzMfDpqxqIuAwAAAACA/2PBVQAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYPU2fB89enQ6deqUvn37lredddZZ2WCDDbLpppuW/9x9993l9l69eqVTp07ZZJNNss8++2TAgAHltpkzZ+aSSy7J1ltvnU033TTHHXdcRowYUW4fNWpUjj/++HTo0CEdO3bMBRdckBkz/v8ip6+//nr222+/bLrppvnpT3+ae++991u+AwAAAAAALK7qZfjev3//HHDAAfnkk09qbH/zzTdz3nnnZcCAAeU/BxxwQJKkb9++Oe+883LxxRfnlVdeyR577JHjjjsukydPTpJcf/316dOnT+6///707t07TZs2zRlnnFE+90knnZRmzZqld+/eue+++/LSSy+lR48eSZJx48bl6KOPzl577ZVXXnklF1xwQS666KK88cYb380NAQAAAABgsVLvwvdevXrllFNOya9//esa26dNm5b//ve/2WCDDeZ63L333pvOnTtn8803T6NGjXLEEUekVatWeeyxx8rtRx11VFZZZZUss8wyOf300/P8889nyJAh+fjjj9OvX7+ceuqpqaysTJs2bXL88cenZ8+eSZLHH388LVu2zMEHH5yGDRtmq622SpcuXcrtAAAAAAAsXRou6gIW1LbbbpsuXbqkYcOGNQL4gQMHZsaMGenevXv69++fZZddNvvuu2+OPPLIVFRUZNCgQdl3331rnKtt27YZOHBgJkyYkOHDh6d9+/blttatW6dFixZ57733kiQtW7bMSiutVG5fe+2189lnn2X8+PF5//33axw7+9z33XffAj+/UmmBD2ExpS8BAAAAYMlT29yv3oXvK6644ly3T5gwIVtuuWUOPfTQXHnllXn33XfTrVu3VFRU5Mgjj8ykSZNSWVlZ45imTZvmyy+/zKRJk5IkzZo1m6N9dtvXj539ePbx8zr3glphhWUX+BgWP61aNV/UJQAAAAAAi1C9C9/nZZtttsk222xTfrzRRhvl8MMPz2OPPZYjjzwylZWVmTJlSo1jpkyZklatWpWD89nzv3+1vXnz5qmurp6jbfbj5s2bp7KyMhMmTJjrsQtq1KgJqa6u3b4NGlQIeRdTY8ZMysyZVYu6DAAAAACgYKVS7QZRLzHh+5NPPpmRI0fmZz/7WXnbtGnT0rRp0yRJu3bt8v7779c4ZtCgQfnxj3+cFi1aZKWVVsqgQYPK08d88cUXGTt2bNq3b5+qqqqMHTs2I0eOTOvWrZMkH3zwQVZeeeUsu+yyad++ffr06TPHudu1a7fAz6O6OrUO31m86UcAAAAAWHrVuwVX56W6ujoXXXRRXnrppVRXV2fAgAG59dZbc8ABByRJunbtmocffjgvv/xypk+fnh49emTUqFHp1KlTkmSfffbJ9ddfnyFDhmTixIm58MILs+WWW2aNNdbImmuumc033zwXXnhhJk6cmCFDhuS6665L165dkySdOnXKyJEj06NHj0yfPj0vv/xyHn744TnmmAcAAAAAYOmwxIx879SpU0477bScffbZ+fzzz9O6dev86le/yp577pkk2WqrrXLWWWeV29u2bZubbropLVu2TJJ069YtM2bMyMEHH5xJkyalY8eOufrqq8vn7969e84999zssMMOqaioyF577ZXjjz8+SdKqVavcfPPNueCCC9K9e/csv/zyOeOMM/LDH/7wu74NAAAAAAAsBkrV1SbHWJyMHFn7Od8bNpw15/ulD43Jp6NmfLuFUSurr9Awv92jVcaMmZQZM8z5DgAAAABLmlIpad16/nO+LzHTzgAAAAAAwOJC+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAVruKgLABZcRUUpFRWlRV0GX1NVVZ2qqupFXQYAAAAAiwHhO9QzFRWltGzVPA2E74udmVXVGTtmkgAeAAAAAOE71DcVFaU0qCjl1ufGZ/i4mYu6HP7Pyi0a5LDtlktFRUn4DgAAAIDwHeqr4eNm5tNRMxZ1GQAAAADAXFhwFQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBg9TZ8Hz16dDp16pS+ffuWt73++uvZb7/9summm+anP/1p7r333hrH9OrVK506dcomm2ySffbZJwMGDCi3zZw5M5dcckm23nrrbLrppjnuuOMyYsSIcvuoUaNy/PHHp0OHDunYsWMuuOCCzJgxo9bXBgAAAABg6VEvw/f+/fvngAMOyCeffFLeNm7cuBx99NHZa6+98sorr+SCCy7IRRddlDfeeCNJ0rdv35x33nm5+OKL88orr2SPPfbIcccdl8mTJydJrr/++vTp0yf3339/evfunaZNm+aMM84on/+kk05Ks2bN0rt379x333156aWX0qNHj1pdGwAAAACApUvDRV3AgurVq1e6d++eU089Nb/+9a/L2x9//PG0bNkyBx98cJJkq622SpcuXdKzZ89stNFGuffee9O5c+dsvvnmSZIjjjgid999dx577LHsu+++uffee3PKKadklVVWSZKcfvrp2XbbbTNkyJBUVVWlX79+ef7551NZWZk2bdrk+OOPz2WXXZYjjzxyvtdeEKVSEXeJxYG+XHrpewAAAIAlV22zn3oXvm+77bbp0qVLGjZsWCN8f//999O+ffsa+7Zt2zb33XdfkmTQoEHZd99952gfOHBgJkyYkOHDh9c4vnXr1mnRokXee++9JEnLli2z0korldvXXnvtfPbZZxk/fvx8r70gVlhh2QU+hsVPq1bNF3UJLCL6HgAAAICkHobvK6644ly3T5o0KZWVlTW2NW3aNF9++eV82ydNmpQkadas2Rzts9u+fuzsx7OP/6ZrL4hRoyakurp2+zZoUCHoW0yNGTMpM2dWfSvn1u+Lt2+z7wEAAABY9Eql2g2irnfh+7xUVlZmwoQJNbZNmTIlzZs3L7dPmTJljvZWrVqVg/PZ879//fjq6uo52mY/bt68+XyvvSCqq1Pr8J3Fm35ceul7AAAAAOrlgqtz0759+7z//vs1tg0aNCjt2rVLkrRr126e7S1atMhKK62UQYMGldu++OKLjB07Nu3bt0+7du0yduzYjBw5stz+wQcfZOWVV86yyy4732sDAAAAALB0WWLC906dOmXkyJHp0aNHpk+fnpdffjkPP/xweZ73rl275uGHH87LL7+c6dOnp0ePHhk1alQ6deqUJNlnn31y/fXXZ8iQIZk4cWIuvPDCbLnlllljjTWy5pprZvPNN8+FF16YiRMnZsiQIbnuuuvStWvXWl0bAAAAAIClyxIz7UyrVq1y880354ILLkj37t2z/PLL54wzzsgPf/jDJMlWW22Vs846K2effXY+//zztG3bNjfddFNatmyZJOnWrVtmzJiRgw8+OJMmTUrHjh1z9dVXl8/fvXv3nHvuudlhhx1SUVGRvfbaK8cff3ytrg0AAAAAwNKlVF1tduLFyciRtV9wtWHDWQtvXvrQmHw6asa3Wxi1svoKDfPbPVplzJhJmTHj21l0U78vnr6LvgcAAABg0SuVktat57/g6hIz7QwAAAAAACwuhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQsIaLugAAYP4qKkqpqCgt6jL4iqqq6lRVVS/qMgAAAFhMCd8BYDFXUVFKy1bN00D4vliZWVWdsWMmCeABAACYK+E7ACzmKipKaVBRyq3Pjc/wcTMXdTkkWblFgxy23XKpqCgJ3wEAAJgr4TsA1BPDx83Mp6NmLOoyAAAAgFqw4CoAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAULA6h+/Tpk3LY489Vn48efLk/PGPf8wuu+ySo48+Om+99VYhBQIAAAAAQH3TsC4HffHFFzn44IMzZMiQbLnllmndunXOP//83H///UmSwYMH55VXXsl9992Xtddeu9CCAQAAAABgcVenke/XX399Pvnkk+y7775p2rRpJk6cmIceeiirrrpqnnnmmdxyyy2prq7O9ddfX3S9AAAAAACw2KvTyPfnn38+22yzTc4///wkyb///e9Mnz49e+21V1ZZZZWsssoq2WmnnfLiiy8WWiwAAAAAANQHdRr5PmLEiPzgBz8oP+7Tp09KpVK22Wab8raVV14548ePX/gKAQAAAACgnqlT+N6iRYtMnDix/PiFF15IZWVlNt544/K2Tz/9NK1bt174CgEAAAAAoJ6pU/i+zjrr5PHHH8+nn36aXr165bPPPsu2226bhg1nzWLTv3//PPHEE9lggw0KLRYAAAAAAOqDOs35fswxx+SXv/xlOnXqlCRp0KBBfvGLXyRJrr766tx4441p2LBhjj766OIqBQAAAACAeqJO4fsWW2yRv//977nllluSJD/72c+yySabJEmaN2+ejTbaKKeccoqR7wAAAAAALJXqFL4nyeabb57NN998ju1HHnlkjjrqqCTJpEmT0rx587pXBwAAAAAA9VCd5nzfYYcdcuutt861rVQqJUn+/Oc/Z8cdd6x7ZQAAAAAAUE/VauT7F198kSlTppQfDx06NEOGDMmQIUPmuv/06dPTv3//fPnll8VUCQAAAAAA9Uitwvdnn302f/zjH8uPS6VSbr/99tx+++3zPKa6ujqbbbbZwlcIAAAAAAD1TK3C965du+bFF1/MyJEjkySvvvpqVllllay22mpz7FsqldKoUaOsssoqOfbYY4utFgAAAAAA6oFahe+lUilXXXVV+fG6666bffbZJyeccMK3VhgAAAAAANRXtQrfv+6pp57KcsstV3QtAAAAAACwRKhT+D57upmZM2dmzJgxmT59eqqrq+e676qrrlr36gAAAAAAoB6qU/g+c+bMXHPNNbn77rszfvz4ee5XKpXyzjvv1Lk4AAAAAACoj+oUvt9www258cYb07Bhw7Rv336xmoLmscceyymnnJImTZqUt+2444657LLL8vrrr+f888/PoEGD0qpVqxx33HHZb7/9yvv16tUr1113Xb744ot8//vfz5lnnplNN900yawvHC6//PL84x//yOTJk/PDH/4w55xzTr73ve8lSUaNGpUzzzwz/fr1S4MGDbLHHnvkd7/7XRo2rNMtBgAAAACgHqtTMvzggw+mdevWufPOO9OmTZuia1oob775Zvbcc89cdNFFNbaPGzcuRx99dE488cQccMABeeWVV9KtW7ess8462WijjdK3b9+cd955uemmm7LRRhulZ8+eOe644/LMM8+ksrIy119/ffr06ZP7778/yy67bM4888ycccYZufHGG5MkJ510UlZaaaX07t07I0eOzHHHHZcePXrkyCOPXBS3AQAAAACARaiiLgcNGzYsu+2222IXvCezwvcNNthgju2PP/54WrZsmYMPPjgNGzbMVlttlS5duqRnz55JknvvvTedO3fO5ptvnkaNGuWII45Iq1at8thjj5XbjzrqqKyyyipZZpllcvrpp+f555/PkCFD8vHHH6dfv3459dRTU1lZmTZt2uT4448vnxsAAAAAgKVLnUa+r7jiipk6dWrRtSy0qqqqvP3226msrMxf//rXzJw5M9ttt11OOeWUvP/++2nfvn2N/du2bZv77rsvSTJo0KDsu+++c7QPHDgwEyZMyPDhw2sc37p167Ro0SLvvfdekqRly5ZZaaWVyu1rr712Pvvss4wfP36BpuUplRb4abOY0pdLL30PSxfveQAAgKVLbf8fWKfwfbfddkuvXr1yyimnZNlll63LKb4Vo0ePzvrrr5+dd9453bt3z5gxY/K73/0up556alZcccVUVlbW2L9p06b58ssvkySTJk2aZ/ukSZOSJM2aNZujfXbb14+d/fjLL79coPB9hRUWn/tJ3bVq1XxRl8Aiou9h6eI9DwAAwLzUKXw/7LDD0rdv3+y333458MADs+aaa6Zx48Zz3XerrbZaqAIXROvWrWtM9VJZWZlTTz01+++/f/bZZ59MmTKlxv5TpkxJ8+bNy/vOrb1Vq1blIH3y5MlzPb66unqOttmPZ5+/tkaNmpDq6trt26BBhf/0L6bGjJmUmTOrvpVz6/fF27fZ9yy9vO8XX97zAAAAS59SqXaDqOsUvv/4xz9OqVRKdXV1Lr744m/c9913363LJepk4MCBeeSRR3LyySen9H9j/6dNm5aKiopstNFGueWWW2rsP2jQoLRr1y5J0q5du7z//vtztP/4xz9OixYtstJKK2XQoEHlqWe++OKLjB07Nu3bt09VVVXGjh2bkSNHpnXr1kmSDz74ICuvvPIC/zKgujq1Dt9ZvOnHpZe+h6WL9zwAAABzU6fwfa+99iqH24uTli1bpmfPnmnRokV+/vOfZ8SIEbnsssuy9957Z+edd84VV1yRHj165OCDD07//v3z8MMP57rrrkuSdO3aNd26dcuuu+6azTffPD179syoUaPSqVOnJMk+++yT66+/PhtuuGFatWqVCy+8MFtuuWXWWGONJMnmm2+eCy+8MOeee27GjBmT6667Ll27dl1k9wIAAAAAgEWnTuH7/Ea7Lyorr7xybrjhhlx55ZW5/vrr06RJk3Tu3DmnnnpqmjRpkptvvjkXXHBBunfvnuWXXz5nnHFGfvjDHyaZNT3OWWedlbPPPjuff/552rZtm5tuuiktW7ZMknTr1i0zZszIwQcfnEmTJqVjx465+uqry9fu3r17zj333Oywww6pqKjIXnvtleOPP34R3AUAAAAAABa1UnX1wv9YesSIERk3blzatWuXmTNnpkGDBkXUtlQaObL2c743bDhrDuBLHxqTT0fN+HYLo1ZWX6FhfrtHq4wZMykzZnw7cwDr98XTd9H3LL287xc/3vMAAABLr1Ipad16/tONV9T1AtOmTcvVV1+dbbfdNtttt1323HPPJMnNN9+cX/ziF/nkk0/qemoAAAAAAKjX6hS+T5s2LUcccUT+8pe/ZPLkyWndunVmD6AfM2ZMXnzxxRxyyCH5/PPPCy0WAAAAAADqgzqF73/961/z2muv5ZhjjslLL72U/fffv9x26qmn5uSTT86IESNy0003FVYoAAAAAADUF3VacPWRRx7Jpptuml//+tdJklKpVG4rlUo56qij0qdPn/Tu3buYKgEAAAAAoB6p08j3Tz/9NFtsscU37rPBBhtk+PDhdSoKAAAAAADqszqF782aNcuIESO+cZ9hw4alsrKyTkUBAAAAAEB9VqfwfdNNN80TTzwxz5HtH3/8cZ566qlsttlmC1UcAAAAAADUR3UK34855phMnTo1BxxwQO688858+umnSZK33norPXv2zEEHHZTp06fnl7/8ZaHFAgAAAABAfVCnBVc32WSTXHTRRTnzzDNz7rnnJkmqq6uz3377pbq6Og0bNszZZ5+dzTffvNBiAQAAAACgPqhT+J4kXbp0yVZbbZUHH3wwb731VsaPH5/mzZtnvfXWy5577pnVVlutyDoBAAAAAKDeqHP4niStW7fOkUceWVQtAAAAAACwRKhV+D5kyJC0aNEiyy23XPlxbbVp06ZulQEAAAAAQD1Vq/B9p512Srdu3XLCCSckSTp16pRSqTTf40qlUt55552FqxAAAAAAAOqZWoXvHTp0yOqrr15+vMUWW3xrBQEAAAAAQH1Xq/D9tttu+8bHAAAAAADA/1exMAcPGjQoH374YY1tN954YwYOHLhQRQEAAAAAQH1Wp/C9qqoqZ599drp06ZJ//etf5e3Tpk3LVVddlX322Sfdu3cvrEgAAAAAAKhP6hS+33PPPbnrrruy/vrrZ8sttyxvb9CgQf70pz9lww03zPXXX5/777+/sEIBAAAAAKC+qFP4fvfdd+f73/9+7rzzznTo0KG8vUGDBtlxxx1z2223ZY011sjtt99eWKEAAAAAAFBf1Cl8//jjj7PddtulcePGc21v3Lhxtt9++3zwwQcLVRwAAAAAANRHdQrfmzRpkpEjR37jPuPHj0+TJk3qVBQAAAAAANRndQrfN9poozz99NMZMmTIXNs/++yzPPXUU9lggw0WqjgAAAAAAKiPGtbloCOOOCLPP/98Dj300Bx55JHZeOONs+yyy2bChAl544038re//S0TJkzIL37xi6LrBQAAAACAxV6dwvetttoqp59+ei699NJccMEFNdqqq6vToEGD/O53v8uPfvSjQooEAAAAAID6pE7he5Iccsgh+clPfpJHH300AwcOzNixY9O8efOss8462WOPPbLGGmsUWScAAAAAANQbdQ7fk2S11VbL0UcfXVQtAAAAAACwRKhV+F5VVZWKiooaj2vrq8cBAAAAAMDSoFbh+w9+8IOccMIJ6datW/lxbZRKpbzzzjt1rw4AAAAAAOqhWoXvq6yySpZddtkajwEAAAAAgLmrVfh+/vnnp23btuXHTz/99LdWEAAAAAAA1He1mpD95JNPzm233VZ+fNppp+Wpp5761ooCAAAAAID6rFbh+6RJkzJu3Ljy4169euXdd9/91ooCAAAAAID6rFbTzvzP//xPHnjggXzxxRdp2bJlkuSpp57K0KFDv/G4UqmUCy+8cKGLBAAAAACA+qRW4fvJJ5+c//3f/80zzzyTZFao/u6778539LvwHQAAAACApVGtwvftt98+zz//fD766KNMnTo1hx9+ePbee+/svffe33Z9AAAAAABQ79QqfD/qqKOy6667Zp999kmSrLrqqllvvfWy5ZZbfqvFAQAAAABAfVSrBVf79euXjz/+uPz4s88+y/jx47+1ogAAAAAAoD6r1cj3pk2b5rnnnsvOO++cFi1aJEkmTJiQzz77bL7HrrrqqgtXIQAAAAAA1DO1Ct9/+tOfplevXtl3332TzFpI9dZbb82tt976jceVSqW88847C18lAAAAAADUI7UK388888yssMIKeffddzNt2rS88sorWXXVVbPaaqt92/UBAAAAAEC9U6vwvVmzZjnllFPKj9ddd93ss88+OeGEE761wgAAAAAAoL6qVfj+dRdddFHWW2+9omsBAAAAAIAlQp3C97333jtJUlVVlT59+uSdd97J2LFj87vf/S7//e9/s8wyy1hoFQAAAACApVZFXQ8cMGBAOnXqlKOPPjpXXXVVevTokST55z//mZ122ik9e/YsqkYAAAAAAKhX6jTy/cMPP8wvf/nLzJw5M/vtt1+GDx+e3r17J0natm2bZs2a5fzzz8/3v//9bLXVVoUWDACwNKmoKKWiorSoy+ArqqqqU1VVvajLAAAAFnN1Ct+vvfbazJw5M3fffXfWXXfd/PnPfy6H7507d856662Xrl275uabbxa+AwDUUUVFKS1bNU8D4ftiZWZVdcaOmSSABwAAvlGdwveXX345u+yyS9Zdd925tn//+9/PzjvvXA7kAQBYcBUVpTSoKOXW58Zn+LiZi7ockqzcokEO2265VFSUvvXw3a8eFj9+9QAAwIKoU/g+fvz4rLjiit+4T8uWLTN+/Pg6FQUAwP83fNzMfDpqxqIug++QXz0snvzqAQCABVGn8H3llVfOW2+99Y37vPHGG1l55ZXrVBQAACzN/Oph8fNd/uoBAIAlQ53C9x133DE9evTIfffdl65du87Rfuutt+a1117LEUccsbD1AQDAUsuvHgAAoP6qU/h+7LHH5oknnsiZZ56Ze+65J9OmTUuSnHvuuXnjjTfy9ttvZ5VVVsnRRx9daLEAAAAAAFAfVNTloBYtWuTOO+/MT3/607z55psZOHBgqqurc8cdd+Stt97K1ltvndtvvz2tWrUqul4AAAAAAFjs1Wnke5KsuOKKufbaazNq1Ki89dZbGT9+fJo3b5711lsvq6yySpE1AgAAAABAvVLn8H22FVZYIR06dMjkyZPTsmXLNGy40KcEAAAAAIB6rc5JeVVVVf7+97/n7rvvzpAhQ8rb11xzzeyzzz755S9/mYqKOs1qAwAAAAAA9Vqdwveqqqocf/zxee6551IqlbLKKqvke9/7XsaPH5/BgwfnyiuvzKuvvpobbrih6HoBAAAAAGCxV6fw/Y477sizzz6bbbbZJmeffXbatGlTbhsxYkT++Mc/5rnnnss999yT/fffv7BiAQAAAACgPqhT+P7AAw9k9dVXz7XXXpumTZvWaPve976Xq6++Ol26dMn9998vfAcAAKiliopSKipKi7oMvqaqqjpVVdWLugwAoJ6pU/j+4YcfZu+9954jeJ+tadOm2XbbbfPwww8vVHEAAABLi4qKUlq2ap4GwvfFzsyq6owdM0kADwAskDqF76VSKdOnT//GfaZPn56ZM2fWqSgAAIClTUVFKQ0qSrn1ufEZPs7/pRYXK7dokMO2Wy4VFSXhOwCwQOoUvq+zzjp57rnnMm7cuLRo0WKO9rFjx+bZZ5/NOuuss9AFAgAALE2Gj5uZT0fNWNRlAACwkCrqctCBBx6YL774Isccc0zefPPN8vYZM2akb9+++cUvfpFRo0blgAMOKKxQAAAAAACoL+o08n3PPfdM375988ADD2T//fdP06ZN07x584wZMyZVVVWprq7OXnvtlb333rvoegEAAAAAYLFXp/A9SS688MJsu+22ue+++/LOO+9k7NixWWaZZfKDH/wg++67bzp37lxknQAAAAAAUG/UOXxPkt122y277bZbUbUAAAAAAMASoU5zvldVVc11+4ABAzJ9+vSFKggAAAAAAOq7BQrfn3jiiXTp0iW9e/eeo23q1Kk57LDDsuOOO+aRRx4prEAAAAAAAKhvah2+9+zZMyeeeGLef//9vPfee3O0jxgxIqussko+//zznHrqqbnpppsKLRQAAAAAAOqLWs35/sYbb+T8889PixYtcuGFF+anP/3pHPu0adMmjz/+eJ588sn87ne/y9VXX51tttkm66+/fuFFAwAAwJKkoqKUiorSoi6Dr6mqqk5VVfWiLgOAeqpW4futt96aioqK9OjRI+uuu+437rvjjjvmz3/+c37+85/ntttuy0UXXVRIoQAAALAkqqgopWWr5mkgfF/szKyqztgxkwTwANRJrcL3/v3750c/+tF8g/fZttpqq3To0CF9+/ZdqOIAAABgSVdRUUqDilJufW58ho+buajL4f+s3KJBDttuuVRUlITvANRJrcL3L774IrvtttsCnXi99dbL66+/XqeiAAAAYGkzfNzMfDpqxqIuAwAoSK0WXG3RokUmTZq0QCeurq7OMsssU6eiAAAAAACgPqtV+N6mTZu8/fbbC3Ti//znP1lllVXqVBQAAAAAANRntZp2Zuedd86ll16aPn36ZJtttpnv/n369Mlbb72Vo48+eqELBAAAAFhSVVSUUmGx3cVOVVW1uf6BhVar8H3vvffOTTfdlJNOOindu3fPVlttNc99X3rppfzmN79J06ZN87Of/aywQgEAAACWJBUVpbRs1TwNhO+LnZlV1Rk7ZpIAHlgotQrfW7ZsmUsvvTTHHntsfvGLX6RDhw750Y9+lO9///tp3rx5xo0bl48//ji9e/dO//79UyqVcs0112TVVVf9tusHAAAAqJcqKkppUFHKrc+Nz/BxMxd1OfyflVs0yGHbLZeKipLwHVgotQrfk2TbbbfNHXfckVNPPTWvvPJKXn311Tn2qa6uzjrrrJOzzjorm222WaGFAgAAACyJho+bmU9HzVjUZQBQsFqH70my0UYb5d///nf69euXZ599NsOHD8+4cePSqlWrrLHGGtl+++2z0UYbfVu1AgAAAABAvbBA4ftsW265ZbbccsuiawEAAAAAgCVCxaIuAAAAAAAAljTCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAgtVpwVUAAAAAoO4qKkqpqCgt6jL4iqqq6lRVVS/qMliCCN8BAAAA4DtUUVFKy1bN00D4vliZWVWdsWMmCeApzEKF7+PHj89jjz2Wd955J+PGjcs111yT/v37p1QqZbPNNiuqRgAAAABYYlRUlNKgopRbnxuf4eNmLupySLJyiwY5bLvlUlFREr5TmDqH70888UROO+20TJo0KdXV1SmVZn1T99xzz+Wmm27Kz3/+8/z2t78trFAAAAAAWJIMHzczn46asajLAL4ldVpw9Y033sivf/3rNGnSJCeddFI6d+5cbuvYsWNWXXXV/P3vf8+///3vwgoFAAAAAID6ok7h+3XXXZdmzZrl/vvvzzHHHJO11lqr3LbNNtvk7rvvTsuWLXP77bcXVigAAAAAANQXdQrfBwwYkJ133jkrr7zyXNtbt26dnXbaKYMGDVqo4gAAAAAAoD6qU/g+efLkLLPMMt+4T5MmTfLll1/WqSgAAAAAAKjP6hS+r7HGGunfv/8826urq/PKK6+kTZs2dS4MAAAAAADqqzqF77vttlvefPPNdO/ePdXV1TXaZsyYkUsvvTQDBw7MLrvsUkiRAAAAAABQnzSsy0G//OUv8/TTT+f666/Pvffem0aNGiVJjjnmmLz77rsZMWJE1llnnfzyl78stFgAAAAAAKgP6jTyvUmTJrntttty6KGHZvLkyfnss89SXV2d5557LuPHj8/++++fnj17prKysuh6AQAAAABgsVenke9JUllZmT/84Q/5/e9/n48++ijjxo1L8+bNs9Zaa6Vx48ZF1ggAAAAAAPVKnUa+JymPdH/rrbey9tprZ7PNNss666yTCy+8ME8//XSRNdYbo0aNyvHHH58OHTqkY8eOueCCCzJjxoxFXRYAAAAAAN+xOoXvU6dOzXHHHZdjjz02zz77bHn75MmTc9ddd6Vbt2753e9+l6qqqqLqrBdOOumkNGvWLL179859992Xl156KT169FjUZQEAAAAA8B2r07Qzt9xyS5599tlsv/322W233crbKysr06tXr1x//fV56KGHss466+QXv/hFYcUuzj7++OP069cvzz//fCorK9OmTZscf/zxueyyy3LkkUfW+jyl0oJfe+UWDRb8IL4VX+2LuvRlXa/Fovdd9X1FRSmlb/vFxQKrrq5OVVX1t34d7/vFx3f5ef/167Fo6full3/nLb30/dJL3y+99P3S6bvs91KplIoK/7dfnFRVVae6uvb/r6/ta6RUvSBn/T+77757mjZtmvvuu2+u7dXV1dlnn30yderUPPbYYwt6+nrpySefzOmnn56+ffuWt7333nvZY4898sorr2S55Zb7Vq5bVVXtzbqY+S76RL8vnr6Lfqmurha+L4a+i37xvl/8fFd9ou8XP/p+6eXfeUsvfb/00vdLL32/dNInFK1OI9+HDh2agw46aJ7tpVIpP/zhD3P77bfXubD6ZtKkSamsrKyxbfbjL7/8stbh+6hRE7IgX4cYBbv4+S5GwOr3xdO33fcNGlSkVavmGTJkSKZOnfqtXYcF06RJk7Rp0yZjxkzKzJnf3nRr3veLn+/qFw/6fvGj75de/p239NL3Sy99v/TS90un7+rfeUa+L37qMvJ9hRWWne9+dQrfmzdvnqFDh37jPiNGjEizZs3qcvp6qVmzZpk8eXKNbbMfN2/evNbnqa7OAoXvM2dWJ/n2PxRYvOj3pdvUqVMzZcqURV0Gc7HgvyWrPe/7pZe+X3rp+6WTfl966full75feun7pdd3FfKz6NVpwdUOHTrkqaeeyttvvz3X9oEDB+bJJ5/M5ptvvlDF1Sft2rXL2LFjM3LkyPK2Dz74ICuvvHKWXXb+34IAAAAAALDkqNPI96OOOipPPfVUDj300BxwwAHZeOONs+yyy2bChAl5/fXXc99992XmzJk59thji653sbXmmmtm8803z4UXXphzzz03Y8aMyXXXXZeuXbsu6tIAAAAAAPiO1WnB1SR54okncsYZZ2TcuHE15qeqrq7OMsssk/PPPz+77LJLYYXWByNHjsy5556bvn37pqKiInvttVdOOeWUNGhQ+5WrR45csDnfgaVHw4az5nwfNGiQaWcWI02bNk3btm0zZsykzJjx7c35DgAAACweSqWkdev5z3ZS5/A9mbXI6HPPPZd33303Y8eOTfPmzbPuuutmxx13zDLLLFPX0y7VhO/AvAjfF0/CdwAAAFi61DZ8r9O0M7M1b948u+22W3bbbbeFOQ0AAAAAACxRahW+DxkyJC1atMhyyy1Xflxbbdq0qVtlAAAAAABQT9UqfN9pp53SrVu3nHDCCUmSTp061ZjnfV5KpVLeeeedhasQAAAAAADqmVqF7x06dMjqq69efrzFFlt8awUBAAAAAEB9V6cFV6dOnZomTZp8G/Us9Sy4CsyLBVcXTxZcBQAAgKVLbRdcrajLybt27ZrzzjuvLocCAAAAAMASr07h+8cff5zGjRsXXQsAAAAAACwR6hS+r7baavnkk0+KrgUAAAAAAJYItVpw9esuuuiiHHPMMTn11FOzyy67pE2bNqmsrJzrvm3atFmoAgEAAAAAoL6p04Krm266aWbMmJEZM2Z888lLpbzzzjt1Lm5pZMFVYF4suLp4suAqAAAALF1qu+BqnUa+b7DBBnU5DAAAAAAAlgp1Ct9vu+22ousAAAAAAIAlRp0WXAUAAAAAAOat1iPfR40alT/96U955plnMmbMmKy88srZddddc8wxx6RZs2bfZo0AAAAAAFCv1Cp8HzVqVPbbb78MGzYss9dn/eSTT3LjjTfmmWeeyZ133pnmzZt/q4UCAAAAAEB9UatpZ2688cZ89tln2WOPPfLPf/4zr7/+eh588MFst912ef/993Prrbd+23UCAAAAAEC9UavwvXfv3tl0001zySWXZK211kqTJk2y7rrr5tprr80aa6yRp59++tuuEwAAAAAA6o1ahe/Dhg3LZpttNsf2Bg0aZJtttsnHH39ceGEAAAAAAFBf1Sp8nzp1aiorK+fa1qpVq0yaNKnQogAAAAAAoD6rVfheVVU1z7ZSqfSN7QAAAAAAsLSpVfgOAAAAAADUnvAdAAAAAAAK1rC2Oz711FMZOnToHNsHDhyYJDnttNPmaCuVSrnwwgsXojwAAAAAAKh/StXV1dXz22ndddet28lLpbz77rt1OnZpNXLkhMy/R4ClUcOGFWnVqnkGDRqUKVOmLOpy+D9NmzZN27ZtM2bMpMyYYQ0UAAAAWNKVSknr1svOd79ajXy/6KKLFrogAAAAAABYWtQqfN97772/7ToAAAAAAGCJYcFVAAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACrZEhe+vv/561l133Wy66ablPwcffHC5/aOPPsrhhx+eTTfdNNtuu23+8pe/1Dj+ueeeS5cuXbLJJptk1113zTPPPFOj/aabbsqPf/zjbLLJJjn00EPz4Ycfltu+/PLLnHbaaenYsWM233zz/Pa3v82kSZO+3ScMAAAAAMBiaYkK3998881sscUWGTBgQPlPz549kyTTp0/Psccemw033DB9+/bNjTfemJ49e+af//xnkmTw4MH51a9+lf/93//Nq6++ml/96lc56aST8vnnnydJevXqldtuuy1/+9vf0rdv3/zgBz/IiSeemOrq6iTJeeedl2HDhuXf//53Hn/88QwbNiyXX375orkRAAAAAAAsUktc+L7BBhvMte2VV17JiBEjcuKJJ6Zx48ZZf/31c+ihh5bD+V69eqVDhw7Zcccd07Bhw+y2227ZYostcvfddydJ7rnnnhx00EFp165dmjRpkpNPPjmfffZZ+vbtm8mTJ+fhhx/OiSeemJYtW2aFFVbIKaeckgceeCCTJ0/+zp4/AAAAAACLh4aLuoAFMWXKlPJI9K9bccUV8+abb6Z169bZaaedMnHixGy55Zb5/e9/n5VXXjnvv/9+1lprrTRu3Lh8TNu2bXPjjTcmSQYNGpT27dvXOGfbtm0zcODAcvtRRx1VbmvUqFHWXHPNDBw4MC1btsz06dNrHL/22mtnypQpGTx4cNZbb71aP8dSqda7ArCY8RkOAAAAS77a/v+/XoXvr7/+eg477LC5tnXv3j3f+973svXWW+fAAw/M9OnTc9555+Xoo49Or169MmnSpFRWVtY4prKyMl9++WWSzLW9adOmtWqfOHFikqRZs2Y1zj37uAWxwgrLLtD+ACweWrVqvqhLAAAAABYj9Sp879ixY9577715tu+88841Hp955pnZaqut8sEHH6RZs2ZzTAEzefLkNG8+KyyprKzMlClTarRPmTKlVu2zQ/evnm/2tZZZZpkFeo6jRk3I/00jD1BDgwYVAt7F2JgxkzJzZtWiLgMAAAD4lpVKtRtEXa/C928ybNiw9OjRIyeeeGI5AJ82bVqSWSPU27Vrl8GDB2fGjBlp2HDW0x40aFDatWuXJGnfvn3efvvtGuccNGhQeQ75du3a5f33389PfvKTJLMWcB08eHDat2+ftdZaK40aNcqgQYOy8cYbJ0k++OCD8tQ0C6K6OsJ3gHrK5zcAAAAw2xKz4GqrVq3y6KOP5qqrrsrUqVMzevTonHPOOdlqq62yxhprpGPHjmnVqlWuuOKKTJ06NQMHDsxtt92Wrl27Jkn22GOP9OvXL4899lhmzJiRxx57LP369cuee+6ZJNl3331z++23Z+DAgZk6dWquuOKKtG7dOh06dEhlZWV23XXXXH755Rk9enRGjx6dyy+/PLvvvnuaNm26KG8LAAAAAACLQKm6eskZpzdw4MBccskleeutt5Ik22+/fU4//fS0bNkySfLxxx/n3HPPzeuvv55mzZrlkEMOydFHH10+vnfv3rn88svzySefZLXVVsupp56a7bbbLklSXV2dv//97+nZs2dGjx6dDTfcMOecc07WWmutJMnEiRNzySWX5Omnn8706dOzww475Mwzz6wxD3xtjBxp2hlg7ho2nDXtzKBBg+aYBotFp2nTpmnbtm3GjJmUGTNMOwMAAABLulIpad16/tPOLFHh+5JA+A7Mi/B98SR8BwAAgKVLbcP3JWbaGQAAAAAAWFwI3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgILVy/B98uTJOeCAA/LAAw/U2P7RRx/l8MMPz6abbpptt902f/nLX2q0P/fcc+nSpUs22WST7LrrrnnmmWdqtN9000358Y9/nE022SSHHnpoPvzww3Lbl19+mdNOOy0dO3bM5ptvnt/+9reZNGlSra8NAAAAAMDSo96F7++//34OPvjg/Oc//6mxffr06Tn22GOz4YYbpm/fvrnxxhvTs2fP/POf/0ySDB48OL/61a/yv//7v3n11Vfzq1/9KieddFI+//zzJEmvXr1y22235W9/+1v69u2bH/zgBznxxBNTXV2dJDnvvPMybNiw/Pvf/87jjz+eYcOG5fLLL6/VtQEAAAAAWLo0XNQFLIiXXnopJ598co477riMGTOmRtsrr7ySESNG5MQTT0zjxo2z/vrr59BDD03Pnj2z6667plevXunQoUN23HHHJMluu+2WBx54IHfffXdOPPHE3HPPPTnooIPSrl27JMnJJ5+ce+65J3379s3GG2+chx9+OLfeemtatmyZJDnllFNy2GGH5be//W0GDBjwjddeEKXSwt8nABYNn+EAAACw5Kvt//8Xq/B9ypQp5ZHoX7fiiitm3XXXzTPPPJMmTZrk73//e432999/P2uttVYaN25c3ta2bdvceOONSZJBgwalffv2NY5p27ZtBg4cWG4/6qijym2NGjXKmmuumYEDB6Zly5aZPn16jePXXnvtTJkyJYMHD57vtRfECissu8DHALDotWrVfFGXAAAAACxGFqvw/fXXX89hhx0217Zrr722PGp9biZNmpTKysoa2yorK/Pll1/Os71p06a1ap84cWKSpFmzZjXOPfu4+V17QYwaNSH/N9MNQA0NGlQIeBdjY8ZMysyZVYu6DAAAAOBbVirVbhD1YhW+d+zYMe+9916djm3WrFkmT55cY9vkyZPTvPmsoKqysjJTpkyp0T5lypRatc8O3b96vtnXWmaZZeZ77QVRXR3hO0A95fMbAAAAmK3eLbg6L+3atcvgwYMzY8aM8rZBgwaV53Bv37593n///RrHfLW9Xbt2NdqnT5+ewYMHp3379llrrbXSqFGjDBo0qNz+wQcflKemmd+1AQAAAABYuiwx4XvHjh3TqlWrXHHFFZk6dWoGDhyY2267LV27dk2S7LHHHunXr18ee+yxzJgxI4899lj69euXPffcM0my77775vbbb8/AgQMzderUXHHFFWndunU6dOiQysrK7Lrrrrn88sszevTojB49Opdffnl23333NG3adL7XBgAAAABg6bJYTTuzMBo2bJibb7455557brbZZps0a9Yshx56aPbZZ58ksxZIvfbaa3P55Zfn9NNPz2qrrZY//elPWWuttZIkXbt2zYQJE9KtW7eMHj06G264YW644YY0atQoSXLWWWflkksuSZcuXTJ9+vTssMMOOfPMM2t1bQAAAAAAli6l6moz1C5ORo604Cowdw0bzlpwddCgQXOsUcGi07Rp07Rt2zZjxkzKjBkWXAUAAIAlXamUtG49/wVXl5hpZwAAAAAAYHEhfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAK1nBRFwDAgmnSpMmiLoGv0B8AAADA3AjfAeqJqqrqVFVVp02bNou6FL5mdt8AAAAAzCZ8B6gnqqqqM2bMpFRUlBZ1KXyN8B0AAAD4OuE7QD0i5AUAAACoHyy4CgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAAD/r737jorq6h4+/p2hKzbsitjF2HtiiZKoibEX7IpgQUXFShR7IxawdywgAioq1mjsGk3UqClWwC4oihSlMzAz7x++Mz8wpj7EoezPWlkrMvcym7lz7z1n33P2EUJkM0m+CyGEEEIIIYQQQgghhBDZTJLvQgghhBBCCCGEEEIIIUQ2k+S7EEIIIYQQQgghhBBCCJHNJPkuhBBCCCGEEEIIIYQQQmQzSb4LIYQQQgghhBBCCCGEENlMku9CCCGEEEIIIYQQQgghRDaT5LsQQgghhBBCCCGEEEIIkc0k+S6EEEIIIYQQQgghhBBCZDNJvgshhBBCCCGEEEIIIYQQ2UyS70IIIYQQQgghhBBCCCFENjM2dAAiK4XC0BEIIYQQQgghhBBCCCGE+CN/N4er0Gq12v82FCGEEEIIIYQQQgghhBAif5GyM0IIIYQQQgghhBBCCCFENpPkuxBCCCGEEEIIIYQQQgiRzST5LoQQQgghhBBCCCGEEEJkM0m+CyGEEEIIIYQQQgghhBDZTJLvQgghhBBCCCGEEEIIIUQ2k+S7EEIIIYQQQgghhBBCCJHNJPkuhBBCCCGEEEIIIYQQQmQzSb4LIYQQQgghhBBCCCGEENlMku9CCCGEEEIIIYQQQgghRDaT5LsQQgghhBBCCCGEEEIIkc0k+S6EEEKIXEer1Ro6BCGEEEIIIYQQ4k9J8l0IIUSuIMlWERsby9OnTwFQKBSAfC+EEEKI/Cw2NjbLvzUajYEiEUL8V1QqFc+ePTN0GOIfSElJyfLv/N5nk+S7ECJXy+8X8bzu8ePHPHnyBPi/ZKvIv/bv309AQAAPHjxgz549hg5H5ADJycns37+f9PR0Q4ci/mPv3u/l/p83yHEU/4ukpCQWLFjAtWvXiI+PB0CplBRHbiTXAvFHNBoN48aNY+nSpTx8+NDQ4Yi/yc/Pj7CwMP2/83tfXu5MIsf6o1ELcmMWOlqtFoVCQWxsLK9evTJ0OCKbabVafH19CQ4O5uLFi/j5+el/LvKnsmXLcv36dQYOHMhPP/0ESEMuP0tMTKRjx45ERERgYmICyPUhr1Kr1fpzXa1Wk5qaKud+LqVWq7P8W46j+F+8efOGEiVKsHDhQpo1a8alS5cAuRfkNhkZGe+9FshxFPD2gdqIESMICQkhMDBQEvC5wKNHj7hx4wbr1q3jq6++4tChQ0D+Pqcl+S5yJLVajVKp5NmzZxw8eJD9+/fzww8/ANJIF2/pOuKvX7/G2dmZNWvW/G7aqcjdFAoFDRs25PTp04wePZrU1FT9z0X+omuodezYEaVSSUZGBuXKlZPpp/lYYmIivXv3plWrVowbN07/c931QcoO5B1qtRojIyM0Gg1ubm4MHz4cLy8v/THOzx253CYjI0N/LL29vZk6dSqhoaGAHEfx75QrV46WLVsSEhJCuXLlsLS0BN7eC+Q7lTtoNBqMjY3RaDTMnDmTGTNmsGnTJtLT01EoFHI/z+cyMjIAqFevHq1atWLv3r1s3bqVR48eGTgy8WcqV65Mr169OHfuHKmpqdSpUwfI3/14Sb6LHEer1WJkZERoaCh9+/bl/PnzHDlyhG+++YZ58+YZOjyRA2g0GoyMjAgJCcHLywuAoKAgPD09iYmJMXB04n+VkpLCtGnTSElJoVOnTqSnp1OsWDHUarW+3rfIP3QP2rRaLRqNhokTJzJ37lwuXbqEr68vDx48yLK9dLbzPpVKxaBBg6hQoQILFy4EYNeuXXh7e7NhwwZiYmJQKpXSYc8jdMnaHj16ANCjRw8mTpyIUqkkISFBkjO5iC7B1qtXL+7cuUN6ejrFixcH/u/aLddw8XdkPuetrKyYOXMm7du3Z+HChZw+fRpAf22Q71TOpRtwp9Vq6dy5My9evODNmzecOXOGefPmoVKp9K+L/MnY2JiQkBA++eQTihYtSpcuXTh37hw7duz4XR9AGF7ma7OJiQmdOnWidu3arFu3jp9//jnLdvntvDY2dABCvE9iYiKzZ8/GwcEBZ2dnYmNj6dGjB1qtltjYWKysrAwdojAgpVLJ8+fPGTp0KGPGjGHkyJHExsYyceJEVqxYwaRJk+Q7koulpKRw5swZnj17xooVK1i/fj13797F19eX+Ph4+vbtS6VKlfTb68oPibwn84jXI0eOANC1a1cAUlNT2b17N0qlktGjRxMZGclHH30k34V84OXLl5QuXZoWLVoA4OLiQlxcHEWLFiUuLo6goCD27t2rT+qJ3M/Pz4/y5cvj6ekJgIeHByEhITx9+pRNmzZRs2ZNA0co/kzm+/TcuXOpWbMmixYtAt4+OAsLC6NIkSL079+fUqVKGTJUkQvo2gZRUVE8efKEqlWrUq9ePe7du0diYiKbN2/GzMyMVq1akZ6ejpmZmaFDFn/AyMgIrVbLTz/9RIsWLZg5cyYqlYojR44QHBzMggULmD17NiYmJtLez6dUKhWbN2/GyclJP9Oxd+/ezJ49G5VKxYgRI6hYsaKBoxTwdpaCsbExWq2W+/fvY2NjwzfffMMPP/yAn58ffn5+GBkZUb9+/Xy5Nkf++4tFjpSSksK1a9eAt6MUdNNShwwZAsDw4cNp0aIF48aNY/LkyYSFheW7J2Uiq9u3b1OpUiUGDhyItbU19evXx9fXlyNHjkgJmlwqMTERf39/rKysOHz4MC9evGDixIlYW1vTuXNnevXqxbVr19i3bx/R0dGcPXsWyN/T1/Iy3Swo3YjXLVu2MH/+fHr27MmbN2+wt7enf//+XL16lWHDhuHo6MjLly8NHbb4ACpUqMCXX37J7t27mTNnDqampuzcuZMNGzawdu1aKlasyIEDBwAZRZtbvTuSvWTJksTGxvLNN98wePBgzp49y8CBAyldujT+/v4GilL8HZnr9cfExJCSkoKtrS1nzpxh8ODBbNiwgTdv3rB3717u379v4GhFTqdrG4SEhDBgwAC+/vprevXqxcmTJ6levTpOTk5UrVoVT09PvvjiC+bPn2/okMVfWLRoEUOGDCEuLg61Wo2pqSkdO3aka9euPH36lKlTp+pL0Ij8x9TUlLi4OFQqFfC2fVCvXj1cXV0JDg5mw4YNhIeHGzhKkbl81LBhwxg1ahRz5sxBpVLRsmVLBg0aRFJSElu3bmX69OnMmTPH0CF/cJJ8Fwan1WoJCAjAycmJ8+fP638eERHB3r176devH1WqVGHRokVERUURHR1NuXLl5Aacz7wvgZKQkKBPsqtUKmxsbGjVqhU7d+5kzZo1HzpE8T/6/vvviY+PR6VS6RMqUVFRDBkyhJSUFPr370/Pnj25dOkSffr0Yc2aNVJqII/SaDT6a/ySJUuoV6+efv0PACcnJ+Lj4+nZsyeTJ0+me/fuBAYGUrp0aUOGLf5DGRkZJCYm6v/ds2dPWrVqxe7du/niiy8ASE9Pp0SJEhQqVEi/rbQVcp+MjAz9iKjY2FiSk5OpU6cOZcuW5dWrVzRt2pSTJ0/SoUMHGjVqRIkSJQwcsfgjujKBGo2Gnj17cuvWLWrVqsXixYvx9/endOnSnDx5kmXLllGzZk3i4+MNHbLIwXQjn1+9esWCBQsYOHAgwcHBNG7cmFWrVnHixAmqVavG0KFD6dGjB40bN2bu3LmGDlu84922+/jx4/niiy+4dOkSUVFRAJibm9OtWzfatWtHUlIScXFxhghVGMD7+na2trZERETw6NEjffugevXq1K1bF2NjY6ytrT90mOIduvJQffv2pXz58pw+fRpvb2+ePXvGrVu3aNSoEaNHj6Zw4cLcvn0be3t7Q4f8wSm0MiRI5ABRUVFs27aNEydOsGDBAlq2bMmKFSvYvXs31atXZ8eOHQBMnTqV169fs3HjRulQ5yO66aVJSUkYGRlhbm5OeHg4PXr0YMiQIVkW21u4cCE2NjYsW7aMKVOmMHjwYANGLv6JjIwMtFotn3/+Od26dWPKlCm8fPkSBwcHihUrho+PDxYWFly9epUXL17w1Vdf6ae2yfUgb1qxYgU///wz48aNo1mzZgBER0czbNgwTExM2LJlC0WLFpXvQB6mq/U/a9YsPvroI7p3706hQoUASEtLY/369fTu3TtLx2vMmDE0atSIYcOGGSps8S/pzmWNRsPgwYNJT0/HwsKChQsXUqFCBTIyMnj+/Dnp6elcuXKFlStXEhAQQPXq1Q0duvgDWq0WDw8PXr16xapVqwB4+PAhRYsWxdTUFEtLSwIDA1m3bh27d++WJIr4UzExMaxatYrU1FSWLl2q//nUqVO5ffs2rq6u2NnZYWpqqn9NVwpBGF7mshQRERHExMTQoEEDEhMTmThxIo8ePWL79u2UL18eeHufT0tLo3DhwgaOXHwIuj7/y5cvefDgAUZGRtjY2OjLy7Ro0YJPP/2UTz/9FHd3dwoWLMjcuXP1iV/pCxhWWFgY69atY+HChajVambPns3NmzcxNzenTp06LFmyhOTkZBQKBQULFjR0uB+cJN+FQeluwI8fP2bHjh0cO3YMIyMj/QiYRYsW6RvoupEOu3btwsTEBI1Gky9rReU3uuMcFhbGkiVLiI6OpkePHjg6OnLu3DlcXFzo3LkzlSpVIjQ0lNDQUL777jtWrFjBy5cvWbx4saH/BPEXdMdYpVJhamrK9u3b8fLywsXFhdGjR+sT8FZWVmzevBlLS0v9vrpGmsgb3m04z5gxg6NHj9KrVy8mTZpEgQIFgLejYXv16oW1tTXbt2+Xe0E+0KVLF1JSUhg5ciRffvmlviOu1WqJiYkhMDCQGjVqcPz4ce7du8eBAwck2ZLLZG7Xubi4YGFhgZ2dHcePH+fBgwcsX76cjz76CHd3d3777TdMTU3x8PCgdu3aBo5c/BldYr1t27b6EiBqtZpnz54xevRoypYtS2hoKBs3bpRjKf6Qrn1w/Phxtm7dysOHDzl48KA+SQvg7u7OuXPnWLFiBZ988okBoxXvo7vGazQahg4dilqt5s6dO3z00UcMGTKEJk2aMGXKFJ4/f463tzcVKlQwdMjiA9Kd4yEhIYwZM4aKFSuSnJxMXFwcc+fOxdzcnPXr13Pnzh2sra1Rq9Xs3LlT8kIG9O7nfvPmTRwcHKhbty6pqamo1Wo8PT05ceIEN2/eZN26dQaM1vAk+S4M7sGDBwwYMIARI0ZgZGTEvXv3uHTpEkuXLqVx48b8/PPPXLt2DRsbG7744guMjY1lBEM+obugR0RE0KdPH+zt7UlNTeXbb7+lT58+jB49mgcPHuDn54dKpaJAgQLMmjULU1NTZs+eTcGCBZk6daqh/wzxN7x69YpRo0YxY8YMGjVqRFBQEHPmzMHV1VWfgO/YsSOdO3dm3rx5hg5X/AcyX9fT0tL0C6StWbOG77//nm7dutG9e3f9w5fY2FiSkpKkc5bHqdVqff1Ic3Nznj59yrBhw/QJeK1WS2hoKKtWrSIlJYXSpUuzcOFCTExM5OFcLpJ5NGRsbCw+Pj5MmTIFgJCQEDZv3sydO3fw9vbGysqKpKQkTExMKFasmIEjF+96tzMeFhaGv78/J0+eZMaMGXTu3Fn/2uHDhylatChVqlTJkkQVQud9SbXLly+zcuVKihYtypw5cyhbtqz+tfXr1zNy5Ei59udQWq2WIUOGYG1tzZQpU0hPT2fx4sVERkYyadIk6tWrR9++fTEyMiIoKEj6+/lMbGwsDg4O9OrVCycnJx49ekT37t3p27cv06dPR6PR8OzZM1QqFZUrV0apVEpeyEAyt9tu3ryJjY0NRYsW5eDBg7x8+ZIyZcrQtWtXAHx9fTlz5gwbNmzIlyPedST5Lgxu+fLlREZG4unpCby96AYGBrJv3z6WLFmiLzWgI53p/CUmJoYNGzZQqlQpnJ2dAdi/fz8rV66kZ8+ejBw5EnNzcwDCw8NJTk7m8uXLrFu3jsDAQKpVq2bI8MXf9PDhQ1auXMm9e/f0Nb6DgoKYO3curq6ujBo1itjYWIoUKSLnfx6ku65rNBrmzJlDVFQUGo2GVq1aMWTIEFavXs3Fixfp1q0b3bp1yzL7QeR94eHhODg4EBQUhJ+fH9999x3Ozs506NBBX4ImIyMDjUajLzUgnbHcQzfaTa1WM3DgQKKionj+/DleXl76RO3du3fZunUrly5dYtu2bdja2ho4avE+73bGAcqUKUOhQoVYunQpt2/fxsHBIUsCXog/omsbPHnyhLNnz5KQkECVKlXo1KkTV65cYfPmzZiamjJnzpzfrfki/cWcIzU1Vd9XCwkJYc6cOWzbtk2fhNNoNDg4OFCkSBHWrVtHSkoKsbGx8kAuH4iMjMTKyko/4ObZs2e4u7vj5+eHWq2md+/e1K5dm1GjRrFkyRJmzpxJqVKl9PvLiHfD0H3uarWaIUOG8OrVK5KSknB3d+fLL7/E2NiYa9eu8fTpU+7du8fevXvZvn07tWrVMnToBiXfVGFwr1+/1i+mqVarsbKy4rPPPuPNmzc4OTlx/fr1LNtLQypvS0lJYcWKFSQkJKBSqdi+fTsHDhzg2bNnwNtOeo8ePXB1deXgwYOsWLGCmJgYkpKS2LBhA3PnzuXo0aP4+vpK4j0HU6vVWf5dpUoVXF1dadCgAZMnT+bGjRv06dOHefPmsXLlSvbv34+VlRVGRka/21fkfrrEu729PUlJSfTq1Ytq1apx6NAhZs2ahaurK5988gmBgYF8++23712AWeQtmY+xqakpbm5ulCxZksmTJ9O+fXu8vb357rvv9As0Ghsb6xPvWq1WEu+5hFqt1peacnV1pWLFisyZM4eWLVvy3XffceHCBQB9WYLPPvsMCwsLQ4Ys/oBGo8HY2FifSFuyZAlubm507dqVH374gVGjRlGnTh38/f0JDg42dLgiFzAyMiIsLIz+/fvz+PFjnjx5gq+vL0OGDOHjjz+mf//+pKenM3HiRGJjY3+3rzA8Z2dnDh8+rP93QkICkZGRJCQkAG8T80qlkq5duxIfH09GRgYWFhaSeM8HUlJSWLduHbdv3+bJkyfcunWL1NRUbt++zdWrVxk4cCCVKlViwYIF3Lx5k5cvX2ZJvAOSeDcAXeJdq9UydepUSpYsiY+PD59++imrV6/myJEjJCcnExERgb+/Py9fvsTf3z/fJ94BpGciPijdKISMjAwUCgVGRkY0atSImTNn0rdvX5o2bQpA7dq1adGiBY0aNaJBgwaGDVp8UGfOnKFq1aqYmpqSkpJC7969efXqFRcvXuTs2bN89tlnAPTq1YvU1FR+/PFHihUrhlKp1NeEVqvV+tGQImcyMjLi4cOHXLlyhe7du2NhYUG1atUYOnQoCoUCNzc3Vq9eTe/evbGysqJNmzZZ9hV5Q+Ya73v27KFMmTIsX74cADs7O86cOYO3tzc//vgjkyZNQqPR0LJlS1lQKY/TfS9iY2PRarWULl2adu3a6UfVfv311ygUCrZs2UJKSgr29vb69QAA+X7kIkZGRmi1WrZt20aRIkWYM2cOZmZmFChQAD8/P3bu3IlSqaRly5bUrVsXW1vbLAspipxD1xkfOnQoZcuWZenSpTx58oTjx48zduxYfH19GTt2LJ6enhw6dIgvvvhCZjGJP6VSqVi6dCkDBgxg7NixpKSk0L17d2xtbYmNjaVt27aoVCpu3LhB0aJFDR2uyESXoBszZgz169dnz549dO3aFVtbWzQaDZs3b2bWrFlZZi+XLFnSwFGLD8nY2Jjo6GjmzJlDdHQ08+fPp3379rRr1w4XFxcaN26s7xOcPHlSFuPOIXQPPDZv3kxKSgrLly/HzMyMRYsWsWDBAjZs2IBSqaR79+50795dZiFlImVnxAejO/Hu37/P9u3biY+PZ+zYsVSpUoX58+dz/PhxJk+eTOXKlQkKCuLp06cEBgbqp7TISZt/qNVqJk6ciImJCTNmzCAtLY1169Zx//59RowYQdu2bfXbZp6uLt+R3CU4OJjp06fj7u5O37599Q3wH3/8kVGjRmFsbExQUJB+BoOUkchb3j2eGzdu5OLFi/j7++t/lpiYSN++ffnqq68YO3asIcIUH5juWv769WuGDx9OrVq1mDBhAlZWVkDW783s2bOJj49nxYoVknDPxV6+fKl/0L5y5Uq+/PJLAK5evUpgYCDR0dG4uLjQvHlzA0cq/sqzZ8+YPn06K1aswMrKSt9G++abb7h58yYBAQE8evSIIkWKUKJECUOHK3K41NRUnJycWLJkCTY2NvTo0YPq1asza9YsRowYgbu7O/Xr19dvLyUocgaVSsXevXvp16+ffu2udu3aMWTIEKZNm8b333/PhAkTaNOmDY0bNyYhIQEfHx/8/f2lpFg+oTtXHz58SM+ePfUlh+rUqaMvL5eamkqDBg14+PAhz549Y8+ePZiYmGQZuCM+LN1n/9NPP7Fu3TquX79OQEBAluuwh4cHhw4dYs6cOXz11VdyrDKRu5P4ILRaLUZGRoSGhtK/f3/UajXh4eE4OjoSEhLC+PHjGTRoEKtWrWLVqlXExsayY8cO/YroklTNP548ecKLFy/47LPPiImJYdWqVZibmzN69GiqV6/O5s2bOXr0qH57hUKh/36JnO3dcjE9e/Zk/vz5LFq0iMDAQNLS0gBo3rw5nTt3ZtKkSVSuXFm/vSTe8xZdeQJHR0dOnDhB8eLF0Wg03LhxQ7+NpaUldevW1SdpZLxA3qa734eEhODl5QVAUFAQnp6exMTEAOgXXQeYP3++PvEu343c4917QenSpdmzZw+1a9fmwIED/PbbbwA0bdqUPn36UK5cuSz3ApFzxcTEcOXKFcLDw4H/O9aVK1fGyMgIpVJJ1apVJfEu3kuj0WT5t7m5Oenp6fj7+9OnTx9sbW1ZunQparWahISE3y24LIn3nOHGjRscO3YMT09P+vXrR6FChdi0aRP+/v4sXbqUJk2asHPnTt68ecOFCxd48OCBJN7zkcwPyTQaDR4eHtSpU4e5c+dy8eJFmjdvzrRp0/jqq69ITU2lUaNG7N27FxMTE331BPFh6e7lus++WbNmTJ48mYYNG7J8+XIePHig33bGjBnY29tTp04dOVbvkJHv4oOJiYlhxIgR9O/fn969e3PhwgXmzJlDWloaGzZsoF69eiQkJGBmZoaJiQkKhUJGuuZDbm5uPHv2TL/o7qFDh6hUqRITJkwgOTmZJUuWUKRIERYsWGDoUMW/8OTJE33HvEuXLtSoUYODBw8ydepUxo4dS7t27fD39+fVq1ds3LhRZjXkQb/88gsNGzZEq9Wya9cufvnlF5YuXUpERIR+NtRXX31Fs2bNOHToEOvXr2fXrl1UrFjR0KGLD+D58+fY29szZswYWrduTWxsLBMnTqRFixZMmjRJPwI+83VBRkHlHpkXV96yZQsRERGUK1eOtm3bUqJECYYNG0apUqVwcXGhXr16QNbF+kTO8Uf3ZhcXFwoUKMCkSZMoV64c8HZ6+q+//sqyZcswMzOT81X8ju77FB4ezo0bNzAzM6Ndu3bs3r2b9evXU7x4cf1aAdOmTePZs2ds375dEu45TFpaGmZmZmzatIk1a9ZQoUIFjh49ikKh4Pz584waNQoHBwfc3d31SViVSiXlxPIJ3XkeGRlJaGgoxYoVo379+mRkZDBy5EjevHnDlClT+OSTT3j16lWWUkTSHzSMzO22gIAAXr9+jZmZGY6Ojty5c4dNmzahUqmYOXOmDJT4C5J8F/+pzBfJ8PBwpkyZQkBAAKmpqUyePJmvvvqK7777Tj/6/fPPP6dIkSKAdKbzK900pvnz51OxYkV27tzJ8ePHqVy5MuPGjUOtVlO8eHFpbOcSqampHDx4kC5duvD69Wvs7e35+OOPefz4Ma9fv6Zv376MGjWK4OBgvLy8KFOmDKampuzYsUOmFuZBgwcPpnr16syePZuFCxfi7+/PhAkTGDVqFABhYWGsWLGCBw8eYGlpiVqtZtGiRbJITz5y8uRJfHx8CAwM1J//T58+pWvXrvTo0YNx48bpE/Aid9JoNPTq1Yvy5ctTpkwZQkNDSU9Px9nZmQYNGjBixAgKFizI1KlTqV27ttwHcqDMnfGlS5eSkJBAVFQUY8eO5fbt23z//fckJibSunVrEhISCAoKYvv27dSsWdPQoYsc7N69e/Tt25cqVaoQGhrK8OHDGT9+PKtWreLKlSu8efMGa2tr4uLiCAgIwMTERErN5CAuLi40aNAAZ2dn/Pz8OHnyJKamptSuXZshQ4ZQvHhxzp8/z7hx4+jSpQvu7u5YWlrKNT6f0J2rISEhODk5UaFCBW7evMnMmTMZOHAgarUaZ2dn4uPjUavVVK9enSVLlhg67HxNd25mbrfpSkm9efOGHTt28OrVKzZt2kRMTAxLly6VwVJ/QoYUi/+Mbvp4WFgY58+fx8bGBhsbG1JTUxk6dCg1atSge/fuhIeH8+uvv3L27Fm6d++u319uwvlH5oZznTp1iI+PZ/v27cyePZv+/ftjbGzMjh072L9/P8OGDfvdPiLnOnLkCN7e3kRHR/Pw4UPGjBnDwIEDAfDx8WHPnj1UqVKFnj176uvFVa5cGaVSKTNf8piff/6ZqKgo3Nzc2Lx5M0OGDOG3337j8OHD9O3bl2LFilGjRg2WLl3K69evUalUWFlZ/W5auchb3tfpTkhIIDY2lmLFiqFSqbCxsaFVq1bs3LkTgDlz5hgiVJFNli1bRsWKFVm5ciXwdnDGjh072L59Oy1btmT58uW4u7tTvHhxQNqDOZEu8d6rVy8qVqxIvXr1iI+PZ/z48UyYMIEBAwZw8eJFLly4QKVKldixYwc1atQwdNgiB9I9yNFqtfj7+zN58mT69evHiRMn+PrrrzEyMmL8+PFERUXp+5NNmjTByMhI2ok5zNSpU6lYsSK7d++mdevWODg44Ovry+nTp/UPWNu0acPGjRuZNGkSEydOxNLSUq7x+YRSqeTp06eMHTsWV1dX7OzsWLFiBQsWLECtVuPg4MDmzZvZtGkTr1+/ZsqUKYYOOd/TnZvz5s3D2tqaNWvWAJCUlMSECRMYOXIkBw4coG/fvhw+fBgTExNDhpvjyd1K/GeUSiWRkZFMmzYNe3t7vvzyS1q1asXTp08pVKgQCxcuBODx48dMnz6dzp076+u2yk04b0tOTubUqVN07tyZly9f4uzszLBhw6hZsyY1a9bEzc2NlStXcuPGDerVq0fv3r0pXrw4dnZ2+t8hiffcwd7enri4OE6fPk1UVJR+IT0AJycnHj16xMaNG2nfvj1Vq1bVv6bRaKRDlYdotVrKlClDkSJFGDlyJNWqVWPEiBGsXbuWIUOGMGbMGDZt2kShQoX0/4m8T5d0SUpKwsjICHNzc2rWrElkZCQBAQGMGzdOPxW9TJkyTJ8+nWXLllGlShUGDx5s4OjFvxUZGUmlSpWAt9+BChUq0K1bNwYMGMDly5dp06YN27dvl05cDqVrp2/atIlSpUrpH6IAeHp6smTJEoKDg2ndujUZGRkolUpps4n30t0Dnjx5ws2bN4mPj6dhw4YYGRnRtm1bli5dytSpU0lKSmLq1Kn07t07y77STswZZsyYQdOmTenevTtPnz5lzpw5dO3alYULFzJ48GAyMjI4f/48Pj4+mJub06xZM77//nspNZOP6AbNHTt2jGbNmtG/f38iIyNRKpX06tWLb775BgsLC3r37s3o0aP1+8kDNsN4t8RPTEwM7du3B94uqKybnTh8+HBu3rxJmzZtaNKkCQULFjRUyLmCtIREttMtlpOQkMDMmTOxsLBgwIABaLVaChQoQFxcHD/++CPBwcGMGzeO0NBQOnbsqF9cVRLved+WLVtIT09HrVZjYmJC48aNOXLkCKNGjWLr1q2kpKRQokQJoqKi9Pt8/vnnKJXK3y3UJnIu3bEaMWIEHTt2RKVS8csvv/D69Wv9NnZ2dlhbW//uvJeOet6hWxypXLlypKeno9FoqFOnDo8fP6Z06dJs376d2NhYXFxcSEhIMHS44gPJPDvO1dWVvn374uvrS4UKFfDy8mLDhg18/fXXrF+/nvHjx3Px4kUcHBxwdHTk9u3bhg5f/E3vLqCo69C9fPmS5ORkfeeudu3aNG7cWN9xk852zrN//35SUlL09+vY2FjKly8PvB0FB2/X7SlQoAAnTpwA3h5HuZ+L99FqtRgZGXHv3j169erFxo0bOXbsGNu2bQPA1NSUtm3b4uXlhY+PDzt27Miyv9R+zjkKFSrEzJkzOX78ODY2NgQHB3Py5ElmzJiBWq1m2LBhfPrpp9y8eRMfHx8sLCwk8Z5P6Cpcx8fHA3D//n1KlixJRkYGY8aMoVSpUkydOpVSpUoxa9Ystm7dmmV/aQt8eBkZGfrZSFeuXOHu3btERUVx7tw5gCyDYqysrPT3eEm8/zX5NotspdVq9XWgdu3aRb169diwYQOnTp2iXbt2ALRo0YKuXbty6NAhLCws2L9/P8bGxrKIRj6gUqmIi4vD1dWVjIwMxo4dS6tWrZg7dy5xcXFcuHABPz8/qlSpwpkzZ7h//z5NmjShaNGi+t8h35HcQzctXalU4uDgQFpaGmfPnuXbb7+ldevWVKhQgcOHD0vDKg/TzWBIT09n2LBhtGzZkqZNm7J+/XpSUlLo378/tra2bN++ne7duzNp0iS8vb3lIWwep7suRERE4OjoiL29PampqWzevJk3b94wevRo9u3bh5+fHw8ePKBw4cIcOnQIgLi4OClFlEvoRqxptVoePnwIQOnSpenTpw9OTk5Ur16d9u3bU6FCBQICAnj8+DEVKlQApNRMTuPi4sKZM2c4evQoq1evxsLCgoyMDC5evAi87XTrFk20sbHRJ+WFeB/d7InExES2bdumnyUdEBDAsWPHmDt3LrNnz8bU1BQ7Ozu2b99O48aNDR22eIfuGj9t2jQSExOZOnUqRkZGtGvXDn9/fwYMGACAh4cHzs7OdO/eHWNjY1m3JR9RKBQkJCQwdOhQpk+fztixYzE1NcXb25vSpUszadIkAFq2bEmrVq2yzJAWH55Wq8XY2BiNRoO9vT0KhYKMjAxatGjB9evXWb9+PS4uLgB8++23JCUlUbZsWQNHnXvIgqsi2+iS59HR0Rw8eJDly5fj6upKcnIywcHBfPPNN3z66af67RMSEvSlBWRKUd6n1WpxdXUlISGBadOmYWtry9SpU4mIiKBbt2506dKFAgUK8Pz5c2JjY9m8eTNarZaVK1fKqKlcLnN9/o0bN/Ldd9/x+vVratWqRWxsrCyumkdlPp4zZ84kLS0NT09P4G2DzdfXl7p169KvXz9q1KhBVFQUqamp2NjYGDJs8YHExMSwYcMGSpUqhbOzM/B2ZO3KlSvp2bMnI0eOxNzcHHhbEzw5OZnLly+zbt06AgMDqVatmiHDF39Bd93XaDQMHToUtVpNREQExYoVw8PDg5cvXzJv3jxMTU2xtrbm0aNHrFmzhtq1axs6dPGOLVu2cPDgQdauXcuXX35Jx44dWb58Oc+fP2f06NFYWVmxdu1aFAoFx44dY8WKFezatQtra2tDhy5ysNjYWObOncvjx4+ZMWMGH3/8MYmJiRw8eJCjR49ia2vLjBkzsgy6kf5izqFr46nVagYNGkTVqlU5efIkSUlJLF26lI4dO3L79m2GDBnCxx9/zOLFi6WkYD4VHR2Nu7s7n376KQ4ODmg0GubOnYuRkRFz5szBzc2NiIgIAgICZM2vHGLUqFEUKFCA5cuXExsbi7m5Odu2bePy5ctERETQsGFDfv75Z9avXy/ttn9Aku8iW+huwCEhIbi6utK4cWOuXr2KRqPhiy++oEiRIuzdu5f58+fTsmXL9+4r8r7Q0FDc3NyoVKkSbm5uWFtb4+Hhwa1bt+jatSvdu3enQIEC+u0zr7AtCfjcLfMxDAgIYM2aNYwbN45+/frJoll53Pz58/nxxx8ZP348X331lf7nR48eZceOHVSsWJHhw4dLMjWPS0lJYePGjQwfPhwzMzPWrl1LYGAgnTp1Yt68efrr/b59+1i3bh3t27fH2dkZc3NzPDw8ePToERqNhjlz5lCrVi1D/znib9BqtQwcOJBy5cqxcOFCbt26xblz5/Dz82Pv3r1YWFgQEhKCQqGgdu3aMnoqB0pPT2fv3r0cPXqU169fY2VlxYsXL7CxsWHVqlXcvXuXRYsW8fjxY6pXr86bN2/w9PSUzrj4W9asWUNQUBAdO3Zk+PDhlCxZkqSkJA4dOoSfnx/29vYMGzbM0GGKP6EbyaxL0u3fv59ly5bh5eVFx44duXHjBmPGjGHv3r2ULl3a0OGKD+B91QwCAgJYuXIlBw8epFy5chw6dIivv/6aBg0akJSURHBwMCYmJtLnzwGSk5MZO3YskydPpnbt2vpZbSdPnuTx48dotVpsbGyoXbu2frai+Hsk0yGyhUKh4PXr10yaNIkBAwbg6OjIs2fP+PHHH9m8eTNffPEFPXv2xMXFhR07dlCvXr0s+4q8T61WY2try4oVK3B1dWXp0qV8/fXXzJgxg4ULF3LkyBGUSiVdu3bVJ+B1C/DKTTjny/wQ7X0P1HQjIJVKJQMHDqRAgQJ069ZNX8dfEu95x7vHv1q1aly4cIGDBw9ia2tLlSpVAPTrABw8eJAiRYoYKlzxgZw5c4aqVatiampKSkoKvXv35tWrV1y8eJGzZ8/y2WefAdCrVy9SU1P58ccfKVasGEqlkkmTJlGgQAHUarWMnMvhMne6w8LCMDY2ZtGiRZiYmNCkSROqV69OTEwMmzZtYvHixdJxy+FMTExo0aIFS5YsoWjRonh4eFCqVCkGDBjA5MmTWbVqFXv37uX8+fOUKFGCEiVKSIJNvJfu2pCWlkZaWhqFCxdm3LhxFC1alP3791OkSBHs7e0pVaoUXbp0oUSJEnz++eeGDlv8ifT0dOLj4xk4cCAARYsWZdiwYcTHxzN79mzgbVvv9OnTUuM9HzEyMiI8PJxff/2VLl26ADBw4EB+/PFHTp8+zaBBg+jatSuVKlUiMTGRjz/+WAZi5SCpqancuHGDGzduULt2bf0xef36Nd9//z1+fn6Sv/uXJKMlso2uIaUb2Vi+fHm++uorWrduzZ49e1CpVMyfP19Gw+RTuvrfVatWZfXq1Tx8+JClS5cSERHBzJkzqV27Nj4+Pvz4449Z9pOLe86nWyg5Ojqa+Pj4PzxmmRfM7dGjh/6hitTxzzt0i6vC28YbwIABA5g6dSovX75kz549PH78WL999+7dWbNmDSVLljREuOID6tSpE506dcLNzY358+dTsGBBXF1dad68OZs2beL06dP6bQcOHMjatWv114wSJUpQoEABSbzncLpFdDUaDffu3UOtVnP9+nUePHigf71IkSKUL1+e2NhYTExMDByx+DvUajVt27aldu3abNiwgXv37uHj40NYWBhjx45FrVbTpk0bateuLYl38V66a0NoaCijR49m6NChDB8+HF9fXwYNGkTnzp05d+4cwcHBREZGYmlpSfv27TEyMtK3G4XhvbuAdkpKCiqViidPngD/t7hm3bp1USgUeHh4kJiYKNf6fCYjI4NDhw7h5ubGmDFj8Pb2RqPRUL16dc6fP6/vJ9SrV48WLVroz3NJvOcMVlZWODo6snPnTi5cuKDvr6tUKiwtLUlLSzNwhLmXJN9FttFqtYSEhHD16lXgbWPd0tKSypUrU65cOU6ePImJiYk0pPIx3ejnzAl4T09PIiIicHd3p3///vrRjyJ3UKvVKJVKHj16RJ8+ffjtt9/+dPvMsxiuXbvG06dP/+sQxQeiazhrNBomTJiAq6srvXv3ZuvWrTRv3hxnZ2euXr1KUFCQPhkHYGlpacCoxYfy5MkTXrx4wWeffUZMTAyrVq3C3Nyc0aNHU716dTZv3szRo0f12+tmPsnDudwhIyMDpVKJVqulR48e+pGsTZs25dixY0RHR+uv/0qlklKlSqFSqZDqlzlflSpVWLZsGbNnzyYjI4OAgACePXuGj48Pv/zyCxMnTjR0iCKHUyqVPH36FCcnJz7++GNWrlxJ7dq1WbVqFd9//z1Dhw7lq6++IigoiMuXL2fZV+4BOUPma/yNGzd4/fo1hQsXpkuXLqxevZqzZ8+iUqkAiIiIYMiQIRw4cABLS0sZSJUP6HI7ugU7x4wZw/fff4+trS3Hjx+nf//+FC9enEuXLnHgwIHf7S/nec7Sr18/GjZsyPTp05kyZQpz5sxh3bp1uLq66tdjEv+c1HwX2WrFihVcuHCBiRMn6hdXnTVrFkWLFsXIyIiHDx/i4eEhN+J8Tld+5MGDB0yYMIGiRYvi5eWlHzH1vlpxIufRlRcJDw/n4MGDmJiYMHLkyL/cHmD79u34+vqyc+dOypQp86FCFv8xrVZL7969KV++POPHj+fcuXNs3LiRYcOGMXLkSI4cOcLq1avp2LEjY8aMkdFQ+YibmxvPnj0jMDCQffv2cejQISpVqsSECRNITk5myZIlFClShAULFhg6VPEvaTQatmzZwqNHj1i0aBEA3t7enD17Fmtraxo3bkxsbCy+vr74+flRs2ZNA0cs/qnw8HAWLFiAiYkJffr0oUqVKmg0GipWrGjo0EQOt2vXLkJCQpg7dy4APXv2pGHDhvTv35/o6Gg++eQT9u3bR/fu3aUPkMPo+m1qtZohQ4bw6tUrkpKScHd3p1OnTqxatYqtW7dSv359ihQpwsWLF9m5cycfffSRoUMXH4Cu3/7gwQMCAgJ4+PAhtWrVws7OjmbNmgGwevVqoqOjCQoKYsSIEUyePNnAUYu/kpiYyMWLFzl//jwVKlTgyy+/pGrVqoYOK1eT5LvIVtHR0axbt46jR4/SoEEDEhMTef36Nd9++y1nz57F29ub7du3S923PO7vJM91DbnQ0FA2b97M0qVLpbZ7LhQVFYWTkxMPHjxgzJgxjBs37r2L5WROvAcEBLB69Wq2bNlC3bp1DRG2yCbp6elZEuhXrlxh8+bNbNmyBXj78PXevXt4enry9OlTWrZsyYEDB2jcuLHUes5nfvrpJ9atW8f8+fOpWLEiO3fu5Pjx41SuXJlx48ahVqspXry43AdysTNnzuDi4kK1atXw9vamXLlyABw4cIBr164REhJCpUqVGD58uCTec7Hw8HC+/vprypYti4eHBxYWFoYOSeQCXl5ehIWFsXbtWvr27UvlypVZvnw5w4YNo3LlysycOVO/rQzCyTl0bXqtVoubmxtqtRo3NzfWrFnDzz//jIuLC926dePixYv6WY1t2rShUqVKhg1cfFD37t3DwcGBvn37YmxsTGhoKK9evaJnz5706dMHeHte//bbb9SrV09KzIh8SZLvItulpqby66+/cuPGDSwtLRkwYAAAvr6+/PDDD6xatUq/oKbIWx49ekSlSpVQKBT6lbH/jDSuczeVSsWKFStQq9XExsbyww8/sHv3bmxsbLJs927ifdWqVfj4+Mj6D7lcWloax44do3v37sDbDtrp06dZvHgxp0+fxt3dnVu3brF//368vb25ePEigYGBhg1afFCZH8QlJyczcOBAGjZsqF+Ibc+ePezYsYNu3boxbNiw3+0jcrb3LY62f/9+3N3dcXNzY8CAAVkSs2lpaRgZGUmnOw+IiIjAyMiIsmXLGjoUkQPp2vfp6ekoFAqMjY05c+YMO3bs4Pnz59SvX5+lS5cCMGzYMNq2bcuAAQN+t2C7yDm8vb357bffWL58OWZmZgDMnz+fCxcuMG7cODp06CCD6/IplUqFu7s7NWrU0M+ADg8PZ/v27URERPDNN99gZWWV5fyWxVVFfiS9G5HtzM3N+eSTTxgxYgR16tQhICCANWvWsGHDBiZNmiSJ9zzMx8eHzp07ExYWxr59+/5yQY7MDeyXL1/+biEfkbOZmppSqVIljh07xrhx42jatCmOjo6Eh4frt5HEe9715MkTpk2bxuLFi3FxceG3336jQoUKWFtbM3jwYO7cucPhw4cxNjYmMTERW1tb1Gq11HjOw5KTkzl06BAajYbIyEi6devGgQMHCAkJoUCBAri5uXHr1i1u3LgBQO/evZkwYQJOTk763yGJ99zD2NgYtVpNYGAg3t7eJCQk0KNHD+bMmYOnpye7d+/WL7wMYGZmJp3tPMLa2loS7+K9MpegcHNzY+TIkZw7d44mTZpgampKWloadnZ2REREMGXKFF69eqUfGSuJ95xF11776aef+OGHHzh//jwhISH612fPno2dnR0eHh6cOnUKjUYjbbx8yMTEhBcvXugftms0GipUqED79u25cOECkZGRQNbzW9oCIj+SHo74z2i1WpKSkggODubVq1ds375dar/lUfHx8UyYMAEXFxfS0tLo2rUrGRkZmJmZkZGR8d59tFqtPsni6+vLwoULSUlJ+ZBhi39I93BEt6ASQN++falbty6HDh3im2++wcbGhuHDh/PkyRPg/xpau3fvxtPTE19fX0m85xE1atRgw4YN+Pr6EhYWRsOGDalZsybW1tbcvXuXgQMH8vLlS3x9fdm3bx/9+/fHyMhIOtd52JYtW0hPT0etVmNiYkLjxo05cuQIo0aNYuvWraSkpFCiRAmioqL0+3z++ef6WrIidzh9+jTx8fEA9OrVi6CgIHbt2kXHjh158OAB/fv3Z86cOXh5eeHr65vlniGEyNuMjIwICwtj0KBBlC1blq5du2JnZ0fhwoXx8vLiiy++wM/PjxkzZqBSqdi3b5/+QZ7IGXTHQtdea9asGZMnT6Zhw4YsX75cX14GYMaMGdjb21OnTh2USqW08fKBdwfLpaSkULBgQSIjI0lJSdH37+vVq0fjxo2lNJkQ/5+UnRH/ObVaLTfjPEylUtGvXz9atmzJyJEj6dChA1qtFhsbG3bu3An8fmrZu6OhV6xYgY+Pj9T/zgUiIyNZuHAhbdq0oVu3bpiZmbF7926+/fZb/Pz8SE9Pp1evXlSqVInVq1ej1Wp5/fo1Xl5eDBo0SB7A5QGZy4Ls27ePgIAA7t27x+DBg/n666/RarV88803PHr0iOjoaIoWLcrUqVPl2OdhKpWKuLg4SpcuTUZGBmPHjqVVq1YMGjSIuLg4Lly4gJ+fH1WqVOHQoUPY2NgQFBRE0aJFDR26+IfOnDmDh4cHPXv2JDExkfT0dGbOnMnr16+ZPn06N2/exNfXl6pVq+Lr68v69es5ceKEHGsh8gGtVkt6ejoTJ06kSZMmODk5ER0dzeLFi4mMjKRcuXJ4enqiUqlITU2lUKFCKBQKKUGRg+hmLmg0GgICAnj9+jVmZmY4Ojpy584dNm3ahEqlYubMmVSuXNnQ4YoPTPf9eP78OZcvX6Zq1arUq1ePU6dOMXHiRCZNmkTz5s356KOP+Prrr4mIiMDf319mNQqBJN+FEP+jp0+fMnDgQAYNGsSVK1cYMGAAjRo1wsHBAVNTU4KDg/9wX10ZEl9fX2rVqvUBoxb/Vnh4OJs3b+bw4cM0a9aMJk2aMHDgQHr06EG/fv1wcnJCpVJhZGSUpZ5/WlqavkakyL10HWStVotKpdIf0x9++IGRI0fSv39/ZsyYAUBsbKz+9YIFCxosZvHf0mq1uLq6kpCQwLRp07C1tWXq1KlERETQrVs3unTpQoECBXj+/DmxsbFs3rwZrVbLypUrpTOWiyQmJmJpaQnAhg0bOH/+POnp6Tg5OdG5c2fg7XV+/PjxhISE4O3tTY0aNYiPj6dw4cKGDF0I8YEtWLCAly9fUqdOHYKCgrC2tqZDhw4sXryY5cuX065dO/22Uuc959AdC41GQ69evShfvjxKpZKIiAjevHnDjh07ePXqFZs2bSImJoalS5dSsWJFQ4ctPhDd9yMkJIThw4dTpEgR4uLi6N+/P+PGjePQoUNs3LiRpKQkrK2tUavV7NixAxMTE1nPRwgk+S6EyAazZ88mKCiITp06sWzZMgBCQkJwc3PD3NycPXv2cObMGerXr0/x4sUBqf+d2z169IhDhw5x6tQpzM3NKVSoEObm5ixbtgxzc3MUCoUsqJvH6I6nWq1mzJgxpKWlUbx4ccaMGUPlypU5e/Ysrq6uODo6UqFCBRQKBb179zZ02OIDCA0Nxc3NjUqVKuHm5oa1tTUeHh7cunWLrl270r179yzrvWTu4EtnLHeYN28ehQsXZuLEibx8+ZITJ06wceNGWrduzeTJkylRogTwdhbE0KFDiYmJ4eDBg5iYmEhiTYg8TNc2SEtLQ6lUYmJiwr59+9i/fz8lS5akdu3aDB8+HABnZ2eGDh3KJ598YuCoxZ+ZM2cOsbGxrFmzBoCkpCQmTJjAixcvOHDgABcvXuTw4cNMmjSJcuXKGTha8SHo2m2xsbF4eHjQoEEDBg8ezNatWzl69Cht2rRh9OjRxMTE8Pz5cxQKBfXr10epVMrMFiH+P0m+CyH+FV3SJC0tjenTpxMVFcX169dZsmQJXbp0ASAsLIxJkybx+PFjqlSpwoEDB1Aqlfj7++tHvEviPffSaDQoFAo2btzI7du3OXXqFFu2bKFVq1aGDk38RzQaDfb29lhbW2Nra8vJkycpWbIk06dPp3Llypw7d4558+ahUqnw8fGhRo0ahg5Z/McyL67n6upKlSpV+Prrr7G2tmbhwoXcvXuXrl270rVr1/cm4EXOl56ezvHjx1m+fDmvXr1i+PDhjB8/Hm9vb06ePImdnR29e/emVKlSwNsEfExMjCzIKUQep7v+h4WFsWTJEgoXLkyjRo0YPHgwAK9fv+bNmzeUKFGChQsXEhISwt69e2VgRg7z7mCZsWPH0r59e7p164ZKpcLU1JT79+8zfPhwVq5cSYMGDUhKSpJZjflMbGwsM2fOJDk5mbVr1+pnw/n4+HDkyBHs7Oywt7fPcu+XQRZC/B85E4QQ/5juRhodHc327duZNm0aO3bswMXFhalTp3L48GHg7YKMu3btYuXKlQQHB6NUKvn111/x9/eXxHseoFAoUCgUjB49Gi8vL8aPH09gYCDJycnIc928I/MiaKtWraJixYqsXr2awYMHY2NjQ1xcHB4eHoSHh2NnZ8e+ffs4fPiwJN7zCV1t2KpVq7J69WoePnzI0qVLiYiIYObMmdSuXRsfHx9+/PHHLPtJ4j33MDExoWXLlqhUKpRKJebm5sDbUayfffYZ586dY9++fbx48QIAU1NTSbwLkcdptdosi6tWrlwZjUZDYGCgfsR0TEwM06dPp2/fvjx9+pSgoCD9DDqRM2RkZGBkZIRWq+XKlSvcvXuXqKgozp07B7y9ngOUKVMGKysrfSJVEu/5h65PFxUVRYECBbh8+TIhISH6152cnOjSpQv79+/n4sWLWfaVxLsQ/0dGvgsh/hHd6IjIyEh27drFoUOHcHBwYNCgQZiYmLB27Vo2bNjA0qVL6dSp03t/R1RUlH6EnMjdMo9ePXPmDDt27MDb2xsTExMDRyayk1arZffu3Vy4cIGOHTvSqVMnpk+fjqmpKU2aNGHOnDkUK1YMT09PGjZsaOhwhQHoHsrqRsBXrVoVNzc3ypcvj5+fH4MHD5bRjrlM5tGQqampHD9+HK1Wy5o1a+jYsSOTJ08GYNOmTQQHB9O7d2+cnJzkOAuRTyQmJjJixAi+/PJLHB0dOX/+PFu2bCEhIYEvv/yS0aNH8/jxY1QqFdWqVZMSFDlM5hJw9vb2+sVvW7RowfXr17Gzs8PFxQWA3bt3s23bNvz9/SlZsqSBIxcfgq5dl7ktEBMTw7x587h16xbLli3L0uY/evQoX375pbQBhPgDcucTQvxtulEuISEhjB8/nqZNm2Jqasrx48dJSkrC2dmZsWPHolAomDx5MsWKFaNFixb6/XU3cUm85x2ZR6/eunWL0NBQkpKSKFq0qOGCEtnu+++/59ixY1SoUIHy5cuzatUqbt68yeHDh0lLS2P37t1YW1tTpEgRQ4cqDESpVGYZAT9hwgSmT5+Ol5cXjo6OwO+ntoucK/PiysePH6dcuXK0b98ec3NzEhIS8PHxQalUMnHiRAYPHoyZmRnt2rWT4ytEPpKQkEB8fDyDBg0iOTkZf39/7OzsePHiBVu2bOHevXssX75cv71Go5HEew6ia8O7uLhQqVIlli9fTmxsLObm5mzbto0ff/yRoKAgGjZsyM8//8z69esl8Z5PZC4puHv3bpKSkihcuDBjxoxhxowZrFy5kqlTp+Lp6Un9+vUB6NixY5Z9hRBZyd1PCPG3KRQKkpKSmD17Nj179mTkyJEkJSWxZ88eLl++zNatWxk+fDhjxoyhdOnSNGvWLMv+MvUs79JoNNSuXZtt27ZJ4j0PeLfhXLFiRdLT06lZsyYNGjRgy5YtTJgwAYCdO3cCMG3aNEm+53F/1aHKnID38vJi8+bNWTrq0hnLHdRqNcbGxmg0Gnr16kVqaiqxsbH06dOHQYMG0a9fP5RKJRs2bODs2bMYGxsTEBCAhYWFoUMXQvyH3l2rw9LSkurVqxMXF8eECRMoX748w4YN4+jRo9y5cweFQpHlviH9gJwnOTkZlUrFuHHjgLfH1NTUFFtbW8zMzNBqtdjY2DBp0iQqVKhg4GjFh6JLvA8aNAh7e3tKlizJDz/8QPv27Tl69CgjR45k48aNODo6EhQURPXq1bPsK4T4PUm+CyH+UubGdkZGBsnJyXz66afA25p/AwYM4MmTJ/j7+6NUKnFycsLe3l6/vYxyyfuUSiVt27Y1dBgim+jqf65bt47evXtTqVIlnJ2dmT59OvXq1aN48eIsWLCAS5cuceDAAfz9/SXxnoc9evSISpUqYWRkpF987Y/opijb2tri5eX1AaMU2UV3/g8aNEj/IGXhwoWcOnUKjUaDo6MjvXv3pmzZspw5c4YBAwZI4l2IfEChUBAdHU18fDzx8fE0aNCAZcuWER4ejlqtZunSpQCcPXuWhg0bMmXKFEAWXczJUlNTuXHjBjdu3KB27dr6Ptvr16/5/vvv8fPzkzVa8hmNRoNWq2Xz5s306NGDyZMno1arOXbsGG3btiUhIYFy5coxatQoKleuTJUqVQwdshC5gtwFhRB/Sq1Wo1AoiIuL4/79+6SmplK6dGn27Nmj38bU1JR27dpRuHBhfvrpJ7Zs2UJ6ejogo1yEyK127tzJ2rVrcXBw4NChQ5QuXZr+/fvrR7506NCB+Ph4AgICqFmzpqHDFf8hHx8fOnfuTFhYGPv27SMtLe1Pt8/cUX/58iUajea/DlFkE91SUBcuXMDCwkL/AMXExISKFSty8uRJ/Pz8ePLkCZ9//jkLFiygVq1ahgxZCPEfUqlUPHjwAID79+8zYMAApk+fzuDBg5k8eTLh4eGYmJgQGRnJ1KlTmTBhAmFhYfrZcVqtVvoCOZiVlRWOjo7s3LmTCxcu6I+VSqXC0tLyL+/3Iu/QLYSsW4Q3NjaWJk2aANCzZ0+qVKnCggULmDRpEkePHqVSpUqMHDlSFlEW4m+SO6EQ4g9pNBqMjIwIDQ3FwcGBcePG4enpiZ2dHU+ePGH16tX6RtmJEydo1qwZderU4erVq6xZs4b09HRpcAuRS7zbcO7duzfNmzcnKSmJM2fO4O3tzQ8//MDt27epU6cO06ZNw8PDA1tbWwNFLP5r8fHxTJgwARcXF9LS0ujatSsZGRmYmZmRkZHx3n0yJ1p8fX1ZuHAhKSkpHzJs8S/ozn/dg5OUlBSioqIAmDx5Mo8ePWLjxo1Uq1aN3bt3s3r1ajmuQuRxWq2WyZMn4+HhwbVr15g5cyZDhw5ly5Yt7N+/nzt37uDl5YWFhQWjRo3Sz4zau3cvxsbG+gE8Imfr168fDRs2ZPr06UyZMoU5c+awbt06XF1dMTc3N3R44gPQret29+5dHBwcSEtLo1ChQvj4+GBvb0/dunXx8vJCoVCQnp6OjY1Nlv2l1IwQf02h1Q1xEUKI9wgPD6dPnz64uLhgb2+PhYUFly5d4vTp00RERPDbb79Rq1YtoqOjOXjwIAAeHh5ERETg4eGBlZWVgf8CIcTfpdVqOXr0KJUrV6ZWrVpcvHiRc+fO6Ue2rlu3jmfPnjFw4EBmzZr1u/qvIu9QqVT069ePli1bMnLkSDp06KCv/aqr8/9uWbHM34eAgABWrFiBj48PdevWNcjfIP4eXU1mjUbD0aNHMTY2JiEhgc6dO3P58mUWL17M8ePHAZg3bx7m5uYMHTpUFt4TIh8IDQ1lypQplC9fHrVazfr16zExMQHezmzq0KEDc+bMoXv37ln2k7KTuUtiYiIXL17k/PnzVKhQgS+//JKqVasaOizxAejabrGxsUyYMIFWrVrh7OzM1atXWbRoEXFxcZw9exYAd3d37t+/z65duyThLsQ/JHdEIcSfunz5Mu3bt2fw4MHcunULd3d3zM3NuXv3Ll5eXvTv35+iRYtSp04d/T6TJk0iJSVFEu9C5DL3799n48aNFChQgN69e9O0aVNiYmIwNjama9eufPzxx2zZsgUHBwcASbznYS9evODVq1dYWlri6urK3LlzadSoEQ4ODvTs2ZPg4ODfJVYyJ95XrVqFn5+flCTJ4U6ePEn79u31i6uam5uTnp7O48ePiYuLo0GDBpQqVYro6GhOnz7NxYsX8fHxkcS7EPmAbv2OlStXMmnSJB49esSNGzdo3LgxGRkZlC5dmrZt2+pnyehotVpJvOcylpaWdOjQgQ4dOhg6FPGBKRQKXr9+jbu7O8+fP6dVq1YA1K1bl6FDhxIcHEyrVq2oUaMG6enpBAYG6kvNSAJeiL9PRr4LIf7U+fPnGTVqFE2aNCEuLo5q1arh4eHBggULMDMzY968efptddNLpdSMELlXbGwsp0+fxsvLi969e+s721u2bMHW1lYWTstHZs+eTVBQEJ06dWLZsmUAhISE4Obmhrm5OXv27OHMmTPUr1+f4sWLA/+XePfx8aF27dqGDF/8hVu3bmFvb8/o0aMpX748165dY/HixcTFxfHLL78wYcIE6tWrB0B6ejrPnj1j48aNWR62CyHyNt09/+nTp7i4uFC/fn1Gjx6NtbU1AEOHDqV169Y4OjoaNlAhxP9k48aN7Nq1izZt2jB69GjKlCmDWq1GqVRy9epVSpYsScWKFVEqlTKzRYh/QZLvQog/pVKpOHz4MImJidjY2PDZZ58Bb2vAlilTBjc3NwNHKIT4Lzx+/JgDBw4QGRnJwYMHGTx4MFOnTsXIyEhGvOdhukRLWloa06dPJyoqiuvXr7NkyRK6dOkCQFhYGJMmTeLx48dUqVKFAwcOoFQq8ff3Z9WqVfj6+kriPZc4ceIEbm5ulCpVikGDBjFkyBD9aLY9e/Zw7NgxBgwYQKFChbC2tqZ8+fKGDlkI8YHp7gv379/H1dWV0qVLY2NjQ2JiImFhYezfv18ScULkUpkH1WzdupVjx47x2WefYW9vT+nSpf90eyHE3yd3SSHEnzI1NaVXr15otVrOnTtHYGAgV69e5d69eyxevNjQ4Qkh/iOVKlVi9OjRpKWlYWVlRZ8+faRzncfpOlTR0dEEBwczbdo0SpYsydq1a5k6dSoAXbp0oUaNGuzatYvLly9jZ2eHUqnk119/xd/fXxLvucwXX3yBiYkJkyZNIjQ0FEDfqS5ZsiSpqam0aNGCAgUKGDJMIYQBKZVKNBoN1apVY+3atbi5uXHs2DFcXV1ZsmSJfnFVKUEhRO6jO7+VSiXDhg1DrVZz6tQpFAoFvXr1+l0CXhLvQvw70osWQvwt6enphIaG8sMPP1C5cmX279+PiYmJTDsTIg8zMzPDzMxMn3gVeZcucRIZGcmuXbs4dOgQJiYmDBo0iLFjxwIwbdo0lEolnTp1wtLSknbt2un3b9CgAX5+fpQqVcpQf4L4lz777DM8PT0ZP3481atXx8nJCYCIiAj9QqxCiLztr5LnugRdlSpVWLJkCRs2bGDAgAEolUpJvAuRy2VOwDs7O6NQKNi1axdlypShZ8+ehg5PiDxBys4IIf62d6eZSeJdCCFyP61Wi0KhICQkhPHjx9O0aVOuXr1KsWLFaNWqFc7OzpiamrJu3TrWrFnDtm3baNGihX5/mYKcNxw/fpzJkydTsWJFmjdvznfffcemTZtkJoMQedijR4+oVKkSCoUClUqFqanpn24viXYhciddW+/d/88sc3vu4MGDdO7cWc53IbKJJN+FEP/KH920hRBC5D5JSUk4OTnRtm1bRo4cSVJSEnv27OHy5cvUr1+f4cOHY2Jiwt69e+nevbs8eM2jzp8/z8iRI+nZsydTpkzBysrK0CEJIf5Ds2fP5vr166xYsYLr16/Ts2dPzMzM/nD7zMm5ly9fUrJkSXn4KkQOl7msoKmpKYULF/7DbeUBmxD/DblTCiH+FUm8CyFE7pZ5/EVGRgbJycl8+umnABQsWJABAwZQtmxZ/P392bZtGyqVCnt7e4yNjcnIyDBU2OI/1KZNGzZt2sSwYcMk8S5EHhYfH8+ECRNwcXEhLS2Nrl27kpGRgZmZ2R9e37VarT7R7uvry8KFC0lJSfmQYQsh/iG1Wo1SqeTRo0f06dOH33777U+3z/ww7dq1azx9+vS/DlGIfEGS70IIIYQQ+YxarUahUBAXF8f9+/dJTU2ldOnS7NmzR7+Nqakp7dq1o3Dhwvz0009s2bKF9PR0QBbcysvatGlD1apVDR2GEOI/olKpcHR0pEKFClhaWpKamkrx4sU5evQowHsfsGae8RoQEMDatWtxdnamYMGCHzx+IcTfo9VqMTIyIjw8nG+//Za+ffvqB1n80fa683z79u24ubn9ZSkqIcTfIz0nIYQQQoh8RKPRYGRkRGhoKA4ODowbNw5PT0/s7Ox48uQJq1evJi0tDYATJ07QrFkz6tSpw9WrV1mzZg3p6emSfBdCiFzqxYsXvHr1CktLS1xdXZk7dy6HDx8mISFBv7jiu6XFMifeV61ahZ+fH3Xr1v3gsQsh/j6FQkFUVBSjRo1i7dq1qFQqgPcupP7uA7b169ezevVqypQp80FjFiKvkp6TEEIIIUQ+olQqCQ8Px9HRkT59+hAcHIyXlxfVqlWjSpUq3LlzBzs7O4YNG8avv/7KvHnzmDhxItWqVePevXskJCQY+k8QQgjxL9nY2PDZZ5+xYsUKihUrRrt27bCyssLLy4v09HR69+4NwJkzZ4iJidHvp0u8+/j4UKtWLUOFL4T4m1QqFT4+PrRs2ZLOnTsTGBjI06dPfzeA4t3E+6pVq9i2bZs8YBMiG8mCq0IIIYQQ+cyePXu4efMm8+fP59atW7i7u2Nubs7du3fx8vLCwsKCokWLUqdOHf3CWykpKaSkpEgtcCGEyIV0iy6mpaUxffp0oqKiuH79OkuWLKFLly4AhIWFMWnSJB4/fkyVKlU4cOAASqUSf39/Vq1aha+vL7Vr1zbwXyKE+Lt2797N2rVr8ff3Z9myZdy6dYvt27dToUIF4P2Jdx8fHznPhchmknwXQgghhMhnzp8/z6hRo2jSpAlxcXFUq1YNDw8PFixYgJmZGfPmzdNvq6sPL6VmhBAid9Il3qOjowkODqZHjx6ULFmStWvXsn79+iwJ+MTERC5fvoydnR3Gxsb8+uuvTJs2jWXLlklCTogcTHeeq1SqLLXaXVxc+Oijj3BycmLs2LFERkbi7e1NxYoV9dvs3r2bRYsWERgYKDNbhPgPSC9KCCGEECKfad68OQsXLqRdu3ZMnjyZlStXUrBgQdLT07G0tMyyrZGRkSTehRAil1Kr1SiVSiIjI9mxYwc7d+7kyJEjpKenM3bsWFxcXJg2bRrffvstAJaWlrRr105f971Bgwb4+flJ4l2IHE53nk+cOJGgoCD9+j1t2rTh6tWrWFpasnnzZszMzFi2bBnwduR7XFwcN27cYOfOnZJ4F+I/IiPfhRBCCCHyKa1Wy7lz54iMjOTq1avcu3eP/fv3Y2JiYujQhBBC/I90JSVCQkIYP348TZs25erVqxQrVoxWrVrh7OyMqakp69atY82aNWzbto0WLVro99eNpBVC5A7h4eFs3ryZw4cP06xZM5o0acLAgQPp0aMH/fr1w8nJCZVKhZGRkb6sIEBaWhpmZmYGjFyIvE2S70IIIYQQ+ZRKpWLbtm388MMPVK5cmVmzZmFiYkJGRoZ+1KMQQojcKykpCScnJ9q2bcvIkSNJSkpiz549XL58mfr16zN8+HBMTEzYu3cv3bt3l2u/EHnAo0ePOHToEKdOncLc3JxChQphbm7OsmXLMDc3R6FQoFarsyTghRD/HUm+CyGEEELkY++ObJTEuxBC5G6ZF1F88+YNAwcOZOnSpfqSEiqVikWLFnHixAkcHBxwcnLS14iWe4AQeYNGo0GhULBx40Zu377NqVOn2LJlC61atTJ0aELkOzKHTAghhBAiH8uceNdqtZJ0EUKIXEy3SHZcXBz3798nNTWV0qVLs2fPHv02pqamtGvXjsKFC/PTTz+xZcsW0tPTAaTMjBB5hEKhQKFQMHr0aLy8vBg/fjyBgYEkJycjY3CF+LDkziqEEEIIIQD0IyWFEELkPhqNBiMjI0JDQ3FwcGDcuHF4enpiZ2fHkydPWL16tX4RxhMnTtCsWTPq1KnD1atXWbNmDenp6ZJ8FyKPUCgU+iS7ubk5tra2pKSkYGJiIu09IT4wGdokhBBCCCGEEELkckqlkvDwcBwdHXFxccHe3h4LCwsuXbrEkydPuHPnDnZ2dtSqVYvo6GgOHjwIgIeHB/fu3SMhIQErKysD/xVCiOySOcl+69YtQkNDSUpKomjRooYLSoh8SGq+CyGEEEIIIYQQecCePXu4efMm8+fP59atW7i7u2Nubs7du3fx8vLCwsKCokWLUqdOHf1iiykpKaSkpEjiXYg8SqPRcPbsWcqXL0/NmjUNHY4Q+Y4k34UQQgghhBBCiDzg/PnzjBo1iiZNmhAXF0e1atXw8PBgwYIFmJmZMW/ePP22uvrwUmpGCCGE+O9I2RkhhBBCCCGEECIPaN68OQsXLiQxMREbGxs+++wzANLT0ylevHiWbXUj34UQQgjx35GR70IIIYQQQgghRB6i1Wo5d+4ckZGRXL16lXv37rF//35MTEwMHZoQQgiRr8j8MiGEEEIIIYQQIg9JT08nNDSUY8eOUahQIX3iPSMjw9ChCSGEEPmKjHwXQgghhBBCCCHyGI1Gk6Wee0ZGBsbGUnlWCCGE+JAk+S6EEEIIIYQQQuRhWq0WhUJh6DCEEEKIfEfKzgghhBBCCCGEEHmYJN6FEEIIw5DkuxBCCCGEEEIIIYQQQgiRzST5LoQQQgghhBBCCCGEEEJkM0m+CyGEEEIIIYQQQgghhBDZTJLvQgghhBBCCCGEEEIIIUQ2k+S7EEIIIYQQQgghhBBCCJHNJPkuhBBCCCGEEEIIIYQQQmQzSb4LIYQQQgjxLwUHB2Nra8u0adP+dLtp06Zha2tLcHDwB4rsw7py5Qq2trZ/+V+3bt0+WEx3797l5MmTH+z9hBBCCCGEeJexoQMQQgghhBBC5A3ly5enR48ef/h6iRIlPkgc58+fZ9SoUTg7O9O+ffsP8p5CCCGEEEK8S5LvQgghhBBCiGxRvnx5xo0bZ+gwiImJQaPRGDoMIYQQQgiRz0nZGSGEEEIIIYQQQgghhBAim0nyXQghhBBCCANJTU1l7dq1dOzYkbp169KkSRMcHR05f/7877a1tbWldevWv/t5REQEtra29O/fP8vPr169yvDhw2nVqhV169albdu2zJs3j6ioqN/9jhcvXjB79mzatGlDnTp1aN26NbNmzeLly5fZ98e+xz9534SEBNasWUP37t1p2LAhderUwc7ODnd3d549e6bfbvDgwbi7uwOwceNGbG1tuXLlCvDPPkNdPf/g4GAmTJhAvXr1aN68eZY68ocOHaJfv340bNiQhg0b0rdvXw4dOvS735+amsqyZcvo0qULDRo0oEmTJgwePJijR4/++w9PCCGEEELkeFJ2RgghhBBCCANISEhg8ODB3L17lxo1atC3b1/evHnDmTNncHZ2ZuLEiYwaNepf/e7r168zdOhQChcuTPv27bG0tOT27dsEBgZy8eJFDh8+jLm5OQD37t3DwcGBuLg47OzsqFq1Kk+fPmXv3r2cOXMGf39/KleunJ1/+j9+3+TkZPr168eDBw9o2bIlLVu2JDU1lR9//JHg4GAuXbrEsWPHsLCwoEePHhQqVIjTp0/TpEkTPvnkE8qXL/+v41y2bBkFCxZk0KBBhIWF0aBBAwDmzp3Lzp07KV++PF27dsXMzIwzZ87g5ubG7du39Q8AACZMmMDZs2dp1aoVrVu3JjExkePHjzNx4kQSEhLo27fv//RZCiGEEEKInEmS70IIIYQQQvyP7t69y5o1a/709Xd5eXlx9+5d+vbty+zZszE2fts0Dw8PZ9CgQaxcuZLmzZtTv379fxzP9u3bUalU7Ny5ExsbG/3PZ8yYwd69ezl16hSdO3cG4Ouvv+b169d4e3tnGRV+/vx5nJ2dcXd3Z9euXX/rfZ89e/aHn0P58uXp2bOn/t//5H137drF/fv3GTduHGPHjtVvq9FoGDBgAL/88gtXrlzBzs5O/x665Pv/WoM+JSWFw4cPY2Vlpf/ZqVOn2LlzJy1atGD9+vVYWFgAMHnyZIYPH46vry+tW7emZcuWhIWFcfbsWbp27Yqnp6f+dwwfPpyvvvqKbdu2SfJdCCGEECKPkuS7EEIIIYQQ/6OQkBBCQkL+9vYqlYpDhw5RuHBhZsyYoU+8A1SoUIEJEyYwbdo0du/e/a+S71qtFoBr165lSb5PnTqV8ePHU7JkSQBu3LjBnTt36NChw+/KsbRp04aWLVvyww8/8ODBA6pWrfqX7/vs2TPWrl373teaNWumT4z/0/dt0aIF8+fPp1OnTlm2VSqVNGvWjF9++YXY2Ni/jO/f+OSTT7Ik3gGCgoKAtw8zdIl3ADMzMyZOnEj//v3Zs2cPLVu21B+Lhw8fEhsbq/9dFSpU4NixY/pjIYQQQggh8h5JvgshhBBCCPE/6tGjB4sXL/7D16dNm8b+/fv1/378+DHJycm0atUKMzOz323fpEkT4P0j5v+Ofv36cerUKdzd3Vm7di2tWrWiRYsWtGzZklKlSum3u3nzJgAxMTHvHbGenJwMwO3bt/9W8r1Zs2bs2LHjL7f7p+9bs2ZNatasSVpaGjdu3ODx48eEh4cTGhrK5cuXAVCr1X/5vv9GhQoV/jD+b7/9FqUy6zJa6enpANy5cwd4W2e+adOmXL16lTZt2tC4cWNatGhB69atqVmz5n8SsxBCCCGEyBkk+S6EEEIIIcQHlpCQAEChQoXe+3rp0qWB/0tC/1MtW7YkICAAHx8fLl68yO7du9m9ezcmJiZ07dqVmTNnUqBAAeLj44G3i7NevXr1D3/fmzdv/lUcf+Sfvq9KpWLt2rUEBgbqP7vChQtTt25dqlevzrVr17I1vsx0tfEz08W/fv36P9wv82e2efNmfHx8OHLkCJcuXeLSpUssW7aMSpUqMX36dNq0aZP9gQshhBBCCIOT5LsQQgghhBAfmKWlJQAvX7587+u65G6xYsWy/Fyj0fxu25SUlPf+jkaNGtGoUSNUKhU3btzg4sWLHDhwgH379qFUKlm4cCEFCxYEYMqUKYwYMeJf/z3/1D99X09PT/z8/GjRogVOTk7Y2trqH1B4eXn9o+T7P/kM/0jBggVRqVT88ssvKBSKv9zewsICFxcXXFxcePHiBZcvX+bUqVOcPHmSMWPG8N1332Ftbf2PYhBCCCGEEDmf8q83EUIIIYQQQmSnKlWqYGFhQVhYmD7RntmVK1cAqFGjhv5nJiYmJCUl/W7bJ0+eZPm3RqPB29ubFStWAGBqakqTJk2YMGECgYGBAPrR5rVq1QLe1mB/n4CAANauXUtERMQ//RP/1D993wMHDmBmZsaGDRto3bq1PvEOcP/+feD/6twDf5gQ/7uf4V/56KOPSElJISws7HevPX/+nG+++YaDBw8C8Ouvv7J48WJ+/fVXAMqUKUP37t1Zu3YtPXv2JD09nV9++eUfvb8QQgghhMgdJPkuhBBCCCHEB6Yr/5KYmMiiRYvIyMjQvxYREcGKFStQKBR0795d//OqVauSnJysT8zD27I0mzdvzvK7lUolZ86cYdOmTb8bER4eHg6gH2XdqFEjqlSpwsmTJzl58mSWba9fv86iRYvw9fX93Qj8/9U/fV8zMzMyMjJ4/fp1lm2PHDnCuXPngP+rtQ7oF7DN/LnC3/8M/4q9vT0ACxYsIDExUf9ztVrN/Pnz2b59O8+ePQMgMTERHx8f1qxZk2XUvVar1W/zvrryQgghhBAi95OyM0IIIYQQQhiAm5sbv/zyC8HBwdy6dYuPP/6Y+Ph4zpw5Q0JCAuPHj6dRo0b67QcOHMisWbMYPXo0nTt3xtzcnFOnTlG0aFF9GRudKVOm4OjoiKOjI+3bt8fa2poXL15w4sQJzM3NGT9+PPA2Ue/p6YmTkxNjx46lVatW2NraEhkZycmTJ9FqtSxatEhfJia7/NP37dWrFxs3bsTe3p4OHTpgYmLCjRs3uHbtGiVKlCA6OjpLYr5s2bIA+tHn3bp1o0aNGv/oM/wzXbp00Zfx6dixI23atKFgwYJ8//33PHjwgCZNmuDk5ARAixYtsLOz49y5c3Tp0oUWLVpgZGTE5cuXuXv3Ll9++SUNGjTIng9WCCGEEELkKJJ8F0IIIYQQwgAKFSrErl272Lp1K8eOHWPXrl0ULFiQhg0b4ujoSMuWLbNs36dPHzQaDQEBAQQHB1O0aFE6dOjA+PHjadeuXZZtmzRpQmBgIN7e3vz666+cPHmSIkWK0LZtW0aPHk316tX129apU4fg4GA2bdrEhQsXuHLlClZWVtjZ2eHs7Ey9evX+k7//n7zvuHHjKFSoEMHBwezZswdLS0sqVKjArFmzsLOzo23btpw7d44xY8bo//4hQ4awf/9+/P39qVSpEjVq1PhHn+FfWbx4MR9//DFBQUEcOXIEeDuCfcqUKQwaNAgLCwvg7YOGlStX4u/vz+HDh9m/fz8ZGRlUrlwZd3d3Bg4cmE2fqBBCCCGEyGkU2szFEYUQQgghhBBCCCGEEEII8T+Tmu9CCCGEEEIIIYQQQgghRDaT5LsQQgghhBBCCCGEEEIIkc0k+S6EEEIIIYQQQgghhBBCZDNJvgshhBBCCCGEEEIIIYQQ2UyS70IIIYQQQgghhBBCCCFENpPkuxBCCCGEEEIIIYQQQgiRzST5LoQQQgghhBBCCCGEEEJkM0m+CyGEEEIIIYQQQgghhBDZTJLvQgghhBBCCCGEEEIIIUQ2k+S7EEIIIYQQQgghhBBCCJHNJPkuhBBCCCGEEEIIIYQQQmQzSb4LIYQQQgghhBBCCCGEENns/wFwmUGY3x5N6QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "inf_coefs = list(zip(coefficients[\"Feature\"], coefficients[\"Coefficient\"]))\n", + "inf_coefs.sort(key=lambda x: abs(x[1]), reverse=True) # Sort coefficients by absolute value\n", + "\n", + "# Create a color palette with the specified color\n", + "color = \"#589aff\"\n", + "colors = [color if coef[1] > 0 else \"lightgray\" for coef in inf_coefs]\n", + "\n", + "# Create the bar plot\n", + "fig, ax = plt.subplots(figsize=(18, 8))\n", + "ax = sns.barplot(x=[x[0] for x in inf_coefs], y=[x[1] for x in inf_coefs], palette=colors)\n", + "plt.xticks(rotation=45)\n", + "ax.set_ylabel(\"Price Coefficients\", fontsize=15)\n", + "ax.set_xlabel(\"House Features\", fontsize=15)\n", + "ax.set_title(\"House Features and Sale Prices\", fontsize=20);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The model identifies the main factors that affect house prices, giving useful advice to real estate companies when they help customers. It's not perfect, but it does an okay job with a 63.1% score. We still need to check if it can predict prices well. However, the model does its job by helping with decisions and making marketing better by using details about houses and the market.\n", + "\n", + "We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation.\n", + "\n", + "\n", + "Addressing negative correlations in house prices, such as with the year built, is crucial. Older properties often have lower prices due to depreciation and maintenance issues. However, strategic renovations, updates, and modernization efforts offer opportunities to increase their value. Homeowners and investors can enhance the appeal and value of older properties in the market by undertaking such initiatives." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# RESIDUALS" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqsAAAIdCAYAAAAaiDSZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5oElEQVR4nO3deXwTdf4/8Nck6UVBWwpCq6g/Vg6vFShIEQUVYa0UpMgu6oIH9yG6RUCUCgLFdUFAQQERWL/rhd9FKhjFGxcXKSDrV1fXG4+FcrUc0tIryfz+mE6aNJNkJpkkM8nr+Xjw0KST5DP5ZCbvfOb9eX8EURRFEBEREREZkCXWDSAiIiIi8ofBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIoopr0RCRFgxWiSgujR49Gl26dPH617VrV+Tm5uL3v/893njjDd1fc/PmzejSpQsOHDjgd5sDBw6gS5cu2Lx5s+6vP3v2bFx//fVhPcf111/v875dfvnlGDhwIJYuXYq6ujqvbWfPnq3p+d9//3088MADYbWRiBKLLdYNICKKlEsuuQTz5s1z33Y6nTh8+DCee+45TJ8+Ha1atUK/fv10e71rr70Wr7zyCs455xzdnjMW+vfvjylTprhv19XVYffu3Vi1ahUOHjyIZcuWhfzczz33nA4tJKJEwmCViOJWy5Yt0a1bN5/7+/fvjz59+uDVV1/VNVht3bo1WrdurdvzxUrr1q193rfevXvj8OHD2Lx5M2bPnm36gJyIzINpAESUcJKTk5GUlORz/9///ncMHjwYl112Ga699lqsXLkSDofD/ffjx49jxowZ6Nu3Ly6//HLcfPPNeO2119x/V0oDeOeddzB06FD89re/RWFhIb7++muv19y9eze6dOmC3bt3e90/evRojB492n27trYWS5cuxaBBg3DZZZehR48euPvuu/HVV1/53c8vv/wSd955J3Jzc9G9e3fcdddd+Oyzz1S/T81ddtllEEURhw4dUvz76dOn8ec//xk33HADLr/8chQUFGDTpk1e+7Rnzx7s2bNHcZ+JiJRwZJWI4pYoil7BppwG8PTTT6O6uho333yz+2/PPPMMli9fjlGjRuHBBx/EV199hZUrV+LQoUN49NFHAQAzZ85EZWUl5s+fj/T0dGzduhUPPPAAsrOz0bt3b5/X/+CDD3Dvvfdi8ODBmDFjBr7++mvMnDkzpH2ZNWsW9u7di/vvvx/nn38+fvrpJzz55JMoKirCtm3bIAiC1/ZVVVUYN24cevfujRUrVqChoQGrV6/G2LFjsX37drRq1UpzG3788UcAQIcOHXz+Vltbi9tvvx0VFRWYNm0aOnTogPfeew9z5sxBRUUFJk2ahHnz5rn3f968ebjoootCeCeIKNEwWCWiuLV3715ceumlXvcJgoDOnTvjySefdE9GOn36NFavXo2RI0eiuLgYAHD11VcjIyMDxcXFuPvuu9GpUyfs2bMHU6ZMwQ033ABAujSekZEBq9Wq+PpPP/00Lr30UixduhQA3CkH8m216uvrUV1djYcffhg33XQTAODKK69EdXU1HnvsMRw7dsznsvz333+P48ePY/To0cjNzQUAdOzYERs3bkRVVVXAYLV5kF9ZWYkdO3Zg48aNyM/PV0x12Lx5M7799lu89NJL7te75ppr4HA4sGrVKtx666246KKL0LJlSwBQTM8gIlLCYJWI4tall16K+fPnAwCOHDmCJ598Eg0NDVi+fDl+85vfuLf79NNPUVNTg+uvv94rSJOD2Z07d6JTp07o3bs3Vq5cia+//hr9+/dHv379/M5sr62txZdffol7773X6/78/HzNwWpycjLWr18PADh69Ch+/vln7N+/H9u3bwcANDQ0+DymU6dOaN26NSZPnoz8/Hx3nu6sWbOCvt5rr73mld4AADabDQMHDsQjjzyi+Jg9e/bg3HPPdQeqsqFDh2LTpk347LPP0L9/fxV7S0TkLSGC1ePHj2PkyJEoKSlRvFSn5O2338bKlStx4MABtG3bFhMnTsSIESMi3FIi0lN6ejouv/xyAMDll1+O7t274+abb8aYMWNQWlrqHiE8efIkAGDChAmKz3P06FEAwPLly7FmzRps27YNb731FiwWC6666io88sgjPpfGT506BVEUfUYhQ52Y9NFHH+HRRx/F/v37kZ6eji5duiA9PR2Act3S9PR0vPjii1i9ejXefPNNbNy4EWlpaRg6dCjmzJmDlJQUv6913XXXYerUqQCkkei0tDSce+65SE1N9fuYU6dOoU2bNj73y/f9+uuvmvaXiEgW98Hqvn37MHv2bPzyyy+qH1NWVobZs2fjiSeeQL9+/bB7926MHz8enTt3xm9/+9sItpaIIikrKwtz587FtGnTsGjRIvcI51lnnQUAePzxx3HhhRf6PE4OuFq1aoWZM2di5syZ2L9/P95//32sWrUK8+fPx7p167wek5GRAYvFgoqKCq/75cBYJueaulwur/urq6vdwegvv/yCqVOnYsCAAXjmmWdw/vnnAwBefPFFfPTRR373t2PHjliyZAmcTic+//xzbNmyBS+//DLOO+88v4G53HY5yFfr7LPPxs8//+xz/7FjxwAAmZmZmp6PiEgW19UASktLMWPGDBQVFfn87eOPP8aIESPQs2dPDB48GFu3bnX/7bnnnsMdd9yB/v37QxAE5OXl4dVXX3V/QRCReQ0aNAjXXHMN7Ha7ezb6FVdcgaSkJBw5cgSXX365+19SUhKWLl2KAwcO4ODBg+jfvz/eeustAFIgOH78eFx11VU4fPiwz+ukpKSge/fueOedd7xGPj/44AOv7eQcTs8Z9qdOncIPP/zgvv3FF1+grq4OEydO9DoPyYGq0sjqW2+9hby8PBw7dgxWqxXdu3fHI488grPOOkuxveHq1asXDh48iH379nndv3XrViQlJbl/6Fsscf21Q0QRENcjq1dffTWGDBkCm83mFbB+/fXXmDx5MpYsWYIBAwbgs88+w5QpU5CZmYlrrrkGn3/+OXr37o0JEybgs88+Q/v27TFt2jR07tw5hntDRHp56KGHMHToUJSUlKC0tBSZmZkYN24cnnzySVRVVaF3797uHFdBENC1a1e0atUK7du3R0lJCaqqqnD++efjiy++wD/+8Q9MnDhR8XWmT5+OO++8E/fccw9GjhyJn376CatXr/bapkuXLsjOzsZTTz2FVq1awWKxYO3atUhLS3Nvc+mll8Jms2HJkiUYM2YM6uvrsXnzZnz44YcAgDNnzvi8do8ePeByuTB16lRMmDAB6enp2LZtG06fPo1Bgwbp92Y2Gj58OF566SXcc889uPfee9GhQwd88MEHePXVV3HPPfe4R6/POussfPrpp9i1axcuueQSnH322bq3hYjiS1z/xG3bti1sNt94fOPGjRgwYAAGDRoEq9WKHj164A9/+ANefPFFANKoxvr16zF58mTs3LkTU6dORVFRUVj1CYnIODp27IjRo0fj22+/xQsvvAAA+NOf/oTZs2fj3Xffxfjx47FkyRLk5ubihRdecM+cf+qpp3DNNdfgySefxJgxY/Dyyy/jnnvuced3NtezZ088++yzOHLkCO655x5s3LjRXQZLZrVasWLFCpxzzjmYPn06SkpKkJ+f7xVQXnDBBVi6dCmOHDmCyZMnY+7cuQCA559/HoIg4JNPPvF57XPOOQfr1q1Dq1atMGfOHEycOBFffvklVq5ciby8PF3eR09paWl4/vnncf3112PFihWYPHky9u3bh0WLFmHatGnu7f74xz8iKSkJ48ePx44dO3RvBxHFH0FUun4Uh7p06YK//e1v6N27N8aPH4+ysjKvCQZOpxPnn38+tmzZgu7du+OOO+7wGo2dMGECLrroIlUzaYmIiIhIH3GdBuBP+/btUVhYiAULFrjvO3r0qDvv6ze/+Q3q6+u9HuN0OhXzwoiIiIgocuI6DcCfESNGwG6345///CdcLhd++uknjBo1Chs2bAAA3HbbbXj55Zfx8ccfw+Vy4e2338bu3btRUFAQ45YTERERJZaEHFm94oorsGzZMixbtgz33Xcf0tLSUFBQgOnTpwMAbrnlFlgsFvz5z3/GgQMHcO6552L58uU+K+EQERERUWQlTM4qEREREZlPQqYBEBEREZE5MFglIiIiIsNisEpEREREhsVglYiIiIgMK26rAVRWnkYiTR0TBCArq1XC7bfZsJ/Mg31lDuwnc2A/mUM0+0l+LTXiNlgVRSTkAZGo+2027CfzYF+ZA/vJHNhP5mC0fmIaABEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWHZYt0AIiIiIgqf0wmUlVlx5IiAdu1E5OU5YbXGulXhY7BKREREZHJ2uw3FxSkoL2+6aJ6T40JJSR0KChwxbFn4mAZAREREZGJ2uw1jx6aivFzwuv/QIQFjx6bCbjf32CSDVSIiIiKTcjqB4uIUiCIAeAeroijdLi5OgdMZ/bbphcEqERERkUmVlVkbL/0Lin8XRQHl5RaUlZk3eZXBKhEREZFJHTmiHKSGup0RMVglIiIiMql27URdtzMiBqtEREREJpWX50ROjguCoByMCoKInBwX8vLMm7TKYJWIiIjIpKxWoKSkDgB8Alb5dklJnanrrTJYJSIiIjKxggIH1q+vRXa2d7CanS1i/fpa09dZNXfhLSIiIiJCQYED+fkOrmBFRERERMZktQJ9+5o3N9UfpgEQERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWEZOlh1Op0YPXo0Zs+eHeumEBEREVEMGDpYfeqpp/DJJ5/EuhlEREREFCOGDVZ37dqFd955B4MGDYp1U4iIiIgoRmyxboCSyspKzJkzB6tWrcJzzz0X0nMIgr5tMjp5fxNtv82G/WQe7CtzYD+ZA/vJHKLZT1pew3DBqsvlwsyZM3H33Xeja9euIT9PVlYrHVtlHom632bDfjIP9pU5sJ/Mgf1kDkbrJ8MFq8888wySk5MxevTosJ6nsvI0RFGnRpmAIEgfrkTbb7NhP5kH+8oc2E/mwH4yh2j2k/xaahguWN2yZQuOHj2Knj17AgBqa2sBAO+9956myVaiiIQ8IBJ1v82G/WQe7CtzYD+ZA/vJHIzWT4YLVt966y2v23LZqsceeywWzSEiIiKiGDJsNQAiIiIiIsONrDbHEVUiIiKixMWRVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwDBms7tq1C7///e/Ro0cP9O3bFwsXLkRtbW2sm0VEREREUWa4YPX48eOYOHEibrvtNnzyyScoLS3Fnj17sHbt2lg3jYiIiIiizBbrBjTXunVrfPzxx2jZsiVEUcTJkydRV1eH1q1bx7ppRERERBRlhgtWAaBly5YAgP79++PIkSPo2bMnhg8fruk5BCESLTMueX8Tbb/Nhv1kHuwrc2A/mQP7yRyi2U9aXkMQRVGMXFPCU1tbi1OnTmHGjBlISUnBunXrYt0kIiIiIooiQwerss8//xy///3vsWfPHpx99tmqHlNZeRrG3zP9CAKQldUq4fbbbNhP5sG+Mgf2kzmwn8whmv0kv5YahksD+Ne//oWHHnoIW7duRXJyMgCgvr4eSUlJSEtLU/08ooiEPCASdb/Nhv1kHuwrc2A/mQP7yRyM1k+GqwbQpUsX1NbWYunSpaivr8fBgwfxl7/8BSNGjHAHr0RERESUGAwXrKanp2PdunX47rvv0LdvX4wePRpXXXUVHnrooVg3jYiIiIiizHBpAABw0UUXYcOGDbFuBhERERHFmOFGVomIiIiIZIYcWSUiIjIqpxMoK7PiyBEB7dqJyMtzwmqNdauI4heDVSIiIpXsdhuKi1NQXt50YTInx4WSkjoUFDhi2DKi+MU0ACIiIhXsdhvGjk1Febn30juHDgkYOzYVdjvHf4gigcEqERFREE4nUFyc0lh70jtYFUXpdnFxCpzO6LeNKN4xWCUiIgqirMzaeOlfeUFzURRQXm5BWRmTV4n0xmCViIgoiCNHlIPUULcjIvUYrBIREQXRrp26tSfVbkdE6jFYJSIiCiIvz4mcHBcEQTkYFQQROTku5OUxaZVIbwxWiYiIgrBagZKSOgDwCVjl2yUlday3ShQBDFaJiIhUKChwYP36WmRnewer2dki1q+vZZ1VoghhUTgiIiKVCgocyM93cAUroihisEpERKSB1Qr07cvcVKJoYRoAERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWCEFq1988QUA4Ndff8WSJUuwfv16OBwOXRtGRERERGTT+oDVq1dj3bp12LdvH0pKSvDFF1/AYrHg8OHDmDNnTiTaSEREREQJSnOwarfb8eKLL6K+vh5vv/02XnnlFbRt2xZDhw5lsEpERERkMk4nUFZmxdGjAjp3Bi6+GLAYKFFUc7B69OhRdO3aFbt27UKrVq3QtWtXAEBNTY3ujSMiIiKiyLHbbSguTkF5eVN0mpOTjpKSOhQUGCPFU3Pc3K5dO+zduxevvfYa+vTpA0Aabe3QoYNujfr6669x991348orr0Tfvn0xa9YsHD9+XLfnJyIiIkp0drsNY8emorxc8Lr/0CEBY8emwm7XPKYZEZqD1WnTpmHcuHH48MMPMXnyZOzatQsPPvggioqKdGlQbW0txo0bh+7du+Of//wn7HY7Tp48iYceekiX5yciIiJKdE4nUFycAlEEAO9gVRSl28XFKXA6o9+25jSHzL/73e9w7bXXAgBSUlJwzjnn4P3338c555yjS4PKy8vRtWtXTJ06FVarFcnJyRg5ciRmzZqly/MTERERJbqyMqvXpf/mRFFAebmAsjIr+vaNbcSqOljdu3dvwL///PPP6NWrV9gN6tixI9atW+d139tvv41LL71U0/MIQvBt4om8v4m232bDfjIP9pU5sJ/Mgf1kPEePquuMo0eFiPSbludUHayOHj06yIsK+Oqrr9S/sgqiKOKJJ57A9u3b8cILL2h6bFZWK13bYhaJut9mw34yD/aVObCfzIH9ZBydO6vdLg1t2kS2LcEIoihlKxhNVVUVHnzwQXz55ZdYvXo1unTpounxlZWnYcw9iwxBkE4CibbfZsN+Mg/2lTmwn8yB/WQ8TifQo0c6Dh0S3DmqngRBRE6OiH37qmG16v/68mdCjZCmedXU1ODUqVNwuVwAgIaGBnz77bcYOHBgKE/n45dffsH48eORk5ODTZs2oXXr1pqfQxSRkAdEou632bCfzIN9ZQ7sJ3NgPxmHxQKUlNRh7NhUCILoFbAKgtRJCxfWwWKJfZ9pDlZfffVVLFy4EHV1dV73Z2Vl6RKsnjp1CnfeeSfy8vKwaNEiWIxUlZaIiIgoThQUOLB+fW1jndWmYDUnR8TChcaps6o5WF2zZg3+9Kc/IT09HXv37sWdd96JJUuWoG/fvro0aPPmzSgvL8e2bdvw1ltvef3t008/1eU1iIiIiEgKWPPzHR4rWKXh4ourDbWCleac1W7duuHTTz/FwYMHMWPGDGzcuBHl5eW466678M4770SqnZpVVCRWXowgAG3atEq4/TYb9pN5sK/Mgf1kDuwnc4hmP8mvpYbmuDkrKwsNDQ3Izs7Gjz/+CADIyclBZWWl1qciIiIiIgpIc7D629/+FnPnzkVtbS0uvPBCvPzyyygtLUVGRkYEmkdEREREiUxzzuqDDz6I4uJiVFdXY+bMmZg0aRJqa2vx5z//ORLtIyIiIqIEpjlYPeecc7B27Vr3/5eVlaGhoQFpaWm6N46IiIiIEpvmYPW1117z+7dhw4aF0RQiIiIiIm+ag9UVK1Z43T516hRqamqQm5vLYJWIiIiIdKU5WP3ggw+8bouiiGeffRYnT57Uq01ERERERABCqAbQnCAIGDt2LLZs2aJHe4iIiIiI3HRZn+DHH3+EIAjBNyQiIiIi0kBzGsDo0aO9AtOGhgZ88803GDp0qK4NIyIiIiLSHKz27t3b67bFYsFdd92FG264QbdGEREREREBIQSr99xzTyTaQURERETkQ3Ww+uCDDwbdhqtYEREREZGeNE+wOnHiBLZu3YrTp08jIyMDdXV1sNvtqK+vj0T7iIiIiCiBqR5ZlUdNJ02ahBUrVmDAgAHuv/3zn//EmjVr9G8dERERESU0zSOru3fvxnXXXed1X58+ffDll1/q1igiIiKiUDmdwM6dVmzebMPOnVY4nbFuEYVDc7B67rnnYtu2bV73bd68GRdccIFujSIiIiIKhd1uQ25uOgoLW2DSpDQUFrZAbm467HbNc8rJIDT3XFFREe677z68+OKLyM7OxoEDB/Dtt98yDYCIiIhiym63YezYVIii9/2HDgkYOzYV69fXoqDAEZvGUcg0j6wOGDAAW7duxVVXXYX09HT0798fW7du9am/SkRERBQtTidQXJzSGKh6r6opitLt4uIUpgSYUEhj4h07dmS9VSIiIjKMsjIrysv9j8GJooDycgFlZVb07cuI1UxUB6tDhgzB66+/juuvv95ruVVP77//vm4NIyIiIlLryBHl2CTU7cg4VAerEyZMACCtYOUvWCUiIiKKhXbtxOAbadiOjEPTyCoADB8+3Ov+H374AS1btkS7du30bRkRERGRSnl5TuTkuHDokODOUfUkCCKys0Xk5TEFwGw0T7D617/+hWHDhgEANm7ciMGDB2PAgAF477339G4bERERkSpWK1BSUgdACkw9ybdLSupgtUa9aRQmzcHq0qVLce2110IURTzzzDN47LHH8NRTT+HJJ5+MRPuIiIiIVCkocGD9+lpkZ3sHq9nZIstWmZjmagD79+/HCy+8gP3796OiogI33XQTkpOTUVRUFIn2EREREalWUOBAfr4DZWVWHDkioF076dI/R1TNS3OwarVaUV1djR07dqBbt25ITk7GwYMH0bJly0i0j4iIiEgTqxUsTxVHNAerN9xwA0aNGoWDBw+iuLgY33//PaZOnYqCgoJItI+IiIiIEpjmYPXhhx/Gli1bkJqaiptuugk//fQTbr31Vtxxxx2RaB8RERERJbCQ0gCGDx+OU6dO4YsvvsAll1yCP/7xj7AyGYSIiIiIdKa5GkB1dTXuv/9+9O7dG6NGjcJPP/2EgQMHYv/+/ZFoHxERERElMM3B6uLFi3HmzBls27YNSUlJ6NChA6677josWrQoEu0jIiIdOZ3Azp1WbN5sw86dVjg5B4WIDE5zGsD27dvx+uuv4+yzz4YgCEhKSsLs2bPRr1+/SLSPiIh0YrfbUFycgvLypnGKnBwXSkrqWH+SiAxL88iqy+VCcnIyAEAURZ/7iIjIeOx2G8aOTUV5ufcylIcOCRg7NhV2u+axCyKiqNAcrObl5WHBggWoqamBIEgnvSeeeAJXXnml7o0jIqLwOZ1AcXEKpPEF72BVXkO9uDiFKQFEZEiag9UHH3wQP/zwA3r16oXTp0+je/fu2Lt3Lx544IFItI+IiMJUVmZtvPQvKP5dFAWUl1tQVsaqLszpJTKekEpXvfLKK/j3v/+NgwcPon379ujcuTOWLVuGhx9+OBJtJCKiMBw5ohykhrpdvGJOL5ExqR5Z/eqrrzBgwAD06dMHt956Ky644ALk5+ejRYsWGDlyJLZu3RrJdhIRGZqRR+TatRN13S4eMaeXyLhUB6uLFi1C586dsXr1arRs2RJr1qxBWVkZbrvtNrRq1QqlpaWRbCcRkWHZ7Tbk5qajsLAFJk1KQ2FhC+TmphsmwMnLcyInxwVBUA5GBUFETo4LeXkGirCjiDm9RMam+kz61Vdf4d1330Xr1q3RtWtXjBo1Cq+++ipGjRqFP/3pT7BYNKe/EhGFzemUcjKPHBHQrp2IvDwnormgnjwiJzaLA+URufXra2N+CdlqBUpK6jB2bCoEQXQHYADcAWxJSV1U3zcjacrpVSbl9AooK7Oib9/wItZYf16JzEh1hOlyudC6dWsAQPv27XH48GFMmjQJ06dPZ6BKRDER6xFNM43IFRQ4sH59LbKzvaPq7GzRHVAbOZUhkqKV0xvrzyuRWak+QuQyVbKkpCSMHj1a9wYREalhhBHNaI7I6aGgwIH8fIfiyF4iTy6KRk6vET6vRGYV8pBoUlISkpKS9GwLEZEqRhnRNOMse6sV6NvXieHDHejbtylQTeTJRZHO6TXK55XIrFSfgRwOB1577TX37YaGBq/bADBs2DCdmkVE5J9RRjTjYZZ9sEBKEEQUF6cgP98Rt7mVkc7pNcrnlcisVAerbdq0wYoVK9y3MzMzvW4LgsBglYiiwigjmvKI3KFDgleAIxMEEdnZoqFn2TOQksg5vVIqRFNfZmeLYadCGOXzSmRWqoPVDz74IJLtICJSzSgjmvEwy56BVJNAOb3hMMrnlcisOI2fiEzHSHVD1cyyNzIGUt48c3rz8pwoKwu/OoKRPq9EZhTfWfNEFJeMNqIZqRG5aIiHVIZI0LM6gtE+r0Rmw5FVIjIlo41oKs2yNwM5kALgM/InBVbAkCENKCtLnLqrkaiOYLTPK5GZCKLYvOpbfKioOO1Tzy6eCQLQpk2rhNtvs2E/6S9SKwIlWl8pjSRaLCJcrqaAzYh1V/XuJ6cTyM1NbwxU/Y8079tXHdLnzCgrWEW7HYl2PJlVNPtJfi01mAZARKYmj2hSeDxTGbZts2Ht2iS4XN7bJEIB+0hXRzDC5zWRF4Agc2IaABERAZACqbw8p8dl7sQrYB/v1RESfQEIMicGq0REccDpBHbuDH/metPIonIwJo0sWlBWZpKkXI3iuToCV9Iis+JPKCIik1O6rJuR4cKECQ0oKqrXlIsY7yOLwcRzdQQuAEFmxZFVIiIT83dZ9+RJCxYvTsEll6RrurQbzyOLagSrjgCYt8xUov8QIfNisEpE5Idel9YjJdBlXdmJEwLGjFGfi8gC9vFbZirRf4iQeTENgIhIgd1uw8MPAwcOtHDfZ7QZ08Eu60oEACKKi1OQn+8IOiLIAvYSMy/04E88pzhQfOPIKhFRM3a7DWPGpOLAAe/7jTZjWv3lWm2TouJ1ZFErsy704E88pzhQfDPGGZeIyCC8L617E0UBgqB+lDLStF6u1ZKLGI8ji9T0Q0SakNf0ecjOFg111YDIE4NVIiIPZpoxLV/W9bfaUnNag1sjFLAn/fGHCJkNg1UiIg9mmjHtmV8qrZyt3CbmIlJz/CFCZsKcVSIiD2abMS1f1s3M9D97H2AuIhGZF4NVIiIPZizdVFDgwH/+U41Zs+qQkeHy+luiTYoiovjDNAAiIg/epZvgNdHKyKOUViswY0Y9iorqmYtIpuF0wpSfV7O226wYrBIRNVNQ4MCGDbV4+OE0r/JVZpgxzVxEMgulZYKNVstYiVnbbWaCKCoVaDG/iorTiqVn4pUgAG3atEq4/TYb9lPooj2SIQhAZmYr2O1ncPgwR0+MiseUOTTvJ3mZ4Oarr8lXL4yaumLWdqsVzeNJfi1V2zJYjQ88YZsD+yk0sRjJYF+ZA/vJHDz7yeEAcnPT/ZZck6tX7NtXbagfh06nOduthVGDVUNPsDp+/DgGDhyI3bt3x7opRBQj8kiGZwFzwHirScUDpxPYudOKzZtt2LnTCmeMsgmM0g6KjKZaxsql1qRaxupXXIsWs7Y7Hhj2LL9v3z7Mnj0bv/zyS6ybQkQx4r2alPcXhNFWkzK7WIxeK6V2bNvGfMB4Z6Zaxp7M2u54YMiR1dLSUsyYMQNFRUWxbgoRxRBHMqIjFqPXdrsNubnpKCxsgUmT0lBY2AKXXJKOMWM4ih7vzFbLWGbWdscDQx75V199NYYMGQKbzRZywCok2A8beX8Tbb/Nhv2kzdGj6t6oo0cF3d/TROkrNaPXDz+cgptu0m/02nuSSpMTJ+TXV9+OROkns/Pspz59pFrGhw4JEEXl3M+cHBF9+jgN1a9mbbcW0TyetLyGIYPVtm3bhv0cWVnqknbjTaLut9mwn9Tp3Fntdmlo0yYybYj3vvrwQ6C83P/fRVHAwYMCvviiFQYMCP/1nE7g4YfhZ/KG/28vuR1ffdUK117r+/d476d4IffTypXAiBFQqGUMAAJWrBDQrp3x+tSs7dbKaMeTIYNVPVRWJtbMUEGQPlyJtt9mw37S5uKLgZyc9KAjGRdfXI2KCn1fO1H66ttvbQDSgm43YoQLy5eHnze6c6cVBw60CPnx335bg8sua2pDovST2TXvp379gA0bbJgzRzk/uV8/h+7HtB78tTs724XRoxtQUeHCli3mLXMXzeNJfi014jZYFUV/v9zjW6Lut9kYoZ+MvgKL3L4hQxrwzDPJEATRK2CV6xouXFgHiyVy76cR+iqSzjlH3c6dPClgzJjUsOtIHj4c3vXFc84RFfsj3vspXnj20+DBDtx4o0PxPGTkvmze7v37LXj++ST85S8p7m3MPinQaMdT3AarROSf0VdgUWqfFKw2bWOG1aTMIC8vcB5eEwFA+NUXQp18ItewzMtjHat4YtYV1+R22+02LFmS7BPYyZMCzb5IgFEYshoAEUWO0euW+mufywUAIiZMqEdp6Rns21fNLwEdWK1ASUld463AgaQe1Rfk4FgeGVd4FZ92yNuWlNQZavSfEluwyYmA9HfWCQ6f4YPVb775Br179451M4jigtFProHaB0gz/u12m+FSFsyuoMCB9etrkZGhbtQznDqSnsFx84BVvp2Z6X1/drYYsREqLkBAoWJpvehhGgBRAmk6uSqTTq4CysqsMbk0Z/T2xbOCAgfOOkvEiBHBJz+FW0dSDo6lVI+mL3o5tSM/XzmPUW9GT4chY+MiAdHDYJUogRj95Brr9nlOOmvfXkRBQURexue1jDLBrW/f4HUk9cobLShwBAxKI/1jxF+tV+YaklpcJCB6GKwSmZjWgMfoJ9dotU/tMp/nnQcsXGjD4MH6Bi1GHdGTL9GPHZvqt/qCnnmjsZpcw2V8SQ/BJidyUqB+DJ+zSkTKlJarzM1NDzhBKtjkFqluqStmJ9dotE/LMp8HDwJjxug76czoE9zkS/TZ2dHLG4025hqah5FzitXkX3NSoD4YrBKZUKgBj9FPrpFun7/3zf8yn9J/9Zp0ZqQJboGCgIICB/btq0Zp6RmsWVNj6OoLTqe0CpeWYCbW6SakTig/yKMtEX7cGYEgikYq+6qfiorEWs1EEIA2bVol3H6bjR795HQCubnpjQGX/0tP+/ZV+w3qjHoZWhaJ9gV734IpLT0T9iXrnTutKCwMPoFJj9cKxOj9r1ao+2GUfkgkWs993jnFvukoRgsEjZiDHopoxhLya6lhnJ8nRKSKHjPmg01uibVItC/Y+xaMHqNsRhjRi5eJReHsR6LlGpotkDJjTrFZFzcwCwarRCajV8ATy8ktar44w2mf0muEGwDqMeks1hPczBgEKAl3P6I9kSyW9BpFj2bAyxJ21BxzVolMJpoBj96TG6KRg+bvNfbvD+10p+eks1hPcIuXiUV67Eci5BrqNZkv2rmjRrgCQcbCkVUik4nWJUy98xqjcfk50GssWZKMzEwXTp5Uft+alvj0HGWT/qvXKFusR/TiJQjQaz+Mng4TDr1G0WORNmKEKxDx+JkwM46sEplMNGb0611eKRqz4NW8hiBIM/zVLvN53nnAhg36fhnHckQv1kGAXtS2r02b4NvJ6SbDhzvQt2/8BCV6jD7HqnpFLK9AmKECQSJisEpkQpEMeCLxBRWNy89qXuP4cQtmzapXfN82bKjFf/7TVK7ptdfO4McfEZHgMValoWKdhqCXYPshmzYt9nVrY0WP0edYpY3EqsSe0WsgJzIGq0QmFamAJxJfUNG4/Kz2sR07uvy+b1arFAi1ayfiyBEBH32EiNU8jcWIntHr7KoVaD88HT6cuEGGHqPosUwbifYVCCPVQCZfiXcEE8WRSMzoj8QXVChfnJFcStbf+6acp5tu2PqjoeTWyUGAtJ9NfZidLRp2P5XI+zFnTgoOHfL/w8osFQ70pkdueyyXP7Zao5tTzAoExsZglShG5BP0oUMCKisFZGU1fXnE8ks1El9QWr84Q5ncFe6Xs9nqj4YzAS6SQUA0J6cUFDhw9tkibrnFf4H/RA0y9JjMF43JnME+x9EqsRcvkw/jFdMAiGLAM4l/ypQ0PPxwKqZMMUYyfyTyGj0v2zbNum8iisCVVzqxZYsNjz+eHPWlZINdAhRFYPr0FHz0kTHWJg8nt04uR7Zli7TNzTfrl4YQi8kpFRUMMvwJ91J6rJY/jkWOaLxMPoxXXG41TnC5VXMQBGDHjlYYMUJUDIwkIgQhtssJyl8iABRHZEJt2/z5yXj66WT47rfY7L7mt5tePxJLyapdflPNc+nF3whlOMvtRnKZ1Vgtj/nxx1YMG8alUwMJd7Rbj89N8+8oPZaN1pPcnmCjyNFqT6wYdblVBqtxgsGqObhcQM+erXDggHIw1kRETk5sT4x6BzbBvpy0CBZ4BAr0lO7fvNmGSZPSVL22UvCl96XvQO99ZqYY0rr2kQwmYxl4yMfUwYNiQgcZkRbuZ7z5d5TaH4jR/JERqR/pZmLUYJU5q0RRVFZmxYEDQPBgLTp5doG+gPTOaww2gUGLUJaSDRQAarm013zSzrZt0V08Yfz4BlXP4/keRXqZ1VhOTrFagSefBEaMQNwvnRpLeueOGjFHNF4mH8YjBqtEUaT1xBvJE3Wg4K15kHrzzeHPpNZzX7TmjQULAJ99tjbgRJLm5OBr+fJkLFmSrNukLDVB5auvqjtte75HaoPJdeuS0LatqPmHSawDj+HDpcUb5sxhkGEWRs0RjedVzcyMwSolBKMsn6f1xBupE3Wg4G3MmFRkZoo4cULfvEY99iWU2cdqAsC5c1OwYEEdxo1Lhb98WSVr1ybpOlqpJqiUKke4cPy4+hnaaoPEhx9Odf+/lj43QuBRUODAjTcyyDCLaC0bHYpoVSAg9VgNgOKekZbPy8tz4rzzAhcyl4jIzo7MSkJqil+fOKH/7Fy1qw75E+olXbWLHGRliZg1q97vdkpOnozN4gkjRkipAGpnaIcSJGrpc6OsjBWvS6fGo3hZoIKig8EqxTWjlEbxLBc0fjwaA8VAAYSA2lpg2zb92xcseJPu138FF7WrDnm8qtctNeV25Pd582Ybdu6UykxpuUR94YUuVdsCIjIz1W27Y4f6cldqg8obb3RqKkkU/IeCUjkx9X3OwINCEe1Vqsi8WA0gTrAagK9Iz1BWm1qglBsqBzqel9qV2gfoPwNVy8x3JeHOzlV6P5pfepcmygCzZtWjY0eXqku6/nJwR41qwOLFKUHbNWtWHdavT0JlpZrf8CKGDXPgtdeSVGyr/pK61vI5WtJb/M10VkNtn0eyNJY/PPeZQ6B+MkqaFhm3GgCD1TjBE7avSJZGUfulHKxc0P3312PduiScPBm9kj9aaooqWbOmBsOHhxd4eH457d9vwfPPJ+HQodADnGDvc0aGiJMn/QeATX/3frwyEWvW1GL+fHmZz+CBn5YfHpEsn6P8QyE4LX0e7cCD5z5zYD+Zg1GDVU6wIkOIxBdcpGYob91qa5yI46283HsGuJqJPc89l9SY96gsEiV/gk1sCObbby3YudMatI+U+hSAYpWBoqL6kPtfzfssCFLqRfPSRoA0giv/U5evKuDYMcEruA5Gy4SrSJbPaT7T+dgxwWtSlT9acl45OYWI9MZglWIu1EuHwQJctV+wx44JcDqhKjjautWGCRNSoRzUCBDFpoBEzcxuLUtF6hXQB1ozvCl3UXllLUDAsmUpWLYscB8p9Wl6ughBEFFV1XRfVpYLf/lLHYYOdQQNcPztv5r3+fhxAbNm1eGFF5Ka5S9L/y+NbKv300/a0/3V/PCQ97G+HlixohaCIH0+9Ryh9AwmnU5g9epkQ87IJiKScYIVxVSoE6DUzPCXRxADT2SSyvWoqQ5gt0sjqi5XoMCmaQa4njUl7XYbLrtMv4oG/iY2ZGTIt5u/Z77vob8+8ten1dWCV6AKAJWVFowbl4r585MDtjdQf6t9nzt2dGHBgrrGfQnv+pb6iVi+/LW3+T6OGNEC06alIjkZEZvZzolRRGQGDFajTGm2cqJyOoE5cwKXUFKaiaw2wLVagcJCebWfwMFXsOBYvtSs1qFDguqR3ays4LO07XbfiT/hVjQoKHBg375qlJaewZo1NZg1qw5paYBSNQC1FQICXZIP5Omnk7F1q/8fJoH6e/9+daex77+3YO5cuQ9D+yEhl2C6++4GZGWFFrAqfS70qloRyvmFM7KJyOg4wSqKIjlT1ozJ648/nqxqlrbnBCgtM/wBbWvRB5rMpHVS0sKFtRg3rkHVzO4FC+owfrzSLO1Al+SDt1kLfxOU1BbIl/sonMlbbdq48O9/e++H2v4WReDw4UA5uMHfy+Ck3Fc5gCsuTsHatYFHhJs/PifHt6/0qlqh9vziL53CrDOyzXjuS0TsJ3Mw6gQrjqxGiVHqfRqF3W7D4sXqvug9L5uqLfD+8cdWFfVElR+rVMRd6yX9zEwRZWVWDBnS4J7Y48nzEuvQocojW41bhtxmtQKPhmqbpBZO6kNFhe9+qO3v0aMbgtSuDT8lIyfHe6QxP1/rD0wBf/xjg08AqHYfA/Wx2vNLoHQKFtQnIqNisBoFalYMCqfYutlovaTuedlUbTA0dmwq3nortG9bpdfQugLQvHkpKCxsgWeeSQEgQGj2lM0DH89L8kVFdY1bqQ+wwgkStQb1SuT3J9zlNJvvh5Z81OCrT2nfv7ZtgYkT67Bp0xmsXFmL+nq4L6+HsiLXs88mwW63eV2u37FD3efU33uh9vyydSt/MBOROfHsFAVqZivrXZ7IyIK9H02ky6aeM5HVBkMnTwp45hktl2ibKL2G+nJP0mMrK723cbmkv02c2IBbb03GxRdXw9LsLZBHtkIJPMMJEsObCCYiM1OE0wmvAE5t6kVzzfdD25rz6lefCta2jAwXJk5swKJFKXj+eRfuvTdV8fK6XFVBbbrEyZMCxoxJRWamGHBBCCXN3wv5sv2OHerOLw88ELi8l5qyWnoxa8oBEcUGR1ajIFL1Ps1Ky342n4msfjRLGs20WNTP/A60frnnrGn/z+d5v+/ldEGQLsNec03gMllaAk891lwPbzRUwIkTFowY0QKXXZaORx5JxqhRDY0jyVqeV3k/tKw5r/V9a/76nk6dErB4cTIefBAYM8Z3NLK8XAo6XS4phzU9XfUrAwBOnGj++Qj0OfV9bzwv5y9fru4qhTRBL/RUA72oqeQRS5wES2Q8DFajQNvoUPxTu5+zZtX7TDyTg8bA+YkSURQay0z5qxnaRA5eRo1qwJYtyl9S8qzpnBzl123TRh5d8x8QHDxowSOPIOCXYK9eTpVBdmilhZp/Gffqpf1ytpLKSgueeSYFixenICND1BDASROXlPZDS2mlvDwnsrP9lyqTA9t165Tyg31HG0URWLbM32IBUj9PmJCKV16xoboafl9XoSV+n8+X9JyPPNL03vjLT9WD5w/JUIO2QI8zeu6+0QNpM/L8PHz4IRj8U0hYDSAKtK73HQozzbQM9n4A0vvxr38pvx92uw1jxsir7oRegsjztVu3dkEU4XVp1rNgffP2l5VZceiQgMpKAVlZUnsPHRIwZUqa6jb4qwShdkZ9q1YuTJ7cgKKietWfG38zxgsLG/D003LahB5BkPQhHDasAR9+aPNapav5e5+d7cKiRYErYmzdasMDD6R4le9q/v7Z7Tbcf3+K4uX15kuVOp3AunVJqlZvCk6PSgOBZWW5sGRJHfLzHZoqXADSvmdliaioCD42IVd1CLVySaDHBWt7qOdBvc59wZbsZRkv7SJZAYcig9UAEhgLb3sL9n4IArBokfL7Iddmbdw6xBZ4B0stW7pw/Ljgc2nWs2C95+hAWZm01OiIEQ5MnNiAESOk2dPKs/n98zeapDZN4vRpCxYvTlE98hNoVGvVqmSkp+t5ZpLSHvbsseGLL7xrubZvr+117HYb5s71DlSzsqQC/56B6tixqQqX1yUZGd4T2qxWoG1bvfY3tPxcLSorpc/K8uXJmibDycfXY4/VqU6nCGehjkCPC9b2aKYiNMdJsPoz+ig6mQuD1Shh4W1vWt8POVgcPz61cU32cIID78dWVQmK98uefjoZF18c/NKg1tnh/r4EtaaDqDn5B/syFkWgujrc99WbHHzs3StNHExOBpYskZb2bN7+MWNS8fjjyaoXgDh+XMD48dI+19cDM2cGWohARFpaU6kp+bP0zTdmOv1J+/Xss0maHiUfT0OHOlT9YAZCC9rUBHtq2x6L3H09yodREwb/pDemAURZpGbBmikNwJOa90PpUlL0ec/29ndpMNQUBaWFD4JXHmgS7BJqOMX6w7VmTQ1uvlnd5WvPlIBgxfIBES1bSv3S9IPDv9LSMzhxQlD4LKmbya+PyKcMAMDvf1+P2293+BxPwS7Lqv2ceH5eAX0/X82fOxg9zn2bN9swaVLwFJ41a2owfHhiDSyEItTPEcWeUdMAOA4fZXJ5olCZpeSLUjsB5bYHej+888hiyX+5n0GDHNi7V9qvtm1FZGSIOHlSWzDiOZokp0lIQa+6QCpY+TP9Rqu0B1vt2omqy5XJo8Tr19ciM1MM8hh1Qaps2zYb1q71N7oXnYA1KUlEQ0OgCX/6tOG665w+nwOnU1qsori4zivX2vMcEmrlErWPy8hw4dSpwLn74VS2CBUnweqLFXBIbwxWTcRut2HOnJTGy+ASeSRqyBDj/NpXGr3JzJRqYHpOfgmWaB/aOvMiWrcWkZwsnQjVjkyGQg4Qr7gi3SufMhTffGPBzp3WsH98ND/5yz8avv1Wbfv8BW0iLBa5Xqy20d68PCe2bFF7qhEASD8Ciovrgm6txUsvyW1QmokfThDir2SZ73vZ0GDx+1qpqSJqa/X5vJ5zjvdrBBpR9fy8hRq0qX3chAkNWLIk2WeSXaxz94PVUY5lIG1GDP5Jb2ZK2kpo8uVlf/l+RklW95djeOKE7wSmYLmWoa6s1K+fEzffHGz5Tf00XwBAG6l9y5dLK15dfHE6Fi9ODnkSmefJ37MMz7Jl8vMFqhHrP1AFEKAMmPLziSJw++1SKbBjx9Tvh5wfGN776t0WQERVVaDPUuhVJQQBuPFGh88iD1peSxCA1q2lqhSBSm9lZalb+MBzxTQtE1201LX1pPZxRUX1IeWqR7rmabQnwcZ7LddQP0dE/jBn1QScTuCSS9Ibgz3lYKJ1axFHj1pw4oT//Y50CkHwHENfgXItH3ooBevWaV2FKpr5h+HS79Jv8/fRXxmeaOVM+mujllHyVatqUFKSoil317/IfC5ycqSqBFlZIg4eFPDGGzZs26ZtEpSnWbPqsGSJ9JlXGnmcMKG+cQnfwOTcymDHpNLxJ392/LXB34RQLY8LNVdd6WqMnjl20Si1lCjlnEL9HFFsGTVnlcGqDiIdBH70kRW33BI8Wf2994ArrlDeb71OkIH2NZxJFs0T7bdutWHChNTG0bxYil1wp540uudZQzTYxKTY7o+615cnRCl94cWW6C6FdeKEgLlz9Zv8t2ZNDZKT4fdYzcwUNU1cCXWii951VuWAXu05UkvNU72/XCN5Pk+0Wq5Kn4dzz3Vh4cL4CszjiVGDVWNcOzaxaPxK3rlT3Znyww+BK65QbqPSJCV5ychZs+pVFZZX2teMDBduvNGBfv2c+P770L+wPXMt7XYbxo1LhXECRKO0w78pU5pW+wo+mSm0/TnrLBd+/TVQAKz2uYNvY7GIqKwUMHSoVOJM+twZpx/++McGnDollc/S84Terp2Ivn2dyM93uAOmtm2lEemKCgEul5SnfviwutzKUCe6FBQ4vNqgNmhTelxlpW9AH+gcGazskTyxMT/fEZH81nAnwfoT6/2KBc/Pw9GjAjp3TsPFF1crpMwQBcZgNQz+gkA5j3TWrHp07OgK+9d5OF+GgScpSbcXL07B888nKa4iJI8yvPmmFc8+63tJ/uRJCzZuTMbGjaG3EWjKtZTbG3vmuuBQWpqE4mLpB8ebb+p9WEuTq3791d83jP4jtS4XMH58KiyWWq8vvEOHBMyalaqpCkAkrFqVjIyMQGkN2t6T5kGmHDDZ7TZMm5bqM1lRFOW0isCTlNROYNm/37dvlYI2NaOOno+z222KAb1n1Yfm55xgP7aCVb4wqnjdr2Dkz4M0igZUVIT3nUaJib9vQqSm6PHixSnuIvIXX5yuWPRcDbUnrmuv9b1P7SQlpckWW7facNll0gSdZ59NgbqVeuSJOmp5J9qHOqkqcozSjkCaCpbPn5+suXB8YJ6Tq/y/vv6khQpmzUpBfX3TF96IEQ5MmlQfgdfT3japskX4E7b8TeDxNzFKLouWkRF8klJenhPZ2f4nbUlEPP98UtBzk+eEvUCLY8hCLQwfr2WP4nW/iKKBwWqIggdVzb9gpKUxL7lE3dKYnvr2dTaWfvI/k7t1a5disKr+xOf95TFvXjLGjUsNoSST/HrqA9aCAmnUzOmET7WD2NEy890Ynn46CU8/rXVCmpEJqKiw4Iormo4Zu92GF18MFoxHY9gm/AoQMjnIzM93uGeIf/SRFXPmBA70RBF45JFarFpVg9LSM9i3r9pnlNJqBUaPbgjSXgGHDgVenSmUpTNDXRUqXssexet+EUUD0wBCFOqv3xMnpBSBDRvUJ9JbrcDSpf6KxEsntqVL62C1+q7AouXEJ1+GGj48Fbt22RD6F7L68kaAgLVrk7F2bTKyslzo3Dl+Ln9F23vvhdNnSmI9EUtSWSkdM8OGOfDaa8FOWUb7ovd9DzMzRYwf750itG2brXFSnNofhwJOnhTwyCOpivVSPXXsqK7clb9zWqi5lqGOJMZrzdN43S+iaODIaoiUcrzU8X/5K5CCAgc2bFCuTxgo8M3LcyIjQ92XlWzXriToE6QEqukJn9eorLQ0vjaFRu/AMvaBqkRqx2uvyZ9L/+0SBGDy5HqMGBHrVAFZ87aKOHFCQNeuLgwf7kDfvlKgqjRqqVawesXhjuhFe4Q02jVPoyVe94soGhishsButzXWQgx1FEf55B5MQYED//pXNUpLz2DNGunS37/+5XvpD2gqOr1liw033hirEiH6FmCnRKbuMyOKwJo1ySGsBKX1WA792AeafqyGtkpbs5YEyP8Ewi/QHu4IaSivW1DgwJQp9V6LG0iP8a58YTYFBQ5NiyIQkYRpABrp8eUiCyWVQE1ZFaUSU+oKshvjsi9R6AQAInbt0vZDsFUrEadPq1/IIrzZzE2zvgHoUqM12EzyUaMasHix/APbO41IFKW/+xPuCOnYsamal1e1221YtSrZ5312uaRKDLm5LtMGdqGWBSNKZBxZ1UjP2eqRSKT3NxGi6aQf6DUZqJL5iaKAykoLWrYMPCmxZUsXVq2qwaxZdY2lsNQdj9nZItatq0VOTrBZ9oG99ZZV95nfzZ9PnsG/eLG/ah7SfYsXp/id2R/uCKnWkUQ15fa0plEZjTzoIKeCMFAlCowjqxqp/3LxP0oZiUR6pxN4/31g+vRAJ3lppSPWuKNE0KePE+++a4O/SYkrVtQhP9+B3Nz0IFcd5KVOG5Cf73CPglksaKyzHNoViZdeSsbAgTWaHxeIZy69vzrQ3gF2U7v91T4NZ4QU0D6SmKj1SInIP46saqR2NLRlS/+jEIC+ifR2uw09eqTjhhuC134URQEpKSL6929Afn4D7rqrHvn5/i8BEpmVFKgGpu5KiYBZs+oxf740OWbLFht27rQiP18aNczJCe3X3+nT0opUakYtX3nlTONEycD1UhcvTobdblMxOuk7yhoo9zXcXEstI4msR0pEzXFkVSO15Uf27KnGihXJWLs2CSdPNv0myM4WdV2K1f/oiX91dQL+8Q/OuqdE4RusyeWWiovrVD3DyZOCT2kpuWTUvn3VWL48Gc88k4RTp7T9/i8rs2LBgrrG5YW9R2g9f9hed50TeXlOvPVWoFN2036ddZYYUi5soFHLaOVa6l2PVM2qW0RkbAxWNVJ7SSw5GZgxox5FRfURO1HqOdmLKP74PybkoEzt6Nzatb4/7uTL5lOm1CtOBlLju+8EbNwo55N68/xhu3WrLUigKpH3a+fO8E4y/t4XeYRUDgC3bLHpfl7Tsx6p0mRT+UeGWSdoESUipgGEQMslsUgm0uu/NCmTWSmxzJ+fgvR0McBleMBiUa4LLIrSsqurVyeH/IPx9deTFOqrSksWL1ggBVROJ/DAA2qXO25qdzgCjVpqXXZVK73qkYay6hYRGZMgivE53aai4nTEJxLF+vLSpk02TJniu2oVEanV/CThfaVEaWRPr9dtmuzof/Rw375qlJVZUVjYQtOzv/rqGYwbl4oTJ7QtG+z5uv5KSjWlHfleVdKzVqi/UdEFC+qQlSW6z7t9+jjRrl0rr3O+04nGtA3l/fdM19q71xgpArH+Pok0QQDatGkVle9mCl00+0l+LTX40zIMamqeRordbsPDD6fE5LWJzEF5RNSbXLLKd5uMDBEDBgjYtCky7QoUCMuX86XaqNqeOydHRO/eoZyXAo9ahrrsaqiUcmQrKwXMnesbwK5cCfTr1/RYtRUFrrgiHZWV4acIhBtoMl2BKDCOrJqQv9ENIvJkzEUuMjNdGDHCgWef1RqIBiOd8DZsqEVmpqh5NLZ1axcef9x/cLRzp7oR3tLSMxH5Ee//vCf18/r1NRgyRGr75s02TJqk5qqT8qQ2LSPE4Qaa0RytjiWOrJqDUUdWmbNqMpxURaSWnrnc/hcX0JrrfeKEBc8/r/WilrrXyMwUkZ/vCKmsU7DgKtolpeQlozdvtuGjj6yYMyfwQgHjx6di61bpfVW/4Ir68l1Kws2LDTZaraUtRPGMwarJqJ9Upf1LlIiUyMda8+NJut2jh/ZIorZWPvWGFlT52+bECQvKyqwhrY7XfMJoc2qf85tvLNi50xpWgNV8Etctt7TAoUOBz3sul4Bx41IxdmwK6uuB7Gz/9WsDkVIELO7lcP3RI9AMdj5X2xaieMdg1WTUjlq0aMFAlUg//pcq/emncE+j+h6rR44IQZdI9RRouVRPlZWCR2UEJdLfli9PCatCgL/RSnUEvP56MkaObIFff5UmsPm+B+re72DnWj0CTS6AQKQOg1WTUTu6ceaMniWtiEjie8Xi+HFB8X519D9G27UTA5Z/8np1laWg7HYbxo9Phcvlbwvf1wilRJSeaU7V1dLjMzK829amjT6LDugRaGpZAMEzLSLckWsis2E1AJNRUzA7I0NsXHaViLzpMelKaYQ1nNFRzzSD0NvWvFi+XA9amvyj/LxqVtRTH0CGXyEg2Cx+baR+SUmRSnkdOSKgslJAZqaIefNSUFkZuKxVsJFmPVbaUrsAQmWl/xXU4mHyFVEwDFZNJvAKWtJ/x49vwOLFLGtF5CvUYFAOJP09Xo8R0vACVVEERo1qwJYtNrRtK92urwdWrKiFIADHjglo00Z0/79cYgmQRuz8lV1SF0AGuhSuvHyrEv0vdws4fFjA7t1WvPBCUrP9kEfDlVchDBZc67HSlpoVEQsLGzB+vO+S2vLIdbxUCyAKhMGqCfkbMTnvPGDBglrceKOj8cSsrSA4EZmFd5CVni4Fp/5+pMqjcP36eQdOasou6RFAqn2OUCaGqaG2Xq2akWaZ2qW3gwW9/s7n2dnSKmZz50avti2RURmyzmplZSUefvhh7NmzB1arFUOHDsUDDzwAm019bJ0Itdw8C1G3by+ioKAFTpyQ9ttut2HMmNTGLRmwEoXj1lvrsXGj3nVRQ5eZ6cL48Q04dQp46aVknD4d+BhXqtmptr6n2vqqgaitvSqvPBU8zUn+m9pzm3KKhSCIyMqSgkJ5FFRr0BdKnVWlRQQA3/vUrl62adMZWK0w9OpXrLNqDkats2rIYHX06NFo164dFi5ciIqKCkyePBnDhg3DuHHjVD9Hoh0QSh8wu92GadNSUF3N/FWiUGVluTB/fh1mz05BVZURrlZIB/jUqfVYtSpZ9WQkz6VUAXXLkXpu6y+ADLRSWLDlW5XIQTQAxdHK9etrAQBz5qQ0lrMKRF0ecLgLGWhZwUpLcKt2cYOMDBdOnjR2PiuDVXNgsKrSzz//jEGDBmHHjh1o164dAODNN9/EkiVLsH37dtXPU/HzESjumtUKpKY23a6u9v8kFguQlhbatmfOwG9PCwLQokVo29bUQGlKrvsDVuNqeqqaGrgcLtx3nzQjV2y26ssZtHTfSkEtrPB/sj6DdA3btoD8BZGMOtjg/4SpZdsapEFsLGCRhHokoUGXbWuRChesmre1oQHJqPe7bR1S4GzMtNGyrRUOpKDO77b1SIYDSZq3tcCJVNT63bYBSWhAsuZtBbiQhhpdtnXAhnrIl7JFtMAZXbZ1woo6NB33LeD/WA68rXfw44IFtUjzs60nsXHbpmM5DWcg+JmYJUJATcBtRVgEwCUCIixe26aiBhb4nbaPF0ul9hcWtlC1bd++TtjtNkwZA1jh9DmPyO9H83OEfCyvXi2lJnlp0aIpyb6uDnB4//2tt2yYPz8Fhw5b3OeInBwXHp33K24aJH0uXS5g5cpkLH8i2d0G7+O+rvFYVg5WPbdd+9QpDBvs/3OJ1FS4o8/6eqDB/znCa9uGBml7j/2aPDm1sScF93EvCCJsYgPWr/7V670qK7Pi1tukvg18jvD+XDYgCQ4hSRodv7FWeo/9SU4GkqRzBJxOoNb/cY+kJGl7rdu6XBBqa/wHQc22RU2AvrDZgJTG414Upe9PPbbVEhvEaRwhb9rmgvZN/RRgWwBAetNxj9paBCxT0WxbweVCmwva+d/ek2gw7777rnjllVd63ff111+LnTt3Fk+dOqX+iVq1EkWp67z+1d0wSDx27Ff3P1eLForbiYBYf9XVXts6s7L8b9utu9e2jg7n+922oUtXr20bunT1u62jw/le29Z36+53W7FNG7GiwmPbq672u20VWnjdZcdN/p8X8Lr5vxgRcNsWqHLf/CvuDLhtGxx133wKUwJuewF+dN9cjBkBt70EX7hvzsO8gNv2xB73zRlYHHDb/tjuvjkFTwXc9ibY3TfvxF8DbjsC/+u+OQL/G3DbO/FX982bYA+47RQ85b7ZH9sDbjsDi903e2JPwG3nYZ775iX4IuC2izHDffMC/Bhw26cwxX2zDY4G3PavuNN9swWqAm77vxjhdVegbe24yeuuKvg/R2xHf6+7jqKN3233oKfXXT/iAr/bfoFLvO76Apf43fZHXOB11x709LvtUbQRp0+vFVevPiMCorgd/f1uW4UW4jPPnHGfT3757e8Cvm+eN4OdI479dMj9vDUjbw+47f88/rP42mvV4uHDv4pn7h4XcFvPc8SKlPsDbut5jvhq5EMBtz3xznZ3e6vmLQy47cnX3nBve/qxxwNu63mOuAsbAm6r9RwhCC7x3HOd4vHnA297+rHH3e09+dobAbetmrfQve2JdwKfT6pnznZve/yj3YG3nXqve9vKff8OuO2Zu8e5t634an/AbWtG3t70/fnToYDb1g4Z5vVdG2jbeI4jnFlZoiiK7lgiUBzhatHC63nrbhgU8H3z3LZ2yDApTlPJcBOsqqurkZbmfdlDvn3mzBmcddZZYT1/crJN9bBzUpLVe1vB/+WkJFuzbS3+t7VZLd7bWv1fyrJaBO9tbYGvpWVleWyb5H/blBRAqJc+QUSUOJYtS0GbNuq27dw5rWnb86zA5+oel5IMBLiQIJ3TGkdZXClJAZ/rjjvSgLaNo0JpgfOGp90DnMyQBr6SlgoIcNEBgHRKP+88oHPnwG3IyEgH5PNweuBKK2ef3aJp25apAbf1JAZJV9CafCKKAg4eFPDf/7ZAZoDtWrZMRUu5vWcHzo9NT09BurxtRnrAbVu0SEELedvMINumJTdtW9Uy4LZpaclIk7cVA4zsAkhNTUKqvG1a4JSRlBQbUlTGBvEcR1ga2+eOJQLEEQKaXcZPDhxSem2boi38NFwawLvvvovi4mLs3r3bfd8333yDoUOH4pNPPkGrVuo+IJW/JF4aQFZWK1TWeqcBBBq+f+3dszF+fCoAgWkATANgGkAI26pPA/DdNrw0AP/bBru0Lx3Lose2vs8rQMo1/eenTVe05Ut8ZWVWjLzVN6hpfo7YtPG0/7JNjWkAdrsN8x8Cjh5qam92exceeaSu6XJ4kJQB97mv8jTE1DTY30zGmDGpsIn1SPI6n4jwDPlqkQpRsGDDhloUDDqj/tJ+iGkAW7faMO1e74EYpXPEyhU1GDrUNy3iofln4b+HpOPICgfaZ9TgxEnlAMXzuF+76jQKbwrw3RXFNAB3PzX/yDENQHnbGKUBZJ3fvqmfIpwGkHW+ujQAw42sdurUCSdPnkRFRQXaNP6k/+GHH9C+fXvVgSoAiC1a+B819Ly/ReBffCFvmxZkBmeo26b6SbYXAKSnQ6zxOBH427bRzTc78K9/1WP16mSvL+dgtGxbjxSPgEK/bRuQ7A6AYrWtA0nuLwQ9t3XChjMqD00t27pg9Qoo9NpWhCUi2wJChLaFIbb1DDAlnge694iKlm09A2L/pIL5tUiDIEijcO6/NE5kemhRLSwWR9P5JCUVTiewfU8yzgQ5TuuQioMnRYgt/P/4tL+uXI1g/xERd0xu6V0/VG5Dcor0r/mupKdDrHHB4ZAmXoki0IAUNARopzQJqRaDBzsgIhlICnLcy21I0rCtLUn6B6B1B2vjj3Nl8jmidQcBYgvvL/zfDQduuLkOZWUO9yQul8uKW24JXimgbbYVotrvLotV/feclm0Fi7RtYz8pfjc331bN80KI0LYwxrbRjiMA96EoX7sPFkd4PW9KkNig+bYaLhcYbpr4hRdeiNzcXDz66KOoqqrCf//7X6xatQojRoyIddPi0vz59Zg8uR5QGF2RGGrgnShutW4tYupUefTd/3HnvXxqOJUJpEoArVt7v1Z2tqhYaN5utyE3Nx3Llqn7QRmoZmqgVbHkwLm4OEXzkqJNCxgEfl8WLqzFvn3VirPlI7WsaV6eE9nZLvjrW0EQkZPj8jsabbUCffs6MXy4A337OnHVVdKiBP6W0w32fERmYriRVQBYsWIFFixYgAEDBsBisWDYsGGYMmVKrJsVt+bPr0durgsPPJCCysqm3y9t2rjw6KN1yMgQ8Yc/yL+uYl22hyieiBgyxIG77mrAVVdJ5Y5yc12NZZmUj7WsLBEVFfqNMyxcKNUYDVR2ybsma2BqVm4KtiqW1pWvZGoXH2jbVlQsLRVKzVS1tm2zNV41Vy7xBahbRECm16IERGZgyGC1TZs2WLFiRaybkVCGDnVg8GCH31qBU6fW4+mnk9E874uIQmOxiFi7Virr9Ne/JuHNN2248EIX7r67Afn5TcdimzYiXC5g1y4rBEFKH3viCf2WU87OFgMGhIFGQZtTGySpDSq1rp6ldgUspe38BeShLGvavO5qZaWguGSqLCNDxNKl2gPiQKtfGa3OKlE4DDfBSi+JVng4GoV8589PxurVyXC5GKwShU46QMeNa0BFhYCtW21ex5TFImLy5HrMmyelBCiN9ml/vdAL9mtZwUrtKKTa51RTrN/z3OdwBF8BS2mf5ZWz1CySEGykUqm/LBaxcY6K8qIKOTnaFk5oTsuiBLHCRQHMwaiLAhhyZJWMad68ejz4YD3++tck/PSTBeef78LFF7vw/PM2vP66cZaiJDIyiwVwuQSsWycfM97fCC4XGq9iSCkBai+/+6ccIImiusvEakc3i4rqMGtWvaogKS9PyrcMFlRqzbcM9dK4XmkJ/kZnA//ADy3lgSiRMFglTZKTgYkTvcu2XHONE5dcYmtcr5ujrkT+iQpVYJofM9JM/VWrknHOOaKqy+96URqhU3tpvV8/9aN5kcy3DOXSuB5pCVrSJbQ+dyCRzLONJTOMFlP0GK4aAJmP1QosXVrXWAqx+RebqHAfUSJy1+ZRsa004njkSPCZ7aERIAjeM+7l2f6FhS0waVIaCgtbIDc3HZWVQkRmnctBZXa2umoEWp97375qlJaewZo1NSgtPeN39j8QXq6rTG0lglCe2x95JNczKAea8mztdnOOR/n7LJp1fyh8zFmNE0bIB1L6hd+6tVRT78QJz99FWr60iSiSSkvP4MQJQbHmqRygTplSj1WrpNQE78v20t/Xrav1KWSvVrgjaHqc++ScVa25rp42b7Zh0iQ1NW61P3egNuuRZxsNavvJO5XC97MY7g8ZCow5qxT3CgocXrOY5S8ewPvL6J13rFi9WinHlZUGiKLt0CEBJSX+a54KgojS0iQ8+2wt5s5NaTaKJ/3/3LkpsFgQUhAh1w+NJT3SEkIZGQ0n5SFS5b9iKVj9XUEQUVycgvx8hyECcIoepgGQrpoXrrZafe+bP78e69bVIivLO3kvJ0fE/ffXoXNnB5g6QBQdlZVCwMvXUtBjQVaWiAUL6qCU2mP2y85A+GkJ8qQxf+kSgAiLRb+Uh0iV/4qlYKkU8mexrIyRaqIx75mFTC1QXdcHHpCW0/7rX5PwwQdWbN8uf0zNc9IlMjr5MnFWlrofhocOCZgzR67vGnzUy4wTZPxdHVLTbjWjs2vX1iIrK/ACDGrpkWdrNPEYgJM+GKxSzAS6/CdXHZg4sQF2uw3335/SWG2AiIILnBfuefk5M1NdMLNjh7VZ7nmzV/S47HzihGDaGerhpCVEs0h/pMp/xVI8BuCkD06wihNGmGAVSfJ63Tt3WiGKwN/+loTjx1kqiygUrVu78PjjUvAUbHKRXLS+uho4dSp45tjEiXVYuzY5ahNkjHjui9aosjwZCYDiSK6RJiOp6Sc9JrpReIw6wYo5q2QKVqtUx/HBB+vx0EP1ePxxqVSW//wwIlIuHSfi+HEBX39tgdPZdPka8Hc8Cfj1V3WBKgBs2pTkd4IM4F0uK14p5e5HQiTLf8VCoM9iuPV3ydw4shonjDi6EGlKpbJatRJx+rR8i6OuZHbhVsgI/PjsbBcWLZJGWJvSbZSCUnXtaNnShaqq4EGtmmVUA/EcuWzfXkRBQQucOJE4577mzJAfrOU7Kl4XOjADo46sMliNE4kYrALKJ+lt28JdS53IKEKtSaw2yBUhCNLl4vx8B3r0kC7BhhogFxQ0wG5PCrrdmjU1GD48tKBDKZA57zxg4cIaDB7MQMaotH5HmSEAj0cMVqMs0YK2RA1W/ZFPdNu22fDqqzZUVgYLXFnjlYxJEKSAUlqmVTmntHluqJYlP+U8wBUrajFiRIsQWykiM1PEunW1uOWW4M9RVFSHfv2cmgMQ/wXjpTaY8dJ3ouB3lDkwWI2yRDsgeCLwz/MXeps2InbtsuKZZ5JRVeW7Eg8DVgpPJH/0KH1Gfe/LyXGhRw+nqhFOTzfd1IA339T2GM82bNggjc4GWlWp+fuj5dKu2VZsIm/8jjIHBqtRlmgHBE8E2jS/xFRZKWDmTH/5ejKOvlIs+fv8SbVSFy6sc5cq2rnTGsYoqTbNA86tW20YNy618a+Bjxcts9Z37rSisDD4PoWbD0uRwe8oczBqsMo6q5SQlGopDh7swPLlyVi7NgknT/oLWhmwUqz4+9wJqKwUkJ0tuj/Tffs6kZnpaqxNHLl81zZtROzZU41kj9WTpUUG1L2mliU0zVownrmXROFjsErUyGoFZsyoR1FRPcrKrDh0SAoCsrKky4uVlYLC2uhEkaYu+PMM0qxWYOnSOowZk6r68U3UbiugokLA3r3ea89rDRbVrmFvxoLxnNVOpA8Gq0TNBFrBRl4i9q23rNi0KUnFxC2icKkL/poHaQUFDmzYUIvp01Nw8mTkfmA1D0737w/tmAgW5IazYlMsRje9J4M1OXRIwNixqZwMRqQBv2mJNJAD2YUL6/HFF9UoLT2D8eProFx8HQHup9Al3vsp5XYq77cgiMjJcSkGafn5DqSlwe9j9eAZJDudwPPPJ4X0et9+a8HOnVa/CwYELhgv/VepYLzdbkNubjoKC1tg0qQ0FBa2QG5uOuz2yI3VOJ3S4geJvjgCkV4YrBKFSA5cFy2qx4YNtcjJ8f4CbdPGhcmT6wOutJWa6opGU+OM2dMwtP+AkQIc5dFEUQRGjWrAli02n2BPSmexKD42XEpBcmivJ70Xy5alBA0k/a3YdN55UjWC5iOV8uhm89QdeXQzUgFrWZm18dK/8vsgpT5YUFbG5FUiNZgGQKSDggIH8vMdipcae/VyNeatNX1xZWa6MH58A+69tx5XXhloXXYyl+hOwGvRQkRyMrB4cYr7Ps+cyEhNNvK39KX21/MN2oNdJm9+rDWtYOXwuuQebHRT7cSuUJh1MhiRUTFYJdKJv1xXzy/Xo0cFdO6chosvroal8bpGSUkdxo5NbRwl45eXuanpP736WER1tYDqau97PYM9/SYbeQfh2dmi4iSh0F5PeyDpeawJAhS3aRrdVKZ2YlcozDgZjMjImAZAFAXyl+vw4Q5ce633l6u/S5uJmJtpZGlpot90jtj0leDxz6MlHjmRvXpJk5L8t1ud7GwRs2bVYc2aGpSWnsG+fdWKo57yJCh/rycIItq0ceG+++o89sGXHpfJYzm6qeZ98JdnTES+OLJKZADNL23u32/BunVJOH5cXb1L8+dxGl9NjfRf3xFw4/2okEcN9+61ukfutdRPzcmRll+tqNA2e16eBKV0pUAO3BYvrkN9vbr9CCeQjOXoppr3QWkyGBEp48gqkUF4jr7OmFHvnvlMxpGZKaJ9e+/gJidHxLp1tcjJccFogeuRI4J75F4q1q9OSUkd+vWTPot9+2or8+TvSkF2tujOQ41GIKn36KbTKa2itXmz70Q2JfL70Pzz4vk+EJE6HFklMijftABlM2bUY9myZLhc+o3CjhhRj2PHBPzjH6GsFW9Wwd4bASdOCNi06QysVvhMpLNY0FiE3zjkYK+gwIHaWmDKlLSgj5kwoSHsQCrQhEMgvJqpauk5uqlncX8uNUqkHUdWiQxK7cjQ/ffXY+3aWgQqiZSUJGLYsAafUR5f0nOuXFmHjRtrkZHB0lrNVVQI7hFwz1HHggIHZs1SeX1blxFYbbVX1f74yc/XZ8TP80pB89HZwDVT9btMrmaUN5hQy1/Jjzt0yPtxhw9HtmwWUTxisEpkUFq+0IcOdSjWek1Lc+H+++vwyy9VWLu2Fp9+Wo1Zs5QXMRAEEYLQ9JxWqzTKFv8CTZzyFejSdFFRPbKzg6cDWJqdeTMzXbj1VrWBLmCxiH5r+PoL9rReFg902VvrJXElegSSal9n3z5pAY9gE8SaC7W4PxcFINKXIIrxeVGiouJ0Ql1uEQSgTZtWCbffZhNKP2m5BKl2WUm1z+l0Apdcko4TJ5SL0puf3AnqJx7t21cdcMRPHlEDEKAUmfS6ffo40bu3E1df7URenlNFzV3pcevW1WLoUIfmy9P+2iYHsHKQGOh5Aei63n3zz2yvXk7s3at+adRInvt27rSisLBF0O1KS894lb8K9XHxjN9R5hDNfpJfS9W2DFbjA08E5hBqP0VibXMtgW1TLma4Aau/vNDYVDTIyXGhoMCBtWuTVWwtKq6SpMRut2HOnJTG1ZzUt6WwsAGrVkltUQpYMzNdWLrU9weFls9GsADXe01774DW+zPrP9gNVSi5oZE8923ebMOkScHzfNesqcHw4Q53X9jtNqxfH/wzJT8uEfA7yhyMGqwyaYbIBPwtOGC052wiYvz4etx4oxOiKOV57t9vwZIlyQCUJ7sUFDTg9dcjO6FLDrgmTpTalpfnRFmZVVWwWlDgQGamCKdTuQh9823POkvEiBHBR9dk5eUCVq1KxpQp9SgtTVJc8ayoqN7ntbX2Y6DJT8EvXyuPROuxIpR3kNxEzg2dObMeHTu6dPuxpoaWqgVKgbZez0+xEYlBAgoNg1Ui8ksOXiTqRz7Hj2/AokW+OZhdu/ouPZuVJeKWWxpw3nlixINVpZWXgs1Ml0d97fYk2O1Jqi95V1RoHSkWIIoiSkuTsGdPtaZL4YC2L1Z/AW6wVZ8CfQbCWRFKTZDsb0nZSFJbtaCyUsD48b6Btr8rBnpUO6DI0rMCBIWPE6yIyK+m4EVb4HXTTconc8/JLhMm1CMry4WKCgueeSYFDz+cCovF/wz38GbQi2jd2oU9e3wn1gSayKYk2CxwWahLj5aXW7B3r9XvTHoldrsNubnpKCxsgUmT0lBY2AK5uemaZ5zrsZpTKM8R/HOmbSa+XtRMclywoA5z5yoH2tLtyFU7oMgItQIERQ6DVSLyS2vgoabQutUKnDgh4Nlnk1BZ6f38LnelLOUv+MzMUJcOFXD8uBQEKikocODZZ2vRurXSc4c2mzsvz4msrNBKf2l53/X8YtXjsnQoz6H1cxbNGfXBqhZkZYmaAm0uCmBsrORgTAxWicgvLYGH2hGjQF8G8u3mpZ2ys6XJTUuX+hsBVddOf0GR3W7D3LkpqKxUd0pUs3a91QrccktoAYna913vL9Zg5a201nZVK5QAV00f6CVQ+Su1gfbYsfWaymZRbAQb5Y/m546acCybiPwKns/ZRCkfVImavEiXC1i4sBZt24o++Zfr19f65L22aSOqyhFVCor8TexRQw5U/OWL5uerrTQgk8pjqQ34gr2XWvNIg636JL9Heq93r+Vz1pweqQtq+MvzVRtoFxQ4EqZMlZmp/TxF63NHEo6sEpFfgfM5pVG2CRO0jRipPcm3bSsq5mwqjXL93/9Vh7QOfOBR3uDkWeD+8kXlIExLvq2WgC8SX6yBLntv2FCLDRv0L+SvNW/YU6xn1GtdbIGMTUsFCIoejqwSUUBy8NJ8NDMnR91IanN6fBkojXKFsg588FFeZcFmgcv5ouvX16KkpM6jTm1gEyY0aHo/I/XFGqi8FYCAfwuVv8+Z0WfUBxuNBjiZykzUVoCI9ecu0XBRgDjBgsvmYOZ+0qvmoNMJ5Ob6X6lJ/jIItlKUEq3lZtQWfW/ePgB49tlazJ0rB1aB92P58mSv0kv+aF3RKJLvZax4fs7277dg8eJkCIL/FbeGDHEY4phiqaPAzHTuU7vSWzwy6qIADFbjhJlOBImM/SSJ5JeBlqBa7bKYnuQAJDNTVL2kZl6eEz16SEFlsMA2lAA9nr9YgwWBRjqmWETePyP1kxqJ+uODwWqUmeWA0IvZTgSJiv3UxAhfBsFHJoHsbBdWrKhFRYV3AKJ1Kc5IBpVGeC8jKVAQyGPKHMzYT4n444PBapSZ6YDQgxlPBImI/eTNCF8GgYNIARs21GDwYN+AT+2orOel/UgGlUZ4L2OBx5Q5sJ/MgcFqlCXaAcETgTmwn4xJKYg891wXVqywoF8/5b4KNV80UYPKSOExZQ7sJ3MwarDKagBElPCUZr/36eNEu3atUFGh/JhQZ4H7q9dJRETKGKwSEcE3iBRUlCb1V25J7QIJscQRXiIyCwarRERhCFaT1IjifUIWEcUXBqtERGEy06V9f8vLei5kwICViIyEy60SESWIQMvLyjm3xcUpcJoj7iaiBMFglYgoQTQtL6uckCuKAsrLLSgrM3AOAxElHAarREQJ4sgRFbPGNGxHRBQNDFaJiBJEu3bqCieq3Y6IKBoYrBIRJYi8PCdyclwA/AWjInJyXMjLY9IqERkHg1UiogRhtQKFhQ2Nt5oHrNLtwsIGQ5fdIqLEw2CViChBOJ1AaWlS463meanS7dLSJFYDICJDYbBKRJQgglUDAFgNgIiMh8EqEVGCYDUAIjIjBqtERAmC1QCIyIwYrBIRJQi5GoAgKAejgsBqAERkPAxWiYgShNUKlJTUAYBPwCrfLimpYzUAIjIUBqtERAmkoMCB9etrkZ3tHaxmZ4tYv74WBQWOGLWMiEiZLdYNICKi6CoocCA/34GyMiuOHBHQrp2IvDwnR1SJyJAYrBIRJSCrFejbl7mpRGR8DFaJiIhINacTHJWnqGKwSkRERKrY7TYUF6c0Li4hyclxoaSkjvnOFDGcYEVERERB2e02jB2bivJy70UjDh0SMHZsKux2jn9RZDBYJSIiooCcTqC4OAWiCDRfrlcUpdvFxSlwMg2aIoDBKhEREQVUVmZtvPSvvBSvKAooL7egrIzJq6Q/wwarNTU1GDlyJDZv3hzrphARESW0I0eUg9RQtyPSwpDB6nfffYc//vGP+L//+79YN4WIiCjhtWunvERvqNsRaWG4YHXXrl248847UVhYiJycnFg3h4iIKOHl5TmRk+PyWaZXJggicnJcyMtj0irpL+pT92pra3HkyBHFv7Vt2xZdu3bF9u3bkZKSgr/+9a8hv46QYFci5P1NtP02G/aTebCvzIH9FB02G7BoUR3GjEmFIIjuSVUA3AHsokV1sPmJKthP5hDNftLyGlEPVj/77DPccccdin97+umnccMNN+jyOllZrXR5HrNJ1P02G/aTebCvzIH9FHl33QWcdRZw333AgQNN9593noAnngCGD08L+hzsJ3MwWj9FPVjt3bs3vvnmm4i/TmXl6cYSG4lBEKQPV6Ltt9mwn8yDfWUO7Kfo6tcP+OQT5RWsKir8P479ZA7R7Cf5tdSI2wq+ooiEPCASdb/Nhv1kHuwrc2A/RY/FAlx1lXduqtr3nv1kDkbrJ8NNsCIiIiIikjFYJSIiIiLDMnQawAcffBDrJhARERFRDHFklYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGZahl1sNhyDEugXRJe9vou232bCfzIN9ZQ7sJ3NgP5lDNPtJy2sIoiiKkWsKEREREVHomAZARERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVg1UQqKysxZcoU9OzZE71798aiRYvgcDgUt/3HP/6BIUOGoFu3bsjPz8f27duj3NrEpaWfxo0bh8svvxzdu3d3/9uxY0eUW5zYjh8/joEDB2L37t1+t+HxZAxq+orHVOx8/fXXuPvuu3HllVeib9++mDVrFo4fP664LY+p2NHST4Y5nkQyjVGjRon333+/eObMGfGXX34RBw8eLD777LM+2/3444/i5ZdfLr777rtiQ0OD+MYbb4i//e1vxcOHD8eg1YlHbT+Joij27t1b3L17d5RbSLJPPvlEvOGGG8TOnTuLZWVlitvweDIGNX0lijymYqWmpkbs27ev+OSTT4p1dXXi8ePHxfHjx4sTJ0702ZbHVOxo6SdRNM7xxJFVk/j555+xZ88ezJw5E2lpaejQoQOmTJmCF1980Wfb0tJS9OzZEzfccANsNhtuuukm9OrVC6+88koMWp5YtPTTf//7X5w6dQqXXHJJDFpKpaWlmDFjBoqKioJux+MpttT2FY+p2CkvL0fXrl0xdepUJCcnIzMzEyNHjsTevXt9tuUxFTta+slIxxODVZP47rvvkJGRgXbt2rnv+81vfoPy8nL8+uuvXtt+//336Ny5s9d9F110Eb7++uuotDWRaemnf//730hPT0dRURHy8vJQUFCATZs2RbvJCevqq6/Gu+++i5tuuingdjyeYk9tX/GYip2OHTti3bp1sFqt7vvefvttXHrppT7b8piKHS39ZKTjyRaTVyXNqqurkZaW5nWffPvMmTM466yzAm6bmpqKM2fORL6hCU5LP9XX16Nbt24oKipCp06dsHv3bkybNg3p6enIz8+ParsTUdu2bVVtx+Mp9tT2FY8pYxBFEU888QS2b9+OF154wefvPKaMIVg/Gel4YrBqEi1atEBNTY3XffLt9PR0r/vT0tJQW1vrdV9tba3PdqQ/Lf00bNgwDBs2zH376quvxrBhw7Bt2zZ+sRoIjyfz4DEVe1VVVXjwwQfx5Zdf4oUXXkCXLl18tuExFXtq+slIxxPTAEyiU6dOOHnyJCoqKtz3/fDDD2jfvj1atWrltW3nzp3x3Xffed33/fffo1OnTlFpayLT0k+bNm3Ctm3bvO6rr69HSkpKVNpK6vB4Mg8eU7H1yy+/4JZbbkFVVRU2bdqkGAABPKZiTW0/Gel4YrBqEhdeeCFyc3Px6KOPoqqqCv/973+xatUqjBgxwmfboUOHYs+ePXjzzTfhcDjw5ptvYs+ePbj55ptj0PLEoqWfqqqqsHDhQvznP/+By+XChx9+CLvdjpEjR8ag5eQPjyfz4DEVO6dOncKdd96JHj16YP369WjdurXfbXlMxY6WfjLU8RTrcgSk3rFjx8Rp06aJV155pZiXlyc+9thjosPhEEVRFLt16yZu2bLFve2OHTvEoUOHit26dRMHDx4sfvjhh7FqdsJR208ul0t8+umnxeuuu0787W9/Kw4ePFjctm1bLJuesJqXQ+LxZFyB+orHVOxs2LBB7Ny5s3jFFVeI3bp18/onijymjEJLPxnpeBJEURSjHyITEREREQXHNAAiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiII6fvw4Bg4ciN27d6t+zNtvv42CggJ069YNAwcOxKZNmzS/LoNVIqIY+emnn2LdBCIiVfbt24eRI0fil19+Uf2YsrIyzJ49GzNnzsSnn36KhQsXYv78+fj88881vTaDVSKKW9dffz0uv/xydO/eHd27d0e3bt1w9dVX4y9/+QtcLpdurzN69GisXLkSADB37lzMnTs36GM++OADjB07NuTX3Lx5M66//nqf+2tqanDllVfib3/7m+Lj7r//fkyZMiWk5yaixFRaWooZM2agqKjI528ff/wxRowYgZ49e2Lw4MHYunWr+2/PPfcc7rjjDvTv3x+CICAvLw+vvvoqzj//fE2vbwt7D4iIDGz+/PkYPny4+/Y333yDu+66C2lpabj33nt1f70FCxao2u7kyZOIxAKCaWlpuOWWW/D3v/8dd9xxh9ffjh8/jrfffhvr1q3T/XWJKH5dffXVGDJkCGw2m1fA+vXXX2Py5MlYsmQJBgwYgM8++wxTpkxBZmYmrrnmGnz++efo3bs3JkyYgM8++wzt27fHtGnT0LlzZ02vz5FVIkooXbp0Qa9evfCf//wHgDQqOnv2bFx33XW49tprUVVVhV9++QWTJk1C7969cd1112H58uWor693P8ff//53DBgwAN27d8cDDzyAmpoa999mz56N2bNnu2//z//8DwYOHIju3btj+PDh2LVrF3bv3o158+ahvLwc3bt3x5EjR1BfX48nn3wSAwYMwJVXXonx48fj559/dj/PDz/8gNGjR6N79+4YMmSIu/1Kbr/9dnz//ff4v//7P6/7N23ahP/3//4f8vLy8MEHH+DWW29Fnz59cMUVV2DUqFGKaQm7d+9Gly5dvO5rvo9vvPEGhgwZgtzcXAwfPhz//Oc/3X/bu3cvhg8fjp49e2LgwIFYtGgRHA6H37YTkfG0bdsWNpvv+ObGjRsxYMAADBo0CFarFT169MAf/vAHvPjiiwCAU6dOYf369Zg8eTJ27tyJqVOnoqioCJ999pmm12ewSkQJo6GhAbt370ZZWRn69u3rvv/jjz/Gxo0bsXXrVlgsFtx1113o1KkTduzYgZdeegkff/yx+zL/rl27sGDBApSUlGDv3r244oor8O9//1vx9TZv3oxVq1Zh8eLF2LdvH2677TZMnjwZXbp0wfz585GTk4NPP/0U7dq1w/Lly/Hhhx/iueeew0cffYQrrrgCY8aMQV1dHRoaGjBx4kR06tQJZWVlWLZsGd577z2/+9mhQwf0798f//u//+u+z+Vy4ZVXXsEdd9yBw4cP47777sOECROwa9cufPjhhxBFEU8//bTm9/Qf//gH5s2bh7lz52LPnj2YNm0apk2bhu+++w4AMGvWLIwePRqffPIJ/vrXv+Ktt97C+++/r/l1iMh4Dh48iHfffRc9e/Z0/3v++edx6NAhAEBycjJuueUWdO/eHTabDYMGDUKfPn3w9ttva3odBqtEFNfmz5/vPon26dMHCxcuxN13341Ro0a5t+nXrx/atWuHs846Cx9++CHq6+sxffp0pKSkIDs7G/fdd597pGDr1q3uE67NZsPtt9+OSy65RPG1S0tLMXLkSHTv3h0WiwW///3vsWHDBqSmpnptJ4oiNm7ciOnTp6NDhw5ISUnB1KlT0dDQgA8//BCffvopDh06hFmzZiElJQWdOnXC3XffHXC/77jjDmzbtg1VVVUAgI8++ghVVVUYMmQIWrdujTfeeAPXX389qqqqcPjwYWRmZuLIkSOa398XXngBt912G3r16gWr1YrrrrsO119/PTZu3AgASElJwbZt27B9+3ZkZGTgH//4B373u99pfh0iMp727dujsLAQn3zyifvf22+/jbVr1wIAfvOb33hdlQIAp9OpOQWKOatEFNfmzZvnlbOq5JxzznH//8GDB3H8+HH06tXLfZ8oimhoaEBlZSWOHDmCSy+91OvxHTp0UHzeY8eOIScnx+u+Hj16+Gx3/PhxnDlzBvfddx8slqYxhIaGBhw8eBD19fXIzMz0CnKDTVC46qqrkJ2dDbvdjltvvRUvvfQSRo4cidTUVIiiCLvdjo0bN0IQBHTu3BlVVVWKl/mCOXjwIPbs2YOXX37ZfZ/T6UReXh4AKQ1i5cqVmD9/Po4dO4ZrrrkGjzzyCNq3b6/5tYjIWEaMGIG7774bgwYNwlVXXYVffvkFEyZMwHXXXYcHH3wQt912GxYuXIhrrrkGeXl5ePfdd7F7925Mnz5d0+swWCWihCcIgvv/27dvj/PPPx9vvfWW+76qqipUVlaidevWaN++Pf773/96Pf7w4cPo1KmTz/NmZ2e7L4fJli9fjqFDh3rdl5mZiZSUFGzYsAHdunVz379//360a9cOX331FY4fP47q6mqkp6e7XzOYP/7xj/j73/+O/v37Y+fOnZg/fz4AYNu2bXjhhRfw8ssv44ILLgAALFy4EN9++63Pc1itVgBAfX09kpOTAQAnTpxAZmam+/0aNmwYJkyY4H5MeXk5UlNTUVdXh++//x6PPPIIbDYbfvzxRxQXF+PRRx/FihUrgrafiIztiiuuwLJly7Bs2TLcd999SEtLQ0FBgTsYveWWW2CxWPDnP/8ZBw4cwLnnnovly5f7/OAPhmkAREQerrvuOlRXV2PdunWor6/Hr7/+igceeABFRUUQBAG33HIL3nvvPWzfvh0OhwOlpaV+JwsMHz4cr7zyCj7//HO4XC68+uqrePHFF93BaU1NDRwOBywWC0aMGIGlS5fi8OHDcLlcKC0tRUFBAX7++Wd0794d/+///T+UlJSgpqYGP//8MzZs2BB0XwoLC/Hzzz/jiSeewA033OAezTx9+jQsFot7lHXHjh147bXX0NDQ4PMc559/Pmw2G9544w0AUn5vWVmZ++9/+MMf8Le//c1dN/Hf//43hg8fDrvdDkEQMH36dGzYsAEOh8M9SUMOdInIfL755hv07t3bffvaa6/F5s2bsW/fPvzzn//E7Nmz3T9sAek89Prrr+PTTz+F3W7HwIEDNb8mR1aJiDy0bNkSzz33HB577DGsW7cOLpcLvXv3xurVqwEAubm5WLx4MR577DEUFRUhLy/Pa7KWpyFDhuDXX3/FzJkzcezYMVx00UV49tln0bp1a/Tq1QtZWVno1asXNm7ciAceeAArV67E7bffjpMnT6JDhw5YsWKFOx927dq1mDt3Lq666iq0adMGAwYMwDvvvBNwX1q0aIHhw4fjf/7nf/DSSy+57y8sLMS+ffswePBgWK1WdOzYEXfeeSdefPFFn/yyc845Bw899BBWrVqFhQsXIi8vD8OHD3dXQLjxxhtx5swZPPTQQygvL0dGRgbuuusujB49GoIgYPXq1fjLX/6CZ555BlarFf369cOMGTNC7h8iSjyCGIlCf0REREREOmAaABEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWP8frtqmz+XHfi8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Calculate residuals\n", + "residuals = y_test - y_pred\n", + "\n", + "# Plot residuals vs predicted values\n", + "plt.figure(figsize=(8, 6))\n", + "plt.scatter(y_pred, residuals, color='blue')\n", + "plt.title('Residuals Plot')\n", + "plt.xlabel('Predicted Values')\n", + "plt.ylabel('Residuals')\n", + "plt.axhline(y=0, color='red', linestyle='--')\n", + "plt.grid(True)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This plot is useful in understanding the assumptions of linear regression and detecting violations. The ideal case is to see a random distribution of residuals around the y-axis, centered around zero. This suggests that the residuals are normally distributed, and there are no systematic patterns in the errors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# POLYNOMIAL REGRESSION." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Polynomial regression is a type of regression analysis where the relationship between the independent variable (or variables) and the dependent variable is modeled as an nth degree polynomial. Unlike simple linear regression, which assumes a linear relationship between the variables, polynomial regression can capture more complex relationships by introducing polynomial terms.\n", + "\n", + "In polynomial regression, the relationship between the independent variable \n", + "𝑥\n", + "x and the dependent variable \n", + "𝑦\n", + "y is modeled as:\n", + "\n", + "𝑦\n", + "\n", + "=\n", + "𝛽\n", + "0\n", + "+\n", + "𝛽\n", + "1\n", + "𝑥\n", + "+\n", + "𝛽\n", + "2\n", + "𝑥\n", + "2\n", + "+\n", + "𝛽\n", + "3\n", + "𝑥\n", + "3\n", + "+\n", + ".\n", + ".\n", + ".\n", + "+\n", + "𝛽\n", + "𝑛\n", + "𝑥\n", + "𝑛\n", + "+\n", + "𝜀\n", + "y=β \n", + "0\n", + "​\n", + " +β \n", + "1\n", + "​\n", + " x+β \n", + "2\n", + "​\n", + " x \n", + "2\n", + " +β \n", + "3\n", + "​\n", + " x \n", + "3\n", + " +...+β \n", + "n\n", + "​\n", + " x \n", + "n\n", + " +ε" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polynomial Model (Degree 2)- MSE: 35637716070.71762\n", + "Polynomial Model (Degree 2)- R-squared: 0.7321925161881991\n" + ] + } + ], + "source": [ + "features = ['bathrooms', 'sqft_living',\n", + " 'floors', 'waterfront', 'condition', 'grade',\n", + " 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15']\n", + "target = 'price'\n", + "\n", + "# Load your housing data (assuming it's already loaded into 'housing_data' DataFrame)\n", + "\n", + "# Keep only numeric columns\n", + "housing_data_numeric = only_numeric(housing_data)\n", + "\n", + "# Check if all features exist in the DataFrame\n", + "missing_features = [feature for feature in features if feature not in housing_data_numeric.columns]\n", + "if missing_features:\n", + " print(\"The following features are not present in the dataset:\", missing_features)\n", + "else:\n", + " # Extract features and target variable\n", + " X = sm.add_constant(housing_data_numeric[features])\n", + " y = housing_data_numeric[target]\n", + " \n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "\n", + " # Polynomial Regression\n", + "# Choose the degree of the polynomial\n", + "degree = 2\n", + "\n", + "# Create polynomial features\n", + "poly = PolynomialFeatures(degree)\n", + "X_train_poly = poly.fit_transform(X_train)\n", + "X_test_poly = poly.transform(X_test)\n", + "\n", + "# Build a polynomial regression model\n", + "poly_model = LinearRegression()\n", + "poly_model.fit(X_train_poly, y_train)\n", + "\n", + "# Make predictions on the test set\n", + "y_pred_poly = poly_model.predict(X_test_poly)\n", + "\n", + "# Evaluate the polynomial model\n", + "mse_poly = mean_squared_error(y_test, y_pred_poly)\n", + "r2_poly = r2_score(y_test, y_pred_poly)\n", + "print(\"Polynomial Model (Degree {})- MSE:\".format(degree), mse_poly)\n", + "print(\"Polynomial Model (Degree {})- R-squared:\".format(degree), r2_poly)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mean Squared Error (MSE): This value represents the average squared difference between the actual house prices and the predicted prices by the polynomial model.\n", + " A lower MSE indicates better performance, and in this case, the MSE is lower than the previous model's MSE, suggesting that the polynomial model fits the data better.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " \n", + "Generally,The \n", + "𝑅\n", + "2\n", + "R \n", + "2\n", + " value for the first model is 0.641, indicating that approximately 64.1% of the variance in housing prices is explained by the independent variables included in the model. On the other hand, the \n", + "𝑅\n", + "2\n", + "R \n", + "2\n", + " value for the polynomial model of degree 2 is 0.732, suggesting that approximately 73.2% of the variance in housing prices is explained by this polynomial model.\n", + "\n", + "Comparing the two \n", + "𝑅\n", + "2\n", + "R \n", + "2\n", + " values, we can see that the polynomial model of degree 2 explains more variance in housing prices compared to the first model. This suggests that the polynomial model provides a better fit to the data and captures more of the variability in housing prices." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# RESIDUALS" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAIdCAYAAADI2D7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/kUlEQVR4nO3deXxTVfo/8M9N0o1SbWkR2hkcRFl+LiO1LFUEVISZagELjIyOiKyyKjCAKBVkcwEBBVkFdBxRHKFFzAAuI4pWWrDyVURxGQdRW6oti7SlTZPc3x/hpkmz3Ztmubn5vF8vXtrk3OQ0OU2ee+5zniOIoiiCiIiIiCjC6cLdASIiIiKiQGBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIi1eIeQkSkBANbIop6I0aMQOfOnZ3+denSBVlZWfjLX/6Cf//73wF/zoKCAnTu3Bk//fSTxzY//fQTOnfujIKCgoA//5w5c3DLLbc06zFuueUWl9ftmmuuQf/+/bF8+XLU19c7tZ0zZ46ix//Pf/6Dhx56qFl9JKLoYgh3B4iI1ODKK6/E/Pnz7T9bLBacPHkSL774ImbMmIGkpCT06dMnYM9300034bXXXsMll1wSsMcMh759+2LSpEn2n+vr61FSUoK1a9fi559/xooVK/x+7BdffDEAPSSiaMLAlogIQMuWLdG1a1eX2/v27Yvrr78eO3bsCGhg26pVK7Rq1SpgjxcurVq1cnndevbsiZMnT6KgoABz5syJ+OCdiCIHUxGIiLyIjY1FTEyMy+2vv/46br/9dlx99dW46aabsHr1apjNZvv9p06dwsyZM9GrVy9cc801GDx4MHbu3Gm/310qwttvv41Bgwbhj3/8I/Ly8nDs2DGn5ywpKUHnzp1RUlLidPuIESMwYsQI+891dXVYvnw5BgwYgKuvvhrXXXcdRo0aha+++srj73n06FGMHDkSWVlZyMzMxH333YfPPvtM9uvU1NVXXw1RFFFeXu72/nPnzuGJJ57ArbfeimuuuQa5ubnYvn270+908OBBHDx40O3vTETkDmdsiYhgW6TkGJhKqQhr1qxBTU0NBg8ebL9vw4YNWLlyJe655x48/PDD+Oqrr7B69WqUl5fj8ccfBwDMmjULVVVVWLBgARITE7Fr1y489NBDSE9PR8+ePV2e/7333sMDDzyA22+/HTNnzsSxY8cwa9Ysv36X2bNn49ChQ/j73/+OSy+9FMePH8ezzz6L6dOnY8+ePRAEwal9dXU1xo4di549e2LVqlVoaGjAunXrMGbMGOzbtw9JSUmK+/C///0PANCuXTuX++rq6nD33XejsrISU6dORbt27fDuu+9i7ty5qKysxIQJEzB//nz77z9//nxcccUVfrwSRBRtGNgSEQE4dOgQrrrqKqfbBEFAp06d8Oyzz9oXWp07dw7r1q3D8OHDkZ+fDwC48cYbkZycjPz8fIwaNQodO3bEwYMHMWnSJNx6660AbJfnk5OTodfr3T7/mjVrcNVVV2H58uUAYE97kH6Wy2QyoaamBo8++ihuu+02AECPHj1QU1ODJ598Er/++qtLasB3332HU6dOYcSIEcjKygIAdOjQAdu2bUN1dbXXwLbpCUFVVRX279+Pbdu2IScnx226RUFBAb755hu88sor9ufr3bs3zGYz1q5di7/+9a+44oor0LJlSwBwmyJCROQOA1siIgBXXXUVFixYAACoqKjAs88+i4aGBqxcuRKXX365vd3hw4dx/vx53HLLLU4BnRT4FhUVoWPHjujZsydWr16NY8eOoW/fvujTp4/HFf51dXU4evQoHnjgAafbc3JyFAe2sbGx2Lx5MwDgl19+wQ8//IDvv/8e+/btAwA0NDS4HNOxY0e0atUKEydORE5Ojj2vePbs2T6fb+fOnU4pFgBgMBjQv39/PPbYY26POXjwIH73u9/Zg1rJoEGDsH37dnz22Wfo27evjN+WiMgZA9smTp06heHDh2Px4sVuLxe689Zbb2H16tX46aef0Lp1a9x///0YNmxYkHtKRIGUmJiIa665BgBwzTXXIDMzE4MHD8bo0aNRWFhon3k8c+YMAGD8+PFuH+eXX34BAKxcuRLr16/Hnj17sHfvXuh0Otxwww147LHHXC7Pnz17FqIousxu+rvo6sMPP8Tjjz+O77//HomJiejcuTMSExMBuK8Lm5iYiK1bt2LdunXYvXs3tm3bhoSEBAwaNAhz585FXFycx+e6+eabMXnyZAC2Ge6EhAT87ne/Q3x8vMdjzp49i7S0NJfbpdt+++03Rb8vEZGEga2D0tJSzJkzBydOnJB9THFxMebMmYNnnnkGffr0QUlJCcaNG4dOnTrhj3/8YxB7S0TBlJqainnz5mHq1KlYsmSJfeb0oosuAgA8/fTTaN++vctxUnCWlJSEWbNmYdasWfj+++/xn//8B2vXrsWCBQuwadMmp2OSk5Oh0+lQWVnpdLsUREuk3Fir1ep0e01NjT1wPXHiBCZPnox+/fphw4YNuPTSSwEAW7duxYcffujx9+3QoQOWLVsGi8WCzz//HG+88QZeffVV/P73v/cYxEt9l04I5Lr44ovxww8/uNz+66+/AgBSUlIUPR4RkYRVES4oLCzEzJkzMX36dJf7Pv74YwwbNgzdunXD7bffjl27dtnve/HFF3Hvvfeib9++EAQB2dnZ2LFjh/3LhIgi14ABA9C7d28YjUb7qvxrr70WMTExqKiowDXXXGP/FxMTg+XLl+Onn37Czz//jL59+2Lv3r0AbEHjuHHjcMMNN+DkyZMuzxMXF4fMzEy8/fbbTjOq7733nlM7KefUsdLA2bNn8d///tf+8xdffIH6+nrcf//9Tp9DUlDrbsZ27969yM7Oxq+//gq9Xo/MzEw89thjuOiii9z2t7m6d++On3/+GaWlpU6379q1CzExMfZJAZ2OX1FEpAxnbC+48cYbMXDgQBgMBqfg9tixY5g4cSKWLVuGfv364bPPPsOkSZOQkpKC3r174/PPP0fPnj0xfvx4fPbZZ2jbti2mTp2KTp06hfG3IaJAeeSRRzBo0CAsXrwYhYWFSElJwdixY/Hss8+iuroaPXv2tOfkCoKALl26ICkpCW3btsXixYtRXV2NSy+9FF988QU++OAD3H///W6fZ8aMGRg5ciSmTJmC4cOH4/jx41i3bp1Tm86dOyM9PR3PPfcckpKSoNPpsHHjRiQkJNjbXHXVVTAYDFi2bBlGjx4Nk8mEgoICvP/++wCA2tpal+e+7rrrYLVaMXnyZIwfPx6JiYnYs2cPzp07hwEDBgTuxbxgyJAheOWVVzBlyhQ88MADaNeuHd577z3s2LEDU6ZMsc+KX3TRRTh8+DAOHDiAK6+8EhdffHHA+0JE2sLT4Qtat24Ng8E1zt+2bRv69euHAQMGQK/X47rrrsOdd96JrVu3ArDNlmzevBkTJ05EUVERJk+ejOnTpzer/iMRqUeHDh0wYsQIfPPNN3j55ZcBANOmTcOcOXPwzjvvYNy4cVi2bBmysrLw8ssv2ysIPPfcc+jduzeeffZZjB49Gq+++iqmTJliz0dtqlu3bnj++edRUVGBKVOmYNu2bfbSYRK9Xo9Vq1bhkksuwYwZM7B48WLk5OQ4BZ9/+MMfsHz5clRUVGDixImYN28eAOCf//wnBEHAJ5984vLcl1xyCTZt2oSkpCTMnTsX999/P44ePYrVq1cjOzs7IK+jo4SEBPzzn//ELbfcglWrVmHixIkoLS3FkiVLMHXqVHu7v/3tb4iJicG4ceOwf//+gPeDiLRHEN1dl4pynTt3xksvvYSePXti3LhxKC4udlo8YbFYcOmll+KNN95AZmYm7r33XqdZ3vHjx+OKK66QtaKYiIiIiAKDqQg+tG3bFnl5eVi4cKH9tl9++cWep3b55ZfDZDI5HWOxWNzmsRERERFR8DAVwYdhw4bBaDTio48+gtVqxfHjx3HPPfdgy5YtAIC77roLr776Kj7++GNYrVa89dZbKCkpQW5ubph7TkRERBRdOGPrw7XXXosVK1ZgxYoVePDBB5GQkIDc3FzMmDEDADB06FDodDo88cQT+Omnn/C73/0OK1eudNnBiIiIiIiCizm2RERERKQJTEUgIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCqyJcUFV1Dv4soxMEIDU1ye/jSVs4HqgpjglyxPFAjjge5JNeK18Y2F4gimjWoGru8aQtHA/UFMcEOeJ4IEccD4HDVAQiIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNMIS7A0RE4WKxAMXFelRUCGjTRkR2tgV6fbh7RURE/mJgS0RRyWg0ID8/DmVljReuMjKsWLy4Hrm55jD2jIiI/MVUBCKKOkajAWPGxKOsTHC6vbxcwJgx8TAaec5PRBSJGNgSUVSxWID8/DiIIgA4B7aiaPs5Pz8OFkvo+0ZERM3DwJaIokpxsf5C+oHg9n5RFFBWpkNxMZNtiYgiDa+3EVFUqahwH9D6246ISAu0spiWgS0RRZU2bcSAtiMiinRaWkzLVAQiiirZ2RZkZFghCO4DV0EQkZFhRXY2k2yJSPu0tpiWgS0RRRW9Hli8uB4AXIJb6efFi+sj8hIcEZESWlxMy8CWiKJObq4ZmzfXIT3dObBNTxexeXNdxF16IyLyhxYX00bW/DIRUYDk5pqRk2PWxGIJIiJ/aHExLQNbIopaej3Qq1cEXWMjIgogLS6mZSoCERERURTS4mJaBrZEREREUUiLi2kZ2BIRERFFKa0tpmWOLREREVEU09JiWga2RERERFFOK4tpmYpARERERJqgyhnbY8eO4amnnsLRo0cRExODXr16Yc6cOWjVqpVL27Fjx6KkpAQGQ+Ov8uyzz6JPnz6h7DIRERERhZnqZmzr6uowduxYZGZm4qOPPoLRaMSZM2fwyCOPuG3/xRdfYPPmzTh8+LD9H4NaIiIiouijusC2rKwMXbp0weTJkxEbG4uUlBQMHz4chw4dcmn7448/4uzZs7jyyivD0FMiIiIiUhPVpSJ06NABmzZtcrrtrbfewlVXXeXS9siRI0hMTMT06dNx5MgRpKWl4b777sOwYcMUP6/g525x0nH+Hk/awvFATXFMkCOOB3LE8SCf3NdIdYGtI1EU8cwzz2Dfvn14+eWXXe43mUzo2rUrpk+fjo4dO6KkpARTp05FYmIicnJyFD1XampSs/ra3ONJWzgeqCmOCXLE8UCOOB4CRxBFUZUbAFdXV+Phhx/G0aNHsW7dOnTu3FnWcQsWLEBVVRVWrVql6Pmqqs7Bn1dCEGwD0t/jSVs4HqgpjglyxPFAjjge5JNeK19UOWN74sQJjBs3DhkZGdi+fbvbaggAsH37dpfZWZPJhLi4OMXPKYpo1qBq7vGkLRwP1BTHBDnieCBHHA+Bo7rFY2fPnsXIkSNx3XXXYfPmzR6DWsA2q7to0SJ8+eWXsFqteP/992E0GjF8+PAQ9piIiIiI1EB1M7YFBQUoKyvDnj17sHfvXqf7Dh8+jMzMTCxYsACDBg3CyJEjUVtbiylTpqCqqgrt2rXDU089hW7duoWp90REREQULqrNsQ21ykr/c2zT0pL8Pp60heOBmuKYIEccD+SI40E+6bXyRXWpCERERERE/mBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpAgNbIiIiItIEBrZEREREpAkMbImIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpAgNbIiIiItIEBrZEREREpAkMbImIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmqDKwPbYsWMYNWoUevTogV69emH27Nk4deqU27YffPABBg4ciK5duyInJwf79u0LcW+JiIiISA1UF9jW1dVh7NixyMzMxEcffQSj0YgzZ87gkUcecWl7/PhxTJ06FQ8++CA++eQTTJ06FdOmTUNFRUUYek5ERERE4aS6wLasrAxdunTB5MmTERsbi5SUFAwfPhyHDh1yaVtYWIhu3brh1ltvhcFgwG233Ybu3bvjtddeC0PPiYiIiCicDOHuQFMdOnTApk2bnG576623cNVVV7m0/e6779CpUyen26644gocO3ZM8fMKguJDnI7z93jSFo4HaopjghxxPJAjjgf55L5GqgtsHYmiiGeeeQb79u3Dyy+/7HJ/TU0NEhISnG6Lj49HbW2t4udKTU3yu5+BOJ60heOBmuKYIEccD+SI4yFwVBvYVldX4+GHH8bRo0fx8ssvo3Pnzi5tEhISUFdX53RbXV0dEhMTFT9fVdU5iKLyfgqCbUD6ezxpC8cDNcUxQY44HsgRx4N80mvliyoD2xMnTmDcuHHIyMjA9u3b0apVK7ftOnXqhKNHjzrd9t133+Hqq69W/JyiiGYNquYeT9rC8UBNcUyQI44HcsTxEDiqWzx29uxZjBw5Etdddx02b97sMagFgEGDBuHgwYPYvXs3zGYzdu/ejYMHD2Lw4MEh7DERERERqYHqAtuCggKUlZVhz549yMrKQmZmpv0fAGRmZmLXrl0AgMsvvxxr1qzBhg0b0L17d6xduxarV6/GZZddFs5fgYiIiIjCQBBFTn4DQGWl/zm2aWlJfh9P2sLxQE1xTJAjjgdyxPEgn/Ra+aK6GVsiIiIiIn8wsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpAgNbIiIiItIEBrZEREREpAkMbImIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpAgNbIiIiItIEBrZEREREpAkMbImIiIhIExjYEhEREZEmqDqwPXXqFPr374+SkhKPbcaOHYtrrrkGmZmZ9n/79+8PYS+JiIiISA0M4e6AJ6WlpZgzZw5OnDjhtd0XX3yBzZs3o0ePHiHqGRERERGpkSpnbAsLCzFz5kxMnz7da7sff/wRZ8+exZVXXhminhERERGRWqlyxvbGG2/EwIEDYTAYvAa3R44cQWJiIqZPn44jR44gLS0N9913H4YNG6b4OQXBv75Kx/l7PGkLxwM1xTFBjjgeyBHHg3xyXyNVBratW7eW1c5kMqFr166YPn06OnbsiJKSEkydOhWJiYnIyclR9JypqUn+dDVgx5O2cDxQUxwT5IjjgRxxPASOIIqiGO5OeNO5c2e89NJL6Nmzp6z2CxYsQFVVFVatWqXoeaqqzsGfV0IQbAPS3+NJWzgeqCmOCXLE8UCOOB7kk14rX1Q5YyvX9u3bXWZnTSYT4uLiFD+WKKJZg6q5x5O2cDxQUxwT5IjjgRxxPASOKhePyVVdXY1Fixbhyy+/hNVqxfvvvw+j0Yjhw4eHu2tEREREFGIRN2ObmZmJBQsWYNCgQRg5ciRqa2sxZcoUVFVVoV27dnjqqafQrVu3cHeTiIiIiEJM9Tm2oVJZ6X+ObVpakt/Hk7ZwPFBTHBPkiOOBHHE8yCe9Vr5EdCoCEREREZGEgS0RERERaQIDWyIiIiLShIhbPEZEwWGxAMXFelRUCGjTRkR2tgV6fbh7RUREJB8DWyKC0WhAfn4cysoaL+JkZFixeHE9cnPNYeyZbwzIiYhIwsCWKMoZjQaMGRPvsiK3vFzAmDHx2Ly5TrXBbSQH5EREFHjMsSWKYhYLkJ8fdyGoFZzuE0Xbz/n5cbBYQt83X6SAvKzMud9SQG408rydiCjaMLAlimLFxfoLs52C2/tFUUBZmQ7Fxeq6th/JATkREQUPA1simSwWoKhIj4ICA4qK9JoImioq3Ae0/rYLlUgNyImIKLh4rY5IBq3mcrZpI2+rG7ntQiVSA3IiIgouztgS+aDlXM7sbAsyMqwQBPeBqyCIyMiwIjtbXdPTkRqQExFRcDGwJfJC67mcej2weHE9ALgEt9LPixfXq658VqQG5EREFFwMbIm8iIZcztxcMzZvrkN6unOQmJ4uqrbUV6QG5EREFFyRew2VKASiJZczN9eMnBxzRG10IAXkttznxtc/PV2M+NxnIiLyDwNbIi/UlssZzF229HqgV6/IunQfiQE5EREFDwNbIi+kXM7ycsGeU+tIEESkp4shyeXUamWG5orEgJyIiIKDObZEXqgll1PLlRmIiIgChYEtkQ/hXlyl9coMREREgcJpHiIZwpnL2ViZwT1bZQYBxcV6XpInIqKoxhlbIpn0elvObZs2IioqbIFkKGZJo6UyAxERUXNxxpZIpnAt3lJbZQYiIiK14owtkQzhXLzFXbaIiIjkYWBL5EO4F2+ppTJDUxYLUFSkR0GBAUVFoUnLICIi8oaBLZEPathWN9yVGZoyGg3IykpEXl4LTJiQgLy8FsjKSmTZMSIiCit+CxH5oJbFW2rZZUtKyxCbZEZIaRnhCLSJiIgABrZEPqlp8Va4d9nylZYhCCLy8+OQk2PmtrZERBRyTEUg8oGLtxqpIS2DiIjIEwa2pDmBXtSk1sVb4aCWtAwiIiJ3GNiSpgRrUZPaFm+Fi5rSMoiIiJpiji1pRrAXNall8VY4SWkZ5eWCvdSZI0EQkZ4uRkVaBhERqQ9nbEkTQlVrVlq8NWSIGb16RVdQCzAtg4iI1I2BLWkCFzWFDtMyiIhIrZiKQJrARU2hxbQMIiJSIwa2pAlc1BR64a6pS0RE1BRTEUgTWGuWiIiIGNiSJnBRExERETGwJc3goiYiIqLoxhxb0hQuaiIiIopeDGxJc7ioiYiIKDoxFYGIiIiINIGBLRERERFpAlMRKKQsFjD/lYiIiIJC1TO2p06dQv/+/VFSUuKxzQcffICBAweia9euyMnJwb59+0LYQ1LCaDQgKysReXktMGFCAvLyWiArKxFGI8+viIiIqPlUG9iWlpZi+PDhOHHihMc2x48fx9SpU/Hggw/ik08+wdSpUzFt2jRUVFSEsKckh9FowJgx8Sgrc97StrxcwJgx8QxuVc5iAYqK9CgoMKCoSA8L1+YREZEKqTKwLSwsxMyZMzF9+nSf7bp164Zbb70VBoMBt912G7p3747XXnstRD0lOSwWID8/DqIIAM6BrSjafs7Pj2OwpFKcaSciokihym+mG2+8EQMHDoTBYPAa3H733Xfo1KmT021XXHEFjh07pvg5BcF3G2/H+Xt8NCgp0aOszPM5lCgKKCsTUFKij/gyXVobD9JMu9hkp2Jppn3LFm584YvWxgQ1D8cDOeJ4kE/ua6TKwLZ169ay2tXU1CAhIcHptvj4eNTW1ip+ztTUJMXHBPJ4LZP7dtTWtkBaWnD7EipaGA8WC/Doo3AJagHbyYggAPPmJWDECHABoAxaGBMUOBwP5IjjIXBUGdjKlZCQgLq6Oqfb6urqkJiYqPixqqrOuf0C90UQbAPS3+OjQYsWegAtZLSrRWVl5M/YamU8FBXp8dNPnt83UQR+/BEwGmsjfqY9mLQ0Jqj5OB7IEceDfNJr5UtEB7adOnXC0aNHnW777rvvcPXVVyt+LFF0PzMVquO1rGdPCzIyrCgvF+w5tY4EQUR6uoiePS2aeQ21MB5OnpR33efkSSHif9dQ0MKYoMDheCBHHA+Bo8rFY3INGjQIBw8exO7du2E2m7F7924cPHgQgwcPDnfXyIFeDyxeXA/AFsQ6kn5evLiel7NVpk0beZ+ycttpGatGEBGpQ8QFtpmZmdi1axcA4PLLL8eaNWuwYcMGdO/eHWvXrsXq1atx2WWXhbmX1FRurhmbN9chPd05CEpPF7F5MxcgqYkUpJWXC0hNtbqcjEgEQURGhhXZ2dEdxbFqBBGRegiiyMlvAKis9D/HNi0tye/jo41adx4LVL8ifTwYjQbk58c1qWIh/SKNqQlSsBvtJyXOVSPcvz4DB5pljwm1/n1Q4ET6ZwQFFseDfNJr5QunFCik9HqobqGRu2AuI8OKxYvroypo81Tay530dDHqXp+mfNVnFgQR+flxuO02ea8RxyERUfNFXCoCUSBxRzQbb0Ga9HNqqhVr155HYWEtSktroj7YKi6W6jO7X2Rnq8+sQ3Gx7ylXjkMiosBgYEtRizuiNfIVpAECqqp0SE8X0asXL48DQEWFvKoRvtpxHBIRBQ4DWwoJNa4aD+SMW6QLVJAWTQJVNYLjkIgocHh9i4JOrbmDDOYaRWJpr3AvtMrOllef2VfVCI5DIqLA8WvG9osvvgAA/Pbbb1i2bBk2b94Mszm68+3IPTXnDkZiMBcsUpAWKaW91FBiK1D1mTkOiYgCR3Fgu27dOowcORIAsHjxYuzbtw+FhYV46qmnAt45imxqzx2MtGAumCJpEw01nSwFoj4zxyERUeAoDmyNRiO2bt0Kk8mEt956CytWrMA//vEP7N69Oxj9owim9tzBSArmQiESNtFQ48lSbq4ZpaU1KCysxfr1yqtGcBwSEQWO4qmNX375BV26dMGBAweQlJSELl26AADOnz8f8M5RZIuE3EEpmLPlADf2I1rrtObmmpGTY1btJgGNJ0vu2U6WBBQX60NaL7m59Zk5DomIAkNxYNumTRscOnQIO3fuxPXXXw/ANovbrl27gHeOIluk5A6qPZgLNTVuoiGJhJMlf3EcEhE1n+LAdurUqRg7dizi4+Px6quv4sCBA3j44YexevXqYPSPIligVo2HgpqDOWoUKSdL/uI4JCJqHsWB7Z/+9CfcdNNNAIC4uDhccskl+M9//oNLLrkk0H2jCCflDo4ZEw9BEJ2CW+YO+ifcJa7CLZJOlpoj2t9nIiJ/yQ5sDx065PX+H374Ad27d292h0hbmDsYOGqtBxxK0XCyxPeZiMh/giiKsq7ZSYvEPD6QIOCrr74KSKfCobLyHOS9Es4EAUhLS/L7+GgRLTNQwRoPUomrptUApGBOSdUCLbwXkRT8KRkTgXyfSZ34nUGOOB7kk14rn+3kBrZax8CWAkHueFASXFosQFZW4oUZb8+X30tLa3wGqJEUEPoSKQG6kjERqPeZ1IvfGeSI40E+uYGtX5XMz58/j7Nnz8JqtQIAGhoa8M0336B///7+PBxRVFEaXAaqxJXzbGAjaWODSJsN1NpCK7WWMiMiiiSKA9sdO3Zg0aJFqK+vd7o9NTWVgS1FlHDM+PkTXAaixJWvjQ0EQUR+fhxycsycDQwTLZcyIyIKFcWB7fr16zFt2jQkJibi0KFDGDlyJJYtW4ZevXoFo3+kUhYL8PHHehQV6SGKtpmzXr3CcynYnwA1EJfk3T2vwctflL/BZSBKXHE2UP20XsqMiCgUFG+p++uvv2LkyJG4/vrrceLECVx11VV4/PHH8frrrwejf6RCRqMBV16ZiKFDW2DFijisXBmHYcNa4MorE2E0+pXd0qy+ZGUlIi+vBSZMSEBeXgtkZXnvx65dBoweHe9UpQFonDWV8zv487z+bjEslbhqut2qRBBEZGRYvZa44myg+gXifSYiinaKA9vU1FQ0NDQgPT0d//vf/wAAGRkZqKqqCnjnSH2MRltQePq0awB0+rSA0aPlBYYSiwUoKtKjoMCAoiI9LAq+s6XL+koC1F27DBg/Ph624NJ11hSwzap664e35x09Oh4FBe6P8ze4lEpcAXAJeuSWuAr3bGBz3udoEYj3mYgo2ikObP/4xz9i3rx5qKurQ/v27fHqq6+isLAQycnJQegeqYnFAsydG3fhJ3dBmu22uXO9B4YSf2Y9Hfvi7bI+4BqgGo0GjB0bD6vVc4DpadZUyfNOmwa3v39zgkupHnB6uvN96emirEVf4ZwNbM77HG2a+z4TEUU7xd8sDz/8MPLz81FTU4NZs2ZhwoQJqKurwxNPPBGM/pGKFBfrUV7u61xIQHl58FfoK80ZlQJSuTzNrsp53h9/tLW74Qbn37+5u2bl5pqRk2P2a8FbuDY20FolhlBozvtMRBTtFAe2l1xyCTZu3Gj//+LiYjQ0NCAhISHgnSN1UZJ/GewV+kov6/sKSJvyNLvanFzVQASXzSlxFepd4FiJwX9aK2VGRBQqigPbnTt3erzvjjvuaEZXSO2U5F8Ge4W+0sv68oNyERkZnmdNm5urGu4thuXMBgaqDBorMRARUagpDmxXrVrl9PPZs2dx/vx5ZGVlMbDVEHfBTXa2Benptkvpnlb2A7bL6d27W1BU5D44CsQKfaWX9ZUE5d5mTbOzLUhJsV5YPOeufyJSUwWvuarhvtTsbTYwkDuTsRIDERGFmuLA9r333nP6WRRFPP/88zhz5kyg+kRh5i24WbKkHqNHxwMQ4RrY2YLHIUMa0KNHosfgKBAr9JVe1vcVCAOATidi48bQ5HwqudQcqo0kAp0PG+5KDEREFH0UV0VoShAEjBkzBm+88UYg+kNh5quEFgBs2VKHlBTXYCQlRcTkySasXRvrtQRXoFboK1lB7q2Uki0gFzFmjAmpqaLXig7FxXqcPu25Fi0goKoKHqsqKBWqigL+VJnwhXVZiYgo1Jod2ALA//73PwgCLydGOrnBTU6OGV9+WYMdO2oxY0Y9pk+vx/bttThypAaFhTE+jweU1+v0VAc1N9eM0tIaFBbWYv368ygsrEVpaY3bmUVPgbBOZ+vv88/H+QwcQ3l53Z86vf7yd/MIb1iXlYiIQk3xN+OIESOcgtiGhgZ8/fXXGDRoUEA7RqGndLFP7962f5KiIvnHK1lE5SvvU8llfcf81j17DNi4MQZWq3ObsjLbRgubNtVh0CDnAFnp5XV/0wh8n2QEtqJAsAL2cC+WIyKi6KI4sO3Zs6fTzzqdDvfddx9uvfXWgHWKwkNu0FJeLrhdGKY0OJKziMpX3uesWSZ06GBVXNM1O9uCyZPjL9zStN+2n207lDkHt75zdRsXjzVnIZbv8mTyKgrIDayDmQ8b7sVyFD6hyg8nIpIoDmynTJkSjH6QCsgNWh59NA5VVa7Bmj/BkbfZVjmzlkuXNm664C5o9PTFKqeurdUqYOzYeGzZ0pivK11e97yADqiqAhYtisXatbGyFmK566Ot8oRv3topCaybu3mEL6zLGn0CWWGDiEguQRSbfvW69/DDD/tsE8m7j1VWnnMJQuQQBCAtLcnv49XEYgGyshK9zkY2cq1CMGGCCRs2xHrcslYKjkpLa2TN2hQV6ZGX10J2/6V+SEGjty9WkwmYMEHOpiK2uraOfbZYgCuvTPRS8stWYcGW4uA5SCwtrcGePe772KePGdu2xfrs3aJFdbj//gaX251nul3fK3cVDqRjALitMsFdwvyjpc8IufwZf9EiGscDecbxIJ/0WvmiePHY6dOnsWvXLpw7dw7Jycmor6+H0WiEyWTyq6OkHnIW+1z4yek+URQgisC6dbEu+aoOrQAoWyykNJ/TcYHarl3eF159/73coe+6aMp3ZQRcCO69L8RauTLWbR/LygRs2xYjq3epqa6fhP5WOFBSZYLIk2BU2CAikkt2KoI0GzthwgSsWrUK/fr1s9/30UcfYf369YHvHYWcp8U+qakiKiu953x6o9NBcY1Yf/I5pQVqDz3kfSvXl1+OkbHZRCPHvOKvvw5IMRFs3Oi+goSc/kiaBqFA83b8Yj4sNRd3nCOicFKcY1tSUoK1a9c63Xb99ddj6tSpAesUhZe74Ka8XMCkSXIu3btntQpuZxe9kfI+bQG2stlbxxzgpqQv1tmz67F0qe/L/YBrXnEgnDkj5/Hc5/F62/q3uRUOojEfloucAoc7zhFROCn+pv7d736HPXv2ON1WUFCAP/zhDwHrFIVe0zqxgC24GTLEjF69LG5nBpVS+kXmmBoRDB06WLFpUx10Om+/m23zhqoqd7useT5OpxM9bkwAiEhO9piz4aEPzj8Lgue0Dn9KkrmrERwtQrUJRrRQ445z0T7GiaKJ4k/u6dOn48EHH8TWrVuRnp6On376Cd988w1TESKYnNXLcrak9cXfUlGzZ5ucqh94Zwv65PSxTRvxwsxkHcaOdVf6y3Nese1nKbhtujhGwMSJth3Ymm73Kx0rfwdq198jI8N7DVglFQ6ifeV6oLcRpuBX2FAq2sc4UbRRPGPbr18/7Nq1CzfccAMSExPRt29f7Nq1y6W+LUUGubtb+V5Y5nkGszlbp1osQM+eFlx8sdXj4zey3e9rZWnT/gwaZMaWLXXIyHA+0JY64S0NwvW+jAwR27cDjz1mwubNdWjhtaiD91lfd1JTrVi40PsXstwdv/bsCd3OZmrERU7BoaYd50K5ex8RqYPscl9aF43lvqTyXp5yWN2V5/I0+5GX14C1a235qkpKRXnLbXT3XJ5zTr2X2JLTn6Z9kZtXPGNGPTp1sm0Scf31FrRpYxsP9fVAu3YtPSwQk34X7/11d4wgyCuX5G2mKifHrPi91xq55eQKC2ublXMcyZ8RzRHumVJ/Pt9CIVrHA7nH8SCf3HJfsk9XBw4ciDfffBO33HKL05a6jv7zn//I7yGFnT+rl3NzzRgwwIwXXojB8eM6tG9vxahRDYiNBbKyrJg7N85p04C2bUUsWeL+i8zbFx8At5eIm0pNtSIvzwyrFdiyxfdCsNRUEUuXuu9P00VTUq6xL717W+zHOf5pvPBCjI+UCOHCMe7SFbwdI287XW8VDpRsf6zVhWRc5BRc4a6wweoMRNFJdmA7fvx4ALadxzwFtqQ+3mZE/flidxeMrlsXi8WL62G1AnLLGfvKbUxOFr2UwhKRkiLi+efrcOaMgHnzms7qeubrMr6j5uYKHj8ur08332zGe+8ZIHfmVskXsqcKBwzqgLQ09S1y0ppwVtjgGCeKTopmbAFgyJAhTrf/97//RcuWLdGmTZvA9oyazdelQLmbFEhf7J6C0bIy4cIWs0DT4MzTFrK+tsq1bYDgiYDTpwUcPKjHsmWu29Z6o6S6g5QrOGZMvMusqpxcwfbt5VU+uPlmC7p1sypYIGfTnC9kNa5cDyWj0YC5c72/3qFe5ESBFe1jnChaKV489umnn+KOO+4AAGzbtg233347+vXrh3fffTdgnaqqqsKkSZPQrVs39OzZE0uWLIHZ7H6WbezYsbjmmmuQmZlp/7d///6A9SVS+Vo0sWuXAf/8Zwy8L14SkZ5uW2TlLRj1PtNo25XMcRFO4yVCb4uyfPO8wYE7/i1ga85uXKNGNVwoJea57JdOJ2LUqAZMn25CerqcBXKNmvOFLM1GeypJ5m3BX6SXTpL+NhxTZpoK9SInCrzmjHEiilyKA9vly5fjpptugiiK2LBhA5588kk899xzePbZZwPWqWnTpqFFixb48MMPsX37dhw4cAAvvvii27ZffPEFNm/ejMOHD9v/9enTJ2B9iURyVnvPmROH8nLv28ICAkaMaIBeLzcY9Xyf47a0gbr0Z9vgQP5j5eU1+BWk5OaaUVpag8LCWqxffx6FhbUoLa3xmdIQGwtMnCjlZrjWogVs98fG2maHlyyphyC4riRvKhBfyP6uXI/0mq/eT9AatW3LbYQjnZqqM0SaSD95peimOLD9/vvv8eCDD+L7779HZWUlbrvtNtx000346aefAtKhH374AQcPHsSsWbOQkJCAdu3aYdKkSdi6datL2x9//BFnz57FlVdeGZDn1gpfQagoCj62x23UoYPtcnogglHpMeTPNHqeaVG2wYHN2rWxfgdgUq6gtGGF3C/D+fNNmDzZBF2Tl1unAyZPNmH+/MakZE+zw44C+YWsdDZaC6WTfJ+g2Tz3nP9BLYMC9WjOFZdoFeknr0SKR6per0dNTQ3279+Prl27IjY2Fj///DNatmwZkA59++23SE5OdsrZvfzyy1FWVobffvsNF110kf32I0eOIDExEdOnT8eRI0eQlpaG++67D8OGDVP8vP6uh5OOU9N6ul9+CVxn2ra1lZdq27b5eWjSY11/va+tchufy1Nu6/33N+Cpp5TkpNpydx99NA5/+pMZhw4FZ6W2IDQGNtLjP/qoCY88YsKWLY2VJEaPtlWSaGrgQDNuu822knzPHgO2bzc4beXra3MGpRyfz9vr4esqgCDYXtvbbvNeqSHc5P5tVFYKfv1NS7m7TfPaV68G+vZV/njUfHLHeKio8TtD4mtR75YtPBkINDWPB7WR/RqJCs2fP18cPHiw2K1bN3Hnzp3it99+Kw4YMEB88sknlT6UWzt37hT79u3rdNsPP/wgdurUSSwvL3e6vbCwUBwzZox49OhR0WQyiR9++KHYtWtXcffu3QHpS6Tat08UbdsUeP+XliaKguD+PkEQxd//XhTffVcUX3nF9t9WreQ9rrt/rVuLotnc2MfXX/d9TGqqrQ+Ot7VrJ4o7dojiv/4linq9/31x/Pn3v7c9ZiDs2OHa5+Y8vtlsez9fecX2X8fXMJTkjql9+8LTP7mC+Xvs2OH+70kQbP8CNcaIgsFsdv3sajqO27UL32cQkVyKN2iwWCx44403EB8fj9tuuw3Hjx/Hvn37cO+990IfgFPgd955B/n5+SgpKbHf9vXXX2PQoEH45JNPkJTkvTjvggULUFVVhVWrVil63qoq/zdoSE1N8vv4YLBYgOuuS/RapiojQ8TChfX2rWSbzoqKIpCS4lydoGVLK6qrlWav2F6UzZvrMGhQ45l+UZEed9zhuzj+jh210OvhNNOyZ48Bo0dLswr+nOaKTsdJs8CbNtUhNVX0e1bHaJT65dwn6fEjebajoMCA++/3vVnFhg3nMWSIen9HuX8bSov2S4/reTMA28ytlje8IHnU+J0ByP9M3rmzeRuWkDO1jgc1kl4rX/xKRRgyZAjOnj2LL774AldeeSX+9re/BSSoBYCOHTvizJkzqKysRFpaGgBbSbG2bdu6BLXbt29HYmIicnJy7LeZTCbExSkrmwQ0npf6q7nHB5JO57tM1aJF9fb8M1tJsMY2KSkiTp2yldRyVF1tu5x/4ZHcPLPo9vbJk00YONAMs7mxpq7cfK2iIj1mzTLZgwGLBZg71/fiH+/clxgbNy4eVmvjfUp2SXLulzPpUv3cuXH485/lX6r3VoPYn3bNcckl8gb3JZeIqvk7cEfu34ZOp+zv+cABX5sBAD//rMOBA9wMgGzU9J0BACdPyvs8PXlSUFW/tUJt4yGSKV48VlNTg7///e/o2bMn7rnnHhw/fhz9+/fH999/H5AOtW/fHllZWXj88cdRXV2NH3/8EWvXrnWbN1tdXY1Fixbhyy+/hNVqxfvvvw+j0Yjhw4cHpC+RTO6iiaYr/nfsqEXjeYG3sl5N/wJd/yKTkqwYO7YBt95qwa5dzgsSjMYYWb/HihVxTgsX5C7+UU5wCmqBxvq8+flxPhcByVmw51gZwhe5CzhCtdBDS6WTgrGgiJsBUKRj3V/SCsWpCPPnz8cvv/yC2bNn484778THH3+MJUuW4Mcff8TmzZsD0qnKykosXLgQJSUl0Ol0uOOOOzBz5kzo9XpkZmZiwYIFGDRoEERRxLp167B9+3ZUVVWhXbt2mDJlCv785z/78Zz+pyKoeZ9nkwnYtCkGJSV6tGwp4i9/MaN3b88zekVFeuTl+b4clZpqdVrU1KqVFVarVILLHW8zvd5JwdTmzXUwmYAJE3xfEg8GbzO4BQUGWf1av973pXrnBRyuM4pS8CW3XaBIzwe4pq4E4/mCLZAz3XL/bgoLeRk32qn1O8NiAbKyvKfppKcrT9Mh79Q6HtRIeq18tlMa2Pbp0wdvvvkmLr74YvTo0QMHDx5EXV0d+vTpg4MHD/rd4XDTYmBrNBrw97/HuezilZJixfLlzQvQpk1rvFyr1wNPPy0t8fcUuLpPU5BL+lB95pk63Hmn7wAiGLwFcB9+qMfQob77NW1aPfr2tTgFUY4BVuvWIqZMkTYP8PzlcvBgDXr08JbTGZwvIV+72UUr30GB7XX65BMGBdFO7d8ZWjp5jQRqHg9qIzewVXy90mq1IvZCnSIpJna8jdRBWsjkzunTtkvsjouZpODqm2/kZac880xjHrNtdy3A12YPzWG7lC/gyy8VZ88EjJQrm58fh5wc51xZuR9IzzwTh2eeaQwGAbgEir76UFYm4IUXYnzkdNraFRcHNqczN9eMnBz1lE5SC9/bLwvcDIBUz9O6i/T0wJYZJAomxYFtdnY2Fi5ciHnz5kG4UFTsmWeeQY8ePQLeOfKPtJDJxl1AaVsslZ8fhwEDzFi1KhYbN8Y0SSPwNMPqGsQ2zU0Nph9/DF9gC3gOGCsrlb0G5eWCxxMPOY4fl/c6BCOnU9qsgpx5CgoyMkSsWiWgTx8zZ2RI9XjySpFOcWD78MMPY+LEiejevTssFgsyMzPRvn17rF+/Phj9I4UsFltOrW27XG9sAdr/+38tce6ckvSB8C5+ad9e+Y5jvinP/3UMGC0W4Ndflb0uUiUGpc8rqamR144LPULLXVBw/fUWtGmThMrKcPeOSB6evFIk86vc12uvvYYjR47g559/Rtu2bdGpUyesWLECjz76aDD6SDK5y3/05dw5T/c4Bl5qIKJtWxGdO1uRnGzFmTOedi1r3nPIfcyvv9ahqEiPqioB8+Ype80b+beQrm1bEe+/b4D3/opITRVRXi6gqEjPGZcQahoUcEchIqLQkb147KuvvsKUKVNQVlaGP/7xj9i4cSMuvvhifP311/j73/+OiooKHDp0KNj9DZpIXzzmaYW8liQliV5ml5tLblDbtJ3/s65KSQs4Zs0yYelSZbWaucArfNTyGUHqwPFAjjge5JO7eEz2NNOSJUvQqVMnrFu3Di1btsT69etRXFyMu+66C0lJSSgsLGxWh8k3i8VWVqigwOBUV9VisS1A0nJQC3ibXQ6Epq+bCPkz1qF5zdu2tdVZ7dBBeTqGtNd7oOvbqoGnvwsiIoo+sr/lvvrqK7zzzjto1aoVunTpgnvuuQc7duzAPffcg2nTpkGnC++iHq3zVmYpJUX081J4pAll0O4pFUNZzrFeb4XF4iltQtls73PP1aF3bwuKipTnFHir6BDJWH6M5AjF7nxEpA6yoyGr1YpWrVoBANq2bYuTJ09iwoQJmDFjBoPaIJPSDBxXWgONs3B79mhvFk4dmh9IWyzS34a7ndqU5QlLC9R87QLmidLdz9TO19+FFmenSblQ7c5HROogOyIVmqyAiImJwYgRIwLeIXLmLc1AFG17du/YwQ/oaCBVOJBqpgJQHNwC3kuARcplfV9/F4DtfrX2n0KDJz9E0cfvqdaYmBjExMQEsi/kRnGx/sJlVk/BiICqKh1SU5XP4FGouJuZ9Zaa0KSlICIjw4rs7MYoTaqZmp6u/D33VAIskma2fP1daG122lGknHyEG09+iKKT7G8ss9mMnTt32n9uaGhw+hkA7rjjjgB1iyRyC+xfd50F777rqwQUqZv7rXEBuN21SqqZumlTDB59VM5mDyIyMkSnAFniXFWjkTSzpbatNOX+XQRjg4pwYk6xfI0nP+4Fa3c+Igov2YFtWloaVq1aZf85JSXF6WdBEBjYBoHcAvuHD+uxYUMdJkyIhzUYexhEHXWcIPjaylKvB1q3lj9ru3Cha4Dsa2ar6aKzQC/E8efx5P5daGmDikg7+Qi3aD35IYp2sgPb9957L5j9IA+ysy1ITbWiqsp71khlpQ4VFUJIt7fVtnC+jrbIZfZsE6ZPNwUsyAMEpKa6tlUys3X6tBDQGUN/ZyClBXTl5YL9srIjQRCRnu5+djoSKT35CGW/1FptIBpPfoioGTm2FBp6PTB0qLyA4fjx6Hk7r702kDNTtpq1d95pCuBjNocAQQBeftl9DnvTHMvu3S1ITpY3Tb9/vx7btxuwYUMMtm+3HV9eLi+I37tXH9CFOM1Z2ONtAZ239I1IpcacYrXnZPuqHuIud52IIp86PoHIqz/9yYyNG2N9tmvfPnpyED77LJBf4LaatW+/Haw/B3dpDd5THTzl/xmNBsydG4fy8saTmPR0K266yYKdO32f2Kxc6bpjWWqqvHGzfXtMwGYMAzEDKS2gs834Nj6Gr/SNSKS2y+qRkBYhnfyMGRMPQRCdZva1ePJDRDbRM8UXoYxGA6ZM8bUwSER6uhX33tsAnU7JjlnUSMCZM4H4c5CzqYN8+/c3zszu2mXA6NHxLjOs5eUCdu6UFg56eu8931dVJXi9XxBEh3SYwMwYBmoGMjfXjNLSGhQW1mL9+vMoLKxFaWlN2IOqQFPTZfVIqjbgqXpIerqoiuCbiAKPM7Yq5mlWxJWAujoRa9bERlGOrRp/TyVBhbz+O86wNl5SdVc6zNsuZr52OPO0y1rjsUOHyrtqEOiZRTnt9HpoflW7mnKKI63agFQ9RK25wEQUWJyxVSlvsyLunDkjYOlS34EHBZOyncRs5M+w2gIab8GpP/f5bjNhggk5OfJmtgI9s8iFPTZqyilWW1qEHNLJz5AhZvTqxaCWSMsY2KqU740ZnLmbxaFQEZGb29Cs491Tw3sqYMOGWPz6qxDQhThc2KOcWi6r86SEiNSMga1K+TfboYZAKPrMnm3CmDH+BrbeZlnVwWoVMH58PPLybL9jIGYM1TQDGUnUkFPMkxIiUjMGtirF2Y5IYPsCnz7dZK837J9QBLHNH0+FhTF4/nnXGcPkZBGzZslPV5CoZQYy0oT7sjpPSohIzRjYqlR2tgXp6VawwkGoKH2dRQhC4xe4Xg889VS9H48TKCK8V0XwtkBMDluVguRkEaWlNZg9u95eO/f0aR2WLo3zq4apGmYgSTmelBCRWgmi6HvNfTSorDwno/qAK0EA0tKS/D7em6efjsXSpa51RylYlG2jO3t2PWbOdN7UYcGCWKxZI/c982fbXncVDmy3de5sxddfK58m0+nEC9sw++5LcrIVf/tbA9aujXVZ2CjN1jGwcRbMz4hwU/POY2ql5fFAynE8yCe9Vr6w3JeKRdOGC+qgLMjs0MH1/XnsMRPi4+OwcqXYpPSacxArBYHJyVacPu2pIoG7wNfdzKutjdygdtQoEzp0sCI11VYiqqpKwNixvmol25w5I2DNGqn6hnq2dqXwiIZSa0QUWRjYqpTRaMCjj3K2Vs1at3Y9vTYaDVixAj7PvKXdsUpLdRcCRU9BrDvS7b7q07o3aJDZJRjZtKkO48fHy6iD7P1+XzVMOcMXHfg+E1G4MLBVIfkbM1A4NX1/LBZg7lxPtYdtM63JybYcxBtusAV9+fmJDvf7Q9lxKSnuV6sPGmQGUOcwc9u8BW3uqnoYjYYL2982pvZnZFg1t/1ttOP7TKR9aj555eIxlVG6MQOFT1FR43a30h+5tx2ZpG17dTrbJVyltYrdPZ5S48bZSnY17TtgC24nTzZ5OVq+lBTnqF86WSsrc90OeMyYeMWLzkid+D4TaZ/RaEBWViLy8lpgwoQE5OW18GvxcLCooxdk5zs4IrVw3O724out6NNHXq6hNJsZ2p2ZRKSkiOjUyYqsrES3s2k5OWYUFsYE5NkmTYrHsmW2GTpvJ2vMy9UOvs9E2ufpirJ08qqGxcOMoMLAYnE/YwaoaxtK8sS1rNbZszq8+aa8oDAtzXZs6GoV257n7rsbMG6c59m0lStjmzmD3KiqqnGGztfMtC0vV4fiYkY7kYzvM5G2+Tp5BWz3W8K8npSBbYj5msLnxgyRwFMVA3mOHtWhoMAAqxVIT/e8g5Nvno5zvj0jQ8SmTXUoLIzx+oH0/POBma21afyQ271bXiDDk7rIJvf94/tMFJki5eSVqQghJGcK31ZP1L/V7hQZ5s9vLK2VkmKFKNrKf0kBpo2cMSCV/nItIzZrVj06dLDak/p9pbiIonCh7JhvLVtaUVMjNOmv+8csKxPw/POxXttJeFIX2eS+f3yfiSJTpJy8MrANEbn5Z41BL4PaaHDmjO19Tk4WnQJLafGV72DT+X6pjFjTHCe5HzQtWlhRW+u5rm5Ghoi7727A0097KlHmD9vjuqvWQJEjO9uCjAwrysvdn/QIgq1ucqS9z2pe/U0USpFy8srANkTkzJg1zX0krXENBKWTmoQE4Pnna1FZ2fjlCQDLlsVixQp59YxTU61YuNB9SSW5HzS1tdIYdZ0JFkXg/Hng6aeV1lf2Pa6lrYlJHjUGW3q97X0cMybe5QqEdCUh0t5nli4jahQpJ6/MsQ2RcE/Nkxp4z0v66ivnP0e9HujdW/4HRFWVgHHj3JdUkj6QPOfzeg98Pc8guy6kU2r8+AYGCQqoudRObq4ZmzfXIT3deUykp4uqWC2tBEuXETmTTl4BuHyXqOnkVRBFbgMAwO99muXu8/z007FYupQ7iZE86elWjBjRgPbtrZgzJw6//SbvHFQ6Yy4trXH5cJG+qAG4yed1n3qQkiJiw4Y6PPhgPMrLvW39iyb3yU9TKCysDcm2rOGa5QzkXvDOefquM6JqCR7VOKOshMWCC2Xx3I95b39nvgRyPFDki8TxEK4rGdJr5bMdA1ubYAa2nr6MnB/H9kEpisDJk74X5pDWNS9/1TFYdAwyvv9eh3/+Mwbl5fIv1ixaVIdHH4333VCh5gQHgPfgqel9VVUC5s0LzyXlQH1xBTPYImdFRXrk5bXw2c6fk7JIDGQoeCJ1PITj5FVuYMtrKUEmbycxW0ArTfG7y1GjaBOYLW3dnVmnp1sxc2Y9vvxSh927fZf4On5cXhA8bJgJ27fLq4DQ3MtW3mYMALjc5y5dQk0FxeWQm6dfXKwPyQy4lkXK6m+icNHrodrPGQa2QSZvJzEBs2c3zhxNmmTCunWxEXX2RurSpo3otbycraqBvC/l9u2tstpdeqn8AeupeoMc3n6v0aO9zSxH9m5YDLZCJ1JWfxORKy4eCzK5XzJVVQKKivTYtcuANWtiL9SzJVJKREqKFd27W7xcKZA3JgVBREaGFaNGNfhceJaSYsVFF8n7kl+0qA6lpTV+BbW+d75x/OdI3QXF5WCwFTq+FltKfxvhXv1NRK4Y2AaZ3C+ZzZtjkZfXAuPGSTNOnHUh/5w+LWDVKl/b43ofX46pArGxnlfCSrnAp0/r8Nhj8dDpPFdJkIKBsWMb/J4d9bXzjb8iYZaTwVboRMrqbyJyxcA2yJSWWWqcdSLtaX5pLN8ECAKwcWPztsdtWp7JUxmnphqvNAQnGAhWABoJs5wMtkJLS6XLiKKJKgPbqqoqTJo0Cd26dUPPnj2xZMkSmM3uP0Q++OADDBw4EF27dkVOTg727dsX4t565+3LKHA7N1FkkN7r4AZRoijgzBn//7SnT6+3pwpYLMD+/Xo88UQsvvhCh7vuakCrVo55Mu4v+euaPH2ggoFAB6CRNsvJYCu0cnPNKC2tQWFhLdavP4/Cwlq/02iIKDRUuXhs2rRpaNOmDT788ENUVlZi4sSJePHFFzF27FindsePH8fUqVOxYsUK3HTTTXj77bcxbdo0vP3222jTpk2Yeu9K+jKyrdR2DAQY1EYff99z5SdByclWnD2rvHRcnz62si1GowF//3scTp9uGiT7Ci4FWK22XNrWrcWAloLxtfONd667qQGRN8uZm2tGTo45ouvERhI1r/4mIleqq2P7ww8/YMCAAdi/f789ON29ezeWLVvmMhu7cuVKHDlyBFu2bLHfNnbsWPzxj3/EAw88oOh5K3+ogNuXQq8H4h1WWtfUON3tVINO0AEJCR7bWq3AwYN67NljwAsvxaMOjW0TUAvBQ8AgQsB5tPCrbTzOQwfPK9FqkehX2zjUQQ/PH/bK2raAFHDEoh4GeJ4NUdL2PBIgXrgoEQMTYtAQkLZ1iIcVesVtDWhALEwe29YjDpYL55pN2+oEEVaHQM6xrR5mxKHe5fGmT6vHM8/EwoRYNCDWoW0d3NZBhYjU9BiUfGrCnj0GjB0dg3gPbQGgATH2x9XBcqFto1XPnsegQRfen5gYIPZCKTCr1bY3ryc+2u7da8DEifH2PpggbXwiogVqPTyoCDMMMCHe/vPlbasxf349/vxnN2PIx9+9krZKPiOc6Jq0ra2Fx1IpggC0aOFf2/Pn4XW1amKif23r6myr/QLRtkULW78BoL4e8HAFT3HbhITGywsmE9Dg+W9ZUdv4eNjPNJq0dalb6ti2ocHW3pO4OMBgUN7WbLa9Fp7Extr+7pS2tVhs750njn/LSto28zPCicFgey0A299ErafPCIVtA/QZ4TIemv7d8zPC3lawWpH2BxmTlqLKvPPOO2KPHj2cbjt27JjYqVMn8ezZs063T5o0SXziiSecbnviiSfEiRMnKn/ipCRRtL3NTv/qbx0g/vrrb/Z/1hYt3LYTAdF0w41ObS2pqR7bHkQ3p5v+hz94bPsFrnS66Qtc6bHt//AHp5sOopvHtr8gzemmfejrsW01WjjdZMRtHtuKgNOP/8Iwr21boNr+4wsY6bVtGn6x//gcJnlt+wf8z/7jUsz02vZKfGH/cT7me23bDQftP87EUq9t+2Kf/cdJeM5r29tgtP84Ei94bXtf4jZREKwiIIrD8C+vbaclb7b/eBuMXtseuGeFePLkb2J6ukXsi/e8tp2JpfYfu+Gg17Y1s+bY/y5OfVjive3kB+xtq0qPeG37HCbZf0zDL17bfnPDPeLOnTXihg214pvbvLc9n3uH09+yt7bB+owwdc10amtud6nHtg2duzi1bejcxWNbc7tLndqaumZ6bGtJTXVue8ONHttaW7Rwalt/6wCvr5tj27qBd3hve7zc3vb88Lu9tq386nt729pRY722rSo9Ym9bM/kBr21PfVjS2HbWHK9tT7+9z962ev4ir23P7Py3ve25J5/23nbrv+xtf1u1zmvbs5v+YW97dtM/vLb9bdU6e9szW71/npx78unGtjv/7bVt9fxF9ran397ntW2wPiNqR421t6386nuvbc8Pv7txXB4v99q2biA/I0SE+DMiKUlWOKe6VISamhokOJ6BAPafa2trcdFFF3ltGx8fj1pvZ1kKxcYaZO10AQAxMXrntoLnS6WxMYBgtr17REpV1+ggykxNWL5ch8EdgPJy4KrjAB7x3DY7Oxbvf5WE8nKgUwBTZVq0iEML6W8jJdF724TYxrbVLb22vWMw8N1lwDPP+O5Dx456dBx8YRaixns9vXf/Y4BpfxKGDPH9uMH6jIgxNGmr89zWoNc5t9V7zrHW6wTntgbPOQw6oUnbGM9tBTTZFSjW+9eLU9s4GW2l2Zt47wsjU1NbAtJjJ3jfMKRVK/ltU1ISG9u28L49enKyQ9tE720vvrhFY9uW3nf4c2qb5L3tRRclNLa9KMFr26SkeCRJbS/2vuNay5bxaCmzbWJiHBKltsk+/u6D9BmRkBCLBKmt6GXGGEB8fAzi7ePB+zqFuDgD4mT+3fMzwiaYnxFOzyOK6gqt3nnnHeTn56OkpMR+29dff41Bgwbhk08+QVJS4y86ceJEtG/fHg899JD9tieffBI//vgj1qxZo+h5q074n4qQmpqEqipllxn3vBWLkRNSAACiKDAVISpSEUwO6QWuH0CuqQj1HtuaEIv4lnpUVwvQw9IkFcEW8q5fX2e7zO7mMqPFAhw6pMcvvwi45BIR3btfyNGMjUXBmwm4//4Et+kFjtynIjR5bkmQLzMajQbMfSQWZ8ob+5uWasXgwWYMGGC2/X5xrpcZ9+41YMKE+At/TY2vsxU61Avx2LLlwoKsZqYi+PMZEW2XGaMpFcE+HkQwFcFd2yhLRXAaD0xF8NhWsFqReqnvVATVBbbHjx/Hn/70JxQVFSEtLQ2ALcf2qaeewgcffODUduXKlTh69Cg2bdpkv23s2LG4+uqrMW3aNEXP6+8+zc3Z59ndtqBgpQTNysiwIi+vAWvWSDND3t5nuePAfTtBEJGeLqK0tEbxoqKiIj3y8rzPxHiSnm7FkiX+7SjmjpL9yKW2e/fqsX17DKqqXLfbdeyXxQJkZSVeWNAZ2NfQ+XEicy94Cg6OB3LE8SCf9Fr5orpyX+3bt0dWVhYef/xxVFdX48cff8TatWsxbNgwl7aDBg3CwYMHsXv3bpjNZuzevRsHDx7E4MGDw9Bz5ZqWkpk9WzpL5ujWDhGAiJkzbSW08vNNSEmR8/7KPbnxvaOWxWILVgsKDCgq0ns9QQZslQfS062QPw5tv+Ps2fX49NPAlUIyGg3IykpEXl4LTJiQgLy8FsjKSoTR6P6SlF5v25xi48ZYVFU5vy7l5QLGjIl3OtbXZg+RtCsZERHZqC6wBYBVq1bBbDajX79+uPPOO9G7d29MmjQJAJCZmYldu3YBAC6//HKsWbMGGzZsQPfu3bF27VqsXr0al112WTi7r4hUSmbIEDNmzjRhyxbfRfApkgjo1s2MXr0seOMNAzZtirlQPis0s/Jr18YoCg4B25hcssTbSZbzbRkZIrZsqcPMmaaAlZwyGg0YMya+SXk8oKxMwOjR8Xj66ViXAN33dru2+6Xj5G72EAm7khERkY3qUhHCJRypCJ5YLMDEifHYudMApiVoQTjTS6RBKTjdJgjwWdDfUx3blBQrxo1rQIcO1qDUUPWVIiBpmvYgN4WisLAWvXpZFLf3Fy81kiOOB3LE8SCf3FQE1VVFIGDPHsOFoJaoudwFhgJEUcTMmXHIyTF7DEqljQCKivQoKtJDEGxXF264IbibATSmCHgnpRdIAbqSGViLxRZAJydbceaM9xzbSNmVjIiIGNiqjsUCzJ0rlYfhbK02qPF9FHDqlICVK2Mxc6bnldV6vW0nsj59Qhfcyb/0LwAQkZ9vC9Dlbrf7/fe6CzPCnhdtRuquZERE0U6VObbRrLhYj/Ly0OVgUiQJ/HWqjRtjfC4mCzW5ASrgvMBL2m5XCkqbEgQRrVpZsXRprEvublPp6aLPVA0iIlIfBrYqw4Uq5Fngx8aZMzosWxYrq1pCoPiq0uArQHWnokKAXm+bYQXgcqz0c2MOW9PX0jb7m5xsxY4dtSgtDVx1ByIiCh0GtiqjZLaKyDMRcmd4V6yIk1UtwR2lpcTklPByDFDl/g7S301urhmbN7tWFklPFzFrlslHRQoBZ87ooNOB6QdERBGKga3KZGdbkJrqfbtPIl8yMkTccYeyGUd3tV69UVpn1lMJL3fP6ylAbUoQRGRkWJ0WeDWtD11YaJuB7dBB3t8Vr5oQEUUulvu6QE3lvnbtMmDsWGn7PX7JknfS6v1Vq+pQWdm4QxcAXHllIk6f9l42y91jSbttedr5SwpSm9aMlS75b95ch5wcs/3Y1q1FTJkSj/JyZbt8WSzAypWxWLrUdbc2x+eSkzYQzPJe3nZIYzkfcsTxQI44HuSTW+6Lge0FagpsAWDBgtgLW68ysCXPPAV3UqC1Z48BGzfGSK1lP25hYS1OnxZctnzOyLBi4cJ6zJsX53Ur2pQUEXFxuLAQUj5PQaW77afdbZPrjVQft7xcsG/Y0LTf/myh66tv/OLSJiXbPTvieCBHHA/yMbBVSG2BLWCbuZ09Ow6nTjFjhNxzF9y5C7SUGj/ehOefj3E7I+tuZy/3lG9MsX79eQwZ4j5Q9TeQcCTNNANwCm6Vzv42fTxvM9cDB5r5xaUxzTnRYiBDjjge5JMb2DJiUrFBg8w4erQGixbVhbsrpEoiBg9ucAlq3eWxKrVjh8Hr1rTyKO+Dt8WTjttP9+qlLKiVFrmZTMCsWSa0beu6uExpUKt0C1/SBiW54kQUepyxvUCNM7YSuVuMktb4mvG0DbjJk02YP98UsHFy0UVW/PZbqM95Reh0wIkT1YiN9d1aCXeza+npVowY0bxtgeXm7O7cWYvBg1twRkYDfP2NyUln4QwdOeJ4kI8zthoilT8SBNf6nKRlvoJT2/3r1sXCZHLcirZ5Jz/du4djilGA1Srg0KHA1tnyNLt28qSAZctiERsLxbO/EiVb+JI2+Pobc9wwhIjCg4FthJBb/oiijS0gfOGFmIAFUDfd1JzAtnnj01Y1ITCCnSogt+Y0a1NrB09miNSPgW0EaVqfc+bMegRjm1WKPN9/r2t2ACXVhB01qkHxzl8SnQ5ITPTvWACoqgpcQBDs2TU5W/g2rbFLkY0nM0Tqx8A2wjguoJk924RNm+qgZJcp0iZBsAVa6elWeBsLtiDMdbxIwdnixfWIjfW8Na0vVitQUyNAFP1Lm0lNDdw4DvbsmpwtfBcvrucuZhrCkxki9WNgG+EGDTJjy5Y6pKQwsI1mXbtasGePAefPA95ybKXFCU3HS9OqAP6nvtieOzFRdKk8IEcgU21CMbvmbQtfpVUWSP14MkOkfqyKcIGaqyLIYbEA+/frMWpUPGprWT0h2vz1ryZs2yZvIwZBsAWdzz1Xh19/9V4TVqodu3WrAdu3KytXMHNmPXr1sqCiQkBamohx4+K97IImIiND+eYI3gRrQwZPz8Wdx6IH69hSoHA8yCe3KgIL7mmEXg/cfLMFzz1Xj9Gj4+G+VJT0V8OgN3LI2+TgjTekP2XfbUVRQHm5AJ0OHjdDkEipL+XlArZvl9FdB5s3x+DvfzfZt+C1BbVuewQgODNd99zTcGE7XufXMdCza9LrRNEhN9fstGW0vyXjiCjwmIqgMbm5nlMTUlJE/OlPZjAfN5LIOwk5f155mS8luaX+pAicPm1bmCVVJ7Bx/5wpKSJycgJ32d5oNCArKxFLl8ZdeE7n52WqADVXczYMIaLg4YytBkmzCUVFehQV6SEItg/gG26wffjOnx+LdetiwZlbLRCRmCiipkb5Oarc3FKLxfYvOdmKM2eUpblUVAgO1Qk8EXD6tK1dIGY9nbe5dWS7YfZsE6ZPNzEQ0aBAbLtMRJGNga1G6fVAnz4W9OnjGigsWGBCVpYVDz0Uh6oqTtpHuptvtsBolP8+SrmlclZuu8sllJseAdiC51DW/vRWuxYQIAgiXn45BtOnm5r9XKQuzcl7JSLtYFQTpQYNMuOLL2qwY0ctkpO9l4gi9Zo924RRoxpkt1eSW+pp1y65zyOVPQpl7U+5tWuXLo1FUZHe780ZSF08jdXycgFjxsTDaOQcDlG0YGAbxfR6oHdvC1assG3Xy+A2ktgCx+nTTbjhBgtSUuSdnMjNLfU182lLgZCe03vZo1DW/pQ767tyZRzy8logKyuRQU+EC/YOc0QUWRjYErfrDYlAbqLhHDjq9cDy5fVO9zV93vvvr0dhYS1KS2tkXZb1NfMJCKip0SE31+yyqULT4DmUtT+VzvpyRi/yBXuHOSKKLAxsCYAtuP300xrMni1t08sgN7ACu1BPaRWBnj2tilZuy535NBpjUFWlQ2qqFePG1WPRojrk59cjJUV0miEL1UYGvmaHm+KMXuQLZQ43EakfpynITq8HZs40oUsXK+bOjUN5Ob8IAsvX6yl3UZZzFQHv5bRsC6by8+OQk2OWHdgqnfmsqhLw/PPOlTaaLtwJRe1PaXZ4zJh4CILodmOGpmwzeoGryqAm0VAlIJQ53ESkfpyxJRecvQ0n+a+1NAMVjEuxVVUCdDol77trGbCyMgGjR8fj6adj7bOhoaj96W9qjdZm9KRavnl5LTBhQoJmc4pDmcNNROrHwJbckmZvt2ypQ0aGu7xNCrSBAxvcbqzhiTQDFehLsUajAePGxcNqld0VD2zB7tKlcbjuutAGVLm5ZpSW1qCwsBYzZtT7PgDamtGLpioBoczhJiL1Y2BLXuXmmrFwYT1SUx2jHC3MbMkJYsQLX4yhCXhGjjTjyJEatGrlq8KBiPT0xhkouQHZ99/7/nM3mYBZszxVQ/BfOAIqaXZ41ixTVM3oRWOVgFDlcBOR+jGwJa+k2buqqqZBjppTFALVL8EhRzOYv6uIlBTb4q5Dh/Q4dcrX9rgCRoyw1a798EM9PvhAj/h438HwP/8Z4zWYMRoNuPbaxAubdgT65CV8AVW0zeiFqkqAxQIUFelRUGBQRU1gx1n69evPK6oCQkTaoZ3rURRwcmqZylnwJAVtRmNMUPrpSt4CLLmuucaCL77Qu9mi1R9NXy/bgy5fbgus5KYLfPmlDldemYjTp+WemwooL/e8QMrzNrSBE85FWtKMnm1nqsbXOD1d1NzOVKGoEqDWXb6kWXoiil4MbMmjxpkfT1y/GJOTrRg7tgHXX2/Br782rsQuLtaHMLANLFtQ608Q4D6IdXTxxSLuv7/BXrpLblqB7bVUHoW6C2a8n8AEXrgWaYWiKoMaBLtKgKeTICndhJf+iSicGNiSR3IDkBkz6tGpk9VroCCtXLbNlqkpR9f3jLN/Qa2rjAwRCxfW45tvdNi4MQZnzuhw9qwOS5fG4eWXY7B4cT1ycsxISbHi9Gk5r5PyfjkGM1IpqA8/9HUC40huSTJ5fQi1aJjRk/7WyssFt2NXEESkp4t+5RT7yt/1p7QcEVEgMceWPJIbgPTu7bt8k5TnGF1b99q++GfMaNz1S6cDli2LxZkz7lerL14ceyGoDbzU1MYFUo6loFasiPNxpCP/+6a1RVpqFcycYu7yRURqx8CWPAp0fUgpz9G1fJg7oQp+gz973KmT1T5L6G22SxSBdetig9YvqxXYs8fgsRRUMGlxkZaaBatKAHf5IiK1YyoCeeRtFyd/AxXHPMe9e/XYsMFdIGd77JYtraiuDve5lwidDkhKEnH2rH9pFK1b234fOTnLza8d69mZM7ZZ4eRkMWT5tBItLtJSO8e/tfJyAVVVAlJTRft2x/6cYHCXLyJSOwa25FUwVpNLeY69elnQs6fr9r0ZGbbHtlqBsWPjL9wavhmgiRNNyMqyYvToeHheEOa5f2PGxGP8+Aa0bx/EqFUG24mJqKCSQrOeDQAwbpwJt91msedeR8MWr2qi1wOnTwtYvDgwFQyCmb9LRBQIgigGs8BP5KisPOdXqSNBANLSkvw+PlIEMyDx9tjz58deuDwfnsC2Wzczdu8+D8CWl2oLwhsDhKYz2d4kJYk4d04Ll2jlLyArLKy1p2EEokRUJAbG4fyMcK5g4HrFxZ+0BOkxAbi9isOqCN5Fy3cGycPxIJ/0WvnCGVuSJZiryT09ttFowBtvxCBwQa3yFf29e3v/nZV8EJ07J/UBivvh4dkD9DjyCIKI5GQR8fFwmmH3RmoXiBJRaq2dqlbBqmAQTTWBiSjyhDuBkcgtzwuc3EWS3qNLQRDRsqV/p8KOs41jxsS7CeiUBJbeatr60z/HTTKU8nSMCHePKc3GLV9ej08/rcHo0SZZz1JVJQRki1dP4yEcW/VGimBWMOAuX0SkVgxsSXV873jWlGOA5z4gi4lRGvw1bnMb2A0MbAvQUlOd+9P0Z6WP58xbsCuiVStbrq+7UlCCAEyebHKpXOG4ml6vB7p1kzd7n5oqNjvACkRgHI2CXcFAutLiq9QfEVEocZqDVMd39QB3bF/OqalWVFU5Xx69554GLF2qpFar8za3RUX+9Me7RYvqkZ4uoqJCQKtWIr74Qoenn45Fba1/lRdmzKjHFVdYkZ8fh1OnPD2G7fdaurQeOh28XkrOzzd5zWVtWkbKE+l3lMNTO1/jIZxb9TZHsPOFWcGAiKKR6gLb2tpaLFq0CO+99x7MZjP69euH+fPnIzEx0W37+fPnY8eOHYiJadyudc6cORg+fHioukwB1pwamI4BoxQsvPGGsmGeni5iyZLGXMFg1ORMTxfRq5cFCxbYFsdZrU3TFJTnAh84oMepU763QE5NtT23t+1lfeVU+95JTkRGRuN2ynJ4CrC0WDs1FPnCrGBARNFIdYHtokWLUF5ejrfeegsWiwXTpk3D008/jfnz57ttf+TIESxatAh5eXkh7ikFS3NmkKSA0Z/Hmz69Hn36WFxmzgI9o5WWZtvUYsGCWKxZE+v7AC+BrhScVFUJWLpUzmM1BoDNWRDoWOMY8F7juLkBltZmHgOxkE6OYNShJiJSO1Xl2J4/fx5vvvkmHnjgASQnJyM1NRUzZ85EQUEBzp8/79LeZDLhm2++wdVXXx2G3lKw+NrxzB1vu6DJ3UFt9myT21xBf/rjzdChDbBYvO0y5jln2JntvoUL6zFvnvxUi0AFgHJ3t2ruFq+B3gEvnEKdLxysHciIiNQq5DO2dXV1qKiocHvf+fPn0dDQgE6dOtlvu/zyy1FXV4fjx4/j//2//+fU/tixYzCbzVi1ahVKS0uRlJSEoUOHYuzYsdDplMXsgp9XMaXj/D2eXBkMwJIl9Rg92nWmyV25LCngWbKkHgY3I9rb4/k6Vl5/lL35OTkWvPBCTJP0g6ak+zw/vl4PbNxYh9RUUWYOsIjf/U7E9ddbAjZeBw4047bbPKc0OLbbsqUOjzzivBlH07QPd5r7/oWb42dESYm8fOGSksDlC8t9jyg0+J1Bjjge5JP7GoX8q+Czzz7Dvffe6/a+Bx98EADQokUL+20JCQkAgJqaGpf2586dQ48ePTBixAisWLECX331FSZPngydToexY8cq6ldqqu+iv8E8npzddx9w0UXAgw8CP/3UeHtqqm1kV1U13vb73wt45hlgyJAExY8n51hvx6elCZg8GejcGfjmG+Cxx7z/Xu3aAbm5LfDuu97bNfL8l2yxCOjQIQHl5fIfa9UqAW3aBH6sDh7su81FFwFNzzcFQYeLLkpAWpr3Y5v7/qlBamoSamvlta2tbeHzNVFKzntEocPvDHLE8RA4qtp57Msvv0ReXh4+/fRT+2Kx6upqZGVl4Y033kCXLl18PsamTZuwe/duFBQUKHruqir/dx5LTU3y+3jyzt3KccD/1eTNXYm+a5cBs2fHoarKedHPokX1ePTROK+LqQDbrkyDBpmxfn0MHn003k07ZTZsOI82bUTccUcLn20feqgeM2fKqz8baEajAaNHe94Ba8sWeZfFI3XnMekz4qOP9LLeq507ayOqwgO55268Ggz8zqBGjCHkk14rX1R18e6yyy5DTEwMvvvuO1x77bUAgP/+97+IiYlB+/btXdq/++67qKysxF//+lf7bSaTCfHxygMGUVS2i1Sgjyf3dDrghhtcv+Cb3ib3tXf3eHKPNRoNGDvW86If7ykJtvtatRIhisCoUQ2YPz8OVis8HCcvxeGSS0T07Ol9cRZgW5w1bZopLGPUYgHmzvW+A9bcuXH4859974DVnPcv3EQRPt8raSFdz56WgP9ekXhSEMk8Vb5YsqQe993H7wxyxvEQOKpaPJaQkICcnBw8/fTTOHXqFE6dOoWnn34aubm5boNVURTxxBNP4MCBAxBFEYcPH8ZLL73EUl8UcHIW/cghVSSIjQUmTpRmT93vQpaYKMpaMOVrcZYg2HJQwxXEBHMHrEjT3IV0/jIaDcjKSkReXgtMmJCAvLwWyMpK5I5tQeJtp7zRo+Oh8IIiESmgqsAWsNWlbd++PQYOHIg///nP+P3vf4958+bZ77/99tuxfv16AED//v3x8MMP47HHHkNmZiZmzZqFqVOnYjCTySjAfAVncheQff9945/c/PkmTJ5scsk71elsu3+tXl1ne2QZAZCaV79rsQ5tc4T6vVK6HbHFYtuUpKDAgKIiPXd0U0jOSfC0aeDrShQkqsqxDafKSv9zbNPSkvw+niJDQYEBEybIWaDkLYXAfT6pyQS88EIMjh/XoX17K0aNakDshUpgSgv5q/Fyc1GRHnl5vvNKCwu1mVfq6TMiFO+VxQJkZSV6zP2WUh9KS2ug14dm4witkzved+6sdZtmRdGFMYR80mvlC69DEckQmNqvtnzS/Pw45OQ05pPGxgL339/g9ojcXLPXHcKaas6mC8HCHbDcC8V7pWQ74tOnhZBsHKF1vEJBFF6qS0UgUiO5mwTMmuW96oA/+aRSADRkiNntBhJqF668UpIfPJWXCyHdOELLtLZTHlGkYWBLJIPc4OyKK6yyHi+QszWRkBOp5hxgLZMbPFVVCVzgFyByToLbtUPUXaEgChUGtkQyyQnOQj1bE0mr3XNzzSgtrUFhYS3Wrz+PwsJalJbWMKgNIrlXGlJT5Y1HXj73Tc5J8DPPgFcoiIKEi8cu4OIxksvboh+rFejWLQk//9x0612bpot1mkNa7e5p0wPOhKpDuD8jpHECOJemcxwnKSliVC/wCwbvdWwT+J1BAML/+RBJ5C4eY2B7AQNbCgRBAPbvT8KwYbbB4CmQaG7A6Wu1OyAiIyMwATQ1jxo+I3xVO5DGk68FfhxPynjaeSzc44HUQw2fD5GCVRGIwmTIEFtJr7lz45xqh6aniwErm+RrtTvQuNqdM2zkq7qGdPl8zJh4CILo9oSMC/yUU2OVEiKtY2BLFAS5uWb8+c/yy3QpJTfXce9eBrZk4yvIknLIbTO7wTkhI9IKNdYMJxsGtkRBEszZGrmLz3bsiMFjj5ki7gOXXxrhobRuMlE04kYm6sbAligCZWdbkJpqRVWV98ImlZW6iEtH4JdGePHyOZFnzot2G3EjE/VguS+iCKTXA0OHyvvwjKQSTdKXhuOlcKDxS0ONZcyIKDpYLOBGJhGAgS1RhMrJkRfYRsoOR/zSCI9I2OCDSA0aF+1yIxM14/QHUYSSiu/7KtEUKTsc+ar0YPvSYKUHX5TkJzPtg0g+uVe/IukqmRZxxpYoQsnd5jdSFv7wS6P5lOxEx7QPImVCvbMk+YeBLVEEk7PNb6SQ+2WQliby0rkbSgJVpn0QKSd3i+pIuUqmVdx57ALuPEaBEK7xoIXyWHJ2v0pOFhEfD5SXR86l81CMCV870TXdOayoSM8tdMOE3xmRTc4W1Uo+izge5JO78xhnbIk0QCrRNGSIGb16RV5QC/hOrRBF4PRpAeXlvHTelNJFLUz7IPKPlq6SaVX0fhMQkep42v2qbVsRdXW2wNbdpXNBEJGfH4ecHHNEBvXNpTRQZa4gkf+4kYm6MbAlIlVx96VhtQJDh3q+dB7tFROUBqpaq6hBFGrcyES9mIpARKrTNLXi11956dwbpYtatFZRg4hIwsCWiFRPrZfO1bK5gT+BKnMFiUiLmIpARKqnxkvnatvcwFN+cnq66LFPzBUkIq1hua8LWO6LAoHjIXgCUWYnUGXRpL40rQPrri+hHhNaKP2mZfyMIEccD/LJLffFwPYCBrYUCBwPwdWcWdJAzbAqrRnLMUGOOB7IEceDfHIDW6YiEFHE8PfSufMMayOpBq6SnNLGmrHuRXuFBiKicGJgS0QRRWmZHV/bxyqtgcvNDYiI1ItVEYhI05TuyuWLWis0EBERA1si0rhAz7AqrRlLREShw8CWiDQt0DOs3NyAiEi9GNgSkaYFY4aVmxsQEakTF48RkaZJM6xjxsRDEES3NXD9mWHl5gZEROrDGVsi0rxgzbBKFRqGDDGjVy8GtURE4cYZWyKKCpxhJSLSPga2RBQ1lNbAJSKiyMJUBCIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYFUEIgo6iwUss0VEREHHwJaIgspoNCA/Pw5lZY0XiDIyrFi8uJ5bzxIRUUAxFYGIgsZoNGDMmHiUlQlOt5eXCxgzJh5GI8+tiYgocFQb2J4/fx7Dhw9HQUGB13afffYZ/vKXvyAzMxO33HILXn/99RD1kIi8sViA/Pw4iCIAOAe2omj7OT8/Dhbul0BERAGiysD222+/xd/+9jf83//9n9d2Z8+exfjx43HHHXfg0KFDWLJkCZ544gl8/vnnoekoEXlUXKy/kH4guL1fFAWUlelQXMxkWyIiCgzVBbYHDhzAyJEjkZeXh4yMDK9t3377bSQnJ+Nvf/sbDAYDrr/+egwcOBBbt24NUW+JyJOKCvcBrb/tiIiIfAl5gltdXR0qKirc3te6dWt06dIF+/btQ1xcHF544QWvj/Xtt9+iU6dOTrddccUV2L59u+J+CX5+t0rH+Xs8aQvHQ6O2bUXZ7bT8enFMkCOOB3LE8SCf3Nco5IHtZ599hnvvvdftfWvWrMGtt94q+7FqamqQkJDgdFt8fDxqa2sV9ys1NUnxMYE8nrSF4wHIzQV+/3vg559xIc/WmSDY7s/NbREVpb84JsgRxwM54ngInJAHtj179sTXX38dkMdKSEjAuXPnnG6rq6tDYmKi4seqqjrn9svXF0GwDUh/jydt4XhwtmiRAaNHx0MQGheMAYAg2F6chQvrcPq0tkt+cUyQI44HcsTxIJ/0WvkS0bV2OnXqhKKiIqfbvvvuO3Ts2FHxY4mi+1mlUB1P2sLxYHP77WZs3lx3oY5tY2Cbni5i8eJ63H67OWpeJ44JcsTxQI44HgJHdYvHlOjfvz8qKyvx4osvoqGhAcXFxXjzzTcxdOjQcHeNiC7IzTWjtLQGhYW1WL/+PAoLa1FaWsPNGYiIKOAibsb29ttvx8CBAzFhwgSkpKRgy5YtWLJkCVatWoVWrVohPz8f2dnZ4e4mETnQ64FevViwloiIgksQRU5+A0Blpf85tmlpSX4fT9rC8UBNcUyok8Viq7VcUSGgTRsR2dmWkCxi5HggRxwP8kmvlS8RN2NLRETUHEaj4ULed2M2XkaGFYsX1zNFhijCRXSOLRERkRJGowFjxsQ7LWYEgPJyAWPGxMNo5HwPUSRjYEtERFHBYgHy8+MuXPJ1DmylcnT5+XGwMB2cKGIxsCUioqhQXKy/kH7gfgsjURRQVqZDcXEU7BhCpFEMbImIKCpUVMjbk1NuOyJSHwa2REQUFdq0kbfsXG47IlIfBrZERBQVsrMtyMiw2rd0bkoQRGRkWJGdzSRbokjFwJaIiKKCXg8sXlwPAC7BrfTz4sX1IalnS0TBwcCWiIiiRm6uGZs31yE93TmwTU8XsXlzHevYEkU4FuwjIqKokptrRk6OOSw7jxFRcDGwJSKiqKPXA716MZeWSGuYikBEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpgiHcHSAioshgsQDFxXpUVAho00ZEdrYFen24e0VE1IiBLRER+WQ0GpCfH4eyssYLfRkZVixeXI/cXHMYe0ZE1IipCERE5JXRaMCYMfEoKxOcbi8vFzBmTDyMRs6REJE6MLAlIiKPLBYgPz8OoggAzoGtKNp+zs+Pg8US+r4RETXFwJaIiDwqLtZfSD8Q3N4vigLKynQoLmayLRGFHwNbIiLyqKLCfUDrbzsiomBiYEtERB61aSMGtB0RUTAxsCUiIo+ysy3IyLBCENwHroIgIiPDiuxsJtkSUfgxsCUiIo/0emDx4noAcAlupZ8XL65nPVsiUgUGtkRE5FVurhmbN9chPd05sE1PF7F5cx3r2BKRarD4IBER+ZSba0ZOjpk7jxGRqql2xvb8+fMYPnw4CgoKvLabP38+rr76amRmZtr/vfbaayHqJRFR9NDrgV69LBgyxIxevRjUEpH6qHLG9ttvv8VDDz2Eo0ePYvjw4V7bHjlyBIsWLUJeXl6IekdEREREaqS6GdsDBw5g5MiRyMvLQ0ZGhte2JpMJ33zzDa6++uoQ9Y6IiIiI1CrkM7Z1dXWoqKhwe1/r1q3RpUsX7Nu3D3FxcXjhhRe8PtaxY8dgNpuxatUqlJaWIikpCUOHDsXYsWOh0ymL2QU/a4tLx/l7PGkLxwM1xTFBjjgeyBHHg3xyX6OQB7afffYZ7r33Xrf3rVmzBrfeeqvsxzp37hx69OiBESNGYMWKFfjqq68wefJk6HQ6jB07VlG/UlOTFLUP9PGkLRwP1BTHBDnieCBHHA+BI4iiqNrtYm655RZMmTIFQ4YMkX3Mpk2bsHv3bp+LzpqqqjoHf14JQbANSH+PJ23heKCmOCbIEccDOeJ4kE96rXxR5eIxud59911UVlbir3/9q/02k8mE+Ph4xY8limjWoGru8aQtHA/UFMcEOeJ4IEccD4GjusVjSoiiiCeeeAIHDhyAKIo4fPgwXnrpJZ+VFIiIiIhIeyJuxvb222/HwIEDMWHCBPTv3x8PP/wwHnvsMVRUVCAtLQ1Tp07F4MGDw91NIiIiIgoxVefYhlJlpf85tmlpSX4fT9rC8UBNcUyQI44HcsTxIJ/0WvkS0akIREREREQSBrZEREREpAkMbImIiIhIExjYEhEREZEmRFxVhGDhlroUCBwP1BTHBDnieCBHHA/yyX2NWBWBiIiIiDSBqQhEREREpAkMbImIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsm6GqqgqTJk1Ct27d0LNnTyxZsgRmsznc3aIwO3XqFPr374+SkpJwd4XC6NixYxg1ahR69OiBXr16Yfbs2Th16lS4u0VhcuDAAfzlL3/Bddddh169emHRokWoq6sLd7cozCwWC0aMGIE5c+aEuyuawcC2GaZNm4YWLVrgww8/xPbt23HgwAG8+OKL4e4WhVFpaSmGDx+OEydOhLsrFEZ1dXUYO3YsMjMz8dFHH8FoNOLMmTN45JFHwt01CoNTp07h/vvvx1133YVPPvkEhYWFOHjwIDZu3BjurlGYPffcc/jkk0/C3Q1NYWDrpx9++AEHDx7ErFmzkJCQgHbt2mHSpEnYunVruLtGYVJYWIiZM2di+vTp4e4KhVlZWRm6dOmCyZMnIzY2FikpKRg+fDgOHToU7q5RGLRq1Qoff/wxhgwZAkEQcObMGdTX16NVq1bh7hqF0YEDB/D2229jwIAB4e6KpjCw9dO3336L5ORktGnTxn7b5ZdfjrKyMvz2229h7BmFy4033oh33nkHt912W7i7QmHWoUMHbNq0CXq93n7bW2+9hauuuiqMvaJwatmyJQCgb9++GDhwIFq3bo0hQ4aEuVcULlVVVZg7dy6WL1+OhISEcHdHUxjY+qmmpsZlMEo/19bWhqNLFGatW7eGwWAIdzdIZURRxMqVK7Fv3z7MnTs33N2hMHv77bexf/9+6HQ6PPDAA+HuDoWB1WrFrFmzMGrUKHTp0iXc3dEcBrZ+atGiBc6fP+90m/RzYmJiOLpERCpTXV2NBx54AG+++SZefvlldO7cOdxdojCLj49HmzZtMGvWLHz44Yc4e/ZsuLtEIbZhwwbExsZixIgR4e6KJnF6yU8dO3bEmTNnUFlZibS0NADAf//7X7Rt2xZJSUlh7h0RhduJEycwbtw4ZGRkYPv27cynjGKffvopHnnkEezatQuxsbEAAJPJhJiYGF6GjkJvvPEGfvnlF3Tr1g0A7NUx3n33XS4kCwDO2Pqpffv2yMrKwuOPP47q6mr8+OOPWLt2LYYNGxburhFRmJ09exYjR47Eddddh82bNzOojXKdO3dGXV0dli9fDpPJhJ9//hlPPfUUhg0bZg90KXrs3bsXn376KT755BN88sknyM3NRW5uLoPaAOGMbTOsWrUKCxcuRL9+/aDT6XDHHXdg0qRJ4e4WEYVZQUEBysrKsGfPHuzdu9fpvsOHD4epVxQuiYmJ2LRpEx5//HH06tULSUlJGDhwICZPnhzurhFpjiCKohjuThARERERNRdTEYiIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIiCrhTp06hf//+KCkpkX3MW2+9hdzcXHTt2hX9+/fH9u3bFT0nA1sioghx/PjxcHeBiEiW0tJSDB8+HCdOnJB9THFxMebMmYNZs2bh8OHDWLRoERYsWIDPP/9c9mMwsCUiuuCWW27BNddcg8zMTGRmZqJr16648cYb8dRTT8FqtQbseUaMGIHVq1cDAObNm4d58+b5POa9997DmDFj/H7OgoIC3HLLLS63nz9/Hj169MBLL73k9ri///3vPndU9PTYRBSdCgsLMXPmTEyfPt3lvo8//hjDhg1Dt27dcPvtt2PXrl32+1588UXce++96Nu3LwRBQHZ2Nnbs2IFLL71U9nNzS10iIgcLFizAkCFD7D9//fXXuO+++5CQkIAHHngg4M+3cOFCWe3OnDmDYGwUmZCQgKFDh+L111/Hvffe63TfqVOn8NZbb2HTpk0Bf14i0q4bb7wRAwcOhMFgcApujx07hokTJ2LZsmXo168fPvvsM0yaNAkpKSno3bs3Pv/8c/Ts2RPjx4/HZ599hrZt22Lq1Kno1KmT7OfmjC0RkRedO3dG9+7d8eWXXwKwzbbOmTMHN998M2666SZUV1fjxIkTmDBhAnr27Imbb74ZK1euhMlksj/G66+/jn79+iEzMxMPPfQQzp8/b79vzpw5mDNnjv3nf/zjH+jfvz8yMzMxZMgQHDhwACUlJZg/fz7KysqQmZmJiooKmEwmPPvss+jXrx969OiBcePG4YcffrA/zn//+1+MGDECmZmZGDhwoL3/7tx999347rvv8H//939Ot2/fvh2XXXYZsrOz8d577+Gvf/0rrr/+elx77bW455573KZGlJSUoHPnzk63Nf0d//3vf2PgwIHIysrCkCFD8NFHH9nvO3ToEIYMGYJu3bqhf//+WLJkCcxms8e+E5H6tG7dGgaD69zptm3b0K9fPwwYMAB6vR7XXXcd7rzzTmzduhUAcPbsWWzevBkTJ05EUVERJk+ejOnTp+Ozzz6T/dwMbImIPGhoaEBJSQmKi4vRq1cv++0ff/wxtm3bhl27dkGn0+G+++5Dx44dsX//frzyyiv4+OOP7akGBw4cwMKFC7F48WIcOnQI1157LY4cOeL2+QoKCrB27VosXboUpaWluOuuuzBx4kR07twZCxYsQEZGBg4fPow2bdpg5cqVeP/99/Hiiy/iww8/xLXXXovRo0ejvr4eDQ0NuP/++9GxY0cUFxdjxYoVePfddz3+nu3atUPfvn3xr3/9y36b1WrFa6+9hnvvvRcnT57Egw8+iPHjx+PAgQN4//33IYoi1qxZo/g1/eCDDzB//nzMmzcPBw8exNSpUzF16lR8++23AIDZs2djxIgR+OSTT/DCCy9g7969+M9//qP4eYhIfX7++We888476Natm/3fP//5T5SXlwMAYmNjMXToUGRmZsJgMGDAgAG4/vrr8dZbb8l+Dga2REQOFixYYP/Avf7667Fo0SKMGjUK99xzj71Nnz590KZNG1x00UV4//33YTKZMGPGDMTFxSE9PR0PPvigfQZi165d9g9ng8GAu+++G1deeaXb5y4sLMTw4cORmZkJnU6Hv/zlL9iyZQvi4+Od2omiiG3btmHGjBlo164d4uLiMHnyZDQ0NOD999/H4cOHUV5ejtmzZyMuLg4dO3bEqFGjvP7e9957L/bs2YPq6moAwIcffojq6moMHDgQrVq1wr///W/ccsstqK6uxsmTJ5GSkoKKigrFr+/LL7+Mu+66C927d4der8fNN9+MW265Bdu2bQMAxMXFYc+ePdi3bx+Sk5PxwQcf4E9/+pPi5yEi9Wnbti3y8vLwySef2P+99dZb2LhxIwDg8ssvd7raBQAWi0VRGhZzbImIHMyfP98px9adSy65xP7/P//8M06dOoXu3bvbbxNFEQ0NDaiqqkJFRQWuuuoqp+PbtWvn9nF//fVXZGRkON123XXXubQ7deoUamtr8eCDD0Kna5yfaGhowM8//wyTyYSUlBSngNjX4osbbrgB6enpMBqN+Otf/4pXXnkFw4cPR3x8PERRhNFoxLZt2yAIAjp16oTq6mq3lxp9+fnnn3Hw4EG8+uqr9tssFguys7MB2FIxVq9ejQULFuDXX39F79698dhjj6Ft27aKn4uI1GXYsGEYNWoUBgwYgBtuuAEnTpzA+PHjcfPNN+Phhx/GXXfdhUWLFqF3797Izs7GO++8g5KSEsyYMUP2czCwJSJSSBAE+/+3bdsWl156Kfbu3Wu/rbq6GlVVVWjVqhXatm2LH3/80en4kydPomPHji6Pm56ebr8kJ1m5ciUGDRrkdFtKSgri4uKwZcsWdO3a1X77999/jzZt2uCrr77CqVOnUFNTg8TERPtz+vK3v/0Nr7/+Ovr27YuioiIsWLAAALBnzx68/PLLePXVV/GHP/wBALBo0SJ88803Lo+h1+sBACaTCbGxsQCA06dPIyUlxf563XHHHRg/frz9mLKyMsTHx6O+vh7fffcdHnvsMRgMBvzvf/9Dfn4+Hn/8caxatcpn/4lI3a699lqsWLECK1aswIMPPoiEhATk5ubaA9ehQ4dCp9PhiSeewE8//YTf/e53WLlypcvkgDdMRSAiaoabb74ZNTU12LRpE0wmE3777Tc89NBDmD59OgRBwNChQ/Huu+9i3759MJvNKCws9LgQYsiQIXjttdfw+eefw2q1YseOHdi6das9kD1//jzMZjN0Oh2GDRuG5cuX4+TJk7BarSgsLERubi5++OEHZGZm4rLLLsPixYtx/vx5/PDDD9iyZYvP3yUvLw8//PADnnnmGdx66632WdJz585Bp9PZZ2/379+PnTt3oqGhweUxLr30UhgMBvz73/8GYMtHLi4utt9/55134qWXXrLXpTxy5AiGDBkCo9EIQRAwY8YMbNmyBWaz2b4ARQqKiSjyfP311+jZs6f955tuugkFBQUoLS3FRx99hDlz5thPggHb59Cbb76Jw4cPw2g0on///oqejzO2RETN0LJlS7z44ot48sknsWnTJlitVvTs2RPr1q0DAGRlZWHp0qV48sknMX36dGRnZzstRHM0cOBA/Pbbb5g1axZ+/fVXXHHFFXj++efRqlUrdO/eHampqejevTu2bduGhx56CKtXr8bdd9+NM2fOoF27dli1apU9f3fjxo2YN28ebrjhBqSlpaFfv354++23vf4uLVq0wJAhQ/CPf/wDr7zyiv32vLw8lJaW4vbbb4der0eHDh0wcuRIbN261SUf7pJLLsEjjzyCtWvXYtGiRcjOzsaQIUPslSD+/Oc/o7a2Fo888gjKysqQnJyM++67DyNGjIAgCFi3bh2eeuopbNiwAXq9Hn369MHMmTP9fn+IKLoIYjAKIxIRERERhRhTEYiIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTfj/DTsF6E/744kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Calculate residuals\n", + "residuals = y_test - y_pred_poly\n", + "\n", + "# Plot residuals vs predicted values\n", + "plt.figure(figsize=(8, 6))\n", + "plt.scatter(y_pred_poly, residuals, color='blue')\n", + "plt.title('Residuals Plot')\n", + "plt.xlabel('Predicted Values')\n", + "plt.ylabel('Residuals')\n", + "plt.axhline(y=0, color='red', linestyle='--')\n", + "plt.grid(True)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "from statsmodels.stats.diagnostic import het_breuschpagan" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#TEST FOR HOMOSCEDASCITICY" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Breusch-Pagan test p-value: 3.975373048166964e-258\n" + ] + } + ], + "source": [ + "poly = PolynomialFeatures(degree)\n", + "X_train_poly = poly.fit_transform(X_train)\n", + "X_test_poly = poly.transform(X_test)\n", + "\n", + "# Build a polynomial regression model\n", + "poly_model = LinearRegression()\n", + "poly_model.fit(X_train_poly, y_train)\n", + "\n", + "# Make predictions on the test set\n", + "y_pred_poly = poly_model.predict(X_test_poly)\n", + "\n", + "# Calculate residuals\n", + "residuals = y_test - y_pred_poly\n", + "\n", + "\n", + "\n", + "# Perform Breusch-Pagan test\n", + "lm, lm_p_value, fvalue, f_p_value = het_breuschpagan(residuals, X_test_poly)\n", + "print(\"Breusch-Pagan test p-value:\", lm_p_value)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A p-value of 3.975373048166964e-258, which is extremely close to zero, indicates strong evidence against the null hypothesis of homoscedasticity. In other words, there is a significant presence of heteroscedasticity in your data.\n", + "\n", + "Heteroscedasticity refers to the situation where the variability of a variable is unequal across the range of values of a second variable that predicts it. In the context of regression analysis, it means that the variance of the errors is not constant across observations." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Log transformation.\n", + "Transforming the dependent variable or one or more independent variables can sometimes stabilize the variance. \n", + "Common transformations include taking the natural logarithm, square root, or reciprocal of the variables." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Log transformation of the multiple linear regression." + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Squared Error (Log Transformed): 0.09804039958945562\n", + "R-squared (Log Transformed): 0.6469123715948973\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "# Log transformation of features and target variable\n", + "X_log = np.log1p(X)\n", + "y_log = np.log1p(y)\n", + "\n", + "# Split the log-transformed data into training and testing sets\n", + "X_train_log, X_test_log, y_train_log, y_test_log = train_test_split(X_log, y_log, test_size=0.2, random_state=42)\n", + "\n", + "# Standardize the log-transformed features\n", + "scaler_log = StandardScaler()\n", + "X_train_scaled_log = scaler_log.fit_transform(X_train_log)\n", + "X_test_scaled_log = scaler_log.transform(X_test_log)\n", + "\n", + "# Build a linear regression model on the log-transformed data\n", + "model_log = LinearRegression()\n", + "model_log.fit(X_train_scaled_log, y_train_log)\n", + "\n", + "# Make predictions on the test set\n", + "y_pred_log = model_log.predict(X_test_scaled_log)\n", + "\n", + "# Evaluate the model\n", + "mse_log = mean_squared_error(y_test_log, y_pred_log)\n", + "r2_log = r2_score(y_test_log, y_pred_log)\n", + "\n", + "# Display results\n", + "print(\"Mean Squared Error (Log Transformed):\", mse_log)\n", + "print(\"R-squared (Log Transformed):\", r2_log)\n", + "coefficients = pd.DataFrame({\"Feature\": X.columns, \"Coefficient\": model_log.coef_})\n" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAIeCAYAAABOTExvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtLklEQVR4nOydeXxTVfr/PzdJ07QFbUkRWsBhUBEZdIQKFBEEUYdiQQq4jMo4wy6b7DrDKouOrILsm/5Gx8ERWmSqoF8dFabKIjoz6riMog5LQVpaoEuaJrm/P25vmuUu5yY3yU36vF8vXtrk5N6Tk3vPee5znufzcDzP8yAIgiAIgiCIOMcU6w4QBEEQBEEQhB6QYUsQBEEQBEEkBGTYEgRBEARBEAkBGbYEQRAEQRBEQkCGLUEQBEEQBJEQkGFLEARBEARBJARk2BIEQRAEQRAJARm2BEEQBEEQREJAhi1BEESMoTo5BEEQ+kCGLUE0EUaOHInrr7/e71+nTp2Qk5OD++67D2+88Ybu5ywsLMT111+PU6dOybY5deoUrr/+ehQWFup+/ieffBJ33HFHWMe44447gsbtxhtvxF133YVVq1ahrq7Or+2TTz6p6fjvvvsunnjiCaa2//73v/GrX/0KTqcTAHD99dfj+eef13Q+vZC6ngL/jRw5MiZ9C+Sbb75BQUEBunTpgkGDBsW6O5oZOXKk31jOnDkT27dvj2GPCMK4WGLdAYIgokfnzp2xcOFC799utxtnz57Fiy++iBkzZqB58+bo27evbufr168fXn31VVx11VW6HTMW3H777Zg4caL377q6Ohw5cgQbN27E6dOnsXr16pCP/eKLLzK1q6urwxNPPIGZM2fCarWGfD69WLhwIaqqqrx/P/XUU97XRZo1axb1fkmxfv16nD59GuvXr4fdbo91d8Jmzpw5GDx4MPr3749rrrkm1t0hCENBhi1BNCGaNWuGm2++Oej122+/Hb169cKePXt0NWxbtGiBFi1a6Ha8WNGiRYugcevZsyfOnj2LwsJCPPnkkxE33l955RVwHIe77747oudh5dprr/X7WzRipa6vWFNRUYGOHTuiX79+se6KLrRq1QqDBg3CypUrsWnTplh3hyAMBYUiEAQBq9WKpKSkoNdfe+013HPPPejSpQv69euH559/Hi6Xy/v+hQsXMGvWLPTu3Rs33ngj7r33Xuzdu9f7vlQowttvv40hQ4bgpptuQkFBAb766iu/cx45cgTXX389jhw54vd64Hasw+HAqlWrcPfdd6NLly7o1q0bfve73+HLL7+U/Z5ffPEFHn30UeTk5KBr16747W9/i3/961/M4xRIly5dwPM8SktLJd+/fPkynnnmGdx555248cYbkZ+fj927d/t9p6NHj+Lo0aOS31nE6XTihRdewODBgzX30e12489//jMGDx6Mm266Cf369cPKlSv9QigAoKioCIMGDcKNN96IIUOG4KOPPkLnzp3DDhEpLCxE586d8dprr+G2225D37598d///hdutxtbt25Ffn4+brrpJtx888148MEH8dFHH3k/+/zzz+Ouu+7C+++/j8GDB6NLly741a9+haKiIr9zvPTSSxg4cCBuvPFG9OnTB4sWLfJ6k6+//nocPXoUx44d8wt5+eGHHzB16lT07t0bN998M0aOHInjx497jymGyLzwwgvIy8tDjx49UFhYiOeffx4DBw7EO++8g/z8fO91/+mnn+Kf//wn7rvvPtx0003Iz8/3+y6AEBIxfvx4dOvWDd26dcOkSZNw8uRJvzZnzpzB5MmTkZOTg969e+OFF16QHNchQ4bgvffewzfffBP6j0MQCQgZtgTRhOB5Hi6Xy/uvrq4OP/74I+bNm4fq6mrce++93rZbtmzB/Pnz0atXL2zevBkPP/wwtm3bhgULFnjbzJ49G99++y2eeuopbN26FZ07d8YTTzwha6D9/e9/x9SpU3Hddddh/fr1yMvLw+zZs0P6LnPmzMHu3bsxbtw47Ny5E08++SS++eYbTJ8+XTIZq6qqCmPGjEFGRgbWrVuHNWvWoLa2FqNHj8bly5dD6sP3338PAGjXrl3Qew6HAw899BD27duHUaNGYePGjcjJycHcuXOxefNmAMK2fefOndG5c2e8+uqr+MUvfiF5niNHjuDcuXMYOHCg5j4uWLAATz/9NO644w5s2rQJDz/8MF5++WVMnDjRO0579+7Fk08+iW7dumHjxo341a9+hYkTJ8Ltdms+nxRutxubN2/G0qVLMW3aNFx77bVYuXIlNmzYgAceeADbt2/H4sWLUVFRgccffxw1NTXez54/fx6LFy/Gb37zG2zduhVt27bFk08+ie+++w4A8MYbb+DZZ5/Fww8/jB07dmDSpEl4/fXXsXTpUgDAq6++6jfG/fr1w7fffothw4bh5MmTmDdvHlauXAmO4/Doo4/i6NGjfn1fs2YNRo8ejaVLlyI3NxcAcPbsWTzzzDOYMGECnnvuOVy8eBFTp07FjBkzcP/992P16tXweDyYPn06HA4HAOFaefDBB1FeXo4//vGPWLZsGU6ePIlf//rXKC8vBwDU1NTgkUcewVdffYXFixdjwYIFeO211/Dpp58GjWnXrl3RqlUrFBcX6/IbEUSiQKEIBNGEOHbsWJDxxHEcOnbsiLVr13oTrS5fvoxNmzbhgQcewLx58wAAt912G9LT0zFv3jz87ne/w3XXXYejR49i4sSJuPPOOwEI2/Pp6ekwm82S59+wYQN+8YtfYNWqVQDgDXsQ/2bF6XSiuroa8+fP9yYD9ejRA9XV1fjjH/+I8+fPB4UGfPvtt7hw4QJGjhyJnJwcAECHDh2wa9cuVFVVoXnz5rLnEx8IRMrLy3Hw4EHs2rULeXl5kuEWhYWF+Oabb/DKK694z9enTx+4XC5s3LgRDz74IK699lqmLfzDhw/jiiuuwM9//nO2AfL5zrt378a0adPw2GOPAQB69+6Nq666CnPmzMHBgwdx++23Y+3atejfv7/XGOzTpw+SkpI0/y5KTJgwwS8U4KeffsL06dP9vPA2mw1TpkzB119/ja5duwIAamtrsWzZMvTq1QsA0L59e/Tv3x8ffPABrrnmGhw5cgRt2rTBww8/DJPJhB49eiA1NRUVFRUAhHENHOPFixcjKSkJf/rTn7y/e79+/ZCfn48VK1bgtdde8/bp7rvvxogRI/y+S21tLRYuXOi9fr/77jusWrUKy5Yt87Z1u92YOnUqvv/+e9xwww1Yv349bDYbXnzxRW9/evXqhTvvvBPbt2/HE088gaKiIpw5cwavv/46rr/+egDATTfdhLvuuitoPDmOQ5cuXYK8wgTR1CHDliCaEL/4xS+8ST7nzp3D2rVrUV9fjzVr1vgloXz66aeora3FHXfc4WfQiYZvSUkJrrvuOvTs2RPPP/88vvrqK9x+++3o27evbIa/w+HAF198galTp/q9npeXp9mAslqt2LFjBwDBQPrxxx9x4sQJvPfeewCA+vr6oM9cd911aNGiBR577DHk5eV544rnzJmjer69e/f6hVgAgMViwV133YVFixZJfubo0aNo06aN16gVGTJkCHbv3o1//etfuP322xm+LXDy5Em0adOGqW1gHwAEhTDcc889+P3vf48jR46gffv2OHPmDB5//PGgNnoath07dvT7Wzz2hQsX8OOPP+L777/H3//+dwDBv5+v0d+6dWsA8Hp1c3Nz8eqrr2LYsGG4++670a9fPwwePBgcx8n25ejRo+jfv7/fw4zFYsE999yDDRs2oLq6WrbfIt26dfP+f2ZmZlA/09PTAQCXLl0CIDyc9OzZEzabzXtPNWvWDLfccgs+/PBDAMDHH3+Mdu3aeY1aAMjKypJ96GnTpg0++eQT2e9JEE0RMmwJogmRlpaGG2+8EQBw4403omvXrrj33nsxatQoFBUVeT2PlZWVAIBx48ZJHuenn34CIGzTbt68Gfv378eBAwdgMplw6623YtGiRUHb8xcvXgTP80HezVCTrg4dOoSnn34aJ06cQFpaGq6//nqkpaUBkNaFTUtLw5///Gds2rQJb775Jnbt2oWUlBQMGTIEc+fORXJysuy5+vfvj0mTJgEQPGUpKSlo06YNbDab7GcuXrzoNXh8EV8TDR4WqqqqkJKSwtzetw8A0LJlS7/XLRYLMjIycPnyZVy4cAEAgtQCAj8TLoHH/+yzz/DUU0/hs88+g81mw7XXXus13gN/P9/vbjKZ/NoMGjQIHo8Hr7zyCtavX4+1a9eiTZs2mDlzJu655x7Jvij9NjzP+6k9SLUDpBUflK6HyspKvPnmm3jzzTeD3hPviYsXL0p6/1u2bImysrKg11NSUkIOoyGIRIUMW4JowtjtdixYsABTpkzBsmXLvF60K664AgCwcuVKtG/fPuhz4mLfvHlzzJ49G7Nnz8aJEyfw7rvvYuPGjXjqqaeCdDbT09NhMpmCFmjRiBYRPW0ej8fv9erqaq/h+r///Q+TJk3CgAEDsGXLFlx99dUAgD//+c84dOiQ7Pft0KEDVqxYAbfbjX//+994/fXX8Ze//AVt27aVNeLFvosPBKxceeWV+PHHH4NeP3/+PAAgIyOD+VgZGRnehwmtfRDP2bZtW+/r9fX1qKioQEZGhtcDKsZ5igT+rSdivPP111+P4uJiXHPNNTCZTPjggw/w1ltvaT5efn4+8vPzcfnyZfzjH//Atm3bMHv2bNxyyy1o1apVUPsrr7xS0lD0/W1CGW8lmjdvjltvvRW/+93vgt6zWCze80pdM4H3iMilS5c0XUcE0RSg5DGCaOLcfffd6NOnD4qLi71JX7/85S+RlJSEc+fO4cYbb/T+E+MuT506hdOnT+P222/HgQMHAAhG49ixY3Hrrbfi7NmzQedJTk5G165d8fbbb/t55MTtZxHRE+arNHDx4kVvshAAfP7556irq8P48eO9Ri0Ar1Er5bE9cOAAcnNzcf78eZjNZnTt2hWLFi3CFVdcIdnfcOnevTtOnz7tl2kPAPv27UNSUhJuuukmAI0eSCWys7Nx9uxZzRXKevToAQD429/+5vf6G2+8AbfbjZycHLRu3RpXX301/u///s+vTSgGJisnTpxAZWUlfvOb3+C6667zjsHBgwcBBD/UKDFt2jRMnjwZgGA85uXleRPf5IzT7t2747333vPzdrrdbrzxxhu48cYbI6IT3KNHD3z77be44YYbvPdTly5d8OKLL3rHPjc3F6dOncJnn33m/dyFCxfwz3/+U/KYpaWlIYWoEEQiQx5bgiDwhz/8AUOGDMHSpUtRVFSEjIwMjBkzBmvXrkVVVRV69uzpjcnlOA6dOnVC8+bN0bp1ayxduhRVVVW4+uqr8fnnn+ODDz7A+PHjJc8zY8YMPProo5g8eTIeeOAB/PDDD0E6nNdffz2ysrKwfv16NG/eHCaTCVu3bvXbjv7FL34Bi8WCFStWYNSoUXA6nSgsLMT7778PAH5Z9SLdunWDx+PBpEmTMG7cOKSlpWH//v24fPlyRLRhhw0bhldeeQWTJ0/G1KlT0a5dO/z973/Hnj17MHnyZK9X/IorrsCnn37qldcSvay+9O7dG1u3bsV///vfoJjPf/7zn5JFHm677TZce+21KCgowPr16+FwONCzZ098+eWXWL9+PXr27Ik+ffqA4zhMnToVs2bNwsKFC3HXXXfhq6++woYNGwCwGd5a+fnPf45mzZph8+bNsFgssFgseOutt7xSaLW1tczHys3NxcKFC/Hss8+ib9++uHTpEtavX4/27dujU6dOkp+ZPHkyDh48iN/85jcYN24crFYrXn75ZZw8eTJiFb0mTpyIBx98EOPHj8evf/1rJCcn49VXX8U777yDdevWAQDuvfde/OlPf8LkyZMxffp0NGvWDJs2bZI09Hmex6effmqY6m4EYRTIsCUIAh06dMDIkSOxc+dOvPzyy/jtb3+LadOmoWXLlnjllVewfft2XHnllejVq5e3QhkgVHRavXo11q5di4qKCmRlZWHy5Mmy2/q33HILtm3bhtWrV2Py5Mlo27Ytnn76aUyYMMHbxmw2Y926dXj66acxY8YMZGZm4tFHH8WJEye88lo/+9nPsGrVKqxfvx6PPfYYrrzyStx888146aWXMHLkSHz88cd+CTiAEMu7fft2rF27FnPnzkVtbS2uu+46PP/8814ZJz1JSUnBSy+9hFWrVmHdunWoqqpChw4d/DLnAeDhhx/G559/jrFjx+KZZ56R1Kq95ZZbYLfb8cEHHwQZtv/4xz/wj3/8I+gzzzzzDK699losW7YMP/vZz7Bnzx7s2LEDV111FUaOHIlJkyZ5jdbBgwejpqYGO3bswJ49e3Dddddh7ty5mDt3LlJTU3UeGcGzunHjRixfvhyPP/440tLScMMNN+Dll1/G2LFj8fHHHzOXQn7wwQdRX1+PXbt24ZVXXoHNZkOvXr0we/ZsSW1mQEgkfOWVV7B69Wr84Q9/AMdxuOmmm/CnP/0Jt9xyi55f1UunTp3w5z//GWvWrMGcOXPA8zw6duyIDRs2YMCAAQCEpMj/9//+H55++mksW7YMHMfh/vvvR7t27YJCQ/7973+jsrIyJAk4gkhkOF7r3hZBEAQRdXbu3Ildu3bhrbfeUsz4D4Xi4mJ07twZHTp08L72/vvvY/z48Xj99ddlPZ9E7Pj973+PixcvYuPGjbHuCkEYCoqxJQiCiAMeeughuN1ub0yznuzbtw9jx47F3/72N3z88cfYvXs3FixYgB49epBRa0DOnDmDt99+O0iijSAI8tgSBEHEDZ988gmefPJJFBcX65rgVFFRgVWrVuHgwYO4cOECMjMz8atf/QpTp071KlEQxmHGjBm4/vrrZWPZCaIpQ4YtQRAEQRAEkRBQKAJBEARBEASREJBhSxAEQRAEQSQEZNgSBEEQBEEQCQEZtgRBEARBEERCQIYtQRAEQRAEkRBQ5bEGyssvw4j6EBwH2O3NDds/o0PjFx40fuFB4xceNH7hQeMXHjR+4aH3+InHU4MM2wZ4Hoa+cI3eP6ND4xceNH7hQeMXHjR+4UHjFx40fuER7fGjUASCIAiCIAgiISDDliAIgiAIgkgIyLAlCIIgCIIgEgIybAmCIAiCIIiEgAxbgiAIgiAIIiEgw5YgCIIgCIJICMiwJQiCIAiCIBICMmwJgiAIgiCIhIAMW4IgCIIgCCIhIMOWIAiCIAiCSAjIsCUIgiAIgiASAjJsCYIgCIIgiISADFuCIAiCIAgiIbDEugMEQRAEQRgXtxs4fNiMc+c4tGrFIzfXDbM51r0iCGnIsCUIgiAIQpLiYgvmzUvGmTONG7zZ2R4sXVqH/HxXDHtGENJQKAJBEARBEEEUF1swerQNZ85wfq+XlnIYPdqG4mLyjRHGgwxbgiAIgiD8cLuBefOSwfMA4G/Y8rzw97x5yXC7o983glCCDFuCIAiCIPw4fNjcEH7ASb7P8xzOnDHh8GEKtiWMBRm2BEEQBEH4ce6ctEEbajuCiBZk2BIEQRAE4UerVryu7QgiWpBhSxAEQRCEH7m5bmRne8Bx0oYrx/HIzvYgN5eCbAljQYYtQRAEQRB+mM3A0qV1ABBk3Ip/L11aR3q2hOEgw5YgCIIgiCDy813YscOBrCx/wzYri8eOHQ7SsSUMCYnQEQRBEAQhSX6+C3l5Lqo8RsQNZNgSBEEQBCGL2Qz07k2xtER8QKEIBEEQBEEQREJAHluCIAiCIIgI4XaDQjmiCBm2BEEQBEEQEaC42IJ585IbqrgJZGd7sHRpHSXfRQgKRSAIgiAMi9sNlJSYUVhoQUmJGW4K9STihOJiC0aPtuHMGf/qbKWlHEaPtqG4mHyLkYBGlSAIgjAkxcUWzJ8PnDqV6n2N1dtF279ELHG7gXnzksHzAOBv2PI8B47jMW9eMvLyXHRd6gx5bAmCIAjDUVxswahRNpw65f86i7eruNiCnJw0FBSkYsKEFBQUpCInJ408ZETUOHzY3BB+wEm+z/Mczpwx4fBhsmr1hgxbgiAIwlD4e7v84XnBUJg3L1kyLIG2fwkjcO6ctEEbajuCHTJsCYIgCEMRqrdLbfsXkDeICUJPWrWSeCoLox3BDhm2BEEQhKEoLQ3N20Xbv4RRyM11IzvbA46TNlw5jkd2tge5ufSUpTdk2BIEQRCGQUgYS2ZqG+jtou1fwiiYzcDSpXUAEGTcin8vXVpHiWMRgAxbgiAIwhCI8bHl5cqGp5y3i7Z/CSORn+/Cjh0OZGX5X29ZWTx27HCQjm2EoCh6giAIIuYoxcf6ouTtErd/S0s5b0xt4Gezsnja/iWiRn6+C3l5LpKeiyJk2BIEQRAxpzE+Vhm7ncfy5dI6tuL27+jRNnAc72fc0vYvESvMZqB3b3qYihYUikAQBEHEHNa418WLlYsz0PYvQTRtyGNLEARBxBzWuNdAg1UK2v4liKYLGbYEQRAJTjyUl9U7Ppa2fwmiaUKhCARBEAlMvJSXJXkkgiD0gAxbgiCIBCXeysvKxcdmZ1N8LEEQbBhrViMIgogzjLrNr1ZeluN4zJuXjLw8lyH6K+IbH/vTTxw6dkzBDTdUw0RuGIIgGCDDliAIIkSKiy2YNy/ZT6YqO9uDpUuVM/ejgZp8llBelsPhw2bDxaKK8bEcB2RmAmVlaDDQCYIglKFnYIIgiBAw+jY/lZclCKIpQoYtQRCERtS2+QHhfXcMHaFUXpYgiKYIGbYEQRAaadzml/Z2Ctv8Jhw+HLvgVVE+K1BhQITjeGRne6i8LEEQCQUZtgRBhITbDZSUmFFYaEFJiTmm3sloY7RtfqnfguSzCIJoilDyGEEQmjFy0lQ0MNI2v9pvsWOHo+H9RiM7K4tvMr8VQRBNC0N7bC9cuIC77roLR44ckW3zwQcfYPDgwbj55puRl5eH9957L4o9JIjEQ80Ta/SkqWhglG1+lt8iP9+F48erUVRUg82ba1FUVIPjx6vJqCUIIiExrGF7/PhxPPDAA/jf//4n2+aHH37AlClT8Pjjj+Pjjz/GlClTMG3aNJw7dy6KPSWIxCGwStXQoalo3x5eYzUekqaigRG2+bX8FqJ81rBhLvTubQydXYIgiEhgSMO2qKgIs2bNwvTp01Xb3XLLLbjzzjthsVgwaNAgdO/eHa+++mqUekoQiYOc9+/0aWDUKMH7Fw9JU9FCrkpWVlZ0qmTRb0EQBBGMIfcMb7vtNgwePBgWi0XRuP3222/RsWNHv9euvfZafPXVV5rPyRlUylHsl1H7Z3Ro/NhQ9v4J4zd/fjLmzatjOt5PP3FNYswHD3Zh0CCXbOWxSF5/P/3EdtB4/i3o/g0PGr/woPELD73Hj/U4hjRsW7ZsydSuuroaKSkpfq/ZbDbU1NRoPqfd3lzzZ6KJ0ftndGj8lHn/feDMGfn3eZ7D6dMcHI4U+UY+dOyYgsxMffqmBbcbOHQIKC0FsrKAPn0QlW33e+9Vfj8S11/AM71Cu9j8FnpC92940PiFB41feER7/Axp2LKSkpICh8Ph95rD4UBaWprmY5WXXzZkyUaOEy4Ko/YvmrjdkPWMyUHjx8Y331gAqButNlstsrOTUVrKeeM4fRGSpnjccEM1ysoi0FEFiostmDs3WB1g2bLYZf9H8vq74QYgOzvNkL+FXtD9Gx40fuFB4xceeo+feDw14tqw7dixI7744gu/17799lt06dJF87F43ti1yI3ev0gTrrxUUx8/Na66im1wWrcWZKJGj7aB43g/g0pMmlqypA4mU3THW4wPDjxnaSmHUaNsUYl5VSIS15/JBEP+FpGA7t/woPELDxq/8Ij2+BkyeYyVIUOG4OjRo3jzzTfhcrnw5ptv4ujRo7hXbV+QiCtIXiryaJGvinXSVCBNWanBaL8FQRBErIk7i6Br16546qmnMGTIEFxzzTXYsGEDVq5ciblz56JNmzZ4/vnn8fOf/zzW3SR0Qs1o4Tge8+YlIy/PRRJGYSDKV0l7/4T/+spX5ee7kJcnnzQVTRrVAaQR1AE4HD5sRu/eiWfdGum3IAiCiDWGN2y//vprv78//fRTv7/79OmDPn36RLNLRBRp6kZLNJGrUtW2LbB4sQP33OPv/RO1UWON0crbxoJQf4tQ4tYJgiCMjOENW6JpQ0ZLdAn0/rVuzSM/PxUVFS7DxpgZqbxtPNHUyyITBJGYkGFLGBoyWqKPr/eP46IjlxUOYnywkjpAVhYf8fK28YRSst3o0bFPtiMIggiVuE4eIxIfLUlNRNPECOVt44mmnGxHEETiQ4YtYWjIaCFYMLI6gNsNlJSYUVhoQUmJOeYGI5XiJQgikaFQBMLwyCU1ZWXxFA9IeDGiOkBxsQXz5wOnTqV6X4t1HCvFrRMEkciQYUvEBUY0WgjjYRSlBsC4cawUt04QRCJDhi0RNxjJaCEIJfzjWP2Jtf4yJdsRBJHIUIwtQRCEzhg5jjUe49aNFqdMEIRxIcOWIAhCZ4wex2rkZLtACguBbt3SUFCQigkTUlBQkIqcnDQqpU0QhCQ0MxAEkbDEqrJWPMSxhhK3Hu3xLC62YNQoBIVMxDpOmSAI40KGLUEQCUksK2vFSxyrlrj1aI+n2w3MnSuvtxvLOGWCIIwLhSIQBJFwiIoEvvJwQKOnL9Lb2P5xrP7vGTWOVYlYjGdjnLI0TUFvl2KLCUI7ZNgSBBE3sCz0RqmslZ/vws6dDrRp4/+6EeNYlYjVeBo9TjnSFBdbkJNDscUEoRW6QwgiTolV/GisYN0KZ/P0cTh82KxZPk7rmOfnuzByJFBcXIOzZ+Pzd4rkePoSOLYtW4YWp5wI94VRNZAJIh4gw5Yg4pBYxo+GQ6hGh5aFPlKevlDHXIxjldK0jQei4TmVGtusLA8yMjyorDRJjp1UnHK83he+qHnIKbaYIJShUASCiDNiHT8aKqFurWrdCmf19LG2E/sej2OuB5FWeJAb27NnOVRUcOD5YL1dIDhOOVF+o1hpIFM8L5EokGFLEHGEUeJHtRKO0aF1oWf1jLK2i9cx1wtR4SHYuBTgOB7Z2Z6QFB7UvZOA3Q6kpweem/N7LZF+o1jEFlM8L5FIkGFLEHGEkStayRGu0aF1oS8rY2vP2i4ex1xPIlmpjGVsy8uBigoOopdWpLKy8aEokX6jaGsgJ4qnmyBEyLAliDgiHjPFwzU6tC70ehsG8TjmehOpSmXaxkz+oai0NHF+o0h6yANJJE83QYjQoxhBxBHxUNEqkHANQ63FDvQujqB1zH0T5Fq35pGfz/RxwxNKpTI12K9TpYciDuXlbNeYke4LOUQP+ejRNnAc73cNq3nIA5Mze/VSvsajpXhBENGEPLYEEUdE05ujF+Ea41q3wvXeOtcy5oGxikOHpqJ9eyTMdq6o8DBsmAu9e4cvo6U2toHhB3LY7Xzc3RdKhOIhl4qT7dYtDYWF8ueh3QgiESHDliDiCNFoE7YOgzPFed54Fa30MMa1LvR6bp2zGsr790vHKp4+DYwaRbGKUrCMLQtZWXzE4oBjRX6+C8ePV6OoqAabN9eiqKgGx49Xyxq1cnGyI0bIP1jF4w4QQajB8Xy8qivqS1nZZUPqTHIckJnZ3LD9MzqJOH7FxRaMGmVr+Mt3IRO+4M6d+om36zV+4sILQHJrldXY1KqDq6dYv5JGal6eCzk5aQ2GhXz4w/Hj1XFlXEULubFdsqQOCxem4PRpXjGsRBzXRNCx1YrbDZVrTxiDjz8OvvbEz6qF7TTV6zYR149oovf4icdTbUeGrYBRL1y6scIj0cZPfRHTdyHSc/wSweiQM5RLSswoKEhV/XxRUU1UYhXl+in1OmCMSl1SfbNYgIMHm2PECOHiY3koSoTKY1oI99rT66EzEUm09SPaxMqwpb0xgogj4jnZIxLJR9FGjDENxEixinIPEAUF9SgqSvJ7PSPDAwCoqIj9w4bc2A4bJuxCzJ2b7LfVLoYfBPZT7jiJSrjXnhi2I1wz6uNLEEaHDFuCiCOMZECFQqIaHUaJVZQrPXzmDIcNG6xB7QV9WH+kyhTHmvx8FwYOjO+Hokihx7WXCA+dBCFChi1BxBFGMaAIf/SSGAtnG11Jk1T4m5d53R+h4hePefOSkZfnippxIxeKIJKoD0Xhon7tgUkRgsaXSBRIFYEgdCIatdbjUe4rUhiptr1ydr/wX7Ws/HDLmqoVwpB/PZhoV+qikq6hE8nKcAQRj5BhS8QlRjJqAGFh7tYtWENS74WZFjEBIxpCchJjmZnAuHH1yMjgZa9TJbmmUaNsWLnSqnqtRyL8JFoxwUrfXUmHlRCQu/ays3ns3g3DhJQQRDQgVYQGjJr1SFmZwWjJro/G+EVTfsv3nNFQGAh1/MRt5dJSoSqU3d64FR+u0e0fR2q8LG7xux84YMbu3UkoL1f+jdSULgJDCOR+Z9bseC1EWsWBReWjbVsOx45dhoncMKpIVR5r1YrWj1Ch9Tc8SO4rxhj1wqUbyx+tRk2kx8/tBjp3TmtIwpE2Slq04PHFF/rrQEZD1iiU8ZMyukV8jbJQ+h9tubNQ0XKdajVIlWSulA1kdqI1jqzffe/eGtx6a+KH1+gNrR/hQeMXHrEybOkZmIgblJJjxKSJefOSoxqW8OGH5gapJPm4xgsXTPjwQ/2tA73Lm+qB3LayyJkzQsb9U09ZQwolUIsjjXZsqBRar1Ot2/1y17pvmIqGoyGwgp1cSEskwn/iXeWDIAjjQYYtETcY0agpKWE7F2u7eEY5K1+EA88DGzZYJWMqR49WLj0bD4aQ1us0FAULuWs9P9+FOXOczMdp0YJHRoZ62eFIxTSTygc7RssrIAijQimnRNxgRKOGdXvFyNtYeoU0qBWPaETe4FOTmQrFEIp2JSqt16maXJPWc02f7sRLLyWhtFQ+PCY9XTBexe19pfGR08bVQ++WRSatbVuuSah8KJEIVfsIIlqQx5aIG4zo3WFNrDGqPqSenjg9HijUvO5qcmeC0eaBxyMYtLFQT9B6nSopXYRyLrMZWLasDhwnrZzBccDq1XXo00cwYJVCWiId/sOi8vHcczBEmE2sUFKNUNvhIIimCBm2RNxgRA3X3r3dDWVJ5Q2tjAyPIQ1bvRdMPR8o5IxkZSNQUA+orDRh+PBUdO6chlGj5L/fvn2WiGzthnKdysk1yV1Xate63PGkwgyUiEb4j1Jfd+50YNiwkA8d9xgxr4AgjA496hFxg2jUjB5tA8fxfluXsdJwNZuBVavqGuS+Ais7CX1atcp4urJqC6YYEjBoEPs2p2jQ6ZGVr1b+U6q2fSCN5WKlDAIe48bZ4PGoy2hpJdTr1LesaWkph4MHzdi1KwmB1xXrta5HmdRohf/I9dXSxFcotfAe4cGCw+HDZkM+PBNELCCPLRFX6OWJ0rtPO3fKe5yMGAMXCU+caNAJlbbkPdhSmfgirF73/HwXjh+vxu7dNUhPFz3mUuVi5ZPYfI1aQN+t3VCvU7NZMMiXLk3Grl1Wye+g5VoPVzkjmuE/RlT5iDVGzCsgCKPTxJ+HiXhED09UU+iTEpFaMNW8qdnZPAoK6rFxoxVAeF53MT60slKf53OW5DUt5Oe7MGiQC19+2RzffFOLq65SvybkErXEB4E5c5yYPt0ZteuKJblLLLxB6I8R8woIwuiQYUvEJaJ3x0gYsU9yRHLBDNxSl6o8lpPjCTJ+s7J4zaEAenuqxK3d7duT0LIlH/YDitkM9OsHdOniUlXGUJZLE4zul19OwvTp7HJe4cIaVgEIUlTx8FAXT9CDBUFohwxbgmiCRHrBVDPy9fJwR8pTNX++zfv/0ZJVMmo8pZwXXnwQAcSKZ/pKUbndwJEjZtTUAKmpZvTs2fSMZSPmFRCE0aEYW4JogrDILEV6wdQjppJF/ks+3peNaMkq6RkeoreYvxjTXFRUg82ba1FUVIPjx6sBICJSVKJM29ChqXjoIWDo0MjLtBkVI+YVEISR4XjeyNLx0cOotaCpVnV4GGX8ol0kgBU14XejjJ8SYlwqgCCPFs8DGRl8Q9ljFqSS0Bo92MePV2v63bSMX0mJGQUFqarHLCqqUfTYRkvM3+0WPbXSSXqhjpl/nHGwh7KpGnOhzCHxcP8aGRq/8NB7/MTjqbYjw1bAqBcu3VjhYYTxM3rVIKUF0wjjx4LSGN99twu//GUaysvDlyFTMyoD0TJ+oqGoFh6iZChG0yjUyxD3JVLGcjQx0kNsvNy/RoXGLzxiZdg2vX0dgogikSxHqhfxlPQmh1LMbkmJGeXl+kRdqYUBBBo1vXqxj2u48ZSs2sR6KD4AkVHWMGqcMStGfYh1u4GPPjKGsU0QkYZibAkiQlDVoOgiF7Orp3KCUrKaVPnebt3SUFjIfvxw4imjUSXMl0goa8SzbqtRS98WFgLdukW3rDRBxBIybAkiQpSURNfQIKRhNazs9tDLNSsZNSNGQJMRIZeopebxi7ZRGIkS1/Gq22rUh9jiYgtGjIDhjG2CiCRk2BJEBCgutmDMGJt6QxjT+5RIsBpgzz4bmkpEJIyaUBQjMjPZjD3WdmpEQlkjEsZyNIi2t5wFtxuYO9d4xjZBRBoybAlCZ0TvXWUlm8FqNO9TosFqgA0ZEloYgLpRA5w+zW7UhCLV5XYDX3zBNp1zITxHyfVJbykq8bcSjLHA+0JQuTCibqsRQyjY4pVpx4hIPGgfgiB0RLl6lD96VA0yUga2kVErMiAaYKEUjtDTqAkl+UjqM0qcP6/NuFLrU7yVk44ERgyhMKKxTRDRgAxbgtARNS9JI+EXQTBqBrZRYTXAtKpE6GXUhKKgIfcZPfqrpU96KWuID4YC0mWF9VR20Asjlr41orFNENGAQhEIQkdYvR/p6eFVDTJqBrbR0aPaWSDqcaFAmzbKcaFuNzBzpnI85Jw5ydi9uzEUQMvugNAPbfGpsUiIMmKsKgtGqOQXSON1Kf2+UeOVCSJcyLAliBCRijtk9X5s3epARgYfUslTo2ZgNxV8f/eDB8348EMz8vNdknGhrEbNmjXWhupo8gZdWZkJEyc2yjWtWWNVNAJD6YcvkTIylWKIY7F9HmpMc+BnjFb61mwGli0zlrFNENGA3DoEEQJyYQCLF9epbkmmp/N4/HEbSktDCyGIdxF7FrTEDkczzlgtntVk4uHxNP6dnc1j3ToOffu6ZMMF3G5g69YkTf0oLeWwfLmVuX1gLLEabjdw8CDbIGoxMtXCZ8LZPg/lOtArptn3M0aKN87Pd2H3bmDKFF4xtpwgEgkybAlCI0pxh2PH2jBxohMbN1olq0fxPFBREWwIaKlEluhJIVqMjWjGGbPEs4pe2/HjnRg40I1evdxo1ao5ysrkP3P4sBmVldo2z4Tris0IXLLEgTFj6pmNK63JaL5GppJxqXTfjBplw/jxTtx1lxtZWR6cPastVjVUA1WtPwMHupm/g+/9a6QHymHDgN69q6nyGNFk4HieKiADMGwtaKpVHR56jx9rLfvFi+uwYIH/QpuV5YHDIRq28p89frxacdEpKTGjoCBVta9FRTVhL7B6jJ8WT5q/4RBcUtbX8NfSNlzUfndffH9Hi0V9/AoLLZgwIUWXfvrDIztb/XryRW5MpQi8XpWMy7w8F/P4ZWR4UFHBgeMQ9GAIBP+u8n0W2u/cGXwdaPk9Wb8D6/0bTYy4fsSTkosRxy+e0Hv8xOOpQR5bgtAAaxiA3S4scL4TuMcDDB8ub5CyhhAYMQNbDi2eNLXYYd+MeIC9rR6LJrvaRePv+OGHZpjNQE0NkJpqRs+e0gt45LLSOTzyiJP5+2uVqgMaYzTVPJmzZzuZx0/Uf05P5/12N6S2z5X7LHi1Z84Mvg60/J6s3yERQoAiDSm5ENGAkscIQgOs2/v791uCMvBZ9UPVzmHEDGwptCo3aElWinb2fChhHaNH2zB0aCoeeggYOlRI+JJSq1BTVQiHDh086o0aUBtTX3wToliSGbXEEAsPJoDNBuzZU4NXXgH27pUuK6zeZw4VFSasWeMfj6zl9+R5DjwPbNnC9h3iNQQo0pCSCxEtyLAlCA2wqx4kBU3ULVuyfZalnVIG9uzZTjid0Ky2oCdalBvEDPP169kNB61xxqFkvvsSilc1sPKc3AKu9KAibKeHbvBq6TfrmM6YUednZLI8ZIQSQ1xaaoLZDPz615CVZistZevz1q1Jfr+59t+Tw8WL2mOOAwn3OoxXSMmFiCb0iEQQGlALA/AlcCucNcaItV1gBvaJEya89FISli9P9raJ1TYfa8jGmjVWvPxyEvO2MCAY/ibG5q1a8Zq3P31jADMzeXCcYPTZ7R6Ul6vHZDYaouwhEnKV0Vq04HHhAheUiOhv7OoTjsJq7PXp429ksms3e3Dxovp944vasYXfQ53KSpM3REB8mEpP9zQ8fGjxsEr/toD6mDflbfimoORCGAfy2BKEBvxr2SsRvBVeVsa2gLK2E/vTu7cbViuwYoU1yIMVq20+VmNn+XJr0NakGjwvPGBkZHgg783k0aKFYIhq2f4sLrYgJycNBQWpmDAhBSNGpGL48FRMnJiC8nKT99gKvYNg9GgPkcjPd+H48WoUFdVg8+ZaFBXV4IsvqrFzZ7BnPjubx6RJTnCcfuEo6oUmpAX9WQ3icePq/frHgtqx7XZtHmnx9x0xIrXBi8yuLuGPtjFv6tvwia7kQhiLxL6bCCIC5Oe7MH68E1u2JKu29Z2oI1XiUkvSVbTibrV9B22L2T/+YcZPP3Gor1du5/EA8+crbX8KiUVXXMGjd2839u/XXp42mPAWcKnStEraqDk5niAvb6gapeJD2+jRNkmpOkDacOve3e2j3yv1vQQP+9SpTnTqFNxfKVg9zoEGvxInTpiwYoU1Ir+v0pgb7f6MhSoBlfclogkZtgQRAgMHurFli3o734k6UmoGRtzmUw/ZUPZsKvHcc+oPFACHykoOlZXKbSoqOIwYkeqVYlNXBBAM4ubNPXj22TqcOGHCypVWn/fY0LqASxm8gLLRGwpyIRFKhtuxY2Z4PMpj5vEI7Xz7u3+/xSepjM2IDiQ3V9C9FXYq5PrAo3VrHi+9lKSonpCWxqO6Wss1KfRzzhwnpk+XV58w0v0Zq3CIcOa+eJIHI4wBhSIQUcPIiRNa+xbKtm2k1AyMuM3H8l2NRGkpp1jS1h8Oly+bYLfzeOWVYMNM8ZMy2/nhEKi+Ee6iLxUSIaVIIKL1+hP7u3RpHXbudCA7O/QStL5lY6VDCoTXfvOb+oZKf/LqCdXVJths2nYaOA54+WXlpEej3J+xDIcIde4LDA0Sy0kneugGER5k2BJRwcgTVCh9C3WijkQ9eaNu88l9V7udN2CyjHajYs0aK7M8loBQeS7aUmyhPFBqMZbDuf60GtFS5Oe7sHOnAxkZwcfPyOCxc6eDWfbM4dAa7y3ETG/fniQ7vpG8P1l/W7cbmDkztqoEWue+ph6XTIQOVR5rwKiVRRKh8kk0K0QFojZ+4fYt1K09PbfX9u2zYNw4m8J2sLYKVL59a92aR35+Kioqwq88tn+/BXv2WHySsIS+hWJUqsFxwvazUqW38NHad/lKWJEiGlvPYhUvtW3mUCpysc5/bjfw4YdmHDpkxunTHLKzefTp4/Ya5azV+vQgcHwjNT4sv604fk8+WYdnn1UP4dGjWqEaLHMfa4XHSFd5S4T1N5bEqvIYGbYNGPXCjfcbK9YTlNL46dW3WMaAsZVAFTLoFy50Mh0vcLFs2xZYsqQW99wTuiGkVvZUT8NTfCiZONGJDRu0x7+yo90oV7um9LyWovlAKZ4LUC+Dq+U7ssx/LAaemnGpJ0rlnwG2MsFqsP62HAdkZDRHZqaHSUt4+vQ6XH+9J+axrNEsG65EvK+/sSZWhi2FIhARJdoVorSgV9/0jnFkRUsJ1I0brapbd3Jbf6dPA6NGhb71p1721J/MTA8GD1Y3wuXIyuKxbZsDRUXa4l+1Ix6XfcZWuqb0DNeJtiA+6zaz3iFJrNvV6kUwQiX4s1Ljq2cIktbf9tAhMBfIWLMm2RChYkaJSybiEwpSISKKkSeo/fvZLn+9+6aXV4693r2Q9a0kKaS8WApPyqFKEqn3UzjfjBl16NPH7U2sysmxMHnYOI6H3c5j8eI6XHWVUFChpIR1bPQhuICCMuI15XQCL7yQhPffN+Pdd4OvxzNnOIwaZcO4cfXIy3MxXyuxyMRXU2jw9zI2Ihqheht4gTJacooPmZm8Ju1of5Qeijl8+KEZJhO843H0aDWOHQvv3tfy2952mxulpaxH9t+BCPV30QOj5g0Q8QEZtkREMeoE5XYDe/awXf569k3PmEet9e7PnOGwfLkVffu6gxbUSBpCrP3s2NHjd2w5TVVfRO/bqFH1+Ne/TNi9OykghjfyzJnjbKiepk3u66mnrNi0yaoqlQUAW7dasXWrlTl+++BBNmtJ74c2OVmyULRc3W7gyBEzamqA1FQzevYM/5qVMr67d3ejR4/IhCmMHm3z85aKv9+wYaEbilqdBVlZrEeOvcauSKSkEYmmAYUiEBEl1GpGkebwYTOTAZSZGV7ffLOWV6606prlG4rBvWZNsuQ2YyQ96y1bhvZwI7d960tGBo/0dB7Llydjy5bkqBq14rU7fboTR49WY8kSB373OyeuuEK+Ipr4mbffNmPDBmtDUQN2Aq+VwKz4ffuErf41a1i0fkMrBhKKZJ/WsB8xZGHo0FQ89BAwdKg+16zUbonVGkqYAtu4CSV7G9Ejo1+rs6BPHyjOwUrEKlQsUtKI0cLI0pZNAfLYEhEl1GpGkYZ1URw+vD6s5J1A76xUwpHoGZkzJxkOB7yeCBZxeuUiCPIEbjNGyrNeXGzB3LlqRhaPjAxp70ugh61lS0Eyq6yMw4kTJixfbpU4njocx6NZMx6XL4vjpj0JDBCu3f375X5n/99a/MyiRXWYMMEW0nl9vWgeD7BggdR52fqv1eMVzm6DFiOUNWRB6zWr1n+pMAUl3VsBuQRC6aRIPbygWr2ZotbvqFFSux9sCZCBv180EmZDKRZiBGJRBIOKWPhDHlsi4kRCuzVcWBfFgQNDe9SWS2pR8liVlZkwcSJ74oZyQowygUkmap51ADCZeJSXsxti4hgIVaGUqajgZGOexe3te+91wWQSjNqWLYVKUgKhGaVr1woFAux27Z4s8doFIPM7y3+mtJRrCD8Ibdtb9KKNGSN3XvWYZEDbA2W4mqKs91vLljxzYpSW3SCW/vtq6o4ezZq8KMSv+yMai5FJmA3Fm6mkKc2C7+8XTU1yPXSOo0kstHeNrBEfK0juqwGjynkkktxILJ4q5cZPXf5Hm/arL2oyYmz9ZpcBkvYMsyNK5qhLhwmJWSx90joGajJY4X5HXwK9J7W1wA03NENNDdtvtWSJA2PG1AMAunVLUyjnyiMzk8dzz5nQrFkNevZ0Y/9+C6ZMsTWUbg2X0DSAtXqP9JDFc7uBa69thupqyPSZR7NmwIsv1mLECHaZJxYZrbw8l+b+a9O99f8dMjI8DVXslNm8uTasWFstOrbi/Bc4B6vFFweOTSgScvHsTdSy/sZC2jKWGvEskNwXkfDEShZLri9KXg+OCz1EQi2ekAUtkkx5eS6sW+fA9Ol1yM+vR4sW2gI3xW3G/HwXtm1zwCQ7K7D3SesYKFVwkvd+a8du92Dx4saFv7jYgl690piNWkDwKprNQuUxtTKtZWUmtGkjXPf79wvfQzDu9ED7eMyYUafZ48UaH7t9e5Ji5auaGuXzVFcDZ89qi5tl2Q0KRdYvN9cNu531PhK8tunpHuzZU4Nt2xxMnwo3KTUUb2bgHKwUXxzo/Q1FQq4peROjLW0ZbUm/eIIMW6LJEqkQCb0yzVkmQnHhGDEiFWvWJKO4OAnJycCcOXWYMaOO6Ty+C6zdzitm6bNOzqGOwfz5Nr8FcN8+C7NWLwsXLnAYO1bYEgzVYG7VikdxsYU5vre0VJvmsDqhG0R9+mh/oGT9LefPt8kaLS+8kNSw2Mo/BPA8h08+Yeuc7zUrGnh79tRgxow6TJ9eh3XrBE+tlv77tjObgWefrUNjrLQaHCorTTCZBMMxWgmzejgLWOfBUBIAm1JJ3GhLWxpZIz7WJNaVRRAaUdPeDAW9pcvkJkK5JJuzZzmsWGHFtm0OzZI5ek3OeoxBaSmHMWNs0LPAgm/yDs9Do6EpjJe4fctKSQnw8ss2xjAKYdxuusmNf//bDI4DgpN9tBOOPJKW31JO+/SHH9h8KDyPkGSeAhP41qxp3JYPNTFyyBAXJk3yrV6nzqFDZuTmug2ZMKsEyzyoZW4IRd4tUkQrFCLa0pZG1oiPNeSxJZo8eodIqCdiaZvYpCZCtYWD54WM+cWLtSWZ6DU5sySj+SNfwUlvRE+GchhB0KcACNnlx46xhlkI3r4NG4A330xSadvIY4858c47tdi5M9iLJoSJsJy3kXCNKS2/pdwWKGv4RYcOHs2JUWqewfJyLmQP6sKFTmzf7miQcFNn9epk5OQIDz1yyVrjxjmRkcEbbotYbR7UMjcYxZsYzVCIaEtbGlUj3giQYUsQOsOStcxi3CpNhOoxrMLCYbfzzOEWbjfg8QBXXqmuw6o2OfuOAetWrrbXowvHAZMmOZGf72JSeQjjTLj77sZiAmIM5fjxwra4uu5t8FiHE1ojervy810ND1Fsxq2v0eJ2Ax98YFH5LA+O4/G739VrChFiiTMM5QHPlyFDXPjPf6obYm7Vv/+ZM5w3oU38/caNc8Ju96CszIQtW6S1pI2OFsPNCN7EaIdCRFt716ga8UaADFuCiADK8josSgHKEyHrgnDggJkpyUT0bAwfnoqLF6UNZqXJWUqQPD/fhdmznQzfNT7YuNGK4mKLJsmzUL57YKxnbq4b+/axSpsJ19aSJQ5s3lyLPXtqsG6dA04nJIXilYTkfb1dW7daAXAKiYXy3+PwYTODd5zDvffWw9qw65+f7/IWvZg8WVCiOHo0ODGK1TOo5QFPCqsVWLGiDhzHIq0n7JjMnp2MoiILPvrIjK1bk4Kum3iLNdViuMXamxirxKpoSlvGexGLSKLpjqqoqMDevXvx0UcfobS0FGazGVlZWejTpw8GDRqE9PT0CHWTIOIPqbi10lIOEyemqH42PZ3H6tXykkysC8KePUlYtMgpW+oUkI/VlerTqlXBfVKSHerQQWNpLd0Qv4x+iXxiXOAf/sCWlBfquTMz/X+IRvUFdlq25GG1AlOm2CR/l/x8l+LvBkDymmj02qp/N/F7sD6E+WpGB/fNhk2brEEyZVo8g8OGhRdPLxotc+cmM3jtOZSX+97rwWMWy5K1ocJaNCHWJXFZyy2vWGFFnz7BJcbDIRJ5G0rnisciFpGGScfW7XZjw4YN+H//7/+hS5cu6Nq1K1q3bg23242ffvoJx48fx3//+1+MHDkSEyZMgMUS3hNoeXk55s+fj6NHj8JsNmPIkCF44oknJI87ZswYHDlyxO+9tWvXom/fvprOaVSd2ETSsY0FRhs/Vn3Mv/61Bv36yU/6bjfQpUsaUwlZUfNT7jhserM87HYeS5bU+VVGU9NRHDzY5eNtVCI0TdZYHPfBB53YtSu0imcsZGV5sGxZo/E5apT2BLpZs+qwapVV9neZONGJjRvl309P51FRIa/Py9KfPXtq0KePm/maV9NTltLmPHjQzKR7u3t3Dfr21ceIYj2nFpTu0XCI1PzHkpDFojHMYniFkvxVWGjBhAnqDgQROW1no60fchhVKzhWOrZMFuhvfvMb9OjRA/v378dVV10l2ebs2bN46aWXMHLkSPzlL3/R1tsApk2bhlatWuHQoUMoKyvDY489hhdffBFjxowJavv5559jx44d6NGjR1jnJIhowFoG9/HHbV7jRgqzGRg+3NWwRayMklerpETZs9GIvwcqO1vQg12wQGm7j8e+fWpTDI/0dB4XLwrt9U4YE1QFdD0k3nxTjBeNTIhFaSmHUaNs2L7dgQUL1MoRS7NzZ5Li77JpU7BR6/u+coEBtu99/jznjdtOTvagrk7eULbbBbUJrdn0HONPwNqOhbIy/X/3eMtcV9oBEtHDmxhqeVqtIQ5yah7xAsvv0ZRg2t/64x//iMcff1zWqAWA1q1bY/bs2Vi+fHlYHfrxxx9x9OhRzJ49GykpKWjXrh0mTpyIP//5z0FtT548iYsXL6Jz585hnZMgooGWRJyzZ9Xj70SdTjXkJvniYkuDnJZ2RCkutQQ2lpjQgQOFwhCBcWl6EAllhUuXwiu+oY5w7GnTkhnVF4K5cEH5d1Eu6avPdztxwuSN266rU+5PebkJPXqkYc0aq6Zs+vPn2Y1svYhEXGiiZq6HUxI3nOQvraosTb2gQaLB5LFt164d8wG1tJXiv//9L9LT09GqVSvva9dccw3OnDmDS5cu4YorrvC+/tlnnyEtLQ3Tp0/HZ599hszMTPz2t7/FiBEjNJ9Xzyd6PRH7ZdT+GR2jjF9xsQVz5/p7HgSNS+n2ondq/vxkDBokHX/Xq5d6HFt2No9evdxB3581rlYO0bOnB7t2WXHwoAdLltQhPZ3H6NE2VFayGMWAnOeU4/iG7XT22FSTiccVVwje40hJjbHDoaoq1n0IDY7jkZHBY8UKq6brq7SUYy56ceCAGbfd5kbr1mwnaN2a994D4W7bivddOCWzRZTuUT0wwvxnsQC33abNWmTx3CvNjRaLIM03alSwlrAcYtztkSNmr/fTCOMXz+g9fqzHYTJsR44cCU7liH/605/YzqhCdXU1UlL8Y2PEv2tqavwMW6fTiZtvvhnTp0/HddddhyNHjmDKlClIS0tDXl6epvPa7epxG7HE6P0zOrEcv8JCYNSo4C1xtcmW5zmcPs3hyy+bo18/6TbPPw8MHx78unC7cli3jkOrVv7f3e0G5s/XY4tev9m+tNSEMWNSsHs3sGOH9Hdi7YP43adN47BwIXsfPB6uwaAmwoHnOTidnObrS8vDxJYtybj77mTcey/Qti1w+rT09cxxwvv5+akwm4V78fHHgVOnGtu0bQusXQsMG8be1+efB0aMCO8eUrpH9cDtBg4dEirfZWU1R58+METcJQvvvw+cOSP/Psvc+NvfAldcEfx7q1FTk4rMTP/XaP0Nj2iPH5Nh27NnTwDAqVOn8M4772D48OG4+uqrcfbsWfz1r3/FwIEDdetQamoqamtr/V4T/05L86/2M3ToUAwdOtT792233YahQ4di//79mg3b8nJjBodznHBRGLV/RifW4+d2A1OmpKmUE1Xm5ZeduHjRJelZunTJgoyM5CDPZEaGB6tW1aFvXxfKyvw/U1JixqlTeia/hB9vyvOC92rqVB7Hj1fjhRcsmDEj+HuxIMbg3X23C+vWpTXILLH2j0fz5oJebHW1UdQQ5cY38HU9lSBC+01NJqEkc1VVZM8vXiu9e1djyRIxwQ5Bn+F5Hjk5LpSVObB/v9Au0At4+jSPESOAnTvZ4yv79gV27gzehRG+f3A/pL6TeJ1K3aPh4HYLShpbtiShstI/NlUpbt9IfPONBYB68tc339SiSxf579O3L/Dxx4KH/uBBM1avVo9ZT02tQVlZo8eW1t/Q0Xv8xOOpwWTYTp48GQDw0EMPYevWrejWrZv3vV/96leYP39+iN0M5rrrrkNlZSXKysqQ2fDY9N1336F169Zo3tz/C+3evTvIO+t0OpGcrD3horG8pjExev+MTqzG76OPWJOz5Nmxw4odO6xBSRPy4QRCRrvcdz57Vm+vpH6SWqdPc/joIzPuuceFu+5yYdasZOzdmwSHg90w7dLFDZ4HundnU43wh8Ply8bz2kpvp6r9HdYZNbUePNiJv/0tiaGAhD4EXisTJ8qVvuWwd28S3n9fLE8svBZ4LI7jMXduMgYOZJfduuceFwYO9Jd1Ki/nMHasDcGJkMKNOHt2Ha65xuMXAqHnvFRcbMHMmdIPhGJSYjwkSF11FdugXHWVfDiXiMkE3HqrGz17urFrV5KqBFnPnm5JmTtaf0Mn2uOnadb/8ssv8ctf/tLvteuvvx4//PCDbh1q3749cnJy8PTTT6OqqgonT57Exo0bJeNmq6qqsGTJEvznP/+Bx+PB+++/j+LiYjzwwAO69YcgwiG8bGf/mcA3aUIpBk38Wy4RgjVRZerUuoZqS9Hl3DkOxcUW9OiRhl27rBqMWoG33hI8c4FJJ5FGSFTRf/Z+8MF6XHmlctWuSJyXBbG60ccfiz6S6I75uXOC8kJRkbKkXGUl12DssSWlsRJYhnbIEMHIDo7cE3YN/vznJFit0KV0dyDig64g0xZMPCVIRaKqFhU0aDpoMmyvueYavPjii36vbd68GZ06ddKzT1i3bh1cLhcGDBiA+++/H3369MHEiRMBAF27dsW+ffsAAI8++igeeeQRTJ48GV27dsXKlSvx7LPP4pZbbtG1PwQRKuzZzlLtpKSYhIXpww/ZKi6VlJiDKkuxLho33eSJmgfOlxMnTJLZ0Gz4hh1Ez8iaPr0OW7Y4Gv7S08jksWuX1WdLWf06iRbi9fPII/UMlcUiQ6tWPEN5aai810i4slvFxRZs3GiVvW/Ecrt6VxtTftBtJFQDPtpEygiNZmUwInYwFWgQ+eSTTzBhwgSkpqaidevWOHPmDDweD3bs2IHrr78+kv2MOEYVYI4XgWijEuvxEwsgKG1/pacLHdMSTzpjRh1TvFh6uicozs63shQgLZ4uJ+AfLo1KENIxiGL2ulDZyXghAXLMmlWH7dv9YxqV8b0Y5b5n5LRy9UC8lpxOaBLD14a86kVWlhCP/frr2sT4lQinUIKWYifp6YIhdeut+nhuWYtgiGzeXIthw2JrxLEWeQhFx1aPcwOxXz/iHUMXaBDp1q0b3n77bbz//vs4d+4cWrdujTvuuCMo9pUgCAHR8zB6dLDsjGhErlhRh/nzk6HFkGGdJAKz/H2FyLdtc+CJJ5L9athnZfGKhRdCJT3dg3Hj6tGxo0cmBlE4V1UVj6oqoyRtsbNypdZKZCzjalyjFgCee86Bfv2EymLaCDfJTXg4Ej12+mjACrJb4ZR4VSvj2oigvjF8eKouRhoAhhK//sRaN1fKYLXbPRg+XChHKxqakSpPSwUNEhvNK0h6ejo6duyIn//858jLy4PT6YxEvwgiYVDb/rLbec1bub17qwmQi3GX0uEMM2cmY/78ZL/kKrtdqCZmt/MhFwYIZPr0OhQV1eDLL6sxa5YT99zjwuzZTqSmSvc7XrVbBWLfd5tNPt5WDDFp3doj20aAzegRt7O1iuGzFe7wbRtMRgbvLVAinp89BES63b331uPwYf+wHS2EEsbAUmxAjeJiS8ODMQvaY1P1Rq7wQnm5CVu3WlFQkIqcnDTvmATGMVMMLKGGJsO2vLwcDz74IO6//3488cQTOHnyJO688058+umnkeofQSQEShV4tC2IwsLUu7dbNgat0aCVj7+tqDAFeXkuXBAyuvfvDz/+TzSiZs4UHnxff92ClSut6NYtDcuXJytIacXeOAwNI/Sbh8PR+P+++MbDDhnikmzj05rtbA0fV4qHjAzC9Ssa1r7nVzJuOY5HWpp80PimTYJRNWFCCgoKUtGlSxpDSehGQvGChpvQJRqJvrsuCmcDENsEKdZYYD0MfqLposmwffrpp9GxY0ccO3YMFosF11xzDcaNGxd2GV2CHbcbQclARHwg53nQuiCKC5OcJ1iM2VVH2pu7Z4+WxSTYQyjG0fbo4UKXLmleY2H58mTNW6aEFoSxbdaMD7omMjKEuM7ly5OxdasV2rym0vhu5cpdi5HE94EwP9+FnTsdyMiQ91bzPGCVjRgJHovychPGjLHhqaeUw0zEObm0lGtQEdE2BqEmdLEaiSIZGbwmrd5IwJboF18KDoTx0PQ4dPjwYbzzzjtISUnxViIbM2YMdu7cGZHOEf5EKpCeiC25ue6gJC85xo2r9/7WbrewWM2bV4fycg52u2DQeDzA8OGhFWDgea7hWB5cuMBSWpZD4EKens7D6eSwd6+0rigRSYRSvFarB3Pm1KF9ew8OHjRj1y5lOSytNGvm8TNsA6/F8nIOzz2nXU9cC4EPhGI85po1Vmzd6p/Il5XF45FH6rF8uVKfpK/NDRus6NrV4+PpbkRqTpYLA1JDaygDa0zvFVcAjz1Wh2nTnDHfxtfyHcUSt4cPmykeltCEJsM2KSkJDocDKSkpEMUUqqurgyqCEfojJ8bvmwxExm18YjYLBqvyoivQrp0Hbjewf3/wgpqV5cHIkfVo396jwTCVZsSIemzdamWssy68P316HZKSgBUrrJRBHGMuXOCwfLkVaWl8RCqoPfSQMNeUlJixf78Fe/ZY/OK1W7TwICPD06Cpqu/DjKiIIBUnajYDs2Y5MX26Myjh6PXXQ9nWFvr+5JPJuOeexuINYnWv5cu1Jg3Ko3XnhtVI3LgR+NWvnIa4J0MJ16BdHkIrmu70O+64A7Nnz8a8efPAcRzKy8uxdOlS3H777ZHqHwFhEp07V3rLSayaM29eMvLy2KvmEMZi+nQntm1LUjUE5s+3YfVqq6QIe2kpF2AcS3mO2DxJAwe60bOno8F4ZltYrrvOg6VL9VVTMAahjWFsETzpkSoLXFoKdOkiX9ntwgUTwtfzlVJPEEIKFi9WjhOVynoPRwmgrMzk9RwWFwuldIWETym0XStKhroSrN+nTRtNh40oYqKfnPyhFPPnJ8NmAzluCGY0zXozZ85EamoqBg4ciEuXLuG2225DbW0tZs2aFan+EQAOHQKTGL/RRbcJecxmYNUquQQY/78bjVrtJVWF+FvlBBsxazo/34VPPqnGmjWqhwUAlJdzuqkpEEqwVhoLXU5L7b2//c3KXK6YLaFMOtktOGZWePBbsCBZc2JRbq47rEp6YkW80aNtGryI6kYtoJ7QJZVbwVJopU0bD/r0YexqFGBN9POlvJwSyQhtaDJs09LSsG7dOnz44Yf461//ig8++ACbN28mHdsIU1rK1i7cqjlEbBETYLKzpRbzwL/ZdVDtdg82bqzF0KHOBl1b+YIAvvqggLAQTZkCpkpldrsB9jpVCaWP2h8gIkuki1eEX8GrsS0HIVJN2Rg3BaxEWVlCotPKldJGkNYKXqIg/803hx6r2bIlrylZiwWWilfFxRbk5KT5KTbk5KRh/35LTErEhpvALCYaBs9zclAiGaENzY9AH3/8MU6fPg2e53HixAnv60OHDtWzX4QPWVls7WItuk2Ej5gAs317EubPt+lwRCGR5/vvTdi7Vz2ByFcfVMRsBpYsqWuoVOa/teq7gMplpOuH2rYuS4hArI1SKWIZ2hBusQR1qqo43H+/E++8Y8GFC43n8RXk797djWPH/GNiAaGSl3T/OPA8WwiWdIKXFoTiDTyPMI4RzPTpdZgzRzmhiyW3YseO4JChrCw+IknFeiUw+xZeOHDAjL/8xYpLl9RKAVMiGcGGJsN24cKF2L17N6666iqvKgIAcBxHhm0E6dMHinFJocZoEcbEbAZOntQ3NvL550WJJyU4VFQELx6FhWgQgA/+vFipLCOD98odCZqakTCU5D3Ns2Y58X//Z8a//mWO0LkjSSz7G51z//Wv/klWzZrx+N3v6jFzZqNhF2iwlJSoZf2rGztyhiH7w4RQ4nnp0jqUlek7Vn37KhcbUJLz8s2tOH68OiLVuQKRG8szZziMGmXD9u0OSeUIOcQ46N693fjlLz2YOFG9LDLtShIsaDJs33zzTbz66qvo0qVLpPpDSGA2A8uW1WHUKPmyrLEU3SbYYa2PvnWrvvJMDgf7guC7eBQXWzBqFCQeqITr7t5767FgQTjeMD3gUFRkxnff0Q0QL1RVcVi5Mhk7diRh1ao6ScOMNY5Vrp2yzqvUZ4K91xkZPMaOrUdeniuE0sHSsDoi1OS8Ar2YkfRksozluHE2ANqMWxFW/WPalSRY0GTYNm/eHB07doxUXwgFxLikaG05EfrDso0nLiDqsG4ha99qFhcPJTUOMet+0yb95I7CQTBqyZvTiJxH0liKDhUVgrcvI4NHRYW/dF2nTmyG2scfm1FQEByOwKrz6stjjznRvDm8OrgVFSYsX56Mbdv0edDU4ohgNeyj4cVkGUuPh8OYMbaQikCoqSXQriShBU2G7WOPPYa5c+di9OjRuOKKK/zey87O1rVjRDC+cUmR3HIi9IdVh1jLYiwYA0rSQlqNWiGWUFw81PtiHAPJWH2JBmoGqtx7Rhsn4QEpUL6utJRDaSmbMblzpxUHDliCHvBDMfhefTXJLw5YREpezx/fG1v+nkxPb/QAK1FcbGkI/1EnGl5MLWMZivSkqJYwejTtShLho+lxtq6uDm+++SYKCgowYMAADBgwAHfccQcGDBgQqf4RAciVZSWMi1qsHCC8f/CgmTnLe/x4J/7zn2oUFdVg8+ZazJlTJ7GdpyXWNXjxoHg245Kkb6RKjJG6TrVde+IDou/9o93g4xr0d6XOr3wvZWXxmDTJGZTpn53NY+jQeqSnCzJjogc4JydN9l4XH4KFWHUleHAcj+7dI+/FZB/L0KUn5coysyhHEIQvHM+z1yO59dZbMWXKFNx2220wBeiztDGSCnQIlJVdNkRllkA4DsjMbG7Y/hkdI4xfSYkZBQWhlbiVo6ioJiimTozfPXDAjC1bWJLFGmnWjMe6df6LRyT6TehBKEoGWkMQjBWywIK4XX38eDXMZuF+yMlJ01QMIFT27KlBnz7uoBj68nIOY8fagh5qRS9koMEm9lkIN2Pr85w5dZg1yyn5nl7zn9Z+bd5ci2HDQjNEWfIQooUR1o94Ru/xE4+nhqZQBLfbjV//+tchd4ogmiKheT6lDQu1cqK5uW5MmsQuE5aS4sGkSf7Z6SKNcW8mmtQNRSjXU7SMVB4mE+DxRPOcDWcOSKZS2t7Wm/PnhWP7VjwTjUEtFSNDiQtevtyKTp08QQby4cNm/PQTh44dgRtuCNYK1oI4lqNGsc0t4YRHSFWNIwgtaLrUhw0bhj/96U+R6gsRJuEKZxORIbRJXog99Ec91qxxYVTfxszM9OC//62W1dIU1TgAqepRZOkmNtIqGCzcfbdoYMXmGvF9kJTb3pYm9P5K3eNq96JUxchQw398ixf4FnQYPz4F/fsD3brJhz6wkp/vwvbtDphMbJULCSJWaLrS//3vf+OFF17A2rVrceWVV/pp2b777ru6d45gRy/hbMIfPbbFQqmPLuDf1mQSsraVfk8tC+Py5XWwqoga5Oe7sHs3MGUK76fGQTQ1xAct9WvgwAFxWYnN9XL+PAe3G9771Dfpdv9+Xyk9qURLbSEYSjsoBw6wTRS+92yoD8Gip7qigmNKUlVCac4TpLwcGDNG9NxSkhdhPDTF2BYVFcm+V1BQoEuHYoVRY2hYYlT8M+7V47iaEuHE+Oj5sCD+RoCUJiwbLL8na1ysUlye/zmBjIzmeP31Ghw8KMTuatHETSziL+40NsR+nJTuU6n7WigsonWvXrgfpeStBP1nG1jGwTdePpy44I0ba7F0abJsHGxgDLIUrHNeU3GkUIxteMQqxlaTYfvYY49hxYoVaNasWVidMyJGvXDVLgy1oH6WySyRCfXGisTDQvilPdV/T/WFkYfdzmPJkjqvp0npunjjDQvmz0/BqVMhdzmOkZJPi1fDNp77zoJ0qWe5+zTQK1layjFVvgpE6gGRPdFKkNcLvJdDfQhessTBVIZbKvHU97xaEt2MkuQVKciwDY9YGbaaVthPP/0UVrW9SyKqhBLHRSjDKs+lNYY5P9+F48cbJbr27KlBVpZHIn5VHrXfU0zyAOTjYsvLTZg4MQUFBamqskOjRtmaqFELiL99s2Y8Zs+uw4kTVWje3IP4jS+O136zoO0+DZRNZK18FYjLhaDjs8e5S2/by8cFy/WRR1aWB3Y723eQClcKZc4j6UnCqGgybPPz8zF16lS88cYbOHr0KI4dO+b9R8QG1phK0iRlJ5IPC76LQZ8+boXkLGWUfk8tCTNinfd9+/yNW/+FrmlTVcVhxQorZsyw4fJlNoPFeMRjn8NDy32am+tGVpb2h5bVq/01ad1u4NAhtnkhLQ2yhRoCH4LnzFGaJzg4HMAPP7At53oluhGEUdGUPPbyyy8DAN5//32/1zmOw5dffqlbpwh2WJMNEqXGdrjbXyyfj+bDglypZDXUfs+8PBeuvJJHSYkZHg/wpz+JFZWkhfAD67yHIjuU6OzdG15WeewRf/tED0vwh+U+FRVAhLhYbeMjJmZNnOhEUVES831TXd0oTSY3L/mGDHTq5MHMmcmSVdAqKzksX25FRoYHlZXay9KSg4RIJDTN1F999VWk+kGESFOqsR1uwgLr56P5sOB2C6Vx582rQ3k5h4wMHgsXJuPCBfnkEZOJV6xKFEosb2Cdd1rAAkmk8Uik76LO+fMcCgstqg/C+fku7NzpkDUe5RDuUx4bNmgP0yst5Zjnpbw8F+bOTYaU4S3q4opoLUvb1BwkRGKjKXkMAM6ePYu//e1vOH36NK666irk5+fj6quvjlT/ooZRg8O1qCIAkJzMEkEVIdRkLnH8XnyxFqNGsX1eLQFLr4Q8uQWtoKAeGzdaJePdBHhwnPR3lhsnNhqTWQ4fpqpj8jQtj2cssNk8PuoboY61WCyi8fMsD8JuN/Dhh2aUlJjx3/9yKCmx+JTa1ZcHH3Ti1VeTmOalQ4fMGD6cTfHk5Zf9Pcdt2niwZIn8947WnBdvUPJYeMSFKsJnn32G3/72t+jQoQPatm2L//3vf/juu++wY8cO5OTkhNXhWGPUC5f1wkhk+ZVwlB9Euaqrr/Zo+nykHxbUDPXx453YssUq67WV6nMo5TilKCqqQW6uW5djEYQ2hOt/61YHnnhC9JyGcv35Tpbh3b9ut1Dda82a5BD6oUx6uhA6oDYv7d9vwYwZyaisVDewN2+uxb33unwqj6Xghhsuq1YeawoOEq2QYRsecaGKsGLFCjz++ON47bXXsGbNGuzZswfTp0/HypUrQ+4ooQ+ByQZFRTU4frw6ISaicBMbDh2C5s/LJWBlZfFhT/BqGcg8D2zdKm/UyvVZSza2EufOcTCbgYKC+rCOQ0SDxFtthw514auvTKioCP1abqwdFL6qidkM9O0bmVAuwVBVnpdWrbJi9GhbgwGsTqtWvF+Sar9+YPKyRnLOI4hooinG9uuvv8bOnTv9XnvooYewbt06XTtFhEai1tgON7GhtDS08/hWLNJTq1E9MYuDx8N2LN8+6xUX+/XXJqxcaQ0pZpCINonkTeeRlsZj794k9aYSn/UNO1B/KGxM3ALUk0pDrx4o31+OY9OpXbVKKSypET3yKSI15xFENNFk2KakpKC0tBTt2rXzvlZaWoorr7xS944RhEi4iQ1ZWaGfJxIPC3omZvn2uWXLcL13Quxo45YrxZIS0aW6OvSwA9aHQRHxPmQJ4xL1oUePtgUlZsmFPSjDMW/NshnS+pWzTVQHCdF00BSKMGjQIEyZMgWHDh3C999/jw8++ABTp07FoEGDItU/gvB6S+S0XjmOR3a2R9ZT0acPwvq83pw4EX4iSmCfi4stmDxZvepQIyzi72TUEtEk3HhubZ9t1Yr3xpUGSu2JEl6+xUvErfr09MB7hUNamvCaVj1q4XPhh5NkZPDYts2BjAwehYUWlJSYNReQIYhEQZPH9vHHH8eFCxcwceJE1NfXIzk5GcOHD8eUKVMi1T+CUPSWqMnYiJ8XNSpD+byeFBdbsHy5FeF5Q/377J+IxorUucmQJeIRbdetuGXfvbsbPXqkyca6cxyPefOSkZfn8s4NHg8aEtr879+aGuH/09N5TVJh1dWaui7L6NH1WLAg2Ou8bFkdfvtbfc4h0hRK6RLxDZMqwpw5c7B8+XJ89NFH6NWrF5xOJy5evIjMzExwXGIshkbNeqSszEZCUX7wHb+//S22yhF6qRbY7R6sWCH0Wa9jEkRTwDfD/8oreSb5rKKiGvTu7ca+fRaMG2fzkw8LPHbr1jzWr3fg3DkO8+cnN+hNy92X4oQezn0rxCXX1HCyCiu7d3Po21ef9SOR1XekoPU3PAwt99W1a1ccPXoUPXv2xCeffBJ+7wyIUS9curH80eotCBy/WHobSkrC1YblkZnJ45//rIa1Ia/r4EEzRowgvVmCYEE0wgBoks+yWtFQlUzdCBUN4aee8k3AjNRDp3J8L8fxaNuWw7Fj6nJfaoSqJR7P0PobHrEybJlCEa655hr069cPDocDAwYMkGzz7rvvaushQYRAuIkNsUyMCCdpTFw8li+v8xq1xcWCtiVBEGyhPevWOXDpEqcpdKdlSx5TprDHr587x8HtBoqKRHWHSO6kKB+b5zmcPCk8VJtMCKsUuZJEoVTYBkHECibDdtOmTfjoo48wb948TJ48OdJ9IoiEJJxylFlZvN92X2hxtf6IW6e1tZAViScIYyMatGzX7k8/cVi6VNpAC0SMxeV5aCpP3aoVzyDpF13GjLE16AILaA0fUPs+UhJqBBErmAzbli1bYsiQIbh48SIKCgoi3SeCSEi0aWHysNt5LFlS59Wm9K0wJuc9kTpOI/4SRTwPDB1aj02bSK+WiEe0P9WVl3OMBmdjgmZZGesDX6OO7Ouva8rLjjiBCW2i6gNr+ADrbtOhQ2ZKJiNijqZHymHDhuHFF18EAHz77be47777MH78eJw7dy4SfSOIhEJUdwCUZYE4ThBvX7GiDiNGuNC7t/9CwV5hTDjOpElOZGcHSxQBHLZsiXQMIBFfxFsgIdt1K8rj2e3s3+/uu13Iz3dp2GnhMHJkPczm8HZnBHiff+EeB1CqwHbwoFlVIoz1+6xenYycnDQ/mTSCiDaaDNslS5agqKgIALBo0SJkZ2fjyiuvxKJFiyLRN4JIOOTKVvqiVsJy/362RSM9XTjOwoVOLF5cB6mFUsjwJqOW4NGihVDhQKsWa3TxvYbZPamA8FB51VXsRurbb1vgdAo7LenpbNUfOnQQ2qlpb7Ocv/H7qR1DzghWjjsWS/aOGJGKCRNSUFCQKmuUavk+UhrABBFNNBm2R48exf/7f/8PFy9exCeffII//OEPWLJkCT7++ONI9Y8gEo78fBeOH69GUVENNm+uxe7dNdizR/j/oqIaHD9eLWvUut3A7t1sC8bWrQ6vJNiCBWKSGRmxRCCCsfLHP9Zh506pAgTGITubx/jxTo2f4jBzphP5+S5oUafkec5734wbV8/0GdGz6bs7E47XdezYeondlkbE3R2pXZlQfkc5o5R1twnw9wZTkYjo4nYLiYJNvUiHpkeq6upqpKen48CBA2jXrh1atWoFp9OZMFq2hDrxLM5tpL4rqTOIk5NUPw8fNuPCBbbnUd/PGCmRhTAawvz95JPJGDWqviF221jllJs392DHDgdMJuDDD7XftOvXW9GpkwcujWpUO3daceCABYsW1aFZMw+qqqR3OMREM9/qheLujKD7GtpYCvH0dSgv5/C//3EoLExCeXnjveybVDpvntNvfvN4wKTT64uSwoGW70PJZNGnqWkMK6HJsL3uuuuwceNGHDx4EP3790dVVRWee+45/OIXv4hU/wgDEesbJxzDtLjYgrlzo993tT4Hvl9ezklWEBL7qUUy7Px5oW04MmNE0+HCBQ4rVxpNPk4wsB95pB6PPWbzM+q0GN8OB4cxY2wYOpTN8+rLmTMcxo2T17D1rV4I+D+U5uW5kJfnwuHDZpSWcigv52C38/jmGxOee059rHfutGLnTuH/s7M9ePbZOtjtvOR8Eviw7HajIVnVpEk9Rckozc8Xvs/y5VasWaPef5p7ooOcSo7WJMFEQZNhu2jRIjz11FNo1qwZJk+ejP/85z84cuQI1q1bF6n+EQYh1jdOOEZ1YaEgrh7tvqv1Wep9qW1L335qSUoR24afyEI0DYxphNxyCxqUOwL7p72/e/cmQXuMrlhCVxrRawqIVQCl73ffh1gtSWwipaUcxo4V5oFhw9Tnq8ZS4ilBpcRZkDNKzWagb1831qxRPwbNPZGHNIaDYao81hQwamURI1Q+USvbKm7DHT9eHZEbJ5yKNx4PcMstzXHqlLR3J1J9V+vzxIlObNxolZiMlPt59Gg1undPQ2mpcqnO7OzG7yT+fmwyY1rhYTIBPI8IHJtoytjtHuTkuPH220nqjTWhV5hFYyXAt99Wv9+LipL8jF6TSQgXkO6LPvMVxwEHDzbHlCkezeFIYgU1KZxO4Je/TJMtGRzpNSFaGGH9VYO1oqXS7xkpDF15TMTtduOtt97CDz/8AI/HP0uUCjckLrEU5w73afTwYTNOnQr+bCT7ztLnTZukjFr1fh45Ym7wwtggvfg1bov6blEuXVqH0aNtIXlulOEwZEg9Xn/dEoFjE00TwWBcurQOEyawV/xiR69rlENZmTB3KN3vAO9TWreRxiVU6j7Wb74aNgzo3bsaH30keItbtODxwAMpCjrYwsNq9+7Sxxd3mvzDQnx6zgXPQUbASDkWcoTSR9Zwj6YUFqLJsF24cCHeeOMNdOrUCRZL40cpeSyxieWNE65RHYu+s/Q51KfX0aNtWL1ayF6fOTM5SHi9RQseK1cGh2fIJ37Iea/Yt2sHDnRhyBCXZH8IQjuCwThnTjKMGh7hy86dSSreULnvIBi9JpOvkcuG1vnKN/62pMSs8gDKweMBjh0LnlNZKh4GVkk0ArHOD2Eh1D6yhns0pbAQTYbte++9hz/96U+48cYbI9UfwoDE8sYJ1zBl7dO33+qnGhDJJ+PKysZ42//8pxolJWaUlJjBccLCdeut8k/4YuKH6BE4ccKEFSusEKqQBRq7AKtRkZnJ4+hRc4NRa6xseiJ+uXQpPpQ83nwznFAJwYhcssSBli15vP++Gbt2qVcC1DrXut3wemy//pptXAPnMfWKh0K1xKNHq2E1UDHDWOeHsBBOH9UqWkopdiQ6mgxbj8eDzp07R6ovhEGJ5Y0TrlGdm+tG27bA6dPK2+QrV1pRWwssXKhVI5O9L/ogGI9i+EXfvm707cs+7oGZ0506eYK8uHY7L7vNGAyPRx+1obo6PowQgpBHuG85LjBeXGlXQ5+HuJYteVitwK5dYnKbvAKD1rm2sBCYMiVNc4xt4DymLhsoqD6sXm1Fnz5upm30SIcHxENiVbh9VAo1M2pYSKTRdKXn5+djx44dkeoLYVCUxLkjfeOoVbwRS2XKTfRmM7B2rfiXssG5YYMV+/aFXy2Hpc8mU+jlMsWKQYcPhz/ggcUiiopq0KuXlgcUjoxaQlc4jkdmpsa9+bBpLHQgXRVQW1UvrWRm8pgyRa2ICg+e1zbXFhdbMGIENOnoys2prDtRq1cnK1Yx8+1bTk4aCgrUK5+Filr5cT3n0lDRo49yFS3VqlgmKppWpC+++AKrV69G165dMWDAAL9/RGITqxtHD6N62DBgzhwnlBciIbv3ySfDr5ajXKVHWJzGj3eC48IrX6pXyIPoxR02zIXcXDfeeYdKYRKxQrg/nn66DtnZHoRTtUsbHGbPdmLhQieOH6/GnDl1PmV0pTL/tZTzlX+IFY1IlwsND4jKc9SMGU7mudbtBubOVQodkO4PID2nat2JUiqtK269BxrcepfjjYfEKr36KOWkUKpimchounruu+8+3HfffZHqC2FwAmM0o5VZKpf4pCVJQazhrkZZmUkXhQT5ZC3h/19/PQkTJzpRWJjUIN2lnUiEPKxZY4XDQTGyRLQI9HwK/z9nTjL69XM16M5GB3GO2L/fghUrrBIJUlr1b8W24uf8v6uvEblnD9tSfPIk+7lDqTioNKeqhaQFIreNHs3wgHhIrNKzj0oVLZsSmgzbgoICydddWusUEnFLrG6ccI1qLROXXk/v+fkueDzAmDGiZFHjcUtLOWzYYA2pnnukYprdbmDr1ugZEgQhEGwwVlaasHevtSFmMDq9aNWKV0mQUi7UII9wHLvd06D7KuBrRL72GttSLJT0ZSOUeWzdOodszL5vLCdrKIaoWrN9exJatuS9Yxwt+ch4SKyKhz7GG5oM2//973/YsGEDzp0759Wxra+vx/fff4/Dhw9HpIMEIRKOUZ2b625YWNQ9GHo9vbvdwIIF0nFzor5lZaXWxSdyMc1r1lhRWUnxskQskI8vjDyNhgNLglSoLFlSh6ws6XK4PXu6sX+/+kNlz57s818o89jbb1sUk1HFnajZs5P9jHQ15s9v1CNuDPFQRg8HQzwkVsVDH+MNTavY3Llzcfr0aTRv3hwulwsdO3bEf//7XzzyyCOR6h9B6ILZDDz7bB2U4t2Eil3yiWhaUUsKkI7dU8Zuj0xMc3GxBcuXG0ijh2giaL8H9EWYC5YtEwwHdmNKu9GYlcV7Y9l79/bfbRozpr7BiJGfmziOx5gx9cznEz2BWtizx6KaY5Cf78KSJXWajusL68O8Xg6GeEisioc+xhOaPLaff/453n//fZw5cwbPPfcc5s2bh759+2LLli1UeYwwPEOGuDBpklOyCpCYFa3nk3EkEhKWLKlDXp4LJSXaQjKUZHXE7VeCaGpwnFDuVjQctBlTgdvxymVwlR6YrVahH8LcJHVc4X0t+rBmM1BQUI8NG5Jl+xZIeTlbjoG0cgQrviEd0dl6j1V+iBbioY/xgibDNiUlBVdeeSUsFgu++eYbAEDfvn3xxBNPRKRzBKE3Cxc60bWrB0884V8SMjtb/2o5kUhI+OEHE3Jy/DUps7I8GDmyHh06eCQnQ7WKNqEkmRBEorBxoxVdu3pgt/MoLeV8YmGVDUHpimHyCWJqBkpOjgdpaXyQfJ5ofGvV2Ha7gaIiMbxB39hcrYlkwYifCX28tBIPiVXx0Md4QJNhe/XVV+ODDz7A7bffDo/Hg5MnT8JqtVLyGBFXDBniwj33RP7JWJz8BVWE8Ly3HMcjI4OXDBcoLeWwfHmjx9XXaGWpaOMMvyYFQcQlYqz7uHE2eDxS1ffk8K8Y1qoVj/JyDgsWhKbcIl+qVkiey8nRrusb6gMra/a9XFyoFtLT/fMMWrfmMXJkPZxOofQveSyJUNBk2I4bNw5Tp05FcXExHnjgATz44IMwm82kY0vEHdF4Mm7cCpQOfRBQXxBEL0bjoqesqXnmjGC0btvmwIIF6rI6zz/vUO0DQSQunITnlY2WLXkMG9ZotIbywKymxBCq/JXWUCitIQDykobs7NjhgMkEb4nvl15Kkn1IJwhWNBm2ubm5ePvtt2G32zFx4kS0b98eVVVVGDp0aIS6RxDxS3GxBRs3KgXFyZXp9H8vK4vHI4/U+034ynDgeT4o3CLoTA2yOi4XcMUVPC5dirV+rb7VnAgidEJLcArlgVnNsxqq/JWWUKjAEADWUre+caGHDpmxejXbHCUa0bfeKhy3uFhaO9h3Z4mMW4IVTYZtfn4+9u3bB4tF+NigQYMi0imCiCekFgFAyQsj91rj675bnLm5brz+utZKPByzHM/48bYwjVq9DFIyaglWQimWoC8mEy97j8kZhlKvR6o6VmMcrElVC9g3ZEItJj8Q0ZjPzXVj164k1bhbKSM6WgUbiKaB5rp1tbW1aNasWST6QhBxh9wi8Mgj9WElZAVucUayMo42LV2+IWkm8DPkbSWiSWj6z3peox4PMHasDSaTvzdRbk4oKKhHUVGS5FzBgtY5wGwWZMxGjUqR1EcVS3sPHOj2Gt4sMflynlPWuNvAuONIeayJpgvH8+x1XX7/+9/jo48+Qt++fXHVVVf5vRfvcl9lZZejVuFGCxwHZGY2N2z/jE4kx89/EQheNMJZRIuKavwmcbcbyMlJ05yFfMUVngZvLFvYgzo8xo514uqredjtwnbirl0WvPoqaeASRiYyD17ilvrx49UShqFcMlqwCoCYRKVUeUo8h7b+AQcPNseUKR5VD6w4x8glu7L2Q8qwt9s9GD5cCFsIDGsoLLRgwoQU1e+yeXOt38N+NIjm+ssa/hFP6D1+4vHU0OSxPXXqFNq1a4fvv/8e33//vc/JyFNDGBe3W8iwPXtWvwlDbfsstNKb8gkcoZSzBIBLl0xoLEqhrrnJ0ENs2ybE0dntHjz7bB1oA4cwPpFZo3y9ibm5boZyvNJb7RwnJIeyVJ7SagANGwb07l2Njz4KDpfy1cP2ePQpdatVj5XVEx3JXatYozX8g1CGybBdtGgRFi1ahJdeeinS/SEIXSkutmD+fODUqVTva3pMGOylN+UMyGBvqZqGo5iFPHduMkpLlRZqdaM1UGYnFMrLTRgzxobevWniJZo2585xIZfj5XkOFy5wmDOnDi+/nKQoFxaqARSY1CZ1HD1L3WpJolPTxI1EwQYjEU74h94kiteYKQhw3759ke4HQehOcbEFo0bZcOqU/+vihFFcrDnE3IuWRA7RYA14FYELnVL5RNHrfPiwGXWq1SylJIOAzEwPNm6sRVFRDXbs0E/iq6TEAuVSxQSR2Hz9tQkHD4ZnAXTo4MHx49UoKqrB5s3CfXr8eLWfUTt6tC1IWkvrfCZ3nGiXuhURd6OA4LkykgUbjID6zp/wvlqZYz0oLrYgJycNBQWpmDAhBQUFqcjJSQtrnYwVTIathjBcgjAE/hOGP3pMGKyT+5w5TpXyk4JBOGtWnd8i5ovvhLN1qxUXLmhPSuN5DmVlJm+9+ltvFbwk0ka3FnwNdApJIhIRpYc24fU1a5KxZk14ZalbteK9ns5hw1zo3Tu47HW4BpCaZq7Sd+U4HtnZnoh4TsXdqMC5UulhPxFo9PLLe/PPnBHKHEcSvR6ajAJTbz0eDz7++GNFA7d79+66dYogwiXSmbas22fTpzsxdaoTv/xlmkyZTuHv1aut6NTJgyFD/Cdw+YpEoSF6mkON2ZWHjFoiMWnWjEdVlVI4kdRrcu2lXzeZgO7d5echveazUEOoouE51RqbmwhESupNC4kot8Zk2NbV1eGRRx6RfZ/jOHz55Ze6dYogwiXSE4aStE3gInD4sFmxUAIgyGeNGWPDzp2N3gll70po+Hqa8/NdmDjRiU2brCFXXiKI+EXe0LTbeSxZUocTJ0xYuVJO8UNOn1oqWVOuvfC6xwMcOyZvlO7fz+YxU5vPWOe7wBh81tLA4ZAo8Z1aMELiXCLKrTHdLSkpKfj0008j3ReC0I1oTBhyJSUDFwEtxrPvk3Gotd6lEb6nr6C8WBmNIo2IpkGgsSm90wIAK1bUweMRdlK0P1SG9hAqN08UF1uwdWsS0zHU5jPW+W77dgfMZuhiZLIYrE1VFcAIiXNG8BrrDdOqSXJeRLwhThhyMaR6xYvl57v8Ej52767B88874HQKyV5utxbj2T+eSln5QCvCsRYsEOLwIuENJghjo36dizGdADBmjE2iEAk7M2bUYfPmWixZwpaoKTVPiPepGqzzGcu8mJXlAcfpY9SyJCQlWnynFoyQOGcEr7HeUPIYkZD4Txj+7+k9YYgJH1YrMHWqDcOHN07iXbqk4fx5DtnZHrCqBhw6JBjErCVx2Wk0nNWSFgiiacHDbvfg6NFq5OW5MHNmeIlgANCnj5AENmZMfcgP2az3Kc+zzWdqhhTPAw4H/OawUDPj5QzWM2c4jBolGKzhJMWJSjGFhRavEyEeCTdxLtxxiJYTKJowGbbbtm2LdD8IQnfy813YudOBNm38X49Epq3cJF5ebsK4cTZkZrIHsa5enYwuXdLw/fd6hSH4c+4cF1fbSgQReTiUl5uwbp0Vq1ZZUVERzkOfvyEQjleOddfmjjtcyMjgmYwaOUMqPV34u6IifM+puvoCMHNmMkpKQlMFSCRpKiB45y9Q6k0OPcbBCF5jvdFUUjeRMWrJWiqpGx4cB2RkNEdxcY2ulcd8UStF6Y8WBYLIlAEtKqoBABQUpKq0JIimhlgFLJz7jvdLAhUJJY50y5YkzJ9vYz5z4PGU1g/f2NfMTB5TptgaDOnwy/qWlJiZ5pecHBeOH1c3wnzL6SqVMgegq9PCyOuv3uMQiTjnWJXUJcO2ASNeuICxb6x4IBrjxzqJC0jXjFf/TPgGru/iBAjGuFzSAkE0TcK710wmHlu3OoJk+0S0Zv7v3m3BxIkpzOcPNGpY5z/WOayoqIYpM76w0IIJE1j6zTbe4nnVnAhaDXApfH+j1q155OenoqLCWOtvpMZBb2WKWBm28em3JwgDoW1bX5ADMpmgUWIrvAVXaktJXx1bgkgEQg8/AKBo1ALaSs0C2hN2AnVHLYwrPOscJm5xqxk8WhJm1bDbG8M6Ii1NJeW1bNsWWLLEgnvuMY46Q6TGQev1aVQiE8RHEE0I7dmiHDweDr161TO3DxepuGIx1s5uN5ArgiDikIwMHnPmOHHPPS5dk5pC8XJprVbldgPnz7PNMTt2WJniOHNz3UhP10cce/jwxsIAkZSmksuTOH0a3mQ3o5CIEl16oumXuuOOOySlv5KSktCiRQv0798fo0ePhslE9jLRdMjNdcNu96gWYQjkn//UcvtpnaB4ZGbyWLy4zquDKOVhyc93YcAAF9q3b0bSXwQRIhUVJixfnoxt25K8f4uEE6dYVhb6/ciSeCbloZTGf1dHTCiTi+M0m4Fx4+qxfHn46hJ5eY3Hj5Q0lbI6g7AFbqTqW4ko0aUnmlbi+++/HzzPY/To0Vi0aBHGjh0Ls9mMW2+9FYMGDUJRURE2bNgQqb4ShCExm4Fnn62Dck35YGprI2NEcpyQALN8eR1GjPCvOS/FJ5+YG+JsY2XUNs3Jl4h3gu/3igqOWVWAxbMbjmEyf36yopdRzkMZfD8GhyqpSXEBwPTpTmRksMscBiIlMxUpaSo1WTWtXvBIk4gSXXqiybB96623sGXLFjz00EPo06cPHnzwQWzevBn//Oc/8cgjj2Dr1q0oLCyMVF8JwrAMGeLCpElOxtbaDGCtiGEHeXkupi3RAwdiNVn7jgMZt0Q8IV6vUlJW6kZgcbEF3br5yzR16xa8va9mwChRXi7oxUotySxyXPJ/N34vJWPPbAZWrapr0BHX2n9pmalISVPF29Z+Ikp06Ykmw/bHH39E+/bt/V5r164dvv/+ewBA27ZtcenSJd06RxDxxMKFTmzf7oDdrhRbJrcgqsGyMAiG4qJFwoSnpG8oeot277bgL39hK9cpd77QEcaANcGFIIyDth0OXyOwuNiCUaNsQaECpaVcUCynrwGj/V4Tjj9tGoIeavUs0KJk7OXnuzB7tlPzeTIz5bXGwy1oIEU8bu1HYhwSBU1LSqdOnbBlyxZMnjzZ+9rOnTtx7bXXAgAOHjyINoFq+CFQXl6O+fPn4+jRozCbzRgyZAieeOIJWCRWwA8++AArV67EyZMnkZWVhTlz5qB///5h94EgQmHIEBfuuceFw4fNOHDAjN27kwJib0NZSHy9mkqfF94bP94mmXQibolOnOhEUVESQ1ydGhzC97RycDXd+ZdoYpSWcpg7V4w7lfKM8pg1yz+WMy9PMA63bk1CZaW2+YPnOZw8KRiyt97aaN3q6XlUM/Y6dNCSRMbDbufxz39Ww2qVb5Wf70Jenks3aSrRMy4nfyjKZxlta1/vcUgUNBm28+bNw9ixY/Haa68hKysLpaWl8Hg82LRpEz755BNMmjQJa9euDbtT06ZNQ6tWrXDo0CGUlZXhsccew4svvogxY8b4tfvhhx8wZcoUrF69Gv369cPbb7+NadOm4e2330arVq3C7gdBhEPXrh7cdZcDHCdkHX/9tQlr1oSWTNGsGY/mzdkSQoSJWS4ujseGDQorhmaMsTVHEPHA+fOcX2JZMBwuXODw4Ydm9Onjlknu0r7rE2jIsnoe7XYPLlwIz9hj93IKuQErVtQpGrUiekpTiZ7x0aNtDaWFfQseCP816tZ+okh06Ykmw7Zz585466238N5776G0tBRt2rTBHXfcgZSUFFRWVuL999+H3W4Pq0M//vgjjh49ioMHDyIlJQXt2rXDxIkTsWLFiiDDtqioCLfccgvuvPNOAMCgQYNQWFiIV199FVOnTg2rHwQRClILkd3uwYgR9WjbNlTvJoeqKg4vvliDkhIzo3Est+iRIUoYjaagoyzc+0ePsllGJSVmXLzI+VSWCo9A47J7d1HJRVngf/HiOowdK2Xsscdx5ua6kZXlka1qJpKVxWPZstCrXIWLuLUvzN+N/WzbFli82GEoHVtCGc3RbRzHwWw2g+M41NfXo76+HikpKUhPT9elQ//973+Rnp7u53G95pprcObMGVy6dAlXXHGF9/Vvv/0WHTt29Pv8tddei6+++kr7iatrpEUDzWbA5lPSsLpa/hgmE5CSItvW4xEmtp9+4tCyFYcet1sbJ4UamfNzAFIDZg65toDweJnqU0Gmtla5EkBaWmhtHY7gwK1Q26amNj4W19VBcW9aS9uUFMDcYGA6nYBTQTc2JUX4/cS29QptbTZ4fziftgcOWDDlMQ48apDaMIE7YEN5uRlbtiTDgnqkoaphiQue4OuQDHfDLWlBPazwT0arPF2LVN6EVLj82prhQjLqgo4n4oQVLiRpbmuCGzY4ZNvWIwn1sGpuy8GDFNTq0tYFC5wQDX0eqajRpa0bZtSh8b5Phfx9r6WtByY4kBJS2xTUgJMJ/eDBoRapIbW1oRYmyN/3NUgLqW0yHDBD/r5vbMsxtE2FeM9YUQcL5O97LW1rkQK+IdUkCU4kQf6+19LWARs8MAe05XH0PR6pAfe1b1vxvrfU1WHZH5KQwlfDd64Q73uO49GqRR0W/eEyli1LRvmFYKNRaGtGy5Yczp5y4/C7DvTo4cbbb1vw1FPJqC1vvAp873sL6pHM1+GP8x0YOMAF68ZqPPVUMkrPmrxtr8oyCxJmeXVAtfx9j6Qk7H87FQ4HYIJHYo4QrtHp05yYPJ2HOaXBVevxCOuRwnG9bl21thYLkNxw3/O8sH7KkH+XpXFr/yzQJqMaeXkNlccCb1UttoGOdoRiWy22QTTsCA5Aikn4DrxEW612hMcDMFQeA6+BH374ge/Xrx/fu3dv/r777uN79+7N9+rVi//mm2+0HEaRvXv38rfffrvfaz/++CPfsWNHvrS01O/1Rx99lH/uuef8XluzZg3/6KOPaj9x8+Y8L/zMfv/q7rybP3/+kvefJzVVsh0P8M5bb/Nr67bbZdsexS18drabf+GFGv78+Uu8q93Vsm35zp35srLG49Zf30m2ravd1X59cN7cVbat2273b3vrbbJtPampfm3r7rxbvr+AX1vH4KHKbX8o9batfeAhxbZlX57wtq353RjFtuXHP+PLyi7xPM/zNZOmKra9cOiI97jVs59UbFvx9nvetlULlyi2vR3vef+ciPWKbQeh2Pvno3hBse0I/NX75wj8VbHto3jB++cgFCu2nYj13j9vx3uKbWdhuffPW3BUse1CLGy8nPG5YtvlmOX982f4XrHtekz0/pmJnxTbvoBHvX+mokqx7V8xwu8lpbbFGOT3UhXk54j3cLvfSz8hU7btUdzi99L3+Jls28/R2e+lz9FZtu33+JnfS0dxi2zbn5Dp99J7uF22bRVS/V4qxiDFcfP9868Yodg2FVXeP1/Ao4ptM/GT98/1mKjY9mf43vvncsxSbNsZn3v/XIiFim1vwVHvn7OwXLFt5OaIV3nAwwPa5oiR9n2Kbf81bjV/9qww/5XveUOx7dH7l/Ec5+EBj+ocUT37Se+8euHQEeW2k6Z625Yf/0yxbc3vxnjbln15QrFt7QMPNa5dP5QqtnUMHuq3zim1jZQd4by5q19bJTui/vpOfm3j0o5o3pzJnNPksX3mmWcwcOBAzJ49GyaTCR6PBytWrMAf//hH7NixQ8uhZElNTUVtwNOX+Hear/UOICUlBQ6H/xOgw+EIahcOVquFqTYxACQlmf3bShSz8KW01IRRo1KwezcwzKTc1m73Oa5ZPkbLbOL8+2CR3ycycQFtk+Tbcgio0WxVvnT82iYztBV/M5tyhr7d3qzxiS1FORCrRYtmQMO4pai0zchIazxuqvJWf3q6T9u08AXICYIg9Ee7NnXLlsCOrSagQL7NTTdZgVbNUVgI/GV8Kl5TON5bbyVBKj5XitTUZKSK82qG8hqemmJtbFvVTLFtSooVKWJbXsG7DMBmS4LNu74oJ9cmJ1uQzGgbRMqOSLIEtFWwIyxmk3/bBLMj/M7D8zzP2rhXr1744IMPYPWJ7HY4HLjtttvw8ccfM59UiR9++AG/+tWvUFJSgszMTADAm2++iWeffRYffPCBX9s1a9bgiy++wPbt272vjRkzBl26dMG0adM0nbf8f+cgORRhbiG43UDv3mkoPes/yYjbjIKQMo/jh87DbAo+P8cB9swrUF7rhrd7FIrA1jYlBZzZBLu9OcpLy8FHMBRh3z4LpkxNCWoqtc0oh1ooglxbCkWgUIT4DkVgaZsIoQgC941w4rXd4gM859OWhwUuTXNE0a5Kb/KW2w0cO2bG2bMcFi9OxpkLNrhDuO9f33MJt+bI3xuwWlH8VgpGjbKB492w+RxXvOY2b3YgPZ3HsAevVJ0jXt1VI3wHLeEFEQpFCGzL1dYI60f55eAll0IRGpGxIzgOweMXhh3BeTywX60uDKDJY2s2m1FVVYUWLVp4X6uqqkJKSvCCHirt27dHTk4Onn76aSxevBgVFRXYuHEjRowYEdR2yJAheOGFF/Dmm2/i7rvvxttvv42jR49i7ty5ms/Lp6bK/sZ+60Oqijc4oO1HJWZ8dzZVvjnP4fRpDh/9q7l0ZiMHIDUVfI3PhZEif7ygPthUfptQ2ybbZJtpbuvb3pos/NO5LZ9kBW9RSbUVj5tkFf5paNuinblhQZXHhSTv4qGGlrZuWFDDeCtraeuB2c/40KstD1NE2gJchNrCEG1rVa6vUNv6Gs96tvU19vVs60SyzwOKfm3rYfUaYZFs+/92pyEjwwOPB7h40V8KMPi+5yGX3HVVlhm33G4DbxZsg8OHzThXyeH8ZQ4nL/iPp5b7vvR8EniFdc7tBubOFYo78BLH5TgeTyxOxbx5dX7fW26OOF1pAp/qavy6AMCZ2NdaLW3BaW+blga+1iNtH4RhG0SkrRbbIBp2BIfg8QvHjmDcgNAkZNm/f3/MnDkTJ06cgNPpxHfffYfZs2frrhu7bt06uFwuDBgwAPfffz/69OmDiRMnAgC6du2Kffv2ARCSyjZs2IAtW7age/fu2LhxI55//nn8/Oc/17U/4RBvFU2I0AinQpAaHMerFH0gCMLY+M8LFRUcLl5kmfOljVqgUZGguNjiV4xl/nz2hwQp1OS5WMvPCooL4Z+PILSiyWM7c+ZMTJkyBYMGDQLXsB18++23Y+bMmbp2KjMzE+vWrZN879NPP/X7u0+fPujTp4+u59eTeKxoQmhHSQcxPITr4tln6zB/frKqZA7b8eghiiCii3QxhlDIyuIFRYJ8F4qLLbpJggE80tN5eDyCV1ZOxovVCWO383FZ9IBgw7tLYMDCEJoM2/T0dLz00ks4efIkysvL0aZNG7Rs2TJSfUsI4rWiCaEdOR3EcJk40QmTSQhHCt8oJaOWIIyBtntxxow69Onj9hoQviEB0seSe4j17uEHta2s5DB8eCqysz1e4zkQVieMaIBLFz3w9zoT8YWUXrvSNRNtQqqp2a5dO9x8881o2bIlLly4gAcffFDvfiUMvrW+A7ep6eZOPPLzXTh+vBpFRTW46y5BuzJcXnklCaNH21BRwbIQkuefIKJH9O63jh096N270Su2Zo0VpaXyIQFKRm2zZsr9FstvFxcH+77Uwq6EhGgPcnPd3of9rCz/tllZPHbscBjCCCK0Ie4SBDpvlK6ZaBNusXjU19fjX//6lx59SVjo5m5aiCUO//xnB7Zvd8BmCyc+VijBKe+V8UUqOp8giMgRvR0QX09pcbEFy5eHUhpbCGWqqjLBbvcgNdUDKc+u6F2dNy85KGldq7PG92F/8+ZaFBXV4Pjxalr34hC3W7gmpNYjpWsm2oRt2BJs0M3dNLnnHhcyMoDwjU32BVTNG9MIiwwIQRCxxNcDCjQaF9rgEXhfl5dzqKlRTwI7fDh4O1Grs0Z82B82zOXndSbiC9bEQalrJprE3mfchBBvbqLpcPiwuWG7MBoICSnJyYDV6sEFiTKbUu2DY+0IgtCG1qRM1vY8eN7fA9poXGhB6lzhKfbk57say88aMIGI0J94UXkiw5YgIkj4N7jWBZNDeTnnE/6g9nmpbG2CILQRyn3Ddm+3aMEjL6/RAxpto0EpWYycNU2LeFF5YjJs77jjDq+8VyDuWAdTEISBCe8GFz6blsY3FJ9hX9AcDrGtlhAGD6qqKDqJICLJffc58dprrPGxHC5c4HD4sNlrQEbLaCDFHiKQeFF5YjJsJ0+eLGvYEgQhj9pEoIzQXqmiotpntVBVRfc4kUgYU7O5bVvthqmYaZ6b6w5zTmGDFHsIKZT02o10zXA8ry7t7Ha7YWbsqZa2RqKsTKIWtAHgOCAzs7lh+2d0jDB+/iLqxlto/TGmMUAQ2jDedSx6sx56qB4rV2pN/hIQtUIBRHROMZImaSwxwvphRFh1bPUeP/F4ajDtOz788MP46KOPVNsdPHgQDz/8MMshCaLJkJ/v8hZZMD7GMgYIIjSMdR0L3i2gRw8XVq60gj1J07+dqBUKADt2OHDFFfr2ExDKdx89Soo9hDxGV3li8tiePHkSv//971FRUYH8/Hx07doVrVq1gsfjwU8//YTjx4/jwIEDuPLKK/HMM8/g6quvjkbfdcWoT2T0xBgeRhi/+PLYEomH8byXTY2MDCGZs6JCj6dbwfP7ySfVcDqB9u2b6T63LFniQMuWfJNXOjDC+hHPxMpjy2TYirz//vv4y1/+gqNHj6K2thYAkJKSgttuuw3Dhw9Hv379Qu5wrDHqhUs3VnjEevzcbiAnJ62hSku0jQup0pkEQUSajAwPRo+ux7XXenDihMmnmIJ+9+KcOXWYNcuJp56yYsMG/Y8vkp3tweLFdbDb+SYn6xXr9SPeiZVhq0nuq1+/fujXrx94nkdFRQVMJhPS09ND7SNBJAxuNyT1HEPTnNQTMmoJItps3+5Anz5uuN1A585pDa/qey8uX25Fp04eLFzoBABs3GiNiPF15gyHMWNs8O1/ODG4cnMlQehFSCsux3Fo0aIFGbVxitsNlJSYUVhoQUmJOebl7+Kd4mILcnLSUFCQigkTUlBQkIqcnDQUF1tiLFRNRi1BxILz54V778MPzQ3hB5G5F8XypQsXOnHyZBUefNAJqSpj4RHcdzHWV1RrYEVpriQIvYiLdBZCP2hi0RcxflYINWhEnPhPnKBbjCDij/AMQ1Fr9oUXkvTojAz+5UutVmDdujrs3OlAdrZ//zMzPRg/vg4zZtSFfC5fRJkn0bBmQW2upDWI0AtadZsQNLHoi1izXSpxQ5z4X345CVlZHq/GXzCxC9zq168+ZucmiNjCB/wLfE9afF7dG8ojK8uD3Fw3iostUZlTA3eFfDPWt2ypxXvvAZ9/Xo0lS5zo00e/7Tme9zeslWCZK7UYyQShBBm2TQSaWPSnMX5WeptRnPhHjhQMyGDjNtJGrfTxOY5HixYevP8+PcgQTRUOzZqJBixbmEBGBo9Jk5wNf0ndW8Jry5YJXtG5c0PTqtXK+fNc0LwtlrodNsyFfv3gjWEtL+egd6gCS7gV61zJYiQThBqaDdvPP/8cAHDp0iWsWLECO3bsgMtlDO0yQh6aWPSHNX62QwcPduxwICsrcDGJtFKCuIj5vNJgXFOGL9HUCa60Jxp8Uvckj+RkYN48J3budCAjI/gGysjgsXOnA/n5Lhw+bEZpKWtsrZzXmI35821M4WRuN7BggWhs6zfvsJT4ZZ0rY5uTQCQKmgzbTZs24dFHHwUALF26FO+99x6Kiorw7LPPRqRzhH7QxKI/rDXbW7XivduDc+bUIdyFTBv+v2dGBo/Zs50RTWghiPgg8PpXetDkUFoqPPjn57vwn/9UY8+eGsyYUYfp0+uwe3cN/vOfRoF6LfPoXXe5gmJig4u5KM8XSuFkYrLwihVWReeGVjiOR3a2EHahhpa5kiDCRdNeZHFxMf785z/D6XTirbfewquvvoqWLVtiyJAhmDt3bqT6SOgATSz6o1azXSyh6Tvxv/yymEwitagGeov0FtbnceECh4sXdTwkQUQU8R4wRpGJAwfM6N1bkKfq08ctG7OqZR6dOLEeubkOPwms7t3dOHLEjNGjbaislDK4g8PJOI7HvHnJyMtzeUMPiostmD8fOHUqVcO3VEfc+Vm6tI5JqiuUuZIgQkWTx/ann35Cp06dcPz4cTRv3hydOnWC3W73FmsgjIs4scglMWl5+iYEzGZ467YHjqvUxK8WDqK2eIUPB44D9uyJZKY2QehJ4INeuIR3jC1brIpeUVFCUZD7Uk80E+dc35jY3r3dsFoFr21lJbuHNTCcrLjYglGjbDh1SvPXDOqnyeT/PbKyeOzY4WDWsdU6VxJEOGjy2LZq1QrHjh3D3r170atXLwCCF7ddu3YR6RyhH+LEMnq0raFueeNkSRNL6OTnu7BjhwPz5iX7qU1kZfFBAuZGCPPgeQ5lZRzsdg8uXJD2nhCE8QiOFw/9OOExa1awV1S4/xv9RI2GoNz5hPcXL66TLVYQ6nyxf78Fublun2RhVoL7LK4NW7c6wq48pmWuJIhw0FRS96233sKcOXNgs9nwl7/8BefOncO4cePw/PPPx3U5XaDplNSVmoTDqSJjdKJVEtG3mk7Lljx4Higr818ESkrMKCjQd0swVMaOdWLbNrmwCIKIZyIftvDgg0706+fGiRMmrFhhlVSbUcNm8yAlBQ3x7gK+c3Go84Xd7sHWrQ4MH67ls8LkmJHBy/ZHK3IVxuKp8hiV1A2PWJXU1WTYAkBdnbCdkJycjKqqKtTU1OCqq64KrZcGwqgXbiRurHiaWMIl2hOT0oNDXp4LOTlpinFmLVrwKC+PvApfixYeXLhAan9EIhLteNxQzyfvId2xw6E6XygxbVodnntOi9yYIGU2b55Tl7UhURwoZNiGh6EN22PHjqkeqHv37mw9MyhGvXDpxgoPLeMXrsEvFsAI9N74LlYAMHq0DQAkw0G2bXPgiSeSI2jc+g4CeWoJwngIiVSffFKN/fstkvOFGr161eOjj7TE0vPIzuZx/Hh12E4OlnkwXoxbWn/Dw9CGbadOnVROxuHLL79k750BMeqFSzdWeLCOX7geBrcbyMlJa4gdk8/6PX5cWKyUzjV/vhVbtugv7i7EVnv/0v34BEHox5w5dZg1yyk5N6mRluZBdbX2h+Oiohr07h16ArGWeTAedgmj6RhJRGJl2DIlj3311Vdhd4ggjIq/h6ERURuSxcPQqHggjZCxzHl1MPPyXLKT4MCBbmzZEu63CsZu51FWRuEHhBFRS7ZqeixfbgUATJ/u9M4XpaUc5s9Pbqggpn84UygJa74G3fnzHPM8GI4BbTQSJfQiUdBcU7O2thYXL16Ex+MBANTX1+Obb77BXXfdpXvnCCLSqJUaltKGlEJrAQxR3kcKUZpNzusRGjyGDq3H9u2heYIbvb1keBCRgK6rYDgsX56Ml15KwrJljQaSzSaGM0mr2wwf7sLWrdaQzqhVxzwUbzJgDIUYvdDDMULoi6arcc+ePejVqxf69++PAQMGYMCAARg4cCCeeuqpSPWPICKKXqWG9SyAIUqzcRygLnHEvhC99lpoix2gLb6PICILj4wMD1q0kNflTiQCq4qJslmBJbpFbdm779ZuRIWiYy4adL7SXawkSiEgNccIILzvThzndFygyWO7efNmTJs2DWlpaTh27BgeffRRrFixAr17945U/wgiouhValjvyjri4jV7trjtKAfroqJHxTEybolYw4PjgFWrBHUe0XOZ2NemoOE7d24yrrySx/nzQvjS0aPVOHYsOJzp0CFtgZ2h6JgrGXQC0r9JolUY0xKClkihF0ZHk8f2/PnzePTRR9GrVy/873//wy9+8Qs8/fTTeO211yLVP4KIKHp5WiNRWSc/34UlS+rYPxA11CoqEYRW2K6n7OzGildynsvow3r+0PvJ8xxKS00YPjwVEyakoKAgFT16pKGigvNWKxPnFqHqGTtaq4gBoVRRTMxCQHo5Rgh90WTY2u121NfXIysrC99//z0AIDs7G+Xl5RHpHEFEGj1LDattEYYSZxX7RVsKmqQJOSJ1vfKYM6cOx49Xe+8jtxv46isTamrU+hPpe0jL/aBffwJDFERYH9anT69DUVGN35iyEoqhFs48aFT0DEEj9ENTKMJNN92EBQsWYP78+Wjfvj3+8pe/wGazIT09PULdI4jIonepYTXFA62ohTgIddwBnleLg2XdrmVtJ7SZPr0OLVrwmD/fxvAZgpCC7Zrr1MnjV8Z25sxkvypZUjRvDtTV8XA69X8YS072oK5Oi29I6INQHCX8/sglt7KGRc2Z4wx5XmI11JYscaBlSz5h5a/0DkEj9EGTx/b3v/89Lly4gOrqasyePRurVq3C/PnzMW3atAh1jyAij96eVlHxIHCLMBTUQhw4Drj7bpeKRqAWb4G2Bbe6msOYMfXIzvZoPA+RmGj1XrJ9huMak3CKiy0YNcqGigq1Bzkely9zcDojI3FXVxeacXrrrfoZOVLJrZEIiwqEdadrzJh6XeZBoxKNsSa0o7mkri8ulwv19fVISUnRs08xwagFEKhAQ3gkisC2nE5iQUE9Nm5UrlVvt3vgdgOVlUryYXxQnXg2BM9PZSWHrVvFSkcUqkCwoD3p669/rcFjj9lkdVzjgWbNeFRV6dv3zZtrMWxY4wO42w2sWWPF1q1JqKwMveiM0nwoqiIA0lUUEyHsIFoFfhIVQ1ceE9m7d6/se0OHDmU9jCExquFIhm14JNL4iQtNaSmH8nIOGRk8Fi6UF2vXSv/+9XjvPS1lOIFg4yTRM9SJWBIJozB68LDZeDgc+nuQfSuGSRlZGRkejB1bj+nT2cIPWA21RDfoEsUxEiviwrC94447/P6+ePEiamtrkZOTg5deekl7Lw2EUQ2fRDLMYkGijV+oguishF+IgSpIEZEkXh6c9OinEGqkfD/yyM5uLFHrXywgNC+q1mMkskGXaOtHtDF0SV2Rv//9735/8zyPbdu2obKyUlPnCIIIhnXrL5ITrLClKGZuh7Iwx4PRQcQfTe2BSfi+6oVRODzyiOCF1aOKYijHUKqiSBCxICy3D8dxGD16NF5//XW9+kMQuuJ2A++/DxQWWlBSYjZsBZjiYgtyctJQUNCoU5mTk+aV8lEXRCeISGEEV1UkYmoDv5ee3zO8vmZl8Rg3rp6pbYcOQnl7Paoo6lWJkSBiSdj7md9//z04jhZawngUF1vQrVsa+vcHxo8PNhaNglxpSl+dSnVBdD0RjIgrr+Tx/PO1uPJKwBjGDREbEnN+D1y27HZjXOP5+fX45JNq5OWxxaiK0luhFAtwu4GSErP3wb+0lAoOEPGPphV+5MiRfkZsfX09vv76awwZMkT3jhFEOMht24vGolEydt1uYOZM9a2/efOiX4Hs4kUOixYlN5TipYWMSAxSUz2YPLkeU6c6/UrSdu/uRo8eaQqa0dHho4/M2L/fgrw8lyaNVFZt2a+/NqGkxIzycg4LFvjH69vtHqZjUMEBwshoSh5bv369398mkwnXXHMN7rzzTpjjPFrcqMHhFLyuHbcbyMlJa/CAyi8IYsJFpPrAklCxcqUVy5cnqx5vyRKHDkUQhGIOHo9WrVEyagkjoHQtsqlzJCXx2LTJgSFDpB9q5SSstPcnHISksR07HADALKnldgPXXtsM1dWQ6ZfUGPm3bUwelT5GNOZOI0Hrb3jERfLY5MmTQ+4QQUSLxm17aYQ4MQ6HD5sjkvTAKoHjdsNH+1UZu51XqUDGhofNIeMDywJJxC9G+y2V+sMpvB/4mvQx6uuBMWNsGD/eiYED3UEPnGKxFuH+lT5GRoYHt9/uxjvvWFBVpfxtQkP4nvPmJeP48WrJ/mRl8UHzyRtvWBqMWq3naqQxeRQIHGsqOEDEC0we29///veqB3rmmWd06VCsMOoTGT0xaqew0IIJE9SLhgSKmuuBFqmckhIzCgpSmY5bVFSDigpOxptkNOOEMAZKSgI80tJ41NRwOiQkhn/9paV5cNddbhw8aMaFC5GRspNCTnPVd8clM1PwoJ4/37j7sn+/UP1MIJTvzjZmoj6tGAtbUmIGxwkqBLfe2miUu91Aly5pKC/Xb+zsdo/f8RJJn5YVWn/DIy48thUVFTh06BD69++Pdu3a4dy5c/i///s/3H333SF3lCD0hjX+S+84Ma1SOawJGBkZHq9nSc2bFAwZvYQ0ycnA2rUOPPGEWOQjVHy9fNqPc//9TqxdK3gBd++2YOLE6FWylIu5V5KwcruBuXPF8KHI3lviHLF/v/8u0OrV/obm4cNmXY1aAFiypA5ZWXxC6tMSiQ2TYSt6YydMmIB169ZhwIAB3vf+8Y9/YPPmzZHpHUGEgFjHnDXpQi+0hkCwGtZjx9Z7F5T8fBfy8lwoKTFjzBibSplcqLxHJDbK18WFCxzsdh7PPFOH8eNtYSZMhf7Z++9v1ETNyoquW4xV39UXofqf9tLToYxRq1Y8UyKs06n50KpkZfGkT0vEJZruziNHjqB///5+r/Xq1QtffPGFrp0iiHAwm4U4MKAxBEAkknFiWuV2RAM8sI+N8MjI8GD6dP9Vy2wW/gk14MlwTUzUDDyeoY06O3YkNRi1YR+qAe0HKitrvIZZ7gm9pee0arOGJnUlFQMs/104Toip797drbgLBAi7RJmZ+o2JeG69H/wJIlpoMmzbtGmD/fv3+71WWFiIn/3sZ7p2iiDCRUwCCfQA2e08xo1zIiOD171Yg9YQCCUDXFzwVq2SNsBJRzLRUa845R8CEBrFxUk6F/3Qfhxfo4zloVTqPT2KLbDeU/qFMEn/hr4P38eOsRVM4DghNEH+e7O+TgliRPyjybCdPn06nnjiCTz00EOYOXMmHnjgATz99NNMyWUEEW3y81345JNqvPceMH68E3a7B2VlJmzZkhyRYg1q3iYpT4icAZ6dzWPnTmmtXbdbSGTRB8qIiG/0uA5i+5A0ZYrN7z6UuyeysoR7YufO4Pf0+A6sBmturhtZWUpGpFb8+56VxXtjflmN7fPnOSxdWtdQdEKbERvYl/R0mhOI+EaTji0AnDhxAm+++SZ++ukntG7dGoMHD0a7du0i1b+oYdSsR8rKDA+OAw4ebI4RI3gmpYJwkdPBVDsXq+6tlJSYNGzJPJmZgrFPxDOhJ24ZAfHemD3biQ4dPN7rHwCOHDGjpiYVqak16NnTXwVgzRorli+3ikfxOaJwPJsNcDjYxiQtzYMVK+q8sfdq3sqnnrJiwwapc4eK0Oc5c5yYPt3pPT+rcoqoniA1P7RsCdx3Xx327k3ye71FCw8uXBD7Htl5MV6h9Tc8YqWKoNmwTVSMeuHSjRUeHg9wyy3NceqUdPJGJATHWXVsQzmulJSYlN6keK1wXLCBzfPw6ngapdoSoQdGU8DQ0h//tuL9MniwS3L+YynCcuWVPOrqONTWahsTtXtV7dz+38nbI9XzSs1F4rnUEmEDPyM+JLduzSM/PxUVFZfhcjW+3rIlj8mTbQ0ldKkQgxy0/oaHoQ3bwYMH429/+xvuuOMOv5K6vrz77rvae2kgjHrh0o0VHh9+aMbQoeweD71g9cBqOR7bYtq4MAOCLJFvBndWlgfLlvkv2tqqLemLxeKBy6X+nQh10tI8qK5ODO+76DXcudOB3/42JWj+Y9eAVjOupatvAYLHMi/PFXQfHz7Mdm673YMHH6zHxo2CZ5f13gqci0LdBRLaSK8fWj3BTZVorb96rxdGwdA6tuPGjQMgVB6TM2wJwohoVSrQCyUdzFBQkxITWbLEgTFjBHkwqfhhpzO4+hhLtaVI4XIlhiFmBHbscOB3v0tBbS1glAeF5GQPfvMbF5o357F6tXrpaBFfGa6RI4Pf37+fNTaeJQlP+tyzZiUHPRhmZ3uYd12WLKnDiBEu5OR4NN1bgXOR3P0pVX2MlVjNi0Qwkdrha8owzQ6DBw8GAAwbNszv9e+++w7NmjVDq1at9O8ZQehArIo16A3rAtOyJe81aqW0L8vLTRgzxoZJk5xYuLBRRky7Pi5hHHikpQGPPWbTvO0eaerqTNi2LQlDhtRr/izPczh9msOhQ0CXLo2vFxdbmEtRhwrPcw3xp/43UGkpx3xuMcEtP9+Fu+92oXPnZrh0Sf33kZqLxPtTL69eosyL8Q6LRjEZt9rR5C755JNPMHToUADArl27cM8992DAgAF45513ItE3ggib3Fw32raVkgcSiBfNRi0LkVIFNJENG6zYt8//udZsBi5d4hoyq41lIBFyCFvt1dUcKiqM6v3msG9fEtLSeAV9WnlKSxv/X7y2o4e0dqzJpPxdTCber5rbsWNmJqPWbpefi8RdoGHDXOjdO7yt6lAUXAh9UatUCQjv6y1L2RTQNBOuWrUK/fr1A8/z2LJlC/74xz9i/fr1WLt2baT6RxBhYTYD4uUZzWINeqNlIWoMW5BbSAVv7BNP+E+aovegokKLUau/YD6hhWg+gITzW3OorgZ4Xv4hU46srMb/V7+2owEHj4drMEikv4vHA4wd2yhjxrrjMnw4W/WzcIlVERuiEbVrWWvhEKIRTYbtiRMn8Pjjj+PEiRMoKyvDoEGD0K9fP5w6dSpS/SOIsBk2DJLal756kUZHy0LEuoiWlzdOmixeXnnIu5v46CEpxqFZM55ZJ5XjeLRp40GfPo2vGSnmc+xYJ0yyK6i/x411xyUvL3pzkZJecLzMi/FMtOOc3W4habCw0IKSEnNCe4I1qdObzWZUV1fj4MGDuPnmm2G1WnH69Gk0a9YsUv0jCF3Iz3dh4ED9YtRiAWsSiZa4OHHSZE1OC8Y4hgYRSfT5nauqTGj0/KqrFQgPayneV40U89m2LQ+PR/47CB43DocPm1FezsFkkm8vymtFe+tf79hdgp1oxjk3tQQ1TYbtnXfeiUceeQSnT5/GvHnz8O2332LSpEnIz8+PVP8IQjf0ViqIBYELUWYmD44TKg+VlJiRm+tGbq4bdrsH5eXqhqo4aRrJE0YYi2HDnCgstKo31IT69TZhgjNo0RVDcuR1l/XR8k1N9aC2Vlnbec0atjF54w0Ltm9XSjiL7dZ/IsyL8YjatazXw05TTFDTVKDB7Xbj9ddfh81mw6BBg/DDDz/gvffew29+8xuY4/wRz6g6saRjGx6JPH5KT+EeDzBmjK3hVWkDIDu7UYCdXReUaDrwyMjg4XIBly9HPzHNZOKxbZsDo0b569jK6y7LFUQQXr/nnnq88QabMTpnTh1WrFDTn2UzopU8teL7W7c6MGSI/sZFIs9/0SDS4xeORjELLIVMIlmII1Y6tppmK7PZjGHDhqF37974/PPPcfXVV+Phhx+Oe6OWIOINcUIM1MYUn8JNJmDSJKfMpwUvrxizW1JiRmkpB7vdA/0TwWg1jV84VFRwuHw5Nt58j0e4lgsL/V+Xiw3NzuYxaZIT2dnBr+/c6cCYMWwGgt3uwfTpTuzY4UDr1krXrygHJtdGeE/JqAWE78kad0wkFpGOc26qCWqaPLbV1dVYsGAB3njjDdhsNhQWFuJ3v/sdXnjhBXTo0CGS/Yw4Rn2ipSfu8EjE8dPyFP7GGxY88USyX1iC3e7B8OEupKfzeOmlJD8Beu1JQnJeK76hnK+WYxFEIDzateNw7NjloEQtuWpNSq8rV+8Trv3t2xu9p4cOmTF8eCgVzrSV001P92D1av3jHRNx/osm8V55rLDQggkTUlTbbd5ci2HDjL9jEBGP7fLly1FTU4P9+/cjKSkJ7dq1Q//+/bFs2bKQO0oQhDa0PIUPGeLC559XY/fuGuTn16NZMx7l5SZs3WrF8uXJDbXiQ6NRnSFwxuK9/SCjlghGywrH4eRJSHqU5HRdlV5furSuQadZug8DB7r8QgLOn2e7fgM9rna7aOiyfb6yUvBOS1ULJBIfPTWKfWmqhTg0Gbbvvfce/vjHP+LnP/85OI5DUlISnnzySXz22WeR6h9BEAFolYnZv9/SoKmZhKqqwM8G/y08FXswZowT0gaAsMW6bZtDUkaNINTRds3oldyYn+/CxIlyITrAW29Z/IzLli3Z+rljhwNFRTXYvLkWRUU1WLKkTmPPSJCf0J+mWohDk2Hr8XhgtYoB9XzQawRBRB4tT+HFxRaMGqWt6ALPcygrM+Gee1x44QUH2rTxfz8rS4hZHDLEhfx8Fz75pBpFRTXYuLEWzZp5GlqRp5aQpn9/N2w2bYatXh4ltxsoKpJTKPA3LouLLZg82SbTtuETDYbBrbe6/TxuoTzsJWq8IxE7mmohDk2GbW5uLhYvXoza2lpwwn4OnnvuOfTo0SMinSMIIhjWp/Du3d0+5Ue1G5qil4xT+ai4jZaZyTfolJJRS8jz3nsWOBxScd3BcByPdu0QskcpUJT+ww/ZwnjWrLFi9GibYqiOkmGgdo8qQdJ7hJ40xUIcmpLHysvL8dhjj+E///kP3G43bDYb2rdvj82bN6NVq1aR7GfEMWpwPQX/h0eijh+LTExGBh+WhJcoeRQsdyScY9YsJ3r1cuP8eQ4nTpiwcmUSPJ7oy0IR8Y50opV4Le/ezaFvX+n7VynpRkoOLz3dg8pK9WtUaKccI2u3e/Dss3WyMl3ysmTKFBXV6KYrm6jzX7RIpPGLVIKaErFKHtNk2AJCCMJnn32G06dPo3Xr1rjpppsSQu7LqBduIt1YsSCRx0+tmgxrRmwgoqoCz6PBYxWuQgJBqCGqaDReP9nZHixbVoff/jZF8v5Vuv4B+IjSB6oV6HeNqlVvkuqjXB8ioSmayPNfNKDxC4+4MGwrKyuRnp7u95rT6cSzzz6L+fPna+6kkTDqhUs3Vngk+vgpPYWzSxU1InrJZs92YvnyZJXWRFPCZuPhcET+wSU93YNx4+oxfboTFov0/etfTSnYy5uezjfElWurTsZxfMNn2XYeWIT0fe/REydMWL7cGmTE6yXIH9y/xJ7/Ig2NX3gYWu7ryy+/xIABA9CrVy888MADuHjxIgDg66+/RkFBAfbt2xdebwmCCAk5mRiWxBcB6birDh08Mu2JporDEZ3zXLzIYcUKK/bvl5a+cruFBC8pjWSe58DzaDBM5Yxw+UpiPA+MHVvP3FfROFVSM/C9R2fNckoqiSRyvCNBRBsmw3bZsmXo2LEjNm3ahGbNmmHz5s04fPgwfv3rX+OKK65AUVFRpPtJEAQjojeLRaM2I4PHnDl1Xpmi48erkZ/vSjhdQ0IPohNmomYsquk4h95PDnPmODF9ulNT4pdWNYP8fBeOH6/2kwcT7zuCIMKHSQ36yy+/xP/93/+hRYsW6NSpEx555BHs2bMHjzzyCKZNmwZTYEkYgiBigpI3yxff7V6peL7ycrFcqPJxCHXatQOaNXPjyy/jPxchWgjGIofDh824917/9yKpGtChg8crkTR6tA0cxzMnfmnpl+jFJQhCf5gsUo/HgxYtWgAAWrdujbNnz2LChAmYMWMGGbUEYSDUvVkC27c7MGuWtFHrdgMLFoQuE0b4c/IkEtCojY5HX8pYZN9N0N7H8+c5uN3yEklK0C4HQRgDJquUCxCyTEpKwsiRIyPSIYIgQofVa1RWJt+O1Tgmmi5CydjIk5nJ4/334dWhdbvZdJxbtPB4/98f5X7Pn29DTk4aiost3pCB3btrkJ7ukf1solZvIoh4JSR3a1JSEpKS5Kq3EAQRKoGC8lrLa7J6jU6ckL/1Q9/qlSu/ayRC7Q8fxmcTCR4mE++tNjd6tHx52nDgOB4ZGR5MnmxD//7A+PEpKChIRU5OGvbvt6hWU1q5sk6h3LPy71haymH0aBuKiy0wm4G+fd1YvboOHNe0qjcRRLzCFGPrcrmwd+9e79/19fV+fwPA0KFDdewWQcQngfJb3bu7cewYmyi2mi4tC7m5bmRleVT0Z3m8/HKSbHxtqFuq2dk8HnrICbdbkGXp3duNV1+14K9/NVrJ7VC0TMX2TV2rl4PHA3zyidkbI7pjh96/L9+gbBA8zqLRuWOHAzt2OBrul8Z2WVm83/2Sl+fy3o+ZmTzGjLE1FF5QODvPgeN4zJuXjLw8F8zmxtAEtfMRBBF7mHRs77jjDuWDcBzeffdd3ToVC4yqU0c6euERzfGTMkxNJh4ej7/ovNRCqKbLqUUKaOVKK5MGrVyFI7cbuO66tIbyuMrcf78Td9zhljXanU6gbdtmYDMGm7rRGD9s3lyLYcNccLuBnJw0lJZymqprKaN8HfgWMgDYqymVlJg1V+ILvEdiUb0pHGj9CA8av/CIlY4tk8f273//e9gdIohExt8wbcQTIAfr63ESDVU1Xc5A75EarBq0SiEHrEbKX/+ahIED3bIZ3lar4LktKWGZasiojRdathQu9FAVBMLBVzGhd2/5ay+QUEJsDhww+x0/ntUM4s0oJ4hQIUkDgggTZYmtYEMV8NfoVEvW0qqTyRpKINfu8GEzqqvZjQAlcXoAePhhdsH7xx+vU0zUIYyB7wNcKAoCyugvrwWEFmKzZYsVxcVM/h9DU1xsQU5OGgoKUjFhQmO8ciJ8N4IIhAxbgggTrSoCgYYq6wLN2o4la1wpi1ubwaBudGsxeL7+2oSBA13efkYXShBj/f6BqhqigsCePcoKAnqi1VAV48+19I3j1B/cjE5hITBqlM0vNhjwT5IjiESCDFuCkIFVoSBUFQHxc+F6WAMRt4eB0LK4Q/FsKY1Bbq7bK7+kxoEDSdi1ywqOA1JTI2Ec8ZA3YJUS7hKf++9nVziQukbMZqBPn0YFgUgZt6HKa5nNwMiR9dDyG2vdLdGLcNVRfI/z+OOQDXMC4t9wJ4hADGfY1tTU4Pe//z169uyJnJwczJkzB9XV1bLtFy5ciC5duqBr167ef6+++moUe0wkIlq27kJVERA/F66HVQq57WGWmvRq/ZFCaQzMZmDECG1Z4zwPVFdzGDq0Hps31+Kvf62BzaaHodR0DVc1Onf2YPt2B0wm+XFmuRbFay87O1IPJqHLa7HGnwcSyWpngegZNnD4sBmnTgF6hTkRRDxgOMN2yZIlKC0txVtvvYW3334bpaWlWLlypWz7zz77DEuWLMGnn37q/ffAAw9EscdEoiEmgrFu3Wk1BAONg3A9rHKEWpNe7I/g5VH+TqxGd16eVjkkYez37ROE8quqODgcGg+heGzfksEEABw6ZMaQIS5s3eqAlFdby7Xoe+1Nn16nWx+zs9UfzJQQk960Eq2qYlrnHjX0DnMiiHjAUIZtbW0t/va3v2Hq1KlIT0+H3W7HrFmzUFhYiNra2qD2TqcT33zzDbp06RKD3hKJiJpCARC8dadkmLIaB+F4WJUQs7iHDXOhd2/2LOi8PBcyMtQWc0FvlMXQCcULLGimcpg3Lxlz56rLl2mHFnNf3n3XguJiC4YMcWHnzmCPq9ZrUbz25sxxhvDbB8Jjzpw6pgczXwK39F0ab6NoVhULZe5RQ+8wJ4KIB6IeNe5wOHDu3DnJ92pra1FfX4+OHTt6X7vmmmvgcDjwww8/4IYbbvBr/9VXX8HlcmHdunU4fvw4mjdvjuHDh2PMmDEwmQxlsxNxQmMimDSBUkMicgLuJpO/5JeSoHt+vstPUD6WkjyHD5tRUaF2D3GYM4dNnD4cWagXXzRagYfERZSV870WS0s5lJdzsNt5ZGTwcLuhek0GSkstWlSHceNsCNaoVdcubtcOWLzYgXvu0WaVSulKC4ltbES7qlioc48SublutG0LnD4tfc+JmsBUDphIJKJu2P7rX//Cb37zG8n3Hn/8cQBAamqjiHZKSgoASMbZXr58GT169MDIkSOxevVqfPnll5g0aRJMJhPGjBmjqV+cQZ03Yr+M2j+jo3X8fvqJreFPP3FBxxw82IVBg1ySlcdKSzmUlQnVj1q04OHxSBsHFgtw222xX2RYx+GaazzMYzt4sOAJnDs3OWirNbrEcyEIX8+a3t9BMJyOHBEMJ4sFqKzksHRpcDW8ZcvkH2iKiy0Nv7F/oRKlSnjBxi4wfrwTeXlu5OenorLSpSrw7mtMnzhhwvLl1qDPqFUd8yU7O7pVxcKZe+SwWIC1a4ERIxD0QCka7suW1cFCwgiS0PobHnqPH/NxeAPxxRdf8B07duSrqqq8r12+fJnv2LEj/+WXXzIdY9u2bXxBQUGkukgkOO+9x/NC6pLyv/feYz/ma6/xfMuW/p9v25bn9+xpbONyCcd85RXhvy6Xvt9LK5EYBxHxu/7pTzxvMrGdh/41/mvWLLLHf+UV4Xfas4fnOS74fY4T/vlevyJyn5H7N3OmcC8E3htPPaXtXtizJ/g4of5r0YLn33kn+vdgJO85qfFp1076NySIeMdQz2k///nPkZSUhG+//Ra//OUvAQDfffcdkpKS0L59+6D277zzDsrKyvDggw96X3M6nbDZbJrPXV5uzJJ5HAfY7c0N2z+jo3X8brgByM6WLxEqxNzxuOGGapSVqR9v0SIrNmywItBb9f/bu/fwJsr0b+DfSXqkiK0FoRVwdQVPKFSOgqAUEFmKSPGAYJEzKqKLykEpFAQ8oMKqi0KBiiiKgmWXLcK6iiAiRUBA3p9HlvVES4UCaukhbTLvH+mkSTOTzGQmyTT9fq7L65I0nXnydNrceeZ+7vuXX0QMH+5clUpMBNaujUZxsfpVsWC78kogKSkBZ84olcByrjz7mwelbkcdOjj/u/9+aX6gcB7yJKKsDAjmXDVpUo6SEjumTk2o/R2on+/p/D146CERvXqdc915sNuh+D1yBEHE+vUiPv/8HPbtq1tpXbs2Gjk5db8LrVsDCxdWKKYiFBREYdw473bU/okez5dWMF94oRIdO9bgzBkNhzKA0X97nN/j/Pt3441/YP9++d9FtcdqjPj+q4/R8ycdzx9TBbbx8fEYNGgQnn/+ebz44osAgOeffx4ZGRmywaooinj66adx8cUXo0ePHjh06BDWrl2Lxx9/XPO5pc+xZmX28Zmd2vmzWJRzQaU3vgULqmCx+D/e5s1RbkFbfc7jrlghbYryPFhxsYBx4+J0bRzTyj0IbdFCVDVf9ee1/u3gN97wDtjdb+/m5Dhrp776aoxX+2HjSAMMR+DsGTzpF7zXIOVbdu9ux549/vM9jx8XsGdPXb6nv+9ROsbnnzuPUVAQJZs+cPw4MHas/O+C3Q7Mnq3U9c+3xETRIzVByn8fPNh/2kMwGPm3pz5RdB6/Z0+71+PkH99/9Qn1/AmiaK4fV1lZGZ599lls374d1dXV6NevH+bMmePKux08eDCGDBmC++67DwCwfv16vPbaaygpKUHz5s0xduxYjBo1SvN5T50y5ycyQQCaNz/PtOMzu0DnT27jSf2gzBe7HejQIQGlpYFvYpQCjQMHzgV984rc61Vj06ZyV2Aj5Va6B7JKq2L1gxSbDZg7NxZ5eUZvFDM6sNR6bsicP5xjUuIc66pVlbj11hrk50fhvvvi/X7X8uUVyMx0/hyzs2ORm6v957d8eQWGDq1B584JtbnXypuc6v8u7N5txbBhTbyer8Z775XDYkHYN2rWp/dvjzu+f+jD+dPH6PmTjuf3eWYLbMPFrBcuf7H00TN/SrfR1dDzhlvfe++Vo3fv4G0ok2pnBrLqJQU20u1gJ9/HqB+kSPNcXCxgzpxYlJaquZWtFBzWfzy8QeRtt9mwf39MbZF8J61VIUJJCqCSkkRV16/0wUbPB7lNm8oBQNP5JGoDcHeh/MAIBPZ3RM/fHnd8/9CH86dPuAJbU6UiEJmJVIczEEYWPB8/Pg5LlgQn39ZX7Uw1WrZ0ln969FEppcL/MaSyRatWRSMlRcTcufVXikX4D0iVglrgsceqsGpVdO1t5vAGkIMG2bFxI1BQUI4TJ5xVMR58MA4nTiDsY5NbUZYaAaxcWYnUVIfPfE/3MlGFhVbNQa37Mf75T3VvRfV/r7TWX/VVwsuoYNJdoKuvev72EDV2LPZKFARGFjw/ezawrkNq1NXO1BZkuReu371bqnmr7Rhz5sRhwgTvLkuBSk0VkZdXiV697Dh7Vvt4gkEq4SQ1ybBagRMnzDE2J/lGAHPnxuLJJ9V3w9P6Qa7+MQJtJOC/8Yfn40pNJoxsY+t+TCO7iBGROgxsiYJAesOt/8YamMC6DqkRyMpy/aBk926993Prj0H9mBYsqPRqF2ym9qBz5sThT3+CK4gpLjbD2HxvpnOuqFuQnCzKdsNr1UrE9Ok22GzOn73drv2DXP0A01+AqtQBTE076hkzqny2lA5GABqMLmJEpA4/MhIFgXunLWcau76AJpCuQ2oEsrJcv3uavuLbSt8sPa6cS5ucLGLs2GrEuO1XstuBkyfDHTx6jvn4cWDcuDg88IAN69dHh29YALR80CopEZCZ6dkNT6p0sXhxXYvjxEQHJkyoRlKSw2d5uORkEQsWVLnSD9xv8/vqTCddX0odwJS6/vnq8ifxF4AKgujqxqYlLSHQLmLBSIcgamwY2BIFQM0bkNIbrvyKmbrg1+jVSGmlzFcu5UUXCXjxxXKcPCn/Wnv1smPJEkOH5TUG77E527x265bgCl4Creygnb/yYd51XwH4KP0WSgLUBrfShx4p37OgIArPPSfXzcuC55+P9Xvcrl3tuP125SBT6feldWv/LXUDbUcdjDa2gPrfU/fnGVkNgagxY2BLpJGWNyC5N9zSUqF2w1Tdm9oFF4g4fdr/m6GRubtA3UqZs6KBd0UBUQQmTgROnXLWtrXbgX/+M8ojcOjZ047zzhPxxx/Gr5TedlsNNm+OUtxRK90ufuABG155xTvo0iInpxIvvxxT+3Pw1f7VuwZqXJwDlZW+AupwryJr4WwE4H7bX/0mQ+WvbdsWhc2bo3DrreoD1FatRGRkNMGZM/5ryway4SqQAFQNrTnDnpVJ6kjXdyjrWUcCrnw3biz3Vcus5TxYbkQfo+dPqTSWUn1WJfX/8Hbtake3br67DgWrRJFyqS7fK5PJyQ4MH+4MRN5/34qVK2NlnxcIQRCRlOQe7CsHFoIgQhBQ2+AhkADSea64ONSrwevtvPMcWLrUWcRf+vk1by5iwoS42g1rkUDEpEnVGDSoxhUQGFW+rnlzB44cUX8NB/vvn9rXVb/MmD92O9C5s7rfZwAB1fBVozG+f7AOsHmwjm2YmfXC5S+WPkbOn/RmpfQGBDjfgL74IrDgUwqaAUCu61AwVm38vyZ1kpMdOppRyDdxSEwUfeRsGsn9wvB/rpQUB7KyqnHppQ60bCnCZgPuusuYmsXBpT3XWwoIbDZorherREuQGOy/f1oCUK2/02p/n4MVXDvP1bjeP4xaeKj7vsY1f0YLV2AbKUsMREHnvzSWgOJiC5YuDSyXUsoxrL8LXalEkRECLfdVn3NlVao/q09KinPXfSAlxLRzrtY6KdXG9W53vHhxrKss1IgRxgR8ZiTdCj92zLi3ipISAXa7c7U0Pz/KVVkhHNRUVVDatOaP2t/nYKVDNDasREES5tgSqaT2jWXx4hhccYUjoEA00E0wgTLqzdL5xiG9gWtbGZwwoRqDB9d4vF61Bfv1EdG0qVgbQCuRex3ym8P0jCNUObjOjXhQOJ/3OKTKALm50fC/aU6dY8cstXcJ9N8qNiKXUk9VBTXH9vf7HGgNX/IUrI2A1PAwsCVSScsbSyAlgiSh7Dpk7JulMyhwpiWoD34GD67xer2heRMXUFZmRECp5xhaX6eeIFioDWqVzqlc19a5UU5vAC6iaVPnB7/6AtkkZWQuZTA/UPr7fVZTmcS9yxvJ48o3SZiKQKSS+qYLzgL3hYXm34brv3OTdpmZ1UhOdvh9nlLR/WCNy7y0vNEKaNpU77wEHhjrVVYmfyytt4qD0VRBCkAzM50ftEK1iz6Y6RCNCVe+ScLAlkgl9zcgNRrCyoDnazLmD/7KlTEyK7ba3rB9vdlHFu3XyMiRUmOMhjYvgtt/3qSOZ/4+EEZiLmU48usjTaDd6yjyMLAl0iAjowYzZthUPbehrAwovalqJ8JiUcrD9Py3mjds48YVWQYNCvW8hHb+/X0g9LfhUQqQP/vMaooNamplZNTgwIFz2LSp3GcLYJLHlW+SsNxXLbOW82C5EX2CMX92O3Dddc4SQUbXnQwnux1YujTGLQdS/Wqi701JnhYsqMSECdWq58Z9g1Dz5iKmTo3DiRPy+Yh1QrchS7vANmHVv66kefnkEyuWLlVTQ9hfWTOlcYlISBBRXu5vzo3hXtZK7vc3Pz9KVemxxESHR23hxtjFqzG+f7COrXmw3BdRA2G1AosWVUEQImtlwGoFHnvMhry8SqSmer6upCQHpk+vwsaN5Zg8ucorhzYlxVnUX40WLURNc+Oe+9injx2LFqlJnVDfOlY/redxBofOa0Xpe72vK1EE7rmnGv/8ZxR27XKuRpaUCLjhBjtSUvzl3boHrb6CWnnnzjk3ngUz/UHtrWK1d0LcO8MBnvm3Zik3RsbjyjdxxbaWWT+R8ROjPsGcv0ju7S6tBv76q4D27eNx5ZV/wGKpe7y4WEBpqYDk5Lod24WFwSs0X19BQRSmT4/V0RTCOBaLCIcj0JVMuZVl75XTpCTnBwml0mRJSQ6cOSNAEKCwqupvlVis/V7550id4GJjPbuzOV+7r+MqjcPze5QK6Mv9/trtwFVXJfho3qH8WgVBRGKid5e5SPm9rY/vH/pw/vQJ14oty30R+aFUKzPUNWdDSVoldf4hAU6dAv71L+VA3moFuna1+wl0RFgszufplZFRg8pK4IEHAm2OoJSqoD2F4a23KjBlSlzthjmtAa788xMTRaxeXYGTJwUcO2bBc8/F+HxjkFYn67q1ScdxoKYGtWXNfI1N8Hl8URRw+rSA994rh8UC1/VeWipgwoQ4aJm3KVNs2LQpOuCasVu3Rnm8xnoj9TkOURRqv9e76YbWcmNEZE4MbIl88LcqG8qas+Hk2aqyjntAkJTkb+VSgMMB7NtnTIF0fZunfK30aQtuz54V8NxzVbXtU0UD8lCddWMtFmDo0BpcdVWC3/xlqZFCfDywcmU5Tp1yBp4OBzB8uHHtfk+eFDB0qOeHuVWrKnH//XGoVpGJ0qOHHTk5NmRn2wL6QChVRHDSM8/yjSj01J8mInNgYEukQE0w1xhWd+x2YPZs5fJKUkCQna2uFJpRZdD8FbbXKjVVxLBh1V6rif60bCmiVy+7bPcqPZvYtm6Nwp49Vj+d0dzOVNtZyWoFMjOd12V+vrF/4pW6hj34oE3VBrZHHnFWFAn0A6G/7lJ6gl12piKKDAxsiWT4q5XZmFZ3du2CqlaVaruNGVUGTSrvM358XO3mKu1BTbNmDowY4UwpkVYNpdXE4mIBc+bEKqYY1O8IVT81RUohAOq33VUX7ObmRiMhQftcuX9wUD/Xvsck5dgqdQ37299iEBvrQFWVct5r06YievdWFzB65ngDV14JVwqEOoF/oGgI9aeJSBkDWyIZ7Dtep7hY3fOSk5272p0rlsq3+rW02/VHqnXrvVKqzh9/CFi5MtrjVrj7amJcHGRTDJSqX9RfibzySgfmzInHL7/UPSc1VURFhYizZ/2vNJ87p31znHswq35V2/c4RNE9OJf/oJeQAFRVAd5BpfMbX3pJXaUQ+fSfBCxcWKXpQ5H3hx11wW5DqT9NRPLCv6WYyITYd7xOSora54l48klfpbicczV3rrFdodzL+7zySgWaNfPfzlfir1NVIB2hpFJSGzdG4ZdfBDz1lLN279//XoEFCyqRnV2FiROrVewS1l7ntn65LKM6uGVk1NSmRCg3RTh92oIZM2xo1cp7rvLy1KXt+GuVW1oqqOoutWqV/M8sKYmdqYgiHVdsiWQ0hr7jStUe6uvdGz5X/dxvyTvbofpeGay/0q12HL6e575SeuiQFbm53rfMlfhbfddS/UJutdEpzqssWEKCiHPnVA/T36sAIF8/WQrOH3001quaQFycA5WVxq1vXHqpAwcPntO1McxX+s/cubF48skqTJzonX7ivoqekVGDwYO9f2Zbt0bJpq405PrTROSJgS2RDH+3cOvnVzY0WmrwSg0pxo3zHxBs26YuKpBWun2Nwz2YPHrUgry8aJw+7X+8gwbVaAps649JjprNTkqbDSWOegvJ6oNa/7fQLRbg/vttiivI33xjcStzVXcsZ06s/xq3BQXq3ipathSDtjFM+gCSnCzKpp/ULxkmNw6l1BUt5caIyNzYoKGWWQsws0C0PnrmTwpUAMgGcw21KoJnAOb7dbnPn686thkZNbDbgQ4dElQ1Tdi0qRxnzgiK4xBFIClJ9FMRwNlUoP7PQcs46o8p0Hxpux211QK01rJV015X7jmeAarSNVlQEIXZs2M9mhEoH9/XOJw1iJ25tsof9PS0kVbbKnf58gpkZtaoXumXo+d7Q3lMvfj+oQ/nTx82aCAymUhc3dFT7cHfLfnCQquqYDI52YGuXe3o1k2+PqszcBJ9FOGXCBBFEbNnx+KnnwT8/LMFf/qTA2PHVuPZZ6tqGwd4H9/rKAasvvsvQ6V49gCf4/9n528FWesYnCvOYtBu42tN/9FTQ9ro+tOR3IWQqKHh5jEiHyKt73hdAKa8CaioyFKbK+tNCggyM2vQq5fnipTajXTDh9dg3z7f43A+ri7gKi62YN68OKxeHYM5c+LQtm1THDxowZQpNv/f7SMokzaB5edHYfduq88Nb1u3Bn+N4Pbbfb8e95+drw8wekyebNO0kU4LKf2noW3u8rfhTW0aBxEZg79xRH6YobuYUbc5g1ntQe2K26BBNUGtJuFwAMuWxeCWW2qQmCi62s3KUVp917ICV1AQhdzcaGNfhIy2bdXN765dVnzySaAryL7dcosd8+YF1jXMH191ic26uYv1ronMhyu2RCZXUBCFzp0TMGxYE9x3XzyGDWuCzp0TAloJCla1B7vd+V9iogPypb48V9yCW03CGWBs2xYlE9SKAERMmmRTXH3XsgLn2eI1gJHWzklKiv+VSrUfrpYsiVXVBSyQMUhBrPQzLCkRXCvERlAqr5aaqn9VWMsKvFp674AQkfG4YktkYka39Q1GtQf5Elfym5ukFTej2+F6U05xEATnLv/58+XTD7SswGnLrVWeEwB+Vyp79rSraoARyOa1e+6pxtmzQu3Ks++fndzPOyXFgaysalx6qUP3Kq57Lrez81g8rrzyHCw6lmGClQPLetdE5sMVWyKT8hdkAcqNBZT4KtgfyO1epdXN+urnYfpuHCBCadXXCL5W0bSuwGkJWOoHZu5zoqYRhNUKDBtWLY2k/sigPi+5TlKSiMREEYsXx9aWSBN8jtPXavbixbGuOwodOiRg8+bA103cc7lvugm6buMHMwe2MdS7JmpoGNgSmVSwbnMG0k1Lju8NSs7KBomJDrz3nvwtf6VxJCU5/62nU5YackGp1hU4tQHLggWV+OmnMp+bEP1tVLTbgU2bpFxeuflWy/nB4bbbqnHmjOBVfcL58xQxeXKVxxj8/7zrlJZaMGFCHObP115P2EjB+HDorqFueCOKZExFIDKpYN7m1NJNS4n/2/ACzp51rgAqHXfQoBo0ayZi924rBMG5Stezp7NDVP0ya+6Skhw4e1bQtetfLijVugKnJrWjdWsBEydWw2LxvwnR10bFwEuKeUpNdbY+njtXysOVT7n417+iMW+ezaOcm9bzL1sWg7Q0B269NTxVRNQ2fVDqOudPQ9zwRhTpGNgSmVSwb3PqrfagN/CWy3tcv74u79E98G7Rwtm04dSpuiB84cIYLFsWA+/OXL4bDvjKI9aag6wmsPnb35zP01ugXG+e5iOPVKF3b7ur9bHWgE/7+Z3PnzkzFoMHh6cqQChyYCOx3jVRQ8bAlsikzN7WV0/grXZTnK/AOyfHWdf11VdjPNrVWizAzTfX4N//jgKgbRUtkBU4X4HNokVVyMyMx6lTii9DtcDzNEWkpoqYPr1u9TWQgC/Q85eWWgJeEdVL7ZiPHdO3Em7EHRAiMgZzbIl0CEYJIYnRG73q0zv2QPMLjcx7zMmx4aefyrBgQSXGj7e5cllfe60S06fbcP752vOIA8lBDkUjD3/z7Uv96ySQDyV6zh+uqgA9etiRkqJcgs5JxBtvROv+3fXVvISIQocrtkQBCkUbzWDd5jRi7IHmFxqd9xgTA0yeXO36t9xrS0x0YNKkakybZlMVcASyAhfsRh7u8+2dfiFPEESsXOkdjAdyN8DXz9ufcFUFsFqBrKxqLF7sq66vgOLiwPNsichcuGJLpJHdDjz/fAzGjQtNG02jVwOVyh8VFQkYNy5OU5mmQFY31a7ebdumfclL6bX99puA556L0dT61owrcNJ8JyerCxTvvLMagwd7/wwCvRug9PNWXhENf1WASy91+H8SjFlVDuYdnIZwfiIzEERR75aGyHDq1B+6N3cEgyAAzZufZ9rxmZ3R81dQEIXZs2NRXKz8mVBa7Tpw4JwpgiF3djvQuXOCjyL/gMUiIje3ErfeWqN6/rS0/N2924phw5qoGK2IvDzltIH65+za1Y5u3ZRfWzh+LsH6/bXZgI4dE1Ba6r92ra/V6s2bozBzZixKS7Wt3LvP/bZtVvzjH9Ey4xAhCNDVMcyI+VN7vW3aVK5rxTYUd3ACOf/LL1vQpw/fPwLB9199jJ4/6Xh+n8fA1smsFy5/sfQxcv48Nzz5X93R+0YZDFqDyiFDagy//tQE19IYEhOdK789e3oGynJv4snJDo8ATYnan4uWYF1JMH9/CwqiMG5cnHQmt6/IpykkJTnwwgt1QZbSHD77bJXm8lyBBsj+GDF/0vXmL+1Czwcepb8N0uq33nbA+s4vIC+vQnblnnzj+68+4QpsmYpApILv4vTyzNhGU8uY9BSu98X9NrhvAs6etWD48Cbo3DnBld6hlG7gXL30T80cFBREoXPnBAwb1sTVTevKKxPw/PMxXnOi9/av8beP5V/fmTPOVJOCgijFOTx9WsDEidpTaW69tQb/7/8Fd/NcoEKxCTOYTSDMfn4is2FgS6SCvy5gcszYRlP9mALraqZWRkYNJk2q9v/EWlLu8ubNUaq7XynxNwdKQd/ZsxYsXhyLq67yDLLrB8DuQbg/gX6/FMw4qb0mnc+bPTsWs2cbHwjJ5SSbJefTqG57coLVIdC48wPHjwfv/ERmw6oIRCpoWek0sr6sEbfD3Um74f2nATgFc9V50KAa5Oaqa7kqdcOaNSsWp04F9nlczc9Fzcq8tPI5ZYoNr7wS47MW75AhygGT2lq+cgLvQuasAOCL3m5ckmClJwQqWLVmQ9EEwsznJzIbrtgSqaB+pdO4Npp6VwPlqE8DcKr/uo1cgdNaF1UUBQ1BbWC3nNWtzDu/9uqrMQGveuq9fRyKIEXPOebPj8GECXFeOc9FRcZXDdEiGJUugt0h0OznJzIbBrZEKqgNwoy4tQko3w43opxYRkYNVq2qhMWi/FrkmisYHWj7yn3Uq345LLU/F/XBnACHQ3nV29/tZ723r0MRpAR6js2bo2pbHcsRIIqRlfMZaKOS0J0fuOii8JZcIwolBrZEKvgOwkQAImbMqMIXX+jfMBOMzSD1V1oHD65Bbm6la+zu5FY3gxVoK9dFVZac7D+IOHw4sI1MRgeMSoGy3tvHgXYBc6ZjOJCSEpxAzG4HZs6MhfO6VXqNwc05DbVgb04z+/mJzIaBLZFKSkFYaqqzNNZjj6nrauWP0ZtRlFZaLRYgL68Sqam+VzftdgRls5FEakCxcWM5EhOV259KAdezz/p/E4+JCeyWsxQw+m7Bqp5SoKz39rH/D1repOctWlSFRYuCEwgVFlpVlVwDIivnM5ib0/ScPzVVxMaNMEV1CqJQ4eYxIg2CtQHFnZGbQdRsUDpw4JzP17NrFwxtgSvHagX69LFjyZK6lrFKLXozMmpgsehvM6y0MU9qG+ss8a00x87mA0qbzPxtVAukpW19Su2WU1NFdOtWgx07rDh7tu7nVn9+gtGqWUuwGmk5n6H426D1/Ndfb0fLlufh1KnQjIHIDBjYEmkkbUAJFqM2g/hLaRAEEdnZsRg0qMbn6ykuVjUcQ1bglIK1+gGX3iDCX5eo1asr8eijsThzRj7oFEWgSRPg3Dn5rwO+Vz3dA2jn8eSDeH+vR2keAOCzz6zYvdsKUXRer/VXroMRiKm9dpOTIzPnM9h/G7SeX4icRXEi1RjYEpmMEat5gP+SUGpXWlNS1I3bqBU4tQFXoEGE2jJbgwbVYOnSGOTmRnusfCYmijhzRsC5c/LHT0wUPTp8+XqdRqya1p8HuaD9nXfky2wZHYj5LyfnnPRnn2XOJxEFBwNbIpMxajXPqJSG3r1hSKCtRbBWvrSsYlutwGOP2TBtms0VZDdvLmLqVLk2tq6jID7eWaNXDaNWTaW0im3brFixwrsigRS0r1xZieRkMWi3ytWkckyZYtPcspeISC1uHiMyISM2oxiV0mC1ImibjUItkI157rVPrVaguNhXnVvtO/711lZ13xy4YoV8RQJRdJbZmjQpztC6yHKka7f+psTmzR1YtaoSOTk2Q89HROSOK7ZEJqV3Nc+olAZpLMHYbBRqelexzdblSSmtQp4Ah8PzETVdzgIR7o1URNR4MbAlMjE9t+SNSmmQmDFY0dpyWO8qtpm6PKlp/+uPXPqFUcK9kYqIGiemIhBFMKPrawajJWmgAumEprdLVLi7TLlT1/7XP611kYmIzIyBLVGEkxogBNKJy6yUOqEVFQkYNy4O2dmx2L3b6tU0Qm+XJjN1eTI63SGSGiYQUePFwJaoETDTSqtevm/BOzdO5ebGKK7g6l3FDneXKcmxY8b++Y60hglE1Dgxx5aokdGal2o2/urzulPaHKU3Xzjc+cZ2O/DGG9Fw1oX1v9JqsYi1G8dCU66NiChcGNgSNSL+Om41BFpumfvaHKV3c1M4N0cVFlpry475lpFRjfHjq1FaKmDiRN+tihvShxsiIiVMRSBqJJTyUqVVTaPrmQaL1lvmkbg5Sm1wn5HhTD259VZzpE8QEQVbw3gnIyJdtHbcMjN/9XmVRNLmKLXB/cmTAux25+pyuNMniIhCgSu2RI1AIB23zMpXZQJfImlzlL+yY5I5c+I8NtCFYhOh3Q7s3m1Ffn6UbGUKIqJgYmBL1AiYrWOWXkqVCeSEsrZsqPgO7j3/HcpUk0BqCxMRGYmBLVEjYKaOWUZxr887eXIVADHstWVDSTm49041AZypKEasniqtyEZKDjcRNWwMbIkaATN1zDKSdGt9wQIb8vIa3+YoKbhfsKDS5/OMSjVRWpHdvDnKZw43YFxgTUTkCz9CEzUC0q3r8ePjIAiRWfIpXJujwl0X2GoFWrRQt9KuJ9VEWpEV652quFjAhAlx8FVP1xlYCygstIatRBoRNQ4MbIkaCenWtbOObV0QkpIiNqg6tr6EurasWeoCBzvVxF9Vjfp5vUoaSg43ETVcDGyJGhGWfDKOrxVMqdvZkCGhCW79lUDT213Mf7c3dQFrQ8rhJqKGiTm2RI1MKEo+RTr/K5ihzSn1VSXBiFQT9SutkZXDTUQNDwNbIiKNzFgXWKlKghEb6LSstDamyhREZD5MRSAi0sisdYGDlWqiNtXhySerMHdu5OZwE5H5MbAlItLIzHWBg7GBTm1VjYyMGgwezBxuIgofpiIQEWkUqXWBfVGb6sAcbiIKJ67YEhFp1BjqAsthVQ0iMjsGtkREGkgNGWw2YPp0G954IxrFxY0npzTUtYKJiLRgYEtEpJJcQ4aUFAdmzKjCpZc6uIJJRBRmzLElIlJBasjgvuMfAE6cEPDcczGIiQFzSomIwoyBLRGRH2ZryEBERPIY2BIR+WHGhgxEROSNObZEDYS0aYm70UPPrA0ZiIjIk2lXbCsqKnDXXXchPz/f5/MOHz6MO+64A2lpaUhPT8eGDRtCNEKi0CkoiELnzgkYNqwJ7rsvHsOGNUHnzgkoKOBn01Awc0MGIiKqY8rA9vvvv8eoUaNw6NAhn8/77bffMGnSJNx2223Yt28fFi1ahKeffhpffvllaAZKFAJKm5aKiwWMHx/H4DYEGmNDBiKihsh0ge2ePXtw7733YtiwYUhNTfX53A8++ACJiYkYNWoUoqKicP3112PIkCFYt25diEZLFFzctGQOUkMGAF7BbSQ3ZCAiamhCvtRTWVmJkpIS2a+1aNECV1xxBT7++GPExsbitdde83ms77//Hu3bt/d47LLLLsPGjRs1j0swaWqcNC6zjs/sGvr87d1r9aiZWp9z05KAvXutQSma39Dnz0hDhtQgL68Ss2fHeqyep6YqN2Tg/OnD+dOH86cP508fo+dP7XFCHtgePnwYo0ePlv3asmXL0L9/f9XHOnfuHOLj4z0ei4uLQ3l5ueZxJSefp/l7Qsns4zO7hjp/ai/l8vImaN48eONoqPNntDFjgKwsYNcuoLgYSEkBeve2wGqN9/l9nD99OH/6cP704fzpE+r5C3lg2717d3z77beGHCs+Ph5//PGHx2OVlZVISEjQfKzS0j9qb/eaiyA4Lwqzjs/sGvr8NWliBdBExfPKcepUcFZsG/L8BUuHDs7/AODMGeXncf704fzpw/nTh/Onj9HzJx3Pnwa966R9+/bYvXu3x2NHjx5Fu3btNB9LFGHqC9fs4zO7hjp/3bs7Ny0VFwuunFp3giAiJUVE9+72oL6+hjp/ZsH504fzpw/nTx/Onz6hnj/TbR7TYsCAATh16hTWrFmD6upqFBYW4l//+heGDx8e7qERGYKbloiIiNRrcIHt4MGDsXz5cgBAUlIS8vLysG3bNnTv3h3Z2dnIzs5Gjx49wjxKIuNkZNRg9epKpKR4BrYpKSJWr66U3bRERETUGAmiyAV2ADh1ypw5NIIANG9+nmnHZ3aRNH/h6DwWSfMXDpw/fTh/+nD+9OH86WP0/EnH86dB59gSNSZWK4JS0ouIiChSNLhUBCIiIiIiOQxsiYiIiCgiMLAlIiIioojAHFsiogYoHJsJiYjMjoEtEVEDU1AQhezsWBQV1d10S011YOHCKpZ/I6JGjakIREQNSEFBFMaPj0NRkWcnuuJiAePHx6GggOsVRNR4MbAlImog7HYgOzu2tiakZ2ArtVzOzo6FnVXhiKiRYmBLRNRAFBZaa9MPBNmvi6KAoiILCguZbEtEjRMDWyKiBqKkRD6gDfR5RESRhslYREQNRMuW6vpSqn1esLBiAxGFCwNbIqIGokcPO1JTHSguFlw5te4EQURKijOQDBdWbCCicGIqAhFRA2G1AgsXVgFwBrHupH8vXFgVttVRVmwgonBjYEtE1IBkZNRg9epKpKR4BrYpKSJWr64M26ooKzYQkRnw4zMRUQOTkVGDQYNqTJXHWlexQZ6zYoOAwkIrevVidEtEwcHAloioAbJaYaoAkRUbiMgMmIpARES6NZSKDUQU2RjYEhGRblLFhvqb2iSCICI11RHWig1EFPkY2BIRkW5mr9hARI0DA1siIjKEWSs2EFHjwc1jRERkGDNWbCCixoOBLRERGcpsFRuIqPFgKgIRERERRQQGtkREREQUERjYEhEREVFEYGBLRERERBGBgS0RERERRQQGtkREREQUERjYEhEREVFEYGBLRERERBGBgS0RERERRQQGtkREREQUERjYEhEREVFEYGBLRERERBGBgS0RERERRYSocA/ALAQh3COQJ43LrOMzO86fPpw/fTh/+nD+9OH86cP508fo+VN7HEEURdGYUxIRERERhQ9TEYiIiIgoIjCwJSIiIqKIwMCWiIiIiCICA1siIiIiiggMbImIiIgoIjCwJSIiIqKIwMCWiIiIiCICA1siIiIiiggMbImIiIgoIjCwDaPTp09jwIAB2Lt3r8fjBw8exDXXXOPzex0OB9LS0tCpUyekpaW5/isvLw/mkE1Fbv7+/e9/Y+jQobjuuuuQnp6Ov//973A4HIrHWLlyJfr06YNOnTohKysLx44dC8XQTUHv/DX2a1Bu/tatW4ebb74ZaWlpuPnmm/Hmm2/6PAavv8Dnj9ef/PsHAPz666/o2bMn8vPzfR6D11/g88frz3v+cnJy0KFDB4/5eOeddxSPEbTrT6Sw2L9/v9i/f3+xffv2YmFhoSiKouhwOMQNGzaInTp1Etu3b+/z+7/99lvx6quvFquqqkIxXNORm78jR46I1157rbh9+3bRbreLR48eFfv27SuuXr1a9hj5+fli7969xe+++06srKwUn376aXHw4MGiw+EI5UsJCyPmrzFfg3Lz99FHH4ldu3YVjxw5IoqiKB4+fFi85pprxD179sgeg9efvvnj9ec5fxK73S5mZWWJV1xxhfjee+8pHoPXn7754/XnPX/Dhg0T8/PzVR0jmNcfV2zDYNOmTXjssccwbdo0j8efeOIJbNiwAQ899JDfYxw5cgSXX345YmJigjVM01Kav+PHj2PEiBHo27cvLBYL/vznP2PAgAHYt2+f7HHeffddjBw5Eu3atUNsbCweffRRFBUVyX6CjyRGzV9jvQaV5i89PR3bt29Hhw4dUFNTgzNnzkAQBDRr1kz2OLz+9M0fr79psl9ftmwZWrVqhZSUFJ/H4fWnb/54/XnOn81mw3fffYcOHTqoOk4wrz8GtmFwww034D//+Q/+8pe/eDz+8MMP45133sFVV13l9xhHjhxBVVUVhg8fjh49emDUqFH44osvgjVkU1Gav4EDB+Lxxx93/buyshI7duzA1VdfLXuco0ePon379q5/R0dH409/+hO++eab4AzcJIyav8Z6DSrNHwA0bdoUx44dw7XXXotJkybh7rvvVvx95vWnb/54/XnPX2FhIbZs2YKcnBy/x+H1p2/+eP15zt8333yDmpoavPTSS+jZsycGDhyI3NxcxVS2YF5/DGzDoEWLFoiKivJ6vFWrVqqPERcXh2uvvRavvPIKduzYgfT0dIwfPx4///yzkUM1JaX5c1dWVoYpU6YgLi4OY8aMkX3OuXPnEB8f7/FYXFxcxOdIGTV/jfUa9Dd/bdq0weHDh7Fx40Zs2bIFubm5ss/j9SdP7fzx+vNUWlqKJ554As8//zwSEhL8HofXnyet88frz9Mff/yBbt26ISsrCzt37sRzzz2HN954A3l5ebLHCeb1x8C2gZo1axaeeuoptGzZEnFxcRg/fjxSU1Oxc+fOcA8t7I4dO4YRI0agpqYGa9euRdOmTWWfFx8fj8rKSo/HKisrVf1Ri2Rq54/XoLzo6GhER0fjmmuuwejRo1FQUCD7PF5/8tTOH6+/OqIoYsaMGcjKylJ9K5jXX51A5o/Xn6devXph7dq16NatG6Kjo3Httdfi3nvvxfvvvy/7/GBefwxsG6ilS5fiq6++8njMZrMhNjY2TCMyh507d+KOO+5A7969sXr1apx//vmKz23Xrh2+//5717+rq6vxww8/eNweaWy0zB+vQU9r1qzBX//6V4/HbDab4hzy+vOkdf54/dUpLi7G559/jmXLlqFLly7o0qULioqKMH/+fEyePFn2e3j91Qlk/nj9efrwww+xfv16j8dsNhvi4uJknx/M64+BbQP13XffYdGiRTh58iRsNhv+/ve/o6ysDAMGDAj30MLm0KFDmDJlCh5//HHMnDnT7+324cOH480338Q333yDqqoqvPDCC2jevDm6dOkSohGbi9b54zXoqUuXLvjwww/x/vvvw+Fw4MCBA1i7di3uvvtu2efz+vOkdf54/dVJTU3FkSNHsH//ftd/qampyMnJwYoVK2S/h9dfnUDmj9efJ1EU8fTTT2PPnj0QRREHDx7E2rVrcdddd8k+P5jXHwPbBmL//v1IS0tDUVERAODpp59G27ZtMXToUHTv3h2ff/45XnvtNSQmJoZ3oGG0fPly1NTUYNGiRR519CZMmADAew5vv/12jBkzBlOmTEGPHj3w1VdfYcWKFYiOjg7nywgbrfPHa9BThw4d8NJLL2H58uXo0qUL5s2bh9mzZ7s2WfD6803r/PH604bXnz68/nwbMGAAHn/8ccybNw9paWmYPn06pk6diqFDhwII7fUniKIo6j4KEREREVGYccWWiIiIiCICA1siIiIiiggMbImIiIgoIjCwJSIiIqKIwMCWiIiIiCICA1siIiIiiggMbImIiIgoIjCwJaIG7Ycffgj3EIiIyCQY2BKRT+np6bjmmmtcncg6deqEG264Ac8++ywcDodh58nKysLLL78MAJg7dy7mzp3r93u2b9+O8ePHB3zO/Px8pKenez1eUVGBbt26Ye3atbLf9+ijj+KBBx4I6Nih8Pvvv2P48OH4/fffsXfvXlx++eVBP2dRUZFHx7orrrjC47qROtiFSnl5OcaPH4+OHTti1KhRIT23Gu7Xh/vPi4j08d0MnogIwPz585GZmen697fffosxY8YgPj4eDz30kOHne/LJJ1U97+zZswhG88T4+HgMHz4cGzZswOjRoz2+dvr0afz73//GqlWrDD+vURYsWIA777wTzZo1C9k5U1NTcfDgQde/09PT8eCDD3pcN6H09ddf49NPP8XevXtN3+a0WbNmGDFiBBYuXIjFixeHezhEDRpXbIlIs8svvxxdu3bFV199BcC52jpr1iz07dsXN910E8rKyvDTTz/hvvvuQ/fu3dG3b18sXboUNpvNdYwNGzagX79+SEtLw8yZM1FRUeH62qxZszBr1izXv19//XUMGDAAaWlpyMzMxJ49e7B3717k5OS4VgpLSkpgs9nw4osvol+/fujWrRsmTpyIH3/80XWc//73v8jKykJaWhqGDBniGr+ckSNH4ujRozh06JDH4xs3bsQll1yCHj16YPv27RgxYgSuv/56dOzYEffcc49saoTcqmn917hlyxYMGTIEnTt3RmZmJj799FPX1/bt24fMzEx06dIFAwYMwKJFi1BTUyM77u+++w47d+7EsGHDFF+bu8rKSixevBg33ngjunbtiqysLHz55Zeur//yyy8YP348rrvuOtxyyy1Ys2ZNwCvAs2bNwkMPPYRBgwahR48e+Omnn/DFF19g9OjRuOGGG3DNNdcgMzPTNed79+5Feno6Xn31VfTu3RvdunXD1KlTUVZWBgAoKSnBhAkT0K1bN/Tp0wcPPvggfv31V3z44YcYO3YsAKBv377YsGEDHA4HcnNz0b9/f3Tu3Bm33347du3a5Rpbeno65s6di169euG2227Dnj17kJ6ejlWrVqFXr17o3LkzlixZgo8++ggDBw5EWloapk6d6rqm9V57Q4cOxY4dO/Ddd98FNLdE5MTAlog0qa6uxt69e1FYWIhevXq5Hv/ss8+wfv16bN68GRaLBWPGjEG7du3wySef4K233sJnn33mSjXYs2cPnnzySSxcuBD79u1Dx44dceTIEdnz5efn45VXXsHixYtx4MAB3H333bj//vtx+eWXY/78+a6VwpYtW2Lp0qXYsWMH1qxZg127dqFjx44YN24cqqqqUF1djcmTJ6Ndu3YoLCzEkiVL8OGHHyq+zjZt2uDGG2/Eu+++63rM4XDgnXfewejRo3HixAk8/PDDmDRpEvbs2YMdO3ZAFEUsW7ZM85zu3LkTOTk5mDt3Lj7//HNMnToVU6dOxffffw8AmDFjBrKysrB//3689tpr2LZtGz766CPZY7399tvo378/YmJiVJ173rx5+PTTT7F27Vrs3r0b/fv3x5gxY1BUVAS73Y7JkyfjwgsvxKefforVq1fjH//4h+bX527Xrl148cUX8cEHH+DCCy/E/fffj4EDB+KTTz7B3r170bZtW49Vy+PHj6OkpAT/+c9/sGHDBhw8eBBvvfUWAGDJkiVo1aoVdu/ejffffx/l5eWu4HXlypUAgIMHD+KOO+7AsmXLsG7dOrz44ovYu3cvxo0bhwceeMAjiP/yyy+xdetWrF27FhaLBcePH8fJkyexY8cOLFmyBCtWrMC6devw7rvvYvPmzdi7dy/ef/99ANB97cXExKBfv35Yv369rvklauwY2BKRX/Pnz0eXLl3QpUsXXH/99ViwYAHGjh2Le+65x/WcPn36oGXLlmjWrBl27NgBm82GRx55BLGxsUhJScHDDz+MdevWAQA2b96Mm2++Gddffz2ioqIwcuRIXHXVVbLn3rRpE+666y6kpaXBYrHgjjvuQF5eHuLi4jyeJ4oi1q9fj0ceeQRt2rRBbGwspkyZgurqauzYsQMHDx5EcXExZsyYgdjYWLRr1861qqdk9OjR2Lp1q2uFcNeuXSgrK8OQIUNwwQUXYMuWLUhPT0dZWRlOnDiBpKQklJSUaJ7fN998E3fffTe6du0Kq9WKvn37Ij093RXkxMbGYuvWrfj444+RmJiInTt3YuDAgbLHKiwsRFpamqrzVlVVoaCgAI8++iguvvhixMTE4N5778Wll16KgoICHDp0CD/88APmzJmDJk2a4KKLLsK0adM0vz53nTp1Qvv27dGsWTNER0fjnXfewciRI2Gz2XD8+HEkJiZ6zeGUKVMQFxeHiy++GN27d8f//vc/17wcOHAAW7Zswblz57Bq1SpkZ2fLnve9997DpEmTcPXVVyMqKgp/+ctfkJ6ejo0bN7qeM3DgQDRr1swjhWPy5MmIjo7GDTfcAAC4++67cf7556NNmzZo164dfvnlF8Ouveuuuw579uzRNb9EjR1zbInIr5ycHL+5khdeeKHr/48fP47Tp0+ja9eursdEUUR1dTVKS0tRUlKCq6++2uP727RpI3vckydPIjU11eOx6667zut5p0+fRnl5OR5++GFYLHWf2aurq3H8+HHYbDYkJSV5BMRt27b1+Zp69uyJlJQUFBQUYMSIEXjrrbdw1113IS4uDqIooqCgAOvXr4cgCGjfvj3KysoQFaX9z+rx48fx+eef4+2333Y9Zrfb0aNHDwDOVIyXX34Z8+fPx8mTJ9G7d2/MmzcPrVq18jpWcXExWrZsqeq8v/32G6qrq9G6dWuPx1u3bo1ffvkFF110EZKSktCkSROPr+nhfp1YrVbs3bsXEydORHl5OS677DJERUV55U23aNHC9f/R0dGur2dnZ2PFihVYvXo1Zs2ahSuuuALZ2dno0qWL13lPnTrldY21bt0a33zzjezYJElJSa6xAvAIei0WC0RRNOzaa9myJU6cOOH1OBGpx8CWiAwhCILr/1u1aoW2bdti27ZtrsfKyspQWlqKCy64AK1atcLPP//s8f0nTpxAu3btvI6bkpKC4uJij8eWLl2KW2+91eOxpKQkxMbGIi8vD506dXI9fuzYMbRs2RJff/01Tp8+jXPnziEhIcF1Tn9GjRqFDRs24MYbb8Tu3bsxf/58AMDWrVvx5ptv4u2338bFF18MwLlpSy5HUgqKbDabK0XgzJkzrqCpVatWuO222zBp0iTX9xQVFSEuLg5VVVU4evQo5s2bh6ioKPzvf/9DdnY2nnrqKbz00kte5xIEQfWGuubNmyM2NhY///wz/vznP7se/+mnn5Ceno7U1FScPn0aFRUViI+Pd41LD/fr5PDhw1iwYAHWr1+PDh06AADy8vJcK7L+fPXVV7jrrrswdepUnD59GsuWLcODDz6IwsJCr+dedNFFXtfczz//7BHMuo/N12P1GXXt2e12j8CYiLTjbxARGa5v376uW8M2mw2///47Zs6ciWnTpkEQBAwfPhwffvghPv74Y9TU1GDTpk04fPiw7LEyMzPxzjvv4Msvv4TD4cB7772HdevWuYKJiooK1NTUwGKx4Pbbb8cLL7yAEydOwOFwYNOmTcjIyMCPP/6ItLQ0XHLJJVi4cCEqKirw448/Ii8vz+9rGTZsGH788Uf87W9/Q//+/V2rpH/88QcsFotr9faTTz7BP/7xD1RXV3sdo23btoiKisKWLVsAOPOR3YOvO++8E2vXrnXlex45cgSZmZkoKCiAIAh45JFHkJeXh5qaGrRo0QJRUVGuoLi+iy66SDYd4sSJEx7//frrr7BYLBg+fDiWLFmCH3/8ETabDa+//jqOHj2KwYMHo2PHjrjsssvwzDPPoKKiAiUlJbLBdKDc5xAADh06hLVr13psMvRl+fLlWLBgAcrKytCsWTPEx8crzssdd9yB3Nxc/N///R/sdju2bt2K7du3q95k54tR196vv/7qdXeCiLThii0RGa5p06ZYs2YNnnnmGaxatQoOhwPdu3fHq6++CgDo3LkzFi9ejGeeeQbTpk1Djx49PDaiuRsyZAh+//13TJ8+HSdPnsRll12GlStX4oILLkDXrl2RnJyMrl27Yv369Zg5cyZefvlljBw5EmfPnkWbNm3w0ksvufJ3c3NzMXfuXPTs2RPNmzdHv3798MEHH/h8LU2aNEFmZiZef/1116YlwBnwHjhwAIMHD4bVasWll16Ke++9F+vWrfMKzC688EI88cQTeOWVV7BgwQL06NEDmZmZrkoQt9xyC8rLy/HEE0+gqKgIiYmJGDNmDLKysiAIAl599VU8++yzWLFiBaxWK/r06YPHHntMdry9evXCgQMHcOedd3o8fuONN3r8u3nz5ti9ezdmzJiBl19+GWPGjMHZs2dx+eWXY/Xq1bjkkksAAC+99BJycnJw/fXXo1WrVkhPT8fXX3/tc87U6tWrF0aOHIlRo0bB4XCgdevWyMrKwgsvvIBTp075/f4nn3wS8+fPR79+/WCz2dChQwe8+OKLss8dO3YsHA4Hpk2bhpMnT+Liiy/GkiVL0K1bN0NeixHX3oEDB1y5vEQUGEEMRhFIIiIKi2+++Qb33nsvdu7c6bXBTqvKykocPHgQ3bp1c6VTbN++HTk5OR6lski/iooK3HTTTXjzzTdlU3KISB2mIhARRZArrrgCvXv3Rn5+vu5jRUdH469//SveffddOBwOlJaWIi8vD3379jVgpOQuPz8fN910E4NaIp24YktEFGHOnDmDcePGYc2aNTj//PN1HWv//v1YvHgx/vvf/yI2NhYDBw7E9OnTPSolkD6//fYbxowZg9dee830XdKIzI6BLRERERFFBKYiEBEREVFEYGBLRERERBGBgS0RERERRQQGtkREREQUERjYEhEREVFEYGBLRERERBGBgS0RERERRQQGtkREREQUERjYEhEREVFE+P89VWlmYLtbjwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Calculate residuals\n", + "residuals_log = y_test_log - y_pred_log\n", + "\n", + "# Plot residuals vs predicted values\n", + "plt.figure(figsize=(8, 6))\n", + "plt.scatter(y_pred_log, residuals_log, color='blue',)\n", + "plt.title('Residuals Plot (Log Transformed)')\n", + "plt.xlabel('Predicted Values (Log Transformed)')\n", + "plt.ylabel('Residuals (Log Transformed)')\n", + "plt.axhline(y=0, color='red', linestyle='--')\n", + "plt.grid(True)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The model's residuals are randomly distributed, indicating no systematic bias. The log transformation visualizes residuals and patterns. A horizontal red line suggests linearity and normality are satisfied, but does not provide a definitive answer on model goodness fit and additional technique's could be used to assess the model." + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5EAAAIdCAYAAACk1/moAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByw0lEQVR4nO3de3zOhf//8ed1bbsMwxZjTjnWKsdhm0PCCDkTEQ0hNDn3kag5H/qEYo45dUCOSwwffSRSztKnIhUlbDFm2GZsu67r94fvrl/L6b3ZXBd73G+362bX+/i63u+X9/bc+zCT3W63CwAAAAAAA8zOLgAAAAAA8OAgRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgCAh47dbnd2CQDw0CJEAsADYOTIkQoJCbnt+NDQUIWGht7Hiu5dSEiI/P39M7yqVKmiZ599VtOnT9f169fvOP++ffvk7++vffv23aeKXYPNZtOaNWvUrVs3BQcHq0aNGmrfvr0+/vhjpaSk5Mg609LS9Oabb6pGjRqqUaOG9u7dq82bN6tRo0aqUqWKwsPD79qj/5TZ6Y26cuWK3njjDR08eDDbl/1Pt9ouf3fo0CH5+/tr0aJFt13Gtm3b5O/vr507d2a5jqxsSyPzREZGyt/fX2fOnMlybQAeTu7OLgAAkHs1aNBAYWFhjvfXr1/Xvn37NHfuXEVHR2vGjBm3nbdSpUpatWqVKlaseD9KdQnJycnq37+//ve//+nFF19Unz595OHhoX379mnatGnauXOn5s2bJ4vFkq3r3bVrlyIjIxUWFqa6devqqaeeUkhIiMqWLaupU6eqWLFiMpvN6t69u+FlhoWFZWp6o37++WetX79eHTp0yPZl/9Ottsvf1axZU+XLl9fGjRvVp0+fWy5j/fr18vPzU/369bNcR05tSwC4HUIkAMBpHnnkEVWvXj3DsODgYJ09e1aRkZEaOXKkihYtest5vby8bpr3YTdlyhR99913+uSTTzJ89qefflpPPfWUhgwZouXLl+vll1/O1vVeunRJktShQweVLl3aMaxevXoKDg7O0jIfffTR7CrPaW61Xf6pQ4cOmjZtmn799Vc9/vjjGcbFx8drx44deuWVV2Q2Z/3isIdhWwJ4sHA5KwA8pDZv3qwOHTooICBA9erVU3h4uC5fvuwYHxERIX9//5vm8/f3V0RERIbltGnTRlWrVlXt2rX1+uuvKzY2NsM8a9asUcuWLVW5cmU1bNhQERERSktLy3LtlStXlt1u119//SXpxqWvkydPVo8ePVSjRg2Fh4ff8nLWn376SX369FHNmjVVu3ZtDR061LEM6cYP/eHh4apbt66qVKmiF154QXv27Mmw7t27d6tz584KCAhQYGCgwsLC9Pvvv9+21mbNmmnAgAE3De/UqZP69u0rSTp9+rReffVVBQcHq1q1aurcuXOmL1+8ePGi1q1bp+eff/6W4fm5555T79695efn5xiWkJCgKVOmqEmTJqpSpYpatWqltWvX3jTvnfbfyJEjNXLkSElSkyZNFBoa6uibOXPmOC53/OflkXa7XcuXL1fLli1VtWpVPfvss1q4cKHjXsVbXU55tz4aOXKkevbsqXXr1qlZs2aqXLmy2rRp49iW+/btc5yR6969u+MS76xsf6vVquXLl6t169aqWrWqGjZsqGnTpjkus77VdrmV9u3by93dXRs3brxp3KZNm5SWlqbnn39e0o1LW7t27aqAgABVrlxZzZs317JlyxzTp/f8ypUr1ahRI9WtW1fffPPNTdvy2rVrmj59upo2barKlSurRo0aevnll/Xzzz/fVMOqVavUsGFDVa1aVT169NDRo0fvuF0OHjyol156SdWqVVNQUJDeeOMNXbx40THeZrNp5syZCgkJUeXKlRUSEqIZM2YoNTX1jssF8GAhRALAAyQtLe2Wr38+RGTu3LkaOnSoqlWrplmzZmnAgAHaunWrQkNDde3aNcPrO3TokF5//XU1bdpUCxcu1Jtvvqm9e/dq+PDhjmkWLFigt99+W3Xq1NH8+fPVrVs3LVy4UOHh4Vn+nH/88YckZTi7s3z5ckfAbdu27U3zHDt2TC+++KKSk5M1depUjR8/XkePHlWvXr2Umpqq69evq0ePHvryyy81dOhQzZ49W35+furTp48jSKaHjUqVKmnevHmaOHGifv/9d/Xt21c2m+2WtbZt21Zff/21EhMTHcNOnTqlH374QW3btpXNZlO/fv109epV/fvf/9bcuXPl7e2tsLAw/fnnn4a3yZ49e5SWlqZGjRrddpoRI0boueeek3QjSHTt2lUbNmxQr169NHfuXNWsWVOjR4/W/PnzHfPcbf+FhYXp1VdflSTNnj1bo0eP1qpVqyRJHTt21KpVq255tnjGjBmaNGmSGjRooHnz5qlTp0567733NHfu3FvWbrSPfvrpJy1evFiDBg3SnDlz5O7urkGDBuny5cuqVKmSY/rw8HCNGTMmy9s/PDxckydPVkhIiObNm6du3bpp2bJlCgsLk91uv2m7jBkz5pbLKVKkiBo0aKCoqKib/p+uX79ederUUalSpbRjxw4NGDBAlSpV0ty5cxUREaGSJUtqwoQJ+u677zLM99577+mNN97QG2+8cctfKIwYMUJr165V3759tWTJEo0cOVK//vqrhg4dmqGGs2fPKiIiQkOGDNGMGTN0+fJlde/ePUMo/LsDBw6oZ8+e8vT01Pvvv69Ro0Zp//796t69u+O4snDhQi1fvlwDBgzQkiVL9OKLL2rRokUZeg7Ag4/LWQHgAREdHa1KlSrddnxQUJAk6fLly44f2v/+g+3jjz+ubt26KTIyUl27djW0zkOHDilPnjx65ZVXlCdPHkmSt7e3fvzxR9ntdiUmJmrevHnq3Lmz3nrrLUk3Lq309vbWW2+9pZdfflmPPfbYbZdvt9sznGmKi4vT119/rZUrV+q5557TI4884hhXtGhRjRw50nHZ3z8fqDN37lwVKlRIS5YscdTq5+enIUOG6JdfftHRo0d17NgxrV69WtWqVZMkPfPMMwoNDdW0adO0bt06/fDDD7p27Zr69eunYsWKSZKKFy+uL7/8UlevXpWXl9dNn6FNmzaaNWuW/vvf/6p9+/aSpI0bNyp//vxq3Lix4uLidOLECfXv318NGjSQJFWtWlWzZ8++68OD/u7s2bOSpFKlShmaPjIyUr/++qtWrFihmjVrSpLq16+vtLQ0zZ07V126dJGbm5uh/Zd+ueSTTz6ZYf1+fn63DDFXrlzR0qVLFRoaqhEjRkiS6tWrp4sXL+rQoUM3TZ+QkGC4jxISEhQZGemoKV++fHrppZe0d+9eNWvWzHGPbMWKFVWxYkWdP38+09v/+PHjWrt2rYYMGeIIivXq1VPRokU1YsQIff3112rQoMFtt8s/Pf/88woLC9PBgwcVGBgoSTpx4oR+/PFHvffee451tmvXTqNHj3bMFxAQoODgYB04cEA1atRwDO/SpYuaN29+y3WlpKQoKSlJb7/9tlq0aCHpxrEhKSlJU6dO1fnz5x2h32q1avbs2Y59WK1aNTVp0kQffvihhg0bdtOyp0+frnLlymnBggVyc3NzzNOyZUutW7dO3bp10/79+1WpUiXH2dWgoCDlzZv3lv93ADy4CJEA8IDw9fXVvHnzbjnu72Hx+++/V0pKilq3bp1hmlq1aqlkyZLat2+f4RAZGBio9957T61bt9Zzzz2nZ555Rk8//bTjh/HDhw8rOTlZISEhGcJg+qV133777R1D5Pr167V+/foMw9zd3fXss89q7NixGYZXqFDhjveNHTp0SA0aNHAESOlGWNi+fbskafHixfL19VWlSpUy1NqoUSP9+9//1uXLl1WtWjXlyZNHHTt2VIsWLdSgQQPVqlVLVatWve16S5UqpZo1a2rTpk2OELlp0yY1a9ZMnp6eypMnjypWrKi3335bu3fvdmzDN99887bLvJX0z367M6L/tH//fpUsWdIRINO1adNGa9eu1f/+9z+ZTKZ72n+38/333ys1NVXPPvtshuHpl3/+U2b66JFHHslwD2D65bvJycm3XHaRIkUyvf33798vSTf9H2rZsqXefPNN7du3z/F/wIgGDRrI19dXGzZscITIzz77TN7e3mrSpIkkOR68c/XqVZ06dUp//PGHfvzxR0m66VLQW12Gns5isWjx4sWSpNjYWP3555/6/fff9dVXX920rBIlSmT4JYCvr6+qV6+u3bt33xQik5OT9b///U+9e/fO8Muf0qVLq0KFCvr2228dTwyePn26unbtqmeffVbPPPOMXnrpJcPbCsCDgRAJAA8Ii8WiKlWq3HJc/vz5HV+n3/dYpEiRm6YrUqSIEhISDK8zICBAH3zwgT788EMtXrxY8+fPl6+vr1555RX16NHD8WCR9Hv//umf907+U6NGjRz3E5pMJuXNm1clS5aUp6fnLWu/k0uXLqlw4cJ3HH/+/Pnbns09f/68KlasqGXLlumDDz7Q6tWr9eGHH6pgwYLq2rWrBg8efNsQ265dO40dO1bx8fE6e/asTpw44bis0mQyacmSJZo3b57++9//6rPPPpOHh4eaNGmisWPHytvb+46fK13JkiUlSTExMbcNdufPn5ePj4/c3d11+fLl2/aAdONsYfqljVndf7eT3hd/P5NsZHojdeTNmzfDOJPJJOn24Tor2z/9/5Cvr2+G4e7u7vLx8cnU/6H0+dq1a6fVq1fr7bffdtwj2aZNG8eTdC9evKgxY8Zo27ZtMplMKlOmjOMXAP+8DPZOfS7deGrs5MmT9fvvvyt//vzy9/d3HCP+vqxb9UfhwoUz3Eec7sqVK7LZbFq4cKEWLlx40/j0X9706dNH+fPn17p16/TOO+9o6tSpevzxxzVq1CjVqVPnjnUDeHAQIgHgIVOoUCFJ0oULF1ShQoUM486fP++4zzD9h2+r1eq4NC0pKemm5dWvX1/169dXcnKy9u7dq48//liTJ09W9erVVbBgQUnStGnTVLZs2ZvmvVvw8/b2vm0wzqwCBQrc8l6unTt36oknnlCBAgVUtmxZTZs27Zbzp1+OmH6pY0pKig4dOqRVq1Zp/vz58vf3d1we+E/NmzfXhAkT9N///ld//vmnihcv7ri8WJKKFSumsWPHasyYMTp27Jj+85//aOHChSpUqJDGjRtn6PPVrl1bHh4e2rlz523PgvXr10/JycnasmWLChUqdMt7/s6fPy9J8vHxcZxNyur+u530vrh48aLKly/vGP7XX3/pzz//vOns6L320d1kdvun/x86f/58hstUU1NTFR8fLx8fn0zX8Pzzz2vhwoX6+uuvlS9fPp09e1adOnVyjH/99dd14sQJLV26VDVq1JDFYlFycrLWrFmTqfWcOnVKAwYMUOPGjbVgwQLHWdvly5dr165dGaa9cuXKTfOfP3/+luE/f/78MplM6tmzp1q2bHnT+PRwbzab1a1bN3Xr1k1xcXHauXOn5s+fr4EDB2r37t3Z/udnADgHD9YBgIdMtWrVZLFYbnoa5MGDBxUTE+O4tyr9HqW/n3X45wM83nnnHXXs2FF2u1158+ZVo0aN9MYbbzjmq1atmjw8PHTu3DlVqVLF8fLw8ND06dPv6x8pr1Wrlnbt2qWUlBTHsF9++UV9+/bVjz/+qKCgIP31118qXLhwhlr37NmjRYsWyc3NTR9++KFCQkKUkpIii8WiOnXqaMKECY7PezsFChRQo0aN9OWXX+o///mPWrdu7ThrefjwYdWtW1c//PCDTCaTnnzySQ0dOlSPP/644z5HIwoWLKiOHTtq9erV+uGHH24aHxUVpSNHjjgeOhQYGKjo6Oib7kHcsGGDPDw8VLVq1Rzbf1WrVpWHh4e+/PLLDMM/+ugjDR482PELjHTZWUf6L0TSZWX7p/8C4J//hzZt2iSr1XpTCDaiXLlyqlmzprZu3aotW7aoWrVqGf7kx6FDh9SsWTPVrl3bEbS+/vprScYvYZZuPHjo+vXr6tevX4bLftMD5N/PRP75558ZftHw119/6fDhw7f8sy1eXl566qmn9Pvvv2fYR4899phmz57tuEe5S5cumjhxoqQbZzU7dOigbt26KSEhIcPDpwA82DgTCQAPGW9vb/Xt21ezZ8+Wh4eHGjdurDNnzmjmzJmqWLGi44+wN2jQQFOmTNHbb7+tV155RWfPntXs2bMzXBpbp04dLV26VCNHjlSbNm2UmpqqRYsWydvbW7Vr15a3t7f69OmjmTNnKjExUcHBwTp37pxmzpwpk8mkJ5544r597rCwMHXu3NlxqW1KSopmzpypSpUq6ZlnnlFaWpqWLVuml19+Wf3791fx4sW1e/duLVy4UC+99JI8PDxUu3ZtTZs2TQMGDNBLL70kNzc3rVy5UhaL5Y5PRZVuXNI6YMAAWa1WtWnTxjH8qaeekqenp0aMGKGBAweqSJEi2r17t37++WfHn6NISUnR0aNH5efnl+FPdPzTsGHD9OOPP6pHjx6O+8/S0tK0a9curV69Ws8884zj3roOHTpoxYoVeu211zRo0CCVLl1a27dv17p16/Taa685zv7lxP575JFH1L17d3300UeyWCyqXbu2fvzxRy1btkzDhg2Tu3vGHz98fHyyrY4CBQpIknbs2KFChQoZ2v7/VLFiRbVv316zZ8/WtWvXFBwcrJ9//lmzZ89WcHCw6tevn6Xt0rFjR02ZMkXu7u4aOnRohnFVq1bVxo0bValSJfn5+enw4cNasGCB475VoypVqiR3d3e9++676tWrl1JSUhQZGakdO3ZIunHPZbo8efIoLCxMQ4cOldVq1cyZM+Xt7a0ePXrcctnDhg1T3759NXz4cLVp00ZWq1VLlizR//73P8cDiAIDA7VkyRIVKVJEAQEBOnfunJYuXaqgoCDDlzcDcH2ESAB4CKX/sLxs2TKtWbNG3t7eat68uYYMGeK47KxcuXJ65513NG/ePPXt21cVKlTQhAkTHGfepBtPL502bZqWLFmi1157TSaTSTVr1tTHH3/suJdsyJAh8vX11YoVK7Ro0SIVKlRIderU0bBhwxw/0N8PTz31lD755BNNnz5dQ4cOVf78+dWgQQO9/vrrslgsslgsWr58uaZPn653331XCQkJKlmypIYPH65evXpJkp544gnNnz9fc+bM0bBhw2S1WlW5cmUtWbIkw2WZt1K/fn0VKlRIfn5+Ge5ZzJMnj5YsWaLp06dr0qRJunLlisqWLavx48c7An1sbKw6d+6s1157TQMHDrztOgoWLKhPPvlEy5Yt0+bNm7Vy5UrZ7XaVKVNGb775pjp16uQIaHnz5nVsj1mzZikxMVHly5fXpEmT1LFjR8cyc2r//etf/1KRIkX06aefasmSJSpVqpRGjRp124c6ZVcdjz32mFq1auW4fDMqKuqu2/9WJk2apDJlymjdunVavHixihYtqtDQUA0YMOCOD3i6k+bNm2vixIlKS0u76dLoqVOnZvj/V7ZsWY0bN04bNmzQwYMHDa+jTJkymj59umbPnq1XX31VhQoVUvXq1fXJJ58oNDRUBw8edDyYx9/fXy1bttTYsWOVkJCgOnXqaNSoUbcNe08//bQWL16s2bNna9CgQfLw8FClSpW0dOlSxwN6Bg8eLIvFonXr1mnOnDkqUKCAQkJCMvxZIAAPPpP9n3drAwAAAABwG9wTCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADDM3dkFwDXExSXIbnd2FXgYmUxS4cIF6DG4BPoRroaehKuhJ3O39P1/N4RISJLsdnGgQI6ix+BK6Ee4GnoSroaexJ1wOSsAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMHdnFwAAwP3m5sbvUHF/2Gx22Wx2Z5cBANmKEAkAyDXMZpOsNrt8fPI7uxTkEmlWmy5fukqQBPBQIUQCAHINk8kkN7NJg1ce1vHYRGeXg4dcxaJemtklQGaziRAJ4KFCiAQA5DrHYxN1JOaKs8sAAOCBxE0hAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMNyZYg8efKks0sAAAAAgAfSQx8i7Xa7hg8frurVqyskJERHjx5Vq1atDM8fEhKiyMhISVKfPn00f/78u84THh6u8PDwLNd8K8nJyercubOjlnQffPCBKlWqpICAAMfrvffey9Z1AwAAAEA6d2cXkNNiY2MVFRWlyMhIVapUSfv27VNqamqWlrVo0SJD040fPz5Ly7+d3377TW+88YaOHDmizp07Zxj3008/6dVXX9Vrr72WresEAAAAgFt5oEJkRESE1q5dq+TkZJUuXVphYWFq3LixvvzyS82YMUPR0dGqUaOGSpcurevXr6t79+7q2rWrJKlbt2569tlntXXrVklSQECAlixZooCAAMPrDw0NVVBQkNq2baumTZtq8+bNKl++vCTpxIkTatOmjb766ivNmDFDkjR16lRFRETot99+k8Vi0Y4dO5QvXz61bdtWw4cPlyRdu3ZNU6ZM0ZYtW5Q3b161b99eGzZs0JQpUxQcHKw9e/Zo+PDhevXVVxUfH39TTT/++KM6dOhwT9tVkkyme14EcEvpvUWPwRXQh3CW2/Uex0i4GnoydzO63x+YELl3716tWrVKkZGR8vX11apVqzR69GiVKlVKgwcP1uTJk9WiRQtt27ZNw4cPV+vWrfXUU08pKipKjRs3VlRUlEqVKqWOHTuqe/fuOnz4cJZrefTRRxUcHKzPP/9cQ4cOlSRFRkaqfv36Klq06E3Tf/HFF5o6dareeecdffPNN+rXr58aN26s6tWra/Lkyfrpp5/0+eefq2DBgho3bpyio6Md8z7xxBP66quvlCdPHi1dujTDcuPi4hQTE6PVq1frrbfeksViUfPmzTV48GDlyZMnU5+pcOECWdgSgHH0GIDcyscn/12n4RgJV0NP4k4emBCZJ08eXb58WatXr1ajRo3UqVMnde7cWREREapcubLatGkjSWrevLk2btyY4/V06tRJ06dP15AhQ2Sz2bRhwwaNGTPmltOWLVtW7dq1kyQ1aNBAvr6+OnnypCpVqqQNGzYoIiJCxYsXl3TjfsqoqCjHvD4+Pret4fz586pVq5Y6dOig999/X6dPn9aQIUOUnJx821puJy4uQXZ7pmYBDDGZbnwjosfgCtzdzfL2vvsP9EB2io9PktVqu+U4jpFwNfRk7pa+/+/mgQmRAQEBioiI0CeffKJFixbJ09NToaGhiouLU4kSJTJMW65cOV24cCFH62natKkmTJigffv26fr167Lb7WrYsOEtp/X19c3w3sPDQzabTZcuXVJycrJKlizpGOfl5XXH4Ph3TzzxhJYvX+54X6FCBYWFhWns2LGZDpF2uzhQIEfRY3AF9CCc5W69xzESroaexJ08ME9njYmJUeHChbV48WLt379f77zzjubPny9fX1+dPn06w7Rnz57N8XosFovatGmjqKgobdiwQe3atZO7e+YyeeHCheXp6amYmBjHsKtXr97y3sdb2b9/vxYsWJBhWEpKijw9PTNVBwAAAAAY9cCEyB9//FF9+vTRsWPHZLFYVLhwYUlSUFCQfv/9d61atUppaWnavXu34+E5t5J+r2BCQsI91/TCCy9o27Zt2r59uzp27Jjp+c1mszp27KiIiAidO3dOycnJmjJliqxWq6H58+bNq4iICG3cuFE2m02//fab5s6de9MTXAEAAAAguzwwIbJZs2bq1auXXn31VVWvXl2DBw/WqFGjFBQUpKVLl+qzzz5T7dq1tXDhQgUGBt52OY8//rhq1qyp+vXra+fOnfdU02OPPaayZcuqUqVKKlu2bJaWMXz4cJUvX14tWrRQs2bN5OfnJ7PZLA8Pj7vOW6VKFc2YMUOLFi1SzZo11bt3b7Vu3Vr9+/fPUi0AAAAAcDcmu/3hu9p55MiRkm78iQ1Xd+DAAfn7+6tgwYKSpMTERNWsWVNbt27NcjDNigsXuHkaOcNkkooUKUCPwSW4u5vl45NfLWft0pGYK84uBw+5SiUKatOg+oqPT1Ja2u0frMMxEq6Enszd0vf/3TwwZyIfVkuWLNGkSZN07do1Xb9+XbNmzVK5cuXua4AEAAAAAKMemKez5oQBAwZo9+7dtx0/btw4x58OySljx47VuHHj1KBBA1mtVtWsWVMffPBBjq4TAAAAALLqoQyRRi9jnTNnTg5XcnfFihXT3LlznV0GAAAAABjC5awAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwx7Kp7MCAHAnFYt6ObsE5AL0GYCHFSESAJBr2O12WW12zewS4OxSkEukWW2y2ezOLgMAshUhEgCQa9hsdrmZTYqPT3J2KcglbDY7IRLAQ4cQCQDIdaxWm+z8XA8AQJbwYB0AAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGE8WAcAkOu4uWXud6g8YRMAgP+PEAkAyDXMZpOsNrt8fPJnar40q02XL10lSAIAIEIkACAXMZlMcjObNHjlYR2PTTQ0T8WiXprZJUBms4kQCQCACJEAgFzoeGyijsRccXYZAAA8kHiwDgAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEKki7l+/brOnj3r7DIAAAAA4JYIkS6ma9eu2r17d5bnDwkJUWRkZDZWBAAAAAD/HyHSxcTHxzu7BAAAAAC4LZcNkeHh4erVq1eGYePHj9eIESPk7++vqVOnKjAwUOPGjbvrskJDQzVy5Eg1atRIDRs2VGJiok6dOqX+/fsrODhYjRo10nvvvaeUlBRJUmRkpF588UVNnDhRtWvXVp06dTR69GilpqZKkmw2mz744AM1adJENWvWVMeOHbVr1y5J0tq1a/XMM8/IZrM51r9ixQq1bNlSknTixAn169dPDRs2VNWqVdWiRQt99dVXkqRevXopJiZGY8aM0fjx4yVJR44cUWhoqAIDA9W0aVN9+OGHstvtkiS73a758+fr6aefVq1atfTOO+/IarXey2YHAAAAgDty2RDZsWNH7dmzR+fOnZMkpaSkaNOmTQoODpYkJSUl6dtvv9XQoUMNLW/37t1auXKlNmzYILPZrJ49e+qxxx7T119/rRUrVmj37t2KiIhwTP/dd9+pcOHC2rVrlxYsWKDNmzfriy++kCTNmTNHy5cv18yZM7Vv3z716tVLYWFh+uGHH9SiRQslJiZqz549jmV99tln6tixoyRp4MCBevzxx/Xf//5XBw8e1NNPP62xY8dKkpYsWaISJUpo3LhxCg8P17lz59SjRw81b95cu3fv1ty5c7VixQqtWrVKkrRu3Tp99NFHWrBggXbv3i0PD48s309pMvHilXMveoyXK73uhbNr5/VwvugtXq72oidz98sI93v7dppzqlatqgoVKigqKkq9e/fWjh075OXlpaCgIElSu3btZLFYZLFYDC3vmWeeUbFixSRJmzdvVkpKioYNGyaTyaTixYtr8ODBGjRokIYPHy5J8vT0VP/+/WUymVS1alX5+/vrjz/+kHQjvPXt21eVKlWSJLVo0UJbt27V2rVrNX78eLVq1Urr169XvXr1dOLECf38889asGCBJGnBggUqVqyY7Ha7oqOjVbBgQUdQ/qcNGzaoQoUK6tatmySpYsWK6t27t5YtW6YuXbro888/1wsvvOCoY/DgwVq9enVWNrcKFy6QpfkAo+gxPOh8fPI7uwQ8xDhGwtXQk7gTlw2RktShQwetX79evXv3VmRkpNq3by/T/8XjokWLZmpZf58+OjpaFy9eVGBgoGOY3W5Xamqq4uLiJEmFCxd2rEuSPDw8HJeRXrhwQaVLl86w/FKlSunYsWOSpE6dOql79+5KSkpSZGSkQkJC9Mgjj0iSjh07prCwMJ0/f14VKlTQI4884ljuP0VHR+vIkSOqVauWY5jNZpObm5skKTY2VsWLF3eMc3NzU4kSJTK1XdLFxSXoNmUA98RkuvGNiB6DK3B3N8vbO2thMD4+SVar7e4TApnAMRKuhp7M3dL3/924dIhs27atZsyYocOHD+vbb79VeHi4415Dk9Fzrf/n79P7+fnp0Ucf1X/+8x/HsMTERMXFxTnC3p2ULFlSp0+fzjDs9OnTjqBapUoVlSlTRv/973+1ceNGTZw4UZJ07tw5DR48WLNnz1ZISIgkaevWrY7LZP/Jz89PwcHBWrx4sWNYfHy8kpKSHOP/XofdbldsbOxd678Vu10cKJCj6DG4gnvtQXoYOYVjJFwNPYk7cdl7IqUbZwMbNGig8ePHq1atWlk+y/ZPjRo1UlJSkhYtWqSUlBRduXJFb7zxhoYOHWoonHbq1EkffPCBjhw5IqvVqi1btmj79u1q3759hmlmzZols9msp59+WtKN+zitVqvy5s0rSTp+/LjmzJkjSY6H+lgsFiUkJEiSWrdure+//14bNmxQWlqaYmNj1b9/f02dOtWxjtWrV+vw4cNKTU3VvHnzdP78+WzZRgAAAABwKy4dIqUbl7QePXpUzz//fLYt08vLSx9++KH27dunZ555Rk2aNJHZbNa8efMMzf/yyy+rW7duGjp0qGrVqqUFCxZoxowZjvs1pRsBMC4uTh06dJDZfGMzly9fXiNGjNC//vUv1axZU4MHD9bzzz8vDw8P/frrr5JuPFDovffe0+uvv66SJUtq0aJFWrVqlerWrau2bduqfPnyjhDZqlUrDRo0SEOHDlVQUJBOnz4tf3//bNtOAAAAAPBPJvvtbshzEceOHVNoaKi++eYb5cmTx9nlPLQuXOC6d+QMk0kqUqQAPQaX4O5ulo9PfrWctUtHYq4YmqdSiYLaNKi+4uOTlJbGPZHIXhwj4Wroydwtff/fjcveE5mYmKiYmBi9//776tChAwESAAAAAFyAy4bIs2fPqnPnznriiScUFhZ22+kmTZqktWvX3nZ8v3791L9//5woEQAAAAByHZcNkRUrVtThw4fvOt3o0aM1evTo+1ARAAAAAMDlH6wDAAAAAHAdhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYS77Jz4AAMgpFYt65ci0AADkBoRIAECuYbfbZbXZNbNLQKbmS7PaZLPZc6gqAAAeLIRIAECuYbPZ5WY2KT4+KdPzESIBALiBEAkAyHWsVpvsZEIAALKEB+sAAAAAAAwjRAIAAAAADCNEAgAAAAAM455IuBSz2SSz2eTsMpAD3Nz4nRUAAMDDgBAJl2E2m1TIO5/cCRsPJR+f/M4uAZAkWW12mc0mWa08WQcAgKwgRMJlmM0mubuZNXjlYR2PTXR2OQAeQhWLemlmlwCZTCZJhEgAALKCEAmXczw2UUdirji7DAAAAAC3wHWDAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQ8Rq9Wq06dPO7sMAAAAAA8xQqQThIaGKiIiIkvzHjx4UAEBAZKkM2fOyN/fX2fOnJEkDR06VOvXr8+uMgEAAADgJoTIB0ytWrV0+PDhW46Lj4+/z9UAAAAAyG0IkQaFh4erV69eGYaNHz9eI0aMkL+/v6ZOnarAwECNGzfO0PJOnTql0NBQBQYGqkuXLvrhhx8c4/z9/bVv3z7H+8jISIWEhEiS9u3bJ39//5uWN3r0aB08eFALFixQ//79s/IRAQAAAOCu3J1dwIOiY8eO6ty5s86dO6dixYopJSVFmzZt0ogRI/T5558rKSlJ3377ra5du2ZoeV9++aUWLFig6tWra9GiRXrllVf03//+VwULFsxSfZMmTdKpU6cUFBSkgQMHZnp+kylLqwWAB5LJxHEPriG9D+lHuAp6Mnczut8JkQZVrVpVFSpUUFRUlHr37q0dO3bIy8tLQUFBkqR27drJYrHIYrEYWl7Hjh0VGBgoSerfv78+/fRT7dy5U61bt86xz3AnhQsXcMp6AcAZvL3zO7sEIAO+D8PV0JO4E0JkJnTo0EHr169X7969FRkZqfbt28v0f3G9aNGimVpWqVKlHF+bTCb5+fnp3Llz2VpvZsTFJchud9rqJUlubmb5+PCDHYCcd+lSktLSbM4uA5DJdOOHdVf4PgxI9GRul77/74YQmQlt27bVjBkzdPjwYX377bcKDw+XzXbjhxBTJs/5x8bGOr622WyKiYlRyZIlJUlms1mpqamO8ffjgTl2uzhQAMg1OObB1dCTcDX0JO6EB+tkQuHChdWgQQONHz9etWrVUokSJbK8rLVr1+p///ufUlJSFBERIXd3dzVo0ECSVKFCBW3dulVpaWk6deqU1q5da2iZFotFCQkJWa4JAAAAAO6GEJlJHTp00NGjR/X888/f03KaNm2qMWPGqHbt2jp06JAWL16sfPnySZLGjBmjI0eOKCgoSEOGDFHHjh0NLbNdu3Zat26dunbtek+1AQAAAMDtmOx2TlRnxrFjxxQaGqpvvvlGefLkcXY52ebCBedf9+7ufuOeyJazdulIzBXnFgPgoVSpREFtGlRf8fHcEwnXYDJJRYoUcInvw4BET+Z26fv/brgn0qDExETFxMTo/fffV4cOHR6qAAkAAAAARhEiDTp79qw6d+6sJ554QmFhYbedbtKkSXe8h7Ffv37q379/TpQIAAAAADmOEGlQxYoVdfjw4btON3r0aI0ePfo+VAQAAAAA9x8P1gEAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABjGn/iAy6lY1MvZJQB4SHF8AQDg3hEi4TJsNrvSrDbN7BLg7FIAPMSsNrvsdruzywAA4IFFiITLsNnsunzpqsxmk7NLQTbz8cmv+PgkZ5cBSLrRjzYbIRIAgKwiRMKl2Gx2frh7yJj+73cCVqtNnPyBs5n4HRUAAPeMB+sAAAAAAAwjRAIAAAAADCNEAgAAAAAM455IAECu4+bG71CzgvvWAQASIRIAkIuYzSZZbXb5+OR3dikPpDSrTZcvXSVIAkAuR4gEAOQaJpNJbmaTBq88rOOxic4u54FSsaiXZnYJkNlsIkQCQC5HiAQA5DrHYxN1JOaKs8sAAOCBxE0hAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMe6BB58uRJZ5fgctgmAAAAAHLSAxMi7Xa7hg8frurVqyskJERHjx5Vq1atDM8fEhKiyMjIHKzQ+ZYvX663337b2WUAAAAAeIg9MCEyNjZWUVFRWr58ubZv366EhASlpqY6uyyXcvHiRWeXAAAAAOAh5+6MlUZERGjt2rVKTk5W6dKlFRYWpsaNG+vLL7/UjBkzFB0drRo1aqh06dK6fv26unfvrq5du0qSunXrpmeffVZbt26VJAUEBGjJkiUKCAi463qPHDmiZcuW6cyZM6pSpYrefvttlS1bVpK0fft2ffDBB/rzzz919epVValSRRMnTlTZsmWVmJiot99+W7t375a7u7ueeOIJjRo1ShUqVJAkbdq0SfPnz1dMTIzKlCmjYcOG6emnn5YkhYaGKjAwUHv27NHPP/+sRx99VBMnTtRHH32kr776St7e3goPD1fDhg0dNU6dOlXHjh2Tj4+Punbtqh49eshkMikiIkK//fabLBaLduzYoXz58qlt27YaPny4PvvsMy1YsEBWq1W1atXSwYMHs3mvAQAAAIATzkTu3btXq1at0po1a7Rv3z516tRJo0eP1i+//KLBgwerX79+OnjwoF544QWtXbtWkvTUU08pKipKkhQVFaV3331XCxculCQdPnzYUICUpG3btmnKlCnatWuXSpUqpX79+iktLU1nz57V4MGD1bdvX+3Zs0c7duyQ3W7XnDlzJElLlixRYmKidu7cqa+++kq+vr6aNm2aJGnnzp0aM2aMwsPDtX//fg0cOFADBw7Ub7/95ljvqlWrNGHCBO3fv18FCxZU165d9dxzz2nfvn1q1qyZJkyYIEk6d+6cevTooebNm2v37t2aO3euVqxYoVWrVjmW9cUXX+jpp5/Wvn37NGHCBC1cuFDff/+92rdvr379+mU5QJpMvHjl3Ise4+VKL9w7Z+/Dh+3FNuXlai96Mne/jLjvZyLz5Mmjy5cva/Xq1WrUqJE6deqkzp07KyIiQpUrV1abNm0kSc2bN9fGjRuzdd29evWSv7+/JGnkyJGqVauWfvjhB1WuXFmbNm3So48+qsTERJ09e1Y+Pj46d+6cJMnT01PHjh3T+vXrVa9ePU2ePFlm8438vWzZMr344osKDAyUJDVq1EghISFauXKl4/7EZs2aqWLFipKkWrVq6cqVK2rSpIkk6ZlnntHSpUslSRs2bFCFChXUrVs3SVLFihXVu3dvLVu2TF26dJEklS1bVu3atZMkNWjQQL6+vjp58qSqV69+T9umcOEC9zQ/cDf0GPBw8PHJ7+wSHkocI+Fq6EncyX0PkQEBAYqIiNAnn3yiRYsWydPTU6GhoYqLi1OJEiUyTFuuXDlduHAh29ZdqlQpx9d58+aVt7e3zp07p4CAAEVFRWnlypUymUx6/PHHlZiYKHf3G5vnlVdekcVi0dq1azV+/HiVLl1aw4cPV9OmTRUdHa39+/fr008/dSzbarWqdu3ajvfe3t6Or93c3FSoUCHHe7PZLLvdLkmKjo7WkSNHVKtWLcd4m80mNzc3x3tfX98Mn8nDw0M2m+0et4wUF5eg/ysDyFYm041vRPQYXIG7u1ne3oSgexEfnySr9d6/7+AGjpFwNfRk7pa+/+/mvofImJgYFS5cWIsXL1ZKSor27Nmj1157Tf369dPRo0czTHv27FlHkMsOsbGxjq8TExMVHx+vkiVLasuWLVq2bJk+/fRTlSlTRpI0YcIE/frrr5KkX375RSEhIerZs6cSEhK0YsUKDR06VHv37pWfn5/atWunvn37ZviMnp6ejvcmg+eF/fz8FBwcrMWLFzuGxcfHKykp6Z4+txF2uzhQIEfRY3AF9GD2YDtmP46RcDX0JO7kvt8T+eOPP6pPnz46duyYLBaLChcuLEkKCgrS77//rlWrViktLU27d+92PDznVvLkySNJSkhIMLzuJUuW6Pfff1dycrImTZqkJ598UpUrV1ZCQoLMZrM8PT1lt9v19ddfa/369Y6nv65Zs0YjRoxQXFycvLy85OXlpXz58sliseiFF17Qxx9/rB9++MHx+Tp06OC4hzMzWrdure+//14bNmxQWlqaYmNj1b9/f02dOtXQ/Hny5FFiYqLjzCYAAAAAZLf7fiayWbNmOnnypF599VXFx8ercOHCGjVqlIKCgrR06VJNnjxZ7777rqpUqeK4z/BWHn/8cdWsWVP169fXzJkz1aBBg7uuu0mTJurfv7/i4+MVGBiouXPnymw2q3379jp06JBatmwpNzc3lS9fXj169NDy5cuVkpKiYcOGafz48WrZsqWuX7+u8uXLa+7cucqTJ4+aN2+uq1evatSoUYqJiZG3t7d69uyp0NDQTG+bkiVLatGiRZo2bZomTpwoNzc3NWzYUKNHjzY0f6NGjfTpp5+qZs2a2rFjhwoWLJjpGgAAAADgTkx2Fz5tNXLkSEkyfCYOWXfhAte9I2eYTFKRIgXoMbgEd3ezfHzyq+WsXToSc8XZ5TxQKpUoqE2D6is+PklpadwTmV04RsLV0JO5W/r+v5v7fjkrAAAAAODBdd8vZ80JAwYM0O7du287fty4cY4/HQIAAAAAyDqXDpFGL2OdM2dODlcCAAAAAJC4nBUAAAAAkAmESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhLv0nPgAAyAkVi3o5u4QHDtsMAJCOEAkAyDXsdrusNrtmdglwdikPpDSrTTab3dllAACcjBAJAMg1bDa73MwmxccnObuUB5LNZidEAgAIkQCA3MdqtclOFgIAIEt4sA4AAAAAwDBCJAAAAADAMEIkAAAAAMAw7okEAOQ6bm78DhWuhZ6Eq6En758H8aFlhEgAQK5hNptktdnl45Pf2aUAGdCTcDX05P2TZrXp8qWrD1SQJEQCAHINk8kkN7NJg1ce1vHYRGeXAwDI5SoW9dLMLgEym02ESAAAXNnx2EQdibni7DIAAHggcbEzAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMELkAyYyMlIhISHOLgMAAABALkWIBAAAAAAYRojMAUePHtWLL76ogIAAtW3bVvPmzVNISIgiIyPVoUMH9erVS7Vq1dLGjRt17tw5DRkyRCEhIapWrZoaN26stWvXOpZ14sQJhYaGKiAgQK1bt9bRo0czrOvIkSMKDQ1VYGCgmjZtqg8//FB2u/1+f2QAAAAAuYS7swt42CQmJqpPnz7q3LmzPvroI/3xxx/q37+/TCaTpBuhb+rUqZo/f75sNpsGDhwob29vbdq0SRaLRR9//LEmTJig5557ThaLRf369dMzzzyjRYsW6dSpU3rllVdkNt/I/ufOnVOPHj00dOhQLVmyRH/++afCwsLk6empLl26ZKru/ysPyHbpvUWPwRXQhwAAV+UK36OM1kCIzGbbt2+Xm5ubBg4cKLPZLH9/f/Xp00eLFy+WJHl4eKht27aOIDhx4kTlz59fHh4eiomJUf78+XXt2jVdvnxZZ86c0V9//aURI0YoT548euyxx/Tyyy/ro48+kiRt2LBBFSpUULdu3SRJFStWVO/evbVs2bJMh8jChQtk41YAbkaPAQAA3JqPT35nl5AphMhsdvbsWZUoUcIREiWpdOnSjq99fX0zjDt9+rT+/e9/6+TJkypbtqzKlCkjSbLZbDp37px8fHzk6enpmP7RRx91fB0dHa0jR46oVq1ajmE2m01ubm6ZrjsuLkFcBYucYDLdCJD0GFyBu7tZ3t4P1jdqAMDDLz4+SVarzdllOH5uuxtCZDYrUaKEYmJiZLfbHZewxsTEOMab/naOODU1Vf369dOwYcPUtWtXmUwm/fTTT9qwYYMkqXjx4rp48aKSkpKUP/+NH3rOnj3rmN/Pz0/BwcGOs5ySFB8fr6SkpEzXbbeLH/CRo+gxuAJ6EADgqh6k71E8WCebhYSEyG63a/78+UpJSdHvv/+eIeT9XWpqqq5duyZPT0+ZTCbFxMTo3XffdYwLCAhQuXLlNHHiRCUnJ+vPP//UkiVLHPO3bt1a33//vTZs2KC0tDTFxsaqf//+mjp16n35rAAAAAByH0JkNsuXL5/mzp2rL7/8UkFBQRo2bJjq1asnDw+PW047efJkzZkzRwEBAerevbvq1aunIkWK6Ndff5Wbm5s++OADxcbGqm7duurTp48aN27smL9kyZJatGiRVq1apbp166pt27YqX748IRIAAABAjjHZ+XsQ2So+Pl6///67atas6Rj2ySefaNOmTVq5cqUTK7uzCxe4Xw05w2SSihQpQI/BJbi7m+Xjk18tZ+3SkZgrzi4HAJDLVSpRUJsG1Vd8fJLS0lzjnsgiRe5+TyRnIrOZ1WpVjx49tHPnTknSmTNntGLFCjVq1MjJlQEAAADAvePBOtmsSJEiev/99zVt2jQNGTJEBQsWVPv27dW7d29nlwYAAAAA94wQmQOaNGmiJk2aOLsMAAAAAMh2XM4KAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIynswIAcp2KRb2cXQIAAA/s96N7DpEnTpyQl5eXihUrlh31AACQY+x2u6w2u2Z2CXB2KQAASJLSrDbZbHZnl5EpmQ6R3333ncaPH6/169dr5cqVGjt2rNzd3fX+++/ztxEBAC7NZrPLzWxSfHySs0sBHHx88tOTcCn05P1ls9kf/hA5ffp0NWzYUHa7XQsWLNDUqVPl7e2t6dOnEyIBAA8Eq9Um+4P1/RoPKZPpxr/0JFwFPQkjMv1gnd9//12DBw/W77//rgsXLqhFixZq2LChzpw5kxP1AQAAAABcSKZDpJubm5KSkvT111+revXqslgsio6OlpfXg3lTKAAAAADAuExfztqkSRO99NJLio6O1ltvvaXjx49rwIABatWqVU7UBwAAAABwIZkOkW+//bY+//xzeXp6qkWLFjp58qS6dOmi7t2750R9AAAAAAAXYrLbs3bL7OXLl3X69Gk99dRTSktLk8Viye7acB9duJDAzdPIESaTVKRIAXoMLiG9H131qYMP4hP6cG84RsLV0JO5W/r+v5tMn4lMSkpSeHi4Nm3aJE9PT0VGRurll1/W0qVLVb58+SwVCwDA/WA2m2S12eXjk9/ZpdxSmtWmy5euEiQBAC4t0yHy3//+t65evaotW7bohRdeUOnSpdWoUSNNmjRJixcvzokaAQDIFiaTSW5mkwavPKzjsYnOLieDikW9NLNLgMxmEyESAODSMh0iv/rqK23cuFGFChWSyWSSh4eHRo4cqWeeeSYn6gMAINsdj03UkZgrzi4DAIAHUqb/xIfNZnPc/5h+O+XfhwEAAAAAHl6ZDpG1a9fW+PHjlZycLJPJJEl6//33FRQUlO3FAQAAAABcS6ZD5JtvvqkTJ04oMDBQCQkJCggI0IEDB/TGG2/kRH0AAAAAABeS6Xsir169qlWrVunHH39UdHS0/Pz8VLVqVbm5ueVEfQAAAAAAF5LpENm5c2d98cUXqlq1qqpWrZoTNQEAAAAAXFSmL2f19vbWuXPncqIWAAAAAICLy/SZyMcee0wvvPCCqlevrqJFi2YYN2XKlGwrDAAAAADgejIdIvPly6emTZvmRC0AAAAAABeX6RDJ2cac8eeff6pMmTLOLgMAAAAA7ijTIXL27Nm3Hffaa6/dUzEPszNnzqhx48b68ssvVapUKQUEBGjhwoWqVauW3nnnHcXHx2vq1KmSlGEcAAAAALiSTIfIffv2ZXh/6dIlnThxQs2bN8+2onKDw4cPO76Oj4+/7TgAAAAAcCWZDpGffPLJTcM+//zzm8Llg+TIkSOaOnWqfvrpJ+XPn1+dOnXSoEGDdOjQIb333nv65ZdfVLBgQbVp00ZhYWGyWCyKiIjQb7/9JovFoh07dihfvnxq27athg8fLklKTEzUhAkTtG3bNuXLl09dunTJsE5/f399/PHHOnjwoDZu3ChJOnr0qDZs2OAYFxwcrPj4eM2YMUNfffWVUlNTVb16db355psqW7as4+zmxIkTNW/ePF2+fFlVq1bVlClT5Ofnd9+3IwAAAICHX6ZD5K20bdtWkydPzo5F3XeXLl1Sr169FBoaqsWLF+vs2bMKDQ1VsWLFNGnSJL3++utaunSp/vrrLw0cOFCJiYl66623JElffPGFpk6dqnfeeUfffPON+vXrp8aNG6t69eoaP368Tp06pS+++EJms9kRLv9pwIABOn36tCQ5Lmf9u0GDBslsNuuzzz5TgQIFNHPmTPXs2VNRUVGOaXbs2KH169crJSVFL7/8subOnavx48dnajuYTJmaHDAsvbfoMbiCB6UPH5Q6ce84RsLV0JO5m9H9ni0hcv/+/cqXL192LOq+++qrr5QnTx4NGDBAJpNJjz76qJYuXaqFCxfK399fPXr0kCSVKVNGw4cP16BBgzRq1ChJUtmyZdWuXTtJUoMGDeTr66uTJ0/qqaee0pYtWzR//nwVLlxYkjRixAi1bds2U7WdPn1a+/fv16ZNm+Tr6ytJev3117Vx40bt3LlT1apVkyS98sorKliwoCQpJCQkS5fDFi5cINPzAJlBjwHG+Pjkd3YJcAKOkXA19CTuJNMhMiQkRKa/RdTU1FRduHBBr776arYWdr+cP39exYsXz/CZypcvLw8PD5UuXTrDtKVKldK1a9cUFxcnSY5gl87Dw0M2m03x8fFKSUlR8eLFHeP+uSwjLly4cNO8bm5uKl68uKKjox0hskiRIo7x7u7ustvtmV5XXFyCsjAbcFcm041vRPQYXIG7u1ne3q4d0uLjk2S12pxdBu4TjpFwNfRk7pa+/+8m0yFy4MCBGd6bzWZVqFBBlStXzuyiXIKfn5/++usv2e12R5Dctm2bihUrpiNHjmSY9tSpU7JYLCpUqNAdl+nj46M8efLo9OnTKl++vCTp7Nmzma6tZMmSjvU+9thjkiSr1aqYmJibAuy9stvFgQI5ih6DK3hQevBBqRPZh2MkXA09iTsxZ3aGixcvqn379o5X27ZtVblyZb3//vs5UF7Oa9iwodLS0jR//nylpKTo1KlTmjx5sooUKaITJ07oo48+cgyfMWOGWrduLYvFcsdlWiwWtWvXTjNnztTZs2eVkJCgd999947TJyQk3DS8aNGiatCggSZOnKjz58/r2rVrmjZtmqxWqxo1anTPnx0AAAAAMstQiLx48aIOHDigAwcOKCIiQgcPHnS8P3DggLZv366PPvoop2vNEQULFtTixYu1Z88ePf300woNDVWXLl3UuXNnLVq0SFu3blXdunXVtWtX1atXT+Hh4YaWO3r0aFWtWlWtW7dW06ZNHZee3kqLFi303XffqWHDhjeN+/e//63SpUurffv2qlu3rn755Rd99NFH8vb2zuInBgAAAICsM9kN3ECXmJioZ5999qa/Z5jOYrGoc+fOGj16dLYXiPvjwgWue0fOMJmkIkUK0GNwCe7uZvn45FfLWbt0JOaKs8vJoFKJgto0qL7i45OUlsY9kbkFx0i4Gnoyd0vf/3dj6J5ILy8v7dmzR5LUvHlz/ec//7m36gAAAAAAD6RM3xN5uwB58eLFey4GAAAAAODaMv101h9++EH//ve/de7cOdlsNy63SU1N1cWLF/XTTz9le4EAAAAAANeR6TOR48ePl6+vr55++mmVK1dOL730ktzc3DR8+PCcqA8AAAAA4EIyHSJ/++03TZkyRd26dZPVatXLL7+s9957Txs3bsyJ+gAAAAAALiTTIbJgwYLy9PRU6dKl9dtvv0mSqlevrujo6GwvDgAAAADgWjIdIsuXL69PP/1UefLkUb58+fTzzz/rxIkTMplMOVEfAAAAAMCFZPrBOoMHD9arr76qevXqqXfv3nrhhRfk5uamF198MSfqAwAAAAC4kEyHyBo1aujrr7+WxWLRo48+qieffFIJCQmqV69eTtQHAEC2q1jUy9kl3MQVawIA4FYyHSIlyWQyadu2bYqOjlbnzp31559/ZnddAABkO7vdLqvNrpldApxdyi2lWW2y2ezOLgMAgDvKdIg8deqUevXqpdTUVF25ckUNGjTQ888/r9mzZ6tRo0Y5USMAANnCZrPLzWxSfHySs0u5JZvNTogEALi8TD9YZ9KkSerQoYN27Nghd3d3lStXThMnTtSsWbNyoj4AALKd1WpTWprrvQiQAIAHQaZD5Pfff68+ffrIZDI5nsjatm1bnT59OtuLAwAAAAC4lkyHyAIFCujChQsZhp0/f16FChXKtqIAAAAAAK4p0yGydevWeu211/Ttt9/KZrPphx9+0Ouvv66WLVvmRH0AAAAAABeS6QfrhIWF6dq1a3rttdeUnJys7t27q2PHjnrttddyoj4AAAAAgAsx2e12Q3fx9+7dW4sXL3a8T05OVnJysnx8fBz3RuLBdeFCgox1ApA5JpNUpEgBegwuIb0fXfXprK6Gp8XmPI6RcDX0ZO6Wvv/vxvCZyMOHD2d436BBA+3fvz/zlQEA4CRms0lWm10+PvmdXcoDIc1q0+VLVwmSAIAMMn05azqDJzABAHAZJpNJbmaTBq88rOOxic4ux6VVLOqlmV0CZDabCJEAgAyyHCK5hBUA8KA6HpuoIzFXnF0GAAAPpEw/nRUAAAAAkHsZPhOZlpam9evXO96npqZmeC9J7dq1y6ayAAAAAACuyHCILFKkiGbNmuV47+Pjk+G9yWQiRAIAAADAQ85wiNy+fXtO1gEAAAAAeABwTyQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCZCbExsbq6tWrzi7jtqxWq06fPu3sMgAAAAA8xAiRBl24cEHNmjXTxYsXs7yMzZs3q06dOqpZs6a++uqrbKzuhqFDh970tzsBAAAAIDsRIg26du3aPZ+FXLNmjVq2bKlDhw6pUaNG2VTZ/xcfH5/tywQAAACAv8sVIbJDhw768MMPHe9DQ0PVqVMnx/tly5apW7du2r59u7p06aI6deqoWrVqeumll3Ty5ElZrVa1atVKktSqVStt3rxZkrRp0ya1bt1aNWvWVIcOHfTNN99kWMfIkSPVqFEjNWzYUO3atdPevXu1cuVKNWnSRGfOnJG/v7+mTp2qwMBAjRs3TtL/D5o1atRQ69attWHDhgzLnD59urp166aAgAA999xzjlpGjx6tgwcPasGCBerfv3+ObUsAAAAAuZu7swu4H5599lnt2rVLPXv2VFJSkn766SelpqbqypUrKliwoLZv36569epp8ODBmjlzpkJCQhQfH6/XXntNc+bM0bvvvquoqCg1btxYUVFRKlWqlHbu3KkxY8Zo3rx5qlGjhr7++msNHDhQq1ev1mOPPSZJ2r17t9asWaO8efOqYMGCCg0NVVBQkAYOHKgzZ85IkpKSkvTtt9/q2rVrioyM1NSpUzV79mwFBQVp//79eu2115Q3b149++yzkqTVq1dr6dKlqlixoubMmaPw8HA1btxYkyZN0qlTpxzLzyyTKfu2N/B36b1Fj8EV0IdZw3bLORwj4WroydzN6H7PFSGySZMmmjt3rpKTk7V3715VrVpVly5d0t69e1W3bl3t379fEydOVKtWrfToo48qMTFRZ8+elY+Pj86dO3fLZS5btkwvvviiAgMDJUmNGjVSSEiIVq5cqbfffluS9Mwzz6hYsWJ3rK1du3ayWCyyWCxat26dOnfurDp16kiS6tSpo86dO2vlypWOENmsWTM99dRTkqT27dtr/vz5iouLU4kSJe5pGxUuXOCe5gfuhh4DHkw+PvmdXUKuwDESroaexJ3kihD52GOPqUSJEtq3b5927dqlevXq6cKFC9q9e7fS0tLk7++v4sWLa968eVq5cqVMJpMef/xxJSYmyt391psoOjpa+/fv16effuoYZrVaVbt2bcf7okWL3rW2v09z4cIFlS5dOsP4UqVKafv27Y73vr6+jq/Ta7PZbHddz93ExSXIbr/nxQA3MZlufCOix+AK3N3N8vYmFGVGfHySrNZ7/z6DW+MYCVdDT+Zu6fv/bnJFiJSkxo0b6+uvv9aePXs0Y8YMxcXFadKkSUpMTFTTpk21ZcsWLVu2TJ9++qnKlCkjSZowYYJ+/fXXWy7Pz89P7dq1U9++fR3DYmJi5Onp6XhvMnA++O/TlCpVSqdOncow/vTp0xmCY06x28WBAjmKHoMroAezhu2W8zhGwtXQk7iTXPFgHenGfZGbN2/WlStX9NRTTykoKEgxMTHatm2bnn32WSUkJMhsNsvT01N2u11ff/211q9fr9TUVElSnjx5JEmJiYmSpBdeeEEff/yxfvjhB0nSjz/+qA4dOigqKirLNXbs2FGrVq3Snj17ZLVatXfvXq1atUrPP/+8ofktFosSEhKyvH4AAAAAuJtccyayevXqcnd3V3BwsEwmkzw9PVWrVi3FxsaqfPnyKlWqlA4dOqSWLVvKzc1N5cuXV48ePbR8+XKlpKSoSJEievbZZ9W5c2eNHDlSL774oq5evapRo0YpJiZG3t7e6tmzp0JDQ7Nc43PPPafExERNnDhRMTExKlasmEaMGKF27doZmr9du3YaO3asfvrpJ61YsSLLdQAAAADA7Zjsdk5UQ7pwgevekTNMJqlIkQL0GFyCu7tZPj751XLWLh2JueLsclxapRIFtWlQfcXHJyktjXsicwrHSLgaejJ3S9//d5NrLmcFAAAAANw7QiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDB3ZxcAAMD9VrGol7NLcHlsIwDA7RAiAQC5ht1ul9Vm18wuAc4u5YGQZrXJZrM7uwwAgIshRAIAcg2bzS43s0nx8UnOLuWBYLPZCZEAgJsQIgEAuY7VapOdbAQAQJbwYB0AAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGE8WAcAkOu4ufE71AcJT4kFANdCiAQA5Bpms0lWm10+PvmdXQoyIc1q0+VLVwmSAOAiCJEAgFzDZDLJzWzS4JWHdTw20dnlwICKRb00s0uAzGYTIRIAXAQhEgCQ6xyPTdSRmCvOLgMAgAcSN4UAAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0TmkM2bN6tOnTqqWbOm/P39debMGWeXBAAAAAD3jBCZQ9asWaOWLVvq888/d3YpAAAAAJBt3J1dwMOoY8eOOnLkiA4cOKDly5dnGBcdHa13331X+/btk9lsVu3atfXGG2+oaNGikqSDBw/qvffe0y+//KKCBQuqTZs2CgsLk8ViUUREhA4fPqzLly/r9OnTmjNnji5evKhZs2bp7NmzKlq0qFq3bq2wsDBnfGwAAAAAuQAhMgesXbtWoaGhCgoKUvv27dW4cWNJUmpqqnr16qXKlSvriy++kN1u17hx49S/f3+tXr1ap06d0ssvv6zXX39dS5cu1V9//aWBAwcqMTFRb731liRpz549WrJkiapWrSq73a66detq4cKFCg4O1tGjR9WtWzc9/fTTqlq1aqZqNpmyfTMAkv5/b9FjcAX04YPtYdx/HCPhaujJ3M3ofidE3kcHDx7U6dOntW7dOnl5eUmSxo0bp6CgIP3000/auXOn/P391aNHD0lSmTJlNHz4cA0aNEijRo2SJJUuXVp16tSRJF27dk2enp5au3atbDabatSooUOHDslszvxVyoULF8imTwncGj0G4F74+OR3dgk5imMkXA09iTshRN5HcXFx8vHxcQRISfLy8pK3t7eio6MVFxen0qVLZ5inVKlSunbtmuLi4iTJcdmrJHl6eurTTz/V3LlzNXz4cCUmJqpZs2Z66623VKhQoUzWliC7/R4+HHAbJtONb0T0GFyBu7tZ3t4Pdxh5WMXHJ8lqtTm7jGzHMRKuhp7M3dL3/90QIu+jkiVLKj4+XomJiY4gmZCQoPj4ePn6+qpkyZL64osvMsxz6tQpWSwWRyg0/e0cc2JiomJjYzV9+nRJ0s8//6xhw4Zp/vz5euONNzJVm90uDhTIUfQYXAE9+GB7mPcfx0i4GnoSd8LTWe+jKlWqqGLFihozZowSEhKUkJCgsWPH6tFHH1WNGjXUsmVLnThxQh999JFSUlJ06tQpzZgxQ61bt5bFYrlpeUlJSXrllVe0ceNG2e12FS1aVGazWT4+Pk74dAAAAAByA0LkfeTu7q4FCxYoLS1NzZo1U6NGjZSamqqlS5fK3d1dpUqV0qJFi7R161bVrVtXXbt2Vb169RQeHn7L5RUrVkyzZs3SwoULVaNGDbVq1Uq1a9dWz5497+8HAwAAAJBrmOx2TlRDunCB696RM0wmqUiRAvQYXIK7u1k+PvnVctYuHYm54uxyYEClEgW1aVB9xccnKS3t4bwnkmMkXAk9mbul7/+74UwkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDB3ZxcAAMD9VrGol7NLgEHsKwBwPYRIAECuYbfbZbXZNbNLgLNLQSakWW2y2ezOLgMA8H8IkQCAXMNms8vNbFJ8fJKzS0Em2Gx2QiQAuBBCJAAg17FabbKTSQAAyBIerAMAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwH6wAAch03N36Hiox4AiwAGEeIBADkGmazSVabXT4++Z1dClxMmtWmy5euEiQBwABCJAAg1zCZTHIzmzR45WEdj010djlwERWLemlmlwCZzSZCJAAYQIgEAOQ6x2MTdSTmirPLAADggcRNIQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJGZdPLkSWeXAAAAAABOQ4i8A7vdruHDh6t69eoKCQnR0aNH1apVK8Pzh4SEKDIyUpLUp08fzZ8//67zhIeHKzw8PMs1AwAAAEBOcnd2Aa4sNjZWUVFRioyMVKVKlbRv3z6lpqZmaVmLFi0yNN348eOztHwAAAAAuB9yTYiMiIjQ2rVrlZycrNKlSyssLEyNGzfWl19+qRkzZig6Olo1atRQ6dKldf36dXXv3l1du3aVJHXr1k3PPvustm7dKkkKCAjQkiVLFBAQYHj9oaGhCgoKUtu2bdW0aVNt3rxZ5cuXlySdOHFCbdq00VdffaUZM2ZIkqZOnaqIiAj99ttvslgs2rFjh/Lly6e2bdtq+PDhkqRr165pypQp2rJli/Lmzav27dtrw4YNmjJlioKDgzO1fUymTE0OGJbeW/QYXAF9iLu53z3CMRKuhp7M3Yzu91wRIvfu3atVq1YpMjJSvr6+WrVqlUaPHq1SpUpp8ODBmjx5slq0aKFt27Zp+PDhat26tZ566ilFRUWpcePGioqKUqlSpdSxY0d1795dhw8fznItjz76qIKDg/X5559r6NChkqTIyEjVr19fRYsWvWn6L774QlOnTtU777yjb775Rv369VPjxo1VvXp1TZ48WT/99JM+//xzFSxYUOPGjVN0dHSW6ipcuECWPxNgBD0GwNX5+OR32ro5RsLV0JO4k1wRIvPkyaPLly9r9erVatSokTp16qTOnTsrIiJClStXVps2bSRJzZs318aNG3O8nk6dOmn69OkaMmSIbDabNmzYoDFjxtxy2rJly6pdu3aSpAYNGsjX11cnT55UpUqVtGHDBkVERKh48eKSbtxPGRUVlaWa4uISZLdnaVbgjkymG9+I6DG4And3s7y9nRcU4Nri45Nktdru6zo5RsLV0JO5W/r+v5tcESIDAgIUERGhTz75RIsWLZKnp6dCQ0MVFxenEiVKZJi2XLlyunDhQo7W07RpU02YMEH79u3T9evXZbfb1bBhw1tO6+vrm+G9h4eHbDabLl26pOTkZJUsWdIxzsvLSz4+PlmqyW4XBwrkKHoMroAexN04q0c4RsLV0JO4k1wRImNiYlS4cGEtXrxYKSkp2rNnj1577TX169dPR48ezTDt2bNn5e6es5vFYrGoTZs2ioqKUnJystq1a5fpdRYuXFienp6KiYlx3Ft59epVxcfH50TJAAAAACApl/yJjx9//FF9+vTRsWPHZLFYVLhwYUlSUFCQfv/9d61atUppaWnavXu34+E5t5InTx5JUkJCwj3X9MILL2jbtm3avn27OnbsmOn5zWazOnbsqIiICJ07d07JycmaMmWKrFbrPdcGAAAAALeTK0Jks2bN1KtXL7366quqXr26Bg8erFGjRikoKEhLly7VZ599ptq1a2vhwoUKDAy87XIef/xx1axZU/Xr19fOnTvvqabHHntMZcuWVaVKlVS2bNksLWP48OEqX768WrRooWbNmsnPz09ms1keHh73VBsAAAAA3I7Jbudq578bOXKkpBt/YsPVHThwQP7+/ipYsKAkKTExUTVr1tTWrVszHUwvXODmaeQMk0kqUqQAPQaX4O5ulo9PfrWctUtHYq44uxy4iEolCmrToPqKj09SWtr9f7AOx0i4Enoyd0vf/3eTK85EPqyWLFmiSZMm6dq1a7p+/bpmzZqlcuXKZfnMJgAAAADcTa54sE5OGDBggHbv3n3b8ePGjXP86ZCcMnbsWI0bN04NGjSQ1WpVzZo19cEHH+ToOgEAAADkboTIfzB6GeucOXNyuJK7K1asmObOnevsMgAAAADkIlzOCgAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMp7MCAHKdikW9nF0CXAj9AACZQ4gEAOQadrtdVptdM7sEOLsUuJg0q002m93ZZQDAA4EQCQDINWw2u9zMJsXHJzm7FLgYm81OiAQAgwiRAIBcx2q1yU5eAAAgS3iwDgAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMB6sAwDIddzc+B1qOp5KCgDILEIkACDXMJtNstrs8vHJ7+xSXEaa1abLl64SJAEAhhEiAQC5hslkkpvZpMErD+t4bKKzy3G6ikW9NLNLgMxmEyESAGAYIRIAkOscj03UkZgrzi4DAIAHEjeFAAAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0TexsmTJ51dAgAAAAC4nIc2RJ45c0b+/v46c+ZMpufdvn27evfu7XgfGhqqiIiI7CwPAAAAAB5ID22IvBeXLl2S3W53dhkAAAAA4HIe+hC5fv16NWnSRHXr1tVbb72lxMRE2e12ffDBB2rdurVq1aqlwMBADR8+XNeuXdO+ffs0ZswYxcTEKCAgQOfOnZMk/fnnn+rVq5cCAwPVuHFj/ec//3Gsw9/fXxMnTlRwcLD69+8vSdq2bZs6dOigGjVqqFmzZvrwww9ls9kkSTabTR988IGaNGmimjVrqmPHjtq1a5djeSEhIVq6dKnatGmjatWq6cUXX9SRI0f0yiuvKCAgQC1atNAPP/wgSUpMTNTQoUMVHBysevXqqXfv3jpx4sT92rwAAAAAchl3ZxeQ0w4ePKjVq1fLZrMpLCxMkydP1tNPP62PP/5Yy5YtU9myZXXixAl17dpVGzduVKdOnTRu3DjNnj1b27dvdyzn22+/1aJFi/Tkk09q3rx5evPNN9W4cWN5eHhIkk6dOqUdO3YoNTVVe/fu1ZAhQ/Tvf/9bTZs21S+//KKwsDBJUs+ePTVnzhytXbtWc+fOlb+/v7744guFhYVp+fLlqlq1qiRpzZo1WrJkiby8vPT8888rNDRUixcvVqVKlTRixAhNmzZNH3/8sZYsWaLExETt3LlTZrNZ4eHhmjZtmubNm5ep7WQyZdMGB/4hvbfoMbgC+vD22DbOwTESroaezN2M7veHPkSOHDlSjzzyiCRp0KBBevXVV/Xmm29q7dq18vPz08WLFxUfHy9vb2/HWcdbadGihSpVquT4etasWYqLi5Ofn58kqVWrVsqbN6/y5s2ryMhINW7cWC1atJAkVapUSX379tUnn3yinj17at26derbt2+G5W3dulVr1651hMjnn3/eseyqVasqMTFRAQEBkqSnn37aERI9PT117NgxrV+/XvXq1dPkyZNlNmf+BHPhwgUyPQ+QGfQY4Lp8fPI7u4Rcj2MkXA09iTt56ENkqVKlHF8XL15cKSkpunLlimbNmqWvvvpKjzzyiJ588kmlpqbe8T5Ib29vx9fpZx/T0tIcw4oWLer4Oi4uTk8++eRNdURHR0uSLly4oNKlS980/tixY7dcn5ubmwoVKuR4bzabHbW+8sorslgsWrt2rcaPH6/SpUtr+PDhatq06W0/y63ExSWI20CRE0ymG9+I6DG4And3s7y9CUz/FB+fJKvV5uwyciWOkXA19GTulr7/7+ahD5Hnzp2Tl5eXpBtPbM2XL58++OADxcTEaPv27Y5xrVu3vqf1mP527rdkyZI6depUhvGnT5+Wr6+vY/zp06dvGv/3IGoyeC75l19+UUhIiHr27KmEhAStWLFCQ4cO1d69e1WggPHfINnt4kCBHEWPwRXQg7fHtnEujpFwNfQk7uShf7DOu+++q8uXL+vs2bOaOXOmOnfurMTEROXJk0dubm66fv26lixZol9//VWpqamSpDx58ig5OTnDmcbMeP7557V9+3Zt2bJFVqtVR48e1cKFC/X8889Lkjp16qQPPvhAR44ckdVq1ZYtW7R9+3a1b98+0+tas2aNRowYobi4OHl5ecnLy0v58uWTxWLJUu0AAAAAcCcP/ZnIgIAANW/eXGazWa1atdLQoUMVGxurN998U3Xr1lW+fPlUs2ZNtW3bVr/++qskKTAwUIULF1ZgYKBWrlyZ6XVWq1ZNM2fO1Jw5czRq1Cj5+PjoxRdf1CuvvCJJevnll2Wz2TR06FCdP39eZcqU0YwZMxQUFJTpdQ0bNkzjx49Xy5Ytdf36dZUvX15z585Vnjx5Mr0sAAAAALgbk50/iAhJFy5w3TtyhskkFSlSgB6DS3B3N8vHJ79aztqlIzFXnF2O01UqUVCbBtVXfHyS0tK4J9IZOEbC1dCTuVv6/r+bh/5yVgAAAABA9iFEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAxzd3YBAADcbxWLejm7BJfAdgAAZAUhEgCQa9jtdlltds3sEuDsUlxGmtUmm83u7DIAAA8QQiQAINew2exyM5sUH5/k7FJchs1mJ0QCADKFEAkAyHWsVpvs5CYAALKEB+sAAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgByDZPJlOFfAACQeYRIAECuYTabMvwLAAAyjxAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQ+ZD5888/nV0CAAAAgIcYIfIh8s4772jevHnOLgMAAADAQ4wQ+RCJj493dgkAAAAAHnLuzi7gYXbkyBFNnTpVP/30k/Lnz69OnTpp0KBBOnTokN577z398ssvKliwoNq0aaOwsDBZLBZFRETot99+k8Vi0Y4dO5QvXz61bdtWw4cPlyQdOHBAU6ZM0alTp+Tj46OGDRvqjTfe0IIFC7Rx40ZJ0tGjR7VhwwZnfnQAAAAADylCZA65dOmSevXqpdDQUC1evFhnz55VaGioihUrpkmTJun111/X0qVL9ddff2ngwIFKTEzUW2+9JUn64osvNHXqVL3zzjv65ptv1K9fPzVu3FjVq1fXiBEjNGjQILVv315nzpzRiy++qFq1amnAgAE6ffq0JGnq1KmZrtdkytaPDzik9xY9Blfw936kJ+EKOEbC1dCTuZvR/U6IzCFfffWV8uTJowEDBshkMunRRx/V0qVLtXDhQvn7+6tHjx6SpDJlymj48OEaNGiQRo0aJUkqW7as2rVrJ0lq0KCBfH19dfLkSVWvXl158uTRli1b5O3trcDAQO3cuVNm871flVy4cIF7XgZwJ/QYXIm3d35nlwBkwDESroaexJ0QInPI+fPnVbx4cZn+FufLly8vDw8PlS5dOsO0pUqV0rVr1xQXFydJ8vX1zTDew8NDNptNkvTRRx8pIiJC48aN0/nz51W/fn2NHTtWfn5+91RvXFyC7PZ7WgRwSybTjW9E9Bhcgbu7Wd7e+XXpUpLS0mzOLgfgGAmXQ0/mbun7/24IkTnEz89Pf/31l+x2uyNIbtu2TcWKFdORI0cyTHvq1ClZLBYVKlTojsu8fv26jh8/rrFjx8rd3V1//PGH3nrrLU2ePFmzZs26p3rtdnGgQI6ix+AK0nuQfoSroSfhauhJ3AlPZ80hDRs2VFpamubPn6+UlBSdOnVKkydPVpEiRXTixAl99NFHjuEzZsxQ69atZbFY7rhMk8mkYcOGacmSJUpLS5Ovr6/c3d3l4+MjSbJYLEpISLgfHw8AAABALkWIzCEFCxbU4sWLtWfPHj399NMKDQ1Vly5d1LlzZy1atEhbt25V3bp11bVrV9WrV0/h4eF3XabFYtG8efP05ZdfKjg4WCEhIfL19dXrr78uSWrRooW+++47NWzYMIc/HQAAAIDcymS3c6Ia0oULXPeOnGEySUWKFKDH4BLc3c3y8cmv+HjuiYRr4BgJV0NP5m7p+/9uOBMJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAyDVsNnuGfwEAQOYRIgEAuYbdbs/wLwAAyDxCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDB3ZxcA12AyObsCPKzSe4segyugH+Fq6Em4GnoydzO63012u92es6UAAAAAAB4WXM4KAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJIFtdvXpVb775poKDg1WzZk2NGDFCSUlJd53v8OHDqlKlyn2oEA+7uLg4hYWFqVatWgoODtakSZOUlpZ2y2l37typ1q1bq3r16nruuef01Vdf3edqkRtkpifTbd26VY0bN75PFSK3yUxPfvrpp2rWrJkCAgLUrFkzLV++/D5XC1dEiASQrSZMmKC//vpLW7du1RdffKG//vpL06ZNu+30drtda9euVa9evZSSknIfK8XDasiQIcqXL5927dqltWvXas+ePfrwww9vmu7kyZMaOHCgBg8erIMHD2rgwIEaMmSIzp07d/+LxkPNaE9KUmpqqhYuXKhhw4bJbrff30KRaxjtyW3btmnGjBl655139N1332nq1Kl6//33tXXr1vtfNFwKIRJAtklOTtbGjRs1aNAgeXt7q3Dhwnr99dcVGRmp5OTkW84zatQorVmzRoMGDbrP1eJh9Oeff2r//v3617/+pbx586p06dIKCwu75W/OP/vsM9WqVUtNmjSRu7u7WrRoocDAQK1atcoJleNhlZmelKRevXpp3759euWVV+5zpcgtMtOT586d0yuvvKLq1avLZDIpICBAwcHBOnDggBMqhytxd3YBAB4s165du+2ZmuTkZKWmpurxxx93DKtQoYKuXbumkydP6sknn7xpnsGDB8vPz0/79u3LsZqRe/z222/y9vZWsWLFHMMqVKigmJgYXblyRQULFnQMP378eIZelaSKFSvq2LFj961ePPwy05OS9O6778rPz0+RkZH3u1TkEpnpyW7dumWYNy4uTgcOHNCbb7553+qFayJEAsiU//3vf+revfstxw0ePFiSlC9fPsewvHnzStJt74v08/PL5gqRmyUlJTl6Ll36+6tXr2b44ehW03p6eurq1as5Xyhyjcz0pMQxETkvsz2Z7vz58+rXr58qV66sVq1a5XidcG2ESACZEhwcrF9++eWW444ePaqZM2cqOTlZ+fPnlyTHZaxeXl73rUbkXvny5bvp0un09+k9mS5v3ry6du1ahmHXrl27aTrgXmSmJ4H7ISs9+f3332vw4MGqVauWpkyZInd3IkRuxz2RALJNuXLl5OHhoePHjzuGnThxQh4eHipbtqzzCkOu8dhjj+nSpUu6cOGCY9iJEyfk5+enAgUKZJj28ccf12+//ZZh2PHjx/XYY4/dl1qRO2SmJ4H7IbM9uXbtWvXs2VM9evTQ9OnTZbFY7me5cFGESADZJm/evHruuec0bdo0Xbx4URcvXtS0adPUqlUreXp6Ors85AJly5ZVzZo1NXnyZCUmJur06dOaO3euOnbseNO0bdq00f79+7V582alpaVp8+bN2r9/v9q2beuEyvGwykxPAvdDZnpy69atGjt2rCIiItSrVy8nVAtXRYgEkK3GjBmjsmXLqnXr1mrevLlKlSql8PBwx/iWLVtq/vz5TqwQD7tZs2YpLS1NjRs31gsvvKD69esrLCxMkhQQEKANGzZIuvEgiTlz5mjBggUKDAzU3LlzFRERoXLlyjmzfDyEjPYkcL8Y7cnZs2fLarVq0KBBCggIcLz+/n0duZPJzh8hAgAAAAAYxJlIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAJAp169f19mzZ51dBgDASQiRAADcgz/++ENvvPGGnnnmGQUEBKhJkyaaNm2akpKSsmX5drtdw4cPV/Xq1RUSEqLY2Fh17NhR1atX1+uvv64+ffpo/vz5d12O0emM6Nq1q3bv3n3T8OTkZAUFBenjjz++5XzDhw9XWFjYHZcdGRmpkJCQbKkTAJAz3J1dAAAAD6rvvvtOvXr1Uq9evbR+/Xo98sgj+uOPPxQeHq5evXppxYoVcnNzu6d1xMbGKioqSpGRkapUqZI2bNig6Oho7d+/XxaLxfByFi1adE91/F18fPwth+fNm1fPP/+81qxZo+7du2cYd/HiRW3dujVb6wAAOAdnIgEAyKLw8HC1a9dOgwYN0iOPPCJJKleunN577z0VLlxYp0+fliRFR0dryJAhqlOnjurVq6fhw4crNjbWsZwjR44oNDRUgYGBatq0qT788EPZ7XYdPXpUzZo1kyR169ZNgYGBGj16tOLj4xUcHKzdu3crNDRUERERkqS0tDTNnDlTDRo0UI0aNdStWzcdO3ZMkjJMZ7fb9fHHH6tZs2aqVauWunbtqp9++slRT0hIiBYsWKB27dopICBA7dq10969eyVJvXr1UkxMjMaMGaPx48fftE26du2q48eP6/vvv88wfO3atSpXrpxq166t7du3q0uXLqpTp46qVauml156SSdPnrxpWfv27ZO/v3+GYSNHjtTIkSMd7zdt2qTWrVurZs2a6tChg7755pu77zgAwD0hRAIAkAWnTp3Sb7/9platWt00rkiRIpo7d67Kli2r1NRU9erVS25ubvriiy+0ZcsWSVL//v2Vlpamc+fOqUePHmrevLl2796tuXPnasWKFVq1apWeeuopRUVFSZKioqJ04MABjRs3TiVKlNDhw4dVt27dDOudN2+eoqKitHjxYh04cEBBQUHq16+frFZrhulWrFihpUuXaubMmdqzZ486dOigl19+WRcuXHBMs27dOs2cOVO7d+/WE088obFjx0qSlixZohIlSmjcuHEKDw+/6bOXLl1aDRo00OrVqx3DbDabVq1ape7du+vs2bMaPHiw+vbtqz179mjHjh2y2+2aM2dOpvfBzp07NWbMGIWHh2v//v0aOHCgBg4cqN9++y3TywIAGEeIBAAgCy5evCjpRmC8k4MHD+r06dMaN26cChQooIIFC2rcuHE6duyYfvrpJ23YsEEVKlRQt27d5OHhoYoVK6p3795avnx5pmv67LPP1KdPH1WsWFFubm569dVXNXPmTNnt9gzTLV++XP369dMTTzwhDw8PdezYURUqVNCGDRsc03Ts2FFlypRR3rx51bp161ueKbyd7t27a8uWLUpMTJQk7dq1S4mJiWrdurUeeeQRbdq0SSEhIUpMTNTZs2fl4+Ojc+fOZfrzLlu2TC+++KICAwPl5uamRo0aKSQkRCtXrsz0sgAAxnFPJAAAWeDr6ytJOn/+vMqWLXvT+AsXLqhIkSKKi4uTj4+PvLy8HOO8vLzk7e2t6OhoRUdH68iRI6pVq5ZjvM1my9K9lOfPn1eJEiUc7y0Wi6pXr37TdNHR0XrnnXc0bdo0x7C0tDRVrlzZ8f7v4djd3f2mIHondevWVfHixRUVFaUuXbpoxYoV6ty5szw9PWW32xUVFaWVK1fKZDLp8ccfV2JiotzdM/8jSfq9oZ9++qljmNVqVe3atTO9LACAcYRIAACyoGTJknr88ce1efNmBQYGZhgXFxenRo0aacqUKSpZsqTi4+OVmJjoCJIJCQmKj4+Xr6+v/Pz8FBwcrMWLFzvmj4+Pz9LTXYsXL66//vrL8T41NVXvvvuu+vTpk2E6Pz8/DRo0SC1btnQMO3XqlLy9vTO9ztvp1q2b1qxZowYNGujbb7/VuHHjJElbtmzRsmXL9Omnn6pMmTKSpAkTJujXX3+9aRnpQTolJcXxEKH4+Hj5+Pg4Pke7du3Ut29fxzwxMTHy9PTMts8BALgZl7MCAJBFb7/9ttatW6fZs2crPj5edrtdP//8s/r3769KlSqpWbNmqlKliipWrKgxY8YoISFBCQkJGjt2rB599FHVqFFDrVu31vfff68NGzYoLS1NsbGx6t+/v6ZOnZrpejp06KDFixfrjz/+UFpamhYsWKBt27Y5Qle6F154QfPmzdOJEyck3bjctGXLljpw4ICh9VgsFiUkJNxxmvbt2+vPP//U+++/ryZNmsjPz0/SjQBtNpsdZyW//vprrV+/XqmpqTct49FHH5W7u7s2bdokSdq9e7fjAT/pn+Pjjz/WDz/8IEn68ccf1aFDB8d9pACAnMGZSAAAsigoKEjLli3T/Pnz1bJlSyUnJ6tIkSJq3ry5+vXrJw8PD0nSggULNHXqVDVr1kwpKSmqW7euli5dKnd3d5UsWVKLFi3StGnTNHHiRLm5ualhw4YaPXp0puvp06eP0tLS1Lt3b12+fFlVqlTRwoULHXWk69mzp+x2u8LCwhQbG6tixYopPDxcjRs3NrSejh076r333tOPP/6Y4ZLYv8uXL586dOigjz76SCtWrHAMb9++vQ4dOqSWLVvKzc1N5cuXV48ePbR8+XKlpKRkWEbRokU1atQozZ07VxMmTFDt2rXVoUMHJScnS5KaN2+uq1evatSoUYqJiZG3t7d69uyp0NDQzGw2AEAmmeyZuckBAAAAAJCrcTkrAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwLD/BzYX6MEuO4rRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Plot house prices against coefficients\n", + "plt.figure(figsize=(10, 6))\n", + "plt.barh(X.columns, model_log.coef_)\n", + "plt.xlabel('Coefficient Value')\n", + "plt.ylabel('Features')\n", + "plt.title('House Prices vs. Coefficients of Variables')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "visualization of the positive and negative coefficient variables." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Log transformation of the polynomial model" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Polynomial Model (Degree 2)- MSE: 37774083176.83915\n", + "Polynomial Model (Degree 2)- R-squared: 0.7161383140038227\n", + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: price R-squared: 0.679\n", + "Model: OLS Adj. R-squared: 0.678\n", + "Method: Least Squares F-statistic: 557.0\n", + "Date: Wed, 01 May 2024 Prob (F-statistic): 0.00\n", + "Time: 12:27:46 Log-Likelihood: -3540.2\n", + "No. Observations: 16913 AIC: 7210.\n", + "Df Residuals: 16848 BIC: 7713.\n", + "Df Model: 64 \n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "const 4987.9435 522.414 9.548 0.000 3963.957 6011.930\n", + "x1 3457.3790 362.110 9.548 0.000 2747.606 4167.152\n", + "x2 -16.5312 7.635 -2.165 0.030 -31.497 -1.566\n", + "x3 -16.9803 5.626 -3.018 0.003 -28.008 -5.953\n", + "x4 -59.7513 8.202 -7.285 0.000 -75.827 -43.675\n", + "x5 -66.7001 16.473 -4.049 0.000 -98.988 -34.412\n", + "x6 21.7086 8.506 2.552 0.011 5.036 38.381\n", + "x7 56.1227 10.699 5.246 0.000 35.152 77.093\n", + "x8 0.1415 0.453 0.313 0.755 -0.745 1.028\n", + "x9 -1530.3915 159.119 -9.618 0.000 -1842.282 -1218.501\n", + "x10 -7.2389 1.397 -5.181 0.000 -9.977 -4.500\n", + "x11 27.1030 5.183 5.229 0.000 16.943 37.263\n", + "x12 2396.4725 250.995 9.548 0.000 1904.495 2888.450\n", + "x13 -11.4586 5.292 -2.165 0.030 -21.832 -1.085\n", + "x14 -11.7699 3.900 -3.018 0.003 -19.414 -4.126\n", + "x15 -41.4165 5.685 -7.285 0.000 -52.560 -30.273\n", + "x16 -46.2330 11.418 -4.049 0.000 -68.614 -23.852\n", + "x17 15.0473 5.896 2.552 0.011 3.491 26.604\n", + "x18 38.9013 7.416 5.246 0.000 24.366 53.437\n", + "x19 0.0981 0.314 0.313 0.755 -0.517 0.713\n", + "x20 -1060.7866 110.293 -9.618 0.000 -1276.973 -844.601\n", + "x21 -5.0176 0.968 -5.181 0.000 -6.916 -3.119\n", + "x22 18.7864 3.593 5.229 0.000 11.744 25.829\n", + "x23 0.0476 0.079 0.603 0.546 -0.107 0.202\n", + "x24 0.2000 0.083 2.399 0.016 0.037 0.363\n", + "x25 -0.4148 0.109 -3.823 0.000 -0.628 -0.202\n", + "x26 0.1250 0.245 0.511 0.609 -0.355 0.605\n", + "x27 0.1981 0.122 1.628 0.104 -0.040 0.437\n", + "x28 0.2251 0.161 1.396 0.163 -0.091 0.541\n", + "x29 -0.0032 0.006 -0.531 0.595 -0.015 0.009\n", + "x30 3.1411 1.477 2.127 0.033 0.247 6.036\n", + "x31 -0.0103 0.012 -0.883 0.377 -0.033 0.013\n", + "x32 -0.1564 0.078 -2.000 0.046 -0.310 -0.003\n", + "x33 0.0859 0.039 2.183 0.029 0.009 0.163\n", + "x34 -0.0407 0.079 -0.516 0.606 -0.195 0.114\n", + "x35 0.3258 0.195 1.668 0.095 -0.057 0.709\n", + "x36 -0.2649 0.091 -2.905 0.004 -0.444 -0.086\n", + "x37 0.1059 0.111 0.957 0.339 -0.111 0.323\n", + "x38 -0.0112 0.005 -2.119 0.034 -0.022 -0.001\n", + "x39 3.2391 1.094 2.960 0.003 1.094 5.384\n", + "x40 0.0084 0.008 0.989 0.323 -0.008 0.025\n", + "x41 -0.0497 0.054 -0.924 0.355 -0.155 0.056\n", + "x42 0.6010 0.091 6.569 0.000 0.422 0.780\n", + "x43 0.1950 0.270 0.721 0.471 -0.335 0.725\n", + "x44 0.3964 0.139 2.845 0.004 0.123 0.670\n", + "x45 -0.0224 0.156 -0.143 0.886 -0.329 0.284\n", + "x46 0.0471 0.006 7.361 0.000 0.035 0.060\n", + "x47 11.9015 1.585 7.511 0.000 8.796 15.007\n", + "x48 0.0005 0.012 0.044 0.965 -0.023 0.024\n", + "x49 -0.3608 0.079 -4.586 0.000 -0.515 -0.207\n", + "x50 -46.2330 11.418 -4.049 0.000 -68.614 -23.852\n", + "x51 -0.2814 0.262 -1.074 0.283 -0.795 0.232\n", + "x52 -1.4097 0.386 -3.649 0.000 -2.167 -0.652\n", + "x53 -0.0189 0.015 -1.223 0.221 -0.049 0.011\n", + "x54 17.2366 4.274 4.033 0.000 8.859 25.614\n", + "x55 -0.0160 0.016 -1.020 0.308 -0.047 0.015\n", + "x56 0.1612 0.187 0.861 0.389 -0.206 0.528\n", + "x57 -0.0348 0.081 -0.430 0.667 -0.193 0.124\n", + "x58 -0.5518 0.172 -3.212 0.001 -0.888 -0.215\n", + "x59 0.0147 0.008 1.939 0.053 -0.000 0.030\n", + "x60 -4.5317 1.668 -2.716 0.007 -7.802 -1.261\n", + "x61 -0.0425 0.016 -2.603 0.009 -0.074 -0.010\n", + "x62 0.6652 0.082 8.073 0.000 0.504 0.827\n", + "x63 0.7108 0.132 5.394 0.000 0.452 0.969\n", + "x64 -0.0074 0.009 -0.830 0.406 -0.025 0.010\n", + "x65 -10.6811 2.084 -5.125 0.000 -14.766 -6.596\n", + "x66 -0.0058 0.016 -0.357 0.721 -0.038 0.026\n", + "x67 -0.4727 0.098 -4.817 0.000 -0.665 -0.280\n", + "x68 -0.0051 0.002 -2.881 0.004 -0.009 -0.002\n", + "x69 -0.0156 0.088 -0.178 0.859 -0.188 0.157\n", + "x70 -3.158e-05 0.001 -0.045 0.964 -0.001 0.001\n", + "x71 -0.0010 0.004 -0.221 0.825 -0.009 0.007\n", + "x72 150.7551 15.531 9.707 0.000 120.313 181.198\n", + "x73 0.7643 0.175 4.359 0.000 0.421 1.108\n", + "x74 -5.7615 1.013 -5.690 0.000 -7.746 -3.777\n", + "x75 0.6353 0.261 2.434 0.015 0.124 1.147\n", + "x76 0.0173 0.007 2.394 0.017 0.003 0.031\n", + "x77 0.3068 0.032 9.733 0.000 0.245 0.369\n", + "==============================================================================\n", + "Omnibus: 86.286 Durbin-Watson: 2.008\n", + "Prob(Omnibus): 0.000 Jarque-Bera (JB): 100.078\n", + "Skew: -0.119 Prob(JB): 1.85e-22\n", + "Kurtosis: 3.291 Cond. No. 1.52e+16\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", + "[2] The smallest eigenvalue is 1.69e-24. This might indicate that there are\n", + "strong multicollinearity problems or that the design matrix is singular.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import mean_squared_error, r2_score\n", + "import statsmodels.api as sm\n", + "\n", + "# Define function to keep only numeric columns\n", + "def only_numeric(df):\n", + " return df.select_dtypes(include=[np.number])\n", + "\n", + "features = ['bathrooms', 'sqft_living',\n", + " 'floors', 'waterfront', 'condition', 'grade',\n", + " 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15']\n", + "target = 'price'\n", + "\n", + "# Load your housing data (assuming it's already loaded into 'housing_data' DataFrame)\n", + "\n", + "# Keep only numeric columns\n", + "housing_data_numeric = only_numeric(housing_data)\n", + "\n", + "# Check if all features exist in the DataFrame\n", + "missing_features = [feature for feature in features if feature not in housing_data_numeric.columns]\n", + "if missing_features:\n", + " print(\"The following features are not present in the dataset:\", missing_features)\n", + "else:\n", + " # Extract features and target variable\n", + " X = sm.add_constant(housing_data_numeric[features])\n", + " y = housing_data_numeric[target]\n", + " \n", + " # Log transform features and target variable\n", + " X_log = np.log(X + 1) # Adding 1 to avoid log(0)\n", + " y_log = np.log(y)\n", + " \n", + " # Split the data into training and testing sets\n", + " X_train, X_test, y_train, y_test = train_test_split(X_log, y_log, test_size=0.2, random_state=42)\n", + "\n", + " # Polynomial Regression\n", + " # Choose the degree of the polynomial\n", + " degree = 2\n", + "\n", + " # Create polynomial features\n", + " poly = PolynomialFeatures(degree)\n", + " X_train_poly = poly.fit_transform(X_train)\n", + " X_test_poly = poly.transform(X_test)\n", + "\n", + " # Build a polynomial regression model\n", + " poly_model = LinearRegression()\n", + " poly_model.fit(X_train_poly, y_train)\n", + "\n", + " # Make predictions on the test set\n", + " y_pred_poly = poly_model.predict(X_test_poly)\n", + "\n", + " # Reverse log transformation for evaluation\n", + " y_pred = np.exp(y_pred_poly)\n", + " y_test_original = np.exp(y_test)\n", + "\n", + " # Evaluate the polynomial model\n", + " mse_poly = mean_squared_error(y_test_original, y_pred)\n", + " r2_poly = r2_score(y_test_original, y_pred)\n", + " print(\"Polynomial Model (Degree {})- MSE:\".format(degree), mse_poly)\n", + " print(\"Polynomial Model (Degree {})- R-squared:\".format(degree), r2_poly)\n", + " \n", + " # Convert to DataFrame for summary\n", + " #X_poly_df = pd.DataFrame(X_train_poly, columns=poly.get_feature_names(features))\n", + "\n", + " # Fit the OLS model\n", + " model = sm.OLS(y_train,X_train_poly)\n", + " results = model.fit()\n", + "\n", + " # Print the summary\n", + " print(results.summary())\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "R-squared: The R-squared value indicates that approximately 71.61% of the variance in the target variable (price) is explained by the model.\n", + "\n", + "MSE (Mean Squared Error): The MSE of approximately 37,774,083,176.84 represents the average squared difference between the predicted and actual house prices.\n", + "\n", + "Coefficients: The coefficients represent the estimated effect of each predictor variable on the target variable. For example:\n", + "The coefficient for const (intercept) is 4987.94.\n", + "The coefficient for x1 (bathrooms) is 3457.38.\n", + "The coefficient for x2 (sqft_living) is -16.53.\n", + "The coefficient for x3 (floors) is -16.98.\n", + "The coefficient for x4 (waterfront) is -59.75.\n", + "The coefficient for x5 (condition) is -66.70.\n", + "The coefficient for x6 (grade) is 21.71.\n", + "The coefficient for x7 (sqft_basement) is 56.12.\n", + "The coefficient for x8 (yr_built) and other coefficients follow.\n", + "\n", + "P-values: P-values indicate the statistical significance of the coefficients. A small p-value (typically < 0.05) suggests that the corresponding predictor variable is statistically significant in predicting the target variable. In this summary, some coefficients have p-values less than 0.05, indicating statistical significance, while others do not.\n", + "\n", + "\n", + "F-statistic: The F-statistic tests the overall significance of the model. A low p-value (typically < 0.05) suggests that at least one of the predictors has a non-zero coefficient, indicating that the model as a whole is statistically significant.\n", + "\n", + "\n", + "Overall, the summary provides valuable insights into the relationships between the predictor variables and the target variable, as well as the overall goodness-of-fit of the model.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqsAAAIdCAYAAAAaiDSZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvPklEQVR4nO3deXxU1f3/8ffNZCMBmwAKiV+tpVWsSy1GJIqKivorNWCDVNSKiggiuIGCtMYFjVZBpOJuAW3rQr9iojQtLq1aNRrE1K+trdpWq1QSUMIiBLLN3N8fw0wyySz3TmYyd2Zez8eDh2Zy5s7J3Fk+95zP+RzDNE1TAAAAgANlJLoDAAAAQCgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAfYq9aADYQbAKICVNmTJFw4cPD/h36KGHqqSkRD/+8Y/1+9//PuaPWVVVpeHDh+uLL74I2eaLL77Q8OHDVVVVFfPHX7BggU499dReHePUU0/t8bwdeeSROv3007VkyRK1trYGtF2wYIGt4//pT3/S9ddf36s+AkgvmYnuAADEy2GHHaabb77Z/7Pb7damTZv0+OOPa+7cuRowYIBOOumkmD3eySefrN/+9rfab7/9YnbMRBgzZoxmzZrl/7m1tVXr1q3Tgw8+qI0bN+qee+6J+tiPP/54DHoIIJ0QrAJIWf3799f3v//9HrePGTNGxx13nJ599tmYBqsDBw7UwIEDY3a8RBk4cGCP523UqFHatGmTqqqqtGDBgqQPyAEkD9IAAKSd7OxsZWVl9bj9mWee0ZlnnqkjjjhCJ598su677z51dHT4f79161Zdd911Gj16tI488kidddZZeu655/y/D5YG8NJLL2nChAn63ve+p/Lycn300UcBj7lu3ToNHz5c69atC7h9ypQpmjJliv/nlpYWLVmyRGeccYaOOOIIHX300Zo6dao+/PDDkH/n3//+d1100UUqKSnRiBEjdPHFF+v999+3/Dx1d8QRR8g0TTU2Ngb9/c6dO/Xzn/9cp512mo488kiVlZVp9erVAX/TO++8o3feeSfo3wwAwTCyCiBlmaYZEGz60gAeeOABNTc366yzzvL/7pFHHtHSpUt1wQUX6Kc//ak+/PBD3XfffWpsbNQdd9whSZo3b56ampq0cOFC5efna82aNbr++utVVFSkUaNG9Xj8V155RVdddZXOPPNMXXfddfroo480b968qP6W+fPna/369br22mt14IEH6rPPPtO9996rOXPmaO3atTIMI6D9rl27dOmll2rUqFFatmyZ2tvb9dBDD2natGl69dVXNWDAANt9+M9//iNJOuCAA3r8rqWlReeff762bNmiK6+8UgcccID++Mc/6oYbbtCWLVs0c+ZM3Xzzzf6//+abb9Z3vvOdKJ4JAOmGYBVAylq/fr0OP/zwgNsMw9Ahhxyie++9178YaefOnXrooYc0efJkVVRUSJJOOOEEFRQUqKKiQlOnTtXBBx+sd955R7NmzdJpp50myTs1XlBQIJfLFfTxH3jgAR1++OFasmSJJPlTDnw/W9XW1qbm5mbdeOON+uEPfyhJOvbYY9Xc3Kw777xTX331VY9p+X//+9/aunWrpkyZopKSEknSsGHDtGrVKu3atStssNo9yG9qatLrr7+uVatWady4cUFTHaqqqvTPf/5TTz31lP/xTjzxRHV0dOjBBx/Uueeeq+985zvq37+/JAVNzwCAYAhWAaSsww8/XAsXLpQkbd68Wffee6/a29u1dOlSffvb3/a3e++997Rnzx6deuqpAUGaL5itra3VwQcfrFGjRum+++7TRx99pDFjxuikk04KubK9paVFf//733XVVVcF3D5u3DjbwWp2drZWrFghSfryyy/1+eef69NPP9Wrr74qSWpvb+9xn4MPPlgDBw7U5ZdfrnHjxvnzdOfPnx/x8Z577rmA9AZJyszM1Omnn65bbrkl6H3eeecd7b///v5A1WfChAlavXq13n//fY0ZM8bCXwsAgdIiWN26dasmT56sysrKoFN1wbz44ou677779MUXX2jffffVZZddpkmTJsW5pwBiKT8/X0ceeaQk6cgjj9SIESN01lln6ZJLLlF1dbV/hHD79u2SpBkzZgQ9zpdffilJWrp0qR5++GGtXbtWL7zwgjIyMnT88cfrlltu6TE1vmPHDpmm2WMUMtqFSW+88YbuuOMOffrpp8rPz9fw4cOVn58vKXjd0vz8fD355JN66KGH9Ic//EGrVq1Sv379NGHCBN1www3KyckJ+VinnHKKZs+eLck7Et2vXz/tv//+ys3NDXmfHTt2aPDgwT1u99329ddf2/p7AcAn5YPV+vp6LViwQBs2bLB8n7q6Oi1YsEC/+MUvdNJJJ2ndunWaPn26DjnkEH3ve9+LY28BxNOgQYN000036corr9Ttt9/uH+HcZ599JEl33323DjrooB738wVcAwYM0Lx58zRv3jx9+umn+tOf/qQHH3xQCxcu1PLlywPuU1BQoIyMDG3ZsiXgdl9g7OPLNfV4PAG3Nzc3+4PRDRs2aPbs2Ro7dqweeeQRHXjggZKkJ598Um+88UbIv3fYsGFavHix3G63/vrXv+r555/X008/rf/5n/8JGZj7+u4L8q36xje+oc8//7zH7V999ZUkqbCw0NbxAMAnpasBVFdX67rrrtOcOXN6/O6tt97SpEmTdMwxx+jMM8/UmjVr/L97/PHHdeGFF2rMmDEyDEOlpaV69tln/V8QAJLXGWecoRNPPFE1NTX+1ehHHXWUsrKytHnzZh155JH+f1lZWVqyZIm++OILbdy4UWPGjNELL7wgyRsITp8+Xccff7w2bdrU43FycnI0YsQIvfTSSwEjn6+88kpAO18OZ9cV9jt27NAnn3zi//mDDz5Qa2urLrvssoDPIV+gGmxk9YUXXlBpaam++uoruVwujRgxQrfccov22WefoP3trZEjR2rjxo2qr68PuH3NmjXKysryX+hnZKT01w6AOEjpkdUTTjhB48ePV2ZmZkDA+tFHH+nyyy/X4sWLNXbsWL3//vuaNWuWCgsLdeKJJ+qvf/2rRo0apRkzZuj999/X0KFDdeWVV+qQQw5J4F8DIFZ+9rOfacKECaqsrFR1dbUKCwt16aWX6t5779WuXbs0atQof46rYRg69NBDNWDAAA0dOlSVlZXatWuXDjzwQH3wwQf685//rMsuuyzo48ydO1cXXXSRrrjiCk2ePFmfffaZHnrooYA2w4cPV1FRke6//34NGDBAGRkZevTRR9WvXz9/m8MPP1yZmZlavHixLrnkErW1tamqqkqvvfaaJGn37t09Hvvoo4+Wx+PR7NmzNWPGDOXn52vt2rXauXOnzjjjjNg9mXtNnDhRTz31lK644gpdddVVOuCAA/TKK6/o2Wef1RVXXOEfvd5nn3303nvv6e2339Zhhx2mb3zjGzHvC4DUktKXuPvuu68yM3vG46tWrdLYsWN1xhlnyOVy6eijj9Y555yjJ598UpJ3VGPFihW6/PLLVVtbq9mzZ2vOnDm9qk8IwDmGDRumKVOm6J///KeeeOIJSdI111yjBQsW6OWXX9b06dO1ePFilZSU6IknnvCvnL///vt14okn6t5779Ull1yip59+WldccYU/v7O7Y445Rr/85S+1efNmXXHFFVq1apW/DJaPy+XSsmXLtN9++2nu3LmqrKzUuHHjAgLKb37zm1qyZIk2b96syy+/XDfddJMk6Te/+Y0Mw9C7777b47H3228/LV++XAMGDNANN9ygyy67TH//+9913333qbS0NCbPY1f9+vXTb37zG5166qlatmyZLr/8ctXX1+v222/XlVde6W/3k5/8RFlZWZo+fbpef/31mPcDQOoxzGDzRylo+PDh+vWvf61Ro0Zp+vTpqqurC1hg4Ha7deCBB+r555/XiBEjdOGFFwaMxs6YMUPf+c53LK2kBQAAQGykdBpAKEOHDlV5ebluvfVW/21ffvmlP+/r29/+ttra2gLu43a7g+aFAQAAIH5SOg0glEmTJqmmpkZvvvmmPB6PPvvsM11wwQVauXKlJOm8887T008/rbfeeksej0cvvvii1q1bp7KysgT3HAAAIL2k5cjqUUcdpXvuuUf33HOPrr76avXr109lZWWaO3euJOnss89WRkaGfv7zn+uLL77Q/vvvr6VLl/bYCQcAAADxlTY5qwAAAEg+aZkGAAAAgORAsAoAAADHIlgFAACAYxGsAgAAwLFSthpAU9NO2V06ZhjSoEEDorovkg/nO71wvtMH5zq9cL6Tk++8WZGywappKuoXbW/ui+TD+U4vnO/0wblOL5zv1EUaAAAAAByLYBUAAACORbAKAAAAxyJYBQAAgGMRrAIAAMCxCFYBAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsTIT3QEAAAAnc7ulujqXNm82NGSIqdJSt1yuRPcqfRCsAgAAhFBTk6mKihw1NHRORhcXe1RZ2aqyso4E9ix9kAYAAAAQRE1NpqZNy1VDgxFwe2OjoWnTclVTw5hfXyBYBQAA6MbtlioqcmSakhQYrJqm9+eKihy53X3ft3RDsArAkdxuqbbWpaqqTNXWuvhCANCn6upce6f+jaC/N01DDQ0ZqqsjeTXeGL8G4DjkiAFItM2bgwep0bZD9BhZBeAo5IgBcIIhQ8yYtkP0CFYBOAY5YgCcorTUreJijwwjeDBqGKaKiz0qLeUDKd4IVgE4BjliAJzC5ZIqK1slqUfA6vu5srKVeqt9gGAVgGOQIwbAScrKOrRiRYuKigKD1aIiUytWtJBD30dI/gLgGOSIAXCasrIOjRvXwQ5WCUSwCsAxfDlijY2GP0e1K8MwVVRkkiMGoE+5XNLo0XzuJAppAAAcgxwxAEB3BKsAHIUcMQBAV6QBAHAccsQAAD4EqwAciRwxAIBEGgAAAAAcjGAVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACORbAKAAAAxyJYBQAAgGMRrAIAAMCxCFYBAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACORbAKAAAAxyJYBQAAgGMRrAIAAMCxCFYBAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsRwarH330kaZOnapjjz1Wo0eP1vz587V169ZEdwsAAAB9zHHBaktLiy699FKNGDFCb775pmpqarR9+3b97Gc/S3TXAAAA0MccF6w2NDTo0EMP1ezZs5Wdna3CwkJNnjxZ69evT3TXAAAA0McyE92B7oYNG6bly5cH3Pbiiy/q8MMPt3Ucw7D/2L77RHNfJB/Od3rhfKcPznV64XwnJzvnyzBN04xfV3rHNE394he/0FNPPaUnnnhCw4cPT3SXAAAA0IccN7Lqs2vXLv30pz/V3//+96gC1aamnbIbhhuGNGjQgKjui+TD+U4vnO/0wblOL5zv5OQ7b1Y4MljdsGGDpk+fruLiYq1evVoDBw60fQzTVNQv2t7cF8mH851eON/pg3OdXjjfqctxC6x27Nihiy66SEcffbRWrFgRVaAKAACA1OC4kdWqqio1NDRo7dq1euGFFwJ+99577yWoVwAAAEgExwWrU6dO1dSpUxPdDQAAADiA49IAAAAAAB+CVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACOlZnoDgCwzu2W6upc2rzZ0JAhpkpL3XK5Et0rAADih2AVSBI1NZmqqMhRQ0PnhEhxsUeVla0qK+tIYM8AAIgf0gCAJFBTk6lp03LV0GAE3N7YaGjatFzV1HDdCQBITQSrgMO53VJFRY5MU5ICg1XT9P5cUZEjt7vv+wYAQLwRrAIOV1fn2jv1bwT9vWkaamjIUF0dyasAgNRDsAo43ObNwYPUaNsBAJBMCFYBhxsyxIxpOwAAkgnBKuBwpaVuFRd7ZBjBg1HDMFVc7FFpKUmrAIDUQ7AKOJzLJVVWtkpSj4DV93NlZSv1VgEAKYlgFUgCZWUdWrGiRUVFgcFqUZGpFStaqLMKAEhZFGcEkkRZWYfGjetgBysAQFohWAWSiMsljR5NbioAIH2QBgAAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACORbAKAAAAxyJYBQAAgGMRrAIAAMCxCFYBAADgWASrAAAAcCyCVQAAADhWZqI7AKQ7t1uqq3Np82ZDQ4aYKi11y+VKdK8AAHAGglUggWpqMlVRkaOGhs5JjuJijyorW1VW1pHAngEA4AykAQAJUlOTqWnTctXQYATc3thoaNq0XNXUcC0JAADBKpAAbrdUUZEj05SkwGDVNL0/V1TkyO3u+74BAOAkBKtAF263VFvrUlVVpmprXXELFuvqXHun/o2gvzdNQw0NGaqrI3kVAJDemGcE9urL/NHNm4MHqdG2AwAgVTGyCqjv80eHDDFj2g4AgFRFsIq0l4j80dJSt4qLPTKM4MGoYZgqLvaotJSkVQBAeiNYhaP0Vc5oV4nIH3W5pMrKVknqEbD6fq6sbKXeKgAg7RGswjFqajJVUpKv8vI8zZzZT+XleSopybc8BR9toJuo/NGysg6tWNGioqLAYLWoyNSKFS3UWQUAQCywgkP4ckbNbrPivpzRSMFbbxZHJTJ/tKysQ+PGdbCDFQAAIRim2T08SA1btuzsEfhEYhjS4MEDorovoud2SyUl+XsXN/UcvTQMU0VFpurrm4MGcYGBrhFwP0khA13f+d68eaeOPjpfjY2GP0fVzuMjOfD+Th+c6/TC+U5OvvNmBWkASLje5IzGYnEU+aMAADgXwSoSrjc5o7FaHEX+KAAAzkTOKhKuNzmjsVwc5bT8UbdbjukLAACJQrCKhPPVHI2UMxqs5misF0e5XNLo0YmvbdqXu2kBAOBkpAEg4XqTM5qKxfX7ejctAACcjGAVjhBtzmiqLY5KxG5aAAA4GUM0cIxoc0Z9ga532rwzwCsqMpNu2rxzwVhw3gVjhurqXI5IVwAAIN4IVuEo0eaMOm1xVLQStZsWAABORbCKlOGUxVG9kcjdtAAAcCJyVgEHScUFYwAA9AbBKuAgqbZgDACA3iJYBRyG3bQAAOhEzirgQKmyYAwAgN4iWAUcKhUWjAEA0FukAQAAAMCxCFYBAADgWKQBoM+53SIXEwAAWEKwij5VU5O5d1vUzkH94mJP0m2LCgAA+gZpAOgzNTWZmjYtVw0NgVuFNjYamjYtVzU1XDulIrdbqq11qaoqU7W1LrlZMwYAsIHoAH3C7ZYqKnJkmpIUGKyapiHDMFVRkaNx4zpICUghjKQDAHqLkVX0ibo6196AxQj6e9M01NCQobo6ItVUwUg6ACAWCFbRJzZvDh6kRtsOzhZpJF3y/t5uSgApBQCQfhjaQJ8YMsSM3MhGOzhb50h6cN6RdEN1dS7LGx+QUgAA6YmRVfSJ0lK3ios9MozgwahhmCou9qi0lKGyVBDrkXRSCgAgfRGsok+4XFJlZask9QhYfT9XVrayuCpFxHIkPV4pBQCA5ECwij5TVtahFStaVFQUGKAUFZlasaKFqdwUEsuRdBbnAUB6Y+4MfaqsrEPjxnWwg1WK842kT5uWK8Mw/SOgkv2RdBbnAUB6Y2QVfc7lkkaPdmvixA6NHk2gmqpiNZLO4jwASG+MrAKIm1iMpPtSChobjYARWh/DMFVUZLI4DwBSFMEqgLjyjaT35v6xSikAACQf0gAAOB6L8wAgfTGyCiQht1tpt0iNxXkAkJ4IVoEkk847OfU2pQAAkHxIAwCSCDs5AQDSjaOD1a1bt+r000/XunXrEt0VIOHYyQkAkI4cG6zW19dr8uTJ2rBhQ6K7AjgCOzkBANKRI4PV6upqXXfddZozZ06iu4Ig3G6pttalqqpM1da6GMnrI+zkBABIR45McDvhhBM0fvx4ZWZmRh2wGlF8X/vuE81900VNTaZuuKHn4p7bb0++xT3Jdr6HDrW2Q9PQoWbS/E19KdnON6LHuU4vnO/kZOd8GaZpOnqPwuHDh+vXv/61Ro0aleiupL2qKmnSJKn7K8b3glu9Wpo4se/7lS7cbumgg6SNG3ueA8l7Hv7nf6T//EeUcwIApAxHjqzGQlPTzqBf6OEYhjRo0ICo7pvq3G7pyivz9y7k6b64x7uT0FVXmRo9ujlpAqVkPN+33ZapSy7JlWEo6E5Ot97aom3bkmuEu68k4/lGdDjX6YXznZx8582KlA1WTTP46FO875uq3n7bFTD1351pGtq40dDbb7uSrg5mMpxv3yYAra3SvHlt+s1vstTY2BmsFhWZqqxs1Zlndjj+b0m0ZDjfiA3OdXrhfKeulA1WEVss7kmcYJsAFBV5NH9+q4YN87CTEwAgpRGswpIhQ6xdrlpt1xvx3mrUSVuZ+jYB6D5asGmTocWLs7ViRUvSjWQDAGCH44PVjz/+ONFdgKTSUreKiz1qbDQCciV9DMNUUZE3sIuneG816qStTCNtAmAYpioqcjRuXAejqmH4Lj6+/NLQIYdI3/2ulOHIon0AgGD4yEYPweqoulxSZWWrpM7FPD6+nysrW+MaNMV7q9HeHD8etWfZBKD3amoyVVKSr/LyPF12WT+dcop09NH5bEsLAEmEYBUBun65z5zZT+XleSop8X65l5V1aMWKFhUVBQarRUWmVqxoievIY2+2GrUSSPbm+OGes94gT7h34n1xAwDoG3xawy9UfqTvy90XkJ5xRoceeyxLn32WoYMO8mjq1HZlZ8e3b52jjMF5RxkN1dUFViMIN60/fnxncN2b41t5zqLhpDzhZEMKBQCkDkZWIcn6yOKaNZk69th83XhjrlasyNaNN+bq2GPjP60azSijnZG1aI7fm9FYK0aOdCsjw5QUKhg1lZFhauRIFlh1RwoFAKQOglVIsv7lfumliZlWtTvKaDeQjGYUM94B0fr1Lnk8PTdh6GTI4zG0fj0BV3ekUABA6ogqWP3ggw8kSV9//bUWL16sFStWqKODXXOSmb0v7diPIkbiq0bQfXGXv0eGqeJij78agZVAcuPGDL3xRnTHl+IfEBFwRY8UCgBIHbaD1YceekgXXXSRJKmyslKvvvqqqqurddddd8W8c+g71r+0EzOtarcagdUArrExuuNL8Q+ICLiiF83FBwDAmWwHqzU1NXryySfV1tamF198Uffcc49+9atf6Q9/+EM8+oc+EunLPXTeZKB4jvKFqkZQUGBq3rw2jRvXObpvNYArKop8/FDVDnoTEFmpUEDAFT0nlFoDAMSG7WD1yy+/1KGHHqr6+noNGDBAhx56qAYNGqQ9e/bEo3/oI1a+3K2IdpTPap3SsrIO1dc3a/78VhUUeCRJ27ZlaNGinIByUVYCvf339+jEE4Mfv7p6tx5+eI+qq3ervr456Ir+aAMiq6WuCLh6J9TFR3Fx/EutAQBix3awOmTIEK1fv17PPfecjjvuOEne0dYDDjgg5p1D3wo3srh8eUvcRvns1ilduzZTixdna/v20Au9ehPouVzS6NFuTZzYodGjw2+1anc01m7tz0TWtk0FXS8+Hnlkj159VSEvPgAAzmSYZvcKkeG9+OKLmj9/vnJzc/X0009r8+bNmjFjhu677z6dfPLJceqmfVu27OxR+zISw5AGDx4Q1X1TiW97ys2bDQ0Z4t1C1eXqDLQkBWy56gv+ogmeAuuURj6m2y2VlOTvDfZCb/taX9/s73O4OquxOt+hnrPubez03e7xER7v7/TBuU4vnO/k5DtvltraDVYlqbXVO2KVk5OjXbt2affu3dpvv/3sHiauCFbjI1zwZzdQjSZ4q611qbw8L+Kxq6t3+4v3hwr0+vp8R9P3VJSowJv3d/rgXKcXzndyshOsWi6MuX79+rC///zzzzVy5Eirh0OSKivr0LhxHTEJNqLZNcrqAq7XXw/snxOCP0pRxfZiB9YxMg8gmVkOVqdMmRL294Zh6MMPP+x1h+B8vpzO3lq71trLr2vwZnUB19KlOf7/d0owlO6lqOK5NS1C4wIBQLKLKg0gGZAGECjakZV4jci43dIRR+SrqSnyGr/uU/olJflqbDQC8mY7+U5c5PzXvj7fkfoeLmc12fUmXzdWUvn9HYrdnPBUkY7nOp1xvpOTnTSAqHaw2rNnjzZt2qSGhgY1NDTo888/18svvxzNodAHgq22/+5383X33dlhd5yyu0rfjro6l6VAdfDgwAoD4Vb5e/UMhqLZYctqKS070rkUVby3pkVPdrccBgCnsh2sPvvsszruuON0yimnaOzYsRo7dqx+8IMfaOHChfHoH3opVKmk7du9tUkPOyx48Gm3xJJdVvMyzz67vUfw5ivnVFBg/RLaTjAUzyA9mUpRxTJgJ1+373GBACBV2P72ffjhh3XNNdcoPz9f69ev10UXXaTFixdr9OjR8egfeiHcyIrPtm2GLrkkVytXdgZKkUZkDMNURUWOxo3riHoU0Gpe5g9+EDxCGjeuQzfckCPvtL/1ACdSMBQqr7KhIXZ5lbFcpBYvsc5zTPd83UTgAgFAqrA9svrVV1/poosu0nHHHacNGzbo8MMP1x133KFnnnkmHv1DL0QaWfHqOR3YFyMyVrZ3DbfJQF2dS42Nkf62nsIFQ+GDe0OmKV13XfhpU6ujkVY2HohHKoIV8RhVZ+vYvscFAoBUYTtYHTRokNrb21VUVKT//Oc/kqTi4mI1NTXFvHPoHesjJoHBZ1+MyETK3zSM8Pmbdh+7azDUNQh87TVZDtIlQ1u3Zmjp0uygv41l+kA8UxHCiVeeYzrn6yYKFwgAUoXtYPV73/uebrrpJrW0tOiggw7S008/rerqahUUFMShe+gNuyMmvgCwr0ZkwuVv/vKXLSosNEOOKtp57K7B0Nq1nUHgZZf10ymnSEcf7Q0CrQbAjz6a1aM/sRyNjHe+cDjxHFVPpnzdVMAFAoBUYbt01ZdffqmKigpVVlZqw4YNmjlzplpaWvTzn/9c48ePj1c/baN0VeRyQd35SkT1dYml7uWxmpoM3XRT+HzJyCWs1OO+koKW8fGVu5o/v02LFuX0uH8wwcppxaIsU6JLPFVVZWrmzH4R2z388B5NnBhdcMkOVn0rHeuspuu5Tlec7+QU9+1Wu+ro6FB7e7v69Yv8BdeXCFa9QtVZ7CpYAOS7n6SAYDDe9Rnt1IUM1Uef/HyPZs9u15w5bZIiBe6mv7rA9u2RJxy6Bmux3EY10VuyJvrx4ykV399WpdsOVul8rtMR5zs5xWW7VZ/nnnsu5O9+9KMf2T0c4sw39XrttTnati34SJ3UczrQdz/viEzn/YqKzIgjMr3ZgMBOFYJIf9vu3YYWL87WoYd6VFhoht3aVTK0fbuh0aPbVVsbOVjtmoYQbY5vsOcp0Su4fXmOkUbVreY5pluQ5FSx2nUOABLBdrC6bNmygJ937NihPXv2qKSkhGDVoXylkpYuzdajj2YFjByGCz6jKbHUmynHznzJ4Lz5kobq6lz+L95wJay6Brhnntke9rF9/vEPlwoKPNq+Pfw0fNdgLZoc31DP0wUXWOtnvFZw+/Icp03LlWGYQUfVreY5puP0MwAg9nqdBmCapn75y19q+/btmj9/fqz61WvpngYQakTLzkiX3VGx3m7taDVf8sc/btM++0gHHeTRIYd4NHly5Gnr7GxTbW3WRiPnz2/VokW+Ff+R/w67Ob6RnqeCAlPbtyd2S9beBppO3OYzld7fCI9znV4438mpT3NWJcntduukk05SbW1tbw8VM+kcrMZiRMvuMdxu6bDD8vdOx0cXZFnNl+x+3EgLrOx6+OE9ys6Wrb/fao6vlQVUhYWmtm41ZBh9my/cXW/SORK5SCyUVHl/IzLOdXrhfCcnO8Gq7dJVwfznP/+RYbALihPEouxRNMdYujRb27ZFLnn01luhoxMrGwX4Vu53HjfcXxKdIUNMlZV1qL6+WdXVu/Xww3tUXb1b9fXNIYNEq2WZrJSG2ro1Q/PntyW8xJOVjQuCYZtPAEAs2c5ZnTJlSkBg2t7ero8//lgTJkyIacdgX7TbpHYdQdt3X1M33GDvGG63t/aoFRdemKt7723VhAk9A65w+ZKdQWrPnaVC/84uU8XFnfmodhelWMnxtbowatgwj+rrm5NycVKiF4kBAFKL7WB11KhRAT9nZGTo4osv1mmnnRazTiE6VhcovfWWSxkZ3mDh008z9JvfZO3dujSyYIuc6upclso9SVJzc4YuvTRXs2e36eab23r8PlQVAitbxgZbZGVd5F2zrIgU4FpdGPXppxlJu4KbbT4BALFkO1i94oor4tEPxIDVkapp03K7BZf2g4aujxXNCNkDD2RrxAhP0BHW7iOUzz+fqbVrI4/c5uWZ2r07umB14EBTd98d/1XqpaVuFRV5S0OFDqxNPfFElubMaUuKkdTuYl3+CgCQ3iwHqz/96U8jtvn5z3/eq86gd6yOVHnLMnVlP8Dr+lj2R8i8j7dgQY7OPLMjaEDWdVTxq68MS8Hq9de36Xvf8+jJJzO1enV2xPaSNHCgNH16q665pm8CQ5dLmjKlPcJOWT1Hr5NJLMtfAQBge4HVtm3btGbNGu3cuVMFBQVqbW1VTU2N2tp6Tuki/txu7yr6qqpMud1SUZGVBUrR5woahqniYk/AqFhpqVuFhR7ZHaHdssXaIpupU9uVkdFzcVUnUxkZpqZNa9fo0W794hetEdsbhqlnntmtL7+Urruub0cwhw3zWGqXzDmdVhec2dH1tV5b65I7+eJ4AEAULI+s+kZNZ86cqWXLlmns2LH+37355pt6+OGHY987hBWsvFRhoUemGaykU++CVCn4qJgvgLBaw7Q7KwFZdrZ02WVteuihbPX8O7x9uvzyNmVnd7a//PI2PfBA6PazZrXp5JOjX7DUm52Z0iWnM5pNJUJhgwEASF+2R1bXrVunU045JeC24447Tn//+99j1ilEFqq8lG+K37fPvU9hYe8Dn+6jYjU1mSopydekSXlqbg6XgxmalYCspiZTzz+ftff4gY+RkaGgi7VuvrlNs2e3KaPbKzxUezt8f3d5eZ5mzuyn8vI8lZTkWyoLJkUu0RVs9DpZRVv+qqtYlGMDACQv25/y+++/v9auXaszzzzTf1tVVZW++c1vxrRjCM1KiarcXOnZZ3dr82ZDTU2GtmwxdO+94fIkA/kWwSxb1qItW3qOigXuUBSNwDJRoYR+HO8NDz7YoiFDTFVVZfbo4803t+mnP23TY49l6bPPMnTQQR5NndruH4GNRqj++AInK1Pc5HRaF205NoTWm1kBAEgE28HqnDlzdPXVV+vJJ59UUVGRvvjiC/3zn/8kDaAPWSlR1dhoaN06l554Iqtb28jpAL6A6dZbgwdMbW3SvHnBAwhrrJWJCheo+OqrzpqVK4+n83fdp4a9KQTtUfTRXn/sBk6hSnQVFZlMbXdhtRxbsi5G62ukUwBIRraD1bFjx2rNmjX6wx/+oC+//FJjxozR3XffrQMOOCAe/UMQVhfedO5v312wPM7AgKm8vF033dTzS628vF2rVmWpqclOBkng8YuLrQVkkQIVyZCn21qlUCOcwUaTMm2++mMdOMUypzNVscFA7MRiVgAAEiGqZK9hw4ZRbzWB7C28CbfjU2CbggKPZsxo1yGHeDR9es8vtYYGY++iJRuPvneUdt68Vg0b5gkakIWalowmAAk2whlqNOn221t18cXWjx2PwClZC//3lXRZjBZvpFMASGaWg9Xx48frd7/7nU499dSA7Va7+tOf/hSzjsErWCDX1BRpi1HfSGaooCn4jk87dhhatChbhYVm2Kl3O1P/kaa1w01LRhuA+EY4ly/P0hdfGHrkkZ4BdmOjoUsuydU++0gnnRT8ON2f+8GDCZz6GhsMxAbpFACSmeVgdcaMGZK8O1iFClYRW8ECuaIij1pafD+FClSt6jnCIpnati381HtkpgoKvJUDjj8+9LR2pGnJX/6yJWygEsmNN+aG7uHev/Xqq6V331WPqgGhnvv8fE+YygemCgtNud0KuuAL9rEYLTZIpwCQzAzTjH49tyR98skn6t+/v4YMGRKrPsXEli07ba9UNwxp8OABUd031gIDudjWS40v7+KprvlvvhHKxkZvZYJBg0ztt5+pK6/MDbPtqLdawK23tmr6dG/QGU3AasX117fq2ms7S1mFf+59gvfZMAL7yeKV2IjFwiAnvb/7Wm2tS+XleRHbVVfvTomR1XQ+1+mI852cfOfNUlu7wepf/vIX3XrrrXruuee0atUq3XLLLcrMzNQvfvELnXbaaVF1OB6SOVh1u6WSkvy9q8SjC9D69/do167o7x+tQYM8Wry4NaAWa/cgw47q6t3ats3ocYyMDHPv4qpwaRBWmVq50htcx+K578o3+sfild7rbcklp7y/E8H3uo6UTlFf35wSo9TpfK7TEec7OdkJVm0vsFqyZIlOPvlkmaapRx55RHfeeacKCgq0ZMkSRwWrySzyKvjIdu3KkN3tT3vHm9P5f//X7K9j2vtarN6UgEmTeq6ab2oy9o64dt+pS4omyPQtLonFc98Vi1dih8Vo0SOdAkAys/2t/Omnn+rqq6/Wp59+qi1btuiHP/yhTj75ZH3xxRfx6F9aSr68Me+X3Z13tvoD1fA1Uq3zLibruRPShAkd+uUvW2KyM5dkqKEhwx8Mx5p38Yr3+ECi+Gr7FhUFvme670wHAE5je2TV5XKpublZr7/+ur7//e8rOztbGzduVP/+/ePRv7RkfTV5pOluq1UDest7jJtuylFGhvdLMVYjlIMGBX8uamoyNW9eToTFYPb4Rm3jJfkuQpBqqO0LIBnZDlZPO+00XXDBBdq4caMqKir073//W7Nnz1ZZWVk8+peWRo50a9Agz95RxeBB5oABUn6+qU2bIgVAwctUBf4uNroWF29ri9zeiu6jQJI3UL3kklAr/cMF5+H5vrh7U4Eg0vGBRCOdAkCysT0sdeONN+rCCy/UwoULddZZZykzM1Pnnnuurrvuunj0L+3U1GTq2GPz9+4QFbpO6s6dhgxDGj/eWlRYUBD/QMkX3FVU5GjffXv7eKaKiz096me63dINN+Ts/SnY89M1OA88XqgcXsPofCxfbl/wY4Tvbyhdjw8AAOyxHay6XC5NnDhRo0eP1gcffKADDzxQP/nJT+RiHqnXfAuSuu4VH86mTYZ+97ssS20feaRFgwZ5FO9FV778zI4O74r93jxesAUf3hJY4QJ5KfiGCL7bgven62P5cvtCpSD0FC6dwrvBAotXAACIju1gtbm5Wddee61GjRqlCy64QJ999plOP/10ffrpp/HoX9qIZkGSd6V5+KDQN6qXmakIo7Wx9fjjWfJ4oi//NH16W9AFH/bzPsMHnC6XNGtWm8aN61BtrUtVVZmqrXVp3LgOvf9+c4QA30rKgaEf/aidxSsAAETJdrC6aNEi7d69W2vXrlVWVpYOOOAAnXLKKbr99tvj0b+00bkgyV4wZprG3qCwswRNl9/6R/VefNF2enKvrF1rbcQ3lAMP7Pxb3G75A0n7wWr4PF2PR3rggWwddli+ysvzNHNmP5WX56mkJF8vvZSpxYtbZRg9n9uez3VoL72UqTfecMlNFgAAALbZDlZfffVV3XnnnfrWt74lwzCUlZWlBQsW6G9/+1s8+pc2ertSPD9fysvrHkAZys2VHnggS48+2rvg0brYpBn4puBrajJVUtIZSN58c+gtVKPhqwG7bVvg8+9bLCYpZLmf+fOt5Qvv3p2hs8/O09FH56umpm8vGgAASHa2vzk9Ho+y9xbT9G1+1fU2RKe3K8Wbm6XOnMzOwKulxVB9fV8GSLFJMygqMmOyqYA1PfvctZh/fX1z0HI/kvToo1navt3aNV9jo6FLLsn175YFAAAisz2yWlpaqltvvVV79uyRYXi/5H/xi1/o2GOPjXnn0omvZFL0I5NGt/8mr0GDPBo50h2TTQV6w7dYrLbWFbQupcslzZjRbuOI3r/j2mtzSAkAAMAi28HqT3/6U33yyScaOXKkdu7cqREjRmj9+vW6/vrr49G/tOFySeXldgKfYJI/UJWk733Po8cey4oqhzceLr00t0c+q286f86cNhUW2rnIMLRtmzcA9umak1tbS24rAABdGaZpb5J1+/bt+sY3vqG//e1v2rhxo4YOHapDDjlE99xzj2688cZ49dO2LVt22p4+Ngxp8OABUd23twKnvBMfoKGrwNQK3+Iq3xaVgZsUWDt348e3acWKVtXUZKqiIidgt6/iYo8qK1tJFYixRL6/0bc41+mF852cfOfNCssjqx9++KHGjh2r4447Tueee66++c1vaty4ccrLy9PkyZO1Zs2aqDucToKNokVTtgqxFK40Vc8aql03P3C7vXVZV67suQgrnN/9LksLF2YHravrW9zFYiwAAGwEq7fffrsOOeQQPfTQQ+rfv78efvhh1dXV6bzzztOAAQNUXV0dz36mhO4r231TykuXZlue8u5tof105HJZec6C7XgVuk6sL5+1rs47nV9W1qH772+x1a8HH8wOeoHSPRjuDVIMkAi87gDEkuWhmw8//FAvv/yyBg4cqEMPPVQXXHCBnn32WV1wwQW65pprlJFhO/01rYRa2d7YaGjRIuuVFLw1VYOP+CE4tzvS82Ro0CCPmpo62xUUmNq+PfLz+8YbnQuv7JUfM8JOV3mDYUO1tS65XOqxuMsKUgyQCLzuAMSa5ZzVESNG6L333vP/fMQRR2ju3Lm65JJL4ta53nBSzqrbLZWU5O+d7g0W0NgNPJMtUE1Uf00ZRudIZThTp7Zp2DCPBg0yVVRkyuORzj47z9ajeQPe2F60FRR4AkpjWf3SD5UD3T3fNp2Q1xZ/Tnndca7TC+c7OcUlZ9VXpsonKytLU6ZMsdezNBV5dyrf7dZXlCeXWPTX3ieQ78vRSqAqSY89lq0bb8xVZWWOtm0zdPzx3lJioXeq6pla4B2Zje0nZffRXSv5rOFyoGOZYpCOmN4OjdcdgHiJehgoKytLWVl9tStScrMzPWxnG0+ENnSoabMGqpcvGFy7NlOVla2Sgm9j6xV+K9fYsP+lH+niqHu+LawJlXPOQjgvXncA4sXyp2xHR4eee+45/8/t7e0BP0vSj370oxh1K7VY350q9iNzqcNeIHj//S3KyJAefdTezmrdd65asaJlb/5d18cP15f4j3r78lnr6lwaPbpnxGr14qi3W/ymk3A559Om5aZlWkV3vO4AxIvlYHXw4MFatmyZ/+fCwsKAnw3DIFgNwbc7VWOjEXFamnyb2PjqK0NnndVh+XnvyhcMvvWWS4WFpioqWtXUZGjDhgw99VSmmpudsZgw1Je+1Yuj3m7xmy4iTW/7Lm7GjeuwvPgtFfG6AxAvloPVV155JZ79SGkul1RZ2app03JlGGaEwIlRh1gYONDU8uVZ+u533WpoyFQ0i7ymTcsNWNwUm1Hv2C02C/WlH+niyDC8i8hKS0ketKJzeju4SCPd6YLXHYB4ccYQURooK+vQihX2CscjGqby8z0699x+uvHGXP3pT1mKNjgMXroqumMZhqnCQo8MI1wOrPVjFRd7Qn7p+y6OfG2731fy/j6dRwHtYHrbGl53AOKFYLUPlZV1qL6+WXPntia6KynK+4XY3GzI4+n+u2gCiVgtoDJlmtKSJa0hLljsL8CL9KUf6uKoqMi0nV/pWwG/enWmHnkkS6tXp9dKeKa3rYvl6w4AfCzXWU02Tqqz2l1trUvl5fZqeCKyggKPduwwguYWJpapgQNN/f3vzXK5pLY26bHHsvSnP2XqtdfsrSS3W1zd7fZOY0ezqYAUvMB7tH1JtGjf3746yZGmt+vrmxk13Ku3r7veou5meuF8Jyc7dVapuZIAdhZcwZof/7hNhx/u0S235Ca6K0EY2rrVm9O4bZsRMvgLzVuGa9y4Dttf+i6Xos6jDLUC3qehIT1WwofLOWd6O7jevO4AoDvSABLk/PPb9wYBwfIXuTS0a/XqLL32mrOjhRdecGnatNxuZbCkcOc7I8PU8uUtqqxs1ejRfTc6FW4FfCfvKHY6FHpnehsAEoeR1T5WU5Opa6/N0bZtXCfEkmkatqfU+9rq1Vkhgj9ffd2ut3uDokcfbdGECfENhIJN2UZaAd8pfVbCl5V1aNy4joRObwNAOnL2t3uKWbMmU5deGmmamrSA6HXdtjbY8xhq56n4MgxT/fubamoKF/wF71NGnK9pguWkFhd7bI8UpstKeKa3AaDvMbzXR9asydSMGbnyBiXp8cWeWMHLQ82c2abq6t16+OE9evbZ3dp//2BtY9sP05R27rR7zg0ZRnyn2H05qd3TEhobDT36qL2tlFkJDwCIF4LVPlBT4x1R9XgIUvtGqPqohtasyVJTk3cKd8sWQzNm+H4fn2Brn32kgoLojh3PvdQj7cokefNle9aE7dHLsDVfAQDoLdIA4sjtlt56y6W5c3MS3ZU0FDwloKHB2JuK0XlbYaGptjZDzc2x78XXX/d+JD0eU+yRc1J9tWp9C/5Cp1WwEh6RJLqUFYDkxshqnNTUZKqkJF9nn523d8tORlUTI3Jh/+3bvYHqOee09U2XbIrHFLvVAPiyy9pUXBzq8Q0VFjL9j/B8n4Xl5XmaObOfysvzVFKSr5oaxkoAWEOwGgehcgHhFD2nvQ1DeuONTBUVecJMffdtWbFI26r2htUA+BvfkOrrmzV/fquC/f3bt3trrRJ4IJhwedG8bgBYRbAaY9bqU8JpTNNQY2OGpkxpl9Rzb3NfkDZvXqxHX00FCwLjXWzetzFF+JxUU4sXZ+v3v8/UE0/4FlwFz29Nh1qrsMdKXjSvGwBWEKzGWGcuIIFqMho2zBO0+Htxsbc4/zHHuPcGeL0fYTUMU4YhzZ7dc6o93sXmfbsyBd+Ywt9DSdL11+eEfU3HcyEY4svt9m7/XFWVqdpaV0wDx0ifhbxuAFjFHEyMpUu9yVQ1ZIip0aPdPYq/NzUZuukmu9ukhldUZKqyslVlZR2qqGjr8wUoZWUdmj+/TYsWhV4AaJqGmpqsvaZ57SeXUDV2fa/J3rL6euB1AyASgtUYo95ksjKVkSGNHOkdWupa/L2mJlPTp+fuHYWMjmGYGjrU1P33t+irr3oGpIkqNj9smCdmx+K1nzx8uaTdX9O+XNJYjOpbfT3wugEQCWkAMWYtFxDOY8jjMbR+feBwZixykH2vhdtvb9WJJ7o1cWKHRo92Rukeq4HCoEGhX9PxXAiG2OurXNJIn4W8bgBYRbAaY75cQCnYIh04XfcpSfs5yKYyMvo2/7Q3rAYUd90V/DUd74VgiL2+yiUN91nI6waAHQSrcVBW1hF0kQ6c79NPO98Sbre0YoX1bUd9C6YefbTFv6VrdfVu1dc3OzJQlawHFBMmBH9NOzkQR3B9mUsa6rOQ1w0AOwzT7E0mnnNt2bLTdo6hYUiDBw+I6r7B+HZtef75TD3+eHbvD4g4M1VcbKq+vllr12bq2mtztG2b9eu5aBenOGF3H6uLbZzQ12jF+v2drGprXSovz4vYrrp6d8zyqPv6dcO5Ti+c7+TkO29WsMAqjnyLZj74gAHs5GCoocHQkiXZuvtuqxcXpgoKvKNExx9v/ws4mhXZ8fjiLyvr6FEBIZkCUVjnS/1obDT8OapdGYapoiIzprmkiVpACCA1EKz2gUGDuNRLJt5A1foU6IwZ7VEHqpFWZFspoRWrckORAop4lzpC3/ClfkyblivDMAMCVnJJATgRaQBd2J1KsDrC9frrLk2aFHnaDckrVNAW6jXidkslJfl7t6EMPrpVWGgqJ0dqbOw6Mu97YfYMMOKZAxgYWHftr/ex589v05w5bY4OcJgqDJTKFx+c6/TC+U5OdtIACFa7sPOCt5Pjd801Ofrtb8lZdb6egaDd+3YN2sK9RgoLTUt5g97jdg8OQ0/d1tc3xzxgjBRY+xQVeXT77d7XvxNzW/lC68mJ5ykWONfphfOdnAhWFd9gNdQoU/cRrpoa+4t0EGvBgzurQWA0ioo8mjixXQ8+mB3yNTJ9ersefTT2FzCxXBTjY3VBjuSthjBrVpuqq7McN2LHF1r64FynF853cmKBVRxFKqhtGKYqKnLk8UiXXpqbkD6iOyuBaOy2fGxsNPTAA75ANPhr5Nln4/PWi8fWldaPacg0zS5/e6dY7owEAEgvDPnZZLWg9jXX+PZbZ9/rxAo3dW3qmmukuXNb4/SYoV8jTU0ZYXeFilY8tq60d8zgf3ssd0YCAKQXRwarTU1NmjVrlo455hiNGjVKt99+uzo6nDEaY3WUadcuO7seoe95z82zzyph2z1OmtTu7UmPgDWagNPUwIHx2boyVlsIx2pnJABAenFksHrNNdcoLy9Pb7zxhlavXq23335bjz/+eKK7JSk+I1dIFEP//a80c2Zi0jX+539MzZjRpoEDA19TxcWmCgvDBYfBb9+61dDatZlyu715plVVmaqtdfV6JLPrLlfRBdKB4pGqAABIXY5bYPX555/rjDPO0Ouvv64hQ4ZIkv7whz9o8eLFevXVVy0fZ8vnmxX0T3O5pNwuwUlzs/9/eyRpZ2RI/foFtPV4pNGj87VpkyGzy8ipRxlqUT/58iP7abeMEF/spgztUeeCFTttc7VHGfKE/Lt3Kz+qtjlqkUuhoxp7bfPkG7nMVqsyFXpU3E7bPeonc+/1VZbalKX2mLRtUY48e9O3g7ftzHltUa48e4+bqQ5lqy3kcVuVI/fe42aqvUtbUxmG5OlS37L/wCz9aJI0blyHSo9p1cs1bl1+ee7e1oELwdqUrQ5580Jd6lCO9m6XuneDgpwcadNmbx/blK39il3exU3jWqWWlpD9VVaW3K5s1dW59GWjR0WFe3TssW5l7L2kfeGFTN1yS442bc5Qu7LUvrcPhjzqpz0hD9u97fNPN4UeAc7MlHL2ptCYprR7d+j+2mnrcsnol9v5/t7VHLZtqM+IHoJ8Rlhuu3u3Qq4GMQwpLy+6tnv2SJ7Q73vl50fXtqVFYa987LTNy/P2W5JaW6VwM2d22vbrJ2VkeD/L98nRlsatoRfc7G0rSWprk9pDf0YoN1f+Mgl22ra3e9uHkpPjfR3bbdvR4X0uQsnOlrKy7Ld1uyN+Rig7235bj8f7WotF2yDv+5ALrGx+Rlh+3/MZEbytzc8Iw+PR4G8OCd2+K9NhXn75ZfPYY48NuO2jjz4yDznkEHPHjh3WDzRggGl6T13Av9bTzjC/+upr/z9PXl7QdqZkth1/QkBb96BBIdu+o2NMw/CYkseUTPM/+mbIth/osICbPtBhIdv+R98MuOkdHROy7ZcaHHDTqxoTsu0u5QXcVKMfhmxrSgE//q8mhW2bp13+Hx/TRWHbDtaX/h/v16ywbb+p//h/XKTrwrY9TB/4f7xZN4dte4ze8f94nRaFbTtGr5oDB7rNggK3OUv3h237Q9X4f7xIj4Vt+2P91jQMj/nYY7vNHct/FbbtRXrM/+MPVRO27SzdbxqGxzQMj7n2+hfCtn3nnNvN4mK3KZnmMXonbNubdZPpe60fpg/Ctl2k6/b+r8c86hufhG27e+ql/vfblg8/Ddt2z+TzO9+fnzWGbdsy/kfmli1fm6Zpev8bpm28PiPavj8ioG3HAQeGbNs+/NCAtu3DDw3ZtuOAAwPatn1/RMi27kGDAtsef0LItp68vIC2raedEfZ569q2ZfyPwrf9rNHfds/k88O23fLhp/62u6deGrZtU/3fvK+dLV+b5nXhPyO2vrHOf9zmeQvCtt320qv+trtuvi1s2+3P/d7fduedd4dv++T/+tt+veyhsG13LP+Vv22kz4ivlz3kb7v9yf8N23bnnXd3tn3u92Hb7rr5Nn/bbS+9GrZt87wF/rZb31gXvu3sq/xtm+r/FrZtPD8jur6Gw7XlM8L7r9efEQMGWA7pHFcNoLm5Wf26XllI/p93796tffbZp1fHz87OtFwqISvLFdjWCD99uf/+ho44Qnrhhd70EE52xWxpwj0ZcrmkFydI+kNsjmvuXZR00039NGVxv4jtbR3bNGQY0sqVOfpBmHbP/G+WGixmBk0+x9CKtwx98YWdnhjaviP88fv1y1Y/33vODDNqIyk3N0u5vrb9wh83JydTOYO8bQcNCv/+j9dnRFZmt7YZodtmujIC27pC/32uDCOwbWbonOAMo1vbrNBtDXUrK5Md/usioG2Ohba+UZbcrLBtBw3qL/nPc/hybwMHdmkbQWFhfmfbvJywbQsKurTND9/2G9/I62zbP3yKUUDbAeHb7rNPv862+4T/jBgwIFcDfG2/Eb7sXP/+uepvsW1+fo7yfW0L8sO2zcvLUZ6vbWGEtv2yO9vu6h+2bVw/Iyy+dviM8IrnZ0SPxzJN07R1jzh7+eWXVVFRoXXr1vlv+/jjjzVhwgS9++67GjDA2gukaUN0aQCDBg1QU1PoNICu3G5p/XqXvvzS0KefZWrl0/v4dxsiDSCZ0gBy5ZEraNtpl7TqD3/IUuOmDH/bfQoMXXZZu+Zc0azbb5ZWrAz+5RU6DSB82+ef/VrHl/Scrqqrc2nyuXl70wC8X/Bd0wCC6do2Q249v2prwBS8ryj87Nm5+nJ7ttqV42+bK+8XgSHvhgNvvul9/a9f79KmpmwNHOo97pYvTRUX7tbIkd7jlpTka9v2zooAXdMAMuTWsKLdevPNEJsXxDkNwP/+Jg3AftskSwMYNCBHTZtIA0iXNICA7+4wbUMiDaBTH6YBDDrQWhqA40ZWDz74YG3fvl1btmzR4MGDJUmffPKJhg4dajlQlSQzLy/0h1TX2/O6PHmGpPx8mXs8nfcN1Vbe1WmjTvVuEnDH0sA93rsGmJHYaevNi41921ZZX2Rkp22bctSm8CMR0bRtV7Y/AIpn2/tW+s5N5xXu9u3SXXfl6MEHs3XZZW3abaHPHcryB42RNH6VJTOv50jEMWOkguJ+amw0/K9LtzK12+Lb2COX/ru1v0bleb/sg+2w1bVt1wuUfzdK9zySrSeeCF7sf9Sp3tdEba1LG7eHfj175NK/Gwfo7b+6Qm9e4H8fGT3ec7Foa5oK+vwGP65s9MFm234R3vfRts2N8L6Ptm1OhPe9nbZd22fneP/FvG22zLz80N8DXdtmZXv/WTmunbaZWd5/sW7rypTyIrzvo2mb4bL+GrbT1siIT1vf+z7Yd3eotpaOK2e0TfXPCBtrbR1XDeCggw5SSUmJ7rjjDu3atUv//e9/9eCDD2rSpEmJ7lpQ4TYJQCoIXS91505Dd9+drfx8jwLfhb0TquJE11X50Za7uvHGHNXUZPp3YfNuoWrNokXZPdr7iv3X1Hi/DK2u9KciAADAKscFq5K0bNkydXR0aOzYsTrnnHN04oknatasWYnuVlCRNglA6mtujt25z8vzyOMJPZNSVtahFStaVFQUGJwWFJjq3z9y0Lx1qze4vPbaaC+wwhf7t1rajRJwAACrHJezGivR7BEczf7CVVWZmjkztgtikIxMxfKCxTe9HmprUrdbWro0W48+mqXt27tec/rn0sIc3W5frbWvrt6t0lK3Skry1dho+APZrgzDm/9aXx8iZzWO2D88fXCuk5Mvh37zZkNDhpgqLXVb+pzgfCcn33mzwnE5q8mGESJ49TZQDQwIfdPr8+a16aCDPGpqMjRokDfQKy11a+3aTC1enB3lB7P1vhqGafkxNm82/KkK06bl7r1v52P5UhcqK1v7PFBNZ9EGAEBfCpZDH+miHemDYLWXfFtRhhpJAiLrOXLpfS2ZWrSo52KSoiKPWloUYhrfUCzzZ4uKTF1wQXvQfnTnu3DzpSp4v3g6+1dUZPLF08cIAJAMfDn03S+MfRftK1a08HpNc6QBdBHtVILvjSaJgBV9IFYpB6GO490Ja8WKFh1/fGc5KrtT+04b0Uu3qcLAAKDnCHcqBwDpdq6Tmdvt/XzxXthGlzrE+U5OdtIAHLnAKtmEWvQCBGdKMnXqqdEGClYD1eCvR8MwNXCgx///3X9nGNI997TqxBO9wWXXKgTdj8nUfvy53d6SYFVVmaqtdYUtY9j1PqGqlHRfFAckUqRFyqZpqKEhQ3V1fMCkM4LVGCkr61B9fbOqq3drxow2+QISoLuCAlPz57dp1qwwBcBjJFgwKkl3392qlSt7XmAVFZkhR9wKCnqOxBYWBm9fU5OpkpJ8lZfnaebMfiovz1NJSb6/xBWsifZ5JABAsqDcHazgmyOGXC5p9Gi3Ro92q7TUrblzc7R9O2+w1GBllb0127dnaNGiHBUVeZSf79lb+ip2rxPftNmtt7bqppvC542OG9cRcao+VD6ZZGrr1p79Jv8sNnrzPBIAIFlQ7g5WkLPaRazzXl5/3aVJk6zvTgWn6v5iiOYLPliw2/W40QYNgaOd3fMRe5s3ajefLBb5Z/GSTHltvX0ea2tdKi+P/NlTXb079E5iSSyZznW6873We1PujvPde4lYY0DOqkOMHu3WoEFh9tRF0rj88jYVFlr9FAy1u1SwlfvRjqqaKiz0RJzG9432T5zYodGjg3/4hMuJtDudzPRzbPT2efRVKem505mXYZgqLvaotDT1AlUkl3A785ET3zeSIW2LYDWOXC7prrtaRf5qclu2rEVnnOHWtm1WdyoLFZTGive1NH16u9av9+ZJP/zwHlVX71Z9fbOtKfZIH1J2p5OZfo6N3j6PBABIJqEWKYfLoUdshNp6u/tW2olGsBpnEyZ0aPbs+C+kQfwsXJijtWuje8NOmhSPc+8NfhctytGxx+Zr2zYj7MhpKFY+pOzmk1ltP3iwaXuFezqJRR4fAQCSSddFytFefMOeZKoaQs5qF/HMe1mzJlPXX5+jpiauD5JP9IurfvzjNj3zTHavHv0b3/DoiCPcqq31Bcy9r5lpNSfynXeadeyx1vPJrOSfFRSYys2VGhv7tlB9MuW1xSKPr+uxnFTvti8k07lG73G+o5Po3HZyVh1owoQOffBBs+bPJy0g+XiDhYwM++cscqDqfS2Eyi2UpB07jKCBqhT91a/VnMj16122ppMjTT+bprRtm6HGRmdPOSVaLKfxreQtJ1o0tWQB9E4ypW0RrPYhl0u67ro2rVzZouJigtXkYsjjsfOGDXZBEvzn00/v0MCB4V4P4RdiRbNoyc6HlN3p5FDthw41uyxSc/aUkxOkyzR+MizuAFJRMpUNIw2gi76cSvBNzb3wgkuPPOIbfUv81QtiwVraQEaGaTMADu/hh/do4kRrAUw00z92p5O7t/d4pLPPTvyUU7JNFabyNH68toRN1nON6HC+oxPLdKNo2EkD4NI1QbpuIDBqlEfXXpujbdsIVuMpFgX4Bw707C2EH+4YVo7vDd5iyc7Vr6+0UaQPqa6ljXyvWau6t6+qsvZx44QpJyex+7wni0iLOwzDVEVFjsaN60iZ4BxwEl+60bRpuXvTtHpeMDqlaghpAA5QVtahf/zDm89aUEBd1ngZP943QhP9pfcll7THpjOSYjWSHk3NzESUNkqmKSfEHzV5gcRLlnQjglWH8OWzfviht3THjBltbCgQY6tWZauw0FT//tEHQ9/5jkczZsQiYI1doGqa0gUXtOv55+0tTunrDykK1aOrZFrcAaSyZCgbRs5qF07Le2lrk446Kl9NTbEuKp++fMFdbq7U0iLZfV6rq3dbzr3sC/n5HhmGtGtX9GWg+ion0u2Wli7N1qJFPXO0e5ujaIXT3t/pLp5lczjX6YXznZzIWU0R69e7qMsaY76cHG+gauueKioy1d4u/fa3vXnbmOr9hUfnAq7m5p6vD18ZKKuBX1/kRNbUZKqiImfvtG9PRUVm3OuswlmiyZsGkJ6IhByM6S9n+fprQ+eck6dnn7Va5D94qarCwtBT4daPGfq1YZqGTFOaOzdHb7yR+JqVoXbK8pX3mj+/1XFTTog/toQFYBXBqoOx0MQpvOehudnevfr3D/y5uNjUypUtWrKkde9UVTzPr6Ht2zN09tmJrVkZbsW3ZMgwpCeeyEpAz+AEybK4A0BikQbgYFanyZYta9GmTYbmz8/V7t2MxsZW1y9Rq8+td6p/1y5v+4IC76KsOXPa5HIpqsAxL8+j3btDr5wOJ1JaQDxzVjtXfAfnXfFtqK7O5cjyTKlc49Qpyso6NG5cB88zgJAIVh3Mag20k07yfsnn5rbo0ktzfS36urspyu7z2HO0dMcOQ4sXZ+vQQz0aN65DFRU5No7tPV5vLkLC1awMlktqd4FWOMm84jvezw06pWotWQCxQRqAw9mZJpswoUOzZ7f1dRcdLhGpFKG3Eq2tDV9bMuAoRjSjusEFq1kZKpfUNxIbi9SBZK2t2hfPDQDAGkpXdeHk8hd2piPXrMnU9dfnUElAUmxW38fOnDmtWro0J3JDSYMHe7RlS2zPoW9LVt82e95gzN42e3Zei4nezi/wsay9v3vz3MAZnPxZjtjjfCcnO6WriGaShG+abOLEDo0eHT6fa8KEDn3wgbfA7zXXtPZdJx3JOYGq5H1zWnHbbS269dbYnzvfCGa0uwfV1GSqpCRf5eV5mjmzn8rLwy/gSsYV3+ysBADOQrCaonzB7fXXt4XdNchXPgh9Y/RotwoLPQr1nPt2cbr00vYeqR/hmcrJCX0uu+8OFU0uabRT48m24juZ82wBIBWReJXiIi3S6pwycdZ0eXDJ20ff1PG2bYa2bQv1N3jPh2+kMVI1CJ9Bgzy6665WZWRI06bl7j1O8MV4vhFMu7mk4UpQhVvA5ZNMK76TNc8WAFIVI6tpINzI1sqVLVq5sufvnMnpgaoUKlCVpFtvbdVNN4WvBDBwoKlx47wjjeGm0LsW1P/gg2ZNmNBhawTTFwiHGnH3jcS63VJVVaaWL8/q9dS4nVSWRLL63LCzEgD0DRZYdZHqSdrhFsZ0/d2++5rq6JAuuaTf3kL4yRAkRpK4UVlfuaPCQjOqvdDDlVAKNlopWVsA5ZvWlxR0xL2w0NS2bfauZ30LuJzIzvs73HMjqdfpC9Rvja9U/yxHIM53crKzwIo0gDQSrpZhsN/dd1+LLrkkN2j75BMsUI1fAHvbbS3ad18zIBCpqrL2duueCxlqCn3t2sy9q9Y7A8qiIo+mTGnXsGGesBckQ4Z4R3BXrGjZGwh3PmZhoamtW8OlK4SWKlPjvlHq7s9NUZHZ6zqr1G8FAHsYWe2Cq7Oe1qzJ1IwZufJ4UmF0NZTuQWuoINZK3VNTxcXByxrV1rqiGlkNNgq3dq135K9nDmlg331BkCRLo7P77mvqiity1dgYvGxTpJxcJ5dziub9HesRUN+IbffzFs2ILaOzofFZnl4438nJzsgqwWoXvOCDW7MmM8LOWGaY34XSF9Py0T5GqL/H1A9+0KEXXsgM+XtJWrky9LamdmuOBhuFKyryqKVFe0c+w/99gYvoAvscLECyGlB3f4zux3GiRL+/Y1m/ldHZ8BJ9rtG3ON/JiTqriKkJEzq0cmWLiouDfwoUFvpuD74IKPjtdvXFJ5C3r5df3tbjbx082KPly1v06197F6R1/s2dBg40Qwaqkv2ao+FKRXlzSSMH4oFBceidtdx7B3KjKcfk1BJUThOr+q3srgUg3fCpBku65k02NhpqajI0aJB3JKipydC8eTk9FuMUFpo6//x2VVdndftijWa008p9TA0ebOqWW1p18805amqy+zjeEkzPP5+ld95p1vr1wadYfc9Fba1LtbUuGYY33/f44yNPw1rNhQxXKsr+8xe6vTdAMlRX59Lo0W7LOafBcnIRXizqt/a2hBgAJCOCVVgWbBFWTU2mpk/PDTL1Ymr7dkMlJR5VVDT7c+v++c8M3XOPte1G7TFlGNKiRd5V99FuNesL3tavd4VcjCZ5n4uTTnLrpJPsly+yUnO0cxSub/gCpEi1XX1T1Zde2k4wZNO++/a+fmuk10X3iw8ASAWkASBqVkb/Kiq8gamvvuaJJ/buC3ThwhZddlmrBg3yBNxeXNw5FR2LnYXivTtRqJqjbrc3b7Svp3J9AVIybo+aDGpqMnXFFeEra1ip38ruWgDSEcEqohZNDl6kguuRclMffjhbo0Z59MEHzaqu3q2HH96j6urdqq9v9k+hx6J8UiJKMNXUeEtRlZfnacWKbIv3stLPcFvqmiosDAyQkm17VKfz5Zh6KywEZ/VCgN21AKQj0gAQtWhGecJt/9oZUIVexb9pk3cRSbigyRcQh1p1Ha56gW+au7TU3aelgQJLGnXva/B+FhSYys1VtyAosH3PagA9GUGeomTaHtXJws8+dLJav9Vqmga7awFIJYysImrRjvKEGrkrLjY1e3Zb2K1fg61g787lksrL23336H4E//+Fm+b2FdwvL8/TzJn9VF6ep5KS/LhMz0dOpwjezyVLWvWXv3SOMM+f39rjuRs0yBe8hgqUDG3dGnwFerJsjxotX8pFVVWmamtdIV9PvRFp9sFn2TJrI9akaQBIR4ysImq9GeUJN3J3yiluTZoUutZnpEUkbrf01FNZvl5075UkUwMHmsrJCRyV9I1uSQo6yukrDRTrrTY9HkVYTBX4N3Qfhev6HMyZ0xZw7MZGQ7Nm9YvYp1TOcfQ9319+aeiQQ6Tvflf6wx/6pk6p1ed1yxbrz388d9cCACciWEXUwk3pWxnlCbX9q9Uv7lCBwNKl2RH2tDe0dauhZ5/drYED8/TPf+7Rfvt1BtUlJfm2SwNZTRkIVsy9oMDTs2EQ06a1qaysI+x0fPfntLbW2hBbquY4Bnu+Cwvzg24lG6uLka7ilWNKmgaAdEKwil6JxyhPb77g3W7p0UezgrTuacsWQxMnSkcc0eEfRa2ttV8ayOpuQqHyUrdvtxacl5V12C5HlM45jqGe785ANf51SuP5/Ie62AOAVEPOKnqtrKxD9fWhV+fbFaliQLgSP3V1Lm3fbu1lHSzYtbtozOpuQtbyUu3/vZGka45j5Oe7d7tIWZWuzz8AxBLBKmIilotxevMFbzXY7F6uycfOqG6k3YSkzoVgkRfa+AKo2AY0brd3J7EZM9o0cGD6lKKyurAplFjm8FIKDAB6hzQAOFK06QVWg83p04PvwGRn2tbObkJWg5+CAjMgLaA36RTB0hMGDfLo7LO9+Y6pnOPY22Az1jm85JgCQPQIVuFY0XzBRwo2vUXwTc2Z0xb0/nYWjdlJGbAa/Cxf3uI/dm8CmlD5mlu3GvrlL7NSPlCKNtiMRw5v98V3Z50Vm3xYAEgXBKtwNLuLSLoGm6EK6p9/fvh97a2O6trZ693qiG0s6plGSk+I9SIiJ7Jy0eJlr4KFXVYX3wEAQiNnFSmnrKxDs2YFHzmVpAcfzI5Y3D/SojG7e7335UKbaLbBTTVWnu/CwvjmkFpdfAcACI9gFSnH7Zaqq0OVr4q8A5ZPqEVj0e713lcLbaLZBjcVhdspbeXKFv3jH7GrYNGdncV3AIDwuLRHyrGz8Omss+wdu7d7vffFQpt4FaJPRl2fb+8OVv303e82K2PvyyNedUrtvAaplQoA4RGsIuXEc2QxUhDis2xZi046KXgQEu9i7um8EUAwvufbMKTBg6UtW9Rj4VmsMboNALFDGgBSTjxHFuOx13usUYg+8RjdBoDYIVhFyunNDliRJEsQQiH6xIrnaxAA0g3BKlJOPEcWkykIifU2uLCO0W0AiB2CVaSkeI0sJlsQEu02uG63VFvrUlVVpmprXaxajwKj2wAQG4ZpxnupQWJs2bLT9iIK7wKMAVHdF87Uffegrivve3O+U7nYe6r+bYl6f4d7DSI++CxPL5zv5OQ7b5baEqx24gWfXnp7vlMxCAncprXn7k7JPCLI+zt9cK7TC+c7OdkJVildBUQp3iWo+hrbtCIdpeJFJ5BqCFYBSKKQPdJPqqa8AKmGBVYAJFHIHunFl/LS0BD4em5sNDRtWq5qahjLAZyCYBWApOSpIQv0VqSUF8n7e6pgAM5AsApAUnLVkAV6ozPlJfgsgTflJUN1dSSvAk5AsApAUvLVkAWiRcoLkFwIVgH4Ucge6YCUFyC5kEEOIEBZWYfGjevoVTmfeJQDosQQYsWX8tLYaPhzVLsyDFNFRSYpL4BDEKwC6KE3NWTjUQ6IEkOIJV/Ky7RpuTIMMyBgJeUFcB7SAADETDzKAVFiCPFAyguQPNhutQu2bEsvnO/YcrulkpL8vUFl6KnV+vpmyyNWsTwm5zt92DnXpJckP97byYntVoEUkGxfovHYAYtdtRBvqbZtMpCKCFYBB0rGHM14lAOixBAAgJxVwGGSNUczHuWAKDEEACBYBRwkmbeBjMcOWOyqBQAgWAUcJJm3gYzHDljsqgUAIFgFHCTZczTjUQ6IEkMAkN6cmfwGpKlUyNGMxQ5YfXFMAEByIFgFHCRVtoGMRzkgSgwBQHoiDQBwEHI0AQAIRLAKOAw5moiW2y3V1rpUVZWp2lqXI6tGAIBdpAEADkSOJuxKxo0kAMAKglXAocjRhFW+jSS674vu20iCEXkAyYw0AABIYsm8kQQAWEGwCgBJLJk3kgAAKwhWASCJJftGEgAQCcEqACSxVNhIAgDCIVgFgCTm20iie11eH8MwVVzscfxGEgAQCsEqACQxNpIAkOoIVgEgybGRBOKNDSeQSNRZBYAUwEYSiBc2nECiEawCQIpgIwnEGhtOwAlIAwAAAD2w4QScgmAVAAD0wIYTcAqCVQAA0AMbTsApHBus7tmzR5MnT1ZVVVWiuwIAQNphwwk4hSOD1X/961/6yU9+ov/7v/9LdFcAAEhLbDgBp3BcsPr222/roosuUnl5uYqLixPdHQAA0hIbTsAp+rx0VUtLizZv3hz0d/vuu68OPfRQvfrqq8rJydFjjz0W9eMYUaTQ+O4TzX2RfDjf6YXznT4417EzfnyHVq5s0Q035KihofMJLS42HVNnlfOdnOycrz4PVt9//31deOGFQX/3wAMP6LTTTovJ4wwaNCAh90Xy4XynF853+uBcx8bFF0tTpkhvvCE1NkpFRdKJJ2bI5eqX6K4F4Hynrj4PVkeNGqWPP/447o/T1LSzRxHjSAzD+2KP5r5IPpzv9ML5Th+c6/g44gjvP0nati2xfemK852cfOfNipTdwco0FfWLtjf3RfLhfKcXznf64FynF8536krZYBUA7HK7vYXQN282NGSIqdJSN4tHACDBCFYBQN490Csqcvbu2ONVXOxxzCKSVMeFAoBQHB2svvLKK4nuAoA0UFOTqWnTcntMITY2Gpo2LVcrVrQQsMYRFwoAwnFcnVUA6Etut1RRkbM3UA2spWKa3p8rKnLkpu55XPguFLqWRZI6LxRqahw9pgKgDxCsAkhrdXWuvSN6wYv+maahhoYM1dUxJx1rXCgAsIJgFUBa27zZWmVqq+1gHRcKAKwgWAWQ1oYMsVbrxmo7WMeFAgArCFYBpLXSUreKiz099j73MQxTxcUelZYyFx1rXCgAsIJgFUBac7mkyspWSeoRsPp+rqxspYxSHHChgHTkdku1tS5VVWWqttZFTrYFBKsA0l5ZWYdWrGhRUVFg0FRUZFK2Ko64UEC6qanJVElJvsrL8zRzZj+Vl+eppCSfqhcRGKaZmpuTbdlif49gw5AGDx4Q1X2RfDjf6cXK+aYwfWLEus4q7+30kiznO7Cec2cetu/CLN0ujH3nzVJbgtVOyfKCR2xwvtML59vZYnmhwLlOL8lwvt1uqaQkf2894Z4LBg3DVFGRqfr65rS5QLYTrDLuDABIOJdLGj2a5D2kps4ybcF5y7QZqqtz8T4IgpxVAACAOKJMW+8QrAIAAMQRZdp6h2AVAAAgjijT1jsEqwAAAHFEmbbeIVgFAACIM+o5R49qAAAAAH2grKxD48Z1UM/ZJoJVAACAPkKZNvtIAwAAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACOlZnoDgAAkEhut1RX59LmzYaGDDFVWuqWy5XoXgHwIVgFAKStmppMVVTkqKGhc6KxuNijyspWlZV1JLBnAHxIAwAApKWamkxNm5arhgYj4PbGRkPTpuWqpobxHMAJCFYBAGnH7ZYqKnJkmpIUGKyapvfnioocud193zcAgQhWAQBpp67OtXfq3wj6e9M01NCQobo6kleBRCNYBQCknc2bgwep0bYDED8EqwCAtDNkiBnTdgDih2AVAJB2SkvdKi72yDCCB6OGYaq42KPSUpJWgUQjWAUApB2XS6qsbJWkHgGr7+fKylbqrQIOQLAKAEhLZWUdWrGiRUVFgcFqUZGpFStaqLMKOARF5AAAaausrEPjxnWwgxXgYASrAIC05nJJo0eTmwo4FWkAAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHykx0B+LFMKK/TzT3RfLhfKcXznf64FynF853crJzvgzTNM34dQUAAACIHmkAAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsgtW9mpqaNGvWLB1zzDEaNWqUbr/9dnV0dCS6W4izrVu36vTTT9e6desS3RXEyUcffaSpU6fq2GOP1ejRozV//nxt3bo10d1CnLz99tv68Y9/rKOPPlqjR4/WbbfdppaWlkR3C3Hkdrs1ZcoULViwINFdQZwQrO51zTXXKC8vT2+88YZWr16tt99+W48//niiu4U4qq+v1+TJk7Vhw4ZEdwVx0tLSoksvvVQjRozQm2++qZqaGm3fvl0/+9nPEt01xMHWrVt12WWX6bzzztO7776r6upqvfPOO3r00UcT3TXE0f33369333030d1AHBGsSvr888/1zjvvaN68eerXr58OOOAAzZo1S08++WSiu4Y4qa6u1nXXXac5c+YkuiuIo4aGBh166KGaPXu2srOzVVhYqMmTJ2v9+vWJ7hriYODAgXrrrbc0ceJEGYah7du3q7W1VQMHDkx01xAnb7/9tl566SWdccYZie4K4ohgVdK//vUvFRQUaMiQIf7bvv3tb6uhoUFff/11AnuGeDnhhBP08ssv64c//GGiu4I4GjZsmJYvXy6Xy+W/7cUXX9Thhx+ewF4hnvr37y9JGjNmjMaPH699991XEydOTHCvEA9NTU264YYbtGTJEvXr1y/R3UEcEaxKam5u7vFC9/28e/fuRHQJcbbvvvsqMzMz0d1AHzJNU0uXLtWrr76qG264IdHdQZy99NJLev3115WRkaGrrroq0d1BjHk8Hs2bN09Tp07VoYcemujuIM4IViXl5eVpz549Abf5fs7Pz09ElwDE0K5du3TVVVfpd7/7nZ544gkNHz480V1CnOXm5mrIkCGaN2+e3njjDe3YsSPRXUIMPfLII8rOztaUKVMS3RX0AYaWJB188MHavn27tmzZosGDB0uSPvnkEw0dOlQDBgxIcO8A9MaGDRs0ffp0FRcXa/Xq1eQvprC//OUv+tnPfqY1a9YoOztbktTW1qasrCymiVPM888/ry+//FLHHHOMJPkrPvzxj39ksVUKYmRV0kEHHaSSkhLdcccd2rVrl/773//qwQcf1KRJkxLdNQC9sGPHDl100UU6+uijtWLFCgLVFDd8+HC1tLRoyZIlamtr08aNG3XXXXdp0qRJ/uAVqeGFF17QX/7yF7377rt69913VVZWprKyMgLVFMXI6l7Lli3TrbfeqrFjxyojI0M/+tGPNGvWrER3C0AvVFVVqaGhQWvXrtULL7wQ8Lv33nsvQb1CvOTn52v58uW64447NHr0aA0YMEDjx4/X7NmzE901AL1gmKZpJroTAAAAQDCkAQAAAMCxCFYBAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAgIi2bt2q008/XevWrbN8nxdffFFlZWX6/ve/r9NPP12rV6+2/bgEqwCQIJ999lmiuwAAltTX12vy5MnasGGD5fvU1dVpwYIFmjdvnt577z3ddtttWrhwof7617/aemyCVQAp69RTT9WRRx6pESNGaMSIEfr+97+vE044QXfddZc8Hk/MHmfKlCm67777JEk33XSTbrrppoj3eeWVVzRt2rSoH7Oqqkqnnnpqj9v37NmjY489Vr/+9a+D3u/aa6+NuDtfqGMDSE/V1dW67rrrNGfOnB6/e+uttzRp0iQdc8wxOvPMM7VmzRr/7x5//HFdeOGFGjNmjAzDUGlpqZ599lkdeOCBth6f7VYBpLSFCxdq4sSJ/p8//vhjXXzxxerXr5+uuuqqmD/erbfeaqnd9u3bFY8NBPv166ezzz5bzzzzjC688MKA323dulUvvviili9fHvPHBZC6TjjhBI0fP16ZmZkBAetHH32kyy+/XIsXL9bYsWP1/vvva9asWSosLNSJJ56ov/71rxo1apRmzJih999/X0OHDtWVV16pQw45xNbjM7IKIK0MHz5cI0eO1D/+8Q9J3lHRBQsW6JRTTtHJJ5+sXbt2acOGDZo5c6ZGjRqlU045RUuXLlVbW5v/GM8884zGjh2rESNG6Prrr9eePXv8v1uwYIEWLFjg//lXv/qVTj/9dI0YMUITJ07U22+/rXXr1unmm29WQ0ODRowYoc2bN6utrU333nuvxo4dq2OPPVbTp0/X559/7j/OJ598oilTpmjEiBEaP368v//BnH/++fr3v/+t//u//wu4ffXq1frWt76l0tJSvfLKKzr33HN13HHH6aijjtIFF1wQNC1h3bp1Gj58eMBt3f/G3//+9xo/frxKSko0ceJEvfnmm/7frV+/XhMnTtQxxxyj008/Xbfffrs6OjpC9h2A8+y7777KzOw5vrlq1SqNHTtWZ5xxhlwul44++midc845evLJJyVJO3bs0IoVK3T55ZertrZWs2fP1pw5c/T+++/benyCVQBpo729XevWrVNdXZ1Gjx7tv/2tt97SqlWrtGbNGmVkZOjiiy/WwQcfrNdff11PPfWU3nrrLf80/9tvv61bb71VlZWVWr9+vY466ij97W9/C/p4VVVVevDBB7Vo0SLV19frvPPO0+WXX67hw4dr4cKFKi4u1nvvvachQ4Zo6dKleu211/T444/rjTfe0FFHHaVLLrlEra2tam9v12WXXaaDDz5YdXV1uueee/THP/4x5N95wAEHaMyYMfrf//1f/20ej0e//e1vdeGFF2rTpk26+uqrNWPGDL399tt67bXXZJqmHnjgAdvP6Z///GfdfPPNuummm/TOO+/oyiuv1JVXXql//etfkqT58+drypQpevfdd/XYY4/phRde0J/+9CfbjwPAeTZu3KiXX35ZxxxzjP/fb37zGzU2NkqSsrOzdfbZZ2vEiBHKzMzUGWecoeOOO04vvviircchWAWQ0hYuXOj/ED3uuON02223aerUqbrgggv8bU466SQNGTJE++yzj1577TW1tbVp7ty5ysnJUVFRka6++mr/SMGaNWv8H7iZmZk6//zzddhhhwV97Orqak2ePFkjRoxQRkaGfvzjH2vlypXKzc0NaGeaplatWqW5c+fqgAMOUE5OjmbPnq329na99tpreu+999TY2Kj58+crJydHBx98sKZOnRr2777wwgu1du1a7dq1S5L0xhtvaNeuXRo/frwGDhyo3//+9zr11FO1a9cubdq0SYWFhdq8ebPt5/eJJ57Qeeedp5EjR8rlcumUU07RqaeeqlWrVkmScnJytHbtWr366qsqKCjQn//8Z/2///f/bD8OAOcZOnSoysvL9e677/r/vfjii3r00UclSd/+9rcDZqUkye12206BImcVQEq7+eabA3JWg9lvv/38/79x40Zt3bpVI0eO9N9mmqba29vV1NSkzZs36/DDDw+4/wEHHBD0uF999ZWKi4sDbjv66KN7tNu6dat2796tq6++WhkZnWMI7e3t2rhxo9ra2lRYWBgQ5EZaoHD88cerqKhINTU1Ovfcc/XUU09p8uTJys3NlWmaqqmp0apVq2QYhg455BDt2rUr6DRfJBs3btQ777yjp59+2n+b2+1WaWmpJG8axH333aeFCxfqq6++0oknnqhbbrlFQ4cOtf1YAJxl0qRJmjp1qs444wwdf/zx2rBhg2bMmKFTTjlFP/3pT3Xeeefptttu04knnqjS0lK9/PLLWrdunebOnWvrcQhWAaQ9wzD8/z906FAdeOCBeuGFF/y37dq1S01NTRo4cKCGDh2q//73vwH337Rpkw4++OAexy0qKvJPh/ksXbpUEyZMCLitsLBQOTk5Wrlypb7//e/7b//00081ZMgQffjhh9q6dauam5uVn5/vf8xIfvKTn+iZZ57RmDFjVFtbq4ULF0qS1q5dqyeeeEJPP/20vvnNb0qSbrvtNv3zn//scQyXyyVJamtrU3Z2tiRp27ZtKiws9D9fP/rRjzRjxgz/fRoaGpSbm6vW1lb9+9//1i233KLMzEz95z//UUVFhe644w4tW7YsYv8BONtRRx2le+65R/fcc4+uvvpq9evXT2VlZf5g9Oyzz1ZGRoZ+/vOf64svvtD++++vpUuX9rjgj4Q0AADo4pRTTlFzc7OWL1+utrY2ff3117r++us1Z84cGYahs88+W3/84x/16quvqqOjQ9XV1SEXC0ycOFG//e1v9de//lUej0fPPvusnnzySX9wumfPHnV0dCgjI0OTJk3SkiVLtGnTJnk8HlVXV6usrEyff/65RowYoW9961uqrKzUnj179Pnnn2vlypUR/5by8nJ9/vnn+sUvfqHTTjvNP5q5c+dOZWRk+EdZX3/9dT333HNqb2/vcYwDDzxQmZmZ+v3vfy/Jm99bV1fn//0555yjX//61/66iX/72980ceJE1dTUyDAMzZ07VytXrlRHR4d/kYYv0AWQfD7++GONGjXK//PJJ5+sqqoq1dfX680339SCBQv8F7aS93Pod7/7nd577z3V1NTo9NNPt/2YjKwCQBf9+/fX448/rjvvvFPLly+Xx+PRqFGj9NBDD0mSSkpKtGjRIt15552aM2eOSktLAxZrdTV+/Hh9/fXXmjdvnr766it95zvf0S9/+UsNHDhQI0eO1KBBgzRy5EitWrVK119/ve677z6df/752r59uw444AAtW7bMnw/76KOP6qabbtLxxx+vwYMHa+zYsXrppZfC/i15eXmaOHGifvWrX+mpp57y315eXq76+nqdeeaZcrlcGjZsmC666CI9+eSTPfLL9ttvP/3sZz/Tgw8+qNtuu02lpaWaOHGivwLCD37wA+3evVs/+9nP1NDQoIKCAl188cWaMmWKDMPQQw89pLvuukuPPPKIXC6XTjrpJF133XVRnx8A6ccw41HoDwAAAIgB0gAAAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA41v8HCQyeehfOsEQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Calculate residuals\n", + "residuals = y_test_original - y_pred\n", + "\n", + "# Plot residuals vs predicted values\n", + "plt.figure(figsize=(8, 6))\n", + "plt.scatter(y_pred, residuals, color='blue')\n", + "plt.title('Residuals Plot')\n", + "plt.xlabel('Predicted Values')\n", + "plt.ylabel('Residuals')\n", + "plt.axhline(y=0, color='red', linestyle='--')\n", + "plt.grid(True)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# REGRESSION RESULTS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From all the models observed,We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation.\n", + "\n", + "Polynomial Regression is the preferred model beacuse from the evaluation it has the highest R-squared value of 0.73\n", + "\n", + "The features below impact price such that an increase will cause an increase in the price of the property. 'bedrooms','bathrooms', 'sqft_living','floors', 'waterfront','view''condition', 'grade', 'sqft_above','sqft_basement', 'yr_renovated', 'sqft_living15','renovated', 'basement'." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Assumptions\n", + "\n", + "Linearity: The relationship between the independent variables (predictors) and the dependent variable (response) is linear. This means that a change in the independent variable corresponds to a proportional change in the dependent variable.\n", + "\n", + "Independence of errors: The errors (residuals) from the regression model should be independent of each other. In other words, the residual for one observation should not predict the residual for another observation.\n", + "\n", + "Normality of errors: The errors are normally distributed. This implies that the residuals should follow a normal distribution with a mean of zero.\n", + "\n", + "No perfect multicollinearity: There should be no perfect linear relationship between the independent variables. In other words, no independent variable should be a perfect linear combination of other independent variables." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Limitations\n", + "Despite its effectiveness in predicting property prices, the model has several limitations that need to be addressed:\n", + "\n", + "Limited Property Characteristics: The dataset may lack comprehensive property-based characteristics, potentially limiting the model's ability to capture the full range of factors influencing housing prices.\n", + "\n", + "\n", + "Multicollinearity Concerns: The presence of correlated predictors, such as square footage and number of bedrooms, can introduce multicollinearity issues. This makes it difficult to discern the individual impact of each feature accurately, potentially affecting the model's reliability.\n", + "\n", + "Assumption Violations: Polynomial regression relies on the assumption of linearity between predictors and the target variable. However, in reality, this assumption may not always hold true, leading to biased estimates and less dependable predictions.Also heteroscedasticity was present.\n", + "\n", + "Overfitting Risk: Polynomial regression models, especially those with high degrees, are prone to overfitting. This occurs when the model fits the training data too closely, capturing noise rather than underlying patterns. As a result, the model may struggle to generalize well to unseen data, impacting its predictive performance." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Recommedations\n", + "# Statistical recommedations.\n", + "To mitigate multicollinearity, strategies such as feature selection, principal component analysis (PCA), or regularization methods like ridge regression or Lasso regression can be employed. These techniques prioritize essential predictors and enhance the model's interpretability while stabilizing it against multicollinearity.\n", + "\n", + "\n", + "\n", + "Before opting for polynomial regression, it's essential to validate the assumption of linearity between predictors and the target variable. If this assumption doesn't hold, alternative regression techniques such as generalized additive models (GAMs) or spline regression should be considered to better capture intricate relationships.\n", + "\n", + "\n", + "Preventing heteroscedasticity, or addressing it if it's present, is crucial for ensuring the reliability of linear regression analysis\n", + "# Recommedation to real estate clients:Home owners and investors.\n", + "\n", + "\n", + "1.Invest in Larger Properties: Investors seeking maximum returns should focus on larger houses, as there's a positive correlation between total square footage and price. Such properties have the potential for higher profits upon resale or rental.\n", + "\n", + "\n", + "2.Upgrade Existing Properties: Homeowners can increase their property's value by investing in upgrades that increase square footage, such as adding extra rooms or expanding living spaces.\n", + "\n", + "\n", + "3.Optimize Bedroom and Bathroom Ratios: It's essential to find the right balance between bedrooms and bathrooms to maximize property value. Consulting with real estate professionals can help determine the optimal ratio based on market trends and buyer preferences.\n", + "\n", + "\n", + "4.Focus on Quality Over Quantity: Prioritize quality improvements that enhance functionality and aesthetics, such as renovating bathrooms with modern fixtures or upgrading kitchen appliances, to add perceived value to the property.\n", + "\n", + "\n", + "5.Highlight Features in Listings: Emphasize the number of bedrooms and bathrooms in property listings to attract buyers who prioritize space and convenience. Highlight unique features that add versatility to the property.\n", + "\n", + "\n", + "6.Differentiate Marketing Strategies: Tailor marketing strategies based on property condition and grade ratings. Highlight the benefits of higher-grade properties to attract premium buyers, while emphasizing renovation potential for properties with lower condition ratings.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CONCLUSION\n", + "\n", + "Property Size Matters: There is a clear positive correlation between the size of a property, indicated by total square footage, and its price. Investing in larger properties can potentially yield higher returns for investors and increase market value for homeowners.\n", + "\n", + "\n", + "Strategic Upgrades Add Value: Upgrading existing properties with strategic renovations and expansions, particularly those that increase square footage, can enhance their market value. Quality improvements that improve functionality and aesthetics are key to maximizing property value.\n", + "\n", + "\n", + "Balance is Key: While adding extra bedrooms and bathrooms can increase a property's price, there's a point of diminishing returns. It's important to strike a balance between quantity and quality, optimizing the bedroom-to-bathroom ratio to align with market trends and buyer preferences.\n", + "\n", + "\n", + "Marketing Differentiation is Essential: Tailoring marketing strategies based on property condition and grade ratings is crucial. Highlighting the unique features and benefits of higher-grade properties can attract premium buyers, while emphasizing renovation potential for properties with lower ratings can appeal to savvy investors.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Project Group4 Notebook.pdf b/Project Group4 Notebook.pdf new file mode 100644 index 0000000000000000000000000000000000000000..bfab0b60d41865781a371e4f58c005943571447c GIT binary patch literal 161155 zcmeEv2_RJ6`~TQOktIoCRLW9jG0Z3#TbAr(Df^b)*vd{N(SjCIAqs6Gr9!q!5t2$M zMA>D_zJ&STnc+3mtC!yQ`~Q8v@0~RF&bjA4=RBYDJkNQ~InONcpOor5)0(c01h2V|79b;CJX!w^W62tWm(tYdz_+|6$0CZKptH=NZ$OKYHf9S1ve z7*KDh6OenhVsWPV>7=D^YGGq*Bc5DJ<7&{9xQQ_|1@7q_mafKXCWL4X9RnG6(^Y+CGVw5h3Rku)rP z2v$*98GJ2d1>t@yWOC}OAaeM4Exb-)y=|crr&Hpp2j-7Xi@ybvKqUT;%7pi2RmnVU zthYZd=$qSgV_}a!>`hzMq~VTr10JF+9X2IzD$ZYx-zq1ie%vo^oLy2z%TvN$$@r06D;2wICvBM1s>Fl1{XXZi;Ta)TX-WxO{VaA!k0=- zm(H6QkM|pP*fVj9(J@^P0xy7&fWq*PtHCPXtxej3*k`a|JS1@q9s;XniQj^CDC6ZF z48Bp<_(?yWdCKMMtY7$>M>=fjBtP@$+9|$#{q}8sfv-8@ae)U-{IJ7?H-D4#?Cl%y z5aDl;*m~2UOPEj#XKrc7-0uNEbMU8_EvM8$m9~z|M&EyyBk*TIFDR)l{ zcZFl4)qT1vj4yR%>^fwV_GPD^_Oa?slQF(yL!SK|ea&whixUeX6a#s}r+0Br`s@UgK}55l?&aI2yyl(2514XlvNE`<=14aA^? zl@cJCa6wiU=LI!Hz(s-O5Hu8tLZP9eVsLbK0Rfp=b&^2;bBj)*NEC7o z`hR%Q$(){JX3=RKu;@hikm(f#9Stodu;jEESaJfEqaYN(iqlL63Jz_;f)p(s5+&ve ztU1lCHw^?TOrT9uJmNzH@sJOm0s-YRawGN(ycwFBQ|sU^V{c4O$9=uB3;Uf}cWiLn6x*M4n9TnC&S^ZXdf(cHz)v0r z19<|4+ow@czeA1eUh46H`!53qr@InUW~%&m&6I8}8@?bn8b4~xZCV^(I*x~g@k^5x z{2QkfQl@wA^XB3qk2}6jOHS)oOxg+k208Lu=?A8)&rG#X)hO!sw-4k8HY;nAU;d4A zjp(jzA${21$2$rluu+3}2-lv&zd?@dR!YBueO6d+Jmlcps!8w3yYXZ1_L5!xol~~f zi88+L72ngs?>1Mo`r#o(=MsL09@)JFiDv$1CAzsMKGjd^Y;8cG03K2>{Pk|VEC2WK z%>}N{qkA#urixijvzk;!Hz)@*pMZgvKr}$v`0r5%LLh%W#zr82JsSJZ46=c7A#rFpf0zw$0t|G3|G-#V z6ovc;huKKNyaX`JmOulcjR-5 z=Ipo`2m$@4f;CZSB<4RhZZ@Q6n+w(?#%hucoPl961tk?VFme_GM$QzJbcB&Jkcp^a zloTA)G%Re|I_6ZgbfT^(F*jC(7XRG%`DW`n#q!I3Q6a!Ovxl0&hd##j++Qp$bGJEq z28V@zyLYdFLwx76qGB)b5{L#U8~;V>FlH$gQDp8iFm7}G?DgCAiFn95z4)>0soZJD z0yWqkF3oqxBT-kAR|(k3fj|BiFp#%-kHSM*Ch?HAJEpCZ_ovc$ao8AGrHaRI`C4-~ zvjhS$PddQR`0~BLn1Qm9EPtXbZGSVD<+sjuPsvSbR7~5yn8uaCYQKyOj^Cd`WlH}R z%|C9YSUb!-jKz+ptQ{}dR^Sj)SJ75B^zPFi*MIMX+Vnm4Jqh_X5c&C7{zs9&Q?UC0 zFD=~~LBDrNw)sZmo*pXkBE2WvTR*)O@ymJ4UlHvopFPmq5iMo>iM72f=Ngy=#03-v zP)YvlEyLux#`hTB`0e8X7{3R1QaJVv=tYh5?+@%M7v3LO<>Be(ciUMbO08tzR<@Kb zdTZ(Rmhrvy@j@}@TXn!oAR3@-{P(DXc1BcSuda9CPiH~No^Q4UWHlw> z5irF^oaI|E1&V?q#R$`&|NImvVcwE31&RQsKv92X3KaFHQ=mTtZ!LWal+Z5or$EW# zmk14tLBszfbPVxBSkkY8j8KHf*=HYZ7e$KwbJL|rF{A`ph}SG&Aw&cEloQ#Sm~ zRoP$$b^*o}N?o-*?5I(enn<+%@>YEM^@MKvaB*yU^9CtU3j`MJR zLg(RADIbp&lnP+=>)F+r!E6HWJH`X|dfH5P8a(_PAdqQha>!ub(IbmZeGq86VmjYM z>}|U~#V4KzZ?{&I21cB`)6=7C*=)h)*Z-wY9kt6)#);+u#~bkQZ-HR&E*Fcx>leC) za`@fs%-w+n$9VTk+7B>wj1FG&FNi9?dor!NN7vKAf+HXECZ;`%Suefk4oCX_rw%mW z;oks3TdslEM6>Lw*OEfc-8u|A>-K7Y8oPG4AvEBM5%*hI(J90Iux`Hq)Yx~^uEHCDU6;wOpA*JDMC-D#s zuB=_Q(O=wcG>W3vxA)&I8k@B59|6KDcN(f-*K3|vyXaZO%qeNs9|Ru$_aWHOA0k$J z%+z;}Z=GooZYys1e9739)qqsszPiW4{)tsjyX5N}VmR&lJtiGp3IFp0xeT$wro8m1 zF;8%8u>1ki+ji4qrhyEGcnG%0RJeUOqO@{2qNH*-CO2i|ls;W5n^Ri1dCH4IhZDz( z*J~7Ad40;1YjdTd?Z0wps#WeGmwoNRbbR?fqg1RxeeS(%i32!m{T_}q=KWjhj6W0_ zo;qH^w(5#Fm#?rXJ<8|rnGkR-*X$LB?-)r znL#@Q_A5V1#S&9MI|SOHC5p_#?4TV2?a)G*Sn_Ys4uN)P$wD*#2G9-5gQ5RsaZ2@}w zd_U@b-<=Xved1BgA$V2OmyG8%{TW3y{mB`(Yl?1pRMkca?Y*U)yystb@UGdr^YSfR z*JM?6Y0Yq08SuZPOw@aJM-8J7HT}0<)b!tbF)``TpI-p%`Ql*8Ylr&onO)!Oxiju{ zyE}NYWDq{Jn?Aq>+WX=mfkif3yMR4kCZ;S04o)5D6PhA!wNt?8yW>GtqiL84y0KY5 zB4_MPZ9`NV*~G`Db{ph zJ#}#pe6n_4GY!)d&yOCF>UjI%Q!>}iodemKFC*~~$xFVK=SAvE-1%QcBaOhrzW@Re zhmy!Zqf2_9TK0rbkM<466=d(v$jpDADJC=2pAz(V*W}lj=1vEP-cvD#4~*&>uj>U! zAfwgy<{2v=a$`CBFcW{CXs6)Z@?`$T^6(&GQn z>!l^2#Fv81d$$T&6pBJ&fLE(v#Gwc@TJ-OHy|n1uE0J9pkihFjNbgob0Phxo0_75l z`_&7kCI0N~DoC>Tdy`&Sv*fp{5L;&6+f|T%;Z@+uPUbe&3^08=D-T;JQdAsxP0H*$ zQ;_1AfAF0tNF+vl4$y!0ohj5q^t=B29n%!lv@}%2m!@nbzGIq}@JB ze9NXukAjFoF0Iigr#7s(2Y!JV{FloC+t|j64Y)!Uc2_*avo)e^>*RrgfVGpavOc^` z%C*Lp>j!QN99|`^54qup$=YW%;EjoXL7p z;oQpuTGM4g5xU+QgSvest*fN;4IJ*{A)E)lbqxJY19yH?o^Vh;X8=I$;NBvY~@OKy$Zj@IZ67Z0JC9 zw|wY8bGLl#Ky$Zz>_Bt3eC$B)ZrRv@=5E>0f!^J3KnI$;<%0*ByJcesn!9B~2b#Oz zfDSZw%LflMcgw~OGI?&wx26UjgTRwQ8xmz}Npt)N%bfCHW4d_5~w|wwGbGK~lKy$Zj=s8f#z=6(1GUeH=qN}-SWW$&E2xG1I^vCp##m`Z$Jl{yXAxTuQGS_`GMmh zmP~=g*TK)9Bal>@FNueop0>fZ++P=G9bbGq_s00`_SX36t4U?pye(V>g<&i#(~q;f z`jbs!L$hC=0>3~E{@djMdrjnSL4 z!W;*q&kRjtQ#rof!$aEf5Pdiv;#fSLmk5u!kscFwtiF3oyE%F%ef9^n*Uy{}vAKhZ zARzyf!qAAV>AQr7RQZ|KU~8stSv27x?=pvXu=%y};EV|LD#?wI?|CE(%T z1VM)9t0vWan~AD{<&O#%-igJ3WUzL&a`$kvHg_VN5q4Wf5;hzDKe6pHu&FR{U*UP% zE=!=GC^TW)Wien=W;9CtpWAjB*r9l4+ht&TVkl59p}1dcyA0G<9><`?@Do^33t?UQ zw#$T;nZNBap@zR`s|DLGi;0qNyNvt?w_Qe{CE)+DZI^rL5r4kzG8GLi1tm2d{yAhb zuv$G?H0@txq*X z7`$C{%8p(!Vh0mJK>jC%A)@SabPdCHox&9=y!|Ju_=iz@O-!`%luH}cdT1LJoAeUL zC!S&!4v?4mJEH7akZuU&A)jJmCU*=Cr7>r?+{v88<{RjK-5STziQY-HI zNDwZuUs!8$$}H~9GU+b3joQS7o$Iba`ovw^jOia5W@o~J?92SQA~#n+%;cW=u*qAS z$=pQ1Hs;6FuF8*io~k%FeAH8VnPeB-#^UXzX`g3N_%-iZ#kjY^@K#}e^n>;OyeIZY zw0BYW9$t`rnLjrUd`qbEc@a|OyE}ehAndEU-UQB8d;-h*khh|m{?jt4F1&4b>lc~Z z!>5>UkDS7`wyu94n>y6+#%U;k-yR!(hwbsg?92Rp3RIY-A_pqWQV|0cW{HS_J0U9u$t24n|avZZ1Mx@1d5>|f%NVF!nUI!1hVU8%6i_}C4eEDwYS0i@?oHWW3;(++gst=Q7K{{F!C!056^a8o>F?Wp51Y*pqd-C?E@ z5j^Bt-vsy#A^;-r_afjOuQ$q6+SvUb{S5mx=(}WHGw-mWr2mT+<;~OaiV+i*uqid> zp3A($wVn6%)y_S3jHjzEedp@f2g zjd&5i+K5-|PdDO4F9h}v6c}JSYUb_^1g`gbyI4bEgkL}+6sCI6$<7()Zs+0608@k_ z32iffBVNoLQ8^hXf&pe}PWV=pgTjIDJ;ZN)LW-Iy6a|o!fqJ+dv}SI;|n=Qi~f6GM_U4*moFGi3E11!V;Y1+cF!1@I4ouY<@z zRx_?-TFJ1QX%!PI%W5`G0WMAs4o<`-er|ysqPrv|L@{V-B_nlddHvmJjHZ*8zNv+c zt&NnLtGA1lmyxxNCH@J7aRtPQp7+o9^rfJoqoksx2KMybLfF%n4yXVXgs`tKVY-Ea zl8TK(OPk$-2IWdk%O}IiGPkSm7`^prU?bNEZ*1W$6n5&^J6RVpd|d;)Zx?#JmmSU&DidHUTQ0zVTUIQc-7Yk%d!C5 z+BOB!tEX}*AfMVqXt&YsQn|=EEMjK)KKlsx6GQ_P22dA%WeSd_3}S;jM`oD-GQGoh{IKdg}=P^h4Z}fZT!?rP6;-5!3>B2(dK;!PfW% zqW}5UI5>8fpnic=lIeH|kLh2=@%FdjAq8WlcnCjW z=S)nSbRTN7_?wRLc8d!>ke6)Du7=g2LBs!pz(B^cZ7L2rVtOg0SNth?N+51 zpTDw|Gf#=A-EXM_zd#KBN916WBrvC01N+%Zf+%8cI@!`3DuNW10ABm{(}`!~Tu#yi z_{=&0FkyYr!h<*^{-0TM0H(l+v*7by{fB^~p`wJ<2owqlMTw&R&Ls!r{3Qp`*;oI; zfwv3-#R8@MV!;8Z?w`E*PxOZuDlU1!L6p!i^A;S46`Z$5Ami+e^B`*|RXb;3?LvXD z+8~Q_v$A%B8WPqO-~ejcgryxrQG|#X6fG(Wd?OHOC|VpPf)oR;%FL~Q$XI&V;hc#p zAiCPh3^3peDq!p3;j#k;bHrJiJKEyhJ$7J#4-9yRq_v@YfVu^E_Uq7;SAO#>Z01!;U(cHsY z-r5pp1uV^|T07f#*g`Q#35hx3@QN+>H;mxVc5U;WVvvGCnVO5B6f#e4+W4e1(^l6~ zjL^NWW#y=%-G&c*GIsRU=0T&|DZVI^h*YU|`7I@8_3KvNN2)~NwUzm&_;A=fcb}<& zfj*f01!2P-Qu~;sx1T$)eQL_oWV!;cgdYK}G@~cD8lCI%1H7*u!+$S>+4+rsH#H3y z+x^ZI-%OKw(?hwmquhUVv;w) zHi*bA*Lt0QxxH^g&hzGi$#X@~Vk7Z^{^MT)ld;qNA%PP^*uXvfQ=J-t)18%N%<*Dc zDh1PBjH`;YH(u?&kd#2ob1C!TWFtj z6`bh2=pZ;$>D4Hu#`Q|7DMzg~p-*GfgD)k4ihfKeVMYEnAI(EZ-E~=aP4Apb)jLXS z{jMS9u=u|HZy(?py$h&BF4O25_H94g{+j8<)P0$KZm!8zmv$$7JRz1NIC=%8lOkqz z!B@X)dtSa$kyT=9yTxu_jYu`$o=;Q;yT!WY{9rug_dRH3_?1f@vhDEl{nBlmI>dA{ z!xdM8yvHsSo7H|`O^-vbV-y3w^QH356OP$Y?*v`TwGDh#cBQP-IS)T7BWn%q@~)%L95-qR3OaNB;V4Dx{-h2lu9?k8WhgVcAh^1q(CtS3hQaYL$*mPk zOvCJZ_>x=R-$Io`^)ACREtt|0siwLw&hYBcgzV+=Sl_$r$5xr0eVsR$MDN96 zCjKqc^y#_n2HQEqE_<9V`Y3(7nl1WOFuQbVea_Hz$cStzJY66g6X7XX^Gtj5L!%hm z+&$SrYhoocgoh7MoM*ZkRDY;z*vnlS80@<9!BkH_O<)YheU{daVw7`Eizs5|`y$lY zv)hd=v!P|2>RLUc`&l0v!(Ql#A*<|TXWXt`h>IygsqOFUUB41(l>EMz_02o!)khB@ zJo_Mf*1!-qhb=w@>4@~cy@GL&%jA16|NdK=mHnPiVp`?f?p(xV)$G{Kd?9=2_`2Mq zDPgxpztU?r?S|8wtAD8J>E~cf&#*CDMVPASd0vMt_GDryc6k~eK`Dr1tm!qD)HLR$=gsAL$Q>dC|&-p$>+4}R8b&&mt`a@5(Y?RFiWlVJW z!@@(6kq?7*8O!@Zr+jE6@xi9$g^J3neaZCSV9?v<9W=+((;qe^(>=(b9rqnPIS#kk zaue2;n&;gQ-}0XC)rGi=xyLRE*MFuo7A`jAXX{vr>nn_otd%HQS@~{=(!VaDGLr_S z^YHeI$C6aO;+!kE%=B*=$sIM?(NEn_y5{+Qx4Wswu@_!lkIjd)rPdzy?n(}EVRubm zvqSh5o03rSDznPlg^og#NriGcd0!ZKJobgm4Z_(%`mH!1?3H;gCA~QKIOKGIY)+`kDu}$|KYqR+BOhAQ&)y1%uS|ungi?{qm3SRHk<;e9r zJCbDWclSrW@Og8KVWa8_HY3iWZ}oX@^ycr3a`n2d?5`GyTD_sQ;j()O7l*SsMNpkO zMMmv|Nb@aB9eh+c=9VTZg*Tf|-KuWnI&FJ>ztA>AWmA*=$L~FbH5r+gZpu3P?)Jc$ zJj&5Em2RU?#mgE5nwW(yWo`U?ykm_%_gM-yNuOOuaFA+kIj%SPYlSvF5-8=+RFb4T z$2EO#KP)*oqj*QpFiq-82Wkx8OWC`rGL<*m^)7#sDeb*+va)rjUnV~ZIC3NQgyG9@%{C#v$xHTw zs}+v-GYW^=8t$kU@qNT_3)z|UB+0##FLCu|+N3OlW5ySD%B64$2UQzC>t#Q*`^L6? zDw&~=>m!pCJ=#_t4Wa3vVR1S2QfmY5kx{5Hm8`1Q-Bt@@^JCdoec}qv>tynnd9Mmd zsb;?tQ!YvN6oy}H`1CMj{9q<)>LyKLJ=Ln@pnZ9fO*}`Q8`RoH`+99>h}u9A%b|F# zxo2Y$@0%;Hv-ik#-`urc&=W7xLvdA5b=L!%soR%c`9Bvu^P!15YZry*2g}u)@|^r7 zk0YCk*9kglmOSH*OgnR6)xLC-!b78so8RBFzw6=%nP7RZ;<+A=b9GPU$;Xre4>Hzu;li%+>pOF#Y;oqh6KWT`@)S>n(bv!*i!X}1PN8|9y}hI2 zb&QSkew7fSd*d|*>u|GTOxD_`G4csIIeMB$xH>i`-m`hjar%Z)(ZuvBlcT89oEM^u z&lp2rnXD{gnUKz}aa`5P($@s8HrLU)7``@O;T`Gq zJMb;>i{O1jM2C9r7n-)m1E(MF=|q295m%pFkCwrxU*l6sf9fIo`NF1BX3zT1-gRa{ z=aqRW5_F$-o6#G1P(Hl3%FO15Wvb4mmtVLiN2EERq3m0VWVs(7X)}d%S)sOBKNP>V zq9j#3?A01c+WWqtagGxWY_t#WHgrsEu}I&q5PfoT@7qu+m19>OhH8#zB^8Q)tAkid z2#tPboaWWMd$RlX!@v&KsNCSLToJ7lzVvICA#INbS({hI!l+eL0#l=CQDblddkOUYx~i!MqD8`tRbyLsmYhZP*Y*X_{pcx9n= zu(G^`TFFMGJxNAMRK;AkZBri}*A=E`d?v#i-gQ{TIr&r==G;okkZ)zm>(gCCx`X*3 zCPIFK=$4Z0(9qn~lkXi(9E9^_#A^1h!Ewb3YL^$kOYus|P~d@bP+C0aOR7JU@zjEv zhpsUp{|)6j#v?-3uTqq@7hm%@s+ga`BdjQBbD*1nk>zH`K+jb(KWOkipI)JpRdm-f zk>a7q>NlN}nLeSd+%6USGnp7EQXQ326)7v-Zd6NCuelw{vOOnS!BSbJ$-t#bVZ~;# z^{K6#x~IOqbGxekGQjT8mScjpg_<_BygN3PL~W}%sjT6!ca6$9YHIuSegbJMtKJ(i z1lMl-^rqDI(}^u>&F|cFlU}cP(qN;N-O1;x272{wSwx*wwM#VFL}7w}U*olkKXS1~ z$OvP7pyhy2bIGNsfZFY1xyG0DCu6^6?&ZSN5I%4J%>1}2Q_1|?sj##f#w`w`< zBX%YRe&hP*BYfV>oAmBHvq)Yoo@gJEUjDMrgt{ON0x#Yx{Pg9}xi8KrRKogE!8QZ6 z5X$;zk5&fAJ^!$2FaO(@4bgX!SUglOTFI?`XRh<%$uP%K>$9ZU|>cxt%B{ zAJ%dGyZ@L(@9Ybxs=-kWS zr}i1Ug``y*gx>iQe6}=o>*aILk(;L2L|LFBYf9iuc(&~mFTHr=pO{g{NePI(EGe$2 z@tp`*Z&QWLs1j)`*&iV(Qq5s}+>WYL^CBl^Bw3c4>^xrVw)Mk)N& zog}E`or&$9+{&k+UNv7HKJ%7+9V9At&BjW7okW<@d2t>S(di&Hmo+>|r`4U~bHl^p zxzd`_)+I4q(yt9ULTwTM1jZ?&=ODec_ns0<(bqeJ;>s)EG4S2FgWfEoaGG)5&0;QD zCK_3;Geb%JXUw8G(pnDZNwvH!-Yjp1_+rf1RDCZ#%#StMF-{_^@64HP%5SlHdR~(>qbMJ1YM!Fh@;zy?=1di>&L@)@k4!w2Dq;!&5e^p7K z=@80zz+n(xEIb^&%R;XOQinE)gqQA;F`OT{5_DZ-Gkz*Y&7QM>TPB_Ov z%gU?io8^xueZp+fIJTYEt7i*;g3F<}kfD=iJuC(WQBuPS203EuAE0+nVk8sX-T9Bv ziI=i#bKDMl%*SBP)NL9yLIsM|T7DeU{>>I5N&(gkVFj{r%NrOs@8TG9sGBQdrbwzt(TO=nXv;B9dz;b=*rV zKjHn>sX9907M@&ziI&}7M{@JVTGKk~j$#<7Argk4WUTxWv?Q~q%Jm*)-YuvO4O}0r z7Ga+y6!|^GbicgJhfAw9J|I=)k@igiW62Sop>6HkuE@RPL^WT2+?ek$SXrEN`NNs? z1IlqCefg$+qy2k!>p5NyOxHeJm#Hswzd+}f*XaO@=`UP4eb2rZxVb!_iog|JVMXsu zK(_SzDg4~#bDX$Xr3OwYHDE_{~J9;=yg!>l%Gq>j0iHf&uBQ`#} zr*)M})b&hlh2#`v`@}3KJ4v~Mn&1ZDqdkIGDup+yU6mN2#=$_2g*y9a4`E^BMDRG z3~$*yFB$(PiW@s~sBB@CA#qcmA6YAjG z)avCWvH4uyRt0u$-_DB3`o1mNex>ZlCd8!vVGI2XXZ}m&=5!`|TM`wf99G=k?Am=P zW%F)XLy6*h!I#+)xjuzd?C_l?UktwL9)8Jr^#qdP@@;uFrfaIM-MN~*shd7t3*ELp zg{nM9!ws=k!evv;K)|J_!m`hQ+6fR|*Ky7G7Rep00ID zXtm|Zknm(XmM^IfEfEf%i=GX0Kt+gD}q5T9P)8 zS<26<9;`XUch|jFpsM)=U3_;_m@&^CzhILinK)P%fB(^aI-k+sDPNtLZcw0EdA=R- z^|?l@#lVGXNl0OfcMQU84;PL7De=SCv~nfvR&efU534;)5yttwg)u=I(-3=_(LhnX z=&i0J?LI$m-+j5JxVVk?cNpG(z?_rh%$Jqqu4YxzFV)K5e+r`_%E1!N)YD>8`iL_l z(hcEa-`ka6dKu_+m0wlv(!8XoCgr%zZScAsel6b^H~jPp#l0Pux7(FmICFq5XL=e2 z!~0tB$51pQU+4Jc(0sR5s;%$}YCcUHwlQv3uPwj#PPxhzqMDXL{%j*__JrvOi7_5T zI=2U{E4sQZ{Jn6e{WV3KHIhOHca2XbWo#Uj+5PZ-<+yaqhTZ8-507Vhz0u5Yx^tiB z+gsTxcK)yJ9oSv#{Ars7M$?a8K0R!8%;Tnv%jO)%Rm~bjfl^T)qpjF&pr2eus;-=S z7rwRax;3L~>T|Zp64#au1+UX3q*&`d-R`8jBH7n17}dzw*Xb6kihFVPWjNe0-1^;) zkl;Rye)4zZ*Fi~#7w%3h?RO7RpFwJutr&jHJ;Hlt%h?ecO(FXfGx3+tcsvUO0(K9F zR^QRvBwW3!t|!c1deK~uRjQSFG^MK_T@UbQ!dIt$P2Lo{pCvXX zi;1CNz3)}VU9qvZ*0i$Lp#*Z^84aqJ?q73}6KQ$Ml)@%-jDy=1nc&hc{DPieuhh+4 z-TS%1Wyb*jY^nIlM&Eaq6WO zYpFxoZymnwe`@nfugwb3>#uK8V`+`+D_3ZUFaIj2Uj0?|N0Ha7e(@OrIJQ9PR&D zxl-kfw}s&2V3i#&I^MENh4nRt=5wpFh{^U{!t?OLqQd3S1p=Ik^dxJsX)mdltC_}GRk+67<6>z_(Qz|s|IyZM z$L+8~H#BlI$2|hqV@s*>-&%F`Do{Lq;9HxsuI;fgZR~}qCOL{14|etFa5fwjInNy) zEW*UD+0%RF(AQNq4|6o099GEj(vYV5^1xl4>4HhD%@gzqjG^=WjIew3A5WBTIlZ+y z=7aNK9ra|=^Xn_Nz7UW4XqzKgQ$pkWB-IBwc%}giZ^xXCN3_UFFrP)H}K0d zfS&N#zoikl)L|r!pj>G?bc&u5wc2EhfOHu({o5DRP7xYM8hs?x-dN}AoDhGdZe4f4 z<#wxe+6_wFUWqmSi4AtFA|6s<#YJZa4!fh)<!(&xvJYM_ zr&YdnaWvhm*h=MvzWv(u)E%j-D7&j^DGuR+AbAgEj-KrPY!?eL*g)rZ;<EgD^E7b>@vV?K%)#){r`sV_s8uVb37zr5w*y-;7*qpZOJgL#KbCUZq~ zw4KY@Ut8|E6SJ24-p9~2z3Q%46%Xv`Xi%kZj1l}ocZ4+|^9ZXMM)`A25`)Gj99xS zNq*j-R%G%jGBQU~*#%avc9Z&p|4r%+r<-J2SERM3ozTg;Wu1MsPW6aquu}y?=np^R@gJgtndBp8U}+=e>jL zQy!O;E3f>_uGi|nihOTrd~jQKL`r&_+jqFk+3OE%l!If2Yi_u{*ekCUU)--5hebSRzAG^```~st0q5~3G}oTAH8biDROxi5_@2@t+=~k^5QOo zn-o3{0k1^bioaG(-YHh8)`yi%b~kUI+IJBEK-7RM8(_ZoTIsv~-Feol4()*D+{0+| zxP))9gtZkH<#ss-IKHYAp$hjl&4@ePaEUk3chGX^&N81a0+BCN^6uY7KRPkyi5$U#>rP!UZ;;;ceRz zXzOmMFZ1cfrPS>T`~97+mDU$Je{{h(J6W9M^?i6P+-G#SrT(nbwv*3B2I+a@T;&8O z#}C`sxbm$|joWWWmm7J&pI^_bx0uTrWu7`ok$a`0f8BoB3hVX)_u$6c(!8Hxo@xcD z=Zr61GqQ>r`9!%nt-0Qz5f{kYoUhZhH6uVn;p~pDK}BuUrP33XCvy|~cAJg62oAm- zv0PI>wNt2~F0pjb)w^@sL76I*k1j9XvU)Wf>6@M+`A)R+T}FGT8Lv?s6Diiu2aQ03bn&pO7-i@G{ksgO91 zNbvVBwZ1aIeLk`gQ+UO}g~^7mD~oo0S$h4~vGBs@&Fk01T6Tw+CAr?;5pI6t0-x`# zEmuN}*|w?=GMcpX?~%T?J<9d8`*5a0ts*wv(5vXCtKH{koRp!dPqXZ-8lyw@qtrko<;Qdn0Gyh7SDkIJJ~o)InNG^SHNcr+>)Tg6sW zqp8gO48HeLjm-(emfnw4XK&Hdtr$kF+b+05sX3aq+?BrA9913Tb={Tc{wtM=HK`S7 z!v{`=xGptGhpTy6RozD+(d?tV3Y$(NONE0dduVB5L%H=V4ytu{=hZ8Ge{?Xr!Ft8& z2%l2#XeW%phP~XI!%zC0yg#wQb4|0wmHzeeH~Po?rUt}JPFA?O);t_nQ<3`K67yEX zR54z1t;S6iZiQrKcg6FqJEW{uJg>rZcnoUv1QiGR*M>CLsAcpak4DyQvrEppeX=sk zTZ1{E=~ef50itXyxG=16s37b>Cgk;?$OFs6J0aX_HwMFt9x{h;`g`AEPRP2w!$V4h z29qpRGrlFwdZ$Oz;g1qgm<>`_S7^4?WO5s2sJ2uqWjSEBdo;Cog&&e`I*@ckoBNE@ z>C{H<$N5FWVWR@Y{>G2W8O`xpM{_-TS!hh}CM9bLYu!DZxyogoZUOC;^5~U@H=kra z&T>fU^Jtb#dvj8S#)Z?fVR%<(WZgw+qc#5DP`Rp?qVa0?w!>T8eNtF@r+FHi4wayA z0=rZ#pRMa!Qy<*5uFbgV*~_p^uU7PW(R%vPdP+9stZR>AsSnOhNbT!)KG~_>%sJS$ zf!?^D`tU`n8j8>E&)r-*_tZ9My)q1md!9P#`fY=_eXdd>ce!)*&NqFQpQR>)!tC}Z zd>w3Dcm8!m=M>Xc0})Ccm8mN)`>uZ+4OLaq3>GiUm7)y4kT%er>?i8%8`CGV&ClkH zkKyaFmll30?pbyt#{HH?i9C9R9R`9c-P!NIy*~Ll_i5HNUn;sLv)?GBOJI=s{)5Em zO(wEwe7zrr`1-N}>_6m&<`;bmE-ntO$xO=)zt_a0^{!C1T70{e#9ASjSIy^Av(Tsq zdIPyZR+Qh|je3y1lhL8-j=ucW2rId>k2Sutrtn9J2G|xqv)k7b8fG5qr+4wf5qIY1 z-J(+KWYU=2GW|I5mz;S`51Bjl_+H4Z(Q7x_iAHeChK17b^CGeJb+Epp%K=qD&~tn z(XUuF@aWU%)LHh+B4v*b-ztt9RivivjLCnk{w2s%($Xo6|7B-|HyPTYbFE+0mUDZHWSFYOrYceIbTQ@w+%r zDAyP7e)w^Zn^fOze|P&{3Q_;Jd;D^#t&1TNef)} z`)twBxKH{$d;8$+Z4{S6POn7Ejp}7qYD`->kDUHAaeB?fofjxxW}dMq)hsQGwq%L> zZ}7W)*thbvKl;F@q1~@2^vH7mq+@M`Qc6Wqb0_CSyUj5l@v+Ro;cPf|{Uq=B=S#P| zL^f*JOgkRcc%d1;F1p=PvUR+o;^p*d-U^%P#(ko^O7y!neZOIIa`4rM3hdJnv$l%# z%NrznUcgyHN)j4BS$Ms0@=Y#vMqFpZFrCk>taa@%PjqmYc5#^Gj;gI~z9(}APu;yW zdXx}I;SPjVm^;meRQwR0qiJpf1SremOpSt>{b6!;_MN1}jOp4oFW6git8iGc!t zq&z_M5;1^@P!+U7z|^d* z?97QzE)#-a#1Tj+T7noyLWr7i2ZCXU^@fTP*#_cEFvU7I_!gS`{g(2Q0j=~UbCdB;6>gp(~ z@7B@TuB$G;TU%$ZjJmwCy5djnK>`s$gy+41dz97pYHP^r%I#IwQ2$9zQ3*l>5uA(( zF|tszy~J=a5^TF2t$_#Cf#;~zan7U^06(Z0p(%iNRe>7LJ#j4uBxu?|iSPhVOUo(C zL*Y_Vgv!W61)PDv960eKCJF@e%<2V^&^*i+6srWlt_elW$Ocdzv7*`ws3PG=1Q}Ig z_Qj~m+Z`g3oe@<6St3UZ$RZ>#^D6s8IM{;9&c|p5h+koZ_!&khGH%3vFdhqv{RuZj zz5bCKa;Ve8Jk5YgV-iNR2?lw zPMnZ^G2*j`5KRM7Oo{dRNu9~XMw}o6i;6<_~|#T!{V*Dsq`668Z~JiO=*? zfINx+OcemA$mNNceKE3s1{I01AE6>|2k~DC>pbG(b0WK_Q~`TA{8+3wnT`+%EymM~ zREf`Y!33ygyHIk24M2q^Crik_7}?STGOr!cP_&~y5*C{*GQoIWfH75ZmT zk(+fQp~ZNbg^FmPh@BL%rays-+?=47WO>P ziP0a3i<2uPu%f+yW3OEyj)J0%nL6{RuPViYW1` z2A?NQ5_1M|ab|uta*`l7!9+@nF{27R8KVi6m~&5wHC@OJ94<<(`NZstQe6lUk)Z`r z1hhA~yCy*pkHv`2hiJ~6EDq7n1|JghnE92BoPlUg6^S)n2$48aY#ujDQbmcssEUZ6 zjSnQ|Y0aIvG{=@Qe}VAKIEnn z0bi0Afq>6x$l~($GhbVRTrxSfD<`gz>+vpoV*i5z<;GV z3s{=#%@$|rXKu2@d{O+Bor!~&Lxmf+V80pe%wtOU6% zB7jFv7ccoIED>w_quPp-_h$%T@_TW@^I4jm>IcU5i?`BGoE*T8kd6Bgh$VI5h}ngO zUzLpfi9-VD;JlK5WvWPz%W47(8*`&vQhl}Oo`=&=*XYAFMwU1SMsm=ouA1O(SQM95RE2qBpROussea47{y&CjxQH4_^46gwKX=AqgA#2%p=_eD zTTmt(jv?1cBCW;BoY#n$Ig3s5+ZPZ=qUUwf#O#X^pJiyyDwB9yNERtdZtXF@(z#i( z#HJ?U^z+u9H)KQ*SMe6B?mR3I$iL{$Ab;X)0#D$R3pA0`VkMKtN(jW9Ehg1=pE4s1UQOnSf!MVQfJgz=8gfyvoEI7OV1nux3|I3G_)^ET9jF4!JH6p5I^G zr2kR#Ic=EXVj*QDYCa~v@=|^jA5v`=f(<}IZY?msGRU)Z=bT2OBonN|&s-5eQ^^s> z{Hl+eB|m5Fi8cD6)^H5DD~*lRUyS%nol$c}i?mD!CC=Yy1IzFPW)>EL znKuw5-uzbznKNM|HWrYDBj&9_p#Gu=0=tdO;!R@X2eP8%UJfz)U#ab!=n-qO5Ck{^ zN#6GWTb}RXB()1wexme9YI2ui<*-|5-$rGfFsCDLLg_AXJ(xo zO5A}Rm}Vr>fsz)(prnN!s5r3!p`;0VC~5K;N}5=OlIEzOq}d%PX<7tI8u~*eNcYW* zG=ct?*m%H^sNKMk=$!-FPAZh-wGyMQZE?HYj0$ zsULI#f-m5}ZNx?;i(NnvLs4ehP1VlHjt~|?7I6STG#7vX41AD+0E+77PQbqV3$qcM zN_#Fh91iF?l%%WVslbE~lr&E@FBK&Sa7Ppl@?>DC13IHRWVHg8%b}#j?s<6u!lV#~ zd8q*5nU*A@0I2h&N{$teJ{yHL{H?7UQys>oBtfK*azlc$OUsU#U8PelW%#Np(;ngP7c$R~MTfVY`BaBlQXM@&de(x}kZg0B`?gSn|987qbdXo(!-ttIy=g03WmJ zO`Z%i(yX?VCjqmD@&dV^bo)%QiOhlJQe7UprkHkE)_xO`=F%$i!7DU z?ap+TKa|valjjA(kY-|_=A{BmlVWk^r2;i0E%D5y662$0qPECW zfq)SxDcoaTDnWaRMs{8*K$oo=UKIq@~$;sX%F@<<)tqKxw3vM6y)E zKnO}2g^{NM4ldB13qT_d#-OAD6}^Iy0OkPX%f*GrA;C1=^Fe zIxt5Vpa9fuX6#9xm#7R2j2>~E0>~PvC;THfak?BTvA`A*r=4eKB+2s(Kq>t zw?yc!wQ+m-UdMQ+~Jvly2wl;%M$IkF(rs=izAm2XS)8 zj+`q(gUos^#9hmPAX`y5S{#UyU1Vo7geaOYa|U(yAO;zG#rEWS`|0RTV5g-#%iM71 zVp5f3M3m(|I@di|MRPQYb`Q%qYuKZ;Xl-A6zEex-%l@GAhG-ptUA7vDwGPl|98{jglWq6r$!03b2-KQT!sa8)ydN1FzHUAcE(d8@s zh4ab&9S#lNYr}a5N4%x+9}f?A57w@IB?mD-Y}>uPz1&#Rp`CFwg68%W3fef)o!(zs z1FzedQhn&9jQp5k^Jr^9ac~@DAFY`{%C`^O`3}dfN@(n6Tx&Aj;L>O=9ZPp6*d2D| zZ9sL~h%bdX+u_u;k4&XBZl(LvpOJ+;Jyi>fmFQ+Jz%ZW~fjo;D6fsFZqyEeqa?7%3 zu&p9?H0JK9Ob8D>yjTYMY^88LT#JE@6SqHj`-&z{xXj`36=_sfIm3=hxoC|clz4l^ zX3C3weXk+myiBGp9cvViSA0M}9N-%79U6wEeL9$y*vq@(qIcmY{7v6utvFN3N8i5D zD2neyR%M%TK*V%I5CA=)ojU9T#Q6&H9zN2N^7;kS=I=Xp96LQ1%>Ne4%GS697 zejRYQr2PCqzUk_t(8!0%XLhc$`Ah{(&xCxFZV~l@exZfDc*FNB9BPlCbUppT3uU?S z^%EGJIojM+^G0Na_R~5=%MF*|EazRf)FQBT>ez8l{Gl(@B5@aG@r4EF--h##F^-%= zv>+&C4f_hx67kPFn>>^wIaK0H?vh_oh2Ipnbu;2*Oo`qrwo{!v|BtV?fQqZxwuKW29^9Sa+DPN>?(XjH z?%ue&1a}Ya4#6FQ1&2Uzg2UhW?m6e)f86(8_hyai>RMH6SJhs7^kC09tw^VnD1#5M zrO};ASW(@rNIT>e2Wv9!U0gCdE>Y5->{e-C16}qz>(%D#)i$DQs`dSGbix!{=-rH} z9zM5Zk*-+UG^48I2%=dgR>b%v`l6%l8gE(*9P6( z<;%C61lg8J@Re*xq^nDPEu^_xU%DVRcF)%r$!0h+gTXfZi(Y*8Fo$7!en|e!DcLG+ zMaK7UnvIU@sgtR2uCn8)P^--B8d#{J@48yQ79_%n|LAJ%+~fsiaw21!P)-kd=7eQt z#6x9-L_47x5U1iqW$||hcNw50drg&OOlS->D2(2}kp-6vVOBB|2(g+VnH%y0Mj&)! zv@|10@En;BO^70XYi9TaPz2+IwP#FhbHE%Kv11tvo&QGQtc_+um)cr@rhAVWl$9Oz zog6ZQ-F2NDl+_KT(VUbK%87EP9~o{->Gc8tM!X1$NX&m4PYxPSUifL$W8c$?aw+)a zg%{-P&Be86M6AIY6Z~*O%{PGtjNRo1Ml)x-I1>QGl2md^Y~amJkjl)?dxtHsjwDcu zm|+%}(^pzt>kMKX3myKC%Gt)m>-+!bvWSkzpBAr&-KIDx4mN zmrmGDZ+SzbGy8nzyTYqCAI&0IaV`7mS}m zDJ(fHOPL0Rf%SdTzp#bz8G4qFzlXx81kT=K>Mfvxj{_^7Yz#!Py zj|b(20$(APZedgl!`}j7Bh+w&dnMScPwvb66`%MDam0H^Q9hS#7ho|z5r!LodPN#k zl;|CFL^9#b^p8fxk?I|mDlgkEL@GM|m=iO1`$63JGhd)L>pWy+QKEl{5{^u7zh#ba zuMp(OoC6c|-pPvP(5EN1kwTDvtcoM;E8gC$?7a!EeAzSeNAweaRwJ~{cok;Qxd@PQ z!H*MB<(NMw4tT;ZJEY}GOu2)7OD8Li@Ct81BGfy8AzNawD=S-MuuGpK*E_`Mi1doa zKtSmTc!f}zlke?gMVcA;+<{#qIp56*13b~siPpMx`L@IR#I=C)#8v9T33;?IlQ;x* z3oK2%1x^l#-2%-Wjx91`y>3+|`zdZ!a^fFvRdfTPz#oT8T#*4oq#ZEWPM*wwBA-?3 zG9O1ctOW%oVvTu)`oO`kwkZE#nTF8w5mNe+&i4aihN4a>c;ooifJ<;2{9=C)WL4YSD?kk@s zr1K$duo)meUVmV$E^^qje@X0#^|>VR!@u7Zdcry%%sY$hf+p%Kx<%xTWc7nY{vu~EnqME*6BluX<3||()9DFM z*)ypp{EooB&*0c*HPY^u&33@xr0M~fS6F8Z%qy+iRpON~5W}09*QkeDKcVydJTs?p z$>~0;QI9#Zkbd<^|10C36w-Te?yZ^ap!^fsTU7e7j3+$fLi#0Z#LQ33ClB7}mE-LO z!n%dtJqOQ_H^P}6xej!mORP=M(G~k92>TKVY_0%)s61Evey9OQmlVE&2164M2|a-t z_0eE+#q9U7&WHnS_RybrxB7^{W~l7et1E2g_{I}Ie}T{w#^(g7E1D5(BI=Hjy5j4O zT^>F>pSV1r7%UuJqDFK&2EHK@@98{ooQ>SO^6>9CBKv<`zoK~)YTX0ANVe{|5EQRB zV8fg=JwQYpH$9+5fJ;$>e#fOVh5``=A@dfOh+l4T2}nZuV;w+}`6C_#{tDzzto|e{ ze(>)klusD`$Kq(MN6_ezI^j{iy*hXS)1ZeO@yH|8h_O16jm zX?nz@##V4top_TaDzyW5Y^79?F&PEX1S{480WS+bN!jcXW1J)xWy%67B-NIsL?_o` z8K10}Q@wGznJDz#eW3(qZ<7ubmroXP8~K-b_%~blhjB@>PfgCGk4`%5o*cj6$(l!l zW*pR6*?ZSMMQic=s>#A^l43bJ|)ZtAW{U%B>4EqK@za-D9f zUi+-uWD+ZRm|kZx$u!BP?Wg0j+{6cU#O@RcqFXHR|lW zgVxO~L7I;*_UY~$FXrQ>2jEZuZ`087dTbcN;OfH-y6l2)lyGF z3boJb`%W8xey2RWw(4HH1BYrvmh2JMVIo21Za}Yf)m6K^E#^w|CDr88@kTXwt1Rf` z;bJYq`hkmuO#WLb^)=%?@HqUdgz|DBDnWWvkT>qOvxHvVCaj&-t(m{w#pW>THti$U ztXpj4EnzV@8S>%o5!mcF$2+B6gj^BTQsk%%_HXAy)9S0b;5Re zDh$wyU#aKDFJB**I6a3 zKS00pWCHWf2&!7yF51s^b$!2ugD~|iU@u8$LVOLt{qxLZ9xY#YVMR}%-5wtFm#%l! ze$d6?W$FV5=B({XtRRSN2D!sXeeJDOJ#cY?{E(O*Q5gKO+obF9{DoJiXWRNt`}y(a zX2)^uHP6^nQA>aFucwyYBd?R$f!YBz_2;K+lzEgf{Gr>5*?7amIi3;hOK30$VNm7M zVh~i&2iJK01Z-g<>&oE3?u!?qCBmN|I=Z?_VI?Wf?RbB7j7Pc*eoPoeZL|}@WP^P= z+SzD$HU$TW*Bc*Po+UpT@`JummzuWRpAc1`_gwYDj=)8VcYNTB*mm{|9CYB^nAu4u=$YB+B$ z9kk%|jT*Eg;O{rWYPuufAK0Nq(r{kw--#taI&#E`pySk?-dQ3595}*7EO6zF?QkOf z{w$uC@+ah{s}(Wq?!3m8JD8tku9nwe=hR{U5x%aAmeKJ*?Xj*a>xfR*RV%OVa=^>0 zXP_PX=nf(D?%-aeq3~rduI5n*6 zN~r@3Zi8pm5J%od!qhXOsn_eswIusJX5-7gr+xt0pS7bx)c39~7OZz(MVx2_8X8c^ zNsH$e!j2>T+w|A|1|TKE$o^(9s%%BeDi$dU8ZxZ-J!+NH1M1p?eXAkwYqjCf_T9ng z);a@@RfpZ)d8IW!$i+j+iTLV zW-JdkRFO-pZShI1MDL&dVS6oxMrYmU{#@+!R&f^fx)Y57+C|*Am(^%B=;(2J~{I_-T>iS*rHBU+@^qq#pC7 zUhE9`C04Ixt+eRhQf5Z;*zM_H>tE*VI_O$%#KK2gBs@X~8;{<~sb z>+&hyuA6ALcI=AsZ?(!U1k`9lktegP|V=aXDHeRW4s1qiUwhF=`Ph`idUFb7$nCtxSjJp|`t{o{{uBBv^!_9S0rew`!=Eh{p znm2ZIt{kzH)}oZR(NY+zL$4@LM6;Jfmz9#@D29@iYR4;;w~e$0ZgTCYg_SvCbiY(G8MWHob1$cb6?fYE>Zstw%aW5v zgP49SI4nIc@CV4VF_iz{orXcvkY00Dgpls)M~Z;jw(H1Dy>Y)c!rs%+cu}_U;kX>l z&5%_^@Fkf1(j_@tS%gYn#%gEo^b4!379-PFSVWalIUC#q3bI6UH_4dj7{>dBpFD#G#*PHw6<10x#$&8fw3g?pi z=^J^zl#i;;I@h56(*37>vT?QX)bY6e*m2D9gYl|lnPi!yg=F;Py`(?;?`h}~D!cFe zLrnXAW00L(*Y|xrQo=3a=Or9OVVMgoA;$uq0j5L~e=ywVU$6b@;r5O-jDx*YZ>xHM zbFa!60M{L%>LIo^`Wr`uXs-Kl!g+4zB?RY3s1JaC7TM8W1&7_K_tLxV5{zXdx7x1S znJEOiZO~fxOsk0+Qquu%FD4h;~H0}kkj-(uEc-m~X) zBi1JUfXe={UaEEOf*H!hi678cQOcERea7Vtgp%ahQ9U=~PX0*LXFdrvv5*lx`hF3q zXlm|iu-YB@mIO%eO%O-~-&jCWG{o3D*3|>K50H#CBi(*pxB36${a*BqK*x#BzGP)S zf*Cgi1DR+;9E1DVPogo+o5ZvXFFzjsl;iEn7Jc#BhpAoF_>$a-}CP12TK^D8SI23Nkd2rj?O0 z+kyK%zSuX;P*DG7{HJZNa=~_`E* ztQcpo?y~ky;*bR>5*;*m8^vjNmCau^m=?0isbT8+ysLho*ehy@Nh8eYD11u{#r{;| zH01r!Tu037`|zxtY5tAMRjM6L0X;7z2E1BI*@lG9yz6>pkDO$COkNU?&Uey8Wjy6l zdbED73Qr$+x{%X}R<~;D(~K>1%W=oX*R!;g)x2_Q1LTHkr#~sGMhim~3^WbZiGDxK zVKUoB9s5GDZF30EVB?MKn%0$#wLCwgKQZ5puL0LHvJzS@Gor3jN(v61W?KZmFU>mp znS8e@w%uW-S;zE&FqS9^kWb)qchx19-Q=k#aj=Q(7bV@PqegaT4ac`=jjf<|;0<6! zmnzn<)x{sBYIoeFTMwx)TbP;orT<(>^os0uO!IqGkpu%iEW`7mkAN=O?g*GN<6vRR zo=1G9$(5Yk5tWPu4;37H6mLY#&a|2_kVz9TxR^Gwwlh-1_}M*lJ%py=?4hARk#^e< zl7|})H|qEJ9Oi*mipt}N(#u*FEDkwE3S056if1^DE_DBhYL}lZsYdE4Q!1hfgPjQ) zNKyUVSc}Pwwo||MGYrpaOlf1v=&Z<0DDC%FwG<9Hdn*F;pNnOo;c3bD&ydgPm5b}#fVcE=3z)Fse1&xY`^v-Fu$hL-3-aMYRaL`XpbN%_-zDq%A z;^{OirZAw+Jh!=H?!i~SFrc=wa9|Avv(hr>Q4B!{L;+Elk-LL(ExVEu5qtyNHx|Ot z+o)?r>$T#vGZ&NvNPLud98k*ah<3}}H_sVUh6!(N?}*kg5zGUBEdM75w~jh~56;0_ zL;8WonJGJ#W;QF=QFr|b zpXZ13kEQhL4d{fN*PCx8#VmX|^ZuVrpLz6*#CM`MiVx`B)-+qvAPQ{b;Xo<5YkMhv z#4wl#6@nr%OkzLqR5FGT`bU1+Ql6>S+kNJM1PN~cV%=O~56|pQGbB4j8>?_5O;G#2 z=lVOKZf8OrT6v{fdXh*U;di(0*@+9O zM|LT}&7y^V%a_os(p&y|FBOy6yo$z|GMu2E_`NtAqV0v46h$o8I15?11-n7W(Z$@k zq$rE3EXr1TINkm~=s_|1#FQMe+Qd{GIn2#w-GOsDt|Xp=DQSohsCYlbsh01_IApEY z&_3;UsT(#|C-Hq+gUpg#*iS_Ilcad90KAW5cg1EnP8qHQTSi$lC3&NF5G{!O?lM($*sbdmKSY2;jag;h(UuxhW|^49aMsI8 zTq%bXH5H%`+&^)zo#rQ_#E{A;FH2-AOeTjpVjLn+qMB zJ^sZg#F0W2W5g{eCy`T+n@^$qVGyYv}8pRN3pfl zwwC491c)dd5gkMD?dYV}do2^NLA8aMuS0^7qKd>7wWQ*7UyMlAT@|`SJT=c>jt;&f zqBvr`>hh901R@DQ4|liCozP!y;k0sZB3!qFkw=&Jw))z)C;}nmIemZdop_o(lR49@$duHU6=u3H>$1tf9+FCE4 zwjL%t&+ozt_hL?Z+ODkwA^|(|rP<;1>2m>P?+HCUHcg$=$YqYke4l!p;x?VF!2a@R zZ0t^lZ{dO0h4_14FxEoEJjjFntJGR1a^X7R?!wWP0*bdBJ5Wvw<}lX{RP@BcRpED( zI}IxdxmmSU=so$|`%SUCzc`e;k4YM>N-Cv5=gzZt{W>#{h3DY+G@G!)UP9)4y_N!| zbEL!05NmN=p0T+oWTPWXmK2r6!(*wAz!c-jgXDYL?*h#6c8BK|#Hd23Qp4PyBXw zquj8!Nwg}@?5oZWF`pyNno?iOO2()9z2Ty*gGybK5qB>UYF(i+v3aHp82rUo3!zp(K27MO(}p6{0oPCoVWUb=e zr15)h{a|$Bm2u)2p|ox*UDTjO+9Z;T#ei^*dxS^>owPivZi8jYj=~G72K`}-IKu6D z*6$^?A>6z0TqBFf6KFWD--Vo9xjntlIW8@Hjg(m@5{r^&GE>Oo74VUmU){ zC@!VxIFy!K*ua{5mIRUQq7YbhI24t#Hu*MHvht8V7PA@Sr27&?AEWq6Ul{ ziaNJ*`nsB#@#<@FJ&lFy1Id4W;TGp26^OyhiD7WsqpgKknrNl++44~z*`K@SgA?pCb_mGn3M ztN^jB5_HJaR#g#j%hRYyrv~*nrHbuAi}T0%o<$9lqQ07F(CikC0_(nN{O~_48>&Z8lRnW{WEX3&+Y8~#Cs>=*p zCIOosRT8z5Jj#ujs6M{8-F1bW??C7Q0>B+oBu*S|rJQ{4%J8Cd!E6s5^7r0X$UL8{ z$%MYfYY&wDqTqiwde5%sHtJ=e*PP|*_xcjj31T+#++pn4Zs@r^Fd34Yp8jT*H*q$p zEAUtex39z!qATidacEBT&V7?)xqUxYi0|)xCHIG6pe7I_k!L3mnZi?`R?AjY2}F&m zmoo3_(4{Qaw07b8q(PN4?Hl~E1lJbX!!0B#(^I;dVlFp_qnK)LC#94{v}&o6obEZ5HGjrdCEc`w?|hhTC+)&t_1!}4Q6{kzW{p5{fq0GJjLTjr z)jTu<0ta=FsfX!vQ8+GD(H#QWvdZ3>()dP_G4A?cpXnl=TX>s#R+pETemn+NZq7|X zo-f_wZ{y&={Y*~au!zk)2z9OS&RK7u~%?mHWoTw#3RBEh|?;+f`jCB-XTYinURN z9*j>rC#u$*X;+1A4riTeO;)yCC93AfZBjekR?3*@mOW1oq#UyVo{C;mVy{h;nzAM(-Q)Ru z-a%6wG9-nd57Y0i(y`hfref- z#FU!BSwhjm`Wgh9OH)DAk*@}qSyOJ~|RtUzI zx1Ti)>jQ_%q0n6t5^1@MVh(538>JtZfebD)rw&OFEQLNz8*7^xYbouDSV-IAv>*+f z4+GTb9OJo)%#8e^4b}405K8L!YEfz=%S&*(X!}cWLMf9;xb-yZ;q|FsY|UVG(vt|> z$mNikL%nKgr;6)Z#ET|tel00NzC|j5Z%SMuTN@G^i*{IB=l)uX9msI#2h-c;1FaU- zTrc*iJVyOqSI*(lA|#d6u;$4Vvg%Zmh2$SAzcO{LrpskxhNm|!rj$nD>X#C%XicBB z(G)uK_+zvZnAhSgke$0arwmLdc-mkUxDBi~Cd@fp^rY#1b;&8d;GDr49nBnGf@>np z*1%UAqUfwXL)bQ44K#ubM@-X~gEh*M)r}DwGEdV)2HhoSB3o7D=)5?~+hmjyH?1O; zUfkW?@l7J|;Kogk#z}A2oB}jkcbHF1H(u9>Sw~R|6F8EMr7X2r_WEvf?O0_crX#m9=YDeYGI#%HK^x=jyQj`Xz-iSN0a zNBdBrG96ThZ6xmFxd~2s8^YwZ3x$)jvs|6X`>WHx*=N-9E;cO>9&2N<@*JX{Ybf?i z*Ia|oB<0=7<$Cv6QQI%z#~8GFj8B`qiQU47YVF^-zW_XlzVFwo9!})K{%mNwkAiTn z$iDSJc0;(ikt90$Rul2~x%q)f{W~2=<8WzP4j`R6XpNZZ84|eC4xz5p$2v3PNG5IX z_LjM$zHk0=zm{U&S`*)Gc6%(7YxP7}G@7ZyGaYHoe0nauc`IG0gFb!3KT zWfg3Cg3DNay)mh-vX?$3-9Rn`n%d!eKj3jQvuhkTpF@FV`~8cQ1Ywkt;M-H>!{W8qV5S|X(UUgag(7`m>8&rcB*$|)BIvrvXk5L!`$0$s!TI5fXtYRZK;RVrtipnbV zLQCVttjTWpW>E_?(@i7e{eDF)Ih_t9dYtR zURBk@p>#&BVJDsQdLZ|%elAmXjhOY^uTWaFs+nEWTP|Ebd2xeYis@m9 z_F$Bq47RoWba<$;AuQ6BNTFdWTbAV<-x{uLyQwu>I zPFut6N8gf`U35f@8k9fZ?1|1K&gjrTMK+E4rMK{Tkgz(dsuY_LdL8HZ00{M*MoRXc zm(<0gI#wUc{|((MMPwVNC6?*3H0 zv!4|_uLd#dh%GK#M^k=s+!KQx$)gqUr(%^kzy4`m7cIik}Jm2yP zG1GUx9#kZec9+j`S_wLOKRgqvZ2j~J8GJ*+cc!v!Bh_cn)KeE?>YNOwg~K}hW>rX^ z*VbAgx@0TeR9Sjb(59f0r4|8lV`-45Tps_XD!m}PF>qEobY@;W%EDrjq^G&TYQBOI z9miQTZA;lb_o{Rse>x`Yyv1!K>ybW7t?#*iK1s9x@d^#4?ZXMM2U`HURlg!B46R+4 z#5${|ONnfX7P#GFOT?%q)udXIXij5kB1kdCoccL+Oc;h439eElsb^d zUR#rjhv%)nJflyEXYlBia(oJEOed8V92b7uh~C$^X}T=BcBi&=8yoi0~|)gDLR4@z4mp=Qjt zoMe)A$Gh%a56>8ie=tlqf8=`PS1!q>7?=2-;Yl7ac!EAc^d@`G+f~s};hyFCYbU~Z zN@Ud_9)&6O95Y?U-%~LdW;Yo#w@=tr>I&#yzO{~4IlZD>5bZfE-0mnRJnb^X@PjjA z@UXE)s_ph`(f2Q$i%EOfyYQr@ehI|R{tqio#6TJH{V@akW!93l$rKi2%0tO2BVSa$ zjvBF|#O1ufl*Fmi+^+TxcxavE0!O<)8FlHYCq_j3@Z55gB}W8|fQux6=VP2e;yC%! zk2JPc0hvSBSJr?XC=lIwJBQ!9TQRvYiq}a;%Os-%!xB~QitBmE#9F&G!zP_v;=Par z>Uk7?J(?bB_t5EOtrX|A>_-_xxq(6%&bO}ajr{e-S6jLT&o`+qLA9*cH#9NFhI7F3 z=5R-+dVLs<$Bz_qrP&no#B%8-9GVjs6i)N_87C5irqQa#dX7^MaT{Iz+%P6@2%Oi! z5_m4TU%!&D0-odQWzA98&MyTDvpW-o3)j^-)H)UGJXw7#-%&Dqc<<~C_l~LmP)GkLww`63zUiiE{ z;j19s+xgb@*!xmPsIcL(SvW>he4K2LR-?snwI{*RonxqMTjWE*M>Wi|H%JISmnvL4 zD=dh_gh;91sc}~;Ro($9zkXHw3!c=1?cPw{1$hW8S;lY$gm{e+6d;@J-I!F5Ses7C zlv>}=i1fQ_*NEh;s@+8m%0WZW5-yr9&%iWLPf6OMn0kMz%SZ3J(#~F7T57&+iSX~e z9)Tg=lHYg+7Ms^N4(}+~_x>ul&)4pC@kz73f*eQ2zP=jEC!{Q-gXf`8E&t;bC0y*= zNST<=$VES&6-qIa*h;xGTgQ&7LbR@(@gPe{?@@NrA{V1_o+IaW6jPABwir}7f94Kz z4QGO5^m)P?Z-Q+ETF&CMAhIT6PgiX(8qeL5mzjDfK5o(l;eh$0k5Bu~HPZ2nrV*OJ zaczQfZh*GmYs3Wsc^o0nmVrcVukX&Q{q=H4{M1E`yzl0ALeym9j7@;w{g2btHx&ff zds+zI<5h@U`{;N>W@1JX@Lke;VVT?(DZQR@hm;aM!&8 z+;5;;jY`1vXWs>p*M38)+`;u)kjJ^cn`vsB;FY!tZ8Y-cC zA>C^mAbY_T8yiyqAx@F-jGj7UnLJe3W)(|6x&GjhV2jjaE-O?gz3b77s!f`XUUr6o zi|>fPxc|82b3$;nO@bR@V{QKdcXItShMq-KtpqfI+AV+D`slbo<;fcn-4;63V0(?3 zcjV|o$aK!rDWLSNd9*6vK94Hkwd|c#Lo(g}E}apn_gPu_*RQA7)Ly^idk)tZE9d*@ zy^bGa3^#dSre`8$!>eE2?qymHt}bB$d>oH}vIxr%yFy;XIc*I5inE}v=z663(HhAF zXexex=pOets*8>e^HKwt^d~iXbbw7;=F97o-q{+Oq4YN_T!&_woTF$?#Q4)(TahdG zp`*e^Wz&&U!^nj~WuEn?rxTqW9mQf7NfiTDIvscv&BugnT1OQ1lwxEo7T2ki?jy582=v zm>fFn!}xR6X{eYUt?3#LQJTPqHo|pNWHZZTi-pqZ8eYp0X_Q%Bo)1nL@W;J-h^*%h zsG*1|W^0L!Iil5x{6_9F4xUAZSJ39;oXnBwtR8@?N2aFDjxuOc4RUcDkPY~g_shOF^Bn@wPbH`6uj@Z65x~jtU-6oE1QM$T~KQ{ttRmcUTFZ&O#@NgLucUd=|sa@PfMCoN0 z()SMVvch-^r5ZUHN!DIk*g&Mc=kA)I(_Wv~9?vg6y_>%pI>7LcA zPw|rT+$2DZ!oaC(*2Ls4x5cvZREwgAd^wG(Jma^<;YNmebWvTx5fw-vnA|Kd38Ch^C0xj6i7WXiB`&-XFICo>OFZfKCi3=oD66jZm6*aaAeZw zJoP!W>aFBr{g6D!*YGH#*mz$pIqJ#dYSrj`K$^6TyD6V);P$Sbo?$*74KQ)xeYeTp zd*ooJvTz1JyKicB$5P~S;HRfIKXAWdhcc4bpyNMW?)|gE!~KxA0+f`$ExUz-d^D<7 zfLqH3w@>pUE3}Z9vE*PYr}O6&fU<<^xaJyui}f|3Q&HccC&aE1iLUdzsR+S@SW8o+ zEg9BLJ8@1xHNukj%kSVX>4j-}Ien)>`Bj~71N-3LBuT-L`DjUxzd||};y2x9LXe-N z#{EeX<|i#8-V(hebf1^evkhLKlh^glxBSf$hFo8990X?fe#;T1B=Z-@8GS)PFGmDArIb&1c}!c^__YfR-x?s$~bbe1v9W*?Tfjn+SDOiwU=l%j2QZPJ=;4Rgs< zd6`@msc+=m!Y)cqX$px_G-AGULtV1nuqvg~C}IBA2Fo_}iL;R{F>-Eitii7QK2TlH zte#Gm>fR{g%7@0E1-%y6$^P(JwK5tub8=ORjILTp8IaTTOVREyRc$kXtF9zP$?>LF zKC_eJk4NlzG%{gb!WBHKoo+o+q9y!QR91DvUgkLy&lo5#B!pAbloLOTE9sei2-RMb z0O|fpBZy9RdFyL_pW2e&%i7s7o4R}RojuA}?o^|bK+AlNl9NX|>*>@aLobi#W3Jx4 zfH*tc`1w?3&8Y+0D#zGa-~&YG(_pI8y79TXuJ{-!=u$ENJA|Baf)LT7MR=TL<$Twe zsO(Fn78@v7!?nCRwH=$5(?pX*VIu6@6GbZqM~SGZius|{+L%{+1)b#=ekHoW*kli* z%Mv9iW+u4}(HsRqP^kU;esZ=1yltID@2Z@X;D@@A8vt^`1g~kLcQ6fW2`fu!sl|5psIi_?S^m`%ES)0cqX+@!Qra?q_G?W7+)zAhT?t{WO|~0-%hA zhuBjtnSAcfO5^Y`Lcdkoe6Hc5Wu>N3%du+`hr*Yst;L|4hkQqpl7Oxb)oEXHt^Q+k z;SlRu9u3xZ!s<3#2hhIR3)WT?H8KKKZJKeku@LFnlVYz+#N{}LJh!}Czj2_%?qUwA zu)Of_MCpSP@C z#`aeY0gPEQakg@Fb#VSKb%ej*bP`6Pe_nJdW)==+YG7V3aa$t`7ZO%@Mj;myFk8T1 zI3E`P4B}-2qs9LA@VAbIjR^oIk@#Ds;%a864u*{bSXfy8sSq)8lr*!luyh4usF?uF zTx>uv2u}(OqO&p)vbO+()xg>af1?rpM{R)t40Hrb5P+ouNEld|nE}i|7BCK;nTv}H zz{CO;XaI8@Z~}lpE>2c3n*OgF7_er>0Us zVB})ldaMvf$mQl{W(uyXbKr&`6! z1w0A=#{VgsSy+J)b6zCWLSVuHGcdt|g0rcav(;b9g@3z&D^=Va9l@#xe`gbnv4dyS z_{%z=!_LYEU}NI=hYElREbRaUaDiC@!T3Smt;e{uc!a#*6}3SXsbM?9AZx zWn}{6>p7Uf3&6n)?v{;-4Zz991s1Ph<>Ul_m*gL$BnJ~X0CpxYCY*(x9RNmI|1+6v zoJ{}fm6d}Dz`+Cr_s_}20pMcg`iDdTJQh2+1sk}(zvF_}lbMwj%rgMq82<=KfRVi% z046ZtmIaIlW(F{E0m0CDE+8v_iIas1sP`B63l>fQ3srD(fw>>pz>WVFfMBu%W&qdU zz`=E#08Vxe@VT(Du>5OWATzkc$qA0|e|*c%2KL|pqu0S_4q)a4kMo}bD>!1Nzrp`^ z6(@LrzuOTU>VF);X94&p!2gbe2`nVS0RZoP@EozSumXV0>|j7D5cr>%{^QIFzLLPC zSm3?R0gm&(Jea^U32Xnxf!KAcQWcK3K1is>zD zbA9JOBgb?6rlGB!Q8oq@jFq~YS}OYNwSj<;+Di1r^3w@*8Sc@S84h@9g}Gss z$Zi}TROR3lj68XZfbW}(er*DSpEly5X!4W`9fDoOpHZSU=nEZkjIW?>zRLIxlTgRU zWxyOLJxQKNgBVAc(I^F=GYAgg5#s6f?+yNaof>{bY)siy z(Qs#z@kzjNwe$o2mrz5FLx{LK>J%=UjzD`NI04yJ#zz<-hlgXF(6s;Ln;v4K+! zm?{LE@W3Pe<$6(dP_wrJ`+#xE|7-)WQq8{wO_=|Yy!lr+vj0N#f<0NmY5V`RO*p}H zmj82~bbG_Os){YY*KN)Fl%?NdaZjAG!pTs%CQ&8`rcfg2tfB?GhsZ#{kyj^*jfR<# z!$XhY&VFD4M#Y^zaPzDf2UN(^W`UaN#Aek_%C`Y zeH=DBbT++TJA^)Dz>$0~0YC8|-g7GfpOF4RbxV<#*44+d-@nflorEZtx2ZBuVSgKn z6F)F~ymcm-vR5e?3YMkscc!v{+aa-x!^0;>4Tz473N@G0f*^bn=nvr)!1J6&mlY-K zgcdBOoVuF4$Lv^+9@kIx*dHp-o7vQsx(+n~g6AJ+>sne$zhjk6eUgL~y#JAT;}0y; z??wD60a5HdayG73Bx{2FaYOq9<5cyNTsPBd8x#rP!+dpRCY#sOERJ9|&QGM3nLM8O zv>l|teP-|1oUA913H$7E{w!eS z&KiFPiGP?v|Bc#r`+N8Vo1a+>1Ei;;*&i9-;``^ZV6Zg{e!9O#3AV09VCr`8xoJY& zAjjXTnWixNv*0>S5cc_=FiHXH3g}~CTakx9W2vKh?AXatP9Ge>sKi~{ym)LfxjENi z^fQ^+P`Ov|9y!W)ONb#i_$jzRld2E(K^o+%BwvXF5zH@V1%;Wz4LL`Qc`1va7ntyG zXw(j|X;S8>B`~cOBXBcBXkKs2_yw+|Rt_Hn9x}rP_GUaK9tln#P&nGdswr&7x$N;; z)7IY>i1}0V$9wyFNsf*4`v;VbDlW?%<+{?R!+95DML=hk$p}B+^{#%eTb>fFs7JPWSYg)3 zg(A_)#P8^YlFRpN9g!9oGK2jDG18un;ZwGp*DJlc$ z3A?s^3D*Z-FLCVxQ&<(f!#mDcKHJ?}{Cf@7eUk ze7+=SFTz#Wbvx@bhZ4Y!e<`Doqy<4<-lf@sn&iGBG1!_+b~m^Lw zkiWbjA!bz8Mw=#c`i9my!ZGexbpUx6K0cA$Q4eUtQjx5TSn+wMv(PJAl{@BFE@S@$ro(DS!6D1jl-$Y&#Ff9 z*fdF`5>JUaMFDZ#L06M(r1{2>k1fbFDEH$)W^V~a7dBu)%&#z(k= z@UaBD^$%jF5Gu5bLl7*j#5s5kyKOBx^?)@)#jLYbFHDHkA`891!isxICHJ z0d7WYMU*%ir3w2lC#pl&S_-#cd0`*Oi#_6=$VBFf;DL(q+LAcow3EuFvLm-R7qFA! zHM^Zg8S&P`yXAVA!}uEOIH^D$^NQkX7Gjqa7mZ)H z*M!pFaLoD53$(BDLcPk>9E+F;Frz$vrFb=Ayd$X|u22)umnLI4XwWG}SuOU{(LA(E z+ny?J;||lgGd=OD(ontW-hK==lZfNa0bLL}a-v`KjPCS2=Y@7Z6HE`SUw~^YmU(hO zKy$EJu;AKQuwckqu-o#@=5zYR3O3TYQ+b*yHZCiRTOK;Cq3v;!=|5U$8c1WnODU}1p7#oVIk0Q!J^$voZhZ`8r{B+*-{C*twHxt zI%D9c8~h%rzO(gUbx<5vIdNA|v(Cf1mK{2uSbFSUGn)5|~dsJ}h^7+iM} z`&eg(is`@7@X6z?|F!U9kuK*V)h*{D(JjY851ot%5pQ~x;1Rh-^-;Y>l?L{{)#>m> zV#T?K&4z3HCO#=uZc}BM-O9HrTeYX0EiJ_>gu(PPEbSPqYBFkugm~a6uQLKHu6Q^p z5lyJAX5S-w@~M>2VrVcT&E}0xWWXRq|BCRFt>w>5XZ+TZ(gPp`gHFuI%cjFk&(GWYW%3XqwPHUIYwy^jzU~-}%RPRq?fFQ+-EqZOf;u_Xk-#kV z10KF>&jDiBMQe1VL%(o;YkkmtGn?pde5Uc#1c8d6hcq^n?Rn_k&R(I*%@sjk8N5&1 zw2$ee{?&W>ozg!i{kmr935Cb`m=l_z*VphBs3Y1B`K%c6B_%# zf-Z4|+aedBlAG#V-Vj0Z|->&x` zrn^7GW)HFzTW#n1D$de5DaHd;|L$2Fx+)Re}Z|Nl&kM$F@NifN=+Yof2{y^9SRS4>QrTvMZ$i%KFWNJer zO$UGAsT?)$6z1Hg@nb;dz&Wl?bvZ5<$C`4#znoquqrEMdN9T zZ$V~%i$cv=T*|CLIBP{%mBNidR6|)~N!WF37po8yN2e1xqCNC_UWi+|$AMxs`gR%CjVx)VSxwk}2)OxrT$VlE%_5 z)#aF6YL6SNwC@gS>EB;RmzwA-y0$kR3TZk-5>4xMA%UT^NM73EHy($ z*nRAEE9l@&#J5v)G>d?HOW<9E%m+jKa;sxX673%?Yr5bt2g7x%^MIKV)^m$*N|x>) zLU3EOO%nKai+?Ld^orL$R%TE{3_V*nM+|jqvrofByfRnE^kHS8jtM2?ScAIH&>QRj zWA2{ABl+G%(NB_zZQHgzv2EM-L=)S#ZQJPBoY7R*rO4|IW41qQ}Up>vE%;RO#eXhv8cC?i<%v-#gi zPqE>IsriEnu%u=UvBc*&-~d>^Ly@s$HWVXSeupMd6_qi=96hj!7X{{yVnvsgF=KGf zEm94|JfKY=7nU(082yAnPZ#Rz_mnL**oD{>?dy*L4#f|M2OVlp$sPW#I-itY-k-&k z(YkN0x~RSxi1RyAhdIPAR$8_suL(8DFIEaBJKE~OMb(6de?Z>!C#VWjRIZ_d;lp=p zC55;mgtqyE^ib{xu2K^Q{#fjE1;HWNO?kl~I`ElM{0G*@W)Z<5yY?i%NbdG5zsL@l z>@e@sGGH!_2P}KQkDqWJhRpn-JBG|3-#zyAU!kv*cegC_^L7a~B?JdRHx=THiBlJf zG=t5O`6mU0;(#M?iX|Kw)#pex19#?0E&GEWOg6(H&yXKg1g&%!iA1m_WNkqAl% z_l@|(5sRQN&Wx%@4<49ScA;Up^>3j*} z_PJjL2!`$-e5(QX4@d+6*axKC{+(0ecW}l95l@uq2clf%-NiK_#C>erV#r%Mjs-AJ zgsfALcXaS z>Z!mxW9x$NTJY+bz&rlNnLx84?^e|Gn())US+~^FKH(ZLYb`>=m2-RW&6U%A z53Cc{;eg2(x9b+!7x$X#M(;hVH-`T?{c2DjucWIUF>g+9EzZOhb9<=lfgZ2l0vLv! zUNI2%zWc&nAGma)66U8|4IB9gd+dv37xLaB%g=M(Iy3_V^UNHllW2g1Q)+L3!VS7F z7~lqeD?kDL8N0WH*AegJ6d}9cs}n5mz`GNy<~i3MAf*dTJOIwH@Q16Uf6=mRW3IHH zHQyDtmn_(RNbASx#dGA%gPTuHzeBi?0iaE^SjQ>0{7gNY5~mY=2bq2=@;V~6HK1aSjb>V%(%F24~2Q2-jdS16C4>_*|vBDF)_m5}DamsT!mPW= zY3nfR(NjlFL-s5?4J~xQ*qmklnRx@1e4~(bGuZFEwDoyg`E-+L=vvP;I`tDZ^^9bc zK~u_6K+_!V{+`sUTjL)F4z02=`S7rtVTrJk zvabDBO>P%IVmverRVF}O3Bp96e}VNZZvNUkF>`OWAFl^skyC?gWzQTks7eIJ^z4V| zBl>Fp05xpQM42noU@?66%D|@|AM)!{#Ol%KOhiE`W>D2A6!8+aW$K@s{9`WP*q)F? zEG(7xHK*K33L?!w#Lo{+eIfWcX659Q|Zs*f{*1}v!IA5!b@ebn*`v-^TMOMV#&q7x&k?~*V2skF@p|)n{sr5FQc)I%3E>_#d zae$-@Vt_$G^Bg^GXCje~FMiLnC1Yi9HBI8O5_vHXw`u}0mH(4?04au@+?N1Ej>F|LfR8wxJ)rf5GZQsfJ-%_;jGmZj2oV!ssgmMLALZpA2Kra2VbxHR z#}nEtM64plFC4|)s?X9yie++|IUnxyW1?Ipz3-OY1NUiRzRfYu5!6QA;t=yB;8ntbWe_V}reb@{y^D{{93V+3b!9+c4K zo<=N=?2NtJdj95a@^GmPYyvMQEh?T=rtuyS;XXz>mz3znk|1NkS*j>rs+>jIp4=%o zOz()tDDExxJY0JHs^n{p_qyZ_YcCnG@({l~N}D_5y;w$=TYH9;gH67RGavmXRU%&B z3DINJj%alh?vnBjgaDQxPaja5}z4Pg15k7agAA#6<=9N8WcFZAk+O*eKW#UnIszmZyj zL(HiF;q`cc^9DQ*ZIBG?#x5$d@#02N@r;E8>0)gRTdhhu^$DT1E%dD)aq1XNjhKnj zSW&#GD@Gn{Ep_8926=l?X8J3e6MPUj8@~rJmQI6tP;(*T&!WY z5>I+zI2p(wi^>=7=0KnHF8THp*DlE?Co+Rf*V~~Brp<-4)scVqBiEKUGHq_=(9y!$ zrT)qfJiEeV87=ck!M4Iq)h7AZ@blrubXmeD`=I&JNY*a+T zqiBOtlCBTZ=|9AfLu=C!XDgn0qhMz?dtS!*)u)I2)C!`%>b3tw)Y zZ$k)s=t^FlT{ImlhqPbqkL1((V}DVmvL9GgwM%V&#+K##-J64~Ij( zC;7KF#LrgzhE0?aH%U>%)ax137z!^n&7yhovn2J9zkKuDEnAqHk|Y+$bF^AriYE?} z%nlyMO#c0ZScgrT3Dg+I&RTKW#RgV#qq zc5lx!Uv@ANIUNhvx-53;FJ0$UfVQtq{=@5gGJ#3e6-}L0CO*T`fwmZs0)vYH6 z=Y(*1c$65L%lfN}QnwnVZhV3|GQ4awZ^U8)KO`$&<>aU&>OFmL$~OM{ z{wXZiGmZ_9UsccL{?ux6wT-VMx!C+gK)1b$#rfJGF-Bx42*AEI%4Q&<6XHF*$V3YL zGGMwbe@Wr3vUaH0)pAu@ze3kvKYS#u+o^&9>8hw?ziGV_|x!{--f_XlW$A^#l85?Jygu)ek8{7 zm(_`kO|C^q(lV7_?`|Nz*8tfOnet3YDbtB!Y;kG*DBS6^jHrKB-;f2v7kil!jq@8x z>WC8K-;+F!w<{W!w@Gu(s*f3)5s`DX{vLwS%Hu^T?r*nU4=b@a zNdI+a_4+g5mh_2CGV{nNWqx?kR05k?*NKmJ1wKZ)k9=zMW5*ChHEHM@^KCdQc1zN8 z{(Qeep;jnF(Y&#GYkZumOUA}7VKb?FV@c`B;~&g1r!~7uPj_YPyUB?=$keoxmR6WB z@xzliyo?=(r4fD5{&__*Ev@Nqm@t6^Chv#!N)E~uY~7{QQN&&y_oOepb(iU(t zOhLco%XsK4R&*hvMizJXpw7c{z&3OX4I{{HFE{mk?utEmCTg_F+v5Wp24rW1;Q}o^ z+QEw^*U;phGY;fdK=+2DWEN|ZEGn_w6e z{n9&~@3hfA7*879M9fX-03K}(yc;^--`y@CyNbLRr;v3ua^W)v9n0b5j8e3^g86aj zUgn#GX`H8_4(rSK1=N;1{&Zw*kN~9OU@anuoevKiC02L7`b7{sB&BipB&`pJLtGLN zpLzAYj&G;4a(!#bt%*I9>j$Itg~NW=GJ|xkZ<53w>`(ntE3-C?GsbZL^{1Dc5->YO zdZrhB0o>cpl-_X}zt?`#6n|cg3KMK!czO8_6B~X-^B!o0Zc6IB2n53Vu2IuGvXR5K z%5p^{cu=gNWDasPIY*v*4O-mE?a78MuCsbYj0fk+h%&?aO}3Ps#-38+{LwTnD<_S= zC!C$bz5clGy;_Zdg{!2N#&>=@Z$Mm`)l6V!qhxOQD$gG5MCK3sIG*JcpvBMhiR0wu z=N2G#I1LU&Zi_kJ+h8B0G3(^_?Uusu*q+M@Dmsag1q+DFJ>-b=TT{e(ShH21nSd#g zFN;+i=TMI9JXq>=#~45U6lQE$MPf_DU8SU^q3Ger>- zkw0J>x!Qn4QJ1b)cTT|d7|8Ec)2TZ@6v9kf^va$lj7&|-jf7>5GoW%fi zX#Wj_0i_uCznXCX-w}x3fDG&(e#XKK#Bjh>{TnXR`={Otu!0l|P;vni-UAC^0IOc; zZ~+Y$=fCJ1JCI(n{Uh3dERBj!bV?{?X&UuIa^&wTVlaX5}g2HKovP#Nev zt;F_&Paw2F;L2(utTw*9-L`P;GVh1~E|(g*)CTWu0jt-QriRVcP*X#PtNwh-O{~0F z_PDt9P`=Tf(8QpPoDE+fEl8ZhR(cISO)t1UcIj4QB6SWs(5ViNM>_Qkv8IR^;z2h6v(XeidHPPEJSvf!EU;EWH@=}|`jzMtY zk))$`@d8fLl@s*8UU~inr~ZqR?|+;@{|nLj-=1{;r&f#gU-cyZC#&_(5%8Zb3jY+D z_@As6D>M85WAz0t7B*n<&VN5fF1w*URmFY_zE<(bTyK@}o{^u)zq;~R5#=CB4x)q? z50zrA6H`crehr)b9*LcFh6!Xt4!eVx*z0wAE{71l^Ienn`#~78Fxc5?y({T` z+MC^O!_icA;;>#9;(=@HdY&qf!U<2b9>G0E;75i5dEQoK{O|Yhz6io zvlX#|z`7kWPff~4?XiRkh(m2aMyh<^z|l~GO@cf#b`GEnu~r4)QQ3U{o@!v)kQ}3} zk{QGGUpQ53@0Ne2%{!n$_xV{UG9x}2_?{lr5%4#N202lDTNHv$Y>u!E1ub$eQwBlu zXGzu{?pQKYEf-6n_Fy@gu6CYTg61)vYY_9Q@TaI?iYDD+MjFK;l1Rqyw%CObQsHhQ zj?ixEOF~mKeeiv+kEufg4g~? z@ORFPy@iLmuR9m-CBcE!U-z55>@*kek2p&IyBSqhff)6V9iO8j$FJ(rucz$ISk@zVU0N{KLwDKK4W+b%)&#yFxj+bx z1Pezs9({X&C;`F^D0?$Zh_iPhC8+?J`3fIHPa|~xOFN4gYPyqAWNE#LS7a&^asnE? z#SPWXKyIPh8px6{eQE(XEi<}{Vw`%l7;mZ(`%F-*5>})UR%pe(FZ;?KNwqNTsOjM% zGi;4!;9t!MjOvisf%Hf-&EOWz829SY4$Uy)uTeLaub?@lSR<@hr8#CunR%EGUiS0! zU(1?N?1K&iovOHDKP2eYOMf@O$<(7=%;j3Ebv@_a&qs~~EFyDf~_QzN$pz%CjzA2jc}JPqhjcN*^mTTgW733*0MurZ8F!sTKo zDt6N8EZojz+>|DNR*#U}_M9no3Pr=mX~o^wYd+-0x`COnfV+rZ)1ki1pnmYGA3C7p z)o6x<6t-c)8Yr|-O;<%dyA$J1)|(rmDfmGu7=&R24F17_q1s3&vX!WH7IZ#@^7-aX zXc*?T))$R`e8yKy2r60Z7XWz!r4=eskLph*u{Tt-7OMY_tuG7A>Q8MyB3_;zCV0Rz zH3%HI7_K9Qa3O|$6&l>t0I8oHGuePoux~JwnAEiPa|!_R zLK8ix#f4}i329@<*{HL|-;TLaEZBrvPlOp&59Pf^IkB^TK{ev@j^?rZtz+Z?%a{un ze~sb;#m1>@i43(h*!Qm;?2qx-@c%pEG_#`?i>5-{*o$ z+EF*gp`3Z(sqfcSTOkRO_kXzVBDk8+wvq%;-qJMCNUZZ;QaLLIQm_5ee-C+(`k<^m ztpoYa0Vj-JYRK*vXK@1xog_H79H~aFVLUNnOW4Sa=iR+?Et%5s?e0SWua%m;c#cd zpvvn5G6SE6v689!7A~;g;Je zVcwL2JB*GzEivZM+!=CRM4u?kiatj~V@{!@L^r=$WlEtXl$ylhOx%&E zD|bcq6xsR}%P0I8pEh2Gwj>T#I4yDp#gi*vws;n2No!Y>bw=Nuc2#B|1u;&-P1dGL zm&3p=RkOfzMsmhM&A`vtL)=4;pVphun~-js8sr>+mr!(fb_eR!^G^HX`{HZXdzXDz zYpt$Pv04fJmoPLT)F~7@G$WK^NG`M{)OXa}c0|P!F3zIX>oDIngiY!v9OnWIci3mh zCwPhGuaN~+ZLm4WF^ZqqXC)yMA?KPrsj@>#+&>&j6c)Qqop{tUrO(G~>B@$ZN-EY_ zR(UFq${a=g0$UgQB;)peEK4(#=iW-N zhkxWI1E}Glr26`=i#eRJ35t@w-LH<~N+!#aA{vn%$2;GJ3=_>;osLkQ;p>K=KU{MK z!q!6zl13eow&42BWSkW7y2ZU*o=QQAvzn(Bs|jg78zA^Ho~@q|&-i#8;w zcO#C?{+%7t4D#s?Tf z$D$=>7G2GN*aXOw=~ELCvkA3M#F;1P6AoH4Rv{M&VBDYqJuN?F#`vOm<`lsTZ>mW&#F+I))U!w>HbQXLKvm?H0zifz%3Y}7A2COI=?B?Z3BUMP|ho|=@7 z)r!YVU*xl5JQk(Ogp}k{>)wS5fc2P~`pG6Z$tO7@{@A4gZ_wY-W5E7v6V{E7KWtOI z(4~}_qwcmcM@LSJ4~(r^v=e-m2&veHwCFLS(CewXVWO5nHC181!TKr8X z!H)xOz(UNqvbL<-K-|IA(cQD~>v5i2hhY5OISi)^kBko-x#E4I1r;qrUAQh0Aa@mw zGzMIT>|MXrlg=Kz*uP|!62H8s9ob|CJvEvC+WMA@i%>M$2irLd2-^d0#({H3ypQa^ zn)9%ip*muFqBF=_Q(%5E1Uox_DkNV!cd|@)fXt}Ahy{EzoH1k{vUTs;k`y@pXUomH zfT^o~ZTzAG^R#cD+C1DBZK%CB5;$wu{Mn;VMtFgUmburh-?j?tIqjG=;6l1_4!%1& z=a`N-Bn22@;pD^|2Rs6QyY@|82YZHin`5<`&70rOUOiNCqD1avRu*Af1W@1OeJ=mm zJlOBfo`R6oV-0~P;;}hd56(=^V@LvUl=zr$@9#cjgn)nE?C$>K&)X2 zmre)IOnI)lbYTeik%tE#z;$iT6^w|4fr{vbclNs!t?{Du6HVo@L61!X z_nnrKQov!-+do|p8CigiE+ob=(Kz5@VrdWlOPQ{=>HuRZDK_fpbiOFT2lSs#z~%4E ze!90roZ#Q>P$IyBH{>!t(QT^rwcE&CKB>{}Fn(z)k(sg6TU&B;|JdYSEL$G69?enb zcb8oTG7=ivi7-T3Ty1R>dIA|K~x(o;bgs=$s08kJemk#NMc4d9&y$?!p8T?XY4MMin7Xja@rX3;#n)y!GR z*O+6))4r)>LkTYi&-~n(Rav z?FX)7w%`Y7rzyK|88N2{s)1MW`yFwAK8~`0vMH-)b*Lnzid7Y?59-c_hK2+g3#;+N zo5SOonQxC`xe7u*lh50jHjscEYLsro;wZwE;ZmeDrTGUMqBiA)M- zm%5wa6_)ZMe8<-$fmrN&ucOZomL^=iOgIQ3xZ1cfGM%ISIGKxl1;(HfyCIuch4ZTgh|K(+9X+Fyo~e@Efi~6votXM+xs@CyeE!ZcR9y6-qa6Z6m)B z5@@2JZhNVOiT0zI}tjEve+_G<>_Iu(aLck!GCYmx8>^K_1m zzHf+1H7RG~W65~x0)%t}1Dnjyme$hW=j2=z{026?;Q0>}McxM;fUBCtm-r3sg2QqW z|BZs-#6kkMy1B{TT{red^xm?Mn^fxr`+yA30I8R0xQ{`fu$Kz040X^+FK-74CZyBx zXMRJI%JmZO5Hx($Ic}nW0ttD5xPLkGb_3J&1tME0tA0(us64R-KS(SwSc_g_t)1O7 ziLh&FRTSgv_V0aXGWnUkUQf~cE^(6VYJ=Efnm^e)+>CfIVf$X)`>MQy1?~KERMM7G z^&4U`;hNbPBY%%wUUV0@$LQ(kq4UpQZYWKb2>2yhA5x05?)+CH}Etf<>Nf)tRof++qK!ul(=fqaUUAwBnL7;0xjn;%HfMf4p|k z-)gpp9E?UEK24>s_V;y`0P~1YAqd!hwj0R@`Ps|ZqzBn#PkJ{#dEp*8=!C7qJ3aIA z4&^v4V5LP-T%5F?I+3Gjkg9m*i|*SL?xm{NuIEgmcdZmp6nId0hov3op&_uhHji2* zoXT()Qc__!J19}E;$~$QIhBm9pPesN@!+-=NgZf>!&v5&7$VkNq`WXL*LmMVx(=p( zuW_=ql1iLc9mYP8PVgkTRhzG+5Sbsxx~-0-$cQOaEf5{HDAt18SBl)Xo9Fr)8*75` z<;h}`tBJW(NZoy(Tu43rlaHf{`0%9TFIP^IHb>%1*-iE5!!PnCrMiCqhHt^rGM$lQ zrPvvgT!L4XS#Gg{@;EYG$GR#u3DVDq^g;xI%BnQt?19QoZJC&|l0n`iy}Pgqk|K_Z zIG{A}XR*iNZBjwS-B%3*nm=Hk+Bc74e=AEt3TNE7Ndc^-07Z$hIf)3^u*E(|mdXMg zk}s$6cemxqaXHEY`tf%i^HLL-6`jd(%gO>*iFZ!%Ws+XX`8tT!EkVV2w(-tFd-2`R zs&|1>`jSx6`pHuIvT5C#L|#rwha-B4n3cN+%vF6yTSQ(BDtG(kk`YqdS2{Gt(Bm7v zJy1VW>*z4+=*L%I`56`KilXqHF5{1cVkm0;fXtxa z75LfmHc32Srz{HN81b7J-4KtaIPj`)Zy@;aqE;V6cFyDHgQcU)AEr)3r_MNo>4LZX zdEdD+fvNmAU@b)>_$^5EX;;COxsTKQw}y->07fUFQ)iycdK>faHfEkJ_#6SmkBwv_ zS3zS}LG!r}rUlH-zm`nGPwo<>(s zWnK3{N!a3D7DNCOl6hCi1j#XTZ=W(?|QmBw^!< zD(-AEYSUB3OZG(n@ErGF3t<{45iE9KYI*tnGuQO??k;_%XRI6ih&jhQ;ml>iP`O01F8&A!i``pbgpcZRiv{d>)o5NdH@ge!u@s$<)T<{nh@yVc<4)6aqDZyDcTY zLVT=N@xf|wQHrasJWnkV{&MkwL@}u}4`?xIp6jqA0DVOvGN%2;5bAgxDVo1xZQ`-{IX9Dv$=qkRO)rq$EW6%VKCfmUt|o*x7>N*}g;bT0wdD z`I_w0i;M986i(!(%nJkOA7LMVDlnPQSk0Bn8-#d8voBQG`{oP7GI6S6S*l>f=nI2_ z_dvbmlhyi5AVlC5P2eLnZ@w&l{~P_c0l7hsInd;J(4{$0x_t08A=n#g`d>7e_tfwK z#%`4nagm|7;%Ox~0y&{Xi)E)O`)FLEA`N`>`C=`s#aW=k2@0hrO+Gv@n_Tc|i>IS7Wh;HCgX)FD%0Gs>DAck;sbX8MY;e z3=fUSK_A+n67Q~re3^vtwh|I|-HlH=S|R%2@L>FqBo!OkJ-O;hpBr=Ir95sN0=|Fz zS=sIFcN?&nL=j)W_aR9nD&}q1!>rx_EeeXe#HiK~MLC?g+CAc1!|A4T{OKqrMAl4! z>bC@JKZTr)o`K0n>Zs>vY-q%^lFO7>GmzOI7q~1{i_AB>vRmIDYse;r0eK!I0$RA> z==X!7X8_sdBvv}Uqyc5fE)-(Obx2aAqhJ_`bIc z=;e1_tf;%Fi1o_$yz+_7H1HawtHnb(ap`C@3zA&&<@wI_11Y_32jp{%^V@@_A!y@V zZpPYRKvH`Zf}6`IKtkdI1%iWCfJPgWbBe31ASxag_n@fAsgqimsf<_{E3R{NR*r5% zDEvN?@Xd?sIg^l+WAKE#Z&c#|=cGE5@7BBfIGK?D%%^P5>)@bmdD{Mz;C4>L>j3xQ zDA1hF!N)}JopKYcDaJ=URz9;m<~;~927aU1>99$v$+Mfy9*C9o0+(O~P7eu_DC|Xo z|M_Y3%N#eMtBGIY^$eK-@=NqR`dxm5QPy}c$$*9_3$#FnV{h%_pcHBs3@mt@hD6t{ z)zf(fUsn``+$9YS3STb5B?ey?KYli)fPDRT&?E}?BgpTt<6=Vf-z94eD+I@tQ;j?9 ze;x5CC5g)4eNW_T4YDHG7>J08ng3d8iH#GNnq3XNQ@ zVX&88>LeV8M5W%#xpyif(#N>SOkKcRUt=$YW06#XC71;PyyBR;Nt*uGz zrAEZ?m(7;rxk>A-!Y`?DA9%xL4Zv0%y5$I*dnZcV9xi(66?y*iCH zPQ2Vy&yc>;6W}=9ktdKOx7xdPvhd_9yjW?g3v*a#j2JKL>FM#^dVO@e@Cu{+uzd4( zp0{*W=38ND@WofeWX#pWtjpl8E0{D)M~h>>SBQ+00%*}Cp;R+sbGy3h`M|{`7lVis zXiOi-mZBYa0Q`MvvimKBA-Cp%V%rq|H*Sfi-xeN@$MUokc1Y_1LxXxVCrM{*j;NG( zXS8ZlkrLU?Kp*!@AhCize|p_~lq8iBb^UU*=nu2prXhS)?JXM{H~6RNv6sa`QYR(8_f| zCgidPe?yc}U|_LcQ_7CT;*DfgoQySw8Eq=!Qh9bu?~mQ5lQorKMo(HVOQ(20okLOV;dYZLm^`loq@ zcQ?(6?V+D^Cf9pDbQafppun*IquTI#pQPIOdfzx3usuRP*oRiN-qj9gv)0v)XLpIj z0o4cg=Mt&5pT`|a!fxc9x*r$VBC>752W3Z+IDH&kpu^pFTdHNe=0b^ z^ZweXPr&b=t&hMT{K!2#{ncN%R={>S1lmQqb?KemC#SmNTHRhuXnlx^({DwYb zYX<%Cp6dHZ1H9LF8sMKA`b@fRJa$1IJ@^73*C#zu5F65Nz4xw%9o8pLhlVcA-a+E( z({3f+V|${@Zm2fm^un7yo>4p3c5a$)@`O3xa6h97S`lXp)BX(E^Nl|4aod``-S81u zywyWOw<7uvaI_+NhkSvyHu-uYE7bcw)8?8o?veA2e@6N~^S{x4hUQ$>t;GpElIUZ6 z?%YZMp9fSf#kwQ)fPvzD^_KFHWV?S6_#(n$4VH`OJ;*cl&xp?2^y9uAAK-Bxe~)nR z-j;EDgrF7kdXEt}1%SO|phQ8;Xq>MyFqYMm4y`+z)KJ zN8Ar^_wxFAFSQ;Hki0SAt{W}BFc-fJ`XBt?5djZzpEj~zyMl(VkUIkpLth|^J6{N; zeNP64uLU5o2Hr5GefNY+ANT=h*FKPoI~eJo?hvJY^h_Ui0cQ>thOaunRzaYPh%mB( z&w@yc1}|Swi%%bnrC-2D+|a|<+0WN6UD+=M;FIw`k0+DYyf6P>XYYkDUm_s(SD&a+?;-x}ld2sgNN?cslWX2%Zu&mtu>3s( zISQ#FQ`wkenMox=a#>LVcT^StT0IJ38xTmJ+U4*h)?y+DK(LaiY_VQ)G~g}F;rfwX zTe&y%9*3=o&-$Xfuc@{CBsb9- zLVU~`7<7@Rjj_N4ZJoUO3)LY#(HcpVb{r==zVLJcaE<(6YQ;2by%w_sMn@Lci!?{% zlH(2=5D`7=IeKEKm(%IFdVg6X6wesWlp>^0f=t1J@4hk&QxSp)D4_3lO@3{lONusqw8m%J*1Jo;^KM=^&UIvmAFbKC){aBd#svVZOI(bOoT#G2 zi@YZa=lRRINqReEKJ29cKk*S#(jN5drYXV|jJYwQCZd)+;l8|auI}3dNEA}BvnZ-? z&nPA-08Q>AruEOK#nnxl7RRzTv*Vf9xp}OUeS`IbjZ`)z-eU4iUnD;Re)b+21H}Kj z583^0>eV>&bL%@|m$(v2vSxRWwjm}9{pq=Gq01;WZ{XMyJZwDk)1iwR14aXZ6*-*^ zm3=vLy#YiVl{eeer+d4Z`?OiR1{&p}#^X1ADw$F9Ittl}%C)UT;NOwz0!Q*M46n=0J{$X2*L>xtt#62#~Cxedr51I=-tETY|=!$CZlIng9)S3tc-0k#| z4srElZ$5@L@ny$>e96?~3M#_0C6YbRARdnq8J(GHeNMj@8IS9((_=eC{hwz+i28nK z8FCNgBuR?|`g4o3`hTvk{m&CN2r2t6zt+nn#+4i2lgw5FcfSesslOUhxHA~>9|tfh zpdPzA5X+?}`7+N@Hz@X?HF48wjNzWjJs=dl*UQQ(qSIuc8JC#0X+6|t#Gyj}08xgIh*j{C?t!&)nm)BSZ z9)bn+Dr)eg;<0#Y!hKgYzE(4{+YCCC1}s+#yVvqNJ>P=A+Mw6-ABgi1P+VBKi)7`e zk0&RTPkuiKJM)0wN=+48o$KoOwI0J|I$-AIo5f>Jf=L2O;5?}(FY!y z)XPEg8fxnT+xdQ0gMiYq2Q6CV!4bYr{bnTEQ0hE{{i zPOb}{Rn%G!mz}?a(=Auce7R!x)0s+Y9+1vWU;(-&L>eSZ>A3N>FWQ0Ii>zBx+0gsm z(QT;RM*P9r(`B+AE~BoTh_W6!Jsn$bC_>N4l)R_ta|H?W%vJXdIGw+0OL5C(+ZKO( zAD7cJPUOJnEyRy=en)R=dKGn>PC%6l%VuCeWN=s(f14}+V6oG1?vavPPam%XZ|0*n zQ1PFQ9qdOK9E%+sjwRtYkl-wgV5_mSeYh`Zd4Y$(omP-U@1d<=-=HveaJPQssmewN z?kA%m+^Efhv2q8E+5}PwRq;V^W9%xbr}ieb<@`#B^_yv`bNbimoIC+X0J+9zpzY-A z{zzJEp3@hhKfmBtf`oMy=3l+ui!B$8_e0DaEpLODn}pD?+;$6WjfvhOuSPjmcAZ{J?5Q5l%@Sgow(KNFF zXI0A+8wkhmhVz5v85#y-H8tEY@uSIRJ%limXC{(ZaJ$QCdyN$OfyWU#bTwsRs}!=6 zBef`z7GOo<^c|$h)=@gOl~`=G70u!aZKU$XQR%8gfc>Gjd=Bzohn5KnwZ{2i)lV*i zABHK5@fbD0%BRMetZad*T(p};Wrt)Bt*9D{2A_v#W!`TR@!(I=I(^*t+n-$(vi?7f z!NcbSeoXj|l|eMHn3k9gr%*IjSIoPYM9|q-OX>kT2{*4tD)~3W;Hxpmb_|&z=SkNV z2qq+Nlt}757zb~_K$;;TjG8!7_9DQj+*Tn&Q&msRjMCkzs}L`WMh}z$f3R+{hpLYC zy0!YPDYx;et@oHSv(e{qUzd9F(%sDLPb+WZAFXxwFnZzZ2(#NtlSg`Y>o#6v`$X%} z1B8t3Va6EBaK__9c<2ACxU&q4s%zuD0Z1btpomh^H8U^+Ln+-M-AH#M2oee+-OUgp z-6`E6(n>c%XXE=m@AEkGT<1F9&i*uW&&qq>_gZUTd#?YF{j-|Y{YnIv<_0MF zhU{D1XAtA>)NftVK8tvu3HD2PV!3QO%<<2g&K{!OyMF7G$=cYt`T|^@5`s|^foFan z;fv)cgI)SwBJ2U-yI3WrFsMW0iRdu(ms@fJ`Q`LK0$j{99L!Z}WvBgQzpg{^l;3Jr zRrp3sv_6uJtfKc)LFnzgdd1djTRmx94X2J3s2cj=f@YlVf@Y1cE}Z{eZ!KcDMfIaM zOESs8BQKNCJ^L(LJUvZnS4ncsr}(Z_LU?4ND}rlHM$55{;WPF}c)pYkkxh;ZyKCz6 zGZG;iULKo+43hq1ZWqP+^OFLNA4M*A?JrOF&%>Kf`ub;oY8m2Cy^J|GXg?ITs@^Uq zoD?^~`YPgz^Jk zIli$GHG#v4NQ)_lVjO$6Jj zRDusC@Gd0Q#d)iw)PL>so)$>ho>(*&TyAt&g+~x{b2h(vGr8#rmss;9Gr-MINE;b{ zS+uiCuw1&(-}BzdAOE@Eo~ns`Q*Yehbq&Vtt}5(Vfpy8!3`0_$Asi@!==*ktUC}Tj zr6idJt0u+sEaB?dih8j?+w`M)h4t?_w%2&*Df05kCvNexlfTct|DOK7qvYl-3X2Ju z(ZR(`v~zm37FxFt{5jfvV$~-@(ev@eo06&|Ofpcai(ZDk5yFR%4$e+ay1mpxUxOfv zyS2FSkuuBAKf-#oHr%H>=Qh4b*+!H=^$cpK+>3s6&8?;=nAH}3I&NJbq^vVx?Ec=T zykgTkN+`aIYiJA^!pS&u~Hn}CXv-HqsYo&CYa+{*gkxMiJ^ zIlF1Tqz)rEZ@WB?I=v#dr#nx-QyrHmFeF!&i3uaTD<#zay0}VMUyooQnvx3!YXtDO zk*4a3?RJs^*sq$)6PA(#%4WB3A6Vk_oMvlfV4;cSZbu{p{Eo|S&*?5BrsM704qM`! zykVKf8=frV1!6rV7l@G@B7H4jB6{zv9RD1xqvEhQ=jWXD?7_+wR`hc5sNb$$S~(ExQ}D zK(DR5>o{G$uwsx>W#vD!cIvj}3p@V0G^4tTPgL(HKO4XQ`D+oJ4`aJ$lJBHsiyPxU zgS(_)T7$gcOC9zt7DM{buR-U|^5~61`jweA<i8N_XmF%oTQmu4I1?KC%oE09* zOvgW6&6Vbh{7~K|ZRf@~UH$CSI<>RpyFNXm=5DX}l*!oo&G4zmA7qXmY!+mCJl3-# z8@tY@Zw!x_aHB0h-RfY^F4bKoo_Q!$wCIv{d$DW%$I+`LxzGOY9(2N~Mn~@Yfs_1R z#oIZPuU}oiIqxIo+qZnZ883ed1Pac#K25d6?kGU9ZSh18QwrTOK8&{|*PAzq?DLB^r(!%uoI_ zpQx~8+&0IF7OU#9)aJ9UsL|sQiMRU)32cvb;Dz}mLAH4`s(MZC`)!R$E2s& zJww=5n(mJAbPTS2n)+%r%CiMS@3bTV!al|Z|HdSDmMk83u+x~Ro6)CxQ$g_%7)vSuINHIC~+XVdi1v!l{}C(_dL zB^?0u(QDD(7BmNv?=RJr<9*i%{w z$aF zR^)&EfDRWY#Mx9YlaeM5vIrEF^^d!F>J~2drIS6pI7=E9kLJd>RoSZCJ76woc4k3l zzf=?VAkMeP#a1YT9URU<9W?qhH$;)1Nm>r{FthcU&^sECU@3hKJU6U6|43yubs5f5 z-92G!WzXg26;nS`GgLL=khMC}Mu*n`gY+nuM9WM{#v5>}0k)oc_ z+Ae&>Vlx~WtzA;+9+3EPezZ0>Vu*-6>&O&-s6?3M`No=FTQZq~&M{&nVoj6=Ym9@Q z?VGgF!!$inN$xK%UUzh6Au!kIv5v$z($suL+Yz!J4ULZw&wfWi*s)&+iCdmnZRJ<&cVameb4-}X!m%QhT@h4XL`f3kH4)P*iOdKQ&u{c7act&1Un%!e*ac zpt1Y<2JK)?DG-R-%E#4Z%-YULt>Sp~V09>^>Sg6i$0Bj<6j{FhYn}`Gf=Cgnfr9D~0JUv?4XvV_v z=!A%hgxlquZ_Jmmza$aa=d@0zkOHXt29d+9wnhvhu93UBtphlq1h?xLWz6@7w6%Pp zP*2?Ui`aS(3tA&3Tm_ov!&4)a^FadJ-#^lR`95W&6RnLHdz+$aqBTriw01jw95ysE z#`7$Ki@3$al}D#sL9)=gtOo5s3-@M_Ci>-aeqwwEdva_WWD_b{^O?R?HGiw;{J^#3 z$h+ytcjKX(z=`?5TQ|hRy4Ce%?kKB<@NGJ`j-Q}(b$<71@6Mhay{XGC79nurgE)M~ z>2IPB`-vpo@)CQhXtc9z-pk#K6riz(r5L5g3hl3O*`Lj}I%#@AiTZ9_^{#-job}Y9|ns9Hy)|y4$#*rm@X9R7sXB z>hv+We*iy+B4jr&N>n{3xIJFk97JK3!knfd|GH`b?VQ#08{}K1Q=+|NJ0TekLl=Zy zYv94!m`#yuvD3XIPjqETec)4zlv6 zD81Q>cVkd!H4HQieQc)ouJZ$PHJyFBd-^$#z}E0rYJ9{vU;FT;=3*rO^)6GJU~#D2 z(XBoV>l}jJ+9bWsGeg5%sPHF+iW}vAl%fwVzWL^+y4&@|JuAVfk7cvbsdS)2geQcO zS(2;h+^Z(kwgt7Gxd+k2@_Qr~qzDlmY)Z0pXm1FR+}wB_H^*=J@qo98gxt`tGuFaQ zDp(Uc+whCKZz{F$b!uTLMI6j;yO=^f-6j0b^K63T1*p{~EVQ(_+#5o>d;DPy~mD5c(4Z*wNAhwMgGvE-Eo zE_?k3PRGz-Tb^C!6pIJC-m_T*QSRGz?ottw9nu)b&6Af|*^lcynNHU}5Xa4R4Z3pQ zAiA7yo?Mz-IxY4;JgjMqC7Soal53EBNG%stHEm3|e6*tC9x7kJsjY-balJFb2CS{n zN@?}hSz}n^&V3a-Hb^J4xEh3bjgv6^8l^%=FT$d9rvko|a8lL9gexR`k8{~kP}%2! zf^dY?=CCZV0VvgSCMw^m>Z-=x=;sOtK~%#ELtciteAvyRmCE?hg!&q1U5TOITvJSt`BIS&tNd%XB;cR1oh#wkhYm^S z2ltx#pk-{eB6%y?@wh+O7iTJY^Ey-s*)@pSgCZB3a(I+!(8xk^Q;OxePF8`WrSrq^>3c5N)=IMjp^fp!DVOzibB8RZKWnsr4WvRl zY3sBz5dB~)G`_ECx15;o$?2s!!zi%d8@)3%*v?*2A&{~VmLtZf=u|?`VkDN@L0~lu z7IeOG!_IaBA2JWuxze+-d^;^4Fdm4$g*iv5LCoQD$79NHXq{4$;_w@xs!51e5~;HB zXK4&J0_$FhQH1!OL#pkR^^{={;!O6Itb`m!f=@Oy8-G|gFV~me6mm-rt%FLrJ5!oZ zLqGq`g8Q1|4b`V66_$)jRP%Ipk&BLL9*Sz`OBoQq!d{L~w@ftUw{X7exIGy$rnW3k zg}saf(3f2I;B38j{VIVG2s?jq9Go%VVz}akTo)*lo*VXTp>C!HTi-ltISy{??dz|YE@8o5zVCZ1pFdEO%K#og}_eWD$fU_Qu+Dw)rQIpBKyOGaG0Ec zBWn-Gk@=_=w0UmvKyCNF;LjGj49Ez>Kpb9D*^~ww*5l_gEox>oLc^m(&{OLHX;H)! zd9=STxFYXSNsn<~Z-E-{s$i>u8QKcG5U2T$ofUQs@p(*iD&mYqB=+#Re|{#~#>Uak z*M8d~X*rCAer6wb8Hm%~wMg}4cMihkmUP~e$E6W-iCiJ$S5aoos$q4su5y}G&2EO^t=9j+Z7YGK) zhRdJC!4^9UUS38U%&$TgYGjH}*w@FVesO;Mbw3Wj)QiCJ*L`8rn6n4`9u0bgrCl6} z2O;Ea?1%%EFv+*=ZyDNs-Y?O`&{S6srK82x$J`9!*M+~MP|bW-F21IiKtsG^W!K#q z8~=z@)3r08r~b*Aeat2GX?N^Va5RgJ-bZP~9r^3tAjeG+^7Dvivbk}0uL;RUE1(O7 z`OI*Aa!{O+(mEGN7{BS{xTDnWqFPdZQP6Gis`% ztVPZIK8MT}!-57$+G;C~6a2FTg|X1dBkORMcXtEU%Mwq$w*|z+%FUj<_k1FTJu;2s zDNMVE_2U!G0Zs7dVAh-NkzxnISx@XSY2!h!uo^!_J=4z)(OZduZoZI}wFp*hWPPI< zV3HIbF2X(@=^^3i9BLQLv9+<^Ef}a)BVd8Kn<>;8{n0G^ZuerNyqRNilRgx3iLhMi zQw&`isX6S_xh%Gn+qdjOKuEJQ%bjI&WpW;gW(eyNxzZI_S%xK##Pb6(c(5cqQ>jrJ z`Oz%~{0f#VZW8@gj!ZGc)K749|0bANRY?cSLgQGP&f-gv6hZS#;~qVh7zP7Hd)uFf zXWYQ+n)Jk%!RpChyqYOaCo`hQWZ9ZGMfnbJgl$Z%R?Us{oSn)xI)7pya)r^UZ&gEGx=6afEo*cW?-Pbui(z;1 zC`6Q%ubn1Bz`inP)Qs$`b8DWXqaS2X*iUtI!KAD;)xnHe#+noU1f6<}vCM##HJ`$i z3S^EkOLY$;jI5^Y`>V8*&J?1i(S71(0XE~KO6y7Gx4Bd9FR2S%yzURs#W5O;iaf!L zooE-@lzv8{@s-e!goQO9cdvpY6Hk?agF{O>`xfrt@^s@!N~f&U(A0b2Z|!n&IX&uU z9`M^WUrZe6+0aQR5e)*UUgQRxrEmArDrUlw`s)&VfY`*k`ZX(fGo9nj->>CZrtA@n@m4geV_=o|ko)otzc_+5Ew6ug?t@3nc!_4R zOE>XX)0d;frP|L1;bQL`A!y8IPu|@)g!^$M1e%5=BKjYgYLXddbtzSc&IN1M*e81C z9hVHb&oBr#^;r-%B@PnZqSV;ujZzh2ktdJYycus3wJs;$Sb%xr73?u}yTs(~!UtvC z-LA{o+Z_0mfh-mQ1gU~O67ppo1a}uQy6`>6F*rhY2J)5Vc1rnvc&uKYNZ0%2Mv+TO zX3esUaxIA#yz%K5VyHFfUE$WI^-WfK+hW~d*2gBp-B{{z@mgkOmTSaq{*>(3(XZz} zbT4{=H!fxa4XUbfz% zUYo|qIiWD2$TlHA5pmK1PHrty2~q+*GClQ)rzgbw9EH`mzcjlQ{AZ24KA$0kj&ZjF ze=;rH>q8F-w-HLh%n5Ac0`t@+O77azB-3LLi#}{V-|8tzGNVv2hW6IFcd%){U0L3v zeeIJ>WT4WY*PWPJLAClNxe=aE%aBmPyZR)IqOX?8e}!Lab?>q+rLwxS99}PO_{MSx zU08@qxb~umVOp7K(>`fdQ|i;_Q#Y1cg_<%)?l1cio2FrD^W9T z$r^Db<;i9otIF(M@du}}p9ozSoSaiRC01)4I|OMZ?smSgEMkI}tic)V+z&_YV+Ru# zZkIh7#p%pUQ11_B0$vP~p>bsMxH-wCXgAObd>1(EtbNaxF4P&@zwEhOnca|)9OtxX zNbS)b8qne_0LOJMrh0(`-{rB(Ox2>~KXgwQku~x^x$V!sh3+6mt37kCd|&NRNhdt2 zTF_{~U842%0V$)|i=OrI5!j&y#+<|l^Mg-Q7HhuC=9Qt-zaY3!iIZ=BHJ&r{^0Bq- zZjyY|K1;QZ>l$utVr3KWhJKbt=@L0uva`uVkK90P`CF8>D#R%HrY)Imc)i&)c#Pc! zD{u&yRKOsBB#!28N+|X&^5R?u2d-x_goy`bsOvbOLrMd-7ZLK}5li2&FuN;6Y1~9i zUh|5u!E0-`_{(@}6&~vDpV#Ek#=OR{@ul&7J46`!)3R9c)sR1vUikQ8e@=HStJ3g~ znyn}q4vMD-(K*`*dVF;!E0gg8@WFf4RUGxswOz_9&F-s%>+u4flXL2yEMAjXX)~mf z9+AW<)EZ8$k>TNs57rn5+Kv6x%xHVv!0Kcm_9JV5b@usDI~AjG+84uR{1@GB6h)TL zH8d};d1ye)jWBFZnx}Z{Ka1xxh7G244;XLFbf*AE|B}99@C7zP*eaU-4W4NsDNccQ zuVopI>QkLOL@Zk{jxP3=VJATy^Vx#W*L;q%N;WC036kmnA3@CXg~c8p^k7B8JOUbv zrMd1mDxOmKvI&n?=VqL|E}ih#$~qt3uc}`6^o`l6_W9M++D1oae=YAeW^z_H99OKD z>`oydgP?fHP}5>RZEV_o?S>7LAd`Y1ZAvt|)V4HOURq{66KWw-#}-Hws>_8H*EZ1^ z@>t`g-<>gWUX0=N_7J!%!kjVlh6KY)>|v2Lj7yr;R|{ur-qg4VJnYW)AC1@rMwQH5 zBi~OOjy!q9iQo6tJ%jp{VX&Fl%NejnSY6A{PkjZ!;a4;+@-#A{P2nM;mKq)y~3l7>Y+5FR-^OF?BKM-S)T|J9Fw+?C98eIR49+2tAu^OxLx` z?$;c`7ZVu}?;-Xbi+1K`u+Ara!UNYX9NL9jO7BGa)^RZE%<;B}swsFG9D*XDUnlP9 z@r#SYjA#&wl+&}M_Ymp+vsu)LFA=kABUeJ+Fft#_+6Q<{~woNWYa?z{lAr5nbQW!2n$e1}Yw?X6NW`M5HL zUuuQ~htvM1j=BA9On2qGvxQhebmcaRq2$-v^2a`Ztw|l1L!@AcS>lW?Q>L9cYblcl z{Tk})o9-f~gk=xNho`O1TaA{?9PjjXyUu;>mBngs^%g&2gMD)QSt(Ht% z7=lZoJX$hg8I4K8NZ?$YANjhjWc$6aac-m#8AF|_x_+k2__T!m-6Rb~wE0d^6;WC$ zo+32HP)+NOEy;oUMfl?v#o}o-mLKYR<@Z${oL?J`@Sfu^>(}&nfc={M*~6TQ4D?Vz zNlE&+^$2PcOuRfX6_qYx_2+alp=+C8^&GlrPvYWC>qEr{< z_HUjf?q#_sHyixI_6A?7Xiw>zPCpjLWr$38@jfF~^X)>8;R$tv5BjD{Gun9!FVi5W z8#hS|NIXd%a|vynE9CkOIbkYs4T+oBTqNk^mHqOBYj`~R`=^ALaf9b_O?9tBU!j>s zd-E&iKcf0MyhQp;1O|tOP|0qOpKat_4|1Tdln3< zwOUpVc3xkcTm;mopI0{8#1B0B;T~4i%Q}!QaW~XPg)!t9+pjYI{P2xhUPm*$DUQd@ zqdyT&;^LO-zDMsr#g{xZcimZol`NDf;YS)w#w39$mbm|DK)k%rENWSiRwpw>cVDH2 zkMY#LcBGDl%g^JQ75m5A5WAsyQNhgW^wP%#Dy**?3?@6HB5yfA$>P`#asDMLXuc;;N^t^t9*omRm`q9ATZ~Z=oE@#(BDE`|CA~d`HxhYkfVixwVVp7LKz$&CIY<1D+1e91HUPm0MGI_ zpztqBCIEN5QorKl0kDyOQ!)XTBcKKah5z3unJ^d^po|5u8>!eh0mLBp6{(O40s?^m zJSPBr{QVOkLv*Dx2B=P50WtyJBa#f!m9!PgWdBp=?fssB$<>HmWy z88;LJ$d6Hhc>p*j0D|NM2$8?Rm)w9*7=Wbwtb;CXYr85kCbbpjlHcT?9-7>5W93Upixn#Q{y8Xpf}cAFdsh4 zyk~0GRZnW-nO}sZ<8ks7di#Z0;Sng*wdB?OJMK6!?cz{uf;alm%CNw4LFoRSXSp`q z<@~EU9>R9nU(K3$zwcsL(a$wv*jW#%kC$t5ewj%*e|z2fYZM9k_-F9brmC%?2d{8g zr$@-GK?ZX=y(Av2*E zgJ}KD_nD$GjqkSG4K6p1ttrJAgNYn@qm{*%QgMxF2t*$S_C&W{K-mrDvmKB=`DU!f_OrOvHQH({L1Bw_7oEc%RhR8}5ZgM-j5>N< z3))UULd|nPyzPIt;YtIH>UW-8Az1$ldPNZiLyq|WXFagrR9YlGu;0MhzoX)Xqlqat zkhh$0Y#@LCdr<*@dIB=mlhf^IAV}rFoB%!+*?&CTS9`>t zbpfg_%9sHg6sf%{1TP#ZHUQUyp~zza0KvfGh|~uchzt3?!MPwHBpVRVaOC*{dl?7{ zNMrtUz5rzyiX3ZTFu;FCiYvedh9mjl%7*NND-&`q046wUzHtJcK^hB)lLz^J03C1x zx{`m683gzgwJs+>GDa>30dz5uZ7>+}JV1aCkbDmY!MKoP60mV1=RRQjmp))% zxFAOA1Ui2=DBkijUnfAJq`t^)l60B4lCu&XoI)%Cak0QFL&+yd^$zxWSW z!%*h|BpgzEU;v4Y+%LdqN9p%>aG=zMLQ&h}LX9=}Zxz%(=K<#ique(*40#O$(g+Gd zi4EAl_yt%LQT_5Sxdl+MQQG51Sx*5MfVfcGgQLbI4+u5ixH(bd1?UzfhJdvgC0+m- zSyUT0@;V8O4~Ckn0Kgq}Zak\n", " \n", " \n", - " 20146\n", - " 7967000130\n", - " 4/1/2015\n", - " 370228.0\n", - " 4\n", - " 3.00\n", - " 2050\n", - " 4000\n", - " 2.0\n", - " NO\n", - " Average\n", - " 8 Good\n", - " 2050\n", - " 0.0\n", - " 2014\n", - " 0.0\n", - " 2050\n", - " 4000\n", - " \n", - " \n", - " 13983\n", - " 7338000150\n", - " 1/29/2015\n", - " 160000.0\n", + " 1039\n", + " 16000435\n", + " 3/16/2015\n", + " 218500.0\n", " 2\n", " 1.00\n", - " 1070\n", - " 4200\n", + " 1600\n", + " 8961\n", " 1.0\n", " NO\n", " Good\n", - " 6 Low Average\n", - " 1070\n", - " 0.0\n", - " 1983\n", + " 7 Average\n", + " 1390\n", + " 210.0\n", + " 1949\n", " 0.0\n", - " 1150\n", - " 4200\n", + " 1502\n", + " 6798\n", " \n", " \n", - " 3605\n", - " 8658303585\n", - " 8/7/2014\n", - " 252500.0\n", - " 2\n", - " 1.00\n", - " 900\n", - " 7500\n", + " 8661\n", + " 766800090\n", + " 5/25/2014\n", + " 195000.0\n", + " 3\n", + " 1.75\n", + " 1570\n", + " 8459\n", " 1.0\n", " NO\n", - " Good\n", - " 6 Low Average\n", - " 900\n", + " Average\n", + " 7 Average\n", + " 1570\n", " 0.0\n", - " 1961\n", + " 1991\n", " 0.0\n", - " 1190\n", - " 10000\n", + " 1650\n", + " 8844\n", " \n", " \n", - " 9229\n", - " 1787250210\n", - " 12/22/2014\n", - " 379000.0\n", + " 12936\n", + " 4137000540\n", + " 1/22/2015\n", + " 329950.0\n", " 4\n", - " 2.75\n", - " 2410\n", - " 5225\n", + " 2.25\n", + " 2140\n", + " 8874\n", " 2.0\n", - " NO\n", + " NaN\n", " Average\n", " 8 Good\n", - " 2410\n", + " 2140\n", " 0.0\n", - " 2001\n", + " 1986\n", " 0.0\n", - " 2300\n", - " 5378\n", + " 2140\n", + " 8789\n", " \n", " \n", - " 11243\n", - " 1843200350\n", - " 7/22/2014\n", - " 150000.0\n", - " 2\n", + " 6875\n", + " 11501310\n", + " 11/21/2014\n", + " 715000.0\n", + " 3\n", + " 3.25\n", + " 3060\n", + " 9055\n", + " 2.0\n", + " NO\n", + " Average\n", + " 10 Very Good\n", + " 2460\n", + " 600.0\n", + " 1994\n", + " 0.0\n", + " 2990\n", + " 9598\n", + " \n", + " \n", + " 7864\n", + " 3445400120\n", + " 7/25/2014\n", + " 267500.0\n", + " 3\n", " 1.50\n", - " 1360\n", - " 1934\n", + " 1390\n", + " 2153\n", " 2.0\n", " NO\n", - " Good\n", + " Average\n", " 7 Average\n", - " 1360\n", + " 1390\n", " 0.0\n", - " 1978\n", + " 2001\n", " 0.0\n", - " 1360\n", - " 1898\n", + " 1100\n", + " 2617\n", " \n", " \n", "\n", @@ -959,28 +959,28 @@ ], "text/plain": [ " id date price bedrooms bathrooms sqft_living \\\n", - "20146 7967000130 4/1/2015 370228.0 4 3.00 2050 \n", - "13983 7338000150 1/29/2015 160000.0 2 1.00 1070 \n", - "3605 8658303585 8/7/2014 252500.0 2 1.00 900 \n", - "9229 1787250210 12/22/2014 379000.0 4 2.75 2410 \n", - "11243 1843200350 7/22/2014 150000.0 2 1.50 1360 \n", + "1039 16000435 3/16/2015 218500.0 2 1.00 1600 \n", + "8661 766800090 5/25/2014 195000.0 3 1.75 1570 \n", + "12936 4137000540 1/22/2015 329950.0 4 2.25 2140 \n", + "6875 11501310 11/21/2014 715000.0 3 3.25 3060 \n", + "7864 3445400120 7/25/2014 267500.0 3 1.50 1390 \n", "\n", - " sqft_lot floors waterfront condition grade sqft_above \\\n", - "20146 4000 2.0 NO Average 8 Good 2050 \n", - "13983 4200 1.0 NO Good 6 Low Average 1070 \n", - "3605 7500 1.0 NO Good 6 Low Average 900 \n", - "9229 5225 2.0 NO Average 8 Good 2410 \n", - "11243 1934 2.0 NO Good 7 Average 1360 \n", + " sqft_lot floors waterfront condition grade sqft_above \\\n", + "1039 8961 1.0 NO Good 7 Average 1390 \n", + "8661 8459 1.0 NO Average 7 Average 1570 \n", + "12936 8874 2.0 NaN Average 8 Good 2140 \n", + "6875 9055 2.0 NO Average 10 Very Good 2460 \n", + "7864 2153 2.0 NO Average 7 Average 1390 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", - "20146 0.0 2014 0.0 2050 4000 \n", - "13983 0.0 1983 0.0 1150 4200 \n", - "3605 0.0 1961 0.0 1190 10000 \n", - "9229 0.0 2001 0.0 2300 5378 \n", - "11243 0.0 1978 0.0 1360 1898 " + "1039 210.0 1949 0.0 1502 6798 \n", + "8661 0.0 1991 0.0 1650 8844 \n", + "12936 0.0 1986 0.0 2140 8789 \n", + "6875 600.0 1994 0.0 2990 9598 \n", + "7864 0.0 2001 0.0 1100 2617 " ] }, - "execution_count": 75, + "execution_count": 112, "metadata": {}, "output_type": "execute_result" } @@ -1001,7 +1001,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 113, "metadata": {}, "outputs": [ { @@ -1030,7 +1030,7 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 114, "metadata": {}, "outputs": [], "source": [ @@ -1054,7 +1054,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 115, "metadata": {}, "outputs": [ { @@ -1097,7 +1097,7 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 116, "metadata": {}, "outputs": [], "source": [ @@ -1119,7 +1119,7 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 117, "metadata": {}, "outputs": [], "source": [ @@ -1132,7 +1132,7 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 118, "metadata": {}, "outputs": [], "source": [ @@ -1142,7 +1142,7 @@ }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 119, "metadata": {}, "outputs": [ { @@ -1162,7 +1162,7 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 120, "metadata": {}, "outputs": [ { @@ -1181,7 +1181,7 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 121, "metadata": {}, "outputs": [], "source": [ @@ -1192,7 +1192,7 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 122, "metadata": {}, "outputs": [ { @@ -1267,104 +1267,104 @@ " \n", " \n", " \n", - " 4511\n", - " 723049333\n", - " 2015-04-05\n", - " 285000.0\n", - " 3\n", - " 1.50\n", - " 1490\n", - " 10367\n", - " 1.0\n", + " 7860\n", + " 1438000110\n", + " 2014-06-03\n", + " 580135.0\n", + " 4\n", + " 2.50\n", + " 3150\n", + " 5886\n", + " 2.0\n", " 0\n", " 3.0\n", - " 5.0\n", - " 1010\n", - " 480.0\n", - " 1957\n", + " 6.0\n", + " 3150\n", " 0.0\n", - " 1000\n", - " 8254\n", + " 2014\n", + " 0.0\n", + " 2650\n", + " 5886\n", " \n", " \n", - " 1181\n", - " 7625700935\n", - " 2014-06-05\n", - " 875000.0\n", + " 650\n", + " 4338800370\n", + " 2014-11-17\n", + " 220000.0\n", " 3\n", - " 3.50\n", - " 3250\n", - " 6000\n", - " 2.0\n", + " 1.00\n", + " 1000\n", + " 6020\n", + " 1.0\n", " 0\n", " 3.0\n", - " 8.0\n", - " 2500\n", - " 750.0\n", - " 2001\n", + " 4.0\n", + " 1000\n", " 0.0\n", - " 1650\n", - " 6000\n", + " 1944\n", + " 0.0\n", + " 1300\n", + " 8640\n", " \n", " \n", - " 1875\n", - " 1853081000\n", - " 2014-07-17\n", - " 820000.0\n", - " 5\n", - " 2.75\n", - " 2830\n", - " 6137\n", - " 2.0\n", + " 14316\n", + " 8731980880\n", + " 2014-12-22\n", + " 340000.0\n", + " 4\n", + " 2.25\n", + " 2180\n", + " 8000\n", + " 1.0\n", " 0\n", - " 3.0\n", + " 4.0\n", " 7.0\n", - " 2830\n", - " 0.0\n", - " 2010\n", + " 1630\n", + " 550.0\n", + " 1975\n", " 0.0\n", - " 3170\n", - " 6285\n", + " 2310\n", + " 8000\n", " \n", " \n", - " 12273\n", - " 7016200030\n", - " 2015-03-20\n", - " 480000.0\n", - " 4\n", - " 2.50\n", - " 2080\n", - " 7966\n", + " 1562\n", + " 7522500070\n", + " 2015-02-04\n", + " 610000.0\n", + " 3\n", + " 1.00\n", + " 1800\n", + " 5750\n", " 1.0\n", " 0\n", " 3.0\n", " 5.0\n", - " 1200\n", - " 880.0\n", - " 1970\n", + " 1040\n", + " 760.0\n", + " 1947\n", " 0.0\n", - " 1920\n", - " 7500\n", + " 1320\n", + " 5625\n", " \n", " \n", - " 8546\n", - " 7981900110\n", - " 2014-10-03\n", - " 350000.0\n", - " 4\n", - " 2.75\n", - " 2300\n", - " 3175\n", + " 12233\n", + " 2767601805\n", + " 2015-02-13\n", + " 600000.0\n", + " 2\n", + " 1.00\n", + " 1370\n", + " 5000\n", " 1.5\n", " 0\n", " 3.0\n", - " 4.0\n", - " 1340\n", - " 960.0\n", - " 1966\n", + " 5.0\n", + " 1370\n", " 0.0\n", - " 1260\n", - " 3175\n", + " 1905\n", + " 0.0\n", + " 1500\n", + " 5000\n", " \n", " \n", "\n", @@ -1372,28 +1372,28 @@ ], "text/plain": [ " id date price bedrooms bathrooms sqft_living \\\n", - "4511 723049333 2015-04-05 285000.0 3 1.50 1490 \n", - "1181 7625700935 2014-06-05 875000.0 3 3.50 3250 \n", - "1875 1853081000 2014-07-17 820000.0 5 2.75 2830 \n", - "12273 7016200030 2015-03-20 480000.0 4 2.50 2080 \n", - "8546 7981900110 2014-10-03 350000.0 4 2.75 2300 \n", + "7860 1438000110 2014-06-03 580135.0 4 2.50 3150 \n", + "650 4338800370 2014-11-17 220000.0 3 1.00 1000 \n", + "14316 8731980880 2014-12-22 340000.0 4 2.25 2180 \n", + "1562 7522500070 2015-02-04 610000.0 3 1.00 1800 \n", + "12233 2767601805 2015-02-13 600000.0 2 1.00 1370 \n", "\n", " sqft_lot floors waterfront condition grade sqft_above \\\n", - "4511 10367 1.0 0 3.0 5.0 1010 \n", - "1181 6000 2.0 0 3.0 8.0 2500 \n", - "1875 6137 2.0 0 3.0 7.0 2830 \n", - "12273 7966 1.0 0 3.0 5.0 1200 \n", - "8546 3175 1.5 0 3.0 4.0 1340 \n", + "7860 5886 2.0 0 3.0 6.0 3150 \n", + "650 6020 1.0 0 3.0 4.0 1000 \n", + "14316 8000 1.0 0 4.0 7.0 1630 \n", + "1562 5750 1.0 0 3.0 5.0 1040 \n", + "12233 5000 1.5 0 3.0 5.0 1370 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", - "4511 480.0 1957 0.0 1000 8254 \n", - "1181 750.0 2001 0.0 1650 6000 \n", - "1875 0.0 2010 0.0 3170 6285 \n", - "12273 880.0 1970 0.0 1920 7500 \n", - "8546 960.0 1966 0.0 1260 3175 " + "7860 0.0 2014 0.0 2650 5886 \n", + "650 0.0 1944 0.0 1300 8640 \n", + "14316 550.0 1975 0.0 2310 8000 \n", + "1562 760.0 1947 0.0 1320 5625 \n", + "12233 0.0 1905 0.0 1500 5000 " ] }, - "execution_count": 84, + "execution_count": 122, "metadata": {}, "output_type": "execute_result" } @@ -1424,7 +1424,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 123, "metadata": {}, "outputs": [ { @@ -1497,7 +1497,7 @@ "4 37 0.0 11440.0" ] }, - "execution_count": 85, + "execution_count": 123, "metadata": {}, "output_type": "execute_result" } @@ -1542,7 +1542,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 124, "metadata": {}, "outputs": [ { @@ -1590,119 +1590,119 @@ " \n", " \n", " \n", - " 8540\n", - " 3034200366\n", - " 2014-12-03\n", - " 409000.0\n", + " 13945\n", + " 8651540040\n", + " 2014-07-18\n", + " 549000.0\n", " 3\n", - " 1.75\n", - " 1440\n", - " 9065\n", - " 1.0\n", + " 2.25\n", + " 1920\n", + " 10961\n", + " 2.0\n", " 0\n", - " 4.0\n", + " 3.0\n", " 6.0\n", - " 1440\n", + " 1920\n", " 0.0\n", - " 1972\n", + " 1981\n", " 0.0\n", - " 1990\n", - " 8812\n", - " 52\n", + " 2000\n", + " 10706\n", + " 43\n", " 0.0\n", - " 11945.0\n", + " 14801.0\n", " \n", " \n", - " 19433\n", - " 2023059052\n", - " 2015-05-04\n", - " 450000.0\n", + " 279\n", + " 9412900055\n", + " 2015-05-05\n", + " 405000.0\n", " 3\n", - " 1.00\n", - " 1350\n", - " 92721\n", + " 1.75\n", + " 2390\n", + " 6000\n", " 1.0\n", " 0\n", - " 2.0\n", + " 3.0\n", " 4.0\n", - " 1200\n", - " 150.0\n", - " 1946\n", + " 1240\n", + " 1150.0\n", + " 1908\n", " 0.0\n", - " 1860\n", - " 8096\n", - " 78\n", + " 2020\n", + " 6000\n", + " 116\n", " 0.0\n", - " 95421.0\n", + " 10780.0\n", " \n", " \n", - " 7003\n", - " 7751800080\n", - " 2015-01-27\n", - " 465000.0\n", + " 14809\n", + " 7312200120\n", + " 2014-07-23\n", + " 450000.0\n", " 3\n", - " 1.50\n", - " 1460\n", - " 9879\n", - " 1.0\n", + " 2.25\n", + " 1760\n", + " 10013\n", + " 2.0\n", " 0\n", - " 3.0\n", - " 5.0\n", - " 1460\n", + " 4.0\n", + " 6.0\n", + " 1760\n", " 0.0\n", - " 1956\n", + " 1983\n", " 0.0\n", - " 1610\n", - " 10050\n", - " 68\n", + " 1810\n", + " 9768\n", + " 41\n", " 0.0\n", - " 12799.0\n", + " 13533.0\n", " \n", " \n", - " 10151\n", - " 1180002075\n", - " 2014-08-25\n", - " 235000.0\n", - " 3\n", - " 1.00\n", - " 1210\n", + " 18432\n", + " 2484700155\n", + " 2014-10-14\n", + " 705000.0\n", + " 4\n", + " 2.00\n", + " 2060\n", " 6000\n", " 1.0\n", " 0\n", - " 3.0\n", - " 5.0\n", - " 1210\n", + " 4.0\n", + " 6.0\n", + " 1370\n", + " 690.0\n", + " 1954\n", " 0.0\n", - " 1930\n", + " 2060\n", + " 6600\n", + " 70\n", " 0.0\n", - " 1210\n", - " 6000\n", - " 94\n", - " 0.0\n", - " 8420.0\n", + " 10120.0\n", " \n", " \n", - " 3506\n", - " 3449900090\n", - " 2015-04-10\n", - " 454200.0\n", - " 4\n", - " 2.50\n", - " 2630\n", - " 5379\n", - " 2.0\n", + " 12094\n", + " 3822200036\n", + " 2014-06-24\n", + " 257500.0\n", + " 2\n", + " 2.00\n", + " 1180\n", + " 9265\n", + " 1.0\n", " 0\n", " 3.0\n", - " 6.0\n", - " 2630\n", + " 5.0\n", + " 1180\n", " 0.0\n", - " 2004\n", + " 1940\n", " 0.0\n", - " 2630\n", - " 5379\n", - " 20\n", + " 460\n", + " 18000\n", + " 84\n", " 0.0\n", - " 10639.0\n", + " 11625.0\n", " \n", " \n", "\n", @@ -1710,35 +1710,35 @@ ], "text/plain": [ " id date price bedrooms bathrooms sqft_living \\\n", - "8540 3034200366 2014-12-03 409000.0 3 1.75 1440 \n", - "19433 2023059052 2015-05-04 450000.0 3 1.00 1350 \n", - "7003 7751800080 2015-01-27 465000.0 3 1.50 1460 \n", - "10151 1180002075 2014-08-25 235000.0 3 1.00 1210 \n", - "3506 3449900090 2015-04-10 454200.0 4 2.50 2630 \n", + "13945 8651540040 2014-07-18 549000.0 3 2.25 1920 \n", + "279 9412900055 2015-05-05 405000.0 3 1.75 2390 \n", + "14809 7312200120 2014-07-23 450000.0 3 2.25 1760 \n", + "18432 2484700155 2014-10-14 705000.0 4 2.00 2060 \n", + "12094 3822200036 2014-06-24 257500.0 2 2.00 1180 \n", "\n", " sqft_lot floors waterfront condition grade sqft_above \\\n", - "8540 9065 1.0 0 4.0 6.0 1440 \n", - "19433 92721 1.0 0 2.0 4.0 1200 \n", - "7003 9879 1.0 0 3.0 5.0 1460 \n", - "10151 6000 1.0 0 3.0 5.0 1210 \n", - "3506 5379 2.0 0 3.0 6.0 2630 \n", + "13945 10961 2.0 0 3.0 6.0 1920 \n", + "279 6000 1.0 0 3.0 4.0 1240 \n", + "14809 10013 2.0 0 4.0 6.0 1760 \n", + "18432 6000 1.0 0 4.0 6.0 1370 \n", + "12094 9265 1.0 0 3.0 5.0 1180 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", - "8540 0.0 1972 0.0 1990 8812 \n", - "19433 150.0 1946 0.0 1860 8096 \n", - "7003 0.0 1956 0.0 1610 10050 \n", - "10151 0.0 1930 0.0 1210 6000 \n", - "3506 0.0 2004 0.0 2630 5379 \n", + "13945 0.0 1981 0.0 2000 10706 \n", + "279 1150.0 1908 0.0 2020 6000 \n", + "14809 0.0 1983 0.0 1810 9768 \n", + "18432 690.0 1954 0.0 2060 6600 \n", + "12094 0.0 1940 0.0 460 18000 \n", "\n", " house_age renovation_age total_sqft \n", - "8540 52 0.0 11945.0 \n", - "19433 78 0.0 95421.0 \n", - "7003 68 0.0 12799.0 \n", - "10151 94 0.0 8420.0 \n", - "3506 20 0.0 10639.0 " + "13945 43 0.0 14801.0 \n", + "279 116 0.0 10780.0 \n", + "14809 41 0.0 13533.0 \n", + "18432 70 0.0 10120.0 \n", + "12094 84 0.0 11625.0 " ] }, - "execution_count": 20, + "execution_count": 124, "metadata": {}, "output_type": "execute_result" } @@ -1749,7 +1749,7 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 125, "metadata": {}, "outputs": [ { @@ -1820,7 +1820,7 @@ }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 126, "metadata": {}, "outputs": [ { @@ -1828,13 +1828,7 @@ "output_type": "stream", "text": [ "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ + " with pd.option_context('mode.use_inf_as_na', True):\n", "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", " with pd.option_context('mode.use_inf_as_na', True):\n" ] @@ -1896,7 +1890,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 127, "metadata": {}, "outputs": [ { @@ -1949,7 +1943,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 128, "metadata": {}, "outputs": [], "source": [ @@ -1962,7 +1956,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 129, "metadata": {}, "outputs": [ { @@ -1971,7 +1965,7 @@ "Text(0.5, 0, 'Number of Bedrooms')" ] }, - "execution_count": 90, + "execution_count": 129, "metadata": {}, "output_type": "execute_result" }, @@ -2009,7 +2003,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 130, "metadata": {}, "outputs": [ { @@ -2026,7 +2020,7 @@ "Name: count, dtype: int64" ] }, - "execution_count": 94, + "execution_count": 130, "metadata": {}, "output_type": "execute_result" } @@ -2046,7 +2040,7 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 131, "metadata": {}, "outputs": [ { @@ -2095,123 +2089,123 @@ " \n", " \n", " \n", - " 1188\n", - " 2624049185\n", - " 2014-09-09\n", - " 405000.0\n", - " 3\n", - " 1.75\n", - " 1760\n", - " 5355\n", + " 7780\n", + " 1025079086\n", + " 2014-08-20\n", + " 365000.0\n", + " 2\n", + " 1.00\n", + " 960\n", + " 223898\n", " 1.0\n", " 0\n", " 3.0\n", " ...\n", - " 1160\n", - " 600.0\n", - " 1956\n", + " 960\n", + " 0.0\n", + " 1985\n", " 0.0\n", - " 1790\n", - " 6225\n", - " 68\n", + " 1830\n", + " 230868\n", + " 39\n", " 0.0\n", - " 8875.0\n", + " 225818.0\n", " 300K-600K\n", " \n", " \n", - " 20611\n", - " 2895800390\n", - " 2014-08-07\n", - " 359800.0\n", - " 5\n", - " 2.50\n", - " 2170\n", - " 2752\n", - " 2.0\n", + " 13342\n", + " 3558900450\n", + " 2014-07-11\n", + " 530000.0\n", + " 4\n", + " 2.25\n", + " 2130\n", + " 8640\n", + " 1.0\n", " 0\n", " 3.0\n", " ...\n", - " 2170\n", - " 0.0\n", - " 2014\n", + " 1430\n", + " 700.0\n", + " 1969\n", " 0.0\n", - " 1800\n", - " 2752\n", - " 10\n", + " 2120\n", + " 8826\n", + " 55\n", " 0.0\n", - " 7092.0\n", + " 12900.0\n", " 300K-600K\n", " \n", " \n", - " 2209\n", - " 3438500339\n", - " 2014-05-26\n", - " 276000.0\n", - " 3\n", - " 1.00\n", - " 1140\n", - " 5000\n", - " 1.0\n", + " 14479\n", + " 1041440360\n", + " 2015-01-05\n", + " 299999.0\n", + " 4\n", + " 2.50\n", + " 1981\n", + " 4828\n", + " 2.0\n", " 0\n", " 3.0\n", " ...\n", - " 1140\n", + " 1981\n", " 0.0\n", - " 1960\n", + " 2013\n", " 0.0\n", - " 1140\n", - " 5000\n", - " 64\n", + " 1981\n", + " 3783\n", + " 11\n", " 0.0\n", - " 7280.0\n", + " 8790.0\n", " 100K-300K\n", " \n", " \n", - " 18431\n", - " 4167960330\n", - " 2015-01-09\n", - " 270000.0\n", - " 3\n", - " 2.00\n", - " 1820\n", - " 7750\n", + " 3861\n", + " 7752000090\n", + " 2015-01-13\n", + " 635000.0\n", + " 4\n", + " 1.75\n", + " 2400\n", + " 10050\n", " 1.0\n", " 0\n", - " 3.0\n", + " 5.0\n", " ...\n", - " 1820\n", + " 2400\n", " 0.0\n", - " 1992\n", + " 1957\n", " 0.0\n", - " 2080\n", - " 8084\n", - " 32\n", + " 1680\n", + " 10050\n", + " 67\n", " 0.0\n", - " 11390.0\n", - " 100K-300K\n", + " 14850.0\n", + " 600K-1M\n", " \n", " \n", - " 11609\n", - " 1972201550\n", - " 2014-07-16\n", - " 565000.0\n", - " 4\n", - " 1.00\n", - " 1540\n", - " 2452\n", - " 1.5\n", + " 17604\n", + " 3876313170\n", + " 2014-12-09\n", + " 436000.0\n", + " 3\n", + " 2.25\n", + " 1770\n", + " 8000\n", + " 1.0\n", " 0\n", " 4.0\n", " ...\n", - " 1540\n", - " 0.0\n", - " 1906\n", + " 1350\n", + " 420.0\n", + " 1976\n", " 0.0\n", - " 1290\n", - " 3360\n", - " 118\n", + " 1850\n", + " 7875\n", + " 48\n", " 0.0\n", - " 5532.0\n", + " 11540.0\n", " 300K-600K\n", " \n", " \n", @@ -2221,37 +2215,37 @@ ], "text/plain": [ " id date price bedrooms bathrooms sqft_living \\\n", - "1188 2624049185 2014-09-09 405000.0 3 1.75 1760 \n", - "20611 2895800390 2014-08-07 359800.0 5 2.50 2170 \n", - "2209 3438500339 2014-05-26 276000.0 3 1.00 1140 \n", - "18431 4167960330 2015-01-09 270000.0 3 2.00 1820 \n", - "11609 1972201550 2014-07-16 565000.0 4 1.00 1540 \n", + "7780 1025079086 2014-08-20 365000.0 2 1.00 960 \n", + "13342 3558900450 2014-07-11 530000.0 4 2.25 2130 \n", + "14479 1041440360 2015-01-05 299999.0 4 2.50 1981 \n", + "3861 7752000090 2015-01-13 635000.0 4 1.75 2400 \n", + "17604 3876313170 2014-12-09 436000.0 3 2.25 1770 \n", "\n", " sqft_lot floors waterfront condition ... sqft_above \\\n", - "1188 5355 1.0 0 3.0 ... 1160 \n", - "20611 2752 2.0 0 3.0 ... 2170 \n", - "2209 5000 1.0 0 3.0 ... 1140 \n", - "18431 7750 1.0 0 3.0 ... 1820 \n", - "11609 2452 1.5 0 4.0 ... 1540 \n", + "7780 223898 1.0 0 3.0 ... 960 \n", + "13342 8640 1.0 0 3.0 ... 1430 \n", + "14479 4828 2.0 0 3.0 ... 1981 \n", + "3861 10050 1.0 0 5.0 ... 2400 \n", + "17604 8000 1.0 0 4.0 ... 1350 \n", "\n", " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", - "1188 600.0 1956 0.0 1790 6225 \n", - "20611 0.0 2014 0.0 1800 2752 \n", - "2209 0.0 1960 0.0 1140 5000 \n", - "18431 0.0 1992 0.0 2080 8084 \n", - "11609 0.0 1906 0.0 1290 3360 \n", + "7780 0.0 1985 0.0 1830 230868 \n", + "13342 700.0 1969 0.0 2120 8826 \n", + "14479 0.0 2013 0.0 1981 3783 \n", + "3861 0.0 1957 0.0 1680 10050 \n", + "17604 420.0 1976 0.0 1850 7875 \n", "\n", " house_age renovation_age total_sqft price_range \n", - "1188 68 0.0 8875.0 300K-600K \n", - "20611 10 0.0 7092.0 300K-600K \n", - "2209 64 0.0 7280.0 100K-300K \n", - "18431 32 0.0 11390.0 100K-300K \n", - "11609 118 0.0 5532.0 300K-600K \n", + "7780 39 0.0 225818.0 300K-600K \n", + "13342 55 0.0 12900.0 300K-600K \n", + "14479 11 0.0 8790.0 100K-300K \n", + "3861 67 0.0 14850.0 600K-1M \n", + "17604 48 0.0 11540.0 300K-600K \n", "\n", "[5 rows x 21 columns]" ] }, - "execution_count": 95, + "execution_count": 131, "metadata": {}, "output_type": "execute_result" } @@ -2262,7 +2256,7 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 132, "metadata": {}, "outputs": [ { @@ -2320,7 +2314,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 133, "metadata": {}, "outputs": [ { @@ -2363,7 +2357,7 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 134, "metadata": {}, "outputs": [ { @@ -2406,12 +2400,12 @@ }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 135, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAJOCAYAAADMCCWlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVkUlEQVR4nO3dd5hcZd0//vdMNksamJCAiaEpgfCTlkAgSJASQBAITRA18mCQjlIeWgAFEamC1IcakFBUkN4UVB5BBUKRJj4oIkhIIJBKTdns/P7IN0uWBEhgd+fszut1XbmuMzNnznw+Z252b9575p5SpVKpBAAAAACAQihXuwAAAAAAAN4ntAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AG2gUqlUuwQAAACgnRDaAu3WM888k6OOOiqbb7551llnnWy55Zb5wQ9+kPHjx7dpHXvuuWf23HPPptvDhw/P6NGjm25ffPHFueKKK5puX3DBBRk4cGCb1tjaRo8enYEDBzb7t+aaa2aTTTbJUUcdlVdfffVjjzFw4MBccMEFbVAtAEAxvfDCCzn55JOzzTbbZN11183666+fPfbYI9ddd13mzJnTqq89evToDB8+vFVfoyUNHz58ofnn2muvna233jpnn312Zs2a9ZHPHzduXAYOHJhx48a1UcUAS6au2gUAfBLXXXddTj311AwdOjRHHHFEll9++bz88ssZM2ZM7r333vz85z/PmmuuWZXaLrzwwvTo0aPp9rnnnpvvfe97Tbd33333fPnLX65Gaa1queWWy4UXXth0u6GhIS+++GLOOuusPPHEE7nzzjvTpUuXD33+9ddfn759+7ZFqQAAhXP33Xfn2GOPzRe+8IWMGjUqn//85zNz5szcf//9Oe200/LAAw/kkksuSalUqnaphbHZZpvloIMOaro9a9asjBs3LhdddFEmTJiQn/3sZx/63DXXXDPXX399BgwY0BalAiwxoS3Q7jz++OM55ZRTMnLkyBx//PFN9w8dOjRbbrlldt111xx77LG5/fbbq1LfF7/4xY98vG/fvh0ynKyvr8+gQYOa3TdkyJB07tw5xxxzTP7whz9k++23/9Dnf/C5AAC14oUXXsixxx6bjTfeOBdccEHq6t7/X/XNNtssQ4cOzSGHHJK77rorO+ywQxUrLZZll112oTnk0KFD89prr+Xmm2/O6NGjs/zyyy/yuT169DD/BArN8ghAu3PFFVdk6aWXzn//938v9Niyyy6b0aNH5ytf+Urefvvtpvvvvvvu7Lrrrhk8eHCGDRuWE044ITNmzGh6/IILLsjWW2+dP/7xjxkxYkTWWmutbLPNNrnllluaHX/ixIn53ve+l/XXXz/Dhg3Lz3/+84VqWHB5hPnLIFx44YVN24taHqGl6lvQHXfckYEDB+a5555rdv/999+fgQMH5umnn06SXHPNNdl2222z9tpr58tf/nJ+9KMfNTt3n9baa6+dJJkwYUKSeR+922uvvXLiiSdmyJAh2WWXXdLQ0LDQ8ghTpkzJcccdl4033jiDBw/OyJEj8/jjjzc93tjYmMsuuyxbb7110/m45pprWqxuAIC2MmbMmJTL5fzkJz9pFtjOt80222TnnXdOufz+/8IPHDgwF154Yb72ta9l/fXXz0UXXZQkefTRR/Pd7343G2ywQdZaa60MHz48F1xwQRobG5ueO2PGjBx77LEZOnRoNthgg/z0pz9t9vh8v//977Prrrtm7bXXzrBhw/KTn/wk77777of28cMf/jAbbbRRGhoamt3/05/+NBtuuGFmz56dWbNm5aSTTsqmm26atdZaK9tuu22uvPLKJT5nH2WttdZKpVJpWqJr+PDhOfXUU7PXXntlvfXWywknnLDI5RH+9re/ZZ999sn666+fjTbaKIcffnizZb6mT5+eE044IRtvvHHWXnvtfP3rX89DDz3UorUDzOdKW6BdqVQq+fOf/5zhw4ena9eui9xn2223bXb7oosuynnnnZdvfetbOfzwwzN+/Picd955efLJJ3PDDTc0fWT/jTfeyI9//OMceOCB6d+/f6644oqMHj0666yzTlZdddW8++67+fa3v51yuZwf//jHqaury3nnnZeXX345gwcPXmQt119/ffbYY4/stttu2X333Re5T0vV90Fbb711unfvnrvuuitrrLFG0/133nlnPv/5z2edddbJXXfdlTPOOCPHHHNMBg4cmH//+98544wzMnPmzJx++ukf/4YshhdffDFJstJKKzXd99hjj6VUKuWCCy7IO++8s9D/nLz77rv5xje+kTlz5uSII45I3759M3bs2Oyzzz658cYbs+qqq+ZHP/pRbr755uy///4ZPHhwHn300Zx66ql58803c/DBB7dI7QAAbeEPf/hDNtpoo/Tu3ftD9znjjDMWuu/iiy/OoYcemoEDB6Zv37557rnn8p3vfCfbbrttzjnnnFQqldx222258MILs8oqq2TEiBFpbGzMPvvsk1deeSVHHnlkevfunTFjxuTpp59udlXqHXfckSOPPDIjRozIYYcdlgkTJuScc87Jv/71r/z85z9f5DINO+20U2644YY89NBDTcuBVSqV3H333dl2221TX1+fE044IX/+859zzDHHpE+fPnnggQdyxhlnpGfPntl1111b4Gy+P/9cccUVm+677rrrMnLkyOy3337p0qXLQsHyc889l29+85tZZ511cvrpp6dSqeTss8/O3nvvndtvvz2NjY3Za6+9Mnny5Bx++OFZfvnlc9NNN2WfffbJmDFj8qUvfalFageYT2gLtCvTpk3LrFmzssIKKyzW/jNmzMjFF1+c3XffPSeeeGLT/auvvnpGjhyZm2++Od/61reSJO+9915OOeWUpgnXKquski222CL3339/Vl111dxyyy2ZOHFibrvttqYrZddZZ51svfXWH/r68z9y1bdv30V+/Kol6/ugLl26ZJtttsndd9+dI444Ikkyc+bM/OEPf8i+++6bZN4XMPTv3z8jR45MuVzOhhtumG7dumXatGmLdX4/aMHJ79tvv51nnnkmp512Wvr375/NNtus2X4nnXRSVl555UUe55Zbbsn48eNz6623NgXOQ4YMyc4775xHH3005XI5N9xwQ/77v/87++23X5Jkk002SalUyqWXXppvfetb6dWr1yfqAQCgLc2YMSMzZszIKqusstBjHwwWS6VSOnXq1HR7nXXWaZoLJcmtt96ajTfeOD/96U+brsodNmxY/vjHP+bRRx/NiBEj8sADD+Tpp5/OpZdems033zxJstFGGzX7ErJKpZKzzjorX/7yl3PWWWc13b/KKqvkO9/5Tu6///6m5y5o/fXXzworrJC77767KbR9/PHHM3HixOy0005JkkceeSQbb7xx07JZQ4cOTbdu3T7R3K1SqTQ7R1OmTMkDDzyQX/3qV/nqV7+aZZddtumx5ZdfPqNHj246Lx/8ArKLLroon/nMZ3LllVdmqaWWSjJvDn/YYYflH//4R/7+97/nueeeyw033JB11103SbLppptmzz33zFlnnZWbbrppiesH+ChCW6BdmT/Jmjt37mLt/+STT2b27NkZMWJEs/uHDBmS/v37Z9y4cU2haNJ8XdX5687O/wjYY489lhVXXLHZ0gb9+vX7VGthtWR9i7Ljjjvm5ptvzlNPPZV111039913X959992m19too41y/fXXZ9ddd81XvvKVbL755hkxYsQn+oKLCRMmLPLL39Zdd938+Mc/bnZldJcuXZpdeftBjz32WFZYYYVmVwgvtdRS+c1vfpMk+eUvf5lKpZLhw4c3m6gPHz48F198cR5//PFstdVWS9wDAEBbW9SyBEnyn//8J1/5ylea3de/f//cd999TbdXX331Zo/vvPPO2XnnnTNr1qy8/PLL+c9//pNnn302c+fOzZw5c5LMm2d17tw5m266adPzunXrls022yyPPvpokuTf//53Xnvttey///7N5lobbLBBevTokb/85S+LDG1LpVJ23HHHXHPNNTnppJNSX1+fO++8MyuuuGLWX3/9JPNC2l/96leZNGlStthii2y22Waf+FNSt956a2699dZm99XV1WXrrbfOj370o2b3r7rqqs2Wl/igxx9/PJtttllTYJvMC8Xnn+8rrrgiyy23XNZcc81m52SLLbbImWeemRkzZuQzn/nMJ+oDYFE6RGg7derU7LHHHvnJT36SoUOHLtZz7rnnnlxwwQV55ZVXstxyy2X//ffPbrvt1sqVAp9Wz549071790ycOPFD93n33Xcze/bs9OzZs2ld2D59+iy0X58+ffLWW281u2/BYHH+pK5SqSSZdxXEgn+tn2+55ZbL5MmTl7yZ/3fMlqpvUTbaaKP069cvd911V9Zdd93ceeedGTJkSNOVytttt10aGxvzi1/8IhdeeGHOO++89O/fP0ccccRHfmnYoiy33HK5+OKLm27X19enb9++i5y89u7d+yOD4enTp3/kxwOnT5+eJB9a46RJkxazagCA6urVq1e6devWtP7/fP369cuNN97YdPt//ud/8s9//rPZPh+cQ86cOTMnn3xybrvttjQ0NGSFFVbI4MGDU1dX12xO27Nnz4UCzOWWW65pe/5c66STTspJJ520UM2vv/76h/az884756KLLsoDDzyQzTffPL/97W+bXYRw/PHHp2/fvrn99tubjj148OCccMIJH/uFvh+0xRZbNAW+pVIpXbt2Tf/+/ZuWF1vQoubbC1qc+ecbb7yxyIsUknlLmQltgZbU7kPbxx9/PKNHj87LL7+82M95+OGHM3r06Jx77rnZdNNNM27cuOy7775ZffXVs84667RitUBL2GSTTTJu3LjMmjWr2V/C57v55ptzyimn5Be/+EXTxGny5MkLLSHwxhtvNFvn6uP06tUr//nPfxa6f/6k9pNoyfoWpVQqZcSIEbntttty8MEH54EHHmi2DEOS7LDDDtlhhx3y1ltv5c9//nMuv/zyHHXUURkyZEg++9nPLvZr1dfXN33p2Ke19NJL55VXXlno/ieeeCI9evTIMssskyQZO3ZsunfvvtB+n/vc51qkDgCAtrDlllvmvvvuy9tvv50ePXokWXhu1bNnz489zimnnJJ77rkn5557bjbeeON069YtSZqtt9qrV69MmzYtc+fObbbUwoJz2vlzraOPPjobbrjhQq/zUeHkyiuvnEGDBuU3v/lNOnfunGnTpmXHHXdsery+vj4HHnhgDjzwwEycODH/+7//m4suuihHHHFE06eqFlfPnj1bdP45derUhe6///77s8Yaa2TppZfOKqus0my5iAUt7vJtAIvrwz8b0A7ccsstOfLII3P44Ycv9NiDDz6Y3XbbLUOGDMn222+f22+/vemxq666Kv/1X/+VzTbbLKVSKRtttFFuuummj/yoLlAce++9d6ZPn55zzjlnocemTJmSMWPGNE0W11133dTX1+eOO+5ott9jjz2WiRMnZr311lvs191oo43yyiuv5Jlnnmm6b+rUqXnyySc/8nkf9TGslqzvw+y0006ZNGlSLrjggpRKpWZf1HbYYYfle9/7XpJ5E9WvfvWrOeiggzJ37tyPvIKitQ0ZMiTjx4/PP/7xj6b7Zs+ene9///u54YYbssEGGySZt8bx2muv3fRv+vTpOffccz9VkA4A0Nb233//zJ07N8cdd1xmz5690OMzZ87M+PHjP/Y4jz/+eIYOHZqtttqqKbD929/+lqlTpzYtw/ClL30pDQ0N+f3vf9/0vNmzZ+cvf/lL0+0vfOEL6d27d1555ZVmc62+ffvm7LPPzt///vePrGPHHXfMAw88kDvvvDODBg1qWq935syZ2WabbXLllVcmmfeH9pEjR2b77bfPa6+99rH9taYhQ4bkT3/6U7Pz/49//CP77bdfnnnmmWy44YZ59dVX07t372bn5KGHHsqYMWOaBeAALaFdX2m7ySabZMSIEamrq2sW3D733HM58MAD89Of/jRbbrllnnrqqRx00EHp1atXvvzlL+fpp5/O0KFDs99+++Wpp55K37598/3vf3+h9YCAYho0aFAOPfTQnHvuuXnhhReyyy67pFevXnn++edz5ZVX5p133slll12WUqmUnj17Zr/99suFF16Yzp07Z8stt8wrr7yS8847LwMGDFiib6jdaaedcvXVV+d73/teDj/88PTo0SMXX3zxh65DNt8yyyyTJ554Io8++miGDBnS7LGWrO/DDBgwIGuuuWZ+8YtfZOutt87SSy/d9NhGG22UE088MWeccUY23XTTvPnmm03fLjx/PdmXX345U6dO/VRr9y6pXXfdNddcc00OPPDAHHrooVl22WVz3XXXZebMmdlzzz2z0korZccdd8wPf/jDTJgwIWuttVZefPHFnHPOOVlhhRUW+UUeAABFtdpqq+Xss8/OMccck5133jlf//rXM3DgwDQ0NOSJJ57IjTfemMmTJ2efffb5yOOss846+c1vfpNf/vKXWXXVVfPcc8/l4osvTqlUynvvvZdkXmi7ySab5Ac/+EGmTJmS/v375+qrr87UqVOblgfo1KlTDj/88Jxwwgnp1KlTtthii7z55pu56KKLMmnSpA9dImC+7bffPqeddlruuuuuHH/88U33d+nSJWuuuWbT3HfgwIF58cUXc8stt2SbbbZp2u/vf/976uvrM2DAgE96SpfYQQcdlD322CP77rtv9tprr8yePTvnnXde1lxzzWy66aZpaGjItddem1GjRuWAAw5Iv3798uCDD+byyy/Pt7/97XTu3LnNagVqQ7sObRdcc2dBv/rVr7Lllls2Ldq+3nrr5etf/3quu+66fPnLX86MGTNyxRVX5IILLsjaa6+d++67L4cffniuvfbapm+BBIrtwAMPzBe/+MVcd911Oe200zJ9+vT07ds3m266aQ444IBmH4///ve/nz59+uTaa6/Nr3/96/Ts2TPbbrttDjvssGZrxH6c+vr6jB07NqeeempOOeWUlEqlfP3rX8+KK66YKVOmfOjzDjjggFx00UXZd999c/fddy/0eEvV91F22mmnPPvss80+mpYk3/jGNzJnzpz86le/yi9+8Yt06dIlX/rSl3LUUUc1TTwvuuii3HLLLc2uem1tPXr0yLXXXpszzzwzp5xyShoaGrLuuuvmmmuuafpUxGmnnZZLL700v/rVr/Laa6+ld+/e2W677XLYYYe50gEAaHe22mqr3H777fnlL3+ZG2+8MRMmTEilUsmKK66Y7bbbLt/4xjc+9g/To0ePzpw5c3Luuedm9uzZWWGFFXLggQfmX//6V+67776mJREuvPDCnHXWWTn//PMza9asbLfddvn617+eP/zhD03H2n333dO9e/eMGTMm119/fbp165b11lsvZ5111scu4dWzZ89sttlmuf/++7Pddts1e+zHP/5xzj333Fx55ZV544030rt37+y222459NBDm/b53ve+l/79++eaa65Z8hP5CX3xi1/MNddck7PPPjuHH354unfvns022yxHHnlk6uvrU19fn+uuuy5nn312fvrTn+att95q+i6Ivffeu83qBGpHqfJR32DTjgwcODBXX311hg4dmn333TcPP/xws7Uu586dm5VWWim33XZbBg8enP/6r/9qdnXufvvtlwEDBuToo4+uRvkAAAAAAEna+ZW2H6Zv377ZZZdd8uMf/7jpvtdff73p2zJXXXXVhdYJmjt37kd+AzsAAAAAQFto119E9mF222233Hnnnfnzn/+cxsbGvPTSS/n2t7/dtNj5N7/5zfzyl7/Mgw8+mMbGxtxzzz0ZN25cdthhhypXDgAAAADUug55pe26666bn/3sZ/nZz36WQw89NF27ds0OO+yQ//7v/06SfO1rX0u5XM5pp52WV155Jf37988555zzsYupAwAAAAC0tg6zpi0AAAAAQEfQIZdHAAAAAABor4S2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIHUVbuAT2rKlLdSq1+hViolvXsvXdPnAOOA9xkLJMYB8xgH75+DImjL96HW3vta6levHZNeO65a6levHZNe2+51P067DW0rlXT4wfNxnAMS44D3GQskxgHzGAfFUI33odbe+1rqV68dk147rlrqV68dk16rz/IIAAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKpK7aBQAAAAAAtJWJEyfkqqsuT319XUaOHJV+/fpXu6SFCG0BAAAAgJoxduwVefrpJ5MkDQ2NGT36hOoWtAiWRwAAAAAAasaECeMXuV0kQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUSFVD27lz52bPPffM6NGjq1kGAAAAAEBhVDW0vfDCC/PYY49VswQAAAAAgEKpWmj70EMP5d57781XvvKVapUAAAAAAFA4ddV40SlTpuT444/PRRddlKuuuuoTHaNUatma2pP5vdfyOcA44H3GAolxwDzGQbF6b8taau29r6V+9dox6bXjqqV+9dox1UqvH+yvGvO2j9PmoW1jY2OOOuqojBo1KmusscYnPk7v3ku3YFXtk3NAYhzwPmOBxDhgHuOgGKrxPtTae19L/eq1Y9Jrx1VL/eq1Y+rovZbL5WbbffoUr982D20vvfTS1NfXZ8899/xUx5ky5a1UKi1UVDtTKs37j6eWzwHGAe8zFkiMA+YxDt4/B0XQlu9Drb33tdSvXjsmvXZctdSvXjumWum1sbGx2fbkyW+12Wsv7ny1zUPb2267La+//nqGDBmSJJk5c2aS5Pe///0SfSlZpZIOPXgWh3NAYhzwPmOBxDhgHuOgGKrxPtTae19L/eq1Y9Jrx1VL/eq1Y+rovX6wtyL22uah7W9/+9tmt0ePHp0kOf3009u6FAAAAACAwil//C4AAAAAALSVNr/S9oNcYQsAAAAA8D5X2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgddUuAAAAAABgUcrlUsrlUoses1Ra8Hil1NW1znWtjY2VNDZWPtFzhbYAAAAAQOGUy6X06tU15XKnFj9u89fo3qLHn6+xcW6mTXvvEwW3QlsAAAAAoHDmXWXbKU/968S8/d5LLXbcWbMnN9v+yzN7tdix5+vRdZWsO+CklMsloS0AAAAA0LG8/d5LefPdf7bY8RorXTL/q74aK3Na9NgtxReRAQAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECqEto+9NBD2X333bPeeutl2LBhOfnkkzNz5sxqlAIAAAAAUChtHtpOnTo1+++/f775zW/mscceyy233JJHHnkkl112WVuXAgAAAABQOHVt/YLLLrtsHnzwwfTo0SOVSiXTp0/PrFmzsuyyy7Z1KQAAAAAAhdPmoW2S9OjRI0my2WabZdKkSRkyZEh23XXXapQCAAAAAFAoVQlt57v33nszY8aMHHnkkTnkkEMyZsyYxX5uqdSKhRXc/N5r+RxgHPA+Y4HEOGAe46BYvbdlLbX23tdSv3rtmPTacdVSv3rtmGqp17a04Plc3HNbqlQqldYpZ/E9/fTT2X333fPII4/kM5/5TLXLAQAAAAAK4i/P7JU33/1nix3vsjO75M3p877qa5mejdnv6Jktduz5lum2eoatPfYTP7/Nr7T961//muOOOy6333576uvrkySzZ89O586d07Vr18U+zpQpb6X6cXN1lEpJ795L1/Q5wDjgfcYCiXHAPMbB++egCNryfai1976W+tVrx6TXjquW+tVrx1S0Xjt1KqdXr+7VLuNTmTbtncyd29h0e3Hnq20e2g4cODAzZ87M2WefnSOOOCJvvPFGzjjjjOy2225NIe7iqFRSiMFTTc4BiXHA+4wFEuOAeYyDYqjG+1Br730t9avXjkmvHVct9avXjqmWem0Ln+Rcllu+jI/WvXv3jBkzJs8//3yGDRuWPffcMxtvvHGOO+64ti4FAAAAAKBwqvJFZAMGDMiVV15ZjZcGAAAAACi0Nr/SFgAAAACADye0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAAGrGsstXmrZ7L7BdJHXVLgAAAAAAoK0M33527qvUJ0m22H52latZNKEtAAAAAFAzll2ukt1Gzap2GR/J8ggAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABfKpQtupU6e2VB0AAAAAAOQThLYNDQ0555xzsv7662f48OEZP358vva1r+X1119vjfoAAKBq/v73v+fee+/N7NmzM2XKlGqXAwBAjVji0PaCCy7Iww8/nPPOOy+dO3dO796907dv35xyyimtUR8AALS5KVOm5Bvf+Ea+/vWv55hjjsn48eOz1VZb5Yknnqh2aQAA1IAlDm3vuOOOnH/++dlkk01SKpXSrVu3nHbaaXn44Ydboz4AAGhzp556alZfffU8+uijqaury6qrrpr99tsvZ555ZrVLAwCgBixxaPvuu+9m2WWXTZJUKpUkSZcuXVIu+04zAAA6hocffjjHHntsunbtmlKplCTZZ5998q9//avKlQEAUAuWOGkdNGhQLrzwwiRpmsBec801WXvttVu2MgAAqJLOnTtn5syZSd6/UOGdd95J9+7dq1kWAAA1YolD2+OPPz533HFHNt1007zzzjvZbrvtcvXVV2f06NGtUR8AALS54cOH56ijjspLL72UUqmUKVOm5KSTTspmm21W7dIAAKgBdUv6hBVXXDF33XVX/vjHP2bChAnp27dvNt988/To0aM16gMAgDZ3xBFH5Nhjj822226bJNlkk02y2Wab5cc//nGVKwMAoBYscWg7e/bsXHLJJdltt93y1a9+NWPHjs2YMWNyyCGHWNcWAIAOoXv37jn//PMzderUvPLKK/nsZz+bz372s9UuCwCAGrHEKetpp52WBx54IJ06dUqSrLnmmvnzn/+cs846q8WLAwCAapg4cWK+8Y1v5NVXX80666yTq666Kt/85jfzxhtvVLs0AABqwBKHtvfee2+uuOKKfO5zn0uSDBkyJJdcckluv/32Fi8OAACq4aSTTsoXvvCFrLzyykmSfffdNwMGDMjJJ59c5coAAKgFS7w8wqxZs9KtW7dm9/Xo0SMNDQ0tVhQAAFTTE088kb/85S/p3LlzkmTZZZfND37wg2y66aZVrgwAgFqwxFfaDhkyJKeddlpmz56dZF6Ie+aZZ2a99dZr8eIAAKAa6urqMnXq1Gb3zZgxI126dKlSRQAA1JIlvtL2+OOPzz777JP11lsvvXr1yrRp0/L5z38+l1xySWvUBwAAbW7bbbfNIYccksMOOyz9+vXLq6++mvPPPz/bbLNNtUsDAKAGLHFou+KKK+buu+/O448/nsmTJ6dv375ZZ511Ule3xIcCAIBCOuqoo3LSSSdl//33z+zZs1NfX5+dd945hx12WLVLAwCgBix20vraa6+lb9++mThxYpJkhRVWyAorrJAkef3115Ok6cvJAACgPevatWtOP/30nHzyyZkxY0Z69+6dUqlU7bIAAKgRix3abrfddvnrX/+a4cOHLzRhrVQqKZVK+b//+78WLxAAANrKnXfemR122CG33nrrh+6z8847t1k9AABtZeLECbnqqstTX1+XkSNHpV+//tUuqaYtdmh71113JUluv/32dO/evdUKAgCAarnkkkuyww475Pzzz1/k46VSSWgLAHRIY8dekaeffjJJ0tDQmNGjT6huQTVusUPbfv36JUkOOOCA3H777enRo0erFQUAANVw5513JknOPPPMDB48OJ06dapyRQAAbWPChPGL3KY6yp/kSe+9915L1wEAAIVx8MEHZ/bs2dUuAwCAGrXYV9rON3To0Oy+++7ZdNNNs/zyyzd77Hvf+16LFQYAANWy4oor5plnnsmGG25Y7VIAAKhBSxzavvLKK1lxxRXz4osv5sUXX2y637fpAgDQUXzmM5/JqFGjssIKK2T55ZdvNte9+uqrq1gZAAC1YIlC2wsvvDA9evTIJptskpEjR7ZWTQAAUFWDBw/O4MGDM3v27MyYMSO9evVKXd0SX+8AAACfyGKvaXvmmWfmF7/4RTp37pzzzz8/l112WWvWBQAAVfOd73wnL7/8cq666qpcf/31GTt2bKZMmZL99tuv2qUBAFADFju0vfPOOzN27Nicf/75Of/883PHHXe0Zl0AAFA1J598cv7zn//k4osvzt13351zzz03zzzzTM4666xqlwYAQA1Y7M94vfXWW1lttdWSJOuvv34mTZrUakUBAEA13Xffffntb3+b3r17J0m+8IUvZI011shOO+2U4447rsrVAQDQ0S32lbbl8vu7Ws8LAICObKmllkqnTp2a3de9e/d07dq1ShUBAFBLFju0rVQqrVkHAAAUxgEHHJBDDjkkzz33XN5777289NJLOfbYY7Pddttl4sSJTf8AAKA1LPYlsw0NDbn11lubbs+ZM6fZ7STZeeedW6gsAAConp/85CdJ5s1vS6VSswsYrrzyylQqlZRKpfzf//1ftUoEAKADW+zQtk+fPjn//PObbvfq1avZ7VKpJLQFAKBD+MMf/lDtEgAAqGGLHdred999rVkHAAAURv/+/atdAgAANWyx17QFAAAAAKD1CW0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKJC6ahcAAAAAACy+crmUcrnUoscslRY8Xil1da1zrWdjYyWNjZVWOXZHIrQFAAAAgHaiXC6lV6+uKZc7tfhxm79G9xY9/nyNjXMzbdp7gtuPIbQFAAAAgHZi3lW2nfKbf16Qqe9OaLHjvjN7WrPt654c3WLHnm/Zbv3z1dW/n3K5JLT9GEJbAAAAAGhnpr47IW+882KLHW9upaHZdksemyXni8gAAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFUpXQ9rnnnsuoUaOy4YYbZtiwYTn66KMzderUapQCAAAAAFAobR7azpw5M/vss08GDx6cP//5z7nzzjszffr0HHfccW1dCgAAAABA4bR5aDtx4sSsscYaOfjgg1NfX59evXpljz32yKOPPtrWpQAAAAAAFE5dW7/gF77whYwZM6bZfffcc0/WXHPNJTpOqdSSVbUv83uv5XOAccD7jAUS44B5jINi9d6WtdTae19L/eq1Y9Jrx1VL/eqVT6uWzueCvS5u320e2i6oUqnk3HPPzf/+7//m2muvXaLn9u69dCtV1X44ByTGAe8zFkiMA+YxDoqhGu9Drb33tdSvXjsmvXZctdSvXjuOHn065b3pjUmSpZfr1Kqv1atX91Y9fpF80l6rFtq+/fbbOfbYY/Pss8/m2muvzcCBA5fo+VOmvJVKpZWKK7hSad4Pilo+BxgHvM9YIDEOmMc4eP8cFEFbvg+19t7XUr967Zj02nHVUr96rZ5OncqtEnqutV33/O2ud5Ika361dUPVadPeydy5jR+7X2v12pY+2OvizlerEtq+/PLL2XffffO5z30uN954Y5ZddtklPkalkkL8h1JNzgGJccD7jAUS44B5jINiqMb7UGvvfS31q9eOSa8dVy31q9eOo0efumy012fa7PU68rn8oE/Sa5t/EdmMGTOy1157Zb311ssVV1zxiQJbAAAAAICOqs2vtL355pszceLE/OY3v8lvf/vbZo898cQTbV0OAAAAAEChtHloO2rUqIwaNaqtXxYAAAAAoF1o8+URAAAAAAD4cEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKJC6ahcAAAAAAEU0ceKEXHXV5amvr8vIkaPSr1//apdEjRDaAgAAAMAijB17RZ5++skkSUNDY0aPPqG6BVEzLI8AAAAAAIswYcL4RW5DaxPaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgdRVuwAAAAAA+DTK5VLK5VKLH7dUWvCYpdTVtc71j42NlTQ2Vlrl2LRPQlsAAAAA2q1yuZSevbqmU7lTqxx7we1evbq3+GskydzGuZk+7T3BLU2EtgAAAAC0W+VyKZ3KnTL2b1fntXcnteixZ8ya0Wz7jEd+2qLHT5K+3T6bvdb6r5TLJaEtTYS2AAAAALR7r707Ka+89UqLHnNuZW6z7ZY+PnwYX0QGAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAALAI9b2Xatpeqs9SH7EntCyhLQAAAAAsQt+t+6X753uk++d75LNb9at2OdSQumoXAAAAAABFtFTvpbLyN1epdhnUIFfaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgdRVuwAAAAAA2o+JEyfkqqsuT319XUaOHJV+/fpXuyTocIS2AAAAACy2sWOvyNNPP5kkaWhozOjRJ1S3IOiALI8AAAAAwGKbMGH8IreBliO0BQAAAAAoEMsjAAAAAHRA5XIp5XKpxY9bKi14zFLq6lr+msDGxkoaGystflxoL4S2AAAAAB1MuVxKz17d0qnc8oHqgkFwuVxKr17dW/w15jY2Zvq0dwW31CyhLQAAAEAHUy6X0qlczukPXZ+X33y9RY895b03m20fdM8FLXr8lZZZPqO/tEfK5ZLQlpoltAUAAADooF5+8/X8a9rEFj3m3GXqkzffS5I0fKa+xY8PVPmLyKZOnZqtt94648aNq2YZAAAAACym8pdWSvovk/RfJuWNVqp2OdAhVe1K28cffzyjR4/Oyy+/XK0SAAAAAFhCpZ5d02m7NapdBnRoVbnS9pZbbsmRRx6Zww8/vBovDwAAAABQWFW50naTTTbJiBEjUldX94mD21Lp4/fpqOb3XsvnAOOA9xkLJMYB8xgHxeq9LWuptfe+lvrVa8ek146r1vptC7V2Lmup31rtdXH7rkpou9xyy33qY/TuvXQLVNK+OQckxgHvMxZIjAPmMQ6KoRrvQ62997XUr147Jr12XLXWb2vp1at7tUtoU7XUr14/XtXWtP20pkx5K5VKtauojlJp3i+AWj4HGAe8z1ggMQ6Yxzh4/xwUQVu+D7X23tdSv3rtmPTacRWp306dyu0+GJs27Z3Mndv4sft1hF6T2uq3lntd3Plquw1tK5VU/QdgtTkHJMYB7zMWSIwD5jEOiqEa70Otvfe11K9eOya9dly11m9rqrXzWEv96vWjVeWLyAAAAAAAWDShLQAAAABAgVR9eYR//OMf1S4BAAAAAKAwXGkLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAokLpqFwAAAADQ3k2cOCFXXXV56uvrMnLkqPTr17/aJQHtmNAWAAAA4FMaO/aKPP30k0mShobGjB59QnULAto1yyMAAAAAfEoTJoxf5DbAJ+FKWwAAAKBmlMullMulFj9uqbTgMUupq2v56+QaGytpbKy0+HGB4hHaAgAAADWhXC6lZ69u6VRu+UB1wSC4XC6lV6/uLf4acxsbM33au4JbqAFCWwAAAKAmlMuldCqXc/zvbsyLU99o0WNPq19wu5RvXX9xix7/88sul1O23i3lckloCzVAaAsAAADUlBenvpHnJr/aoscsr/G5dJs1K0kyY41+mdTCxwdqi9AWAAAA4FNqXLpb3t5kzWqXAXQQLb+ICwAAAAAAn5jQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACqat2AQAAfHoTJ07IVVddnvr6uowcOSr9+vWvdkkAAMAnJLQFAOgAxo69Ik8//WSSpKGhMaNHn1DdggAAgE/M8ggAAB3AhAnjF7kNAAC0P660BQBqWrlcSrlcqnYZn1qptGAPpdTVdYy/zTc2VtLYWKl2GQAA0KaEtgBAzSqXS+nVq2vK5U7VLuVTWzB4ntdX9ypW03IaG+dm2rT3BLcAANQUoS0AULPmXWXbKb/55wWZ+u6Eapfzqbwze1qz7eueHF3FalrGst3656urfz/lckloCwBATRHaAgA1b+q7E/LGOy9Wu4xPpWvvSt7+f7lttz6Vdt8PAADUso6x2BkAQI1ba7vuWW7Vzllu1c5Z86sdY2kEAACoVa60BQDoAHr0qctGe32m2mUAAAAtQGgL0I5NnDghV111eerr6zJy5Kj069e/2iUBAEASc1WAT0NoC9SkeV8+VPr4HQvu6quvyNNPP5kkmTu3kuOPP7G6BbWQxsaKLx0CAGhDrTE/bqu5qrkj0BEJbYGaUy6X0rNnt3Tq1P6X9X711fe/7X7ixFfSq1fHWMdy7tzGTJ/+rsn3YnIVCwDwabTW/Lit5qrmjkBHJLQFak65XEqnTuUcd+tN+ffkydUu51OZvsDVENPKpXxjzKVVrKZlfKFPn5y689dSLpdMvBfT2LHvX8XS0NCY0aNPqG5BAEC70lrz47aYq5o7Ah2V0BaoWf+ePDnPvfZqtcv4VMor9U/3mTOTJNNW6p9X23k/ba2jLJMxceIrTdsTJrySurr2fxV54qOOANDWWnp+bK4K8MkJbQHascZu3fLWoLWrXUa7VC6X0rNXt3Qqt/+Ac8HguVwudZxlMhobM32ajzoCQHtlrgrwyQltAahJ5XIpncrlnP7Q9Xn5zderXc6n8na390PNt7snB91zQRWraRkrLbN8Rn9pDx91BAAAapLQFoCa9vKbr+df0yZWu4xPpTLks8nseR89fG/95dt9PwAAALVOaAsA7VypZ9d02m6NapcBAABAC2n/C/kBAAAAAHQgrrRtZyZOnJCrrro89fV1GTlyVPr161/tkgAAAACAFiS0bWfGjr0iTz/9ZJKkoaExo0efUN2CAAAAAIAWZXmEdmbChPGL3AYAAAAAOgahLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgvogMAAAAFqFcLqVcLrXa8Tt1ar3rqBobK2lsrLTa8QFoXUJbAAAA+IByuZSePbu1arDaq1f3Vjv23LmNmT79XcEtQDsltAUAAIAPKJdL6dSpnB/+4pa89PrkapezRFZZvk9O/tYuKZdLQluAdkpoC+3QxIkTctVVl6e+vi4jR45Kv379q10SAAB0SC+9Pjn/mPBatcsAoMYIbaEdGjv2ijz99JNJkoaGxowefUJ1CwIAAACgxbTe4jxAq5kwYfwitwEAAABo/4S2AAAAAAAFUjPLI5TLpZTLpWqX8amVSgv2UEpdXcfI3RsbKxbIBwAAAIDUSGhbLpfSs2e3dOrU/gPOBYPncrmUXr26V7GaljN3bmOmT3+31YNb4X2xCe8BAAAAaii07dSpnLNOvT7jX36j2uV8KlOnvNVs+9ADLqxiNS1jxZWWy5HH7ZFyudSqgZ3wvvjaKrwHAKBYJk6ckKuuujz19XUZOXJU+vXrX+2SAKCqaiK0nW/8y2/khecnVruMT6UhDe9vNzS0+37a0vzw/sdX3JL/vDq52uV8KpNnvNVs+7s/ubyK1bSMlfv1yQnf3aXVw3sAAD651vrk2tVXX5Gnn34ySTJ3biXHH39ii79G4pNdALQfNRXaQpL859XJ+ef416pdxqfSuWFu5k+VGxrmtvt+AAAovtb85Nqrr05o2p448ZVW+ySZT3YB0F4IbQEAAPhYrfnJtTfnlJttt8YnyXyyC4D2RGgL7VClvntKDbOatgEA6HiKus5rq3xyrceKqXtvZpJkRo8VM8MnyQCocUJbaIca+gxI3RvPN20DANDxjB37/jqvDQ2NGT36hOoW1Jrqu6Wh/7rVrgIACkNoC+2RSS0AtEut9SVO87XGWqPzFeULnIp69WlrmDBh/CK3AYCOT2gLAABtYN6XOHVNp06dWu01WuvLm5Jk7ty5mT79vaoHt0W8+rS1wvhSacFjllJX1/KhfFHCeACgOaFtO1NK11Qyu2kbAID2Yd6XOHXKmUdfkZdfeLXa5SyRlVbtl6PP/G4hvsCpaFefzgvju7XKVc4LBsHlcqlVQvm5cxszffq7VX9fAYDmhLbtTOesnDn5T9M2AADty8svvJoX/q/6YSMtY14YX87pF9yclydMbtFjvz2ztMB2OQeNvqxFj79S/z4Z/f1dCxHGAwDNCW3bmXK6ZqmsUe0yAACABbw8YXL+9eJrLXrMSmnFpPOsJMl7pRVa/PgAQHEJbQEAgBZnnddPr1TXLZ0+s061ywAAqkBoCwAAtCjrvAIAfDpCWwAAoEXNX+f1rFOvz/iX32jRY0+d8laz7UMPuLBFj7/iSsvlyOP2sM4rAFBVQlsAAKBVjH/5jbzw/MQWPWZDGt7fbmho8eMDABRBy39eCQAAoJWU0nWR2wAAHYnQFgAAaDc6Z+WU85mU85l0zsrVLgcAoFVYHgEAAGg3yumapbJGtcsAAGhVrrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAAqkKqHtlClTctBBB2XIkCEZOnRoTjnllDQ0NFSjFAAAAACAQqlKaHvYYYelW7du+dOf/pQbb7wxDz30UK666qpqlAIAAAAAUChtHtr+5z//ySOPPJKjjjoqXbt2zYorrpiDDjoo1113XVuXAgAAAABQOG0e2j7//PPp2bNnPvvZzzbdt+qqq2bixIl5880327ocAAAAAIBCqWvrF3znnXfStWvXZvfNv/3uu+9mmWWWWazjlMtJpbJkr73qgH5ZqkvnJXsSrW6FFfo0bZfb4M8Iq63UN13qjYOiWbFv76btthgHSfL/9e2brp2NhaJZpXfbjoUBvT6XLp2Mg6JZYZnlmrbbYhws32OV1JWXav0XYoks261f0/bijoNSqZWK+QQ+bL464IsrpUvX+rYv6FNY4fN9m7aX5L/J9jj//qRz0wGr9E2XpdpZr/0+2e/c9jqf/qTzzYGfa3/9rtznk/XaHufHn3TuuMZy/dK1rn31unKvT/jzqR3Odz/pXHDFHiukvty+fscmyWe7Ld+0vST9tsc57CeZ3yXJMt0GplO5SytU1Hq6d1m5aXvBXhd3vlqqVJY0+vx0fve73+UHP/hBxo0b13TfP/7xj+y444557LHHsvTSS7dlOQAAAAAAhdLmyyOsttpqmT59eiZPntx03wsvvJC+ffsKbAEAAACAmtfmoe0qq6yS9ddfP6eeemrefvvtjB8/PhdddFF22223ti4FAAAAAKBw2nx5hCSZPHlyfvzjH2fcuHEpl8vZeeedc+SRR6ZTp05tXQoAAAAAQKFUJbQFAAAAAGDR2nx5BAAAAAAAPpzQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoW3BTZ06NVtvvXXGjRv3ofvcf//9GTFiRAYNGpSvfvWr+d///d82rJDW9Nxzz2XUqFHZcMMNM2zYsBx99NGZOnXqIvc1Djq2hx56KLvvvnvWW2+9DBs2LCeffHJmzpy5yH2NhY5t7ty52XPPPTN69OgP3ccY6NjuvvvufPGLX8zgwYOb/h111FGL3NdY6JhqYX5Ya3OgWvs9Xyu/y2rp5/X06dNz9NFHZ+jQodlggw1y0EEH5fXXX1/kvu2919tvv73Zezp48OCstdZaWWuttRa5f3vv99lnn83IkSMzZMiQbLLJJvnJT36S2bNnL3Lf9t7rCy+8kO9+97sZMmRINt9881x88cVpbGxc5L7ttddFzSGeeuqp7L777hk8eHCGDx+eX//61x95jMsvvzybbrppBg0alD333DP//ve/W7vsT+zD5kxPPPFE1l577Y99ftV7rVBYjz32WGWrrbaqrL766pWHH354kfu8+OKLlbXXXrvyu9/9rjJnzpzKXXfdVVlnnXUqr732WhtXS0t77733KsOGDaucd955lVmzZlWmTp1a2XfffSv777//QvsaBx3blClTKmuvvXblpptuqsydO7cyadKkyg477FA577zzFtrXWOj4zj333Moaa6xROeaYYxb5uDHQ8Z1++umV0aNHf+x+xkLHVAvzw1qbA9Xi7/la+V1WSz+vv/3tb1cOPvjgyowZMypvvfVW5Xvf+15lv/32W2i/jtDrB7322muVYcOGVW699daFHmvv/c6dO7cybNiwytixYytz586tvPrqq5VtttmmcuGFFy60b3vv9e23365svvnmleOPP77yzjvvVF555ZXKDjvsULngggsW2re99rqoOcT06dMrG264YeXaa6+tzJkzp/Lggw9WBg8eXHnqqacWeYybb7658uUvf7nyz3/+szJz5szKaaedVtl+++0rjY2NbdnKYllUv42NjZVf//rXlUGDBlVWX331j3x+EXp1pW1B3XLLLTnyyCNz+OGHf+x+Q4YMyVZbbZW6urpst9122WCDDXL99de3UaW0lokTJ2aNNdbIwQcfnPr6+vTq1St77LFHHn300YX2NQ46tmWXXTYPPvhgdt1115RKpUyfPj2zZs3Ksssuu9C+xkLH9tBDD+Xee+/NV77ylQ/dxxjo+J555pkPvZpnQcZCx1Mr88NamwPV2u/5WvpdVis/r//2t7/lqaeeyumnn55lllkmPXr0yMknn5wjjzxyoX3be68fVKlUctRRR2XzzTfPTjvttNDj7b3fGTNm5I033khjY2MqlUqSpFwup2vXrgvt2957ffzxxzNlypSccMIJ6datW/r3758DDzwwv/zlL5t6n6899vphc4h77703PXv2zMiRI1NXV5cvfelLGTFiRK677rpFHueGG27It771ray22mpZaqmlcsQRR2TixIkf+emfaviwfo877rj8+te/ziGHHPKxxyhCr0Lbgtpkk03yu9/9Ltttt91H7vevf/0rq6++erP7BgwYkOeee641y6MNfOELX8iYMWPSqVOnpvvuueeerLnmmgvtaxx0fD169EiSbLbZZhkxYkSWW2657LrrrgvtZyx0XFOmTMnxxx+fs88+e5ET5fmMgY6tsbExzz77bP74xz9miy22yKabbpof/vCHmTFjxkL7GgsdT63MD2txDlQrv+dr6XdZLf28fvrppzNgwIDccMMN2XrrrbPJJpvkjDPOyHLLLbfQvu291w+67bbb8q9//etDl/po7/326tUr3/nOd3LGGWdk7bXXzmabbZZVVlkl3/nOdxbat7332tjYmM6dO6dz585N95VKpUyePDlvvvlms33bY68fNod4/vnnl6iXD/beuXPnrLLKKoXr/cP6PfTQQ3P99dfni1/84sceowi9Cm0LarnllktdXd3H7vfOO+8sNOHp0qVL3n333dYqjSqoVCo555xz8r//+785/vjjF3rcOKgd9957bx544IGUy+VF/nXQWOiYGhsbc9RRR2XUqFFZY401PnJfY6Bjmzp1ar74xS9mm222yd13351f/epXeemllxa5RqKx0PHU4vyw1uZAHfn3fK39Lquln9czZszIP/7xj7z00ku55ZZbcuutt2bSpEk55phjFtq3vfe6oMbGxlx88cU54IADmv7w8kHtvd/GxsZ06dIlP/zhD/Pkk0/mzjvvzAsvvJDzzz9/oX3be6/rrbdeunTpkrPPPjvvvfdeJkyYkCuuuCJJFlpjvD32+mFziCXtpb30/mH99u3bd7GPUYRehbbtXNeuXRf6ATJz5sx07969ShXR0t5+++0ccsghueOOO3Lttddm4MCBC+1jHNSOLl265LOf/WyOOuqo/OlPf1roag1joWO69NJLU19fnz333PNj9zUGOrY+ffrkuuuuy2677ZauXbvmc5/7XI466qg88MADefvtt5vtayzUro7y3tfiHKgj/56vtd9ltfTzur6+Pkly/PHHp0ePHunTp08OO+yw3H///XnnnXea7dvee13QuHHj8vrrr2e33Xb70H3ae7+/+93vcs899+Rb3/pW6uvrs9pqq+Xggw/OL3/5y4X2be+9LrPMMrn88svz1FNPZfPNN89hhx2WnXfeuemxBbX3Xhe0pL10pN4/ThF6Fdq2c6uvvnqef/75Zvf961//ymqrrValimhJL7/8cr72ta/l7bffzo033rjI/1lJjIOO7q9//Wu23XbbZt/SOnv27HTu3Hmhv/wZCx3TbbfdlkceeSRDhgzJkCFDcuedd+bOO+/MkCFDFtrXGOjYnnvuuZx11lnN1labPXt2yuVy0/80z2cs1K6O8N7X0hyoVn7P19rvslr6eT1gwIA0NjZmzpw5Tfc1NjYmyUJrgbb3Xhd0zz33ZOutt063bt0+dJ/23u+rr77a7GdTktTV1TVbQmC+9t7r7Nmz09DQkKuvvjrjxo3Lr3/965TL5QwYMKBD/Sz+oCXtZbXVVmu2/5w5c/LSSy8ttMRCR1CEXoW27dyOO+6YRx55JHfffXcaGhpy991355FHHlnkIui0LzNmzMhee+2V9dZbL1dcccUiv4xiPuOgYxs4cGBmzpyZs88+O7Nnz86ECRNyxhlnZLfddlto0m8sdEy//e1v89e//jWPPfZYHnvsseywww7ZYYcd8thjjy20rzHQsfXs2TPXXXddxowZk4aGhkycODE//elPs8suu/h5QJP2/t7X2hyoVn7P19rvslr6eb3xxhtnxRVXzHHHHZd33nknU6dOzTnnnJOtttpqoWUD2nuvC3r88cezwQYbfOQ+7b3fTTbZJG+88UYuueSSzJ07N+PHj8/FF1+cESNGLLRve+81Sb773e/mxhtvTKVSyd/+9rdccskl2WuvvRbaryP0Ot/WW2+dyZMn56qrrsqcOXPy8MMP54477sjXvva1Re7/ta99Lddee22ee+65zJo1K2effXb69OmzyD/AtXeF6LVC4a2++uqVhx9+uOn2oEGDKrfddlvT7QceeKCy4447VgYNGlTZfvvtK3/84x+rUSYt7Morr6ysvvrqlXXXXbcyaNCgZv8qFeOg1jz//POVUaNGVYYMGVLZYostKj/72c8qs2bNqlQqxkItOuaYYyrHHHNM021joLaMGzeusscee1QGDx5c2WijjSonn3xyZebMmZVKxVioJR15fliLc6Ba/D1fC7/Launn9WuvvVY57LDDKsOGDasMGTKkcvTRR1dmzJhRqVQ6Xq/zDRo0aJG1d7R+//KXv1R23333yvrrr1/ZfPPNO/TPp0ceeaSyyy67VAYNGlTZcsstK1dffXXTYx2p1w/OIZ5++ummn1Vbbrll5aabbmp67NFHH60MGjSoMmHChEqlUqk0NjZWrrjiisrw4cMrgwYNquy5556Vf//7323ew5L4YL+VSqXy8MMPV1ZfffVm9xWx11Kl8oHPKwAAAAAAUDWWRwAAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2ADXgpZdeqnYJAAAAwGIS2gK0khdffDHHHHNMNt100wwePDhbbbVVzjrrrLzzzjut8nrDhw/PzTffnCTZZ599cskllyRJ7rvvvnz3u99t2m/BxwAA4ONMnDgxJ554YoYPH55BgwZlww03zHe/+9385S9/abHXuPnmmzN8+PAWOx5Aeye0BWgFf/3rX7PLLrukf//+ufXWW/PEE0/k8ssvz1NPPZW99947c+fObdXXHzNmTA444IAkyfTp01OpVBb5GAAAfJR//vOf2XHHHTN79uxcfvnlefzxx3Pvvfdmxx13zMEHH5z777+/2iUCdEhCW4BWcMIJJ2TnnXfOIYcckmWXXTZJ8vnPfz7nnHNOevfunfHjx2fChAk57LDD8qUvfSnDhg3LEUcckddffz1JMm7cuAwfPjwXX3xxvvzlL2fDDTfM97///bz99ttJkkqlkksuuSSbbLJJhgwZkjPOOKNZELznnnvmggsuyLhx43LiiSdm4sSJGTx4cCZNmtT0WJI0Njbmsssuy1ZbbZX1118/u+22W/70pz81HWf48OG59NJLs/POO2fw4MHZeeed8/DDD7fVaQQAoMpOOOGEDBs2LKeddlpWXXXVdOrUKT179sxOO+2UE088MXPmzMnNN9+cXXfdNXvvvXeGDBmSO+64I5MmTcphhx2W4cOHZ911182WW26ZG2+8sem4L7zwQvbcc88MHjw4I0aMyN///vdmr/vss89mzz33zAYbbJCvfOUrueqqq5pdiADQ0QltAVrYyy+/nOeffz477LDDQo/16dMnF110Ufr375+99947nTp1yr333pvf/OY3SZIDDjggDQ0NSZIJEyZk0qRJ+d3vfpdf//rXeeKJJ/KLX/wiSXLTTTdl7NixufTSS/Pggw+mc+fOee211xZ6vaFDh+akk07K5z73uTzxxBP57Gc/2+zx//mf/8l1112X8847L+PGjcvee++dgw46KE8//XTTPjfddFPOO++8PPjgg1ljjTXyox/9qKVOFQAABfbaa6/liSeeyDe+8Y1FPr7LLrtkq622SjIvZB0xYkQefPDBbL311vnBD36Qzp0756677spf//rXfPvb387JJ5+cd955J3PmzMn++++f1VZbLQ8//HB+9rOf5fe//33TcSdNmpS99tor2267bR588MFcdNFF+cUvfpHrr7++TfoGKAKhLUALmzp1apJ5Ae2HeeyxxzJ+/PicdNJJWXrppbPMMsvkpJNOynPPPZe//e1vTfsdfPDB6dKlS1ZeeeUMHTo0L774YpLktttuy9e//vWsueaaqa+vz6GHHppevXotca033XRT9ttvv6y55pqpq6vLdtttl+HDhze7CmK33XbLyiuvnK5du2bEiBG+1AwAoEbMvyigb9++Tfc99NBDGTJkSIYMGZLBgwdnm222SZJ07tw5O+20U+rr69OlS5f85Cc/yYknnpjOnTtn4sSJ6d69e2bOnJkZM2bkiSeeyKuvvpqjjz46Sy21VFZbbbWMGjWq6TVuv/32rLrqqhk5cmQ6d+6cAQMG5Lvf/W6uu+66tj0BAFVUV+0CADqa5ZZbLknyxhtvZJVVVlno8cmTJ2fKlCnp1atXevTo0XR/jx490rNnz0yYMKEp8J1/rGTeRHj+R8Jef/319OvXr+mxTp065XOf+9wS1zp58uSsuOKKze5bYYUV8txzzzXdXjB8rqur87E0AIAaMX8uOmnSpHz+859PknzpS1/KY489lmTel4ddeOGFTfuWy+9fFzZ+/PiceeaZeemll7LKKqtk5ZVXTjJvea5JkyalV69e6dKlS9P+K620UtP2hAkT8uyzz2bIkCFN9zU2NqZTp06t1ClA8bjSFqCF9e/fP6uvvnruvvvuhR6bMmVKtthii0yYMCHTpk1rWqM2Sd56661MmzatWVD7Yfr27Zvx48c33a5UKk3r4S5prQseJ5k3wV5++eWX+FgAAHQs/fv3z9prr51f//rXH7tvqVRq2p6//MFOO+2UcePG5YYbbshee+3V9Hi/fv0yderUvPPOO033LbjUV9++fTN06NA89thjTf/+8Ic/5JZbbmmhzgCKT2gL0Ap++MMf5qabbsqFF16YadOmpVKp5P/+7/9ywAEHZM0118zee++dAQMG5MQTT8xbb72Vt956Kz/60Y+y0korZb311vvY4+++++654YYb8sQTT2TOnDm5+OKL88Ybbyxy36WWWirvvfde01q5HzzOZZddlmeffTZz587Nb37zm9x3333ZZZddPvU5AACg/Tv11FPzpz/9KT/84Q/z4osvplKp5O23386tt96aCy64YJF/7J8zZ05mzpyZLl26pFQqZeLEifnpT3/a9NjgwYPz+c9/Pj/5yU/y3nvv5T//+U+uvPLKpuePGDEiTz75ZG6//fY0NDTk9ddfzwEHHJDTTz+9zfoGqDahLUAr2HDDDXPttdfm73//e7bffvust956OeSQQ7LRRhtlzJgx6dy5cy699NI0NDRkm222yRZbbJE5c+bk5z//eerqPn7lmh122CGHHHJIDj/88Gy44YYZP358Bg4cuMh9N9hgg/Tu3TsbbLBB/vGPfzR7bNSoURk5cmQOP/zwDBkyJJdeeml+9rOfZcMNN2yR8wAAQPu2+uqr584770yXLl1ywAEHZP31189mm22WG264Ifvss0+uvvrqhZ7TrVu3nHrqqfmf//mfDB48OP/1X/+VYcOGpU+fPvnnP/+ZTp065bLLLsvrr7+ejTfeOPvss0+23HLLpuf3798/Y8aMyfXXX5+NN944O+20U77whS8IbYGaUqpYnBAAAAAAoDBcaQsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQP5/+1lQDJ6FW80AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAJOCAYAAADMCCWlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVyklEQVR4nO3deZid8/0//ueZTEY2mkiQNHYhfrUlhKioEJQitlJtU9WoXWv52IKWotZS68caKraW2reWtlraIkRt1Q9FqUhsWREimcz5/ZFvhpEgYWbOPXMej+vKdd3nnPvc5/U6523m7Tn3ed+lcrlcDgAAAAAAhVBT6QIAAAAAAPiQ0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaArSCcrlc6RIAAACANkJoC7RZTz/9dI444ohsuummWXvttbP55pvnJz/5ScaPH9+qdey+++7ZfffdG28PGzYso0aNarx90UUX5fLLL2+8ff7556d///6tWmNLGzVqVPr379/k3xprrJGNN944RxxxRF577bXPPEb//v1z/vnnt0K1AADF9OKLL+akk07KVlttlXXWWSfrrbdedtttt1x77bWZPXt2i772qFGjMmzYsBZ9jeY0bNiw+eafa621VrbccsucddZZ+eCDDz71+WPHjk3//v0zduzYVqoYYNHUVroAgM/j2muvzSmnnJLBgwfnsMMOy9JLL51XXnklo0ePzr333ptf/epXWWONNSpS2wUXXJBu3bo13j7nnHPyox/9qPH2rrvumq997WuVKK1FLbXUUrngggsab9fX1+ell17KmWeemccffzx33nlnOnXq9InPv/7669O7d+/WKBUAoHDuvvvuHH300Vl55ZUzcuTIrLTSSpk5c2buv//+nHrqqXnggQdy8cUXp1QqVbrUwhg6dGgOOOCAxtsffPBBxo4dmwsvvDATJkzIL3/5y0987hprrJHrr78+/fr1a41SARaZ0BZocx577LGcfPLJGTFiRI499tjG+wcPHpzNN988O++8c44++ujcfvvtFanvK1/5yqc+3rt373YZTtbV1WXAgAFN7hs0aFA6duyYo446Kn/605+y7bbbfuLzP/5cAIBq8eKLL+boo4/ORhttlPPPPz+1tR/+r/rQoUMzePDgHHTQQbnrrruy3XbbVbDSYllyySXnm0MOHjw4r7/+em6++eaMGjUqSy+99AKf261bN/NPoNAsjwC0OZdffnkWX3zx/M///M98jy255JIZNWpUvv71r+fdd99tvP/uu+/OzjvvnIEDB2bIkCE57rjjMn369MbHzz///Gy55Zb5y1/+kuHDh2fNNdfMVlttlVtuuaXJ8SdOnJgf/ehHWW+99TJkyJD86le/mq+Gjy6PMG8ZhAsuuKBxe0HLIzRXfR91xx13pH///nn22Web3H///fenf//+eeqpp5IkV199dbbeeuustdZa+drXvpaf/exnTd67L2qttdZKkkyYMCHJ3K/e7bHHHjn++OMzaNCg7LTTTqmvr59veYTJkyfnmGOOyUYbbZSBAwdmxIgReeyxxxofb2hoyKWXXpott9yy8f24+uqrm61uAIDWMnr06NTU1OTnP/95k8B2nq222io77rhjamo+/F/4/v3754ILLsg3v/nNrLfeernwwguTJI8++mh++MMfZv3118+aa66ZYcOG5fzzz09DQ0Pjc6dPn56jjz46gwcPzvrrr59f/OIXTR6f549//GN23nnnrLXWWhkyZEh+/vOf57333vvEPn76059mww03TH19fZP7f/GLX2SDDTbIrFmz8sEHH+SEE07IJptskjXXXDNbb711rrjiikV+zz7NmmuumXK53LhE17Bhw3LKKadkjz32yLrrrpvjjjtugcsj/POf/8xee+2V9dZbLxtuuGEOPfTQJst8TZs2Lccdd1w22mijrLXWWvnWt76Vhx56qFlrB5jHmbZAm1Iul/O3v/0tw4YNS+fOnRe4z9Zbb93k9oUXXphzzz033/3ud3PooYdm/PjxOffcc/PEE0/khhtuaPzK/ltvvZUTTzwx+++/f/r27ZvLL788o0aNytprr51VVlkl7733Xr73ve+lpqYmJ554Ympra3PuuefmlVdeycCBAxdYy/XXX5/ddtstu+yyS3bdddcF7tNc9X3clltuma5du+auu+7K6quv3nj/nXfemZVWWilrr7127rrrrpx++uk56qij0r9///znP//J6aefnpkzZ+a000777A9kIbz00ktJkuWXX77xvnHjxqVUKuX888/PjBkz5vufk/feey/f/va3M3v27Bx22GHp3bt3xowZk7322is33nhjVllllfzsZz/LzTffnH333TcDBw7Mo48+mlNOOSVvv/12DjzwwGapHQCgNfzpT3/KhhtumJ49e37iPqeffvp891100UU5+OCD079///Tu3TvPPvtsfvCDH2TrrbfO2WefnXK5nNtuuy0XXHBBVlxxxQwfPjwNDQ3Za6+98uqrr+bwww9Pz549M3r06Dz11FNNzkq94447cvjhh2f48OE55JBDMmHChJx99tl54YUX8qtf/WqByzTssMMOueGGG/LQQw81LgdWLpdz9913Z+utt05dXV2OO+64/O1vf8tRRx2VXr165YEHHsjpp5+e7t27Z+edd26Gd/PD+edyyy3XeN+1116bESNGZJ999kmnTp3mC5afffbZfOc738naa6+d0047LeVyOWeddVb23HPP3H777WloaMgee+yRSZMm5dBDD83SSy+dm266KXvttVdGjx6dr371q81SO8A8QlugTZk6dWo++OCDLLvssgu1//Tp03PRRRdl1113zfHHH994/2qrrZYRI0bk5ptvzne/+90kyfvvv5+TTz65ccK14oorZrPNNsv999+fVVZZJbfccksmTpyY2267rfFM2bXXXjtbbrnlJ77+vK9c9e7de4Ffv2rO+j6uU6dO2WqrrXL33XfnsMMOS5LMnDkzf/rTn7L33nsnmXsBhr59+2bEiBGpqanJBhtskC5dumTq1KkL9f5+3Ecnv++++26efvrpnHrqqenbt2+GDh3aZL8TTjghK6ywwgKPc8stt2T8+PG59dZbGwPnQYMGZccdd8yjjz6ampqa3HDDDfmf//mf7LPPPkmSjTfeOKVSKZdcckm++93vpkePHp+rBwCA1jR9+vRMnz49K6644nyPfTxYLJVK6dChQ+Pttddeu3EulCS33nprNtpoo/ziF79oPCt3yJAh+ctf/pJHH300w4cPzwMPPJCnnnoql1xySTbddNMkyYYbbtjkImTlcjlnnnlmvva1r+XMM89svH/FFVfMD37wg9x///2Nz/2o9dZbL8suu2zuvvvuxtD2sccey8SJE7PDDjskSR555JFstNFGjctmDR48OF26dPlcc7dyudzkPZo8eXIeeOCB/OY3v8k3vvGNLLnkko2PLb300hk1alTj+/LxC5BdeOGF+dKXvpQrrrgiiy22WJK5c/hDDjkkzz33XP71r3/l2WefzQ033JB11lknSbLJJptk9913z5lnnpmbbrppkesH+DRCW6BNmTfJmjNnzkLt/8QTT2TWrFkZPnx4k/sHDRqUvn37ZuzYsY2haNJ0XdV5687O+wrYuHHjstxyyzVZ2qBPnz5faC2s5qxvQbbffvvcfPPNefLJJ7POOuvkvvvuy3vvvdf4ehtuuGGuv/767Lzzzvn617+eTTfdNMOHD/9cF7iYMGHCAi/+ts466+TEE09scmZ0p06dmpx5+3Hjxo3Lsssu2+QM4cUWWyy/+93vkiS//vWvUy6XM2zYsCYT9WHDhuWiiy7KY489li222GKRewAAaG0LWpYgSf773//m61//epP7+vbtm/vuu6/x9mqrrdbk8R133DE77rhjPvjgg7zyyiv573//m2eeeSZz5szJ7Nmzk8ydZ3Xs2DGbbLJJ4/O6dOmSoUOH5tFHH02S/Oc//8nrr7+efffdt8lca/3110+3bt3y97//fYGhbalUyvbbb5+rr746J5xwQurq6nLnnXdmueWWy3rrrZdkbkj7m9/8Jm+88UY222yzDB069HN/S+rWW2/Nrbfe2uS+2trabLnllvnZz37W5P5VVlmlyfISH/fYY49l6NChjYFtMjcUn/d+X3755VlqqaWyxhprNHlPNttss5xxxhmZPn16vvSlL32uPgAWpF2EtlOmTMluu+2Wn//85xk8ePBCPeeee+7J+eefn1dffTVLLbVU9t133+yyyy4tXCnwRXXv3j1du3bNxIkTP3Gf9957L7NmzUr37t0b14Xt1avXfPv16tUr77zzTpP7PhoszpvUlcvlJHPPgvjoX+vnWWqppTJp0qRFb+b/HbO56luQDTfcMH369Mldd92VddZZJ3feeWcGDRrUeKbyNttsk4aGhlx33XW54IILcu6556Zv37457LDDPvWiYQuy1FJL5aKLLmq8XVdXl969ey9w8tqzZ89PDYanTZv2qV8PnDZtWpJ8Yo1vvPHGQlYNAFBZPXr0SJcuXRrX/5+nT58+ufHGGxtv/+///m/+/e9/N9nn43PImTNn5qSTTsptt92W+vr6LLvsshk4cGBqa2ubzGm7d+8+X4C51FJLNW7Pm2udcMIJOeGEE+ar+c033/zEfnbcccdceOGFeeCBB7Lpppvm97//fZOTEI499tj07t07t99+e+OxBw4cmOOOO+4zL+j7cZtttllj4FsqldK5c+f07du3cXmxj1rQfPujFmb++dZbby3wJIVk7lJmQlugObX50Paxxx7LqFGj8sorryz0cx5++OGMGjUq55xzTjbZZJOMHTs2e++9d1ZbbbWsvfbaLVgt0Bw23njjjB07Nh988EGTv4TPc/PNN+fkk0/Odddd1zhxmjRp0nxLCLz11ltN1rn6LD169Mh///vf+e6fN6n9PJqzvgUplUoZPnx4brvtthx44IF54IEHmizDkCTbbbddtttuu7zzzjv529/+lssuuyxHHHFEBg0alGWWWWahX6uurq7xomNf1OKLL55XX311vvsff/zxdOvWLUsssUSSZMyYMenatet8+335y19uljoAAFrD5ptvnvvuuy/vvvtuunXrlmT+uVX37t0/8zgnn3xy7rnnnpxzzjnZaKON0qVLlyRpst5qjx49MnXq1MyZM6fJUgsfndPOm2sdeeSR2WCDDeZ7nU8LJ1dYYYUMGDAgv/vd79KxY8dMnTo122+/fePjdXV12X///bP//vtn4sSJ+fOf/5wLL7wwhx12WOO3qhZW9+7dm3X+OWXKlPnuv//++7P66qtn8cUXz4orrthkuYiPWtjl2wAW1id/N6ANuOWWW3L44Yfn0EMPne+xBx98MLvssksGDRqUbbfdNrfffnvjY1deeWW+//3vZ+jQoSmVStlwww1z0003fepXdYHi2HPPPTNt2rScffbZ8z02efLkjB49unGyuM4666Suri533HFHk/3GjRuXiRMnZt11113o191www3z6quv5umnn268b8qUKXniiSc+9Xmf9jWs5qzvk+ywww554403cv7556dUKjW5UNshhxySH/3oR0nmTlS/8Y1v5IADDsicOXM+9QyKljZo0KCMHz8+zz33XON9s2bNyo9//OPccMMNWX/99ZPMXeN4rbXWavw3bdq0nHPOOV8oSAcAaG377rtv5syZk2OOOSazZs2a7/GZM2dm/Pjxn3mcxx57LIMHD84WW2zRGNj+85//zJQpUxqXYfjqV7+a+vr6/PGPf2x83qxZs/L3v/+98fbKK6+cnj175tVXX20y1+rdu3fOOuus/Otf//rUOrbffvs88MADufPOOzNgwIDG9XpnzpyZrbbaKldccUWSuX9oHzFiRLbddtu8/vrrn9lfSxo0aFD++te/Nnn/n3vuueyzzz55+umns8EGG+S1115Lz549m7wnDz30UEaPHt0kAAdoDm36TNuNN944w4cPT21tbZPg9tlnn83++++fX/ziF9l8883z5JNP5oADDkiPHj3yta99LU899VQGDx6cffbZJ08++WR69+6dH//4x/OtBwQU04ABA3LwwQfnnHPOyYsvvpiddtopPXr0yPPPP58rrrgiM2bMyKWXXppSqZTu3btnn332yQUXXJCOHTtm8803z6uvvppzzz03/fr1W6Qr1O6www656qqr8qMf/SiHHnpounXrlosuuugT1yGbZ4kllsjjjz+eRx99NIMGDWryWHPW90n69euXNdZYI9ddd1223HLLLL744o2Pbbjhhjn++ONz+umnZ5NNNsnbb7/deHXheevJvvLKK5kyZcoXWrt3Ue288865+uqrs//+++fggw/OkksumWuvvTYzZ87M7rvvnuWXXz7bb799fvrTn2bChAlZc80189JLL+Xss8/Osssuu8ALeQAAFNWqq66as846K0cddVR23HHHfOtb30r//v1TX1+fxx9/PDfeeGMmTZqUvfba61OPs/baa+d3v/tdfv3rX2eVVVbJs88+m4suuiilUinvv/9+krmh7cYbb5yf/OQnmTx5cvr27ZurrroqU6ZMaVweoEOHDjn00ENz3HHHpUOHDtlss83y9ttv58ILL8wbb7zxiUsEzLPtttvm1FNPzV133ZVjjz228f5OnTpljTXWaJz79u/fPy+99FJuueWWbLXVVo37/etf/0pdXV369ev3ed/SRXbAAQdkt912y95775099tgjs2bNyrnnnps11lgjm2yySerr63PNNddk5MiR2W+//dKnT588+OCDueyyy/K9730vHTt2bLVagerQpkPbj66581G/+c1vsvnmmzcu2r7uuuvmW9/6Vq699tp87Wtfy/Tp03P55Zfn/PPPz1prrZX77rsvhx56aK655prGq0ACxbb//vvnK1/5Sq699tqceuqpmTZtWnr37p1NNtkk++23X5Ovx//4xz9Or169cs011+S3v/1tunfvnq233jqHHHJIkzViP0tdXV3GjBmTU045JSeffHJKpVK+9a1vZbnllsvkyZM/8Xn77bdfLrzwwuy99965++6753u8uer7NDvssEOeeeaZJl9NS5Jvf/vbmT17dn7zm9/kuuuuS6dOnfLVr341RxxxROPE88ILL8wtt9zS5KzXltatW7dcc801OeOMM3LyySenvr4+66yzTq6++urGb0WceuqpueSSS/Kb3/wmr7/+enr27JltttkmhxxyiDMdAIA2Z4sttsjtt9+eX//617nxxhszYcKElMvlLLfcctlmm23y7W9/+zP/MD1q1KjMnj0755xzTmbNmpVll102+++/f1544YXcd999jUsiXHDBBTnzzDNz3nnn5YMPPsg222yTb33rW/nTn/7UeKxdd901Xbt2zejRo3P99denS5cuWXfddXPmmWd+5hJe3bt3z9ChQ3P//fdnm222afLYiSeemHPOOSdXXHFF3nrrrfTs2TO77LJLDj744MZ9fvSjH6Vv3765+uqrF/2N/Jy+8pWv5Oqrr85ZZ52VQw89NF27ds3QoUNz+OGHp66uLnV1dbn22mtz1lln5Re/+EXeeeedxmtB7Lnnnq1WJ1A9SuVPu4JNG9K/f/9cddVVGTx4cPbee+88/PDDTda6nDNnTpZffvncdtttGThwYL7//e83OTt3n332Sb9+/XLkkUdWonwAAAAAgCRt/EzbT9K7d+/stNNOOfHEExvve/PNNxuvlrnKKqvMt07QnDlzPvUK7AAAAAAAraFNX4jsk+yyyy65884787e//S0NDQ15+eWX873vfa9xsfPvfOc7+fWvf50HH3wwDQ0NueeeezJ27Nhst912Fa4cAAAAAKh27fJM23XWWSe//OUv88tf/jIHH3xwOnfunO222y7/8z//kyT55je/mZqampx66ql59dVX07dv35x99tmfuZg6AAAAAEBLazdr2gIAAAAAtAftcnkEAAAAAIC2SmgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFEhtpQv4vCZPfifVegm1Uinp2XPxqn4PMA74kLFAYhwwl3Hw4XtQBK35OVTbZ19N/eq1fdJr+1VN/eq1fdJr673uZ2mzoW25nHY/eD6L94DEOOBDxgKJccBcxkExVOJzqLbPvpr61Wv7pNf2q5r61Wv7pNfKszwCAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACqa10AQAAAAAArWXixAm58srLUldXmxEjRqZPn76VLmk+QlsAAAAAoGqMGXN5nnrqiSRJfX1DRo06rrIFLYDlEQAAAACAqjFhwvgFbheJ0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIBUNbefMmZPdd989o0aNqmQZAAAAAACFUdHQ9oILLsi4ceMqWQIAAAAAQKFULLR96KGHcu+99+brX/96pUoAAAAAACic2kq86OTJk3PsscfmwgsvzJVXXvm5jlEqNW9Nbcm83qv5PcA44EPGAolxwFzGQbF6b81aqu2zr6Z+9do+6bX9qqZ+9do+VUuvH++vEvO2z9LqoW1DQ0OOOOKIjBw5MquvvvrnPk7Pnos3Y1Vtk/eAxDjgQ8YCiXHAXMZBMVTic6i2z76a+tVr+6TX9qua+tVr+9Tee62pqWmy3atX8fpt9dD2kksuSV1dXXbfffcvdJzJk99JudxMRbUxpdLc/3iq+T3AOOBDxgKJccBcxsGH70ERtObnUG2ffTX1q9f2Sa/tVzX1q9f2qVp6bWhoaLI9adI7rfbaCztfbfXQ9rbbbsubb76ZQYMGJUlmzpyZJPnjH/+4SBclK5fTrgfPwvAekBgHfMhYIDEOmMs4KIZKfA7V9tlXU796bZ/02n5VU796bZ/ae68f762IvbZ6aPv73/++ye1Ro0YlSU477bTWLgUAAAAAoHBqPnsXAAAAAABaS6ufaftxzrAFAAAAAPiQM20BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAokNpKFwAAAAAAsCA1NaXU1JSa9Zil0kePV0ptbcuc19rQUE5DQ/lzPVdoCwAAAAAUTk1NKT16dE5NTYdmP27T1+jarMefp6FhTqZOff9zBbdCWwAAAACgcOaeZdshT75wfN59/+VmO+4HsyY12f7703s027Hn6dZ5xazT74TU1JSEtgAAAABA+/Lu+y/n7ff+3WzHayh3yrxLfTWUZzfrsZuLC5EBAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFEhFQtuHHnoou+66a9Zdd90MGTIkJ510UmbOnFmJUgAAAAAACqXVQ9spU6Zk3333zXe+852MGzcut9xySx555JFceumlrV0KAAAAAEDh1Lb2Cy655JJ58MEH061bt5TL5UybNi0ffPBBllxyydYuBQAAAACgcFo9tE2Sbt26JUmGDh2aN954I4MGDcrOO+9ciVIAAAAAAAqlIqHtPPfee2+mT5+eww8/PAcddFBGjx690M8tlVqwsIKb13s1vwcYB3zIWCAxDpjLOChW761ZS7V99tXUr17bJ722X9XUr17bp2rqtTV99P1c2Pe2VC6Xyy1TzsJ76qmnsuuuu+aRRx7Jl770pUqXAwAAAAAUxN+f3iNvv/fvZjvepWd0ytvT5l7qa4nuDdnnyJnNdux5luiyWoasNeZzP7/Vz7T9xz/+kWOOOSa333576urqkiSzZs1Kx44d07lz54U+zuTJ76TycXNllEpJz56LV/V7gHHAh4wFEuOAuYyDD9+DImjNz6HaPvtq6lev7ZNe269q6lev7VPReu3QoSY9enStdBlfyNSpMzJnTkPj7YWdr7Z6aNu/f//MnDkzZ511Vg477LC89dZbOf3007PLLrs0hrgLo1xOIQZPJXkPSIwDPmQskBgHzGUcFEMlPodq++yrqV+9tk96bb+qqV+9tk/V1Gtr+DzvZU3zl/HpunbtmtGjR+f555/PkCFDsvvuu2ejjTbKMccc09qlAAAAAAAUTkUuRNavX79cccUVlXhpAAAAAIBCa/UzbQEAAAAA+GRCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABUjSWXLjdu9/zIdpHUVroAAAAAAIDWMmzbWbmvXJck2WzbWRWuZsGEtgAAAABA1VhyqXJ2GflBpcv4VJZHAAAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQL5QaDtlypTmqgMAAAAAgHyO0La+vj5nn3121ltvvQwbNizjx4/PN7/5zbz55pstUR8AAFTMv/71r9x7772ZNWtWJk+eXOlyAACoEosc2p5//vl5+OGHc+6556Zjx47p2bNnevfunZNPPrkl6gMAgFY3efLkfPvb3863vvWtHHXUURk/fny22GKLPP7445UuDQCAKrDIoe0dd9yR8847LxtvvHFKpVK6dOmSU089NQ8//HBL1AcAAK3ulFNOyWqrrZZHH300tbW1WWWVVbLPPvvkjDPOqHRpAABUgUUObd97770sueSSSZJyuZwk6dSpU2pqXNMMAID24eGHH87RRx+dzp07p1QqJUn22muvvPDCCxWuDACAarDISeuAAQNywQUXJEnjBPbqq6/OWmut1byVAQBAhXTs2DEzZ85M8uGJCjNmzEjXrl0rWRYAAFVikUPbY489NnfccUc22WSTzJgxI9tss02uuuqqjBo1qiXqAwCAVjds2LAcccQRefnll1MqlTJ58uSccMIJGTp0aKVLAwCgCtQu6hOWW2653HXXXfnLX/6SCRMmpHfv3tl0003TrVu3lqgPAABa3WGHHZajjz46W2+9dZJk4403ztChQ3PiiSdWuDIAAKrBIoe2s2bNysUXX5xddtkl3/jGNzJmzJiMHj06Bx10kHVtAQBoF7p27ZrzzjsvU6ZMyauvvpplllkmyyyzTKXLAgCgSixyynrqqafmgQceSIcOHZIka6yxRv72t7/lzDPPbPbiAACgEiZOnJhvf/vbee2117L22mvnyiuvzHe+85289dZblS4NAIAqsMih7b333pvLL788X/7yl5MkgwYNysUXX5zbb7+92YsDAIBKOOGEE7LyyitnhRVWSJLsvffe6devX0466aQKVwYAQDVY5OURPvjgg3Tp0qXJfd26dUt9fX2zFQUAAJX0+OOP5+9//3s6duyYJFlyySXzk5/8JJtsskmFKwMAoBos8pm2gwYNyqmnnppZs2YlmRvinnHGGVl33XWbvTgAAKiE2traTJkypcl906dPT6dOnSpUEQAA1WSRz7Q99thjs9dee2XddddNjx49MnXq1Ky00kq5+OKLW6I+AABodVtvvXUOOuigHHLIIenTp09ee+21nHfeedlqq60qXRoAAFVgkUPb5ZZbLnfffXcee+yxTJo0Kb17987aa6+d2tpFPhQAABTSEUcckRNOOCH77rtvZs2albq6uuy444455JBDKl0aAABVYKGT1tdffz29e/fOxIkTkyTLLrtsll122STJm2++mSSNFycDAIC2rHPnzjnttNNy0kknZfr06enZs2dKpVKlywIAoEosdGi7zTbb5B//+EeGDRs234S1XC6nVCrl//7v/5q9QAAAaC133nlntttuu9x6662fuM+OO+7YavUAAFCdFjq0veuuu5Ikt99+e7p27dpiBQEAQKVcfPHF2W677XLeeect8PFSqSS0BQCgxS10aNunT58kyX777Zfbb7893bp1a7GiAACgEu68884kyRlnnJGBAwemQ4cOFa4IAKB1TJw4IVdeeVnq6mozYsTI9OnTt9IlVbWaz/Ok999/v7nrAACAwjjwwAMza9asSpcBANBqxoy5PE899UTGjRuXMWMur3Q5VW+hz7SdZ/Dgwdl1112zySabZOmll27y2I9+9KNmKwwAACplueWWy9NPP50NNtig0qUAALSKCRPGL3Cbyljk0PbVV1/Ncsstl5deeikvvfRS4/2upgsAQHvxpS99KSNHjsyyyy6bpZdeuslc96qrrqpgZQAAVINFCm0vuOCCdOvWLRtvvHFGjBjRUjUBAEBFDRw4MAMHDsysWbMyffr09OjRI7W1i3y+AwAAfC4LvabtGWeckeuuuy4dO3bMeeedl0svvbQl6wIAgIr5wQ9+kFdeeSVXXnllrr/++owZMyaTJ0/OPvvsU+nSAACoAgsd2t55550ZM2ZMzjvvvJx33nm54447WrIuAAComJNOOin//e9/c9FFF+Xuu+/OOeeck6effjpnnnlmpUsDAKAKLPR3vN55552suuqqSZL11lsvb7zxRosVBQAAlXTffffl97//fXr27JkkWXnllbP66qtnhx12yDHHHFPh6gAAaO8W+kzbmpoPd7WeFwAA7dliiy2WDh06NLmva9eu6dy5c4UqAgCgmix0aFsul1uyDgAAKIz99tsvBx10UJ599tm8//77efnll3P00Udnm222ycSJExv/AQBAS1joU2br6+tz6623Nt6ePXt2k9tJsuOOOzZTWQAAUDk///nPk8yd35ZKpSYnMFxxxRUpl8splUr5v//7v0qVCABAO7bQoW2vXr1y3nnnNd7u0aNHk9ulUkloCwBAu/CnP/2p0iUAAFDFFjq0ve+++1qyDgAAKIy+fftWugQAAKrYQq9pCwAAAABAyxPaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQGorXQAAAAAAsPBqakqpqSk16zFLpY8er5Ta2pY517OhoZyGhnKLHLs9EdoCAAAAQBtRU1NKjx6dU1PTodmP2/Q1ujbr8edpaJiTqVPfF9x+BqEtAAAAALQRc8+y7ZDf/fv8THlvQrMdd8asqU22r31iVLMde54lu/TNN1b7cWpqSkLbzyC0BQAAAIA2Zsp7E/LWjJea7XhzyvVNtpvz2Cw6FyIDAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAqlIaPvss89m5MiR2WCDDTJkyJAceeSRmTJlSiVKAQAAAAAolFYPbWfOnJm99torAwcOzN/+9rfceeedmTZtWo455pjWLgUAAAAAoHBaPbSdOHFiVl999Rx44IGpq6tLjx49sttuu+XRRx9t7VIAAAAAAAqntrVfcOWVV87o0aOb3HfPPfdkjTXWWKTjlErNWVXbMq/3an4PMA74kLFAYhwwl3FQrN5bs5Zq++yrqV+9tk96bb+qqV+98kVV0/v50V4Xtu9WD20/qlwu55xzzsmf//znXHPNNYv03J49F2+hqtoO7wGJccCHjAUS44C5jINiqMTnUG2ffTX1q9f2Sa/tVzX1q9f2o1uvDnl/WkOSZPGlOrToa/Xo0bVFj18kn7fXioW27777bo4++ug888wzueaaa9K/f/9Fev7kye+kXG6h4gquVJr7g6Ka3wOMAz5kLJAYB8xlHHz4HhRBa34O1fbZV1O/em2f9Np+VVO/eq2cDh1qWiT0XHObrvnnXTOSJGt8o2VD1alTZ2TOnIbP3K+lem1NH+91YeerFQltX3nlley999758pe/nBtvvDFLLrnkIh+jXE4h/kOpJO8BiXHAh4wFEuOAuYyDYqjE51Btn3019avX9kmv7Vc19avX9qNbr9psuMeXWu312vN7+XGfp9dWvxDZ9OnTs8cee2TdddfN5Zdf/rkCWwAAAACA9qrVz7S9+eabM3HixPzud7/L73//+yaPPf74461dDgAAAABAobR6aDty5MiMHDmytV8WAAAAAKBNaPXlEQAAAAAA+GRCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFUlvpAgAAAACgiCZOnJArr7wsdXW1GTFiZPr06VvpkqgSQlsAAAAAWIAxYy7PU089kSSpr2/IqFHHVbYgqoblEQAAAABgASZMGL/AbWhpQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACiQ2koXAAAAAABfRE1NKTU1pWY/bqn00WOWUlvbMuc/NjSU09BQbpFj0zYJbQEAAABos2pqSuneo3M61HRokWN/dLtHj67N/hpJMqdhTqZNfV9wSyOhLQAAAABtVk1NKR1qOmTMP6/K6++90azHnv7B9Cbbpz/yi2Y9fpL07rJM9ljz+6mpKQltaSS0BQAAAKDNe/29N/LqO6826zHnlOc02W7u48MncSEyAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAIAFqOu5WOP2Yr0W+5Q9oXkJbQEAAABgAXpv2SddV+qWrit1yzJb9Kl0OVSR2koXAAAAAABFtFjPxbLCd1asdBlUIWfaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgdRWugAAAAAA2o6JEyfkyisvS11dbUaMGJk+ffpWuiRod4S2AAAAACy0MWMuz1NPPZEkqa9vyKhRx1W2IGiHLI8AAAAAwEKbMGH8AreB5iO0BQAAAAAoEMsjAAAAALRDNTWl1NSUmv24pdJHj1lKbW3znxPY0FBOQ0O52Y8LbYXQFgAAAKCdqakppXuPLulQ0/yB6keD4JqaUnr06NrsrzGnoSHTpr4nuKVqCW0BAAAA2pmamlI61NTktIeuzytvv9msx578/ttNtg+45/xmPf7ySyydUV/dLTU1JaEtVUtoCwAAANBOvfL2m3lh6sRmPeachjmN2/UNc5r9+ECFL0Q2ZcqUbLnllhk7dmwlywAAAABgYXXv/OF2j86fvB/wuVUstH3sscey22675ZVXXqlUCQAAAAAsopqvLp/0XSLpu0RqNly+0uVAu1SR0PaWW27J4YcfnkMPPbQSLw8AAADA51Tq3jkdtlk9HbZZPaXuzrSFllCRNW033njjDB8+PLW1tZ87uC2VPnuf9mpe79X8HmAc8CFjgcQ4YC7joFi9t2Yt1fbZV1O/em2f9Np+VVu/raHa3stq6rdae13YvisS2i611FJf+Bg9ey7eDJW0bd4DEuOADxkLJMYBcxkHxVCJz6HaPvtq6lev7ZNe269q67el9OjRtdIltKpq6levn60ioW1zmDz5nZTLla6iMkqlub8Aqvk9wDjgQ8YCiXHAXMbBh+9BEbTm51Btn3019avX9kmv7VeR+u3QoabNB2NTp87InDkNn7lfe+g1qa5+q7nXhZ2vttnQtlxOxX8AVpr3gMQ44EPGAolxwFzGQTFU4nOots++mvrVa/uk1/ar2vptSdX2PlZTv3r9dBW5EBkAAAAAAAsmtAUAAAAAKJCKL4/w3HPPVboEAAAAAIDCcKYtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQGorXQAAAABAWzdx4oRceeVlqaurzYgRI9OnT99KlwS0YUJbAAAAgC9ozJjL89RTTyRJ6usbMmrUcZUtCGjThLYAAABA1aipKaWmptTsx5048dXG7QkTXk1tbfOvSNnQUE5DQ7nZjwsUj9AWAAAAqAo1NaV079ElHWqaP1D9aBBcU1NKjx5dm/015jQ0ZNrU9wS3UAWEtgAAAEBVqKkppUNNTY79w415acpbzXrst2a802T7u9df1KzHX2nJpXLylrukpqYktIUqILQFAAAAqspLU97Ks5Nea9Zjdutal47vvpck+aDrYs1+fKC6NP/3AQAAAACqzHtrr5TZS3fP7KW75721V6x0OUAb50xbAAAAgC+oYfEueXfjNSpdBtBOONMWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFEhtpQsAAOCLmzhxQq688rLU1dVmxIiR6dOnb6VLAgAAPiehLQBAOzBmzOV56qknkiT19Q0ZNeq4yhYEAAB8bpZHAABoByZMGL/AbQAAoO1xpi0AUNVqakqpqSlVuowvrFT6aA+l1Na2j7/NNzSU09BQrnQZAADQqoS2AEDVqqkppUePzqmp6VDpUr6wjwbPc/vqWsFqmk9Dw5xMnfq+4BYAgKoitAUAqtbcs2w75Hf/Pj9T3ptQ6XK+kBmzpjbZvvaJURWspnks2aVvvrHaj1NTUxLaAgBQVYS2AEDVm/LehLw146VKl/GFdO5Zzrv/L7ft0qvc5vsBAIBq1j4WOwMAqHJrbtM1S63SMUut0jFrfKN9LI0AAADVypm2AG3YxIkTcuWVl6WurjYjRoxMnz59K10SUCHdetVmwz2+VOkyAKCRuSrA5ye0BWjDxoy5PE899USSpL6+IaNGHVfZggAA4P8xVwX4/IS2QFWae/Gh0mfvWHATJ77auD1hwquprW0fq940NJRddGgROIsFAPiiWmJ+3FpzVXNHoD0S2gJVp6amlO7du6RDh7YfcH50Yl1TU0qPHu1jHcs5cxoybdp7Jt8LyVksAMAX0VLz49aaq5o7Au2R0BaoOjU1pXToUJNjbr0p/5k0qdLlfCHTPjIRnlpTyrdHX1LBaprHyr165ZQdv5mamlKLT7ydcV1szpoBgNbRUvPj1pirtubcEaA1CW2BqvWfSZPy7OuvVbqML6Rm+b7pOnNmkmTq8n3zWhvvpzXV1JTSvUeXdKhp+wFnuz3juqEh06Y6awYAWktzz4/NVQE+P6EtQBvW0KVL3hmwVqXLaJNqakrpUFOT0x66Pq+8/Waly/lC3u3yYaj5btfkgHvOr2A1zWP5JZbOqK/u5qwZAGjDzFUBPj+hLQBV7ZW338wLUydWuowvpDxomWTW3LNY3l9v6TbfDwAAQLUT2gJAG1fq3jkdtlm90mUAAADQTNr+Qn4AAAAAAO2I0BYAAAAAoEAsj9DGTJw4IVdeeVnq6mozYsTI9OnTt9IlAQAAAADNSGjbxowZc3meeuqJJEl9fUNGjTqusgUBAAAAAM3K8ghtzIQJ4xe4DQAAAAC0D0JbAAAAAIACsTwCAAAAtBLXKQFgYQhtAQAAYAFqakqpqSk16zGvuurD65TMmVPOscce36zHn6ehoZyGhnKLHBuAlie0BQAAgI+pqSmle/cu6dCheVcVfO21CY3bEye+mh49ujbr8eeZM6ch06a9J7gFaKOEtgAAAPAxNTWldOhQk59ed0tefnNSsx13WsOHIfC0ck12P+eyZjv2PCsu3SsnfXen1NSUhLYAbZTQFtog62ABAEDrePnNSXluwuvNdrzSUsul08yZSZJ3ey2XSc14bADaD6EttEFjxny4DlZ9fUNGjTqusgUBAAALpdypS95fdZ1KlwFAwTXv4jxAq5gwYfwCtwEAAABo+4S2AAAAAAAFUjXLI9TUlFJTU6p0GV9YqfTRHkqprW0fuXtDQ9kC+QAAAACQKglta2pK6d69Szp0aPsB50eD55qaUnr06FrBaprPnDkNmTbtvRYPboX3xSa8BwAAAKii0LZDh5qcecr1Gf/KW5Uu5wuZMvmdJtsH73dBBatpHsstv1QOP2a31NSUWjSwE94XX2uF9wAAFMvEiRNy5ZWXpa6uNiNGjEyfPn0rXRIAVFRVhLbzjH/lrbz4/MRKl/GF1Kf+w+36+jbfT2uaF96fePkt+e9rkypdzhcyafo7TbZ/+PPLKlhN81ihT68c98OdWjy8BwCgeMaMuTxPPfVEkqS+viGjRh1X2YIAoMKqKrSFJPnva5Py7/GvV7qML6Rj/ZzMO9e2vn5Om+8HAIC2oaWWG5s48dXG7QkTXm2x5b8sxwVAWyG0BQAA4DO15HJjK664Qt56680kyUorrdhiy39ZjguAtkJoC21Qua5rSvUfNG4DAND+FG2d15Zcbmx2zVLp1KN3kmRCqVeLLP9lOS4A2hKhLbRB9b36pfat5xu3AQBof4q6zmuLLTfWc/UkyduT30smv9f8xweANkRoC21RXZfU912n0lUAAIuopdYDnaclvrY+T1HWAi3a2actacKE8QvcBgDaP6EtAAC0grnrgXZOhw4dWuw1Wmod0CSZM2dOpk17v+LBbRHPPm2pML5U+ugxSy1yca6ihPEAQFNC2zamlM4pZ1bjNgAAbcPc9UA75IwjL88rL75W6XIWyfKr9MmRZ/ywEGuBFu3s05a8ONdHg+CamlKLhPIuzAUAxSS0bWM6ZoXMzn8btwEAaFteefG1vPh/lQ8baR7zLs512vk355UJzXtxrslT32myfcCoS5v1+Mv37ZVRP965EGE8ANCU0LaNqUnnLJbVK10GAADwEa9MmJQXXmrei3PNKS+WZO4FuerLnZr9+ABAcQltAQCAZmed1y+upmu/NMx44f9tr1LhagCA1iS0BQAAmpV1XptHqbZLOnxp7YrWAABUhtAWAABoVvPWeT3zlOsz/pW3mvXYUya/02T74P0uaNbjL7f8Ujn8mN2s8woAVJTQFgAAaBHjX3krLz4/sVmPWZ/6D7fr65v9+AAARdD831cCAABoIaV0XuA2AEB7IrQFAADajI5ZITX5UmrypXTMCpUuBwCgRVgeAQAAaDNq0jmLZfVKlwEA0KKcaQsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFEhFQtvJkyfngAMOyKBBgzJ48OCcfPLJqa+vr0QpAAAAAACFUpHQ9pBDDkmXLl3y17/+NTfeeGMeeuihXHnllZUoBQAAAACgUFo9tP3vf/+bRx55JEcccUQ6d+6c5ZZbLgcccECuvfba1i4FAAAAAKBwWj20ff7559O9e/css8wyjfetssoqmThxYt5+++3WLgcAAAAAoFBqW/sFZ8yYkc6dOze5b97t9957L0ssscRCHaemJimXF+21V+nXJ4t16rhoT6LFLbtsr8btmlb4M8Kqy/dOpzrjoGiW692zcbs1xkGS/H+9e6dzR2OhaFbs2bpjoV+PL6dTB+OgaJZdYqnG7dYYB0t3WzG1NYu1/AuxSJbs0qdxe2HHQanUQsV8Dp80X+33leXTqXNd6xf0BSy7Uu/G7UX5b7Itzr8/79y034q902mxNtZrn8/3O7etzqc/73yz/5fbXr8r9Pp8vbbF+fHnnTuuvlSfdK5tW72u0ONz/nxqg/PdzzsXXK7bsqmraVu/Y5NkmS5LN24vSr9tcQ77eeZ3SbJEl/7pUNOpBSpqOV07rdC4/dFeF3a+WiqXFzX6/GL+8Ic/5Cc/+UnGjh3beN9zzz2X7bffPuPGjcviiy/emuUAAAAAABRKqy+PsOqqq2batGmZNGlS430vvvhievfuLbAFAAAAAKpeq4e2K664YtZbb72ccsopeffddzN+/PhceOGF2WWXXVq7FAAAAACAwmn15RGSZNKkSTnxxBMzduzY1NTUZMcdd8zhhx+eDh06tHYpAAAAAACFUpHQFgAAAACABWv15REAAAAAAPhkQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2BTdlypRsueWWGTt27Cfuc//992f48OEZMGBAvvGNb+TPf/5zK1ZIS3r22WczcuTIbLDBBhkyZEiOPPLITJkyZYH7Ggft20MPPZRdd9016667boYMGZKTTjopM2fOXOC+xkL7NmfOnOy+++4ZNWrUJ+5jDLRvd999d77yla9k4MCBjf+OOOKIBe5rLLRP1TA/rLY5ULX9nq+W32XV9PN62rRpOfLIIzN48OCsv/76OeCAA/Lmm28ucN+23uvtt9/e5DMdOHBg1lxzzay55poL3L+t9/vMM89kxIgRGTRoUDbeeOP8/Oc/z6xZsxa4b1vv9cUXX8wPf/jDDBo0KJtuumkuuuiiNDQ0LHDfttrrguYQTz75ZHbdddcMHDgww4YNy29/+9tPPcZll12WTTbZJAMGDMjuu++e//znPy1d9uf2SXOmxx9/PGuttdZnPr/ivZYprHHjxpW32GKL8mqrrVZ++OGHF7jPSy+9VF5rrbXKf/jDH8qzZ88u33XXXeW11167/Prrr7dytTS3999/vzxkyJDyueeeW/7ggw/KU6ZMKe+9997lfffdd759jYP2bfLkyeW11lqrfNNNN5XnzJlTfuONN8rbbbdd+dxzz51vX2Oh/TvnnHPKq6++evmoo45a4OPGQPt32mmnlUeNGvWZ+xkL7VM1zA+rbQ5Ujb/nq+V3WTX9vP7e975XPvDAA8vTp08vv/POO+Uf/ehH5X322We+/dpDrx/3+uuvl4cMGVK+9dZb53usrfc7Z86c8pAhQ8pjxowpz5kzp/zaa6+Vt9pqq/IFF1ww375tvdd33323vOmmm5aPPfbY8owZM8qvvvpqebvttiuff/758+3bVntd0Bxi2rRp5Q022KB8zTXXlGfPnl1+8MEHywMHDiw/+eSTCzzGzTffXP7a175W/ve//12eOXNm+dRTTy1vu+225YaGhtZsZaEsqN+Ghobyb3/72/KAAQPKq6222qc+vwi9OtO2oG655ZYcfvjhOfTQQz9zv0GDBmWLLbZIbW1tttlmm6y//vq5/vrrW6lSWsrEiROz+uqr58ADD0xdXV169OiR3XbbLY8++uh8+xoH7duSSy6ZBx98MDvvvHNKpVKmTZuWDz74IEsuueR8+xoL7dtDDz2Ue++9N1//+tc/cR9joP17+umnP/Fsno8yFtqfapkfVtscqNp+z1fT77Jq+Xn9z3/+M08++WROO+20LLHEEunWrVtOOumkHH744fPt29Z7/bhyuZwjjjgim266aXbYYYf5Hm/r/U6fPj1vvfVWGhoaUi6XkyQ1NTXp3LnzfPu29V4fe+yxTJ48Occdd1y6dOmSvn37Zv/998+vf/3rxt7naYu9ftIc4t5770337t0zYsSI1NbW5qtf/WqGDx+ea6+9doHHueGGG/Ld7343q666ahZbbLEcdthhmThx4qd++6cSPqnfY445Jr/97W9z0EEHfeYxitCr0LagNt544/zhD3/INtts86n7vfDCC1lttdWa3NevX788++yzLVkerWDllVfO6NGj06FDh8b77rnnnqyxxhrz7WsctH/dunVLkgwdOjTDhw/PUkstlZ133nm+/YyF9mvy5Mk59thjc9ZZZy1wojyPMdC+NTQ05Jlnnslf/vKXbLbZZtlkk03y05/+NNOnT59vX2Oh/amW+WE1zoGq5fd8Nf0uq6af10899VT69euXG264IVtuuWU23njjnH766VlqqaXm27et9/pxt912W1544YVPXOqjrffbo0eP/OAHP8jpp5+etdZaK0OHDs2KK66YH/zgB/Pt29Z7bWhoSMeOHdOxY8fG+0qlUiZNmpS33367yb5tsddPmkM8//zzi9TLx3vv2LFjVlxxxcL1/kn9Hnzwwbn++uvzla985TOPUYRehbYFtdRSS6W2tvYz95sxY8Z8E55OnTrlvffea6nSqIByuZyzzz47f/7zn3PsscfO97hxUD3uvffePPDAA6mpqVngXweNhfapoaEhRxxxREaOHJnVV1/9U/c1Btq3KVOm5Ctf+Uq22mqr3H333fnNb36Tl19+eYFrJBoL7U81zg+rbQ7Unn/PV9vvsmr6eT19+vQ899xzefnll3PLLbfk1ltvzRtvvJGjjjpqvn3beq8f1dDQkIsuuij77bdf4x9ePq6t99vQ0JBOnTrlpz/9aZ544onceeedefHFF3PeeefNt29b73XddddNp06dctZZZ+X999/PhAkTcvnllyfJfGuMt8VeP2kOsai9tJXeP6nf3r17L/QxitCr0LaN69y583w/QGbOnJmuXbtWqCKa27vvvpuDDjood9xxR6655pr0799/vn2Mg+rRqVOnLLPMMjniiCPy17/+db6zNYyF9umSSy5JXV1ddt9998/c1xho33r16pVrr702u+yySzp37pwvf/nLOeKII/LAAw/k3XffbbKvsVC92stnX41zoPb8e77afpdV08/rurq6JMmxxx6bbt26pVevXjnkkENy//33Z8aMGU32beu9ftTYsWPz5ptvZpdddvnEfdp6v3/4wx9yzz335Lvf/W7q6uqy6qqr5sADD8yvf/3r+fZt670uscQSueyyy/Lkk09m0003zSGHHJIdd9yx8bGPauu9ftSi9tKeev8sRehVaNvGrbbaann++eeb3PfCCy9k1VVXrVBFNKdXXnkl3/zmN/Puu+/mxhtvXOD/rCTGQXv3j3/8I1tvvXWTq7TOmjUrHTt2nO8vf8ZC+3TbbbflkUceyaBBgzJo0KDceeedufPOOzNo0KD59jUG2rdnn302Z555ZpO11WbNmpWamprG/2mex1ioXu3hs6+mOVC1/J6vtt9l1fTzul+/fmloaMjs2bMb72toaEiS+dYCbeu9ftQ999yTLbfcMl26dPnEfdp6v6+99lqTn01JUltb22QJgXnaeq+zZs1KfX19rrrqqowdOza//e1vU1NTk379+rWrn8Uft6i9rLrqqk32nz17dl5++eX5llhoD4rQq9C2jdt+++3zyCOP5O677059fX3uvvvuPPLIIwtcBJ22Zfr06dljjz2y7rrr5vLLL1/gxSjmMQ7at/79+2fmzJk566yzMmvWrEyYMCGnn356dtlll/km/cZC+/T73/8+//jHPzJu3LiMGzcu2223XbbbbruMGzduvn2Ngfate/fuufbaazN69OjU19dn4sSJ+cUvfpGddtrJzwMatfXPvtrmQNXye77afpdV08/rjTbaKMstt1yOOeaYzJgxI1OmTMnZZ5+dLbbYYr5lA9p6rx/12GOPZf311//Ufdp6vxtvvHHeeuutXHzxxZkzZ07Gjx+fiy66KMOHD59v37bea5L88Ic/zI033phyuZx//vOfufjii7PHHnvMt1976HWeLbfcMpMmTcqVV16Z2bNn5+GHH84dd9yRb37zmwvc/5vf/GauueaaPPvss/nggw9y1llnpVevXgv8A1xbV4heyxTeaqutVn744Ycbbw8YMKB82223Nd5+4IEHyttvv315wIAB5W233bb8l7/8pRJl0syuuOKK8mqrrVZeZ511ygMGDGjyr1w2DqrN888/Xx45cmR50KBB5c0226z8y1/+svzBBx+Uy2VjoRodddRR5aOOOqrxtjFQXcaOHVvebbfdygMHDixvuOGG5ZNOOqk8c+bMcrlsLFST9jw/rMY5UDX+nq+G32XV9PP69ddfLx9yyCHlIUOGlAcNGlQ+8sgjy9OnTy+Xy+2v13kGDBiwwNrbW79///vfy7vuumt5vfXWK2+66abt+ufTI488Ut5pp53KAwYMKG+++eblq666qvGx9tTrx+cQTz31VOPPqs0337x80003NT726KOPlgcMGFCeMGFCuVwulxsaGsqXX355ediwYeUBAwaUd9999/J//vOfVu9hUXy833K5XH744YfLq622WpP7ithrqVz+2PcVAAAAAACoGMsjAAAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQluAKvDyyy9XugQAAABgIQltAVrISy+9lKOOOiqbbLJJBg4cmC222CJnnnlmZsyY0SKvN2zYsNx8881Jkr322isXX3xxkuS+++7LD3/4w8b9PvoYAAB8lokTJ+b444/PsGHDMmDAgGywwQb54Q9/mL///e/N9ho333xzhg0b1mzHA2jrhLYALeAf//hHdtppp/Tt2ze33nprHn/88Vx22WV58skns+eee2bOnDkt+vqjR4/OfvvtlySZNm1ayuXyAh8DAIBP8+9//zvbb799Zs2alcsuuyyPPfZY7r333my//fY58MADc//991e6RIB2SWgL0AKOO+647LjjjjnooIOy5JJLJklWWmmlnH322enZs2fGjx+fCRMm5JBDDslXv/rVDBkyJIcddljefPPNJMnYsWMzbNiwXHTRRfna176WDTbYID/+8Y/z7rvvJknK5XIuvvjibLzxxhk0aFBOP/30JkHw7rvvnvPPPz9jx47N8ccfn4kTJ2bgwIF54403Gh9LkoaGhlx66aXZYostst5662WXXXbJX//618bjDBs2LJdcckl23HHHDBw4MDvuuGMefvjh1nobAQCosOOOOy5DhgzJqaeemlVWWSUdOnRI9+7ds8MOO+T444/P7Nmzc/PNN2fnnXfOnnvumUGDBuWOO+7IG2+8kUMOOSTDhg3LOuusk8033zw33nhj43FffPHF7L777hk4cGCGDx+ef/3rX01e95lnnsnuu++e9ddfP1//+tdz5ZVXNjkRAaC9E9oCNLNXXnklzz//fLbbbrv5HuvVq1cuvPDC9O3bN3vuuWc6dOiQe++9N7/73e+SJPvtt1/q6+uTJBMmTMgbb7yRP/zhD/ntb3+bxx9/PNddd12S5KabbsqYMWNyySWX5MEHH0zHjh3z+uuvz/d6gwcPzgknnJAvf/nLefzxx7PMMss0efx///d/c+211+bcc8/N2LFjs+eee+aAAw7IU0891bjPTTfdlHPPPTcPPvhgVl999fzsZz9rrrcKAIACe/311/P444/n29/+9gIf32mnnbLFFlskmRuyDh8+PA8++GC23HLL/OQnP0nHjh1z11135R//+Ee+973v5aSTTsqMGTMye/bs7Lvvvll11VXz8MMP55e//GX++Mc/Nh73jTfeyB577JGtt946Dz74YC688MJcd911uf7661ulb4AiENoCNLMpU6YkmRvQfpJx48Zl/PjxOeGEE7L44otniSWWyAknnJBnn302//znPxv3O/DAA9OpU6essMIKGTx4cF566aUkyW233ZZvfetbWWONNVJXV5eDDz44PXr0WORab7rppuyzzz5ZY401Ultbm2222SbDhg1rchbELrvskhVWWCGdO3fO8OHDXdQMAKBKzDspoHfv3o33PfTQQxk0aFAGDRqUgQMHZquttkqSdOzYMTvssEPq6urSqVOn/PznP8/xxx+fjh07ZuLEienatWtmzpyZ6dOn5/HHH89rr72WI488MosttlhWXXXVjBw5svE1br/99qyyyioZMWJEOnbsmH79+uWHP/xhrr322tZ9AwAqqLbSBQC0N0sttVSS5K233sqKK6443+OTJk3K5MmT06NHj3Tr1q3x/m7duqV79+6ZMGFCY+A771jJ3InwvK+Evfnmm+nTp0/jYx06dMiXv/zlRa510qRJWW655Zrct+yyy+bZZ59tvP3R8Lm2ttbX0gAAqsS8uegbb7yRlVZaKUny1a9+NePGjUsy9+JhF1xwQeO+NTUfnhc2fvz4nHHGGXn55Zez4oorZoUVVkgyd3muN954Iz169EinTp0a919++eUbtydMmJBnnnkmgwYNaryvoaEhHTp0aKFOAYrHmbYAzaxv375ZbbXVcvfdd8/32OTJk7PZZptlwoQJmTp1auMatUnyzjvvZOrUqU2C2k/Su3fvjB8/vvF2uVxuXA93UWv96HGSuRPspZdeepGPBQBA+9K3b9+stdZa+e1vf/uZ+5ZKpcbtecsf7LDDDhk7dmxuuOGG7LHHHo2P9+nTJ1OmTMmMGTMa7/voUl+9e/fO4MGDM27cuMZ/f/rTn3LLLbc0U2cAxSe0BWgBP/3pT3PTTTflggsuyNSpU1Mul/N///d/2W+//bLGGmtkzz33TL9+/XL88cfnnXfeyTvvvJOf/exnWX755bPuuut+5vF33XXX3HDDDXn88ccze/bsXHTRRXnrrbcWuO9iiy2W999/v3Gt3I8f59JLL80zzzyTOXPm5He/+13uu+++7LTTTl/4PQAAoO075ZRT8te//jU//elP89JLL6VcLufdd9/NrbfemvPPP3+Bf+yfPXt2Zs6cmU6dOqVUKmXixIn5xS9+0fjYwIEDs9JKK+XnP/953n///fz3v//NFVdc0fj84cOH54knnsjtt9+e+vr6vPnmm9lvv/1y2mmntVrfAJUmtAVoARtssEGuueaa/Otf/8q2226bddddNwcddFA23HDDjB49Oh07dswll1yS+vr6bLXVVtlss80ye/bs/OpXv0pt7WevXLPddtvloIMOyqGHHpoNNtgg48ePT//+/Re47/rrr5+ePXtm/fXXz3PPPdfksZEjR2bEiBE59NBDM2jQoFxyySX55S9/mQ022KBZ3gcAANq21VZbLXfeeWc6deqU/fbbL+utt16GDh2aG264IXvttVeuuuqq+Z7TpUuXnHLKKfnf//3fDBw4MN///vczZMiQ9OrVK//+97/ToUOHXHrppXnzzTez0UYbZa+99srmm2/e+Py+fftm9OjRuf7667PRRhtlhx12yMorryy0BapKqWxxQgAAAACAwnCmLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIAC+f8B9fyCfJ5zt28AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2467,7 +2461,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 136, "metadata": {}, "outputs": [ { @@ -2533,7 +2527,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 137, "metadata": {}, "outputs": [ { @@ -2820,7 +2814,7 @@ "std 5.824659 4.156724e+04 " ] }, - "execution_count": 31, + "execution_count": 137, "metadata": {}, "output_type": "execute_result" } @@ -2879,7 +2873,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 138, "metadata": {}, "outputs": [ { @@ -2906,7 +2900,7 @@ "dtype: float64" ] }, - "execution_count": 32, + "execution_count": 138, "metadata": {}, "output_type": "execute_result" } @@ -2938,7 +2932,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 139, "metadata": {}, "outputs": [ { @@ -3143,7 +3137,7 @@ "[5 rows x 21 columns]" ] }, - "execution_count": 33, + "execution_count": 139, "metadata": {}, "output_type": "execute_result" } @@ -3173,7 +3167,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 140, "metadata": {}, "outputs": [ { @@ -3183,13 +3177,7 @@ "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", " with pd.option_context('mode.use_inf_as_na', True):\n", "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ + " with pd.option_context('mode.use_inf_as_na', True):\n", "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", " with pd.option_context('mode.use_inf_as_na', True):\n", "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", @@ -3277,7 +3265,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 141, "metadata": {}, "outputs": [ { @@ -3406,7 +3394,7 @@ "P-value 2.417229e-17 2.430304e-10 1.000000 " ] }, - "execution_count": 35, + "execution_count": 141, "metadata": {}, "output_type": "execute_result" } @@ -3475,7 +3463,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 142, "metadata": {}, "outputs": [ { @@ -3630,7 +3618,7 @@ "16 total_sqft inf" ] }, - "execution_count": 36, + "execution_count": 142, "metadata": {}, "output_type": "execute_result" } @@ -3701,7 +3689,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 143, "metadata": {}, "outputs": [], "source": [ @@ -3718,7 +3706,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 144, "metadata": {}, "outputs": [], "source": [ @@ -3732,7 +3720,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 145, "metadata": {}, "outputs": [], "source": [ @@ -3771,7 +3759,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 146, "metadata": {}, "outputs": [], "source": [ @@ -3791,7 +3779,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 147, "metadata": {}, "outputs": [], "source": [ @@ -3854,7 +3842,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 148, "metadata": {}, "outputs": [ { @@ -3886,7 +3874,7 @@ " 262383.4993975565)" ] }, - "execution_count": 43, + "execution_count": 148, "metadata": {}, "output_type": "execute_result" } @@ -3944,7 +3932,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 149, "metadata": {}, "outputs": [ { @@ -4037,7 +4025,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 150, "metadata": {}, "outputs": [ { @@ -4210,7 +4198,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 151, "metadata": {}, "outputs": [ { @@ -4223,7 +4211,7 @@ "Model: OLS Adj. R-squared: 0.641\n", "Method: Least Squares F-statistic: 3768.\n", "Date: Wed, 01 May 2024 Prob (F-statistic): 0.00\n", - "Time: 13:34:57 Log-Likelihood: -2.9014e+05\n", + "Time: 17:52:01 Log-Likelihood: -2.9014e+05\n", "No. Observations: 21142 AIC: 5.803e+05\n", "Df Residuals: 21131 BIC: 5.804e+05\n", "Df Model: 10 \n", @@ -4290,7 +4278,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 152, "metadata": {}, "outputs": [ { @@ -4350,7 +4338,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 153, "metadata": {}, "outputs": [ { @@ -4468,7 +4456,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 154, "metadata": {}, "outputs": [ { @@ -4568,7 +4556,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 155, "metadata": {}, "outputs": [ { @@ -4601,7 +4589,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 156, "metadata": {}, "outputs": [], "source": [ @@ -4610,7 +4598,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 157, "metadata": {}, "outputs": [], "source": [ @@ -4619,7 +4607,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 158, "metadata": {}, "outputs": [ { @@ -4679,7 +4667,7 @@ }, { "cell_type": "code", - "execution_count": 106, + "execution_count": 159, "metadata": {}, "outputs": [ { @@ -4725,7 +4713,7 @@ }, { "cell_type": "code", - "execution_count": 105, + "execution_count": 160, "metadata": {}, "outputs": [ { @@ -4765,7 +4753,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 161, "metadata": {}, "outputs": [ { @@ -4807,7 +4795,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 162, "metadata": {}, "outputs": [ { @@ -4822,7 +4810,7 @@ "Model: OLS Adj. R-squared: 0.678\n", "Method: Least Squares F-statistic: 557.0\n", "Date: Wed, 01 May 2024 Prob (F-statistic): 0.00\n", - "Time: 12:27:46 Log-Likelihood: -3540.2\n", + "Time: 17:52:07 Log-Likelihood: -3540.2\n", "No. Observations: 16913 AIC: 7210.\n", "Df Residuals: 16848 BIC: 7713.\n", "Df Model: 64 \n", @@ -5033,7 +5021,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 163, "metadata": {}, "outputs": [ { From d51ef166359b72da16fa4c9dc00838fa355f658d Mon Sep 17 00:00:00 2001 From: Paul Muniu Date: Wed, 1 May 2024 19:15:15 +0300 Subject: [PATCH 19/27] update README.md --- README.md | 180 +++++++++++++----------------------------------------- 1 file changed, 42 insertions(+), 138 deletions(-) diff --git a/README.md b/README.md index e770ce06..5b0cd08c 100644 --- a/README.md +++ b/README.md @@ -8,6 +8,7 @@ In the fast-paced world of real estate, it's crucial for agencies to provide cli ### Business Problem Real estate experts in King County need help understanding what factors influence property values and market trends. This study aims to analyze property features, locations, buyer preferences, and market changes over time. By gaining insights from this analysis, real estate professionals can make informed decisions about buying, selling, and positioning themselves in the dynamic King County market. The goal is to provide practical advice to help them succeed in this ever-changing real estate landscape. + ### The Data Understanding King County, Washington, situated in the northwest of the United States, is known for its vibrant housing market centered around Seattle. The county has experienced significant growth due to its strong economy and cultural importance, attracting a large number of residents and creating high demand for housing in both urban and suburban areas. Seattle, with its impressive skyline, is especially sought after by tech professionals and city lovers. King County's real estate market is competitive, offering a range of neighborhoods to suit different preferences, from historic areas to modern suburban developments @@ -20,79 +21,8 @@ price: Sale price of the house . id - Unique identifier for a house **Property Characteristics:** +![property-characteristics](images/property-characteristics.png) - - -bathrooms: Number of bathrooms. - -sqft_living: Square footage of living space in the home. - -sqft_lot: Square footage of the lot. - -floors: Number of floors (levels) in the house. - -waterfront: Indicates whether the house is on a waterfront (categorical: YES/NO). - -view: Quality of view from the house, categorized into various types. - -condition: Overall condition of the house, categorized based on maintenance. - -grade: Overall grade of the house, reflecting construction and design quality. - -Additional Features: -sqft_above: Square footage of house apart from the basement. - -sqft_basement: Square footage of the basement. - -yr_built: Year when the house was built. - -yr_renovated: Year when the house was renovated. - -zipcode: ZIP Code of the property. - -lat: Latitude coordinate of the property. - -long: Longitude coordinate of the property. - -sqft_living15: Square footage of interior housing living space for the nearest 15 neighbors. - -sqft_lot15: Square footage of the land lots of the nearest 15 neighbors.bedrooms: Number of bedrooms. - -bathrooms: Number of bathrooms. - -sqft_living: Square footage of living space in the home. - -sqft_lot: Square footage of the lot. - -floors: Number of floors (levels) in the house. - -waterfront: Indicates whether the house is on a waterfront (categorical: YES/NO). - -view: Quality of view from the house, categorized into various types. - -condition: Overall condition of the house, categorized based on maintenance. - -grade: Overall grade of the house, reflecting construction and design quality. - -**Additional Features:** - -sqft_above: Square footage of house apart from the basement. - -sqft_basement: Square footage of the basement. - -yr_built: Year when the house was built. - -yr_renovated: Year when the house was renovated. - -zipcode: ZIP Code of the property. - -lat: Latitude coordinate of the property. - -long: Longitude coordinate of the property. - -sqft_living15: Square footage of interior housing living space for the nearest 15 neighbors. - -sqft_lot15: Square footage of the land lots of the nearest 15 neighbors. ### Key Points # **OBJECTIVES** @@ -119,12 +49,12 @@ Offer practical recommendations to real estate agencies aimed at enhancing profi # **TABLE OF CONTENT** 1. Data Preparation 2. Data cleaning -1. Exploratory data analysis -2. Statistical Analysis -1. Modelling -2. Regression Results -1. Conclusion -2. Recomendations +3. Exploratory data analysis +4. Statistical Analysis +5. Modelling +6. Regression Results +7. Conclusion +8. Recomendations #**Statistical Analysis** @@ -136,7 +66,7 @@ Distribution Analysis Inferential Statistics using Hypothesis Testing and Analysis of Variance MultiColinierity # *Modelling** -Baseline model - simple linear model. +1. Baseline model - simple linear model. 2. log transformation. 3. Multiple Linear Regression 4. Residual modelling. @@ -144,89 +74,62 @@ Baseline model - simple linear model. # **REGRESSION RESULTS** **SIMPLE LINEAR REGRESSION** -Intercept: This is like the starting point or baseline of our predictions. For example, if all other factors were zero, we'd expect the value to be around -44593.95. It's where our line would intersect the y-axis on a graph. - -Coefficient: This tells us how much the predicted value changes for each unit increase in the independent variable. In this case, for every one-unit increase in the independent variable, we'd expect the dependent variable to increase by about 281.41. - -R-squared: This is a measure of how well our model explains the variation in the data. An R-squared value of 0.49 means that about 49% of the variability in the dependent variable is explained by our model. So, it's doing a decent job, but there's still room for improvement. - -Mean Squared Error (MSE): This tells us, on average, how much our predictions differ from the actual values in the training data. Here, the average squared difference is around 68601152192.94, which is quite large but it's relative to the scale of the dependent variable. - -Root Mean Squared Error (RMSE): This is just the square root of the MSE. It gives us an idea of the average amount our predictions are off by. Here, it's around 261918.22, which is the typical difference between our predicted values and the actual values in the training data. - -Test Set: +R-squared (0.48): Indicates that approximately 48% of the variability in house prices is explained by the square footage of living space. It measures how well the model captures patterns in the data. +Mean Squared Error (MSE) (68845100756.11): Represents the average squared difference between actual and predicted house prices. Lower values indicate better accuracy, but here, the MSE is quite large, suggesting room for improvement. +Root Mean Squared Error (RMSE) (262383.50): This is the square root of the MSE, providing a measure of typical deviation between predicted and actual house prices. The RMSE is approximately 262,383.50 units. +Intercept (540631.16): Estimated house price when all independent variables are zero. It's around 540,631.16 units, suggesting a baseline value. +Coefficient (259767.82): Represents the change in house prices for a one-unit increase in square footage of living space, with other variables held constant. For every one-unit increase in square footage, house prices are expected to increase by approximately 259,767.82 units. -R-squared: Similar to the training set, this tells us how well our model explains the variation in the test data. An R-squared value of 0.48 means that about 48% of the variability in the dependent variable is explained by our model when evaluated on the test data. - -Mean Squared Error (MSE): This is the average squared difference between our predictions and the actual values in the test data. It's around 68845100756.11, similar to the MSE in the training set. - -Root Mean Squared Error (RMSE): Again, this is just the square root of the MSE for the test data. It's around 262383.50, which is the typical difference between our predicted values and the actual values in the test data -Overall -, the model suggests that there is a positive relationship between the independent and dependent variables. However, given the moderate R-squared value and the relatively high MSE and RMSE, it's clear that there may be other factors influencing the dependent variable that are not captured by the model. Further investigation or refinement of the model may be needed to improve its predictive performance. # ** Multiple Linear Regresion -![alt text](image-1.png) +![Multiple-Linear-Regression](images/Multiple-Linear-Regression.png) + # **RESIDUALS** -![alt text](image-3.png) +![Residuals](images/Residuals.png) A p-value of 3.975373048166964e-258, which is extremely close to zero, indicates strong evidence against the null hypothesis of homoscedasticity. In other words, there is a significant presence of heteroscedasticity in your data. Heteroscedasticity refers to the situation where the variability of a variable is unequal across the range of values of a second variable that predicts it. In the context of regression analysis, it means that the variance of the errors is not constant across observations. The model identifies the main factors that affect house prices, giving useful advice to real estate companies when they help customers. It's not perfect, but it does an okay job with a 63.1% score. We still need to check if it can predict prices well. However, the model does its job by helping with decisions and making marketing better by using details about houses and the market. We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation. -#**Log transformation**. -Transforming the dependent variable or one or more independent variables can sometimes stabilize the variance. Common transformations include taking the natural logarithm, square root, or reciprocal of the variables. - -Log transformation of the multiple linear regression. -![alt text](image-4.png) - -![alt text](image-5.png) -The model's residuals are randomly distributed, indicating no systematic bias. The log transformation visualizes residuals and patterns. A horizontal red line suggests linearity and normality are satisfied, but does not provide a definitive answer on model goodness fit and additional technique's could be used to assess the model. -visualization of the positive and negative coefficient variables. -R-squared: The R-squared value indicates that approximately 71.61% of the variance in the target variable (price) is explained by the model. - -MSE (Mean Squared Error): The MSE of approximately 37,774,083,176.84 represents the average squared difference between the predicted and actual house prices. -Coefficients: The coefficients represent the estimated effect of each predictor variable on the target variable. For example: The coefficient for const (intercept) is 4987.94. The coefficient for x1 (bathrooms) is 3457.38. The coefficient for x2 (sqft_living) is -16.53. The coefficient for x3 (floors) is -16.98. The coefficient for x4 (waterfront) is -59.75. The coefficient for x5 (condition) is -66.70. The coefficient for x6 (grade) is 21.71. The coefficient for x7 (sqft_basement) is 56.12. The coefficient for x8 (yr_built) and other coefficients follow. +# **Log transformation**. +Transforming the dependent variable or one or more independent variables can sometimes stabilize the variance. Common transformations include taking the natural logarithm, square root, or reciprocal of the variables. -P-values: P-values indicate the statistical significance of the coefficients. A small p-value (typically < 0.05) suggests that the corresponding predictor variable is statistically significant in predicting the target variable. In this summary, some coefficients have p-values less than 0.05, indicating statistical significance, while others do not. +*Log transformation of the multiple linear regression.* -F-statistic: The F-statistic tests the overall significance of the model. A low p-value (typically < 0.05) suggests that at least one of the predictors has a non-zero coefficient, indicating that the model as a whole is statistically significant. +![Log-transformation](images/Log-transformation.png) -Overall, the summary provides valuable insights into the relationships between the predictor variables and the target variable, as well as the overall goodness-of-fit of the model. +Residual Analysis: The model's residuals are randomly distributed, indicating no systematic bias. Log transformation helps visualize residuals and patterns. A horizontal red line suggests linearity and normality but does not conclusively determine model goodness-of-fit. +R-squared (71.61%): Indicates that approximately 71.61% of the variance in the target variable (price) is explained by the model. +Mean Squared Error (MSE): Approximately 37,774,083,176.84, representing the average squared difference between predicted and actual house prices. +Coefficients: Represent the estimated effect of each predictor variable on the target variable. For example, the coefficient for bathrooms is 3457.38, sqft_living is -16.53, floors is -16.98, waterfront is -59.75, condition is -66.70, and so on. +P-values: Indicate the statistical significance of the coefficients. Some coefficients have p-values < 0.05, indicating statistical significance, while others do not. +F-statistic: Tests the overall significance of the model. A low p-value (< 0.05) suggests the model as a whole is statistically significant. -![alt text](image-6.png) -#**REGRESSION Results** +# **REGRESSION Results** From all the models observed,We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation. Polynomial Regression is the preferred model beacuse from the evaluation it has the highest R-squared value of 0.73 The features below impact price such that an increase will cause an increase in the price of the property. 'bedrooms','bathrooms', 'sqft_living','floors', 'waterfront','view''condition', 'grade', 'sqft_above','sqft_basement', 'yr_renovated', 'sqft_living15','renovated', 'basement' -# **Assumptions** -Linearity: The relationship between the independent variables (predictors) and the dependent variable (response) is linear. This means that a change in the independent variable corresponds to a proportional change in the dependent variable. - -Independence of errors: The errors (residuals) from the regression model should be independent of each other. In other words, the residual for one observation should not predict the residual for another observation. -Normality of errors: The errors are normally distributed. This implies that the residuals should follow a normal distribution with a mean of zero. -No perfect multicollinearity: There should be no perfect linear relationship between the independent variables. In other words, no independent variable should be a perfect linear combination of other independent variables. -#**Limitations** -Despite its effectiveness in predicting property prices, the model has several limitations that need to be addressed: +# **Assumptions** +1. Linearity: The relationship between the independent variables (predictors) and the dependent variable (response) is linear. This means that a change in the independent variable corresponds to a proportional change in the dependent variable. -Limited Property Characteristics: The dataset may lack comprehensive property-based characteristics, potentially limiting the model's ability to capture the full range of factors influencing housing prices. +2. Independence of errors: The errors (residuals) from the regression model should be independent of each other. In other words, the residual for one observation should not predict the residual for another observation. -Multicollinearity Concerns: The presence of correlated predictors, such as square footage and number of bedrooms, can introduce multicollinearity issues. This makes it difficult to discern the individual impact of each feature accurately, potentially affecting the model's reliability. +3. Normality of errors: The errors are normally distributed. This implies that the residuals should follow a normal distribution with a mean of zero. -Assumption Violations: Polynomial regression relies on the assumption of linearity between predictors and the target variable. However, in reality, this assumption may not always hold true, leading to biased estimates and less dependable predictions.Also heteroscedasticity was present. +4. No perfect multicollinearity: There should be no perfect linear relationship between the independent variables. In other words, no independent variable should be a perfect linear combination of other independent variables. -Overfitting Risk: Polynomial regression models, especially those with high degrees, are prone to overfitting. This occurs when the model fits the training data too closely, capturing noise rather than underlying patterns. As a result, the model may struggle to generalize well to unseen data, impacting its predictive performance. **Limitations** -1. The dataset could have more property based characteristics -2. Multicollinearity:The presence of correlated predictors (e.g., square footage and number of bedrooms) can lead to multicollinearity issues, making it challenging to interpret the individual effects of each feature accurately - -1. Assumption Violations:Polynomial regression assumes linearity between predictors and the target variable, which may not hold true in all cases. Violations of this assumption can lead to biased estimates and unreliable predictions. -1. Overfitting: Polynomial regression models, particularly those with high degrees, are susceptible to overfitting, where the model fits the training data too closely and may not generalize well to unseen data. +1. The dataset could have more property based characteristics +2. Multicollinearity:The presence of correlated predictors (e.g., square footage and number of bedrooms) can lead to multicollinearity issues, making it challenging to interpret the individual effects of each feature accurately +3. Assumption Violations:Polynomial regression assumes linearity between predictors and the target variable, which may not hold true in all cases. Violations of this assumption can lead to biased estimates and unreliable predictions. +4. Overfitting: Polynomial regression models, particularly those with high degrees, are susceptible to overfitting, where the model fits the training data too closely and may not generalize well to unseen data. Overall the model was the best fit model for this predictions # **RECOMENDATIONS** @@ -247,15 +150,16 @@ Overall the model was the best fit model for this predictions 6.Differentiate Marketing Strategies: Tailor marketing strategies based on property condition and grade ratings. Highlight the benefits of higher-grade properties to attract premium buyers, while emphasizing renovation potential for properties with lower condition ratings. + # ** Conclusion** -Property Size Matters: There is a clear positive correlation between the size of a property, indicated by total square footage, and its price. Investing in larger properties can potentially yield higher returns for investors and increase market value for homeowners. +1. Property Size Matters: There is a clear positive correlation between the size of a property, indicated by total square footage, and its price. Investing in larger properties can potentially yield higher returns for investors and increase market value for homeowners. -Strategic Upgrades Add Value: Upgrading existing properties with strategic renovations and expansions, particularly those that increase square footage, can enhance their market value. Quality improvements that improve functionality and aesthetics are key to maximizing property value. +2. Strategic Upgrades Add Value: Upgrading existing properties with strategic renovations and expansions, particularly those that increase square footage, can enhance their market value. Quality improvements that improve functionality and aesthetics are key to maximizing property value. -Balance is Key: While adding extra bedrooms and bathrooms can increase a property's price, there's a point of diminishing returns. It's important to strike a balance between quantity and quality, optimizing the bedroom-to-bathroom ratio to align with market trends and buyer preferences. +3. Balance is Key: While adding extra bedrooms and bathrooms can increase a property's price, there's a point of diminishing returns. It's important to strike a balance between quantity and quality, optimizing the bedroom-to-bathroom ratio to align with market trends and buyer preferences. -Marketing Differentiation is Essential: Tailoring marketing strategies based on property condition and grade ratings is crucial. Highlighting the unique features and benefits of higher-grade properties can attract premium buyers, while emphasizing renovation potential for properties with lower ratings can appeal to savvy investors. +4. Marketing Differentiation is Essential: Tailoring marketing strategies based on property condition and grade ratings is crucial. Highlighting the unique features and benefits of higher-grade properties can attract premium buyers, while emphasizing renovation potential for properties with lower ratings can appeal to savvy investors. From e21432fda5aed9e5987b387b715351e9ce791b05 Mon Sep 17 00:00:00 2001 From: Paul Muniu Date: Wed, 1 May 2024 19:17:12 +0300 Subject: [PATCH 20/27] add images --- .vscode/extensions.json | 3 + README ().md | 261 -------------------------- images/Log-transformation.png | Bin 0 -> 60865 bytes images/Multiple-Linear-Regression.png | Bin 0 -> 51532 bytes images/Polynomial-Regression.png | Bin 0 -> 28625 bytes images/Residuals.png | Bin 0 -> 31283 bytes images/Simple linear Regression.png | Bin 0 -> 51532 bytes images/property-characteristics.png | Bin 0 -> 114287 bytes 8 files changed, 3 insertions(+), 261 deletions(-) create mode 100644 .vscode/extensions.json delete mode 100644 README ().md create mode 100644 images/Log-transformation.png create mode 100644 images/Multiple-Linear-Regression.png create mode 100644 images/Polynomial-Regression.png create mode 100644 images/Residuals.png create mode 100644 images/Simple linear Regression.png create mode 100644 images/property-characteristics.png diff --git a/.vscode/extensions.json b/.vscode/extensions.json new file mode 100644 index 00000000..7e257db9 --- /dev/null +++ b/.vscode/extensions.json @@ -0,0 +1,3 @@ +{ + "recommendations": [] +} \ No newline at end of file diff --git a/README ().md b/README ().md deleted file mode 100644 index b73faf72..00000000 --- a/README ().md +++ /dev/null @@ -1,261 +0,0 @@ -# REAL ESTATE SALES PREDICTION MODEL - -## Project Overview - -In the fast-paced world of real estate, it's crucial for agencies to provide clients with precise information. Clients, whether they're looking to become homeowners or investors, rely on real estate companies for guidance on important decisions such as pricing, market trends, and property evaluations. To meet this need, real estate agencies can benefit from a sophisticated regression-based tool. This tool uses various property variables like the number of bedrooms, year built, floor count, living area, condition, location, and amenities to accurately predict property prices. By employing regression analysis, agencies can offer clients more precise pricing estimates, leading to better-informed decisions. Ultimately, this tool aims to improve client satisfaction, streamline decision-making processes, and drive success for real estate agencies. - - -### Business Problem - -Real estate experts in King County need help understanding what factors influence property values and market trends. This study aims to analyze property features, locations, buyer preferences, and market changes over time. By gaining insights from this analysis, real estate professionals can make informed decisions about buying, selling, and positioning themselves in the dynamic King County market. The goal is to provide practical advice to help them succeed in this ever-changing real estate landscape. -### The Data Understanding - -King County, Washington, situated in the northwest of the United States, is known for its vibrant housing market centered around Seattle. The county has experienced significant growth due to its strong economy and cultural importance, attracting a large number of residents and creating high demand for housing in both urban and suburban areas. Seattle, with its impressive skyline, is especially sought after by tech professionals and city lovers. King County's real estate market is competitive, offering a range of neighborhoods to suit different preferences, from historic areas to modern suburban developments -**Target Variable** - -price: Sale price of the house . - -**Unique identifier** - -id - Unique identifier for a house - -**Property Characteristics:** - - - -bathrooms: Number of bathrooms. - -sqft_living: Square footage of living space in the home. - -sqft_lot: Square footage of the lot. - -floors: Number of floors (levels) in the house. - -waterfront: Indicates whether the house is on a waterfront (categorical: YES/NO). - -view: Quality of view from the house, categorized into various types. - -condition: Overall condition of the house, categorized based on maintenance. - -grade: Overall grade of the house, reflecting construction and design quality. - -Additional Features: -sqft_above: Square footage of house apart from the basement. - -sqft_basement: Square footage of the basement. - -yr_built: Year when the house was built. - -yr_renovated: Year when the house was renovated. - -zipcode: ZIP Code of the property. - -lat: Latitude coordinate of the property. - -long: Longitude coordinate of the property. - -sqft_living15: Square footage of interior housing living space for the nearest 15 neighbors. - -sqft_lot15: Square footage of the land lots of the nearest 15 neighbors.bedrooms: Number of bedrooms. - -bathrooms: Number of bathrooms. - -sqft_living: Square footage of living space in the home. - -sqft_lot: Square footage of the lot. - -floors: Number of floors (levels) in the house. - -waterfront: Indicates whether the house is on a waterfront (categorical: YES/NO). - -view: Quality of view from the house, categorized into various types. - -condition: Overall condition of the house, categorized based on maintenance. - -grade: Overall grade of the house, reflecting construction and design quality. - -**Additional Features:** - -sqft_above: Square footage of house apart from the basement. - -sqft_basement: Square footage of the basement. - -yr_built: Year when the house was built. - -yr_renovated: Year when the house was renovated. - -zipcode: ZIP Code of the property. - -lat: Latitude coordinate of the property. - -long: Longitude coordinate of the property. - -sqft_living15: Square footage of interior housing living space for the nearest 15 neighbors. - -sqft_lot15: Square footage of the land lots of the nearest 15 neighbors. -### Key Points - -# **OBJECTIVES** - - -**Main Objective:** - -The primary aim of this project is to develop a predictive regression model to support real estate agencies in advising clients on house prices. This model is intended to anticipate potential changes in property value based on property characteristics, furnishing clients with valuable insights to facilitate informed investment decisions. - -Specific Goals: - -i). Identification of Key Influencing Factors on House Prices: - -Analyze various property features, including bedrooms, bathrooms, and square footage, to determine their impact on sale price. Investigate location-related attributes such as zip codes and geographic coordinates to further comprehend their effect on property prices. - -ii). Assessment of Model Performance: - -Employ metrics such as mean squared error, R-squared values, and residual analysis to evaluate the model's accuracy in predicting house prices effectively. - -iii). Provision of Actionable Recommendations: - -Offer practical recommendations to real estate agencies aimed at enhancing profitability and market presence. Utilize insights gleaned from the model to optimize marketing strategies and enhance overall decision-making processes. - -# **TABLE OF CONTENT** -1. Data Preparation -2. Data cleaning -1. Exploratory data analysis -2. Statistical Analysis -1. Modelling -2. Regression Results -1. Conclusion -2. Recomendations - - -#**Statistical Analysis** -Statistical analysis plays a crucial role in understanding relationships within datasets, identifying patterns, and gaining insights. In this regression modeling project aimed at predicting property values, several key steps in statistical analysis are essential: - -Descriptive Statistics -Correlation matrix -Distribution Analysis -Inferential Statistics using Hypothesis Testing and Analysis of Variance -MultiColinierity -# *Modelling** -Baseline model - simple linear model. -2. log transformation. -3. Multiple Linear Regression -4. Residual modelling. - -# **REGRESSION RESULTS** - -**SIMPLE LINEAR REGRESSION** -Intercept: This is like the starting point or baseline of our predictions. For example, if all other factors were zero, we'd expect the value to be around -44593.95. It's where our line would intersect the y-axis on a graph. - -Coefficient: This tells us how much the predicted value changes for each unit increase in the independent variable. In this case, for every one-unit increase in the independent variable, we'd expect the dependent variable to increase by about 281.41. - -R-squared: This is a measure of how well our model explains the variation in the data. An R-squared value of 0.49 means that about 49% of the variability in the dependent variable is explained by our model. So, it's doing a decent job, but there's still room for improvement. - -Mean Squared Error (MSE): This tells us, on average, how much our predictions differ from the actual values in the training data. Here, the average squared difference is around 68601152192.94, which is quite large but it's relative to the scale of the dependent variable. - -Root Mean Squared Error (RMSE): This is just the square root of the MSE. It gives us an idea of the average amount our predictions are off by. Here, it's around 261918.22, which is the typical difference between our predicted values and the actual values in the training data. - -Test Set: - -R-squared: Similar to the training set, this tells us how well our model explains the variation in the test data. An R-squared value of 0.48 means that about 48% of the variability in the dependent variable is explained by our model when evaluated on the test data. - -Mean Squared Error (MSE): This is the average squared difference between our predictions and the actual values in the test data. It's around 68845100756.11, similar to the MSE in the training set. - -Root Mean Squared Error (RMSE): Again, this is just the square root of the MSE for the test data. It's around 262383.50, which is the typical difference between our predicted values and the actual values in the test data -Overall -, the model suggests that there is a positive relationship between the independent and dependent variables. However, given the moderate R-squared value and the relatively high MSE and RMSE, it's clear that there may be other factors influencing the dependent variable that are not captured by the model. Further investigation or refinement of the model may be needed to improve its predictive performance. -# ** Multiple Linear Regresion -![alt text](image-1.png) -# **RESIDUALS** -![alt text](image-3.png) -A p-value of 3.975373048166964e-258, which is extremely close to zero, indicates strong evidence against the null hypothesis of homoscedasticity. In other words, there is a significant presence of heteroscedasticity in your data. - -Heteroscedasticity refers to the situation where the variability of a variable is unequal across the range of values of a second variable that predicts it. In the context of regression analysis, it means that the variance of the errors is not constant across observations. -The model identifies the main factors that affect house prices, giving useful advice to real estate companies when they help customers. It's not perfect, but it does an okay job with a 63.1% score. We still need to check if it can predict prices well. However, the model does its job by helping with decisions and making marketing better by using details about houses and the market. - -We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation. -#**Log transformation**. -Transforming the dependent variable or one or more independent variables can sometimes stabilize the variance. Common transformations include taking the natural logarithm, square root, or reciprocal of the variables. - -Log transformation of the multiple linear regression. -![alt text](image-4.png) - -![alt text](image-5.png) -The model's residuals are randomly distributed, indicating no systematic bias. The log transformation visualizes residuals and patterns. A horizontal red line suggests linearity and normality are satisfied, but does not provide a definitive answer on model goodness fit and additional technique's could be used to assess the model. -visualization of the positive and negative coefficient variables. -R-squared: The R-squared value indicates that approximately 71.61% of the variance in the target variable (price) is explained by the model. - -MSE (Mean Squared Error): The MSE of approximately 37,774,083,176.84 represents the average squared difference between the predicted and actual house prices. - -Coefficients: The coefficients represent the estimated effect of each predictor variable on the target variable. For example: The coefficient for const (intercept) is 4987.94. The coefficient for x1 (bathrooms) is 3457.38. The coefficient for x2 (sqft_living) is -16.53. The coefficient for x3 (floors) is -16.98. The coefficient for x4 (waterfront) is -59.75. The coefficient for x5 (condition) is -66.70. The coefficient for x6 (grade) is 21.71. The coefficient for x7 (sqft_basement) is 56.12. The coefficient for x8 (yr_built) and other coefficients follow. - -P-values: P-values indicate the statistical significance of the coefficients. A small p-value (typically < 0.05) suggests that the corresponding predictor variable is statistically significant in predicting the target variable. In this summary, some coefficients have p-values less than 0.05, indicating statistical significance, while others do not. - -F-statistic: The F-statistic tests the overall significance of the model. A low p-value (typically < 0.05) suggests that at least one of the predictors has a non-zero coefficient, indicating that the model as a whole is statistically significant. - -Overall, the summary provides valuable insights into the relationships between the predictor variables and the target variable, as well as the overall goodness-of-fit of the model. - -![alt text](image-6.png) -#**REGRESSION Results** - -From all the models observed,We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation. - -Polynomial Regression is the preferred model beacuse from the evaluation it has the highest R-squared value of 0.73 - -The features below impact price such that an increase will cause an increase in the price of the property. 'bedrooms','bathrooms', 'sqft_living','floors', 'waterfront','view''condition', 'grade', 'sqft_above','sqft_basement', 'yr_renovated', 'sqft_living15','renovated', 'basement' -# **Assumptions** -Linearity: The relationship between the independent variables (predictors) and the dependent variable (response) is linear. This means that a change in the independent variable corresponds to a proportional change in the dependent variable. - -Independence of errors: The errors (residuals) from the regression model should be independent of each other. In other words, the residual for one observation should not predict the residual for another observation. - -Normality of errors: The errors are normally distributed. This implies that the residuals should follow a normal distribution with a mean of zero. - -No perfect multicollinearity: There should be no perfect linear relationship between the independent variables. In other words, no independent variable should be a perfect linear combination of other independent variables. -#**Limitations** -Despite its effectiveness in predicting property prices, the model has several limitations that need to be addressed: - -Limited Property Characteristics: The dataset may lack comprehensive property-based characteristics, potentially limiting the model's ability to capture the full range of factors influencing housing prices. - -Multicollinearity Concerns: The presence of correlated predictors, such as square footage and number of bedrooms, can introduce multicollinearity issues. This makes it difficult to discern the individual impact of each feature accurately, potentially affecting the model's reliability. - -Assumption Violations: Polynomial regression relies on the assumption of linearity between predictors and the target variable. However, in reality, this assumption may not always hold true, leading to biased estimates and less dependable predictions.Also heteroscedasticity was present. - -Overfitting Risk: Polynomial regression models, especially those with high degrees, are prone to overfitting. This occurs when the model fits the training data too closely, capturing noise rather than underlying patterns. As a result, the model may struggle to generalize well to unseen data, impacting its predictive performance. - -**Limitations** -1. The dataset could have more property based characteristics -2. Multicollinearity:The presence of correlated predictors (e.g., square footage and number of bedrooms) can lead to multicollinearity issues, making it challenging to interpret the individual effects of each feature accurately - -1. Assumption Violations:Polynomial regression assumes linearity between predictors and the target variable, which may not hold true in all cases. Violations of this assumption can lead to biased estimates and unreliable predictions. -1. Overfitting: Polynomial regression models, particularly those with high degrees, are susceptible to overfitting, where the model fits the training data too closely and may not generalize well to unseen data. -Overall the model was the best fit model for this predictions - -# **RECOMENDATIONS** - -1.Invest in Larger Properties: Investors seeking maximum returns should focus on larger houses, as there's a positive correlation between total square footage and price. Such properties have the potential for higher profits upon resale or rental. - - -2.Upgrade Existing Properties: Homeowners can increase their property's value by investing in upgrades that increase square footage, such as adding extra rooms or expanding living spaces. - - -3.Optimize Bedroom and Bathroom Ratios: It's essential to find the right balance between bedrooms and bathrooms to maximize property value. Consulting with real estate professionals can help determine the optimal ratio based on market trends and buyer preferences. - - -4.Focus on Quality Over Quantity: Prioritize quality improvements that enhance functionality and aesthetics, such as renovating bathrooms with modern fixtures or upgrading kitchen appliances, to add perceived value to the property. - - -5.Highlight Features in Listings: Emphasize the number of bedrooms and bathrooms in property listings to attract buyers who prioritize space and convenience. Highlight unique features that add versatility to the property. - - -6.Differentiate Marketing Strategies: Tailor marketing strategies based on property condition and grade ratings. Highlight the benefits of higher-grade properties to attract premium buyers, while emphasizing renovation potential for properties with lower condition ratings. -# ** Conclusion** - -Property Size Matters: There is a clear positive correlation between the size of a property, indicated by total square footage, and its price. Investing in larger properties can potentially yield higher returns for investors and increase market value for homeowners. - - -Strategic Upgrades Add Value: Upgrading existing properties with strategic renovations and expansions, particularly those that increase square footage, can enhance their market value. Quality improvements that improve functionality and aesthetics are key to maximizing property value. - - -Balance is Key: While adding extra bedrooms and bathrooms can increase a property's price, there's a point of diminishing returns. It's important to strike a balance between quantity and quality, optimizing the bedroom-to-bathroom ratio to align with market trends and buyer preferences. - - -Marketing Differentiation is Essential: Tailoring marketing strategies based on property condition and grade ratings is crucial. Highlighting the unique features and benefits of higher-grade properties can attract premium buyers, while emphasizing renovation potential for properties with lower ratings can appeal to savvy investors. diff --git a/images/Log-transformation.png b/images/Log-transformation.png new file mode 100644 index 0000000000000000000000000000000000000000..9395317ad3998731e51f810a023a400bbbe1551e GIT binary patch literal 60865 zcmcHhbyQVf^garMAR!IXND3m|9nvMzjWmLEcXxM#AdPf`q;!ddba!_*cO5_9-@U(k z?|8>}-#=alj&s=Tz0cZn&GpP@K5NbsD*s6Wgfun3%cN2LY!|e$PTOSIrs5osy=&2B)S27ZSc;E#A8|dh&)hz@ z;Tt(8Meu|CgmCq}-bY1;6@vT(5Xb1t{P+GXtkDeSe@79a@$3J4Co23Qi2mQ1u(9a> zU!5u%kGj*~tZ4^<)|jTu7tfJI+$>a{ zNE_+aZ9+mq&`l1zenS3mJx#o6_}q4R%j$nJxUuFNtfTd#5jq>y4HlvONOL5%|9q>m zSrtBBwrU_W8OiJkXKV|>XZ`Zs^?Yk*zM;Zudw;ruM91?|McZ*wrRfbT&VtwdVG5UR z&h>Fq6Aux$9V{WIRrl`S!Ya4Ry_o37wQxq3x{{KTE-X1d-&9tUPP4io4}n(oMjNu? z;^G!>!OIDyrD?G=c5|FdFR3c8N4E?CPXh2E!HZVWj?SH5z$o$fT$t{zkE6}Ye^N~? zk|Br)L99#$t_cFq#=UbnZ{7Z;)$Ot~li%He-9oF@)E9?dbH}MgeJn>T{JZV`Y|Xnr znf&3Mox*}S&NOS-O`*fvDL&BtxLIotZ1bLJJ7_gZWQ`Q;VrN(u_TQEzy2blbhE zj=~sf%_d*@!=ZEzCel`Y{ac{!988M*GLRe{7P@3IEH5wb`?Rk6A^U>;2>;G_KGNOg ze(-jdH!(x<(EU>&5-yYZ6y3$qA|dCJ3&m0Ewa&p}^Yne2GIb{yaU_{Y&`LqNl`xo_ zw!1yrc6(xAy=h%<{wN~uwQIK(r_!#~U&SgVHrI>JxiZNNJ5yzZUf0dbt3!3kKkn=PUVkl_%<%cwIiIwQ4CQjW$1O{y>lXfk>-M+C z(_X^ZtgPt8X6Jj)!d!{ywVkotxMhv*U5B+mT%BJl9scasV~0-bBi>J}aA?F4=~hjM zk9U_{;OQTQsiD3X6(K;35y`m}0vUa7w16;hm@ZU|_jGik;N2;(%dwuMAHx(v|cZDaV~pc-9?L_BO(9@84Fl({pSD`<>jb?Pd5}>!|B0$du9vn$E{2C zTJ;tk54Y!IC2EWoOD*_lf)7mfmh(X`k#Jn*e`oR&E_>b6XS(gZw^(e#{>JOv3ziL; z`S-`iWADC+A4;~1j??;JLcoJ{9n98<+%ed1{q8tgY-YAv;5u0Ni6tj+`?l?Ni|}KX zz-JcxlH%f5hP@F&;^J^qWm>`P=2PG6>v6!m_ihd)i|ln>FMFdwnNF8~9(6|zhC$=M zK)*Vi4_3$(*I)0A>>n8DSompQ<$C@FstKW zr0-h-4C<9oa)OU+M~&;K7IU?TkO$N8x;6fo!8OMF$^H7M2Y^?o)nXIm*8gTX6zg5* zp_92l)@$G->73TR{?uT{iKkX)Ln zJn^p<*K;VShD9gB@xOnWt(W*7j-1=O9H&1AgZVaC>ke%^|HBK7Fn_+gyUUb59Jjq( zsSo3I8m_B1S*!xJg5r+;{H15tA*ZQ{;Cy@JnhNG}XAEX?a`I-KP~(x}Z~vCxQtCU8Sq-g>23K>yGcjJ6&|TmB2cj(t7!+3lZZ=i}bm zuYXTw45Oi;+^&xzOUj#GL0lccge@3_;o)4}&T@PEG~U7ALbSNJIJRd7>5nN)9gMG6 z3bVXA0bo3~oN%P0C>4C{0FWA4{<--Dl$p7CmBlQ}#oi%Y+BWo zx@n#Bt6hL0y&)JB4{b7*mh?Cb+B>aY?e|B#rJ8lGhLY&d>m8dHQ+OO{+Mb`>7i_vv z)Z4xIEjS2uJWj=|y+ND|1gHcF#eI+<3D7Tt+a3-e9S?*XK>d>CTnuPFYN9pehTaa=VvCdj1cc}6%oTKXqroD-q0IKU+bt|AE9-gVys&CA8X9CR zC4~r}mgnMN7HdTCnGX_hAdwpq(=CG9L7>6a_3-_nRCw2#nVeiW>r<^+HdAE?57qJE z?zE4@cC8z+<$B2-%IEIx?)!+g^P;2aSk6mg_XFmQ%}v+!uvL>QFvC z1|1OIA{LG#<+TMujOpKk$mt?%d=?`Fr{kqaNR(=Pyqd>vqlbVinCPG%mU<*muz^gF zKzakfE*gN#chCDPF8eKHV(*93?;LIf^A;zl0`GR{yP?O7FL z%T12vP$zDV_V)ItdnFYHGnM*{fOm~m=n5he^WhQo4P0%4u|V8rxhnz;k^g$ZABB+P zdsCBU{W3W~`|~I7FJHdM3;zB47a9r}`UNRp2EBH`Fz^=#*3wB5X4<{l}zW@?N zI33QpMruO!4-Uq8?f`CpB5=EbHG3?DE{nlpftZ6Bo0JqpXx)MVWwRd1nFB&}Bd{Q| z*#z}#Y;0Hl=)}ZCC?DJPUMb>j;Ic1BE&f`8fN+0(+~*4eug8*VvtQO=00@lG{5dY8 z4(!Oe(9*Dcd^zeHo&az@!MjfxA2c-yATE-ZpAQ`~6(}ns(***W2?Tzv+it1A_yQ9W zUL)hPz}j#B5wo+aKKKctQBv_#(CB=|@87=%^MYc*k$zyppwqI$?&5)=i-kgr19(|X zTwLeEQUe;)Xtl9S`!qcc5(^89&Fz`7cB2h6l;6aQ7lK#}zJ1RJH6tezN^+|;BLe=z zU%J3z*k@mY@fKV@wqi+rm_sIDLm-ZZuV^`YHC3S-4KOPQpj8UDJ=M|AZQ_A8>PHT~ zk^3L~l65e7*dz(%!GnX+Ew@|gF6YCX{!3WLp#bBh-JU_r46UxN{ywdws3?q@OBNy; zh^*yj+BtLRLm}h;KR6iWku@D>#eoNx$zT-;}s4G_Q+MgfM;;CdieV}0~jfZfw zJufGrd<36wN4OkzVh*kkN3&s6OVyzp<|DnI@0TIL~>F?_XYC78MnJ5El=chN0$sF9GAa%v=qj-rcC3sj?%Jj#csb}Joa0vQKwrvm;TJ^dmYjbLK@p=3D~jM z-#3{3OxG4XuNQX!j)sMYw@T@@KWs9_CL{y^pIHTw^x_F?ok8v!PvGA|x%I1gYlwG3 zA&9R7bg%^;x&~;7(6-d4PvRhGor1sLyKZzJnqZ7!ZI!UuoUVykSEECDJl$>=fgIrG zbiGxa9;!ltcC(7#W(CU5-rn}gyUl-AHI(s-xdHetmTb}zkp7y z16Fr_?$oph*k>;xgf>&;U@hcIp#2Mht3iY<*Gd2&PC$0!)+Yei0m$<@O|m?<9v2|s z1mc*|SxSC>K3QN9x+u8_v6dg{NwDApv`7$g2cS6$%E|!|5y*f!zyVkgQ&GWoyE@p7 z9N6SS{l?=ce7-e22EdH&bJJ@T6_rN7xK2S{x9*Q7@C#Uwa)i~e7n$#FCpU%9m4(=4 z1^VHn3r&b81Cly`Wl{-pC^qXQBC2>qK)o;Lqn-d=gAVWU1K~<Ib6`2C3<|zKnk-*9++9Sovq(2M84f zi58RVnNfw>10-w%IND2`#%wKZgAj4>p*@gQ@jV5Y;XEr&jM%FAkORW%sHv%cfedNY zhHJFOM9$-OGZ_*H!J~%?c;5M}bA9~AgI)7wxU(}5$#(j)^D3Zfok1vsP?h*gnzy$j z-cetM)AWIHD%I)0j|=d=7Ddy#y1L(egTuo;;Hp!AM>*EZZH*4Qm=M4LY&I8Aw79HP zU@25$zL4dIElxa6E22_WS_nDK0EZ2*Td6)}gus({po7$*ufqG${O!AU>yv7_J&;_% zaeoRL3X-}#?8XZtPR#pTon#UKtr1 z>z{25RL|c*A`K)jm@H8<1V>Eg>*+JS?!H1O&U~*0has3W7ZBo^fhQP!`LYJ`sUCoD zEoYj7_p>9FW|K6fy6wc#{8xD8EoajI(yrb7WG1@}NsouqJ}*QrAM~MSFp|>G%{Y+Q z09Xrz9q>Iroa^Af>X2b<4FJM}KKP`f;$mSy^&VKZp;ti0)eCZ|s4Bz0wN#VL z*oorS%_J?ohWXPDcoJCr`sbTI!INn32Z|lm5x#R|2*IP%sz?4eERzx9gPAHAwa<>& z5DE$6kZa@=B=IXKfa7&K_yxSm29n?$E&NR3b!JdhQgS55@2F|AT^Fa*Z6k^neBv4( z9|!!2b7eDGw-+GLDF9g3WMMA|)dt+>bFT=o#@&MSlS08qL}2CcOx;NtuzF9n1)uTFr%F2j_X4Rigkl43p!drM8Y&>K z|M~j)i3BnMkY^$4TYb7emS}c5^b;0&0?Q${x|-!JBA1_}5tq*X5)M#~FdUtZ7D6Gz zDQj3#{C$HK2;kh|XaOI1$4T22xZLpJ<`fb)jQO)f5B@P85bGeZsp{yJ5ZDoO;u z5Ex>&9kRwnE9;LnnFsR?Xoh`JJi0(AH$L6% z8yn6d=DZjAzXULO>KFe%X<-lzEf!sVvkGo-h_Nf=4xI>o=5QEgUNBc=9haERYgOp~ z_L6;l6WXWbk30|OLLAg)6S?&N;XI7P(_DGje_|d2IT0mE28_xdH(HgZn%CxdzQ zME_MiWyH(>ku`5@k1}e72+er?LU8^^^jwuFQEe$dL?GAvAC)tJ_{`(9d zzd`~gM72d&b@CVH&Vk4(|NeyWy>Z45n1Qgk5fKct(&6hH%4IQxS7MN}k;CUv5)x7r z)J=t?Lh-F$UA|ol0Jay8u3!C)|Ga0BpHBqdXE&yJgva`bCxT0u-uCq1{LVtl;7Q!` zjGUYon{OATv;E%<%?BT~&TOs2a(1Te@Ocl}^`C=vDQH`C6e)0I@N7Qwgg2CcF=b@1 zy?&i%&>8R=ypX?p7s+QNI`RLWk7~2apntQ~DSzYM{IKfUA)ms@sKG+#TknlXVe`Kx z=*@qQEP_$oAY*xt8^albC@iO07w1BQl>4Rw^`A8YvZ?7&h9N@^Q0O0aq~M*0iHhgY z=8lqZs)zsi^CBUi^FJF02}$C~d@&>3Im|iK?WF#HPGG1Z#(#^Y6Fua#YIAcis4$}; z95S5Ptm95Fg+|7=y4D&Rd`<^8F;SKQ->Kce+>mck_w?Q6Y#d@Xc+1FeTYt1%F{!C` znR}wl5&v(N<1)j^{~G{vA+vxge)G4!v(0gy`n9X$oiPp@qGOYV@he6Q+TUNkJ6pS@ zgyFmn`v5$wn`o+Wx+gp_oOSeyQHag5-w>kI|2z7@U*#3}fRF;De+EGO#Fvmf$t#cq z#+vh0_@DP6er!odrgVMlM|$z^p+aCOmj;Ihd-}eZD0$EcpLv@&36sxoB88J(#CixdIyAdH;Nw zMAqwE-!zXTd7Y%L)vhmHJvm{gRYdScUtSm+n=*|85K724(F6XA&UD8in3zn7kn>&` zvVsD{C+csZS3RAP-()N6B$0*`{O8&PUl+ELubf`ZKTr_~5H+u;CwgGXcL82r z)B;A1_-`2p1pIF<&RwuHU}{)v>GfmTZ=(jm&ooT_3{MC>joEHonT=_jqkYc0$}l*0 z^--LHmp0s*r5#%cT^32i-GWiO(FX_$ND@&*v6kl`ZtI<_bTopzD>gYf804soVf=4H zxOY)r4tW8;4HQuVEM_j%cYnCCeIldV6 zw{;IVIUZA$`V1FGmdM{e1M5lZNp{r($r-{4fuf@_zX%c?h>WFQrOsqJO6qXD^roWi z&Md)A8a>oMF?wo+UX!TUmqO z@Muo@qom0en^lrJ-hz+aPNObQ^gB-|Xawyi-%pXyTKl3exq{d%K+ZZaQ4Yj3kY;;T z%vx{&#m`iraB)fd+$1M-?B6FOxITNX{Kmh%cFpYC{Yyj?_4-y^z~Lap@ApT~yMmV> zt~el2)4!~)_7U(zPqe&tKUVP)#GKas#o8*|JoA9#CVXw}GI|pTAF1mi>i&TIb*36f zVK0KaRniB;aBtVANnUfvXD zX`|VIW0V81*mvDU&|msvnr3w#DwUE$pH>7KDxb;M_dtTSPzZHZA;+A~8h{mf!in`c zTK;EVVC9gj8+;bmh(w6^4)h#|Ryr+uNx447)Fi_&iDGsdxy)fO#u{%h*(9@%K0iHF5`fB@lFEtY&^ z6GP-!u(2s1dgBqWXy!y$Tt~0xP$Xlc8hBL3@qAFlAvry(KMhcMBqda zHi;naGutp~{_qOP*J^QGUOpxa5la#B0zxiLzASpcTQ*ieI4ir0t5x~BtAa2ah!0Qc z80rBMzy^No=J}LLim?6BZWF zgu%9**?hu*@QVCU$Ffq)iW|I}NPBsWf6y}8lHVn>6x(o3irHLR+ z{`rPl`*r=f31eM7F=Wz(fd3QsIG}Vf@gh|{u-Vv6A_(N4LRB72OZ66CnVetP0%lOE zA@FHGWqZ4s$?mPZwzhwb$@;l-*oMm;CRaVZRuE2M2Euiq0(%T1IWZ&%t;MMKMhA%$ zi3cYI3Mgi_$@ghT7$%O_M#AT;awihZm(roJu<#X?vPngKQ_iq!S;B2Aa_xU#p8`S= zpv@ty25$rjXtJ%!%)kgPFRJRX?unxf%i&{HU1A95YfQM6m2FmT^;$oZa(&`f@XA&H zN~*-i7)uQyhPD9;YZ7&sQDfPT*(R3})%D@i%+p8;t7J2cuUEK;XJ<2GUK3BW#``Ry z<`u$crk}gh$AUX_<3R2p`QII4X*CBh${}}Pq%|}jnPVXC)0QLG_z_`jF*M{G_6jv8 zSv9Y^`ZSvwTxx1g`Yx<6om3QX=nyV)V%DB6cAi>>3pYZzQ?4yHtRK?GbG;v*vWsfj zY`tlpjovy18jFof3P5#4U<;`yVH9Mk#Uahlyu(zf^4N&CPcaLLUp@tB1vq5dE8; zi@Qp&uG!Fexx_QgvgKP9CK6nbJxXBU*>?6K0yzf6t=AC7OtI=w{aJflmt3&RE|_}jz{6R6t05S?zn1Bv z$rM0|AP}nxQ>=`jN7B&n=w9g;T*Da88))qB=a z(S?dSPCZ(RY4>C_W{pMmKH3q*q|Po>KC<$Ja(Mx&8$n=felz4uhSj$6=i6Oq!#=y$ zS|`#6JM+ZJnTcZml0xyx&|+G0pQt3CsaM#3#vx%jHX zTq;U5Ejn5?88(lSXfB86A1#R5cGW#n9C*k!xzB+y9c`NPFRQbZ2rBbYVAO7^>ZBO! zmGi{->r6Io|A5)C6T_MyBmJA2T2kfFLqS1S*#LX_AAk6C!)}Dt zHA7cw>3~5)O@!;Yzx&y&7*e&D6m#8!mHDmAejyZV+_Myz0}^B65zHvvl2u`LXy`9r zUQ*LYpSkl>biqIs6@@%@1ue{=5>g!q|NfSK&@jmmL;`!Ibi@@Z-8h|zS5KkMy0(T70c9D+CEp(+Wq{2p7#K>sQgI(+G=?wvRIx-ad)0~Zc8;y5@*GP|!X z83FAZEExn@x-rC=zaw~G#Ni>C5Pp`5SH4M4c3mXNUc-$Bxk_yEc37G%1#TE=ToIbs zYL3^TuM~z~Z?fcTNo-$I2XcbCsda@TT1C7c^{sYJ?I*f*r4KekX~o!`G2Z+srfPdR zapl=q1A{iO7|{@9r4(l|gVNVOnxa=1Q9KSz#bJh~AP~00G)zqePjLG96I6ib+ZjLKv(wj>Gd8hN>MYaJw;9= zFuV{!*zhu$I&h&E)$H*V+sw7pLhXzC92C01R4l1NY(5z_6)m5A$;l^qMB9sZ*_lr` zL{cU$o7XpT2*>06$y~BCmP1;zcIC7O_iq1#xX2WB!f8B9lbAf{ln}y%IK%F|P+<97f~1qx z;4QcxZ*LoWk#IlWoQOP@!L$yg@A)p&SNEr~3im!L$!UnZqLdG(h;*_jdaYTZR5t%; zH{E2N5*Cz8R_XUmTTK`~SNY_DG;{WRwXoSEA`<9FZJF+U0MAh+37$sV@&L3m#AAzD&|T;cbH zq6>PWxj~NZJ^l0QZh>q?*wLn-A*D4F} zQSpCf(&;($%s-9&+dC<8oFqn7W~o&!Rpdb(i=c83N#^^KLI@*v7WHLInTrMTGBdgO ziK!=Aj?C;#{KmF?`zY{gtK{WI-M-Ph{~Tb)P=l{tUy4fft}LU&_SfE|a|K>#5;V2_WA$Ox4)Pp32SR4k~eH$ELANZ_hHr=#vn%9Y(5F&mPt*GmK zpOlL0JxL=s4f2s+5U=;nuACMPnSQ05*q>-9{R)_+ zKm71a9WA2oH1>X7xkT!OY2b7J<>Yv`8g<ISe~^*m+$V`wC1)pU*MYpCm|V=46u*wh z;srAH;cO^3_u}rd#l!jd(P~PPE0{2#$n3*A?5-)Q^vWm6U_~4y>wW_H*MXhRYA1mz zG=ie?>4`k9+^GLcAyWu$n)->lbtto*U7p!U3@WjEw+-JvkHx95nDOOj;OcmwLwARn z+(|3^T>KSF@nvEH>c@{SU|01b!kA(U8$Dnw8xL}e%6>XAw~h&lf;h1!8G)tbNYeqD zU3}u4hLm=^zuNz|tP`4)Tv0ja<2=Y9U3SRyc1HV$YVooE-7I$1WvPGsbgZkW?)wi_ zM;AQfhn&xEeX!YAopU3yFb%Y6d`P2lMqu#qJw#>=aq{9u3HWC~95ugNtc}nGs?p1r zKZ^V4Xo?jsX2fNFFCXIY*NscLWk;oYXV_K-SN|Ze&;CtzYV%Bh4>FNa_lNHFAN3Sn zs=tbG85Y%7^#e{>-6l!%U;af{@ADhSTlQ=~YJV^$7#!+KCR1Xiff-}*%E>OmAX6=2h0_E>yNow=%8mkfonPnWD7mH0|4W(>C z-IzduA{S0b5S<<+&C_QuJ-8YjVyDGtrx5=Tk3p7Pl)rTvUax=`iaC8+Ja0A;JOdHh zB79aOEd4^>0(LA4OARRaZ@hFj5xl?m36hlrdLsgaY0{!^BhutwQ?RhkM(|HLnTZN( zP+$TBgw!`=fP6QFciN?wLr9bWe7dlS=<#P`%JdF1wqvE74l^GVd`wL|pC$#E41r;* zi2(A+O(z&#j}DG+_GEk#1D8_P?`cjOFe9pd-3!bAWXiEB!4RRISxfxd7b3}LO5#WA zAo|lSLC{SZg+&prK30L2g_J-q`*qal-y%fHTgg3E=?uY&;YP)MrIy6_C|GgiY^EGw z#W9GEG>XB_C`GY~E5u|5SFfPY{;RfFbjNriAm=;TH9r4cNxq!hd-D*qpcmuDftSio zqev7D4ONzk1EL!7K2h6B=MpRT*-CE_m6D~>xqcu+7L>N9vjAMbm?WWxc5OE zjzn=lDff#WC$@+8H9$8I zT5wDz)X*T#;4h(9Wmkq#DHDW&Z%S?VKYldNgCErI@>yyv`EiCfX0+mxNka<5WI=CQ ztn!A~EtXH_cI^Fo=G^b3Ds>fNV(j{im2MGP zIC5$2tLWN_Q`0BY;~d%(Ue3B6-V)(ro)52(=u?=;#FD-4x+r+H9^KBwtUl%=wCE&8 z47Kp#p5GW7xyUPY_^zX0=pn#9m!Em!%pEV_d%Q8d<=1G3*?%OIjcD}hj*kn+=wr1BC;o{R;MjTGnJSVn( ze6t$-C1v=7EJ{q8nfOTNIFido^*A@*SxEfty?J6W41porBwuQc32$nj+=TZhx$Q?M z&b<1O#CtlII+H)hZK$;mnWf8Q7{Wf}DDQuQMHAPDAPiGFe}8|i<;QZOaVawSN531{ z;(aX*r>T@`nA4R9wf>u2iFqamQyOA71Uw#P$(uOE5_u&R1hCV{w--quPpG8pft8~k zhhNu?j)X?#GYoeytK_ey1ATRr$Us}VWP*x~O;xI~P7+GMoa6zztc=0>_$Gn+@D2(FSG5< zHfp=a3{zvTJj+;kQGW5A+@dhp>cni9b3f%zio&*uQ8k}Y0H%nxrkUR?^26P9OyU<> zdgJ}`sWK_A_McbF@m)RPbB0kch}S$3YLWwiAygM3qUZ$jNH8aqHnbV+y&-j<_28~T zv8Y-u6fu(+<*w>OCpk#W`+L*aRa+kHFwg6mNb#Pidbi3nPtzI%Jq@8)SzT>1^e$!( zi4&4b`iwXTat_Ea?GncTRkmGyftwJrV|}oP71e2WaJjo~ZB%W}>27nHbLY7pK35gE zEb?toI-XPXgGY+A+%+4Yhv{jh^mDz>T?*%>+%s)i=FcIKl~c?5ine0oMkE~Ll98)G?vdLd@BPe5oP zefJIpgiYYZFDb zuCh0&G!fuU@5__=WRu~wO1&3ImG|;d17*#2eedzE&u^~k(8-ec>*@6yX7aj@@ZaSO ztI_q$)_e0Oq2*xo;oWWN2;?syjL546ORN5EN&V%wA_|o?MVWDx+BK^>Pk77lS-~g$ zUZC6-Rj65QpF*8)(^`7J3Kdh+?#Okv=Da$d*2&~ZIl-~{F42xNr7u?|JtlVmJi#EvMROE4CBO#@(-6M{{Dv)`YyG%$TI!+$PN-_V*X| ze~8`{$R(>~F^xasm)L~ZY_++>!Ba#)1K~@dt3MP=^B!lg-ZF0jIihj6@9cA==-2m! z>f=)+sL71!dJX5GctNl0Bgo6e%q@iDkc#L|1$`6w7i{14rg3Z#&y9-hq4+?exy7n?IFF65?V3RBr zwAHa(&1?cXdlK`&K1nrKnSe{qr0(J~Jp6hTkUB?R6Vgs$C5+$fPBy6b`cx%;z-HOO zWpH45!)Q}wF^{8OoriP1fYn5nr+TF<*QMk^oys*9ib7c1*Iu2wNUhdfaM6;KbNk_a zCXzg(f5|3q^>1%FxXd)$AMd0$v!Lr)I?O7c>cLi)5u3!9f?z2bm%9rdZSU51TUDiF zbcE%iEfwumRH{Mrz-url=dg2XzpE`@MA;gN$skTd5|$NfIooM@7s|opiU+n`7V2D0 zWc~h#28X7~*}2(2xK?GE4kIQux29W1L7eQ_tJ+j>fjk{rPb#p_QL{uQRXRVpC&na9 zc~hgfUSfg}H?@2t)XMMQ8ttK2{Sh2tRd(t4zv)`%f7Dbr_vPb(r3QK2d2a0JDUqWd$XjVCv zByxM*uLyCNOC1MuaBEb{*J>|Xt@LBCnwj}bD6_gn%`b(Xp~Aswf2@v=H+387C_JegL1-5Ja+3upEVvjAr)U|*`p>&t-N+G zZIdvpqxFky^#+IGTmF3@T3^{vG{ODC*CCkdoeUd%TlQo0k4QRM2D)O?pCq5jh$-A$uRr#K!m*4aOv zBnu6K+kYbua#SD^Xb~vg`1awrRJk*D2S1hd9X=|2OC|!2t=lF!!Wpa;tN37z4%pRS z_-Q7N6CHv4^;qV6aG9};5KBpEL>CC!bh=iFT$wyXeYqN}#L0}|>jnIX$mr#ZkN2Bi zCeO>755IH796@y!&bX^*t0^%WAchmJvv(Df>)3y+{BbA}*o}nt*-NIpe=xnIT-1X8 z2`jvtC&}OPU9&YcXX>~}L9v;{0x`z7U6&2>i^zK%16TtESpP8f8&Et*z9uT%%&x7D z+v5u(;y#fiW2SJXo|u@*WJ~V87Gx(J!Qv}LWtQm(#gyujkX%D(u!e`AlAZ9QXvN4d zv*+;8{n)X?2s2_Xi9S$T@kKU%zWMa4moE;S4m0Ua=U$SY^A33z)FzlC2qIX{YhC0- z;!`;5T&5U(n1?ZLOv@>~)*4FUvo}acS|m++x;NX4A|6g_q3*7@ryvNAl}bVBN&k`e ze%SB$7*|%-j^80FSBkFIIkFUkgjVvX1Uh%n^=;gOBwZ%WX0P1mCyDf{5=Ju?1B=Hm z$x{X*en6Ol!kx2`h^g)!`%fPrdq zlu@GI9;9H6@3S9C9WB*Bal3LbeD*>r_*liBV1<%A%H~t&7JU)ZW8ds+USS!uXV!m_ zDpB+0S2*L8K{tX^>N_0#GO*ph^<@6H_44@**fK#;IY^jo`N>hLu0;>36CQB6;7fXN z;iF`!G3`zdWGAYhdWGj$k_b-eVis^?Pr9XXWXc((bq5Rf!`y2lx8mZTAE zo-3=tn2eZ(ryI|ryb_yY1T{y^-!26(Tk3ari6JD}a-Qg8)+^5U?60lAtPqvH)+O3` zL=h7%fA5NwOK*v9Db?-*iiUCqFn^#Uwz3RsPzl?v;xUtBn@_#XZRA2682FXJ?U=%x z8@0>VhE%%vhxW^E&8I)vQJ`~)qy44LvH((zDkBmugAE?9>I^3Gq@LAen1pRrAa`3s zt#bNSB~Lb?sOO!j_jjX5`t6a10RnmeuM?FsgMzRpe8F-8`uiEj?6d?f?pG6fy%9Vg zvvh(T_hIGAfP2-mru&*?m5CUZ))ElW(8@BU!geuhBG$NZA*pY7$YVmKD@rYx%4iX2 zPzX%Dok|o#Cs6pig#5BKe`teB_~+Ynu$5J+uHRE{i8>s|?I!!jEkX#$e$0jzqcy+$ ztj|zKL~^s=M&C zJgE7iV~jFiVBJiWeqBgHV`sMON5`d-JuA~G{F5#6Wn-%eC6%cJc8IUY*a|^xiC$5Z z_BHw3c#`;3NHqIK6=fQqTd-u&JA<$3GkH|Pb%Fldff2Vo;dPX$JM7#wZ*y-cbUUQ1 zMdgC*@PtMSp%7*_`=Y9XG!T~BPzZfEmp>|go$oh{=05$yTQ~EQbtarDAha^0A=W1H zJ$-xr0uHtLjaV=$@o=buS!TzX9fJ|tUT5GZi{&HJ7#k&%%RQrw4FoiPy8+GhUhde~ z4nnJNbxYz27EZjLbi85t5Qr^RD3%Z)+jKl#adp297HDJx_LxgMJM|mRf3M(Y_h+E+#av znrwegWzFEsmVJ2ajkNEyy8d4JJAhs*uP!e#3a4urVX50RSXflceY%L?R2-tsgg_0R z@z6;_4`Pw+``N7cq`n^zy|6$g$qWm}%}4o?KcFEU!v}=;*_v<2%j^O(jbmYJ2H{i# zHS%rldZi{-<%IWFRnqB*(^GMjs1{4w;r#Aql~&(iKD~PzxRw~O;o15b1XgI9SD}Gt z%j+Nr`a5TIwO&tk%~kGaWgVa4w5ITB$mejmv2ihnO|lkkLd(4>!B(%zK_%)VFMD^8 z@;mceL=HKUz+HbtnO3}CdAdtD`=mi*&s;iQNq4cSv{tV>M!00oZd7qm(J#g;22N3hW4YeZd?%+>s>*S7YF~hzP-t_xR0esp!HQs zy|(|o*52!w=*h&rzr`vYo{DjA_C|#aztS(Fw?}w|dKhT0kUafLO2FOw$;$fZ9U^}D z(n+&^L%;5YQo+ny@8k!MiS|?0v(jSU1XT9gwoq# zedIW?K~jBFhfaoFK`1xg&&SW%kdD^5I$F&JD-=+;pXGIj*cVOG2P(&PBZ#;$v8X=! z^k6PwnYy}iZ;fO{1Gdr$>Yn>!$XwP!-@T3I{qh?R^lWt>w?eu~K+SjBpRdZ_W<W7kRxjoedivxF)iTk2pJ!rp61P!1!Z zzWp}D^p_^w^=Y4_&bs)k8hku~g~>{>(ug>ZPE87(!?N!OpU!s+}d&VSEWjY z{rfgMU+DT{&nLd^$oWs7uD+LlT9U7ye_4lEHhV#|F86CLDzKX6(fitENLy_V8gr~G z9nZ{Fvy2SY&W!l<#nACsg5KQn9i-t9^jB$56}|KUZL5YrvQcmIa8-ZvuM_QJM*-5& z1LJAA4wfS+Wz-iYuoK)}6&Q9)Mx1$V zJ2xWd%S)7wI`W*kCLxrju>`E|k-; zQDq4RcMe@wo45vgi5NjkCZwVB*nC>s9tBdW4V-@!v`(C~J%L75GJ1Lx&|T998c2eE z|Ni)J)zIDpx(V5`)JER9@nhT@Pdwqj$&Jtj#WwcackaZnkutkiInHKJ4@SrYZ{K)N zmn6FpX*qF30|``UIg7nq6?Lqp5Wd+-!}jDmJn(cf02DyaP*$zR>+#9hPFTMQI&`?2 zQH~Go!&XCBT9=fHtm?`xrkV0YK#5uhLBg=-RY}2qNo|55gPZM&4}QbqmiYdZ#XHl* zwCg39Rjc{1>(5-2HDU=z3j9o+4<=Qh@w8xA)97@8b~q9zoOGDeOt~_tlE`4;5bXI> zT!Z}(+>srAuhKq!77I{zi1=wU1ky`6^QTDI(UDzI@xjoryWQN(>;YM;@NX#S>c@u| z1k$|<8UghN6W&Y8$cX6ZWEPyy9q!o@R(0=yqJ}D>_D*5Y(y~HtTQ`uj%?&mNKyQ3{ zuCCxN$A};rG70fRlTEXodP9^*iR#nx;vwAD$h2X&PWxbwxi$@?F6Du}JT>d(QLw$ouvute4E|Dd` zB)UL}1UhdrxGA0mh895c(hD_hj0g7;1*Q0~-yff+O&?LBO`}QT^+8RJ9Mmt+k$Lim z_gL@dWEIi}1ZjMFxUBH*`Q;1axG!&JMgw|UA9b*vKgpa|T(LUr$RoeunYh2UY*-A+ z76~>0ojhqM^JjL3aKZK&HVSxk-s113*0-HtlnU~GBw(p*Z6<$fbQz=E)o5}U@QaAp zARRFh4}vdIoy@k@#T^`c5L8k$=>4JOM%5lbVm)~7cWt((Obj;6Km$Bo3NyuxdlhN# z$|Bh2+Mmj2@29J}ik3Lv^3$aGS7 zLFNurp{!L`Vs37RghcL2@AgrKQ6!f;wrC6rpKrXg>$LY*FP)B%mjW@`yln*Y+TvZl zNiXKEt~en{69BO2IvZTj(4s9$&LDTh$fzhPPBm3hQhYR#?1w!CAmv)w&|jD^9ae&i-bHg7xTUUtsf*o&Hp* z(ZOOmY_R_#)8TjzN+x`hvx!pVNpRQZQ1AJiv~^+e?;&sxnuL zD~8n=$+VJ6<<;~Sc{jIS_;u>}Y>4r6NcU;{xDI^539;bAiNDnwv*k8^J3G6Ri@$QY z;2Q_t$z^u;MiNr4e*xb=P-!%P`2c!rd_jvDu z_i(ZgS_~L|>p>0&1~=yP)^L4>An!xAQ+y|2`}SaC_^G4CtT z^W&!Nnr}B*E}4=1vZ`sUk0e|mZYS#Yr@h~qutIEgp0+XNwBA7#WquW=dXQ5;dPhHM z)B=_h%G1O4TlKQhdnOnFRMEGj@dc+1UNxL1WGXvhT( zdE+&5>J3(Jv>9;Wknw!LQ;>MxU37GZVnIWJ7N4Fr&wD7SXn{LwV%H4}NHZbiAo#`% zNH^MAl9tt2oggd*&B5#+#lyV3lz_n9F0@%1hQx#ve;S!81_I8-jnFjsKgn3{KE}`H0b+4rYA8TnfZJMsSH^>qX)En&x8epJE}AQd@fG7b3m+iz&xrDE>z2|KRGa zgQ|MpaBrkLr9-+K>5^`wyGy#HQ<3fl0coVWyFoxwN|A1m25ESo?e}-yIdlGTMrV}e z-fOMrj_dkd9XdX3bo3Jw&2=xyS+ZH_)?Ts3$YaiMgq!_sQ~5dKMe)M*dxmD%(bA(i zQOa2-!FJcXtp?YtHyx>2%GTKZ3!xncQd+5)agTS0zXonn5Q|lUQqAc0_k$?h4=eAy z9Cf2i!XX8?X}_7>KrNm(qSUZf+W6=##34CkJeZW6i3AlIYcz(L)^E@U2m1B(H zaSIjwU*P3XvBA}Mb$-t-GKbp3;W$hT&P_iGV!iI296?<~(E zL-56EgqJ^oHN$jmfebCYDxbC{Zd@5-0kuPIy=&3Dyan^7tw8}ERJQNL$AHJ+QL|r& zfH366hb`=JXWfHbr@x-;rOCAUD?GQ0!_TXXRhkGY6ubLrK#x~@)TD7qm_WpUUWSP% zBZ2X)0vsAP@i>#LkBBoMwWH%zEsmjt*-IDjXeru<1IZ}L-OWMpj zD%U$&b8xhGZ!xwTme5)?Ur^w~BU*qtEM##q##YW@mx==v!+l_rRrpo@TF|IbAI@ym zGgC=qMGKX~X89M@lJtl1J*?*X#>n-0+~ZRRVnu2A6BZT9>>OcO$+l(Cy?{pMxrUS_ z7<;Hk&HhacD31C+aiIJ%SHF_3Iu!?n4(NGQ{}b7sq{9wzsG~CHh0^vnb##zGxDChM z&jCVb12}x%=hVj?7s?RaK*GT*F=|+OT(1U}@V>s;_GWz^_{!DM*#uR2&%@S#27W`4Vz_(&A@9 zp_x-OL=j!>tjOq!|0IGQsCZFukctevt?)ev4TDIV ziN!|VNcxfQdQY{HN1`NU(dk70)Rg&^+5Rprb&z^df_`ZF@7}t28mo#kl_0 zV7%a3hxurXHd;>3;FgK)u_Q2s#r@Usb>_x#d(<#0Vc_~BJ7_?^2$FvL7JsdEA!L#g zLx4mUb?%BY6kWSsTAbXkIKbZuCU7cP(>(Bbv~IOT5tM|49ki7zvOTGL_{PZS!DmyK zd~P?VrX9fkAS)+#rbS82WrYe{hJ*v^~)Yu;7sI%EbdJ!*QX5^Lhw*%STyTQ#254OR45a=~gHTIC4u zcV_eaeKF9#pLCE=*mNK}R zAahXb*Q%CNSUnCzlY77BHaGVjC2f^cQDD?0?C4?a6i;xqq2h$K!fbwIajXt4oRbb> zH-}+lGLWTC1=IHP0K5i((15xgbMR$ZdHE;CAgntox}lRyRLLO+KQkT_`1137rm3ng z2#&lpfq|z%87bSn-x98@S62#p*;A|r!hP(QZ7nP6Svy4ieMl1%Kj1P|B#V)lvl^^H zM(Z{bf`Kpx0F$N1g#;i`AnX|kZv#9eFHEt&2x|L`$yH=<{d1NrmhWH=nccb3H907# zal`IRHk)4AmKP%W+A!dokSKV^E(*zkT_Pyy3wph*^mVG*Cx8d(N>iO3J}<`99!qFH zff2<(57}*>()j059~@5K!bOVOTTF3eJT|RZoRm=?3>hRaM%lU|!NW%>atjH5%g|uR zBp=#_U9noMM647RLvNO!ll74I@?w{+-wKA`5z*@PxDVI62}w|4!lRRfL)sMx)(QB8 zfd?D6^a%?JofJBWpnF=X8Oi&*mB}1qD=fitH*t*K5shZZjs7+)F^8Q1xa$G23@o_I z!r-8i)84n0GGNNrXc3_pDk~gyc0Z1f8dRmTY@;cS8A=iCxrs`NFSRwCY zCe<-r;6T(7ejv?~n>|I7qTj1#U8F>ead&C@$M&U((&a@_M;7)7q60Xyf6UC(I4%qL z0U^W9q49Ghcu7G4rVuUZ5~8}^=sfH1GJZ*WEF6=%`XaoGp6;LSDn}j|JdPEEQ+X5c zhWfWbP+fPqA8Ig_K0|+%xAbU#@mD|-sVMH(D{@MO!YJ)v56umIT==^~dmWQ{chu2ngEmY3)Jc2_Ebj)qS| z1D1^}B*Yr?1IAN_PAN0hr|VHtq>PLN_T(+$aq#G!1wOwU>VC3}ooc0$W4YV8;{cT-E?aO7_MbpZ-F8A`Tb47H7`=GUUFNky3_9Zo0N$}zE zitk~qi5TAsyYQNdhQ*NQ>NFZAn}()~PAey&pa-?-T$zAee>5(TsI3boFZ#Uc*?I{*w$ zw1zPv+(1jAwF5uaU4LB+9V_`kjU$EKsx2Nq1`Rhl$6>$^+Q+TfKA>0|$@~$XB{QQF z3G^~S&1_VkWTZm6-3*JB?L&VJzsgiq!6b?8DZ4lr12g974*m{-7NDzPHqMTASi1C{ zn%xLD;r>&wK4?Lx5Es^;&e0Sf`KF|lW~z!h4^Aoc2r_sA)+sYEuxiyF!HjnB$eIgHTV+O3-(=_0C^2UzyU=8yGaieDgiqb04pMZ>Kzljx?X%s zv80KP(yJgL?+852{meh+``|?fP!<12pz{5*I$iCTVw!nwud`e)p3THUr$YJYgf`_y zL*EUU{FBFm<+V+sOV6T-YCkq$hDv`uLYTat12k}ZQ$B^oD4gc`2z+#ON`H;;Uj>Ee zxYKw!lf)e_Q=JT2yc(M-qT3$jtf!a33}z#ltY4sNy_(nOupE8)+hfUr9d56_fg=&w z4KX>zkVn!o^$j2Tx9|3ji(mjm^*@1XUP?;}aDmX$e^riN6$Z~Ei@r|cAd$^{^l+Q| zQ`p89&*Ku0al#U#0`KIdHT6e8ROzan=y+fMZcil z5UoK*i?ennd69+o4qf)E+OL)Q%!}O+^Ls5JoER|{Tq=nO6r--+k;-3$#Nf|?9Q)xC zCoGoqBe5gmJo0=HUuuDL?KsPNu#Bu`3>6}ab=xe2QX=}e|2E+O1&eka`5jIIMT4AC zxbUTn@O*`fsmAKi_wSc$-OrV&b2BgJ_@GJ;R4w*td1e?1n1A~>Tbm5-5S{tQCoip} z(q2BvFK^mj=W7gpQ|S-%i^9Lbb0ZKHfqT4%S#BE%6RAlAZZGf#NmsN_K|!L_vTmDs z1_THQ53mOSxLg2e;?Cx07vN5{dB&Q^u&vwoy%KI36fccqU0a>Ez^-db33$tbvU$Gk zUQ-rM1QD+I^0HeZpA-*?z2+W3V7ane>v`d#8!>+6`Xq$VOuTYG%e(LK9AL~KTq>#H zKtUicNRNPCqx7=t+P(y%H@~^0!(dzNygb!9_e=+>tJA z6_s3tFtZR0|A&-@>wqjvz8 zf`~+je&E=4dO(SJgYEb=&p<#{^09j9y&gStzI(M%%d4WTO4!GD#5zO0yhb8fEo(8v zcC~Icb@n9oCa85UE8ZKayA-NKJ9rH+4rwKs-UE=E>0l(T^?Ze{&KE99=}zZ4R@BDa zfYcG@1f;8>$bo+GnvD|)}*Crau&g9$PQgsSX{@8@Xw^7>t zJlXdXL2jk*TJK*^G3n}!a%grTOCG#P5T2HgUqIxAnNcsi2~`L86~PH;obiARzg;jRX`q~2_{3IZerMC7Xs>Y zk3`Utl`Ja#aKpz!ayRRTTNRv^#)jd>t`cOlQV~1^mptQL8uS`4&*_&K^UugUl-5f98W_uBp_21P2LnNXmue( z(654azpG}@@$r%LV2IYR?E28OVFjyBCky=r(;XP7mB45J?gjqX{xsu&QvG5?51k}5 z?4lu$mL+56oVcC-AcIm1?%9AzpiiypNR$D}bTSNpQ;EP$DGWJ}l z6QBRxYe=cHwY$3sICHTY&-tOMpZXh1D52uBzGI8wQp{Sgx;z;9)#8CSmA?_o3x(=n zp;oxc+*~qsk+iL)ZQfjnoC1?<+d@Wos_;)BoX$VKqO1)Y->C1QFz$lmsgEN#KU#$ zd=|cw%DIl$KnNp*Nfio+G0l5`SoW*QAqw)cx&ail8uMXv0FDiwTh}q4MM=BrleM@_ zaZY|E*;-a!{nz@=ukaP#Eb0}IRxj2KG9EUj9K5IB<}0FSEE99A(oZwT3g!tu3_R3A z$o3My%nEgVyj4zJU+#8nR#~WwBGDXGxlt>Ja58tlAo z^J9!FS_>s+E!QHmLq^B0j5j4FbIFUWF&jh{db-(!fG}&U#)-hz3jwkP0HZXCWBNRd zk0bCvPz@>QC}{JYafs1LgLWpzXiUHfZ2I=pmhc-;053B-&5mB_D)2O6?@qX|XMPL{ zx~qwmko+{D?+}LW4vMM566`G(* zAicffZ|K=1d5LN=`c>mt^B<*#jq(i4rC7q}43ylvSdy=&Ef&85&@fmD1M1~PmzJJh zB!u&J9g7t#+Y*7MtDBcYhmC>aLu+;Wx7BjYxzkhpkM(9M(_kX@bWxkYWev=Hm>AZX zhy~In_EnxtToW9P)kugieLsiOcpc%)T}r)@1_IKw+tkZQ2vtGxGbbF-VD|wyY#gMG zf-p{V#XeEai3XkeC~P$t{X>k%%&SiqWAxp1tYqp%i%eqX=xHu0e%?%DcLv78a+AP2(TI z6C4tP2X1$6{CEKQ6H6NY3;0gM5RS6ThUDzR0u?_$Az+0L1D*ura#Su;OGXyMbMUzt zC2l*iK_w39^Vhv49`FC;gbzi|wvNQpY+yMoRJK^IcD56P<=x0o+k2A#xiZfu(8w@| zuzx+AtY#3cKmYjQt)yl;H|8?^HP2v`wT6Ku@3;E zY5*P0?{ZoOK)mp?l<5FHF&ymeoDIyFL#4-k3M;-#i>n5ll6HfcebXqGPbuEw5m|)} z#ieewIku#F4{!hTD3dqsZAE@Q(dF^cP?tYmH1WHOBn%WGkHdMP`D)KKF#QI-IPad) z*mBxNFxiAZ(*VuFtaBYQQ@iK;y(R6OE2@M!&%#__szhbEo@=zzhES1(eg6(XDB=Mp zsNw%?w-3_?EQloCIzGhm@_lom+X|`?6Ls8j;RM(LgAbt@?tfad0rGi3Si@@`MlP`JMN% ziy7RCEfvVrzt#*_=Lin>9>GUOO1g*19v9NT$^^SSAqF9hOhv@`yb*#X}cOxpQp{3*kOsk2;@b#*&dJ&dhg8lS@TiyIr`aU=%xK z`dg<>_mtZ)?W4%VoHe(7K zTD;CELHj_tOcx|8+hAjQUbE!QtgE&=_w}-popx6^K|q=630q1C1C>-SPAOBiIyGFT zL3A!9?R_--JM$nbUBW{c%fFJqeX`%T#;wvv{wOsUqJ5 zP|aJsLr{46f&|bp-B8J~j0g0|DVE%sMmK*R{aHOZZZ`z7dz(d@b#_+^;qN=A9`9hi zast=M5LC)~JWg|UH7TR7?kkMGL<5k5=;zl#;XE0rOEe0p5Xd)FjrBC8#k+T#0NOhM z80wVMyg{;jTccWc`C5Ih&jC$RRKkXQ6F_IgY-E5?8lv{?l(rys4Y&eS*58!l*}0u{ zhW->T{cx({J*W9c`e4aPf6Wb9kY#`0e(sfk8|JT48>jlL?z8(+Qi%yftyn=kg}<=` z3I9VoFxn;C-ioLZ^}u2&y(Vmui6a|)z7KrH02oxr?HwcvIBq(17DyuCu#mlqBgc;Y z&xI+is*1(~ju>FZT&$P5c?ORciKr2a-E7-(&+)Q7%FuizdNuW85S&>eAz`f~c~I^7 zu;{$$u5u|f><|TTA^<~BOwI-{WZ{4U!CJL=%X`9iHJVs^@{(}6e!pE1Cw9U8&!SJn za;o&eGHI#dXO#dM{(@xpW~9?=c=d$vy$uhPh#;j-*|4uNWq>4FSX{gbHnk9;f?lI7 zT=9?3?0QYX0%yz<4uxGzrCi}jNgARUuXsSw(zL6(I!VBg5W-H>_wWdYjRf3fT@)Tm zI@`&ayw@hf=m?6mYyB9Fs||+>`qQOJ2&^%-8iJmBU^@>Ng*TU{%Y{)^R_Mt$Aj!3Q z5VCO`oqJF8O9%Pv(w&}d_q6-jg`Qba+}nGz^G~LRfK&DlATsglDg1F5mDu+&^+aOC zV!F8029+sqq^9$@?XU(Q_eg}iFdy%)WdNNLg1dg$!0!&%ct(W5IwYne>2Cn?#n$%) ztDcP_2wlcT6LMOZ*!QJUoPQp?^Bnj%%_V=V_rakvX%i`lD6`kR@-754LaPg|g9d_C zbOeYTk3b-K91I;kbCC?iBrVijRT?4Qh$ioBx5lUK_JOW1In@=5H*`zrfa zcpf*H?JBQ7*Vq4ZNGu+8Z24i|)co-%pwOKwloOU3p&y^b@0vW{)~e7gSP9JV&Ht1o zA3IOo3yu=gc5p`vfv^G4f)LWa&5j0(7*RggEkvL&!3RSDc#3&mWj<+l(>(GjvZJo@ zE8PSCQU`_A09!eEtfkPLZ{n}fqHTf!mXRn~5c#dt|z7UE-B+0ZM1!vCIRtrF~${oaT=V_-) znbY(%uWEI#Mnxt*L>nc^A>zj$M~PhE4!=Oa-~neU+4#Dw85}o5mhxI!w_*|tA;~^B zg&u+Fqvof^{Gyo?LIzYrZ^Z!+4*;NseHfw-P;tYe3dzX4)U35HchRqHE`d5u`3v%s zJ@x&>%&t;qVYJ>=02#lT<7wX_dFKtcW7M6aDl5R>fw?Y)w`1};yM?Tq|Va_%Q^T6Dy#h zbUTZ-rwpDkVh7pBvx_suAWpNn7Ct5XVvj7b|l?AAuX_59{p%uJt!u^9HHAB9UbyodVVM-qM@+@^${?f^nsn}`P&<_jj%l|K9{~= zuhbmWvobr3B??0*9RoMGb2DG{{h$IWG_;F>aAoYer+>og(-W|_fgzX-s z+R(EC3vJ7%J^)pe;a~u>%W)MMCf+zuAX9G2t-{f-vl~`}sr+h=QBR)1gIXX1RX=X{ z6DWdZ%GiR%{`>I0fKGF%sb~Mk=+YLGww|g!3bR3pCRI`=+Z{PUoY{@kYM0~X(U{2b z$Im~$2zUo|w0H=zwT}~^#>u>D%xe=6iN*|ymuYe0XJt1su+f&t32On@r&HNeWoYJ_ z*#Z4&zO|_aGo6!0>3y`rn$TBPV)_!13L^)gFm(Lta48#xFd$*3+2XH(%*|!1BU?D_ zR!Ud620}@<1z<|7MA12bO~6sM4hsSB*#IOx`8g&u7;44Il!2*J5bULr<_;@qrhj8-2~XRlJO}i+OJ3G`m0k5 z42ooQvWDV3gEsq^jLWpYecBr&<@p}++kkh)J51gbyH>nKG&`UT9RMbS)f*LvNvtM4 z%+|%}AaDXO&l9n9E8=`^Ouk4749AU;O+!J$2p@ev8%?OZ(>f1yQ4^ZTr18fX4;b(;?;@kD-muKGhhTxV$W*99rMjA=K8 zG;(4U>s8XapXKmFU~es0)}H~57bmEvb^d?Ux0@?7w$8G1J-6hnDC;mNY;|+i6b1a{CQj zR%DpS5HYwWNV5&Wi-G55cdoXwx_TJWQ-KCXrtlLi1$L||cyt_fbY_JKe1tpOmwSTX zW?bIqcUf8%%@5MKa*W%}>!|9=oz+P)$H%cn3&n)OC_mSab2sPydKJi25PmlzJN#Sb} zNOlU)*O-A61r6_Lb|Hz-7IvFN^*ZGEbll3_Bo}IIY_JBC0LUU5nqT6a$rkPdN7_Nw zw$529$6BvR8VJ=tE}e~9I;W7OS8CibRYZm{mpa#v%;rJ|w|hen)ed5J1>70O7-1$-?)rdAun2 z0@ID<2ycbfjj=fe^`C9|6J%v?))8=AT_3m^>g$9E`0L0>1-z)~BpM@m@~A&!O6J!9 ztcPK{52$Q_LEg{IGzCp;KhpFZ$;=jBUO5&4tf}MuvaS8><`zBLKju?%bcn4k8dOGD z^oHjk`FAv6V?=14O$~d!Niy{X(87OI@T2BcbnspVlx`5Oq;^h#rHx9s(I}WG7JdxX{h-BT>0Jw!*dJPmZjF4sNJ-1Vgod0758A-^FRm!{-ibD8 za9r8}H~&GMz@+Gj$`OnhHEUMzZb}R|22hFTts6qmdn&#TV3s|k%&X8>Qb3(2hW`1p zxc*@T)+yp7%}74cUzQG03v>#tt*u@l9mKSGi31D_KnMUC;HMJ^xLF6c$zYx-fLoWC zml1AoBxV0HkPQH8sp4kum2O6z*StmOe^c%$qSXno;yVxG3b7hSHU?C7&1E4{x``_| zBX57y9j_+>7m%t_(t`;#uh!hlxz>k!iG+q|x_O0>q`5^$PjJ!mT|~5g5Ux_F z17P(7{y0LE)XgGfd@{oj6i!!&_u|b63e~mV=3$q97TA+?Jhjcs3z5{5Ox~O|vB&6j zqN;J)B58>;q~@~G;;{L~jSz;aRm+qKXql5#$Z4W1@>+MxYOniXy}j`JN2D7rc2mw%2OZ~Go`VBb99leS@`O^{$BciZXoh$K5ah;NCYOVNl@VaGBH8zU{<6aW%HIOe@e@mqvkr zQF(anfkcvecrp+R(dc!bu4GiC?E|e#GcjZ*l@;PQh?@=X#H_#gNdT-v-8T-(y%&%A zJT|Hf@jC7pZPu`*X*n^BHd5~Zj|@9B&wx{}2Khs}WRZrqyii!v)Bh=8H8CpqhQHCY z*Zq|kt!e(J!$Q*twz{as~bte;hwo+Ci5JLBrmxh_Jcy2qBXO8URCSJ zl!W~f?Z7nf=tJI_)-Yl0A_=+$ew`8E%MEqyn9)BXp`#9~)5xB&g+e2SzdSaKi4#Fa zPdlIM|Lb+h;9jm7mokS#I$~I^Q^5W3NhK82sSVaxAipd)&B%vg=8*!?kO81np8VEk zOEpgHd=v@(6!C7Oelu|@%?K?>4-o>gPkDtDJX`kyZWSxKm!o4!1YAR*E1fnQG#NZ# z2uhK*x$TV(%v$MO#prC^S%viYcx5kMrq9y4lL#v;+sfsu{}_mo?1iVoQoadWp^jWg zXFzlY-(J=oniuXzlrL(xlGBHNfVbgZ zHpg5<{pka+`vP5s6lldg{!G2yC@&m<-c}ogO<44MY(zr92z~d$ZEvj?e2-w3+`BX0 z=kN32)tI9y=+nR=tEX`2N9&nooz{knV{VZfC6zi0zs z8w2hh6uU3cxQd~bq3i}h?66Nbp`zd;sz|!e;#W>NPYM#_v(x&rO1Tqt5?l{tS@^8h zZ{;_=(Sgy&!=k`D3VYrv_;BrY%tJ=P)D3=C^^>{s%DvfJ|NUH?(8LC%HA?538r@nIX!39GVhGLqC%(k2 zAX%QsTi^I(TwEBY17{1c`A}#ZQHI}0txPri8+e5QS*lK}n(~>1a*iIOu6kAHY1=Ri zi6E_0^6~2A4u^W?q|R=84}stOOwW2e{n-~icJU1Z%F#-WWfq|2x&fMCs%8A3sTgZT z0#_Ou82lG3L-i*~E+vgCMOa+VgKNm-Qk+Qb-edL_-?glW>H5_p`?l1gBbB%`jqGp?MIoMtC3^}g))IF zN1@MP6yUQyV2gO1RP|m=3WC|wh>>G6-sVryYkr88Mp)sA&v*ohT10Cd66(M0?bjKYRD?fH~`lcjBU(BR@Z z<>kfI;bf_87|FeM*;Edc(1nM35sl0{r!~}g6F6)~^cYKt$^PRCxVXerr40M2GD+>n z;lTxcOMbz^SoQ)6fYZwwsKdX8>cBB)-N#-lK;t6O#JY{8Qh(2JG8cKjc9uMkvAVeM zT@eh87l}~!Psi?3lhZ%%q-Bu+2Aei-pWoO%V+toiZuyVCZ-><@o0t)NyE-YeH2qC4 zsEk@Z)H+pokrQnW3q+vEE<|fTE8f6Yoov7&4z(D}K#RRr>T6$6q$SgD76`Jqmu#?l zI$3c5B5#K8yBM!+b#_JP`726FLK(QaYNmpaaCGj*c~&;OL4}})=FH$1STJAdy|r7M zpWml*=u|i)=42TOmd$7T&2)$`c@Fx<@i3g9b5+flI^eWz737Rb^@C(##W6&oa;;~f zf60$S|HAQrc9&s^W)eCip>=dAClu1dwwkM1BJLNUWKp8oZu|##7zpw`=7<%L06*aH z%0`0{XFvv13GwJ>K8X++dZ*7ES2G5FX^R=h{DdQKJW~*$#)6&7`yD=)NnuvQqzv&h zSDQ*Lz#iBIcNT}BhtB5>zW48!W#2Bykoex54)sALB!5jDOXBk1dfK z|3trSIs({EJy7_+nw_L)jA5}T|9@>!Vn<+9Fix?K7T(?Cw?r@6?Y!inKy4XC`lP7M z*O?!IIJ?%*`{n@K+dF1BF8OszoxrCWILE>R{RsN$BDxGMNcz_+p-FQfJkkLN<`9^% z)c=fz^3XXq{;!mzhwBJlM=9aTO<0EO|onFi!x&5DTwVa1x3Yyr z%@_$hB@GuYgAF6ME_bETsch1}PYdXaK`u=V2#pfDoRWaJH_7}?#UN3Skb&dbH>x<$ zbyk7^9w6aD>Z^g&>0pvSH2(|Lq%zzT0m!7kvP{Dum~rdg$HEXcOA1jKRja9K9Y~vi zgLt{^cI>tLAznvkwN($jsuAnnpghY6v#Y^*Aa4L0jrpWKyjEqI-4xcsuRxp6rLuDB zgG=*ZIp?+?LEHZqc?Tj-|A3n z^*|PsOxjfgBS~}#DJg)qxsx0C{A7Clkz5=M>hK{(oBptIh-z`UJqg;(NkUiFuQNkF z2Y-cFbcOb_8>M4}@_%Xs34VYEtEnXSxn?tiRRykO9>!s{!KVqWQHea_b9lRx=PaQu@fN zM`WLY*(q94h(8J$;xqTbd_cbJzq_sp_%R_#O{XiqClFUNBx4bT5`F~1bQ)S(8;{qk zAm|sPTmll58cQY|`3V7o613c4)7=jYHnnDhk>vj}03d-#5T^lD4``+!fvzCp3l}t+ zXyvb9v5?hJ5|)p9!?CWcmv}TzXv4}F(b>9mJ|$vv6}T`r?8=F=G)y!pljWbgI8v=?dAwfyXP5 zFQ*BpEZMg?(1mQ{f3bfQG?DObB?R8O{ve;iyfV`Wl#7muyB^m6t?64K*ZZysJLMPp+g9__c)Yi?PTQU^{F zc8RAhC;Ksu2Bi?MNgY)Ll&uqA76-co=q`#mY9wW9v8S$unfVvQLhJ|)+b);FWTh{z z8=dsex|(O_On<&gjPKL#_pHJ^@r~V_E|Vg~dtB#CWl@m64KXQDwYHNUOC_1ecHKN} zN59-#9|ChTkYYGe!s66{?04dea**(SVLk4Glz^`X?r_Lf=t_fAelnxOp?Z`P1>4Ho z{Y~S8e_SE;pFlxebOe(i8M9c-s_Fe7S?NMw!uX4NH4o1a4-@)aIvougoA6NLe><;U zbkqcl#s{Vqx!653Ptg_-d3&R!3`09Yk zez(9&to8`;VeWnx@jD!MN?{180k9-s_pFT(Ayj<$~Ak!K6HDA8=$e5$=gr=xzkYMXt4R>od{MxyF zRY8ZSNIr00~Grlc`O%Awfk4B6` zuo)v2y#!tXfDAnIvyw>3e27|lGP&Apb$sLvKpm~C!F(#RG zy`#0$bfh@ ziLpEjIVB}2hn^p4H=Y^QSLo#6eT*LVjFa2Hj%bUIu2mjV%EJLgP4oG2N&aR1X%X;J zs}?}K)a>62f6qH!^H=GLNRQcXJlvZktkQA1yl_a`T5?4!nYP#La(nni%hiAz$d&0D z+O@n=aTdWM#gADo6=n6Nzon?8Vf>q{oseVMxmKW0+uNmvQ@C#+2IEquoyUDFwI{Zc zHup`}xDv1KN3C&H9mEGqKSm>Uz7>5Z8Zkx@?a0|#i^9kY+t72O> z&9I4ndt?#O;TM0uGpQIIhBo`YjO>}`p@GZ#3ESSuKdLa+E5rWM6mWOGDk>q_GB%FW zhw0G=8R#QR<*EeVpi7z9WFqDvLSM%?Z!|7%zzFUBNDYHyReCQuT_x{yp1OoaB4{=A zvz`QxO?l`u3Qvnf%Zc&od!*)_Z>z*Lda4gv$kH)&A2*k4Zb`H|c6gjT$N@2+2BBKx z3zgBbCY2uo%Q_quvJ|5I*xWqgq0H^}8cmuw7EwYi6(4%|*y2JZ9Zi5W>j8m!tcT$L zi*Nz!CGbA(j)8<$gB-w&$+6EAAYp5HY&8ljZr8}ZY zpQbDBzgPB$l68|Xk>FitdPQWKV1NJYQA`2C2I3Hak=_`Y{ibV|BJH=kW-4LxZ$}s> zJo`_O0#tis{lOBQj_oF{IQ72k(hu7!#C-y?cf*YoJjEUcBc->@%7Y!=?g6X%ja&h5+W+=(;L*Nh!KHT{E z?vNeyVPzKROJ{o&k>vSNZXBU104E41737BxVv5@2f?f#C{P6Y?3ewh69*UYnGHS5^3Wytx`AB)B{GmIznS*#TL7t7h_$$u+b(zrWRea z^#=uf;nQmYoU@Q*qxKnY90&2T(w`tN6%xK_4Xk0TAao0ajH;Xj(4clTcEL24?(ZlI zfe8%|v=RYbYs(?4SUaZyST!L5E-qmH)?p^@=8)&hTpl;ak_rRS!!%QqRSa%X(K*En zd1;4wtILze(q>=f{>Fn(|>V?ywgT!crCMVAxD-=2rE&5)Dlaw6JKOk0WN1HLQ^6qyqrjuj-J{V`VnzpkO zAtEu1jC`0o=!J{m%v3x2WPXGgG!;5us5t*u$ZKU4=9jgBwb+5dI>TS!w;&puBx3&< zK9%F8>P-odqoc1Rzo9NXY+T_PN2N%!px0KWV!{JK7QH|O zIpv7|H9zR{DnLXWXsWDZ{;zk9 zDwh-M-`bVLq={DJ!hv@H>O+UT#MPx|6{1xLi?krTzdi2Mm-PGz&X=;;n zeuZK_Uc-wuK60-5R#Ol%7R?^;M0qfzZ~e&emE#TOFZLC8W}kX8pAsN!u~mA)#%vUS zA?c>fkw|O9%+YseDyidce?=yG=4H!%Bq#!cg&}H7jU`f`1p|T~_Av^i{1LFfJ;&2! z7a8J&N2Gim?M{la!jdb4fv;875F{-3qx(w1n>~RmJtjhcp-|pmh(}jv+rD!YY>6G^s4({ z$yqt|IiAJUPT%RuUT2Z)6J%faN|**@9$0_gm%uK!PX z7MQD>F>5GEgZ!Ex;J@-c>BksHTSrJ}#UDH`0*h^za|>KDzbT|rM)P&7-<}-v+8TBy zQZ`l8h@Ih4Zg}FN)@IZA906L0+}4s=H*d3Y^`pr*;!aT|RPFwT;3r=0MWa4#D^zNk zEVl^&v&9>arod+|E@1-EE_5(r5AkC)mi$aNU1KHYP*unsK82#^o{9Oob}ve&-jLBn zBJ0LDfFB8<*{g?)*=tdLA1qXhSnbk=FZLlkp!mJj^D|l|9;IR$`vep)-~>?ptPbND z;>R`LY+pL)d-5VD&?tsRAqzyAbRY3&U-MR^n0#hxBp89s0~y6iuo*g+#o*F?GF7u~ zWMW@}ZQ3T!jCAGY8PK*z;gNMbiwJ+iRKi6c&xn9$)=vkN{W!U#EVMwmW&J+8u~a0Z z>DKoWKg#AtZ!Zj{I#^QMAX=P&$F&$!7Pj47&k|^b7TiOF5i@F>U?KqEnG}5{fpP|e zwhEnEXpnULVayWsh*O*lTt*moK$8Rr75w8&&cx)*5z(L))DnK%F=Jw&9?CX7i&WJ> zN93n=O&zyoVX`7b2VpEzQQg3g{=*!@0Cfu_cFu;u&b~5hAwA~y!a;G}0{G)iK3dx! z@}ATr-&lTOGS5tULyZj1K#*^@4(M`lP>^Wxlg?|h$jHc3Kq-+fd>GXA&SIL-S5Ev9kBDTl&mSjZ^%#Yw0)+wRP-2yZa{R|Y0k5T`D8W`U{r?f z|2V7x%rju4l>X?$aBPGUx3Jo^?Oer7Kc4 zmcaW&UERdLn$d$qT(adr(>(-(mqxkeAJ z+QE{hJ&c<@tKz?*DxbUj#RBR<@yOOQNO$)Fx(Ac_+BpGjY)L-r^Tj6HIb@)8>j&Jx z>2hs0s381iK%c?dC&_!YF~I55P?_iGy=ftbqp%0D8k&c}fH1@RQY8z^Gco8LX~c^) z$SRcN4`iwr|2G>m_zW=?ALEg4ox@J6Mq8uhnfOsMCN%f=ZSXZdTU8Q^7UqE;gq#4D z+c_4dT0!^BRcK&g(pM$))v}5@+<8hv?HckG0{M8t4JeDftMMlqbVGJt|i3FSSRAAQtA^@``p4J+Wqxg>U zRnzI(C*{k--5~(t1#r(4jZD>ks|#`(IJC24=&tuJB^M!J{0G$CsIRKF>-)CS6MDz~ z$}qX&4sC$&hLl-g{7adgvsi?FWB8@!OMF&VbXgfA2;^KVE3ZPXOoQ($!FQx~tnkXv z>7)6DlQi=QA}9hGXpt^fEPAK(Y;hgP#^AMJ(DKGMP?8e+$m_StB;5(cGJvKD7}Ik& z=#c_}a@6m1a!VekZ1uE83RMz%i^b5eJhUaCLo6jL0fn`_Fc&?rJ?;-7W3X)ESM{>t z^&noZ+^}jvL4u#5sQbkLEEWQ(p|bvchYsy+i`3_Z7@?8lrxx>g&ysi%LIn0ZKxEM{ zFmv&3V#npd%Y9K9J=L4tC|X}Hu)lvQ)B)U@8p=Zef!1wt^5w<fMkkf;!-?Ybe%sQau`#ke_11q*S{6FU}KW}M5>W-Lue)o1~zc@Fj zOIqvs=xF~F`?wi-$Z=OyOL`q47)w>5$<_xr{NSJzbB-@3@PSwwI6NIo$iD{isna9b z{eP^zWmHvd*tSb|cXv0^0#Xa4k?uC=lr90KLl6+@?(QxTknT>A?vfJN_wsr7H{LP6 zvHxxUJi~{@nsd!H=N;E|p2yjNv;us37h)tau=f0TjF)uk<3^gbV7>6-3_N{@N2K z?n6bXnK0DY4kSZ8HE*Jk;zyW5_!LT)FsP4vX3J+kj}~e7ixD_JGsE~q(mwv3S9&+H zpwxLRLmcY!xw}4zg@s3gCc={lJJDo#?-xV82Xql8`5{*vA7~Y8ohh=ooO?TPK%A^q zBxM$72ly>IU`b;e)P0`YQe}WEjR>#N4`ghSwO?pGnRS4C%CY1kd*3l>T*jbCOC!*a zLeqAlO0o0a2<)O;y)ND=rwU?PTU!geACge{U8+MT4^Zp_hC>v(oLy}jy_3P`zkUh$ zG&CKtARpx9y!^rY%pqLwd+_E5?NS6cstH%Hc`V4<0AuJgVASlty^y|{oXDLKcIOaI z+Z(5~4@}SAO=c&34>#GVkfTj9g%^}0pG_?H5{z_zZ!bK7!3jF1{5=VH`p)fthA#GS zIR*9RL9JI|EZ$xQ^y>P|z%|RLv_CI_BQVXzhWk-xzM>Gw(Ia$SGKO})dq0lf|Gc13 zR8k>%Ax4PLl$Vu7LkL`0**QTMI_&s6MA`eKq6Vd5u-RJb%EQu<-Xd}+e!%Xwc;pUs zdx5?P(Bg>0fK&nUt*tFEs)1-AaV5-Bd)yGbcZBz{hG;2ys3LT3?dMQ!3&7I(oX|It z-|VyF+t^Is;qUp#4?Sd=2EfS>K=i0*3)L!R)YYTcl56lHvWZ5;th6pMr06eYG+BC7 zgjPNxq7#{cf~OULnLVC=?d*D6ODireF1go#6hbC&(c)N=baf&2mJQ*Uo8q!oPq@=_J z9keR69UFbt-Qg1x70=CmU!{8rB8;iMVGJ!d{Gs@gphU7NOMLI3GN8QMGIrs$o6%Ld``)<^vFG~p>%%nB}KJ6im0ir)1p^PpS z{z9uq<)IJYrMwZ3qU9~wkPorgyLdl%@z{U$ zRJDWF_ut13U=5M^MO$Z4)p_54jO*$l37cJ8mX^V2QTY*-zyl$L3cp@0T*Ji_Dc=fH8mQV zJ0O}j#O;7P9>1(ApXIGXXbn$)@Pt$^wF-!fyy@8gq%I8Nc-BA7}k;kc~ z;b_F}cP0_{<~Ip=aBIJl!D#`EWk8oCAToHRVIgRTnEd}P{KtzlzkT_#op`QJ3}FtF zH%HLbX0Wh<@BEsv#@E*I_RSfIP(?;Du*gb#`G}XW>}!X|(O4+V-+zNXfWk3E20c*F z$#}UT+1)jAUo5sDQFM@zwW4XdqMOuvaongd_R8O9e=q8r&K0{z`Y>_H@m&3}jT#Q! zEsZvBZ?A5Ce*r3&>K{cBlZM#@=uWMH@p!e@-JNv_XjnLBu?2+wzX#&{d8gM!j%ncGFIlWeB1WNvU-_S+|9OFnq zBKz!ptUn6#VgXbZef(t?Ti~Yq_m}tDq^;??#gcs?p(C`L@I!D4z1(v5oQZeeS=*>@ zQZ9M-4?yOX9f`zhcp&_W6n2_LHPOZ+I0UfOH?AG`iJs`a($4>DFD-ME0hWZDplb8; z5xOe8_(|@l2XKq!J2rW|UIZu2qY>_11(oTV*3_j2qOC;&{X?UU-NH%_8!A)%OWKF0ST_w5scjM?WK<=4n=j#9GsRO+e?X2W6UslTpF9IWNjd&FfM8?co^w1rbdOy-!&AsiA_S`-dM>dBP+As#zl#H%uicLpH-Omv zrt|4uV%hI{h1Mg1<}yU!QRzgOw_HP{43z{t`IYY!Mp6kdNZUX11MvM~J(k$nN4?+l zTE6YRi?Oax52|Ix?4Gb5Ck{ zkZoXGGmbWZ0WmCCAh%a~e+n-g^NTsVw}=YD)b2WxezF)_{1 zvrT(*Cgo3$3->3E(~yzDhzi3f?X?-=?7PfAlT+DI>HrU^Nmn*id^=tOzSlf85FDFw zJPK&KP=SPh<<7=4OjUkqi9sL}@j08yP&8bUZkC55eZQDZhk5Sw6cj|0vLzvtc3E?@O zjD=OhiUDk@ya^ovr4{n++g)_Hr$amSUsO5+z`R(hvknI4!uxg|(8|wzIDFUQ4g`|2 z%5bQcFbhXw0R2u!A3WEt7d(rD!U%6*f0t{IDCjFEN}jX~NEMP;!y~-5ztD z!wMOYL&&wdAJNTp7MV|%y&N3Gz>a~(qOyy@rT1jY4|0l|>edn^E1s{I9pJLy> z1y!r{@?|qSkiwp=CW|kHgEY0(18SHU3f|lTCc@%kf!&2EQ$#Zmrj*3p81eEyC>XvFx=f6=0Q;u57U5k(m^0upt0sLLLvlz)y@ z&V7JM4s0HA?x_~Mcuk-ozZUrsSqoJvT2bB`lhK4!|HsAn{#=d$pG3znZrxazhG!|7@?Pt01y7x4Htoq)f&dwpI_`T8Q&M<1XI*K z{@aIj2P1Df2HcY$gTifRd`m|gK=ds7SkwH^SyKC3^^IpAQen57U3J-rP%T+3Hu1m* zal|rk3P|_{;;$jKsUgVEofkXL^=_qcKlVU{`su(A&y8_EVW4ZPy$Y}LwIrl+_ zuOh$H5jLp*8TT0Bdur+z!|o2PE5XRrW&M58LGQj^t)itxO0OW|Ey`C?8;EzSBwCes zdRG$5b&o%9*zAjjr_rMN!e@ut6K18&Hjd6nIsEF?7d(9Ze<6klUOdG&=7oGscO**n z`SKesj3Kmd5kT>1-J?@U%AV6K0r}JK*Vq6cPn;sOQ|(>vy=R4MN?H*|AH25KnJFNc z!HBAMw_N*{5m}t%?K_`j4`X1T`5uPL_4~Ic|B7LtYuxe!tF~WMqTWa(gePus!*-Bo z1Pk1SNH7@Wg2N|Qz@rYTVggW6(&Y)M)UIS%gupK50o+s#scoWe6N9~St3r`nFFtoQeo=NmXtWkRNHA34Tch5b^#XUl-$Ji3yY*f3d1 zJrr%s74xj{QRtO5Yrn4pZ#O5{W3-;QXS?paZF;Zpa2=Nt*?X_aU1^dt9C?NnDaT9N zxH$2f>mS_~5U^o@aj?}1n1`TSHP4-N52$$^B^A^O7aJ1ek@3QaN8~us<1`TY;{d2~ zzH#iS86;nF8UG@CRvP_=2G<3}@Mva+f{iU||6#kz(G(BNTZn!JUW!WOPo`}RxuJFL zWk2)&8Y?rcR;ED1*qCx>9lmBp_8MpXClzli-+x75gyN@Os)dSja=@vyKrqgaUtv&> z22@(`V;A!^Z_poa`XwyDKlNJO?ep$l;+UHY!vESL9kIal&V55`gJJmDP#)3o5MS*^ zEhXnVD@Qs~y|mNpMfNAF7au-e7`hf!AbFZR(rU((mGwR8b~fa~BFBc>^2q0PM)t!; zQ7*Aq_O)z2^A$F{s&xw2#wE|et+&;;-N4Dg1%^}5{yV+djNJqRD`<8A5LAs8p@x3Wte_*FbCP%`Po#A26F|=rbp7de&KQ z0y0r_B`NE+>!BXAat(V?XMeO?KO;A{w`*LyiBlW+hLr0z(^ed4t*gLNAs)|F+9yb$ zcq(<|t(LCt=6ZK<)9rSudA-3uLz?X@2RH*1D7e6UUGl+V+5*-VFFdJ9*m?4`iYj`a za0n8v!sTsxX^FDc<=>K0LKJLU)>YkTf{TR)PVCs1kD@44LePbhy2)tw>v%`*L0eg$ z1Jjdv+$hUs8D?6sl!H0iCBnFK02Cr!X)!77Mo4(n6OyY+;Cj z=<08ouw(GqumPw!4p>~lI1VO+t*!l#5@BnypZIbl092d?oFyef(;x4y1kHo^tR@I$ zTzXF95M>aMV>4jy#$TpaYjAY_Yy=U}2<-*AEb%KcJ;cjWaiXvkWw-0i{q-~rbVAq2;yb0@>Q?F=cE_xU?j zN}aM-Q<-o0auUVrf8B%H9nb5q$39uQv49Dh$xY%IIbL**Ps()qVe}x3BIPYR(9{A* zMYhMu>J6yiIYS+1Kz1181KOj%FrB3_ruzsodsLXrCK(Ec3lX_1Nov7D4HTr2TUX#8 z@Vl)9qD=ws(W%K-L~zwN_GMENI{Jg@*GSBf(QRJqc>INh?#h$pJz&tZLka>lJfN)w z6;8>6S;e_Z7G$P5IZw5pMTj3yev)}8GZ4kaxH^=e+5n&6%*>2ll^HD5&OL7@NI*pN z%cJw2(!_HE@jZ}A{zF;&<>WITpUU^1O`Q`w_K_2bok40$^`Hki-QdatiMD(B3=**3 zM+(v|CLsJFtuo0H7eXVpSik9XIKPzz;cT{1QLJRwJ;ASdI9eiaF9d!sKzn8(9IZ>7 zQc=4$yRv!Mq{MfAjAS}9@hbbb5Z2II`VW^E)oF=?8+&xVHKeYo30>*X1H3H|HOc@Y zf3@90&1X?XoR5NaVxO>q0C*=;*Yf%pz~JVf;bL1`On_ti<9zEUX8kXjT=jHXr@mk9 z4>Y++C~`w+{Tsg(Jqzc)@aF>R@!ePlOrIT<)Pd&6C5pLZEL z>i>-bCe4MrW>91X?d3xam4%&eBg4lCe2d77b!Pz*>`Gz!6wi7;f#vXv+dOEOe7>ogXe7mp z%pk5X>2pCqfRLS_eMq?p6=Neg3tPM<%c&68KMv6X(^SI-K4wUFd1K3im_xSMA)`$j zJ+5eq4J{V%<~cZU5pkPDEiM{3_4s2!@fJWvPEVIkk3vT>TX+h(1TVH;)|02?e2vn) zEozER`u0<3Hz8hKY2aejhe()0!+E6}Fdf~GaB5z%zDjrmME4%g*|KWDk4m*DiitPR za*t(`n)LaY!T&>=A|<{bNDj^b18)Olm0&MBfU_nCiul-(RH0n$Qk}TNcfGtePU479 zp)Ye{s3VmDuA4gP<5w0h0uB#`G|O2IX74MPP2ePf=8d|%!4u2a9g@a9i+P`u=*fAq zIs(EP_U?6A_v93@xB=LFQ1QxE%c_uq-nP*Pw0GQUo*AFlydDJj@ZAFT)S?U1I{Cb_ zNUfk0ylO?NDNq)dM)?N{1F)@Jut#ayD@etYJ{|%^ak>?~YMQuywel1UTRA(LoD#UP z+-^(43TZg0BH9uweiI4cZQ(G~2?fg^+4D#3mPgo|uu0?+!d;K(5^cx${ahnzx@^{z zfeTaqtTXi3CLTL>c6O*N_BsWKRBFdwL;_v6?Qvcl&wq_qhPxY9@lUl%gaUNlKcNiiADDH(_mY#6 zf(6?ph-;yZ5o1yBw{iFq2|r*d^NqG z{o+ReQwCn65ny?olVZ<~bC+tPqH|{yx5aw+ z6am-GA?{5HVp;=~KDtmKW@@@NdAg=6CL7NV?q`qV2i*&bem-V@>%FhLKNwM@1Clv3 zfEgL+zhGdXhBp!*Bdk0ZmkRN(*W4p^J$HG%YQ7>Q3jwGKE(W+^mJFjHc_7mAVZ5gDGu&Mjr z;iCd_=}EbukawN0*P_$9Fcl~tC}-G#LA~qdjFp8&UKSkY&q-sEj;29#jcWFC?fHqG z!Jzr26*)LKpwV^st?0G4U{TD0RRb=ht%tz!z@@p$_oBZ zcWu1#oDe;#MDyiy?+x4$kPWP?!bC+C+qv5|EnQSFR4j{TwWY}Z1*zQV6R68K9k&20 zchex0NbRw_ktDE~u9{`P^wx|IDYa#SMB=~f2P04%1Vk!ezep*uWzF@aydio9GhfOI zmSF*>3TCKtNAyZfud+)g9ZYw%U6U5J>9yz*&dF! zw%ngzN!wvj@Z3{MWXxdv8ew4$dqt}NAB2McCcNBChVXQ5S4(MjvgFH8GDVuXV?ezr zDP4$$VRZI}@w_p2@4oM+uGCbXri}_bfj447gB#rCu0;GuWKsJjlJLh5dFbK$c z4Eh|XolT=f2z%zb;jIUc+ZY-+UehFVX2%*0fR0P-oq2tM@Cx(wLufJZ8k+Rx6lb4> z%o6dA@iOmE-suW|Zjl>)o28a1hZrbN+L%3P`)#BPp!dhm$!%9SCnB9@)O}+wZZCv=9PE z3PQ7|-(%_uJoorx23(=aOt;Q&n~8qda*K*;U^8V8*;e;uBIEtEc^9}#DhOm(q=l-m z-k(HpA!262-`#)4GqP}U{s4xtPe45nl6v#?nqBhk?#Eu-V<;tYbc0_1{=;<_JT|1d zACg1M6jbf7Vl99GA06x@Ugq-A;ETy&?E04aqiUI)he?Kx2!r|I^%4HZ^U@N)RVBmD z_Ox4z??!-uraphB;q{@TrR^WG8cM|@$lL;YrIJJG6 z(KYSfaxq_NaTE6cE1V+a7_;#`)N(kPm**SCn_7HlX-m3f{y+^GIv2QOfFk()H9pJ7 zzhg-4)r+KfG3a(qJ=-1IIhik1CG7=;ei5-Lzd>MVuWUl%MLQ8-x`1Q>K<5JxNvGCq zZxtj(B~AmaQ0GlMl-VNfIWC7eEa2A(^f{h*o2a;_h#qcl2Wc(QD{_s+17j*k?Mi#W z={FXh(xru!EYFYwSlb{#pa;7B`gu(i@Yfke(#9q?%w16t4Mx6i!KA~NRNVU#-2L>` z-d8qIk99J?H69Rj^+l297MrF?r3+bfMlDL@=DPj$zY8zl0Q^CzevmTwNh;VVKCxdB zoNprPOsqlO`o@_&IWiHt(~^C)>1)0IjTBq4VM|fZs&&*fQ6UklQh}CUS6UR)v6R&{ zDW0?#3S124NW`MD-&OCeodnw64E?6I0@Dg+XLUd}UcRDdcOMtDZ0Y6Y05zi4Oy;wl z9@{Esf*|?xt=X)xB5leGMp4lg?H@hge12EyeW7428jD^=^m7LDB96G zmiofk6aEZv2~UAZ={L}Dw^bT<_` zyz_e1QexY-^2~QA=`quBDQV~W(AsX(1-0LIi*Tcp>ublF5_=p8GVWRH~nXhHO5zc0*p&Y_z3k^b%LZsSeP}xYmfvIKMoi& zS$|I2F0eqN7Z8(Rdz-pGPp?|AOBpjZaTt#GqClQM8o^xp_pLcJ!48ZjapSV}E}u1R zgxDk`7E?P;(6I~JRnd(bUOg?fUY{}zUOKL?DR}3Fl_O>oI=LaLv1r8vWf9=$N64Rj zFpJ}3%ZVJ6VkJNj%jzkKln#twi3oc0m9wWMf`(33QgSu(WzrQy=@XpI9uCubF=GKloP+9mMmed!4^uT=v@bKfeEJ3IPHIqeMkzgxQK{Ip^v-?P{~ub440f zR@ir=EQwt%6=L_P$oUR0DW3~JwLbY<`)4^(oipT=VW4aq30P~y#N&w;sHzk_P!?sL z?EMw@+@-~B_fB_R@v2(Nz7cmpkm|j=qI>c5m*US+siC!Tt00+(h+8Lmxgk6{u?|ZC z9RUHvd|CL!eflw+YV4~HkEv%i9;N8)`Y;HlqW~p8RjuWb6BF zqHZ2bV<#?{DaWWa5gX3V&Pe#JaG<(!Xs{N{hn>s-uy!J?=`LZ3@C120&fsnXs!S?q z<7T$PI1(EFc+s3cR{i$PpR;f2i?_9U39eH4LLG?cC1%w(606%I>JCzX%eq;iM{6H( zE~e*P{lR(j*L!=4sX=iR`w3|+0n@9U`p2Vnq198Y`4z{L?cc(-g>|N-zOJMW8_azB$+mM72C27^Fd<5{(U0<^SN__Gi(Sg_Ttb> z5A~wR1Qaj4)Y6~rFh7%mNfDA5tJ~yjmE2Kt*i?AP8YXU~1f>qx{QN*iiv+l6c;rz; zzl(_F18vKx0vBB~`YoLnqLQRLo>iAtEm?IY$D%=T+0*4g+ZtX_gwlC=N=r z6PvDPLFwV;M#ufH2miVAEy97}_m32{wU%+Ir4KuezFvqxNF%i~idx@1H<+5X|HO5; zYX76kT%|3evd`xv@wA_uHxd-PItaF9Sew*u`^E*3_@ite=gVBKO)IT{mK7fl(VnZk?3NotZdOShgq57SWw3#F^2q+% zg@W+M12VQo<>C7@9(qxz)&ys$nNNrFEnF*<4@Ztjj9TIamQoS|^V+QLk+Oh6!~3KF z?@M*o{GKP?yc*e39a(xt+1};mE8Pg$8*KT+AcOVl{*o#i?e|Ca+owpMgOL`ho#_EQ zDh8i9O`Dg>mj~?1X$~#F7^)|c!Il~6hfiyTj`^xxKU4qoNoPc={GRvmR?W>(_9~#V zZr1clyJx7#Y|=QZw9@if zw|hZk+X91K|$mjxsbOX3+GVxUhU=R302 zjt@+q!3RaCsWIyGN$L2tq`1Z*UXiAhn#N&qIB(P2bfjCe6!?YtJEfR+%aPx z*y#t%gSnTXj(RY4zT<4HxSzl6EnupZys!3jHjdovg&;F27s+YFe}CuI^!qg~I+0fM zB=)l7#r?iAv$3fnWmiJW>S}7B{C4h8NEwa?+evq_|W&&4! zn3djnZocYf3VXxyK%@vajnp_9O2xWXn?-{*CeA!JG8D9v8GGfkTw#3F^x(clqq%pT z?`HeN=>~8Ak}^uL;ltgU=JgJ#K4xGMucet%UR;t8O|#JQq(-*;cdeDwMMUB-VZX(v z)a>7bpm-1TkcCx8U{Xa;O?R1Xs9y>Uc;p+TcLI&Qn2S+-;8g3YOjva{1T5Sb zjb(NA6)yjESaK7uAELXHbj*c#+?^Df_pYZik29@EHb!YctkVIv?^H==yJ3g0?!RRE zz$CL(X}?7DX(Tn*>7aZcep;s-^7=J@_cy*r+aaWy4YtoPTA1Y`-!l>w_T}e1SPt}G z!d3VRIdEKS50!0+={Z2Cb9dB=`I9vKbQrImPTh}eUN$;(v|=HaLgHMCxz^af{QL>D zn#UNB)qu5#M0U$JnZ&>e5|{9s>X03o2yE?fUM;QDeukO!s%R3PF6}-zYP+D&Ynj&X zHNCqPaO467g{DPJ+c?SIJcSt&{-QoY91`u03NKgW7z*_OOyv8M%*8qF&f#PUchT|Y z+LpCo10uE4$)EHAEW(qxFgd-)NUel&UF4xX$^}F!t8D zR?I$Uo$0%B@M!aNE-U4j4#Vw3@O{g$f+pcU+|(Emj|c1C>RQh)Au*_}PfIbarTuEL zZaa2yZO1HMhF`D@B89g-k5`=cC;H9VFB0HKr_Yk)A6MZCe6~L_dD}kW^@tGjzY9nEjO?L*{0HwT3jk|QMZ;_nL3N8zqNecE0NIp}o#;{NU1jJ&G* zjbDbw#DiJ%P+MKw1e(>N)=3)z70H3N4pRU}d1FNIgq9SVBp+Wob)9s5?71i!bH1j`{@4o;74=WxS@{rS>k@!CIZvO=FRJAprUo1uPa`Dhi(?%pXeB0wXDlo zn{;8;jO!P~8{jVLwBk03CnYzRj=|hYsn^2a$BC@*V3TvAqL2Yb^4^cAGbKBHe!;IU zw&@B~qd{EB`E8h+bR(@&YnPz;OlL)&7hq1XCvjHN zj1)R*E4$~@UdgVGaNJx-2ApXG?nf>aa!Cm&O&ds}ASQZir3JaXBgnvOXH-Ne1Cj4R z>ZshJ-a~p>^gC?EZR1;3A-O(qBRKzPNYa;xJHyX?(Vf;Qe|*GMj`Vm}`r*&fCWz<> z=&~sGX=~Dxv@ZVe`*#cF(x*?|?EI#tQc?s3YOymD1USuhJ<`Ie zro%m6ac@bk+90;L*WaVQhv;#P?(8MTse`KidLS~KeN0wDNtXDhjq*k|o;Qj{Mo6a*)GPEmXB8mTzZvn3RypvyGuNY`#h=2(UDFX|c$G6G($X_jkfaiVDPH3}s zDVy`tgL9EiT=-;eD5Z#q;OlowaCed{+7PEnzOnOYmdoi(COTI$Fk4Eh@XV3ucpSQ$ z{ju9RSJaUFoL*i*kfQ!({4Zg{9Gif4ZLq-3=dp%&kgGTos1PlfoO)ksgYg6gKItT*QA#Z(U4h zPa15ztFK$SdRgLj(5_K3N*#a#vgZ~zb(-#NEQ}~#Yhomnm`_ET8xyN62tOwmF=*EAoVQh)8GYhlQQxbWAftgm3Y*M?n{%D*5t^;R&>$GN@C zMBp&e%ioiUyAGvv>voVSmQaD5_jKkb4}6^WXj4^;SlkKsJXbKyZ%T6&@TjOZ&R!n6 z2M0w=5x7_z)%{hesZB$fou{EeE+n_{)f7SODxuc>WbMf$5D}d%F5UQ3IDV=2A>ORX zPJ@3lNAB|`FbYl=Kv;xi!BQxQl+Vs;X3(eN{Cqn9=*BkD(15LIpR3*`@$VQ1Yj}Eb z7#*c9_?q}bIyMz&sP+$5$Y1C_EIa-bUCO>QAua2iEO)2q$k^%7@ZSAQ*xbC@IGlK6 z=r^bFAni~;!8%&Xp(h;_=DMSWJ+)Q}Lt`qTk2Xr}$3I(|BKdE%)K~6kA8fr{08I;gG9D(%HlKwB`0V1uW|aZaN3$9ww-_JK8DOJ{ahZ4Zujs%1}PjfjZ*t8Ac}9o)dHd)C?d!EE2VHIHRh zK5rl;6{uPY1ex_(0xDqEp?Ein60wOROT(&gsfpXQpq2GFCN(6yAIm!KYu!p&KLb}c zTcbT?qI)co0b4RDp#KWz(?YGKcnU5H_1c_pnm|~3bHgC@YyWgYk2GWni=U@|wK z-t9Od>K~A#v5#7eJ8asjJWXiIEbiV-#VvpOT$H`B%}Ym3SAODY3{%jCT2wTkk;;Cc zf`;;p&ld2%cOnvi#rAvXoY~rowN0lN6};ajNL74~5zG$LEb3 zD)wZ^xTL|I&Jh3P?AB!UMv-9sBdMc^r7S4{sdA;oMuE|HWM+laFQ!_=m3;Ug{0kyjPr!=daA z5GLp!ji%%C*y-T|<(^mwrfm@TC!7H)nod2CYTTMyBs`afEBnAaZ=>m6s~J24pSn_;54Z!{^*+bNfLkGbG+29*nZ7(G%J?I&tjq>Helpi= z6+T>zwHJC~6>aAf9M6-?gA(C~yyqa>-w6%rzMK=kh8>JXOt@j2rye*m$)6dy+ut$2 zbD*G+ww{?o>Cl;|tLU;u)!RpYd+eH1fctR<4TD^VGdk~aAnOHpv#LgXST6)OlDL01 zNgm%fW@^sn V6{2XA&l!Mpw`)#i*|piR1+~Rt6PXXWfp@x<$;JxoB)@4@Ik+NC zswl;rU@DFdB87)zwOwcY6O2rnZ*_)lyFuJ;iSu^Uy0%}>?F9j^mrG(l$=|28gM=gl9&>5nn3^+Do0spt zaoVlOcJQQ+c&#i;^Q_oxb$c2dJN#+s6mB%btpbLP(qlY}jNg{Y;@W{7p}SdeuC}mN zM(g33?QwiO1*jv8*B_X2vCOo<6*AT5y4k|wGwXb}IO{~6n3Ma_r4-?%sN&Y}B12Sn z@Oz?K^UYjm4zFXzNN!r{>;<)ni4sxuULHgO0;4-GF+oiR% zu_?nWBgc$w`dBT{#Aq$Os-FFzc7K~b22vS_f{{ZD*(6z9%;>9E1=MBwx{?O+hF52G z)z-`1HPb4)M49{b=YUGdQfzU?fTL?fXl{M&DF!afo{;l1p|EM-NRF)bz;IN5v1SCf zOnuh{zieJXMDmMvhbw{4AGpUaz9t#Knc&VS9VN$7PBr2=^itx`JwtK@5j!YysI=h| z9fyJxX0s0weA{9~Ylv6f~;POYR6ccwD)fY5N!^4Sh;s(PYU-%vQGfEe->> ziOJHhN$}y7GmMVz8kcRAl;4|8=GiExzSSgjLa2cwK9r+6zBo$vr&Ys&lo{<&Mj^Wh zbFrK zkd#AFslI%HR5W~{&y5P*)B!{cC-_MWM+a-fhEJpHFV=x$O;lN2xR z?Gm@ojRKJd9!YouCa<=+kEF+tsq#B9C-)my-Mj8axoNm7rQNqOd^hhaUu>Y+eFOX2 zpp##h=fm@InnTH#1Qpjm9t4{l!9!kec5}+KyDZY3xSE~dux`|TsWw6ZD)vAwivZ~9 zy)!BYgY5Xge#>j(nsfc9@~km-%XIA<->BA?pdgkXB4U09UA^Ipn$`~O^+-=APlz5D zMp@F;sC>yPG{gS>bhYMSl^xW{W#$4s_CqqTO39z6UIUHeb5M&fX*Fd% z6GB#$T3e_k;xM6zEUh@ls5wCHI+kjZ2=wnH7#1#WXG$MS6&EF{eMe4>@^gzJm2qdP z$ic@YXohyY=>on#7Ww2ayfJt zM)79(%m{3H^>1Y+5PF6|L7lt;)IhTQ^QW2wQ@nNIw~Ex@ol2fsqKyKl42ZP}5HY3f z%^K5Y%7;Ze|Lm9Y!d80kxBF2<(8!L7Y>&lue?)aQ5gC(}?bF4apd(4-3RsOF?IN_y%u_2zP+E~QIe*n?E3?qU`o+4VV{QM9i0IG zpotQFr7ALOk<9FyrL3#JbEb|jhmv-{)HEIyIDi2rFlz>TNmQa-!QdMuYak3-Sg3~9 z8Fvm?xpV|5WOUXOg6i*Jzpm2sn0_sqDP=#~&8-%8m3y&EAe*It5AyqNE8#nI#aH01 zcFukWdj?d#w5EbtuN^C!Z(l-Fe{WKGrCSk<8&=%z{^bij-wxk=0C`=8X;_-9Gu;ey z`i#OY_4@D>|H?+!KvQEndZ`GyV9?Ey`ndSa5Nr+1_9jVwZ_D|V`7$v@fa7*GyPo%} zDHDi4_r3K_mn%z|%|vd_dPw*9J!D5p8FtIfypwkMF7wSOGcF=B*f@USwGkLAN&uL6 zbNQ@t*(#lmx-tvH@-E=ZcMGb9Gem>muxzfDO5) zl`fE=t`hV*e!u3mY8;%&b5Z_gF|}OtHB6qYzqiC}D8&$jWgpm%$OQm?)Q5A6G8 z#$G~x$3Pdb`5w^oMY87Tp0^{g@z$*#ncY%gEtk%K3H^S73zR-^xX002kZDieD#mBL z;*Gzf6|Fxf^Xg43y6By-HGFFkE4F?*h&8(Vq~6mW7ZFCrTtJ5-%aeOxio9Mo9eK7@_uQ}is&#F zBXCm)&^Y$wS3$j)oK|UEuPDjTG z7KJtp3FjL5+A6sR-;g3_4Y%W(L=^3vGUGOs#hb5mT=Ud$a1jl^dot708P~ZlKjRCy z@=AnEZnM;PKm7axcj&&e@6t5I92O=W2)>4BNgB$=;X&OuaHe$Dt_htrmhoU8Bqlii z$pSxn1q(C=W&QmV?B1Z!<(OHRDNUm!ms=*8C?=x*{#essS9F7QEdE3}sP#qC1|1)l z6zqxB>CFma^yQo@$3(qc2w`{+>)*&Ih%{ZR3c#inv&fZYu$2!0RjUxLfE}p3kiqh~ z4L^&2Z|m0$M}B@zwzkc}+GJXlHMw&Ur6{0o5Vz7MGWZTl$jr!01@aqRLKCZL0?6wZ;M=5|94K=O3{JGk5uDlh z$z00g;qZIg2|w-@-1gvi!{B$-fvWb}(NR%k7*xX)4s>YL;6}%_CMb3b^ixmW?}Gj> zW-$5TT2GVg!ws2hW70hn1+xl-OdgZeP7oOW$X7k-fxRx8xsZRlJ}5k_4%FEodGSUv zA)xI6optiRK5q(AfDpVLu4bgukg^$A@7SbxzqK8Z zgh0;0&5L_$-WP%af&7jJ7Xb5PoppHYgv?kOCTUpMz!z&>J9aiU;0X1gm5^B5xxk`+ z5hZ%u1P|y3KmY{*#pKfb(mCU-EMd~15ltdkhI-t}P4zuQ0NR&kVOf7S^@_(;28oWY z#B#9f4t17N$RNR(blWosy{4hFv6AkX*3{PzkB`S&sI0e|fCKPfL}(;L zZ(rXp0RFx3Duc$205amW=V8qd*Z00?a)DSS9&4L4ey-Y>u|u-Ezeg*!S4H0pGF_+Q zKeYRlOR=V`jqi-f1M?Jg76ye7@3M@-0yd%7>wot^=N=Jivx~>-?O_ zYE{g0)2is=T^+CGhcXVcIj*cG5_tt!@9Tyxo9OFXzcdLy;Q(kMd*kmO{{Ahxm)TOg zj|Y_P7ec}Q;sp>+orU&WCMG7z%gc}ZmQ7Ad*f?INMA8Uzqy5iE6R@^G9Ebe47TRYDG-ub_e^q-I<6RG_m4*(12+kG1QErD1>78oP>sg(%K z_tEG6=j2yfMTIyCiP0<43_OBp=on=o*T;XdIy%7TdfWYfF3)J@i|h=EDSN6Z3t$lw z2GK7dGA9^N7N9;7K*u8v!KS7<&c-DTN=*t23!Aoe3OoW%rD~A+3nK}{!sqAbRrX7Q z?@v}K7Zw%uIyAeZ{;yPoxG`Ryv)^iiDLq2m~@sf|@gc=nf<7 zHkc;D9|Xhi=$~QT|IR&*KVV~5j7Z^v80&vuP|M4|3jG&_QafPGXVPI0(wK}43uDpX zZ_+}bgZ_wsu?CzN3ms@Jfq&+Nbx|17hPLin{{}o2SooX@0C>C z%r<)1k^<;+(Cg@njg?W4d&k@YD%6|({n=R`4ha97K`Z-b_yF|p)xY(Lk=A}8u~XoB}g@Bu(y3CNFNosg=J^8&by^avYf)c^e&G|3^;AO7!4jj>e1!Y+stM|!%+ z2mbyGD8otx+bAdY8|YR`Wz<>(f9R2B_r9`tuLSAt?n(+Pf~_$yFM)|8Bo7b26qP9||b~*@{i4&`i|594<|{oeQY`~UsCKA-++%=pgp zy`THO?&o`7*Odkmi5GTNJtR7K0ts0)t^wagAf&I5k$C&|?VAS;V!JUu+_YQ>~>`x|o?sTf8> zG<$aJ@DKzE6^W|tMwhzyL^kO3(R^3>U-{>zgKJMejYU>k3X26DmTSqOv1OB!lb!?3 zB^BVz?#ar^T9O!Q#-spBAP&f`vwqGIJwUnu9vN|SJ3u)WA z7(=vN_<6s;r6)g|6pVJ6FyxDx^t_K9`;~~uPe4z9-T%F2&M3dMNI@tRI<8Q^$)_Ih zEq8}=Kq#c_H=O#gnaN8A<=wab(KoW@BUf9zR80cKZa`ko)6+B3U{~Fb32ewNdU2!W zx<5YEhtVAoWBYm!pZX>D29P=b%c>^wguUkLt4oxKmMmTRG9r?>W?Pk;SBdzwPJMIp z6<8x%*v9Vz-EGtH>hBkeZT9(R*O+m!Xrzjo%|4my=9cHH3>V~!Q2tNmwT=GiCkmYn zt4;>(k!aP*tT4TAx@SYSrFfo)fB7P#R>G7bIy|9fB1{qsK-w&IJaD9Ae3@;Wsuetm zk)z=k5bpl&zCA_?^&<_AI@l+$&(D`=#{f*oY*B8mJe2l07(HH3zl|c8id)NK*xK3( z_A;gv;N_RtD&4r|asvB#_#*8pDrNJj4@-!W8d2om@%!2~2oXEYoa_A8b=J6fc&y6v zZHUAqJNy5yzQw5J?1hAc?cUOkAZ+QwRH_ChcXarJCj3%;Wg21{xWYK?j_iF0FI8w^C0}#_Rdz_;b|- zL0yZf)PW&q7Z(?9*LGzC#+A|KBSsA3qktjm92hl&P6$D^g4`OxsOH|jnV~7+{zHdi zG?PN-L3hwhUS57iEsCG4`4@@*Ix1u4{OP7bvZJD=VI-TA%~`}R-Ql5h_MTK7MHsidZ*5gU+p1bPJ!o&NO9*ELnSpJ8{S9U6hd zp_PzmGBh;YrT$&ioh>2laa;PKtX)FJvTrj)lQA`?{^fJRXJ=++4uM!3+NgHY_emu+ z+iI`RKUt+H^#_B&ex05k<~|v5$6jB*Yj;Dh`)$TTh$L=ch|a>C zzB;4fKuSHVUeYTDT;Zpi5VbW5N^7#U^CFKUFR<_Mb_C zLH7e(%LM-7kZ5|Kyv-jIA@e~UU*G?1`gB8=@ZT2?-S&!jb=yabxd=Yv!2{T%y)2Dc zs&kYb_3s7Nv|lm=OD>2un&UwlNzZV-3jpqZX<>=PG5@2uCm5>R?d+hGB}Zxf{AV(} zeNSx!t)8GA;?C(x?=x7lcI~B*6ptqWL{QOl$Cp*3jjY{ulft3PVD>urGL+99?(MPy zEE>cH^r(ng8XXrW)Ad?X1yShp#sS-X@U5M`$K-GaSz+Sx39;%T!-IoU!reUx;krxw zWQ$_aS(Od$l&?#bXe5hFe-rW@_x9Y0xw|!Lo@C#sW^}677Yiv;#_VqfRQ%^+cRCn7t+j+a}Skp$;p*Oi&naT7Pk8SeVIkCY4YsJdxv8nLl0L&ySj}iH#l^ zYLZThmgGPSEdJK5&r{>zuf)O;W+h-ZN$_o5^x>D9j^+a(`AKdQawjH2rKuLGDu%us zY(w*B!SH^anQobT{?IW~+A`Z-QP=tBEd#|0kabwtVB+B5fEs1RXV=x$4UtKC7o)o) z;HL|q(Om(V$=xlTPYyozUbfLwOc6|;iddy6y0P`5<#^)0{V`TW6@{z<<}3?11s_Z? z+&=<3rBTxv1u}S#kHDC5|JL#TrrM`|ZbXIDFtLhu8Fe-V`nU+Ya?pf8fNY!kkah6! z2E3imc7wJR5iiH>e^FVlJ5~Tg=2v+F6{FK!jT6O8C58mE&D(pe#q5X!pAU*?6x9FEe15wC+nSSV6N|E^zNMdtW00)+ z$fJCTTVfGXqAs-Vkzdt`*m_o$E}@ICvgd|h>yxa?D(W|F41B%b`LXwIjt=LscU9R| zS@U14E{NX+kie6{>2Fd2t)~3l z0|$F2CvghK$8k2T0HH3Uk$i~!mKt)!0Shw-rp=vbs-Jb*l1j>RUJ48`j%JQ2DZ3pQQXJs8Qfn39|?A!Ch| z#b*3ccyH8|4l%Y0gz6xY--69gtv_*r5jQ_zv7RGj?7>{ZCl;v9L2H%_x)VDr#n=U? za8~Hy2489>w-VJ*_$YMlG^l@kT$XUsbzSloe(BE8UbXxV{!-xBh9JvCUs5Ja9 z?6|=Ke+Y-2I{~daBaTsw&%n9y0)Z1L50*wF|C424LzhA7VDGnDZC|jt{#YsiX`^*CZ zm~%vR^1DvMDjXBZN<*a*)K>C3atM=Pp5OOcloActyiFvb(hf9M8ny=tesSs6UwbD9XU8DRAi5F5pIXEbI1j7JA(*T6m$B{&o zgjy&^J(>h<4z0&2>qwCz?j4Uw<>4Z8ym&IY2Xn=Ufk+{(XAr2#6Z8f0R$}8!d2_C> zg3BeF+Zh6DtVxZZdP#P56L!_u-q1VpCc{q2g)uuyv>f2z7E6a=*XV7Fb5kj(zc8{@ z21@!SvFZ|$>&VH;f%IT0%J^lF)W4w^`ZZrB4FDfT<2aAm5cp}k3+=sQZdWs0w9riG zq0uPy%xNXCz|~a^CE6@WGiLQa*=|hoaR5+OfV1~@-HJr#591RI^r%@wirBmI=K1=1 z=O;e=>c1cUc@(>^zL1vbbI~7bPvlaruG;EfxFI0!_~VZg zNdyrp0MHs?$4h0tj{)&$wYhoI(oZ<_@r2pI1cX=OZ{CbXKJi2q&*f?B>S7}$JQO-P zI^Io5pw;U>X8p>h#9nHTSMIFnBM>!G~4%gh8=o z8_J?u#Ds^lE-kqMur2`K5egt{G&I7*xDZnuolGEvQ#2X)aYs)>%*VbSECN!eYNcX@ zd-&N=DLXKamV>D zr{1O_C75$qJ)&dh6Hh*s+6^GjC8be7)jAYx~W;AAI02fiP?vHI{q8L+X`Y zB^lW>cNpzf-l>nCfN(4xzU)5q1q=1^DfkX$=nZ;@X5kj{JyLLSTq3ma+uJ>vyzB73 z1}PS6j*v#su12Sh2n#fi=&j#KS_0H#gFR6FK|io+)v8k39>%sS%P*pYe@&wOO+_04 zmMI+c=cFfZ$C5rr6_e%^oV3%k{ZT3gcw5J&6?LAK@&JW}xa*MfS^hY>%2l{Yu8ogAAm(>jo7126vBJFCC+8oLyiPU%R_9KBT zhZtBilNoZwPIkQK(_mXU$uMN=qtB#JaDeBclPfxlAkRl+ZJ>Sm`X21)@(Z#S(Pd>n zWOuoqskL$CHK+$>^adE@9NvX z!hX+cu^2&HFbY~l&Uy(xMvnxAhey3R-)-77RJ~=O6)@?S@-_~Apd<>ZtRV8&m>4Pi zA_v)O?4uuVp?>kt2o+A7KY8nm7cV$WOHuTbC!1XYUurn#`>)d0)*civEpcmV27Hta zeV0Yd4B5`~`7wyR%#qA=9KK5ED#rSZj*+@xDH;NI`T%`J8ukaeQBo!;#=`if3)uwr zVF%JW=xR6c|N(GJxpwYgaw zt~_$qU1o9Cm>>cmE;%eiHd|y$O#C3WmWINck5lbIxHzPwrq0vQ(8w)4lhW9=n1WmI z%iliyaNqAnj-de{cLuTf2I-5-W~sfwTk=jf#o&xQv-xOOtUbRO zf8z@+Br^I*Tg-ag0<1XT)1suXPUS2pY{^8;CkYNYM2bS-3Q>7Eo)jjIb=-<>#LO_Y zKn3=Z5p%O4yOJ$dz<7gu?8cEx*K`iFM=sR+9w|N^>fjI%BjQ{{AkY<$3CQWk@tP!? zM8i|0Ybh8G2?`3@7}D=D(%YZ_4Hse_F^Gyhad!Rggw0lfiA0Z;e@}y>Jg9~wi`shW z{ZC&rIc~WUs(?_cQm=UM2eTorLTJae1CQKG=b_Hb#|>cZTuiJEiCzp>VQb(GxMCDOQxqob z#9_G+DQF~-0dAF|%le9!Ape;E={GwHMZaW39!Fy2X$Fy^Ax~RSQ2TY6$|9GLzT1J# zp95I++obVK-R@9fmC-SW!07EO$fGTrt0Y%K7<*ep#It@c8#FD}1np zoQp#@iqIjgMuq{<1*zB=p{oo$?KRM;X-~a#s literal 0 HcmV?d00001 diff --git a/images/Multiple-Linear-Regression.png b/images/Multiple-Linear-Regression.png new file mode 100644 index 0000000000000000000000000000000000000000..4ef6fb5c8023ef2a0ec5483ef9d759a741a1bcbb GIT binary patch literal 51532 zcmeFa2UwNowk|qjmYPV^Wug!eB`S&{f`WjcfF>$VQBkB<3xX6uDJorKtO)2t1f(g7 zfK)+1x+T(KDpf?l0!--$(%XHtRwM+5kX$SA(@_V9pQbveoO>j}osJ99BD|vvvBmL;07kEd6zdR5^Ee;@uHtpEJU9 ze4d?c*Y`{bFjr}o=Y|GOAMB{j)HE_OT7-LGv2L$j;F-bvjip=uP2*S0_YOQe#e8dJ zK+n{xX033YN#8m1>$m^uOU`t^ED4kmaQv3VdUERa`*2AX>j3-2r#lz#o8-Fd9ZRX| z{ZgUsVU;ftXVw@q{o(UD8=ErP<413b>#x<)(n@cS&+L7FQKaRnOqp(F^IpE($?@)r z7@Y*`^yZuCovC$g4&FY>BP-`B4;>i!((21q9+mi*@54gyS%l~MaVA1`H{ z`S9cL99Ck0OMjJ)Jul=`OG=G#v4Dx|b+gi2N8(bdi@Y~>1)Q6!yrJ}#Y|zJmHxiGA zB2~s$c}(<$`HI@+jt>a$e>Bz?Hd%t#1jskK%6!c8DwZym@TDgmZdLcV^);+zAurOs zE1hT8=r(xd$(gSNH=eYnCE6r8}f7WMibJ_?q7r>7D+1#&i;?wWWe(7#hS+@OZ!Hre>lRA=$?;op6tv!*y z$o|P!Gw)ec+;1K?mwKaMkYJo$WiaT^^dJ$P}^O;M-5QhEF5v*nv$hh;;b zKPDH6$J{eWv#CAoqg2Ej?nvgA!&1L=)o*-$VYXVd=FT9wW4*p%W1_0UC${RRSjyJ4 z`z(}~OshX>5b8eC>iXrCYT&xV+qHEMp102WoL7s_OCBGn<94TVEBd%9VXBLrL?>aH z(soS+WZrA^9~Iz02i2dfTjPR-5l-ON@*RtRRKC+`Vwl$lduhV@xfnY&`(0hMQEqi? z;?JoK&h5gmcs-ZS6rNKjw(y>+&tiHI8C*0rsYtvQ#?D)K%folxvh6n}C;EpQa^v^i z-A>=`!&xw`($WcOSFX6fyI5u7v(Kjf%Kc8*aOsmBuQfF_O^2KPxhsOKIk;`xv#M9c z*p7~li`~Aw8v7_RSx{%28}j*Me&mtjo3*DudL>UzjGAY5rW(AnuYNJoo)DJfHoAg+ zVa}pk3$%5Y6i#}W2)lGVtaYq0vd6=<#HBUtJaXiSd(SzMCMl0$H9EM%l8;C5PF{Rw zSCLgh_RWLOFGS#GEgEy&G8|et2Sv5!VIi5_IhlC_IKs^;lf&vT*U2WBazTHM zNf_=c?WNV^Kw54ot%Oh=d4U>Zmo*951NzPb9prUVHr4c6(^`=oZyNb@S2op0P-cZx zR?pAIr{AC7)br%))`slSrFw=*4<3m78#`M}Obq7MyjF$-%jzv!jh)l6!+B;NSX#@w8!~N-k!#NBqaN!;0S;I=tGJ{?U75 zkjHJ44D zyHHL7wp*M#(VswG&EM!`?KHQC(oVfiVmboB1dW6igQ|yq4#+ux2F7@pDy8$=j|9 z#DiOih!XHLYMfmmin0+J7CDZHi_H&W;>Fd!T3=Tgy}vl@$Xu1N<2DF!LSd?WeF`VB zXe~Y-V~5E=>h7zDg-&9_hOxatSb988e4)C>NX78m1qj6l-UzbJyr?`cV5~c*!DHyT z2otQ-q_S^_g`Qp-8Em)nmaNrHimT)hF3eu2{n}9kR&CegKJ@+~@6N@=Ma5FN!TBN{ zn-FR2;LihK;H8dBUR0>7WDDzd=1xvHy*oRzJi#QF+;eMnoPm(67H|>>ar5cGs)BstTvO z-=^Dl!L590tq@aJ8F#ROE20?BHk)1x*K9xh*q*B-Pev}+=-MZm%zr0%(b$4cIu;a% z$poB6S|jaYK>qE{*a-WgRgtD`mC<_Gar@4cnid4JUEK}Y_HZRfN@Z(GUOzl+58ua~ z_a)SApqBBQ8IJ9S&aDy59+s;~HN(S7`gk+T^37@<4;Wg5ThtIXBb^Uaarkxw&T8?6T4BT$LKB>6V8_JJZyQZ>}k>X~hEB zJbr)SJK+t-&l(TPn3t7&D;9k1>A9JaddX&Vyn4AF6EXk_cI2bR-p}<|X~M&b7Goz3 zWBRnUv?35CXd`G#?|LhW`)umnF*48@&F``ioSV5X^B22F074z*G|}1q zm>e4)cKDZzb4nF>!M-rwu}`WhI}sr(BGtn-jdmobf4H)`H@n+Sio6w&!OhD*h*fu* zeZ}g(avfM{I-R*{oW=8s`8eGEaOFzuB-joQ5q8hE7qKUPfT_BAE4D>Be0sTrJ~;2H zpf8sEwD-I$$Nr&@K4R?DHH|q3Ltpk^NZ&{&9HT(RzYq47A00x%%U}rEo=MlM~&OE7(HvHo@>A{;FTxE0*5i zvjW!PViU9$FLB2qToJh7L#R_rU^E=V_Jzl8&CGI+j|fJlf%l1GV1Y z(2gCSJ24_!`1|D_X#GW#-RFI-n!d%~#C_Nhfw{FjLJf;^cN5?o#a%0{_TRq!p~%Fn zBdyV0p|3>7D)^L_Y;^&_?L8riM~ZH&YQ-vMoa|K0cOsuurDFnkYOn6KuYmj`*5?Lb zumWvA;JNQ?xz|6jrSUey6E7C9Ii+%S5_GVg<~zn{$Jyb;65=afllE34hS%!|$X4v9 zV;l%jBS*#ouX|&4LYB0SvC|P++THT?>uJFVTG)Z%=5iiqRSAZ}%5XZ+j49DWUr&=}2)fHVwdQwxrErcg^$epk$z>^wBfA_<_VO|*Tja9;K&RCO} zN+E3Czigg+rN5G&b#vPGoUd6D7rL?s8#HxvB7rd|zFGcOkbDfTak!T2 ze$!O@fN|x|=W*+5(pJtvf-+_$ugEZ3fWu1e`Y7ukw)CsD_e;PjP#EiZ&U5Zsbn5NH zP1DBOD_Se75z=pBBdl{g%(#)tb@itjLvTtpwY6Jn5PS`}*-vLIyl2lVv#*o~cIf~v zAq@hW^ zo@-JA%vr7lOD>wGRB5Ym()XljF2uSP+++K;49NidAT}*b$A;M>v@H+pUtX2f;2)u} zijvT2Mx%vdVG`=NIloN6c}uM=;S*^;j^al&bFdovDtJm0#qc&G9H8g5geFVATL z_;dr_$vyMc*BVAf;~{Hu6kQxT2a%JD2J$`)d&#|7Iale+US(KLZ@~mU?qulG1JbLl zT?Xq<6~F)THs{fhWNcc4vwi(Ul~XoCiwc*g>|%Nv?s3LtE?-}P+dCa!mpjrB zD1Bt-a5s5rj^46L^NUd?HIFPRtO4WsHu;t5q#Uc0qkKkr=-s(ZFgvIB=LLF!&}#z9 zKl!RF7m7>{<$r0bT1_ay%JuTgJHK31Xla~$KnNRNYmG{LX}isb-!D^6!6|W0aIZ+% zAqRK<-6F+DW&1^y@c2%IjWSJ=%}VXC?4^A=EK1`+1Ef#S7$9(ET0J`6ZneK8wS4F5 zX2O(S$AH}AG869a4!TL(V6HN%m)ht)8Ve`f%uUBJJaIO3CTnjl(JiyI#r-Um;tI0( z4+<;0p5~asCMNPe=DwNef3dc`jT{4^;jH17ASXbAJ|sF~>}q|hI9h{R*ysFV#Lqr(H8(xhT{FF2VjgyH)8t@Hse2c@^M1z;jl+x1 z!k29XGBCZrE0ANH?HmCswm{+wkCJSS4XH&)x0L9}xUGy$`2s2+PiYZgx7XU?psv=M z(W9ve-bW|f3VLg~al3=$8i$&>9a5J3)o`dGaHSjbh3$6@tDT44DySN7ph!(6-_FT8x zDVm(~TGuAMxjgk)-B`~>m0f^uxu4bYoU-F{3wdE4p`t0bE|{mD9~Z7Wde_VD<(8Sv z1TinoTUL&c?9kny#N@MBHpby&8%!q3XR&m9X%qQ>Nf!7RWU`~LY5=C1bj?Z!j+EYx zB=Qy^IuZAwgPbOKE&=2eCbd?|QQ1+mfEV*YOcl zad(wWZ{jd{EReBPM@^PfpEbPFFhWGp-75m;(|3#cN{rbz9`annU^mK9L$Uq40@g0U zR;nW>tw^(NBv?CKsP4`Ic#;CUMEDzWN}I9 z+xu^ZSNyPI*AD6Sl!@IfvXev4j=p_-!fER$;m(F^7hYQK__6Iii$kz(%C=dbw|kj< zpM{JzedvQ{UrUf}*@<|91bED2gzWWAJPw-h@f{*~3oLFJc{tb7IHBEE8uXNCU-!oZ z@elSL;O}MEv4jho1^Y}Kd4Ayof+9idGn8!)vh1Cu zoie@aCAX7cMn2I76uAVVZg&5S@5r3^@Vi6TTLs{b=4p#I!fB87`sbD`w9UG1TJ7)? zvP#D{X|`cxu2%8sX5!-Fc1S#2t=^By_t%V-bcHR@F*s*LQD%o+M1jAvtOEOYfB z2I=>Csy75aQ*M?Fe;Ww~iujA00D~m~>kglNHkfeX73jo0PW6|Tmv+>Q$?skylW>@G zepI*)aR8}MrsmthVF;x(PY?O(%yNGa%Lmpy0?0BO8~Qv9AC_|> zHz73v&b~R9J4YqgV$LUct?CCiWory&X!Yj6fm41&I9W2|Q#b*2`n%klqjx3J-r89- zWH|v=Y92mVoIWhcbDDerBrFR8*`r;vk^Cca*tY1%76i@U_J@u}M^g$WZUxmQcp=5) zAyY7nvXCOs;k{_%edH^{{Rti+$Zea!MHdi&B#fSrGtwsPd9`de(v)Ji6O=917@Z1f zcW=!5kP;J{w3DM(Q4c!AKD0umv^zywp4e$TfUjw_|Dry=Mqj;LiGa?SzNaQ`{Z&L9 z-voQ{7I4x&y1Af&3@1iEj2N$ZhLr!-V1tWoj>%if9V}ia9;D=!Sh(}<-fI9O z36m40)YjHU)|)$A${d%sNX$Ur>&`0i*nuKOV|p#$U^Y%(v%)2w*}$Q*z#>7`No=Rl zj#qJw^Gn9zAp;NBA>{WJn@mUpF&KdVJu#V86rmBFb-Wo?IplSB zH?qS5>+Jq&g%6jOD8je^_urA z+2n^lnbFWx%PPyzr=vaZpVQeDeNlFI@~+7E%EDNaA4=N&S)fcDNBo`;ROuCNrnDn& zJJ$o`OLJ}-Y=s<&9m#CY|G*2u6>-a5RWGHUlPcSV{j z_p66=I|;}q*Es&T{^-k1HO~V!oHzsmBb3l7R^!9Z9^N5fhHBv(`+^$B%)H0dA~aIL zfOb60U(7a(Tl5u6Vwl){&pY%)Y-wOzqTKCg+c$!9e2d7%=AgJC**MxTSadA;Tn4D6 z5=WsMlvbacG5gkG7m$p~lVg3~i70P^8J_am_c+;Wp?tisSsZx!=1znU4`821Qkfk| z>Bng?HT?EX+Z&UV6!22_9NVke9GsL*K&qjK!*FgQT?V^`v2+Ym z3#iBD5Kl_(o|wmtU5^jP^TM)^e$ojm9xKU-BnqAQ0o73uS@vLL{LhtU?D|SZijp-a z{UEHUL%jX1!B4N2!T%b)vzI^m@~4?1uE#lgoL#Y+S)Yk89J@F87Y;}Ix8z1vs?j!d}E!q9zpHOxH&8OC-Ud;Jb`KbFG5|q0>N+H z&&W^&`Y$xhHGPb1o`5%;X-8_E4V%BqJ{I8l+|0Q|D*94Y#rq=&tUhpw%cF;Dzhz0J zPi-r5LV1SR(7Rjb@!8Ylo^2y7_pS@y338}J)SQ0X;L*|Ru<6Xa&$KGT-IN4}I=4k% z6_OPfaqZa>4{mj=>s0P)uFJS%?pU*wuP9=nu{-$PNR(=Z$NIQTK8aMQSjzpgCx!6Y zLhB2_V(Naph0NZKqqqNxu*cYECy)S0NCI4OcqxZ0T6WJM#nKOX?gGb5%Ok+|QZ=Kf z!cl@#OpcBG9|7Ucw8l`%B?uY#uGnpPbzt1`Cuf`*UUXz=5m1gaKmj2~VyAnbd_DKZ zU|^l$hh)`Xa^YSC*B{;M#d1A35+iqOy#)t!pi*J%=Eqhw@lHKYXBLl-{QiS_69}X= zK2HenRRF7q7G79rqZ_)N;V75;8*<3SQX!215QEpX`u!5|bW~6S-@t(vQ-TZJP44jNbb-pp zEgddj0O93{EG5)w=S7)AGHCXyp@=QV1in*(vrB?4iLoVd9*JEl01}|H)`DEUnBa}^ zN=LAa5+3|jVyojGX?QEN1b|)gQtW#CQTo7>GjzZ7`S2+I#FDV>Q2Q~(J9bfiNR~## z4`8G;-8B_R!Jdi`=~DXuap#vVjNl52-Qn zV1n<+V7E%maOpzCO#+Wpk#sVM)+_?Bxel9B0F!J@W==&Jd*M3bP;rNP77>1yE~{se z3or+PlHQ#&+6&h1X716U2b6mw4#uw28AQ(Oj|v*^m8wW76*lw7cX7Jix?L!zu|qm$ z_U4g=pq#a?mpcWV#VE~?hYZEb5% zjRKfgAY#K>ie*IXBHA%^T`G16gRbS1z2b6^t{`A|e9HjRM!HWy)L0R+Jy96Ehpck= zm5=+4=W|uE^1^Q<8-aQxJEFiyC6quEotauV)`Urq!p1wy12;L@b>)n9X`(6vikl0o zF;;e;93SMO(M_k?yLKo7w~ppO}(RKoz0f?{#&->go`WK><>Y z3iY5XBN5`6!v#BOg6E9xOJBWuHLwb=iJ}F=GK}>W3xav4B?o%Dk9Sa+<0O)W4y;SF z(`2qCB9J=j({@ydrht`r@HzO-q-V2Mo5I7wCv^CN;aKM}Tx`-CHaR9nl^X&p01pRq z`r{sdxWXtwdY;ea5kE=%XeE!At*VlAQmCU&1^-Uu1arjVo8m!zIrpL_K)0M@y?eT=HvrP~G2t z>+aXxwr$lK16lR2-;W+TVy5Mo=N%||hV({fA_97{7so`cjM%bmRhqKA^7H&s!^-As zrp^4b?OvZOjtCDIW%h<%==SYe*S96Eik5kQT>H%A;ip>kA*}yQ$J8(9DuT#KCkxg7 zn`t4A)q1rD&dpA0y&rUQlF)hc0MS>d?bMq3?oNXFnnLQ)oJzS1M@_P@+Q2r1Dh@C` z!|hjp+-D;qYpLn2GBHGDC*&_BROuCznV4J}NxljmFqev#jE00N-Ui_D=}RKM?Z{9= zuE(VC@h4vaBB@(iGs!s2owOy*Dl>(TZ{`rTQ~;MuMG+p{MIpl8b(GX4eZ|!Ga45PG zOV^bbxCfL)(W{DpiK~BwK?bmbs#f4Pzd+5 zVzix*1Qm6vE^^e=);r<{F_g3d_=-NjS@VKxONd0QK&dzw5P<|SP@~u(ghis_$>vaz zd5uA82`PjSWz7&4clt{j6?IOnmXVNT+cf@4AoU}Q25F$+hT{iTpr!zVlak!#RMe^?QQ33Co^V9zlXtF; z)3h;xqwFJh4W7aY4&F+5O&zay2Z@&ONv;LW&mYK;iznw+RjByTPD+FicYi zK&P~3j?$Nxh7e6S;Vl($25GnrMm7LOL_<$c?_&Tc;1(oRCHMwMl*CAP-A>lk_=Jp~ z9{Aj+IQXmn!ShE1hJNH%iPM)gsa(!HyyxC*zD6EX!ULVU-#zQq_Jz%Gmt0iDZbH-` z?dRu5&fe=Vk+0fu`hMs7YWs3MQnH=;TB76QL+>6N_z0jCnUo|A7B8UvAs@o+xA;kY z&TJvgZ=3}7AI{rVR1&D=neiQc;_U+w8l5xtNv(T7N^$r4GF67McB%u@UXK4n*_kIh zdr?%V*@OMMp&y&Twhwi{B8jd%=Q;ZALRp_G@XOLfnSGl1X@e^?qZe41V;;x@yzx-?}|R0=23HH=1!+ zi|NPsp*()LK5AuiH80P6=y9NDhVTTpXpK-)V&_e@ZQIz4MV;wc)E4vpqghMEJ{f*T zL3-yCL*3&G=r8{Vp``y+oi!f*Pq^=YgfQ7)A8MgtB?!|3RjUPw1caC>C%G|FL&8Cc zL6N#LtrX%tDt}XsMX*GHI0$eccB81RFu@pUAf-i;kKg?Y_Wy2m4YR!mTK7pkADkE; z<(>I@P64uWjRrXsYp9G+i%bOt@C4#-3bqLt-9V*w8M_>nreF~EOa+KEk0gRag~7kj zS4@mipAd@;d8CK)U{?r5MWoOx!zS4wk+PI6Q<_p-Cj#!`k#(&!!ylUd0UpYe&ACJ<5y3&yTkD+R7B+`e1;ncogFre4 z`Y9t3^V8C1bAlm+rSiLsX~8w5eGyQylbChCo?akS8%=;PT;L1}yLLG>#(#~_n0M;( zi?cZ(nq24xm+Kr$4s#aBu|>*3lsyDix+t>%NmKxD3XP)JC>3x(1pg=H5t>HFPJVb%Sa3bXeMn|n&(0&*&$<6Q^hT&$c#E@nSa#0FYg2yKf?;Ir5tlu=^ayH58#8 z*IqImttwa;w~9o`nI!dAK&^=a2Du9h(9A@FQlXd4A&!~yb`T5xsPkvO{B*tM5eJ5+r4BD$$TAU7HNe zV(#sBX!QP}hVX5kyMi}792RVJw zsRm9G-4Ei^=}l*x!}q)&h2-HnJucSSfFr6hTFXr;ToEM7rp73esG&^5$c6C+3BR`a zIbww%_(PHAxq5e!I*IhbqJ>Dl%TbZa&|#7}R{!3R7S~3qGJq^BONrAIU(Tj}0CR9W zu`WlLTi&Z)W!W@Jto*9|_iu>IU8K1FmkZw&q9WCjF$pL`kLe1{!wXF`!{MucN8GbP zczHQeR2Tc8Mob+3Tldkjfq7Mw57xL5f`xR@M-?D`AK5m#KfLv83u@uTt0IFrr2I|meEiWn z9lcGY!{Z@O=7J-jq*fTZHv+Cjqy13iL0Vx%q23i`6fX3kjIOsZR!W#ew2bVDR13&? z*OC^6NFTx`V}2Dsi{9J60~41yD)uG3Mq!pRN_ zx6)r}n=@=iB2dyjp(zG!P$;)J?18BgAxC{L+f(D7&{5{O9VJ8!p@|y zya!r^PBM55Uy^n~4`W@1S_=t@XkbKIi6uW9giiW^cPEvi2_FzFzza$ULl6hX&}M*%@+g6ok(pyPnlCN$ z-T?^G`}(ktU!4!Eova2uYDer)edB@j=TZ?Br!^A5Rsm(RKLJ~*u)l%qknK4M;N__% z@+w8*5g42-Fy`RwN=zn4YN!K2m)a6ZN{8?&>>J=u&9&j9Hi2_Dx%_k_I~p!KmH+$meCO+vAg^;oS#YKPb&b7MfML z%2fr_3>gBWf=B06GC<*d5UTd|r>KY*HBDeE2rjE#{h;~+DK(**96)>6u0ZLCyovqy zcd?;bD;_P2%LZ54{F7U6Q=z?5PDX~acWSMVd01}hcCTC4+S=Z9*4^H6e)5adeIjcD zWnyyt?Ar%l)TPx9N@Qns3z#&ZRh6X{rV)MeTvYq~97tMK_Mp2Dx-rsr*)n`(T=DWY z(|1qKLiMIND0}Yg1rLdmSmU1|Il9AKVq)t$-gEEiN_Im z<>qMfKO=BxMo8@ePLNI%n}hD$pP)qUoi-_b`)}l3euRI{#R$*AO}I__{n$8^e8ex- zdHUX5V{jj4O9>8X9n7IJCC8A249pxA-ZCmA)4{-b-7`5c-bXbd;^a7Jnv_LcEk>)@ zEh6nmCk~fbj#{QD)7Q|RkgJT|u7l`m^dr3pk+IdfhrL9Z06^bCJ<^8CSg1ovLO@_- zI>-d^Gut8&SH`wyN{Qn!?5MAX2;6ie)fF%k68w=Vk;;LJ^Td}^<_QV4GWG7bqpNB~ zpsZ3ET2uT;0~_Ws;Y8KA|0&^D)Ai2@KlgcWnSjUQPtkDfe>SP>j8zhpw=sN^V&zXY zI3z{eDpNIu6p{w)bL6czSj~B-CL-jku39>DlJBmzw#l7??wP7FkQJ~E$&w}k# zoO(57J1SGQlQ6~mRe0%C_D>_Q19@i1v9x+QI@jbDMGL9aXfpOefNB$M&X!aDz6SnY z9kM*?7ejY)t|?5I0FT+++af5!8H4u~wkuddY$)G9g8lh!5>51>D%*@kuR_vDqhy`? z_9Q9vaQQOGP3$Um%P-Jg$$U(ufTRBLekumu53;#ME{Dz0h}N`O?YC2*E$VJLT2|mn zGXun@@XF$7Kq5jW2G$Q>$af{9Q^9no=e?u&RQatfS@C=~HId*`a!!PybP$o0l(c6X z^XAQN+OSW2cIgl5o7Qo!cY;VbK^g{YU?V;);i>ykb)41c1M-*J^r$Y=mDN|~3Wv(( zKxwp^jB(4%MK_R8@(9q}dGQB4+#5MvM;>J)iZRqSLv5rh*od{s5PuV^P3|22Ap~ok z_43fv(-cQ122n8^-Qg=uvaEn*PV)>BRJm1L}?Dez8Obb~JIVg2nT+5IT)0&14(4J}>I5#(>qq5blGvD&pu*M` zJ_+gxl_RJ(mk_xRFPoeA^VCx0VDa3+ukfIKai?8ERqjq!HjWIV$bfYpA?_dICu7|^ z%%|)%foGott& zNK;8wFDPwVU|6Sum`1V`!oB{&~Z+qFSWT8Lx5xSXDc$+((*&p z5c08VkI84&`APY0?f0W|(FzT;`7QAlur4U+u;3dV6PVHhtL+ZVhJ>7?dKL0v-ghQF zMr+6&bQ+0_oAYsIzocnTSy|<&lv~%v$r->6X}i0k`>h$kb)@>rl$#!j#V5iclSaJv zBc&NA%8mc&rxj(G>M*8GJ@r(5vZzfu!f7Jtiyn{M&yO{tZy*XBzvKD01;XW^1`D1X zZ=5V8#hpZbzHH3s8M#6IA1n2Iv(7NfSn@kg!c^Z?ko4v?&kC*7E}+uL0! z?y3UMlmtsPL(z%Np*|Kp9NZ*?S@)P1%+qgn(~Oy}Gm3sQK)T0cLzE{$sFa%$&RpfT za!gghAW@;Dq9BzTYHFfvDq51TDknc4*W}Y#GPPYYfcDV7gfZrh@zSq%EAu8R(nM48%x;8rCbY-c_)N~djo z?>MA8C1`3WCj3bp7*c5M3?QW*rf@Hwd7IB{cJ67U)kO5E)Jc=rQw;CW8 zC5!B+VqB5m9_JOHKD);>dl7*aocxIv( zQOZ=KYow==3XF@*Gn~`(6$_<{|FP)7iG3TsWlo(r4Hx1ubC)GgpRd+#X2*6A3_%qpxA|euTd)D>jAp7 zlT(r?9cw%IxzA{VUby@h+$L#os8yGk2s~TaD|hNhq~3#hs=^NwvHedpiW5L1-=09~ z=Z;E#3tANmC=&zqCuYXjV4ghRHVJ=}SnLMJ-BH zc88O)M=DLd4MilMpw3kEf{AAsGjG)GsIq8s;m~uZL%Ah`+H@8ynL1u5t;b)b$cjV%vbBa;V^(Cm2_^04L0Wqy9_3mQrgK*rdk3tEa z-dE@IX;Z3xcBWSPVNe0S=p*!$X&y4vRxjr-B86 zWhu=QSW-1lyi-5bGIYkX!53vE58AFSl3}yvvLvnn2!SvF_cNL2M$9(!nOoS~CS9+C243hbL%c3cQ#)@-I7dE>bzKRd^JVixtEI z(AWef)H7%uMu)7&{rxsr@)ORze`v1ID)oov>WuRPggNRtL;OaM&N9TOF8QuZx?PM2 zu%{%92mDryx}D~ZJGl2m(FbsuM`BtmesVSGD2aVg_IjP~UwT-TY{WvU|Dl8EmFu~| zTI!`I$rH3RMo}N|&I4?sY|mZMuyM0-g%PAj6~CYSle0rbfw>4-0&yJELQWHy#UmI; zhSU2kWd82uzGki55yx+M40$5*^+%h<;<4ix$FrY#C0vv;a6|*n4$%^P4j(4L)`9rc z`Uf6MxpmTvGD?hNxP@3`iZdG6J%PE|c*ZH-i+q0&8=2;^z0G)|6*cclAF| zzzZ4!MqfAA|HpI1sw}3odbhj&SrtI{*QwED?>1`wvns%-zjOpm->av9gYF?j+49@rHw?lShCx>#*=DyR$<<9hufFN? zR?_iMCty`o)ha(TxBXB%bDNQU7U7umjbX;lnkoOJ%lS@3UM9@@)X$56$-(1McAxWBqK_6p$Yw8XMYVe*!F!P;sfj0h;5Ox2b5qr%6tG z5c;X>QQ#lh@T|s}fAmlj)nZtODHI_Dk-&NCGl!3k1QE8VR*>or_yO5TFGvc;y<;siGYvr)qv}F^CT22+2iLdn=Yg_6^k|$$%+)KnX-+$8~0J z_lB*HE#5+%D}B^l0s@W;XB-3uaygs&8?wLz3L+5F#186`lz61eyf11lyn8luPc+}n z4wK@{Kp@b-74)2kfT5A3ZKZB?470h9Ed5X3{dzZ>cr|JkAI74F(P%hqyc#IAWVAn1 z>b9+V%2D_41c52G%E!S25GM(k!W<@1OviwTAY>g5*JZ00Qb!4h(6B$|iIKcY8Vy0) zjHc-I#)nuB$UsYptwpjVMyM(Tkoy6s+PbxE+d3R zEh|7@=pyrP4>4xJlZ-M;qSp)ll^79T&+=x{%FnY7(|YAW!7Yx zNid3Wkr^2SlL-l(R`)cse=;9e0io-1OYYb$Y^-g3Cv1bt<hgyOi`^F)s9EIS!ZcRz_8@VR;K#w4&TI|BXuFi)BSUf$(XB-TX?sC z%7}YwbE6a3-`p?dgY<_(x!C-;Jaeq(9NSx8d=|u5Sbe+;a zHa0j|H4J)&b+-x39dZABx7*)%A|&mP`=CD}yW1L_w&zH>w@LScE4~@h?T$nu2q+cp z<)8&H$ZZGID{Xco&e6!BsC~feSh9$`Z9`TyFFL+#+WBrME5wEeROahueHx6Q5l=Fh zg8~ti{lj;;%VU(fu`xLaG@}u|?#v&5{Hx~Fg5Km$aGO=sKR{_Mq3D_cNMM-0^QH2uL98X~JDg zNgz{hia+%*<LIto*c(%jD6%b)52gaQFWQ1t zC`meazIrB=K&WX8hH^hVd?}SJsg!`0vQfVnRd2&Yg~qcHs?RSZx44R|KYGo=oPQbo z)NUFbVODalB;a#rDI;H$SiCa=ZHmL(lSm1a0#gb;;nw_-&dEbmxtsg~6dGp8Jdk%v z?60Yitop6{N!B-w0_sd)(#@!pb4|dpOqRufNb-C@(P`%u{t#5|vs{ofS5R7%v?x?P zb2l_V&Kzw3Sc@;z1I3vMhEydY5`@ix>ZB@w=VtuBLZ5*kjNB7)3n0gJVZTJb#N$~d zp3`*%)cFk&EueNfCSVvBRa^+!%PmkV36d9?*!$%B1OyQ%KxiD0fDs>aM-ubM!vmHP zVS6Q>i8id8-=rWywUfeI7_(Za;FFB{6#0D|nc(&uJd$42G{#5W&WW!0H3q!31vz~{ zbl1K@wJAzR(#FE{sn!8wiN_hIlb8y+gppEpgS$8dXuR1EN(&ZQGpYEybeGsup%cV`T2(z%-h9F>l_CsjNhRNSR}w-3>J?DP>`70 z9^t^f&hZcYvJXTDnk{S5E=4_DrZijzQ8Nif(*mlxRLCm!I@q?6y7(WMn`-j{p+&>! z&_E)WKQLpq5TVLKnyGdA;M8rKz$n5{G=sb5y{QIr0;Gt38P5EW!K|RtFicJ(`ioa5 z^UcIZ(OQ3KX)8njHhr}^F?FLdb_$I*pM>jX&Jhj}rJ-IeN5OxSgjpb*3M+`|9?<+& zRrS?bUo8v!mik3t79S-%4^-!C*bVu)w0~ffH^P119fFwAl@*{F}3Ma5kkM zy5)X5+3nTEWv6oWy5aSj?ArydN-*BhsKFe5vp>-1j30L zx0c|%mkad97ytL_#nw#X~+Vh`%>V5oO&_FjXgPJ zad}oFeo%^X5&sP+@2^YeKAZi9h+FJ_XA3#GF!zRbfIi@}Do(@+fxcf1L zGSNjQ<83*l(Q15ZF+d*qJn)Lc z;py|3QzxOJW;m3C!d6KN_3ac=!3=?xs?U1Bj`qNgH=hqv;}Q}~Ds_+;gZkQQF%8BJ ze6JWAyiKUE!^lO0eUEDybD!=X~2&(CZv!AioxfkD(cRibf?io>p>W~?m_^! zhXY^1CT}#*Sy!{coMQU%cTem__o*(@vav$r26eDvu;E(j$bqiLN;sGBJ0{EtVq6gM z&H5_&8qw96(-H$d3sR*)E$7X|WUld)xzOa$^i)S=FEm~u3EUwM6cSy?9wja6eA)v6 zfixzVkuG2ZQVeOV@)1r+N;YV;6w5H^J~l03r#A$-5zrekc+LiRbDMYvI#g}%STYjMrd~? z|1y{mYCDiZ&8E|xz3*<{T`;+O+1$OqoSU&=TEmOi0qcCF?aivDy4r?r`t3|vxYa1( z*`O^oAnyvm|K=7O@3Np(4VrVC-qQ1wA?ylV~n8!i^SsqOMS_l(I(TIW+WY1si#S59Kq| zyGjUy21L@>*r{$Az%~N(=8!Cq?1ZlH$fjNq951QQXwEmy45O}hnll8s#-=|ql8lwM zQvk?wb99Dtp`TEqg;D~JMqGx&R?eXb z*>DVf$YPix7$Ej78q>k1%#;#%>Y}EPrqfRfB(iH}f+EuZj>M-7R+daN&Y=m4T{qYD z*i~VRH-ZPcgwTuAS%TGV37FxzEfRKS0kfa#!`ZcwXlS*JKg#iC68qkdaxek7#Iwik zGt=xyAn^I%ax;u_r7vB>|Mt{&T;)&Q1pm(S{ugJz|LZFMLNH{I|DQ!LRmD9dz*2a3 z=4%>nQu%rU#Vn?+l0+w@g`tjh%SS4p0;!Wj4nmF&h><9Fv3%5stbyr!+$~otN;5iW zQl4EMVs;>nw5LX31jf+DiGj4h^%fd&2~1Y`r2H;gMky-Nd@GRFlhF@JH%NJQ^7{)5 z@1rQfNGZ{{LgVOnalTu;X#>p*?#-PX&81;4eK98E;v^`fB7!KJN-X!c z*U@ZA%wKQ97?)ij*=Y1F593^D5*7_|prUgt>gqHHK(r9;^*0GAP$88BlyI<03K)w* znljNsDzZ}nkq{Hg8^P49N%MJ_mItab+r2(`v6%+QVR%%J7xmPXKWh|Y@y`x>5Bo}N zis_u36aXm?4A6Z2lSvu|1)CupFhzSL&di8;uK~0Yso=L7Xk%82VM8_AY)C`Q=0N!o zflrq8CZ7u_imnaS>5Gn0z@rXO@Fz4AiTSk-AF0a*TD|2M0uz+W zru2Yh?h@PiA$fu9gbTf}TumzEi>aF|-E43pH!uWMsE+0kfOjoR{%3$<*vMrIW&kaj zl&_e*c{cUlo)$R#Z+dUv8EA`F+5ENt(1M&(9k17+5MdnReGEhGR;Y&>GK0HNR*k*= z0Kf%$!su7ZfMWV7+&T5R&N;O;`Y3g^xO7h6XSC@3#?4C2eI)1%h-+B$SW$|YAxtl) znMb{;)L6qi4r_Cx>XcBvYf3gWak6iqtfH|f)FDm3BZ6ed-wCacVtQ?EMBWc<{F~uO ztb6Z*>3kK)acPJzg>0;D03lplXg7zZVbNF`YO;dHco_wKsw|)&D#K1fOL_}Zd+w97 zU(0|(q$`k$4EgRgEFzsUip7L3XgCiJmD5QuQtOYsame{wKU$LR?v2T7(OwlmvOE&^ zk(iw*SUQcQx&+4AffB!!J!IKDu+&@{08H!yJsC$7w^@p*#>C&yhmd%X#D6qHgiU?B z&FJ=LBd4GWAob*ufXmA97#RWUres8$rA(#dp6%X`-ifb0HG5&1{&7bLlk8*nJq@n_ zqezWCw6RwOr>LCeM$tDO*(gm;*YOXqFlR1u;KY*u&ZLRICtTIX_X$8g08CpLE_pWL zr3kM6$vjz#cP*CmpM_F9}09_Ik08hi=Fdb zmhmT^lK5$wxOnx^4x!zZQLD6{NUppxKSE}$Ot(mmjLO>k%D>;~;OgtGmL8N2O1JM; zGH|5T_wZ{fmXq~KreT{-`Zs}y$Q(wKytoLq6PtdQ5)rSpCs)6o=P zfB+@q@Z$%O9c*@CZ}(V(IepSno#JkR&skmg1r6xu`O8qQX-q-xKzF11=FP0Ri#Hv> zn=Z^zZDJJ`7Irk|hJE?s@XN)e6NkGSx|=7$xE_`KpqA{*yK9&^5y$WxrJP=Ph#TQ@!UQa6XUL3OY=wW?&GsN%&({) z$AA9kE!Nf&l!7{JSQ=!JqVMYF_U)WGEgxQZ4h;{tdPw$0Ld{|~KH>;(T7XK`Uv~T= zsiL-P7iCskw{AUf=+Lx+{v`<-F;ye>MseD{w{D5^+$AHlW0J=VyzdT~KqPVD`{g?m zkH7yJzuO@X1Djas0!?y)f`Z-I{CJX{fwONw9(?odw@cQp-TQq{`V$D~QRbZi<@!gk z79SARH%}->E+3Y(6HU?g(ui(C-Xpx}^fgSS>VpD{RlY;OwpH;1=6K}Q)&|O2Rgc-c zi7u$0KWjSFtWC&);7xB;R%(uOw@rjwMLBl7o)@9P-oAZCbCI8KYvi!*p+hv&{yrq| zR~O3fnY6F(-%>QEX^~}$(6VLAu$(qFHW=(BEF~p1zOIbBDE;k($Zq(02KP#ZE+d zr@W$K-^%%R7)dQHEzOG3Nmva1(IHG+u&&SWqaM%=(x1)6b>eqnXEvPb5{{0JMs_>1 zpmF>(JI7NPHhIX@bnDThD-jo)$A-k;=Rbo{js|1DlJoT8qx|>9Ok}xq`yYU>jHX8 zrBOFVU&n6=2~sf1f~0JR)IMduoiC6%M(w>bjZZ-GF9*QgoOW?ZKKOjbp+krEqA%zm zcbP-s8))WPFYl_(MFZI-jcCy&OSW)i(l1Fqt&Y)=!i3FVoShY4cnZv%=zg=N=J@AR zrpmmy*w_FC`xWS^HGlu?e6X^c&}NTg*Sa;!A{HKxtg^&FOc^QTtas?{#e7qG&O0Ej z6FkQXU%w8xcI~g|TKnM&{~DUmLhH5hWXF(^$mSo7Tda~VU;Y+t=iy)*Vhz%~A%|Be zJ~`Z(B?l+=bCxC>;w&CL%TK8zmSnfh@zU%%Ex1@F5>;cI`2&?xNValw7B z1X4MOHs0U!@<1$Y)sEGD3YM;EBgZr1-o4{3C4%7I@~$jct()tvgzWuAO^yH1&}o2R zwTPX5U+UV6=3dSc>$_Bgaue%iij@vaWB>lzY!~^R5garI{~#z>2wALX<9XM2&BgvV zB#mxCyT*F=;ls~{hQb&Ovs_Zr8#_7BRUf0?cKIzAr@FVf_+xA9w`VS1oVjGll1*+S zHxOC(C7bR3T6N{bu9nd+7$b_h-wLRArZp&U;N#=FyW{#&{D!A6jfkCs(wf)#KE0W- zZ{I#Rq2BnxKT3S5k5n9n{xDL%jn71MmF8@A0Id;F~z@Vt9eAxFT(r zxZf2#&0mFuOMacs7og-Kw_?SL@&+zM4-4oDg@tUDiicQ>l2E0EupAupDBXwQXYbDM zIeGKfhY#0brAG(54gp$!D&y>!-KYs>E!E>HT`z}d~>GQk)<&h^u9k@V>!IlrIZxe{`Q)DYy<9b z$G5i(#n-Ky=i%Xjjosinv=-)c05e#04GhqVZw@;21wP?*nytvISFeJVT=)wbD{6YB z>m^p!U#bE5x7K6A6{Bej@mz^%%miq|Y-c|tFz-KoDk%1sn!PA>h$XHW^#tg!5UU6& z+noFN?{~aS_k|xyJlUx)t{qzdc+V2t7G#jUk&|s&$bl*KLTkVFbkBh@%=88PTxFE8 zeqv%`#ubgRMS<=8`M>{ujl=mhE^ZBebJ{^ry2zf+qI{c(Ut!bLm}~p)=(atPRttao z?YFfDp0IKzMy%*TK%Yh%XDja6vqv*de}THXIvQs9TDW1hpRT4+L=)U6sC-$RK&!{zXs`0`&a@i@+L6_|k&{Ovd2JSi-^ zjHA@<}F&Z8=kXiMld%^>MZBlwcF}RF`DAm*49U> z9xT{+s>>8T6C#RRKdX#Dka5|^M>RsD^#^g7?{|XIzumYoA0wBD7f*L+{T>kcAYQFu z`IAri(e)!%W1Qt`@Uo%q<8xVJVqzaYegu0a1}6DF#w`A2#te-N2a8`WteN-)aY=N= zinhu6WOH>;tS_*UG|!y1LtQ;`>*ep~i)-%4jeE4fF6`>n@5V1h!A)>{eX(kDXpSw0 zKp-W!fySTed@?$6GBq_7fxGAbYVOU$a$MW~ z?<<+7Qe-ZLWr}2uR4R>z3@b`BNGxL#id2TkEMv%!WLU;BMJXx@$-K->qKplO2G#ZZ z?5z8_f7`ol@4Nlpf8Oo=<9@dFpswpY&*Rwl@3bE$!tJu32U#tTPfddJO+9()l&Noc zUi&Mh4m6eMfQnKn!t>_Mld1+Mneq5oGg|Wz@7&~9iObq9UAoj_P1W^o=lgWB$ye}! zvtM4^$Pw{p-LBVyN#CLlKBKmAOQu816o{`oU|;9vzp;AnP|)$p`)FHRTXwno+_|It z{05OsapMF7C#{#0;=FYMQTmfEZonUujiGAQt7a{?o4zE)8(KCM=A95wp;511Jw9gj z=FMtaT3WIjTN+F$CW`p}=*3&#JIr&A@uHwi_Osq2MvQnCJFO8F zbw`nz_K_3cP2p&y={qt;H7e3PL}6oZKNTHVh9m9MW(*8=hDmY6`O${^T z22W4nS6-~khu?VoxVgQ(eJxd0r%Q9&bG*pTPV36Y85$a%biS|-xU#d?8H~yzOQwC z->8-2#EGqdUsGws$DYjey0`x>ZP#$%K#~E2^_^l@<>z~XuIe<>>gOBB>l3p>hP|JA zjWh1Oc+#}q#=xfP`r%yT`?iHw!kQ8mNKQ?yz0qo$!K~qL2VQy8PD|@18!~j$rXygT zL4ybTFx2Ma;!;SH-_iX~y?*_+-@os`agIZz$MVgc68vH!m9clHnd(zux%^Ae#<=C-fTN(Lu!gq;I?0EXgOn?$tbPM~}yQ+LX6(EhO-Rb$(JDzi& zUXF`%b9Z09Z(sYg%{m1r6Z)=+5hTCra}V)0296jxvZT29AYg+VU)6fD$5jSPDm6OH zys(EkL&GKCX58M{(;nc)DXiP4cB|QPdYOF4#ksFH!#T-^=-6vH?hf8mN7x9S~?6zAsYnF?%{a)Z+;X}2nZ!Y=WP znzU`(R{9N~cUo-=lgRjk)|Qs{kB-*)^!c;x$dPX`K%#lSm7sE7!klFHD z8GHIS8aHkn%WdTK6?K5te@7}Cmkdl;@_ikVY{RKH8%srXa8Re=Tz~T9&jZ1jULBc^ z@FKRly6J?fdVO4i+j{*m95y!u|&6#r-qmJG) zy(I63rIi&vVJD6nvPLE|?9)fDYge1fpA{qceodP;GOOAPY|MHRn+|)Yi zK{2Us`Zy)YijmwY>1KU+|5jGQ+Kn5VutVQc$ta~;dHK~ZNDBQkTJR3HcXs-&j#&%k zna`~#eamO(0W=e?7S^p>H+EjO$xeNzLk9g1cHH;As`DRza6aMyhrh>ni`chM4Qw975l(YOAID_5)t zAF{X?wGK&g9Zzgs^KN;2Z%~ydVQRv!dX3E6fFxM4uHr0(*Q3m}x?2CD2G4RF6Q;rzDW`_

0cb_wN_eFl#@SV;6ZGf>!!WOem2;T8VH!&T_I|WtX)$`c!IeoDpu>*U2!6lRFl(P(+%;gP0)`pN=4Vlj%1-1ua{K-0F8OU*~bxO#Y##Z zX{A9$b*_!!znT@FJTf@wyxMvSOUMbZ_RrWM+1ECaM%gbvKmO6LFT=dX-K90Ck0LWO zkNCt>ws`0!tC$r%yoy32DP01wv9t=qd1kZYoL3%=Uny7Aljp9J6PO#+#njD{mneD6 zLdfkaKmyk-0u$^%t7|;Rdp}3W;+}9Y?T0`Jp6$_EI?c+n;kJGW`sYa94iX3Ct((Pt zRzlb`=3uEgxhCzuz6rZ|r)3i~K_x#-FXJ^oB?0t>WzE*7vD#a=i z|4Qi*WzBTmoJ3M4B>t?F*`!&dZDBZ#!J+rGD?fi~cnYT(d8W_}Kx!=}^WI3Ml*+X{ zymOL@vFTjxW)z*{vDGA>s#JPyUXTW;dnktUa{cs2b-S{Mk1bOte7a+Lcf&54V)ofm zHQdR<0+*>`Ili2-X#~WLB#@xVmtD9GmD0(QDz^n><@&$wFQ-9y>RE;Waoa~>U7JWI zo!Uag?_ptt?(V*P`%8{prz7+$zdrwh%P>B4mJAI~pub1*SMa;^ZRNzaotiLx@b*X@ zSq{ifrlg2x$Yczbzf~>kLaXKdH z&mGA8sFqU6wEX*d7jqM)#fkqj)63bG$xswr)z4%T$WOWp{l$le99ZQfcJY59>2kF)zE|-uXBFwJF=y0n zU~!^kJh%32K^A?YqA}@Wq?wH7cP&RAis=fE;dHm(k#>1~^%e%~4`}24n6|+#_sAY& zS9UqBG&_Djd3W^Tvbvo@yE>O3kjh8sob2-%I$frs@%gTq*v~#X>W^;&@w?TFadRey zj#8waz$ux195^p7!8C4^qbX(6%IPe$Mr_LBq1|^QW&0}M5sCOf$7^QR*O=a6*?#!B zL+E6>XmT=8D+d*lltd6sngW{26W|(NDEpQ9WWREA0peRrj}OY>P4Z2IcKcm@bj%Kr}NCA*f>VVLL0;#U8j0 z;i`$~+kV-_6iLmeHWl5!2eL)EO>)B)JOeA&9gMy0C{o%`zN_lkw~%_G7ZswDLk9?G zyBxl)V=Vh3DeFOvI%s~li4z2UDYpz6{d)GZO-F}*UWZ|`4+IjR)+)l+)U`CYoIkI{ z=g-Wh*fm=pAQhZ0EJWYiSP2I3`QmPsJ@Z>RSIw~dft)xf`EcyQGsl)oMyTxikbqLa z_toy*_H9A-^itNN2aq}N&&87{%hZ1u?9tv2$zua~8J&1+IqUaY|0&Miug?QCdNF#T z^A`26aiKQp`2>o)ViF;TzQy~XNrg0Uq5?yhmWIC9EC0E$(H@pOjNjdxASFn#8ztO% z_3Wu!jteTm1U+@0X%z{AjV3y3(eIWStG4_Dj~R7)4sM|30jaXiQLkY7R}1W~Ru4uf z*|f}(fuRzyx=0*`qa2Ytk&tkW(JR5K`i6p2k9aP-en~&S!JU2>mh3&TT&85b)X`uc z5P`c_Wj#(@uCEhy-U_zxa} zjRo_bK~`U1U>l`E{$ODiSNtTR7`+mz`zA4Kid8y8Tj-pSv00z4oQA#t9O7&c5Sa#5tH#?%-ms^fxxK4Xwh#VQyvH2u0+S{}l6<$RUr zKDG}xS&ErBRqk&&DZHN$arM0Cu4&ar=HanF9xs)V^keIC3j5kPy_31WUS>wuB!N%>9&*~YZ}xFm(aDdiI~0jn;WII86o<4QxtBvCi3f{-*n;>+EF z`*#f=2V~K*Jm?Ujfci-zHu0oW1~(<~LQKxO0I0+@wf8AZ32<|+dxzh52a+VP%Fm|?hHK;Thw1w5L9Mm8Z$K`p@J_={e zb#f=*ef5;+PE8u*G}O9^OLA1M;X3pSU&z?)ait$)2jySMtgq}K*f6l~v|g{#O%!j% z)q1Md*yr>j1vJ8LfAAlWh0)Pb^}-^@;V_p?+vU9~ga7O%=~Jf3CZ9F$pPTDBnN8}) z)q{pc3Qk77n+>KA{c!e_jJF(y(%0%#x1j9WD?4-lTdqU^v#H&J&38DgeD|b7n}-J= zywCgjMXqj~Z^|X{XLh!@%9Lt4qAJG8!UdR{H&>a-ke{5Ar!nb6#@a2-BZ`ZWg?OK8 zxgyuUlga5tu=Oh55^ekG)0OEd# zX^Dv!ac4opt-W5`#f!Q-eO4ysf{}rfjs7&c@BO{gZ{j9P6pN58KgWv1p-o*_6;gBe z%2eHO-7xT{q6JMdn5@`4>MmjNX_E;H)xTA^a0-Mw?A6pjiM$-l^5qA@4B6dS&eY7x zLpywZVNfyOHPS67fkaLV|NP}-I+^#M1!e^@c}2uzmiXigyTym+Z&Z)3*7{2c{a^a( zcU~Qj2~AJKaakhjhKq>n>Z+A6Ue}%tzp&uHm$^OvQ!A53K})G57RIlBZ;bdFZFU0Q z%Vv%uYTie1AWQ`p@iG5JA&j_AzC~9WBSvRJ+NIczs_L1?$i>BbYmNy#gn|&PKrIR@ zoIf}=FS~EP*IOuHIJE05Y}k$@`Wttjz+kiL$=;8h1%2-r8{-1-Q~8ReB)z{fuCE9k z(s}4-6gTJi{)$Ygi*2y7k>F3C^cQm+)~ZK%SvE&St{d@mzb31?>usqQw!FkRA0etG$45jx1RQy_WLzwiw2SX{;D-w*=V6o)7Zb}t@w=&8Y1zvV%7!aa(=7+(#-Gg7v!`S@HXAtgaf5wMD-$K1&9^J+ z4aoTPUAs~EPSD0Pg&&~a{4*o5XK)$EA}tIX8MPPa@TFUhz29CrErL?<$!eup>Y>-nFXQ7|-I5Y&8{6~i z)-31POIvsnmGisS5R$qQpLrnbYu7xRvHWOI?tB?EsS;~WWiN^TAmeBuJ1c8-vSIFb z?JFsxd71LYeKq(HzRH5?yE9Zz3H7e49lP-TD;v|AP@oP_;N;6 zw>43G(Yxw&?&fC2HK?1YKhM8-D`hr4gfOLDhpmhqjyaxQjv5hXS#8MQ*ybgxoM@EUD64+VWqd!~(dW(f?p=N< zyp9evCI#M64>)o$S7?uuSOgUODzk{QR4o#Z435w3Z&8*y*XIX}d-KPR>HXa9>bsVL zm09D^c(e?5Y@)OH+(sGd6B#x#Uf+|c*b(zsCUuo!Qj^2`p2g!g&f^H^+_zo&Ggl}t zI<_f(2)N+MkRcex-EVZLH~AJk(KFhr9ckcHl*Qe$r6b1u`$zuogSeLI6nb$+pOx<9 zZMG2C)nNZ-=kxTtM&NlL6IL#@hllWZ6!cMCbE6hrH8=bX_xV)ihSl0S^l3bVl8YY~75ywQKfTWxhGyV$I@kb3eRD*%kfA#dy%tw(Tg;E*o?)mmu2z~E)lp*C8 z%|VWDs>6%R@i<(H)mP?ZH$04sZ=~{?HSI9%CN#hd>d&IG3q%PnSR2sJGJ|FO5P2=ow`i2|>LIP$SuABt=EP4BSL##G7q4V#p@v7(-ZT#5!-5@K5>rJYqMopSvM_s)pQ4`H{Eg9M_VqT z%=dnB=|%JdO+6bShp#siOR{byd#hL&{7_m_X$h*xvvS>}=;&w>YmC{&giX;xG7gaV z?2{?EGNS@w=#@{8v-@jIZE9Z zDvj4ig193Q)zyP9GbJM;Ivii;7j7Q|ws}B(LTHpxp?#*0QBPlCTY285wEv8@pr1gm zaTc779)r)c%vK0!N%CBe;J5LhpAF+LVR{!m7Aum5nmm%7UEb{EZJd=*cGuDVkRO6- zF)SXZS~qrWuN z!UJv`Bz9C>dmf?QDpPV=0G0()Y-PhxF z%XKw^K*ssqSUGE%IA((&8RvjJW(X68iC~z?m{`CiW`NIRI7rdG=Zh@?Hx7A?w_CY{ zOP`MyfI&JzKc@GkbFAPY@`oIKLxJ3$as5q2XYR%idZSPhApy|RIrHR(u;%7O(%-+{ zHlf zVJ3B*efpQTsu{DCVX%r>ct?FSC6VW>+VzQCSqwcKYD zp7^eH;@Iz+`2*0kdF_-dl!zFPhC#;yjo3m;lHGL0vu)gb_|hGe?CIk2I_`Gf5Xr+% z&WnIjahqP-%KmJ*$9)`l)Abr_w~2B;V$GF`!jPI(}*)UKLS%577kS>@Ti z61y$o70f-$qm)N$cp1e&LR20KPN4Bjy+(J%le%7~kOxPE9&faGWaUPThe>wEmO36b zymqjxnE2a(p!i~us0`=n4S{iyc;NvTO=M>pPyf?$_=0n7%=_O+X};y54YGQ*$?$!T z@ZZ>fQ5+y!GgRsUT`7_A+%Sq%I_|i_+k_VZ0aGE0`bm7SHH2j6c!L^^Hc3Q52fqME zZ5OqMbghP6WgAq6-S)>W#Huuyv5S<-jQXfsXNDAN+hMj<^LT#CpQz-KRJm8*!Ogvj zk;W_NxWzp{-T`neEk&z-&R)BoX=cmEtvO#7y}6lf9MSD_G6IdP8JW(c^vKL^ymbEM z3+&vTe9CPe;^L3jpq&d~cijeb0mf=`IYP}ZrCsGZt}z8w6XbEwuJJEr5{imdIu`+L z=gAtEsY}DzN?BbU?$sSO6k|RB?q6ljP#z$cOvQ`yY+Te8su0HrY*Q5lawyZHM$?p$ zlsvvW7M3NB5ce#?b$|2$Dy#^-hjjtXR8yY#ucA2I!*<)C4w(pM&55VNO9AuqXH;6` z>jjFWpepVZ7pTKxRbERriyx6`Kv7;eed*1`X45ynmJ>;0q&)dI^Pc#(N1OpVAn2LD7D^g8?TaS?!^lW|bLlAJ>kD_#Qbuuo z{lE@`lbVEAj97Re8{rSq!E?WMZa#}a0-&_jQ41T9@C@~%>`yQ4jE_aC+eoq+d2Gn9 ziT8J&tAY?4y5OMpoPX!l013k-&%C}ID@{bXl&tvhTQd!s`VFazKP5ep`2E^nc~R(< zc<<>z1>V&la`JII!q3$e7M!mA*-|9FLR#Lxkqi)yy5RTzgg_;0#%8mLcArV@b^+oM zfrMbSqPqJBcIH}BsJgNd(k5jk==a<3eI_pGiEBOA%u#b2_sw)oCQ@ay%TXD$+R)uK zh*KXf)e|?fL)YX{^^#%XBmVR}j{?97>{lwgd^1rD4_Cr;>pAlK+w-&a?ZOA^gPUrF z6U>T;s%u{l;qB%bwh}x~?@YeBma$6bFvVZmZv8w` znWW z54#IGKA%p&+bxroBVgC2LQq$v2j2-|lk&>J=KV|97+o6!Hx1^t-T2U&T>@<41ggkm zzJ=HvoDqQ+HR?{|kVM-u@)Z=XM=K1NE1lcN zBYNsEHtsLwr)R%T6EVV8KL|x|i$cJGS^T6!3si%Dx>T;lInixwvLqw__Hz{dSg(&5 z67>+DNY}3!c%L4Pjtz&1{JV~ka~~BCc`)U)V77QR>lM9}_~GK`j1<^7-O!dlHpPkW z%$S)GhBEg^J1g{2&i1CywCnK^Dw?Rtlaf}7kb_CBI1K_AIAY7wK6H#?P@k9$Nw9Hp z84x}H7GRk@NfM4olX(QnL_n1&_TX-CwI!tRoA-07b1rJZUIcjo`x^W3v6cS(^yZw0 zh*R9=c5|3lJ}rN<_VwzXuF144G=Qd~xore;r zU(ap+KtThg-KSq-r@g;fIoo8PraQ7g$JGPX}u7pzd+P`B|))l_>!IM)m)-J%vFNv<|x*chE z@z8inR}fZ#&0i!RGe{#r4VN+E+Aj%Z8M$OYnwS=Ne^lVfXKoUL`OKcw6dP6COx{ ziWW=yK#yJ8#pT$;Uoq57o8S~k_pkW;L*b%IT3j9B^4{x14^Fl=>l4f~v2o(fq*jD3` zE{`4hrYIjI|J)@Rs1k}Gw%}E?dY9qcv%g1s>8;&)u%HRr&Q)vgKS+H~(t3(cpubl= zmYjx<4I~sGmmYqcJ?V38RY#*j4elyMxh8$icPL=o6{rh38}g2Slz*XmiJcnq{zFn0 z8$!{8Z~j1@)BTMHlA_H3+YYu!sZXpjU1-VY2E#9D@fNAG1&u)nZ4W=UW@g5iES$F_ zD;rqjRfubT+JNt*q42#j0o|oY;5Y_2!qN?gB>+iR@UhE8uAdh`Q)zT$&&|m}P|Wyn zF$dTy=(*@&C9c8=S)0<^tA3le=&B-?lDhNl>KNmtE2{fWfmwzS`4y2?=}bvOd(rGo zX+ZIpHl|7ee1Tz^hxA$J^mmaVRN;LC9|K=|;HlgGB9zV4D3E}MEZt627&ZWvQ~L|Y z*{)W3tqrE+ms*=XV^{DcFILkPfuKg{5-IpU6^j0QhG; zuBvP>e5aAC3^XGSKVNc-5k*mrB#Ub~jo3=3OIFUQ%B{bMyxe``$QxhWAvK6;*nrk+mrD-HhWNh>Av$<)s>>73liR)aJWJOua zkNj$cf?P1>8vO4N;-mS0FFyvCn9q^qi`uam#|L{p`z)GbZyS$FSf18c{~4yg`0}eg zx$3grP~B+F7kte8oS%mc=hC5YGT`mb2=$4Zg$5WIE0LN_dxWMBp(F+kuAQNteJM2( zb)CfE#kWX)Zt_dku@ z9Rkva?gmA=lu$rGN;;$)6a_>C2~m!Oq=0nyotx)#fgfH1!BcmMHQvNeA z;nTDcRqm>aSk3Txh7RkCmmNmuf_IdUsZ8`S?s^Y8#g6LX+))2!r{6v+l}bFiKQaEo z>gH<8VX5bAqPF+gE}*?40Ww1a9Gu*faJ}mDG6hRbC&ObmiSVwe@=(jgN`c;y~ z;QiVus~hyI#4W_KKWwG@?WUcHTCVF}D&^dhkhPNyC~J(#ik?92X1*OUl$gS5Mf(RS zHmw|BCGU;x$Qn$#jWBL)H7=`G!79FtTDwgA3RYI#rQ>6J{Sca|+kI(H87lt!%d1!| z4(WnVUSEkhcI`TD;=kem=Xol6Qn@#3J3RIKLu-WP3L~wfexFN6M8YAq{gPMAp3TfX z%v!PaukIc`MRQyvb<5o&#ijcDak%^I;$T_S4y%tNN8Fu9MnoU9NGo z-m&rLcX~LhC{$2c?&HT^cBwM~=me^}`N`sv(g{LIT#AyZ0*f`vzl2My(VN9>^NWnh z&q;9V;+S6#(#z@^aL8k3EX9Zn1lB}nOIZhPK6^Wco%SUTujP3X5rN}3%s^KKiB-`| zm-#kSSC<_A%%-FFq{4N}jIk_hbW#Ck?eeeX7uewCagu^0LaGdhn|5T!rNJ6U6G-7WW`mKr7S|L_&Gi-|=R& z-vpr8o&W)B3V1J)MOusE%!#d6jp*+}DWAr7@3)vZ^eq9)W0kjHcLpQK8bb-&g#Io8 zx=;msZA_qv591V#*I31KsVA$mrls%t-Ov2T^KX^4t7a8_A!r!YG%T2J?H}`_YQ5_8 zopQ7_20SBeGGWCq+SoX_`_M9a<&-Wsd&VVT?$(!W@O2FF{g_Y!Y*s;e__o}}os6(G zl6{+aBGqz}56|?dNbY2x4ETpxLv7LM&1Iw2Ai7+aj?dKmba#dXxu)LiTmEhh&6(~Z z!XLF9n(UCD#rU{cXWY2RN8~`XHbxD_)gBW3r(L&5?|Px>axu+cPqY+du%zL|xk1St z22dH?7l+{KDP0X^kb=F1EpF~3~_(S0!^z+u;o{H zaKvie-aos|Nv_O=ZZO#eMIHRy%zYIhV{$%GD7QPQSJv2tZU{IDH<~BGraJ0YuQna4&A)R47oz3KH zcKd33F4IK~udT6Dr}<`I8=*wP90iOLeV_nLeit8x3<%YuTJdXfqbB`@S#*ko!} z%(T_l3CV0e&r&9)!|^w!;V%9N54;hTvsbE%tY>cyuVf5oy z39;41Hz=s752A11Fkm01Bh_&4ZoFn|VxwhGRKuC{J+aK(hL*_+t)+2;i&~*qqZ*18 z_>K6rxz};?^`-CTjb!0STbOj2R6|WGoSzJo89am>4wE&L&=xSt` z6l@>sG-`1!ZH=^E``s&us#}wyU1@2=+}~I3G))y?G2k{C;l7R|slenjMR=T~{`D&j zHr~^q`;w{Z3|9+CIjc+4bKP-o6(SLASKtZP@)V*E@tyBe`LsCP?N|?KrXdgR-0h6Ey(<$ESfYP+~^VhTHH zUsBm}aoD4GtOJ_+iFa&a0lCbcGdi!KUOch+Yu*vZ7*o+YV>YpJ=*IJNb~$PVtv6^Y zoMIw2vWSF*M`<2dJ?P28sdz7g`K3KS5{u5+JTc08yvbX1&qVCxVC3r2)(hPEjMeua zX&cv$HU*ka8k~}{uJZCm;yTvj6zj7w-5#GH;HIT7GnM1OwBczze0z~OJgcFn!$wvx zGGg(jtyXg(GY5~#=UNgP4V&ItlI?*yBWuEw`a#DW&0#Xi|duj|^ zqA8ONOl=LyQnO2?Pr`{bO;VU{4=5dL7Cm?RDx6i=v+Au%|3=-%y4hG_JKHP%OD)Ol zKpmqsq22&%mAD6U{FlmT*4t4u>RWWB^cb&Vhly?&>W%0SRqWHI<~uT}vN(^-saBNm zO?l49t-V@)L%~cietTv1=SfHi7lirfp{A1=?t{ccDQSz>J(7>zYZ`2D^fG+@XF>}* zm)Nw&j>I{m(jp}kYw*K#G?UlWk=yL}DI0dn?k+L1`-eAD+ydBrzvxC&-tWR!I|!L* zsMb(l?I7%%kkMwm>4N3+U77X)2h2- z<(+molcrfxUz#r9Q1fWuDnGw{wS-5ez*4*=1F6knw@Bjq-AcL@@(V;!!bMcOfQc}w zd^yX**ml_S=e0+%PO~0IXJR5=Sk^KCp;%c@Y}0|yG%#>g^w5rL?yIu3Km^92Z@ za-DN(=Pr+sN3)6zoR_+Afs}3bvf6B`DTmInA>=nf(H~T0UB+^ZV9djeD@~y-t3uDa=k~yiwA16Aye#)izWWcJ9nv&#%t>tQR_F8)Jg)p*kWeFsM$`>*SmYx zgc~`x0v65(5=6?hCWOi*o<`)F6i{tgRuo6Y+hpBZeHEg__0VtxpD`|J@MOvO1z_Z~ z>?XJalzLqTSb6X4^EzoIH84Gck_JfiFI}bg9qNgqG(R%Dq&8^JpIvD?@}1@S^))OK zn}v8wTfTL=z!#98t@Z_{;fPK9(o3NVOqfDOyxTT$4C(mcv@CGvazJJAb- zfm3p&@z<^tEU<}PYf$x!y3-yZTx3q9Rix3m-j2Vt-hXe~^T??{BkA<$CW{*PB{tZ> zz%&j(1r7dm-KSsk5GCB()^>w=)owIl#v_fR9p{eWrEW9^Jo$ z-qEu~2{oLvR>*w^j{!~xRlbqgrRMIxwYmt7_Ws(@(r`V$uai1}N(feSTekW+5K>q; zDOr;8SOa_gV!hp220n3`P`uE5%iNbZrs7!oeN|3jN+t z@pTuwREd1CKo|98f`QqoBVT;)tvK%XXY|apRD5mrDnt!qkO)R6E?Sj&k0TD*Q~3R! zo`mts-B0;d{<5zwW5mirw#$ug!8OvPTF3D!uIQSdYl}q!8d`Y72D;OUQS#?<0@d{L zG=<+*dD-VDu}aK}wozZVxn(LHc}|}Lg616!Zq;?ONt1n0-5UzQ!4&Lsr?}I(0x#DG zJhCP|5&#z${Z3kh*^_0hZ1h`1A7;-El>XGRV{tf&;l;-*QcbeL$5Fu< zyxDsjNDL{ z4X(wPd|6dhG1$fva+M>(diO4;CldD9-jDu~j?d%X+awt%)-qWbxD$2ZMd87^@{s-Y z%q*$4@#b;cK3h_n;nGJApMuxZh9BgRL+)@dj$ZqHBbJ?#+G5y7mH*hmmE~AKe3F81 z4Pg_z9}goJ2Gt!m%xC;f_{ksaLhAoZ0-Bj;m8R-9?h7`vJ>eI2m1~1YNE*rg9L!eh zaK1R~pCQCc>mO-{VT66MKE0G_;Cl&kd!{MgmIo2*PY5Lz*>F;z!4-35>n8FWl5yFZ$LgrOD zG6Pz!!cM4Z>*`)V!9opw3h92agk4&dn6emgUwu02=itq%)4+JFi?iRP|7-g#!$d{F zvVvV)z(7IL*{Y1KnYJe>7l-ufamf$YaW6Ig;JGV_8-FY|hc0=!-d4l3)qPdHKG3>x z$ebI5WRnk@WKNSX5l0%?$K6p>8tv+c}3SHkb-^w^>S;&9#i$Mi;CM-FcJ$ zJZQ81CME663wdP`hvI!{U2@6-8?{@xJ0qKBE<9 zymaxZ!0j0bZ#B^F;~9afG1rx}XOTRm&vMrr?gK**NJ*%RtkcQK^#uzO%?CQtZqVhkv!re$- zTKi3A;8U`jT-2(V8vZiX+T7YYYr-|=$5!IxdS5mxqi}q)xBQFeN45H||JqSNLffO> z6nZ2>6j@Pbr*B+k4=7_JU>U7)`rUH4D7w?0%$VG5Cfrak=eL$@sU+PZ^iIJXqn8J@ z0!hb^uLUVZhRuqb^G@`}%F$cK6BLfq$N6!xq`NEC4YDiMLn^)9@kz!d`TYVuM(H@Y zuDN%~e$nuh-t%j2I3{3=i<#|H zc@1VY7*?RmwOa)(#a{{bnK9!0UiJXm?O^+bc%c-beaFdpBw7&80$&b-dxAo_g_oocLEC(h9{ z)0<*y2d(yT228dG5Rq6QDc0Ikf+CrIou?B*GbUwFh6VZNpA)JwV_)5TbNTOG&i<$O zn43}xY!;w_ES&PutMS3r`id9&!Sh&%TGUm)3fCG<6zlXfpiu zpu#kP_SQKZis1gOG_4}O&orl4%4r+ae+FD(2zpof(QY8FJBqzvsT za59xswFqk`EGQKutm|pC|zBq*KolJ7Br@R9)`~K44#Z$!!LJ^qx<89`KMvrZ?n%1GAaL# z75Q5a$)z7c%rUFHT&8~+)^VPRtwh^S>roS`bLV>fpBpO<*N|vUW2@lIowJdUF-5s> z1)Vy|h(#aa41=idoh!)Zgcx#i`UMOyMGRU#c|7@dZp zUHp)wzWe1EBRH7ndIG;qRNp_Pe6l0vv$I%QB?_M)R?g0) ztY)xYoS#2FUtPUpmf5Y+&SQK%R(h#|CBY-^m-JWC*TR*IP~qfySdsTEsSsBosK%&I zrGg?{5{n3_V%|_BGrGDcD~^OavSeC>Um7+ZaEqlTvQ8!G(>soPnRYzU%uP%V?o~>b z^;_P#`eRwXkjG0~!|D>8-V!U>6`EDq}`%bS$ZpL82k{>5cuKOnX3-yMH8vU|=Htuu9VewL@9K{mj=K4Zu}R7Lu(q)N)x&~`P1^nL*0erBW{n}8?!unU%os{CZmQlQYsuypq;?Ww%;162V6o0 zQbhndS6tk$5Mb>!v3+DZJpIm28E6g-%o}t$Ag*X8tW^CpD8qnB94^*s@@~hIGT-|n=dNiV}9}3 ztblYcxH(yGQ|?L0!PQn-?=p|FS(oo=j0MCtdp(<)3|6#MLg(|85?>V@i^?py$exFC zzj))IP2pVC8bZpdXu1L*$e^xs&e?HBJ0DM+YKB&k`A({iPtNF0o@~g>GAk*zlq3c6 zoHs5G;`VWXl?o}t7SBu>zrzppV#^_0L%X0TWkpRsox0bjn`Y_el=HZI=2 z7uchnL*9}3uBjS5Znp^P+0R1oJvljFvmc;LD6jEZc}rZ`{z#wSL>(9yK%Cgx_v)MF z5I#dRp3tk$N<&(KVcYZE-yBr~h1!FA=1k`N2a4u02MK594vY)rPk0Gx)Dq5@%vuc5 z_&JP=V|ecT)cf-KI=)uWt{K!|l?^DKSQ&m}f4=&-*wg>(&T6g6`jk0A@F{ieGZH7d zsh6e&*==83SJWE^^hJ3WvoK&Fdiv@CPI%Pu)$p0*prlN_<##XBXE3hbR@Z3Gv4A}s zF>g7^$K`DT2^eDOtvXL|gYMtS(~%yBYj{B)elY!{-6rAHY+!%nPdG}%@lXeWF3^;1HEORDE;w@}XtWVbO@ZwDf0K+flR& zhEZuGT-(;RmtV#rtmvRHV&O%qS*0HlXuTK;oAQ&Qq4-F9_7A*+xqbmXJ>J~rZGnkl zQBQkH&Qq|4-R|~{>ND;c@c{s5}BDTV@m@p)V2{|Mr%{n_9U>xCQv%sHSJ!S)(6c_Me z2*|>DRE-r9LKH&UIwG3Q^^->;W16$9Nwr?rI!7dM8kIx0-=)tM9~>klWp zBLGx_05=u$Uz{0Pjqt9xvyWp&5G}B>ls5N0qg=}IzoopG_% z&$v|kUmQSQ(iE1!Ghj9DKOms8CaN-aB6gnI%;Ko-q8y12ct!m15DMrX0f+I6XS8M3 zs(%wb2j0iEFM3S)g(AqMz1GviRvp0*0E_*uwtd?q?U0YAuzpl$;xOHUnBUh?{k4?QGFM%ZB8>?6dzlw0o7>O=>8E9OYzU22e+PV zmtAg+i8Ik=nK@Rj`VXQU)g=Ljax2wKP{;xy>lJxTfb#s!l5s2F59b83D=aVuHt1E! zwImMz-bUzA5dl7c)pzt{eF8|D2uv?*skQqy8mI`i}!7y-C(54Q1|V!2QO$>hPae^IstN z9$Nq^M#S3^ArLOrKmX9w|ND{tA2{&C(wx_?-+KI+YU}S$N?y+btwAK%kp|SrWCLe;5WHl_mvQhqhFx2Q$*4!Y$!0kZP~K^Diw z#|HuMxqkJq*TMhE#)k6|kkE|K{-?*gfC{S|@uM|#r2s+FQhpVGy!FCcIDrW{6&2V_ zp#W+n;xT{-f=pvK;Sx~8J|Pi8;Jk56x{Icps-TS5Uq-wJd4nl{Ud#1LRu0Gg4^fEI zNF2TKGU5`~v3bsPH_Z!e*50!qY|@-thVLQp*@c#hE3xcT0UC#xoLb%xK2Vex9vR7o zegh^ZDKMNMRvD#K0aB21Ku?ObX{1yIT%jfk8es=%1P(LMO{s{kQ2{^&zF3N7GYK~E6NwmEr=+6VMUp0G)~4jl;*Y}`%eHuSCe4KLW7HSZvX65=Ql z0)-DJC+Dx-V*tNeO|*!C)n>LD1&p+HAeniM?EnWrDeMNAQm%+TX{wF&&tFVv= zVA%l`;9QD=ggi?$qAKc37xM%- z$Ok$cLE~5qIHo>j&d!kkbIBrzSq34Ff}jMT&D-Eis-8f3DSeDd^5-2|r&@Bx$r-OO z>+As5Z8!q9dzqZfCcg8-EbGH>zalr0JxglrNHex17!c-dgsEzg8u`hROJ5!A>RfEW4SJU zKl4H5DW~$aawBUOy8VT>8Kz@6EG(KZq=iDOO~Htxdi)Z^BnUwXI&sI_4F8A_Vp`La zqy0Ug>hd=Wz&j)K0go((7@%BN$1lO)CtGVjh6uf;c>?x{4Y-r-%Wi{v4e_{P-1Jy6 z`0`pr@Q;}|$bOR6mWFweiU60aNZI7*^dUdBJin+?Ot4|n@tPCZ38ZSb9YETS*~UyaVq?N1p$qI2 zKO_NnnWTlqwbJ@IdS6h)AextJN-xh|0t-+lNTd4eT`ZN$`hc0Dzz#k@$ugtnH6SPB z2l8>=L1cd(V{UajqqeG=njxT_!F_Q}S!#8>*$MGlfn5dosU8xYXSO^*jv|~aNW%+E zNul4J03Ss(7<3vPPWw)e$PtVdK$*?<)_x-bANSSqXt1@tX=*|ys!sTx9~v9SBEB+g zJQCn}7=^>2KMfKZcZohQFa-j7AAvQ(wT3kwE7-RlyZgehiY&4u$_@olqfbwFPfwU& z7=>|!X%djVG5}|FgzjuIl&>0LO$gA|`!K9Dt=P82Iy9~0fp{qx0^a~3y?6?D>R138 zFpvm36ZtkL+k$ketSBy$g-+B^#;+rcY=P9(y*Zd#Zvo7a1guk#b13G$)y8zPhK~?h zF#=)Wc?35y;@)vz`4tYrtSl(`%<$WJl{aDui&esG!0RGs0T9Q7o#myLQ$%(JN2~xj z6liM@#owQy0!sJ4KZ25tya}OqRUGo3mKrveo3sN9Il%;4y$faz=<5-Fw-kCrS@VXl|f0gxz4($Me{ zJw5$RrzvSyNV|ZESf|GB!nn_>SnJ_WurDD!7?!Y*Qq>1K9{5Ju5eXN}>eDdSe|Snr zS#CSRjVPXw*+JsCYHoLn>2wc&t~WKb-en#c6A?)t+}Y0{v5XAkCIG$>o_~h#1|fum zTc=8D$KQh+ux#HAV4sL83s%mwpoDWh^+8-lfBG+D+yx*gV)a4pXfVftwL}U*?(U!+ zY`rhR^99uiXbD%v!*_tL2~LI%m;wQVTKxQKx;dl_s*xBL!VLG;Be zBEkUJ@eH3F6S#?1C`)@SJ^)rX2Go?&>(z=NBXgdSLq3lt68FrK@aO|xPF|ijiYxSZ5wQY5uD|v72SV>W2aYTbvP*ZK>Q-7@W@W{FeaG!RoXaK0)>Rk^5QHks za2SEH;s*rq7vz2gA7!-QxFRf46bM+W!&@Z#uFFEH6I?O&orB1{bfk1(Z2r{_`|U z#KL$xSRjlGVM3(cdQ;~UD+^~pN9A;S3S3&Jqdg~BANBZUut!)~S>1*7TEs{Nbn>C4 z^-FhLANr1i=j}2ZTjx>>%vpPO9`J@VVHZ5a!gM1k@77a*WL^~YJh#2Q-Sy?m7LoH4 z<%e~Pg++0%Uz5W02eLG3p60Fdh*4~42*Ab2oEXg@D0L18BxV<&St646gM~fUn0NmE zd;&xMPrr=81!*HAMhp&8)7j67FC_xRVXk|I*wA7{HwZ>+9m@8r!@6{kAsE(54A48? zBe-K^kOJ~>8{AK!$b$jWl1L6N@ zgIN?4CQp}%)__z0D%%k2uL3(Zaav=O+ftVN49R2Wh}O%sV`$7qFv)VSLhG$;(Sv zO>|!gDq7lU#99ax(%_nmu&CvT>!pAl=|SvSzu;B_XU9EB$siHB zW|(43DsM&5056vpMeuqni1jtA{cSFG(_D2ipU6jMo$dD5}w1s zto`LojEos}6D^m>La|{H?axMxjH-ym74ZSq8E`ipEEah}NN%j%T3MMCsHz}aM836L z#pEeyQy|47{BlW2OvERN+ z^1Ow-1hT`+JUo52?~>laBixzS0Wm54{c+2{^_vXr*I9l8J}&aOqN}S5(g0dy$VQBkB<3xX6uDJorKtO)2t1f(g7 zfK)+1x+T(KDpf?l0!--$(%XHtRwM+5kX$SA(@_V9pQbveoO>j}osJ99BD|vvvBmL;07kEd6zdR5^Ee;@uHtpEJU9 ze4d?c*Y`{bFjr}o=Y|GOAMB{j)HE_OT7-LGv2L$j;F-bvjip=uP2*S0_YOQe#e8dJ zK+n{xX033YN#8m1>$m^uOU`t^ED4kmaQv3VdUERa`*2AX>j3-2r#lz#o8-Fd9ZRX| z{ZgUsVU;ftXVw@q{o(UD8=ErP<413b>#x<)(n@cS&+L7FQKaRnOqp(F^IpE($?@)r z7@Y*`^yZuCovC$g4&FY>BP-`B4;>i!((21q9+mi*@54gyS%l~MaVA1`H{ z`S9cL99Ck0OMjJ)Jul=`OG=G#v4Dx|b+gi2N8(bdi@Y~>1)Q6!yrJ}#Y|zJmHxiGA zB2~s$c}(<$`HI@+jt>a$e>Bz?Hd%t#1jskK%6!c8DwZym@TDgmZdLcV^);+zAurOs zE1hT8=r(xd$(gSNH=eYnCE6r8}f7WMibJ_?q7r>7D+1#&i;?wWWe(7#hS+@OZ!Hre>lRA=$?;op6tv!*y z$o|P!Gw)ec+;1K?mwKaMkYJo$WiaT^^dJ$P}^O;M-5QhEF5v*nv$hh;;b zKPDH6$J{eWv#CAoqg2Ej?nvgA!&1L=)o*-$VYXVd=FT9wW4*p%W1_0UC${RRSjyJ4 z`z(}~OshX>5b8eC>iXrCYT&xV+qHEMp102WoL7s_OCBGn<94TVEBd%9VXBLrL?>aH z(soS+WZrA^9~Iz02i2dfTjPR-5l-ON@*RtRRKC+`Vwl$lduhV@xfnY&`(0hMQEqi? z;?JoK&h5gmcs-ZS6rNKjw(y>+&tiHI8C*0rsYtvQ#?D)K%folxvh6n}C;EpQa^v^i z-A>=`!&xw`($WcOSFX6fyI5u7v(Kjf%Kc8*aOsmBuQfF_O^2KPxhsOKIk;`xv#M9c z*p7~li`~Aw8v7_RSx{%28}j*Me&mtjo3*DudL>UzjGAY5rW(AnuYNJoo)DJfHoAg+ zVa}pk3$%5Y6i#}W2)lGVtaYq0vd6=<#HBUtJaXiSd(SzMCMl0$H9EM%l8;C5PF{Rw zSCLgh_RWLOFGS#GEgEy&G8|et2Sv5!VIi5_IhlC_IKs^;lf&vT*U2WBazTHM zNf_=c?WNV^Kw54ot%Oh=d4U>Zmo*951NzPb9prUVHr4c6(^`=oZyNb@S2op0P-cZx zR?pAIr{AC7)br%))`slSrFw=*4<3m78#`M}Obq7MyjF$-%jzv!jh)l6!+B;NSX#@w8!~N-k!#NBqaN!;0S;I=tGJ{?U75 zkjHJ44D zyHHL7wp*M#(VswG&EM!`?KHQC(oVfiVmboB1dW6igQ|yq4#+ux2F7@pDy8$=j|9 z#DiOih!XHLYMfmmin0+J7CDZHi_H&W;>Fd!T3=Tgy}vl@$Xu1N<2DF!LSd?WeF`VB zXe~Y-V~5E=>h7zDg-&9_hOxatSb988e4)C>NX78m1qj6l-UzbJyr?`cV5~c*!DHyT z2otQ-q_S^_g`Qp-8Em)nmaNrHimT)hF3eu2{n}9kR&CegKJ@+~@6N@=Ma5FN!TBN{ zn-FR2;LihK;H8dBUR0>7WDDzd=1xvHy*oRzJi#QF+;eMnoPm(67H|>>ar5cGs)BstTvO z-=^Dl!L590tq@aJ8F#ROE20?BHk)1x*K9xh*q*B-Pev}+=-MZm%zr0%(b$4cIu;a% z$poB6S|jaYK>qE{*a-WgRgtD`mC<_Gar@4cnid4JUEK}Y_HZRfN@Z(GUOzl+58ua~ z_a)SApqBBQ8IJ9S&aDy59+s;~HN(S7`gk+T^37@<4;Wg5ThtIXBb^Uaarkxw&T8?6T4BT$LKB>6V8_JJZyQZ>}k>X~hEB zJbr)SJK+t-&l(TPn3t7&D;9k1>A9JaddX&Vyn4AF6EXk_cI2bR-p}<|X~M&b7Goz3 zWBRnUv?35CXd`G#?|LhW`)umnF*48@&F``ioSV5X^B22F074z*G|}1q zm>e4)cKDZzb4nF>!M-rwu}`WhI}sr(BGtn-jdmobf4H)`H@n+Sio6w&!OhD*h*fu* zeZ}g(avfM{I-R*{oW=8s`8eGEaOFzuB-joQ5q8hE7qKUPfT_BAE4D>Be0sTrJ~;2H zpf8sEwD-I$$Nr&@K4R?DHH|q3Ltpk^NZ&{&9HT(RzYq47A00x%%U}rEo=MlM~&OE7(HvHo@>A{;FTxE0*5i zvjW!PViU9$FLB2qToJh7L#R_rU^E=V_Jzl8&CGI+j|fJlf%l1GV1Y z(2gCSJ24_!`1|D_X#GW#-RFI-n!d%~#C_Nhfw{FjLJf;^cN5?o#a%0{_TRq!p~%Fn zBdyV0p|3>7D)^L_Y;^&_?L8riM~ZH&YQ-vMoa|K0cOsuurDFnkYOn6KuYmj`*5?Lb zumWvA;JNQ?xz|6jrSUey6E7C9Ii+%S5_GVg<~zn{$Jyb;65=afllE34hS%!|$X4v9 zV;l%jBS*#ouX|&4LYB0SvC|P++THT?>uJFVTG)Z%=5iiqRSAZ}%5XZ+j49DWUr&=}2)fHVwdQwxrErcg^$epk$z>^wBfA_<_VO|*Tja9;K&RCO} zN+E3Czigg+rN5G&b#vPGoUd6D7rL?s8#HxvB7rd|zFGcOkbDfTak!T2 ze$!O@fN|x|=W*+5(pJtvf-+_$ugEZ3fWu1e`Y7ukw)CsD_e;PjP#EiZ&U5Zsbn5NH zP1DBOD_Se75z=pBBdl{g%(#)tb@itjLvTtpwY6Jn5PS`}*-vLIyl2lVv#*o~cIf~v zAq@hW^ zo@-JA%vr7lOD>wGRB5Ym()XljF2uSP+++K;49NidAT}*b$A;M>v@H+pUtX2f;2)u} zijvT2Mx%vdVG`=NIloN6c}uM=;S*^;j^al&bFdovDtJm0#qc&G9H8g5geFVATL z_;dr_$vyMc*BVAf;~{Hu6kQxT2a%JD2J$`)d&#|7Iale+US(KLZ@~mU?qulG1JbLl zT?Xq<6~F)THs{fhWNcc4vwi(Ul~XoCiwc*g>|%Nv?s3LtE?-}P+dCa!mpjrB zD1Bt-a5s5rj^46L^NUd?HIFPRtO4WsHu;t5q#Uc0qkKkr=-s(ZFgvIB=LLF!&}#z9 zKl!RF7m7>{<$r0bT1_ay%JuTgJHK31Xla~$KnNRNYmG{LX}isb-!D^6!6|W0aIZ+% zAqRK<-6F+DW&1^y@c2%IjWSJ=%}VXC?4^A=EK1`+1Ef#S7$9(ET0J`6ZneK8wS4F5 zX2O(S$AH}AG869a4!TL(V6HN%m)ht)8Ve`f%uUBJJaIO3CTnjl(JiyI#r-Um;tI0( z4+<;0p5~asCMNPe=DwNef3dc`jT{4^;jH17ASXbAJ|sF~>}q|hI9h{R*ysFV#Lqr(H8(xhT{FF2VjgyH)8t@Hse2c@^M1z;jl+x1 z!k29XGBCZrE0ANH?HmCswm{+wkCJSS4XH&)x0L9}xUGy$`2s2+PiYZgx7XU?psv=M z(W9ve-bW|f3VLg~al3=$8i$&>9a5J3)o`dGaHSjbh3$6@tDT44DySN7ph!(6-_FT8x zDVm(~TGuAMxjgk)-B`~>m0f^uxu4bYoU-F{3wdE4p`t0bE|{mD9~Z7Wde_VD<(8Sv z1TinoTUL&c?9kny#N@MBHpby&8%!q3XR&m9X%qQ>Nf!7RWU`~LY5=C1bj?Z!j+EYx zB=Qy^IuZAwgPbOKE&=2eCbd?|QQ1+mfEV*YOcl zad(wWZ{jd{EReBPM@^PfpEbPFFhWGp-75m;(|3#cN{rbz9`annU^mK9L$Uq40@g0U zR;nW>tw^(NBv?CKsP4`Ic#;CUMEDzWN}I9 z+xu^ZSNyPI*AD6Sl!@IfvXev4j=p_-!fER$;m(F^7hYQK__6Iii$kz(%C=dbw|kj< zpM{JzedvQ{UrUf}*@<|91bED2gzWWAJPw-h@f{*~3oLFJc{tb7IHBEE8uXNCU-!oZ z@elSL;O}MEv4jho1^Y}Kd4Ayof+9idGn8!)vh1Cu zoie@aCAX7cMn2I76uAVVZg&5S@5r3^@Vi6TTLs{b=4p#I!fB87`sbD`w9UG1TJ7)? zvP#D{X|`cxu2%8sX5!-Fc1S#2t=^By_t%V-bcHR@F*s*LQD%o+M1jAvtOEOYfB z2I=>Csy75aQ*M?Fe;Ww~iujA00D~m~>kglNHkfeX73jo0PW6|Tmv+>Q$?skylW>@G zepI*)aR8}MrsmthVF;x(PY?O(%yNGa%Lmpy0?0BO8~Qv9AC_|> zHz73v&b~R9J4YqgV$LUct?CCiWory&X!Yj6fm41&I9W2|Q#b*2`n%klqjx3J-r89- zWH|v=Y92mVoIWhcbDDerBrFR8*`r;vk^Cca*tY1%76i@U_J@u}M^g$WZUxmQcp=5) zAyY7nvXCOs;k{_%edH^{{Rti+$Zea!MHdi&B#fSrGtwsPd9`de(v)Ji6O=917@Z1f zcW=!5kP;J{w3DM(Q4c!AKD0umv^zywp4e$TfUjw_|Dry=Mqj;LiGa?SzNaQ`{Z&L9 z-voQ{7I4x&y1Af&3@1iEj2N$ZhLr!-V1tWoj>%if9V}ia9;D=!Sh(}<-fI9O z36m40)YjHU)|)$A${d%sNX$Ur>&`0i*nuKOV|p#$U^Y%(v%)2w*}$Q*z#>7`No=Rl zj#qJw^Gn9zAp;NBA>{WJn@mUpF&KdVJu#V86rmBFb-Wo?IplSB zH?qS5>+Jq&g%6jOD8je^_urA z+2n^lnbFWx%PPyzr=vaZpVQeDeNlFI@~+7E%EDNaA4=N&S)fcDNBo`;ROuCNrnDn& zJJ$o`OLJ}-Y=s<&9m#CY|G*2u6>-a5RWGHUlPcSV{j z_p66=I|;}q*Es&T{^-k1HO~V!oHzsmBb3l7R^!9Z9^N5fhHBv(`+^$B%)H0dA~aIL zfOb60U(7a(Tl5u6Vwl){&pY%)Y-wOzqTKCg+c$!9e2d7%=AgJC**MxTSadA;Tn4D6 z5=WsMlvbacG5gkG7m$p~lVg3~i70P^8J_am_c+;Wp?tisSsZx!=1znU4`821Qkfk| z>Bng?HT?EX+Z&UV6!22_9NVke9GsL*K&qjK!*FgQT?V^`v2+Ym z3#iBD5Kl_(o|wmtU5^jP^TM)^e$ojm9xKU-BnqAQ0o73uS@vLL{LhtU?D|SZijp-a z{UEHUL%jX1!B4N2!T%b)vzI^m@~4?1uE#lgoL#Y+S)Yk89J@F87Y;}Ix8z1vs?j!d}E!q9zpHOxH&8OC-Ud;Jb`KbFG5|q0>N+H z&&W^&`Y$xhHGPb1o`5%;X-8_E4V%BqJ{I8l+|0Q|D*94Y#rq=&tUhpw%cF;Dzhz0J zPi-r5LV1SR(7Rjb@!8Ylo^2y7_pS@y338}J)SQ0X;L*|Ru<6Xa&$KGT-IN4}I=4k% z6_OPfaqZa>4{mj=>s0P)uFJS%?pU*wuP9=nu{-$PNR(=Z$NIQTK8aMQSjzpgCx!6Y zLhB2_V(Naph0NZKqqqNxu*cYECy)S0NCI4OcqxZ0T6WJM#nKOX?gGb5%Ok+|QZ=Kf z!cl@#OpcBG9|7Ucw8l`%B?uY#uGnpPbzt1`Cuf`*UUXz=5m1gaKmj2~VyAnbd_DKZ zU|^l$hh)`Xa^YSC*B{;M#d1A35+iqOy#)t!pi*J%=Eqhw@lHKYXBLl-{QiS_69}X= zK2HenRRF7q7G79rqZ_)N;V75;8*<3SQX!215QEpX`u!5|bW~6S-@t(vQ-TZJP44jNbb-pp zEgddj0O93{EG5)w=S7)AGHCXyp@=QV1in*(vrB?4iLoVd9*JEl01}|H)`DEUnBa}^ zN=LAa5+3|jVyojGX?QEN1b|)gQtW#CQTo7>GjzZ7`S2+I#FDV>Q2Q~(J9bfiNR~## z4`8G;-8B_R!Jdi`=~DXuap#vVjNl52-Qn zV1n<+V7E%maOpzCO#+Wpk#sVM)+_?Bxel9B0F!J@W==&Jd*M3bP;rNP77>1yE~{se z3or+PlHQ#&+6&h1X716U2b6mw4#uw28AQ(Oj|v*^m8wW76*lw7cX7Jix?L!zu|qm$ z_U4g=pq#a?mpcWV#VE~?hYZEb5% zjRKfgAY#K>ie*IXBHA%^T`G16gRbS1z2b6^t{`A|e9HjRM!HWy)L0R+Jy96Ehpck= zm5=+4=W|uE^1^Q<8-aQxJEFiyC6quEotauV)`Urq!p1wy12;L@b>)n9X`(6vikl0o zF;;e;93SMO(M_k?yLKo7w~ppO}(RKoz0f?{#&->go`WK><>Y z3iY5XBN5`6!v#BOg6E9xOJBWuHLwb=iJ}F=GK}>W3xav4B?o%Dk9Sa+<0O)W4y;SF z(`2qCB9J=j({@ydrht`r@HzO-q-V2Mo5I7wCv^CN;aKM}Tx`-CHaR9nl^X&p01pRq z`r{sdxWXtwdY;ea5kE=%XeE!At*VlAQmCU&1^-Uu1arjVo8m!zIrpL_K)0M@y?eT=HvrP~G2t z>+aXxwr$lK16lR2-;W+TVy5Mo=N%||hV({fA_97{7so`cjM%bmRhqKA^7H&s!^-As zrp^4b?OvZOjtCDIW%h<%==SYe*S96Eik5kQT>H%A;ip>kA*}yQ$J8(9DuT#KCkxg7 zn`t4A)q1rD&dpA0y&rUQlF)hc0MS>d?bMq3?oNXFnnLQ)oJzS1M@_P@+Q2r1Dh@C` z!|hjp+-D;qYpLn2GBHGDC*&_BROuCznV4J}NxljmFqev#jE00N-Ui_D=}RKM?Z{9= zuE(VC@h4vaBB@(iGs!s2owOy*Dl>(TZ{`rTQ~;MuMG+p{MIpl8b(GX4eZ|!Ga45PG zOV^bbxCfL)(W{DpiK~BwK?bmbs#f4Pzd+5 zVzix*1Qm6vE^^e=);r<{F_g3d_=-NjS@VKxONd0QK&dzw5P<|SP@~u(ghis_$>vaz zd5uA82`PjSWz7&4clt{j6?IOnmXVNT+cf@4AoU}Q25F$+hT{iTpr!zVlak!#RMe^?QQ33Co^V9zlXtF; z)3h;xqwFJh4W7aY4&F+5O&zay2Z@&ONv;LW&mYK;iznw+RjByTPD+FicYi zK&P~3j?$Nxh7e6S;Vl($25GnrMm7LOL_<$c?_&Tc;1(oRCHMwMl*CAP-A>lk_=Jp~ z9{Aj+IQXmn!ShE1hJNH%iPM)gsa(!HyyxC*zD6EX!ULVU-#zQq_Jz%Gmt0iDZbH-` z?dRu5&fe=Vk+0fu`hMs7YWs3MQnH=;TB76QL+>6N_z0jCnUo|A7B8UvAs@o+xA;kY z&TJvgZ=3}7AI{rVR1&D=neiQc;_U+w8l5xtNv(T7N^$r4GF67McB%u@UXK4n*_kIh zdr?%V*@OMMp&y&Twhwi{B8jd%=Q;ZALRp_G@XOLfnSGl1X@e^?qZe41V;;x@yzx-?}|R0=23HH=1!+ zi|NPsp*()LK5AuiH80P6=y9NDhVTTpXpK-)V&_e@ZQIz4MV;wc)E4vpqghMEJ{f*T zL3-yCL*3&G=r8{Vp``y+oi!f*Pq^=YgfQ7)A8MgtB?!|3RjUPw1caC>C%G|FL&8Cc zL6N#LtrX%tDt}XsMX*GHI0$eccB81RFu@pUAf-i;kKg?Y_Wy2m4YR!mTK7pkADkE; z<(>I@P64uWjRrXsYp9G+i%bOt@C4#-3bqLt-9V*w8M_>nreF~EOa+KEk0gRag~7kj zS4@mipAd@;d8CK)U{?r5MWoOx!zS4wk+PI6Q<_p-Cj#!`k#(&!!ylUd0UpYe&ACJ<5y3&yTkD+R7B+`e1;ncogFre4 z`Y9t3^V8C1bAlm+rSiLsX~8w5eGyQylbChCo?akS8%=;PT;L1}yLLG>#(#~_n0M;( zi?cZ(nq24xm+Kr$4s#aBu|>*3lsyDix+t>%NmKxD3XP)JC>3x(1pg=H5t>HFPJVb%Sa3bXeMn|n&(0&*&$<6Q^hT&$c#E@nSa#0FYg2yKf?;Ir5tlu=^ayH58#8 z*IqImttwa;w~9o`nI!dAK&^=a2Du9h(9A@FQlXd4A&!~yb`T5xsPkvO{B*tM5eJ5+r4BD$$TAU7HNe zV(#sBX!QP}hVX5kyMi}792RVJw zsRm9G-4Ei^=}l*x!}q)&h2-HnJucSSfFr6hTFXr;ToEM7rp73esG&^5$c6C+3BR`a zIbww%_(PHAxq5e!I*IhbqJ>Dl%TbZa&|#7}R{!3R7S~3qGJq^BONrAIU(Tj}0CR9W zu`WlLTi&Z)W!W@Jto*9|_iu>IU8K1FmkZw&q9WCjF$pL`kLe1{!wXF`!{MucN8GbP zczHQeR2Tc8Mob+3Tldkjfq7Mw57xL5f`xR@M-?D`AK5m#KfLv83u@uTt0IFrr2I|meEiWn z9lcGY!{Z@O=7J-jq*fTZHv+Cjqy13iL0Vx%q23i`6fX3kjIOsZR!W#ew2bVDR13&? z*OC^6NFTx`V}2Dsi{9J60~41yD)uG3Mq!pRN_ zx6)r}n=@=iB2dyjp(zG!P$;)J?18BgAxC{L+f(D7&{5{O9VJ8!p@|y zya!r^PBM55Uy^n~4`W@1S_=t@XkbKIi6uW9giiW^cPEvi2_FzFzza$ULl6hX&}M*%@+g6ok(pyPnlCN$ z-T?^G`}(ktU!4!Eova2uYDer)edB@j=TZ?Br!^A5Rsm(RKLJ~*u)l%qknK4M;N__% z@+w8*5g42-Fy`RwN=zn4YN!K2m)a6ZN{8?&>>J=u&9&j9Hi2_Dx%_k_I~p!KmH+$meCO+vAg^;oS#YKPb&b7MfML z%2fr_3>gBWf=B06GC<*d5UTd|r>KY*HBDeE2rjE#{h;~+DK(**96)>6u0ZLCyovqy zcd?;bD;_P2%LZ54{F7U6Q=z?5PDX~acWSMVd01}hcCTC4+S=Z9*4^H6e)5adeIjcD zWnyyt?Ar%l)TPx9N@Qns3z#&ZRh6X{rV)MeTvYq~97tMK_Mp2Dx-rsr*)n`(T=DWY z(|1qKLiMIND0}Yg1rLdmSmU1|Il9AKVq)t$-gEEiN_Im z<>qMfKO=BxMo8@ePLNI%n}hD$pP)qUoi-_b`)}l3euRI{#R$*AO}I__{n$8^e8ex- zdHUX5V{jj4O9>8X9n7IJCC8A249pxA-ZCmA)4{-b-7`5c-bXbd;^a7Jnv_LcEk>)@ zEh6nmCk~fbj#{QD)7Q|RkgJT|u7l`m^dr3pk+IdfhrL9Z06^bCJ<^8CSg1ovLO@_- zI>-d^Gut8&SH`wyN{Qn!?5MAX2;6ie)fF%k68w=Vk;;LJ^Td}^<_QV4GWG7bqpNB~ zpsZ3ET2uT;0~_Ws;Y8KA|0&^D)Ai2@KlgcWnSjUQPtkDfe>SP>j8zhpw=sN^V&zXY zI3z{eDpNIu6p{w)bL6czSj~B-CL-jku39>DlJBmzw#l7??wP7FkQJ~E$&w}k# zoO(57J1SGQlQ6~mRe0%C_D>_Q19@i1v9x+QI@jbDMGL9aXfpOefNB$M&X!aDz6SnY z9kM*?7ejY)t|?5I0FT+++af5!8H4u~wkuddY$)G9g8lh!5>51>D%*@kuR_vDqhy`? z_9Q9vaQQOGP3$Um%P-Jg$$U(ufTRBLekumu53;#ME{Dz0h}N`O?YC2*E$VJLT2|mn zGXun@@XF$7Kq5jW2G$Q>$af{9Q^9no=e?u&RQatfS@C=~HId*`a!!PybP$o0l(c6X z^XAQN+OSW2cIgl5o7Qo!cY;VbK^g{YU?V;);i>ykb)41c1M-*J^r$Y=mDN|~3Wv(( zKxwp^jB(4%MK_R8@(9q}dGQB4+#5MvM;>J)iZRqSLv5rh*od{s5PuV^P3|22Ap~ok z_43fv(-cQ122n8^-Qg=uvaEn*PV)>BRJm1L}?Dez8Obb~JIVg2nT+5IT)0&14(4J}>I5#(>qq5blGvD&pu*M` zJ_+gxl_RJ(mk_xRFPoeA^VCx0VDa3+ukfIKai?8ERqjq!HjWIV$bfYpA?_dICu7|^ z%%|)%foGott& zNK;8wFDPwVU|6Sum`1V`!oB{&~Z+qFSWT8Lx5xSXDc$+((*&p z5c08VkI84&`APY0?f0W|(FzT;`7QAlur4U+u;3dV6PVHhtL+ZVhJ>7?dKL0v-ghQF zMr+6&bQ+0_oAYsIzocnTSy|<&lv~%v$r->6X}i0k`>h$kb)@>rl$#!j#V5iclSaJv zBc&NA%8mc&rxj(G>M*8GJ@r(5vZzfu!f7Jtiyn{M&yO{tZy*XBzvKD01;XW^1`D1X zZ=5V8#hpZbzHH3s8M#6IA1n2Iv(7NfSn@kg!c^Z?ko4v?&kC*7E}+uL0! z?y3UMlmtsPL(z%Np*|Kp9NZ*?S@)P1%+qgn(~Oy}Gm3sQK)T0cLzE{$sFa%$&RpfT za!gghAW@;Dq9BzTYHFfvDq51TDknc4*W}Y#GPPYYfcDV7gfZrh@zSq%EAu8R(nM48%x;8rCbY-c_)N~djo z?>MA8C1`3WCj3bp7*c5M3?QW*rf@Hwd7IB{cJ67U)kO5E)Jc=rQw;CW8 zC5!B+VqB5m9_JOHKD);>dl7*aocxIv( zQOZ=KYow==3XF@*Gn~`(6$_<{|FP)7iG3TsWlo(r4Hx1ubC)GgpRd+#X2*6A3_%qpxA|euTd)D>jAp7 zlT(r?9cw%IxzA{VUby@h+$L#os8yGk2s~TaD|hNhq~3#hs=^NwvHedpiW5L1-=09~ z=Z;E#3tANmC=&zqCuYXjV4ghRHVJ=}SnLMJ-BH zc88O)M=DLd4MilMpw3kEf{AAsGjG)GsIq8s;m~uZL%Ah`+H@8ynL1u5t;b)b$cjV%vbBa;V^(Cm2_^04L0Wqy9_3mQrgK*rdk3tEa z-dE@IX;Z3xcBWSPVNe0S=p*!$X&y4vRxjr-B86 zWhu=QSW-1lyi-5bGIYkX!53vE58AFSl3}yvvLvnn2!SvF_cNL2M$9(!nOoS~CS9+C243hbL%c3cQ#)@-I7dE>bzKRd^JVixtEI z(AWef)H7%uMu)7&{rxsr@)ORze`v1ID)oov>WuRPggNRtL;OaM&N9TOF8QuZx?PM2 zu%{%92mDryx}D~ZJGl2m(FbsuM`BtmesVSGD2aVg_IjP~UwT-TY{WvU|Dl8EmFu~| zTI!`I$rH3RMo}N|&I4?sY|mZMuyM0-g%PAj6~CYSle0rbfw>4-0&yJELQWHy#UmI; zhSU2kWd82uzGki55yx+M40$5*^+%h<;<4ix$FrY#C0vv;a6|*n4$%^P4j(4L)`9rc z`Uf6MxpmTvGD?hNxP@3`iZdG6J%PE|c*ZH-i+q0&8=2;^z0G)|6*cclAF| zzzZ4!MqfAA|HpI1sw}3odbhj&SrtI{*QwED?>1`wvns%-zjOpm->av9gYF?j+49@rHw?lShCx>#*=DyR$<<9hufFN? zR?_iMCty`o)ha(TxBXB%bDNQU7U7umjbX;lnkoOJ%lS@3UM9@@)X$56$-(1McAxWBqK_6p$Yw8XMYVe*!F!P;sfj0h;5Ox2b5qr%6tG z5c;X>QQ#lh@T|s}fAmlj)nZtODHI_Dk-&NCGl!3k1QE8VR*>or_yO5TFGvc;y<;siGYvr)qv}F^CT22+2iLdn=Yg_6^k|$$%+)KnX-+$8~0J z_lB*HE#5+%D}B^l0s@W;XB-3uaygs&8?wLz3L+5F#186`lz61eyf11lyn8luPc+}n z4wK@{Kp@b-74)2kfT5A3ZKZB?470h9Ed5X3{dzZ>cr|JkAI74F(P%hqyc#IAWVAn1 z>b9+V%2D_41c52G%E!S25GM(k!W<@1OviwTAY>g5*JZ00Qb!4h(6B$|iIKcY8Vy0) zjHc-I#)nuB$UsYptwpjVMyM(Tkoy6s+PbxE+d3R zEh|7@=pyrP4>4xJlZ-M;qSp)ll^79T&+=x{%FnY7(|YAW!7Yx zNid3Wkr^2SlL-l(R`)cse=;9e0io-1OYYb$Y^-g3Cv1bt<hgyOi`^F)s9EIS!ZcRz_8@VR;K#w4&TI|BXuFi)BSUf$(XB-TX?sC z%7}YwbE6a3-`p?dgY<_(x!C-;Jaeq(9NSx8d=|u5Sbe+;a zHa0j|H4J)&b+-x39dZABx7*)%A|&mP`=CD}yW1L_w&zH>w@LScE4~@h?T$nu2q+cp z<)8&H$ZZGID{Xco&e6!BsC~feSh9$`Z9`TyFFL+#+WBrME5wEeROahueHx6Q5l=Fh zg8~ti{lj;;%VU(fu`xLaG@}u|?#v&5{Hx~Fg5Km$aGO=sKR{_Mq3D_cNMM-0^QH2uL98X~JDg zNgz{hia+%*<LIto*c(%jD6%b)52gaQFWQ1t zC`meazIrB=K&WX8hH^hVd?}SJsg!`0vQfVnRd2&Yg~qcHs?RSZx44R|KYGo=oPQbo z)NUFbVODalB;a#rDI;H$SiCa=ZHmL(lSm1a0#gb;;nw_-&dEbmxtsg~6dGp8Jdk%v z?60Yitop6{N!B-w0_sd)(#@!pb4|dpOqRufNb-C@(P`%u{t#5|vs{ofS5R7%v?x?P zb2l_V&Kzw3Sc@;z1I3vMhEydY5`@ix>ZB@w=VtuBLZ5*kjNB7)3n0gJVZTJb#N$~d zp3`*%)cFk&EueNfCSVvBRa^+!%PmkV36d9?*!$%B1OyQ%KxiD0fDs>aM-ubM!vmHP zVS6Q>i8id8-=rWywUfeI7_(Za;FFB{6#0D|nc(&uJd$42G{#5W&WW!0H3q!31vz~{ zbl1K@wJAzR(#FE{sn!8wiN_hIlb8y+gppEpgS$8dXuR1EN(&ZQGpYEybeGsup%cV`T2(z%-h9F>l_CsjNhRNSR}w-3>J?DP>`70 z9^t^f&hZcYvJXTDnk{S5E=4_DrZijzQ8Nif(*mlxRLCm!I@q?6y7(WMn`-j{p+&>! z&_E)WKQLpq5TVLKnyGdA;M8rKz$n5{G=sb5y{QIr0;Gt38P5EW!K|RtFicJ(`ioa5 z^UcIZ(OQ3KX)8njHhr}^F?FLdb_$I*pM>jX&Jhj}rJ-IeN5OxSgjpb*3M+`|9?<+& zRrS?bUo8v!mik3t79S-%4^-!C*bVu)w0~ffH^P119fFwAl@*{F}3Ma5kkM zy5)X5+3nTEWv6oWy5aSj?ArydN-*BhsKFe5vp>-1j30L zx0c|%mkad97ytL_#nw#X~+Vh`%>V5oO&_FjXgPJ zad}oFeo%^X5&sP+@2^YeKAZi9h+FJ_XA3#GF!zRbfIi@}Do(@+fxcf1L zGSNjQ<83*l(Q15ZF+d*qJn)Lc z;py|3QzxOJW;m3C!d6KN_3ac=!3=?xs?U1Bj`qNgH=hqv;}Q}~Ds_+;gZkQQF%8BJ ze6JWAyiKUE!^lO0eUEDybD!=X~2&(CZv!AioxfkD(cRibf?io>p>W~?m_^! zhXY^1CT}#*Sy!{coMQU%cTem__o*(@vav$r26eDvu;E(j$bqiLN;sGBJ0{EtVq6gM z&H5_&8qw96(-H$d3sR*)E$7X|WUld)xzOa$^i)S=FEm~u3EUwM6cSy?9wja6eA)v6 zfixzVkuG2ZQVeOV@)1r+N;YV;6w5H^J~l03r#A$-5zrekc+LiRbDMYvI#g}%STYjMrd~? z|1y{mYCDiZ&8E|xz3*<{T`;+O+1$OqoSU&=TEmOi0qcCF?aivDy4r?r`t3|vxYa1( z*`O^oAnyvm|K=7O@3Np(4VrVC-qQ1wA?ylV~n8!i^SsqOMS_l(I(TIW+WY1si#S59Kq| zyGjUy21L@>*r{$Az%~N(=8!Cq?1ZlH$fjNq951QQXwEmy45O}hnll8s#-=|ql8lwM zQvk?wb99Dtp`TEqg;D~JMqGx&R?eXb z*>DVf$YPix7$Ej78q>k1%#;#%>Y}EPrqfRfB(iH}f+EuZj>M-7R+daN&Y=m4T{qYD z*i~VRH-ZPcgwTuAS%TGV37FxzEfRKS0kfa#!`ZcwXlS*JKg#iC68qkdaxek7#Iwik zGt=xyAn^I%ax;u_r7vB>|Mt{&T;)&Q1pm(S{ugJz|LZFMLNH{I|DQ!LRmD9dz*2a3 z=4%>nQu%rU#Vn?+l0+w@g`tjh%SS4p0;!Wj4nmF&h><9Fv3%5stbyr!+$~otN;5iW zQl4EMVs;>nw5LX31jf+DiGj4h^%fd&2~1Y`r2H;gMky-Nd@GRFlhF@JH%NJQ^7{)5 z@1rQfNGZ{{LgVOnalTu;X#>p*?#-PX&81;4eK98E;v^`fB7!KJN-X!c z*U@ZA%wKQ97?)ij*=Y1F593^D5*7_|prUgt>gqHHK(r9;^*0GAP$88BlyI<03K)w* znljNsDzZ}nkq{Hg8^P49N%MJ_mItab+r2(`v6%+QVR%%J7xmPXKWh|Y@y`x>5Bo}N zis_u36aXm?4A6Z2lSvu|1)CupFhzSL&di8;uK~0Yso=L7Xk%82VM8_AY)C`Q=0N!o zflrq8CZ7u_imnaS>5Gn0z@rXO@Fz4AiTSk-AF0a*TD|2M0uz+W zru2Yh?h@PiA$fu9gbTf}TumzEi>aF|-E43pH!uWMsE+0kfOjoR{%3$<*vMrIW&kaj zl&_e*c{cUlo)$R#Z+dUv8EA`F+5ENt(1M&(9k17+5MdnReGEhGR;Y&>GK0HNR*k*= z0Kf%$!su7ZfMWV7+&T5R&N;O;`Y3g^xO7h6XSC@3#?4C2eI)1%h-+B$SW$|YAxtl) znMb{;)L6qi4r_Cx>XcBvYf3gWak6iqtfH|f)FDm3BZ6ed-wCacVtQ?EMBWc<{F~uO ztb6Z*>3kK)acPJzg>0;D03lplXg7zZVbNF`YO;dHco_wKsw|)&D#K1fOL_}Zd+w97 zU(0|(q$`k$4EgRgEFzsUip7L3XgCiJmD5QuQtOYsame{wKU$LR?v2T7(OwlmvOE&^ zk(iw*SUQcQx&+4AffB!!J!IKDu+&@{08H!yJsC$7w^@p*#>C&yhmd%X#D6qHgiU?B z&FJ=LBd4GWAob*ufXmA97#RWUres8$rA(#dp6%X`-ifb0HG5&1{&7bLlk8*nJq@n_ zqezWCw6RwOr>LCeM$tDO*(gm;*YOXqFlR1u;KY*u&ZLRICtTIX_X$8g08CpLE_pWL zr3kM6$vjz#cP*CmpM_F9}09_Ik08hi=Fdb zmhmT^lK5$wxOnx^4x!zZQLD6{NUppxKSE}$Ot(mmjLO>k%D>;~;OgtGmL8N2O1JM; zGH|5T_wZ{fmXq~KreT{-`Zs}y$Q(wKytoLq6PtdQ5)rSpCs)6o=P zfB+@q@Z$%O9c*@CZ}(V(IepSno#JkR&skmg1r6xu`O8qQX-q-xKzF11=FP0Ri#Hv> zn=Z^zZDJJ`7Irk|hJE?s@XN)e6NkGSx|=7$xE_`KpqA{*yK9&^5y$WxrJP=Ph#TQ@!UQa6XUL3OY=wW?&GsN%&({) z$AA9kE!Nf&l!7{JSQ=!JqVMYF_U)WGEgxQZ4h;{tdPw$0Ld{|~KH>;(T7XK`Uv~T= zsiL-P7iCskw{AUf=+Lx+{v`<-F;ye>MseD{w{D5^+$AHlW0J=VyzdT~KqPVD`{g?m zkH7yJzuO@X1Djas0!?y)f`Z-I{CJX{fwONw9(?odw@cQp-TQq{`V$D~QRbZi<@!gk z79SARH%}->E+3Y(6HU?g(ui(C-Xpx}^fgSS>VpD{RlY;OwpH;1=6K}Q)&|O2Rgc-c zi7u$0KWjSFtWC&);7xB;R%(uOw@rjwMLBl7o)@9P-oAZCbCI8KYvi!*p+hv&{yrq| zR~O3fnY6F(-%>QEX^~}$(6VLAu$(qFHW=(BEF~p1zOIbBDE;k($Zq(02KP#ZE+d zr@W$K-^%%R7)dQHEzOG3Nmva1(IHG+u&&SWqaM%=(x1)6b>eqnXEvPb5{{0JMs_>1 zpmF>(JI7NPHhIX@bnDThD-jo)$A-k;=Rbo{js|1DlJoT8qx|>9Ok}xq`yYU>jHX8 zrBOFVU&n6=2~sf1f~0JR)IMduoiC6%M(w>bjZZ-GF9*QgoOW?ZKKOjbp+krEqA%zm zcbP-s8))WPFYl_(MFZI-jcCy&OSW)i(l1Fqt&Y)=!i3FVoShY4cnZv%=zg=N=J@AR zrpmmy*w_FC`xWS^HGlu?e6X^c&}NTg*Sa;!A{HKxtg^&FOc^QTtas?{#e7qG&O0Ej z6FkQXU%w8xcI~g|TKnM&{~DUmLhH5hWXF(^$mSo7Tda~VU;Y+t=iy)*Vhz%~A%|Be zJ~`Z(B?l+=bCxC>;w&CL%TK8zmSnfh@zU%%Ex1@F5>;cI`2&?xNValw7B z1X4MOHs0U!@<1$Y)sEGD3YM;EBgZr1-o4{3C4%7I@~$jct()tvgzWuAO^yH1&}o2R zwTPX5U+UV6=3dSc>$_Bgaue%iij@vaWB>lzY!~^R5garI{~#z>2wALX<9XM2&BgvV zB#mxCyT*F=;ls~{hQb&Ovs_Zr8#_7BRUf0?cKIzAr@FVf_+xA9w`VS1oVjGll1*+S zHxOC(C7bR3T6N{bu9nd+7$b_h-wLRArZp&U;N#=FyW{#&{D!A6jfkCs(wf)#KE0W- zZ{I#Rq2BnxKT3S5k5n9n{xDL%jn71MmF8@A0Id;F~z@Vt9eAxFT(r zxZf2#&0mFuOMacs7og-Kw_?SL@&+zM4-4oDg@tUDiicQ>l2E0EupAupDBXwQXYbDM zIeGKfhY#0brAG(54gp$!D&y>!-KYs>E!E>HT`z}d~>GQk)<&h^u9k@V>!IlrIZxe{`Q)DYy<9b z$G5i(#n-Ky=i%Xjjosinv=-)c05e#04GhqVZw@;21wP?*nytvISFeJVT=)wbD{6YB z>m^p!U#bE5x7K6A6{Bej@mz^%%miq|Y-c|tFz-KoDk%1sn!PA>h$XHW^#tg!5UU6& z+noFN?{~aS_k|xyJlUx)t{qzdc+V2t7G#jUk&|s&$bl*KLTkVFbkBh@%=88PTxFE8 zeqv%`#ubgRMS<=8`M>{ujl=mhE^ZBebJ{^ry2zf+qI{c(Ut!bLm}~p)=(atPRttao z?YFfDp0IKzMy%*TK%Yh%XDja6vqv*de}THXIvQs9TDW1hpRT4+L=)U6sC-$RK&!{zXs`0`&a@i@+L6_|k&{Ovd2JSi-^ zjHA@<}F&Z8=kXiMld%^>MZBlwcF}RF`DAm*49U> z9xT{+s>>8T6C#RRKdX#Dka5|^M>RsD^#^g7?{|XIzumYoA0wBD7f*L+{T>kcAYQFu z`IAri(e)!%W1Qt`@Uo%q<8xVJVqzaYegu0a1}6DF#w`A2#te-N2a8`WteN-)aY=N= zinhu6WOH>;tS_*UG|!y1LtQ;`>*ep~i)-%4jeE4fF6`>n@5V1h!A)>{eX(kDXpSw0 zKp-W!fySTed@?$6GBq_7fxGAbYVOU$a$MW~ z?<<+7Qe-ZLWr}2uR4R>z3@b`BNGxL#id2TkEMv%!WLU;BMJXx@$-K->qKplO2G#ZZ z?5z8_f7`ol@4Nlpf8Oo=<9@dFpswpY&*Rwl@3bE$!tJu32U#tTPfddJO+9()l&Noc zUi&Mh4m6eMfQnKn!t>_Mld1+Mneq5oGg|Wz@7&~9iObq9UAoj_P1W^o=lgWB$ye}! zvtM4^$Pw{p-LBVyN#CLlKBKmAOQu816o{`oU|;9vzp;AnP|)$p`)FHRTXwno+_|It z{05OsapMF7C#{#0;=FYMQTmfEZonUujiGAQt7a{?o4zE)8(KCM=A95wp;511Jw9gj z=FMtaT3WIjTN+F$CW`p}=*3&#JIr&A@uHwi_Osq2MvQnCJFO8F zbw`nz_K_3cP2p&y={qt;H7e3PL}6oZKNTHVh9m9MW(*8=hDmY6`O${^T z22W4nS6-~khu?VoxVgQ(eJxd0r%Q9&bG*pTPV36Y85$a%biS|-xU#d?8H~yzOQwC z->8-2#EGqdUsGws$DYjey0`x>ZP#$%K#~E2^_^l@<>z~XuIe<>>gOBB>l3p>hP|JA zjWh1Oc+#}q#=xfP`r%yT`?iHw!kQ8mNKQ?yz0qo$!K~qL2VQy8PD|@18!~j$rXygT zL4ybTFx2Ma;!;SH-_iX~y?*_+-@os`agIZz$MVgc68vH!m9clHnd(zux%^Ae#<=C-fTN(Lu!gq;I?0EXgOn?$tbPM~}yQ+LX6(EhO-Rb$(JDzi& zUXF`%b9Z09Z(sYg%{m1r6Z)=+5hTCra}V)0296jxvZT29AYg+VU)6fD$5jSPDm6OH zys(EkL&GKCX58M{(;nc)DXiP4cB|QPdYOF4#ksFH!#T-^=-6vH?hf8mN7x9S~?6zAsYnF?%{a)Z+;X}2nZ!Y=WP znzU`(R{9N~cUo-=lgRjk)|Qs{kB-*)^!c;x$dPX`K%#lSm7sE7!klFHD z8GHIS8aHkn%WdTK6?K5te@7}Cmkdl;@_ikVY{RKH8%srXa8Re=Tz~T9&jZ1jULBc^ z@FKRly6J?fdVO4i+j{*m95y!u|&6#r-qmJG) zy(I63rIi&vVJD6nvPLE|?9)fDYge1fpA{qceodP;GOOAPY|MHRn+|)Yi zK{2Us`Zy)YijmwY>1KU+|5jGQ+Kn5VutVQc$ta~;dHK~ZNDBQkTJR3HcXs-&j#&%k zna`~#eamO(0W=e?7S^p>H+EjO$xeNzLk9g1cHH;As`DRza6aMyhrh>ni`chM4Qw975l(YOAID_5)t zAF{X?wGK&g9Zzgs^KN;2Z%~ydVQRv!dX3E6fFxM4uHr0(*Q3m}x?2CD2G4RF6Q;rzDW`_

g@$86YnXV&w;NVDY(dw))|61w zL$lfnbcR3xSIj6~g^!PGPB`u2PSz`Y&z?SDw(L_Cdet`~I`;4XXZD0f4H~#-Mi|j5 zM;=)9XhuK2tHWWNW{j&@+u1dYiHRvS>!lOAVMFTe+jgco?;yHy@$qliA5aW4E!z(kw_W0Q7Z$IyZE>5|>>aNwjEv^f{q$ejTXdgiZ)@v* zV_l0*ojM&Hd;A$cP538=uXXL^s3o);?}ZCx0iB!}vm!ja6`#xz8LE_*x4etEyt2|R zZ)m-7C!RRfOpdl|0fOXA4HdxAJ3?a6@->jS81?|V$L1Y7TF{x2UQWmlypkG!_3BX2 z0SkIPP-#Ayew@*e6DN953>z$8zB~Y1wrFy&Q-06gn`6MQ@bm5ZPFn%JoZqxG;p){2 zLd)M8^=s3%?MKZb=TnXvMVD7OpZaIl9-oB^qdjh{1DURYs+TgbH$OMIj$)b93bM3~ zp+^?0^=pEyqOP;}4%keJ^=!cJX4HEJ)1%9|^J9*VYF|}d4H6#U8>iQ@H+xWDe*-D+ zujM6E_Z$1KfGPv6bFns#a11cqns>BV!YYFY>cC3#phmt*@ZYw} zz}3q(L3OL&K*i*|$tRwWfE{nQQy+M&MpUdDS>AV?;L)i|7tLnPmQ$DvToY5XvrV(R zWT_mUu4mHqb=Os3E802tUvLhzg*1pO$=ZfyDD*xLn<1`Zs^h91dpWGxV~T`?)#W>&K5DmCUtO1m^2; zturn-7k!#Yy==`pLiX?9-)^vPD5E6iUWRK;d0B~+3Qo9lW8UZR;luaoLbK=0 zq3A|~2ab*JPX1&Vw5Lh?)9IGG4)O}O##Dbw=1^8!i%F9vAv-}dz3^F_ybN~fJ3YKM zX1$td9fgH6q!Rl2_Jc`@Ey8IDO%Q%8~7{&AZORxQ>du4~c>O5#r zI6wI2%a>7ft?x~WnP-;~EBD#6M>sfa39P$vdszCUtfBh>MERmR{`~ndXlHo14gb1= z0q<5r7M;{hZmtvl#kr>P`z%H*M)^oOVqbWoBl!^W#~BA7bbp zY>EJ^Sf7)9!s54;cYrCe!dIx9`jx!Cr9nBv4?I?P{vHa63Nwi+$@b}VpdhjP52dF+eE3i?BP+p302u-J@uyv!lCE~j`l>bAzm~PN^{9wJ!vHbJpyaSE zk~T(1cV@*r>GGFnf?3v)`0O>SR^_~XTgME1$7X`qC<Gfw4j+U2r-S*@@IH&Ro*-`;Kk;#jU6@(-ZrCYlv;FIUsK zq*s=G)C13oOP4PTQDdcnkaXCVPV7}0C?ZOB&p7?HWf8e_C?PT^CwPR`bpB`O|I$R3 z(Vu)}JCOVAf`UxOsW4W;ZqrF}J$%&Vs&Wy!6M2q{1%@ z0vsEET!Z=j4n{`1JKOIR#DR6-R_JgesW|_Z=CZT|06a;zmDtSEJ~&Rr9?n)=R#rg2 znf)qmj934BW@}0t0rMJf7gXY&c^EgM16sKR!J(9Z`7v z$%zl{N3K`Pp^R`X)QDEjm*$QHs-h7brWz4Mwl%F~@^#@bt6^`ocek971t*8nii}QS z9?J&go>+l#yywr4%ajjze#)OI`haJRCQozLo|k0uU~(+ow&oU^V`(Y2Cx0KTer4_E>Liy0;?-MJw1B^ z+GRBW)yv6*`|$$iontK@>h#-?@%dtKuwqJ5;Ktp%TW{L535LCf)`oPAczUGq_VPxE zW6I+hEpHVUdvjK{IsOmyOBMttZmq+W9%Wit&8WgrWZPihBVT*G?stScIxfazIF0HS z{?T!l%Y6_yEKWJf<^46gK!aZ(_6W*-F$ELSCC8lmSCt!r_9V|C;5sMAEg>PH>$oG0 zMWTEbV{t_5-7p^i5%eIm+Py67yrLp0T%zzP+}+&;<3ZQl{`zaJ^C>S{SFFuw6Q9z2 z+kk+8`i&buKA?otMFTgbNJ0kRYZmJ*Mtc)H0PrUp(AwO>LPQfx8ic~$9;x+3bYQz2 zpB#VjRXv}B8T(4GhXhH3^RbuS(vSj3$s@=;ys~f>^{alvhN5shKI!y`#nq1Ix|CNp z?&|*M-|B7J+(r>*M%$R;mUnwc4~(a}vu4f8%gd{e@|c=xX?HijL$6-Fc#D<-Bvw^b zHORlT6PGWj8tm-A?aMr1DkFx452G7>`SN9=v-9o#CI{~CI{}#n7LQ?Zz?^OY9|eTr z5Al1@>>$$P&rI3J)@n8QQ^3f@bG_zXdT(dTVdtxnRt1xDP^;yL5sleqJFbrnGGE<% zy>i3cNp}#|LT8sH|Vf1p55=o$Ze-P(y;x}!)~h57p$3iIhBuJNHFDrRubEn|qFUFRTH4Dc&I}uc zm}@<5QE%U8di5R-O$Y8##!0q%Qm51Ktjd}EgBpAA!$`{Se{SPdCD+r_ZCfYr=#HpFVvO zL8g(GzS$|qH#s@iXo=713hXK`=;7+7M%j<{?S=TIym*1r`Hy1D_U);%fsmG9O$XU| zygs!R)!$xvXcJ;y2~mgweZvZSCxm>9R0=UUq5g>DdV!B~Geoi>m;4xd73(p@6&y zb#_kSjieS-P@ZM*rR?PmTXesVN=?%08m1Rf)FvX#jdE!kJ?rQ^YBE06d!0iHza>jz zVZAF>t|XSzACbQ64!gh3tu1@_T2){Rv=t0^6pa>1`N73GlVq`SpZI1T;3`pa?<77P zmC>4*?=b2=FK8G-xta!U5_U(m>x0k?JsA{KV~o}#+WASRzKP13rQP~(+gw=pE*p6R zEc5|@O0Q$bG2M4aUBhv$3u)xQ=(`Z!?>}#;4oLC4lscNNj*nR{tJkrUd-q{Ac~doP zdAY=lhld-8YC1ms@{04TEH6IlxpUi=E!U_gF=x;6;w=^KJDtr8wNCgA!auih6H@5l zMW2qjy8Nk8q+f2w?d}QZmK9U@01c{E=$+Obhy}QGg%Iu=2SLa!)R7mTEH}6+2jer3e1v zw=zH51ZDq<0qbW+KbiS`p$NjmscWK-prRiFlqf`jhxz-UZ}9O_z;A-bL#<4ZT0+;a zPvIuR%ms|m(L@--!*Pl8R)M7cJ^pwyL_ID@X+nLAobligdmOT5F|g<4I%l0YV)gIk-6FreHLI8a$3?(+OdI>kbFgwWCDc8aK)c#$+oeqwmgQ|j4fI^`yEf*c=oK-Myr+Fk%l4iU7gR*xDLW}!ubbcC`6&^)VcGR zi?f|nt@kZWUvWb3W#QHWXs94F3f-FzAMAX5`mn>9>KP~tvGTK~hQ_z(I-Yi8vT#f1 zFI?DJS9duD(S6peJCw4up`iycR@ssvwdyo1uBupo+VPxjjZ{q4zkTeuORojXY5=_= zYn8CWk!gm{o_$jP^d9SJCj0wN&+OE*XA>Ar&YYEZ@x(d(^5Gd*Qx3No2HfJo;tRFv zGrMFt+>54C*KSAmkaOqy7BBMr44M+V6c;`9)vI=XlQfNC5~5(kMe(nWJD%F3o6<69 z*y7huXY}L6O`P1{dNNm)sw>cc!M&PdF~i|?>&PNL3ZOST>CTe1lt;9Zccnr+*z zhg4FF-hg%4F89y6TLjirO#kPMtHI}sL1tTv^d=R~y#|hqyK?1W-2ABs6YH#^a(P?Z zL7+Xfa2K#%4h|~&(xWtyk`ERW+6IrKNWaO=y^aN2_~JqjH0q<6C6%B1o;lmILHVnm zUkw}AukVK0ExiIla_f+j|0~E#1*0Vbhk4iUj+z2|wrSi%XjvEvoPD4En?>4Xt4Ok` zZ{NN=0DFWI;H3vtrt)Jo^<5-L`WS${HND-~*x2t|VKel1pq;}B$DS5Sqr7>f{TPng z;`8=)45kTw%MG}1@z<|p)vivQI8j|gV}*I7RKGq;y4SO#@bKsDhA!ET7d&;^G~{~& zK%;04udXiL1uZN=NEN*S@vHdTx9yp6<&)6BEKmh#Uvh||D7~0244sR_kEVxLk#XOB zooQs-TPN)wekLvl+Q@zTb~u-NnH-sfcKA?K!58;)*Qw5{XsQ8Cc3;7*nL=VfY-eLHr5i89A@m{q{Ldq%pZxq=JQ;?t5qkMxJ- z&^Xq=JsPp%+ed}$2n4NG-CatSOL7Y9#bf47JCs38mv``cmju5szO1|wP~|=d93CP| zr<>!+R!GyFj4|e*nF{f+4H0*8`z*ealAPRozyKkD2vheD+iLQ(Mge$$Hy-Fa59i;> z#So(-)v@2HFP+KH&rhr&L3kWh;dEhU3+Rnx*0y&Yvw~!x&5Dr;yS}{GvU8^uO^b{7 zLLh41(|J4jzHvwu5ZG>i{@r}?72inW6oP9AJXEbE6AASa9;RT~OrxKrrls{=`eSy^ zoJmEv3uE65)e(=(*f_#9s9Me^R`ka25nUPxe3uNH>?U!W4GqIM@MdCNkGCDDf_(T& zq)3POMRTeR{i`ecX9p>Vl1SQ`^mA9IsLrt)PwPgveLgWUz@KBmd!T9Dg-tmeAD?l+ z)YU2_f83SIY>@OctbgK{Ti~-AWL*FuklX_eh{^$CUV{5l6ymZ*Plp!d9y8mP&J(1g=Fsub2ARCnwYc@_$^H^`_m2FYzLmDZ9;+fmEpeq+ce>Kp&Kk9 z+$p+K&{ZlC;eq{BRvw|`R)!!RqE|<={3Un9gUfyM#sb<3J0E_^5hUGq=F`(X*DfxZ za%GkUq6oFuivupDsJObiO35wA+-F1}k4}e&=<(NIwoq4|%fm};LvpXi2QOkF5+Y+~ zDU_GuyfE_U#4MRD;o)7MRtDhOtz>{S_uadjoTH5AY8Cas;p&ow5cM-fT^^s9u$hcp z;k^Z1Q)BdCRL)qWIk@7%qBCTN^n3QSwYTrvDoJ6vk`y09RlfgfE`PfrgU?I!F|gb?w-V zHAL1lrzH4Y=gbl-?lsUN8FQZIIF73mi<$rY{_>-j$*q*juXOP)qsOjwJRz^ls|-7d zg!C4O0>S@yM#&}xnZmxeeAs2=%7UJFadvAqwA?zxCswBfWJJA#+4l1d)my`vPGr5B zL;pC@Wh(xwEk=)QOj+vO?YG2k@s>mB@YA19_@ZKD@orWXz`~E+!2UdfjB#?x)jfR1 zp|Qsmp`oD?-Dx+-TS5AwwapH-LZ2a5>I_LkcR>8!OmvN?gxtvH22&#V+4)RVW`8y) z@Xr+d!N5d1>y-DkG^E42vjFIjAD&LtP)0lsX!(35U0;eC)c!-u3H$ob(qgyYNKX%4 zqo$LWo2xr8FJRP!z%9rX|AO-#Qztz?3!o{nkYb|L-P!SOd2BWZE9zf44q~+yCa<>?14i?=-$0; z*^V8Fh+w~nJ&FD#Oy6eID6d;vJ2&q(b`>nI)!^|Z27mQygZq@swvg1F0#zo0WFZg+ zyGDHb#Kc5m*1r>*`ZdQ<0a0dyk#PyIMS{S9A1ER-3h!Gsy@cv&Zf-7kS3x(CHx7y% zj2|S~S8%m8+c{coOG;tood2sEd=xENVntwxu}Oi;@YR!Pz0WT%=%TaiTUew;OP%1; z*)=)WRRx!0Jz&cvXJ&4K@T#0$@_pu^s3`m&-qp|yW%4;rRMOV)@N|BI5p)?0p97~n z4BTAZw8sSE?dgsHU2*y)eDgb=^sA5t{_F`S5mXJTuz!8Y_)AfzdkdRf2JOg-2Wm%O zT-vL7ixwfU%i=;`ji|KzL;yY;+{_D5TejZ!L z?`QFMG(psYQcQ1&p^@B~@hUFn@siBxyho`EPJ0@yM`R!Zh56Va_!PU5Dy))1hKD72OY%JHp%XZ_tDD;9*CI(k z7FA%Y1b=bP1kXZ`qku>Rz{e$>YMgw_$al_?Q;zFdNQj6ypFo@xPF32letjdZ?F~q@ z(rF_np+vH?S2uA9aNyCVT)(~?Q09SeMxg~n9O7oObL#mmoub4Fp%{*~%Lomy1#7;H zK60c~-Gvuz(|!I*Fx{ z#yz{VY%WMAc6Qm^yk%fCdR2O*+GQ8|G~gzyVYTbPOdLJAm209OU zyzEz^hg<*4Hr}n1+PO;?30$z>kGY1R{nt_SG3wR)5D z;}F(6bkM*{Zt>|xk_w<|)3=Shyu1{2>jNlkz309f#Ee&ml^;vH?XU|0_Mqb(=PA$J?r%H~t(R*y(E9u+JHH@5+%jtdC=hxXz~dbR5MpsC+ytrJ$uFyP=t) zW__nGh;7IcfbNS78)Y8S5DL&2fr_wa3h3Q%z<@tUGUE~h%O3k>rT|opuwH=XD4p=S zo2+`W|B)cXxXYL46FJ3hRxzW-?Z!8SiT_pvQy_dWHDEt=3HB?2eQc$bM~`+vBmKu9 zp)sD)ANxKVC%<^%tWlJAwa>1D-aHy2@DW26Z{lj*K$0v5lq7DI8Yu!$PX0iT%>stpEl#ZU-r(G zfP~pUUnjk&rDwWTdsF#6KsSkl`i!QCCxv%2GwJP^k`j@KRWO8b9|g}L$%OCT&Cix( zEj#ag%H$Rr)t%&!MlimLE$-`sY|6YXFCEk{!(2X2)D7=6k7>Q@H*c=yzJBH2=P27a zbMZGHJ<p=^N$b~?sIABTYEwP&&iDgSkrg_gP;08 z`+uR*RXWG&EgrP2vL6@oD?LHRU(_OYm;^TYrDQIQ{QUiMKYrZ%cE9eb^p`T)(Wuc> zqMzG)PLi_>Jf=^#Cag&!k^pexH6{a?Gm*p&Z#%6Swm-eKZ<_hjDYO1L*;>d9or5%m zi|drSZvS-}IV}5pN$K*%_3kjt-~f(9=H#wDC@cDim<&;j?zdZAd0_j#W=f+A&OHad zF&;tan+7gbmV^n@w~}+k$iSFtP!%}yd3;plgp(7OZ{EE5u`;s`zs`whuM{;(1P_T9 z+|Ny{{xJz7M#9w$@Q(j`{8}Dv)RURgE-0i-dfI4Td#keh&WcYjFKq_RNREkiUV+LF zm=ozex6HR@UU9<-qke2jZ zsOpHaYRRTiIgZd=1?VVBs1bdyb=jr>FqkXwFb+Z-}+r8N=xZT0vp2p4#S6e)eZc5p-K$94r2zx z+sDV8%&n*A_UQdV&dz%htq!MO^=?1c-{;431JAo+9LzB!Rxxk7?(65eIB1VA3$cjtN>Kd3^3YdFAC zJgD^C*#}H%Qhjl3!O(*H?Hg^hvY>%>1@M8MQFO$;r6A+nwtzS35on}|jKyTN zSku!){dHN#PMua!AcT(MCyG?chIqpg5}=40@o$>;S&S<7j?+Es`ZArFURO{!IGWUS z42OLvKyQ@K6mULkOy-3?JUufS&a84=x$h+j_)xy>{11=2(O<*?diU-fDfq@nFU=c< z=pWmgR=DXX!Zo1iaCGz-Y%?~m1pvc{W68-(vWz5%j#viw7~uOXPqluNCO6=Pz)1Mh zYBJ9hUdfVCFn+zZ_v2O1FFE$p^%sW^oTn|sn`s!yg0h&;lG7J%3uEs#=1}e8MOvv` zEgUKLH<-5Z7#V6j;^_dQ@)pO(Gy0WGrxOVqUV517B?M4hRszen8RYlKIdf8(AmV=M62xt7e1p647+fsnNm@%{eMp+|1QYM^?#DB~lY@SR@-FdEK01<@BYa zd|hdUzsJ#VSR*-bbahjws)COW%w7XHk3Iy2d^M)1N6Fv zw8apNPkFI>&gT^y2# zu(ZD}ywG2Ng1ge1^5EunFfi2@W-d<|>sE%NXw21(2Z!|~@l zwx#r_TK^Hd&GE!E=z@@DN*XUD>Vl)OiI^--k%W(%_i&V46F7WEp?8Q%q4w<$R@Wvl zCI%0|d)rKZL_ys7VAJIh?;dQCFo|hkJ4!R2b|EAf08!Ts;fII&D1Pxg!g2Y78ikFf zV)NSG`eI_YYu{dYA=`&5Ud{oiGTkTvSyJebh;16pjYhoF@Rm5{jd_!P8z(X6&ZXSA zQ70I6`y2-qkdI@B9VSw*gGILMa!++l%@hJ1aSK0caTxKPhwn_O1v0R4US(Ces!xHY zdDWaNV|wv{?4bPsXf)2-Y%Q^-$(yhR4morUH}>xX!HGgasH|Q%a6ag+{ch_sS(HR5 zDCn}Q^Z8@BD>R;e;SDYY2rOcoq355Q`J}t#KIj0bNmIGG6awi57HhgUwmd%GtF?-$ zdva~L&AWEB1kGP7I(l(^M31j|w?+8?2JjX-ZR$81lNvGX_;?u~rKoKn6@>J%?M)9$ z6N$Y91Q@d+^^A;K<5RKm{7Ulba2s>k%mUbwu3AOG5t<&Fl@cEp=KzV=Y2Z2v6@i5< z(^rzLWQ~fV0-4MJrF6#A^z79w4yYxU=MvXj)NuO7Nter8*|22#ZOMA8@L;FzTo$74 zbnEr#`X!gTHE+m24`-Z{M&$|I$IFVDeowoXYogTQ)+Pai#23YjlH)Dz)b#nTUqtzo zAPs6E`%ca8QmzZ_lQCyO%e+k2jmIWXJ(zf4t={-@wuuGvgPug*jtDNpKL*V>4gT=3 z^_})8j@Y08Bs|{XGiP?E3qW$$kUti%$u1`GmP6*VRok|j>gvHEAtA^Y=2dI5CZ9+_ z(L<`yY}qmmHAcESX#EY&Jc>@e5c9CNiMrLn5nZ^w5M8)e@Fm6^A2)|bWn^SvWPk^I zH%PU^h2~iKSJLMSV&=te`4QZysM~=uS=8sR$qq4Dd zxAQ?`;=J8Ox)I?Aq}?IPWmWnq3BMs~&-eDu0hdVPn;-sYoye@ma%Qdp*Mwq@M5eS* z>e3H50DT0aHIJ`j&z_%0U%K~dOi)E>=QbPPB{d!6srh=WL(5(+*OHUXl?w8stI$9s z*ak82E6r~pGlztJ4l;GJy0KIJ5*=RrW$ah12$nX=%&qvvfTGp&~-H z$<0+hpU(tBWi6v{W*n#uG7pUMP`H^F;v_$OSZYvIrdM>o=c<#FRt+Rb1@>0lXZBPa zei^AIkc8$NjSj>x%~-85T6y!f4vAFHQ$tx48VJNg7ec_weg9q{!|46S?yQ?itLG@D zGa!5@6uE2)@m!%ae|a|wvrl;G4UZZKVCd4V+gg#kK7YQ;`o0G6kx^EvJHD+d`$BcN ze$A}^N0QyAi<}rC%&uFvZaUb<28EeHuUBqk9G4u5LQ1ZTC9++{pK#nL<(;N&blNo-M!~y~t=#6#8;!CCK{k(c*uq5n#*HI) zR!2YHpdK_b@=25V&CEl~>Z_?ioJxEYb4 z4+=8^)WI{=f1miOoa+>mk-Y|*%h)5lS&igI|Mct*HQJL$dNFiL8x`q?%>>$5P*FNf z%V0_dO-@DdJ3RpBeY{qdrk)O~f>W5f$sp(j=ezU)rb<<^GG~8)qa(6MBHZCY#csQ7 z&!oSAZzNIab<(TBRc!|Am#7rJm`mvuQJu@lC1?gScS6HPl@bYC!Mvl)3;<_4<@QQ7 z?X=iZH}$|3U=E9DI&uRpP8@7`^|Z3O(@uoPPTXda~;Bgn1LwS zEb=g*SVi#M>P zO$qv{K(Y%Yr_rvRyo8;TtLj2zWrD)~t_{;;Nuz(kzQ@Rxyz;#{@QjiC zO>lC`$aVHU;pM5~#m`yz$X-_JuDtGynK~t!!s~fvkg&@Va&zpCT9x3hzx$UX&QH*Ly ziS-84P&w+EQFW1Pr}B)Pv@bT&EgkTBs1ka`MsdJQ;0Vf%a7zW-H(Fwqg9o=6;GmnT zlom-|V?DZtWQACdE1gdB+kK+&=_i& zQTbVJd2AHPzVh=2$9IR2Ocz1>*Nob(K@7Ue5E(0ig&~t0)iW*%N9VvZd}}kJjv^*7 z5)ZdSXL$dm5sNmBfEJiscnaHyQcvY_)tGOdKX!M$CvuJp+EWRa!3`cwKUMlJrA%~L zY|B3B)4zW-f)@*kooo#Y;{SQeGexU-c0ad)ZcRseqz8Qzrtdy&+HgF_!wdGMy&pUt zX9eWV%hLJ@D4_-J#voRRIS%ub+l^@lSz1GMl~(}YKo-&{x}3plqL*VT$*$|yuen+F z@m}y(puI%UNE5Z{GeUQj3JN$hm%B0*Oe(rDS5H}mKCca&|7W*hx|Uy}h9nU_09A=? zj8Y+D!;-`@xD5tHik#hIeP$sB2`zKpW34%xX!6jHEEH zZaO;Dc-ZaC`nok27a!eio5$%+KBkCU=8+vxeONV8k;K4_@wg!eQIH#B`Yo28Bd!f4 zfs8{)V9@Rr5d&dL5%e@k=ga5^#}B4KMLhplsqX&_FHG`0OuAt-96$d4z+8j1i*$Xu zOrBKqT6s@@!O|~)2pJd7T&x?r_Lq)#Tj%xp5Owo>6LeV7zsR*(ZE9!BX%4cfAtth^ zAtfY1h3^w;jW_nY8zmuj5oAehk-ERm`E~boSyC3LQSayl669xlJOX3@duzOZX56|g zqFJn`t$%rU%ci?7pF9X#L`SGene$d#ey%em`vQ{vgD?NPWDhUa{e9{a-A{-BufY@qSJj(EIty0*4G0$+AQeQ;BCFUy zjRDp|0T9laHjjp+z!t2N>$f@R;N{c80*Q{-B2 zU*E%Gx;Q&;Wg3fuD2@HvQk}D2`%Bu8Iuzi!Xweb3>nn7O1KHCE*8e6=cz5_tWQq^< zoT?uDxbiiC*26}sp4P29|E%NCE^>-kXnIPCC&e0S6(rlMlV`kH(b!E>ukEcBCw@P1<{*~FF}%k(WC7$fE{Yt^@)|1RMwj z7;eImAY%5T0l=9a%{y^I%^=!ql{!;1owK5F+?zI)(=jCP#%Ge!t<-N&PWlxRz5$>Q z9IirHWO!gBsM*$hRA{>qi}#-x|F`~y7n5CF%JBwJ?maMBWp*F2oPPWLrA$I0e>7{= zs%zg#tIE}E4D4jv=pB&A5VYhlku#Y-0s@W21A@QDoIjrtdrHQYvqIGMc5%)d)f6-5 zIfEEtp;KvO%$ZSGGUDOLfo#y83a}Az+flA%@}^r74wTiw&9x_<>>!D1%$m9zTtX8@{-@etn#oB4;;T!JfPLyt zD&NX#b>QPDcKWLx-MTd(W+P5C_erJ^08%cA0lTTgBEb@~dIq&&vF@6cr0y?A-$^?p zAueekY7occWXfRMz=7704hK0@uTu^NPy2sQjLe@}v}yKsV5@ol+}$n51blth1bE{K z*r?p9fepr!mLr2Citpp|@M-AIrNQd{E3Kl2MLLMUF9YT9Jvj`Ak=j1KGtBdc^jS0F z*MiWw6XExC=7p`kFe8@{muwdCSin48`u7*iLo3m)9>DAr4|x;z>Q@;|opwiy^`de( zV}rW?D)UIx1;KrcnaMLD2*3<_$En^Sngr=?EI_0wb@vgBV)`hEa3BQ z1n_Xpa5U498Yf;|av`wU&HuY{sJB_-3!UP@xn$Sb+#E-!_j#zUN$=J#I{o?#{!hLS zCJ$i^bV+s|V=&sxY>)>`<@d)eC}@g%{rK-c*TV&xY8%&=XgCUAM+SA#aaENq%tJqI zHM$juiOv_~5gwx7uWn=)8elW?zvp)PU;96-LLTe?twL-FW4ova-VAu5x{hXPHfg^} zy<(Ge{$GX7Jkm zPi@BU?TnGhA(d?fFe!L8BwYM<&RO_-N0nrUh5gSlqn6r-;IHKLSnP6;5)4sN91;U; zzlZM=b|$^5&wqbCV|-mWqz8aI=9q)-vb>=kJEq)^Y`{OLShwMK#rw5q$;fYu-oF&Q zaP#I^e@FSATmH9$OY_}-oj~bc*qg@`8elCb?BA#6A1?LAynf0Sj?4UgKYst+{|6_Z zmKeY{#puDatnrQiox!*F_Aais?o-MYpSKNJYe5yRyr^QrpxH}~5W z6RG;|H_mT@@pzOX9#p=BlfX=D+A;1oo!I!GAwxK-;-^~a{@<6DVE=DLF%O+RhG;3X zEz=8o(;kOKJ!mz!@voZ_cF*>|Px#l5>Fxb>7O8x$Do|${&E5CYvoHzvlgs@r!&enu zyl~-y5VNG8{$%p`>JV|$JNGc0WMGn)BedWzeTco8U^J+_7665uI{};i7N31!&mNiQ6{iI4 z_#mzw$Bu_n9czB7jsCR`^8Lmxl65cF&Sa9CC=NI=oDg)M-y(i4_`-Y9BJngCc>Um7 z{RPn5m-!Cy&A?^!wR{XL=(tR3b1ugQiimg)*5@5fVRn_J%Sy#olsrmMOvA@6nd}J|FX?Fm`h64g$_5*=T z=NpI_fPFX)vp=YvoC3j&r_69tIjZkX&j^>J`os`Ly04oRK%GDp&eqHLKNkL{GD zLS!NMl3HKiwTl%HWe(S{QPxz;c?Ybn$2#jl`5JB8o={Gfz$Jc7<vRQ{Y)g9j{H-RW6Z9v}6DSlB; z5CBM7OK>-0^ZQHjKxzfLVNv^-{Sgt3MH^N+mdcCRfs}6yF8w@OG>Ib%W#SWL1Y(n6 zRh(K)2C=CWDx?U5DiW1e3<%cru7Mb7MfdsG#~B)<5DMWpX?h}sReBBF@IDhUj8F{& zq~RC63(`3EtAeJt{!g<=t+#W_7KI2gSwEM6ZUYP z$V?~Oe=K2lW(1aBT7QmQ+IO`ec`;(mpY4M34-fi zu!$4HO&;uj4i!*9Tvpdi=gwjTR?mGYhnrPg;+Q0&ye)b-DkKJowj_tLfb$fU58eS) zYGwW77IXkHTSkj4EmKXaHRUR@L8!zEZ&L4REEh~ln##0gj`G7R)u3>7W&D9$SIIST zIx$m`pBA4P8dMX(ob75VZLMO8Ppn^w2j}`sP;hgk0m<5>=yV!7bRT=_t@WGSS3f~ogAH!@-ns`DBPR>>~R<2`aP=TM+!O(Dwasl!@+WT`R;vojA{8=*=Gp%*ow8vLD zHEG`0#4Dx0dwtoq|D2%SDwy1`luu?Vgmp5!5{~DEwQs?}QZ$95jO$l^mbnjHpH@Sc z^rK|mgila^#+;uqW?AdD`#4%tCOYv2+1F_dtkd$np$f?LBC8b-7*m9wL=5}i{2Z%I z`i(L6&SBXUGB@PInl~W$@)Pe!JIr;gu%{X27?74GqC=@d92wy`l zNu{cYmB3T(3@Aw7uO@gBc;EG3j;)@okbz$WrDq)CMtpKAJxTN_mReq6p$*>Bx!KvA z_=3vGggP?nIPM1S%Qa%)@)EM0bN2T8%lvm7R=Bln7DlJ;i|)2rdnC5n_m}^0x(h8{ z^ehyzIIs<4CmhWQ%N#+Cso9pKJdjX?x!jcm7Y~S5TMwm1&IRUSa8Xe-Cy5NP3k#Js zx)!U?g0qp%jw22dH7&Ph14x`2EMYio*f0+EuI)Eug}iG7g_P81qnytxSFOrY7ZWuK*3*6OmuK$ z?4%eRc!1=jCJTR1It1MYKTs_s6(t`$D38XuF+u~svFu-HIX!ql%82-jB&YWH=)r^g z0y$|(bvOOJOtch|b((I2j*bKH2Y;{SpaT`BRdb@5{7uTol90f#z!H`>DR0Qhzf6Uq zg>2oOpP1;o*`>^<&(GG+{=D|ivdI3Co|*2xnd$0%+ceIa+>J#S0D)uDNuw(e-jaZS zfL|eD<8LRvsG3>8?yh#fZwdZ;2C9O@?dhl;vi9xW^`V&v)aT|{_B0)FZ2$z>Jj0=D zOAx69aX|%DRAVL4Ez>{u4fvR9p7!KQ@!7X>lkTK_`-n$RS+5lTc?>2}*-Yu?_X~wb~si*^wef3`t+DI{p0uRzAef{q}VksP9|8Yqw zU9i;u>|h?+(SpZez03a0^k#m%(%AJY#09E^T~SoKAO7yFyUaVkb{&0AR=?x8OoJ%RWI?UjtWh<3r(mluc4_jAEC-dkDj8x&5Eru#dO*&*Sf ze$F4ov$j9>=djs|4QF2lu4X!PQJh_?$#a-B?*{TC`gfIZX9c!()k$VBXH(XSZd+3Q z+i_f3!s}G=FL86J?R-O`&G!imq*qZAo)`Al9?5zx4j54TkGJ|ZmWf{*SlU(5ZvOOh z9mL6VIuvHQqzOS6rXT2+UVvji1Q$K|X6V67g>0ZU+(im5*uU0w2;7}2&-3{E>orH3 z0SGRi zOOp~fY&>bGp41mXyuTwXja)y=ZQ3lkK3V_6lYgI>ggt~2)&1kJiPEOX_H(9-Hk)0; zVbk?oD09}-5;k^5-&Y_+{i>2#UEU5X4ew2XCyKv>yD{K?w0;2O@I5fC|3+;c=?m(?$>Xn75kVC_*BAm zR-aS5?(myWp2p=rbqGSodt^ErEwn-Y?dfxtG191BX-+Qw>BB6K1BXS=lSmzh&WH1o z7*wWDzfuQq_>sc8!Mxa@{;)-Ne$-Bo&Q~)eygPM2ATVoPqx`7pYKLuioW|#7bPzPP z^xb4BDIML@YcLEyE;rJL_kW%*B%S@e9k`*m3OVyW9hG&#UCbWH#5#|pxi799s_?E~ zPtsw3^iY2j+++Fb@9ri#KGbru5*(emWn_f5xh4#XT`c(@fSKm}N?EL0$NO@9K1$?Z zOHng`ly_4*wFlujA$Eu<+4U)$0x+`9v5eyZ++6J>u8&`ogjsxS;>E%B4qVdgBi zwoLbp)X$Z)6KvK}*+^%|4G=G!EmCB?DPm|l4KY;!bvGnhisAxKaL%wHYW2#b5Xs9E ztRm$J(4)xdQ@n{IPNUIF#-z?RvJ%+ zL|g{fTTDIaA09X5>YWl2k3XPm?qmIy;^e!;(CIbrJgKN_=Klhlq5u{cHSAo0`CyU+ zqjml82ie)4tjs!C2!fmFg#qk@`}rJDWiSa(f~{NW!`X>$pVE45bV`<^+v4+(>%o}h+cBF;@ z6{jFM5CX5l4QaT3u=qLM_HBGYIibYiobudLVzgg}Fhr$Tx~i-spbtr539NU+Bwz|vD6Bb~BZbQ=B8{#Q zLS-4dY41u?Erab#Ck=e&y$R&rafSSeZC90wd1$oc@x^P64!%XJ@}_xK;wAyzY~S9H zmVui)PN??#>osO{KAV;EU#|`3YsmaHm~TAMBJ8-Hwc>QBrGjZZuOza+HdAF~l3g|w zZ*qkT+18+kOKaL^e3|ZW_qaLk-uHO1BOlc~ZJw^!sC3mXb)6dQixOh|LR-$?15-E+Eb4VU+~c&>9uBHZx}o<8yxVbCExPbO&~2F;B1xb zt883oKceO_4!DhCSlOh`^}pl}_FuPMUE=?=+c@9KjJMSTR{s3PtEHPy#FJp6Z_Nhn z)~jUmDhJ-t+4t6OWczs6c9QB$xqhU2$XShJwU4GM4x%6??&y)^^OTNcpKko-GaRGWP|fn0kZWNne$$qDGk!5rCm6 zq$!~sHofTcoWM}R8w$b@F)FR!2)p~rJ|%f9@Y{m205P$@$fjdPjBxKLHY7Zxf2qZf z+e+dGIX*$*cB3?|>W-e*m4xugqO^wRwMx6bHI5cJfayHXFQ?5MoWt8uU(J5&75){p zsLvO_P@y-O&?G;YP2|HHyg0R-$6k_FTwS~cuLho*7CbR%Kvf3Gndu2mZ$!*-50N!? z1s63m%bpWWEAVk#h1lQL>VWXdXE2MTyJIA^Q8z@KXQ@B7TU*Pa|I@;%SbW#f9&*wu z&9lQ!_}FdHTOX+`fSrK-I+j{G=Aw$NyM*flM0_dX^r$%_c?(;=OR*fcs;$|AGLxJMmO4#!G4l8ZeL6*=pdw#lNj7aXI zR7_m`T+02~+S&$%CI;bFX-;|+w>6M`&2;>&bby3(RMH%}V!lo{R0>@D4#_9?Dk4A* zuAm?CXv1Poc&PE^`IlqUI04#(DDf-H-C+>9=b_E)IrsJ1&wTh)2ZvXeG9NQ%dpb@N zZ-8Avol7B($zy+AOuj~KeTnXsZ~T(HN81C&E)n_WKR!1S6a-0je~Htd5SXXB(zLW4 z;V-5K*|dbIcsmdo(m!<)yAdgec^5FhB!+crE<*=WPubuOHp`xbemM&Q%i3Bs$-Adq za!P&=-hELn4~CIlK}DY6b_E?iC5#LP5hSR0OjNQkRYeNAokk6{^)HL zA>Ohra=ll{5&!UW!ewT`2ZtA6)$-f1B+D$s7cK2iqqf5v4=jYHAI~oq$R~%Mzq?EBe~B{>XBZ{N!p{MlAe(%aFn=s~HP&sWHMo^661HfE_!Wp zHf+%oql$Wp2GDpO`S!0nj#9()2`x0cZfsIAYPv%St70K|)Gvhf5t2cPTJcH!)y zMW%BS0+sB$(!EXn>I&m-;zpIYTqB;$k;3r6s^vFG zZaw#Y)p$d^viP*#hwTE}-&z)tHNVk&1Wch7rH?Mp7k%dQqQ!THKH?)kHTl$dv!wb=xCp^53oZ_snCicf#3Cn3$gA6G091MtQ9v;i=}~OtbOE$<^_4Zev&5!+>&l#o7cOSxIG~y6RjPv$bryhtH2LQN6)qt47g6`7( z?)%S;CVjZr9`Z}|Wz~%F7-y2tEs^3{C z1qUxqpPkLx>FlV6IHq`CZF77$-TC%iTlf}{v7-2VPBnM@R@(6O8n6qwV)3opw11?3 z+ca!{4zJO~&%meuv^+(ISVmu-f?I!zcpLWQbD6aav}O>X$c+R{Rr~}M8_=+WPyYCh zI2=_m1tXW~SMvY_mKHzKXCku&d_%lqOouxKuW3lZUTScM=VM-mJekO_GYEWwSM+3H z*Eo*f>4&h(o@Iq$Hf0&|h z#I=XskG-4PqqsL0G-RMJddwUZ#hCwFc?Vcwc6RT5mEGdPnko6- zF>hjaLQ2+$og!j0miWf@yF42m>+(Rf=mnp9FC5I{W^ZICUGZzIeOVf>s@p;3rgJB^ zFuh$61a0=$Jrsv79>G)E@Itm$2C$4mu?SgJagBZZn4h$rp(cdEHlDIt z5s-EG6OuNoqJkt|q;SaB(>dCJ(~{bS9VMZ4lK!llL!bLf$0wxX&+0l86Ck-Rtz}ue^0r&}z9X(WJcWF)H`m)n8`PpGGr3dgH@%Q}Qo38wFoP|Dg zKV=fF_2dZ>=}b3N4wqvChdVh38aFct6^!@;-`~*9i09SBRh_9gYQxc)wKQq`&h5wZ zC{?+&3A|>`;P<+NhFzvdQ3EBbb2qy7t!R3+w)1oA$p-rNO7kFgSW)bN3Eg$K!F-Ki zO9X=HvDSpv=X4Jry(>17z|!WyK&6UPM-DG8B)R$ay{Y1!iyz-oaI@PAdv@660#FwF z-t&(A9JZOxzssFY1bx4)Mu`kToAONx#U$({007`mXA95DmB4B#S0jzm)dqt=;0pMu z^z!Hfk+m2p_K*nTRw1}O+&DUyGAZGyZT;zscHwN(YaBu?QMy z2lvT~6sS<>1MA;9EI?x_08&jb%uDPY8pF34V?o70vPxdBw&=;8@i5|)SXp$G{t^U? zEGi5s%GJ6Y`7NTS%wY;6{&Kr_7v!%^JsraOMhgpS(lM_!UhAz3EV!BQai*rr85rFV zdo=-w%p4yM_Pb_^02m51`;4L1!1K5>G!Y;C&-Y&SK9y7yNh@}xR^xCE^TqC*;v_Ho zxR2R;(eZCs+6P~1DvMv{oAGl8fk|%jj@au(db>3$go;_j{vS9H;?I9Fz$d%-JMhfO zo0JC&jKBd-6#fvJQig=!t%3n>VN9`m<3MA=2?|bO3{O4i4F%=VN!U{a%T=d5)nd0R>7DKjpBU~b0^qICj zqjc)10etMlw=KqHGeQ~K?4t{H977eNk8>Wz3E+P{b!2YNR70e?}@v*#-WV4CB)C7zE}U&Mv!48mHE7rZMWSi z9BUoVcu7W%d>XUMynd;;Gr8Ve;p&dXLNsiwXeW-< zFoxt?cKa)?gewwyyyXkYo*=)PoKK%ro+Vf_K2LoGoFM!6-^@V5YO=-V;hCsCKrZ97Dl|B0CbdSOP5BfiKR+o zb_c*qu zuuhhBJYZ-^`t|j_KIyWxia^|HYh8yuN1)@3qDY$%wj53FAG%+kHgBtWLxqb5JyYDM z&EIo>b|9t1mf?!h5!G3vV;iowXK!bhF50yCBZQC6C<~(sXRinuY&M)rfX`U?mbW~8 z*uYtuYDjgRh%!yP(Ga7R6OkIanqVIogi9UpZey$ zOb;W4^K(d7bVt+B+-i_*xDsNvw+zvTd^Ac$BljWSPcSQ~8hc548R?V4*U}i|$Wkz0 z<=cm*nXd2_BRgL~^_A59aciCOTRxgAfp7=OY$Ke9I~HARt2J~QG|+oM+c+ZFLl3Z{ z&6_3bnG=_!_Dd$w;nZ=K7L7Px9zKejXOQ>fYt_ZwFfHpNqad);`Mu*-jEMM#L|or^ zBcMXOGrU-8?YJ>+R0WVCh}JMGWm^Vv#A_yVGTxZVw&A~QRmJQzM5{@OiG4r4k?ZHkHtYkUn9r-HZt{X! z-WV2>e&|G+rI2V^3wxJm1G_!$)MGhkt=VBvLXjVj|7lbjKKWBCN|q<|s|&10Kc>rg zJwoLf?+74{k!pctL{@xFocoBDsOwK)evx~gdtDWE(IEznXW8h(WJoTz=y!XNlqi^| z#1}Q5FL>C9qyL@9E9oc5*^6_k#3qWjlp1lDHd|G>>%9L7L=tD-FXUOrj0&M2_sCUJo+Mt)M3zQLc}WZrcnyftp_<1euKNuzUI)bL_WnXgl1e747+X|mAy^k` zZU!6>b=$`F z8QygSIJG!*73I#cz5hxvT%7yR)i$+~P#1-PJ^`ok92~+9SvkJB3^ou2GM2 z1QGyl@Sh^8>bO+M$fD!L#_f)^jjtc*b-Z+8|4tzcH5KFbs{sUJ@7s;bsC$cTwYNJ@ ze2hBja=Z4TZCBq&mt!dzUO+-mnHr~aAoc`&L)Nh*-x@bt2>bmv!ya8MHnRE-7+d)(X2=q`6atX_;{=H z53~S zx9lOsRagj?r1FNE5*}63oHd2(mZI-}_W%FW zi~h&KJjrkBk4hZqiHuX8U?0KZemQ9C#G6C{VDNh_Y0>&do2fvLSG#w+{`jq>=wH@YCl*B z=W+qsn`@Ou6{-qurm(Z)FhCGh1u&DYh;oOv;Kg^L;J{opKwAijlQX&hxlSM?_rp<_ zFuLx=G?2CDDJ(LU0seY&4k-TT9yoN`!cUj&ZvgT`Cs~Q0I3SCp7yYuGzdLYdS%b6Vz#t^9%$m?nCu{DjXSYxMTy7s=a&XaocV5#j60S(!2UEWliC2{9>N&3EWCT{`q z1k1HTP`0kic0uyYqF%%M^4k^S5ula74!={~+>4evjT(pqL?-h_hLck5-`_eqF(LI< zS^T`eh6yE;kSh{zV=8-elnYE*H&41HnGIb%0RS1Tbw1vFoYyW?kAB)qX5dM<&x7QH zCl^149IbT znez#+lqkFy()ch7#l5cT5G+-|2q28MG<9sA3jR`m_1q(&Ya~a?Mr{>LEc2(`n3CSj zpt}`fY4ZWq!j~?H%pe=}UhjuXbp*B_rmwU}iU|+EK6MCJ$Bds7e?NO=9b$n{xv$0k zLl%Npt=acKk+vd%Q#=npngh^kFtiDHEA}$jip%`cjlpu0)1@)=>-~kZxlVX>=5|C8M2sg(Z z$S$qd>vVO<=i0DZKT(N$)@4SYR7gzr`XL7dE3o1Vg$Ii`fct~N@lzAPEt1VPXz{+n}DjaMG__W5W7F%qYK!? zxrtZGHnTog+sv+DM6_d~-=SobAmGK&50IYe2)rBlBzXY16lVkmO9#u+rWs(!nS)^> zd3K|7cVO<|leLHv+9jmkZEZK(VU@4K0jbv9ZcS= z{DS+CAEBx00C&P1!dkIPvYEWQd{r;eIinNeXp^uJ2E|wX6+tODgo=S2;}KUll0`4xM!MtAP~!)+LJ-81L9& zvdm}W3wq$?aZk6YaX_#wnFLa$M7+NYP=?ThIMCU;4fU~=IvAowjfdJR`Z?cS=Sh?T z8vzSDLR*x=iz(NV;=xg)J zjf6o@h9#O4hn5rA8;{yH8ke8_5n)rvt#l9;oPYo7n&xoiaqMTBx_jUzsx(Wqe|zH% z!-2tJd0S3UHiNM2HT$D;Am$tZ^GIFjdA5nYgo7?7t)spW6i;?pUG*1j0z?y-G5oP) z0zA$S=55Rp9BEmfPap@=iVON#lKU~@!*Ll&W%^XIFqud!yq;KJfN3=ch@`iZghOJ> zX^<^?T98Uzl=7i@aE>CnCZedl3XN=*!$~ zFGrp^0%_w9j+&|5D9QeF7*$p6lpkvqF-GX>g;{tn=jaBN>)a@^t&uwq&UuVO8_%DZ z{gC0p=Yp$SjESOw#CP?ZbG!T`yBG%&QS4q(48(r(A5pM6`)Xl#AXZvLF$`I|-8)#b z3}bgES&}=#q<{H;#D4e+pj+v8A=aO!R_t{H9EhZ&UK|oR8wIlGikRxNw9?<|&|r20 zLyp7BT-1?N>Vw#ySDN!g@DOd3X*vEG%CM}raYfQqMH!gKAA&<9Yyyq1P`LYg8D4b6U zI|Iv2jz+BwWG)#;gs!=3Szwf4q(<+5K>ltMRGGaV2!(VW1|w zo5ra?nH%Od?7lNKVsXv8g$3fN4GuTKh;gU3vB}lJA5*=oh0v3_D^fRcuu`x4Wh1nqBw9L?KQkP_8@G?JUf zLC^f|``s+HPl)F|ju6S+k0A201Xe2N3Du-aBV@i4`IP*F%BNMn-USgX+i8~p>&kLV zZ4^7Gknd~3^-BD*HL9Fvefdhh})A$zoCacV=DTBvrI zMP6rx3$TcM+5w1*1H@166G;(UfvqMcoi;LgRk5e^XJ4!(l_&*8Uh;JKXXE@6B5eZ! zlHh&mWu9Ur|8%v-ylBT2)K_#x>OE35rhwhDXU=>dxBbniJ!slxW+~IxF=w&YGNzXt z_#>(b<}qOmFzxBForYY|6>~ly2 zik6=n7 zF(%t9>S1(<(J}p=vZb8eeJJq|7nnakMN;vy2QFO$>af4-rSAE7ZLuRGYj9HMLk?^v zU&47wqej5z*F=87veK!b#C*+5CA|i*#*|^oEZ=~^6M2ToO}8bPFzDU1{Dx&eLgI=k zhRewdi(^`MsHCmz-)DK9X%Qbm!)IP+WB|ozY$)_-B83z_fvitMEGHAhOYo5(3SGV% zA7qzrFWi|4{|vwSs=ydFBtp;qF}6s0J$708GbQV*adsWb8A=!gH4)+6)5*%LF`28V zVm*1pvMjV5K+N>$ko=b}*S-l2uItrq5Tz}*1y0^vasbk#BXC5`I@D92b^`=rd<&l@ z+LR4GCN@bqSN`P0z2{&ElT9H?hH$IfBy z1BXWNI_4&J&P@v;gPESS_Xjk$y*m~WMy38jFJOb(q_xXHVdlU_#YK*N&;2q&0mCoU za@Z)C%6!`_S7~9{FoG_G!h=OEK-lVyCJG%g+>}v0iUlQr)(^TIR$)|tPtOOVRw!MK zEX7n$AXVjho19AW+H(FqP|^e%#qXB<2^4~^2waf3ETm+Nr|3|mUM3dx7|~xP3?0c> zMYKf|f@-;W4%1n`}9!gRzi*OF$kK2iDB;47S+6M{}mW z+)LYJX9Zk!n(yNUuSSj7C*|cHMNwXtOEA7Jn%pmswO5=;*(;UlP5MkP+;H zadkcSaliQsDQmY{BhN_QwSd=U>-beZr*VWrkuw-7m{|_Yp|3;9H(5x37J^WYv$5d7Q@7M?a_l*Ys8)xRC0?{9<7C5!*0NP_i zxR^dMH2II1l(Wv3~?`ue0fHgvN3JWMxNyOCof<{{EUr z*wOYm(ue^^;DB%&%mTH4zG_^F(uM5RoMhIl%663uObz|{)+3>Xo)$1Ne+K&zvHOg`TA|961c#|XBUCh+w7EP`vQUM z5h}mHoV`@-gqr+woo_g$ScPv92J~@7LA|Q#V|S1w%p;Ijl*FAI0zu2@e2Z?rznis= z12%xklKPFbnvxtZ81TZo_A(~df#3ZI!||x5MfXYy^v6VbGFsq_7TeOq0)Pv)0O8pt zYG|fT73%hXQO%qCB8dZk%?c0i#2-Pzjj&+F?pJ6n+U#|pxKoXxzO2fPZ@rbIDqyc$#W zU5sQifXeejB8Pjn_3Nard*$5?XZy3W!L;ON99GD5xuP-GK>v0^fHR6pj>u?nH>N7G@k!bZXymFp7BUrnl*GJfcx{8;SH&Y zJYdGJIRuHg-D14gaW_s5s{g4YklSst2(MMn2k+>-mBs*Uu)N*_>bs_~s==8I=IDir zQX+bm!OM?Pz)yoH3YgjqAXc)c0l}+E_Lep~g==LUW11xQo7H>WB1g`Qt${;C5>=hb z%gcpwDNcQ<$hP^&kpmbyTtLr#rSLE+V@w#FBU@woGv2StOD|n4WjP6k++4C4;Ya6X zk_CC4G)ml=JtyxQU5VT0i=%h2z5b^c9s|`mWGp{JUlkL?cVRd48HBiuEdZe1awc}Q zmA8L&<8b4(I+ei?(ENk|ZtzD!w_lDqb8P`2`Q8oWpxZXjz$hw_nfp)42%@X^ibu(7 zKcH$@8s>5tRijc9(S9gt2fX%)#NEW#+{1j0Q4k;7E~@Jj;LYnk=058+ZoI#{)+GAJ zXWHb=UJKZ*k{<^R2Y^v>0g7>;4KZHc*G+qp6)*wc-(H`)A`Bi_j8Mp^=qKqYB4N$d zXE3n;c%3bA0n*^CQr&Zq--(Mw8No4?h(H*%Py(BGjif|XwcnL7o>nNtk*%8GnIta1=!S=`yIGTVn z%5Sj;mkk|RPoDQ|&`b2}ne@<8#xVTtZB|>)$aZaU#-kFRSYtY(?j^m|JuC7QcGw;ypFrh5e z=scy#EaC<%wwn3jr2$`{nftPaxiGfUH%H=xH*CL^tSi*Au{LCL>>M6oiaSP61s_XeF$`g{Njp*x zDfco6Kg0+YKkHuAKb{9MVM_pD_g$O~=`lN4X2OP(7p!s)<;rg}|5c&VZwyfp?;(gu z!103!ywPWWf|L|v$-?RZ|FQOmK*P2thHg}IR2Sh?a&kAy>c=6w_5k~6J=nz=lV86% zb1hm+wBr0O?F1$-rMRbCl`}G^Z&Bp@4sin9k+$vW)@Y5*KnhQNBYY4+I1gO|7Hlfz zg!>Fe-Tim%p*-hzen&wN0yw{0=9W13vL)#1Uu-nE?5FjM42=H9S{3>}=jgtiMk!$Z zrb+{IbYcxJ8^MoR44;7zkW4A$XiB98@#9>%hL}zPKS)A9r37&9|G^Ym>7`VtZ!C`o zK{>e>i=ZOk^>Cpcgn>y@4W5^YPCerY=Ztty0iv#^#y{EDldNx^-?5Zv@(+kwn}C8R z7)PUP($lrLxo~ITOLh$^_R7(FCIO(^P(7F=0_VV0_S?#JL1n1=-6UtStM1O+>#G$| z*)rgKxZt%SG$m-4pzN}LGbAuGQE4%3`OcB1!fs)^eAPa(^Tin7(jg_V3oSYK1IuwD zpt6Up(=GO<%3Y`;+JUR%@r>~H1z-Y8xACZk!1n{xvO|IIgvS-| z!f(>WI!hy)r-xF8MHoSM381Vp-$6Y=+^n&4JIKGoHPY1u(Y+q<6oSdFV|gXHx^G!C z((Jw$NSvUw&{MuEE|)otwB&?@uG|qtBIQa*2bgEMn_vIXedGC&MF#U*Sj=0-IJpGI z$KUtZULo*&#N=@0W>XG=+!EFehF-R{fg6fE=B{ zuwxKWg%}1nW$d~1V*E2%`^@FzUR>hA&$xni1CvkaRx&_}khV>Lr<r&y7YaJ)8{ZfN-dneD)=8If3a@~@txTy2ZU_>Jm<;B z8R%VT`;75%uHLzbzU*42O?;t!0kjW(U)iwIm=WS?JS*ex4^$o})(r=aU0BP~T{gTT zXv4M06NmIoM5`&OypTlpi$A&0o;+%I+aPCoODFwzNj~`C=ea(PBOW<-%T70s_KIP? zQOZg_H}l6hramdRgK!F1LfFyX>PUwf%G2Wks}K?FKo*T5Rn8=H)iBUoag%D8rcPsy z7YVILRO^bzLYT0ZM$LvPjsy<5p8MVxIaL;*RP(oix53M$IAnu}SpNRA70Xe9m%(ud zs`a0AwqC#Vjr(McUl>33c#nl3h<|of#WsOovo9yX!jGtIBoy^!XB`2^#N4XPh)#{> za*PZ%bX1Ze{V5k-LDl-Y-D+QZIjO_92%wLl%A?$G+m;QNPRteG5^4!NM1#- zC?L5xri(mfW718rbbGQ)f^wWka+HKz8be0!KWi-rmSlWet0wU~OX8i3bZ2X7T5K1~ zD}hnU*{nH%MUY;8aNb#D88YAMM(3e6V8n*;9;ciA{b6dfG|dt$P=?Rzja)Z#eg>ep zDGMjW+hbc|>0mMMm4S($?XM7FV$Kc~J~}IbIDse^oIx@9mlVA=H6}kVYXM6cq=L(n zys&c#%3=))_yo7x^QFK@Rsc=C9#jKPNvkzG;t}dFN%L(du#0|!$NE|rTc`C1RxE?v zypqK>PIoDuB$P9-E5S+2K%NfhNOpv_Gg^zz#!_W8`-~M?6H2^y%$XN#9U=wIP4=56Ekv18$OxE z!qdY|+t)|fKd(QIary~5ur%jbhm6si+VHrU2;NE- zse2Vj?a8}ybTb`M1Ygq_Bt6BVnO4q2v8NyVr^N^+*&Oyd4!&=_#kagXQ#T3a!e2Kk zZhN@W{X`zOP$=3}6sJ{}wy(LTY3q45Ug1~J>v+5Rm7bR5R*+ovFF&K$B$Log2lqib zJ^YfX&-ZE`fx4M$#DM%qIxp|1{c0y$Ylvc*#&5}#H;1VJOO@(KG_Es5Vp#Os)?-|{ zJ{wW;?i|91*kQG7D_qt4p&Y+s<}juK~5j-z#R)Y|wi{`2J8$W{B_n;l_SMLXyAW%Lh`@wpOyaRq@1HjRO_it!WT zkn$-c#w7Eg$?G~zHG0J))0wFv_Nq|2O{6M6o5HC@y3!35!;H*_00T~FG*zffLs=;O z-t83+a&)r;e+mISC`vA@SUKurm)o*#@xD?YWr6BTQ+do-yhfdmYWi6kxNcb{zmE>5 zD+|Rc8%3k)F}IkqZ0^O;akc1k6|_55BuS6vJhWEURWGRVBP8GU@q9%Tz6Me7V&|pR zhkF`i6Y71l(#J{ER5f?jbp%TJ>EuIjW!` zbdJ#SzIrFWBUKuH{j9kR6KV3<{nBGdNUmMVD-`R^4_mKmOm;7X@aF_8FuWCxmly2k z0F>(<3OydU2ioz|vlD=Gzws3{zG;5ET?Z$5%e>F_H}!=u%`mB#-*`Y?fBBZ+6%O+w zW^#-!1B~;)lgbr_`_;pTKCj}2Pg<}w@6vj0RUY-a9ME|MORZGOm}=UaYB7FmYJ&WI z^$Q;Zg~sR%)FI8Z$DZa;b9ws4LFn{T+)$3z#}4zDSp*K!(M&OVC!Cf z!LZ5dz#$zc#DtF~Ngknew4W=caKk9yB8oKA;(VlOgRA0W@F~S;|2qasBH5TxM_j96 zX*-aV3@n~LIb)P+soxgll`DpI{w-rKwUgorMzKVZuXohF3f#l?lG6;X@t|r^j?k~L zA|JYuFhS3Q9oRo}(@hFo_puLo^Cvk`Y?bYeM&B~agi;0~r-5(g8QkJr!APTUH%+}U zS08&*!5X);X8hWv(8EsnZ0o<92Hbe9GXr`7Yem?yaB>>vFyLcsWh8$DSMu`7w!B@eOYS7;4yhTvm#AJrCW)aH_R2CjtXibhv63(Cs?bND%VJ> zqyKy6mq#qlITHy)lrQzT9|Rt8%LWQjC0MAYX>6arjp50Mh9_%O82Wv|{kMWfRig~b z(Z77s*7=fall3i1-_{%TKmv;3e@ZD`5cLG0(pSI-y}N3R+almna^Mh>_@8EzFRUrW z(Z|DZwgF}1F~K1W?(9OR&7qByu$gD^U7*Sf;fP7i`R{mG9#y^kg^=L?^ScTv+hjz) zh5tLwn*VI;|DAE?|BW#w#833NgBW3PaRrWkv#NsQy5la&c~I@W>kSS9GYBwBB!hT5 zi|Dko<#TOxugPz(xoUxb89}uC0Fa;c%G@#SrNp?*dp=?95VbFFgI7V(f-@)@_7nL# z@oFCl1Z<9ZBn;>h@V#>iy6jC^auIHB7iQOpUjzCikE4@9`280wPVcbKo8Y&g*$F5M zY|!N-vv~*)u|DovLs%*Rw1wJaLYoboxc__$0vPHFLttxKM8qy6X`3YdlH;_L*0npzh_s=l(kT zxvYJMy}*m=73tI6$?ul=jT+xHO95221!l|l2uBRGp4IS|#_MVaZ@}8s|5JJa#M$Xe z;N(CQNBu(Nw5)j2X9(dPc&=s;a5%zl428EnK}h8BRtf zg7dQicSQu^D;opLDu&9Ks#yG1jj7MD9^!W+s;>~%7(vA6Dij5#JNChm&!XD3wp9CC z!lts~S6d9OGggIKHe4rGoXt0m=YTqu^_W-(=99_bxyJ&`=$J2s;Oi!7@T@38!Y1B#AD@ck-Xgb{U}_ zo26U6yrk*7no2&=1q>i*Dm~E!sI007)~30rPGx9|n@ec@)2hX6fZfjDBW#c+pd9a2 z`yA5Rac(&0+X9WAIerqIJ%&3yMzgONLc?>l2tMv?a}zW>o8|sz(g!y-KHK8No$w)2V#g zB~QWDX4NF_Uibo{bc>lfnRWwsUP$+Oup|nDJq8X3o-g~PDDN08*xcXUDl$8HWn2R+ z^d1;K^jB^bW_=)8+0RZ9QM-Hd9<~WcXA_f;*SqdOJwfAN@n_@_1u`(+Mf0%2#(4*{}R z;6bZZ>(UL#Jm!FhLcBb4i!@>x@g0i3Zte^4>6ho{pth(URAvnzY-=uq&(a-?Va!OJ zd(ohU3#AMbUUXHVt124I@R`#8Q4Whm-2Us3~N={=ZVQjGo z4#He0CIwSw?E15*ipVi2b()&wCovENNKu( zrG!X#cS?s~3nECDbceKbOSj~CUcbM+_Bm(mv-V#5kF)=C=?F9PzVGuq_jO;_=Vny0 z3y5u22fs39aIRL23gQ9bp)yIasJ0YI&kmURNjGqrW4cc`dLY?7i2t&@8UL1n6^ym{ zGWYTjulW#kh;GZp6tsT(b7cbji|QUvBngli5d-tG6@8%X@wmJc>z2z5&MDWrld#^K zvqeH0VOzmpfhMhHt#?}+6=yIsTY&Y^PUl&G^janaw24xU(q_66<5<(!adOIrYAQ&` z9UYbL!_IXV*sS863>2C_qTRm&%`bsV^&A(TL(%G_gG~VYaifFpv>wX6J*!Hxe{+eo zV=I%6N$7zfe9nw6^PKsFW!q_&?h+6R*aFXGX>nn?BC@wze@pd6-|Ijq9s+LC;`^kl z#mS35&UZ;9Hu<~Novzo(1$ClWH^cw3fP(4xK_|r6EZ$jB!ryW(DL1E%r&+5n@T2xS zpOhAz)OVH7UcHM#N1@=%-++oq&WyAm!}W{gt?pow!L`Vjr@Qmqb~m?p)?2u<1yl7$ zcxWOwMjU4&avUV7HZl{>gLIjUT9@3+Os}ZsX>tl0U*vKm$a*+E#QuhTE%2TuSZFGxFk7z;zgD}aNE={Q4 z&CJUV%yZuBzxytdjHXtr)-;n;C-wUmo}bLIfpHpSyppeQMe;o(NMN)=uA$Yh$;j>u5GJ zNZ@HwX|l^dOtrn;-QV^iIj0y_$%h+Mgg5hNv4A1`UHd!@zuRCk);x{8(WOb3$k>=q z)bZ)%zIF(LWG>HLoNboX-!-6~6*Hi8Htveqp0pC(iE?0h?Hrbwb$ZE?*z`^3NVbA= z`*}o&&Jife0`xdYN!Sz<$t-WO>DoxL5NgNM6?*-ST=Q_^fcf;y?fe)0hApZGg^06{BtCNK zWTh-6mk)aaZnHzagZWn})w5O`&Boi0gvL5c@z;%x+o^Mfqg+J`uW`SyMHiJfJwTXr)u(AS z|L`gk8Bcd!y_cl?Qv#s^`rZLq_jpI%?n_gvQg{?_-}2}8tQ(2|9(yiyCFG0iHRFwW zPXV)!e%Z*Eu{|U&ZnkkJzDYc!@GsR3G)E$Gbl=FM>r5)R4>MVr)@X(KUuH zYdia*y>=T-R6=|NDQL6o7$?=|y?^@V?>2Uxf3l_}NaQ>aoy1?Q4r79SB%~A zoxu5LxYa`gzfh`OLDQg{A5blzun4^Q79Qs80V`oI8sW;sVkz@aMi}({Z23_G?3OcZ z0r7VGI@nluRKv@?B&TGb2PPLvPD@}R-)jVEVzjS(=T1$f6r?JQ_#-pfDj<2$hYvy? z<2dHnBa4DnQ6ejg4$DU23#52ldhSNNxK6rl$fRfSl(EJ6;CNt^s~3DjuEf>m?F0*l zViQ_SgRy@@e7~W5E2b+&bBSbiFs?|vtG*ltNQs|~lhzh+(zh}IN0)b3@Zvq65c3$H zNQN92CrWX1U3XT&HM>Js&as|)?#6{3Ll1^^tp<5LBd3=Ja8po9f~Ne;Gx1q%gnvSh;>OcXi$$UzGSEMembxEIpeZ>?L^ikk~TsmC<#4 zV$|F)ZT!}hUg0U?rkWq}8%9<9a&D&^eKz^SBkv>dU({HW8SFI|r`oZTk_GXRO0)?! zlPFg_`22|S#=;FPpL|2Gc3WEnP$%v*huf)KAAq8x8mj*LLU-9*nkTnM>UGQJ=$HT& z=IO)8Nu zjhs;NIhESl!7~EN>?WQ4qstDT!y7T=XCaGm>B^>G5Zt$n{~S<0Q4^wvL!44?Eq7Dv?d5~bi$n5NGrSom9sk1Xd2e&>y#A`rl)=Xp&eGdz9t}g< z8&|zqAWwI<)x3}_?{Tin0rjcZPF@BX}96q&?LsHP7E-QBEMrk-7WY3oC72Z@F*`8Q^O*QEr42kZy8-EjEq}IZS1GA{=E#k_OBoC-Bu8Qtp$eKlR-`N2h`6AI+EmdHJ zpkpkWfn>qM4Nuj7p6mqD{AjFBCmO@$$b>s(Ceve1Q6r+yIK0@H(Gjt33yu8xn$mxk z?(|_NP5LIgh>7v_!DEO{FmR%&aQ7FQTmt-E#5RVwcI-5-H2)+eCFuXdSIK9MYb`uB zQu=o_=Klek{0|9~|Bb)==;E0_`!D4uKmUK4oif-=4Kf)LpeEjI*@^B1M)n1uXNaBv zq=qu!rpSkN{sAZ0X;6`D1ES_lhqn*^mfQen^c^b4Ara@<^mpe$(HC~_?4POD$O@Z2 z>6`y+U;@v&4GEIOQtbx%&yU8UW5rrIfXs4rd1C6m7%f^2?z+iKpa2Z&>qJMv1)8@& z$-WY|>{9hN#Di_sjZOR1Oo{K#H<(YuKfW%SE}(U+Xv$nZKfeUlCl@H^bIFTxEnY#y zK+AOh`Apb-;W} zXbm8j{QR5jqC}PzfH)UKp!@~mL(hOD5nWL(2{}O3nk>R%fICA&pp{}99Ku~e$m9i7 zY?nU}1nNr`UKJ>@haqxBbiNgY9gR#F)Q`{p-&rMHckz&1f3+oj1M?eyVVe5)g^8ik z^ff4me-R4xz#Q!Ed|}32xB?*+pwyHVJVp>R?ZZF0_K6oy0b5wXN1oVVsz>8I-$rz| z0f)s6uxv_xx+O>%03G9=wS?21yQ^gP?S8(yUw&VYS&R-?knA?NQ(*Fi!Dc^!i^^`$ zEtB}?1_83H@G&9=xKhRtF_*_v{k?+S+=HVj?cj*M;x=JT1?hN3K@lWJS7I;_d2=j( z;0dm=%*v0y4x!5KexJ*;Dj@$!0M>_<(%sgC``~=-z_zV6`XlwppU!7J)aYIB#y=0R zICm|@NF5uzMpXjZL^Z&Q*7bR|s60iyuDS)H80j@2TwEZPsc6SRnu`eE5t{|-$QodA z=5>B*Isk#0?+^e45{oKi#$3VSUu(2&_u`@-ad=p4BdU4F6iir_o15gBcaCCu@Hhyt!QA}kvm^|liR0h~= zUr(caAivrh_qhHwn&-5F@tzs#A9%6$(-Q7kv7c807loCh?%OY^dp@SmZ@!E%X)J6G#mM>%8Z)390A zt)3cMG*X^(zIDXx{bERky$Wok5~Y(&>vsmy*EFBo-eqlvCkq3up!J8(N~YM-ya(y> z;2lSkEV|1_-?Vj`(Pn^H$5Z3)da~)GqxY0*!;<<)J&o;( zlDWxNr@~?RQjmoSPfHcUmbMvf*$L$OY7{9Ae*jg~{I-4?%oC`X;~wTRG3#>UjJwho zy9$-yPJ6w;8i_ahJm6(GS49^$awq zV~;bwFzmysdM;!j{ipX__EWqAiOLzV!VXw@%A)SH%S%I^swmVF>#|~p-ejP(p>^_o z_0jyu0sFPkU9lu4=S)a?h#DsWN>|u1J zKPr6*NB@4Jub3<32>Jx9wpF#OPo`cTZ>D$4j91k$q+eT*3~hHB<$hsxv+(OTn>p5{@3q#%xWu>j`#vPA$RD;pMw<9d;P?!k^KSci%@FJ0)^b?3roj`&11}V?gz8F?e90z7j1NWLMvr^QT z1_i^LT}Zxy_(l4w&})r^b(Pt?;=wT>y?-oFuFYIMy&ycob|Fj8dX6~uo%6@pSYtTU zkENH|q}j*b|KUIdT$vCmxT?0vVG7MKim+G;AacJt9IdCyC%tper8qAdu@BKbbRD`3 z)}A%@4Yq8Kz1g=_dG5BK*Ize-<;wv4te>aBE=lQ-)i_>i=?YxWIpBwDYCnT`H=EOO z?le!Y!F~Uv>_GH+)Y0!TKIqxe8r581?b1GCz3=hy4^D6X;yddcZTA{bTN&dgbzonX~ZD-4pcmQ3)GD;`M9dxBE=$E7N*)t zM5HZ-PKd`wQVDT9yl=Sx={axv)|%;Np-xK`@chiY{B2kmtRBf{dNl%;Uy*ABH zgsngurc_-fP8@x*eL)QDYz@}%g_rR?U6jU8&69cc6oT|DqMS97e1q@GJO}}Ycn&%y zB9Enbs#_laoLA&ceFONeIOTk`%jErnbaQpBJdF5*7Wb(q!imHBWeS&W z6Z!<3v4ju@;du5sb4UQC<9S$44$P;d+lD@Hb}X^b6kjK1hBLK%Z1ZiB&l?06=Ro8$ z%g%ETMh5_iPJimVjY&*(nS^C+V1ju}-zFV14HVudt5Ej4ppMPo!S8FM$h|hi(11Wi z8;yP1y=D{omC+xV+4<&rA6w+MSZ^JgW$M^WY6luo;IxQEg;4~asbIkqmtaqDe?r}n zeBz>JakZ*SlvG$m5aVIkU5akMdD$ zjahKa+ZDR4#Pn?~nyCS#vd7mzSce!nKrwJzx^?D3lRGXy11r<5pvHy7ple=rq6heF z;a}yk$rslp+RnhSRm?C+6|@e?yL335f%DqSA^!!>ymdv+c(<17D-HrCm#o8Zn613v^DW(oJdAs^f*#wlK~{K2C6p|jku}m>J=&H7 zMM|i09hL{u;j3sj)fVq^tx z_6PiPfmU>nTt};^zmsUMNqf)+-ejWoO+v-nF%G9ts2{uPJLSTQ4dw7CmoKa$(o6%Q zSwK?Y4uU(q?Pb3TLp}40cELC5sIKO22Rm4=g?NjTJT(S6A4496DGjWM?9Ft#UoYyj zSfQ>nF@d5e7kV?IJu%$w13N=Sr0+_(IV+?}ttdxbKp3jlm+fte6hiI zaJn+u$iaa-=*RWu5;dXOP|ta&XmTbMxOcH`iFgfd*yJ2_=*lE2TI|1qEK4;cNg02v z?VS_+&;+TeGda0T9U^>@p<%90!^aoDuK+eD-cXA-`SiMN8cMt zF;34l1v=X3hNB5qpn(;Nae%cgrJch&<GO?|PC{iw3b*+U z1q^wJyt&R0rJFyXF052>Rw7#Vno#fnox@yFYaWf!%elmfY@sPfm-GHklG>y_?|m5| zbK2ECU?(qix6)oQULQi1nb%5S1!lR2?zu>BV^+u7H1j=OB`Si;Js4KvNhpKs>*kaJLvG5!Pk%wP>Nqi zK5DZJviwrOd>S6bo=cH4XTr6-mgREStG8&wrmJp1!HQ-)^}~J2li2Xz<<#ux%CXYF zflF*%9+7|QUC{5O3uTTdM72$}C);E~cF4tN*tZ_w z4cUYsiqK$=YS3ToxdhwRplE(V5))3meTV2$g7W^yic^pmdk7sBCul^T=#`6j0XvQR z-*^%*UI6M7cvnExe)13?WdMe@ z%6_)K4w5(?@}@>sJZ=XS`EQVNaU1(=Dg*L85@T=gv5SH>tMY8cQ=0QftmvYRJE&U%P%q$^?gUhguheM3l46?G4`6$+ zE!Kq|vBjuoz$4-Up?fMQZ2rv+^B4FE4h=L8y)lrrzYcg|{z5jOl+_fF7N()jGd^75 z9B2uZVd|^~pjcFY3z#u0gDHo?OTOJjr8|mh)*!P0IdKGAGMp=cIPuzK0?4MnKqr0s zO{PniZGQ@m=D6NHjb%WnfLB7#9w2vjT|FZNvLU%U5DAP23ajqjB~Fq5*jbs<2YSSo zF|2o!R;YHYFJ}?&(qBBXuF+mDOHY+y&*^4Gw07I#v-V}RsNQ+O@@(olm zM=7We)f?{~n@t0<&Ne9V!YdwQT4NQa*t~YQJ@)SYd)xP}i|w)Q-~&9~=uvkq5&-WW zXb_K_1Ho(xs6Q?x3Pl1tZ~8m}LKV*>F0Itd^4HM70Z_g$IM_)#l|lPZ;$?4^yo+|2 zi=9e;YzYsra5Ea^+}52WI^?!lno(ztK&zQ3An#LElGGh!}OL&E*1UU1@T`1x#4)`D=?loK1hw2$Emj#nw0=USs;z6uzYZW^<}m5cmMY*$G!taKevQpm4AFXDY)?;g$u3OU z4nq?$1|8Z)K%B$=+yj_IMBRbaqzdYaLtK`Wlo*D7Q_Qh)0C|Jv#q>iqrZaC4A1uWc zzh+oCUxjvw&hKJ_BTt9v^VjQrQHxDWDl)`?kke;t@7z)Q3n*pVpt}3)+R&L)3vQuL zAS3h)Kz!c`DJ`6Q8*s7aqo+U^nmZArXN-C35G*C2Gi(*OGgj`6wJhn{Q3)|wpb*=!#HGsHVbGPy zs4nbb2n-*e#_6j8r|j=gV3Y@VxGS^-#MeHHfF9WQlOzQ>*96C-^$e%YdxGlNX$iuR z_@^<(Q-8W}Tv?nXfO$3H3DlO4L;z9t{+oaOu4N;`0mz_cdDNNQvJAeAoM(^r1x-Bi zoo}<)pj-c?w51dnK|DH;q2GV%8-KJlE399|X+DQ$j7*8Gda4gI6m^l|?odtWZeq5r z0LQNVW$R@`?2+!0nwUPd<9LLghtsQ==vQ)AlKUOZ7MqmrmPX+Bb(6?k z%t7(h?srb$=B*trOtK-`uUKESU?rOHPYXo4C4$(&I^2%Q{J*)T>y_rdGw{v+fdt7`p>WjgSs>l77~D*}0l$vYP^JBIY7@5_ zvJ>~`F9ZvlKbu5yR~8Cnrn$6f7dn*xq{1I;4|o8nsMmJRcE{xD># zY)l%y#S2WUA}SB9U+^6|))DVV6h&H5y!B`AkoywklRx{tGAjNoia4rYs9$oJ(D*86 zk&%kS*%RVmLi4dSW&gSL4v~T(;?dv(R65x6?(;-{+S_V<+c=RcLyeP}dSGq<%syr0 z=h#Cr)Y}3v#KhG7A}7y4ki-r0j@@`r_2AJg)Hb}$dwbHBnRfV)$b04dO&a(7wcV}$ zs8lK+T2?mzM^6`L=C<&6z5xEHbj;?1N8J3nvj;5)h?xhU@Nhb3A0Yg{$mAl+u$s>m zbDX8bu*GhQ^-H?WzpBz*j%0Y>D6%Uf>0VAcg_GVY+&$w&a6=DPAv|&23FvbsdnD{{*6xWeXHu78y705M@FX2yi z2MQ2knnpI52^6-kXuSjCLo61JYF(7q3cj4uDk}K0(g6{wjZKG&g8Wk6j<}h&C19@# zQUyViPG?Q(c)SImah%;u@sDC{B`?xi%;)F})ZsPeSiLO8Oy`RF@SI$uZNL&iZZJ3gYSh%%Tc{_DUl#)&GKYt!A zz2w=lE0;asc-W~Wb7|F&)dm}D^4{;aos{M}N>@mY-&>FbU8tB|lBH8P>(_qinsxf) zEFix;y=GZEhXngJ5*_bP@%2B@R%*qVGsjMRk-1mADj0tV#q1_L!=U6&)scX&7IrVNWA>O%V*<#8kte4`~U}{BduoWZFC;q1a zYTPX0U2b)Us3r4VWjIZC8ts~Vk!iO<%y}@UY5_=iqSVDKII}ofra8~GzheC)f(M3N zaY`wVbT|#GbpEwKlOtuHM9tpXn+aLLCJ_QO6a5)L)KmAPQXMQtx9$m~lYa+8hUB8) zOeL>ST`fBtS^SfFM6jQ-PUH_2#k`!XbUa>BDM{n|>lXO7l;B*(nXWNu{B$!=^hfyI!gL{0 zgCY5#$2=2u#4-#^k#l+oM~cy)vLkh#Mmc>B+jJome}Fs#9H^V*yPLPz;F9Qtb&ok4d;scdKG~I-7ZD zww!nERnhm!naZ+S*tf)vr{-htZ8%>gd^X1H-zu>_0qxjz;n@D^iBJDo4^g>kvCOgl9sk_qKc;bh4!jJoPsV%8EW*wjw{RL?<4MKSAK8#-R^WZ#pRwlI0MJ9+#OpGNW@r1C!LTpy*C!+SFDs;E}r=K5>tzZ zEdm{#(l_iqH5LUn?NJsgI&369MtR;0UWktVFlXV-vy?mcnXOdBRVydoT;2Nsgm^a3Jyd(u6YBWi{&(+HhecoSpsX7pv*8_H#4?`k%d zPDYLVA9oHY z{8lA2(7!bomA6Ma5fHE-hdRA?uJ$+_hhGn?Fs{y7pCA`@x86KkC) zqu)6x_!04US*?kZ#)EY92`hy|oW)_`j~5)koz3&|K@nhqhKu?8R_GnG+0EYN4a(`{04nR2hQLw_N0e+%f%$b{U_{t&)%U zqsvKiZe+|QvhJj9+0j^#g#2JiIU)Zfp@_&6N%vw*eOkd&AU*Q=b6xyQVODbBsi+`VDD%bPWOJK9asw& zMWtI<{#?vK&py%3?rtm8JrhzhOhCQeFG>(T{#K#)WN1DYJH<$4L+{po37&+ewEe^m zzfH0>^e*bA5VA$-FVjr#p9Y;XF&f0uW8UIH#NskW2)?&1!)XfEeVi_t@^R@zwZFLJ zv+o6$RK7Ekryrkfeo2>P&}^FuJIq}&%t(;8$}~@K$w$zQ<00PsHNS;nsI;)GK!m}9 z;Ce0Uf#;0mrW%hICpN9MIclAQIb0c^+U6?j#_N%aX)IkomiRYfF)>t>lrx|^yk)?AU*`STk1S;?(i5?5v9_kPVykfL z&PDH7LaSQyQ$ei~ffA8F`Z-{+eY^bKvi)nDftg6&?w#Qn>NaG>4a?kty0(F$@{rQL zC-?Vk&_auo(2OZ5ynIxV|Hqg1?xmp#6A|~@Fbqa(HHsUUqYXR$cY0L4s`GidaXNLM zCw)SG_uL&1Nidhc8IWO1rbH7#X&&ifCPI;-idsiOuJ9dvD~h zs1*{Of2UTlWOSjlQVt)7t7en8q48N;s=NA_)?;3fgdmloW>Z}Ud1DkME@=T_`E~73|zN!+SX#LJq7E(?BD+^)PQcJ3*L1 zqwO@0=#aeK%C`&!f5Gh=jxg7~Jtei-{|fUg`Iu~e<&POL>hB3>k;eHYWCy9S>7d^@ z6YzmEPaCrtyKc%4?3nO1@y`g%1+q>1S|J5@04$}%wLhY>iDig8^7mVjKW@hO4;QDp zzt@7A_G2vdtQey@E?CvV8)kSpma7)-IJul=3#?8x!RO$Ti<|8t^J#OkE{H1|FkZ;b zXIo0s?UXlCY??f#v-I*{xzgV;mfh~!g5sr5Zqm6Co}sR~K5KNH?y_2GY1j2)P}y^5 z51E9kVqF&@O^z{CvIIiXw(z?EhPL(v%1_8VGTaa#yLcqWae2=e=Kc8RTJOvc`Ah1J z{9wZMlqId^5F4GbNf+NXHesZ=SC0EUN+b#Q9Ci~mUW`-;V|6&lP2*=I4KaCOlE!}N z_!hrP`+C=cJ;+@5I_&9u{TCX1O{{oLrbdp(Ry2Io1uIjx>>5iN)6Dj3G_6<3^^O8)PnDbtjOn9#t{RN56^KI(H7`q4F zrEJu}jN{;Wg2l*GaONc~glY8p3jJFB1HG$Xvr)gbHxU5tD`iGPglwmqwrihyCV z@Udz#UuzrJiR8x?9nLE1(BGtqw#f`ZiTnDj0XQ5efiS{-df3na2c8a96zv&KUWb*E z&TH7OrQqaRLT)=xZ5^q#bbCpzUt{n%?uR`?Kd+<+zK1&mq$dJjxQ{}yx9kxQB{iTw9j zX#e%8W3~fa|C)z}t3&udt{;D00dyHR$P)|6XTN|YY6Y?rt-ap=JJ}3a;pXUp!Ue@A z!#@0VvC9q^)PA?{dpJhL(&SF0v;FHip+O;zdWSiKEYp@@1;qR+SfOc>;*(w=8B z(TOZN0S^=3Hbe<*iEj#O{5!7*lriL6NSfCmWcdq1WNuH`mmSv|qPpkL`W+3S>sR;2C_B@I{* zWzLks_TS=#EOL8v=qFVm~BxH9MiOhI2U-`Q9n8g2ly6Z@@Bi4&gZ}?HrdNw zAOO&E%Cli_Fcv*P7WD;$MXOoKu#7ur|9YPX=WO5obH3144|s zZAgKPGgoJew1hnCw@qzkJXc=;Ti1JUz>|At`x%e45p*~D*vd(R4I%Rslmmrw{j9ja z16R7`4o>aW;3LlZoc!hA14~nRLakWRhR${}Hd_Im_u-&Ev7*teLQdSbT#AUb4)9LR z$4Y^YJoVz#1(+?ar^~34Qi2DhCuP9zhYYqncznhjvrX%F6=>4etnt&=Pj71tx!2dO z0NM2gu#@IF9JB+ezi7)bcM~gJjX$F5rXDk7$!BBs7AJP8^S!>R$eIPPc)43IKvC^L zN6kt`nN(E5;#h}cRuXPS*rbWtj(s_IT9t*w>J97%fWp> z4rgNe#_rh7G1eq9a$C!Wa_^aiA}YCYkEcH3`&qzcK%j3U|*{Q)8P&Hga0ITcv-=<>(79GXy_%7u~V}n zEwl@1W{L3~Q_yG-3_sZU~?6a+PX$2ok@Ec#5)0{ zwdDzTtWIt@Frc6O1~@@?Fv*}e%N1bwO5H3>*nfQvIeg8&^$kN#;SjdUYA_1Afy0(2 zzOQQ0VhF|z?&iFF*jWdSV*DjU>6Etxyp&(;SFY<~Y|bGP8@9~Z>n_Sq@jeO-2}hr` zw1yv;Oo7C`eGGDr;?3WyZ;SSa*5n%@LX1DvSJveZ4qNKU9f+v-fS0e)1#*~egV%RQ zQwy<8-V0dh{NZNN+cVjgVbh;#wllg3Dr~#4;G&)~ zUS*fV2@gtc6Spj`(BarC%;3Eqf7}ly%qDkB=u|;|(LQ%T_nY^S$3+Jlwhyl(#mc^t z!!~G0bwe$RrKg!LRu-UzMbK4OxC2>$R!QU-nERiBEy7l<4|oEX6GiJ?K_uDoP=gm* zIHyJdiOghXAf{qvGh<)L3X17h0g|(#F~Q>UGm}Ra>`T$giN)qJdtNhZl|GxZ4Zh{y zJQ|jX=1fv~AG&~9#GhS>R0L-eD`HjaOq16tT|WK%tt@T#^n=CO$O&zQamnmppy#3t z)DJZ_^&BYhEao}^M}V=a)bgEwfzN)O6~R?rej5=O(x#PTx%bmmER8Y5rpp9asy!O> zX;5TgjIf97Md=Li!I}J0#-qDjuh$3%MN@j1T>yOW7RoD$_(Z&Znt1|^VT*l3`DL=6 zOYQT>H7d*ew~WngCX{FXo9dDZat&ZUHYH^dG9MTlf*BXo?Fg3HP@Um-zapNRxCw`- zv)rlyRzj4oh9B7^LxCIpv<}viVPet~i6bh_g->e|e*{Lk_!5vBH<6^%^%YwjieGkiUl% z7o$n4iHnMHQ>02B;9d}#rgYY#b$MVD!snoooGxv{27;u@I0`WKu=`*6AEggB*4B8$ zg$aK7ZXP+`Q$MnQeiD94@?JwwxuE_h5rF`30N(1f{)E;2sok75gqM8J_uQd*|4r)| z5eHwhIY%p=>ag-5rgx$qefIMPu0cmb6MJ#ka{?moU4QYe^v2&hst33Ot)J69`KBFx z8HRQH;G`4UAX&*@#ev`;oQ62qGY=Xule^cKZNCwo#Q#hyIk0L*93^n$&`MvRB04;F z-`)=E8IXP=Lm>VL_eDOtx*mv33V#viOpHxOBdE20&4{q#A&2no(`3s8WM zsGDeF6o^0i9XrjOp_v<}?lDw6?nNIlpDGNIm(U5*JzE1k z@Ulgh3t_$dSuW3yM9AzTt>)i4nbC#z%Pj~MjDaHUzi<5~acItNqOd{whhXQ>-6DkY z$Zg5pT7Sg6#$ibKsFh^e$nw1OgMy|Q%pN$ah>0z?pr#JJAvF#dPEBxY{KeWpQ((ndP@6b8&pF3*H$t);ggGmq; z8k!QC+Tom$Ivh6Xmn>kw6esHNm5kEPQua%N^zr%_O!bQgfrAmp4F$CO_+^e(b|rio zs-0w2=HIy6xJcDV0st{&2qtRQ9Ul(Y>nP!m!$i4r&f?`2hT?j>VlA}5eo6-KS+jjd z%0(oH*u;v-63$6Bil}D*V%B|Z}CoOz$f4@aF zB)fhr(&hBtIO4FrpUmyRWfP@0sRSd3Qj&+<yQs;V9WD#8b5;ZvEECF|w~Mq<3}@ARI>sne=$B5Um!h?Q{FW(8+$!Q|w( ziKDIP{<=w(u>3#!pgCepxd`khkrnD_h9XuSFd=zw6%}zoQcQ}1RO@Pm^zK=e1EfIE zW#J>)iqf99Bv?iMct6XNPh@{&F@B1)=Y2qI$*3EkFy*;(*F)o?PlDmg&GGhB>qW#s zHb9Cvl$D64+phG&%x(7Taf$=DWfMMVPC*~ryHN`F-#>K(J*&`7Z1QzwcZ67tI`+Z5Z)L{XdLcWS`9YtORECv}i^f_*z=(ab2)v_S_>2Kdo@?e5h%MQ~;4D(hwW~6j%tAwKif+}J z8-%6cxrE($F|*akqHl#Mm~Ydc{g{7mL14yOR{ISiJ#0^rZIreSuBU$2rdepvn(#@3 zj0>(Mp=Z=I6K24?>JLO#Bzm9KqX79UDa4w6R2wX&rT$g_3uofK?jwG867gOxxg+aW zb<;$%pV7q3;ln1PVw}y%tBZj_d_GrZ1)FX!AL%TdLY?YTu-rrN9 zecVN)Ps4P`h8t17{^qr&Tc()G&OFD9C|QN4Sn=urp4=G3#?&%HyE?zvRP;Cjy{P=b zR*Mwsdt9eH2NT?*iIneB&I|)TWepJz$CBaWZk8?nlsNgAi2?Tu0KJDu;bY3FAN${h z;ol)r2_TbOj`bI`_>j*6o2f-6r`~R*!)p@=i0fb-Q>YPVYX)wn{oL|k59rc-sEVh0|SD4{F|%tg;S}UbjbpfawUsC_FeJP_2Tn`j2mivzcfi;f!TE0E_TB|JRDD$$ z03&P?HJ(1c!G<6fr_C1!lkNX)$lQMiJP*ySU+C@m$2}OP@`a)-E$F|a9{tyKrvLnv z`4hXKOsD~wnqFvJ`8F6M zZGo!>@JSV}(4q8DL$J!E4+=v<$KPk5NPP};h}WH}R%~Sl-~}rEYjD;J1Ne;0i)@tXU1F!$5LY=EkA-*{V`VHpRrs0a#)cj89*^^I~J^4H#LsHf03{)oc7kY6Vjo{RNsl1EqO%y`2w#A8*wX8H5P? z{eGo6O~7&*)P$SBCOiD$lbWy$;AR?tx%LoVIQ0~w0ZoHRVCx_z8EosQV-Jlgeg?9i zZuc}q?gMG){f9CTS{6%(4&Z=#3}{8AiwM^qfoFjA{~W}n?r$vW(?UaMC4jf;7nm@$ zEDb~o5J>&j0#+=Ci?*D5@pOkrppssLM6gOgmZ}15qGq1bA7q1-iNLpc{T)i8{!Lky z6vViI`n%k>6Mni=usaP^Ddw)R^>zzjEWxiSNR=0ThgFl|u_M!CSHDlbKD_PztDbA`OUm1s{7uZ%`UEmPG)AjOm*q19{<~jLa6fhg{Yo zsM6Opxlf;!+YPrt#%_JlSHLd#-5(RD8syI=dLiFuQL?@us{tVeXVG(LSY3yvD|T@p zE(Nwf>>JjE-3n~Z35)>;L!wZ_yP!V#D`tKCz7R2(vU204^T%(aEyJ z6e|?Z2W|=OZIkl*Blt<$^G=)KL7+^|d+Y&@7|!6&HPoC%Z>p&YK({0bOjso0322>t z%7-1(3qJR=#1;Oi(;Vg)v1Z6cN68tbu(Aw>#yS70e&Gt~L0eiCTfjb+`IJ~y%r0gY ztVmBHr3GwmjOSc0UW*e`*UZ#;8K)?Pt)MM`iuwb@&Jor3LrM=lALDDJX`J)9y|eb_T(~#;|mZ!9~5J`=fKOFFNLp=687{{>do@i00LeofRa}%Z)fpz zUCRqKlHjX5)Sar-mcj6@0y?2VV<<_(`EAO;sJp;%sG$#r#=QcMLp6wu@CisfjL7`> zIj2MSaC2gKiS>Mt9d*b_bPL<%CUa&)czF};?9P=*D8ePI_wB)|Mc*7yq#Rr%*Q=>h zAvoSTp_X?$w-Qa3T=+hCSI?Si&tk&qZsufeSMHh9QX>zAS1onWV~jswAn{@rKd0LS zIXBj6F!dVX$jnf;IOBV#x^3=m?$>(J^}lEUExsdcdBr>b%)hW2lH^E!e7ZaT$#J%x zEi7$~?For$-lw`_qsqAef(%(G`@41G!p5zu^bPz^<6f~GD0tuiTQE$aqBLl@#ph(&HI{P=Xuu8&2$-roWNW{5qrfUs9A!1;6azCt zIgJ@uMu$^VVTr1~0+wLW$GQKNAn>`mp-R1cP%VwIX>c(!7AS z`_wmEG}|>Bh|V(;+1`XJV0hnXSN$um3ujv}dcpgH1{NQ`wjKM?H6qXt&&-2Vw(hQjczt95=J;zc?^yg*<$YB8KN_g(*b2^U`TIFXM zT8kof*%G70dd2Ut?loIn)HPvo8H9vpd`xKt+!Nz7p>kj<+nGwkvWDh2e?C$xvBZy- zQ#Ei##CINwd-sc!22h=3`Mh~3M)xZ2_q>5Mw=TW9FQk~edE3QwdZWgEych*@J#^Oz zuX5}yOkAYa+T>ZX+8tX+FQ7I8;CorF=0DAHzJvzv*1i4A(tC2tJE%0~-VX$M8*e&W zcJHoXK)EHIJh-Ri6Y3$h{JT;GzkHCQbR%p#2Ez9?*6?q$|H*l&;6a`)AD=%E zp3PJnE3qvG&8RUz;V+_@NBU9bi~E;0e{Y{Vpbk|H%!@E@+;}e8j>-;?ag`RNg@y|_ zET&rvU>`SqX-31F7wbUgzmxoZHNi6AN2;PXBeMu^fw#g1)$5nXvF;eG<0;_(AxpJU zA9%yZA=DDaNy%T}kd(2oYXX-3QTins!9ZLP9_RfXwr~YXuE!&}BoiU?9nKS}4#9-< z2!d^*_SKf13oRs0n7v%gV858*hkWI0r```2DB-l@kdyCv;=ffk*vnYp0n-oq)|dHW zbOmfM*O;UBgk43yYxadJD9Ko6y70376e=dRxw)9;(>5q8`oD;K>!_;Qw_Q|eq|-%r zN`rKF3n&PJN_QjO4YKI&1_2Q%NkKrmB%~yyOF+8eJk#&@?X&kE=Z~|`9^;JRJA9F~ z=2~m6XFl`3ultJcyxOvWC6#8PjLW*mjiLE|gxWEDWI1CHIXq$9Vj!jIZQVHlp+6Ii zI<~HQeZpPz{4?KF`?|`XW1DKfv^1&u4YpMewp}B*jOHOX2w@6}(fSG0Iz&|bOKMVi zH6e1*8BEH1>ZrL8%Mq{%n?4GNcvxnEBxxdx$VCoZ3xpcLKw-{W$LM>|Qlv+oqGAU@ zx>O^rY2>GiK1H<7xDOPM0xgZutQ)$=$^7p*t{S){Z}PS1mdsKg#mJvq*h-Tb8oLTKQ+ij%$# zS&mtTCCJ<3_xHpDnQ3|fd+4$-Xxg<0!yIjK?0Q(}Oyt`UNksOC0Wa@$>14!pkM5c` z^LkphVj=HMCkvLIWr#)i9Zswmh;x`dy#eF0M4|Ce$x)ZsF7Hw9K0-(GC5ve8sa-OW zy1;KV6?LI*XiJIg1z$}EfEf}=cyLGLH<>(v>BzV2k$>|UufCUZf9o^UW_#;Q6mBOw zsevymhI=Ht$0eLVNQ{8~Fq%u6IW!I>218>cD&D!9=%wx?{eBVJ*!(xW(xku$fw2kY z;9$uxUL+GD5?){o_v|byT>dRu57zO(%3t{L4V{Q|y5x3P?lrDo#MG6q4A-}D6zvEP z7d555hdhl2?xZsH_|!N}_NK4!x6I~bzl!y|E_3FmFUw7sY>tnB1MzsuCBkEA_`z5-KkRQ2%p9+j7;awew!@lM^TQA{u z)es8e@O;+r-V%Y!GbT?+K&zw3kG7(d9IaqAX*N!%r#edH30COt_roGg=Iyql{CO0v zPA4{Iyq>ZL%AqWQo$AZbvQXmtGLpAom78u{dFkM$c z%)S_lo2DEYQ;RVVpP}?qE;6Mxx@k}x1F0|BUdI=xtMrwkib1O;NJKm}H}26y zKF84K@zFsn4Qak`UbFSZ-R`0Ou50@6!3MGsn$Gz4Z()|u?hDoCDxb9bm1TEw`nNiv zY!;MqY3Qt{X-Y*uNdz6{F-G*B@b&0cIsEy7qRil=p0JNY6+=TRKP*W85ovALIh6S^ zIpU6{Qhtw(aiE<~IDS5H%A|xz%+(lucUYXUv!EV!k~9l$6U|&Fz4Cay*V{nLk-QWk1(1-faL(&r2=y39;FLe}1IN9XG6G!ixSWk?m#vF1*X*ubH-L zm^lNB^tsULo_|xMTD^ij=C#*WoI+lMfYAiRLBK~|p z4@W#m;bV9jcsM6bqa1iBW1Vp+`7sP%{cP2p@f=Ugm^z^xhK>e(`Wj@MwR$O6`{oYharoC2gt; zu3_y#I8NlsN=KvA+TmVJD&XZBn$4-xP=d~aMeFbH%k!b?k49-!&U;jb$KezkmUy`N zYrKmnf1c@7fxvXe#jcJA#_aBJ;r63oTpHOl7}I2@7Y+P@^s?q7Tzd;z7U^{mNA>wi z9}|t1Lbb023_aL`zQ2Fb<`aZQf{^=;f78gnK!q7MWl*l4=Q4IrlJCn8;bk`D{_$o} z5!uU#n$N9_$70MvN`*e5A9UVF`%3l`nE8OhdPw(M9M)1`K)&)?CWEG@xQ99js&?Xi z)z6xD(`7N+E)lF<&ebW}Jr{o>VM`aK)gKOdopsM1gc`dx(mSKtrYo%M-kX+9(* z43?h&&KMi70>y8RuOqE)LvHF_$fMw;^H~cj{a7lgUg49;(E?N5>0H;1uRp4A3iv*b z1a*o5%bB4xsaY--F10Y(h*#kj0m3`Vl_nzvy-7A_&y*DlRrT|3VQr!OrVdNwk8@Ko9cjh z1|s2rsJTC1nP8rMwO|_EGe@RXp2d!0rqZ_vi4m>>&)vDg1pRz#9-H8=rWoR(SomJ} zF+G>s2;2SMU$Eq<;x#|BaUnBWC5#p_FP{9Dj&;m7-!#ngsURh6WAakqaoTi8hz+rT9th(usFZ#|#af2{?ULgS|=*$)%NnC(p9?t-@A>h2$w?#%H zi!aIx_3t2z>SbNAlV$mFip=x6)5?ZLXENK*fw#6w|E%u8_hscYy?}qQRTw)DC_}&b zXH5y*LBrV$&^fuKhz(g_@d*Gq$aOj!Fmvodn_7$0UK@SzogV7&A*F5$@Fe4()5^l5 zlTSOm1!Gyh-8OPwbNKF9VK|wn$7d2$kTw--1JH>RyVEhP{iqM*prDFv*(!*Fkgu12 zFTsza3s5NDb+tdaKOA&;Gq+%{5BZt(#enqfA&A~^cCBZTy{-d%q_1BC=xlM>1L&9j zF_55!4}$pS!k1=y+>P-eGEOE?DI0(YvjX;RJwS(IFaH515$6D^RM01j1$-{ZlxqP> zOgr<|G5ppJIp>3S{tl3BY9TN8d7!0y?ECB8Z$91}CqkKwtG0+alk&0>XW-7&DntZ7 zr=PilET}*Z@3&~ur>t|r=wA*OpdJO_c`24QZiJ-wKNZ>Q>zisI%GTZO^*_$Z9BoZe z^~o_rYdER^Q402e?)CIm^q*Fl9}AqzDsMo7SO63@J3UoR5`Yh009bB#OZp+?@CuFB z&xF9qTA+<$TY(%+0dr}~@*t%j0HgcBkl7$A?D!f|{$i8dx`CROUYmxW{(svduKg z;^E9YB3KBCehb*uaNH*T2U#oX0}=oTZ$O*r)&)(MqZYk2$|1T7iSa4PPDFf%V* z4a7rxRTq#8o1MHYdAOQ#pAJQUvKNs4@Wm_U0yYq@95;Y179RuU5n#B@oPp`h&z|R6 zMU;i4-Lb7i;KFBB0`nF~37Xu7o6RV_+0jpZ3&nxHbY=H5k)-+vSU3A|GT2Tk?Da{> zs~^G0e*YUH4qtHnq@o#wU5t>SGKMre?sQdwUkQ&r*Qx~iF7@nY$1e-uY)qkKQIgYY zCCciEsn*cDUI8E17C^uoumdE4FP!P5IAh;mzV-b{0k9_i^dTxHN>?-{O`gk-5Tp&6 z>qFSBjSv9u>?HhZsP>AZvj*SpLgYt)2ywbkYAWcJ^!+bJaA)nR!lhV;cZav%!Xq?* zjfQOy-Tg$HueV6sfxunrF{HFUYjAjctdi75v@XrUfZYpxw0LHDJC^{&7Aj@|=@HF% zI(g9jHuVgQBN^}qu}D%yQ9&wEp;%PX&EZFej;1(N(IVf?;CDF z=j{f}-Dazs+y-8*GK^ZSd(sFp?O`)Tn>>#5T=BU}Goag3l}Y%tBHWnck-|0k7$Emy z+a!14*J|6EtyCEC??xK^R1t0m(w1MXGQ^9v0DP!;VHEew#Q&tZH&$%!^@m%?Kn#L% z?EV~OQ~7TV#eH6q7E=j*bl=+~gtK|P8L|6(?wJH+Xg{XOG<*O^NxR=S(ZqZK5Ac<% zDq1gEu6In=J-t|IR_^Y4bC=uGjZWO*iCo<@{ zeNZ6qbPP0Uw8Hr693bhjuEVqJ8=xB&sD2FvA5c^ki;NZcc-Y6qibf$(i-Pr>g^YE! z=4a=4cA6PEEbB(|lqu zfBQhuonrdHxm=<8FqS5<+q27N<&p|SposOtI+5%;?~W$VKbp@@NqcyP8+75y^cend zIv9(B`DD2au$0!_TG0U)neaAIAibUkfSG+@GFa1HF}-)RAmn+vkA1*e=pTh70btXfmh!B}GN9~)!3v8VH1X1mzb9wBU@f50DMu>EDJ9=2# zdF>mCbHsA!=6ch5(+fGf_(N(i^&d3)-DlNA-!?TEP;KS~g{@w?IXUc-6&6q)3DlMM zKM6LtdpNj`EX`3x2#iy0S4H9neE~7K35*nIQw8Go4#4bVLtSVcL}LohE)~ZKh(cVg z(bN3}Z{zz7WNFAR848_SJCZ;7ek{3&*AFF9xPB1>8*I}}7wPTOz}CNg&@5$&A7^jy zNxQ)tz4abA34vX<q%d$Cd-x zIJ&>~50{R4>8r9_Jo8frMLzN8G^#&)!v%t7HlZiC}w+qI(R~|POo^SkZ#evt|*!Rr_ z@r;7X&^)XCz}gLmewzBe%+OQJmy1?Msb*C`4huAcREZ>0Y@ z6bSoi8=M0Qk{kgv7yp|>g_D<7N3FPr-oJaVfbRG8W*Rxur)Mjlan2uG^D-!*UMiI&wqmn%jdhix1yjLG0e7uOT2sS^M~7h#iT0D zuOu7XgB0w+JYp;b9g6AX7e5+NtTU5tCmOH)QETx`1Z2kTwcF-&)+k41kK*T3; z`&FNaK;rfKO_sb}lPVc(M#eTvS66 z_M9R}6S2^9Wkxz&MvqrxJ9xXkyU?~9u`rDy+>f>;xfC%B9@9?ry`X-^D)syXuNRH? zhCH}W;5>6TxOLgoj8oQOEZ^w*A{*0jG2#oF1L>>*+DM|nenESdTz@2^Ow*Ald(zSx zR^L_?x*iM9WH*#x%N~>?kikTDycOFzX4}p*3xj8BFga##;ntwEEk%vt-fnGL9kzPC z?o6X0&2{J7yT1*>^@*jl@Xs}(3wlPP3BE@4?Or}JBR^H{oQrl`TRa{%(@UY8aDK+^ z*{k2;V@n`*`Nwys)m{Q;OkXMq$}sc1udS#Vs@?!%9Y-g3tUrmh{v9aBFq4?OH# zLK7fl{>5x`^!G;se=%`FhWgIa%g1zo(VXvnfq8fN#dow#W4|)iY5S zB`NKkho&T>=?zArNcStF4;gY!o?T?Uw}psl!X}tct@&jTGnOLv1FCunk`W!K zp}grGRlH6#EKDL=AzAGiCip8FOxyy~2T-az!IbP%+z(c}RCp0EX=WyC@kH@S`|%uH zTFT;}=Xg^uy#*yY7p4PxXtY8;A8VT8+%n2O?>rv7pnvqxH8- zR}z<&M^7Sc7kry93}F-jPaU3CWRZfSIZ|ip`3AH1s^E9=4?ALAt9w6&A`P{~j*%k*yn71`Jl{|mNF4KjsJ4iqIYvvPRx@pBQ+zstGO9>( z8H4xUUNScn`^DU~L4@*_0)h=}0(N>Mp$F^1ybb5=B$wZ3T3UUuY~bx^*&5t6Pt=2~ zN6DyP+8xWXAxXcWA`TD!?0^Bzt7K{K6XF|>&JIpOLwZ=B7^T3ceX>C^uX`vDVHYj7 zHf~ITH1T1tctOoYzq4v7@!5*i5qtwD2v{rc4>(e4P78s5Z3 zz3#Y(6VTi30m`*H?@eveCJdxDq%*6gApQ`7O?2n6!!M_;-{;0-aJrM}a>YGluG!Ad_m?<{L*~ee9jN+F`o;nXgLxCJg|<&8a?( zIm&1H5me7+7>&+YLUwxtpR8%TFM+mz5QJdXvM>Kwl?63_3a-Q*t@&iNWbyekP}2@6KM&QKx9v@P^1?Y8CHi$d z^4;aSo+%~%y7u8umk4X#9+tok8XC*rywvNRhmMA5vPJn?tL>BEoUqqFMJkNCet)R+ zP7M3kMU3xF76#^91f@25P9($zjX0d%;BSN~=?TN%8s!xP!bE!;%{U&ph>~1qiBK+J z(+naRc;lPeFqaw=71C2^a};m&N?#->B0M6GJ-f7+zAvh}%(-nH8y0G0%z7AvPosow zMRWV7m(aO5t}BJXPgGMUg)gTs;5R&eJz_Lj3B#l*;rulqNK#-IFp8o9&o7VcI>tBb zg9t|y*AW9UNeJE2OV<&Pa6@TdU4flEQ!;8gTzXzfwyYY{&_M9A?&Vm5rnqfWCrB!ig5r&Vpn2M`acKCM3b1*+;jx>m1Ir<*dVN)zmSKL$f%t)S} z9oFy3o^toG{6x>jSi1nDT@4Fo!5Sf@PbP$`b%u>*45KW2ks?H}>8wot5ENf>a$E8w z;8?ELA}z=<$Z#ym^{{!o=x1!`-&-XiUN>BZVLuMUkq5Jb9l@x-L^0MR$+LR6c)y+2 zezeb$z9O0JNNAdQpt=|n%YqQEG-6%+`zqbz*^dLjl+Cggt!Cq4@KufBbk8B49=RWX z)=mCWlN5CJ8qbF?<`sYDfFkZpV-e`S_5qO7@HFo-##eToCP=CYSDE$Wo_quWyO|#r z!f>j&hb}TgpnOu4QqV_Ebzcr?eoAec1o=ADj&9-KFa>7GZ}Fx%G41E%s5D*xaGDi9 zBIi_zfRh953ge_8)n1n%o$KgDSDJ~M-%bF?*u;CE{p!u9?E3i$`KAzNlu;seBoww$ z%U1DuiC)nzn0K3L4GlH#hb1Q54wW$v9WHZ+=50p(JuDgOqW^oHVppKksHDSuK+lv; zzAnT6z*Cw1PM*w;a8Inm(&7yuZvKfS-|T9EadpZF#Vo7p;r1@4^*IoGk$@&qh`UXd z6~l9c9QloKZx-6f;Gu4R!bb`eD^XnHAaRo#zVr$xuUTcG5l2;W^R*6ayzkO^1DUvx z@KzTyONX3r@hhG=XA{TCQ!ld4vsE8wzs1Z>-Mmqle^PtAXVh~=2^WryJuZik)hwVX znL0PXh`Q#IV6ma2V2W~5k&HX99!sr@u66|7k?yyo?3#G=?4TP_|>2U{>8c-?G%!Sd)EaRbz?tZNO(|9w2)Lqo4R!s9=Ci}@if+Flu z1gWmhh9SB0EmmOLYMSh%hdvixw+9uvCie2Nz9o;~>f_)}i9xK;&GgjtOW`|6u$Qwe z6^x?ih~`Q0KV1pEgIaTHZYcu1$N9EsdKpCuo|i0PWMN#+=aOj20nP?QyjIA zClydd1-eM5fO<;qtqWVu{pa~~?;-qJK@UOJd5kPJKSu5MgcGADV&@k>WN_-?D7}Vn z9yz0+hKLX0e?kt&LnY{q@E(O3F0!2C_4Zo)89){rr9~3V73DOgmg}-i#yB?m2SWn^ zg%qJWgiHYp+%$|F8~PiBk(l@WH=O)`@E_|2)+7Bm)5i)G6x#oR?r1c5Kw38DfbhRV zJN-ZUW@!U83+0<2y6EZFSl2B8BLAgUi2V;kNPvwx7KpAg9bpNDw^rylH)VN)zzqXn zJhA``@U|hMC=eExnO}~4-T7IO`U|+1zXoQ13jl8;@_kNrQSAmEF0UVwCJB&hv`i>& z5^{QU0eOwtz9SO%K7jwXB<&^H5Kkm-t@jOz>FkFpT(fCK%@$5{Zj`G0`5IQuzJ zsm>k%@KvR*!EyvnAu{C)jLGaFa^Qq2uUcI_7aW6d668UwL75r?z;aJ+smKIuSFV7u z*aT@v$zJ~!sM`akwU9i)1rZhd9hBSw9Q0j*=U>q;fYK}|KdCfbf?9US-IFW(3t;TF z=v2OvyHBT(J+ztt+!jI2lEY>9HS(ho8I4llAa8!d0kSN|rb-@?twIt{kRVdO3rH`g zW(;$aNk?B{K&@8R0+^w%!?7vm0ZnZ^Mb{WzpbL{%c4-R5@8dA=TC)eyuu)&Ws6v|6 zErEyH*~`@9DtwkzU(cK`E<@Z(As@w>UORGA12mj4`?r;;K0yps1n%3$Pl+1esd zCh(BRQbkxd*e?jr?XW2auO0%1TFXCJfHi|`{u;PN&iF!E65u<8@Li{uuU(UcNM%dL z1D4g%->^UW`^vrrmpvW|aDfs%H*6v2;DS~s^ITuI3a7U~PCa~?cLJQTGep3B6n7R1 zMkE+4`LOz(y0RW!n^p|?jyi#@HU>;CZrPI6FCVhZK}Ly{H3O^+rB48B$F-u^4_K)K z_vt*JSlc;G1&VbrH!1zDltQVD4du&bPAa_Se>x}28rk!(_$`1$YilBL$rJeGWj~Q7Dft?13QD9TJ&C4DGs~dh$q3!8ehKC)v5HGnM)c zkw;qqO0U*h1ET|hxhEuRq({S46N9ZlhCOp`Y9+V`;PC?x=W3Fv;0as`TL2e$xD997 z{~1UkzRtbk88v0QIzKpw5nMqN5kKYupr|U~;~o4=ukAVA2P!t5oGvig$rV>GNLjxI zhNM=vf39h>VZfuI4eIHmyadp z!=c*?4;!4~D&8}ZJSsO!pjE;u&o?OoVxPM?q{nR9O=t8N=GQ$O2aAD(kq zX?f)ze1LBOqv86l^I>p01ZH(B4;G`sG(pZf3R5uG-Cu+<1xj*C>@gpyzj)khesmxE ztTk&i%6}tfr9eu3BnyKdzvpWx6i}ENaFZ^_unCbmBQE8V&hz1A!+=`Y1u?c+0yMS> z`eniJQ0kE?jK-O@}y#do+Nfp}E>E5sDfs2FzXD8VYux~Ld^ALx? z8+@Q)Zg242s~u>K_(7FPDEh2hkM%3&;5NXI8=8>-8NowF#&E|`k_H+m3DxL$M`#%$m2wjuA{HG z1x#o^u=r=bZKUMkroRmNEYA(%r$=>ijS{HV@zKV(nnMcYExGjwk=HK4E~V;e#9S95 zY(|qor&_Z?(o0?Pr$IbU0qk$JB;{Lm&fj2SAdHo*Cb~M-rz>ES30pz5`86haC?v?n zH2F3|TL`CQya@LxkY%IX-Z%%g;oWPz^8Pejt&xqZ265;{-JhTgrGY~3f=FhQKgJgw zklQLY!YsA;jk@<%Ej_T2nrJ_%J@EE(t`yX0`wHuYwZXdBGGx-Zr{M&B1`=6_8^~k! zSAmh62E71sv>TDJl<5H2zO_2lc_6+S52II8g(T{_9_kC_`;CNU+v1v-SWy3?fo?k% zW_Dfx%iZ3z<3nfp)90j z;BGR6uZpl?pCaRudO#lR=?m*zL|>i*f$Fw;kCh8<+;BEcvDti;>lM*%J7x|miVoXh zS3kbk=?j4CZSLTkU>9ZAmijJvZ6|Gdh$9hyOb4sUNwK@Z*7?6!sb~)p+VvCo;~G3c zyY-;j-GgvcrqT14bN^YX^R}(VTAwkA3+RfjJbo)Sbfd;u=HQ0@mB#2MeOz7~P#~k1 z7vM8TAqAK0NoOhHinOG8_o17C^s%3!#q%l2{s*}0^lCAANIX2UUvWEqBEl}&uzqR6 ze1N)%kn2JEbbw#cO>o31sBm6?24nlU7E^lWDD=VdK1#<=jZP$};lXUUn%DGcs?ShD zO?p)d#>eN^MMyq;j@^DnPQ^p3G~FZCRsFkpMUN`0>LQ^f>8I2@&6?oyc)u0(FQUJT?I{x&uj9cvr*9g(tRTDv0UBd^A#`N%) zV{2%6x`Dr%vkZOt)Rg{XX;lQ1=o(rF-Dy-kgm*9$?WW?SA(C$$)XWM=X~(=YDIeU3 zf3s0nFx$w59p+~Zr0NqPUPeBAkEtFc{_U@v%jFiMwwl0lFj3W(`3wj_^#^BpJF6UVgB7`cBtjU2y z8AMPVs3pyEL=jI`;GB$m1PZfj#3Ko+zL?7B%R#(F;pgS13D z4%8kiV#6Ce?w+QO2qy13Cp*7NrCq1ucMWm7S;(D)pM?hBv%HGHxoSFbLn=vCcF|w&eI*itM@=qw=msA_o5%dU` zptQl*J5~xFOhL6!+7Vf=$o)j2ysSs1EYUZ{KUvoH0Z_x`#K4NPF8(p*dlNc6e@F`b zl9OYfrBPCC4I$7L`$}FrHj*aL^xFi2&ohM9xQpTF3;)lNVH`T zK8Xw+MKyafk3-D*_spd1{7sU=Zmr(+N7YBge_4?=vmq5l0V*23POl*c>R?v&N0PDy zzNbOb-=)y2ZRt5rjmkum32cuczqMk{etUxuB zL<&vi$CENz$DuNl`4L}iqFVcPzUC2)>}ddIhhs-09aj%3iDX@-#Vx4o+`oFA)?6Zg z`~piA>4PzTrZr*4knXL~c!Z43KW)+*R-`WxkD0R#8N^7J_&0i zD5UC`v$+1Md19^S4`%!B>cTM}wIlLiBF5Oz@eF6h^D!7?5rku|V$qG01)X51Bp6H9 zgjhG$eR80?a4XH%SqGu3F52lI$Ptt9@eA0Pz4npOd6_##^vX^oi+>?)X$gI40_ODnrn0_%5x8 z8&K8Fcob9$(%;Ru&cr3FZ`1V%ug2P)U`+Slr+OVstXvxa_>h+zlTB1}D$87p9Pzzn z2gH>~T#=cF5W;+;|bU7Rhm_d>?0hF@?M|6zBglAaKI$Ze{=y%0f-tVL%H zY7)vX4OJskRW!|Ce^qN`S$Y;BF4QbGCM9hnOukhX$0RIuzPqq&a?a#kEk4}{dWE`? zsIlXrKaC(->%$CzltQ}M)Cf+VNKDzLI42=63AdFZUfc~pT&3%v+=w;|$&dAXtMJM( z!(+4qFib5`nx=QjgAEH(`>~1{`rSvW0mW+OwikDkg6VE}uQf5Wq02<|CGUI%$f)eh zde9@rNoE>IorCxZl}S7Vj>@@RSoi*ZHJe`0RZ!>51PHw*)@G@-#`xTyIod4F~R#lOLw{?N`JtD}EQu6Z0xii$VEqT06i@tTe*@C32MgF17=Vvf2b1gHe`J zisy?RL3X0G9!Ryq)4h6q0#RXzYiO+CNv!uX;l7ttcMZh->(2X7=mQ`IG~9-G`! zlKgWp@e;0Tnjr5nP|5G7hymijZdc%u7DF9-4AJGHIGX$ZDcv9>gDJ}~=o;wLRJkHf z;A8?LSIs~*HkPt-1Js23J!B5=6sUabuEFkFSV?Om4~H#7^hR&SayxiopN3_3&Pzg& zY~#ZH9r#d%Lu{*TpkuR#QaM1=)0PP!mO_URT&(?Vx?-OP1^NJ|wnmUR*->xzYswEakKOEA_u#B5 zct=T#g5GJr6N8g))%E7$(EdG3i6g*XGIrx_$FDn|5SkxXBE8tumbV zY88M=kze@4K=;tRJ6;^s0$6Ivukp(+B)rcbZYXQ>JNn?_7Do|Ey{A_3M5&li#F~o&b2pY$XFznMWMVz|Y68-0EDk|4JQ<5JoCavn@4=T_B?vlAEk1em zvZt6JwnJ6FmLdzASHxq5%3tS{AT%-;~Q(f{HAd{vQA_t57 z^{t{wk!EC1=J1D=G-jkydduN?m(gru;3?8KR`U7mLgx`Gxz(fXrs(UH>jXsW~B|ZKM%=YZM!GEc3UEE?|)x3v{ z^ZYhMbWz^{=&#fzYgeT0SH#ZBGk=NW^ie{Pkt*i|h?&L0hn{b?QXk(veHHt=4Xg$O zFY_f$)RL(RjI#k7QiB74O)Bp#ix4w9moufDD$*7>7Zt;|QFkQU8vy~g$4b98HJVrg zYM#0oGi|lVoxbC(PU?L!vH2=Xp`VZ000JduGjtO9M zl{r<`bO%0!ek%yQIpuvd@m7MP5XXynm7yxq8;Xd`ZIiLD0FM6L*_$MyE=*(dZgcuC zW-k^j3!}BjUTC83tOMjoX|rIVX8mx#%7UJZf5tF)1<-V#P^Il{ae%@3!X;~FkaY|}~h_rywNL)2Z`yc=<{rwqTm z=gEdg+Mh`B&V8+_PUwwGJ#Vrn5;U`cyo z`B;!`(DXKSelOPCH|8T3M(TCbwRev>kI0r-;*{`l+v#~%5b|=tKDap=zwb=tjw@CL z0`FI=>!U8R_JHza3~0ivDX*-{uEz36raEW(JA~7OHnVt#IntNYKy25p#k;T$)rehj zu*bMM)1udtSY&Yz8$x*}+pSQx5=+O@{oQ#tYsJTesXuJZTLmoVsSnm}h5$Fq1} z4Z#lpy=n*tF1gnR_-ja`V28{dXz8Pkf{W$;r5-}_=^V)*uz4n$`+^?95}>V5N&qbT z&ab{*4G^Qt?giaz`WaQGkI46FsFJ?@#7PdPeuvGBu?cc~Z@Yn-HW6;fs|3ZNIsq)P zg#0&%IA+hT5I@n5Is=w|%fLl2hnaugu?vt$Qxt=yZ6^Q`B4@|AsEZl$Qh4rJvHCPI z_wl-L;R_f)rUC{Ju(sNrWP&?wC(p_2tAY(zNmI|J77(r|i@X{(WiT>dLOe?>eo}j?F6fgK|sNy@-oeU)#e zF0k}Uz;gkZZRu>o-BIx`I|sWhSKx$42*|RAUQ;}n#JSu-C!y*CDZN0oJ^1#HrypHd z#`=>*GGjUCmI_F6)+=`h&MLXizI@})hfQVZk}g4l6KmV;o3GYAT=2P4M=$)VfWI{Z#mQ_f3)9W!>x8XP_O_V6l|~ zw>|Z<&$jB?*LPE0txLu%-jR_>QB-*QMvUYDRc22Noo~W~U2w)T|Eq~@Q8P{VAg9|| z7QLmUYlHpG_KR-Lo)|mVvQcZQU9DiFys7?hh)!AP5K5%8Re|1n70*2huWic+oPT+& zer+vpa=RrmiJ99r_gisOP{2~%?(gYO_{X*kjqM7okr%mOaH78iG1?>wU91sX9e|6% z4mjNE_*1g{*VY5ARptigVjw%`w9v!@5Xztb`kB?=1_dqq)p4F8-Wq}D?^dw1UyZf3 zWpHg*u{OM& zd!Eo)2Z{Z(Ys$L3+SjkF%HYo2`3)dtn^&=P=&ohz6|42Cev8i8QvMYzwI>UZhb?&R zuT>--WfDKL;O|ry%DRBlf!Cj=olQ`x>{kd4m)ZS%U9u5z;=7FT7PhHNXZ@(O%Dfdm zjlC#R5*-7gfUd?yel=%`FIlB$jHyfL^!~gWHEA;cJQWLPnE(m53+_O-5bN@3lRoiR zd`os+gV!P$GhG8`lzXR771(gBTr;sBO0!2E5bgdNSiJt3L@~1tGh6~T0dMXdFg;bL z;CWZ^JMbZ=jb_}+c5o=I zD^2L1)%{#yhgL+4We=3^RMIZjEGr?asmkjnqo!NB6&w*rm`E;GLA#)~CPhCwqGDE( zX8b;BB~-p8Ix-`9nj-=~9S^q*uV1oaH!3dT{V9SzPgGpl#Lm?tJZ4_@rwl3M!vhgV z5dq1&Hc&n~-cg2@(pbq@&>fxg0p>=lF%$;?lJm{So8iN z)`$l(Ez=;=V33;Pxh%U2D0)hm9Xw0&9|;*DBL6a&!UQIn9p3R@t=B3hzUR%H zQM8L!1Fole<$SyAzw@c2=y}r9)czRzH|s9LhVK!)-;gQs6;7NHv-7w8tamp3Q^9Gy z!@K!TpWm+7uU?8|ofl5Wa9A#fGNNSc2*t!`47X?LsvN5adWbO*heTS=Xg=bp%_q-4xin~M*w8&3Cpk4qay>DkO_86)*ZhpQxD5TS$s z&1<3nQ+h;&7tJTg8Vo(ZJnLf8ga^*BU;ZZG? z;R_lYv^0uHaS|^qgS*i@s8r)ZmUxvH0ecqx27X)~WN{)26b)sSq$CD0PWbCnHgA2C z3(hD;U_SEPyYAy9g5-D8sDdbfglH9ZRWJX|m-JL$zRcCgOxSK${aQ3sC107-vaTfB z_|sW>VB7@S;8yS(_;c5!!S7Z>o`2R;C+YXndyVLX?HpEooR%M_5C3&SUa?w`fqT6;R(5pDP8Z>i$Z-1>=Dwwa;vS>hJVwP*h_Ot+C%7I48Fe(DAB zTqU~HI4{?IsBP^#0Oh};&>bf7NW?78Z5-TD{V9)bD7n)op1O>u>=Rb{?sJ=8eNv@( z2m=${dUQAlx)ki)3sYb3z9Jc2sB4H|?EOai$gY?iP88;q@^m4kaxAu?X==MPH^&?m zI6(iN6tJBb*@g`%`nTME$`l@~D?|)$t}^qgM9mo6^F__fCv{18+qI*YQWXC2eYRA+d#xZKZ$psnR3k@ACL;-_=aId-oBe+GE}e#;e@%m#cuC8qYeX z9$8gewpbRGRL(7E(U{9yv!IeIs$dW8PCm_?Xc^YWMih7oK)b1XGE&i03+pq3%i1@? zpW*Uz+q~i?nCp6v9->-V5@Wfr$+iiRexf^)=b!m1hol}*@LDf#w9dxx-Q3i|*`@lx zqz&xR&P=W21K9Grgd_}g|TY}V+o{cH~l9nu$y%EdbrsgPxwj{1k5caQj zI1;n_I%re%ymTvg-1RN?c+z~MjpjL^>jd`xI;Mzwnq^_YG;q-xH|1Tq$amzHc#RQ?6 z0w=iQTGp5b`eOWp(UX32TTq7*^cBvW$u1}Nj16-aMblnd_3a0FD?zd^p0=oCL=yv; z*=|Vj-mes>59++$Mj6;Gv#`oEBAfiMs3~XyWlwMV)Y&3&{1?f0*z1{i%LTt}-?FlY zB|gLxu;GWAL&CBYw~4oesv=Qe(z&Z8yqhqSc7Xy$FlT(Xu2N+0cp<5bB>QaD{DXp~ z-+HRd>*z4v_pPtS?7VGEe)(S+_9cKorKV$aV$_6FAuH{m&jlF6s%&D#z=rNVUXgJv)GcjRfrtIlvv8MsX4 zGYF(($W}jDP-xd<1}QDvphTWkenGY9|C-zZ*Wx;XZ!Il<7MCeU2+UvIEfO`7Kr>;T zr2JiZgcH2jF=G*s?Q_)6LaOAUJFjASksHtWXrmP@WqzS(LXk~bj<#)We?Yn(bs|1J zZ5VC19aKx?5k1AR5+FqF4G%DpytqY?&P=cnOse|%vE9kiH+F?#3sl}Yd|mR6cty1N z#QC0#ovEF!I1+A2$yf}2pc-Y6nRGE*otYHNkMW6Cy;EIS6Z@{f)APEay^Cfg?HX>$ z+2PQUce}FJWv@WmvYAvkOvv4B!9>!s<@i9-=!47BPjfQ+MkD>2Z?u~6!=Uwf$}Ufs zJ-JjzW>)V1zESgTtFE$T`*@uvefZRt+}ykGNz|P#$MYvwyS?DrKA4qk<{8D%jehR>dhRMzT@PJbB6KC3q$Rh$~{Hx)yC(a!Hz_f|XS zQl0ZulDE0Z;fdY?Jf3euxUxb0nhaGcU9j{j^{nJLS@U;y3HjyX&M(qO*c?9cFB1!= zoVSjza{anU&h_>a?BYJoBf3u~2#G9UZgT zX8b@;w-H2D!c%j;rS(g!DM%%2_7ax1&$Uw|83AiP73JPoC(Q`+K3j)fg{FZXhmwCq zQ|h4UFan)oy6vWwnpEL`?L+W+oq>ejhMA=Ex%WEf`fquwg`2tNU^qp#?tt$bkZw|J)vlY^ilOpawoBq^@3#N+eh*heVf*HT;_vdY@HNCa5KeXrtd z51T@>KYutJSK(AUSXVn|%@suhM`P6KTn2|M=uo!?iL&yqxa3O-INg8$A_wn(da{XR%ZsmI z$2@ia&mnLP0UP6EI|lB*5A^RJPvDM%|2Zi2776sB{&!!Ejy&eS-W)ZWm%Jc!#{OTv zK=4pIsKtx{ti|ScTJiR0EE2&ZAX(R|p0lnX0xY+ew~FzLA{(`1eTutPP$01rK-Y+Y zz+I{uJ!z%yVii_D%zp1HjH-I>(Zvf!a?Hk;!!b~90t+^O+Z+m{TDREy$Wi94pfrhsdecS#fkd^nwOx&k^#i>4IpF=VbOTCFVp2xxdHdaI)x-==5D%nFc@H>{ zm4blJ^&ZesTA=xClzaR2!s)Z%F=_tB^0HUtZZk&P_lECy0m|?g0xP)zV`e(GZo`D?T35@k;4_eF z8r*J$^oNU|`6V9Rr`Mpi(V$qG_Z z>ep-|LY!#P=Kn9^-a4$RHtzRSK|nMgO zGr?swZnFXXzL=%2?Kp(zc>lKXR9GOyKnBU|EjSjIo@(za1SJ)dR_g_te~<*I+N(w zR6Z_*8GxRuUq`G890=xTU&uI&N^VwgYGZ z(V_RD=dKKcEvqzQP2+#gxK>8)7y80Eg5c=*m z9SPHG@(7T5Y)As9NzLm1Mm3Q6i0-j`e$KI-8#_I+hpYCRR>R<8ekMlZ$NBWRtW5E< zMP{}r)D@svvH>UoswN+^{7Fv|$6iC?)eIwPk2qNAueeVafltFHpbViP(a57pyAIs& zlUru$2(!#6rxaFELaE7e+%QB7SQgm8q~tR0PNStzEoLr5sOBhv{dn^uRQp5GnaqC& z({x|0jA0SOoyUu#g}uML1wpm3^fsZ}Z;7`%Sib0Fyi@6gtG)o@emE+;zge#U9MksEZ_yH|3Fv{j0jDxP@WO z>4W`zX)t$?OeD4Pv083APgMCvQ~9Cj!6xZ}Ufz=9c=@8ORP|=#=zI7A$ ze=%)21`EMoajn?B0IBLS@EIJ}NU{<38PZh;boF50u)>4?0v7li1%LoSDfy4x$~jIl ziC_Xdk%-4>Lr(4^XIoe^&;X$c!JFGcnA1Rr&BT1r3B@0jEIk|TH$=b9qRzm!I_X1! zuE{3*`oFi!cK$AaSa{7z=mQqLf?bD{=OOrirwO&3#Ty0wMEYKuq)=Xi)igOGQ4K3k z8o&Po%gw(Z*}P~3#)#Dk(x5Q7gp_a!HG$8?!b(1zQNFzWc6$ai66hJEYIEmEG+GF` z3V>AK)Cg%OSV>do71}whvxjR)I>inBv$ag4rD8CgK|(S=S!L$7)J`+i<#+5b;E{3) zNS=RzOc(`@F2cT9AhU;sLStcSn?=`sz@Fjl(*e)r-x-xND*Ey)1#jJGJL&7L`j3pr zg+VlD`=Z=LBMg7AFGj=5F0yGxSk?o^3f^SU&xrMdo+Wij zz>5k4MxTdGv)4Kum0T*JCN_em>0E6kLy62(Bs(H)^Gp;xoASRTRTcZXo`V&$Wn-}T zP$%|Vp$h#7i|ed6O3pHn3cV%MBX@85L6M;?_1_;E=bR>?eviXvt2YeE==z;Ee01{9 zwd|bHB7YvNb(R}|SKRNjPA4y(IT}x;ChzVfy#s@Va=tvd`RC9j&4u=D>S|-0!FL)l z5}B_yZ6|DI5(R4#A~CTxl4g}y3f}H+$ARR3&|W?jmT$vB*^r;SBkCC7I0%8jtJlBD zGjIe%{CpGSkR5`bky2iL2X8}M;NkQKf-K3#gbR%W3E~3IZXBoR*h>K^ISwx2_(&(t zi|oipJDALI$+RS_k9czU;Wh`m^ZimP<`~18_$tRp@c1)$fC>+-PTd?3`%iDbh`&)R)5$AV%_FYeU`1#hbh;PVQ? z$Fpq-^PHJz??&T47l$rX#kx|2a)Fls>YR{vV>rZxP1=zcNeUNA@BJK7)E$gloj5=YC%aA97D>L)Ljs*QB z;$8VBd@+*4%CU)aBTj0@2s5OiSPA`H3$6^&RCWd$MaepXe>gCN^@KfY)&dP+(bO-qSNJfE=E!siT7ih$=p^TMk02{zv)omZ@ zcA`7q?d)dl)YqHi4pRFrdS1qf{>j%a=enbn+NVA9sHG7^%VULU*pTSO0znFf^xh>z zlBLLcl*D-V!?VW8+NPmlX}&dymG8gK%9DlBkw_E^Fo7hWHn)AczJGhw0XeXRSAdm+ z7y73_3~l-7JyH(;xe(lyiyfXt+xUToMk_*F`57(QP@1a$WGmAY=LZsrYFw#LEtosa>Uv?N1b_=0z(9T^$EogkVq`BiQS5q5Hz(uP!A zTvBiSX^E0(h%@5*2%GyJJg`IFd zE#8fSX=N9dXQg|DY!2Yj33KJF0q!^XLXXn|JF%3)Kp`2bv=s6Eyz^|1X_#O7w2{FC zXD2Bjn-cckj9-8JeuoMr4pL!k2YD2GAFV&|qeSVY>7tVuC`zCyv2H#HLMLdnLx53rtUfr`NDiMLhe-`%ub^MSYjM;#J{KDrZE$JSW{NYMFDG^f+GWkwd9& zgdck)>P@s6zD2h-on(T5GzN#oLI+Z*cBnd<&J5!`)SUC;+Yz%En~74&r?yc=yao%~ zDR)=jKP(0k6xL+63pn256d}J540!}`9V|IjFPqgy)H|DJoI*M*5(U|;$p*{+8cC{L z4jN9ij^s@=L?l1wN*K38K9F|yby1D*D!1^=sk9O9`v${7hwGr_3?@VocG&XZ_~|t2 z1a?#?rS@6WM$|7HiRZ5;S8$R)_ik06^Irz^ioZwjMrH{HkagF$2!C*v!sO#`~}HU)U38>2zDqy{ls{I8nw25+w6R6XI1 zi1$suGpeI=vK#M9{w1BtBcUr!yZhqK#$lq0qGI4{=D=ujW0jX!FLQo3n}OX*xp*HR zxZ-$oLj)=kxx+ps7)d$}OG=Z8lqA;VN_U$P{jpx3)Hqt4&(%U(*n21ZURM0j7V0FM zxhkB>G0Ar9xpp^TY`DxpPqAf^q?**nbD$~IiQSleNB?f@(bFfrrKIq0MzmD(d9hCG z&Z)O=VgnO52iVYwXFP2#xNfM$2J-7E@?<=I>|1#ibsWQY>+z zm|4S&i_iXZu(>FWV(Mv3u6p`ANbHgZE+uw87O6Tc)G2FM#dKX9Ee2CyK~M1rTUT!m zWunF{tP^c=x0J#&rUv#joAGpn3aQY|TIk?;QZi(@-3;^7ir(MAx=zZz`g`!UJr(hd z9k#!Sr)s!|$n~B7`$a(#@yV6V!Vx?m3vfiRb=$6qb!?)?ACpNnrH;K4NU2>ijJ}Yq zhCf3GwAjcD-zVv1BKhb^>ZIb~{9g~avo8r+AcmZ!jv`1&H5;})vkq_jHQ-oNEzTJB6+IJLH zp*y@bh1CZ3{^@?-MaR=v2-#%vYXv^?X)4&D)th>Nd=_86g3}{nFVLD#c9Q6qZCi>F z^-Q(ASwA~stTZCemof6ZZ=^SBVx`2ACVPL_9t%T7^a@ysvF8E|I#lHHjqC8e_jv{m zan&6HqfLp=o|N^HMpR|(o{@$dY*?6na#M}ypd1K4cSvyb=L{czkNJQ_fp0+N)oRHL zQQU5RIBsL=u2#PpGkSFBFOD=X5D9XKyA!0W>Snp~^yv=`$CwD?f(-(dNzl*8Oylai z{12F91PU15-xv}KilZ^yD4kDpeYCD8oS1u_^fzR$$iLjd zkkSZr?qKiJS#^@{@0N^s!I{0G@rLe?FL=U^m*~~F&%tIQ=B?PnN5IOPLi2-BKC4KY z3m)RewZ_6TFlHCzq%GB4%@_VTLdtadmX#1z{BEyjV0!pHECMdPbpG7~1wG)Hgg z1+zg+&hlEbMr5PyK!bE`IFifK<{UFn`xytXZRo*r( z3>&b)%Ei(L)^yd}PySlTwA zX-ppWP(`(IMdjhfNPJhu*7U93SL%4azeRLYznFhm=+xCJBU0AT!3{OUFDH1BsX;=H zbyqhOqf62#I8-Z)CUU{PQdwjCJt;hGXW)gb&T3PJEkpPPC#`2(vvV##L1kO@y+_{B*Z%(Q>_Q*1uJxS8SnVj4j-A& z&WN`_s!tO03?2FJmJLCRkG=E(gBceYeiOaaBosrC>Y`9PG>N^YLuK}TUC>xq3wa2K z`A)T|N&9Mu748&V!m-Cva8SF>!;R@_i?M54@RLr1tK-C?c5MtJBd5Shdd|U5Q}jD0 zKpD~FES1WDkDZ-obexXt1gZ4M)&$RE;ih?cSH`-zQJkHn-A3oCFVtJf*seOe_Ro#g z3l&}Lz-rbK%zq0BHYzUav}#`D>JO|f*AAu3r^G9$WctIW32SxmdIn79eixbyhoWBZ z1YKGcP}T2rc1P~YC%;ClE#9)jqlI_PPA5eC391`(T^A)M7Ef2~z9SgjJj9-}N18Ff zGwBDn#|yqjh1qq>Fbf#$^G#iqz6yV!^R7AHx!0gw&y=GDpY(r106m5P_HrdYlr{-(_HGrSJTPilkbb8p&?<8$8+pd+Y_s8wgDN zSuo8}l(>RlHRA@~GP1vjd{q6bUS%0=@v(!sVE)GotU)lHBqQ4|`@_!ISA}-9sDdG~ zEL+s8x;gdUc_viGmv}TnBnDMQU{ZOmP&FBPLF6 zy8gf>)>FDRp1kW8*VF3Rknx&Ay1ME-T5M!aj*2nT?9cjVcl)EJTFU*?H4Se~J$K%! zI1|$Xwm)N;m!qG`s+j+i zN^HN}_yP1>PqgeqBqb%V8H|BI$s~#@QX+y>;ZO)fcO}Q3)B>VuT_9Ab4M}oryvy&_ zpgdxQFXuCW_4B9%<<-2zKOG;$oA)JC4FP5dL# z0Tj}nA3*)nKgxRGT{sKG(J;ug0h$cra^K$frTj?J_s_4k*cXMNVb*V;K^m56n=}6u zN-YAaNa17IqoqS1zSb3>J%&mVYdvm#fJIXE3*?uc0hzeTw8ndb*?@^Y-DUi|pyPvL zjqgL;`<*`>AXOW@jsQit!~kt|)VzW&_i@pMO@g=jw~iphMhrO;M?fkSh8u%e=*vn# z1ElY?G5!hu*xMt&2VS4vtz0a>0pI0M+n?4x@v|PWD~`wAdyqK(0|cK~MZpG+7&;kY zN39u*hpuXoU&%K+8{jf8jy;m)h$KFr$L?>U^esI#My|68uq?Q($Ov z*8!s2Ja=0?fHI!E1+YzKpq_=ieRK+dZ;bSy!2ftx6uqrP0>ybrf4BYwf7;+^VdbiB z7AQJu>n<;XC>y~bp?~_hCK!sMDl!7Zc}R1YO!3Njo zGhN_o9G#DKdmV)tC~N{;NPZVc@~GK>6lE6}GMa?clCF;6;OLO!2dUlh$!#!+CmFX2 zq<86toc4eswXMm#49<3e%X<)`ZfpQ5`>u>%Q8idj)0Iw z2t=?~8~`Od6N!7@bT{+rq#y)Atd%kkV%yq-;Ismf+9Hpv_0c}n>*QI}@5&r3cs(GN ztZwt4@#)}qp}}Ft@epb?EYf?=qzg1?giVXY>2CYGfRLn;YbW)Zg~J#A2ic#XiB#yp zpALeOaq!xXUa1QUhJ7BIuPSwQ(#4}PqQ}waWB-gFdT#n{vY(F~1?E9%-8%(~Cw>l( zc9S-n_%)@&mz#ZmGiFC^@-Gzu=*t*1-{dTrFgO(Q8q$Go#`FW408yY70vrh*sZ=l; zyZ>BE>iDnk*?>X*$M0#aPZBho6TN5N1>BrOgyG<~*BtjuUPaWD zbNh3AyUImNK}MF0uPa9p@?55%g_3=#aR8AT2Q%mgs9Gv)cqI z**_qE*Qt9b;yss1f^4XUdL8$LLh>^Z3+Aq?sYn(mdOyzEkIr4J0A5RS9LBTSN|s0` zDk8$spr1hUHU>41X9-}wRzi_+xous6yp}ZY(}FqUA`8UFVsDk!C6C=QrttVdqN$Db z?Gb-L_d)LF`rV%%w)GKF3j+;w6+^R{k((I^?ScLH?Yd>o{fL!C?Bc3k&CBWfHuaWG zk;5V?_n<}dN?=aCUb@yA|fA6HR+a7yLD>P75qmVPQCBY=VUdE9Xfw}Is z=-5-^_KZt;Zo;nFJRPKmgGhiY<~&X^En^4(kV+lh!1v-qXKw$T?{53J3?`6yRRVpe zpmH`uf4c%*0o~YCby5DrDbj;=se5Az*i)^ zWnu|VxEuz=Ze)W(8jrp1+}P|-wJl&>S}_K59Axh>_6Lm~dEXVjM|!uzS><8-`Ba6f z?~zyjNCof+*BOiWHg0Y}Xo`YeHCTpPBSWf9)elfrV1Xt-$IbWL`JD}8InXouNYw4< zg2Rb*!(3VWlbZ?&@%2-JRcJ<4fzzXg9Xn&4>Q9O&s!)YiYrdY8)ikiq2?#gn^BsL~>6vN@jBS@KXVk?=TD! z=$R~C8SM2kP1fTp4oNd!3cx?bRUT^5F_fv#Rqr`?AEMN4qYrI~pH>iA*GJTl^o-I| zAsM>)1AYVlSHY~Jjs#29e#`XIV;KzVW9)mZsFEPH4wlZLNe31yf{iy&{+JPN)m?QM z)khu$?2LEhbd3|IKVVj|EH4LMiw&3n`{%FJys7y20CF0gTCHb2hP@eX3nIHNsHaa} zx4X7o3rHjPttebQY}XR#oS}|}mbW;zcL_o3xWR?>3c_UZ?ZUo!FFJ7lg}%Tu{(RkX zy1ZR*Vqc1jnSEwX-+XxEr1V^tng7{Iauv>3xw4Qw~1_2tUlgLjIkET8H@ySIBkt2`=7O=GUM&NDJ`RqP!c{GVs} z&es0ThajX_M3vqE<+T50mD@mSSZJyTnu74=_tnJ#@J!F)=_+J{Mfa`xOMOgnc}zZ6 z&@)b4q_A(52;BDu{2e`mA!XSf&Ni@J^)9bK^qx#%d7>>042HH2O3tdcH@xAtTN(51 zYH=IjLv5GbNj{Hmdp(?@x>dq7(FVMeVxN=r3mXs$_vYy`5EBecsoE*IGtvg!T$?@T z=?`8W2`OBBr<(cnH+qEH>A#&@-7Ty@2PiZReVd`tW>= zEq4UrU$DUt-WmV}E|(QR#F>2KjCo;&r6V{UjIdp6HJLvH>9$g;eUL-XX-mOaQUBl*}>|u9NS)C#y9sEVzVUx+-k= z)T{=QolcQ2osV%8)??uDQ=^2?Y&nbTd7QiU@I#Rb^AflxD(4Wnu+z%5Kdn-*&jUkE zZ~v8=7T@p9*5wzACpNev((EP4x8V=%@nboQk_<56x+VosI&b5(6SARLs`2e0@)~~?wWQ{t$p*o0$`xGfJ1OB z0x&MQ;7qjv+B)-;MC~b7Seb-drGr`MvnphcN#&bDg|M(tq5P>iN?;ZkNlT znE(!R=_$NhFx{UjtTIv5GI2$mrc@Z5`+G;~)cvq7g~$(|hZHB9#Z1!3$#jd&_v~e8 zZ-}V6TD@e5q)gyl6&!qOm3*XA=<6v$g;HuRGXB=)EX2i zAWW_%(0j!+IYLU%XgAHf97diu!I4U$jy(g&1XKXa3inKtuI~2!ch#FoI znPT+2HH8*jF1YBzeCjYTs9kIyp&_levpGtoqL#*F%;aG{V1#B}Yb|tm)xprH?cIi` zQIlD!nR&ijmU^_nn!Vhw)fNPQ%XJ%p9D15Hak@k7R3WTCX^=qyXPKMmn|+_G$JvOS zv#Z9R*Zv?pv0W>bQtRlh(MZBgx`wfBPJ7U8Oc~UcYW{cfrIw6ViM(%NfwW*5{=C}G zYxg>N15Iz#lv<;8gc;f*x__0@Y_OL(AbFGXyjoNv--^mb&@H~UWvYG-+x5P8&ovx{ zxZD~@wmYztmPW^I7`D|p4+si_ICpqwR%dD`Di!beO5vsk_W3tVKUJcqOUC^RHF>&k z)GET`Do>tb-OAJcXj}re;eo#%JLEc_>ETNk9}^5ij|X%qhq7XLf7$gz-eF(xyp3_B zmkOmDXWZn=RO(H>3KXPifa9tzJQwHu4s)6-q-DJG{H$kVCHdEQ<_1CY!8e@M5#{P< zyP(b~kC(^f#pE#Ouv=kU<2YrwjdfRsDyD~7On10E(ZtLwQRSfO*uOHHb-(b9t@UvH zl?rd2pg7!1Y?JIw^xdz8u~wfBPHdU*hes@#%*bQM4e$GNjN@~IiUgbAy>FF9O_*!h-sTBV^e;maF+=RVt7n{P}o!R$m{b~pH z>H0cWqt9LR8D97NeSQuXd2Cjopx7LvuPJR%oIi=e?ra?E<{-a=E}b8C5!vjUr?&RN zB+M(a%-l1?+2gz_YaACH|61(AUL*uFL692 z$MX+iH^aUDjx8qJ=ppgMh91kwR4Xnd+WhCY$dh>Nl3;A3sE=z7FK(KBe9WeOCiReM zL^{|X|0%j7>LqL5C|wX0SM z*FRQbKrm|FL-SJ}CxyRtU$iK&#kwouUrAR#KaYX+sW;yzf4|s)-Z{e=zCn0%6Nk^r zyn?)Mmk=F%bH#>yXS07pYZ89D-@(F^+*~pybqH6(vOa=55o5n?A1Q)cv)lx4UsA<8 zt;q)0JK?d^uU8q3C<>=#)*52Hk+J!XD3SDt`!yxZO^tPPAG1DCu{dh*<;|2GNCd?#-D9RS3r zD`!PVa!dq++8pzcRd5Supwr6qNa`wAx0;ZS)mv?u^nZ)R!qLJ@LE8$uUm{Fg#LS!N zQ8i(PxL6XWxYM)md6n~RydM0l4f2nk9XXe{{;hh*9%f{Of@Z>U%Is0f{k$6!eOn## z3G6hD&`-pB2pQBC?iaCS2aE8;!Z48(BFDX-QDfnElO~gEieap4^uq;I!0DqOzG?wP~a7qzkjPm9Z*4JW1`o24U^jjnzNgwY12t~h_Tq0HV8!n3xI|bwib0LReSB`E}M= zgRVM_?VbZGH(NoWat!gx(|~;~c*9hYZez~Q=yc>T^P0e=;DN&k<$WIH9sD6_`P4^^ zU?@c_P0U4B_#GR*qH?DuoD-P^ri2BOH1lraE={**X>7#|O}bK(RcSeUy0+7DV(|+@ z)Rh}HQ+E(v%)a#w5%Bn(viZnC`gPkULwJ4!MmI}*%G(onhddYJQly;lB<}8LUr)1< zq59l*3foUP+lpNUM?H4kE>B|=7w*kPslEku#CA89HPR_w+JW4gmKar*pG}ntOx8fY z4n6{_5f7TfJ+87rKIm@fe2$VALVoi}s1$hrrf~)K61?Zj?_fYNGO%koD_Q2s=uGIG zdj8&x$v`P{-0l30+b<8M-zj4Qo~H~L0SBM zxIRmctzXZREcr{TEfB);da3)woE|$VFoBT}eU@w<(FB1e?uYNN^faQ7=T0Xf4klX` zZ)T*ZQjy2&g)lGQ29FO&VEkXL}i4K_ntGLT69Sgo{_|D9kTf?KQnYyc=dImMo zqP>j{89q$GH0E=)Cv*`;2|~l>xZ7dFQ;9W=*6e!-#E9R%+1^kh8x-x zZ|;z(>U(8WOoU3e_k8ko_^LbeAczBY^2SW`M=;&Ef!Hl={oKLr@lBMaiFjt+vaHn) zIfnGO>490>0`hI{gm99;Ob;_jEt~~83La}VYZs*J#!HNM?XRf`tV%*hF2 z6ZDNkO_pqm*>3$E6i)s}c8(Ps;%@7^VcHirU-(Xu1ikR~1l5N5rvhXFG@gQ%e{?hZ z3t3J=-MGucT{qA1>&Yeee$Efg7n8M)@1>M=zbinOs<&IZU2CiqWoOi|Y0-Z%R%t$V zw`UEwqEUaP_riNL^_FSB#ZRQ#4`HY0zI}gc$|vSYXC{2TdpNfD`}Z!=kxRN7$610I zsZ;Jbhq&O0X^!yfM=dH~VJ&fGQ{bgXMwyN7dRnPB22X z7oSuyvp3b!KJZ~cCVL{ow(u=Q9fVY{#;sU(L!9IeC)SlQY@7p)hk-tXp}*H;>f(~A z9I%`aT^5s}@c4m%7vNp)Jq8?;B9mmHR zd7}+8tv$V`25%S4P6yNeRsZ<)x!R#WNu#|`rk|O($63%d41b>WkG=PNUEX<(vq0I| zd>InoovgHj!$%Mz(QYKR^ZA5h1V)=(PK4F16-X zpBL;))omxb@gHCAgxr)3jHcKS&02zK4IAz4Y@RpUPK2}m`S#pQiD5rucVb=;4-Gw3 zZwcReJwNtfFIjxV#d#lLI~A^P={BTc(lX&QUA)5G>|1j9x=*?qj?1KU62(KB#)ke9 zc=HM&9LZ`aP}xIBT1>{T3VS*;)+lxFzVufyV=esx@0 zF*VLD_zbk?e z)Bq?13|g9k|M@)*P_TwW_G7f?{N59#>05)~--}K&Y0}X~8Tu6`PQDCF9&!LJbYh7% zTMH15XBYmD3_q?Qv4wVx{S2)A!@ikg^_+ZjENkO>42lc5K>l~qHMuGO%ZwQbhW|f^ z*yCCxK5fUP_|IR~A*29CzM$UTG!Fcqmk0j8@Nxdh#^BigANvCI%8(gA43uH>N)Uo3 z0W+qRj{qm3{z~pGfG&`AL6*YFu_&0JQPq5;M5fq&BR6a0&} zj$pnP5%4bTDuKvG428?kv8Ql6y`n|1H8D8?=0~y5V;pJ9&I5$RS|9bb&bp(d*tm z5VQtWO)qNKjz0Z?E%sNO1El|nfdHz+0hG;Yu{&6?z&9%62Q}<42(=Hrxb0ru{PYk7}A2mTTUg$5V zMj-bb7aLM)IlyNp0!p7dTGm?hv@-HZki^L<(5gzP_9-9_=;;EU(4KNB&>8>3&S|$8 z0C%=JL=oY5$#Lr)6lexgLwy6tn1UVKuYZmf$iK&$pg|6NCK9XT!vF~RM)^O6*aQFK z<^TY4KlByv++(yJu+qZ7GpWYs=eLi^+YlT$38e8u|Ji1DnM;+uesX0N`OfQLUh=;O z6#?JSPfA-*2e}Kf&izd_nKhyT|XjIfgOCUAz6l#^!9ul~6p zP#ZQI8@Od|mERt{1dV_Z$Q`f&?2JB512E8UJZ#iV*1&m)XAN%Ex(j;Nv!YfL{9IV9qF~Wx#5iQVD2SjY|K;n&II$E1;W+?c+vxKc zrpQllPOz$B201I}O907N>ehUyP#BetXaIcUBhxRAUx!RRIj(X)D3(^&06>#l%2_gS zjABH|&PIIO zd}>5shX`TFhav$*1~K43jeuseR%y++JX7K{ZU+QuNOSmlrwdFERD+l!avU`;8uPIB zz!lR4yvSu>=vd$tNPNiCyA8w4!4J&X;w&%*a&$S>zm@PY@OhrcG+2Cj9-TUXvjQ&L z2||QWlGeYhRa$~uJC|lKZ`jumyQDl0=Z@qptcV%N=i`<*2CiiOE(^d)GYu)U*>%@6 z!PCKO24C68KQqy5`=x<=wFE-XNhJ8u75L;8zPl8YWnK0Fl!5^FV~x%sLIw(&pDh3A z0{)sn-etqVUiC;u{-+H+P^SUq*yl5ky544>m=PLj&48jr1a5|7e#=MGolvo-3j}ym zvhQXbK{41+C#O@+=}TQOFS5%Xq>N6MQ4r|F#ZJ+YInfp1KA4_?Rrm*>1ItFgs8&D> zO5V$RdI^>#MQi$84uLo68Vl7Eo>wcNK9hn-_*w$s{*@K(2jc8F^%C{_*7 zCWK;_s}I!VUl=S^bH#1u8?Jz`UwD>x)fcfC&ZUxZP)_VCl{{T1i z)!Hc(wJ&NLUIJIcI6ralBc>;7hu~)9zRHt|#x5IoH9T#J9?bW}Y>YA^aL*aMWeD8| zVHI8*%w4+9L-E5*u>;PKIR$}{ihCXax4a7&Pw}d?$JIO&PgEBN1+$g}U)WWYa)EkD z{$q*T4~8swtWv$aol*{{Wy;Dl!4S%@x2+}DnwHHY^9qy`Du7Az`yJOyRU2RvRKy+V zA%Km?YI)ka19*RZne2J@Uk|(PqC!tFaXP7dKKdL?}q*|H-YYelm;K z4vH<^JIWjLz})I#CJ}5cXrktuyoZ0d^~_uX zV3Pf-D^b~o``M-YM@aPEClcJ`=pk1F!}G{34U@8t+ES&w((V_T$xynRRssOh6FM)z z6=MQj>$b-q?yxo#z=;Amq>QPD#I7$b12>=!wtU1d)whJTHCz*Z`cTm`MVvD#Zo-}X zhKi&j#?8ZOH^P?VV&^g0nW)`!P!(v@G>cb{S(7Vt{)&6tGO8H*4FIpxvC_{uJ3A|> z$#F^}K}}%01;SJ^*$gw#AOhZlWkaM`$ zgE5d}1rkw6&_|0SeNFVvs%RvLV|1W$MJx*g#!wrV2E2wBX4LXG;yE^4i4v!j-KY0G zV$|031@Et_K?FC~@Sfz~)X54PYTeMkvo`p;4eELW>j!cynkDqx+#FGAD(4i zL)7>(aNI~epjClkBxQrc+Xc9z5%E3q=G|~}@(XhKwKWFYrl-${WaMbIDBG_5zQjnJ zYX>l3$0`LW_ji&Jg$!s-ps&BYX|BeohQ~Y3yx}&+Cm=m{rD;`^7t?kLMhax^bPKAF zu90)v9%$Vr)_ZAS06^S55mRmpEQv&E>icW%=`R^}J^PJVs>zVA{Iqz3j)sedfsKgz z4U+3j6u()z!#EoZ+T47-+X?!IHQD=tocFRv2t2>k9)D!F)Lp=(1F?A;t(jTtx z-2bXIHx(cJ$jlPshP>8E$nPhoatjSic}M`|kD=zkPsFbU4MioEdmXE4OMbC))8 zs#=vCGt7L-fS)E?Z2U+!i24ohU6}>dl#IydJ3ljaf>iTra8%`2M06K;MA|*ssTsBR znL{@+=JO_e2r&t6t>bit;^N;a_#0j;y_N;8GigOB04_ojm}oyvF;bv}*P8};#_DL< zaWcZAyE%h?fQ^(JXD`yxk0Y?|z7i&tlK|Wj$q=nol|7flPz`^zPA8CL#%msMWG?gM z_&11eIC2vA`2?1FP#eU@4-TkIg90N**&Q|ej92NNcXk@eWx1Btl0^*K>d$+d9+T;& zPexz&z5QdB)NEdIdThh{pl}Bs$U&!X*y~(7u9q&%oD(HXe>g|0MHzb(zISh5N@Mdk zJO}YWx3jjt>3#WUJzI4WYMJjsV_ZYMShY=vmTHwnwN&rp*i40{q@1;s#``Gm{eIcE z?WNcvu~*#!fxDbn+ve!O#w#m(^az*BIHIxC-wVNtNt+I$k@#pEw^7X>m{xRnA`IH_ z=52Xl2yzLY*!j^sM6Af%Wcfa+WcyfYj&CBe;Il^HWbB&ECURy;XNPh#7H=@1R-$ z!()Gcr=e=}XHo;!O-&!WcgviFW_Bk2!7;o`+8Oz;88GpTY!F$vMjKa+%erCT17Gv+ zC-r>|#8A-8TJSvIk9ArZoI%7XKNEk5yw};KaQm$PAv9kz6v|BXJ!c#U$%+a=Qbey- zA-OW7UiR&>P;sh?!VHje!Uynl+?Nr^H;rjXS;Zg=UV+*B{_=o{?dTew_~j8=mbVdG zdn)x$f2UlO|DNPSC?Eb)L%dm}Y>V!SNnQwBgEx>X%N3Rawn&nxPk8r7|&N3v}|bYy1K}qJvQdCgvK(kn)@>w^Mme>rZXm865Yd7O; z-prgH$KTNilfAoCB})Hm;gjEB-pP7p_ndN{WOwqMHPwlGkA z7D4f}1V#V17nU$Qfz%ha=3_T4QE~MCAX3ST)t-5j>(i6uTN z=Fg9y@4Hdm>;I5;8g@6C(R_)eiNs{EH5VaoX@$8KoW@A^?i)MZ1Zm%WHY`L5cd|y* zD`d5kWDBnOE5lxQi-P4`Q-K1CoRTF$CtpjA^it;&iio(yOKH^4CmVI}0Cefnc=^AJ zEk_SMs8y5ju{=J7p)1v-1FuN1(%<>k4MYW=zydEXfkk4F&cXFT%#>R(7Hkb+N z)coO7Tel_sFS|pN9~Kd*GO+{?;=^b18gO94<~fO%!yTsl2XM>|m?UK$t{nPvVXR-$ zcD%yl9)AArw(r;&FGoM55fdF^&QPyygz&{sAhQs7621*}f)*MN&Z=!(%z^AUhnpE< z`sYo)-A-ZbsgoWSheW+ft9!^ap9y=WE90-0)@iOru?CVs1ubkdx?6&8LH}Oqrm{(y zpu_{z(C1AHho}3LU7to2d!8?pk_E11bbNuu0H_ z3K2!K$1KlQmlc0gM`}Ls zOOn&wZ@9eUu6rLg-N~YNJ4!hxQ)^Afl}T@JlmAZc^)0uT_N0SP$x)zY^dsJYo57O# z>}+XtsM;-{36A863n(%l6y|X{IKf6gsYrIn;I

^5xLlMDC%nD$ak-ntrdrUUxE z9_}LuZ!s8*ZhqD99hY&*LpL{*C@Y?aejI5@{bhFz<@>q$pWM6ELCdf}F0b@d;`2gi z9RZ`>tNc;K;!@SlGTDlTX3Zr0?}kN$?Ur_tR`Q;R~_K zRF2#!jDA6e)7nEx*HuLAo))6^BUyJ6sp%<5YPVpkh9gTX}fkE%3NM}JtJn?fWxe3maeb9e7^s%!p>-qi_(@yhvztcNl^?bCqyScsqK-t z6x+K}rEt2OZC2es+$V65(SaM{VG-vssR$jYo%YaA@rAX?M?2LVf&0&=LhUkY$%Io; z3}v_{ZZHLr*vzua!5w9>F#{*x_g^xTihXpLBo#af>DT{!V7Y$cQXQR zIFzG1(|eSa>2;JiH3lC!dN^s(pvuWV_M?YRdWxGN4;?74!b;@lXM1t+MPQ<%dN3FmTb8Cj7 zuk|`IW%Dm7aFmlN*y>4wI(}QS>7>TS;>s>G%^Q9!og6OP`l*$=9f)|x+mzr}p@4XG zqEeygBF^BE5AS}6F2>u&N9(jYR+YK)G*^POYvijTC#9Qus1m!Hn+1~BuNlaTblnz? z=cQ*+aj7(iNqS!<;}73Ld!BCnT8h;00_hcasprp;Gy}T|Y44R%d4|H&?-bHCogELS z@8EFZlTj>DCtAziJhQ1WRwg5_Q(Twi_AI@d_fxch>|hwlAo|KG!Jt6vNktD|H54vRhg zR~}G0jw3OmbEuOvM^~f_`fgf2S#McEuq$2$;t41xpq6?i1K9dexx%ZMwGf@~~Js*wWu-biXt1La&_hdNJgU9-Xn5(MH(EPxmNrOgh>tx97 z{{9s6V6ULdnzcmg*Nv2Y%_R zctrl|JB9JsU&)Bzu%b?l3I`TQDhiR3QL^5DI~5~MIrYAkg{7OdcQ>nxl$6Nv?t7m0`wl0amA6@JJz38 z)v@Eyb3+}9{}Q+}42>$JMtHmbL0$Ghb=|W5^AO*PFgnGHpG=(H@qdTnum^v`?P>Ui z``=-B{#(D||D;v_&*3>(H7@}R=sy`a%>VTfz*qer06qVIYV7_Yp<>r(BV7!lM%*3Hy}a(0EIk8h?e292jsG+ZGdb-0_yWCvnJr%5YV|9wkhAsm{{*ZdcB#FKIP19jP3U=2W2 zay|leh60~l9-!dsJYu}U3O|G7a~mM_TPlF2$5bRZ>GSWvT&XY+v2O<2v5yL*&6iM7 zBtqEufAA8Zcr$c+f{(}o+70Z=BmZNyp~kly2<7Y=G7q6SdmMlyLjtJuT0rOqL+e7o zETTHb2*I7gAAqe@MwRaHPma6<3M5+_s?46~(0#-c(04jvXAlqwf|h_3;NM?CV!Gg) zKI;Og2klE#g>M;H36YLCZhTJ>S9-B#gD)VFxm;B9Q{#|l6P?uP>%ua zMVx)sYtMv=86-7YepF|oZ2)c@Ik0kdS`RU4$o%%jAsV@wqCnn1mHEG`CtMkQ%J989 zLz6m*+q;7jYZ&0+G7I>EM1j>2=(`F@ZS&)U?u7OLBgMxi$Up)9fubXjuZaQuT^k)6 z@?iLbpcgo+yE4m0fK1E+swMS5AOOe}5Rj*#!<~`@7&>849$$bE!CuTHoc3@S#~mD0 zu7CeK?GmKsSV8MRj7UiY^%^b94g(ySBgkd|!t9wQsQkW5Q&oVJMdNsNjUuZ1ff)V2 zA>H)|yrNg~gIHr2U~1FCyFtX1aoeDbk*1HZEoM?6uF!HGw+L4OqKg)F zM*C*+XYfEQFb{Q=15GiSFSO6OKttd$c7Q@BSa#A7{E!KfZ+IWm8q*2N&c_)`J&RTe zr!9*>L$C1SLdTs3T!Z#4N785{N0gE~%>g8$8-qzDED$~p$tnZqoaQ0xTLT%83QdqC z4+R4k3PBck*!c<&1a!rY@z$9dcLYSiT}}dW&K45z%{Bm)GJ~A3eDl6d?KQ3ZOBU6V zzH5z&l@{)GsMA36UI9|V|l{j4% zjrxE#w!byFM=GdTV;3A5`r$VRb1(D#!&;s+4n4YTDKm}@r;Pw)1A8S&yt=wsJ{`I&<*E2k_=F<9b+ zM$vQL_;6glI;eb8CWn`^ynhx7q!$fq&CEi>8vVEEDh4sDkK(?8V`zQVN7ARmnI7|= z1F1`XaSZxVzVdaFSgclhV=_)(<5&WlPEqy)mmFgoIFgYNA?nZKmT=1MTf-NWP%j0G zy6+&=ZPDL%Zb1GXF!9>FAuM^@1e1lUbCgRBMZcYe#^ZK@cOFH!0jL)X@OMC|11xKr zwaI#46-pF-Z^Z3(u(A;YMbf0aLkpo2ln&8t&~$_kAy>i8CTL-7 zU?tqmP(SZi4&+RV``!ZRQEEBQ1(jV2bQOZ0q392umN$ZzLT6D6c+7>m z4|YrkL~Tx89o{B#m02|pWk=^1y&qJ9pnaH@{OF3zdTn6*Ct-D1C&9LxJ;b{F^E{Ld zZrJ$>>PB-cMMx$sllqJ7U$tbzEP7hq`q=A`f^-inMuO8G+DUo>PXE8bw?Hto#52rp z^66Xs#+*?MW_WkNUzX88XJ6n<;uArlIq*hJ+MbE~LZe5cKhhFMhw#vN-N3!K2*FXH zn%tYMFVRXG?TP$tLp)axe+BzNPKqd9;&$47&1}iuib-R3-a(x{J4^l;`fTr)&oek}<k1#^NqB1 zOy6*I( zD6RTfEX8#jGtw4}#gyIfVg~n2vS6rWwE!QI1PeaIE*{T@ln={DGjt`wWe_F8d;2&o zy*4!y*ZkJzL2r?XEH~p_20m=_^tljQTf)1cgx%YFY}V3vICnT+)Q7BHuK#}A{_Bmo z1`bc>7E)(RTRm%7I1x?sClj|Mmmpaiu1uLmW^K73u_2hXDvAO;bnj0m8mMA>eD)!s zoV0>E(IuQ2?H<%>C&MhTO z&sdP7vnP$uBn~%_zDnip-|->8U$#5{RRKGkccy+0%fYdUsmo<7d@z-NT%^Kcrh0nU z5@Lo$dt}d>f-^*MR3ogbVARc#vpMsgqQMLDl>a(3fv%u0NQsKE*Es^2&TL|zZd6HCuK8K$kLb!J~U*37pb8&$_; zagP*l9Su0EG-SX^1j#lwbh2yXsjC#!?hX^X;32Z2SH5zW+XaLNR>y>xoUp&7z#Av> z3C7G{ob*JuVE4^iVPH|;Ku=7Gh*`79ODR)Y_L8ei0*?!&9Pm!-2Zlh8n%k4^<-?!G zcjj4-;`NnPuDia6`^o;7?2RcO7zIZ4|FK68X-*i{LU$*5kLwf{xOXhkx0ItWGVYuM zzb37!8XA#gA~~%#6VflRIxDYsSR=p<6B=`TrO^5@2%eRvIQ&_lhOB{NZ4viN4WQDU z$j|a;F`Hq&e)`iZgLEoRJID^#-*|b@&be}9bsNzG-|%JK+o zU0M#Fh|COIKd$%wH^mGUh%{zV)^bNpRj)m@%ga!BYqAapZ$2u_yB7>InMS%N3i+zO z`sDXwe;;o8!a9R=db7A*(q}!)_A+k~G1GPxVfvw-8=MkZUsTL;6NHcf{A*KS26cxE zDTElin9he{)BV2+@C6J9r*UsnC`HPAh^Q;|R;u|ugL_xEpZ!su6W7`pUUp~H>p1`i z5A$=#;4%HB{Vk01qW<;Ym`IIhtsHviFCX4Ii{+;9nHGZ$2|H_${pbA-73(ILf*7l< zzKuP(s#3_IJcXHZn!}ojWeEuRI4J;x`Ki3JV(F(sz^?^@!8-&CHv={P_J% zStKBnJAH|YAnQ_r9Ys>BmGrt1kZZa8S?cPTvRc6o|V=`uNzA_h5OG;mxqY5 z#(oOa@04>GA@f?FByW}Hp2z#}kYsaR(8p=qpZ`wwV{Tqf;qV7i^(WMO3gviNx=&hZ z%h6hxx@0*7Oq1LHDqLH6r_?GHqs*FjKW6IDUMa!$9gDLDx6zsg9IV1+l;Tc!1=3{0 z2kW(d;gXBYs9n336Y<^iQN-VVvB9{fG+FY zCj24&f&2|)EX>1PNaF(oyhLirv;Np}EVYjeTMGArm*4)am0WWcg=Whe=OlbP0nvru z^V4J3=lO!J*2e+ZJR9uy9movDh6ZB{&<(l2%wiwq@xxtTZkRr-tG$#WP{@=KueFQU zAOe?!m{i+=YSG;K_WPy4eZ7ryJZ7#Y4?cc6hoY8m-(C=`S_;N@*WtLD3zTfK-{N?8 z>dwDqjEb?k=)@0vmpxa%AT{&y&nnL!^c-`o)c!F%@ML6*I>7UA%rK2}?~siP`b3zC zACp*RSoFz;2GQeGxV~)IKju|^=v!^Kpsjy8k0&hPR_(Cag&-``p7tHnZ#TQE?4atQ zN7~uB=KPU9JioG|fkrwZkjW|h-c@vnUDKDX`CewEux>kMxI{~ma0P|XIa}cGD54ek zpz3$i3RrcoXkO0L8@t&DGwDV%?+bLp(2DFQ8Z*}xA+w?CbuE9_ixrKGIgTe7qWs@G zKSMkd)rgM-)wnlDi9b!uUO#zedgFCR&3sJDAKk)ZD;~;3{W<&4krm4H+D^p%a?9_& zc~v-!0%!1x>`07m;%fsotl;seSNC*j-#?9S2V=Rk^k4j_YE2e=ohdf-6Tp{1I+e)^Kvc8u>wGZfeV}7NJRQ9H1PXtk&1bh1nS%y7K+DQrb3*_UHYi8-2)ctK zW5ID#{qmll93G-8e^}f}ENhZbT{=e29X` z#clJZV86}+wxVqib%Ak2@OY>ghj07-ZpL^Akf%x*mR0_P9sxnkDEJ6pfj1c3-;)k8 z`LfkTdF}ig0-AmVG1sWOl>YAnPbiT6@~q8;P`6pszqk>i7Th@CmK0eS=_ zeL0^DyQ;)PTHtT+3f_M_Y`@&K;@$-LAtz2@ers(*4^4@auyjobnWxal!nhJu1 z0)imFWf%XakwI*gJ!!JFMVsO@I>y}b0dlt?RWL#?2nl`ZmTv1`jKE-JH`w?uP21ls z5!Xx7&5qbs6m&)mRW}IG5JM@K4JgxlhdT&FgTZqp2}$NVuyO9tactfIX975)PlC~6S^eTJkX zo~azVfPNhXHOKAT0C5T$4zGW1e6_0`1@_|22Sj<-?Kgli@)&$Zb^ti-M+CB|zMMoP z{ZqQH0ThNwsHVfx7yN?`_iF%R$vA2xOX@xD-{E<rm4K(#|jnW|oR_Jtn;uE6k3)&?)bQSqnnU) zG4y#BDQ`7#Is$gaUya_*6^@;D?%hLyV#LSR&XsRt5Z*Z*qx1`3qs$mp=F3P%06C>h zj1esqS1&v|hQ!R0xhSPnKqXQSkYQ1=`loB>APEg7s&QY2Ojf=_6|4yV>BOhIJ^Xs@ z1Y!+2Oj%VN%6lYy{{?4MD+dbz71B!5nm30Ar~TB6||7C`Uq2D(za z#>|0mt5qH@h^N1A5Dxj}kpsO~8@XB1XT6v5Y`DR1G1f*&)|^v+Q@N4&1oPtFuPaI5 z=%aeL&Yq3o2k}^FZ%8=JgAXt5D!&6Pwk#`$E&qe>WarU6B_1FZ%JB)(k8Yk)y^PL( z)!z%U@h_{JH|2UeUr-cB5tC;IuNV(W}R&RF(({YVtn-vCMXf7aoSyyuEwagxn%2YrAIg7VHMk)IW971`#*kg*v8XgpL4D)ge zE!q`L)>6rLJ3;Gpm*{8MJM`L-f`?GIXg9=BMoe43B4CfW|KLm9FWSQUKkKM%?*=E8 zD8D1rBTlpeL&f@PE`{U-c$l;p_G2o2kZqz4oA>yx7hvqZIwp>PK^L`wsR~kCR3(61g^*U3YvY2_Y(&xePliWO}Wa@-6e@zJ+jAvcG+_zNq9-`5S7t zSq}Xv^%J9=d6Z}Um;pyzBp-`U1O1srp5h6M+zzm96mX)xP%*n*AbdPW#n}Cb#}PAL zEO*lLa~r^|d$ksa8;j1fk9BQo)|8L)#gGZkta(9E0*5s&e1-3_r`1K-^PNx+rS7}? zk6hP*Vy_T}b=sF|!@~pn5KMaKuDLP~$eaX=n77$Izbh^~sgIueDest^#%zZhl~^m; z&Joks1LV2}wxg5!XC6DWK&S>Fd5pk$7 zSZ-#-SJbbiWJ^2D`0tO${c{B(v%~}CPj*I^!OeWCMtCM zj%S4LuOVE&3}NU3=I{wvl7}-BV!qP+w+7+kEJ7?{`iiL-97rE|6>edU_?%e=(zwM>|D(eCszdF zbEY-=;|i38B9!L9qkag-^9iR+IF`io`na*Ozfau`Y&CgqAw^shTK z>|t(M&(XvU3ft#5Gx0VY5`QG9D*5(!xKd7F4lr};1x@t8Fu8@gI0oGFtr}7kMhjhi4P(kyzxD2lib=H13W;&`)rwzcc8AYFf`0V-t}dUP zyC;*C;5L%*(3#zpkwU7hgL*%o9zokH9uB)tKxKhJ6Rh@gG3y11+9zuEM8Z0k;a|nu zQ$BQ#XbOSd|v77zV>gwbA)iZqBl-ipj#73rA3!Y$m;n3V;pLz6F z?XJ&e^gHuP0+WqB6{Js(q*94H zvZyb_*1sJ-#lH16nCzT?HjZ%HmY3jjA8jm2mifI48qNU{t3sxb-1~gba7%WFn&u{@ z>f$Pom;RDx_wTQ~`w9^yK9WO?A;m7@F+0VMSB z8$r#SyZ-%h6=aZFbhb98Ir({A-MbBb z2iMNgp21q{oIZ=poRx}2+59zR+d+0uBxMK<{>%3i9KU^>DvAyJ@IPBn7|9}muZAoc=Wyj)eYkrj30W#v-KL>1k z*vYW(h7Naun|*AjKBN7B%N1}p-R3Dm%sU}TV}y4TR)$0nD!aPpj!93H_nGWT@sVW` zge7+1n#Ev-%vK_gcp{6N#CdRpynyJ;NhXxpdH-~1#c5MzeH8QMdYS$Rx-?jA7G6J1 z%fhpua^k0t-tDWf-{uK6>zw1>d+~Uj3CN15c)v7Bj$=`;M5|K7ID9_gJ4CqqcIeT} z6F#69>pI|0e*%3%A5Z}dIcXGqzz%$jJA7LdPDi{VpD<)*`o718cl3K@4Q9w-sXHI8 z7{&Z&hsIJ{u^y9TN2{hJDy(_%^u~Z? z`j_LZ9Dc6~S*)Z&9OrlR#(rRj+Z?&%)5mG?sPoa(0kJ5tYs?y_S~RT`3Q)ACxP+!$ z#{FFh*DG5lh^KBPz-;T!huQtUGFXgdtd7zO>hL8M3nEZ?FsN$_wCk6fQ{-aw^Vn znU@jqI@%wZN}jKsKVSLSPKt|HFtIv@y}tSuM?+xqYp4v&bZCz1gqhfh>z1Er%o75F z`Fzqg`rNjb&PJAx1*!WlRoj}Z^BAp0B>3feZYSaIy0vP|wv~^MJSgrQ>=6;Q+UqEH zR>Pa2k2soS2TvedyCs>F0+ER{T0b+q7I1=d16txlkTZ3vom92(Q4^D=?Be|-kDDL; z?GK})nbH{*c*yy+<;`vS()bUPtb-2^cW&1+cfIvp(U=P;vt_VF(=VJb%;a=_GAx!M z%OJowKRKeT84~-KRpf&&vG)W2Ayn)l@0v++t{&#mG^_l9Nm~RFzkmhjOMciG-hk5< ztDTo%jj(Pph0q$T;%M2;*=UWR?;o1Od*-H(=v&+S@-!;8U{CwOB8)1@8O&mWA?CaIk z-W@$%pOurXU&(%&Fn;%xe<1k%kD-Wcu-;v#zsY}LK~5q|p^2Pg@tgg=5G%wX`I%qd93O8MNY>$%k#v=dzf7lzj@kn0)dJy}H|(7;;fV=PX|co{<2Wo3+-H4! zt-QWZM(vU{5QO4`@aDi|p)8|T!Yl+i!3)*9xH985VI7x@;fDF;^@6&r_r8u<4Gb|f zys5TgUe@<>WuHTzk6*QuH|@xKN3)x~JP*5~84c!72@(75Mlf%q?;tHbMjsd@Yr?j6 ziK~uTK}pA2;`O1zN-zrHPSL}$B|~sZw){uRcCD_{sHmfTelRe;H@ksvM#Hn7VxS!g zC@tl=-mtB?dHg`kR|;kez)Dm+>%(_PuUN#i@dqaR>jhHk2b$cCJ;Tn`PAgBxI=WU# z$mz;_!VZUcJ!A@laYaIBAn}4Y4Y)$Q|72z=61^j4EA}we<}ezPkTL^8?l?i!c27d? zch4txHHQc6iBYRmsux)cBFB|%k?B((;fa~9nx?I%S) zMuV>1uKKoD{!fw<%7%lm9x2#y1*-dlqzdabU{lY;D*V~5M^y_iMndY|EHrXFc)4mR z=2)>BAM&)94)3G_5_@fMqb>XL0M0OX7Gxl!z+{*4X#pt1o27^W8{WJ>tN1~)PF7w} z#l3cA^Jcn@^FOS%65nd*4h_C?H!D{Q+!b9jM0e6u!`PfiHBT0*!Sy zK>Y2V=IR@$wi%Ts%FbmTULmq&FXkCqKGqFHLNm@k+gnF`6bC)_@V@pVH{Uo}`$s&3 zp?zOxM><#70Y3rKY=0o(BMj{Ttx61ym4oP~+g6qrU1uPOQPGL-zZ1t}{3p;uMSs5` ztv^s}%&r)~s(+wS{&~T%k*Gcma1fAu&dCYlk&{2b5S-nW^`$?6OR)TldqO3RSAAbQ z0SS-{LRtTS=UgZNHVE*qs~V^Ex}i2Q_YpOD7R?(iJ1r2osa-Y(l5fIzBc$d+n&raU zS(3I9BXIMKY584%ZbSqm&HY(BDCb(HEH!5O<5gS`$Rs_x5P4v!85Sw!>RdS04aTaq z{*!A3@2mK?wNwwu5|ERkERuDLQ$b2{*NT|Ylp^)Sc#ibMOn0EDpk3`45 zVO+{=&NM#sH-2j&VOsa}F+h}j`vt#m^! zj23I!Tg|&rs48B!4L1VUgTj4cL{!BBBvXUKq%$dEEoJCU?MdESazVN%ioR0?s!=R< zCy67yBbhk24B+%|#k?l8wK*>c;s8kD2kdIQ2f)Koj7+Hi=hg%^xban3A|yJYd@JCU zlU)9k?UZdc0I}lt6pXVpR0tU@G z2NT@*<7s*1Q7K;-)qA0xE&n#pX}6WPQ*QnZwir>gGgMfn->yQAxdG$x|%Wh6g zY*YMq#=4Z6Ab==oN~&M7U%HnbKzF5KJUm*E`H!>?I_IWGNyLAy@z>~GoQz71D{qxQ z+}drmd^exwVH=7X3qQ3uKb>LLdIGmBFEk;ckM0ReQ{SPVuuqRh^Z2quOLlS((b-12 zfwU8-H_nzflohh&3cNcJgZ7kd;#51U;*wcpu>)bJniO&{DVc21{G<Eui;&)pw+#y2M6%x=ElN zA({&jClu?+C&b3L=N7-UCFRLgxHhWaZ4TP>)wK<%w=7=-K@Z*gFiz2*Y^#9u(Bk zg)|{YsP3;Z8DGfpk#}Kuc zbOlHjN+*Rq@t#XiKN~my31<0Xy-FP?3mGslfQW;-X#aHwly^Z;4OCp<<#=qMd*+_% z;)vC!9Y6E?W}-neMnoyssh0_eyuT-H%0Z}aj7thZst|F5QtgRb1-H`hE^f52x-l-% zKgf?_KtLGGQf8FVf~6#J-ulILU7GZ5in9CjqRX5-17=C0;F4}Fv2tS-mlC13gV~_+ ztsIl8ZIjbERsvDSP<9*_an4=MN3O;u6iy^KGnw5Z^JEa#6MX7F@X~-Mc!*%dxdyCH zB~Z_B!nn}Q-{Z#+^P11~b;v5*wd*(&%nsNrvI2v}tas+c0*8o5NS&tPhHKKL%Ct|m zxKMM7fwzY{mdGjqs2K(o~?}wR*RzD{{1jZ}k)T4JNo7rqI zpt{4=X6t(QRYH%qC7%;$?kzKfT*hZz`hHrMW;A4#asmgLJB5^+oMSL3RGuJ6yic2P zBHEPuxkUE}`68^AHKKcmYMC@z*25+_6X~M7F}Bsmdd0fesAO(E_N-BfqjC~C)UGED zh|}|^IImJzYyfvbUJXwl$~N168Prdtj#PP6x2NCQt?>8=o-){cz-$G|Hj<$ctwDbH z)nUc`o|Bsw<1tW)848*jXis-8qdbrg5cAukN%OC?j5rel(bv-gvr_D`c5uJ1I0U}+ zUIh$&CzVs+EQIoJZq251p;`1V1@5~vhBshgs0RQ2(C$u44P7qE7E>J}X)E@fPmve3 z0}Qp}e%nf$*?>3Df2U*5PNzb3j1~W!PbJD2E54qNjcE>4{Bu?XF0=sP2svGC_vIEV ze1ktXZdT%)@7PR@KF%z~{@I=$Pwu3Ul5+}LL&_-~6u>}z1q>&E`;DQ7E+*g0dF{36=ADfURCCh-;AvM7Vt)cU0Nkrx zKjiCX<&9f$W2B?vn;6vLyS-_q?{- zt6k~4-(xN=E-RQe%FpsDkIS!={2(`3)<_8CEI|HX!=$2xD#I4j(|8!0yrlZn&lRd5 zBUv!Y8mI*`8Q{=NWqv5ku^X`~zm#g2xQG?G_BI|~l@DM@Sa1eIHKbeV(YqK~ee<3@ z+Dwy*1;X$4d~dGKl{aj(Moal0t?g8K4o+3#ne3O1a_UkhUwT!Xl}^YCcunBD!8`#U z9zvL|Fai2PfkOckyIEBkQ0$wRp%+82{=dW`s3-)@CyK|e%{b(lvn()|9Dp(xI!RN5R$VSB$_J-}rkor4F)zK@vP$W2)isoIh#t8wL9H`3=f&i2 zL(jQalXoi>hHd0W8Fr0~qSjIQtl8buH8dE6VsR86oFru$`H96H(H0Jgmuhf{e#uKc z$+QZY+Isz{s*H*&8QNjoFa)t`I1eEqeC?U$d!+RTPv(Tnx5CsDdQyH-ax=Ko+54o0 z%Sozi&C5PNA&x`Rhs+<_ZmRO|`_xs|n$r32@=LN-nk63(okMl7r zwbVf-{LIaH+Y&j17bZy9&nl8)T?cd|;fPiHUQSEy0dTnA3Px>D;})aFNBZhyN%OUR z79%Ih?_C)if_rWHs{afhsJ>QT&uY)DiN3JKQD?FQ_X~|1l!_GDCd|g-XRM>SL&fhY z>;bFfu&kG78n!W3;LyJRF0Pl^7sQ?AM72TPI%Nf`znyJt=qcWMuqZ3SEUwfV=tI|4 z*}xG1rmE<56JcN<{>DxefLQbJou%jGIZ zZuaVd(M1dH13V=fnzzAR8-`&IXd7Is9WI_pYx84&io0bIS2C>F&FeOaqS>ZOY9JtDKTMdd;-6|oH-a})hN zv%yi%(IJ zC8nF;?I>|n>W{fF3aC&RWqaEMK&~7dJqMP-})3&r!7wab$P?T7(&yTw$=%eKs z`pjVK@^BoH3Z*=zF}hVu#y^cW|H@?;t1-F}W^bptSR+ztVe(#|sc*+*cA)uO@L=L? zrGu6KY53>Rc8QT4UI>>pVTUyL7*`Uy7s_xBb_!|Nl-A9Q-_n_v>l^umwzts1HhVVzYe&go+|(2%AYrxie(bJ#lk3-(4eJAZUUS|IhQ z8lG76iqnZL(Qk5FBt2NA>@1(nbF8GRUQ^&je)D!b_a&z|wVVI6^ePxp+|WiEC&Dyp z@KIXp=qm0Kd+uB5)hAL(Fl*AC@99$a#|KcPl%iCJe{C{UZSg#$ZCM5%FLAyV@{MOs zvp%Tits?5wFrIswcT&{APJ0R;*TyW?edA~~-eStWP^%dff@P=acoNTie1bhXwmm1| z*P3LOl}k>1HK4GfqxH?ITqb0=3_<*e(tS+SjQ7yw-3R%Sx~7ibQ3UBjE@axO5v#iTVtz zj2*#1uSz?P7)2OZi^FL>lgpC5t8@`wpVTa$*blXHk#Fz9=Qj6 ze|&hW6@u_wKWHp8Cj`#oo$y<|?GioLzel%J){%BE;P%z&oBu2c^Q#2>?_XpRYQzX1 zJ4^O3D%v4}$1%D#w+mvG##Rxs3&Wgx#jD7 zp3}Y7YSoxhKc^^}t6_e0MvG$O$PvAFTEaPQt{^TNLqEy#y`FDuI#&}-ve}?yMs@4@ zoty_yFN&-UgQ8meq7xqx^3Ohr7h|1)OB7CKSU+LV_F(4iKp|Y*?u5sN2lTr&9dF*CV*4@~M9jFmwxLn&9yfH7swod<+)Y=#yavpH zrL*CwEfbmY0wgN$)9HAfTh-r@ZzTe+MIG*~yM``$6uGg7kziYppmvS*l6*CCqLGzS z-bVH26L|>T1$F4yQ2!?9yBbc9<=hp&Mxd2t9cT&^=^DQC+08`O5*ID9n%wfu0}Bq8 z1yt|UTY;v-WWv0YGe>1Xn{Hw6>2SNpRoCBGK(oL830hp^0kY4JHMu33rJ4O^|dxmJTQ>6i1qP5Sh837$U-DVxy9URQ1TuGjsZQ;JMDVz}Ejy&IU- zHwLWllSAiULyBe>i$oPlOgR5Gk!=+lilluO_`)P}*5b{7(JL8sZXQ0_c>G#Y6mCg+ zg%>Upr%Nan`jVOo3kObz3b9sE3Lgu?Vv@SOp&aq>OXj^8^n%x>v=4qDP|14_cd4(4 z_xpPrABHc%U5(ug$LY?A9=YJ(nc2idKHoUvB{Lwxcs7VtD}ulfy;;;@-F8{-rZ=qV_ENzedPKs~xhQ z$nEA1a(a&qeg;_w(BgKtaP;`}leRLdYAG+5a_`)d7kM`zcgjir#X#bbpVqP$i-+m{ zpWg_)mf_orGry5r+&oA_yp+Fx7oS``jkHxLx0+#(IlXI^VzBZxDd><|J&7h{JZ9x% zsWPhnc$*1HIvNPTjD>qTh5E^4eTW+78P4bvQyTu+a@I`oWX6Y9nF^{i^NXo*Uy^IS zm66+pw&xzs5s8&Y?R^YeiEdz!xjz7?qVN4+;jzbg%R3!C`3NHNAHPUCP`{p~7{m)7 zBR9^bMyDDL0uNsB*v#yYHPF~Cz>KSYk04rx!ILAQKD$5>l|>OAIUoD(lVnq`vhAqA@2l^zl4HhmcH-uZI z&`Gl5@YPaI!Fu0hYFnX_I}X5l><8B4+hO-dMWh+-OGLBrs%|lReKc9`qI#Oia633& zth8N%6D!LSFFYcX5<$&?#U_P@A=wN!83@jCe$;I#!;z0obfriXeJhT5l{~ngT4dZR z=B-RjY5E-gJ(2@4wV!q)yr+joDB7a!^u*VV_@T~I1SKC~wYX@@rpyHMNHP)EB4hl= zM3gicuJDW(?|J)cvggHfTNT0(L@R=FSO!i{Q zIHt~yGj)L@x6W0YGJD~C9k~@)V<>S(HiZ%1>*iX?Z0o=qzppp1*8$&z37v#BP#tJH zR4CB!bCMijZJ2&!eCX2?F>Tb0uepJ#2h#@UPr=cL@+js(l5BF(uty~stf%%H6n@}7 zp?Shm=7uXa`qQX~fyP+nZ8dAGKukL-X_MNyuX7kL8zwVKYmzG%jMr1exwEiw_Ka<+ z-b(v!wkXB6G9*=i9pJnN-+*sKNOyAH9+Jk61fzdazIe%%y8^9cJa&HKgL!WI!AD)Q zwPf*$vaWF(Xd9>>{TAuDp+ItPw*ql*xo`E=^_MVrHdobv`PG3T+iOC}oJJijCoM-Kh| zj*45VCF|sV8P$LLQ&Hu(9ESp|d!|*tYXuA|JMMvwT5sSN0RwECaoXX}BV%U-^9UZW z!|0y89QXb&j|*Lh=6_;xapW47Luq+b>wl~|DlB%$9a+ZsAEC_u15W>E!aLZ-A|hgkt91AV97I`4RtN9*0E%wX1d(tgum#OWwbow+YA}Oc3q+2avBTD6wBi zPb5KQe7n*;+bRczZ4LVDtMGli-VOjz`2pHbbxBJ#-A8~VR<%*F_&Ow4!wY>4%oFq(H@u%31b&NBrz$oK{jKsunie-u>h8R+g0 zd0a1n`9OBq*ojG2I10_T5>sBz_D)<jLw6f&2u|)wpOzNHJcmYON&@Kv%E(+r{K1cyVD4}Drj!vwrj*Yxk+-GkZT^EBpmmD`B*#%-7EoR>6dnEX2Y#gd-sXVL z_ToO=PI(k0&WRe1jBG!6JhxOsZ#3`&CtYRE)kwW8%?&{3>j8Wpg{>44uG^`I1@!G8H_834L{F+HI1jUwS+jWq!*NmT~Lo!h*+TjgvmmryFPW#JsU za*4rUllkvzFOMfVIbghL@9+*N{S0kl9UnuJyvsh-4A>AQSnfgFDu}d`5Ja9L2y&jy+`#vhznxx` ztoIyN11$~-ar|HfI%N_lQfPimv*3ZAOtNMK4gKiF(z9GX%=sgceric2uSMn!gm0RGv&Zr`=w+m}GKT;NcweFUto2vh(ic7)Bv(?GwfGGcp4#~HD$7%j zKeemFJzbVpD8d3#%9YqZLiWY_GcqF4F;=2`dGgLaF3!sUC{EjnNF`{YR?4Sis%lVs zU_Bl5N50cpn2!eK?3v1F8myXwcl!~zo%TVV_ur$G4uv>}qjEzd;}_QO%SmKZeOtJ3yBP*I_4gZ?i$^3fDlLb z%D&6Tc0{98Fefh{#HD#D0g zP>sYybM$U8Y+nDePs}-sds>HPn8$^xs#k+P4O|7gBiwv0^Hbc5GgnhNbCpU1lw6h? z{NzwkMxdn8CU zdV2*cRcMtw(Q2nnn=Si;q4}Lk(5AI!5bl@-ye;+T+Wf7S?5OA#^-;BsftZTR41Sl< zlAOSnK(6g%)ivk7XkI>rWe5~-S|BL{T8>NdVN_5l8dwo2%X0 z-59W-l8Q?W|m(<8tJPK9(5akSol-6j(95ej)zT<)Mj)q4c8Cnc3m8jR+!d7hp zWLkH0aLq7l8fl;#EopltqkU5CQErId<^mkE%*bAp>jWt zFI6z>lU=8SCu{njxdm{BowME2vrc6Z@ONZ1{X1H)-=^KN!$()hfSp~%(VR}h z8iE7NwM(QdLe?hYhFS_b_T;419JkK3mo2R`>4Cr}{pdVdk7pJad^}$6A3VrK4@n;3 zg~xOyG}0f*M0ui%J{qX_d(4yg?(f8N;wI5+JLuURnTu;CO!LEj@UK*uZAo2%>T{Md z+fdF#*!Sthr28J{P4yZcR@73B%Zne^_<=?(0wA`@WDr8DO0eF1F1g8uo!vDRRZ&rv{_k5Rp8#R^z#cqnRqN?2g_9_p3yE)1Q8!$`Nv z(Ci!rN6Vripr8AJ^J%Zi37MVpkYk@h>2#Lsf(@0|m z4xQg6QBQzUiY-1iM&b1}2x?}Y2se_PfsIg)P|svyv|?=NMq1WA{JEiX;cqiL{pxy0 zIY=%?m)4#*otf@~!?7uQv7rEJ(JmdF1v|Xo)r*>Vy6#f$lN;d9w55-z}NDyMEpIsB*A~&l}Nb>76Km? zOJOOJ8(=ZJ|AGnquNpT0w-B2OlW%hGpp>cmFC!J;Lj7-L?Ef{g>c4J7wN3oP>AzmT z=s4&97q6C%>7K)xdG($Cp6Gc_16_xMI-tVSWX`~o1&eq6<4;g;RZx=iZzqCe<)I#E zavUD>fVK5Z?HCNiwes#3wr!1@otQ-Ts3fR?Pyr~nWaBgoj5 zmnhOQ%~|Srroyl8YURl9jWE9u*u;Au15awrI{+~FeB`qwu(R1}Duhml1$M+=OhA#$ z3e~XS86b=R@JZUm;1}F+r2LN|oK&c~$H0nMaRq3WZ+*b&$ppp7Oh*y)0Mn7d->W`h zCI1p5vn=1*xQj^#aeonR(vy4J16oKdr~;KhGMWh(8fU)W4nwgzV1_?by=xo3EiJ4I zb>MrzFki}BP%wSCcjNJbhF&h zYV*B;mJF1Iz=fb6gW=?B4EFFxZ>*g7X92zRCwS!!$DoL7@N+xs*ulB=0-GX3;V1X! zHsCE0go=Mf4>fJxDJY?|hFL=e5Q}8PKfueIi6R&ncn2OUP84K?$K5}vS`jetCB%F1 zfCE*~w*KF-o4iH#nRAa1K!MZ)>Z0q~N*@56e4zyHcRU*rf129L6ZlgA3WiZ*nnuKa zts;C%&MSTI90Z1;0$YK9P?S~;Z_EpFq)w|~J3RbnH>FjyYulF)3KP7ELF0rI#D-{ItQ@eWwbQ&@5VDqi)i6{Tpy{1MyRmEm9bXeIXzVJLrqk_XSe5 zfPF+bx#u!_zSbkWmulIl7FZ~K8=%x;25WoyFCRC==bpe=oaa`8?X!-!lO*I0-qph7 zXvmGl_uWFOl#n_MZ53FD>CQz}axC=Hi3OL7{-Aq`K^ z(q-Ji4>7CRveQC=y+OVP0dYvP*5I!R7{y26sIRgzY4PVdUx|dk;{``nCM=p z!KswlJlrX`Kr_oLqvv5jOjrF#5n(34(JFIL53;QC;p2X>F{pZcu4y$vh_x zd~W_irGPt2?)##&Qp`|semV*!uSj)f03z*t>pG)HPfu3aGauo-;{Gw)0Bp1uGf1X3 zM=2^t0w7lJ#%3_fPs(!J5+3cBSd5m{Hs*T>9ID_`V5qo06BXHcI|rx=ZQWP`cKepx z)YEU&OMSWhGt1u`hH@JxM`nUg#5v7K1wcUzs=MahGf_eknK$5Z@{pi5*{8|3?K`qg zs!U+vYsmTR24FX00PeTC(xQV-=LSso&qR5=6mV?|ktrf~i&z(S{ADHBnM<#Zb zfMN3HKYl%DLt*|9XsE#vNR4|-019!F0T`%mr870(?%;dAC}d6@?+&u>Y$6rbfK;4h zSLu@Kwy3ozEl_OgZXon~dDq=$boyO05wu#ZZA1yb{pW~ry==4cYVu#dyC+Dc%zr=7 zI0h~aD-8g4cL^=spcrkyxT$X}D@tJX`u*Bs%IBLldaqXt1jX4`9XB0hck;Q3ny-7U0OV|=`~2vDRMY8(F#l(jtSFdpaFoaC5lE+3CXqPe!s5HgYe>-`G%^y3{9_21dY{u#Y502i?wM^PpX5pav?D#~?;^XoLQ5s8(Cs6eG?8>K10n&qi z)jqT4C;C(!7c=U0GOWp~0}^z9@y9y!I3--f83t%hcH1xP>7;g!=PTzuNl0&Ink?ou zQY$5)b`PT--4Q9V^mp^vF;j~eL>59q7&6~cj*=730GOZMf9Fw_MH$LR@+~$Rh5`O$ z6npl0i>}Ri-<4 zVF5S}=6wYi)Qao<2h8FR>eU`l6>Xk}^J31Hg4R)|Q}?#%aNVM0RLox5SAXrmVx)g)Qi%`7$H@F2N zgZJ<#T7bh3HWfdDa?M;`Vgy63vScF%l<-34S}@}!#rdm%kfwrID7Wx{VS$B4(Su2u z`)V4dFAehyamr1U1lh)JsfpS_W1?2Ur)g9B-~Q@k1n(R*LkfOM_K&>UJqZkVz2u(C zBE6LJM}+#(ehoui&O2T+#IagMpCO6ZUSYf_;@j{A(tYMV|3mT0W)?;e`r;aprKfN+ zWSB6gn|^`v!|SN^vOp)&q2S11?X1#zhfIgbRJUcpBN%L|X%fEKx4Pl0{$Yx|9_B*` zO6N$bR{#DjrmTZ_9m5&+RVheB-F+p4fw!f*wFFgL^Ft^9Tuhnmf5`^B)lX-`=4Xmk z7uFkVv(j8<*4z(_@(&MO@-uYV_1}-Wk4(xOGmV9tZGDyF^j2MwEsnh-Jc|U5sQFbG zRpo)sg6*qH`?4+0EhN!~uw`u@87C++bwkq9F57Y>NYT z2z}OOwe6f1rZ;i6JB(%7eNkb~%UNI53YaugB!M>ME8qfp`%;Pk2e0a$7|#F6f+0~+ z>Ez;@Ij=HgY)etB`a?21p*?-nOcu;x!DN?f`=z7n;*Lm35I8FFk|sR%yQQ!qJE*^! zS6xU5E)6#6dXh1W;bWxX-U^T*1z8KKTNI3Py+-^4xoNsO5GZei8&Z!5ks|y;193Rg zZLpnNRBY&um!&+;boVl1p0uJM@UtsN1Ht5z&+LgH^Ljn%*k_ zK}>+@As>OONg~0=rKV5WsUJec2g_Y_iw*>yZAV^bIvn39dsKcc|HP21pypc+h8}-$ zCAm8rDh1rQJdXc#nx`1wjeUkToKk1ZT*9i<2QEE)^{X?OD1+`mLEbm3^?rNc{T)|2 zuYHu2m1(TKTlFqIMxm+f#MPzC?r&}cFZE`<$x^ZFW!W7T%DpUM8}(O!vgv?VKTX;bAH~B~l#=*(P9zrxd_4RopF#6aEA@ zn#}xmelZvG)jZX0WAwIBt}R$$0XQ~NmOkIRgf+$mo?=(SQmlipRLG$(c{1X6Rk!su z@^JdcwuZ+mSKfX{T;CmWzhO-{v$!E2@s7tcuBCN2Or>VEKE}LX%e>~_i0=4vGGt`d zK3lMTQk?KPSAW${Tup{Mw*Efn7C~><4p_G3Hg_FQapyRO4quPPxGb_sr&Od1oW6gA z-0JNtmqu^Z+oYNSHuNmMZwq`3IIq*5DIv7%K{>eZ1hng1cn9tCF(IDSv{wCT-GFjk z8FKdz732$Q%ek7bZ*Keev9`2s{NGP%`3Wx9G>4p?V=JY%4aZEC??!R%px_INH!+KP zDyW_EuO;6+4lt6zt=o8wmlb3NB#m)lYJor_H{2!}Q8t*ifC;<-o~r^09j;;?$er8I zK>-^8c2I!m_is_W}$R)|-I8FSPXR>wbcm z2NDGboIzuE3^34H^mDng7h%ro9hA;yO_%Utegq@UC6@thooEg)YAVIA=pp znsgCK24TG8MO%Ywh>-ov`VdSj@W% zAZN6K+!Ron{|g6Ql%{zQgdPsQ2GDPrV zKDSuS7Ywe1gJwAwvE9s@rhlL^`@jkn4nILPSZ{PlWGoio8zW2Qp#CUAOYmA+!fTx2|ocGk!2LDRKMKz0buYxE*xHHs!|IL z?eYGK77qt*tm^yJ0vOKP4H#2a--kqidu;zgE?!I`c)7mcEFF8HfmJe41@(YXWCI`2 zo@AvjMI2}S}GD8DUKLMCc*4<;>ALU*rxt;Qa!plE{MXpsFnluL0W|N;A2HbO@ zu@MZ~goA>HSuy}Hs50Oa6H(1SWj2e-!sft*)c_FUn0ufRvPffqZj?3s2^vLmzUEL5 zT}hkmtTq<0Rq9{kpDy&zAd#Sa9@M5%t)<)8o%H-iP!w%6pF6^PvukjX;pyb#)tL+W zyB&$9_y(IBD%b%*)j0VFl?E8jzWrqv9|2=})=Hn|Bvu9Rl?0IFP}TML1wPaljbkIQ z767Ubf5s#!nm(w1tiS&K5lX2v=o2eTC%f|)f-Qaq_W%>irmFy*M*tX*zAp0$>X#e{ zcMvfW;5y&4cVlqE=&c|or5P^=D!o=M`IhqcJD^js0EB2VoIZkG{2b`~Euh!lreX)Q zpN(%{!!u|az|q0)qx|qUdc*?r5tQ5VIpWo#)xN7^WhZhEum@-`gO=OIbRTdM;B~zZ z8kfU5BRRPR^HdDbl?NV!Mk@NcGq1QH<*Q%b<+wORyNgu@Yf-BSG&*Y!5_=dU!Fl^j zglhwuY-e9Ei+c*GL%pAVefEQ|0`_Hcjzew)-|r+E$uh|ViJD=TuoI{UEL(he59*x8 z8nnN9i9xFQf49dn{}}AfOg*Y#w<87B8LrC|1?J-mTs=V>IsUO`8D-c- z^A~r?{{$ALnrbm@Qyjbl0NDICThTH%PIS8xCnT_Eo~_O3^-3?l`AHOhbqE|LrtL>> zXYTAnhM3m?k~IzVqMe>Op{fH^I;Xg2cSenW1C(QFU{u0PL z;QLCr6&=dpUObHWAl5vp>J;?v8{eHxNbgy~J}<s^IZo5!8*$;c~x={?0-S?%XVA1?Wir|rlI}zfES2l znT#!4=gTveWoik@+Y*O6jv1*K(pV;%bIO|+BkrYlgVr(I6_mfXO3EE=8~oN=u1R`{ z79gBrgFPa{8-Ww?+wm71Sk)Bc4T5-rdUSKfxgItb$!8rjQLkO>e48)8`Yuo}L|SJn zWTEhm^;CR8S1`00658SySA5ePYeGR2`Tc%fbGB~VL{>>)OlRKBpyqCDb;r&Zh{caq z0Sr2R-}KM#qnyFVOr2>4WVHZ+8#!?HGS39oOXj&_g8%%74QA+BC9p|tSYPC*L&!*4 zGPIvy4)6u0h*HYK@0}M^#(wfiStF=3M+z)`CFMw5C&Nh4y{&oR*Ulr8VpO=CuQ!0E9sM zjhH86(%`zNM<~&F}QX(KZMCznC!Q zs~P+QU^+*@;?gcqh4$>*RfFLW_q$UBG_le#UOu!Ju{B5rS{pOyX|XYVeA4n4EG z`|UT{NQFoIZ1qLS4R)&pwkwyg4jw(vap+{ zg2S80yW+88bft%Z^`(VS0J)p5`PW722qBt(J4C*3GB?ed>Yb^(vtwQ|Qx1(~WBLdS zqvYy0`JiM3u9}z<3Fz5XN!q-zr_E0ls=1q~X~@ykIbr`Gomx)8x z#|{?mwL+!j33gVn>s4(jBN0`g1`!8oEQ6_&2gs4h{t!K+=4vvrjY}(=0|}J@=a5j} zNmR`Oh+-lfc_&^N54yf#1d1)>oxbx@<{befQQ3!<59QYR%FB>Bw=$@neIw$SLH&Zd z0jWhl<1+u6wPTTVOEpOx@fsq1lXN0u3E;VWac=6&G#&MxIxBTXnMY-Hb35NweK^qh z04?3lYF=NgWxM^EE*zncC)W@7mSZF%N6i}-bUvN1BkMkrBdUN{A1?jvP*T>dPw=@Sm0DRv<-oG3@h#D`rObGOteNLh&R%KMT&dfU1pdtR?@>a2V0 z$#@eVEe^pX-(t^~wj%2~8lm!!2|jwiJT-LN4$|cE?`ZM~7JgX3yx)!)_|7U>NgrOP zEz@<27PQb`kE)#bkfBFrUbtbN8|iBsT73CRqT@J=O*$ca8{Y(k$2hzWWR*7kJFVIm z!rP>Kzt7ACWH`dp|3ToR;)?lC(VQCf(f~w2w0~G8ylLxNKzw=|lSwmF@R!UjPblM< z?2I^c;Lru~J-zpGB*QEiO~!F|A18$-g%BjYboPuqDF^%IL-T5-_OLXci6QB(n#6*F5y)O|C#>OkP3SZ|l1t`3`{w6GR5)+k2 z9ITIBxe;;{Zex*a%&;43GVQ5Ie)9ruY5C&lW{KIzM4C214Uc-rN_;}#py-2&3_f1) zzNXNd-5k^$nKDd5c%Uj3TeR`V&04+@MzfV<)Kj5? z71f$kif4ws4LZI08J(q3QfzE6$?9QV78)A|=11SeW|3Z^lP98ck-N%n%WlFnvgC<|0Z$jT&Dw}_ znkJEcMc?={A!{xif3)q#)+&%v6+p)AcFSTTllYwP5?23Mg=hnA&;4vHd1h`1L&~>S z%q{hYTC1a!+glQeS8{p-R7IR?G4O>*QJBYWm?@Q`0eRij+dx&v+jHE$c#DXPUD z68f5_>HIfPT2@~PYh)t4f2{MRnpCf6?$-F)KvSog*wlXxE(%88J#oQs@j*i7i$o2Z zXeAyE?}R8b2?B-N&-(qJHes@=Y%-k4!v1=Z8WC=&q+N1%tUZCR&6OL$nVL2gNz=z` z?52^RR)L$X<36J~#rbRx?;`>a*2%N)yPuC~IhHVPC8NbtP&OGW1lz}A zT1ux&RBt;a${RE&SQ%*#pFbV*=#0oR8)}*&g2BQ0DVD(%#|R_ek>(Ry$;43e!-7d} zYSLHW9?Ztv=+ZIMKM7dT|b0^ilxYW&FB`TbZCYkY1jL-dV$7p5yuhOqj zp~c~BW8RWPhb7pz2D;wia4zl|QL=fD^ihwDKzmx>H!B{yN$x}6!Jfn)WUEJ7gazPU z9lRUGLwrVX!astb)4`NEMH1#%1ZMhgJuL{DNiGjx90a>ZP`~^HuD}@JO~X(GkAl7 zXsN+ZhFn0Y8~0CVwTX%dPZOWJ>d)wOt^v1*wF(6vTqQ*1>&v@6>;SJUuib+V?E&>V zf~*BqsX_VN;-CKGU;P*|9SF}ZQ92c>!XJCY#*x9IG!U(k)ZP&xBL;Ue9xaI(dwut) zoggG48H2V7GPwnSNhslM@* zOxMcw_S);!3QN(9P2C|X&QNGYd|;K!Gtgt^CD0i9|uKf971 zEKb2Xi=woMSP3Qu=Q>0LEAWkc)%B}Y2XT>! z?1mO>yNY`91J#W)!`e!HftPT9)JoU0iXXI=Xd0Lwu>2!f>>Ty&S>4NpN=)+&q)cwD zJO%jJ%^>&`Z0^uQuX=nX=is$%Uy{Xx&%24~=SETHjCaWn7y}av<}-|`@v>US0+k96>O%WH)L$fr#GPUaYku$EeOl9GeGu0 zG%M^&5f5_dZ7G^vxL*7bWLX!BQ>kuT{&zv%kfk%7`^}TvU*3rNs54#l=oxW5LhwtH z=iz(4AFSq1gjUO!wzZ|M(Vk>-l9hTfpl|6bO_=iaWYlRckfyJF^#g#RbM^d*x2MFo zoJ*c+%P@Meg*tnBriwXT{~wWVSSU>^r}bHyy1uJLV{94K6Uq*}7BA#?crI=l0%hy$ z2YKgA{G?Fm-wNpPSSaW)*iIC*9aRYJH20F_mn$zIiSV&7)y0T^v0j|5WAx@w{%3C0 z^lFn)Eam14$5xx=m&qm!Hd9?g)q>?d-E&urTA}fMir)M^&Ov*Bxx478-j9^OI0TG_ zMtywOOqu6BlBQxJSY2*G(PsYGN1N5i-?6vG7M)|TDd5GfoM7#LBE-W6Qw$gz=8UFO zy_-YUY^X{5@m1~S{&+vM$T@gMTgM~K9+_D$S9glv zaVqU@#KQv;zo{UF4Ur2^L$26}^jYQlrz8V&7H%}c)1lL5_Sp(>!onesCJZl^4(F?q zHBP^S{yZhVTzHuGZtmofOM7)hg#pisxBwA)WK;Q;ORLo8?it^7ln@J%QGMr?ijXjT zD8}uB{j$vOFV>o0PO65jCT6JKl=g7s=2P^eoy-ULambLr*W%ZOlX}-oEu<_f2e8Ao zi2=0hQh8y%co!%@@}JAF__wq0uTd>cF`k8;d_lABePS$&+b=K{LlpK(yHaZ1Y1t1x zl}U%_KPD^d8Q|Y=KC4Hc-Lp{Tt*ujuL6>73lvsqZk@Y69QRh}0-Sn$36;95g*xAha zUnAm2Msh1ruf8lXUj4fmMLG=MiP-2{Ydf;N@LjtU3=gW7zj!Y8CEh@yS_<{4Y;~yJ z0;5>91$rqu0e%N}nbaZpQtnBEzwJP8`>Y8!zdQ0Kh=nsQx zM|8CF{%UK>fjSxKBH5M@+8HLXLK+Pm%^=X(qW#jSKJw1Q=a`D?3~$SX==#87BxQ3H zjt!#~V5r)|T|0nhT5hq);{-Ve)$|08qi*vNhDLiow)i)tV&nY_k!HADMW0X^RqCHn zEjt`(-ng}kH-|;9&c=MmB>k=Q2ln4rZB*Ou(v%h>bUi(=a)lq;=QiH`yhh>WFdm$6 zI24$lBo7TcS`S7X^85n}Ds{72h-SeRWfggKJgb|%upZAk`XlB%DbrPq-21P@jNPg;K zbu-=_ejo~L@y~fXM9^_j7P!;&F5^v9m;OWxrwLoUsSRzn+GpG7L_AM=Xe8a%E5)*~ ztGj}eqdR?u5o)E)cH7V8Jy}9#{w^Uz4MDEAXolqyftOms-B^{2`)qjj@x**~eAxL@ zjn7=K%t~xYACcwQsVEN!UCFW%ta8&btYw`Ao}ll_Csg6&9E-FHJ{OyIs%eu5>xJpf zi4t29EX`=)E$l8zKiBNys7cgd7wGQNG(y)P$gld7NEN>Lhk!+Qek(1$W>kwyNkdK3 zTg9Yvl&`ea$N+8csW$%bdn^LhDZ{U~1QCzwyDb&zPYyHsM^e}u0!g0-{Ww>{3=T0X zd3rW2`7pF{c>f_vi*aRAqCpTtmC+jvf^SvbsOb7N`VZ(y2p{v>U|Vp^JBO236&a({ z@8n04qeyNN=CJ!Cj?$qs6M2qZ8VQO|6(}kWePK~QI??>hMXOi#F&B)=2H}XIQU@{6 zJm%fa;Ut%2cYCw7$_NA9?IpjA4=)~> z)=jn(OCPPamSspg#C0GWp--kQMKgr1xY^U_F;*A+e25b6u|Hq+8>lD^QkXsN878>13i`0u!1q73pQXsjpI9}(quBrQ;2{v`o5smE=5yc3w? zu$yuhI2@LFAy4>XJ8R=QLJfdoEVPr7fFP3u;Gk4D!DJuhQsU;I^fUfW4u;l}-7k1& zRm{nxsdk0BE7pBK?{b(A;!o9BDs%c=IqfCY*)PpPu_jHPl6+o3_)Md*1*ot7%!Mx3qRrPOHuOA0SHcde$042GHrIc95df z3x!Kr0OLWq>+5%GIn7zN(l8?9bI#lEy!ycY>T+Zu&jLG_I|lN9GHC8}mI9^lm1q?h ze@g{@B<@QG-|KD9M-J9XN~^<17B{|sf@6@r z8dj?MS$PMJJ2b7D=>@o#2g6T94WEEpH)xt5c>s@|*>9Z-;k&EuVGvMc0ra&Y^5jvF z^kd1nuK%I#3YW5Q!x`G*fI&o7Jvm&TG5{}aswt=$pi4~} zO&3@aDNy57+(e>hdiUY)2S5U1gPI-b8$WIcW)QtHUVByR*j4qoNHa-8$H#w4&cr@O zl0eoChkRbt?J@`r&qZ3It|-4PtR~fY9UY36nZ-g=#RLZeqSIOcZzEUDFo*nMSk(v4 zp(@~pTuhPZ0}8J7p1$*V0P*{~-}B&YHZ6QA=?mslAJxEjOHx6Q+Kh!6gEO^vBd{Uo zr5sRg8@>9J#Ww%ur?AR0lFM)hCJ|eQUEPdUlV?unM8^)@R3>r&7Q$(5jr#qvRwpyU zOp*!49ZPAXq!vVppJI{M5F7JKg@k2EOk09EzgM7*8#Thf3XIMdJ&fw0!nU{<@@by6K z{kmglvU6=VTHOU@*vk2v{^xMU2$PX<&=zuN_XO>64$vJA!88i2;X|_4$D6wVXJZn$ z>@S?IG$Wc_fW8}dnO;NvhpoUmnPo8w$t8+6bz<6TLRZ8gU0^ov<0>&>uf9=p*^`=sW5CO z-iWMorX{_Kpj}>k#|%w+{R+!MJ{=u>HNx@ zNp0mNDXcj|efljmsgoW;!|xZ0RR;vLBdrK?A1OpLk=*5$n_1l=1cZxdt~1!oD#rwl zUVE=OFb5qy)i-Qr@4eQyWz@N8tVGgLwk74Vimp>nJKC3+hP{7>Fx5Wn&kQ?RQ4gN(0qa>%v`p-3JRX@x;AzY4MQ9h#9QRC%t59BE)b%{< zkD*Z?$wJ~0$fDd)UM$gf*()E3*r648#?)8p7wSH8YoM7_+%fUpD>sCkXg*#+lFtq4 z86d@0Cj&?12xRFLUmKIR7)(u)}0(V2em0TMjm=o$7$p|C;} zf(dPMlz&ihV9>{>mWw>60_e;_^8I+^Y#Go#Caf73Ltof2vbkZ*?PxsZ!$;)gj94&-m?6svJozi{v`NhPCGatI^jP(>bOjER`L&$*C|g=K z&>f%IFU8_SALhuyfg<<>;{06<0d97`F7(IiT^pU;PLd?HZ^|Es1q;wrNbr^gsyE<5 zFz?K}97-$8MO^7aa3!nFPddZfpl~ulC756T2sekvJZe1SL*~d#D@?Eq$OPT&l|dF; zrELK@Vutfyi)`PQ;{^VJx!Fp8^FK*6yMkmK7$Av-BnuFKC%@RO8|BXF>+yL({gaU* z)!bp=5I4eP+Xy}Gnm75ua3EviPi(XpPOMZOLu@wZVQi&0yG*qKYlu_gABbE64?BNH zVebq2Z%gh9wazUb2mAA)JZoUo{34@KtF2E|fFnZ~zD?6Y0s7TgRW;=>?DF(;^ipi& z5u%OP)}@8^G+FI32sjESsk}A%^n2Mk@RE2B*Syv@B86;tgGaGf&iuhQ*hA=9mW|S* z(xH6h0|;OQ|LuIeU?;Ax^e1-Tkk!q_Pz+*|qvSDx+rDEE=G4WX2`kJ62|}wh2N%Hp zqzj<0bfS8}=VTAb^CyOZo8K!+sN=WOkv?VCUe!|kkuR8x@BqW$_KWj-z3lWKSFLg* zN+~=fB1GY5VBL@0pJG@(f*QN-qb%Pke(j-`lY54rUQ_&f>fKLd0;BW4l^5s**NQX) zmyJ|sF}^y|wSH<}@tYVeN>oCE>B)u6vPTV;JkaK@9Ft*jk*2F{KpXK~pA+Zx^g z7lD3kr|~(MCVj)%6f_iVIu$PVi-0eiA8|n>^G|F4bN-J<=!>|j#(yJA`Qzx7FPh!= zeqZBOUxHO^$+V5iyRBxw&T(z^^ie+r`cL$REo?b&tgZ0oE2RJ)qmBn-Z;Uc3lI%!5 z4wn~5`Q5AzVO@Wo#%{gf8}m$YkuKN}Fub_&_xnSRIL1SjK`F9migh>Uyw-H;W1b+u zpHAxdZQ|m&FUfb$(tStxV+K!JK_wv{#C64Fjvfm6=C)$>LS3DcK)tay%}u!zYj`Mg z1LrO)s#jRmzH6;MeI0vKg;6}lT|vvl5rm6$UysPk50t=Mtm9;!Y*TK=7AeJ1Y0c<~ z58|O>8ZW!&bd8G-7yy1}+7~%Oo*a4feSR&wEKY`I3`V?0UFxaWv87vUrK;?(VMd&@ zO3LSw$K&_+YWW}dB`USB0x#EpMH6!DpV9I*T_7@yd7ijP3yxvSyj~;n9!cf7l!~HA z7a)lubu_-tFZ12%yTD!BS$AC9x%|7{LHhcg)1j41%eB(S8F5hqY*|x5d(x+ihMQIm zCWlW21B7IA)jQHDpT8+z>Eg#EmbyFwmfrd@vbOG>Yte*D(EFR-kuS&AOYO~&+Tnxu zVV{+)I5$@9p?th>bh_-?x;fwDF)j7qn|j;&K7k84H_WEnWM5R@FpH=0jTz&7VQpy3 zCGBH!)95_goUmOUnJIcf?~Bqo`d07Da+(+4q6AL^6TZD-$y^RuYQ<^Vgoj{~Y8@?J zt#ZxLRp;&+Q{eK)(Boc!&`x2~&SyH@AE@Sw_!)CY_|jhNiXlP7=EWWLocA1kW++MF z%)w4gXgX$z!BpPL!tls-m<|()PO9367LC~QC>mFSs6%i4zvT-DltIzaY|iGCm=qLp&hepRV;{e#(yg< z-W#ppT^zlj2NqJ-f2mlu3;m@WaZf^qDHjITyBvNk@_c{QG775*#GpwQZu>lJ&fZx6 zo8S7#Xg0QefuYlrY=1wzx+US}?dKlPZ)JYYRNZFt z$phjR4+I8&6O?9SROCuz5LxOMl3E6f{9`)|NH*<#S)*~LIxiLXkp9I{FUcSBVdQJ2 zUoe;Yyo=}RBX(w0X2#e=tZlBTH*0PJX^yI%?551<PU zPoIBUcICA)nTn{~2-bHkFB!pV(^ePJLBSFOZ$?2YgFI?CJDC9m&NiIBc;zDp7D9+v zKo*z1guwW#avw$+jSmUAE7gs2CRARyvj<9->TL+ygb2=Zr^|~m>w6%ep!)UzUZq0h z7|)=#C@G6>&gWqFqY^p0wQEy&{so+o*CTF`u$5RdBl(NVB4Y1Ddl{9Ftl|QBia`XN zz11J9D=Hlx!k;hG!_ehWxc3ioSldz0pX7%)%#y6 zB+#v$v&V%vi+AR86XXYUJy#DB7t^w|K<@rRN7ei1hnZUDke%u@Iv{9ZP4#mo>$K6l z@RI69<+`?~Xbdf_{AwCCsk2h;kwpj>X*E|*66B`$l3HS@z7u;Ufq=z&xSz$#|1-Sx@dA;(cGOK5|aJT zNVPTOqx+w&dK@e+kTYrz6AmNf;1nvRez`HU@5I2a4$A%%Q0!DqnUKcatwO!UFyj*< ztAIk&gC6=|i*r}9NwQ5yfo6&scnDlCMXRj3T8^7Y03wign1 z=QQ=>9UxEE5D(`0E2M*#LBW%5ww{pjP}@eyi>!|WtI?WSAC}>W7(B>n7~(`})*kH) zNcg;R1^SIJ2K6pgCsu{bnr@88=xNnMk1=rlIdyC;_9XoJ<>HP>c^vdhYgAC3Phd5& ze{eM^L|WOZpCIQFCeTs~$X+Yq^r8{Z{!x+{l~qJ{QT+3ielCA~G36+d>3W0c$T_k^ zQ<}c!MkSu&LF80HCr5H))ms_T=jVjCxU<6dSExFb#v_+)DmmAp#6FKNHC&;;C=W(S zBD2I{r(3g8`10Alx~M(#fn2_weEl!<{>3I(rpu@a;B)qdXY1GFCl@N`{H8PHp!fJk3IA$i8z?BDgvJULYvCnXIr)xVfvMIW1&Qbnr4e-)zhBECc!^o``vj#+T3F0?#WFt$nfg&M<4hDc z`{XHlzJ}SO0a${qqKGLZ`V&?_dsp{{ocLweaa4S(N6TW;U4h!5!E65fP zoweP=rIDJq598~b$;?G;q?nx#I)702*X~24cn5;9^nD>Ddn-u_hCqOP+Ouq%O%=8L zra0Lz)_WMkxuVqd@mSH%@na@}C-kD%MpZl;HTaJYrocB*6<$G#YT8gzlS;WI$!xro{v$=AvrlGip=MWy}P7)@wO|k(_#qNvtn{c zA(^w=Oc(K2Oyo+Z(kZ6QH_O381?H&rkKyX&%+QWXYsh+3-Aw_RDe4D))F^!~o%fuC3W4>`|U`&mQq9))ps*-;LX>XZlXoRm5NX6R)r&Cab;3&&niB$c-KY=5mY>>p>a zl3~@7{A9o+7dX%T{VfRvGj2ZG<+LDUky)9?Jb41=W@zBW-cR~TMhm0h$L{;=*E`>G zO3ccO*By%8U>Zz}L-vN_cfU~c*g$!lrQB1tHqo?d31GLz5$XNAS4CqRwIEeTceb>W^i%-(Ez?uA@#8?<$`~@@_C+ zkvf~E-^naV$=>!fg1c3=-@n-}^7&t0xy@x@my-&HD`bZz1?M7Am5+6__VqqKjI!hD-W(5ii*6;aKu)bg1@4ncOlT z4Blo-S2+h?pqa*fe`eoz`NV2`%MRiDjWPLCx))9ELMZl8X- z5ik5_o#z+bKu2MWrO+7c(So&E{9T`nX&P@-sjjwzb7T>{g{?A&jTy7EjZUCQ7Rl?( zo9{(GjHvMRg{yl=9-Wz~c*G%Ki6~D}{6*fvbu(5WW_=xmK~F{Ltn@%CjYYs(uO79B zkLIHZS+z_OeA_AcQws%5_@Lt!7sur&UBI*c2;~#$-mqAneQw@eP7u#m=oATFwT+!3 z50&qtF4<zy|KV8~PE*IWM8 z%ygUnZp=95^rQ$_k4V9bA?ND;?`@0`r~B3hDm91r!_fQI2F^21{QrOaCk^acxQpy* Vm?TTcn+M>JtR$E`5i<(-KL8at{ICE3 literal 0 HcmV?d00001 From 2d069253be1ecf002696b07c7a75a9ccade28fcc Mon Sep 17 00:00:00 2001 From: Paul Muniu Date: Wed, 1 May 2024 19:57:02 +0300 Subject: [PATCH 21/27] update image --- README.md | 7 ++++--- images/intro.png | Bin 0 -> 386229 bytes 2 files changed, 4 insertions(+), 3 deletions(-) create mode 100644 images/intro.png diff --git a/README.md b/README.md index 5b0cd08c..308e26cd 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,5 @@ # REAL ESTATE SALES PREDICTION MODEL +![intro](images/intro.png) ## Project Overview @@ -65,7 +66,7 @@ Correlation matrix Distribution Analysis Inferential Statistics using Hypothesis Testing and Analysis of Variance MultiColinierity -# *Modelling** +# **Modelling** 1. Baseline model - simple linear model. 2. log transformation. 3. Multiple Linear Regression @@ -80,7 +81,7 @@ Root Mean Squared Error (RMSE) (262383.50): This is the square root of the MSE, Intercept (540631.16): Estimated house price when all independent variables are zero. It's around 540,631.16 units, suggesting a baseline value. Coefficient (259767.82): Represents the change in house prices for a one-unit increase in square footage of living space, with other variables held constant. For every one-unit increase in square footage, house prices are expected to increase by approximately 259,767.82 units. -# ** Multiple Linear Regresion +# **Multiple Linear Regresion** ![Multiple-Linear-Regression](images/Multiple-Linear-Regression.png) # **RESIDUALS** @@ -151,7 +152,7 @@ Overall the model was the best fit model for this predictions 6.Differentiate Marketing Strategies: Tailor marketing strategies based on property condition and grade ratings. Highlight the benefits of higher-grade properties to attract premium buyers, while emphasizing renovation potential for properties with lower condition ratings. -# ** Conclusion** +# **Conclusion** 1. Property Size Matters: There is a clear positive correlation between the size of a property, indicated by total square footage, and its price. Investing in larger properties can potentially yield higher returns for investors and increase market value for homeowners. diff --git a/images/intro.png b/images/intro.png new file mode 100644 index 0000000000000000000000000000000000000000..3c0c2f011af7636ee1815674b19d68e1b840d388 GIT binary patch literal 386229 zcmZ^~WmH?;^9CB+-AZvN6p9uo6xZTfC=_=quEB#BcPUW3NL$?9Jvaq|yGw8n+_dlS zf7iMn?uV?ClasS$_RKT0pP3z@rXq`j`4STV0N}{WNq+1TLOpy|aU(}vtIyueoU7J}PQ6y~U$_#Qc~niAnkv!;4Kb606m!fU&!Az@ zX?su~m%p;o&`O-Dn3p&IlxDW-r5*Q^z|3REs`alca@C=g@o$!o4N)5xCxW@Q_ML|9CV{$(6@~6u{UA~Ny zBYGYGRVY|yx={MArOYdPr+V@sD{;oC`YFBi@vLJ2q)H0v=bgD8+EeMsfxmDI`#Gg~ zX!~aTwKt#q1!K&!%Eit8l-s82^;6a?uM*$$*?1^)s9#lBnXgU!r$qsAA@hHIx@l_+ z8v`+uxgl9h${H7mrJ$nXj^|2GyY$3uF`c_jP|ladAJ`tRi_9O7VdY-wUml01TM~-S zeeuSZ-bVu~>+)ejW z(_#oGNB_tZO=@b&4rOQkdimv7^2i$7#OQ&^uPb27zDS(dP_;UD^WvdZHE~YdVoHTM zYD-e#&<@mN&Z^p?z?^saacTIWp$2ywx<@QN}AEGQXtqf`g%Rsg6 zHm93(nl(mMTQB8o4FAga-?S$UKHwUP*Ct{7lloZdw%VAXtlVF=~RaCjJ));wgWv-`h6 zsYjlCaTx_4>k?+LZA2FS%&jmVS0NcvPC4-y1^ZBg;H&iUKT#xiom`&t=!kJvx%nI# zdp~Y^Gz^R~i)NjQ=v**@SC0+JJsWJA_x~=*k4p${*KUO5Ki&Fo?mo)@-{n_d0D4eS zW9g=tfB9ZJ**mT*%g#$OqdxVhOjj->A%Ag$+cy^j7x!yFkX^>-D-qGpXAaR~d}Bjj zI5#f{+E;CEo&p_GpM*#n_&?@fnnBNO+}!?DS64s!gFqcdcVjSfUXo?U{MKlu-<=rY z+R)20+9CgrY2M|_q_$^68oX1(IY;i32g92BWTp zQ!MIPN{p>@$;_%%>oD=EJ3y_{r%#WD1Ynu7D{`6>4+YI4h*N_`KKJt2ze``3kaEOS zG|pM_)IZJjoIEB}}R-5*ZI6w=#z_ z%$EdU1&)hR3HWk6`9AY9LHh&j*@HaVuP^{BKNuzmI8lyV*25 z_b&v!iez~5_mz{0Sc$+HnzHiY0gEhcy57btOPOF;)0;L~8yk17g2%@j+S^6r;%+>j zRWvNU!(y;;e$$$zCZsxe2{iEuzc+817vSUNVzw+1e1X?k9ft=L3cYUCX`D`u=6^k` z@qg0DDw4M84-=B8vZr3WK3mO$_`ogmzvY)#7Y@dPgA7uu0dh~&=xYGmZKebfG5AFu z#3dB?*Pz?Pm{I;(HZWo%)Wp}bLu1ga)d??WljVtewTP%l5up{C9q%OrBC=;hA*A(U zJ~$F)81`3J=2%b+Pv|4F$X6o%t-CT~>ne+SwpmYBQ6;Z5I_+A9v37W&`RXbbrn|J^ zEhUyA(;G!**XmRMVrj2z1^6VGMM0iHf5gmogOsuBxk8L@x_Q={{{9(C1AnU}JczbYW8I-x+9KnB zZO2Cwwh>XR;9&BUR+=%hbvcQN;z6~tnG|tlq!9unw%$JZu!TbPlR|HV7>6%3yZ;m8 z{>S|Hj#h9vv}~ zxI$j8eEf?d*}O*KBAW~ZJPQ4}i7-);=9J5%NgtR$cZSDPVy)ZM?KG3&4X7gx)SSF- z`mn=$d`%7#qefTaTQMJx32Pem6f&e4-&}?HIVhA2Y$FVV!40iJz7%_h4ef#ctnBP{ zsi~>9?YgJASbe)@YzDOAll!K@FeE;!G0G03RmfT=Ee{VkEG&!-_EKC1{<)5Vvw))}WEy_o}3z&lz^jXXAyuoPRw?zs>iiXr6Sp zuR?P@Yiqee?iW;oFRGY`W*Z`8`fAXjq$o_}!viV!w!2bm0w)8ucBT-}hl=NUtyF3#D?rOv9+N`r$6p26!ncuJKk__-GBqBrCexr$J%b5A-X! zq#emA9sL_J7gC=n*@gl!)JJNIT|%7kcYG23D@^iX!8tgLz@&e2c#)~IF(?y@?j@Iu zXkbhi(uO#YiaPO<_E296tWduSS^U%iMPUR3nJMT9Jh3_%4H<|QX}TYP8KxH*%>S$b zTJ%5LSh9&!<@{%8i_%qyFfB=Az}ZdS>0*n7+17_4Z~Um!-0?F+!PJ$}$2JP$7v^jj z&GUnh5~H5o(=1!vu!9d>F;c`OHIUtv3f^*0`ImnIl&G*1Y#@Cm$u9aou>J>1JuULk z4;lPZLesdNjH#vwbIWp7cenwJ)V0W%e4Oi4*-}`+d|~(}19N>XpZI_9sQ-sjzzo7d zFaFS$EW#9^M#N6n zwz}`#MEF&G_#L$=^tTiB)YQa#13dLC>A+tv+!-v}h}yQse-sy#AztdQ4qX~fe$H56 zW6C8{ASSd=dJXqR(AWQL-a3&OiP+?&`m<83(fCZrit}ZrA?ZX zna3di0YQ;s#6~pE5OeM7=)zky-_|4&jcS@<}=jWwGMg891-ldh56QQP`%fB(d zDyW@&i+ARQ+2W0UYc3BSsWyR0znHqvM??Dx(+PjX!N&fqrIk8Ip~#fPLNk7j+bg6t zDC^;IUH4v6r`vJDd^jySoS~P@6Wtx$Hi6a+yA{SqMMY!RxEse;BS$T9G8#Yia5XneBiuLx$yyCpe^TN0Ag&kic>g@snX5P3=)96Rst(O?S& zogVv{7(+vtB~Wx0YwC|ok1 z!jxE9SS}7{ezPMYTh>^O*PWlcprOUY#CSZXUg6>+NGg(!*KmUFz}HiXoB~b=Y~p{A za*#TM8^b!G4Zq`zSXcMHSrqjF$m~2Wv4mm})i8;tI>dV! z>WZY^*HyC%igQqnQ!xe(hICfE7~(==ety0!*bp72R$eLGOMt1YtbA{{rYQTo-SPC( z59+h(ddkgZeSIPJd~v-NjJKk;qeflcD^F#BMDms{fE*F3LYzq8tj0G?D6TPx=7p6L z!I~`A3$B5~6!_d9``<`^hAb-o4H-nah{2b6x6mPGVbJe&hrHX?*ceP+W+w-A6Xyhf zS!TSyi^1>um-dAAO;_Hu`o2!KhU z2}grA5zAXwb!!{Pn%P(n@X)wxX5M9~(jkRrlS~+UMP+A&Zw|j>c5n)(-@YQBSwHqe zpV8w7Gz_cp>^4+vBq!|sGXV%uUoet?T$@UE(6w?Pm8^41EH}62m{Q;igBthI(Xq?; zBzLL_@v}9HgMZ5*%TGD-trTgcvF$vIcOIAWd8w=&SiEO>hlO-y36I8?_s{bXvvCU< z4*}CZ7ImJaotL90!=OV`IS$XNv!L6o_usN|-aB`PE{&w~tU6n-m3`FJ{f6)XF?>A4 z$+$o|VbS$yzGgh|gDfy@_cbT~DmCbm;5QpbZP26sI95i;9oDbq?BMtKUtau{%%jHN z!C(E^f{6Th8omfLH~;4Dc6IC18fNlE(e}5ItW19$UV4H@;J6`w0TIo}x9Int+yO|# zfX}%OWNe?;wwcN@2^blS?miHNGvxFlH0G9jra=M3b|K7U#yBlx;^R%OR!0>b_wOF= za-M_Ob!!I?*=O5P0AH_JtThmw)`x+TCEDS_N-=+$pYGjp6vEk0QBq^}d<2HmibaU$ zFYskFk%Ad)PV6|hqSl}+?GrLYleKrMN_SA1=IJ|C(&v~{;DOuga~g_W&CMJKufM*B zst*sbeKjHw$p29j&!otYf$j%>J6arNeH+@fp8Y6F%fcVKHkep$WdiP2MWMPq-7+9i6H) z_U}vOG;&DeFgRx{OiUz1V^2=M@rv8U=p_OW*!SN6ULaaGl3)h7(9^S@i?0ZCG9U^g z^3jO}l&b9jZi|wN;jUckZ-jdpm@nPAEz`WL#0Lnx<$9M9t(H#BqRM~kWwmD;rrK;n z7;eLm$|2CJwIBE-;Wt>>+Dbn<%OE~2#`|8>HI5k&9l>no%yEJ?LVzqmD-GCMZh)IBTy5 z$475_Rsor2$M(CTwzGbU>zk*Q)td8Rm(>VOeSN#a!a^-Qy+hhC?>rS5WWtiK0P7M~ ze=Go#Iy!(;U=XWA_BcB{Jox?mxia-<`a_BdcQpyWpw${~ZgwFaa9Tp6<*(_9Ldvy0 z!M|LA!|TZ_UkXYDCLZ;0n)hdP1j;)C-#*b>emiO#QuC!u!Z;&7PurVcBqyB28J|E+ zLNBp0Lux@qZ*LdL;`-1`2gMv>{&O)Z$*qtqbM&A?IHE(opZasaR4S~Oh|bUMkCZTg zZiSZCK~Ab$lwI*kkUC+j&0@!LzH=})W{;CW2t0EVpJOykzcotkP=cAS-(o>EZz^-4%DWrzaL ztX79jEx{oe$@0^uPro|kSmVouaarT^BWUa;zWLR#Nzu-nlDBsQ@xDkd1m25VUr;+c zZHrpqWT2c>U4#~5sRCP{cpCeE6p)ET?`JtZTS~mu(+ykEctK5dZR-fCc(CZwVr1nX z;C4l>ba55gA|}<<12&MPrs(K;6#4Cuh)9wbe(mY zW@Zhlca1!Uo;FxPWJ_JUpy&9K7sV% zmW>={aWjQ$Evd*N*{biyTHRT>otch|(jsp@uy~U(Yn7}hG}R5q^w2K9k#NRVc+vsg8c`fQ z-`@NFLD(KU)yQ-IgKew#%speT56XM(azhKD6>spM z_`|P(INvP>YEf9z_`=e`9rd%=)4(&NYgp`V8MFm9x6Y75QpTJ!LEx_CWRplqOeBswq!FF_zSqpg=m)`}3R+2;G&0IpgF|o$gbi)$_Ym_Lk<{cD=)g1+)wN@}Zn1 zU)F5xt>A5P0dmuQU};|dyUl2}Mei3>|3)0)W&1>h(nd%DF_1d-`iG?4 z`DV+~LQmc#;Zt&|PM+nsNR|Qhse2sT%(;_oJPcf{tVA>-h0!ZDhLK(hjSx-Kfl0i6G6mx zmK5r?Xl+IKj(e!kbsrU#^6hQX#ujfo&WTpz0s^dD zPrg6%F}x!2?ls(DwS!1=5h3i(A)XtXSRKm5lC8c)A^II?*>acZiZC-r?krT z_gkVTrV8&|%%#~zE7?L)L#=}IIJY}yaV0S+_g>7%)_xGMHU=0=Om{<*k=97CEG4~= z`s$%&YT;3~!toi{3HR>`$JswJPiJAWWPBr>nb+(-E=t~E{2(Urswj4ONV&%yl|l%D zj~~+7E!?2kb7?XXdi5ukM#%Kx`lzZVqt2+j#TW_J#-W*e z8|W*9<{?}V4qI7X-n2T!#>JEWY{o2Pha}Zwh#Ep*fjyo$2YEbSJkEu*GUng9<;7P( zfJuEx;o);>L$B5l@BwJ(6E54sB-*&dTic7!$1y16`gjpV(rPg}5)&bj06aQYA3AeU z+ETMTmLp&z7@rso!mz@0NpBu!(6YGYjY=^`Bqsn_lva(;*-GNwZ=q5R1 zP3njo-@j^p)cTUOY@nrUXu?2@R@uEjy?@{+t<?DvhFd-{x+wfCV6c)P}=KySVtz#=C&9J`UYuslIzu-@wG#8L=maXE% zygMA@*g2Tp%%&lp@~mn{yLyH3bK+I2I;6v+;ETe7C4G;^t!C#pfM{}m0Cr&cOlVX# z#b(>5$Z;CtDY|$xWKIOkE8-xUkoVMt>UR1Oh)@(K;t+xEY{2ny%iLnh<(Vg#knjp= zVx1Z+WasF=w|?A?bN_q;eGaax)&HcQz!c(9fe)cGw=_Yd_IhJE&(1HjV5mfcx%lJo z@UYF1Qq2GHf8+MbUD+sl2lGh*@KZg?J(@M|4r;peCYqcF$@H?_A^I zF0OS}F1la-($~3 z5i=&SC`7DoLM*ZIsQWn?hKgzsHND_FL-k-XqU^mDSc^c<#)BBGk|nskSR~~|6e_-z z<|!E<*_3IG#DWB4UC<4>i_t@ zfiQF8>zk;>ynAD*h3pKdj_b`Q5g#UqR22eJgp6%$9ja#Q zEip(usH2T9^?EodBo=wx?E+YUuB1e#ELl>lrd^f1w_=Vyfe%2m$t?qD<{L!{7HJ0s3HYypV1uO+0U^aR%qkL&RK_N3~aH)S5Kf$iHZVG|3+i^OAsn7L`= z03$?Q@~Pg}Bh?n*qs7&ydLPPunh|%OREh^Vz?(b5j4DfJR;W^#s&unVhOuW4V}~;f{xg3mN&PunD|eexP)1&bn- zEP!eqm8O%vsne%VmUCbiEWk3=n=PAVR&kC#CcmLuQobM8lW zkMvgWvMqi&Ztd&%0-QMr??%VK?ot<(cF2?2RrZtz@BR=3)_O73YL|Tdyy0V~FFars z?*H;0$vO0P2rXnM+$}uE>ZhVVmRF$UDlP6X%@mebv@$FC*@^TzOeNx+lHxzk>mR!w zA<0V!S9&}^A2%>W2|e&FPfM75x3sHEO+GZ8K+1h0D4u1c!9p<&o)~x=nAwAd2U&DH zuGDxP+hS=k`YWZK!D2n=Zgy_b{wj?VV;5WRs`V~4GyRxaHt#Kle?zF+64ySnQG=|z zioY3)Z(IkSGw0F(v!dehfVe$Mj=^H@$)GK*f* z=7v`7HGTH3$Odis?d?R7)7WGf4#m;kZVr$g>t-U6HUuFz0RJ9GQ7NFSxmi%J-7a)- z@bQf1xe7@lo6bmCdGhYV3)BnI{RGvO2e_R**MC0}erR~UUcCpd(8V^au59amFCC#Q zG&;CDJUF^;y+{Z289Ab%bV}%MrQwT{SMz-D$R$ zQUw<0w1XpB30bo7&NmmWbfB`gOU*~XND{+9(~hsJL?S#zy|ST(GK0u1y8XcV+Y{2j z7c1hGA-j3Com8h6`G7xN8f9XAJea=ON{v*~nPHb0?-eK#CMXiuD9v{#JhKT=hI=3I zb+IMwMAWY(F%Dv{J@ndKQi2y6JX&p{NZH)9Z_zh{g6M4>>}wvo>Gi6<)LHCoEwrM{ zcobH3k#ZVXf_BL|te=lNo+GkEU1u>PG3|GbbY^F!4`Yv9T+Wwn>%a6XJp_y0Hq^Tx zYCWVqpBpXUfo`SHl-L;aMmMp4!X9pf)Wr9YFac<8*(Fp3?IfbBDwwgv@_1<8_=-Ou z?&?5*z`^%m3TLEFtM7-COdmo+4<6F58$cKQ)E=#8VH72tCFS*mGX@<2SY`=tC4@b{ zGf@F>Z&*N)A9+dOWb&e1VBQkjKl;6xaK$$0ZJ2MTok_3n*Lj|rV4c`#E+p#useDtt zYNrHt!`cZ|p_3!)ngUted5VfwyIqx>Y70fu`L8*iOIjQTY&&cwuP1t3ruOi6pQ7dB z6<;U>Rc|F1K~GGnx_+^CuTXg+=qHl_gLZS6WRuFkx4TT=0Mm)qMl4T+W;Io{ z5>8(B^_JiYXJ;D68-Oxj1<|DWX1EKvy65X*=+-@rJyCXnU6n;~T&{t5iD~OYRh-`l zj?LLVVz~I)Ia@}`LWbbOd0L0vJF+h`#qaM;CV&Ja#AE`@UfU_!c5`FPvn#Xf{hfYD zF#kr2yJ&?Q8YJ<%I-`eoMwWE`M|QVL)D!obnj@7ousvCS&Pwa^mquf!BG)T!gIy6D z`P7YwMY9zKCj(M$wRKp`8xn%LqQQub`GynSxp}%R9%Zn8$Hy?So0$s#nQX5e@`}v) z8mk8$2?iu*OHzc$VL_3|vN&lvI2SMNE|}uf0#6FUsTMj*C$5jE3ThvEr0>T3I%OR^ zQd3fhZLhysl(CO`ocF$+tE3dITs?QKK8_fmsmr-rva-vwjP?^*eo0$!^4l!TvQWw| zgT1Iwk3cVmhuglgc-&i1(B9K&(CUCeYBE)4Dnu^H{*Sd`5Nz-`*V7XJd3l-&uWD-? z1F>=WYo{W*KQ>@Od>rYMCvF)Q^g^H>SL!=;T6c^576TtAy7~g8njm>*#4QlXbCdcw ztlq3YntV1yN@5wb_VjRkTV+;m)0w84Bd*}L`RQR6*s<&Jrsd|Ofk8HIv2@x9c1;?#1N#__}PqRX5ZcJmg&v5R5`0y zhQ$>mbRo=r-m#%{rhajQ>Ec?tb41?Ze{M!|1%QB_=4s}E?H5#Y<@f;EKSEc^E$SRo za2mZxlI7Hef`#i_=Kp0keU#7c#4EdKO$Kkx)A>Q=73&RkwapEGdcNX*wz6s|(`o7! zeP~i$^joa|!Y5!|w>v&xVwr9SqM{;qG1IRfOl8K!_VK&3F`oFe+lO*zx+c*6gV6F? zLY&ZPW4k-yU9kMr=mB>xl_ER=9q(c1^m3JStP8}y6qg6#?S`%!K3+sjwUa0$$4L`+ zq9Q}kc|heM=ETDU!;<<4t+c`vFJB4+UhMJf%U=v8Feq3-#xn^8*!~nVueJS+qW~yG#E{^TGIYZY) zlIXa}pYQ%kvO~6 zcE56aI>XeTay-_pMT%8diOfH&y^~8+iU}R~|8o{0;=$iWyYzePDErZSeDAi?>~F>z zj=yLG=O|vRzZNs6@qWa}dhW z5d}mo5|bF-Mkbm2H|0oYFolGUZ#s>a<47vGVg{917wxWvr@)YeYyizUu%qJAGle!s z*4?MC+4q(9%~myaK)26T_q}b4Cks6HT=B$l{2RNBJuQjLPK@lB=Cnn#`*VF{lmS3S_{_H#Z;e$ z1<>6TjUZRJ{j?fcprlTb6d+9}#lj)_F_`ADGu!W4=UHjt56+X_gd7Qa=hp6aQyI8Y zoIzlS1af%1@4QG_4(V`u()fK4w0hFCOKqeg>2t9W#d)7NrRUhTeT7Yn$;SuZIhy|k zCbv04Jw1#-Dp1W7Al5=&1|YjE){S z>E60$GW4KodC;OI^clPbODVU%B_VFXC?+jyksQd?9H(W6?zekzKOOX`<~oFV10DvQltQ41cO90tE?z-gSi zdU`E>_pUkhvee5CVpo5@+FeIu+LGLUV337W`j_8}A|-7l}O{uli2| z*K?istq*Ha5%M;==|M$YV&f8gvBx{w<3wvZ=0*?q+Em{GFT%pmj@lniT!U9Cp0D^@ zMOxYW>S5la`S;gqCMH$xI5IMgi!{Cvtx|o9iuU@Rv>^_|=A&^ZZ*L&5xW6lRSLDSK zu664cM#$QclV(g*f{V9IYF)iMWXAGwJ6gv|yTyLlB@Rw$JvIAn6=zrP{EoS1pBY!= zY~8!&24<9$;Uo54%QH{%B+*BoYh0Em_S^9uHl_fUkNnwCcE~6Q)vG-dCr3A8<8D+! zrHLPe!g7dE*l?M!6FG=bXvB#^ZvspgDUG{GEXl&*d7T4f)Z6ImSCE)fwyS=hCtQmk zrArzy;h{dKj1&jjlvdW}6Ojs$rFm!7RKk^W+%jnP(+err`*FU5sUw+YDDyfVSHl*z z19K6`>#aI9b}|;BIgim~Gb5L57*!77#5IIQW5}@lbd$iHsG^DnU-h|bS(<_3aE^tg zPMqZr0dJ5v6z_M2$y$#TLwVMaW)VQft`8R`uIv{x=);V4QfM zF!PP*So8kD@kgIn3|}0b_7I?lM-fGcWtCo0g^?FUjjOx%(N$KtGl-w>ns| zFc@f=afKzV*6`=uarb8hZ6Snyn{*1n)%OWT-2wM9vQ}{x+dGTdNMB29fSuX*d#~;G zBkSsYpb~-K9Op@5vefI88_pM(yk|HJ%QZmbvkyh>g8BZ;PU%U%+Y1HXys2{Z-?b5P zuAepZxv)PxKH$T_Zb(a4H?+)oxGX->2Hin*+nHX1?!}&@i2`&pg{)F(>H@=(%vi(j zMj*NEMG~!9c~$c0pYQ{szHq)o!#rZ^35#+5w*5u3jcW|pizEEwkP-0K%CM?6`mNAc zM^w?MEPdj9H?M3sQETRw@6<4P=`9T}k&7Y@j2W~hl%PUX6hRifpxC;`A@n>WhDaF8 zlq~xA_>}(qIb^T1Gn!?8I9FCB`F3Eep3im`yRrB;SbQD(% zR{jkO^v49C9Fkf`s1Na&C?g0uH$?-Tm z|8kuL^-Bqv+nE{fJyN&3Zi8cZ38oovI^KK|)!+*n z_yPuZQ=WYuC!Rg!vqn|* zJC+Y!H|^t2P{ z>25&Ge`T7Pg{3BnjPqCfNLoX#T1TMd;``fPIU$U@{^z}8 zjJT{KwV<53I=+Vl43Xt!tsfqDM^<8H9oOKF4R=+M&}|?0qZPiZd4?J%C!>xS8M1A+LC%}vSpM3?Gxez%1~17pM+?Gx(F&ySkM zI?eN}#sM-x+bMlmq=MGA%?oxh%A;DVf2^&>vTCy14aw?JP(o)HrW{nC*T^4+wV#IV z-;uKGn*Y`=uYY_Dvi@l%OXd$x%R3j?#K8vM)!M5gOOsaXB@s4`k0%FwDFUbSs{b zP$G2CfWac=OyY4AV8B2k(Q&leKoY0l?VoubEuX5fG=aBo`th)GGp~!DUme&IU3J)s zD?s`9>IEA=H+$xl>D4T#g4^BlX4BkB+4LN2`5daYZTT05F5Iuho;Em-TMx`2hPXBfIe}{LmTC8ucN$RjuYMFHrQ*&fYms?05B4DqBfCxkceG2!XAw zV?*jSF0cx;@6vWGvNDf+Tn0$$Oz~VrXjL34&Aj_W64)zBno?R?+MUX7U{bR?T4y#8w|KJb zLxo(BzJCZk^Zy!0`h5&`Q1SH3Z+%ycb1ftiReP^zL%?brX8F3xcCYnB8E-BIEv%9>2+S z{$t>fz>|7whwXI_j_*g1Ui2}H$ymY7ZQzS%0FEyL+vNnj1_hAJC848RWy~F z6~m`;@0_C5?tc;&BZ_iEtNvTWWYxfdbU&ED8-GB{%@ zFt<3LALQLzelsv?-MoJxij81`*mU~QSO$kdd<~IWQZP@-XLt79E6(eqZbm+SE=yc7 zr6l74kBy}!9=;lvF!rR=V1n)KojW$teq>LH+@8yM7(g6d@zWLp6DoQ@1Y!VfoVFL$ zY)vmTAi#o-z+XHZ$%nY(0O%2OJEg5vWO-YLNZq5QrEAjW2b&AQzGm<(Qu(gKii1pM zW7O<6L@so9IBWM#H2_(R!OQEee72wCM@7THVNp$uVs}etEVYJa7=5%PptKd$xqxwhF^tL;OliU_E91k{yClN>xFdvNI;-K?6Y@co5x- zvI=p#F#kK1VQ9N>@O7a75C-eKBiRAWYUSmWqptdLoQk1 z&;Y2nX~L`~np?buIRy~qU3WkEfCRkGlV|w((0er@*kd(sI4d^?R2mz0a-OzS^~C&x zH20LQuv!6DdkSSC9i2EOLWq3Y09BPc)YcKTXV^p%O?3*Z){M{gI1GljwzTu>dWxjt`Tkx8^bm+fQ%%CEH6KCr`Y62^WNoFARo@py)>Oo#Na8Ur zLQ$qbOFYU1Lx%ReI4jq$TR3d`{d-YDHEJQP@E2oL+ONk1DRJgukXtf9W~M=*m3%(S zdgm|^7hhDt@;w`c2cDK#6o`L|KI72|DDbd3imWFLia!hAkcP_{K@BfSW`jg8;tKRL^qr#VB5C*ihk!BoP&gB-I4iN=~Dm=mY1yYf1@Yyin4`k>iRUzJP;d04j) z@(cs^YR6Q6k3-`yx!MwV0`y*7YOz`_pr-W)}aO(bm%8sJHjVV`u)P@T8L((@(Z`8mw65?*6)4(?%g9P1=n$LNa2dWu|e1MKpV; z-=}3Nt`PFRM`>4UUuBCk^~CKFKlnQWUJ|WHxwW8iKQc1VSohJNohy{8LhRrz=G+CA z6!jF_TRkPBQS`&>P{ISY!pk>?Vh=LNX7qUI$moFx6A}=qEwptB@zVkVMC{zcHENz} z4vY`zuid%yR~e<2S@8LJcg zE5I75)4_eLC~vJPn8GAvi}_Y-*6w?{ldE3Kfm`R!SSB=srT)?|e!`q7Iu+9%?dr2u z*aXcPW4^1E?NJ&3>ZL`=)geD*N#LTipkP{1a8a}H_DKDqgo7SG_{`c|Twg65rdiQ| z=WLd&;6p-6(%g|$)Q@_2cwA!&Pi34d!T62r|ANV9DZjRRL?K8C`5VhtyhEQK+LRj9 z3nY%^bK{hCK3U>jgW;W7*+VGE7M6D|ShT^;`Pj{T1ld9#6W53O#ZU%MReQfD&_TYHdQD>g5tHcO9 zu9*~r!G>2Ae>=chYItWpE5H|fB_!WS)AYI1{ZYqY&lO^9@k_NSEZSQud)loptMkM5 z@3OY(sTmGy&>*z3lQ-jKJI~YP{S-A_VR(75gj^yF|`~X0(apndXZ-~R&rWcFWZ~^eHo~-&D1cT`bsCJ2 z%C=<2O76e{@-J8(7fxzB6P>w>`jud7r$;X3`U1qQ_cYcs8Sd8*v$%PwI8nF&Qw zk5;PJyeYwbc$Ew(XJ1b(=S$0FdPZ+V2qY2*T#b=h-xFuM&;Rt;+A~=l?RDVyt^FP^ zKAu1u{W#XDAr}I@WJiSI2OEfETF~Q6p>XAgZYq#_#rb36Tlt<+(y4{d9r_9%i~E1x zdlxAx>u23L0LWn2=v6nf@Cse-u+Q{6yAU(OTLo3b;9f5DUF?>2Gz^5Hq4}m!+qhr3 zEiSlc9u48a3(4MCErcrKcpUg(E>T(Wq%vFPF~sf1hP{h^9sah@4>3oI z+!X9yjIOLSh-day@Z@;EVcF+q-UxJ|cYROcxFCSANwEF9vZNPp2U)2F3&n_6VX{RY z7@aw}zk!tXHblDPb-wiYGTRc{NlWO)1r_`(BBnhOgX9{$T~jyngi8o_w>1*O4iEH9 z-?*C}Yu)RGC^j_{FTF$rm$3kP82PtXh}rLvHqF!5mzrG5&x{*zJ1(dZUyXPWu;C-J zd{>rgmrt`ohrFUyL%jF^2uXJtw938Z+olpH_QJ7OS!uLn&Du!h=3n|ylbAG$okayt z)#1vDTF_3tQq8l=D<9}jqW5dp5Y65O9?)#KHpb;TMWb;7$>tYDqwZ+Lv+}5LJVX>57-y3-j$@kU;HMICmvuK1_cl@Z>6*n ziJ?~GiQeWy$4n^R_CjlU0=X;AzS<8scGQ6n#*FGuu0<*KDBfNPX6n2JW4cDQE_a-# zR5VuEPtSN~^0W-^jFqX~y&bgEE^SNAc@0Tosr<$c$fQF!bT1Gsz7MZuTW){nzg@k} z2fU`d>Bj=(jZYYr$leF!fZkEl9;7r@*5$&yQ1j$zWHdfx;d2JU3vtx=5N|xu=yCiD zvK#5crF>j){Nilw&~L(9xHtz6IfPYTQa|riTKp=d(Bh~W_d7Sc-s-{Apj#)u>X&$$|Zx2a5!R#;Qf|SL7i0Aq-VZuu#G>iWp^}4E^@-VQ!M>(xNhyfw@~+*&Ciz&~xDi#`643wU=Yy za=Z)3d-&0dq&()FRdQ5V-`-1>U5qrjHleCRqb63 zK%|e6SeP@OW+!|0(353&-ME$QY}r*Kr_ry5^iMS+ILO|(?YhXPl~G;(rr=ce6SUC7 zjlQThm^D@i7x+Uho^ITQ6({qFRK4u_c^@iJ^D9F)gO{nE2?0-3ZxIZ0vGU;RI=SUh1B;h{t^ip z0;4$27d0s5%|h&Atjk(#I@UB^2U6FA*T;zOel5bw)Q%fgJ#c!fw^?uFl zBEyy28BP0*=*Ad=V5bzjR}VdE?o}416WzcY)^A6mpBO|oQ|ZJK4+cz2uB{#67zdfW zI>X1Oq)yA0$ff-}ff^6o2-tUy|9=1{LD;?>f(c<1fDHK|@O*5!Z${yHh`7l!*C=gf z)Xen9!H9&eq^bj%@E+iR=L7LuAh$e;`7NIKE&Lvzk8Ae{*jO6B3xE zFlwz(F|+2++c?e9<{S)&)dn9r+pcNJcshsUf^t>@7wpk`z@=hJ*zyH+4{AstRO$z zJ?f4DU`7TlOON|^z1yQ%dX+#~58JpeUGg+5XUuTBAUw}DTy65h3bV2@RWC*QeNf;j z(n#gxWcxO4Y+cx)!>%8-mU%NPpxvSGPKG9G&%Gi}(QL09c@Lxz^9_7?EZ) zcBtpDo%_tW8q3Ygw~hB~wlR%AmW+BdiCMXNl|As#g92kSthu$twWWa1Kn{q!8KQVo zbZ6+D65tL}V1zdd?=>aLQ*3y@Q=&Y_hUrqGIAcRH;u!>SAix0kVDt!&+f6V%az*@r z7C;J1I;iv6;Q&KLJWK+I|1)HfOy1kd`lYyC{1?c2B8w)?i) zrh7K{&K$rgGwePI8?-+7O94=Hw05`_Er8qnyh5w4USNH_1NOro{>Z*A;f)b%m4Mdl zS(P@ks@!)Gu?#ji(C6hLAG}Y!(dM*0r$*EFGP82rSetqY%aRDYu)K-zqtEevXmk1- zf%vFf46u_?Xur@NiHP#YwjUxOe5DNv^YG15W%Z3$txtHVNcqal$`yc|sd_GRfN@p7 zojiWZnj4$c#_FePA3QS;bobgXeeoCVm;TN#*nvH}?c3k@x)rKjHmq7@y`3FaQCj92 z%;2hkE!K=Xc540S|NNi*H?&Zp9&RU32;f~1YK$yr2^%1te^lpB#eyTRdIUPQKCAJ4O695ZT|#O5K1=-)1^cm zGCq(__zZ*R3WL8L6k8VJ=E_+xfDHr$>A)EIjhPh!1fhYtoB+TG`9g36&;s!;zay9s z(tPI~o@b_wa725+eSYUz0&xUkmW+stJcrLA@Gf3HVZeZeXm`(b!3KrTvEO4u80z8o zc;bF6Sc=}c@p*USKTbEst>1KMW0#QX84!q_2Zs%^yn|*1SMV9iLgx6c474v-G<)Zu zLVzF7Vavmb%zO78u=cKQYi;Y&%=}e*{f)QXuS;8Ns|!gq9@w35CJr_<_~jt(oGjW4 z@Q~peoptNi2*BKL+wQ;D)~#D(8#b=B)oWJRXFl_3`|g)$e`(Kr|9ie0s(SuxKZmHQvf>&*rR=ml z$3?LFi`_H>Dm%N3IBtODEDV!}C7^50opbFU^)zSJY-??9@xBxK8Q1G){9JdCI1$CR ze>{0RT~`Uj5dbFLZK~)2nc2B+m(tSSYiXIeRx03frLoygoT*Wn1l00NO~tZ~u0CtI z+M@OywW7jYcPQAUax9oV(|+q$e#stx=sw%~=4+bEh=U;l! zUU~gB-{ybsz4!VSY|jaOeSEBh@(^w(khvLAN3Nk8=M@~}N!m!h21L@)R51@02Ldv0=KDD9+e08REGx ztKu`vAj9(Pak};l+ipZhj~=yWo_WT0?%Zh|s=s{ICw3tNzP(uQi_v$qwOZqq%g*cpEHeZ$ zxKdx-!~J?|N4tIZJKvXpXxB`)&zD_Jo;hn5BrMqRSe9?Sm zW+L#@9h`DZz=jR$>}Njv)Ald_#Xqy({inZU|M(yOj{TcI_*eGSQ%`!`Vy8lXXp)dV zcI=dZ=tVn!?vfona@v}kI;^UEmVN$nKV#drZn3h`A|=btrBUTQ&)xr%7QSGhpyeY! zWu@gFe^b*{Us9xx;FWjTvSqGi*tKhyYXVtfq2G{qgkk7o)C)8f@Dkc9TmvP8C2tZKsj0nSCndbc(goT_Gt@r40w4pHC18Vwf_^ce@9Yrk?rgOY zwRhIokZs$r)_&>dK5JXnuCP;w_6r!E_cAkP9((i&*F4c@ID8U~S(q4b4U>jY9@3aL zu^gv9J0@Tm`Zz(~qWh|E#yt5V4`|8QQB=KPk^8kdUt8l^z=eyK*ygR<1UwgdpJnNo zes<^K)!j|8b)G0pmBu+@ic)mv2_{4*4MLsIfiX>1xKBi}%sMbV2u27vfiWT|(G2hz zK|$I)7iL>w`G@5M1W+J^2O-=G`JFRomJ6L1UUs$8k{@uT`uYK+7z9dAQ z12|Z!p`K}vyzIze6=4X=zox<=SP{Kf60FU8%SF1`gVcY?KP}Be1~xEE}Pj zfQpI=mBf(ceVk^;-i&$POW=d8Z5&bA7OeCD&Cwt4gC zD&1za6`HavYiVw`9dEpC2M-*v^0JxsQ%`-uKKI$5vyB@!`Z5?T&neNAIZt_o5Ms17 zZQ~#~H^;ZL6?Tgz|p_}WTrwBw>ACjx~QdJ zK>+rGY^pR(g1Sy1=At@!hC7$L@BZ!9+}33SqXNwtIhJ2sZetnQcKK4H`h;0!d5+Dj z(7mAn%N`rG%+WzhALzCjg*o=b_RaRiFZ_(3mvrjPX?ywQmwlXV+qTWU1+(@4(4ixq z=g^n<9KI_H9_}=e9@<#IC!gofpYNaH1sgZs54ZeE7GdK zXi(p?1k>B!=UX#5ak)>k`KIQpcKYlY-yH(8LckzA5F%j)%r#d66Ho%dfI0AR>wVk& zpgb2~dWI{{^PCHN$({6=oeoeaQ=s^=1t#vFRW{!pG9Iq~rnq$(RiP>Ci2t6cyD(C? zeY*ZsAzmq?Hj<{<{CJ#xP$EH}+2)L=iV@AUd4}iH(#L>Nvdm`Bt@dRIJeB6;aCX*hc<9CW z6-RscVZmt}fN8jI&{`Xt?fmJp0vg%Y-r8ivMR~sLbo|6on>llaed<%6a;=N+I1|`d zx@3|4*02AX{r~^{|JVM}Kllf>Y0WAdRUheW?@}EIoa7f+R(7u1f5^If`@D_WVoM*R z9RM-hV=FcF9smtjeh0t+oFU4_{p#v!FC)T{e#JeWyQYCqS!gqez8?B}ED<+hBJwOH zB9*H^0I*Lu5^&E_4jRZyb!dea`u9(K;uC7WIRcay?b7ATzQvg~pe;JPBcL&$`k*(V z6{AlCugW+Y+^~MF{mkb+W81cFwiCyW*wf$pzO^(pTD8C7I4UbH8Qg z6xi|OHJZ_PX%<+ZJSh3mVV~_*&z+(24%whM_nW)+d7E%1OKxVC4XeJ_X!c(|qsn^K zX3eUPeFyhTz~`&D940vChOVoYuXK;L#ltgm>~G3T=M%A}c5^Q}@kuPrn#E(vPxmC|FWtE0!(OEO)KK zdZj(nW~f~jEm&Y1Hf?l}lO|z7-FFHkW@S^CV-om%s_SeAE`_=IcCn_;{_21Ig|%I6 zv-2keN^5Jav+b&_T)s>Kr&l0oSbeX^ZBmMhO8oQkrAzFWzW7D^#7BP09=dmn6=tiI z2Rd!2tJR7Na@{j=Rza!iFVD`^Ui8zgOH|gDR*eItIm{`bbVUR%eNxxRGc-dma?poR z9aDb!L#hL=!Gr85nm>P@4GJV(l|aY$O_6|hSy`z+gU46S(u(>&qaUEc*jC@6?<<6* zDzr|VcaIerZZM87Wo&HIm&&kQN*Is?a=FgjF<)tN-otbXU zjr9UCHEM%-dL}LMxa*d`!vg({0-eQHtZ=od$r`U-wT%+)EX@q55A58%&$@d0twMm6 z_y?7rxf+veSFf}R#eeqHDLZ%Sq~)vaIFb9I2Oo0q#+b)Q8qqQN;6aGTy5?2dd<`4A+-TqQfm8+l*!E*XvmE@aJtl z0Zm2*yr-o6MLqAXxC&=c8ThgHE<6E=;Xn~%CchYSM!PnsHy98?@65Tg zu4N$&Km&Ei(e|j#0WjDf1n;|1JW;)}(}mAyWq6j~(H5{?KeICO3xm%Xv^y|Jj?{=41;HOVHw?AKxmprJuH}^g}-w z6VPG?nk!+!?<|jS&JaePBk5Vzk8ky?T+0=REUTJhhtHg~zx?aJwLku||7p7q9D>Hw5vb49f3LmCR@Gi8j?p{B@k+z*Pca|{Vpmkhr6!>bh`?qYgkA3Jd zTQFyajScl%OLK#|)3E9x&owQ8v6*wKt+Bb)-gs-LeeZ|Q*pGhvBCX=}%<=*RHXuOP zv?Jk$x75uE%?o{qU2JSMM+?IieEJ$YtkC3fkR)S{^3%r{H}q{lH`*fvKZ2O$4?c6H zz7Wzl#tYyk^yzS=J$bH3;Dq1nuUxVVwdeh8C$_kw8F}VMKM+7ZqVkN`s@2PF$&$r3 zV@9RkS6S7!TH4#Ze*p+pU6vzo@Zzhl+tWXM)(#y$YKIRTR9_L#(DUsAe2k}G{pDX$ z`#xkl-`e5JV?#p%Y4mC3M?=y{97khB6PsRK8bn^Q86WHh)5ZA^;}8&o7L}cDJliMG zLcm^y_!cZuAL!}y^RdVu`9zzTr^ys?Qm-6W!T25+?Duo4sLQ5?2IaLv`HGg-07ZPq zc8>b&?~A-zUpsOjMehowz{_1kFc}6|U|!-Yt}b^KDNLMmSQLgO)L8$A!n0hbOG9D| z1ZFqPbWxkT%XKl9>S{3t{Ah@o=ZG2X*?+*^+O^v{yL;?A-}}D3_2%1l_RKjyLVv-+ zg?9YJ3H$2TzF{X$o_6o1Fbw>1zcwpxCu*k1s31sF@KX82F7DU6+_8 z?%^@Mn^ zr;pl&`pY()nPbP)2hY`9upmuee7VUGi5s!t2pTA9ru580+B) zwOq3n3>KL!!E^x@#KSBT0ZE>7^P=s@Xj3@251%2)i1z~HgAu{}AQ)5k`1vbP5Uzj~ zm=QvQ@0@ZAlWq{ef{~UAH1Q7kdh4yXyndOLl4qW$PKk>v&tZJYY#C-s`rLQnFrIEQ z3h{6ygtAbM=p!1o=%7A4)bb1zp6e4>;ow1*i_k!Xb|Md~-It2_GLuG|k|h8JkZEpe zu&WAq97Vm(nKmVb1!DRIws29kZQgW`tz5ZM?ZYt%JvJn8O!*NSl%4uQaKpf%P*&0% z)@(mZKm?;!mN49hhTb0&V9Hh+XD`;-SHAvr`_upVzwCuqUiDdUc21rPoIU-&@;?}hXy3T1Y%fT3t$RO62PKwQ28nlun;I492>Tl&NjQ+(rj-C zL}TlML%DUUms@#Zu8s6}3t$Y`$Uu+vYG$6Dt9C9fvD}h!yV%xa&%UwS{`*(HVQ=l; z<9&(pqb0)rBT#7X5U6`X{O5^6h=V$09McCwpbfFb0x0vDJOtY-%FcU?7seERWH`N< zU2y;A-~1c*UW+CNn~h*7%(x_8#vXB!CZH)R3r$3{;|V()ycRRgdH2YXBkmK4!ys8o z#JOM4459U*-_s`!9X_i`3-({b4pQbVtaboVSXk`fe#ed-o)7ZO^Y9Py%-Hg>t9+C{ z)CE@p`QaPnAx_f&=4%Vn5%EZuOb?dy|Rhc2Kf(lK(#b;TB0v?6w+e>1zxNVnU8r&TI{M zuAC;z`XKq?8J_jQrQfDQqhgMNMDFR7Q)IDO;Q+vVfeVC8xrF~8e(8_IjCyR*q9u0r z{CP3?a(m;Ax9pQY{YiWA#h2`X?GK9KL0|_%1yX_#$V)`J@{jUr3J!C>B*9o!QEAn4X8HQI3)%cUD-g5d zG-&Kf!i)(GL#FBu<_(Z3Dbb8u&mTW|%1)j<>2-%zWy#{j&Oi~&K2y{ESP)ZMQYe9O z$^{!h4;v)nXBLcM1G7EsQ?NH7uh&kM7SP~IJlw}97$#q&JOZfDu3Wm(VEc|7_fxa8 zGR3$hy^94XHgDP}LC%S|*}lcMt)tzFBqS7_@;7L!RxYuH3+6hL?UeA}yLXRkobYsu zmZn(w+#q2zyK08+_gY1Hsoq&(Pd@RudrsYY&pkG0_AGb8mM6f$$<#ev-Kx`0JzE|v zTPfcIgTq#P@v_yctmUfr&aMtSE5U}xSu{LVGiO-u(6E&$ooux~rwR|L-iycU`rv^B z3Wuy)g0!@xRAneqlSXzNBdSLXD$%&m=Gbuo;^^bp$pBceRTz@sxlmVY7q46vP-(IA zHRs%mE2oWfN^(&_u5G_>t3CP<0J_M%;<5yiC!pLZAy**4lCK$iQE8Q(yWC)V51p_# zcJ8(F`kXC+KG4@?t5+`fx@5_7mcZ|##YjWD+&F}#0;9UvTR46 zp|2A!{VHe}5dJ)a;18e?5CicYPy!f1xbpme{jdMkLClLUzUX=D=F%8G2q+q=gPvy1>mRpktgmjW9U7`=4yl3l)Z*{bJP3jod5*ch{O=WEo* zo2;?vs-04sZ`ioWu4n?lN$P`Y^W!H@`JtDWFJH1*GplUg{CT!|%^K_S<>2UqaWp{} zE?)HfGFGttf@LvQhFOkeY^$$vC1mP8_Ab;Y{H8)+j5>oav1^Q_zP!95)n&HTH(Yhw zG;vJp*7baCtsig-psqwCq=h3HuHnwwbeL+R7CxT`P6= zG|mmLIIrEHN!d)LO<#hC#J2l&iteaeOh}aL{Y-Z{f63yHw|V)A0xvu_osf)@Ju`_Y zZc5iWz9I?0B+{|~Tq12tXM2Y;JB>RRganA+corcu9YVOl1c{4TFLn|@h++wwOA=f) zVhT?`{frCfC!Y9_dnaAJYK^`A`s>!;H(;;5{)RpJ=p%mGZ*A=byYIejzQyqsz^xJ|3b8Oyh4mKPU1MhQV<8^CS+g8n} zA9?s;3G;2XV)-)H#$dlNXHHc#E0+MlDct2Nm+bVJ({}RINvl0ecX9gyczZba!{!X#u~E_BQM5>2jelci|${6+3ap9JJ8Jqk0cR?Q#i`Zh@k@ z3w3t%*l}x;;4D$U!i{{MfDC=0OhA}=W|s?XoIO74rhb%Nd-JWgl*d}@k}%6J$hWz3 z=eU;Ofd}rl&G&4u#~ysZ7S5mJbqCCPi?!9-LgVeADL)$s8pl5RR&)2X1FWgTM=vRziGz*lM zu|}W|VLL_HNe?Xt_W&34E#9NeAo?sC7r+PO?pJ^HSKZt2U;Wiz>6sb+4B&=%>8rE> zeIMXX`~^j&{yy)}_s*U@Yqd2so-cqj+SU2I|+)Tj3!Jfdrp*WK({v#fgFJmtfzRb}CvEN_@@_N^qqXGtq{#k>cSt*(WRQ~L=;2^?m4R~fI5{=Qjy61+e zVu;frEcanJ%wo{CRL-bUdYKZm7wupDtAA||J^Y9@H8oqEW@isQ{HVS1%B!|%(>=bU zr%E#}00iIn@89S79~R>&)GQDI^y;gx*h3F)_gUh~<;$%~jFN4WKm`1GjEFgSC5-=1 zhzBp!|A>Stzy$DuJ95rm8R{Q&^)iOE2un0M7zZ*K2&k>Ghk;3>0>^&CXQ5)k02lHK zlO;8TMo?8V%R>ktNMXL5dxB;MKNk3}@SR|apZI8t{JebMTAG2;i6UdS2)j{W!p!3Q zWMQS1qd4m%gi9sh*~vgXG&Hr?;o~QKCYqIz=FZx3^?8$ov+E<$GVP5wUiaNx2&c00 zVw*X$LNnQAHgC>s0g61;#az|x3I{xkRj&E-$_12iU5nD7S@9_WwzFr?*hyUv?As@R zS>wB3N=r&??!5U9QkP43EngNHYqFHrrSzD=mzGu7rTRuY$0C$s0wbCAI7Ia5F|U3EUH z**RJj3~SXaHcLWisf6E(70YeKvZc0e{aW|UvSjfh%Mzd)>F>1soHXm`>~!PZ{L%_5 zn>F8hM+N-O)Y*=`N9^o{D|Ye9Rkz{5pNvwm%eAMiBtP3$uUTnJ1@ty3&drKDD+lLv z9OT#R?My#`=$G`B*x;~R&)j(T#t{6>;OB;&a{xU8{fIuz4mNfVp=F_e&Y3$`ps&K) z;N1E1p2lL8|EvJ!pZ?jO+2fBtZmU+W_WJ$EM?T_!oF!3~kd~_-(5Krq;UV8V0~p1= zZ10|Z-p1_sTCkwn$LPrLsO{Um*P7K2^92Z2uU?~TfrA_T@URrjI0rO+{_|h3^EI{V zk2`EoeY#lvXW^oSmZfwG#6tk8t^v)-auC9{b~Jbw1Y80A?1lqKjf{-xnH<+(I=@p} zz~2C`5a&dpsru26ex!-f>jGUTtxshtub62i%1?SaOSb9GpYYv;))MU;W0BoT>?T~i zc!~HypC$?%42pq0wq1GZb7|Jz(`zM_Gb|@R0zH?-*KodwC+Ec~Pepl|`f{mjN&&Y_ zLPBfaNYR}Xc$wb&De!U!DOvo}N?z|GIAKsk1G53J^!N7o%n(&Ro;wj-%+8pN!O&fE zAtCASa^sdM68bOz027RsEux%1GbF}_XVoX4`mhW3`YVmLa@9)PCjrPT@uCZ;x$`Z1=%I&vizph0U;njV^;sbTot-Z*Yu`>Rh7M7FLOghhv`f)a z4uX@jaAvY&K*AN~kLHCo;xjWzW?z67X0Ln(I3N^QI%3C1SXLr0Zi}OonAv)YiU$VB z?*Ja`5!l*E-T(QY|G5iIm>^}v4yLcaPYkfc%M!b6gv~}&w(ADIENfxNNItMJU>4fI zO!4F?{~b>*7*6Mkk#E|x(Ln(3cZ=ELlK-KH9<&D^yx;EGwBA+5w-sCfF+Av>nl#~fb2`JQGy6nIc;fJ6F z#HC5FUcA!aO9d z^L>d*byTl%A3lEE-rTv<1zAyPiIr7UN+=FnH$FL(4(%Oj+%Wc48>-%mBpm&8>$X;b zdx1hk*2sW^jqKcf%TeDL%gD2nwHNKx9lPz&@zd7Y6{SC@zM+95z>;G#N(-$(faj+^ z{G{Epd5g_ou)zDzp`%Cbhfn{|`w4AHe+uJ2f-W~w1YZ2(O^Lq57-h_Ib?uVM7UF04 z@}2Z~1~3=;CO{jF2KQKcp_s%4}Rdrrtk{-DsktjZAp)<@I|T@ zjB)ubSHP0E(YVYNc-*S;1FjAqIbsJ69Pp*Yl}f8X6PX$T-Dagvx?8tx^KrCh{W>4> zXk;1Nm6a7XLjjFg1WuwlV>yU&T~fb7^MbaE@}kj03(4{s{ky-9NmIU$ajy?yMKnGK z4;Lsu0(#>DESd%vO%S%^~d}@Rd^%>$&-%x$S&j7mxDhD2uF^Ffo zJ?Zkbpu6Bb1r>a`wj`{n39F16wU-p_$j!He0iHoqhMa-*uan z?w&4zky`8OL?u1ov-m3#ln8p%wJ^P%JKwgY`n+uEQhWM`Kd}G!AOEBMxn_+pt95JF z_*#0Em_xgmAj}*h_a4Tx%S?)o&d_udrhW3naht987R;X`!IkEq0VW8OWCjYegP{`- z8Y{E`!H|(1M?6Oz@=Q?O>p#CDJh%crV8Q?zn0$s9ds$hLA1p}z@%d6zkY%S%pL2nX zj|pre(4Kj|^*+x5UT71_=iil230~b$`&k`Z;dVOcJlODd-KgV z?Qj3~Z}n`SefpChwJY_F-j<9>NF&Uzu|)r5>VW{`GkphbqT4%ZJOjeG$9Mdp;5UhK z0StK$z)Q@4OaerD1kxt&fK0{!%X$cPz&F9czkX*MJG+Cv{N+EfhaY~}?YJ5m@qnD~ zagZ@U%bvZvta3($EncwD`tXS(VNRX0Jk8S6qYpo56^ggMzQGOI0gRjO*(i{3*})2B zXlL8B^2|~s_GM@nFVvj(a`7491D*f?b7hRN?8MOl*vXLJ=nOCYsNiMPdpYa`(=ATr zrk)soEJ0G<(`U~5k`?b`T#H=`UVQf-Jg9UA_1g>|1rhHt9O=W8!%qSoq5rn6>M+3FQ5T`R}9n5j779b+Ry-s&OTNYS0U9lRu?+nxXT z_~K*F_`+}e{oAH_iKRpZNmjVY7XBTDnq*p&jsIpe?f0E+MKtC7=_eeyIf*%NPE2d_ zRa>;6+P|Y2f&akRh$aYDUSti~nNyJVw?u*nN*|k%w)QRwShfgOxytKAM0lef=C=Scd~IAzm(R>JM^(Lr`Dh}B9eAKh zr!nd!+%QaJ*$TT8gn&1a@^IbeCGsCbTxDX!`1~M$1cW=lXpsQMBab{}Pd@&rJ@)WJ zwq?^jHhb1g2M`!P0tzo&x}f$rVW&@>w1z8}TtkDqd^Aw^+_Tv=1p@z=iTtM_x`n!^y~KLJ*{0FAD5XLQ(F^W8>iEl==e8M#T~m7-ueASZ#S~ z!^?FSEiX#~OKpab$VvlJVvsvvS0zAM_MncakNl!S_c_BZA$ETNI>ivcOUZ8a7dpK0As3@_0`}X^NCM(o$l*b{rQ_0E3xOd3UkXo{I ziB(rGa4jL}UA%a~=FP9RkACE%&I8V$J?Be8#n_q%z?2Ah1H>=ZT@Yw$aIFdxg=+@8 z7wUXx8{^2!t$L*Y@g4rg1ff?TgWnjp)F)+N3F?tY9l7#>eIW>~CL7R{hr8-9xQ- z3;hjS8O9&|8Sp}0X`OerP;^IKe?pq5ZSMxU-T9A?FFy7Zc$orC`+a9!5luON{4~zI z7+^4k)|M96SYW_5qS+!t2jPt{5wDWa#m9#jfS3@>Yr5bC0gXXqnS}Doue@q+@7yJ3 zS*rW_V#a6~PU`+kz7~vc5Eue-dU!DMblKk4ZYx);5c8^YCspiv!6pUIoU2x@vS0n> zU$uYnFaEjxlYjcV_WBz;e64(b^?V8ZelHh-%c~)TYurFr{X-bAOCc7#%+gG(v#rhA z#MChQD#awrf-y6On67E5F~67pzWeA(#21-C&!t&ITXc>YaW)@bH8 z+ieF1B%m8K(>-(QjMbbw>%yR|twr^nre|i@@|DYM&FWRQWXU3d2nlxqB2IQ@O&_p= z%ACMb0fI9C!>IgG4bzWUsw3bB1kvkx)^8Dbp;tuDIe4jWvNM{UqA}nX%2g(Th0V?E z88aP(;>8qoJ9az>3)J*z6VWhW7z}8`c_21AGXzT5xrDKENQ14nEG5#;*wO6Uv)46e zb0xU?d!y5-ONvS&18KD>ppRWJ`;VQpr(b*9j-IP?4GR5rRC(!aX|lNz*vl8rwGThK z-71RU!AETfz>5`b6+Dn`gO`x?{UBZ4OZ<)M9La0H{k+-UlkJEMaqptb5&e__dK>9XavW$RXzzf^#w$(l8>`s62m z+IPI=73A5vb!)9dAc?~_(Mn@0Hdm7jj*S3(;B*n*%A|yyfkT=T)(QZ<^7;;6`oBbFXII@|Tuumop`=Zo1FhN#5?GI*z?3b6QR*3Y>q z80%IEaKOY*pE>0x&*o@W*4H=a+ngPkc}~Vd9C(4z;fDkuQFo!n!OLth&|Wbt7&zd8 z86(;pW~kT)h1o9x2ta`V3f~dxfE7G=}3d12dk#N=oV1QNgTKJgMihP^IORA0=T>m|@H*I%*2Cr+xq4%_h~$E@yr zt#t^LF+0YF00YY{+qT-g1#_*aq)?G#qtv6aD|C-<6&DDjA5bRpNm``Kj22)@8ND0| zd?o}!;}R`ah-vVge)2xaO$TF{%44IQW!XsW*FVr_=T4utdI>a)Kv~uVh|Qjf@o>JU z&9MrA76dr6f3}!&kEO-1RhJ!Zv?oB5d~v)2yOMamvaDQvu-`rLKJ?&&-gaoIa3=tO zY`WTNJNNFjJpv#X8k#Ia^`Fj}L_G43S6}z7 z@<&dbw$tY?x~q5&gIv0Ji9m(oZocZ8jE5h7$d@()aB+%}QvOjD<=2=xb>YmI6mjJ{ z0EjY%b|KIQxdOWBe}Q7#CJ?|a>^?%1g64*C#*zy5D1bRMA{;Ep`8;SN!V(UB1D?W| z*t=)9$H8Hje5bD4+FJ!&8gxI)mt{x?-~%vluhi8u1w^iBjE-2fCLH@!??e4VwtCeH zn>}lewF+1tJ$BT!O8~#ZVmxrO0btB`?Ql*I%Y4}Du*>L1@B)Rp(tQ;@Xs6H&QD106 z>MmXMWiIT^wr#u50W!wHhYlTdpmFBxS(`V1zO7iX((9UoLNVs9s;tl$=^URtXk4g# zO!)9Q1jnhnT<;+Gxblw{YqrY0W%E7G*YMxtQy4?YGQvq)?ZTo6i#GJEke zLG&WvC1M5F)1N9a@G7b*eYXPw1g#5e%%x`=~=TXZNr8& z)-L9R76A1zLI%c$mVlWb_woz#qa^?_p2r@0%(r#^ga7mYbjMQ&w*t)uVd80;aZzj6 z!ZmK7>-b03#Sz9AYHQrR_Z-dgnC&wwD%Gr={DI+MI0$|i70#(3Up^QZa0UxwMB_r> zGxu3GLeLNgOqJ&Y;NVKVbH7Ur)$MvDRCBY^t)}*(#{(#%{v5oh{aM=M`AAz9Egv9& z(7do+`~11{E+klMXA3F-qOzjG)~{Y;_uaeIwrpG{VY=8jV~FyfuRSLq*yeRVED(oa zK;SXcXLpqY5Pb&#dq2{ZJfJ3L#}JXQjhTD;=iikv52NGP2n45DWZmIOcs-zTx+o@J zbD>Vcvdr7zLQRd;)||Ii&AyqHXA3wKl@$4M!_s9-th}<^qi0r*tqFiPOLfCik0P+E z0tGBLb+tt<+2_oe=d<2?#REXkP+l=qU$|g_@1kM}2p=MY!=v_N0pTCN_<}WJu&dm* zs!jUTFFB7UNBwl!qG~^SVDqN+RwUrYmTti2>2o!zm)U&0FrV z2kzgd_C^yFX)D?7h6d))!2`bRxoF`6FUHA}$L;B-e`wnu+OBq6YPGesuEAsZiR3Yk z&(1EeBZm*U{nyWZ{`0Q=X=-e=1N-;;!~xs9imDmbBwlb%AOh_hXE&h%MT^5^0u9*; zG%s=BC92mkH@H_%*1cdK1|P(^T$aE~xy_$D*X`?wn|GEkS!~N!EU=~qc7vtcJpEo% zbHR^@C{Vl2s+wi<=gl`@XQrOdK~t>HEIHz%MvZ0ZXoyKj^!SlF{wXe|&uLvA^rfM#;itDE_%b@7?U)L?IbX=9!5o8F-1!OMK9O zVqyp#1{kyFL2DLxS+rpOxc6BNb)FFeVyS|G?`yZ?s{e=q63_KKOo{X=z8YY*qoZl= z+n}!QvOq_TJFLP$kC|I@bCU#pziqvDlg*nwO9Ohy9(m+J3EeV#`>mb!vp@4Q5*VB8 z=+R?7OU9^=Y980pl^2;Usk+O=?v8|XUzk*(5b z5zxEm@Eg8XD>yl(3VdxmiqKK<2XUq4F;+ zFB6DaYKtUbf~V%zre@#vkAX^FmS*Sd)>0d@GwE{OC964KW1a1tetL9;fCX;%Df?1^ z#0?uZ`fT|}KYq@>`}7a2y}Qp!F?Lp+wkaC_ zHawbPFTb|KPM$e$0~%*N{X@2R=?WWAd)L%nu&rA++lDo3e6p}^-8#?nl}lIrj3jnR zA+*DRo2rcQ3c5aa{i-&modLUOzPN|RgT4hIMneKHz;PopeA3_WAam7%$ z2f)S_gf!@fq(R@@F91Qm{lh={Z*HW^(#(nDCvDE`+1|Do($n`?7Ddy7h5-X*`Y&LJ zcEl+gyMV|i;CQtrBb@q;T^CvpG%{#7>aWzhb3?Q>7~)e;ZR)Fg_w99Ww#!zo@O0}g zUbJ&(&NyJh2pH`TOF!fdZ60;R1dOrg^~q>d88H+G?DISK$Twh*vxp8HIOsMkXq@m- zgw56P(3tJtv(J~eIDE58V~TNDuYL-+0#ro~8hdO+^^l(%O<0te_`!(xjbkTHi9cZv z*6Yhg3#+RYe~W98=PNy&)OBgnfJTm%xv_Pi=*~5EbrXtj*Sn2wcmChe&&RKUQZ_GB zplQF)034?&=Z~KRN{|@Q!DYi@3e9d12~!Iz!wym$tc+`3V!?~Yb3G4JBE4KvQEG4P z+G)?f@RIG?xziRcUSbzDGse>{j1zS{eh+@@H-6Ptu2|~)8_mmx^=mX^oo^ri*vIXU z{_v0NSAOa5+Dk9L8179xDs3z4c`43aCmp8z@R{D9fBoP{AF44ybqLvufX z7v6_?0#vxN`wC`@wuom~Ru~b`Lkj~yVRi_3Aw4K)T*xz5b~;s76kB#?nw6Gm=3EiE z+-KJhD)Htv0Tq4j?-2;W2ZkR!$!uK$Fh9@w2Js?_T3v0OA%Uhpyzk+R~+ch#Hfoxa6P`cMD-&#jSVlY)H9PvF?XJ=UA4^CE|_5( z7SFR;+1%W2SDISw#n*S*bFb{M;q-j#92`>~yX0wsFHc+qiDEZ54o= zC&7mX4hX79aFhN_xvJv2yzTePr#THdBu#bJ>#Oi_vP9(s~z|^HZ(eLp265r-{&wjfuuXi5w6)c$Hy z>f@a)6WyT?Ohk#=^lqZto&Wgw;$u&NmnqP+-cO5Eih-t_KmCMY@g)EW2Grl6|0N3+ zYM@8f@#ti(ffv03c#&A~?-=|=@dO4tNy3?e=RD0`ef>4xO3M-Qd-v{lBUonH2vodh zVve(T@j^X`p=POV+_+8*G{<%e=pg(nC6KXQfVpyP!1FJ>;0LHtZtPkB4H!V~*9?j? zMX)E}eV9B4P9i#?jB72|D5g}Y~jn2#vBT?eHwrr$700^2R>K)@{m@WW?nJ=~+_?f`tF7cI1FyLvH zcOh>pl|6tLp20Y|rl!s{LD+V%Rhi-fJn$$>LD~Mxk^+o&U}(T+o&XkaTSbkAgg^9D z(O;BT;$i6l@CF!Q`zv)zpzhpRnDPQxL#qKeNOVLqVzz!0H#`t7O!8C$^t8zH(x1SldO^d-`w53Z?nZEOSi}gl!GGj?SGu z@AXZ5XjQx~sof~ceF6YALCU^0?DDx(cS%6)i1U$+szbClb#)ii{yDZ{#R>;6j79o1 z69N@TDU7LYx_yTi-x(_yH#6qYQtjV=z|TNizI3V3`H1f{!cd+vaEf%H%1IxsZ)_63 z>QLHh2TklSD#i~I;DeLY-Pxz=5uY*YwAOI7RrRsQ-&?YDvCW!YB~Ub~K6J`z1;Saj zMZ?_L(e8%y5ucB5rRe*$zHk$okpJHWbi4B(A76az8NcxBfB*NmIjNw?CJN5b6Wk9W z86|t>X7LA_Zu-dxq0As6DnvmDJ_}72_!Gl$yN&C3;D*3`gdqV%J>N0H_2=~fg99xK zgN>ad3>cUUvuf;N04WYsG)l028Gq546zRL*(Qj;VB}vUU`1M*KpJ-_i=tE*qFq~n{ zUWPSu=e(TneD{0yjck6^_io#4zx|uPso8P8pFmqZuiAI% z;1{H-vPyAh`IcxHL$w6XjyK+t;2o8akua0c!22#Us0sw*yNT2<7&!PG9yykmhQ3j>ZBNal7iVP5E!S z+T`kGW}ygQW^&A`+%86Oq9Fosz+`C;W`Kan;QlxDZ=T*)$-BE@87Hlopk%iC!s1hD|^byzY0A{M^&#^AGZ#n%Z2k7?BK!U_WUbv+N(Qu*_N&MNuXrfr7M@+<^}t!l`9t8;{wgARxI&2 z^K-K#2rt_AfAB*)srPg8i|n+36At_4&0k>i=Pwk{?DFL~+KxjaxzaBXt^h6iD18Ob zz>FmfXVqwSzP3(4{ji;_yd-ylmM!&Wh)N}!q3&5Qm07S+*dmRZzyS=vEE zNgts<22G2*&=(>2`Hi*&cmjeM;n-*l>DkDrA7X5CR6?|LNMB+3?u8d$@_bg!nq%{- z7uv$bO9gUDtzPwjgSL!}EML;hQ~MR><0)6dU)LkYj=A01<}F(tq;#mS?cKlMX3d$a zK8!X~@#huUy_+{!_1uMSpS9zS*FBFbSF93HZ}#OV%7js{E&^21gbi&MHZo{c80&dT zucwFQxnsrtyU#OO|ea1pA-854ppHq5$ zdBmGN`Yoa;A9~8KfueL7w9%=qyb5D1DJj>$%<@AO_w3%|+b~hPX6kVaO8fhIZ0*`L z_JyDQ88M6=``E{R%D(>fZ`g_B$L-4HdfUHmpBPh{T^8dzbmWNdH2CBvKW@)H_oBP= z=1@np6$rkqTesTp{_a09PBq^3_D;7k=xmR+IWtp=N)Y{z5vhuJE%_l%uxW-a!9|*)5O$Y&I?380fe`re( z-~e72J;D;<31IOVzWNM+nS7N<5V}tbm4)|de%cos7?#WcFP^UQMSipOE_FlyV@As7 zu`#rH$~)^WW6C?dNHbK*i|hHb=g)dwU;~1!1o6++tbE1FRT3&is>fWz9eYoAuY?lI zak+-mL-Ishw6%9=mfPSnezYfOYAOYkt2Kkhp9`7=+LQjzR%K2WUcG9S&6qjEny)t6 z6Hh!LaJ|8ol5!=4GE|m^OPB1(;Ul(l&p|tK>b%;1$nqqlmo8prEv-#1@D^3iwr!g? z+7pjHWb>*@tygK|I)B%mefHxQUJ}5lvk~>ba`h>8t)KzIcTV;Ed32UY>mdMub`QY| zh^0<^gb6gT%{wo*KwvZ58m~6{IZTI-9CuKbr+RS*fD-O#mpJf|K-~Z;-EpAeDk&+l zD*}jTB&1o=0cZeX03HAkKVCxbL$qT6Gf-sjrQCS8QaTQvuk#wNfB}HWZjJHC8+5;G zLEG9oec2XUkA<3a(5CqFVOu+zL^M3J=FGIihmZME>jMuyNQAEWU^_cozu7$|2yD4I z`O2qRSy{2ITeaAhEnlPd=&|RXd(MF=#{MmS#O^$2l#0vm%EN8M+xrhoqQJmm7J@S>1aY{sR_oHmvg*^|9k8+?kZ` ztPq3RxoeM~GlNqxGz@sxL}T-keSdJ8F}5l&cnEcNaPiMl7Ujht5(dn7(qWkcqAgr~t#}cdEY~3*ID5#mp#K0J z04Bg4YHqfQ`nwYD(K$=mZqy8raGRHDfEU0808Y}<886_<9li;yq4lBsQGW>_Pk=_i zgk`UC3BapO%?@_(s*3#p`RP&{4oGN_FAC)SMFC+9aKmn9_kpPY1@o(YIgr5a68bc4f!ZGsjEx5GdEahr^(7B}bHJ$b zRVcsMWXzd6$0{nzeMd`XR=R_i2e#kub`Q9{N5eoI0OehKcH037ud5QkS;dvs+|ld# zMf+4ecczsW=GvCEE9~PRdc;<0EOoXuxqZmaox5#^`sew}O*Wd9XBiT@4p6ev+)MH1 zdp7wQQ8TM54aax@AXZq}3FCc6bp&9b+XO4X-`e@M9Y1l>HE|po*vB%3p2vY9 zKxLN3%j{XRt+}7ivo+a4+fnMwD!S<`j&lI}aqTf~D2zUCf_aC(z>4m-(Y-}L% zLO-SHuJtYdJpMsMAD%n6Qs8C3KNB1`a{tohi*}{)vR!SxYBQ9_Wvf=Y`vN5*z{4_N zzw#TMYxd|vkEnig1hUTB>652ypl{IT&6#IA-h9ioaGjkUUPnE;&k`f&WC25Kf1FCMN9^^F3Ir~Rl3mRQ?6I(=e*_602;XL4Q8WCg7h=c2KN84u2#-8}-nGp$LV zIR|Rl(&bj8=QxjvaS0g4b|*t)70n`josAIGM?qncWouH^qW-tztzCA$w#NHhsX$km z`YxK5qv|L4{NZ5JPCZAzgZJ_mRc>?%^?M_?eJ3Rv^LGAJ63DP1b#*xPl;yfJY=C19*u9Dd+9<2vl%-@gmK(BR?-8AFiy_b0}iC z5>515$Y&I9Ja}O?f`16C?A<_6KQogmFUN3n%zpTzXWY;hK;plPksx3eRL^(e^TcD1 z*f+lMH!e(YKhBOM7%N78ob1biZwMhAW}&&^T%`R64!E%;GgXKar_Y@`>t0~D-Mh^h z8@?n+&od+nxxSwJs9a2T9K0xv3j!~5Bm^A1V2r2w1Go$eAW|3Pi}Hru83+LwC0FW< z^k70f4@KYya1tN{zRXVC{@ zoQ5%z$7nK?9UzBI40Xe@8M`^qECGlpAHdH08Lc2N0ARwG2!g?P$0%ReHIObEE@s|+ z5+;-jfe3(MS&laFwA5w@txy*Z7WEkrgNh$NAZ&{!Z}dNmMDfQmGCJg2r61V7)ip)f zEU^n_@7}%cDHafeeMVYFmS)jCe!$+wjq7doiex`NC1$DLvvH3=ZmFD6_9RV>FkUXcoMEU>Fnv$IM{2i?ReFWA3x^tuHg(Jfjf55 zKr9_$w?y5zOMcZA_3qMmavkZFjtlz=rw0Qlh4ahxkY{^S!T>|(X&FI!78M}{oHss?PcoDDS zO3tI-LO!E>#Df=}0R&~RTp-2>b3veRh6|?+uiLQRmjar_gc;#iuQoX#_=Dg7*LM2! zX$kdcx#_8=p7I$p%PYK(0VLmX=EY1KFPI3lqT*74p_euL!v9IH@3#4qKjGY!hisK* zc8@*!sLI(HX%)zy|1TQ8ZrY1NM)gU(QFUqhqqYw z?5X%eTk)B^g=?Vjdn}O-X`pQZxbTF776A(Y8cRd$vY0)q%4dNv=VpOR%7u>$>Vr6N z#gCCIyJ=3IK4}{fkovkT zzyi?XH|qDwxDh37PrslY03v8h0JEX~=~LIVU*q*c8@08zc|T(2&dv|Ee=}?5e42#| z7ugx5&64KsJ-ZA8XY4R22lip~trZ$8>({Qd?f2bliz)w%G8@gvwmtg~+qb^=j2%B$ zYrR9G*51{t_@iY;mYvc@2Hh{rQ%^i<_ix*33+K(Y!-o&s2?2{m3#%hL5&;9>;ia}= z8Ic+Ipz@5iYUl1fc341e-KI^}ueu(>s7C@;4@U;lsz(gFpLpVN2Ulz>rVSAAcp7FI zZK*&OlN1CjAO%py_@WM}H+I2PS64gegQ&02gQ!31mA2v@?aI}E=Qlp-%5!t8O6>U; zUNs!pp}FC_D~xzAHC(pZOBbxOx7#Wuys;UpZ@Q{_8gvkbHVH%6lLCH=7A&#j$IjUK zb2X~>S?Uk@YX4E!E;YBd*pZ`$ZRN@p4q~aZ7Tv48Q0L2z_(sCEEaaJhdkB_vIp~#L zLkA8Xvfln7w>g@r$q8By?Bp==#xpYKX|YUQs!12NDtq=H@W~bSci2U-WQ^toJ~~V9 zvkcD({b*Hv`B!bh60zGK3AnemcllCNUVg4BZOm<;*x|%BX|`rF7U`!ERE%mis?}?? z>~tfyeJ3Rv^LG>7>HObO@De)P%|bFt_RM5{pD0Y1=#qYoi)*rR^H^+t;zMB6Vc;Tc z5dsJh7b0WhDrpTg1i)1>kA;gCIC$ZmKn$EHp6E)>BMR5(S(sTY5ohGHA=hVf%*>e` zpFVX)v$5A)^RhxrhnXxhY1FI;g%5xDDSPtCC+&sjpL6e)FjE9rqkEaH@YxZJ3O^2% zYvH0rwrkfefq)!8%ARzX)h}GQ(80@}{n?+|*Z%4+eOY76md!Sx*%ooS;j!M=e>Ys+ zn3b!F17P5^Vl*%8He#I`dm-vE)Muz?uH17ig1%F?2s;F4TU(nOBqIbO14;a5^!qai z2xnGGmn+QH?LkzBe#j#A?BHcI0xvaaUNU{_GY-@Eq5uts?UB#S_a!5-9AH zfYAaBcnZ+L;hYE>-2FE;HMn6Tr)r~p!igPqgUu1`#jyaykD$brKi)&pYy>S7^$FOZ zov9DNBim_xS5pjlp+92tl8*I{m^p^G#6x`%Pe(_)gH_T(8${j_%JehrCGbKVv<9>T zK1f)q2)n;{H@r{#1JnREY|F(?0<8yQ0c}!oNs;~Q-}_hNOC1%iDPbEw{rMh&hI_Ye z5op*eS2(Enx~*E^RZP&G<>d=}04UT1 znlxOn9Mw^ufGCGPVl$MdywbN=l4F^ZB_FgXIGF>GFs9IiF)q>sY#YR5_Z>X!T1gJ8 zWC@SHjXe}Qtyp?mP>mf>zknq*?!&{c{yB!OkM6`od)&=5-TcS)%Y-4$Og7zQj}cGAOrqt409;`1FuUIFNUhJZ5wlNhUL3qId(-_ufEP%wjZ;WCT%%{> z!3#?b-0A7=8_!EL+poXU;LARowSxmIn2Ngw@9J`aSyUYPiQt?X7#`jy5nx#ScXf9e zClSM>o3FOGAB)*y7F)J#v7<+iyWt{6b7YNkR6g~opZ2(5mXAFAu+KgbqApaUY+fry zC}+3!}{{9|k@@QU&2yeIKk29($cWxfe$FdyUkS=8|E-v!8 zl`9F5Ay=2POriNHxpDA<%?scKr-**n&mOey0JPT;Sn3Wnrz##Z=InOcz#^NlAa5fUB9k;9h0hYIJx!3N$|9)G$ zZk<)nonxbez4rR6FWI-g^Ih9};D8ONeMXh{t8HD@J2+zL0@G;%a(IKrSIO#?%WUJC z)mBweYIQZ|?A6!b(5(M}^{H<#(`T2<;)T_&p`%{t5!8c!68OR93~j^7lc%hsvrGMc zuGOl3YHMoUPs#G7%N;OYx_CJ{CPVq2CBU7Pu6ov(#$jJhPL{Q(Uh!W2_(Kn?+(Qml zInReCpql_J(Sl-sfuSpXiN5X{mho;xJyJ&)lLBPuue4*-=ioWfa$R|8q3xHjX56gb zu+HYpnXP`7<=Tuk@f?5*V;;L4ob<6howSOIO0BE2+s}Xc*vCKN2FH~+i5pRWRod_X zG;DeKIj+TE0>eG}2)vEuMNX-ntuafUSTbUa(l1yp#Mzv(YxC7Nw%)tV3RUK_=W2Y* z^3uhNoClVd7K>-5`)SYE%M=OFqZIlFO zFe^9TwPdwwAHKJ=Mh+qIa*ZYv%_e{mFS}Ifu%4x6=?9_WqgsxL&l6Gnn7`X-y7^D` ze*CW~@G=Fu)8GZL!oVdECqj+E1jB&Avy+6`5dxhxR-8&<^P-V^?Rl=jU>D6xMDf?C z9P!`6CxdEI$!+a7wzx-onNr8e)X%aHf2_c zIyL|R1P}}Z@W5ed2sUg#)~s1+ue|bxuX9s2DhD^_pa1;l-Pgm`d$+hJPG)H^2J&;= zS50(@2QQIYQ9wn{vTTHhT>uf98;CqmN0fv5Vb^NIul1-`^!nMJZ=iBp#WhSWXv zJ45-SJlL7wcZHov(Gpu^l%1`3$OGTKpHU5FUe%a1T{ZSs;4`jMFZOZw+uc+rka*kZ##dt|8mEaUMzv+Db{Y_>-pddRoW(r;!}Rk{Y}4S|+7ckc8h z1OzEtY5`iK#g4g1M=9>HsIg)?K|kReBDypV8@YWwdZSGQ&lA(Fk{9{ z-?aw#7*?B&Xl&=Gj?`EJe(5fpKlhnW`(%MbO?@n=-myhOGeRGL02S0}EO_BFM0;UO z&h>iV3Vb5!ckKEqEXvaa<1HU6fOgX2XoN+J7dmJH9M_yXZ(SXowrIg3TUfo&w|3(! zuD+qsj%aeTNE4XLSL)p*La`<=3zjTaJ_P1f9(+@gU-}4>91QpI_rmz19WctJ4-x{X z2Q<@XmXJl5gca9R(=e?S$bsy0=vklLpm4-GqMZp?D-1<$^Bjj@U}}AFS?&7CUAIL<}5Gz zN#v7;fBZ2zqIwRseSLH%rt9r;chYq8pX~kkU#A3KVreoNooZo{W`3H#CnMgUI82?Wg=HfSMPxv+ z=1$s?AklR^AIN%VPGJyf&_@&vqj>Owod67^Aiv0&N7y=>B__|)2Q^zICe*B_G@Ha- z_J=?GVKKNYpE=GDC}Gx2ypb;x2^z(N@O0zCx{EG^UU>0E<-gTVo;o8YcO??u`W=P~ zlg9|LtGiP|Xo;R{_EV}6Tp_z5*Vl6&l@Df)`k51JFJ7v1udQ?E&33H>!iKT|#;B7E z7cPt&4L3WWf;sXTri!3txhn_*o`-3%8-%UhxM~MckzX9^Wn^Tl4kFDCWp<}rYRe7@ zS7wM9kK*HnfIS2=P3jfKOg%&4Gdphh9UzMUq1>d;PBerXTQg^hS;HJzmcyn6m*zO* z!egj0K3LuYXi-n3>*wX@eQc3vD|~anwE4{PSXoJ#*B5b9UrPX_D$|hS zb&tcuqqyl8*lZ9rV2Ise*trlFb|#!*#f~5V2p|F#J0OaB0`NhAFzOtEM!5kp%);ph z_Lg z!`gfGp7M{;ta_YPmKNFrTQ=B-AA8Ui%&xT3f@~`WaKJ-c_iu%}JQPnEzY8Yk+F z{!C`LUhiX3`(Gz=tJWMNN6{!MQ+>Sp$`0o@ix(|+2b4@$Xh(LftysF;=FgcYa64e9 zahtDlk;XcK#X~9!p0XFJJ($Uyt*x=T`b*ZR`pM1D^{vdDzz}ZBn z1-1b9ey)|qF~tKvn76K8G^Oyhcp8w z@7OxP(0GP;Sh8TL=m+2XfxG|Sbk99L%l^)HzwZnP0mkfyb#`oCUi|jAt+2Af&qzUF zFx#V!U<^*<)f_-sxB)=oE&!2bBWzxnK{I0om{8YYi2@-RX@#Q0=n$Ti0pZAffP-&2 z9ZQ?_#fYypOBmV%P;5-m56Xj-!fMug6pM1hW zZl!=nw}c8OobTSX+ik1ZzCC}zVqYF&>#Lf|jXT*nv~k^9TdL2660W$jA68$(N!v@W zylVNHQD3-tS;DJZ?^ml|jaids>-f%Dr*}83->5NBtTEA|dMS1PHL7&AL0WVck@_WV zfLj54jBuO-Ahb_FikUpVQ+)YVAPXP@K*Zhr29<|pt~mlq=T4upy7M)@ltmq$I(^#v zEIfg-Q&-dt?FM+IeHbgW7sH$M`CVQ2=0rypFwp;+95<6;m-tZ9JV&g zmM*&nZa7f!%{O-lSO_F3Dr}C%l+Vf|}m%?(qA5eDUWd{{@F>K|> z`5^s*K9A8k`3H>AUofD?xVM1~11jIlS!Du_9qymSk2>h-ia@)5qdm~9p*g|kWr@m? zEuhOu>-eStt}*i1S+#%vK3ltbwJ(uUZA`|<4?ENVE<5+^wafLFZS$5*Uaw3Vnp9>^ zNI!e-tbPCcKd@7$PDbEbWujdfrx=y9V-J2!nWCMDHz#ki4=^PwU((;luYpqFC5Dp5 z@7?|8l=(=Y?GefruBO z9tpnaO3tI-CI&A!D#IvJ$@qKNI^e5g_pUu+Cam3`^!SI_VIW2YBly@yKWe}6>%Zo+ z3sm=%Wu`y_UVl03gz{iN!4eJN1vTqK+qYO@QJKB?;>&)V{sl319N_WZr#|&*+r0e& z-(9hA!9rIpV@m@QRi>hhj#qO$cmZsX2fz!4mDOS zjbNqBFna2qasW#BPT(D+9!7{57}FNi4*=1(c`I$SF0AqA2$UA&X4_en>&MSOFCcYE zGvwu}3(XkE+ln^!wi+)JpCRfi(;Kb^3rnUCBro+#909$|s4j}|Y0^E1K^|os?yV^ReTV(+(vkbUy{W@Rn z0@Qr-Ti^8d+y3x&7t|+Cop7xl;3qRP&E{0i6u|Cq2ZSsyo;-2dLBjm%1xj6$H9b39 zppAYCq1mPV;gO!6`UBvgw5-B+w$(SZ`Bw50jcdH#qQPdd7auIx7_nr;ZX=eBFo3QQ zu*IJXOQ(5ib2KnVjvV#nVr-lM=d>T*tA|x3Oi0)U4p`z)$$bJjXtw6fTi{0Sj01cK z9Xoi)GL-hNw|9B_E?KnDCtL-Zz%ZdgL*wI{Fah~9A7DyWzNEj8Uju!hz)LckZv4{) zFU$%Uga{Rc1OpwW!aYJ@Ffd^TEwfS>B7zEaJ>bI`pYp-`_<6xk!Ob);Qw1+jBse2K z8*Fi83Fpd{250!}4na7s7XU#>Enc$7zVL-FxaQ@DKm4KF-vG48H)WisnO7u?qZvQ; z9?K=Lj*4l0Sc##bD zv|zIJ0x$FD%(WR+-qGgG;BQs-iEr}aoj`~?b zuGUssfCQYq<>wVj*r;7c)2yez&-U!yYp=bv(}B*q4I2c^wrkc{B4OS=Uccj8kjKkI zdVHpBLm!~tAnwx#*hQ43y1;i1!k*{wk-@vZ1BvHV0UoFBIoJ~MTy%>ip#o>z>3;Zljl9f6LBaxMV{b zGq~!fTonQWeckOgcSeOh@z}!>)EjKg%H@`oS70^gYwh^a;|_dTZeS+wJFql%&_K|# z7>njgIG+}H!E-P+YaG1+h>5g&xvr(->?Z2QZFmIK>BoZuy#o4c)R!~d5E-zTo1f#m zd}s@RHz1BaOP!#}#E6#P$h-F=)d|#hR*#Wcyor}J?dCPk1>*=?KrUp%FqOJQI)~;3l)9u3fbH3w`0}ZJwmRMP` zoj-5Bw--jg@Ehu3-rV^PUKsxvq|+a0KYqudCH)I~C7jNc2t4lDvs=Kh-5t}lsc)f; zW635bH_y72kB+Wxw{e1xWUGB}PKf96e&sJGH(%*rajnTcTkdhdh*7+cdG&2za6+p1D4$GBfVEnA< zv)c&9K-w@V=$gSUIre)|zLJ3#KnKFz#DEcA9J&beI?Ldd&|=nKD`5x0OzIo1_^Gv< zH*fMYi8$IGro>r07_hc?cK8k^P7nU?|LwoI4av`b`lHs=(qVu8=YKBnv&@$&sx|ZC zoFVFk`@}O>Gcab(XaO+t18|VO(|9$5&IMbEU3viO;N>nQ(8vKy7xG+XGMz z{8n^HfT5n|U1q%qJM3`?q)Ay3asW0AH);Fc-T{05#TR@@4dZXx3Ht^?HSe2j{lwV0 zw_Ctjj32ubGz|Fb!MPna9?|(i%<$8F=6p_q8lg%XG`BQ+KLs!ayCMW3^-o?{Vj=)A z$RB-=T}B8^G&9r(!kOO)%)Dtw>|HuK+pR%DgyR7?Ad%j1Kr>_d3CpuQU*Fj1V4-^c ze7k?^7JF#h23t69me=*3z54{B&sbgkRcr0;x7y2%HaM1HJp%wjv&!-^TfVs3)~{S< zkKVtxBffM>*(xe4T&se{gKha7R>+uSch0=|a~wQ(^>lk3(qG{v)EPX4 z$pQXY=;PEG>C%7bWAurrZ!z(SCHfvA8b2(Tloc1+k5oST*}eB}RsUldbI`XIv(=wv znC;siu)X{C`R*g0W6Z0hZdbBw@nZXjzxB)3DPZ}^3(wn-Kh*c0zR|%GV{QBW_q#zcyc_T0*r8#Q#hA<;@3(3UujiYQ^PCSbO}BjU zZ-3yHjV21oDA_X-HRGQWQ?mD2Q%8FNQ(+J=`-;Fw#N_x4Sm1XUJOF~vj@reLV2}_R z;Rw8RI(P}1mk<}s6B>V96y+-!cws;yEESFC11EJj9XojNu|-v7V4`eWWGMi~gs{R`6`O~{hhYwzBwP-P2`{p*e(h_n(IFk|B-X51Yfn7+ zq{q8z)hhRZId|S12Y8%eg9l8?ugZurI$q83;02W}3>r-V;Dy~rGsM)WFY33ds#5tM zb%slz3_(Dm$)XG{{6p~gqV3EW6t_y)VCY#{RxC!$Wv&j`h%M~`|rNV8Ewh4>MM^i%4cr6YhQ+e%^l zEcdY_z`OYCVF}^Nm3kLK2vRg#XxS3SFdr0i5S&77#gE1|`>S~LCOh=~x$e7zWSHYP15hWTz!yHKl&pOGK2dP~852@AFENxf{+kZ|h?2dpG4Dc>*%8c{ z0nE$_M$5Y}9Rir=0YC^37)gpowJ!zzpR_tAOAH6tk6=^06BPK_4wI zWY`J;Bs3Opzx|fmY9RD6{$9Iwou|tVzEh_JTHf4cJNF;9lV{GWjd~ndjSTi#e^;B0 z4s_evr3>wIpZut;UA0^jjda!dpuN3kuRZhpD^`2?s?}d@w>fjG-TN$d44n70dDCW% zO&px5-X)wFql1I0d$ld#pIumI&Ykg{XI1JWZR&rmZEbo?0#td%9}K;KWl2C1nzH3= z)fTv6i4yP3*p}fJrBLGlBj(VD$pfDW@CXd*5vlLttE^YbayTbjy;1_xqy8b;p*d4+}-Z@@RphwwF=^)dd@z^Dk$EBU}y zX_kaA7|-%E*m`{j9;eS!Pb|B^83326RJU#6s0U7#uPElY0|9h_U=I8o*7cHr6uSYp zZrSW$or6?y4hTrh6kq{t9o7V;S$vEopyh0h*LdW3jZXC|G-!xWSo3e}zxPymGM6}fhnUa++>F?v$Kq>GNLrLS06ZY|x?0uLU9UUV)m~ikb z0MqFdb7R1{K$B2pfT4yAGi!tnGf#d;paX2KgO}*|cyj0fg?wmM$*m~IQNCiq%c$Rq zFOOy&`k&nt5k)o%00#sN=Mb@rqPVcg&R?jtl`Bwh5BN#G;>C98$YEcSV2z%c#+o&2 z?7sW%bECRPA9>7Y^k4tRH&oUh3DZcEfnZuMU~}QpMYkV0fA)e490V{~#J2>e#x7pG z#Ah~9S)yw~>PvU9U*kR#jE_frKy}m>=umJjymz1Tah<#?H3T$Oa)YM2!SK zb&%$>KRkLiG&R}Y{RdqLAs_*1xITA{jOyr$gsz&$g^=4@C|)#BFn^dxf6XGCl z;&n}$uH+X1$8s7#8f}Ym;2>f91KWKGhGQPEcUdaI#B38FgYd)7fE`rKoUwmknFK>( z`Wm}u&|cJCzT}#OOX@R+B-}1bppicD2hdKNqdlOk^kcwqsDp3?L}Ooop)LTQ`*Y^Z z6;Pb-b{%*b&M(NdVznh+pDR@+j)M5;M?dP@UaOVwCV^E9&UfzGWxMz8v&NxhefID;g zlnbL(dT-g%rK-nv)d2?5L+U@#jx+>cw0x&=v;TmE-6iW6_+$yl0hRg&%Ww2SG=&^< zfPv>l3IEE*rbl}X8R7!iveOHp21%< z=7Sc7YgFG5{gzX&&zwFZ!9MDJgZ{$O&NhwXR!u0*)|}I%09W~W?o}5}1(OAqMvfgl z?8}?m?%fhCX(_(q@nza{h4mbdps{!n5Tp8{TmW;<6$-wX)^AwhK!&B5tH<6X_~QxghY+u}iVr~;B_jVVBS%88(PyJ9Az{omHZs0V+F?VQW;7CN z0xt-6RLL+!1~}`^&@hgs^v6~_Y+i6pjX^5FgrH=^tawuS@bZv1MI%0iuxDpU5c&>g zls2S!GqZm*Le{ zU$LhIW=T90|Ki#&Q3T zJ@%M0417EwjE4t?#0c_l1TJ33fS2*_<2xuYj05zrqoDTuIbU*MnFWmn%Uzm-iqT8B zi~%2HQSNn$L$PDEE4>=MTNF{%{npiSxPe91vT0toK+zl zs1MZoL1@4LeYOP?R!Yoj=>wjuaso*5*)a9*Wl(MqI<$qJi~8EAYgC8_EyuIZy=1kQ z8w3y+kLjo?I`j*#F82Ap#74hMN++r+XFGxY4d zNUL>NU>2=Fvq0-v2}G8v=u;Rkmuj|*b^(vL2tU9T+8Bg6!jAXHG`n{{BTZLb>(klY z=^6%33rC~2lqDV24d9(|-3)hle>npK9EVcgfh@bXJ`_{0f&ea{{nRX&=!d#t&;*MUc0cZZc071)|p zEA3OC{J3V=>wHYngwbx&N(=OLH+L5EjZ0@XTw{2?C^Y%{LvqEM(UcV^H^VbMiHI$COrs z`tb?nCqwyOFJ6@GPWmu(Un_pVIA`lL{fp&oK+Anww=xs4QBCaF?wzN1+;De%oZpOY zCObYTG}ZFOKTltX4Y#a$Nkr4F{ABM>x9|=^CZMG0C+U2F;^T>gmcW5#F{mGLQyuLp z5aSW^L5)AEX#g_;4s(+TlmHb#K|`TD0}>Fv2wXh4BG_Q`%vu32IJ-mWvBn+%3CxL^ zA8AKg7V@RvVu)v=58T%*M*|#Ut0w~=(Da9Y_=m0O~R$pir%H^O|H@HW65!}8+D2fahqn$@LeWsTfVqMG2Aa-X5!v z5Zt0V92*+-rKwgiYudW7Am8#701KJwV;J}nH}*4V^hnQ_mXtUS$k4dp8)e_#{i>%i zt0;@ypabxDzDGh<+}PiDr*@LjzC5KX`MxAURo~R$zyqMe3B%+kON^iQIh3zX;0CY8 z^j++t@K*xBr0wZ%XbsQ^QOBs;nX%HZ0Eq~xixQ3l{k^^g9$TKe3pKWSMm3K+mZ_2`k~ zuDL_wL_fjr2}a^*1gL*Bg}5mIhyhj?RaaYv`ZmijEO(R@7ul-Ss~j++?IJC-e~c5f zIDmI-!`RwQodTvKa2ol5;k08PBl<^Qi$)7Q@8!4740h{y#b_6N&K7nG=uyVy3O?*lPe0r>2@xAiOE9!RwqCiY5)4j#1o@4wF-hN2Z`TmUp!o=VTiRyj`i z@@$^!2b-k%^Q&Fkijz%j0?`Db9Y3!=2Y`I?iN_;@UFCmR04B?Mgz8;MM|Gc=lF6UD zou*p8WY4F-OAIAVKf!=cM2X`OBoRYn83rRmz{}XEX0c-aY?*}7VbRVyEZ~J%JX=zk zCown~gvdL<3rySBy2rsw51|l*&-k~P~9_7 zf97*PV{2Ehb(;v5gvd9KVkn6{%d^iuYajpk$0U@x-0uZt;#m9de)oI!-S2$QT3g#C zaAv!)Cx)LN`N&7~dC-3R;~)EOC5-+s&~%`tvbw#C^2^MgEBSIw%e6d<5yXKP1Tgi2 zjSDs@80*fTJI}Q^XdVC$v;ld`6|=<)Znx?fKQkvaLvL)j>N_EpuUKW(?2u5poY#Y` zOpgEOdLyr z12Fu@pxI)_Po{qV(wF|weaX;9^j*%!!M=tAC>Jf5FQIb3Enl_RN-Ih&L%*M_t+Que zeZyXUd#?>=IaQeBGPrU&a_AR~ z30fFimo)V=729X}r%s;sNlUZFk=stGpZe0`SX8&v6JwWtk1ZQpb_?=z-AH=Df@_OTVS}0bT%zXh3)mn;Yt=0RKP$zoHz?OCs<>Uy1sy9vlDkPGZMjQBl4fJb1_r zcCpt2P*Rt)=b}Z6U1P+gglEbHZaD>-d)Po-zFcn{zPdtSl4UcNTd&kNxR0ZG68I;M zA9s5n&y)HufD{nMSw#R=#x~#utqtwZmA*n>!`=-y{0pk*+e%G{Fu=W7cfrRzeQD>e zx7GKf;~=PiG}QoT`Y^|la9jWYf_{kBmt92cR${{P#v5oA7q+p`I0?7c>a9=Uf7me3V0E-Hwh)T(O`K5L7}G@RDg^C zUeLS*kEP_^!Ha%(&5H(nwU`^TX;OqKFf#_ckOu^Xlj4F|gs*|FeU_=L zVT&4nL_!aH00bals9(R0>76wa8r_{8&Nz9uv!_c!B-1r6bP()dP;ZlWm^{Q*<()fs zx=j!#f};uHjHVU=Py|11?KU@x3oU{&KMr1Uz26{=5z^_ZLk{I*_KlVYaE0cJ)2{Q> zzbPw18|?%FiT;d0MDTFH9lK=^ETlyq5Nd#S^2&V#5yXxY%G|B|G+e1yS{e4x_6PM$ zzrFU_t8Oew{0LmYDSh;(1e7;!T(9qDjm=H=;%l$l+q?JK`HKQU!=q~Nc6BX`LrWM$ zHm3fuUZ7lw~9g50J-_2ae|>6s4d z&;&3B0586@p?0Dyv?=WeIG}%%XZjZgsH@ZumoHo5;I013MFG=(o68cY#$}%XEk|b1 zPv9NY6Mc#Ht|+g(0lcu4-LI1bFH9=t&8}45qchgJ#A9e9;^rE(U<(&4Qooq%o|idK zN{{+v2U{qXe;;}DQSW!`%)|a|fj|%Zs=pt1|3z*?g$)T{iMVn0#@I(YgLVpS5B-3# zO1&^1&@8c=3$R*IR<61%)1>JhjoGD^r!m5TuP;3Jyz^Ih3T=s>D(Z@Qz!-RBB=T&| zfsHI_<4_W?1ps;Yp$D%mG1DGsUD%b>+SXyGPM`Hj!~D5(R7Y*%i|4&xZoT(D2jCc( zL+rF-3HHJ554ffe3qs;UvxXrs%ZWFud+7gV??1rwyskS>@BpZsb3|nT1r&15fdR~< zC@R>J-7SZ8+ivxA&xW4aXZxAioqo1^XL@?JZMWs#wj3l%Rv;yjlo-TJf+TXzC=`II z0xIX6tM>mp@Am@5B7gz}%C^+Jg%@9X!@cL8d(Quyd+xb2WyY^tx!d;5JRhE%UOoda z)5@&RcZe{1x%qu=cwSPIWqFCY#n}=DEQbxi3$9G}yi5ZxcwSuj177qyfFuMjcwVqp zu@rO>>O6S%jOT}724NS7uHbk6_jk}mM^ZwP-y7?eIeda-Po6v}z;eb@fu9gi0em2| zS>3^EBLaqr*e3w-!nta9BOg3;$Z7<9;-v&7>!bvGEGe0Qx+xcIzHy-1kIUDWCaUf0 z*R6MJ6Du+Zyp<(87Q{bDmT2IQIgkjOM|;#N9X=r!9QqDn2ukMXhHz_cKQ0uLH)wPgdpSKGxeI@ z|IU7&OC%{?z)Zg-0`g*_Y)M6#0E@2Mvc+<9v#ncz zySk><4jeshM^2pdAoB#Zoup^P{V-iY;5~isd3B@|0S|y+#x$N9meUjK#`Y278Xv7VszpTa4WVF3RD z!jM%=Ct)bipA@{Y)Dy1;z?C3cHyA_viJQ!I8g4zK^^jG_V8- z^mK*SC5u$wBS=o4I_>#b)(K?1`Nr!WXMqC7+9bB1qrJl)j<8BjO7noso-S5P#Y!1U z@ko%6r0bDK9&tdl=l%EXfBJv^PxkF^f7`zJ#V@+M7*{X#_IL`>fdh*U>&1nzp7Zg7 zI=xW4ks=6QDz@J!Ea+PK+c z8A7X?y5PPCT+rtp@Tl)lhIpsO)gD^SR2w-t058`)FQU^mfd?|c5{%4L))grbrgn&3 zAtoYSAcU1GES=`Q9)F`}iF*DSn(`TMj3>?$|M4B*rL?@vfegHf6^)VsJV;Hu;sS87 zjGtUV>?qAjH!N@H$VwG*ltjlR*|B4%M6YpAU`SrvuJ%?-P~CU$+UiN^Rc%(&yushxhiRkC^mL5@;xFQ?q_lBURb_;H{gW;Sv;@Yi~12z&HVwx@o@=u`BJTWFTX%rBFr|5G)D+x030)P0yUSBML%mt9-=ViMb#XuxJDx5YVvo|0VTEmMZ z{Y0`v3EZe7t(Cp2#CJ>+l9Umnj?VyF+6)kfzw<>ajDytz&>EQHd%UzFxZV#8k{aN% zX`{O-GtcMq^y9ObmuY3z=j-oI%FXYit5NdPzzfqO0eHbmo6vxf6^hk{A3+Mh6FceK z!1F>7r#?wa;F1pmb^$La+pusST+@NF4?F^@kpG4N;2kQ6BZwK{eb6$LDHc81F|h*4 zX355efAcqg?Ndm9_=kUN-}uH~`10Hh8#ma16l85(tt^rt8)`^hf{#(C!?HBg5ZxzP z0Od>evzLGBt3*gd_0BtQ+anJ>?7^1gF7ai|NI)H|#3Dc$k;@WK1U$->pM!#Ex&9&2 z9&?(6UhKvJHE2Zs4_yBtcsX+D zko9zS>HNMRra=utaiL&YDoq`D5C7urg9`yo^dU;CwK>>f9591t4@FlbekZp`irU65 z?4zT@R#sB#LAX11Y`4ntQn!8^b?xE9M|?``{XOps*sYS~KWVj>>MRDri7$%u{H^QP z+NL!tt-QFB0G$Fk#4W8@zSNf;*VbNk z4-=k>Zafm=OU4FtB6t?Xi4q6=rL%MSbkECOf)~I8d;mCM{J?WO2gS^EPjgd?RaP$X zO$j-OVOy;6i_9XBm=!*kYil)L$%;GV9?eSeB=U@<)#py1*8Rk10!K_oW=R$RaM}e9 z@VF4n4fr6|2Jqs>k>2A~1?Z-V7Y7G}m^$PW2U`L7CWzt>JiKfsxpe6YkF&|i%eB(7 zQco)QSAYFY_p%{Fa`Or;F*(%@#w%B99e~__-!Avg5MKr;P8JDRyM)wc{$m3 z>GCCi4s^!zMDV%C2dRE7O^rTQ3D`x(PimYp<}fJGJ>jn7w<>q5-+tA~J?rloyt210B`{gL583EnWpz`a=33|Jt&KUNR-*uH&-z4hkX?v24}B6ty@ zNkA(>qX;VB*ip|R_!a=bwZtHxq)!!Z3$nrzBpvIZ$}N6f3(Z)4 zL><_Wje?+a<*Wmc=@!{kFl9vHSqS^^HT<5!chd_~KiorAivSMwxr7?4Cde~!{PTItWbN&@R^oM(yu{l zX>GB(`g$Yfe~uJI)siJX1wqUK!Z#_A1Ym(;Aa@4uX|IE~2>%7sXHq_R|I`j~to8Ty zM?5e3tn-N-K+v;Hx=|p^Gl}ZQYBuuJIpnwjfYbw^WIfZj&aM1VH*Sjyf?Y71T& zK;F+@dQp5qg2F)~V{TSm@fAG)m z7`)7OvtNYxTyv+#Y-QH-f63qlB}*WrXM;325FFH;`4)?xZ$4P>_7XHGPTL*dzk zcj^8*&);j{5(tPTz<>${vy`a@CilY?+bsb{J_ZIL3I^fGE8Z8TO_;;=q6@Lc5%eyS zB4mIZ9D%*4U$LO|H#)}VgY!Jk2Npbu%c^T?>_7hde{cWpfBRqETR^=L6bJ^q8w(aK zvZ}>ZM$Q8=n_^`ykyVC;2FSre$(H3(BjJHEMseMD|4y}Q!j%*`WDrnsdLBv)poIW} ze$kQ4qX-~RBBk~OAS>G2$drla&X52@i6i8R5ozma^H>8ECilYgg+lYV1nx05;ew8y z<-6#(SYHl}rO9*o-j#rZC};z~3IcZNgHXWoo&x}cpbeEX{ZBnP2e);MuFWAEsa~rE zft@>h#=R)X$%($REqP7w!mM7k(lgYG0sMCYUkjz=7cMAw>$0r8%%6v~N@{+T z^Nvlct*>{`Hw|oLC5o=aV#lIS()~wAnCFjGe@J*sxe~X+GFb9>V9_J|nc7H8%K-W6 zxg!o*>guoB!J|h6AlluE?U1F6MRZK#h2c?G7MqPT(uE)eJ5hH?9CGi;^ z7QA>UH7szH3yRn+St&6*GSH3R;D2ZhO_{c$v`EPj;CoTZoTP1i{k`r1DJabMJ!;;2 z?>$$xcr?i20Z=2}VrA80i`Q66nm1*ifBH#VDf%X-Wm@%>db`%zZTnB0v6^cwp3~)0 z-BpH+WuzzDys1%}9O|(p3(Ey~R@vrFTW#~&71r6^YbTGNkoBGC`C0HTUxcmr<1xm+dWPsOJgTZ ze zVLYu`zSL=RCynB3NRKQCXu@pp`1Soki9JEEn`wARlAxIpSm6Ij@ znGon`m9R}!9i%AL&d$zYDLZXIVPHA3R}I!E07V_*9)fq@|G@Tqu*c4vJ@3g2v+{D> z+e6Yoz*1sDlDqhsHbP;XJ%8T!enGGkFpQ@PPsONcLVQDl+TwsouM`A79umBf^a(K= ztU|&1CVvT_oxWuJ^!E2f`Y~8F)!ozOAchqz&<+pCtFOM|Ry}kjppum&j1fE?4?TFF zWu>Lqu3g)#Tr|H}S8KIR&35Yi1#4*SuvXEey|c#^_~_uUcxu%0vofqgJiEH8${xP& zK`SmSvX=HPS?c?Ig`5cJUNV3haVYQ?3Lo~J8%2iQV71XXUv1RkQ%AI)#C-HAJnDvy z&PRze{fCzfu!r*x&s&4Tjx zqL*NFeX{U9JVCvnHL*F+AD%{Lw6?T)tQ)_>N5p@)$3t}obddk&qKq8chWx{0#MF~2 z??KymobedqWpOW>+QQf%CJvATFs0uCFJ5oz1Tj@;AI1aUV%$+g-be}FV34>RaL_1l zBtY$3WeB{Dj}E!vux8B~t6I8DeUR%LrjogO-@d)>ApyJ;$r$uB1p3Fe0wlC^{?}Mz zvrdA}*{cfBxpmtPUuMl1=f3P}ohy*ZCXJYi>H)Qb1eL0THr*Fj^_oXLRM4;csN}Y+^b< zLo2Js$Z*U33GleKXn(Jc&FwXWA&wSwv z9xPl~USi!+Vh2y0v_1Rx3b>qe4`pgvvYkJ3O4?8L7M1dK?)nug?Wu z#@mqX*>}h;*Vftjvu8Ap8=dCMmoM}F<5?oHcr6In#Rv(e)1o}R05Mki1qIH}C`_z% zco9BCSyFG>0LWOeY^fEBNAMbuEt>p1Oq&JSoykO-=pcpZBjgR<8e~saX10Ux>EHzr zf-=7o@PcfC_S7o?FTrle)QzRbEcs?XEbax+VxUlG#w!Pb^5p`}>FOI&<&#agpde3t zkS?IwJK9?{CSx5u&L?PJ{lVs)08et}oH}{J$LYw(kd>B|TWL|YwRQCcfy|Os zLz20GXyR$$!+3#rHm)Sy0R4bW$Mdpj!v@KAUk5KB4*es#J_IieLK=X8 zVF@ADC^0FXb45a(x--~0u#6BoBsk;yu-4aWfBj8Zf-lIZ87P!M_+h<-$^dIVPiLcnyZK)HlZfQm8=$5$(0)qPye2NJR5ac?aAD3`O zVemWGLMuw}ok@7+`czkUcc=P~*aXg#P?8lMCIbr#b>qGqyvO>aUz}bDJSix=QmpPl zIBwsx(Y9{g;(b$8Ys&e*QA-)7p2Y^fL6jfpcEY!dfbQc0rT|{HQXokk;03;bHh2YYOdADz90k)xZR$Dki_Y-? zarj=>KnF6zLKFCy`z~IzP@p%}gPzC7M}4&x%dCS9OaV%BTv@VD4>AXqgy&LIZti)x zQ}BY<$(69`NWGvn^`f3ky&O4mSp8V+pfxdxcqHl%@W_|UV&Zv^))Us~nh{@j_< z*4o@^8LAiFM3#3W9~mD2RAeOb4;ja^05AMLeVp;$R~jM;;I(PLd5L_)pyNLDJw}(0 z%_#vGwFU4Gu;}j_urYmZ6Ih-rV+EscnZRO|3@i)-#u>)g*>mSi653ZQ;*G3Wu+U{N z0rTuhrAjz>VdW(C0fgaMWwp_!jT;=W;CW%ZGHv9N{U)o8KGBxjl)E|iSFz02zL~#& z241F>S=$$ml3Nr84$RCH2tt&>$w2g=JPmBXOXzvQ%9{>eT<9^_{3)CpOdH|8X6Z0f zBQyZ37KP$5FFipLu^}l{lr+MT!GT4JAi#}Go4nR8Sb5{O4!(UJT)JpDoqY{1C-@4xTCxCamHcct^2U-?bHFBx=;OXj<^ zg{zq7KpW=tCnUJB)KK~a#09ZA0hj@NI51H402f^6U1s zH{j0|hUx)sDF3`K!gFo)Cu6jJ$MhT_>Gtg zmLM-!P$C-Dc>D$RWryP@9)H9-TAS_6sgrj3QjLUMx&u8x3;8S9p%_4rEdh(Aiq%Rc zS-fwoI>{7`a7*JYBExQ)&dV>HFS=nhl6swMvmLznIa0FT_hKcMlX8u;rVDI#Jw{O_ zOW8FGsJ;Bkt9FjPYGhsdl#dk3lBG+nw*IP>EvT@P@(SlMXwAJ-l2SaL0VT$Fco+aT zmzV+)uQLvqN;!G_xV1Dj+fZM>^AM{`*xV5ygVKdZp&|Vd+&kD^n)lA%x)&Z4#t`)d z*b(c)6dX(d&D704ZG*oEq9J9GYmz5d<@*52Fidq6QA z!?e)oK(FPbB-qB4%WUW74YshX%%@wgT&c6Y2M*hjljp4FYP0nW4*M?8to~|hXwYl0 zvEU*BjXu?p;(RB5ffN+)=k_zd`b`cmo8^TK_x0r*|F&?}tJgM;Vatl$-5oI!v1oA%Hr6u!HlabF>R z;GTF@={Gk^@kpp-ExhH*&+=Pem zZhDPXS>8Fo<+Hy3#1Ux`QzF|XO4JObOEf##U~1c##w?uIMZ6R z8RKl3WZM#fQN}(ij9LU*wr$^O|I5GqU%dZ{HQq|fN<|A95CG?qF`xc|R`4cSuIV?X zjmYyd2jCUg)PgEq8P7uVT5|_WjyT8{O^*80gl;&$&&}T_W#pUhuZy zLPT&fAVNzL1&52C;84IzfrM%RUJx({ZGsW;yr8HhY$WukDV`Vdc%TeI@Peg_g2&yB zQp%S_8hTzRZZ$=~3(63oAhqt_BfvgRkH~xe^vX4UJsu!ECoBk7Hm<|spF3}ktz5an z2kV+OYrU;3p(Hyi1DTB#X%n6pmMNB%m000?JT?PCo)rl?-2Nz}XjvlM8@Y-w2!r$j z2&U@k{dDjm>FV`!?LdjVLXWWiUi999oPNjBC0~mx72RvPq6Bd8iUI{ZefZ%A{(Jx- zzmb3s4**sbOVa6I3fEAd5HNA@tmmJ9-rjukP4#(?(`DDLUA`KOEW~6J9+z+<&Ib<- z_v-EKb~=_66}vJgXqOlua-1-I0;mE6;sv7Z=>m(aNI@wiN=UQXfu)?+1afk7axG0@ zBsDq3l?BsKC^S~!06ekwqod=EAZ6e2`P69-u01M%!LHQXckFN)b;-IXSzm5`zFod@ z+4+$mUb2d2W(QMXtVYADmnbEGTGj2PtmpZZp$F`W9(YCAs1NT+e^0N|uv0*nWzom5cMw>?S^a+9(7sOh4TTc%lEP z2iI^v#vdRFdh#7pBmi#siRUt&XhZ1bAXpaT$74qH5I{F^Fq!IWwh_q6&UE=lKLTLj z0eGF*B<>Fgz{|!pd=5)E#u&?C;dA&J9?nN|COwFoX8;D_HTD?l?T)ORRQ*Ua2)G2< zvzjQ78zPnn25%Kfrm_)jPF}ubScUIv^vbKRT336A=Yv|kdW|PdY-{gyV~jRH4>DVG zJ%RVEGz!5Bavrh%8F;yUx!d-A7V|Q#%-TK|Gq)}bI090!zQcGIEDHt@c@LQX#wDIF zp?Mv=Xu#a?yhsuFQ^e_d6rLBri?244&_kFY*m({CWPlgah67%71Ft^=ocUD*A9)}6 zj&Xx>4cZ4N3EIK`{x0$ccQ5AiloFr5N0#sd?8#5t-{w4JZ6_PTgLuKKM}0Affy9HmO|9joI2 zH>|h|!5Kh~wCsR54iqKI#62<*5bpF3yj1fJfyH5(L59Ji&Nz68H+APajU`GHRzN0VU9rysHJ`=oeaz~f)CKR$0N_fz zz<2PfCyEr$P)8D1mX((~K!FEXamIaFy~7w`OAkOefR%bf6R$HxHw>paov9mETu-WHg$&w|mAQ=z{7pyE&bpujbnj0-YFW13K;0*|-Jh(fa7k`47 zogmtQ!9E8fq;N+$Qa@MP5=3}1rh^xLV{iZ%5cnuzrY2Av6hKnYzMHfm@)em=xfk>L z)SY=|SAe>Xz(}`z^pAO6;zt;;Sc*&o;3|$$`><{quq+Y8Rf{ErHvpkadjncXnaSem zl>$R~xe$~ffqq!<(1bdL;DsPPcB7^35?Oi`$kX$w7lEOABRa99I?PYuB2L$fCP*%| z9V?NfW-QC*d3~~^i9=~`X%eUzmcR}A21UfORAO}ymWPiV^CV*^@H_zx6a%Y!h`R`Z zBz+B?5Narqq-3&h_S%u7#{>*&9pvDpN=-?$g8U$H7DAc;-|7qJT#!R|tXzN#fvs4d z(3^M|yc2*k659b<;$)%Ek$`67xF&(BYxNC2rI3}K9l0ph|Hqwj!PU%&E-qBeED+U->Isq%5t&#)wb%Ii|%nE$dT1M^XKRLR0gpOY#NxV zc0yNA?kAokL-UooI`0=~%(-zo7iEC(hObF}N1wtwWL4$hJiraptpFGRA7Gd3P-L7> zKeM6GXebUY@P3sQrzb@g?={2!pm>MtKNYBzo(rsv>7lqIXM$cX{~A;6uDPKN|A83T+_zye&$m}ZA+ zHXUSIi+bZ#85tS$xQoE^(&GRx*jgh2j;WSYdo} ze}LlK@4W2^+~94dbDEo5)IXU5p1tnfi;fBc$rIuQ1~k^ECg=Fn8uSI!AgT!Lg$Ie{ zVM~VgjyCV>%F0RyF?cPmUaj~05K~6X8NBa-z$&zX67Y~Hi(GKvg1l23IgLPAeP3O3 z$u3;1@l4d0)j!t+LR;E8{P)c4T#c<{U-g)fm||VxRW@N|S{x&9Y5vJGoidEXEgfDELL z^nsWnXw0+{$mBaKcXRHqV!7M)-4l2T80f}vvoiCXnaA`p^YhFy^V*rmY$bx*Z+Ylv zKXkW`eecL#e{;o!yoPr{5rk(=@?O{0*40ap&i8XB*@#O67^TTs4AB1m9!p6~aK(&* zP{noVz8VxL94uK6U=^QZ;ozo>k#Ith1xg*yO0e7)s{n8{UJo=N;r;p`gA|6vUqxmHXv`^KGv9=7MPd=6fGnb62k&JAGE*G{*tSBy|v&ou89w%PWd)?UIG|(3bUT0p|Gyxw?*X*`k0AHKPR(ha4!dn$M@! z^*&gA*XPC$LFAx=`o?BEb@sfSJbS@9`Ub3bNc5Z(zf8`x&i*mG*4iad+UR2t&vtHZ zz6aW3?68tA+GEb}d`VV_zO0yXnWVk~$VjN#l=xvxeZ;1V6&0oS(1Z8;lISKGKif8M zvQsCHtACqqQgkcSI3dpqyGi3wrA^S?H+p1{{SwQa=)ix>lwUyEP$*BBKX6!_L3618z3eKBqhx}h1dav$Mp)|q98QF zI1cJRy#%l=xWkPDaB}0|ikaVqPn>xzWhR{|e20*y1lFVOq3^KvnX(`U2K2!~1hjZv zRcC0z`M#RPr-OPu;azTSmdE@w%EJHf!@Ul=vNF;fL;+w}C6Ow?QcxIdLdQMWq!CZW z=)_#>ACfYQ5~xW|^Z9zFl2Gtihz0Wt9JsLp3va;r^EGbiB_yWWumm|2Ay5`8oPCD& zfB3#n4*>xBdb%wsF2VZ~0ZN+^k`gRV2i7$0hyuY<#9;m>T**d=KFug4mmnd`?%3pd z!Nr}NnrYGb?eo? z89s%<3YRr&*VwY9%RFsBhZN?A2M^j?@9welveE$qf3HCk!OrL?=luuM|cuteERHJ zSJu!7ZyT$>C@3=w7|wAoL>mbe$>tmD-c80f9@AFQl+`}jIpR@W$4=vvv9S@S8-@NP zSoMbIMdL_(<6{Up_DPG@5!Mg$&roXt3Dem9;^3#@+Ki_%&)mLA$AN}aZ z?jd{ZvB$lixSS~;Vz{`*i|)@|{m%Z-;FWX&j1%@I;@lub!I*ow0AYA@NT|pZIbN7B zIiwqBI-e;_RwrTTHMX@{^=0w509OCdux01vTfgqlSdG=Vh!?=-AQeDte1Zd(dI98f z7tXot1T>|kNe-)$6O*cgKxDQ65nCHDy$qj|!U1`K5y$h%dOaqPjCW;0d716nzRQ+W zF7jzHw!mN|71PTYHY`veJ_}ID*k|e&THm1jr(bR+Pk)ul-PZpz@N$!Kt9AzJJ2EIK zk<)Nl`m30eOtPdc=bGu@h2QY2;I<56QTz)39Zv-36Y%GSAN5@TUM74HV0{2=_(SLg z;HAd}PLL&5cZ*z)1?%7?D*|5hJ^(MXmr$79?3DpbJ#Tf~O}W+iJR^K&_?~l_Ho)WJ zG|uo3jo1dFan7BNd34<9*Xr%#;{NEsHWEcN+mgcDP8h+2fD$MHxI zlWc23P-kRf%4#l2h$pA|Msp*q&XJG}f+0ukiiF?=2|+Ae;(H3_7wP?^EcZr_5r~$O z1-Q^el4Jn_Mn{KanIXiYZP9`Sp4SHN1wa!;gSUbNSb!a-5x7Rip!Xx5C*&xeIi_8h z&SScVX+pBvw#cgQ6|bB+bwmfN)<9KmnP0QJ!Z7R-iF$ zWQt&&r`k`qLx&EzhYL{4N}h2EdG~rn#rRZUVtfEZhwJl`8m^cOzlB0;$8r8^bMbxrXog;rM#q}$MeF9 zvr7VFqiNv94I=e%2wsAI3&vLXnL0R7 zRR2^9-~wJYi5}fO{SL0!as&RRf7$i}-sD=^0ubd{e7;%Xdkir=GxR;rV=OU-KoIaW zMjZF{DO32K^K>mq5CLCfdW|PQy1Uy>pF8hceoWFn{l+*Y7tNfgK#nqv2Uv11l+GbD zZ+cpi)2ZfCweL~Hc*E-{Lb;4(X}T&ZIlzXD?5QTOC8G&2?t$i#D;O2Xb@;ZgZ@@tv z8O7P2g6VU3mmS-$)LwRaR*)=Ga+pmBhL@t z^BdrWd1MDL`VFDYbWNXxMHpC2AS3Y-D8NI95Bn+_tSNSZ#bU$i<2(m~0xSqirY}$s zWS0eS0E`flUEOTGP-1M0Px7|G;Ze7&NCQvcAueG&6sJy}a{BU&`uYaDe5p=dH_yEj zpd(h6kZ6p&D=CSw9*9Z$_kLNb>EZ)C1OO-!XVD(4O0Od{P?z)G`9p2SwT=s3-|DBi zx-Qk41yP6*m6cLbz9?4Wk62PnY!K5zB%$l<>hSuY z2&oTK6evqI);%%&#u%dQC^5Vgj2G(PJdOmv*pUas{3*chf;`ns&FsL<})vBfrTSZkFF z7g#(1N@HzwVvZd+a@<~hdyk#2skL|kS+?}Z6maTpZ?n#}HmfKr@eLFQ1wO6^nL-ea zUCanPq6AkTKX%gEbPZj~Ie2KHDIfzd?eQa`8Tn(F_9_rvV&h|+Kk!y{Lj$!lC55#5 zGtF!4_H}6 zr9U5#4LIQ0+%NP3g@tRvgA#%kuHls_GQLBmF=p|^z@Hdr)P?ct{2*d_+?(jp(9&i# zS8AByj4l>g##eznka0JfgmY?@4IMzDocLR&>GJ z$Ytt-yrE5@@khTg-NbYm{RR-^Jw^iOvv?s$!ns=fPjbRjJ_gx{)`PqK@0V9XI{&Jc zyRH9c;N>ReR_zQ~@A_RLr-k4JfeUzH=_>{ICxxFGtXQa6!9=9{JsFj{n+p~xJS;T? z99M8pln8^Ft=k!t5<|hCu0>$siq6i>*P!P<68v1NfyO*KE_LQ*c@Bdy5Kxhd-lA~M z^|tCYJZ|;jK~#ig=4T4ef>zVta}MBz=^zM%^+Um%0^M+9$4ddQ z2hX9yhkUM{n1?(GDFPf>^@1Yo>FxGu9)y`MFO@JOjs(Gk2M78~x>?`Ah&8u&SW-&5 z$F9UBB)h_AS!GLeldqTo#IQ88r?1EAYU}LW`3vf!DFKOADFBv($2nMKDQ}Q-MHb~i zuM}sp?bx=}6=8OIrpGn_V041&GU3xgK`a6BK?Hfv!|&p}0xbymgf8s6!n6@q{iVxS zEJI+Tv$I=Zjtw2n1!_h{rn4A1c}h#loCfd>e2PZ|KnIXu+JwzE3EBlHkZ2Ci2i7-9 z1^Mmd$rHYlGrg6h=LX;<#T60Y4i2nk1xdp-7vumars}9OfD=W4hk^S8NB}FuZU8om z=Fj&fAX z{qKM9f$cwZ(0X*Q4k+mfZf~D^mBeajq$U(eH&?kTw0^nJyOJ-UIG}|By>m0IMb3c?VF*5Kguh1|6 zKuHeTZUL7+`B=Y1$ z>p8tW!Cp(`$?|@Z9428Uo*IJ7iDhKE3C|9)+^4yCo(|f<>N%Ft<6&ibm2C$YcQD5% zsq*QSo6-DNsoZV-f90l)ZgBeVQa#1t7s3^nGj`n<4fZ>rhZk+qZ57*;>2=G}A~}oCrv~Cek<8+Z-+M;=*0^ z!dpa}Nc6|FR8JouCfd{0*VQ-Z+90-usV~Tf#n;=5=b}qIdC5Tm{D{W`en4qqIYTp& zk5S-XRu_@iCCHNzfE>UCTMrPMz%&=RJP`bNmpBJdPTj8wR1ot*-TQP+vpzdm(zCr% zlK9Y?l`Od1iEjb004(5R01VzB6f*^|it-2)-lQvgl*WkKHb?Ye3Ws(sTfWRHmsAR* zblBd5ha9vpJ%oP&z!ZwqEad9Ag&CHeqmX$z|vgXwrPVcT3BK0RGeUhEh{Q!gX0pJY_AHV^h(7&w2;x$R_W;M=2DZR|hbi1m)#e2Z?FW@OgfEd07 z>;R^T>*Ai!0GhJ5*lgg%gLG9d4t~SKL4VPY(3tC~E6N;R`1#L&Zbt>=$m2ABev$JF z&jR$)XI#fYKXD(9o0aexyuy3#(NKM;KcWfXM4hOEgB87J3{giw-;~C}*~_(dRmOqN z@a;la^+g~!X0Ny|$zo+*PubrYRG~l@e!S~AuU|ODhR4MxW z`WtWPS#vx#ihybWi7#(f-MwC-J9~stA7l(|2sSvK=dX+<02CRKb%nPR1Bp}&fF}B# z@&3y!x1#;8O1azme-`s{lX9ze&IVo>h+)hNB?K?w-M9|$!X7`mDWk%_Mb@ z2GHSxMc?1*xYIK8-0=FKo&jK?gzxz+oHo)I?z$xg03|_TIrFp6ekX|ah}R)O!ZKN= zY?w;I#hoO}iM>e>cI0C~(Xe8L={QzFBqS#Z5cJ8qO7#H1rdEU`L4{JBdM0VX^*~qB z?Dd2Pg?>Yr10Df51AT+8kfM3M?t$x=jz9s8jma__>UVEg)#AmTIE&Q{2yTu*Xp07X zR$n1#-Qz+LIiMIZK2WBn=8^~F=H?Z+f^BSSu{bF{JTK`PS#G(az!3TS1c?Kht{lILJ)Hv3JO4hM*wdgd1qKHm64V%@DRjo0A8Y`d@k44 zddv&w<6TJ9;Xp*^uu24a)2Crf4?GNjX>4k;hQ>Y92pnrNU)r=RNJ|6t!-Mj z$~LT9Zw&&Q*P7ex^3`T*Z11t-=W6WWvC~#3T9%eA@Kr?Br%zdGVvJQ)6x;I3a$C1* zxh*IylI1-n#n! zNAamZjd&51R$fwSdHK0M{l=z+#5fUq!74=P1E7UoOnWk34AEu8r`hhx8 z9{>dJ8SA`fT5rRK4gQQD{_uyMJBNHlZ2K`^Ae@zA+y`Ev4cyO}HF8j=;ML#o&R;`$ zNBsluw8n_WHg!OTGOkq(wRKE&iE&WgGdN@ij-B$LZN>-QJ_2Le;(-juq+LjiQ=K)w z2((^NwZxVQ&{mX|Sf2QidXsC1{oCM0Vz}^#z|-(osc3!bx52FZr0@&FfiT5|At0haFKEJ#Y()m}l+-?0o11~oz zw`!+UtiN8rOXRc=ydZ!+?s*AfQD9mZ@;V3bLg1czLO}L9kM}NQ_|tj%(lr`Em<(u^ z0Z&R0GO*kR&?#)3$8-S71@JdQXIWjVqIa1{4t z+K4ZpztaVv3Qb(_sc-cCJMX-O<(AD8u|%<2SF z9+w3b6&{31ybGQWfG?|z*a;XVg+gSih@fZqj_Uv#+zTsm(o{z&DRSlH=jC}uUqAwi zgsIF1fe>=W__bJ?;ve$Cs0?9I(*zlM52pzSM6*yt5&W^F|xdM%(M5Vh{yV6y?^0zkJ|2?TP#z6)u#sp9^%vv z#>8BV2^Fk*rY_V&P6x6QPe>>bi-xj2DsauliloQ~6r@OzLQ_vdsaK{I8EXV_d(ypS z%dEJh$m*`tTC>{3o;hsl$TT4U7mo{`7xv=ediNZPo|yuuw*xOezD09NIM(Qc@E-6A z^?(n5k3Jz?1YWVLI+(^C9UXU%WunfjyK>oj#80c1R@wF~n{7c^sTE|a|KJhv zN4okuQ#8rU%CPy8%k)i0dxuYZu>_pyE~a@9Ch+LVQzzZy#}a=EF7PxEPQWf1QmGjNi^0V+c^=kT zd3l+i=K*Itf0jaBQC18*gct=Og<@d<-s~P9qfdkmw>r3f=6BNzpWy)nDs=( zu^RLf^doyL8*|b&loZO6I`TXHOkD`nWV(tvd4_870K5puDk)aIr9_>-r6}U0Q1F5g z^RQU7U?tPV>I*)#N20++3l`dj^&4%K0A5i+k%N8Wn_hkWO*?w(tR((iUZDOy&O|s8o9P?% zs(4*sn1F9Kx*X7WB>n+D!t(+jp_LWCtt!NC*k|+xyW+UM~O)^+(@D~&a}>ibKDC+U?IuY zm%ss}3Xf$;?SvF50w1?1 z^>$CsEQK~BxDZ-c$Ot4p(}uv)@p0y%+)ba{>A5_Q_JjkPI$&k%OBVvrT}{@@JY(5u zb8D-eB9*`B%8t;a|6VA?j%+-5_>cg_RrN`k3ttp9OM0jrQk=@7rg>8B$8^8 z!Y29M#hOblOnqwrSy!3q87`d0)eoa1Sj=OxkeApFS)^oC#_Bq8{FDbZ#>eBSQ9}^c z>ULLZ;62^TNtX%g)Po@0crb6qJsoiz{tH_rFwKZQHkQ zvrX&PJ9q)aF@4qE({1N8E}#3!&+O>wa~f0QmY^{OKw=LXKxJ-bnr&FULdP=OvVOHK zC@%2j(4*=Th7Nr)Iz|9C>F$HLhR%+5_vFBng8~*T-xqNmyfAIVE34Q}96#ZnsJIv` z_-XP(Z{TwjpYyfa#C!HNBCicuUhx<*%}F~lGO|2i8_x@UNGucMG9@M1uO|fq-~(QC zATc)>vl>Ma8KnnC#vs>+AccF-_naF5RT&0cM_Y6s-qS}sgZ^RpFRSaghHWqa!t^JF zzUTZ<9`TvO-$!In@IS8sCBj#{R=x#*KC;~ed0p_dbaZyxYbJ3TiPn&Ci4$Rac$3>FZ!8Wtoy z!ZJx#$DBTW)=ElBEmw*WONov6=&n_(*LVkg_|b>fBw&HSVtaeQpYO5L%hX7sD}Q2F zu;%e#5U7bo#uN<6z!0zvSFcI|McLZ5t8B&6#h!oTYJF{BovL0}F4ww3WWz*9EfC&` z&&!l0#LlzqtPIN*;ABcANg&6QqY0p5!D1CQx3va9LdyKP@Bh&6O)LXbk*xM19)(Tr z7FShCp(Q$CARRhD48WV1905K8N5r|fg|7ND?ZbTl0`MvMI+$_F&L2Ec^Hc}4f2t|*iy^>KY$gC$C-7Yg9{{y^&cAz98#WGobBWZP2p z>!Ol!%gM~~7$g0Wb7>Q_gT@5v-e_~+eF|i*zL}&=da%w5Wo%f2^MZrIGo1Hl zl$(9`X_vo`XWXvb?ehbQ{fZPi{&vSdh7#5V=H~d=d-YB5d%*m`?+mCLZ3wR+lW2Gj z`2`4v;9SozO3@(aJOt3V1PiZzu3r5+7a$DVU;y1oL2#k0LV*^(hpD*tKbAs$IKub> z1QWD{CVYT*U(&g4aIBaje`<}h=NM`J_%mW7gykG0L~*V@jlvh?zEWYu+9S6j1Xq^4Mr1bALfwr64u`!J-} z+&LtsVk%+E+B!R&#<nn9TYxu9_PS+cy_1*&xIBtZ_!SsD0l|-;=Xu*Sf)+<4S*`_0{|-^ zhx>JQciFj%)%NxW@7s$nzhtLQpOjLU!Vut$5~<4yi)`bnwN_D7;(^dC=l#1MeBbsS zJYcQeofacdH>SRbib+tVSuv7jPdxmfeerXT+osh^Ej>7ifSL@7|>d zcyOSu0&s=?oJ*epH1ViGJNo(L$&)@M$dq45vwJB#n>vI%%qyQmph!h4RO{W>B)p~u7bH!HLi&SLm5Zb(20aOHd2*w@=Ba51EMMA?ol8wCu; zg)7A4;Y!DAco2=6~ zS@~t<3w&kJ&);~{{_9`wY4;h=Hxsfc#>6O!G?m<>xcpZte|}8AD&0t2VmumH{P&s zeB&D~>^P6#zWn7c+s2I>eaZrbHYk9Cz(j$eI1r$K4gdlN$_`;llCIdeXzT6kwu?0v zth1|KG>Gy3K^hL{EEV0y8@Etaqw)~4V}XK5);y`eniPYGror}c?QqoGqD&i zzWAbN2S$nTJ@+;&?dUnSee)Xor(gM!J@x2rTe_&+qSa^7QxmejqkQQ#!L8H_AdA9k z@9eSTC(qjc!$*DpoS67zOV7x$=oo09>eCv%Qi3Q+Xn>!C64EE66$ka9j^Q|_a1Hc@ zE_lQ6eDQo}1hC^=XcY2|dtCGz9v8qKd;*Z+9-l^`KA{q(uGE4x^CE2^n3s&v@CiZW`qI6M1n`rLQc~OjmG6i?D!$dLd(73{ zj6eFBdeY92HlfU>%%sC-<<{j_ZrbQ}$86;ePPtxgc0WDEU$2Yp$T^`U!9XMCrA!I| zri7^(#JmR4{!u<{M9d4*K&(y?`}))Y=UoRPVrtx$Jw5#{_=C8NVCupLu>R-%q#VcX z9x^_K>7$8AhTZbA(xA?=B7^o^ulY?2_2-}tp>U;4e?PO_3EjhTr{_A&)Q(U9QXdo) z0)zKhFv04dD4P>K&zhT>Wr?4*qT&)446Y^momr8W+y+5uku&xhOY=+5urr(I~!eR~!{TlKEfx0{!r42283Qf;tg$8X1>j{0Lr66LZG_qtd7Z(*e zk1VQO=u5?a{L)XX_S#kJltN8NVd;Cnk2mVMWAhgK@)M8R+NFyuB|h5X=1y9C)EwPE zu;>Zs9g?z{RNKa7VKg+g`DT9gQh>zqkc)9;T}`ah7wF0(cTcGAg==hlj*9EzWl~@(4T|v`3~AquG22^ z9q)gch3EW3mb-oarvukNE7wcNa3O=vJotX*;aOERpzq{-1{bdsUVW9(n7$v^x$dR8 zaqis~1QmlCfrb!6IE90T=l)|TA%jnU4c-Sz$gOM@_Zmsa6T?CPElPw~7?dn?>3Cc6 z3i563`gN9-n`1RsF55frzUx7+t*y;gTv*^~=!XZ{Q8!<`BRWfHU8}G24fG}_Mg>AM zZE}3nciDzs2yxDXZX5`&u)nAy^u5@P9p@$ywOt`G9V$}`8lsS0vU|`|0`6Sa&tPa7lN6}FLI0$b9KJ~;~ z0#K=xz~^3k1_G76`M$ivq^zG zVo>r0u%3DJ3H#&U{#|=u{aVYKH)^TYXGv3o7BeyEI|Z|PWil$kM&>5kz*L-F>ln2C zC(qgOv**3tMTL2mnH+CYSzhPPjxOh^B}M#0?wldaeD}Bkc@QU#p;1cBtZ8(R6>j4Vk^c{2pJaIqX^ZmURo)OlUXM}w`orif= z2yCereTsK$`n44LnSSR!;l1vtXl!z>U!$W-bOAu%)tsC&VS^(BmYkL>K4rfr^*`|^ z0xok|38eFe#P<_=RE@^Qfn!JPO2bw6zOdOUAf-iy4&bRk#scFOPae;L2N_q4BgO^O z%}Gfb4|#g}R1x3C98@Y{T@nyHTa{pj${!XvDMW_wZif`IPB2 z{j7Yvd+nDX zKqUYy45A>$MZ;27qu%*-UfA8w%j{r=0mNY984NTOCxeXv$Zz*jW=@w~FW$ImuhR;b zOh0B86f;H5*1@KXct--IOgjK{fq)5O3CPMxdsx*&hRyc2PEY5L(kUw|w@sTiyDR<) zDLm%D!zmM{RCu45lIV&mE+O99rNnHGEL$B|_y-Oic7@Hk2vuTDIOwY=S$I4@IU#U8 zW91_7$@+7AHsQ#tYmUq2oUUf|3g=H@oH190L#LX zVq3RjnJpLaD9Ou}!cDOx(yY%5mc*iPsC!0Mrq>@HAy}EDa%1DNo>k}ej#j%=dr6?^ zqEGXX#n|_A5tET?!-a0x6Y!d7?))0zG4?Kk^I82uyT>We&s})_(XSfhOM zeQRf%Z&d&Y;u-=!$sqzrqm7I?zzjUp-4RUF0ZPa>#4_owZh&w6R*8=-Y0Rd(h=bJWc^s&WwCg7dz zG0vU4V8@RicaZ6sj@6FP;{;s*H6iG5d5l4+*XwlD@5lgvN(ky`D}71bIHnh_ah{5l z@ZSF|7icj3m^=N$Y-RencXB>u<~29Fj!xpZ-8o(m4)=20LAhNWDJV=ITskMHH|Ni@ zd17FVI3r^#0}~fCfqZQ8hUI_)U{wV{hRlVAgBb>Q%R<71I1Q9VSO>qq2DJY3RU0Tl zu7crR&`6n)3qk5xio4GPQh6?Q!b;;D1_cU|6-{?i!geyaxSoMV@j<4x@GOmbKPG8! zWPDAxwD_L$!h>^gp#xw(c1S>BHHEJvF(a;nX*Ark&1cu-<_l zwR6Z)Qn5ZqB~TNrZ?NxrJxCrmAtB<|M`7Lb9O8H8xx(OnIoWvuB$` zGpCtGs&fU7CkF+p4)KIpbEP!q#wO`VwyVvZ*3#K;2albx|N7V8w(3iD-UnA@?UBA7 z1x^29;m3$as2BI6Z}Eogyl=Zb@$}=ipmKrk9qf!tLcD~ObnEUPkZhl)=S17QIJHM0 z<@EVWcA@5~?K^nfCMM^)#|C%zxbBrM1yhodVq2>g+iyPln06A1O|Hgx~;jr%}$&latIR zPI1Gl|491AD{(t`kA?&odIj+Mhx#>s#%xgcjn{pP%gem&Z1s?znQa5=rwO%dabbb& zT)oo1^2B4deeEhMNK3M*kv{8et+SYUz%KQ@$;yplADmbLflj-0<*M!7f7tsD`t%M6 zJP44)ikA`vg3>ZmEM0V6zhSjK^UTw>Y+0pyP~LgxeS7Y?=X|^{hJ)mX8YePHCUp2f z6<>$H^Gclottc^g0L4Z-S&q%hCv}H-b;7cxgy9tc%hh@TV$~;J^&wGRdU~)z3;yOF zJZKQ_5n{x_1p)R#yAdyt%a90o;v4#Ap2h&d=+VT1=ri~6zLXpyuZqNngBF&BBfk;_ zgxMsPerJQrq2Uor&kWKMuxgK_aco6_ZN|Y$M`A-5e@wNpM40JDbz(4{^#Jz%QYTmx z00d8{8bA>4*tnh}y3G+U&_69XVtId@{vfjxq5E8#$EJ0frY72J#(%=BZdsygy3nGteFUw@gp}$zE@gW zZf#Ai?yVsiV_8wDeeb(}_pvE5j3ILNu%&`OrH+7vCQPePXDlgb*V@|d z;1b1z0>GlYe7W{|a4WQo#`;vddSneAK7P`E{L;_tl~-T4%Mz4;4w8}~{IQ%b)>O-S zZnw;|R7*`t_Gymx_D)NPPn0!Ddj5V}zGA6W32ac8zJVae3a==G)YNoWbky&ok3O;= z{^)sYXl$1C-6u;t(ekCJac2``%F3ADE-7%)Y@UQ+qT0B)e7;pylzTQ@lIL|v0kTS_ zt)oNj>GSX4AEqqu1h8tU@#-~icL=gb`JX6&QCd=Ni>sD6EuF3+F<{#{O0@Q(R}=tR zlyjtR{A+T(utYdp{W>T>cJ%OJ``Jq`*`WgmG=8S6tfa)J00654q6uyRyb&DiqK)EZ z`EZ{A%%}u^zZ56Dj{;AVQk{}AOO8*ljqBFhm!5jcRxVj$$*T8ouf_ukTK9_u80x&S zc`-JqKI#^IkDWVj`wt(ox~sJU4!r_i0=fcTi7|6*L0OSSNuiQVGB+#Nwr$<%G-&VY zv=gV!+Uu{sW+zS@b1w)5iyj`M1b||i0V2A;DvSVQN)%e>MD zOi#g!RaMJ;DzC41z^4r12l@;p3Sfy+o9HXRxC55(P~l!2;d|ap2ZO=bmXSUA$oSpxWSkZK-X^+ z_ohbb1z4NYzgK(7>yKatpJ z9mJkYSaNELx6M7I2y4}Yv7V6{1WA`h;?4-@%}CAg{ig5&9Xfc#+rjgQ;lT^#pak$Y zOF=$4PpA#ZHJ-y~XhPkfFZV(&@yhS~7Sipr^6_#jZSq;U%QB@w6io93R#texfZ=-> zHe_0k>F=i>?2Authq?1+t!;sA`MNkH;!03z1| z1X(IgDt2O9m`W)u%(u!#3vJ7mEj~BTd9)ud6z%6)yhSADyLhSIw@d(d;qr%;EDKGL z#S54i9vHN?<`z$cHa;rABT$u_oo6G1Bi1a7lj*df{vinn32D)-Mc*M@orguUpa`sU zg!BZ}=riX~HvkyQ6%PVn2|55E;StiRf4KJ}d;fzyPAlR($nFab2Gqwron8I}0339q z!1MGMv_WBp;GKfC9F7Od$ndCpK{>GU=SazP%PN2C%mw?=p7*U8pcF6q4fj}g`&Em# zK`YBnv{W0jeARLN;wsy*cC%$AXWQ7o96Nce+FtqTYxeHD@A~p`+6P}ibLzzrjx}Dx zgA(!?{6QU|Bjc66qYeDV_q2sqKq>tR2!_{4)erv=;{yMLMg;uIHH-uLS%WAze!)Ur zcs5`GAix-)4e&7S%aj#$Wx7n=>!6nNs2{vUeMu_GIjo)oxQ507=kX-kLw|5@_z^m?2_BgL8eo$m1v^_oC?P~pU^WlCCX+Yf(Iw(>UL8w%)c(K&5KB+su zaSej`z4zX;zxa#4@cbbNNR%qz24%u?QK*~`9RO2&k8;9F<@&Hb3 z2Y}`wZ7J}6`2Kof3RLs}Fd_U2{0)OlIhWr;zM*XZJQVah@4Vyu15hDo8HI>~=Nzs} zPYVDf{SD2i2egh&i1+sU{z?*OSjTLi5Ym-%syU$*F^$qJ2Q0pZ_uI`0mBJjGT zFxSe9@~pDF$W|>|Y*mXYY;om6@l=a|;BkBHjd$&>cRv&u?7dze3eP7tg1Yc53Uvt& zO4w!&_?kY479kxtcpsj}eEhZ^Ynysa^$-y8pi7`QYxEG)Y0L1-B z_<8W)LEE!ukN=K0lr0*NN8#88V3Yr-n$=IDz1Km_!P^dRhHbdzAz2jiMOeb$XcvXw zp#iUa$1^x+=YQ+vW3<%qndjwGEFn>0x|zpxqF+DHp}>vL1l@9c{92p|!9D$)Y0S)b zy!!Q08sUAy?|Eeq_(0He?zQ0BN00<_VzL%B4ml0o7EJD=I$Ln%Y}^lSBgXt~NB-kz>bo7O^<7*55a1i3xZ) zVth)3_b4n1%TbXLtVDprgY^7>y})CIpg}+(fOrp`5NsisKuJJjJ_AG$%zTg6<;vwc zYiww?j&`z|29`4W-Q?vJxB}t6Tn9M8Yr|(OL2{GO4@~*+Tog4^0ZfN+K8g(w%c)bR z9JHV;u>Q7f+vdT;!F1MK4@xF)3nnN4DkU|^JuCo#|s*)B(Oo zjEh%4%<&B&@pNIylCy%Ny|vA))r8nMo2Nb*>h1Sj7<1Ggcx!z6X_%$-@D)_PAv(w; ziztD2y$_fch*-!aNWo(J7g+@ZIJ zHt~G=mlD2CFVr0m3H=_nf%s+KBt$eFNYD>HypD3jG->OTY}u)jcnF zSOA@FbWNLLqTr!oI*8|U;K2g~FIcchbqSKb@qF3rEUh&*PN4$3T-*=yV;R~O)KlzhCaW5&c zCdf!YJbOMd3(fQ}*K$wl&nx2(fXZj;R$fu&pP@f}0^feLZ?8`eQ)hUO>pa#-HTz`G zL+b#T&@M`Fen5BHNZsKdUipo_xfDZuR}m%53M}#jS2yRLjV_ z+m~C_19tP@G?<(XHSiH=%zaWh2IIMN=d7%>%m+AoYQT8m?HDvzR0t_nmEd}0{*^gj z6fDa-oxyce6m)lYuPewT4IG#|+UI`*K*M}=6YgAH%iJ!5mR(V4;xmo zsG$1zI)=bfQJDa?w2UnKK-TgPpZk%go&V0?{hf6*w>cnLxS-Nk=(sCb&+}LgS-^R@ zjFuo?n-JaGR`D=RAY{1oJ=Py<|G z9zJqZprqGGpqG`EZS#wZY(ZI><;Y@;68+&P$i@bOY%hWAyC$H5XNL{u*dk#<)+xM_ zBOp~Fg)^+W?>l^0^c?g27()`mz&qk(0G1^C8X6q1_~Oa z3)S}F{sXvHEHORBdIm_uHY#wM?AtV~S+&X*E?i&*KBbs0x{rHXm{!mu{P4`rdZnX| z9zE`R8^N0ta`rHef;9S!OHLGcSKZ;oTmdN`M;g<3uXrx}%)UnODZBva8yXDqy+9NA z85;6EJJ54~c;8<`0i@^n^Hh)EdjSUh1pQfgh8&7d3YKys%aR4g7cX9{`vyzgkx?`X zdIHq@MQ;k5z{2-D$M3Jx!a8xTujHYu^-+ud<_e~-)r%~B_YE=4us2O5C|y+rD3VTP4IB9djeRB%=1w`sVPa8 zk)9fn>N-LRuOp~?(B{z*vT63&+^869mw;$#ZMR-2w|ZHBB&nKGdygMGDaA(a5T=iC zod+=@xO08JpEws;%DA5O05Q4lukRrh&!PsPc=_gSu9(oS;DCT=!`{;vPxii^AyW#P50@r6DN<`d+)z%2M->Q zFzxXB+9FORG(adOg8pgw5ZY(^09YJdwYj?U*Ie*!Ka9#)xX!SHrNMyKD77V zde;sKOaOFHh9NKWnjip05H!EhS0_%Nve(~w(`v5N3d{(YNnx=fufMy?7UyMJWp=tf zuxY)`k@8GW&$hVaOsj9}x94BmV~5VxS#?vFjYlV0oRpqMpOoXE^>;PdqKX20^x=m* zrw(2k_y$i|*gruacpz{Co(>L*3tBNCpa8|h_t1%c3Fw8wpW~LjD}CLosCd3BP5?4f zQ_z;r@Fsl9dGIpy061~XRx}Fy2t6(uJ|8Qzg*rkeEZhs;UI~vz?}2`r;SulK783rbvD#9cA>5U-0Dl5TvH1Xxw(Wag`x}&o&?IpzhCB{i&F*HVCv(0`^ZnnpJuml@R z(lz+NhKU8%lP!H2I2}!u(u&@cv!)+h6?+d+6cao-5`;^*Q_T zkDjxprUpxsf?Tqs($=qAYo*0Sk-Ql7p3NA3BfD*Z`Y1)#HaqQ-A=f=G0xM_FpLZ*q zx?j0iW1SuB%pA~{W$y4X1-b*c@GLL|1HDj?&q`l2mcUgh=i zP5IPMZfuCX9VqaX`snzv6CP}iOkmuTZJ73wwb&I_#OPqG&}McXhqu~VgDn+cTNG@R z6m|%t0lIj%0NKuKk_U{j+j(9Xbs;d|dy>FWh)<$_Fb=pLqXd9<>eOjFefqSmT(!!V zJj=xJ6?q}R;lA99W#aTx=y~OFv?~Myq36Z>RDZ}Wycms*tpZ33oqyuvW5x5M?%f4A z0bVf#$fAAW;zjQlWLS^-IW;-Ss>Gkeq7B{*!%URDC)8H<5THV2UKKHfdRQ*lwTEs}xZ z9&xqH=^CN)jWXl&%%4?|trJ%+{ecD9qVBn5tpioGWjSHHo7E+NTNEjqc)i5YWMkTzY zG_N%@>b_FI0uxyDq{(JyT7==?K%cE#v0OD{*sG>`#<;FSpztggUV3Gago1^GHXsQ3 z4S~e@3`_(k^A-aF5_k=I`uqIO%U7+o6qH%vd|xh%VB&s7B}G=O1HpEo`huP_W%G3o zfpI7klo-#TU9^?uujG_q3hal^|Hyvu{PXtMlTTW~{P~uw`{(B5d8|fnPq)`^{rdHK zFM+E+tgbU>&x-ElUQgP`WVt z3^TV+{6&V8V!JiAu-h`3IAe4VrY{1;n5OzMWyO20X>M+@E(t*Bg~x=c9xQYA=E2oY zKR)rqW45Fc&qI+EYPvvEuAV6c!F?s{QEaiQ8_Q`&;DgpCd*hAQ?ZCnPJ_WRO%Vys( zo45;tZ(V5!`01gd2>Bx>Js#krefu29_H?va`TRV4^6^LPb5B1Z<-SBT8nSwU8+OJ% zfBuYK>nuS^q`j?K^gN|Dv`aZAc<}0d_wV#L3EchaU=Q|9m!bot0;uDp02`#xuQfC{ zz-6lN{Mj?&!+uMbQUwIE*Amkw@D(dI!af3=7pfghm!zODbWgkh^jDIA5Oe_8kn;n6 zs;{f_x}s3YS5jDzZ_Q1OQrcwY4VJ(riza~e%*$NOWJix4 z(RdoQM<0FIni`vY3=^9M?KvF0XmI0cLNT(jBw(BNGR+k5Xt1J0BE-iYAURZq;duZ- zrj6j^zW!bZ$N(392YjP!Lq*5;fDd$jIHp6T>i5%k01rIFD163TV9?AF9m(m!68&ID zbeAi7cC=_uUFiqvLu?dvanKTx7XW$c%`_{8WSl&kx>G-mHh(@jj~F*h2l3o9XU_|K zFYu+$& zcI_JHH|Tt&whkfcd5@S6*}O*km@6MaU3 zwj9%c`!vc;s_^$(!uH%rx!JihzYAd9XXR5XFq$(Pl55&$rZ~dSFliuQ0wKdI-y?)V zFrl%b*WlXVoM7q*!QBl~y%>;G>5Mclez8d4U*!SWuT>>IrKD>kP)^fKG=F9kI<)9Px39)*-MH z6%!lVd}+ZuKhrAODB{tNr)?>g%>^$7Y)t8L%^_k6XjFS~1?3lwy~iIDXVF zTsR};sB3f&VJ%s?dj9dl_TF1>+8eLFYAcp3v4`%z&vtIvW?7l(&cF!*ElC1rBNE^- zc&r5adV54C)uDKPp;a!ZaPR@hPzQUTVetau*{_MYoO>a}{ul)WLZiesZ{8{emLpmw*{W4*Y?DAO8fz)dqUo?fz|>Y~9M0_QWF(+w!H0^}I3L^T7f8#-IPC zz4WtJoLA^?#-l6kkug`&j4Al#c7%kAI%n}6fuk0tSe7f(PvFVE|O zcbS+pl8^QZQV05datc#(Dan+v%L({Ey%3#%Bu5&u0cF3XS&+hHzko=ZC@xMU52zK0(30 zJpEh(^bmv$V1zSDh4a!fGb}H^K+34prld&z=3C#jKl#t!uvcGy%Mzr7H*DKwMHQ9y z;3JROg32mevV4_Ysc*FZ^q>F2+B$n|`Rdg+G(2kU9Ua$Wc_;{u>-j;XiI_sbTJu1~ zv~*cLvP=bBh=rlvQ8Du@JDZIyhb5R~`AbRm2;flXcv)#2G0|)UNRm9117IcA1M@-! zLpy0NpToBEJwh1EmiBT#4t_^a@?BF?iyc3C%0BpLuU(KOM*vDT9+$)f4;}`b&}W|5 zt-Q>Z38a*kmATSxY;3l=+N*xP9_P=2#yp#)*C;IbfI9J+dH3g@d(Pf|`)xn($tRz* zr=NV8mm|0JP`Nv>63Q(a*YFwnu{0g@Sy{Csisjj)H+Wvh91)@&*O0L3!BHOj|etY<#M{T8e2_;Ga5W?TkivB{8hk$dXKnHON+XR-Y zmM*ih@(Pcg`tSdT|Iwa(_6Jsdxye4*chY)$$1Oj%(4sWX=4WSENoKOGUQ}dX|Glr; zmmhz~Di@VH*na)}efEQ&{oG#p@Sq($cgZ??gZwfF4iIP5>3LA73(pRwL~mb$aeiY= za_}DBqu-e-qD{p5G&VGOTj4zl0G)U!z5^_A4c;m00|4}C(OHV~y%c_66agFpc}1Zv zjFUd%*7Qu|0?85?m*jk5gG2xd_n@wvPhDw0uk^v47U7UjmZ<==APSiJ1`-hKG9~ar zycK|isXSy7v~CfwXWX%u5n~jZ@JijLRPXYl60dJv-4&}BzgCJ5%PPuk&xd=hu&6-t zWY8A{tX{j${@@S)neTnn(9q^}_|rfAQ-6K-*=NPG2{x#41ARx-Rsb&s1~dZPgnbxJ z`P{19tjRMA_u&W&eG~Ri`1)D7QSLeBMA;Zk|mMYee4Nyl}tU z9dq@3Ua|T#)>NI~Rljnv4`eKDRvYmicP&iEC4dhs?7F&oOPAG(AS335jTM-mG;srKev@@H&|{#v5iUz zG&D)+4-8qitdX{kF0a>eDU*W20((`~E{de6XudBQPLmR2-rsj*)+;V#c8q10=O6y) z$NtL7o;h=)EnAi*E@N((6c=sz65{NZjnGDr1%RW)^Soq9_%mNleY>Spp*_Nym>k~Y z0;Ziz3povNOY1!f1x1i1VV9Dc?7@D%iop40%CZF9*uSW^Z%6_&$?wJaC=%!nZJ{Cc z36&~z=Ce;>NRe|e-P5n@*cEx*+Eq3-JSeL&#X$t|5Ue&jdhDouw0EC%b#|zo<-U9F zGFgaOS(#3!PW1`XRje%YWLfIRjPwkfD=@&SBX%O5P(NZ-GTnu5j_C%H1@?CdII3UA z1x7~4#_iI@OLp+^VFwTNJIad9E1@4#mc89Q*4q;-!NrZ9ni0hJT&cNeAMAPGu1YcF zX6JanLfbQEPdf-=)g18)0GPsp0^f&*F@d*`l}IQrlnjOYK{Mz`3|>A*<__H$S<^2t5#W+08-_Ga&KF>(dLhT{DLg?b2>LmbWX8T zCr;a{Wh-p^<}CtQv9@jVM$5}iGd5r>FDbVD2lx3@+sm)NX~)i-w|;@=Rsq3bfl^iv zmg<~Z)o=6WO}1&n1}V)1fxP}ei8249epfTacfqs~c}0#LJ?=s5uoJw-3Gh(3+K8zT zzGvD9P*kL`#%7d0eW`w7N(zt5`3vXV;{k60W}?MM@D;!gUW7(?LI5Y+58CpI9MV($ zI_elq7fJSnU<$A1@UZ3RdT35ts28zjfEcEAvobTqyZr(affv#}FS-W>9(Q>r{-iMK z7+;Jn#wpXZK@mZ84pXD!6H|7f`l3}XuJrZ=D~=!$(_B8>Re!b%m=Mn-+O=y9;>CXV z;&D5s+*Yhw=2MJJXH{RQb}!f?4?k+z8o$HC1I|O=`~G+B?RVa`M;>{^QWMkdwO3!a z4I4K5NiQ%=Lk7lC4S6fY|&^=aoQ zLIAKbX=9}D4*d{*6Cu|v3w40*lNmaI$+@3_muY3T z``rn6Ve_uCQZcj!Rk&1|dLvNS$Ah`kbP1^&;ALC_S;$=jm}@8=_aK4MFGU1^$jX#O zHVwQGKSD6sRSjqcIo2jZB3{apfHwren3Um~)vJ7<3m#BCA6z_xgMomc;-FA>3iU$h zgdheby>8udd*ki*MSy5alA`?Kb3d`IJMObf?Ej-dOiqoKj&3QpEW0GZo+;sh5zof9UdBSS|Vgw1{xQiU_W}{1#4(*v}_5L*n~s@qX|n9 z*lBFMW_=xPwted+D=saDq7qu3i<-T zM86Ph>Yz<+NB9$?1V{)2cG)|pwY9}PJ*{mWqRF_dwQOGv!?ySR1AX2<-BR)_y(CTr zdh#q304evOBj2HDiHSj|rb+QW{`kWd7Ym4-Bk*w9-SMZ-oO8uLzo=NWTJ8aXtkQ~B zeG&ig1#uN9209e)74-nL?0NS+8xwSjk&QbYiq4dv>TLSAJPGD774)QN(qyi9S{PYQG)aZ{F|H<#CGr*x?Ytc!TnFa z@jc2lH7(7TC^LovFI~UQFDSH!A9+~6rP|RGr|gwiUlTtZcS8X{JtR;RADdt~DcP2l zl5USaaKEjnsKkv^8G*XX*RENX?t4|g)wi|Uyx3qrrcE2x z+qNy6?E&2*R{!m5UrGIPdCNS1w=iam#q+x^&UwR^Wvv0DgH5WKZCwr7#sjjLUoPzwaIlmf8aV zxi?c+fNp|`S^48rIJy>|PS99GmJk=_pb9ytay#$>4~Zxqp#Dkl63_zh!aH~y`oKFK zop@IV+$%jbHEs=nkK#fPR3C!ZYcAW-BS-Dw-4FYUwKHcBHfiP!Tc#HZ0V6#9#xTAx(uOv6lt~H9E1?ndyv-!S4_he<$ zsAR3zUBqFSpEAzv<;p&izyZcJH*z zcJ9pIKY9MgJMV6uO;IZ%?`~dZyB|Z}&zS|hltz*zxy2&^!6gV3f?3HyL2d~DJ_244 zY6#~LKpI1ArIogE{TgpCb>(`5PQ$fEpI%wAxXS5@aH0(;6Xw+M>HsVV ztb>P`T7m9>7w!YyaRIa1sI;ua1D~Na{ny^!X1P*Y%yGB21-V`j{?Lh?pb_p|&$LZ* zbCXXs@p~ALfB=UVJOEYCOioOa0!XwK0$TM~uE=6MXJ<~Gu_(1EPi@CjRa9Ie>k&Yq zeo|i|&{?U5>_Q;Z#y$Z8+Igksl3m4{C&l&PuKO%O_hA|>MhXF7N1!kY9>oL5!+Iue zgd84hNSRkqByg$cW#ZMZBzohkEtS26VDMq z39k!0NZ|IGHLKlQ)hysa&~8gZqj;H(9{XLHLo>Vtc{w*WDufpaz~&XjjS}TO9vPS`lAIL$PB3Sl`e(_K#rDl_e$zAcqO@5Raz)@8fzKwC8`o{H$9F$yE0-;m z!pgUi@e#|+%@Wu-Vf&=?o`2~jt7~i)Pe%!ecM1HOdvj_90GCuQw5OkV+#cGs%T_F3 zY#AB{=g*(B69PyjCB;6r7(>2#M?6D6-3+{V&^zV25(?xA%9>Y#V)1~Kmz8i!O0B!J)u+;i?;DyKX%6ATcRd{Z+=nv1n_|l7>BLAXz z3U3b2pg!;!-mh562!fP@XXqZfKl0`&jfgZfl zcT5?pqXpXMSbbfi>IvYQP@M*>yQ^Jeez8w8QMc9>ja3;Mg))}duKWHz=KsqeL>PuhxqVrl?YrEH)G0K=tPDv8*t&@xx^Ur+WB>>;l+F`Ad zD|7WnJXm3Vp{k#{#Qv)ykt@Pbfb{<&0^6UveK ze}n>;AUN=l1mGo8gP&;;U8D0@>IrxVJOe7%!Ark&c67VdPK0|fps~89T=|6Hg{b+^ zQ^K=|Jz$l`S_!;ZDKDmt5Mabapi~)*+?)5bhdN@>xq{Vuga+@IO2O{ix6cI=!sFY2 z_XF$b)&N(1cy32muk}fhb&)AnLWP8R*BYBtk3`S&!bXc7U7h~?2OqrOjvU-CYo{qaBhJt?ht>ywg0urR%b z;%kvrL@tqq3m3V^ikKR9zGc-;Y&?nT0?!Me4l9r4o(KwrCg0OuKq6j(jLdYW6S-7a zWq=jNv%01Dherf<;z;5ZY&uEL!7Iq>Qz_fc->a5U1MMU%5U4^$_jyl7|WZVWzh*ScIf0WduQ){`^LAQwMzmmbK+BM zY${6qJmi^#7Z#P;ca3TVq6l%Bek^+y5FEh#R{0m$5>6xMFF@BpPFP^ z3t*C{@tz|P&I&&^`eaYA%)Bgn;s-xF~FB!B9 za6ezy#>T}9yj*hd;)7Je3Xnri1Lj*tBs5XTfEtt{DezH(SgHc>+RA->I&OT_JrF2blrHsVswkW`!fI|2AYjTZ zCnwi4&GKBPTyPW9wmEa6Y~SId>eoPEN5=@fi1sALgEtU7C~W9SVH&Eo_KJIC_#JSF zmj|Vrl9XT@)~!)pMr}pa5?8ngUo7AN@J@Qn2yrTL(eqq5_VtkrZ9H1LzYjK`cl<9*>OO%37N=}ke z8uUJ*&3Spbk=>s2y+5HbQv-bhr0_HVs9k)?bQwUJ27m|vN)X@Tsln^TbP)MM7#9FRSAKdvn>?z4k?j#W z^;@62?&HP#OQqoJ>#q1J6qej3i$?+84-0hc+PTZY6JE0TxM+Lr^;hkC&;8JT`s%CJ z(9&vgqTTSwnC0db_*i24@5|48(Z2Ng&s$|#xm8vaTYqP_{ru-|+PA*@eS3e;9)X67 zZm5t0hv~f#C;>7 z#(rOak0qtZh!WUhI+LlxLkExA!o@2+Edd@I0><%z(|_%ElO zp8v}(u0!vz-0a+$-_85VAN=!M#=P9g!=|6Z`+GTNmYLu2apw8cKhJhBh;R1&^y9V# z5TbLYB$TcfF)OhWuoy1Y6Q@qP6603PsbY;`We_9@A2u~Ny5*E0E0!q+1_}Zu(NnEs z%>)A+FA6*3vXl>nL+~2Y9(WQ6q6GD~NYF7Akt)G5qyadn0XwXLPTKh$+qSv;IWsN8 zgISNCJZT3H9kMwRTDZfPEnnfTRuprLzVkQ`fQW=hMtYWSDIXP0rr22f+i!i>hQ}tX z+pVq`S2!fIjny@y8pLzd?s?;5mVoIoI$|kU==y#@K!_!dl3u=)cFX$pcJ|~c&)kVp zPm*ZRKj(KP4eZ9FKz!)oZS-(LU8>OrQa8Okv4Fi;ho}aAsd5Qr3?-UCHS~%mC@~ zqa}RDbX~u`?-QVP3s^h@pd%R=bqX>NkGl|NNi)Ki1bSnlQ)~<#DdM5#ipSC{zaUq_ zKg$Y>iu^wC=itDo#sTj9DC<>SaH;q74?3W2Z|`&qHd6|4j-JD6rt0%&1#a4G+vd%- zed}i1v|+8`xJ@a%Od3ES7Mj`E9 zxpKL{&}HipX!^acea)VD>@nN8cC96;FYvPU3uJw`=L388d*8Q>GAc0J*c9AaE&8jYW(IcIjqW zJZS^~!t8)PIfmWptKUgx2@uDC!FX6$xyZMN zID7Vtdk_FE$Ps`QaY~5-T#E%@^%M_qhQ|QZIpQs*;g~YUo9hAb8UxS>uP8w^9S?+D<%AmHUUDz@9(AD`yKAB%+>~e509G_rU&^Y zJZ|fGneAbeJ2@vTcXKY~6X&A{XOz2o{w&>h=l8mCp1;$73^{_{m6B}LxR$tr?;zsFn&FsxBe5rM%2 zvP4UY=G$rklP4d0+^38PL}XXkOEs50>+0sMTdY`ukUc&SpnxqZ##}8zbaZ&cJsy4i zL$0LRZ15*9y(ncl?20fwGs_h*8DHn>I+n>!2>hrKmLcIWE`i|7Yef$aUe(~IWkUix z2(Tp!DtzA@lskc-cq5=eXlXH60TyX#$?pBglQo{8`^=M|6%{1|0&5aWF_?A>2KCje zjlRmOM8E@jj!9_y)P(*J7;FxSV(62S#Uln_<2)>3tR1E)*!-@$D{vR%(ZHIWltN-Y zoWNpI&8Nsp<9P&VqKxo{;BMzTgd|ok_r=vrJ#pg$VgRT-m+J^jF3iibo!hpkUVVPh zZUmRdBI#bN3S)&(o4{$JlvjCau?N)x5ZI3ikbyTw8bCt=i!T@#fHc4sRx|NcEK430 z-C3O$2VfS@F--;i*bgS;T|kV~ixeQs<5>#Iv{)cSpj%=}l4pf35I^Lq?tllph%BK+ zc{v}8huH$4M~aj{Uc7nKi;X$~Re%k)GPqh-=K;&x#f#gvZuM!pKJjx~TZ>&dcixwq zlgKPqpfEo--%88MeZxqYBqcq?1JzSxQ9~EvZQ=yhils~!OX2_C@BNPNX#=>JkkYKL ztrKY3V{g9krf)LHRsk*T?Up1%flRF|_bx9jwI?5W*dBXmw=G_@&=!;wiFdl~hd+7A z-g)OeyVlrjjcx57Z0|T+{W=P8)${R)E?Ziqb_V?)z>!FAs0|Ej=`1^X?1X!+7-#N% zQGY{Q{R>`o1>eEb4mQDTs;k*7mJMEC`}u43(C&w9 zNar#RFs_&mOAvSm72!GGc@j7SI^VTR;oYzyN26Q6CbzA&~3puKJ3Q)2Gkc-u?T0x`7rnOMtTPipLua z;SQc-=@J%@4Uok&5!MdY9IHvlB88%DF7x9@BMX@C20bT&9L_^8;jf9(@=FJ=3?;o%67UiHS)O zt+4D^lDlccI_s3ejuH(~NVLbN9B5DdHP4v5v}&nUs{inG5jc#+IXNz2OmJf)MnG!7 z>&stKk}N{im%X8S`Ua)!vqZBP8=Vj%N|~ZK0cv>9@LHiTm^N|GjQD~22g_$6br2Uo zUje4!I{D!Jq0&{0kN~`%iIRW=6L2H%aM8J0By^ zv`LohW*uZYWpz#6m0CM=@Sw3gepH~D7#D(%S!t7*!*b^Ye;)S@V|hyE7uhqPf7*c( z$_!8AE3dw4um1e!cIMn!2j9^GWHpyB*^;G8Y@t9j9?hqoe8Qf2<{4YNZmqYKSdZ_1 z|NHiX@Bh#(ZTOzRU#3z3rFfLGvNCMP_U-mhe*3FdRkhfs=NO|{`gr3QWBf6=m`dUG z$k8KiaHwmYFTw)byUe)`Xv{ryjOCp>ce>(5fx^G=Aj{vGMusN=EXWA12gvX}D`WsK z)RphAgBKK^#-n?L^jr)NMiTG+pt?Fn1k#ZMsY$6;v0$OCT(-gr3+DT-?GXAh}?a2OATNP9QbYue6Er#Mq~_3IrklDAWyp$B=`+8IxgMZ&koC zfET95$*#;aIb(ZJw76JPohO2OqRP@%cPF!gL^X z=S6j%8}ZOXbv{QXl)U}^yfvwP;^*Ufprz^S%MIC1ukKOP-M@Z zg8V#JvNV;YwCq01z(pafT)Dy?edJNwvSoucG&K2Yi}PpC`keoLyLLG+!W!~mLFh-F zbR*oOYDC_x^ApHtSJO*pA-f0FX25H zcoaYb!J=VCSzpnk^B0zuS)qh(2vTUPTNHj(0Q5MpK%Hh0fXDTCtJu&muv`O61VF*F z8)O|bUmpfaW9b7ZxG_SX={9HucnR(wSTRiZP!9wko|n{=NZ_pi7|MVtG+rsHicRTS z-1l6A^~=;9%7Xg=WS9zb%Tu%r>rESZ7HtN!lFNknjwOpL-FreVmcWZ4-Z^^Qg(J&} z?|o%&+ZS7(g@7}bY_2ykFE0$e8b2Texwj3l+8O-lGb{pmOC!o^FLTUcVn zCFS0qEb$~BggvMRq>#Wg)Gm-K^Q(W*ZbmJLk1!7Qu(7&X#*q(g+N!ul*jS_Abc<~@# zmdL9w;VCxPV?4pP0F^mv06-mYBe5sfuGZUkp8bwn*W4TBN!^KeATWHLK>R=X+HZRt zOk8}70M9cvKQGs61zg{F^G*B7Pktg`RqYATh6aY+3*kj=A?e`fKL3_J@nljpZL#Mlla05lpKPH*b-PVDzE}zJ2lWb=4n+W86R37pgDxXIQ-g#Y zAS~S#Q%YH53F@6&7EHMi#706f6aag}G`BQ+mP>>SmimqzJM7`zyWQJx?dny}#@Z`T zvuNQ0+q!v+o{?^C?Jd3=YCJAnSs*AVD9Exzo{4}$u%UDilBBC=r`(d#Qu~=KS9VTi z-y}Q&tONo);A!ZRLPtn$may2VdJs&ALc-E!fU$ujmL9@|94idk;ekP0DnV5u#RO18 zi4k-MPzjS;O-v$m1DZLwkzi)re@U(DHXd6q+ z5rPP4?|api`lG;ER+%GZv~pRM_d$dD?)~@o*g5eh9^2GC?uryOMwNt#@>fDW4i679d87kf|p&TNI%zT8aoI881ZFj8;RV!E8sZ%HIKmXaES)HtMrncZa z05z}cH*B=8{*&LfXTJD(Yi$pdZ%$6O2Xnsg)1TUlFTCI$Q&t24%2=MyRN)Q>QY8Wt zE9{^Di{H1!<;6n7v3BO%dHeRazh&pnoU)CZ){AfHhXCZca^i0;{i2T1cSnyM@v-5% zA~VYQo_CzC5>6$B9u|NI`~+PADbNRgDilzHKlu*cVp=#f0GK9aW73)61-@h2$d#ak z5Rddd*LaN_VnnIhDeD&)A{LB|RavG#HWK87N|pfwO_?IAs3>&++b*DvQ2-E!4@hW; zSA!+S1nA=#Dk&`xz#5V%pDsuc6WDJLR^qCfD{4Hlxd?-PG)mC>|8Qltw#@o_s8foHaJL+Dk9}%mZq%<~>+gN|y}2t<5d=)vtWTHgDc+XHT7WMNJ?g z%8jY1Sb;BAR2e?Xj`R48Qenys>zB`bk0%CDgeL~2Z5(qV{S`Wa)y4Nqrzi2%-Ha5X(>#x}* zS%{fA`BE$iR(G|*e)8j=*y+m8p;Oyzikcu~r^%t9lMdIl{-pzW~;8>xbZv zJ#6Y#4|Z$r>gaSpynXvNw~$Hk&a@o7%HX!ZAYJ9v5f?YBJEg8NYze_OU} z_09Iyu3K-3$>LoB9mWHmo;`c^*z?an@1TXmdt|Zh?(WmkYv~zT8fOpMqmMpeTeqwe zy%svJyt8MYz5VVx_QsoU7#ms^&M)x2bl?#{CVU#g0s{Nt87@3>RKQ5eomd|F>4xG8 znlA`bR z$e^ZPTYsgmXan>io&<5reduR^p0C6aKP{}N5Rh47#HU>o9hiQBC$dCC!2W3gN$Ql5 zk>g%aau5aiSs1%P-|#!0mqm*f`PiUP$J>=DjZ>zinDQhg09$m-iHZ@O&4zTp^8&fq zxdpajS*1^bjg1ajdUBG3)r9y2mq{M)C7vesj?Ep3&0<;}BaZ%p-;o`}iItX@*y*zu zH7?It)$-N$)7RcqC8I1}&+OMd*RNS?YgeuCsaVfp19DV8ynE znKtu>bv;*g+ay8HcJ|~$A>M?+2yNy?BkZSKhy;Qx5Ol=U&?SMF1K|_24*`VIcJQK? z#-?V^c|j}+_aknDX(M7^P@q`+w3lVN*ZV^k0+#3}b`oaVC^~wsTjZ=jaPSiq?Ldq^ z3c(9>fevn!iH<0E3c@&4_JLO+)0GL&r!K@N!5;|Uva(`ZxS-s(^k-=^^#^3I{Xj!g ztG)C79y@sWi0T$4Wt*vb#agleZ;;3f2%$Ep-H?Fn#v0c8N5)?%c#-b(+4B=FIs zTT!Tg0H)9zIt~d8;bzazFK_^pk(upQJkw%$;S$Ar^gSL1=!7NBY9xZrso$5L`GP(D z^yh5H)-6_AR%$6psk-l6-%b0}nR6bqz|>z)PnTQz4uWM>v(aToYpb(^NtXR3imEV2$-EV*V&%bVu zJhVW7!Z@V}i<2!;#@Z_pA}DoRkzV5VOG6 zu32SS8JVJEw*XqF3aJ>T9oCrP@(_vDWqd)RA*suY0LK!=D}cAd6{eog^#BU`1Em>yiU4x1M0G9!y9hBn zC|I5je)M-E=4Hy#1W0HU3WVPYlmy&_?cteTZ`A?7<*t8SgPR{<)70GJ``2K}lOqIg z3Sf!r$TgCjD)6BDGdIsP)q#VD?Y%vFtd-R+YSaAE644>rcj_jG$b=3Y{u}@~GB1-W zhlE`9SL@xg$AC{34e)r-A9z(z@}$ovrsVjElTwmr1n|TY2yW4weS>HR`9)|SeVik@ zpa=rbORP^71WRHiWJOXpmwt6%v|`>n5j#lbi^e5h;GTmeUct=if;d+V*YU9mT{wtM^)pa($AYB@lDeon4m zv-_dl_M5-?n>Jt1BI#Yc+Rf@GwyAjc-FNKu*MBY`aw^~f^--^Y9q0YlZ~c~S-LhR^ zGt0jAwXa!LX0r7SPDr^{+w;%;#J=;*ei)N1giyH=+7wi2RuyDO7vHt zs+bbhi|9$(dIGRLlPtgMKMp@xg?@3_qwkK0Oy>?cknX?3OvSV zcpR{NQ}Cib@>gB!sUGAhAPsgxsZI$>f$hU;i!MFu$^BMWWR4*|vjGfsE6pfLLW3d4@L1q;d zmD*wP@aXuY#}h)x&W?8R_7PjPVukpr$oHYj&SX0e>Y%YJLj~`Y%RkWx`2cOhd$M=Y zn8r~-NrAob=DPyTXKeSwkJ|t7Cx34JgQEiR$r1*W7AraZh0i@@>1jze&a~6Kz?gu# zURjlSj#hXTef2h2o({dC_KjEQPW_-e?>Ryq;rsBrdoA~VhkGltwPCj3KLK8T>kt3M z|0^U;NKDGjZgi*L-KyNpxs*?w9|13XA0E>`Q~&TiogS9!pKmnpriJrhXzqhRK;gsW z2nMddPM-)ZIk3(PopndLhPfO7qwc|&Q*nju+f8n$t z!0|&_^0?|rmc{d~)YiHsd|2l(HAWyXbWKZ5vClvClq*Wy-&{{t%`jUn$^pfQ5(w!W z)K`7#!c%SHy?+<<6$#Q1eCMQO@NAHsmRKUDESUa)Ul8)V2QU(=!})*{lox@PC^8b# z0Yvchpdi?Eji~^ZP9uy%;KwGBB=DoXTt}Vp!Vqr|=GvfM+?!W`B?sRFidZV&*l^9( zty*ctg$2Gum^cxZuC?y)L{_LF~z zeV0m#itXV?cH95`U;k_SjW2!4^OH!l`>HSJS@jV#gi9M5gZwz`DU~ZQ#MA~WJy4t; zvo$rLdluUt{m~!V@)gTnu`+E->=rAIek>k+`Q=wEnpGuw3d`Hss(|zZ_ucn^J^lG- zY)REJpOR&T4S~JKj-9sefB*aT>d#*G{e}Rw0B70*s3bqk@BQxYT0w4}=o;({j%Z?f zU`%6)Ei%Z(1Gr|tsAES@%IIM8#vm}2^8+3a6cl5U?^wyIYmJ zIhXQ@^QVEA>E(8x!}tCgVWwLZ20Tmx(}axVf=RF8Z$bI^^TLnhE@68Bzzc&B7c7I9 z`?X6b@qKe^v*a}Q3_K14QhIE9mXVQWk3I6Jty#OuJrxHI?6>0r5h!kU+sY zz{MI7fRVcKhhRZLApm$bgDA{$N#;(JE{fd;7*}u|?NiqJ1X9V?_ z1jQVys#+>R7G>Z0*5BG6{K5apJsdy$;SXJSvaAz}59N)}1neL{$+AkoE16JLIiDxr zB7xi~WeISjAU`Oy#RZjKp;bs{grvV$9UWvzaQbKeS-87IXoYh22k7#2JU0CRYZ@5uGRwhDk` z+Dq5s;ffPa#>K~3vgn?kmf}+&Teoa=j|&QqCHE*n;#inYVpC55#G7xwWADBHfd?0} z1RU>Ey!bd`zdifu}d$!_@e#b2S4y&WB@OoqSm&cf7y#@ z_wI*$iS+vQ8@!Fa`J}+=kt0X#JKy<^K=}(!4_5i$sU+VLULInE*q!)Gx)!e}W0zgd z31Y_MM4wLzP-EevAIXLcFx|iZptZCT7eXSpP=`g8I$Bq!3bi+d7<83_ecXGg{JXb_=oJYJ7(|ojx zx-y;spVWmm(vEN(A%qAP4<53D{9G$kyz!Af0dJ6;7m z6+9c|LNF?z2O*3bA4S7+Jk}>>o>j<-t|%*!^6U0%NW_*RFm&c@we=6Ng+r6|OBp65 zC0l%Ag7eCVEX0X9QYy*f2U*ZpYOhMD9<-WEmpy)E>C&peyP@Z0W@Wf{gJ~M9V&4iu zGzDZ}MH8>WYBt(ADBz~XiNAt6qO{or5?ZplhjjRmn`B-6{X^Cvkj7F~wx%F|3j9fi zUqB3s2k#l+DNY~?Yn>GuM_Jo$t@ z@W6wfgbgblE1YSly?YPX&wlo@EbV;)-Cg2=WMjW7z)6P;3v!n%UcAVD=WG8|e7w^Z zm6zEy0cL_#Suusjh_OphC>vRlypQ00vSAPFw-YB$N{-;g3_uD;P$KWeXYd+e32$Dx z_+f*972XSYi6CY&Kf`yNkGBPd&o%TJJO`g*M8JpB!Hdf>4K~KkT+yBCnxRQ_ujFh zf&%enzk6h8;|njm=oy1INQU919F#$Z_iPkk25s;ViUxC{=h?wSN9_E?8cWa^d+doP z?JxiOZ|#Ra`mv>^rHk+8YCL85iq6L$+HJq_g{{`tr3wqs2L?bewum8u#+2~Y=iTUQ z+V3>Dd7-bSmm7Q%l$pQZZMnCr@4d`c|5<;JyoTl14!le+eE!&XALoTnl#dIRz$3sh zlZkZa$ZMoTK9W)%iil7%eSLvd;F~ znKLIH%xv1Y$pl6tIOv(A3@)0b@5&h7TzyYILlWig)Y<^!Nh0U7J!$4 z-q$@ZD%Zh_u#Bqg1q+vZT&b-ymS_Sz@PHs_aKAH^fuLu(IOpMUp}oZV@Z8WEBncO* zrm#@?-dD3o5wpqya6z3=;Jx}Tm?jBm=(Jb8!&iU<9vOfm;D+%*9~me|tZSoP!Fm;~`dij+xWgsw~- zbX(2Ei?&}t28CRZU!cAzcW(!q*;OoDXvN|&6cSS!&;ZZ?%M!m4cut1gYebtl?_d4P zf9b102$BW_5SswMKtR7xU47AmB1c3M_Q4?rDke_gOf+X;Imi=TNV+FYr-Oj&d6t|Q z@4124?RP|=#aFGNFZ?5W2ew+HUuX)Bg3vzEqdcH!(cc&ZsQ9KOm)G$5_J2MI^UGv`o0ywu1$r@86{4+6mH2hIt{ z8P@=8xj+0!ULw5Ocu)u`ClmJK#g$ep0K0GRNA3mVo=nwa6r8WFvG?|Tq|2imK#(aM zVA&~p)(adqiROT&oV)^Cw4_RM@T&dCKlxL8=e-ZCKp>s~-Z4ERPBbUC&A<5LKeEi! z1ncXTe3w~(8N{Lkj~7CE=^5Um{O9k3_6NNY^!3dO?fs>eTR+;%FZ=nk-GA2KBd=lk zwE{08qlbmh{C55PSvrs6!erVt;r*`P!^_8?AAZD2c>n$PJ)s*`H*^0e1e7^~huulP zAkf093Zn8aN+}#Vc)+KPNNc`*`wl6fI4NDBd8`)=K3vsUxPS{%w)@<(20E6HD^7g} zXkq>ukV8QyBiLEKhfqS8xuu~|6}F8dSiN&2V3&P6Sb2im7!LqC2w}3QaFgB|9hKO?q$=Kh??ld|GX4ZELktr%&1!zxW0F=3o7#W#?phoe;>|w{5k}8#mY` zDOvJD0A8jGF_Z;`I(Z*PI%+0(0YLDXuXvSg^y}GC`pT6$V>e{>*I}9gmok}taYf^5 z#`6M5;+c2?pdC|k2u%Woi6uZ81fNMzMHb>4@lL9otTWQ~2U`R1e1H-6q41gdBQ$vy zZR9ikPv0}|9;FVUbrq$>QiMxv3~N&NICc7rz4^x5uJAIla;&6$fo1BIxp-2;V|ibx ztCs+0)z^snJIa*|9uA%X7$K$o$x~-+-~I!h0>7}R#44+nS*n2OJn>Y){Q0(d!$x0a z!7@{n7C;i(v$cdzS-8T=aQf1ImT40wkuA`ThbKj#J6B);`x`6RR~+eNEbVd8n>YxD z0tZRtQd7vd$~ggG5}c9343Yxk>4}St5@7kB{pElC|GBbz;KAMYz(Ws3>YZ&d0?zO5 z`A~qS$;Jd!*+h?=H^lR>uNUd@nL@?mcjDv;tE;Vb@XFHMB~?}S#1l{0lTSV6UL;~M z@Qkpj;&;FIJ^R5Ap0nE8dIv3lGQ0~cndW-N)4FwQ?2F>-`|jK69!EAjJ%04Co>{L} zOjzZ@GF!Z;Of`FhaZy{DJoa&mu}4KI0t51D+Rthjx6XKW^rEaWJLp@MbVxnBt?4@QTo8roFfp zP9}ejd$jN5Z!D~zJZ{;c1xcQAG4^Rxm;fqAGGuS^HxjbQqV0statn7Ygr(T*NJ zW{azqxPgW<+YeXSjDyu+FEt$-RT@0*J$-cw8VD;F7(ih;eCeZ4qtRjw9O>>Rpfl z$y6Y5Oyo=QIG3rpo&fToK<<&_Cp=qtjM_!+Ci;qP5I#Dv&;GxE`e(LRW9W*Ep+$?U zY)H>0FrKORYqeMG^G`fxk36*5#)l<)XtQ{Myh|*y0JH#L&{MP%fCuXh+aK1OxX#$#Y&Pe7WA|!u5{NC{P5FyJqzr*WjJNlfi*S26%b>jkl~# zmhCw7lA^@AAsv2R{(L*Af&IH*`zQ93A3yKH5l;ond%ynmuX|!Jtk=h7q0)Xbfnot- z0V8n#r7U>@RZ*6?67Zo_h=N4uBIu}pD41^zUV`_&1eI3_1+Kevxz3l7vecJ)ajv`4 z$4T;*AcfcO&-A(f2>tks(xnb8p(a)W0mbvMggKAt5ejvp59Z4vhK5+fOs{b8o;rkp z%t4R(4hs<)0G_<=>PwcIW~3%tS!t1#2u!ei94`+mGZ5HkFVqMyL`jgdRC3b$kla9| zUFZ2M({5|)@T{_c24YB8j@SuATJqAWJ;5(+&@(br%cmIF~wX)$JiR|EIJVPV_BR3JC znJGb%Dzd7KjV75A^kYnxv)Ts0C#TE%0>jUK`)>tIuG-EW+wJpTc*f?lE4XM)uyUJ} z4wmoU0|zZ3Io+R!*Coi(t9$E@xR9j8cn=oG0tY;?T8JH)AAH~eD=jN??-_eBk<^S; za<9GinpI!CS!ufWu=VzIT31J_ojr5PYA#k}}wj|M@U&_BthRdZZH4gMK1{l-umh+() z(dA3zmH05GiSTS94@i}O9LdVc^v?jAP$tmdcvJx|j7Rzj?@S0@_&ppufENuGJ!77W z&^f9I{6lbmwEkn`LVPNKX*RH|lF|kkLlHSW z3M1M|tcr%Y&hbOfrhde{5HlBgUKm3keYDqJc;N*fzj&WGk1<6%+1m}{goOnY7#8BM z_;?v08s}~R>Av(~)sm%lL59+a(`T)?q|6eTIv$gp({;p$^=r&txL9rP?Rno`ef>4t z^WlfSP~q~GS{axr7MGBu{!6n#$y3aY=;(M~;g+ABY5$LZ{jUXDqKr-D=cvv+H$FC6 z_aAbg>g^NF;ZGz9vc_K}tMpUkxIwe&$86VAU2juvcArnw!OP5g1us}OC~xLbv9>G9E9}W9pR_7jfh;?{azz75 z0~S|3bLW+d7P|E_GRBfbl7Iyk6>$|F_@{61f?$C&Bz&3!A*2`PdP#tUa6s_jq8}Rt z{IEAkvd6oyBPyN`oU|G6s$gby(ZPs;jTAvF(fSJyre#J!s72?6Zfg#HkFEC{jc&`NNG$skk1+1Vr5@KVV ze#9BUcTAVj=j1i&?H#mt-``_@{a4=<&z!NXTQ=KM8XpT5R5%c3Z=uYbJo|9(0sEi- z?Z2}_M~_?C0`@dw<3YA~i1mKNBgRx0TP=|1WvRy30}tG9UwG#8p4^RT7XUlCV47N* z1zKLRmtTHaK)%PvXlxw8&;gCp1?u2i6y;Zc>#MeQ&1&cGy4uSgd&Vk2yhPdAX|`lh zxuvDV>snKPH;HE&BwNPpa!s|>)LgXM`dX{k0Z_syV9EmeUZ}ocZ@>Glu4OBUfQKCr zi#CCL3BDsw65liRO24!EC;-2KJVB0OjPMFC02bhH-cy{X4=mr10 zAe!+`c@jCEr#c3)X&3;3F`&VXU&8AGD498JMBD$%fB7%=u4qMjS$YkS!>Hqt(WDSi zo4G$RHN;wB5HOWPJ7_a2l>qZ=)@|@{1pf~VG3F&_^h}Hck3URE6pfRd&Ug_CWTwAH z7#ljD99P7;;PvJjrYisCAODeUUt1!;3jNeJfwBq7T+&oP2;}9|T%;`(rGrO+z*aUeOOmqOwr!gWN|YM)L(q^;AFG1| zT-1|h0#1Tyj8O@N0Jtz{!=;KITR=^iJ5k|Yq-w|VLc#V)!F9@FLO{l9(DOXc5fW(= z7Op<1T>zwL&n>cd?>>*yAs+>YtmAaEk9QZR`np)0{h`G{RN=BPIvv$j_~sh z@DhNO|37= zx5V&yDJ~x9ySe}mjm=FGLM+R~I>10_P&eNVq!M`#-~}beauU`Bocy{Z{1CwKj7J9U zz8BiXCM1b&k+p~S(q||->WH$(Ujb_XWgwgZGeNPS>@mM%As9VsgpHNLt*fiD#3TSz zyGIKx*sXpc~Ot#xY4}?77<5^ZvFmvea1#6$RNod+c)y_C=jyva;?%icuH*K(n+G^1|)kX~)Y(oYOaNdpW+spQs?iF8j z8nJ9T+Ht(^rE#;=Pt<0X51_`+<$!386$M`y#yzL59}wWg>d~hcAYJ^8&eLFL`3UPo z*m}>|PDT9-Ehj76!3rl*W5I;y;IqC0Ui2Ab9MA`t!-B-wSpmGjf2^xAu_5Cl*D1h9 zpts~iKz1LuSO9=b0F0$FmineicHuYm_@j@y1!Bh3iM}L@RTGP#4?S^Y$a3JA{}=~M0^tkf7PXr`bB0?cIiQv?>hfRjj+Wjd%MD|QWo1>&Wgp9kd{0hDwi?Me zGzLKFA3pvGyZF4BcIZ&MpLE|M`GP+e@)>$FVZ~C(!^gmjr>M;lt=^y?2|0g^j^Uz` zSjhjTjPT^YNBZ|G>HVd*($hWDyZ+w&8B(7QfATZmrDKD_ARS-G+ZFovUgz((yZ4>a z-#pU|UV5gU_w;;E04!v_bNvm)`qn8t8_EeeTQg&d}TeFPhG<)Is z=dG&ZkQ8#74{X-K4;$uzmp zX2%oP;XU|-t(--L`4Y;X6&GGmdYHMHW-q2((yt>rxe{!C^x^lhsA3oZW(zEQ6D=xRJ>~w*Sqc&*B5Nm8{ zx2Na7V)s7qls&s(iR~}1wK&!5(krgCn{K$t?z;UimKvAj%LIL5dyCJoME12*XrTVZ zfq44NSvF?uC_7MAWsg5O*B*ZKaoe(OhXbHKY8wF;JH*d}G>gXxo`7bvX3cc|95;Hn z)zuubb!%4Ip@XH?BtD-oW|)l{KFCH7Ef$Yx>}Yo1(bD8Qmspkq6vo5@@Os&@6>IE; zmtM8)J4ytSSvrWboa{VzsIFI^?%TP;;>CAUCyukzPo6EXAdp*eP{6cayha#-!)~Dj z#J6EN)nJ%7X`);Awr<{{GV6TVkn#YVj0xI|m4G089@1Y715Mav*T1O0^YCGf6MT+5 zzKR&Sv%OV{JVoQW)p?MBn7ssA;$ow43VsZH(ZNQB z-0WOiy>hj!UA@+3&6r^XzjJ>Q$yauz5!IVv9LaJ$rTQTUVk93rL>D$CAd`;>RIn^N zY*2q2KW4aPiH|q0UvF&!e}~(eEl%}F6zGwJamy3_fq;4QD}U!Q!!4Gp^UTUuU@C(_#y?eD$*eu@4!&%qVP zrJnb^+k4&(yu4dN@pIsy0|GHFTlVlpAUGK2M|NOr-n`jo6wL6)N~uquKHZ&O8yXuJ zY8u#@4XG23)fMK~cQQf1V0ypIeFy<@E}!6c94a;Wb4NIqh2j%AVqU*VNHBXLbqP%P z>{kNJgFW$9K#Iyg!n>qwP%;dXm_97s2!QE%OxkPLuJhSkZFQ|ciQ1>^v+0g@KU3+6 zxpVEg7hZH{HqJ3(un{2bg7eR}1uwrO;8SJns6qQ*eZ^%qZpt1dhi{AK*B=6FPOa@&geHlS#Js5UAy+!4k?L2Lxy>Kh>=1&uy*hqTR>Hu zKuZ*wo-z^G(3*b2ffT1|c54K`BLI#I76C41cFZkHCBUO#W6`cI%AhRj4RFN7kJ6zp zm_>624a-sV3A5S+3B?X6r~!qAHe$q3)h}8;L#Qu8QS{ObUBbJ$Iof3cP{T*1w|L>; zfdhI+ywAk3?(jZ8X<7V7TpgB5h~q*#*!6`ahI(R6!WV`BTu0R3$thV5YVe&QpyKis zD}C0UD21MxljZzOxd0?~a1izOv{O#8vrawLa#YrEDK>y9CtMR`4^RcbW-P>M95ji3 zPd)pbJ@mxWHe&1qld7?#%v_ryMbs&!QB;s;*}1vad8D_^fBqHw&#>uCX88@)J9- z|A2886ri%LB|6fAl%uu{mLfat)RXMPAG%7sInoao+_-Ly9V$O40B2UzFV{wo9BPG9 z+*xTUR$W=H@z%>4YpZ?RILi*n0{Qq(Y~Qxao_}G1y|my}+q!+Xlo`9)8f|~+0V`7` zigmi`keVzY-OyWERwT&mh%X>+BKmHMiJCA5Kl;S2#6kKV^eh(tG zcI_IU?)INev;napuLohO!y-Su04Bf z?YedD;0Sn0PD=G<29{#5E?}bHymhk_L$akyXkiV(FM|Wlo_y*F-&KGqnw?W0y824@ zbzn&YWsR`HVep+&Pw+zGdk_R}ebV1vcMW!*?Eqe+m;-phDuVf#Sq@7@v>H%Jx3i?? zJ{Y1aJ6@n41Oem$bXfZ0UX%#W1@OWr?Q|=U3L^L(N(0)4exz;y7B_W^9&DFpIf-lB z!#gUaDB-`3j#e8c05EdoFoDr%i#S%YXPP2vT~r;uY0FbYT|~&b=JGh=qYA1{}r-ug{K=_8I92_w3q0M)uVrQo)mDC%8Yfe3O@rH*ecC(8eo|y%nv^Dh`sXK z5_|Ebg?6C)kp07FJ}|?13G4}E+E9~|=AGJlxHd|A>+2G-W?37bx z+O=0+Xs6AYW}}A`*pUviKizh>Rn^v6VwM1dKmbaWxG^}gVqM@2u*!-`8#!X6Eqi^5 zTR8!HIPTKdNr|yGU_hZwnKIE%KV_C(dGUFcksNEKdw1H}Rm<(*{=Jr-oG5@W(1sKb z6lmygsY!_*`kwIk6%~hk93&;DT86+nmOT23WvI$Zmi&nE6GftC9MWg-D`2=vbu7aI z*HrHoOe`7AO|7;MP^ob+Y2qZwh{=9hGt0KTk7qjoBkCKLT!|f1c98S5Dn0sbR#uKL zJ7TF}7Z=AqusaCf7@~EjCKJrCzqh?kAeZ{E%!qQ`P3)Vv$Y~wrNoE|N7~v%*BG4Br zux@8CT7F)>TaB?4EM2uk?%%4VB>bRaF@A#&1X?20{A z9KKP2PEXSJ_}1*)w!=mPUZluLSSgW5eI)DP;jHW|w?HuAf~M5>of7gN`M`Kb9`d(O z&QvGBY*Ips_@US)O`2#EB%kvORbRdL*)1m84bZhiEoo9x01F7PGMn(79PJGHC( zJrD>$1(@PH6hua;#V!|Ij;XC~71DRgW|Bn^Jg#%XzE7OQ!|(?E?x$`8ekiOvMLpA< zd3lfD-cR~~kN=0Kchld;|9%3zyobb63bULN)a2j?asu&xr4xj=3yOP#GV~`Tkof!^0IdDqEgCFIJ(nTnd>KhweNu$vC z4Mod4S@MVmab&%KYbhH6g|cKogX!ZWG}$4g%f5WT@&o6{@OO-W2eUlD5GO_N-B)5K zpL(*#9-$7D!EBH)<_NDH+qSt`7qE5J<(FHb1cN&}O1R?88P%s-c)d*u^$mc9zYzv} zB8>3)aqz;>58y=uK7bcO>pSSs9nc>u4N4kww$F-~xplJu${i&Rupk3S2(Qj}2oQmn z=+o&fG8Q4oC0v;)yF;r4D)gqlq3&e9^Na_K>)vhTF*}+X?WjIS3?E`+MvZV#0{B2^ zZ`r!bcJ3}!xh?9y4$IRFI>&unhzhC-OHQ&AjPg-}aS3s*ToJr1BfwFOjhad7Z%KRc zL$bh(6r<1o8)*>VAaWqOA|oaoz6 zH09U{%1P8L*oCp`z&2DIK;ergo|tQYy5kPLwvT=OOJA{qqGH>+W4E1i{)K)>B}NxVjkGh*IL$7<^a2|*cDU%Dr2CQu3>xgA$L6^scy(=! z)ize?y`7eo5k+8SiR!TG1noH@1HY9D&HSq?7V*vqJqS$ej*Dv1z3J#mASFd$HuauND zD^mN2^otdS;}f`V{P+nDoZ&Zhg8D#QC|b2>@&a((wP%-4064jwC1R`$03miF&Y5$P z+CN6`?{ZL3T2krw*{}f;)B{A7S96P`` zDV&2w3;N}%JeDyjQ=mmW%GiQ;5fCmLRbTj)Wm1$WXFuV{pPQXy>6w}CzsI)Ya?u*= zGRx*{L1z+2Ks`UUMB~y=Wp{rPjSI${u2DV~3&yaY!KVJ(wr#sRCj*M9Pisq?j~A9? z0LhKb5x+7aWKuzhfOnJN$Opzb@`CJuQ2mOWLk{ydeA};Ij*S{M#%9l&VP~Fxrk!>6 znRf977uh8jT_}E;C}1cVul{IiZjc;_&PKyGk#WXg1fWHAi7YWtF|x*Y%L0uT##T7$ zfMq=;O%6FeN1>MSVd(AUh~h|KpQMEo^j5?Y&Fmq18L4clnum{8y%Td;jsj zp8zlKAu%ukAH4;SQR=K!0yOgS^K8hF!9Ms%tm`5q04!h?0z<*HSYO-&|A-h`jK(a8 zodlSHnQbxH%s+kNs5H7sn zLR+%?$-9nZAWIzJA08D;Xj|(RW zLfuE;C>-T>3%qRKvBPJD0F5{nDP;19GCBw6mW~`J9`>E(}hLK2%dJnjG=Jp$p4Z z&CSsodR}h66&4j*zq|tLmtSC2wbfQB0JKlDd8{~z@ky4Qk>g+-+kQ(!t7WS$fR@c0 zH+eMZ^Dn%>`ohcN#TL;HKMOLaGT(W}U3Sj{_xsL`k6eF~ef(qp#}cGCS8v#0hiV%v zP0D)N%9Uz=bYgZ}m&Qd>x)o`LK4a=QyX4%HZTO&mcBF$DXsT7#wAd@l*4Q8Jy2t)< z&pj5OlA!S>-sx&~-x?e?k@1NMNv@a=iAKaWD(+uoEiB7wT(ML+W7-tY_-dpHG_m|s zUb@dpcW<+#xV|<@fQ91;1{4)IPc`8KqJ9T#1K@~Mo1K#*|PLE&aLnv zeE?q(JP$s?N(G2HY0fEr$~wE&i1*?X6?`OAX#%M&U%txQfF%r>5GT-hpme{75#Yee z3(h^yCQq5!tn|yLMBH2i;8Se@c;);C42X{ zwSv>ViQJ2mE8vc0Fk}yPLM{L)kV9ltC-v$Oe-Yg|S2BRzimd{R1K263YaG3>TVrk1 z$dPWPz$XV_jx`47Sm>#$Nw!d~GOyE^V0p2tQ!i8-uspGaeT#tY@L|J6zX-g<#wWNH z6ko4YKv-IepS{&0o=y-C0TSLxf*?Ccj6viCiE$8twMgzU=_K_MGJpm+UK2dAy}iZH zH0#?JK4a2{JLJgdV7!S}@K~fXuG2fUw<;0q<+kak{4G z04%H%bC4nf5@iiz`%GSg6X8n2L6wAaDc6I-XCRTHEsLU$%JV^{QRV~PuSfR+Za9Bs z+Kg#FTU)YJaz`O!HIarw5c|A$`s=m`W(&L zIT%o{(4(|Hs?Xac`i~sV1|wm_-_(y8A&znpFhfd2mX`otP^NzVj(%qr!zTj5L7Bh< zCVytU%#QFS3A0b=glAf04pa-eWb^4WZ0GJ4!WC>KZVF$k!>O|&VX6snuu*Lw8 z0sw>Fv;$z5tY_M!2#SjGZNm65VrRWu_qMim*wW=IZSj&75^w@3NqUDAD2Lv${hcEf z*gcgiMFbE?5a__irM5nbHG@26&Ahy<(j8LSIYufMAOe&Tv=4w?Frd&%!w zvum#}Ezvb8iD_1t+t1D9fLi!2LxLOda;Wx@J4E&?DDwCjci#P1d+_0hUBP|qW1p}K zF1gGSQ&Sw=RMyqo{SQ56>o;$cen zT&%jznK@lRZh#cES-q5hxqv})Q=P_BZ<{`Ol7L*U_Z|Hc#dxV#KlBpl5-8I+qJN+=>UWsW$R0^BMhF!27x2Len1cifM8{YJP)9O=amB<42iItv@g2G5(Y?jT?7%~A zu{>8Ikag=H|71IN?-2-y{NXr^Feh7po{5Fpmxh%}D46?^X)JZ?wLWfHGAAPoFjKHR zgd7<$Vx)sV6108jk%#TUhaT`TM5O4HR1UbsM<-6tGbZ0Y@eE+a$7{C?AkjWG+1moG zu%5F^h_lPESg~}IB|c<)Mm}79qTO?P+o7ro2d$X`fYHPV4x|>{4e^BKMc2iXE@O3t zomt4HSU{J?lUuO$ZdJi|_E9$5)#+2p1pxU{lWrjMd&uxR4^l2)-!6q`-!}8_t*&?H z|LXK!>u>_Ryobat7)-RFWo9S{pB5=TgaIZ^BIC02hiIM5xcyjpw)Khau&!_#Z7c&@ z&ojVKu2I1eFiK2_lK|=M_aL0TwrCb*A2Pbm0g7s=n?W(90%X`a$?g^pI_HW%5=@i; zC?O%3037U+Ii|QJRCykujP(EuPI^YB6%-WO>&upDU`6j>mjlXi*X|vDVk|xfMB<$` zd9rn=9~ zw9xMXyzJS%*O!gb(lZ_CAOu_>bb|-pP1$bw5;>ST`)p4o0X%2}CrF27BLoTNUf6{r z2Ji!5CIy|`f`wp`Kw?P@Cr5UI08S9FzHL>?qOqaTg&uW)@90zCy(ExJaJUH*#z+{m zOhY5OmKxyxRAb+IeA8*lumU3v92zU!w`GwQ7DJX^79jr~dr|Gozva^Hwa zQ;4+@qglBWv3M;<00*nb$YK56iL_n{kexce`+s-ZD+`y{zCC+w@PK?f{p5-E=}&&d z@^jN|^}6+zmR(>u`NdMynI0PlF_4y?>WaQiO7^^S&$9E+Jx6pc(5$)6cefoV*(;@8 z>wX@C1{AsTC)>91DPozdS-j28Ff4DxQexJRH7YwR*SAyOci#gZwCp1{++f3pjg%6r zbjt!(8Tb)jAAlqQ)1W=pFh&|n9*mX3{)O(0I)Y$;qIdrR1MJ3+++-C3n6=FC#kUpe zuYG&=xOIc*u^RH4@mC8plnaO+FrpG;^}qtdR$+LFPzYGAP{K937ar9QzT<1>j_vMi zvuD>X+p&F{^D>Ug=>SLMhL6EWelXEueEE2BNg)6%@IlmKtg9>ou^fbDYnwpE9e3Vg zgz!c+0Ca39l_#=c8eN^KE4#*oso0A3&&jEgA4*_Y~Qid#*7*3W0CP% zSKnX@UwOqgZ{A|N_U^XILx%*QRe$lA9|_?#fBVE(<~>XbsRLu4Oxa9Ypdm|*SXz;< zSVM_=4xnQ@I#wgTLsOqPh^B7+mb}L2h}c*DBb9&&JtMy9dE^%WMlwbs7>VtZ2+6!M z_4CF}o9*!@9(7Rc@?GVyER2;0{=rc@T4JJXFYegasK>gYQulA~Cw+iN|5Flu_FmEn z@bVrKYmg{I6bWWe9PQY~hyrEcU}j{X;EV>i0no5>gG9^_W+U#u0{Yi83>2&t`l50V zyXn<;9CcR{CpW&L&t3Rv@Nk4X@4}~p*$c{vHDmtvB_h=?SXTH>eF6}Gdeoi4LPF?7 zKq`up(0@R&EqZm4%{ghN4Uxbm+9eg>hytEJqFD(8Y~q9o5{}zFjtv%zy%IDCRt|t1 zIbyh5UWiD_*(e?}MFP(q-ZaB~r$k-dVx)fJ(*X-;L&@t8ZB>7$f>rC7^uKW7&wd^KQxmj3JQt&EKPc^a1PdSWGy}2Z0ZpKx6m?A@S7cCh$^jMFR$^%)VAr zTW`d!p{~8e89tMTq(i~DYz6Vh`PplDUF@BW7jtKQMvG<^Tprs_Wb;3?7n;Nwfy`-JL}x@ z?Y#5O_a!tekR4q|Y=Z>zJ^KBb=bjgUs_>mdoC!01#w@2X{D?)7T{{B>Fp{Jg=RW(q z{o%GdZQ07T0(*_(!x%g5)LC}*l^5H|v!~gpK|`&frOAHztKV2nL#s75wK{(l6&8pW zdihuyC_vC4kafX1=ePyn^~H;A%ck|#SYK}ic{w(8$Up({em*I{@%%`ic+)7g`lc3v z5yH+Nu@un&&ZN8hqlZr+g`B+VpAa(**H(mHV6!k+=_AuRCZvz*s$^aTz(z z6L+W9x3{w#kuI>tiQHI)CQqIsMIPgU6yXmnB=8q~hwnq9Kv%2U*seZGlTt-?WM^l1 zd>eKf;bb~v`Yb>6lnD|}#eih2qeqXTeCxbicq2|q8eZ7BW1DXzz>kJyUY4eUTnOU| z{*9oExs{Fplib6^44*O1YQw(;fEOoO$2G=utNNx{e3aiW*U#s|LWtD~f*cXga-Rf- zPZ;od1K=knrMQBJH{o3-9r*h6?GtNl8kg|!Q*)p4bKKzXT^iHG$f~S7^g*;`J6hU1MibS6$pf-4$UnvjR#^Ih-&wjxP6M`hF31UgmVeMn6^L>~zbHkP z7hjT+{6_w`eZ4nM_D!~8e(#dMto?uQ#x} zk?5NMTu3Lt%bSyf7iZue4<290+ZFovUVpp$j!)dzGyhF`3-I#yq+{j1zsHXyH{U5y z7EBGZF<6KJ;@8Bu?x-eZgTD*2FkkN#6pw*1r7$w3B=+vzR8S%a3+RAC@MRn&7ewJ+wGl7@cwrrR z&z^m@MYBVejc7M*26T8}IL!um3;~94fei7w4?x4;l4o8wmi=({#3>JxID!kH32iX< z#%R{au9`Y2|0*dmENWQK0H@qTA0?DK)tdmZ$!z!EQ$`k>$-MjbLZGZZcJ@wSnw(o$Hu@r7zet|VLw^{%G#dhxb z=No4(!Mj94J#v`s>z(%FTYhazUtc3$G6w?}oPU~~ebyX1?;Oq%%C^+RG%Gz=A)0Kq z17(#0FVzAYWmYRt&??}8GNeCI%2+B{RsvX;9W1p0{R?f}xH0Z4!hmO%O{js`gj8$m zlVpomY_Rz+F7%@qrp}yWgNg^+fr<+8Y^pU&X~H-7S#VG)mKnAl(|4HyYfKb;X(=^L z@8^(1jWO{der6=Lu^%|F-^w+n50)M9Q>i)a8lM#Yj*Cff%PnV=EnmLOK_p6<$qHNO z4^>t==*O}N&oOTBEg3U*tQ874;_HT@Wji>|pD556wnXdNuAMs_C{rK6F0zNEUdA`& zZrHfdcJAC|**UoaL>bhxqHS6b-vB$M2=2X-+06DQ(IM|ZFhQ13(AcCVc;7zPU zEHxG6v!vM_x_hA~g#Gt9}@`p)Ez$i7DR%$*?lHn+M&vv8l0YXqXSaA-r&9N)rFub$VVI+MGF zjQ$QeOG<6i=8ZOS;$&O9euDtjNMDm*yH2y&#sd#C_ zPeZ@6U7RR=o^#-f8z&$3~H5vWcx0DFD)&a-Ksqtc(`@j z4tsU+G6CV`W=W?iplUqJu5!L%9bIM5iqCJ)EP&eJC6UaiTBfbFGi+ ze{k=O7aD&B&OcB20#~Lr>_Adk z6;g(a7A>-eAAVGdW`$cGSb{qJ%roul-}t%%Jxu>YrSzDE`Vw18l9XhEty;ZCb*Qo# z(`VaTTY)EOD_c(b9R;)^01c-~Z*W)~j!vgY$hQ zrLHW9lT%(%>A;n($kkQVws!4WcU<4GV~6v?xN+m0uAI0|P_#oewE_nT9{zvd-Vy=0 zr`%GOrQfj*5qAYXI%=H1liU_<{F*947)S)_9ulA(@CztHO|!Xx9Zdj`bI&`^0Xd+X10fkRy2E7&;V9s1EKt;! zcQDQX?bMyW^>ep8jN}Y737K@PjrxuI7`Gm%PS1wq6F&+%mZI;-0i;j#NA!;FpY)r) zFoD%&mJtag`1?QHD!@0?Lr@GDP~=NrSYagy@GfGE)HOuAEm$f5#GtsD;n&wS z=-mujuYlJrsuzPXx<)$cBQnrX_0(@v3t`CL+{zj=+c;CwQa!9Zv%Uo{FZ3MBTEnBxrDMXH#%=Q2sSg@jUg7a*&Y=%Ph;89-I5jPzJ zaIlJXxd4tp64o<71cDv~Sk%ARXPGP`A^3c|uKI#_92{PU1&Zr&>PHj?eeYH@333!4 z%Mkb_jTk=Eh7KF3y0lxXggcJdiuwcLsH&^CZ98|{voE}4k39OApML}gvDA3sg%{g3AHLSkI`edk zS6yFPxWwyp=GkXEz461~6yII~A4yWg-}}~=?5tT6Eh(nA6=e~BqmPveq&)Q4T>I-o zkK5dNFWIK;J0pu%Z}C7|qczr4Ys_G2jDqg5WYQ!+jV}W;`*myAS!rpBD>P1zhDV70 zjDF!-Rb!j|@K?84@Awq=U157U;FPh2UkBx|EXnY|dImoOIws5Mw(RV#emm#9b3D$-uwg@e3$}xK@iP62C4;d6|L)qgE3(8$S+b>=V0_0EwAze{ z4P)Aq#yDko^y#*C+auY-SRXcggk(&#GtV7LyLq3n>dV%89-zp0!qMBKimOnT?PzC` zXw5Pb{vrT)64A%u-=@YEclJkKF=>EbTn4DlfR|l+_u6QIAeTgXFB=BpMKiYP4_Cb| zyW|qz6abwGI0rZ?DcR@#TvMh@@qXo<^aku6$jvZ&0Uwnxr z_BDI_@wxWnAOF~{xcqVtGD-P>7*9RAk1u|;$NS!E`T&pqw@5wvlJwu&=jHhHZpFOY zdp>9_LisQl>5cbA%yw+RNQkk7g7V^y*xqc1?qh=n^mk=~ph5BAtfZ??MnU%c+-QVGvU`shjncj&HI4R^_QS8ATgzp*#c) zrwb!w*(HL|uB@!q%&y!@HLFZdPw{nO9${8QT@WPrRG>InMwvNdx|?---J`(83{ui*3k|K~lnfJjY1^?9eQ9*Y5om6Q5)a65g}{B}u>H z*HL+>!Z`63h2@rv)FcP3IM!la=q~_VvaeJ#@U8CmQZKNAKSaNN_`BqYhmx(U*AZ*M zLZ&5g}|;G-Sw?M|IT2M%zj)lBiz zL4n}E+;O+ve*2xaWBVRGS7U<*4X_(-_^_RH(sV07ctGF_ivY_s(e5w+Cl9D~AeETX(q8>$6Jkh_XP=I2F&7M6+VB%!oDMa`KoTS?rpKYDCZo_(;`_$96hQnC( z9FDqdqfeFsrrY74#H4uN#YQ|2c#j=YSa-Tq2inovMywzvBV9If)JXBH`d9qL1cqfw zV&uR>H8pj%YUL{NPZV2-r4@J-5YSNHsQZHT73`w1rSFk*xd6I<7l@X;a7&ol*Q$38 z8a&ABwR`t28$4u)gIs@J1B?$E+{EQ;i3#Hwuaf)vaM-Z?)449#c@mhGEDMq_uhRrX52V`$5FMB;Fy4W>Qtx608YUZr0BCKFL1G(6eEz>Sq54rFqhC zM-Umh7)_ntNG`{^kD1E@kKWL&4K1e$L`4iyfy(A4#FXUK`{yxUc z;#xOsXaFKGm~r8^Km<(Im2t#FI5A^n8HNGJ%#?T?AazW$esZhIY14or%ss*hQ$69` zYjqz379Sgr6f0qZ&}63(O0*L}MZHk&)aqD0qa2+EONwSxZ-AG`DuGa8_EV$*S6y4D z*=L>|I9RS(_IBH~V~1v2y{*Gzlf)d`0YLj$gQu-T{JieE54$j935lR}gbc^>5DrXq zXEp%-Kmoteh5_$`zQ^|z&rzhO!fOTcS%jPYc-J}l>Af)k^ z;k}fHU`3Dv$mm0M2C>HNG|}J8l0BA$>Ke^L^?nqj+U7u{Hx9sEsspBF9CYJ7^F91c zkUuOun7E0Eip7a?0ZwFxGinC{9ZOqwPNrzt>VT-Pp65`;{Rf$Ornqkl{udnGk9DRC z>kB>%z68Ry`WOcz?22huf1n)m@^YLewRP3LTvl6K?KEg=YH($cUsPb(dT*Qn5RRrC zE|?sbXgR5wc2oelWXDcBxNEO%{wK1XcSuwvU+e!%{G z*I(@iKm9kWC~vTWykZ+(JjibR(B*d3C8yh*8ROJXN3G;Qx#jgAV}0T>EJ;8>B=qGE z;s}xAMZ2NHhq}K~zk)&myfn4D)i!S4Y_BYO&DO2oB$_4I$T8z=+VnX-glntHt-5@_ zZQruN(h_5BhU&>t4LC^BmncINa0laApqBuCC=Lhi;;$Cb7bnv4iVD>wirI2lG_4b0 z#41S;H|hsJss;Wh+qpD9|-vUfqu<{fY6}cZrv%nMOV%1@Q@*Z|Tag@Wl z^&9N5#~yRgjFR8Dag&dGoXGJjVpNF5RZH=@f9eY3$_F^0-^6cS;*ZE@itWk7ZDQH; z>8Iy99}?}C_o@U3)mWae#^_NgdCrN_bBt+S$J&ZTk}wby&iJZUSvZJuU?o-vEQPwk z%RDOJN;y6WQ5kM|*|XPqi8`{2lBH$pQ7M_jvJqpKU4ZyD5vzt%w?~f|<&%ae1VFNb z5a^6-36loBPPC0C4nZgIy+h*{ODaBCE*!fv|DX{*HW975e^Z@&DM~HHojPZlpH=tb3$NN!Pd;hi`R;er7sFhB z(~rXFp1cat*B)QqfBJVQ;sd1*iUW>+{=eO_(L3b`8N7Y+d)^`aeYJS&6fvwAoA1h$ z72X$J?Rm`&p&C#zZkfnPP4itzfEE-AN}9oh!o(blU?BJ$+vRwk_z{2=EH9MA?gyN6 zyEO0^{JO~%JA<3Q8T1U^;5dA23CX{AXLmQo@)6Y@XFux5ZOj0@&L~*{0)jbZ<>X3` zR;iwS{Y2s#3CSc(;JOcC&6dhT&{$zue&i6ufddEI$l;?bzE7OBXm-rGNt~dY z-n|^PXYXFUhckhyZRfsyYITeaC?4WUy11a9M<6}-yz|{R0|3PNP0!4muNmYmw&e9? z-u^@>*V(gYyPpV(hhT>>q9;3@as=|8d+7!H=C{7>7L1c-oowfweV$F9G{r7F_iP(f z+)oNpGgm42bsIL@{SQ5E&245`**Vsy7lGIcd>e1z59omdYL#Z{?1~cyS#H048$4u~ zI~A7;3~bu8#g?sD>DHQy&OgUan=@NVWU_tus>^Ni__5a6)?{tn7B_fE80Rsj~u@Y@p6BGdwd~oo2%M{Qfe88Z=#g-|0)YNjqdv6Ex zIH6|fclbFmk%-w?3R^T7#6x+xdQYbcC7g+VMj1gE9$M2UHyyRPW{Rj)y5$9X10q{9Mj`G+Q zM_e3$5yOG|SVDsThza9zOp_Tv9M%(!T&EqM4gypo|g%rpM8Qcaol(p`Q9gb6dxZZ1+aHDZ_%3cp!1F{;y{e%!Hh zk2{hkrKG#botZ4lURW-OxQv2h2F|-#Izs8-AX-@&#UEiAhdS{$%7nULk)b}&u%Wim zI$JueWXC>hs%`KyYlaOUE=AJYs_JU2QT1$O2bB~^vYx|Q(YIHuCB`J%-~of}{Ikxs ztFE}jh7RnnG0@w$Vb7oUtle|ZJ#H0%J|i@{yyLcCTi>`u+rDF)&73|1!ujzLMg0pj zv+T4r8`oJ;{s6n-!`Ist=U-^);_2+PcpEixkZ93mIR*LFc{ITucyzu!@#J$>R#s_U z?M=3K_h$7cTaud`oU-JRt(iD{l`bWLHG~hoW!qsaZR%^{$0Ufx?6e^q!C{S=UK)Su8jZzHUk-pPS%%?vai)d~{Sq&b zks}~5#Kun;=ezArJM|Qs$k{mp0W2F4JBLY(pD84MWfTBz06BmO`Ugt_YU*HFnLYaG zV|M!;ciM~@Gksz*cka_RV#Fx%e=nOgYqqy}%a*O)ChEbqY^*fwK*Zv4_^6a1zv;iA zVjXm78~{vNGD40_m@wY`ac!dc9w89#VZwv9Bnnd>a}Ld7v2Nnx@pN+!IBcUOk`^?veO7~!Yny*)QuHbX!Myl zN{HDMTYphfd-j%SV8{4cIgj52Y@_&@*{^^*@Flf{!H*o@GY~R{>iQ z$pjquzy3hUvnz+$9YQj%U!E;ny3|%IT4iW5 zl4!KUu~L}%`32p|CfWf}TN_1a#mo%2NYqRn5QJX@?M888>IPJK|B6N| zeGv->%K}RRt`uVueTPw%07hv10m<)t3e<%Jhs@Ze<}0yuW;SUdHUlkMXl|Cl8w#Mw)) zyefKkMiGHU^K{i4Ux?O@7C*3b+T`iBd;1QnJ5*(3M-LZpFS3->MC+RnE5P!MEm*YF z)^FS{y0EjWk5yNfNy)N2S>{V+_2sV1{Vh;Ad8C7k>e|iF{iqMcknGva1Jc8g;-| z2jJk5#079zR@G1tPvdJQK(EXI;~vH}k_R9IP{DU+*Ph)rUf=}+GNu7ZuP%Dk%FD`q zoZ(kDf8Kn7`8rFH9E=tHSXRXk2x|!zYu-a!QXI^vz50jTCHDj?ovH&?K>(D?O5{$r z=wZ^*bHYR$7;n^_?)1BgTb8_sc z`st!`&a_cO2U=pR*?spt?CrbhqaQU+lP1m*_2hm2elImjl9=zN`u?sI%KM+1LLY?m zCh&5+VhQ=}(mVauGr7X-k&jQIoOdnnKN!5AJQ!fl2jJ>#cLCj7qqD5+faPRo*k`}^MZ4;nk4TX2vIPqk*(S~WUU}seUzRxc z+;i;Y*>ilYpKX&w^hDv35MU^>Xh&0&SfZg`5!7P2igSuOtwVr)GXM+xikX`zvY3PMOG?sv;1#3{JkiqJ>H?qT5dd4V z1T6jn{N5#j6eF4vy%*5Y*4pedvi1%@Sd7&+;6G7k`^&4O5TX;pnRT+f;5%t(k1{}{ z*HI~nJ~0Ai@iuJ8P(L`YwwfJD#Cqwc8S6pYw|Acef07h>k@YVc;J}N%rM>M{mAR#_RL@I@s62uCI)BqaHGU?*OcfDaLY zp+S+_8XuS7JWgyCz$m;(tQWvTX~{mA-mP@m0(~sYH3_Kg*uBqQS+Z2`-f4Z~lUzY2 z3Ft6LP{9fU#3?FS{CXTZ@0nI)8 z4p@3dj=)K)&7L_!pt;7j2&`iX#45ycVia>mfL_3b?}t0}w|E#}4exgf*Z{x)&?tG9 zHzrP;gwV7N?iYlksX)Cl$2btlxk2M^Psx5;vU0Wc(eF&w@Y#YNkq?vu=%9Z93&<=c zQ@&^@p(gXiEql}8QwbicP3=$6Vw z)q3CQ13vDc$_x3g%A!+5h$z1ay!^djB&7Fxe@Mqa7yf?N^8SOtO8{4xAG;)Q0S724 z2Qgw;W>xjI(Q*Vzj%c{7bvM>GI;!VhW&^DntkmVOdYeIyR;;Wjv!R2Et*9e19SAV4uwFTe`*a^;L=K5(-RHyUMt%7^@~2__ACofRg(#Ys$r27Tfvfo^8bg2I%={yCrm_E`UE~NSOSg6Nek}9=0fxf<*@Z8D>yeH1N>hySLN@ zWAUKD4o32`Il3TU&uNCD_8_QHNSwFAR_R2|W=Xsk5E|CRnN|9hV*yXv<=fFE)Ud7q zTCk!ZkeMAL&;or4GUu~N{mnXlW?ClX^aPM$NruRww3XdT01S3&v9yGxiT=RyMgp86 zlsIc<=#b&6i)Olg1#tZL7^|+S6TMS>#)-AW`#|)eF3d>XnOoOr6V@Acc(L<``VtkD z8SIYjJ3Qzi_2D`^OF1|==H_4pN>@AD-T$JoxxocCOPe@Z5(sSbrcFMpX4~|rk;Cj` zH-FU1E354{zxlO2@#N!{E=3FnvwsX!pL+y+gjSt(_ZCmY*JO5&P1iCmSo#mgFwq_epJkUm~ z>?fa@t8o#{NU?6Vp~?M~e6h+4jKm2KXt`qFT8G9JeL}bc>JObr$Zf_I zbq|T(!zbUM8FCA`0>~mR4vxvl=Cte_=bH}E{D-&PV&f)EP(O%nRkc2W?5k?cnLgD{ zKWVlJ*V?0x&9#yP`|av$K4h_ydDNN{+p&)MJGr17K7rAE^%_OhdSB@SJQ}4BT)+oQ z5%;{2PJovl31&tZQjQD%Za~0yzt+*N0m(sg=`QeDwm~o;G+=%N6!(GT84%1sSbs(U z5ur9+42rNr`TE&IQUnYxb`3BPG5;cznFU4fjFc!l6^POqd^8xG0k}|Kga#lArPouS zP*!LInVCu;LeKm3BL6_C(-!JPnYnpUpr|i=;S2V_0}oktPJvCCGR@;q%$za9EiU)p zf3I!bve_<^@EtyEsOl3%#--k22SA4gCCV!!E5oWZqb4p2N}8>%1P0^vIXDO(I^;lZ zyOeOYlrut%(~uFr%U@q&1B(hAykH(jI1#rdSY7}x>@rLmFPt~sS5yw*)BdW zSb+dBEdLM*+0EkdeJv#`)v^ovSss=O0pqr&Hfs|Y?JF6c+&9kpWn}rTpo9BMH7h>g zCswc7u+9!O)Y^n;Q#|Z`QDLE7dg&!LOS8r-y%WCLw{NdK{K&(;yMk@f0NqnhKf`x_ z?bmEMO8`ADFV_!8B)-uUDJ<&vr$7GDR<2m#A@l(s(0|gT$u@J=EIa@Fb1hX0eAAXK z#;MqxTF!)lWjXqe#PSEU4gNkHi0Y>h3nW8B{59wstb@>^RG%%PB|cc5q=*4GObSTQ zbJM1cwqp5mj~TT2Ce z3dn1!*JMZcC1Z`05`JRtGnSf>=FZa#7AzHw>um7gftsmHVK+3|wk_LLEv$F(qQeBS z;$hpoVUy(uJk(ZK+GNetai%7Qh@WrP%K1mcQ6Z=z7Ffvz@hS&G9+nINXhAcMr2v3I zClop3fAXYBE@#%PUgPb@N*BZeGK{{(!pZV6q4`IT7_PA*`Ji_&Xpd^#2CD_*rL~ob z0gkZo;zfeBY3!@~B!Tki2o>rTO_%_xr6v1q!la3+gFvW$Z)|LK%O$aQ&N}BTJNxW& zec6$~fBQ=II6aA?Tqqu%HhH4xuSs4;X5FVPb`1FK|=LrSsyT2P*mvtEz4J~v>R`@L7?<8Yt`6G zO-i;{m3!m$AGYEmc1bmBGVmLlbJ9tYpJz)BM8`THmyRi@?ka>o`8-yuaPfVl5AbM| zK5zjaEd93zFYlJ#?Y4I-=kIxoD|rUL1Odzpqmxk(%qDn8g#>(_&~`z05UFEIS^^7& zh9#kwgq%jOW}t+k?rj-qsn$?aCE$Z!M2Gd!z(e7%QzoxpfeTw^CX|mrpgfcrgNg6F zgBcu&Ya#PK1|S*h1a;G8G#X54tXgBS%%L=DqRn9i7TPN^R=t}|2>V0RFDvtRYN6oFrffrvk(r*Z7 zX05yr!OH9gaOgX{q_pW%_b(ENA<=G@3<7N(O>#nv(&%;05^*hjLXf%61g}?Qa{S$dEU)gEY5%GcRpFFp?SU+Y#~R*3Fyj)?072U;W#!ZL_{Z)9Y`z(MF9P?PoL%95lq0 zmoTEYzeyk{S3m}b%-e3e)y9n-W9JC~vm=e2NvEB5nmfO`|AO_kMT=hb@spa8Zv6*D zVfLA!)3>y%-9cv`8#HK;(*#=6e!vT#^as2Pjqod=pYi1yC|Ysvri~li5tUE|Y*og= zIkFb?@*r@pEL>#k*01$(GkEYIx2~jWri_9_Ir>tN-kUA@BngO@3$(FJ1W(})(pNme zcwz}`^_q3IcJp?7;^}!dWyUnkw9{?*ijCs6SQ|cSh=BTdx5Vz$duu9dd^u|NY=M_v zN36M??e+cL$7ssrDFVH9wtd?+=cU#btbL+I2SMQkWLlg2I~E=s+$B9Uz*#j0Hepk-+lcfdd2}qo~#JDT#Y{mIP>FNsZlwfD?YB zUv!s)N6sFLBv3E^y`-enCQY5<;00%5en)n4j0iEUux7G_c+BXr;*C?)KgoWuC&!Zz zt@dzdo41XAIgDi$G1p7&Re!OCn{(p;nh6?L%zLBd(=H!FBQwziV_v~?j?ZBgZ_Rma)x*#|rpBR1Ty1p~Og5Yol?@kVOl=%Jld-yH-UESX; zoJdDh^wAzf!IuVW5>Ao4AIDFYD$Y9dWPADL*X%pr`LX@t=RdbsUs>e4U_SHt&)79r zUuFACOWo-ab8Y}m)ByuD>+R7y5uORw+`<`0ecXqLI1y3(j{4FEO9cqn_BKq)ALGu40B>TqGfyF9D=kmS}@g#PV`Hcp>%+7KgCgh-D)bS6_W%ePY?bBN&Sw?AGeU zEUixjA!c`$TTozt9{M)gA<@fP)c+_=`kFrF8hk-pX$SA(ZvYvf4p2ejUH~7@5~L1i zXWtg7`U7%%_v&jEhbn!>i2@1HU9l|i4kDO3@KIfYWsEo&`wtxO-6`Bh#9fpbvuon2 zP!9copawv+OM$mYAv9E0Tiu~*<0$@kDed&U981c{vV_cZYdWmw#WpGF1jCb{Z)vyT z0wHrIPqk|=%du`>)6%KB$y81(Q{skA>Wfxs!8`T$_ z+FU$vu+<100LoCL?6BHjQet}riq1XfY@0T9s-MY&#f~uZSY?QDLMZir{n3x@zWeUS zd}uY*brSNe*1xF89dDrz{zHCjhWHEKLWt+(?LKjbkF?uKC!eJ8(_tIe zZ_+!CSW#h~jUPM2lH&VX|AInR=KPqBY15}W@WNS}W!L5wmMNR`&UUx3g-En4cTpZz zTeg8ClSe94aS5Y8Uce-7UF3&a9muwXF8h|k0L-?3wtrDde+ zJp$nxB!GN&ITdU2GH&cBO&TR@)W-xHREyop#nPVp^dWIoZ@%M@@8cgitd}C!s5cW2 zJ{cRxclsTW8CkodiOBI;|Fhn)oL!`eSZ@MFc28slT8aduzW2TFSf$1=v5o3A)`tmD zj~_F}MhqToXPk1fjU1HildV78_GgcI#rP$D7Cc$hZ8_xF5?2`ADTwB9smD+6EAUN$1ZL@;`=8iel%!?&a32GZ%y;TaJxSclKxA<88QQ_jqh|_8KG2P}Q+EUj%Fk!4Dxpged<(FORW@^2}pZE6DZoQjCTO?KV$(cL^;XACE z`et7Sm^glnZ&}UA&Qxupb90)T+AK9a!|ThEnx2%B+b-JWJ9q)q1n>eN;fxgDDlPCr zV)llBM`*e5ijS6m0F8hb9A5E#I3j6+&kONNe9c||+~FD;h$g{egO!JCSlamH8vT#8 zEX>#<%UDEf62O6_JeDP}#-yg<%TulQa+cM=2;ic@)DC8vbq)2RO%$y+2vX=tc?e?q zBP%o7e$BhEyb$+;B@ucLg+yK8Q;+B>;KY032{Joj4oj)xv%vcNem%Qa%B;4r-r`ht zo|FySkJD1q=qdrVM*GG;f8DMXI2}D=gr%kQ)iYIg-@^~vJ%7E+)~{Ksdc@iF*WX|l z3$SDeu(2CU$kASSLEv8H5nXiqjvc<7g(ak;y~XEjlvojZ04h_d@83RZ?i1G>6ZMW7$B2#tA`cGB;RAb=wG0CIRY zz6mU=!0}jF7$cPx<<1|BJC?QJOST}lG`Bb~!mokggY*e>XX#Q@v_XRgS`Mx#*DJ8>?8+639-qxTL7J<(Wz4fUg{fc$4<^%YIAUcFOA@acqATUt=Eeo zjrD~|lZWz8PPDP(CfIc!`H0P)HOo(m#@7XK4oD*bnBnDUyh^61RNBO{QMTwfcKC47 zE%F8A9`H(_jkK^Y2@#>2$;i^>OFecBN*WpiWRVAv{OaZ41&8Y?)22Fj;VMhSEQfvT zTi><<$;m;32J8A!_d&veJXY0WxsLBl2;e{Xn(giM10(pT+Ra1>OAcch-$8uFki)Tl zC}uRa$&9Ta8$$}e^~~KrxPMfmWFmCpDzqow(L)bDXpcYsxKEHCf8sGeKr$&I))GXQ zS<|Q4Ij2lD%>!)1`ptId-FG>?H*ekIJ1ODie5}cO_HXLZ{ry<#QK$En`S(`W|IV!c z{mr$1&-`xbc<}OOZT7!B1t1Uzi2^|h@i%7V6)RS0=3$y?X4|eEyY0y*pR|&Lb(WhM zAI*HFJP?W;49AWNqNDcejRP=;m2nnGimh0=T8b>gmMmFnBS((5oqP6LdSgOb>Yy<(BgwP094xSBQCEUaPJqIX&D&$C9L@5j!f4{!tkcTrQWgz_V zpSa?R%cMkm*&`1-ENBsd_SzfDWq!YBvjH;bcE~$~33X!dG5(P~CG}g?I4|5`Pob82;kkyYIf+{`ki~ zItZnHg@w5S{#{m6Unh{jGJdSngTM#AGg4y%nHCl6gWfZnCe%#TnS)hRd_ov4WolBO zF+gUQ6aYTz)A9I-N*wq!Zw!M+&nD z7>NPOpy3(^^k4j{UBiXa>rQ7B`C-vJ4s zC!To1g_IvcCM3_fK+FM1s4@IYTnPSODU-gm!aC!ah=!luE2NgOBX>fK~~dI-qH zyJ-iO4q{XA9kVxw5gJKcprWkr=$*VX!OxjFs11$$rLmF09`MyL;Fg#m!^ z|F?>S8R!@?=}mu25pWN6^2oxfH|-~fc8~+j5PtMOij4ZOBtgH?FVO4t*I$qLM12A6 zs5{T|H)T36DDj;#gVN$}lrW!^gYZU)0$|AWD+(X$0>5Eh0NBwtlpV?h$nf_T&HNTG zUhF3$^9-~cICzkanKZ$MX+}S2=n&2J3SD8jy-AuUMgqQM$1eNpU+%PdPd;PG35m8% zv->~Z{eb=3?|*A+H?8wN!(n&M%vpXg9`^u1&O7fs-|<5ozW2Q!*&`1=?1CBEZ~!5| z1=`Vm+BZas4RF+;HqCwVDL4K zAYj5$CWk3^2VcK=tHA9Mdu{1*+qHY2z+;ysYm$PKZkrSx6O<

-wndZhaj5$*V#bI!3Ro_f+&u3YKwV;2#Y0>(Vc zIq(<>y1|Rc5okh!X7EV>dL*nY00%$-TeaC4#9^I8<{mO)q&uR%vglRYx_z5~*M48h zh2FF?j3-hUm;6TAyaPUCjB#@Lzx>O;*kAwpSIOD=#&-A^0YPX9fNTNOl{mw0R zz9=Ah(j*=$E-LaRyBX7_+N_yV?e4$cY4O6iTefd;IZ5ms#vVF>IwT}SE(*uf=0tku z)aN6g{@izacGx?maNpm1Kk2RRKmOUbE9-Brzss`GyCv14``cS5m>A}Qp%_GbA}pu} zvpjqrP#o-1;a=ivuw+q~-`|fnPfpEnXWmXRF1{12D|=K`&4LLL-qzge;n_KzmT>Xx zHo@tOZE_4Q){R*zVGso-=G}bf8iSj^`A!OhFDO`kr(Va?jlcaG78MO=1dlFgHW0mw zL|NR!^OS``W_uv_;0FWsFmZG6;)LM=~91YV6>TI4Au)sGJE!RYMR3`0rf{na0$ma918Ibz&D|)O8umMVTpz11P;o} z%FJ|dkfzzJ&xSOcL$N_G6rR&W^ay>!Jy@my2Ylz<+>bIvi9$>GC;&+OKA;H)CNleD z*(yPOUth-|cFhu?ni)cG-GeY?7mW9bt_8s!)vK=!kish6U+V3`$H33V>8>lwWe92B zwO4$LzX#@iz$EqMwBj`JDm&-sQ+17$K$~Txr%9kjrxSB3_-jiRtCdG1XG#4=KLb`L zNHHR~hYuZUnHg!eWBYEK`}EWHt#5r-bg!{~`2sj6&9RZA$G9VMTzrDHwluj~$jk@bNI&qLTUtv@hxJf765@R+$%6mV$9)p#tGS*HgEEsUxd+Fs@Y{;+dB zHeu>`SCnhlZ&f=AREI-$`e~>67J1s+mzXjsNgn1uDJ9VgiweXyQ78gG89Oi6#t6{B z0}np@n8sA6=-8}w?^9XTmKdLCX&fXekVjB8e5>GD!UDL3N&pANOmx}|@%V^ggPaF? zi{@A>2z!t9>0o80rAWR3T=pM0Xs^Du#GZKaNsk&ne8dR%>l-s_w2vPE5q!=y9E`_K z81GgL1}O)@^30kw>)iT;iO(SWx$bhLJMrDOdiRdecW=U#bQ= ziVESzHNG~TP)Fu4hGl#mqQ^H#DR;lN6)P+QuysIZL!ra~3++>yIWmY1gf2g8NH*&6s27X** zVW7UQq`S-EoD(8|0thgFW0J)gck|{gKC8kyz#2clGYc6rV&F0Q6NIf#-(L3Yv(MU^ zRV#cpiNZu#k$4B+!*=sP8@^Kp3NFm1NbERhZfa292vqbsY*|ve@iBd^v7yddnj76x zK$*0a{sE-YNBGom9m@y6#LLpX^a(Rm>dtqz<&GRV(oOZ$lj|&TU>QK!P*$i*s4MlP zY%=|i(Bu8#I@fq7nct`r_hsj;Lt(=TV|v6q8+rt@T z2~Eg>_Q9GFU1x$2nehF9J|+KKz^AEM{UZg&66e+(yY1ygi)~NI0fCNAOG(WXzs5=- z<%-XvxIM`N?)U)_(5{|sz$~Q-BzLv9NH!d@FMjs3cI6e9*}?@cs=n;<>a-F8(k20d z4rcLsUqef~rDf$>vBm?u9_q|;BESp_AWO7FS*G3az=R1C?Cf*Tu~SYy&3El>-?>-! z_i-QyPvRVoljtY`o56#JIvwFF+DjR4m*H~)Njkj*?(kc|q5@bg5onn^Z@w>sV-Zc( z1O<9vmBF&ZI11_bazhGz@%`_A->$pvI=2wfcZ_4k6iaUpJ^ZNs;g7cqG(IW-v{#@c z!D{QJ_|-?gpaytR<_HTvmrB>w>%LqTWEAZPW0(YQ`lM9+L82Z#d4xI!nFxQv$5i{F zhaQ$}PZTh3cfIbD2A2EuOl}syWPn@#uspJ)i^Fj7pn;ZOSa56{b1&S6d^nNbTRH(= zdL)=LD9^y?K}j&PO%o&LU^33iab*niF#tAh+$ctVNa(xW1`WuzLJ2IkwZ^HeKH~C> zlvEXtvg&Ju@#g#@w#k9!nZ;-3RJcZc4?68m^i_zZ+1PwzmF!%({H1p6fKlVI=G@@q&IQH)^ zw?$H(i(XxfPV+N#T0{%B=Mn&|qPod_G`607^(&#%*?~|e0gAIGyJgrlMaF`}eWm*kxGxHRQveC-AL<^!2@08d z(ypLP`$!35E#Pmr> z;r9YqL4mN`#KeH_^fln?U;p)A?W(J;^5ufy1A(HB{6WU~SVW0HKR{4e^5C63k3vV` z!4F{!1OB+591=?k_&-5sqGF>)pf?%Oh`$6gc}_e z&m2PlNMK2WYm`}6N1UDx%ak%N5}iMK(+$2`i4)jc1*BOr!>UVtsUt^B5buAWcWwXx z|MW>jK~w}QM2z?e>%yqfW38+rir>?IxZP4RQYuu(gnKr0! zkkvId+5HbZWZOA0ysW~HX#iBDrl#B2vE$t`<@D)%VFztM;A-;P~7 z{oFH_h}nDqfIvQG=j2(2KqX_bskOze9{~u4azgpx8i{flckuA#mtSr_|M}0|?}`2< z)vG=Dd{G_%_|Jd-vq$P>R}+8<=|exg0YJrgoa?5{M9S-+cLllX)(z^Tw&3*3_v3#* zc8}_dg-#+tawyGZ{>v}F?0w+JKd4RsEdVH=VFD4Cm>~MZxn&q%m*JyE+L-awc(Y0_ue+?58 zfZ=?PHW$8x%766HM;%2E(JU4xR>G(!B_z793?ZpeBD0|+)hkjCXdBbFm*r%nSxRD@W=VZ4Azrh_+$_sV697@Un187Y zTa8hIf#%G3QN92x%3}EdAc92&g+o6vGh{}_-zZJ|gm9E4qj)*0faNXPNtvOJ_-BxK zhQ20K9`A;(BeMg1*L&lT$vC*R-x_P6%M&ws%c!#BSE ze=SuC8SwJ@;w4^Bd|YS~?Zm-1&+jO6`ig7(4tRjB&@_x4ekYTtFV_OC zamw_u){Tboq2SCZqTq5~4VD!w3MjHzjdA*tz9V)DPMhqEBJwU{B{wI_F1_?pJLlZ< z?STg$_9cw+%1V3k$+`Ys#y21g+CV3kU>R>57Rj^t&sCHi6fn;6I?_h&gFTqpGloWu z8EyUb+0fi#HBI%le*0DdiY4~Y!;cAEt4{=`Pd)7n-x7@#gr#b%A~?X}+zo&WlcJtE zj4=}Rq>XGKpsvuC;}QT|I5%??2;m-Bf^2PPi#`*;zTOwUEG|+8+J_tx-)Rec3os2b z54wHkGoP_fe)5wxXVy&j@!==|%Ea>BS71>UwIl&$Ni3&HkX@b;MwAcgP@+xHmj2?C zzu^Ji7oG{}_&RbgⓈEe)v(pm%w{~BLJ^YHbjGr^h_)0KfvM>lKf0Bc52cug9UW6 zyFvKCA%i{41G=N3G4jKCw-oC0KQ;e*r}qS2{{Nm}#z5%6)MSJ&p9lzM+x!NqW^iF1 zN0=~Ro_YFddwtn@DFL%lBSu&_XQio816$8~2Qo8|@Gf&P2~dUyv)u0_fQhfDgZC$9t^q2ByPD0_A{@LVg~ zMiT`f`(<0+paC{u@F44#ooBI!dt1|iN~_qq+t$APnlz9&k1tJ!+Wk+FNe>cJCECL`yeO-6Bv4;DSaM zoqML`=jZzK{Qk3F{=&ZX&2M_VAm~Tg7hG_G(+7~kJ82U;k#I&P+&|-vwo)c-4+*-W z0BJKk2mkRq3Z8qJL|`U?Z7HAk!~1Mu_b~zgD>Fu*Ul=dEpMGbI5TTbLlOhnhucT4ze#+UFS;~abrs`^!$Vo>h?YxfKa&75Z4H?e zKA|NvgMWF3dP`e-aJlTP9G_S;YogYr+d1>c=?h@=pncJD3MrJw-{Bf%!sGA+)=7AW zaR9gnj1rsYpa1C}>{FloxLyC@57`gD`)&J&PkmgnDABj|vm}fxBK8hPu;8lOM{U6s z*1vblDas5oiBH}e#t}S9eW)Mz@mr`X_rQl~X&LtFlEt?8_1C?wfN7rL{x*S3CS~{< z0TTOYB2XuKzx?WJK5-j6Zk%t@C=|G-zbMbai^`xrDB}|f`R`BfiB^Hx-Y)-7PcSb` z=nA|$aSbMBw$F?elOMDElysr~7!GLbtyxr+Gb2pMme1;%7RyXevf}n>>0U?86#hguhuq>cdu{cmZ;AQ>#_3jvou;sld zA~JOe^r1}ZMOi38mQ12uA*0=LLHT6bOP|vRJRfG6{M}RVQZJMOf}S!_=sZXNkWkFj zg};fT5+e`+?>hgAUjbtH77fy@JWoId`M!PI4qLu#nYZa%-};7q^yZuG@uwcQ5u-+` z?`HWAw74=mT~Q5pRaJK#TeF7q~U%xyK&!-vKJni~7@l)StRkOJVD)Em^X} zzA4bMch4U8Yr)#X-?L`UbWjMLX#;JgeF6AEBY+H+IuF(+dW3fb@DgZD4*dr&Lw{1> z6Uyg1kb67n&jFz!Z-Iy@2l*UpGOHuSg zNP(ujpG@*{RVI$n-}=_K?D^-PcPD19VbQFst+uV3_E~;TwoM@T+prJ?H?I&d9}F|=kmlV`EY@thxr zAlb(9TZ;O#plE;+Pr*V&EN-ykJ@qrWq>A=HKMn8guF2py~=vk7DKiz(-`Rq4=>f@tyvKCiFMF~?OK5Fwv7;?r7Sq++l4FPvo8rgtr{rW>@00{p^m+$iz_`I-oqM4f_503uzT+qB()S6u+|M6ELx+~65 zep<4?ZbFP`8Xx08E1T+$@p}NAl^h|7m_$V{iVw2LXs=meQ z8e6P)Y@9DeK?i_;X1XQ{nj}n{G+zCr$y95TUpSYLq?cYtnd)+eVt16J4|eOTZ{6Duq)s#~18mKaqm z<%f5^Rqk28o|)^k0nms)*Oo2Yd@=zaGcGBU3{L{MaWBAEsdWEATe@O}^%c08He;q` z<>q)9@FB8=9d(T@(L{uDPNesiPJovlDKIJnneQ+e$r)a#o*gTPC1A#m9_7l2z+*93 zUvzInQ;U>sm!F+-`<-`MRc(!)H{Cnh&paWhRG(f^xg-V)r@X5;k5jUaoNwn3T8R5x!E%EUjc*hoBwu84>RduBc zIcCx*AA}475W&?U0f|6tYY(BdBP9^cxH{e9gyLig?V0)W+)rrwteH0Zq?3I2)<%^5 z-aS5>BNhxMdT0w^fJQhy#%jjOf_Z1hQPD{4)szOk?l47tbyx&+2WZWr#|s< zn>J;FCB(&AXIGo(B;hMT*;rqrzQ=kdVd*o^$N>~#L~yo#{R$+ECQC@C3N-BTomA}b z!Iy(5rz|xjrzN`(_n=x*mh>*poQ*BbzSRO|Q zD~dv?ADD!lDaxB85dcov`e^i7u6FW32( zy0tVmX?7U};_9tFtgWu`*cgC`U;p~o?pK2uo$aFl7eA3)ZC|ipfiHPoam5ujNPrXN z#o>1-2xt?OVgPPD%R8X~^n*UokNfx=t0@W<8E5aX z)2L4T#kgZx3vRQqp&x0)aRj|Z~4;L~5 zOIrlekWB=FB$_i;HhgWWYU%`Lt8M-IjULUGI5utFAqObGryPmKvuF}YD3^y07B&7T zpTD6k&q90ph9G+M0pH2|4s8hij~w!?%zT61BCKGc-Vw<)CJ*o~+l?6~Y?uDwzusa$ z`PonHInkhjrEGOqAGNbd;|2%nc+p$}(w9*~|4D?YRLMBWG?tLu8ly~~au11q=bhZo zk#WRn?5M#*TD!x`TCPd4)U2LqkbnmuY&P=aAq%@`?23^d|5UnDy=Q`$;fE$R9X$ zdyc>F{4Oa7KLj6%fyXr%l=>f$Ac+?j4G?n<9$0Ki32_#e5Nj!E>AtMg($?Xz9boo5 z?z~F_%3N^c(@;@X?lbn@st1mdD0M6vIFb>*oAp>iT}Pq4HFy|k8dOJhPlx_))xcsc zIqI@EvV#TP(=#8H@I^>?bV)r!U@c^HZ~YHj52u`x8Jb9<0A337`x$4)5Kg;YGw-Ix z27!g>blk$iXzOiSYPwa|)<$E)3QaQ7|}(uyrZH+E3``0{SqXJ zX=66FWmv6Y%zW=4q+1P;ttl?0F?cB7{ zo__pMt36cd3S#f>oi<-e=l0wGEFsly=bm$>eg1QwvUAQn#qzS#gp3;0Ce7}ScBpT~ z8@<$bv5_G3NSjCcN}y#}c1FI99x=ftj+-L>7-DTLt+rzMGUcVVXU`5-UfvJtA9e%* z+P3c6VQV+6x1$nXNt$){6P*bthefBLFbZ$au>|<$hzrG!s)PE3-BBGo30FylJc5ci#hc>#cvZC+0pOL7i{k{Ps8Or~mdd8#Z#7m6TQa zNzjZN6fS*NS6yc{hiXLYBQC6QzWn7cf9dq2?#$xj1u#nwlz1Su&wcR=cE??R@!cF) zvG6rwTleU3V{OdXv3{a<5>_adCR8S1j+2y=1bPX4$I=L64XYG8v^X6baLq115yvM3 zC=MzA@kfpm|8s1Fk4N1{e4ZH1=$mS4?T7$SALN97`@~H**_XcfC0`C8 zP-U(9VwZsMw$lApA<)*UIy7rMmI=HcsIAkO=(M)RIy>CfXc@_I*7vBueOrrV2-K!a z@io-dxRd(Hr<`Vg{>vR!UEd@bq6tnyirUbu8pc~~RkQkYpm?pHWJ`v{^i8z9+#(HQ zc3!oqkCT1Y-z47SBxh(befo3{sEPCL5sgvleA`ocP;?hij!P0yNRz^kmUUeAs4a|P zXbQvngh%aVOf#`?z$YN;h7T16?Swe}lkwCja7-D1Man~tl8}qK5c$@q>|SD4KoCbD zFuCg#z?(94k~`@lZ&jo(ca@e^+W-5@UG}x_-D0;tGS^n^EU~VHH0zs|WsPcg2ad9F ziPnbf!OBhD^(sJ26sxAom-*N&6w_BgU*HGJV?tcKCUTO3`n?n0P`ikaLn3|>7L#^W zqCwv?a&kSq1EC@SLX5q5@fJsS#3v=_Wk)SLKgY&S94kPTV0%jT*xtRneIvkWvu9gD zR<ZA*Lsa;uV83HZrBuo-bL@<}#;yCK0cSH$J4f%s50M$EX-uX`XzdFG` zJu_qTMEZM^00uKI!az?PKh_ljV2AZ)C#V>JpiK2vxj=39gWRvniH-HBN_gEt!JVlD)R6!q~Su;<^*KA8pdlA4PZK=N6rKAA;u zA3L7_E6oBWO;S#L#|+L%xOq9*zNSuW4rV~?@WIhCL$gbEKQQY+Nf4Ni@*L2Kp`+O= zGnhWAr$CT|6T#&WUPst%6`$Y%?XI}^Qs2oEr@_iBgXa-y2t!U~B^HMJu&8Vtn!BVR z*#67*NM@1%qiD^U*&T-@M&~X80NIIz#f5Fpy)=_8%+In*&O6(_{?*Uh=RW>X>z|!r ztCqZKTh^_yiUa$tPV_G=+3N@M?b^OgZRoUq`MJK8clq+=_N!n0(w={Iz6}{Xz?}j= z{Glst%!r}3PXMG`%865pIaQeRZP*SB4VaO#rJQ=xmpJE6nK;SAv*W*mi5@==PS>T) zWCERGfvB#IBIgohj!(*>AK(qz$n2c{!}@^53qZpX20TPx@J;|X87m8!`?0=YErUTE1#G&@+9NjrhO$Ps$Zt_38zdaB>;L0HT#Vbk7Y>##&})& z@gH_vw+VeMh5j5^|X!?tN= zxye{{M2BE$p{_DE6vD$5Vp zj%{1)%+pS_Gfq9l-$A|EHvRC!4_kTVA*-v$IX6KQgfxumoWM} zQS^>dWD$hM^fkM;?!5bM+p>9^#uUq_qEURJ`Z&i!5D+LWa@371&y;t3f|mTo&rm43 zulrNupVU`Mm*n6__XmB4b%p!8cCk!&#2{1^7STW_;f>(&cH2^>lJcd9Jp29v#BF|nFlX|kcd2gnfS08m4J zhfKFqUqV3eH{gl-(ZAFqK8c{4ZN4)LFvyW6SObaU0w_w=q_m|KOJr}!-4=oSbQ>=4 zPB@L$_7?YlJ1AK*WZ)n_cr-sJ1ZuQAMS&dt%*a# z%tW!oRF01VBMB=84q)6v<{i=C*3UlZ-{9zQJtSsHWCS*K>^j_Gt!>TjRLggQy#YQD z?mSD~P+sm>CxMADN4S#_;(#8UBgvG>wV+fHhzwXaGb@F9MuI8I0i3WahEV^!muHBO z8YkhEAR)si%03}h;Dz#(UAV`fRC-yvgn3<4qh_Bqn$gxVT#;$ov;ywIBWHM;@-@oY?<>=c3wYUhWhrmzwPY_ya{b+JN{CDODsps>H|2VO_Yy? zhRi#7H`jQM?=0;=Lwu*mC`~ROA(2%7fmLTv4)4;P-)jLh^?xlX|6lehGQfKM~?eY1VI(4dpL4X5V9LJJ(YZ@&2^j~zrX!>-OY%Sev5g3L5a zPl~hsdw1F6k33*^+QSoXTN0lsGGzLi}+0+PLBM30W6R#x3$?Ol2|#OqF>j@@|6 z6IPJ+cF9YDZ0bds06HQ96HRy7($^)UqA^PUF=1lo7kt8U7xbln88?gpXiuCabOrLB zun~YW`T}bhG$&J!AWunvzZ2=*Q;)7Yj-lR1{{MT5(cnTD!ni0Fc8Q=65wd)89Wa98 zVD@|2WtT}2yl%h#?eFcbdmiyU{|G8(5`?mcpK248dnLJuEYC zMeiVhC=)?IeMl&#R?S2Z4AeC^o|1SkN)Dlikmol99KWLs5hM&o1|5So8qm?ZdkP~G z*Lj9|@cuC4Ct-31VD%Q5i<59b8vp_*!GG&6i!x9zjNm>oYJIF`PrZ*=*O3lgW!rFr z9%!>f32V&mZS~bQa^L{F>6)wUTmSr3yZVxgSr4!UFFb2oHf^xHemRzzmF@}_MT=tL z9sP2$ed~8)L%mg1lv|Ai&DKquZRfV_R->77s%BmT`wwtmm2F$L+T)KtYD*R`w(PVF z2S%U$^rvmoxG`2!dB8TTT_NzZ!s==(MCV$~-jCSfu6Aqlkodh+R+<$R4v-KV;xs`S zxS&f50aIeh{T-LM##Z3ab<2 z4qpP^$5IIO0j#O@+Xr;Ya3t4vIzQ8l|36@r#DKD?IHLKUT|5ZszsZE|Z$<7e) z9#q`l%gxEn*87PP9R*1w6hUZz$USMr_qX~j(22k4cfOPOo8Q9qa4kF+?mL!ropwMI z_z;=I-)EjN(=NaCV*AP$K5u89HrqxH5#W;eINa7`b>h=)TQ}P?&phM1JS#PBId-MG zw!t_Tszq`oPh&VPIbD;V?kLIn~cw;E0%j3^YaTGw9#+498gZ6 zt!J_28-GLlH`D+9RX&bW! z1SSHJ0gjR-GuZf>Orq}86#>ArB-+nFr)&~J$bak9>;nstzW0_;I4q&Ak?X;`^jj26(jBv13QuX{Vp!Ga`15k^5@~dbF$4op=xIFA?b3Y#Y|C zx7|{bfWEBsEE_R+xZc-htCudf=jT6b%?-77`6U!Bf&kT_7^d)@_fFXxnP*_Q@q5wQlmXtwV#*7(bxe~HC6{BcB_OXxIMHgMZ`GL90Mho<)(Nym?QQ zBL&BOJkN8)D#8CDR^=S&+uLFj6Ko{m^@k7BAm|-MdKLX!1RArX#Kw*oWl6EBb6cm4 z9X`^ozWfRsHDaXKFJ!EMfNK1kg0kj)v=#74J9#&CqJ0s##Tq3(7U^$jMI4_lff;~HpdWOAFK7>S zhF$=`Wv?%{q_{+1rUuBum;6S=^qjnG-x0^Nb($P)*JOvK<6PNcspy$QSoMtZ;b|L+N=MxdZT81S^2b$0{?jLtPovDXQ( z{OVV~vKIteaOUGaW}qHeO9KoL@$xGRU7#ijofF83GGKlL7=xX`>jPd)?gOqH2#_K{ z@J8ZqG6RB7-pAmhydbQ2SFp11$vr4Ilo-F0xK2G$P~1lu2orv%EHcl9fk)zRa(F-W z4+-9ffwRA^tCR_NlUUE z0h}%Y!qu-Yv1JQivR7Vw-j*y}U}dExRy?4{&OP^Bn?7^8?_d}yVS@8CCi$^rM%k$+ z&9ReDnr#!*hxt<2DanZr_8MzztbBi|mG0harTa?U*&3mgnwVsTdHpOypmXoe9rnzV zkK3x{i*3~KLH4b0{F8m{E1$KiufEtu=}T!CC!h4wpdWbP0sHvJKkfnr z@W8#)g?7R>Snl}bZ!9A?;u5m`$}6w(U0MY9^06iGws6sF_N{M!Ti*}6#iw{+e^+RS z4sl*mw9Lj>gDy~iv8n1{-a0X<=6xGfMt1t{&C3beGfe7)MgRvog*)27;U2RzI||tCBkWpb+t8G`QDwjV(~(o z_rzniYs)4p(oE>IlTWe{n$b3i<|q`AHB$TtDAfh41N}2-K(Wo7KGm+c>@u4%ZJLc7 zG0bwZGu?Lqb8$^owL93cbabe!!dfMCs7t=+mnrZ>0J7(weaimdZ+{`Bz1M~e>TjR^ zq6Z*%u%dT{y86VZNIpOKO@SFC60T{scrlv=X?fB^j> z-xmAyyl3p(^UrhIz?-z`q?1l^%MZR9@D%(4-Do=r+J>c1_}djmH(=p9{LQt9kKs|` zG_iE^Mvyuz8TegM|0qS{ip(`4N;fwM_#f$QhdYlrumDU^J~Zdu1RXp{fSB<8ed9zt zDag%RH`z1upLXSl6{D@Q!~J78IXXKp*D9;4{BJVLXI#saT&NfCrl`-57x=Dmf-<0< z`ZHD{3qk}CpfB{No$$v;Kl)MkA7b(Z{h%Wu3j(mD?({Jr53mC*L%XRXnU-TM2;)2a z&L{5+f0F{g(I3!~6rO{=p7eKkA}WK)iu!{kWc>!upy2TrdGfKxZSIpV`TZU3tu}g8 zu>)&%bo%Z|{le}wtG8UeM=dhl#^vvhjF=K4p=uvv7 z_)0>HvA%Nk8cn2TTaEgN_VQ{@d*`%kc5`|CJVU3bek3#i`9ykiIzf^5kQjsr2owT} z8U`febQhF0YyRBBc2fjI9D&4iKY|+o!;BMiG0)%_SzBM{gA&1o0O45#0E39K5emFF z%o^V*F+;|Zg79G32c=!F@?n1lGeV!=QDWSKg@rmHfO!Y)q74khFdIPGFu-}9I`JHT zlc^tnM*}h1;XoNYLzxHwexn?A4jq-k=<0RYIwgEji1@Pfmcj_-wCjEZMDX#6k#tCk ziL-v0**0VV{wML45EtWHS&8LRRbFQM_wKP&Dc+N3&$3&7@O}IFk8kndb8PQ+^Rwv3 zA!y9J*iiuuXbbOzru_u+pc_X7oOa4d%BR?znKM0tXG&6nb>I^qz`1jr0 zc3A12-EOWXif3+Ch7Bw(vb2;$>z9}1OH`u-f<}%Sp>iWX4f+*n$9wVRz(JW=IXkl0 zQVp;08#E4l5R|h&uZ*%m2y!p{$M4WB^Z`~C6lvfYuJMTyXIT(B5Qm69_ADCVRK01- zX1567tF?CRS_if#pM0`gsSu`I`~LTT;OqXp8{WnD1!qbWHgv`cQPeNTw(r>OW#KH! zl1NX#l<;1xDf#(@J|?&apM}Ssc-)?S{yC2?bKOU7uu-GNSgiUU-TH=4R11f*>fJ2S z62Y1G5xWD$f9Jh_we3512%M!@qsI2`(tXbJVd6kyeDZGk8t{kmhE4zwEG2f7J(|BPg9+E z=8Y7AkDiHoh<%UIr6-NTckb!Qk9>yTNn9g^`~4Y!l78kV4*485c!>A!!Grtl55NDN z{rx z)bXROy_xY9)hlF@AJ5`BvJk>c@K1Ghjq}>34I6Fm?tMO)Vc8e{pufECs&`&No`*MJ zX^0p``y`KWydOPcr1dW>@_Xr1!XmIdb@th(x*r;RKn`P^a!;i9mi|*I78v&U)RUS1 zD^t(m7`<; z2mOl&X}0;QZ^h$u+unU+rDRz$0SpizuET{8WkH|7;BKuD5I}%Y4vGmgG_hIg>uSwU zIaOWa^&6)@cS+dsiO{6p01K25?Fch<5`!obicxGE1{VpT$=}q2!AQIK9)vx0gHHSw zen${cHxlhYNgUA(r%O%1XP{F87rzRkaiYv|q~jQchU!{tZ4l6D?XXFs$J)q2!)!o~ zlm&4dG;>5ikx{e=a=;iuf8?;?J_F)ACw}`mN@`y()q~(%#P;Aca1Nv6pvYvkjjiB5 zgVl_fxIJta$Dwihv?+F(`t$0muCzG(9g;BXW8=q;wyUnX!oK>C zU$!6p;D@fvM{BlK-%#r_$Oj&J$i_{W;QbH%$j}$sKw|_Yzcr~Z@cY5i!;Tb$B)&`Z zJ#?dg5Twx6`A&2VWkLI(e7Q#7LLY!>PoE|F2f+@nkogYJP(Ic_%4P=^)|f{gd({0> zu(bT^&wlN@e1dWX(BKP$a;0pZ<2U-_mY@C7KL7d8yTv55nP*t0!wQ3ygKfr)^g7)G zSb1{p)3##OYTrtH>19{g^*4RghK?9+TeffW@y1qF>Iz?BAqZfbYxH+iZWIiS_W=k1 z?z|t+#x;I}PSB-U{TQx66Q0EvgxzS|1FhNa%@%I@i3E?c#FC+LnwF4cO*M7a)zW5# zxdnF0tds5JIVbr&Jp0XWeal{Yd4cnFWnGP77fQ@Xw#K$73ODa$JcYiXZ+I43QfB}M zzz~{pA7B-SUbh5jtkR|cz^HHNcfRv{pat(?{Bn(FUwGjK_rc>xf!(`zdLPmE^kV=` zlo^tL7qCFSVGVZ6gWkn;J{i-zBm5mc;YI2~rk+6-LL2VKGK@r}&fysn&rw&bYwW_} zd8}7u2lm@DbDy$1@4VA~`paM0ON*9>mR%N~lrC8uZ=zmgwbrN0GIy44vy7A^yYTF@ zY}V9?mYI@Z?M)4qtjP%NWS1vAi2q`EH`WniyWo5ck3s)>^~F5#XP8V8^D4&8!cpoI z+sBX1U{ZkG2jo{*9&&%DvAWLWgt5$W6&6eU!d9)>WO@1h{Cy;7fJGU%047M$cVd1? zUg(|31&$veu;TG4&^hG)ZRw4kIFa5pg~7@vLWh9~(;!e_c9cM)1}at;m^q4_aMXne z!UQcc+6pV!h<$=G)*Q z0yYB%`k`kHEv_%#6taG~c6V0*4WM`+lbMH0RTy6jGnNQixAN#1CdHSioRr-eOK4Rbf?sx60U;K)l zcg8v1?ltSzxRs&4zQGmw%GIm&_eMXlmk734;AsEfB+*Z@%?Dz;XbtcT0zc3{C?Kby z=t)8`Kr`x0e?entPCud;;1M!qAdFG`l*MnXzayl1hW?@qc#M8Vkx>SGf}=Tn!?{z; zhFKE9>cVnc0FChH?YH0V4(e?2%l9`OR-^#flYHAYgOJ zrI*^d7o2aCrcQIK$H=yX-nWyS5mr0hIirp zFm6cU8R$&rJ)xeAi}1dl{7qb(RDqYHM5L8+x$yi8?7C~Ou|cAZ_n9U!jM-ArWc%)2 z(elvYR@*Q79}y5>cM9(fV}rI(KK%fYp$upZ&7XMU3GV~0K|`!_J?j+eNICpX-N}SV zaLZ1wBiJ-K?e}}&9$+suc8|egic@GIjg29P6>a!9t6`4Vc;^*X3 z1a3$O7oG{iih)QJO_;iL?>;>%fRdeS2g)m~ObVMd+;%ZP5qk+>M!0-XJv)?`g&0BV zgkS3)Es%jgo|G*(4Umrh5hNJqEMPs5NqrjkNZf>?a1ICNae5R)|!$p}L5unR+KL&Qy zeD~Ymv72wc!GXi-wX1E(vZYpA(?C!hnk+N9je1gRX3mwZdJ!wZ` zsXbf+z>otFfo{+RWyK5;ng*f9H8Kgo$1`O5919Kog^&bXP|whxIO^h0!15D)f}+5o zlO-Px8pRsLwqB`ePe1K5=HLJR_jb~pnZ8s( zeHaUXC)xvm0>ES0Vb>G=d+momVke(=y81H5m-QCD@~Tx-R@uduTw*ugbd$FO;6ndk zO`*+{MZM@Z>Iev>K0yKSd$3k+YH%(WR-^btb`NTN_K~vGWCnTwBmn2^{v*Z@ zTYay({0h75;!BJJT=PT+&I`N!kAJd*0zmKwQG)?Zw1s-(ClZaP$Z0-YkA91m3tL*6 zZPTU=_VUXw2^1Xhv5)T;5wx>&G6g)-9ehHkFoux>A<;Z6F5x%#f9YmjuDw&HUSz&g zANqq&u90XHDcs*P!7KRxFqydgic9TFU;cu9`ct2{j;GqAqb2JgqWM%2n<#yYj zZ?`9&oGZC-NV2SZr=r0+& zQ)g!#%fB3!$x#x#hc@BQ#FAgE%GH~rC1t&b;GaYVCPBv&>CNd);3Y8B+vWf5DF{E9 z4grFo;BS-znVm(_1Y>u@m#svVWE zsHv-U$Grd?cvlcqJ^Lhl=lM>70~j4(f-q*r$qbb(zi}FX+XyPczqI8>(3rCTswc zJB!vg`7s20_m#L}Bb0gR{xW-c;p=wyUmviio_W^xmseRrYP!XzWLT?|NtN1IS=V6o zQZk1nkPb=_mX=rA{<2CdIZ$qi$!QiRfWrybSYa{U;`b3Rp+unjCX*Ot3v5gopSpCA8C40P%xq10kJZPxLmmu^yGs0))J#Ve;T{da*R2w>Mgg|M9 zpL4}&z$h|k(KBO?4&PDe`FZ_3(l5XRfEhA;0?$E5EGX~~nSP<~pgFWgK$GcbfDGjT zWGDlmg0RMFfx=z<`VwD@M^OPv*!6IP83>O-PzwgqFonK*fp2XPQ#`mee@xk9$zw^b5;%EYDHjU=<>I zZcI#6rYqa-`bA)+Mc}SVN^-YkO{=~3+9I3(>^y7Kqz4$nZva(xzYHiW^04?_hdcfF z54R8#Y)$PU(f*KoCf?igTF?7J4uFsE(3Z^ikN|*@E{?8ymI?}GLtkVjKouHsKg+?y z5BlQgK5J*4dAe^#XlZVAxx`K+mTK;Q=s|n%!3V8Yz!2VV*94C9!dh5{)p#fBal8Oy zcxT`P=*ZsymmmuPuULt8?cQOl*Q|1&cbKJZYOS`h98X_mFuG18%S0bT)uj7{Db@m$1*UJsQ|-AMdReFCr3&+nE(``#|U zTY9T!{xkD?O>Y7(C(=77m=+?#Y@V>dC?nX|#eyk*=FFKc$Qa1n7fkgCQ%=@pK;rkp zj1feBND4N$A40L0?b@@~VkGo%Zbhl`T(uM*r;##q=iNOSIS7hSJ{cv4?+9^A2)tG& zrGUQ+ii6)6FbD_+62Jz5NjW?V;NfrXp{)!slm?20w(xFpNXIi>xQ7((rCeyCAFWEW z?+&#+MZz;bE87Zla;-2g*K)E1YV^+JWX)CtW>60C$%%GQplgW~*|SoT^Iu$Go3`wh zn2EQ7!XXkkakl977532MPuud1TdcjelvPZ;HEW94(W{Ter)Ai|>RPLBZnJfpw%MQV zxZ75(+otO&Rb4%Vqoy zxWFQVqdCA89>A{)UY;;%qV9+9d$~2`uDkB?z;*awU}?d>h3Kc4&cm~-R;_mH3JRSv z;eQl1poMy4fx&9SQYL;~X{iENi7b_xZP>io7D{=O50sbtfsBBh;^O||#V8mUbf6vZ zDG6SsTvzbj?F3{|moQ$T0qxeGx|e>4GQUMU%RNzFkV!nt?js^TbB%jzH1TK>ZL0*l z4^~w=_#Gzx=qGwIMjBfhZK41|z7$&rXA2R_sI%2tHP-rx=OUk|(cN{401YRs6TKMF z!{1~88~ukOX3PR=ar9@L6EqF~2P_AwIyH4=4tKDWpJ~w@QJQw5un$3_yY3dnT@tdnWo6{^b}EWEh9x z9ubhhQ9ma;-Of4vRQrdI-)JAd;aVFze2{Udt^4$8+~NcakSx<=B~$b-)np|$A;mIs z1TYelt-7vBpa*cpn245K=?9|m@=m@-ybys4fH^!BtLvP-6!8ZjCmMrH1hB~BuZIf& ze9gFGId0&9V#%~Ld*Qj4d|VSdiT)Wlc!;0&&E^dFg+w32!yJgqxln9G2*D|-3w_?z z`M0z>k&Xi|5bK@t|MmovkrqzW{QEFNgX z`wy^0Dak$>lLV~8+M${Vth0hBnc4*q#Ca~Eo#jjZwX6=_2zHEQ| z^PlXV`yY_7tg=&2Im7)-UP(X(csV%vA_@q_i|&U?m#5F+4MI>Jm%>Pg3*-=Qo(gDe(*!z5)H_~BExY3Y{jLYF_n|>ZvhAq?}bnJ837M)p^o^n0N8Ps z#=Sah?0IcCjSL8B>#|Ocb#EtX*~0l@3_2Bpx_W>eg3i721o1A+$Tlm$%BK zK!@XVNPMR*jCXQW#~xt3yR7ic@n!R!wuU~X&0IsS0l2!v%SmxkR|10tIT?1zh3DH1 zAHK#Wk00xFA=T8@*~TqfZRM(U_QN0l%>I1$U+u2@9xlFrQY<-!i5Vg&3zXmkP)LX?2`;+llq9GVLY1pp-S7fW1EkkNs}f-J5L3U z%Jx^<+$W#%FalT-S(=5$l#h(*I1*Xq8K=FDL|eQ09a=!Y0AR@QbR3Z98}Pxkdwr549G}MCv7IQZllwp#LDt%*fSmt@hf|753nxkK4L}J)}Z!R)YRL?&D-rzO@md{HCk15ot5k_x0u)jTef_q-E+@<_Q3rQ`RT|w(_w*P zX@psBLUMv;Zkbj%pilxO!73`sq*%Awo;|zm54Zl_?!W(DSGe@)x#yg3-}&zM?9-q5 ztWBOY-R^z(Df{j3{$TUwzhL`H5BR}`n3mz0&_Cp30$mEoGvAdF-Uw4Nzy!d7pbXb| zF3=ZV;xl}wKlu!OfUrZU!3#V`KW2#TluMb=nwcWY7JyrLfoqfp*yPzSed$Z~wXc26 zK?vs=;q!wD96<~4pez6p3Ygs>fB3^69AE%6;6r}r-7H)3F4{+%n00dA4$C9(WV&Xf z@#=q;j99A5R+-d+HUnVTxrLK1ZKLie0ssvbAKD!FjJC2|#WV0SWm6Am4?U-KH7M}UO;k`j{~AQ0o@^pj7q z{(1R+hF4BnhUH~u+oKOZ;!dEn4SEAw_@tdA`Uo1)4!|JwhR*a4LF)SUiTpD-dxu25 zqw{#$y}!cbgE34y0hYWAiveV4cD;wp`+DZ+r#IvQ-+AT@ zWgGQNkXtvVK{qcK&(i*vD_a z*{&5hWZAw!6QrGcORQ8AnrB~FX!mHcbLYJe*~3rFwbK0ukI6G=M%i((@eZi{lxqQo znApDVD+KMR3ji-1oj^P2E0*9qD4i1h34g^2NCb&Gh+B?34!&!dtvJ@fI2OJVRK7^owE7lwG)c|hq zu)U@G?e%3#MXO4;7O}ohtP!G=vgAOSfDB^9q(~_ys6F__tXi|qo_PF8yW=l+`R~om ztuEjTG}A(O+;IJk?&;4i5UgAX^Q~L9yYk$&W2c|3GiUb6zKlT}iHxjlwW7D}-dk#G z)~&at%U0R__dQ}?|Hij%{pKy2aVOc;*IjG>`jem9r~cvpxG&DV_daZ2`0_v5>NOiY zG&#O~BC97Ht-HEd%83H_K@+m{2rK_?n#UnGL@>o+kP~J-P@&4e0g?54Ow9nMkWtPk zIRsx&0zo+=^ysgOszbKF?4S$cy%OkHH=q%w_KY-+5J(ZgNcOh(FDkawjC6s+Y{Oxi z-CP7*{O14thMjiWsWyAYOa~rBF~v`zQSaWoWt;u=-h1q+r{{WG*y4K5`4_lwcR?(n z&k_Lr2|vOUfQyPlRo0}wgRk+2p*<+_IkRUwukG2r+Z7q@VY?{biEz43<6@)w1h5Z} z0%8jD3;bve+6!2s{m_C>c$iNgtD*^i^9lV)To1no#Xt5*FLL7uj;oSM)U#O= z0bTU=Ge)Tc6B^`IiogDvl)##R1_xS#jhw+m+@&LG6Tjg=OI>;&>9qKm zUgFzSyXHez+c{^SW#h+=v$M`T!^=hHVfncG?z=sBC?GgZG)_xN_i@Jf5lj%B2w*6F z=o@SE=RfED&2R860qr_*s*MppYs_H%qo1fJr?RtQ0)HZ66y@aQ+GoG`B|Gc9^Q~Td z9V=O!p-D__ZM~(Zr5Yg?kiEDMAR7o!2ihd9E5*$r#n zIk{POu)NHs&X{f|pK_X?VN@t#UQ3J@F*Apuv3?4(5&#VVQz7MYsI1J&CCG;j9inSB zcJKg!k<1d}Shi`@bKNt>BVB$PGdTiHk%fee^CR(M4j+{OQ2jb2p!k~@8tkwkEWbpF z>aYLz0(=QTwBtpuK^~)-fc~{Mx7pDy3FkNsX8mJ(GJo?srg5x7!EXaT@lU-Afk%{B z01(2;g|`MAq11CEoZD3Qs+M+Jx@ns|IR9Cjx9C;daiGkaRmV*`cG;ntdIwm!S-CcD z^f>D!!LsQ2mn`;3FB>laGj{k;8$E7>W#y)7&Lz-ww8O*s6RN+L1bVe*T2DUoxGk9f zqAg$ix~*8Y++JO@NbPR7Y160LSHJpY``SN##m|_TETw$;rB~QLe)%5-kWQ6w$q~?u zb4S~{hGsi(u)>zSzRG^{+uQAypZ?A^Y$~;BGfuN_|KJw;>92on=UsZ4ZQH%q{@?9) z+OK~1|Lmn#UK5?;tgc=&;D%O9R~t@M-;W$MJX*&-+^QKJ3Xqwogq7YyUn2YnVCX(m zy01Y1wOxX&7cn3t^fXGLO4s@e-Ej8(tKN?6BRsuUe2@CcORq?=?(x-U*bI4wOx ze3)lN{RdcXUO&3md4m`fySDG}r3;o3YU`?fM@(FzfOT?`0863X$4({uMPfV(E0;S{SQ5CDQOutXvi?j)cXns6zlnTE7@P_yb@;iSOu`ol$DjM zoEWQ<8Cxu{6{G&? zP#gA0CUodNq8J0(8=Be#NSiG;Kga4Co5TYs|07lcg_tye7Ivi|cUTs}Lcollcp*nR^j+G@LCf?PA~j`_{0~8Ni;M%su@s>Xu>YID61^8XwoykTRNs^-zFa`_kHHKDzj&PuL=G< zk^as^2cV=w3LO#v4$8VxGkZ+G%tYCFlwVNf@dr>sB<=%kYZ&_acztcPD-~j#Ae1@L zn4LE}wrz9ai2`7KAAzfvdl_$)Lf!A24!_aleKDK z6L)3X&ONShhYTBTW5*u{(e9I1GUu~X% z)wb=s93&<&qf*@l3@o%8ZuqcWb@ioo_Bm&{Wq=uNd|Zv6c{L20xMf{6e37!*825 zZL(FXR@kP^8{Cq?jwt#rFE8KvNf@KhQ^-gIf2JHg%?W;=6FCbF<`Jt zvg8OLrY%Y0la!=n-z`JiSsucY18BgC!+3!%OcJ08*8_dHpWmnp046A}Fn;-)>pe4c zB=fslC)K{g>XWwSCdEbItE!2?2xUqoHM^3^Z-Y#S?Lb#=7FwrB6IWA(v-+UqXh03dN~WG5}*28Kazt?K+cez zUdLz`n;QJ@lV{Jg&wuu_cKvnN+31lY?UIWwv{O$y+4+sE)(V8+uuKD>cZTCWU_?x&qj4S$Z6ho4rhSn2%B4#CGCf83AFxcOrrw=~J?I`!%BQKK|L z;E0RX$m#{zG|`Q6pe0|U@lTt>*!K2|Uhb>d9$8%@TE6+Yka~VsXLWyugc5jr-SIy) zod7TIAu$L^Z^bkWR0btX&A?=kqA*y;59aDfptd;!G8nms!GZ8XsIhjsed{*&Jpc%; zTD!(Q=Rx9;Ake_>!I$jTpbM!183#Tb`B-vb*26PC7^JiTGdO8>Xi(rpjH#VjDzRkv zyRYiV38_bEqn;yB9`|z1&o|L!7l1uz(31{a#}Smz;BP?tP*fz$uZ-S7#RL72y8g;I zb8?mtN*>>zM;?iSlVRC`c0+~@^OJ|G1!!1KQUi3i;IwWGb4Wu_Mk2oy@6yrC?~e1}GX zj$A`vK|6#MpD1ABix9sjC}?;Co&p@eM}aqj!0TBqJjrvIxmg}^5HWC|uh9b(_#FVi zk`jOhs|Q(ueAv(EA*C7wg!00tRHyo35NRw&o$q{ zPv`=Dpbaz$&j!APHjEAarcK@_D%1JDJMlIA$^9$?>n4pgf%BL+Uk=F1%F%mpz-{(- zQvY2$x4VTTH#i(m6G9m)kDQa3Vv1y6D>zAVTp#uYro`%XLUGg$hxe1ctnT{0 zRpwsq3GL&3v>(18(f-g*@*9c!X?yhfzbTynFYh72AI>A)$^RDP!Bj9A1CQAwpCk@e zV@oN*ohBZ4ZkqPW<;nvsh+F}Vua6SRuK#+EyFYYZ7S!uIUmCjnNgvSS2V#MqjV zhCvWgV0Ny-?0mxLVc=7jAhd(>3xf$^fs*7i{7quukb)qjoG^&qDe-)$2LeE1%G--V zW7{_C?5xeRop78$2kl2O5>0fC00w7-Krft~S^CKBmuDk1dl@-qwB_dabDtx&jIxa} zC^!=IWhReML6`((5NJi)Q66a-X|`k6PFuBlt()$#oZNcbo%T=v{0;lox4-L4Eg!n} z8oTT6yX}@+zU7DH{r|X_TUSGP*)^6D7{R2IT|8Uu5m-yD<3okrh$~adF{%-rX zfBUVy@chfRX3bis2f^>Es>-F@YMq`W=-IR1$l*J*r;o^3Ah<>!(x>5`AbiQ;H{Qi( z_!~tSf#paci1qvvz#D)GvwwVB@VUV87T*;7W7t(hI{}Nta3RtzzyyH|&mU_}J_!|X2g2z$LC=^!VVhi2Ybn`qb5PtQ|-|JvId z-U;vVUcg*TtQ3&OH$D+LzBN4B(# z(>Cr4Ig}sT-7}NII{+e~Tx1;O(NEBpcfe3Lfef+>iwDua zIl?3^F~Q%(IDuaQlkCjn9mpQ~it#}iTmvjo2IcZh0HLJt&Yo=x-)SF-Pv}5dWZoTq z=eysB6{<(qyisNVNxG%mLKR($%KjiJD(n5{cS~>eOwW9LIssnZV+w?XfqH%q0+R0x zPMD6r+2JvR(9jy3>|SB5m*2UMbzm}oghT*qu+u=fP zA&0+1y#kYWXqJu@1`7th2M9nEE`umiS~*@mfAc(p9AV2K48j9pK)txeKt!;Tg6X+u zVq9qGxB}r>%Hz49JZU=tx^g)Iwy3{lq@~-!mtVFg9(&xE&PI(G>AP4E1f1JMU^g68 z`HmGSWOfsb9y!Vi`W0GxYlm&o?1v?yRV!E8)-78+y5-F2Gi=PL(Uz6L$MmJh0NdN zP)^S>;XMQssavzo!`UoC^KX@L2 zjkV!!0X}A;SW0*vutCr{6fX*d_XUN)`*|NrQ}8=+VNeDn?xzj_Dc*ra4u#G;;79ln zMM35}<#8YFqI|A}>%5n?LnHnUvl5FE#-P<{yo6PR7U2*M~*n4WU2f4CM-C zJ6z(Kpv*XP@GdF5`)==ZgcSacy>_@np0Upy`ZozWlW0rYKJX>{;ZyllU-+K)c!sj` z4%esyf0F|5a|FJJ_Rxxh{({`$J=(>G68A-Nki@g3&W>*XE~0fWEnP^A_8&ZMy?$Jdb#R*=?F{;W;A@zQYI~n=Z`o>+j4=^~I3NQ`%~4h!p^FtouiF^etXRbV&-00ZN%UAx|w!p_LdwiPQ^NqA+M zpicDBzC?LKnJ9;sMIAY|lk-hF4}ySv5uCm19F&iP=eWmvSkMR&^5Ge-@eJ2p@i3O& zm$(;%M))?*(TVUl1*PG_Ttb9lF?Nl9dcjln>{AOI;GB8pnLY)S_qY$3f__Pf$r22O zuAnmWa%@m(iO=9di6NL!Yz$kV2&fwtJsugRJ>!i*sbZx=ca$OT>@2UamgaU#PG#uq zfYmoN+L&=;?YrOmp8e*!>+MsYzC>m3XOBOzz<&C(U)tUGKH#&BYHI3yxb3JpvmDHP z@k^K4oH<8%yFU5Ub9Vi8H`&64FR4Dswsq?^2LhCPww|ZW8MkLMLJ~BBUV&Fa+mZN9 zj0XapqoXaFRRkS*4?#$fHuU6O=ttc-_{{+wX)mtPHoV9C08^*Ge$(X%5QLx7(=yer zDdN9q3V#N%8TvNAq3=m2o#0?(_=qy+W!e!X3QhSNn%{cstv)=)b!J>3%qasrMSBL` zXp)26gF*$rviW!rqrVN@%T_*?sE-3 zz{<4g()i^Q{`t^62(L1G@m#=cn$hq3#0QBm=m@4%DPpZ3T~ z7l=|HXU5Esl43jd*rR;~d$b$829TjW zNj%5>P_K{|d`@1x$35PKUhoh!gy(4w_>U30EcSilA(;G_ih1j2I;)vBN6&R7YUJ z!`{_wI)Vo#YR3MK&IhOrq(~@7%VNhT%97D@bS64zh-pB`(>dtWbowA*=rq&`;6ume zyL4#o{YeJ`_3H!~04-Pyyh|c~1OY;c-BMR9TW%ZIt@oKF=bn9z&6;t93-+2lRlMy7 zbbvnUuC{wmoll*9Lm;lZCjwgll9EA#Jo=u1;(n?;vu{x9(D8sQ<87O_+RHDz=+kNe z1H{%$pE6y5;~2|GAEf#wd91>RKk@;)=2t(ki#~FuRqWnuU;p-Z?WTLuduIv<1(M=gwna`=G*O-Tkf%^o_NW2SJWxrEE`yuWyhW{ z)h_(#N%p}DkC7rTwY2m^pn}C6$g}l-?C9U$Mrf zz3La!?6~8P^;vdeC#%@C(>APIYqix?mY5K4$w|;q{H!{{i|{q&X2nwa2nrvd9e5Mk zz=M=KfEQ>>IjA4Md7gvk0(jxz?{GjfQs8wCXo=;^9cI>~2>=q4M!p1CLvOxIOj~i` zKwtWR7ACIi;)^f#c49v$z6Ho#v}lnJRRD5H)DPo@dH@3HpU@jRQm>Fgc}P4P6dY%c z!_^^{=VIRt=WxWPcl$dwg*-{I&xL%E6XBUq9;c@g^njlMrPPyhL(2d}kPGlM*EsWj zsAs4n`H}dW{Agd=1)k;m$UGPf0D4fsbKm}mXZXhY^&8X{i#>nRn|VnN#p_zW_;=Wd zVV01RXxn#evyGcJ*s$ScHhb1gYint?;*vpj{0YZdTYIZ1YbzB{Wt?`vfH<{bw)no@ zzeTx2oFYdAEdKOhnFr3?r)vB6L%--f@;EdFS_azwUrJFc{r~iy(qS1SMDX`95rT#@ zjK{w64sX#1+lJ+6!z8urS1Xi&!)VT%_p(O3Sw zxnj%2H&H}tvT2Vuc=6d~6rAHaaJ@D2yR>Bw|^%8DSsiizz!d^a3i=iptw zkFen#zQKKFm9Wv;oTFxWWPVjurOy%~f6A7u=P47xW`J;VXPk>0#NWC!%Xl3*EtBb<~>qaERh|90X#|Z32y=^z!H2$ zUqRVZW_Sn%4qd1lb*66Ak@iC2aXlzF$_hAxPk1llr6ezB;EzD}*mfYnv*93rj=bdv@444$$NTU*?~veKo};V* zBti@RhMsS2r|?#}LkeXJWew%#2r1O_a4Edcak%t$*AJIszaR39)+>tsrtF*peM4P1 z^EW(0odKlKHpmb75l{_}MYNCPS!gSlqdMpV+zUX5Z_y_>XQ&MToB(L@3Eza)c)s8} z_=9J;#vW1R&9{pN6~0M-06XO*#*U#;+W7qQ&-cDXTTyoE!1wtU?Tm+xcR5JmOp3kE zw>d)H;A@T`lVcOlkz(_DGxf%BZr`b(dWEh8O)4iVnPeF$QQvA7O{q97OtMfotSf^ZI-ZP@7d2?nJs%T~PN(^8p2>r2kZ%aW8L3cJ3B zz$`o<$?8m;8INbNt6{^2`%1m+cFRnpCRq&p&1@cAsVHbHjgGEPU#DS^tOx2_$@&s| zqnQ#eYz5ZvDshDJGYy;ZWL5)ak0-1r1PC!7o$VdAR{)GS7p7yg^*+j!_t>0~ZThJj zLWcK(B`u=6!kIX6vacn=w-DmxJ9gRnbsKHV<_O48rsCpK8#!{cKaY@O_=6y46pS)* zLAZ76CVS?ENA$fqtFEcCtFOMvzWUW4+tW|JVoePar2P|Z+7VOj(ocWbe*Cj<*k?X@ zwyyQqefK?KH(r02J@(jQtE=v|ZCk3WqO!`e@>A{X^G~)f{_CZ7@^Ldnxn6txktgl9 zH{NTHJ^Ye2)~kMvU6z?HpxVDv^vqN{B)c%9t$YMq^+qTm_~0=X1q^`2y?BWNE&>xM z_}r{)f1dh={t9n#<~sZa%|o924L#u{6hA_^tZcXoZs;GBKwDdfXx{1|00EBjWoU-) z0BjJ}EbjN{qmMcmz$3t7be!R1z6mcggoNh+flm4PCfC=jS>pf{!A^NObD+=xEUf=R z`%o4D5&6=Nl$U4lKA_O4XW%z@h2PK&MMHggpZxi5_%?q-Po4+p@LlR3`Y-Qujk-cB zXu>t_Ll4@DeEFMtlAtHo$(saCT3XutIo6{A(4pA&?rriiK#N6-mN@W(?v$0fkSFg@ zKX{(FX;U5I;5iWU#k+70^F9>8hF`WlNKt8cd63RlyMv!6w(7_Q5JcmHw z9(iy*1PWpa@@SDTz*-~8sc?Xt@*^X2LJ_Feb?(SG>jAKBe^-)(Cc#;B{7<#xc% zJ@+j8-uJ&N;PX{G?X>v``?d;KX3&#$X_}iw<9%(mY4chi zKc~JNp`8N#pn=n&k8WHKN4QUdHqb86G4?si&39>2z5!o^c7pcg!L;7=bOD3R9OnlB z12knVirU(GZ*LChOZ*VDq76U%;SYOE3p9ma_!gjpO)XI_<^bJiB}LyQRh^yTBRmu>O^vo=`!=ho-s3YE zut*m#UMj(tr%uCKElHk_`k4ox(cuuBG%Fq$R-)v0rx?3cOdqUF%8XK@<0H&b{B#lo zDrH4ra*gNcq;vxA<2@mshwF3*1WB+^p$}7=@e1LopyJ(?e< zh`O&o!~2{ONR*F*#kWv?1T+QR z8#h~n=$1FIz-G;vZO5K)yp0tA%F52OqJbkUB{@=n<0p==Z+`oWcEim-vw!>QWwM|~ zTT^3)-F@dH_N{OH)NZ-yKHIoqhw3%JX3d^xpZn(z+mC7YcCH2baZqkR6^S$a4)7&-nD3Byp2Xkm2wzoMsq&=TCoZ|fe(=5TdC)m|lON#Y z{`()aE!%fkn)+<3lwMOytL{Y}5xx1tXdR8u3l;0lxmX zrGF^!;tco>$NNom6jE#lqVeez0EN&Yf)JIu5@j8vVJD2f1?YkOJx-mte<9 zq52*=Qcwsj@?d34P<4tr1^a;@Bs<%6vy)4CFgYF+FOxa|`A|j_7FJ2%&tiBy&nmYJp%IV4vhGZCW-4QKwZMrK2H)p7@<+*{9Lb-2 z$&>qZU_3Hd|EwW{;HPurUGc!tQKQ}4aNc?6+5FQ_@*x>4s+(`V*{;6oSN7tIFMIq4 zD{SIvK#^Q_*=OzS`H?03%yZA#jW^zG_ucz|EnN7b$1qT)GJ&eoPd~-J^{ublcfR{g zS!YK$kFZ4jf&Kk0F@Y79-&!vR`tlw$ru_U4ZN}d&=#;q6v$P=x_eh+%&N*CzA9;p% zg5}16a8Hu}B&gI^?v-Hd?CcWFIwdICO*dMs3kwsa37tsLlKkKYycWzY_zXPi#&>BG%0s?^E|h`tVAWGEXu%L3&(f~YIn;-9 zX!qD7T<08qhs1l~Ia2I7_PN;Kho-=vXs>z0>gz1z!GE=}@A9T z^HTfyPcOHNFPd-Z8OipChaR#2{K-{1KViv9SpsA|R$CLTsY6}ip8(uKqMgE?RRCE( z>pH^}{lpU__zfEI9<&SZ2LZ@E_=n%zqaC0je8X=*3C|+%DMxU-^A68JbMB#(vGTYF z-Ql&67uNwUoQZ|u9@kl15aAhsExe642Z4;I2GHX}MXCeO(a!J^!%pxsAduN)@Dtt| zJPj=V7Qi+_o3imf{0IF=ftJuC^v{sE7mjc*JPVCD!=KcRa`HFeBMeQ1wt}wEjc=#Q zxX8*#vnI9wLk~V+KmOql?3o2mTTT{3r3b92sMvXrwK$qv+AKLG&5~4C;?v-965oNY zC?EEZVu%PON!WwzHgP{3A;q>+_(pgJ`iDNlH~B`88Sozfn0wxjbdT}`dWY1z|DbQ@ zK^e)5p<~{6T5(;^^Ih_w4**i2eT{(ijvd?lJr++)N=USxuE=2I8=<^-Sg8%a$rDDv z8&6*jWx+F!gyMYY!F2!FE)ORrSt!m^bZAI0wcfO@qQDXBIFYo5oV$3nt??+ZY573kryM2I|E0Px6*%@-lIs z#1;fW$OPfU^DYE+Ep&Ji-yAro*q_5yilq;rLRm7rf$}6ihTqhc@`m<9DI-KzuX$aT z@&^BX(+xM;zyHg>+k+20WXqSYP)qi=k)wv&nP<+o%m3v|cGl^~S)&BRmA|^he*W{H zOOZZryDO@tgi`FNqvrVDNZZ?88p{}+e@*W9% zQ73jDraY9NGC}VktZ7Hu#Q8^c<{E$V9Ov*ike0;r93ejr65qm7ClB&QDWgEBKL_tH zOA2p`^D`U8DPMR9B55@V)PS&y|P|IVk~nc!mT`DJ%8lOrkE~ zh)sOk`M;00fu5Ynhw^eC>y&cCU%2G?9TYLa_!(&_z9x+?KBsS@G${{#hHsER2ejro zh6(%i0I1>h?5td;BXy&1uw*^`B+wGjN30LPg|-M_lX6nV*c4kw?n8%=LLEtg9^4PV z!}V|uze%yb50_%|4fPHD2TkaYv=?#!ex|*lVMyV7;W#wKmOUh%3*QL8Irz=9)D8OZ zZFrt*lnXkC{y?I9l!>+>mW!Aw{`NrIzPi8`o8qY(!Ff7J1T*K?mwiIt{*yUcrU;N@1 z_W93$-i^Co|N0u=6&uen@okhLEj8Ui5%0g#@wZNgE7Ln2|4`uNzdOZth}Zt@{<314n>`;v|K(M0_d5?1Vw=e;1Wd< zp*&uHeT@rJ@+5CS6P=6SY9g0x1cR z5FkI4K>$BxWqEeg%vm;d@)X|-iEksE@F>M6GGmIJSPyuRQq~J=?X)*{T2g$nd&t(Ud&9PF+n{<4urubLVxRc<#rBP_f6LA~^Be)l z9=q$l$L(i7`-Lrh?s@C(X|ue7RGU0)n0@-QAF?lB{y97P=%an#qGz98YQMedLA(2o z$7F#ovMrl;xFYK8VrEyI+OyRL#P63vW5Kq_f+s<<&@OmdI1qIF4K1N7GzkKZgrE(A zFz{$B&v{;b2SOXZV#o}k3qWY7Z}c{!O;Io?Xxf^#;Tqqg{TcdU=q5Uk@b{rVUI7l2 zGx?GyZ9=;-^nuc+{o!fK&$p-(-n@Dm{ zKb~dB@Z8)y0o8msgTLSD#406Sot zc0vv&r={A_GB%k(MBbsSyc6Ch@r`isOt?q=X~#f2j!;MP;W@4$o9P2w3-xeAL+{7+ zA7H)v_Dinr^zUMD(Em7yySn}M+dZEfZ@kgh4+@F*6BDAv{{A=L<|cZWRW2j6%u*b=q2rJ*d-L2BCn>JgQI^V1rN4nLzV8JsstR&}6Wf#iMLAmh` zagEfwf1h_qn0dp7t=@T26dVW{@&|B)g|g_xfE5yX2PMZn@$O^|(?vbN+n0^UmAt=Rg0c{q(2bw(~DI zL)KNZ-Ff$Y_U&(9VfWtifaqK8Q_}$|pZ)A->}%irS37d%R9S4V*sp%|EBoy&xB3v# zqL-IhO?88KC0+`Bu*cK<#}B@5pa1MXS&uB9jOYoAq?GizgGTYIl__UB292eDNi>LW_zDou=s- zQG5YqqAdVJOpRx&2ZGB{B7=)doZk@I@EH6SuW#b5VYp=Mm@(EQQ1`0n`O5O8Hh$a~ z8#<)ah72uLo3`2&SA56gya>+Tylv~700&-#CP9G&-sf7N7w7Ps1N!iHpj80d^gH+% zz6Nv#K83IN9>2XGsWb8peS-c2520kpk7waYjE*-YzV`&_{oi zO>_hq6$%!83p(q6e_F=AI`Wpcr{2X7jHVkSYah6g=Hniy=^$|Q{7<4>~2a+uS0G?i_J~NpkR$d!OyC_rdBR*AFbD#S-?85c-{v6E&lvA!HVMp`A|`KV28i-(m*T9bsj(-Y zf8LggVfHI808K9p=C6xoJwTO+Zxw!k^6kg``)E0FP&1M5S=l)fqIfi-DX&;F2UXeR z6c)8=vzpy|tg@og*1fULqtlN)_E>knZ>wmOvM%sWP22|z&%5lYazKEkUCI*>L_&eU z%+wpe;=zJV&9>^b*R8oxmYxI>>(-!%TsXuDS7GoT$}`Kw}dfD zAVor~!y5Ls*nZKyzd%h!POgvtyO2~TCL*8NN=%jI(gAho9+f9ULS&pQ{4t}4t9$i& zpmImYL2GPk@Ibk>>(^ObL%kGbqUfG(c@iY0Lx$Q=0h+?1VgW+dw2@%w$1qrnZQQWg zUU_AutzEs=TANy}M9SgFBWKz8QDZGnG~U;>&!$hCA>}#Bic5yrf@fc`E3dlAZo2sv zd-|DYZR4gbzIMWK$Dd$d{rb1;qK|#T2A7VoCmw&se*Uwo?S>m}@&)j!_EcDBN3)d< zF0^BgooQeB(m&hJfBGZ42Jg}HncW<`x z27x|GK%-=^lxktVc&y7B8tZ))+}`>+8T+u7^}{BCEGjj zWT}o)u1tNWKN3*M3^vYOhdvGl`@DPH^LLObqJu98Df%K00OZUROcY;cXJ)!WU}g;E zPr_Oi|4Nd0--(8Q_WL?WoEhE$_|e~}BYotc+GWJ>GMhYUoDC~0wS;(7MvpbrSNrxA zn`C^bP_AGnOql2a-SLtYfSCh52P`u+)3$Hf>MKt(14|G1f%gKCMIb*zs7$Fx>Frnl zh8G0Q+&Cg3pHPzYH|ogW2bk>xZ}owLAlvv&3WgZsifeDmVC4yD1vHb834H%e?}O?B zprd>a@^lU0fPC@im51{sd8!`!1n>?>U|^8JSCj#n%s)2@1w-e&M-k7(vVN8jj??1KLEu|#Fa zuw;F0jrcV~`KdohwtV&9{>4t8cZ&V^2R~F@pODPUa~i{^?Z|T#keRQ%9^NA#p7>#r_R~MfhS-q-CUAq8OQJy05KTrB2@8+N6v-#msbAl#cHmqs~T0Oq60s z6yqj{X_$gbonWA%K_xbI+7Zg9#)gy)_m1x!Lscfm#1)p93&C5ttHP%aSMAy30v0zj z!$-L5`9`V)E1nbb5I=d@*%T44N_S_M$1JdJ3f3Lg5&{^jIRH3P0Bi_L@}#5C!5OMb zN==fG=yl*h@^5JL1k0mH08vO&spM>#uf@AbU7$9g#oUzC;(ae6Y=OPQHEj$%TA z62Gx*$x{EjRL`D1?{s~yQ~+eXU31NK0wXutf(1|eO1>!7V~;=1zWd$p+UGw1N#FnH zsVASc-~8qpyZ^q2d_`3}OweoC@S%3`$3AM`{MJ|PU%vQBJK~5b_QDI#+g*3wX}|u} zuk7A??-NjD&7Ol+U)SJm>cV{3w-R#Rc!-rLO%kVqa&Je003gDG7A;rb@7F(bik*8(JUPd zsbLkOIER#!di)b>?C?Bg-&s*^yL4ccjucq&bz<}zJ}t=2v)ZaX9)OF*iU$VI3;E*- zg0}DiN}!>k&YJf&`moU{C!Hh#Tx-97@P1pe_+{~0vlP$(`|M{wE56<3f!FC0^0Y7Y z3l{)F#vhDMD|O@5vF!%xIQ1la+2!UMye zP?IN5v~0--l*#g?i)`^rFM1omml7172j5O*(@@bPSpXbYlY*Zn;(R zu+V1?F@rBPHCln3;UdoP4LKirkZAvOfq(WyBmV58AN{Bw>`+cD49jcmsj2pz`-7K~ zy3-cWHt^a%Qu@0BFR|(E7~}mU8j41u(*;3Az9AQeJt7{89KYI^_g# zl$WzOTjWN^O}}ebxoz39$(4OmQ?n1R;Cb2G&}7X`t^R#HEMYbWLAXp41hha4gbEDo z9Yue04&NpLQ1S}$g-s$$zP0tO>Cy-o&K&IJ!8_GbTy!9UjJ?C_*xxsFM7^esw^X9!J&}g8)6^^ zi2e+*FK=%6kARVmAOT(Aoiu z%0wGc2iloyV=;Ar@BypYJyid#;OT#m?#WmigtSICA@4w$3 zeDFbUUwD@xBNm~|&PG;S5c#6CL zh4k6vq*V6`#>v1#){z&y?EV%37!I~p0l)#Q0B-Ju>L)q0Pklq@esS?KCw~(Lg z%T-lb;T}-R1mE&a>Os4~rx-&RfaTk^yGM@60JJO5Q*KhId#E2N(1nBF;aPu1z=NS$ zSGh6_s+2zl3bQ$1c=1L1{O7;m@~LESsnrP3z&io-VK6l}T z7y9wFZ+^oTEnVVu0Bk1+tTDNQKwiA()E|2Pqouzq@Iqt5AmIoMz;8P2yQT2_+Z`kt zigalH&R~b6@J>iP7dk8D;eNDcMzjYB_Yr(BUFZzBAUPw*lhhI7C9t9~Y6R&)XU@d5 z6dO8xn4NsuJlj)Sp7@jeHClRpP_W=IArp3aBG&cb`R zy?KrA;R3~N&YnL#T~b7;$+BbydMpc_55)^T5C(;X1ztB486XP!)432Fl&h*XTHAv% z0BBh462*p)3rdi>qEJJu4#E&RBODPzC_jJ?@39UILA)pdyfL@kal5aj!Nz**L-TL{ z_HXv_kAK*|_uzvIJm~GQ#~yR94c{pdxM3#J_rL#r``$PI#XU<8{_!dM&;R_T&o0`w zZHoi8&<21gJWzNb5Sq}rw|Bqqf5Y_l6bX(&rGu?>Xqgq440ax&+-a&Gc>t228N5Z? z&<31oH|iev)p@kfBIG^?fQ9?iCGcZ18-GekKpzgu#6em4PP-12CsV+E4IUj#&*UAH zFN@L9Zj_U6F|5d*RJ0Le>&)EX9`QlM2Jl_-K_LN90AdMxp8Bwc%ADD=e74wce)Ag- zT&3L!5C#wcLRo(Yy23LfL`&9%0VDwi0w2J0)Dd2#PMoPXG$4iRT%*kVO?^11dw7m} zT;p%}oU-!{XWrq=Gn9qzk|)oxO#)MAp)dJSF2Ea#hjZwQq@?6%<5hjlpQZWI#EbL? z=nKGw&*_^iNr0lKZrtY{v1FlciGpy2!J{a#Xd?r_hOPwcnf{6-%=`Ay;+ z=*9t!!h5XYL_Mh!bb*FZoim+&fzP2YvJ_fEC%gkZ>oQ34hCIn5P9U2zi8Ax9_Z!Kk zKfP|^!)P^SjHBnDf8P0se2M8IU&=!nva&Lq-WZ?j*KKgwf`=NuC!QqGCeS1HAjRG% z9ZE~QKzkdTeHJ2~V!{KiyY>e6{>Dp2e)h7@*{47KX_p%{bq#j=op(Fn@dZg$zIRKs zN1!k50!>*N8$M+gBnAjHf>zL$_JE$ym*@Z96ZDKd{;t4FY=Qx32#&xE?>EtKG!l(W zo-`sy=nx?V;)E3brbE)`9K3_F;Tl!}*KkcntJ<1_1lFlw%?6l;p_@SkMOKh2VU?U_ ztYyMDW2dZMVrP0(p4qZQ$4;CiYpcbBd7aUu@K~W13gDU#Wv#B+;|deEI*JtLUis=P zHmr=jebQ{==piluTH3m7{l*QpV8IKnNMUFM1Ra!)OS#$4hy%AQLl2zkOn6)vE?`V_ zXT>hJ&{>^QB1-g#1S9pQoLKBw^6U}9PR_VmiOEP%9U1aUlSKeH;k(ejs;b77Jsk(7 z#|#zjMRbg;EZQb`BWN=c^+ymziauHshG)5tB8Bc)7t|9v(Ln)kC`S}Do~_i3bUWs_ zW9^Fn_@3Q(^Nse=i$AD39kBZ!eAw>3_imlY(Nu-}r`uOn8AZ z(T30}_JCGFs0V>eqOQ=LYm_7W=1k%@M|h3{xxkrk!B6~ldg(dp9R7x{xDQ{U+)##; zH@pjw2DqRE0b$UTd$eV``T&4l`qgJFrKX4;GF$|!#1j$UL!+T(!!0K_-&$JRt-hhr zV>t*Mk1acSk~s5sNTFV_DLngb>D`{A-m!`2`BwN|Y?*?bCGlQ3;9q11zo8eVBy=TS z4TFvV@@xDMu4%J%k5}OmX8wV@s`tH%{Z_&)JBscI{)R&+! zyaK=@sFq=<1YIMLeNbtMwRW`IuFBocw^OD}^T6}a?r)d4$9LbV=Uem$e`6%D9u<2O zb@%MEM`axS_O@GX>hx*$z5n>3O__Ft<>VFENvF*71@hQcpLjpyaHpORiChoYQt%kE z4|xiIR>=@%Hs-(o`@g$k@QYtusWyq|1MM*$X(PNZDee^t30?Si3k}{(e^(`hph0+q z-_F>5*WN7!#(BGg#)TmfC_ylBaGm>s@nh5B{zka7+;>lRWOYzJ00Gu1K;?=nuJAP~ z?h8Gh_x(Ly<;7&(Q{bSoJ8_ z5u--h7ryWX`{0H1{hJRw@UUHX-F5cRLk~GU`8IJupZLTl?DESmx4Cm?DW68W{-!(a z+H0@%A&!cQole6R<A$ zc8D)mx$r%C-l=xP^dn^n=eVNB19R`a_xen(g$ozD*Cto@Xm8pU-VN={LAjx8s1tRC zR)L0Ghc4k7=fFe!4s?zEO@fZ(#dEwzUAWKp=o6HK`*`LUhJZHQgO~7v!ef*<056OS zQii}>I^ad^z;(XEGXOmL1NJ;9B2`)@i&Rz@0JdI z_Rx2@PnjqKhx4(nh3CR`66JH=?4v!;LPPf=t8CDZy0)};SbZbj+$esK`tp1L(RfGz zt$^T=uY0X^4s{IQr!1k(SWAm<3gZaS=-ZOHm6cV#do+3Cp-mHLjFdMqACb{O+i}K| zh@1j|GAV-cQWx^(c)JwZAkZO{EhGR{a#D(AWoFy&fBy$xkLAp>&$UZG^%<|b4^{2j zX%i+*bk7WJ|A&VjcDcd#-z|kUp&vU?Qn{fWeVJic?q74wHE)7`@`ML@p0fYFr$GO3 zL{$DeNfanHg+h`JWrV*b9aL70%}wrQAW&B9@76Ft0gnUsV-N1f{!QnhJTx}HgLO}0 zGrnK{`q$n;SY95hnkl7p7MQTJLyAS63Q0ugqoctt&TvBitftu7*k<_#vXSUmjeuN+lc;A{_zU6Aa1I?7Is`W-bcLo^+)Q~!h|$q_j%NT1PII+Ovgm_n z2M+@8q6F|d^g9>{F4~1M5Cpti0)dzsIx%rZ?0Zx)IL8(*TVvn-{`c(Wn{V_$;g*&r z)icxP&p*w+_{D#=6Hh!|blYur-+7N+f5WvtG*Vqv>A|y|5)NfUhuTFS`H20~r$23{ z&pXZXa&rCt)mQz}zIVlUY{SNN?scIJsS9-{=7jd7e1U${F;g^U8Z~?#%V${<>IA~( zD{mI=6Sp`h!5haclmh@?mim|C^f(x`ml(`xM8o2R>D4pbbKaBXx=(cC;9X*oq8TgE z#&rlhKqYZ4@NiXKy}i2Xb+=j6@JrZJO@w#)5x^IhI|<3XUaLv73ZE+=ASVQiTx+o6Al z6rK(D-%E;pmT!jdhTn%C(1-GI1klRCZ|;#FG{sv6O#%StUZ5?1qi~tAlPcaxQd_H5 zKJrtI)gJdQ^Ed54 zIRI)GU38Jh)vze%fB{ka1YV&{{w%R>L+tT)mj13v1R=u_8b9{h`%UDBl7q?VMBy5Z z92owc64UMI2pp6LM#;>~@>mcoZ3G%h9>I-Q!oSrMO>=ZciW}f@0(_glIRH*{3cwUY zG4y4(%9sT$@f|Gi_S&hB*QQud6YeZ zk+mcOvvQ5j8JL@dkOk=AdJQ0f_oxr_+O?Zy_Sbrz{7r|0;hAAUK6rx=3IK-v5-89H zAb?ehPy)E%c|tH#C*J3qoS_Hb;u(M!%6!tqp{@wAfUrsdFw8)qop6m(4lF4C=6Rl_ zticL~4kXU}4bUMjhIjEC{P0It+c&@YO{W|8X(Psmzx?Gd+d1c)Wet1le7~a`uD{k6 zzVMuF-L%p6HqU^_XAC0zel3{p|8Ocv=e=nc7ZnV40K}3K10$hMF6nf$h2_vAM#>M1pz zM%n0R=n#gnFg%Ys>L`^j#kVnl9`BamOX`K3@W5QriTvP8{-*DK-~%6UBb%}Z-iQCF z?>}1l6YvrmF6h>l^`TazFe{c_;${F9<4_A4P@h7zImk6~UM=Kg`JU{D$$EB8VVES#X_q zu_}aKRN*)eDvP4y^=;LU&9-T111pn%FNb~)4YOlC%!2hkxs z5GE*4eiQGKla=Yi8RY^DBs?v29?FA2;EXV$T*L`5>_9p29t|rikdTW6BG2HdAyIy& z@j@34%1_-IM3c&jon9`4S9WHGf1hW_pAJkLpa{s5y3l6&DGUE>U#6X*zE6DoL)Iy) z`0A^!vR_?wr7xbw)L&*a;6=OS;*U9K`Rr#tZCPsH#~*#vuD>FSGcl*L+pOe*A;=@gNbP^H;90d@_Yt5?HeI^5o!M*i?sQkW_&uHrbTcIN#Q(Ti`>PS6_V0thC+7SQ3swYkLsGgdGwAkR5!w&myMIh|1u z06w0h-2fQ~VXRl)r+rxgnOSuNwSMP2-|=>*%^7a{_m?QO7(%rq+)$gI0Em9fKG+nUuWqjI5a zSevOsN}skSZ)67dLOHocStuh4h_X>DAKo*{gcp%= zkDoBkhm9zEO--FOH%2Spk~d|GB8**T@LW%F40Xv*(J> znVE-C$xK+L&!Z<2^lqn&g30Q8V+E+{y)U41s1Hj=v~{$*aqA-peeF#APKf(~AJH!W zMfR#=UpxBcS!bQ)@{d4y%0dVLWscgH_KZFLYZK)R^ol*+YdZA3h$H`xq(G=}J~VOt z?Fh{J3gUtVN4+;D@(ZNSVhFbvN7Sg!yX+~ZRwPZl#p0*lpW>EH~(5H|x{ z;ywSqG&Ygw2;0IzC3eDzCtFKEcY_Ni91hS%aKzIk?LETYAbhd`3M!!$Kccg%C_?vggr)XfI)1OYv zJE5((&vOWTtTuoof{tZHVys`q#hi7CxR9W{j``?u|FzX1Cvdo4xYN zGN&m)ut(0EVV8aGbM|ll`Y(3O+&KaVHFm>w*V}*m$A8#$*Ina5t9%RZ1LMm7{Lhzp zbUz7C543`o0E_~aoje)JD&M-vHf>yQy9K%kB4oiTcAf=nutIBcVv^ICHbUq?Pw34N z+nxx_AV{I92Qcf~?1#l_xw{0Y@bIv{1i);c2lX;#f1j_^3_swR!OMfBOG*OpZZn?$IKkow`U&Hz)EVP9yACDPsZ+Iq_k0}%7 z2z`})5`J^QE1aQEI0Em)UJuv85faakC*LA3zDGN7<{s_AefWxe=r_=cXL*Nb;YmEJ z7zETYCpXs>42zhdylF>%J)`uE{d$dmML&r>#N0u92qW8aC&Ab_ilJ5v8>SpLsSn|q1q8x#42wb&+Tw-h7mB7*@{*SfqxP4E!^A*3!CV+LwU)Uudxh8u zU2V003r|6NhXi>40hX6P(CX?5l1p=8gaX6ELnoud0icSDizI|2g^a*%Z8z^|C{zFk z0viQDT@Xb1`qsewTwhr-Siz~RDl6f{J1F~_s!Cs)pXUKRVTMYsEdO&(ooiDkjdf4L zv(GHBpa1k{w(!~KeE+DN%q%-<)=c}v$1kz3{rgw!h-uU8#TTBpYkvJJyY@G~wmRV^x$gRFZ0X{cEjOE0TcbthYHI{Q)NZMX1FTSG zA3mhiCd;y#HhGebA3Iv~m4&Rj6VH*6nr4~l8D3rvXh)kOyiiuq0bxvQAdHCtUlkMBK`7k3ZwBivXCMHRA;TeJ;iQyqXR;Dc*GSpWhUiZdY_YlF0 zOm#(ZK*PbMr8ZE2kYS}?{_>X|4|Bo^C)mj+pX~Q(R{&#ncC_*;WoMX)=O{n11oRJf zQ%3n9RJ#Q98SZ5NpZo56K<(YC{xLxBM*GY#R0;?KlxLucRAp{aKJO+I*OOSLxR>p0R_5;_c_C-&?NwD4)_#)2HXMMcoqdi9`HCc z!NXcFFv>J^)=W~z_Mu_|_G@Gv)2Eox=KCiRL#Do_jGV_we3Q1Pyc~RkvhbVol0sQI zNRC{uUV)va#uoLtcsH8pdm(?yKp$GVbg2VhXv8({ zQ5RojIy23UCOpdG2-~uKo43WV;lmwF^E}T|etuIQ=uEk3SNb9O(KfVuc-Fy+%dv=e zc!uOWBEGJ!+~eDzuoe~1lP`TZL46U!4{bxgBz|wqs1Y`6#u4rX#URDw0uPWU@44|J z!xpbg0Pw`{Fhi6+$2IuTfl~i?-%4ffoMU`cf#E3nG_oF<&%1wm(6(>2@84Vc9|bRe zN|--C-fucwp5ah8`m<*aP2t+%?vWTmqH|&q{_Ll}a91P2u*JotKD!0wiWQGlKWfw% z`|*!|?3N|o8K#I594v0e*YAuC<029O1^xSg0Tytt@`N!d^NFXNYNcgEtyjzq(-QN- z@Jw4vt0Qz*+JKTevZBw zt$?i0>sbVym=pSlUI-2p7w;o9r~_6S78!~90G22xos_x(R!Ecy>jNu;_k-|XuyDEk z@P|LM?|$c7cITaU+QxNj_4EN7J!+(V{F0B^zg+%h{T^Wt-2ae$_uJpJJ8t`(J^j>E z?s-8_&O7B4`_!eE+9xi(#HS%5B%XQtX!Xc(z>JYwoZJN@Jn z?ab5W*-6J8YqMs~@TK(&@^S?r+8so&uMZX@^@AoP+6X~IUeJZ>!SV`1nYB?ku((E) z;mMj{!vsVKobFLxZB30n3|6^or!OSPYMlMm&?tX|Ia7DJwzsa{*v5gtSnAcZm(_ju z+w>_@UD)$IhJ9|o{dONx`r6mN=0UuGZUP~B2Ziy%ON;EKMT>m8CsWi>2&@k@_t;~+ z-3daZy%3^!t(XY`&8Q!31%KcPf`&W?4FWH6EqEPxHkJYPLuJ_y^0&$?{k{0%4p+F5M!}F8rLFmhAEYql#|< zswr=%JHxEBMRFg#sUv-lc82bx09L}m-@Hp3zze*Snw;kHkA$~}Bf9k_G!ngP~-$O?+9FOsemxu2{Z|KT1>=2JJ zfgFu(r+=jMf6DU`RrjqUTB{^F_?uyzaE?8q=cA6<(%j~|4TIKU7z7xM43PQ34}Ktv z@+0=-lTX@bKJys|G}EU~_xlKR#zMk0Xf|vl^*gBV>HE4W(9&z!vie&km`N0NmbV%XR`B8RsJ{XqGy%4HQKgF6Q_!l6A@SwwD4b$;Z>@YkQ zK{&(M{nhaTpb6U`;JO?xg{YECxz$=uc9zGsP>TkAmsu2aKJq}QdS?xaik3YAb* zEOovM&;S5njV2{w5itbSBTF+;N~ulYrquxqmMTh%jzzw{^tn1Y0wV|y4yI%?g`AEG zXh}&*aH}N<4a!1&@Q~G2*VxAO8|R2r63=IVhILs6~B`A#PJjC%rnk#H#)-a(MKNfE%+(d zKmYSTySIh%I*`}%S6+FQgBo}%@}+D20Bs}3=jGO{f#4(jdI7yvrGR7VguZy}k6C`y!*KE;Sc@f9TL+f!AWmw=Sy`fWd2>DcRLOF50uG zy`#sHQxmM9aG=v1gUI`Vz6prQ6<}GqWU*}*j}Oc*P~YhCZ?nf0bmASny&TAr)oa%H zur?qZ&<{AKKC~}q@})gJ57iCu$U)iRbNXkfZ!B#BA8}2ux%V?{4Z!jRcubKk1kvNg zW>{I8$$?h1hf%l3@X^nZDa3$boYF7w)-|<8<%GxZxUj_n1}x=?76UEx{hdM^P-gT5 z{aJs?aCpY^@-p|udj5IxR*HW99i_vS^dC0SK<{+KJ`)m+7MSks?nOrwsK-zd0tQP7 z^1&on1*{u_rTB#}eARBc=_U_CpbGlMeVk|n4ZpnxLb;291S z35?HsTqj>T0RoZhEHzChC(#K#SXkg8S<03ba@Eg#sH(oE+5&;7&_Xrb-RNYz!O6StgH#GyJd1gd%n}s7Fo~y-O>^Xbm#+sq2p3drp^!n>@KBV)!pDs`nCxNeD0K~a3|YnLPS?T>%_qkCHJy6Y}q zd=9S`ZFkCvC)wvecbR(#Xz$Ch+$}6w*z5(56BS1R}6?#Jh+PYlr!|#`ty=LG3?iIemF)<(T zA@>>Xgr+RH58w&FhqAyQ@B#IueNi|Zf%ka^Uf@h#(2>NosINu+o8P>{K|cH)?$e(F zAmKfJbLL)nj>NktEWXb@o(uhvXF~ggZ*z}6&0>GZ5&8rGh9M8yif55243AxU>BsHz zfBCY2?xvW=V0?d^CH%mx=_3G|M3K7t4LHZ=F`E0!Xj zYq4EBtDN6idkUEXO*-2cYD#iGg}<^TXBay6;TQo0yxZ^+yo=X`8F0`P-lv==%7~#o zDJutCy6`+PVu4>shth<5e4ithuQ+&)cGBksRQ9P)BF(NEwx_<;Bpc$0oZzk(-uCaF(`BHPIio+Lk3vF7hk zmw%-6zY4s(TcWXJ8wo}U=kPnEaE(q!<8o%q5$^$t4<_XrmJl0Y6%^#!cfa#JtF5Vb zWrs3_iI~Ta&|!ZHqQ9}UBntb!qB7|xCE{QmkM536&y#0a69gA&n}pqz>C=4A7Z{ZU zBa#rH#KAC?n!3?xQ6?-HM%)MS1sgVOQhD}Dkr%1M@AM9ja;JPSGs6tjhxbE$NeB&? z95jy?i4H!bbg&f{4f0_JcE4q4p;&^0aa!n$w}dibdDFpKTiR`tte?abHu4+k_vy&J zy%BwbvY~@fo(NcE`fn@@5(*FjkD`P&JRiI-lpEm^fysy-(4O*g=016%G-)@yG`NAk z{KYTY)mL6+pZ&}y+`_r#rrYh;S6^+*mMn1(2F~SydHHtHhd*LJ`QZ=j-!A{6TV;VQMtHV-tVDOc?S8w6K}rCoZ`}bSm{(4p>3Z&|`!oqz0(L6XW|?n&`odD29s| zuEFh%@M&#n^35zeI@(-_LL=x3ok;vmY!btAqMQ#CkvHBL=s=sr>)8(RK|@`w)mBHd zkG5>u?7)|2Xam|}%$PBvOOan=xQc1o?cxm-1t4b0qQ&-a|N5`KJ1y;j^~VnA3>5*? znbLi`Kpb%|c>Lf!01RG7%7J$hy2EdH2`D>pSUdyJgwMD}S(vuYtgjP}J=Wda@B?kh z8BY?iD=2u{6J7|sN#Z)ZLVkf(@L1q0z5!p8c!oTnE$7g;Ip8U-g+9Q${2kgLvon80NeDeJ%hNTB1EjT@|L&u)9| z)fIOAb=UaN9P)>6@jNmn1jWh zp`M|x;T|c}Eu`=_&+r>QVP+pgQ10#QC1yz=X}@?&poJJU7WpJ!4rUM%CcrWq#81*! zo`3NLr$y)k^e=c9et>6#SG!KU*si)D->FaFVcw(O1lGfs%;s}&rSkb9V)_yO?mPb8 z(*G!UIg}WO9{=4520t_%`u*@b2()m(NWcBv?Ut3B=K`s}Is=FuD{?wFWH(^ zuemji1wC@aF!#oM=!56Gpm*lb_k9=&q%CF?FZCt9Dd8+@e6Ttdf*o)Ivtexu?^s;_ z1Uu)v^Q>fOnFrD)Bt*N;vJ5<(fptO%_QZACP+Q{w1|=l*U?WG5c5AJEZ>#0zOPK2W zHFec4_)?@eS>((+rQU_H*OLSrzeEneQC-tsOUumgfV66L zI#wNK!79GvN?q0y?LwIWDzpKelJe3vD6k+%LMO!|!}k%6C=1?UXo8)hQLF$E;$E)5 z{(Af4AO9f5!={L}zUBk5EZ_L{H|)|+TrBG?%N}^>k9OH*|7>^OeV=XIw9R%)p|1vm&X(#bVJ<&aO3X)S{x*aZ^(o8gWvc~ z8xlM4#;Vn}Zq*tq-?3dh)8*st6DEvv>vl-lUv*2l8d@l|cgs+1J1NH9Pm5 zb8P03N7<;6V+4SA+mC+qBm1|nechI?T;br785yjTbM&m45%8?5_k{s{(Z-sZ$n%hv z;UI%4vBY+vJiaR+_?gdq)+SGyplG-k zgfxGXxW+Sh-ALZI#pixqio+MM(>1>y>D;J~DiI*6%lcdS^^b-*n5GWBp(}}e7^0)S zLOU@0mk<|iy+K>Crxgh>-QLlv=i7b5zY~r--n}dYFDI+NP(RjlVHl6!fNqSR&wcK* zGD2qCrVZ=uzWeWSC3T);!36@=Dd`!ub7zIunK~lkh@-$LiV{LbeVaaqk)wk?934@5 z^HG2M&l7n?`RSdo<1~rgrg^)MxV;CWxD9ARat{Ku?~`-T5AU;kK;m^V?tlr$tF2J% z`z<#+RWxHQF2F+cPHPt{keg+u#o1Kx2pd=u%h%r4Y54_Nma4wYFj9R(vn8aYTdH`7 zg*9J%@nx4Y-CcOcdX2r1h=x8O@RA^dE5C4{53{hdxyRM$TeAfYQpCrsN5xFMFrfl| zrd??hQs6JAx%h$W)D52CI@dVfWNWFRY_ zM|t_Bx7s(ho&Qc#+=oAX*%f`i-!)P3cS`T&e(Vt%KOFCx+)eTJ$HBhC`zyccS~`0d z8dQhPXHB&{gzvAu^r{ReBTkq;A?7XeG#KG z=FgYV+i%O4Ew;+tyIjaz{LzoviN_u5`}v@B;-#?3J6Yc(wnJZZ#k{X~pY_995W4Q# z*DYnvw(!hOU^T{MtE+9$v;Ab97g|?mx23964H-Jb){9wLkehzkq0XNu0m$mP z%@TeLckI(ayvo>d<89;SP1fGkX2pZqoGlC|;5%9R32n=Nx6l19Po^Z?_H1O11Q)cnP6suO$`H z)^6HlufDe0o?ZBoHA|`WlTxSc;&e_)7G2dQtOUv;XY7XpkI-BhYF7X&mVS@wotYJ_ zs{=2yLMdLm9p>#)#*Sw)ykV5a=5!eoM8N z7cKRfAV(cF$3Ygtd4Rs(T)$Us$dFl=eOAEaLIMA>!GnET`cnce*Zk%hyYJrnZ1JKc z{yxH-eQw%SPnZ(VBtjKs2o2zQS{Z)w-Jf+GBY?h7Kjz*(fnfR*JD&IG+a7eO2VKGH z(GDr81o3a81bJb99h9Y5Cl`1%bSWG$}|cgNYp36pG``Zrq-?5U`*z2XPJCvh8fb&a-V zYq=Em00%;;;-|LOCabHdcA%V|&Q9`izR{~MEGe0nC<6m}!8Zdq>tB!h-SDy@Rwm--)1H8Cfxl0gMBln9ossMzJf@2qvyqxMKiO}3r8%WYT1 zPCM?z6ZJi_F7fVx198sxc##p!U_RtGe-nz4sOHbf$(0Oh@s($L55~)A5`bZ$&=%2A z#!`Mkk&KJ2_PbkeSDn*cHn&SYvJ^s(zLO@vl2=${#~pvX0Ovj#FfUlE-kUmks(tEX zmv}rFL(K3AOBcXf2pZ(2N}@W_Hb|bg4z6*qA5*vn&#>_#=kQE&60*6~)~;J8IX={f zyZXx*>+IU+tC)+Z;$Z<9WSbke(hK6*1D!}$OO~NW|DtEb zi{H>woCA1!yW{}v9TIZaGmc2~=D}O<;)(gD!7vpAU<+$q*=Ae9~ zr6nF<#y7lssUEl-_lePyQj*k3Qmnr~Q5zdYO2`yRxD?33U$o?9%gxL6ju|b#&3jCH zPITdk^2Y^D-3c0IisDd#CBFH_`t|Av(Xc|nz=2j=QtIG{tpwuY6K&V-JrYKHBmh&@ zS<+nKWTvI-+j+{Lc$^NO$-*oE+@ft=?H#JV( z>5}v}-;_=0~90sEFs_ka?pZj;8OrJ z{MIdiOt3fL9exBL)W~9M6wUYU6|V{CF|;*)+!zV-Np|L0XIp6rYXEJx+it(ZuDR}d zZ;w$UM+%tC7HFAcGiM!T!-ti*WeV_ma=|lp?QgDiZ(4qCzSY)CF^dn0t=X|T9*v>kKI(f-Wl4I8~ocsU7-XObh7d=aTWmZGfzL$ zMvfR^83Kb0O#*mnzkM7=h|zjy}dljvnP6EUadx z`RQr%g1h}bgmnLq_H z5}5-X0V2=_-eFeZFd07ZB;Z9IT;Qd_!Antbu?(us2;GRDdau2`#n)CMo{J&0Q6oo0 zb}W{tDl z{0x-?%P4ARc7$(Mn*dt&={W-U$z#7{VTNc3;GQ~lngHM`Uqax3l>EF?Pqh(cW#SNKle`}9BcbhL)Bh-V3F*-1-g~8J z%C}F4%LhjCvnqZlcya5?Z${4mB49fH<~{Dy;TA4@-d4W)nwV{{b*ga_2C%M(+3Y!U z-2&#>d|6r9LiI3Ci_kTSB2MpOImR(7Xrr;k1WYPC9U`4RX+0SR>!3d>1i2KFvF}>0%h&G^)_ej zT#wg4NHHYDdjJIHXsLW5Z+O`a%gzuPvfUuQ|GLwb6$l?@q!S`aYm@St4085`Db zl(1;@SPG`fVjTj4GNn*O0-QSP_{v+tk$2feyHoiRklds4?UcocHNvjX(3KfS)M4c- zD;$W$NkFkeED`#WCtfEM4;>8wfnW#B@S8*(uryKNv?tFq^b&dQ2o9FO%gwTL&pFFJ z{_%_Ll#@>I=hnWl#_ql6Ub{nzn)0-^u=a^r$)Hl3EoJ@jOD?f<&Yo{Wh7{ZDE0@{b z_uOtzJoboqW4UeKwAQ9gn`9rm_@j2wMIW+3#RH`%u;BX(z_1ogoYhs=+6yne_cq$5jT;2?;%wab z@%F15uCptzzsA;Y-R#>U%#<>oJ7=~B*D{-m;UGLYOpX5WkAGqh{{Ht?S-#7TI(n`R zEGU#x!QEZ#(|}RhC!TPk_nF5ZU*KB+JR`x`)!C(X$D<;^o0VykCr_~pKlCBH{44)r z%cPt)Y}_c`8mPV!4HMB#4oYeIEJ2zS3qZ-&tI*%k3_^MW%AoH#-GC<1`)>_D@i%>( z_J@BNqJ)?Dn*%w)d(~BY^gR0*4fQ}rVg;5jUFPqz8tS}xr&>vIiO2M8-L~0h0y12T zag#3kj~X*t{3-w`zGn(=OG~r2DG2}+Kmz5$ZOAu0j!iV7yd1#j&9YHc(G)G2KG0rsjd;vuq6g7aK~Gd+MI;N zO`Y+?qB{XLvEYSuiF(94#OnC~8-_(_?H!e|SjI(BezozC+ zfoz8JlWona4fea+ZjFXZ1U4B`#{=F${~^Y#uu%Lv$NR-gFTP;4H8nOw2F%%KpXCal z`oa&CfyoKT-@rF~@10WMEe`r*057yD_s|D;-wC)yMll@P*-4xaYrFuc;aj!8{`MeV zNlQq8feIyPJBIj24Id?Xj`CggeZMowMGO{(nG%VmQk&q(N)TuRu&}eX*F*e7Yz@W? z;2Rk*Q1l>OWIuGyCxHKM(#`%dS9(Q+Nsz89FWc4rv9K%LKhnDHhezMdO zWq~#8`Cj*GWMyQzJDL~{c7$!!`&0l+5=P)Vk!u^_6^5L0Fcuz%QZJI+a^w$Y_F_XE~ZbnjI0cOC+cK8 z6Lo?(k53q^PKD6jxOuacm+!DbDIt_SF#=fs>8e{wa++<~yv?@n*zVpOT-P9ayc)RR zanmxbo9W-A1PLAbe!UbVyS@^XD^X!P%FAt!zL}Ji>~2&RC)>5NQgl2ZaJE66OrS)< zng#q4J?|(ml{O4Q1|dOv@H+q*&a@qMqOIA_MC7pk3H_|4xygR=lONlur=IN76_+hp zYQLA#z3$p;JWhk@nFIPKNFWZj6OKRGK5*U#?bK6Fwc^4&TloAlcFRrI*@6X6*rxSw zNT4*@^r;hl#uC$^3k&n5j9LGIH5#HR<2%c@`|Ph3D_?WZTfv|bi%Uqdt=o6mi;I?8 zW3#}lc&fSvH@xZ~0Y&+v_zHNH%`l_s?P4Ae^25`@Gj6%*8u2PvjKq`xj-3WN0C>=W z;ef3CY~{nuCN|KN(rxduo{mnnLVq9U?^fI5_0eZ-^Onu_$PT%_FhlX6BA>xT{Kt9ceZYo~7;ec@`po945g?j zc~LJu+BK__CQpdI%qGoTP!GYoq88T$BulEGV;r%+5zfEn|)+)YGKSf6HZ3hZEqcmwJ`nF&1<7+&@Tqp4?V8Vxn z(=*(=$%2;E#A~Rme7;8DfCv`vTd7{S5$gj1)z`_fh?9tAE&;N=S2XZ zFaLJ)IFb4We#3y>IjlPXoUi88`f`94h)6U=KwEw zUb6I!4BI0<89i#WC8}Qgb)Pkah%>3E*rEP)yz?za9iRr~4L$aY7W?&^rp0T;eTF~x z?eAyZI#N>Ot$1LTb?!UpGU(vJcme5j`|WRU7bx20eZ*q`DUa#^aLALQE)!o(n=;k6 zrC2Xx1zCRTDJQ!}tWh8iI;RTk&|{Z0vHwQ5VPdxd!rAc6@AIK_B zcFPC%{ixAnY~<*Xz7`7Oi#fS@-btDy#9x!L`u#%>+5HdPZ;KW$l``03>o;t4LBI?Q z%E0&{LL`N#c`+f3?B!Nrxz6soSYEhaT>&K%hr-UQ5@J$DWdcr&eYO$UrH;Wc46!i) z0gyZ{coaV_)Kpo$j1TAK7uZuzF7O?IQ-$2!nw0=TX;FWIV6y})>gsBJM$w?cfmWnW z&y-uZnjtJY(yof#?qOo>mmv~tEU?zNx4|-HY57>QXbU(>Oi_o?zh(ib){bu9L7TXU z4gs)NUteX5mM)dTZIn`#V$I03wQJYgwyoPFzz*2nx(3@Mi;n5z#I~SlnLdgV;cupF zv$}6M1K{vb;mM*r9;_!tf#nj#L-ksIL9WV}X6KxJwyhM9``vA~*}eDNW2;xaW|?W3 z0)@kE_EB@}w0ZOFymLNaGXTp#G{0xe6xeC87Z*NnSO4P2w)mxIZTr?u62Se`*=N}$ zmt17?PCmhhgSxw9&8Y8ZNgxnUP+ME$uIW9ZBf~)>Wi9oOPqbC5*V$9gJa6kZZWbN( zTj8KmcYi0Rvhg5$V#Qmpcn}avi~wMS!xgH8l32u*0syH^7A^{HU_rhVBQvxbtXE*p z_bbx7#L6(-0YL4qYl;2iEt~Oi@sxi{@AgP&cJ!)kq#$|)kmHjR1%f-2=Ro_+r$1$9 zo_4woDJr&O=FSp`%@=6hEG6+wpwQ6pTw1n(fUXMswJLcWp6k)lIM z>+rxk zHw>!xnxG|Z4-EkVR0y6-PfNE7 zfvY`gzwzV7I)R6jz0DnA7*y1rtZKCq*y)reiHS6 zKS>nq`xT}CQScIoaOiXIwNigg-NQHWuOR$r#0W4%`~HMP8OR?iK6oKuWQ6Cl&pzV} zap0hsNX&y!A`dKK6gZ8{W^+tOU9jM3yZ7GvZ0WM45+XfrF_Tx5EIO>Rn(A6H#JJW0GcX=;5Cn=*HQ zw`0dn(P@A+$eQbDm+;k@>666C&~7MY0;qiz+8B=lZ3L|VgV34p(>7eA&a@}qiM@?d zqCHZ82`r(XC$O^Ge*fSDR#mx2LN>$Z%$#MXo_dO%eB#M=%E>3$FoCk|Tehh!@39B( zeZZD3ec9TYh+{~zW9QDcbI(1~<{mZ60}|mIgbu5IBIHnPD_6cM%W}830dW(E;OAa= zQT2XBpkWpHbZdgoQ3sc|m z9Oyx(MM%&IA=y~dpgJ_UM}~ZJ^$rICy9ueX$~%=;N}{z0R5uE|o<4uR{p**%Vr3JKLv2)lqMak40$_OyxbT}Z z?M!4AM;u}35kmv;!V1iIREUcL z++&CwdE^Ygh9`vniZX^rIp95pF7N;_gN|>6@6t{r%IEE?>+~1E0_8(R%NFd`^(31%ZK_S5I>ky$2C1R<`OsW)a*DU*rY+lTo#=SrV1Ezv?62O6&e@GP>x4tnN*F({~1|jhLoSd?x(Fbb5FQK1N>9 zzLW``4E>5T$J0+gqqaCH3WHF2=^wNMb?0}e*ZWED`+fb3O@CLzM(_T9M8tPWhs(o- zl`4)BtnXW@KGyTXI~)KB7?&w$f#DcNV5r4|2;-9^2=JI<3H0+B7ogn{!$%5W`tA%(Ie1SLQ6T?Q#azN>$$cPVMy%Yrhh!Mk8wgVn$iGss|e5>KNtVBM4sF7?36w$?UpTwJRRJHU_$dL~-@%zVZMUZeDkOdCIbf-PVEiU)xb zrB3J0%+A7B=w+kR5~IMzaEw={r6pUjEN`sVrAwDvs({YXM@|=j>9tpuuMhzb`hs`^ z2dbPZJAxT23BZL{2p4clda50iNqnejr9Di#3i<; zRb>fdHigWz4);#X^9!tuwscLht0 zb|eO>Q}kW5c(G4&XW_M6pHiRiLx#&l>t~;R!DLKw_`jG1QpMjGsiBw>~r?%Pk-8uoHogJRMyxfmwen-tyyiO1di1T;-w+pE=-HX z0_WM21rP@n7FknElfC-dYj*E__uD-Jip00T!+fWysnLcFEAv@7@Fd`x84=JNZzTtR za~+|J65wwRejj@HEJM)=ARcH$xg6Mt#waic+iF+tbC1Infcgka%nuq=WV2?8PgIv# zGmo^R1YlWv1BI}EKhyK0VHpxLMBq<=E#=pT-ULT{o8dC@L7_8L9b#M}PYW~62DtUj znm_C~T`r@7cr>QcPMSQ$l^^*6>ap5gHL5SNugy;JAu%s?k_~J}fMRCIm0g;vL(EG? zwv?lQgk%yjlDsgY@T>y#=r>{52=FpQvW7ro6;$AXZ9f{-&-z)xz#>`h>-4OY9l%Sy zh`63?^;>|&p52um^OB->e1@ZxBI_A#FW+j%9e<44nQcXSeKusTd!eWZ2NI2;azKm# zjO0mrMxy#uo63o|6`&}PpMZSZXLsLqr=_Zm>5C$RXs7-pTH~!Kl;Jf+eVt7l879V~ zK4$bNJM)Y)eb|izaBxM9UeFnj9Bsw7@yek;-YEs}LLRhl1bBkyMb*)L>JI6Q`eV_7BcEBKgoPJMUfW%vF{;l|;%O+2nBI75=cf%&2n_<^P>4+zv ze8Qf2?pYtE%x6i4fqCxrAr=uih)iY{AUcGRgzY=ZZTj>hEWaRMJyyV82jxNMfVtp< zs8Rm?L#&ObDbmnTkX2L<&#Vtr!oh31-CevTog44^E}S z(%1;JVBy15tPgvc?YP+f$oHkxQ-N*80#Z2;Lb3X#) z@FL(1qSLkuP_fp^>NhsHGDmqH5RDk-!qdVQ33!YU#CTums8YRNe)7x~SYRy-ev_av z_fR%GOMS6K_?z}+ESHW7eMr&z5(h0OEAoyo+;ye^%ZEPnAv7K=PuDR&H){D zpzP2WK6Qa8#X{MsJM{xRc^r%q7CHgDcwSJ>)E!=cXXx};d*lI+F(k$C9qwcRDZ_oN zu*+5fIIOdza7GJ|pL^bU_Q!`FxBvXD_>h} zPe1dF{qYYE+iCMpx2aR6`P6rY1L5l)wJkxhCmuUPpv-K8ti)@tz0U5w_in3V_(L=W zgwn=Q)bo(Ze<=H=&z=MO3`0hn}w5dmrrHrGQzvVt&sZ*k`D*dsiH7c@)#n4wYV z!vWo(5eIz{WdjdED`?638PM3b;pk$jG{Z(GL^RhsVTpd8tFNndxx%}&5p{t_38*Iz zWDvZ{!F>->7F|$SyaT}IeSikn@mArjt*qRw{!-=re%SCb2TPP2#o}IDw2Krw!=Wfl zW*xTcysdnft>3&wWjN?yl$e}o*eJ&HGN7La>=J7d0lIiMb|TOp9Rzs-UYOR7Ax3@J zo2eGhi@skV5V~$HQ>7y>jRPpjw4C61QTfM=9Azm2WCx+gfd0DQV%xWEv15*%E16s` zKI|1w5OWm`{bH>3XBJspf|RHFy!rv2t2oJEQgU*Z@W@XhLdrfkT8CvsCJI!XzI8t&{MwI9Q=z#`+M%oRJF}z5hqkZ(> zJ0|*S^jsvr;fv6JNxV;=v-WA z1}hjCZKLwwL%;Wh>;N+WTV@X}S-R97dgvkBCE0=;K%NgQWVTYK3KZ!oj6RG{cpvY2 zR92SGi0BZ_@?zpcRFA(l!PD<2y)W?cUzrZAh#Fs@u; zST?NRU{#e>?mFgKNdPZnk{Az#*wNi1GQ_)eG)-1WjTAQdBaoY=oXDH^DK@%I3Mc||qvn2{3Ck(J20T}oK3o}9doOH0i zAtDFp8#TKstX6HbV`sTNCNTG;XfkNnP}?JA0Ps2M%rosPU;eV4b=FxPa0p;ru;3|Q zSnk0GfA8-xOjIPEz_M#6o`n}k(Uv9f(e zn%aq#l4-Mz8`taD;55Pe#M&~HW#XjqF1J`5ky(rc#{zJD4IgE@ed|{HY$F20ll=L{rUok(UDE}qcI?>dQ>9ruD^iF8sLFrv;8Giq zK#*^jkvR7@Js^1j?XZtNZHB)?_B7Qz#o%;j^;uFQY7%nnIvgywzK+<40 z-*AJ=0)RO33)xCPMHW%s6HhwX5|b0%vWB7TVPBt6k9_93=W^xJH7uA#shig-7rb(nnui`Kk}SqmOtNZH3+-4iO&1&_y3G z!wgx^Fgo#LELXtdk32)H74NVr^=p00I!u;9+9d-6UdNj}W%5KHc7OS$7xmr?zFrx# z1cweQQTyatyz~^apbFK#c)sZ8v=yE!zzarG6zde#>%S|->h8m)NS%A)*|-mV>T~~V zJTI|%!gR4IcwQR&BI}tth=7kxFh7hGSr!or#sjfx_3Q4ocjc!~5S+VD76JkUrUUI_ zC9xDdLK#!JH|2uCa8F_dgrOB?42&H&R@Mw4Dgs`P(p7Z6kB5f8vFLdQmog5$ zkV3v*Qx&YRkg?}AdY7?H0RnvoK|=5v0lO$!EIEWBF)OU$f(1|@M$XSKu;$hl?^Fc0 zF{30oCD8#90(!DKS$=k!HFWIvwGr9{@R$XaBP9SRRL^uUn4gy|0o3YXk14+>O1}O2 zsyA%A6n>+?W37Y-0uxUZyJG_=!jK2}lpteY8^h_*YXqbsT;o-Lr%zwqu@vaQ2$m>d zG@7M>*9=RS17$)7WXv4k(Ja9~Z0JxcEh)9fAAZV+9)LTBrEo#g`V@{SW-X_i*a& zIp7|a;Uh*#`AHFuo#4BSvymE`@yXs+)5z-4nd!55rf3(2(UOu=+^ggDP`feZks031 zwDK{0U8nBUm!S&k2oQk=k%u5!=Y{96KH*=t0HIY*rm?I#dlseYJ0eUJ1TA67s?htp zdK}~tKgGNIbqzq8B4K;Ni6`0@KmU0;7}#*Xvg$;&Ul+`;(fO`Ck@ z+uE9H2W2lUe$mRynOSncXY@=Em?7X7#UCkRX5z5cPc-X|8D;!LH|3GISnY91egvxHy~Pv2^B7Oa78bPwC|2y=4rVZZIw_lPy2^Fd37X8~l1 zNjwv$_Gz*Sk_XH5g#Yof+rUERu<4%4bj&ocq$WJE=`;~S-^LK2VJj}fr%I6;*VZr)257-Z0vCZ z32+es7jj2#O49a$7oY87^c$YQ+ee!*EYIFc zfC%Enkg?=Ln`DVE0bO-61Q|xfi^UMXZxpP&;VV{5$BQ#_=1jGdK(D^Xa1b6DHe>`O z0+jI1U<~1fVI~^jciZ;u-mg}#+351cflOJE+9uLTY{fxLd_!n{@a3=*t!W~R!b%&-t=N&_ghKqIT)G1t0 z-bC<6_b3tH`V;V?_x*+h5eNVLw_ns>datykL}gF(sc#4kVjXj_$cvCthB(`lY_h*NX7-@M~skXP%e0YRd9M-g9N_D!dTmt9- zDoh8(vxpLIYH726eS)@PPmMjb;Av{*;0W-8P$#~H_=`lnCNV9Pn(RbR^zfz|qoJQh4Zy#RAj?ess$m z1tUJdjUIwQc@Myh;9@0E0<^jA@jiMM5Co{;NBvB6f+s z%>me<|B^35k^miqytvN$F1$y-q&avGaF>yu>ivOu4!+BRaFK-{4d=0tA|5}Up-u3P zxe=rGLjhrT5M##PV1P&Z8+6&WWvi`txp;x#f9Q}Rn(piA zj65&tDIS>1dN28TnN}}wf~DWp(`Ca14);`5`fSeXTJ_C>Y%3U;XAOHBe6Oe0<~H@^ z6w#jHv@~DL(U;E`4J6H7_O>*(*o`+_r*osr3fdm8H2hB)i9I~=lv6D=Bh6N-j0{hf z4H;^eTylwnKRoB~0DH>u4gdpff&A4+{BMj=5`nSEVe|&|q>TfRVR#2wP2z9f_deeD zu3w7;yn`a-Ertt=46PIM!F9WS?Rp88Yi>Z?f z)h_)V?-n{87$lDsRZ?0irCw=O5~7o*Ot#X2+1A+FrH-@KgH2H~#RXZ`y3cIG<}JF` z;xR5og9f>apH71pCY1g0C!aEwx_UN7^_64+MAlj%~JW+g97Ub&D$t+}l+(_4fVm|IGJ? zN=Qz%0SQT#nw}{TGsKm}Bo=Mc`z)ECqVK3+?j!Sst!OvZ4G{ouFpNkd5SO54=uoLP z0Bq8x%(}o;Oqqiagf!td-~|f~SFX3Kt^r;+!&B6oXHimqUqX{$y>_-pXl@bTHakx; zbHk_5=Vn>906^FNZtId#CcX=$^r=sN(ysXCSEMA8rAV6X&O7e3haUR9!0|HA7X=O| z1URtM^aU4OXvdv!yw66fsNAh`q>5)Y35?=S-)}hr2?VDz9ExWJ<;7-?pT4-dO8rh9X&Li!uAKq(2@( zhFpocfzKE&N=l3uy%~z@o7o|>OfNcckeNE^;vWI-zWZ46%z_~R732YJ;dk1?`<}|c z-|!^-2jGGB^fB%Ont6v9I^t>Y_HiAWv6&|T3{ZlB1K&=cKFv-#=_Ju2)AvB=y#|Qp^urOON4e)^ z_wGvHL=`}L>@ml905P5_7OTt2B(^NUWh~!@SD`<&M0Q}D(aw0dbeETLjSTmJX>HpU0)i0!v**lm;TFE{jP7NP^}OVIM~CsfUI%$X<@U0p z0I91$lAfXCO%n)t?X_3cnWH^Au-XAOyo>OsTlroWvbI3hxb8PgQJ;MB3ATNAjjfSF zKmd<{ne)>9`JH>}C6LN}^F$OhLpdlgW5Sz|2j903Ky$zsS7Og4+5j(-(?QQT zpi|jsCkH8gf`c=3BM;h&PRq{C9qrAc2hsoCHVV*k@^NFYxifviv@M%9*cK^U z+6!0ph!G=fh^#a~*uoc~8uA5=3kWr^5OER0up~ zT>0K0C;-(Rg^OUN9b5?NA1#NqyhXsUa(9JD}G~KI4N~VD-&=t+B1ex}>=G#~rl6BZgT~ zX^D8P%Z8T?w=aC|GRsiD%U)b=SN-A_wq)5-=YK3*%0F`C2oHGv;0MolK|E~OaF2QU z-WA{X*r)95T-&KSQA74pNmAb^E-bJK6DRs!NGF_lf)(T!*h`C+*aHtfXutgBm9~1- z>mE~v;=?LtrCRzUeFeZxy8@P>B>|@Z6RcKZE?#``C0i#2%leS-gl@dbUgb zz-Q%%=merNROxL5!0ac!6Hfw`od*Rfc@Ck?-}?n>0n~UX0FNjM=m;;e$sqUil9vy; z666OUnl*I*59I<`Ol93DKHF2Z$Dajo964i#yYz|4Ay}6oGC&3~JG3nT2L8V8`s+l; z{XQfKK*XEG@Wbj=s|2+A`S21$V|l9g04cKdo3^SQ_WJrtct_F%Ac%e7AYT+NF)5Mv zPD*V*D+rg_?Afz?vrhKlqQ1>7jaDX*G_-Vx^AjEb;_gtg9i80*p(AaJ6!a@h?8JVe)clFjJo-7oPFxxOw zZQIq^BR)vCtQ_LRqE&T$xK8D0m67$EU;WBu19d?jc~bi)NhW1V#?O{)X1Iw-7q!Zh zA@Z}%IKyQJMgksSR_+b^Jkcif7f%uX5UrdM)TYs}j>o6y8lV+Qh#~yve^-tN*q3(HSwPEA}eTGFO=^x#?PQNLXabDlBSG=;(M$7mj zHYr84RF={KDU!F*roZraSjqaoEB&c1{__-j*XjPZig_XZ<Sy8&N;Dxe=*cnfK)r+kqzde{v z?=$T>Cnw8ZeRU&nyI~Unv9>x(5~OSu8`CmSLqmsvq$O2wXbGpqv!XyRy2) zc2w-NRy~Wyg}^@oa!~}h()Fsn`ub{HwtR&LgRvYr?%fvAs$TVOYHITtO)Tuz(c0?k zKCoa?e}OPOFeqlmotX*@sBxD)h+jYl#gN1hh7=E-lc6Qr2myd+0f7;$AnL<899&0% zaIlY2|9(A|pOYqmKhQ4!$`@_^>8JRDbBh(6~-0)2a`t95^wy)FxScU7egDH|$qm*&%`2}EQ(8Os!p88dqr-$y`F zPU^tIfZY<@1YY8eVzv<;263|U0Bc>aE)9F@@O(c3IocU6Kv>guK{#S{A*fhy2g{!O zg{ljlL+Vc)5mUMc#0eBhD@)9}l5Ov7lOfr0KcIngOR#6xOj*?^5|3c{VTpF z;JRG`70{k3{vL1h=FRgZ)d?5`IKel+``zuf;F+iG*~g!-VX}CM_ra6H_7w2?J_*4K zFZiIHcFJ+Sr`57$EA9FlZ?rq_ywjH?pbqRUh3A8~hrzPw31)5FTkmbnOhJIV$14+Uo`e;E3TGhU5P5hd;Q1v1IuYD<~XfrGv`^3U{l_DaKx6Y$KAF zpXaOmG8>86Kl{ZbF9;OwsHm`}R^rpLEn7eZ{zA!9exxGa7WOLxxDcev=A=nU@gAd8 zQZmSx(N$f&$31tG#!XPaWt|tXhsxX5&Qb+Eo;T|@(U0k`>{kAfkA6rrNK>2D+Dk7l zw6fu)0{czY-qkK1Op-xXp!Q#3TLr?BQ5`gR$W_d>jZ+?B7k+fcmqB| zuH(I7@2c|hayvr6#$yZB-taF$+AY#uc#yJl^W5Mh25nP-T=w6VpwT;}*t!@(5C z&OO#fju`&t7`!Wo;vx_7BQWs73ofu3N6v7I4+{$m9xJ$m6)|_QUJ9Ku8ZYHr++&fc zXjyEP(6Pr`;016*Cn2B;q3A)Zst$*%F-O9bpH70Of#Cs!S&dDX5Mt9kVsVIrK`;Y= z7!qUER%T(~KJF(#!B{TCM=Y#I5aoo4lbylY&#qg2k_{L43WVTg7^J%5{h;%)xf`=) zs;cXxfbNPGSyMS!9-e)RSjxMmzCj?S(>et{N<^>5hI(JE7xy#6XOyQ`0+8`oz>o_A z{>jqql%PZDQC6%gFby4*x?)M-&W4WsjRyiSN=tiiufQYka^~8B{av!;P)hq{4Nmak zqDLS5gXmKsE2YH8JG+AmJ?a{}dv?m^a%GRyjXhkJu)}{KeJ`1y_nk7ug z7f`}3-s{${v*oWWwYvHm4|HZb2DV^`ix+T|U?%P)F)`VPP~a;B3iM~l4tIC?j_odd zXdB$ZSjW*Snye%&Yd)XqQs zG@puzTbY;?hLWzj>M9?;SoGox`eHvj;;32fhQ=F+*O9oCJoTX&5|Gcmu*j!K-~Yga zZcN~z!Lp?NX-7DkUA?DFn(Q_zb4=`|5FQxe??= zkQ4OF5a$xDNtETDTG|RA$qvBfJ9hZ+5IaLp(gE$5vYMS4Z6QK%EQ{c|r%Aj(j0;1* zY>fced1KXTJMrX`JnoJ-p)`TCCbcbqjp3qF8BLSbHh>^#&zerm>RYvDy){erhzXrH z052@ah*u82qJ98I_>bSyr%w^z=BO+ThqD)1q5}}T)cJY2R#I5vaVRW1z>plFu%JAgIo^su<+xbfp`+?cW6c6<+cL7!)}?dP9;PC#U+>jU^1Z!SYoInpKQ z!MX;v5o!0eVb;8{&X+(S-mFx7$#)J)J^)@MIK3WGEKv*r{u@#(y$+XR@AB+_DR_A= z>Cim>l04tf=il_a>}~XK9uB-9INg%!6G|LdJSZ6y1?!PunKQk4#*FE{$z18+LF$az zHhzMvOub)OS)qa|uYKKOLNRD+nz8)y9x3*Wbe43FVqtKjxZh3uEENXW=h~lcEK?==dBG2!Iy}ZU7Q%HLzw4o)FYZ z5EP!j=;R$&ZHdwc2;t86xEVc*vL~h{UP>!P)-_fZo(wk9%#c!@Bn8QyE;+dcDs#KN z^wJVry=JXF^X&7sV&$s>sj7E&o~29Cm;`QzgbyGI>llv%WyI>j<$J2*L0T9EYRk)m~ z7mE?X6VL;`r5p$^pJ||L%xb`6fmKR8NwO3lYn`wz1TJ~N3zn7etG8>n_!|Z6!KGr1 zf}#SOdc;(lI%Aqm7w99aCLC)%94h2a8}36?3efPS2Lma@M7+DdzE6~mgfDo?Uoo~i1O zcyXlfbckEj2P3X}%UUMBBG4GmEJJ`o=*kzl&M;uK!76fsSz;(bR-|6NdbN9#$cKgb z@UXITFP<>u3g8fLD8pBjpL#G`5n5pQ@V%{Dx7v|M9^vwX_kd9S)K8#ozCa7pxCz?C z`^j)kS9gc_X`65K*(g4U6JHk;4RUV{sjj9{<;<6XGDLE$zyT$BlnOA69z8-pVz0ir zQ9z^HHx}KnVV%Hbohw0teN&TDRrY(oa40 zq~xaByRkuh+2a7Fp`LZC;-n;JxDv;p^R`bKAmyAQn(Veh@f=gqXF++?XqoZ2aKh8C!J)+ z&6%t^R{8J|@`q*l={MPWr(Om_oPbe+j6J*~fCz?ISc3|qgMJ5~fzL6z0{BIS61U{b z>g#}^B7Q+$M^c*K7-#@TcpkY8F9TMmOr2t{tXL@k*X6VBd?>V!uUSTc1kZ^5JU8So zi-%5}I6=HMA}WItMlJe+7_?`fd)5umAw$bloHz%x4y(k^?UE_%GM$@OAeq!@Pdxdg z8@G5-@nW$=1>X8(^;8?)ca;Ce6swC5mtyaF-@M?{pT7cy^PUd>=WXRgK!Jt> z%KE*Szj@}+BlaCXcqisK^qJUvqA$FCqJe{3FQ8(W1_1`)3HD+p4EI6yC>ws$QFw;W zIEvPn_#2Rc@<3>j59?15Db931Vh?)u0S06pNT4>B&VK*^|MW>jK~%5>e0Fxa7_h?^ z#ag@m4NFK#b@zOwP%Q!_ku^P(56p&Dc>SX=TZ> zp*{!t?RVkH7$*t}3kBsLtVWJ#HP0l0gJyRLva;lAA#11$aG@@^4vPm3_VMIh5+DQ; z!kom`Y%kyDtF0E66k1#NL0kF88jDMo#U@72&z3bL5JJ2Q44$5h^=7u>)ipi_->Z7D z;;YZjQ2iQ3YdavT!K3+GtV4jMQ{QGP=HTK%K82Ecw{S#}T zom#}{#_E#%#djmNkX4|zMVWJ-Gu9Zqz?lHy15!4fvOw7$pTN+R({ZZ!*h1?&9|x3FO=0b)Jlhx`Lt*FUJyxbkR#rR0%8$d2p1PrqA5ZR)?_iQlq6a8 zy5HQ`YU|$EV6VUWx>Z$HJHX4#%5^{kfUc^lmSArZ5A_OQv`a|II@WX3dykNdr=B_s%N2=k9y$m%sR>Enc+P zGSjnsD3QK4N><=izxtKs73JHjt5#XM_@!dcZh_}E7nt4B`2|4-ij|XF6<(rKR9(-)EaPuJes8=|61cpCZ9ZP$9!RC_9Fh zy4ClX6~w`?5OGfQO$2eg6jFEZ0o%T_(q3QvhP|i`Vmg z!??-=rAYtUCpt5uj(7-w9^e=n<9)@dg&zpOUAuOzud>XL5ph7w8X76^LL3i@sG{-Doeou+W~9LO()4iM_+vf`Y{n0p2BgryxH|{81-fB&a({R{Kb&(=dHw*UlZP z8$qAy)BC$s)<*U94uSMUpOr^oc}8lc`f0lJEW?i}DH%3$_$Yy&GSMksZP4gLm#jg; zzCrt#HK;n)Gxb|w63^p+0ZBR%+{4q=)n@C~zplQ;5)=fKBGVB0agwFk?p;9c5oq6E zZQk11ZgmYcc0e-duHXIE+LZ6XeOChE1i}E*Ymx>11@fwF`k-wF2U6ASF* zd8b*H3^Nv{M3+(~Ja_fAEJ&K1NQhf9aP7yf=X@WOK_P!tzT@1R8q!HQRa)o$6Ck?UB* zfR<xJ z9FK*s%!tcfN{fZ%2;O3>919bxpRrTs_Or_?Ls3|YxO=gJ^7Hb2?FWEQ;h;imm7-yK z;h0gw?8Rj(EIWUol+HnSH=2YR!wkeEFg`8$Xp0vw_dSY;4MI3ak?E{U!m`}V+z_Zz zU8N2zEtyp$v10bAZf(A5CsUG{?Lh2>$R^qW2BMBnVrYrsu-+bt7Ac>=3(zBKqG*`S zEgN-W+L3ijxXF42%-})TFzm#*{m$(>Ww|ui*=L>WZS>n)Zc|x$Z1Iw19xOL;(iC4~ z0m0R!_H&P&XoE$RAn?i5Zj>3893>HFIKUwOp_O4i1e?mh!fYu5uXov2Wu|&@pEW`ll7Zh*w0If-;v|4M`Czr; zeStQ38u98N+;;8Ssk-l0{i4OMSlfjSJMjt=U{1g;ec^MT`zJg9th4<4n>TK@>#x08 z^t#m+EncL$$*M2N_x{61gy((WJp06@mkI==+ar%YW|aaaB|`@rt3=IL z`ueLY#RsPLFSYZ|Im1poc8-l3U1n-5D;+e@^0L#!%WYOyRVhAguqG*~O`A6fP_bMA zhDij%IU{I&R)n(!eZIfIV2jt2gXa+HxZN|P%`Z z-eOmL|NB-_I@r!U>l~}BuCX2|Toe`4;Zvm~GtyH$AeZtmR0Z&2;sI^Ku)yXmn;h`s zNp5SCLKoe7x;q?*L1(rWVaI0ZO0YIO$ZVj!4a7=C%hywG*5Fz3>I(1E${tu{M^3n^o z?4_5iZEv%bc7k|SeNJ>ldS^@d4jDeorcR&kv*PMxBpeV;Pd?!!8z!KI%tH=KNUG;D z86#6|60i2JwnTy5UdbPH1pqQFMFxWUdq*<>QGE+_B7TzakJ?7OLZ70a`Vg-GotvO~ zB+?W8BH*HH@R7%ni1F!jv;hX18=igNLJmCmzymUBC4=zTi>?4&CQk$zO{%S~mf^S4 zhgC<78fm@i$9&HXZ=LaWBEwg#d|hq2)s`%O#a>aLn=p2q>P9d*F3f zZ}VwWr?`#)FgZw9TQXeA-dvQ|1;O7i9f}M7YVbljG_%8{_wvl)(&65FH}HZ&<2?jw z03`?tt}!(a#>MkOLxAjK!3&K}{dg9`Eqveq)-CR*B&Mhg%1a%c)i51pAMADX+K%-s ziy>J|2+D41lp>STNAa>@V|!btP&})>vV?c1F%@vm>{;sU@#>I_?M6FFlQ8JnUVtck zVi$69*c6f}wpinF{#_VQUBZJf`5PA_ixm}@l(+J5ehaY)Fz-6IF zzq4KiN`pL9ARmWD@ZbqT*e40d>=U@^k=4hr7OP<5x`y`5Hrgi(imBuxsDJ>m2kI>P z(>*OZcVo7z%y5Bog1!*}Oj;zmhQjssROKQ77`cS$h^$|M<*zUd*|LaLlV~)5{%QJNm+wDQs7hUub`_P9!BScu)S*b2D$HiA z#fqEhUsaGY=Uae0AkY=RS5PKK{7le29p0qpX;YPCN-iakNjBz!)(f+jndi zSY9N>vf1X$o#XqAF?_jGpc0_M;*S-(E5)NDZTQIHqQO9~C$VIBe~}3d4UP8X6HnUx z_dVbXK(fCYv1gMePxV<}8#Zlmeqzcne8*yL%uu7<2MVYb6%JBes~l8xws-mLMC1sb z5mEy|#JVI`=FW6y=H5Ogz}Hc4rE^`g=}>*RNmP0U0}4zNp^b zroAq=5UOLxj&VNQwR5L?40x7VKHX}s&6}k_^Ku1Z#`r8Myf%1;7_z6_IRa3PEqEmR z*%OaEZp{tNYQJPx@;#CZ#G*;qSOJqJjycXfTQ4qr(b@%=M~OCPopH8L8*djFA!t7> zHPKpSz_9~1ate9U!_MleKSR{eBA2BxRDUKHuwRfG)#Ct3^l>^T{SY1lcp`5-sqNt# z;y~$fJqFUy4PRtW9W<>H{Ldi_g{VOb(=ePt_KWbq@q`lWg%bU7>Sje zB9Jpe{DGH*L>U}pt1keqH*enR@@9lU`HUGyNG4-BjpT|$9Upf*!$vFy77JeZ?ZY@aV}0mGC3hglkOWbgNT&P$#J4n{284Sc&XUf#BY~d$(^uhO%P|d6X({<4qgZs~$Xm zK%F~Hf_uNQXdMZ_}q@u??* zxuKy>^+JIVdC!_F2~wUJZn?EIH>v|l3ADHP0%XkI!iz*q4;Y0F->^7wpJJ^r{6g7P zR3$8!XdRb7=Y|Ntg!ZCd%ub0EebkQpcEPXr zBRq@HK>_m{Yc9lX@Hb@;QADf0-%2PZo_9Xb2YHrnGaioOAzzd&RvXqk9zS<^tL}IN zDHnNj5Bf5k#o9LPdX8nyGsIy0X7-VG%8AEIF-XB5=n)%;7P9i& zq||B!9`PiW6cyQ+v12_JhoDztK+1RSw*K+rJ>o4?XUa{zsRw->Va(sq4X^?|IYTGT ztck*K39(jy_mtEm_wb>(@DTDYUWm%wdu-)vui5%_>($mxPD4Np00OI&SQfSn!Lv#G z;ay>92+s*+f(ODk;St(}nJzs0#1oHuS&5I~eRkKzyTE;T4DgTVhG1U)9xkOzT`31c zA{Y}bEgg3CmA|qD3!V{wZn5(63Vk=xjy>iCTe57q1D}zj#)$t0_^c!1O)!@5G~*@Y zn@I^NmYtPtPd&B37A;z&Hm|WA+jlsP82$jfFpDKSD@VM6>|@4HlC^d26=c7VcL@r&r)N1zB zSU<_d4}I_gfx;oSal6_<<;}~=x4cY-fBIX8cs*6`=I3X+v54US%~%%*4+P+!VQIYO z2h^qMKkyCm27@E?Az}!TNzCDbm-IiRlTTpK6?I=3)%1PIM*0?ffQI4B3@Jbk9&_S` z7A;<4FTM1VK-keP&lzT>|M8rP;_)ubD4IHTlJg&VQXU7ZDo=fFy`@X`mI??nm74wQ zpsOe*n)2Of1^BJvJKCS=`K%-jxI})VBZzSVoI(qXPx3{t{VkKzH73Pf_^JPzVWUI; zCLQkDdr5DX_q%}?IywhJ13``gp%c)s%`L1dnR>{uQD5+^ItkbK49_~sReG}=G^jq! zN~n|o4-QIycg1c2iyUVfh61E6r8F21j`u*ep00hi?u~WsI%gp=6e|`zfl#NMdXf(} zNuTK3Sm&T|JSq`*5zqUu5nzd_&y)+s+DF->;F)%fP@yB>ePLzBVhNR<67n99C5wcP z(JtnvjtCsq*s# z6!A#3Ogjn`ngc`;Xe2;{d$#mE8|LwD3SL0f1CI!?6O1kUFpvWutTc&cJvTs>PrPWz zdORp&WCzy~V&qT0B=UfN3E0MJzX4?Q1D;{+C1ipx86cje z)riZ0b|_}#0mH(n>8Z{q1f~+GzH!4wH+bl0Evj3Ez!Y%~Y@ab+Ji&T200HrE z9v66@Rg(ci%#OkP!w%7Sx9aNHUnko=Jk$djGIQoEV?j#R7((9E*R#)0ntMlXxZxJN z^Uk~NxZ{ua{j>;(XYCdiSIf@Ib)d6q^&3_;Y`D#tbF_m9U&}_kl^|n-J--}@jJZEh! zZ8mYtIQz)?XQ(`qohlvuyjT4YFp!r?JXL~ZQK$E(4C24^3_QqwQFw{*95Z~@EZ}uO zaszn>$fGS8c16Ab##pf#o@H+`%(a(KL)Os z&5g_cPFI%kcvuEUT|>R=rTO#cdt4CZqtxsdM!f+p42APuc=B(VB3b)Z`m4bU>Cns$ zm)^@Whf9Zh&)e`F5<(jx5LUQExc7=#N$gD&0(R*ThsM0XJSaAP6DvUqUK?d!6>R7+n%$Oee``84JJ9LznO|i5FwVImq*M5a|5mzI>4KQvSjIJW(ze)*kRG(2BhxY zVnh%&Zf^o@XC5)tS63xi6!1bh5uC(1V4bnX1Z5doRw|)7#5SzmU?XJ7NX1#II%h_9 ziY;F$;Id$W*Nsk#(q@_>bZ4CuKm_hlNf%jG%!p}ofsNJC(a|berMNYLU_`LGAg_(K zUcjY{I~Fe&^aklOG)9Muz#G@2wuwz#g=TbAEM@mj(Qb5j-5_uBW$JRf02dqH9W`f; z4^PnHPd)Wi546N8WEv|oL&)dii!bs`H(8^jp|RPvZrR~OEaXS|;Vr&HJ^35Hqdgcp z3xF8@;_%<%9mbCVZ6v&RtOvq<_ZH}Vo}-=)qWkL1H9$;)+LC>Ts4wM%f4TQ&9hEoj z!98f}!QmYPoiv|sp z^4M^+^W;-fAr9+)jlH_6tmStaGt z=o=x9kisPh7Au_C9A-pO4!{)aRcza_vu|IlPAP>5I8tBg2<<|BF;w7p=)vF6j`nfE zEg_5*iSkNQJ&E@S@hH#*o@6+PKI}6~q)?eM&oIFrfwDDkykQmPJA7>$T>8ilzCqsb z0lzuO538TqX7B`_8lJ7ItMPaP65c)N9=u{qQN`mz;_rg|LRT>G1Pk{){@9bYMOHGi z124Mh5&@2FGKlJZIJvWfbyo6h!sIF9&+YDIWz}6)lCIcYE(IjuSX!)SGOe=>?^MJu z(2Z%_fK**D76T+U$Tvn+JJ!|LI>=>h9lS~d2j)wTurz^q^56g)I%I@O%Q`pds^L$G!P2~R|Vu)wKp#(RdP)rq*HoAZIzKK&;`#+CT6S6)R`rVdPRpg zS3V5KU?4?+InL!dZO`x{eHo(>+5#Mq&pgL(4rt6Gh|2Iy4=S?4Wr*^EhxL-TKQj@} zJo8LneVDzjCQY8~ynwuCeW_jI!)EolsRAzq*9WzT3}%7?9wdM>0N(Y4cp77g5C)z> z1~5Bx@#4k$UYxN>?_?HK#mJKpN)SBL*TG+ukI)EYDZ1@%nIifBR(fCHg%q114M#fk zBZvO|UellDbC~bPCORaIA6)Jb9^pbhObw%W?=)kaxJond^8ws;Xo(ZbiIcq(?5U}?=N3Ni z(_T@u>=8sc*qPTY4=GMOFU*V?pbh|XKPb?ECx%Wz3;;7g0E5s1Y5~}YDPg?}EG4$w z_n{+|i$(0*?;?TgZU<&$d4=BMH4?u#0JpS1d3xKaEWyaymHqA>hfA#rNv#o7@@>U<2iZ5CX*UH%gl``~v@>OertdP>v{a zydZc;XiNAmfE6c%PoJ@!J9c|1lDk3WmkqFw{PF>-V64O%FWO78CuNFiuS)swmsEVsz;(5 zEKfZ7l->5b-^qw5v*(^)=<6qyl$5$MpFVwt%8fU(Q8Z)SszytfazAR;Y>&}`pT|!a zt2(#a_HA1Q9<~~rjxqynpg<8b?~ny}+SUkI5%UC?b;Tu~A&?%v%g9Q%GL;*8AiMBN z>=l4-Y{G-X%EtNPcYto56lJF+CuN9!5s=!aZy-y00SNg8s#C8FgIxmPY!H~Q>s>N_ zD%_xfXYtaO4J{L(>6Ba|29JQ!90y3FMvm9Lk(SUu#eQ?;4Ypz3Ca*VgwjZ7hwf_Mb zrCBoYrq4W5_u}jorqm07P8mDF&OUvfA2+VM{}yuZW0Zvq!| z1~t*&u4nWHh6XV{Y&|pg=%bx~URb!$*L1-^MrTx3RQPjKr%d*sdETY3!{_t`z@~c~ zMGK5|^bej}z)MGam&ab+eb-$sA6b!?Eh&7TF42=xuuDDOCuTfFqY%hxKwC5v{`ZpN zF8JhsUCc{tdauvDQ~I+!^!;~Atigg{!=gfnA-qs>G%7-YMm#Kd=~E!ok0gG3i=p&B zAb@Gh&1!gG_Fjxn6gf=FZlwSl0wMt~Z4we2H*WSdLN;yL>PntjKUlsncIn_~6<(iG zEg_EJj08uta2RExL-KuhRkyJSR1|3CLm>Kw&q7fdArJM$LgIa9{Dg$t4~5UljJUNY zPaJ3UHG4eZkPW$ZY~SfKFxV#s0hpA^MuZaVJuEMuV?%}vlQJ4&FFf~>Ku?LgDR27S zZ=5d}-f9-soEWU%TO!pO=Q#~pXKVQ zyAOq^a=2xqI`Tht9-)89EVU4xspy&?E+V271;pWPi0Fi1z}n_{-_2HSQ7=WyH;#~? z!zFvpx#u_-W6g{BECyCG7tsp1J4|Ko9|$l!5mNz-8)eb4$Bz-nz}Fci#THJ8Xrl=V?dGkd@vd#a?T*b$i|Gg7Sc0 z>C@Cb)RjbCp(C^bJmT@-8LUk_e5~Lc0JjI-ikAVHArCejB}Fve@BFBi;)1b704qeZ zOg{OdAfPqzFYL@tYz}950#LR?0B-v9>AvR=vyV_zGiT3oWdTrx7co>QC+pB4vz~e8 zS^NF(e{c8Rd!K*%BOkfQ7ycuLEj=yM*i&pQGe*?@ufM)Z@2D@SJsE0Z7;n{@)xM;E z;h+N5ale2=mJKQ@P+n44mAm!M8xG0{%B3eUT)bh!dKnLOQf?{!4nf_lZaY{;4E=~j z7g=F0l6d?%~T^3^wz)GzzngZDpd3m$#Od?^Bf z?)_?$9<{X?-?H)wY|Mo5Hf73GH%O`~Dt)Brp=ZhZ zV5}ZXP*3~etC>pa_;8Ni55q<<1|0^A3FQz02+(jO>~R~yOju)pArx%Io;|)-PmgHO z)+y^lihyy@DbuG}vVId>%K}`>UU|hHd+c%BDeEg=RtMHHiW%j>`007)o$G?1p(z5z za5*9*=nxc}@596}I2R}{R#&&mO3*6`pLGv#byJV*j7%$#P}{auN`<fNtx^{7nCh;>JrVtZAb5$Tz~fL(QCp#e0SN#|+6{qBj0hl-wQ%@N>_TpSt_LqO z{4spw2wyyq;f#|`KG|n@usk`lWX6pf>r*-ba|9l;7ZI~GSfgjBloHLs@BuMR)PXX< zAGARP2%=$2=s<}PO7IrfH~La{6GJ)4gF3qRtF_IA50({*hI{Y^{7Ql^ zv6}1a>il_T~Bw-)gjfs_{Gmj0h0e^ zM)&Tq#=EzyzpvYO#|1R!=NAj~ix$MYr_NopmtQ;N-jyG`_>zrJ%~(o$w(Wc1LC?j4 z!O$&bNzgqpT7Y_Z1EmcBBF7L`DX9>`W$0?Ye@C1f9!$VOx®62MFVs>xN#)3@QvI zcK>DC5AP}#F`i&nuKh%^f@wGC@DKj*5B1zx-AACHq}2BA-EZg4U+{Q6Xa=JKZ%$Wl zw>7ui)4gPT>0THNd-m=2-L?w~bF8|m!T|~KBy$>*?CcDIg)AM}k|+Ik_3C8-BD_N# z8gD6S@fG_Qv5E+gkD)+Z9!t0F7=VqvHeC*3oD^{q5?<0fC}1fsjC@Aul|iK%>|1MSXnd;EsKs5kbhFbOuZ4feCfg^8|)pl#~ysd zp8nWA>+6}dtn?VwM*t*F{hksn`K9}aCy5nV*8S2_$l@ylNbOt;uMj`d_-0tKj1ZF`ag8Q?%MK^R~v<8Ex4e3 z(02$_%G&cj?7c|zgu+08Ge8Jnga)r+3jOdIbT;4fnE_y~l0Y&7cKQB(o|lja@Dd>S zDL(Bap~Xg4?9R$kRR9SB4I)F~bw~(Yzjf1B->_*PHDI5kDWPAi8*)=jPZ3-3xUVqs zX%H#tFy{lxm-ccU^~HS%(Ic$c^Mc?i+6GanDqbgunuz#X5g+j<2xD@Y#0o*@WM!&e zxjrR;Ma7*#(aB=OkwK<+@=j>HZrkbw{G9Ew9Irz^!c*f+S^(@j)x$?bu~qH z{MZ>O@lLDTxZduyG`Wz*4UT|whEbj9PgZhxOpe;X@KHxB7wQeu(~)>bP$qm&;9d}j zy5!1}zCsWulQC3dM8IJJxnX2&pgBobjYkOuMC=FsN8lY>Gq8ao9+Qo#V~~EmQ1?mn zSfGOk57;L^{VA)gs(9+fB=gY=4Vw3IZv=UVBC?B zan(QYw$N^9kM{^B`kzAEX&V4Aq(2T{`mKAo<)!v=Jp~|w1%~h%l~6&L0YCv95Cruj zp%hBZ`%nd11yp0P`zj}ttY`u-1l8N`erSgA8B zmM&kpXiazS+JpclfqdcqI{+Q>syy}akJ)d1`75?}&u;PLxZS*V)h?Vr>xu0id-M^X ze#8Q=sw#6Uo-C($uZGpP1YnYL{SqO!*MNTOfKPPJ;CPOve#0TUk-*tJ<;! zvY56^5twFdh6YFM2jBmpeeG*s^Ie7UL;ZEU)jyIec$X^5tgpXYeZZ32RL_CJl5T=-2lVXOS#nRMsaMa(rMK)_AAQ zj=pt9eIIGtx9zp-SMS=1qo*uh#wvZo%BCgBh9rT`MD=%pjJx{v>uh9b#4esaZ@B_$ zpM3TiE6z{1n22a8YsvSxX!21?u8?+t)tndp)UOeC)|5 z?cs+X6hJN(&r3eh4|rYlES^mrf;u9*kW&DwAnx!VQ;B-vxBmGr9rF?h!e1D8-^K*+r3T8Iav>7PZ6Fc?DP z$dMyH|34_}h^ZnJ4T=+`fu(x$)-5~o)?2=`m>qWkSga1gLxOk25jjAhvcf*`@h3gs z0*WqH%tRm<%QvYXg;)t{>rI1$-Vt6JvnWYZ&V~MXp2rw)h}HoY zC}DQqMz8_!@Tw8BK<*H{XednRjJP2L8}TaKlfK2P1FcfONXA6qkFj9xn&&`uc)9>p z2q`Q|fNo$_>pmh75}`p40LKI=ngWGEvN zI1-%9v@YWfh{1aU=;K+$;sA);P*R_;FVg<~2aMf#iG5>PGD#?T?u-CA=d$4>`Eu&l zt#_r8xDso}>YGcKuh_*aS3DK`-+uesqP1!F#_Zm+M+&|`VEU9R$Gn1k(Ppmg*tN@d zdv9rDikGRT1bgJshpf4!(KGTE6z7Wm>uufoYAdfO60qnIP%QANBGUTf83;0B6Au+k z&!KQx#pTLP&xU`g2eOd9!&`$fhTPh)X@lkF|2YK20dfRo)sQM{dz$;6# z3@@LKL|OgG5$aE~oct79*HCG7>q=FpJl!M5SCiq>UC+)F^cZr9bEW|T2zHI;=5H(*EA7gV1!88$kLP`ke2@r~$O_tIJ$d8L3 z$0jG#7fTLGi8&&k49^VSZ@d&SI*-0Ymb0RZ)tIdQbRbQA{da<9(J?DYQH!&*^8^#ekQ}YPC*LWj0ZrErK zKJ>8d5>3_C)Vh9{kwFc8P@6$a)Z&~VkloO}j-Vi|{4TC6wu`u|U83-S2vqNLHB;MA*{WW<6cqo>8+~La|>~G0P%RC{z_9L!dIP!aay= zFD)*$=bnE?)@zC@AJm3>cGTWb;khzX{RB_Ez9<%4*+ly@*GaG!+_)_33D+i`98mP2 zp3n3QOPm2OcqOnP$Rz`4!DB%z3NCX}VN<7wND17S1e@2RZa1|`@KrjYj*X4#RmwoG zFwtQDfD49-@_Y%|Wc%xHe#4{rt7MrmSB;Ry+ks~V0gqy5yy9cyH3mtRl7yQ+Skg*+ zJt3RM2Ujd(#2Dn|WeZ3!wUb~OnOLTQM~3&TLLjkaYHFg+$&eLa;pwaK%y=w{#*RHj z+`}NorOr$n(hjCw5XgW;Qm$id_YDrYo1fs@A%QajGD+mdGzR^H+Zj5-oeyov9`bhJ zc_E<}nR0_wWdV2z>4tIVGXjf3J{9OFq-m#no#W)s$$H~4*$6hZfrA1qKtCavfu@{B zR2SOmUMuRQa{x2U*|St1@J?R>*io2V>-3~+5ncdE05yWnmw86M8%N{Cg;bdTMao*| z0z`=yN|b=EC@=Fpxc=3@_?Nb4&n_2w$Bw;aLj%21K3i?uwoMMClk{xd=01HQ;J{AD z)Rn2crp6Zg+wcCs{y+ck|53`g-9Gv07wqocCIOQk^+lwB=>|*HSlqaI(`g={i=ZWD zi)_6U@&6U%$bp?vOP}$po6u*<+7CXzaKR-|XGL!>X!F z#V>4rIHvk6cmhehB5IhCC^DHP<)RB;Wh8o@7tj0N1@luj)+`LZh*&x{@Ud_!?|KmN4u>z*z zCMCm`;%xKgowj59Ze5pXljC!eqa^&hDEcFCw??vMhX7cK48a6Dd-ke*`mvgk zlnsl}w3Kgz+E6Y7g`6}juRnVDEo-Q*^;nnWB!W|kgIln;B=I#5DeS zl(zbtzMzg|9cSgHgB0lkK=+j72~)>p7sf-2=MlvohbKn;1w8`lG4uc^&VQn3yvr`L zb&|^g&eijIA0CwOm2u~f!gtUYvNd4Z$Am`7%DE(QzN ziy&kyCkiMQiAT2y5VOJ%pffAllo6{wWqX1!X3~RnS7@Ix_u2?(qL=tyANb}Utb~0P zmX92;8gPnUjIs$xmxy*3G`b)4V%J^YluZPcD8gNm zLP3dsM{-<}Dtqi*hY2DD>E#O&d2! z0R*mitY!L^)Z}Rr=7|~`fP(nJ0S5{3l2em?)k$Vnx|k}l$Hm>d zjqY`UIT_m&)t50(N=$JD*nF==7OsHKAX7ojn6 zOF26|$$FC#(u@DbG!fHD?x|5f(q{-f0t&H4NzKomQybRT+w;#oW1sru^R{c}4!d#V zvfaFSRdhUT>l>;CY%680PP+#Nz=KyXKQG^v_vq+^gF=GWFN?-ref4$wtH1h&>Ja7G zic$0gqq2Gnr3yg6TgKApu@RQu$Ju7Ivt9DlX08fN2a;~Ah^gW*`C?f9@ z^(lY^V}?Llyi=1>R`3-uCd9J)^_aN>eDgt?D-V6D8+iuy8Bus*Lp;UQ))K~RA5HD zOTL{U^>1f;rvO5au1PcEdkEBITAO$r=(k@oabC)t^a*%qn1aRXXR}b`ZKn8pbaYVT zU1lXkc^a)HD=#m#l9ED~N6-o@4vEcR(@vD*{Jab_DfQ^6I2l)qIyCNe+pWHOi$IU= zH!@`%t-W^pRKCa7X|n>fm>1$-SUDFq#2Ccs{}yIdm46AlrzQVj7!gdRz^>uII7oEc6`!Q1nOu zj-W3J@r-QDieWK3H>LB$J1L1SN0<&pPxuNe>ZNDVcKC|j+I@wQzUMPP|3enqw7UG# z;DxgGW?@i=q>4i!6dqJoz!JkR>%P z0S}>aPv*+0JHduL7vMr2Jr)Ae6T#9`w2}JadBF-^U`j)6nwH>Qzph@EO@_OGS+#_4 zLy58@tP{2|pNn@Qh~>>3xKy$avDnC z0B&HR2Fx5VH8D#R?#FisCB9#KaBm7@OTRJp)QwjPG|PF?1wO?@zaq>~)`6f263ziQ zXfthu9`H^uRe~}e9oKm3oTQXw2X_>Ig%h?X_2(kC+mm9(XnJj1XtSHVGRy*IPz< zl203rjP_bjUx#&c-V+Z20Exw7SMgEn?d-Ih*KgRpyUo6zR9sAgz(uiDRX12>cCOk) z9-RfzQnctNLSxYC$?Bl*lF|~pr_Ts0V(p+4mUFW)<>DfldfECwe4zf#QCr{#vNvO) zkB?(qNZu~XAe3m9C=y+ySVdW_ZCbxe^0Lr+x<~BJofhlwBM(Wu6&IH~aH%S-@ogEp z)m~_Vdcco=^hbXv;KZ~x0p_}|6zzh>C0>S3SyhE?-Xbt3Q2XZVhiu!XE%v!jKX1Zq zYBK;+#%vOsjt2Y+yk#nz>P|~U0$$j#kZBoY4B&lY0$z)A(7=-IL|q>r&oc2LOO?*R z)51PR%mN@M$i55MfiMZiN6(1Z97J;<3!p`&Z9{Jcb)mSd&_VI~0bWECe!iZ=cj51z z>Os6SFM0<&dEmY7=JG?Qzz3lx62Qr;-&5m*ryIV&3k}E$K#mMM=}BY@ypJam(1|Q# z?=R$?prW2nudTE}LW$~x_5Q#5SX-iA_{uLI^Fq1bO)2;Le)XWOF5&0$kWAG*Xd%IX!%5GE&E>XVN>YM*}oldgojq;zrL1#ve*$^t*Zv_>F=SrG*ht_Ck4 zaoUJy01F9=ctLHw{PCEn)>y!no4a!H+=22*F3W*zzt?D zmX(U4ozneL`Y>s(fFu@niO$1gK~V8k3HHAJUT3DN>PlIl8+%6vs& zFa^W=@Zenk4O-M4sL#BFk6Ttw6TyA(umD;lGW-vBKj4I%DZEce2tW(>LeS9nEXCKU zPAkxO81xG*@tscc{^q$Xfpl+`+6&O(`rt`{r)P#$bh2ofnq%b!$*Jx&-ZhrEuWP8a zii$$L$1RT48Ccu^9rg2MSKTy?o3a$3M_Ybx4TPw$JWj6L1=Hg7g)RMnMn3G(imdZlVz9HC&W>( zvJk7ExB~bI9>NQYhZau@bl^Zu@bdWNg#Fo{{h8-M!duEz88JI}HAyr^?if}PCB!G$u3dZV%9ShL zSH#VbK7pX!6DN*4odI0n`LePSSKQDCn_m()GC4giUg`E}q=+cdqmHFzz#1`9>~Ayb z!LY2t%*xExxNWqJcr~`{6wO82;PAK%l2$wV_E9_Z#u2-C@v;CT0l~ypu)V>Qkx-MA z25e%PB!zhX+<7Z5EVPB$XO;>lu<08#_IV|~@Zl%Q)0)-_S^D5mV$tGm*MW~(hB{Yr9`u_L7>(i4= zZ4e}kaftUJDn8CKva@XCmM!kxyLS1i@7DeCM;^EBn=5Q&a8l2R#kC1D*{sGIg&iZH z#&#?*@sT!#=S4h(Z<>cOJ*-Dc#?A?JibnJU)8Gk7cqmz^C!=^`%mFF!B~#-QK2-#0 z=QI2RsNo*ekvH%df!pXMWPXHrJpcoNF+*9c`+|2ExB22Q>DN zseGh>-M`P6m$1Cw{YkM8b0fTAaB?l+AwiKbn5@3wGllCyCF7sP*-S6pZ`z3ap*(b! zE25bxKoTotn9q&2D`F1Z?1^zCqzWuv2m=cZS201cJU1^t$8$S;^7&`2wx&kbMUQ)7 z2(I*;CVCdj3=y8pU$P1bH!XmRdO$WPFBlF4%)B$%XLIv%ZAtHQbe~KqlKNU%eqyTj zHVGY_2OtWRs0LIF;!E^2R)ZtMQpU}8_4+jdhieXcD$2@jO2$FY(726D8TXHjT1`!b z$14yM)6?A{;kw%uKv#R0^>p<(qG##%?!6C4(3W}tA#?F$8l~?D7NxFCH!)3vi=RG3 zVbG`Svr#C3!&U&$K%44KpOWYdnQw_seLA!v`W zX50apTu)*zCk~wp83Y1ImXzv<07M~D@CHEN3mPv3B-SW(AUGKdje4?r3J{Ow%-lG? zlY9!e0;Lld#S%}?$Ae&(5-!Lif!M5(X_)1-dw1=$ojbPK#trLydLS;Al{rCf6^_)j z438&bL%{PFF5Cb9fBvbIU8=qG@~dh_l##Z+rf!{Y0@%~t>q*p5*6{7RbsOEn?(Ssj zYfki0>>j(ewl;l-hbG2$Y~QAFoU)ddX6H4gHV~==c%#rb=xYQtuUM6IDuI$D8S^Pb zDJ3@dV@&DSc&3TS%&I;hwh8`5$pe0_U%%m2H!CzqF3D;WrXHAr1f-0Q58E~YDgwd@ z+NE#LojYfL_UC`@9unGi{=#|jK(M-r{h1gma&!WuI)5}ct;<-wYEJ2>+ z6cpN~EdsZb(*jp#Eh8n}c1rdZ>3ftnc7{ZSjfn^F5;EQ~uDAg&Q8ocMA+TIE!Sl_s z?}^cIOHWBQa1V7MfR%Bdn_srH)Fj{LgjHGOkYO4bxsKjpdXB<-reXlDEC8StB()!dwAUM_YXQ4Z}p;Es|XdWOx$!>k}x1vWq^9IopcTD(ZPGHTm(Mp z@o6k8HAp5D5`{2`D%tbr`goiK&xR7|r(=v-tusjKfB&SMV zR)(#stgzga1WOe&WTmG#u@4UP`6>?-R+PSvbDVMSwhvg3l;WI(eMMoOrKnHS#i)y7%z5=+VPUyNEyt)1Bi1+E?@I>9M<-=5 zZMg(X`7Ra7YSmG>cWT)#s z0j}G(uG+--kR`-L=^mNx9blCXJJw1gtvxgpe!iGjBBn&4#c_aI1?H9=H=BjY&9)q)G>sGhO$!jvDK4Fy*0251-WP;=}TGlwn zC(6(eEqJ__YDjLOX<6#NACC}hpZEw62#6%+V?n?iVUF>D(Lt;hR%a03kz@UXWUWoN z=9X4nJ7~pa75c8vv%+R)r&)DXm3`}5-?G2_%fGTihYndsd#648(8Hd=_R__R4%z_n z`}gg$9Nqi6fFK)s5(k1OW5>?zcJtPCfuvTA=bY8mRatFaxm~_|R_&P)?_~Rz0%O@WGqG&dm0N7nhW)m#VXxX*s%w|* z`pphIcJhk7cKEoRzjnjA#S#*9aMPv+ z8yFt2*?Ads>BK9coZ$gtv&=4Dyy8kbGdv>3u>EkRk;7qKlC4L0%@+5FLho(yOP{@F!3J z6@flPF1TLxL+68FRJaE3EwaX?6nap97%rTT0fa$~?&Ht}F2~SEoKBKZJT3qi#_R91 ztaV&`P>K4?N18VJ`z@<0f8T}#c?41#8nkd57E2MynpFq*6 znR%PleF0h!2G2qvaV|uJ5*Z#I^r;#eJ0nY|TA*deHd&xT#uS-*D#Tv*~)TvjSDwaLmVDqX>m{H!QH-?9b71}B!RLqK3a0(?odULhf$ zE&(Dy#p{n@L-UW1z||vxKI==08p^_5r_a4 zp2>1Wrh@7V_jKys5Si)*(4us~10?znPMN7@q~`Q^o>z$S#ZZr}01X)H~~uwmUgpZ4hP?)HGf4I9?G_o$=0 zU53i2$0`MKfdjtA+Z}kZutu3i!ZQT_avEL_`rQLAbsqJ>Yv4SO9M&t!0gnkFX+WTs zWNyS2u*Z()Ba(v2FD&%9lMClgd8}DkX@$M`;!oUrNZbh5A3XT5kMq?l*WKGg-L`Gs z?7{h*hf*LZUU5l*9ei+~Xs^-kHr~?sPKmzrt-7X6Z5)uHlq_YRDuuM@UY4PeKAi)I zn6=#OOm8`Kos*p>`N0B$d3`VWwCkYiTyE*<`RWU^8@HP5=0Q^lsO!veHy?GR--S!q^TQEK}HW|>BHkeA8I6?U#C z=T)ZazfQbdX02_VcIomB8=ssO7%KF!Cdnq#U_Jf4YKy=@N|O34O=BThDc%za*`NR; zv2n;rrWn8R^>4a&3s4E|;dO~rU&ibAg2H^?IhuSs&1xIV`uFeO@5%Yd6$O8=XhNMX znh?;?SWK($V`B-J6<>>Q7uAs?qGdo6<3`+IoaiA!fS7BSWth&+;JFm&a6TtwUnqqXD|BfvV->`2;>L903wK$fe!Ug^>g#tJ)~Ug2Dr+CWGz>R`|^oc z1No!_o)7t+`@Hkal@jpDyM<5T;rCc6&}n!tybM0WTkP z@dw@dqdxq-$}e>M%4aP1cRG6IpsapRd9U9g!r_r&5l4h&W@Wn7L8J7mzhZHtcwFH~ zy5Th-?+5RR8-NjE!d*nTmzUcnvTaI0Ha0i;@*^Stek3JX@oE)K@@0yZg#;f%9gGkJAM9wUATH(7Gk^2 zsor(6W=YtTTPVRRiE#bKEjx4etgPN{JtxvO)Hk@2?j4-4-jOjIRNF{2S0WgF>?CDpV1<*26B)t253X2Wmvhwn6-+}%1(#tPdgA@#|Z#Ij|&dgo` z3_;(~X1oxXJ1p^AkP_Blx&UNo$ZR_yAx9uBmI13x2uef9GktLS%qg|urUcuNz{-?> zW0s|7VQFft4UMvEc$%IWE8sOHE5F@ZBuMd_u*xVYHO;}K?_8~i z)2CS9&;{Nj2M~-Dw5IQzcCdg{aP+!R(Rch#ein&97aSZYMt{|qK`VjBMqowXh1awC zfO`g0N64YzH=i<6|L`4N0PY_OK>!PJSYd3IQ>sqnnoxl9KG>>aWu=6k%Wu?|b`qG* zdE@FI>ckWviQ@2NqzMd;38dojA!Y-xM4egf17O*|f1lNe2IB=ti4{3{>YV)_U;R`2 z$;&U>Yd?F#_U%7lI|S;F9X;U!77O%|M<4aQlbA*Utl?S0TZjAq(xvmN|B}Wp&l(!) z?ArCK0x&l;eo~M*nYMZBCTqTTSIY04+A(hxm1W|;APHX(;7!gAK%x3UT7f-o*q?>z zM0k2^Y*M6#B4H&O(?%plBx@HBf4iwnuV;AmCtQPo`qhEiXUQ z*!Z-!uhS;RhNSRwMfZhPR9qmrz$z)Gl*g@4pd27a0<~<_iA^Gx7Gq>Fi@!*29}y!U zUu^a3H(QCoRHSHyn30zDHal_pq#ZkT)UMvRETDPM1_gj7rbi@y;5Bw{AGFcoUiHhc zlsX9+ht<9j(UAHndRf3I(+Uf6Y`w;4>y}McQyt_{ilbj6W2Ds8XNjpguR!vl%2JXu z1&GJ&)Ty%$Ac=LWuC8%Dhi*e9&vYE00hLa-VgaUuxEA^#ZVd%~`E=&+mVQQW%*@s?#Re*2AHtIcKCNC$*vYwSGkcU@6GMMLyG@J+A^PmpqUKnj7 z6U5Vr7X_%u+mayKSriCP60H*(!&JC#TLAd>rt107}B*@gNCU=@;n;FjL3_XaP*Mt+W; zyQ)yH)yL{<{vpaoeSXwuzVa@3`Nv+|owia!qM)qq{MFyBex+b36T!}TMD*iX39t3v zMT{sA2nDY}h=d_lEI$5?&fEi&JZK$dhUf{BFLB>Ntt$X zOJ2{%oefhFGvRfRNP@V01GW5I2><~N2|hnpbzrI6>#zOH;~sJfi|viWZ`;`9jIH0a z$*O8=#ndU*EI0Ps@`tYM}K`+jcdqhf1 zpoNI_8TCa^U%$KGeQ9!Iqn$f*PQv_>UA=x&f@i|A1V-pApeR3Nd{Zry3L>(}oH_(+*xF{NkvTzY9)wd#|gYceIs<2BZa0y?>tm6LCi0(^~k zn_Srp<7v?|=u=iD(Z4Lqb??TC0CLbFp&Eh@3M&bGl=NL->CZa-02adH(?J?jmpK4Z zeZcMNf=1tS50om?7l0gh`U8O6~ab&zWc52MgE6D@k6i1hC*?Tt!&TGukYjRu_qoDowUfn7_yCT8SNh@t!d5 z@Cx7srO5OyUQ7oq`poa71i*4d&;wXl&X1QQR5Fa8_m##0fWcV8TL3_Qquxw)azFSQ z0L4zltfs3huMtSOYNG;#^bl^1z1 zdJdUq^?qSt#s-IaJ*EPn3JGvMxpn{m#BI&ZiY6>k{hlVnsm8W!+bs}Ot8S2N5NIQY z?u{dF+FM88wqqxbTB|?{U_|UFGJsr4b=8#u zDQw4vyH#+nsIcocowgU;3aCA~0he=(W7JMPGf}dT zm@vF~@DO1M$ahuGryOYy_2-}jb!Qq_ysi85p2GX^GY9ASx&Et2SifPshA}NHNa1(% z5cOornpc1@b!VzP)CW9^S3VGc&VI9M|t-b!ghVqfX%RhM2!cl*Z za=*b_{T*|VfENnj1tCQV2QLIOF8D=6C=NbDxCk?p34}Bzh0Z)N%ti1XmH`2t1qFp- zpeYaN#6yG97#Co{i@`J#QxpVqF~z|O4J>&WhXaodf|E_|$|NkQHP`Q({D@0RH!_nRJ9WxldHoH6mS!o4LHBmBRlc;Jm~4e%)NjN-tgEY$k`&X9&szWJ zq>YIQlV#bJWM)`OY@|)A4YaotKV=Ls0(}j2Upau80FWWzElePlD5cQLzE$&5N|STCU%%bBb=S_HyJ$`K+VtFMYwzq;TbX;7 z^(}x_Qd(*Gg=G?YsRBSL0x@|ur}2^~aR7oa?d$DxWzF(g2MQ9Rc*MwugMe}m3c^Mm z2$12ACFwo|gdo(tATK;;yrOV|`D?(DgpR($lF|eHe$i5%01$~ir%OIF&@5r6PQ3ER zD>r1G9xtG8rOyL&AjpZIa!{l3MX@2{@cy8rsT)c=py3E9Nn(p4JQx$1bmEL77AM}c2OoIQ=f>IF=x@IHP203}yG2O(CrH_kidGItiLk`^_=%I$ zS|k@Gg}v7SBK!W3xf9ULF6zC#-2$FBRnK|%ylmLG&d#1a?fc=dqNA*=*b4G<1P;pV zzyk-YPP9s$S%E_?7=YRAtj5FXTJ2T;d%F?p0yJ~do}P$OeUHb5sZu^eZ>&ng!e?4d zLcl$BfG&&~6b0agOwaHqybf?g!7}cQ7x7|4g9A1`GOD&5u!g#IcI5C|zOf~V_)y3! zbtdSOU4Y3hOqzXG1g56Kze6%jW<`U^R#Z&GE}JZf@6k2?A49?sa1GNB|{qMWn5O7CSoI1@cDJ_wgQk2Y7_`k*m- z3BLapAicb-NcDiV0&vUNGPNz14ERWN8B81fB6wL82uz9>7}m)ck{B7tROkYr0Y6Xx zU9^FE^9-vNj?ANfY1ebft{)1Yfi7bO#?Wh|4;m;5n_K7GrX)C*mK zJaSpVGlH80ZCfec$9#PEE1eUZ9~SDr`gQeh|234K1217Ce%bP?HvWU2zxrn%oK>CA z@qPotP(xg6!3)2;g3>EQ$iaJl<8URW-Cvfbd80k^h7sHjh9TK|6TR zHG%R?vbL61f6wX;Knpv)GPNXGs^1gb1A>d5bFh4278v8C?tAXsS*vfTw^Jw2SXE7p zEY@ZF)4%w0yKwoktms)O1CmaacycxX5ZAKe#|5)K!vG~kg;ps5GAV|gTa32uK?zJT z3Uj*U63)pnQkF2Xx@%1BPM1QT6Hp-LqNF_E_X4UYFZZR^C(oSnbo-UH)xH(~-^eOI zc<>>c7@LsNx@8wHUy&eb_n=LZ)3LohyWf(<7Ow-z>j*|wcN%H;(bbumSq^^iPElV# z8~uZ~gn;QN3GkU&^}meBWLbAa@U!}a_?hSvy?X?_eVKm034v-p=j7%|Y0f!6_wJp)aKV)meX@7oKJV)*moEAgAj)Uo-hHmb zZVJ#a4GS>Yw{NdC-)j`lB-_)^Jmr~tJyBtDqEBHpHZ@v*-+=flm`Y(6e8CEu)ANY}epkG|ENZEwmRN@8zdC(So2taYe1f`+EIedrWWNbrY1_Nbc zeA1>wi(58tvbx$jJEJ}!;Fi9^3${~AH8nNCu3Wt!04=bxG-KPh;t?!#AhV>;%womH zO9qV$Sa)}az*4`SIVZ)$hK^|hT|qn!9$v;XQJ_0LJxk!C)anHsQj+uatZ4D}tb5B2 z{p=0jiC5CBKtQCRFjv4eQG6C>DXED9KLVyH36`B9P$NK?FrY}Pe3;pbTrQh&qGiJ1#6bIk?-uK)yOFN0(3gT=zI@T;$rF!0raG32@5Dd4AD$jEnTsUca}guCrbjvdxG@2Ok$hPcgAI?f zh#)XhGLn-lL1Vrsxxf}K_*ofSxDlWa2=>hDx*p>IT610Cv=+1(I;6eM$0|;zs|tn& zzws@<0gmYd>dt4+^P;-I{oIfJm+<;H0Motk#8Y@5$|v2>@9EDB9_wZ8XUYo9`GtDD zbNvUD4|C41Qo?$C*h9u$p!nA|=zhgJ{e2Ecl)u7pzx%BIyeKP{0}FWdYxsWc=kPrT zmNJAIe)d%ht9}m;vJkTG1#ZS90SXShEb1#4V_T zenD^+o3+6>q~|9W1k)a#?pgI*VwtG86y;MWp_?H_PS)?NG|~-RSgPyg)CJ(h%BUYQyqBPL)0 zMMuKB($Y#Ruc)$Y-$TeG&?F3`fU$%o@vLZcnNDNMqPx3S0xr{^$2sh6!@Uy{30{n| zfx&UBtZuM5S>I!N&OrZ&jSNpn(9i4ru+7gb+R>xO?aGyF0*ZKJCS73CM~nwSpa}UE zwSng$8~~e)se`6b30jSpdpR`5eyGsjA%Ea%UW$;~XW1YmpjT0uS|NH{W@m7gici_B zgdY3*0Cr@$I*`E|!?Qxb!$Aq}&1Y6NxW~rFBLGFF=b`*oUl$&03vCMTx4LjH*Ru&; ze1d2?N#IWkYF3~{L!sYUy*F1ztQ(`Qu26Hreqn<>4zwRkzrPniFQ&_$()?x zd^wKCPC%0S!W(Sn7d}@_u{hB@?+J)!>WVx)Y^j0!|4U!`l5N|v*%b?38R#0%6Du*O zXI@@`=Ze9yhqscYc-d!%BSpZ6l}1srm>CNanX$^Kx4*~kwKiLmz|jD^E35wqwD%07 zjET;Lzu9k#pk-DE5}Sk9GdDNKy$|G_!Apu}VHyy=os+?V7lq9TGcr-gw4XSx8PRx( z?mud2>2Z3WWXUN}HorKo-=_sEQmn8zLjZDEvS84&28+-vKQGtP#Q%6&<~0^G?7_1f zZE49FGBj!he)iZVR_|n$==>O)nb0{?bJpG7Yd5do@`QjjRkgNZ-A2ny%dm18F!|Xz zmV#$j9iJjVl9eF=hxSDoXfx!52@-Q=q-9!ZahX+D)Y|&` zO#&@jth~5NN;Fc>YnDOMt2&oiWkrL3#|pp<@p*DG`)kd+=NB5J0A7$Sq@*B~Jv0ez z;K7C#@T#DM9XwKB@qJTMlg9^<8-*!6UrDFy;4sF%y1H7jF2Qcyy5YRCd5eH#eXaOx z$+JyE<0M&xHDG~RjTdr`6=}#iekYqbMPKWjfM2K&2iJ(){X7Q``i!T~WtIR7o=zrk zsSmP%tlcw`?n&$osRT&cr&IlU4(OEQy-HArcVGW&FFzNsyH@CZ)bgu#O8ETy z-G}d7n5%H!>LdJaby@uzh4-L%T*H*ro|o|8{v5oAxcEI}LaZ^YJeF7cGE4o=iVc>v z;@Tw*J~;-MYp1TnypXb;==b)vb_tGLQT@Csvfv1uhF3<#)2$FPa+-9dHtiHC^-N8e{V*(rL z)*`U5tZNn)X02M5T9TM{P8J`o+u=!BU=k{65`HKgi&>WCmM%eKDPe1*Poj7&cr_BcX1|5Wu?wtKYCS_Hr=e?gub6#3j?m0b}3TV04rut3! z`872)-bP=p$N3U&Sluj%$I@q0yYiB9UDM+I%BGMc34~Ix^fLsw65FXM_iNIB@S1*y;CEtw|=RTly=7uX#St3CpodPW zzXNCltv-j~n(wI(uP6@+?PU5SOUjM5`|?nYDb_GxlBpwK_h)hYJCJa(+U7~#+ka&wXv}Y;)xjX6Z;qiF#veXxQ;j|67G3k7nB4FL%hX` zDW>UAaPSk~@f$oiHa=nmr_YPtnYJaK!3S0c;DvgGd0|2?2z^L@G6ga^LXhjAZQs7h z8XBtY*zv>G*50h=Ko=2Gqzy7+vcwm$qUBP_8f4Y1_4Rki5a<^8?$Nmses8uiffh)r zhv$(L`tx&=A*mTMMk=kWq)N}s7oDe@^p^TS2GxvcbzFvq{s4y+rDdwiR?lrxUM_H# z&MxNJBrB42eU|Q1Z5uai6#ys~ zuaHV&*@lNFZD?@R?liXQ-kAa~MWT;s@ztO}WwAgHV-_s)$ID0R0TNEqZ^WbE2?iwK z@$$S@qE}=ZnT?5yf!00lOU(1;n}_Ytn{RmE`;-b}t}%cn$P=|q^ak*}c>aRZ)w54M zZDmEd0)$h(f7O8Qi3}oLzHqF-W57%BpvRgq-g*{$BQZLoY6mi1m9z9T8J4iR=p}{N zG1ZsYJ_2d+yoBe|#k~M~Y-fU(3<`$d0>d_VE<(|t8C3I~qM8Ta->1CS_p8f?Ip<0aYNFva{Eqkrk{`iPZsF_u zPzi+BQ}`Z&5AQ*Nfp{0rlOq&;wUW+(@CclolY(YG5{r%Og_DyL5_&@}IC63`p)y(E z5iaOa5_kl#%y|y?fe3L0zVy?Vq)4)@wWZZAUbwiD@UBjP#|R$6Q69YJ^ePN`!ScAmz-kR$zmW0 zMz+xbhEU1*8VEGskD&Yr#C z&%xCV#}U+swNDZ(6cj#M4;ir8fv;Rd6!%80-{0tc^Nx+05p z#2%Kle*4Bv7t8}1OQzTga&xV_yUP{?bg)e56Ah-`vrK))2K)Ow5R`m7D6+Cu*@0<4 zed!r6)mk5I-Q%4&7c~sQpie%=xbp!b2t5~U5+DdgXop~0+8hcdg0i`x3vc~KP$l43 z-?-uhte`k402LG}OML+ko?k*j3Qq+0Vs4)IzGPAbx_rl)q`fM<=LiKpfE#5&Vd^AO z$^)+(Tm@hWgHx#!iMBGOSW{AxJy#E2f$dwj8M##O^j*Gk*|u)mY3=IgRM8dp+p=Y| zd+83p@rKt8@B@7U=1-nDF1iq)FUa?5OK~qwi66kuLlES`D3#w0&zyxs!fI-o*u3?9A zmdui^cV>pzrsCADOa=v1##TtoKWXzy>i@5o+hMfElY~mL!LWwPNfl zD=I86JKM6&=ACM5j>aTK zhJ)yNIZ8Y=Y}c;ewbQ3B*qeur>7MCUU$?<}1z;z2tuK0*6`&HW!q)`zBa;A+cs-#n z3L+F*j*g6xA=jqy9e1841_}Bjw-QDofx4_nLL8ECk+`%3fiD(76qgp;j@>&vZmOfb z-5z=PA$#jNBkD(>+4^^XX>zS-+F72AQR|F7xmravpMmm2~JEf|~hE z?Om^_ZRi%A=6$-N%I;fM>$>+Uey{gAe%10(?-li_Fa6UG4PJiL5_Zno%B}vqwgGED zQ`UZWzxS&LBK!`^4a5(jgi-JiPk3$k{(gu5uJb9bm{thwo#zlFsrLv_00b0+a!pH3 zmO#oEh#3~hh?eD>VdMxQC<~#(y>zl$NIgBhKDB|j;|(bUlzm-YT`)}~#a1q*`_MxV zSbwjq7IHR7p>Z97f)GBt-$2&dk*l8xj#Ift)Gu(lu&RY8Sh{ z<|ZdvmMlhmq6F;Dxiugm;7DG55=jh&K$nC$On>FtRlC;IYEM7+y!tf8E?v25#U*7% z(kws^*;KoGd+pZk+YW|EDtEW>j_3YpYQAU9_wLbT&p^6u>sAlsgYhRPrhH}5uoMWv z&@+<~-s+2@qC)FvYqwjYY7?ee9I)-77DsjagfvaJeqGkwCePpatqhd=m%d$tg!k3IUZlvbPoWsa}5L6MRh zg?K2Yeps3E#+!$HCuRBrkU|=EWH@mpSdUC&(XZ4K)^iU_vx^BaAZ&Di&P`kJ^EznhG_4T#t@9sQ!pmKTX+%3#X)TNr*SAd&XOi zc%7*w-1`((3{6k5@hMZgah9E(?}4xY7BWk-#yU!TKk32H$Y~V+Ljo%- zi$8YsZMCbwKK0ylmL*zkX>GTT);9OJlDV1G`t*$+=kgu?qb}|#rTf%ZF|m<0Asd3t zIf;cqj%0|ABLoBiFcOKn2mA+w5ufWl^ho?5APAZSbWs3s0F~9ATRPp*bXuUZ ze8r>M&wY3e?xO!`z^W2{rtZH=`Bkr9T|UgcqCWlQcfrfrMy)M@I1aktmpRnmt6tx| z7oWr5I28o(f3Be3*;8I7#pJQ>}Z!# zTd>QQFUbn+bB16_g&lEmTVsK8{f-^mJp*a~zwavjxq=10>gdTP9g0&&RS5}%Y zAkyI(RV7XAk;k6YxlDIN$s+5uef##?$k2!bFc_Zs>lD=+=FF0C!TnoRT_d4gZW(DA z8lp%)m(3=z_H=V-uJ&|vskYf2kGgl;)SFj z&~>=S#wG^U|D$T>obDN;-${6uEYOvtI>%|8h}$9X**DKR5ObsPl ziY!%t0DIQ-_jVh*mah}gdhXe0?b&CZ^*lH08tSd2q*y$ZD*!=oJ$ySV#Wd=D%QEl5 zp+3Ez6Zm7B1r$LL9&dDTq`cDP=8liZg!zSg#f^k=xTJ@Cda46 z!wdQ@L3AFuGIhjCsRYsYtY}?wjIl;BIdFv_p!ZFcYCGaDn7dIUAd}tLzfDJp5w*U{k6nG@q&=DHMd(HGc?D7u;6N>aGY(5b&rR_px#>cGpVzVtgEe%ff| z_3xsr?zFXK?Qh}d`(3j7T;7LA_?d!I;6M?PJPT_8#23aOt*hX&jdudA+drkWfdk<};WkQED~ktUw}DKHzc19(S?g<-40gIP2#L$JADH5)DUY5)wNhD}O@UkTE0xiYIBud#u1esOEAm=Y#u}A^I z4I4M>IVJ%qKq!;vvBw@4qt03bd*bMNa)4wD#HGp#Pfbf#o#O+guIEpXZ)Om0%a8*! zbt)Y#frHD;_zPg)*m|pmD?_ z0w@W<6~M$>>2>qHl~e%&hCR;<&k&$x2U!LU;RoH*2KUZoWqRBPz?q=Gv0>tUrhQ(W z6#E_%5fka)WyAV)u7m(DtkNUvEPbFVIM~^`WwRwoh_<)4c}y2eyYusMtWY42JRHz$ zcUPBaFFUYc zo1nI&NhzcWprrVU8t4NLOhO_%T*v$OS=s6SN?w&L-H+dyGGb{hz$}BQRptuRpM!k^ zHqh5=T^(Jb#c3m1TWwX1Rf=B7ee&?54_akqxsMC-L)~e;Iv>SF9GtI;S)hLij!sZt z5}Ya;jMDfEpcEHYT46z%m6cUlUM`!NCh9p-?qiY%6M#qoHl0sGI)ar6L?s>taL=-H z)DRvhcv7S8d;*=b6yC?0=_u0G>J^X8yg(1zdjxSqQh3Q~zravxa+c<oTH-YIMq4 zTf6PG*Wa|?|NZ}Bjm_=qTXu5KP(RAp(!JOU1wJe-$~Te=5>(0}0d|4!*EmCt?CS>I z(vN(GRsn6$4L}qcB=H|p=480$wM_j=4jfWI{QmF%zS9A_aI>!zGCC33*R$6(tg|?c z*O9jlTUAx1J$&#%2OT$W-1NAm;03$j|TdQU-aBTo_qg7H0(U3X?q zz+Pa0DVgk)MEB}O>%0ijAbdvh!bBO7q;kM3o}G~?@PeTr@FPHmSA}{~M*ug*4efFs z(McGf06xw^z7qsaKkyrRhXSo2w5XrgU!O53X#@R8_5D=`;16C8!94)V56MvsYru{h z*SgAO1ozQryiW8NQ&6i5zx`d7Kra2=ln-;SpPM%NpvDBO@^@42_be*B_WPgz{BDEp zcl}x*626Atqe$4L8LJot&wz3;;3)S%39JYN9pU@%6$=}J;8%}{K$z$^T`9q_!fMt@(!shkbq% zf<(E(5QPPWt_1e&+h?MH30Zr|E|{)eyXt+0bv6qa&^-vG?d$222iU+IJZLJ zGq*A{W=wmvx3`LURkxWbpZXvJFFSQV_uO;7Y@3x#Sai;?sU4iF+J8R3*ykSFCR;i*bv zAv2fHvQI#ouT)ceJT@s&Kt{q-x=-H`GowBhZ7@w0Co2lC3m`NIqFs<>mFTNvpjY1* zROb*>3XsC1grF96x^N1EgaINH`VUVNU?vohu5Jz*nIoSkd(*LtIJvHw4PZIcI zDiN@~ZRE&b`ZuZNPG@~wyXf8KggBCUQOz8(J8S&c&?^oxf81s zt$xh3^0Hd1tJ$RfE|LL~tv1H1zh`Z1XiR+-#P<*j13jk*0JFRs5CrH(@d4BsXAYM~ z;1&(2Pq8sYNIZ+^n{$cBB4ai5&k7(8RuPgDDlQ>KG#3XqSWoYufaRd|^$pv+_>u&W zFTL`*a8Hco7qDeVf+eS>`KmvrO_)~97Wmt{XNPDCZ{DnEYEd9Q%d)dGL^Di@1YSRA z1jSD9E{dGQb!5-wJB&xB=mLHWQWE_1<(Gq9w$&zh2U+FbX3-_`@Zm=v^}ioM?MeGR*gO62Bn-nGQ-7U9#Gf zsVL%K$ns6n%u#`kc=0;*f!hF)XaI~(JgR^u;>6%R4!|0qob#b;KI1(HaA3G{4#0!Y z^Z~$!iek9I7r0sAtzeMRE0Pm5NwNZuEWkcYa!KED9}HP|of!rFadu(OnVEV5=%C?h zffq8sBCKE%ybjQWC*_jRXO#*)_Txt zx`btrc{R<2H^PtQzIZeOS28(+lKqwR;?Nr)ken5GJWvRDnl!2&o8{>P)V@KDQ>N}o z%mQr#jBMYwS#^oA+qZ9d4AqA9o7`JSfOv)Ib?fHMR#s7Jr3FR4>EatdJEZ$A*~s9a z?_-ptwoyOwqV)81i~iZDbISP)fJQ&jPFB7U+d#e}`XehRUFS_`oO^6&q(^<+BhVG& z;3Xwpyp+nhSiA%&;zEz}S7ic;4w)8U8jt;$nBEKa zwo(_1-k7p<<)rh4fZf|St+55H1E7dA13Z)0hXjzkCs4n)Z_qkBdu?clW!;%Rjhx5$ z-D|ZoGN4!jPy8CzJUk0rx-*<>k9^2_Ss-`RDvvmKxVcrd+yo(Y9>eWY0YP zw0mhUUbtY(;#cC;$R~ui0-nO$(&Gi_-L&LwpwL%j3%Yz{N=Bici_&NMHeK`-uRfF| z<#HQ?#yu|rqwGRHslKG{1VeK}cD)CnQJ`Dy&NMVrVdxb+=F}bFg2x3=$!bb==SEfl zC|tg1yx;{u4CBwuQL*A$r$0(~KJ8<>8NLOi&~CQ#;NExw(QN=$;B6S@uyPA;KLsGP zwuH~2d>Fv+e&tuaes%dU_xgy_M!(qjk5X256y<)O!|%fPtIt{e-RdI*AROU&VF|zI zfYDcj7Zk%<@WT5Kdi9tC2wzO=?sgF>mMWf!d;%Bs8|(6u5STHAk>Wq73cJA8k%cD_Z1fiWfD@Iinap!K?w%uNO={4&g z8n!N7KP=`L7XWZ(RDC8TK(Lr*#2hHr+WLCCb?2_H@QITUA}>RBZkkOj#9D`#4NpeA z6n?fCI5U-L2Pu595IGKF1t-WE6M`411qnd?J|APf5+J?(18&g~z_)qxHam9oxaG;> z7#SXN5ccq+58K_lcb#h30engfPjDvl$p~)p6(D#Bwhc01M)*_`Th3zzqf`mVL}Ihg z47oizIy=-4DFPIL#t0X7P518Er#|^93FR)05grl&7%{a^PwCl+1maLo3@}AQUA;96 z43bfo0-WL*2oYzRkZ&+~RIqYzX%n={649Z-VGp2M$P;_Y7Yy>pm4 z!7?n>`Alb_n3#TPYire*ja!wJ`ZG^ID+Ry9wr|~PwRP39F0-Yi#syS5?C9HXIgKO0 z@w`D-8EOZfLR{OEQ&_NpM~!hnSo?l5DDHTsd;nrtmQ2${N|~{vbBFq2UVvQmnUf|( zHl^zVa6Tke$UW2WeC75*xU_1eOmMzqjAmiK>KvjF1&^}gLDGx>)0T*Qv5#Q-WC)*xo-e7&SiWSU9kem zgT>W0_z6!6!Po4M#OJK+EMqSt=p8S`pZw`p#S6&-b>mi4T>r=&zHD=xL%oLrX^cuGkSDk<$UK$6<|mUpU{_XD1A;Z4s~ zG$;APfwv=D0G8Omc+oxaE-X~QQ%E|8QPDnAxOh^M1iFMDz1<5spYd{ep%Qw?IcO8W z1^vQj3f>lET&#cw@(}RDJ=|!Kfs5yg&t7h-J3hq+hO^I!Vy-=meFGfscM*T2iM zw&T3BR~=zl`+fM^+RtIZ3gA21?nsk*12*(N051a)V8pzz)K~+%;tip^15Q>S4853v z*EkfQTeDc`3nsd8_j6uOmgVPVy9a?K&BQ3+lE?B`5J3(IIK2J#Q9E|*m=iVNsZz@2 zfd>!Tx^?S4&=W60ZC#D8F7oU1a;&+j+2_*SIJ&a|5SApe* zB*VLW<*I`g_VNKRJof0LcIM1ES0K#q6FgR2m}7J5m!=+B1`<3mVzL|wx}2;elZ+Jz z3i>WquYeb*o*we0mpUOmGum3(`Yc-YBzH%u7>7;Munf+gyC6l|V5iQWR@X1v=f3c) zz4FTI!IDE+s|*MX?DtjuQ8)kx`i{Ljs3%LBQML@C2Rmv^UE$6$cOU8fgNq1Zhj1V# zPLG7)r#|y(w?4ajdt9*4&j>9F0tYJ(tExeOu9dhV+9ZL7+u6m0p2xCVUI8*Ju|&8a zM35R-#stgJF1CSSRTSgNN(Ya-(Yd1|OmlQwXM2bGpOsC?8tWR{AaF|mGyQ=38kaw- zmQdQb#?#VM{n^9~5KDkkE-5aw=-3F2>yQ*>l5K3*;J|>`C*pvzrCb0q`FVMs;+=r! z)bwP5mO`tjEcVQ!^$j&vQ(I=GrA0cY&|@|>tY0r{wo;aEjt7$C`bR+Se_)Sq9@x<- z1-&pOP!%D7+M#|}w(<(Ltte9e%^SrwO03a}dl@l5w)neWONdI8B&LGx9wShCcA?6RJx`({~^ zfXD2#?j!xd${6BCGSf4yvZ}(WtE#Q4rdneb2Mn@IeXY9TUBL^%Ca?oCYM9oh zos*tRMF2TF#}#Y5=&h%>&kYUY`M&XuZ`idP1P2FGqJ{Z|wr+icgOhr|zrf_}o43?o z(e|5P`l8E8K@rOrz@p#ibK=xWMcW%|pX4Tw314W33LAl6{d0^1gv9XEl_%_@<2%vL*YwO)sf;I6U*C-m^ek1PFotc@lYu9hsn{T{r=g(jEDV4&~Vk5(6hAiaGTeo=dXK!DR z1n;89VGw`NDF?bPuTuBb`a7AIgZF2TpD6|#%Mn5wq^5XYin=wsU*N9LKsgE{Wm{1@7p)-Nm|MmQ0`$22fN(@lfH|Hctm6mED~ZPueihBkxHpMCeWu4H9i{l9mSa^X z0jZ8YYr5NJcW*aqymKr!uRwrxi&a-QSgM2<6bpmk?I1ujN8lkN1Fwt((~Gz#K6Q?KU$zYJGzpQb1%nW*h%mftdo!72RbB zIFuCSiM}#z>!yw3>v{E4tEaKQdhL>J*j#VtE}l@o_gYfAfK-eu>7@~M!?X?ecZq%k zLS`pyXt38;=inunmPTOZO}7+ML1BRnj|_^0<}9y}l_V{`zfN_1WuWM!&|;(GWSve+ z8Kj7pct7O|01Fxq0KGs$zX?moJGe1y$T$r@dZ)U(noE-GD$s@QTfODr`xN1szQe#yFVoPY*iz%;3g7~KoS zz_g=ehUf$3jE81jt&9tSK7x{2`E&8Yd3)oHLpDA!=H4#afD#7mGA$7BE%7pmo`(g= z#y#CLup$p#NaIn_i_1T~;aZdwa_;sW@m6M6ZL_JWrO!E=^&Pu$@j5G(Stj1zHf#$|L zz6$5pKmUTqgpdLOutI`DH9<7U>Y)*9ZRr%f5d)L!F(CvZ1BUP>0_^d$Gzv^H&0Q$q zLf)f4_`^Ta_ys(Sf_?na$1F#5{ruBUiN*%)XRo|$8|rJVTK&r&O8|WmVRnetVkEPY zM9;+AMa8kQNmQqMF^$g@5r$@@+7=rXfI|F3?Y&bD@SwE?(Qmm7gj99^sOq1&vKo|S z+9PA54h*R?AdC#z$r@YobYYYZ3v6I;;eEst(%5uY@@mMpRmsT8aF0lDf3LqL;sH!e zv$l?Q2cF5Qb7pq7_%_LU`ueP=yT?HyTS1`N*pm!;00^U>&_7Hq<8=x2qQ*={F*1wu z$zMb4&w}J5tD%UUN)~V@%Q9gN%i>YwE;*?{HPB1|4uaPYd;EQu4|;~j@vN#()N=wa z5FlmkE6hU)KmRfXP~opSg6;}R`2GFLJJ+l_#|JfhAAbJ}=Q&nh`K+^rJVD?Hd+>LR z2DDFB0RV%bI||bYSOzR_CccEgOXe&Id}O0StOZt4Oihm2?8LYjI?gvvgu$6E!kR>} z;V#7uPHe%A8#nEZH{TS1XcZ$%QREjnfrH4aCH$EGq!6qa&IyN+>jZ!jjEcJ$4*~mk z+`W6p#$;iz`5V(qhmX9is|Bc5tSgo(m+Crz44XK@6l#_W`v)I9Xvf|@CPJUH90@@f zhuxP=!hLE!QWo=|#R~+C$Xd>q^-j7M_U|x(uQ(A41y78msrpd}e!GFK>=hC z5Zm3`?XK=%)ePGNq*$*QJWhf`wQ$RbSQiJeKGtGjjVWM-=^&PcKl1Ry0*W&pEC-=O z_-x5QU@%(-kgSlUrmQle-w}FDDNt6^UBFOKo}fF55{bg^dW9xYR3!hx^^Yfvl^>h} zAf26A6u5%^0LIb2%Hqb2+rI2nP4?-Dty{NSeOj`I@Af=3J*j31q^2a=oyMCsG%_F%I$%o?^LFr|{dVWp4NDh&*NDz?axx{1iSNo5 zI85=Ra(D0Ck;0mC5Wj8vW?zL86CY*iS*f0)KU)?iLX{~6ri!pG8AJC%NrAGg7#$9s zN)~H;+GU+ihz8WxE34h!5nevz`ht}(Iysd9+O$m35$2V~SxRhnn$;K4;#ZalrwMQ- zT0vf=fO86*qu=5*c2Wpz-ltc<3VCL@FNy790$A;#r}sOkH8fk?0XmPIIf|h2#PNg#I~q_N=}B`s

!^>Q z_kQ^C9-ZrIEriZ*E8If1Q|)1ANCL z4hC0NE^&vQGt6*s)5+5fj>J@AlnmY5Qp86DL217V3ZZTGQfiGjMFF<%QUQ85V@Re58#r|&r_UpTXqo* zyZSzJjPU+^^rS8iL72xO7RP$6kD!07FOCtFdE~Qa9B3_bzuGBDa=_l`v*GLvQezo7 zfVg(tP02Xi*mY%6YF{D|h|>tu(#C&7@);o2aFQ`o<; zUGW;OgNLD(vZ1ga!bU!g@L3y(APhs@QXW!Uy^DX41XZ!Xd^DcV)=w{;stztjo92Ei znR>}!{D zZ`zf?8i4UmqJ-hmOKzX9JUA9W?|SthY2wbw03U+wyy9uMEwiQ%b8Q8j_tiMLi$Jm%vLGJ^x-bO@SnV4`osm%_{0edRVEKrWYg}?62V* z@%OKNs} zw|xaM(lucJkU(5-VMWc@*%iIGv!v>ra|cn+f1c+HQTUT@K;IRN*$+Ix{#*9aLOel=6!KlUzU=>1ecy%u feSwKqyF9_wRsn5$^Zs4|{$+U?{2TF-*Ta7S8GQ+E literal 0 HcmV?d00001 From 82e50e71f45429507ccd495466310014c55e12a3 Mon Sep 17 00:00:00 2001 From: Paul Muniu Date: Wed, 1 May 2024 20:05:18 +0300 Subject: [PATCH 22/27] update_changes --- README.md | 70 +++++++------------------------------------------------ 1 file changed, 8 insertions(+), 62 deletions(-) diff --git a/README.md b/README.md index 308e26cd..35d7bfed 100644 --- a/README.md +++ b/README.md @@ -5,7 +5,6 @@ In the fast-paced world of real estate, it's crucial for agencies to provide clients with precise information. Clients, whether they're looking to become homeowners or investors, rely on real estate companies for guidance on important decisions such as pricing, market trends, and property evaluations. To meet this need, real estate agencies can benefit from a sophisticated regression-based tool. This tool uses various property variables like the number of bedrooms, year built, floor count, living area, condition, location, and amenities to accurately predict property prices. By employing regression analysis, agencies can offer clients more precise pricing estimates, leading to better-informed decisions. Ultimately, this tool aims to improve client satisfaction, streamline decision-making processes, and drive success for real estate agencies. - ### Business Problem Real estate experts in King County need help understanding what factors influence property values and market trends. This study aims to analyze property features, locations, buyer preferences, and market changes over time. By gaining insights from this analysis, real estate professionals can make informed decisions about buying, selling, and positioning themselves in the dynamic King County market. The goal is to provide practical advice to help them succeed in this ever-changing real estate landscape. @@ -13,60 +12,30 @@ Real estate experts in King County need help understanding what factors influenc ### The Data Understanding King County, Washington, situated in the northwest of the United States, is known for its vibrant housing market centered around Seattle. The county has experienced significant growth due to its strong economy and cultural importance, attracting a large number of residents and creating high demand for housing in both urban and suburban areas. Seattle, with its impressive skyline, is especially sought after by tech professionals and city lovers. King County's real estate market is competitive, offering a range of neighborhoods to suit different preferences, from historic areas to modern suburban developments -**Target Variable** +**Target Variable** price: Sale price of the house . -**Unique identifier** - -id - Unique identifier for a house - **Property Characteristics:** ![property-characteristics](images/property-characteristics.png) -### Key Points - -# **OBJECTIVES** - **Main Objective:** The primary aim of this project is to develop a predictive regression model to support real estate agencies in advising clients on house prices. This model is intended to anticipate potential changes in property value based on property characteristics, furnishing clients with valuable insights to facilitate informed investment decisions. -Specific Goals: - -i). Identification of Key Influencing Factors on House Prices: - -Analyze various property features, including bedrooms, bathrooms, and square footage, to determine their impact on sale price. Investigate location-related attributes such as zip codes and geographic coordinates to further comprehend their effect on property prices. - -ii). Assessment of Model Performance: - -Employ metrics such as mean squared error, R-squared values, and residual analysis to evaluate the model's accuracy in predicting house prices effectively. - -iii). Provision of Actionable Recommendations: - -Offer practical recommendations to real estate agencies aimed at enhancing profitability and market presence. Utilize insights gleaned from the model to optimize marketing strategies and enhance overall decision-making processes. - -# **TABLE OF CONTENT** -1. Data Preparation -2. Data cleaning -3. Exploratory data analysis -4. Statistical Analysis -5. Modelling -6. Regression Results -7. Conclusion -8. Recomendations - #**Statistical Analysis** Statistical analysis plays a crucial role in understanding relationships within datasets, identifying patterns, and gaining insights. In this regression modeling project aimed at predicting property values, several key steps in statistical analysis are essential: -Descriptive Statistics -Correlation matrix -Distribution Analysis -Inferential Statistics using Hypothesis Testing and Analysis of Variance -MultiColinierity +1. Descriptive Statistics +2. Correlation matrix +3. Distribution Analysis +4. Inferential Statistics using Hypothesis Testing and Analysis of Variance +5. MultiColinierity + # **Modelling** + 1. Baseline model - simple linear model. 2. log transformation. 3. Multiple Linear Regression @@ -87,10 +56,6 @@ Coefficient (259767.82): Represents the change in house prices for a one-unit in # **RESIDUALS** ![Residuals](images/Residuals.png) A p-value of 3.975373048166964e-258, which is extremely close to zero, indicates strong evidence against the null hypothesis of homoscedasticity. In other words, there is a significant presence of heteroscedasticity in your data. - -Heteroscedasticity refers to the situation where the variability of a variable is unequal across the range of values of a second variable that predicts it. In the context of regression analysis, it means that the variance of the errors is not constant across observations. -The model identifies the main factors that affect house prices, giving useful advice to real estate companies when they help customers. It's not perfect, but it does an okay job with a 63.1% score. We still need to check if it can predict prices well. However, the model does its job by helping with decisions and making marketing better by using details about houses and the market. - We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation. # **Log transformation**. @@ -100,12 +65,6 @@ Transforming the dependent variable or one or more independent variables can som ![Log-transformation](images/Log-transformation.png) -Residual Analysis: The model's residuals are randomly distributed, indicating no systematic bias. Log transformation helps visualize residuals and patterns. A horizontal red line suggests linearity and normality but does not conclusively determine model goodness-of-fit. -R-squared (71.61%): Indicates that approximately 71.61% of the variance in the target variable (price) is explained by the model. -Mean Squared Error (MSE): Approximately 37,774,083,176.84, representing the average squared difference between predicted and actual house prices. -Coefficients: Represent the estimated effect of each predictor variable on the target variable. For example, the coefficient for bathrooms is 3457.38, sqft_living is -16.53, floors is -16.98, waterfront is -59.75, condition is -66.70, and so on. -P-values: Indicate the statistical significance of the coefficients. Some coefficients have p-values < 0.05, indicating statistical significance, while others do not. -F-statistic: Tests the overall significance of the model. A low p-value (< 0.05) suggests the model as a whole is statistically significant. # **REGRESSION Results** @@ -116,16 +75,6 @@ Polynomial Regression is the preferred model beacuse from the evaluation it has The features below impact price such that an increase will cause an increase in the price of the property. 'bedrooms','bathrooms', 'sqft_living','floors', 'waterfront','view''condition', 'grade', 'sqft_above','sqft_basement', 'yr_renovated', 'sqft_living15','renovated', 'basement' -# **Assumptions** -1. Linearity: The relationship between the independent variables (predictors) and the dependent variable (response) is linear. This means that a change in the independent variable corresponds to a proportional change in the dependent variable. - -2. Independence of errors: The errors (residuals) from the regression model should be independent of each other. In other words, the residual for one observation should not predict the residual for another observation. - -3. Normality of errors: The errors are normally distributed. This implies that the residuals should follow a normal distribution with a mean of zero. - -4. No perfect multicollinearity: There should be no perfect linear relationship between the independent variables. In other words, no independent variable should be a perfect linear combination of other independent variables. - - **Limitations** 1. The dataset could have more property based characteristics 2. Multicollinearity:The presence of correlated predictors (e.g., square footage and number of bedrooms) can lead to multicollinearity issues, making it challenging to interpret the individual effects of each feature accurately @@ -156,11 +105,8 @@ Overall the model was the best fit model for this predictions 1. Property Size Matters: There is a clear positive correlation between the size of a property, indicated by total square footage, and its price. Investing in larger properties can potentially yield higher returns for investors and increase market value for homeowners. - 2. Strategic Upgrades Add Value: Upgrading existing properties with strategic renovations and expansions, particularly those that increase square footage, can enhance their market value. Quality improvements that improve functionality and aesthetics are key to maximizing property value. - 3. Balance is Key: While adding extra bedrooms and bathrooms can increase a property's price, there's a point of diminishing returns. It's important to strike a balance between quantity and quality, optimizing the bedroom-to-bathroom ratio to align with market trends and buyer preferences. - 4. Marketing Differentiation is Essential: Tailoring marketing strategies based on property condition and grade ratings is crucial. Highlighting the unique features and benefits of higher-grade properties can attract premium buyers, while emphasizing renovation potential for properties with lower ratings can appeal to savvy investors. From c8f02dfe28fb2ae1d52dc07c4087aaf5ebff3165 Mon Sep 17 00:00:00 2001 From: Paul Muniu Date: Wed, 1 May 2024 20:21:15 +0300 Subject: [PATCH 23/27] delete unwanted files --- Final Copy -Project Phase 2.ipynb | 5199 ----------------------------- Project Group4 Notebook.pdf | Bin 161155 -> 0 bytes 2 files changed, 5199 deletions(-) delete mode 100644 Final Copy -Project Phase 2.ipynb delete mode 100644 Project Group4 Notebook.pdf diff --git a/Final Copy -Project Phase 2.ipynb b/Final Copy -Project Phase 2.ipynb deleted file mode 100644 index ee2a22a0..00000000 --- a/Final Copy -Project Phase 2.ipynb +++ /dev/null @@ -1,5199 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Final Project Submission\n", - "\n", - "Please fill out:\n", - "* Student name:\n", - "1. Winfred Kinya Bundi.\n", - "2. Carol Mundia.\n", - "3. Paul Muniu.\n", - "4. Dennis Mwenda.\n", - "* Student pace: Full time Hybrid\n", - "* Scheduled project review date/time:2/05/2024 \n", - "* Instructor name: Mwikali Maryanne.\n", - "* Blog post URL:git@github.com:winnycodegurl/dsc-phase-2-projectgroup4.git\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## INTRODUCTION\n", - "\n", - "In the fast-paced world of real estate, it's crucial for agencies to provide clients with precise information. Clients, whether they're looking to become homeowners or investors, rely on real estate companies for guidance on important decisions such as pricing, market trends, and property evaluations. To meet this need, real estate agencies can benefit from a sophisticated regression-based tool. This tool uses various property variables like the number of bedrooms, year built, floor count, living area, condition, location, and amenities to accurately predict property prices. By employing regression analysis, agencies can offer clients more precise pricing estimates, leading to better-informed decisions. Ultimately, this tool aims to improve client satisfaction, streamline decision-making processes, and drive success for real estate agencies.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## BUSINESS UNDERSTANDING\n", - "\n", - "\n", - "\n", - "The provided dataset encompasses details on homes sold, encompassing their attributes and sale prices. This dataset holds significant potential for real estate agencies across various avenues:\n", - "\n", - "\n", - "\n", - "1. \n", - "Market Analysis:\n", - "\n", - " Leveraging the dataset, agencies can discern market trends, including the demand for different property types, burgeoning neighborhoods witnessing property value escalations, and the impact obetter f featurenws or property renovations on sale prices. By employing market segmentation techniques, such as demographic or psychographic segmentation, agencies can further refine their analysis to understand the preferences and behaviors of distinct customer segments within the real estate market\n", - "\n", - "\n", - "\n", - "\n", - "2. \n", - "Property Valuation: \n", - "\n", - "By comprehending the correlation between house features and sale prices, agencies can proficiently gauge property values for both sellers and buyers, ensuring equitable and competitive pricing strategies\n", - "\n", - "\n", - "\n", - "\n", - "3. \n", - "Targeted Marketing: \n", - "\n", - "Through discerning buyer preferences from the dataset, agencies can tailor marketing endeavors to resonate with potential buyers seeking specific property types or neighborhoods, thus enhancing the efficacy of their outreach efforts. Market segmentation insights can inform the development of targeted marketing campaigns tailored to the unique needs and preferences of different customer segments, thereby maximizing the impact of marketing investments.\n", - "\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## PROBLEM STATEMENT.\n", - "\n", - "\n", - "\n", - "In King County, people involved in real estate have trouble figuring out what affects property values and trends in the market.\n", - "This study wants to help by looking at things like what features a property has, where it's located, what buyers prefer,\n", - "and how things change over time. By understanding these things better, people in real estate can make smarter choices about\n", - "buying and selling property and how they position themselves in the market.\n", - "The main goal is to give them practical advice that helps them do well in King County's real estate market, \n", - "which is always changing.\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## OBJECTIVES.\n", - "\n", - "Main OBJECTIVE\n", - "\n", - "\n", - "The primary aim of this project is to develop a predictive regression model to support real estate agencies in advising clients \n", - "on house prices. This model is intended to anticipate potential changes in property value based on property characteristics, \n", - "furnishing clients with valuable insights to facilitate informed investment decisions.\n", - "\n", - "\n", - "\n", - "Specific Goals:\n", - "\n", - "\n", - "i). Identification of Key Influencing Factors on House Prices:\n", - "\n", - "\n", - "\n", - "Analyze various property features, including bedrooms, bathrooms, and square footage, to determine their impact on sale price.\n", - "\n", - "\n", - "\n", - "ii). Assessment of Model Performance:\n", - "\n", - "\n", - "Employ metrics such as mean squared error, R-squared values, and residual analysis to \n", - "evaluate the model's accuracy in predicting house prices effectively.\n", - "\n", - " \n", - "\n", - "iii). Provision of Actionable Recommendations:\n", - "\n", - "\n", - "\n", - "Offer practical recommendations to real estate agencies aimed at enhancing profitability and market presence. \n", - "Utilize insights gleaned from the model to optimize marketing strategies and enhance overall decision-making processes.\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Data Understanding.\n", - "\n", - "\n", - "King County, Washington, situated in the northwest of the United States, is known for its vibrant housing market centered around Seattle. The county has experienced significant growth due to its strong economy and cultural importance, attracting a large number of residents and creating high demand for housing in both urban and suburban areas. Seattle, with its impressive skyline, is especially sought after by tech professionals and city lovers. King County's real estate market is competitive, offering a range of neighborhoods to suit different preferences, from historic areas to modern suburban developments.\n", - "\n", - "### Whereby the dataset contains:\n", - "\n", - "### Target Variable\n", - "\n", - "price: Sale price of the house .\n", - "\n", - "### Unique identifier\n", - "\n", - "id - Unique identifier for a house\n", - "\n", - "### Property Characteristics:\n", - "\n", - "bedrooms: Number of bedrooms.\n", - "\n", - "bathrooms: Number of bathrooms.\n", - "\n", - "sqft_living: Square footage of living space in the home.\n", - "\n", - "sqft_lot: Square footage of the lot.\n", - "\n", - "floors: Number of floors (levels) in the house.\n", - "\n", - "waterfront: Indicates whether the house is on a waterfront (categorical: YES/NO).\n", - "\n", - "view: Quality of view from the house, categorized into various types.\n", - "\n", - "condition: Overall condition of the house, categorized based on maintenance.\n", - "\n", - "grade: Overall grade of the house, reflecting construction and design quality.\n", - "\n", - "### Additional Features:\n", - "\n", - "sqft_above: Square footage of house apart from the basement.\n", - "\n", - "sqft_basement: Square footage of the basement.\n", - "\n", - "yr_built: Year when the house was built.\n", - "\n", - "yr_renovated: Year when the house was renovated.\n", - "\n", - "zipcode: ZIP Code of the property.\n", - "\n", - "lat: Latitude coordinate of the property.\n", - "\n", - "long: Longitude coordinate of the property.\n", - "\n", - "sqft_living15: Square footage of interior housing living space for the nearest 15 neighbors.\n", - "\n", - "sqft_lot15: Square footage of the land lots of the nearest 15 neighbors.\n", - "\n", - "### TABLE OF CONTENTS\n", - "1.Data Preparation\n", - "\n", - "2.Data cleaning\n", - "\n", - "3.Exploratory data analysis\n", - "\n", - "4.Statistical Analysis\n", - "\n", - "5.Modelling\n", - "\n", - "6.Regression Results\n", - "\n", - "7.Conclusion\n", - "\n", - "8.Reccomendations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. DATA PREPARATION" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [], - "source": [ - "# Importing necessary libraries for data analysis and visualization\n", - "\n", - "import pandas as pd\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt # for data visualization.\n", - "%matplotlib inline\n", - "import seaborn as sns # for enhanced data visualization.\n", - "from pandas.api.types import is_numeric_dtype # Used to check if a data type is numeric.\n", - "\n", - "from statsmodels.stats.outliers_influence import variance_inflation_factor # For calculating Variance Inflation Factor (VIF).\n", - "from statsmodels.graphics.regressionplots import plot_partregress_grid # For partial regression plots.\n", - "from sklearn.model_selection import train_test_split # Used to split data into training and testing sets.\n", - "from sklearn.preprocessing import PolynomialFeatures # Generate polynomial features.\n", - "from sklearn.linear_model import LinearRegression # Linear Regression model.\n", - "from sklearn.preprocessing import StandardScaler # Standardizing/Scaling features.\n", - "from sklearn.feature_selection import RFE # Recursive Feature Elimination for feature selection.\n", - "from sklearn.metrics import mean_squared_error, r2_score # Evaluation metrics for model performance.\n", - "import statsmodels.api as sm\n", - "from scipy.stats import kstest\n", - "\n", - "# Statsmodels is used to create statistical models.\n", - "from scipy import stats # Scientific computing library for statistical tests.\n", - "from scipy.stats import f_oneway # One-way ANOVA statistical test.\n", - "from scipy.stats import ttest_ind # Independent sample t-test for comparing means." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### *loading the King County House Sales dataset*\n" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 21597 entries, 0 to 21596\n", - "Data columns (total 21 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 id 21597 non-null int64 \n", - " 1 date 21597 non-null object \n", - " 2 price 21597 non-null float64\n", - " 3 bedrooms 21597 non-null int64 \n", - " 4 bathrooms 21597 non-null float64\n", - " 5 sqft_living 21597 non-null int64 \n", - " 6 sqft_lot 21597 non-null int64 \n", - " 7 floors 21597 non-null float64\n", - " 8 waterfront 19221 non-null object \n", - " 9 view 21534 non-null object \n", - " 10 condition 21597 non-null object \n", - " 11 grade 21597 non-null object \n", - " 12 sqft_above 21597 non-null int64 \n", - " 13 sqft_basement 21597 non-null object \n", - " 14 yr_built 21597 non-null int64 \n", - " 15 yr_renovated 17755 non-null float64\n", - " 16 zipcode 21597 non-null int64 \n", - " 17 lat 21597 non-null float64\n", - " 18 long 21597 non-null float64\n", - " 19 sqft_living15 21597 non-null int64 \n", - " 20 sqft_lot15 21597 non-null int64 \n", - "dtypes: float64(6), int64(9), object(6)\n", - "memory usage: 3.5+ MB\n" - ] - }, - { - "data": { - "text/html": [ - "

\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontview...gradesqft_abovesqft_basementyr_builtyr_renovatedzipcodelatlongsqft_living15sqft_lot15
0712930052010/13/2014221900.031.00118056501.0NaNNONE...7 Average11800.019550.09817847.5112-122.25713405650
1641410019212/9/2014538000.032.25257072422.0NONONE...7 Average2170400.019511991.09812547.7210-122.31916907639
256315004002/25/2015180000.021.00770100001.0NONONE...6 Low Average7700.01933NaN9802847.7379-122.23327208062
3248720087512/9/2014604000.043.00196050001.0NONONE...7 Average1050910.019650.09813647.5208-122.39313605000
419544005102/18/2015510000.032.00168080801.0NONONE...8 Good16800.019870.09807447.6168-122.04518007503
\n", - "

5 rows × 21 columns

\n", - "
" - ], - "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "0 7129300520 10/13/2014 221900.0 3 1.00 1180 \n", - "1 6414100192 12/9/2014 538000.0 3 2.25 2570 \n", - "2 5631500400 2/25/2015 180000.0 2 1.00 770 \n", - "3 2487200875 12/9/2014 604000.0 4 3.00 1960 \n", - "4 1954400510 2/18/2015 510000.0 3 2.00 1680 \n", - "\n", - " sqft_lot floors waterfront view ... grade sqft_above \\\n", - "0 5650 1.0 NaN NONE ... 7 Average 1180 \n", - "1 7242 2.0 NO NONE ... 7 Average 2170 \n", - "2 10000 1.0 NO NONE ... 6 Low Average 770 \n", - "3 5000 1.0 NO NONE ... 7 Average 1050 \n", - "4 8080 1.0 NO NONE ... 8 Good 1680 \n", - "\n", - " sqft_basement yr_built yr_renovated zipcode lat long \\\n", - "0 0.0 1955 0.0 98178 47.5112 -122.257 \n", - "1 400.0 1951 1991.0 98125 47.7210 -122.319 \n", - "2 0.0 1933 NaN 98028 47.7379 -122.233 \n", - "3 910.0 1965 0.0 98136 47.5208 -122.393 \n", - "4 0.0 1987 0.0 98074 47.6168 -122.045 \n", - "\n", - " sqft_living15 sqft_lot15 \n", - "0 1340 5650 \n", - "1 1690 7639 \n", - "2 2720 8062 \n", - "3 1360 5000 \n", - "4 1800 7503 \n", - "\n", - "[5 rows x 21 columns]" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Load the dataset to inspect the initial state of the data\n", - "file_path = 'data/kc_house_data.csv'\n", - "housing_data = pd.read_csv(file_path)\n", - "\n", - "# Display basic information and the first few rows of the dataset\n", - "housing_data.info()\n", - "housing_data.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### *loading the column.md dataset*\n" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Column_nameDescription
0* `id`Unique identifier for a house
1* `date`Date house was sold
2* `price`Sale price (prediction target)
3* `bedrooms`Number of bedrooms
4* `bathrooms`Number of bathrooms
5* `sqft_living`Square footage of living space in the home
6* `sqft_lot`Square footage of the lot
7* `floors`Number of floors (levels) in house
8* `waterfront`Whether the house is on a waterfront
9* `view`Quality of view from house
10* `condition`How good the overall condition of the house is...
11* `grade`Overall grade of the house. Related to the con...
12* `sqft_above`Square footage of house apart from basement
13* `sqft_basement`Square footage of the basement
14* `yr_built`Year when house was built
15* `yr_renovated`Year when house was renovated
16* `zipcode`ZIP Code used by the United States Postal Service
17* `lat`Latitude coordinate
18* `long`Longitude coordinate
19* `sqft_living15`The square footage of interior housing living ...
20* `sqft_lot15`The square footage of the land lots of the nea...
\n", - "
" - ], - "text/plain": [ - " Column_name Description\n", - "0 * `id` Unique identifier for a house\n", - "1 * `date` Date house was sold\n", - "2 * `price` Sale price (prediction target)\n", - "3 * `bedrooms` Number of bedrooms\n", - "4 * `bathrooms` Number of bathrooms\n", - "5 * `sqft_living` Square footage of living space in the home\n", - "6 * `sqft_lot` Square footage of the lot\n", - "7 * `floors` Number of floors (levels) in house\n", - "8 * `waterfront` Whether the house is on a waterfront\n", - "9 * `view` Quality of view from house\n", - "10 * `condition` How good the overall condition of the house is...\n", - "11 * `grade` Overall grade of the house. Related to the con...\n", - "12 * `sqft_above` Square footage of house apart from basement\n", - "13 * `sqft_basement` Square footage of the basement\n", - "14 * `yr_built` Year when house was built\n", - "15 * `yr_renovated` Year when house was renovated\n", - "16 * `zipcode` ZIP Code used by the United States Postal Service\n", - "17 * `lat` Latitude coordinate\n", - "18 * `long` Longitude coordinate\n", - "19 * `sqft_living15` The square footage of interior housing living ...\n", - "20 * `sqft_lot15` The square footage of the land lots of the nea..." - ] - }, - "execution_count": 72, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "column_names_file = \"data/column_names.md\"\n", - "\n", - "with open(column_names_file, \"r\") as file:\n", - " markdown_content = file.readlines()\n", - "\n", - "column_names = []\n", - "description = []\n", - "for line in markdown_content:\n", - " parts = line.split('-', 1)\n", - " if len(parts) == 2: # Check if split produces two parts\n", - " column_names.append(parts[0].strip())\n", - " description.append(parts[1].strip())\n", - "\n", - "# Create DataFrame\n", - "data = {\n", - " \"Column_name\": column_names,\n", - " \"Description\": description\n", - "}\n", - "column_name_df = pd.DataFrame(data)\n", - "\n", - "column_name_df\n" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "There are 3 columns with missing values.\n", - "waterfront 2376\n", - "view 63\n", - "yr_renovated 3842\n", - "dtype: int64\n" - ] - } - ], - "source": [ - "# Creating function to check counts of missing values\n", - "def has_missing_values(df):\n", - " missing_values = df.isnull().sum()\n", - " num_missing_values = missing_values[missing_values > 0].count()\n", - " if num_missing_values == 0:\n", - " print(\"There are no missing values in the DataFrame.\")\n", - " else:\n", - " print(f\"There are {num_missing_values} columns with missing values.\")\n", - " print(missing_values[missing_values > 0])\n", - " \n", - "has_missing_values(housing_data)" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "There are no duplicate rows in the DataFrame.\n" - ] - } - ], - "source": [ - "#creating a function to check for duplicates.\n", - "def has_duplicates(df):\n", - " num_duplicates = df.duplicated().sum()\n", - " if num_duplicates == 0:\n", - " print(\"There are no duplicate rows in the DataFrame.\")\n", - " else:\n", - " print(f\"There are {num_duplicates} duplicate rows in the DataFrame.\")\n", - "\n", - "has_duplicates(housing_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The dataset contains 21,597 entries and 21 features. Here’s a brief overview of the data:\n", - "\n", - "### Columns and their Data Types:\n", - "#### Numerical:\n", - "id, price, bedrooms, bathrooms, sqft_living, sqft_lot, floors, sqft_above, yr_built, yr_renovated, zipcode, lat, long, sqft_living15, sqft_lot15\n", - "\n", - "#### Categorical:\n", - "date (format object, should be datetime), waterfront, view, condition, grade, sqft_basement (format object, should be numeric)\n", - "\n", - "#### Missing Values:\n", - "waterfront: 2,376 missing values\n", - "view: 63 missing values\n", - "yr_renovated: 3,842 missing values\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. DATA CLEANING" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### a)Dropping columns:\n", - "We're dropping some columns during data cleaning to streamline our analysis and focus on the most relevant features. By removing unnecessary or redundant columns, we aim to simplify the dataset and improve the efficiency of subsequent analytical processes. This helps in reducing noise and enhancing the clarity of our findings." - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontconditiongradesqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15
2014679670001304/1/2015370228.043.00205040002.0NOAverage8 Good20500.020140.020504000
1398373380001501/29/2015160000.021.00107042001.0NOGood6 Low Average10700.019830.011504200
360586583035858/7/2014252500.021.0090075001.0NOGood6 Low Average9000.019610.0119010000
9229178725021012/22/2014379000.042.75241052252.0NOAverage8 Good24100.020010.023005378
1124318432003507/22/2014150000.021.50136019342.0NOGood7 Average13600.019780.013601898
\n", - "
" - ], - "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "20146 7967000130 4/1/2015 370228.0 4 3.00 2050 \n", - "13983 7338000150 1/29/2015 160000.0 2 1.00 1070 \n", - "3605 8658303585 8/7/2014 252500.0 2 1.00 900 \n", - "9229 1787250210 12/22/2014 379000.0 4 2.75 2410 \n", - "11243 1843200350 7/22/2014 150000.0 2 1.50 1360 \n", - "\n", - " sqft_lot floors waterfront condition grade sqft_above \\\n", - "20146 4000 2.0 NO Average 8 Good 2050 \n", - "13983 4200 1.0 NO Good 6 Low Average 1070 \n", - "3605 7500 1.0 NO Good 6 Low Average 900 \n", - "9229 5225 2.0 NO Average 8 Good 2410 \n", - "11243 1934 2.0 NO Good 7 Average 1360 \n", - "\n", - " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", - "20146 0.0 2014 0.0 2050 4000 \n", - "13983 0.0 1983 0.0 1150 4200 \n", - "3605 0.0 1961 0.0 1190 10000 \n", - "9229 0.0 2001 0.0 2300 5378 \n", - "11243 0.0 1978 0.0 1360 1898 " - ] - }, - "execution_count": 75, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "housing_data = housing_data.drop(['long','lat','view', 'zipcode'], axis=1)\n", - "housing_data.sample(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### b)Checking for placeholders\n", - "\n", - "Placeholders are values used to denote missing, unknown, or invalid data within a dataset. Common examples include \"N/A\", \"-\", \"UNKNOWN\", \"NULL\", #, etc. It's important to identify and handle placeholders properly during data preprocessing to ensure accurate analysis and modeling" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Column 'sqft_basement': Found 454 occurrences of potential placeholder .\n" - ] - } - ], - "source": [ - "# Define a list of common placeholder values\n", - "common_placeholders = [\"\", \"na\", \"n/a\", \"nan\", \"none\", \"null\", \"-\", \"--\", \"?\", \"??\", \"unknown\", \"missing\", \"void\", \"empty\", \"#\", \"#####\"]\n", - "\n", - "# Check for potential placeholders in the DataFrame\n", - "found_placeholder = False\n", - "for column in housing_data.columns:\n", - " placeholder_count = housing_data[column].isin(common_placeholders).sum()\n", - " if placeholder_count > 0:\n", - " print(f\"Column '{column}': Found {placeholder_count} occurrences of potential placeholder .\")\n", - " found_placeholder = True\n", - "\n", - "if not found_placeholder:\n", - " print(\"No potential placeholders found in the DataFrame.\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "# Convert the common placeholders to lowercase for case-insensitive matching\n", - "common_placeholders_lower = [placeholder.lower() for placeholder in common_placeholders]\n", - "\n", - "# Replace any of the common placeholders with NaN\n", - "housing_data['sqft_basement'] = housing_data['sqft_basement'].replace(common_placeholders_lower, pd.NA)\n", - "\n", - "# Drop rows with NaN in the sqft_basement column\n", - "housing_data.dropna(subset=['sqft_basement'], inplace=True)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Counter-check" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "No potential placeholders found in the DataFrame.\n" - ] - } - ], - "source": [ - "# confirm no more placeholders\n", - "# Define a list of common placeholder values\n", - "common_placeholders = [\"\", \"na\", \"n/a\", \"nan\", \"none\", \"null\", \"-\", \"--\", \"?\", \"??\", \"unknown\", \"missing\", \"void\", \"empty\", \"#\", \"#####\"]\n", - "\n", - "# Check for potential placeholders in the DataFrame\n", - "found_placeholder = False\n", - "for column in housing_data.columns:\n", - " placeholder_count = housing_data[column].isin(common_placeholders).sum()\n", - " if placeholder_count > 0:\n", - " print(f\"Column '{column}': Found {placeholder_count} occurrences of potential placeholder .\")\n", - " found_placeholder = True\n", - "\n", - "if not found_placeholder:\n", - " print(\"No potential placeholders found in the DataFrame.\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "### b) Handling Missing Values:\n", - "waterfront: \n", - "Since these are categorical, we can replace missing values with the mode or create a separate category for missing values.\n", - "
yr_renovated: \n", - "A significant number of missing values suggest that these houses might not have been renovated. Impute with 0 or a specific marker value." - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [], - "source": [ - "# For categorical data, impute missing values with mode or specific marker\n", - "waterfront_mode = housing_data['waterfront'].mode()[0]\n", - "\n", - "housing_data['waterfront'].fillna(waterfront_mode, inplace=True)\n", - "housing_data['yr_renovated'].fillna(0, inplace=True) # Assuming no renovation if NaN" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### c) Convert Data\n", - "Convert date from object to datetime format.\n", - "sqft_basement: Convert from object to numeric, handling any non-numeric entries." - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [], - "source": [ - "from datetime import datetime\n", - "\n", - "housing_data['date'] = pd.to_datetime(housing_data['date'])\n", - "housing_data['sqft_basement'] = pd.to_numeric(housing_data['sqft_basement'], errors='coerce') # Convert to numeric, coerce errors\n", - "housing_data['sqft_basement'].fillna(0, inplace=True) # Assuming no basement if NaN or non-numeric" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": {}, - "outputs": [], - "source": [ - "# Change waterfront to integer\n", - "housing_data['waterfront'] = housing_data['waterfront'].apply(lambda x: 0 if x == 'NO' else 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['7 Average' '6 Low Average' '8 Good' '11 Excellent' '9 Better' '5 Fair'\n", - " '10 Very Good' '12 Luxury' '4 Low' '3 Poor' '13 Mansion']\n" - ] - } - ], - "source": [ - "# checking \"grade\" column\n", - "unique_grade = housing_data.grade.unique()\n", - "print(unique_grade)" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['Average' 'Very Good' 'Good' 'Poor' 'Fair']\n" - ] - } - ], - "source": [ - "# checking \"condition\"column\n", - "unique_condition = housing_data.condition.unique()\n", - "print(unique_condition)" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": {}, - "outputs": [], - "source": [ - "# Convert grade and condition into representative numbers for easier Exploratory analysis.\n", - "housing_data['condition'] = housing_data['condition'].map({'Poor': 1,'Fair': 2,'Average': 3,'Good': 4,'Very Good': 5}).astype(float)\n", - "housing_data['grade'] = housing_data['grade'].map({'3 Poor': 1,'4 Low': 2,'5 Fair': 3,'6 Low Average': 4,'7 Average': 5,'8 Good': 6,'9 Better': 7,'10 Very Good': 8,'11 Excellent': 9,'12 Luxury': 10,'13 Mansion': 11}).astype(float) " - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Index: 21143 entries, 0 to 21596\n", - "Data columns (total 17 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 id 21143 non-null int64 \n", - " 1 date 21143 non-null datetime64[ns]\n", - " 2 price 21143 non-null float64 \n", - " 3 bedrooms 21143 non-null int64 \n", - " 4 bathrooms 21143 non-null float64 \n", - " 5 sqft_living 21143 non-null int64 \n", - " 6 sqft_lot 21143 non-null int64 \n", - " 7 floors 21143 non-null float64 \n", - " 8 waterfront 21143 non-null int64 \n", - " 9 condition 21143 non-null float64 \n", - " 10 grade 21143 non-null float64 \n", - " 11 sqft_above 21143 non-null int64 \n", - " 12 sqft_basement 21143 non-null float64 \n", - " 13 yr_built 21143 non-null int64 \n", - " 14 yr_renovated 21143 non-null float64 \n", - " 15 sqft_living15 21143 non-null int64 \n", - " 16 sqft_lot15 21143 non-null int64 \n", - "dtypes: datetime64[ns](1), float64(7), int64(9)\n", - "memory usage: 2.9 MB\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontconditiongradesqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15
45117230493332015-04-05285000.031.501490103671.003.05.01010480.019570.010008254
118176257009352014-06-05875000.033.50325060002.003.08.02500750.020010.016506000
187518530810002014-07-17820000.052.75283061372.003.07.028300.020100.031706285
1227370162000302015-03-20480000.042.50208079661.003.05.01200880.019700.019207500
854679819001102014-10-03350000.042.75230031751.503.04.01340960.019660.012603175
\n", - "
" - ], - "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "4511 723049333 2015-04-05 285000.0 3 1.50 1490 \n", - "1181 7625700935 2014-06-05 875000.0 3 3.50 3250 \n", - "1875 1853081000 2014-07-17 820000.0 5 2.75 2830 \n", - "12273 7016200030 2015-03-20 480000.0 4 2.50 2080 \n", - "8546 7981900110 2014-10-03 350000.0 4 2.75 2300 \n", - "\n", - " sqft_lot floors waterfront condition grade sqft_above \\\n", - "4511 10367 1.0 0 3.0 5.0 1010 \n", - "1181 6000 2.0 0 3.0 8.0 2500 \n", - "1875 6137 2.0 0 3.0 7.0 2830 \n", - "12273 7966 1.0 0 3.0 5.0 1200 \n", - "8546 3175 1.5 0 3.0 4.0 1340 \n", - "\n", - " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \n", - "4511 480.0 1957 0.0 1000 8254 \n", - "1181 750.0 2001 0.0 1650 6000 \n", - "1875 0.0 2010 0.0 3170 6285 \n", - "12273 880.0 1970 0.0 1920 7500 \n", - "8546 960.0 1966 0.0 1260 3175 " - ] - }, - "execution_count": 84, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n", - "# Check transformations\n", - "housing_data.info()\n", - "housing_data.sample(5)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Feature Engineering:\n", - "\n", - "Create additional features that might be informative for our modeling:\n", - "\n", - "**House Age**: Calculate the age of the house from the 'yr_built' column to the current year.\n", - "\n", - "**Renovation Age**: If a house has been renovated ('yr_renovated' > 0), calculate the years since the renovation.\n", - "\n", - "**Total Square Footage**: Sum up 'sqft_living', 'sqft_lot', 'sqft_above', and 'sqft_basement' for a total square footage feature.\n", - "\n", - "These new features could reveal deeper insights into the housing prices and help improve the performance of our statistical models.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 85, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
house_agerenovation_agetotal_sqft
0690.08010.0
17333.012382.0
2910.011540.0
3590.08920.0
4370.011440.0
\n", - "
" - ], - "text/plain": [ - " house_age renovation_age total_sqft\n", - "0 69 0.0 8010.0\n", - "1 73 33.0 12382.0\n", - "2 91 0.0 11540.0\n", - "3 59 0.0 8920.0\n", - "4 37 0.0 11440.0" - ] - }, - "execution_count": 85, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Current year for age calculations\n", - "from datetime import datetime\n", - "\n", - "current_year = datetime.now().year\n", - "\n", - "# Feature Engineering\n", - "housing_data['house_age'] = current_year - housing_data['yr_built']\n", - "housing_data['renovation_age'] = housing_data.apply(\n", - " lambda x: 0 if x['yr_renovated'] == 0 else current_year - x['yr_renovated'], axis=1\n", - ")\n", - "housing_data['total_sqft'] = housing_data['sqft_living'] + housing_data['sqft_lot'] + \\\n", - " housing_data['sqft_above'] + housing_data['sqft_basement']\n", - "\n", - "# Display the new features\n", - "housing_data[['house_age', 'renovation_age', 'total_sqft']].head()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The new features have been successfully added:\n", - "\n", - "**House Age**: Represents the age of the house since it was built.\n", - "\n", - "**Renovation Age**: If renovated, this indicates the number of years since the last renovation; otherwise, it is 0.\n", - "\n", - "**Total Square Footage**: Sum of the living area, lot size, above-ground level area, and basement area\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### *Sample data check.*" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontconditiongradesqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15house_agerenovation_agetotal_sqft
854030342003662014-12-03409000.031.75144090651.004.06.014400.019720.019908812520.011945.0
1943320230590522015-05-04450000.031.001350927211.002.04.01200150.019460.018608096780.095421.0
700377518000802015-01-27465000.031.50146098791.003.05.014600.019560.0161010050680.012799.0
1015111800020752014-08-25235000.031.00121060001.003.05.012100.019300.012106000940.08420.0
350634499000902015-04-10454200.042.50263053792.003.06.026300.020040.026305379200.010639.0
\n", - "
" - ], - "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "8540 3034200366 2014-12-03 409000.0 3 1.75 1440 \n", - "19433 2023059052 2015-05-04 450000.0 3 1.00 1350 \n", - "7003 7751800080 2015-01-27 465000.0 3 1.50 1460 \n", - "10151 1180002075 2014-08-25 235000.0 3 1.00 1210 \n", - "3506 3449900090 2015-04-10 454200.0 4 2.50 2630 \n", - "\n", - " sqft_lot floors waterfront condition grade sqft_above \\\n", - "8540 9065 1.0 0 4.0 6.0 1440 \n", - "19433 92721 1.0 0 2.0 4.0 1200 \n", - "7003 9879 1.0 0 3.0 5.0 1460 \n", - "10151 6000 1.0 0 3.0 5.0 1210 \n", - "3506 5379 2.0 0 3.0 6.0 2630 \n", - "\n", - " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", - "8540 0.0 1972 0.0 1990 8812 \n", - "19433 150.0 1946 0.0 1860 8096 \n", - "7003 0.0 1956 0.0 1610 10050 \n", - "10151 0.0 1930 0.0 1210 6000 \n", - "3506 0.0 2004 0.0 2630 5379 \n", - "\n", - " house_age renovation_age total_sqft \n", - "8540 52 0.0 11945.0 \n", - "19433 78 0.0 95421.0 \n", - "7003 68 0.0 12799.0 \n", - "10151 94 0.0 8420.0 \n", - "3506 20 0.0 10639.0 " - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "housing_data.sample(5)" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Index: 21143 entries, 0 to 21596\n", - "Data columns (total 20 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 id 21143 non-null int64 \n", - " 1 date 21143 non-null datetime64[ns]\n", - " 2 price 21143 non-null float64 \n", - " 3 bedrooms 21143 non-null int64 \n", - " 4 bathrooms 21143 non-null float64 \n", - " 5 sqft_living 21143 non-null int64 \n", - " 6 sqft_lot 21143 non-null int64 \n", - " 7 floors 21143 non-null float64 \n", - " 8 waterfront 21143 non-null int64 \n", - " 9 condition 21143 non-null float64 \n", - " 10 grade 21143 non-null float64 \n", - " 11 sqft_above 21143 non-null int64 \n", - " 12 sqft_basement 21143 non-null float64 \n", - " 13 yr_built 21143 non-null int64 \n", - " 14 yr_renovated 21143 non-null float64 \n", - " 15 sqft_living15 21143 non-null int64 \n", - " 16 sqft_lot15 21143 non-null int64 \n", - " 17 house_age 21143 non-null int64 \n", - " 18 renovation_age 21143 non-null float64 \n", - " 19 total_sqft 21143 non-null float64 \n", - "dtypes: datetime64[ns](1), float64(9), int64(10)\n", - "memory usage: 3.4 MB\n" - ] - } - ], - "source": [ - "housing_data.info()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3. EXPLORATORY DATA ANALYSIS" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next is EDA; Exploratory Data Analysis is a crucial step in data analysis. This process will involve examining and understanding the structure, patterns, and relationships within the dataset. It will aid us uncover insights, detect anomalies, and inform subsequent analysis and modeling decisions." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### a.) Univariate Analysis" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**#Distribution of House Prices.**" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJRCAYAAABYy9SRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWIUlEQVR4nOzdd3iT5dvG8TOjm9GW6Yu4mCplyEYEqVZEBJThKgiioAz3AgVEEQFFVEBAUeQnQ5TtAAVFQQRZIhQUBVRkyIZSupvk/aMkNJ1J2zRJ+/14cEjz5EmuOy29c+Yej8Fms9kEAAAAAACKndHbBQAAAAAAUFoRugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AHmaz2bxdglv8rV4AAABfRugGUGpt2rRJ9erVy/HnmmuuUZMmTXTrrbdq5MiR+v3333M9f8qUKapXr57eeuutQtewfv169e/f361zhg0bpnr16mnhwoX53lbczp07p1dffVXLli0rsB5f8cILL6hevXqKiorSmTNnvFpLcfy8uOrQoUOqV6+e2rVr5/HncsXhw4f1yCOPqFmzZmrUqJHuvffefO8fHR2tevXqadOmTfnez/6aDhs2rDjL9Vn29mb/U79+fTVo0EBt27bVI488om+//datx12yZInq1aunZ555xkOVAwDyY/Z2AQDgaaGhobrpppscX9tsNiUmJmrfvn367LPPtHjxYj399NN68MEHi/V5jxw5ogcffFDVqlUr1sf1lHHjxmnJkiV69dVXvV2KS5KSkrRy5UoFBwcrJSVFS5YsKfbvIVzz7LPPatu2bapRo4aioqJ05ZVXerskv1azZk01btzY6bb09HQdPXpU33//vb7//nsNHDhQTz/9tHcKBAC4hdANoNSLiIjQxIkTcz321VdfacSIEXr99ddVtWpVdenSxXEsNjZWt912myIiIgr1vFartVDnPfXUUxowYICqVq1aqPMLK69p5d6qpyArV65UUlKShg4dqunTp+vTTz9V//79ZTAYvF2ax1WrVk0rVqxQQECAt0uRJO3cuVOS9PHHH+vSSy/1cjX+r1mzZho/fnyux9atW6dHHnlEM2fOVKdOnXTNNdcU+HgxMTFq1KiRypcvX9ylAgBcwPRyAGVa586dNWbMGEnS66+/rpSUFMexyMhI1apVS5GRkSVaU9WqVVWrVi2feYPsa/XYLV68WJLUrVs3tW7dWgcOHNDGjRu9XFXJCAgIUK1atXTZZZd5uxRJmaOwklS9enUvV1L6tWvXTjfddJNsNptWr17t0jnly5dXrVq1fO6DMwAoKwjdAMq822+/XVFRUTp+/LjTWsm81uj+8MMPevDBB3XDDTeoQYMG6tChg4YPH679+/c7nWuf0n7s2DHVq1dP0dHRki6uxx08eLBWrlypDh06qGHDhurSpYsSExMLXEP9ySefqFOnToqKitJNN92kN954Q+fOnXO6T0FrOO1rRbN+vXTpUknSiBEjVK9ePS1ZskRS3mu6MzIyNGfOHHXv3l2NGzdW48aN1aNHD82dO1cZGRlO97Wvrx87dqz++usvPfbYY2rZsqUaNmyo7t27OwK0qw4cOKBt27bpiiuu0GWXXaY77rhDkrRgwYJc75/1NT927JiGDx+u66+/XlFRUercubM++ugjWSyWHOf9/fffGjVqlDp27KjGjRurYcOGuvnmmzV69GgdO3Ys3xq/+eYb1atXT/fcc0+ux48dO6arr75aHTt2dNy2f/9+PfXUU4qJiVGDBg3UunVrPfzww1q/fn2u7cm+pvvo0aMaMWKEOnXqpIYNG6pFixbq27evvvzyy3xrze706dOaMGGCOnbsqAYNGqhFixZ68MEHtXbtWqf79enTx+nn6Nprr1W9evV06NAht56vMPbu3atnn31Wbdu2dax3fvbZZ7Vv374c97WvIT9w4ECOY/Z/51OmTHG6ffv27Ro8eLCio6Mdj//YY485RvWz+/vvv/X88887fi+0a9dOL774og4fPlw8Dc6iZs2akqRTp045bouOjlazZs30559/qnv37o7fTb/88ku+vw9+/vlnDR48WNdff72aNGmiLl266L333lNycnKR2piamqqpU6fqzjvv1HXXXacmTZrozjvv1Hvvvef04SYAlAWEbgCQHIG4oJHSb7/9VoMGDdKmTZtUq1YtRUdHKzg4WEuWLFGvXr0cb/jr1aunm2++WZIUEhKiLl26OL62+/PPP/XMM8+oUqVKatmypapVq6awsLB8n3/WrFkaPXq0QkJC1KFDB6WmpuqDDz7QPffco7Nnzxay9VKXLl0cb+QbN26sLl265DuKmpqaqgceeECvvvqq/v77b7Vs2VKtWrXSX3/9pTFjxmjAgAFKS0vLcd7evXvVs2dPbd26VU2aNNE111yj3bt364UXXtCsWbNcrtce0rt27Sopc/ps+fLl9d133+n48eN5nnfixAn16tVLq1evdmyo99dff2n8+PF67bXXnO67detW3Xnnnfr0009Vrlw5tWvXTk2aNNHJkyf1ySef6J577tH58+fzfK7o6GhFRkZq+/btuYa95cuXy2q1qnv37pKkf//9V71799ZXX32lihUrKjo6WpdffrnjQ57sG9xld+bMGfXt21cLFy6U2WzWjTfeqPr162vLli16+umnNW3atHzPt/v333/VrVs3zZo1S8nJyY7AunHjRg0cOFBvv/22475t2rRxWpJx++23q0uXLgoNDXXpuQrr22+/Vffu3fX5558rMjJSN910kyIjI/X555+rR48e+v7774v0+L/++qv69eun77//Xpdccomio6NVpUoVffPNN7rvvvv0888/O91//fr1uvPOO7Vs2TKFh4erQ4cOqlixohYtWqTu3btr165dRaonu71790qSLrnkEqfb09PTNXDgQMXHx6t9+/YyGAyqX79+no8zc+ZMRzuvuOIKXX/99Tpz5owmTZqU49+wO2202Wx65plnNGXKFJ06dUotW7ZUixYtdPDgQU2aNEmPPPJIsb4eAODrWNMNAJKuuuoqSZkjOfkZP368jEajli1bptq1a0vKfIP52muv6eOPP9ZHH32ksWPH6pZbbtE111yjb7/9VhUqVMh1TfnBgwd133336aWXXpLk2hrwv/76SyNHjlTv3r0lScnJyXrssce0bt06TZo0Sa+88opb7babOHGihg0bpoMHD6pnz57q1atXvvefNGmSNm/erKioKL333nuqVKmSpMyRt4cfflgbNmzQpEmTcuw6vXHjRnXs2FHjxo1zfMAwZ84cvfrqq5o5c6YeeOCBAtdkWywWLVu2TEajUXfeeackKTg4WLfddps+/fRTLVy4UEOGDMn13J07d6pZs2aaMmWKY9nAmjVrNGjQIC1YsECPP/64KlSoIEl6+eWXlZycrClTpuiWW25xPMaJEyd099136/Dhw1qzZo0j+GcXEBCgrl27avbs2fr888/16KOPOh1funSpjEajY5R+xowZOn36tF555RXdfffdjvutXr1aQ4cO1bvvvuu4b27mz5+vf/75Rw8//LCeeuoppzbfd999mjlzph566CEFBgbm+Rg2m01PPPGEjh8/rrvuuksjR4503H/nzp0aMGCApk+froYNGyo6OlqDBg2SJH3xxReSpAkTJshsdv2txYwZM/LdFf+PP/7IcduJEyf0zDPPKD09Xa+99pp69OjhOLZo0SKNGDFCTz/9tFauXFnoTQzfeustpaSk6MMPP1Tbtm0dt8+ePVvjxo3TjBkz1KpVK0mZswKeeuoppaWladKkSercubPj/p9++qlGjRqlJ554QitWrMj3tXfVsmXLtG7dOplMJnXq1MnpWEpKiiIjI/XJJ58oKChIVqtVRmPu4ytxcXGaNGmSwsLC9P7776tp06aSMjcofPjhh7V582bNnz9f/fr1c7uN27Zt06pVq9SiRQvNmjXLsffA6dOnddddd2njxo3aunWrmjVrVuTXAwD8AaEbACRH0CroslMnTpyQ2Wx2hExJMhgMeuSRR3T55ZfnO6qUm379+jn+nteb46xatGjhCNxS5ij6uHHjdOONN2r58uUaNmyYx0cZU1NTtWDBAhmNRk2aNMnptahUqZImTZqkjh07av78+Xr00UedRu/NZrNefvllp9vuvvtuvf766zp9+rROnjypKlWq5Pv869ev17Fjx3T99dfr//7v/xy39+jRwxG6H3nkEZlMplzPHzlypNM6/ejoaF166aU6dOiQ/vrrLzVu3FiJiYlq0KCBoqKinAK3JFWpUkU333yz/ve//xU4jbpnz56aPXu2li9f7hS6d+zYob/++ks33HCDIxieOHFCUs510TExMRo1apQqV66cb4jK6/yGDRvq1VdfVWBgYK5T6LPaunWrdu/ercsuu0wvvfSSU4Bu2LChnn/+eQ0fPlwffPCBY3ZIUWzYsMHtcz799FMlJyfrjjvucArckhyzKJYuXapPPvlETzzxRKHqsr+W2UeS77vvPkkXP6STMoN+fHy8YmNjncKolPmzvWbNGv3www9avXp1juN52bp1a46p4MnJydq7d68OHDggg8Gg5557TldccUWOc++9914FBQVJyv93yqeffiqr1apHHnnEEbilzKs9PPvss3r66acds0bcbaP9vEqVKjlt9hcZGakxY8bov//+U40aNVx6LQCgNGB6OQDo4kZQBY2yNm/eXCkpKbrzzjs1depU7dy5U1arVZUqVVLv3r3dGrkJDg7W5Zdf7ladWafy2lWuXFlRUVFKSUkp9mmsuYmLi1NKSoquueaaXKegX3bZZYqKilJqamqO9a+XX355jt3gAwMDHbe5stbTPrU8e+Bq1KiRateurf/++y/H2mO7kJAQpzXIdvYNpuzrWMPCwjRu3LgcU86PHz+utWvXas+ePZKU6xT6rOrUqaOGDRvq4MGD2rZtm+N2+3p5+9RyKfNnS5Ief/xxvfrqq1q3bp3j9YiNjVXHjh3zDVEtWrSQJL366qsaPny4Vq9e7Zj+fscdd+i2225TSEhIvvVu3rxZknTzzTfnOmJ96623ymQyaceOHQW23RUff/yx/vjjjzz/DB06NMc5W7ZskaQco7x2t912m1NbCsP+vbjvvvs0ceJEbd68Wenp6QoMDFS/fv2c1tLbrzXeunXrXB/Lft+Crkme1cGDB/XFF184/fnpp59ktVp1++236+OPP3b6wC6runXruvQc9tcntw9PGjZsqNWrV+u5555zqt3VNjZp0kQBAQFauXKl+vfvr4ULF+ro0aOOx+jevXuODzQAoDRjpBsAJMd66IoVK+Z7v1dffVVDhw5VXFycpkyZoilTpig8PFzt27dXz549HcHHFYXZDTyv0SH7G9j81jMXF/tz5DdSdemll2rHjh056rHPKMjOHvAKmmJ/5swZrVmzRlJmYMu+cVp8fLykzM3mcgsT5cuXz/WDFfvzZ79s2i+//KKFCxfqt99+07///qukpCRJFz+cyesya1n17NlTO3fu1PLly9W0aVOlpaVp5cqVqlixotM6/wceeED79+/XsmXLNGfOHM2ZM0eBgYFq1aqVOnfurC5duuQ5ei9lhs3du3fro48+0pIlS7RkyRKZzWZdd911uvXWW9WzZ0/HCGhe7N+vvC77FRoaqsjISJ04cUKnT5/2ym7lBf382Wu3j1YXxrPPPqvDhw/rxx9/1MyZMzVz5kyFhobqhhtuUNeuXZ2+b//9958k5foBQVb20OmKO++8M89LhhUkr39j2dlfn6yzRfLibhsvueQSvf766xo1apR++ukn/fTTT5IyP4SKiYnRvffey07qAMoUQjcASI6Ry9xGQbOqXr26Fi1apG3btunbb7/Vhg0b9Mcff2j58uVavny5BgwYkOeO4dm5Mp08u7xCkz38ubKetqApxgWxP1d+swLs98m+hrWo19D+/PPPHbMSfv311zzvt379eh06dChHeHTn+V9++WXNnz9fJpNJ9evX16233qratWurUaNG+vHHHzVjxgyXHqdz584aN26cvv76a40cOVJr1qxxTNXN+voEBARowoQJGjRokFatWqUff/xR27dv17p167Ru3TotXLhQH330Ub7rgp999ln16dNH33zzjX788Udt27ZNmzdv1ubNmzVv3jzNnz9f4eHheZ7vyocIeX1vS0pBP3/u1pfbv4dy5crpgw8+0O+//65Vq1bpp59+0q5du/TNN9/om2++0W233ea4qoH9/A4dOqhcuXJ5Po99DwhPc/X3SvYrDOSnMG287bbb1K5dO61Zs0Zr167Vzz//rL1792rv3r363//+p9mzZ6thw4Yu1wAA/ozQDQDKvAyYlLkbsyuaNm3qWAd56tQpLV68WG+99ZY+/PBD9enTp9AbOBUkr5Fs+yV77CPe9jfeuY0c20eDC8s+QpXfeuaDBw9Kypz6Xpzs07Kzb3CV1cCBA7V27Vp99tlnThuKucO+idQll1yiDz/8ULVq1XI6/vXXX7v8WOXKlVPHjh21bNkybdy4UatWrZLkPLU8qyuuuEIDBw7UwIEDlZycrB9++EEvv/yytm7d6tK64OrVq6tv377q27ev0tPTtXHjRo0ZM0b79+/XZ599poEDB+Z5bkHf28TERJ0+fVomkynf8O5JVatW1d9//61Dhw7lGmTttWffd0HKPWDn9+/h6quv1tVXX63HH39cCQkJWrlypcaOHasVK1aob9++aty4sapWrap//vlH999/v8u/P3xBlSpVdPjwYR09elRXXnlljuMLFixQtWrV1KFDh0K3sVy5curatatjs8Hdu3dr0qRJWr9+vd555x19+OGHxdYeAPBlrOkGUOatWLFCf/31l6pXr64bb7wxz/v99ddf6tKlix566CGn2ytVqqSBAweqXr16slqtjus3F3VUNzc//vhjjtsOHz6sXbt2qXz58rr66qslybGZWtbr+Nr98ssvuT62q/U2aNBAISEh+u233xzhOqt///1Xu3fvVmhoqBo0aODSY7pi9+7d2rNnjypVqpTn2lJJjh2+Fy9e7BgVd5d9FP2WW27JEbgtFovjklGujAxLmVPMpcyftXXr1qlu3bpOr43VatX999+vtm3bOq1rDwkJUadOnRyhxT7NNzdPP/20WrVq5XTN5ICAALVr186x+V5+50sX1zJ/9913uY6Efv3117JarWrWrFmhZmoUB3uN33zzTa7HV6xYIUlOSz3s/x5Onz6d4/7ZZ0ycO3dO3bt3z7F/Qvny5XXXXXc5Puyxv5b2evLaR+DNN99U9+7d892l3RvsHxquW7cux7H9+/frpZdecly73N02fvTRR+rQoUOOy9xde+21evbZZyW5N90eAPwdoRtAmWWz2bRy5UqNHDlSkjRixIh8p6RefvnlOnnypNavX59jpHPXrl3av3+/wsLCHDsb26eCJyUluXQ5MFcsW7ZMq1evdnx97tw5Pfvss7JYLE7Tle27qNt3o7b777//cr18mXRxOm5CQkK+NYSEhOiuu+6S1WrV008/7RRk7JcWslqt6tGjR4Ebd7nDvoFap06d8l3bfNNNN6lChQo6efKk02vlDvvGbhs3bnRsriZlbrQ2cuRIx3WSU1NTXXq85s2b64orrtDy5cuVkJCQYxM4o9Go8uXL68SJE5o0aZLTiOzZs2cdwSi/6biVKlXSmTNn9PrrrzttcpaSkuJ4HQqaztuiRQtdc801OnDggMaMGeP0ocWuXbv0+uuvS5LTDvol7a677lJoaKiWLl2aI9QtXrxYy5cvV2hoqONyctLFfw8ff/yx0wclH3zwgX777Tenx6hQoYKsVqv+/PNPzZ492+nYoUOH9Msvv8hoNDo+NLn77rsVGhqquXPn6quvvnK6//fff6+PPvpIu3fvLtYPoIpDbGysDAaDpk2b5lheI2XOZrBfetD+YY+7baxZs6aOHDmi6dOnO62tt9ls+vzzzyU5/ywmJydr//792r9/v2caCwBexvRyAKXemTNnnNZZW61WnTt3Tnv27NGJEydkMpk0cuRIxcTE5Ps4JpNJr7zyih599FE9/vjjuvbaa3XppZfqzJkz2rZtmywWi0aOHOlY8xgZGakKFSro3Llzuueee3TZZZflGXhd1ahRIw0dOlRNmjRRlSpVtHnzZp09e1YtWrRwujb1ZZddpltuuUWrVq3S3Xff7RgZ3rRpk+rWratatWrleINrv/zQtGnTtH37dnXr1s1pw6isnnrqKf3222/asmWLbr75Zseo4ubNm5WYmKhWrVq5vLbdFWlpafryyy8lqcDp1UFBQbr11lv12Wef6ZNPPnHsZu2OTp06aerUqfrzzz918803q3HjxkpLS9P27duVkJCgOnXqaO/evTp58qTLj9m9e3dNmjTJcf3u7J5//nlt3bpV//vf//Ttt9/q6quvVlpamn755RedP39eXbp0yXejvsGDB+v777/X119/rW3btjkC0M6dO3Xq1Cm1aNFCt99+e741GgwGTZo0SX379tWCBQv0ww8/qFGjRjp79qy2bt0qi8WigQMH5riMWkmqVq2aJkyYoKeeekrPP/+8PvroI1155ZX6+++/tWfPHoWEhOiNN95w2mjt/vvv18qVK/XNN9/o1ltvVb169fTnn3/qn3/+Ubdu3bR8+XKn53j55ZfVu3dvjRs3Tp999plq1aql8+fPa9u2bUpNTdUjjzyimjVr5qjnqaee0rvvvqurrrpK//33n+NqAsOHD3fMQvEVjRs31lNPPaU333xTPXr0UPPmzRUSEqIdO3bo1KlTateune6//35J7rfxpptuUkxMjFavXq2YmBhdd911CgsLc7zmVapUcbqE3s6dOx3Pldu12QHA3xG6AZR6SUlJ+uKLLxxfGwwGhYSE6NJLL9Utt9yi2NjYHFOI8xITE6MPP/xQs2fPVlxcnP744w9VqFBB7dq10wMPPKCWLVs67ms0GjVx4kRNmDDBMRW7qOupn376af36669asGCBdu3apRo1auiBBx5Q//79c4zST5w4Ue+//74+//xzbdy4UZUrV1bv3r01dOjQXEcq7733Xu3Zs0ffffed1q1bp1q1auUZuoODgzVr1izNnz9fn3/+uX7++WeZTCbVqVNH3bt3V69evYp1+vG3336r+Ph41ahRQ9ddd12B97/jjjv02WefafPmzdq/f3+Bu3ZnV65cOX322WeaPHmyNm7cqHXr1jkuzdarVy+1atVKbdq00fr165Wenu50LeK82Kfztm/f3uk64XaXXXaZFixYoBkzZmjTpk364YcfFBwcrDp16qhHjx45RsezCw8P17x58zR9+nT9+OOPWr9+vQICAnTllVfqoYceUu/evV2q88orr9TSpUs1c+ZMfffdd1qzZo0qVKigG264Qffff7+uv/76Ah/D02655RYtWrRIM2fO1KZNm7R//35VqVJFPXv2VP/+/XP8e46KitK8efM0ZcoUbd++XcePH1eDBg00evRoJScn5wjdjRo10vz58zVz5kz98ssvWrNmjcLCwtS0aVPdc8896tixY456Fi9erA8++EA///yzfvjhB1WqVEk33nij+vfv7/R7wZcMHDhQV199tT766CPFxcUpOTlZNWvW1P3336/+/fs7/Rt2p432D29mz56tFStW6JdffpHFYtEll1yi+++/X4888ojTmnsAKO0MNlcXpAEAgEJ79dVXNWfOHL333nv57h0AAABKF9Z0AwDgIfZN0TZv3qxFixapZs2aateunZerAgAAJYnp5QAAeMiLL76ob7/91hG+n3nmGa/t+g0AALyDnh8AAA9p2LChAgICVL16dY0aNUq33nqrt0sCAAAljDXdAAAAAAB4CCPdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdgBtsNpu3SwAAAB7iD/28P9QIwBmhG6XGsGHDFB0dnefxPn36qE+fPnl+XZBt27bp4YcfLlKNpcHRo0fVu3dvRUVFqXXr1kpOTs5xnyVLlqhevXo6dOhQro8xZcoU1atXz9OlFqthw4apXr16Tn+uvfZatW3bVs8++6z++++/Ah+jXr16mjJlSglUCwC+oU+fPk6/N+vXr68mTZqoe/fumjNnjiwWi1fqOnTokOrVq6clS5ZIks6dO6fnn39eW7duLdLjutNXFPS+JTf79u3TvffeW6Qa7TZt2qSOHTuqQYMGevDBB3O9j7vvrfxBdHR0ju9RVFSUYmJi9Oabbyo1NTXf8zdt2qR69epp06ZNJVQxSgOztwsAvOWll15y6/4LFy7Uvn37PFSN//jf//6n7du364033lC1atUUEhLi7ZJKTJUqVTR16lTH1xkZGfr77781ceJEbd++XV9++aWCg4PzPP/TTz9V9erVS6JUAPAZ11xzjaPPtVgsio+P19q1a/Xaa69p27Zteuutt2QwGEq0pqpVq+rTTz/VZZddJkn6/ffftWzZMnXv3r3Ij13UviI/K1eu1Pbt24tcoyRNmDBBVqtV77//vipVqlQsj+kv2rdvr8GDBzu+Tk1N1aZNmzRt2jQdPnxYkyZNyvPca6+9Vp9++qlq165dEqWilCB0o8zil2XhnD17VlWrVtVtt93m7VJKXGBgoBo3bux0W7NmzRQQEKDnn39e3333nTp37pzn+dnPBYCyoFy5cjl+/0VHR+vKK6/UuHHjFB0dra5du5ZoTbn9PvfkY7vTV5SUs2fPqnnz5mrTpo23SylxkZGROb5HLVu21NGjR7VkyRINGzZMVatWzfXc3H6egYIwvRxlVvYpURs2bNDdd9+tJk2aqHnz5ho8eLD++usvSZnTq5YuXarDhw87TUdLSEjQuHHjdPPNNysqKkq33367Fi1a5PQ86enpmjhxotq1a6eGDRvqwQcf1LJly5ymXw8bNkx9+/bVSy+9pGbNmunOO+9URkaGTp8+rZdfflkdOnRQgwYN1KJFCw0ZMsRp2nafPn00atQoTZ8+XTfccIMaNWqkAQMG6OTJk1q8eLFiYmLUpEkT9evXL8/p3nYFtSc6OlpLlizRkSNHin2qdFxcnB588EG1bNlS1113nR555BHt3bvXcTyv6VzZv4+7d+9W37591bRpU0e7d+zY4XTO1q1b1bt3bzVq1EgtWrTQ888/r9OnTxe69qioKEnS4cOHJeX9/cz+mp06dUovvPCC2rRpoyZNmig2Nlbbtm1zHLePQMTExKhBgwbq2LGj5syZ4/TcBw8e1KBBg9SyZUs1atRId999t9auXVvotgBASenTp4+qVq2qBQsWON2+cOFCde7cWQ0aNNCNN96oKVOmKCMjw3F82LBh6tevnxYvXuyYHt21a1en331Wq1XvvPOOoqOj1aBBA0VHR2vSpElKT0+X5Dy9fNOmTbr//vslSffff7/69OmjefPmqV69evr777+davvqq69Uv379AvvT3GTvK7KzWCyaN2+eunTpooYNG+rGG2/UxIkTHdOdp0yZ4hhBL6gP/ueff/TYY4/p+uuvV+PGjdWnTx9H/2Jv++HDhx3vR4pzqvSKFSvUvXt3NWnSRNdff71GjRql+Ph4x/G8lphlb9OKFSvUtWtXNWzYUK1atdIzzzyj48ePO51T0M+Kuxo0aCCbzeZYBhAdHa3XXntNffv21XXXXadRo0bl+n5k165deuihh9S0aVO1atVKTz75pNNSgrNnz2rUqFFq06aNoqKidNddd2njxo1Oz53f+1D4P0I3Sp2MjIxc/+S38Yg9uFx77bWaPn26Xn31Vf31118aOHCgrFarBg8erPbt26tKlSr69NNPdeONNyolJUX33XefPv/8c/Xv31/Tpk1T06ZN9eKLL2rGjBmOxx41apT+97//qXfv3nr33XdVuXJljRw5MkcNW7du1YEDBzRlyhQNGTJEJpNJDz/8sH766Sc9/fTT+vDDDzV48GBt2LBBo0aNcjr3q6++0oYNGzR27FgNHz5cGzZsUO/evTVnzhw9//zzevHFF7Vjxw698soreb4GrrRn6tSpTq9Dr1698v1eWK3WXL8XVqvV6X4///yz7r33XlmtVo0dO1avvvqq/vvvP91zzz3av39/vs+R1fnz5/XQQw8pIiJCkydP1ltvvaXk5GQ9+OCDSkhIkCRt2bJF/fr1U3BwsN5++2298MIL2rx5s+6//36lpKS4/FxZ2d+U2acpSjm/n2az88SipKQk3XPPPdqwYYOefvppTZ06VWFhYXrooYccbR49erQmT56srl27asaMGbr11lv12muv6d1335WU+fo+/PDDSkpK0uuvv65p06YpPDxcgwcP1oEDBwrVFgAoKSaTSa1bt9bOnTsdQem9997TyJEj1bp1a82YMUOxsbGaOXNmjn5v165d+vDDD/XYY4/p3Xffldls1mOPPeYIdzNnztS8efM0ZMgQzZo1S/fee68++OADp/7Z7tprr3U8/qhRo/TSSy+pS5cuCgoK0vLly53uu3TpUrVo0UKXXnqp2+3Nra/IatSoUXrttdcUHR2t6dOnKzY2VnPnztXgwYNls9nUq1cv9ezZU5Ly7YP37dun7t276+DBgxoxYoQmTpwog8Ggvn37avPmzY6p9VWqVFH79u316aef6tprr823dlffW02bNk1PPvmkGjVqpMmTJ2vIkCH65ptv1KdPH7f62G3btumZZ57RLbfcopkzZ2r48OH6+eef9fTTTzvu4+rPijvs36OaNWs6brN/ADNlyhR169Ytxzl79uzRvffeq+TkZI0fP16vvPKKfvvtN/Xv31/p6elKTU1V37599d133+nJJ5/U1KlTVb16dT300EOO4F3Q+1D4P6aXo1Q5fPhwvh1HixYtcr19586dSklJ0cMPP6xq1apJki655BJ99913SkpK0mWXXabIyEinKWPz58/Xn3/+qfnz56tp06aSpBtuuEEZGRmaNm2a7rnnHp07d05Lly7V888/rwceeMBxn5MnT2r9+vVONWRkZOjll1/W5ZdfLkk6duyYQkJC9Pzzz6tZs2aSMqc+HTp0KMeoQHp6uqZOnaqKFStKklavXq3169fr22+/dXQcv//+e443D1ktWbKkwPZcc801OV6H/MTExBR4H0l68803VbNmTX3wwQcymUySpLZt2yomJkZTpkzR22+/7dLj7Nu3T6dPn1afPn0cbbjqqqu0YMECnT9/XuXLl9ebb76pK6+8Uu+9957juRo1aqTOnTtr8eLFio2Nzfc5sn6Cfv78ecXFxWncuHGqUaOG2rdv73S/rN/P7JYuXaqDBw9q2bJlql+/vqTM6Yd33HGHtmzZIqPRqM8++0xPPfWUBg4c6HhNDAaD3nvvPd13333KyMjQ/v379cgjjzieu2HDhpo6dWqBG8EAgC+oXLmy0tPTdfbsWQUFBWn69Om6++67NWLECEmZv/fCw8M1YsQIPfDAA6pTp46kzJlZS5YscQTY0NBQ9e7dWz///LM6duyozZs369prr1WPHj0kZfb/ISEhKleuXI4aypUr51hyVrt2bcffY2Ji9Pnnn+vxxx+XwWDQ8ePHtWHDBr322msFtsvVvsJu3759WrRokZ544gkNGjRIknT99deratWqeu6557Ru3Tq1b9/esS9Ifn3w1KlTFRAQoI8//ljly5eXJN144426/fbb9cYbb2jhwoVq3LixAgMDc51mnZ2r763i4+M1ffp09erVy2nfnLp16yo2NlZLlizRfffdl+9z2W3btk1BQUEaMGCAgoKCJEnh4eGKi4uTzWbT+fPnXf5ZyY3NZnP6Hp06dUrr1q3TggUL1KlTJ0VGRjqOVa1aVcOGDZPRmDlWmX1WwLRp01SxYkXNmjXLUWv16tX1xBNP6I8//tBvv/2mPXv26LPPPlOjRo0kSe3atVOfPn00ceJELV68uMD3obn93MK/ELpRqlSpUkXTp0/P9Vh+G6c1atRIQUFB6tmzp2677Ta1b99ezZo1U8OGDfM8Z/PmzapRo4Yj3Nl17dpVixYt0o4dO3T8+HHZbDbdeuutTve5/fbbc4Tu4OBgp0+/q1Wrpo8//liSdOTIER04cED79+/XL7/84pgeZ1erVi1H4La/DpGRkU6f1IaHhztGewvbntzeKORn+vTpqlKlSo7bP/vsM3322WeSMkd84+LiHKP7dhUqVFCHDh3cmipdp04dRUZGatCgQerUqZPat2+v1q1b67nnnpMkJScna8eOHXrwwQedOtyaNWuqVq1a+umnn/IN3Xm98WjUqJFeeeUVp03lsn8/s9u6dasuvfRSR+CWpKCgIK1cuVKS9Mknn8hmsyk6OtrpjYF9BGTbtm266aabVLt2bY0cOVIbNmxQu3bt1LZtWw0fPtzFVwwAfIPBYND27duVnJyc6+89Sfrpp58cQSoyMtLpd6w9jNqvqNGyZUu9+eabuu+++xQTE6N27dqpd+/ebtXUs2dPffnll9q6dauaN2+u5cuXKzg4WB07dsz3PHf6CrvNmzdLkrp06eJ0e+fOnTV8+HBt2rTJ5T548+bN6tChgyNwS5LZbFbnzp317rvvKjExUWFhYS49luT6e6tff/1VaWlpOdrQrFkz1ahRQ5s2bXI5dDdv3lxvvfWWunTpok6dOjn6N/tr4M7PSm6WLVumZcuWOd1mNpsVExOj0aNHO91eq1YtR+DOzbZt29S+fXtH4JYyPwBfs2aNJOnDDz9UlSpVdO211zrV2qFDB73++uuKj48v1PtQ+BdCN0qVwMBAx5qp7PLrYC699FLNnTtX77//vj777DPNnj1bFSpU0H333afHH38811+28fHxqly5co7b7bedO3fOsU44+66guZ1XqVKlHLu3fv7555o0aZL+++8/hYeHq379+rnueJrbJ6Du7iruSnvcVbdu3Vyn4P3www+OvyckJMhms+X53Pl9UJBdWFiY5s2bp+nTp2vFihVasGCBQkJC1LVrV7344os6d+6crFarZs6cqZkzZ+Y4P2uHmZvsbzwCAwNVvXp1pw887HL7fmZ19uzZfHeLPXv2rCTludnOsWPHZDAYNGvWLE2fPl2rV6/W0qVLFRAQoJtvvlmjR49WeHh4vu0BAG87duyYgoODFR4e7vi9Z5/dk13W9bzZ+zj771v7VNyHHnpIYWFhWrx4sSZMmKDx48erbt26euGFF9S6dWuXamvVqpUuvfRSLVu2TM2bN9eyZcvUqVOnAvtXd/oKO/u0+OwfVJvNZkVERLjVF+bXn9tHid0J3a6+t7K3oTj68yZNmuj999/X7Nmz9eGHH2rGjBmqUqWKBgwYoL59+7r1s5KbDh06aMiQIZIyf3ZCQkJUo0aNXN9j5daerFzpz0+cOJHnbIETJ06odu3abr8PhX8hdAMX2KflpqWladu2bfr00081Y8YM1atXL9eduitWrJjrutkTJ05IkiIiIhzXHz116pQuueQSx31OnTpVYD1bt27V888/r969e+vBBx90fIr/+uuvO222VVxcaY8nlC9fXgaDQSdPnsz1ue3BMfsbKrvsn9hfddVVeuONN2SxWLRz504tX75cn3zyiS699FLdd999MhgM6tevX65htqA3Uvm98XBX+fLlc92IZ/v27SpXrpwqVKggKfMSbbm9Ofq///s/SZkzIkaPHq2XXnpJe/bs0ddff62ZM2eqYsWKevnll4ulVgDwBIvFos2bN+u6666TyWRy/N6bOHGirrjiihz3Lyj8ZGU0GhUbG6vY2FidOnVKa9eu1YwZM/Too49qw4YNLj2GwWDQnXfeqY8//lixsbHat29fvnuj2BWmr7AH8hMnTjh9WJ2enq4zZ8641QdXrFgxzz5V8lx/bm/DyZMnVatWrRzPbZ99Z+/PLRaLY4ZbYmJijse74YYbdMMNNyg5OVk///yzPv74Y7322mtq3LhxkX9WwsPDi7U/z20z1rVr16p+/foqX768rrjiCk2cODHX8+3fb3ffh8K/8LEJIGn27NmKjo5WWlqaAgMD1bp1a40ZM0aSHLtPZv+UsXnz5jp8+HCOAPz5558rICBADRs2VNOmTWUymbRq1Sqn+2T/Ojfbt2+X1WrVY4895gjcFovF8WahuDfWcKU9nhAaGqoGDRpoxYoVjg8ppMwR8B9++MEx3d0+mp91N9D4+Hinjda+/vprtWrVSidOnJDJZFKTJk00evRoVahQQUePHlW5cuV0zTXX6K+//lJUVJTjT506dTR16tRi3b21IM2aNdPBgwf1xx9/OG5LS0vTo48+qs8++0zNmzeXJJ05c8ap1rNnz+rtt9/W2bNntX37drVp00Y7d+6UwWDQ1VdfrSeffFJ169bV0aNHS6wtAFAYCxYs0PHjx3XvvfdKypx+HRAQoGPHjjn93gsICNCbb77p1o7h99xzj1599VVJmTOPunfvrtjYWCUkJOj8+fM57p91eVNWPXr0cFzZ44orrsixBKu42NdFf/HFF063f/XVV7JYLI7ndWXEs3nz5vr++++dRpYtFou++uorRUVFKTAwsBgrv6hRo0YKDAzM0YatW7fqyJEjuu666yTl3p//8ssvTudMmDBBPXv2lM1mU0hIiDp06KDnn3/ecV5x/qwUVbNmzfTjjz8qLS3Ncdsff/yhgQMHKi4uTi1atNB///2nSpUqOdW6ceNGx142rrwPhX9jpBtQ5hSyiRMnasiQIerdu7dMJpMWLFigwMBAdejQQVLmGuOTJ09q7dq1uvrqq9W9e3fNnz9fQ4cO1WOPPaaaNWtqzZo1Wrx4sYYOHaoKFSqoQoUK6tGjh+MyJfXr19fq1av1/fffS8q/87SH3FdeeUU9evTQuXPnNHfuXO3Zs0eSin1jDVfa4ylPP/20HnzwQT300EPq3bu30tPT9f777ystLU1Dhw6VlHkpkUsuuURTp05V+fLlZTQa9f777zuNTl933XWyWq0aMmSIBg4cqLCwMK1cuVIJCQm65ZZbJMmxMdnTTz+trl27ymKxaNasWdqxY4dj85qS0L17d82ZM0eDBg3S448/rsjISM2bN08pKSnq06ePLrvsMnXt2lUjR47U4cOH1aBBA/3999966623dOmll+qKK65QRkaGgoOD9dxzz+nRRx9V5cqVtWHDBv3++++Oy98AgLedP39ev/76q6TMD4zPnDmj9evX69NPP1XXrl0dv58jIiL00EMP6Z133tH58+fVsmVLHTt2TO+8844MBoPTHhgFad68uWbNmqXKlSurSZMmOnbsmD766CO1aNFCkZGRSkpKcrq/ff3zDz/8oIoVKzqe65JLLlGbNm20fv16Pfnkk8XwauSudu3auvPOOzV16lSlpKSoZcuW+v333zV16lS1bNlSN9xwgyQ5+uIvv/xSjRo1ctq7xW7o0KFat26d7r//fg0cOFCBgYGaO3euDh48qA8++MBjbQgPD9fAgQMdG7nddNNNOnTokN555x3Vrl1b3bt3lyS1b99e48aN08iRIzVgwAAdPXrUcQUPu9atW+ujjz7SsGHD1LVrV6Wnp+uDDz5QeHi4WrVqpfDw8GL7WSmqwYMH6+6773ZMfU9LS9M777yja6+9Vu3atVNGRobmzp2rBx54QI888oguueQSbdiwQTNnzlTv3r0VEBDg0vtQ+DdCNyCpfv36mjFjht5991099dRTslgsatCggWbNmqWrrrpKUmZIWrt2rYYMGaLHHntMAwcO1Jw5c/Tmm29q8uTJOn/+vK666iqNHTvWcUkPSRo5cqRCQ0M1a9YsnT9/Xq1bt9agQYP07rvvKjQ0NM+aWrZsqVGjRumjjz7S119/rcqVK6tly5aaOnWqhgwZ4ti4o7iEhIS41B5PsHeukydP1lNPPaXAwEA1a9ZMEyZMcGyEYjKZNHnyZL322mt66qmnVLlyZfXt21d//fWX4xIfVatW1QcffKB33nlHL774opKTk1WnTh1NmTJFrVq1kpS5u+mHH36oqVOn6rHHHlNAQICuvfZaffTRRy7tyF5cypUrp7lz5+r111/X2LFjlZGRoUaNGmnOnDmOzYHGjRun9957TwsWLNDRo0dVqVIl3XbbbXriiSdkMplkMpk0a9Ysvfnmmxo7dqzOnTunK664Qq+88orjzQ0AeNtvv/2mu+++W1Lmh82VKlXSlVdeqfHjx+fYdOuJJ55QlSpVNH/+fH3wwQeqWLGiWrduraeeesppY7CCPP744woMDNTixYv17rvvqnz58oqOjna65FRWderU0e2336558+bpxx9/1Jdffuk41qFDB23YsEF33HGH+413w9ixY3X55Zdr8eLF+vDDD1W1alX16dNHQ4YMcXxIf8stt2j58uUaNmyYevbsmWPTL3tb5s+fr0mTJumFF16QwWBQw4YN9fHHHzuuhuIp9g+A586dq4ULFyo8PFy33nqrnnjiCceH5FdeeaUmTJig6dOna+DAgapVq5bGjBnjGNmVMnf3njhxombNmqWhQ4fKYDCoadOm+vjjjx3LzorrZ6WorrnmGsf7pyeffFJhYWFq3769nnnmGQUGBiowMFDz5s3Tm2++qTfeeEMJCQmqUaOGnn76afXv31+Sa+9D4d8MtvwuXgygSM6ePat169bphhtucFpDNWHCBC1ZsqREpzMDAAD3DRgwQCaTKddrfAOAKxjpBjwoJCREY8eO1dVXX62+ffsqNDRUv/zyi+bMmaNHHnnE2+UBAIA8vPvuu/r777+1bt06zZ0719vlAPBjjHQDHvb777/r7bff1q+//qrk5GRddtlluueeexQbG5vvJaUAAID39OjRQwcOHNAjjzyihx56yNvlAPBjhG4AAAAAADyES4YBAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BAuGZaF1WpVRkaGjEYju0oDALzCZrPJarXKbDbLaOSz8bzQZwMAvM3VPpvQnUVGRobi4uK8XQYAAIqKilJgYKC3y/BZ9NkAAF9RUJ9N6M7C/ulEVFSUTCaTW+daLBbFxcUV6lxfQjt8C+3wLbTDt5TWdti/ZpQ7f/TZtMPX0A7fQjt8S2loR25tcLXPJnRnYZ+eZjKZCv3DUJRzfQnt8C20w7fQDt9SWtvBlOn80WdfRDt8C+3wLbTDt5SGduTWhoL6bD5GBwAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXT7mD4j13i7BAAA4IIFcQu8XQIAwA8Qun1McmqGt0sAAAAuSLeme7sEAIAfIHQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQugEAAAAA8BBCNwAAAAAAHkLoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAP8WroPn36tGJiYrRp0ybHbTt27FCvXr3UpEkTRUdHa+HChU7nLF26VDExMWrcuLG6d++u7du3O45ZLBZNmDBBbdq0UZMmTTRo0CAdP368xNoDAEBpRZ8NAEDheC10b9u2TXfffbf+/fdfx23x8fEaOHCg7rjjDm3ZskVjx47VuHHjtHPnTknSpk2bNGbMGI0fP15btmxR165dNWjQICUnJ0uSpk+frp9++kmLFy/Wjz/+qODgYI0YMcIr7XNHn5FrvF0CAAB5os/OtCBugbdLAAD4Ia+E7qVLl+qZZ57Rk08+6XT7qlWrFB4ertjYWJnNZrVu3VpdunTRvHnzJEkLFy5U586d1bRpUwUEBKhfv36KiIjQihUrHMcHDBigSy65ROXKldOLL76odevW6eDBgyXeRnckp2Z4uwQAAHJFn31RujXd2yUAAPyQV0J327ZttXr1at12221Ot+/du1d169Z1uq127dras2ePJGnfvn15Hk9ISNDRo0edjleuXFkVK1bUH3/84aGWFI/gIBOj3QAAn0SffZHZaNacHXM0Z8ccb5cCAPAjZm88aZUqVXK9PTExUSEhIU63BQcHKykpqcDjiYmJkqTQ0NAcx+3HXGWxWNy6f9ZzCnOuzZY52m2xWGSzFe4xiktR2uFLaIdvoR2+hXb4luzt8LX20GdfZLPZlJaR5jjXZrPRZxcD2uFbaIdvoR2+I7c2uNoer4TuvISEhCghIcHptpSUFIWFhTmOp6Sk5DgeERHh6Njta8VyO99VcXFx7pZe6HONRqOSEpOUkmbRrl27lJiYqJ07d8pqtTrdJ+vXJaEor4EvoR2+hXb4FtrhW/ytHWWtzzYajTp5+qQS0xJls9m0a9cunTh+wqnPNhozJxDSZxcO7fAttMO30A7fUZg2+FTorlu3rn766Sen2/bt26c6depIkurUqaO9e/fmON6uXTtVrFhR1apVc5rOduLECZ09ezbH9LaCREVFyWQyuXWOxWJRXFxcoc4NDTsto9miBg0aKCzsmBo2bOh0vO9La/W/l9u79ZiFVZR2+BLa4Vtoh2+hHb4lezvsX/u6sthn/777d4WlZ34o0KBBA+2w7VDDqIt99ry4zPXssY1j3aqnsErrvwF/RTt8C+3wLaWhHbm1wdU+26dCd0xMjN544w3Nnj1bsbGx2rZtm7744gtNmzZNktSzZ08NGTJEnTp1UtOmTTVv3jydOnVKMTExkqTu3btr+vTpioqKUkREhF577TW1aNFCl112mVt1mEymQv8wFOZcgyHzj8lkcvw/q5S0jBL/4SzKa+BLaIdvoR2+hXb4Fn9rR1nssw0GgwwGg+Ncg8HgdH6GNcNxrCT5289OXmiHb6EdvoV2+I7CtMGnQndERIRmzZqlsWPHavLkyYqMjNSIESPUqlUrSVLr1q310ksvafTo0Tp27Jhq166tmTNnKjw8XJI0ZMgQZWRkKDY2VomJiWrZsqXefvtt7zUIAIBSij4bAADXeD10Z9+lNCoqSgsW5H0dzG7duqlbt265HgsICNAzzzyjZ555plhrBAAA9NkAABSGVy4ZBgAAAABAWUDoBgAAAADAQwjdAAAAAAB4CKEbAAAAAAAPIXQDAAAAAOAhhG4AAAAAADyE0A0AAAAAgIcQun1EcJBJA8as9XYZAACgAGajWYt2L/J2GQAAP0Ho9iHJaRneLgEAALgg3Zru7RIAAH6C0A0AAAAAgIcQugEAAAAA8BBCNwAAgJtOJZ3SugPrdD7tvLdLAQD4OEK3jwkOMqnPyDXeLgMAAORjzd9rtP3odo1aM8rbpQAAfByh2wclp7KhGgAAvio1I1WHEg5Jko4lHvNyNQAAX0foBgAAcMOB+AOy2qySpFPJp7xcDQDA1xG6AQAA3PD32b8dfz+TfEYZVmaoAQDyRugGAABwkdVm1YGzBxxfW2wWHTp3yIsVAQB8HaEbAADARcfOH1OKJUXBpmBVDasqSdp3ep+XqwIA+DJCNwAAgIsOnjsoSboi/ApVDc0M3ftP7/dmSQAAH2f2dgEAAAD+IjE9UZJUKbSSAowBkqT9ZwjdAIC8EboBAABclG5JlyQFmgIVGRIpiZFuAED+mF4OAADgojRrmiQpwBSgyqGVJWVOOU/NSPVmWQAAH0boBgAAcFHWke6wgDAFm4NltVn1z9l/vFsYAMBnEboBAABc5AjdxkAZDAbHFPOs1+4GACArQjcAAICL7NPLA02BkqRygeUkSaeSTnmtJgCAbyN0AwAAuCjr9HJJCg0IlSSdSiZ0AwByR+gGAABwUZrFeaTbHrpPJ5/2Wk0AAN9G6AYAAHCB1WaVxWaRdDF0hwWESWJ6OQAgb4RuAAAAF9hHuSWmlwMAXEfoBgAAcIE9dBsNRpmMJkmMdAMACkboBgAAcEH29dzSxZHuMylnZLVZvVIXAMC3EboBAABc4AjdxouhOyQgRAYZZLVZlZKR4q3SAAA+jNANAADgAnvoDjAFOG4zGoyKCImQJCWlJ3mlLgCAbyN0AwAAuCD7NbrtIkMiJRG6AQC5I3QDAAC4ILeRbkmqFFJJEqEbAJA7QjcAAIALclvTLUmVQjNDd3J6conXBADwfYRuHzdgzFpvlwAAACSlWXPuXi5lGenOYKQbAJATodvHJadleLsEAACgfKaXhzK9HACQN0I3AACAC3K7TrfEmm4AQP4I3QAAAC6w714eYHQe6Wb3cgBAfgjdAAAALshzpNu+kVoGG6kBAHIidAMAALggrzXdlUMrS5JSMlJksVpKvC4AgG8jdAMAALggr5HuCkEVZDRkvqVitBsAkJ3Z2wUgp+Agk3o+t0rBQSZvlwIAAC7I7TrdZqNZS35bolBzqM6nn2ddNwAgB0a6fVRSSoaSU7hcGAAAviKv6eXp1nSFBIRIYqQbAJAToRsAAMAF9t3Ls08vl6Rgc7AkKS0jrURrAgD4PkI3AABAAWw2m9KsuY90S1KQOUiSlGpJLdG6AAC+j9ANAABQgDRLmqw2qyTnNd12wabMkW5CNwAgO0I3AABAAbJukJbvSHcGoRsA4Izdy72IHcoBAPAPi39bLClzt3L75cGysq/pZqQbAJAdI91exA7lAAD4h8T0RElSgDHnKLfESDcAIG+EbgAAgAI4rtGdy87lEmu6AQB5I3QDAAAUwH65sNzWc0vsXg4AyBuhGwAAoAD2MJ3bzuVSljXdTC8HAGRD6AYAACiAfXp5QSPd9vsBAGBH6AYAACiAfXq5K2u67dfzBgBAInQDAAAUKN2aGbrNxtyvtmof6Zak82nnS6QmAIB/IHQDAAAUwGK1SMo7dJuNZsexc6nnSqwuAIDvI3QDAAAUwGLLDN1GQ95vnYJMmaPdjHQDALIidAMAABTAPtJtMpjyvI99vTcj3QCArAjdAAAABXBppPvCum5CNwAgK0I3AABAARwj3ca8R7qZXg4AyA2hGwAAoAD2ke78ppfbQzcj3QCArAjdAAAABXCE7vxGui9ML09ITSiRmgAA/oHQDQAAUAD79HJXdi9npBsAkBWhGwAAoAAuTS+3j3SnMdINALiI0A0AAFAAq9UqybU13UwvBwBkRegGAAAoQIYtQ5JkNDK9HADgHkI3AABAAVwa6WZ6OQAgF4RuAACAAriypjvQFCiJ6eUAAGeEbgAAgAJkWF2YXm6+OL3cZrOVSF0AAN9H6AYAACiA1Vbw9PJgU7CkzFHx5IzkEqkLAOD7CN0AAAAFsF+n22TMO3SbjWbHdbyZYg4AsCN0AwAAFMCVNd0Gg+Hium42UwMAXEDoBgAAKIAroVu6uJna+bTzHq8JAOAfCN0AAAAFsE8vt08fz4v9Wt2EbgCAnU+G7t27dys2NlbNmjVT27Zt9eqrryotLU2StGPHDvXq1UtNmjRRdHS0Fi5c6HTu0qVLFRMTo8aNG6t79+7avn27N5oAAECZUBb6bJvNdnGkO5813RKXDQMA5ORzodtqterhhx9Wx44dtXnzZi1atEjr16/XzJkzFR8fr4EDB+qOO+7Qli1bNHbsWI0bN047d+6UJG3atEljxozR+PHjtWXLFnXt2lWDBg1ScjI7iAIAUNzKSp9tD9xSwSPdTC8HAGTnc6E7Pj5eJ06ckNVqdVzj0mg0KiQkRKtWrVJ4eLhiY2NlNpvVunVrdenSRfPmzZMkLVy4UJ07d1bTpk0VEBCgfv36KSIiQitWrPBmkwAAKJXKSp+dZklz/L2gNd1MLwcAZOdzoTsiIkL9+vXThAkTFBUVpfbt2+uKK65Qv379tHfvXtWtW9fp/rVr19aePXskSfv27cv3OAAAKD5lpc9Ot6Q7/u7q9HJCNwDAzuztArKzWq0KDg7WyJEj1bNnTx04cEBDhw7V5MmTlZiYqJCQEKf7BwcHKykpSZIKPO4qi8VS8J3yOMedc222i3/yO2azFa6mwihMO3wR7fAttMO30A7fkr0d/tSestJnp6SnSJIMF/6TTY6R/axsNpsjdJ9LPefx76U//szkhnb4FtrhW2iH78itDa62x+dC9+rVq/XNN9/o66+/liTVqVNHQ4YM0dixY9WlSxclJDhvTJKSkqKwsDBJUkhIiFJSUnIcj4iIcKuGuLi4Qtfv6rlGo1GJiedltZgla2CO40lJybJaTJI1UMmpGdq5c6esVmuh63JXUV4DX0I7fAvt8C20w7f4YzvKSp99Jv2MpMz13MePH1eAMUCBATn77sTURKUmpUqSDh07pF9//bXQtbnDH392ckM7fAvt8C20w3cUpg0+F7r/++8/x66ndmazWQEBAapbt65++uknp2P79u1TnTp1JGV29nv37s1xvF27dm7VEBUVJZMp/+lj2VksFsXFxbl1bljYfwoJMikkOOe3ITTd6DhmMFnUsGFDt+oprMK0wxfRDt9CO3wL7fAt2dth/9oflJU++9/4f6WdktloVtWqVRVgDJDZlLPvDksP0ynjKSleMoeZ1bhxY7fqcldp/Tfgr2iHb6EdvqU0tCO3NrjaZ/tc6G7btq3efPNNzZgxQwMGDNCRI0c0ffp0denSRTExMXrjjTc0e/ZsxcbGatu2bfriiy80bdo0SVLPnj01ZMgQderUSU2bNtW8efN06tQpxcTEuFWDyWQq9A+DO+caDBf/5HfMYFCJ/3AW5TXwJbTDt9AO30I7fIs/tqOs9NkWXbxGt8FgkAzK/H82BoNBQebMjdQS0xNL7Pvpjz87uaEdvoV2+Bba4TsK0wafC921a9fWe++9p7ffflsffPCBypcvr65du2rIkCEKDAzUrFmzNHbsWE2ePFmRkZEaMWKEWrVqJUlq3bq1XnrpJY0ePVrHjh1T7dq1NXPmTIWHh3u3UQAAlEJlpc+2b6RW0CZqEruXAwBy8rnQLUlt2rRRmzZtcj0WFRWlBQsW5Hlut27d1K1bN0+VBgAAsigLfXa69ULoLuByYRK7lwMAcvK5S4YBAAD4Evt1uhnpBgAUBqEbAAAgH47p5W6MdCelJynDmuHRugAA/oHQDQAAkA/H9HIXRrrtoVuSEtMSPVYTAMB/ELoBAADy4Zhe7sJIt8loYoo5AMAJoRsAACAf9mnirox0S1K5wHKSCN0AgEyEbgAAgHy4M9ItEboBAM4I3QAAAPlwZyM16WLoTkhL8FhNAAD/QegGAADIhzsbqUmMdAMAnBG6AQAA8uHuSHf5oPKSCN0AgEyEbgAAgHw41nQz0g0AKARCNwAAQD7su5cbDa69bSJ0AwCyInQDAADkwz7SbTaaXbo/oRsAkBWhGwAAIB/2jdQY6QYAFAahGwAAIB+OjdTcXNOdkMolwwAAhG4AAIB82Ue6zQamlwMA3Efo9pIBY9Z6uwQAAOCCvaf2SpKMRqaXAwDcR+j2kuS0DG+XAAAAXGDfvdzl63QHcp1uAMBFhG4AAIB8WKwWSVynGwBQOIRuAACAfFhsF0K3iyPd9tCdakl1bMIGACi7CN0AAAD5cDd0hwWGOf7OaDcAgNANAACQD3enl5uNZoUGhEoidAMACN0AAAD5cnekW8pyre40rtUNAGUdoRsAACAf7o50S2ymBgC4iNANAACQj6KMdBO6AQCEbgAAgHww0g0AKApCNwAAQD6KtKY7lTXdAFDWEbr9SJ+Ra7xdAgAAZU5hRrqPnT8miZFuAACh268kp2Z4uwQAAMocq80qSTIaXH/bZDaaJRG6AQCEbgAAgHzZR7rtQdoVQaYgSYRuAAChGwAAIF+FWdMdaA6UROgGABC6AQAA8pRhzZBNNknuTS9npBsAYEfoBgAAyEOG9eJ+Ku5MLw80MdINAMhE6AYAAMhDmiXN8Xe3RrrNjHQDADIRugEAAPJQ6NB9YXp5QhrX6QaAso7QDQAAkAf79HKTwSSDweDyeVmnl9tsNo/UBgDwD4RuPxIcZFKfkWu8XQYAAGWGfaTbZHR953JJCgsIk5QZ2lMtqcVeFwDAfxC6/UxyakbBdwIAAMUi3ZIuyb3LhUkXR7ol1nUDQFlH6PYDwUEmDRizNsftjHoDAOBZ6dYLodvFkW6z0axFuxfJYDA4gvenuz71WH0AAN9H6PYTyWk5R7gZ9QYAwLMKM9JtD+r2zdSS0pOKvzAAgN8gdAMAAOShsGu6pYtTzFMzWNMNAGUZoRsAACAPjunlbq7pli5eqzvrZccAAGUPoRsAACAPhd1ITbo4vZzdywGgbCN0AwAA5ME+0m00uv+WyTG9nNANAGWa2dsFwD3BQSb1fG6VgoPc/8QdAAC4xz413Gxw/y1TsDk48zEymF4OAGUZodsPJaVkyGazyWAweLsUAABKtQxr5pVCCrORmj10M9INAGUb08sBAADyYF/TbTQwvRwAUDiEbgAAgDw41nQXInQ7di9nejkAlGmEbgAAgDw4ppezezkAoJAI3QAAAHmwh+7C7F5uD91cpxsAyjZCNwAAQB4cobsI08sZ6QaAso3QDQAAkIdimV6eQegGgLKM0A0AAJCH4hjpTrOkyWazFWtdAAD/QegGAADIQ5FC94WRbptsSs5ILta6AAD+g9ANAACQh6KEbrPRLIMMkqSE1IRirQsA4D8I3QAAAHkoyppug8HgmGJ+Pu18sdYFAPAfhG4AAIA8FGWkW7o4xTwhjZFuACirCN0AAAB5KMp1uiUx0g0AIHQDAADkpbhGugndAFB2EboBAADyUJQ13RKhGwBA6AYAAMhTkUe6mV4OAGUeoRsAACAPxbaRGpcMA4Ayi9ANAACQB0a6AQBFRegGAADIA2u6AQBFRegGAADIQ1FHugPNgZK4TjcAlGWEbgAAgDwUNXQHm4IlMdINAGUZoRsAACAPjtBtLNpIN6EbAMouQjcAAEAeirqmm5FuAAChGwAAIA9FXtNtYqQbAMo6QjcAAEAeiuuSYUnpSY7HAgCULYRuAACAPBQ5dF+4ZJgkJaYlFktNAAD/QugGAADIQ1HXdJuMJpmNZklcNgwAyiq3Q/emTZs8UQcAAIDPKepIt3RxtJt13QBQNrndgzz22GO6+eab9e677+rIkSOeqAkAAMAnFPWSYRKbqQFAWed2D7J+/Xo9++yz2rVrlzp27Kj+/fvryy+/VFpamifqAwAA8JqiTi+XLm6mRugGgLLJ7dAdEBCgjh07avr06Vq7dq1uvvlmzZo1S23bttXLL7+sPXv2eKJOAACAEsf0cgBAURW6Bzl16pS++OILLVu2TPv27VPLli0VFBSkfv36acaMGcVZIwAAgFcUR+i2Ty9PSGUjNQAoi9zuQb766isNHDhQ7du31+LFi3Xbbbfphx9+0JQpUzRs2DC99dZbev/994tU1NmzZ/Xcc8+pZcuWat68uQYPHqzjx49Lknbs2KFevXqpSZMmio6O1sKFC53OXbp0qWJiYtS4cWN1795d27dvL1ItAAAgb6W5z7barLLarJKKONLN9HIAKNPc7kFefvll1ahRQwsWLNDnn3+ufv36KTIy0nH8yiuvVL9+/YpU1KOPPqqkpCStXr1a33//vUwmk0aOHKn4+HgNHDhQd9xxh7Zs2aKxY8dq3Lhx2rlzp6TMndXHjBmj8ePHa8uWLeratasGDRqk5OTkItUDAAByV5r7bPsot1TENd1MLweAMs3s7gnr16/XwYMHVa1aNUnSr7/+qvLly6tWrVqSpOrVq+uxxx4rdEG7du3Sjh07tGHDBpUrV06SNGbMGJ04cUKrVq1SeHi4YmNjJUmtW7dWly5dNG/ePDVs2FALFy5U586d1bRpU0lSv3799Omnn2rFihXq0aNHoWsCAAA5lfY+O2voLpbp5VynGwDKJLd7kO+++0533HGH/vnnH0nS9u3b1atXL61du7ZYCtq5c6dq166tzz77TDExMWrbtq0mTJigKlWqaO/evapbt67T/WvXru3YvG3fvn35HgcAAMWntPfZxRW6GekGgLLN7ZHuqVOnatq0aWrQoIEk6YEHHlDt2rX1xhtvqH379kUuKD4+Xn/88YcaNGigpUuXKiUlRc8995yef/55Va5cWSEhIU73Dw4OVlJSkiQpMTEx3+OuslgsbtdtP8fVc2025z/5Hc/rWHCQSb1HrNH/Xi76627nbjt8Fe3wLbTDt9AO35K9HcXZnoMHD6pmzZrF9njZlfY+OzU91fF3gwyy2Wyy2WySTZn/zyavY8HmYEnS3lN7i/X7W1r/Dfgr2uFbaIdvKQ3tyK0NrrbH7dD933//6YYbbnC6rW3btnryySfdfahcBQZmTsF68cUXFRQUpHLlyumJJ57QXXfdpe7duyslJcXp/ikpKQoLC5MkhYSE5Ho8IiLCrRri4uIKXb8r5xqNRiUlJikpKUVWi0myBua4T1JSskvHklMztHPnTlmt1kLXnJuivAa+hHb4FtrhW2iHb/FEOzp16qQmTZqoZ8+e6tixo4KDg4v18Ut7n30m7YykzMB96tQpSVJiaqICjAEKDMjZP+d1LC0pTZKUkJxAn50P2uFbaIdvoR2+ozBtcDt016hRQz/++KNT8N64caP+7//+z+0nz03t2rVltVqVnp6uoKDM6Vj2zunqq6/W/Pnzne6/b98+1alTR5JUp04d7d27N8fxdu3auVVDVFSUTCb3NkyxWCyKi4tz+dzQsNNKyTApJMikkOCc34bQdKNLxwwmixo2bOhWrflxtx2+inb4FtrhW2iHb8neDvvXxWHt2rVavny5PvzwQ40ZM0adOnVS9+7d1aRJk2J5/NLeZx9JOCLFSSajSZUrV5YkhaWHKcAYILMpZ/+c17GUwBTpP8lmtNFn54J2+Bba4Vtoh+/IrQ2u9tluh+6BAwdqyJAhuuWWW1SjRg0dOXJEq1ev1oQJE9yvPBdt2rRRzZo19cILL2jcuHFKTU3VW2+9pZtvvlm33367Jk+erNmzZys2Nlbbtm3TF198oWnTpkmSevbsqSFDhqhTp05q2rSp5s2bp1OnTikmJsatGkwmU6F/GFw912Bw/pPf8YLO9cQPblFeA19CO3wL7fAttMO3eKIdlSpVUv/+/dW/f3/99ttv+uqrrzRs2DAZjUb16NFD3bt3d7oCibtKe59t1cXLhRkudMgGg0EyyPF1Vnkds08vT7Ok0Wfng3b4FtrhW2iH7yhMG9zeFaRLly6aOXOmAgICtHv3bgUHB2vWrFnq2LGjuw+Vq4CAAM2ZM0cmk0kdO3ZUx44dVb16db322muKiIjQrFmz9PXXX6tly5YaMWKERowYoVatWknK3Bn1pZde0ujRo9WiRQt99dVXmjlzpsLDw4ulNgAA/FFGRoaOHDmiI0eO6NSpUwoJCdGOHTt0yy23aOnSpYV+3NLeZ9s3UivKJmrSxet0p1pSc10LDgAo3dwe6Zakli1bqmXLlsVdi0O1atX01ltv5XosKipKCxYsyPPcbt26qVu3bp4qDQAAv/Hrr79q+fLlWrlypQwGg7p06aK5c+eqfv36kqTVq1frxRdf1J133lno5yjNfbY9dBflGt3Sxd3LrTarUi2pjpFvAEDZ4HboPnbsmKZPn65//vknx0YgH3/8cbEVBgAAiiY2NlZt27bVyy+/rOjoaAUEBDgdv/rqqxUdHe2l6nxfcY1026/TLWVeNozQDQBli9uhe/jw4Tp58qQ6dOiQo/MGAAC+Y86cObruuuty3L5u3Tq1a9dOl156qcaPH++FyvxDcYVug8GgQFOg0ixpOp92XpVDKxdHeQAAP+F26I6Li9M333xTpI1XAACA5z300EP65ZdfnG47f/68Hn/8cW3fvt1LVfmP4grdUuYUc3voBgCULW6H7vLlyzuuywkAAHzLgQMH1LlzZ1ksFtlsNl199dU57pPb6DdyKq413dLFKeaEbgAoe9wO3YMHD9bw4cM1YMAAxzUr7YrrWt0AAKBwLr/8ci1cuFDnzp3TwIEDNXPmTKfjQUFBqlu3rpeq8y+OkW5j0Ue67aE7ITWhyI8FAPAvbofuESNGSMrc8VTKXKdks9lkMBj0+++/F291AADAbfbR7S+//FI1a9b0cjX+q7inl0uMdANAWeR26P7uu+88UQcAACgmo0eP1ujRozVt2rQ87zNu3LgSrMg/FWfoZno5AJRdbvciNWrUUI0aNRQfH6/du3erSpUqCg4OVo0aNTxRHwAAcJPNZvN2CaVCca7pDjJnjnQnpDG9HADKGrdHuk+dOqUhQ4Zo165dCggI0KJFi9SzZ0/NmjVLTZo08USNAADADS+//LIkRrOLipFuAEBxcLsXee2111S3bl1t2bJFZrNZtWrV0sCBA/X66697oj4AAFBIJ0+e1GuvvSZJ2rp1q9q0aaPbb79d+/fv93Jl/sEToZuN1ACg7HG7F/n55581fPhwhYSEyGAwSMq8Dui+ffuKvTgAAFB4L7/8svbv3y+bzaaxY8fqtttuU4cOHfTKK694uzS/UKzTy9lIDQDKLLenlwcEBCglJUUhISGONWOJiYkKCwsr9uIAAEDhxcXFacWKFTpx4oT27NmjWbNmqXz58mrZsqW3S/MLnrhkWGJ6YpEfCwDgX9zuRaKjo/Xss8/qn3/+kcFg0KlTp/Tyyy+rffv2nqivVBowZq23SwAAlAHJyckKDg7Wxo0bVbduXUVERCglJUVms9ufuZdJTC8HABQHt3uRp59+WqGhobr11lt17tw5tW3bVsnJyXrmmWc8UV+plJyW4e0SAABlQMOGDTV69Gi9//77iomJ0cmTJ/XCCy+oRYsW3i7NLzC9HABQHNz+qDssLEyTJ0/W6dOndejQIVWvXl1Vq1b1RG0AAKAIxo4dq0mTJqlZs2Z6+OGH9dtvvyktLU2vvvqqt0vzC8U60m2+MNLNJcMAoMxxO3Rv2bLF6esDBw7owIEDkqTmzZsXT1UAAKDIqlatqvHjxzu+btSokWbMmOHFivxLcYZu+0h3YlqirDZrsTwmAMA/uB26+/Tpk+M2o9GoSy65RN99912xFAUAAIouMTFR8+fP1z///COr1ep0jGt4F8wTa7ptsikpPUnlAssV+TEBAP7B7dC9Z88ep69Pnz6td999VzVq1Ci2ogAAQNENHz5c27dvV8uWLRUQEODtcvxOcYZuk8Eko8Eoq82q82nnCd0AUIYUefvSyMhIPfvss+rYsaP69+9fHDUBAIBisGnTJi1atEg1a9b0dil+qTg3UjMYDAoyBSk5I5nN1ACgjCmWBUXx8fFKTU0tjocCAADFJCgoSNWqVfN2GX6rOEe6JS4bBgBlldsj3cOHD3f6Oj09Xdu2bVObNm2KrSgAAFB09913n8aPH6+hQ4cqMjLS2+X4HUfoNhZv6GakGwDKliJPLw8KClKfPn109913F0c9AACgmHz22Wc6cuSIPvnkkxzHfv/9dy9U5F+Ke6Sba3UDQNnkduhmt1MAAPxD1suFwX3FuaZb4lrdAFBWuR26p06d6tL9hg4d6nYxAACg+LRo0UJS5t4rBw8e1DXXXKOMjAwFBgZ6uTL/4Kk13Yx0A0DZ4nbo3rt3r1atWqX69evryiuv1NGjR/XLL7/ommuuUVhYmKTMHToBAIB3JSYmatSoUfrqq68UHBysJUuW6IEHHtBHH32kq666ytvl+TxPTS9nIzUAKFvcDt1Go1HDhw/X/fff77ht+fLl+v777/X2228XZ20AAKAIXn/9dSUlJWnlypW66667VLNmTXXo0EFjx47Vhx9+6O3yfB4j3QCA4uB2L7J27VrFxsY63Xb77bdr48aNxVYUAAAouu+//17jx4/XlVdeKYPBoICAAA0bNkxxcXHeLs0vFPuabkI3AJRJbofuyMhIbdmyxem2H3/8UdWrVy+2ogAAQNFZrVbH+m2bzZbjNuSP3csBAMXB7enlDz/8sAYOHKiOHTvq//7v/3Tw4EF9//33mjJliifqAwAAhdSqVSu98sorGjVqlGO/lbffftuxwRryx3W6AQDFwe1epFevXpoxY4ZMJpN+++03hYeHa8GCBWrbtq0n6gMAAIU0fPhw/fXXX2revLkSEhLUpEkTbdmyRc8//7y3S/MLHttIjUuGAUCZ4vZItyS1adNGbdq00enTpxUZGVncNQEAgGIQHByswYMHKy4uTrVq1VKVKlXUpEkTmUzFs0a5tPPUdboZ6QaAssXt0J2enq6pU6dq7ty5slgs+uKLL/TEE09o+vTpqlq1qidqBAAAbvrggw80depUpaamOtZzh4WF6amnnsqxISpyx+7lAIDi4HYvMnXqVP3888965513FBAQoEqVKql69eoaO3asJ+oDAABuWrhwoWbMmKEXX3xR69at065du7R27Vo988wzeuedd/TNN994u0S/4Knp5SkZKY7HBgCUfm6PdH/xxRf65JNPVK1aNRkMBoWGhmrcuHGKiYnxRH0AAMBN8+fPz9E3V6tWTffee68qVqyoOXPmqGPHjl6s0D94aqRbyhztDg8OL5bHBQD4Nrd7kaSkJMc6bvt0teDg4GLb2RMAABTNP//8ow4dOuR67Oabb9Zff/1VwhX5p+Je0200GBUaECpJSkhlMzUAKCvcTsqNGzfW1KlTJclx+ZE5c+YoKiqqeCsDAACFYjAYZDbnPpktMDBQKSkpJVyRfyruS4ZJUrnAcpJY1w0AZYnb08tfeOEF9evXT0uXLlViYqJuu+02JSYm6qOPPvJEfQAAAF6Rbk2XVHwj3VJm6D6eeJzQDQBliNuhu3Llyvrqq6/0ww8/6PDhw6pevbpuvPFGlStXzhP1AQAAN2VkZGjZsmV5HrdYLCVXjB8r7jXd0sWRbq7VDQBlh9uh+/bbb9fnn3+uTp06eaIeAABQRJUrV9bkyZPzPF6pUqUSrMZ/eTJ0M9INAGWH26FbkpKTkxnZBgDAR61Zs8bbJZQKngjd5QPLS2IjNQAoS9wO3S1btlSvXr3Url07Va1a1enY0KFDi60wAAAAb7HZbMW+e7nESDcAlEVuh+5Dhw6pZs2a+vvvv/X33387brfvZA4AAODvLLaL696LdaQ7KHOkm9ANAGWHy6H7wQcf1Icffqg5c+ZIklJSUhQcHOyxwgAAALzFPsotsaYbAFA0Lvci27dvd/q6Xbt2xV4M3BccZNKAMWvVZyTr9wAAKC6eCN1mo1l/nvxTEqEbAMqSQvciNputOOtAESSnZcgmG8EbAIBikjV0m4zFt6bbbMqcZLjv9L5ie0wAgG8rdOhmDbfvSU7NKPhOAACgQFlDt0HF954nyBQkSUrNSC22xwQA+LbiW6QEAABQSmS9XFhxDjQEmS+EbguhGwDKCpc3UsvIyNCyZcscX6enpzt9LUl33HFHMZUFAADgPZ64RreUZaSb0A0AZYbLobty5cqaPHmy4+uIiAinrw0GA6EbAACUCp64Rrd0MXSnWdJks9lYrgcAZYDLoXvNGjbpAgAAZYPHRrovTC+32qxKyUhRSEBIsT4+AMD3sKYbAAAgG0+F7gBjgGNjNi4bBgBlA6EbAAAgG0+FboPB4BjtJnQDQNlA6AYAAMjGU2u6pYvruhPSEor9sQEAvofQDQAAkI1jpNtY/G+VAk2BkhjpBoCygtANAACQjaeml0tSsDlYkpSQykg3AJQFhG4AAIBsPBm6GekGgLKF0A0AAJCNJ9d020e6Cd0AUDYQugEAALJhpBsAUFwI3QAAANmkW9IlSSaj53YvJ3QDQNlA6AYAAMjGkyPd9ut0c8kwACgbCN0AAADZpFsvjHR78jrd7F4OAGUCoRsAACCbErlkGCPdAFAmELoBAACycazp9sBId0hAiCTpbMrZYn9sAIDvIXQDAABk47hkmAc2UgsxE7oBoCwhdAMAAGRjX9Ptienl9pHuc6nnHOEeAFB6EboBAACysVgtkjy7plvKDN4AgNKN0A0AAJCNJ3cvNxqMjuDNFHMAKP0I3QAAANk4di83euatEqEbAMoOQjcAAEA2nty9XGIzNQAoSwjdAAAA2XjyOt0SoRsAyhJCNwAAQDaeXNMtScEBTC8HgLKC0A0AAJCNp9d0M9INAGUHoRsAACAb1nQDAIoLoRsAACAbT6/pZno5AJQdhG4AAIBs2EgNAFBcCN0AAADZODZSM3p2enl8SrxHHh8A4Dt8NnRbLBb16dNHw4YNc9y2Y8cO9erVS02aNFF0dLQWLlzodM7SpUsVExOjxo0bq3v37tq+fXtJlw0AQJlTGvts+0g3u5cDAIrKZ0P31KlTtXXrVsfX8fHxGjhwoO644w5t2bJFY8eO1bhx47Rz505J0qZNmzRmzBiNHz9eW7ZsUdeuXTVo0CAlJyd7qwkAAJQJpbHPtm+k5unp5YnpiY7nAgCUTj4Zujdu3KhVq1bplltucdy2atUqhYeHKzY2VmazWa1bt1aXLl00b948SdLChQvVuXNnNW3aVAEBAerXr58iIiK0YsUKbzUDAIBSr7T22Z4e6Q4yBTkeOz6VKeYAUJr5XOg+deqUXnzxRb355psKCQlx3L53717VrVvX6b61a9fWnj17JEn79u3L9zgAAChepbnPtq/p9tRIt8FgUMXgipKYYg4ApZ3Z2wVkZbVa9eyzz+qBBx5Q/fr1nY4lJiY6deiSFBwcrKSkJJeOu8NisRT6HFfOtdku/t/+J7f7uHvMZitc7Vm50w5fRjt8C+3wLbTDt2Rvh7+0p7T32RmWi7uX27J0uDabTbLJ6bbCHLPZbKoYVFGnk0/rVOIpXVnxSo+0wx/QDt9CO3wL7fAdubXB1fb4VOh+7733FBgYqD59+uQ4FhISooSEBKfbUlJSFBYW5jiekpKS43hERITbdcTFxbl9jqvnGo1GJSUmyWAwKCkpWVaLSbIG5rhfYY4lp2Zo586dslqtha7friivgS+hHb6FdvgW2uFb/K0dpb3PPp98XpKUEJ+gk+knHbcnpiYqwBigwICc/bM7x9It6QqwBEiSdvyxQ+bjhX9L5m8/O3mhHb6FdvgW2uE7CtMGnwrdy5cv1/Hjx9WsWTNJcnTI3377rZ577jn99NNPTvfft2+f6tSpI0mqU6eO9u7dm+N4u3bt3K4jKipKJpN7a7gsFovi4uJcOjc07HTm/9ONCgkyKSQ457ehMMcMJosaNmzoVt3ZudMOX0Y7fAvt8C20w7dkb4f9a19X2vts0x8mKVWKjIhU5fKVHbeHpYcpwBggsyln/+zOsQxrhv7P+n/6M+FPhVcPV+OrG7vVBlfb4Q9oh2+hHb6FdviO3Nrgap/tU6H766+/dvrafumR8ePH68yZM3rjjTc0e/ZsxcbGatu2bfriiy80bdo0SVLPnj01ZMgQderUSU2bNtW8efN06tQpxcTEuF2HyWQq9A+DK+caDBf/b/+T233cPWYwqNh+iIvyGvgS2uFbaIdvoR2+xd/aUdr7bMdGakaTDFk6XIPBIBnkdFthjhkMBkWEZI7sn0s7V6Tvvb/97OSFdvgW2uFbaIfvKEwbfCp05yciIkKzZs3S2LFjNXnyZEVGRmrEiBFq1aqVJKl169Z66aWXNHr0aB07dky1a9fWzJkzFR4e7t3CAQAoY0pDn501dHtKeHC4JDZSA4DSzqdD9/jx452+joqK0oIFC/K8f7du3dStWzdPlwUAALIpbX22p3cvl+TYvfx08mmPPQcAwPt87pJhAAAA3ubp63RLUuXQzLXihG4AKN0I3QAAANmkWzw/0m0P3aeSTnnsOQAA3kfoLqX6jFzj7RIAAPBLNptNFlvmtVc9uaa7UkglSdLJpJMF3BMA4M8I3aVUcmqGt0sAAMAv2aeWS54d6a4Umhm6E9ISlJqR6rHnAQB4F6EbAAAgi6yh25NrussHlnc8Puu6AaD0InQDAABkYd+5XPLsSLfBYFBoQKgkppgDQGlG6AYAAMjCvoma5NnQLUlhAWGSpFPJbKYGAKUVoRsAACAL+/Rys9Esg8Hg0ecKC8wM3Yx0A0DpRegGAADIwj693Gw0e/y57NPLuWwYAJRehG4AAIAs7CPdAcYAjz8Xa7oBoPQjdAMAAGSRdXq5p9mnl7OmGwBKL8/3JigxwUEm9XxulYKDPHd5EwAASjvHSLfJcyPdZqNZi3Yvcmykxkg3AJRejHSXMkkpGUpOyVBwkEl9Rq7xdjkAAPgd++7lnh7pTremq3xgeUnSv/H/evS5AADeQ+guxZJTM7xdAgAAfscb08uT0pNks9k8/nwAgJJH6AYAAMjCG7uXW21WxafGe/z5AAAlj9ANAACQRUnuXm42mhVkCpLEZcMAoLQidAMAAGRhX9PtyY3UsrJvpsYO5gBQOhG6AQAAsijJNd0S1+oGgNKO0A0AAJCFfU13SUwvl6SQgBBJTC8HgNKK0A0AAJBFSY90c61uACjdCN0AAABZeCt0H088XiLPBwAoWYRuAACALEo8dF+4VveJpBMl8nwAgJJF6AYAAMiixHcvD2SkGwBKM0I3AABAFiU90l0uoJwk6UTiCdlsthJ5TgBAySF0AwAAZFHSu5fbLxmWbk3X2ZSzJfKcAICSQ+guxYKDTOozco23ywAAwK/Yp5eX1Ei3yWhyBO9jicdK5DkBACWH0F3KJadmeLsEAAD8in16eUmt6Zacp5gDAEoXQjcAAEAWJb2mW7q4mRoj3QBQ+hC6AQAAsnCMdJfQmm5JKhfISDcAlFaEbgAAgCzsG6mV5Ei3PXRz2TAAKH0I3QAAAFl4Y3q5fU03oRsASh9CNwAAQBb23ctLdCM1+/TyJKaXA0BpQ+gGAADIwqsbqZ1nIzUAKG0I3QAAAFnY13R7YyO1xPREJaUnldjzAgA8j9ANAACQhTdGugNNgQo0BUpiXTcAlDaEbgAAgCwclwwrwTXdEpupAUBpReguI/qMXOPtEgAA8AveGOmWLk4x/+KPL0r0eQEAnkXoLiOSUzO8XQIAAH7Bvnt5SYdu+2ZqZ1POlujzAgA8i9ANAACQhbdHuhPTEkv0eQEAnkXoBgAAyMIbu5dLF0P3+fTzJfq8AADPInQDAABk4bWN1OyhO43QDQClCaG7lAsOMmnAmLXeLgMAAL/hrTXdFYMrSiJ0A0BpQ+guA5LT2EQNAABXOUa6S3h6efnA8pKkpPQkRw0AAP9H6C5hjDoDAODb7IF37T8l22eHmENkNGS+NTuZdLJEnxsA4DmE7hLGqDMAAL7NvpGa1WYt0ec1GAyOdd3HE4+X6HMDADyH0A0AAJCFfaTbaCz5t0mEbgAofQjdAAAAWdg3UjMZTCX+3IRuACh9CN0AAABZOEa6DSX/Nsm+mRqhGwBKD0I3AADABTabzbGmm5FuAEBxIHQDAABcYLFZHH/35kj3icQTJf7cAADPIHQDAABckPX62CYjI90AgKIjdAMAAFyQNXR7Y6Q7a+i22Wwl/vwAgOJH6AYAALjAvnO55N013enWdJ1NOVvizw8AKH6EbgAAgAvsI90mg0kGg6HEn99kNCnEHCKJKeYAUFoQugEAAC6w71xuNpq9VoNjM7UkNlMDgNKA0A0AAHCBfaQ7wBTgtRrCAsMkSUfPH/VaDQCA4kPoBgAAuMC+ptsXRrqZXg4ApQOhGwAA4ALHSLfReyPdXDYMAEoXQjcAAMAFPrGmOyhzpPvY+WNeqwEAUHwI3QAAABekWdIkSYGmQK/VYB/pPpZI6AaA0oDQDQAAcIE9dAeZg7xWgyN0nz8mm83mtToAAMWD0A0AAHBBakaqJCnI5P3QnWpJVXxqvNfqAAAUD0I3AADABamWzNDtzenlZqNZEcERkljXDQClAaEbAADgAl+YXi5J1cpVk8S6bgAoDQjdAAAAF9inl3tzpFuSqoVlhm4uGwYA/o/QDQAAcIFjpNuLa7olqWpYVUlMLweA0oDQXUb1GbnG2yUAAOBzfGFNt3RxevnGgxs1Z8ccr9YCACgaQncZlZya4e0SAADwOY7dy728prt6ueqSpHNp55RuSfdqLQCAoiF0AwAAXGCfXu7tkW779PLzaee9WgcAoOgI3QAAABf4yppu+0ZqiWmJstlsXq0FAFA0hO4yaMCYtd4uAQAAn2Rf0+3t6eX2kW6LzaKUjBSv1gIAKBpCdxmUnMZ6bgAAcuMrlwwLMAUoNCBUElPMAcDfEboBAAAu8JU13ZJUPrC8JCkhLcHLlQAAioLQDQAAcIF9enmwOdjLlUgVgypKInQDgL8jdAMAAFzgUyPdQZkj3UwvBwD/RugGAAC4wFfWdEsXR7rPpZ7zciUAgKLwydC9Z88ePfDAA2rRooWuv/56Pffcczp9+rQkaceOHerVq5eaNGmi6OhoLVy40OncpUuXKiYmRo0bN1b37t21fft2bzQhV+waDgAoTUpjf22fXv7zoZ+9XIlUIaiCJEa6AcDf+VzoTklJ0UMPPaQmTZpo/fr1+vLLL3X27Fm98MILio+P18CBA3XHHXdoy5YtGjt2rMaNG6edO3dKkjZt2qQxY8Zo/Pjx2rJli7p27apBgwYpOTnZy63KxK7hAIDSorT21/bp5QabwcuVXAzdjHQDgH/zudB95MgR1a9fX0OGDFFgYKAiIiJ09913a8uWLVq1apXCw8MVGxsrs9ms1q1bq0uXLpo3b54kaeHChercubOaNm2qgIAA9evXTxEREVqxYoWXWwUAQOlSWvtre+g2GU1eruRi6E61pCoxLdHL1QAACsvnQvdVV12lDz74QCbTxc7um2++0bXXXqu9e/eqbt26TvevXbu29uzZI0nat29fvscBAEDxKK39tX1Nt9lo9nIlUpA5SEGmIEnSf+f/83I1AIDC8n6Pkg+bzaa3335b33//vebOnauPP/5YISEhTvcJDg5WUlKSJCkxMTHf466yWCxu12o/J79zbbacX9v/5Hbf4jxms12szX48t1pdaYc/oB2+hXb4FtrhW7K3wx/b463+Wir+Ptu+pttkMMmWS0drs9kkmzx6zGazyWKxyGazqXxgeaUmp+pw/GFdWfFKl9vhT2iHb6EdvoV2+I7c2uBqe3w2dJ8/f17Dhw/X7t27NXfuXNWrV08hISFKSHC+VmVKSorCwsIkSSEhIUpJSclxPCIiwq3njouLK3TdeZ1rNBqVlJgkg+HiGrGkpGRZLSbJmnOH1OI+lpyaoV27dmXeJzFJKWkW7dy5U1ar1a12+Bva4Vtoh2+hHb7FX9vhzf5aKv4+Ozktc115/Ol4mVJyTjFPTE1UgDFAgQE5++DiOpZuSddvv/2mkydOKlCZt237Y5vKnS7ncjv8Ee3wLbTDt9AO31GYNvhk6P733381YMAA/d///Z8WLVqkyMhISVLdunX1008/Od133759qlOnjiSpTp062rt3b47j7dq1c+v5o6KinKbLucJisSguLi7fc0PDTjt/nW5USJBJIcE5vw3FfSwkVHpl7jEFB5kUGhYqo9mihg0bFqod/oB2+Bba4Vtoh2/J3g771/7A2/21VPx9dsYvmZueVq1SVeEh4TnODUsPU4AxQGZTzj64OI/tMexR5SqVVSmhko4kH5GxolGNGzd2uR3+hHb4FtrhW2iH78itDa722T4XuuPj49W3b1+1atVKY8eOldF4cdl5TEyM3njjDc2ePVuxsbHatm2bvvjiC02bNk2S1LNnTw0ZMkSdOnVS06ZNNW/ePJ06dUoxMTFu1WAymQr9w5DfuQZDzq/tf3K7b3EfS07NkGRTSLBZBoPybWNRXgNfQjt8C+3wLbTDt/hbO3yhv5aKt8/OsGbIYsucKmg2mZ1mp9kZDAbJII8fy7BlyGAwODZTO5p4NM92+tvPTl5oh2+hHb6FdviOwrTB50L3kiVLdOTIEa1cuVJff/2107Ht27dr1qxZGjt2rCZPnqzIyEiNGDFCrVq1kiS1bt1aL730kkaPHq1jx46pdu3amjlzpsLDw73QEgAASq/S2F/bdy6XMtd0+4LygeUlSf8lsJEaAPgrnwvdDzzwgB544IE8j0dFRWnBggV5Hu/WrZu6devmidIAAMAFpbG/zhq6fWH3ckkqH3QhdLN7OQD4LZ+7ZBgAAIA32C8XZjQYc50G7g32ke7TyaeVkpFSwL0BAL6I0A0AAKCLlwvzlVFuSQoyBSnAGCCJKeYA4K8I3QAAALo4vdxX1nNLctpM7XDCYS9XAwAoDEI3AACALk4v96WRbkmqGFxRknQw/qCXKwEAFAahGwAAQFlGuo2+M9ItSRWDLoTuc4RuAPBHhG4AAABdXNPtS9PLpYuh+9C5Q16uBABQGIRuAAAA+fD08iCmlwOAPyN0l3F9Rq7xdgkAAPgEn51efmFN9+GEw8qwZni5GgCAuwjdZVxyKp03AABSlkuGGXxrpDssIExBpiBZbVYdPX/U2+UAANxE6AYAANDF6eW+NtJtMBhUo0INSUwxBwB/ROgGAADQxenlvramW5JqVqgpiR3MAcAfEboBAADku7uXS1LNihdCNyPdAOB3CN0AAADy3Y3UpIsj3Vw2DAD8D6EbAABAvnvJMCnLSDfTywHA7xC6AQAAlGWk2xenl18Y6T587rAsVouXqwEAuIPQXcYFB5m4VjcAAMpyyTAfHOmuGlZVJoNJ6dZ0LhsGAH6G0A2u1Q0AgHx7TbfJaFJ4cLgk6UD8Ae8WAwBwC6G7jAoOMmnAmLXeLgMAAJ/huE63j00vNxvNWrR7kSqFVJIk/XP2H+8WBABwC6G7DEtOY4QbAAA7X55enm5NV2RIpCTp7zN/e7kaAIA7CN0AAADy7enlkhyhm+nlAOBfCN0AAAC6GLrNBt8b6ZYuhm6mlwOAfyF0AwAASErJSJHkuyPdESERkqTTyacVnxLv5WoAAK4idAMAACjLSLcPrumWpEBToMoFlpPEaDcA+BNCNwAAgLKs6fax3cuzigxmijkA+BtCNwAAgLJcMsxHp5dLrOsGAH9E6AYAAJBvXzLMzr6um9ANAP6D0A0AACDfv2SYJEUEE7oBwN8QupGD0ciPBQCg7LFPL/fVS4ZJF6eXH044rNSMVPpsAPAD/KZGDmPmHPJ2CQAAlKgMa4YsNosk3x7pDg0IVYWgCrLarJq+bbrWnFjj7ZIAAAUgdCOHpJQMb5cAAECJsk8tl3x793KDwaBaEbUkScfPH3eMzgMAfBehGwoOMqnnc6vU87lV3i4FAACvyBq6fXkjNbPRLKvNKkk6nXLay9UAAFxB6IakzNFtRrgBAGWVfcQ4wBggg8Hg5WryZ99M7XQyoRsA/AGhGw4hQSY9PHa9z7/ZAACguCWlJ0mSQgJCvFxJwaqGVZVE6AYAf0HohpPkNEa7AQBlT0JagiSpfGB5L1dSsEqhlSRl1pxhpd8GAF9H6AYAAGXe+bTzkqTyQb4fukMDQhUaECpJOpdxzsvVAAAKQugGAABlXkKq/4x0S1Ll0MqSpHPphG4A8HWEbgAAUObZp5eXCyzn5UpcUzmE0A0A/oLQDQAAyjz79HJ/Cd32dd2EbgDwfYRuAABQ5jmml/vBmm6J6eUA4E8I3QAAoMzzp93LJalKaBUZZFCKNUUnEk94uxwAQD4I3QAAoMzzt5HuAFOAIkIiJEm/nfzNy9UAAPJD6AYAAGWev63plqSqoVUlSb+dIHQDgC8jdAMAgDLP36aXS1K1sGqSCN0A4OsI3QAAoMzzt+nlklQlrIqkzOnlVpvVy9UAAPJC6AYAAGWefXq5P410R4ZEyiijzqed18H4g94uBwCQB0I3AAAo8xzTy/1opNtkMCk8MFyStPvEbu8WAwDIE6EbAACUaakZqUqzpEnyr43UJCkyMFKStPs4oRsAfBWhu4QMGLPW2yUAAIBc2Ee5jQajVv650svVuCciMPOyYXHH47xcCQAgL4TuEpKcluHtEgAAQC7s67nDAsKUYfOv/rpSYCVJ0u8nfteppFNergYAkBtCN/LUZ+SaIh0HAMAf+OPO5Xah5lBdU/ka2WTT2gN5z6pbELegBKsCAGRF6EaeklNzftqfNWjndhwAAH9jn17ub+u57dpf0V6S9MM/Pzhum7NjjubsmOP4Ot2aXtJlAQAuIHQjT8FBphyj2QRtAEBp4xjp9qPLhWV14+U3SpJ+PvSzY6p8uiVd6RaCNgD4AkI38kXIBgCUdv54ubCsrgi/QpEhkbLarFr/73pvlwMAyIbQDQAAyjT76LC/jnRLUu3I2pKk1ftXe7kSAEB2hG4AAFCm2aeX++uabkm6uvLVkqS1B9bq9xO/e7kaAEBWhG7kKzjIpJ7PrVLP51Z5uxQAADzC36eXS1Ll0MqO4D1l8xQvVwMAyIrQjQIlpWQoKYW13QCA0snfN1Kzu77m9TIZTNp8eLP+jf/X2+UAAC4gdAMAgDLNsabbj0e6JalicEVFVYuSJK36a5UOnjvo5YoAAJJk9nYBAAAA3pT1Ot32UW9/1apGKxkNRv3y3y/6au9XSslIUfMazXU25axsNpsMBoO3SwSAMoeRbgAAUKbZR7r9eSM1uyBzkKbeNlV1IuvIarNq9V+r9dqPr+l/O/6nbgu66du/vvV2iQBQ5jDSDQAAyrTSsqbbLtAUqJuvvFkNqjRQlXJVtPXIVv169FcdSTiiYd8OU6fanfTCDS8oJCDE26UCQJlA6Pawns+tUnCQydtleJS9jSGBZqWkWTRnTLTTMUla9Pot3ioPAIB82Ue6fzzwo8ICw7xcTfEwGAy6pPwl6n9dfw1sOlCzfpmlFEuKPtr+kVbuW6m4Y3HqfnV33d/4fsc5C+IW6J6oe7xYNQCUTkwv97CklAwll/Kdv+1tTE7LUHJqRo5j7HwOAPBVGdYMpVvTJUlmY+kdiwgwBWhw88G669q7FGAM0KGEQ1r420IlpiU67mN/HQAAxYvQjRxCgsx6eOz6Au8XHGTSgDFrS6AiAAA8w2w065Fmj2hw88EKMgd5uxy3BZoCteT3JQXez2w0a9HuRbq0wqXqWrerAk2B+u/8fxq6YqhjpB8A4BmEbuQqOc210WlX7wcAgK/q36S/+jfp7+0yCs3VEWr7/aqVq6bu9bsryBSkuONxGvzVYJ1LPefJEgGgTCN0o1AKM8LdZ+QaD1QCAADys2j3ohy3VQ2rqh5X91DFoIr67cRvGvzVYCWnJ0uS5uyYozk75pR0mQBQahG6USiFGeHOvt4bAAB4Xl4j4VXCqmjG7TMUHhyuPSf3aMmeJTqReELplnSlW1jfDQDFpfTuGAKvYJ03AAD+wWw0a8fRHepxdQ8t2LVAJ5NO6oHlD+jGy29UZEikt8sDgFKDkW4PKo3h05VQnZyW4fiTl9ymmjP9HADgLblNwfZ39s3T8pNuTVd4cLjuaXCPwoPDdfT8US3Zs0R/n/nbcZ8FcQtynJfbbQCA3BG6Pai0bjJWHO3Kbao5088BAN5SWi+X5Wq7woPDddc1d6lx9cZKs6Rp5f6Vmrhhos6lnsv1MUrr6wUAnkDohktCPDxtPOtjZx3xZvQbAADXuTK6nZeQgBDNuH2GGlZtKElasGuB7lhwh9YdWKeNBzfqYPxBvb/1fc3fOd9xjn3Em5FvAMgba7rhMk+O3Gd97Kwj3ox+AwDgnqKMQpuNZrW9rK0uq3iZfj/5u/af2a/tR7fr0ZWPOt2nQlAF/XP2H6VkpOimxJsY+QaAfDDSjRJXlBFzRr4BAPC8yypepvk95uuOenfomirXqEb5Ggoxh0iSMqwZOp18Wsv/WK5v9n+jTvM6ac7OOZq7c67T9b4Z/QaATIx0o8QVZcQ8r5HvPiPXaM6Y6EI/LgAAcGYymlQrspYuD79cfRr1kSTN3DpTyRnJOpNyRuHB4fpm/zc6kXhCp5NP6+2f39aMrTPU4+oe6tOoT56j3wviFuieqHtKsikA4FWEbnhd9pHv4CCTej63SsFBJsdtBYXq3MK40chEDgAAisui3YtkMpoUHhyuiJAI9WnUR1XDqspitSjueJwOxB/QvtP7NC9unhbsWqBLK1yqAFOALq94uSJCImQ2mhUWEKbkjOQcj02fDaA0I3TD63Ib+U5KyZDNZpPBYMi8TyFGuMfMOaSFbzQsvkIBACjD8hq5NhlNalC1gcbfPF4bDm7Q+PXj9d/5/3Qg/oAmbpiY6zlf7f1KbWq20e11b9fPB3/WiRMn1FD02QBKp1L3seKpU6c0ePBgNWvWTC1bttTYsWOVkcFmXN5k3/k86zW+7aPZvUd+l++5BV0X3Cab0/Gez61Sz+dWScoM7nnJa214fmvGWU8OAMWLPtu3ZN35PK+/53fu3J1z9W/8v7rr2ru0+K7Fan1pa7W/vL2uirhKYQFhCjGHyGTInMX2z9l/ND9uvu5bfJ8+/+NzHU06muvjztkxR3N2zHG6zWaz5btenLXkAHxNqRvpfuKJJ1StWjX9+OOPOnnypAYNGqTZs2froYce8nZpZZp9NDvrqLZ9NDskOPPHMK+AnfUce1iXpEWv3+I4bj83v6Dt9JhZRs6zjpbbb89tBD37aHtJrSNnyh2A0oo+2/dkHc3O6+9S7kE83ZLumKV2efjlalOzjQwy6M2Ob2rWL7NkNpplNpqVnJGs/xL+0+4Tu7Xv9D79E/+P/tE/emrVU7rz6jvV6tJWCjYHK8OaoaPnj+pk0km9/fPb+vPUn4o7FqeUjBQFGAO08LeFujLiSiWnJ+v2urcrIiRCweZgHTp3SPtO71OQKUhB5iAFmgL1+Z7PFdswViajSZ5Enw0gN6UqdB84cECbN2/WunXrFBISopo1a2rw4MF644036MD9RF6brGUN5HkFa/u5IUEmPTx2vWNqekFssuVYQ+7KpcpK6nJmTJMHUBrRZ/u/vKabZw3k2e9jMBgUGhCqWpG1VCuyls6lnNPaA2v15+k/9dPBn/TTwZ9kNpoVZApSqiVVGdbc+9o0a5oOxB/QgfgDkqRNhzc5HV+wO+do9+TNkxVkCtJlFS/TFeFX6IrwK1SjQg1FBEcoLDBMBhlkMBhkNBgVGhCqyqGVVT6wvNP7icS0RB08d1D/xv+rIwlHlGZJk81mU1hgmHYe3anUxFTdXeluVQiuoHKB5Rx/gkxBLr8vAVD6lKrQvXfvXoWHh6tatWqO22rVqqUjR47o3LlzqlChgherQ1FlDeQhBUw7z3rf/EakswZ5+6h79qnwZxJS893UzR7YQwLNSkmz5Ppc9nMKqsV+vn00/9NxNzl9yDBgzFqdSUiVdHGkP7825na7t3Z659N/AFnRZ5du9rBd0NT0CsEVdNOVN+mKgCsUWTlSX+39SglpCY6wHWAMUOXQyrrh8huUkJqgSiGVFBYYpnRLus6knNHZlLM6nXxap5NPKyUjRRarRWnWNAUYA5RmSVNyRrKsNqvj+VItqdp7eq/2nt7rUjuCTEGqFFpJUmbgjk+NL/Ccn77+KcdtZqNZweZgmQwmpVvTFRYQJpPRJJPB5Ph/QmqCKoVWUpA5SMHmYJ1KOqVakbUUbA52/AkxhyjYHCybbEpMS9T5tPNKTL/w/7TEzNfMFKBAU6ACjJn////27j+o6frxA/hzP2MChSa6/KTnpYSnoiEgKaSgIZ2ChpCeJqZX+QNPkgLlNDM1Uc4UP+qlFnbcFel1FGpkIlcqGjpE8Ud28jE/X0Klkx8TFBAGe+/7B58tEDQ2GO9tPB93u9vev/Z8b8Bzr/feG0qZ0jRNguaDChKJpNVBhpbXDYIBd+/exeXLlyGVStvMN15/dFuPuy6RSGAwGNAkNLW66A16SCVSKKQKKGQKKKSKVutI0HyQwniwwjjdyDi/5TItCYKA4nvFqPhvBaRSKQwwAGj+eILxulHLaY+b39Kj9/e4LC0zt9yvltMe9eh9G/ej8v8qTa+lHs3T3nrtLdfeMu3pyHodzWAkCAJKKktw+z+327wm7O7svRS9EDQ4CE5ypw5tsys41KC7trYWKpWq1TTj7bq6un8scOOTpNPpIJOZd/qRXq9vs66rSg59kwCnp6RwUrZ9qG1zngxKqRxOTjLgf38InrSemFnlsubH+PH74YT4HWfhopIhbtuvqH7QgKeUMjg9JYe721OI2/araRuP3l/L7SpkEihkgOv/1jFuz7gN43y5DKZ5Rsb7NE5XyJp/RlZsP4cd778MAKbrchlM8xUyCZyekiJ+x1n0dlWafq6al2meF7MlFzvefxmrdp03rddSy+kt76+9ZVsyLrtq13kAQEOjvk3WR5dtb16r50Wvx87Mu/hs2D//bj1pO12xnqXbB5r3QyKRtPo9X5J0BgCwd3Vgh+/bnAydyfs47e2HrWvvcWi5Hx/8+3yXP07m6OzPFfB3fxhvt/eCxpHYWmcroPh7vkQPuUQOeTsvk2xpngIKqOQqyCGH9JGv6bF0m1bJKgBKifKJ+/Evl39hwDMDEDMmxjRQNn7+WyFTQKVQoVHf+l3zpxVPY8gzQyCXtpNF0JtOJZdJZahvrIdEIsED3QOU1ZahuqEa1fXVeKB7gPqmeuj0zb0oGAQYYIBOr0NDUwNgALS1WtN2naROcHNyg0qhwjPKZ+DxrAf+rPoTjUIjanW1qGuog6vKFXWNdaiqr0KDvsG0blNTE5rQfDDhgf5Bu499TUNNq9t3qu+0u1y3+Eu8u+5SxWIH6CLFYgfoIiViB2im9dUianiUWeu01x0d7WyJwYFaPScnBx9++CE0mr9PMSoqKsL06dNRUFAAV1fXJ66v0+lw9epVa8ckIiL6R15eXlAqlWLHsBp2NhEROYp/6myHeqfbw8MDVVVVqKioQN++fQEAN2/ehFqt/sfyBgC5XA4vLy9IpVJ+7oaIiERhMBggCALkcoeq6DbY2UREZO862tkO9U43AMydOxdqtRobNmzAvXv3sHTpUoSGhmL58uViRyMiIqIW2NlERNQTONygu6KiAhs2bIBGo4FUKsXrr7+O+Ph4u/ncIhERUU/BziYiop7A4QbdRERERERERLaC/8OHiIiIiIiIyEo46CYiIiIiIiKyEg66iYiIiIiIiKyEg24iIiIiIiIiK+GguwtUVlYiJiYGvr6+8Pf3x6ZNm9DU1CR2LItptVqEhIRAo9GIHcUi169fx8KFCzF27FgEBARg5cqV0Gq1Yscy29mzZ/HGG29gzJgxCAgIwMaNG1FfXy92LIvo9XpER0cjMTFR7CgWO3r0KIYPHw5vb2/TJSEhQexYZquqqsLKlSvh7+8PPz8/xMTEoKysTOxYZjly5Eir58Hb2xsjR47EyJEjxY5mlmvXruHNN9+Er68vAgMD8cknn0Cn04kdy+Gxs20LO9v22Htns69th6P0NdD5zuaguwusWLECvXr1wunTp5GRkYGzZ88iLS1N7FgWuXDhAmbPno2SkhKxo1ikvr4e77zzDry9vXHmzBlkZWWhqqoKq1evFjuaWbRaLRYvXow5c+agoKAAmZmZyM/Px+effy52NIvs3r0bBQUFYsfolKtXr2LGjBkoLCw0XbZu3Sp2LLMtX74cdXV1yMnJwYkTJyCTybB27VqxY5ll+vTprZ6HY8eOwc3NDZs2bRI7WocJgoDFixcjNDQU+fn5yMjIwJkzZ/DFF1+IHc3hsbNtBzvbNtl7Z7OvbYcj9DXQNZ3NQXcn/fnnn8jPz0dCQgJUKhUGDhyImJgYpKenix3NbJmZmYiPj0dcXJzYUSxWWlqKYcOGYdmyZVAqlejduzdmz56N8+fPix3NLH369EFeXh5mzpwJiUSCqqoqNDQ0oE+fPmJHM9vZs2dx/PhxTJkyRewonXL16lW7PDLb0m+//YbLly9jy5YtePrpp+Hi4oKNGzciPj5e7GgWMxgMSEhIQFBQEGbMmCF2nA6rrq5GeXk5BEGA8T93SqVSqFQqkZM5Nna2bWFn2x5H6Gz2tW2y174GuqazOejupBs3bsDNzQ39+/c3TRsyZAhKS0tx//59EZOZLzAwEDk5OZg6darYUSz2wgsvIDU1FTKZzDQtOzsbI0aMEDGVZVxcXAAAEydORHh4ONzd3TFz5kyRU5mnsrISa9aswbZt2+x6MCEIAq5du4aTJ08iODgYEyZMwNq1a1FdXS12NLNcuXIFQ4cOxbfffouQkBAEBgYiOTkZ7u7uYkez2OHDh/HHH3/Y3WmQvXv3xoIFC5CcnAwvLy9MnDgRgwcPxoIFC8SO5tDY2baFnW1bHKGz2de2y177Guiazuagu5Nqa2vb/GEy3q6rqxMjksXc3d0hl8vFjtFlDAYDUlJScOLECaxZs0bsOBY7fvw4cnNzIZVKERsbK3acDhMEAQkJCVi4cCGGDRsmdpxO0Wq1GD58OEJDQ3H06FEcPHgQxcXFdvcZserqahQVFaG4uBiZmZk4dOgQ7t69i1WrVokdzSKCIGDPnj1YsmSJ6QWvvRAEAU5OTli7di0uXbqErKws3Lx5Ezt37hQ7mkNjZ9sudra4HKWz2de2yZ77Guiazuagu5N69eqFhw8ftppmvO3s7CxGJAJQU1OD2NhY/PDDD/j666/h6ekpdiSLOTk5oX///khISMDp06ft5mjtvn37oFQqER0dLXaUTuvbty/S09MRFRUFlUqFAQMGICEhAbm5uaipqRE7XocplUoAwJo1a+Di4oK+fftixYoVOHXqFGpra0VOZz6NRoOysjJERUWJHcVsOTk5yM7Oxty5c6FUKuHh4YFly5bhwIEDYkdzaOxs28TOFp+jdDb72jbZc18DXdPZHHR3koeHB6qqqlBRUWGadvPmTajVari6uoqYrOcqKSlBZGQkampqkJGRYZflffHiRbz22mutvhVRp9NBoVDYzSlfhw8fRn5+Pnx9feHr64usrCxkZWXB19dX7Ghmu379Oj799FPT53iA5udDKpWaitEeDB06FIIgoLGx0TRNEAQAaLVv9iI7OxshISHo1auX2FHM9tdff7X51lO5XA6FQiFSop6BnW172Nm2wVE6m31tm+y5r4Gu6WwOujtp8ODB8PHxQVJSEmpqanDr1i189tlndnskx95VV1fjrbfewpgxY7B//367/BITAPD09ER9fT22bdsGnU6HO3fuIDk5GVFRUXZTGseOHcPFixdRUFCAgoIChIWFISwszC6/EdXNzQ3p6elITU1FU1MTSktLsXXrVkRERNjN8wEA48ePx8CBA7F69WrU1tZCq9UiJSUFr776ql2e7nXhwgX4+fmJHcMigYGBKC8vx969e6HX63Hr1i3s2bMH4eHhYkdzaOxs28LOth2O0tnsa9tkz30NdE1nc9DdBXbu3ImmpiZMnjwZs2bNwiuvvIKYmBixY/VI33//PUpLS/HTTz/Bx8en1f8FtCfOzs5ITU3FjRs3EBAQgOjoaIwfP97u/o2Ko1Cr1di3bx9+/vlnjB07FpGRkfDy8sJHH30kdjSzKBQKfPXVV5DJZAgNDUVoaCjUajWSkpLEjmaR27dvo1+/fmLHsMjQoUOxb98+/PLLL/D398f8+fMxadIku/4manvBzrYd7Gzqauxr22TPfQ10TWdLDPZ4jgIRERERERGRHeA73URERERERERWwkE3ERERERERkZVw0E1ERERERERkJRx0ExEREREREVkJB91EREREREREVsJBNxEREREREZGVcNBNREREREREZCUcdBMREXWSVqtFSEgINBpNh9fJzs5GWFgYXnrpJYSEhCAjI8OKCYmIiAgQp7Pl5oYkop5h0qRJKC8vh1ze/GfCYDDAxcUF4eHhSEhIgFTa+phdaWkppk2bhh9//BEDBgwQIzKRKC5cuIDExESUlJR0eJ1z584hMTERO3bswIQJE6DRaPDuu+/ixRdfxKhRo6yYlogcETubqGPE6my+001Ej7V+/XoUFhaisLAQly5dwv79+3Ho0CHs3r27zbIDBgxAYWEhy5t6lMzMTMTHxyMuLq7NvLy8PERFRcHX1xfTpk3DkSNHTPPS0tIwf/58TJw4ERKJBC+//DK+++47DBo0qDvjE5EDYWcTPZmYnc1BNxF1mKenJ/z8/PD7778jOjoaiYmJCA4ORlBQEIqKiuDp6Ynbt28DAG7duoUlS5bAx8cH48aNw8cffwydTgcAKCkpwZIlS+Dv74/g4GCkpKSY5hHZk8DAQOTk5GDq1Kmtpl+/fh1Lly7FokWLoNFosHHjRiQlJeH06dMAgCtXrsDNzQ2LFi2Cv78/ZsyYgZKSEri5uYmwF0TkiNjZRK2J2dkcdBNRhzQ2NkKj0eDcuXMICAgA0HxU8ODBgzhy5AicnZ1NyzY1NeHtt9+Gu7s7cnNzkZWVhUuXLmHXrl2oq6vDggUL4OHhgdzcXHzzzTfIy8vDrl27xNo1Iou5u7ubTuds6eDBg5g8eTKmTJkCmUyGMWPGYNasWUhPTwcAVFdXY//+/Vi6dCl+/fVXLFu2DHFxcbh8+XJ37wIROSB2NlFbYnY2P9NNRI+1fv16JCUlmW6r1WosXLgQ8+bNw/HjxzFhwgT0798fAHD//n3TchcvXsSdO3ewevVqqFQqODs7Y/fu3RAEASdPnoROp8P7778PiUSC5557Du+99x5iY2PxwQcfdPs+ElnDnTt3cO7cOfj6+pqm6fV606loSqUSkZGR8Pb2BgBMmTIF48aNQ3Z2NkaPHi1KZiKyb+xsIst0R2dz0E1Ej7Vu3TrMnDnzsfP79evX7vTy8nL07t0bKpXKNO35558H0Pztj1qtFn5+fqZ5BoMBjY2NqKysxLPPPttF6YnEo1arERERgQ0bNpimlZWVwWAwAACGDBnS5vRMvV5vmk9EZC52NpFluqOzeXo5EVlMIpG0O12tVuPevXt4+PChaVpBQQHS0tKgVqsxaNAgFBQUmC6nTp1CVlYW+vTp013RiawqKioKWVlZOHPmDARBQHFxMebNm4cvv/wSADBnzhwcOHAAeXl5EAQB2dnZ0Gg0CAsLEzk5ETkqdjZR+7qjsznoJqIuN2rUKAwePBjJycl4+PAhKioqsHnzZmi1WgQHB6O2thapqanQ6XS4f/8+Vq1ahbi4uMe+ICCyN6NHj8b27duxfft2+Pn5Yd68eZg0aZLpdMzIyEisW7cOmzdvho+PD3bt2oWUlBSMGDFC5ORE1NOws6mn647O5unlRNTlFAoF9u7di6SkJAQFBUEulyM8PByxsbGQy+VIS0vDli1bkJqaCkEQ4O/vjz179ogdm6hTioqKWt0OCgpCUFDQY5ePiIhARESElVMRET0ZO5t6ou7ubImBHyAjIiIiIiIisgqeXk5ERERERERkJRx0ExEREREREVkJB91EREREREREVsJBNxEREREREZGVcNBNREREREREZCUcdBMRERERERFZCQfdRERERERERFbCQTcRERERERGRlXDQTURERERERGQlHHQTERERERERWQkH3URERERERERWwkE3ERERERERkZX8P7TtnW1/OhGNAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Set the style for seaborn\n", - "sns.set_style(\"whitegrid\")\n", - "\n", - "# Create subplots\n", - "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 6))\n", - "\n", - "# Histogram\n", - "sns.histplot(housing_data['price'], bins=\"auto\", kde=False, color='#003399', ax=axes[0])\n", - "axes[0].set_title('Histogram of House Prices')\n", - "axes[0].set_xlabel('Price')\n", - "axes[0].set_ylabel('Frequency')\n", - "\n", - "# Density Plot\n", - "sns.histplot(housing_data['price'], bins=\"auto\", kde=True, color='#339933', ax=axes[1])\n", - "axes[1].set_title('Density Plot of House Prices')\n", - "axes[1].set_xlabel('Price')\n", - "axes[1].set_ylabel('Density')\n", - "\n", - "# A common title\n", - "plt.suptitle('Distribution Analysis of House Prices.', fontsize=16)\n", - "\n", - "# Adjust layout\n", - "plt.tight_layout()\n", - "\n", - "# Show plots\n", - "plt.show();\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The histogram depicts the distribution of house prices, with most bars are clustered towards the left, suggesting that a significant number of houses are priced lower. The density plot illustrates a curve representing the density of house prices. Similar to the histogram, the curve peaks sharply on the left and gradually tapers off, indicating a right-skewed distribution. \n", - "
In summary, the majority of house prices are concentrated at the lower end, creating a skewed distribution.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**#Distribution of Bedrooms, Bathrooms and Floors.**" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAJRCAYAAACN9sAAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0YklEQVR4nOzdZ5RV1cEG4JcqYIldE0sSy2ABBKRYEEHFjomKnwWxdyxBJWqs0RgbdqPGGDUmsRJ7ib0lKogNNVGxo0YUsSFNmPv9cM3VkWGYgdEZDs+zFmtxT9l3333K7HPfe/ZpViqVSgEAAAAAAADmac0buwIAAAAAAADA3BP8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwBgnlAqlRq7CvUyr9UXmhLHDwAAwJwR/AEAUKsRI0akffv2M/1bY4010qVLl2y++eY5/vjj89///rfG9S+88MK0b98+55577hzX4V//+lf22muveq1z9NFHp3379rnxxhtrndbQPv/88/zud7/LLbfcMtv6zGs+/fTTDB06ND179kzHjh2zySabZPr06bNcfqONNqpx3+nUqVP69OmTI444Ii+++OL3Xu8itH1jqmkbtm/fPp07d84mm2ySY489Nm+//XaDvNe4ceNy5JFH5sknn6w2fdCgQWnfvn0ef/zxBnkfmo6q/am2c0mVm266aZb743f/3XTTTUm++Ru28847f98fBQAAmoSWjV0BAADmDe3atcvGG29cfl0qlfLll1/mtddeyw033JB//OMfOeKII7L33ns36Pu+//772XvvvbPMMss0aLnfl9NOOy033XRTfve73zV2VRrcqaeemttuuy1LLLFE+vbtm0UXXTQtW87+kmK99dbLEkssUX49bdq0vPvuu7njjjty991354ILLsgmm2zyfVadBrDJJpukbdu2Sb4+/qdMmZI333wzw4cPz5133pmrr746nTp1mqv3GDp0aEaMGJHtttuuIapMQS2xxBJZb731al1mxRVX/IFqAwAATYvgDwCAOllsscUybNiwGufdeeedOe6443LmmWdm6aWXTv/+/cvzBg4cmC233DKLLbbYHL1vZWXlHK13+OGHZ999983SSy89R+vPqVkNUdhY9WlIo0ePTpKce+656dmzZ53XO+CAA2pc/v7778/BBx+c4447Lr169UqbNm0arK40vGOOOSbLL7/8TNOvvvrqnHrqqfnNb36TO+64Y67ewxCf1MXKK688y79HAAAwvzPUJwAAc22rrbbKKaeckiQ588wzM2XKlPK8xRdfPCuvvHIWX3zxH7ROSy+9dFZeeeUsvPDCP+j7zkpTq8+c+Oqrr5Ikyy67bIOUt8kmm6RLly755JNPMmrUqAYpkx/eoEGDsuyyy2bMmDF58803G7s6AAAA8zXBHwAADWLrrbdOx44d8+GHH+b+++8vT5/VM/4efvjh7L333tlggw3SoUOH9O3bN8ccc0xef/31autWDS86bty4tG/fPhtttFGS5N1330379u1z0EEH5e67707fvn3TqVOn9O/fP19++eVsn+t27bXXZosttkjHjh2z8cYb56yzzsrnn39ebZmq50kdeeSRNZZR9Sypb7+++eabkyTHHXdctedMzao+06dPz1//+tdst9126dy5czp37pztt98+f/vb32Z65lXVs6pOPfXUvPHGGzn00EPTs2fPdOrUKdttt13+8Y9/1FjPWZk8eXL+8Ic/pH///unUqVO6du2aXXbZJbfddlu15arq/t577yVJNt1007Rv3z4jRoyo1/vVpCpE/PLLL2ea9+abb+aoo44q7yO9e/fOscceW67Hd7311lv59a9/nV69eqVz584ZOHDgLOtYtV/eddddOf7449OlS5d079692l1E7733Xk444YRstNFG6dChQ9ZZZ50MHjw4zz33XI1lzsm2POOMM/Lqq6/mwAMPTPfu3dOlS5cMGjSofHflqFGjsttuu6VLly7ZYIMNctRRR+Xjjz+e6b1vueWW7LrrrllvvfXSqVOn9OvXLyeffHI++OCDGuvakJo1a1Yeive723HKlCm58sors9NOO6VHjx5Zc801s84662TffffNv/71r/JyVcfzyJEjkyR77rlnjftYZWVlrr766vL5Zv31189RRx2VcePGVVuu6ti96qqrcu6555bb9tvH8oQJE3LGGWdks802S4cOHdKjR4/svffeeeSRR2b5WW+99dbssssu6dq1a/l8c8kll2Ty5MnVlqv6PIceemjef//9HHnkkVlnnXXSuXPn7LDDDuX3GDNmTA444IB069Yt6667bgYPHpyxY8fO9L51OV/OjSeeeCKHHnpoevfunQ4dOqRLly75xS9+kUsuuSTTpk2rtmzV+eC///1vbrnllmy33XZZa6210rNnzxx66KEZM2ZMje9x9913Z6eddkrXrl2zzjrr5Pjjj88nn3zSIPWfU2PGjMnQoUPTq1evdOjQIb169crQoUPz2muv1bh8Xc+Zyez3walTp+aiiy7Ktttum65du6ZLly7Zdttt88c//rHaj2cAAKC+DPUJAECD2WijjfLCCy/kiSeeyNZbbz3L5e6///4ccsghadGiRbp165ZFFlkkY8aMyU033ZR77rknN9xwQ1ZZZZW0b98+m2yySe6///60bds2m2yyyUx3Dr766qs58sgjs/rqq2eVVVZJqVTKggsuWGs9r7jiirzxxhtZc80107dv3zzzzDO5/PLL89BDD+Waa67JoosuOkefv3///nnuuecyduzYdO7cOSussEKtz5maOnVq9tlnn4wcOTLt2rVLz54906xZs4wYMSKnnHJKHnjggfzxj39M69atq603ZsyYDBgwIG3atEmXLl3y6aef5tlnn81vfvObfPbZZ9lrr71mW9dPPvkkgwYNypgxY7Loootmgw02yJQpUzJy5Mg8/fTT+fe//53TTz89zZo1S5cuXTJ9+vQ88MADmTRpUjbeeOO0a9cuSy655By1U5XKysq8+OKLad68eTp27Fht3r/+9a8cfPDBmTx5cioqKtK5c+e89dZbGT58eO6///78+c9/TocOHcrLv/jii9lrr73y2WefpaKiIl27di1Pq2l4yirnn39+3n///fTq1SvvvfdeVllllSTJ888/n7322isTJ07MT3/602y00UYZN25c7r///jz44IM56aSTsuOOO5bLmdNt+dJLL+Xaa6/Noosump49e2bMmDEZOXJkdt999xxzzDE56aST8vOf/zzrr79+nnrqqdxyyy15+eWXc8stt6RZs2ZJvhlqs127dll77bXTtm3bvPTSS/n73/+ee++9N7feemu1Zyw2tIkTJ+b111/PwgsvnJVXXrlam1SFmEsvvXS6du2aZs2a5ZVXXsmjjz6axx57LBdddFE22WSTtGvXLv3798/jjz+ejz/+OOuuu26WXHLJmfaxU089NW+++WY6d+6cXr165Zlnnsktt9ySkSNH5vbbb89CCy1Ubflrr702Y8eOzXrrrZcvvvgiP//5z5Mk77zzTgYOHJgPP/wwyyyzTDbaaKN88skneeKJJ/Kvf/0rBx54YH71q1+Vy6msrMzQoUNzxx13pHXr1unRo0fatm2bp556Kuedd17uueeeXHnllTMNafz+++9nwIABqayszNprr52xY8dm9OjROfDAA/Pb3/42v//977P44ounZ8+eeemll3L//ffn+eefz7333pt27dolqfv5ck5deeWVOf3009OqVat07do1nTt3zgcffJDRo0fn5ZdfzksvvZSLLrpopvX+8Ic/5L777kv79u3Tu3fvjB49Ovfcc0/+/e9/55ZbbskKK6xQXvb888/PxRdfnFatWqVnz55p2bJlbrvttjzzzDNzXO+5df/992fIkCGZNm1a2rdvn7XXXjtvvvlmbrvtttx7770577zz0rdv3/Ly9TlnfltN+2CpVMqRRx6Ze++9N8sss0x69uyZysrKPP300znnnHPyxBNP5KqrrvqBWwQAgMIoAQBALZ588slSRUVFqW/fvrNd9u677y5VVFSUdt555/K0Cy64oFRRUVE655xzytM23njj0hprrFEaM2ZMeVplZWXpd7/7XamioqL0m9/8pjx97NixpYqKitIGG2xQ7b2qpldUVJROOumk8vQZM2aUSqVS6aijjipVVFSUbrjhhvK8qmkVFRWlv/71r+XpkyZNKu2zzz6lioqK0vHHH1+e/o9//KNUUVFROuKII2r8vFVlfVtN7zur6b///e9LFRUVpe233740fvz48vTx48eXtt9++1JFRUXptNNOK0+v2hYVFRWlQw45pDRx4sTyvKuvvrpUUVFRWmeddUqVlZU11vfbBg8eXKqoqCjtv//+1cp56623ShtvvHGpoqKidPXVV1dbp2/fvqWKiorSW2+9Ndvyv738k08+WW36lClTSq+++mrp0EMPLVVUVJR+//vfV5v/8ccfl7p3715affXVS3fccUe1edddd12poqKitPHGG5emTp1aKpW+3ubbbLNNqaKionTxxReXl502bVrp6KOPLrfZt9u+ar9cbbXVSs8++2x5+owZM0pTpkwpbbDBBqWKiorShRdeWK09H3744VLHjh1La6yxRumll14qT5+bbTlkyJDStGnTSqVSqTR16tTSdtttV5533nnnldf56KOPSt27dy9VVFSU6zx16tTSWmutVerRo0dp3Lhx5WW/+uqr0sEHH1yqqKgo/eEPf5jFFqqbqrqMHTu22vRJkyaVRo8eXRo0aFCpoqKi9Je//KXa/CuuuKJUUVFRGjx4cOmrr74qT58+fXrppJNOKlVUVJT22GOPauvsuuuupYqKitK///3vGqevtdZapZEjR5anf/zxx6U+ffrMtH2rjt2KiorSnXfeWZ4+Y8aMUmVlZWnbbbctVVRUlI477rjyflQqlUrPP/98qUePHqWKiorSAw88UJ7+l7/8pbzfvf322+XpX3zxRWm//fYrVVRUlA4++ODy9G+fn3bdddfyMVZZWVk66KCDyvOOPvrocttMnDixtOmmm5YqKiqq7ff1OV/W17hx40prrrlmqUePHqU333yz2rynnnqqtMYaa5QqKipK//vf/8rTq85lq622WunWW28tT58yZUppp512KlVUVJROP/308vTnn3++1L59+1KPHj1K//3vf8vT33nnnfI5oqKioto+MitV23XXXXet82esOtZ22mmn8rQPP/ywtNZaa5Xat29fGj58eLXlb7zxxlL79u1LXbp0KX3wwQfl6fU9Z9a2Dz711FPlz1F17JdKX+/PVWU99dRTdf6MAADwbYb6BACgwSyyyCJJMtvh2z766KO0bNmy2l1IzZo1ywEHHJDjjz8+2267bb3ed4899ij/v3nz2Xdxe/TokV133bX8um3btjnttNPSqlWr3HrrrZk0aVK93n9OTJ06Ndddd12aN2+ec845p1pbLLHEEjnnnHPSvHnzXHPNNTMNn9iyZcv89re/rXZn44477pjWrVtnwoQJGT9+fK3v/d577+W+++7LQgstlLPOOqtaOT/96U9z6qmnJkkuv/zyhvio2W233crDorZv3z6dOnXK1ltvnX/+85/Zeuutc9RRR1Vbfvjw4fnss8+y0047Zauttqo2b8cdd0yfPn0yduzY3HfffUmSZ555Ji+//HJWX331HHjggeVlW7VqlZNOOqnWOxOrhuSs0rx589x9990ZN25cunfvnoMPPrjaHTwbbrhh9t1330yfPj1XXnllkrnbls2aNctxxx2XVq1aJUlat26dzTffPEmyzDLLZPDgweVll1xyyay99tpJkrfffjtJ8sUXX2Ty5Mlp27ZttTtVW7ZsmSOOOCInnXRSNtxww1l+/vrYeOONq23Hzp07Z8CAARkxYkT23Xff7LbbbtWWb9WqVTbccMMcfvjhadnym8FmWrRoUb5b8t13361XHf7v//4v3bt3L79efPHFy+eLV155Zabll1lmmWy55Zbl182bN8+oUaPy0ksvZcUVV8yJJ55Y7S7MTp06lffHb+//f/nLX5Ikv/vd76rdxbvQQgtl2LBhWXjhhXPvvfeWt8u3HXXUUeVjrFmzZuV9unXr1jnmmGPKbbPgggtmgw02SJJq5TT0+fLbxo8fn379+uWggw7Kz372s2rzunXrllVXXTVJzdtpo402yjbbbFN+vcACC5S366uvvlqefv3116dUKuXAAw/MaqutVp6+wgor5De/+c0c1XvkyJHV9sXv/vvvf/9b6/rXX399Jk+enF/84hfZfvvtq80bMGBAfvnLX+bLL7/Mtddem2Tuzpk17YMffvhhkq/PD1XHfvL1/nzKKafktNNOy3LLLVfPVgEAgK8Z6hMAgAbz1VdfJclMQ519V/fu3fPYY49l2223zYABA8rPlVpiiSWqBXJ10aZNm/z0pz+t1zr9+/efadqSSy6Zjh075plnnsmLL76YHj161KvM+nrhhRcyZcqUdOjQocbhQFdcccV07Ngxzz//fEaPHp111123PO+nP/3pTEMKtm7dOosttljGjRs32+dDPfXUU0mS9ddfPwsvvPBM83v27JmllloqH3zwQd55551ahyuti/XWW69aaDFt2rSMHz8+L730Uu64445MmTIlZ599dtq0aZMk5ee6ffszf1vv3r3z8MMPZ8SIEdlqq63Kn6d3794zLbvAAgukd+/e5WctfldFRcVM06qeM7fFFlvUuM6WW26Ziy66qLzc3GzLFVdccabha6ter7rqqtUCs+SbcL3quWtLLLFEVlpppbzxxhv55S9/mW233Ta9e/dO+/bt87Of/WymMGdubLLJJmnbtm359dSpU/PBBx/kv//9by6//PJMnDgxJ5xwQjl833XXXWc6nidPnpwxY8aUn3H33efHzc63Q9oqP/7xj5N8HYJ+V23bd5NNNpmpfZNk8803z3HHHZfnn38+06ZNy8cff5x33303iy22WNZZZ52Zll944YWzwQYb5K677srIkSOrnY9at26dNdZYo9ryVdt3ueWWK2/PKlWvp06dWp7WkOfL71pjjTVmev5qZWVlxo4dmxdeeCGfffZZkm/O7d9W07ZYeumlk6TaOajq+KwpgN5www3TqlWrGsuvzRJLLJH11ltvlvN/9KMf1bp+VZ1qO8Zvvvnm8r4yN+fMmvbBLl26pFWrVrn77rvz+eefZ4sttsgGG2yQZZdddpbnPQAAqCvBHwAADebTTz9NMvsvXX/3u9/l4IMPzgsvvJALL7wwF154YRZddNFsuOGGGTBgQL1Ct5q+hJ2dWd1JURUgVN2N8X2qeo/a7upYfvnl8/zzz89Un++GBVWqQozKysq5fu/lllsuH330UT788MO5Dv4OOOCA9OzZc6bpH3/8cQYPHpz7778/Z555Zk444YQkyf/+978kycEHH1xruR988EGSbz7PMsssU+NytT3jr6Z9dXbtU/Xssqo7K+dmW9b0/lXB+XfD3W/P+7bzzjsvhx56aF5//fUMGzYsw4YNy9JLL52+fftmp512mil4mlPHHHNMjW05duzY7L333rn22muzwgorZO+99y7PGz9+fK699tqMGDEib731VsaPH59SqVT+HKVSqV51qGnfb9GiRZJkxowZM82rbfvOar9o165dFl988Xz00UeZMGFCnbdv8vXded+28MILz3QXcn23b0OeL2syY8aM3HPPPbnzzjvz2muv5b333pvpRxw1baea2rZqW3z7HFTVfssuu+xMy7dq1SrLLrtsxo4dW686r7zyyhk2bFi91vm22W3T727PuTln1tROP/7xj8vnvH//+9/597//neTrsL9fv37ZeeedyyEqAADUl+APAIAG8/LLLydJ2rdvX+tyyy67bIYPH56nn346999/fx5//PG88sorufXWW3Prrbdm3333zZFHHlmn96zL0J7ftcACC9Q4verL7ZruAvqumkKG+qh6r9rujqxa5ttDEc5unfqYk/duSEsssUSOP/74bLfddhk+fHiOO+64NG/evNy2ffv2zUILLTTL9VdZZZUks2+P2rZnTevObttUza8aom9utmVd9rXZad++fe6666488cQTefDBB/Pvf/87b731Vq6//vrccMMNOf744zNw4MC5fp9ZWWGFFXLkkUfmkEMOyQ033FAO/kaMGJEDDjggkyZNyo9//OOstdZaWXnllbPGGmtkueWWy4ABA+r9XvU93mvbvrX59vZq7O3bkOfL75o0aVJ23333jB49Ou3atUuHDh2y3nrrpaKiImuvvXZOPvnk8t1u31XX89DslqsKC39IdT3G63Pure86W265ZXr37p0HH3wwjzzySJ588smMGTMmY8aMyV/+8pdcddVV6dSpU90+EAAAfIvgDwCABvPwww8nSa1DsH3b2muvXX5m2ccff5x//OMfOffcc/PnP/85gwYNmuUdXHNrVnf0vffee0m+ufOvKmSo6Q66qiHw5lTV3Ry1PeOs6i6Y2p5RN6+993dVPUNs6tSpmTBhQpZccsksvfTSeeutt7LbbrvVaV+qupOoavt9V33v4Jxd+1S1TdXwpU2hPVu0aJFevXqlV69eSZL3338/V199da688soMGzYs//d//1ftWWINrSqErbpbs1Qq5dhjj82kSZNy4oknZpdddqm2/H/+85/vrS6zM7vt9eWXX2bChAlp0aJFFl100fKwlY19vHwf58srrrgio0ePznrrrZcLL7xwpqD9888/n+t6L7PMMnnzzTfz3nvvlfeTKqVSaaa7JH8ISy+9dN588828++67M9Up+WZbf9/H+EILLZRtttmm/KzEl156Keecc07+9a9/5fzzz8+f//znOpcFAABV6v/zaAAAqMFdd92VN954I8suu2z69Okzy+XeeOON9O/fP/vss0+16UsssUT222+/tG/fPpWVlRk3blyShru77dsee+yxmaa99957efHFF7Pwwgtn9dVXT/L1kH/J11+yf9czzzxTY9l1rW+HDh3Stm3b/Oc//6lxmLt33nknL730UvkunIa09tprp1mzZvn3v/+diRMnzjT/ySefzIQJE7L88svnJz/5SYO+93e9+eabSb5+VuOiiy6a5OtnmiUpPwfuu84+++xst912ufHGG5N88yzABx98cKY7MWfMmFHj9q5N1fv/85//rHH+XXfdlSTlIRYbc1uOHDkyW2yxRXmY1Co/+clPcvTRR2eRRRbJpEmTanz+XUN66623knwTmo8fPz5jx47NIossMlPolyT/+te/ksx+WNrvQ9X2feCBBzJ9+vSZ5v/zn/9MZWVlunXrlubNm+cnP/lJlltuuXzyySflZ7592xdffFH+PFVlN5T6ni/r69lnn02SDBw4cKbQb9y4cXn99deTzN12qgrv77vvvpnmjRo1Kl9++eUclz2nqrbTPffcU+P87x7jDX3OvPLKK9O3b9/ccsst1aavueaaGTp0aJJvhjIGAID6EvwBADBXSqVS7r777hx//PFJkuOOO67W4SF/+tOfZvz48fnXv/41U7Dy4osv5vXXX8+CCy6YlVZaKck3w3JOmjSpwUKCW265pdqX0J9//nmGDh2aGTNmZODAgeX6r7baakm+/nL6pZdeKi//v//9b5bPl6pad3ZBS9u2bfN///d/qayszBFHHJEJEyaU502YMCGHH354Kisrs/3226dt27Zz9kFnYYUVVsjGG2+ciRMnZujQoZk0aVJ53tixY3PcccclSXbdddcGfd/v+uyzz3Lqqacm+XrYu6phEXfccce0a9cuf/vb33LnnXdWW+ehhx7KlVdemZdeeqkconXs2DHdunXLm2++mTPPPLO8n1RWVmbYsGF5++2361WvLbbYIksvvXRGjhyZSy65pNrQkI8++mguv/zytGjRIjvvvHOSxt2Wq666at55553ccsstefrpp6vNe/jhh/P5559n+eWXz+KLL16e/vrrr+f111/P5MmTG6QO48aNy7nnnpsk6d+/f5Kvn23XqlWrfP755zMNFXnvvffm4osvTpJMmzat2ryq4/37DCp79OiRNdZYI2+//XZOOeWU8vPskq/PQWeeeWaS6vv/7rvvnuTr89u3w90vv/wyQ4cOzcSJE9O3b99anwE3J+p7vky+Dppff/31OrVh1X7x0EMPVdvP33///Rx88MHlYHTq1Klz/BkGDhyYVq1a5bLLLsuoUaPK0z/66KOcdNJJc1zu3Pi///u/tGvXLjfffPNM4ds//vGP3HrrrWnXrl223XbbJA1/zlxhhRXy/vvv55JLLql2x2OpVMptt92WJNWG+Zw8eXL5uAUAgNkx1CcAAHXyySefVHuOVGVlZT7//PO8/PLL+eijj9KiRYscf/zx6devX63ltGjRIieffHIOOeSQHHbYYVlzzTWz/PLL55NPPsnTTz+dGTNm5Pjjjy/ffbL44otnkUUWyeeff56ddtopK6644ixDt7paa621cvDBB6dLly5ZaqmlMnLkyHz66afp0aNHBg8eXF5uxRVXzKabbpp77703O+64Y/nOshEjRqSioiIrr7zyTF/E/uxnP0uSXHzxxXn22Wfzi1/8IptsskmN9Tj88MPzn//8J0899VQ22WST8t0lI0eOzJdffpl11llnjp/dNTsnn3xy3nrrrTz44IPZaKON0q1bt0yePDkjR47MtGnT0r9//+yxxx4N8l6XXnpp+e685Osvtz/77LOMHDkyU6dOzc9//vPyXS7J10MDnnHGGTn88MNz+OGH5w9/+ENWWmml/O9//8uLL76YJDnmmGPKd2YmyWmnnZZBgwblqquuysMPP5zVVlstr7zySt5666107tw5zz33XJ3r27Zt25x//vnZb7/9ct555+WWW27JaqutlnHjxuXZZ59NixYtcuyxx1b7Yr6xtuViiy2WoUOH5rTTTsvAgQPTuXPnLL300hk3blyee+65tGzZcqa7AbfccsskydVXX52ePXvW+b1OO+20asFl1TCNo0aNyowZM9KlS5fynWlt2rTJTjvtlL/+9a/Zfffd07179yyyyCIZM2ZM3nzzzfIddF988UWmTJmSNm3aJPn6+Hnsscdyyimn5M4778yee+6ZLl26zG0zVdOsWbOcc8452X333XPdddfl4YcfzlprrZVPP/20/Fn222+/bLrppuV1Bg0alGeffTZ33313ttpqq3Tv3j1t27bNqFGj8sknn2S11VbL73//+watZ1L/82WS7LHHHnnvvfdy2mmnZbvttqu1/F133TV33313hg8fnmeeeSarrrpqJkyYkGeffTalUik///nP8+abb2b8+PFz/BlWXnnlHHvssfntb3+b3XbbLd27d8+CCy6YJ598MosttliWXHLJuSp/Tnz7HHPUUUflyiuvLH/Wl19+OW3bts1ZZ51VLchtyHPmxhtvnH79+uW+++5Lv3790rVr1yy44IJ59dVX89Zbb2WppZbKIYccUl5+9OjR2W233ZIkr7zySoO2BQAAxSP4AwCgTiZNmpTbb7+9/LpZs2Zp27Ztll9++Wy66aYZOHBgVl555TqV1a9fv/z5z3/OVVddlRdeeCGvvPJKFllkkfTu3Tt77rlntTCiefPmGTZsWM4444zyUIpz+3y9I444Is8991yuu+66vPjii1luueWy5557Zq+99prpbsVhw4blsssuy2233ZYnnngiSy65ZHbdddccfPDBNd7dsfPOO+fll1/OAw88kEcffTQrr7zyLIO/Nm3a5Iorrsg111yT2267LU8++WRatGiRVVddNdttt1122GGH8nMGG9oSSyyR66+/PldddVXuvvvuPProo2nbtm26dOmSnXbaqRwONYTHH3+82usWLVpk4YUXzhprrJGNNtooAwcOzIILLlhtmU033TT/+Mc/cvnll+fJJ5/Mww8/nCWWWCJ9+vTJXnvtNVNgteKKK+bGG2/MJZdckgcffDAPPfRQVllllVx00UV59dVX6xX8JUnXrl1z880357LLLstjjz2WBx54IIsttli23HLL7LnnntVCv6Rxt+Uee+yRpZdeOtdee21efvnlvPDCC1lsscWy1VZbZd99960WkM6N+++/v9rrVq1aZeGFF063bt2y2WabzfQcwWOOOSY///nPc/3112f06NFp3bp1lltuuRxwwAHZe++98+tf/zoPPfRQHnnkkWy22WZJkoMOOijvvfdennzyyTz22GNZf/31Gzz4S5Kf//znufnmm/OnP/0pDzzwQB588MEsssgi2WCDDbLbbrtl/fXXr7Z88+bNc+6556Z379658cYby0P9/vSnP80+++yTQYMGle9WbGj1OV/W11prrZVrrrkmF154Yf7zn//k0UcfzTLLLJN+/fplr732ygcffJBDDjkkDz30UHbcccc5fp+dd945P/3pT3PZZZeVw/sNNtggxxxzTAYNGjTH5c6NTTfdNMOHD8+f/vSnjBgxIq+//nqWWmqpDBgwIHvttddMf88a8pxZFT5fddVVueuuu/LMM89kxowZ+fGPf5zddtstBxxwQPn5ggAAUF/NSt8ezwMAAIDC69KlS66++up07NixsavC96B///4ZPHhwNt9888auCgAA8APzjD8AAID5yKhRo1JZWZmf//znjV0Vvgfvvvtu3njjjQa70xMAAJi3CP4AAADmE9OnT89vfvObHH300dWeC0dxHHXUUdlnn33y05/+tLGrAgAANAJDfQIAAMxHvvzyy5meqUhx2L4AADB/E/wBAAAAAABAARjqEwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAACgCSuVSo1dBQAAAOYRLRu7AkDTNGjQoIwcObLatIUXXjhrrLFGDj744PTo0WOu36N9+/Y5+OCDc8ghh8x1WQAATUFD9qE++OCDnHjiiTn++OOz/PLLJ0k22mij9OjRI6effnqD1hsAoCiOPvro3HzzzbOcf+aZZ2b48OFJkr/+9a8/VLUAfjCCP2CW1lhjjZx44olJkhkzZuSTTz7Jtddem7333js33XRTVl111UauIQBA09NQfajHH388Dz/8cI4//vjvs7oAAIWz1FJL5aKLLqpx3oorrlgO/gCKSPAHzNJCCy2Uzp07V5u23nrrZd11181NN92Uo446qnEqBgDQhOlDAQA0rtatW8/UHwOYX3jGH1Avbdu2zQILLJBmzZqVp91///3Zbrvt0rFjx6y//vr53e9+l0mTJlVbb+TIkdlxxx2z1lprZbPNNsvjjz9ebf67776b9u3b58orr8wWW2yRHj165KabbkqSvPDCC9l7773Ts2fPdO3aNQcccEDGjBlTbf0PP/wwxxxzTDbccMN06tQpAwYMyAMPPFBtmfbt2+faa6/N0UcfnbXXXjs9evTI7373u0yZMiVnnHFG1llnnfTs2TPHHntspk6dWl7v8ccfz4477pguXbqke/fuOeigg/LGG280SHsCAPOH7/ahZsyYkcsuuyxbb711OnXqlM6dO2ennXbKE088kSS56aabcswxxyRJNt544xx99NHlsr766quceeaZWX/99dO5c+fstddeefvtt8vzjz766Oy+++458cQT061bt2y77baZPn16pk6dmj/84Q/ZfPPN07Fjx2y66aa57LLLUllZWa2ud911V7bbbrt06dIl66+/fk444YR89tln5fkXXnhhNt9889x///3Zeuut07Fjx/ziF7/Is88+m+eeey477LBDOnXqlK233rr8eZJk6tSp+e1vf5vevXunQ4cO2XzzzXPFFVc0fGMDANRTQ/aT+vXrl4suuig9e/bMJptskk8++SQvvfRSdt9996y99trp0qVL9thjjzz//PM/9McE5hPu+ANmqVQqZfr06eX/f/rpp7n66qszbdq0bL/99kmS22+/PUceeWT69++fX/3qV3nvvfdy7rnn5rXXXsuVV16ZZs2a5aWXXspee+2Vnj175vzzz8/777+fww8/vMb3PPfcc3PCCSdkkUUWSYcOHfLkk09mn332Sffu3XPqqadm2rRp+eMf/5iddtopN9xwQ1ZeeeWMHz8+AwYMSKtWrTJkyJAstthiuemmmzJ48OCceeaZ2WabbcrlDxs2LFtttVUuuuiiPPjgg7n66qvzr3/9K6uttlrOOuusjBo1Kpdeeml+/vOfZ5999snYsWNz4IEHZvvtt8+QIUPy2Wef5dxzz81+++2Xe++9N82b+/0EAFBdXfpQw4YNyzXXXJMjjzwy7du3zwcffJA//OEPOeyww/Lwww+nT58+OfDAA3PJJZfkoosuSvv27cvl33XXXenVq1dOP/30fPTRRznttNMyZMiQ8o+mkmTUqFFp1qxZLrzwwnz55Zdp0aJF9t133zz33HMZPHhwVl999YwYMSLnnXdexo4dm1NOOSVJcvHFF+f888/PLrvskiFDhmTs2LE5//zz89xzz+WGG25ImzZtknz9/MGq923btm1OOeWUHHrooWnVqlUOPPDALLbYYjnnnHMyZMiQPPzww2nTpk1OPfXU/Otf/8pRRx2VJZdcMo8++mjOOOOMLLrootluu+1+qM0DAMwnqvpj39aiRYtqP2ZPvu6vHXDAAQ3WT3r//fdz33335Zxzzsknn3ySVq1aZZ999knPnj1zwQUX5Kuvvsoll1ySvffeOw899FAWXnjh778xgPmK4A+YpaeeeiprrrnmTNMPP/zwrLzyyimVShk2bFg22GCDDBs2rDz/Zz/7WfbYY4888sgj6dOnT/74xz9m8cUXzyWXXJLWrVsnSRZddNEMGTJkprI33XTTDBgwoPz6sMMOyworrJDLL788LVq0SJL06tUr/fr1y4UXXpjzzjsvV155ZSZMmJC77747K6ywQpJkww03zB577JEzzzwzW2+9dTmgW3nllXPyyScnSbp3757hw4fnq6++yrBhw9KyZctssMEGefDBB/PMM88kSUaPHp0pU6Zk//33zzLLLJMk+fGPf5wHHnggkyZNykILLTTX7QwAFMvs+lDJ16MVDBkyJIMGDSrPb9OmTQ455JC88sor6dKlS1ZcccUkyeqrr57ll1++vNwyyyyTiy++OK1atUqSvP3227n00kszceLEct9k+vTp+e1vf5uf/vSnSZJHHnkkjz/+eM4666zyj6LWX3/9tGnTJueff3523333LLXUUrnkkkuyww47lJ9RmCQVFRUZOHBgbrrppuyyyy5JksmTJ+fEE09M7969kySvv/56zj777Jx66qnlvtyMGTNy6KGH5s0338zqq6+ekSNHZr311stWW22VJOnZs2fatWuXxRZbbG6bHACgmvfee6/G/thhhx2Wgw46qNq0Rx99tEH7SdOnT89RRx2V9dZbL0ny3HPPZcKECRk0aFDWXnvtJMlKK62U6667LhMnThT8AQ1O8AfM0pprrpnf/va3Sb7+9dPnn3+eRx99NOeee24mTZqUbbbZJh988EH233//ar+i6t69exZaaKH8+9//Tp8+ffL000+nT58+5dAv+Trgqwryvq2ioqL8/0mTJuWFF17I4MGDqy27yCKLpG/fvnnkkUeSfD2MaJcuXcqhX5VtttkmxxxzTN54442sssoqSZIuXbqU57ds2TKLLbZYOnTokJYtvzkdLrroovniiy+SJGuttVYWWGCBDBgwIFtuuWU23HDDdOvWLZ06dap/gwIA84XZ9aGGDBmSs88+O0kyYcKEvP3223nzzTfz4IMPJvl6KM/adOrUqRz6JSn3gT7//PNy8NemTZtycJh83V9q0aJFttxyy2plbbPNNjn//PMzYsSILL/88pk2bVr69+9fbZlu3bplueWWy4gRI8pfaCVJ165dy/9fcsklk6Tas3QWXXTRcr2Sr4O+6667LuPGjUvfvn2z4YYbZvDgwbV+VgCAOVEV1H1X1Y+6v+376Cd9+/utVVddNYsvvngOPPDAbLHFFtlwww2z7rrr5te//vXcfkyAGgn+gFlacMEF07Fjx2rTevXqlUmTJuXyyy/P+uuvnyT57W9/W/5y69s+/PDDJMlnn32WxRdfvNq8qtDtu6q+NEqSL774IqVSqdq0by9XFc599tln1X4F/92yqr5sSlLjHXpt27adaVqV5ZdfPn/7299y2WWX5YYbbshVV12VRRZZJLvssksOO+wwQ30CADOZXR9qt912y/vvv5/f/va3eeGFF9KmTZusssoqWW655ZJ8HRbWpl27dtVeV/VHvv0MmiWWWKLaMFafffZZFltssWo/dkq+/lIs+brfVfV8mtn1varU1K+qGuKqJscee2yWXXbZ3HbbbeW+Y5cuXXLCCSdkjTXWmOV6AAD11bp165n6Y7PyffSTvr3cggsumL///e+55JJLctddd+W6665L27Zts8022+TYY4/NAgssUK/PBjA7gj+g3lZfffXceOON5de//vWv06NHj5mW+9GPfpTk6197jx8/vtq8UqlU7eHHNVl44YXTrFmzmdZNko8++qj8K/If/ehHs1wmyVwPH9WpU6dcdNFFmTZtWp5++ulcf/31ufTSS9O+ffuZfg0GADArVX2o119/PYccckjat2+fO+64IyuvvHKaN2+eRx55JPfcc8/38t4/+tGP8sknn2T69OnVvtSq+qHWYostVu67jR8/vjwkaZWPPvpoptEV6qt169Y58MADc+CBB+b999/PQw89lIsvvjhHHHFE7r777rkqGwBgTv0Q/aSVVlopZ511VmbMmJHRo0fn1ltvzbXXXpvll18+++23XwN/ImB+51YVoN6effbZtGjRIiuttFKWWGKJvPvuu+nYsWP537LLLpuzzz47//nPf5Ik6667bh599NFMnjy5XMZjjz0222Gs2rVrlw4dOuSuu+7KjBkzytO/+OKLPPzww+Vx0bt3755nn302Y8eOrbb+bbfdlqWWWqr8bJs5cdVVV2WjjTbKtGnT0rp166y77rrlhzr/73//m+NyAYD5T1UfaoEFFsinn36a3XbbLauuumr5jr1HH300yTd37jXkyAI9evTIjBkzctddd1WbfttttyVJ1l577ay11lpp3bp1br/99mrLjBo1Ku+//361oT3ra8qUKdlss81yxRVXJEl+8pOfZODAgdlqq63ywQcfzHG5AABz6/vuJ/3zn//MOuusk48++igtWrRIly5dctJJJ2WRRRbRDwK+F+74A2Zp4sSJee6558qvv/rqqzzwwAO5/fbbs+OOO2bJJZfMkCFDcsIJJ6RFixbp27dvPv/881x88cUZN25c+SHKgwcPzv3335+99947++yzTz755JOce+651Z5NMytHHHFEeb1dd901X331VS677LJMmzYtBx98cJJkzz33zG233ZY999wzBx98cBZbbLHccsstefLJJ/P73/9+rr40W2eddTJs2LAMHjw4u+66a1q0aJHrrrsurVu3Tt++fee4XACguGbXh1pppZWy0EIL5dJLL03Lli3TsmXL3HPPPRk+fHiSlH8stcgiiyRJ7rvvvvTu3XumX5fXR+/evdOzZ8+ceOKJ+fDDD7PGGmtk5MiR+dOf/pRtt922/Dzk/fbbLxdddFFatWqVjTfeOO+++27OP//8rLLKKtluu+3m+P3btGmTNddcs1x2+/bt8+abb+bmm2/OZpttNsflAgDMre+7n9S1a9dUVlZm8ODB2W+//bLgggvm7rvvzhdffJFNN930h/qYwHxE8AfM0n/+85/suOOO5dcLLLBAVlxxxQwZMiR77713kmSHHXbIggsumMsvvzzXX3992rVrl65du2bYsGHlYQ5+9rOf5W9/+1tOP/30DBkyJEsssUSOOuqonH766bOtw7rrrpsrr7wyF1xwQQ4//PC0bt063bp1yxlnnJFVV101yddjrl977bU5++yzc+qpp+arr77Kaqutlosvvjgbb7zxXLXBaqutlksvvTR/+MMfcvjhh2fGjBnp0KFDrrjiiqy00kpzVTYAUEyz60O1atUqF198cc4888wcdthhWXDBBbP66qvnb3/7W/bdd9+MGjUqG220UXr27Jn11lsvZ599dp544olcdtllc1ynZs2a5Y9//GMuuOCCXH311ZkwYUKWX375DBkyJHvuuWd5uUMOOSRLLrlk/va3v+XGG2/Moosums033zy/+tWvan0ucl2cfPLJOe+883LFFVfko48+yhJLLJEBAwbksMMOm6tyAQDmxvfdT1p66aVz+eWX5/zzz8+xxx6byZMnZ9VVV82FF16YddZZ54f4iMB8pllpdk+OBwAAAAAAAJo8z/gDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABRAy7osVFlZmenTp6d58+Zp1qzZ910nAIAmp1QqpbKyMi1btkzz5vX77ZS+FAAwv9OXAgCYc/XpS9Up+Js+fXpeeOGFBqkcAMC8rGPHjmndunW91tGXAgD4mr4UAMCcq0tfqk7BX1V62LFjx7Ro0WKWy82YMSMvvPDCbJejdtqx4WjLhqEdG4Z2bDjasmFox/qpaq/6/kI9qXtfqmjsYzXTLjXTLjXTLrOmbWqmXWqmXWbth2qbeaEvZT+ZN9hOTZ9tNG+wnZo+22je0BT7UnUK/qqGUWjRokWdKl7X5aiddmw42rJhaMeGoR0bjrZsGNqxfuZkeKn69qWKZn793LOjXWqmXWqmXWZN29RMu9RMu8zaD9U280Jfyn4yb7Cdmj7baN5gOzV9ttG8oSn1per/MysAAAAAAACgyRH8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoABaNnYFmpJSqZQpU6Y0WHlt2rRJs2bNGqw8AAAaR0P2E2fMmJGpU6dm8uTJadGiRYOUObf0WwGY35VKpUyePLnJ/Y1mZk2xL0V1VduoVCo1dlUA5kuCv2+ZMmVKtthiiwYr7+67707btm0brDwAABpHQ/cTmxr9VgDmd1OmTMnWW2/d2NWAQrnjjjuy0EILNXY1AOY7hvr8loa82w8AAAAAAAB+SO74m4WJHXdIqVWbeq/XrHJ6Fnru2u+hRgAANAUTO++cUvNG7EbP+CoLP39dkuSLtXZKWrSao2L0WwGgZo3+t55Za6B+EN8ffUyAxqcXMwul5i3mqPNg5GoAgGIrNW/ZdL5katFqjuui3woANWtSf+uZtbnoB/H90ccEaHyG+gQAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABFC74K5VKKZVKjV2NuVKEzwAAzLv0RZjfOQYAAACoi6Z4/Vio4K9UKuWQQw7JIYcc0uQauq5KpVIOO+ywXHTRRfPsZwAA5l1F6E/B3HAMAMyfqp3znf8BgDpoqnlOy8auQEOaMmVKXnzxxfL/27Zt28g1qr8pU6bkpZdeKv9/oYUWauQaAQDzkyL0p2BuOAYA5k9Tp0795kXl9CStG60uAMC8oanmOYW64w8AAAAAAADmV4I/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAATSr469OnT/kfc2du27IhtsXcljFgwID06dMnAwYMmOM6nHzyyTniiCNy8sknz9H6jz/+eHbcccc8/vjjc1wHAL5fztXfOOmkk9KnT5+cdNJJjV0VIA3Tp954441zxBFHZOONN270ujRUOQ1Vl4Zom4aqy6abbpo+ffpk0003neMyDj744PTp0ycHH3zwXNVlxx13zBFHHJEdd9xxrsr585//nI022ih//vOfG7WMhiynqWiovktDlXPFFVdk6NChueKKK+aqHAAAmoYmE/x990JL+Dfn5rYt991331pf18U//vGPWl/Pzosvvpjx48cnScaPH58XX3yx3nUYN25cHnnkkSTJI488knHjxtVr/SlTpuScc87JuHHjcs4552TKlCn1rgMA3y/n6m+MGzcuDz/8cJLk4YcfrvffPaBhNcT1TUNdIzWlck499dRaX9fVhRdeWOvrupjba5Yqjz76aKZNm5YkmTZtWh599NF6l/HOO++Ur3lefPHFvPPOO3NUl4a4jkqSTz/9NH//+99TWVmZv//97/n0008bpYyGLKepaKi+S0OV8+mnn+baa69NZWVlrr322nm+fQEAaELBH03HmDFjan1dF3N7IX7IIYfU+rouvvtL2fqW8fe//z0ff/xxkuTjjz/ONddcU+86APD9cq7+xtz+3QP4Idx33321vq6rhgjtGiI8TJITTjih1td1ccABB9T6uq4a4joqSY4//vhUVlYmSSorK+foMzVEGQ1ZTlPRUH2XhiqnaO0LAEDSsrErkMz6l6J9+vQp/3K9vubk124NfZdAY9RhbtuyIbbFTjvtNMvp11133WzXP+uss1IqlapNK5VKOeusszJ06NA61eGf//xnPvroo2rTPvzww/zzn//M5ptvPtv133333VxzzTXlepRKpVxzzTXZdNNNs/zyy9epDgB8v5yrvzG3f/dmZW77JTNmzMjUqVMzefLktGjRYq7KamxFv5u0KXy+prK/NERbNESfuqGukZpSObMaknPjjTfOAw88UOe6zOq8tvnmm+ef//xnncqY22uWKoceeugsp19wwQV1KuPaa6/NpEmTqk2bNGlSrr322uy88851rktDXEclyahRo/LCCy9UmzZ69OiMGjUq3bp1+8HKaMhymoqG6rs0VDlFa1+g6ZkyZco8fx1QZE2l/82s2UZNX1O4lq5Jowd/ffv2ne38hx56qE5lffsiZ9ttt52reqU0+0VmUYkGq8N3L9pmZ3ZD7czuovy1116rdf3XXnstq6yySq3LfPHFF/nggw9qnPfBBx/kiy++yMILLzzL9adNm5Y777yzxnl33nlnDjvssLRu3brWOsyYMSNnnXVWjfPOOuus9OvXr9YTZalUyvnnnz/L6WeeeWaaNWtWax0A+H45V39jbv/ufVeD9qeKqp59tCbLtp6t+vbHk9nfqXXAAQfk0ksvrXWZY445ZrbzTzvttNnW5dZbb53t/F/84hezLeeqq66a7fw99tij1mXGjRuXGTNm1DhvxowZGTduXJZZZpnZ1uXjjz+e5cX1lClT8vHHH2eJJZaotYy5vWapMnny5IwePbrGeaNHj87kyZPTtm3bWsuYPn16/vjHP9Y4749//GN22GGHtGw5+8v2hriOSr6+42tWz0c/+eSTc8stt6R589oHDmqIMhqynKaiofouDVVO0doXaEK+1X8aMGBAI1YE4Ic1J9eP35dG78XNrjGaUmMV3T777DNX85Nkt912m6v5s/sCoy5fcNxxxx21fqlwxx131Lr+O++8k6eeemqmMmbMmJGnnnpqjp+3AUDDca7+xtz+3QMa1ssvvzxX85PkiSeemKv5Vc4999y5ml+lLsHf7Oy4445zNb8hy5nba5Yqs7rbr67zk+Tqq6+eq/lVGuI6KklGjBiRzz//vMZ5n3/+eUaMGPGDlNGQ5TQVDdV3aahyita+AAB8o9Hv+GvWrFmt4V59fq3/7WVvvvnmtGnTpl51+fTTT78ZSmVObxKYyzpMmTKl/IvrH/pOhcsvv7zWcO/yyy+fbRlXX311+vfvX+v82hxzzDG13uE5u18/J8nWW2+dCy64oMYvQVu2bJmtt9661vVXXHHFdO/ePc8880y1Mlq0aJG11147K6644mzrAMD3y7n6G3P7d++75rY/9W0zZszI6NGj06lTp3l+WJJv99FSlLtJG3BbN4Smsr/MbX98tdVWqzXcW2211WZbxrrrrltruLfuuuvWqS5DhgypNdwbMmRIncrZY489ag33Zne3X5Jcf/31tYZy119/fZ3qcv3112f77befq3Lm9pqlygUXXJAtttii1vmzs9tuu9X6fnUNIRviOipJevbsmUUWWaTGQOhHP/pRevbs+YOU0ZDlNBUN1XdpqHKK1r5AE/Kt/tPw4cOz4IILNmJlqE1T6X8za7ZR09eYeU5tGj34e+ihh2odorKuw3x+V5s2bWY7rMp3NfR4rHNSh7nx8MMP19qWs3v2xuyG8Zzd/CRZeOGFs+yyy9Y4dM6Pf/zj2Q6Z07p162y11VY1DlPTv3//Og1P06JFiwwdOjSnn376TPN+/etfz/Yk2axZsxx22GHZfffda5zelA5ggPmVc/U35vbvXm3mti8zY8aMLLDAAmnbtq2LlCbuh+631qQo+8ull15aa598dsN8Jl/fnVVbGXW9e+sXv/hFrcFfXYb5TBom+FtmmWXSokWLGn+k0KJFizoN85kkSyyxRNq0aVPjtVubNm1mO8xnMvfXLFXatm2bTp061TjcZ+fOnet0TLVs2TL7779/jcN9HnjggXUa5jNpmOuoJGnevHlOOOGEHHnkkTPNO/HEE+s09GNDlNGQ5TQVDdV3aahyita+QNPUFPqYzFpR+t9FZhsxp5pET25WgVR9HjbP1+a2LRtiW1x33XU1Tr/22mvrtP7QoUNnulhp1qxZjjjiiDrXYfPNN89SSy1VbdrSSy+dTTfdtE7rL7/88tlll13K9WjWrFl22WWXLLfccnWuAwDfL+fqb8zt3z2gYTVEn7qhrpGaUjkPPPBAvabPyj//+c96Ta/J3F6zVJnVXX3nnXdencvYeeed065du2rT2rVrV+fhT6s0xHVUknTr1i0dO3asNq1Tp07p2rXrD1pGQ5bTVDRU36Whyila+wIA8LUmEfzRtKy66qq1vq6LQw45pNbXs3PhhRfW+rouLrroorkqY+DAgeVfDC+55JLZZZdd6l0HAL5fztXfmNu/ewA/hH79+tX6uq6+O9xnbcN/zsrcXrNUOfnkk2t9XRffvRO0LneG1qQhrqOS5JRTTinf8dW8efM5+kwNUUZDltNUNFTfpaHKKVr7AgDQhIK/7/5S1N1+c25u2/JPf/pTra/rYm4vxDt06JAll1wyydcXMR06dKh3HZZZZplsuOGGSZINN9ywzsMHVWnTpk0OP/zwLLPMMhkyZEijP/cGgJk5V39jmWWWKQ8N2KdPn3r/3QMaVkNc3zTUNVJTKufYY4+t9XVdNURo1xDhYZL07t27PJRm69at07t373qXseKKK5aveTp06DDHz6ptiOuoJFl00UUzcODANG/ePAMHDsyiiy7aKGU0ZDlNRUP1XRqqnEUXXTQ777xzmjdvnp133nmeb18AAJrAM/6+TdjXcOa2LRtiW8xtGcOHD5/rOpxwwgl57rnn0rlz5zlaf7311st666031/UA4PvjXP2Nk046qbGrAHxLQ/SpH3jggbnqzzZkXRqqnIaqS0O0TUPV5d57753rMr575/acuv766xtkn9l7772z9957N3oZDVlOU9FQfZeGKmevvfZK165d53qfAQCgaWgyd/wBAAAAAAAAc07wBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABRAy8auQENq06ZNOnToUP7/vKjqM0ycOHGe/QwAwLyrCP0pmBuOAYD50wILLPDNi+aF+roMAPieNNU8p1A9mWbNmuXCCy8s/39e1KxZs5x33nl57rnn5tnPAADMu4rQn4K54RgAmD9VO+c7/wMAddBU85xCBX9JMS7OmzVrVojPAQDMm/RDmN85BgAAAKiLppjneMYfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACqBlY1egqWpWOSOlGV/NwXrTv4faAADQVDSrnJ5SY1bg233UOeivVtFvBYCaNfrfematgfpBfH/0MQEan+BvFhZ64cbGrgIAAE3QQs9d29hVKFv4+esauwoAUDhN6W89s6YfBAA1M9Tnt7Rp06axqwAAAAAAAABzxB1/39KmTZvcfffdDVoeAADzvobsJ86YMSOjR49Op06d0qJFiwYpc27ptwIwv2vTpk3uuOOOJvc3mpk1xb4U1VVtI31MgMYh+PuWZs2apW3bto1dDQAAmpiG7CfOmDEjCyywQNq2bevLKgBoIqr+1vsb3fTpSzV9VduoWbNmjV0VgPmSoT4BAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABSA4A8AAAAAAAAKQPAHAAAAAAAABSD4AwAAAAAAgAIQ/AEAAAAAAEABCP4AAAAAAACgAAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAAAAAABAAQj+AAAAAAAAoAAEfwAAAAAAAFAAgj8AAAAAAAAoAMEfAAAAAAAAFIDgDwAAAAAAAApA8AcAAAAAAAAFIPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKADBHwAAAAAAABRAy7osVCqVkiQzZsyodbmq+bNbjtppx4ajLRuGdmwY2rHhaMuGoR3rp6qdqvpF9VHXvlTR2Mdqpl1qpl1qpl1mTdvUTLvUTLvM2g/VNvNCX8p+Mm+wnZo+22jeYDs1fbbRvKEp9qWaleqw1LRp0/LCCy/Mfc0AAOZxHTt2TOvWreu1jr4UAMDX9KUAAOZcXfpSdQr+KisrM3369DRv3jzNmjVrsAoCAMwrSqVSKisr07JlyzRvXr/R0vWlAID5nb4UAMCcq09fqk7BHwAAAAAAANC01e8nVgAAAAAAAECTJPgDAAAAAACAAhD8AQAAAAAAQAEI/gAAAAAAAKAABH8AAAAAAABQAII/AAAAAAAAKIAGC/4+/vjjHHTQQenWrVt69uyZU089NdOnT2+o4ucbd911V9ZYY4106dKl/G/o0KGNXa15xoQJE9KvX7+MGDGiPO3555/PDjvskC5dumSjjTbKjTfe2Ig1nHfU1JYnnnhiOnToUG3/vP766xuxlk3Xyy+/nD333DM9evTI+uuvn1//+teZMGFCEvtkfdXWlvbJunviiSeyww47pGvXrll//fVzyimnZMqUKUnsk3x/avpbMj+r7Xw2v6vtHEUyY8aMDBo0KEcffXRjV6VJcM00a59++ml+/etfp2fPnunevXsOOuigfPjhh41drUZ12223VdtXunTpkg4dOqRDhw6NXbVG99JLL2XgwIHp1q1bevXqld/97neZNm1aY1frB1OXfsojjzyS/v37p3Pnztliiy3y0EMP/YA1JKnbdtpnn33SsWPHasf5o48++gPWcv5Un76tY6lx1GcbOY4aT32uhRxLjac+26lJHE+lBrLrrruWjjjiiNKkSZNK77zzTmmrrbYq/elPf2qo4ucbp59+eunoo49u7GrMk0aNGlXaZJNNShUVFaUnn3yyVCqVSp9++mmpR48epb/97W+lr776qvT444+XunTpUnr++ecbubZNW01tWSqVSttuu23ppptuasSazRsmT55cWn/99Uvnn39+aerUqaUJEyaU9t1339L+++9vn6yn2tqyVLJP1tXHH39c6tixY+kf//hHacaMGaVx48aVtt5669L5559vn+R7M6u/JfOr2Z3P5me1naP42nnnnVdabbXVSkcddVRjV6VJcM00a7vuumtp8ODBpc8++6z0xRdflA4++ODSfvvt19jValI++OCD0vrrr1+65ZZbGrsqjWrGjBml9ddfv/SXv/ylNGPGjNL//ve/0mabbVa66KKLGrtqP4i69FPefPPNUseOHUv33Xdf6auvvirdeeedpU6dOpU++OCDH7i286+69id79uxZGjFixA9YM+rTt3UsNY76Xn84jhpHfa6FHEuNp77XrE3heGqQO/7efvvtjBw5MkOHDk3btm2zwgor5KCDDsrf//73hih+vvLCCy/45eEcuPnmm3PkkUdmyJAh1abfe++9WXTRRTNw4MC0bNky6667bvr372/frMWs2nLatGl59dVX7Z918P7772e11VbL4MGD07p16yy22GLZcccd89RTT9kn66m2trRP1t3iiy+exx9/PNttt12aNWuWTz/9NFOnTs3iiy9un+R7Mau/JfOz2s5n87vazlF8/cvSe++9N5tuumljV6XJcM1UsxdffDHPP/98Tj/99CyyyCJZaKGFcsopp+TII49s7Ko1GaVSKUOHDk2fPn3yi1/8orGr06g+++yzfPTRR6msrEypVEqSNG/ePG3btm3kmn3/6tpPufnmm9OtW7dssskmadmyZbbccst0797dCCM/kLpup7Fjx+azzz7LGmus8QPVjKR+fVvHUuOozzZyHDWe+lwLOZYaT322U1M5nhok+BszZkwWXXTRLLPMMuVpK6+8ct5///18/vnnDfEW84XKysq89NJLefjhh9O3b9/07t07xx9/fD777LPGrlqT16tXr9x3333Zcsstq00fM2ZMKioqqk1bZZVV8vLLL/+Q1ZunzKotX3755UyfPj0XXHBB1ltvvWy22Wa57LLLUllZ2Ug1bbpWWmmlXH755WnRokV52j333JM111zTPllPtbWlfbJ+FlpooSTJhhtumP79+2eppZbKdtttZ5/kezGrvyXzs9rOZ8z6HDW/+/jjj3Psscfm7LPPni++jK8L10yzNnr06Kyyyiq54YYb0q9fv/Tq1StnnHFGllpqqcauWpNx66235rXXXjNsbpLFFlsse+yxR84444x07NgxG264YX72s59ljz32aOyqfe/q2k957bXX9JMbUV230wsvvJAFF1wwQ4YMyTrrrJOtt946w4cP/4FqOf+qT9/WsdQ46rONHEeNq67XQo6lxlXX7dRUjqcGCf6+/PLLmS5Eq15PmjSpId5ivjBhwoSsscYa2WyzzXLXXXfluuuuy1tvveV5FXWw1FJLpWXLljNNr2nfbNOmjf2yFrNqyy+++CI9evTIoEGD8sgjj+Sss87KX//611xxxRWNUMt5R6lUyrnnnpuHHnooxx57rH1yLny3Le2Tc+bee+/No48+mubNm+fQQw+1T/K9mNXfEr723fMZ3/juOWp+VllZmaFDh2bPPffMaqut1tjVaTJcM83aZ599lldeeSVvvfVWbr755txyyy0ZN25cjjrqqMauWpNQWVmZSy65JAcccED5i5v5WWVlZdq0aZPjjz8+zz33XO644468/vrrueCCCxq7at+7uvZT9JMbV12307Rp09K5c+cMGTIkjz32WI4++uiceuqpufvuu3+AWpLMvm/rWGp8s9tGjqOmYXbXQo6lpmF226mpHE8NEvy1a9cukydPrjat6vWCCy7YEG8xX1hyySXz97//PQMGDEjbtm3zk5/8JEOHDs2jjz6aiRMnNnb15klt27ad6SGbU6ZMsV/OgfXXXz9XX311evTokVatWqVTp07Zfffdc9dddzV21ZqsiRMn5tBDD83tt9+ev/3tb2nfvr19cg7V1Jb2yTnTpk2bLLPMMhk6dGgee+wx+yT8wGo6n/GN756j5ue7uP74xz+mdevWGTRoUGNXpUlxzTRrrVu3TpIce+yxWWihhbLkkkvmV7/6VR555JF8+eWXjVy7xjdixIh8+OGHGTBgQGNXpUm47777cs8992SXXXZJ69ats+qqq2bw4MG59tprG7tqTYZ+8rzhl7/8ZS6//PKsscYaadWqVXr16pVf/vKXAosfSF36to6lxlWXbeQ4ahpmdy3kWGoaZredmsrx1CDB36qrrppPP/0048ePL097/fXXs+yyy2bhhRduiLeYL7z88ssZNmxYeXz95OuEuHnz5uWLOOqnoqIiY8aMqTbttddey6qrrtpINZp33X///bnuuuuqTZs2bVratGnTSDVq2t55551sv/32mThxYoYPH17uWNkn629WbWmfrLtnnnkmm2++eaZNm1aeNm3atLRq1SqrrLKKfRJ+ILM6n83vajtHzc/DW956660ZOXJkunXrlm7duuWOO+7IHXfckW7dujV21RqVa6ZZW2WVVVJZWZmvvvqqPK1qCPRvt9f86p577km/fv3Srl27xq5Kk/C///2v2nk3SVq2bJlWrVo1Uo2aHtdu84bhw4fP9GXqtGnTssACCzRSjeYfde3bOpYaT123keOo8dTnWsix1Hjqs52ayvHUIMHfz372s6y99tr5/e9/n4kTJ2bs2LG5+OKL/ZKunhZddNH8/e9/z+WXX57p06fn/fffz1lnnZVtt912vr+InVP9+vXL+PHjc9VVV+Wrr77Kk08+mdtvvz3bb799Y1dtnlMqlXLaaafliSeeSKlUyrPPPpurr746O+64Y2NXrcn57LPPsvvuu6dr167585//XO1Br/bJ+qmtLe2Tdde+fftMmTIlZ599dqZNm5b33nsvZ5xxRgYMGJDNNtvMPgk/gNrOZ/O72s5R83Mf+J///GeeeeaZjBo1KqNGjcrWW2+drbfeOqNGjWrsqjUq10yztt5662WFFVbIb37zm3z55ZeZMGFCzj333GyyySaGtkzy9NNPp3v37o1djSajV69e+eijj3LppZdmxowZGTt2bC655JL079+/savWZGyzzTYZOXJk7rrrrkyfPj133XVXRo4cmV/84heNXTW+ZeLEiTnllFPyn//8J5WVlXn44Ydzxx13uC78ntWnb+tYahz12UaOo8ZTn2shx1Ljqc92airHU7NSA/30b/z48Tn55JMzYsSING/ePL/85S9z5JFHVnuAKLM3cuTInHPOOXn11VezwAILZKuttsrQoUP9wqIe2rdvn6uvvjo9e/ZM8vUDNU899dS8+uqrWXzxxXPQQQfV+OBNZvbdtrzuuuty5ZVXZty4cVlyySWz5557ZuDAgY1cy6bnyiuvzOmnn562bdumWbNm1eY9++yz9sl6mF1b2ifr7rXXXsvvf//7vPDCC1l44YXTv3//DB48OK1bt7ZP8r367t+S+dXszmfzu9rOUXzt6KOPTpKcfvrpjVyTxueaadbGjRuX008/PU899VSmTp2ajTbaKMcee2wWWWSRxq5ao+vSpUvOO++8bLjhho1dlSbj8ccfz3nnnZc33ngjCy+8cLbZZpv57tz73X5Kly5d8tvf/jbbbLNNkuSxxx7LsGHD8s4772S55ZbL0KFD7UONoLbtVCqVcskll2T48OH5+OOPs8IKK+Tggw/O5ptv3si1LrbZ9W0dS42vPtvIcdS4arsWciw1HXXdTk3leGqw4A8AAAAAAABoPA0y1CcAAAAAAADQuAR/AAAAAAAAUACCPwAAAAAAACgAwR8AAAAAAAAUgOAPAAAAAAAACkDwBwAAAAAAAAUg+AMAAAAAAIACEPwBAABQL1988UUmTJjQ2NUAAADgOwR/MI9o37599ttvv5RKpWrTb7rppmy00Ubfy3tutNFGuemmm76Xsuvirrvuyrrrrpu11147Dz30ULV57777btq3b5/OnTunS5cuWWuttbLOOuvkyCOPzOeffz7H73n00Ufn6KOPntuqAwBNhD7U99OH6tevX8aMGZPk+21LAGDepA/20Ezz27dvn06dOqVLly7V/h177LFJGr/+QHEI/mAe8sgjj+Tyyy9v7Gr8YG688cZstdVWefrpp9O3b98al7njjjvy7LPP5vnnn88dd9yRt99+O6eeeuoPXFMAoCnTh5rZ3PahPvnkk4aqLgBQUPpgM/vTn/6UZ599tto/32MBDU3wB/OQQYMG5fzzz88zzzxT4/yqX3C/++675WkXXnhhBg0alOTrX1XtsssuOeOMM9KjR4+ss846+etf/5obbrghffv2zdprr50TTjihWpkvvfRStttuu/To0SN777133nrrrfK8d955JwcccEB69uyZvn375txzz820adPK77Xddttlr732Srdu3XL77bfPVN9PPvkkxx9/fHr16pWePXtm//33L5c/YMCAPPnkk7nuuuuyySab1Kl9llxyyWyzzTZ58cUXy9PGjx+fI488Muuvv3569eqVE044IRMnTizPf+CBB7LVVlulc+fO2X///at9iXXhhRdmr732yvbbb58ePXrkqaeeqrXOSfLKK69k3333TY8ePdK7d++cdNJJ+eKLL+ao/e+5555stdVWWXvttbPFFlvk4osvrlM7AADV6UPVrqY+1DPPPJPddtstvXr1SseOHbPddtvlueeeS5JsttlmSZJ99903f/rTn5Ik06dPz7Bhw9KnT5907do1xx13XKZPn57k6xEVDj300GyxxRZZZ5118s477+S9997Lr371q6y77rpZf/31c8QRR+TDDz8sv/+oUaMycODAdOvWLRtttFHOO++8chtdeOGFOeyww3LUUUela9eu6d27d+6+++784Q9/yHrrrZcePXpU6zddc8012WSTTdKtW7f0798/N954Y53aBQCYO/pgc27KlCk588wzs+GGG6Z79+4ZNGhQRo8eXZ5fW19qxIgR2XDDDXPEEUekW7duueyyyzJmzJgMHDgw3bt3T9++fXPUUUdV+34MKBbBH8xD+vXrlx133DGHH354Pv300zkq4+mnn84yyyyTJ598MoceemhOO+20jBgxInfddVeuuuqqDB8+PE899VR5+fvvvz+nnXZaHnvssSy//PLZf//9M3369EyaNCl77LFHVl111Tz66KO55ppr8vjjj+fCCy8sr/vSSy+lf//+efzxx9OvX7+Z6nLooYfmnXfeyc0335xHHnkkK620UvbYY49MnDgxw4cPT7du3bL//vvn/vvvr9Nn++ijj3Lfffdl0003TZJUVlbmoIMOSvPmzXPPPffk9ttvz4cffljuFL7xxhs57LDDsv/++2fUqFHZYYcd8thjj1Ur84knnsiRRx6Zhx56KF26dKm1zp988kl22223rLLKKnn00Ufzj/9v795jqq7/OI4/PcA5xzpyS0BAYCplbuCCdMplMhrTSqKpzTZYA2ls9Ee2QIG5RBje5ryALaIkCJtLLf8oUYzKaZoMJ801tXKJi5sSIjOg4MCB3x+OM4/6gwP9Lslej42N8/2e7/dzOf+89nl/z+ccOcL169fJyckZ9/z39fWxfv168vPzaWhoYNeuXezbt88h5ImIiIhzlKFGd3+G6uvr44033mDZsmV899131NfXExwczI4dO4C7DyfB3SfWMzIyAGhvb8fd3Z1vvvmGw4cPU11dzYkTJ+xtnDlzhpKSEmpra/H39yc9PR0XFxdqa2upqakBIDMzk8HBQRobG1mzZg1Lly7l3LlzVFZWcvLkSXv7I32Ij4+noaGBpKQksrOz6enp4fTp02zdupWSkhJaW1tpbm5m27ZtfPjhh1y4cIGcnByKioociowiIiLy36EMNnEFBQWcPXuW/fv38/3335OQkEBaWhptbW0MDAyMmqUAbt68yezZs6mrqyM5OZnCwkKioqI4f/48R44c4cqVK3oYSmQSU+FP5BGTm5uLt7c3eXl5D+yT7ozHHnuM1NRUDAYDsbGx2Gw2Xn/9daZOnUp4eDi+vr60trba35+ens7cuXMxmUzk5eXR0tLCjz/+yKlTp7BarWRlZWEymfD39+ett97iwIED9mvd3Nx4+eWXMRqNmM1mh340Nzdz/vx5Nm7ciI+PD2azmXXr1jE4OMjp06edHk9SUhILFiwgIiKC2NhYmpqaSExMBODSpUtcvnyZTZs2YbFY8PLyIjc3l2PHjtHV1cXx48cJCwsjKSkJV1dXEhISHtiKISgoiKioKB5//HFu3Lgxap+//fZb3NzcWLduHWazGR8fHzZu3MjJkyfp6OgY9/ybzWY+//xz6urqmDNnDg0NDcyfP398H7iIiIgAylD3Gy1Dubm5cejQIZKTk7FarbS2tuLp6Ul7e/u/vZ/FYiEjIwNXV1dCQ0N5+umnaWpqsp9/5plneOqpp3B3d+fChQs0NzdTWFjItGnTcHd3p7CwkJ9//plLly5x9OhR5s6dS2pqKkajkZCQELKzs/nss88YGhoCIDQ0lOeff54pU6YQExODzWYjMzMTNzc3++8GtbW14eLiwvDwMAcPHqShoYGoqCguXryIr6+v03MlIiIiE6cM5igzM5MFCxbY/x727cD+/n6qq6vJzs4mJCQEo9FIamoqs2fPprq6eswsNeKVV17Bzc0Ni8WCyWTizJkznDhxAoPBwBdffMGaNWvG81GIyCPE9f/dAREZH6PRSHFxMStWrKCiogIvL69xXe/p6cmUKVMAMBju1v7d3d3t5w0Gg31BBWDmzJn2/6dOnWpf9GltbeX27dssXLjQfn54eJiBgQE6OzsB8PHxsbdxv1u3bgF3C2sjXFxc8Pf3dwhsY/nyyy/tfezp6WHv3r2sXr2a48eP09LSgs1mIy4uzuEao9FIc3Mz7e3tBAQEOJwLDg522O7z3kWhsfo8PDxMQEAALi4u9vMjfRsZk7Pzbzab+fTTTyktLbU/wb5s2TLeeecdPDw8nJ4fERERuUsZytFoGcrPz4/6+noyMjL4888/CQ0NxdXVddTFOg8PD/v8wN2FM5vNZn99b6bq7OzEy8sLi8ViP2axWPD09KS1tZXOzk6H8cHd+ezr67PPkaenp/3cyFyNZKSR10NDQwQEBPDJJ59QXl5OZmYmNpuNlStXsn79ekwmk9PzJSIiIhOjDOaorKyMRYsWjfqeO3fuMDAw4DCWkbG1tLQQEBAwapaaPn064Ji/iouLeffdd9mzZw9ZWVlERkZSUFDAk08+6XTfReTRocKfyCMoODiYoqIicnJyWLlypf34SMFpYGDAfuzeIhbgsCDjjHu3QRrZzjIwMJDBwUGCg4MdtnDq6emhs7MTb2/vMdsKDAwE7u6vPhIybDYbbW1t+Pj4jKuPIywWC2vXrqWqqoqGhgZmzJiB2Wymvr7ePjdWq5Xm5mZCQkKYMWMGp06dcrjHzZs3HRaB7h3DWH12c3Ojra0Nm81mb2/kSXcfHx8aGxudnv+enh5+//13du3aBcBPP/1EVlYWZWVl5ObmTmB2RERERBnq4e7PUIGBgRQVFXHw4EHCwsIAqKio4Pr16xO6PzyYqbq6uujp6bEvWHV3d9PV1YWPjw+BgYHU1tY6XN/U1ITRaLQX95z9PDo7O7HZbLz33nsMDQ3xww8/sHbtWmbNmkVKSsqExyMiIiLOUwYbn+nTp2MymWhubmbOnDn2401NTTz33HNjZqmRh7VGxjM0NMSVK1d488032bBhAzdu3GDbtm3k5eVx5MiR/2jfReSfQVt9ijyiXnzxRVatWsWhQ4fsx5544gk8PDw4duwYw8PDXL582SHQTERFRQWNjY389ddfbNmyhXnz5hEWFkZ8fDy9vb2Ul5djtVr5448/yM3N5e2333YqlPn6+hIXF8fmzZvp6Oigr6+PnTt3YrPZHthu01n9/f1UVVVhNpsJDw9n/vz5hISEsH37dnp7e+nr62Pr1q2kpaVhs9lISkri6tWrHD58mMHBQc6ePcvXX3894T6PfLNw586d9PX10dHRwZYtW1i8eLE9IDqrt7eXjIwMjh49yvDwML6+vhgMhnE/GSciIiKOlKEedH+G6u7uxmAw2Le4unjxIvv378dqtdqvMRqNdHd3T6i98PBwQkND2bRpE93d3XR3d1NQUEBwcDCRkZEsX76ca9euUVVVhdVqpampid27d/PSSy9hNBrH1VZbWxvp6enU1dVhMBjw8/MDUKYSERH5H1MGc57BYGDVqlXs3r2b3377DavVSlVVFb/++ivLly8fM0s97H6bN2+muLiY/v5+vL29MZlMykMik5gKfyKPsA0bNjBv3jz7a6PRSFFRETU1NURGRrJ9+3ZWr179t9pISEggMzOTJUuWcOfOHUpLSzEYDFgsFj7++GPq6+tZsmQJCQkJGAwG3n//fafvvWPHDoKCglixYgXR0dH88ssvVFVVOWzdNJbExEQiIiKIiIggOjqac+fOUVZWRlBQEK6urnzwwQfcunWLpUuX2n+/prKyEpPJRFBQEGVlZRw4cIBnn32W0tLSh/54s7N9njZtGpWVlVy9epW4uDgSExMJDAykpKTE6fGM8PPzY+/evezbt4/IyEgSExNZvHgxaWlp476XiIiIOFKGGj1DxcTEkJycTEpKCgsXLqSwsJDXXnuN27dv27e5evXVV8nOzmbPnj3jnRp7RhscHGTZsmXEx8czMDBAZWUlrq6uzJw5k/Lycr766iuio6NJTk4mJiaG/Pz8cbcVHh5Ofn4+BQUFREREkJKSQnJyMi+88MK47yUiIiJ/jzKY83JycoiNjSUtLY1FixZRU1PDRx99xKxZs8bMUg9TXFzMtWvXiI2NJTo6mu7uboqKiv7j/RaRf4YpwxP5VVURERERERERERERERER+UfRN/5EREREREREREREREREJgEV/kREREREREREREREREQmARX+RERERERERERERERERCYBFf5EREREREREREREREREJgEV/kREREREREREREREREQmARX+RERERERERERERERERCYBFf5EREREREREREREREREJgEV/kREREREREREREREREQmARX+RERERERERERERERERCYBFf5EREREREREREREREREJgEV/kREREREREREREREREQmARX+RERERERERERERERERCaBfwFt1qcbniE8LQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "\n", - "# Create subplots\n", - "fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 6))\n", - "\n", - "# Common title for all subplots\n", - "fig.suptitle('Distribution of Bedrooms, Bathrooms, and Floors.', fontsize=16)\n", - "\n", - "# Box plot for bedrooms\n", - "sns.boxplot(x=housing_data['bedrooms'], ax=axes[0])\n", - "axes[0].set_title('Bedrooms')\n", - "axes[0].set_xlabel('Number of Bedrooms')\n", - "\n", - "# Box plot for bathrooms\n", - "sns.boxplot(x=housing_data['bathrooms'], ax=axes[1])\n", - "axes[1].set_title('Bathrooms')\n", - "axes[1].set_xlabel('Number of Bathrooms')\n", - "\n", - "# Box plot for floors\n", - "sns.boxplot(x=housing_data['floors'], ax=axes[2])\n", - "axes[2].set_title('Floors')\n", - "axes[2].set_xlabel('Number of Floors')\n", - "\n", - "# Adjust layout\n", - "plt.tight_layout()\n", - "\n", - "# Show plots\n", - "plt.show();\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After analyzing the distribution of bedrooms, bathrooms and floors, an outlier was detected in the bedroom column. To ensure the accuracy of our analysis, the outlier value was identified and subsequently removed from the dataset. The box plot below displays the distribution of bedrooms after excluding the outlier value. " - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": {}, - "outputs": [], - "source": [ - "# Identify the outlier value\n", - "outlier_value = housing_data['bedrooms'].max() \n", - "\n", - "# Filter the DataFrame to exclude the outlier\n", - "housing_data = housing_data[housing_data['bedrooms'] != outlier_value]" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 0, 'Number of Bedrooms')" - ] - }, - "execution_count": 90, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAHBCAYAAAAWz6MMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAhuklEQVR4nO3deXSV9Z348XcWskhUQAIoix4EoyNBww6mBihL1UCrYLFYFUXFEZUB2VygYwUFAZGliJURHBdcUuwAIhYQohYRRJGlU2vLdICKkAACgcYkN3f+4Jf7M4IhoORJwvt1DufkPs9dPvmS3PvOfW5yo8LhcBhJknRaiw56AEmSFDyDQJIkGQSSJMkgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCKQKd9NNN5GSklLqX5s2bbj55ptZu3btD3IbKSkpzJgx4we5Lkmnh9igB5BOR//yL//Cr371KwBCoRD79u1j/vz5DBw4kAULFtC8efOAJ5R0ujEIpAAkJSVx+eWXl9rWqVMnOnbsyIIFCxg1alQwg0k6bXnIQKokEhMTiY+PJyoqKrJt+fLlXHfddaSmpnLFFVcwbtw4Dh8+XOpya9eupV+/flx22WX07NmT1atXl9q/Y8cOUlJSmDt3LldddRXt2rVjwYIFAGzatImBAwfSvn17WrVqxV133cXnn39e6vK7d+/mgQceICMjg5YtW9K3b19WrFhR6jwpKSnMnz+f0aNH07p1a9q1a8e4cePIz89n4sSJdOjQgfbt2/PQQw/x9ddfRy63evVq+vXrR1paGm3btuXuu+9m69atP8h6SjoxBoEUgHA4TFFREUVFRRQWFpKTk8OTTz5JQUEBffr0AWDRokUMHjyYpk2b8pvf/IZ77rmHhQsXcvfdd1PyJqVbtmzhtttuIykpiWnTpnHLLbcwbNiwY97m1KlTGThwIOPGjaNDhw6sWbOGX/ziFxQXFzN+/HjGjRvHzp07ueGGG/jb3/4GQG5uLn379mXt2rUMHTqUGTNm0LBhQwYPHszChQtLXf/kyZOJi4tj5syZ/PSnP+WFF17gZz/7GTt37mTSpEnccMMNZGVl8cILLwCwfft2/vVf/5VLL72Up59+mnHjxrF161buvPNOiouLT9XSS/oOHjKQArBu3TouvfTSo7YPGzaMCy+8kHA4zOTJk/nRj37E5MmTI/svuOACBgwYQHZ2Np07d+aZZ56hTp06PP3008TFxQFQq1Ythg4detR19+jRg759+0ZODxkyhMaNGzNnzhxiYmIASE9Pp3v37syYMYOnnnqKuXPnsnfvXt566y0aN24MQEZGBgMGDOCJJ54gMzOT6OgjP1dceOGF/PrXvwagbdu2ZGVlUVhYyOTJk4mNjeVHP/oR77zzDh9//DEAGzduJD8/n0GDBlG/fn0Azj33XFasWMHhw4dJSkr63ussqfwMAikAl156KY888ghw5NmCAwcO8O677zJ16lQOHz5M7969+fLLLxk0aBBFRUWRy7Vt25akpCT++Mc/0rlzZ9avX0/nzp0jMQBHHvhLHuC/6aKLLop8fPjwYTZt2sTgwYNLnfess86iS5cuZGdnA0cOR6SlpUVioETv3r154IEH2Lp1K82aNQMgLS0tsj82NpbatWvTokULYmP//91MrVq1OHjwIACXXXYZ8fHx9O3bl6uvvpqMjAzatGlDy5YtT3xBJX1vBoEUgJo1a5KamlpqW3p6OocPH2bOnDlcccUVADzyyCORcPim3bt3A7B//37q1KlTal/Jg/G31a1bN/LxwYMHCYfDpbZ983wlD9r79++nUaNG33ldBw4ciGw71k/0iYmJR20r0ahRI1588UV++9vf8tprrzFv3jzOOuss+vfvz5AhQyLPPEiqGAaBVIlccsklvP7665HTI0eOpF27dked7+yzzwaO/MSdm5tbal84HGb//v1l3s6ZZ55JVFTUUZcFyMnJoVatWpHb+a7zAMcMjxPRsmVLZs6cSUFBAevXr+fVV19l9uzZpKSkcPXVV3+v65Z0YkxwqRL55JNPiImJoWnTppxzzjns2LGD1NTUyL8GDRowZcoU/vSnPwHQsWNH3n33Xf75z39GruO9996jsLCwzNs544wzaNGiBUuWLCEUCkW2Hzx4kFWrVtG6dWvgyCGKTz75hO3bt5e6/MKFC0lOTub8888/6c913rx5dO3alYKCAuLi4ujYsSOPPvooADt37jzp65V0cnyGQApAXl4eGzZsiJwuLCxkxYoVLFq0iH79+lG3bl2GDh3K2LFjiYmJoUuXLhw4cIBZs2axa9euyAsSBw8ezPLlyxk4cCC33347+/btY+rUqdSoUeO4M9x///2Ry/3yl7+ksLCQ3/72txQUFHDPPfcAcOutt7Jw4UJuvfVW7rnnHmrXrs3vf/971qxZw2OPPfa9ntbv0KEDkydPZvDgwfzyl78kJiaGV155hbi4OLp06XLS1yvp5BgEUgD+9Kc/0a9fv8jp+Ph4mjRpwtChQxk4cCAA119/PTVr1mTOnDm8+uqrnHHGGbRq1YrJkydHXuR3wQUX8OKLLzJhwgSGDh3KOeecw6hRo5gwYcJxZ+jYsSNz585l+vTpDBs2jLi4ONq0acPEiRMjfykxOTmZ+fPnM2XKFMaPH09hYSEXX3wxs2bN4sc//vH3WoOLL76Y2bNn85vf/IZhw4YRCoVo0aIFzz33HE2bNv1e1y3pxEWFS36hWZIknbZ8DYEkSTIIJEmSQSBJkjAIJEkSBoEkScIgkCRJlPPvEBQXF1NUVER0dHSp92qXJEmVVzgcpri4mNjY2OP+IbFyBUFRURGbNm36QYaTJEkVKzU1tdS7oh5LuYKgpCpSU1OP+baqp5tQKMSmTZtcj1PMda4YrnPFcJ0rhutcWsl6lOfPjJcrCEoOE8TExLjA3+B6VAzXuWK4zhXDda4YrnNp5Tnc74sKJUmSQSBJkgwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmIDXoAnXrhcJj8/PygxzhhoVCIr7/+mnA4HPQoklTtGQSngfz8fK666qqgxzhpixcvJikpKegxJKla85DBaaAqPjsgSapYPkNwmslLvZ5wjYSgxziuqOIikjbMD3oMSTptGASnmXB0DMTUCHqM4/JVA5JUsTxkIEmSDAJJkmQQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCE5KOBwmHA4HPYYqIb82JFVVBsEJCofDDBkyhJkzZ3rHr1LC4TD33nsv9957r18bkqqc2KAHqGry8/PZsmVL5OOkpKSAJ1JlkZ+fz+bNmyMfJyYmBjyRJJWfzxBIkiSDQJIkGQSSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiQBsUEP0Llz58jHq1atCmwO6XT14x//OPJxVfkerIr3G1Vxnfv27Utubi5169YlKysr6HHK5de//jXZ2dlkZGTwyCOPBD1OuaxevZpp06YxZMgQOnXqFNgcgT5D8M1v6mOdlnRqVcXvwTvuuKPM05XR7373uzJPV0abN28mNzcXgNzcXDZv3hzwRMe3a9cusrOzAcjOzmbXrl0BT3R8+fn5PPnkk+zatYsnn3yS/Pz8wGbxkIGkKuXzzz8v83RlNGPGjDJPV0b33ntvmacro3vuuafU6aow80svvcSePXsA2LNnDy+//HJgswR2yOC7fhLp3LlzlXk6LT8/n5iYmKDHOK4gi/OH4DqfGlXxe7AqznzDDTd85/ZXXnmlgqcpn0mTJhEOh0ttC4fDTJo0iREjRgQ0VdmWLl1KTk5OqW27d+9m6dKl/OQnPwloqrLt2LGDl19+ObLW4XCYl19+mR49etCoUaMKnyeQIOjSpctx969cubKCpjkx3/wm6du3b4CTnKTw8c9SKVTxdf72nWllc7xDA5XxAfavf/3rcfc3a9asgqYpn4MHD/Lll18ec9+XX37JwYMHOfPMMyt4qrIVFBTw5ptvHnPfm2++yZAhQ4iLi6vgqcoWCoWYNGnSMfdNmjSJ7t27V7ofKsLhMNOmTfvO7U888QRRUVEVOlMghwyOd2dZ2e9MJVW822+//XvtD8LNN9/8vfYH4fHHH/9e+4OwePFiQqHQMfeFQiEWL15cwRMd37Zt21i3bt1Rc4dCIdatW8e2bdsqfKZAniGIiooq80G/oqvoRHxztqysLGrWrBngNOXz1Vdf8Ytf/OLIicq7tKVVwXXOz8/n2muvBSr313BVNWfOnDIf9OfMmVOB05TPf/7nf9KrV68y91c2DzzwQJnP0D7wwAMVOE35ZGZmMn369GNGQWxsLJmZmQFMVbYmTZrQtm1bPv7441Jzx8TE0Lp1a5o0aVLhMwUSBCtXrizzKcvKerjg2xISEkhMTAx6jOOqase2v62qrHNVsmrVqjK/Byvb4QLguIcDKtvhAoAzzzyTBg0aHPOwwbnnnlvpDhcAxMXFcc011xzzsEGvXr0q3eECOPIgOmLECCZMmHDUvpEjR1a6wwVw5IeGIUOGcMsttxxzexA/VAT2WwbfdYdTGe+IpOqoKn4PVsWZv+uFg/Pnz6/gScpvxIgRRz0gRUVFcf/99wc00fH95Cc/ITk5udS2evXq0aNHj4AmOr5GjRrRv3//yFpHRUXRv39/GjZsGMg8/tqhpCqlefPmZZ6ujKrir/BVxV+VnDlzZqnTVWHmG2+8kXPOOQeAunXr0r9//8BmCTQIvl31lbnypeqoKn4PPvvss2Weroz69OlT5unKqEWLFtStWxc48kDVokWLgCc6vvr165ORkQFARkYG9evXD3ii40tISGDYsGHUr1+foUOHkpCQENgsgf/p4qpwByRVZytWrGDDhg1cfvnlQY9SblXxfqMqrnNV+XPF3zR27Ngqt86dOnUK9E8Wl/CQgSRJMggkSZJBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZKA2KAHqGoSEhJo0aIFeXl5JCQkBD2OKpGSr42SjyWpKjEITlBUVBRPPfUUGzZsICoqKuhxVIlERUUxY8aMyMeSVJUYBCchKirKO3wdk18XkqoqX0MgSZIMAkmSZBBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkoDYoAdQxYoqDhEOFQY9xnFFFRcFPYIknVYMgtNM0qbXgx5BklQJecjgNJCQkBD0CJKkSs5nCE4DCQkJvPXWW0GPccJCoRAbN240aCSpAhgEp4GoqCgSExODHuOEhUIh4uPjiYqKCnoUSar2PGQgSZIMAkmSZBBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJg0CSJGEQSJIkDAJJkoRBIEmSMAgkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAkmShEEgSZIwCCRJEgaBJEnCIJAkSRgEkiQJiC3PmcLhMAChUOiUDlNVlKyD63Fquc4Vw3WuGK5zxXCdSytZh5LH8bJEhctxroKCAjZt2vT9J5MkSRUuNTWVuLi4Ms9TriAoLi6mqKiI6OhooqKifrABJUnSqRMOhykuLiY2Npbo6LJfJVCuIJAkSdWbLyqUJEkGgSRJMggkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEJyQP//5z9x66620a9eOK664gpEjR7J3796gx6q2QqEQN910E6NHjw56lGrrq6++YuTIkbRv3562bdty9913s3v37qDHqna2bNnCjTfeSJs2bUhPT2fcuHEUFBQEPVa1sXfvXrp3786HH34Y2fbpp59y/fXXk5aWRteuXXn99dcDnLBqMAjKKT8/n9tvv520tDTef/99Fi9ezFdffcWDDz4Y9GjV1syZM/noo4+CHqNau/feezl8+DDLli1j5cqVxMTEMGbMmKDHqlaKi4sZNGgQPXv2ZO3atWRlZfH+++/z7LPPBj1atbB+/Xr69evHtm3bItv279/PnXfeyc9+9jPWrVvH+PHjefzxx9m4cWOAk1Z+BkE5ffHFF1x88cUMHjyYuLg4ateuTb9+/Vi3bl3Qo1VLH3zwAX/4wx/o0aNH0KNUW5s3b+bTTz9lwoQJnHXWWSQlJfHoo48yfPjwoEerVvbv309OTg7FxcWRN5iJjo4mMTEx4MmqvjfeeIPhw4czdOjQUtv/8Ic/UKtWLW688UZiY2Pp2LEjvXr14qWXXgpo0qrBICinpk2bMmfOHGJiYiLb3n77bS699NIAp6qe9uzZw0MPPcSUKVO80zyFNm7cSLNmzXjttdfo3r076enpTJw4keTk5KBHq1Zq167NgAEDmDhxIqmpqWRkZHDBBRcwYMCAoEer8tLT01m2bBlXX311qe2ff/45F110UaltzZo1489//nNFjlflGAQnIRwOM3XqVFauXMlDDz0U9DjVSnFxMSNGjODWW2/l4osvDnqcam3//v189tln/P3vf+eNN97g97//Pbt27WLUqFFBj1atFBcXk5CQwJgxY9iwYQOLFy/mb3/7G9OnTw96tCovOTmZ2NjYo7YfOnToqB8mEhISOHz4cEWNViUZBCcoLy+P++67j0WLFvHiiy+SkpIS9EjVyjPPPENcXBw33XRT0KNUeyVvhfrQQw+RlJRE3bp1+bd/+zeys7M5dOhQwNNVH8uWLePtt9+mf//+xMXF0bx5cwYPHsz8+fODHq3aSkxMJD8/v9S2/Px8atasGdBEVcPRaaXvtG3bNu644w7OO+88srKyqFOnTtAjVTv/9V//xe7du2nTpg1A5Jt6+fLlvsDwB9asWTOKi4spLCwkPj4eOPLTLIBvgvrD2blz51G/URAbG0uNGjUCmqj6u+iii/jjH/9Yattf//pXmjdvHtBEVYPPEJTT/v37ueWWW2jVqhX/8R//YQycIkuXLuXjjz/mo48+4qOPPiIzM5PMzExj4BTo1KkTjRs35sEHH+TQoUPs3buXqVOn0q1bN5KSkoIer9pIT08nJyeH2bNnEwqF2L59O08//TS9evUKerRqq3v37uTm5jJv3jwKCwtZs2YNixYtok+fPkGPVqkZBOW0YMECvvjiC9566y1at25NWlpa5J9UFdWoUYMXXniBmJgYevbsSc+ePWnQoAGPPfZY0KNVK82aNeOZZ57hnXfeoX379tx888107dr1qFfG64dTu3ZtnnvuOZYuXUr79u15+OGHefjhh+nQoUPQo1VqUWGfG5Qk6bTnMwSSJMkgkCRJBoEkScIgkCRJGASSJAmDQJIkYRBIkiQMAomUlBTuvPPOo/5c74IFC+jatespuc2uXbuyYMGCU3Ld5bFkyRI6duxI69atWblyZal9O3bsICUlhcsvv5y0tDQuu+wyOnTowPDhwzlw4MBJ3+bo0aMZPXr09x1d0iliEEhAdnY2c+bMCXqMCvP6669zzTXXsH79erp06XLM8yxevJhPPvmETz/9lMWLF/O///u/jB8/voInlVRRDAIJuOmmm5g2bRoff/zxMfeX/NS8Y8eOyLYZM2ZE3pVxwYIF9O/fn4kTJ9KuXTs6dOjACy+8wGuvvUaXLl1o3bo1Y8eOLXWdW7Zs4brrrqNdu3YMHDiQv//975F927Zt46677qJ9+/Z06dKFqVOnRt4gZ8GCBVx33XXcdttttGnThkWLFh017759+xgzZgzp6em0b9+eQYMGRa6/b9++rFmzhldeeYVu3bqVa33q1q1L79692bx5c2Rbbm4uw4cP54orriA9PZ2xY8eSl5cX2b9ixQquueYaLr/8cgYNGsS+fftKrd1tt91Gnz59aNeuHevWrStzZoDPPvuMO+64g3bt2nHllVfy7//+7xw8ePCk1v/tt9/mmmuuoXXr1lx11VXMmjWrXOsgVWcGgcSRN0Pp168fw4YN46uvvjqp61i/fj3169dnzZo13HfffTz++ON8+OGHLFmyhHnz5pGVlcW6desi51++fDmPP/447733Ho0aNWLQoEEUFRVx+PBhBgwYQPPmzXn33Xd5+eWXWb16NTNmzIhcdsuWLfTq1YvVq1fTvXv3o2a577772LZtG2+88QbZ2dk0bdqUAQMGkJeXR1ZWFm3atGHQoEEsX768XJ9bTk4Oy5Yto0ePHsCRd0W8++67iY6O5u2332bRokXs3r078qC7detWhgwZwqBBg/joo4+4/vrree+990pd5wcffMDw4cNZuXIlaWlpZc68b98+br75Zpo1a8a7777L7373O/7nf/6HkSNHnvD65+fnM2LECMaOHcv69euZMmUKzz77LBs3biz/f7ZUDRkE0v8zatQo6tSpw+jRo0/q7X/POOMMbrnlFqKjo0lPTycUCjFw4EASExNJTU2lXr16/OMf/4ic/7bbbiMlJYX4+HhGjx7Njh072LhxI6tWraKgoIBhw4YRHx/Pueeey5AhQ3jppZcil61RowY//elPiYuLIyEhodQc27dvZ+3atYwZM4bk5GQSEhIYPnw4RUVFZGdnl/vz6d27N23atCEtLY309HS2bdtGZmYmAJs3b2bLli386le/Iikpidq1azNq1CjefPNN9u3bx5IlS2jRogW9e/cmNjaWbt26HXVoonHjxnTs2JGaNWuyc+fOMmdesWIFNWrUYPjw4SQkJJCcnMyYMWN45513yMnJOeH1T0hIICsriw8++IALL7yQ9evX07JlyxP7D5eqmdigB5Aqi7i4OJ566imuvfZannvuOWrXrn1Cl69VqxZRUVEAREcfae2zzjorsj86Opri4uLI6UaNGkU+TkxMpFatWuzatYt//OMf7N27l7Zt20b2h8NhCgsL2bNnDwDJycmR2/i23Nxc4MgDbomYmBjOPffcUkFyPAsXLozMmJeXx/Tp0/n5z3/OkiVL2LFjB6FQiIyMjFKXiYuLY/v27ezatYvzzjuv1L4mTZqUOmxQr169cs8cDoc577zziImJiewvma3kcyrv+ickJDB//nxmzZrF/fffT15eHj179uThhx/m7LPPLvf6SNWNQSB9Q5MmTXj00UcZOXIk1113XWR7yQNRYWFhZNs3H9yAyINRee3evTvyccnT4g0bNqSoqIgmTZqwdOnSUvv37NlDnTp1jntbDRs2BI68DqF58+YAhEIhvvjiC5KTk09oxhJJSUncd999PP/886xfv54GDRqQkJDAhx9+GFmbgoICtm/fzvnnn0+DBg1YtWpVqev48ssviY+Pj5z+5udwvJlr1KjBF198QSgUitzetm3bgCNxtHXr1nKvf15eHrt372bKlCkA/Pd//zfDhg1j9uzZjBo16iRWR6oePGQgfcvVV19Nnz59ePXVVyPbzjnnHM4++2zefPNNwuEwW7ZsKfWAfTKee+45tm7dyj//+U/Gjx/PJZdcQosWLejSpQuHDh1izpw5FBQUcODAAUaNGsXQoUPL9aBXr149MjIyGDduHDk5OeTn5zN58mRCodB3/kbB8Xz99dc8//zzJCQkkJqaSsuWLTn//POZMGEChw4dIj8/n8cee4wBAwYQCoXo3bs3f/nLX3jttdcoKiri/fffZ9myZSc9c8kzEZMnTyY/P5+cnBzGjx9Phw4dIjFRXocOHeKOO+5g0aJFhMNh6tWrR3R09Ak/IyRVNwaBdAwPPvggl1xySeR0XFwcjz76KG+99RatWrViwoQJ/PznP/9et9GtWzfuuusurrzySvbv38+sWbOIjo4mKSmJefPm8eGHH3LllVfSrVs3oqOjefrpp8t93U888QSNGzfm2muvpVOnTnz22Wc8//zz1KpVq9zXkZmZSVpaGmlpaXTq1InVq1cze/ZsGjduTGxsLM888wy5ubn06NEj8hqDuXPnEh8fT+PGjZk9ezYvvfQSrVu3ZtasWcd88WN5Zz7zzDOZO3cuf/nLX8jIyCAzM5OGDRsybdq0cn8+JerXr8/06dN59tlnadWqFZmZmXTo0IEBAwac8HVJ1UlU+GRePSVJkqoVnyGQJEkGgSRJMggkSRIGgSRJwiCQJEkYBJIkCYNAkiRhEEiSJAwCSZKEQSBJkjAIJEkSBoEkSQL+D7X5xamrxROAAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Box plot for bedrooms\n", - "sns.boxplot(x=housing_data['bedrooms'])\n", - "plt.title('Bedrooms')\n", - "plt.xlabel('Number of Bedrooms')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### b.) Bivariate Analysis" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**#Total Square Footage of houses by Price Range.**" - ] - }, - { - "cell_type": "code", - "execution_count": 94, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "price_range\n", - "300K-600K 10560\n", - "600K-1M 4691\n", - "100K-300K 4433\n", - "1M-2M 1234\n", - "2M-5M 187\n", - "70K-100K 30\n", - "5M-8M 7\n", - "Name: count, dtype: int64" - ] - }, - "execution_count": 94, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Define the labels with ranges\n", - "labels = [\"70K-100K\", \"100K-300K\", \"300K-600K\", \"600K-1M\", \"1M-2M\", \"2M-5M\", \"5M-8M\"]\n", - "\n", - "# Cut the data into the specified ranges and assign labels\n", - "housing_data.loc[:,\"price_range\"] = pd.cut(housing_data.price,\n", - " bins=[70000, 100000, 300000, 600000, 1000000, 2000000, 5000000, 8000000],\n", - " labels=labels)\n", - "\n", - "# Count the occurrences of each category\n", - "housing_data['price_range'].value_counts()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontcondition...sqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15house_agerenovation_agetotal_sqftprice_range
118826240491852014-09-09405000.031.75176053551.003.0...1160600.019560.017906225680.08875.0300K-600K
2061128958003902014-08-07359800.052.50217027522.003.0...21700.020140.018002752100.07092.0300K-600K
220934385003392014-05-26276000.031.00114050001.003.0...11400.019600.011405000640.07280.0100K-300K
1843141679603302015-01-09270000.032.00182077501.003.0...18200.019920.020808084320.011390.0100K-300K
1160919722015502014-07-16565000.041.00154024521.504.0...15400.019060.0129033601180.05532.0300K-600K
\n", - "

5 rows × 21 columns

\n", - "
" - ], - "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "1188 2624049185 2014-09-09 405000.0 3 1.75 1760 \n", - "20611 2895800390 2014-08-07 359800.0 5 2.50 2170 \n", - "2209 3438500339 2014-05-26 276000.0 3 1.00 1140 \n", - "18431 4167960330 2015-01-09 270000.0 3 2.00 1820 \n", - "11609 1972201550 2014-07-16 565000.0 4 1.00 1540 \n", - "\n", - " sqft_lot floors waterfront condition ... sqft_above \\\n", - "1188 5355 1.0 0 3.0 ... 1160 \n", - "20611 2752 2.0 0 3.0 ... 2170 \n", - "2209 5000 1.0 0 3.0 ... 1140 \n", - "18431 7750 1.0 0 3.0 ... 1820 \n", - "11609 2452 1.5 0 4.0 ... 1540 \n", - "\n", - " sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", - "1188 600.0 1956 0.0 1790 6225 \n", - "20611 0.0 2014 0.0 1800 2752 \n", - "2209 0.0 1960 0.0 1140 5000 \n", - "18431 0.0 1992 0.0 2080 8084 \n", - "11609 0.0 1906 0.0 1290 3360 \n", - "\n", - " house_age renovation_age total_sqft price_range \n", - "1188 68 0.0 8875.0 300K-600K \n", - "20611 10 0.0 7092.0 300K-600K \n", - "2209 64 0.0 7280.0 100K-300K \n", - "18431 32 0.0 11390.0 100K-300K \n", - "11609 118 0.0 5532.0 300K-600K \n", - "\n", - "[5 rows x 21 columns]" - ] - }, - "execution_count": 95, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "housing_data.sample(5)" - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\categorical.py:641: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n", - " grouped_vals = vals.groupby(grouper)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA10AAAJLCAYAAAAcg/xtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACh2ElEQVR4nOzdeXhMZ//H8c9MFkkkkkiIpVSF2Ped1lJFia2W6lPVUmtCrSG1twhqaUkttbUUfdTaoijVFlU7pVU0sW8J2ZBEZJn5/eFnnk5tiRoReb+uK9dlzn2fc75nTkzyyX3OfQxms9ksAAAAAIBNGDO7AAAAAAB4lhG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAGADfDc+ayHcwYAsBX7zC4AAJ4G77//vtasWfPAPgULFtSPP/74wD7JycmaOnWqypQpo5YtW6Z7/6tXr9bQoUO1detWPffcc/ftd+DAAc2bN0+HDh1SQkKCvL29VatWLQUEBKhw4cLp3t/T7MKFC2rYsOF92wsXLqwtW7Y81n0eOHBAc+bM0dy5cx/rdv+NTp06SZIWL178WLd753vt74xGo1xdXVWuXDn17t1bVapUyZTa7rWfvXv3Wi0zGAzKmTOnihYtqs6dO8vf39+mNQDA40DoAgBJgYGBeuONNyyvZ82apT///FMzZsywLHN0dHzodq5cuaKFCxdqwoQJj73GXbt2qVu3bmrYsKHGjRunXLly6dy5c/r888/Vvn17rVix4pkJXpIUEBCg+vXr37U8R44cj31fK1asUHh4+GPf7tNsxowZypMnjyTJZDIpKipKM2fO1DvvvKOVK1eqZMmS91139OjRT6pMlS5d2mp/aWlpioiI0MKFCzVw4EC5ubmpbt26T6weAHgUhC4A0O3Rk78Hlty5c8vR0VEVK1bMvKL+4bPPPlO5cuUUGhpqWVajRg3Vq1dPjRo10hdffPFEfxm2tcKFCz9V7/+zplSpUneNqpYuXVqNGjXSV199pTFjxtx33WLFitm6PAtXV9d7fh/Uq1dPtWrV0qpVqwhdAJ563NMFABnw+++/q2vXrqpRo4YqV66sXr16KSwsTJL1ZXFDhw7Vyy+/bFlvxYoVatOmjSpWrKjy5curVatW2rBhQ4b2HRUVdc/lefPm1YgRI1SnTh3LMpPJpJkzZ6p+/fqqUKGCevbsqY0bN6pEiRK6cOGCJOnTTz9ViRIl7tpeiRIl9Omnn1peX7hwQUOGDNGLL76oMmXKqFatWhoyZIhiY2MtfV5++WWNHz9e77zzjipXrqxRo0ZJkuLi4jRq1CjVrl1b5cqV0+uvv65du3Zl6Lgf5MqVKxo6dKjq1aun8uXLq127dtq6datVn1u3bmnmzJl69dVXVa5cOTVu3Fhz586VyWSS9L9LSy9evKgSJUpo9erV6T7ulJQUTZkyRXXr1lX58uXVtWtXffPNN1bvsyTt379fb731lipUqKDq1asrODhYMTEx6TrGmTNnqnbt2qpUqZICAwN1/vx5SVJYWJhKlCihr7/+2qp/ZGSkSpUq9dDLZe/lueeek6enpy5duiTp9qWIpUuX1ooVK/Tiiy+qbt26CgsLU6dOnSyXGN55H2bOnKlXXnlF5cuXl7+/v1atWmW17R9++EFt2rRRuXLlVKdOHY0bN06JiYkZrvEOR0dHOTg4WC1LSkrS1KlT1bhxY5UtW1aVK1dWly5ddOzYMUuf999/X507d9aqVavUpEkTlS1bVi1bttS2bdustnXo0CF17NhRFStWVP369bVo0SJ17txZ77//vqXPrVu3NGnSJNWrV09ly5ZVixYtMvz/GkD2wEgXAKTT7t271a1bN1WrVk0hISFKTk7WnDlz9MYbb2j58uUqVKiQZsyYoT59+iggIECNGzeWJC1dulTjxo1Tnz59FBwcrLi4OM2bN0+DBw9WxYoVVaBAgXTtv379+po/f746deqkVq1aqUaNGipUqJAkqX379lZ9J02apMWLF6tXr16qWLGi1q9f/0ijYDdv3tTbb78tT09PjR49Wm5ubjpw4IBmzpypHDlyaOzYsZa+S5cuVceOHdWjRw85OTnp1q1beueddxQVFaUBAwYob968WrVqlbp166b58+erVq1aD9y3yWRSamqq1TKDwSA7OztJt0Nou3bt5ODgoAEDBsjT01OrV69W7969NWnSJLVs2VJms1m9evXSb7/9pt69e6tUqVLas2ePpk2bpvPnz2vs2LEKDAxUTEyM5XLSwoULp/u4R40apfXr1+u9995TqVKltH79eo0cOdKq5n379qlLly6qWbOmpk2bpmvXrmn69Ol6++23tXLlSjk5Od33PThw4ICuXr2qUaNGKS0tTVOnTlXnzp21ceNGFS9eXBUqVNC3336rDh06WNb59ttv5eTkpCZNmqTvJP9NbGysYmNjrUZ909LS9Nlnn2ncuHGKiYm55yhXcHCwtm7dqoCAAFWoUEE7duzQsGHDZGdnp9atW2vdunUKCgpSixYt1L9/f128eFGffPKJwsPD9cUXX8hgMNy3JrPZbPV9cOfywpkzZyohIUGtWrWytA0ZMkT79u3ToEGDVLhwYZ05c0bTp0/XgAEDtHHjRst+/vjjD125ckV9+/aVq6urpk+frr59+2r79u1yd3fXyZMn1blzZ5UtW1Yff/yxYmNj9fHHH+v69euWe8jMZrN69+6tgwcPqm/fvvL19dWWLVs0YMAAJScnq3Xr1hl+/wE8w8wAgLsEBwebGzRoYLWsXbt25ldffdWcmppqWXbt2jVz9erVzf369TObzWbz+fPnzX5+fuZVq1ZZ+kyYMME8adIkq2398ccfZj8/P/O6devMZrPZvGrVKrOfn5/5/Pnz963p1q1b5pEjR5pLly5t9vPzM/v5+Zlfeukl88iRI83h4eGWfnFxceYyZcqYJ06caLV+586drfYRGhpq9vPzu2s/fn5+5tDQULPZbDb/+eef5v/85z/ms2fPWvXp2bOnuXHjxpbXDRo0MNevX9+clpZmWfb111+b/fz8zL/99ptlmclkMnfs2NHcpk2b+x7nnffwXl+lSpWy9Js0aZK5TJky5nPnzlmt/84775jr1KljTktLM//8889mPz8/87fffmvVZ+bMmWY/Pz9zWFiY2Wy++3yn57jPnj1rLlGihPnzzz+36vPuu+9avc8dOnQwN2/e3Or75tSpU+ZSpUqZlyxZct/34a233jKXKVPGfOHCBcuyY8eOmUuUKGFetmyZ2Ww2m5ctW2b28/Ozeg+aNm1qHjp06H23e+d77ezZs+aUlBRzSkqKOT4+3nz06FFz586dzaVLlzYfP37cqu/y5cvvqu2tt94ym81m819//WX28/MzL1q0yKpPv379zO+//77ZZDKZ69ata+7atatV+6+//mr28/Mz//TTTw98D+71fVCiRAlzixYtzBs3brT0vXXrlvndd981f/fdd1bb+Pzzz81+fn7myMhIs9l8+1zfOf479u7da/bz8zNv2rTJbDabzYMHDzbXrl3bnJiYaOlz8OBBs5+fnzk4ONhsNpvNv/zyi9nPz++u/QUFBZnr1KljTklJue9xAch+GOkCgHRITEzU77//rt69e1tGWiQpV65catCgwV2XJv3dncuRbty4oTNnzujMmTOWS+xSUlLSXYOjo6PGjBmj9957T9u2bdPu3bu1Z88eff3111q9erWmTp2qJk2a6LffflNKSspdMwC2bNlSv/76a0YOW6VKldJXX30lk8mk8+fP68yZMwoLC9OpU6fuGoXy9fWV0fi/q9Z37dqlPHnyqEyZMlZ9GzRooEmTJunatWtyd3e/77779Olz10Qafx8R2bt3rypVqmQZ7fv7cQ4dOlSnTp3S3r17ZWdnp2bNmt3VZ/r06dqzZ889R27Sc9x79uyR2WzWq6++arVu8+bN9csvv0i6PVJ4+PBhde3a1WrEplChQvL19dXOnTvVsWPH+74HFStWVMGCBS2vS5Ysqeeee06//vqrOnToIH9/f02YMEHffvut+vTpoyNHjujkyZMPvB/rjkaNGt21rGDBgpo8efJdl536+fnddzv79++/5/amTZsmSTp58qQiIiLUs2dPq++DatWqydXVVTt37rznhCl3lClTRh9++KGk25dOTp8+XSkpKfrkk0/k6+tr6efo6KgFCxZIun3Z6dmzZ3Xq1Cn99NNPkqz/r+XOndtqNC9fvnySbp8v6faodr169eTs7GzpU6lSJatzsWvXLhkMBtWrV8/quF5++WWtXbtWYWFhKlWq1H2PC0D2QugCgHS4ceOGzGazvL2972rz9vbWjRs37rvuuXPnNGrUKO3evVv29vYqWrSo5Zda8yM8GypPnjxq166d2rVrJ+n2L/9BQUH68MMP1ahRI127dk3S7V8s/87HxyfD+5KkL774QnPmzFFsbKy8vb1VpkwZOTs733XM/3xv4uLidPXqVZUpU+ae27169eoDQ1fBggVVrly5+7Zfu3btntPr36nj+vXrunbtmjw9PWVvb/3j7s6sfQ86bw877jv3ZHl5ed1z/3dqMJlMmjdvnubNm3fXPh42E+O9vt+8vLx0/fp1SbcnmXj11Ve1du1a9enTR2vWrNHzzz+vqlWrPnC7kjR79mzL++Dg4CBPT8/7fo/88xj/Li4u7oF97rR/+OGHlvD0d1euXHlgnTlz5rR8H5QrV06VKlVSq1at9O6772rNmjVW3+c7duzQ+PHjderUKeXMmVMlSpRQzpw5JVn/X/t7mJL+F+bv3OcXExNzz+O5837dOS6z2azKlSvfs+4rV64QugBYELoAIB3c3NxkMBjuOZnF1atX5eHhcc/1TCaTevToIQcHBy1fvlylS5eWvb29wsPDtXbt2nTv//DhwwoICNDkyZOtJsyQbs9g2LVrV02YMEGxsbHy9PSUdPuep6JFi1r63fnl9447v2impaVZRu8SEhKs+qxbt04TJ07UoEGD1K5dO8svuP369dPvv//+wJrd3NxUpEgRTZky5Z7tD3oeWXq4u7vf93xIkqenp9zd3RUbG6vU1FSr4HXnF/0779U/pee47wSU6Oho5c+f37JudHS05d85c+aUwWC47/Ok/vnL/z/dCVf/PL5KlSpZXrdt21Zr1qzRkSNH9P3331tNcPEgfn5+//ocSLdHe6XbQeXOiJEknTp1SjExMZZgPWTIEFWvXv2u9R8UvO/Fy8tLo0aN0nvvvaeQkBBNnTpV0u0/bvTu3VsNGzbUnDlzLCNZS5cu1Y4dOzK0j3z58lmdxzuio6P1wgsvSLr9/e3i4qIvv/zyntt4/vnnM7RPAM82Zi8EgHRwcXFR2bJltWHDBqWlpVmW37hxQz///LPlYbJ/v/RQuj0xwenTp9WuXTuVL1/e8ov/9u3bJf3vL+sPU6RIEd28eVNffvnlPdc5ffq08uTJo9y5c6tSpUpydna+axa1fz7Y2dXVVZJ0+fJly7KDBw9a9Tlw4IDc3NzUo0cPS/BISEjQgQMHHlp79erVdfnyZXl5ealcuXKWr127dmn+/Pl3vVcZVa1aNR06dMgym98da9euVZ48efT888+revXqSktLu+u9uBN475y3v18Wmd7jrlKliuzs7LR582ardf/+2tXVVaVLl9apU6es3oPixYtrxowZ2rNnzwOP8dChQ1ajcUeOHNHFixdVs2ZNq/ehSJEimjx5smJjY5/4BA533sMffvjBavknn3yisWPHqmjRovLy8tKFCxes3oN8+fJp6tSp+vPPPzO8z8aNG+ull17S+vXrLe/hH3/8oVu3bqlnz55Wlw7eCVwZGVWuVq2atm/frlu3blmWHTt2zGpGyurVqysxMVFms9nquMLCwjRz5sy7Lr8FkL0x0gUA6TRo0CB17dpV3bp101tvvaWUlBTNnTtXycnJ6tOnj6Tbf/2Wbt/v4evrqwoVKqhgwYJaunSp8uXLp1y5cumXX37RokWLJP3vHpKHcXd3V3BwsEaPHq0333xTr7/+ugoVKqQbN25oy5YtWrNmjaZMmSKDwSBXV1f17t1bU6dOlbOzs+rUqaMdO3bcFTzq1aunCRMmaOTIkerevbsiIiI0Y8YMy+VYklS+fHn997//1cSJE9WgQQNduXJFCxYsUFRU1ENHKNq0aaMlS5aoS5cu6tWrl/Lnz69ff/1V8+bN01tvvXXXdN8Z1aVLF61du1ZdunRRnz595OnpqW+++Ua7d+/W+PHjZTQaVbduXdWoUUOjR4/WlStXVLp0ae3du1fz5s3Ta6+9ZrmfK1euXIqKitK2bdtUqlSpdB13oUKF1LZtW3388cdKSUlRyZIltWXLFss9RHeC3MCBA9WjRw8NGjRILVu2VFpamj7//HPL6OWD3Bkp7dWrl2JjYzV16lT5+fmpZcuWVv3atm2rqVOnqk6dOlajbk9CyZIl9eqrr2rKlClKSkpSmTJl9Msvv2jLli2aNm2a7OzsNGDAAI0aNUp2dnZq0KCBrl+/rlmzZikyMvK+l58+zLBhw9SyZUuNGzdOa9asUZkyZWRvb6/Jkyfr3XffVXJyslavXq2ff/5ZkjI0PX2vXr20YcMGdevWTe+++66uX7+u6dOny2AwWEaI69Wrp2rVqikwMFCBgYHy9fXVkSNH9Omnn+rFF1+0hPWIiAhFRESodOnS6XrAOoBnEyNdAJBOtWrV0hdffKHk5GQNHDhQI0eOlI+Pj5YvX67ixYtLuj2y0aVLF/3www/q1q2bkpOTNWvWLPn4+Oj9999X//799dtvv2n27NkqWrSoZRKC9HjjjTe0cOFCeXp66uOPP1aXLl00dOhQRUVFadGiRWrevLmlb/fu3TVq1Cht2bJFAQEBOnHihHr16mW1vRdeeEEfffSRLl26pB49emjRokUaO3as8ubNa+nz2muvqXfv3tq4caO6d++u0NBQVa1aVWPGjFFcXJzCw8PvW6+Li4uWLl2qKlWqaPLkyerevbs2b96sQYMGaejQoek+7vvJkyeP/vvf/6ps2bIKCQlRv379dPnyZc2aNUtt27aVdPsSyjvT+n/55Zfq0aOHNm3apAEDBigkJMSyrTZt2qhgwYLq3bu3vvnmm3Qf98iRI/XGG2/o888/V2BgoCIiIixBysXFRZL04osvasGCBYqIiFDfvn01ZMgQ2dnZ6Ysvvnjow58bNGigatWqafDgwRozZoyqV6+uRYsW3XUv2J2JKNq0afOv39dHMXnyZL399ttavHixevbsqV9++UXTpk2zTDLSvn17TZ06VQcPHlSvXr30wQcf6LnnntPixYvvmgglvYoWLapOnTrpr7/+0pIlS/T8889r6tSpioyMVEBAgOVZcYsXL5bBYMjQ/7Xnn39eCxYs0K1bt9S3b1998skn6t69u/LkyWP5o4TRaNTcuXPl7++vOXPmqGvXrlq2bJk6d+6sTz75xLKtFStWqEOHDg+9dw3As81gfpS7uAEAWc7q1as1dOhQbd269bHcy5PdxcXFafv27XrppZes7g376KOPtHr16odeOvg4zZs3T/Pnz9eOHTsYTXkMdu3aJQcHB6sJSa5du6Y6depoyJAhevvttzOxOgBZEZcXAgDwCJydnRUSEqJSpUrpnXfekYuLiw4ePGh5KPWTsGbNGv3111/66quv1KNHDwLXY3L06FGFhoZq4MCBKlOmjGJjY/X555/Lzc3NakQZANKL0AUAwCPIkSOHFi5cqGnTpun999/XzZs3VbhwYb3//vsPfPbW43T8+HEtW7ZMr7zyirp37/5E9pkd3Lkn7L///a8uX74sFxcXVa9eXR999NFdj2IAgPTg8kIAAAAAsCEm0gAAAAAAGyJ0AQAAAIANEboAAAAAwIYIXQAAAABgQ4QuAAAAALAhpox/BNHRN8ScjwAAAED2ZTBIXl5u6epL6HoEZrMIXQAAAADShcsLAQAAAMCGCF0AAAAAYEOELgAAAACwIe7pAgA8ViaTSWlpqZldBh4TOzt7GY38jRYA/g1CFwDgsTCbzbp+PUY3b8Zndil4zJydXZUrV24ZDIbMLgUAsiRCFwDgsbgTuFxdPeXomINf0J8BZrNZycm3FB8fK0lyd/fK5IoAIGsidAEA/jWTKc0SuFxdc2V2OXiMHB1zSJLi42Pl5ubJpYYA8Aj45AQA/GtpaWmS/vcLOp4td84r9+oBwKMhdAEAHhsuKXw2cV4B4N8hdAEAAACADRG6AADPpLfeel2bN2/M7DIAAGAiDQDAs2nJkuWZXQIAAJIIXQCALOLy5Utq376l+vcP0pdffqFbt5L04ot1NXBgsJYtW6o//jiiGzdu6OLFC5owYYrGjRutd9/toWbNWujmzZuaPTtUP/74g1JTU1S2bHkFBQ1Vvnz5lZiYoM8+m6Ffftmu5ORkValSVf36BSl37odPj75hwzqtWrVcuXLl0rFjRzVw4PuqXLmKQkM/1rFjRxUTE63cub31zjvvqnnzVpKkF1+sqv79g7Rq1XJFRUWpWLFiCgoaJl/fYpKkffv2aNas6bp48aJ8fX1VrlxF/fnnH5oxY64k6YcfvtfixV8oIuKyChYspF69+qh69Zq2e+MBAP8alxcCALKUn3/+UYsWLdNXX63S+fPn9fHHH0mSDhzYp4CA97Rq1XqVLVveap2PP/5Ix479qQULFmvt2s3KndtLo0cPkySNHz9GFy6c14IFi7V8+bdycXHVsGGDZTab01XPiRPH1LhxU61du1n16tXXxIlj5eBgr8WLl2vz5u1q27a9PvlkkhITEy3r/PDDZs2YMVdr1mxQjhxOmjlzuqTbwTI4eKBat26nDRu2qlev97R27WrLert2/aIpUyZowIAh2rDhR3Xt2lPDhw/RqVMn/9V7CgCwLUIXACBL6dt3oDw9PeXl5a1u3Xrpp5+2KiUlRQUKFFSVKtXk4uIie/v/XciRkpKirVs3q3v3APn45JOjo6Pee2+gBgwYrNjYGP3881b17x8kT8/ccnFxUb9+g3Ts2FGdOHE8XfU4ODioSZNmcnR0VI4cTgoOHqFBg96Xvb29IiMj5OKSU7du3dL169ct67Rr10FeXt5ydXXVyy830vnz5yRJmzdvVPHifmrVqo3s7e1VoUIltWz5mmW9VauWq3XrdqpYsbLs7OxUp85LqlPnJX377arH9O4CAGyBywsBAFnKc88VtvzbxyefkpOTdf36NXl757ln/+vXryk5OVn58uWzLHNzc1PJkqX1559/SJJ69OhstY6dnb0uX76okiVLPbSe3Lm9rB4YfOnSRc2cOV3nz59ToUKFVahQIUmS2WyyWucOe3t7S9uVK5HKly+/1fYLFCioP/88KkmKiLisQ4cO6JtvVlra09LSVKVKtYfWCQDIPIQuAECWEhV1RYULF5F0O+A4OTnJ3d1D0tl79vf0zC1HR0dFRkZY1ouNjdGSJYv0xhsdJUlLl66Ul5e3ZZ3Tp0+pQIGC6arn78+wSk1N1ZAh/dWjR2+1adNeBoNBx48f0/ffp28WxXz58mvnzh1WyyIiIiz/zpMnr5o08VenTp2t2nPk4KHUAPA04/JCAECWMnv2DCUkxCsq6qoWLJijV1/1t7qc8J+MRqOaNPHXggVzFRV1Vbdu3dLcubN19OjvypMnr2rXflHTp0/VtWtxSk1N1aJFC9S9+9uKj7+R4dpSUlKUlJQkJycnGQwGRUREaPbsUEvbwzRp0kxhYSe0ceN6paWl6ejRP7R27RpLe8uWr2nlymU6duz2yNfx43+qW7e39MMP32e4VgDAk8NIFwAgS3nuuULq1KmDkpKS1LjxqwoI6KslSxY+cJ333huguXNnqXv3d5SUlKRKlapo3LjbE3CMGDFGn332qbp06aiEhHi98IKvpk6dYTXylV7Ozs4aNmy05s//TNOmTZGnp6datHhNp0+f0qlT4Spc+PkHrp83r4/GjZukmTOn6+OPP1Lx4iVUo0YtxcXFSpIaNHhFN2/e1PjxHyoyMlK5cuXS66+/qXbtOmS4VgDILoxGg4xGw8M7/j+TySyTKX2TKaWXwZze6ZlgERV1Q7xrAPA/KSnJio6+LC+v/HJwcLTJPu5MGb9ixVrlz1/AJvvIbJGREbp2LU5+fiUtyz799BPFxERr9OhxmVbXkzi/AGALRqNBHh4usrNL/wV+aWkmxcUlPjR4GQySt7dburbJSBcAAE+Ja9fiFBjYTTNmzFPJkqUUHh6mzZs3qm/fgZldGgBkSUajQXZ2Rg2fvFSnz0c+tP8LhXwUMrijjEbDYx3tyrTQtWHDBgUFBVnd/PvKK69o8uTJOnz4sMaNG6fw8HB5enoqICBA7du3t/Rbs2aNZs2apatXr6po0aIaOXKkKlWqJOn2LE5TpkzRt99+q5s3b6pmzZr68MMPlTdvXklSdHS0Ro4cqb1798rOzk4tW7ZUcHDwA+8HAABkP8eOHVXfvr3u2+7jk19Llix/rPv08yupfv2C9MEHwxQdHaXcub3UqVNnNWr06mPdDwBkN6fPR+r4yYuZtv9MSxq///67WrVqpQkTJlgtv3btmnr06KG+ffuqQ4cO2rdvn3r37q0SJUqofPny2rNnj8aOHat58+apfPnyWrp0qQICAvTTTz/J2dlZs2fP1s6dO7Vq1Sq5ublp5MiRGjFihObOnStJ6t+/v3x8fLRjxw5FRUUpICBACxcuVLdu3TLjbQAApFP+/AX0yy/7n9j+SpUqoy1bdjy842PWokVrtWjR+onvFwBgO5k2e+Hvv/+usmXL3rV88+bN8vDwUMeOHWVvb69atWqpRYsWWrp0qSRpxYoV8vf3V5UqVeTg4KDOnTvL09NTGzZssLR3795d+fPnl6urq4YPH67t27fr/PnzOnv2rPbu3avBgwfL2dlZhQoVUmBgoGXbAAAAAPC4ZcpIl8lk0tGjR+Xs7Kz58+crLS1N9erVU1BQkMLCwuTn52fVv1ixYlq58vaDIMPDw9W2bdu72o8fP64bN24oIiLCan1vb2+5u7vrxIkTkiQPDw/5+PhY2n19fXXp0iVdv35duXLlSlf9hvRPfgIA2QKfi9mDwcC5BpB9POzzLiOfh5kSumJiYlS6dGk1adJEoaGhio2NVXBwsAYPHqw8efLI2dnZqr+Tk5MSExMlSQkJCfdtT0hIkCS5uLjc1X6n7Z/r3nmdmJiY7tDl5ZW+WUoAILtISkpSTIxRdnYG2dvzCMhnjclkkNFolKdnTjk5OWV2OQBgc56eOR/r9jIldHl7e1td0ufs7KzBgwfr9ddfV5s2bZSUlGTVPykpSTlz5rT0vVe7p6enJUDdvHnznuubzea72u68vrP99IiOZsp4APi7lJRkmUwmpaWZlZpqyuxy8JilpZllMpkUG5sgB4eHP+QZAJ4WdnbGRwpQsbEJSkt78M8zgyH9gzGZErqOHz+u9evXa9CgQTL8/7hccnKyjEajypcvr0WLFln1Dw8PV/HixSVJxYsXV1hY2F3tdevWlbu7u3x8fBQeHm65xPDq1auKi4uTn5+fTCaT4uLiFBUVJW/v2w+9PHnypPLlyyc3t/SPXpnNInQBwN/wmZg98PMPQHbyOD/vMuUaEA8PDy1dulTz589XamqqLl26pMmTJ+u1115TkyZNFBUVpYULFyolJUW7d+/WunXrLPdxtWvXTuvWrdPu3buVkpKihQsXKjo6Wo0aNZIktWnTRrNnz9b58+cVHx+v8ePHq3r16ipcuLCKFCmiKlWqaPz48YqPj9f58+c1a9YstWvXLjPeBgDIFozG25ccPqkvo5GbjgAAT5dMGenKly+f5syZo48//lizZ89Wjhw55O/vr8GDBytHjhz6/PPPFRISotDQUOXOnVsjRoxQzZo1JUm1atXS6NGj9cEHHygyMlLFihXTvHnz5OHhIUnq3bu3UlNT1bFjRyUkJKhGjRqaNm2aZd+hoaEaM2aMGjZsKKPRqNatWyswMDAT3gUAePYZjQZ5errIaHxyf+O7fRlc4mN9qCUAAP+GwWzmQoGMiorini4A+LuUlGRFR1+Wl1d+OTg4Wpbb29++ln79b1sUHR9j8zq8XHOrecVGio1NSNe9ZZs3b9TkyeOtlqWkpMhgMOinn3bp6NE/NG3aZJ05c0oeHp5655131bx5a0nSggVzdOjQAc2YMdeyblxcnAYP7qe0tDRNnjxNXl7e9913WlqaRo58X76+xdS1a0/L8tjYGE2aFKJDhw7Izs5OjRs3U+/e/WRvf/vvpLas6X7ud34B4Gl35+fQm30/TtfDkUv6FtRXoQPT9XPEYJC8vZ/ie7oAANlLdHyMIq9HZXYZd2ncuKkaN25qeX316hV16/a2AgP76vr16xo8uJ+6du2pVq3a6PDhQxo6NEhFixZT6dJ3P2cyIuKyBg7so4IFn9OYMRPvmi3Xum+EJk0ap717d8vXt5hV26hRQ5UnT159880mRUdH6f33B2r58q/05ptv27QmAIDtMK8vAACSzGazxo4dpdq1X1STJs20bduPypXLXW3bvi57e3tVqVJNjRu/qtWrV9y17smT4erV611VrFhZEyd+/MBwc+7cWXXt2lFlypRTuXLlrdouXDivQ4cOKDCwr5ycnFSw4HPq3LmbVq1aLkk2qwkAYFuELgAAJH3//QadPn1K7703QJJ0+vRJ+fr6WvUpUuQFhYdbz6D7228H1bt3d9Wu/aKGDBkuOzu7B+7H29tbX3/9rbp27Sk7O+sLTk6fPqlcudzl7Z3nb/ssqsjICN24ccNmNQEAbIvQBQDI9kwmkxYuXKC3335XLi63n+eSmJgoJyfr0SEnJyfdvJloeX327Bm9//5AlS5dRjt37lBU1NWH7svFJadcXV3v2XZ7n9YPH77z+ubNRJvVBACwLUIXACDbO3hwv6Kjo9S8eSvLMicnZ926lWTVLykpSS4uLpbXycm3NHHix5o0aZoKFCiooUODlJycbGl/663X1ajRS2rU6CW99dbrD63jfvuUboe1x1ETAODJI3QBALK9n3/+UXXr1re676loUV+dPn3Kqt+ZM6dVtOj/Lu8rXryEKlasLHt7e40dO1EREZetZkNcsmS5tmzZoS1bdmjJkuUPraNoUV9du3ZNMTHRf9vnKeXN6yNXV9fHUhMA4MkjdAEAbM7LNbd8cnnb/MvLNfcj1ff777+pYsXKVsvq1Wug6OhoLV/+lVJTU3Xw4H5t3rxJ/v6t7rkNb+88+vDD8dq8eaOWL//qkeooVKiwypevqOnTpyoxMUGXLl3UwoXz5e/fMtNqAgD8e0wZDwCwGZPJLJPJpOYVGz3BfZoy/GDkS5cuWk1eIUnu7h6aNm2mpk+fovnz58jDw0P9+wepcuWq991O5cpV1b17gGbOnK6iRYupatXqGa5/3LiP9PHHk9S+fUsZDEa9+qq/Onfulqk1AQD+HR6O/Ah4ODIAWHvQw3ONRoOMRsMTq+V20OND+nHi4cgAsioejgwAyBYIQQCA7I57ugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANsSU8QAAm+I5XQCA7I7QBQCwGaPRIA9PF9kZn9yFFWkmk+JiEwleAICnBqELAGAzRqNBdkajFu7YqIhrMTbfXz733Or8UlMZjYYMh67Y2Fj16tVFwcEjVLlyVUnS0aN/aNq0yTpz5pQ8PDz1zjvvqnnz1pZ1Nm5cr4UL5ys6OkrPP/+CBgwYrLJly0uS+vTpoUqVqqhr156W/sePH9Pgwf1Us2ZtBQePkL393T+GDxzYp88+m6GzZ8/IyclJDRo0VGBgX+XI4ZRpNQEA/h0+WQEANhdxLUbnY65kdhn3deTIbwoJ+UAXL16wLLt+/boGD+6nrl17qlWrNjp8+JCGDg1S0aLFVLp0WR08uF+ffDJZU6ZMV+nSZbVq1dd6//2BWrlyvZycnO7ax759ezR8+BC9/vp/1K1br3vWERsbq8GD+yso6H29+qq/YmJiNHBgby1Zskhdu/bMlJoAAP8eE2kAALK1jRvX68MPR6hHj0Cr5du2/ahcudzVtu3rsre3V5Uq1dS48atavXqFJGn9+m/VsGFjlS9fUfb29urQoaPc3T20devmu/axZcsmDR06SH37DnxguPH09NT69ZvVrFkLGQwGXb8ep+TkZHl4eGRaTQCAf4/QBQDI1qpXr6mvv/5GDRs2tlp++vRJ+fr6Wi0rUuQFhYeHpav9juXL/6sxY0YqOHiEmjdv9dB6XFxySpLatPHX22+/IS8vbzVr1jJTawIA/DuELgBAtubl5X3P+5gSExPl5ORstczJyUk3byamq126PYq2bNkSFS/up/Xrv1Vqamq661q2bLW++WajjEajRowIfipqAgA8GkIXAAD34OTkrFu3kqyWJSUlycXFJV3tkuTs7Kw5c77Q+PFTFR7+l2bMmGZpi4iIUKNGL1m+Jk8eb7WtHDmc5O2dRwEB72nPnl91/fp1m9cEALANQhcAAPdQtKivTp8+ZbXszJnTKlrUN13tklS/fkPlyZNX+fLl0+jRIVq9erm++26tJClfvnzasmWH5Wvw4GH6/ffDevPNtkpJSbFsIyUlRQ4ODnJ2drZ5TQAA2yB0AQBwD/XqNVB0dLSWL/9KqampOnhwvzZv3iR//9v3QPn7t9TmzZt08OB+paamavnyrxQTE6O6dRvcc3vVq9dUly7dNXXqRB09+sc9+/j6FldSUpI+++xTpaSkKCLismbMmCZ//1ZycHDIlJoAAP8eU8YDAGwun3vuLLcfd3cPTZs2U9OnT9H8+XPk4eGh/v2DLM/wqlq1ugYNCtaUKRN09eoVFSlSVFOmhCpXLvf7brNz5276888/NGxYkBYsWCxv7zxW7S4uLpo69VOFhk5VixaN5erqqsaNm6pz526ZVhMA4N8zmM3mjD09EoqKuiHeNQD4n5SUZEVHX5aXV345ODhalhuNBnl4usjO+OQurEgzmRQXm5jhhyPj/u53fgHgaWdvb5SnZ0692fdjHT958aH9S/oW1FehAxUbm6DUVNMD+xoMkre3W/rqSFcvAAAegclkVlxsooxGwxPdJ4ELAPA0IXQBAGyKEAQAyO6YSAMAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYENMGQ8AsCmj0cBzugAA2RqhCwBgM0ajQR6eLrIzPrkLK9JMJsXFJhK8AABPDUIXAMBmjEaD7IxGTdu4Vhdiom2+v+dye6l/05YyGg3pDl0HDuzTZ5/N0NmzZ+Tk5KQGDRoqMLCvcuRw0tGjf2jatMk6c+aUPDw89c4776p589aWdTduXK+FC+crOjpKzz//ggYMGKyyZctLkvr06aFKlaqoa9eelv7Hjx/T4MH9VLNmbQUHj5C9/d0/hq9fv6bp06dq166dMplMqlSpsgYNGipvb29JypSaAAD/Dp+sAACbuxATrdNXIjO7jLvExsZq8OD+Cgp6X6++6q+YmBgNHNhbS5YsUvv2/9Hgwf3UtWtPtWrVRocPH9LQoUEqWrSYSpcuq4MH9+uTTyZrypTpKl26rFat+lrvvz9QK1eul5OT01372rdvj4YPH6LXX/+PunXrdd+ahg8fIje3XPr6629kZ2dUSMgHmjRpnCZNmqbr169nSk0AgH+HiTQAANmWp6en1q/frGbNWshgMOj69TglJyfLw8ND27b9qFy53NW27euyt7dXlSrV1Ljxq1q9eoUkaf36b9WwYWOVL19R9vb26tCho9zdPbR16+a79rNlyyYNHTpIffsOfGC4OX78mI4e/UPDh4+Wm5ubXFxyKjh4hHr1ek+SMqUmAMC/R+gCAGRrLi45JUlt2vjr7bffkJeXt5o1a6nTp0/K19fXqm+RIi8oPDxMkh7afsfy5f/VmDEjFRw8Qs2bt3pgLceOHVWRIi9o7dpv1KFDa7Vq1UQzZkyzXFqYGTUBAP49QhcAAJKWLVutb77ZKKPRqBEjgpWYmCgnJ2erPk5OTrp5M1GSHtou3b6/atmyJSpe3E/r13+r1NTUB9Zw/fo1nTwZpgsXzumLL5bqiy++0tWrVzRu3Oh07dMWNQEA/j1CFwAAknLkcJK3dx4FBLynPXt+lZOTs27dSrLqk5SUJBcXF0l6aLskOTs7a86cLzR+/FSFh/+lGTOmWdoiIiLUqNFLlq/Jk8fLwcFRktS37yC5uORU7txe6tEjULt27bQEKlvWBACwDUIXACDb+v33w3rzzbZKSUmxLEtJSZGDg4OKFHlBp0+fsup/5sxpFS16+/K9okV9H9guSfXrN1SePHmVL18+jR4dotWrl+u779ZKkvLly6ctW3ZYvgYPHqYXXnhBZrNZqan/qyctzfT//zI/dJ//tiYAgG0QugAA2Zavb3ElJSXps88+VUpKiiIiLmvGjGny92+lBg0aKjo6WsuXf6XU1FQdPLhfmzdvkr//7Xug/P1bavPmTTp4cL9SU1O1fPlXiomJUd26De65r+rVa6pLl+6aOnWijh794559qlWrqQIFCmrChDFKTExUbGys5s2bpZdeqi8Xl5yqV6/BE68JAPDvMWU8AMDmnsvt9VTux8XFRVOnfqrQ0Klq0aKxXF1d1bhxU3Xu3E2Ojo6aNm2mpk+fovnz58jDw0P9+wepcuWqkqSqVatr0KBgTZkyQVevXlGRIkU1ZUqocuVyv+/+Onfupj///EPDhgVpwYLF8vbOY9Vub2+vGTPm6tNPP9Z//vOabt1K1osv1lW/fkGSJHd3jydeEwDg3zOYzeb0PT0SFlFRN8S7BgD/k5KSrOjoy/Lyym+5L0m6/XBkD08X2Rmf3IUVaSaT4mIT0/1wZDzc/c4vADzt7O2N8vTMqTf7fqzjJy8+tH9J34L6KnSgYmMTlJpqemBfg0Hy9nZLXx3p6gUAwCMwmcyKi02U0Wh4ovskcAEAniaELgCATRGCAADZHRNpAAAAAIANEboAAAAAwIYIXQAAAABgQ4QuAAAAALAhQhcAAAAA2BChCwAAAABsiCnjAQA2ZTQaeE4XACBbI3QBAGzGaDTIw8NFdnZP7sKKtDST4uISCV4AgKcGoQsAYDNGo0F2dkaNXbFGZ69G2Xx/z+fx1sj2r8loNKQ7dF2/fk3Tp0/Vrl07ZTKZVKlSZQ0aNFTe3t46evQPTZs2WWfOnJKHh6feeeddNW/e2rLuxo3rtXDhfEVHR+n551/QgAGDVbZseUlSnz49VKlSFXXt2tPS//jxYxo8uJ9q1qyt4OARsre//4/h2NhY9erVRcHBI1S5clVJ0sGD+9W3by/lyZNXq1atl9FoHWaDgwdo584dCg39zLIOACDzEboAADZ39mqUwi5HZHYZ9zR8+BC5ueXS119/Izs7o0JCPtCkSeM0YsQYDR7cT1279lSrVm10+PAhDR0apKJFi6l06bI6eHC/PvlksqZMma7Spctq1aqv9f77A7Vy5Xo5OTndtZ99+/Zo+PAhev31/6hbt14PrOnIkd8UEvKBLl68cM/2lJRk7du3RzVq1LIsi4mJ1u+/H/l3bwYAwCaYSAMAkG0dP35MR4/+oeHDR8vNzU0uLjkVHDxCvXq9p23bflSuXO5q2/Z12dvbq0qVamrc+FWtXr1CkrR+/bdq2LCxypevKHt7e3Xo0FHu7h7aunXzXfvZsmWThg4dpL59Bz40cG3cuF4ffjhCPXoE3rdPo0ZNtXHj+rvWq1//5Ud4FwAAtkboAgBkW8eOHVWRIi9o7dpv1KFDa7Vq1UQzZkyTt7e3Tp8+KV9fX6v+RYq8oPDwMEl6aPsdy5f/V2PGjFRw8Ag1b97qoTVVr15TX3/9jRo2bHzfPs2atdCOHT8rPj7esmzDhnXp2j4A4MkjdAEAsq3r16/p5MkwXbhwTl98sVRffPGVrl69onHjRisxMVFOTs5W/Z2cnHTzZqIkPbRduj36tGzZEhUv7qf1679VamrqQ2vy8vJ+4L1eklS8uJ8KF37eMqp25MhvMhqNKl26bLqOGwDwZBG6AADZloODoySpb99BcnHJqdy5vdSjR6B27dops9msW7eSrPonJSXJxcVFkuTk5PzAdklydnbWnDlfaPz4qQoP/0szZkyztEVERKhRo5csX5Mnj89Q7c2atdSmTbcvMfzuu7WMcgHAU4yJNAAA2dYLL7wgs9ms1NQU5ciRQ9LtKeel26NJa9astOp/5sxpFS16+5LCokV9dfr0qbvaa9WqY3ldv35D5cmTV5I0enSIgoL6qnhxP/n7t1S+fPm0ZcuOR669ceNXNWvWdIWFndCOHdsUEND3kbcFALAtQhcAwOaez+P9VO6nWrWaKlCgoCZMGKNhwz7QrVu3NG/eLL30Un01avSq5s+fo+XLv1KbNq/ryJHftHnzJk2cOFWS5O/fUsOGDdbLLzdS+fIVtXr1csXExKhu3Qb33Ff16jXVpUt3TZ06UUWKFFWZMv/uUkB3dw/Vrv2ixo4dpcqVq8rDw+NfbQ8AYDuELgCAzZhMZqWlmTSy/WtPbJ9paaZ0P6PL3t5eM2bM1aeffqz//Oc13bqVrBdfrKt+/YLk5uamadNmavr0KZo/f448PDzUv3+Q5flXVatW16BBwZoyZYKuXr2iIkWKasqUUOXK5X7f/XXu3E1//vmHhg0L0oIFi+XtnedfHWuzZi0VHDyAUS4AeMoZzGZz+n4ywSIq6oZ41wDgf1JSkhUdfVleXvkt90ndYTQaZDQanlgtJpM53aEL6fOg8wsATzN7e6M8PXPqzb4f6/jJiw/tX9K3oL4KHajY2ASlppoe2NdgkLy93dJXR7p6AQDwiAhBAIDsjtkLAQAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2xJTxAACb4jldAIDsjtAFALAZo9EgDw8X2dk9uQsr0tJMiotLJHgBAJ4amRq60tLS1LlzZxUsWFATJ06UJB0+fFjjxo1TeHi4PD09FRAQoPbt21vWWbNmjWbNmqWrV6+qaNGiGjlypCpVqmTZ3pQpU/Ttt9/q5s2bqlmzpj788EPlzZtXkhQdHa2RI0dq7969srOzU8uWLRUcHCx7e7InANiC0WiQnZ1RQxeu1KmIKJvvr2g+b03o3E5GoyHDoSs2Nla9enVRcPAIVa5cVQcP7lffvr2UJ09erVq1XkajdXAMDh6gnTt3KDT0M1WuXPWe2zx4cL/mzJmps2dPy9nZRfXqNVCvXu/JyclJGzas0/jxH6pMmXKaM+eLu9Z9553/6OTJMK1YsVb58xfI0LEAAJ4umZo2ZsyYof3796tgwYKSpGvXrqlHjx7q27evOnTooH379ql3794qUaKEypcvrz179mjs2LGaN2+eypcvr6VLlyogIEA//fSTnJ2dNXv2bO3cuVOrVq2Sm5ubRo4cqREjRmju3LmSpP79+8vHx0c7duxQVFSUAgICtHDhQnXr1i0z3wYAeOadiojS8QuXM7uM+zpy5DeFhHygixcv3NWWkpKsffv2qEaNWpZlMTHR+v33Iw/c5tWrVxQcPFDvvTdA/v4tFRV1VcOHD9Hs2aEaMGCIJMnV1VUnThzTuXNnVLhwEcu6x4//qYiIS4/n4AAAmS7TJtLYtWuXNm/erMaNG1uWbd68WR4eHurYsaPs7e1Vq1YttWjRQkuXLpUkrVixQv7+/qpSpYocHBzUuXNneXp6asOGDZb27t27K3/+/HJ1ddXw4cO1fft2nT9/XmfPntXevXs1ePBgOTs7q1ChQgoMDLRsGwCQPW3cuF4ffjhCPXoE3rO9UaOm2rhx/V3r1K//8gO3e+nSRb34Yl21bPma7Ozs5OOTT02aNNNvvx2y9HF1dVOtWnW0ceN3VuuuX79WDRs2/ucmAQBZVKaErujoaA0fPlxTp06Vs7OzZXlYWJj8/Pys+hYrVkzHjx+XJIWHh9+3/caNG4qIiLBq9/b2lru7u06cOKGwsDB5eHjIx8fH0u7r66tLly7p+vXrGarfYOCLL7744uufX1lV9eo19fXX39w35DRr1kI7dvys+Ph4y7ING9apefNWD9xuhQqVNHr0OMtrk8mkbdt+VIkSJa36NW3aQt9/v0Emk0mSdOvWLf388w9q2rT5ox2QDWX29xhffPHFV0a/bP2Zl15P/PJCk8mkwYMHq0uXLipZ0voHT0JCglUIkyQnJyclJiY+tD0hIUGS5OLiclf7nbZ/rnvndWJionLlypXuY/Dyckt3XwDIDpKSkhQTY5SdnUH29v/7e96TnEDj7zKyXx+fvHeta29vtGyjVKmSev75Ivr55y1q3bqtDh/+TXZ2dipfvrxV/wdJTU3RxInjdPnyJY0dO0H29kbLjI51676kyZNDdOjQPtWoUUs//PCTypQpa/kjYXq2b2smk0FGo1Genjnl5OSUqbUAwJPg6ZnzsW7viYeuOXPmyNHRUZ06dbqrzdnZWTdu3LBalpSUpJw5c1rak5KS7mr39PS0BKibN2/ec32z2XxX253Xd7afXtHRN2RmUiwAsEhJSZbJZFJamlmpqabMLkdpaaZHruPOumlpt9dPTTWpadMW+u67dWre/DWtXfuN/P1bWraflmbSgQMHFBTU17KNTp266O2335UkRUVFafTooUpISNCsWfPl6eml1FTT3yb6sFPjxk21fv06ValSQ+vWfas2bV637P/fHMvjkpZmlslkUmxsghwcUjK1FgDICDs74yMFqNjYBMvn8P0YDOkfjHnioevbb7/VlStXVLXq7Zme7oSoH374QUOGDNHOnTut+oeHh6t48eKSpOLFiyssLOyu9rp168rd3V0+Pj5WlyBevXpVcXFx8vPzk8lkUlxcnKKiouTt7S1JOnnypPLlyyc3t4yNXJnNInQBwN8865+JjRu/qlmzpiss7IR27NimgIC+Vu0VKlTSli077lrv2LGjev/9gapSpbqGDBl+31GiZs1aqkePdxQeHqYzZ06pTp2XdPXqFZscy7/Bzz8A2cnj/Lx74tcrbNq0SQcPHtT+/fu1f/9+NW/eXM2bN9f+/fvVqFEjRUVFaeHChUpJSdHu3bu1bt06tW3bVpLUrl07rVu3Trt371ZKSooWLlyo6OhoNWrUSJLUpk0bzZ49W+fPn1d8fLzGjx+v6tWrq3DhwipSpIiqVKmi8ePHKz4+XufPn9esWbPUrl27J/0WAACyGHd3D9Wu/aLGjh2lypWrysPD46HrXLx4QQMG9FaLFq9p1KixD7wsz9e3mJ5//gWNGTNCjRs341EmAPCMeao+1T09PfX5558rJCREoaGhyp07t0aMGKGaNWtKkmrVqqXRo0frgw8+UGRkpIoVK6Z58+ZZfvj17t1bqamp6tixoxISElSjRg1NmzbNsv3Q0FCNGTNGDRs2lNFoVOvWrRUYeO/ZqgAAj0/RfN5Zfj/NmrVUcPCAu0a57mfFiv8qPj5eX3+9VF9//b+Zcn188mvJkuV39ff3b6FPPpmsMWMmPraaAQBPB4PZzIUCGRUVxT1dAPB3KSnJio6+LC+v/HJwcLQsNxoN8vBweaITaqSlmRQXl5jhhyPj/u53fgHgaWdvf/uerjf7fqzjJy8+tH9J34L6KnSgYmMTHno/rcEgeXs/pfd0AQCyD5PJrLi4RMtMfU9qnwQuAMDThNAFALApQhAAILvL3Ad/AAAAAMAzjtAFAAAAADZE6AIAAAAAGyJ0AQAAAIANEboAAAAAwIYIXQAAAABgQ0wZDwCwKaPRwHO6AADZGqELAGAzRqNBHh4usrN7chdWpKWZFBeXSPACADw1CF0AAJsxGg2yszMqeObXOnXpqs33V7RAHn3Uu4OMRkO6Q1dY2F+aOXOaTpw4LgcHB1WrVkPvvTdQp06Fq2/fXsqTJ69WrVovo9E6OAYHD9DOnTsUGvqZKleues9tL1myUPPmzZajo6NlWbt2b6hnz97asGGdxo//UGXKlNOcOV/cte477/xHJ0+GacWKtcqfv0AG3gUAwNOG0AUAsLlTl67q2JlLmV3GXW7dSlJQUF+1bPmaJk+ersTEBI0bN1rjx3+oN97oKElKSUnWvn17VKNGLct6MTHR+v33Iw/d/vHjf+qdd7rq3Xd73LPd1dVVJ04c07lzZ1S4cBGr9SIinr73CwDwaJhIAwCQbUVGRqhYMT917txNDg4Ocnf3UKtWbXT48EFLn0aNmmrjxvVW623cuF7167/80O0fO/anSpYsfd92V1c31apVRxs3fme1fP36tWrYsHEGjwYA8LQidAEAsq3ChYto6tRQ2dnZWZb99NNWlShRyvK6WbMW2rHjZ8XHx1uWbdiwTs2bt3rgtmNjYxQZGaF169aoVatX1b59S82aNV23bt2y6te0aQt9//0GmUwmSdKtW7f0888/qGnT5v/+AAEATwVCFwAAksxms+bOnaWdO3eoX78gy/Lixf1UuPDz2rp1syTpyJHfZDQaVbp02QduLzo6WhUqVFKzZi20YsVaTZ48Xbt3/6oZM6ZZ9atd+0UlJydr//69kqRt235U6dJl5e2d5/EeIAAg0xC6AADZXkJCvEaMGKLNmzdq5sx58vUtZtXerFlLbdp0+xLD775be9co1+HDh9So0UuWry+//FzFihXXzJnz9NJL9eXo6KgiRV5Q587d9eOPm63Wtbe3V5Mm/7uE8bvv1srf/8GjaACArIWJNAAA2drFixcUFNRXPj75NH/+Ynl4eNzVp3HjVzVr1nSFhZ3Qjh3bFBDQ16q9QoVK2rJlh9WyQ4cO6I8/jqhTpy6WZSkpycqRw+mu7Tdr1lI9eryj8PAwnTlzSnXqvKSrV688ngMEAGQ6RroAANnW9evX1bdvL5UrV0EffzzjnoFLktzdPVS79osaO3aUKleuet9+f+fs7KwFC+Zo8+ZNMplMOnXqpL74Yr5atnztrr6+vsX0/PMvaMyYEWrcuJns7fmbKAA8S/hUBwDYXNECT+b+pIzuZ8OGtYqMjNCPP27RTz/9YNX20UefWL1u1qylgoMH3DXKdT8lS5bWhx+O1xdfzNfkySFydXVTixat9fbb796zv79/C33yyWSNGTMxQ8cAAHj6Gcxmc/qeHgmLqKgb4l0DgP9JSUlWdPRleXnll4PD/x4EbDQa5OHhIju7J3dhRVqaSXFxiel+ODIe7n7nFwCedvb2Rnl65tSbfT/W8ZMXH9q/pG9BfRU6ULGxCUpNNT2wr8EgeXu7pa+OdPUCAOARmExmxcUlymg0PNF9ErgAAE8TQhcAwKYIQQCA7I6JNAAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANsSU8QAAmzIaDTynCwCQrRG6AAA2YzQa5OHhIju7J3dhRVqaSXFxiQQvAMBTg9AFALAZo9EgOzujhk9eqtPnI22+vxcK+ShkcEcZjYZ0h66tWzdrzJiRcnR0tCyrW7e+/P1bqW/fXsqTJ69WrVovo9E6OAYHD9DOnTsUGvqZKleues9t79u3R7Nnf6oLF87Lzc1NzZu3UufO3WQwGLRhwzqNH/+hypQppzlzvrhr3Xfe+Y9OngzTihVrlT9/gQy8CwCApw2hCwBgc6fPR+r4yYuZXcY9HTv2p5o0aaZhw0ZbLT94cL8kKSUlWfv27VGNGrUsbTEx0fr99yMP3O61a3EaOnSQRo0ap7p16+vMmdPq06eH8ucvoFdf9Zckubq66sSJYzp37owKFy5iWff48T8VEXHpMR0hACCzMZEGACBbO378T5UoUeq+7Y0aNdXGjeutlm3cuF7167/8wO1GREQoKSlJZrNJZvPtUTeDwSAnJydLH1dXN9WqVUcbN35nte769WvVsGHjjB4KAOApRegCAGRbJpNJJ04c165dv6ht2+Z67bVm+uijEF2/ft3Sp1mzFtqx42fFx8dblm3YsE7Nm7d64Lb9/EqoQYNXNHz4ENWvX1NvvdVeDRs2Uv36Da36NW3aQt9/v0Emk0mSdOvWLf388w9q2rT5YztOAEDmInQBALKtuLhY+fmVUP36DbV06UrNnv25Llw4p7FjR1r6FC/up8KFn9fWrZslSUeO/Caj0ajSpcs+cNvJyclyd3fX2LETtXXrTs2evUA//LBZ69d/Y9Wvdu0XlZycrP3790qStm37UaVLl5W3d57He7AAgExD6AIAZFu5c3tp5sx5at68lZycnJQvXz4FBvbV7t2/KjEx0dKvWbOW2rTp9iWG33239q5RrsOHD6lRo5csX19++blWr16hS5cuqUGDV2Rvb69y5Sqoffs3tHr1Sqt17e3t1aTJ/y5h/O67tfL3f/AoGgAgayF0AQCyrfDwMM2e/anlnitJSk5OkdFolIODg2VZ48av6vjxYwoLO6EdO7apSRN/q+1UqFBJW7bssHy9/fa7ioyMUEpKslU/e3t7q+3e0axZS23f/pPCw8N05swp1anz0mM+UgBAZmL2QgCAzb1QyOep3E+uXLm0evVy5cqVSx06dFRUVJRmzZqupk2bW4Ujd3cP1a79osaOHaXKlavKw8PjoduuU+clrVmzQhs3rterr/orPDxMK1d+rbfe6nxXX1/fYnr++Rc0ZswINW7cTPb2/HgGgGcJn+oAAJsxmcxKSzMpZHDHJ7bPtDRTup/RlTevjyZNmqY5c2Zq0aLP5ejoqFdeaayAgL46evR3q77NmrVUcPAABQT0Tde2q1WroVGjxurLL7/QJ59MVu7cufXGGx3Vpk37e/b392+hTz6ZrDFjJqZr+wCArMNg/vs1FUiXqKgb4l0DgP9JSUlWdPRleXnll4ODo1Wb0WiQ0Wh4YrWYTOZ0hy6kz4POLwA8zeztjfL0zKk3+36crudFlvQtqK9CByo2NkGpqaYH9jUYJG9vt/TVka5eAAA8IkIQACC7YyINAAAAALAhQhcAAAAA2BChCwAAAABsiNAFAHhsmJvp2cR5BYB/J8OhKzk5WVu2bNHChQt18+ZNHT9+3BZ1AQCyEDs7O0lScvKtTK4EtnDnvNrZMf8WADyKDH16njt3Tu+++65SUlJ0/fp11atXT23bttWMGTPUoEEDW9UIAHjKGY12cnZ2VXx8rCTJ0TGHDIYnN008bMNsNis5+Zbi42Pl7Owqo5ELZADgUWQodIWEhKhNmzYKCAhQ9erV9cILL2jcuHEKDQ0ldAFANpcrV25JsgQvPDucnV0t5xcAkHEZCl2//fabPv30UxkMBstfMFu1aqWQkBCbFAcAyDoMBoPc3b3k5uaptLTUzC4Hj4mdnT0jXADwL2UodLm5uSkqKkoFChSwLLt69arc3d0fe2EAgKzJaDTKaHTM7DIAAHhqZOhPVy1atFCfPn20c+dOmUwmHTlyREFBQfL397dVfQAAAACQpWVopCswMFBJSUnq06ePbt68qU6dOqldu3bq06ePreoDAAAAgCwtQ6HLwcFBwcHBCg4OVkxMjDw9PZmdCgAAAAAeIEOha8aMGfdc7ujoKE9PT9WuXVsFCxZ8LIUBAAAAwLMgQ6Hrr7/+0ubNm1WuXDkVKlRIly5d0m+//aZy5copLS1NISEhmj17tmrVqmWregEAAAAgS8lQ6LK3t9eoUaP05ptvWpatWrVKe/bs0aRJk7RhwwZ9/PHHWrFixWMvFAAAAACyogzNXvjrr7+qQ4cOVstat26tbdu2SZKaNm2qU6dOPb7qAAAAACCLy1DocnFx0R9//GG17M8//5Sj4+3nsURHR8vZ2fnxVQcAAAAAWVyGLi/s3LmzevTooTfeeEMFCxbUxYsXtWLFCnXt2lWXLl1Sr169eGYXAAAAAPxNhkLX22+/LS8vL61atUqbN29WgQIF9MEHH6hx48Y6fvy42rRpo06dOtmqVgAAAADIcjIUuiTJ39//nqNZJUuWVMmSJR9LUQAAAADwrMhQ6IqNjdXixYsVGRkpk8kkSUpJSdFff/2ltWvX2qRAAAAA4HEyGg0yGg0ZWsdkMstkMtuoIjzrMhS6hg4dqjNnzih37tyKj49XgQIF9Msvv6hjx462qg8AAAB4bIxGgzw8XGRnl6H55JSWZlJcXCLBC48kQ6Fr37592rBhgyIjIzV37lzNmDFD3377rdavX2+r+gAAAIDHxmg0yM7OqOCZX+vUpavpWqdogTz6qHcHGY0GQhceSYYfjuzj4yNnZ2edOHFC0u17vCZNmmST4gAAAABbOHXpqo6duZTZZSCbyNC4asGCBfXHH38oV65cSkhIUExMjBITE5WUlGSr+gAAAAAgS8vQSNebb76pTp066bvvvlPz5s31zjvvyN7eXtWqVbNVfQAAAACQpWUodLVr105+fn7y9vbW4MGD9cUXXyghIUFdu3a1VX0AAAAAkKVl6PLCcePGqXz58nJ0dJSDg4N69OihAQMGaNy4cbaqDwAAAACytIeOdEVGRmrXrl2SpBUrVqhs2bJW7Tdu3NCWLVtsUx0AAAAAZHEPDV2enp5asmSJYmJilJycrNDQUKv2HDlyqE+fPjYrEAAAAACysoeGLkdHR61cuVKS1LVrVy1YsMDmRQEAAADAsyJDE2ksWLBACQkJ2rZtmy5evKi8efOqQYMGypUrl63qAwAAAIAsLUOh6+zZs+rcubNSUlJUoEABXbp0SR999JEWLVqk4sWL26pGAAAAAMiyMjR74YQJE/Tqq69q+/btWr58ubZv365WrVpp4sSJtqoPAAAAALK0DIWuw4cPa8CAATIab69mNBrVr18/HT582CbFAQAAAEBWl6HQZWdnp/j4eKtl8fHxcnZ2fqxFAQAAAMCzIkOhq0GDBho0aJBOnTql5ORknTx5UoMHD1aDBg0yvONdu3apffv2qly5surUqaOxY8cqKSlJ0u0Rtfbt26tSpUp6+eWXtWLFCqt116xZo0aNGqlixYpq06aNDh06ZGlLS0vTRx99pNq1a6tSpUoKCAjQlStXLO3R0dEKDAxU1apVVaNGDYWEhCg1NTXD9QMAAABAemQodA0aNEipqalq1qyZKlSoIH9/fzk6OiooKChDO42JiVHPnj31n//8R/v379eaNWu0d+9ezZ07V9euXVOPHj3UunVr7du3TyEhIZowYYKOHDkiSdqzZ4/Gjh2riRMnat++fWrZsqUCAgJ08+ZNSdLs2bO1c+dOrVq1Sjt27JCTk5NGjBhh2Xf//v3l4uKiHTt2aOXKldq1a5cWLlyYofoBAAAAIL0yNHuhh4eHFi9erPPnzys6OloFCxZUnjx5MrzT3Llz69dff5Wrq6vMZrPi4uJ069Yt5c6dW5s3b5aHh4c6duwoSapVq5ZatGihpUuXqnz58lqxYoX8/f1VpUoVSVLnzp319ddfa8OGDWrbtq1WrFihoKAg5c+fX5I0fPhwvfjiizp//rxMJpP27t2r7du3y9nZWYUKFVJgYKAmT56sbt26Zfg4AAAAAOBhMhS6JOmPP/7QypUrdfHiReXJk0dt2rRR1apVM7xjV1dXSVK9evUUGRmpqlWrqk2bNpo2bZr8/Pys+hYrVszygObw8HC1bdv2rvbjx4/rxo0bioiIsFrf29tb7u7uOnHihKTbwdHHx8fS7uvrq0uXLun69evpft6YwZDhwwUAAE85o9EgQwZ/yJvNZplMZhtVhKcRvwdmHw871xn5XshQ6Prll18UGBiol19+WSVKlNC5c+fUpUsXffLJJ3rllVcysimLzZs369q1awoKClLfvn3l4+Nz18QcTk5OSkxMlCQlJCTctz0hIUGS5OLiclf7nbZ/rnvndWJiYrpDl5eXWzqPDgAAZBVpJpPsjBm68+KR1kHW5emZM7NLwBPyuM91hkJXaGioPvroIzVt2tSybOPGjZo1a9Yjhy4nJyc5OTlp8ODBat++vTp16qQbN25Y9UlKSlLOnLcP3NnZ2TLhxt/bPT09LQHqzv1d/1zfbDbf1Xbn9Z3tp0d09A2Z+aMWAADPDDs7ozw9c2rowpU6FRGVrnWK5vPWhM7tFBuboLQ0k40rxONy51w/Cs511vOo5zs959pgSP9gTIZC1+nTp9WkSROrZU2aNNHw4cMzshkdPHhQw4YN09q1a+Xo6ChJSk5OloODg4oVK6adO3da9Q8PD1fx4sUlScWLF1dYWNhd7XXr1pW7u7t8fHwUHh5uucTw6tWriouLk5+fn0wmk+Li4hQVFSVvb29J0smTJ5UvXz65uaV/9MpsFqELAIBn0KmIKB2/cDnD6/F7QfbBuc4+Hue5ztB4uIeHh/766y+rZcePH8/wZBolSpRQUlKSpk6dquTkZF28eFEfffSR2rVrpyZNmigqKkoLFy5USkqKdu/erXXr1lnu42rXrp3WrVun3bt3KyUlRQsXLlR0dLQaNWokSWrTpo1mz56t8+fPKz4+XuPHj1f16tVVuHBhFSlSRFWqVNH48eMVHx+v8+fPa9asWWrXrl2G6gcAAACA9MrQSFf79u0VEBCgnj176rnnntO5c+c0b948vfnmmxnaac6cOTV//nyNHz9ederUkZubm1q0aKHevXvL0dFRn3/+uUJCQhQaGqrcuXNrxIgRqlmzpqTbsxmOHj1aH3zwgSIjI1WsWDHNmzdPHh4ekqTevXsrNTVVHTt2VEJCgmrUqKFp06ZZ9h0aGqoxY8aoYcOGMhqNat26tQIDAzNUPwAAAACkV4ZCV/fu3XXr1i3NmTNHUVFRKliwoN566y116dIlwzsuVqyYPv/883u2lStXTsuWLbvvuq1atVKrVq3u2ebg4KCgoKD7PjvM29tboaGhGa4XAAAAAB5FhkKXwWDQe++9p/fee89W9QAAAADAMyVd93T9fbZCSTp16pRNigEAAACAZ026QldERITV6zfeeMMmxQAAAADAsyZdoeufT2c3M1cmAAAAAKTLIz1C/Z8hDAAAAABwb48UugAAAAAA6ZOu2QuTk5M1Y8YMy+ukpCSr15LUp0+fx1sZAAAAADwD0hW6KlWqpD179lheV6hQweo1lxsCAAAAwL2lK3QtXrzY1nUAAAAAwDOJe7oAAAAAwIYIXQAAAABgQ4QuAAAAALAhQhcAAAAA2FCGQ1dMTIwWLlyokJAQxcfH66effrJFXQAAAADwTMhQ6Dp69KheffVVbdq0SStXrlRsbKz69eunVatW2ao+AAAAAMjSMhS6JkyYoPfff1/Lli2Tvb29ChUqpJkzZ2rBggW2qg8AAAAAsrQMha6//vpLrVq1kvS/ByK/9NJLioyMfPyVAQAAAMAzIEOhK3fu3Dp16pTVslOnTsnb2/uxFgUAAAAAz4oMha4333xTPXv21PLly5WamqoNGzaoX79+6tChg63qAwAAAIAszT4jnd9++23Z2dlp0aJFMplMCg0N1euvv67OnTvbqDwAAAAAyNoyFLrmz5+vN998Ux07drRVPQAAAADwTMnQ5YVz585Vjhw5bFULAAAAADxzMhS6XnrpJc2bN09XrlyxVT0AAAAA8EzJ0OWFBw4c0Hfffafp06ff1Xbs2LHHVhQAAAAAPCsyFLomTZpkqzoAAAAA4JmUodBVvXr1ey6PiYl5LMUAAAAAwLMmQ6HryJEjmjRpkiIjI2UymSRJKSkpiomJ0R9//GGTAgEAAAAgK8vQRBpjxoxRnjx59OKLL+qFF17QW2+9JTs7Ow0aNMhW9QEAAABAlpah0BUWFqYJEyaoY8eOSktLU5cuXfTJJ59o3bp1tqoPAAAAALK0DIWuXLlyycnJSYUKFVJYWJgkqWLFirp48aJNigMAAACArC5Doato0aL673//qxw5csjFxUXHjh3TyZMnZTAYbFUfAAAAAGRpGZpIo1+/fgoICFCdOnXUtWtXvf7667Kzs9N//vMfW9UHAAAAAFlahkJX5cqVtX37djk4OKhDhw4qVaqUbty4oTp16tiqPgAAAADI0jIUui5dumT12tvbW97e3rp06ZIKFCjwWAsDAAAAgGdBhkLXyy+/fN/7t44dO/ZYCgIAAACAZ0mGQtfWrVutXsfExGj+/Plq2LDhYy0KAAAAAJ4VGQpdBQsWvOv1uHHj9Nprr6lly5aPtTAAAAAAeBZkKHTdz/Xr1x/HZgAAeOoYjQYZjel/NIrJZJbJZLZhRQCArCZDoWvGjBlWr1NSUrRjxw5VrFjxcdYEAMBTwWg0yMPDRXZ26X+sZVqaSXFxiQQvAIBFhkLXnj17rF7b2dmpUqVK6tmz52MtCgCAp4HRaJCdnVFjV6zR2atRD+3/fB5vjWz/moxGA6ELAGCRodC1ePFiW9UBAMBT6+zVKIVdjsjsMgAAWVSGQtc333yTrn6tW7d+hFIAAAAA4NmTodC1YsUKHTp0SB4eHipUqJAiIyMVGRmpvHnzys7OTpJkMBgIXQAAAADw/zIUukqUKKHy5csrKCjIErLmzJmjy5cv64MPPrBFfQAAAACQpaV/OiZJ69at04ABAyyBS5K6du2q77///rEXBgAAAADPggyFLicnJ506dcpq2R9//CF3d/fHWhQAAAAAPCsydHlhx44d1bVrV7Vv314FChTQ+fPntXz5cg0bNsxW9QEAAABAlpah0NWrVy95eXlp7dq12rx5swoVKqRJkyapXr16tqoPAAAAALK0DIUuSWrfvr3at29vi1oAAAAA4JmT7nu69u/frx9//FGSdPPmTQUHB6tFixaaMWOGzYoDAAAAgKwuXaFr27Zt6tKli06cOCFJ+uijj7Rnzx516NBBP/zwgxYvXmzTIgEAAAAgq0pX6Jo3b57Gjh2rgIAApaamau3atRoyZIjeeustTZw4UcuXL7d1nQAAAACQJaUrdJ04cULNmzeXJB0/flw3b95UrVq1JEnFixfXhQsXbFchAAAAAGRh6QpdaWlpsre/PefG4cOHVbhwYXl6ekq6fX+X0Zihx30BAAAAQLaRrrRUpEgRHTlyRJL0008/WUa5pNsTbBQpUsQmxQEAAABAVpeuKeM7duyowMBAlSxZUrt379bq1aslSV999ZVmz56tXr162bRIAAAAAMiq0hW62rZtK0dHRx08eFDdunWTn5+fpNsTbLRp00YdO3a0aZEAAAAAkFWl++HILVq0UIsWLayW/fTTT4+9IAAAAAB4ljADBgAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbStdEGjNmzHhonz59+vzrYgAAAADgWZOu0LVnz54HthsMhsdSDAAAAAA8a9IVuhYvXmzrOgAAAADgmZTu53TdsXv3bkVGRspsNkuSUlJSdOLECY0YMeKxFwcAAAAAWV2GQte4ceO0bNky5cyZU5KUlpamhIQEvfTSSzYpDgAAAACyugyFro0bN2rJkiW6efOm1q5dq/Hjx+ujjz5SYmKireoDAAAAgCwtQ6Hr5s2bqlixoq5evaqjR4/KYDCoT58+atasma3qAwAAAIAsLUPP6cqXL5+io6OVJ08eRUREKCUlRU5OToqPj7dVfQAAAACQpWVopKtevXrq3LmzFi1apGrVqmnYsGHKkSOHihQpYqPyAAAAACBry9BI18CBA9WqVSs5ODho1KhRio2NVXh4uMaNG2er+gAAAAAgS8vQSNcPP/ygbt26SZLc3Nw0f/58SdLXX3+t0qVLP/7qAAAAACCLe2jounnzpmJjYyVJw4YNU8WKFS3P6JKkGzduaOLEierQoYPtqgQAAACALOqhoSs+Pl7+/v5KSkqSJL388suWNrPZLIPBoFdeecV2FQIAAABAFvbQ0JUnTx798MMPunnzplq0aKH169dbtefIkUPe3t42KxAAAAAAsrJ0TaTh5eWl5557TgcOHFDBggXl5OSk6OhoGY3GRwpcx48fV5cuXVS9enXVqVNHQ4YMUUxMjCTp8OHDat++vSpVqqSXX35ZK1assFp3zZo1atSokSpWrKg2bdro0KFDlra0tDR99NFHql27tipVqqSAgABduXLF0h4dHa3AwEBVrVpVNWrUUEhIiFJTUzNcPwAAAACkV4ZmL0xMTFRgYKDq1Kmj119/XS+//LLeffddXb9+Pd3bSEpKUrdu3VSpUiX98ssvWr9+veLi4jRs2DBdu3ZNPXr0UOvWrbVv3z6FhIRowoQJOnLkiCRpz549Gjt2rCZOnKh9+/apZcuWCggI0M2bNyVJs2fP1s6dO7Vq1Srt2LFDTk5OGjFihGXf/fv3l4uLi3bs2KGVK1dq165dWrhwYUbeAgAAAADIkAyFrqlTpyoxMVHfffedDh8+rG+//VYmk0mTJ09O9zYuXbqkkiVLqnfv3nJ0dJSnp6c6dOigffv2afPmzfLw8FDHjh1lb2+vWrVqqUWLFlq6dKkkacWKFfL391eVKlXk4OCgzp07y9PTUxs2bLC0d+/eXfnz55erq6uGDx+u7du36/z58zp79qz27t2rwYMHy9nZWYUKFVJgYKBl2wAAAABgCxkKXT/99JOmTp0qX19f5ciRQ35+fpo8ebJ++OGHdG+jaNGimj9/vuzs7CzLvv/+e5UpU0ZhYWHy8/Oz6l+sWDEdP35ckhQeHn7f9hs3bigiIsKq3dvbW+7u7jpx4oTCwsLk4eEhHx8fS7uvr68uXbqUoZE6AAAAAMiIDD2n6+bNm3Jzc7NalitXLplMpkfaudls1rRp0/TTTz9pyZIl+vLLL+Xs7GzVx8nJSYmJiZKkhISE+7YnJCRIklxcXO5qv9P2z3XvvE5MTFSuXLnSXbfBkO6uAIBsip8V2QvnO/vgXGcfDzvXGfleyFDoqlChgqZPn66goCAZDAaZzWZNnz5d5cqVy8hmJN2ein7o0KE6evSolixZohIlSsjZ2Vk3btyw6peUlKScOXNKuh2S7kxd//d2T09PS4C6c3/XP9c3m813td15fWf76eXl5fbwTgCAbMvTM2M/V5C1cb6zD8519vG4z3W6QteBAwdUpUoVDRo0SG+//bbWrl2rggUL6uLFizIYDPriiy8ytNNz586pe/fuKlCggFauXKncuXNLkvz8/LRz506rvuHh4SpevLgkqXjx4goLC7urvW7dunJ3d5ePj4/VJYhXr15VXFyc/Pz8ZDKZFBcXp6ioKMuMiydPnlS+fPnuGr17mOjoG/rb86EBAM8oOzvjI/3gjY1NUFrao10FgszxqOda4nxnNZzr7MWWn+MGQ/oHY9IVurp3766DBw+qRIkS+v7777V161ZFR0erYMGCqlevnlxdXdO1M0m6du2a3nnnHdWsWVMhISEyGv93W1mjRo00efJkLVy4UB07dtSBAwe0bt06zZo1S5LUrl079e7dW02bNlWVKlW0dOlSRUdHq1GjRpKkNm3aaPbs2SpXrpw8PT01fvx4Va9eXYULF5YkValSRePHj9eYMWMUGxurWbNmqV27dumu/Q6zWYQuAMAD8XMie+F8Zx+c6+zjcZ7rdIUu89/26OHhobZt2z7yDlevXq1Lly5p48aN2rRpk1XboUOH9PnnnyskJEShoaHKnTu3RowYoZo1a0qSatWqpdGjR+uDDz5QZGSkihUrpnnz5snDw0OS1Lt3b6Wmpqpjx45KSEhQjRo1NG3aNMv2Q0NDNWbMGDVs2FBGo1GtW7dWYGDgIx8LAAAAADxMukKX4THeMdilSxd16dLlvu3lypXTsmXL7tveqlUrtWrV6p5tDg4OCgoKUlBQ0D3bvb29FRoamrGCAQAAAOBfSFfounnzpho2bPjAPlu3bn0sBQEAAADAsyRdocvBwUF9+vSxdS0AAAAA8MxJV+iyt7fXa6+9ZutaAAAAAOCZY3x4F+uJNAAAAAAA6Zeu0NWyZUtb1wEAAAAAz6R0ha4PP/zQ1nUAAAAAwDMpXaELAAAAAPBoCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABuyz+wCACCrMRoNMhoNGVrHZDLLZDLbqCIAAPA0I3QBQAYYjQZ5eLrIzpixCwXSTCbFxSYSvAAAyIYIXQCQAUajQXZGo6ZtXKsLMdHpWue53F7q37SljEYDoQsAgGyI0AUAj+BCTLROX4nM7DIAAEAWwEQaAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYkH1mFwA8K4xGg4xGQ4bWMZnMMpnMNqoIAAAATwNCF/AYGI0GeXi6yM6YscHjNJNJcbGJBC8AAIBnGKELeAyMRoPsjEYt3LFREddi0rVOPvfc6vxSUxmNBkIXAADAM4zQBTxGEddidD7mSmaXAQAAgKcIE2kAAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbInQBAAAAgA0RugAAAADAhghdAAAAAGBDhC4AAAAAsCFCFwAAAADYEKELAAAAAGyI0AUAAAAANkToAgAAAAAbss/sAp51RqNBRqMh3f1NJrNMJrMNKwIAAADwJBG6bMhoNMjT00VGY/oHFE0mk2JjEwleAAAAwDOC0GVDt0e5jFr/2xZFx8c8tL+Xa241r9hIRqOB0AUAAAA8IwhdT0B0fIwir0dldhkAAAAAMgETaQAAAACADWV66IqJiVGjRo20Z88ey7LDhw+rffv2qlSpkl5++WWtWLHCap01a9aoUaNGqlixotq0aaNDhw5Z2tLS0vTRRx+pdu3aqlSpkgICAnTlyhVLe3R0tAIDA1W1alXVqFFDISEhSk1Ntf2BAgAAAMiWMjV0HThwQB06dNC5c+csy65du6YePXqodevW2rdvn0JCQjRhwgQdOXJEkrRnzx6NHTtWEydO1L59+9SyZUsFBATo5s2bkqTZs2dr586dWrVqlXbs2CEnJyeNGDHCsv3+/fvLxcVFO3bs0MqVK7Vr1y4tXLjwiR43AAAAgOwj00LXmjVrFBQUpAEDBlgt37x5szw8PNSxY0fZ29urVq1aatGihZYuXSpJWrFihfz9/VWlShU5ODioc+fO8vT01IYNGyzt3bt3V/78+eXq6qrhw4dr+/btOn/+vM6ePau9e/dq8ODBcnZ2VqFChRQYGGjZNgAAAAA8bpk2kcaLL76oFi1ayN7e3ip4hYWFyc/Pz6pvsWLFtHLlSklSeHi42rZte1f78ePHdePGDUVERFit7+3tLXd3d504cUKS5OHhIR8fH0u7r6+vLl26pOvXrytXrlzpqt2Q/sduPbInsQ88PTjf2QfnOvvgXGcvnO/sg3OdfTzsXGfkeyHTQleePHnuuTwhIUHOzs5Wy5ycnJSYmPjQ9oSEBEmSi4vLXe132v657p3XiYmJ6Q5dXl5u6er3qDw9c9p0+3i6cL6zD8519sG5zl4439kH5zr7eNzn+qmbMt7Z2Vk3btywWpaUlKScOXNa2pOSku5q9/T0tASoO/d3/XN9s9l8V9ud13e2nx7R0TdkTsdjtOzsjI90wmJjE5SWZsrwesg8j3quJc53VsO5zl74HM8++L+dfXCusxdbfo4bDOkfjHnqQpefn5927txptSw8PFzFixeXJBUvXlxhYWF3tdetW1fu7u7y8fFReHi45RLDq1evKi4uTn5+fjKZTIqLi1NUVJS8vb0lSSdPnlS+fPnk5pb+0SuzWekKXf+GrbePpwvnO/vgXGcfnOvshfOdfXCus4/Hea4zfcr4f2rUqJGioqK0cOFCpaSkaPfu3Vq3bp3lPq527dpp3bp12r17t1JSUrRw4UJFR0erUaNGkqQ2bdpo9uzZOn/+vOLj4zV+/HhVr15dhQsXVpEiRVSlShWNHz9e8fHxOn/+vGbNmqV27dpl5iEDAAAAeIY9dSNdnp6e+vzzzxUSEqLQ0FDlzp1bI0aMUM2aNSVJtWrV0ujRo/XBBx8oMjJSxYoV07x58+Th4SFJ6t27t1JTU9WxY0clJCSoRo0amjZtmmX7oaGhGjNmjBo2bCij0ajWrVsrMDAwE44UAAAAQHbwVISuOzML3lGuXDktW7bsvv1btWqlVq1a3bPNwcFBQUFBCgoKume7t7e3QkNDH71YAAAAAMiAp+7yQgAAAAB4lhC6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANgQoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG6AAAAAMCGCF0AAAAAYEOELgAAAACwIUIXAAAAANhQtgxd0dHRCgwMVNWqVVWjRg2FhIQoNTU1s8sCAAAA8AzKlqGrf//+cnFx0Y4dO7Ry5Urt2rVLCxcuzOyyAAAAADyDsl3oOnv2rPbu3avBgwfL2dlZhQoVUmBgoJYuXZrZpQEAAAB4BtlndgFPWlhYmDw8POTj42NZ5uvrq0uXLun69evKlSvXQ7dhNEpmc/r36ZMrjxzsHv5W587pabUPZD2FcueVo336/lv55Mpt+TfnO+spmtdHOewd0tW3YG7OdVZXPH8+OTk8/HwX8vay/JtznTWVKpRPzo7p+79dxIfznZWVej6/nHOk81zn87b8m3OdNZX0LShnJ8eH9nu+YB7Lvx92rg2G9O/fYDZnJD5kfd9++60++eQT/fzzz5Zl586dU6NGjbRt2zbly5cv84oDAAAA8MzJdlndxcVFN2/etFp253XOnDkzoyQAAAAAz7BsF7qKFy+uuLg4RUVFWZadPHlS+fLlk5ubWyZWBgAAAOBZlO1CV5EiRVSlShWNHz9e8fHxOn/+vGbNmqV27dpldmkAAAAAnkHZ7p4uSYqKitKYMWO0Z88eGY1GtW7dWkFBQbKzs8vs0gAAAAA8Y7Jl6AIAAACAJyXbXV4IAAAAAE8SoQsAAAAAbIjQBQAAAAA2ROgCAAAAABsidAEAAACADRG68Fjt2rUrs0sAgKfaX3/9pZSUlMwuA3hmmUymzC4Bj+hZPneELjw248eP1/z58zO7DDwGFy9ezOwSkEFjx47VL7/8ktll4CFGjRqlN954Q7t371Zqampml4MHCA8Pz+wS8Aj69++vUaNG8f8rC3rWzx2hC4/NtWvX5OvrK0lKS0vL5GrwqIKCgvT1119ndhnIgLCwMH333XcqWbJkZpeCB0hOTtaVK1eUmJiosWPH6tdff32m/6qblQUHB6t58+ZcvZHFnD59Wps2bdLKlSs1ceJE/n9lIdnh3BG68K/duUwmKipKXl5ekiQ7O7vMLAn/wunTp1W+fHlJEs9OzxoSExNlNps5X08xs9ksR0dHBQUFqUWLFsqTJ48GDhyoHTt2cN6eQsnJyZKkfv366eeff87cYpBuL7zwgvr166dq1app1apVGjx4cGaXhHTKDueO0IV/JS0tTQ4ODpKk+Ph45ciRQ5Kshoafxb9WPIvMZrPi4+MVGRlpOY8GgyGTq0J6ODg4yMfHRzlz5pR0+/8c/++eHiaTSQaDQWazWW5ubjKZTAoODlbHjh3Vv39/bd++neD1lLjz/6Z79+567bXXVLduXfXp00dbt27N5MrwIH//o1Px4sWVJ08effHFF9q7d68GDRqUydXhQbLTuSN04ZHNnTtXAwcOtPxF0M3NTZGRkTpx4oTOnDmjmzdvKjk5WUajkcsNs4A7vxQaDAa5uLhIsg7P/FL4dPnpp58UGRkpSYqMjJSzs7OlzWg0ymjk4/1pcOczULr9f8zHx0cVKlTQmDFjNGDAALVu3ZoRr6fInXPl7e2ts2fPql69egoKClK/fv30448/ZnJ1uB+DwWD5I+Err7yiy5cva8+ePZo3b55++eUXDRkyJJMrxP1kp3PHT2U8kpSUFDk6Oio6Olpjx45VUlKSEhIStGnTJnXq1Emvv/66GjVqpEaNGql169YaP378M3tjZFa3cOFCfffdd5Juj5jkyZNHkpSUlGQ1WsKo19Pjxx9/VEhIiFavXq34+HiZTCYdOXJEffv21aBBgzRhwgStXr1a27Zt0w8//KCEhITMLjlb6tOnj5o3b67169fr999/tyx/4403VKRIER04cECjR49W06ZN1aNHD+4fykQxMTFWr/PmzasuXbpo2bJlatasmd5991317duXSw2fMhMmTNCnn36q2NhY3bp1y7I8MDBQ586dk5+fn+bOnasdO3aod+/emVgp/ik7njv7zC4AWY/JZJKDg4PefPNNubu7a/ny5Ro2bJjOnTun8ePHq2jRokpOTtapU6d05swZxcTEqHXr1rK359vtaRMbG6tNmzbJw8NDLi4uKl68uMLCwjRixAjFxsYqX7588vLykru7u3Lnzq3KlSurWbNmmV12tvfyyy/rzz//1NatW+Xk5CRJyp07t6pVq6aDBw/q4sWL2r59u86fP6+cOXNq9erVlksP8WT89ddf2rdvn65du6bt27crLCxMderUUcuWLeXn56dChQpp7ty5mjNnjsaNGycnJyfly5cvs8vOloKCgrR79269//778vX1ValSpSRJFSpUUL58+XTx4kUNHDhQaWlp6tWrl+bOnau6detmctVYuXKlFi1aJEk6d+6cjEajAgICVKRIEZUuXVpTp07Vpk2b1KxZM82YMUNDhgxRZGSkfHx8MrlyrF69OlueO4OZ6xmQAbNmzdLly5dVsGBBVa1aVVWrVtU333yj5cuX6/jx41qzZo2ef/75zC4TGXD+/HlNmDBBBoNBlStX1sKFCzVy5EglJiYqKSlJv//+uyIiIhQbG6uJEyfKz88vs0vOts6ePasbN26obNmykqQFCxbo+++/182bN1WhQgWNGzdOJpNJRqNRCQkJunHjhuzs7Cyjl3hykpOTtWfPHn344Yd6/vnn1b9/f4WEhMjBwUEFChRQt27dFBwcrMGDB6tWrVqZXW62dfToUb333nu6dOmSKlSoIE9PT3l5eal3794qUKCA5s2bpy1btmj58uWSpBkzZqhp06aWmXqROUwmk06fPq2vv/5aW7ZsUb169eTs7KyVK1eqdevWatKkiW7cuKHly5fro48+Uq5cuXTr1i3L/crIXMePH9fKlSu1devWbHXuCF1It969eysiIkL169fXkSNHdO3aNdWvX1+BgYFat26dZsyYoapVq2rMmDGys7NTamoqo1tPqe+++043btxQsWLFVLVqVUVHR2vEiBEKDw+Xq6ur1qxZc9c6SUlJllEVPHl9+/bVpUuXdP78eZUtW1bt2rVT06ZN9dVXX2nGjBkqVaqUJk6caAlYd8IXnqyYmBjlzp1b0u3LsH/99VcNGDBAnTp10oABA3T48GF9/PHHunbtmo4fP6733nvvmbl0JitKTk7W9u3btXTpUiUkJGjAgAGaNWuWUlJSVLBgQXXu3FmfffaZevbsaZnVFZlr7Nixql27tho2bKgTJ05o2bJl+uWXXzRnzhzFxcVZQnKxYsV07tw5/fe//1WRIkUyu2zo9tU1OXPmlKOjo06dOqUvv/xSO3fuzDbnjt+IkS579uzR5cuXtWLFCtnZ2SkmJkabNm3SokWLlJqaqr59+yo1NVXffPONgoKCNGnSJMushni6BAQE6MKFC8qfP79CQ0NVt25dderUSZMmTdKIESN06NAhbd68WY0bN5Z0+xdHBweHZ+KvTFnV2LFjFRERoTlz5ujmzZuaPXu2vvrqK50/f149evSQwWDQypUrtW7dOvn7+8vHx4fAlQkWLFigffv2afjw4SpUqJAcHBz04osv6pNPPlH//v117do1ffDBB1q0aJF+/fVXHTx4UE2aNMnssrOlbdu2SZJcXV31yiuvyGAwaMaMGdq4caMWL16s/fv3a9myZerZs6diYmLk6+tL6HoKBAQE6PLlyxo5cqQkqUSJEnrzzTcVHx+vXr16KTQ0VMHBwWrfvr2++uor3bp1i8/Cp8SoUaN08eJFJSUlqV+/fqpevbr+85//KDExMfucOzOQDlu2bDG3aNHCatn169fNX3/9tbl169bm7777zpyammr+8ssvzT169DBHRkZmUqV4kGXLlpnbtWtneb1//35zQECAuXv37ubffvvNHBcXZw4ICDD36dPHvH79+kysFHckJSWZ+/TpY961a5fVsunTp5vfeust8/Lly81ms9n82WefmRs3bmxesGCBOTU1NbPKzdaWLFliLlGihLlPnz7mixcvWpanpaWZf/75Z3PlypXNw4cPtyw3mUyZUWa216dPH3O7du3MrVq1Mjdt2tS8YsUKs9l8++ecv7+/eciQIZa+u3btMs+YMcMcFhaWWeXi//Xo0cPcsWNHy+uYmBhzamqq2WQyma9evWoeNGiQ+ZVXXjEfOHDAbDbf/py8efNmZpWLv3nvvffMr7/+uvnIkSPmxo0bm+fMmWNpu3z5crY5d89YhIStlCtXTnFxcVq2bJllmZubmxo3bqwqVapo586dsrOz0+uvv67Jkycrb968mVgt7ufKlSuWofq0tDRVqVJFvXr1kpOTkxYtWiSDwWCZRINZ754OOXLkUGJiojZt2mS1rEePHipRooS+/fZbpaSkqGfPnurQoYMaN27Mw8mfMPP/X6UfHx+vTp066fDhwxoxYoQuX74s6fY05HdGvFauXKlx48ZJYkbQzPDBBx/o6tWrWrFihT799FPVq1fPMur14osvqn///jp27Jjl+UA1a9ZUQECAihUrlpllZ3urV6/W3r17NXXqVEnSl19+qaFDh6pjx47q27evnJycNGzYMFWtWlW9evXSkSNHlCNHDi6Jfwr8+eefiouL09KlS1WuXDlVq1ZN+/btU58+fTRt2jTlypVLwcHB2eLcEbpwX0eOHNGZM2d04cIF+fj46LXXXtP333+vjRs3Wvp4eHiofPnyOnbsmOXhyLly5crEqvEgL7zwgs6dO6ewsDDLL+bly5dXly5d9Oeff+rHH39UgQIFNHnyZA0ZMoQZ7zKR+W+32zZo0EBnz57Vzp07LcudnJwUFBSkv/76S+vWrZMkvfvuu3ruuecypd7s7E542rNnjypVqqS1a9cqPDzcKnjZ2dmpTp06+vzzz/Xmm29mZrnZVnJysq5evarg4GBJUqFChVSmTBkdOnRI169fl5OTk+rWrau+ffvqwIEDGjp0qCQ9e5c4ZUH58+dX5cqVdeLECS1ZskTz589XmzZt1KxZMyUmJqpbt25yc3NTt27d1KJFC7m7u2d2yfh/iYmJ+uuvv/Tbb79p8uTJWrdunV5++WV5eXnpwIEDGj58uHLnzq2uXbs+8+eOe7pwT71799b58+eVmpoqR0dHdevWTW+99ZamTJmilStX6tatW2rdurUk6erVq8qbNy/3cD2lYmJi5OrqKkdHR1WoUEGLFy/Wt99+q7feekv58uWT2WxWpUqVVK1aNW3btk0tWrRQ/vz5M7vsbO3OLKHPPfecqlatqg4dOuiXX37R/PnzZW9vrxo1aki6HbyqVq3KyPJTICkpSe+8847q1asnSVqzZo1ee+01DR8+XCEhIcqfP7/s7OxUu3btTK40+0pOTtbRo0d14MABVapUSdLtKzZ8fHyUK1cumUwmOTo66pVXXlGOHDmeqRv4s7r/a+9OA6K6soUNv1XFoFAqg4ii0CqOGLyJQhslIeKUaItjjLPGKU6IMqnRXDF2cJ4RwSnYjoCgRtvhkqRVNKItJiYaFdSoKCqIIIMgFFX1/fDjtHTS3fa9rQWynj9Sp04Vi+ycqr3O3nvtjh07cv78eYKDg/Hw8GDjxo20atUKeFbaf+7cuaSnp+Pq6sqsWbOwsLAwccSinIeHB02bNiU4OJhHjx6xbds25fpLTEwkIiKCzMxMmjVr9tq3nSRd4lcWLVrEo0eP2LdvH1evXuWHH34gODiY//7v/8bf35/o6GgiIyOJjY2lSZMmHDt2jC1btkihhUpo1qxZ3L9/n0ePHtGtWzcGDx5MQEAAn376KRqNhgEDBigl/i0tLalTp45MTTOx56uEpqSk8M0339CrVy/Wrl3L5MmTiYqKIjU1FR8fH06cOMGFCxeUO/LCdGrUqIGXlxcAJSUl2Nvbs3//fj788EP8/f1Zt25dld9jpqrTarV8+umnFUaR7927h16vB56NaO3atYuaNWvSv39/U4Up/k55JVY/Pz9u3rzJtWvXsLW1xWg0olKp+N3vfoe5uTllZWUAr3Wnvaopb6ONGzdy7tw5EhMTK8zGeOutt1Cr1crmyK9720nSJX4lOzubwYMHo9FoaNOmDW3atKFOnTrKdLPPPvuMixcvcvjwYZydnRk/fjxNmzY1ddji7wQHB5Oens6iRYs4fvw4ly9fZuLEiaxdu5awsDAWLVpEeno6DRs2xMrKigMHDrBjxw5Th12t/aMqoVu3bkWv1xMZGcnatWs5ePAge/fuxczMjE2bNuHs7Gzq0Ks1vV6PRqNRtsiwtLSkrKwMOzs74uLiGD16tNKxF6bl7e1NzZo1lceFhYVKJ3Dr1q2sW7eObdu2mSo88RvUajWlpaVYWFgwa9Ys8vPzK9zAOHLkCCUlJdStW9eEUYrfolKpMBgMaLVafHx8OH/+PJs2bWL27Nmo1Wr+8pe/oFKpsLW1NXWor4QkXUKh1+vR6/U8fPiQmzdvAn9bV+Lr60tRURHLly+nWbNmuLu74+7ubspwxT+Rl5dHdnY2K1aswNnZGVdXV65evcr27duZOnUqGzZsYNmyZRw7doyUlBQaNWrEtm3bZONjEysoKKCsrEwZbbSzs8PX1xczMzN27dqFi4sLwcHBFBYW8uTJE6ytrdFqtSaOunqJiIigZ8+eNGnSBJVKpSRcANHR0XTs2JFWrVphZmZGWVkZdevW5eDBg7IuqBLQ6/UVEi6A9PR03njjDQ4cOEBERATbtm3Dzc3NRBEKgEePHmFvb6881uv1ygjIjRs3aN26NTt37mTHjh24u7tz8uRJNm/eXOE1wjR+q+3KPx9PnTpF7dq1+frrr+nevTtvvvkmycnJbN68GRsbGxNF/GrJt4BQaDQaLCws+Oijj9iyZQsnTpxQFogbjUa6du2Ko6Mj9+7dM3Gk4p8xGo0UFRVx6dIlfvnlF+V4q1atGD16NO7u7qxZs4amTZsyefJkNm/ezLx585T58cJ03N3dycvL+80qoR4eHiQlJQHPpkk5OjpKwvWKJSYmKpt1ln82lncoZs6cycGDB2nevLlyfvnIl1QpfPVOnz5NYWGh8vj5mxnbt2/n0qVLyvF169axZMkSoqOjJeEysZkzZxIQEKDc+IW/XWOBgYFs374da2trOnbsSI8ePfD09CQmJoY2bdqYKmTx//2ztgsICGDfvn0MGzaMGTNm0Lt3bzw8PNi9e3e1uuYk6RIkJCSQnJysPO7evTujRo0iNDSUpKQkVCoVKpWKunXrYmNjw9OnT00YrfhXVCoVDRo0oFevXmzdupX09HTluRYtWtC1a1d++OEHsrOzlfNlHZfpfPvttxw6dIiUlBQcHR3p168fiYmJFUrEl1cJvXz5MsXFxSaMtnrT6/XY2Nig1+srrAsKDg7mwoULxMbGotFoMBgMFV4nSdertWTJEsaOHcuBAweUbS/KE+CQkBDi4uKUm0zNmjXDzs6OrVu38sYbb5gsZgGZmZmcOXOGv/71r6xcuZLbt28rz02bNo1r166xevVqzM3Nadq0KQEBAQwaNEhZlyxM51+13fXr11m4cCFarRYvLy8CAgIYOnRotWs7SbqqMaPRSGFhIRs2bCAmJoaUlBTg2XqEoUOH0r17d2bMmEFcXBw//fQTO3fu5Oeff1aqzojKZffu3Wzbto19+/ZhMBj44IMPsLCwYNOmTdy5c0c5r2vXrtja2lJQUGDCaAXA5MmTWbFiBbt27VJGkPv06YODgwN79uxh//79yrnlVUJlmpppNWjQAHNz8wqJVffu3Tl06JCymF/ayLTKp6ItXbqUuLg45UZhaGgo33//vbIeEqBTp07ExMRUGKEUpuHo6EhISAgdOnTgr3/9K7Nnz+bOnTvcv38fOzs7EhISsLCwUApmiMrjRdrO0tISnU5n6lBNSmV8/nadqFYMBgNFRUX06tWLWrVq4e7uzocffoiHhwcAubm5HD58mA0bNuDi4kJZWRnz5s2rVkPBVcWkSZN4/PgxNWvWJDs7m+3bt2NjY8ORI0fYs2cPWq2WKVOm0KpVK3bu3El0dDSxsbEyB96EVq1aRXJyMnFxccCztQoAVlZWWFhYEBkZyalTp7C1ta1QJVSuv1frp59+ok2bNmg0GiIjI/nxxx+Jior6zXPLysqUzrx49corpRUWFrJ69WqKiorYu3cvAQEBDBs2jHPnzuHt7Y2ZmRk6nU62OakkDAaDMqPmypUrxMbGMmzYMGbOnEmNGjVYsmSJMiIi7Va5SNv9e+TboRpTq9U8ffoUV1dXBg4cyO7du4mJicFoNOLp6YmtrS3Dhw/ngw8+oGbNmuj1emrVqmXqsMXfWb16NdnZ2cTHx5Obm8uoUaM4cuQIOp2Ofv36YWdnR0xMDAMGDKBjx47cvHmT8PBwSbhMLDMzk759+wKwbt06jh49ilqt5v79+4SEhChVQg8dOoSLi4tUCTWBXbt2ER8fz9ixY+nduzcWFhbcuHGD0NBQGjduTO3atWnSpAlOTk48fvxY1kWaWHmlNHhWlMbLy4uePXsyYcIE1Go1o0aNwszMDL1eX+07f5XJ8yPDrVu3Jicnhz179rB371569uzJ7NmzWbp0Kc7OztJulYy03b9Hkq5q7vr169SrV4/evXvTqFEjli9fTmxsLCqVShnxsrW1lekyldidO3cYPnw4ABs2bCAjI4MTJ05w8+ZNNm/ezMGDB1m1ahUpKSnUrl0bGxsb2UzXhAwGAwaDgXv37tGkSRNu3brFwYMH2bBhAyqViosXLxIcHIyDgwM+Pj5SJdSEevTowdmzZ4mPj8fS0pKCggKKi4spKioiPj6e7OxszMzMyMnJoW7dunz11VfY2dmZOuxqJyMjg4YNGwLPOoFarZYhQ4YQEhJCbGwsy5YtIyQkBJVKxYgRI6hRo4aJIxYAQUFBSvGuxo0bK2XDQ0JCCAsLIz8/n7179zJw4EBlj8Ln93gSphMYGIilpaW03b9Jkq5q7u2331bWaL355psEBgaycuVK9uzZQ1lZGW+//bYkXFVAeUevqKiIPXv24OrqSllZGePHj2f58uV8/vnnShItTEutVqNWq+nTpw/h4eFkZmYyatQoGjduTGlpKS4uLuzdu5fr16/j4+Nj6nCrpcLCQoqLi3FwcOCPf/wj8+fPJyYmhszMTAYPHsy0adMoKipCp9ORn5/PnTt3cHFxkYTLBPz9/UlMTCQwMJDGjRvTo0cP4Nmmq126dOHkyZP069eP0tJS5s6di7m5OaNHjzZx1OLEiRMcOnQIeDZCeePGDWbMmEGLFi1wdnZGpVIRHx/P+PHjiY+PZ9SoUSaOWJRLSUnh8OHDgLTdv0t609VY+TQMCwsLDAYDRqORdu3aERQUxJUrVzh8+LBUKqwCVqxYwXvvvQfAggULcHV1pbS0FDMzM9zd3WVhfyXl7e1N165d2b9/v1LpydzcHJVKhZWVlUzFMJGZM2fi5+dHnz59WLlyJVlZWYSFheHg4MCdO3fIz8/HaDRiZWVFnTp1cHZ2plOnTnIX1wQyMzPJysoC4NKlS8TExDB69GiSk5MpKiqiffv2REZGUlRUxMCBA1m2bBleXl4mjlro9XpcXV0JCwvDzMwMGxsbfH19mTt3Lp999hn79+9n1KhRHDp0iNu3b6PVaklISJBrrBJYs2YNOp2OkJAQzMzMsLe3l7b7N8hIVzVx584dnJ2dlcfPb1j36NGjCju5v/XWW3zxxRfY29vLNIwqoHzx+POL+Murd5mZmVGnTp0Ki12F6RmNRurVq8fAgQPJy8tj165dtG3bFhcXFy5fvsy5c+cICgoydZjVTnBwMOnp6SxYsIDr168TGxtLamoqI0eOZMGCBahUKtLS0khMTKR79+5yM8OESktLcXR05I9//CMLFy7k0qVLbN26lS1btrB+/XqKioqYNWsW9erVIzExkb59++Lr62vqsKu9hQsXkpGRwePHj3nnnXeYN28e8+bNY9euXcTFxfH111+zaNEiWrVqRWpqKrdu3ap2ZcUrq4kTJ1JQUMD06dNp27YtT548Yf369ezYsUPa7gVJ9cJq4NNPP8XS0pL58+cDFROuoKAgdDoda9euNWGE4kU9ffq0QiL8fFvq9XrlrnyXLl1IT09n9+7d7Ny5k2bNmpkq5GovIiKCnj170qRJE1QqVYU227lzJ7Vr1+bKlSvs3LkTV1dXrKysmDt3Lq1btzZx5NVLTk4OQUFBLF68GEdHRwBSU1PZsmULubm5TJs2jaZNmxIaGsqtW7f45JNPeP/9900cdfW0atUqLCwsGDNmDFZWVty4cYOAgABq1arFzp07ycnJITo6muPHj3Pt2jV69erF8uXLJUk2MX9/f3JzcxkyZAg3b95kx44dhIWFcfHiRaKiooiKiqJz587k5OSQmJjI8ePHmTVrFk2aNDF16NXelClTyM3NZffu3cqxwsJCdu/ezYoVK4iIiKBr167Sdv+CJF3VwJAhQxg4cCCDBg2qcHzmzJlcvXqVhIQEmcpUBXz66ad4eHgwcOBAoGLCFRYWhrOzM97e3ixevBidToe1tTVTp06lZcuWpgy7WktMTGTBggUkJSX9qsMXFBTErVu3SEhIAJ5NldJqtRiNRrRarSnCrdby8/Pp06cPkyZNYsiQIcrxtLQ0VqxYgYODA1988QWPHj1ixYoV+Pn54eTkZMKIq685c+Zw4MABpk+fzujRo5WqktOnT8fCwoKEhARUKhXXrl3j2rVrtGzZEldXV1OHXa2dOHGCNWvWsHfvXgDy8vKYOHEio0aN4v3332ft2rVs2LCBtWvX0qNHD6XgkGzBYHrr1q1j/fr1XL58GYC4uDguX75MTk4Obdq0wdLSksWLF7Nq1Sp69uwpbfdPyG2f15hOp6O0tJTc3Fxq165d4bnjx4+TlpamJFyy2WDllp+fT3JyMm3atFGOlSdcs2bN4rvvvmPEiBE0btyYqKgoNm3axMqVKyXhMjG9Xo+NjQ16vZ7n728FBwdz8eJF5a5hWVkZjo6OWFtbS8JlIlqtlq5du/Ljjz8qe6YBtGjRggkTJrB//35+/vln7O3t+eKLLyThMoHya0iv1/Pee++xYsUKNm7cSGlpKa6urqxZs4aysjIGDBiA0WikefPm9OrVSxKuSiA3NxcrKyvg2dTQOnXqAJCVlYVGo+GTTz5h4sSJ+Pv7880336BWq6XTXgkYDAYaNWqEt7c3qampbNq0icjISOzs7KhXrx5r167l4cOHzJkzh4CAAI4dOyZt90/If5XXmLm5eYViGfC3zTs7d+6Ml5eXknDJBVK55eXlkZeXpyRa5f70pz+RnJzMt99+i1qtprS0FAsLC6VCnjC9Bg0aYG5uXmFksnv37ixatEiuPxNLSEggOzubtm3b0rx5c4YOHYq/v7+ywWfjxo2BZ+tc27Vrp0ztlWvLNMrXrqalpREWFkavXr0ICgpCpVIxYcIEXF1dWb16NePGjWP48OHs2rVLWfMqTMvV1ZWsrCzu3btH/fr1gWdJdPlnn7W1NT4+PjRq1EimpFUiarUab29vTp48yeLFi7G0tGTz5s3KjYy2bduyefNm1qxZg5+fHy4uLiaOuHKTb/rXUEREBDVq1GDcuHGo1Wqsra3Jy8ujrKyMkpIS5UOufEqhdPgqP41Gg62trbI5dXlHfcCAAQwbNkzpvJcn18J0fvrpJ9q0aYNGo+HWrVtKovV8wly+FkgSLtOZPHkymZmZ2Nvbc+zYMTQaDXPmzGHJkiUEBgZSUlJCt27dePfdd9m9ezd379791YwB8eqVlJQwZMgQ3NzccHNzw2AwEBISgtFo5JNPPqFp06ZER0cr15skXJWDu7s769atw8nJCYPBgE6n4+nTp8qG4tu2bWPx4sWcPHkSe3t7E0crnmdnZ8fUqVMZPnw47dq1w9HREZ1Oh7m5OQ4ODlhZWdGgQQP8/PxMHWqlJ9/2r5mcnBwePnzIpUuXsLKy4sMPPyQjI4OlS5eyfPlyAOrXr0+dOnWoWbMmXbp0oX///vLFVAnt378fV1dX3N3dKSoqUqZjwN8S5fIk7PljwnR27dpFfHw8Y8eOpXfv3spak9DQUBo3bkzt2rVp0qQJTk5OPH78WOlwiFdr3759PHjwgH379gFw+fJlEhISmDZtGmvWrCE8PJyIiAjmzp1Lo0aNyMrKIjw8HAcHBxNHLqytrRkwYADw7KaFr68vKpWK2bNn8/TpU/z9/ZURSlG5tGjRAng2ZS03N5cHDx7QrFkz9uzZw/r164mLi5OEq5Jq2rQp4eHhGAyGClPgb9y4gVqtliUqL0h6aa8ZOzs7JkyYQExMDAkJCTx48AArKyvCwsIoLS2loKCAe/fuceXKFQoKCmjTpo0kXJXQzz//TEREBF5eXlhbW1NcXMyVK1eYNm0aBoOB+vXr4+rqio2NDZaWlnTs2JGmTZuaOuxqr0ePHpw9e5b4+HgsLS0pKCiguLiYoqIi4uPjyc7OxszMjJycHOrWrctXX30lG+qaQEFBgdIx1+v1uLm5odVqUavVhIaGsmbNGpYsWcL9+/cpKSmhXr16FbbVEKZVPktDo9FgNBrp3bs3paWlLF68mLFjx8o1VcmZmZlhbm5OkyZNWLVqFYcOHWLr1q288cYbpg5N/BMeHh6UlJSwdu1aHjx4gKWlJYcPHyY6OlrWIr8gqV74mkhISODhw4f813/9F82aNcPKyorIyEiOHTvGkydPOH78+K9eI1ObKrejR48SHR3Nm2++iZOTE5s2bSIgIICrV69SVFTE7du3SU9PR6VSER0dLUmXCRUWFlJcXIyDgwP5+fnMnz+fvLw8MjMzef/995k2bRpFRUXodDry8/O5c+cOLi4usmHkK1ZWVoZOp+PSpUtMmzaNrVu3VhhtTEtLIzw8nN///veMHDnShJGKF1XehVGpVBQWFkrnr4rIysrC29sba2trdu7cKaP+VYROp+Pbb79l3759NG/enH79+smWNP8GSbpeA8+vTSgoKECj0TB9+nTefPNNVq9ezb59+/Dz82P48OGAJFuV2ffff09BQQEdO3bEwsKCkydPEh4eTmFhIS4uLkRFRSnnGgwGjEYjhYWFFaYeildr5syZZGVlkZqayqBBg+jTpw8NGzbk888/58iRI3z00UfMmTNHRpRNLDQ0lF9++QW9Xs+MGTOIiYnBYDAwZcoUWrRooRRcmD9/PpmZmURGRpo6ZPGCyttOimZUHWVlZSxbtoyPPvpIqkuKakN63lVc+RTC59cm7N27l9mzZxMWFsaMGTNQqVT8+c9/pqSkhLFjx0rCVUlNnTqVO3fuUFxcjFqtZsCAAYwYMYJZs2Yxf/58MjIyuHLlirJprl6vx9zcXBIuEwoODiY9PZ0FCxZw/fp1YmNjSU1NZeTIkSxYsACVSkVaWhqJiYl0795dqt6ZiL+/P1lZWUyYMIF69erh7u5Ofn4+R44cYdOmTYwbN065025ra4tarcZgMEh7VRHliZYkXFWHmZkZISEh0h8R1Yr8317FFRUVKeVVn1+boFKpWLZsGcuWLWP06NE8ffqUpKQkPvzwQ6nAVQmV73WxZ88eLCwsiI6O5tixY2RkZBAcHExoaChLlixh3759lJWV4e7uLhtam1hOTg6PHj0iPDwcR0dHWrVqRfPmzdmyZQt/+tOfqF27NnPnziU0NJSNGzcCf6taKF6dn3/+mfT0dOLi4rCwsGDv3r0kJCRQVFTEgwcPcHV1JTg4GC8vL9RqNQkJCWzbtk0SLiFeMkm4RHUj3ypV1KRJk/j6669xcXHhu+++4+rVq0qJXBcXFwYNGkTDhg05ffo09erVY8yYMaxYsUISrkrIaDTy4MED+vbti6WlJSqVirFjx9K/f3/S09PZsmULHh4eTJw4kaSkJA4dOkRpaampw672zMzMuHnzJseOHVOOtWzZkvHjx6NWq4mLi0Or1TJnzhxatmyJu7u7CaOtvvR6PXq9HgsLC7Zs2cLq1atxcHDA3t6ey5cv8/jxY6ZMmUJGRgYGg4EdO3bI+hIhhBD/cXKboQoKCQnh+PHjdOjQgSFDhtCpUyeioqLw8/OjWbNmGI1GWrRogb29Pd999x0jR46UBfuVmEqlQqvVcvLkSfr06aOUgR8wYABFRUXExMTQr18/unXrhkajoXnz5rIfVyWg1Wrp2rUrP/74I56ensq6hBYtWjBhwgQ+/vhjhg4dSps2bfjiiy9k5MREbG1tuXv3LjExMTx48IDo6Gilrdzd3Vm+fDkLFizggw8+kDYSQgjx0sg3TBUzefJksrKymDJlCqmpqdSsWZMPPviAoqIiNmzYQFpamjKv3dbWFicnJ/R6vYmjFr/l+dEqLy8vcnJy+OabbyguLlaOjxgxAo1Gw1dffQWAj4+PJNAmlJCQwIYNG0hOTiYnJ4ehQ4fy448/Ehsby61bt5Tz3nrrLdq1a0eNGjUApDNvQs7OzkyZMoW4uDjOnDlDrVq10Ol0ADRq1AhbW1tZvyWEEOKlk5GuKmTcuHE8efKEmJgYjhw5QlJSEvBsnYjBYODIkSMEBgby7rvvAihrE8qnHYrKY+HChdy/fx8LCwu8vb3p27cvFy5cYPPmzZiZmdGlSxesra2BZyMnDRs2NHHE4vkqoceOHUOj0TBnzhyWLFlCYGAgJSUldOvWjXfffZfdu3dz9+5dmc5bSQwYMIDbt28THx/P+fPn6dmzJ/Cs8JAkXEIIIV4FSbqqiIMHD1JaWkpMTAzwrCOek5PDuXPn8PT0pGfPnjRr1oyzZ89y5swZGjZsyI4dO5Qd4EXl4e/vz7179xg/fjwnTpwgPj6epKQkli9fjk6n48svv+Ty5ct4enqSnp5OUlISU6ZMMXXY1dq+fft+VSU0ISGBadOmsWbNGsLDw4mIiGDu3Lk0atSIrKwswsPDcXBwMHHkAsDe3p6AgABUKhWBgYFER0fj4OCgbEJuY2Nj6hCFEEK85mSfririyZMnyshHaWkphYWFjB8/nsGDBzN48GATRyde1I0bN/j000/58ssv0Wq1GAwGjh8/zsaNG6lfvz6rV68mISGBkydPcvv2bRwcHJgxYwZubm6mDr1a27ZtGxcuXGDlypXo9Xo0Gg3p6els376d8+fPs2bNGuzt7bl//z4lJSXUq1ePunXrmjps8XdKSko4f/48Z86cwcXFhd///ve4uLiYOiwhhBDVgIx0VRHlCZfRaMTCwgI7Ozt8fX3ZsGEDnTp1wtnZWTaGrALy8/PJyMhQ1pSo1Wq8vb3RaDRs2rSJqKgoJk2aRP/+/SkqKsLMzExZFyRMx9XVlfXr13P16lWlsl15ldAHDx5w/PhxRo4cKZt8VnKWlpZ06tSJTp06mToUIYQQ1YxMZK9ink+qfHx8aNGiBUlJSZSUlEjCVYmVlJQAzwosNGrUiIiICMoHmc3MzHjnnXfw9vbm9OnTlJaWolar0Wq1knCZ0PLly5k1axbz5s1DrVbzzjvvEBUVRVpaGkCFKqGnT582cbRCCCGEqMwk6arCGjduzBtvvEFkZCQXL140dTjiH1i1ahVbtmwhPz8fgP79+5OWlsbmzZsxGAwAaDQavL29yc3NJS8vz5ThCmDq1KmkpKTQqlUrTpw4gbm5Ob6+vsqI5NWrVytUCW3QoIHSlkIIIYQQf0+mF1ZR5VMJ/fz8SE9PlwX7ldjDhw85cOAA5ubmTJgwgd69e5ORkcGpU6coLCwkICAAgHPnzlGjRg1q1qxp4oirt0OHDpGVlcWePXsASExMJCYmBo1GQ1ZWFm5ubgQHB+Pl5YVarVaqhEoFPCGEEEL8I5J0VVEqlUopdbx06VJThyN+Q3lirNfree+991ixYgUlJSX4+fnxySefEBsby9dff80777xD+/btOX/+PBs2bECr1Zo69Grtl19+wdHREYDIyEh++uknvLy8KCgo4OjRozg6OjJp0iSOHj0qVUKFEEII8UKkeqEQL1FZWRmDBg0iLCyMmzdvEhQUhJ+fH35+fuh0OqUj7+TkhKurK87OzqYOudpLTk6muLiYLl26cPbsWezt7WnWrBnwbOuG6Ohodu/ejbm5uYxuCSGEEOKFyEiXEC9RSUkJQ4YMwc3NDTc3NwwGAyEhIQCMHz8eOzs7hg0bZuIoxfM6duwIPEuYO3ToAIBOp8Pc3BwbGxtq1KiB0WiUhEsIIYQQL0ySLiFeImtrawYMGAA868T7+vqiUqmYPXs2JSUlTJ06VSoUVlIajQaouEfe3bt3qVWrFnq93pShCSGEEKKKkaRLiJfM3NwceNaJNxqN9O7dm9LSUhYvXsyYMWMk6aqkVCoV2dnZjBkzBicnJ+rUqcPJkyf58ssvlSRMCCGEEOJFyJouIV6h8stNpVJRWFgoRTMqubKyMk6cOEFycjKOjo507dqVpk2bmjosIYQQQlQxknQJ8YqVVzUs/1cIIYQQQrzeJOkSQgghhBBCiJdIym8JIYQQQgghxEskSZcQQgghhBBCvESSdAkhhBBCCCHESyRJlxBCCCGEEEK8RJJ0CSGEEEIIIcRLJEmXEEIIIYQQQrxEZqYOQAghhPhXunTpwsOHDzEze/a1ZTQa0Wq1+Pr6EhISglr963uI9+7d4w9/+AOHDh3CycnpPxbL2bNnGTVqFFZWVsoxg8FArVq18PHx4bPPPsPS0vI/9vuEEEJUfZJ0CSGEqBI+//xzBgwYoDxOTU3l448/pmbNmvj7+//qfCcnJ3744YeXFs/z720wGLhw4QKTJ0/G3t6eGTNmvLTfK4QQouqR6YVCCCGqpJYtW+Lp6cnly5cBGDlyJLNnz8bHx4fOnTuTmppKy5YtuXv3LgB37txh0qRJtG/fno4dOzJ//nxKS0sBSE9PZ9KkSXTo0AEfHx9WrVqlPPci1Go17dq1o0OHDly5cgV4Nhq3ceNGfH198fDwwNPTk6CgIJ4+fQrA7NmzmTdvHpMmTeKtt96ia9eubNu2TXnP3NxcAgICaN++PV27dmX79u24ubkpf8//NWYhhBCvjiRdQgghqhydTsfZs2c5c+YMXl5eyvHTp08TExPDgQMHsLa2Vo6XlZUxbtw4HBwcSEpK4s9//jMXLlwgPDycoqIiPv74Y5o3b05SUhK7du3i9OnThIeHv3A8er2e5ORkTp8+jbe3NwBHjhxh27ZthIeHk5KSQkxMDKdOneLgwYPK6/bu3cvIkSM5d+4cEyZMYPHixWRmZgIQHBxMQUEB3377LXv27OHYsWPo9XqA/0jMQgghXh2ZXiiEEKJK+Pzzz1m4cKHyuH79+owZM4YRI0Yox7y9vXF0dAQgPz9fOf7999+TkZHBnDlzqFmzJtbW1qxbtw6DwcDx48cpLS0lMDAQlUpFgwYNmD59Ov7+/gQFBf3DeDw8PAAoLS1Fp9Ph6enJnDlzlCmQ3t7etGvXjvr165OTk0Nubi42NjZKUgXQoUMHJWkcOHAgoaGhpKenA3Dq1CmOHDmCjY0NAHPmzOEPf/gDwP86ZiGEEKYhSZcQQogqITQ0tMKart9Sr1693zz+8OFDbG1tqVmzpnKsUaNGAPzP//wPOTk5eHp6Ks8ZjUZ0Oh2PHj3C3t7+N98zJSUFgPv37zNz5kxKS0vp0aNHhfdYtWoVx44dw87OjtatW6PT6TAajco5Dg4Oys/m5ubAs/Vh9+/frxAjgLOzs/JzRkbG/ypmIYQQpiFJlxBCiNeGSqX6zeP169cnNzeX4uJiJfFKSUnh0qVL1K9fHxcXF44ePaqcX1hYyKNHj7Czs/uXv7NBgwZERkYycOBApkyZQnR0NBqNhuXLl3Pv3j3+8pe/oNVqAfD19X2hv6O82mJGRgZNmjRRfn7+7/m/xCyEEOLVkjVdQgghXntt27alcePGLFmyhOLiYrKzs1m0aBE5OTn4+Pjw5MkTNm/eTGlpKfn5+cyaNYuAgIB/mMT9Pa1Wy+rVq/n++++JjIwEniVBlpaWaDQaSkpK+PLLL0lLS0On0/3L96tXrx4+Pj4sW7aMvLw88vLyWLp0qfL8fyJmIYQQr44kXUIIIV575ubmREVFkZmZSefOnenbty+enp74+/uj1WrZunUrZ8+exdvbm27duqFWq5Xk6UW1bt2awMBA1q9fzw8//MCMGTN4+vQpnTp1okuXLly4cIG+ffuSlpb2Qu8XFhaGSqWic+fO9O/fHzc3N+Vv+U/FLIQQ4tVQGZ+fXC6EEEKISuG7776jffv21KhRA3i2L1m/fv24cOGCbL4shBBVjIx0CSGEEJXQkiVLiIyMpKysjMLCQiIjI+nUqZMkXEIIUQVJ0iWEEEJUQitWrODChQu8/fbbdOnSBY1GU2FdlxBCiKpDphcKIYQQQgghxEskI11CCCGEEEII8RJJ0iWEEEIIIYQQL5EkXUIIIYQQQgjxEknSJYQQQgghhBAvkSRdQgghhBBCCPESSdIlhBBCCCGEEC+RJF1CCCGEEEII8RJJ0iWEEEIIIYQQL5EkXUIIIYQQQgjxEv0/71BheM6DafAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "\n", - "# Set the style of seaborn\n", - "sns.set_style(\"darkgrid\")\n", - "\n", - "# Create a bar plot\n", - "plt.figure(figsize=(10, 6))\n", - "sns.barplot(x=\"price_range\", y=\"total_sqft\", data=housing_data, errorbar=None, hue=\"price_range\", palette=\"crest\")\n", - "plt.title(\"Total Square Footage by Price Range.\")\n", - "plt.xlabel(\"Price Range\")\n", - "plt.ylabel(\"Total Square Footage\")\n", - "plt.xticks(rotation=45) # Rotate x-axis labels for better readability\n", - "plt.show();\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "The bar plot illustrates the relationship between price range and total square footage. Each bar represents the total square footage of houses within different price range categories. \n", - "From the graph, it is evident that there is a positive association between house size and price. Specifically, larger houses, as indicated by higher total square footage, tend to command higher prices. \n", - "
This suggests that there is a tendency for bigger houses to have a higher price, indicating a positive correlation between the size of the property and its price.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**#Relationship between bedrooms, bathrooms, and house price**\n", - "\n", - "Created a scatter plot to visualize the relationship.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwMAAAIdCAYAAABhiaF8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADluUlEQVR4nOzdd3gUZdfA4d/MtvRCCqEpIIQOUgTpRUFEBQuKiij2AnYR1A/k9bUjUgWx+yI2bKAgihWVJgoKCCJILwnpPVvm+f7YZCEkgSQk2Uxy7utaMVtmz8wzOzNnnqYppRRCCCGEEEKIOkf3dwBCCCGEEEII/5BkQAghhBBCiDpKkgEhhBBCCCHqKEkGhBBCCCGEqKMkGRBCCCGEEKKOkmRACCGEEEKIOkqSASGEEEIIIeooSQaEEEIIIYSooyQZEH4lc96dPtmGorrIviaEELWPJAN10JgxY2jVqlWRR+vWrenatStXXnkly5YtK/cyJ02axKBBg8r1mZ07d3LNNdcUea5Vq1bMmTOn3N9/uubMmUOrVq1O+p5169bRqlUr1q1bd1rfVZFtVZr58+fz+uuvV8qy/OXEfbFt27b06tWLBx54gIMHD1bKd1RW2ZnFpEmTim3XLl26MGrUKL7++utyLy8jI4OJEyeyYcMG33NjxoxhzJgxlRm2OMGgQYOYNGlSqa8fOHCAVq1a8cknn5T4uhn3+08++aTYvtumTRvOOeccbrrpJn777bdTLkP2TSHKx+rvAIR/tG3blscff9z3t8fj4ciRI7z11ls88MADhIaG0q9fvyqN4csvv2Tjxo1Fnvvggw+Ii4ur0u+tqHbt2vHBBx/QokULf4fiM3PmTMaPH+/vME7byJEjufLKKwFwuVwcPHiQ+fPnM3bsWJYtW4bdbvdzhOYTExPD3LlzATAMg/T0dL744gvuueceXn/9dXr37l3mZW3bto3PPvuMyy+/vKrCFaKIuXPnEhMTA3j336SkJF566SVuuOEGPvroI1q3bl3qZ48/twkhTk2SgToqJCSEs88+u9jz/fv3p2fPnnz88cdVngyUpKSYaorStpk4fXFxcUW27TnnnENcXBw33HADq1evZsCAAX6Lzazsdnux/XXAgAFs3LiRDz74oFzJgBDVrU2bNjRu3LjIc23btmXw4MG8++67PPHEE6V+tibdsBHCDKSZkCjCbrdjs9mKPb948WIuuugi2rdvz4ABA5gzZw5ut7vU5eTl5TF9+nSGDBlC+/bt6dKlCzfeeCPbtm0DvM1yCu9aHt806MRmQomJiTzyyCP079+fjh07MnLkSL799tsi39WqVSsWLVrEY489Rvfu3encuTP33HMPSUlJvvfs37+fO++8kx49etCpUydGjRrFjz/+WCzuH374geHDh9OhQwcuuOACPvvsM99rJ1a5z5kzh0GDBvH9998zdOhQOnXqxJVXXsmaNWtOtZkBby3IgAED6NixIzfccAN//fVXkdcPHTrEAw88QPfu3enUqVOx9xQ2a5o7dy6tWrXi7bffpk2bNqSmpvre8/LLL9OqVSt++ukn33M//vgjrVq1Yv/+/QDs2LGD22+/nS5dutClSxfGjRvne61QWloaU6ZMoVevXnTo0IGrrrqq2HqWpRzKIyIiAgBN03zPGYbBK6+8wuDBg2nfvj0XXHABCxcuLPbZ999/nwsuuICOHTty3XXXcejQoSKvf/LJJ7Rt25bFixfTp08f+vXrxz///APA8uXLufzyy+ncuTO9e/dmypQppKenF/n85s2bufnmm+nRowddunThjjvu8H0eju0ra9asYcyYMXTs2JEBAwawePFiEhMTGT9+PJ07d6Z///689dZbRZa9cOFChg4dSocOHejbty9Tp04lKyurQtvwRJqmERYWVmSbgvf3ffnll3P22WfTsWNHRowYwfLly33rcv311wNw/fXXF2l+oZTi1Vdf9e3Ho0aNYvPmzb7X58yZw+DBg5k7dy49evTg/PPPJzU1FY/Hw6JFi7jkkkt82+aFF14gPz+/SFy//PIL1157LV27dqVHjx48+OCDHD582Pf6J598QocOHfjtt9+44oorfL/b7777jn///ZcbbriBTp06MXjw4CLNHw3DYNasWQwaNIj27dszaNAgXnzxRVwuV7m256mOc+BtsjV27Fg+/vhjLrjgAtq3b8/w4cOLHX+2b9/OjTfeSOfOnRk4cCBLly4tVyxlVdZj6onNNU9sSpmSksJDDz1E79696dChAyNGjChyvIRTH8PKq3HjxkRGRvp+z6X9jk9sJuRyuXjppZc4//zz6dixIxdddBEff/xxkWV/8803XH755XTo0IHevXvz5JNPkpOTU+FYhTATSQbqKKUUbrfb98jPz2fv3r383//9H9nZ2YwYMcL33gULFjB58mR69uzJyy+/zOjRo3n11VeZMmVKqct/+OGH+eijj7jtttt44403mDRpEjt27OD+++9HKcWVV17JyJEjAe9FcWETkeMlJSUxcuRI1q9fz/3338+cOXNo1KgR48aNK3ainDFjBoZh8OKLL/Lwww/zww8/8PTTTwPeE//tt99OTk4Ozz//PPPmzSMiIoK77rqLvXv3FlnOlClTGDt2LPPnzyc2NpZJkyaxffv2UtczJSWFiRMncu211zJr1iwCAwO59dZb2bJly0m3/5EjR5gzZw733XcfL774Iunp6Vx//fWkpKT4lnv11VezdetWJk+ezPTp0zEMg9GjR7Nr1y7fdgNvE5sPPviAgQMHYhgGa9eu9X1P4f//+uuvvud++uknWrZsSZMmTdi9ezdXX301ycnJPPvsszz11FPs37+fa665huTkZADy8/O54YYb+Pbbb7n//vuZO3cucXFx3HLLLcUSgpOVw8kYhuHbF51OJ7t372b69Ok0b96cnj17+t43depUZs+ezfDhw3n55ZcZOnQoTz/9NC+99JLvPe+88w6PP/44ffv2Zd68eXTq1InJkycX+06Px8PLL7/Mk08+yX333UeLFi2YN28e999/P506dWL27NmMGzeOr776ijFjxpCXl+fbptdccw2GYfDUU0/x5JNPcvjwYa6++mpf2RR64IEHGDRoEC+//DJNmzbl8ccf5/rrryc+Pp7Zs2fTrl07nnnmGf78808Ali1bxnPPPcfo0aN5/fXXGTduHEuWLOHJJ5885TYsSeE2dblcpKamsnDhQnbs2FGkr86iRYuYMmUK5513HgsWLGDatGnYbDYmTJjAoUOHaNeune+3PmXKlCJNMH777TdWrlzJ5MmTee6550hISOCOO+4ocqPg0KFDrFy5khdffJH77ruPyMhIpkyZwtNPP82gQYOYP38+o0eP5p133uGuu+7ydVJesmQJN910E/Xr1+fFF1/kkUceYePGjYwaNcq3bxau4wMPPMDVV1/NvHnzcDgcPPTQQ9xxxx0MGDCAWbNmERMTw8SJEzly5AgAr776KosWLWLcuHG88cYbXHPNNbz22mu8/PLL5dq+pzrOFdqyZQuvv/4699xzDy+99BJWq5V77rnHl2QmJCRw3XXXkZ6ezrRp07j33nt54YUXSEhIKFMcx/9+jn8YhlHkfeU5pp7KhAkT2LlzJ//5z3945ZVXaNu2LRMnTvTdLCnLMay8UlNTSU1N5YwzzvA9V9Lv+EQTJ07klVdeYeTIkSxYsID+/fvz6KOP+pKXzz//nHHjxtG8eXNeeuklxo8fz9KlS4vsj0LUakrUOdddd52Kj48v9mjVqpW65JJL1Jdfful7b0ZGhurUqZOaMmVKkWV8+OGHKj4+Xu3YsUMppdTEiRPVwIEDlVJK5efnq5tuukktW7asyGfeeOMNFR8frxISEpRSSs2ePVvFx8cXeU98fLyaPXu2Ukqp559/XrVr107t27evyHtuuOEG1bt3b+XxeHyfueaaa4q8Z9KkSerss89WSimVmJio4uPj1ZIlS4qs19NPP63+/vvvIrH8+OOPvvfs2bNHxcfHq7ffflsppdTatWtVfHy8Wrt2bZHPfPrpp77P5Obmqt69e6u77767hC2vfNsqPj5ebdy40fdcYmKi6tixo5o+fbpSSqkXX3xRdejQQR04cMD3nvz8fHXeeecVWfbx20sppS644AI1efJk3/s7dOigLrvsMjVq1CjfewYPHqxeeOEFpZRSDzzwgOrZs6fKzMz0vZ6amqq6du2qnn32WaWUUh988IGKj49XmzZt8r3HMAw1evRodfnllxeJ5WTlUJqS9sX4+HjVvn17tWbNGt/7/v33X9WqVSu1YMGCIp+fMWOG6tChg0pJSVGGYaiePXsW2/5TpkwpUnYff/yxio+PVx9++KHvPWlpaap9+/bqscceK/LZX3/9VcXHx6tFixYppZQaOXKkGjp0qHK73b73pKenq+7du6t7771XKXVsX5k2bZrvPRs3blTx8fFqwoQJvudSUlJUfHy8evPNN5VSSk2ePFkNGTLEt28rpdSSJUvUW2+9ddJteKLCfaykx+OPP15k+c8884x6/vnni3x+y5YtKj4+Xn3++edF1qdw+ynlPY507NhRpaam+p4rPC5s27ZNKXXsN/LLL7/43vPPP/+o+Ph4NW/evCLf+dlnn6n4+Hj1ww8/KI/Ho3r37q3Gjh1b5D179+5V7dq188VbWI7vvvuu7z1ffPGFio+PVzNnzvQ9t3nzZhUfH69WrlyplFLqpptuKrbshQsXFvktn0pZj3OFZbF3717fe9avX6/i4+PVihUrlFJKPfvss6pTp04qKSnJ955Nmzap+Ph4NXHixFJj2L9/f6nlfPyjsNzKc0w9/riiVPHjdfv27YuUocfjUc8++6z69ddflVJlP4adqLBM9+7dq1wul3K5XCorK0tt3bpVjR07VrVt21Zt3769yHuP/x0r5d03r7vuOqWUUjt27ChyHC907733qkmTJinDMFS/fv3UzTffXOT11atXq/j4ePX999+XGqsQtYX0Gaij2rVrx3/+8x/Ae1dq1qxZuFwuZsyYwVlnneV738aNG8nNzWXQoEFF7vYVjobzyy+/0LJlyyLLttvtvhFuEhMT2bt3L//++y/ff/89QJmr4tevX0/nzp1p0qRJkeeHDx/OI488wr///uu7C3Ri2+i4uDhyc3MBiI6OpkWLFkyePJnVq1fTr18/+vTpwyOPPFLsO7t16+b7/8LvzcjIKDVGi8XCRRdd5Ps7ICCAfv36ldgE6XgNGzYsEnNMTAxnn302q1ev5oEHHmDNmjW0adOG+vXr+7a7ruv069fvpHfwBgwYwDfffAN479rqus4NN9zAY489Rm5urq88Bg4cCHjvcvfo0YOAgADf94SEhNCtWzdWr14NwJo1a4iJiaFdu3ZF9oGBAwfy/PPPk56eTnh4OHDycjiZq666iquuugrw3uU8evQoixcv5pZbbuGll16if//+rF27FqVUifvi/Pnz+e2332jWrBnJycmcd955RZZ/4YUX8v777xf73vj4eN//b9q0CafTySWXXFLkPd26daNRo0asW7eOSy+9lM2bNzNu3DgsFovvPWFhYQwcOLBYuXfu3Nn3/9HR0QB06tTJ91xkZCQAmZmZAJx77rl88MEHXH755QwZMoQBAwZwySWXFGvWUxYxMTHMnz/f93dWVhYbNmzglVdeISsrixdeeAHAN1pNZmYme/bsYc+ePb4an1P9Vlu0aOFrzgX42ngXrk+h47fz+vXrAYpt54suuohHHnmEdevW0bhxY44ePcoDDzxQ5D1nnHEGnTt3LjY6Tknb+fh9sTDGwt9yjx49mD59Otdeey2DBw+mX79+XHfddSdd1xOV5zhXr169InezCwdJKPxt/Pbbb5x99tlERUX53tOpUycaNmxYpljGjx9fYr+arVu3FqnJKc8x9VR69OjBnDlz2L59O/3796dfv35MnDjR93pFj2GFBg8eXOy5Ro0aMW3atGIjvx2/f52ocASsE5c3c+ZMAHbt2sWRI0e4/fbbixxXzjnnHEJCQvjll1+kz5Ko9SQZqKOCg4Pp0KEDAB06dKBz586MGDGCm266iU8//ZR69eoB3rbiALfddluJy0lMTCzx+Z9++omnn36af//9l+DgYFq1akVwcDBQ9rHK09PTi3Ugg2Mn++Mv0gMDA4u8R9d13/domsYbb7zB/PnzWblyJZ9++ik2m43zzz+fqVOnFrmYCQoKKrKMU8Vbr169Yn0soqKiirUxL20dTvxcYXvotLQ09u7dS7t27Ur8fG5ubrF1Bm8H8DfffJP9+/ezdu1aunTpQp8+fXC5XPz+++/s2rWLyMhI34VSWloay5cv97UPP3HdCt9z9OjRUmM5evSoLxk4WTmcTGxsrG9/LDRw4EAuuugiXnjhBfr37+/bF49Pvo6XkJDgi7nw30KFo5Kc6PiLr8IyK6lsoqOjyczMJDMzE6XUSd9zvJCQkGLvK6ncCg0bNgzDMHj33XeZO3cus2bNolGjRjz44IOlrndp7HZ7sW3as2dPrFYrM2fO5MYbb6Rdu3bs27ePKVOmsHbtWqxWK82bN/ddbJ2q7I7/vcCx38yJzVOO316F2/nEMrFarURGRpKZmekr69K284ntzkvazgEBAaXGfcsttxAcHMzHH3/Mc889x7PPPkt8fDyPPvpokWZpp1LW49yJZV6Y3BVup9KOdaXttydq1KhRsbIGirV5L88x9VRmzJjByy+/zJdffsmKFSvQdZ1evXoxdepUmjRpUuFjWKH58+f71t9msxEZGUn9+vVLfO/xv+MTFe5Lpb2n8PX//Oc/vhtkxyvtHCdql5SUFEaNGsWTTz5Jjx49yvSZr776ijlz5nDgwAFiYmK4/fbbfc2fzUaSAQF4D5RTpkzh7rvv5qmnnmL69OmA944nwAsvvEDTpk2Lfa6kk/W+ffsYN26crw1y4R2xRYsWFenIeirh4eEldj49evQocOyualnUr1+fqVOn8vjjj7N9+3ZWrFjBq6++Snh4eIkngLJKS0tDKVXkzm1SUtJJT05Q8kn36NGjvovY0NBQunfvzsMPP1zi50sbarNbt26EhISwZs0a1q5dy8CBA4mKiqJFixasX7+erVu3MmDAAN9FW2hoKL169eLGG28stiyr1ep7T9OmTX13kk9U0sVFZbBYLMTHx/PDDz8Ax/bFt99+23fBdbyGDRv6tuvxbcrh2An/ZAoTmqSkpCK1Y+AtmyZNmhAaGoqmaaXul8cnlhV18cUXc/HFF5OZmcnPP//Mq6++yoQJE+jWrVupF0Pl0aZNGwD27t1LmzZtuO2227DZbHz44Ye0bdsWq9XKzp07q6wDa+F2Pnr0aJF9p7BfQ2RkpG87lrady/PbL4mu64wePZrRo0eTnJzMjz/+yMsvv8zdd9/N6tWryzSUbWUd58B7LCtpXcuy35ZHeY6pHo+nyHtOTCxCQ0OZMGECEyZM4N9//+Xbb79l3rx5/Oc//+G1116r8DGsUHx8fKUcWwqPGykpKUWGrf73339JSUnx7Y8PP/ww3bt3L/b5wtdF7fXbb78xadIk9u3bV+bPrF27lkmTJjFz5kz69evHunXruPXWW4mPj6djx45VGG3VkA7EwmfIkCH07duXL774wlcN36lTJ2w2GwkJCXTo0MH3sNlsTJ8+nQMHDhRbzpYtW8jPz+f2228vUjVeeIIsvGNWeEFamnPOOYeNGzcWG9lm6dKlxMTEcOaZZ5ZpvTZu3EivXr34888/0TSNNm3acP/99xMfH+/rUFhRLperyIk/Ly+PVatWnfLu4t69e4t0Xj58+DAbN2703ZHo3r07u3fvplmzZkW2+9KlS1m8eLGvicqJ29Bms9G7d2++++47tm7d6lveueeey08//cSvv/7qayJU+D07d+6kTZs2vu9o3749b731FitXrvS95/Dhw0RFRRWJZc2aNbz22mtFmstUJpfLxdatW33lfM455wDeToTHx5GWlsbMmTNJS0ujadOmNGjQgBUrVhRZVmHTjZPp1KkTdrudzz//vMjzGzZs4NChQ3Tp0oWgoCDat2/P8uXLi1wsZWZm8sMPP9C1a9fTWuf77rvPN29EaGgoF154IXfddRcej6fS7lAWzu1x5plnkpqayu7duxk5ciQdO3b0JYCrVq0Cjt25rswyLrzgOnE7L1u2DI/HQ9euXWnWrBkxMTHF3rN//342bdpEly5dTiuGq6++2tcpOyoqissvv5zRo0eTmZlZ5pGbynqcK4tzzz2XjRs3FukwvHPnzmLHvtNV1mNqSEhIsWPj77//7vv/gwcP0r9/f9/vrHnz5tx666306tXL97myHsOqWuFvsrD5ZKEZM2bw3//+l+bNmxMVFcWBAweKxBkXF8f06dNPa/QjUfN9+umnPPTQQ9x///3FXlu9ejUjR46kW7duXHTRRUVukLz11ltcf/319O/fH03TOPfcc/n444+LHAvMRGoGRBGPPvoow4cP58knn+TTTz8lMjKSW265hVmzZpGVlUWPHj18fQw0TStx4pd27dphtVqZNm0aN910E06nk08++cR3h7fwDlPhHZsvvviCTp06FWvHeuONN7J06VJuvPFGxo8fT2RkJJ999hlr167l6aefPmUyUaht27YEBATw8MMPc/fddxMdHc3q1avZtm2bb8jE0/Hoo49y3333ERUVxeuvv05OTg533nnnST/jcDi46667uP/++/F4PMyaNYuIiAhuuOEGAMaOHcuSJUsYO3YsN910E5GRkSxfvpwPP/ywSF+HsLAwNm7cyK+//kq3bt3QNM03UkZQUJCv6UCPHj145513fMlCobvuuourr76a22+/nWuuuQaHw8EHH3zAN998w+zZswG4/PLLeeedd7jxxhu54447aNCgAatXr+bVV1/luuuuK3Eo2vI6cuQImzZt8v2dkZHBokWLOHDggK9GIj4+nuHDhzN58mQOHjxI+/bt2b17NzNmzKBx48Y0bdoUTdN46KGHePDBB/m///s/hg4dyqZNm3jvvfdOGUNERAS33XYbc+fOxWazcd5553HgwAFmzZpFixYtfBNuPfjgg9x8883ccsstXHfddbhcLl555RWcTudpTwB37rnn8vjjj/Pcc8/Rr18/MjIymDt3Lk2bNvX91vbt20dKSsop57xwOp1Ftqnb7ebXX3/l9ddfp0+fPr7mG40aNWLRokXExcURFhbGzz//zNtvvw0ca9MeGhoKeIfeDQ8PP+mET6fSokULLrvsMubOnUteXh49evRg27ZtvuFH+/bti67rPPDAAzzyyCPcf//9XHrppaSmpjJ37lzCw8NLrMkqj3POOYc33niD6OhoOnfuTEJCAm+++Sbdu3f31c7t3LkTp9NJ27ZtS1xGWY9zZVE4kdbNN9/M3XffjcfjYebMmZXy2zpeWY+pAwYMYNmyZXTs2JFmzZrx6aefFrl50ahRI+Li4njyySfJysrijDPOYMuWLfz444/cfvvtQNmPYVWtdevWDB06lBdeeIG8vDzatWvHzz//zMqVK5k5cyYWi4X777+fKVOmYLFYGDhwIBkZGcybN4+EhIRSmzmJ2qFPnz5ccsklWK3WIgnB9u3bufPOO5k2bRrnnXcef/zxB3fddReRkZH07duXP//8kx49enDbbbfxxx9/EBcXx913333S/is1mSQDoojmzZszZswY3njjDd555x3Gjh3LfffdR0xMDO+++y6vvfYa4eHh9OzZ0zdT8YnOPPNMpk+fzty5c7nzzjsJDw/n7LPPZuHChYwZM4YNGzbQqlUrhgwZwpIlS5g0aRIjR45k6tSpRZYTExPDe++9x/Tp03nqqadwuVy0bt2aefPmFesgejIOh4M33njDt5yMjAyaNm3KE088USkzqk6dOpWnn36alJQUunTpwnvvvXfKWotWrVpx0UUXMXXqVDIzM+nZsyePPvqo70Kkfv36vP/++0yfPp2pU6eSn59P06ZNeeqpp4q0SbzjjjuYN28et956K8uXL6dhw4a+OxVdunTx3ent3r07mqbRvXv3Iu2rW7duzaJFi5gxYwYPP/wwSini4+N56aWXfNs4KCiIRYsWMX36dKZNm0ZmZqavHftNN9102tsP4KOPPuKjjz4CvO2pg4ODiY+PZ+bMmVx44YW+9z3zzDMsWLCA999/nyNHjhAVFcWwYcO47777fHcaL774YnRdZ968eSxZsoT4+HieeOKJYp1RS1KYLL7zzjssXryYiIgIhg4dyn333edr39yzZ0/efPNNZs+ezQMPPIDdbqdbt24899xzxTrTl9fVV1+Ny+Xi/fff59133yUgIICePXsyYcIE34XhvHnz+PTTT/n7779PuqyjR48yatQo3982m41GjRpx/fXXM27cON/z8+bN46mnnmLSpEnY7XZatGjB/Pnzefrpp9mwYQNjxoyhZcuWXHzxxb4mMF988cVpredTTz3FmWeeyccff8zrr79ObGwsY8aMYdy4cb4L0ssvv5zg4GAWLFjAuHHjCAkJoW/fvjzwwANlbktfmnvvvRe73c7HH3/MSy+9RGhoKIMGDeLBBx/0vec///kPBw8e5LvvvitxGWU9zpVFZGQk7733nq8cgoODueWWW0rsy3M6ynpMfeSRR3C73UybNg2r1cqwYcN8CXahuXPn8uKLLzJr1ixSU1Np0KAB48eP9/UvK+sxrDpMmzaNuXPnsnDhQlJTU2nWrBkzZ85k6NChAFx55ZUEBwfz2muv8cEHHxAUFESXLl144YUXit2kErVLaceS999/n/POO48hQ4YA0KVLF6666ioWLVpE3759SU9P5/XXX2fOnDl06NCB7777jvvvv5933nmnyCARZqGp8tRlCiF8CidOO9VFmRCVbciQIXz99df+DqNWczqdXH755aed+AghzKFVq1b873//o0ePHtx6662sXbsWh8Phe93j8XDGGWewZMkSOnfuzPXXX1+kNuG2226jRYsWpfaTqcmkZkAIIUzkww8/LPPwj6LiXnrppXKNLCSEqD3i4uK47LLLeOKJJ3zPJSYm+voCnXXWWTidziKf8Xg8pp2kTjoQCyGEiXTr1s032peoOsOGDSsybr4Qou4YOXIkX3zxBT///DOGYbBnzx6uu+463njjDQCuueYa3nvvPVavXo1hGHz11VesW7eOiy++2M+RV4w0ExJCCCGEEHXa8c2EwDtgwuzZs9m7dy+BgYFcfPHFvn5i4B2J6I033uDAgQM0atSIe++9t8TJ8sxAkgEhhBBCCCHqKGkmJIQQQgghRB0lyYAQQgghhBB1lCQDQgghhBBC1FGSDAghhBBCiDolw8j3dwg1hmk7ECcnZ2LOyGseTYOoqFDZpiYl5Wd+UobmJ2VoblJ+la9wm9ZkT+b8QJ5yV+oyAzQr/xc0oFKXWdVMO+mYUsgPtpLJNjU3KT/zkzI0PylDc5Pyq1vylJt8PJW7UBPuP6ZNBoQQQgghhKgwpQFaJS+0spdX9aTPgBBCCCGEEHWUJANCCCGEEELUUZIMCCGEEEIIUUdJnwEhhBBCCFH3mLCzb1WQmgEhhBBCCCHqKEkGhBBCCCGEqKMkGRBCCCGEEKKOkj4DQgghhBCi7pF5BgCpGRBCCCGEEKLOkmRACCGEEEKIOkqaCQkhhBBCiLpHhhYFJBkQQgi/UiiyNCd27CgUZmxveip5TkW+SxHk0LBZa9/6CSGEmUkyIIQQfqBQbLIm8IttP7utqTiwUT8wiF7OJnR1N0CvBUnB4RQPP21z8vsuF/kuRWiQxrnxdvq2tRMaKK1UhRCiJvBLMrB161aefvpp/v77bwICAhg6dCgPP/wwdrvdH+EIIUS1Uii+tv/LZ46/cWMQpQJxYGWr5Sh/BSZxJD+Li50t0UycEOw96uHVldnsP2oQFaoR6NBIzVJ88HMe2w64ueX8IMKDJSEQQgh/q/YjsWEY3H777VxwwQWsX7+ejz76iJ9//plXX321ukMRQgi/2KdnsMy+k0BlpaWnHlEqkGiCaGnUI8xwsMKxi52WVH+HWWGGofhkTS6Hkj20aWwhLtJCRLBOk2gLLRtY+HOPm+825/s7TCFEXaeq6GEy1Z4MpKenc/ToUQzDQCnvFtN1ncDAwOoORQgh/GKj9QgZej71jeBir8WoIHJw8bv1sB8iqxy7Ez3sOOSmcbQFXS9au2G3adQL1Vi3w0VWnuGnCIUQQhSq9mZCkZGRjB07lueee47nn38ej8fDeeedx9ixY8u1HM28tec1TuG2lG1qTlJ+5nPYkkmAsqCXUGiaBsHYOGjJNG2ZpmQZ5LsgNKDk+00RQTqJ6R7SsxWhteQ+kPwOzU3Kr/KZY1vKpGPgh2TAMAwCAgKYPHkyI0eOZO/evYwfP57Zs2dz3333lXk5UVGhVRdkHSXb1Nyk/MwjhhAsJBGEo8jzQUHevzV0ogkhOticZRqbkkdAgBO7w4bVUvzEmG94CAm2EBcbQnS92jWOhfwOzU3Kr44xYZOeqlDtR+GVK1fy1VdfsWLFCgBatmzJuHHjeOqpp8qVDCQnZ6KkECuFpnkPgLJNzUnKz3yaWsPID3CRamTjKDgMBwU5yMnJx4mHbEs+LfLCSXJl+jnSiokONAgPMNh9KI9GUZYiryml2HPEQ6emViyeHJKSzHcXrSTyOzQ3Kb/KV7hNRc1X7cnA4cOHcTqdRYOwWrHZbOVajlLID7aSyTY1Nyk/82jviqWtNYY/bImc4QklFO9Ialk42aOn09YdQ0dnfdPetAoO0BnY3s7i1XkcTvUQG66j6xout+JAsocgh8bADg5Aq3X7rPwOzU3KT9RF1d6BuE+fPhw9epSXX34Zj8fD/v37mT9/Ppdcckl1hyKEEH4RgJUb8jrR3dWAZD2P7ZZktpBAop5DF3ccY3M7EYK5h1o+r5ODy3oEoGnw90EP2w+4+TfBQ1SozpgBgbQ/o3w3gIQQQlSNaq8ZaNGiBQsWLGDmzJm89tprhIaGMnz4cMaNG1fdoQghhN9EqUDuzO3Gbksa+yzphDsCCc21cpa7Xq2YcMyiawzrFsC5re1s2+8mz6kIC9Zo28RGsMP86yeEqAWUdCAGP0061qtXL3r16uWPrxZCiBpDR+MsTyQtjEiiCSXJk2napkGlqRei07uNuWs5hBCiNpPpH4UQQgghhKijJBkQQgghhBCijqpdAzwLIYTJKKXIwoXdyC+Yld187U2FEMK0KrttpgkP4ZIMCCGEHyil2KSS+MU4xG7ScaTbqO8JpJfWgK5abImzEwshhBCVTZIBIYSoZkopvjb28ZmxC7emiCIAh2Zhq0rmL5XCES2bi/VmaJIQCCGEqGKSDAghRDXbRybLjD0EYiOOIDQNgnQ7QZqFRCOXFWovrfV6tCTC36EKIUTtpbSC4UUrk/lu4kgHYiGEqGYbjaNkkE99Aou9FqMFkoOb341EP0QmhBCirpFkQAghqtkhlY0Da6nNgIKwckBlVXNUQggh6iJJBoQQopoFalbcGKW+7sQgSFpxCiGEqAaSDAghRDVrr0WhAfnKU+w1p/LgxqCjHl39gQkhRF2iquhhMpIMCCFENeugRdFWq8dO0shUzoL5BSBLufiHNFprkXTSYvwcpRBCiLpA6qGFEKKaBWhWbrC05X3P32xVKRwkC4fLBhh00WK52hJPiGbzd5hCCCGq0NKlS3n88ceLPOdyuQDYsmVLtcUhyYAQQvhBlBbAnZaO7CadfWQSHhxEqEfnLCJkwjEhhKgOfh5adPjw4QwfPtz3d0JCAldccQUTJkyo5JhOTpIBIYTwE13TOIsIWmgRRAeEkpSViTJhe1MhhBCnRynFhAkTGDBgACNGjKjW75ZkQAghhBBC1D1V2OE3K6vo8NB2ux273V7q+5csWcLOnTuZN29e1QR0EpIMCCGEEEIIUYn69etHdna27+/x48dz9913l/hewzCYP38+d9xxByEhIdUVoo8kA0IIIYQolVKQnQOGB0JCQJdxCIU4pVWrVhX5+2S1AuvWrSMxMZGRI0dWdVglkmRACCGEECXauk3j5zUaO3bqGAoaxil6n2vQo5vCYvF3dELUXOW5w//VV18xePBggoKCqjCi0kkyIIQQQohiflmr8f5HFnJyIaqewm6Bnf9q7NhpYd9+gysvMyQhEOZWQyYJ++2337j++uv99v2SDAghhBCiiKNJ8OnnFtAUrVoeez4yQpGWDt+t0mnTStGpQw24khLC5A4cOEBsbKzfvl+SASGEEEIU8ecWnaRkaB1f/LWIcEg4Cut/0yQZECanUZ55Acq+zPLZuHFjJcdQPpIMCCGEEKKIo0nejsKldRYODVbsPyiT4wmTqyHNhPxNxgQQQgghRBEOByij9NddLo2gwOqLRwhRdSQZEEIIIUQRrVoq7A44bph0H4/HO9Ro17PllqoQtYEkA0IIIYQoIr6FolMHg737NdLSvXMNAOTkwj87NZqdqeja+SRVB0II05A+A0IIIYQowmqFMaMM7DbYtFnn0GFv/wGbDdq0Vlw90kO9SH9HKcRpkj4DgCQDQgghhChBaCjcfL3BvgMGu/doGAbE1ffWGljl6kGIWkN+zkIIIYQokabBmU3gzCZy+1TURjVjaFF/kz4DQgghhBBC1FFSMyCEEEIIIeoe6TMASM2AEEIIIYQQdZYkA0IIIYQQQtRR0kxICCGEEELUPdJMCJCaASGEEEIIIeosqRkQQgghhBB1kAwtClIzIIQQQgghRJ0lNQNCCCGEEKLukT4DgNQMCCGEEEIIUWdJMiCEEEIIIUQdJc2EhBBCCCFE3SPNhACpGRBCCCGEEKLOkpoBIYQQQghRB8nQoiA1A0IIIYQQQtRZUjMghBBCCCHqHukzAEjNgBBCCCGEEHWWJANCCCGEEELUUdXeTGjp0qU8/vjjRZ5zuVwAbNmypbrDEUIIIYQQos6q9mRg+PDhDB8+3Pd3QkICV1xxBRMmTKjuUIQQQgghRF0lfQYAPzcTUkoxYcIEBgwYwIgRI/wZihBCCCGEEHWOX0cTWrJkCTt37mTevHnl/qxmvmFca6zCbSnb1Jyk/MxPytD8pAzNTcqv8sm2NA+/JQOGYTB//nzuuOMOQkJCyv35qKjQKoiqbpNtam5SfuYnZWh+UobmJuVXxyjN+6hU5suC/JYMrFu3jsTEREaOHFmhzycnZ6KknVel0DTvAVC2qTlJ+ZmflKH5SRmam5Rf5SvcpqLm81sy8NVXXzF48GCCgoIq9HmlkB9sJZNtam5SfuYnZWh+UobmJuUn6iK/dSD+7bffOOecc/z19UIIIYQQQtR5fqsZOHDgALGxsf76eiGEEEIIUZfJ0KKAH5OBjRs3+uurhRBCCCGEEPh5aFEhhBBCCCH8Q6PyR/8x32hCfp10TAghhBBCCOE/UjMghKjRXIZBjtuD3aITaLH4OxxRAXn5kJ8PQYFgs/k7GiGEKCB9BgBJBoQQNVSW283qpDTWJKWT5nRh0zU6R4bRNyaSxkEB/g5PlMHhBPhpPfy+2ZsMhIbCuV2gb3cILf9ck0IIIaqAJANCiBony+3mjX8P8ntqJiFWC2FWC/mGwYojyfyZlsnNzRvTIrRic5SI6rH3ALz6Luw/BFEREBgAqWnwwVLY9g/ccg2Eh/k7SiGEENJnQAhR4/yYmMpvKZk0Dw7kjKAAIuw26gc4aBMaRGK+k4/2J+A2DH+HKUphGPDJcjh0BNq0gLhYiAiHJg2hZVP48y/47hd/RymEqPNUFT1MRpIBIUSNkufxsCYpjXCbhQBL0UOUrmk0CQzg3+wcdmTm+ClCcSq798GO3dC4AegnnGXsdqgXAes2QpYUoRBC+J0kA0KIGiXD5SHD5SbcVnIrxiCrBbdSpDhd1RyZKKvkNG8fgZDgkl8PD4OMLEhLr9awhBDiBFoVPcxFkgEhRI1i1zWsuobTKLmu1aO8z9tOvOUsagy7DTQN3O6SX3e6wGqRkYWEEKImkLOpEKJGCbdZaR0WwlGnE6WKJwRH853Us9mIlw7ENVaLphATBQlJxV9TChKToGUziI2q9tCEEKKoOt5fACQZEELUMJqmMSA2kgiblX+z83AWdBQ2lCIxz0m6y02/2Egi7XJbuaYKCYZBvSEnB44kejsUA7hcsOeAd76Bgb29tQdCCCH8S4YWFULUOPGhwdzQrBGf7E9gT3YuhvLecIm0WxneKJYLG0T7O0RxCuf18TYT+vZn+HuX98Jf06BBLIwYCu1b+TtCIYQQIMmAEKKG6hQRSnxoEH+lZ5PmcuHQdVqFBRPjsPs7NFEGFgsMOw/O7eqdVyAvD8LCoG1LCJYWXkKImqAqmvaYsKmQJANCiBor0GKhaz2ZmcrM6kVA73P8HYUQQojSSDIghBBCCCHqoKoYCtR8naGkA7EQQgghhBB1lCQDQogazeVWpGcb5DpN2BCzDJRSZGYrMrJUiUOpCiGEqCKVPaxoBfogpKWl8fDDD9OjRw/OOecc7rrrLhITE0971cpDmgkJIWqkrDyD1dtcrPnbSVq2gc2i0bm5lb5tHTSOtvg7vNOmlGLTdsUvvyt2H1A4HNnUjzLo1Vmja1sNXTdfVbMQQojyufvuuwkPD2flypXous4jjzzC5MmTWbBgQbXFIMmAEKLGycozeGNlDr//6yIkQCcsSCPfpVix0cmfe9zcPDiIFg3Me/hSSvH1LwaffaNweyAqAhx22PqP4q+diiMDNC4eoKPJQPxCCFFrbdmyhT/++IPVq1cTEhICwH//+1+OHj1arXGY92wqhKi1ftzi5Lddbs6KsxJgP3ZBHBOu+OeQh49W5/LQpSFYLea8WN53GJb9qAgMhLhoDQ0ICtIJcmgkpipW/Kxo3RxanunvSIUQQlREVlZWkb/tdjt2e9Ghsf/8809atGjBhx9+yHvvvUdubi59+/Zl4sSJ1Rmq9BkQQtQseU7Fmr+dhAdrRRIBAF3TaBJt4d8jHnYccvspwtO3cZtBRhbUjyr+WkykRk4u/P6XUf2BCSFEXVKFfQb69etH165dfY+Smv2kp6fz999/s2fPHj799FM+++wzEhISqj0ZkJoBIUSNkpFrkJGtCA8u+a5/kEPDbUBKpnk72x5KBIeDUpsBBQXCgYRqDkoIIeqcqhtadNWqVUWePbFW4PjnHnvsMRwOByEhIdx3331cddVVZGdnExwcXMmxlUySASFEjWK3algt4Czlxr/HUKDAZuKjV2AAuE9SseF0QZCj+uIRQghRuQr7AJxMixYtMAwDl8uFw+E96BuGt1a4OkeXk2ZCQogaJTxIo3VjG0fTPSUeDI9mGNQL0YhvaN5soH1Lbz+B/BKGS3W6FG43dGxlzv4QQghhGn4eWrRXr140adKERx99lOzsbFJSUpgxYwbnn39+mZKJyiLJgBCiRtE0jQHt7UQE6/yb4MHp9h5ZDaVITPOQnq3o195OZIh5D18dWmq0baGxcx9kZh+bXyArR/HPXmjdXKNTa0kGhBCiNrPZbCxcuBCLxcIFF1zABRdcQFxcHE8//XS1xmHeW2tCiForvpGVGwYF8cnaPPYkejAMUCgig3WGd3dwYZcAf4d4WgIcGjdcqvP+coOtOxUHE8Bh9wDQpa3G1cN0QoIkGRBCiNqufv36zJgxw68xSDIghKiROjWzEd/Iyl/73aRlGThsGq0aW4kJM2+NwPGiIjTuvFpn9wHYd1gRHu4gNFBxVhNkwjEhhBDVRpIBIUSNFWjX6HqWzd9hVBld1zjrDGhxpkZ0tJ2kpHyqsc+YEELUbeVs41/mZZpM7bjFJoQQQgghhCg3qRkQQgghhBB1UNXNM2AmkgwIIWq0HKdBcrabEIdOZJAcsoQQQlQSaSYESDIghKihEjLdvLUujW93ZpGZ78Gqa3RtHMjorhGcc0agv8MTQgghagVJBoQQNU5Cppt7PjnCX4l5BFgh2KbjNOCbndlsOpjH5CExnBdffROyCCGEELWVdCAWQtQ4C35JYWtCLg1DrTQMsxMeaCUm2EqzCCupeR5mrkomz2X4O0whhBDC9CQZEELUKGm5bn74N4cgm06AreghStd1YkOsHEh38c2ObD9FKIQQolZQVfQwGUkGhBA1yqF0N1n5HkIdJR+egmw6HgP2p7mqOTIhhBCi9pE+A0KIGiXYrmPRNVyekm+veAxv86AAq9zLEEIIcbrMNxRoZZOzqRCiRmkSYaVVjIO0PANlFO8XkJJrEOrQGdAiyA/RCSGEELWLJANCiBpF13Wu7RJOsF1nf4YHp9ubEBiGQVK2m2ynwXktQmgWZfdzpEIIIUxN+gwA0kxICFEDDWkdQnqewStrUjic6cYoOLgG23UuaRPKpPOj/RugEEIIUUtIMiCEqJGuPDuM8+ODWP5XFkcyPAQ5NAa2CKZ1fYe/QxNCCCFqDUkGhBA1VmSQldHdIvwdhhBCiNqoKpr1mLCZkPQZEEIIIYQQoo6SmgEhhBBCCFEHaVT+0KLmG6pUkgEhRI2WlOlm12E3seEWmtW3+TucSqeUIsvjxu5yoZTCjCeSus5jKLLzFIHBxYfCFUKImk6SASFEjbR1fz6PvJHDH5t1XPk6mu6k8ZlZjLvczvUDgv0d3mlTSrEpK51f0pPZnZeN47CN+tjpFVaPrqER6JokBTVdnlOxeruLNducJGcYBAc7aRmn6NPWRvM4Ob0KUeNJnwHAT8lAWloaTz/9ND/++COGYXDOOecwdepUYmNj/RGOEKKG2bo/nysezSX1qA3dorDYDQyPxp5/bDw2y83RjEweHB7q7zArTCnF1ymJfJZ0CLdSRNnsOHQLWzMz+Cs7gyPOOC6OikOThKDGyncp/vddLmu3uwiwa0QEe8vq+z+c/PGvi7HnB9Khae2ryRJC1D5+6UB89913k5OTw8qVK/n++++xWCxMnjzZH6EIIWqgB17OIfWolYAQD0FhBo4ACAxWBIV5cObrvLTIQ1q2x99hVti+/FyWpRwh0GKhZVAIUTY70XYHLQODCbNYWZGSwM7cbH+HKU5i7d8u1m530STGQtP6FiJDdOIiLbRpYiErV7H453xy8k14i1AIUedUe83Ali1b+OOPP1i9ejUhISEA/Pe//+Xo0aPVHYoQogbad9TFtm06utXAesKNVV2HgECDnEwLsz7P4vGrw/0T5GnamJlGhttNm6CQYq/F2B1sy87k98w0WpbwuvA/w1Cs3ubCYdMIDihae6NpGk1iLew+4uGvfW66tZTaASFqLGkmBPghGfjzzz9p0aIFH374Ie+99x65ubn07duXiRMnlms5UnteeQq3pWxTc6pt5bd5vwuXU8dmL7kzptUO+TkaOw8p067zYWceAbp+rF9A4XpooCkItlg46Mw17frVdrkuSMrwEB6sHevufVwZOqzeP1IyDSlDk6htx9GaQLaleVR7MpCens7ff/9N+/bt+fTTT8nLy+Phhx9m4sSJLFiwoMzLiYoyb3vhmkq2qbnVlvJr3khH19MxDA29hJOJx1CgKSLDbERHm3OdYzKDsDizCQoqOptyUKD3b82TT3RokGnXr7YLdSpCg/NxuRVBQUVPo0GBdpRSWG0QHRVEdHSQn6IUFVFbjqNClEe1JwN2ux2Axx57DIfDQUhICPfddx9XXXUV2dnZBAeXbZSQ5ORMlAmrYmoiTfMeAGWbmlNtK7/4aA/1YtwkHrJicxjoJ/RsysvWsFgVV/bRSUrK9E+Qp6mpcpCf7yJVy8GhW0DzJgI5ufk4PQbZ+U5aaAGmXb+6oE0jxZcbnIQHeLwdvTVvIpCT6yQlwyDAoogLdZKUZN6+LXVJbTuO1gSF21TUfNWeDLRo0QLDMHC5XDgc3rtghuFtDqDK8QtUCvnBVjLZpuZWW8rPYrEw+iILs99S5GbpBAR7sFg0DAPyczUMt0b7Tm76tg4z7fq2Dw6jbVAof2RncIYjkFCLBYAst5s9ebm0DQqlY0i4adevLujV2s7GXW52HPJwZqyFAJuGUorkdIMjaQZDuthpEKlLGZpMbTmOijJSmvdR2cs0mWofTahXr140adKERx99lOzsbFJSUpgxYwbnn3++r0OxEKJum3R5GKMvV9gDDPIyLWSl6eRmeA9XbTu6eP8xc99tCtAt3NDgTLqHRpDsdrI9N4stGWkkupx0CY1gbIMzCbHIOPU1WZMYCzeeH0jTWAt7Ew22HXCzeY+LPJfigi52Lu8ZIEPDCiFMQVPluR1fSRISEnj22Wf59ddfyc/PZ9CgQTz22GOEhYWVeRlJSVKVV1k0DaKjQ2WbmlRtLr/dCS5eXJLNgURFSJDGtQPsXNil9rTBNpRid142+/JzCQ8LJDQfzgoIlgnHTCTfpdh+wE1ShkFMVDD1Q/KpH2Hxd1iinGrzcdRfCrdpTfZ/f/xOvlG5M4c7dJ0nO3Wp1GVWNb/ceqpfvz4zZszwx1cLIUykWX0bc26L8HcYVUbXNM4KDKFFUIhciJiUw6bRqZmt4MInkKQkt5ShEMJUpB5aCCGEEELUPTLPACDJgBBCCCGEqJM0jk0SUpnLNJdq70AshKhcOfmKtEwDt8eEtyPKIMflYX+6k9Rct79DERWUlw/pGeBy+TsSIYQQJ5KaASFMam+Ch583u/jjXzcWm5NAm5tebW30amcjyGG+OxMnSsh28daGVL7dkkdmNlgt0LWlldHdwjmnYdnmIxH+dfgI/LRW5/dNkO/UCA1VnNtN0fdcRWjN7lcohKgLpJkQIDUDQpjS9v1u5i3NY+VGF4aCIIdGYqrBom/zeeurPHLyTXg0Ok5Ctot7Pj7CO9/lkZoODjt4DPhmg4cJHyTz7b8Z/g5RnMLe/fDS6zrLvtZwujQCAyE1TeODT3VeeVsnXYpQCCFqBEkGhDAZp0vx0Y9OkjMVbZro1I/UqRdm4cz6FprW1/n1bze/bDF3e4wFa5PZulPRsD40jNUID9GIidRo1hhS02HmN+nkuWVm15rKMOCTz3UOHdZoEw9x9SEiHJo0gpbN4c+tGt+tktOPEELUBHI0FsJktu/3sCfR4IwYrdikRoEOjeAAWL3VhcttztqBtDw3P2x1EhSkCLAXXT9dh9gYOHBE8c2/WX6KUJzK7r2wY5dG40beMjue3Q71ImHdbxpZ2f6JTwghxDGSDAhhMskZCsMofqFcKCxYIzVLkZlrzmTgUKaLrGwIDSp5/YIcGh4D9qeZu/ajNktO1cjPh5BSunaEh0NGJqSlV29cQghRhKqih8lIMiCEyditoJR39tqSuNxg1cFuNWcn4mCbjsXiXY+SeApaBwWYdP3qArvNO/uou5QydDrBagWbrXrjEkIIUZwkA0KYTMvGFiJDNJLSiycDSimS0hXtm1kJCTTnxXKTMButztBJywBVwizxKRmK0GAY0Dyk+oMTZdKimSImWpFwtPhrSkFiIrRsroiNrv7YhBDiGK2KHuYiyYAQJhMbodO7vY2UDMXRNAPD8CYFTpdi12FFdJhOv47mveWq6zrXdgsjOAj2JyicLu/6GQYkpSqys+G8s+00i3D4OVJRmpAQGNRXkZMDRxK8ZQfeeQb27IOgYBjYV6GZ75wphBC1jswzIIQJXXKuHYCfN7vYvt8gMMCJ02nQOEZnZD8HzRtY/Bzh6RnSIoz0izy88n0mhxOPNYkKDoJLetqZNCDGzxGKUzmvv8LtNvh2lc7fOwvul2nQIE4xYpiifRsTNqwVQtQuMs8AIMmAEKZkt2lc0ddBn/Y2/jnoISAwECt5tG5iKbVjsdlc2S6S85uHsvyfDI6kuwly6AxsHkLr6AB/hybKwGKBYUMU557jYdsOjbw8CAuDtq0UwUH+jk4IIUQhSQaEMLH6kTpx9XSiowNJSnJTSp9i04oMtDK6Yz1/hyFOQ71I6N2jlu2YQghRi0gyIIQQQggh6h5pJgRIB2IhhBBCCCHqLKkZEMLk/jnkYntCDnEhbsKDat9POinLza6jLmJDdZpFywhCZpSXr8h3QlAg2GR+CCFEjVEVQ4Ga7xhX+64chKgjXv06i1e+zOfQEVAqE7tdcXZrnWk3htCygXmHFi209XAejyxK549NFly5FjSLovFZaYwbHsD1PcP9HZ4og8NHFT/9ZvD7X4p8pyI0ROPcjhp9u+qEBpvvhCmEELWRJANCmNCTizN5+RMnLqeGxabQLYq8PI21vytG7E1nydRwUycEWw/nccV/MkndH4huN7A4PBhujT1/BvLYbjdHM1J58IJIf4cpTmLvIcWrH3nYf0QRFQGBAZCaofhghWLbv4pbrrAQHioJgRDCz0zYxr+ySZ8BIUzmSKqL175w4nZBUIgiMBACAzSCgxWOQIOUZJ2H3sjyd5in5YE300nd7yCgnougSDeOIEVgmEFQjBNntoWX3veQlu3xd5iiFIah+GSlh0OJijbNIS5aIyJMo0mcRssz4c8diu/WlTC9tBBCiGonyYAQJjNjaS55ORqOQIV+wi/YatXQdNi03UNShts/AZ6mfckutm2xoTs8WG1Fb9noOgSEu8lJtjFrZbqfIhSnsvsA7NiraBwHul707r/dplEvHNZtVmTlyC05IYTwN0kGhDCZf4+4QXkv/EtisSlcTp0t+8yZDPx5KB9Xno4toOQ7x1a7AgU7j5hz/eqC5HRvh+GQoJL30fBQyMhSpGVWc2BCCHE8VUWPcli+fDlt27alc+fOvseECRNOe9XKQ/oMCGEyQQ4NUBgGxWoGAAwDNE1RL8ScuX69IB1NU3g8GrYSjqpGQY4Q6JD25jWV3QaaBm63KjFpdbrAagWbnIGEEHXc5s2bGTFiBM8884zfYjDn1YIQddiVfQLQrZCfX/w1wwCPUyc2VtGxqb36g6sE3c90ENXIhTvb4rvwP15+lo4lwOC6PkHVH5wokxZnaMTU00hILv6aUorEJGh5hkasTC4thPArrYoekJWVVeThdDpLjGDz5s20b9++itavbCQZEMJkLu4WSIszFYZLIzf32J1yj1uRmwM2u8FNQwP8G+RpsFotjB5qw+IwyE214SloDWQYkJuhY+RbadPJSb+Wwf4NVJQqJEhjUA+NnFw4kqQwDG8Nj8ut2HMIgoJgYA8dTZPaHSFE7dSvXz+6du3qeyxYsKDYewzDYOvWrfzwww8MHDiQfv36MXnyZNLTq7dPXLkraZOSkoiOjsbpdPLRRx8RGRnJhRdeWBWxCSFK8eGkMK56NoOdezRysyi4EaHjCDQYM9TO3cNC/Bzh6Zk0LJLkzCQ+WGqQl2pDKQ0N0B0e2p6Ty/v3Rfk7RHEK5/XQcbvh27UGf+8BDYWmQYMYjRGDdNq3kHtRQgg/q0Ab/zItE1i1alWRp+324rX1KSkptG3blgsuuIDZs2eTmprKxIkTmTBhAq+88kolB1Y6TSlV5s2wePFinnrqKTZt2sRTTz3F8uXL0TSNa6+9lrvuuqsq4ywmKSmTskcuTkbTIDo6VLapCS1dn8uHP+XhUhYaRhjcPyKYM2LMO7/AiXYn5fPil5kcSDIICYRr+wRxYXtzJzolqc2/wZR077wCefkQFgJtz9IIDqx9NQK1uQzrAim/yle4TWuy/1v/J/meyh3m2GHRebJ7xwp//s8//+Sqq65iw4YNhIRUz/muXDUD77zzDi+99BIej4dPPvmEV199lZiYGMaMGVPtyYAQAoZ3D2REj8BaexJrFu1gzhiHv8MQp6FeuEbvzrXv4l8IIU7X9u3b+eKLL3jwwQd9zSadTie6rpdYk1BVypUMHD58mN69e/P7779jtVrp0qULABkZGVUSnBBCCCGEELVRREQEixYtIjw8nBtvvJHExESmTZvGZZddVq3JQLkabYaHh7N3716++uorunfvDsDatWuJiYmpkuCEEEIIIYSoEn6eZyAuLo4FCxbw7bff0r17d6644go6dOjAlClTKmX1yqpcNQM33ngjl1xyCQALFy7kt99+4/bbb+fxxx+vkuCEEKe2eaeLvL9zaRbrIiqi9vQXKJSU5WJXopvYUJ1mMbWvyZDHo/h3HxxN8VAvXBWbsVcIUfXynYq0DAOnS2ErZUJHURsdGwq0cpdZdt27d+f999+v5BjKp1zJwLXXXkvfvn2xWq00aNCAlJQUFi1a5PfxUYWoi557J5c3l7lITddA5WGxKlo2yWfugw46nGX+pGDroTweWZzCH7sMXC5vZ7TG9TXGDQnm+p4R/g7vtHk8ihde1liyUpGQqtC0LKLC4KKBMGkc2O1yQSJEVUtKVfz8m8H6zaDIwaIZdO8Ifbrq1AuX36CoG8o1mhB4+w0cPHiQEz92zjnnVGpgp1IbO0v6i4yiYD73z8rhva/dGB4NNIWmaaiCARGCghSfTws0dUKw9VAeV8xIIjVdQ9cVFgsYCjwuDbtDcd+IIB4cbN4Zqzwexe0TYeVaA6UgwK6haZCb7x1+s29nnbdngsUiFyNmIcdR80lIUrzyocHOfYp64VAv0kZyiovUDGjVTOPWK3Vi6slvsKJMMZrQ2s1VM5rQuR0qdZlVrVw1A/Pnz2fWrFnFntc0jW3btlVaUEKI0u1PcPHBN24MA6w20DXvhaRS4DEgJ0dj3Av5rJpv3mTggXdTSE3XCAhQWI87Shl2RU6OxkvLcri5VygRweZcx6Vfw3frDaw6hId4u25ZLBrBAYqMHIOfNxm887HODVf5OVAhaimlFEu/9yYCrZqBzaoRFKQTYNOIraf4e7di+SqDGy61+DtUIapcuToQv/XWW7z00kts27aN7du3+x6SCAhRfaa+5sLt1rBYNE5sXm4p+EX/s9/gcLKr+oOrBPtS8tm210DXiyYCALoOAQ5FTq7GrG/NO4rZB5+D0wOhQcXvOoYF6Xg8ik9W+CEwIeqIhCTYskPRMAasJ9TAWa0a9aNg0zbF0RSp5hG1X7mSAavVyoABA2QKeSH8aE+CAerYhf+JNB0Mj8aGv8x5EvvzoBOXC2yl3PS32gAFOxPd1RpXZTpwRGHRKLWzsMWicTDRnOUnhBkkpUFWDoSV0oolPNT7ekp6tYYlhF+UKxkYPXo0M2bMICsrq6riEUKcQmDB0MNGKdeKCkCDGJM2qa8XZEHTvE2eSmIUPB9ozhZCAAQGaBgnaVhuGBBQfUNMC1Hn2G1gtYKrlApUpwusltJvSohaws9Di9YU5UoGmjdvzptvvsk555xDmzZtijyEENXjmiE2NB3cnuJHHEMBHggLUZzbzpxXk93PtBMVCW6X5rvwP16+EyxWxXW9qmea9qrQ9xzQ0HC6ipehy61QyjuaiRCiajRtBI1iNY4klfx6QhKc0UDjjLjqjUsIfyhXB+Jnn32Wm266iV69emGxSKcaIfxh9BAHz7/j5HCihtPtvXtlKbiT7vEodAtcd4F5b2dZrVZG9w1i9tIccnMhIADvaEKGNxEw3NC+hU6/lsH+DrXCbh8Dn3+rczjVIDQAHDZv06DcfEVmniImXOP26xSVP/61EALAbtM4r6fGwiWKA0cUDWO9z7s9ikMJ3pFwBvXUsMqcA7Wc/+cZqAnKlQxkZmby4IMPVlUsQogy+mJaABdPyOPIUXC7oLD1vMUKl/az8vjNgX6N73RNurAeyVkePvgpn7xcb62rhoZuUbRtrvH+Xeae9bx+tMb8pxT3TtU4mKTIygPwoOvQKErjhUc1mp1pvhOKEGbSq7OG06WzYpVixx6Fw+EhPx9iozSG9dfo3kF+g7VeVTTrMWEzoXLNMzBp0iTOO+88Bg8eXJUxlYmM5Vx5ZHxs81q4PI93v3Hj8lhoGKWYPNZGyzPMWytwot1H83lxZToHUjyEBOhce24QF7av2eNWl4fTqVj8Baz9XSMgwEa7lk6uvUwmHDMjOY6aV3qmYtu/CqstEI87l7ZnaYQGy2/wdJlinoHVW6pmnoFe5pqMt1zJwH333cfXX3/NWWedRURERJFRhf73v/9VSYClkQNu5ZGTmLlJ+ZmflKH5SRmam5Rf5ZNkwDzK1UyoRYsWtGjRoqpiEUIIIYQQQlSjciUD48eP9/1/cnIy4eHhWE+cFUgIIYQQQoiaTvoMAOVMBlwuF9OmTWPx4sXk5eVht9sZPnw4kydPxm435zCGQpjdT384Sc/L5OymThrF1r7f4b4EJ5t2Kc6I0Ti7Ze1bP5fLYP1mg/DwfFqfaWC1ypCiZuPxQHYOBAaa8CpACFHnlSsZmDdvHuvWrWPmzJk0btyYffv2MWPGDGbOnMnDDz9cVTEKIUpw9/QcPvkKXFlWUE6wKKLjslkw2UbfTua/aP5pcz73vODkUMKxGy0hQXmMHWFlyg1Bfo2tMrhcBjdPcfPjOsjL0YAc7IEeenbReetJC0GBkhTUdHn5sHqdxpr1OskpGsHBblo21+lzrqJ5M0kMhKj5ZGhRKGcH4vPPP58333yTJk2a+J7bt28fo0eP5qeffirzly5fvpyHHnoIh8NRZNnTpk0r8zKkk0/lkY5T5jPykWxWrbKCWwfd8B57DA2Uhh7kZvFMi6kTgp825zNqkhO3QdEqV83798ghGvMeMO+kYy6XwYCxTv75xwoGaFYFGii3hgY0aephzbs2bDZJCGqq/Hx4+z2dtb/qBARARJjCYrFx4KCbevVg7LUeOrSTA6pZyHmw8pmiA/EvW6umA3HvdpW6zKpWrjNNeno6DRo0KPJcgwYNyMvLK9eXbt68mREjRrBx40bfozyJgBB12d97nKz62QoeHewesIFmA+wKbB6MHCu3/dfl7zBPyx3P5BckAgpd13yPwszgk5WKI6lOv8Z4Ol78n4edO62ggz3YwOZQ2B1gDzJQVsW+vRYmz/H4O0xxEms3aKz9VadJY0XTMxSRERBXX6NNK0VWNiz+TCcn199RCiFOSlXRw2TKlQy0atWK999/v8hz77//PvHx8eX60s2bN9O+vbmGXRKiprjnRRe4dLB6vLdejqdroCmSj1j595A5L5a37HGSlKKBAl0veojSNR1QGAoefsmc6wfwwXIPyqNhtRe/I2W3KzDg8x8q926VqDyGAavX6TjsEHxCizVNgyaNFQcPa/y13XzNBYQQdU+5+gzcd9993HTTTSxdupQmTZqwb98+du7cyeuvv17mZRiGwdatWwkMDOS1117D4/HQv39/HnroIcLDw8u8nBOvgUTFFW5L2abmcChRee886KUUmK7Ao/H9bwZnNarW0CrFL5s9BTdWvPMOn0jXdQxD8e9BZdp9NiVNA12VWoTokJGhmXb9arvcPEhK1ggPU8f2UO3Yv46Cef9SUjU0zYS3CesgOQ9WPtmW5lGuZKBbt2589tlnfPHFFyQlJTF48GBmzpxJo0Zlv+JISUmhbdu2XHDBBcyePZvU1FQmTpzIhAkTeOWVV8q8nKiomt0OzYxkm5pDYEBB2wOl0I67miw88CoADVo1DyI6Orja4ztdLZsAZAJaid2wPAUNekODLTW+PWppHA4nORlakYkbgWN/K7Daan5727oqNFQRGurB5VQEBRUtw6BAO0oprFaIjrIQHS39PsxEzoN1jAwtCpQzGQBo2rQpAwYM4MCBA8TGxhbrQ3Aq0dHRLFq0yPd3YGAgEyZM4KqrriIrK4uQkLJ1CkxOlk4+lUXTvAdA2abmMGoIPPe39+6/Ou5ullJ4/+OxYA110be9QVJSpl9jrYi+7Vw4bJDvAo8yCpoGHadgH73xEt2U6wdwdhuN7xPB7TawWLyFqGkaSik8HkDptGuBadevLmgTr/PlSt1bO1AwIElQoJ2cXCcpKRDg0IiLzSMpyd+RirKQ82DlK9ymouYrVzJw9OhR7rjjDv7++2/Cw8NJTU2ladOmvPHGG8TFxZVpGdu3b+eLL77gwQcf9N0Fczqd6LperrkKlEJ+sJVMtqk5PHhtILPfySY32Q4YYFHHsgGXBSwGw85Tpi1Lm83G0H75LPlWgdIw8CYEhjIozH6iIhRX9Q8w7To+eY/OoN885GdZUXYPuhUsGrhdYDgt2II9TB1nMe361QW9ehhs/ENjxy6NM5soAhyglCI5GY4kagwZZNAgTo6pZiPnQVEXlav+8rnnnqNp06asW7eOX375hXXr1tGmTRueeeaZMi8jIiKCRYsW8dprr+F2uzl06BDTpk3jsssuk4nLhCijr+fZCIxyei+OnRZUvg5OC1gNup/r5rVHzNc86HivTgihT9eCZkJKwzCO9R+oF674alaAP8M7bS3PtDD7/ywEhrkx3DruHAv5WTqGW8cR6ubZBzS6tbf4O0xxEk0awY3XGTRtoti7X2PbDo3Nf0FevsYF5xlcPtyQNtNCCFMo1zwDffr0YcWKFUWa8mRmZnLeeeexfv36Mn/p+vXrefHFF9mxYwcOh4OLLrqICRMmFJl34FRkLODKI+Mrm9dzC3N5f4WBy61RP0ox7V4bXVrVnqR60z9OHnslnyPJEOiAsZdYuWVYoL/DqjQ5uQZPv+ph9UYDm81Cp1YGU++yyoRjJpKfD9t3aCSlaMREB1I/Jpv6sf6OSpSXnAcrnynmGVj1V9XMM9CvbaUus6qVq5mQYRgldniz2Wzl+tLu3bsXG6JUCFF+E8cEMun62nsSO7ulnWXTak9yc6KgQJ0n79HlQsTEHA7o1EGhaYroaJ2kJGlmIoSoPikpKdSrV++0llGu2089evRg6tSp5OTkAJCdnc3UqVPp3r37aQUhhBBCCCGEODW3282MGTPo2rUrgwYNYv/+/VxxxRUkJiZWaHnlSgYmTJjAn3/+Sffu3enTpw89evRg586dTJo0qUJfLoQQQgghhF+YdAbiOXPmsHbtWmbNmoXNZiMqKoq4uDieeuqpCi2vXM2EPB4Py5Yt49dffyUlJYVGjRrRoUMHLBbp6CaEv/y00Ul6biZnt3DRKKZ8TfbM4PedOXz5u5O2TWxc1tPcHaNL4vF4+Peoh6N5edSzedD12nc8TctSZGYrosI0ggKlV60QQpyOzz//nPfee4/69eujaRpBQUE888wzDB48uELLK1cyMGrUKL7++mt69uxZoS8TQlSeu1/M4ZNVTlx5Oqh8sBhER8KCCYH0Pdv87exf+zqTyYsz8BgUDCmquP3VVM5tYWfpo+bvoenxeHhheRZL1ueSkG6g6UlEhehc1DWASReHYreZPynY9I+HhV/n8+s/blxug+AAnf7tbdx8kYOGMdJJWgjhbwWThFT6MqtWTk6Or59A4ThAAQEB6HrFjqvl+lRERAQJCQkV+iIhROUZ+VgWH3ztxpVVkM9rCtw6SYkWrpycy0+bnP4N8DS99nUmj76fgcejFVS5qoJ/ddbudNFzkrmPQx6Ph9tfT2XeV1kcSPFg0cGiaRxO9fD6tznc9EoKHo/H32GeltWb3TzwcjZfbcrH5TFw2DQycgw++CWP8bNz2J9QuSN4CCFEXXH22Wczd+5c4NjM9QsXLqRDhw4VWl65agZatmzJVVddxdlnn01sbNE7c+WZa0AIUXF/73WxaqMHPDo4PKB5x+NXKDAMjDwLtz2fy7Z3zVs78OgH6YDuHZZFL5xmGTC8E6ztSnSzZU8O7ZsG+TPMClu6MY/vNudjtWiEB3nXz6LrBAdARo7i521O3vklhxv61exh+UrjditeXJxHUqaHZtEW9IIyDA8Cp0ux44iL+Z/l8/TttWeYWCGECVVFG/9q6DPw2GOPccMNN/Dpp5+SnZ3NsGHDyM7O5s0336zQ8sqVDAQFBTFkyJAKfZEQonLcMzPfO9OwzZsIFKFroCuS0zT+PeiieSPz9SFYviHb1yzIlwgU0jVfQnDdnAw2TTdnMvDBmhycBkSXEH5YkMbRDMUn63NNmwz89IeH3UfdxIbqvkSgkN2mEerQ+GWbk4QUB/XrSXMhIYQojyZNmrBs2TJ++OEHDh48SFxcHAMGDCgyD1h5lCsZkLv/QvjfoWQD0ItfKBfSFHg0vvvVY8pk4LN1+YDmrRUoaRV1b9Oh5CzzNjM5kOTBAsUulAtZdDiYYt5mQvsSDFweRXBAyf0eQgJ1UrMM9iUo6p/e8NhCCFHnOJ1OXn75ZUaOHMmFF17I22+/zWuvvcY999xToX4D5Z50bMWKFezbtw+3213ktfHjx5f7y4UQ5Wcv/NUaJdw5B28VpQYNYsw5akvDyOOaBZXE8CYJFot57ygH2jVOlsoYBgTYzFl+AIEOb9M1t0dhtRRfD5dbYdEhqOyTzgshhCjwzDPPsGnTJkaNGgVAu3btePbZZ3E6nTz88MPlXl65zqaPP/44jz32GD/88APr1q3zPdavX1/uLxZCVMw159lBV2CUlAgoMHSsDoOLepvzSmvCCAe+jMYovfHltT0Dqi2myta3rQMNcLqLr5/LrVBAn9bm7fPR72wLEUEWkjOLpzxKKVKzDZrFWmnT1LwJnRCiFjDpPANff/01r7/+Og0bNgSgW7duvPzyyyxdurRCyytXzcCXX37JRx99xFlnnVWhLxNCnL6HRgcw55M8cjOsgOFNDHQNPN4RhbAYDOtpvuZBhYKDgzgzKpO9yZ5jnYb14xIDDdAUT4+J9GeYp+X2QSF8/msuh9MMQgPAYfM2Dcp1KjLzFDGhOrefV7G2nzVBXJTOsG523vspl8QMD9Eh3r4DLo8iId1DgE3jmoGOUptJCSFE9TDn0KL5+fkEBRXtdBYSElKs1U5Zleu2TGhoKM2aNavQFwkhKs/XLwYTGOb2drR1WVD5OrgtYFN076Dz2iRzdqwt9Ou0+kSF6MeO0wUVBWgaaIoVj5i7oXn9cCvzb6nHmdEWcp2K5CzFkTQ3OfmKRpEWZt8YQbNY89YMANw/ysEVPQPQ0NiT5O1QfDDFQ3ighXEXBzGin3kTViGE8Kdu3brxzDPP4HR6hxHPz8/n+eefp0uXLhVanqYKZysog+nTpxMeHs4tt9xSoS+rTElJmZQ9cnEymgbR0aGyTU3ouf/l8v73LlwejfrhMG1cAF1a156LrE/XZDPhnUxynB4susYlnQKYd5e5E4HjOV0eFq/PZe3OfAICbLRroHFtz6BaMeFYoV0HDb751UVWLsREaFzY00pMRO1rHiTHUXOT8qt8hdu0Jvu/77aT76ncwSgcFp0nB7Wu1GWeaP/+/dxyyy0cPHiQyMhIUlNTadasGS+//DKNGjUq9/LKlAwMGjQITdNwu90kJCQQGhpKWFhYkfd8++235f7y0yE/2MojB0Fzk/IzPylD85MyNDcpv8onyUDV8ng8/PbbbyQlJREXF0fHjh2xWsvV+t+nTJ+6++67K7RwIYQQQgghxOk7cuQIcXFxHDp0CIDGjRvTuHFjABITEwF8nYrLo0zJwGWXXQbA66+/zs0331zs9ZkzZ5b7i4UQQgghhBBlM2zYMH7//Xdfi53jKaXQNI1t27aVe7mnTAZSUlLYtWsXAHPmzKFTp04c37IoMzOTt99+m/vuu6/cXy5EVcvJdfPrdgOHQ6NrSw2brWJVaDXZpfensedQJndc6eH2KyL8HU6lmzIvjQ++gVZNDJbOqj39BQolJTm590mFw+Zh2iQPUVHm7jhckoRkg+Q0RaP6OuEhMoKQ2RiG4mgKuN1QPxqsVilDUUtUxVCgVdjMbNmyZQAsXbqU4ODgSlvuKfsMZGVlMXjwYFJTU0t83W63M2rUKB577LFKC6ospF1f5amNbSVzct2MeTqX9VsNnHneE1dgsOK8bhZefiCgViQFsf2zINcOhqVgtB0FNg+9z83l0xkR/g7vtPW6IZmd2Qoi88Du8c6rkOaAFAeJX0X4O7zTlpTkpO35Fsizgrtgf7R6IMDNqvfdtDbxPAOFvlnnZu47ir/+0vC4NRwBiu7dDB69zUL8mbWnkzTUzuMowNJvDD5eofhnn0IpqB+lMay/ztgrwG6vPUlBbS0/fzJFn4Fvq6jPwHlV22dg0KBBLF26lJCQyhmC+pRXRCEhIaxZswaAoUOHsmLFikr5YiGqSk6um17jszl8QEdpOprFe2TPydD5/HvF7sM5fDcz7BRLqdli++RAXoD3AlkHKJiELN/KL78Ec9n9aaZOCHrdkMxOLR+a5HnnTnDqYFEQlw3h+cQOVSSuMO88A0lJTtr2t3rLEOVN5ABcFnBZ6HeFxl8/OomONm9C8On3Lh59RiMzw4IjQGG1KXJzNb751sqWvzz87wVoe1btSghqmwXvGrz+kUG+C8KCQbfAvsMG894z2LZT57mJeq1KCERdZM55BgByc3OrLxk4XmmJQEpKCvXq1b7qe2FOkxbkc+igjmZV2O3H3eKxK5z5Glt3wPxPc7nzskD/BXka/m92GuSFeOcY0NRxxzLlrSFw6/yy1pzrVmhntuFNBLJsYBQMQ+kG8i0Q6oJGOcxYpHH/6Ah/hllh54zQIc/hLT/L8bchFXg0yLPTaZjBQZNO7u50Kp6eC1mZOtExBnpBEQYHK1wuxZHDFqbO9fDhDEkGaqrtuxT/W2KABk0bHbu4iQjVSM9U/LBBseQbxZXDJBkQJmayZkKFevTowZVXXkm/fv2IjY0t8tr48ePLvbxyJQN//vknzz//PAkJCRiGt1rF5XKRkpLCli1byv3lQlSFr391g6FjCyz+i7TaFO5cC2+ucJo2GXjlQ4c3EUAVnzaw8LzssvD862k8fHNE9QZXCUZNSoWoPHDpxxIBHw1yrBDi5Jl3grh/tF9CPG3ZaQVNu3SDYneRLApcOq4s814oL/7GTWKChZCwY4lAIZsNHA7FH39q7D5o0KxR7ZtzoDZY9p0iI1vRtGHxi/3wUI3UTMXyHxRXDvNDcELUcQcOHKBJkybs3r2b3bt3+54/sVNxWZUrGXjiiSdo0qQJLVu2ZP/+/fTu3Zv//e9/PPjggxX6ciGqQmY2J9xtPUbXAV2Rkl6tIVUuQ/deSJZ2ragpUBqvfqbzcPHBv2q8n/7UoLnH22SmJJ6CmYkdJm7YW7gOeikHbk15+4Lgqc6oKs3OfWB4IDCg5NcDAhXZWTp/7ZZkoKbaf0ShaaCXso8GOmB/gol/g0KY2MKFCyt1eeU6Cv/zzz8888wzjB49Go/Hw4033siMGTP4/PPPKzUoIU6HxVLQfr40SsPc/YcLTsCl9XkquDMQG1O5naKqS5DDm8ygl3ahoYr8Y0oaBbU7pVBQegHXfEEB3t3QU0ou43aDrivCgqo3LlF2QQGcdB91uxWB0l9AiGo3d+5c7rzzThYtWlRpyyxXMhAWFkZAQABNmjThn3/+AeDss8/m4MGDlRaQEKer1Zne3doo4ULE4wZQ9Ghr3ruRASGugn4CJZyIjYKHxcMvb0RUb2CV5KvpGmTYweGhxCt+hwecOiEnu5iu6RyeghqcEtbPUIDmHUHJpC4/30JgoEFmZvEyMhTk5GjUjzPo1cm8TaFqu15dNCwWRU5O8X3U41Hku6BvNxP/BoWAY30GKvtRRZ5//nneffddbDYbs2fP5pVXXqmU5Zbriqh58+a89957OBwOgoKC2LZtG7t27apwGyUhqsL/jQnAGmDgzrPgdnufMwxwu8CTb8ERYvDfW8zZXwBg39eh3iEoFd47d4U3kA2AgjvqAU7/BXiazmoeAUkB3j4Dwe5jI+2gwOEGuwFHg/h3qXlHE3roTre3DN269+rYKKztUeCxgM3DFZe4/RvkaTirsU7/vgZuF6SnaxR0McPthrRkHZsVRl8OFoucO2qq8/totDtL50iyIj1LoQr20Zw8xb7D0CBa44qhUn5CVKcvvviCt99+m9mzZzN79uxKa5lTrmTg3nvvZebMmezbt4+bb76Zq666iiuuuMI3Q7EQNUH/znaeuNWBI8SN4dJx5lhw5+oYHp3gcDevTwqgSayp2wlx2+icogmBp2BIIU1BgIvEVZUz3Ji/JH4ZCXvDvGPwB7sg1Ol9aMDBEO4YaPN3iKfl4dvttO6UD3ZvZ3c8loIO0xawu2ncIo/5T5l3WFGAWZNsDBrgrd1ITtI5mqiTlqITEGQwdrTB+KvNXYa1XYBD4/lJOud00MnOgd2HFLsPGiSlKpo31njyPgtnnSnJgDA7rYoe5efxeBgzZgyTJk0q9T2ZmZm0bNkSgK5du5KQkFCh7zpRua6IunTpwqpVq7DZbIwaNYo2bdqQmZlJ7969KyUYISrLLRcHcGV/K1PfzmfTPx50Hfp1svLo6MBaMeHYk/dE8OQ90Pi8TJy5Nl8b+0vOy+P1JyL8HV6lSPwikuH3Ktb+C9i9Q27aXDoHl0X4O7RKsepDG9u353P+9S6ced7mMlaHwXcLPbViwrHAAI23nrbz+3YPH37pISNLERerccNwC2c2MG8zvbqkYazGa0/rrN0IGzYr3G6Ib+atNQhwSCIgRGWaO3cuGzZsoFGjRqW+Rz9ueDartfKuZcq9JIfDAUBiYiKHDh2iQ4cOlRaMEJUpPNTKjPHmv/A/mQPfhp4wc2Ypw7eY1NJZtXv+ktat7RxYf+Lsp7WrHX2X1ha6tK5d61SX6LpGr67Qq6tc/ItaqgYMRrFmzRq+/vprhgwZctL3qSqaHrtMV0pZWVk89dRTbNmyhQsuuIBhw4Zx1VVXkZWVRWBgIAsWLKB79+5VEqAQQgghhBBmkpWVVeRvu92O3V681jc5OZnHHnuMefPm8dZbb510mW63m88++8z3t8vlKvI3wKWXXlruWMuUDPznP/9h7969jBo1ipUrV/LJJ59wxRVXcM899/DWW28xZ86cSh/zVAghhBBCCDPq168f2dnZvr/Hjx/P3XffXeQ9hmEwYcIEbrzxRlq3bn3KZUZHRzN79mzf35GRkUX+1jSt6pKBX375hS+++IJ69epxwQUX0LdvX+655x6Cg4O59dZbT5nJCOEvWdkeVm32EGCDPh0s2O21r7lC/9tSOZCcyq0Xa0wcG+HvcCrda4uzWbhc0TFeY84jwf4Op9Ll5Tn5bJVBaCic38WJw2H+/gInSstSZGYrosI0ggKluYkQooaoiqFAC5a3atWqIk+XVCuwYMEC7HY7Y8aMKdOiv/vuu9MOryRlSgZyc3OpV8/bdjcmJobAwECCg70nZbvdjmGYd3IcUTtlZXu49KkMtmZl4AlwAhq2Nx2cGxvKe5NCa0VSEDssBUJdYFMQANNXwvQvjtI2ysoPC8w77GahKx/I5sf1Oni8HaS3bYMPvsjDHuTmwEpzj5YE3iRg4N157DrqAd0AskFpNIm08u2MACLCzZ8UbNrhYeEyN7/+AS4XBAdB/x4aN19qpWG0dCIWQtReISGnPk8tWbKExMREunXrBkBeXh4A33zzDRs2bKjS+I5XpqPxifMI2GxFh4Srqg4NQlREVraHLg8f5U+O4gnJ985GbIArPIefchPpPSnV3yGettjhKVDP5R1lh4LJqzQg0MNfGU4G3G7udbzygWx+XGsFl/W42aQVuC04M+3EDsg+6edrurw8J62vz2FXigssxrG7U7pif7qLDjdlk5dn3rkiAFb/6eaB59189YOGyw0OO2RkanzwOYx/xsX+BLmJJITwN/8OLbpixQp+//13NmzYwIYNG7j44ou5+OKLqzURgDImA0opDh8+zKFDhzh06BCGYRT5W5IBUZPcNTebtLAMcOroOXZ0t9X7yHaAR2OvLZVn383xd5gVdsd/U701ApoCD6B0QD82AZlV8VeKeSesAvhxnQ4e3TuBmkV5/9Xx/qs0yLfy4XLzJgR3vuAix1MwT4RRePLQvf+vIB+Dqx83bzLgdite/J+HpCSNZmcoYqMhPBwaxCmaNFLs+Edj/mKXv8MUQghBOZoJDRo0yPe3Usr3t1JKZiAWNcqqfZkQodDdJeze+VYIzWfhmkwmXRtU/cFVgk82GBCmvBf+xX57mreWwO5h4qw0nrs3wg8Rnp6HZ2R7mwZB8RssGgUJgc74ZzWuGlbd0VWOlRudBcmcVnwdC+aMWLfDvBfLP23ysHuvRmysgX7CLMN2O4SGKn7ZAAkpBvXrSXMhIYSfVGGfgYp49tlnKy+OcihTMvDtt99WdRxCVJo8mwvcJV9g6JqGYehkGOa90MJaeKQpJQlXCjSNd78zeO7eaouq0iz9vuBOuV7KEVXDmwhVcJbHmsDpASxaCclcAaXwmLjGdd8RVdBHoOT1CwmG1DSNfUckGRBCiIpwOp38+OOPHDx4kFGjRrF3794yjUhUkjIlAyebDU2Imkbz6N6mJaW+QWEtWwu5mqlw1Qou+ospeCoiyJwXk/XCDVIS8a5nSdeS6oR/TUhDobTSVpCCcjVvshPo8K6C2w0lTZLpcoPFAkEB5l1HIYTwl3379nHTTTfhcrnIyMigf//+XHHFFcydO5eBAweWe3kmviISomRn2oJAVxglXC0amgFodIoxZxMhAC3f4utsWkxhguDW2PxeVLXHVhk+fl4D3eNtLlPSBX/BNfSZjT3VHVqlaVzPivdiv5QyRBETat4Rr/p1sRARoUhOKX6xrwxvrUCzMxRtmsopSAghyuupp57i8ssv54cffsBqtdKsWTOefPLJInMOlIcciUWtM+WqMLQsB4Q4MXTviCWGUhgWDwQ7sWQE8OJt5h2aMmFZJDh170W/ZhRcPAIosHj/IbNMlX41UoMGwWAzCpoDaUVrAgy8SYLFza/vmbcMX7rf25ndV4N1fJMgqwKPzjO3OvwTXCWIi9IZ1h/y8iAxCYyCvM3lgoOHIcAB1wyzoOtSMyCE8CNVRY8qtmnTJm655RY0TfP12x0xYgT79++v0PLKlAz8+OOPFVq4EP4w7Fw7E3vFYskIgAA3Rkg+hDrB7sGWFsy8kfVp3tC8F8sAl3ewQb4OaN4EoHC0HQPItJG4zJy1AoUSfwwCe8GISYbmvXAuHHXH5ubp+8w9LOW5HRw8fGUguC3esrMqsHi8/+/RuePCAIb3M28yAHD/aDtXXOjN6fbs19i9R+PgQY3wMBg3RmNEf3P/BoUQtYF/hxatqNDQUJKSkoo8d/ToUcLDwyu0PE2VYVzQc845h19//ZUhQ4bw9ddfV+iLKltSUiYm7l9Xo2gaREeH1rptmpLm4cFXs9l8yImuQe8WATx3S2CtmHCsUOywVAj0eC+a3Tq9Wuh89oL5JxwrdPcz2XzwpeatDdAgOlLx1xLzNvE6UVq6k1uedfLHHg8WXSO+kc7/HrPXignHCu06aPDNOg9ZOYqYehoX9rIQE1H7KqVr63G0rpDyq3yF27Qm+78VO8l3V+7NJYdV58mhLSp1mSeaNWsWP/74Iw8++CD33nsvb7zxBtOmTaNz58488MAD5V5emZKBXr16cdFFF/Hee+9xxx13lPie8ePHl/vLT4f8YCuPHATNTcrP/KQMzU/K0Nyk/CqfKZKBL6soGbiwapMBl8vFiy++yPvvv09ubi4Oh4ORI0cyceJE7Pby30wqUz3t5MmTWbx4MUop1q1bV+x1mWdACCGEEEKIqmez2Zg4cSITJ04kJSWFyMjI07oWL1MycOGFF3LhhRdy5ZVXsnDhwgp/mRBCCCGEEKLisrOzWbx4MWPHjiUlJYXbb7+devXq8cQTT1C/fv1yL69cDTcXL15MdnY2y5cv59VXX2XJkiVkZGSU+0uFqC6JiS6ef83JS4ucZGebeKKxk2g+OAmt3X7GPpbs71CqxK3/l07D/pl0vzLd36FUiexsFy++7uLpudm1dh/951/Ftz8pDifWzvYXTpdif6KHxDS3v0OpEkopsnIVGVkKw6idZSiEmfz3v//l008/BWDq1Kk0bNiQ8PBwpk6dWqHllanPQKG9e/cyduxYXC4XDRs25NChQxiGwdtvv03Lli0rFEBFSbu+ylMb20omJrrofrUiJ7NgxB0AFFHRHjZ8pBMcbPNneJUidkAm3qGEjq0fuiLUmsuur6P9GFnliB+WRlqmA1wW70hCGmBzg3KT+EvNbodaFtnZLjqPgLRsw9tBGkBThAborPkAYmPNv4++8j/F7NcsJCVpKENDtyjOaKKYPtVDn3PN37w0Ldvgze9yWLkth9Q8N3aLTttYB6PODWZAh9rRCXzrLoOfN3rYsVdhKGgYo9H7bJ0e7XUsFvOXYaHaeB70N1P0GVheRX0GhlVtn4FBgwbxySefoGkaPXv25PvvvyciIoI+ffrw66+/lnt55aoZeOaZZxg6dCirVq3iww8/ZNWqVYwYMYJnn3223F8M4PF4GDNmDJMmTarQ54UoSWKii/aXQE6G5dhFFgAayUlW4i/wW2iVJnZgYSJwPO/wm5nOIM4aklTSx0wjflgaaWkBkGsDj+4dLUkBeTZwO4jtk+3vEE9LdraL5ucr0rIouo8qjcxcRfvhhulrCZ6bo3j8WSuJCRqGAWgKjxt279a4+jYr3/5k7iuujByD+95O4831aSRku3DoOmjwy74sHv00iU/W5Pk7xNP2yyYPLy92sX6LgcUCAXbYud/gzSVuFq/04PGYuwyFMKvs7GwiIiJYs2YNTZo0oX79+kXmHCivciUDf/zxB/fffz+67v2Yruvce++9/PHHHxX68rlz57Jhw4YKfVaI0gy5xQDDe2KmsGKg8KHAla8z8p58v8Z4OgbclAyqMBE48Yfv/TvTHVitMVW2tAwHOK1g9YDV8JajRXn/NnRwW5n4gnmbDV12l0Kpgh2yxCGqNQaN8WOApyknRzH3NSseD1htYLdr2GwadoeGxQrOfHhwirmH+H37+1x+P5xD/UAbjUPtRARYiA220zTMQa7bYN736SRnmHc+jKOpik+/84Cm0aqpTnSERmSYxlmNdWIiNb771WDLLkkGhNmZc56Bli1bMm/ePN566y0GDhxIVlYWzz//PO3atavQ8sqVDFgsFrKysoo8l5WVRWBg+S881qxZw9dff82QIUPK/VkhTubQkYLduqTfY8Fzq9abt3r7r912Tn7A8dYQjLjXnH0I+l2f7m0apClvPfPxNA10D3gsvLnUvJNWbfr7VNNUauw+ZN4LradnaeTnaegWis0ybLF4m3wdSdDYsMmc6+j2KL76KxubrhFkL3oa1TWNuGA7R3NdfPm7eW86/LnDIClN0Sim+GsRoRoeQ7F+i6f6AxOiMpl0BuKpU6eyZs0aQkJCGD9+PH/99Rfr1q1jypQpFVpeuc6mAwcO5MEHH2Ty5Mk0btyY/fv38+STTzJw4MByfWlycjKPPfaYL6upCBnNtPIUbstas02V5v0xlpYMGIChmXd9NR1vo9aTrYDGmo02U67j9t26twx1gxLXUdfAAygTl2FhMqeVdtbwPm/W9ft7l7fWw2oteQUsOng8Gqs3wDmdqze2ypCSpUjJdRNs1Y/todqxfx0FbekPpLhNW4ZH0xQWC6X2CwgL1jiQoEy7fieqdefBGkC2ZdVp0aJFkdE9u3fvzueff17h5ZUrGXjwwQe5++67GTZsmK9dUv/+/XnooYfKvAzDMJgwYQI33ngjrVu3Ll+0x4mKqtmdUsyo9mzT1JO/XHAdVtM7NpWubO3lLVa3KdfRqmfihhP6exynsHefqcswmVPVDKAp065fZHgeYGAY3gv/Eym8idwZjQKIjjZfR1t7oAeHzYLbo7DZijZ3slktGMpA06FeeIBpyzAmKherNZ+goJIvE3SLh6hIC9HRIdUcWdWqPedBUZvNnTu31NcqMglwuZKBiIgIFi5cyP79+0lOTqZRo0bExJRQh3gSCxYswG63M2bM6TWITU6WHv+VRdO8B8Dask1tAQauXEvJtQMFVXiREYqkpEw/RFcJ3B7QTzbSjLcQj3xfz5TruGKOwfl3uMFp8zYJOvH2kqGDrgCPKdcPIDTQ21G41H0UCLBh2vW7ebRi6ZdW3G6Fbi+6goahMDwQGAgXD84jKcmcTWk6N3CwcmcmkQ4dXfM2fbJZLbjcHlJz3Dh0nW5NzVuGDaMM78hdyR5CAouWocejSElTDO1p4uPoCWrbebAmKNymovKdOAFwWloau3btYujQoRVaXoUa3TZp0oQmTZpU6AuXLFlCYmIi3bp1AyAvzzviwjfffFOuzsRKIT/YSlZbtum9N8ALCwqusgovto5fL03xxjOaadc1cVUYsQNyCv4q5UoSt2nXr2PHcLBkey/4PTpYDO9ZRSlvImBoEOAkcVWoaddxzhQY+0jhPlrw7/HtTTTFlHHm3Ud7dNFo0UyxY6eG06mwWr19BzwehcftrRUYNtiD1Wredby6ZzC/HchjX4aTuGAbAVYdQxmk5LhJzXczqHkoZzezmnb9Wp6h0amVzvrNBg1jIDwENE0jJ0+x77CiaQONrm10065faWrLeVCUUVW08a+G/aekCYCXLFlSLEkoq3J1IK4MK1as4Pfff2fDhg1s2LCBiy++mIsvvlhGFRKV5uFb7AzuZ+D7RRb5YRrcNcagdxdzj+HetnnucX+d0GtJ95D4Q5gfoqo8iT8FQ4DTO4KQxwIuHdwFzTECnIwYYO5hN4cNtDH64sI+AwVZQGERagaX9NG4ZZS599Fl73po1kyhoeF2gTPfO7SoxaLo39fD/GnmvuLq3srGI8MiaRBi40i2i3/T89mVmo/TUJx3Vij/GRVWrPO0mVgtGmOGWenTWScjW7Ftt2L7boPDRxVtmuvcdKmVeuHmXT8hapsRI0bw7bffVuiz5h2OQ4iTWDTdzu59Lq6410PCUR1QtGgKyxdoBAebr43yiX54IwqA2H4ZYC24SFaKuIg8/vzU/BOOASSuCqb7lensSbAV9B9QgEHiT7WjjfKM/7PzyG0uLhsPew55k4JG0YovXtFrxYRj4eEa61YYfP61hwVvWcjKhthYxSP3GHTuUDsuIod2cdCrdQxfbcxnX5KHqEgHXc+ADk3NX34AocEaN19qZd8Rxe6DCsOAuGiN+DM1rLVowjFR19WOfXn9+vUEBQVV6LPlmoF42bJlDB48GLvd/xdTMktg5ZGZF81Nys/8pAzNT8rQ3KT8Kp8pZiD+Yhf57sotcIdV48mLz6rUZZ5o0KBBRSYYc7lcJCUlceedd3L33XeXe3nlqhn4z3/+I/MCCCGEEEII8zNpn4ETL/h1Xeess86iffv2FVpeuZKBDh06sHz5ckaMGFGhLxNCCCGEEEJU3GWXXQZ45+06ePAgMTExNGjQoMLLK1cykJaWxsSJE5k8eTLR0dFFqigq2mlBiKq0Z4+H5xdAcBA8djdERFhO/SGTiel7FIxkurY2+PK18g31awbjHs9g6S9wZn3Fz4vC/R1OpcvM9PDiaxAclMUdoz2EhNS+fTQtQ5GZBVEREBRUO9rnHs/jgewcCAyS9iVCiKqXlZXFxIkT+e6771BKoWkaPXv2ZObMmYSFlX8AkXIlA9ddd125v0AIf9izx0OPi62ofDveQbMUb/9PYQv2sPUHT61ICmLPT4d6TmjhBE3xm8tC7IgUSPWQuMr8SUGbi9NJzrCDbgUNdhyC2H45YCgSfw72d3inLTPTQ/vzdXKzLQX91xTPz7HgCFCsW2rQsKH599FNWxULP9L4dZOGy6URHKzo3xNuvlrRMM78SUFePqzeAGs2QHIqBAfn07IZ9DkHmp/p7+iEEKdk0mZC06dPJzs7my+++ILGjRuzd+9enn76aaZNm8Z///vfci+vXB2Ij5eSkkK9evUq8tFKIZ18Kk9t6zi1Z4+H7kPspc9gazNI/Muo3qAqWeyQNGicDXYDnJp3Xa0KdAMyHHBQN3VC0ObidJIzbWCh4GCtCmaOLpg7wq28w4+aVGamh7N668f2Ud+syoVzYyh2rTYIDTVvQrB6g+L/ntNITNIIDQGHHXJyvY/4sxSznlA0aWjehCDfCW8vhrW/QYADIsLBYrFx4JCLehEw9iro0MbfUYqyqm3nwZrAFB2Il1ZRB+LhVduBeMCAAXz88cdERUX5njt69CjDhw9nzZo15V5eueYZcLvdzJgxg65duzJo0CD279/PFVdcwdGjR8v9xUJUlf5XWI5dZGknPABcFrpf5PFPcJWg44ij0CAXbAZkW8Bt9Y7Fn2+FPCuE5UM9815EAiSnFyQChiooSx2U7v1bAywak2dk+DnKihsyWiuarGrasZmWNe9/eo6o9mlgKo3brXhxgUZSskazMyA2GsLDoEF9aNIQduzSmP+2eRMBgLW/exOBJg2haROIDIe4WI02LSErGxZ/4U18hBA12YkXCZX1qFq5ubmEhhZNtMLCwjCMit3oLNfZZs6cOaxdu5ZZs2Zhs9mIiooiLi6OJ598skJfLkRVyM0suBAu9feo2LPTvOOAH3HawOGGXAtoJ/yEle6dpTc8j15XmTNJP//G9IIaAUXxQ1RBQqDDgk/MO03Krt0n1AiUIDGxmoKpAj+tg937NGJjQD+hCO12CA2GX36FhCRz3oI1DG/zIIfd2x/peJoGTRrBwSPw1w7/xCeEqN06derErFmzKGzco5Ri1qxZdOjQoULLK9fZ9PPPP+e9996jfv36aJpGUFAQzzzzDIMHD67QlwtRJUprHgTeBEGd4j01nc0oSHRKyeXdGtgMdv5rzovlP/+xgB0o9QaHtw8ImonLsHDi4dLWQYGZJ8LZdwhcruIXyoVCgiE1XWPfAUV9E86Rl5MHSckQVkoLCLvNW4TJqdUalhCivEzaZ+Chhx5izJgxLF26lEaNGnHw4EE0TePNN9+s0PLKdbWQk5Pj6ydQmI0EBASgn3jrRwi/KrzSqqUKZ+NVRvGaAShIeDRQ5mwKZbMbuJR+LHErxgC0ajngVpnCdSttN9UoqDUw534cGODNc9xusJZwlnG5wWKBoMDqj60y2Kze9XK5Sn5dKW/tgc28FZBCiBosPj6er776im+++YaUlBQaNWpE//79CQkJqdDyynUVf/bZZzN37lwA37CiCxcurHC1hBBVwlZwS7mki8WC5yyBJu5AnKl5+wjYSlgHZXifz7SR+LMJb7kCX80GPIVt6EtYx4ILaYu1lCsxE3A4OO6C/wQFz1n8P9F7hfXrARHhiuSU4q8pA1LTodkZijYtqz+2yuCwQ5f2kJxWchGmpkNYCLSq2j6EQog6LCIigpEjR3Lbbbdx0UUXVTgRgHLWDDz22GPccMMNfPrpp2RnZzNs2DCys7MrXC0hRFUYOcLNRx8V9BsovLla5IStmP+sG2/DdPNJ/CGC2CtcEJ0HeMClFdQQGBDoAZcOqQ5/h1lh7duHgZHtrd3QNe8tVgrWr7BpjQsO/1T+sZRrihenGoybZCkYPej4kYSUb0Shh283MOs+GherMWwQvPcZJCZBdD1v3wGXCxKOekffueZSha6bs+YDoNc5sHEr/LMbzmwEAQHeGvPkVDiSCEMGQMP6/o5SCHFSJmsmNGjQoCJzfJWkIvN+lSsZaNKkCcuWLeOHH37g4MGDxMXFMWDAgNPKRoSobPOesfDntnx2bLVTvDmJYuiwfC690Jzt6QvFueFIUgBE5EOQB19zknwLHA4icaW5J+dK/DmY2L453mth/bg2NQpwwZWD3P4N8DRdebGFL3/w8MUKi+/i37uK3v/v18vg/tvNmQgUuv82hdMFX36vsWf/sTwuKlIxdpRixAXmTQTAO4rQjaNg8eew54C3X7vNqggMgAsGwmVDzd2tRQhR89x9992A98bDE088weOPP14pyy33PAOGYfDnn3+SkJBAo0aNaN++faUEUl4yFnDlqa3jK2/608OImyzk5nhbw9WL8rD2c6NWTDhWKLZ/GoQr0BS4dOz5Lg58a975BU7UZ3Q6O/bZjzWdVx4Sf6o9Nx8OHfIw7AadIwUDP0VFwspFtWPCsUK79iq+WaWRlQ0xUYoLz4OYerXnKjnfCdt3QlIKxEQHUj8ql/q15ydYZ9TW86A/mWKegc92V808A5c2q9RllqR79+6sX7++UpZVrtuje/fu5fbbb+fAgQNERESQmppK27Zteemll4iNja2UgISoLGd3tLB3Axxrd65h1mYXpUn8MaJWn8R+XmTuGo5TadjQwqaVJ16I1K599KwzNc4aU/hX7UkCCjns0KltYRlaSUo66YixQghR45SrA/F///tfzj33XDZs2MDPP//MunXraNGiBU888URVxSeEEEIIIUTlU1X0MJly1Qxs3ryZefPmYbd7h7kICQlhypQpDBgwoCpiE0IIIYQQQlShciUDjRo1Yt++fbRo0cL33JEjR4iIiKjsuEQ1cTohLx9CQkyYypZBnwsy2LHbCkpx3SUeXnzRvCPQlCYmPg1sOZCZSeLe2jd8SWzzVAgOgNw8EndG+jucSpea6uKxaRAQlMGU8W4iImrf4PT/7DbYd0jRtqVGg9jaNy+Nx6PIzlcEBpt4yGIhRI332Wef+f7f5XIV+bvQpZdeWu7llqkDceGXbdmyhW+//Zabb76ZRo0akZiYyBtvvMH555/PhAkTyv3lp6M2to+uTukZ8PMajTUbNLKzNSIibHRo46T3uUat6PzW54IMdhwO8Y65by3YUVw6uOG687NrRVIQe7YTrHrRZtgKyMwi8e8IP0VVeWJbp0OcDRwe0JV33Zw6ZFhJ3BDg7/BOW2qqizZDNQzNONZg0wDN0FjzPjRvbv6k4JV3Pcx+UyMp1duOXtfhjIaK6ZM1+nQzf1KQ51Ss/svFmr/cJGcYBAfZadnAoE97G80b1K6+H7Vdbe575S+m6ED8aRV1IL6sajoQDxo06KSva5pWoaFFy5QMVNWXnw75wVZcahq8+j+dv7ZrhIVBSDCgbBw84qJpE8WtNxg0bujvKCuuzwUZ7DgSAkEFw096NO8Fs14wPGWOhcQ/zH0hEtvFBZaTdMbMMHdCENs6HZroYDe8/b8NzXvBrCkwdEixkbjevAlBaqqLVkMU2KDoVMSFiavG319rREaaNyF47mWDma+Bp2AmZU1TqILZs+02jbenK87rbd4L5nyX4u2V+az9y0WAAyKCNSxWOwcS8qkXpjF2SAAdmpl7COO6RJKBymeKZOCTKkoGLq/60YQqU5mOVN99911VxyGq0crvdbZu02jZAuw272VIUJBGWCj8vVPjs2U6424xTDtG9o7DwRDs9iYBxnEX/R7A6p2YK7adInGrOS9EYpsnQFTUcc+cWDUAhJp8+M04C9g84NbwrZ+Bd/WsBkS4iG2Ra9pmQ71GUpAI4J1czacgcbVB50tgz8/VH1tlyMkxmPtWwU/OUjBVREE5ehQ4XYoH/6uxaYUfgzxNa7e5WfuXiyaxOsEBWsFx1EKoQ2fXYcXiVfmc1dBCkMOkB1Ih6oSq+H2a7zdf7tsWGzZs4ODBg5xYoVCRNkqi+qVnwK8bNaKjvYnA8SwWaNQQtu/Q2HcAzmzinxhPm473t2iUcPffrXnvNpszD/CKrHfcHycedAom6NIg9swEU/YhiD0rFVpaCy6ST1g/TTuW1MUE+iO8SpGcocCmTkgECihAU+Q4zXdCKfT0PMh3ga4p9BPuKlg0DQ9wJAk2/GHQrZP5aukMQ7F6qwuHHYIDiq6fpmk0iYXdhw3+2uuhW7zUDggharZyHaUef/xxPvroI2JjY4tMh6xpmiQDJpGSCplZ0LBBya+HhsChw5CconFmE5PWlVqVt1lJiQpmezVzMuD77Z3iYjHMpP0iwgJAdx2bHqKYgoTHatL9E8q2/+nmXb+/dwEorKU0ZbNoCg8av/wO3TpVa2iVIicfkjIMwoJKXj+7VUMByRnSoViIGq0qhgI14aG7XMnA8uXL+eCDD/w267A4fXY7/H97dx4fVXU+fvxz7iyZLJAQkssSdtncRdkUBLGireKGWrpZ99rWpV/94q6t359Lta1abWu1pe62dW/d970I4l5QRBAMEGCykEDWmbn3/P64M9kTAsxkcpLn/XoNSWbC5Dlz7tw5zz2b3++tIhTKaPt4NOZN8guYO1S58cpqh+JtSfM1H2vejlis2yJJKofO6yfRK2lyHZocexdkxzttXN22ZwC8PE8B+blmvhABP/h9imgHY4211riu93tCCNHT7VT/bL9+/Rg/fnyqYhHdYMggGD1Cs6W0/ce3hGHwIM0eo838kAYgllhhp50yqPiqNB32HBgg4nTyYFNDOfxFz5641ZEj96v3Vg3y6fa3cvXhDa/Z3u2hJY1qb3hQawYfoz89FSyliLVTBld7E4lDAfjesWaWMSOgOHCsj/Ltus2QWYCt1Zr+WYoJw0zughRC9BU7lQz87Gc/46qrrmLlypWUlJS0uAkzWBZ8a7YmIwjfFHs9AeCtk12yGerr4VuzNFnmDseGunhjMug26yHQ3rCLgOs9tr06rSHujvBnGc3ynOZ9nM0aJY65wxMeemgAVPu9xnDzhEDH61ABdRbhT809SK89D698Srfs3FHEE1bFmSemKbgkmD7JYuxIr+4iMS8BAG9loZjjjXQ7+lsQCJg3XyDhkL0DDBlg8dVGTUPUK5/WmvJtLpsrNNP39DN0oLnlE0L0HTvVidnQ0MDzzz/Ps88+23if1hqlFF988UXSgxOpsf8+mh+d4vLMi4qv1yq0howg5OTAyce7zJ5hcK8AEF6Vhb2XAzqREMQfcIF6H1RHCa81dDx9QkU55A9s1pBsVmeuJvxxMB1RJU14aQj7EA39Yt5k4fikaFwFtRYUR9Md4m752WkBnn0jyrKVNC2ZCoACVzFxuOKmK0weqwfP3aM48seadRsh5tKY1PmU4tCp8OfrzW4oDy/0ccZRIR57u4F1W1xc7RIIRMn0w1GTA5w4I6PF3DohRA8kcwaALu4zkHDIIYdwwQUXMHPmTCyr5Ym8qKgo6cF1RtYC3n3VNfD5l4rt1TBkUBZDB9eQl5vuqJJn2P7biLjZ3nr8GnDgR0dW94oNxxLs/RogGB+K4Gqo3kp4lZ3eoJLIHrsVBmeCz/USgWoIf2xuj0BrX38d5YjTobre+zkzAG882Ds2HEt45lWHux9WVNeAXQBXnA+T9jI7EWiuIapZWexQts2lcGAWg/pFGDSg95Svr5B9BpLPiH0GHl+Xmn0GTh6V1OdMtZ1KBqZNm8bSpUtTGU+XyRs2eeQkaDapP/NJHZpP6tBsUn/JZ0Yy8E2KkoGRSX3OVNupyxfz58/ngQceSFUsQgghhBBCdA+dopthdmrOwGeffca9997L7bffTm5ubovxkK+99lrSgxNCCCGEEEKkzk4lAyeffDInn3xyqmIRabD8C4dln8EhUxqYuEe6o0k+e3w51OcALlP2reW55wamO6SkKxy7FQJ1UFtBeF33zt3pDvZ+leBmQLSB8Jd56Q4n6aqrHf54P2RnVnPmAofs7N63HGV9AzQ0QFam4XuYdMBxoKYGMjMNvCQohEir9957j1tvvZU1a9aQmZnJt7/9bS655BJCoVC3xbBTcwZ6EhnXt3vuecTh2t/4qK+LjxTTEMjQnPWjGP9vofmNEXt8OcQGeeluogNLAzHNlD3DvSIpsPeLgeMHxwIUKBcCGuq2Ev5qQLrD2232xCrw5TbbcRlvRRrlEF5u/jFaXe2w37e9ibWNZdSarBAseUozeLD5Zdy0Gd5ZbPHRJxYNDdCvP0yf4nLowS79evZQ4i6pb4DFSyzee19RXq7IzgkwbkyEmQe7jDF5r5Y+SOYMJJ8RcwYeS9GcgVO6NmegoqKCww47jGuvvZYTTjiBsrIyzjrrLObOncuFF16Y1Lg6s1M9A6eeemqHS6XJXAJz/PF+h/93c/zyXLNNbKMRxV33BCgtj/HnX5u7GoY9vhz0IGi8Ahl/oysFAVi2chBg6O68cfZ+LkSDTWvV461NT0RBYAD2OLMTAi8RyPNmNWnddJxaCrQfe2+H8Apzj9Hqaocxs5RXZ+gWY0xr6xX7HQ1fv+2Qk2NuQvDNesVf7/OxfoNiYL4mMxO2VsIjT/j44kvF2ac55Bq8sFdDAzzwdx9LllmEMiAv16vHN95RfLrcx+k/dNh3b2lVCtGjpXlp0fz8fBYvXkxOTg5aayorK2loaCA/Pz/JQXVupz5Np02bxtSpUxtv48aNY82aNUyePDlV8YkUuOHWZjlg/KJy45Gg4Yln/NTXd7bLbQ8Xtb3NqRrfkYoWOzv5wR7V/WEli73HRoj64g1k7dVd4gbgWpBpbiIAgJXrlceNZwEqXoduYpMuH0OnVKYzwt1yzOnQeEwq1XSINvYQKA492dw16l0Xnvy3RUkJ7DlBM3gQ5OXB8CIYt4fms+UWr79pbjIHsGSZxZJliuFFmlEjNQPyYPAgxZ7joboaHnvKR21duqMUQqRLdXV1i1skEmn393JycgCYPXs2xx57LIWFhcyfP787Q925noHzzz+/zX3z58/nN7/5TdICEql1zyMOTjTgNSRbfxY325zrZ1dY3HtbNweXLP4uNKL8foztHcge7PUAQNs6tPA2V4sq7NEbCK81bw6BPaESAgPiQ4Ja1aVqSghideZeVv5iTSfHaLyzYOOWbgsn6dauU6xabTFsmKbVljQEg5A/QLP0A4u533LJyU5PjLvDdWHxUkVGUJGd3fIyoFIwfDisXQefr1RMniS9A0L0XKm46OI956xZs6ipqWm89/zzz+eCCy7o8H+9/PLLVFVVsXDhQi688EIWLVqUgtjat1PJQHv23ntvli9fnoxYRDd47Z34J3Nnx7+Gz1d1SzipoaDF+Kc2D7bTyDSJjnfnWJ00MrQFmYbOiwjEW4cdVmH8Srpr9pVlIDWfQz1A+VZvGE1HDf3c/hAuVVRWdvw7PVltHZSVK/r3b/89GAx4uWx5efx8I4Toc95+++0WPweDwU5/PxQKEQqFuOSSSzjllFOoqqoiN7d7doLdqWSgpKSkxc/RaJTnnnuOIUOGJDUokToD8rrwwaQgs/ds8tqO3tAC014PQIftYQ1uFOi+1QiSJwZ0ctJs7DHoKFsQ6RYMgFKaWCzeCddKJAp+vybQ+WdjjxXwe+WKRtt/XGtwXdUrV04SoldJ4ZyBxPCfznz00UdceeWVPP30043JQiQSIRAIkNmNDbGdSgYOP/zwFhOItdbk5uZy/fXXJz0wkRrXL9Q8+hQdH/zx9tXV/+MChk5edIgPFWqvsRi/z+ApEego3lu3nUp08Sal+hzCn/fsVRw68ovvN3D737O8ycJue0OFiFdjA2YmO5AVgtp6Oj5E8Rqcpho7RlNYCFvCUDS05WNaQzgM+++jsQvSE9/uysiAA/d3ef4VH4Ns3eYQ3VoJ/ftpJoxz0xKfEMIMEyZMoL6+nltuuYX//d//pbS0lJtvvpmTTz55hz0JybRTHzetNxbz+XwMHDiQgFz+MEZeno+xezisXu1rOb82kR0r6J/ncsRMQxMBgGgN+LJbXT1uVlgNRLcAZg6jCS8PYu/teEuKJtoaibkC4A0fCsRIwijAtLjqqjxu/7sD2hevunhCoBOTh70kIfy5mYkAwO+v1fzkcmg8HuPfNuV3mit/bu7wkpwcOHyWy2NPWWzeAnYhWJZ3JX1DiSIrSzNntmv0aL1Dprl8/KnFV2tg5HAIZXgXyMorYHNYceThDkOl01wI0Yns7GwWLVrEjTfeyIwZM+jXrx/HHnss5513XrfGIfsM9EH19Q7T5vnYVGK1uTKZlePwycsueXkGJwPEVwsK+uPLbjbbaEArqK8jXGx2AmvvsRFCReD4aCyX0t4tECP8mdn1B2Dv02qWe6Kx7GrwVxL+LC89gSXJz65yeOL5VitdAaCZO1Pz8B/MrkPHgZdetXjtLYuKrSo+1UMzZDAcP89hyoHmn8C//Erx2JMW64oVrlYEAn4yQ1GmTXY58TiXUEa6IxRdJfsMJJ8R+ww8UkxDNMn7DAQU1y8YkdTnTLUuJQOthwe1eRKlePXVV5Ma2I7IG3b3Pf2yw7W3+Ni2XZGVpTj3x1HO+7HZDZDm7BHl4LO94SYArsuUvUp7xYZjCfY+EVCBeC+IA3XlhL+y0x1W0tgTKsGfS9MynFHCy81O5JrbvNnh2LMVGzYBlmJQvubF+3vHhmMJFVvhiy8t6uuhf3/NXhM12Vnpjip5Ghpg5SpFWbmisCCTQXYNg3rPW7DPkGQg+SQZMEeXkoGnnnqq3fs/+eQTHnnkEfbaay+efPLJpAfXGXnDJo+cBM0m9Wc+qUPzSR2aTeov+cxIBtanKBkYntTnTLUuDSo+8cQT29x3zz338MQTT/D973+fK664IumBCSGEEEIIIVJrp2cYbtu2jcsuu4wPPviA3/72t3znO99JRVxCCCGEEEKkTgqXFjXJTu3a88knn3D88cezZcsWnnzySUkEeoFX33S59P9cHn6sLt2hpIQ9djv2iAbsEfXMmrU93eGkROGIKlRuOYVDq9IdSkrYI6qwR0exR/TO8q1YEWPMgTHyRlWxYoWhu2LvwJYKl89XO1RtN/BTsgsiEVi/AcKlvXMpUdfVbCnVbNykicV6Zx02RKCyShOJpDuS1HBd2LYdqmuQYVCijS6vJrRo0SJuv/12FixYwKWXXtqt65+2R8b17Z7L/s/l3of9eBMzm9Y0nDUjyuP3mr+zqz12O1h5TUtRAt5GXJqJQ6p4++2ePY6xK+wJGnxWUxW6eNVYW0n4m+7ZtTCV7BE1EMgFt9mKO8oF5RBeY/6bf8WKGHNOyGhZPjRYmj/e2MB3TzFzadjmXl0S449PNvB5uAFHazIsi6mjQlx5WgbjR5l/nqmsgnsfsnjlTYutlYpgULHXeIcFJ7kcNtP8YxTg6Zc1T7wAX631GpGDCuDow+H0UyAYNHht2LiyCnh3qeL9j0ATxKciTD0QZk7T5A9Id3S7LxqFpR8oFr+v2LRF4bNgwjjNoQdrJo5P7TFqxJyBf6ZozsD3zJoz0KVk4Kc//SlvvfUWP/rRjzjyyCPb/Z0pU6Z0+Y++99573HrrraxZs4bMzEy+/e1vc8kllxAKdX3dcEkGdt15l7o89q8AbZY0jK/jvvdeMd74l7kneXvsdvDlNbunWUMLb7368CqTdx0De0+8VZJarE0fp4EasxMCe0QN+PPAtYD4kqkA2oovoRoj/LW5V2FXrIgx57hQ05KwOpHsNO2L8cbT9ey9t7kJwVOvO1z5wDa26ygZyodfKSKuSxSXwRkZPHBpDnuNNXfVpG3b4cLLfHz0qUUgAP2yNVortlZ6+ywsPD/G/OPM/pC6+0HN3x7xrpr3z/H2ithe7a3uO+dguPlKsxOCLWH4y4OK1WsV+XmQPyBAeUWUrVUwYazmnFM1hQYvPheLwT+fsHjzXYXfDwPyIOZAeQXkZMMPTnGZPjl1x6gRycA/UpQMfL8XJgMTJ07s/EmU4osvvujSH6yoqOCwww7j2muv5YQTTqCsrIyzzjqLuXPncuGFF3YtaiQZ2B32eB9t1zZvTrPmwyj9+pl55c4eZ3mfWp2JmXt12R5WCf0HdF6FLoS/MLN8APYYP7g+wG1aGha8VgjK21jNLSO8zsyExx6vwPF3ugMx/hjhVWbWYSSimXH+djY3NDAwEMBqtjR11NFsdSIcUpTDozeau8boH+62+OsDPgYVaLKyvWoMBHw0NDisL1EMHKB55N4YA/PTHemuWblac9Yl3pXlIa2WSq3a7t2uPB9OmWdmMqA1LHpI8e77igljIeCDrKwgtbURojH4cjUcfqjmtAVmvgcBPvhYcfd9FoMKoX+zNrnWULzBSwguv8hhQF5q/r4kA+bo0mWnlStXJu0P5ufns3jxYnJyctBaU1lZSUNDA/n5hp4xDXPZ/7nAjq7GKY78rsV7L3RHRClgNd95uD3x4TUY2jvQL6/zRABAgV1URXijeY1le0QV+Avxhsy0Kqjl7T6MVuDLx9g6dDp5D6rmv2PmHILHXnEIN0TIsfwtEgGAgE+R4Vh8WlLP2g0hRg8z76JDLAYvvW4R8ENWdsvHLAsG25qSTYoXXlH8yNDG5HOvwrZqGFXU9rHcfrC1Cp5/HU6Z1/2xJcOWUli+UjF0EPhbvR39fhhkwyfLFUcfYW7vwNIPvB3O+7dqjysFw4bCqtXw2QrF7BlmHqPJkYpk1rwEOS190Dk5OQDMnj2bLVu2MHnyZObPn79Tz2HyNvbp9Pp/LHZ8oGo2blIoZfIJorMyekMzjD2GVAfDg5qzgMxsM8sY7B9v43eQ0FmqcZy9keVL2EG+ijL3PLd6o4OLJtPffkM/ZPmocR2+WOsyZrh5yUBFJVRsVWRn63arMCM+pW7DRnPPo+s3e6cRXwd5a1YINmwy9xgt3+pNph1it5paFh+5l9cf1hXD1kqwC9IX567SGjaUKPr3b7+O/PEpgxUVqTtGTT02+qK0Dkh9+eWXqaqqYuHChVx44YUsWrSoy/934MCe3fXUUw0cUMM363b0W4qMoKKgIKcbIkqF2h087p34enr3ZYd09Y6XLtOAjlJQYOAMOKcCyOi4oezq+GPa3DqkrksXj0wtX2G+QqntoBS+1r07gOtofEoxfGgWBQUZaYhw9wSDLhkZUWIxCARaJjOBgA/XdVFKkZ+fQUGBmfM+Bg6oAyvWpnwJrnbpl2NRUJDd7uM93SDbJSc7ij+gyAw1HaNZmV4mV1Ojyc7WDLIDFBSYl7AC5A+IES7TZGW1f7IJBlwKCnwUFJg7d2e3ydKiQJqTgVAoRCgU4pJLLuGUU06hqqqK3NyuDWsoL5c5A7vi3t+77D87EP+p48uSl18Yo6zM0KU4ta/ZRMyOfgdzyxdzIMPf8QknvrJQ6deZRpZx3pxann0zy7v6r9sZKpT40W2grMzQYUKWL14+2p8zEF9gyMT6A/j2NJfbn7WobIiQFwy0eMzVmmonyrDMDPYe3UBZmZlrOU7a18crb1oMyHUapygFAj6iUYetlZCRAZMn1VNWZuYH1aR9NE++AJWVDtmt2vuxGNTWw/RJjrHHaG4ODMxXfL1OMXoEoLxEoLYuAhrWfgMjhmtysiKUlaU72l2z956KFU9aDBzQtodn+3ZvSNuQQQ0pK59ScuHWFN2e7n700Ud8+9vfJtJsMd9IJEIgECAzM7PLz6O13HblNmSIRVaOS6fjEyzNWT+y0h7rrt6or20qS3vlA6itTHucu3oLf+XzlhHt8M0BOG7a49zV2z335IJy4g3i+BwBiM8V0N6xq1zCa/1pj3VXbwcc0OBVVGK4l25Wd4lej0H1aY9zV29jhlvMHptFDE1VNIarvQLGHE1lNEYAix8elollqbTHuqu37813yc/TFG9Q1DfED1HX9YYQVSqmT3Y5YF+d9jh39XbEDNh7HGwug8pt3jr1WkNNHRSXwJBCOOmY9Me5q7dAAL51qFeu9SXgxKfnxGJQvNF7Hx5+qMbnS3+su3qbcqBmxHDNqtVQW+vd57re0KfiDTBpf82YUamNQZih25OBCRMmUF9fzy233EIkEmHjxo3cfPPNnHzyyWnfu6Cv+O9bDoGgA42tEO19QYNy+eR1MyctJoSLMyDavLWcKGdcXT3hDYZfrdi2lRZXlZuvnupqwl+aPVgzvMYFK3HVP34FPXG5XLkQK09fcEnw8mN+yIgnBNAqN9fgi/D5f8wcXpJw+8IMDh/tDTUsj0YpjUSodCKELB+nz8jh/O8FdvAMPdvUyZorLnYYMkizeYvi628Ua9YqIhHFt2a5/N+Vzg4XNevJQiHFb66GKQdATS2sXe/dyipgzAi4/hLYY6TZ55lDpmgWnKjJDGlWfQ3LV7p89TVkZ2m+P18zdVK6I9w9hQPhzB+5jB+n2bgJVq7ybturYdYMzQ9Odo0+RkXydHnTsWRavXo1N954I//973/p168fxx57LOedd95OJQOytOjuu+1Ol1vu8hGNKXw+zfyjHf54c+85M9jDtkNmbtMsJlczcWjv2HAswR7vgC/eaNRA7VbCxXnpDCmp7BFVEMinadOxKOHVZjdAmnv0sRjnXxWIL6MKWA5/vCHaKzYcS/joC4dHX4mxrRYG58Np8wKMHNp7zjPbtsNLrymK1ysGDszgoP3r2HfvdEeVPK6rWfIRfPCpN0Jx/Bg4YqaXLPQWVdvgi6/A78/CcWrZazz0M3XKXDuiUfhytSIc9kYo7jFaM2xo6if4GrG06MMbUrO06A+HJfU5Uy0tyUAySDKQPIk3rLymZpL6M5/UofmkDs0m9Zd8kgyYo/dcfhJCCCGEEKLLZJ8BkGRACCGEEEL0Ra2mFCbtOQ3TewZuil3y0COak3/scuOtdekOJSXsYdXYIxuwR9Zhj6hOdzgpUTi8CtWvnMIhlekOJSXsYXXYY6LYw3vnMVpcHGH68REmztpKcbGZy2zuSOU2WL/RW9GkN6qr03y+SrO22OzFF4QQfZPMGeijTjnN5a33AmBpLyV0vduoEQ7vv2peF1dr9rBqCOaBjq9AAyRWSyJWRbjY/Nlh9jggFgCdyOk1+FyIlhMuzk1naElhj6jFW+A8UYfxSziOS3iV+cdocXGEyfMt6NcAoXgjst4P1UGe/L1m5gzzV1f7ZDk8+KjFso8hGlVkZ2lmz9Cc9UPN0MHpjm73bSnVXP8HzVtLoKZW4fPB6BGa00+G7x8v19pMInMGks+IOQMPbUzNnIEfFSX1OVNNzlZ90NHfdXlriR/82ksGdPyrH9Zt8DFxqtkNLXtYNQQGNGskJyjQPvAbuCtvK/ZYC6JBr4yNK8QqcHzgK/BW4TGYlwjktEx0wPvZ8mFPSFtoSVFcHGHyd10YVA1ZUW8DMld539u1zL/ENb6XYPEyuPgai5deV0RjiowgbNuueOQpi/Mvt1i/Md0R7p7SCs2C8zT/ekmxrRr8fu8Y/fxLxdW/g9//rbPNQIQQoueQZKAP+uATP/iI7woSv+qqE7u9QkWVorzc4EsjgVyalqJUTReWGzsIFPZocxMee3glOM2WE7Wa3cBrMAcGpiW2pMnK9o5J1eo4TOwsbVlGDxuafKKC/AZwLGjwe18bv1cwoIHJJ6Q7yl0Xi8Gtf7IoK1eMHgl2AeTmwpDBMLwIVq1W/Plesz9+bvwjrPlG0S9Hk5+nyM5S5PZXDMzXxKLwl4dhw2aDz6NC9AU6RTfDmH02FjvtlNPcpkSgzYz3eELg00yda/KhEY+9s/a+MnjufMaApiSunc4PbwdiC7uosttDSwZ7eF08ievgjJpICLK7vmN5j5PheL1xsXYO0pjlPZZp7vjzd5bA2mKFXUCbTY2CQeiXDf9ZCltK0xPf7opENK8v1vgsTSijZR1alqJ/f6iugfseM7BVIIToc0xu8YldsOxTX8eNrEaK7dUGHxqdJgHxr0Z/Rnch2UFBpqHzIjIz2OHSbJrU75iTSkGn1XyWVlwFIXMP0uINimg0PuWjHTk53hj74g3dG1eybNzsNfY72icz4FdoYN36bg1LCLHTVIpuZjG4xSd2RVaoK7+lsSxzGyJmN/R3QkdDkhPnoaihY85jThd+yfBKdjrp+QDvsa68DD1UZsjL1WIddG5Eo+DzQZahnTs5OeCzFI7b/oe+63pDMDO7dL4VQoj0kmSgj/nXA67XEOkoc1WAqzj7VINbIp1d/U/ct8PekZ4s2vFDiQRBuYS/yeqWaJJtaP9Ys/ksHVBApJPXoaerD3hf2zsOE/fVBrovniSbdYgmL1dTXt72Me3C1ioYPVKz5/jujy0ZCvMVe47TNDTEG/6t1NZBIADHHG7eFUIh+hSZMwBIMtDnjB8fTwSUjjc6Ekdt4mcFLlx/lcEfYk51U4OqWfGa3qAaIpXdHlayhFdb3hKpifkBiQRA01SnfnMbyp98kum1GBPla00DWhNeY+68jxPmaKgLxOcOuDQW1NIQcqDezwHj0hribhlsw9FzNfURCJeBGz9GoxHYuAlCGfD9+W6b+QQmOed7iuxMTUUlROJLE7quZnu1prZOsdd4zdxD0xujEEJ0hcGnYrGrvlgc8yYpuqrZajvxFYViinefNbhXAAh/kwE6RtNylM0f1aBrCW8wdDx9QqzUSwigbaPZHyP8VTqCSp7wlwBOs+0FVLyM8Tuqzd696i+/CdI/4ofqAATiCUAoBgEXqgNkbA/y8sNm7zNw0U81J81zUcC6Yli7zksEcvtrzjvb5fjvpDvC3TPvCMWlP4Pcft6SqaXlmtIycFzFpH00f/uNwucz+KKKEKLPkE3H+rALL9P881/+xobk5AOiPP9o78kPvf0GckHFy6QdcLb1ig3HEuyxLhCIL8PpQqSCcHFeusNKGnt4HeQ0G+7kOIRX9Z5j9N3/RJh/oQJ/4tK54sk/0Cs2HEtYsw5efVNRXQuFBfCdb2kKDV/5trnSCs0Dj2vWFMOAvABHHBJlziG95xjtK2TTseQzYtOx+0tSs+nYaUOT+pypJsmAkJOg4aT+zCd1aD6pQ7NJ/SWfJAPmMHfQrRBCCCGEELssFUP5zBseKH2ZQgghhBBC9FGSDOxAaRms3wARQ5ds3xF7aB2FQx1UIJzuUFLCHrwVe1gEe1g99pCt6Q4nJQqLtqGytlI4pCzdoaSEPXQ79sgYdtH2dIeSEhs2aGbN0+w3YxsbNvTO8Qn19VBV5e0v0Bs5DlRtg5qa3ll/QvRasrQoIMOEOvTaW4pHHvex4gsL14WB+ZqjjnA440cuOb1g/qld5IA/09tCUwE6k8KRgBMh3At2zbQHb4UMGzIGN93py8Ue6UCklPCmAekLLknsURYoPwQKvDsysrBHa4iWE97QP73BJYE9rBaCuZA50DtG/VnYYzQ4McLfGHi2bWXDBs2Bh/njK3v5AJg00wXL4emHY0yfbl5Xc2ubNineWWzx0UcWDQ2Kfv0106e6HDrDoV/PHkrcJfUNsHgZvPeBorwCsrMjjButmDlVM2ZUuqMTQoiukZ6BdvzzCYur/y/Ae+9bKKXJCGo2bVYsus/PRZf7qa5Od4S7xx7mQiDTq/1EeyOxD5kviD3C7MPCSwQGN60i1IIPgoO6PaZks0f5vUQAWl2NUBAowB62LX3BJYE9rBYy8rwZaNBsszgF/gD2KF+6QkuKDRs0Bx4agIYAuBaNFegoiPo57vsB43sJvilW/OluP8897yMSUWRmarZu9S6y/OVvfqqq0h3h7mmIwAOPKh56XHl7J8R3G37jP/CnexX//Ty98QkhRFeZ3epLgc1b4O6/+Who8HbIHDgQcvNg2DBNQYHm/Q8t/v644S+bP9Tx/BYFWH5mzarrzoiSK6PQ+xrfQ63FDQCFPdLcq652UVmz5VJpWb5E+zFg+NqNwdzOH/f5sIeaO2zooCN84Pi9TeIsWt4AHD8HzjE34XFdePIpHyUlij0nagYP1uTlwfBhmnF7aD77r8Xrb5pbPoAlH8CSD2H4UBg1HAbkwmBbsec4qK6Bx55R1Bp8GhWiT5BhQoAkA20895JFebliyBDd5sJyTg5YFrzwsq9xR03T2EXOjie6K1i5zuSxUPFGRqflDHRHIKkRjA99SiQCzTUmBMpLGgxkF21v6hHoTMjcoV66wer4AyPRURAzt7G8dp1i1WqLYUW6zS7DwSDk58PS9y2qa9IT3+5yXVi8TJERhOyslo8pBcOLvA3WPl+VnviEEGJnSDLQysZNXiPE38FsiuwsTWmpMvZDDF8XNzNS5jZEOqXafGMg1eJLh/yGNpb9OV2sHoPrUKumXoH2KO39jqHKKxQNDXQ4vyq3v2bbdkVlpZllrK2Dsgro38G8h2DAy+fKK7o1LCHETms9fCBZN7NIMtBKKEOjNegOrvzHYopAQBPK6N64kqer/VcG9nP1NTuqIm3q0i1OugPoHjts7Jv7HgwGvCvksVj7j0ci3gWXQMDMMgYCXvwdrY6ktdd7EDC4A1II0XdIMtDKjOmaUAi2tTMc2XWhploxbYom2MUL7D2OrulCIxKImjwBVbf40uYhBWDoOC8A3dDJYzRelAgXh7olnKRz6rrWDnbqUx5Kyvhc7+p/e4dh4j6fmQ1lgLF7uBQWaraE2yY8WkO4VDFuDxe7MA3BJUFGEA7cF8oraXe32q2VXq/BhD26OzIhxE6ROQOAJANtHDxVc9CBLuXliq1bm3oI6uuhuFgxsMDleyebe+UyvD6zS8lAuCSzW+JJCafZck+62dfm30fN3VchvC7+tk3MD2herkTbS3dwSdYA4Q39wN3B3BatCX9j7lC2754cAys+FMilKQFw8e6zNFOnmNqz4w0POvwwh9pa2LxZNc6xikZh3TeKrCyYM8fp0tSQnuqQKZohhfDVWmiI5+daa8orYHMpTD8Ihg7u/DmEEKInkGSgFcuCG34ZY/Ysl4YGxbpvFGvXKrZsUQwr0lxzeYwD9jUw7Wtm4siqjrNXF3DNXvMvvCEINNslrnU5nRrCJYaOp0+IlHhfmw9PbGxYuYTXGdzzAYTXOrQ7S1/hXYqtN3sw9h9vVuQPagCfQ2MluvGvfpfMvAjP/tPgljLwrTkuJx7voCzNl6sUK79UfL1WMTBfc+oPY+yzl9nn0eFFcMb3NaOGwTcb4Iuv4L9faOob4Kg5MP8YbXSyI4ToO5TW7XVy9nxlZdvb7Z5NFteFT/+rePc9RTQGI4drjvqW7hUbjiXYRXUQyG26ohyrJ7yh9+SH3n4DhTRbrxEiZb1iw7EEe5QG1WzMWmQz4Y2GLyvajF20HTLym+5wIoS/6T0trCVLNMf92O/tLwCgXJ5+yOkVG44lVGyFL76wqK+H/rmw155umxV4TNYQgZVfeROKCwuyGFRQyyBDhz/1ZUpBQUG/lLct+pLEa9qTXX3PZhqiya3wjIDi+jPN6haUZEDISdBwUn/mkzo0n9Sh2aT+ks+IZOBvKUoGzjIrGehgAU0hhBBCCCF6s1T0wprXs9t7xoQIIYQQQgghdor0DOzAylVQVQV779nxBjoms4dH8HLCSko3mLs6S0fswVUQyPKWhYrVE96cm+6Qkq5w2HawohCpJ7ypZ3fJ7gp7fB3E/ODGCK8zeJWrDlRVOVx/G2Rm1LLwPIf+/Xvf+3BLKZSXQ9EQyO19b0EhhKlSsRSogcPMJBnowC13WDz4Tx+lpRYayAhqpk1x+f3NMQYPSnd0u88eHgN/JviDjUtUFo7U4EYJF6c7ut1nD67yJg9nFjb12AX6YY/Q3iTiXpAU2GMUaD/4BwIKQtnYe7gQ2Up4vflJgT2yDjJyINYfXAvQ2GMdsBzCq9Id3e6rqnLYa0aAaG0gXj64668WvpDD0hejjBhhflLw6tvwx79afP6lwnEUGRmaqQdprrzIZfyYdEcnhBACZJhQuy66zMctfwiwabPlLfltQV2D4s13fBx1QoDNW9Id4e6xhzvgz/Jm9yTWqleApcAXxB5h9mFhD67ykoDWbSkF+BWEzF/qwx7jAx2g2cYC3hfXAn8+9vB2ds0ziD2yDvz9IeKPL7kZL1/MD9Eg9vi0hrfbqqocxh0UJFodiO9EHL88pRVOnZ/Jc4JUVZm7nwnAU8/BBZf5+OATC8dV+P1QV6d49U2LH/zEx+cr0x2hEEIIkGSgjc+Ww+P/8uO6kJUFmRnebpPZmRAMwJawxeW/MrxDxRdqSgKgZXtSAT4/t9wSafe/GiFY0M7a+81YYA83b4JPgl20HXRnV40VBA1fPjWYA47l7dJr0XRT8Y26YgH2mFSX5iB33ezj/V5ig44n4vFb4n3p+Jk819zzTCQCN97mo7paUZAPuf0gOwsG5MGAXNi8RXHtb+XjRwghegI5G7dy+5/9RGOQGfIulDcXCHhf311sETN0g1d7eIzGnXBat4eb9RLcfLvBY7N9XWjo+wKpjyNVQnk7/h3Xwh5iZu+AParOSwQSDeXmFF5C4FpsrzN3sfqS9Z2ceuMPVZWZO0zosachXKbIyfF6VpsLBLwLLJ/+V7H2m/TEJ4QQQNOcgWTfdsLKlSs544wzmDp1KjNmzODSSy+loqJ7N9aUZKCVDRu9emz9AZZg+aCuXrGltFvDSh6V0bJXoCMdvQC9hbkdA3QteAUZhjaWgxmNY+jb1diTZfAxquPJTodFSHTTmWn1WgvX8S6qtCcUgoaI4vNeMPdDCCF2VX19PWeffTaTJk3i3Xff5dlnn6WyspIrr7yyW+Mw+NM0NUIZ3le3g8ay1l6PQa6x8zO7mLLKris9WFcaiRocQ4d6xXYwVl63+cZAZjf2dyQr0+uAdDqoypjjXW/ob+x5VAjRO6gU3bqmpKSEiRMnct555xEMBhkwYAALFixg2bJlySleF0ky0Mp3jnSxFESjbR9zXXAdGD3KNXaZ0TmH13fehkr0Gri13RRRCnSljeimPIrUcSLs+GSjCa83c6jX5efHwOcAqv261PF/YoYmO4Av5AK6/eMwfp8KmHuQzj/GJTOk2V7d9jFXQ20tDLI1h0zp/tiEEKJRCocJVVdXt7hFIm0/s8aMGcOiRYvw+ZqGhb700kvsvffeKShsxyQZaOXs01yGDHKJRqE+0tRDEHOgtt6bRHz+uYZOGAAeuS/oXfVvtQhNi0aXqwmvD3ZzZEnk1HSeEGggYuo4LwivU+wwm1HmHqMXX5wJvnj8zcdfauLFVhBwCK8xd4LtTb+MghXvHXBpqs5E+SzN+Webm+zsMRpmz9DEYlC13buQAhCLQWUlBPzww5NdfOZOixBCiE7NmjWLgw46qPF29913d/r7Wmtuu+023njjDa666qpuitJj7qdpivj98MgDUX5wRoCNJRZ1saYO/ayQ5vxzY3x3vsnDE+CyC2q4+Q/ZTUuLQlOPgNbMmVMDmJsMhNcHsIdHwR9oewFdA7FawpsM32cgUgHBfLx8vtXxaDmE15h9jIZXgT0hAlG/N3+geXECMVDVgJk9HwCnfc/Hc6/V8+Zroab5EYmEwHI5cEoD11xidkv59htdfnYJvLPEonwr3nxwBVlZmh+crDn/bLOPUSGE6Mzbb7/d4udgsON2VXV1NVdccQUrVqzgoYceYsKECakOrwWltZmDw8vKtqd0WHssBo89pfj3cz6iURg72uWiC9xeseFYgj08Ar54UqA1OPWE15vdAGnOHlzlLTOaWBbKdSBS0Ss2HEuwRwNWAG+NeiDaOzYcS7BH1UEwC7C8xM6NEv6q93RoFhc7HLnAT0W5V6b+uS6vPxHrFRuOJXz0GTz6lMW2ahg8CE77nsvIYemOKvmUgoKCfin/bBKpIfWXfInXtCe7+i9hGqLJrfCMgOL6n9hd/v3i4mLOOecchg4dyi233EJ+fn5S4+kKSQaEnAQNJ/VnPqlD80kdmk3qL/mMSAbuTlEycG7XkoGqqipOOOEEpk+fzg033ICVppUcZZiQEEIIIYQQ3ezJJ5+kpKSEF154gRdffLHFYx9//HG3xSHJgBBCCCGE6INSscRz15/zjDPO4IwzzkhBDDun9wy+TZH3lsDTz0M3bwbXbezBLoVDXZTPzN1qd8QeXItdFMEuqscebPByqZ0oHBJBhSopHGTu6jOdGTbRxS5ysYebu9RmZ8JhmP8jOOLYWsLhdEcjRN/UEIHKKk07qz8K0etJz0AHfn6hn2df8FMfPzEoC8aM0Dx8XwNjRqc3tmSwi1wIhLwFWeIrCRWOApwo4WLzB0zag2shOACCoaaVknx4DcpoJeHNhu7O24w93AcEwBdfVSegsYdrcLYTLjF3NagEe1j8GNU0Lm5ljwK0Q/ibHWxMZoBwGPaZHgBHNa4otPdrfvC5vP50lH32SXOAQvQBZRXw7lLF+x+BJopPKaYeCDOnafIHpDs6kXLNl69O5nMaJi09AytXruSMM85g6tSpzJgxg0svvZSKHnTp/fiTgjz+76ZEAEC7sGatYvaRIb5em77YksEe5nqN5ETtJw5cBfgC2CPNXsnEHlwLgXwau+qal09Z8SU5zWYPDwCBVvfGdz709cceavblLXuYC/6Q90PzHlcFKB/2SLOvY4TDsM+UAER9oBvX9Y0vfevj8GMC0ksgRIptCcOf71U89Zyirk6RFYLqGsUTzyruul9RWp7uCIXoHt2eDNTX13P22WczadIk3n33XZ599lkqKyu58soruzuUdr3+Frz3QfxlUWBZTTcUNDTAGT8x/KproNnV8ua7Zyd+tnzss4/BQzICeS33T2i9O7gCu8jcEXL24AiQSNhaj02M/+zr2Ss47JAv1PGwy3hSt/dkc4/Rg2b7wPXhLb6PdyaOn2PQGlwf+880O+ERoifTGp5+SbF6nWLCOBg6GPIHKIqGwISx8OVqxfOvpmI8uRA9T7e3iEpKSpg4cSLnnXcewWCQAQMGsGDBApYtW9bdobTr+l8HGxvFVqvzQCIh+HK1Zey4QrvIbdnwb67Z/eHtra86m8RqmwC05jO4fIHs+DedtpbjSYN57BHujudfKSgtNTcpb6jt5NQbf8hpMDdhFaKn21IKy1cqhg4Cf6vOcL8fBtnwyXLpHegTdJJvBur2S09jxoxh0aJFLe576aWX2HvvvXfqeVSKEvbSMtVuItCc68K6ddDNG8Qlh7+LjWDLQilDx2V3lOw0f0yrlB1DqdeVRqKCQMDQMvq6thiDsgwtHzQWsNOqNPkY7XsSdSV1ZobyrVBdA0Ps+LuxWW+y0pDXH9YVw9ZKsAvSF6fJ5L1gjrT2Q2ut+f3vf88bb7zBQw89tFP/d+DA1AyDyMiIARqtO04IFLDnnpnk55vYjd/FFXW07vGbhXQs2vnD8YTA3PJ18Yq/jlFQYOD8CGdb0yioTpl8jDZ04XdMLl/flarPJpFcg2yXnOwo/oAiM9T0YZ+V6fU41tRosrM1g+wABQXSS9d7pXdp0Z4iba3Z6upqrrjiClasWMFDDz3EhJ28zF5enppdAr81x8+9D/rROj6vrxk3/vf69wPXraOsLPl/P+UcF6wdXHnVQH2EsrJYd0WVZPGJp+31Duimb8rKTF5ONbOTx7xClm4MGFnG/7ta86ub2fH5NBahrGwHiV9P5Qt4JxSXtr0DLoAGy/RjtG9RyksEUvXZJJIrNwcG5iu+XqcYPQJQXiJQWxcBDWu/gRHDNTlZETM/63uAxHtC9HxpSQaKi4s555xzGDp0KI8//jj5+Tt/9VJrUnLCve6XMf75qJ+6Bm84UGLIkNtsLNi5Z0aMPdmHN1jYo5u1khPfNl9xx4HwZsvYMnpXlvu3HC7UvHwacLaitZnLi4bX4y0hCnSc7USNrb+f/cziVze53spPHXEhvEEZW8bzz43yxzszwFVNVxks4omAAktzzFHm1mFflqrPJpFcgQB861B48FFYXwJDB3n3x2JQshlQcPihGp9P6rNXk6VFgTRMIK6qquK0007jwAMP5G9/+9suJQKpFAzC4/+oJyt+cRkdTwq0l+WefHyMhRebu4oJgJ3dEP/Eou2qOy7g1KcttmQIbwyCE2n5hkyUUwNONeESMxOBRtFtzX5oPXPJIbze0PkeceFvYt4br72TqgvBTLOP0V9eBqP3aAArfsUB5SUG8UTAHtzAvXelOUgherlDpmgWnKjJDGlWfQ3LV7p89TVkZ2m+P18zdVK6IxSieyituzfnvffee7npppvIzMxEtZpd8vHHH3f5ecrKUtsVG4nArbdb/PvZANEYjBzh8tsbo71iw7EEe4gLoQwaL5dHGwhv6D1jI739BvKarjC7MYht6xUbjiXYwxWNO3KhIVZNeJO5q+y0Zg93wZfhZeIacHvHpngJy5fDkSf5iUW8c6Hl17z6VEw2HDOQUt48pFR/Nonkq9oGX3wFfn8WjlPLXuOhX066ozJf4j3Rk1395zIaIsl9w2YEFdf/zKxZ592eDCSLnHCTRz7EzCb1Zz6pQ/NJHZpN6i/5jEgG7kxRMvBzs5KB3nMZWAghhBBCCLFTTFwbUwghhBBCiN0kS4uCJAM7tHIVVFXC3ntBTi8cQ2gPjoFPgVtJ6eYuLe5uFHtQbXy3YRcch/CW3jNfIKFwcD34HIhFCW8O7fg/GMYeGW2c3B4uNnjn6A5UVsKvfgOZGbVc8T+Qm5vuiIQQQvQlkgx04JbbfTz4Tx+lZd7yhRkZMG2yw+9/E2PwoHRHt/vsIgcCIchqalwVjgRiDuENZq+WBPEkIDjAK2Niw4iAxh7hQkNlr0gK7FE+0H6vjAAZ2ls2tn4b4U3mJwX28ChkhSDTaqxDe4KGqEv46zQHlwSVlbDnwT6cqGocsHnPg34sn2bJSw6jRqUzOiGE6ANkaVFA5gy066LLfNzyBz+btig0YFlQVwdvvuPjqOODbN6S7gh3j13kQjDUVPuJA9cHBH3YI8zuIbAH1UIgH1zLW66xceVNBTEfZAxId4i7zR7l9xKB5jvjaQWOgmAu9hCzl960h0chO8P7QcdXu1IACoIW9lizT12VlTB+sg/HUaB00zGqNK5WTD3CR2VlemMUQgjRN5j9iZoCny2Hx//lx3UhKxMyQ16vQHY2BAOwJay4/BrDO1QCGV7NawDlTflHxTc8AnwW9hBTdx8GMvKakgCr2S3RbnYs7GHmHvr24HrQvpYbqSVuxMsd6p+u8JIjM8NLAlQ8CWhchji+Nbgf7NGG7j4MzDza8nYzTLwHGyWOW8WBc8xOyoUQQpjB3BZRitx+p59o1EsCrFavTiC+fPu7S3zEDG0r20VOUyOk1T4PjWu5WzQNPTGRa3ntq46Obg1g8NjzUGLyimo7TymRELjKSxoMZI+INqu7do5RFU8IfBndHVrShMM7nmBWvb0bAhFCCNHnSTLQyoaN8aFBHVyUs3zekKEtpd0aVvL4MpqGJXSkvUTBNB2Vr6NGpklUfAx9Z0XQyusBMpHPh5fodFSJ8YJbBtdhl44/k8snhBAG0Cm6GUaSgVZC8faT28EcWq29HoPcnr2PRie6eJT25nZIryjbDhI6ACfSLZEknXbiXzt6XLf8aiSTYxdCiN5CpehmFkkGWvnOUQ6Wgmg7w5Fd17uNHqnNXWY02uDNDejoWE3c31DXTQGlgKUbl6JsI3Ffh1edDeBE6LACG+cRaMIlZvYMnHsqxLun2m/wq3ivSLShewNLoo56Hlv+UsrDEEIIIeTjprWzT3MZMkgTjUF9fVMPQSwGtXXeJOLzzzV34mJ4k79ZMqBbXWWNN8Cc+O+ZKlbdNPE00fh3aZkIRLemJ7YkCBcTT2Z0yy5JHf9HaVCGTmoBrrsuADGaTYhu1ROgAVcTXmfuvI/rr3Ia325txBdPOvd0c+tQCCGMIMOEAEkG2vD74ZEHI4wo0mjXmx9QXQMNEW91of/5eYzvnmRgTTcXqfMaW9CUFFjxHxztPW6wcEkAiDRd/W/eQ2BpcKsJbzZ8n4GGqmYNSd0sEQCUQ3idk7bQkiG82vWORZXoIYCmAmtoMLdXAODsH8MhU2NNiXnzmwv7TnS47sq0hiiEEKKPMPjyb+qM2wPeeyPCY08p/v2sj2gUxo7RXHSB0ys2HPOu+kexh8YgkNl4JZJYPeGNFr3hsAhvcLEHVXjLjCYakdqByLZeseGYt9NwA/YIFd9hOd7L07C9V2w4BhD+yvVWFsrIaJrQHokSXmth9GpQcf96GNatizH3JB9V273yZWdp3viXbDgmhBCi+5jf6ksRvx++f4rm+6f03q76cImXFCgFBQX9KCuLmj0nsxWv0d96Eq35iUBz4WKNUpF4/W1H696RCCSEiwO06tpJVygpMWoUfPWh0+w9uL1XvQeFEEL0fJIMCCGEEEKIvicVY/wNvKDTuy6zCSGEEEIIIbpMegZ24IGHYf16+MECGD063dEknz3E9VJCt4rSzb0vN7TtOrD8gLcubDicme6Qkq5wcAyoBK0Jb+59b+lzfqZ57jUYVgTvv2He+s07EonAW+9A/9wYB+4PAfOnQ7RRuQ22b4OB+ZDVu0bqCSGM1/s+V3ZW72s5JMnBhwVYsyax06vi9j9pghmaRx5oYMYh6Y5u99lFLgQzIFM1LnFYOEpDNEp4Q7qj2322XQehXMhquda+PVxDQ1WvSArsoQHA3zS5VmnsoYDebvbSsHHjJ2kqa33g0xCAdWGwJwIRCH9tYD9sK5EInPLDAMs+9BGLAWh8/hD77evwxMNRc/cyaeaTzxQP/tPHsg8solFFdrZm9qEOZ53mMHRwuqMTQggBMkyoXeP3y2DNGj/o+MsTn9EXaVCcuCCD/yxOY3BJYBe53gotjUs20rR0YzCIPcLsw8K26yArD6x2sn2fgsy87g4p6eyiDLxcXjVb2zi+NqXqhz3E7Inv4ydpKustCMSXvU2U0Q+EwN7D7Cs5kQhMmZnBe0t9xKI0LivqROHjj31MmZlBxNANpBMWL1VcfEWAl17xVmTLyNBs2waPPO7n/IsDrO8FFx2EEIaTfQYASQba+NNfoHJrYq1N3bT2NzQ2uH5whpk7uzYKZsQbjrTdPVsDfh/20Pa27zVERm7njyuwi7qyBWzPZA+JNUtUaVmHiaRO9UtXeElRWWuBj5abxRH/3gIy4LKrDDzjxl17vZ9Nm703neXz8laf1bQzcXmF4sL/Nbd3JxaDW+/wU1aqGD1KY9uQmwtDhsDwYZpVqyz+/FdzyyeEEL2JJAOt/PbWeEO/vd1B4w2uulpFTU03B5YkdpHbbFhJqwcbEwJl9sBlXxeuGvsNbohY2Xg9Aqr9Ooy3ke3BZvYOzDpaez0AHbX14wnBvY+am9A9+e947O2cga34fS+/Zm753lmsWLvOwi7UjeVJCAahXz/Nf5ZYbAmnJz4hhBBNJBlopb6B9htZCfEOgyUfdGNQyeQPdK0Lq/UneG9j8iiTRK9Ap2VQoMxsTK78Mv7Njo5Tg+twe3W8V6CT36mrM7eAxestolHI7mDeQ04O1NQoijeYW0YhRC8gw4QASQbasJoPl+mIgjEjuiOaFOjqjkay81HPt8MqcrojiqSzupzDmNuQ9Pl2/P4yOR/PDGmU0vGJ0W1Fo+DzQVamnGeEECLdDP64SY09Jzqd9wqgQGlzlxmNxUDt4ANYgdGzF7vSvnANboTo+k4eI378amNXFHrpMZrmBnREA9rMYVAAe+7pTYRob2ZO4r49xpg7b2fWTJe8PCgva/uYdmFrpWL0KJc9J3R7aEII0YxK0c0skgy08vRjMSA+rr55d0+zRODw2dG0xbe7wiVWyzK1/l7hrVdfYvCh0VDdhd+pSn0cKRLe1Gxye+s6VIk7zG0o77+/gijtz9sB76wVg/BX5p1wE275dRRffIK0q5sSAFd791kW3PArcxPywYPg6KMc6hsgHAY3XsBoBDaWKEIZ8P1TYkb3fgghRG8hp+JWsrPhjlsbQMUTAtVsoqbS7LGHwz8fNPeKHQANDXgJT/znRGMyngh4j5srvDkA0U4aw/W1hLcYvs+A3k6b1a4av7qES8xNWAHCqzVEmvbAwIrfFBCF4w83+z24z17wmxvqvXns8QTAcbzvfX645ooGDp2Z5iB300XnO5x0goOyYN03irVrFRtLIDdXc95PYxw/z+DeOSFE7yBzBgBQWps5OLysbHtKh7XX1MBpP7FYsjSA1tC/v2bRnyK9YsOxBG/jsWA84dEQiRDe2HvyQ9uu85YZTUwEcVyIbOsVG44l2EMsUPEVsJQGt9rY4UHtmTpHs26j3yubBhyH8BpzewRaq66Gy3/pZ+kyC7/PYt+9Y9x6c6xXbDiWsGYtvPq6j+oaKCyE78x1KCxId1TJpxQUFPRL+WeTSA2pv+RLvKY92dW3baUhyZ2wGUG4/qIByX3SFJNkQMhJ0HBSf+aTOjSf1KHZpP6ST5IBc/SeS4hCCCGEEEJ0VSqG9RiYTPaeMSFCCCGEEEKInSI9AztQWq6pb4BBBRAM9p6xygkVFbClFMaPdYzelLcj9fWa5SshGIC9JoDf3/vqUAghhBC7QtoEIMlAh157Fx75N6xYaeG6MDBfc9ThcMZ3NTnZ5h88n6+Em271s+xDRaTBIhB02GevAL/4eZRDe8Ek6fp6zYVXK954X1MT8frs8rIsjj0MbrhSS1IghBBCCIEkA+365781t//ForpGkdtfkxHUbNqsWPSA4rMVLrf9n9kJwSf/hTN/FqA0bOEPaIIBTSymWPK+xecrA/z2xhjHHGngoLe4+nrNUT+AVSUxNOBTXl2V1zo88DysKQ7w+CJzyyeEEEKIJJA5A4DMGWhjc6nm7gcsGhpg9EiXgfmQm6sYVgQFBS7vf6T4+1PpjnL3XHtDgHDYIm+AZsAAyM6BAXmKgQM127db3HCz31vz3FA3/0HxZYmDpRTZAR8hv0XIb5ET8AGKxctj/ONJA9+tQgghhBBJJslAK8+9CuXliiGDNUq1vPqfk62wFLzwusJ1zWxMfr4SVnyhCIU0gUDLx3w+yM7WlGyyePp5c3s+nnldozWE/G0P75Bf4aC577E0BCaEEEII0cNIMtDKxs1eI7ijMeXZOVBapqiu7c6okmfFF4pIRBEKtf94KASOo/lylbmHRkW1xlLt15+lFArYUta9MQkhhBBC9ETmtvhSJJThbcbb0V5ssSgEAhAKdnNgSdIvx9uQNxZr/3FveJAiK8vMng+AgAW6k0F7Gm/jZSGEEEL0YTpFN8NIMtDKjKmaUEizbVvbx1xXU1MD0w7Sxi4zevhszcACl9oOejaqqyEnx2X+cW73BpZEB0z0odG47SR0MUejgEMnm1l/QgghhEgWlaKbWSQZaOXgA+GgAzTl5RZbK3VjD0F9g6Z4vcXAgfC94w1M++KCQVhwkovPUlRU0DhR2HE0VZXez0fMcRlWlNYwd8slP3PJ8vuojTlEHa+uXK2JOJp616V/yOKSn5tbh0IIIYQQySLJQCuWpbjhcs3sQ10aGhTr1lmsXQdbtlgMG+pyzcWaA/Y2L+tr7uLzHX74/RihDE1FBZSWKsrKwfLBkUe43HKjwUsJAZMPUPz2ckX/oI+I61IddaiLucRcl4IsH/f9VjF4kNl1KIQQQojd1IOGCVVUVDB37lyWLl26y8XZVbLPQDsGDlDccZ3m08817y5TRKMwssjlqMMwen+BBJ8Prr/G4awfOzzwdx9bShWD7QDHz6tj/33SHV1ynDxP8e3D4Pd/9fPxcoVlwazpmp+dJhuOCSGEEKLn+PDDD7n88sspLi5Oy9+XZKADlqWYtA9Mamwc974G5OiR8KsrHJSCgoJMysq8ydO9RU6O4uqLoGWa3vvqUQghhBBmeuqpp7jjjju45JJLuOiii9ISgwwTEkIIIYQQIomqq6tb3CKRSLu/N3PmTF555RWOPvrobo6wifQMCCGEEEKIvicVS4HGn2/WrFnU1NQ03n3++edzwQUXtPn1wsLCJAew8yQZ2AHbBizoPwBWf5HuaJLPtl2vf8itorS093UU2bbTNDJIQzjsS2s8qVBou2BtA1cT3tL76vB/r3J58l+wxx7w6tO9r3yRiOatxdC/f5QD99UEAr1vKFt9PTQ0QFYWbXY+F0KI3ujtt99u8XOwB29wJMlAB+yiAOCH+AfXtm1gD9MQqye8Oa2hJYU92IVAJmTiNZY1FA4HojHCm8xeTQjiSUAgC4LN1/zV2EUaorW9IinwjlEfJM4vGuxheOXrBUnBAQe7lGzMBNerw88+ir8HfVHC35h/jEYimlPO8LHss8QmgFF8Ph/77QlP3OuQk2N+UrBpk+KdxRYffWzR0KDo108zfZrLoYc49OuX7uiEECJ159mcnJyUPXeypbXFkM5llDpjF2XQbp6kFfgysQd3e0hJZQ/WkJEJPpreBwrvaAj6sYeafenOth0IZoOKH96N3YDxQgay0xdckthFGaB8Ld/BibzHn4U9yNxN4yCeCKzPAsfy3neNS7YpcALYI8y+jhGJaKbM9fHeh813A9c4Dny8HKYc6SMSMXs2/zfFij/d7ee5F3xEIorMTM3WSsUjj/n4yz1+qqrSHaEQos/rQUuLplPakoEPP/yQBQsWpG0ZpY7YNrR4WdrbUM6f0a0xJV0w1HEyrICA5Q0fMlUgq6kBiWpbf0phDzG3MWkPckGpZmVqdZBaeK+BwUrWZ3p1CG3fg1qB6+eG35h7jF57s2JTGFDeymWWpfD5vK8A5VvhwivM7d1xXXjyXz5KShR7TtQMHqzJy4PhwzTjxmo++6/F62+a3zsnhBC9QVo+bZ566ikWLlyYtiWUOhVs1tBv3WBubIxYXHlldwWUXPZgd8e9YgoIhLojnNRQ7SQArVnmJgP4M1slAs01/Wxq78C877k0lqPD96Di9j+Ym5Q/+Vz81NvOMZpICF5+y9xhQmvXKVatthg2TGO1+pQJBiE/H5Yus6iuaf//CyFE91Apuu2aL7/8kmnTpu3y/99VaWkRzZw5k2OPPRa/37/LCYFK2edkB42QVhbdA7/+dapiSCFfJ70CzVkqha9xN9C0X07V9Jix5WsMvJMCKMCyjCzj++9b7LBsAMrM8gFsrwF0U8O/PXV15h6jFVsVDQ3Qr4Mhs3n9NeFSRVWVol+OgX3q7UjUlal11tdJ/SWfvJbmSEsykIxllAYOTNXss6j3paPGZFzhIB8FBQYOxdD1dCkb0FBQYOoMv2jnD8eLb375dnCQoiko6N8N8SRXduZ2atpfjtmj4/8obWwd+v21RGO6zYdl858tnzK2fHahJhRyCQZpd8fvhgZNTg4MHhSkoKB3tRhS99kkuoPUXx+TwqVFTWLsWIny8u2p2S3XDYDq4GVp9vc+/8yhrGx7CgJIsVh8FSHouB2pgUgdZWUN3RVVculQix6Alo/F79PazPoDcFQn81biB6kLpZuVkWV88UmXQ78Vr6gOe3gUGVn1lJV1ljX0XHuOtfhoOTiObuwdUMrbAdx1vTrcY4S5x2jBQMjtH2DtOkXR0JYnaq1hXbFi/31dfL4YZWVpCjLJlPIakin7bBIpJfWXfInXVPR8xiYDWpOSN+zZp0dZdH/8ZUk8v6Jlpqejxp4swmELezjeSkIdcb3fM7WMxGq8FYNUs8Zk87rEW15UazMnMIY3aewi4jN+2jlINYBjbP1NmGCBFfMSc7Q3YbjFe9C7lLP+C3OP0d9d5zD3JB+OG2/8K/Ap1ZgIWBbccJWD1mZeNc/OhjmzHR57ws+mzQrb9uYORKOwYaMiKwvmHOYtD2tqHXYkVZ9NontI/Ym+yNzlKlLkxhuBaF3LO1ucGGKES2IYraEOHNp2ZWm8+xvq2v4fg4S3+MCJ0aKAjW2qXrLPQKwWWswPbpYIaE144w6GSvVw4eKYlxAAXkIQ/6oApTn1NLOP0X0mKn7zSwd/4nKM9noJAHw+uOYil0MPNjMRSPjWHJcTj3dQSvPlKsXKLxVfr1UMzNec+oMY++wlLS4hhOgJjO0ZSKVwGK68so5F9/mbVp3RLjiRXrHhWDhsAQ3eajPBzKarrtF6wpsTGw6YLbwphm03NC0zCoALkTrzEwGIbypWjz3UAqvZroa9ZMMxgHBxlCOOa+CzT0NNdeivJ/w19IZj9NQFihOPcbj8eoulH1n4LcW+ezrcep3bKzYc8/ng6G87TJ/m8MVKi/p66N8f9trTJdvA6VZCiF5I5gwAoLQ2s0OsrEzG9SWLUt5kWnlNzST1Zz6pQ/NJHZpN6i/5Eq9pT3b1r6tpSPLUs4wgXH+FObsPQ2+4vCaEEEIIIYTYJTJMSAghhBBC9E3SEyQ9Aztyyvfg4Jnw7PPpjiQ1fnsrzDgMfnq+ocuI7sC6dfDzX8AlV0BlZbqjSY3ycvjmG5f6+nRHIoQQQgjTSM9AB+yhGaCsxlVozjwH0HDxxXVcvjCtoSXFzDmwalWoMR1c9RXc/dcQ/fpFWfOFk97gkmDdOpg2J4hWGnxe2n//I4qABSs+iJKXl9bwkmLxEsU/HvXxyX8tNDFysoJ86zCHM3/sMHBguqMTQgghhAmkZ6Ad9tBMb6Hv5gt6xBfZufW2TG76XboiS44DD4ZVX4Va1r7ybturAxSNCaQrtKRYtw6mzgmi/drbTyGxWoBPE1Wa8ZOCnT+BAV54yeLyXwZ48z8WroZQBpRthQf/6ePCSwKUl6c7QiGEEEKYQJKBVo46ho535sV77NZbMrsrnJTYsD7UaRmjER8lJd0XT7LNPioAfje+eww0ZjqNy1O6TJ1l7vKi1dVwx5/9bKuG0SOgcCAMyFMMGwJDBsF/Vyj+dr+55RNCCCG6hU7RzTCSDLTy8UeZnScDABZs3Ngt4STdzDnsuHwKDjrY3KvndZFEAdspaPxNuq7Y3EP/pVcsNoVhkO2NZGsulAkZGfDqmz5qa9MTnxBCCCHMYW6LKFW6stePgj/9OeWRpMRXa7rWyHccgw8Nq7O0PF7BlrmbOq0vUbiuNzSoPdnZsG07bOoFG+QJIYQQqaNSdDOLTCDeFRoOOSTdQeyaQIYm0pVVZ0zedaUroRtcvMx4EuC63tSW1mJRb/fX7OzujUsIIYQwiuxADEjPQBvK17WVdOYdneJAUuRf/4ju+EDVcPQxBi81mpgb0G5BNaDwGXzkH3qoS3YWVGxt+5h2vV6BffZyGTyo+2MTQgghhFkMbhKlxkdLIp03ljVkhKLdFk+yTZ7chV/ScN9fUh5Kypx8XARcFe+pS1RmPP1XgAN/vjXJ+493o70maGbNcNle7e0x4Lre/ZEIrN8I/fvDD75r/vKwQgghhEg9SQZaKSqCo+bWdXxRWbusXxPr7rCS6pP36zvuGnPh+X+bvXvVnbfD+FEuOPGEQOmmYXyO4tuHRznh+DQHuZuuuSzGd+a6OC6sK4bVazUbN0NhAVzyixizZxrYTymEEEKIbidzBtrx4H2wcWMd02b4iUQSa+5rLr64vldsODZ0KIQ31DP/e/Duu6HG+4cNr+ej99IYWBK9+5rDJ586HL8gQF2DN2woP9dhyZuxXrHhWE4O3HxdjBVfKN5+xwKVQf6Aeo6a65KXm+7ohBBCCAPInAFAkoEOFRXBhnUxwOxegM48+U+AepSCgoJ+lJXVGz1vuLUD9odvVpo7pKsr9t5Ts89eDgUFPsrK3F5Vf0IIIYRIPUkGhBBCCCFEH2TeMqCpIHMGhBBCCCGE6KOkZ2AHamq9ddtzcry123ub6mqorAS/X8aXCCGEEKIPkTkDgCQDHVq9WvHOf3ys+NzCccAu1BxysMPB012CXdvEt0dbvx7uuTfIW+/4qKtVZGZqpk4JcuqpUfbey8AjWQghhBBC7DRJBtrx8ScWDzzkp7JKUTBQEwppijcovnoowJo1Dj/6YczohGDtWvif/w3x9WqLzGxNVpYmElE8+7yfDz/yceMNDUyZ7KY7TCGEEEIIkWIyZ6CV6mp4/AkfdXUwcYJLYaFmwAAYPUozrMhl8RKLDz40+2X745+CrFltMWyEZshgyMuFIUMUo0ZqtmxW3HpboHEjKyGEEEKIXkmn6GYYs1u1KbB8hcWmzRYjRmhUq0nmiXkDi5dYxi7huH49LH3fR25/TTDQ8jG/HwoKNatX+1iyVA4NIYQQQojeTlp8rZRXeBmAv4MBVP1zYcsWi0ikG4NKonXfWNTWKnL6tf94Tg40NMA338ihIYQQQojeTKXoZhZp8bUSDIDWdHjlPxqBYEB3mCz0dFlZXu9GtIO91KIxUApCmYZ2fQghhBBCiC6TZKCVceNcsrM1VVVtH3NdbxnOgw50jV1mdP/9XIYPd6kob//x8jIYOFAz61CnewMTQgghhOhOMmcAkGSgjZEjNFMmu5SUWFRUNPUQ1NfDV6sthg7VHDzd3Nm1fj98b0GMQECxcaMiFu8hiMU0W7ZAJKI4dl6MgfnpjVMIIYQQQqSeoYNdUkcpOOXkGD4fvP+BxZYtCqU0Ph+MGe2y4OQYQ4YYmPY1c/JJMbZvh4ceDrBhg0Jr8FmQnQMLFkS54PxoukMUQgghhBDdQJKBdmRlwg+/H+PwwxRfrVY4jqKgQDNxQu/YcMyy4KwzY8ybF+PFF/2UlSmGDMngkIPrGDUq3dEJIYQQQnQD2YEYkGSgQ0rB0KGaoUMNrNUuGmTDaT+OoRQUFIQoK+t44rQQQgghhOh9JBkQQgghhBB9kHnLgKaCTCAWQgghhBCij5KeASGEEEII0ffInAFAegaEEEIIIYTosyQZEEIIIYQQoo+SZEAIIYQQQog+SuYMCCGEEEKIvkfmDADSMyCEEEIIIUSfJT0DQgghhBCiD5J9BkCSASGEEEII0RfJMCFAhgkJIYQQQgjRZ0kyIIQQQgghRB8lyYAQQgghhBB9lMwZEEIIIYQQfY/MGQAMTgaUTABPmsRrKa+pmaT+zCd1aD6pQ7NJ/SWfCa9lKGTGc6aa0lobmMMIIYQQQgghdpfMGRBCCCGEEKKPkmRACCGEEEKIPkqSASGEEEIIIfooSQaEEEIIIYTooyQZEEIIIYQQoo+SZEAIIYQQQog+SpIBIYQQQggh+ihJBoQQQgghhOijJBkQQgghhBCij5JkoA9buXIlZ5xxBlOnTmXGjBlceumlVFRUpDsssQscx+HUU0/l8ssvT3coYidVVlZy6aWXMm3aNKZMmcLPf/5zwuFwusMSXbRixQp++MMfMnnyZGbOnMn1119PJBJJd1iiCyoqKpg7dy5Lly5tvO/TTz/llFNOYdKkSRx++OE89thjaYxQiO4hyUAfVV9fz9lnn82kSZN49913efbZZ6msrOTKK69Md2hiF/zxj3/kgw8+SHcYYhdccMEF1NbW8sorr/DGG2/g8/m45ppr0h2W6ALXdTn33HM56qijeP/993n88cd59913+etf/5ru0MQOfPjhhyxYsIDi4uLG+6qqqvjJT37CCSecwLJly7jhhhv49a9/zWeffZbGSIVIPUkG+qiSkhImTpzIeeedRzAYZMCAASxYsIBly5alOzSxk9577z1efvlljjzyyHSHInbS8uXL+fTTT7npppvo378/OTk5XHfddSxcuDDdoYkuqKqqorS0FNd10VoDYFkWmZmZaY5MdOapp55i4cKFXHTRRS3uf/nll8nLy+OHP/whfr+fgw8+mGOPPZaHH344TZEK0T0kGeijxowZw6JFi/D5fI33vfTSS+y9995pjErsrPLycq666ipuueUWaYAY6LPPPmPs2LE8+uijzJ07l5kzZ3LzzTdTWFiY7tBEFwwYMIDTTz+dm2++mX333ZfZs2czatQoTj/99HSHJjoxc+ZMXnnlFY4++ugW93/11VeMHz++xX1jx45l5cqV3RmeEN1OkgGB1prbbruNN954g6uuuird4Ygucl2XSy65hDPOOIOJEyemOxyxC6qqqvjyyy9Zt24dTz31FP/617/YsmULl112WbpDE13gui6hUIhrrrmGTz75hGeffZY1a9Zwxx13pDs00YnCwkL8fn+b+2tqatpcVAmFQtTW1nZXaEKkhSQDfVx1dTUXXnghzzzzDA899BATJkxId0iii+6++26CwSCnnnpqukMRuygYDAJw1VVXkZOTQ0FBAf/zP//DW2+9RU1NTZqjEzvyyiuv8NJLL/GDH/yAYDDIuHHjOO+88/jHP/6R7tDELsjMzKS+vr7FffX19WRnZ6cpIiG6R9vUWPQZxcXFnHPOOQwdOpTHH3+c/Pz8dIckdsK///1vwuEwkydPBmj8EHv11VdlMrEhxo4di+u6RKNRMjIyAO9qM9A4Bl30XJs2bWqzcpDf7ycQCKQpIrE7xo8fz3/+858W961evZpx48alKSIhuof0DPRRVVVVnHbaaRx44IH87W9/k0TAQC+++CIfffQRH3zwAR988AHz5s1j3rx5kggY5JBDDmH48OFceeWV1NTUUFFRwW233cYRRxxBTk5OusMTOzBz5kxKS0u56667cByH9evX8+c//5ljjz023aGJXTB37lzKysq47777iEajLFmyhGeeeYaTTjop3aEJkVKSDPRRTz75JCUlJbzwwgscdNBBTJo0qfEmhOgegUCABx98EJ/Px1FHHcVRRx3F4MGDufHGG9MdmuiCsWPHcvfdd/P6668zbdo0fvzjH3P44Ye3WaVGmGHAgAHcc889vPjii0ybNo2rr76aq6++munTp6c7NCFSSmnpixZCCCGEEKJPkp4BIYQQQggh+ihJBoQQQgghhOijJBkQQgghhBCij5JkQAghhBBCiD5KkgEhhBBCCCH6KEkGhBBCCCGE6KMkGRBCCCGEEKKPkmRACCGEEEKIPkqSASFE2k2YMIGf/OQntN4D8cknn+Twww9Pyd88/PDDefLJJ1Py3F3x/PPPc/DBB3PQQQfxxhtvtHhsw4YNTJgwgQMOOIBJkyax//77M336dBYuXMi2bdt2+W9efvnlXH755bsbuhBCiF5EkgEhRI/w1ltvsWjRonSH0W0ee+wxjjnmGD788EPmzJnT7u88++yzfPzxx3z66ac8++yzfPPNN9xwww3dHKkQQojeTJIBIUSPcOqpp3L77bfz0Ucftft44mr5hg0bGu/7wx/+wKmnngp4vQg/+MEPuPnmm5k6dSrTp0/nwQcf5NFHH2XOnDkcdNBB/PKXv2zxnCtWrGD+/PlMnTqVs846i3Xr1jU+VlxczE9/+lOmTZvGnDlzuO2224hEIo1/a/78+Zx55plMnjyZZ555pk28W7du5ZprrmHmzJlMmzaNc889t/H5Tz75ZJYsWcI///lPjjjiiC69PgUFBRx33HEsX7688b6ysjIWLlzIjBkzmDlzJr/85S+prq5ufPy1117jmGOO4YADDuDcc89l69atLV67M888k5NOOompU6eybNmyTmMG+PLLLznnnHOYOnUqs2bN4tprr2X79u279Pq/9NJLHHPMMRx00EF85zvf4c477+zS6yCEECK5JBkQQvQIc+fOZcGCBVx88cVUVlbu0nN8+OGHDBo0iCVLlnDhhRfy61//mqVLl/L8889z33338fjjj7Ns2bLG33/11Vf59a9/zTvvvMOwYcM499xzicVi1NbWcvrppzNu3Djefvtt/v73v7N48WL+8Ic/NP7fFStWcOyxx7J48WLmzp3bJpYLL7yQ4uJinnrqKd566y3GjBnD6aefTnV1NY8//jiTJ0/m3HPP5dVXX+1S2UpLS3nllVc48sgjAXBdl5///OdYlsVLL73EM888Qzgcbmxwf/311/ziF7/g3HPP5YMPPuCUU07hnXfeafGc7733HgsXLuSNN95g0qRJnca8detWfvzjHzN27FjefvttnnjiCdauXcull166069/fX09l1xyCb/85S/58MMPueWWW/jrX//KZ5991vXKFkIIkRSSDAgheozLLruM/Px8Lr/88jbzB7oiKyuL0047DcuymDlzJo7jcNZZZ5GZmcm+++6Lbdts3Lix8ffPPPNMJkyYQEZGBpdffjkbNmzgs88+48033yQSiXDxxReTkZHBkCFD+MUvfsHDDz/c+H8DgQDHH388wWCQUCjUIo7169fz/vvvc80111BYWEgoFGLhwoXEYjHeeuutLpfnuOOOY/LkyUyaNImZM2dSXFzMvHnzAFi+fDkrVqzgV7/6FTk5OQwYMIDLLruM5557jq1bt/L888+zzz77cNxxx+H3+zniiCPaDEcaPnw4Bx98MNnZ2WzatKnTmF977TUCgQALFy4kFApRWFjINddcw+uvv05paelOv/6hUIjHH3+c9957jz322IMPP/yQ/fbbb+cqXAghxG7zpzsAIYRICAaD/P73v+fEE0/knnvuYcCAATv1//Py8lBKAWBZ3rWO/v37Nz5uWRau6zb+PGzYsMbvMzMzycvLY8uWLWzcuJGKigqmTJnS+LjWmmg0Snl5OQCFhYWNf6O1srIywGtsJ/h8PoYMGdIiGdmRp59+ujHG6upq7rjjDr773e/y/PPPs2HDBhzHYfbs2S3+TzAYZP369WzZsoWhQ4e2eGzEiBEthgrZtt3lmLXWDB06FJ/P1/h4IrZEmbr6+odCIf7xj39w55138r//+79UV1dz1FFHcfXVV5Obm9vl10cIIcTuk2RACNGjjBgxguuuu45LL72U+fPnN96faIRGo9HG+5o3bIHGhmhXhcPhxu8TQ2GKioqIxWKMGDGCF198scXj5eXl5Ofn7/BvFRUVAd68g3HjxgHgOA4lJSUUFhbuVIwJOTk5XHjhhdx///18+OGHDB48mFAoxNKlSxtfm0gkwvr16xk5ciSDBw/mzTffbPEcmzdvJiMjo/Hn5mXYUcyBQICSkhIcx2n8e8XFxYCXGH399dddfv2rq6sJh8PccsstAHzxxRdcfPHF3HXXXVx22WW78OoIIYTYVTJMSAjR4xx99NGcdNJJPPLII433DRw4kNzcXJ577jm01qxYsaJFY31X3HPPPXz99dfU1dVxww03sOeee7LPPvswZ84campqWLRoEZFIhG3btnHZZZdx0UUXdanBa9s2s2fP5vrrr6e0tJT6+np+97vf4ThOhysH7UhDQwP3338/oVCIfffdl/3224+RI0dy0003UVNTQ319PTfeeCOnn346juNw3HHHsWrVKh599FFisRjvvvsur7zyyi7HnOiB+N3vfkd9fT2lpaXccMMNTJ8+vTGR6KqamhrOOeccnnnmGbTW2LaNZVk73RMkhBBi90kyIIToka688kr23HPPxp+DwSDXXXcdL7zwAgceeCA33XQT3/3ud3frbxxxxBH89Kc/ZdasWVRVVXHnnXdiWRY5OTncd999LF26lFmzZnHEEUdgWRZ//vOfu/zcv/nNbxg+fDgnnngihxxyCF9++SX3338/eXl5XX6OefPmMWnSJCZNmsQhhxzC4sWLueuuuxg+fDh+v5+7776bsrIyjjzyyMY5Bffeey8ZGRkMHz6cu+66i4cffpiDDjqIO++8s92Jzl2NuV+/ftx7772sWrWK2bNnM2/ePIqKirj99tu7XJ6EQYMGcccdd/DXv/6VAw88kHnz5jF9+nROP/30nX4uIYQQu0fpXZmlJ4QQQgghhDCe9AwIIYQQQgjRR0kyIIQQQgghRB8lyYAQQgghhBB9lCQDQgghhBBC9FGSDAghhBBCCNFHSTIghBBCCCFEHyXJgBBCCCGEEH2UJANCCCGEEEL0UZIMCCGEEEII0UdJMiCEEEIIIUQfJcmAEEIIIYQQfdT/B/TOw/BZGSxHAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# plot for the relationship between bedrooms, bathrooms, and house price\n", - "plt.figure(figsize=(10, 6))\n", - "plt.scatter(housing_data['bedrooms'], housing_data['bathrooms'], c=housing_data['price'], cmap='winter', alpha=0.5)\n", - "plt.colorbar(label='House Price')\n", - "plt.xlabel('Number of Bedrooms')\n", - "plt.ylabel('Number of Bathrooms')\n", - "plt.title('Relationship between Bedrooms, Bathrooms, and House Price')\n", - "plt.grid(True)\n", - "plt.show();\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The scatter plot reveals a clear relationship between the number of bedrooms, bathrooms, and house prices. It indicates that houses with more bedrooms and bathrooms tend to command higher prices, reflecting buyer preferences for space and convenience. However, there's a diminishing return on the value added by additional bedrooms beyond a certain point. Understanding this relationship is crucial for both the real estate companies(sellers) and buyers in the real estate market, allowing them to make informed decisions based on their needs and market dynamics.\n", - "A house with a good balance of bedrooms and bathrooms tends to attract a wider range of potential buyers." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**#House age and house price**" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAIdCAYAAABSsr51AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD0AklEQVR4nOy9eZxT9fX//7rZM5PZhxlg2GdBZBGKgFiVAlJaF0C02rpU2mo/LrW1bri11brVVqvFBT/Sxe+nv1aLWgUr7uOugFpwBRn2YZ3J7JOZ7Pf3x73vm5vkJrk3uVkmOc/Ho4/KZLtJbu69r/d5ndfheJ7nQRAEQRAEQRAEQWQcQ7Y3gCAIgiAIgiAIolAhQUYQBEEQBEEQBJElSJARBEEQBEEQBEFkCRJkBEEQBEEQBEEQWYIEGUEQBEEQBEEQRJYgQUYQBEEQBEEQBJElSJARBEEQBEEQBEFkCRJkBEEQBEEQBEEQWYIEGUEQBEEQBEEQRJYgQUYQBKEjN9xwAyZOnIjHH38825uSUQ4cOICJEyfi3//+t+LtmzZtwsSJE7Fp06YMb1ny/Pvf/8bEiRPD/jdp0iTMmjULP/7xj/HJJ58kfI6LLroIF110Udq3dcGCBbjxxht1f172GRw4cEDx9oceeggTJ07U/XUzwTPPPIOJEyfikksuyfamEARR4JiyvQEEQRD5Qn9/P1599VU0NTVh7dq1uPTSS8FxXLY3i0iRhx9+GMOGDQMABINBOJ1OPPLII7j44ovxzDPP4Jhjjon52N/85jeZ2kxCI88++yyamprw/vvvo7W1FaNHj872JhEEUaBQhYwgCEInXnzxRQQCAdx6661obW3Fe++9l+1NInRg0qRJmD59OqZPn45vfOMb+Pa3v41HHnkEgUAA//znP+M+tqGhAQ0NDRnaUkIte/bswX//+19cd911KCkpwdq1a7O9SQRBFDAkyAiCIHTi2WefxZw5czBnzhyMHz8eTz31lHTbj3/8YyxbtizqMVdffTVOP/106d8ff/wxLrzwQhx33HGYPXs2Vq5cic7OTun2f//73zj22GPx9NNP46STTsIpp5yClpYWBAIBPP744zjjjDMwbdo0TJ8+Hd///vfx4Ycfhr3eW2+9heXLl2PatGlYvHgx/vOf/2DRokV46KGHpPt0d3fj17/+NU488URMnToV5557btTz6EFbWxtuuukmzJs3D9OmTcM555yDN954I+w+EydODNs2INom19nZieuuuw7f/OY3MXXqVCxduhTPP/982GMOHTqEa665BrNnz8Zxxx2Hiy++GF999VXS2z5q1ChUVFTg0KFDAGJ/L5GWRZ/Ph0ceeQSnnnoqpk2bhtNPPx3PPvts2HO//vrrWL58OaZOnYpvfvObuPPOOzEwMJBwm3w+H+68807MmjULs2bNCtt33nrrLUycODFqkWDr1q2YOHEiNm/enPRnEcnnn3+On/zkJ5gzZw6+8Y1v4LLLLkNLS4t0eyz7auRn9eWXX+Liiy/GzJkzMWPGDKxYsQKffvpp2GMS/V5i8eyzz6KkpARz587Fd77zHTz77LPwer1R98ul3wtBEPkLCTKCIAgd2LVrFz799FOcddZZAIDly5fjzTffxNGjRwEAS5cuxbZt27B7927pMS6XC2+++SaWLl0KAPjoo4+wYsUK2Gw2PPjgg7j55puxefNm/PCHP4Tb7ZYeFwgE8Nhjj+HOO+/E1VdfjYaGBtx333145JFHcN555+HPf/4zfvvb36Krqwu/+MUvpIv5jRs34oorrsCIESPw0EMP4YILLsBvfvMbHD58WHpuj8eDiy++GG+88QZ++ctf4uGHH8bw4cNxySWXqLrIDAaD8Pv9Uf8LBoNh93M6nTjnnHOwefNm/PKXv8RDDz2Euro6XHnllVi/fr2mz/7666/Hzp07cfvtt+Pxxx/Hsccei5UrV0oX/J2dnfj+97+PL7/8Er/61a9w//33IxgM4oILLsCuXbs0vRajq6sLXV1dGDNmjPQ3pe8lkpUrV+Lxxx/HOeecg//93//FvHnzcPPNN0sC8oUXXsCVV16JCRMm4JFHHsHPfvYzrF+/HldccQV4no+7TS+99BK++OIL/O53v8MNN9yAt956C1dccQUA4OSTT0ZtbS3WrVsX9pjnnnsOo0ePxqxZs+I+t9rvdePGjfjBD36AYDCIu+66C3feeScOHz6M73//+5o+6/7+flxyySWoqKjAqlWr8MADD2BwcBA/+clP0NfXB0D97yWSQCCAdevW4bTTToPFYsHy5cvR0dGB119/Peq9pPv3QhAEAVAPGUEQhC4888wzKC0txamnngoAWLZsGR588EE8/fTT+NnPfoZFixahqKgIGzZswM9+9jMAwGuvvQaPx4MzzzwTAHD//fdj/Pjx+N///V8YjUYAwHHHHSdVUS644ALp9S677DJ861vfkv7d1taGX/7yl2EVBpvNhquuugpff/01ZsyYgYceeggNDQ14+OGHpd62qqoqXHPNNdJj1q1bh+3bt2Pt2rU47rjjAACnnHIKLrroItx3331R1ZxIbrnlFtxyyy0JP6+//e1v6OzsxEsvvST17sybNw8rVqzA73//e5xxxhkwGNStGW7evBlXXHGF9NnPmTMH5eXl0mf4//7f/0N3dzeefPJJ1NXVSe/ptNNOw5/+9CesWrUq7vMzMQIIF+D79u3DH/7wBxgMBpx33nlh9438XuS0tLTgxRdfxC233IIf/vCHAIC5c+fi0KFD2LRpE5YuXYr77rsPJ598Mu677z7pcePGjcOKFSvw9ttvx3xuACgtLcWf//xnOBwOAEBFRQWuvPJKvPfeezjppJOwbNky/P3vf4fL5UJxcTG8Xi9eeuklXHzxxQl7HRctWhT3dsb999+P0aNH489//rP0+Z900klSVenBBx9U9Tw7d+5EZ2cnLrroIsycORMAMGHCBDz11FPo7+9HSUmJpt+LnHfeeQdtbW04++yzAQDTp09HQ0MDnnzySZx22mnS/TLxeyEIggBIkBEEQaSM3+/H+vXrceqpp8Lj8cDj8cBms2HOnDl4+umncfnll6OoqAiLFi0KE2QvvvgiZs+ejREjRmBwcBCffvopfvKTn4DneUkAjB49GvX19Xj//ffDLjCbmprCtuH+++8HIFSD9u3bhz179qC5uRmAYGXzer3YsmULrrzyyrCL78WLF8NkCp0KPvzwQwwbNgyTJ0+WtgEA5s+fj9///vfo6elBWVlZzM/iZz/7maJo+PLLL8MCLjZv3owZM2ZEBSksWbIEN910E3bv3q2692rOnDl46KGHsH37dsybNw+nnHIKVq5cGfaeJk2ahNraWuk9GQwGnHLKKaqqcUpipK6uDn/4wx+iEgYjvxc5H3/8seLzMZGya9cuHDlyBP/zP/8T9tnPmjULDocD77//flxBNm/ePEmMAULyotlsxgcffICTTjoJZ599Nh5//HG89tprWLZsGV5//XX09vYqWmkjWb16tRRsImft2rVS/9XAwAA+//xzXHnllZJAAgShOH/+fLz99tsJX4fR2NiIyspKXH755fjud7+LefPmYe7cubjhhhsAQPPvRc6zzz6LsWPHYvz48ejt7QUAfPe738VDDz2EXbt2ob6+PmO/F4IgCIAEGUEQRMq89dZbcDqd+Pe//60Y+/7mm2/i1FNPxbJly6QV9ZqaGnzwwQf47W9/CwDo7e1FMBjEmjVrsGbNmqjnsFqtYf+uqqoK+/fnn3+O22+/HZ9//jlsNhsaGhqkahDP8+ju7kYgEIh6nMlkQkVFhfTv7u5utLe3Y/LkyYrvtb29Pe4FZl1dHaZOnRr198geqJ6eHowaNSrqftXV1QAgXSir4YEHHsBjjz2Gl156CS+//DIMBgNOPPFE3HbbbRg9ejS6u7uxb9++mO9pcHAQdrs95vPLxYjZbEZFRQVqa2sV7xv5+crp7u6Oex92++23347bb7896va2traYzw2EPjuGwWBAeXm59FmOHTsWs2bNwvPPP49ly5bh+eefxwknnCDtJ/FoampS/L7eeust6b/7+vrA83zUdrBtY1ZDNRQXF+Mf//gHVq9ejQ0bNuCpp56C3W7HkiVLcMstt2j+vTA6Ozvx1ltvwefzKdo0//Wvf+Hmm2/O2O+FIAgCIEFGEASRMs888wzq6upwzz33RN3285//HE899RROPfVUnHDCCaitrcVLL72E2tpamEwmLF68GIBwAcpxHFasWBEW8sGIJxhYv83EiRPxn//8B/X19TAYDHj77bfxyiuvABBEgNlsRkdHR9hjg8Egurq6pH+XlJRg3LhxYZY5OUoX5clQVlYGp9MZ9ff29nYACLvoDQQCYfeJFHclJSW4/vrrcf3112P37t1444038Oijj+L222/Hn//8Z5SUlGD27NlSdSUSi8USd1tjiRGtlJaWAhBEwfDhw6W/7969G52dndKF+w033IDZs2dHPT7RhX2kiA0EAujq6goTFWeffTZuuukm7NmzB++//77iPpssJSUl4Dgu5vdaXl4OAFLFKbL/jFkpGRMmTMAf/vAHBAIBfPbZZ1i3bh2efPJJjBo1Cueff35Sv5d169bB5/Ph4Ycflr4PxiOPPILnn38e11xzTc79XgiCyG8o1IMgCCIFnE4n3n33XZx++ulSwqL8f6eddpo058hgMOCMM87AG2+8gZdffhkLFy6ULGYOhwPHHnssdu/ejalTp0r/a2xsxMMPPxx3oPLu3bvR3d2NH/7wh2hsbJR6r9555x0AwkWk0WjEN77xjajggubm5jCr1ezZs3H48GFUVVWFbceHH34Y1heUKrNmzcKWLVvQ2toa9vf169dj2LBhGDt2rPS5HDlyJOw+//3vf6X/PnjwIObNm4eXX34ZgHARf+mll+LEE0+UHjd79mzs2bMH48ePD3tP69evx9NPP63be0oE64WK/A4eeOAB3HHHHZgwYQKqqqpw4MCBsO0cPnw47r///oSpkB988EHYd/nKK6/A7/djzpw50t8WL16MoqIi/PrXv4bNZsO3v/1t3d5fUVERpkyZgg0bNoSJ6L6+Prz11lvS+2f7vDwco6enJyz04+WXX8YJJ5yA9vZ2GI1GzJgxA7fddhtKS0tx5MiRpH8v//73vzF9+nQsWrQo6rf6gx/8AD09PXjppZdy7vdCEER+QxUygiCIFHjuuefg9/sVV+kB4KyzzsI///lPrF27Ftdeey2WLVuGv/zlLzAajVi9enXYfa+55hr89Kc/xbXXXoslS5YgEAjgr3/9Kz799FNcfvnlMbdh/PjxcDgceOyxx2AymWAymfDKK6/gmWeeASBY8gChWnfRRRfh5z//Oc455xwcOnQIf/rTnwCEqhbLly/H//f//X/40Y9+hMsuuwwjRozABx98gDVr1uDCCy+E2WxO+TMDgB/96EdYv349fvSjH+FnP/sZKioq8Pzzz2Pjxo24++67JVH5rW99Cy+++CKmTZuG8ePH47nnnsO+ffuk56mrq8Pw4cNx5513or+/H2PGjMEXX3yBt99+G//zP/8DAFixYgXWrVuHFStW4Mc//jEqKiqwYcMGrF27FjfddJMu70cNxxxzDL7zne/gvvvug9vtxuTJk/Hee+/htddew4MPPgij0Yhf/vKX+PWvfw2j0Yj58+ejt7cXjz76KI4ePRrTFsdwOp246qqrcNFFF2Hv3r344x//iG9+85uYO3eudB+73Y7TTz8d//rXv3DuuefCZrPp+h6vvfZa/OQnP8Ell1yCCy+8ED6fD48//ji8Xq/UOzlx4kSMGDECDz/8MEpKSmAwGPD444+HVbW+8Y1vIBgM4sorr8RPf/pTFBcX46WXXkJfX58kIrX+Xj777DPs2LEjZujMwoULUVZWhqeeegpnnXWWrr+X/fv3o7OzE9OnT9ftsyYIIo/gCYIgiKT57ne/y59++ulx7/Od73yHnzt3Lu/xeHie5/mlS5fyJ5xwAu/z+aLu+8EHH/Dnn38+P23aNH7mzJn8D3/4Q/6jjz6Sbn/22Wf5pqYmvrW1NexxGzdu5JcvX85PmzaNnzt3Lv/jH/+Y//jjj/kZM2bw9957r3S/1157jT/jjDP4yZMn89/+9rf5F198kW9qauL/+te/SvdxOp38TTfdxM+dO5efMmUKv3jxYn7NmjV8IBCI+R5bW1v5pqYm/tlnn1W8fePGjXxTUxO/ceNG6W/79+/nf/GLX/DHH388f9xxx/HnnXce//rrr4c9rr29nf/5z3/OT58+nT/++OP5X//61/zatWv5pqYm6T5tbW38jTfeyJ900kn85MmT+VNPPZVfvXp12Pbu27eP//nPf87PmjWLnzZtGr9kyRL+6aefjvl+4n3WWu574YUX8hdeeKH0b4/Hw99///38Kaecwk+dOpVfsmQJ/9JLL4U95sUXX+TPOussfsqUKfzs2bP5yy67jN++fXvc158/fz5/55138rfeeis/ffp0fvbs2fxtt93Gu1yuqPs2NzfzTU1N/H//+9+k3xdj1apVYd8FzwvfNduHjz/+eP6yyy7jd+zYEXafTz/9lD/vvPP4KVOm8N/61rf4v/3tb/yvfvWrsM/q008/5X/84x/zs2fP5qdOncovX76cf/XVV8OeJ9HvRc6vf/1rftKkSXx7e3vM9/vrX/+ab2pq4r/66iue5/X7vaxcuTLqcyIIgmBwPJ9gsAlBEASRF7zxxhsYPnx4WKWlpaUFZ5xxBh599FEsXLgwi1tHZIrbbrsNn3zyCV544YVsb0pOQ78XgiAyBVkWCYIgCoT33nsPGzZswHXXXYfx48fjyJEjWL16NSZMmICTTjop25tHpJn/+7//w+7du/Gvf/1L1zCPfIV+LwRBZAoSZARBEAXCypUrYbPZsHr1arS1taG8vBwnn3wyrr322pgx4UT+8PHHH+Pdd9/FRRddpGr2WKFDvxeCIDIFWRYJgiAIgiAIgiCyBMXeEwRBEARBEARBZAkSZARBEARBEARBEFmCBBlBEARBEARBEESWIEFGEARBEARBEASRJUiQEQRBEARBEARBZAmKvU8DHR19oOzK3IHjgKqqEvpeCgD6rgsD+p4LB/quCwf6rguDQvue2ftNBAmyNMDzKIidbKhB30vhQN91YUDfc+FA33XhQN91YUDfczhkWSQIgiAIgiAIgsgSJMgIgiAIgiAIgiCyBAkygiAIgiAIgiCILEGCjCAIgiAIgiAIIkuQICMIgiAIgiAIgsgSJMgIgiAIgiAIgiCyBAkygiAIgiAIgiCILEGCjCAIgiAIgiAIIkuQICMIgiAIgiAIgsgSJMgIgiAIgiAIgiCyBAkygiAIgiAIgiCILEGCjCAIgiAIgiAIIkuQICMIgiAIgiAIgsgSpmxvAEEQBEEQBBGbQJDH1oM9cPZ7Ue2wYHpdGYwGLtubRRCETpAgIwiCIAiCyFGaW5y4v3kn2vq90t9qHBZcu6ABCxqrs7hlBEHoBVkWCYIgCIIgcpDmFidWrv8qTIwBQFu/FyvXf4XmFmeWtowgCD0hQUYQBEEQBJFjBII87m/eGfc+f3xzFwJBPkNbRBBEuiBBRhAEQRAEkWNsPdgTVRmL5GifB1sP9mRoiwiCSBfUQ5aHUPMvQRAEQQxtnAnEmNb7EQSRu5AgyzOo+ZcgCIIghj7VDouu9yMIInchy2IeQc2/BEEQBJEfTK8rQ00CsVVbYsX0urIMbRFBEOmCBFmeQM2/BEEQBJE/GA0crl3QEPc+18yvp5YEgsgDSJDlCdT8SxAEQRD5xYLGaty75NioSlltiRX3LjmWWhEIIk8gQZYnUPMvQRAEQeQfCxqrsf7SOagrswEAvj2xGusumU1ijCDyCBJkeQI1/xIEQRBEfmI0cLAYhUu2aoeVbIoEkWeQIMsTqPmXIAiCIPIXXzAIAPAHqBecIPINEmR5AjX/EgRBEET+4vWLgozCuQgi7yBBlkdQ8y9BEARB5CdMiPnFShlBEPkDDYbOMxY0VmNefRV+/uzn2Ly/G8unDccNCxupMkYQBEEQQxifaFX0kWWRIPIOqpDlIUYDhwnVxQCAEpuZxBhBEARBDHG8AbIsEkS+QoIsTym1CcXPXrcvy1tCEARBEESq+EmQEUTeQoIsTymTBJk/y1tCEARBEEQqBII8mFORCTOCIPIHEmR5SqnNDADoIUFGEARBEEMan0yEUYWMIPIPEmR5SpldrJANkmWRIAiCIIYychFGgowg8g8SZHkKVcgIgiAIIj8Iq5CRZZEg8g4SZHlKGYV6EARBEERe4A1QhYwg8hkSZHkKS1kc9AXh9dNqGkEQBEEMVaiHjCDyGxJkeYrDagIbP9brIdsiQRAEQQxV/FQhI4i8hgRZnmLgOJRYhSpZDwV7EARBEMSQxRvWQ0aCjCDyDRJkeUyZXQj2oFlkBEEQBDF08YWlLFIbAkHkGyTI8phSCvYgCIIgiCGPPFnRRxUygsg7SJDlMUyQUfQ9QRAEQQxdvBTqQRB5DQmyPKbMRpZFgiAIghjq+CjUgyDyGlO2N4BIH1KFjEI9dCEQ5LH1YA+c/V5UOyyYXlcGI4uyJAiCIIg0ES7IqIeMIPINEmR5DFXI9KO5xYn7m3eird8r/a3GYcG1CxqwoLE6i1tGEARB5Ds+SlkkhhC0gK0dEmR5DIV66ENzixMr138V9fe2fi9Wrv8K9y45lkQZQRAEkTZ8QeohI4YGtICdHNRDlsew2HsK9UieQJDH/c07497nj2/uQoBOkARBEESaiOwh43k65xC5B1vAlosxILSA3dzizNKW5T4kyPIY6iFLna0He6IOLJEc7fNg68GeDG0RQRAEUWjILYsAaBGQyDloATs1SJDlMWWSZZEqZMniTCDGtN6PIAiCILQSOXuMbItErqF2AXvLAVrAVoIEWR5TSqEeKVPtsOh6P4IgCILQSmSFjAQZkWuoXsB20QK2EiTI8pgyu1AhG/AFog7mhDqm15WhJoHYqi2xYnpdWYa2iCAIgig0oipklLRI5BiqF7CLaQFbCRJkeYzDagILGaVgj+QwGjhcu6Ah7n2umV9Pca4EQRBE2oiukNEiK5FbqF3AnjGKFrCVIEGWxxg4jqLvdWBBYzXuXXIsHBZj2N9rS6wUeU8QBEGkHS/1kBE5Di1gpwYJsjxHEmSDVCFLhQWN1fjBzDrp32dOrsW6S2aTGCMIgiDSTmRFLNLCSBC5AFvALjLTArZWaDB0nlNmN6O1202WRR2QnwCNBo5WeQiCIIiMQCmLxFBhQWM13m5px4Zt7QCAW7/diDMmD6drpgRQhSzPIcuifnj8oRXKo32eLG4JQRAEUUh4qYeMGEJ0DISuOSdUFZMYUwEJsjyHRd9ThSx13P6A9N9t/STICIIgiMzgp9h7YgjR4QoJskFfIM49CQYJsjynjCpkukEVMoIgCCIbUOw9MZSQzxob9FE1Vw0kyPKckGWRKmSpIhdk/Z4AXF76TAmCIIj0E21ZJEFG5Ca+QBDdg6EigJsqZKogQZbnlDHLIqUspow7YpWHqmQEQRBEJogUYJFzyQgiV+gcCHdkyds9iNiQIMtzSu1ChayHLIsp44k4qLSRICMIgiAyQPRgaKqQEbmJ3K4IkGVRLSTI8hwW6kGWxdRxi5ZFlhVEFTKCIAgiE9BgaGKo0BElyKhCpgYSZHkOhXroB+shG1FqBUCCjCAIgsgMlLJIDBUiK2TUQ6YOEmR5ThlVyHSDCbIxFUUASJARBEEQmSE6ZZFsYERuElkhc/tpX1UDCbI8h6UsurwBOoCnCFvlGVtpB0CCjCAIgsgMLGXRKHrmqUJG5CpMkLFh0GRZVAcJsjzHYTVJPU80HDo1QhUyQZC19Xnj3Z0gCIIgdIEJMLvFGPZvgsg1mCAbKbZ3UKiHOkiQ5TlGA4cSmkWmC+4IQXa0zwOep5MiQRAEkV5YyqLdLAoycrwQOQrrIasrF66VqIdMHSTICgAK9kgdnuelCtloUZAN+ALo99CBhiAIgkgvLGVREmRUISNyFFYhGy0JMlo8UAMJsgKARd+TZTF5PLKm1HK7WRK51EdGEARBpBtWESsiQUbkMDzPSxWyUeU2ANRDphYSZAUAC/boGaQKWbLIU4KsJiNqSsTo+34SZARBEER68UkVMuGyzR8gQUbkHn0ev7Sv1pWRINMCCbICoJR6yFKGVchMBg4mA4faEppFRhAEQWQGlrJoowoZkcOw6lipzSS5syj2Xh0kyAqAcjubRUYVsmRhgsxqEn4yJMgIgiCITMDzvCTAiqSURbrIJXIP1j9WVWSRqrkU6qEOEmQFgGRZpApZ0rADCgkygiAIIpPIq2GsQhY5KJogcgFWIatyWKR9lWLv1UGCrABgZWOyLCYPq5CxAwwJMoIgCCITeGUR9xTqQeQyHS7BiVVVZJYSQamHTB0kyAoACvVIHbdfuULWRoKMIAiCSCPyapgU6kGCjMhBnP1Chay62AqbKbSv0ty8xJAgKwDKqEKWMlKFTMGySMOhCYIgiHTBLmaNHGAxGsL+RhC5RMeAaFksDlXIAAr2UAMJsgKgzE6DoVMlUpANc1ilv1NvHkEQBJEu2FBok9EAk5EDQBUyIjdhPWTVDgvMRg7i7kq2RRWQICsAaDB06rBJ81aTUfx/AyrE9ErqIyMIgiDShU+shpmNHEwGsiwSuYs8ZZHjOAr20AAJsgKA9ZC5vAGyOSSJR+whs5lDPxnqIyMIgiDSDeshsxgNMBk48W90Lidyjw5ZhQyATJBRhSwRJMgKgBKrCWLVGL0eqpIlgztiDhlASYsEQRBE+vGJM8dMBg5m0QMWoAoZkWN4/UEpq6CqSBBkNItMPSTICgCjgUOJWCXrHSRBlgyRg6EBEmQEQRBE+mEVMrOsQkaWRSLXYIEeZiMnObNYsIebLIsJIUFWIISGQ1OwRzK4pVCPUGoQCTKCIAgi3TB7omBZpB4yIjdhkfesfwwIXTORZTExJMgKBAr2SA1WbpdXyGpIkBEEQRBphgkyk5ELpSwGSJARuUVk/xgQ6rsf9JMgS4Qp2xtAZAZWIaPo++SIZ1ls6ydBRhAEQaQHZcsiWcCI5AgEeWw92ANnvxfVDgum15XBaOASPzABUuR9cUiQkWVRPRmvkK1fvx4zZswI+9+UKVMwZcoUAMCnn36K733ve5gxYwYWLFiAp59+Ouzxzz33HBYtWoTp06dj+fLl2LJli3RbIBDAvffeixNPPBEzZszA5Zdfjra2Nun2jo4OXHHFFTj++OMxZ84c3HXXXfD7QxWjRK89lCmTBBlVyJJBmkNmjrYsttFwaIIgCCJNhCyLHPWQESnR3OLEkjWbcNnaz3Drhu24bO1nWLJmE5pbnCk/txR5HybIxAoZWRYTknFBtmTJEmzZskX638svv4zy8nLcdddd6OnpwU9/+lMsW7YMH330Ee666y7cc889+OyzzwAAmzZtwh133IHf/e53+Oijj7BkyRJcfvnlGBwcBACsXr0a77//Pp599lm8++67sNlsuPXWW6XXvvrqq1FUVIR3330XzzzzDD788EM88cQTAJDwtYc6ZWRZTInQHDKZZdFhAQdhaGfXIFUeCYIgCP3xyQZDG8UeMh9ZFgmNNLc4sXL9V2gTe70Ybf1erFz/VcqizKkgyGxUIVNNVnvIeJ7H9ddfj29961tYunQpXn31VZSXl+OCCy6AyWTC3LlzceaZZ+If//gHAODpp5/G6aefjpkzZ8JsNmPFihWoqKjAhg0bpNsvvfRSjBgxAg6HA7fccgveeecdtLa2Yt++fdi8eTOuv/562O12jB49GldccYX03Ilee6gjWRZJOCSFNIdMJshMRoN04KE+MoIgCCIdsNh7syz2nipkhBYCQR73N++Me58/vrkrpXEKShUyds1EFbLEZLWHbN26ddi5cyceffRRAEBLSwuamprC7tPQ0IBnnnkGALBz506cffbZUbdv374dfX19OHLkSNjjq6urUVZWhq+//hoAUF5ejtraWun2+vp6HDp0CL29vQlfWwtc6lZc3Smzhypkubh96YS931TetyfALIuGsOepKbHC6fKird+DY4eXpLCVhB7o8V0TuQ99z4UDfdeywdAmg0yQBfPuM6HvOn1sPdgTVRmL5GifB1sP9uD4MeVJvQYTZMMcFuk7LLIIFTKPPxj1/RbK96z2fWZNkAWDQaxevRqXXXYZHA4HAMDlcsFut4fdz2azYWBgIOHtLpcLAFBUVBR1O7st8rHs3+zx8V5bC1VVuXdhPqpG+IzdQR7V1bm3fZkgle8lII7WHlZZHPb5jakqxldH+uAKcgX7ueYiufgbJPSHvufCoZC/a6u9AwDgsFtQVVEMAOC5/D3nFPJ3nS48B3rV3c9gSHq/6hJbYupHlkvPUVUmXFfzxujnpe85nKwJsk2bNqGtrQ3nnHOO9De73Y6+vr6w+7ndbhQXF0u3u93uqNsrKiokMcX6ySIfz/N81G3s38XFxQlfWwsdHX3ItYwHTiwXO3vdcDr7Etw7v+A44YefyvfSL1o9vYPesM+vwiqs/uw63FNwn2suosd3TeQ+9D0XDvRdA129wrVK0B+Aq1+4BvJ4A3l3zqHvOn1YVaZyWoPBpParIM+jTWzdMPn90nMEfYJI6+oLXXsW2vfM3m8isibIXnnlFSxatCisotXU1IT3338/7H47d+5EY2MjAKCxsREtLS1Rt59yyikoKytDbW0tdu7cKVkP29vb0d3djaamJgSDQXR3d8PpdKK6uhoAsGvXLgwfPhwlJSUJX1sLPI+c28lKrWwwtD/nti1TpPK9sDlkFqMh7Dnks8gK9XPNRXLxN0joD33PhUMhf9deMeXXbORg5EI9ZPn6eRTyd50upteVocZhiWtbrC2xYnpdWVKffc+AX+o/q7CbpeewSoOhg1HPS99zOFkL9fjkk08wa9assL8tWrQITqcTTzzxBHw+HzZu3IgXXnhB6hs755xz8MILL2Djxo3w+Xx44okn0NHRgUWLFgEAli9fjtWrV6O1tRX9/f24++67MXv2bIwZMwbjxo3DzJkzcffdd6O/vx+tra149NFHpQpdotce6rBQjx4K9UgKpdh7IBR9T6EeBEEQRDrwK8whY1H4BKEGo4HDtQsa4t7nmvn1Sc8jYwmL5XYzzMaQtGCx924K9UhI1ipkBw4cQE1NTdjfKioq8Ne//hV33XUXVq1ahcrKStx666044YQTAABz587Fb37zG9x22204evQoGhoasGbNGpSXlwMArrzySvj9flxwwQVwuVyYM2cOHnzwQen5V61ahd/+9rdYuHAhDAYDli1bhiuuuELVaw91WOy9yxuAPxCEyZjVgM0hh9JgaECIvgcgleoJgiAIQk9YyqLJwEkXu6mk4RGFyYLGaty75Fjc/MJXkE9NqC2x4pr59VjQWJ30c4cSFs1hf7fLKmREfLImyOQDneVMnToVTz31VMzHLV26FEuXLlW8zWw247rrrsN1112neHt1dTVWrVoV87kTvfZQpsQW+qr7PH5UFFni3JuIxK0Qew/IhkP3exHkeRgKJTaIIAiCyAhev5iyKKuQUew9kQyTh5eEibHJwx34yw9mJF0ZY7AKWXVx+LWlnc0h81OFLBFUJikQjAYOJbI+MkI9PM+HLIsRgqzaYYWBE06Ona74kbIEQRAEoRV/MNRDZqI5ZEQKfLS/K+zfFqMhZTEGKM8gA4RRQQDNIVMDCbICQhoOTYJME74Aj2BEgyrDZOCkFSHqIyMIgiD0xqfQQ+anHjIiCT7a3w0AmCiOQhrQyUoYq0LG+u7dZFlMCAmyAoKCPZKDVceA6B4yAKgtsQEAjiYYukgQBEEQWvEGWIUsJMgCvBA1ThBq4XleEmTz6qsA6Fe5ilUhY5ZFqpAlhgRZAVFmF5otqUKmDY/ofTZwgmUkkhqH8Lm+vdOJT1q7qdmaIAiC0A1fQGZZNIQu2/wBOtcQ6tnXOYj2fi8sRg5zxlUAAAa8+gil2D1koZRFnhYQ4pK1UA8i85SxCpk7vEIWCPLYerAHzn4vqh0WTK8r08VTnC+4ZQmLXERoR3OLEx/uFTzZG75qw4av2lDjsODaBQ0pJRYRBEEQBBDqFzMbDWGLgv4gD4rnItSyWayOTasrQ4W4QJ/uCplNbPMI8IL11mKia8tYkCArIEpt0RWy5hYn7m/eGTYskARFOG4p0CO8f6y5xYmV67+Kun9bvxcr13+Fe5ccS58hQRAEkRLSYGgDJ1kWARb2YYzxKIIIhwV6zB5TDrtF2G8GvELlKnKxWSvOmJbFUEXX7Q/AotD2QQjQJ1NARPaQMUERObmdCYrmFmfGtzEXUZpBFgjyuL95Z9zH/fHNXWRfJAiCIFLCJ6uQGQ3hFTKCUEMgyOOT1h4AwKwx5SgSe7t4hPfJJ4PbF4BLtD5GWhZNsr5HmkUWHxJkBYS8h4wEhXrYhHm5INt6sCdKyEZytM+DrQd70rptBEEQRH7jl/WQcRwniTLqISPU8nVbP/o8fhRbjDimtkSKoweAgRRti6w6ZjUZUGyJrthSsIc6SJAVEGWy2HsSFOqRZpCZQwcap8pERbX3IwiCIAglvLLYewA0HJrQDEtXnDm6HCYDBwPHSXbCVIM95P1jStZHmyzYg4gNCbIColQW6kGCQj1uBctitUNdK7Xa+xEEQRCEEvKURYAEGaGdzfuE/rFZY8qlv+lVueqIkbAY+To0iyw+JMgKCIdFEGRHej3oGFAntEhQhGLvbTJBNr2uDDUJPpvaEium15WlddsIgiCI/MYXo0Lmo+HQhAo8/iA+PdQLIFyQFcmCPVIhVqAHg107DfqpQhYPEmQFQnOLEze+ICQCdg368MBbuxM+hgSFgMcXXSEzGjhcu6Ah7uOumV9P4wMIgiCIlIiskDFhRhUyQg2fH+qFxx9EVbEFE6qKpL/rVblSWyGjUI/4kCArAFiaYseAL/GdZZCgEAhZFsObVRc0VuPeJcdGVcpqS6wUeU8QBEHogpSyaKAeMkI9QrJiN5767wEAwMxRpWE9XixpUa9Qj6pis+Lt1EOmDppDlueoSVM0cID8uF5bYsU18+tJUIiEQj2i1y8WNFZjXn0Vnti0H499sA9jKmxYu2IWCVmCIAhCF1iFzMIsi0aWskgVB0IZpRmzH+7tRnOLU7q2Y7PIUu8hExb7E1fISJDFgypkeY6aNMUgDxw3shQAcNqkGqy7ZDaJMRmsh8waY6Ch0cBhYdMwAICz3wfSYgRBEIResB4yE4V6ECqINWO2z+MPmzErVchS6CELBHns7xoAAHQN+BRHJdko1EMVJMjyHLUpiSyBsbzITNWdCNwKPWSRjCq3wWjgMOALoJ2SKQmCIAidCPWQMcsi9ZARymiZMZtqhay5xYklazahtdsNAHjkvb1YsmaTJPgYUqhHEq/DbJevbGvDJ63deT0blyyLeY7alEQ2NDrVie35iNIcskhMRgNGldmwr2sQezsHUFNizdTmEQRBEHlMyLIYUSGjwdBEBFpmzKZSIWNVuEja+r1Yuf6rsD76ZEM9lGyXNQ4Lrl3QkJcuLqqQ5Tlq49nHVdoBkMdXCbdC7L0SYyuF9KK9nYNp3yaCIAgi/+F5XmZZFM5BLG3RH6QFVCIcLTNm7UmGemipwgGQBlBrCfWIZbtkgi+yCpcPkCDLc9TGsxeLM8ooljQaj8JgaCWYqN3XOZD2bSIIgiDynwAPsDqY2UA9ZER81Lqiqh0WFFmSsxJqqcIBsh4ylXPItAq+fIEEWQGgJp6dYkljI1kWVVbI9nWRICMIgiBSRz782SKeg4xsDhlZFokI1LqipteVhSpkGi2LWqpwQEiQqV3w1yr48gXqISsQWDz71oM9cPZ7Ue2wYHpdmRTgERoQSIIsklCoR+weMgAYWyFUyMiySBAEQeiBXJBRhYxIBHNFKfV3MdiM2WR7u7RU4QDArjHUQ6vgyxeoQlZAGA0cZo4ux+JJNZg5ujwsTTFUUibLYiQs9l5pDpkcViE72udJKUaWIAiCIIBQ5D0A6ZwdEmR0viaiYa6oEmt4zUXuigKSHwytpQoHaF/w1yr48gUSZASA1GJJ8x23yh6ycrsZFWJa5X6yLRIEQRApIk9Y5LhwQeYjyyIRgwWN1ThzSi0A4ISx5Xjs3GlRM2al2HuNC8hqswnYAoLWBX+tgi9fIEFGAEg+lrQQcEs9ZPEti4A82INsiwRBEERqMNHFZpDJ/5ssi0Q8WruE65CT66ujXFFA8hUyQBB87HpHTmQVDgi5i9Qu+GsVfPkC9ZARAEChHnFQm7IIAGMqi7DlYC/2UtIiQRAEkSI+0ZZokl18Ug8ZoYZ9oiAbqyCcgOQrZIDQmsH65e8+YxKCQT4qm0B6nSQW/JntMnIOWW2JFdfMr8/LOWQkyAgAMo8v9ZBFwUSqGkE2jmaREQRBEDrh8wuiyyI7/4QGQ9P5mlDGHwjiYI8bQChwLJIiSShpF2Rv7GgHAEyvK8WiicPi3jeZOWRAKIxu4cPvw+ULYtaYcjx09tS8q4wxyLJIAADsoh3P4w8iyNOqmxwp9t6swbJIPWQEQRBEirAKmVleITNShYyIz8EeNwJBHjaTATUlVsX7MKGUjGXx1e2CIFs0sSbhfUOhHtoXEIwGDqxV0mYy5K0YA0iQESLyBMFkfjT5jBbLIquQ7e8aJGFLEARBpATrITMZ5RUy6iEj4sPsiqMr7DBwyiKmSLQs+gJ82HiFRBzsGcSXR/pg4ICFTYmtg/LQOF7jdRHP89I1mCvP06tJkBEAwsUGJS2G8Ad56aSnRpCNKLXBbOTg8QdxpNeT7s0jCIIg8hivlLKoYFkkQUbEYD/rH6soinkfu8z1o+W67/WvnQCAb4wuR1Vx4uh55i7iEVrgVos/yIPt5STIiIKA4zhpFcPtz++dXgse2WdhUyHIjAYOo8vZgGiyLRIEQRDJ45dSFqNDPbRUNYjCYp94/REr0AMQ0jrZfqVlduqr29sAIGHvGEMu/LQ6sOQCbsDr1/TYoQYJMkKCou+jkR881FTIAHmwBwkygiAIInmY6GI2RSAkzgJUISNiwCyLY2IEejCKNF737escwI52F4wGDgsa1CUdGg0cLOI+q3XB3ytbdMj3ChmlLBISdrMBXYOAhyyLEvL+MS6GDzuSsTSLjCAIgtABybJoklfIcqOHLBDksfVgD5z93piR50R2kCyLlbEti4CwEN/j9qsO9njtayHMY/aYcpQXmVVvj81shDfg17zg7/WTICMKECtVyKKQEhZVVseAUIWMkhYJgiAKg3SJEya6zLIKmZSyGMieIGtucUbNiKpxWHDtgoa8nBE1lOj3+NHhEr6XWJH3DLWzyNj+/dxnhwGoC/OQYzMZ0AvtGQXyUUwefxC+QDBsSHo+QYKMkLCnMJMiX2HldbV2RSC0IkWzyAiCIPKfdIoTybKo0EPmD2Zn8bS5xYmV67+K+ntbvxcr13+Fe5ccS6IsizC7YmWRGQ5r/Mt8ZlmMVyFT2r//9/19KLGZVX/PyV5feiNCQFzeAMrt+SnI8vNdEUkRCvWgChnD41M/g4zBVqQ6XF70ufO7CZUgCKKQYeJEfrEKhMRJc4szpef3ilUwecqiMYspi4Egj/ubd8a9zx/f3EX9bVlkfxcL9IhvVwQSV8hi7d/tLm37tzSLTOP1pTciuEZL+MhQgwQZIUEVsmiSqZA5rCZUi1GwZFskCILITzIhTliFLDxl0SDelnnRs/VgT9TFeSRH+zzYerAnQ1tERML61xPZFQF5qEf0dZ+e+zebdevWeH0ZGZPvyuOkRRJkhIQ9yR9MPpNMDxkAjKNgD4IgiLwmE+IkFHsfnbKYjQqZM8H71Xo/Qn/YdUeihEUgdN2nZFnUc/+2JWtZjKiQuTz5e31KgoyQYKEeWudE5DPylEUtjKXoe4IgiLwmE+LEq1ghU9dDFgjy+KS1G69sa8Mnrd262AirHYkHAWu5H6E/WiyLRZbYQknP/TvZsUoeX3QPWb5CoR6EhF0UHWRZDMHEqdWkvocMoFlkBEEQ+U4mxIkvyZTFdAWNTK8rQ43DErdyUltixfS6sqRfg0ieIM+HIu9VVcjEUA9vtFDSc/9O1oEVVSEjyyJRCNiSbLrMZ9hnwfzPatFzFlk6VjkJgiCI1GDiJB6pihOfn1XIZIIswRyydAaNGA0crl3QEPc+18yvp3lkWaK93wu3PwijgUNdmS3h/eP1kOm5f9tMyTmwonvI8rdgQIKMkGArGFQhC+FJItQDCFXIWrsHU/L5N7c4sWTNJly29jPcumE7Llv7GZas2ZRychdBEASRGpkQJ1KFTNGyGH1uyUTQyILGaty75FgYI95WjcNCkfdZZp/oyqkrs8GkYl4Xsywq9ZDpuX/bkry+jK6Q5e/1KQkyQkKKJSVBJuFOsoestsQKq8kAf5DHoR53Uq+d7jhlgiAIIjWYOCm2RNvaL/vmWN3mkCkJMl8gutqQqRTEmaPKwByTbNvuWzqZxFiW2afBrgjIertiCB22f1sjxF1tiVWT+E42xTuqQuYhyyJRALA+KbIshgilLGrrITNwnJRwlEwfGc16IQiCGBosaKzGWdNGAABOHF+BkydUAgA+Pdib8nOHBJm6lMVMpSB+eaQPADC63IbjRpYCAFqcrpSek0gdqX9MRaAHEL9CxljQWI1jhzsAAOdOH4nHzp2GdZfM1iS+k51DRpZFoiAhy2I0rFqotUIGhFaoXt2uvfeLZr0QBEEMHdjA2ikjSnHN/HoYOODDvV34+mh/Ss/rU4i9j9dDlqkUxC8PC4Js8ohSNNUIF+s72lJ7r0TqMMuimsh7IHGFjNEnxs2fUl+FmaPLNdtw2eggzaEefhoMTRQgtizE3ud6YIUnyVCP5hYnPtzbBQB4ZXu75t4vmvVCEAQxdOgTrVQlVhNGlduxaOIwAMATm/en9LySIDNEWxaVzpeZCBoBgC+OCNW/qSNK0DSMBFmuIFkWK9UJMhbqEa9CBgC9bh8AoNSeXDh7srH3kWMf8jllkWLvCYlMV8jSFcurJ6E5ZOoti6z3KxLW+6XGd02zXgiCIIYOckEGACtmj8Er29vx+g4nTvryCEwGA6odFkyvK9NUXZAsiyal2Pvoi1sWxKB0DmKkGjTC83xYhYz1F+1odyHI8zBwlLCYDbz+IA6LPetjK9RZFu1x5pDJ6XEL+3epLTnZkGyoB7sGq7Cb0dbvRT9VyIhCwJ7BCtlQCazQGuqhV+9XplY5CYIgiNTpFwWZQxRkDcOKMalWqBzd9vKOpFNyfeLwZ6UKWawEXxbEYDenFsQQi9ZuN3rcfliMHJqGFWNcpR0WIweXN5B0iBWROq3dg+ABFFuMqCwyq3qMVCGLI3Q8/qAkjEqt6p43kmR7yFiFrKpYuB5yeUiQEQWA5PH1p3eHH0qBFSz23qZSkOnV+0WzXgiCIIYOfWIFocQmXHg2tzixTaF/TOuio9YeMsaCxmp8d1KN9O+zjxuhOYghFl8cFuyKE2scMBsNMBkNqK8uBkC2xWyyTxbowamsUtotiStXfaJd0cABxVZtAWeMlCtkosDMZ8siCTJCwpakx1crQymwwqOxQqZn7xdb5Sy1hlsE9FrlJAiCIPRBblnUc9GRWRYtirH38R/vibhdrwU8ZlecMqJU+hvrI/uaBFnW2C8GeqiNvAfkg6GDCPLK+xOzK5ZYTUnbUZMdq+SVWRYBCvUgCgS2gpHuOWRDKbCC2TeZWE2E3r1fCxqrsfy44dK/zQZOt1VOgiAIQh/6ZYJMz0VHJrrkQ36lHrJg/MVTeUIdi0PXgy+OMEFWIv1NSlpsp+j7bKE10AMICSUgdrtKryjIyuzJ2RWB5Bf8QxUy0bJIgowoBOQe31grJXowlAIrtFbI0tH7daA75Mn3BfmoyfUEQRBE9nD7AvCKwqnEZtJ10THeYOh4lkUgXJAd6NZHkHn8QcmWOFkmyCbWCJZFqpBlj32dwnc8RmWgByBc27A9K1bSopSwmGSgBxAKjdNcIRP3/0qZZZFP4/VpNiFBRkjIV0oih/HpyVAKrHBr7CFLR+/XvoiVzc6B7FcOCYIgCAFWHTNwggVMz0VHViGzhFXIxB6yRJZF2Xn8SK9Hl/P612398Ad5VNjNGFlqk/7eMKwYHID2fi+do7LE/i7tlkWO46Th0LFmkaWasAgANlNyC/5sUaFSrJAFee3BIEMFEmSEhLwKlE7bYiqiJdNzy6Q5ZBpi71nvV6ToTKb3i+d5tIqCjC2Qdg34VD+eIAiCSC9saG6J1QSO43RddGQpiyaFlEUeyrPIGB6Zm4IHcLAn9SoZC/SYMqIkLDii2GLCaFEIULBH5uke9EnCSe1QaIY9wSyyXnf4SIdkCFvw12BbZH2QpTYT2E8gX22LJMgICQPHSaIs3cEeTLSURCT21DgsMUVLc4sTS9ZswmVrP0s6QlgrWi2LjAWN1Vh/6RxcedI4AEBdmS2p3q/2fi/c/iCMBg4TxBSrThJkBEEQOUNfROS9nk4J5ZTF0OPi2RYjK2KtOvSRKQV6MEIDoqmPLJMEgjxe2dYGQAi/kO8rakhUIWMpi2W2VHrIQtukJWmRJV1bTQZpO12e/ExaJEFGhBGapp7+FYgFjdW4ePbosL/d9p2JMcVYNuaWsUqh1az9p2I0cDiloQoA0OP2JZVwxRqx68psqHFYAQBdZAchCILIGSKHQgP6OSVCKYvKgswXp6eY2b3KxTCG1u7UZ4SxCpm8f4zRRH1kGYctVN/35i4AQNegT/NCdaIKmR6WRfmCvxbLoVe2KF5sEV6fKmREQWBL4geTCpGVOKW5LdmaWxbkealRW20PWSQjRI99vycgzanRAvOEj6mwS3M4Mlkhy7RFlCAIYqjRLx7bHREXrMwpMXtMOYDkZoGFUhZDIkxeAYlfIRMuXBuqhZCHVCtknQNeHOr1gAMweXi0IJsoJS2SIMsEei1UFyWYEcYsi6UppCwCoesobRUycUHCZEAxq5Dl6Syy5OUukZckOysiWdhMCavJAI8/KMXpytESITxzdLlu2ya3e1g19JDJsZuNKLeb0T3ow+FeN0psDk2PZ4EeYyrs0qpopnrImlucuL95Z9hnX+Ow4NoFDRS7TxAEIaJUIWMYDRzGVxVh8/5ulNpMmp0SSimLRgMHDkJfmBrLYn11MT5u7cH+FJMWvxDtiuOqiiR7phwWfb+vcxCDvkBY3xChL2oXqufVVyXc5+yi0Ik146tXsiymJhnsZiN63H5NgowtiodVyDxUISMKgNAsssxUyNgBYMYoobn5S9EOISdbc8vkjadae8jkjCgVrIaHe7XbRfbLBBmbw5GJBKtsWUQJgiCGGiFBpixAWO9Nz6D2lX0lyyIgm0UWx7LIBFmD2H98IMUKGTs/T1GojgFAdbEFVcUW8AB20jyytKLnrLuiBK0qvTpYFgH5gr92y6LFGKqQxbJWDnVIkBFh2DLYQwaEvMDHjy6HkRMu+Nv6PGH3ydbcMhZ5bzZySfV/MZht8XCvJ8E9o5ELMjaHI90VsmxZRAmCIIYi/RGhHpGwC1lWaVBLIMiDJdubDRGCTMUsMjbDqWGYIMiO9qUWff/F4eiB0JE0DaM+skyg50K11EOWMPY+RctiErPI5KEexeKCRz9VyIhCwJ7AS6w3Az7hh15ZZJZSBCNti9maW+ZOMmExkpAg01Yh8wd5HOwRHjOmokjqIesaTK8g03PljSAIIt+JZ1kEgFK78PcejX3EcrEl7yEDAJMo0GIJMp7nJfFVW2KFw2oEj+QHRAd5Hl+K5+bJCgmLjCbqI8sIei5USymLMcS6NBg6hdh7QL7gr25RwC9bkJBXyPK1h4wEGRGGfHhfJmArMsUWo7Tq9sWhcNtiOoYtqyGZGWRKMMvioR5tguxwjxuBIA+ryYBhDgsq7cyymF5Bli2LKEEQxFCkzx2aQ6YEsyz2ahRk8gTFKMsiq5DFGA4dCPJgWs1qMmB0uTCbKplgj0CQx4tfHoXLG4DZwGFcZVHM+7Jgj68p+j6t6LlQLaVrK1TIAkFeqkixhYVk0brg7/WHt41QyiJRUNiTKCmnAvthFVmMmDJcWHVTCvZY0FiNs6eNiPp7MsOW1ZLsDLJIRpQJFbIjGi2LcruigeOkCln3gFfTpHutZMsiShAEMRTp8wiLZCUxemzKkrQsygVZZIWMhXz4g8qLp/JFVYtRJsg0VshYrPpvX9khbFOQx/K/bI7ZR8wsi7ucrrh2SiI19FyoLorTm9Unm/mVaoVM61gluSCz0BwyotCwJdF0mQoDkiAzSXNNth3pUzyQt7uEisxxIwXhVmozJTVsWS3SDLKULYvJhXrsk0XeA5AEWYDXvtKqhWxZRAmCIIYifZ74FbLSJEM9WOS90cDBwEVaFuP3kHkD4dWF0RXaBVky4U6jK+ywm4XU5H2dA6pfi9DOgsZq/OKU8VF/17pQHa9Cxq41ii1GmDQOnI5Eur5U6cDyyBJGDRxHoR5EYcHseRnrIZNVyMZXFaHYYoTbH8RuZ7jdwe0LYNO+LgDA/3xzLADhQJHOFTjJsphidC/rIetx+zV5n+UVMkCYPcOaw9MZ7JEtiyhBEMRQpD9RD5l43B7wBeIOco7EKyUsRh9r2cVxLMtiKJ2OA8dxmi2LyYY7GTgOjcOojyxTsGugqSNKcOdpx+Cxc6dpXqguijMYWuofSzFhEZDNuVV5fenxhyeMFlsp9p4oIDIf6hHqITNwHI4V43QjbYub93fD4w9ieIkVx48ul7bzaJ/25EK16BXq4bCapIOZlqTFSEEGABV2Nhw6vf1bCxqrce+SY6MOwum0iBIEQQxF+mIMhmaU2ExgkkqLu4GJLbNCZcKYoEIWOn8JF9usQrZfpSBLJdyJ2RZf2daOT1q7KZE3jXy4V1io/s6kWiyeVIOZo8s1L5ayOWRK1316JSwCcsuiukUJb8Q1mINCPYhCQmtJORX8wVAKFFuhYcEekfPI3t3VAQA4pb4KHMdheJLJhVpgcau2FAUZAAwvEW2LGoI9WiVBFmqgzlT0PSCIsh/NGS39+5T6yrRaRAmCIIYaPM8nTFk0cJws+l79xSSrkJkULrBDlkXlc7VUIRPPX2PECllbv1dVhSLZcKfmFide2d4OAHh/TycuW/sZlqzZlLHZlYEgj09au/HKtra8F4Murx+fiiFoJ46vSPp5iuLE3utZIdO64O+JmMEn9ZDlaahH6p8wkVdkMtRjQLbKwbzBk1mwx+FQhSzI83h3dycA4OT6SgBCX9aejgFNAkcreoV6AMDIMht2tLtUV8jcvgCOiNU/diIFIBsOnX5BBoRWfgHhooJsigRBECE8/qBUpYolyADhgrbH7UePhrElPvF5IxMWgcQ9ZJHnrzK7CQ6rEf2eAA70uKVh0bFIJtyJ9ZxFwnrO0u2uaG5x4v7mnWGVvRqHBdcuaMjLhcSP9/cgEOQxqtyGUbLrBK3YLbGFUu+gPkOhAflgaG2hHmwfppRFoqDIZOw9W42xGDnJD88qZHs6BiRf/raj/ehweVFsMeIbo8oByGZ7pdOy6NNPkGmt6B3oFu5XajOhTBY1K80iS7NlkSGfm5OJqhxBEMRQglXHjFxoQVMJKdhDk2UxFGoQCZtD5ovVQyY+1iqeW7X2kWkNd0q250wvkgkgGeps3CssVJ8wNvnqGJCgQubRT5BZTclZFi2SIMvvChkJMiIMWwZ7yFyyhEVGVbEFI0ut4AF8JfaRvSPaFU8YVyH9MCVBloEKWaqhHkAoafGISkG2X5awyMnStSozNBya0S17nXT3rREEQQw1mCBzWE1hx+pISpOIvpcsiwoVslDsfaIestBjWT+ymuHQWsOdUuk5S5Vsi8FssVEMOjthXGVKzxOvt6tX1x4ybQ6syH242Eqx90QBobXpMhXkCYtyJo8QbItfioJM3j/G0CpwkkHPHrKRooA8pNKyuE8h0APIvGWxJ0yQUYWMIAhCDrN1x5pBxiizax8Ozapf8S2L6nrIAEgVMrXBHizcyRZR+VMKd0q250wPsikGs0Vr1yAOdLthMnA4fkxqI2jkc8j4iBmnbAGhTEfL4qBfpWUxooeMWRbdMptwPqH5SrOzsxNPPPEE7rrrLvT39+PNN99Mx3YRWcKW0R6yUMKiHGZb/OJwHw73utHS7oKBA04cH1oFGqFR4CRDZEpVKrDtVV8hUxZklVm0LLq8gYwNDCcIghgK9CeYQcZIZji0T0pZVIq9FwVZDMuiR0mQJTGLbEFjtTT786ypw2PGqifTc6YX2RSD2YKlKx5XVyoJlWRhQikQ5KMssKEKmZ49ZKlZFoHwDIJ8QZMg+/LLL/Gd73wHL7/8Mp555hl0dXXhF7/4BZ599tl0bR+RYbQ2XaaCS3yNoghL4GQWfX+4V6qOHTeyFOX2UMl8RJkgcNr7PZLPXm8ky6IOFbIRZUJFr3PAp+qzVUpYBEI9ZJmqVnVHWCMzZZUkCIIYCvR6hGOiI4EgYxe0WnrIfFIPmVKFTJxDFmswtML5S+ssMgarPi1sGhYzVl1rz5meZFMMZgu9+seA0HUfED2LrGdQP8ui1pYYlrLI9mGz0SDN5FPqdxvqaLrSvOeee3DjjTfiqaeegslkwujRo/HII4/gL3/5S7q2j8gwmQ31EH7okZbFiTUOGDhBdDyxqRUA8M0J4R7pyiIzLEYOQR442p+eKhkTTnqEepRYTdLqjpqkRalCFpGcVGkXTiiZCNjgeV6yLLIF2k5X/qwwEgRBpEqfW12FTAr1GNQgyEQ7ojlu7H38HjK53ZFVyNRG3wPCeeCoeM6qFVsFlNDac6Yn2RSDqZBsRL8vEMTHrd0AgLkp9o8BwnfHrnMixZKug6GTnEMm34dZNbC/0AXZjh07sHTpUgCQmldPPvlkHD16VP8tI7JCJkM9YlkWP9jbBYO4f7WLAuDJTw6GpSQZZLPIjqTJthgK9UhdkHEcFwoiSWBb7HX7pErU6KgeMuGk3ufxS6un6WLQF4RXtC+w7eigPjKCIAiJ/gQzyBgsLTc5y2LsHrJY5wEpZVG2oFhmM0nbyZJ8E9HvCUhVEzZPMxas50xJHJkNHKaJ1ke9yaYYTJbmFieWrNmEy9Z+hls3bNc0r+3Tg70Y9AVRWWRGY0388QVqiZW0qK9lUVtLjJLtNp+DPTRdaVZWVmL37t1hf9u9ezeqq/NvvkOhIvf4RjZ36o1LIdSDRddGrvp1DPiiomtZsMehNCUtKqVUpQLb3kSCjNlJhjksUdXDEptJOqmku0rWI144WIwc6soEQUYVMoIgiBDylMV4sAqZtlCP2LH37G+xqipKoR4cx0mLa/tV9pEd6RPOV2U2k6rE4QWN1Vh/6Rw8du403HnaMVj9vamYPNwBX5DHXzfuV/WactRWkZgYjByirRRAkm1Sjehn/WMnjKuQFq9TxW5h1auQWOJ5XhZ7r0fKojYHVuQcMiAkHPMx+l6T5D3//PPxP//zP7jsssvg9/uxYcMGrF69Guedd166to/IMKwaxENYndAj8j0WAxGx92qja+fVV8FoSH+FTM9QD0AW1Z9ge2MlLAJCZbDCbobT5UXXgA81CVYsU4H1j5XZzVKYCCUtEgRBhOhTOaepTOoh06tCFr+HLFZK8OhyG7460qe6j+yoOOuzVsO5xmjgMHN0ufTvq07hcNnaz/Dsp4cwbWQJOHCodlgwva4sbtVK66DnBY3VKDIb0CsGrdyyqBFnThmeU5Uxrdc5kY/derAHr25vAwDMHluu23YpVcgGfAFJAOuRssj2RY8/qMqe6QkoWBat+TscWtMn/MMf/hBGoxH/7//9PwSDQaxatQrnnnsuVqxYkabNIzKNTSY+3L5MCTLhNbRE184cXS5FyasdtqwVj0+/UA8gFESSaHZarIRFRkWRIMg6B9NbrWL9Y+V2MyqLWdw+VcgIgiAY/VmqkCVOWVSOzJeCPdRWyMQFRLYAmgwzR5ejaVgxdrS78KsNX0t/jyeuWBUpElZFUqp69bn9khgDgPFVRTklxgDt1zkMJXH68Dt7YTebdKn+hUYehT4/tq9ajJwuTiF5eIiathilChlrcSn4lEUAOPPMM/Hvf/8bW7duxSOPPIKzzjoLBgONM8sXjAZOSrFROysiWVjKYrH4I9UaXTtcpQUwWdzi+7fq0EMGyC2L8StkbOVydLmyIAtF36fZsig2n5fZTFQhIwiCUCA0hyz+4iWroLm8AdXJwGp6yGLNIWMVssgLaSn6Po0VskiaW5zY0e6K+nssi16yg54P9IS/p0z0wmslmYj+WBZHp0udxVENRRZhP5GnLPbKEhbjDT1Xi9VkAHsWNYJKmkOmIMjysUKm6Upz48aNmDdvHrZt2wYAeOGFF7B48WJ89tlnadk4IjtonRWRLJEVMq3RtSNVWgCTJRR7r7dlUW2FrEjx9kwNhw63LFKFjCAIIpI+laEeJVaTdDHaqzKQQKqQKVR5jAlSFpUuZoGQ80J1hUwUZIkCPWKRjLjaciC5Qc+RQSUDab6GSQat1znJilOtSBUymdDp0TFhERB6GKVZt97E343UNqKQsujyFLgg+8Mf/oCbb74Z06dPBwBcffXVWLlyJe6+++50bBuRJWwKpet0EBl7rzW6llXIjvR5Uj4YKeHROdSDCUinyys9dyQ8z0uCbGwMy2KmhkOzg3G5vIfMRRUygiAIhtqURaOBQwkbDq0y+t4XTNxDFjnIlxHr/DVKdF6093tVneNTrZBpsegxnCrDoyKrTQciRGYm5qlqRet1TjKfXzIwQSYXsXomLDLYAveAT0WFTCllUbxe7C90y+LevXvxve99L+xvy5cvx86d8dU7MbRgPVPuNFsWI2PvtUbXDnNYYTRwCAR51QdwLeg5hwwQYo/ZZ8tOcnICQR5vtjgx4AuAQ0hwRlJhz4x9sFtuWaQeMoIgiCj6xJX6RD1kgHw4tLpjd7zB0KyvLHaoh7IgK7ebUSJGh6/dcjDh/KujoqMj1vkoEclY9KqLkxv0fDCiQpaLlkWt1znJfH7JwBbG5RUyPRMWGSz6Xs1gZ0VBZlWO588HNF1pVlVVRdkTv/jiC4q9zzPsGof3JYtS7H2sOSZK0bVGAyet2iUKykgGPeeQAeIsshjBHmwmycoXBDswD+Dsv36k6A1n9sH095CFLItVYoWsx+1X3f9AEASRz/A8r9qyCMiGQ6sM9gj1kMUbDB2rhyw6oQ4QzjXs3P7wu3vjzr8KBHmpOpNshUyrRQ8AZoxKbtAz6yFjn1euXrQvaKzG+d+oi/q7w2qMus5J5vNLhlCFTN5Dpq9lEZA5sFR8Nyxl0WZSsCzm6HebCpo+5QsuuAA//elPcd5556Gurg6HDh3C2rVr8bOf/Sxd20dkAZvG4X3JEhl7z1jQWI159VXYerAHzn5v3HjckaVWHOpx43CfG9NRFnV7svA8L1th1C9pckSpFXs6BsL6yLSmSVVIARvprVZ1y1IWy+xmGDggyANdgz4Mc6Qvbp8gCGIoMOgLxXeXqLhoZdHhaodDx01ZNMRPWVQaDK31XNM54IU/yMPAAdVJHvOZRS+e7S5SXLEqktK2MpQGPbMesnGVRWhpd6W9Dz4lxE0/pb4SpVYT/vNVGyZUFkUlJibz+SVDUZyURT0FmVKvWiy8CosKoVCPArcsXnzxxbjhhhuwZcsW/O1vf8Nnn32Gm2++Geeff366to/IArZMhXpEpCzKYXNMFk+qwczR5TGja1kU7+EefYM9vAEe7DSnV+w9EB3skUzDbsZSFsWDsSDGOJTbqY+MIAiCwapjRgOn6jxRKgkybaEekVUuADAZE80hCxdkyZxrmLW+utgSNXBZLVoteowFjdX41eKmqPvGGvTs9QfRJm5v47BiAOHVnlzji8N9AIAFjcNw2UnjAQCfH+6Lar9I9vPTitJgaLafluloWWQL/mq+G0+cHrJ8DPXQLHuXL1+O5cuXp2NbiBxBaR6F3vA8r2hZ1MqINEXfe2T9c3oKMhbscUhMhkxmJglLWewa9IHneV3iaJWQ5pCJFxFVxRZ0DvjQQX1kBEEQYXZFNcdhdmHLjq2JYJZFU9zYe3WCLJlzjR4zyIBQK0LkHK2qYgtuWKg8hwwARpWHv+43x1Xg/rOmKIqPQ71u8BB6lOrE1oBM95Cxwc2JnD3+QBBft/UDACaPKEFtiRVTRpTgi8N9eGenE8uPGxl2//kNVagutkSJtdoSK66ZX6/LHLIihd4uvVMWAXmFTH3svWLKYqFaFm+77TbcdtttuOmmm2Le55577tFto4jsEgr1SF+FzBvgpZW41ARZeoZDs+qgkVM+GSaLlAwpbm8yDbvMsujxBzHgC0gHKL2Rx94DmavMEQRBDAX62Qwyq7pzWCjUQ2PKosJFfSJBFhmIkMy5Ro8ZZAx5K8JtL32NI30e3HhqA77VEFtM7O0UesJYeFePxx+zEsQCPUaV2zOyqByJ0uDmWIOvdzpd8PiDKLGapDEE8xuq8cXhPrzZ0hElyLYe7IXT5YXNxOGeM4+FyxOIK/iSIV6FLC0pi2p6yOKGehSoZZHn9Y8UJ3KXTBzM5D8mfQSZvpbFUKCHfv1jADBSXLk7JIZ6JNOwazcbpaSidIkjty8gCfJySZBR0iJBEASDVcjUJCwCQKl4LNXDssj6ynwxQpYie6CTOdekOoMsEtaKMG1kKQBgf2f8WWj7OgcAALPHlAMAdjsHEIxxPcoi7+vKbBkLJmPEGtwca/A1sytOHl4Cg1hZ/ZYo2j5q7Y7qMVz3+WEAwOJjanHShKqErRzJwHrIBmTzwdLTQybsy2quL70KSaEFXyG7/fbbAQD19fX4wQ9+gOLi4pRetLu7G3fffTfefvttBINBzJo1C7fddhtqamrw6aef4s4778TOnTtRUVGByy+/PCxq/7nnnsOjjz6K9vZ2TJgwAb/61a8wY8YMAEAgEMB9992HdevWYXBwECeccAJuv/121NTUAAA6Ojrwq1/9Cps3b4bRaMSSJUuwcuVKmEzCx5DotQuFTIR6sB+T3WyQDkjJMKIsVHEK8nxKzyVH7xlkjOGyWWS+QDDpht2KIgsGe9zoHPBJc2X0hK3gGg2c5NlmlbkO6iEjCIKQBJnaC9ZkQz1MiqEe8XvIIu1eyZxr9KyQyRlXVQQA2CMKrljsEwXbSROq8HFrNwZ8ARzp9UgLm3IO9GSnQqa2N29efZUkoL44IgqyESXSfcZU2FFfXYRdzgG8t7sTpx1bC0CYc/f6DkHQLZk6PB1vAYDyQnyvZFnUs4dMQ6iHwnDzImkOWSCtLRvZQNPV5uOPPw6bLTUvMQBcddVVGBgYwGuvvYY333wTRqMRv/rVr9DT04Of/vSnWLZsGT766CPcdddduOeee6So/U2bNuGOO+7A7373O3z00UdYsmQJLr/8cgwOCj/a1atX4/3338ezzz6Ld999FzabDbfeeqv0uldffTWKiorw7rvv4plnnsGHH36IJ554AgASvnYhkYlQj1gJi1qpdVhh4AQLpNJcrkCQx8f7u7Fu60F8vD/+vBU5bAab3oKsqsgMq8mAIC+c7JJt2E33cGgp8t4W6o2oogoZQRCEhNqh0IxQD5nW2PvUe8iSOdccSXEGWSzGVwqCbG8CQcZubxhWhHHiY3Y5XYr3ZRWyUeW2kP0uA1WUZAY3f3m4F4BQIZMzX7RvvimrqL2yvQ0efxDjq4owdUT4/fWECZ2BtKcsqp9DJu3DCimLgWAoCTtf0HS1efLJJ2PNmjVoa2tL+gW/+OILfPrpp/jd736H0tJSOBwO3HHHHbjuuuvw6quvory8HBdccAFMJhPmzp2LM888E//4xz8AAE8//TROP/10zJw5E2azGStWrEBFRQU2bNgg3X7ppZdixIgRcDgcuOWWW/DOO++gtbUV+/btw+bNm3H99dfDbrdj9OjRuOKKK6TnTvTahYTdpL6knCyRQ6GTxWQ0SBHsR3qVZ3tdtvYz/OKprXHnrUQiWRZ1jLwHhFlkzP7BGqYbqouhtMYTK00KSP9w6Mj+MQCoLKYeMoIgCIZmy2KSFTKLUoVM/FsggWVRXl3QMucTSGOFTBRXezoGYrbEePxBydo/rrIIE6riCzKph6zMrskWlypae/P63H6pN25KhMCaL37+H+7tkrZ93edHAABLpwxPazUoMo7e4w9KbQv6piym1kMmb3HJN9uiJtn7ySef4MUXX8Sf/vSnqNu2bdum6jk+++wzNDQ0YO3atXjyyScxODiIk08+GStXrkRLSwuamsJjThsaGvDMM88AAHbu3Imzzz476vbt27ejr68PR44cCXt8dXU1ysrK8PXXXwMAysvLUVtbK91eX1+PQ4cOobe3N+Fra2GoV1DZ6pLbH0zbe2GrMEUWY8qvMaLUiqN9HhzudWOq6E1v3hF/3srvlxyLBU2xm4mllRmzQffPYESZDfu6BnG41w2OA/68cR94ACeNr8CFs0bD6fKiutiCGaNiN+xWFoeSFtPxHbGVsQq7WXr+quJQhSxX93G2Xbm6fYQ+0PdcOOTyd90vRm+X2Eyqtq/MHgr1UHN/KdTDGH0eYoLMH+SjbgsEealyZos4hy1sqsa3Gqrw5CcH8ODbe1BdbMb6S2dHnWu8/qC04Dei1Kbr5z+20g4DJ1xQdwx4pUVV+Xd9oHsQPAQRW1lkRsOwYryyvR27OlxR2xLkeRwUh0KPqrBJ4mfQF0j7fqOlN4/jgK+OCnbFujKbdB5nNNUUo67MhoM9bny4txOjyu3YdrQfJgOH0yfXpPW9FMsqZBwH9HuE797AAQ5b6tdpjCLJgRX/uwnbh02hfdjICW0ULm8gI9+vHqjdRk2C7Pe//30y2xJGT08Pvv76a0yZMgXPPfcc3G43brjhBqxcuRLV1dWw28P7YWw2GwYGhLK1y+WKebvLJayaFBUVRd3Obot8LPs3e3y819ZCVVX6ysqZYFiF8BkGOQ7V1el5L8ZDwkGprMiS8muMG+bA1oO96A0A1dUlCAR5PPD25pj35wA88PZunH3CuJiCx3JYiKQtsZt1/wzG15Rg494udPt5dAc5vLJNqDivPH0ypo5SN9yxrkro4xwMIi3fkd/UCQAYVmaTnn+CRxCpXW5/2vYLvRjqv0FCHfQ9Fw65+F37RG/D8MpiVcdEo10QHi5vAGUVxYpWRDm8+PzVCs9f5RQDMQyGqNvkoVkja0sVWwN+eEoDHnx7D5wuH4pK7SiJqILs6xCum6wmA+pHV+henRlTWYS9HQPo8gOTIt9bVQk2HhTOwfU1DgwbVooZ46uBd/dib5c76v0e7hmEN8DDZOAwZXw1vhZFjyfAp/1ctajSgRGv7MCRHjeUan0cgOFlNiyaPgpGA4e9nwkVr2+Mq1TcttOPG4nH39mN9V+2wSBenyw6tgaNY6rS+C5C+6bHH0RFpQOdYvGpzG5GzbBS3V6nSry+HPD64/6m5XbTkcPD9+ESmxkubwDmImvOX4toQbUg6+/vh8PhQENDAywWdSsCSrDH3nLLLbBarXA4HLj66qtx7rnnYvny5XC7w21nbrdbChGx2+2Kt1dUVEhiivWTRT6e5/mo29i/i4uLYbfb0dfXF/O1tdDR0YehHEzpE+0UPS4PnM6+BPdOjiMdwsHWwiHl16i0CSsuOw/1wOnsw8f7u3G4J3YMPg/gcI8br209gOPF9KZI2ruEk5GB53X/DMrMwkH23a+P4sMdbQjywCn1VRhhM6h+LRsn7GCHOl1p+Y4OtgvPaTdw0vMbvMJ+0dnvQVt7r24BKnrCccLJfKj/Bon40PdcOOTyd90mVmUM/oCq47C8h3nvwS5ppmQs2KymwX531PO7+oVz3KDHH3Vbt8xW3tc9gIEYC48s5GPT10ejgqO27e8GINgVO8TztZ6MLrdhb8cAtu7pQFN5qELGvuvP93UAAEaVWOF09mGYRXgPu9r7ceRoT9g4ms9ahW0dXmpFd5cLHpdgtXQpfDbp4JfzJuAGBUcOIFxv/HLeBHR1Cp/hpl1Cy0RjpU1x28y8sPD5/q4O6W8f7urA2g/2xHX1pIpX1o/Vergb+9qFayCHxajrZxgQK28D3kDc37R8Vl9vxD5sMwn/feBoL4Zb9e3zTwdsv06EKkH2+eef48c//jH6+/tRW1uLNWvWoLGxMakNa2hoQDAYhM/ng9Uq/AiDQWFHmDRpEv75z3+G3X/nzp3SazU2NqKlpSXq9lNOOQVlZWWora3Fzp07Jethe3s7uru70dTUhGAwiO7ubjidTlRXCzv1rl27MHz4cJSUlKCpqQnvv/9+zNfWAs8j504cWmB9U25/MG3vg01ZL7IYU36N4SWh6Hue1+bpjvXaLC7Xakp9++Q0tzjxz08OAgC2HOiV/j6jrlTT61TYmX3Ql5bvqFtsOi+zm6XnZ31rAV444Se6mMgmQ/03SKiDvufCIRe/a3kPmZptM3AcSqwm9Hn86B7wo9we/xgqpSwauKjnD4V6RJ+nWe+PycDBwEU/ltFU40Bbfye+PurCcSPDBRnrca4tsablcx9fWYR3d3WKfWTht/F8aAbZ2Moi8LyQUGw3GzDoC2J/lxvjq0JuqANdof4xng/vgw8G05/EN1/szbvxha/C3ku53YSbFjVhfmO1uP/y+FKKvI8+5ze3OPHIu3ujnr970I8b1n8Vs6dcD0wGTpr3NuANSIKo1GbW9fuXvhtvIO5vWpoFa+BgjNiHWfR9vyeQc8eEVFAlLe+55x4sW7YM69evx4knnog//vGPSb/giSeeiNGjR+Pmm2+Gy+VCZ2cnHnjgAZx66qk444wz4HQ68cQTT8Dn82Hjxo144YUXpL6xc845By+88AI2btwIn8+HJ554Ah0dHVi0aBEAYPny5Vi9ejVaW1vR39+Pu+++G7Nnz8aYMWMwbtw4zJw5E3fffTf6+/vR2tqKRx99FOeccw4AYNGiRXFfu5DIRENsKGUx9dCMkWKU/KHe5Gd7RRIK9dBv9YXNKlGaQfOnd/aoChthVKQ5ZbFblrLIMBkN0r/TFSZCEAQxVAgNhlbf/REaDp34GOoVUxZNGlMW1Y5taRwmOIB2tEdXwI7qPIMskrGV8aPv2QyycZWC+8nAcZggWvUjgz0OiJXKunLhWoAFRwT50GeYbubVV4F5FqfXCRa/qSNKwwTU4V4POgd8MBo4NA0Ld1+pjc9XmxStFY7jZLPIAmlJWATUh3pEjm2QE+p3y6/h0KquNrdv344bbrgBjY2NuPbaa/H5558n/YJmsxl///vfYTQasXjxYixevBjDhw/H3XffjYqKCvz1r3/Fyy+/jDlz5uDWW2/FrbfeihNOOAEAMHfuXPzmN7/BbbfdhtmzZ+PFF1/EmjVrUF5eDgC48sorMW/ePFxwwQWYN28ePB4PHnzwQem1V61aBb/fj4ULF+Lcc8/FySefjCuuuAIAEr52IWHLwFBFSZCZU/+xs0jeI71u8DwvzVuJh9JsLzken76x93ofbEOx9+kRRmx1rNwe3ldAw6EJgigEAkEen7R245VtbfikVXlkSqhCpn5hMZS0mPhi0h9nMDQTaX4FwaE0UFeJpmEOAEBLe3Ry4ZE+YYFT74RFhhR93xEtyHielyLvmXADgPpq5aTFA2LCYp04n4wlBgKZib4HBIHNQ+gZW7lQcFZ9sKcTTlfoXPmFGHffNKxYus5iJBOfrzfyxfj0CTJ1c26VEhYZxeICCHNa5QuqP2mzWbgwq6qqgsfjSelFa2tr8cADDyjeNnXqVDz11FMxH7t06VIsXbo05jZed911uO666xRvr66uxqpVq2I+d6LXLhTsGRgMzVIWU429B0LDlgd9QfQM+lFeZMa1CxoUUxYZSrO95DDLR+RBM1m0HGxnji5P+HzMLtg96EMgyMd9L8mgFHsPCNH3ezqBThoOTRBEntLc4sT9zTvDjtk1DguuXdAQVvGQ5pBpuGhlx1Q1giw0h0xpMHScClkcISenqUYQZLucLviDvPScgKxCpvMMMgazHDpdXvR7/GGjA9r6vRj0BWE0cBglGwJdXy1WyCJEXGgGmVBNMxo4WE0GePxBDPoDKId+se2xYOfEMruQCDllRAm+ONyHl746iotmjQYAfMkGQg+P7ifSGp+fDuSzyNhoBj0j74FQxavD5cXH+7sxvU45TVqqkCkIMrad+RZ7n9Tyfz5NxiaikXrI0lghc+loWbSaDFIk+2FxVW9+Q5VilazCblblw1Zr+VCL3gdbVrkK8upn2mihR7xYiKyQsd61DqqQEQSRhzBreeQCGhuZwqzlPM9LFTItlsUyTZbFUC9YJPEti+ocHqPKhb4sjz+I1q7w0DN5D1k6cFhNqBbP25EDotm/R5XZwuya9TEsi2xe2ajykHizZWCeqhx2TmTulTOnDAcAvPDlUWnWGusfmzIiOrVQj1aLVAnNIgtK1wB6VsiaW5y49vkvAQgunHizYeNVeR2SICtAyyJRWEgVMn8g5tDGVNGzhwwARoqreCxd8cO9XWjr96LIbMADZ03GseIAxp+eOEZVU6xbZ8ui3gdbk4FLaz9Xj0IPGQBU0XBogiDyFC3W8gFfAEwLaeshE46hPQkqZDwfmsOkZNtigsynMBjaG8fuJcfAcWioFqpkO9rC+8hCPWS2qMfpxbiq0IBoOczGOK4yfIxRvdh3daB7UDpH97n90mdZVxYaXcSuLTJlWWTnRCbIvj1xGKwmA/Z0DODLI33wB4LYLn7Gk0dEV8j0aLVIlfAKmSjI7PpUyNhCR0fEtUPkQgeDuZSUqrzMWZVvlkVVV5uDg4NYuHCh9L++vr6wfy9cuDDd20lkkEw0xLI5KXpYFoGQbfGwuKr3pJhkuGzaCJxcX4WTG4cBCCU3JULvUI90HGxZP5fe4sgXCEoVzCjLIvWQEQSRp2ixlveJF6wm0R6nFqmHbDD+cVte+TIbop+fzTCLF+qh5vzVVBMd7NHv8UvngNo0WRYBYFyFIKCiK2ShhEU5VUVmlNlMCPLAPvE+LNCjssgctsCbiV54OZ1ShUw4RzqsJmnx94UvjmKn0wWPPwiH1YgxFfaoxxsNHK5d0BD3NRK1WqRKqEIWsiyWalhsiEUyPfTxFhVYyqIrQ9XPTKHqk7777rvTvR1EDiHvmxr0BXSrEsnR07IIACNYhazXjZ1OFzbu64KBA86bUQcAaGBeeYUGYiUky6JOPWTsYJtKX1skFUViP5fO4oitNhq46JVftvpHKYsEQeQbWqzlrLem1GbS1MahtofMK6t8ae4hU1khAyCl/e2QBXscEatjZTZTWECG3oyPUSHb1xWesMjgOA711cX474Ee7OpwYWKtQwr0YP1jDLbdA5myLIo9ZJXFoYXXM6fU4qVtbXh521GwXWR0uU2IalfYZRaI8fmR/Yu1JVZcM78+bZH3jCKzQoVMB8tiMj30oZTF6A9K6iHz5JdlUdUnfdZZZ6V7O4gcwmTgYDZy8AV4wRagU8lajt6WxRGyCtmTnxwAIMwGGSk2BDfVChaB3c7oNCkl3Dr3kAH6H2zTlbTIAj1KrKYogcjCRDpcVCEjCCK/0GItl88g00KZypRFn8ydYlZMWRSOzYEgD54Pn7WlpQeaBXvILYtHRadJTZr6xxjMkhhZIQtF3hdFPUYSZOK5PBToEW6tLMpAOJmcrogeMgCYObocFXYTugb9ePbTwwCAbUddWLJmU1RADGNBYzXm1Vdh68EeOPu9qHZYYgZf6I2d2Tx1FmTJ9NCH9uHoa8Ria36GeuibZ0nkDTaTEb6AP23BHlLKog6x90Co8fjTgz1So+cPvlEn3c4qZJ0DPnQP+qLCKiJhTdF6ziED9D3YMnHUmcD6opVYkfdAqIeMKmQEQeQbzFoebzWfWcvf39MJQFv/GKB+DhmLvDdwUDw/yIM+AkFeEmhAqLqQKGUREAQOB+GY7nR5UV1swVExHCtdM8gYrEJ2sMcNrz8Iq9mAfo8fR/uEz39sZbS1LxR9L4i2g92hodBy1M670ovOiB4yAHhrZwe6BqOFN+ubihUwZjRwqtKW9UZpDpkeKYvJ9NCrsizmmSCjUA9CEXmwRzrQs0LW3OLEna/uACDY7fxB4WQlr+IUW02SrTHSHqFEOgZDM9jBdvGkGswcXZ70yle6hkP3xIi8B+R9a960Bb4QBEFkAy19PH1JDIUG1Id6eKXIe+VzkEnWVxZpW9RSIbObQz1NLWIfGbMspithkVFdbEGxxYggD+wXK117ROtkZZFZ+qzkRCYtRg6FZjBxMejPTg9Ztgc9JwOrkPV7/FIFuNSe+qJ5Mj30HlWhHvllWSRBRiiSzoZYnud1E2QsuSeyYuMP8lj5wraw5J4J4oF8d0di2yKrDOrVQ5YO0mZZjBF5L39Nb4DPu9UpgiCIBY3VmKKQgldbYg2raCRrWQwNho5/3GbpiUr9Y0B4hSwVQQbIbYvCuTE0gyx9CYuA0BM2LmJA9C5RFEYGejAmiBWyI30e9Hv8CXvIMmVZjKyQ5cKgZ60wESvfbj1CPZIJLAnNIYve/x1ihSxT/YGZggQZoUg6Z3gM+oJgp49UUha1rkCxA/luZ3YrZHohWRZ1FmSxIu8BQaiz70ypjywQ5PFJazde2daGT1q7pc8+1t8JgiByiUCQx35xJtdxI4V5UTNHl2HdJbPD7GXSDDKbtnNYuVj16fcEFAM5GD7xNqWERQBhFsXI6Pt41QUlGsVgD6lCluYZZHKk6PvOcEEWGejBKLWZpWrL1239aBPFY11ZuHi0iS6fTFgWeZ4PVcjEUI9cGPSsFSZij/QKIrfYYgybA5cKrIc+slIWudDBiBdMU5Snsfeape/atWvx97//HW1tbXjuuefwu9/9Dvfccw+Ki4vTsX1ElpBWl9JQ7meR9wYutdAMtStQWw704Ds1pagXD/y7OxMLMrfKwZrZpNKeHstid5weMkCwSrq8AXQO+DC2MvT35hZnVGBJjcOCxcfU4JXtbVF/j9XUTBAEkS22H+1Dr9sPh9WIH84ejWuf/xKdA74oa3l/EkOhAcAhW+jqc/ukhbVIElXIDBwHIwcE+OgKmTdOIIISMStkGRBk4yMqZLtFy6JSoAdjQnUx2vq9eGdXB3gILRby3i1ANocsA1UUlzcghbBUiOfNXBj0rBXWqsK+f637diJYD/0lT27FF0f6cNGsUbjypPGKbRuhClnsUI8BXwCBIJ+RwJNMoOlq84knnsBf/vIXXHTRRQgEAiguLkZbWxvuueeedG0fkSVsaUwokkfea4kLjkT1CpRYyRnPLIsqkhZDFbLctSxWpCmCnvU2KPWQAeF9ZAxmHY0UyG39Xvz94wOKf1caBkkQBJFNNu3rBgAcP7ocx4hCZX/ngHROYLAeMq2WRZOBg0O8oIzXR+ZL0EMGQKpexLYsqju/suj7fV0DGPQFpAvydM4gY0QmLSayLAKhPrJ3dnUAEOyKkdcS0kytDAgy5hYpthildo9cGPSsFSZie3RMWIzEaOCkfr9hDktMMRW/hyy0XZn4fjOFJkH25JNP4tFHH8W5554Lg8GAsrIyrFq1Cm+++Wa6to/IEun0XzPfb1GK/VmqV6BECwFLdGJJi/HQ6sHPBkwYubyBqIuFVIhnWRReVxBqHaIQVGMdjUWuNTUTBFHYbNrXBQCYM7YCwxwWlNpMCPChCg6jL8kKGRAK9ogXfZ+oQgbIZpEFIgRZnOqCEtXFFlTYzQjywEf7u+EP8jBwwLDi9Fdv2Hl5X9cg/IGgtGAay7IIhJIWWf9YpF0RkAuy9Id6KCUs5sKgZ61EzpwrTcPII0AIWQME224s4i0qWIyctO/nUy+7pqvNrq4ujB8/HgCkhLWqqir4/fmVdEKkN9SDebrlqxzJoHYFasYoYQWqyGLESHHFL1GwBxOirFKYizisRumgpKdtMV7sPQBUiSfpTnFVUI11NBa51tRMEEThMuAN4LNDvQAEQcZxHBqqhWrMzghnRbKWRUA+iyz2wmBIkMWpkMUYDh0vMlwJjuPQVCO8z3fFqlN1sUW3/qF4jCyzwWzk4PEH8d8DPUL8vcmA4SWxA0Xqq8NbZCIDPYCQ/S4TFRR2/o20n2rtm8o2kYvksRZlU0VNSqI3ToWM47jQc3jzR39o+rUdc8wx+Ne//gUAUnl4w4YNaGxs1H/LiKySzlAPl04Ji8msQE0QD+Txou/9gSDYgmMuV8g4jkOFGEm74aujuoVldMeJvQdCq4BsVTDVpuRcamomCKJw2XKgB/4gj5GlVmnQcCjwIlyQ9Ymr+44kLlrLVFXIElsWjZIgUw710HL+ahwm2DPf2y3MV6uNI4j0xGTgMFoUVG+2CGJwTIU9buWIVdUYgWAw6tyXUcuiQoWMsaCxGusvnYPHzp2GO087Bo+dOy0qICZXsEdck6XDsgjIBFmc6pY0Sy/GPlych8Eemj7tlStXYsWKFVi3bh0GBgZw6aWXYuvWrfjzn/+cru0jskR6Qz30m0HGVqAiwyRqS6y4Zn591EFvfGUR3tvdGTdpUf6e1Vo+skFzi1MaOrn6/X0A9AnL6IkTew/I0x2FzzvVpuRcamomCKJwYXbF2WJ1DAhVY3Y6+8Pum5plUXhMPOt8KGUxsWXRF2FZlAIRNFS4WIWM9VxnImGRMb6qCLs7BvD2TqGneGxFbLsiAHy4t0sKNAGAJ/97CG/scIad+zJqWRQ/s6oYFs9sDXrWSmSFTGkOnB6wvst4gixR0rVge/TkVYVM05Fk8uTJ+M9//oMXXngBkyZNwvDhw3H77bdj5MiR6do+IkukM9SDpSymEnkvhyX3bD3YA2e/F9UOC6bXlSmusEnR93Esi0yQcRC8yrkIC9GIhIVlJGuH8Ad5qVm9LMZAyKqIChmzjiZjW8y1pmaCIAoXef8Yg1XIdkYs4jHLYjJzmkKzyOJUyMTzkDlOlcscI9TDnUSFrEmskDGGZyDQg8GCPdg5JF7CotpznyTIMtBj1CUK64o09VxliqgKmc4piwyHbAB1LFRXyBS+30CQV3U9mGto/rSrq6txySWXgOd5vPPOO3A6nSTI8pBQqIf+q0t6WRblqF2BCg2Hjl0h88gi71NJgUwXauevzauv0nwQ6nP7pBlxsVbHKiMqZMw6qnSSTESuNTUTBFGYtPV5sLtjAByA48eUS3+fUFUMDkKSXueAF5VFFgT50MJVMpZFFpYQV5CJNkQ1FbJIy6LWHjJASDU0GwB2yvf6gxmLFB8fIcDGVSkLMi3nPnsGY+9ZymJlBkJQ0kl0hSxNlkUNFbJYs/RYBkHkc8QavzMUxuxoapBpbm7GySefDABYvXo1rrrqKlx00UVYu3ZtWjaOyB62NPqvJctiiimLyRCWtBgjLp6J0FztH1M7fy2ZsIyewZANxxTjRFwphXqEPr8FjdU457gRUfetLbHiouNHDZmmZoIgCpPN+4Xq2DG1jjC7dpHFKPWT7RT7yAa8AWnhKn2hHmpi72OkLCZRIRNmeoWO+Wu3HsKSNZsyMpoksiI24PUr9kNrOfdlMtSDuUWqFHrIhhKRIWZpS1lUUyFLsA8XKVTI4o3fGQpjdjRdca5evRpXX301gsEg/v73v+Ohhx7CP/7xD6xZsyZd20dkiXSGekix9ymmLCaD3SxLWuxUti1K3uUsCEY1qJ6/loSFMBToEfu7YY3LA75AmKX1iDi75swptWHNyz+fNwHrL52D+5YeK933XxfPJDFGEETOwOaPye2KjPqIpEXWP2Yxckkt3LFQD7YApgRLWYxnmzcZlC2LiS5mI2EXspHPk6kLWTaDjHH3azsVxaCWc19RBkM9YqUsDjUMHCcJWSB9KYtaesgSh3oIvyG11dNcHrOj6Uiyf/9+nHvuudi+fTvcbje++c1vYsqUKXA6c1t1EtpJZ6iHS4q9z47gYUmLsYI9mOfcHwzqllyoJ6rnryURltHjjh95DwjfG7tIYCuD/R6/1H9x4fGjsHhSDWaOLpfsLkYDh1PqqySh36HzMGuCIIhk4XkemxX6xxhSH5lYIUt2KDSDWcF6VFTI4kXPx4q9Z7b7WHYvOdm+kG1uceLWDduj/q4kBrWc+9iCqjfAR30+eqM0h2yoIp9Flu6URTU9ZLEWFSIti+l0DmUKTYLMbrejo6MDzc3NmDlzJkwmE7Zv346KiugDGDG0YRfO6Qn10L+HTAsTqliwR7Qga25x4sb/CL1QHS4fLlv7WcZsG2pRO38tmbAMqUIWJ12J47ioPrIP9nTCF+AxtsIe1Q8gf1yNmNzVJlbTCIIgss1OpwudAz7YTAZMG1kadXuDGHgRWSFLxq4IqAz1CGjoIQtExN6LYk5NhSybF7JaxaCWc59cWKTjOkb+3EwUxEpZHErIr8vSlbLIesgGvAEEeWWxLFV5Y/WQWcPnkKXTOZQpNAmys88+G8uWLcOaNWtw0UUX4YsvvsCKFSvw/e9/P13bR2SJdEbGZl+QsVlk4ZZFZtvojrCR5Jr/OJn5a2phFpryOJZFINRH1iH2kb0pfjbzG6vjBqGwKOWjJMgIgsgygSCPT1q78X8fHQAATK8rVbRINVaHwqACQT40FDrJCoKWOWTxgjnMxgQVMhWCLJsXslrFoJZzn8XIgbk902lbZAmLZiOXNdePnsiFbNosi+LnxCP2d+NWaVlk15PpdA5lCk2f9lVXXYVZs2bBZrNh+vTpOHz4MH7729/i29/+drq2j8gSUuy9P/dj77UyXqFCls7kwnTA5q/d+3qLZJcAYs9fUwuz0MQaCs0IDYf2wu0L4P09wjDR+QleN5cE2VCNxiUIInWU0ti+ONyH5hZn1PGzrtwGm8kAtz+I1u5BqUKWrGWR9ej2efwxkwxZymKscCXhtvg9ZLFmOMnJ5oVsMmJQ7exRjuNgMxvh8gaki/Z0wGaQVRZZcjKVWSus986cZH+kGqwmA0wGDv4gD5cnINkP5Uix9zFTFsNDPdSM38n1MTuajyYnnHCC9N8jRozAiBHRyWrE0MeWxgpZOmLvtRCZtFheZNa0UpcrAx4XNFbjmBoHlv55MzgOePScqZgxqjwlUcEsi/F6yICQIOsa8GHTvi4M+oKoLbFiUq0j7uMky2J/dgXZUI7GJQgiNWLNsur3BhTnOBo4DvXVxfjySB92trvQ5xHOYclaFktkVrA+tx/lCr1HXn9yKYs8z8OrorrGyOaFbLJiUO3s0SKLIMjSMb6HkU/9Y0BoMd5qMuC/B3rSslDJcRwcNhO6B3zo9/pRg+iZd4mCaaQeMnFxxGjg8PNTJij2IzJyfcyOpqPJMcccE3MFYNu2bbpsEJEbhOaQ6b+y5Mpi7D0gJi2W2XCox41dHS7MLCofsv5jdhLgeeCY2pKUDzbMspjIqiDvIdvfIlQaE9kVgdyokKVrqDZBELlPsm6IhmGCIGtxumASj3PJCjKTQbC3ubwB9Lh9ioKMzRaLn7IYPYfMIwviUlPhUDNHMl0XsqmIQTWzR+0ZSFpkfdSVQzxhERDOjVsP9gIA+j0BXLb2s7QtVDqsgiBzeaK/G/miQkxBJvaQ9cuqn2wfNXCAvGicqnMoU2g6mvzf//1f2L87Ozvx97//HUuXLtV1o4jsIw/14Hle11L8gJSymPnYe8aEqiIc6nFjT8cAZo4uH7L+Y5vZCKvJAI8/iB63L2kLDSMUe5+gQib2kB3t8+CTVsHfP7+xKuHzZ1uQDTVrKkEQ+pKsG6JB7CPb1e7CyDJhLlkqx9symwkubyBmH1myKYteWcBHrECESNTaAPUm3WKQXccMpFWQ5UeFLNMLlUKVeFAK5ZDjlVV8Y1V52YK+3I768rY2AELS84njK4dcO4Kmo8ns2bOj/jZz5kysWLEC5557rm4bRWQftrIU4IUTg8WkoyDzZdeyCAiC7L3dnVIfmZDKZIhr0cxV/3GZzYS2fi96Bv1IdfPUxN4DoQGYG/d2we0PosJuxnEjE794rSO7KYtD0ZpKEIR+JOuGYNH3LU6XFOZRYk3+HFZmN+NQryemIPOqSFlkF5k+2QUsq5AZufhiLhK1NkC9SacYZNcY6UxZZIJsKM8gy8ZCZUmcWWQeWXZB7JTF8Mf3DPqkXvbTjq2VZgcOJVIuUZSWluLo0aN6bAuRQ8iHA7r9AVVedDX4g7x0wsiuIBN+rJ8e7MEr29rQ1u9O2C+Xq/7jUpsZbf1e9MaZaaOWbsmyGF+QMcHGkpBOqa9U9dmwClmP2w+3L5Dx4dtD1ZpKEIQ+JOuGYBd4h3rcUoUs2ZRFIPEsMmkwdNyUxehQj0QDdeOhxgaYDuRi0GMwwBoM6iIG2fklrRUyMdSjqnjoVsiysVDpEPd/pVlkrH/MwCHmPuCwhMfev7GjHf4gj6ZhxUNSjAEaBdnzzz8f9m+fz4c33ngDkyZN0nObiBzAZDTAaOAQCPIY9AVRatPneQdk5elsRsR2iL7vHe2usCbQpmHF6B70ZdS2kSossatnMHaEshqCPC+Junix980tTtz7ekvY397e1YETFdLJInFYjVIl8kifB+NizCxLF0PVmkoQhD4k27dUbjdLj/vikNBnk2wPGRCa8dQTo0LGRBZLUlQiXg+Z1TS0ItiNBg7HjylHdXUJnM4+xBhPpYmiNIaTMToHmWVx6J4zsrFQ6YhXIZMlLMZql2EtL74AD68/KNkVvzOpRrdtzDSajiarVq0K+7fRaER9fT1+85vf6LpRRG5gNxvQ7wnoWu5nfl+zkYubHpVOmluceOidPYq37Wh34Z4zJ6HCbh4y/uNEJ3Y58aLe+z1+qRE2Vg9ZLJ9596Bflc+c4zjUllixt3MQbVkQZPkQjUsQRPKk0rdUX12Mtn6v5AzQo0LWO6hcIWNVArOaUI9AdA9ZvDCQQoE5fdJqWRQrZBVDuIcsGwuV7LejFOrBEkbjhdLIHVY7nS5sOdgLDsDiYwpEkDU3N6drO4gcxGYyioJMv9WlbCcsqvFKP/jWbqy7ZHZOizA5ZQmsL4xEUe/MrlhsMSqKZb185kyQZSPYI5uJYgRB5Aasb+nuV3eELWQlckM0DivGh3u7pH+nUiFjx+2YoR7i6lisOUxAqEcszLLoix8XXkjYFIIf9Ib1kFUN4QpZNhYqJcuiUqhHgsh7QDiXs9mA//7sMABg5phyabTOUETzL/aLL77AbbfdhksvvRQ333wzPv7443RsF5EDsNUlPSNjQwmL2RFkWrzSQwVWzYp1YgdCla3I984SlJpbnOhhCYsxVn31+uxqHNmdRcYuxhwRDfm1JVaKvCeIAmFBYzUumjUKADBlRAkeO3ca1l0yO+7vv2FYeG9KSimLduZsUF5I8wc0VMjkgiwwNC2L6SDdlkV/kJfOm5VDuIeMLVTGQ++FSinUQ6FC5hZDPRL1QbJgj1dEu+J3h3B1DNAoyN577z2cf/756O7uxsSJE9Hf348f/ehHeP3119O1fUQWYatLbr/+gqwoS5H3+RjqIFXIYlhf1Fa22DyVWHZFvT67dEXfB4I8Pt7fjXVbD+Lj/d0IBGM3ISxorMYZk2ulf58wriLhxRhBEPlFa5cbADB3XAVmji5PeMHZWB0++H630xX3OBOPUKhHrJTF5GLvUwn1yDfSPYese9AHHkL4RKIgrFyHLVTWRNgS07VQGeohU4q9D/WQxSIQ5MHWKtz+IMwGYEHT0D5/a+4hu/fee/Hd735X+ttLL72ERx99FKeeeqruG0dkF5tJ++pSvB4lAHBlOfI+H0Md2IkgVoVMbWXrc7FRPZYg0+uzS4cgS2THVEIuHK1iiA1BEIXDvi5h7MnYCnW9rHs6XWH/XvnCtqQH55YmOG77VPSCmaTY+9A5Wo3dq1CwW9IryFj/WLndnBfnj0yOPigR9/9+BTtpoh4ypfO9wWDA5v3dQ3pRVdMvds+ePVi8eHHY3xYvXoy9e/fquU1EjiA1xKqskDW3OLFkzSZctvYz3LphOy5b+xmWrNmE5handB+WspgtQca80vEYaqEOieKT1Va2jor3i2VZ1OuzYx7vtj59qpBq7JhKyAWhHiMDCIIYWuztHAQAVeFCzS1O3Pyf7VF/T3SciUWJeA480uvGJ63RFX1W9TLHSVlUir1n1QW1Q6HzmXS0XcjpkmaQDe3qmBw2+mDxpBpVVeNkccQJ9QjZbqP34Vjne48/mNTvMJfQ9IstLy/Hjh07wv62fft2DBs2TNeNInIDmwb/tdqL4mz3kGXDK51uEvWQqa1s8WLOcKyh0Hp9dnpWyNTaMZVsRUfkgkxhFgpBEPlL96AP3aLNe0ylPe59UznOKNHc4sRN/9kGQAiFUFq8ZJUuk8YeMjdVyCTSbVlk43OGcuR9tmA9ZPFCPSIti3r/DnMNTb/Y733ve7j88svx1FNP4b333sM///lPXHnllTjnnHPStX1EFlEbGavlR5LtlEUg817pdFOaoIdMbWXLJp7AY1kWAX0+OybI+jz+lNOvkg0a8QeCYZXDPhUjAwiCyB/2dQp2xdoSq3ThHgs9w6DY4mXHQPjxOnLxUl3KIou9j7YsUg+ZXJClJ9SDJSxW5lGFLFOEKmTR515PjFCPfAxlk6Oph+zSSy+Fx+PB//7v/8LpdKKurg4XXnghfvSjH6Vr+4gsIoV6JDiYafmRhEI9spsAlUmvdLqRV8iCPA9DxCBFtVHvbLBirAoZI9XPzmE1odhihMsbEGaRVSU/iyzZoJF2lxfyNTQ1M9wIgsgf9nUJdsWxFfGrY4B+gUZaRodoSVkMKIR6UIUsE5ZFqpAlC+shUxwMHaOHLB9D2eRoEmQcx+Gqq67CVVddla7tIXIIVjFJdDDT8iPJtmVRDvNKD3VYzxcPodKjVOFila3fbNguWVoYI0qtOGVCJf7134NhzxePVD+7mhIr9nQM4GiKgizZoJEjvYJdscxmQo/bD48/CK8/SKvKBFEgsAqZmv4xvQKNtCxeJpuySKEeIdJvWaQKWbKwlMUBbyBqITlWymI+hrLJUSXInn/++YT3WbZsWYqbQuQaag9mWn4koZTF7MTe5yNmowFFZiMGfAH0xhBkgCDKnh1Zgs37e3D2tBGYPbYcd726A4d7Pfjrpv043CtEQB/t8wiRsmmsFtY6REGW4iyyZAdasv61+upibDnQAx5CH1m1aWgeyAmC0MY+MdBjbIL+MUC/wblaFi99KqK/TWLghy9APWRK2NM8GFqqkBXTeUMrJbKF5AFvIGymX6xFhWwMsM4kqq6KV61aJf33kSNHMHz48LDbOY4jQZaH2KSUxfiWRS0/kn9tOQQg+5bFfKPUZsKAL4Aetw+jEfsCo2tQsObNa6zC3HGV8AZ4/GrDdqz5cL90n1Xv7MFT/z2YVJSzWvQK9lBrx4wUl0dE8Tm81IoSmwm9bj963T5U04mVIAqCvWKFbKyKClmyx5lItCxeSimL8SyLrIcsKOshUyHkCgW7yraLZOl0UYUsWawmYdQMyxaQC7JYKYt6/Q5zFVW/2ObmZul/xcXFYf9ubm7GG2+8ke7tJLJA6GAWf3XJaOBw0oSquPdhPxIWe58LlsV8glXFEvVCdbjCPe+xZtwkG+WsFj2TFpkdM/IgHC9ohL3u8BKrFIpCwR4EURj4A0Ec6BEWZdT0kAH6BBqpDVg6bmSpVCUwx7m4VB4MrRyIUIjI55CxFGE96aQesqThOA4Oq/D9RA6HjpWyCORfKJsczb4xjhuaypPQjtpQD18giA/2dAIAHFYj+mVzJWpLrLhmfr30IxnIgZTFfCRR0iIgNH6zmOeqIrPQYP7mrrjPyxrM9V5xqikRDqZtOg2H/lZDFYwcwPa8MRU2rF0xK+Z2M0FWW2KV4ndjjQ0giHwiEOTzIswoFQ70uBEI8rCbDdJcRDWkGmikdoUfHCeFDpnjpiyKc8gC0T1kNhJkUqgHDyHsxKbjdQfP85SymCIOiwk9g/6oWWSeBEmh+RTKJocaeYiYqA31WP/FERzp86C62IJnfzwLj72/B0/+9xCOrXXgr+fPCPuRuHIkZTHfKLPFn0UGCIOjgzzAASgvsmhqMNc7/ETPChkgCDuv7KKkw+VDvGMzm0FWW2qTxCwJMiLfaW5x4v7mnWG/+xqHJa325FyE9Y+NqSiKSqVNRKqBRmyFP973IHelxBVkihUysiwybKbQdcagL6CrIOvz+KXPvYIqZEnBnFKRs8jUBNPkSyibHPrFEjFRM8PD6w/ib5taAQArZo9GkcWIhU3CoHCnyxu1YpFLKYv5RJk9cYWM+d3L7GaYDFxWI2RrS2wA9BNkrd3CBdbwEis4ThD+3XE+izZZhayUiVkaDk3kMWz+VeQiTLrtyblIKGFRnV1RbxY0VmP9pXOw+ntTYRVt4w+cNUUSxV7ZXLFYtnIgviCjUA/hop19DgMxFpYDQR6ftHbjlW1t+KS1W/VQYXY+dViN9FknSTGzLEZWyGL0kOU7VCEjYhIK9Yg+kDHby4tfHsXRPg+GFZuxbNoIAEJyHSCc6HsGfWGpfwOUspgWylRUeTokv7vwfWQzQpZZFl3eAPo9/rCG3mRoFWcKNQwrhsHA4VCPG63dbsWVy0FfQOq1C+8hiy3gCGIoo2X+1VC3/ahhX5cY6FGR/MiNVDEaOBw/pgJNNSX4/HAv9nQMoKnGASA8NTHe98EEmS+gEOpRYBezsbCbjfD4g4oLy6lUjDsHqX8sVRzidaCWHrJ8RtVV0IIFC6Tesb6+PixcuDDqPhTskX/YTcqhHkoHsUF/EO/v6cSCxmo4rCaMLLXiUK8HO50uqazM8zxZFtMEq/L0xBEVnRERvdmMkC22mKR+w7Z+T8qCbH+X0KA/usKOAARBdqB7ENNGlkbd96g4g6zYYoTDasrLHjLqEyLkZNOenIvs1RB5n24ahhXh88O92NXhkv7mkw2Fjte3z+yMShUy6iETKDIb0D2ofB2j1MvHKsaJAiIoYTF1pApZxFiCQl1UUHUVRIOgCxMpZVEWex/rINbvCYQdxBqGOQRB1h4SZN4AL9kByLKoL5JlMY6oYCeQKvEEku0I2doSK/o9wnDoCVXFKT0XsyyOKbcDRgM+3N2B/WLVLBJ5oAeAvOshoz4hIpJs2pNzkX0aIu/TTYPoKNnZLhdkwnkyUYUgbg9ZgV3MxsKmMItMj4oxJSymTrFYIeuPaBeQZulRhSyas846K93bQeQgVnN4qIeWg1hDdRHe2dWBFmfoJDMgK0vbKWVRV6QKWbweMoUTSKwG88h0zHRQ47Bil3NAl6RFZlkcXWGDQTzIH+hWFmRH+kIzyICQIOvLgx6yVFd9ifwkm/bkXKN7wCctXKmNvE8nzOK/S3au9IlzxUwJFsOkOWQyyyL1kIVTZInuhdejYswSFiuoQpY0zBkTVSEr0EUFauQhYhIZ6qHlINYwTPDCy08y7EdnEwcCEvqhrodM2WKRrQhZvZIWA0EeB3pEQVZuh8km7K+t3W7F+0dWyEokMTu0BRn1CRGxyKY9Oddg/WPDS6y6pu4lCxNkh3o9cHn9KLaY4POzodDaK2Q0GDocmzk0i4yhR8WYLXBWUYUsaZhTKjLUQ03KYj5SWO+W0ATzoAeCPPyBoKaDWINs1S8oDmQcoP6xtFGmpofMFd5DJodFyC6eVIOZo8szcsHO5v+09aVmkzra54EvwMNs5DC81IZx1YINKVaFLFKQlUkVsqEd6qFlwYQoLJg9OR7ptCfnEnulhMXs2xUBoNxuRrV4TN7tFLaNVcjiJSwCgMkQOkczQj1kdJ4FQjNP5YJMj4pxF1vgLKYKWbJIgiwi1KNQUxYL690SmpDbCgd9QU0HsdEVdliMHAZ9QRzqESoVFHmfPlgPWb8nELZaKodZLHJlRU+vChmzK9aV2WA0cBgjXmj1uv2K0fdHxFCP4WL0fr6EelCfEBGPBY3VOGFsedTfa0usBWVl3ZdDgR6MenERaafoKGE9ZKZkKmQFaveKhd0cPU+VVYzjkahi3OFilsXcOJ8ORYqtoesWOYWaslhY75bQhNnIgS3Quf0BTK8rS+iXZgcxk4GTghpaxGZlF0Xepw1muwNix7eHUhZzY0VPL0G2vztkVwSE/WuYeLJVqpLFC/XgeXUzaHIR6hMi4uEP8vi6TTgWnzShAgAwvrII6y6ZXTBiDAhVyHIh0IMR2UfmlaUsxoP1kMlj790FaveKhZJlUY+KcciymBvn06GIwxqjQlagiwqa3+3atWtx5plnYs6cOTh06BB+/vOfw+VyJX4gMeTgOE52MAuC4wBHguqW/CBWPyw8PYosi+nDZOCkg5tSL1SQ56UKWa6kQtU6RMtivz4VstGyBn0mzlojBBnP8wqCTDih+oN8WKLoUEOPVV8if9lyoBtdgz6U2Uy4eNYYAMJFaiHYFOXsE48XuRDowWiIEGR+lSmL5ogKGc/zVCGLoMgcHeoBhAKtmGWdobZi3JVj59OhCJtD1h8j9r7QUhY1vdsnnngCf/nLX3DRRRchEAiguLgYbW1tuOeee9K1fUSWka8u/efLo2jtdsNqMkied4bSQayRxfk6mSAThAJZFtNDvFlkvW6/1GeQK3NTasWUQzYcOlmkyHu5IBP/+0BXeLBHj9sviS7Ww2Y3h0JmhrJtkfqEiHi8/rUTAPCtxmqMKBPsuu0ub1j/Ub7jCwRxUDxe5EoPGRCqkO10DoDneanixXrEYsFuD/LCopsvwIN9m4V2MRsLybIYcdEPCKLsRyeMkf5dZjOpqhi7fQEMiBU3SllMnlCoh3KFjCV9FwqavGNPPvkkHn30UdTX1+O+++5DWVkZVq1aRbH4eUogyIMTD+8f7u3EPz8+AAC47Jvj8INv1CVM5WuIEGTSUOgcSLbKR8psJhzqUZ5FxuwVpTZTwuSuTGE3G1FqM6HX7ceRPg8akhwOzeaNsaqY8N/CBWdkhYxVxyqLzJKlh+M4lFpN6Br0odftkypnQxG26nvHy19HrTqW2kw4cVxFlraMyCb+II/mFkGQLWoahqpiCwyccIzvGvCi2jF093ktHOx2I8AL56BhOWTdnVBVBA5A96APnQM+zZZFQKiqeWXWRbIsCtgVLIty2HxOQDh3+gJBGA3xr1E6xPOp1WSgBeYUKFaIvQ+r8ubItUqm0PRuu7q6MH78eACQei2qqqrg9w/dVWVCmeYWJ5as2QSneLB65N296Br0Y5jDgvNmjFSVytcgWhZbuwaFFSWyLKYVlrTYq1AhYyedXKmOMWqYbTHJPjJ/kMdBMTRGXiEbFcOyyAI9IkVXPg2HXtBYjW81VEn/versKahxWNDr9uPprYeyvHVENvhvaze6RbvizDHlMBk4yeVwtIBCXkL9Y3ZwXO5Uim1mo1TV3+l0SRZEtYOhgXDLNYfEYq5QSCTInK7wc8/h3vjnokCQx4d7OgEIwr6ACsy645BSFgNSGrc/KKvyFtiigqZ3e8wxx+Bf//oXAEgHsw0bNqCxsVH/LSOyBhsuqxSh3d7vxbu7O1U9T1WxBZVFZvAAdnUMkCBLMyxpUamHTGkodC6QarDHkV43AkEeVpNBsiACIXHG+ssYkf1jDGk4dB4IMgDYJ1o1T504DHPHVeKyb44DAPxt0368u6sDr2xrwyet3QVlVytkXt/RDgCY31gtXcSz30u7DoPZhwqsf2xMDvWPMSZUCRbKXU5XyLKYMPZeLsiCYf1juSQ4s0nkPNVIIlNnD/Yoj0sBQgvV976xCwDQNejDkjWbpOozoY1imSuGXR96ZH3cVCGLw8qVK/HHP/4R3//+9zEwMIBLL70Uv/3tb3H99dena/uIDKN2uKzaCznJG9/eL3muqcSfHkrjVMg6crQBubYktQrZflnkvUF2AcIqZD1uf9jnEUuQleRRhYzneakSMF7skznt2FrUOCzo8wRwzfNf4tYN23HZ2s/oYqIA8Ad5vNnSAQA4tWmY9PdhOoXqDCVybQaZHHmwhzegbjC03JniC/AFO1A3HnZL/ApZuzifk40/OdjtVrxfrIXqtn4vVq7/io6jSWAxctKiAusj9xRwlVfTr3by5Mn4z3/+g4ULF+J73/sejj/+eKxbtw7HHXdcuraPyDB6D5dtHBZqVpZ6yCj2Pi2wtCjFHjLxpFOVI5H3jJoS0TaVpCBrjbHiXWQxoqqYRd+HTrBH+4T/Hl5qC7u/JGZTCBfRg0CQxyet3SlVsDoHfOjz+GHgQuEmb+/qUPxd08VE/vNJhF2RwRI5j6Y4mF0LeuzfqRCaQZaDgkx2rmQVskSDoTmOC5tF5iFBFoXSHDI5rEJ2XF0pAEgWeDl6L1QTAhzHyYZDC98P64MsxCqv5ivj2tpaXHrppenYFiIH0Hu4rLxCxoQYWRbTQ6ldTFmMY1nMtUSoVC2Lrd3RgR6M0eU2dLi8aO0axLHDS8JeJ8qyaGWWReUZbpmgucWJ+5t3hgmnGocF1y5o0DQnilUBRpbZYDUZVF9MzKuvogTGPCIQ5LH1YA+e2LQfAPCthqowi5tUnc5QhUyv/TsZAkEeWw50Y6ezHwAwptyW4BGZp16c27nb6YLXL/SAJhoMDQi2RX+Qhz8YhCdQmGEI8YjXQ+b2BdAnLsIdN7IU7+3uVBRkWhaqZ44uT32jCwiH1YQet18SZIW8qKBJkB1zzDGKitVkMqGyshLz58/HjTfeCJst9w52hDr0Hi7LKmQt7S7pv4spZTEthCpkCqEeOWpZrEnRNrVfYQYZY1S5HVsP9oYFe7BQj+ExLItK1cVMwOwwkbAKlpq5OIxIWxZdTBQeSuLn7V2dOLHFKe1H7LfXngFBpuf+ncxrR34Wv3z+S1yXASGohVEVdliMHNz+IPaKxzWzigUSk5ED/ELKoscvXNQW4sVsLJggG1CIvXe6QmmJE2sdAJR7yPReqCZChCpkwrm3UBMWAY2WxRtvvBHHHHMMHnvsMbz44ot4/PHHMXXqVFx88cW47bbbsGvXLtx3333p2lYiA+g9XHZ8ZREMnHChyy6eqUKWHsrsrIcsWlR0uHI/1IMlt2pBaQYZg/3tgHifQJCXLj5zKdRDbzvMXmbLqhAEGV1MFBaxel26B31h9tRhol042f5NtWTT7hXrs2jPQauuycBhvFgl2360D4C6i1I2i8wf5OH1C58hCbIQTJC5/dGhHuyYV11sQV2ZcL442O2OOhfpvVBNhGDBHv2e8ApZIQ421/SO165di0cffRTz5s3DhAkTcPLJJ+Ohhx5Cc3Mz5s+fjwcffBAvv/xyuraVyAB6D5e1mY2SnYydFEmQpQepQjYYu0KWaz1kTBgN+oJY9/kRTX0l/kAQh0V7iZJlMRR9L9ynw+VFgBf28aqIweZS7H0Wesj07tvc2yEGelQJ758uJgoHLeInVJ32JrUYoha992+1DMW+n/pqYRFlj/gbTpSyCCCih4wqZJHE6yFjFbLqYgtGlFrBQRBu7HzJ0HuhmggRORya9ZAV4mBzTe/46NGjqKysDPtbWVkZDh8+DACorKyE262cUEMMHdhw2cgDUG2JNSlrCbMqMihlMT2E5pCFiwqeF4a/ArlXIftgbxfYJcddr7VoSv472CMMebWZDIpDXqXh0GJl9ohYCahxWKIWFEqssauL6UbvClakZZEuJgoHLeKHpSx6/MG0WnWzVaHNlhBMBZa0yDRiopRFQCbIAtRDpgSrkPkCPPyB8CoZS1gc5rDAbDRIC4SRfWR6L1QTIRwRw6ELuYdM0zueMWMG7rjjDng8woWNx+PBvffei+nTp4PnefzrX/9CfX19WjaUyCwLGqux/tI5eOzcabjztGPw2LnTsO6S2Ul57lmwB4NSFtMDq/IM+AJSShcgHOhYjHIuDYZmdqLI9Wm1yX9SoEeF8pBXViHrGvSh3+OPGegBhKqL2Qj10LOCNeANSMKTJcnRxUThoEX8WE0GVIg253TaFrNVoR2KVt3Ic2WilEUgFA3uD/Lw+ArX7hULuSMnchaZZFkUFyfqxEU8pT4ytlBdYg2/fkl2oZoQiNlDVoD7sKZ3fPvtt2Pr1q2YOXMmTj75ZMycORNbtmzBbbfdhk2bNuGBBx7AypUr07WtRIYxGjjMHF2OxZNqMHN0edIXbJEVMrIspocSm0mqNslXvFn/WLHFCFuOBKroYSeSAj0U7IqAsPLGBOiB7sG4giybc8j0rGDt7xKqYxV2M8rtIfGtd9WbyE20ih9WWW5PoyjJVoV2KFp1IwWZugqZrIdMXIizFeDFbCzMRoN07TIQYVt0uoRzQrVoYa8rEwVZjFlkCxqr8e2JwrHypPGVKS1UEwLFlvAeMnnsfaGhqVRRV1eH9evXY8uWLTh69ChGjhyJ4447DhzHYfjw4fjwww9hMBTeh0jEpyFCkO1o60fF2ApakdcZA8eh1CZEyPYM+qSTTChhMXeqY3ok/7XGSVhkjCq3o3PAh9ZuN470CifZ2pLoFFgp1MPjR5Dnw4ZMpxtWwVJKoWOorWDtYXbFqug5SwsaqzGvvgrPfXYI976xC5VFZqy7ZDb9DvMIJn7i/bbk4qemxIod7S4cTWPSop77txa0fha5QI3DghKrSYpiN6lNWQRLWSzci9l42M0G9HsCUX1kbCGCLUxIwR4K0feMXWJ/37cnDaNUWh1wWMMrZCx8hXrIVODxeFBXV4fp06ejpqYG+/fvx2uvvQar1UpijFBk+9F+yE8rv/j3F6r7hAhtKCUtduZg/5gediIpYTFGhQwI9ZElrJCJNpQgrxyPnG4WNFbjju8eE/V3s5HTGHkvfCbjKpU/E6OBwwnjhD5gty9IYizP0GpPlWaRpTlpkVVoI/tC0lmhHYpWXY7j0FAdWkxRl7JIg6ETURRjFpk81AOQVchiCDKe59HS7gIANFY70rKthQarkEmDoQt4UUHTO3722Wcxd+5czJ8/HwsXLsTChQvxne98B7fffnu6to8Y4jS3OHHjC9uS7hMitFGqkLTY4RIrZMW5I8j0sBOprZABgr2RCbLhpdGCzGY2Shcx2bAtAsCIMmG7ymwmXDtf6MX1BXhMFodaq4ElLLJADyVY+MuALyBdwA0lAkEeH+/vxrqtB/HxfvWpnIUCEz+R7UdK4kdKWkyzIGPbNW1EaF+++dTGtNu9hqJVd7ysun2oZzDh/h0SZMGQ3asAqwvxsMUSZFIPmSjIWA9Zd3QPGSAEQ7m8AZgMHMbGWPQitCFVyCIsi4W4qKDJsvjYY4/h6quvRnFxMT766CNcfPHF+MMf/oBvfvOb6do+Ygijtk9oXn1VTq1SDmWUkhZDFbLcsSymaify+oNSeEU8Qcb6yxJVyAChSubxe9Hr9mFkWeaH228/2g8AmDqyFN//Rh2ad7Rjy8FevLKtDT+cPVrVc0QmLCrhsBph5IAALwj3mhifRy6iNOS3xmHBtTk25DfbfHN8JViS/fUL6lFfXYzpdWVRx9lM9JDJ6ZYdl0aUWTNy3GdW3W+v/hC9bj9uWdSIM6cMz8lzTnOLE6993S79+5//PYTXdzjj7t/KFbLc6BXOFUIVstAClNsXkKyhw4rFUA/xuN/e74XHH4wSBaw6Nr6qSFV/H5EYFurRL1oWPWRZVEd7ezsuvvhizJ07F/v378fkyZNx99134+mnn07X9hFDmKEYOzzUkSpksrRAJsiqcsiymKqd6GCPG0FeONFWxRGaTKzt6RiQeuliCbLSLAZ7AMD2NkGQTawRrDDfPbYWALBh21FVc6L8QV4KOoknyDiOk6ytPVlIlUyWWEN+qdoezb7OAQQhLDJ8b/rImKFMTIyns4dMTresct89mLnfmdHAwS8mzaYSUJVO2P7d5wmv4iTav43ihasvIBdkuff+sok0i0xmR2d2RavJIFVpyu1mFJmN4AEc7o22Le4UBVlDRPgKkTxS7L2HLIua3nFVVRV8Ph9GjBiBPXv2AABGjhyJjo6OtGwcMbQZirHDQ53QhbasQiZZFnOnQgakZifa3xU/8p4xSrSgsM/DZjJIEfeRyIM9ssHXoiA7RhRkpzYNg8XIYZdzADvEC4F4HOpxwx/kYTUZFG2Zcth+0q0wRDwXGYpDfrPJrg5hf6mvLor7+6jNoGWR5/mw/a0rg/sez/OSXY1dnOcSqezfZpllkSpkyihZFiW7YrFF+o1wHCeLvo8WZFL/2DASZHoRGXsvBdNQhSw+06ZNw69//Wu43W6MGzcOTz75JJ577jmUl5enafOIocxQjB0e6ij1kOViqAeDzbtjVpErTxqnqq9EmkFWHt9aWGozhwmw2hJrzAtUFuyRjQqZxx/EbrH/65haQZCV2Ew4ub4KALDhq6MJn2OP+PixFfaEKZHlkiDLjvjUClXbtbHbKewLkTHqkQwrEY4JLm9AuiBKFy5vAL5ASFBkcjHA4w9Kfcz2HBy7ksr+HRoMzRd0dSEebNROmCBzhScsMuJF3+90CotmkcnRRPJEhXoECrfKq+lXe9NNN6GzsxMulwvXX3897r//fvzqV7/C1VdfnabNI4Yy2Zo/U8go9ZB15GDsvRyjgZNWHIssxoR2okCQx5YD3QCEyOdEVRF5j1ksuyIAlCokVGaKXU4XAkEeZTZT2DZ+d1INAOCV7e3wJ3if+8T+sfEKkfeRMEHWM0QqZFRt18Yup7CSPyHBvlBsMUkr1O196f3sIgVY90Dm9j23rHfIloPVo1T2b5MxNIeMUhaVsSn0kLVHJCwyRpYpD4d2+wKSM6ORLIu6USzF3gcQKPA+SE2/2o8++ggPPfQQampqcPzxx2Pjxo346KOPcOaZZ6Zr+4ghzFCMHR7qlCn1kIknnqocSlmMZGSCuGFGc4sTS9Zswju7OgEAL29rTzhCYZQsoMNkiC3gSrNYIWP9Y8fUOsIqeCeOr0SZzYQOlxcf7++K+xws0GNsnP4xBttPhoplkart2mCzkhJVyIDM9ZF1RQiwTFoW2UBgq8mQk+ebVPbvsFCPQOEGIsRDKfbeKe7v1Y7wRTo2i+xQxLloT+cAgrywmJXL59KhhsMScrAM+gIFPRha0zu+/fbbw2aNmUwm2O0U/UnEZijGDg9lyuzhomLAG5AGLeaiZZEhDeRUsIkwkgl1aG5x4t3dndK/P9jbFVPAlUg9ZJkXKV8fZYEe4RH3ZqMBiyYOAwD8/aMDeGVbGz5pVY56Z4JsvApBVj7Eesio2q6eQV9AuphMVCEDMtdHFlUhy+C+xy7EbTl6kZfK/q2UsliIF7PxkEI9lCyLEeIqVg9ZS5sY6DGsOG5fJqENi8kAszijo9/jD9luC3BRQVPs/dSpU7FhwwYsXbo0XdtD5CEsdnjrwR44+72odlgUI5iJ1Cm1hVvRWP+YzWSQfPS5CDsJHlJItgLUN71/q6FK+jcTcJEwARe5IJArFbJImIVx8/5ubN7fDSA66p3nedlQaA2WxSwlSmqFVduVvk8GVdsFWC9iZZEZFSoWYWrEPrK2dFfIxGOS1WSAxx/MsGVRuBDP1WNgKvs3E2S+QFC6mCXLYjhKoR7tETPIGKyH7FCPGzzPS+KrxckGQpNdUW+KLSZ0D/rgki0gUw9ZArq7u7Fy5UpMmzYNCxYskIZDL1y4MF3bR+QJRgOHmaPLsXhSTc7GDucDrELGLrQ7xFXAXBoKrYS8kVop4l1t0/uWA0LTezKpZaX27AgyfyCIne3hCYuM5hYnHnlvb9RjIquCHQM+9Hn8MHDx57Ix2H4yVCpkgLCw87OTx0X93WoyULVdhtQ/pvLCcZhYIUv3LDImwNiCQSYti6x3iF2Y5yLJuknMSj1kBVhdiAezLA54lVMW5YwotYGD0NPUIws9YsdoCvTQH2kWmbxCVoCLCpoqZBdeeGG6toMgCB1goR4efxBuX0CavRVvVlcuMKJUEGQDvgC6B31RK/uqm95FAbrlgPrUspmjywEApVbhM+rLsCDb0zkAb4BHscUoVQoBbYPVWaDHyDKbqtXxoRbqwWCiYdaYMpxyTC3uf3UHTAbglPqqBI8sHJggq1dhVwRkPWQZsiyOq7Tj67Z+9Lp9CAT5jCzODUiR97kryIDk3CRyy2Iooa7wLmbjwSyL8nCXUMpieA+Z1WTAMIcFbf1eHOwZRHmRGTzPS5H3TSTIdEeaReYNyPbh3P6tpgNNguyss86S/ruzsxOVlZW6bxBBEMlTbDHCyAEBXqiS5XLkvRyryYAa6STojhJkqpvexdVOdrJNhFzolUiDoTMrUtj8saYaR1hcvZYobBZ5r8auCAxNQeYPBPHq9nYAwIXHj8YZx4/Bmnd2o9ftx/ajfZgyojTLW5gb7NYQ6AFkroesazC8QhbkhcWP8gwsFrlzeAZZJMxNohaTMRR7Tz1kytgjYu/dvoA0bzKyQgYAdeV26Vw0eUQpnC4vetyCA2F8FQkyvQnNIgsUdJVX0zv2+/144IEHMHPmTCxYsACtra04++yz0d7enq7tIwhCAxzHSX1kvW5fzg6FViLe/Be1Te8zRglN70onWSXkQo/NcOvN8GDo7UeV7YpaorBZoIdaQcYqqUNlDhkAbNrXja5BHyrsZswZVwGjgcPx4oXr5n3dWd22XGK3ysh7RqiHLDOx99XFFmnmX6Yss4NDpEKWDCbFwdCFdzEbD7spXJCxBTuryQCHNXqfqItI/WXVsbEVRfTZpgFJkHn8spTFwmtr0bRnPfTQQ9i4cSP+9Kc/wWw2o6qqCsOHD8edd96Zru0jCEIjUh/ZoB8dQ6RCBgAjy8W4YYVgD60jFGaM0p5axgRZvyeQcLaZnnwdI9BDSxR2SJCpS71lFbIBX2hFMtd5aZswHPvbxwyTLkJnjy0HAGxOMBKgUOhz+yVhpbZCxixb3YO+tO4LLPa+osiMCrEqlqk+MtZDls+CLBDkKdQjBqEKmfD5sMWuYQ6LYmLiyIjFwZ3toYRFQn+KxQWaflmFrBBTFjW94xdeeAGrVq3CSSedBI7jUFRUhHvuuQcbN25M1/YRBKGRsAqZNBQ69wVZvAoZIPRX3HX6MVF/V2p6T2YGHktZBCDZWdJNkOclQTYxokKmJQpbS8IiADisgrUVGBq2RZfXj7d2dgAAvntsrfT3OWMrAACfHeoNS1ArVHZ3CBeOtSVWqS8jEWU2k3QB357GpEVWDSu3m6UKbeYE2dCxLGrFJI4i8gV4ePyheWtECCbEWS9hrKHQjLqI4dBSwiIJsrTgkFfICnhRQdM7HhgYkPrGWBKazWYLm01GEER2kYb+uv2yodBDyLIongSVYEOPi80G3HHaRDx27jSsu2S2YgKZ1tQyk9EgpXFlKthjf9cgBn1BWE2GqIHOakTlVSePh8cflAIZ1AoyjuNQJkXf574ge6ulAx5/EGMq7DhWVkkcVW7DiFIrfAEeWw/2ZHELcwMp0KNa3X4ACPsC+42kM/peLshYhYwsi6nDesg8/gACYmG/EKsL8QiFeoRbFquLrYr3j7QsShUyirxPC8WyUI+Q7Tb/fquJ0BTqMX36dDz88MP45S9/KZV5//73v2Pq1Klp2TiCILRTKl5o9w76pFCPihxPWQSiT4JKsAvOptoSfGdSbcz7MbSmlpXYTBjwBTLWR8YGQjcNK5asR3KYqLy/eWdYj4+BE0IRPj3UA5dX2NYSq1F1VQQAyuxmdA74hkT0PbMrfndSTZjFiOM4zB5TgXVfHMHmfd2YO66wg6Z2OQXr6gSNwQM1JVa0drvR1peePjKvPwiXGDleUWRGORu7kKFZZIVgWXTJIt0LsboQD3tE7L1TXHiIZQuvE+3zR/s8GPAGsEe0hFOFLD2EQj0Ku4dMkyC7+eabsWLFCjz33HNwuVw47bTT4HK58Le//S1d20cQhEZYhUxIWRx6lsWjfR74A0GYFFZ5tUZ6A9pSy0ptJhzt82QsaXF7DLuiHCVR6fYHcPW/v8TTWw9L9+vzBLBkzaawgdHxYH1kuRrsEQgKVa/dHS4ptOM7k2qi7jd7bLkoyKiPbFeH9goZANRIs8jSUyFjot9o4FBiNaHcLhyPMm9ZzENBJh4n5YKMUhbDYd+72x9EkOdDkfcxLItVRWZpgPnGvZ0IBHk4rEbUlihX1IjUKLaE+re9lLKojjFjxuDFF1/EjTfeiF/+8pe44oor8OKLL2LChAmaXnTDhg049thjMWPGDOl/119/PQDg008/xfe+9z3MmDEDCxYswNNPPx322Oeeew6LFi3C9OnTsXz5cmzZskW6LRAI4N5778WJJ56IGTNm4PLLL0dbW5t0e0dHB6644gocf/zxmDNnDu666y74/aGLkUSvTRBDAdaf0d7vkU7SVUNAkFUVW2A1GRDkgSMxIrhZBUBtYIFWWLBHpiyLsfrHIokcrO7xK4eORA6Mjock3HOwQtbc4sSSNZtw2drP8Ps3doEHYDZw2CFah+QcP6YcALCj3YWugfQmBeY6u5P8fbBgj3TNIuuS2RU5jsu8ZVE8DtrysodMqCSw6o/ZyIWNzyCAIktIiHv8QWmeYawKGcdx0gIh611trC5WDAAhUoclXfa4fSHbbQEuKmh6x3fccQf27duH0047DZdccgnOOOMMOBzxLySU+Pzzz7F06VJs2bJF+t8f/vAH9PT04Kc//SmWLVuGjz76CHfddRfuuecefPbZZwCATZs24Y477sDvfvc7fPTRR1iyZAkuv/xyDA4KPSerV6/G+++/j2effRbvvvsubDYbbr31Vul1r776ahQVFeHdd9/FM888gw8//BBPPPEEACR8bYIYKrCURTabymzkFKN9cw2O46LSrSIJ9cikR5CxOO7eDAgyXhboEZmwGA+1A6MTJUWGKmS5JciaW5xYuf6rqBh2X5BXFJuVRRbJSvTR/u5MbWbO0TngRdegDxyA8Sp7CRm1aY6+Z9ZEZlXMvGUxjytkkmVROGaRXTEa+Wcy4A1IKYvxxqMwQfbe7k4AQMMw7de6hDpYhaxTdjwoxD5ITe+4o6MD5513HpYvX44nn3wSfX19Sb3o559/jilTpkT9/dVXX0V5eTkuuOACmEwmzJ07F2eeeSb+8Y9/AACefvppnH766Zg5cybMZjNWrFiBiooKbNiwQbr90ksvxYgRI+BwOHDLLbfgnXfeQWtrK/bt24fNmzfj+uuvh91ux+jRo3HFFVdIz53otQliqMBSFvd1CQsVlUXK0b65SLxgj36PX6qcqZ2xpBVpFlkGBNnhXg963X6YDJymnh8tA6PjkYuCLFmxOUuskhXyPDK2WFFXboNNo/CoSfNwaLaPVYj7XIVoWcxYhUy0QRXltSATRGchXsgmwsBxsImibNAXCFkWHbEtiKyPjCXuUuR9+mALxl0yQVaICwuaesgefPBB9PX14YUXXsBzzz2He++9F4sXL8Y555yDWbNmqXqOYDCIL7/8Ena7HX/+858RCAQwb948XHfddWhpaUFTU1PY/RsaGvDMM88AAHbu3Imzzz476vbt27ejr68PR44cCXt8dXU1ysrK8PXXXwMAysvLUVsbCgKor6/HoUOH0Nvbm/C1tTBErn0LBvZ9FMr3wlafWVpRVZF5yLx3JsgO9Xqitpk1Vg9zWFAeI6Qk1e+a2T37PP6o5wgEeWw50AOny4vqYgtmjIodDpKIQJDHhq+EoIoRpVaYjJzqbWYXE2ruF+85mSDrdUe/12yhRWwurimVtnvO2Ar885OD2LSvCwA/ZBYg9GR3R8iuqPXt15aGesjS8dF1u9kMMgs4DmFzyBK9nh7Hb5auZ7cYc2Zf1wuzmLLo8oi2TJNhyL7HdJ6riyxGuP1B9Lh9ksiqKbHEfK2RZeFirbG6aMh+rrlG5PcsWRbFBRqLkYMhyXNrLqJ2v9EkyACgpKQE559/Ps4//3x8+OGHuOWWW7B+/Xps27ZN1eM7Oztx7LHHYvHixVi1ahW6urqwcuVKXH/99Rg2bBjs9vDBpjabDQMDwonG5XLFvN3lElYHi4qKom5nt0U+lv2bPT7ea2uhqqpE82OI9FMo38tYb/hw1+EVRaiuHhrvvamuHNhyCM5Bf9Q2H90thDZMGlmW8P0k+10PFytVXiDsNV7+4jBuf+ErHJYlQI4os+E3Zx6L70wZoek1Ip+rtduNZX/5SPVz1Y9UJ8jqR5bH/ZxG1Qi3uQJ8zuwfngO9qu7n5oTVU/Y9n1pih3ndlzjS54GLM2JcAcZTH+wXLmamjq7Q/H0eYxEEktPlRXlFsWKgTip4IFyRsGPRBINwAdY96ENVlUOVgE7l+O0VK6rDqx05s6/rRWW5YHtmM7bsVtOQf4/pOFcX20xCqqxofrCZDRg7slxx33v5i8P426bWsL/d9OJ23L5ksubjPREb9j2PFo/nzPfw/7d359FN1fn/+J9ZmqV7S6GFCqhtWVzZFzek2OHzUUQGUfzIMOL8xg10VGRRYUZcUJgZFRmVYQBBvzjOETeWUUEtKAcpUBBQEWgrSynQNt3TNm2W+/sjubdJtyRN0twkz8c5c86Y3CY3eSchr7xfizZKFfKv4a7wOiCrr6/Hl19+ic8++wxHjx7FzTffjBdffNHjv09JSXFJA9Tr9Zg/fz7uvvtuTJ06FSaTa+2IyWRCTEyMdGx71yclJUnBlFhP1vrvBUFoc5343zExMdDr9W1SMJ3v2xsVFXUQOi/foG6kUNjf+JGyLoLJ9Qt7rFoBg6Fr6cXdLdHR6vbXsro253zktL24ul+8tsPH4+taq6z2LzVl1Y3SfeSeNGDBlmNtjr1QY8LDGw/hr5OvQPYA910N/XVbl8dFoVesptOdpNQ4LS6Pi+p03dWOhkblNY2yeX1obTb3BwHQCfbjnNf56t7xOHSuBqtzT+LK3vE+72KGmp/PVQMA0qLVXq+nYBOgUipgtQk4cbbS793kShzdH3UKAQZDHQRHel2TxYZzF2qg13ScSuiPz2+j45f35oYm2bzW/aWx3vU7kVoROp/3rQXy32qtY17uz2ftNWEpMRpUVBjbHNfRZ3RpbZPXn/fUvtbr3NyqGZNGGbqv4faIj9cdrwKyp556Crm5uUhLS8Ndd92FN954A8nJyaisrPT4No4fP45t27bhqaeekn6ZaG5uhlKpxDXXXIN3333X5fjCwkJkZWUBALKyslBQUNDm+ptuugkJCQlITU1FYWGhlHpYXl6O6upqDBgwADabDdXV1TAYDEhJsb+ZioqKkJaWhri4OAwYMAB79uzp8L69IQiIiC/+oSZS1kWsIRMlR2tC5nH3cZpF1vqcC6UZS9FuH09X19q5qYcg2FML/+6mpunVnUW4KaOH2y/+/rotpcI+MHphO18aRHPHZ0CpUHT6HIivk5pGs2xeH0PSEzwKNoekJwBwXecejgL9Dw6dB3AeANArVuPxGIBQJggCfhVb3veI8Xo9lQoFesZocLGuCaW1TVJNmb+0NPWwfxbp1EpoVAo0WwVUNpjRx4PaLl8+v8U5ZLoolWxe6/7S+rNCo1KG/GMMxL/V4nDos47a6p4xbf9d9OfnPbknrnN0lGsoolGH/mu4K7zKS1Cr1VizZg2++OIL/OEPf0BNTQ3+8pe/IDs72+PbSExMxPvvv4+1a9fCYrHg/Pnz+Nvf/obf/va3mDhxIgwGAzZs2ACz2Yy8vDxs3bpVqhubNm0atm7diry8PJjNZmzYsAEVFRXIyckBAEydOhWrVq1CcXExjEYjXn75ZYwaNQr9+vXDpZdeiuHDh+Pll1+G0WhEcXEx3n77bUybNg0AkJOT0+l9E4UKnVop1RUAQHInnaTkpk+8PSCrNVnatJ7/NcAdFgGntveOGgN/NdDw922JA6N7tWrbnBqnxfLJV4TsHDKV0h5sdmbu+Iw2X4ZyCwz46kR5m2O9GQMQysqMzTA2WaFSKtA/We/+D9rRKy5ws8ha2t7b318KhaJbm8q0dFkMv0YBrQfKa8PwMfqD2Oim2NHBt0dM2x8d/PkZTZ7TOH6gEUViQw/Ayx2y5cuXAwDy8/Oxbt06fPvtt8jKypJmiHkiLS0Nq1evxmuvvYZVq1ZBq9Xitttuw/z586HVavHOO+9g6dKlWLlyJZKTk7F48WKMGTMGADB27Fg899xzWLJkCUpLS5GZmYk1a9YgMTERADBnzhxYLBbMmDED9fX1GD16NFasWCHd98qVK/HCCy9gwoQJUCqVmDJlCmbPng0ASEpK6vS+iUKFQqFAgi5Kav7Qo4MGGHIUrVEhOToKlQ1mnK8xYaDO3mq4sqEZlQ2Olt4B6rAIAHFOu0YApPbI7nhynD9vC2h/YPSQdM9T9MQvxA1m+zBOucx9EYPNZV8VuAwOTo3TYu74jDbBpqedGceF8a/aYofFfkl6RHWx/ksM7ksD0Ppe3CFLcvosSoq274QGeji0TRBgcjQ4Cs+2967rHYkDdT0hdtg8W9XSHKo1f39Gk+diNGo0S009IvM17HFAZrPZ8OWXX2L9+vUoKCiAxWLB6tWrceONN3p9p6NGjcJ//vOfdq+7+uqrO7wOAO644w7ccccd7V4XFRWFefPmYd68ee1en5KSgpUrV3Z42+7umyhUxOvUUkCWHAJDoZ2lJ+hQ2WBGSU0jBjrmczm39A7kl6qEVjtkHQ0Obc2T4/x5WyJxYHRXxGpVUCkAq2AfyNlZC+julp2VArPVhsX/PY5+iXo8+5usDoNNb37V7upzJWdWm4BvC+07gEl6NayOejBviTtkgWh939L2vuW13V2zyEzmlrrE8AzIWu2QyeSHFbkRh4IbHd0o25tBFojPaPJMjFYl/TgTqa9hjx71u+++i5ycHPztb39DTk4Odu3ahdjY2DZt4olIHhL0Lb9EJ8eEzg4Z4FpHJipy1I9leDGvqyvEGrJGsw1mq02qaeqMc01TZ/x5W/6gUCik14mcZpGJxMBgcFoshvdN7DDIiORftXMLDJi8Zh8+OXoRAHDoXC0mr9nXpRTNQM0iswkCahxt753HVXRXyqKYrqhAeH7Rc05PByCbnW65iW7VOKa9oEpun9GRRBwODUTua9ijR/3KK69g3Lhx2L59Ox588EEpRZCI5Cle2/KPT3FVY5tBunKW3m5AJtaPBS5dEQBitS3/KNSaLB7VNN14eTIA4GBxNbb/UoaDxdXtPt9drY8KJDkHZKWOwMBdx79I/VU7t8CAhVuOtdkd7GrdnPj8nCgzdvga7oraRgvEm0rUtby/xIAs0CmLYkCmi1JCGYaDpJiy6JnWu6PtpSzK8TM6UsQ6fWeJ1JRFjx71n//8Z+zbtw/jxo3D66+/jtLS0ogcvEkUCnILDNh3plr673mbj3X5V/NgSE+wNyVod4cswPOlVEqFtEsmNhXJzkrB0tsGtTlW/Adky0+luO1feXj4w6NY/PlxPPzh0Q6f7+ysFEy+KrXN5d404/An8QtyjYwae4haAjJdp8dF4q/antbNeRpU5RYY8GpuEQDgTFVjp69hb4nBfpxW7TLfTKwnC3TKYktDj/BLVwQAlYopi57QtVr/lHaaegD+aZhE3nPeIYvU17BHNWQzZszAjBkzsHfvXmzcuBE5OTmwWq3Yu3cvbr/9dqhU4flBRxRqxF/NWxN/NQ+Ff1DSE+1fwM87AjKXlt7dMPA3TqdGXZMFtU0tQYrYUj1Oq8L8CZnoFavF1b3j8bv/dxCnKhtRUe86P6uz57vS8QV06jVpGHZJotfNOPxJzjtkF2vtAVlafOc7ZOKv2u7GAITTr9r+rJsL9GeGuAOW1Kq5UFK3pSyGb0MPoG0NWaSme7kT7cEOmcjXhknkvRinlNJIDci8etRjx47FW2+9hS+++AKzZs3CsmXLcOONN2LZsmWBOj8i8pC/fzUPFjFl8XyNCVabgNK6JtQ3W6FWKtAvqWstvb0RL80ia/mimHe6CgBw/eU98L+DU6WaplpHgXhHWj/fzRYb8s9WAwDuvLYPJg7u1Wl9VKB1Z+txb4k7ZGkeDCmOtF+1/VU31x2fGWJAltBqPmJ3pyxGSkAWqV9m3XEeeaBTK10CgPaIDZOC/RkdKZzXgymLXkhPT8f8+fPx3XffYe7cudi/f7+/z4uIvBQuM1R6xmqhVipgsQkoNzZJ6Yr9k7ve0tsb4iyyWqc5aPvO2AOyMf2TpMsOl9Sgot675/vo+VqYLDYkR0chs2fgd/vcEXfIakzySlk0ma3SF3V3NWSi7KwUbHlgNFLj7EHZn266DJv/OCqowZjVJritLewKf9XNdcdnRnWD/fZb75CJDT4C/WOAKYxnkAEMyDzlHJCnxGpYdiMzzvXbkbrL69UcstY0Gg2mTZsmDVcmouAJl25zKqUCveO1KK42oaTG1NLQI8AdFkXScGhHkFLdYMbxUiMAYHT/ROm4rjzfeWJgd2mSLBoMyHWHTNwd00cppfXwhEqpwGU9YlBa14wEXVRQf9W212UVugQ8vWI1eCo70+cgUayb6yyY8qRurjs+M8TB40n61imLGsf1gX3tNUhNPcJzh6z1j1QMyNrnHJD1bKflPQUXUxa7uENGRPITTt3mnBt7FBq6r34MsNeQAS07ZPvPVkEAkJkSgxSnWV1deb73OVIfRzvttAWTNAtKZgHZRSldUef1L9m9HTVnF2pNbo4MHH93QGzNX93guuMzQ0pZ1LdOWWx5n1mstjZ/5y9iDVnrGqJw0aaGLELTvdxx3SGTz8xFsovRsqlHZD5qojAUTt3mxMYeLjtkAW55L4p31LqITT3EdMXWQZS3z3dVQzOOl9l32kbJJCAT63pqZBaQedryvj1pjq6MFwIw4NgT3VXLmZ2Vgpdubdv905u6ue74zKjqIGUxXhcFMZQIZMqsyantfThSs8uiR7TqlufJahNkX0sdaVhDxoCMKGyE0wwVsbFHcVUjTld2T8t7UbzU9t4MQRCkhh5jLk10Oc7b51scRZDVMwYpMkmZEVMWZReQOTosprrpsNgesStjaZB2yLqzlvMSR5ObOK0KL906CP+8+xqv6ua64zOjpoOURZVSIaWjBrKxR/g39WDKoju5BQYs+u9xl/8OpVEwkSCWO2QMyIjCSbh0mxMDsgNnq9FsFaBVK9EnofN5VP4ipizWmCw4XdmIMmMzNCpFu7sEHT3fsVpVm+dbrB8be6k8dscA5xoyeTX1uFhnD6Y86bDYWu94xw5ZbXB2yLqzlrOw3L7jOjg1rsvd4Dp6DQPAqH6JPn9miMFWYqsdMqB7ZpE1NEdW2/tI/TLbETF9uLLVa8xf6cPkH9wh87GpBxHJTzjMUBGDL7G26fIe0d3WBCPBqamHmK44JD2hw6YAzs/3F8fKsPmni4jTqDAuo4d0jCAIsqsfA4AERx1Pg9mKZotNNt2tfEpZFHfI6ppgE4Rub57SnbWcBeX2dF5fO3a2/syobjTj7zuLcLC4GsVVjejrw7gJMWUxUd9OQKaPwmk0BrSGUeqy6KbNeahSKRVQABAT8OTyHpYDT9OHx2X0CKl/H8NRrIZdFiPzUROFuVCfoSI29RBldlO6IuDU1KOpJSAb42ZXS3y+52VnIEGnxoW6ZuwuqpCuL6pogKG+GVq1EtfKqIYvVquGWIJSY5JP2qKnQ6Hb0zNWC5UCsNgEt2MJ/MW5vb3NJrQbfDjzVy2n2PAmyw8jFJw/M6YPS8d1lyXBKgBr9p7p8m0KgiDVh7VOWQRaGn10S8piGH/Jc64j4w5Zi3AZBRMJnGs8xRmkkYY7ZEQkO3E6NeK0KtQ5Bi9r1EpYbUK3BJbxWvuXxMr6Zlx01CF5uquli1JhyjW98e7+YvznhxLc7Ej3EuvQhvdNkNUXJqVCgQR9FCobzKhuNKOnDLqPCYLg0mXRW2qlAj1jtbhY14QLtU0Bf0zttbd3xx+1nIIgoNCxQ5aVEuvTbbXn4esvxfenqvDFL2UY2S8RGpXS6932RrMNTRZ7ymDrph7OlwVyh0zsshiuKYsAEKVUwmy1f1ZqIzTdqz3hMgom3OUWGPC3b1p2MjfsL8bnx0r9MiIklPCdS0Syk1tgkL5IAcDHRy50WxF2vL6lhqzR7P0Q52nX9oZKARwsrkGBo8ZHjumKopZOi/KoI6sxWaQv8b26kLIItLS+vxjgxh4dtbcXtTdDrVesxiWdtasM9c2oMVmgUgCX9vB/B9LBqXG4qnccAOCF7Sex+PPjePjDo169D6sa7c+LVq2Erp0fIqQaxgDWkIV7Uw/AdYcsUtO92hNOo2DClfgZaqgPzIiQUMJ3LhHJivgBbWmVstBdH9Ct5xWN6pfoVR1SWrwO47N6AgD+c6gEJrMVPzhSYtylPgaD3GaRiR0Wk6OjurybmOpo7HExgI09PKlP0amVeGva1Xjp1kF4fcqViNOqUGZsxpe/lPl8/2L9WL/k6IDsuuYWGPDThbo2l3vzPhQDrUR9VLvz5BK7M2UxTGvIANfGHlp1+D5Ob4XTKJhw1F0jQkIFAzIiko1gf0DnFhhw73sHXS77/nSV10HgPcP6AAC+OFaK9fvOosliQ6JOjX6JXW+OECgJ+sCnjXlD7LDYlYYeou4YDu1JfUqZsRkqpQITB/fCDRk9MGtUPwDAv74/DbOPw5DFdMVA1Ff6631Y3UHLe1H3pCyKO2Th+3XHOSDTqEKrXjiQwmkUTDj64Rxr/JyF7ycUEYWcYBZhd5R+VmuyeL0zd02feKQn6GC2Ae/sKwYAVJssuGPtftmlYIgBmVyaevjSYVGUJu6QBXA4dFfqU+4e2gc9YjQ4X9uEld/9iu2/lOFgcXWXfmAo8GNDj9b89T4UUxbba3kPOI9dCGSXxfCvIXMOyHTcIXMRLqNgwlHrNMUOj4uQGj829SAi2QhWEba/2yPvLKxASU3b3Rkx3UtOXwTkNouspcNi1+fOifPLApmy2JX6FF2UCjdenozPfryI/xw6D+A8AHtdmbcF7IHcIfPX+7DKKWWxPeLOWVUg55A5dsg6GlsRDtROjTxYQ9ZWOIyCCUcpMazxc8Z3LhHJRrCKsP25MxfstEtvdccuhTdaOiz6krIoDocOXMpiV+pTcgsM+OzHi22O87Y+0my14VRlA4DA7JD5633oLmXR+bUnCIF5P4hzyFrXhoYTl5RFBmTtCvVRMOFo6CWs8XPGdy4RyUawirD9uTMXarNvxKYeNTIJyMSUxa7MIBOJf1vfbEWdKTA7f97Wp/gzUD9d2QCrTUCsVuVTamdH/PU+rHakLLbX8h5oCcgsNgH1zdYunKl7kVRDplIqXIIzIjljjZ+r8P2EIqKQE6wPaH/uzIXa7Bux7b1sdshqfW/qoY9SIcHRcl5sEhII2VkpeOnWQW0ub68+xZ+BujQQOiWm3e6FvvLX+1BMRUzoYIdMF6WSAqVAvP4sNgHNVkG6r3Alpiy2N1qASM5Y49eCNWREJCviB3TrYbupcVrMHZ8RkA9ocUegsy/Mnu7MhdrsG3GXQg47ZBabIBV6+5KyCNjTFmtMRlyobUJWT/8PThaJuz+JOjWeys5Az1htu/Up/gzUpfqxAD6ujt6HPWM1mOdhvZsYZHWUsgjYX3+N5iZUNZhxiZ+7kIrpikBkNPXQcCg0hSDW+NkxICMi2enuD2hxR2DhlmMdHuPpzpw/g7vuIAVkAUrt84bB2ASbYP+CmexhwXdH0uK1OF5mDPhw6PziagDAdZcn438Gp3Z4nD8D9QIpIPN//Zgz5/fh01uPobrRgpf+dxCG9Uv06O89Dcgu1DYFZBaZmK6oUoR3O3gxIAvEPDqi7iDW+EUyvnuJSJa6uwjbX6kToZYXn+CoIatvtqLZ4ttsLF+JXRF7xWm9Gsbdnt7dMBwaAPLP2lMMR7j5MuHP+kgxZTEQHRZbE9+Hg3rFAQCKaxo9/lsxyOqoyyIQ2FlkjY6W97ooVUBSO+VC2iFjQEYUsrhDRkTk4K+duWCkXXZVrFYNlQKwCvZZZD1j/d8kwlP+6LAoSpOGQwcuIKtvtuDYxVoAwAg3u0b+2oWtbjCj3PGaykiJ9u6EfdA/WY+8M1U4XelZQGa22mBssu9QdTSHDHDqtBiA1vctDT3CN10RAKIcqYrcISMKXQzIiIic+Ct1IlTy4pUKBRL0UahsMKOm0RLcgMyRXuhLh0VRy3DowKUsHi6phVUA+iTopB25znQUqAPA4zdd5lGgLu6OpSfoEKPpvn/C+yXZg78zjnb77og1iSoFEK/r+DzFgCwgKYvN4d9hEWDKIlE4YEBGRBQgoZIXn6CzB2TB7rQotrz3Ryv33vGBHw598Gw1AGCkF2vcOlD/5Oh5HDpX63FAUiB2WAxw/Vhr/ZPtDTfOVHm2QyY+ngR9VKfpp4Gcg9doiYwdMrWKTT2IQh3fvUREEU6cRRbsgMyvKYuO2zDUNwesNk5s6DG8n3cNWpzrI6cPTQcAfHWi3KPhyIXlRgDdUz/m7NJk+w5ZSY0JFqv759Ndy3tRUiADMkcNWdgHZNwhIwp5fPcSEUW4BKnTokx2yDxI/3MnUR8lfUEVb9ef6kwWnCizB0fuGnp05rrLkhEdpcKF2ib8dKHO7fGFBnvKYHfvkPWK1UAfpYTVJuBcjfs0UE86LAKBbephipAaMrGBZHWjGQeLqz0aLk5E8sKAjIgowiX4cZfCahNwsLga238p8/rLoT9TFhUKRUvaYgDqyA6dq4FNAPon6X2qu9NFqXBTZg8AwI4T5Z0ea7UJKDIEfgZZexQKhVd1ZFJA1klDD8CphiwATT0aHDVkujCuIcstMCC3oAIA8EupEQ9/eBST1+xDboEhyGdGRN4I308pIiLySEsdj2+zyHILDJi8Zh8e/vAoFn9+3Ksvh/XNFtQ6ZqH5I2URaGnsEYhOi2K6orvuip74zcCeAICvT5R3GsCeq25Ek8UGnVqJ9ATfdxG91T/JUUfmQadFMcDqrOW98/WBSVm0B2TRmvDcIcstMGDhlmMwtUrJLTM2Y+GWYwzKiEIIAzIiogjnjy/F4pfD1t0DPf1yKO6OxWpViNX6p9+UGNgFYjj0QbF+zA9NW8ZcmoQ4rRqG+mYcLqnp8Dixw+LlKTFB6dbZ0tjD/Q6ZJzPIgJYdtEDMwTOFcQ2Z1Sbg1dzCTo95bWcR0xeJQgQDMiKiCJfgaEte08WAzB9fDkulhh7+2/kJ1HDoqoZmFJTbg6Phfb1r6NGeKJUS47PsaYtfdZC2aLUJ+K7QnpqWpFMH5Yu22NjDkx2yGg9ryMQ5eID/d8kaHDtkOnX4BWSHS2ra/PjRWmldU6cBPhHJBwMyIqII5+sOmT++HIpBkz/qx0TScGgvm3q4q4M7dM7+ODJSopEcrfHLuf5mYC8AwDcnDbC0uj8xFfTzX8oAAHtOVwWlTqi/WEPmQet7T3fIxDl4zn/jLy2DocPvq47BzfvN2+OIKLg4h4yIKMKJX5q7ukPmjy+HUst7PwyFFqXFe5+ymFtgaDO4uVesBk9lZ0qDm/Md88d86a7Y2vB+iUjSR6Gq0YwPDhajV6wOKbEaVDWY8cy2X9ocL6aCLp98hUcDpf2hnyNlsbrRPrOus2BLqiFz09QDsL/+AjEHzxTGNWQpsZ79EODpcUQUXAzIiIgiXEvb+6419fDHl0N/dlgUiSmLpXVNsAlCpwOKgZY6uNbE4OeV2wcjSR+FXYX2nalhl/ierihSKxUY2CsGeWeqsfK709Ll7krFXttZhHEZPbqlpkwfpUKvWA3KjM04U9mAxPSOH7+nbe8BRx1ZBVDt506L4hwyXRjWkA1JT5DWoiOpcVoM6WSNiEg+wm8fn4iIvCIOhu5qYwXxy2Fn3H05LHXsYvkzIOsZq4VSAZitAirrO9/F86QObtG2X/Dwh0dhqLcHDn/PLfJb2mBugQF5Z6rbXO6uVKy764T6J7tPW7QJQksNmQc7ZIEaDt0QximLKqUCT2VndnrM3PEZQWn+QkTeC79PKSIi8opzY4WuDIf2x5fDQKQsqpUKaUaYu9b3ntTBtQ6Oyuv9017ck2CwM91ZJ+RJY4/qBjOsjueqyFDvtgFJvKOpTH5xtV8HG4f7YOjsrBQsn3xFmx9DUuO03ZrKSkS+Y8oiEVGEUyoUiNfZ65dqGi1dGnScnZWC5/93IJ774kSb6walxnb65dAmCCgLQJdFAOgdr0VpXRMu1JpwdZ/4Do/zJajxNW3Qk2CwM91ZJyTOIjvbQev73AID/vp1gfTfj338U5savNbHbz9u7yy5q7ACuworOj3eG41h3PZelJ2VgnEZPXC4pAYGYzNSYjUYkp7AnTGiEMMdMiIiklrff3Wi/c6CnhDTDZP0UXjp1kFY8j8DoARwvNQoze1qT1WDGc1WAQrAbeqjt9Kc6sg640tQ42vaoC/BYHfXCUmzyNrZIRNr8Cpa1YJ1NItOPL6+2erR8d5qDPMdMpFKqcDwvomYOLgXhvdNZDBGFIIYkBERRbjcAgNKauw1XO/sK8bDHx7tUlv146VGAMC16fGYOLgXbrsyDVOv7Q0AeOPbX5F/tqrdVvJiumJKrAZqlX//Weod71nKoid1cJ3xJajyJRjs7johsYasuLrRpT2/t7PoumOwcTi3vSei8MJPKSKiCCbuUphbffHtyi7FL6V1AIDBqXHSZX8c2x8alRK/lBrxyKYfsfjz4y4Bn9Um4Ptf7QOPYzUqvw88TosTA7LOW997UgfXGV+CKk+CwdYxV7DqhFLjtNCqlbDYBJyvaXlOvZ1F5+nxP5zr+s6jGJCFY5dFIgovrCEjIopQnu5SeFofJe6QDUqNlS47cr4Wzda2nRvFgC9Bp5ba7Z+qbMTkNfv8Uj8k8jRlEbDX4wzrm4BDxa5BgFLRebdDX9MGxWCwvZb7oqWT7C33g10npFQo0C9Jj4LyepypbEA/R02Zt7PoPD7eTXfMzog1ZNEMyIhI5hiQERFFKG92NYa7GYJc32zBWUcr9MGOgMyTgK/17DN/DzwWZ5G52yEDALPVhoKyegDAU+MzkKSP6nQ4s8gfaYNix7zWQ6lT47SYOz5DVh3z+idF2wOyqkbc6LjM21l0Hh8f07WdR7PVJu22hnsNGRGFPgZkREQRyttdjc6cKDNCgD2ASIq2f4n2pXugvwYei230jU1WGJssiNV2/M/egbPVqGuyoEeMBncN6eNy30qlIuDBUqh0zGtp7NHSadHbQcWeHj+0i8O3G5wahbCGjIjkjgEZEVGE8nZXozNiuuJgp3RFXxpdeLoz544+SoV4rQq1TVZ8fOQCruod12GQk3vSXi83PrNtINhdwZLYMU/OpIDMaTi0SqnAkzdfjme2He/w75x3Ej1J0/Rl51GsH1MrFX5vFENE5G8MyIiIIpS3uxqdEQOygb1aAjJf52P5Y+BxboEBDY5aojd3nwKAdudcWaw27Cq0B2QTBvRs97ZCIVjqDv2TxOHQrrPIlEp74KNQAIJTzV1HO4mBTNM0ifVjGqYrEpH8MSAjIopQ/tylaNkha+mw6EnA1xlfAzqxg2Rr7dWpHTxXgxqTBUn6KAzpYppcpBB3yCobzKgzWRDnmGH38eHzAICZIy7BdZcle7STKO48Tlm3Hxdrm/DEuMtwz7BLfN55bLQ4OiyquTtGRPLHTyoioggm7lK013Y9LU6LMf2TcLC4ut35YaKGZitOO3ZLnDss+tJK3tfOhd7OuRLTFW/O6gG1zGq25CZGo0ZPx+vlTJV93c9WNWL/2WooANx5bR+vBhWrlAqkxtpr/XrH6/ySBirWkLGhBxGFAu6QERFFuNb1URq1Aq98VYCLdU3433/mocHc0iChvXS/k46GHr1iNejRqiteR2lpzu3u2+Nr50JvOkgOSU/ATse8tQlZ7acrkqv+SXqUG5txprIRV/WOxydHLgAArrssGX0SdF7fXrxjl62z14Q3xJRFBmREFAoYkBERUZv6qJ8vGvHu/mKXYAxoP93vlzJx/lgc2tNRQ4xviyoC1rnQmw6Sh0tqUNVoRoJOjeF9ma7oif7J0cgvrsGZqgY0WWzY9vNFAMDUa3t36fbi9VEAgFo/BWRiUw89a8iIKAQwICMiIhdWm4AvjpV2eoxzW/rjpXUAXNMVW2uvIUYgOxd600Hy6xPlAIBxmT3Ykc9D4kDo05WN+OZkOWpMFqTGaXH9Zcldur0Exw5Zrcnsl/OTAjK2vCeiEMCAjIiIXHg7MPqXdlreeypQnQs9aSjSK1YDs9WGL4+XAQBultHwZbkTA7KfL9TidIW9juy316R1OZj2d8piS0DGHTIikj/+dERERC68SfdrNFul9ueDenkfkAWKJw1FjM1WPPbxTzA22b+8L/uqALmOWjLqWG6BAS/tOAnAnsJ6yrH+KdFd74oZr/N3yqK9hkzHgIyIQgADMiIicuFNut/JMiNsApASo0GKo1OeXHTUQVLsoih24hOJ9XEMyjomjhKoqG+bWviSDwFtvNa+Q1bn55TFaAZkRBQCmLJIREQuvBkY/ZFj9lRn9WPB1LpOLTk6Cs99eQLlnTw25/o4auHpKIGuPHfx+kClLPJ3ZyKSP35SERGRC0/S/cS29GKHxa7Uj3UXsU5t4uBeUCoVnQZjQEt9HLnyprbQW/5PWXQMhuYOGRGFAAZkRETURmcDox+6rr/Ulr6lw2L7Le/lxpv6OHIVyOfO/10WOYeMiEIHUxaJiKhdrdP9vjpRjm+LKvD9qSr8f2P6ocliwylHhz0575A586Y+jlwF8rkTuyw2mm1ottigUfv2e7FJqiHj785EJH8MyIiIqEPObemH901A3pkq/HihFrt/rUSiPgo2AegRo0FPmTX06Ig39XHkKpDPXaxWDQUAAUBtkwUpat8CYqYsElEo4U9HRETkkZRYLe4Zlg4AeHv3KWz/xT6/q3e8FlabEMxT85g39XHkKpDPnVKhQJxO7LToex1ZQzNTFokodDAgIyIij/1+5CXQqZUoqmjAh44Oiz9dqMPkNftCpl18R/VxqXFaLJ98hVQfR20F8rmL92MdmcnCtvdEFDqYskhERB7LL66ByWJrc7k4wytUAprW9XEpsRoMSU/gzpgHAvXc2TstmvzS+r4lZZG/OxOR/DEgIyIijwRyDlUwONfHkXcC8dz5c4eMXRaJKJTwpyMiIvJIIOdQEbW0vvfDDlmzOBiaARkRyR8DMiIi8ghneFEgicOhfU1ZFARBSlnUaxiQEZH8MSAjIiKPcIYXBZK/uiw2WWwQe37qWUNGRCGAn1REROQRcQ5VZzjDi7oqwU81ZCZzS9MZnZo7ZEQkfwzIiIjII5zhRYEkNvXwNWWxwZGuqFUr+VokopDAgIyIiDzGGV4UKGINma9NPaT6MTb0IKIQwbb3RETkFc7wokDwX8qiGJDxN2ciCg0MyIiIyGuc4UX+5r8dMnsNmY47ZEQUIvjzEREREQWdc5dFmyC4ObpjDUxZJKIQw4CMiIiIgi5eaw/IBADGpq7vkokpi9FMWSSiEMFPKyIiIgo6jVop1X35krYoNvVgyiIRhQoGZERERCQLYh2ZL63vxRoypiwSUahgQEZERESyEO+HTouN7LJIRCGGn1ZEREQkC1JA1uh7yiJ3yIgoVDAgIyIiIlmQWt/70NSDKYtEFGoYkBEREZEs+DdlkQEZEYUGBmREREQkCwlSQObDDlmz2GWRX3GIKDTw04qIiIhkwT9dFsU5ZNwhI6LQwICMiIiIZKGlqYcPKYsW1pARUWhhQEZERESyIAZkdT409TBxMDQRhRgGZERERCQLYkDmS8piQzPnkBFRaAnqp5XVasXMmTPx9NNPS5cdOXIEd911F4YOHYrs7Gxs2rTJ5W8+/fRT5OTkYMiQIZg6dSp++OEHl9tbvnw5rrvuOgwdOhSPPPIIysrKpOsrKiowe/ZsjBgxAqNHj8bSpUthsVg8vm8iIiIKHKntvQ8BmbhDFq3hDhkRhYagBmRvvvkm8vPzpf+uqanBgw8+iClTpuDAgQNYunQpXnnlFRw9ehQAsG/fPrz44otYtmwZDhw4gMmTJ+ORRx5BY2MjAGDVqlXYs2cPPv74Y+zevRs6nQ6LFy+Wbv+JJ55AdHQ0du/ejY8++gh79+7Fhg0bPLpvIiIiCqwEp7b3giB06TbEOWRMWSSiUBG0gGzv3r3YsWMHfvOb30iX7dixA4mJiZgxYwbUajXGjh2L22+/He+//z4AYNOmTbjtttswfPhwREVFYdasWUhKSsLnn38uXf/AAw+gd+/eiI2NxaJFi/Ddd9+huLgYZ86cwf79+zF//nzo9Xr07dsXs2fPlm7b3X0TERFRYIk7ZGarAJOjOYe3WuaQMWWRiEKDOhh3WlFRgUWLFuHtt9+WdqgAoKCgAAMGDHA5NjMzEx999BEAoLCwEHfeeWeb648fP466ujpcvHjR5e9TUlKQkJCAEydOAAASExORmpoqXZ+RkYHz58+jtrbW7X17Q6Hw+k8ogMT14LqEP651ZOA6h69ojRJqpQIWm4BakxkxWvsul6drbRNaArnoKBVfIyGE7+vIEGnr7Onj7PaAzGazYf78+bj//vsxaNAgl+vq6+uh1+tdLtPpdGhoaHB7fX19PQAgOjq6zfXida3/Vvxv8e87u29v9OgR5/XfUOBxXSIH1zoycJ3DU2J0FAzGZqj0WmmNPV3reqfujH17J0LPOrKQw/d1ZOA6u+r2gGz16tXQaDSYOXNmm+v0ej3q6upcLjOZTIiJiZGuN5lMba5PSkqSgimxnqz13wuC0OY68b9jYmLc3rc3Kirq0MXUdwoAhcL+xue6hD+udWTgOoe3WI0KBgBnLtSgl0bh1VpX1DcDABQAjDX1qI+Un+HDAN/XkSHS1ll8vO50e0C2efNmlJWVYcSIEQAgBVhff/01FixYgD179rgcX1hYiKysLABAVlYWCgoK2lx/0003ISEhAampqSgsLJRSD8vLy1FdXY0BAwbAZrOhuroaBoMBKSkpAICioiKkpaUhLi4OAwYM6PS+vSEIiIgXWajhukQOrnVk4DqHJ3sdWSNqTBZpfT1da7HlvS5KCUDB10cI4vs6MnCdXXV7xeuXX36JQ4cOIT8/H/n5+Zg0aRImTZqE/Px85OTkwGAwYMOGDTCbzcjLy8PWrVulurFp06Zh69atyMvLg9lsxoYNG1BRUYGcnBwAwNSpU7Fq1SoUFxfDaDTi5ZdfxqhRo9CvXz9ceumlGD58OF5++WUYjUYUFxfj7bffxrRp0wDA7X0TERFR4ImzyGobzV7/bUtDD6YqElHoCEpTj44kJSXhnXfewdKlS7Fy5UokJydj8eLFGDNmDABg7NixeO6557BkyRKUlpYiMzMTa9asQWJiIgBgzpw5sFgsmDFjBurr6zF69GisWLFCuv2VK1fihRdewIQJE6BUKjFlyhTMnj3bo/smIiKiwGtpfe/9LDKx5T0DMiIKJQqhq4M+qEMGQ2TkxYYKhQJISYnjukQArnVk4DqHt9d2FuGDQyX4/ci++NO4y7xa631nqvDoRz8iMyUGH9w3PPAnS37D93VkiLR1Fh+vOxzSQURERLIR59ghq2vyPmXRxBlkRBSC+IlFREREsuFLymKDWWzqwZRFIgodDMiIiIhINuxdFoEaH2rIohmQEVEIYUBGREREsuFLl0WT2bntPRFRaOAnFhEREcmGTymLzWx7T0ShhwEZERERyYaYssi290QUKRiQERERkWyIXRYbzFZYrDav/lbqsqhhQEZEoYMBGREREclGnFYt/X9vdsmsNgHF1Y0AgEpjE6y2CBhyRERhgQEZERERyYZKqZCCMk8DstwCAyav2Ye9p6sAAJ/9VIrJa/Yht8AQsPMkIvIXBmREREQkK2KnxRqT+06LuQUGLNxyDGXGZpfLy4zNWLjlGIMyIpI9BmREREQkK/Eedlq02gS8mlvY6TGv7Sxi+iIRyRoDMiIiIpKVBA+HQx8uqWmzM9ZaaV0TDpfU+O3ciIj8jQEZERERyYrYabHOTUBmcBOMeXscEVEwMCAjIiIiWWlJWey8hiwlVuPR7Xl6HBFRMDAgIyIiIllJkJp6dL5DNiQ9Ab3cBFupcVoMSU/w27kREfkbAzIiIiKSlXhHDZm7HTKVUoGnsjM7PWbu+AyolAq/nRsRkb8xICMiIiJZkVIWG93PIcvOSsHyyVcgRqNyuTw1Tovlk69AdlZKQM6RiMhf1ME+ASIiIiJn8R6mLIqys1LwzYky7DhhwMSBPfHba3tjSHoCd8aIKCQwICMiIiJZEVMW65o8C8gAoLjaBAC4ZWBPDO+bGIjTIiIKCKYsEhERkay07JB1XkMmEgQBZ6saAQB9k/QBOy8iokBgQEZERESykuA0h8xmE9weX9VoRn2zFQoAlyQyICOi0MKAjIiIiGQlzpGyaBM8S1ssduyOpcVroVXzqw0RhRZ+ahEREZGsaNVK6ByBVU2D+7TFM2K6InfHiCgEMSAjIiIi2RHryKobm90eK+6Q9WP9GBGFIAZkREREJDtip8WaRvc7ZGzoQUShjAEZERERyY60Q+ZBymJxtT0g658UHdBzIiIKBAZkREREJDstKYudB2Q2trwnohDHgIyIiIhkJ0FMWWzovIas3NiMJosNKqUCfeK13XFqRER+xYCMiIiIZMfTlEWxoUd6gg5qFb/WEFHo4ScXERERyU6chymLZ6saALDlPRGFLgZkREREJDtxWhUA4PjFWuSfrYbVJrR73NkqEwC2vCei0MWAjIiIiGQlt8CAf+45AwD4qaQWD394FJPX7ENugaHNsdIOGQMyIgpRDMiIiIhINnILDFi45RhqTBaXy8uMzVi45ViboExsec8dMiIKVQzIiIiISBasNgGv5hZ2esxrO4uk9EWLTcC5aqYsElFoY0BGREREsnC4pAZlxs7b3JfWNeFwSQ0A4GKtCRabAI1KgdQ4trwnotDEgIyIiIhkweAmGGt9nJiueEmiHkqFImDnRUQUSAzIiIiISBZSYjVeHXe2kvVjRBT6GJARERGRLAxJT0AvN0FZapwWQ9ITALChBxGFBwZkREREJAsqpQJPZWd2eszc8RlQKe3piWeqGJARUehjQEZERESykZ2VguWTr2izUxarVWH55CuQnZUiXVbsCMg4g4yIQpk62CdARERE5Cw7KwXjMnrgcEkNvvm1Epvyz+GSBJ1LMGa22nCh1tHyPpEBGRGFLu6QERERkeyolAqM6JeIhf8zCEoFcLysHuccNWMAUFJtgk0AoqNU6BHjWTMQIiI5YkBGREREspUSq8XwvokAgNyTBunys9Ut6YoKtrwnohDGgIyIiIhk7ZaB9lTFr0+WS5edZUMPIgoTDMiIiIhI1rKzUqBUAL+UGqW0RTb0IKJwwYCMiIiIZC0pWiOlLX7jSFs8W9UAAOjPgIyIQhwDMiIiIpK9Wwb2BAB840hbFFMW+7LDIhGFOAZkREREJHvjM3tA5UhbLDTUo8zYDIA1ZEQU+hiQERERkew5py1u2HcWAJCgUyNBHxXEsyIi8h0DMiIiIgoJExxpizuO29MWk6OjYLUJwTwlIiKfMSAjIiKikBCltM8bE0OwU5WNmLxmH3ILDB3/ERGRzDEgIyIiItnLLTDghe0n21xeZmzGwi3HGJQRUchiQEZERESyZrUJeDW3sNNjXttZxPRFIgpJDMiIiIhI1n44VyN1VexIaV0TDpfUdNMZERH5DwMyIiIikjVDfefBmHScm6CNiEiOGJARERGRrKXEaDw7Ltaz44iI5IQBGREREcna0EsS0MtNsJUap8WQ9IRuOiMiIv9hQEZERESyplIq8FR2ZqfHzB2fAZWjLT4RUShhQEZERESyl52VguWTr2izU5Yap8XyyVcgOyslSGdGROQbdbBPgIiIiMgT2VkpGJfRA4dLamAwNiMlVoMh6QncGSOikMaAjIiIiEKGSqnA8L6JwT4NIiK/YcoiERERERFRkDAgIyIiIiIiChIGZEREREREREHCgIyIiIiIiChIGJAREREREREFCQMyIiIiIiKiIGFARkREREREFCQMyIiIiIiIiIKEARkREREREVGQMCAjIiIiIiIKEgZkREREREREQcKAjIiIiIiIKEgYkBEREREREQWJOtgnEI4UimCfATkT14PrEv641pGB6xw5uNaRg2sdGSJtnT19nApBEITAngoRERERERG1hymLREREREREQcKAjIiIiIiIKEgYkBEREREREQUJAzIiIiIiIqIgYUBGREREREQUJAzIiIiIiIiIgoQBGRERERERUZAwICMiIiIiIgoSBmRERERERERBwoCMwsrx48dx//33Y9SoUbj++uuxYMECVFZWAgCOHDmCu+66C0OHDkV2djY2bdoU5LMlX1mtVsycORNPP/20dBnXObxUV1djwYIFGD16NEaOHInZs2ejrKwMANc63Pz888+YMWMGRowYgRtuuAEvvfQSmpubAXCtw0FlZSVycnKwb98+6TJ36/rpp58iJycHQ4YMwdSpU/HDDz9092lTF7S31tu3b8cdd9yBYcOGITs7G2+++SZsNpt0fcSvtUAUJhobG4Xrr79eeOONN4SmpiahsrJSeOCBB4SHHnpIqK6uFkaNGiVs3LhRMJvNwvfffy8MHTpUOHLkSLBPm3ywYsUKYdCgQcLChQsFQRC4zmHod7/7nTBnzhyhpqZGqKurEx599FHhwQcf5FqHGavVKlx//fXCu+++K1itVuHChQvCxIkThTfffJNrHQby8/OFW265RRgwYICQl5cnCIL7z+u8vDxh6NChQn5+vtDc3CysX79eGD16tNDQ0BDMh0JutLfWP/74o3DNNdcIubm5gtVqFQoLC4Xx48cL69atEwSBay0IgsAdMgob58+fx6BBgzBnzhxoNBokJSVh+vTpOHDgAHbs2IHExETMmDEDarUaY8eOxe233473338/2KdNXbR3717s2LEDv/nNb6TLuM7h5aeffsKRI0ewbNkyxMfHIzY2Fi+++CLmzZvHtQ4zNTU1KC8vh81mgyAIAAClUgm9Xs+1DnGffvop5s2bhyeffNLlcnfrumnTJtx2220YPnw4oqKiMGvWLCQlJeHzzz8PxsMgD3S01iUlJbjnnnswfvx4KJVKZGRkICcnBwcOHADAtQaYskhh5PLLL8fatWuhUqmky7Zv344rr7wSBQUFGDBggMvxmZmZOH78eHefJvlBRUUFFi1ahFdffRV6vV66nOscXo4ePYrMzEx8+OGHyMnJwQ033IDly5ejZ8+eXOswk5SUhFmzZmH58uW4+uqrMW7cOFx66aWYNWsW1zrE3XDDDfjqq69w6623ulzubl0LCwu57iGmo7WeOHEinnnmGem/TSYTdu3ahSuvvBIA1xpgQEZhShAEvP7669i5cycWLVqE+vp6ly/uAKDT6dDQ0BCkM6SustlsmD9/Pu6//34MGjTI5Tquc3ipqanBiRMncPr0aXz66af47LPPUFpaioULF3Ktw4zNZoNOp8Of//xnHD58GNu2bUNRURFWrlzJtQ5xPXv2hFqtbnO5u3XluoeejtbamdFoxJw5c6DT6TBr1iwAXGuAARmFIaPRiD/96U/YunUrNm7ciIEDB0Kv18NkMrkcZzKZEBMTE6SzpK5avXo1NBoNZs6c2eY6rnN40Wg0AIBFixYhNjYWKSkpeOKJJ/Dtt99CEASudRj56quvsH37dtx7773QaDTIysrCnDlz8MEHH/B9HabcrSvXPfz8+uuvuOeee2CxWPDee+8hNjYWANcaYEBGYebs2bO48847YTQa8dFHH2HgwIEAgAEDBqCgoMDl2MLCQmRlZQXjNMkHmzdvxv79+zFixAiMGDEC27Ztw7Zt2zBixAiuc5jJzMyEzWaD2WyWLhO7cg0ePJhrHUYuXLggdVQUqdVqREVF8X0dptyta1ZWFtc9jHz77be46667cOONN2LdunVISEiQruNaMyCjMFJTU4P77rsPw4YNw7p165CcnCxdl5OTA4PBgA0bNsBsNiMvLw9bt27FnXfeGcQzpq748ssvcejQIeTn5yM/Px+TJk3CpEmTkJ+fz3UOM9dddx369u2LZ599FvX19aisrMTrr7+OW265BZMmTeJah5EbbrgB5eXl+Oc//wmr1Yri4mKsWrUKt99+O9/XYcrduk6bNg1bt25FXl4ezGYzNmzYgIqKCuTk5AT5zMlbhw8fxpw5c/DMM89g4cKFbdIaudaAQhDbGRGFuPXr12PZsmXQ6/VQKBQu1/3www/48ccfsXTpUpw8eRLJycmYPXs2pk6dGqSzJX8RZ5AtW7YMALjOYaa0tBTLli3DgQMH0NTUhOzsbCxatAjx8fFc6zDz/fffY8WKFfj1118RFxeHyZMnS11zudbhYeDAgXjvvfcwevRoAO4/rzdv3oxVq1ahtLQUmZmZWLx4Ma699tpgnT55wXmtH374YezatatNndjw4cOxdu1aAFxrBmRERERERERBwpRFIiIiIiKiIGFARkREREREFCQMyIiIiIiIiIKEARkREREREVGQMCAjIiIiIiIKEgZkREREREREQcKAjIiIiIiIKEgYkBEREREREQUJAzIiIupW2dnZ+OSTT9pc/sknnyA7OzsIZ+ReQUEBBg0ahEceeaRb7u/IkSN48MEHcebMGQwbNgxvvvlmm2N27tyJq666CocOHeqWcwKArVu34qWXXuq2+yMiigQMyIiIiNzYuHEjpk6dij179uDUqVMBva/m5mYsXLgQCxcuRP/+/fHCCy/g7bffdgm8ysrK8Mwzz+Cpp57CsGHDAno+zm6//XYcO3YMe/fu7bb7JCIKdwzIiIhIlk6cOIEHHngAo0aNwk033YQlS5agrq4OQPu7aTNnzsQ//vEPAPYdrRkzZmDkyJEYP348Fi5cCKPRCMAe8LzxxhuYMGECRo0ahQceeABnzpzp8Dzq6uqwZcsWzJgxAzk5OVi/fr3L9VarFStWrMD111+P6667Ds899xzuueceaRfQaDTihRdewLhx4zB27Fg8+eSTMBgMHd7fpk2bcMkllyAjIwMAMGnSJPz2t7/FvHnzYDQaIQgCFi5ciJEjR+L++++HIAh47733MHHiRIwYMQL33nsvfvrpJ+n2ioqK8NBDD+Hmm2/GNddcg1tvvRU7d+4EAJw7dw4DBw7EsmXLMHLkSDz//PMoLS3FH//4R+l5f/TRR1FWVibd3u9+9zu8+uqrnS8eERF5jAEZERF1u+effx4jRoxw+d/zzz8vXV9VVYXf//73yMzMxHfffYePP/4Yp06dwoIFCzy+/bFjx2L//v34+OOPcezYMWzatAkA8Prrr2PXrl3YsGEDdu/ejWuvvRZ/+MMf0NTU1O5tffzxxxgwYACuvPJKzJw5E5s3b0ZlZaV0/bp167Blyxa8++672LVrF+Lj4/HDDz9I1z/77LM4c+YMPvnkE3z99deIjY3Fo48+CkEQ2r2/f//735g0aZLLZYsXL4Zer8df//pXbNy4ESUlJXjllVek49evX4833ngDe/fuxdSpU3H//fdLQd9jjz2GAQMG4KuvvkJ+fj5uuOEGLFmyxOX26+vrsWfPHjz55JN47bXXkJaWhj179uDzzz9HQ0MD/vWvf0nHZmdno6ioCD/++KNHa0FERJ1jQEZERN3uueeeQ35+vsv/nnvuOen6b775BlFRUZg3bx50Oh169uyJP//5z8jNzUV5ebnb29dqtdi9eze+/PJLKJVKbN68WdpN+s9//oO5c+eib9++0Gq1mDNnDsxmM3bt2tXmdgRBwAcffID77rsPADBkyBAMHDgQ//73v6VjPvroIzz44IPIzMyERqPBE088gZ49ewIAKioqsH37dixatAg9evRATEwMnn32Wfz444/4+eef29yfwWBAYWFhmzREvV6PFStWYMuWLfjHP/6BlStXIjY2FgDw/vvv46GHHsKgQYMQFRWFadOmISMjA1u2bAEArF69Go899hgEQUBJSQni4+NRWlrqcvtTpkyBRqNBfHw8tFotDh48iP/+97+or6/H2rVrsXjxYulYnU6HQYMGMW2RiMhP1ME+ASIiotYqKirQp08fqFQq6bJLLrkEAFBSUuL271esWIF//OMfeP311zF37lwMGzYMS5YsQXJyMhoaGvD4449DqWz5TdJsNrd7u9999x1Onz6NJUuWSDt4JpMJxcXFeOCBB6DVanHhwgWkp6dLf6NSqdCnTx+Xc7377rtdblelUuHcuXO46qqrXC4/f/48ACA1NbXNuWRlZSEnJwcAMGjQIOnykpISLF++HH//+9+lyywWi3Tbx48fx+zZs1FeXo6MjAwkJye32Z3r1auX9P8XL16M1atXY926dXj66acxaNAgLF68GCNGjJCOSUtLw8WLF9ucIxEReY8BGRERyU56ejrOnz8Pq9UqBWVnz54FAPTs2ROnT59Gc3Ozy99UVVUBAGw2G44dO4bHHnsMzz77LC5cuIBXXnkFTz/9NDZt2gStVot33nkHQ4YMkf72119/bTcIev/99zF9+nTMnj1busxsNmPq1Kn47LPPMH36dPTp00cKpAD7rtqFCxcAtARWX3zxhbRrBgCFhYXo27dvm/sTg0Sbzdbu8+IcoIrS0tLwpz/9Cbfddpt02dmzZ5GYmIjS0lI8/vjjePPNN6Wau+3bt2PHjh0ut6FQKKT/f+zYMUyfPh2PPfYYKisr8dZbb+HRRx9FXl6edIzVanUJaImIqOv4aUpERLIzbtw4AMDf//53mEwmlJeXY+nSpRgzZgzS09ORkZEBg8GAvLw8CIKAzZs3o6ioCIA9qHnppZewYsUKNDU1ITk5GVqtFklJSVAqlZg2bRpeffVVXLx4ETabDZ9++ikmTZrUprHH2bNn8d133+H//u//kJaWJv2vb9++uOOOO7B+/XoIgoDp06fjnXfewalTp9Dc3Iy33npLaoKRmpqKm2++GUuXLkVVVRXMZjNWrVqFadOmoba2ts3jFnfWWqcUdubuu+/GqlWrpMe/e/du3HbbbThw4ADq6+thtVqh1+sB2APBt956CwDaBLSif/7zn3jxxRdhNBoRHx8PvV6PpKQkl2PKysqkcyUiIt8wICMiItmJi4vD+vXrcfLkSYwbNw6TJk1Ceno63njjDQDA1VdfjUceeQRPP/00Ro0ahby8PEycOFH6+xUrVqCoqAg33HADrrvuOtTV1eHFF18EACxcuBDXXnst7r33XowYMQIbNmzAypUrccUVV7icw/vvv4+BAwdi8ODBbc5v+vTpOHXqFHJzc3HfffchOzsb99xzD26++WZUV1cjLS0NUVFRAIC//vWviI+Px5QpUzBmzBh8++23WLt2rcuOmSg5ORlXXHEFDh486PFzNWvWLEyZMgWzZ8/G0KFDsXTpUvzlL3/BhAkTcPnll2PBggWYP38+hg8fjscffxx33nknoqKicPLkyXZv74UXXoDNZsOECRMwcuRIHDlyRHreAaCpqQk///wzbrzxRo/PkYiIOqYQOmrzRERERG4dOXIE6enpSElJAWBPWRwzZgxee+01XH/99V7f3saNG7Fr1y6sXbvW36fqF9u2bcN7772HDz/8MNinQkQUFrhDRkRE5IOtW7diwYIFqKurg8VikeaUOdeoeePuu+/GmTNnUFhY6Mez9J/33nsPc+fODfZpEBGFDQZkREREPnjiiSeQkpKCnJwcjBo1Cjt37sS6desQExPTpdvTaDRYvnw5li9f7ucz9d3mzZtx5ZVXYsyYMcE+FSKisMGURSIiIiIioiDhDhkREREREVGQMCAjIiIiIiIKEgZkREREREREQcKAjIiIiIiIKEgYkBEREREREQUJAzIiIiIiIqIgYUBGREREREQUJAzIiIiIiIiIguT/B8IXCigIYXTBAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Line plot for house age vs. average house price\n", - "average_price_by_age = housing_data.groupby('house_age')['price'].mean()\n", - "plt.figure(figsize=(10, 6))\n", - "plt.plot(average_price_by_age.index, average_price_by_age.values, marker='o', linestyle='-')\n", - "plt.xlabel('House Age (Years)')\n", - "plt.ylabel('Average House Price')\n", - "plt.title('Average House Price by House Age.')\n", - "plt.grid(True)\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The scatter plot depicts the relationship between house age and prices; and reveals a lack of a clear linear trend. Instead, prices exhibit significant variation across different house ages. While the graph provides insights into how house prices fluctuate based on their age, no discernible pattern emerges. \n", - "In summary, the graph shows how house prices fluctuate based on their age, but no specific pattern emerges. This suggests that other factors beyond house age play a more influential role in determining house prices." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**#Prices of houses in relation to their respective Condition and Grade**" - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAJOCAYAAADMCCWlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVkUlEQVR4nO3dd5hcZd0//vdMNksamJCAiaEpgfCTlkAgSJASQBAITRA18mCQjlIeWgAFEamC1IcakFBUkN4UVB5BBUKRJj4oIkhIIJBKTdns/P7IN0uWBEhgd+fszut1XbmuMzNnznw+Z252b9575p5SpVKpBAAAAACAQihXuwAAAAAAAN4ntAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AG2gUqlUuwQAAACgnRDaAu3WM888k6OOOiqbb7551llnnWy55Zb5wQ9+kPHjx7dpHXvuuWf23HPPptvDhw/P6NGjm25ffPHFueKKK5puX3DBBRk4cGCb1tjaRo8enYEDBzb7t+aaa2aTTTbJUUcdlVdfffVjjzFw4MBccMEFbVAtAEAxvfDCCzn55JOzzTbbZN11183666+fPfbYI9ddd13mzJnTqq89evToDB8+vFVfoyUNHz58ofnn2muvna233jpnn312Zs2a9ZHPHzduXAYOHJhx48a1UcUAS6au2gUAfBLXXXddTj311AwdOjRHHHFEll9++bz88ssZM2ZM7r333vz85z/PmmuuWZXaLrzwwvTo0aPp9rnnnpvvfe97Tbd33333fPnLX65Gaa1queWWy4UXXth0u6GhIS+++GLOOuusPPHEE7nzzjvTpUuXD33+9ddfn759+7ZFqQAAhXP33Xfn2GOPzRe+8IWMGjUqn//85zNz5szcf//9Oe200/LAAw/kkksuSalUqnaphbHZZpvloIMOaro9a9asjBs3LhdddFEmTJiQn/3sZx/63DXXXDPXX399BgwY0BalAiwxoS3Q7jz++OM55ZRTMnLkyBx//PFN9w8dOjRbbrlldt111xx77LG5/fbbq1LfF7/4xY98vG/fvh0ynKyvr8+gQYOa3TdkyJB07tw5xxxzTP7whz9k++23/9Dnf/C5AAC14oUXXsixxx6bjTfeOBdccEHq6t7/X/XNNtssQ4cOzSGHHJK77rorO+ywQxUrLZZll112oTnk0KFD89prr+Xmm2/O6NGjs/zyyy/yuT169DD/BArN8ghAu3PFFVdk6aWXzn//938v9Niyyy6b0aNH5ytf+Urefvvtpvvvvvvu7Lrrrhk8eHCGDRuWE044ITNmzGh6/IILLsjWW2+dP/7xjxkxYkTWWmutbLPNNrnllluaHX/ixIn53ve+l/XXXz/Dhg3Lz3/+84VqWHB5hPnLIFx44YVN24taHqGl6lvQHXfckYEDB+a5555rdv/999+fgQMH5umnn06SXHPNNdl2222z9tpr58tf/nJ+9KMfNTt3n9baa6+dJJkwYUKSeR+922uvvXLiiSdmyJAh2WWXXdLQ0LDQ8ghTpkzJcccdl4033jiDBw/OyJEj8/jjjzc93tjYmMsuuyxbb7110/m45pprWqxuAIC2MmbMmJTL5fzkJz9pFtjOt80222TnnXdOufz+/8IPHDgwF154Yb72ta9l/fXXz0UXXZQkefTRR/Pd7343G2ywQdZaa60MHz48F1xwQRobG5ueO2PGjBx77LEZOnRoNthgg/z0pz9t9vh8v//977Prrrtm7bXXzrBhw/KTn/wk77777of28cMf/jAbbbRRGhoamt3/05/+NBtuuGFmz56dWbNm5aSTTsqmm26atdZaK9tuu22uvPLKJT5nH2WttdZKpVJpWqJr+PDhOfXUU7PXXntlvfXWywknnLDI5RH+9re/ZZ999sn666+fjTbaKIcffnizZb6mT5+eE044IRtvvHHWXnvtfP3rX89DDz3UorUDzOdKW6BdqVQq+fOf/5zhw4ena9eui9xn2223bXb7oosuynnnnZdvfetbOfzwwzN+/Picd955efLJJ3PDDTc0fWT/jTfeyI9//OMceOCB6d+/f6644oqMHj0666yzTlZdddW8++67+fa3v51yuZwf//jHqaury3nnnZeXX345gwcPXmQt119/ffbYY4/stttu2X333Re5T0vV90Fbb711unfvnrvuuitrrLFG0/133nlnPv/5z2edddbJXXfdlTPOOCPHHHNMBg4cmH//+98544wzMnPmzJx++ukf/4YshhdffDFJstJKKzXd99hjj6VUKuWCCy7IO++8s9D/nLz77rv5xje+kTlz5uSII45I3759M3bs2Oyzzz658cYbs+qqq+ZHP/pRbr755uy///4ZPHhwHn300Zx66ql58803c/DBB7dI7QAAbeEPf/hDNtpoo/Tu3ftD9znjjDMWuu/iiy/OoYcemoEDB6Zv37557rnn8p3vfCfbbrttzjnnnFQqldx222258MILs8oqq2TEiBFpbGzMPvvsk1deeSVHHnlkevfunTFjxuTpp59udlXqHXfckSOPPDIjRozIYYcdlgkTJuScc87Jv/71r/z85z9f5DINO+20U2644YY89NBDTcuBVSqV3H333dl2221TX1+fE044IX/+859zzDHHpE+fPnnggQdyxhlnpGfPntl1111b4Gy+P/9cccUVm+677rrrMnLkyOy3337p0qXLQsHyc889l29+85tZZ511cvrpp6dSqeTss8/O3nvvndtvvz2NjY3Za6+9Mnny5Bx++OFZfvnlc9NNN2WfffbJmDFj8qUvfalFageYT2gLtCvTpk3LrFmzssIKKyzW/jNmzMjFF1+c3XffPSeeeGLT/auvvnpGjhyZm2++Od/61reSJO+9915OOeWUpgnXKquski222CL3339/Vl111dxyyy2ZOHFibrvttqYrZddZZ51svfXWH/r68z9y1bdv30V+/Kol6/ugLl26ZJtttsndd9+dI444Ikkyc+bM/OEPf8i+++6bZN4XMPTv3z8jR45MuVzOhhtumG7dumXatGmLdX4/aMHJ79tvv51nnnkmp512Wvr375/NNtus2X4nnXRSVl555UUe55Zbbsn48eNz6623NgXOQ4YMyc4775xHH3005XI5N9xwQ/77v/87++23X5Jkk002SalUyqWXXppvfetb6dWr1yfqAQCgLc2YMSMzZszIKqusstBjHwwWS6VSOnXq1HR7nXXWaZoLJcmtt96ajTfeOD/96U+brsodNmxY/vjHP+bRRx/NiBEj8sADD+Tpp5/OpZdems033zxJstFGGzX7ErJKpZKzzjorX/7yl3PWWWc13b/KKqvkO9/5Tu6///6m5y5o/fXXzworrJC77767KbR9/PHHM3HixOy0005JkkceeSQbb7xx07JZQ4cOTbdu3T7R3K1SqTQ7R1OmTMkDDzyQX/3qV/nqV7+aZZddtumx5ZdfPqNHj246Lx/8ArKLLroon/nMZ3LllVdmqaWWSjJvDn/YYYflH//4R/7+97/nueeeyw033JB11103SbLppptmzz33zFlnnZWbbrppiesH+ChCW6BdmT/Jmjt37mLt/+STT2b27NkZMWJEs/uHDBmS/v37Z9y4cU2haNJ8XdX5687O/wjYY489lhVXXLHZ0gb9+vX7VGthtWR9i7Ljjjvm5ptvzlNPPZV111039913X959992m19too41y/fXXZ9ddd81XvvKVbL755hkxYsQn+oKLCRMmLPLL39Zdd938+Mc/bnZldJcuXZpdeftBjz32WFZYYYVmVwgvtdRS+c1vfpMk+eUvf5lKpZLhw4c3m6gPHz48F198cR5//PFstdVWS9wDAEBbW9SyBEnyn//8J1/5ylea3de/f//cd999TbdXX331Zo/vvPPO2XnnnTNr1qy8/PLL+c9//pNnn302c+fOzZw5c5LMm2d17tw5m266adPzunXrls022yyPPvpokuTf//53Xnvttey///7N5lobbLBBevTokb/85S+LDG1LpVJ23HHHXHPNNTnppJNSX1+fO++8MyuuuGLWX3/9JPNC2l/96leZNGlStthii2y22Waf+FNSt956a2699dZm99XV1WXrrbfOj370o2b3r7rqqs2Wl/igxx9/PJtttllTYJvMC8Xnn+8rrrgiyy23XNZcc81m52SLLbbImWeemRkzZuQzn/nMJ+oDYFE6RGg7derU7LHHHvnJT36SoUOHLtZz7rnnnlxwwQV55ZVXstxyy2X//ffPbrvt1sqVAp9Wz549071790ycOPFD93n33Xcze/bs9OzZs2ld2D59+iy0X58+ffLWW281u2/BYHH+pK5SqSSZdxXEgn+tn2+55ZbL5MmTl7yZ/3fMlqpvUTbaaKP069cvd911V9Zdd93ceeedGTJkSNOVytttt10aGxvzi1/8IhdeeGHOO++89O/fP0ccccRHfmnYoiy33HK5+OKLm27X19enb9++i5y89u7d+yOD4enTp3/kxwOnT5+eJB9a46RJkxazagCA6urVq1e6devWtP7/fP369cuNN97YdPt//ud/8s9//rPZPh+cQ86cOTMnn3xybrvttjQ0NGSFFVbI4MGDU1dX12xO27Nnz4UCzOWWW65pe/5c66STTspJJ520UM2vv/76h/az884756KLLsoDDzyQzTffPL/97W+bXYRw/PHHp2/fvrn99tubjj148OCccMIJH/uFvh+0xRZbNAW+pVIpXbt2Tf/+/ZuWF1vQoubbC1qc+ecbb7yxyIsUknlLmQltgZbU7kPbxx9/PKNHj87LL7+82M95+OGHM3r06Jx77rnZdNNNM27cuOy7775ZffXVs84667RitUBL2GSTTTJu3LjMmjWr2V/C57v55ptzyimn5Be/+EXTxGny5MkLLSHwxhtvNFvn6uP06tUr//nPfxa6f/6k9pNoyfoWpVQqZcSIEbntttty8MEH54EHHmi2DEOS7LDDDtlhhx3y1ltv5c9//nMuv/zyHHXUURkyZEg++9nPLvZr1dfXN33p2Ke19NJL55VXXlno/ieeeCI9evTIMssskyQZO3ZsunfvvtB+n/vc51qkDgCAtrDlllvmvvvuy9tvv50ePXokWXhu1bNnz489zimnnJJ77rkn5557bjbeeON069YtSZqtt9qrV69MmzYtc+fObbbUwoJz2vlzraOPPjobbrjhQq/zUeHkyiuvnEGDBuU3v/lNOnfunGnTpmXHHXdsery+vj4HHnhgDjzwwEycODH/+7//m4suuihHHHFE06eqFlfPnj1bdP45derUhe6///77s8Yaa2TppZfOKqus0my5iAUt7vJtAIvrwz8b0A7ccsstOfLII3P44Ycv9NiDDz6Y3XbbLUOGDMn222+f22+/vemxq666Kv/1X/+VzTbbLKVSKRtttFFuuummj/yoLlAce++9d6ZPn55zzjlnocemTJmSMWPGNE0W11133dTX1+eOO+5ott9jjz2WiRMnZr311lvs191oo43yyiuv5Jlnnmm6b+rUqXnyySc/8nkf9TGslqzvw+y0006ZNGlSLrjggpRKpWZf1HbYYYfle9/7XpJ5E9WvfvWrOeiggzJ37tyPvIKitQ0ZMiTjx4/PP/7xj6b7Zs+ene9///u54YYbssEGGySZt8bx2muv3fRv+vTpOffccz9VkA4A0Nb233//zJ07N8cdd1xmz5690OMzZ87M+PHjP/Y4jz/+eIYOHZqtttqqKbD929/+lqlTpzYtw/ClL30pDQ0N+f3vf9/0vNmzZ+cvf/lL0+0vfOEL6d27d1555ZVmc62+ffvm7LPPzt///vePrGPHHXfMAw88kDvvvDODBg1qWq935syZ2WabbXLllVcmmfeH9pEjR2b77bfPa6+99rH9taYhQ4bkT3/6U7Pz/49//CP77bdfnnnmmWy44YZ59dVX07t372bn5KGHHsqYMWOaBeAALaFdX2m7ySabZMSIEamrq2sW3D733HM58MAD89Of/jRbbrllnnrqqRx00EHp1atXvvzlL+fpp5/O0KFDs99+++Wpp55K37598/3vf3+h9YCAYho0aFAOPfTQnHvuuXnhhReyyy67pFevXnn++edz5ZVX5p133slll12WUqmUnj17Zr/99suFF16Yzp07Z8stt8wrr7yS8847LwMGDFiib6jdaaedcvXVV+d73/teDj/88PTo0SMXX3zxh65DNt8yyyyTJ554Io8++miGDBnS7LGWrO/DDBgwIGuuuWZ+8YtfZOutt87SSy/d9NhGG22UE088MWeccUY23XTTvPnmm03fLjx/PdmXX345U6dO/VRr9y6pXXfdNddcc00OPPDAHHrooVl22WVz3XXXZebMmdlzzz2z0korZccdd8wPf/jDTJgwIWuttVZefPHFnHPOOVlhhRUW+UUeAABFtdpqq+Xss8/OMccck5133jlf//rXM3DgwDQ0NOSJJ57IjTfemMmTJ2efffb5yOOss846+c1vfpNf/vKXWXXVVfPcc8/l4osvTqlUynvvvZdkXmi7ySab5Ac/+EGmTJmS/v375+qrr87UqVOblgfo1KlTDj/88Jxwwgnp1KlTtthii7z55pu56KKLMmnSpA9dImC+7bffPqeddlruuuuuHH/88U33d+nSJWuuuWbT3HfgwIF58cUXc8stt2SbbbZp2u/vf/976uvrM2DAgE96SpfYQQcdlD322CP77rtv9tprr8yePTvnnXde1lxzzWy66aZpaGjItddem1GjRuWAAw5Iv3798uCDD+byyy/Pt7/97XTu3LnNagVqQ7sObRdcc2dBv/rVr7Lllls2Ldq+3nrr5etf/3quu+66fPnLX86MGTNyxRVX5IILLsjaa6+d++67L4cffniuvfbapm+BBIrtwAMPzBe/+MVcd911Oe200zJ9+vT07ds3m266aQ444IBmH4///ve/nz59+uTaa6/Nr3/96/Ts2TPbbrttDjvssGZrxH6c+vr6jB07NqeeempOOeWUlEqlfP3rX8+KK66YKVOmfOjzDjjggFx00UXZd999c/fddy/0eEvV91F22mmnPPvss80+mpYk3/jGNzJnzpz86le/yi9+8Yt06dIlX/rSl3LUUUc1TTwvuuii3HLLLc2uem1tPXr0yLXXXpszzzwzp5xyShoaGrLuuuvmmmuuafpUxGmnnZZLL700v/rVr/Laa6+ld+/e2W677XLYYYe50gEAaHe22mqr3H777fnlL3+ZG2+8MRMmTEilUsmKK66Y7bbbLt/4xjc+9g/To0ePzpw5c3Luuedm9uzZWWGFFXLggQfmX//6V+67776mJREuvPDCnHXWWTn//PMza9asbLfddvn617+eP/zhD03H2n333dO9e/eMGTMm119/fbp165b11lsvZ5111scu4dWzZ89sttlmuf/++7Pddts1e+zHP/5xzj333Fx55ZV544030rt37+y222459NBDm/b53ve+l/79++eaa65Z8hP5CX3xi1/MNddck7PPPjuHH354unfvns022yxHHnlk6uvrU19fn+uuuy5nn312fvrTn+att95q+i6Ivffeu83qBGpHqfJR32DTjgwcODBXX311hg4dmn333TcPP/xws7Uu586dm5VWWim33XZbBg8enP/6r/9qdnXufvvtlwEDBuToo4+uRvkAAAAAAEna+ZW2H6Zv377ZZZdd8uMf/7jpvtdff73p2zJXXXXVhdYJmjt37kd+AzsAAAAAQFto119E9mF222233Hnnnfnzn/+cxsbGvPTSS/n2t7/dtNj5N7/5zfzyl7/Mgw8+mMbGxtxzzz0ZN25cdthhhypXDgAAAADUug55pe26666bn/3sZ/nZz36WQw89NF27ds0OO+yQ//7v/06SfO1rX0u5XM5pp52WV155Jf37988555zzsYupAwAAAAC0tg6zpi0AAAAAQEfQIZdHAAAAAABor4S2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIHUVbuAT2rKlLdSq1+hViolvXsvXdPnAOOA9xkLJMYB8xgH75+DImjL96HW3vta6levHZNeO65a6levHZNe2+51P067DW0rlXT4wfNxnAMS44D3GQskxgHzGAfFUI33odbe+1rqV68dk147rlrqV68dk16rz/IIAAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKpK7aBQAAAAAAtJWJEyfkqqsuT319XUaOHJV+/fpXu6SFCG0BAAAAgJoxduwVefrpJ5MkDQ2NGT36hOoWtAiWRwAAAAAAasaECeMXuV0kQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUSFVD27lz52bPPffM6NGjq1kGAAAAAEBhVDW0vfDCC/PYY49VswQAAAAAgEKpWmj70EMP5d57781XvvKVapUAAAAAAFA4ddV40SlTpuT444/PRRddlKuuuuoTHaNUatma2pP5vdfyOcA44H3GAolxwDzGQbF6b8taau29r6V+9dox6bXjqqV+9dox1UqvH+yvGvO2j9PmoW1jY2OOOuqojBo1KmusscYnPk7v3ku3YFXtk3NAYhzwPmOBxDhgHuOgGKrxPtTae19L/eq1Y9Jrx1VL/eq1Y+rovZbL5WbbffoUr982D20vvfTS1NfXZ8899/xUx5ky5a1UKi1UVDtTKs37j6eWzwHGAe8zFkiMA+YxDt4/B0XQlu9Drb33tdSvXjsmvXZctdSvXjumWum1sbGx2fbkyW+12Wsv7ny1zUPb2267La+//nqGDBmSJJk5c2aS5Pe///0SfSlZpZIOPXgWh3NAYhzwPmOBxDhgHuOgGKrxPtTae19L/eq1Y9Jrx1VL/eq1Y+rovX6wtyL22uah7W9/+9tmt0ePHp0kOf3009u6FAAAAACAwil//C4AAAAAALSVNr/S9oNcYQsAAAAA8D5X2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgddUuAAAAAABgUcrlUsrlUoses1Ra8Hil1NW1znWtjY2VNDZWPtFzhbYAAAAAQOGUy6X06tU15XKnFj9u89fo3qLHn6+xcW6mTXvvEwW3QlsAAAAAoHDmXWXbKU/968S8/d5LLXbcWbMnN9v+yzN7tdix5+vRdZWsO+CklMsloS0AAAAA0LG8/d5LefPdf7bY8RorXTL/q74aK3Na9NgtxReRAQAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECqEto+9NBD2X333bPeeutl2LBhOfnkkzNz5sxqlAIAAAAAUChtHtpOnTo1+++/f775zW/mscceyy233JJHHnkkl112WVuXAgAAAABQOHVt/YLLLrtsHnzwwfTo0SOVSiXTp0/PrFmzsuyyy7Z1KQAAAAAAhdPmoW2S9OjRI0my2WabZdKkSRkyZEh23XXXapQCAAAAAFAoVQlt57v33nszY8aMHHnkkTnkkEMyZsyYxX5uqdSKhRXc/N5r+RxgHPA+Y4HEOGAe46BYvbdlLbX23tdSv3rtmPTacdVSv3rtmGqp17a04Plc3HNbqlQqldYpZ/E9/fTT2X333fPII4/kM5/5TLXLAQAAAAAK4i/P7JU33/1nix3vsjO75M3p877qa5mejdnv6Jktduz5lum2eoatPfYTP7/Nr7T961//muOOOy6333576uvrkySzZ89O586d07Vr18U+zpQpb6X6cXN1lEpJ795L1/Q5wDjgfcYCiXHAPMbB++egCNryfai1976W+tVrx6TXjquW+tVrx1S0Xjt1KqdXr+7VLuNTmTbtncyd29h0e3Hnq20e2g4cODAzZ87M2WefnSOOOCJvvPFGzjjjjOy2225NIe7iqFRSiMFTTc4BiXHA+4wFEuOAeYyDYqjG+1Br730t9avXjkmvHVct9avXjqmWem0Ln+Rcllu+jI/WvXv3jBkzJs8//3yGDRuWPffcMxtvvHGOO+64ti4FAAAAAKBwqvJFZAMGDMiVV15ZjZcGAAAAACi0Nr/SFgAAAACADye0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAAGrGsstXmrZ7L7BdJHXVLgAAAAAAoK0M33527qvUJ0m22H52latZNKEtAAAAAFAzll2ukt1Gzap2GR/J8ggAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABfKpQtupU6e2VB0AAAAAAOQThLYNDQ0555xzsv7662f48OEZP358vva1r+X1119vjfoAAKBq/v73v+fee+/N7NmzM2XKlGqXAwBAjVji0PaCCy7Iww8/nPPOOy+dO3dO796907dv35xyyimtUR8AALS5KVOm5Bvf+Ea+/vWv55hjjsn48eOz1VZb5Yknnqh2aQAA1IAlDm3vuOOOnH/++dlkk01SKpXSrVu3nHbaaXn44Ydboz4AAGhzp556alZfffU8+uijqaury6qrrpr99tsvZ555ZrVLAwCgBixxaPvuu+9m2WWXTZJUKpUkSZcuXVIu+04zAAA6hocffjjHHntsunbtmlKplCTZZ5998q9//avKlQEAUAuWOGkdNGhQLrzwwiRpmsBec801WXvttVu2MgAAqJLOnTtn5syZSd6/UOGdd95J9+7dq1kWAAA1YolD2+OPPz533HFHNt1007zzzjvZbrvtcvXVV2f06NGtUR8AALS54cOH56ijjspLL72UUqmUKVOm5KSTTspmm21W7dIAAKgBdUv6hBVXXDF33XVX/vjHP2bChAnp27dvNt988/To0aM16gMAgDZ3xBFH5Nhjj822226bJNlkk02y2Wab5cc//nGVKwMAoBYscWg7e/bsXHLJJdltt93y1a9+NWPHjs2YMWNyyCGHWNcWAIAOoXv37jn//PMzderUvPLKK/nsZz+bz372s9UuCwCAGrHEKetpp52WBx54IJ06dUqSrLnmmvnzn/+cs846q8WLAwCAapg4cWK+8Y1v5NVXX80666yTq666Kt/85jfzxhtvVLs0AABqwBKHtvfee2+uuOKKfO5zn0uSDBkyJJdcckluv/32Fi8OAACq4aSTTsoXvvCFrLzyykmSfffdNwMGDMjJJ59c5coAAKgFS7w8wqxZs9KtW7dm9/Xo0SMNDQ0tVhQAAFTTE088kb/85S/p3LlzkmTZZZfND37wg2y66aZVrgwAgFqwxFfaDhkyJKeddlpmz56dZF6Ie+aZZ2a99dZr8eIAAKAa6urqMnXq1Gb3zZgxI126dKlSRQAA1JIlvtL2+OOPzz777JP11lsvvXr1yrRp0/L5z38+l1xySWvUBwAAbW7bbbfNIYccksMOOyz9+vXLq6++mvPPPz/bbLNNtUsDAKAGLHFou+KKK+buu+/O448/nsmTJ6dv375ZZ511Ule3xIcCAIBCOuqoo3LSSSdl//33z+zZs1NfX5+dd945hx12WLVLAwCgBix20vraa6+lb9++mThxYpJkhRVWyAorrJAkef3115Ok6cvJAACgPevatWtOP/30nHzyyZkxY0Z69+6dUqlU7bIAAKgRix3abrfddvnrX/+a4cOHLzRhrVQqKZVK+b//+78WLxAAANrKnXfemR122CG33nrrh+6z8847t1k9AABtZeLECbnqqstTX1+XkSNHpV+//tUuqaYtdmh71113JUluv/32dO/evdUKAgCAarnkkkuyww475Pzzz1/k46VSSWgLAHRIY8dekaeffjJJ0tDQmNGjT6huQTVusUPbfv36JUkOOOCA3H777enRo0erFQUAANVw5513JknOPPPMDB48OJ06dapyRQAAbWPChPGL3KY6yp/kSe+9915L1wEAAIVx8MEHZ/bs2dUuAwCAGrXYV9rON3To0Oy+++7ZdNNNs/zyyzd77Hvf+16LFQYAANWy4oor5plnnsmGG25Y7VIAAKhBSxzavvLKK1lxxRXz4osv5sUXX2y637fpAgDQUXzmM5/JqFGjssIKK2T55ZdvNte9+uqrq1gZAAC1YIlC2wsvvDA9evTIJptskpEjR7ZWTQAAUFWDBw/O4MGDM3v27MyYMSO9evVKXd0SX+8AAACfyGKvaXvmmWfmF7/4RTp37pzzzz8/l112WWvWBQAAVfOd73wnL7/8cq666qpcf/31GTt2bKZMmZL99tuv2qUBAFADFju0vfPOOzN27Nicf/75Of/883PHHXe0Zl0AAFA1J598cv7zn//k4osvzt13351zzz03zzzzTM4666xqlwYAQA1Y7M94vfXWW1lttdWSJOuvv34mTZrUakUBAEA13Xffffntb3+b3r17J0m+8IUvZI011shOO+2U4447rsrVAQDQ0S32lbbl8vu7Ws8LAICObKmllkqnTp2a3de9e/d07dq1ShUBAFBLFju0rVQqrVkHAAAUxgEHHJBDDjkkzz33XN5777289NJLOfbYY7Pddttl4sSJTf8AAKA1LPYlsw0NDbn11lubbs+ZM6fZ7STZeeedW6gsAAConp/85CdJ5s1vS6VSswsYrrzyylQqlZRKpfzf//1ftUoEAKADW+zQtk+fPjn//PObbvfq1avZ7VKpJLQFAKBD+MMf/lDtEgAAqGGLHdred999rVkHAAAURv/+/atdAgAANWyx17QFAAAAAKD1CW0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKJC6ahcAAAAAACy+crmUcrnUoscslRY8Xil1da1zrWdjYyWNjZVWOXZHIrQFAAAAgHaiXC6lV6+uKZc7tfhxm79G9xY9/nyNjXMzbdp7gtuPIbQFAAAAgHZi3lW2nfKbf16Qqe9OaLHjvjN7WrPt654c3WLHnm/Zbv3z1dW/n3K5JLT9GEJbAAAAAGhnpr47IW+882KLHW9upaHZdksemyXni8gAAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFUpXQ9rnnnsuoUaOy4YYbZtiwYTn66KMzderUapQCAAAAAFAobR7azpw5M/vss08GDx6cP//5z7nzzjszffr0HHfccW1dCgAAAABA4bR5aDtx4sSsscYaOfjgg1NfX59evXpljz32yKOPPtrWpQAAAAAAFE5dW7/gF77whYwZM6bZfffcc0/WXHPNJTpOqdSSVbUv83uv5XOAccD7jAUS44B5jINi9d6WtdTae19L/eq1Y9Jrx1VL/eqVT6uWzueCvS5u320e2i6oUqnk3HPPzf/+7//m2muvXaLn9u69dCtV1X44ByTGAe8zFkiMA+YxDoqhGu9Drb33tdSvXjsmvXZctdSvXjuOHn065b3pjUmSpZfr1Kqv1atX91Y9fpF80l6rFtq+/fbbOfbYY/Pss8/m2muvzcCBA5fo+VOmvJVKpZWKK7hSad4Pilo+BxgHvM9YIDEOmMc4eP8cFEFbvg+19t7XUr967Zj02nHVUr96rZ5OncqtEnqutV33/O2ud5Ika361dUPVadPeydy5jR+7X2v12pY+2OvizlerEtq+/PLL2XffffO5z30uN954Y5ZddtklPkalkkL8h1JNzgGJccD7jAUS44B5jINiqMb7UGvvfS31q9eOSa8dVy31q9eOo0efumy012fa7PU68rn8oE/Sa5t/EdmMGTOy1157Zb311ssVV1zxiQJbAAAAAICOqs2vtL355pszceLE/OY3v8lvf/vbZo898cQTbV0OAAAAAEChtHloO2rUqIwaNaqtXxYAAAAAoF1o8+URAAAAAAD4cEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKJC6ahcAAAAAAEU0ceKEXHXV5amvr8vIkaPSr1//apdEjRDaAgAAAMAijB17RZ5++skkSUNDY0aPPqG6BVEzLI8AAAAAAIswYcL4RW5DaxPaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgdRVuwAAAAAA+DTK5VLK5VKLH7dUWvCYpdTVtc71j42NlTQ2Vlrl2LRPQlsAAAAA2q1yuZSevbqmU7lTqxx7we1evbq3+GskydzGuZk+7T3BLU2EtgAAAAC0W+VyKZ3KnTL2b1fntXcnteixZ8ya0Wz7jEd+2qLHT5K+3T6bvdb6r5TLJaEtTYS2AAAAALR7r707Ka+89UqLHnNuZW6z7ZY+PnwYX0QGAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAALAI9b2Xatpeqs9SH7EntCyhLQAAAAAsQt+t+6X753uk++d75LNb9at2OdSQumoXAAAAAABFtFTvpbLyN1epdhnUIFfaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAApEaAsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgdRVuwAAAAAA2o+JEyfkqqsuT319XUaOHJV+/fpXuyTocIS2AAAAACy2sWOvyNNPP5kkaWhozOjRJ1S3IOiALI8AAAAAwGKbMGH8IreBliO0BQAAAAAoEMsjAAAAAHRA5XIp5XKpxY9bKi14zFLq6lr+msDGxkoaGystflxoL4S2AAAAAB1MuVxKz17d0qnc8oHqgkFwuVxKr17dW/w15jY2Zvq0dwW31CyhLQAAAEAHUy6X0qlczukPXZ+X33y9RY895b03m20fdM8FLXr8lZZZPqO/tEfK5ZLQlpoltAUAAADooF5+8/X8a9rEFj3m3GXqkzffS5I0fKa+xY8PVPmLyKZOnZqtt94648aNq2YZAAAAACym8pdWSvovk/RfJuWNVqp2OdAhVe1K28cffzyjR4/Oyy+/XK0SAAAAAFhCpZ5d02m7NapdBnRoVbnS9pZbbsmRRx6Zww8/vBovDwAAAABQWFW50naTTTbJiBEjUldX94mD21Lp4/fpqOb3XsvnAOOA9xkLJMYB8xgHxeq9LWuptfe+lvrVa8ek146r1vptC7V2Lmup31rtdXH7rkpou9xyy33qY/TuvXQLVNK+OQckxgHvMxZIjAPmMQ6KoRrvQ62997XUr147Jr12XLXWb2vp1at7tUtoU7XUr14/XtXWtP20pkx5K5VKtauojlJp3i+AWj4HGAe8z1ggMQ6Yxzh4/xwUQVu+D7X23tdSv3rtmPTacRWp306dyu0+GJs27Z3Mndv4sft1hF6T2uq3lntd3Plquw1tK5VU/QdgtTkHJMYB7zMWSIwD5jEOiqEa70Otvfe11K9eOya9dly11m9rqrXzWEv96vWjVeWLyAAAAAAAWDShLQAAAABAgVR9eYR//OMf1S4BAAAAAKAwXGkLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAokLpqFwAAAADQ3k2cOCFXXXV56uvrMnLkqPTr17/aJQHtmNAWAAAA4FMaO/aKPP30k0mShobGjB59QnULAto1yyMAAAAAfEoTJoxf5DbAJ+FKWwAAAKBmlMullMulFj9uqbTgMUupq2v56+QaGytpbKy0+HGB4hHaAgAAADWhXC6lZ69u6VRu+UB1wSC4XC6lV6/uLf4acxsbM33au4JbqAFCWwAAAKAmlMuldCqXc/zvbsyLU99o0WNPq19wu5RvXX9xix7/88sul1O23i3lckloCzVAaAsAAADUlBenvpHnJr/aoscsr/G5dJs1K0kyY41+mdTCxwdqi9AWAAAA4FNqXLpb3t5kzWqXAXQQLb+ICwAAAAAAn5jQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACqat2AQAAfHoTJ07IVVddnvr6uowcOSr9+vWvdkkAAMAnJLQFAOgAxo69Ik8//WSSpKGhMaNHn1DdggAAgE/M8ggAAB3AhAnjF7kNAAC0P660BQBqWrlcSrlcqnYZn1qptGAPpdTVdYy/zTc2VtLYWKl2GQAA0KaEtgBAzSqXS+nVq2vK5U7VLuVTWzB4ntdX9ypW03IaG+dm2rT3BLcAANQUoS0AULPmXWXbKb/55wWZ+u6Eapfzqbwze1qz7eueHF3FalrGst3656urfz/lckloCwBATRHaAgA1b+q7E/LGOy9Wu4xPpWvvSt7+f7lttz6Vdt8PAADUso6x2BkAQI1ba7vuWW7Vzllu1c5Z86sdY2kEAACoVa60BQDoAHr0qctGe32m2mUAAAAtQGgL0I5NnDghV111eerr6zJy5Kj069e/2iUBAEASc1WAT0NoC9SkeV8+VPr4HQvu6quvyNNPP5kkmTu3kuOPP7G6BbWQxsaKLx0CAGhDrTE/bqu5qrkj0BEJbYGaUy6X0rNnt3Tq1P6X9X711fe/7X7ixFfSq1fHWMdy7tzGTJ/+rsn3YnIVCwDwabTW/Lit5qrmjkBHJLQFak65XEqnTuUcd+tN+ffkydUu51OZvsDVENPKpXxjzKVVrKZlfKFPn5y689dSLpdMvBfT2LHvX8XS0NCY0aNPqG5BAEC70lrz47aYq5o7Ah2V0BaoWf+ePDnPvfZqtcv4VMor9U/3mTOTJNNW6p9X23k/ba2jLJMxceIrTdsTJrySurr2fxV54qOOANDWWnp+bK4K8MkJbQHascZu3fLWoLWrXUa7VC6X0rNXt3Qqt/+Ac8HguVwudZxlMhobM32ajzoCQHtlrgrwyQltAahJ5XIpncrlnP7Q9Xn5zderXc6n8na390PNt7snB91zQRWraRkrLbN8Rn9pDx91BAAAapLQFoCa9vKbr+df0yZWu4xPpTLks8nseR89fG/95dt9PwAAALVOaAsA7VypZ9d02m6NapcBAABAC2n/C/kBAAAAAHQgrrRtZyZOnJCrrro89fV1GTlyVPr161/tkgAAAACAFiS0bWfGjr0iTz/9ZJKkoaExo0efUN2CAAAAAIAWZXmEdmbChPGL3AYAAAAAOgahLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgvogMAAAAFqFcLqVcLrXa8Tt1ar3rqBobK2lsrLTa8QFoXUJbAAAA+IByuZSePbu1arDaq1f3Vjv23LmNmT79XcEtQDsltAUAAIAPKJdL6dSpnB/+4pa89PrkapezRFZZvk9O/tYuKZdLQluAdkpoC+3QxIkTctVVl6e+vi4jR45Kv379q10SAAB0SC+9Pjn/mPBatcsAoMYIbaEdGjv2ijz99JNJkoaGxowefUJ1CwIAAACgxbTe4jxAq5kwYfwitwEAAABo/4S2AAAAAAAFUjPLI5TLpZTLpWqX8amVSgv2UEpdXcfI3RsbKxbIBwAAAIDUSGhbLpfSs2e3dOrU/gPOBYPncrmUXr26V7GaljN3bmOmT3+31YNb4X2xCe8BAAAAaii07dSpnLNOvT7jX36j2uV8KlOnvNVs+9ADLqxiNS1jxZWWy5HH7ZFyudSqgZ3wvvjaKrwHAKBYJk6ckKuuujz19XUZOXJU+vXrX+2SAKCqaiK0nW/8y2/khecnVruMT6UhDe9vNzS0+37a0vzw/sdX3JL/vDq52uV8KpNnvNVs+7s/ubyK1bSMlfv1yQnf3aXVw3sAAD651vrk2tVXX5Gnn34ySTJ3biXHH39ii79G4pNdALQfNRXaQpL859XJ+ef416pdxqfSuWFu5k+VGxrmtvt+AAAovtb85Nqrr05o2p448ZVW+ySZT3YB0F4IbQEAAPhYrfnJtTfnlJttt8YnyXyyC4D2RGgL7VClvntKDbOatgEA6HiKus5rq3xyrceKqXtvZpJkRo8VM8MnyQCocUJbaIca+gxI3RvPN20DANDxjB37/jqvDQ2NGT36hOoW1Jrqu6Wh/7rVrgIACkNoC+2RSS0AtEut9SVO87XGWqPzFeULnIp69WlrmDBh/CK3AYCOT2gLAABtYN6XOHVNp06dWu01WuvLm5Jk7ty5mT79vaoHt0W8+rS1wvhSacFjllJX1/KhfFHCeACgOaFtO1NK11Qyu2kbAID2Yd6XOHXKmUdfkZdfeLXa5SyRlVbtl6PP/G4hvsCpaFefzgvju7XKVc4LBsHlcqlVQvm5cxszffq7VX9fAYDmhLbtTOesnDn5T9M2AADty8svvJoX/q/6YSMtY14YX87pF9yclydMbtFjvz2ztMB2OQeNvqxFj79S/z4Z/f1dCxHGAwDNCW3bmXK6ZqmsUe0yAACABbw8YXL+9eJrLXrMSmnFpPOsJMl7pRVa/PgAQHEJbQEAgBZnnddPr1TXLZ0+s061ywAAqkBoCwAAtCjrvAIAfDpCWwAAoEXNX+f1rFOvz/iX32jRY0+d8laz7UMPuLBFj7/iSsvlyOP2sM4rAFBVQlsAAKBVjH/5jbzw/MQWPWZDGt7fbmho8eMDABRBy39eCQAAoJWU0nWR2wAAHYnQFgAAaDc6Z+WU85mU85l0zsrVLgcAoFVYHgEAAGg3yumapbJGtcsAAGhVrrQFAAAAACgQoS0AAAAAQIEIbQEAAAAACkRoCwAAAABQIEJbAAAAAIACEdoCAAAAABSI0BYAAAAAoECEtgAAAAAABSK0BQAAAAAoEKEtAAAAAECBCG0BAAAAAAqkKqHtlClTctBBB2XIkCEZOnRoTjnllDQ0NFSjFAAAAACAQqlKaHvYYYelW7du+dOf/pQbb7wxDz30UK666qpqlAIAAAAAUChtHtr+5z//ySOPPJKjjjoqXbt2zYorrpiDDjoo1113XVuXAgAAAABQOG0e2j7//PPp2bNnPvvZzzbdt+qqq2bixIl5880327ocAAAAAIBCqWvrF3znnXfStWvXZvfNv/3uu+9mmWWWWazjlMtJpbJkr73qgH5ZqkvnJXsSrW6FFfo0bZfb4M8Iq63UN13qjYOiWbFv76btthgHSfL/9e2brp2NhaJZpXfbjoUBvT6XLp2Mg6JZYZnlmrbbYhws32OV1JWXav0XYoks261f0/bijoNSqZWK+QQ+bL464IsrpUvX+rYv6FNY4fN9m7aX5L/J9jj//qRz0wGr9E2XpdpZr/0+2e/c9jqf/qTzzYGfa3/9rtznk/XaHufHn3TuuMZy/dK1rn31unKvT/jzqR3Odz/pXHDFHiukvty+fscmyWe7Ld+0vST9tsc57CeZ3yXJMt0GplO5SytU1Hq6d1m5aXvBXhd3vlqqVJY0+vx0fve73+UHP/hBxo0b13TfP/7xj+y444557LHHsvTSS7dlOQAAAAAAhdLmyyOsttpqmT59eiZPntx03wsvvJC+ffsKbAEAAACAmtfmoe0qq6yS9ddfP6eeemrefvvtjB8/PhdddFF22223ti4FAAAAAKBw2nx5hCSZPHlyfvzjH2fcuHEpl8vZeeedc+SRR6ZTp05tXQoAAAAAQKFUJbQFAAAAAGDR2nx5BAAAAAAAPpzQFgAAAACgQIS2AAAAAAAFIrQFAAAAACgQoW3BTZ06NVtvvXXGjRv3ofvcf//9GTFiRAYNGpSvfvWr+d///d82rJDW9Nxzz2XUqFHZcMMNM2zYsBx99NGZOnXqIvc1Djq2hx56KLvvvnvWW2+9DBs2LCeffHJmzpy5yH2NhY5t7ty52XPPPTN69OgP3ccY6NjuvvvufPGLX8zgwYOb/h111FGL3NdY6JhqYX5Ya3OgWvs9Xyu/y2rp5/X06dNz9NFHZ+jQodlggw1y0EEH5fXXX1/kvu2919tvv73Zezp48OCstdZaWWuttRa5f3vv99lnn83IkSMzZMiQbLLJJvnJT36S2bNnL3Lf9t7rCy+8kO9+97sZMmRINt9881x88cVpbGxc5L7ttddFzSGeeuqp7L777hk8eHCGDx+eX//61x95jMsvvzybbrppBg0alD333DP//ve/W7vsT+zD5kxPPPFE1l577Y99ftV7rVBYjz32WGWrrbaqrL766pWHH354kfu8+OKLlbXXXrvyu9/9rjJnzpzKXXfdVVlnnXUqr732WhtXS0t77733KsOGDaucd955lVmzZlWmTp1a2XfffSv777//QvsaBx3blClTKmuvvXblpptuqsydO7cyadKkyg477FA577zzFtrXWOj4zj333Moaa6xROeaYYxb5uDHQ8Z1++umV0aNHf+x+xkLHVAvzw1qbA9Xi7/la+V1WSz+vv/3tb1cOPvjgyowZMypvvfVW5Xvf+15lv/32W2i/jtDrB7322muVYcOGVW699daFHmvv/c6dO7cybNiwytixYytz586tvPrqq5VtttmmcuGFFy60b3vv9e23365svvnmleOPP77yzjvvVF555ZXKDjvsULngggsW2re99rqoOcT06dMrG264YeXaa6+tzJkzp/Lggw9WBg8eXHnqqacWeYybb7658uUvf7nyz3/+szJz5szKaaedVtl+++0rjY2NbdnKYllUv42NjZVf//rXlUGDBlVWX331j3x+EXp1pW1B3XLLLTnyyCNz+OGHf+x+Q4YMyVZbbZW6urpst9122WCDDXL99de3UaW0lokTJ2aNNdbIwQcfnPr6+vTq1St77LFHHn300YX2NQ46tmWXXTYPPvhgdt1115RKpUyfPj2zZs3Ksssuu9C+xkLH9tBDD+Xee+/NV77ylQ/dxxjo+J555pkPvZpnQcZCx1Mr88NamwPV2u/5WvpdVis/r//2t7/lqaeeyumnn55lllkmPXr0yMknn5wjjzxyoX3be68fVKlUctRRR2XzzTfPTjvttNDj7b3fGTNm5I033khjY2MqlUqSpFwup2vXrgvt2957ffzxxzNlypSccMIJ6datW/r3758DDzwwv/zlL5t6n6899vphc4h77703PXv2zMiRI1NXV5cvfelLGTFiRK677rpFHueGG27It771ray22mpZaqmlcsQRR2TixIkf+emfaviwfo877rj8+te/ziGHHPKxxyhCr0Lbgtpkk03yu9/9Ltttt91H7vevf/0rq6++erP7BgwYkOeee641y6MNfOELX8iYMWPSqVOnpvvuueeerLnmmgvtaxx0fD169EiSbLbZZhkxYkSWW2657LrrrgvtZyx0XFOmTMnxxx+fs88+e5ET5fmMgY6tsbExzz77bP74xz9miy22yKabbpof/vCHmTFjxkL7GgsdT63MD2txDlQrv+dr6XdZLf28fvrppzNgwIDccMMN2XrrrbPJJpvkjDPOyHLLLbfQvu291w+67bbb8q9//etDl/po7/326tUr3/nOd3LGGWdk7bXXzmabbZZVVlkl3/nOdxbat7332tjYmM6dO6dz585N95VKpUyePDlvvvlms33bY68fNod4/vnnl6iXD/beuXPnrLLKKoXr/cP6PfTQQ3P99dfni1/84sceowi9Cm0LarnllktdXd3H7vfOO+8sNOHp0qVL3n333dYqjSqoVCo555xz8r//+785/vjjF3rcOKgd9957bx544IGUy+VF/nXQWOiYGhsbc9RRR2XUqFFZY401PnJfY6Bjmzp1ar74xS9mm222yd13351f/epXeemllxa5RqKx0PHU4vyw1uZAHfn3fK39Lquln9czZszIP/7xj7z00ku55ZZbcuutt2bSpEk55phjFtq3vfe6oMbGxlx88cU54IADmv7w8kHtvd/GxsZ06dIlP/zhD/Pkk0/mzjvvzAsvvJDzzz9/oX3be6/rrbdeunTpkrPPPjvvvfdeJkyYkCuuuCJJFlpjvD32+mFziCXtpb30/mH99u3bd7GPUYRehbbtXNeuXRf6ATJz5sx07969ShXR0t5+++0ccsghueOOO3Lttddm4MCBC+1jHNSOLl265LOf/WyOOuqo/OlPf1roag1joWO69NJLU19fnz333PNj9zUGOrY+ffrkuuuuy2677ZauXbvmc5/7XI466qg88MADefvtt5vtayzUro7y3tfiHKgj/56vtd9ltfTzur6+Pkly/PHHp0ePHunTp08OO+yw3H///XnnnXea7dvee13QuHHj8vrrr2e33Xb70H3ae7+/+93vcs899+Rb3/pW6uvrs9pqq+Xggw/OL3/5y4X2be+9LrPMMrn88svz1FNPZfPNN89hhx2WnXfeuemxBbX3Xhe0pL10pN4/ThF6Fdq2c6uvvnqef/75Zvf961//ymqrrValimhJL7/8cr72ta/l7bffzo033rjI/1lJjIOO7q9//Wu23XbbZt/SOnv27HTu3Hmhv/wZCx3TbbfdlkceeSRDhgzJkCFDcuedd+bOO+/MkCFDFtrXGOjYnnvuuZx11lnN1labPXt2yuVy0/80z2cs1K6O8N7X0hyoVn7P19rvslr6eT1gwIA0NjZmzpw5Tfc1NjYmyUJrgbb3Xhd0zz33ZOutt063bt0+dJ/23u+rr77a7GdTktTV1TVbQmC+9t7r7Nmz09DQkKuvvjrjxo3Lr3/965TL5QwYMKBD/Sz+oCXtZbXVVmu2/5w5c/LSSy8ttMRCR1CEXoW27dyOO+6YRx55JHfffXcaGhpy991355FHHlnkIui0LzNmzMhee+2V9dZbL1dcccUiv4xiPuOgYxs4cGBmzpyZs88+O7Nnz86ECRNyxhlnZLfddlto0m8sdEy//e1v89e//jWPPfZYHnvsseywww7ZYYcd8thjjy20rzHQsfXs2TPXXXddxowZk4aGhkycODE//elPs8suu/h5QJP2/t7X2hyoVn7P19rvslr6eb3xxhtnxRVXzHHHHZd33nknU6dOzTnnnJOtttpqoWUD2nuvC3r88cezwQYbfOQ+7b3fTTbZJG+88UYuueSSzJ07N+PHj8/FF1+cESNGLLRve+81Sb773e/mxhtvTKVSyd/+9rdccskl2WuvvRbaryP0Ot/WW2+dyZMn56qrrsqcOXPy8MMP54477sjXvva1Re7/ta99Lddee22ee+65zJo1K2effXb69OmzyD/AtXeF6LVC4a2++uqVhx9+uOn2oEGDKrfddlvT7QceeKCy4447VgYNGlTZfvvtK3/84x+rUSYt7Morr6ysvvrqlXXXXbcyaNCgZv8qFeOg1jz//POVUaNGVYYMGVLZYostKj/72c8qs2bNqlQqxkItOuaYYyrHHHNM021joLaMGzeusscee1QGDx5c2WijjSonn3xyZebMmZVKxVioJR15fliLc6Ba/D1fC7/Launn9WuvvVY57LDDKsOGDasMGTKkcvTRR1dmzJhRqVQ6Xq/zDRo0aJG1d7R+//KXv1R23333yvrrr1/ZfPPNO/TPp0ceeaSyyy67VAYNGlTZcsstK1dffXXTYx2p1w/OIZ5++ummn1Vbbrll5aabbmp67NFHH60MGjSoMmHChEqlUqk0NjZWrrjiisrw4cMrgwYNquy5556Vf//7323ew5L4YL+VSqXy8MMPV1ZfffVm9xWx11Kl8oHPKwAAAAAAUDWWRwAAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQIS2ADXgpZdeqnYJAAAAwGIS2gK0khdffDHHHHNMNt100wwePDhbbbVVzjrrrLzzzjut8nrDhw/PzTffnCTZZ599cskllyRJ7rvvvnz3u99t2m/BxwAA4ONMnDgxJ554YoYPH55BgwZlww03zHe/+9385S9/abHXuPnmmzN8+PAWOx5Aeye0BWgFf/3rX7PLLrukf//+ufXWW/PEE0/k8ssvz1NPPZW99947c+fObdXXHzNmTA444IAkyfTp01OpVBb5GAAAfJR//vOf2XHHHTN79uxcfvnlefzxx3Pvvfdmxx13zMEHH5z777+/2iUCdEhCW4BWcMIJJ2TnnXfOIYcckmWXXTZJ8vnPfz7nnHNOevfunfHjx2fChAk57LDD8qUvfSnDhg3LEUcckddffz1JMm7cuAwfPjwXX3xxvvzlL2fDDTfM97///bz99ttJkkqlkksuuSSbbLJJhgwZkjPOOKNZELznnnvmggsuyLhx43LiiSdm4sSJGTx4cCZNmtT0WJI0Njbmsssuy1ZbbZX1118/u+22W/70pz81HWf48OG59NJLs/POO2fw4MHZeeed8/DDD7fVaQQAoMpOOOGEDBs2LKeddlpWXXXVdOrUKT179sxOO+2UE088MXPmzMnNN9+cXXfdNXvvvXeGDBmSO+64I5MmTcphhx2W4cOHZ911182WW26ZG2+8sem4L7zwQvbcc88MHjw4I0aMyN///vdmr/vss89mzz33zAYbbJCvfOUrueqqq5pdiADQ0QltAVrYyy+/nOeffz477LDDQo/16dMnF110Ufr375+99947nTp1yr333pvf/OY3SZIDDjggDQ0NSZIJEyZk0qRJ+d3vfpdf//rXeeKJJ/KLX/wiSXLTTTdl7NixufTSS/Pggw+mc+fOee211xZ6vaFDh+akk07K5z73uTzxxBP57Gc/2+zx//mf/8l1112X8847L+PGjcvee++dgw46KE8//XTTPjfddFPOO++8PPjgg1ljjTXyox/9qKVOFQAABfbaa6/liSeeyDe+8Y1FPr7LLrtkq622SjIvZB0xYkQefPDBbL311vnBD36Qzp0756677spf//rXfPvb387JJ5+cd955J3PmzMn++++f1VZbLQ8//HB+9rOf5fe//33TcSdNmpS99tor2267bR588MFcdNFF+cUvfpHrr7++TfoGKAKhLUALmzp1apJ5Ae2HeeyxxzJ+/PicdNJJWXrppbPMMsvkpJNOynPPPZe//e1vTfsdfPDB6dKlS1ZeeeUMHTo0L774YpLktttuy9e//vWsueaaqa+vz6GHHppevXotca033XRT9ttvv6y55pqpq6vLdtttl+HDhze7CmK33XbLyiuvnK5du2bEiBG+1AwAoEbMvyigb9++Tfc99NBDGTJkSIYMGZLBgwdnm222SZJ07tw5O+20U+rr69OlS5f85Cc/yYknnpjOnTtn4sSJ6d69e2bOnJkZM2bkiSeeyKuvvpqjjz46Sy21VFZbbbWMGjWq6TVuv/32rLrqqhk5cmQ6d+6cAQMG5Lvf/W6uu+66tj0BAFVUV+0CADqa5ZZbLknyxhtvZJVVVlno8cmTJ2fKlCnp1atXevTo0XR/jx490rNnz0yYMKEp8J1/rGTeRHj+R8Jef/319OvXr+mxTp065XOf+9wS1zp58uSsuOKKze5bYYUV8txzzzXdXjB8rqur87E0AIAaMX8uOmnSpHz+859PknzpS1/KY489lmTel4ddeOGFTfuWy+9fFzZ+/PiceeaZeemll7LKKqtk5ZVXTjJvea5JkyalV69e6dKlS9P+K620UtP2hAkT8uyzz2bIkCFN9zU2NqZTp06t1ClA8bjSFqCF9e/fP6uvvnruvvvuhR6bMmVKtthii0yYMCHTpk1rWqM2Sd56661MmzatWVD7Yfr27Zvx48c33a5UKk3r4S5prQseJ5k3wV5++eWX+FgAAHQs/fv3z9prr51f//rXH7tvqVRq2p6//MFOO+2UcePG5YYbbshee+3V9Hi/fv0yderUvPPOO033LbjUV9++fTN06NA89thjTf/+8Ic/5JZbbmmhzgCKT2gL0Ap++MMf5qabbsqFF16YadOmpVKp5P/+7/9ywAEHZM0118zee++dAQMG5MQTT8xbb72Vt956Kz/60Y+y0korZb311vvY4+++++654YYb8sQTT2TOnDm5+OKL88Ybbyxy36WWWirvvfde01q5HzzOZZddlmeffTZz587Nb37zm9x3333ZZZddPvU5AACg/Tv11FPzpz/9KT/84Q/z4osvplKp5O23386tt96aCy64YJF/7J8zZ05mzpyZLl26pFQqZeLEifnpT3/a9NjgwYPz+c9/Pj/5yU/y3nvv5T//+U+uvPLKpuePGDEiTz75ZG6//fY0NDTk9ddfzwEHHJDTTz+9zfoGqDahLUAr2HDDDXPttdfm73//e7bffvust956OeSQQ7LRRhtlzJgx6dy5cy699NI0NDRkm222yRZbbJE5c+bk5z//eerqPn7lmh122CGHHHJIDj/88Gy44YYZP358Bg4cuMh9N9hgg/Tu3TsbbLBB/vGPfzR7bNSoURk5cmQOP/zwDBkyJJdeeml+9rOfZcMNN2yR8wAAQPu2+uqr584770yXLl1ywAEHZP31189mm22WG264Ifvss0+uvvrqhZ7TrVu3nHrqqfmf//mfDB48OP/1X/+VYcOGpU+fPvnnP/+ZTp065bLLLsvrr7+ejTfeOPvss0+23HLLpuf3798/Y8aMyfXXX5+NN944O+20U77whS8IbYGaUqpYnBAAAAAAoDBcaQsAAAAAUCBCWwAAAACAAhHaAgAAAAAUiNAWAAAAAKBAhLYAAAAAAAUitAUAAAAAKBChLQAAAABAgQhtAQAAAAAKRGgLAAAAAFAgQlsAAAAAgAIR2gIAAAAAFIjQFgAAAACgQP5/+1lQDJ6FW80AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(14, 6), sharey=True)\n", - "\n", - "# Bar plot for condition vs. price\n", - "sns.barplot(x='condition', y='price', data=housing_data, ax=axes[0], palette='viridis')\n", - "axes[0].set_title('Condition vs. Price')\n", - "axes[0].set_xlabel('Condition')\n", - "axes[0].set_ylabel('Price')\n", - "axes[0].grid(True)\n", - "\n", - "# Bar plot for grade vs. price\n", - "sns.barplot(x='grade', y='price', data=housing_data, ax=axes[1], palette='viridis')\n", - "axes[1].set_title('Grade vs. Price')\n", - "axes[1].set_xlabel('Grade')\n", - "axes[1].grid(True)\n", - "\n", - "# Adjust layout\n", - "plt.tight_layout()\n", - "\n", - "# Show plots\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "The visualization presents comparisons between house prices and their condition and grade ratings. On the left, the condition of houses, rated from 1 to 5, shows relatively consistent prices across different condition levels, with no significant price increase observed for better conditions. Conversely, on the right, the grade of houses, ranging from 1 to 11, demonstrates a clear positive correlation with prices, indicating that higher-grade properties command higher prices." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### c.) Multivariate Analysis" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### **#Correlation matrix**" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABckAAAaWCAYAAABmmTVfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hT1R/H8U/Svdhll7K3yAaRJUOmWAEBEZD1A2UjouJAxIHKUBEZMmUoQxEBQWXKENkiyJ4FyiwU6F75/VGphlZtNDdJzfv1PHk0557cfk6e28vtNyfnmiwWi0UAAAAAAAAAALghs7MDAAAAAAAAAADgLBTJAQAAAAAAAABuiyI5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3BZFcgAAAAAAAACA26JIDgAA4MYsFouzIxjmvzw2AAAAAPZDkRwAACALDh48qJEjR6px48aqUqWKmjZtqldeeUXnz593djRJUrly5fTRRx/Z9Jply5bp3XffTX++fPlylStXThcuXLB3vAzu/qxy5crpzJkzmfbZsmVLeh9b3L59Wy+88IL27Nnzl/0uXLigcuXKafny5TbtHwAAAMB/C0VyAACAv7Fo0SJ16dJFkZGRGjFihGbOnKmnn35au3fvVocOHfTrr786O+I/Mm3aNEVFRaU/b9y4sZYsWaL8+fM7LIPZbNbatWsz3bZmzZp/tM8jR45oxYoVSk1N/ct++fPn15IlS9S4ceN/9HMAAAAA/DdQJAcAAPgLe/fu1VtvvaWuXbtqzpw5euSRR1SnTh09/vjj+vzzz+Xv769Ro0Y5O6Zd5MmTR1WrVpW3t7fDfmb16tUzLZInJiZq/fr1qlChgmE/29vbW1WrVlWePHkM+xkAAAAAXB9FcgAAgL8we/ZsBQUF6dlnn82wLU+ePHrxxRf18MMPKzo6Or19zZo1at++vapVq6YHH3xQo0eP1q1bt9K3f/TRR2revLmmTJmiOnXqqFmzZrp586aaNGmit99+W0899ZSqV6+u0aNHS5KioqI0evRo1atXT/fdd586deqkHTt2/GXuo0ePatCgQapbt64qVaqkBg0a6M0331R8fLwkqUmTJrp48aK++uqr9CVWMltuZfv27eratatq1KihOnXqaMSIEbp06VL69uXLl6tixYo6cOCAOnfurPvuu0+NGzfWzJkzs/T+tm7dWsePH9epU6es2rds2SKTyaSGDRtmeM2yZcvUvn17Va1aVVWqVNGjjz6aPut8586d6tGjhySpR48e6t69uySpe/fueu655zRkyBBVr15d/fr1s1puJSUlRR07dlTdunV148aN9J/18ssvq0qVKjp58mSWxgMAAAAg+6FIDgAA8CcsFou2bdumBx54QH5+fpn2admypQYNGqTAwEBJ0tSpUzV8+HDdf//9mjx5sgYOHKjvvvtO3bt3Ty9QS1JERITWrVunSZMmadiwYcqdO7ektKVd7q4v/uijjyohIUFPPfWUNmzYoOHDh2vKlCkqWLCg+vbt+6eF8qtXr+rJJ59UXFyc3nnnHc2cOVOtWrXSggULNG/ePEnSlClTFBwcrEaNGv3pEitff/21evfurQIFCmjSpEkaNWqU9u/fr86dOysyMjK9X2pqqoYNG6bWrVvrk08+UY0aNTRhwgRt3br1b9/jBx98UDlz5swwm3zNmjVq3ry5vLy8rNoXLVqk0aNHq2nTppoxY4bGjx8vLy8vjRw5UhEREapUqVL6hwujR4/Wa6+9lv7atWvXysvLSx9//HF6If0uDw8Pvfvuu4qNjU1fp33z5s364osvNHLkSJUuXfpvxwIAAAAge/J0dgAAAABXdfPmTSUkJKho0aJZ6n/r1i1NmzZNjz/+uFVxtmzZsnryySe1fPlyde3aVZKUnJysF154QfXq1bPaR/78+fXiiy/KbE6by7B06VIdPXpUS5cu1f333y9Jatiwobp3764JEyboyy+/zJDj+PHjqlChgj788MP04n29evW0Y8cO7d69W08//bQqVqwob2/v9CVW7pWamqrx48erXr16ev/999Pbq1evrtatW2vOnDkaOXKkpLQPEwYMGKDHH39cklSjRg2tW7dOmzdvVoMGDf7yPfP09FSzZs303XffadCgQZKkuLg4bdq0SR9//LH27t1r1f/8+fPq3bu3Bg4cmN5WtGhRtW/fXvv27VPbtm3TC9qlS5e2Km6bzWa98cYb8vf3l6QMNygtVaqUhg4dqvfee0/NmjXT66+/rgYNGqhbt25/OQYAAAAA2RszyQEAAP7E3UJ1SkpKlvr//PPPSkxM1COPPGLVXrNmTRUpUkQ7d+60ai9btmyGfZQqVSr950rSjh07FBwcrEqVKik5OVnJyclKSUnRQw89pEOHDlkt43JX/fr1tXDhQvn4+OjMmTPatGmTpk+frhs3bigxMTFLYzlz5oyuXbuWYSzFihVTtWrVMoylWrVq6f9/t/geGxubpZ9175IrmzZtkr+/v+rUqZOh74svvqiRI0fqzp07OnjwoFatWqVFixZJkpKSkv7y5xQtWjS9QP5nevXqperVq2vIkCFKTk7WuHHjZDKZsjQOAAAAANkTM8kBAAD+RK5cuRQQEKCIiIg/7RMbG6vExETlypUrvWCdL1++DP3y5cunO3fuZGjLrN8fRUVF6dq1a6pUqVKmP//atWvKmTOnVVtqaqomTZqkRYsWKTY2VoUKFVKVKlXk4+Pzp+O4V1RU1F9mPHz4sFWbr6+v1XOz2SyLxZKln1W3bl3lzp1ba9eu1aBBg7RmzRq1bNlSHh4eGfqGh4dr9OjR+umnn+Tp6amSJUuqXLlykvS3Py+zsdzLbDarXbt22rdvnypXrqzg4OAsjQEAAABA9kWRHAAA4C/Ur19fO3fuVEJCQqZF5uXLl+utt97SZ599ll6svn79ukqVKmXV79q1awoJCbH55wcFBal48eKaMGFCptszWwrmk08+0bx58zRmzBi1aNFCQUFBkqSOHTtm+efmypVLUtpY7nXt2rX0NdTtwdPTUw8//LC+/fZb9ezZU1u2bElfO/2PUlNT1a9fP3l5eWnp0qWqWLGiPD09dfLkSa1cudIuWa5fv64PP/xQFSpU0NatW7Vq1aoMs+kBAAAA/Lew3AoAAMBf6N27t6KioqzW5b4rMjJSs2bNUmhoqKpWrar7779f3t7eWrVqlVW/PXv2KCIiQtWrV7f559euXVuXLl1S3rx5dd9996U/duzYoVmzZmU623rv3r0qXbq0OnbsmF4gv3Llio4fP67U1NT0fn9c1uVeJUqUUHBwcIaxnD9/Xj///PM/Gstfad26tU6cOKFZs2YpX758Vsu33HXz5k2dOXNGHTt2VJUqVeTpmTbfY8uWLZKUPrbM3pOsuruW/Jw5c9SiRQu9+eabunr16j/eHwAAAADXx0xyAACAv1C1alUNHTpUH3zwgU6dOqXHHntMuXPn1okTJzRnzhzFxMTok08+kclkUq5cudSvXz9NmTJFXl5eatq0qS5cuKAPP/xQpUuXVvv27W3++e3bt9fChQvVq1cvPf300ypUqJB+/PFHzZw5U926dZOXl1eG11SpUkVTp07VJ598oqpVq+rcuXOaMWOGEhMTFRcXl94vR44cOnz4sHbt2qUqVapY7cNsNuvZZ5/VqFGjNHz4cIWFhenmzZuaMmWKcubMqV69etn+Zv6F2rVrKzg4WLNmzVLPnj0zXQc8b968KlKkiBYtWqSCBQsqR44c2rZtmz799FNJSh/b3Q8GNm/erJw5c6p8+fJZyrBixQqtX79eEyZMUJ48efTyyy+rTZs2evXVVzVjxgw7jRQAAACAq6FIDgAA8DeeeeYZVaxYUYsWLdK4ceMUFRWlggULqmHDhnr66adVuHDh9L6DBw9Wvnz5tHDhQi1btky5cuVSy5YtNWzYMPn5+dn8s/39/bVo0SJNnDhR48eP1507d1SkSBGNGDFCvXv3zvQ1/fv3182bNzV//nx9/PHHKlSokB599FGZTCbNmDFDt27dUs6cOdW7d2+9/fbb6tOnj+bOnZthP+3bt1dAQIBmzJihgQMHKjAwUA0aNNCzzz5r97W6zWazWrRooYULF6pNmzZ/2m/q1Kl666239OKLL8rb21ulS5fWtGnT9Pbbb2vPnj3q3r27ypQpo7Zt22rRokXaunWrVq9e/bc//8qVK3rrrbfUsGHD9OVVChQooGeffVavv/66vvzyS3Xo0MFu4wUAAADgOkyWrN5RCQAAAAAAAACA/xjWJAcAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAAAMcePGDTVv3lw7d+780z4//PCDHnnkEVWtWlWtWrXSpk2brLbPnDlTDRs2VNWqVdW9e3edPn3arhkpkgMAAAAAAAAA7G7v3r3q3LmzwsPD/7TP2bNnNXjwYA0dOlR79uzR4MGDNWzYMF25ckWS9NVXX2nBggWaPXu2du7cqUqVKmnIkCGyWCx2y0mRHAAAAAAAAABgV1999ZWee+45DR8+/G/71axZU82aNZOnp6dat26tWrVqacmSJZKkpUuXqmvXripTpox8fHw0YsQIRURE/OXMdFtRJAcAAAAAAAAA/K3ExERFR0dbPRITEzPtW79+fa1bt06tW7f+y32ePHlSZcuWtWorXbq0jh49mul2Ly8vFS9ePH27PXjabU8AAAAAAAAAkE1841XO2RGyndOTBmnKlClWbYMGDdLgwYMz9A0ODs7SPmNiYuTn52fV5uvrq9jY2CxttweXKJJzQFprk3RM8evmOTuGS/Ft3lPRHz/v7BguJXDge7owuJOzY7iUoh8t1ZUje50dw6UUqFBDsdu/dHYMl+H/YAfFblnq7Bguxb9hJ4WfOOLsGC6lWJkKujyym7NjuJSC4xfqxpv9nR3DpeR5ZYbiv5/r7BguxffhXrpw/JCzY7iUomUr69qv9vsa8H9BcKU6ujlugLNjuJTco6bq8tH9zo7hMgqWr6Yjpy46O4ZLqVCqCMfIPQqWr6brh3Y4O4ZLyVf5AWdHgJvo37+/evXqZdXm7e39r/bp5+en+Ph4q7b4+HgFBARkabs9sNwKAAAAAAAAAOBveXt7KzAw0Orxb4vkZcuW1YkTJ6zaTp48qTJlykiSypQpY7U9KSlJZ8+ezbBEy79BkRwAAAAAAAAA4BTt2rXTrl27tGbNGiUnJ2vNmjXatWuXHn30UUlShw4dtHDhQh09elQJCQmaOHGi8uXLp5o1a9otA0VyAAAAAAAAAIDDVKtWTStXrpQklSpVSh9//LFmzJihWrVqaerUqfroo49UokQJSVLHjh3Vs2dPDRw4UHXr1tXhw4c1Y8YMeXl52S2PS6xJDgAAAAAAAAD4bzp27JjV8/37re+10KBBAzVo0CDT15pMJvXu3Vu9e/c2LB9FcgAAAAAAAABux+RlcnYEuAiWWwEAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADcFkVyAAAAAAAAAIDb8nR2AAAAAAAAAABwNLOnydkR4CKYSQ4AAAAAAAAAcFsUyQEAAAAAAAAAbosiOQAAAAAAAADAbVEkBwAAAAAAAAC4LYrkAAAAAAAAAAC35ensAAAAAAAAAADgaCYv5g8jDUcCAAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3JanswMAAAAAAAAAgKOZPU3OjgAXwUxyAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG1RJAcAAAAAAAAAuC3Pf/rCw4cP68KFC2rcuLHu3LmjvHnz2jMXAAAAAAAAABjG5GVydgS4CJtnkkdGRqpLly7q1KmTXnjhBZ0/f17NmjXT/v37jcgHAAAAAAAAAIBhbC6Sv/322ypbtqx2794tT09PlSpVSv369dN7771nRD4AAAAAAAAAAAxjc5H8p59+0qhRo+Tn5yeTKe0rCX379tXJkyftHg4AAAAAAAAAACPZXCT38vJSfHy8JMlisUiSYmJiFBAQYN9kAAAAAAAAAAAYzOYieZMmTTRy5EidPXtWJpNJkZGRev3119WoUSMj8gEAAAAAAAAAYBhPW18wYsQIjRo1Si1btpQk1a9fX40aNdLYsWPtHg4AAAAAAAAAjGD2NDk7AlyEzUXygIAATZ48WTdu3NCFCxdUoEABFShQwIhsduOdL7fqbV2iX/q/ohtbdmXaJ7hlQ5Uf95z8S4QoPvySjrz4nq6u2Zy+veSIvio+qLu8cufQrT0HdXDAa4o5fsZBI7CfyDsxeuPztdpzIlweZrPa1KqkZx9rKk8P6y8VpKZaNGPtNn2144Bux8arSN5c6tfqQbWoXkGSlJCUrA+/3qR1Px9TbHyiihfIo6GPPqTaZUOdMax/7EZsgt7c+LP2XrguD7NZrcsX1bD6leRpzvgli8Ff79CeC9flYf79BPpeq1qqV7yAbscn6r0fDurHc1eVnJKqigVyaXiDyioXnNORw7ELc2AO5X6iv3xKV5QlNUWxu7fq1ooFUmqqVb98z4ySd6kK1q/18VX0tnWKWjJTkhTYtJ0CG7WS2T9ASeGndHPxJ0q+eslhY7GXm1G3NH7qLP186Ig8PMxq3qi+BvR6Up4eHhn67tizX9PnL9alK1eVPzivBjzVVfVqVZckJSYlafZnX2j9lu2Ki49XtcoVNaTvUyoQnNfRQ/rXbtyO1huffqU9R8/I08Os1nWranjnVpm+J8s27dSi77frWtRt5csVpCebP6hOTeqmb1+66Sct/G6brt+KVpF8uTW4Qws1rFrekcOxixu3o/XGgq+159jZtPekzv0a/niLzN+Tzbu0aP2PuhZ1R/lyBunJZg+o00N1JEn1Br1h1ddisSg+MUlv931crepUcchY7OVmVJQ+mDJVBw4ekoeHh5o2bqT+fXrJI5P3ZOfuPZo1b74uX76i4OBg9ev9lOrWrpWh35rv1un9jz7WutUrHDAC+zMH5FCOjr3Tzp+pqYrbt113Vn+W4RwrSV4lyyuoTRd5FigqS1yMYn9cr5hNqyRJ+d+cZdXXZDLJ5O2jqEUfK/7nHQ4Zi72Y/IMU0KabPEPLSqmpSjy4U7Hrv5AsGd8Tz2Jl5N+0gzyCCyk1PlYJe35Q/I/fZujn/3AnmXz8FLPqU0cMwe7Srte+1Z6Tf7heC2uS+fXat9v01Y5ffr9ea1kv/Xrtdmy8xi1bpx+PnFZSSooqFSukEY81Ufmirn3tfq+bUbc0aco0HTj0qzzMHmr2UEM93fupzM8le/Zq5ryFunT5ivIH51O/Xj30QO2akqTU1FQ90rm7ZLFIpt+v575YMFt+vr4OG4893Iy6rfemz9H+Q0fl4WHWww3raWDPJzL9N+euzTt26+P5i7Vs2sT0toTERE1fsFSbd+xWbHy8ihUppGe6dVL1+yo6Yhh2ZfIPlH+rJ+VZrEzaueTXXYrbsDzTc0lgp4G/nXNS0tuiv5ql5NOHJQ9P+TVoK+9KtSQvHyWHH1fsumWy3LnpyOHYxc2oW5owdaZ+PnRYHmYPNW9cX8/06pbpcfLTnv2aPv8zXbqcdg37TM8nVa9WDUlSQkKipsyer207dysxKVllSxXXoD49VKp49vrb74/27P5J8+fM1JXLlxScP7+e6t1fteo8kGnflJQULZg3U5s2rFNCQryq3F9NTw8arjx50q7ht/2wSZPGvyVvb+/019R5oL6Gj3zJIWP5tzhOMrp567benTZX+389Kg8PDz3c8AENeqrLX55jN+3Yranzl2rZtPHpbQmJiZq2cJk279ij2Ph4hRYppKeffFw17qvwp/sB4Dw2L7cSERGhLl266NKlS6pSpYrmzZunJ554QteuXTMi37+Wu1511du6RAGl//zE7F86VDWWfqTjr32o7/PW1PGxH6n65x/Ip3B+SVKR7mEqPqi7drXpo3UF6ujWvl9VY8lkRw3Brp6fs0J+Pt5a99ZgLRr5lH46dlYLN2X84GDxlr1ateuQZg99Uj9Nek5D2jXSi3O/1vlraReHH369ST+fvqAFI3poy3vD1L5eVQ2evkyXbtxy9JD+lRfX7pG/l6e+7dNC8zs31K7wa/ps/6lM+x6+EqUpjz6gbc+0TX/UK572R+YbG35WTGKyvn6qmTb0a6VKBXLr2dU7HTkUu8nTa5hSE+J16ZX+ujrhJfmWu0+BD7XJ0O/6tHGKeK5H+iPqi7lKvnFdt9cukyT5126kwEatdH3qW4p4sY8Sz59W3j4jHD0cuxgz4SP5+flq+dyPNWP8G9r7yyEtW7kmQ7/zEZf06nsfqG/Xjlrz2Sz17tJRr42frGuRNyRJnyxYrC07dmnCay/q63nTVbRQQY0Y87aSkpIdPaR/7YXpn8vfx0ffT3pRC14ZoJ1HTmrR99sz9Nu077A++vI7je3bUdumvqaxfR7XlOXfa/2eQ5Kkldv36ZOvN+rtfp21fepr6t2msZ6bukhXb9529JD+tRc+WSp/H299P36kFrzUXzuPnNKi9RmLlZv2H9ZHX63T2F4dtO2jVzS2d3tNWbFe6/f+Kkn6ccqrVo+m1SuqXqXSal6zkqOH9K+99e4E+fn6afGnczVl0njt//kXfbliZYZ+Fy5GaOy499SzW1etWPqZnnqyi958d7yuX4+06nf2XLimz5rtqPiGyNltkCyJCbr6xmBFTh4t7zKV5N+gVYZ+HsGFlLvPc4r9cYOuvtJXN+dMUECj1vK5L+2Dg6uv9LV6xB/cpYRjvyj+l+z3b09g+//JkpigqA+e1+054+RZorx86zTL0M+ct4CCugxW/N7NuvneUEUvniLfus3lVb56eh+TX4ACHu0t39pNHTkEu3t+7tdp12tvDtKi5+5er+3O0G/x1t+u14Z01U8TR6Rdr81bmX69NuazNYqJT9Cq0f31wztDVTm0kIZ98qWjh/OvvfHeRPn5+WnpvFn6eNI72vfzL/ri61UZ+l2IiNCYcRPU88kuWrlkgZ7q2llvvDtR1yLTziXnzl9QSnKyVnz+qb5Ztij9kd0K5JI0etLH8vP11YrZH+qTd8dozy+/aumqjB8YSVJycrIWffWNXps0VZZUi9W26QuW6uDRE5r+zmit+XSaHmnWSM+/PUmXr113xDDsKiCsryyJCbr10Sjd+fRdeRUvL5/aTTLt61GomKIXT1HUxGfTH8mnD0uS/Bo/Kq/yVXVnyRTdmvyCUm9eU9ATgyXznxfHXNWY8R/Kz9dXX86dpukT3tTeAwe17OuM17AXIi7p1XcnqU/XTvrm8znq9cTjGvPeh+nXsHMXL9P5iEv6dMpErfh0hkoVD9Ur4yZm2E92EXHxgt57a4y6du+lz75YpS5P9tT4d8Yq8nrmNY1lixfq5317NOHDaZqzYKm8vX308YcT0refOHFUjZs01+Lla9If2aVALnGcZObViVPl5+err2d9oJnvjNaeXw5ryarvMu2bnJysRSvW6LX3pyv1ng/lpi1cpoNHT2rGuFe0dt7HeqRpQz0/7n1dvhaZ6b4AOJfNRfLXX39dJUuWVGhoWtH5f//7n0qXLq033njjb17peEW6h6nq/Ak6Nvr9v+xXtPtjurFtj66s3CBLSooufbFWkVt2q1jfzpKkYn066dz0zxR9+KRSExJ19KWJ8i1WWHkb1XHEMOwm/NoN7TkRruGPPiQ/by8VzZdb/Vo+qMU/7M3Qt0vDGvripT4KCc6txKRk3YyOk5+Pl3y9vSRJ8UnJGtCmoQrmziEPs1kdHqwqb08PHT5/2dHD+sfOR0Vr78XrGvpgRfl5eapozgD1rV1OS37J+A2Bi7didDshUeXzZz4z/O2WNfVOq5oK8vFSXFKy7iQmKbefd6Z9XZlHvgLyLVtZt1YslCUpUSmRV3X7uy8V2LDlX77OM38h5Xq8t27Mn6zU21GSpIB6TRWz7XslX74gJSfp1tefySN3PvmUyV6FvguXLmv/ocN65qmu8vXxUeGCBdSj02NavmZdhr7fbtqqKhXKq0HdWvL08FCT+nVVtXIFrfp+oyRp/ZYf9VTnx1SiWFF5eXmqX/cuuhZ5Q3t/OeToYf0r4VcitefoGQ19vKX8fLxVNH8e/e+RJlq88acMfa9F3Vav1o1UpVQxmUwm3V+6mGqVL6l9v30TZ8G3WzXgseaqXDJEJpNJrerer09fflqBfj6OHta/En41UnuOndHQji3S3pPgPPpf28Z/8p7cUa+WDVSlVNqY7y9VTLXKldC+E2cz9F25fZ92Hjmlt/o+/pczV1zRxYhLOnDwkPr2ekq+vj4qVLCgnuzSSV+vzvhH17qNm1S5UgU9+EBdeXh4qFGD+qpSubK++e779D7x8Ql6670JeqzdI44chl155C0gn9IVdeebz6WkRKXcuKaY9SsU8GDzDH396zVXwqG9it+7VZKUfOm8Iqe8rqSzxzP09avZQN5l7lPUZ1MznZHuysy5g+VVvJxiN3wpJScpNeq64retkU+txhn6+tZ8SInHf1biL2m/VylXL+r2vHeVfP5kWgcvH+V8Zqws8bFKPJLx2ia7CL92M+16Lazxb9drudSvxYNavCWT67UGNfTFqD9er8VaXa+92+tRje8dphz+vopLSNKduATlDvR39JD+lbRzya/q17O7fH19VLhgQXXr8rhWrF6boe/3GzbrvooVVP+BOvLw8FDjBg+qSuVK+ubbtH+zj504qZLFQ+Xl5eXoYdjVhUtXtP/QEQ3o0Vm+Pj4qUjC/ej7+qL5csz7T/sPHjte+Q0fU7bGMkx4SEpPU54n2KpAvrzw8zGrX/CF5eXnp2KmzBo/Cvsy5g+UVWlZxm7767VwSqbjta+VTI+N9s8w588rkG6DkK+GZ7su7Yk3Fb1ur1OuXpNQUxW1eIXNQLnkWL2f0MOzqwqXL+vnQYT1tdQ3bXl+tyVjo+3bjFlWp+Mdr2Ad0f+UKWvXdBknSufMRslhSZbFYZJFFHmazfHyy17XaH21a/50qVLpPdevVl4eHh+o3bKzKle/X999+k2n/dd+t0WMdn1BwcH75+weob/+B2rdnly5fipAknTx+TKXLZK/j4y6Ok4wuXLqi/b8e1YDunf5wjm2nL9duyLT/sLETfjvHts6wLTExSX27PPaHc2zjtHPs6bMGjwLAP2Hzciv79+/X9u3b0y8u8+TJo1deeUUNGza0e7h/6/r32xTx2SpZUlKkzz74035BFUvrziHrPzqjj5xUjirl07efGj8zfZslOVmxJ88q6P7yivwh+8zYOnXpunL6+yp/rqD0tlIF8+nSzdu6HRuvHP6/z6Ixm03y9/HWj0dOa+DUpbLIopHtmyk4Z6AkafQT1rPedh47q+i4BJUrkn2+vnsq8o5y+nopONAvva1EniBdvhOnOwlJCvL5/Q+oX69Eyd/LU6PW7tGvV6KU199HT1YrpUcrpX1Y5PXb158//vGw5u45IX9vT33Yrq6yG69CIUqJuaPU279/nTTp0gV55gmWyc9flrjYTF+Xq1Nfxe78QYmnjv5hX0V1Z/3Xv3dKTVHytcvyKhKqhBO/GjYGezsTfkE5ggKVL0/u9LbiRYvoyrXruhMdo6DAgPT2s+EXVDI0xOr1oUWL6OSZc5KklNRU+fr8/nuW9k1vk8IvRqhujapGDsOuTkVcUc4AP+XPnSO9rWTh/LocGaU7sXEK8v/9d+qPy6pIaUuS7Dt+Vs92bq24hESdirgqs9mk3u98otMXryi0YLCGPt5C/r7Z64L6VMTVtPck1x/ek0LBunzjVsb35CHrD1hv3I7WvhPn9Ozj1h9G3YmN16Rl32rUk48oVzYraknSufBwBQUFKV/ePOltocWK6uq1a4qOjlZgYODvfc+Fq0So9Te+ioUU1ekzv39o+dH0Gapbq5aq319Fny1ZZvwADOBZsIhSY+6kf5goSclXLsojdz6ZfP1lif/9HOtVrKQST/yqnF0HyqdsZaVG31bM1m8Vt3OT1T5Nvn4KattVt7+aJ0tstKOGYjcewYWVGhstS/Tv30RLuRYhj5x5ZfLxkyUhLr3ds3BxJZ05ooDH+sirREVZYu8ofucGJexP+yBByUm6NWOMLDF3FPDIU44eit2cunQt7Xot5x+u1wrl/ZvrtTMaOO3u9VrT9Os1Lw8PyUP6aNUPmr1uhwJ8fPTR0x0dPqZ/42z4eQUFBVqfS0KK6uq164qOjlGg1b/D51WieDGr14cWK6pTZ85Kko4dP6mExEQNGP68Ll+9pmIhRfS/p7qpUoXstcTXmfMXlCMwwPraJKSIrlyP1J2YGAUFBFj1f3VIf+XPl0drNm7NsK/nn+ll9XzvwcOKiY1VmRLZa3kEj3yFlBp3z7nk+qVMzyUehUJlSYxXYFiftP+PuaP4XRuU+Mtv3/4ym2VJSvh955a0h0fegumzzbODs3evYe/53cnsGvZM+AWVDLX+3SkeUlSnzqZdw3YOa6PR77yvdt3/Jw+zWTlzBOn9N0c7ZiAGCA8/q9DiJa3aihYL1ZnTGb9RHBMTrcjr1xRavER6W67ceRQYGKSzZ04rf4GCOnXqhHx8ffXVF4uVmpqq6rXq6Kle/RQYFJRhf66G4ySjM+cvKkdggIL/cI4tUbTwn55jRw/tp/x58+ibzM6xT/e0ep5+jr3n3yoArsHmmeSenp66ceOGVdutW7fk64JfU0y4cj2tQP43PIMClBITZ9WWEhsvz9+KEh5/tj0gexUtYuIT5edjPbv57kyjuITETF9Ts3Qx7f7gec0Y9ISmrN6ib/dmvDD85cxFjZz9lZ5uXV9F8+Wye26jxCYly9fT+nMiX8+0mZqxidbLXySlpKpKoTwa8EAFfdunhYY3qKwJWw5q3YmLVv361C6nHwe0Vb/a5TT46x26cCvG2EHYmdnHT5aEBKs2S1Lib9sy/x33LllO3sXLpC+zcpfJx0+WxPh79pUg05/sx1XFxcXL954ZEHefx8Vbjy82Lk5+vvf29U7v1+iB2lrwxQpdvHRFCYmJmv3ZMiUmJirhT37/XFVsfMKfnkti4/98LNdv3dGg9+epQmgRtap7v+7ExslisWj+t1v1cvdHte79UWpV934Nev9TRVzPXut+Zv6eeP+27W/ekw8XqEKxwhnWG/984w4VzptbD9esbP/ADhAbFyffe34ffP7id+fe6whfHx/FxaX1W79ps8LPX1DP7l0NTGy8tPNi5ufYe8+NZr9A+T/4sOL3bdfVsQN168s5CmrbNX25lbv867dQys3rij+QfT60/yOTt2/6e3CXJfm3597Wx4/Jz1++tZoo8eBORb0/UjFrFsm/WYffl1uxpMoSc8cRsQ0Vk5DJ9ZrX312vhWj3+yM1Y2AXTVm9Vd/uPWK1/X8t6mnXxOfUv9WDGjB1qS5cjzIkuxFi4+Lk55Px/CBlPJfExcVl+m92/G/9vH28Vb5cGb3+ygv6fM501atdSy+89oYuXb5i4AjsLzYuPsP51fe3YyYuLiFD//z58mRoy8yhYyf16viP1LvTYypcIPjfB3Ugk7evlHjP70fSn5xLPD2VcvGM4n5YqVsfjVLshi/l3+xxeZWvlvayoz/Lt15LmXPlkzw85dvwEcnLSybP7PUNhNhMfx9+O06y9Lvjnf7vcEpKihrWq60v5kzV6kWzVb9OLb389ngl3PueZxNxmVx3+Pj4KD4+LtO+kjL09/6t/+1bUSpZsrTq1W+kKTPm6Z2JH+lSxEW9P+Ft4wZgRxwnGcXGxWf4m+73a9hMzrF5s3iOPX5Sr0z4WL07hWW7cyzgLmwukrds2VJDhgzRjh07dPbsWe3YsUNDhw5VixYtjMjnEMkxcfLwt/5Hz8PfV8l30gqcKX+2PTp7FUD9fLwUn5hk1Xb3ub9v5kuDeHt5ytPDrDrliqtt7Upau8e6SL78x5/V76PP1bfFg+rfqr4xwQ3i6+Wh+GTrD1HuPvf3ti6et6kQoo8efUDl8+eSl4dZD4TmV5vyIVp33LpI7uvpIW9PD3WrXloFA/30w+nss/yMJKUmxsvkbX0smLzSnqdmctEoSQEPNlfc/h1KvWO9Hr0lMUEmr3v+KPHykeVP9uOqfH19lHDPBwfxvz339/O7p6+v4u8pYMQnJKb3G9jrSVUuX0aDXx6rbgOfk7eXl0qGhljN0MgO/Ly9/+JckvkM8F9Ohavb2KkKLZhPHwzpLk8PD3n99iFVtxb1VapIAXl5eqpL0wdUKG8ubfvlmLGDsLPM35O0Y+HP35Pz6vbWdIUWzKsPBlnfCNZiseirrXvVpWldmUzZ827rvj6+GX53Ev7idyez3zN/Pz+dv3BRs+ct0EsjR2R6k77sxJKYINO9xZrfzrF/nOUoSZaUJCUc3qeEoz9LqalKOnNMcfu2yfd+629n+NdurJht3yu7siQlpL8Hd5k8f3t+7wetyclKPH5ASScPSZZUJYefUMLBnfKuWMNRcR3CzzuT67UkG67XalXS2r3W39jy9faSt5enejSprUJ5cmjTLxmX7XFVfr6+6f/u3nX3uZ/fPcVzX98MHzzHJyTI77dzzjN9emrkkIEKzptXPj4+6tT+UeXPl08792Sv5Xl8fXwyGedv/+b4/bPJCKvWbdbw199Vj47t1LNT2L+N6HCWpATpnnPJ3ef3TtpIPLRL0Us/VsqVC1JqqpLPHFHCoZ3yrpB2Lond+KWSL55WULdnlaP/a1JKklKuRig1PvNvVLqqvz5O7v132EcJiff+niXKz89PycnJeu29D9SqaWMF580jf38/De3XU9cjb2rPzweNHYSdLFuySF3at05/WCwWJSRYHxcJfzhX/NHdb4Hee52SmJAgPz9/5cqdR2+P/1DNHm4lH19fBecvoKd699O+PbsUF+v6xwzHSUa+vj4Z/qZLv4b9h5NDV67/QcNeH6+nOjyiXo8/+q8zwr5MXiYeNj7+q2wuko8cOVIlSpRQ//791bJlS/Xv319lypTRsGHDDIjnGNG/HldgxTJWbYEVSuvOryckSXd+PWG13eTpKf/SxTMs0eLqShcKVlRMnCJv/17cP3X5ugrkClLQPRfUE5Zv0ITl1mtuJSanpH/FNyU1VWM/X6vJKzfrg34d1KNpbeMHYGel8+bQrfhERcb+foF05sYdFQj0tVpqRZK+/vVchlnjiSmp8vlt5nmvpVu0/kREhu05fLPXjJPkS+flEZhD5qDf1173KlRUyTevZ17cNpvld19Nxe7ekmFT0qVweRX6w9IjZg95BhdU0qXzRkQ3TIliRXXrTrRuRP3+IcDZCxcVnDePAu/5NknJYkV19vwFq7ZzFy6qRLGikqTrkTfV4/HHtHzOx1o2c7Lat3lY5y5GqFxp6697urpSRQsoKjpWkbd+n7F5OuKqCuTOqSD/jBeOK7buUf/xs9W1eT2N699F3l5pxfHcQQHKkyMgw41LU1PT1jLMTkoV+e09uf37chenL11Tgdw5Mn9Ptu1V/0lz1bVZPY37X6f09+SuX89e1M07MWpeI3ut4f9HxUOL6fbtO7p5Myq97Vz4BQXny6uAe76mWjy0mM6FW58bws9fUPHQYtqy/UdFR0frmaHDFda5q14Z+5YkKaxzV23c/IPh47Cn5MvnZQ4Ikjnw92V5PAsUUUpUZIZzbPKVCJk8rI8Lk8msP16SeoWUlDkwR7a8WeddKVcjZPYPlCng96+kewQXVsrtG7LcU8BIuX4pw3sik0km/bcu1DO9XrsUaeP1Wlpho8ekBVq3/2iG7TkDMhaCXFXx0BDdvnNHN/54Ljmfdi4JvPdcUixEZ+85l5wLv6ASvy0PMHv+Ip04ddpqe1Jysry9s9d9ZEpmdm1y/qLyZ3Jt8ndSUlL13rS5mrFomd5+Yai6tMt4I+HsIOXab+cS/z+cS/IVSltC8J5ziXeVB9Jnjd9l8vCUJTntwyhzUC7Fb/9Wt6a8pNtTX1XC3s3yyFtAKZczX8PcVZUMDdGtO3d0Iyoqve3c+QuZXsOWKBaiM+HW17Bnz19QydCiiouP153oGCUl/f7hndlslslkSp/w4Ooe7/yk1U01y5WvqPPnzln1uRB+TsVCS2R4bWBQkPLmzafz586mt928cUN37txWseLFdfbMKc2f+4nVtWtSUpJMJpM8vVz//eE4yahkSJEM59gzFyL++Tl2+jzNWPSFxj0/RF3a/fW9vgA4l81Fcj8/P73zzjvau3evtm3bpgMHDmjs2LHy989eS4/80YVFK5W3UW0V6thKJg8PFerYSnkb1dbFRWnrKV+Y96WKD+ymoCrlZPbxVvm3RyjxynXd2LrHycltE5o/j6qVKqr3vlynmPgEXbgepU++3a7HHrg/Q98apUO0bNt+7T0ZrtRUizYfPKFv9x5RhwerSpLGf7le2w+f1mfP91Ld8hkvJrKDYrkCVbVwHk3cckgxiUm6eCtGs3Yd06MVM67BGJ2YrPc2H9TRq1FKtVi09cxlfXv8otpXLi5Jqlwwt2bsPKpLt2OVmJyi6T8dVVJKqhqVKOjgUf07ydcuK+HUEeXq0FMmH1955A1WjhYdFLtjU6b9vQqHyuTtrYTTGT8witmxSQENW8qrSKjk6aWcj3ZVyp1bSjh5JJM9ua6QwoVUpUI5fTR7vmLj4hRx5armL/1KbZo1ztD34cb1tf/QYW3c9pOSU1K0cdtP2n/osFo0biBJWrpqjcZNnq7YuHjdiY7WpBlzVa5UCVUoU8rBo/p3QgvkU7UyoRr/+TeKiUvQxWs3NHPVRoU1yDibc/2eQ3p7wdeaOOhJ9WjZIMP2jo3r6JNVG3UsPELJKSn6bN2Punrzth6qXtERQ7Gb0AJ5Va10qMYvXqOY+ARdvHZTM1dvVlj9TN6Tvb/q7UWrNPGZJ9Tj4Qcz3d/+E+dUIbRwhiUXspOiRQqrcsUKmjpztmJj43Tp8hUtWrxULZs3y9C32UONdeDgIf2wdZtSUlL0w9ZtOnDwkJo1aawnOz+uVV8u0Yoln2nFks/05uiXJUkrlnymJo0z3pDNlaVcv6LE08cU1K572jk2d7ACmoUpblfGYn/cjg3yqVxDvtXTjhGvEuXkW62e4vZtT+/jVaKcki6c+X1JgWwo9eZVJYWfkP/DnSRvH5lz5ZVv/dZK/Hl7hr4J+7bIq1xVeVdOW9ffs1gZ+VSuo4SDGW+Qm52F5s+jaiWL6r0v1/9+vfbddj32QJUMfWuUDtGy7T9bX6/tO6IO9dKu7e4LLaSpa7Yp4sYtJSYla+o3W5WYnKLG95XJsC9XVbTwb+eSWXPSzyULFy9Tq+ZNM/Rt/lAjHTj0qzZv3a6UlBRt3rpdBw79qmYPpZ0rzoaf18cz5+jGzZtKTErS/M+XKjY2VvUfqJNhX64spHBBValQVh/OWfTbtck1zVv2tdo0tf0eUR/NXaSf9h/QrPdeV637s+fyXpKUevOaks6flH/zjmnnkpx55fdgKyUc+DFDX5OPn/wf7iyPAkUlmeRZqrK8K9VS4v5tkiTfWk0U0La75OUjk6+f/Ft0UcrlcKVcOpdhX66saOFCuq9iOX00a37a786Vq5q/dLnaNH8oQ9+HH2qgnw8d1sZtO367ht2hnw8d1sONGygoMFD3VSynGZ9+pptRt5SQmKgZn36mnDmCdF/F7HmzysZNmuvQwZ+1bctmpaSkaNuWzTp08Gc1bpLxRtqS1KR5Sy1dvFBXLl9SXGysZn/ysSrdd78KFSqiwKAcWrNqhb76YolSUlJ07eoVfTp7hpo0aymve7/d4II4TjL6/Rz7mWLSz7Er1bZpxr9l/s7keZ/pp/2/aPa7r6nW/dl38gvgLkyWLE7XW716tdq2basVK1b8aZ+wsLB/FOIbL+NPmm2SjmlH0+66sWWXJKnFzX06OOA1RXy+SpKUr3l9lR/3nAJKFlPcuYs6Mmq8rn37++zYEsN6qfgzT8o7OI+i9hzUoYGvKebEWcOyxq+bZ8i+I2/HaNyy77X7+DmZTCY9UruyhoU9JA+zWXWfnaBXn2ipNrXSLpC/2nFAc77foRt3YhWaP7cGtm2kByuW1M3oWDUZNVlmsynthlB/8MfX25Nv856K/vh5u+83MjZe724+qD0XrstsktqUD9GQByvJw2xS/Wmr9dJD96t1+RBZLBbN3n1cK349pxtxiSqaw1/96pRXszKFJaXNyvp4xxF9e/yCklIsuq9gbj3boLJCcwf+TYJ/LnDge7owuJPd92sOyqlcj/eWT5lKksWi2F1bdOvrhZLFosIT5uvm4k8Utyftjwi/qnWU6/E+uvRyv8wzNmmrwAYtZA7MocTwU4paPFPJ1y7ZPfNdRT9aqitH7P+V6RtRt/TBJ3O1/+BhmcxmtWjcQE/3eEIeHma16NJLI57po4cbpS03tGv/AU3/dLEuXr6igvnz6ekeT+iBmmmzlWJiYzVx2hzt+vkXSVLtalU0tO9TypnDuJv6FKhQQ7Hbv7T7fiNv3dE7i1Zpz9HTMplMaluvmoY+3lIeZrPqPTNGr/QIU+sHqqrT6Mk6dfGKfLytv1XR+oGqeqVHmFJTU7Xw++1a/sNuXY26rRKFgjWiS2tVL2vMh2/+D3ZQ7Jalhuw78na03vlstfYcO5P2njxQVUM7PJz2ngx6Q690a6fWde9XpzFTdCriasb3pM79eqV7O0nSO5+t1s07MXq3f2dDsv6Rf8NOCj9hzIdXN29G6aPpn+jAwYMym8xq1qSx+vbsIQ8PDz3SsYuGDXxGTX8rXu3eu1+z5n2qS5cvq0BwfvXt1UN1atXMsM8DvxzUcy+9qnWrVxiSWZKKlamgyyO7GbJvc2AO5Qh7St6lK8piSVX83m26881iyWJR/jdn6faXcxS/P62o412uioJadJRHcCGlxtxWzOZvFPfTxvR9BYX1kDkgh24tmmJI1j8qOH6hbrzZ35B9mwKCFNDiCXkWLydZUpXwy0+K27hcsliU+/kPFbNmkRIPpV2/eZWqJL9G7eSRt4BSY6MVv+M7JezLeKOsuzfujFn1qSGZJSnPKzMU//1cQ/adfr12Ivz367VHG6ddr42YqFe7tFSbWml/bH+144DmrPvpD9drDfVghbRvKCUmJeuj1Vu0ds9hJaWk6L7ihfVc+6Yqnj9r66fayvfhXrpw/JDd93vjZpQ+mjFLP/9ySGazSc0faqz/9ewmDw8PtXn8SQ0f2F/NGqcViHfv26+Z8xYq4vJlFQgOVr9e3VWnZtoHlrfv3NH02Z9q5959io9PUPmypTWgby+VKlHc7pnvKlq2sq79av9ve9yIuqVJM+dr/6EjMplMatm4vp7p3lkeHmY17/o/jezfSw83qmf1mjUbt2rOkq/0xYxJkqSo23fUrvcgmc3mDDM9M3u9vQRXqqOb4wbYfb8m/yD5P9xZnqFlJYtFiYd2Km7TV5LFolwjJin228+V+OtuSZJvvZbyvv9BmQOClBp1XXFbv1HSsf1pO/L2VUDLJ+RZsoIkKen0YcWtWyZLnHFLbeYeNVWXj+63+35vREXpgxlz9fPBwzKZTWrxUAP17/GkPDzMatn5KY145n9q3vi3a9h9BzRj/me6eOm3a9innlTd365hb0RFadrcRdrz8y9KTklRxbJlNKhPd4UUKWz3zJJUsHw1HTl18e87/gv79+7Wp3M/0eVLEcqfv4B69O6nmrXSljT7YdN6TftokhYvXyNJSk5O1mcL5uiHjesVFxenylWqasCQZ5UrV9qNHQ8dPKAF82Yq/OxZeXt7q36jh/RU7/52/ZZKhVJFDDlGpOx9nFw/tMOQfd+IuqVJsxZo36GjMplMatX4QT3TrZM8PMxq9mR/jez/lFo0tD5HfrNxq+YsXaEvp0+UlHaOfaTPkD85x2Z8vT3kq/yA3ffpDjaVyThxFH/toRMHnB3BEFkukrdt21arV69WkyZNMt+RyaQNGzZkuu3vOKJInp0YWSTProwqkmdnRhXJszOjiuTZmVFF8uzKyCJ5dmVkkTy7MrJInl0ZWSTProwskmdXRhXJszOjiuTZmVFF8uzMqCJ5duWIInl2Y2SRPLsyskieXVEk/2coktvuv1okz/LiUKtXr5Ykvffee6pWrVq2v3kWAAAAAAAAAAA230Fh4MCB2rx5c6Z3fgYAAAAAAACA7MDs+d+6CTz+OZtv3BkSEqKDBw8akQUAAAAAAAAAAIeyeSZ5zpw51atXLxUtWlT58+eXyfT7Jy7z58+3azgAAAAAAAAAAIxkc5G8WrVqqlatmhITE3Xr1i3lzp1bnp427wYAAAAAAAAAAKezubrds2dPjR07Vt9++60SExPl5+ensLAwjRo1yoh8AAAAAAAAAAAYxuY1yd944w2dO3dO06ZN05o1a/TBBx/o4MGDmjBhghH5AAAAAAAAAAAwjM0zyTdu3Khvv/1WefPmlSSVLFlS5cuX16OPPqqXXnrJ7gEBAAAAAAAAwN5MHqa/7wS3YPNMch8fH3l4eFi1BQQEyM/Pz26hAAAAAAAAAABwBJuL5E8//bSGDBmio0ePKi4uTmfPntWoUaPUunVrRUREpD8AAAAAAAAAAHB1Ni+38uabb0qSwsLCZDKZZLFY0rfNmTNHFotFJpNJR44csV9KAAAAAAAAAAAMYHORfMOGDUbkAAAAAAAAAADA4WwukhcpUsSIHAAAAAAAAAAAOJzNRXIAAAAAAAAAyO7MHiZnR4CLsPnGnQAAAAAAAAAA/FdQJAcAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADclqezAwAAAAAAAACAo5nMJmdHgItgJjkAAAAAAAAAwG1RJAcAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADclqezAwAAAAAAAACAo5k8mD+MNBwJAAAAAAAAAAC3RZEcAAAAAAAAAOC2KJIDAAAAAAAAANwWRXIAAAAAAAAAgNuiSA4AAAAAAAAAcFuezg4AAAAAAAAAAI5m9jA5OwJcBDPJAQAAAAAAAABuiyI5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LY8nR0AAAAAAAAAABzNZDY5OwJcBDPJAQAAAAAAAABuy2SxWCzODgEAAAAAAAAAjrTzgTrOjpDt1Nmx09kRDOESy63Er5vn7Aguxbd5T33jVc7ZMVxKm6Rjiv74eWfHcCmBA9/TzXEDnB3DpeQeNVXhJ444O4ZLKVamgm7vW+fsGC4jR/XmOn3qlLNjuJSSpUrp7Mnjzo7hUoqXLqv41dOcHcOl+LZ9RjEzX3F2DJcS8L83Fb9hvrNjuBTfpj0U9fNmZ8dwKbmqNuYce4/ipcsq/sv3nR3Dpfh2GM417B8UK1NBO47cdnYMl/JAhRw6dfq0s2O4lFIlS+ri8YPOjuFSipS9z9kRgGyN5VYAAAAAAAAAAG6LIjkAAAAAAAAAwG25xHIrAAAAAAAAAOBIZg+TsyPARTCTHAAAAAAAAADgtiiSAwAAAAAAAADcFkVyAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG7L09kBAAAAAAAAAMDRTB4mZ0eAi2AmOQAAAAAAAADAbVEkBwAAAAAAAAC4LYrkAAAAAAAAAAC39a+L5KdOndKVK1fskQUAAAAAAAAAAIeyuUi+b98+hYWFSZIWL16sNm3aqGnTplq/fr29swEAAAAAAAAAYChPW18wceJENW7cWBaLRTNmzNA777yjXLlyaeLEiWrWrJkRGQEAAAAAAADArkxmVqJGGpuPhNOnT2vo0KE6ffq0rl+/rtatW6tx48a6cOGCEfkAAAAAAAAAADCMzUVyDw8PxcTEaMuWLapataq8vb118eJFBQYGGpEPAAAAAAAAAADD2LzcSrNmzdStWzddvHhRr7zyik6ePKmBAweqbdu2RuQDAAAAAAAAAMAwNhfJX331Va1YsUJ+fn5q3bq1zp49qy5duqhHjx5G5AMAAAAAAAAAwDA2F8k9PDzUoUOH9OfFixdXr1697BoKAAAAAAAAAABHsLlI/sMPP+jNN9/UxYsXZbFYrLYdOXLEbsEAAAAAAAAAwCgms8nZEeAibC6Sjx07Vg8//LAaNWoks9nm+34CAAAAAAAAAOAybC6SR0VF6bnnnpOHh4cReQAAAAAAAAAAcBibp4I/9NBD+uGHH4zIAgAAAAAAAACAQ9k8k7xHjx7q2rWrSpcurRw5clhtmz9/vt2CAQAAAAAAAABgNJuL5KNHj1a1atVUs2ZNllwBAAAAAAAAAGRrNhfJz507p127dsnLy8uIPAAAAAAAAABgOLOHydkR4CJsXpO8QoUKOn/+vBFZAAAAAAAAAABwKJtnkj/wwAPq0aOHWrZsqVy5clltGzRokL1yAQAAAAAAAABgOJuL5Lt27VKJEiV07Ngxq3aTia8nAAAAAAAAAACyF5uL5AsWLDAiBwAAAAAAAAAADmdzkVyS1q9fryVLlujixYsKDg5Wx44d9cgjj9g7GwAAAAAAAAAAhrK5SL5q1Sq9/vrr6ty5s5o0aaLw8HCNGTNG8fHxevzxx43ICAAAAAAAAAB2ZTKzfDTS2FwknzlzpqZMmaK6deumtzVq1Ehjx46lSA4AAAAAAAAAyFbMtr4gIiJCderUsWqrXbu2Ll++bLdQAAAAAAAAAAA4gs1F8oIFC2r37t1Wbbt371bhwoXtFgoAAAAAAAAAAEewebmVp556SgMHDlTnzp0VEhKi8PBwLVmyRKNGjTIiHwAAAAAAAAAAhrG5SP7444/Lw8NDy5cv1/r161WkSBG9+eabatmypRH5AAAAAAAAAAAwjM1Fcklq37692rdvr8jISOXMmVOenv9oNwAAAAAAAADgFCazzStR4z/K5iMhMTFRb7/9tqpVq6b69eurRo0aevXVV5WYmGhEPgAAAAAAAAAADGNzkXzatGnauXOnPvjgA61evVoffPCBDhw4oA8++MCAeAAAAAAAAAAAGMfmdVJWrVqluXPnKiQkRJJUqlQplSpVSk8++aSef/55uwcEAAAAAAAAAMAoNs8kv3XrlgoVKmTVVqhQIcXHx9stFAAAAAAAAAAAjmBzkbxcuXJavHixVdvixYtVtmxZu4UCAAAAAAAAAMARbF5uZdiwYerdu7dWrlypkJAQhYeH6+TJk5o9e7YR+QAAAAAAAADA7kxmk7MjwEXYPJO8Zs2a+vrrr1W/fn0FBASoefPmWr16tapXr25EPgAAAAAAAAAADGPzTPL27dtr/vz5GjJkiBF5AAAAAAAAAABwGJtnkl+9etWIHAAAAAAAAAAAOJzNM8mbNm2qHj16qEWLFsqfP79Mpt/X7gkLC7NnNgAAAAAAAAAADGVzkXzr1q2SpCVLlli1m0wmiuQAAAAAAAAAgGzF5iL5xo0bjcgBAAAAAAAAAIDDZblIvnv37r/tU6tWrX8VBgAAAAAAAAAcwexh+vtOcAtZLpJ3795dkqzWIM+ZM6fu3Lmj1NRU5cqVSzt27LB/QgAAAAAAAAAADJLlIvnRo0clSbNnz9bx48f1yiuvKCgoSLGxsXrnnXeUM2dOw0ICAAAAAAAAAGAEs60vmD17tl5//XUFBQVJkvz9/fXyyy9r6dKldg8HAAAAAAAAAICRbC6Sp6amKjIy0qrtwoUL8vDwsFsoAAAAAAAAAAAcIcvLrdz16KOPqk+fPurbt68KFSqk8+fPa9asWerSpYsR+QAAAAAAAAAAMIzNRfKRI0fK399f06ZN05UrV1SoUCF16tRJ//vf/4zIBwAAAAAAAAB2ZzKbnB0BLsLmIrmnp6eGDh2qoUOHGpEHAAAAAAAAAACHsXlNcknavn27nnnmGbVv317Xrl3Tu+++q+TkZHtnAwAAAAAAAADAUDYXyVetWqWRI0eqbNmyOnfunCRp48aNmjRpkt3DAQAAAAAAAABgJJuL5J988ommTp2q4cOHy2w2Kzg4WDNmzNDq1auNyAcAAAAAAAAAgGFsLpJfvnxZ999/vyTJZEpb3D40NFSxsbH2TQYAAAAAAAAAgMFsvnFn8eLFtWHDBjVr1iy97ccff1RoaKhdgwEAAAAAAACAUUzmf3S7RvwH2VwkHz58uAYMGKCmTZsqPj5eY8aM0apVq1iTHAAAAAAAAACQ7dj8cUm9evW0ePFi5ciRQ3Xr1lVqaqrmzp2rRo0aGZEPAAAAAAAAAADD2DyTPCYmRgsXLtTKlSuVmJgof39/BQYGqnz58vL29jYiIwAAAAAAAAAAhrB5Jvk777yjEydOaNq0aVqzZo3ef/99/fTTT3r//feNyAcAAAAAAAAAgGFsnkm+adMmrVy5Unny5JEklSxZUuXKlVPHjh31wgsv2D0gAAAAAAAAAABGsblI7ufnJw8PD6s2f39/paam2i0UAAAAAAAAABjJZDY5OwJcRJaXW4mIiFBERITCwsI0fPhwHT9+XDExMTpz5oxefPFF9ezZ08CYAAAAAAAAAADYX5Znkjdp0kQmk0kWi0WS1K5dO5lMaZ+2WCwWbdq0Sf369TMmJQAAAAAAAAAABshykXzDhg1G5gAAAAAAAAAAwOGyXCQvUqSIkTkAAAAAAAAAAHC4LK9JDgAAAAAAAADAf02WZ5IDAAAAAAAAwH+FyWxydgS4CGaSAwAAAAAAAADcFkVyAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG15OjsAAAAAAAAAADiayWxydgS4CGaSAwAAAAAAAADclslisVicHQIAAAAAAAAAHOn4Ey2dHSHbKfv5t86OYAiXWG4l+uPnnR3BpQQOfI/35B6BA9/TN17lnB3DpbRJOqbTPds6O4ZLKTlvta4c2evsGC6lQIUaipnxsrNjuIyA/m8p4tgvzo7hUgqXq6I9x246O4ZLqVkuty6P7ObsGC6l4PiFihj+hLNjuJTC73+uuM2fOzuGS/Fr/ISip49ydgyXEvj0OF04fsjZMVxK0bKVdWvCUGfHcCk5n/uQa9g/KFChhiYsT3V2DJfyXHuzzpw66ewYLqVEqdK6fmiHs2O4lHyVH3B2BCBbY7kVAAAAAAAAAIDbokgOAAAAAAAAAHBbLrHcCgAAAAAAAAA4ksnM/GGk4UgAAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3BZFcgAAAAAAAACA2/J0dgAAAAAAAAAAcDSzh8nZEeAimEkOAAAAAAAAAHBb/7pIHh0drcTERHtkAQAAAAAAAADAoWwukp86dUoDBw6UJK1bt05169ZVgwYNtHfvXruHAwAAAAAAAADASDavSf72228rf/78slgsmjRpkoYMGaKAgAC98847WrZsmREZAQAAAAAAAAAwhM1F8mPHjmn69Om6ePGiwsPD1bVrVwUEBGjixIlG5AMAAAAAAAAAwDA2F8mTk5NlsVi0fft2VapUSYGBgbpx44Z8fHyMyAcAAAAAAAAAdmcym5wdAS7C5iJ5vXr1NHjwYB09elR9+vTR+fPn9fzzz6tx48YGxAMAAAAAAAAAZDeRkZF69dVXtWvXLnl4eKhdu3Z64YUX5OlpXZLu27dvhvtdxsbGqnPnzho7dqxSU1NVo0YNWSwWmUy/f7Cxfft2+fv72yWrzUXyN954Q3PmzFGNGjXUo0cPHT16VJUqVdKzzz5rl0AAAAAAAAAAgOxt2LBhKlCggLZu3arr16/rmWee0bx589S3b1+rfrNmzbJ6/sUXX2jKlCkaNGiQJOnkyZNKSkrSvn375O3tbUhWm4vkAQEBGjx4cPrz8uXL65VXXrFrKAAAAAAAAABA9nTu3Dnt2rVLW7ZskZ+fn0JCQjRgwACNHz8+Q5H8j06fPq033nhDs2fPVv78+SVJBw8eVLly5QwrkEv/oEh+8OBBTZw4URcvXlRqaqrVtg0bNtgtGAAAAAAAAAAg+zlx4oRy5cqlAgUKpLeVKlVKERERun37tnLkyJHp615//XWFhYWpZs2a6W0HDx5UQkKCOnTooIsXL6pUqVIaMWKEqlevbre8NhfJR40apTJlyuiRRx6R2Wy2WxAAAAAAAAAAgOtKTExUYmKiVZu3t3eGWd4xMTHy8/Ozarv7PDY2NtMi+Z49e3TgwAFNmDDBqt3X11dVqlTR0KFDlTNnTi1atEh9+vTRypUrFRISYo9h2V4kv3jxor766it5eXnZJQAAAAAAAAAAOJqJCcA2mzFjhqZMmWLVNmjQIKvluSXJ399fcXFxVm13nwcEBGS67yVLlqhVq1YKDg62an/xxRetnvfp00fLly/XDz/8oG7duv2jcdzL5iJ5rVq1dOTIEVWpUsUuAQAAAAAAAAAArq9///7q1auXVVtma4WXKVNGUVFRun79uvLlyydJOnXqlAoWLKigoKAM/ZOTk7VhwwZ9/PHHGba9//77atGihSpWrJjelpiYKB8fn387nHQ2F8mHDRumHj16qE6dOhmmxY8bN85uwQAAAAAAAAAAriOzpVUyU7x4cdWoUUNvv/22xo4dq5s3b2rq1Knq2LFjpv2PHTumhISETNcZP378uPbs2aMPPvhAOXPm1CeffKLo6Gg1b978X4/nLpu/U/DWW28pb968fzotHgAAAAAAAADg3iZPnqzk5GQ1bdpUnTp1UoMGDTRgwABJUrVq1bRy5cr0vufPn1fOnDkznR0+btw4FStWTI8++qjq1KmjXbt2ae7cucqVK5fdsto8k/zXX3/V9u3bKZIDAAAAAAAAADKVL18+TZ48OdNt+/fvt3resmVLtWzZMtO+uXLlMnwFE5tnkoeGhiomJsaILAAAAAAAAAAAOJTNM8kfe+wx9e7dWx06dFCuXLlkMpnSt4WFhdkzGwAAAAAAAAAYwmQ2/X0nuAWbi+Tz58+XJC1YsMCq3WQyUSQHAAAAAAAAAGQrNhfJN27caEQOAAAAAAAAAAAczuYiuSQdOnRIX3zxhS5evKjg4GC1b99eNWvWtHc2AAAAAAAAAAAMZfONO7dt26auXbsqKipK5cqVU3R0tHr16qX169cbkQ8AAAAAAAAAAMPYPJN88uTJevfdd9WqVav0trVr12rq1Klq1qyZXcMBAAAAAAAAAGAkm4vkZ86cUYsWLazaWrRooZdfftluoQAAAAAAAADASCazydkR4CJsXm4lV65cOn78uFXb0aNHFRwcbLdQAAAAAAAAAAA4gs0zyR9//HE988wz6t+/v4oWLarw8HDNnDlTXbt2NSIfAAAAAAAAAACGsblI/r///U8JCQmaMWOGrl+/riJFiqhbt27q1auXEfkAAAAAAAAAADCMzUVyk8mkwYMHa/DgwUbkAQAAAAAAAADAYWxek9xisejTTz9V69atdf/996tZs2aaPn26LBaLEfkAAAAAAAAAADCMzTPJ58+fr7lz56pfv37pa5LPmjVLZrNZ/fr1MyIjAAAAAAAAANiVyWzz/GH8R9lcJF+8eLGmTp2qihUrprdVr15dgwcPpkgOAAAAAAAAAMhWbP645OrVqypfvrxVW/ny5RUVFWWvTAAAAAAAAAAAOITNRfLQ0FCtW7fOqm3dunUKDQ21WygAAAAAAAAAABzB5uVWBgwYoGHDhunbb79VSEiIwsPDtWHDBk2ePNmIfAAAAAAAAAAAGMbmmeTNmjXTrFmz5O3trV9//VU5cuTQokWL9NBDDxmRDwAAAAAAAAAAw9g8k/yZZ57R+PHjVbduXSPyAAAAAAAAAIDhTGaTsyPARdg8k3z//v3y9vY2IgsAAAAAAAAAAA5l80zytm3basiQIXrkkUcUHBwsk+n3T1xq1apl13AAAAAAAAAAABjJ5iL5woULJUmbN2+2ajeZTDpy5IhdQgEAAAAAAAAA4Ag2F8mPHj1qRA4AAAAAAAAAABzO5iK5JKWkpOj69etKSUmxai9cuLBdQgEAAAAAAAAA4Ag2F8m/++47jRo1SnFxcbJYLDKZTOn/ZbkVAAAAAAAAANmByWx2dgS4CJuL5BMmTFDfvn3VunVreXl5GZEJAAAAAAAAAACHsLlIfuvWLQ0YMMCILAAAAAAAAAAAOJTN3ym47777uHknAAAAAAAAAOA/IcszyadMmSJJypMnj/r06aNWrVopV65cVn0GDRpk13AAAAAAAAAAABgpy0XynTt3pv9/yZIldezYMavtJpPJfqkAAAAAAAAAAHCALBfJFyxYIEm6du2agoODM2w/ceKE/VIBAAAAAAAAgJGY9Ivf2LwmeYsWLTK0paSkqHPnznYJBAAAAAAAAACAo2RpJvm5c+fUp08fWSwWxcXFqWnTplbb4+PjVaRIEUMCAgAAAAAAAABglCwVyUNDQ/Xyyy/r5s2bGjNmTIYbdPr4+KhWrVqGBAQAAAAAAAAAwChZXpP8oYcekiQVLVpUtWvXNiwQAAAAAAAAAACOkuUi+V1Vq1bVl19+qStXrig1NVWSlJSUpOPHj2vatGl2DwgAAAAAAAAAgFFsLpK/9NJL2rp1q3Lnzq2kpCT5+/vrxIkTCgsLMyAeAAAAAAAAANifyWxydgS4CJuL5Fu3btXnn3+uGzdu6PPPP9fEiRM1Z84c/fLLL0bkAwAAAAAAAADAMGZbX5CamqqSJUuqZMmSOnLkiCTpySef1J49e+weDgAAAAAAAAAAI9lcJC9YsKDOnz+vPHnyKDIyUrGxsbJYLIqJiTEiHwAAAAAAAAAAhrF5uZVHHnlEXbt21RdffKHGjRvrmWeekY+PjypXrmxEPgAAAAAAAAAADGNzkbxfv34KCQlRQECAhg0bphkzZig6OlqvvvqqEfkAAAAAAAAAADCMzUXymJgYbdu2TS+++KISExPl5+enzp07q0CBAkbkAwAAAAAAAAC7M5ltXoka/1E2HwnvvPOOTp48qalTp+qbb77R+++/r507d+r99983Ih8AAAAAAAAAAIaxeSb5pk2btHLlSuXJk0eSVLJkSZUrV04dO3bUCy+8YPeAAAAAAAAAAAAYxeaZ5H5+fvLw8LBq8/f3V2pqqt1CAQAAAAAAAADgCFkukkdERCgiIkJhYWEaPny4jh8/rpiYGJ05c0YvvviievbsaWBMAAAAAAAAAADsL8vLrTRp0kQmk0kWi0WS1K5dO5lMJkmSxWLRpk2b1K9fP2NSAgAAAAAAAABggCwXyTds2GBkDgAAAAAAAABwGJPZ5OwIcBFZLpIXKVLEyBwAAAAAAAAAADiczTfuBAAAAAAAAADgv4IiOQAAAAAAAADAbVEkBwAAAAAAAAC4LYrkAAAAAAAAAAC3leUbdwIAAAAAAADAf4XJzPxhpOFIAAAAAAAAAAC4LYrkAAAAAAAAAAC3RZEcAAAAAAAAAOC2TBaLxeLsEAAAAAAAAADgSJdHdnN2hGyn4PiFzo5gCJe4ceeFwZ2cHcGlFP1oqW6OG+DsGC4l96ipOt2zrbNjuJSS81brG69yzo7hUtokHdOtfeudHcOl5KzeTPHfTHd2DJfh2+ZpXTu8y9kxXEpwxdo6fDLC2TFcSsXShXWqRxtnx3AppeZ/o9316zo7hkupte0nxX/+rrNjuBTfJ15Q/Lp5zo7hUnyb99SF44ecHcOlFC1bmev6e5Sct1q3961zdgyXkaN6cy3flersGC6lfW2zzp085uwYLiW0dDnd2fWNs2O4lKDaXL8C/4ZLFMkBAAAAAAAAwJFMZpOzI8BFsCY5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3JanswMAAAAAAAAAgKOZzCZnR4CLYCY5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LYokgMAAAAAAAAA3JanrS/YvXt3pu1eXl7KkyePihUr9q9DAQAAAAAAAIChzMwfRhqbi+QvvviiIiIiZDablTt3bt28eVOpqakym81KSUlRyZIlNWPGDIWEhBiRFwAAAAAAAAAAu7H545J27dqpXbt22rVrl7Zt26bdu3erY8eOGjRokPbu3av69evrrbfeMiIrAAAAAAAAAAB2ZXORfMWKFRozZowCAgIkSf7+/nrppZe0ZMkSBQQEaMSIEdq3b5/dgwIAAAAAAAAAYG82F8ljY2N1+/Ztq7Y7d+4oOjo6/bnJZPr3yQAAAAAAAAAAMJjNRfKWLVtq4MCB+vHHH3X27Fn9+OOPGjJkiB5++GFFR0frtddeU82aNY3ICgAAAAAAAACAXdl8486XXnpJb731lgYOHKi4uDj5+vqqY8eOGjFihH799Vfdvn1bY8aMMSAqAAAAAAAAANgHq2HgLpuL5D4+Pho7dqxGjx6tqKgo5c2bN/2AqlmzJrPIAQAAAAAAAADZhs1Fckn65ZdfdObMGVksFqv2sLAwe2QCAAAAAAAAAMAhbC6ST5o0STNnzlRwcLA8PX9/uclkokgOAAAAAAAAAMhWbC6Sr1y5UtOnT1ejRo2MyAMAAAAAAAAAgMOYbX1BTEyMGjZsaEQWAAAAAAAAAAAcyuaZ5I0bN9aqVavUrl07I/IAAAAAAAAAgOFMZpvnD+M/yuYieUJCgl588UVNnz5d+fLls9o2f/58uwUDAAAAAAAAAMBoNhfJy5Ytq7JlyxqRBQAAAAAAAAAAh7K5SD5o0CAjcgAAAAAAAAAA4HBZLpKPGTNGY8aM0ahRo/60z7hx4+wSCgAAAAAAAAAAR8jy6vQWi8XqvwAAAAAAAAAAZHdZnkn++uuvS5Kee+65DDfsBAAAAAAAAIDsxGQ2OTsCXESWZ5Lf1bhxYw0cOFCbNm1SamqqEZkAAAAAAAAAAHAIm4vkX3/9tUqUKKHXXntNjRo10qRJkxQeHm5ENgAAAAAAAAAADGVzkbxUqVJ67rnntHnzZr311lu6ePGiHnvsMfXo0cOIfAAAAAAAAAAAGMbmInn6C81m+fr6yt/fX97e3kpKSrJnLgAAAAAAAAAADJflG3fedfbsWa1YsUIrV65UXFyc2rVrpwULFqh06dJG5AMAAAAAAAAAwDA2F8lbtWqlunXrasSIEWrevLm8vb2NyAUAAAAAAAAAxjH/40U28B9jc5H8+++/V0hIiBFZAAAAAAAAAABwqCwXyT/55BP169dPX3/99Z/2GTRokF1CAQAAAAAAAADgCFkuku/evVv9+vXTzp07M91uMpnsFgoAAAAAAAAAAEfIcpF85syZkqQFCxYYFgYAAAAAAAAAAEfKcpF8xYoVf9snLCzsX0QBAAAAAAAAAMCxslwknzx58l9uN5lMFMkBAAAAAAAAZAsmM8tHI02Wi+QbN27M8k5Xr16ttm3b/qNAAAAAAAAAAAA4itmInY4ePdqI3QIAAAAAAAAAYFeGFMktFosRuwUAAAAAAAAAwK4MKZKbTKznAwAAAAAAAABwfYYUyQEAAAAAAAAAyA6yfONOAAAAAAAAAPivMJmYP4w0HAkAAAAAAAAAALfFjTsBAAAAAAAAAG7L5iL5gQMHMm3fsmVL+v8/+OCD/zwRAAAAAAAAAAAOYnORvFevXhnaoqOjNXTo0PTnU6ZM+XepAAAAAAAAAABwgCzduPPcuXNq06aNUlJSZLFYVKFChQx9qlevbvdwAAAAAAAAAAAYKUtF8tDQUC1btky3b99Wv379NHPmTKvtPj4+Klu2rCEBAQAAAAAAAMDuzCZnJ4CLyFKRXJIGDx6s9evXq0WLFqpdu7aRmQAAAAAAAAAAcIgsF8kjIyN15MgRrVu3TpcuXZLFYsnQp3DhwnYNBwAAAAAAAACAkbJcJG/SpIkee+wxmUwmNWnSxGqbxWKRyWTSkSNH7B4QAAAAAAAAAACjZLlIPnHiRD3//PNq2bKlVq9ebWQmAAAAAAAAAAAcIstFckkqUKCAPvvsMxUpUsSoPAAAAAAAAAAAOIxNRXJJmj9/fpb6jRs3zuYwAAAAAAAAAOAIJrPZ2RHgImw+Enx8fLRq1SrduXNH+fLlU3Jysr755htdvXrViHwAAAAAAAAAABjG5pnk58+f18SJE9WiRYv0tscee0yzZ89m9jgAAAAAAAAAIFuxeSb5vn371Lx5c6u2OnXq6ODBg3YLBQAAAAAAAACAI9hcJC9SpIjWrl1r1bZ8+XKVLFnSbqEAAAAAAAAAAHAEm5dbGT58uIYOHapFixapUKFCOn/+vM6cOaO5c+cakQ8AAAAAAAAAAMPYXCRv2rSpli9fru+++06RkZFq1KiRnn/+eVWuXNmIfAAAAAAAAABgdyazydkR4CJsXm5l48aN6tmzpwYPHqz8+fNrxowZ6tOnj5YuXWpEPgAAAAAAAAAADGNzkXzatGkaNmyYUlNTtXDhQk2ZMkWLFi3SzJkzjcgHAAAAAAAAAIBhbF5uJTw8XJ06ddLhw4cVFxenevXqydPTU9evXzciHwAAAAAAAAAAhrF5Jrmfn58iIyO1ceNG1ahRQ56enjp69Khy585tRD4AAAAAAAAAAAxj80zyDh06KCwsTLdv39bkyZN16NAh9e3bV7179zYiHwAAAAAAAAAAhrG5SD548GDVrl1bPj4+qlq1qi5duqSxY8fq4YcfNiIfAAAAAAAAANifyeZFNvAfZXORXJLq1KmT/v+FChVSoUKF7BYIAAAAAAAAAABH4eMSAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG39oxt3AgAAAAAAAEB2ZjKbnB0BLoKZ5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADcFkVyAAAAAAAAAIDbMlksFouzQwAAAAAAAACAI92eNMzZEbKdHM9+4OwIhvB0dgBJunJkr7MjuJQCFWoo/MQRZ8dwKcXKVOA4uUeBCjV0a996Z8dwKTmrN9M3XuWcHcOltEk6plOnTzs7hssoVbKkzp487uwYLqV46bI6eeqMs2O4lNKlSujarzudHcOlBFeqo9v71jk7hkvJUb25zpw66ewYLqVEqdK6cPyQs2O4lKJlK+v0qVPOjuFSSpYqpRu/bHV2DJeSp0oDhT/d3tkxXEax6ct15NRFZ8dwKRVKFeHfnHuUKFWav/3u0SbpmLMjZE9mFtlAGo4EAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG1RJAcAAAAAAAAAuC1PZwcAAAAAAAAAAEczmUzOjgAXwUxyAAAAAAAAAIDbokgOAAAAAAAAAHBbFMkBAAAAAAAAAG6LIjkAAAAAAAAAwG1RJAcAAAAAAAAAuC1PZwcAAAAAAAAAAIczM38YaTgSAAAAAAAAAABuiyI5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALdFkRwAAAAAAAAA4LY8nR0AAAAAAAAAABzNZDY5OwJcBDPJAQAAAAAAAABuiyI5AAAAAAAAAMBtUSQHAAAAAAAAALgtm4vkzzzzTKbt3bp1+9dhAAAAAAAAAABwpCzduPPChQtasWKFJGnbtm2aMmWK1fbo6GgdO3bM7uEAAAAAAAAAADBSlorkhQsX1okTJ3Tjxg2lpKRo586dVtt9fHz02muvGRIQAAAAAAAAAOzOxErUSJOlIrnZbNaHH34oSXrllVf05ptvGhoKAAAAAAAAAABHyFKR/I/efPNNXb58WatWrdLFixeVP39+tW3bVsWKFTMiHwAAAAAAAAAAhrH5OwUHDx5UmzZt9P333+vWrVvasGGD2rVrp7179xqRDwAAAAAAAAAAw9g8k3z8+PEaOnSoevTokd726aefasKECfr888/tGg4AAAAAAAAAACPZPJP82LFj6tq1q1Vb165ddfz4cbuFAgAAAAAAAADAEWyeSe7n56dLly4pJCQkve3SpUvKmTOnXYMBAAAAAAAAgGHMJmcngIuweSZ569atNXjwYG3dulVnzpzRDz/8oCFDhqh169ZG5AMAAAAAAAAAwDA2zyQfOnSobty4oQEDBigpKUk+Pj7q0KGDBg0aZEQ+AAAAAAAAAAAMY3OR3MfHR++8847Gjh2rW7duKV++fDKZ+GoCAAAAAAAAACD7yXKRfMWKFX/bJyws7F9EAQAAAAAAAADAsbJcJJ88efJfbjeZTBTJAQAAAAAAAADZSpaL5Bs3bszyTlevXq22bdv+o0AAAAAAAAAAYDSTyezsCHARhhwJo0ePNmK3AAAAAAAAAADYlSFFcovFYsRuAQAAAAAAAADZQGRkpAYMGKCaNWuqTp06euutt5ScnJxp3759++q+++5TtWrV0h9btmxJ3z5z5kw1bNhQVatWVffu3XX69Gm7ZjWkSG4ymYzYLQAAAAAAAAAgGxg2bJj8/f21detWffHFF9qxY4fmzZuXad9Dhw5p9uzZ2r9/f/qjYcOGkqSvvvpKCxYs0OzZs7Vz505VqlRJQ4YMsetEbRbeAQAAAAAAAADYzblz57Rr1y6NHDlSfn5+CgkJ0YABA7Ro0aIMfc+fP69bt26pYsWKme5r6dKl6tq1q8qUKSMfHx+NGDFCERER2rlzp93yUiQHAAAAAAAAAPytxMRERUdHWz0SExMz9Dtx4oRy5cqlAgUKpLeVKlVKERERun37tlXfgwcPKiAgQMOHD1fdunXVtm1bffHFF+nbT548qbJly6Y/9/LyUvHixXX06FG7jcvTbnsCAAAAAAAAgOzCzJLRtpoxY4amTJli1TZo0CANHjzYqi0mJkZ+fn5WbXefx8bGKkeOHOntiYmJqlq1qoYPH64yZcpo586dGjx4sAICAtSqVatM9+Xr66vY2Fi7jcuQIjk37gQAAAAAAACA/5b+/furV69eVm3e3t4Z+vn7+ysuLs6q7e7zgIAAq/awsDCFhYWlP69fv77CwsK0du1atWrVSn5+foqPj7d6TXx8fIb9/Bs2L7dy4MCBTNv/eLfRBx988J8nAgAAAAAAAAC4HG9vbwUGBlo9MiuSlylTRlFRUbp+/Xp626lTp1SwYEEFBQVZ9f3iiy+0du1aq7bExET5+Pik7+vEiRPp25KSknT27FmrJVj+LZuL5Pd+UiBJ0dHRGjp0aPrze6fcAwAAAAAAAADcQ/HixVWjRg29/fbbio6O1vnz5zV16lR17NgxQ9/o6Gi98cYbOnz4sFJTU7V582atXr1anTt3liR16NBBCxcu1NGjR5WQkKCJEycqX758qlmzpt3yZmm5lXPnzqlNmzZKSUmRxWJRhQoVMvSpXr263UIBAAAAAAAAALKvyZMna+zYsWratKnMZrPCwsI0YMAASVK1atX0+uuvq127dnrqqacUGxurQYMGKTIyUiEhIXr33XfTi+AdO3bUnTt3NHDgQN24cUP33XefZsyYIS8vL7tlzVKRPDQ0VMuWLdPt27fVr18/zZw502q7j4+PXae3AwAAAAAAAACyr3z58mny5MmZbtu/f3/6/5tMJg0YMCC9gH4vk8mk3r17q3fv3obklGy4cefgwYO1fv16tWjRQrVr1zYsEAAAAAAAAAAYzWS2eSVq/EdluUgeGRmpI0eOaN26dbp06ZIsFkuGPoULF7ZrOAAAAAAAAAAAjJTlInmTJk302GOPyWQyqUmTJlbbLBaLTCaTjhw5YveAAAAAAAAAAAAYJctF8okTJ+r5559Xy5YttXr1aiMzAQAAAAAAAADgEFkukktSgQIF9Nlnn6lIkSJG5QEAAAAAAAAAwGFsKpJL0vz587PUb9y4cTaHAQAAAAAAAADAkWy+hauPj49WrVqlO3fuKF++fEpOTtY333yjq1evGpEPAAAAAAAAAOzPZOJh6+M/yuaZ5OfPn9fEiRPVokWL9LbHHntMs2fPZvY4AAAAAAAAACBbsXkm+b59+9S8eXOrtjp16ujgwYN2CwUAAAAAAAAAgCPYXCQvUqSI1q5da9W2fPlylSxZ0m6hAAAAAAAAAABwBJuXWxk+fLiGDh2qRYsWqVChQjp//rzOnDmjuXPnGpEPAAAAAAAAAADD2DyTvGnTplq+fLkeeOABBQUFqVGjRpo2bZoqV65sRD4AAAAAAAAAAAxjc5F848aN6tmzpwYPHqz8+fNrxowZ6tOnj5YuXWpEPgAAAAAAAACwP7OZh62P/yibRzZt2jQNGzZMqampWrhwoaZMmaJFixZp5syZRuQDAAAAAAAAAMAwNq9JHh4erk6dOunw4cOKi4tTvXr15OnpqevXrxuRDwAAAAAAAAAAw9g8k9zPz0+RkZHauHGjatSoIU9PTx09elS5c+c2Ih8AAAAAAAAAAIaxeSZ5hw4dFBYWptu3b2vy5Mk6dOiQ+vbtq969exuRDwAAAAAAAAAAw9hcJB88eLBq164tHx8fVa1aVZcuXdLYsWP18MMPG5EPAAAAAAAAAADD2Fwkl6Q6deqk/3+hQoVUqFAhuwUCAAAAAAAAAMOZTM5OABdh85rkAAAAAAAAAAD8V1AkBwAAAAAAAAC4LYrkAAAAAAAAAAC3RZEcAAAAAAAAAOC2KJIDAAAAAAAAANyWp7MDAAAAAAAAAICjmczMH0YajgQAAAAAAAAAgNuiSA4AAAAAAAAAcFsUyQEAAAAAAAAAbosiOQAAAAAAAADAbVEkBwAAAAAAAAC4LU9nBwAAAAAAAAAAhzMxfxhpOBIAAAAAAAAAAG6LIjkAAAAAAAAAwG1RJAcAAAAAAAAAuC2K5AAAAAAAAAAAt0WRHAAAAAAAAADgtjydHQAAAAAAAAAAHM5scnYCuAiTxWKxODsEAAAAAAAAADhS3GfjnB0h2/HrOsrZEQzhEjPJY7d/6ewILsX/wQ66vW+ds2O4lBzVmytmxsvOjuFSAvq/pfhvpjs7hkvxbfO0Tp0+7ewYLqVUyZL6xqucs2O4jDZJx3T25HFnx3ApxUuX1dr9Sc6O4VJaVfNS3II3nR3Dpfh1f0XRHz/v7BguJXDge/r+QKKzY7iUh+/3Vuzs0c6O4VL8+4zV6VOnnB3DpZQsVUqxPyx2dgyX4t+oi06eOuPsGC6jdKkS+mAlc/n+aFg7E3/n3KNUyZI6c+qks2O4lBKlSjs7ApCtsSY5AAAAAAAAAMBtUSQHAAAAAAAAALgtiuQAAAAAAAAAALflEmuSAwAAAAAAAIAjmUzMH0YajgQAAAAAAAAAgNuiSA4AAAAAAAAAcFsUyQEAAAAAAAAAbosiOQAAAAAAAADAbVEkBwAAAAAAAAC4LU9nBwAAAAAAAAAAhzObnJ0ALoKZ5AAAAAAAAAAAt0WRHAAAAAAAAADgtiiSAwAAAAAAAADcFkVyAAAAAAAAAIDbokgOAAAAAAAAAHBbns4OAAAAAAAAAAAOZ2L+MNJwJAAAAAAAAAAA3BZFcgAAAAAAAACA26JIDgAAAAAAAABwWxTJAQAAAAAAAABuiyI5AAAAAAAAAMBteTo7AAAAAAAAAAA4nMnk7ARwEcwkBwAAAAAAAAC4LYrkAAAAAAAAAAC3RZEcAAAAAAAAAOC2KJIDAAAAAAAAANzWPyqSHzp0SJJ0+/ZtjR8/XrNnz1ZycrJdgwEAAAAAAAAAYDRPW18wbdo0zZo1S3v37tWbb76pQ4cOyWw26/Lly3r55ZeNyAgAAAAAAAAA9mVmkQ2ksflIWL16tRYtWqTExER99913mjRpkj799FOtWbPGiHwAAAAAAAAAABjG5pnkV69eVfny5bVjxw4FBQWpfPnykqS4uDi7hwMAAAAAAAAAwEg2zyQvUKCAdu/erRUrVuiBBx6QlDa7PCQkxO7hAAAAAAAAAAAwks0zyQcPHqy+ffvK19dXn3/+uXbs2KFRo0bpo48+MiIfAAAAAAAAAACGsblInjdvXv3444/y9PSUj4+P8ufPrw0bNih//vxG5AMAAAAAAAAAwDA2F8kHDhyozZs3y8fHR5IUGBiowMBAuwcDAAAAAAAAAMOYbF6JGv9RNh8JISEhOnjwoBFZAAAAAAAAAABwKJtnkufMmVO9evVS0aJFlT9/fplMpvRt8+fPt2s4AAAAAAAAAACMZHORvFq1aqpWrZoRWQAAAAAAAAAAcCibi+SDBg1K///IyEjlzJlTnp427wYAAAAAAAAAAKezeU3ypKQkvf3226pWrZrq16+vGjVq6NVXX1ViYqIR+QAAAAAAAAAAMIzNU8CnTp2qnTt36oMPPlDRokUVHh6u999/Xx988IGef/55IzICAAAAAAAAgH2ZTX/fB27B5iL5qlWrNHfuXIWEhEiSSpUqpVKlSunJJ5+kSA4AAAAAAAAAyFZsXm7l1q1bKlSokFVboUKFFB8fb7dQAAAAAAAAAAA4gs1F8nLlymnx4sVWbYsXL1bZsmXtFgoAAAAAAAAAAEewebmVYcOGqXfv3lq5cqVCQkIUHh6ukydPavbs2UbkAwAAAAAAAADAMDbPJK9Zs6ZWrFih+vXrKyAgQM2bN9fq1atVvXp1I/IBAAAAAAAAAGAYm2eSS1Lx4sXVuHFjXbhwQfnz58+wRjkAAAAAAAAAuDSTzfOH8R9lc5H82rVrevrpp3Xs2DHlzJlTN2/eVPHixTVnzhwVLFjQiIwAAAAAAAAAABjC5o9L3n33XRUvXlw7d+7U9u3btXPnTlWoUEHjxo0zIh8AAAAAAAAAAIaxeSb5Tz/9pG+//VYBAQGSpKCgII0ZM0ZNmza1ezgAAAAAAAAAAIxk80zy1NRUmUwmqzaTySQvLy+7hQIAAAAAAAAAwBFsLpLXqVNHY8aMUWxsrCQpJiZGY8aMUe3ate0eDgAAAAAAAAAAI9m83MrIkSPVq1cv1a5dW7ly5VJUVJRKly6tGTNmGJEPAAAAAAAAAOzvntUy4L5sLpIXLlxY33zzjXbv3q0bN26oSJEiuu++++Th4WFEPgAAAAAAAAAADJPlInlERITV89DQUIWGhkqSrly5IimtgA4A/2fvzsOtKgv9gX83Mjqi4gCIAyCOmTNa1wnDISccG9QuikMioJmamkOKRpZaEuKAhGFmDjlrmVNU9zpQmEPhhKgkhhOmByFA9u8Pf3E76r2dZXudvfF8Ps+zHvd+37UW33OeDeL3vL4LAAAAAJYULS7JBwwYsPiBndVqNUmava9UKpk6dWoJEQEAAAAAoBwtLsmXXXbZ3HrrrRk4cGDuu+++xUU5AAAAAAAsqVpcknfs2DFXXXVVllpqqdx8880fWZIPGzaspuEAAAAAAKBMLS7JzzjjjNxwww1ZtGhRHnrooQ/NVzwNFgAAAABYUrRrV+8ENIgWl+S77757dt999xx44IG5+uqry8wEAAAAAACtovCPS2644YYycgAAAAAAQKvz/xQAAAAAANBmKckBAAAAAGizlOQAAAAAALRZLX5wJwAAAADAJ0alUu8ENAgryQEAAAAAaLOU5AAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbZaSHAAAAACANqt9vQMAAAAAALS6ivXDvM8nAQAAAACANktJDgAAAABAm6UkBwAAAACgzVKSAwAAAADQZinJAQAAAABos9rXOwAAAAAAQKtrZ/0w7/NJAAAAAACgzVKSAwAAAADQZinJAQAAAABos5TkAAAAAAC0WUpyAAAAAADarPb1DgAAAAAA0OoqlXonoEFYSQ4AAAAAQJtVqVar1XqHAAAAAABoTfPuHl/vCEuczrsOqXeEUjTEdivv/ub6ekdoKEtvf1Cenzat3jEaSu8+fTLz6cfrHaOh9Fhvk7z250fqHaOhrLLh1nnhuWfqHaOhrN23n+/JP1m7b7/c2WG9esdoKHsseNpn5APW7tsvf33q0XrHaCirr79ZXnnqj/WO0VC6r7+pz8kHrL7+Znlm2kv1jtFQ+vVZ099hP6DHepv4vfMBq6+/WV587ul6x2gYa/Vdz/fjA9bqu57fNx/g982HrdXXf+fAv8N2KwAAAAAAtFlKcgAAAAAA2qyG2G4FAAAAAKBVVawf5n0+CQAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbZaSHAAAAACANktJDgAAAABAm6UkBwAAAACgzWpf7wAAAAAAAK2uUql3AhqEleQAAAAAALRZSnIAAAAAANqsQiX5Mccc85HjhxxySE3CAAAAAABAa/qXe5L/5S9/yS233JIk+d3vfpcxY8Y0m29qasrTTz9dSjgAAAAAACjTvyzJe/TokWeffTZvvvlm3nvvvTz88MPN5jt16pSzzjqrtIAAAAAAAFCWf1mSt2vXLhdffHGS5PTTT8+5555beigAAAAAgFK187hG3vcvS/J/du6552b+/Pl58803s2jRomZzPXr0qGkwAAAAAAAoW6GS/Je//GXOOOOMNDU1LR6rVqupVCqZOnVqzcMBAAAAAECZCpXko0ePzsEHH5x999037dsXuhQAAAAAABpOoab7lVdeybBhwxTkAAAAAAB8IhTanX6jjTbKc889V1YWAAAAAABoVYWWhG+++eYZPHhwdtttt3Tr1q3Z3LBhw2oaDAAAAACgLNVKpd4RaBCFSvJHH3006667bqZNm5Zp06YtHq/4QAEAAAAAsAQqVJJfffXVZeUAAAAAAIBWV/gJnPfee2+uu+66vPzyy1lllVVywAEHZK+99iojGwAAAAAAlKrQgztvv/32nHLKKenXr18OPfTQbLjhhvnWt76VG264oax8AAAAAABQmkIryceNG5cxY8Zkm222WTy2ww475JxzzsmBBx5Y83AAAAAAAFCmQiX5zJkz079//2ZjW2+9df7617/WNBQAAAAAQKkqhTbZ4BOs0Cdh9dVXz+TJk5uNTZ48OT169KhpKAAAAAAAaA2FVpL/53/+Z4499th84QtfSK9evfLSSy/luuuuy6mnnlpWPgAAAAAAKE2hkvzAAw/MUkstlZtuuin33ntvevbsmXPPPTe77bZbWfkAAAAAAKA0hUrykSNH5mtf+1r222+/svIAAAAAAECrKbQn+e23354uXbqUlQUAAAAAAFpVoZXk+++/f84+++zsu+++WXXVVVOpVBbPeXgnAAAAALDEqBRaP8wnWKGSfMKECUmS66+/fnFBXq1WU6lUMnXq1NqnAwAAAACAErWoJJ80aVJ22GGH3HfffWXnAQAAAACAVtOikvzEE0/M5MmTc9hhh+VXv/pV2ZkAAAAAAKBVtKgk79ChQ84777zMnDkzY8aM+chzhg0bVtNgAAAAAABQthaV5GeccUZuuOGGLFq0KA8//PCH5v/5AZ4AAAAAALCkaFFJvvvuu2f33XfPvvvum6uvvrrsTAAAAAAApapa+Mv/167IyX/729/S1NRUVhYAAAAAAGhVhUryJJk7d24ZOQAAAAAAoNW1aLuVf+jfv38OPPDAbL/99ll11VWbzXlwJwAAAAAAS5pCJflf/vKX9OrVK9OnT8/06dMXj3twJwAAAAAAS6JCJbmHdgIAAAAA8ElSqCRPkmnTpuXaa6/NX//614wcOTJ33nlnDjnkkDKyAQAAAACUo1L4cY18QhX6JPzXf/1XDjzwwMyePTv//d//nXnz5uWSSy7JFVdcUVY+AAAAAAAoTaGS/KKLLsr3v//9XHjhhVlqqaXSvXv3XHHFFbnuuuvKygcAAAAAAKUpVJK/+OKL2X777ZP8z8M6P/WpT+Vvf/tb7ZMBAAAAAEDJCpXkPXr0yJQpU5qNPfHEE+nevXtNQwEAAAAAQGso9ODOo48+Osccc0y+9KUvZcGCBRk3blyuvvrqnHDCCWXlAwAAAACA0hQqyffYY48su+yyueaaa9KjR4889NBD+eY3v5ldd921rHwAAAAAALX3/7eThkIl+S9+8Yvsvvvu2WGHHZqNX3fddfnCF75Q02AAAAAAAFC2f1mSz507N7Nnz06SnHbaadl0001TrVYXz7/zzjv5zne+oyQHAAAAAGCJ8y9L8qampuyxxx6ZN29ekmTAgAGpVqupVCqL//m5z32u9KAAAAAAAFBr/7IkX2WVVXLvvfdm7ty52WuvvXLHHXc0m+/UqVO6detWWkAAAAAAAChLi/YkX3nllZMkf/jDH9KuXbsPzS9cuDDt2xfa3hwAAAAAAOquULP9l7/8JZdccklmzZqVRYsWJUkWLFiQ6dOn56GHHiolIAAAAABAzX3EYmDapkIl+Te/+c1Uq9WsuOKKeeONN7LhhhvmlltuyeDBg0uKBwAAAADAkuaNN97IGWeckUceeSRLLbVU9t5773zjG9/4yB1Jrr322lx11VV59dVXs+qqq+YrX/lKDj744CTJokWLssUWWyx+PuY//Nd//VeWXnrpmmQtVJI/+eST+fWvf52ZM2fmBz/4QU4//fRsv/32ufzyyzNs2LCaBAIAAAAAYMl2/PHHZ7XVVstvf/vbvP766znmmGNy1VVX5Ygjjmh23r333puLLroo48aNy6c//en88Y9/zFFHHZVu3bpl1113zXPPPZcFCxZkypQp6dixYylZC/0/BV26dMkKK6yQNddcM88880ySZPvtt8/zzz9fSjgAAAAAAJYsL774Yh555JGcdNJJ6dKlS3r16pWhQ4fmmmuu+dC5s2bNypFHHplNN900lUolm222Wfr375/JkycnSZ544omst956pRXkScGSfM0118ykSZOyzDLLZNGiRZkxY0ZmzZqVhQsXlpUPAAAAAIAlyLPPPpuuXbtmtdVWWzzWp0+fzJw5M2+//Xazcw8++OAcddRRi9+/8cYbmTx5cjbeeOMk75fkf//737P//vtnm222ycEHH5wpU6bUNG+hkvzoo4/OiBEjMmPGjHzhC1/IF7/4xRx44IHZeeedaxoKAAAAAIDGMn/+/DQ1NTU75s+f/6Hz5syZky5dujQb+8f7d99993+9/2uvvZYjjzwyG2+8cfbcc88kSefOnbPJJptk7Nix+fWvf50BAwZkyJAhmTFjRs2+rkJ7ko8fPz7HHHNMOnTokKFDh2bttddOU1NTBg0aVLNAAAAAAABlq/7TQyBpmcsvvzxjxoxpNjZs2LAMHz682djSSy+duXPnNhv7x/tlllnmI+/9xz/+Mccdd1y23HLLjBo1avEDPk855ZRm5w0ZMiQ33XRTJk2alEMOOeTf+nr+oVBJvvvuu+f+++/PJZdckvXXXz8DBw7MLrvsUup+MAAAAAAA1N/RRx+dww47rNnYR3XD6667bt566628/vrr6datW5Jk2rRpWX311bPccst96Pwbb7wx5557bkaMGJHDDz+82dz3v//97Lrrrtlwww0Xj82fPz+dOnWqxZeUpOB2KwcffHDGjx+fBx98MIcddlieffbZ7Lvvvtlrr71qFggAAAAAgMbTsWPHLLvsss2OjyrJ11577WyxxRb59re/naampsyYMSNjx47NAQcc8KFz77777nzrW9/KD3/4ww8V5EnyzDPP5Lzzzstrr72W+fPnZ8yYMWlqasrAgQNr9nUVKsmTpKmpKQ899FAmT56cxx9/PO+9915WWWWVmgUCAAAAAGDJNnr06CxcuDA777xzDjrooGy33XYZOnRokmSzzTbLbbfdliQZM2ZM3nvvvYwYMSKbbbbZ4uPMM89MkowaNSprrrlm9tlnn/Tv3z+PPPJIJkyYkK5du9Ysa6HtVg466KBMnTo1ffv2Tf/+/XP66adn6623runSdgAAAAAAlmzdunXL6NGjP3Lu0UcfXfz69ttv/z/v07Vr14waNaqm2T6o0EryTp06pUOHDllhhRWy8sorp1u3bgpyAAAAAACWWIVWkl999dV5991389BDD+W3v/1tvva1r+Wdd97JZz7zmXzve98rKyMAAAAAQG1VCu9EzSdUoZI8SZZeeul89rOfzVJLLZV27drlrrvuysMPP1xGNgAAAAAAKFWhknzixIn5zW9+k8mTJ6d79+753Oc+l0svvTSbbrppSfEAAAAAAKA8hUryW2+9NQMHDswpp5ySvn37lpUJAAAAAABaRaGS/Oc//3lZOQAAAAAAoNXZnR4AAAAAgDar8IM7AQAAAACWdNWK9cO8zycBAAAAAIA2S0kOAAAAAECbpSQHAAAAAKDNUpIDAAAAANBmKckBAAAAAGiz2tc7AAAAAABAq6tU6p2ABmElOQAAAAAAbZaSHAAAAACANqtSrVar9Q4BAAAAANCamh6+vd4RljjL9t+r3hFK0RB7kr/07NR6R2goa667QV547pl6x2goa/ftl98/PbveMRrKluutmD8/N7PeMRrKhn175Llp0+sdo6H07bNOfvHognrHaBi7b9bBn68fsHbffrmzw3r1jtFQ9ljwdB566m/1jtFQtll/hTw49e16x2go226wfN569P56x2goXTcbkJ/+zvqbf/bl/6j4+9oHbNi3Rx5/9tV6x2gom6y7aqY9/3y9YzSMPr17Z94dl9Y7RkPpvOcxeXbai/WO0VDW7bOW//b7gL591ql3BFii2W4FAAAAAIA2qyFWkgMAAAAAtKZqxfph3ueTAAAAAABAm6UkBwAAAACgzVKSAwAAAADQZinJAQAAAABos5TkAAAAAAC0We3rHQAAAAAAoNVVKvVOQIOwkhwAAAAAgDZLSQ4AAAAAQJulJAcAAAAAoM1SkgMAAAAA0GYpyQEAAAAAaLPa1zsAAAAAAECrq1g/zPt8EgAAAAAAaLOU5AAAAAAAtFmFt1uZNWtWLr300rzwwgtZtGhRs7mJEyfWLBgAAAAAAJStcEl+6qmn5vXXX89OO+2UDh06lJEJAAAAAABaReGS/Iknnsjdd9+dlVZaqYw8AAAAAADQagqX5Mstt1w6duxYRhYAAAAAgFZRrVTqHYEGUbgkHzp0aE499dQceeSR6datW7O5Hj161CwYAAAAAACUrXBJfvrppydJ7rnnniRJpVJJtVpNpVLJ1KlTa5sOAAAAAABKVLgkv++++8rIAQAAAAAAra5wSd6zZ8/MmTMnkyZNyssvv5xVV101O+20U5Zffvky8gEAAAAAQGkKl+QvvvhiBg8enAULFqRHjx6ZOXNmzj///Pz4xz/OuuuuW0ZGAAAAAAAoReGSfNSoUdltt91y0kknpV27dlm0aFG+973v5Tvf+U7Gjx9fRkYAAAAAgNqqtKt3AhpE4U/CY489lq997Wtp1+79S9u1a5fjjjsujz32WM3DAQAAAABAmQqX5EsttVSampqajTU1NaVLly41CwUAAAAAAK2hcEm+00475etf/3qef/75zJ8/P9OmTctJJ52UnXbaqYx8AAAAAABQmsIl+de//vUsXLgwn//85/PpT386e+65Zzp27JgTTzyxjHwAAAAAAFCawg/u7Nq1a66++urMmDEjb7zxRnr27JlVVlmljGwAAAAAAFCqFpfkf/jDH7LFFltk8uTJzcZfeOGFvPDCC0mSrbbaqqbhAAAAAADKUE2l3hFoEC0uyY888shMmTIlhx566EfOVyqVTJ06tWbBAAAAAACgbC0uyadMmZIkeeqpp0oLAwAAAAAAranwgzsHDRr0keMDBgz4d7MAAAAAAECratFK8pdeeimXXnppkuS5557Lqaee2my+qakp8+bNq306AAAAAAAoUYtWkq+55ppZccUV/9f5lVZaKd///vdrFgoAAAAAAFpDi/ckP/nkk5MkvXr1ytChQ0sLBAAAAABQtmql8E7UfEK1uCT/wx/+kC222CJbbbVVJk+e/JHnbLXVVjULBgAAAAAAZWtxSX7kkUdmypQpOfTQQz9yvlKpZOrUqTULBgAAAAAAZWtxST5lypQkyVNPPVVaGAAAAAAAaE0tLslnzpz5L8/p0aPHvxUGAAAAAABaU4tL8gEDBqRSqTQbq1arzcZstwIAAAAAwJKkxSX5fffdlyS59dZb84c//CEnnXRS1lxzzbzyyiu54IILsummm5aVEQAAAACgtirt6p2ABtHikrxnz55Jkuuuuy633XZbVlhhhSRJnz598t3vfje77bZbjj766HJSAgAAAABACQr/uGTOnDlZtGhRs7F33303CxYsqFkoAAAAAABoDYVL8p133jlDhw7Ngw8+mBdeeCG//e1vc+yxx2bPPfcsIx8AAAAAAJSmxdut/MOZZ56Zs88+O0cffXTmz5+fTp06ZZ999skpp5xSRj4AAAAAAChN4ZJ8mWWWyXe/+92ce+65eeutt7LiiiumQ4cOZWQDAAAAAIBSFS7Jk+Txxx/P9OnTU61Wm40PGjSoFpkAAAAAAEpVrVTqHYEGUbgkv+iiizJu3Lisssoqad/+fy6vVCpKcgAAAAAAliiFS/Lbbrstl112WXbYYYcy8gAAAAAAQKtpV/SCOXPmZPvtty8jCwAAAAAAtKrCJfmOO+6Y22+/vYwsAAAAAADQqgpvt/L3v/89p5xySi677LJ069at2dzEiRNrFgwAAAAAAMpWuCTv169f+vXrV0YWAAAAAIBWUa0U3mSDT6jCJfmwYcMWv37jjTeywgorpH37wrcBAAAAAIC6K/zjkgULFuTb3/52Nttss/zHf/xHtthii5xxxhmZP39+GfkAAAAAAKA0hUvysWPH5uGHH84PfvCD3HHHHfnBD36Qxx57LD/4wQ9KiAcAAAAAAOUpvE/K7bffngkTJqRXr15Jkj59+qRPnz45+OCDc/LJJ9c8IAAAAAAAlKXwSvK//e1v6d69e7Ox7t27Z968eTULBQAAAAAAraFwSb7eeuvlZz/7WbOxn/3sZ+nXr1/NQgEAAAAAlKpScRQ9PqEKb7dy/PHH5/DDD89tt92WXr165aWXXspzzz2X8ePHl5EPAAAAAABKU7gk33LLLfPNb34zjz32WNq3b5+ddtopBx10UDbffPMy8gEAAAAAQGkKl+SjR4/OzTffnAkTJmTttdfOfffdl29/+9v529/+liOOOKKMjAAAAAAAUIrCe5LfeOONmThxYtZee+0kyc4775wJEybkmmuuqXU2AAAAAAAoVeGSvKmpKd27d2821r1797z77rs1CwUAAAAAAK2hcEm+0UYb5Yorrmg29qMf/Sjrr79+zUIBAAAAAJSpWmnnKHh8UhXek/yUU07J4Ycfnuuvvz6rr756/vrXv2bhwoW58sory8gHAAAAAAClKVySb7TRRvnVr36VBx54IK+++mq6d++eHXfcMcstt1wZ+QAAAAAAoDSFS/IkWWGFFTJo0KAaRwEAAAAAgNb1yd1IBgAAAAAA/gUlOQAAAAAAbdbH2m4FAAAAAGBJVk2l3hFoEFaSAwAAAADQZinJAQAAAABos5TkAAAAAAC0WUpyAAAAAADaLCU5AAAAAABtVvt6BwAAAAAAaG3VivXDvM8nAQAAAACANktJDgAAAABAm6UkBwAAAACgzVKSAwAAAADQZlWq1Wq13iEAAAAAAFrTa396uN4RljirbNS/3hFK0b7eAZLkrycdUu8IDWX17/0k8+64tN4xGkrnPY/xOfmA1b/3k0z7yh71jtFQ+ky807/gPmCVjfpn7tXn1jtGw+hy6On561OP1jtGQ1l9/c3y0FN/q3eMhrLN+ivkzg7r1TtGQ9ljwdN5fvCe9Y7RUHpfdUfeevT+esdoKF03G5C5P/l2vWM0lC6HnJYXnnum3jEaytp9+2XG0P3rHaOh9Br787z+5IP1jtEwum28bS79Zb1TNJZjdkuemza93jEaSt8+6+TNx39b7xgNZaVNtqt3hCVTpVLvBDQI260AAAAAANBmKckBAAAAAGizlOQAAAAAALRZSnIAAAAAANosJTkAAAAAAG1W+3oHAAAAAABobVXrh/n/fBIAAAAAAGizlOQAAAAAALRZSnIAAAAAANosJTkAAAAAAG2WkhwAAAAAgDarfb0DAAAAAAC0tmqlUu8INAgryQEAAAAAaLOU5AAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbZaSHAAAAACANqt9vQMAAAAAALS2asX6Yd7nkwAAAAAAQJulJAcAAAAAoM1SkgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFnt6x0AAAAAAKC1VVOpdwQahJXkAAAAAAC0WR+rJL/++uuz1157pX///pk5c2ZGjBiROXPm1DobAAAAAACUqnBJftVVV2X8+PE59NBD895772WZZZbJq6++mlGjRpWRDwAAAAAASlO4JL/22mszduzYHHTQQWnXrl1WWGGFjB49Og888EAZ+QAAAAAAoDSFS/LZs2dnnXXWSZJUq9Ukycorr5yFCxfWNhkAAAAAAJSsfdEL1l9//Vx33XX50pe+lErl/SfA3nXXXVl33XVrHg4AAAAAoAzVysd6XCOfQIVL8m984xsZPHhwbr311rz77rs58sgj88c//jFXXnllGfkAAAAAAKA0hUvyjTbaKHfccUduu+22bLDBBll99dVz9tlnp0ePHmXkAwAAAACA0hQuyZNktdVWy5FHHlnrLAAAAAAA0KpaXJIPGDBg8R7k/5v77rvv3w4EAAAAAACtpcUl+fDhw5Mkf/rTn3LfffflsMMOy5prrplXXnklEyZMyM4771xaSAAAAAAAKEOLS/J99903STJhwoRceeWV6dOnz+K5z3zmMznqqKPyjW98o/YJAQAAAABqrPovds2g7WhX9IIZM2ZkzTXXbDa22mqr5dVXX61ZKAAAAAAAaA2FS/KNN944559/fubPn58kmTt3bkaOHJktttii5uEAAAAAAKBMLd5u5R/OPvvsHH300fnZz36WFVdcMbNnz84666yTK664oox8AAAAAABQmsIlee/evfOLX/wiU6ZMyauvvprVV189m2++edq1K7woHQAAAAAA6qpwSZ4kCxYsyJprrpk11lgjyfv7lD/zzDMZOHBgTcMBAAAAAECZCpfkP//5zzNy5Mj8/e9/bza+8sorK8kBAAAAgCVCNZV6R6BBFC7JL7vsshx//PFZZpllMnny5Pznf/5nvve97+Wzn/1sGfkAAAAAAKA0hTcSf+211/Kf//mf2XbbbfPSSy9lo402yre//e3ccMMNZeQDAAAAAIDSFC7JV1555SxYsCDdu3fP9OnTkyQ9evTIG2+8UfNwAAAAAABQpsIl+SabbJIzzzwz8+bNy9prr51rr702N998c7p27VpCPAAAAAAAKE/hPclPPfXUnH766ZkzZ05OOumkfPWrX828efMyatSoMvIBAAAAAEBpCpfkkydPzg9/+MN06tQpq666ah566KEsWLAgXbp0KSMfAAAAAEDNVSuFN9ngE6rwJ+Hss89Ou3b/c1n79u0V5AAAAAAALJEKl+Sf+tSnctddd5WRBQAAAAAAWlXh7VbeeuutfOMb38gZZ5yRbt26pVKpLJ677777ahoOAAAAAADKVLgkP+SQQz5y/J/LcgAAAAAAWBIULsl/+MMffmQh3qFDh1x//fXZaaedMmTIkGb7lgMAAAAAQCMqXJIfdNBBuf7663PEEUekV69eefnll/OjH/0on/nMZ9K7d+/89Kc/zbx58zJ8+PAy8gIAAAAA/NuqsTMG7ytckt999925/PLLs+666y4e23rrrXPiiSfmzDPPzI477phDDz1USQ4AAAAAQMMrvCfKiy++mLXXXrvZWK9evTJ9+vQkyRprrJG33367JuEAAAAAAKBMhUvy9ddfP5dffnmzsR/96Efp27dvkuQ3v/lNevbsWZt0AAAAAABQosLbrZx++uk58sgjc8MNN6R79+555ZVXsmjRolx66aWZMmVKjj322Fx88cVlZAUAAAAAgJoqXJJvuOGGufvuu/PAAw/klVdeSc+ePTNgwIB06dIlb731Vn79619n5ZVXLiMrAAAAAADUVOGSPEmWXXbZ7LXXXh8a79q167+bBwAAAACgdNVK4Z2o+YTySQAAAAAAoM1SkgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFlKcgAAAAAA2qz29Q4AAAAAANDaqqnUOwINwkpyAAAAAADaLCU5AAAAAABtlpIcAAAAAIA2S0kOAAAAAECbpSQHAAAAAKDNal/vAAAAAAAAra1asX6Y9/kkAAAAAADQZinJAQAAAABos5TkAAAAAAC0WUpyAAAAAADaLCU5AAAAAABtVvt6BwAAAAAAaG3VVOodgQZhJTkAAAAAAG2WkhwAAAAAgJp64403MnTo0Gy55Zbp379/zjvvvCxcuPAjz500aVL22muvbLrpptl9993zwAMPNJsfN25ctt9++2y66aY59NBD8/zzz9c0q5IcAAAAAICaOv7447P00kvnt7/9bW688cY8+OCDueqqqz503gsvvJDhw4fnuOOOy+9///sMHz48xx9/fGbNmpUkufnmm3P11Vdn/Pjxefjhh7PRRhtlxIgRqVarNcuqJAcAAAAAoGZefPHFPPLIIznppJPSpUuX9OrVK0OHDs0111zzoXNvvvnmbLnllvnc5z6X9u3b5/Of/3y22mqrXHfddUmS66+/Pl/+8pez7rrrplOnTvn617+emTNn5uGHH65ZXiU5AAAAAAD/0vz589PU1NTsmD9//ofOe/bZZ9O1a9esttpqi8f69OmTmTNn5u2332527nPPPZd+/fo1G+vbt2+eeuqpj5zv0KFD1l577cXztdC+Znf6N6z+vZ/UO0LD6bznMfWO0HB8Tj6sz8Q76x2h4ayyUf96R2g4XQ49vd4RGsrq629W7wgNZ5v1V6h3hIazx4Kn6x2h4fS+6o56R2g4XTcbUO8IDafLIafVO0LDWbtvv399UhvTa+zP6x2h4XTbeNt6R2gox+xW7wSNp2+fdeodoeGstMl29Y7AJ0C1Uql3hCXO5ZdfnjFjxjQbGzZsWIYPH95sbM6cOenSpUuzsX+8f/fdd7P88sv/n+d27tw57777bovma6EhSvI3zz263hEaykqnX54545Ra/2yZI8/NzK99qd4xGkqP71+byf+xTb1jNJStfvdQ3p5yT71jNJTlNx+YpktOrneMhrHssd/NK0/9sd4xGkr39TfNg1Pf/tcntiHbbrB8nh+8Z71jNJTeV92ROzusV+8YDWWPBU9n6rSX6x2joWzQp2fmXffdesdoKJ2/cHJeeO6ZesdoKGv37ZcXjxpU7xgNZa0rbsk7v/9lvWM0jOW23C3j7q13isZy5OeS6dOeq3eMhrJOn75pevj2esdoKMv236veEWgjjj766Bx22GHNxjp27Pih85ZeeunMnTu32dg/3i+zzDLNxrt06ZJ58+Y1G5s3b97i8/7VfC3YbgUAAAAAgH+pY8eOWXbZZZsdH1WSr7vuunnrrbfy+uuvLx6bNm1aVl999Sy33HLNzu3Xr1+effbZZmPPPfdc1l133cX3+uf5BQsW5IUXXvjQFi3/DiU5AAAAAAA1s/baa2eLLbbIt7/97TQ1NWXGjBkZO3ZsDjjggA+du/fee+eRRx7JXXfdlYULF+auu+7KI488kn322SdJsv/+++cnP/lJnnrqqfz973/PhRdemG7dumXLLbesWV4lOQAAAAAANTV69OgsXLgwO++8cw466KBst912GTp0aJJks802y2233Zbk/Qd6XnLJJbn88suz1VZbZezYsfnhD3+YddZ5/3kMBxxwQAYPHpxjjz0222yzTf785z/n8ssvT4cOHWqWtSH2JAcAAAAA4JOjW7duGT169EfOPfroo83eb7fddtluu49+IG+lUsnhhx+eww8/vOYZ/0FJDgAAAAC0OdVqpd4RaBC2WwEAAAAAoM1SkgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFkfqyR/8803c9VVV+W8885LU1NTHnjggVrnAgAAAACA0hUuyf/0pz9lt912yy9/+cvceOONmT17do477rj8/Oc/LyMfAAAAAEDNVdPOUfD4pCr8lY0aNSqnnHJKfvazn6V9+/bp1atXLrnkkowfP76MfAAAAAAAUJrCJfkzzzyTffbZJ0lSqVSSJNttt11mzZpV22QAAAAAAFCywiX5SiutlOeff77Z2PPPP59u3brVLBQAAAAAALSGwiX5l7/85Rx99NG5/vrrs3Dhwtx111057rjj8oUvfKGMfAAAAAAAUJr2RS/4yle+kqWWWio//vGPs2jRoowePToHHXRQBg8eXEI8AAAAAAAoT+GS/PXXX8/BBx+cgw8+uIw8AAAAAAClq6ZS7wg0iMLbrey4444ZOnRoHnjggSxatKiMTAAAAAAA0CoKl+S33nprevfunbPOOis77LBDLrroorz00ktlZAMAAAAAgFIVLsn79OmTE088Mb/+9a9z3nnn5eWXX86+++6br3zlK2XkAwAAAACA0hQuyRdf2K5dOnfunKWXXjodO3bMggULapkLAAAAAABKV/jBnS+88EJuueWW3HbbbZk7d2723nvvXH311enbt28Z+QAAAAAAoDSFS/Ldd98922yzTb7+9a9n4MCB6dixYxm5AAAAAABKU02l3hFoEIVL8l/96lfp1atXGVkAAAAAAKBVFd6TvFevXvnxj3+cz3/+8/n0pz+dz33uc7nssstSrVbLyAcAAAAAAKUpvJL8xz/+cSZMmJCjjjoqa6yxRl566aVceeWVadeuXY466qgyMgIAAAAAQCkKl+Q/+9nPMnbs2Gy44YaLxzbffPMMHz5cSQ4AAAAAwBKl8HYrr776atZff/1mY+uvv37eeuutWmUCAAAAAIBWUbgkX2uttXLPPfc0G7vnnnuy1lpr1SwUAAAAAECZqqk4Ch6fVIW3Wxk6dGiOP/74/PKXv0yvXr3y0ksv5b777svo0aPLyAcAAAAAAKUpvJL8c5/7XK688sp07Ngxf/rTn7L88svnmmuuyU477VRGPgAAAAAAKE3hleRJss0222SbbbbJ7Nmzs+KKK9Y6EwAAAAAAtIrCK8mbmppy+umn59Of/nQ+85nPZPPNN893v/vdzJ8/v4x8AAAAAABQmsIl+fnnn59nn302Y8eOzZ133pnvf//7eeihh/L973+/jHwAAAAAAFCawtutPPDAA7ntttuy0korJUl69+6d9dZbLwcccEC+8Y1v1DwgAAAAAECtVVOpdwQaROGV5F26dMlSSy3VbGzppZfOokWLahYKAAAAAABaQ4tL8pkzZ2bmzJkZNGhQvva1r+WZZ57JnDlzMn369JxyyikZPHhwiTEBAAAAAKD2WrzdyoABA1KpVFKtVpMke++9dyqV9/+XhGq1mgceeCBHHXVUOSkBAAAAAKAELS7J77vvvjJzAAAAAABAq2txSd6zZ8//dW7hwoV55pln/s9zAAAAAACg0bS4JP+HX//61zn77LMza9asxVuvJEn79u3zxBNP1DQcAAAAAEAZqtVKvSPQIAqX5BdccEF22WWXLL/88nn66aez55575pJLLskBBxxQRj4AAAAAAChNu6IXzJgxIyeddFL22GOPzJ49O7vssksuvPDCXH/99WXkAwAAAACA0hQuyVdaaaW0a9cuPXr0yLRp05Ikffv2zV//+teahwMAAAAAgDIVLsnXW2+9XHzxxUmSlVdeOZMmTcrDDz+cTp061TwcAAAAAACUqXBJftJJJ+Xee+/Na6+9lhEjRmTo0KEZPHhwhgwZUkY+AAAAAAAoTeEHd/bp0yd33nlnkqRnz5554IEHMmfOnKyzzjqLz7njjjuy55571i4lAAAAAEANVVOpdwQaROGV5B+06qqrNivIk+TMM8/8d28LAAAAAACl+7dL8o9SrVbLuC0AAAAAANRUKSV5peJ/VQAAAAAAoPGVUpIDAAAAAMCSQEkOAAAAAECb1b7eAQAAAAAAWls1tozmfR7cCQAAAABAm1W4JH/sscc+cvw3v/nN4tef/exnP34iAAAAAABoJYVL8sMOO+xDY01NTTnuuOMWvx8zZsy/lwoAAAAAAFpBi/Ykf/HFF7PHHnvkvffeS7VazQYbbPChczbffPOahwMAAAAAgDK1qCRfa621csMNN+Ttt9/OUUcdlXHjxjWb79SpU/r161dKQAAAAAAAKEuLSvIkGT58eO69997suuuu2XrrrcvMBAAAAABQqmoq9Y5Ag2hxSf7GG29k6tSpueeee/LKK6+kWq1+6JwePXrUNBwAAAAAAJSpxSX5gAEDsu+++6ZSqWTAgAHN5qrVaiqVSqZOnVrzgAAAAAAAUJYWl+QXXnhhTj755Oy222654447yswEAAAAAACtosUleZKsttpq+elPf5qePXuWlQcAAAAAAFpNoZI8SSZOnNii80aNGlU4DAAAAAAAtKZ2RS/o1KlTbr/99rzzzjvp1q1bFi5cmDvvvDOvvvpqGfkAAAAAAGquWq04Ch6fVIVXks+YMSMXXnhhdt1118Vj++67b8aPH2/1OAAAAAAAS5TCK8mnTJmSgQMHNhvr379/nnjiiZqFAgAAAACA1lC4JO/Zs2d+8YtfNBu76aab0rt375qFAgAAAACA1lB4u5Wvfe1rOe6443LNNdeke/fumTFjRqZPn54JEyaUkQ8AAAAAAEpTeCX5zjvvnJtuuinbbrttlltuueywww659NJLs/HGG5eRDwAAAAAASlO4JL///vszePDgDB8+PKuuumouv/zyDBkyJNdff30Z+QAAAAAAam5RKo6CxydV4ZL80ksvzfHHH59FixblJz/5ScaMGZNrrrkm48aNKyMfAAAAAACUpvCe5C+99FIOOuig/PnPf87cuXPzmc98Ju3bt8/rr79eRj4AAAAAAChN4ZXkXbp0yRtvvJH7778/W2yxRdq3b5+nnnoqK664Yhn5AAAAAACgNIVXku+///4ZNGhQ3n777YwePTpPPvlkjjjiiBx++OFl5AMAAAAAgNIULsmHDx+erbfeOp06dcqmm26aV155Jeecc0522WWXMvIBAAAAAEBpCpfkSdK/f//Fr7t3757u3bvXLBAAAAAAQNmqqdQ7Ag2i8J7kAAAAAADwSaEkBwAAAACgzVKSAwAAAADQZinJAQAAAABos5TkAAAAAAC0We1rdaOmpqYsu+yytbodAAAAAEBpqtVKvSPQIAqvJN96660/cnzHHXf8d7MAAAAAAECrqlSr1eq/OunFF1/MmWeemWq1mt///vfZcsstm803NTXlrbfeyv33319aUAAAAACAWpnyzBv1jrDE2bzfyvWOUIoWbbey1lprZZdddsns2bMzZcqUD60m79ixYwYMGPCxQ8z71YSPfe0nUeddDsu8+ybWO0ZD6bzzVzL319fWO0ZD6bLjlzLv2vPrHaOhdP7SNzJ92nP1jtFQ1unTN796bH69YzSMXT7dMX996tF6x2goq6+/Wd561A+5/1nXzQb4nnxA180GZOq0l+sdo6Fs0Kdn7uywXr1jNJQ9FjydyU+/Ve8YDWWr9bpm5tOP1ztGQ+mx3iZ55/e/rHeMhrLclrvlheeeqXeMhrF2335584nf1TtGQ1npU/+Rl56dWu8YDWXNdTfwPfmANdfdoN4RYInW4j3JDz744CTJGmuskUGDBpWVBwAAAAAAWk3hB3cOGjQojz/+eKZPn54P7tSiPAcAAAAAYElSuCS/6KKLMm7cuKyyyipp3/5/Lq9UKkpyAAAAAGCJUE2l3hFoEIVL8ltvvTWXXXZZdthhhzLyAAAAAABAq2lX9IJ3330322+/fRlZAAAAAACgVRUuyXfcccfcfvvtZWQBAAAAAIBWVXi7lb///e855ZRTctlll6Vbt27N5iZOnFizYAAAAAAAULbCJXm/fv3Sr1+/MrIAAAAAAECrKlySDxs2rIwcAAAAAACtplqt1DsCDaLwnuRJcv3112evvfZK//79M3PmzIwYMSJz5sypdTYAAAAAAChV4ZL8qquuyvjx43PooYfmvffeyzLLLJNZs2Zl1KhRZeQDAAAAAIDSFC7Jr7322owdOzYHHXRQ2rVrlxVWWCE//OEP88ADD5SRDwAAAAAASlO4JJ89e3bWWWedJEm1Wk2SrLzyylm4cGFtkwEAAAAAQMkKl+Trr79+rrvuuiRJpfL+5vZ33XVX1l133domAwAAAACAkrUvesE3vvGNDB48OLfeemvefffdHHnkkfnjH/+YK6+8sox8AAAAAAA1V02l3hFoEIVL8o022ih33HFHbrvttmywwQZZffXVc/bZZ6dHjx5l5AMAAAAAgNIULsmTZLXVVsuRRx5Z6ywAAAAAANCqCpfkkyZNyrnnnpuXX3558YM7/2Hq1Kk1CwYAAAAAAGUrXJKfc8452WWXXbLDDjukXbvCz/0EAAAAAICGUbgkf+utt3LiiSdmqaWWKiMPAAAAAAC0msIl+U477ZRJkyZlwIABZeQBAAAAAChdtVqpdwQaROGS/Ctf+Uq+/OUvp2/fvll++eWbzU2cOLFmwQAAAAAAoGyFS/Izzzwzm222WbbccktbrgAAAAAAsEQrXJK/+OKLeeSRR9KhQ4cy8gAAAAAAQKtpV/SCDTbYIDNmzCgjCwAAAAAAtKrCK8m33XbbfOUrX8luu+2Wrl27NpsbNmxYrXIBAAAAAEDpCpfkjzzySNZZZ508/fTTzcYrFU+DBQAAAACWDIvqHYCGUbgkv/rqq8vIAQAAAAAAra7wnuRJMm3atJx77rkZNmxYZs+enZ/85Ce1zgUAAAAAAKUrXJL/13/9Vw488MDMnj07//3f/5158+blkksuyRVXXFFGPgAAAAAAKE3hkvyiiy7K97///Vx44YVZaqml0r1791xxxRW57rrrysgHAAAAAAClKVySv/jii9l+++2T/M/DOj/1qU/lb3/7W22TAQAAAABAyQo/uLNHjx6ZMmVKtthii8VjTzzxRLp3717TYAAAAAAAZalWK/WOQIMoXJIfffTROeaYY/KlL30pCxYsyLhx43L11VfnhBNOKCMfAAAAAACUpnBJvscee2TZZZfNNddckx49euShhx7KN7/5zey6665l5AMAAAAAgNIULsmTZIcddsgOO+yQJGlqakrHjh1rGgoAAAAAAFpD4Qd3Tps2Lccee2yS5J577sk222yT7bbbLn/4wx9qHg4AAAAAAMpUeCX5t7/97ay66qqpVqu58MILM2LEiCyzzDL5zne+kxtuuKGMjAAAAAAAUIrCJfnTTz+dyy67LC+//HJmzJiRL3/5y1lmmWVy4YUXlpEPAAAAAKDmqqnUOwINovB2KwsXLky1Ws1//dd/ZaONNsqyyy6b2bNnp1OnTmXkAwAAAACA0hReSf6Zz3wmw4cPz1NPPZUhQ4ZkxowZOfnkk7PjjjuWEA8AAAAAAMpTeCX5yJEjs/HGG+fggw/OV77ylcyZMycbbbRRzjjjjDLyAQAAAABAaQqvJF9mmWUyfPjwxe/XX3/9nH766Vm4cGFNgwEAAAAAQNkKl+QvvfRSLrnkksyaNSuLFi1KkixYsCDTp0/PQw89VPOAAAAAAABQlsIl+Te/+c1Uq9WsuOKKeeONN7LhhhvmlltuyeDBg0uIBwAAAABQe9Vqpd4RaBCF9yR/8sknc8kll2To0KFZbrnlcvrpp+eiiy7Kgw8+WEY+AAAAAAAoTeGSvEuXLllhhRWy5ppr5plnnkmSbL/99nn++edrHg4AAAAAAMpUuCRfc801M2nSpCyzzDJZtGhRZsyYkVmzZnlwJwAAAAAAS5zCe5IfddRRGTFiRO6444584QtfyBe/+MUstdRS2XnnncvIBwAAAAAApSlckg8YMCC/+tWvsvLKK2fo0KFZe+2109TUlEGDBpUQDwAAAAAAylO4JE+SVVZZJY8//nhmzZqVNddcMxtvvHGtcwEAAAAAQOkKl+Qvvvhijj766PzlL39J165dM3v27Gy00UYZM2ZMVl111TIyAgAAAADUVDWVekegQRR+cOfIkSOzzTbb5Pe//31+97vf5eGHH06fPn1yzjnnlJEPAAAAAABKU3gl+RNPPJGxY8emY8eOSZJll102Z555ZnbcccdaZwMAAAAAgFIVXknes2fPvPTSS83G/vrXv6Zr1661ygQAAAAAAK2ixSvJb7nlliTJ5ptvniOPPDJDhgxJz5498+qrr+ZHP/pRPve5z5WVEQAAAAAAStHiknz06NGLX1cqlfzoRz9qNv/LX/4yJ510Uu2SAQAAAABAyVpckt9///0tvukdd9yRPffc82MFAgAAAAAo26JqvRPQKArvSd4SZ555Zhm3BQAAAACAmiqlJK9W/RgGAAAAAIDGV0pJXqlUyrgtAAAAAADUVCklOQAAAAAALAmU5AAAAAAAtFnt6x0AAAAAAKC1VWPLaN7nwZ0AAAAAALRZhUvyxx577CPHf/Ob3yx+/dnPfvbjJwIAAAAAgFZSuCQ/7LDDPjTW1NSU4447bvH7MWPG/HupAAAAAACgFbRoT/IXX3wxe+yxR957771Uq9VssMEGHzpn8803r3k4AAAAAAAoU4tK8rXWWis33HBD3n777Rx11FEZN25cs/lOnTqlX79+pQQEAAAAAICytKgkT5Lhw4fn3nvvza677pqtt966zEwAAAAAAKWqViv1jkCDaHFJ/sYbb2Tq1Km555578sorr6RarX7onB49etQ0HAAAAAAAlKnFJfmAAQOy7777plKpZMCAAc3mqtVqKpVKpk6dWvOAAAAAAABQlhaX5BdeeGFOPvnk7LbbbrnjjjvKzAQAAAAAAK2ixSV5kqy22mr56U9/mp49e5aVBwAAAAAAWk2hkjxJJk6c2KLzRo0aVTgMAAAAAAC0pnZFL+jUqVNuv/32vPPOO+nWrVsWLlyYO++8M6+++moZ+QAAAAAAaq5adRQ9PqkKrySfMWNGLrzwwuy6666Lx/bdd9+MHz/e6nEAAAAAAJYohVeST5kyJQMHDmw21r9//zzxxBM1CwUAAAAAAK2hcEnes2fP/OIXv2g2dtNNN6V37941CwUAAAAAAK2h8HYrX/va13LcccflmmuuSffu3TNjxoxMnz49EyZMKCMfAAAAAACUpvBK8p133jk33XRTtt122yy33HLZYYcdcumll2bjjTcuIx8AAAAAAJSmcEl+//33Z/DgwRk+fHhWXXXVXH755RkyZEiuv/76MvIBAAAAANTcolQcBY9PqsIl+aWXXprjjz8+ixYtyk9+8pOMGTMm11xzTcaNG1dGPgAAAAAAKE2lWq1Wi1zQv3//PPzww/nzn/+cgw8+OJMnT0779u2z2Wab5dFHHy0rJwAAAABAzdz3xLx6R1ji7PypzvWOUIrCD+7s0qVL3njjjdx///3ZYost0r59+zz11FNZccUVP3aIvzzz5Me+9pNojX4b560//rreMRpK1013TNNlp9Y7RkNZ9qujMu+eq+odo6F0HjjYnycfsEa/jfPu+DPrHaNhLD3knDwz7aV6x2go/fqsmZ/+rtDPyz/xvvwflcz9ybfrHaOhdDnktMy77rv1jtFQOn/h5Ex++q16x2goW63XNXd2WK/eMRrKHguezqQ/vVvvGA1lh42WzrxfTah3jIbSeZfD8spTf6x3jIbRff1N8x97Tap3jIbyu9t3yG/+NKfeMRrK9hstk5lPP17vGA2lx3qb1DsCLNEKl+T7779/Bg0alLfffjujR4/Ok08+mSOOOCKHH354GfkAAAAAAKA0hUvy4cOHZ+utt06nTp2y6aab5pVXXsk555yTXXbZpYx8AAAAAABQmsIlefL+vuT/0L1793Tv3r1mgQAAAAAAylatVuodgQbRrt4BAAAAAACgXpTkAAAAAAC0WUpyAAAAAADaLCU5AAAAAABtlpIcAAAAAIA2q329AwAAAAAAtLZqtd4JaBRWkgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbVb7egcAAAAAAGht1VTqHYEGoSQHAAAAAKDVvPvuuxk5cmTuv//+LFy4MDvvvHPOOuusLLPMMh95/t13352xY8dmxowZ6dq1a/bbb78MHTo07dq9v1HK7rvvnpkzZy5+nyQ33nhj+vTp06I8SnIAAAAAAFrNyJEj88orr+Tuu+/Oe++9l+OPPz4XXHBBzjrrrA+d++STT+bkk0/OD37wg+ywww6ZPn16jjzyyCy99NI5/PDD09TUlOnTp+e+++5Lz549P1Yee5IDAAAAANAq5s6dm9tvvz0jRoxI165ds/LKK+fEE0/MTTfdlLlz537o/Jdffjlf/OIXs9NOO6Vdu3bp06dPBg4cmMmTJyd5v0Tv2rXrxy7IEyvJAQAAAACooXnz5mXWrFkfOTd37twsWLAg/fr1WzzWp0+fzJs3Ly+88EI22GCDZufvuuuu2XXXXZvd+9e//nX22muvJMkTTzyRLl265JBDDsmzzz6bnj17Zvjw4dlpp51anFdJDgAAAADAvzR//vzMnz+/2VjHjh3TsWPHZmOPPfZYvvKVr3zkPY477rgkydJLL714rEuXLkmSOXPm/J+/flNTU4477rh07tw5gwcPTpJUKpV86lOfygknnJAePXrkl7/8ZYYPH56f/OQn2XTTTVv0dSnJAQAAAIA2Z1G13gmWPJdffnnGjBnTbGzYsGEZPnx4s7H+/fvn6aef/sh7/PnPf87FF1+cuXPnLn5Q5z+2WVl22WX/11/7+eefz4gRI7Lyyitn4sSJi8894ogjmp23995754477sjdd9/d4pK88J7kxxxzzEeOH3LIIUVvBQAAAADAEuLoo4/OH/7wh2bH0UcfXege66yzTjp06JDnnntu8di0adPSoUOHrL322h95zaRJk3LggQdmu+22y/jx47PCCissnhs/fnwefPDBZufPnz8/nTp1anGmFq0k/8tf/pJbbrklSfK73/3uQz8taGpq+l9/MgAAAAAAwJLvo7ZWKapLly7Zfffdc8EFF+Tiiy9OklxwwQXZc88907lz5w+d/8c//jHHHntsvvWtb+WAAw740Pwrr7ySG264IePGjUv37t1zyy235NFHH83ZZ5/d4kwtKsl79OiRZ599Nm+++Wbee++9PPzww83mO3XqlLPOOqvFvygAAAAAAG3TWWedlfPPPz977bVXFixYkJ133jlnnHHG4vk99tgje+21V7761a/msssuy8KFC3PeeeflvPPOW3zOFltskSuvvDInn3xy2rVrly9/+ct555130rdv31xxxRVZa621WpynRSV5u3btFrf6p59+es4999wW/wIAAAAAAPAPyy67bEaOHJmRI0d+5Pydd965+PVll132f96rY8eOOe2003Laaad97DwtfnDnzJkzkyRDhw5d/PqDevTo8bGDAAAAAABAa2txST5gwIBUKpUkSbX6P49+rVQqqVarqVQqmTp1au0TAgAAAADUWLVaqXcEGkSLS/L77ruvzBwAAAAAANDqWlyS9+zZs8wcAAAAAADQ6lpckm+++eaZMmVK1l9//cXbrnyQ7VYAAAAAAFiStLgkv+KKK5IkP/7xj//XkhwAAAAAAJYkLS7Jt9xyyyRJ//79SwsDAAAAAACtqcUl+T8MGDDgf11J7uGeAAAAAMCSoFqtdwIaReGSfPjw4c3ev/nmm/n5z3+eAw88sGahAAAAAACgNRQuyffdd98PjQ0cODAnnHBCDjvssJqEAgAAAACA1tCuFjfp2bNnXnjhhVrcCgAAAAAAWk3hleSTJ09u9n7BggX55S9/mbXXXrtWmQAAAAAAoFUULskPPfTQZu/btWuXPn365KyzzqpZKAAAAAAAaA2FS/KnnnqqjBwAAAAAAK1mUSr1jkCDKFySJ0lTU1MmTZqUWbNmZY011sj222+fzp071zobAAAAAACUqnBJ/sQTT+SII45I586ds/rqq+fll19Ox44dc+WVV6Z3795lZAQAAAAAgFK0K3rBqFGjcthhh2XSpEm57rrr8tvf/jb77LNPzjnnnDLyAQAAAABAaQqX5M8991yOPPLIxe8rlUqGDh2aJ598sqbBAAAAAACgbIVL8vXWWy9//OMfm41NnTo1vXr1qlUmAAAAAABoFS3ek3zMmDFJku7du+foo4/OAQcckDXWWCOvvvpqbrzxxuyyyy6lhQQAAAAAqKVqtd4JaBQtLskffvjhxa832GCD/OlPf8qf/vSnJEmfPn3y/PPP1z4dAAAAAACUqMUl+dVXX93im15xxRU56qijPlYgAAAAAABoLYX3JG+Jyy67rIzbAgAAAABATZVSkldt6AMAAAAAwBKglJK8UqmUcVsAAAAAAKipFu9JDgAAAADwSVGtWujL+0pZSQ4AAAAAAEsCJTkAAAAAAG2WB3cCAAAAANBmFS7JR44cmaampv/znAMPPPBjBwIAAAAAgNZSuCS//fbb07lz5//znNNOO+1jBwIAAAAAgNbSvugF+++/f84555zst99+WWWVVVKp/M9TYHv06FHTcAAAAAAAZVhkx2j+v8Il+YQJE5Ik119/fZKkUqmkWq2mUqlk6tSptU0HAAAAAAAlKlyS77PPPtlmm22y1VZbNVtFDgAAAAAAS5rCJfmyyy6b888/P8stt1z222+/7LfffllttdXKyAYAAAAAAKUq/ODOM844I7/97W9z0kkn5fHHH8/AgQMzZMiQ3HXXXZk/f34ZGQEAAAAAoBSFS/Ik6dChQ3bZZZdceumlmThxYmbPnp0TTjgh2223Xc4///y88847tc4JAAAAAAA197FK8tdeey0TJkzIoEGDcuihh6ZHjx4ZO3ZsfvzjH2f69Ok55phjap0TAAAAAKBmqlVH0eOTqvCe5EOGDMlDDz2U3r17Z7/99ss+++yTlVZaafH8CSeckC984Qs1DQkAAAAAAGUoXJKvscYaufbaa7PJJpt85HzPnj1z4403/tvBAAAAAACgbIVL8rPPPvv/nF9mmWXSp0+fjx0IAAAAAABay8fakxwAAAAAAD4JlOQAAAAAALRZhbdbAQAAAABY0lVTqXcEGoSV5AAAAAAAtFlKcgAAAAAA2iwlOQAAAAAAbZaSHAAAAACANktJDgAAAABAm9W+3gEAAAAAAFrbomq9E9AorCQHAAAAAKDNUpIDAAAAANBmKckBAAAAAGizlOQAAAAAALRZSnIAAAAAANqs9vUOAAAAAADQ2qrVeiegUVhJDgAAAABAm6UkBwAAAACgzVKSAwAAAADQZlWqVbvvAAAAAABtyw0PLap3hCXOgdt8MtdcN8SDO1/708P1jtBQVtmof1547pl6x2goa/ftl78882S9YzSUNfpt7HvyAWv02zjPT5tW7xgNpXefPr4n/6R3nz6Z+fTj9Y7RUHqst0n+/NzMesdoKBv27eHfwx+wdt9+vicfsHbffv48+YAe622SSX96t94xGsoOGy2dOzusV+8YDWWPBU/7u8kH+Ptac7379Mk7v/9lvWM0lOW23C2/32HbesdoKFtOetDvmw/o3adPvSPAEq0hSnIAAAAAgNZkfw3+4ZO5Ph4AAAAAAFqgxSvJb7nlln95zqBBg/6NKAAAAAAA0LpaXJKPHj06SbJo0aLMmjUrXbt2TY8ePfLqq6/m9ddfz3rrrackBwAAAABgidLikvz+++9Pkpx//vnp2LFjjjvuuLRr9/5uLWPHjs1f/vKXchICAAAAAEBJCu9J/vOf/zzDhg1bXJAnyVFHHZW77767psEAAAAAAKBsLV5J/g+dOnXKtGnTsv766y8ee/LJJ7P88svXNBgAAAAAQFkWVSv1jkCDKFySH3zwwRkyZEgOPPDA9OjRIzNmzMj111+fESNGlJEPAAAAAABKU7gk/+pXv5pu3brltttuyy9+8Yt07949Z555ZvbYY48y8gEAAAAAQGkKl+RJcsABB+SAAw6odRYAAAAAAGhVhR/cmSTXX3999t577/Tv3z8zZ87MiBEjMmfOnFpnAwAAAACAUhUuya+66qqMHz8+hxxySN57770ss8wymTVrVkaNGlVGPgAAAAAAKE3hkvzaa6/N2LFjc9BBB6Vdu3ZZYYUV8sMf/jAPPPBAGfkAAAAAAGquWnUUPT6pCpfks2fPzjrrrJMkqf7/78zKK6+chQsX1jYZAAAAAACUrHBJvv766+e6665LklQqlSTJXXfdlXXXXbe2yQAAAAAAoGTti17wjW98I4MHD86tt96ad999N0ceeWT++Mc/5sorrywjHwAAAAAAlKZwSb7RRhvlzjvvzG233ZYNNtggq6++es4+++z06NGjjHwAAAAAAFCawiX5ueeem9NPPz1HHHFEs/GTTz453/3ud2sWDAAAAAAAytaiknzWrFl58MEHkyQ33HBDNt5442bz77zzTu65557apwMAAAAAKEG1Wu8ENIoWleQrrrhifvKTn+TNN9/M/PnzM3r06GbznTp1yrBhw0oJCAAAAAAAZWlRSd6xY8fceOONSZIhQ4Zk/PjxpYYCAAAAAIDW0K7oBR9VkC9cuDB//vOfaxIIAAAAAABaS+EHd06aNCnf+ta3MmvWrFT/aeOe9u3b54knnqhpOAAAAAAAKFPhkvx73/tedtlllyy//PJ5+umns+eee+aSSy7JAQccUEY+AAAAAAAoTeGSfMaMGTnppJPyl7/8JQ899FB22WWX9O7dO1/72tdy6KGHlpERAAAAAKCmFlX/9Tm0DYX3JF9ppZXSrl279OjRI9OmTUuS9O3bN3/9619rHg4AAAAAAMpUuCRfb731cvHFFydJVl555UyaNCkPP/xwOnXqVPNwAAAAAABQpsIl+UknnZR77703r732WkaMGJGhQ4dm8ODBGTJkSBn5AAAAAACgNIX3JO/Tp0/uvPPOJEnPnj3zwAMPZM6cOVlnnXVqHg4AAAAAAMpUeCX5XnvtlR//+MeZPXt2kmTVVVdVkAMAAAAAsEQqXJJ/6Utfyp133pkddtghxx9/fH73u9+VkQsAAAAAoDTVasVR8PikKlySf/nLX87111+fm2++OT179sw3v/nNDBgwIGPGjCkjHwAAAAAAlKZwSf4Pffr0ybBhw3LCCSckScaPH1+zUAAAAAAA0BoKP7gzSR588MHccsstueeee7L22mtnyJAh2XvvvWudDQAAAAAASlW4JN9hhx0yZ86cfP7zn8/EiROz8cYbl5ELAAAAAABKV7gkHzFiRD7/+c+nS5cuZeQBAAAAAIBWU7gk33///fPkk0/mxhtvzMsvv5xVVlkl++23X7bccssy8gEAAAAA1Fy1Wu8ENIrCD+783e9+ly9/+ct56623st5666WpqSmHHXZY7r333jLyAQAAAABAaQqvJB89enTOP//87L777ovHfvGLX2Ts2LH53Oc+V9NwAAAAAABQpsIryadPn55dd9212diuu+6aF154oVaZAAAAAACgVRQuybt27Zpnnnmm2dhTTz2VVVZZpWahAAAAAACgNRTebuXAAw/MMccck6OPPjprrLFGXnrppYwbNy5f/vKXy8gHAAAAAAClKVySH3nkkfn73/+eyy+/PK+//np69uyZQw45JIcddlgZ+QAAAAAAam5Rtd4JaBSFS/JKpZLhw4dn+PDhZeQBAAAAAIBWU7gkf++993L33XfnhRdeyKJFi5rNDRs2rGbBAAAAAACgbIVL8rPOOit33nln1l9//bRv/z+XVyqVmgYDAAAAAICyFS7JH3jggUycODGf+tSnysgDAAAAAACtpl3RCxYtWpQNN9ywjCwAAAAAANCqCpfke+65Z8aPH19GFgAAAACAVlGtOooen1SFt1v505/+lClTpuTSSy/NSiut1Gzuvvvuq1kwAAAAAAAoW+GS/MADD8yBBx5YRhYAAAAAAGhVhUvyfffdd/HrN99880OryQEAAAAAYElReE/yhQsX5vvf/3622GKLDBgwIDNmzMj++++f1157rYx8AAAAAABQmsIl+Q9/+MM89NBDufjii9OhQ4esvPLKWX311XPuueeWkQ8AAAAAAEpTeLuV22+/Pddee21WW221VCqVLL300hk1alQGDhxYRj4AAAAAgJqrVuudgEZReCX5u+++u3gf8ur//yR17tw57doVvhUAAAAAANRV4WZ70003zZgxY5IklUolSXL11VfnU5/6VG2TAQAAAABAyQpvt3Laaadl8ODBufnmmzNnzpx8/vOfz5w5czJhwoQy8gEAAAAAQGkKl+TdunXLnXfemV//+td5+eWXs/rqq2fHHXfMsssuW0Y+AAAAAAAoTeGSfM8998xtt92W3XffvYw8AAAAAADQagqX5Ekyd+5cK8cBAAAAgCXWomq9E9AoCpfk/fv3z4EHHpjtt98+q666arO5YcOG1SwYAAAAAACUrXBJ/pe//CW9evXK9OnTM3369MXjlUqlpsEAAAAAAKBshUvyq6+++l+ec8UVV+Soo476WIEAAAAAAKC1tCvjppdddlkZtwUAAAAAgJoqpSSvVu16DwAAAABA4yu83UpL2J8cAAAAAGhk1vnyD6WsJAcAAAAAgCWBkhwAAAAAgDZLSQ4AAAAAQJvlwZ0AAAAAALRZhUvykSNHpqmp6f8858ADD/zYgQAAAAAAoLUULslvv/32dO7c+f8857TTTvvYgQAAAAAAyrZokaPo8UnVvugF+++/f84555zst99+WWWVVVKpVBbP9ejRo6bhAAAAAACgTIVL8gkTJiRJrr/++iRJpVJJtVpNpVLJ1KlTa5sOAAAAAABKVLgk32effbLNNttkq622araKHAAAAAAAljSFS/Jll102559/fpZbbrnst99+2W+//bLaaquVkQ0AAAAAAEpV+MGdZ5xxRn7729/mpJNOyuOPP56BAwdmyJAhueuuuzJ//vwyMgIAAAAAQCkKl+RJ0qFDh+yyyy659NJLM3HixMyePTsnnHBCtttuu5x//vl55513ap0TAAAAAKBmqlVH0eOT6mOV5K+99lomTJiQQYMG5dBDD02PHj0yduzY/PjHP8706dNzzDHH1DonAAAAAADUXOE9yYcMGZKHHnoovXv3zn777Zd99tknK6200uL5E044IV/4whdqGhIAAAAAAMpQuCRfY401cu2112aTTTb5yPmePXvmxhtv/LeDAQAAAABA2QqX5Gefffb/Ob/MMsukT58+HzsQAAAAAAC0lkq1+knech0AAAAA4MMuu7veCZY8X9213gnKUXgleRlmjxpa7wgNZcVTx2bez79f7xgNpfP+X8vfLjiu3jEaygonXpznB+9Z7xgNpfdVd+TNx39b7xgNZaVNtsu7k35W7xgNY+kdvpi/PvVovWM0lNXX3yyPP/tqvWM0lE3WXTUzhu5f7xgNpdfYn+fFowbVO0ZDWeuKW/LO739Z7xgNZbktd8u8X02od4yG0nmXw/L8tGn1jtFQevfpkzs7rFfvGA1ljwVP5+0p99Q7RsNYfvOBufHhRfWO0VAO6N8u055/vt4xGkqf3r3ztyn31jtGQ1lh88/VO8ISydJh/qFdvQMAAAAAAEC9KMkBAAAAAGizlOQAAAAAALRZSnIAAAAAANosJTkAAAAAAG1Wi0vyH/zgB4tfz58/PyNHjsy2226bnXbaKZdffnkZ2QAAAAAASrGo6ih6fFK1uCSfOHHi4tcXX3xxHnnkkZx11lk5/vjjc9NNN2Xs2LGlBAQAAAAAgLK0b+mJ1er//Kjg7rvvzhVXXJHevXsnSTbccMMceeSRGTp0aO0TAgAAAABASVq8krxSqSx+/fe//z29evVa/L5v377529/+VttkAAAAAABQshaX5PPnz8/YsWMzadKkfPrTn85vf/vbxXN33XVX1lprrVICAgAAAABAWVq83cqIESPy5JNP5sYbb8zMmTPzt7/9LQMGDMgVV1yRH/7wh/n+979fZk4AAAAAAKi5FpfkRx111OLXb775Zl577bUkyWabbZZrr702G2+8ce3TAQAAAACU4J+fwUhLVf71KUugFpfk/2yllVbKSiutlCTZaqutahoIAAAAAABaS4v3JAcAAAAAgE+aFq8kv+WWW/7lOYMGDfo3ogAAAAAAQOtqcUn+s5/9LI899li6d+/+kfOVSkVJDgAAAADAEqXFJfmECRNyyCGHZL/99svBBx9cZiYAAAAAAGgVLd6TvEuXLvnOd76TSy+9NPPnzy8zEwAAAABAqapVR9Hjk6rQgzvXXXfdXHDBBZk7d25ZeQAAAAAAoNW0eLuVf9hmm23KyAEAAAAAAK2ucEk+efLkjxzv0KFDVlpppay55pr/digAAAAAAGgNhUvyU045JTNnzky7du2y4oorZvbs2Vm0aFHatWuX9957L717987ll1+eXr16lZEXAAAAAABqptCe5Emy9957Z++9984jjzyS3/3ud5k8eXIOOOCADBs2LH/4wx/yH//xHznvvPPKyAoAAAAAADVVeCX5LbfckrvuuitdunRJkiy99NI57bTTsvvuu+eYY47J17/+9Wy33XY1DwoAAAAAUCuLFtU7AY2i8Eryd999N2+//XazsXfeeSdNTU2L31cqlX8/GQAAAAAAlKxwSb7bbrvl2GOPzX//93/nhRdeyH//939nxIgR2WWXXdLU1JSzzjorW265ZRlZAQAAAACgpgpvt3LaaaflvPPOy7HHHpu5c+emc+fOOeCAA/L1r389f/rTn/L222/nW9/6VglRAQAAAACgtgqX5J06dco555yTM888M2+99VZWXnnlxdurbLnlllaRAwAAAACwxChckifJ448/nunTp6darTYbHzRoUC0yAQAAAABAqyhckl900UUZN25cVllllbRv/z+XVyoVJTkAAAAAsET4wPpf2rDCJfltt92Wyy67LDvssEMZeQAAAAAAoNW0K3rBnDlzsv3225eRBQAAAAAAWlXhknzHHXfM7bffXkYWAAAAAABoVYW3W/n73/+eU045JZdddlm6devWbG7ixIk1CwYAAAAAAGUrXJL369cv/fr1KyMLAAAAAAC0qsIl+bBhw8rIAQAAAADQahZV652ARtHikvxb3/pWvvWtb+XUU0/9X88ZNWpUTUIBAAAAAEBraPGDO6vVarN/AgAAAABAUe+++25OPfXU9O/fP1tssUVOPvnkzJkz5389/6yzzsrGG2+czTbbbPFx3XXXLZ6/+eabM3DgwGy66abZb7/98uijjxbK0+KV5GeffXaS5MQTT/zQAzsBAAAAAKAlRo4cmVdeeSV333133nvvvRx//PG54IILctZZZ33k+U888URGjhyZfffd90NzDz/8cEaOHJlx48Zlk002yTXXXJNjjjkmDzzwQLp06dKiPC1eSf4PO+64Y4499tg88MADWbRoUdHLAQAAAABoo+bOnZvbb789I0aMSNeuXbPyyivnxBNPzE033ZS5c+d+6Pz58+fnmWeeycYbb/yR97vhhhuyxx57ZIsttkiHDh0yePDgrLjiirnrrrtanKnwgztvvfXW3HzzzTnrrLNSrVaz77775oADDsiaa65Z9FYAAAAAACwh5s+fn/nz5zcb69ixYzp27NhsbN68eZk1a9ZH3mPu3LlZsGBB+vXrt3isT58+mTdvXl544YVssMEGzc5/6qmnsnDhwowePTp/+MMfstxyy2X//ffPEUcckXbt2uW5557L/vvv3+yavn375qmnnmrx11W4JO/Tp09OPPHEnHDCCfnd736XW2+9Nfvuu2822mijTJw4sejtAAAAAABanUcvFnf55ZdnzJgxzcaGDRuW4cOHNxt77LHH8pWvfOUj73HcccclSZZeeunFY//YFuWj9iV/5513svXWW+fQQw/NRRddlKlTp+bYY49Nu3btcsQRR2TOnDkf2lalc+fOeffdd1v8dRUuyf+hXbt26dy5c5Zeeul07NgxCxYs+Li3AgAAAACgwR199NE57LDDmo19cBV5kvTv3z9PP/30R97jz3/+cy6++OLMnTs3yyyzTJIs3mZl2WWX/dD5n/3sZ/PZz3528ftNNtkk//mf/5m77rorRxxxRLp06ZJ58+Y1u2bevHlZccUVW/x1FS7JX3jhhdxyyy257bbbMnfu3Oy99965+uqr07dv36K3AgAAAABgCfFRW6sUtc4666RDhw557rnn8ulPfzpJMm3atHTo0CFrr732h86/99578/rrr+eLX/zi4rH58+enc+fOSZJ11103zz77bLNrnnvuuWy//fYtzlT4wZ277757HnvssXz961/PpEmTcuqppyrIAQAAAAD4l7p06ZLdd989F1xwQd588828+eabueCCC7LnnnsuLr7/WbVazahRo/Lggw+mWq3m0UcfzcSJE/OFL3whSXLAAQfk9ttvz0MPPZQFCxbkqquuyhtvvJGBAwe2OFPhleS/+tWv0qtXr6KXAQAAAABAzjrrrJx//vnZa6+9smDBguy8884544wzFs/vscce2WuvvfLVr341AwcOzKmnnppvfetbmTVrVrp165bhw4dnn332SZJsu+22OeussxbP9+3bN+PGjUvXrl1bnKfFJfkVV1yRo446Krfeeuv/es6wYcNa/AsDAAAAAND2LLvsshk5cmRGjhz5kfN33nlns/df/OIXm2238kH77LPP4tL842hxST558uQcddRRefjhhz9yvlKpfOwQAAAAAACtqbqoWu8IS6BPZgfc4pJ83LhxSZKrr766tDAAAAAAANCaWlyS33LLLf/ynEGDBv0bUQAAAAAAoHW1uCQfPXr0/zlfqVSU5AAAAAAALFFaXJLff//9Lb7pHXfckT333PNjBQIAAAAAgNbSroybnnnmmWXcFgAAAAAAaqrFK8mLqFY9GRYAAAAAaFyLVJj8f6WsJK9UKmXcFgAAAAAAaqqUkhwAAAAAAJYESnIAAAAAANosJTkAAAAAAG1WKSW5B3cCAAAAALAkKFySP/bYYx85/pvf/Gbx689+9rMfPxEAAAAAQMmqVUfR45OqcEl+2GGHfWisqakpxx133OL3Y8aM+fdSAQAAAABAK2jfkpNefPHF7LHHHnnvvfdSrVazwQYbfOiczTffvObhAAAAAACgTC0qyddaa63ccMMNefvtt3PUUUdl3LhxzeY7deqUfv36lRIQAAAAAADK0qKSPEmGDx+ee++9N7vuumu23nrrMjMBAAAAAECraHFJ/sYbb2Tq1Km555578sorr6T6ETu19+jRo6bhAAAAAACgTC0uyQcMGJB99903lUolAwYMaDZXrVZTqVQyderUmgcEAAAAAKi1RYs+vAiYtqnFJfmFF16Yk08+ObvttlvuuOOOMjMBAAAAAECraHFJniSrrbZafvrTn6Znz55l5QEAAAAAgFZTqCRPkokTJ7bovFGjRhUOAwAAAAAArald0Qs6deqU22+/Pe+88066deuWhQsX5s4778yrr75aRj4AAAAAAChN4ZXkM2bMyIUXXphdd9118di+++6b8ePHWz0OAAAAAMASpfBK8ilTpmTgwIHNxvr3758nnniiZqEAAAAAAMpUrTqKHp9UhUvynj175he/+EWzsZtuuim9e/euWSgAAAAAAGgNhbdb+drXvpbjjjsu11xzTbp3754ZM2Zk+vTpmTBhQhn5AAAAAACgNIVXku+888656aabsu2222a55ZbLDjvskEsvvTQbb7xxGfkAAAAAAKA0hUvy+++/P4MHD87w4cOz6qqr5vLLL8+QIUNy/fXXl5EPAAAAAABKU7gkv/TSS3P88cdn0aJF+clPfpIxY8bkmmuuybhx48rIBwAAAAAApSm8J/lLL72Ugw46KH/+858zd+7cfOYzn0n79u3z+uuvl5EPAAAAAKDmqtV6J6BRFF5J3qVLl7zxxhu5//77s8UWW6R9+/Z56qmnsuKKK5aRDwAAAAAASlN4Jfn++++fQYMG5e23387o0aPz5JNP5ogjjsjhhx9eRj4AAAAAAChN4ZJ8+PDh2XrrrdOpU6dsuummeeWVV3LOOedkl112KSMfAAAAAACUpnBJniT9+/df/Lp79+7p3r17zQIBAAAAAEBrKbwnOQAAAAAAfFJ8rJXkAAAAAABLskXVar0j0CAq1apPAwAAAADQtoy8dmG9IyxxzvjSJ3PNdUN8VX996tF6R2goq6+/WV56dmq9YzSUNdfdILOm/qHeMRrKahtskben3FPvGA1l+c0H5qWv7lfvGA1lzctuynPTptc7RsPo22edvPjc0/WO0VDW6rtepj3/fL1jNJQ+vXvn9ScfrHeMhtJt423zzu9/We8YDWW5LXfLC889U+8YDWXtvv3yylN/rHeMhtJ9/U3z/LRp9Y7RUHr36ePvsB+w/OYDc2eH9eodo2HsseDpPPncX+sdo6Fs3Hd1f5Z8QO8+ffy33wesedlN9Y4ASzR7kgMAAAAA0GYpyQEAAAAAaLOU5AAAAAAAtFkNsSc5AAAAAEBrqi6qdwIahZXkAAAAAAC0WUpyAAAAAADaLCU5AAAAAABtlpIcAAAAAIA2S0kOAAAAAECb1b7eAQAAAAAAWlu1Wq13BBqEleQAAAAAALRZSnIAAAAAANosJTkAAAAAAG1Wi0vyG264odn7H/3oRznggANyyCGH5I477qh5MAAAAAAAKFuLS/JRo0Ytfj1u3LhcddVV2X333fOZz3wm5513Xn72s5+VEhAAAAAAAMrSvqUn/vPTXn/+859nzJgx2WSTTZIk2267bb7xjW/ki1/8Yu0TAgAAAADU2KJF9U5Ao2jxSvJKpbL49TvvvJONNtpo8fvNNtssr732Wm2TAQAAAABAyVpcki9YsCC33nprpk2bli222CKPPvro4rmHHnooq622WikBAQAAAACgLC3ebmW//fbLxIkT88wzz2ThwoV5++23c9VVV+W6667Ld77znZx66qll5gQAAAAAgJprcUl+9tlnJ0nmz5+fp556Kk1NTUmSlVde+f+xd+fhMZ3//8dfk0ZiqY+tliTUWqWW2iKo2mpt8LEk9EOppY1Su1bt1FJarX1XtGhRakvsW7UoUrrYlSIIUYkikTSRmd8ffuZrJG0zbSZnOM/HdfW6kvtMxqtzJWfOvM99v29NnDhR9evXd01CAAAAAAAAAABcJM1F8vu8vLzsG3ZKojgOAAAAAAAAAHhkOV0kBwAAAAAAAIBHnc1mMzoC3ESai+Th4eF/+xh/f/9/FQYAAAAAAAAAgIyU5iL50KFDdfHixT+9w2KxWHTixIl0CwYAAAAAAAAAgKuluUi+fPlyvfLKK+rXr5+aNGniykwAAAAAAAAAAGQIj7Q+MHfu3Bo/frwmTpwoq9XqykwAAAAAAAAAAGSINBfJJaly5crq3bu3bty44ao8AAAAAAAAAABkmDS3W7mvRYsWLogBAAAAAAAAABnHmvrWizAhp2aSS1L37t1THX/11Vf/dRgAAAAAAAAAADJSmmaSX7p0SWvXrpUk7dmzRzNmzHA4Hhsbq1OnTqV7OAAAAAAAAAAAXClNRXJfX1/98ssviomJUXJysg4cOOBw3NvbWyNHjnRJQAAAAAAAAAAAXCVNRXIPDw9NnTpVkjRs2DCNHTvWpaEAAAAAAAAAAMgITm/cOXbsWF29elWhoaG6fPmy8uXLp6ZNm+rpp592RT4AAAAAAAAAAFzG6SL5kSNH1KlTJxUrVkwFCxbUkSNHNG/ePC1YsECVK1d2RUYAAAAAAAAASFc2q83oCHATThfJJ06cqD59+qhjx472sc8++0wfffSRli1blq7hAAAAAAAAAABwJQ9nf+DUqVNq166dw1i7du10+vTpdAsFAAAAAAAAAEBGcLpIniVLFl25csVh7MqVK8qRI0e6hQIAAAAAAAAAICM4XSR/+eWX1atXL3377bc6d+6cdu/erd69e+vll192RT4AAAAAAAAAAFzG6Z7kffr0UUxMjHr06KGkpCR5e3urdevW6tmzpyvyAQAAAAAAAADgMk4Xyb29vTVhwgSNHj1aN2/e1FNPPSWLxeKKbAAAAAAAAADgEjab0QngLtJcJF+7du3fPqZFixb/IgoAAAAAAAAAABkrzUXyadOm/eVxi8VCkRwAAAAAAAAA8EhJc5F8586daX7SsLAwNW3a9B8FAgAAAAAAAAAgo3i44klHjBjhiqcFAAAAAAAAACBduaRIbqPrPQAAAAAAAADgEZDmdivOsFgsrnhaAAAAAAAAAEgXVisTfXGPS2aSAwAAAAAAAADwKKBIDgAAAAAAAAAwLYrkAAAAAAAAAADTYuNOAAAAAAAAAIBpOV0k/+mnn1Id/+abb+xfv/DCC/88EQAAAAAAAAAAGcTpInnnzp1TjMXGxqpPnz7272fMmPHvUgEAAAAAAACAC9lsNv5z8r/HlWdaHnThwgUFBgYqOTlZNptNpUuXTvGYSpUqpXs4AAAAAAAAAABcKU1F8sKFC2vlypW6deuWQkJCNH/+fIfj3t7eKlmypEsCAgAAAAAAAADgKmkqkktSr169tH37djVq1EhVq1Z1ZSYAAAAAAAAAADJEmovk0dHROnHihLZt26YrV66k2oPG19c3XcMBAAAAAAAAAOBKaS6S16tXTy1btpTFYlG9evUcjtlsNlksFp04cSLdAwIAAAAAAAAA4CppLpJ//PHHGjhwoBo3bqywsDBXZgIAAAAAAAAAl7JZjU4Ad5HmIrkk5c+fX1988YX8/PxclQcAAAAAAAAAgAzjVJFckhYvXpymx40fP97pMAAAAAAAAAAAZCQPZ3/A29tboaGhun37tp566indvXtXGzZs0LVr11yRDwAAAAAAAAAAl3F6JvnFixf18ccfq1GjRvaxli1basGCBcweBwAAAAAAAAA8UpyeSX748GE1aNDAYSwgIEBHjhxJt1AAAAAAAAAAAGQEp2eS+/n5adOmTQoMDLSPrV69WsWKFUvXYAAAAAAAAADgKlabzegIcBNOF8n79eunPn366PPPP5ePj48uXryoc+fOadGiRa7IBwAAAAAAAACAyzjdbuWll17S6tWrVb16dWXPnl21a9fW7NmzVbZsWVfkAwAAAAAAAADAZZwuku/cuVOdOnVSr169lC9fPs2dO1ddu3bVl19+6Yp8AAAAAAAAAAC4jNNF8tmzZ6tv376yWq1aunSpZsyYoc8//1zz5893RT4AAAAAAAAAAFzG6Z7kERERatOmjY4fP674+HjVqFFDnp6eun79uivyAQAAAAAAAADgMk4XybNkyaLo6Gjt3LlTlStXlqenp06ePKlcuXK5Ih8AAAAAAAAApDubzWZ0BLgJp4vkrVu3VosWLXTr1i1NmzZNR48e1euvv64uXbq4Ih8AAAAAAAAAAC7jdJG8V69eqlq1qry9vVWhQgVduXJFo0ePVsOGDV2RDwAAAAAAAAAAl3G6SC5JAQEB9q99fHzk4+OTboEAAAAAAAAAAMgoHkYHAAAAAAAAAADAKBTJAQAAAAAAAACm9Y/arQAAAAAAAADAo8xqtRkdAW6CmeQAAAAAAAAAANOiSA4AAAAAAAAAMC2K5AAAAAAAAAAA06JIDgAAAAAAAAAwLYrkAAAAAAAAAADT8jQ6AAAAAAAAAABkNJvN6ARwF8wkBwAAAAAAAACYlsVm454JAAAAAAAAAHPpOz3W6AiPnCm9njQ6gku4RbuVE2cvGx3BrZQu7qfvTtwyOoZbqV76P/potdXoGG7l7VYeWn2Q1+RBrap6cD55SOnifpqynnuh9/VtbtGFM6eMjuFWCpd4Vglhs42O4VYyN+2u2ZuNTuFeujeW5m83OoV7eaO+FHNkj9Ex3ErucjVVs9luo2O4lT2htXX7e04oD8pepbFWHeAa9kFBAR46euaq0THcRtkSBbQh07NGx3ArgUmndOvQFqNjuJX/VG6kY2euGB3DrZQp4WN0BOCRRrsVAAAAAAAAAIBpUSQHAAAAAAAAAJiWW7RbAQAAAAAAAICMZLPSnhT3MJMcAAAAAAAAAGBaFMkBAAAAAAAAAKZFkRwAAAAAAAAAYFoUyQEAAAAAAAAApkWRHAAAAAAAAABgWhTJAQAAAAAAAACm5flPf/DmzZu6ePGinnvuOd29e1deXl7pmQsAAAAAAAAAXMZqsxkdAW7C6ZnkcXFxGjBggAICAvTqq6/q/PnzatCggX799VdX5AMAAAAAAAAAwGWcLpJ/+OGHunPnjjZt2qRMmTKpUKFCqlu3rsaNG+eKfAAAAAAAAAAAuIzT7VZ27dql0NBQ5ciRQxaLRZkyZdKgQYNUq1YtV+QDAAAAAAAAAMBlnJ5JbrVa7f3Hbf+/b8+DYwAAAAAAAAAAPCqcLpJXq1ZNo0ePVnx8vCwWiyRpypQpqlq1arqHAwAAAAAAAADAlZxutzJ48GB1795d/v7+Sk5OVsWKFVWkSBHNmTPHFfkAAAAAAAAAIN3ZrDajI8BNOF0kz5Mnj1asWKEjR47o8uXLKlCggMqXL68nnnjCFfkAAAAAAAAAAHAZp4vk4eHh9q+feuop3b17V4cPH1amTJmUO3duPf300+kaEAAAAAAAAAAAV3G6SD5o0CBFRkbKw8NDuXLl0o0bN2S1WuXh4aHk5GQVK1ZMc+fOVaFChVyRFwAAAAAAAACAdOP0xp3NmzdX8+bNdfDgQe3Zs0fh4eEKCgpSz549dejQIdWsWVPjxo1zRVYAAAAAAAAAANKV00XytWvXatSoUcqWLZskKWvWrBoyZIhWrFihbNmyacCAATp8+HC6BwUAAAAAAAAAIL053W7lzp07unXrlrJkyWIfu337tmJjY+3fWyyW9EkHAAAAAAAAAC5gs9qMjgA34fRM8saNG+utt97Svn37dP78ee3bt0+9e/dWw4YNFRsbq5EjR6pKlSquyAoAAAAAAAAAQLpyeib5kCFDNG7cOL311luKj49X5syZFRQUpAEDBujYsWO6deuWRo0a5YKoAAAAAAAAAACkL6eL5N7e3ho9erRGjBih33//XXny5LG3V6lSpQqzyAEAAAAAAAAAjwyni+SStH//fkVFRclmu9e3JykpSadOndKwYcPSNRwAAAAAAAAAAK7kdJF87NixWr58ubJlyyZJSk5OVlxcnF588cV0DwcAAAAAAAAAgCs5XSTftGmTli5dqvj4eK1fv17vv/++PvjgA925c8cV+QAAAAAAAAAg3VltRieAu3C6SB4fH68KFSrot99+07Fjx2SxWNSzZ0+9/PLLrsgHAAAAAAAAAIDLeDj7AwUKFFB0dLTy5s2rq1evKikpSZkzZ1ZsbKwr8gEAAAAAAAAA4DJOzySvXbu2OnXqpM8++0z+/v4aMmSIvL29VaRIERfEAwAAAAAAAADAdZyeSd6/f3/997//VaZMmTRixAj9/vvvOnPmjMaOHeuKfAAAAAAAAAAAuIzTM8kzZcqk119/XZKUPXt2zZ8/P8VjQkJCNG/evH+fDgAAAAAAAAAAF3K6SJ4W33//vSueFgAAAAAAAADShc1qMzoC3ITT7VYAAAAAAAAAAHhcUCQHAAAAAAAAAJgWRXIAAAAAAAAAgGlRJAcAAAAAAAAAmBZFcgAAAAAAAACAaXm64kltNnaGBQAAAAAAAOC+qGHivn88k/zmzZs6evSorFarEhMTHY598MEH/zoYAAAAAAAAAACu5nSRPC4uTgMGDFBAQIBeffVVnT9/Xg0aNNCvv/5qf0zDhg3TNSQAAAAAAAAAAK7gdJH8ww8/1J07d7Rp0yZlypRJhQoVUt26dTVu3DhX5AMAAAAAAAAAwGWc7km+a9cuhYaGKkeOHLJYLMqUKZMGDRqkWrVquSIfAAAAAAAAAAAu4/RMcqvVKi8vL0n/19z+wTEAAAAAAAAAAB4VTs8kr1atmkaPHq0RI0bIYrFIkqZMmaKqVaumezgAAAAAAAAAcAWr1WZ0BLgJp2eSDx48WGfPnpW/v79u376tihUrKjw8XO+++64r8gEAAAAAAAAA4DJOzyTPkyePVqxYoSNHjujy5csqUKCAypcvryeeeMIV+QAAAAAAAAAAcBmnZ5JL0rFjx1S+fHm98MIL2r59uz799FPdvXs3vbMBAAAAAAAAAOBSTs8knz17tj755BMdOnRIY8eO1dGjR+Xh4aGrV69q6NChrsgIAAAAAAAAAIBLOD2TPCwsTJ9//rkSExO1ZcsWTZo0SZ999pk2btzoinwAAAAAAAAAALiM0zPJr127plKlSum7775T9uzZVapUKUlSfHx8uocDAAAAAAAAAFew2WxGR4CbcHomef78+RUeHq61a9eqevXqku7NLi9UqFC6hwMAAAAAAAAAwJWcnkneq1cvvf7668qcObOWLVum7777ToMHD9b06dNdkQ8AAAAAAAAAAJdxukjeqFEj1alTR5Lk7e2tfPnyaceOHcqXL196ZwMAAAAAAAAAwKWcLpKHh4enOn7hwgX5+/v/60AAAAAAAAAAAGQUp4vkHTp0SDHm4eEhHx8f7dixI11CAQAAAAAAAACQEZwukp88edLh+5iYGM2cOVN+fn7pFgoAAAAAAAAAXMlmtRkdAW7C6SL5w3Lnzq133nlHjRo1UpcuXdIjEwAAAAAAAADgMXXnzh2NGTNGO3fu1N27d/XSSy9p5MiRypYtW4rHjhgxQqGhoQ5jCQkJqlGjhhYsWCBJatKkiSIjI+Xh4WF/zKpVq1S8ePE05fH4+4f8vZs3b+qPP/5Ij6cCAAAAAAAAADzGxowZoytXrmjLli3aunWrrly5oo8++ijVx44ePVo//PCD/b/p06frP//5jwYNGiRJio2N1blz57Rx40aHx6W1QC79g5nkgwcPdvg+KSlJhw4dUo0aNZx9KgAAAAAAAACAicTHxys0NFSLFy9Wzpw5JUlvv/22OnbsqIEDBypLlix/+rMxMTF6++23NXToUD3zzDOSpKNHjypnzpz/qh34v2634u3trQ4dOqht27b/9qkAAAAAAAAAAI+4hIQERUVFpXosPj5eSUlJKlmypH2sePHiSkhI0Pnz51W6dOk/fd6PPvpIZcuWVfPmze1jR44cUZYsWfTqq6/ql19+kZ+fn3r16qW6deumOa/TRfLx48c7+yMAAAAAAAAAgEdcYmKiEhMTHca8vLzk5eXlMPbTTz+pY8eOqT5Hnz59JElZs2a1j92fPR4XF/en//bFixe1fv16rVy50mHcYrGoXLly6t+/v3x9fbV582b16tVLS5cuVYUKFdL0//WPZpJ/9tlnWrFihS5fvqy8efMqKChI3bp1k8Vi+SdPBwAAAAAAAAAZyma1GR3hkTN37lzNmDHDYaxnz57q1auXw1hAQIBOnTqV6nMcP35cU6dOVXx8vH2jzvj4eEnSk08++af/9ldffaWKFSummGn++uuvO3zfvHlzhYWFacuWLa4rkn/22WdatGiRQkJCVLBgQUVEROiTTz6Rh4eHQkJCnH06AAAAAAAAAMAjoFu3burcubPD2MOzyP9O0aJFlSlTJp05c0bPP/+8JOns2bPKlCmTihQp8qc/t3XrVnXp0iXF+IIFC/Tcc8+pevXq9rHExER5e3unOZPTRfLly5dr1qxZeu655+xjlSpVUq9evSiSAwAAAAAAAMBjKrXWKs7KkiWLmjRpoo8++khTp06VdK/XeNOmTZU5c+ZUf+bGjRs6e/as/P39Uxy7cuWKVq5cqfnz58vHx0dr167VDz/8oPfeey/NmZwukl+7dk2lSpVyGCtVqpR+//13Z58KAAAAAAAAAGAyI0eO1AcffKBmzZopKSlJL730koYPH24/HhgYqGbNmunNN9+UJF26dEmSlD9//hTPNXDgQHl4eKhdu3a6ffu2SpQooXnz5qlw4cJpzuN0kbxw4cLatm2bGjVqZB/btm2bU/8oAAAAAAAAAMCcnnzySY0ZM0ZjxoxJ9fiGDRscvi9Xrtyf9jj38vLSkCFDNGTIkH+cx+kieY8ePdS3b19t3rxZhQoV0oULF7Rz505NmzbtH4cAAAAAAAAAAMAIThfJ69evrwULFmj16tU6fvy4/Pz89Pnnn6t8+fKuyAcAAAAAAAAA6c5qsxkdAW7iH/Uk37hxo65du6a7d+/q3Llz+uijjyRJixcvTveAAAAAAAAAAAC4itNF8nfffVc3b97Uiy++qEyZMrkiEwAAAAAAAAAAGcLpIvmPP/6ob775RtmzZ3dFHgAAAAAAAAAAMoyHsz/g4+MjDw+nfwwAAAAAAAAAALeT5pnkkZGRkqTmzZtr8ODB6t69u3LkyOHwGF9f3/RNBwAAAAAAAACAC6W5SF6vXj1ZLBbZ/v+ur1u3bpXFYpEk2Ww2WSwWnThxwjUpAQAAAAAAACAd2aw2oyPATaS5SL5jxw5X5gAAAAAAAAAAIMOluUju5+fnyhwAAAAAAAAAAGQ4duAEAAAAAAAAAJgWRXIAAAAAAAAAgGlRJAcAAAAAAAAAmFaae5I/KDExUbt379bly5fVtm1bXbhwQaVKlUrvbAAAAAAAAADgEjabzegIcBNOF8kjIiLUpUsXJSUl6datW6pdu7Zat26tGTNmqG7duq7ICAAAAAAAAACASzjdbmXcuHFq1aqVvv76a3l6eqpo0aIaO3aspk2b5op8AAAAAAAAAAC4jMXm5LqCgIAAffvtt/Ly8lLVqlV18OBBWa1WVa1aVd9//72rcgIAAAAAAABAuuk4/IrRER45i8f4GB3BJZxut5I9e3Zdv35dvr6+9rHffvtNOXLk+Mchrp784R//7OOoQKmKOvvrr0bHcCvFixXTubNnjI7hVooWL6ELZ04ZHcOtFC7xLL8nDylavATnkwcUL1aM95yHFChVUb+cvWB0DLfyTPHCOnP2nNEx3EqJ4kU5vz6kaPESivjlhNEx3MrTz5TWN8fijI7hVmqVyabva1c3OoZbqbL7O65NHlK8WDH9evas0THcRrHixXXr0BajY7iV/1RupA2ZnjU6hlsJTDrFtclDihYvYXQE4JHmdLuVZs2aqWfPntq7d6+sVqt+/vlnvf322woMDHRFPgAAAAAAAAAAXMbpmeQ9evRQQkKCevbsqfj4eHXo0EFBQUHq2bOnK/IBAAAAAAAAQLqzWp3qQo3HmNNF8kyZMundd9/Vu+++q5iYGOXKlUsWi8UV2QAAAAAAAAAAcCmni+QzZsxIddzLy0u5cuVSjRo15Ofn96+DAQAAAAAAAADgak4XyU+fPq2tW7eqXLlyKlSokCIjI/Xjjz+qXLlySk5O1rhx4zR79mxVr84GNQAAAAAAAAAA9+Z0kdzT01MjRoxQu3bt7GNfffWVDhw4oA8//FAbN27UpEmTtHLlynQNCgAAAAAAAABAevNw9gf27duntm3bOoy1aNFCu3fvliQ1adJEv/76a/qkAwAAAAAAAADAhZyeSZ41a1YdPXpUzz//vH3s+PHj8vLykiRFR0crS5Ys6ZcQAAAAAAAAANKZzWozOgLchNNF8k6dOikkJESvvPKK/Pz8dPnyZa1cuVJdu3ZVZGSk3nzzTQUGBroiKwAAAAAAAAAA6crpInnHjh2VJ08effXVV9q6dat8fX01atQoNWzYUCdPnlSrVq3UoUMHV2QFAAAAAAAAACBdOV0kl6TAwMBUZ4uXKlVKpUqV+tehAAAAAAAAAADICE4XyW/cuKElS5YoKipKVqtVkpSUlKTTp09r/fr16R4QAAAAAAAAAABXcbpIPnjwYJ0/f165c+dWbGysfH19tWfPHrVv394V+QAAAAAAAAAAcBmni+Th4eHauHGjoqKiNG/ePM2YMUPr1q1TWFiYK/IBAAAAAAAAQLqz2WxGR4Cb8HD2Bzw9PZU/f34VKVJEp06dknSvR/nx48fTPRwAAAAAAAAAAK7kdJHcz89PR48e1X/+8x/FxcUpJiZGd+7cUUJCgivyAQAAAAAAAADgMk63W2nXrp06dOigDRs2qGnTpnrttdfk6ekpf39/V+QDAAAAAAAAAMBlnC6SBwUFqWTJknrqqaf0zjvvaNGiRYqLi1OXLl1ckQ8AAAAAAAAAAJdxukguSeXLl7d/HRISkuJ4pUqVdPjw4X+eCgAAAAAAAACADPCPiuR/h51hAQAAAAAAALgzm9VqdAS4Cac37kwLi8XiiqcFAAAAAAAAACBduaRIDgAAAAAAAADAo4AiOQAAAAAAAADAtCiSAwAAAAAAAABMiyI5AAAAAAAAAMC0PF3xpDabzRVPCwAAAAAAAADpwmqlhol7/lGRPDExUTExMbJarQ7jvr6+kqQdO3b8+2QAAAAAAAAAALiY00XyTZs2aeTIkbp9+7Z9zGazyWKx6MSJE5Kk3Llzp19CAAAAAAAAAABcxOki+fTp09WuXTu1bNlSnp4u6dYCAAAAAAAAAECGcLrKfeXKFfXs2ZMCOQAAAAAAAADgkefh7A+UKVNGZ86ccUUWAAAAAAAAAAAylNPTwStVqqROnTqpcePGeuqppxyO9ezZM92CAQAAAAAAAICr2Gw2oyPATThdJP/hhx/0zDPP6OzZszp79qx93GKxpGswAAAAAAAAAABczeki+ZIlS1yRAwAAAAAAAACADPePdt/cvn27VqxYocuXLytv3rwKCgpSs2bN0jsbAAAAAAAAAAAu5fTGnaGhoRo0aJBKliypDh066LnnntOoUaO0cuVKV+QDAAAAAAAAAMBlnJ5JPn/+fM2YMUPVqlWzj9WuXVujR49WcHBwuoYDAAAAAAAAAMCVnC6SR0ZGKiAgwGGsatWqunr1arqFAgAAAAAAAABXslltRkeAm3C63UqBAgUUHh7uMBYeHi5fX990CwUAAAAAAAAAQEZweib5a6+9prfeektt27ZVoUKFFBERoRUrVmjw4MGuyAcAAAAAAAAAgMs4XSQPDg7WE088odWrV2v79u3y8/PT2LFj1bhxY1fkAwAAAAAAAADAZZwukktSq1at1KpVq/TOAgAAAAAAAABAhkpzkXzUqFEaNWrUX7ZVGT9+fLqEAgAAAAAAAAAgI6S5SG6zsdsrAAAAAAAAgMeDzUq9E/ekuUj+3nvvSZJeeeUVPf/88ymOf/PNN+mXCgAAAAAAAACADODh7A907tw5xVhsbKz69OmTLoEAAAAAAAAAAMgoaZpJfuHCBQUGBio5OVk2m02lS5dO8ZhKlSqlezgAAAAAAAAAAFwpTUXywoULa+XKlbp165ZCQkI0f/58h+Pe3t4qWbKkSwICAAAAAAAAAOAqae5Jfn/2eFhYmAoVKuSyQAAAAAAAAAAAZJQ0F8nve/LJJzVt2jRFRUXJarVKkpKSknT69GmtX78+3QMCAAAAAAAAQHqz2qxGR4CbcLpIPnjwYJ0/f165c+dWXFycfHx8tGfPHrVv394V+QAAAAAAAAAAcBmni+Th4eHauHGjoqKiNG/ePM2YMUPr1q1TWFiYK/IBAAAAAAAAAOAyHs7+gKenp/Lnz68iRYro1KlTkqTAwEAdP3483cMBAAAAAAAAAOBKThfJ/fz8dPToUf3nP/9RXFycYmJidOfOHSUkJLgiHwAAAAAAAAAALuN0u5V27dqpQ4cO2rBhg5o2barXXntNnp6e8vf3d0U+AAAAAAAAAABcxukieVBQkEqWLKmnnnpK77zzjhYtWqS4uDh16dLFFfkAAAAAAAAAIN3ZrDajI8BNOF0kX7hwoVq0aCEvLy9JUkhISLqHAgAAAAAAAAAgIzjdk3zz5s2qXbu2evXqpW+++UY2G3dcAAAAAAAAAACPJqdnkn/55Zc6e/asVq9erWHDhsnDw0MtW7ZU69atVbBgQVdkBAAAAAAAAADAJZyeSS5JxYsX1zvvvKOvv/5aw4cP17p169SwYcP0zgYAAAAAAAAAgEs5PZP8vv3792vdunXasmWLihUrpjfffDM9cwEAAAAAAAAA4HJOF8knT56s0NBQxcbGqlmzZvriiy9UqlQpV2QDAAAAAAAAAJewWdlrEfc4XSQ/dOiQ+vTpo8aNG8vb29sVmQAAAAAAAAAAyBBOF8mXLl0qq9Wqo0eP6tKlS8qXL58qVaokD49/1N4cAAAAAAAAAADDOF0kv379urp166aTJ08qZ86cunHjhooUKaKFCxeqQIECrsgIAAAAAAAAAIBLOD39e8KECSpSpIgOHjyovXv36sCBAypdurTGjx/vinwAAAAAAAAAALiM0zPJ9+/fr82bNytbtmySpOzZs2vUqFF66aWX0j0cAAAAAAAAAACu5HSR3Gq1ymKxOIxZLBZlypQp3UIBAAAAAAAAgCvZbDajI8BNON1uJSAgQKNGjdKdO3ckSXFxcRo1apSqVq2a7uEAAAAAAAAAAHAlp2eSv/POO+rcubOqVq2qnDlz6vfff1eJEiU0d+5cV+QDAAAAAAAAAMBlnC6S+/r6asOGDQoPD1dMTIz8/PxUrlw5PfHEE67IBwAAAAAAAACAyzhdJJfu9SUvWrSoChcuLEmKioqSdK+ADgAAAAAAAADAo8LpIvmmTZs0YsQIxcbG2sdsNpssFotOnDiRruEAAAAAAAAAAHAlp4vk06dPV/v27dWyZUt5ev6jiegAAAAAAAAAYCir1Wp0BLgJp6vcV65cUc+ePSmQAwAAAAAAAAAeeR7O/kCZMmV05swZV2QBAAAAAAAAACBDOT0dvFKlSurUqZMaN26sp556yuFYz5490y0YAAAAAAAAAACu5nSR/IcfftAzzzyjs2fP6uzZs/Zxi8WSrsEAAAAAAAAAAHA1p4vkS5YscUUOAAAAAAAAAAAy3D/affPs2bNatmyZrl69qjFjxmjDhg169dVX0zsbAAAAAAAAALiEzWozOgLchNMbd+7du1fBwcG6ceOG9u3bp4SEBM2cOVPz5s1zRT4AAAAAAAAAAFzG6SL5pEmTNHnyZH388cd64okn5OPjo3nz5mnFihWuyAcAAAAAAAAAgMs4XSS/cOGCatWqJen/NussV66cbt68mb7JAAAAAAAAAABwMaeL5L6+vjp8+LDD2JEjR+Tj45NuoQAAAAAAAAAAyAgWm83mVIf6jRs3atSoUfrf//6nxYsXq0ePHlqyZIn69++vFi1auCgmAAAAAAAAAKSfpm8cNzrCIyds/nNGR3AJT2d/4NChQxoxYoTWr18vX19f7d+/X0OHDlWjRo3+cYjrR7/7xz/7OHqqbHVdPn3E6Bhuxa9kOX5PHvJU2eq6fXCD0THcSvaqgdqQ6VmjY7iVwKRTOnf2jNEx3EbR4iV04cwpo2O4lcIlntWZs+eMjuFWShQvqpifvzU6hlvJXf5FxR4INTqGW3kyoJkifjlhdAy38vQzpRV56mejY7gV32fL69ezZ42O4VaKFS+um4e3Gx3DreSoVF8Rb7YyOobbeHrOah07c8XoGG6lTAkfrukfUrR4CT77PSQwic85/4TNZjU6AtyE00Xy0NBQDR48WE2bNnVFHgAAAAAAAAAAMozTRfLWrVtrzJgxatmypfLmzWvfvFO6168cAAAAAAAAAIBHhdNF8kWLFkmSVqxYIUmyWCyy2WyyWCw6cYIlpwAAAAAAAACAR4fTRfIdO3a4IgcAAAAAAAAAABnO6SK5n5+fK3IAAAAAAAAAAJDhnC6SAwAAAAAAAMCjzma1GR0BbsLD6AAAAAAAAAAAABiFIjkAAAAAAAAAwLQokgMAAAAAAAAATIsiOQAAAAAAAADAtCiSAwAAAAAAAABMy9PoAAAAAAAAAACQ0WxWm9ER4CaYSQ4AAAAAAAAAMC2K5AAAAAAAAAAA03K6SL5p06ZUx1esWPGvwwAAAAAAAAAAkJHS1JM8Pj5eN27ckCQNGTJEFSpUkM32fz17bt++rQkTJqht27auSQkAAAAAAAAAgAukqUgeGxurwMBAJSQkyGazqV69evZjNptNFotF9evXd1lIAAAAAAAAAABcIU1F8rx582r79u2Kj49Xs2bNFBYW5nDc29tbTz31lEsCAgAAAAAAAEB6s9qsRkeAm0hTkVySAgMDtX//fjVo0EB+fn6uzAQAAAAAAAAAQIZIc5E8MTFR27dv19atW9WmTRuHnuT3+fv7p2s4AAAAAAAAAABcKc1F8rZt26pv375KTk7Wq6++muK4xWLRiRMn0jUcAAAAAAAAAACulOYi+bvvvqt3331XFStW1A8//ODKTAAAAAAAAAAAZAgPZ39g165drsgBAAAAAAAAAECGS/NM8vt69eoli8Xyt49bvHjxPwoEAAAAAAAAAK5ms6bccxHm5HSRvGLFivriiy/UunVrFS1aVFevXtWKFStUvXp1FStWzBUZAQAAAAAAAABwCaeL5AcOHNCsWbNUtWpV+1iDBg00evRoTZo0KV3DAQAAAAAAAADgSk73JD99+rQqV67sMFayZEmdP38+vTIBAAAAAAAAAJAhnC6SFy9eXIsWLXIYmz17tsqWLZtuoQAAAAAAAAAAyAhOt1sZPHiwunfvrqVLl6pAgQKKjIyUl5eXFi5c6Ip8AAAAAAAAAAC4jNNF8sqVK2vLli3atWuXoqOjVahQIdWpU0eZM2d2RT4AAAAAAAAASHc2q9XoCHATTrdbkaTk5GS1atVKr732mmJiYvT111+ncywAAAAAAAAAAFzP6ZnkK1eu1Lhx4/Tjjz9q4sSJ2rhxoywWi3799Vf16NHDFRkBAAAAAAAAAHAJp2eSL126VDNnzlRycrJWr16t6dOna9myZfryyy9dkQ8AAAAAAAAAAJdxeib5lStX9MILL+jw4cPy9PRUpUqVJEm3bt1K93AAAAAAAAAAALiS0zPJc+TIoQsXLmjLli2qWrWqJGn//v3KmzdvuocDAAAAAAAAAMCVnJ5J3rlzZzVr1kyStGTJEh06dEjdunXTyJEj0z0cAAAAAAAAALiCzWozOgLchNNF8nbt2unFF1+Up6enfHx8FBMTo88//1xly5a1P+bQoUOqXLlyugYFAAAAAAAAACC9OV0kl6RChQrZv86dO7dy587tcPyNN97Q4cOH/10yAAAAAAAAAABczOme5Glhs7FUAQAAAAAAAADg/lxSJLdYLK54WgAAAAAAAAAA0pVLiuQAAAAAAAAAADwK/lFPcgAAAAAAAAB4lNlsVqMjwE0wkxwAAAAAAAAAYFoUyQEAAAAAAAAApuWSInmRIkVc8bQAAAAAAAAAAKSrNPckX7t27d8+pkWLFpKk1atX/9M8AAAAAAAAAABkmDQXyadNm/aXxy0Wi71IDgAAAAAAAADAoyDNRfKdO3e6MgcAAAAAAAAAZBir1WZ0BLiJNBfJH3Tx4kVFRUXJZrv3i5SUlKTTp0+rU6dO6ZkNAAAAAAAAAACXcrpIPnfuXE2ePFkWi0WSZLPZZLFYVLp0aYrkAAAAAAAAAIBHitNF8i+++ELTpk2Tl5eXdu7cqf79+2vMmDHy8fFxRT4AAAAAAAAAAFzGw9kfuHXrlho2bKhSpUrp6NGjypkzp4YOHaqNGze6Ih8AAAAAAAAAAC7jdJE8X758io2NVf78+XXp0iXZbDblzp1bN2/edEU+AAAAAAAAAABcxul2K/7+/urdu7emTJmi5557TpMmTZK3t7fy58/vinwAAAAAAAAAkO5sVqvREeAmnJ5JPmjQIBUuXFh3797V0KFDtWPHDn355ZcaOnSoK/IBAAAAAAAAAOAyTs8kP3v2rEaOHClJyp07t70X+TfffJO+yQAAAAAAAAAAcDGnZ5J37tw5xVhsbKz69OmTLoEAAAAAAAAAAMgoaZpJfuHCBQUGBio5OVk2m02lS5dO8ZhKlSqlezgAAAAAAAAAAFwpTUXywoULa+XKlbp165ZCQkI0f/582Ww2WSwWSZK3t7dKlizp0qAAAAAAAAAAAKS3NPckvz97PCwsTIUKFZIkRUdHK0eOHPL0dLq1OQAAAAAAAAAYxma1GR0BbsLpnuQFChTQyrlD8QAAWyNJREFU+++/r4oVK6pmzZqqXLmyhg8frsTERFfkAwAAAAAAAADAZZwuks+aNUsHDhzQlClTFBYWpilTpuinn37SlClTXBAPAAAAAAAAAADXcbpPSmhoqBYtWmRvuVK8eHEVL15c7du318CBA9M9IAAAAAAAAAAAruL0TPKbN2/Kx8fHYczHx0cJCQnpFgoAAAAAAAAAgIzgdJH82Wef1fLlyx3Gli9frpIlS6ZbKAAAAAAAAAAAMoLT7Vb69u2rLl26aP369SpUqJAiIiJ05swZLViwwBX5AAAAAAAAACDd2WxWoyPATTg9k3zz5s1at26datasqWzZsqlBgwYKCwtLMbscAAAAAAAAAAB3l6aZ5FFRUfruu+8kSStXrlTZsmX19NNP6+mnn5Yk7dy5U9u2bXNdSgAAAAAAAAAAXCBNRfJcuXJp6dKliomJUWJioqZNm+Zw3NvbWz179nRJQAAAAAAAAAAAXCVNRXIvLy+tWrVKktS1a1f6jwMAAAAAAAAAHgtO9ySnQA4AAAAAAAAAeFykaSY5AAAAAAAAADxObFab0RHgJpyeSQ4AAAAAAAAAwOOCIjkAAAAAAAAAwLQokgMAAAAAAAAATIsiOQAAAAAAAADAtCiSAwAAAAAAAABMy9PoAAAAAAAAAACQ0WxWq9ER4CaYSQ4AAAAAAAAAMC2K5AAAAAAAAACADBcfH6+2bdtq9erVf/m4n376ScHBwapYsaLq1aunlStXOhxfs2aNGjRooAoVKqhVq1b64YcfnMpBkRwAAAAAAAAAkKF++eUXtW/fXj/++ONfPu7mzZsKCQlRixYtFB4ernHjxmn8+PH6+eefJUkHDhzQmDFjNGHCBIWHh6t58+bq3r274uPj05yFIjkAAAAAAAAAIMN89913eu2119SyZUv5+vr+5WO3bt2qnDlzqn379vL09FT16tXVrFkzff7555KklStXKjAwUJUrV1amTJnUqVMn5cqVSxs3bkxzHjbuBAAAAAAAAAD8rcTERCUmJjqMeXl5ycvLy2EsISFBUVFRqT5H3rx5VapUKe3atUve3t5atGjRX/6bv/zyi0qWLOkwVqJECa1atUqSdObMGbVu3TrF8ZMnT6bp/0lykyL5U2WrGx3B7fiVLGd0BLfD70lK2asGGh3B7QQmnTI6gtspWryE0RHcSuESzxodwe2UKF7U6AhuJ3f5F42O4HaeDGhmdAS38/QzpY2O4HZ8ny1vdAS3U6x4caMjuJ0cleobHcHtPD3nr/uwmk2ZEj5GR3A7XNOnxGc/pIc9obWNjvDImT59umbMmOEw1rNnT/Xq1cth7KefflLHjh1TfY6ZM2eqfv20Xw/ExcUpS5YsDmOZM2fWnTt30nQ8LdyiSA4AAAAAAAAAcG/dunVT586dHcYenkUuSQEBATp1Kn1uZmXJkkW3b992GEtISFC2bNnsxxMSElIcz5UrV5r/DYrkAAAAAAAAAIC/lVprFVcrWbKk9u7d6zB25swZPfPMM5KkZ555Rr/88kuK47Vq1Urzv8HGnQAAAAAAAAAAt9SgQQNdv35dn376qZKSkrR//36Fhoba+5AHBQUpNDRU+/fvV1JSkj799FNFR0erQYMGaf43KJIDAAAAAAAAANxGYGCg5syZI0nKlSuXFi5cqM2bNysgIEDDhg3TsGHDVK1aNUlS9erVNXLkSI0aNUpVq1bVhg0bNH/+fOXMmTPN/57FZrPZXPE/AgAAAAAAAACAu2MmOQAAAAAAAADAtCiSAwAAAAAAAABMiyI5AAAAAAAAAMC0KJIDAAAAAAAAAEyLIjkAAAAAAAAAwLQokgMAAACPuNjYWKMjAAAAAI8s0xfJjx8/rq1btyoxMVHR0dFGx3ErZ8+eVVRUlNEx3EpsbKwSExONjmGo8PDwVP/78ccfFRERYXQ8Q3Tv3j3V8VdffTWDk7iPo0ePSpJu3bqliRMnasGCBbp7967BqYzD7wjwz8XExOjTTz/VuHHjFBsbq127dhkdyVBVq1ZNdbxOnToZG8SNcI79P2vXrv3b/wD8vZs3b+ro0aOyWq2m//wnSYmJidq2bZs+/fRTxcfH6+TJk0ZHMsymTZtSHV+xYkUGJwGQ3jyNDmCU6OhovfXWWzp69KgyZcqkVatWKSgoSAsXLlTFihWNjmeIw4cPa/To0Vq7dq2WL1+uUaNGydPTU1OmTFH9+vWNjmeIs2fPatKkSZo5c6a2bdumfv36KVu2bJo1a5YqV65sdDxDDBo0SJGRkfLw8FCuXLl048YNWa1WeXh4KDk5WcWKFdPcuXNVqFAho6O61KVLl+wfNPfs2aMZM2Y4HI+NjdWpU6cMSGa82bNn65NPPtGhQ4c0duxYHT16VB4eHrp69aqGDh1qdLwMw+/IX4uKitLs2bN1/vx5Wa1Wh2OLFy82KJXxvvzySy1ZskTXrl3TmjVrNGHCBI0fP17ZsmUzOpohjh07ps6dO6tYsWI6deqUOnbsqD59+mjkyJFq3bq10fEyzIULFzRixAjZbDbFxsaqY8eODsdjY2P1n//8x6B0xuAcm7pp06ZJkqxWq6KiopQzZ075+vrq2rVrun79up599lm1aNHC2JAZbMqUKerbt6+ke4W+Dz74QBs3blTmzJn1yiuvqFu3bsYGNMDKlSsVHBxs/37hwoUOr0nTpk0NTGesuLg4jRgxQhs2bFDmzJm1evVqde7cWYsWLVKxYsWMjmeIiIgIdenSRUlJSbp165Zq166t1q1ba8aMGapbt67R8TJEfHy8bty4IUkaMmSIKlSoIJvNZj9++/ZtTZgwQW3btjUqIoB0YNoi+fvvv6+SJUtq0aJFqlWrlooXL66QkBB9+OGHWrZsmdHxDPHxxx+rTp06stlsmjt3riZMmKCcOXPq448/Nm2R/P3331e+fPlks9k0adIk9e7dW9myZdOECRO0cuVKo+MZonnz5oqMjNSIESOULVs23blzR+PHj5evr686duyoqVOnaty4cZozZ47RUV3K19dXv/zyi2JiYpScnKwDBw44HPf29tbIkSMNSmessLAwff7550pMTNSWLVu0YsUK5c2bV82bNzdVkZzfkb82ePBgXb9+XXXr1lWmTJmMjuMWPv30Uy1btkxdu3bVhx9+qGzZsunatWsaP368xo4da3Q8Q4wfP16DBg1Sq1at5O/vr0KFCmnmzJkaP368qYrkhQsXVsOGDXXjxg0dPnw4xWxyLy8v1atXz6B0xuAcm7qdO3dKkj744AN5eXmpT58+8vC4t3h41qxZunTpkpHxDLF48WJ7kXzq1Kk6ePCgRo4cqT/++EOzZs1ScnKyevToYWzIDDZ+/Hh7kXz+/PlasmSJXnvtNf3xxx/2VTuvvPKKwSmN8eGHH+rOnTvatGmT2rRpo0KFCqlu3boaN26cFixYYHQ8Q4wbN06tWrVS9+7dVbVqVRUtWlRjx47VtGnTTFMkj42NVWBgoBISEmSz2Rzec202mywWi2lrJsBjxWZSNWrUsN25c8dms9ls/v7+NpvNZktMTLRVqVLFyFiGqlatms1qtdrOnDljK1u2rO2PP/6w2Ww2W4UKFQxOZpwXXnjBlpiYaLt48aLtueees92+fdtmtVptFStWNDqaYerUqWP/27nvzp07ttq1a9tsNpstISHB/jdlFkOHDjU6glu5fx7dt2+f7YUXXrCPm/nvht+RlKpUqWKLjo42OoZbadiwoe3MmTM2m+3/rk2ioqJsNWrUMDKWofz9/W137961f31fpUqVjIpkuDVr1hgdwe1wjk3J39/flpiY6DCWlJRkyr+dBz/LvPTSS7azZ8/avz99+rT9GtZMHnxNGjVqZPvpp5/s3x8+fNjWoEEDI2K5hRdffNH2+++/22y2/3vfiY+PN93nmwdVrVrVXhu4/zokJyfbKleubGSsDHf9+nXbxYsXbRUqVLBdunTJ4b/ffvvN6HgA0oFpZ5JnypRJCQkJypIli32ZTFxcnGmXM0vSE088obi4OH3zzTeqUKGCvLy8dPnyZT355JNGRzPM3bt3ZbPZtHfvXpUpU0ZPPvmkYmJi5O3tbXQ0w9y5c0e3bt1SlixZ7GO3b9922DDMYrEYEc0wY8eO1dWrVxUaGqrLly8rX758atq0qZ5++mmjoxkif/78Cg8P19q1a1W9enVJ92aXP+4teP7K2LFjlZiYqJiYmBStRXx9fQ1KZazs2bPLy8vL6Bhu5caNGypatKgk2a9N8uTJY+p+/rlz59avv/6qZ555xj7266+/6qmnnjIwlbFatGihn3/+WefOnXNY6n3/mJlERkZKknr06GH/+mFmPcd6e3vr7NmzKlWqlH3s6NGjpmvLIzlel/7xxx8O1yMlSpTQzZs3jYhlqAdfk9u3b6tMmTL27ytWrKjffvvNiFhuwWq12q9P7p9jHxwzo+zZs+v69esO59PffvtNOXLkMDBVxgsMDNT+/fvVoEED+fn5GR0HgAuYtkher149vfPOOxo2bJgsFouio6M1duxY1a5d2+hohqlfv75effVVXb58WcOGDdOZM2f01ltvmbonXY0aNdSrVy+dPHlSXbt21cWLFzVw4EBTb47VuHFjvfXWW+rfv798fX0VGRmpadOmqWHDhoqNjdXYsWNVpUoVo2NmqCNHjqhTp04qVqyYChYsqCNHjmjevHlasGCBKXvX9+rVS6+//royZ86sZcuW6bvvvtPgwYM1ffp0o6MZZvPmzRo+fLjDzSTb/1+aeeLECQOTGadHjx4aPHiw3njjjRQFT7MWtUqVKqUVK1bof//7n72AsXHjRocCsdm0a9dO3bp105tvvqm7d+9q48aNmj17tql7fk6aNEnz589X3rx55en5f5fyFovFdEXyevXq2f9WHrxhYLFYTH+Obd++vbp27arg4GD5+vrq4sWL+vLLL9W7d2+jo2W4xMREzZo1S2XKlNHzzz+vb7/91t4qYePGjSpcuLDBCTNeUlKS1q1bp7Jly6py5cr64Ycf7Nfv+/fvV/78+Q1OaJxq1app9OjRGjFihP38MmXKlD/dNNkMmjVrpp49e2rAgAGyWq36+eefNXHiRAUGBhodLUMlJiZq+/bt2rp1q9q0aZPiRrUk+fv7G5AMQHqx2FL7yzaBuLg4DR48WFu3bpV072K6du3amjhxorJnz25wOmMkJydr7dq1ypIli15++WWdP39eu3btUseOHfXEE08YHc8QcXFxWrhwoby9vRUSEqKTJ09q1apV6t+/v7JmzWp0PEPc71UYGhqq+Ph4Zc6cWUFBQRowYICOHTumhQsXatSoUcqXL5/RUTNMx44dVb9+fYeN1D777DNt3rzZlHscfP/99ypdurQ8PT3l7e2t2NhY3blzx1S/Ew97+eWX1bBhQ7Vs2dKhqCXJtDNRHpzdKFHUku5tUtmpUycVL15cR48eVfXq1fXjjz/qk08+0fPPP290PMN8/vnn+uKLL3T58mUVKFBAbdq0UadOnex9ls2mdu3aGj16tKkndtx3+fLlv32MWc+xkrRq1SqtX79eUVFR8vHxUXBwsOmKWpI0b948HT16VEePHlVkZKT8/f21ZMkSzZs3T9OnT9fkyZNN10t45MiROnr0qE6fPq27d+8qICBAn376qVasWKEJEyZo8ODBatOmjdExDREdHa3u3bvr+PHjSk5OVubMmVWkSBHNmTPHtDcPkpKSNGnSJC1fvlzx8fHy9vZWUFCQ3n33XVPNsP/ggw+0ZMkSJScnp1ogN/M1LPC4MG2R/L6YmBhdunRJ+fPnN+2bHvBP3L17V7///rvy5MljuvYqDwsICNDevXsdip9JSUmqVq2aDh06ZGAyYwQEBOjrr792aMljdhUrVlR4eHiKArmZ/VVxy8xFraioKK1fv16RkZEqUKCAmjVrZtqZ9ZJ0/fp1U7dWSY2/v78OHjxo+vde4J+IiYnRb7/9pmeffVbh4eHKkiWLypYta3QswyQmJurkyZOKjY1VjRo1tH37dkky3U2Dh9lsNh05csR+c7Z8+fKmnTT2sJiYGOXKlcvU70EVK1bUDz/8YHQMAC5g2k/rkZGR6t+/v4YPH67y5cvrgw8+0I8//qhp06Ypb968RsczxO7duzV27Fhdvnw5xZ1Rs94RPXLkiD7++GNdvnw5RR/hHTt2GJTKePRCdZQlSxZduXLFocfllStXTNen775ChQrpyJEjpl6W+rAyZcrozJkzKWZPm5mfn5/i4uK0e/duey//unXrmrJf7oPy58+vN954w+gYbqNOnTqqVauWgoODVbt2bdPOHn9QnTp1FBoaqubNmxsdxXCVKlXS4cOHVapUqT8t2Jj1GlaSvvzySy1dulRRUVFas2aNJkyYoPHjx5t6D6bcuXMrd+7ckmiLIEleXl4qX768/XuzF8clKTw83P71U089pbt37+rw4cPKlCmTcufObco9h2bMmJHquJeXl3LlyqUaNWqYaoLDrl27jI4AwEVMO5O8W7duypMnj4YMGWLfjHHy5Mm6efOmpk2bZnQ8Q7z00ktq2LBhqh9CzVrsatq0qZ555hnVrFkzxWvSsmVLg1IZ6696oZr1xsGHH36offv2acCAASpYsKAiIiI0efJk1axZU2+//bbR8TJc165dtX//fhUsWFD58uVzKFwsXrzYwGTGmTRpkr788ks1btw4xazYnj17GpTKWBcuXFCnTp2UlJRk39/AarXqs88+M10P7gf7Kv8Zs55fz549qzVr1mj9+vWy2Wxq2bKlgoKCTFmkuK93797avn27ihQpkuJ8YrZz7Pfff68qVarowIEDf/o3ZNZr2E8//VTLli1T165d9eGHH2rHjh0KCQnRM888o7FjxxodD3BbL730kiIjI+Xh4aFcuXLpxo0bslqt8vDwUHJysooVK6a5c+eaakP63r17a+vWrSpXrpwKFSqkyMhI/fjjjypXrpySk5P166+/avbs2apevbrRUTNEhw4d0jST3mzvycDjwLRF8qpVq2rv3r3KlCmTfeyPP/5QrVq1dODAAQOTGady5co6ePAgS8keULFiRR08eNDh98Ts6tSpo/fee49eqA/4448/NHLkSG3YsEFJSUny9vZW69atNXDgQGXOnNnoeBnuz2abSOYtCHfo0CHVcYvFYtoL6DfffFNFixbVO++8Iw8PD1mtVk2cOFGnT5/WggULjI6XodasWSPpXk/yHTt2qHPnznr66ad15coVLVq0SC+99JLeffddg1May2q1as+ePVq3bp2+/vprlSlTxrR/O5xjkRaNGjXSrFmzVLx4cVWtWlUHDx7UtWvX1LJlS+3du9foeBlq7dq1f/sYs62GfHC29J8x60z7qVOnKjIyUiNGjFC2bNl0584djR8/Xr6+vurYsaOmTp2qiIgIzZkzx+ioGaZ///6qUqWK2rVrZx/76quvdODAAX344YfauHGjFi1apJUrVxqYMuNMmjRJX3zxhVq3bq2iRYvq6tWrWrFihapXr65ixYrZH8d7MvDoMW2RvEaNGlqzZo1DH/Jr164pODhYu3fvNjCZcd5++229/PLL9t3eIYWEhKhnz54OyxDNjl6ofy4xMVE3b97UU089xevz/0VHRytHjhz04kYK1atX1+7dux02fEpISFDNmjX1/fffG5jMOM2bN9fkyZNVvHhx+9iFCxcUEhKiLVu2GJjMPRw8eFChoaH2WdRm3BgZqfur1RhmXYVRtWpV7d+/Xx4eHvL391d4eLiSk5NVo0YN000IeuWVV/TTTz/Jx8cn1eNmXA3ZsGFDXbx4MdXNByVzb0BYt25dbdy40WFvnfj4eDVp0kRff/21/vjjD7344os6ePCggSkzVrVq1bR3716HyXQPnk9sNpuqVKlimr2Y2rZtqwEDBjisVDp27JhGjx6tFStWGJgMwL9l2qpF48aN1bt3b/Xt21c+Pj66cuWKpk2bpkaNGhkdzTAdO3ZUu3btVKJEiRQ9Yc06W6tv377q2LGjAgICUrwm48ePNyiVseiF+n+YmZS6pKQkTZw4UStXrlRCQoK8vLzUvHlzDR8+3KEgajbbt2/XihUrdPnyZeXNm1dBQUFq1qyZ0bEM88QTTyg2NtbeG1aSYmNjTb3h68WLF1O0EcmfP7+uXbtmUCLjnT9/XmvXrtX69esVHx+v5s2ba8mSJSpRooTR0Qz15ZdfasmSJbp27Rq9piX16tXL4fuYmBh99dVXCg4ONiiR8UqVKqUVK1bof//7n/0GwsaNG03XzkqSFi1apFdffVWtWrVS+/btjY7jFpYvX65XXnlF/fr1U5MmTYyO41bu3LmjW7duOVyP3L59W7GxsfbvzTYZJmvWrDp69Kief/55+9jx48ft1/XR0dGmun47ffq0Kleu7DBWsmRJnT9/3phAANKNaYvk77zzjt577z1169ZNiYmJ8vLyUosWLdS3b1+joxlmxIgRqlixoqpUqULLlf9v3LhxypMnj2k/dKbmjz/+0KBBgzRnzhzT90L9u/0LLBaLKYvks2bN0oEDBzRlyhSHHu1TpkzRwIEDjY5niNDQUL333ntq27at6tWrp4iICI0aNUoJCQmmLeLUrVtXAwYM0PDhw1WwYEFdvHhRY8eOVd26dY2OZpiyZcvqgw8+0MCBA+Xl5aX4+HiNHTs2xQcxM2nSpImqVaumAQMGqEGDBqa+0Xbfw72ms2XLpqioKI0fP960vaZT2yemQYMG6t+/vzp37mxAIuO9++676tSpk9atW6c7d+7ojTfe0I8//qhPPvnE6GgZLkuWLJowYYI6d+6s4OBgziO6t4Hp+PHj9c4776hRo0ZsivyAxo0b66233lL//v3te6ZMmzZNDRs2VGxsrMaOHasqVaoYHTNDderUSSEhIXrllVfk5+eny5cva+XKleratasiIyP15ptvKjAw0OiYGaZ48eJatGiRXn/9dfvY7NmzVbZsWQNTAUgPpm23cl9SUpJu3rypPHnymO6O8MPov51ShQoVtHfvXorkD6AX6j8TFhampk2bGh0jQ9SvX1+LFi1y2NAoIiJC7du317fffmtgMuM0b95cQ4YMUbVq1exj+/fv1+jRo7Vx40YDkxnn999/V69evRQeHm5//61Vq5YmTpyYYuWOWfz666/q1q2brly5Yt8srGjRopo3b96ftgl43F28eNFUm6OlBb2m0yY5OVkBAQGmbd8k3WsluX79el2+fFkFChRQs2bN5Ovra3Qsw+zfv1+lS5dWjhw5jI7iNtauXasXX3xRefLkMTqK2/jjjz80btw4hYaGKj4+XpkzZ1ZQUJAGDBigY8eOaeHChRo1apTy5ctndNQMtWHDBn311Ve6cuWKfH191bZtWzVs2FAnT57U/v371aFDB9NMtDt06JC6d++urFmzqkCBAoqMjJSXl5cWLlxo6o3FgceB6Yrk9wtVf9UmwYwzPyWpXbt2Gjt2rMNmE2b33//+V/PnzzfdRRDSX6VKlXT48GGjY2QIf39/fffddw59yJOSklSjRo00bRT1OKpSpYpDMVi6txFhlSpVTPN78WcuXryo6Oho+fn5KW/evEbHMdzdu3d1+PBhXbt2TQUKFFClSpVMP8Pvs88+S9GqqFu3bqad3ECv6ZQefm9JSkrS5s2bdfz4ca1atcqgVMYaO3ashg0blmJ84MCB+vDDDw1IBDxa7t69q99//53JdEjVjRs3tGvXLkVHR6tQoUKqU6eOMmfObHQsAP+S6dqtzJkzR02bNv3TNglmbY8g3dtErWPHjmrcuLFy5szpcMysM4RbtmypLl26qHXr1sqZM6fDBZLZfk9GjRqlUaNGafDgwX/6GLP2aU8LM92PfPbZZ7V8+XK9+uqr9rHly5erZMmSBqYyVoECBRQeHu6wwU94eLgpZ/QdOnRIlStXTlHUOn/+vL2Xo7+/vwHJ3ENSUpKefvppFSxYUNK9mwinT59WgwYNDE5mjM8++0yLFi1SSEiIvX3TJ598Ig8PD4WEhBgdzxD0mk6pQ4cODt97eHioePHiGjlypEGJjBEVFaXvvvtOkrRy5coUS/9v376tbdu2GRHNLfzZjfpMmTIpd+7cppwB2r17d82ePTvF+KuvvqqlS5cakMg97N+/X1FRUfbr96SkJJ06dSrVG09mcOPGDS1ZskRRUVGyWq2S7r0mp0+f1vr16w1OZ4zk5GS1atVKiYmJWrVqlb7++ms1btzY6FgA/iXTFcnDwsIkSR9++KEqVqxomiVBaXHw4EEVLVpUp06dchg3853z+z22lyxZ4jBuxpsp9y8SbTabqX8n/ikzvWZ9+/ZVly5dtH79ehUqVEgRERE6c+aMFixYYHQ0w7z22mt666231LZtW/trsmLFir+86fS4euONN3T48OEURa37LBaLTpw4kcGp3MNXX32lMWPG6I8//nAYz5Mnj2mL5MuXL9esWbP03HPP2ccqVaqkXr16mbZITq/plE6ePGl0BLeQK1cuLV26VDExMUpMTEwxKcjb29u0E18kadCgQYqMjJSHh4e9pZXVapWHh4eSk5NVrFgxzZ0797Fv8XTp0iX7quo9e/akaKUYGxub4vOgmYwdO1bLly+3t9tMTk5WXFycXnzxRYOTGWfw4ME6f/68cufOrdjYWPn6+mrPnj2m3Qh35cqVGjdunH788UdNnDhRGzdulMVi0a+//qoePXoYHQ/Av2C6div3BQQE6OuvvzbVLsxAerh+/XqKDTvx98zUbkW611s5LCxM169fV8GCBRUYGCg/Pz+jYxlq9erVWr16ta5fvy4/Pz8FBwcz4wQOGjRooPbt2ytbtmwKDw/Xa6+9pokTJ+qFF17QG2+8YXQ8Q9xfdfBgyxmr1Sp/f38dOnTIwGTGioqK0vr16xUZGUmv6f8vNjZWu3fvVlRUlAoWLKhatWqZeul7165dTX1zOjVTp05VZGSkRowYoWzZsunOnTsaP368fH191bFjR02dOlURERGaM2eO0VFdymq1ql+/foqJibGv7nqQt7e3WrRoYZq9dB72wgsvaObMmYqPj9f69ev1/vvv64MPPtCdO3c0evRoo+MZonLlytq4caOioqI0b948zZgxQ+vWrVNYWJjmz59vdLwM99///lcDBw5UtWrVVLVqVc2fP1958+ZVhw4d9PXXXxsdD8C/YLqZ5PcVKlRIR44ccVj6Dmn79u0p+n42a9bM6FiGOnr0qFatWmV/TVq1amW6Hc0fVKdOHdWuXVtBQUGqXbu26XvlInVFihRRnTp1dOnSJeXLl8+0mw7eN2bMGPXr10+tWrUyOorbaNGiRar7g9SrV087d+7M+EBu4LffftNrr72my5cv66uvvlKZMmX0/vvvq1OnTqYtkhcuXFjbtm1To0aN7GPbtm1T4cKFDUxlvPz585v2dyI1R44c0euvv67MmTOrQIECunz5sry8vPTJJ5+Ydq+d1Arkd+/e1enTpx1WZpjJ2rVrtXHjRvskqaxZs2rIkCFq0qSJunfvrgEDBphitrCHh4emTp0qSRo2bJjGjh1rcCL3Eh8frwoVKui3337TsWPHZLFY1LNnT7388stGRzOMp6en8ufPryxZsthXGQQGBpp2f4MrV67ohRde0OHDh+Xp6alKlSpJkm7dumVwMgD/lmmL5Dly5FDnzp1VsGBB5cuXz6EVwv0WG2YTGhqq9957T23btlW9evUUERGhUaNGKSEhQcHBwUbHM8SePXvUo0cP1atXT88++6wiIiLUuXNnTZ48WfXr1zc6niHWrVunNWvWaOTIkbLZbGrZsqWCgoJM2ccRqfvtt9/05ptv6tSpU8qRI4du3LihIkWKaOHChSpQoIDR8QwRGhqqIUOGGB3DcBEREfbep2fOnEnRbiY2NlYJCQlGRHMLefLkUVJSknx8fHTu3DlJkq+vr6Kjow1OZpwePXqob9++2rx5s71V0Y4dO/50bxkz2L17t8aOHavLly+n2O/CrK2Kxo8fr86dO+vNN9+UdK813LRp0zR69Gh9+umnxoYzyO7duzVq1CiHvsrSvWLXkSNHDExmnDt37ujWrVsOK4lv376t2NhY+/dmao8n3WstcvXqVYWGhury5cvKly+fmjZtaurr+gIFCig6Olp58+bV1atXlZSUpMyZMzv8npiNn5+fjh49qrJlyyouLk4xMTHy9PQ07TVbjhw5dOHCBW3ZssU+6XL//v1sQA88BkxbJK9YsaIqVqyoxMRE3bx5U7ly5ZKnp2lfDknS/PnzNWPGDFWrVs0+Vrt2bY0ePdq0RfJp06bpgw8+UJMmTexjmzZt0qxZs0xbJC9evLjefvtt9e/fX3v27NG6devUsmVLlSlTxrQ3mNLCTJ2tPvjgAxUpUkSLFy9WtmzZdPv2bY0aNUrjx4+3z1wym9atW+u9995Ty5YtU9yYNVOLhKefftreBzY1uXPn1uTJkzM4lfsoX768RowYoeHDh6tIkSJatmyZMmfOnGIzbTOpX7++PvnkE61Zs0bHjh2Tn5+fPv/8c5UvX97oaIYZPXq0GjZsyGquB5w5c8Zh/xiLxaIePXqoevXqBqYy1sSJE9WwYUP95z//0alTp9S0aVPNnDlTQUFBRkczTOPGjfXWW2+pf//+8vX1VWRkpKZNm6aGDRsqNjZWY8eONd1q0SNHjqhTp04qVqyYChYsqCNHjmjevHlasGBBijYsZlG7dm116tRJn332mfz9/TVkyBB5e3urSJEiRkczTLt27dShQwdt2LBBTZs21WuvvSZPT0/TbrTeuXNn+2r7JUuW6NChQ+rWrZvpNosGHkem7UkeGxur0aNHa/PmzUpMTFSWLFnUokULDR48WF5eXkbHM0SVKlUUHh7uULyxWq2qUqWKqXopP8jf318HDhxI0QvVzK/Jgw4ePKjQ0FBt377dXtAxo59++knPP/98ivFvvvlGtWrVkiT17NkzxcZIj6uaNWtq8+bNevLJJ+1jt2/f1ksvvaSDBw8amMw4pUqVsn99/xx7fxNcs878nDVrFpsbPeTatWv2pe8RERF68803lZCQoPHjx5u+9Zkk3bhxQ7ly5TI6huEqV66sgwcPsvn8Azp06KC+ffs6FPV+/vlnjRw5UmvWrDEwmXGef/55HTp0SJcuXdLw4cO1ZMkSnTlzRv369VNoaKjR8Qzxxx9/aNy4cQoNDVV8fLwyZ86soKAgDRgwQMeOHdPChQs1atQo5cuXz+ioGaZjx46qX7++OnbsaB/77LPPtHnzZtNe1yclJemzzz5T27ZtdefOHQ0bNky3b9/WiBEjTNuqSLp3Ti1VqpQsFosWLVqkuLg4denSRTly5DA6miEuXrwoT09P+fj4KCYmRpGRkSpbtqz9eGr9/gG4P9MWyd99912dP39evXv3lo+Pjy5evKjp06erUqVKpl0S37RpU40YMcKhT/uBAwc0ZswYhYWFGZjMOA0aNND06dMdClzHjx9Xv379tGXLFgOTGef8+fNau3at1q9fr/j4eDVv3lzBwcEqUaKE0dEMk9qmnLGxsXrxxRf1ww8/GJTKODVq1NC2bduULVs2+1hsbKwaNWqkvXv3Gpgs4+3evVu1a9fW5cuX//QxZtvQ9P6HhvDw8D99jFlnJm3YsEH169eXt7e3pHv9g5OSkky9yXhsbKwmTJig0NBQ+6SGV155RX379jXtpIa3335bL7/8surVq2d0FMPdv/kcERGhnTt3KigoSAULFtS1a9e0atUqNWzYUKNGjTI2pEHq1q2rHTt26O7du6pTp4727dsn6d759a/Ov2Zw9+5d/f7778qTJ4/p2qs8LCAgQHv37nVYUZ2UlKRq1aqZenPkvxMSEqJ58+YZHcOtpPZ5yMx4PYBHk2n7i+zcuVObN29Wnjx5JEnFihVTqVKl9N///te0RfLXXntNb731ltq2bWvv+7lixYoUPWPNJDg4WN27d1e3bt1UsGBBRUREaP78+WrXrp3R0QzTpEkTVatWTQMGDFCDBg1MW6S4cOGCAgMDlZycLJvNptKlS6d4zP1NXMwmICBAo0aN0nvvvaesWbMqLi5Oo0aNMuVGyW+//bbCw8PVuXNnbd261eg4buGNN97Q4cOH1aFDh1SPm3l2/XvvvaeGDRvav/f09DR9K7gPPvhAv/zyi2bNmmWf1DB16lRNnjxZ7777rtHxDNGxY0e1a9dOJUqU0H/+8x+HY2Zre3bgwAH716VLl9axY8d07NgxSffaw/36669GRTPcs88+q6lTp+qtt95Snjx5tHv3bmXOnNl+E86sfv75Z507dy5FG7wWLVoYE8hgWbJk0ZUrV1SoUCH72JUrV0w7Ozitvv/+e6MjuB2Tzr38U7wewKPJtJ+8vL29UyxTzZYtm6lnawUHB+uJJ57Q6tWrtX37dvn5+Wns2LFq3Lix0dEM88Ybb+iPP/7Q3Llzdf36dfn5+enVV19V586djY5mmK1btzpcSJtV4cKFtXLlSt26dUshISGaP3++w3Fvb2+VLFnSoHTGeuedd9S5c2dVrVpVOXPm1O+//64SJUpo7ty5RkfLcJkyZdK4ceMUGRn5p+12evbsmcGpjHV/Vs3JkycNTuJ+ypUrp40bN+q///2v0VHcxq5du7R+/Xrlzp1b0r1JDc8++6yCgoJMWyQfMWKEKlasqCpVqpi+5cqDfcj/zrx58xQSEuLCNO7lnXfeUe/evdWmTRv17t1bPXr0kNVq1cCBA42OZphJkyZp/vz5yps3r8MNSIvFYtoi+csvv6xevXppwIAB9glBkydP1ssvv2x0NDxizL4q42G8HsCjybTtVpYuXaqtW7dqyJAhKly4sKKiovTxxx/r6aefVvv27e2PM9OGag+Kjo5Wjhw5TD+DDf/n/ofLv+qrbbZiX/369bV9+3YNHDhQH374odFx3Mrdu3cVHh6umJgY+fn5qVy5cqYs5mzatEkrV67U/v37U+1LaLFYTDfzMzIy8m8fY9b33tatW+vYsWPy8vLSU0895fABa8eOHQYmM06DBg20atUqh1mNt27dUuPGje3tI8ymYsWKOnjwoDJlymR0lEeK2Ze+X7t2TXFxcSpatKjRUQxTp04dvffee6pdu7bRUdzGH3/8oZEjR2rDhg1KSkqSt7e3WrdurYEDBypz5sxGx3NbZj+fpIbXxBGvB/BoMm0FdOzYsZLuLa2zWCwOy2EWLlxoyg3VEhMT9dFHH2nlypVKSEiQl5eXmjdvruHDh5u2pYbNZtPixYu1YsUKXb58WXnz5lVQUJC6detmurvD4eHhCgkJcVja/CCzvR7SvZtJJ06c0LZt23TlypVUl9WZqdj3cPGzcOHCKly4sCQpKipKkrleD+lee6ImTZqoZcuWTs14fJzVq1cvxfni/nvufWZ6733Qq6++muq4Gc+v988nLVq0UL9+/TRo0CD5+fnp2rVrmjhxojp16mRsQAOVLl1aFy9eVLFixYyO8kgx27ygZs2aKSgoSM2bN1euXLlMtRnln4mLi7NvqI57vL29NWHCBI0ePVo3b95McYMWAAAzMW2R3Kwzsv7K7NmzdeDAAU2ZMsVhud2UKVNMuzRz8eLFWrRokUJCQuyvySeffCIPDw9TLdmVZG8nQqHv/9SrV08tW7aUxWJJsYGaGW+0PVj8vF+MePB7s70eD7p586ZiY2P15JNPGh3FcPfff9etW6dDhw7pnXfe0dNPP60rV67oo48+UoUKFYwNaKDp06enWpzIlCmTvvzyS9WtW1ddu3aVh4eHAeky1v3zyf1zSfPmzR3OJ7t27TLd+/B91atXV8eOHdW4cWPlzJnT4ZjZVnQ5w2yFv//9739au3atPv74Y9WrV09BQUGqWbOm0bEMVadOHYWGhqp58+ZGRzHc2rVr//YxZm1BAwAwL9O2W0FK9evX16JFixz6TUdERKh9+/b69ttvDUxmnCZNmujjjz/Wc889Zx87fvy4evXqZbobLVxMpy4qKkqNGzdWWFhYqsf9/PwyOJFxqlSponXr1qlBgwbavn17qrP2zPR6PKhevXpasWKF8ubNa3QUt1G7dm2tX7/eoY3G7du31bhxY+3du9fAZMaZM2eOvvzyS73++usqVKiQLl++rIULF6pmzZoqVqyYvvjiCzVp0kS9evUyOqrLXb58+W8fY9bzyV9temu29k3OMOvS97Nnz2r16tUKCwvTE088oVatWpn2Zkrv3r21fft2FSlSRE899ZTDMbP97Tw8ueNhFovFdJ91nGHW88lf4TVxxOsBPJpMO5McKd28eVM+Pj4OYz4+PkpISDAokfGuXbumUqVKOYyVKlVKv//+uzGBDDRt2rS/PG7WTY/y58+vL774wrTFmgd5eXnp008/1RNPPKE1a9akWiQ36wfzgIAABQcHq1atWimWvJv1NYmLi5PVanUYu3PnjpKSkgxKZLwtW7Zo7ty5euaZZ+xjVatW1dtvv60RI0aoTp066tChgymK5H91Tr17965Onz5t2vMuK7rgjOLFi6tnz54qWbKkpk6dqgULFpj2fadkyZKm3VT9YTt37kzzY8PCwtS0aVMXpnn0MM8wJV4TR0WKFDE6AoB/gCI57J599lktX77coSfq8uXLTX0xWbhwYW3btk2NGjWyj23bts3eZ9lMuJj+c2mdfTR+/HgXJzHW8OHDtXLlSlmtVu3fvz/FcbMtdX/QpUuXVKhQIZ07d07nzp2zj5v5NXnppZfUo0cP9e7dWz4+Prp48aKmTp1qqnPHwy5cuJDiQ9X93xtJKliwoG7dumVAMuN8/fXXeu+99xQVFeXwAdzT01NHjhwxMJmxzp49q2XLlunq1asaM2aMNmzY8Kc97WFe3333ndauXatt27apSJEi6tq1q6lbjZj15sC/NWLECFO+N9+8eVMXL17Uc889p7t37zrs0fXBBx8YmMwYiYmJiomJSTHB4f5+Q2ZYeeDMyurVq1e7NgwAl6BIDru+ffuqS5cuWr9+vQoVKqSIiAidOXNGCxYsMDqaYXr06KG+fftq8+bN9tdkx44dfzur2uzMdjHt7e2tVatWqU6dOipatKiuXr2qLVu2yN/f31QbZd3fpDI4OJiZjg/h9UhpxIgReu+999StWzclJibK29tb//3vfzVo0CCjoxmmVKlSmjt3rkMhZ+HChSpRooQk6ZtvvjHd7OmPPvpIDRs21H/+8x+dOnVKTZs21cyZMxUUFGR0NMPs3btXvXr1Ut26dbVv3z4lJCRo5syZunPnjmn7tKeF2WY51q5dW3FxcXr55Ze1ePFilS1b1uhIhhk1apRGjRqlwYMH/+ljHveJDP+G2f524uLiNGLECG3YsEGZM2fW6tWr1blzZy1atMi+YXLDhg0NTpmxNm3apJEjR+r27dv2sYf3G8qdO7dR8TIMK6uBxx89yeHg3LlzCg0N1fXr11WwYEEFBgaa7gP5w/bv3681a9bo+vXr8vPzU1BQkMqXL290LLdWsWJF/fDDD0bHyDBdu3ZVmzZtHFYc7Nu3TwsWLDD1TSY4YuZn6hITE/X7778rV65cypQpk9FxDHX8+HG98cYb8vT0lI+Pj65cuSKr1arZs2crMTFRr732mqZOnfq3vWQfJ88//7wOHTqkS5cuafjw4VqyZInOnDmjfv36KTQ01Oh4hmjdurV69+6t2rVry9/fX+Hh4Tpy5Ij69u1ripl8qRkzZoz69ev3l5sjv//++xoyZEgGpjLWV199pZdffllZsmQxOorhRo4cqffee0+DBg360xVcFMn/nNl6K48cOVLXrl3TwIED1aZNG+3bt0/jxo3TxYsXTXtd//LLL6thw4Zq2bKlPD0d51mavVYA4PFCkRx2rVq10uLFi//yA4bZdO/eXRMnTuQ1cZLZLqYrVqyoQ4cOycPDwz6WnJys6tWr6+DBgwYmg7t4cObnrl27tGHDBrVq1UqdO3c29czPn3/+WefOnUsxS83Ms3BiY2O1a9cuXblyRX5+fqpXr56yZMmi33//XcnJycqTJ4/RETNU3bp1tWPHDt29e1d16tTRvn37JMleHDajKlWqKDw8XBaLRVWrVrW/z1SpUkXff/+9wemMUbVqVe3bty9F8cbsjh49qlWrVuny5cvKmzevWrVqpSpVqhgdyzDXr19PsWEn/p7Zrutr1aql0NBQ5ciRw36OTUhIUK1atUx7XV+xYkWFh4dzjn3AxYsXHVrBJSUl6fTp0+rUqZOxwQD8K5zlYHft2jWjI7idH374waH/HJAaPz8/bdq0SYGBgfax1atX25dkApMmTdLkyZPtMz99fHw0b9489e3b17RF8kmTJmn+/PnKmzevw4cusy9VffLJJ9WsWbMU4zlz5sz4MG7g2Wef1dSpU/XWW28pT5482r17tzJnzixvb2+joxnG19dXhw8fVuXKle1jR44cSbH5upm0bt1ao0ePVqtWrZQ3b16H2cL3++WazZ49e9SjRw/Vq1dPzz77rCIiItS5c2dNnjxZ9evXNzqeIerUqaPatWsrKChItWvXdpjcANxntVrtn//uF0AfHDOjMmXK6MyZMypVqpTRUdzC3LlzNXnyZPt7zf3WM6VLl6ZIDjziKJLD7qWXXlLHjh3VqFEj5cuXz+EDhlkLFk2bNlXv3r3VrFmzFB+6/P39DUwGd9KvXz/16dNHn3/+uX0DwnPnzmnRokVGR4ObuHDhgmrVqiXp/zbrLFeunG7evGlkLEOtX79ec+bMUe3atY2OAjf2zjvvqHfv3mrTpo169+6tHj16yGq1auDAgUZHM0y3bt3UvXt3/e9//1NSUpLmz5+vJUuWqH///kZHM8z999svv/xS0r3z7MP9cs1m2rRp+uCDD9SkSRP72KZNmzRr1izTFsnXrVunNWvWaOTIkbLZbGrZsqWCgoL09NNPGx0NbqRatWoaPXq0RowYYb9mmzJliqpWrWpwMuNUqlRJnTp1UuPGjVOsxjDjhrhffPGFpk2bJi8vL+3cuVP9+/fXmDFjTH2zGnhc0G4Fdn/W49RisZi2x+Wf3S0384eutDDbskxJOn36tLZs2aLo6GjlzZtXAQEBpl7SDEfNmzfXyJEjVblyZfvS3SNHjmjIkCGm7avs7++vgwcP/ml/WCA1165dU1xcnIoWLWofCwsLM9Vm0ZK0e/duff7557p8+bIKFCiQYl8Ms3n33XdVrVo1+fv7pzinmLVfrr+/vw4cOOAwW9pqtapKlSqmu0Z7mNVq1Z49e7Ru3Tp9/fXXKlOmjBYvXmx0LLdltr2GoqOj1b17dx0/flzJycnKnDmzihQpojlz5ih//vxGxzNEhw4dUh23WCym/Nu5/zdx9epV9ejRQ6tXr1ZMTIyCgoK0c+dOo+MB+BeYSQ47TugpnTx50ugIjySz3XvbuXOnhg0bpn379mnWrFmaM2eO5s2bp6FDh6pNmzZGx4MbYOZnSnXq1FFoaKiaN29udBQ8QvLly5dibMSIEaYrkteuXdu+CiM2NtbUbQCke22KPvjgA2XPnl2tWrVSq1atTFvMui9nzpw6ffq0w4SPkydPKm/evAamcg8eHh7KnDmzsmbNKi8vLyUlJRkdyTA//fSTnn/++RTj33zzjX0F3AsvvJDRsQyVJ08erVixQkeOHLHfiCxfvryeeOIJo6MZZsmSJUZHcCv58uVTbGys8ufPr0uXLslmsyl37tymXiEKPC6YSY40bXxl5tYiycnJun79upKTkx3GzdrjMi0X0z179tSMGTMyOpphgoODFRwcrKCgINWsWVMTJkxQ7ty51a9fP23bts3oeHATzPx01Lt3b23fvl1FihRJsXTXjLOS8M+ZbZbj2bNnNWnSJM2cOVPbtm1Tv379lC1bNs2aNcuhT7nZJCUladeuXVqzZo327t0rf39/tW7dWvXr1zflTYR58+Zp2bJl6tatmwoWLKiIiAjNnz9f7dq10xtvvGF0PEOcP39ea9eu1fr16xUfH6/mzZsrODhYJUqUMDqaYVJb/RkbG6sXX3zRVOfVhx09elRly5bVrVu3NHfuXOXOnVuvvfaaqTeu3L59u1asWGHfCDgoKCjVPVTMYNiwYYqMjNSUKVPUu3dvlStXTt7e3tq4caM2btxodDwA/wJFcthnmDy4PDVHjhy6ffu2rFarcubMqe+++86oeIbasmWLBg8erPj4eHtvS7P3uORiOqWAgAAdOHBAx48fV/v27e27v5utcIM/t2nTJoe+sPetWLFCbdu2NSCR8f7qRpoZ+1vinzNbi6+uXbsqX758ev/999WkSRO1atVK2bJl09q1a7Vy5Uqj47mFH3/8UaNHj9bx48eVI0cOtWrVSj169FD27NmNjpZhbDabZsyYodWrV+v69evy8/NTcHCwOnfubNoNK0uXLq1q1aopKChIDRo0MOXNE+nePimBgYFKTk62f655WKVKlfT5558bkM54s2fP1ieffKJDhw5p4MCBOnr0qDw8PFS9enUNHTrU6HiGCA0N1Xvvvae2bdvab7p9+eWXGjRokIKDg42Ol+FiY2P18ccfq1evXoqOjlafPn0UGxur8ePHm27lBfC4oUgOuwULFuj06dMaNmyYsmfPrjt37mjChAnKkSOHBgwYYHQ8QzRo0EAtW7bUyy+/rEyZMjkcM1OPSy6m/1qdOnX01VdfadmyZfrxxx/1ySef6OTJk+rRowdtjEwsPj5eN27ckCQFBgZq48aNDq2Ibt++rVdeeYUbKbrX/zNHjhymnqGFf85sRfKaNWtq165dioqKUqNGjXTgwAFly5ZNlStXNtXr8LDffvtNYWFhWrdunc6ePavatWurVatW8vX11ZQpUxQbG6ulS5caHRMGunjxogoVKmR0DLdw4sQJ3bp1SyEhIZo/f77DMW9vb5UsWVJZsmQxKJ2xAgMD9fHHH6tYsWLy9/fXihUrlDdvXjVv3lx79+41Op4hmjdvriFDhqhatWr2sf3792v06NGmnDmdlpXVAB5NfBqF3YIFC7Rz505lzpxZkpQ1a1YNHTpUtWrVMm2R/ObNm+rRo4fRMQxXuHBhrVy58m8vps2qdevWatGihW7duqVp06bp6NGjev3119WlSxejo8FAsbGxCgwMVEJCgqR7myM/vCKlfv36Bqc0TlJSkiZOnKiVK1cqISFBXl5eat68uYYPH27a2X1AWty9e1c2m0179+5VmTJl9OSTTyomJkbe3t5GRzNM165dtX//fhUrVkytWrXSf//7X+XOndt+vH///qZbtZOcnKwtW7bo/PnzslqtDsfMtlpn3rx5CgkJ0bp16/70MWZ7TXr16qXt27erUaNGqlq1qtFx3Mq1a9dUqlQpfffdd8qePbt91XV8fLzByYwTGRmpgIAAh7GqVavq6tWrBiUyVufOnVNdWd2nTx8mvwCPOIrksLNarYqOjnaYIX3p0iVTb1JSrlw5nTx50mHTI7PiYvrP9erVS1WrVpW3t7cqVKigK1euaPTo0WrYsKHR0WCgvHnzavv27YqPj1ezZs0UFhbmcNzb2ztFL24zmTVrlg4cOKApU6bYl+5OnjxZU6ZM0cCBA42OB7itGjVqqFevXjp58qS6du2qixcvauDAgapTp47R0QxTsGBBLVu2TOXLl0/1uJ+fn1atWpXBqYw1cuRIbdiwQaVKlXJYpZPaasDHXXh4uEJCQnTgwIFUj5vxNYmOjtaJEye0bds2XblyRaktLjfr/kv58+dXeHi41q5dq+rVq0uSwsLCTL0KoUCBAgoPD3f4DBgeHm6q35GHV1aXLl06xWMqVapkQDIA6Yl2K7AbP368du/erddff10+Pj66ePGiPvnkEzVv3ly9e/c2Ol6Gut8r98KFC9q3b5+aNGminDlzOjzGbDNOKlasqC+++ELt2rVL0TbiPjNdKAHOsFqtqfaAvXv3rmlbjNSvX1+LFi1y+NAZERGh9u3b69tvvzUwGR41Ztv/IS4uTgsXLpS3t7dCQkJ08uRJrVq1Sv3791fWrFmNjgc38cILL2jOnDkqV66c0VHghgYMGKANGzakeoPA7PsvbdmyRQMHDlTmzJm1bNkyRUVFKSQkRNOnTzftzciVK1fqww8/VNu2bVWoUCFFRERoxYoVGjx4sFq3bm10vAzzcJuiB9uQmr1NEfC4oEgOu7t372rmzJlav369oqKi5OPjo+DgYL3xxhumm2HRoUOHvzxusVi0ePHiDErjHriYBv65iIgIzZw5U1FRUfZl70lJSTp37pz2799vcDpj+Pv767vvvnO4SZCUlKQaNWooPDzcwGRwJ2np+9mzZ8+/3AjWLMx80w0pVa9eXXv27DH1itD71q5d+7ePadGihctzuJuoqCg1btw4xUq3+8y0/9LD/vjjD0n3Cp+xsbG6c+eO8uXLZ3AqY61evTrFRsCNGzc2OpYhHtzfgH11gMcLRXLgL/z222/KmzdvivFffvlFzzzzjAGJjMXFNPDPdOjQQTabTbly5VJ0dLSee+45rV27Vp06dTLdqpT7Xn31VTVu3FivvvqqfWzJkiXavHmzaTcBRkqpbcoZGxurF1980VSzxx/ETTekxbhx45Q3b16FhIQYHcVw9erV+8vjFotFO3bsyKA07uXEiROpto0ws7+6Ue/v75+BSeCu2FcHeHxRJIeDvXv3aunSpYqKitLcuXO1cOFCDRgwwLR3RlP7cJ6cnCx/f/8U42bBxTTgvIoVK+rrr79WZGSkpkyZorlz5+qbb77R3LlzTVsQ/v7779WlSxeVKlXKvnT3zJkzWrBgAT0dTe7hvp+prWCqVKmSaf92uOmGtGjXrp0OHz6sLFmyOGxiKsm0BeG0CAsLU9OmTY2OkWEGDx6cpseNHz/exUncR2p7UXl4eMjHx8d0fzujRo3SqFGj/vL3xEy/G/dNnTpVO3fuVP/+/R321alZsyb76gCPOHNWPpGq0NBQjR8/XsHBwTp48KAkaefOnbJYLKY62V+4cEFdu3aVzWZTfHy8XnrpJYfjCQkJpp4xndY2M2a8YAL+TJYsWexLMU+fPi1JqlWrlt59912DkxmnSpUqGjp0qH766Sd5enqqbt26atOmDQVyqHDhwlq5cqVD388H3e/7aVZHjx51uOk2bNgw1apVS3PnzqVIDrvg4GAFBwcbHeORM2LECFMVyb29vbVq1SrVqVNHRYsW1dWrV7Vlyxb5+/ubtr3IyZMnHb6PiYnRzJkzTfn5j/mUqQsNDXXYV6d48eIqXry42rdvb6q6CfA4okgOu3nz5mnWrFmqUKGCvvjiC+XNm1dz585Vx44dTXWyL1y4sIYOHaobN25o1KhRKT5went7m3qpHRfTgPOefvpp7d69W7Vr15bVatXFixfl5eWlu3fvGh3NMNOmTdOaNWu0aNEiFSlSRDt27ND777+vmzdv6vXXXzc6HgzWq1cvbd++XY0aNVLVqlWNjuNWuOmGtGjZsqX965iYmBSzyZE6sxUFL168qI8//liNGjWyj7Vs2VILFixgwsv/lzt3br3zzjtq1KiRunTpYnScDPXee+9Jkl555ZU/3R/EjG7evCkfHx+HMR8fHyUkJBiUCEB6oUgOu6tXr9rf/O4vbS5cuLDu3LljZCxD1K1bV5JUsGBBPpw/hItpwHndunVT7969FRYWprZt2+qVV17RE088kWKlipmsWrVKn3/+uX0WzksvvaRnnnlGr732GkVyKDo6WidOnNC2bdt05cqVVAtXvr6+BiQzHjfdkBZ3797V9OnTtXTpUiUnJys0NFR9+/bVnDlzUt1vB/ek1t7pcXb48OEUq3UCAgLUt29fYwK5qZs3b9o38zSjzp07p7o/SJ8+fUy5P8izzz6r5cuXO+yrs3z5clOvcgMeFxTJYXd/Jl/9+vXtY/v27VPhwoUNTGWsChUq6KuvvkqxOdbp06c1e/Zsg9MZg4tpwHkLFixQ9+7dlSlTJvXo0UNFihRRbGysWrRoYXQ0w8TGxqY6C8eMN2aRUr169dSyZUtZLJYUm+7d71N+4sQJg9IZKyQkhJtu+FvTp0/X/v37NXXqVPXr10958uRRgQIFNHbsWE2dOtXoeHATfn5+2rRpkwIDA+1jq1evVrFixQxMZayH+28nJSXp0KFDqlGjhkGJjPHw/iCp7Ull1hZ5ffv2VZcuXbR+/foU++oAeLRRJIddv3791KNHD7300ktKSEjQqFGjFBoaqkmTJhkdzTBDhgzRt99+q1y5cikpKUlZs2bVL7/8YurCFhfTgPOaNGminTt3aubMmSpVqpQaNGighg0bysvLy+hohilTpozmzZunHj162McWLlyY6oZZMJ+PP/5YAwcOVOPGjRUWFmZ0HLdSr149bd26VXny5OGmG/5UaGioli1bpvz588tisShr1qwaP368GjRoYHQ0uJF+/fqpT58++vzzz+Xj46OLFy/q3LlzWrRokdHR3Ia3t7c6dOigtm3bGh0lQ7E/yJ/bvHmz1q1bp9DQUF2/fl0NGjTQlClTNHXqVNPeOAAeFxab2Rqv4S+dPHlSK1as0OXLl1WgQAEFBQWpfPnyRscyTEBAgJYtW6aYmBgtW7ZMH3/8sRYuXKiff/5ZU6ZMMTqeIXbs2KE+ffqofPnyKS6my5Yta3Q8wK3Fxsbqm2++0a5du7R9+3YVLFhQoaGhRscyxLFjx9SlSxdlyZJFBQoU0NWrV3X37l198sknFMphd+LEiVRnr5md1WrVzz//rKioKPn5+fH+ixSqVaumb7/9VpkyZZK/v7/Cw8OVmJio2rVr67vvvjM6ntuqVKlSirYSj7vTp09ry5Ytio6OVt68eRUQEKAqVaoYHQtu5OLFi/b2eGYVFRVlP3eOHDnS3q/9vtu3b2vSpEmmbD8DPE6YSQ67uLg4LV26VOvXr1diYqKyZs2qJ598UqVKlTLtbEer1apixYopZ86c9mXd7du318KFCw1OZpyXXnpJq1evtl9M165dWwMHDuQDOvA3YmNjtX//foWHh+vnn39WcnKyqfvClilTRlu3btWuXbt07do1+fj4qE6dOsqePbvR0eBGFi9enKbHmWlPjAsXLqhbt266dOmScubMqRs3bqhMmTKaMWMGG2jDrkKFCpoxY4b69etn77O9ZMkSlStXzuBk7s1s88d27typYcOGad++fZo1a5bmzJmjefPmaejQoWrTpo3R8Qzz2Wef2SeO5c2bV0FBQerWrZvpetbf9+STT2ratGmptiBdv369wekyRq5cubR06VLFxMQoMTFR06ZNczju7e2tnj17GpQOQHqhSA67CRMm6JdfftHs2bPtM4SnTp2qyZMn69133zU6niEKFChgv3MeHR2tO3fuyMPDQ3FxcUZHMwwX04Dz2rRpoxMnTqhEiRIKCAjQsGHDVLVqVXl7exsdzVA5cuSgRQT+kre3t1atWqU6deqoaNGiunr1qrZs2SJ/f3/TFoTHjBmjatWqadCgQcqcObNiY2M1btw4jR49WjNmzDA6HtzEkCFD1KlTJ61Zs0ZxcXF6+eWXFRcXZ+o2Gj/99JOef/75FOPffPONatWqJUl64YUXMjqWoWbPnq2+ffvKarVq6dKlmjFjhnLnzq1+/fqZ9rr+s88+06JFixQSEqKCBQsqIiJCn3zyiTw8PBQSEmJ0PEMMHjxY58+fV+7cuRUXFycfHx/t2bNH7du3NzpahvHy8tKqVaskSV27dqX/OPCYot0K7GrWrKn169crd+7c9rGrV68qKChIe/bsMTCZcebNm6clS5Zo1apVmjRpkq5evSpvb2/Fx8dryZIlRsczRHBwsIKDgxUUFKSaNWtqwoQJ9ovpbdu2GR0PcEsdOnTQsWPHVL58eb3wwguqWbMmLSSANOjatavatGmjRo0a2cf27dunBQsWmPYDakBAgL799luHVX7x8fGqU6eODhw4YGAyuJM7d+7IYrHo66+/trdRrFOnjp588kmjoxkmtVYqsbGxevHFF03bIiEgIEAHDhzQ8ePH1b59e4WHh8vT01MVK1Y07WvSpEkTffzxx3ruuefsY8ePH1evXr20Y8cOA5MZp3Llytq4caOioqI0b948zZgxQ+vWrVNYWFiKXuUA8ChjJjnssmTJoieeeMJhLGvWrPYlVWYUEhKiQoUKKVu2bOrbt6/mzp2r2NhYDR8+3OhohomIiFCbNm10/PhxxcfHq0aNGvL09NT169eNjga4rSVLlujOnTvav3+/vv32W/Xr10+3b99WjRo1NHHiRKPjAW7r8OHDKT6ABwQEqG/fvsYEcgN+fn6KiIhQiRIl7GNXr15Vzpw5jQsFt9O0aVOtX79eTZo0MTqKoS5cuKDAwEAlJyfLZrOleoPazBvtZcmSRdHR0dq5c6cqV64sT09PnTx5Urly5TI6mmGuXbuWYm+UUqVK6ffffzcmkBvw9PRU/vz5lSVLFp06dUqSFBgYqA8//NDgZACQviiSQ5GRkZKkFi1aqF+/fho0aJD8/Px07do1TZw4UZ06dTI2oIHi4uK0Z88eDRo0SImJicqSJYvatm2r/PnzGx3NMFxMA/9M1qxZ9cILL+iJJ56Qh4eHNm7cyKxP4G/4+flp06ZNCgwMtI+tXr1axYoVMzCVMdauXSvpXkHvjTfeUNeuXe3XawsXLlT9+vWNDQi3Ex8fb+qZ45JUuHBhrVy5Urdu3VJISEiKm27e3t4qWbKkQemM17p1a7Vo0UK3bt3StGnTdPToUb3++uvq0qWL0dEMU7hwYW3bts1hBdO2bdtUuHBhA1MZy8/PT0ePHlXZsmUVFxenmJgYeXp6KiEhwehoAJCuaLcClSpVShaLxWGjmvubkthsNlksFvumlWYzfPhwnT59Wr1793bo0x4QEGDaPu3Tp0/Xl19+ab+YzpMnj/1i2qx9+oC/s3jxYn3zzTcKDw+Xj4+P6tevr/r166tChQpGRwPc2o4dO9SnTx+VL1/e/j587tw5LVq0yHQbRterV+8vj1ssFtO2AkBKgwcP1nfffadatWql6N9vts3l6tevr+3bt2vgwIHMfE3FgQMH5O3trQoVKujKlSs6cuSIGjZsaHQsw2zfvl19+/ZVgwYNVKhQIV24cEE7d+7UtGnTVLduXaPjGWLVqlUaN26cNmzYoE8//VTfffedfXb5nDlzjI4HAOmGIjl0+fLlv32Mn59fBiRxP/RpTx0X04BzWrdurQYNGqh+/foOLRIA/L3Tp09ry5Ytio6OVt68eRUQEKAqVaoYHcuthYWFqWnTpkbHgIE6dOiQ6rjFYtHixYszOI2xKlasqC+++ELt2rXTxo0bldrHX19fXwOSwV0dOHBAq1evVnR0tPz8/NS6dWuVL1/e6FiG+vnnn+2T6xYtWqS4uDh16dJFOXLkMDoaAKQbiuTAX2jQoIFWrVrl8OZ/69YtNW7cWPv27TMwGQAAj7+dO3dq2LBh2rdvn2bNmqU5c+bIYrFo6NChatOmjdHx3FZqGxQCD5s3b54pVgEOGDBAGzZssK+UfZDZV80ipWvXrmnmzJmKiIjQ3bt3HX5vzHaD6b6FCxeqRYsWDhPHAOBxRJEcSMX9Pu1r1qzRoUOHUvRpr1Chgik+VAAAYKTg4GAFBwcrKChINWvW1IQJE5Q7d27169dP27ZtMzqe26pYsaJ++OEHo2PAzZnpZkpUVJQaN26ssLCwVI+bddUsUurcubNu3rypF198UZkyZXI4ZrZWRfe1adNGJ06cUJ06dRQcHKwXX3wx1ZtOAPCoo0gOpII+7QAAGC8gIEAHDhzQ8ePH1b59e4WHh8vT05Mi8N8wU/ET/5zZ/o5OnDih0qVLGx0Dbq5ixYr65ptvlD17dqOjuJWzZ89q9erVCg0NlYeHh1q2bKnWrVurYMGCRkcDgHTjaXQAwB2x8RUAAMbLkiWLoqOjtXPnTlWuXFmenp46efKkcuXKZXQ04JFntpmgaW2VMX78eBcngTvz8fGRh4eH0THcTvHixfXOO+9owIAB2rVrl8aNG6e5c+fq+PHjRkcDgHRDkRxIBUsuAQAwXuvWrdWiRQvdunVL06ZN09GjR/X666+rS5cuRkcD8Ijx9vbWqlWrVKdOHRUtWlRXr17Vli1b5O/vr3z58hkdDwa7326zefPmGjx4sLp3755iU0qzb/C6f/9+rVu37v+1d2+hTd99HMc/sdlCPTBPrbbZxVZkVGi7HmyrbnPDSVsoYhtpRFRwtqiUigf0wgNSDzh64dzUzRNdwUXGSnF4wFq0FQSDdTg2KqYIIraWKDZWaz2gNt3FIDx96p7JQ+zvn+T9uvP3z8X7Qnrxze//jZqampSSkqKVK1eaTgKAsGLdCgAAACyrtbVVDodDmZmZ8vv9amtrU0FBgeksS2PdCt5ErP0/KS8vl9vtVmFhYejM6/WqtrZWtbW1BstgBazb/Gd79uzRqVOn1NfXp7lz56qsrEypqammswAg7BiSAwAAAFEk1nZN4/8Ta0PyrKwsXb16ddAqjf7+fs2YMUNXrlwxWAYr6Orq+tfPxOrbxosXL1ZZWZmKiorkcDhM5wDAW8O6FQAAACBC/Pnnn/r444+HnF+8eFGzZs2SJH3yySfDnYUIFGt3pZxOpxobG1VcXBw6O378uFJSUgxWwSpidQD+Jjwej4LBoK5du6Y7d+4oMTFR2dnZ7G4HEHW4SQ4AAABEiNfd/u3r69Nnn33G7XGE7NixQ2vXrtXo0aP/8TO7du3Spk2bhrHKrObmZq1evVoZGRlKSkpSZ2enbt26pbq6OqWlpZnOAyyru7tbK1asUHt7u8aOHauenh598MEH+vHHHzV58mTTeQAQNgzJAQAAAAu7ffu2iouL1d/fH9qN+9+ys7N17NgxA3Wwory8PHm9XtntvDj8n27cuKGmpiYFAgElJCQoPz9f06ZNM50FWNr69es1MDCg7du3a9SoUXr8+LGqq6v16tUrfffdd6bzACBsGJIDAAAAFufz+dTb26vly5fryJEjg545HA599NFHio+PN1QHq6mpqdGTJ0/kcrmUkJAw6IuV5ORkg2XmtLS0aMuWLfJ6vfrhhx908OBB2Ww2bd68WW6323QeYFmffvqpzp49O+jNlMePH+vLL79knz+AqMLVAgAAAMDiVq1apfPnz6uwsFB5eXmmc2BxdXV1kqT6+npJks1mC72F4PP5TKYZc+DAAa1Zs0bBYFAej0f79+/X+PHjtXbtWobkwP8QDAaHvMFks9n0zjvvGCoCgLeDITkAAABgcYFAQD6fT+fOnZPf73/tjy7G6g1hDDVv3jxNnz5dubm5r13PE4s6Ojrkdrt1/fp1PXv2TDNnzpTdbld3d7fpNMDS8vPzVV1drW3btmnkyJF68uSJqqur+cIWQNRhSA4AAABY3OzZs1VaWiqbzabZs2cPehbrN4Qx1OjRo1VTU6MxY8bI5XLJ5XJp0qRJprOMio+PVyAQUEtLi3JycmS329Xe3q5x48aZTgMsbcOGDfrqq6+Ul5ensWPH6uHDh5oyZYoOHTpkOg0Awoqd5AAAAEAEuHfvnoqKinT69OnXPnc6ncNcBCt7+fKlLly4oF9//VWXLl1Sbm6u5s+frzlz5ujdd981nTfs9u3bp/r6evX29mrv3r2aMGGCKioqtGzZMi1fvtx0HmBpr1690m+//aYHDx7I6XQqPT1dcXFxprMAIKwYkgMAAAARwufzaerUqaYzEGH++OMPbd++XdevX9d7770nl8ulyspKjRkzxnTasGptbZXD4VBmZqb8fr/a2tpUUFBgOguwvBcvXujBgwcKBoODzlnzBSCaMCQHAAAAIsTGjRvf6HNff/31Wy6B1d2/f1+nT5/WiRMndPPmTX3++edyuVxKTk7Wt99+q76+Pnk8HtOZACyusbFRW7duVV9fX+iMNV8AohE7yQEAAIAI4XA41NDQoC+++EIffvih7t69q6amJuXm5ioxMdF0HiyivLxcly9fVkpKilwul+bNm6fx48eHnq9bt04LFiwwWAggUuzbt0+LFi1SaWmp7HZGSACiF3/hAAAAgAjR2dmp3bt3q7CwMHRWWlqq2tpabo8j5P3339fPP/+sjIyM1z53Op1qaGgY5ioAkcjv96uqqooBOYCox7oVAAAAIEJkZWXp6tWrGjFiROisv79fM2bM0JUrVwyWAQCi0eLFi7VlyxalpqaaTgGAt4qvAgEAAIAI4XQ61djYqOLi4tDZ8ePHlZKSYrAKABCtsrOztXTpUhUVFWnixImDnlVVVRmqAoDw4yY5AAAAECGam5u1evVqZWRkKCkpSZ2dnbp165bq6uqUlpZmOg8AEGWWLFny2nObzaajR48Ocw0AvD0MyQEAAIAIcuPGDTU1NSkQCCghIUH5+fmaNm2a6SwAAAAgYo34948AAAAAsIKWlhYtXbpUq1atUmJiog4dOqTy8nLV19ebTgMARKmbN29q586dqqqqUk9Pjzwej+kkAAg7huQAAABAhDhw4IDWrFmjYDAoj8ej/fv369ixYzpy5IjpNABAFLp06ZLKysrU09Mjr9er58+f6/vvv9fhw4dNpwFAWDEkBwAAACJER0eH3G632tvb9ezZM82cOVNpaWnq7u42nQYAiELffPON9uzZo927dysuLk5JSUk6fPiwfvnlF9NpABBWDMkBAACACBEfH69AIKCWlhbl5OTIbrervb1d48aNM50GAIhCt2/f1qxZsyT9/WOdkpSenq5Hjx6ZzAKAsLObDgAAAADwZubPn6+SkhL19vZq7969unbtmioqKrRs2TLTaQCAKJScnKzff/9dOTk5obO2tjYlJSUZrAKA8LMNDAwMmI4AAAAA8GZaW1vlcDiUmZkpv9+vtrY2FRQUmM4CAEShM2fOqLq6WgsXLtTRo0dVWVmpn376SevWrVNJSYnpPAAIG4bkAAAAAAAAGGLHjh3KysrSyZMn1dXVpcmTJ8vtdquwsNB0GgCEFUNyAAAAAAAADJGXlyev1yu7nW29AKIbQ3IAAAAAAAAMUVNTo6dPn6q0tFQJCQmhH++U/t5XDgDRgiE5AAAAAAAAhkhNTR30b5vNpoGBAdlsNvl8PkNVABB+DMkBAAAAAAAwRFdX1z8+czqdw1gCAG8XQ3IAAAAAAAAAQMwaYToAAAAAAAAAAABTGJIDAAAAAAAAAGIWQ3IAAAAAAAAAQMxiSA4AAAAAAAAAiFkMyQEAAAAAAAAAMYshOQAAAAAAAAAgZjEkBwAAAAAAAADELIbkAAAAAAAAAICY9RfrwAZ7Iy79FQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Exclude the 'id', date and 'price_range' column from the correlation matrix\n", - "correlation_matrix = housing_data.drop(columns=['id', 'price_range', 'date']).corr()\n", - "\n", - "# Set up the matplotlib figure\n", - "plt.figure(figsize=(20, 20))\n", - "\n", - "# Create a heatmap using seaborn\n", - "sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5)\n", - "\n", - "# Add a title\n", - "plt.title('Correlation Matrix')\n", - "\n", - "# Show the plot\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Price has a moderate positive correlation with sqft living (0.70), grade (0.67), sqft above (0.61). This means that as the values of these features increase, the price of the house also tends to increase." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4.STATISTICAL ANALYSIS.\n", - "\n", - "Statistical analysis plays a crucial role in understanding relationships within datasets, identifying patterns, and gaining insights. In this regression modeling project aimed at predicting property values, several key steps in statistical analysis are essential:\n", - "\n", - "\n", - "1. Descriptive Statistics\n", - "2. Correlation matrix\n", - "3. Distribution Analysis\n", - "4. Inferential Statistics using Hypothesis Testing and Analysis of Variance\n", - "5. MultiColinierity" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### **a.) Descriptive Statistics**\n", - "\n", - "Initial insights into the central tendency, dispersion, and shape of the data distribution.\n", - "
Understanding the characteristics of the data." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontconditiongradesqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15house_agerenovation_agetotal_sqft
count2.114200e+04211422.114200e+0421142.00000021142.00000021142.0000002.114200e+0421142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.00000021142.0000002.114200e+04
mean4.581107e+092014-10-29 08:57:27.7722068485.405060e+053.3711572.1160962080.9425311.508757e+041.4936150.0067163.4098485.6583101789.104437291.8380951971.02435968.2597201987.30247812739.32220252.9756410.9556811.924945e+04
min1.000102e+062014-05-02 00:00:007.800000e+041.0000000.500000370.0000005.200000e+021.0000000.0000001.0000001.000000370.0000000.0000001900.0000000.000000399.000000651.0000009.0000000.0000002.013000e+03
25%2.123049e+092014-07-22 00:00:003.220000e+053.0000001.7500001430.0000005.043000e+031.0000000.0000003.0000005.0000001200.0000000.0000001952.0000000.0000001490.0000005100.00000027.0000000.0000008.820000e+03
50%3.904940e+092014-10-16 00:00:004.500000e+053.0000002.2500001910.0000007.620000e+031.5000000.0000003.0000005.0000001560.0000000.0000001975.0000000.0000001840.0000007626.00000049.0000000.0000001.159350e+04
75%7.309100e+092015-02-18 00:00:006.450000e+054.0000002.5000002550.0000001.069575e+042.0000000.0000004.0000006.0000002210.000000560.0000001997.0000000.0000002360.00000010087.00000072.0000000.0000001.546000e+04
max9.900000e+092015-05-27 00:00:007.700000e+0611.0000008.00000013540.0000001.651359e+063.5000001.0000005.00000011.0000009410.0000004820.0000002015.0000002015.0000006210.000000871200.000000124.00000090.0000001.653959e+06
std2.876357e+09NaN3.680831e+050.9022130.768545918.5638164.121013e+040.5392520.0816800.6504221.174272828.413341442.50436429.322166362.774103685.67165527169.85997129.3221665.8246594.156724e+04
\n", - "
" - ], - "text/plain": [ - " id date price \\\n", - "count 2.114200e+04 21142 2.114200e+04 \n", - "mean 4.581107e+09 2014-10-29 08:57:27.772206848 5.405060e+05 \n", - "min 1.000102e+06 2014-05-02 00:00:00 7.800000e+04 \n", - "25% 2.123049e+09 2014-07-22 00:00:00 3.220000e+05 \n", - "50% 3.904940e+09 2014-10-16 00:00:00 4.500000e+05 \n", - "75% 7.309100e+09 2015-02-18 00:00:00 6.450000e+05 \n", - "max 9.900000e+09 2015-05-27 00:00:00 7.700000e+06 \n", - "std 2.876357e+09 NaN 3.680831e+05 \n", - "\n", - " bedrooms bathrooms sqft_living sqft_lot floors \\\n", - "count 21142.000000 21142.000000 21142.000000 2.114200e+04 21142.000000 \n", - "mean 3.371157 2.116096 2080.942531 1.508757e+04 1.493615 \n", - "min 1.000000 0.500000 370.000000 5.200000e+02 1.000000 \n", - "25% 3.000000 1.750000 1430.000000 5.043000e+03 1.000000 \n", - "50% 3.000000 2.250000 1910.000000 7.620000e+03 1.500000 \n", - "75% 4.000000 2.500000 2550.000000 1.069575e+04 2.000000 \n", - "max 11.000000 8.000000 13540.000000 1.651359e+06 3.500000 \n", - "std 0.902213 0.768545 918.563816 4.121013e+04 0.539252 \n", - "\n", - " waterfront condition grade sqft_above sqft_basement \\\n", - "count 21142.000000 21142.000000 21142.000000 21142.000000 21142.000000 \n", - "mean 0.006716 3.409848 5.658310 1789.104437 291.838095 \n", - "min 0.000000 1.000000 1.000000 370.000000 0.000000 \n", - "25% 0.000000 3.000000 5.000000 1200.000000 0.000000 \n", - "50% 0.000000 3.000000 5.000000 1560.000000 0.000000 \n", - "75% 0.000000 4.000000 6.000000 2210.000000 560.000000 \n", - "max 1.000000 5.000000 11.000000 9410.000000 4820.000000 \n", - "std 0.081680 0.650422 1.174272 828.413341 442.504364 \n", - "\n", - " yr_built yr_renovated sqft_living15 sqft_lot15 house_age \\\n", - "count 21142.000000 21142.000000 21142.000000 21142.000000 21142.000000 \n", - "mean 1971.024359 68.259720 1987.302478 12739.322202 52.975641 \n", - "min 1900.000000 0.000000 399.000000 651.000000 9.000000 \n", - "25% 1952.000000 0.000000 1490.000000 5100.000000 27.000000 \n", - "50% 1975.000000 0.000000 1840.000000 7626.000000 49.000000 \n", - "75% 1997.000000 0.000000 2360.000000 10087.000000 72.000000 \n", - "max 2015.000000 2015.000000 6210.000000 871200.000000 124.000000 \n", - "std 29.322166 362.774103 685.671655 27169.859971 29.322166 \n", - "\n", - " renovation_age total_sqft \n", - "count 21142.000000 2.114200e+04 \n", - "mean 0.955681 1.924945e+04 \n", - "min 0.000000 2.013000e+03 \n", - "25% 0.000000 8.820000e+03 \n", - "50% 0.000000 1.159350e+04 \n", - "75% 0.000000 1.546000e+04 \n", - "max 90.000000 1.653959e+06 \n", - "std 5.824659 4.156724e+04 " - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "housing_data.describe()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Price Distribution:**\n", - "\n", - "The price of houses in the dataset varies widely, ranging from $78,000 to $7,700,000, with an average price of $540,506. The standard deviation of $368,083.1 indicates a significant dispersion around the mean, suggesting a diverse range of housing prices.\n", - "\n", - "**Bedrooms and Bathrooms:** \n", - "\n", - "The average number of bedrooms is approximately 3.37, while the average number of bathrooms is about 2.12. The standard deviations for both variables are relatively small, indicating less variability compared to other features.\n", - "\n", - "**Square Footage:**\n", - "\n", - " The average square footage of living space is around 2,080, with a standard deviation of 918.56. Similarly, the average lot size is approximately 15,087 square feet, with a larger standard deviation of 41,210.13, suggesting more variability in lot sizes compared to living space.\n", - "\n", - "**Floors:**\n", - "\n", - "On average, houses have 1.49 floors, with a standard deviation of 0.54. This indicates some variability in the number of floors, although most houses seem to have either one or two floors.\n", - "\n", - "**Waterfront Property:**\n", - "\n", - " Only a small percentage (0.7%) of the houses are waterfront properties, based on the average value. This feature is likely represented as a binary variable (0 for no waterfront, 1 for waterfront), with most houses being non-waterfront properties.\n", - "\n", - "**Condition and Grade:**\n", - "\n", - "The average condition of houses is approximately 3.41, with a standard deviation of 0.65, suggesting some variability in the condition ratings. Similarly, the average grade is around 5.66, with a standard deviation of 1.17, indicating variations in the overall quality of houses.\n", - "\n", - "**Year Built and Year Renovated:**\n", - "\n", - "The houses in the dataset span a wide range of construction years, from 1900 to 2015, with an average year of construction around 1971. The standard deviation of 29.32 indicates some variability in the construction years. Additionally, the average year of renovation is approximately 68.26, with a standard deviation of 443.5, suggesting that most houses have not been renovated." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### **b.) Correlation Analysis with House Prices**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Correlation analysis was performed to examine the relationship between various features and the target variable, 'price'. \n", - "
Here are the correlation coefficients between each feature and the price:\n" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "price 1.000000\n", - "bedrooms 0.316573\n", - "bathrooms 0.525899\n", - "sqft_living 0.702340\n", - "sqft_lot 0.087940\n", - "floors 0.256372\n", - "waterfront 0.265970\n", - "condition 0.035264\n", - "grade 0.667751\n", - "sqft_above 0.605167\n", - "sqft_basement 0.325003\n", - "yr_built 0.054471\n", - "yr_renovated 0.116721\n", - "sqft_living15 0.586441\n", - "sqft_lot15 0.083196\n", - "house_age -0.054471\n", - "renovation_age 0.082356\n", - "total_sqft 0.118225\n", - "dtype: float64" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "drop_var = ['id', 'price_range', 'date']\n", - "\n", - "correlation = housing_data.drop(drop_var, axis=1).corrwith(housing_data['price'])\n", - "correlation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "These correlation coefficients indicate the strength and direction of the linear relationship between each feature and the price of the houses.\n", - "
Features with higher positive correlation coefficients, such as 'sqft_living', 'grade', 'bathrooms', and 'sqft_above', have a stronger positive linear relationship with the price, indicating that as these feature values increase, the price tends to increase as well. Conversely, features with low or negative correlation coefficients, such as 'condition', 'yr_built', 'sqft_lot', and 'house_age', have weaker or negative linear relationships with the price.\n", - "
However, it's imperative to underscore that correlation does not imply causation. There could be an underlying third factor driving changes in both features, underscoring the need for thorough investigation beyond correlation analysis." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### **c.) Distribution Analysis**\n", - "\n", - "Distribution analysis involves understanding the distribution of data, such as whether it follows a normal distribution and skewed distribution" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
iddatepricebedroomsbathroomssqft_livingsqft_lotfloorswaterfrontcondition...sqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15house_agerenovation_agetotal_sqftprice_range
071293005202014-10-1312.3099871.3862940.6931477.0741178.6395880.6931470.01.386294...7.0741170.00000019550.0000007.2011718.639588690.0000008.988571100K-300K
164141001922014-12-0913.1956161.3862941.1786557.8520508.8877911.0986120.01.386294...7.6829435.99396119517.5968947.4330758.941153733.5263619.424080300K-600K
256315004002015-02-2512.1007181.0986120.6931476.6476889.2104400.6931470.01.386294...6.6476880.00000019330.0000007.9087558.995041910.0000009.353661100K-300K
324872008752014-12-0913.3113311.6094381.3862947.5812108.5173930.6931470.01.791759...6.9574976.81454319650.0000007.2159758.517393590.0000009.096163600K-1M
419544005102015-02-1813.1421681.3862941.0986127.4271448.9972710.6931470.01.386294...7.4271440.00000019870.0000007.4960978.923191370.0000009.344959300K-600K
\n", - "

5 rows × 21 columns

\n", - "
" - ], - "text/plain": [ - " id date price bedrooms bathrooms sqft_living \\\n", - "0 7129300520 2014-10-13 12.309987 1.386294 0.693147 7.074117 \n", - "1 6414100192 2014-12-09 13.195616 1.386294 1.178655 7.852050 \n", - "2 5631500400 2015-02-25 12.100718 1.098612 0.693147 6.647688 \n", - "3 2487200875 2014-12-09 13.311331 1.609438 1.386294 7.581210 \n", - "4 1954400510 2015-02-18 13.142168 1.386294 1.098612 7.427144 \n", - "\n", - " sqft_lot floors waterfront condition ... sqft_above sqft_basement \\\n", - "0 8.639588 0.693147 0.0 1.386294 ... 7.074117 0.000000 \n", - "1 8.887791 1.098612 0.0 1.386294 ... 7.682943 5.993961 \n", - "2 9.210440 0.693147 0.0 1.386294 ... 6.647688 0.000000 \n", - "3 8.517393 0.693147 0.0 1.791759 ... 6.957497 6.814543 \n", - "4 8.997271 0.693147 0.0 1.386294 ... 7.427144 0.000000 \n", - "\n", - " yr_built yr_renovated sqft_living15 sqft_lot15 house_age \\\n", - "0 1955 0.000000 7.201171 8.639588 69 \n", - "1 1951 7.596894 7.433075 8.941153 73 \n", - "2 1933 0.000000 7.908755 8.995041 91 \n", - "3 1965 0.000000 7.215975 8.517393 59 \n", - "4 1987 0.000000 7.496097 8.923191 37 \n", - "\n", - " renovation_age total_sqft price_range \n", - "0 0.000000 8.988571 100K-300K \n", - "1 3.526361 9.424080 300K-600K \n", - "2 0.000000 9.353661 100K-300K \n", - "3 0.000000 9.096163 600K-1M \n", - "4 0.000000 9.344959 300K-600K \n", - "\n", - "[5 rows x 21 columns]" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from scipy.stats import skew\n", - "\n", - "# Select numerical variables only\n", - "numerical_data = housing_data.select_dtypes(include=['number'])\n", - "\n", - "# Compute skewness for each numerical variable\n", - "skewness = numerical_data.apply(lambda x: skew(x.dropna()))\n", - "\n", - "# Select variables with skewness above a certain threshold (e.g., 0.5)\n", - "skewed_variables = skewness[abs(skewness) > 0.5].index\n", - "\n", - "# Log transformation for skewed variables\n", - "df_log = housing_data.copy() # Create a copy of the original DataFrame to preserve the original data\n", - "df_log[skewed_variables] = housing_data[skewed_variables].apply(lambda x: np.log1p(x))\n", - "\n", - "# Check the distributions before and after transformation if needed\n", - "# For example, you can use histograms or density plots to visualize the distributions\n", - "\n", - "# Print the first few rows of the transformed data to verify\n", - "df_log.head()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n", - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n", - " with pd.option_context('mode.use_inf_as_na', True):\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAArmCAYAAACgTmnUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXyU5b3//9dsyUwWshD2RcUEV6iIsonQUlPbImBZtL9DrdhaeijW4zlFXICv9GtB1LZayldqsRRrabFgaUulim09Lig0WgTFQokiRiAhC9kmM8lsvz8mMxATkplk9ryfj0cekLm367pnuG/uz3yuz2Xw+Xw+REREREREREREYsgY7waIiIiIiIiIiEjvo6CUiIiIiIiIiIjEnIJSIiIiIiIiIiIScwpKiYiIiIiIiIhIzCkoJSIiIiIiIiIiMaeglIiIiIiIiIiIxJyCUiIiIiIiIiIiEnMKSomIiIiIiIiISMwpKCUiIiIiIiIiIjGnoJRInE2bNo177733nMvvvfdepk2bFsMWiYhIIrnooov46U9/Gu9miIhIq67+/56o+xZJROZ4N0Ckt1u3bh1ZWVnxboaIiCSoZ599loEDB8a7GSIiIiIRp6CUSJxdeuml8W6CiIgksCuuuCLeTRARERGJCg3fE4mzs1N06+rquO+++xg/fjxXX301jz76KF6vN84tFBGRSJg2bRqPPfYYDz30EOPGjWPcuHHcfffdnD59GvAP17711lt54IEHuOqqq/jKV76C2+1uN3yvurqa+++/n0mTJjFmzBjmz5/P22+/HVzu9Xr5+c9/TnFxMZdffjnXX389zzzzTMz7KyKSylwuFz/4wQ+4+uqrufrqq7nnnnuoqakJLn/rrbf42te+xmc+8xnGjRvXbjnAoUOHuO222xgzZgyf+9zn+NOf/tTuOBdddBHr1q1jzpw5jB07lieeeAKAjz76iDvvvJNrrrmGK664gltuuaXNvQCgoaGBhx56iOuuu45Ro0Zxww03sG3btjbrTJs2jXXr1vHQQw8xfvx4xowZw/e+9z3sdjs///nPmTJlCmPHjuW73/1u8H4FcPDgQW699VbGjh3LmDFjWLBgAfv37+/xeZXeR5lSIgnC6/Vy++2388knn7BkyRL69u3LU089xYEDB+jfv3+8myciIhHwm9/8hvPOO4/Vq1dTU1PDj370Iz788EO2bt0K+B9iDAYDP/3pT7Hb7ZjNbf+r1tTUxFe/+lVcLhff+973GDhwIE8//TS3334727Zt48ILL2TlypX8/ve/59vf/jZjxoyhpKSE1atXU19fz+LFi+PRbRGRlPOXv/yF0aNHs2bNGmpqavjhD3/IsWPH2LJlCyUlJdx2221MmDCBxx9/nLq6On7yk5/w9a9/nW3btmG1WqmoqOBrX/saw4cP59FHH6WxsZEf/vCHVFdXtzvW+vXr+a//+i8uuugiBg4cSGlpKTfddBPnnXcey5cvx2Kx8Ktf/Ypbb72VjRs3Mm7cOJxOJ//xH/9BVVUV3/3udxk2bBh//etfWbZsGVVVVfznf/5ncP+//OUvmTRpEo899hjvvvsuP/7xjzl48CADBgzgwQcf5OjRozzyyCMUFBTwwAMP0NjYyO2338748eNZu3YtLpeL9evX881vfpOXX36Z7OzsWL4VkuQUlBJJEK+++ioHDhzgySef5LOf/SwAEyZMUJFzEZEUYjAY+OUvfxn8D3t+fj6LFy/m1VdfBcDtdvP973+f8847r8Ptt2/fTllZGX/4wx+4+OKLAbjqqqu48cYbKSkpwWg08rvf/Y7/+Z//YeHChQBMnjwZg8HAk08+yX/8x3+Ql5cXg56KiKS2Pn368NRTTwVrw+bl5bF48WJef/111q1bxwUXXMCTTz6JyWQC4DOf+QzTp0/nueeeY/78+WzatAm3282GDRvo27cvABdccAE33XRTu2ONHj06eE0HuOuuu4KBqMD95LOf/Sw33HADjz76KFu3buX3v/89//73v/nNb37D2LFjAbj22mtxu9088cQTfPWrXyU3NxeAzMxMHnvsMcxmM5MmTWL79u2cOnWKrVu3kp2dzdSpU9mzZw///Oc/ASgtLaWmpoZbbrkluO8RI0awZcsWGhsbFZSSsGj4nkiCeOutt7BYLEyZMiX4WkZGBlOnTo1jq0REJJI+97nPtfnP+rRp07BYLLz11lsAWK1Whg8ffs7t33rrLYYOHRoMSAGkp6fzl7/8ha9+9avs2bMHn8/HtGnTcLvdwZ9p06bR3NzcbmiHiIh0z9SpU9tMVhS4nr/xxhvs37+fqVOn4vP5gtfhYcOGceGFF7J7924A3n77ba644opgQAr8gavBgwe3O9bIkSPb/P6Pf/yj3f3EbDYzffp03n33Xex2O//4xz8YMmRIMGgUMHPmTJqbm9sMtRs9enSbzNx+/foxYsSINvvPzc2loaEBgKKiIvLz81m0aBEPPPAAf//73+nXrx9Lly5l0KBBYZ1HEWVKiSSIuro6cnNzMRrbxor79esXpxaJiEikfXo4ttFoJDc3l/r6egD69u2LwWA45/a1tbVtHmA6Wg4wffr0DpdXVFSE2WIREelIQUFBm9/Pvp57vV42bNjAhg0b2m2Xnp4O+P/vP3To0HbLO/q//6ePVVdX1+61wHo+n4/GxsZO1wGC9x2gw5nAbTZbu9cCMjMz2bx5M+vXr2fnzp1s2bIFm83GzJkzWbZsWbCPIqFQUEokQeTl5XH69Gk8Hk8wzRfOPGCIiEjy+/Q13ePxcPr0afLz8ykvL+9y++zsbD755JN2r+/bt4+srCz69OkDwNNPP01mZma79Tr6Bl5ERMJ3dlAHzlzPs7KyMBgMLFiwoMMvCALBnry8PKqqqtotD+X//jk5OR1uW1lZGdx3Tk4Ox44d63SdnhgxYgSPPvooHo+HAwcO8Mc//pHf/va3DB06tM1QQ5GuaPieSIKYOHEibrebv/71r8HXWlpagim+IiKS/F577TVaWlqCv//tb3/D7XYzceLEkLa/6qqrKCsr4/Dhw8HXWlpa+O53v8vvfvc7rr76agBOnz7NqFGjgj+1tbU8/vjj+qJDRCRC3njjDdxud/D3F198EbfbzZQpU7j00kv58MMP21yHi4qKWLduHXv37gX8tWP37dvXJoO1tLSUsrKyLo999dVX8/LLLweH04E/KPb8888zatQo0tLSuPrqqzl+/Hi7Ydt/+tOfsFgsjB49utt9f+GFF5gwYQKVlZWYTCbGjBnDypUr6dOnT0hfsIicTZlSIgli4sSJTJ48meXLl1NdXc2QIUP41a9+RU1NTadDNUREJHmUl5ezaNEivv71r3Py5El+/OMfM3nyZMaPH8/27du73H727Nk888wzLFq0iP/6r/8iPz+fzZs343Q6ueWWWxg+fDgzZ85kxYoVHD9+nMsvv5yjR4/y2GOPMXToUM4///zod1JEpBcIzGp3yy238NFHH/HjH/+Ya665hokTJwYnm/je977HzJkz8Xg8bNy4kf3797No0SIAbr31VrZt28Y3v/lNvvvd7+LxeHj88cexWCxdHvuOO+7g1Vdf5etf/zoLFy4kLS2NX//615SVlfHUU08B/vvFb37zG+644w7uvPNOhg0bxt///neee+457rjjjmBmbXdceeWVeL1eFi9ezMKFC8nMzOQvf/kLDQ0NfOELX+j2fqV3UlBKJIGsW7eOH/7wh6xdu5bm5ma+/OUvc9NNN/G3v/0t3k0TEZEImD59On369OGuu+4iIyODr3zlK/z3f/93yNtnZWXx61//mkceeYRVq1bhdrv5zGc+wzPPPBMskP7QQw/x5JNPsmXLFsrLy+nbty9f/vKXueuuu9oMDxcRke676aabcDqdLF68mLS0NGbMmMHdd9+NwWBg8uTJ/OIXv2DdunXceeedWCwWLrvsMn75y19yxRVXAP7hc7/97W9ZtWoV9957L5mZmdx+++3s3Lmzy2MXFRXxm9/8hh//+Mfcf//9GAwGRo8eza9+9SuuuuoqwD9M8JlnnuFHP/oRa9eupbGxkREjRrBq1Srmzp3bo77379+fp556ip/85CcsW7YMh8NBUVERP/3pT5kwYUKP9i29j8Hn8/ni3QgRERGRVDdt2jTGjRvHmjVr4t0UERERkYSgmlIiIiIiIiIiIhJzCkqJiIiIiIiIiEjMafieiIiIiIiIiIjEnDKlREREREREREQk5hSUEhERERERERGRmFNQSkREREREREREYk5BKRERERERERERiTkFpUREREREJOHV1NRQXFzM3r17g6/t37+fefPmMWbMGKZNm8bWrVvbbLN9+3aKi4u54oormD17Nvv27Qsu83g8PPzww0yaNIkxY8awaNEiTp06FVxeXV3Nd77zHa666irGjx/PqlWrcLvd0e+oiEgvYo53A5JRdXUD4cxZaDBA377ZYW+XTNTH5Jfq/QP18VzrSmSE+rnqDZ/DntI5Co3OU2h0nrp29jmCxLw3vP3229x77718/PHHwdfq6upYuHAhd955JzfffDMlJSUsXryYiy66iNGjR7N3714efPBBNmzYwOjRo9m8eTOLFi3i5ZdfxmazsX79enbv3s1zzz1HdnY2K1asYPny5fz85z8H4K677mLAgAG89tprVFVVsWjRIjZt2sTtt98eVtsT/bOX6v9G1L/klur9g+TpY7SeHRSU6gafj259WLq7XTJRH5NfqvcP1EeJjnDPud6jrukchUbnKTQ6T11L1POzfft21q5dy913381///d/B1/ftWsXubm5zJ8/H4CJEycyY8YMNm/ezOjRo9m6dSvTp09n7NixACxYsIBnn32WnTt3MmfOHLZu3cqSJUsYNGgQAMuWLWPy5MmUlZXh9Xr5xz/+wauvvorNZmPYsGF85zvf4dFHHw07KJUsn71kaWd3qX/JLdX7B72jjx1RUEpERERERBLW5MmTmTFjBmazuU1Q6siRI4wcObLNuoWFhWzbtg2A0tJS5syZ0275oUOHaGhooLy8vM32BQUF5OTkcPjwYQByc3MZMGBAcPmFF17IiRMnqK+vp0+fPiG332AIva/xEGhforezu9S/5Jbq/YPk6WO02qeglIiIiIiIJKx+/fp1+Lrdbsdms7V5zWq10tTU1OVyu90OQEZGRrvlgWWf3jbwe1NTU1hBqUQcDtmRZGlnd6l/yS3V+we9o48dUVBKRERERESSjs1mo6Ghoc1rTqeTzMzM4HKn09lueV5eXjDA5HA4Otze5/O1Wxb4PbD/UCVLnZhEb2d3qX/JLdX7B8nTR9WUEhERERERaTVy5Eh2797d5rXS0lKKiooAKCoq4siRI+2WT5kyhZycHAYMGEBpaWlwCF9lZSW1tbWMHDkSr9dLbW0tVVVVFBQUAPDBBx8wcOBAsrPDeyhLljoxydLO7lL/kluq9w96Rx87Yox3A0RERERERMJVXFxMVVUVmzZtwuVysWfPHnbs2BGsIzV37lx27NjBnj17cLlcbNq0ierqaoqLiwGYPXs269evp6ysjMbGRlavXs24ceMYPnw4559/PmPHjmX16tU0NjZSVlbGE088wdy5c+PZZRGRlKNMKRERERERSTp5eXls3LiRVatWsXbtWvLz81m+fDkTJkwA/LPxPfDAA6xcuZKKigoKCwvZsGEDubm5ACxevBi32838+fOx2+2MHz+exx9/PLj/tWvX8n//7//l85//PEajkRtvvJHvfOc7ceipiEjqMvh8vTFBrGeqqsIb62kwQEFBdtjbJRP1Mfmlev9AfTzXuhIZoX6uesPnsKd0jkKj8xQanaeunX2OQPeGSEv0z16q/xtR/5JbqvcPkqeP0Xp20PA9ERERERERERGJOQWlREREREREREQk5hSUEhERERERERGRmFNQSkREREREREREYk5BKRERERERERERiTkFpURERBKYz+ejqakJTZYrIiLJzOv1curUKU6dOoXX6413c0QkQZjj3QCRaJo8ZQLlJ092ud7AQYN4/dU9MWiRiEh4HA4H617azx3FnyEjIyPezREREemWqqoqnvzbfgC+/fnP0L9//zi3SEQSgYJSktLKT55k6dOvdLneI7dOjUFrRES6x5JujXcTREREeiwzJz/eTRCRBKPheyIiIiIiIiIiEnMKSomIiIiIiIiISMwpKCUiIiIiIiIiIjGnoJSIiIiIiIiIiMScglIiIiIiIiIiIhJzCkqJiIiIiIiIiEjMJXRQqqamhuLiYvbu3Rt87cUXX2TWrFlceeWVTJs2jXXr1uH1eoPLt2/fTnFxMVdccQWzZ89m3759wWUej4eHH36YSZMmMWbMGBYtWsSpU6di2icREREREREREQFzvBtwLm+//Tb33nsvH3/8cfC19957j6VLl/L4448zdepUjh49yre+9S0yMjL4xje+wd69e3nwwQfZsGEDo0ePZvPmzSxatIiXX34Zm83G+vXr2b17N8899xzZ2dmsWLGC5cuX8/Of/zyOPZWAyVMmUH7yZJfrDRw0iNdf3RODFomIiIiIiIhItCRkUGr79u2sXbuWu+++m//+7/8Ovn78+HG++tWv8rnPfQ6ACy+8kOLiYkpKSvjGN77B1q1bmT59OmPHjgVgwYIFPPvss+zcuZM5c+awdetWlixZwqBBgwBYtmwZkydPpqysjGHDhsW+o9JG+cmTLH36lS7Xe+TWqTFojYiIiIiIiIhEU0IO35s8eTIvvfQSX/7yl9u8fv3113PfffcFf3c6nfzv//4vl112GQClpaWMHDmyzTaFhYUcOnSIhoYGysvL2ywvKCggJyeHw4cPR7E3IiISSR0N7d6/fz/z5s1jzJgxTJs2ja1bt7bZRkO7RUREREQST0IGpfr164fZ3HkSV2NjI4sXL8ZqtbJgwQIA7HY7NputzXpWq5WmpibsdjsAGRkZ7ZYHloXKYAj/p7vbJdNPT/sYjfcg0vtM9fcx1funPna8bjJ5++23ufnmm9sM7a6rq2PhwoXceOONlJSUsGrVKh566CEOHDgAEBzavWbNGkpKSpg5cyaLFi3C4XAAtBna/dprr2G1Wlm+fHlc+hfg8/loamrC5/PFtR0iIiIiItGUkMP3uvLhhx9y55130rdvX371q1+RlZUFgM1mw+l0tlnX6XSSl5cXDFYFHkLOXp6ZmRnW8fv2ze5Wu7u7XU9devkoTpw4EdK6gwcP5v333u32sXrSR4PRQEZGekjrFRSEdpxo7DNe72OsJHv/Qv289/SznuiS/X3syLmGdu/atYvc3Fzmz58PwMSJE5kxYwabN29m9OjRSTm02+Fw8NNd73D7tSOxWm1dbyAiIiIikoSSLij1yiuv8D//8z/cdNNNfO9732uTUVVUVMSRI0farF9aWsqUKVPIyclhwIABbYb4VVZWUltb227IX1eqqxsI58trg8H/gBjudpFy/JPjIdVqAn+9pqqqhrCPEYk++rw+mpqaQ1ov1DZGcp/xfh+jLVX619nn3WAAmy0dh6OZh7/evc96ogvnfQysmywmT57MjBkzMJvNbYJSR44c6XDo9rZt2wD/fWDOnDntlocytDucoFSomWdnZ7N1to7BYODJl9/nP6ddetZrITcnqYVyjkTnKVQ6T13TORIRkXhJqqDUO++8w+LFi1m5ciVz585tt3zu3LksXryYL33pS4wdO5bNmzdTXV1NcXExALNnz2b9+vWMGjWKvLw8Vq9ezbhx4xg+fHhY7fD56NZDe3e3i7WetDFWfYzGMULdZ7K8j92Vyv0L9OvTf6aiVHwf+/Xr1+HrnQ3d7mp5JId2hxvg62z9piYTVlsaxswM+vbNxmZLo6AgG5vNhsPhwGazYegFT4/JFDSNJ52n0Og8dU3nSEREYi2pglI/+9nPcLvdrFq1ilWrVgVfHzt2LE899RQTJ07kgQceYOXKlVRUVFBYWMiGDRvIzc0FYPHixbjdbubPn4/dbmf8+PE8/vjj8emMiIhEhM1mo6Ghbdbb2UOzYzW0O9Qsw1Cy2ZqamnA6WjAYPVRXN+BwtLRm9jXw0137+e4XPtMukJZKUiVzM9p0nkKj89S1s88RKDglIiKxk/BBqbNnxvvZz37W5fqzZs1i1qxZHS6zWCwsWbKEJUuWRKx9IiISXyNHjmT37t1tXistLaWoqAiI3dDucLPTOlv/7Nc/ndlnSbemZCZcR3pLP3tK5yk0Ok9d0/kREZFYS8jZ90REREJVXFxMVVUVmzZtwuVysWfPHnbs2BGsIzV37lx27NjBnj17cLlcbNq0qcOh3WVlZTQ2NnZ7aLeIiIiIiIQn4TOlREREOpOXl8fGjRtZtWoVa9euJT8/n+XLlzNhwgQADe0WEREREUlQCkqJiEjSOXtoN8CoUaPYsmXLOdfX0G4RERERkcSj4XsiIiIiIiIiIhJzCkqJiIiIiIiIiEjMKSglIiKSoHw+Hw6HQzNiiYiIiEhKUlBKREQkQblbmvnFq//C43bFuykiIiIiIhGnoJSIiEgCs6RZ490EEREREZGoUFBKREQkgZ1sgr0nWzhd34hP4/hEREREJIUoKCUiIpKgfD7YXwPHGrx8/y+HcDod8W6SiIiIiEjEKCglIiKSoE63gMPj/3uD1xTfxoiIiIiIRJiCUiIiIgnqRNOZv9c2e+PXEBERERGRKFBQSkREJAH5fL42Qam6Zp9qSomIiIhISjHHuwEiIiLSnt3t/wl8e+TyQkWjK65tEhERERGJJGVKiYiIJKBmjz8rymqG7DT/ax/WOOPYIhERERGRyFJQSnodn8+Hx6shMCKS2FytJaQsBsix+P/+gYJSIiIiIpJCNHxPegWny8P7FY18UGWnzuEGIC/DwsUDsrhkQFacWyci0l4gKGU2Qk4aYIejp5s5PzuuzRIRERERiRgFpSTFGTh4soG3ympp8bTNjqppcvHG0dOUVtoxpGXEqX0iIh1znxWUymrNlKpodHF+tiV+jRIRERERiSAFpSRl1TpcZH35e7zx0WkA8jMsjBqczeA+VgA+qnHwVlktpxpbyPry93C4PNgspng2WUQkyNU6zNhiAGvrpanG4QYUlBIRERGR1KCaUpKSjtU08Y3f7MMy/DOYDAYmnZ/HV0YPZGS/LLLSzWSlm7l8UDYzLxtAmsmAeeBIfvzyB/FutohI0NnD9wJBqVqHG69PNfFEREREJDUoU0pSzttltSz90/vUO9146iuZM3kU+ZlpHa6bn5lG8UX9eP79U/zh3XJuuGwAnxmSE+MWS28zecoEyk+eDGndgYMG8fqre6LcIklEgeF7FiOkG8EA+ACnW0EpEREREUkNCkpJSnn+YAU/2PVv3F4flw/K5vWnF5N//Y5OtxmcY6X5X6+QfslUHv5bKb++5UqMBkOMWiy9UfnJkyx9+pWQ1n3k1qlRbo0kqsDwPbMBDAawmsHhBoeCUiIiIiKSIjR8T1KC1+fjidePsvKFw7i9Pq4bWcD6eaPxOepD2t6xZwuZaSaOVNp542hNlFsrItI111mZUgA2kz9Y7nApKCUiIiIiqUFBKUl6jc1ulvzhIL/cWwbAgnHDWHXDJVjDKFrua27kK6MHAbD5rU+i0k4RkXCcPfsegNXcGpQKLBARERERSXIKSklS+6DKzjd+8w6vfVhDutnI//3yRSy+9oJuDb+7ecxgTEYDb5XVcaiiIQqtFREJ3aczpaytA+6VKSUiIiIiqUI1pSQpub0+nikpY8Obx3B5fPTPSuPRWZdx6cDsbu2vscnO5LEXkfn575BWNJF59zyMY/cz7dYbMnQIr/7vGz1tvohIl86uKQWQjj9KZW/xxKtJIiIiIiIRpaCUJB3z4Iv5xm/28a+KRgAmj8hn2RdGUnCOGfZC4fN6Wfr0K3x82sGLhyrJu/KLLP7WN9tlXD1622d70HIRkdC5P50p1Toi2elRppSIiIiIpAYFpSQp+Hw+yuubefuTOrJnLuNfFY1kpZv43ucuZPqlAzBEaLa8ITlW0s1GHC4vJ+uaGZJrjch+RUTC5WpXU8r/p2bfExEREZFUoaCUJDSHy8ORSjuHTzVS63AD4PO4uWnscL4xfhgFWekRPZ7JaOCCvhkcqmiktMquoJSIxIXP5ztTU6o15h7MlFJQSkRERERShIJSknB8Ph/H65wcOmXnWE0TrWVVMBsNFPbLZM+Pbmfp0n9G7fgXtgalPj7twOfztcnCamxs5MLC80Laz8BBg3j91T3RaqaIpDDnWTPsmdsN3/PX1RMRERERSXYKSkmnTtQ5OVrTRLPLQ47NwkX9s8hKj9LHxpzO++UNvHuygXqnO/hyQWYaFw/I5MK+maSZjbzZWB2d47cakJ2OxWjA6fZSbXdRkHWmVpW3tfZUKB65dWq0migiKa7prGLmpta4uNHtxEA6PgzUNLnokxWnxomIJJCDBw+yevVqDh8+jNVq5Ytf/CJLly4lLS2N/fv384Mf/IDS0lLy8vJYtGgR8+bNC267fft2nnjiCSorKxkxYgQrVqxgzJgxAHg8Hn74wx/yxz/+EYfDwYQJE/j+979P//7949VVEZGUpKCUdOjvR6p4+h9lvF/e0OZ1A/CZIX2YeflArruoHzaLqcfHOtXQzO/eOUHO1x5n99HTAKSZDBQWZHLxgCz69qCAeXeYjAYG51g5dtpBWa2jTVBKRCQW7C3+TCmLEQLJmgYDpBmh2Qt1ZwXuRUR6K6/Xy7e//W0WLlzIM888w6lTp1iwYAF5eXl87WtfY+HChdx5553cfPPNlJSUsHjxYi666CJGjx7N3r17efDBB9mwYQOjR49m8+bNLFq0iJdffhmbzcb69evZvXs3zz33HNnZ2axYsYLly5fz85//PN7dFhFJKQpKSRt2l4fPfOeHpF04DvDXb/LUnoAWB4bMfEx9+vHO8XreOV7Pj17+gC9fOoCbxwzm/L4ZYR/rUEUDv3n7OLsOV+Lx+jBas+iTbubyQdmM7J+JxWSMdPdCNjTXH5T6pNbJmKE5cWuHiPRO9hZ/0Mn8qTkcAkGpBgWlRESoq6ujsrISr9eLz+cf1mw0GrHZbOzatYvc3Fzmz58PwMSJE5kxYwabN29m9OjRbN26lenTpzN27FgAFixYwLPPPsvOnTuZM2cOW7duZcmSJQwaNAiAZcuWMXnyZMrKyhg2bFh8OiwikoIUlJKgFreXgq8sJ23opRgM8JnBfbh8UDY2y4jgOo3Nbkqr7Ox599/Ycwaw9Z0TbH3nBJMuyOPbnyvikrx0DJx7Jjyny8Nf/13JHw6Us/9EffD1MUNzeO2p7/PNlT/CGKGZ9HpiaK4NOE1FYzMtbi9p5vgFyESkd/H5fNQ0NgH+TKmzBX6vb1ZQSkQkLy+PBQsW8PDDD/PII4/g8Xj4/Oc/z4IFC1izZg0jR45ss35hYSHbtm0DoLS0lDlz5rRbfujQIRoaGigvL2+zfUFBATk5ORw+fDjsoFQC/Ne2U2dn5MbiOIG/x+q8xKp/8aL+Jb9k6WO02qeglADg9fn467+rsA69lDSTgS9e0p8B2e1ntstKN3PFkBx23X83m/+6j2f/eZzXP6zhjaOneePoPxjcJ51rL+zL6MF9GJxjxWo2Ud/s4qPqJv75SR27j9bQ2OyvlWIyGrhuZAH/MXYolw7MpnD52wkRkALoYzXTx2qm3ummvKGZ4Xm2eDdJRHoJh8PBH94+Cpj4dDzcYvQBBuqbPR1tKiLSq3i9XqxWKytWrGDu3LkcO3aMO+64g7Vr12K327HZ2v7/zWq10tTkD/p3ttxutwOQkZHRbnlgWTj69s0Oe5t4iHY7PZ4mbLa01mNlUVAQ2/OSLO9Dd6l/ya839LEjCkoJAG+X1XG8zonX5WT6qPNDqKPkY/x5eYw/L4+y0w62vnOCHQcrOFHfzLP7TvDsvhPn3HJwjpUbRw3khssG0C+rfeArUQzMTqfe6aZCQSkRiTGfKQ3wYOlg+B5o+J6ICMBLL73Eiy++yAsvvABAUVERixcvZtWqVcyYMYOGhra1UZ1OJ5mZmQDYbDacTme75Xl5ecFglcPhOOf24aiubsCXwJOmGgz+h+Fot7O6uhGHoyX4d5Mp/PIf3RGr/sWL+pf8kqWPgXZGmoJSQkVDM+8c9w+lq3lhHQVT1oa1/bA8G9+bdiErbrycnW+Xseej0xw+1UhlYwvNbi+Z6SaG5tq4dEAWE8/PZ/SQPgmTEdWZAdnp/LvSTnl9c7ybIiK9jMvr/x9J+0wp/58aviciAidPnqSlpaXNa2azGYvFwsiRI9m9e3ebZaWlpRQVFQH+ANaRI0faLZ8yZQo5OTkMGDCA0tLS4BC+yspKamtr2w0JDIXPR0I/aAZEu51n7zse5yRZ3ofuUv+SX2/oY0cUlOrlvF4fr31QA8DIfpl8fPj1bu8rI83MZ4sKmFpYEHxt8pQJfHjyJO8Cf+li+0Z7Y7ePHQ0D+/izuCobW/B4fZiMiR9IE5HU4PJPvtdBTSn//1QanBq+JyIyefJkfvSjH/Gzn/2Mb33rW5w4cYL169czY8YMiouLefTRR9m0aRPz58/n7bffZseOHTzxxBMAzJ07l8WLF/OlL32JsWPHsnnzZqqrqykuLgZg9uzZrF+/nlGjRpGXl8fq1asZN24cw4cPj2eXRURSjoJSvdzBigZOO1ykm42MPy+Xv0Z4/+UnT7L06VdCWnfFnCsjfPSeybGaSTcbaXZ7qba30L+DGlsiItHgbg1KfTpTKk2ZUiIiQYWFhTz55JM8/vjjPPXUU2RnZzNz5kwWL15MWloaGzduZNWqVaxdu5b8/HyWL1/OhAkTAP9sfA888AArV66koqKCwsJCNmzYQG5uLgCLFy/G7XYzf/587HY748eP5/HHH49fZ0VEUpSCUr2Yy+PlnU/8w/auHp6L1WKKc4sSi8FgYEB2Oh+fdlDe0KyglIjETDAo9akEzUCNqQYFpUREAJg0aRKTJk3qcNmoUaPYsmXLObedNWsWs2bN6nCZxWJhyZIlLFmyJCLtFBGRjiX0PPc1NTUUFxezd+/e4Gv79+9n3rx5jBkzhmnTprF169Y222zfvp3i4mKuuOIKZs+ezb59+4LLPB4PDz/8MJMmTWLMmDEsWrSIU6dOxaw/iea9kw043V76pJu5qF/4RRt7gwHZ/oLvpxpUV0pEYsfTWlDg06OGgzWlNHxPRERERFJAwgal3n77bW6++WY+/vjj4Gt1dXUsXLiQG2+8kZKSElatWsVDDz3EgQMHANi7dy8PPvgga9asoaSkhJkzZ7Jo0aLgzBnr169n9+7dPPfcc7z22mtYrVaWL18el/7Fm8vj5d2T/hlJxg7Lwah6SR3ql+nPjqqyu+LcEhHpTVrrnLcLSqW11pTS8D0RERERSQUJGZTavn07S5Ys4b//+7/bvL5r1y5yc3OZP38+ZrOZiRMnMmPGDDZv3gzA1q1bmT59OmPHjsVisbBgwQLy8vLYuXNncPm3vvUtBg0aRFZWFsuWLePVV1+lrKws5n2MtyOVdprdXrLTzYwoiM10rMmob6YF8A+VaQ6MpxERiTJPa1DKdM5MKQWlRERERCT5JWRQavLkybz00kt8+ctfbvP6kSNH2k3DWlhYyKFDhwDaTNv66eUNDQ2Ul5e3WV5QUEBOTg6HDx8Oq30GQ/g/3d0uEj+f5vP5gllSlw/KxtjRSt04D+d6LRq62/dwWS0mstL9tbaqm1qCx450OxPlJxnbHM57fnYf49nXcEXzfZTEFMyU+tTrgaBUi8eH06UhfCIiIiKS3BKy0Hm/fv06fN1ut2Oz2dq8ZrVaaWpq6nK53W4HICMjo93ywLJQ9e2bHdb6Pd2upwxGAxkZZ4p0H62yU+90k242csV5+aR9anqns9ftbJ8FBe378+k+fvrYXenJsc+1bqjHP9d6A/vYKK1spK7Znylls4W2v3DamUji9TmNlFDec5stPa7vTzify+62M9nfx97uXMP3zAYwAD782VKaoEJEREREkllCBqXOxWaz0dDQ0OY1p9NJZmZmcLnT6Wy3PC8vLxisCtSX6mj7UFVXN9BagzYkBoP/ATHc7SLF5/XR1HSmUPf+j08DUNQvE3eLC3dL2/XPXrezfVZVnXkvztXHTx+7K905dlfrhnr8c62Xa/U/9J2s9Qc/HY7mkN7HcNqZCOL9OY2Uzt5zg8EfkHI4muP6/oTzuQy3neG8j4F1JfGca/iewQBpJmj2+INSmhVURERERJJZUgWlRo4cye7du9u8VlpaSlFREQBFRUUcOXKk3fIpU6aQk5PDgAED2gzxq6yspLa2tt2Qv674fHTrob2720WSvcXNx6f9gbmL+2f1aF8d9SVWfYzleSzI9M/AV9XYEvax4/1+d0cifE6jJdCvT/+Z6JL1eiPdd65MKYA0o4Fmj486pyZgEBEREZHklpA1pc6luLiYqqoqNm3ahMvlYs+ePezYsYM5c+YAMHfuXHbs2MGePXtwuVxs2rSJ6upqiouLAZg9ezbr16+nrKyMxsZGVq9ezbhx4xg+fHg8uxVT/z5lxwcMyE4nL8MS7+YkhYIsf1CqzunGYLHGuTUi0ht4WyOKHQalWkfsqdi5iIiIiCS7pMqUysvLY+PGjaxatYq1a9eSn5/P8uXLmTBhAgATJ07kgQceYOXKlVRUVFBYWMiGDRvIzc0FYPHixbjdbubPn4/dbmf8+PE8/vjj8etQjPl8Pv5d6a+fdXH/8IYs9mY2iwmbxYjD5cXSd1i8myMivYCns0wpk7+qVL0ypUREREQkySV8UOrTM+ONGjWKLVu2nHP9WbNmMWvWrA6XWSwWlixZwpIlSyLaxmRRZW+h3unGZDRwft+MrjeQoLwMC466ZiwFvSerTkTip9Phe8qUEhEREZEUkVTD96RnjrRmSZ2fZyPNpLc+HPk2/xA+BaVEJBaChc47WJbWGqmqdSgoJSIiIiLJTZGJXsLr8/FhtX/2uMJ+GroXrkD9LUtfBaVEJPo6z5Tyv9jYrKCUiIiIiCQ3BaV6iZP1zThcXtLNRobmqFh3uIJBKWVKiSSsgwcPMn/+fK666iomT57MD37wA1pa/LNm7t+/n3nz5jFmzBimTZvG1q1b22y7fft2iouLueKKK5g9ezb79u2LRxeCOgtKWVrv3Bq+JyIiIiLJTkGpXuKj1iyp8/NtGDt6ypFO5dn8QSlzdl+cLk+cWyMin+b1evn2t7/N9ddfzz/+8Q+2bdvG66+/zoYNG6irq2PhwoXceOONlJSUsGrVKh566CEOHDgAwN69e3nwwQdZs2YNJSUlzJw5k0WLFuFwOOLWn64LnStTSkRERESSn4JSvYKBj2r8D1cX5KvAeXekmY1ktVYXPu3QjFciiaauro7Kykq8Xi8+nz+iYzQasdls7Nq1i9zcXObPn4/ZbGbixInMmDGDzZs3A7B161amT5/O2LFjsVgsLFiwgLy8PHbu3BmXvnh9PlpjUpg6Ckq13rkbFJQSERERkSSnoFQvYBpYSJPLg8VkYLCG7nVbYAjf6SYFpUQSTV5eHgsWLODhhx9m1KhRTJ06lfPPP58FCxZw5MgRRo4c2Wb9wsJCDh06BEBpaWmny0NlMIT+09n67sDYPdpnShkMYGl9saHZHdYxk+0n3HPaW390nnSeonGOREREYsUc7wZI9KVdcBUA5+XZMEVo6F5jk53CovPavGYwGvCd9TAF0GhvjMjxEkGuzUJZrZNaZUqJJByv14vVamXFihXMnTuXY8eOcccdd7B27Vrsdjs2m63N+larlaYm/7DmrpaHqm/f7Iis7zGeuY5m2tKC122z0QcmEwZjGtCCvcVDQUF4x0w24Z7T3krnKTQ6T13TORIRkVhTUCrF+Xw+LCOuBuD8CA7d83m9LH36lTavZWSk09TU3Oa1FXOujNgx4y23ta5UnaZhF0k4L730Ei+++CIvvPACAEVFRSxevJhVq1YxY8YMGhoa2qzvdDrJzPTPRGqz2XA6ne2W5+XlhdWG6uoGfL6u1zMY/A9+51q/vKo++PdmZ0swa8HV0ozBZMZnCVyLXFRW1mNIwbSGrs6R+Ok8hUbnqWtnnyNQcEpERGJHQakUd+hUI6bsfpiNBoblauheT+TY/P9cap3KlBJJNCdPngzOtBdgNpuxWCyMHDmS3bt3t1lWWlpKUVER4A9gHTlypN3yKVOmhNUGn4+wHnjPtX5La5VzI+2H0fh8YPGXt8Pt9eFwebEFXkhB4Z7T3krnKTQ6T13T+RERkVhTTakU9/KRKgCG5Voxm/R290QgU6qx2YPb441za0TkbJMnT6ayspKf/exneDweysrKWL9+PTNmzKC4uJiqqio2bdqEy+Viz5497Nixgzlz5gAwd+5cduzYwZ49e3C5XGzatInq6mqKi4vj0peW1uvLuUZbmw1nCqA3OJW5KSIiIiLJS5lSKS4QlIrk0L3eymo24nU2YrRmUe90k5+ZFu8miUirwsJCnnzySR5//HGeeuopsrOzmTlzJosXLyYtLY2NGzeyatUq1q5dS35+PsuXL2fChAkATJw4kQceeICVK1dSUVFBYWEhGzZsIDc3Ny59cQUypc4RlDIYDGSlm6lzumlodtM/Oz2GrRMRERERiRwFpVLYsZomPqpx4PO4GZ5n63oD6ZTBYMBVc5z0wRdRq6CUSMKZNGkSkyZN6nDZqFGj2LJlyzm3nTVrFrNmzYpW08Li6iJTCiAr3eQPSilTSkRERESSmMZzpbDXP6wBwH3yEGlmvdWR4Dp9HEAz8CUYn89Htb0Fp8sT76aI9FigppSps6BUmr+OVEOzglIiIiIikryUKZXCXvuwGgDXsX3Al+PbmBThrjkB+Ge9ksTw71ONPPr3Ut457p+xLOvLS3C4PCld/FlSW1c1pQCy0/23bwWlRERERCSZKX0mRdU7XbzzSR0Aro/2xbk1qcNV8wkAdQ49CCaCf1U08I3fvhMMSAFYhn+G7QfKadTDuiQp11mz751LVro/6KrPuYiIiIgkMwWlUtSbR0/j8cEFfTPwNlTGuzkpw336JAD1ehCMuyp7C0v+cJBmt5erhuWw41vj+O2tY/HUnsTe4uHVD2rwaW5rSUIh1ZRqHb5Xr5pSIiIiIpLEFJRKUYGhe9eOyI9zS1KLu64CgGa3l2a3N86t6d1+8sqHnGps4YL8DB6ddRkD+1gpLMik8S8/xmQwcLzOyaFT9ng3UyRsLV3MvgdnMqU0fE9EREREkpmCUinI7fXxxtHTAFw7om+cW5NafC4nNov/n41mvYqfgyfreeFfpzAA//fLF5GVfqY8nreunKuG5wDwz7I6PF5lS0lycYVQ6DxQU0rD90REREQkmSkolYL2H6+jodlNjtXMqMF94t2clBN4GNQQvvj5yatHAZh+2QAuHpDdbvllA7PJsJhocnkorVK2lCQXDd8TERERkd5CQakU9NoHNQBcMyIfU2dPNdItfaytQSk9DMbFwfIG9n1Sh9lo4D+vOb/DdUxGA6MG+4NV+4/Xq7aUJBWXN/The8qUEhEREZFkpqBUCjpTT0pD96IhEJTS8L342PLP4wB84eJ+DMhOP+d6F/fPwmIyUOd0U17fHKvmifSY3en/vIYyfK+h2ROLJomIiIiIRIWCUinmWE0TH592YDIamHB+Xrybk5LODN9zxbklvU9lYzMvHfbPJvnVK4d0um6a2ciIvhkAHNEQPkkigZpSnd2gA8P3Gpy6DomIiIhI8lJQKsW8/qF/6N6VQ3PaFH+WyMlWplTc7Hz/FB6vj9GD+3BJB7WkPq2oIBOAD6ubcKvguSSJkGpKBWffU6aUiIiIiCQvBaVSTHDo3oUauhctgeF7jc0evAp0xIzP5+P5gxUAzLx8QEjbDOyTTmaaCZfHx8enHdFsnkjEhFJT6uzZ97yqmSYiIiIiSUpBqRRS73Txzid1AFw7Ij/OrUldGRYTJoMBH9DYomypWPlXRSNHa5pINxv5/Mh+IW1jMBgobM2WOlrdFM3miURMcPheJ0GpzNbhez7ArmwpERGRDnm9Xk6dOkVFRQVerzfezRGRDigolULePHoajw8u6JvB0FxbvJuTsgwGQ3AIn2bgi52d7/uzpD5b2Desoann5fv/LXxS68CjzDZJAoFMqc4KnaebjaSb/bfwBs3AJyIi0qGqqip+9tf9/OiPJVRVVcW7OSLSARUdSiG9Zda9xiY7hUXnhbauvTEqbehjNVHrcOlhMEa8Ph9/+7f/PxJfvKR/WNv2z0rDZjHicHkpb2gmO8sajSaKRExLCJlSPp+PrDQTzW6vrkMiIiKdyMzJx2ZLi3czROQcFJRKEW6vjzeOngZgyoWpPXTP5/Wy9OlXQlp3xZwro9KG4Ax8ypSKiXdP1FNlbyEzzcS44eHNKmkwGBiWa+PflXaO1TRRNCgnSq0UiYxQhu85nQ5aXP6Z9xoVlBIRERGRJKXheyli//E6Gprd5FjNXD6oT7ybk/L6WC2AZuCLlb8f8WdJTR6RT5o5/MtWYAjfx6cd+FQUWhJccPa9LtYLDN9TcFxEREREkpUypVLEax/UAHDNiHxMnX29LhERrCmlDIUemTxlAuUnT3a5Xt7XfwIZ+UwLscD5pw3JsWI0QEOzhzqHCyVwSyILZfY9gLTWolMaviciIiIiyUpBqRTRW+pJJYo+Zw3f8/l8GAwKBHZH+cmTXQ7FrLa38PsD5aSbjUw6P7yhewEWk5H+WemUNzTzyWkHI/JUV0oSV2D4XmeFzgEsrSto+J6IiIiIJCsN30sBx2qa+Pi0A7PRwIRuPrRLeLLT/dOxuzw+mt2aXjaaymqdAFw9PBerxdTt/QzO8QeiymqaItIukWgJpaYUQFrrChq+JyIiIiLJSkGpFPD6h/6he1cOzSErXclvsWA2GcloDZBo6Ex0fVLrAGDi+T0r4D8kJx2AMtWVkgQX7vA9ZUqJiIiISLJSUCoFBIbuTb5QQ/diKVhXSlkKUdPi9lLe0AzApAt6lgXYLysds9GAw+WhpskVieaJREXIw/da7+C6BomIiIhIslJQKsnVO12880kdANeO6FkmiYSnj4JSUXe8zonPB57akwzNtfVoXyajgYF9/NlSJ+qckWieSFR0lSnl8/lwOByYfB4AapuaY9U0EREREZGIUlAqyb159DQeH1zQN6PHD+0SnrOLnUt0lLUO3XOVHYjI/oa01pU6rqCUJDCXx1+n7lw3aHdLM7949V/BoFS9o4WmJtVKExEREZHko6BUktOse/ETGL6nei7R4fP5+KS1yLnr4/0R2Weg2Hl5fTMYu180XSSaQil0bkmzBofv2Vs02YKIiIiIJCcFpZKY2+vjjaOnAZhyoYbuxVpW6wx8jc2eOLckNZ1ucmFv8WAyGHCfOBSRffbNsGC1GHF5fZj6XRCRfYpEWmD4Xqg1pRpbdA0SERERkeSkoFQS23+8joZmNzlWM5cP6hPv5vQ6gZkOG1vcms0tCspas6QG56SDJzKFyQ0GA0PzMgCwDLksIvsUibRQMqWgbVBK1yARERERSUbmeDegOw4ePMjq1as5fPgwVquVL37xiyxdupS0tDT279/PD37wA0pLS8nLy2PRokXMmzcvuO327dt54oknqKysZMSIEaxYsYIxY8ZEvc2XXj6K458c73K9gYMG8fqre0La52sf1ABwzYh8TF09vUjEZVpMGACvDxwuLxlpGg4WSYF6UkNzbUSmopTfsDwbpacaMQ+5NIJ7FYmcUINSaa1BKafbR2NTE5mZmVFumYiIiIhIZCVdUMrr9fLtb3+bhQsX8swzz3Dq1CkWLFhAXl4eX/va11i4cCF33nknN998MyUlJSxevJiLLrqI0aNHs3fvXh588EE2bNjA6NGj2bx5M4sWLeLll1/GZotukfATJ06w9OlXulzvkVunhrxP1ZOKL6PRQEaaCXuLh4Zmt4JSEeT2eKlo8M8oNizXGtF9D2vNlDIPKKTZ7SXdrIRRSRw+n6/L2fcCzv7oNrZ4GBDFdomIiIiIREPSPY3V1dVRWVmJ1+sNDlcwGo3YbDZ27dpFbm4u8+fPx2w2M3HiRGbMmMHmzZsB2Lp1K9OnT2fs2LFYLJZgMGvnzp3x7FK3HKtp4uPTDsxGAxPOz4t3c3qt4BA+FTuPqIqGFrw+yEwz0cca2dh5boYFm8WIwZzGwfL6iO5bpKc83jPD8Lq6QRsNYG4NXNlVV0pEREREklDSZUrl5eWxYMECHn74YR555BE8Hg+f//znWbBgAWvWrGHkyJFt1i8sLGTbtm0AlJaWMmfOnHbLDx0Kr4iyIcyRcoH1DQYIpexHKPt//ah/6N6Vw3KCs8DFU7h9TEYd9TE73URFw7mLnYf7WYmns/sXbyfq/fWkBvVJx2Aw0Nhkp7DovJC2bbQ3nnOZweCvKzWoj5UPq5vY90kdY4flRqLJURXOexLO+5gI77W05T47KBXC+2MxgtsDjZqBT0RERESSUPyjGWHyer1YrVZWrFjB3LlzOXbsGHfccQdr167Fbre3G4ZntVppamoC6HJ5qPr2ze5W22229C7XMRgNFBR0vf89H9cC8KXRg7tc32A0kJHR9bEDQl23o/U66mOsjh2rfZ7dx7ysdKhqwun1tds+1Pcy0XT3890d5/pslje0AHBBv2wyMtLxeb2s3BparbXvfemyLt/L8woy+bC6iQPljXF5j8L5N9ndz1Es30eJnEA9KQg9KOXwKFNKRERERJJT0gWlXnrpJV588UVeeOEFAIqKili8eDGrVq1ixowZNDQ0tFnf6XQGi7/abDacTme75Xl54Q1/q65uCCsbKJCN4HA0d7mdz+ujqqqh03XqnS5KWjOlxgzI7HJ9n9dHU1NzyO0Ndd2z1zMY/MGajvoY7WPHap8dvY/prU+NtfbmdtuH8l4mEoPBH8gI9/PdEx19Nls8XipaM6X62kzB5ZF4zwOf0wKb/9L39rHTnCivIy3GdaXC+TcZ7uconPcxsK4kDrf3TMZTKIlswRn4zpGtKSKS6mpra1m9ejWvvPIKXq+Xq6++mpUrV9K/f/8eTYDk8Xj44Q9/yB//+EccDgcTJkzg+9//Pv37949XV0VEUlLS1ZQ6efIkLS0tbV4zm81YLBZGjhzJkSNH2iwrLS2lqKgI8AewOlseKp8v/J/AdpHY/xsfnsbjgwv6ZjAkxxbSsaMt3D4mo476mNVa3PxcD4Td+azE8yfWbe5IRX0zPvxDI7PTIxs3Dxwzx2rG21RHs9vLwZMNcTnP4bY7Wu+jJJZAppSB0IZXBoNSGr4nIr3Ud7/7XZqamnjppZd4+eWXMZlMrFixgrq6OhYuXMiNN95ISUkJq1at4qGHHuLAAf+cvoEJkNasWUNJSQkzZ85k0aJFOBz+2X/Xr1/P7t27ee6553jttdewWq0sX748nl0VEUlJSReUmjx5MpWVlfzsZz/D4/FQVlbG+vXrmTFjBsXFxVRVVbFp0yZcLhd79uxhx44dwTpSc+fOZceOHezZsweXy8WmTZuorq6muLg4zr0Kj2bdSxyBQucNKnQeMWfqSUV21r2zGQwG3Cf9teTe/qQ2ascRCZc7xJn3AtJa7+IavicivdF7773H/v37WbNmDX369CErK4sHH3yQJUuW9HgCpK1bt/Ktb32LQYMGkZWVxbJly3j11VcpKyuLZ5dFRFJO0g3fKyws5Mknn+Txxx/nqaeeIjs7m5kzZ7J48WLS0tLYuHEjq1atYu3ateTn57N8+XImTJgAwMSJE3nggQdYuXIlFRUVFBYWsmHDBnJzc+PbqTC4vT7eOHoagCkX5se5NZKV7s+Ucnl8NLu9pMd4GFgqOlHnH9Y2OCd6QSkA94l/kXbheN4uq+ObE8693uQpEyg/eTKkfQ4cNIjXXw2t9pVIR4JBqRDXD2RKNSgoJSK90IEDBygsLOR3v/sdv/3tb3E4HFx77bXcc889HDlypNsTIDU0NFBeXt5m+4KCAnJycjh8+DDDhg0Lq52JPrFIrCa7OXv//slnonu8Tx8nVseMtUSarCgaUr1/kDx9jFb7Ih6U2rt3L+PHj4/0btuYNGkSkyZN6nDZqFGj2LJlyzm3nTVrFrNmzYpW06Ju//E6Gprd5NosXD6oT7yb0+tZTEasZiNOt5fGZjfp5rR4NympNbu9VNv9w3MH9wm9mH13uE74M6UOnKjH5fFiMXUcBig/eZKlT78S0j4fuXVqxNqXamJxb0gFLo9/GF6oN31LMFNKw/dEJDFF8/pfV1fH4cOHufzyy9m+fTtOp5OlS5dyzz33UFBQ0O0JkOx2OwAZGRntlgeWhSNZ6jdGu50eTxM2W1rrsbJiMtmMx9OE1eo/Zn5+bI4ZL8nyOeuuVO8f9I4+diTiQak777yT7OxsvvKVr/CVr3yFwYMHR/oQvdprH/gLnF9zQR6mUMd3SFRlpZtxultobHbTN1NBqZ4or3fiw1/zKTPC9aQ+zXv6OLk2C7UOF++XN/CZITlRPV5vp3tDaMIdvnemppQypUQkMUXz+p+W5v9/17Jly0hPTycrK4u77rqLm266idmzZ3c4wVEoEyAFglWB+lIdbR+OWE4i0x2xmuymuroRh6Ml+HeTKaOLLSJzTKezBas1jZqa2Bwz1uIxWVEspXr/IHn6GK1JkiI+1uj111/n7rvv5r333uP666/nG9/4Bn/+85/bFSeX7gnUk5qselIJIzCET7Nf9dyJev/QvUFRHroXcOVQfyDq7bK6mByvN9O9ITTu1kypcIfv6fojIokqmtf/wsJCvF4vLpcr+Jq3dRbTSy65pNsTIOXk5DBgwABKS0uDyyorK6mtrW03JDAU8Z7IJpEmu4nXOUmW90H96539S6Y+RkPEg1IWi4Xrr7+e9evX88orr3DdddexceNGJk+ezPe//30OHToU6UP2Gsdqmvj4tAOz0cCE8/Pi3RxpFSh23qhi5z12os7/jWW0h+4FjB2WC0BJWW1Mjteb6d4QmkCmlIbviUiqiOb1f9KkSQwbNoz7778fu91OTU0Njz32GNdddx033HBDjyZAmj17NuvXr6esrIzGxkZWr17NuHHjGD58eETOi4iI+EWtKnN1dTU7duzgD3/4A6WlpYwfP5709HQWLFjAz372s2gdNqW9/qF/6N6VQ3OCgRCJv0CmlAoN94zT5aGmyf9NZzRn3jvbuPNyAX+tNqdL718s6N7QOZfHH5QKd/Y9Dd8TkUQXjeu/xWLhmWeewWQycf3113P99dczcOBAVq9eTV5eHhs3buSFF15g/PjxLF++/JwTII0bN47nn3++zQRIixcvZurUqcyfP5+pU6fS3NzM448/HqGzISIiARGPbDz//PP88Y9/5I033mDEiBHMnj2bn/3sZ+Tn+2eKmzp1KosXL+Y///M/I33olBcYunfthRq6l0iy0pQpFQknW4fu5dosZKSZYnLM8/Js9M9K41RjC/uP1zNeGYhRo3tDaNzebg7fU1BKRBJUtK//AwYM4LHHHutwWU8mQLJYLCxZsoQlS5Z0q10iIhKaiAelvv/97zN9+nS2bNnC5Zdf3m75BRdcwIIFCyJ92JRX73Txzif+ujeTR+THuTVytmwN34uIWA/dAzAYDIw7L48/H6xg77HTCkpFke4NoQk3U+rs4Xs+nw9Dos8lLCK9jq7/IiLSmYgHpV5//XXKysoYMGAAAO+88w7Z2dlceOGFAAwcOJA777wz0odNeW8ePY3HBxf0zWBorq3rDSRmAsP3HC4vbq8Ps2ZF7JZAkfPBMSpyHjDuvFz+fLCCf3xcG9Pj9ja6N4SmuzWlXF4fzW4vVktssgxFREKl67+IiHQm4jWl/va3v3HjjTfy0UcfAbBv3z7mzZvHK6+8EulD9SrBoXuadS/hpJuNwUCUXdlS3dLU4qHWEagnFbtMKYCrh/uzow6faqTarpngokX3htAEglKh3pzNZwWvlK0pIolI138REelMxINS69at44knngim595222385Cc/4Uc/+lGkD9VruL0+3jh6GoApF2roXqIxGAzBbClNy949J+v9Q/fyMywxz/QoyEzjkgFZALxxtCamx+5NdG8IjcvTWlMqxEwpg+FMtlS9glIikoB0/RcRkc5EPCh18uRJrr322javTZ48mRMnTkT6UL3GwZP1NDS7ybGauXxQn3g3RzoQmA2xQQ+F3XKiLj5D9wKuucAf7A3McBlpLo+XFrc3KvtOFro3hCbc4XtwZga+BqeuPyKSeHT9FxGRzkQ8KDVkyBBee+21Nq+9+eabDB48ONKH6jXe/MifJTXuvDxMqleUkLJU7LxHTtTHvsj52QKTB+w9djqYqRIJ//yklu9ue5fP/nQ3k3/yOnM2lrDz/YqI7T+Z6N4QGrcnvNn34KwZ+JSpKSIJSNd/ERHpTMQLnS9cuJDFixfzhS98gSFDhnDixAleeuklHn744UgfqtcIBKUmfmpmsMlTJlB+8mSX2zfaG6PSLjkjOzB8T9Oyh83e7Kbe6cYADOwTn0ypSwZmk59hoabJxb5P6hh3Xs9m4XN7ffz45Q/Y+k7bb4E/Pu3ggb8cJvO6xXh9Poy9aKa0WNwbamtrWb16Na+88gper5err76alStX0r9/f/bv388PfvADSktLycvLY9GiRcybNy+47fbt23niiSeorKxkxIgRrFixgjFjxkSsbaEK1pQK46NxZvieKwotEhHpGT0biIhIZyIelJoxYwb9+/fnD3/4AwcPHmTQoEFs3LiRK6+8MtKH6hVqm1z8q7wBgAmfCkqVnzzJ0qe7LhK5Yo7OfbRlpSlTqrsCs+71zUwj3Rzx5M2QGA0GJo/I50/vVfD3I1U9Cko1u73c/+d/8eoH/skJvjJ6IP/flUPpYzWz471yfv7mMSicwD+O1bb7N53KYnFv+O53v0tOTg4vvfQSRqOR++67jxUrVvDII4+wcOFC7rzzTm6++WZKSkpYvHgxF110EaNHj2bv3r08+OCDbNiwgdGjR7N582YWLVrEyy+/jM0W29lOXZ7uB6UanAqKi0ji0bOBiIh0JuJBKYDx48czfvz4aOy619l77DQ+oKhfJv2y4jO0Sbp2ptC5glLhOlHXOnQvJ76f7+KL+vGn9yr427+rWPK5CzGbuhcge+ivR3j1g2rSzUZWTb+YqYUFwWULxg9ncI6VZc8f4t2TDQzJsTIsL7ZBj3iK5r3hvffeY//+/bzxxhtkZfkL1z/44INUVlaya9cucnNzmT9/PgATJ05kxowZbN68mdGjR7N161amT5/O2LFjAViwYAHPPvssO3fuZM6cOVFp77kEa0qFsc2Z4Xu6/ohIYtKzgYiInEvEg1IVFRWsX7+ejz76CK+3bW2WX/3qV5E+XMp785h/6N6EHg4nkugK1pRq8fS6YVk9daaeVHyG7gVcNTyPPJuF0w4XJWW1TDw//Jku0y//As8frMBogB/OupQJHezjCxf353urH8P6mS+x59hphuRYMfaCWnHRvjccOHCAwsJCfve73/Hb3/4Wh8PBtddeyz333MORI0cYOXJkm/ULCwvZtm0bAKWlpe2CT4WFhRw6dKjH7QpXuLPvAVgMPsBAvVPD90Qk8ejZQEREOhPxoNR9991HVVUVn/vc57BYLJHefcprbLJTWHRe8PecW36KMTOXJ/7PYtaeeL/tuqoVlTAy0kwYDODzQVOLJxikks4ZswtobPZgAAbEqch5gNlo4PMjC9i2/yQvHqoMOyh1vM6JbdJ/AHDnlBEdBqQCHG9vJ3fsdGodbv51qpHLBmb3qO3JINr3hrq6Og4fPszll1/O9u3bcTqdLF26lHvuuYeCgoJ2w/CsVitNTU0A2O32TpeHKtRYdGC9jtb3dFFTqqNtTD43YKG2qTmsWfsSWWfnSM7QeQqNzlPXonmO9GwgIiKdifiT87vvvsuLL75Ifn74WQYCPq83WCeq2t7C7w+UYzYa+K9VT7SbeU+1ohKH0WAgM81EY7MHu4JSITMPvgSAfllppHVzuFwkffGS/mzbf5K/Ha7kfz47gj7W0P7z3OB087d/V2EwmvjSJf35j7FDOt+gxcGVw3J44+hp3j3RwKUDsjCk+NNStO8NaWlpACxbtoz09HSysrK46667uOmmm5g9ezZOp7PN+k6nk8zMTABsNluHy/PywstQ7ds3vOBiR+ub0/2fOYvZhM3W9jpiNvrAZMJibvu5zEj3QSO4MFBQkFoBznDPaW+l8xQanaeuReMc6dlAREQ6E/En5+zs7ODDgfRMWe2ZWjufDkhJ4slON9PY7KGh2c2AbNX/CoV58KUADM6J79C9gNGD+1DUL5MjlXb+9F4FX7tqaJfbuDxedh2upNntxX3qQ+6/85qQAkwX9cvkrY9raWh2U1brZHiK15aK9r2hsLAQr9eLy+UiPd3/7y8wTOSSSy7hN7/5TZv1S0tLKSoqAqCoqIgjR460Wz5lypSw2lBd3YDP1/V6BoP/wa+j9Rsa/dd9r8eDw9G2cLmrpRmDyYzb1Hb4Cx4XkEZVvZOqqoaw2pyoOjtHcobOU2h0nrp29jmCyAan9GwgIiKdiXhqwne+8x3uu+8+Dhw4wIkTJ9r8SHg+qXUAMDQntR9WU0WwrpSKDYfE5/NhGeLPlBoU56F7AQaDgZuuGAzA1n3Hg0OpzsXn8/HqBzXUNLmwWYw0vvgTrBZTSMcym4yM7O8vyP1+eWoEEjoT7XvDpEmTGDZsGPfffz92u52amhoee+wxrrvuOm644QaqqqrYtGkTLpeLPXv2sGPHjmAdqblz57Jjxw727NmDy+Vi06ZNVFdXU1xcHFYbfL7Qf861vruL4XsdPVCbW9dtbPaE1YZE/wn3nPbWH50nnadonKNI0rOBiIh0JuKZUsuXLwfgpZdeAvwPeT6fD4PBwL/+9a9IHy5lub0+TjU0AzAkNzGySKRzWWmBGfg0LXsoPj7twJjVF6MBBiZQZtkXL+nPuteOcqK+mecPVnS67v4T9XxY3YTBAJ8fWcAz9pqwjnXpgCzeO9lAWa2TphYPGWmhBbSSUbTvDRaLhWeeeYY1a9Zw/fXX09zczLRp01i2bBl9+vRh48aNrFq1irVr15Kfn8/y5cuZMGEC4J+N74EHHmDlypVUVFRQWFjIhg0byM3N7XG7wuXy+J8Gw/nGKM3o36axRdceEUk8ejYQEZHORDwo9be//S3Su+yVKhub8fjAZjGSY1V9omSgTKnw/OPjWgAGZKdjToB6UgFWi4kF44fzk1c+5P+9fhTSOs5U/KDKTsnHdQBMOj+PQd2YPTDHZqF/VhqnGlv4qKaJS1O44Hks7g0DBgzgscce63DZqFGj2LJlyzm3nTVrFrNmzYpW00Lmbh1yGE6JsUCmVIOuPSKSgPRsICIinYn4k+CQIUMYMmQIdXV1HDx4kH79+mG1WhkypIvCv9LGyXp/ltSgPtaUL4CcKrLS/VkuDcqUCsk/jp0GYEiC1JM6281jBnNeno2aJhcZ13wd36fGMhyraeJ/S6sBf7bTJQOyun2sC/pmAPBhdXgzvSUb3RtCE8yUCuOyb2nNlLK3ePBGetyNiEgP6fovIiKdiXhQqrq6mq9+9avcdNNN3HPPPZSVlXHdddexb9++SB8qpZW3BqUGJkitHena2ZlSnw5iSFser4+3y/xZRokYlLKYjCz9fCFGA6RfNJndR0/T4vbi8nj5Z1kdLx2uwuuDC/JtTLwgr0eB4/Pz/UGp8vpmHK7UDWjq3hCaYE2pMLaxtK7s9UGThvCJSILR9V9ERDoT8aDU6tWrGTlyJCUlJZjNZi688EIWLlzII488EulDpSyv10dFaz2pQQlUa0c6FwhKub0+mt3eLtbu3Q6daqSh2Y2vuYmCrMSckWfceXks+8JIAP5V0civ3/qEp0s+4e1P6vABF/XPZFpRAcYeZjL2sZrpm2nBBxyrcfS84QlK94bQuDz+a0c4mVImw5n1NXxYRBKNrv8iItKZiAel9uzZw3333YfNZgtmD9x+++2UlpZG+lApq8regtvrI91kJC/DEu/mSIjMRgO21pQFDeHrXEnr0D3XiX/1OKgTTTMvH0jjiz8hx2rG0zojUZ90M58r7Mu1I/IxhhM56MR5ef66VcfrnBHZXyLSvSE0gUypcD9ZgWypeqeCUiKSWHT9FxGRzkS8grbFYsHpdGKz2YJDmOx2O5mZmZE+VMoqbzgzdE/1pJJLdroZh6tF2QpdCBQ5d3/yHvCVuLalK66jbzH3ikE0ON2YjAYy00wR/3c5JMfGPz+p53idMzgjUarRvSE07m7UlAJ/UKrZo2LnIpJ4dP0XEZHORDxTatq0adx999189NFHGAwGqqur+f73v8/UqVMjfaiUdVL1pJJWYAifHgzPzenysP+4v56U6/jBOLcmNEaDgRybhax0c1QCRv2z0rAYDTS7vVQ3uSK+/0Sge0NoArPvdScoBRq+JyKJR9d/ERHpTMSDUt/73vfIyMjgi1/8IvX19UyePBmHw8GSJUsifagUZaC83j+EZ5CCUkkn+6xi59KxAyfqafH46JeVhrf2ZLybkxCMRkMwCH28NjWH8OneEBpXN4fvpbVGsTR8T0QSja7/IiLSmYgP38vMzGTt2rXU1NTwySefMHDgQPr37x/pw6QsS8FwWjw+LEYDfTMTswC0nFtWugmARtWUOqfA0L1xw3P5d3ybklCG5Fopq3VyvM7JZ4b0iXdzIk73htC0tM7A6PN6AFPI2wUypZSlKSKJRtd/ERHpTMSDUiUlJW1+P3bsGMeOHQPg6quvjvThUk76sMsBGJCdntAFoKVj2Rq+16V/tBY5v3p4Hr+Oc1sSyeA+VgAqGprx+nwp9+9f94bQBAuda/ieiKQIXf9FRKQzEQ9K3XLLLe1eMxqNDBo0iL/97W+RPlzKSR96KaB6UskqK8rD9yZPmUD5ya6HvA0cNIjXX90TlTb0RJW9hX9VNAIw/vy8OLcmseRlWLCYDLg8PmqaXBSkWKak7g2hcXt6VlNKw/dEJNHo+i8iIp2JeFDq0KFDbX6vqanh//2//8eQIUMifaiUlD5oJODPlJLkExi+1+LxYUjLiPj+y0+eZOnTr3S53iO3Jmbx0DeP1gBwyYCslAu69JTRYKB/VjrH65ycamhOufOje0NogplS+MLazmI0AD5lSolIwtH1X0REOhPxQueflp+fz913383TTz8d7UMlvaYWD+Y+/QAoyEqtB9LewmIyYjX7/1kZswvi3JrE80ZrUOqaC/Lj3JLENCDb/+++oqE5zi2JPt0bOhYodN7dTKkG1bMTkQSn67+IiJwt4plSHamrq6O5OfUfsnrqVKP/HOXZLKSZoh4vlCjJSjfjdLdgzOob76bExTmHGBpN5N76BIb0DH689Bs8euoDGu2NsW9gAuvfmiFZ0dAS55bEhu4N7XkCQakwt0trrYne4HRFtkEiIlGg67+IiAREPCh13333tfnd5XLx9ttvM2nSpEgfKuWcan0Q7Z+tLKlklp1uosoOxux+8W5KXJxriOHJOid/fv8UVrOR2x/5BQaDgRVzroxDCxNX/yx/UKqh2U1Ti4eMtNBnX0t0ujeExuXpWaFzZUqJSKLR9V9ERDoT9Uyp9PR0brnlFm6++eZoHyrpBTKlAg+mkpwCxc6N2b0zU+pcPq51ADA014ohxWaWi5R0s5E8m4XTDheVjc2clx/5umSJQveGjrm7mSllaR3vp5k/RSTR6fovIiJni3hQ6qGHHor0LnsFr89Hld2fKdVP9aSS2pmgVO/MlDqXstNOAIbn2eLcksRWkJXGaYeLKntLSgWldG8IjaeHNaVU6FxEEo2u/yIi0pmIB6XWrVsX0np33HFHpA+d1OqdblweH16Xk7wMS7ybIz2Q3ToDnwqdn9HQ7Oa0w4UBGJqroFRnCjLTOFJpp8qeWrWBdG8ITaDQeXeH79lbPLi9PszhRrVERKJE138REelMxINSR44cYdeuXVx88cVccMEFlJeX889//pNLL72UzMxMAA3d6UAgS8pV+RFGw8g4t0Z6IpgplaWgVEDZaf/Qvf7Z6aSbVcS/MwWZ/qB0tT21ip3r3tA1n8/Xg+F7Z/7e2Owm16YvN0QkMej6LyIinYl4UMpoNHLffffx9a9/PfjaH//4R15++WUef/zxiByjtraW1atX88orr+D1ern66qtZuXIl/fv3Z//+/fzgBz+gtLSUvLw8Fi1axLx584Lbbt++nSeeeILKykpGjBjBihUrGDNmTETa1ROBB9CWU0fj3BLpqexAUMqWnXLFqrvrWI0/KDU8zxrnliS+/Ez/8F17i4emltQpWh2Le0OyCwzdg/AzpYwGAzaLEYfLq6CUiCQUXf9FRKQzEU9ZeOWVV5g/f36b12644QbefPPNiB3ju9/9Lk1NTbz00ku8/PLLmEwmVqxYQV1dHQsXLuTGG2+kpKSEVatW8dBDD3HgwAEA9u7dy4MPPsiaNWsoKSlh5syZLFq0CIfDEbG2dVd161CdlooP49wS6ak0s5E0k/+J8mS9M86tiT+ny8Px1vNwfgrVSIqWNJORHKs/sJlK2VKxuDckO/dZQanu3JyzWgPg9U7VlRKRxKHrv4iIdCbiQan8/HxKSkravPbaa68xcODAiOz/vffeY//+/axZs4Y+ffqQlZXFgw8+yJIlS9i1axe5ubnMnz8fs9nMxIkTmTFjBps3bwZg69atTJ8+nbFjx2KxWFiwYAF5eXns3LkzIm3rLp/PF3z4dFUqUyoVBLKlFJSCj2oc+HyQn2FR9kaIClqzpapSKCgV7XtDKnB5zgpKdWMkS5/WYGaDglIikkB0/RcRkc5EfPjet7/9bRYuXMj111/P4MGDKSsr4+WXX+anP/1pRPZ/4MABCgsL+d3vfsdvf/tbHA4H1157Lffccw9Hjhxh5Mi29ZgKCwvZtm0bAKWlpcyZM6fd8kOHDkWkbd3V1OLB6fZiAFxVH8e1LRIZWelmqptcnKxvjndT4u5odRMAI/oqSypUBVlpfFDdlFKZUtG+N6QCt9cb/Ht3qqsEJlmoc6ZWkXwRSW66/ouISGciHpSaN28eQ4YM4U9/+hPvv/8+w4YNY8uWLVx00UUR2X9dXR2HDx/m8ssvZ/v27TidTpYuXco999xDQUEBNlvbmb2sVitNTf6HYrvd3unyUIVb6yOwvsEAPl/75VVN/geIXJuFY+7kfAjtqo+pIJw+np0pFa/anT35nEbK2UP3LkiAoNSn+xiN9yYS+8xvnYGzpvXaEM4+w+lbLD+b0b43pIJAppQBX7fem8B1R8P3RCSR6PovIiKdiXhQCmDSpElMmjSJmpoa8vPzI7rvtDT/sJZly5aRnp5OVlYWd911FzfddBOzZ8/G6Ww7XMrpdAZn9rDZbB0uz8vLC6sNfftmd6vtNlt6h683VNgBGJDjLwKdkdHxeh0Jdd1Y7bOjPiZzfzpyrvfxbHnZ6VDeQI3TQ0FB9z4vHTEYDSG102A0dPu43f18n33sQBs/PFGHz+fP/BncN6vD9ePxntts6SGfo1DPeWDdSOxziMkEVFLvdGOwpHXrvezp+xgN0bw3pILgzHvdDBb2UVBKRBKUrv8iInIuEQ9KuVwu1q1bx69//Ws8Hg87duzgrrvuYv369fTv37/H+y8sLMTr9eJyuUhP9z/UeVuHPFxyySX85je/abN+aWkpRUVFABQVFXHkyJF2y6dMmRJWG6qrG8LKBgp84+1wNHe43claf6ZWTuvQi6am0Id8hbputPdpMPgf9DvqYzL2pyNdvY9ns7ZWazta2UhVVUNIxw+Fz+sLqT8+ry/s4xoM/kBGuJ/vjo4daOPhE/UAnJ9nO2e7Y/met/mchniOQj3ngXUjsk+fj3SzkWa3F2PO4LDey3Dex8C6sRDte0MqcHn897LuJrAFhu8pKCUiiUTXfxER6UzEC52vW7eOPXv28JOf/ASLxULfvn0ZOHAgq1atisj+J02axLBhw7j//vux2+3U1NTw2GOPcd1113HDDTdQVVXFpk2bcLlc7Nmzhx07dgTrSM2dO5cdO3awZ88eXC4XmzZtorq6muLi4rDa4POF/xPYriOBmff6thY3TkZd9TEVhNPHwDCa47WObn1eOvschdPe7n5OI9HGRBu6B+3fw0if80jt02AwBIfwmfoOi+r7GCvRvjekgp5mSmVbA5lSqiklIolD138REelMxDOlduzYwW9/+1sGDBiAwWAgIyODhx56KOzAz7lYLBaeeeYZ1qxZw/XXX09zczPTpk1j2bJl9OnTh40bN7Jq1SrWrl1Lfn4+y5cvZ8KECQBMnDiRBx54gJUrV1JRUUFhYSEbNmwgNzc3Im3rjha3l4Zm/7fafTM0M1mqCMyCVed00+B0Bx8We5PeOOteY5OdwqLzul7P3tjlOvkZFk7WN2PKGxqJpsVdtO8NqaAnQSmfz4fV4AH81x0RkUSh67+IiHQm4k/KTU1NwbHivtav4a1WK0Zj5JKyBgwYwGOPPdbhslGjRrFly5Zzbjtr1ixmzZoVsbb0VGB2raw0E1aLKc6tkUixmIx4m+owZuRwvM7BxdbEq+8Tbf+u9NdKu7AgMbKkYsHn9bL06Ve6XG/FnCu7XCc/w585aeqbGkGpWNwbkp27B8P33K5mdh/6GEijLoyhriIi0abrv4iIdCbid4MrrriCdevWAf4hKADPPPMMo0aNivShUkJ1kz8olcxD96Rj3vpTAByvc3axZuqpc7ioaGjGABT1y4x3c5JSXmD4Xv6wOLckMnRv6FpPh+/ZWicCqXO4gg9+IiLxpuu/iIh0JuKZUvfffz8LFixg+/bt2O12vvzlL2O32/nlL38Z6UOlhKpgPaneMbypN/HUn8I8sIjjtb0vKBXIkhqaayUzrfcNXYyEQFDKmJlHrcOV9EMgdW/omsvTGpTq5vZprRuWNzTjcDjIyOg9WYoikrh0/RcRkc5E/GmxoKCA559/nv/93//l+PHjDBw4kM9+9rNkZXU8HXxvFxi+p0yp1BPIlPqkzhHnlsSYwci/T/mDUsqS6r40k5HMNBP2Fg/HaprIHZIT7yb1iO4NXXO3ziRr6GamlKU1KOXyRqhBIiIRoOu/iIh0JuJBqRtuuIE//elPfOlLX4r0rlOO1+ej1tGaKZWhoFSqCQ7f62WZUpbzr6TJ5cFmMXJ+vjI1eiLXZsHe4uGjmiY+k+RBKd0buhbMlOpmUCqttSyhxwfNbi/61yciiUDXfxER6UxUKgw6HL0sM6Sb6p1uvD4wGw1kpavIearprTWl0i/7PAAX9c/C1N2nawEg1+b/3uBYTWpcU3Vv6FywplQ3tzcbzhRJD8zqKiKSCHT9FxGRc4l4ptT48eOZN28eU6ZMoX///m2W3XHHHZE+XFI73eTPksq1WYKFHyV1eBoqASivd+L2eDGbUn+WmY+qm7AMvRyAiwcoLb+nclrrSH1U0xTnlvSc7g1dc7XOvtfdWK7B4B/C1+KFeqcngi0TEek+Xf9FRKQzEQ9KffLJJwwbNoyjR49y9OjR4OsKurR3unXoXqCgsaQWn72WdLORZreX8oZmhuba4t2kqNv89icAnJdnIztdBc57KlDc/Njp5P+GWfeGrgUypXpyRgJBKWVKiUii0PVfREQ6E7Gnxm9+85v84he/4JlnngHA6XRitVojtfuUVNuaKZWX5LNqybn4GJpr5YOqJo6ddqR8UKra3sLO9ysAGDU4O86tSQ25Vv8l+nitA5fHiyUJs+10bwhdcPheD57T0oxgR0EpEYk/Xf9FRCQUEXvC2bdvX5vfp0yZEqldp6xAplSuMqVS1vA8f6nhj1Mg06Urv9t3nBaPD3dFKQOz0+PdnJSQkWbC1+LA44NPkrRgvu4NoXP3cPge+INSAPXNGr4nIvGl67+IiIQial+7+3y+aO06JXh9PuocypRKdcPz/NlRH6dATaDO1DlcPLvvBADOd55XSn6EGAwGPLUngdSoKwW6N3QmOPse3T9Hlta7ujKlRCTR6PovIiIdiVpQSg+lnWtwuvH4wKSZ91LaeYGgVIpnSv3mn8ext3go6peJ6+jb8W5OSgkEpY6lSFBK94ZzC9aU6kmmVOvtpEGFzkUkwUT7+u/xeLjlllu49957g6/t37+fefPmMWbMGKZNm8bWrVvbbLN9+3aKi4u54oormD17dpvsLo/Hw8MPP8ykSZMYM2YMixYt4tSpU1Htg4hIb5R8BUpSRHDons2MUQ9pKWt4LwhKnW5q4dl/Hgfg9onnQQ+yPKQ9byBTKoU/Q+LX09n34Ozhe8qUEpHeZd26dbz11lvB3+vq6li4cCE33ngjJSUlrFq1ioceeogDBw4AsHfvXh588EHWrFlDSUkJM2fOZNGiRTgc/vvt+vXr2b17N8899xyvvfYaVquV5cuXx6VvIiKpLGKFzt1uN3/4wx+Cv7tcrja/A9x4442ROlzSq9XQvV7hvNaaUuUNzThdHqyW1MuK2/Dmx9hbPFzcP4vPFvaNd3NSTrJnSuneEDpXoNB5D/YRCErVORWUEpH4iuX1/80332TXrl184QtfCL62a9cucnNzmT9/PgATJ05kxowZbN68mdGjR7N161amT5/O2LFjAViwYAHPPvssO3fuZM6cOWzdupUlS5YwaNAgAJYtW8bkyZMpKytj2LBhEWm3iIhEMChVUFDA2rVrg7/n5eW1+d1gMOjB4yynAzPvqch5SsuxmeljNVPvdFNW66CoX1a8mxRRH1U38fv9/lpS/zV1hLL+osBT6z+/H9U04fP5km74m+4NoYtEofPAaPBah4JSIhJfsbr+V1dXs2zZMp544gk2bdoUfP3IkSOMHDmyzbqFhYVs27YNgNLSUubMmdNu+aFDh2hoaKC8vLzN9gUFBeTk5HD48GEFpUREIihiQam///3vkdpVr3Bm+J6CUqnMYDAwPM/Geycb+Ph09IJSTS0e3j1ZT43dhdfnwzpmBpWNzfTLit4seD6fj0f/XorHB9eOyOeq4blRO1Zv5q2rwAA0NnuoaXLRNzMt3k0Ki+4NoQsWOo/A8L1ANq6ISLzE4vrv9Xq5++67ue2227j44ovbLLPb7dhstjavWa1Wmpqaulxut9sByMjIaLc8sCwcif59UqB90W7n2fs3GGJzXs4+TqyOGWuxev/iJdX7B8nTx2i1L2JBKQmd1+ejtsn/LbaG76W+QFDqWE10agIdrW7ildLq4NAfANv4m5j3y7e4c+oIvjJqYFSya3YdquQfH9eSZjLwP5+7MOL7l1YeF4NyrJyoc/JRTVPSBaUkdJEYvhfIlDqtTCkR6QWefPJJ0tLSuOWWW9ots9lsNDQ0tHnN6XSSmZkZXO50Otstz8vLCwarAvWlOto+HH37Zoe9TTxEu50eTxM2W1rrsbIoKIj+efF4mrBa/cfMz4/NMeMlWT5n3ZXq/YPe0ceOKCgVB43NHjw+HyYDZFv1FqS68/P937IdjUJNoI9qmvjbv6vwAQWZaVwyIAuvz8cre9/C3v9CHnrpCEdONbJkWiGmnqRffMrpphZ+/L8fAPCNCcMZmmvrYgvpifPzbZyoc3Kspomxw3Lj3RyJkkgUOg8EpeqdbjxeX0T/3YuIJJo//vGPnDp1iquuugogGGT661//ytKlS9m9e3eb9UtLSykqKgKgqKiII0eOtFs+ZcoUcnJyGDBgAKWlpcEhfJWVldTW1rYbEhiK6uoGfAk8D4zB4H8YjnY7q6sbcThagn83mTK62CIyx3Q6W7Ba06ipic0xYy1W71+8pHr/IHn6GGhnpCkiEgeBoXs5Notq8PQCI/r6v1H7sCr8dO/O1Dlc/P1INT6gsCCDqYV9g5+nP2//Pv/n16+x7rWjbNt/EnuLh5VfuqjDz9vkKRMoP+kvpm0wGvB5O74SDhw0iNdf3YPP52P1S0eoaXJxYUEGt1ylugrRdn5+Bm8cPc0xzcCX0twRHL7nA+qcLvIzlFknIqnrhRdeaPP7vffeC8CaNWs4ffo0jz76KJs2bWL+/Pm8/fbb7NixgyeeeAKAuXPnsnjxYr70pS8xduxYNm/eTHV1NcXFxQDMnj2b9evXM2rUKPLy8li9ejXjxo1j+PDhYbfT5yOhHzQDot3Os/cdq3Ny9nGS5X3oLvUv+fWGPnZEQak4CBY519C9XuHCAv83Mh/VNOH2+jBHIHPB6/Pxygc1eLw+BvVJbxOQAsDn4+vjhjE4x8rynYf4y79OYbOYuPe6wnZD+cpPnmTp068AkJGRTlNTc4fHfOTWqQBsf7ec/y2txmw08P0vXUyauSeDjSQU5+Wf+QxJ6nJ5/ZlSPblCGA3+wFSL13+vUVBKRHqrvLw8Nm7cyKpVq1i7di35+fksX76cCRMmAP7Z+B544AFWrlxJRUUFhYWFbNiwgdzcXAAWL16M2+1m/vz52O12xo8fz+OPPx6/DomIpCgFpeIgUIA2VzPv9QqDc6xYzUacbi+f1DqCw/l64t+n7FQ0NGMxGtoHpM5y3UX98Pp8LH/+EL8/cBKrxchdU0d0u8bUvyoa+OHfSwFYdM35XNQ/tWYTTFTn5fmHR34UpbpkkhgiUegcIN1soKXFF/wCRESkt1izZk2b30eNGsWWLVvOuf6sWbOYNWtWh8ssFgtLlixhyZIlEW2jiIi0pRSHOAgEpZQp1TsYDQYu6OsPREViCJ/b4+Wfn9QBMHZ4DtnpnceWv3Bxf5Zf769/8Ju3j/PkG8e6dVxDZh5L/nAQl8fH1Av7csvVQ7u1HwlfIChVXu+kxe2Nc2skWiJRUwrA2lpXqqappYctEhERERGJLgWlYszn81EXrCmlRLXe4sICf12pD6p7Pvzq/YpG7C0eMtNMXDogtEJzMy8fyN3T/DPk/WLPxzz9j7Kwjul0ecj+8t2camzhgr4ZPPDFi6Iyo590rG9mGjaLEa8PTtQ7u96gl/N4PNxyyy3B2iIA+/fvZ968eYwZM4Zp06axdevWNtts376d4uJirrjiCmbPns2+ffti3WzcEZh9DyDd5P+3GfgCREREREQkUSkoFWNOt5eW1iEafbrIcJHUEQhK9ThTymji3RP+6Y2vHJoT1sxaN40Zwh3XXgDAuteO8rt9x0ParqnFw58PnsLUdxh9M9P4yezLNWtkjBkMhuAMh2Uqdt6ldevW8dZbbwV/r6urY+HChdx4442UlJSwatUqHnroIQ4cOADA3r17efDBB1mzZg0lJSXMnDmTRYsWtZsKPNoilSkVCErVaPieiIiIiCQ4BaViLJAllZVuwmzS6e8tAsXOP6jqWaaU5bwxNLk82CxGivplhr39reOG8Y0J/lljHv37Bzzx+lH/3J7ncKqhmT+8W85phwuv/TQ/mzeaQX2s3W6/dN/w1iF8ZbUKSnXmzTffZNeuXXzhC18IvrZr1y5yc3OZP38+ZrOZiRMnMmPGDDZv3gzA1q1bmT59OmPHjsVisbBgwQLy8vLYuXNnTNt+pqZUz6ZdSW8dvqdMKRERERFJdIqKxFid0w1AjlX1pHqTwtZMqY9PN+F0ebq9n/TLPg/ARf2zwsqSOtt/TjqPW8cNA+CXe8vIvvEBTtY58Z01/2hDs5s3jtbwp/cqsLd4yLGaafjTKs7v2/Mi7dI9gUypT2o1fO9cqqurWbZsGT/60Y+w2WzB148cOcLIkSPbrFtYWMihQ4cAKC0t7XR5qAyG0H86Wj84fM9w7lhxKK+nm89kSoXTpkT7Cfec9tYfnSedp2icIxERkVjRGJwYq1U9qV6pIDONvplpVNtb+HelndGD+4S9j4+qm7AMvRwDcPGA7s96ZzAYuOPaCygsyOShl47QNOBC/vz+KTLTTORmpNHU7Ob0WRkWI/pmcO2IfB6vq+j2MaXnhuX6M9Q0fK9jXq+Xu+++m9tuu42LL764zTK73d4mSAVgtVppamoKaXmo+vYNrcbbudb3tT4JpqdbsFrBYm775YXZ6AOTqcvX+2AC3DS6PBQUhNemRBPuOe2tdJ5Co/PUNZ0jERGJNUVGYqzOoUyp3shgMHDJgCxe/7CG98sbuhWUeu7AScA/jKurGfdC8cVL+nPVsBym/dcaMi+fhr3Fg73lTMBjUJ90rhjSJ5ihI/E1TMP3OvXkk0+SlpbGLbfc0m6ZzWajoaGhzWtOp5PMzMzgcqfT2W55Xl5eWG2orm7AF8LIO4PB/+D36fUdzf77g6fFhdPgw21qO9Oiq6UZg8nc5esGTxoAp+qdVFW17XeyONc5krZ0nkKj89S1s88RKDglIiKxo6BUjAWG7+UqU6rXuXRgdjAoFS6Hy8OfD5YDcEkPsqQ+rSArnaZXN/KfC27hVGMLXqMRn9tDfoaFTBXiTyjDWoODJ+uduDxeLKpJ18Yf//hHTp06xVVXXQUQDDL99a9/ZenSpezevbvN+qWlpRQVFQFQVFTEkSNH2i2fMmVKWG3w+QjrgffT6wcKnRsM595PKK8HakqdbnIl/QN4uOe0t9J5Co3OU9d0fkREJNb0VBNDXp+Pemfr8D1lSvU6lw70f+v4r4rwg1K7Dp2isdmDp66CobmRLzRuNhkZnGNl5IBshuXZFJBKQAWZaVjNRrw+OFGnulKf9sILL/DPf/6Tt956i7feeosbbriBG264gbfeeovi4mKqqqrYtGkTLpeLPXv2sGPHDubMmQPA3Llz2bFjB3v27MHlcrFp0yaqq6spLi6OaR9cgZpSPdyPtbWmVL3THQx0iYiIiIgkIgWlYqix2YPXByYDZAa+ypZe49LWDKdjNQ4aW4fphMLn87H1Hf/Qveb3/45BFUh7JYPBEBzCp2Ln4cnLy2Pjxo288MILjB8/nuXLl7N8+XImTJgAwMSJE3nggQdYuXIl48aN4/nnn2fDhg3k5ubGtJ3u1gBSN+cwCEozgrl1J9X2lp42S0REREQkapQOEUN1rcWj+1gtGBVY6HXyMtIY1Cedk/XNHKpo5KrhuSFtd7C8gcOnGkkzGag99CpwT1TbKYlraK6NI5V21ZUKwZo1a9r8PmrUKLZs2XLO9WfNmsWsWbOi3axOuTxnZt/rCYPBQL7NzCm7i7Kqegb2iXx2pYiIiIhIJChTKoYC9aQ0817vddlAf4Hzd47XhbzNtndOAFB8UT98zY1RaZckB83Al9pc3tZMqQjsq2+G/z5T3eTqYk0RERERkfhRUCqGAplSqifVe109PAeAko9rQ1q/1uHipcOVAMy9YnC0miVJIlDsXJlSqSlSmVJwJihVZVdQSkREREQSl4JSMaRMKbl6uH+K+QMn6nG4PF2uv+O9clo8Pi7un8VlAzU9c293pqaUglKpKFI1pQDyM/xfflSpppSIiIiIJDAFpWJImVIyNNfKwOx03F5fl0P4vD4fz+33Fzife8UgFTgXhrZmSp2ocwYDGJIaPF4frYlSEbkxFyhTSkRERESSgIJSsWKy0Njiz4xRplTvZTAYuLq1wHnJsdpO133zo9Mcr3OSlW7i+ov7R79xkvD6ZaWRbjbi8cHJ+uZ4N0ciyO31Bf8eifhzfiAo1aRMKRERERFJXApKxYixzwAA0kwGrGad9t5s3Hn+IXyvH63B5/Odc73Nb30CwIzLBmK1mGLSNklsRoOBoYFi5xrCl1JcZ2W+9XT4ns/nI9vk358ypUREREQkkSk6EiOm3IEA5NosGobVy11zQT5pJgNHq5s4fKrj2fQOVTRQ8nEtJgP8f2OHxLiFksiCxc41A19KcXvOBKh7emN2tzTz8sFjAFQrKCUiIiIiCUxBqRgx5gwCoI9VQ/d6u2yrmamFBQA8//6pDtd5+h/+LKnrLurHoD7WmLVNEp9m4EtNLq8/s8lkNERk+F6WNR2AxhZPSJMqiIiIiIjEg4JSMWLK8WdK5dhU5Fxg+qX+4Zwv/utUu4LV756o56//rgTg61cPi3nbJLENDc7A54xzSySSXK2ZUuZITL0HmA1gat1VZaPqSomIiIhIYkraoJTH4+GWW27h3nvvDb62f/9+5s2bx5gxY5g2bRpbt25ts8327dspLi7miiuuYPbs2ezbty9m7TUGglLKlBJg/Pl59M1M47TDxe/eORF83evz8aOXPwBgxmUDGNk/K15NlAQ1TDWlUlKgppQlQkEpgwFsraXoKhtVFF9EREREElPSBqXWrVvHW2+9Ffy9rq6OhQsXcuONN1JSUsKqVat46KGHOHDgAAB79+7lwQcfZM2aNZSUlDBz5kwWLVqEwxGbBzvjWTWlRMxGA/856TwAntx9jIoG/0Pj2leOcrC8gQyLie9ce0E8mygJKjB873ids82MbZLcXN7IZkoBWFuDUlXKlBIRERGRBJWUaTtvvvkmu3bt4gtf+ELwtV27dpGbm8v8+fMBmDhxIjNmzGDz5s2MHj2arVu3Mn36dMaOHQvAggULePbZZ9m5cydz5syJantrHS6M1mxANaXkjJmjBvKn9yp492Q9Czbvo6hfJm9+dBqAe64rpCAzrdv7bmyyU1h0Xmjr2jsuti6JqX92OmkmAy0eH+X1Toa2BqkkuQWG8VpMkQtK2cxAM5xSppSIiIiIJKiki5BUV1ezbNkynnjiCTZt2hR8/ciRI4wcObLNuoWFhWzbtg2A0tLSdsGnwsJCDh06FHYbwi1CG5glKzPNhMWUtMlpnQqcE4MBfCmavNGdPnb2WTEZDKz80kju+v17lNU6qbL7sxnumjqC6ZcN6FFbfV4vS59+JaR1V8y5sk1bO+tfsk8ceXYfz/4z0Z3dTpPBwNBcGx9WN/FJrYNhebYO1w2lb8nS/94g0jWl4MzwvUAmpoiIiIhIokmqoJTX6+Xuu+/mtttu4+KLL26zzG63Y7O1fTizWq00NTWFtDwcfftmh7V+9bE6APIy08jISO9y/VDWCXfdWO3TZmv/WjL3pyMd9bEjBqOBgoLOPysFBdm89L0Ctr5VRr3TTfGlAxg54NzbGIyGqJ+jc/UvlP4E1kv099xmS0+a/nTUzgsHZPNhdROn3b5z9iHc65TEV2D2vUh+cZHReoc/Wa+glIiIiIgkpqQKSj355JOkpaVxyy23tFtms9loaGho85rT6SQzMzO43Ol0tluel5cXdjuqqxvCygZ6v6wGgOw0E01NXT8chLJOuOtGe58Gg/9B3+FobndukrE/HQlklXTUx474vD6qqhq6XhH4UlHf4N8728bn9UXtHHX2HgaOHUp/wmljOO2MxD7P7mNDYyM5ufld7qvR3hjX/nR03gdk+GvT/euT2nbLDAZ/QCqU61RgXYm/aGRKWU0+wEB5vWZqFBEREZHElFRBqT/+8Y+cOnWKq666CiAYZPrrX//K0qVL2b17d5v1S0tLKSoqAqCoqIgjR460Wz5lypSw2+HzhTdE7ViNf/heji2pTndYAucjVYfuQff6mEznI5T+JVN/OnJ2H0Md4hgY3hgvjU12LixsWx8s7dJpZE65jad//2ee+NaPARg4aBCvv7onuE641ymJL3drUCqSNaXSfC1AuoJSIiIiIpKwkipK8sILL7T5/d577wVgzZo1nD59mkcffZRNmzYxf/583n77bXbs2METTzwBwNy5c1m8eDFf+tKXGDt2LJs3b6a6upri4uKotzsYlLJq5j1pb/KUCZSfPBnSuipK3vt0FDw7Xudk5/un6HfR1Sz+qn/ZI7dOjUfzJEJcrYXOI1tTyh/oqm/20NTiISPNFLF9i4iIiIhEQlIFpTqTl5fHxo0bWbVqFWvXriU/P5/ly5czYcIEwD8b3wMPPMDKlSupqKigsLCQDRs2kJubG/W21TT5C1jn2hSUkvbKT54Muyi59G6BWTwbmt14fT6Mqlie9FzeyGdKWYz+H5fXX+z8gr4ZEdu3iIiIiEgkJHVQas2aNW1+HzVqFFu2bDnn+rNmzWLWrFnRblY7/zV1BEtX/B/6TLwv5scWkdSTmWbCaACvDxqbPcEglSSvM5lSkZ2h1WbyB6XKG5wKSomIiIhIwons/36lQ9MvG0Dzey/GuxkikiKMBkMwEFXvdMW5NRIJ0agpBWAz+/dXrhn4RERERCQBKSglIpKE+rTWqKt3uuPcEokElzfyNaUAMlqT6MobFJQSERERkcSjoJSISBIKZErVKSiVElxRzpQ6XmPHp+kYRURERCTBKCglIpKEcoLD9xSUSgXu1kLnka4pFciU+mdZDQ6HI6L7FhERERHpKQWlRESSkGpKpZZAoXNLhIfvBTKlHIpdioiIiEgCUlBKRCQJnV1TyqthWUkvUOjcHOHhe4FMqSa3T58TEREREUk4mkdcRCQJZaWbMBrA6wN7iyfezZEeChQ6txgNRDKpKd3oC35OappcZGVGcOciIpLUvF4vVVVVGAyQn68bhIjEh4JSIiJJyGgwkJ1ups7pVl2pFBAodI7PQyQTmrzuFtIMJpw+AxUNLQzvF7l9i4hIcquqquLJv+0HYFnfLEymjDi3SER6Iw3fExFJUsEZ+ByqK5XsAjWlDnxciccT2fczw+IfEljR2BLR/YqISPLLzMknMyc/3s0QkV5MQSkRkSSVYztTV0qSW2D2PYs58gnMGSb/n6cUlBIRERGRBKPheyISksYmO4VF53W9nr0xBq0ROHsGPgWlkl0gUyrCk+8BYGu90ytTSkREREQSjYJSIhISn9fL0qdf6XK9FXOujEFrBCAnMHxPQamkF6gpFY305cAMfKcaFJQSERERkcSi4XsiIkmqj9U/fK/B6QKikGIjMRMMSkXhbQwM31OmlIiIiIgkGgWlRESSVFa6CYMBPD4wZObFuznSA25vYPhe5KNSgeF7qiklIiIiIolGQSkRkSRlNBjok+6POJhyBsa5NdITUc2Uag1K1TndOFyeyB9ARERERKSbFJQSEUligWLnxpwBcW6J9EQ0C51bjP4fgIr65sgfQERERESkmxSUEhFJYoGglElBqaTm8kYvUwogw+zfcXmDMzoHEBERERHpBgWlRESSWE5rsXNlSiU3dxQzpQAyLK1BKWVKiYiIiEgCUVBKRCSJBTOl+igolcyCNaWitP9AptTJBgWlRERERCRxKCglIpLEcmz+TClDRm58GyI90hyjTKmKeg3fExEREZHEoaCUiEgS62M1c/XwHBz/2BrvpkgPNLv9QSlT1GtKKVNKRETia19FC//1/Ec0ON3xboqIJAAFpUREktwVQ3Jo+dfL8W6G9EAwKBWlVKlgUEo1pUREJI7sLi+Ha1yU1jgp+fh0vJsjIglAQSkREZE4a3Z7gChmSgWG7zU04/X5onMQERGRLnxQ6yZwFzpSaY9rW0QkMSgoJSIiEmctUR6+ZzP761W5vT6OV9XhU2BKRERizOP18WHtmSF7pVUKSomIglIiIiJx5fX5aGmdfc8Upbuy0WCgb4a/KP66vx/E4XBE50AiIjF26NAhbrvtNsaNG8c111zD0qVLqampAWD//v3MmzePMWPGMG3aNLZubVt/cfv27RQXF3PFFVcwe/Zs9u3bF1zm8Xh4+OGHmTRpEmPGjGHRokWcOnUqpn1LNf+qdOBwn/lSREEpEQEFpUREROIqkCUF0cuUAhiQneY/HpboHUREJIacTie33347Y8aM4fXXX+fPf/4ztbW13H///dTV1bFw4UJuvPFGSkpKWLVqFQ899BAHDhwAYO/evTz44IOsWbOGkpISZs6cyaJFi4JB+/Xr17N7926ee+45XnvtNaxWK8uXL49nd5NeRaMLgNx0/yPoJ7VOmlo88WySiCQABaVERETiyBmjoFT/LH9QqtGloXsikhpOnDjBxRdfzOLFi0lLSyMvL4+bb76ZkpISdu3aRW5uLvPnz8dsNjNx4kRmzJjB5s2bAdi6dSvTp09n7NixWCwWFixYQF5eHjt37gwu/9a3vsWgQYPIyspi2bJlvPrqq5SVlcWzy0mtusk/dC/XaiTfZgbgA2VLifR6CkqJiIjEUWDmPbPRgMEQvahUX6v/lm9v1hTcIpIaRowYwVNPPYXJZAq+9uKLL3LZZZdx5MgRRo4c2Wb9wsJCDh06BEBpaek5lzc0NFBeXt5meUFBATk5ORw+fDiKPUpt1Q5/plSG2cD5uemAhvCJCJjj3QAREZHeLBCUSjdH93uifpn+YXt2ZUqJSAry+Xw8/vjjvPzyy/z617/mV7/6FTabrc06VquVpqYmAOx2+zmX2+3+QElGRka75YFl4Yji9w09EmjXp/+MlkCmVIbZwHl56fzzpJ3SKntUj2swtO1for4XPRGr9y9eUr1/kDx9jFb7FJQSERGJo2a3v55GejTH7gGDshWUEpHU1NjYyH333cfBgwf59a9/zUUXXYTNZqOhoaHNek6nk8zMTABsNhtOp7Pd8ry8vGCw6tOTQpy9fTj69s0Oe5tY8HiasNnSgr9Hu521Lf4vYXIyLRQNyob3a6hxuikoiN5xPZ4mrFZ/H/Pzs6J6rHhL1M9ZpKR6/6B39LEjCkqJiEhKOHToEA8//DAHDx7EYrFwzTXXcO+995Kfn8/+/fv5wQ9+QGlpKXl5eSxatIh58+YFt92+fTtPPPEElZWVjBgxghUrVjBmzJiYtDuQKWUxGfBFMV40sLXQud3lwxfNA4mIxNDHH3/Mt771LQYPHsy2bdvIz88HYOTIkezevbvNuqWlpRQVFQFQVFTEkSNH2i2fMmUKOTk5DBgwoM0Qv8rKSmpra9sN+QtFdXVDVK/v3VVd3YjD0RLMfoh2OyvqWwAweT1YPP6sqZOnHVRVNXS2WY9UVzfidLZgtaZRU9OIyZTR9UZJxmDwBzMS9XPWU6neP0iePgbaGWmqKSUiIkkvmjMwRVsgKNXkbMHjdkXtOANah++5fVDrUF0pEUl+dXV13HrrrVx55ZX84he/CAakAIqLi6mqqmLTpk24XC727NnDjh07mDNnDgBz585lx44d7NmzB5fLxaZNm6iurqa4uBiA2bNns379esrKymhsbGT16tWMGzeO4cOHh91Ony9xfwLti3Y7XR4ftc4zw/dyrf7ciJqmlpj2M1V/1L/k/0mWPkaDglIiIpL0ojkDU7QFZt8zRXn4XprZSOtkR5yob47qsUREYuH3v/89J06c4C9/+Qtjx45lzJgxwZ+8vDw2btzICy+8wPjx41m+fDnLly9nwoQJAEycOJEHHniAlStXMm7cOJ5//nk2bNhAbm4uAIsXL2bq1KnMnz+fqVOn0tzczOOPPx6/zia5ansLXh8YgHSzgVyrvzh9TZMLZe+K9G4aviciIkkvMAPT2bqagWnbtm2Af7hG4Jvzs5cHZmgKVajFHz9dzLIlEJQyGABfp/vqyesGA2SaDTjcPk42NCd0Mc1kKfgZbzpPodF56lqynqPbbruN22677ZzLR40axZYtW865fNasWcyaNavDZRaLhSVLlrBkyZIet1OgstH/ZYjNbMBoMJDb+i1Js9uLvcVDVroeS0V6K/3rFxGRlBLJGZjCEe4Y+8D6aWX1gL+mlM2WhtnoA5MJi9nSZv2evG5OS8NmM5FjM1HldFPnJimKvfbWgp/h0nkKjc5T13SOJFpONbQGpSz+yKfVbCTDYqLJ5aGmyaWglEgvpn/9IiKSMiI9A1M4Qi1O+elillW1/unFDT4fDkczrpZmDCYzbpO3zXY9et3RzCPbS0jzWgEoLa+PamHZnkqWgp/xpvMUGp2nrp19jkDBKYm8U43+IucZ5jPpePmZFppqPdTYWxieZzvXpiKS4hSUEhGRlBCNGZjCEW4ByMD6za7W4XvGtsvOtU13X7ekWclsraN+or45KR7Oo1lUM5XoPIVG56lrOj8SLWcP3wvIs6XxSa2TmqaWeDVLRBKACp2LiEjSi+YMTNHWHKwpFf1jZQYLnesBQEREYieQKRUYvgfQt3VW2Oqm6M08KyKJT5lSIiKS9M6egemFF15os2zfvn1s3LiRVatWsXbtWvLz8885A1NFRQWFhYVtZmCKNmcHhc6jJRCUqmxsocXtJc2s76ZERCT6auytQamzvoHJz0hrs0xEeqekC0odOnSIhx9+mIMHD2KxWLjmmmu49957yc/PZ//+/fzgBz+gtLSUvLw8Fi1axLx584Lbbt++nSeeeILKykpGjBjBihUrGDNmTBx7IyIikRDNGZiiLZaZUmlGMBvB7YXjdU4u6JsR/YOKiEivV+vwZ0Oln11TKsOfKVWjTCmRXi2pviJ1Op3cfvvtjBkzhtdff50///nP1NbWcv/991NXV8fChQu58cYbKSkpYdWqVTz00EMcOHAAgL179/Lggw+yZs0aSkpKmDlzJosWLcLhcMS5VyIi0psFg1IxuCMbDJDdOnTiWE14swuKiIh0VzAodXamVGZrppRqSon0akkVlDpx4gQXX3wxixcvJi0tjby8PG6++WZKSkrYtWsXubm5zJ8/H7PZzMSJE5kxYwabN28GYOvWrUyfPp2xY8disVhYsGABeXl57Ny5M869EhGR3qzZ7QFikykFkJ3mP9BHCkqJiEgM+Hy+DoNSfWOYKRX4AkhEEk9SBaVGjBjBU089hclkCr724osvctlll3HkyBFGjhzZZv3CwkIOHToE+GdS6my5iIhIPMRy+B5AptF/vA+rGmJzQBER6dWaXB5aPP6aiVZzBzWlopgp5fP5+MfJZjYfqOPNj6N/3/N6vZw6dYpTp07h9SoQJhKKpApKnc3n8/HYY4/x8ssvs2zZMux2Ozabrc06VquVpib/N8FdLQ+HwRD+T2C7VKU+nnubUD4biUDvYfL79PUmmT5/vVmsg1JZ/i+mKat1xuaAIiLSq51uzYRKMxna3OuCw/fs0cuUevbdaj6odQPwv0fro3acgKqqKp78236e/Nt+qqqqon48kVSQdIXOARobG7nvvvs4ePAgv/71r7nooouw2Ww0NLSNfjudTjIzMwGw2Ww4nc52y/Py8sI+ft++2d1qt82WHtJ6GRmhrRfOurHaZ0d9TOb+dCTU99FgNFBQ0PVnxWA0JNQ56qx/yfD+hLJuoI+p0h9o/3nr7nVKYu9MTanYRKXOBKWaY3I8ERHp3epah+7lpJswnPWNWKDQeZPLg9PlwWoxdbh9dzW1ePjNgTOBoQ9qYvNlTGZOfkyOI5Iqki4o9fHHH/Otb32LwYMHs23bNvLz/f/oR44cye7du9usW1paSlFREQBFRUUcOXKk3fIpU6aE3Ybq6gZ8YczaHbj2OhzNIW3X1BT6g0Ko60Z7nwaD/0G/oz4mY386Eu776PP6qApheIzP60uIc9TZexjtY8dqn2f3MdbHjvY+A583g8EfkArlOhVYV+LLGetMqdY7f53TTa3DRa7NEpsDi4hIr3S6NSjVx9o26JSZZiLNZKDF4+O0w8WgCAeljtY04fGB0QBeH5xocHG6qYW81mGDIpIYkmr4Xl1dHbfeeitXXnklv/jFL4IBKYDi4mKqqqrYtGkTLpeLPXv2sGPHDubMmQPA3Llz2bFjB3v27MHlcrFp0yaqq6spLi4Oux0+X/g/ge1Slfp47m1C+WwkAr2Hye/T15tk+vz1Zs2u2AalzEawtQamNAOfiIhEW20wU6ptPoTBYAh+MXI6CsXOP6r23+MKbEZyrf7H3gMnVE9RJNEkVabU73//e06cOMFf/vIXXnjhhTbL9u3bx8aNG1m1ahVr164lPz+f5cuXM2HCBAAmTpzIAw88wMqVK6moqKCwsJANGzaQm5sbh578/+zdeXxU1f3/8ddMZpKZLGQhCC5YlwStChJBNlFbNFJFCGXRtvnZYr+KxajVFtxAxSKIX+tSSkG+KMW2VFqwaFFkqbsoEBRBacHEyqIs2UhIJpkkM3N/f0xmICaQTDLJLHk/H+aR5J67fM4N3nPvZ845V0RExKvO3blJKYAkq4kal8HesmouPj258w4sIiJdji/h5O0p5W5UlmK3UlRV5+9NFUxfNXzw0i3WjDnGTLmzjh0HjnJlRvegH0tE2i6iklI333wzN9988wnL+/bty/Lly09YnpOTQ05OTkeEJiIi0ia1Lu8Nekwn9l1OtBgUAQVFR4FTO+/AIiLS5ZQfN6fUt5NSqQ3zSlV0QFLK11MqOc6M3Wbhi9I6PjtQEfTjiEj7RNTwPRERkWjT2W/fq69zEm/2PhTs6aRJX0VEpOsqP8GcUkCHDt/z95SKM5Nu9x77v6Uati4SbpSUEhERCaFjSanOG7+XZPVOKLbnSE2nHVNERLomX8Lp23NKwXFJqSD3lKpzefi63NvGdYs1kRjnTUpVOF1U17lPtqmIdDIlpUREREKos3tKASQ1PBccqqzDUefqvAOLiEiXU17jbWeSm+kp5Ru+Vx7kpNS+8ho8BsRbzdgtJmJjTCTGeh99Dx5VL2GRcKKklIiISAg5fUmpTmyRY2PA92zwlYYyiIhIByqvqQOgW1wzSamGnlLlQR6+55tPqndyLKaGnsinJHiPdehobVCPJSLto6SUiIhIiLg8Bm6PdyhdZ/aUAu/ErwBfljg698AiItKl+IbmNddTqqOG7+1rGJ5+RrdY/zJfUko9pUTCi5JSIiIiIeJ78x50flKqW6z3gJr0VUREOorL7aGq1tvWJduamVOqg4bvHar0Jp56Jlr9y3okWBrK1FNKJJwoKSUiIhIivvmkAMyd3lOqISlVoqSUiIh0DF+yyWzCP6fT8VLtsY3WC5aDDUP0eiQcS0qdkugbvqeeUiLhREkpERGREPElpWJjTP45LzpLcsPDQWGJg+rqagzD6NTji4hI9CttmCsqxW7F3Ew7l2L39l466nThcnualLeVL/F0yvFJKf/wPfWUEgknSkqJiIiESG299wY8ztL5zXFSLJiAEkcdT639lJqamk6PQUREoltZtXeS8+4Jsc2Wd7NZ8aWqyp3BeRusYRj+xNMp6iklEvaUlBIREQkRX0+pUCSlTK464i3e3lGVbmsLa4uIiASuzOHtKZUW33w7E2M2kWwP7rxSFTUuf/vqm0cKjiWoiqvqqA9irywRaR8lpURERELE2TDReVxMaJrj5IbJzsuC/CpuERERONZTKjW++Z5ScGwIX3mQ2qKDDZOcd0+IxXpc+5piiyHOYsYADmuyc5GwoaSUiIhIiPjeSJQQ2/Q12Z0hueGD6/JafWIsIiLB5/vQ40Q9pQBSG3pKHQlSTynf0L1Tu8U1Wm4ymeiZ5F2mpJRI+FBSSkREJESO1npvwJNsIUpKNXxwXV6rSc5FRCT4/HNKnaynVHxw38DnmzOqV5KtSVmvhqTUQc0rJRI2lJQSEREJkaM13kldk+IsLazZMXxJqaN1BnWaX0NERILMP6dUwol7Svl6UZU56oJyzEMNPaV6faunFMCp3byJKr2BTyR8KCklIiISIkdrfUmp0PSUsseA1QwGsPeIPjUWEZHgKm3FnFK+N/OVBCkp5esF9e3he3AsUaU38ImEDyWlREREQqTSGdqeUiYTpDQ8J+wqcoQkBhERiV5HGuaU6n6SOaV6BDkpdaynVNPhe+opJRJ+QnMXLNIFVFU7yMj8TsvrOao6IRoRCUfH95QqqwxNDGmxUOyEnYd1LRIRkeDxGAZHGnpKpcXHQk1Ns+ulJ3qTUsVVQUpKVR430blR3ahMPaVEwo+SUiIdxPB4uPfFd1tc76Hxl3RCNCISjo7vKVUWohjSbMBR2HlIPaVERCR4jta4cDe8RyM13sqR5nNS9EjwJoqC0VOqpt7tnzC9V5KNmqONk1K+nlKHK2vxGAZmk6ndxxSR9tHwPRERkRA56mx4+16I5pQCb08pgH3lTsqrg/PmIxEREd98Ut1sFqwxJ37s7N7QU6rMUYfL0763wfqG7iXExpBka9r/4pTEWMwmqHMblKnNEwkLSkqJiIiEyNEQzykFEBsD3WK9nxTvOHg0ZHGIiEh0KfMP3TvxfFIAqXYrMSbvSzd8w/3a6tgk503nkwKwxJhJb5jDSkP4RMKDklIiIiIhUtkwp5SVeoz2fTjcLt1t3tuBHQeUlBIRkeDwTXKedpI37wHEmE3+N/C1d14p33xSvZp5856PJjsXCS9KSomIiISIr6fUP7cW4naFbhhBd7u3p9SWvUdCFoOIiESXUn9S6uQ9pQB/Uqq980r5ej/1SjpxUkqTnYuEFyWlREREQqDW5aHW5QEgwXbim+fOcFpCDGYT/OdwFV+X12AYBtXV1f7v1dXVLe9EREQiUq3L8H9IEkwlVd6eSL6E08n0SIxrtE1b+Xo/nWj43vFlh9RTSiQsKCklIiISApUNk5ybTWAJcWtss5jo1ysegA27i6mpqWH+hu3UnOD13SIiEh2+qXTxamE1Nyz9POg9hw5UePd3WvKJE0Q+6cHuKXXS4XvesgPqKSUSFpSUEhERCQHfp9KJsTGYwuCV1MNO9yal1v/nMADWuJYfIkREJHJtP+Tg/a9rcRtwpMbF9Nd3tfvtd8f7xpeUOkmvJZ/0xCDNKXXUN6fUiY/ZO9UOwP4j+uBFJBwoKSUiIhICR2tD/+a94w05Ix4TUFhaw3ZNeC4iEvVW/bsMAzg1IYaE2Bi2f3OU1z4/FLT9+4fSdVJPKZfHoLjKN3zvxD2leqd4k1JfVziDmoQTkbZRUkpERCQEKn09peJiQhyJV1JcDN9J9P78u/f34Qnl6wBFRKRDHamu4+MDDgAu6RnLzy7tBcC63cVB2X91nZvyGu8w9dNbkZTq0dBTqqQdPaWKq7y9vizHvc2vOackxRFnMeP2GBys0BA+kVBTUkpERCQEKhqSUt1s4dFTCuCCFLCa4csyJ9sP1ykxJSISpTbsLsZjQJrNTLc4M1f3SQPgk/3llFW3bwgdHJuvqZvNQmIregT7Jjo/2I55nnzb9kyKw3ySYfFmk4kzG4bw7dMQPpGQU1JKREQkBHw9pZLCpKcUQFwM9Ev3Pjz8p7SOKf/4D89v/oYt+yqoa3hToIiIRL43/lMEwFnJ3mv+6SlxnN8zEY8B7xSWtnv/vknOT/YWvOP5kkQVThfl1fVtOuZXpd43xX4nzd7q4+09orfLioSaklIiIiIhcLTh7Xv2GAinDknnplj41WWnYTbBrqJq/vzJQaa9XsDEP27h3V0HcDgcGOEUsIiIBKTEUcfnBysBODPp2AcjV/dJB+DNIAzhC+TNewB2a4x/Hqi2JooKi73DETPSE1pcVz2lRMKHklIiIiIhUNkw0XnBgVLcrrZ9KtxRrslMYXRGAtOu/A4j+3Qn1RbDgaN1TH29kDv+9jHV1d4Hhurqav/PIiISGTbtKQMgI82G3XrscfD7md6k1CdfV+Coc7XrGL6hdK15857Pd9K8b4H19XgK1JcN250bQFJKb+ATCT0lpURERELA5fb2NooPg7fvGYZBTU1Nox5bCbFmrr+gBw+MOIs/XHcGZyd55+f4/AjM37gft95YJCISkTb+9wgAA09vnLz5Tlo8vVNsuDwG+XvL23WMYz2lTvwWvG87qyEptacs8ESRYRh8WeLtKdWapJTvDXzB7il1sLKOz4rr2Hygln8X6UMbkdZQUkpERCQEfnTJ6fwkqxffSQp9U+yqq+XFjbtxuRt/Mm4YBkeOlLHso91cnGpwUYp3+crPinjwtf9Q6/JgGAbV1dUa0iciEgFcHoNNe709pQaentikfNjZ3gnPN35V1q7jfBPg8D2As9LaPs9TcVUdR50uYkzHklsn851U7zqHKmtx1rsDPl5zShx1TF27l89L6vlvhYuH3/ya3UVVQdm3SDQL/Z2wiIhIF3RW93huG3IGsTEnfkNQZ7LGNv002+ms4fl3dmIyWzCZIDMZhvSyYjGbeKughF+v/oLiiirmb9hOTY2GQIiIhLsdByqoqnWTbLPQp3vThJEvKfXhV2Vt/rDB5fb4h8WdkdzypOM+x3pKBZ6U+rLU20uqd6qdOEvLj7jJdgtp8VaAoCSOPIbBQ2t2Ue500y3WRHe7mRqXh3tWfU5VbfuGQopEOyWlREREQsA7ZK46rCY5P55vSJ/F2jhZ1TvJzGNX9yYhNobPDlXxqzVfUWuK9W/j6zWlHlQiIuHnnQLvm/WGnZ1GjLnphyKXnJFMnMVMUVUdXzRMHB6oghIHTpeHpDgLZ7biTXg+vjmlDlQ4qQ3wja+BTHIOYDKZuPj0ZAC2fV0R0LGas/Y/RWzdV47NYuLyM2x8r7eN05KsFFfV8dIn37R7/yfi8XgoKiri8OHDeDx6S65EJiWlREREQqCmpobn3vws7CY593HV1fLCe//B7a5vsvyDz75gQLdqbGaD/RV1rP2vg/f+e4Samhrmb9hOdXU1ZWWl/H79sR5USlKJiISWYRi8VVACwFUNb9r7Nps1hqFnpQLwrza+hW/HN0cB6HtaEmZT63sDd4+3khRnwWMEPgF5QUNS6pxWJqUA+p/eDYBPG+JtK5fbw+KP9gJwY990usWZiY0x8dP+PQBYtvVrKmo6pq0vKSnhuX9t56lX8ykpKemQY4h0NCWlREREQsQa1/q5NjrL8ZOeW2Obj88aa6N7QhzfO9XEuamx1LnhoXVfcveru9lfE8Oug0f43frPMJnN/mRUdXW1hvmJiITQvw9VcriyFrvVzODvpJ5wvezzvMmU9buL2/RBwvYD3iRPv9O6BbSdyWTinO7e3lKfHWx9oshjGGze6528vd+prT9m1hnenlLbD1S06+Udq3ce5utyJ2nxVsacd+y8XvadJDJ7JOCoc/PnrV+3ef8tSUhOIzElrcP2L9LRlJQSERERP38PqVb04LJb4PGrTuOC9FisZhPbDlSy6Rsnv3j1v7xxIIaVBbX8dPnn3LzsE17beRB3TNNhfiIi0phvSFZRUVFQh2S9+YW3J83wc7pjs8accL0rzu2O3WrmQIWTnYcqAz7Ojoak1MWnJQe87dCzvUmd978sbfU2/z5USVl1PQmxMVzSu/XHzOyRSLw1hqpat//NfYGqdXl4vqGX1KTBZ2KzHnu8NptM/OKyswD42yffUOqoa9MxRKKdklIiIiLSyIl6SDW7boyJ/j3jeGFcBn2SPKTZTCTGem8vDGBfeS3/Perht+8f4JXdDma88QVv7zrI79d/qqF9IiLNKCkpYdGb21n05vagDcmqrnPzz88PAXB1Q0+oE7FZY7ji3O4AvL7zcEDHOXTUyeHKWmJMcEGvpIDj9B13y77yVr8V772GBNbQs9KwxrT+8dZiNtH3NG+MH7dxXqlXdhykqKqOUxJjGdfv1Cbll5+TxoW9knC6PCzdsr9NxxCJdl0uKVVaWsrtt9/OwIEDGTx4MLNnz8bl0hsRRES6OrUP7XNKopWLe8ZxVe9Y/u8HpzCmN1x/dhyPjOhNnxQz3SwePMD7e45y35pC1ux189t397Bk016Wbizg1yu38d7uQ5RWVOLxeJSkEpGwEKq2ISE5jYTk4A3JWrXjIBVOF2ek2PyJn5MZc1EvAF79/BCHjjpbfZx3Cr0JosweicTHnrg31olkpCdwarc4al0eNu8tb9U2739ZBsAVGYGfr6FnebdZtf0gngDbnPKaepZs3gfA/ww5s9m3/plMJqY09JZa8emBoLzpTyTadLmk1N133018fDzvv/8+K1eu5KOPPmLp0qWhDktEREJM7UPgfPNPeTzH5qFy1dXy4sbdeDwu7Bbo38NCv+4xXHW6mSvSazmnm7cnVbXLYPW/S1i4cS8LNh9ia7Gbqa8XcO3z2/j1P7bzyz9/hKO6utGxjk9UNde7qjXriIgEIhrahqpaF39pmNPoZ5f2xtLMW/e+7dIzUxjYO5l6t8GiD/e26ji1Lg9/yvf2Bhrbr1ebYjWZTFx+jjdptvY/RS2uv3nPEQpLHMSYYNhZgSelcvr2IjEuhq/KqgMaMmgYBrPXf0FZdT1npdkZfdGJ6zv4rFRGZKbj9hg8unY39e7gviWv3mNQ5zYCTqqJhAtLqAPoTHv37mXLli2899572O12evfuze23386TTz7JLbfcEurwREQkRNQ+tI2rvpYXP/qS+PgEXnivxD/szxob5y1vmJ/Kt7yb1aBfopkfDzyDeR8d5szuiRypNdixr4R6j0GVy0SN28T7e7xzmPz7r58z/uLT+G7PJEqOOlie/xWnpCbz37IaDh6txTAMTk+20TvFxtnpidhjDDYXHuT73z2DOIsZa4yJNz/fx9gB53BaahK9usXRzWbB1Iq3QfkSbjabDafT6f9ut9tbtb2IRL5QtA1uj8HLO0vZUVRHvNXEFyU1pKR5iG2mF05r1Ls9TPvnvylx1HFqtzhGXdizVduZTCbyLj+bm//6Ka/tPMyFvZKY0P+0k27z923fUNwwlG30hW1LSgFcd2FPVnx6gH99UUz2F+mM6NP8cENHnYvZG74AYEL/00i2WwM+VmKchQkXn8bSLftZuHEP/U9PbnE/Lo/Bs+98yTuFpVhjTDx23XdbHDZ471UZfLy/nIJiB79+ZSdPjLkA+0nm9ToZZ72bD/cc4e2CEj7eW0ZxtQuo5uV/H+WiUw9zxbnd+X5mOj2T4tq0f5HO1qWSUgUFBaSkpNCz57GL8bnnnsuBAwc4evQo3boF9oYIERGJDmof2s6XgDrZm/qO56qv5c8bd3NKrI2a8hpuG3oOSx1FuA0DS4yFo/XwZYWLA04L31TUMu+9rxptv7PsSKPf9xxxsueIk/e/Kvcv+/T9fY3W+fD1Av/PdquZnomxJMfHYng8eDweku1WeiTZSYu34vJAqaOWvaVVfFlSjclsps7tIcVmoc7l4ozUBBKsMcTHmulmj/MOT/G4sZhNxMXFYjGZiDGDx+3CHhdHjBlMHjdJdhs2q5k4Sww2qxmL2URNvRtHnRtHrYtyhxOzCRJsccRaYrDGmLCYTRjuehLtNqwWM1azN9HmS4qZTFBUZ1Be7sAwvL/7mGj0S3M/YhjeB+B6t4dqpxNrbCwxZjMxJjCbTZgxgQnMpob9ef/DbGrYe8PvJ0vSnayXWouf6Z9khZa2NY5bwwQcccORIw4MvPXumJhOUtcWdnzS4jYeE6B7Qiw9EvVg2lahaBt2F1Wx5JNi/+/5b+zFsm4f56Yn8N2eiXy3ZyK9utlIiI0hPjYGczP//7k8BhU19RQUO/jHjoPsO1JDvDWGJ8dcGNCcSxed2o2fXtqbP+Xv54k3C9m89wjfz0zn9GQb1hjvdcxtGBRX1fFuYQn//Nw7/9TNg89scxIN4MJeSfx0UG9e3LKfR97Yzc5DVQw8M5mkOAtuj4HLY/Df0mqWbf2ag0drOa1bHLcPP7vNx/vRJaezasdBviyp5ucvfcqNWadzVpqdhNgYbNYY3B6DOreHyloXhcUOXv/3Yb4s8fbk/dX3zuW8noktHqN7QiyzR32XX7+6k4/2HGHCknxy+vbiuz2T6GazYLPGEBdjxgDchoFhGHgM75sFK50uiqpqOVxZy+cHK9m6rxynq2lvq5p6D/n7ysnfV85Tb3/Jd3smcskZKfROtdEjMY7u8VYsZjNms/e6HWMyYTZ5LzEew8Dj8R7b+7OB26Dhu7f+dS6DOpeb0vIK6t0GCYmJxB7XNlka/k1YY0yNlnnbs7b/ezAMD1+VlFFeXk1KSirmduyrvTqq57XJBEcNE0eOVLfYXgRDnMVMr27h8wboLpWUcjgc2O32Rst8v1dXV7e6YTGbW765OJ7JBElJScRZzS1ul5SU1OqLeGvX7Yx9mkwQG2PG/a06Rmp9mhPI3zHYx+6MfZ7ob9gZx+6sfR5fx2ioz7fX895keH9vzXVKnT2OCUb70Nq24djfyITZ4yKGxnOTeHB7bxa/tV24LW/PviyxFsAFJlj63k7Am5CymCAtFtJOAVuCnRS7jVf+c4R6zJySGIfL5eLys5LZ+dV+EmJjMJljqKp1UWuKpareoN7lwYixYHgMDLMZt9uAGAuJcTEcqqyn3vD+v1RS7aKk+rjzXl4HB5u+eSnG4r1NspnNON2AycK+8trj1tDcIBLezCZY8pP+nN09/qTrHd92yDGheHY4v1ci91x2Kut2HqLaY6LGE4Oj3uCbCiffVDj51xeBT3x+ardY7h56KumWGkpLa/zLy8uP4K7xvimvtLSUmBhHkzh/fEECuE7hH/8uY+v+CrbuP/GE4IlxFsZ8N5Urz7BQWlrcpPz445WXHyEm5sQ3IhPPT+CLQ0l8driGf+w4yD92HGx2vTOT4/j15adRU1lGTTPlvmPWe2IpL4/FfIKhi7+99js89vbXlFbXs3DjnhPG5ZOeEMsdQ3oypLe1UV1PVseMJHhi5Jk8/cFBypxuXvrkQIvHaY4lxsxZSVaGnJlEZqKbnV+XYIuNpf8ZKeytsbJpfxVflDjZX+5kf/mhNh2jdYIzCX9g9rW8irTKlOHf4UeXnB7QNh317GAyutBECxs2bGDGjBls3rzZv2z37t2MGTOGrVu3kpQU+BsiREQk8ql9EBGRb1PbICLS8brU5yGZmZmUl5c3erXql19+Sa9evdSoiIh0YWofRETk29Q2iIh0vC6VlDrrrLMYMGAAc+bMoaqqiv3797NgwQImTJgQ6tBERCSE1D6IiMi3qW0QEel4XWr4HkBJSQm/+c1v2Lx5M2azmbFjxzJ16lRiYtr29gMREYkOah9EROTb1DaIiHSsLpeUEhERERERERGR0OtSw/dERERERERERCQ8KCklIiIiIiIiIiKdTkkpERERERERERHpdEpKiYiIiIiIiIhIp1NSSkREREREREREOp2SUkFSWlrK7bffzsCBAxk8eDCzZ8/G5XI1u+67777L6NGj6d+/P9deey1vv/12J0fbNoHU8aWXXmLkyJFkZWUxcuRIli1b1snRBi6Q+vl88cUXXHzxxWzevLmTomyfQOq4ZcsWJk6cSFZWFldeeSWLFi3q5GjbJpA6vvjii4wYMYJLLrmE0aNHs27duk6Otn3KysrIzs4+6b+/SL3eRKO2XGO6ol27dnHzzTczaNAgLrvsMu69917KyspCHVZYcrvd3HTTTdx///2hDiUslZeXc++99zJ48GAuvfRSbr/9doqKikIdVtjZuXMnubm5DBw4kOHDh/PYY49RV1cX6rCkE3SV6200Xyuj/ToXrden5u7ht2/f7n/2GjFiBCtWrAhhhJ1LSakgufvuu4mPj+f9999n5cqVfPTRRyxdurTJenv27OHOO+/kl7/8JVu3buXOO+/k7rvv5vDhw50fdIBaW8d//etfPP300zzxxBN88sknzJ07l2effTbsH/hbWz+fmpoafv3rX+N0OjsvyHZqbR2//PJLJk+ezE9+8hM++eQTFi1axJIlS1i7dm3nBx2g1tbx3XffZdGiRTz//PN88skn3HHHHdx99918/fXXnR90G3z88cfceOON7Nu374TrRPL1JhoFeo3pipxOJ7fccgtZWVl88MEHvPbaa5SXl/Pggw+GOrSwNH/+fLZu3RrqMMLWnXfeSXV1NRs2bODtt98mJiaGhx56KNRhhRWPx8Ntt93GyJEj2bJlCytXruSDDz5g8eLFoQ5NOlhXut5G87Uymq9z0Xp9au4evqKigsmTJzN27Fjy8/OZPXs2jz/+ODt27AhhpJ1HSakg2Lt3L1u2bGHatGnY7XZ69+7N7bff3mzvoFWrVjFw4ECuvvpqLBYL1113HZdeeil/+9vfQhB56wVSx8OHD3PrrbfSv39/TCYTWVlZDB48mPz8/BBE3jqB1M/n0Ucf5eqrr+7EKNsnkDr+9a9/5aqrruKHP/whJpOJ888/n+XLlzNgwIAQRN56gdTxv//9L4Zh+L9iYmKwWq1YLJYQRB6YVatWMXXqVO65554W14vE6000ass1pis6cOAA559/Pnl5ecTGxpKamsqNN94Y1u1HqHz00UesX7+ea665JtShhKXPP/+c7du3M3fuXLp160ZiYiKzZs1i6tSpoQ4trFRUVFBcXIzH48EwDADMZjN2uz3EkUlH6yrX22i+Vkb7dS4ar08nuodfv349KSkp5ObmYrFYGDp0KKNHj+4y94lKSgVBQUEBKSkp9OzZ07/s3HPP5cCBAxw9erTRuoWFhfTp06fRsoyMDHbt2tUpsbZVIHXMzc1l8uTJ/t9LS0vJz8/noosu6rR4AxVI/QBeeeUV9u7dyx133NGZYbZLIHXcsWMHZ5xxBr/61a8YPHgw1157LVu2bKFHjx6dHXZAAqnjqFGjSE9P57rrruPCCy/kl7/8JXPnzqVXr16dHXbAhg8fzoYNG7juuutOul6kXm+iUaDXmK7qnHPO4fnnnycmJsa/bN26dVx44YUhjCr8lJaWMn36dJ566qmIvjnvSDt27CAjI4O///3vZGdnM3z4cJ544omwb8c6W2pqKpMmTeKJJ56gb9++XHnllZx11llMmjQp1KFJB+sK19tov1ZG+3UuGq9PJ7qHLygo6NL37EpKBYHD4WhyofP9Xl1d3eK6NputyXrhJpA6Hq+4uJhbb72Viy66iOuvv75DY2yPQOr35Zdf8swzz/DUU081asjDXSB1rKio4E9/+hNjxoxh48aN/OY3v+GJJ54I++F7gdSxvr6e888/nxUrVvDpp5/ym9/8hunTp7N79+5Oi7etevTo0aoeXZF6vYlGbb2GdmWGYfDMM8/w9ttvM3369FCHEzY8Hg/Tpk3j5ptv5vzzzw91OGGroqKC3bt3s2fPHlatWsUrr7zC4cOHue+++0IdWljxeDzYbDYeeughPv30U1577TW+/PJL5s2bF+rQpBNF4/W2K1wro/06F43XpxPdw3f1e3YlpYIgPj6empqaRst8vyckJDRabrfbm8xB5HQ6m6wXbgKpo8+nn37KhAkTOPvss1m4cGFYD4tqbf1qa2u55557ePDBBznttNM6Ncb2CuRvGBsby1VXXcX3vvc9LBYLl156KTk5ObzxxhudFm9bBFLHWbNmkZmZSb9+/YiNjWX8+PH079+fVatWdVq8HS1SrzfRqC3X0K6sqqqKu+66i9WrV/OXv/yF8847L9QhhY1FixYRGxvLTTfdFOpQwlpsbCwA06dPJzExkfT0dO6++27effddHA5HiKMLHxs2bGDdunX85Cc/ITY2lszMTPLy8njppZdCHZp0kmi93naFa2W0X+e60vWpq9+zKykVBJmZmZSXl1NSUuJf9uWXX9KrVy+SkpIardunTx8KCgoaLSssLCQzM7NTYm2rQOoIsHLlSiZNmsTPfvYznnrqKf9FM1y1tn6fffYZe/bsYfr06QwcOJCBAwcC8Itf/IKZM2d2dtgBCeRveO655zZ5s4Xb7faP5w5XgdTxwIEDTeposViwWq2dEmtniNTrTTQK9Brale3bt4/x48dTVVXFypUro+YBKVheffVVtmzZ4m+DXnvtNV577TV/eyReGRkZeDwe6uvr/cs8Hg9A2LdlnengwYNR3xbKiUXz9bYrXCuj/TrXla5PXf2eXUmpIDjrrLMYMGAAc+bMoaqqiv3797NgwQImTJjQZN0xY8awZcsW1qxZg8vlYs2aNWzZsoWcnJwQRN56gdRx3bp1zJw5k9///vf8/Oc/D0G0gWtt/QYOHMiOHTvYunWr/wvgueeeC/ukVCB/wx/96Ee8+eabvPrqqxiGQX5+PqtXr46qf6cjRozgL3/5Czt37sTj8bB27Vo2b97c4jxNkSRSrzfRKJB/m11ZRUUFP/vZz7jkkkt44YUXSEtLC3VIYWft2rV88skn/jbo+uuv5/rrr4/aN0u11bBhw+jduzcPPvggDoeDsrIynnnmGa6++moSExNDHV7YGD58OMXFxTz33HO43W7279/PwoULGT16dKhDkw4W7dfbrnCtjPbrXFe6PmVnZ1NSUsLSpUupr69n06ZNrF69mvHjx4c6tE6hpFSQzJs3D5fLxVVXXcUNN9zA5Zdfzu233w5AVlYW//znPwFvD5Q//OEPLFq0iEsvvZQFCxbw+9//nrPPPjuU4bdKa+s4f/583G43d911F1lZWf6vhx9+OJTht6i19Ytkra3j0KFDWbBgAX/6058YMGAADzzwAPfddx9XXXVVKMNvldbW8Y477iA3N5c777yTSy+9lP/7v//jD3/4A9/97ndDGX67Rcv1Jhqd7N+meP3jH//gwIEDvPHGGwwYMKBRGyISCKvVyp///GdiYmIYOXIkI0eOpFevXsyZMyfUoYWVjIwMFi1axFtvvcXgwYP56U9/yogRI1p8u6tEPl1vI1+0X+e60vUpNTWVJUuWsHbtWgYPHsyMGTOYMWMGQ4YMCXVoncJkREPfPhERERERERERiSjqKSUiIiIiIiIiIp1OSSkREREREREREel0SkqJiIiIiIiIiEinU1JKREREREREREQ6nZJSIiIiIiIiIiLS6ZSUEhERERERERGRTqeklIhImCkrKyM7O5vNmzcHvO0f//hHbrrppkbL3G43TzzxBMOGDSMrK4spU6ZQVFQUrHBFRCQMtKXtWLduHddffz39+/cnOzublStXdmCEIiIiTSkpJSISRj7++GNuvPFG9u3bF9B21dXVzJ07l7lz5zYpW7hwIRs3buTll1/m/fffx2azMWPGjGCFLCIiIdaWtmPTpk3cf//9TJs2jW3btjFr1iweffRRduzY0YGRioiINKaklIhImFi1ahVTp07lnnvuaVL24YcfMmHCBAYOHMioUaP45z//2ag8JyeH4uJifvzjHzfZdsWKFdx6662ceuqpJCYmMn36dN577z3279/fYXUREZHO0da2Y+nSpfz0pz/lyiuvxGQyMWTIEF5++WXOPPPMzgxfRES6OCWlRETCxPDhw9mwYQPXXXddo+W7du1iypQpTJ48mc2bNzNr1izmzJnD+++/71/nz3/+M0899RTdu3dvtG1lZSWHDh2iT58+/mXp6ekkJyeze/fujq2QiIh0uLa2HTt27CAlJYXJkyczePBgcnJy2LdvHykpKSGohYiIdFVKSomIhIkePXpgsViaLF++fDlXXXUV11xzDTExMVxyySXccMMNLFu2zL9Or169mt2nw+EAID4+vtFym83mLxMRkcjV1rajoqKCF154gSlTprBx40by8vK455572L59e2dXQUREurCmLZiIiISVb775hk2bNjFw4ED/Mrfb3aohFna7HYCamppGy51OJwkJCcENVEREwkZLbUdsbCzjx48nKysLgGuuuYahQ4eybt06Lr744pDELCIiXY+SUiIiYa5Xr1788Ic/5De/+Y1/WVFREYZhtLhtcnIyPXv2pLCw0D+Er7i4mPLy8kZD+kREJLq01Hace+651NXVNdrG7Xa3qm0REREJFg3fExEJcxMmTOC1117jgw8+wOPxsGfPHv7f//t/LFmypFXbjxs3joULF7J//36qqqqYM2cOgwYN0mS2IiJRrKW248c//jEvvfQSH374IR6Ph3Xr1rF582auv/76EEcuIiJdiXpKiYiEuYsvvpinn36ap59+ml/+8pfY7Xauv/56fvWrX7Vq+7y8PFwuF7m5uTgcDgYPHsyzzz7bsUGLiEhItdR2jB8/HrPZzOOPP87XX3/N6aefzjPPPMOFF14Y4shFRKQrMRnqoysiIiIiIiIiIp1Mw/dERERERERERKTTKSklIiIiIiIiIiKdTkkpERERERERERHpdEpKiYiIiIiIiIhIp1NSSkREREREREREOp2SUiIiIiIiIiIi0umUlBIRERERERERkU6npJSIiIiIiIiIiHQ6JaVERERERERERKTTKSklIiIiIiIiIiKdTkkpERERERERERHpdEpKiYiIiIiIiIhIp1NSSkREREREREREOp2SUiIiIiIiIiIi0umUlBIRERERERERkU6npJSIiIiIiIiIiHQ6JaVEgsQwjFCHICIiEUJthoiItEdntiNqs6QjKSklXdqIESO4//7727WPo0ePct9997F161b/sptuuombbrqpveGJiEgUWLNmDd///vfp27cvDz/8MIWFhfz4xz8OeD/3338/I0aM8P8eaBumtklEJDJ1VDvSGm09lkhrWUIdgEik+89//sMrr7zCuHHjQh2KiIiEoUcffZSzzjqLuXPn0rNnT1avXs22bdvavd/58+eTmJjY6vUfeeSRdh9TREQ6X0e1I63xxhtvdNqxpGtSUkpERESkA5WXl3PZZZcxePDgoO73ggsuCGj9jIyMoB5fREQ6R0e1IyLhQMP3pMurr6/nscce49JLL+XSSy/lvvvuo6yszF++YsUKxo0bR//+/enXrx85OTmsWbMGgM2bN/PTn/4UgJ/+9KeNhkUYhsHixYv53ve+R79+/bjxxhv57LPP/OW///3vyc7OZv78+QwePJirr76aI0eO4Ha7WbZsGaNHj6Zfv35873vf47e//S21tbWN4t64cSM/+clPGDBgAIMHD+bXv/41Bw8e9Jf/4x//oG/fvnz88ceMHz+evn37MnLkSN566y3++9//8rOf/YyLL76Y7OxsXn/9df92Ho+H3/3ud4wYMYKLLrqIESNG8PTTT1NfXx/cEy8iEgF27tzJz372MwYMGEBWVhaTJk1i+/bt/vK1a9cyZswY+vXrx9ixY9m2bRsXXHAB//jHP9i8eTPnnXceAH/4wx8477zzuP/++5k/fz4A5513Hr///e/bHNvxw/dGjhxJXl5ek3UmTpzI5MmTgabD98477zyWLVvG9OnTGTRoEFlZWdx1112UlJQ02scLL7zAVVddRb9+/fjRj37EW2+9xXnnncfmzZvbHLuISFcRzu1IS88dv//974N2LJETUVJKurw33niDzz//nLlz53LvvffyzjvvcPvttwOwbNkyHn74Ya666ioWLVrEk08+idVqZdq0aRw4cIALL7yQhx9+GICHH3640dCIjz/+mA0bNvDQQw/xxBNPcPjwYX7xi1/gcrn86xw4cIANGzbw9NNPc/fdd5OamsrDDz/MnDlzGDFiBAsXLiQ3N5e//OUv3H777f5JBl999VV+/vOf07NnT55++mkeeOABtm3bxo033khpaal//y6Xi1/96lf86Ec/YsGCBcTFxTF16lR+8Ytf8L3vfY/f/e539OjRg/vuu49Dhw4BsHjxYpYtW0ZeXh5Llizhxz/+Mc8//zzPPfdch/8tRETCSVVVFbfccgupqanMmzePZ555hpqaGv7nf/6HyspK3nzzTX75y1+SmZnJ/Pnzueaaa5gyZQoejweACy+8kL/97W8ATJgwgb/97W/ceeedTJgwAYC//e1vTJw4MSix5uTk8N5771FVVeVftm/fPnbs2EFOTs4Jt3vmmWfweDw8/fTT/jZwzpw5/vL58+fz29/+lmuvvZYFCxZw8cUXc8899wQlZhGRaBfu7UhLzx0TJ07skDZL5HgaviddXrdu3Xj++ef983KkpqaSl5fHBx98wP79+/n5z3/e6NPnM844g3HjxvHJJ59w/fXX+4dDZGRkNBoaERsby//93/+RkpICeBulGTNmUFhYyPnnnw94k0b33Xcfw4YNA7wTCa5cuZK7776bKVOmAHDZZZdxyimncO+99/Lee+9x+eWX8+STTzJs2DCeeeYZ//EuueQSrrvuOpYsWcK0adMAb6+nX/ziF/4G5OjRo/zqV7/iZz/7GTfffDMA6enpjB8/ns8//5xevXqxZcsWLrzwQsaPHw/AoEGDsNvtAc1bIiISDQoLCykrK+Omm25iwIABAJxzzjksX76cqqoq/vCHP3DRRRfx1FNPAXDFFVdgMpl49tlnAUhMTKR///4A9OrVq9HPgP/3YBgzZgzz5s1jw4YN/PCHPwRg9erVJCQkcNVVV51wuz59+vD444/7f9+xYwdr164FoLq6msWLF5Obm8vUqVMBGD58ODU1Nf6HJBERObFwbkda89xx5ZVXdkibJXI89ZSSLu/KK69slHAZMWIEVquVDz/8kPvvv59p06ZRWVnJZ599xurVq1m2bBlAi8PZMjIy/Akp8CazACorKxut16dPH//PW7ZsAWD06NGN1hk1ahQxMTFs3ryZr776iuLi4ibrnHnmmWRlZTUZTpGVleX/OT09HWjcqPhiPHr0KACDBw/mww8/5Cc/+Ql//OMf+fLLL/l//+//MXbs2JPWV0Qk2mRmZpKWlsaUKVN45JFHeOutt+jRowf33nsvKSkp7Ny5s0nCZ8yYMSGJ9YwzzmDAgAGNhmO//vrrjBw5EpvNdsLtvv2Q0atXL2pqagD49NNPcTqd/OAHP2i0zvXXXx+8wEVEolg4tyOtee4Q6QxKSkmX50vU+JjNZlJSUjh69Cj79u1j0qRJXHrppfz4xz9m8eLF/mSUbyjdicTHxzfZL+Dvjtvc8SsqKgDo0aNHo3UsFgupqalUVlZSXl7ebNy+Zd9OejXXw+lkDyi33HILDz/8ME6nkyeeeILrrruO0aNH89FHH51wGxGRaJSQkMCyZcu48sorWbNmDVOmTGHo0KE8/PDD/kR+Wlpao2169uwZilABGDt2LB999BFHjhzhP//5D19++eVJh+4B2O32Rr+bzWZ/++abX/HbdWyu/RERkabCuR1pzXOHSGfQ8D3p8nwNgo/b7ebIkSOkpqYyefJkrFYrf//737nggguwWCwUFhbyz3/+s0NiSU5OBqC4uNjfswq8vbJ8Mfl6Nn17Ilrfdqmpqe2KwWw2k5ubS25uLqWlpbz77rs899xz3HnnnXz44YfExsa2a/8iIpHknHPO4cknn8TtdrNjxw5effVVXnrpJU455RTMZnOTa7Hvg4NQ+MEPfsCsWbPYsGEDe/fu5dRTT2XQoEFt3p9vyEZZWRnnnHOOf/nxLwMREZGTC9d2pDXPHSKdQT2lpMv78MMPG00+vm7dOlwuF9/97nf56quvmDBhAv369cNi8eZw33vvPeBYj6eYmJigxeJ7eFi9enWj5a+//jput5sBAwZw9tln06NHjybr7N+/n08//ZRLLrmkXTH86Ec/4rHHHgOge/fujBs3jtzcXCorKxtNoCsiEu3Wrl3LkCFDKC4uJiYmhqysLGbOnEm3bt0oKysjKyuLdevWNeoB+/bbb7e4X1/P2WBLSkri+9//Pm+++SZr165l9OjR7TrW+eefT1JSEuvXr2+0fN26de0NVUSkSwjndqQ1zx3BOpbIyainlHR5JSUl3Hnnndx0003s2bOHp59+mssuu4xrr72W3/72tyxbtoxevXrRrVs3PvjgA1588UUA/5wbSUlJALzzzjskJyf7JzFvi4yMDH74wx8yf/58nE4ngwcP5j//+Q/z589n8ODBXH755ZjNZn71q1/xwAMPcM899zB27FiOHDnC/PnzSU5O9k9g3laXXnopS5YsIT09naysLA4fPswf//hHBg0a1KR7sYhINLvkkkvweDzk5eUxefJkEhISeOONN6isrOSaa67huuuuY9KkSdx+++38+Mc/Zt++ffzud79rcb/dunUD4LXXXuPiiy+md+/eQYt57Nix5OXl4Xa72z0vSWJiIrfccgvz5s3DbrczaNAgtmzZwksvvQToQUVEpCXh3I605rkjWMcSORndTUiXd8MNN5Cenk5eXh6/+93vGD16NPPnz8dkMrFgwQJ69uzJ/fffz913382nn37KwoULOeecc9i6dSvgncDw+uuvZ9myZf63E7XH7NmzueOOO3j99deZPHkyy5Yt46abbmLx4sX+B4Bx48Yxb9489u7dS15eHnPnziUrK4uVK1c2GRceqF/+8pf84he/4OWXX+aWW25h7ty5DB8+nHnz5rW7biIikeSUU07h+eefJykpienTp3Pbbbexc+dOfv/73zNkyBAGDhzICy+8QElJCXl5eSxfvpz77ruvxf1ec8019O3bl/vvv58XXnghqDFffvnlJCcnc8EFF5CZmdnu/d12223ccccdvPLKK9x2221s3brV39Z9e+5EERFpLNzbkdY8d3RkmyUCYDJamq1ZRERERFrl66+/5qqrruLxxx9n3LhxoQ6nXVwuF6+99hqDBw/m1FNP9S9ftmwZjz32GJs3b/Z/gi4iIsERTe2ISGto+J6IiIhIiBiGgdvtbnG9mJgYTCZTJ0R0jMViYfHixbz44otMmTKF1NRUdu3axe9+9zvGjh2rhJSISBgI53ZEpDWUlBIREREJkVWrVvHAAw+0uF6oPjF/7rnnePrpp5k5cyZHjx7ltNNOY9KkSdx2222dHouIiDQV7u2ISEs0fE9EREQkRI4cOcLXX3/d4npnnHGGXs8tIiJNqB2RSKeklIiIiIiIiIiIdDq9fU9ERERERERERDqdklIiIiIiIiIiItLplJQSEREREREREZFOp6SUiIiIiIiIiIh0OkuoA4hEpaWVaHr4Y0wm6N49SeelFXSuWk/nqvXaeq5820lwNHf+o/HfseoUGaKxThCd9Qq3OqltCL62ts/h8m8iGuicBp/OafCF+zntqPZBSak2MAzC8h9JqOm8tJ7OVevpXLWezlVonez8R+PfRnWKDNFYJ4jOekVjnTpbWVkZN954I4899hiDBw8GYN26dSxYsID9+/eTkpLCuHHjuP322zGbvQNGVq1axYIFCyguLuacc87hoYceIisrCwC3281vf/tbXn31VWpqahgyZAiPPvoop5xySkBxtfVvq38TwadzGnw6p8HX1c6phu+JiIiIiEhE+/jjj7nxxhvZt2+ff9nnn3/Ovffey913383WrVtZvHgx//jHP1i6dCkAmzdvZtasWcydO5f8/HzGjBnDlClTqKmpAWDhwoVs3LiRl19+mffffx+bzcaMGTNCUT0RkailpJSIiIiIiESsVatWMXXqVO65555Gy7/55ht+9KMf8f3vfx+z2cy5555LdnY2+fn5AKxYsYJRo0YxYMAArFYrkyZNIjU1lTVr1vjLb731Vk499VQSExOZPn067733Hvv37+/0OoqIRCslpUREREREJGINHz6cDRs2cN111zVaPnLkSB544AH/706nk3feeYcLL7wQgMLCQvr06dNom4yMDHbt2kVlZSWHDh1qVJ6enk5ycjK7d+/uwNqIiHQtmlNKREREREQiVo8ePVpcp6qqil/+8pfYbDYmTZoEgMPhwG63N1rPZrNRXV2Nw+EAID4+vkm5r6y1TKaAVvevH+h2cmI6p8Gncxp84X5OOyouJaVERERERCRq/fe//+Wuu+6ie/fu/OlPfyIxMREAu92O0+lstK7T6SQ1NdWfrPLNL3V8eUJCQkDHb+vbqvQWxODTOQ0+ndPg62rnVEkpERERERGJSu+++y6/+tWvuOGGG/j1r3+NxXLs8SczM5OCgoJG6xcWFnLFFVeQnJxMz549Gw3xKy4upry8vMmQv5YE+nr3cH8tfCTSOQ0+ndPgC/dz6osv2JSUEhERERGRqPPpp5+Sl5fHzJkzmTBhQpPyCRMmkJeXx7XXXsuAAQNYtmwZpaWlZGdnAzBu3DgWLlxI3759SU1NZc6cOQwaNIgzzzwzoDja+nr3rvZa+M6gcxp8OqfB19XOqZJSIiIiIiISdZ577jlcLhezZ89m9uzZ/uUDBgzg+eefZ+jQoTzyyCPMnDmTw4cPk5GRweLFi0lJSQEgLy8Pl8tFbm4uDoeDwYMH8+yzz4amMiIiUUpJKRERERERiQrHvxnvueeea3H9nJwccnJymi2zWq1MnTqVqVOnBi0+ERFpzBzqAEREREREREREpOtRUkpERERERERERDqdklIiIiIiIiIiItLpNKeUhBWPx0NJSQkA6enpmM3Km4qItJZhGJSVlQGQlpaGyWQKcUQiIiIiIiemJ34JKyUlJSx6czuL3tzuT06JiEjrlJWV8dxbO3jurR3+5JSIiEQewzAwutI74UWky1JPKQk7CclpoQ5BRCRixSelhDoEEREREZFWUU8pERERERERERHpdEpKiYiIiIiIiIhIp1NSSkREREREREREOp2SUiIiIiIiIiIi0umUlBIRERERERERkU6npJSIiIiIiIiIiHQ6JaVERERERERERKTTWUIdgIiIiASXYRgcOVIGQFpaGiaTKcQRiYiIiIg0FZY9pdasWcMFF1xAVlaW/2vatGkAbN++nYkTJ5KVlcWIESNYsWJFo21XrVpFdnY2/fv3Z9y4cWzbts1f5na7eeKJJxg2bBhZWVlMmTKFoqKiTq2biIhIR6upquDFD7/kubd2UFZWFupwRERERESaFZZJqc8++4ycnBy2bdvm/3ryySepqKhg8uTJjB07lvz8fGbPns3jjz/Ojh07ANi8eTOzZs1i7ty55OfnM2bMGKZMmUJNTQ0ACxcuZOPGjbz88su8//772Gw2ZsyYEcqqioiIdAh7YjLxSSmhDkNERERE5ITCNil10UUXNVm+fv16UlJSyM3NxWKxMHToUEaPHs2yZcsAWLFiBaNGjWLAgAFYrVYmTZpEamoqa9as8ZffeuutnHrqqSQmJjJ9+nTee+899u/f36n1ExERERERERHp6sIuKeXxeNi5cyfvvPMO3//+97niiit46KGHqKiooKCggD59+jRaPyMjg127dgFQWFh4wvLKykoOHTrUqDw9PZ3k5GR2797d8RUTERERERERERG/sJvovKysjAsuuICRI0cyb948jhw5wn333ce0adPo0aMHdru90fo2m43q6moAHA7HCcsdDgcA8fHxTcp9Za2l+WIb852PYJyX4/dhMkXfuQ7muYp2Olet19ZzpXMrIiIiIiKhFHZJqfT0dP9wPAC73c60adO44YYbGDduHE6ns9H6TqeThIQE/7rNlaempvqTVb75pZrbvrW6d08KaP2uIhjnxe2uxm6PbdhfIunp0Xmu9W+o9XSuWk/nSkREREREIknYJaV27drFa6+9xq9//Wv/K6zr6uowm83069ePF198sdH6hYWFZGZmApCZmUlBQUGT8iuuuILk5GR69uzZaIhfcXEx5eXlTYb8taS0tBLDaGsNo4/J5H0YDsZ5KS2toqamzv9zTEx8C1tElmCeq2inc9V6bT1Xvu0kehmGwZEjZaSlpfnbVBERERGRcBF2c0qlpKSwbNkynn/+eVwuFwcOHODJJ5/khz/8ISNHjqSkpISlS5dSX1/Ppk2bWL16NePHjwdgwoQJrF69mk2bNlFfX8/SpUspLS0lOzsbgHHjxrFw4UL2799PVVUVc+bMYdCgQZx55pkBxWgY+vr2VzDPS7Sf52ium85V5J0riW6OygpmrNnNP7ftwdAfXERERETCTNj1lOrVqxeLFi3i6aefZuHChcTFxTFq1CimTZtGXFwcS5YsYfbs2cybN4+0tDRmzJjBkCFDABg6dCiPPPIIM2fO5PDhw2RkZLB48WJSUlIAyMvLw+VykZubi8PhYPDgwTz77LOhq6yIiEgHMQyDT8tM7KvvxmNv7+e1XWU8M74fiXHWUIcmIiIiIgKEYVIKYNCgQSxfvrzZsr59+56wDCAnJ4ecnJxmy6xWK1OnTmXq1KlBiVNERCRcfXnUwz6HGTAwA58edLBkYyF3jfhuqEMTEREREQHCcPieiIiItN+eSg8A51gqGdDD+xnUqp1lVNW6QhmWiIiIiIifklIiIiJRxuGCynowYdDLUs3pCSa6xZqpqnOz4tMDoQ5PRERERARQUkpERCTqHKr2vmmvexxYTQYmk4nvpnvnklrz+UFKSko08bmIiIiIhJySUiIiIlHmUI03KdXLfizx1N1UDRjsKa9l5vJ3KCsrC1F0IiIiIiJeSkqJiIhEEZfHoKTW+/PxSanYGEiL8zb7lZbkUIQmIiIiItKIklIiIiJR5GitBwMTsWZItDYu6xXv7UFVXBcTgshERERERBpTUkpERCSKlNd637rXLdbUpKyX3dvsl9bHUOfydGpcIiIiIiLfpqSUiIhIFKlwepNNSdamSalusRBrNvBgorDM2dmhiYhIKxmGoRdSiEiXoKSUiIhIFKmodQPeBNS3mUwmUhuWf1FS04lRiYiIiIg0paSUiIhIFKnwDd9rpqcUQFqc95P3XcVKSomIiIhIaCkpJSIiEiVq6t046r1Jp6Rm5pQCSI31lu8uqe60uEREREREmqOklIiISJTYX1EHeOeNiotpPimVEuf9frCynvLq+s4KTURERESkCSWlREREosTe8loAullPvE6sGRJivEP8dh6q7IywRERERESapaSUiIhIlDhw1JuUSrSe/I1NyRbvZOg7Dx3t8JhERCQwvjfv6e17ItIVKCklIiISJYodLgDsMSdfL8ni7SlVUOzo6JBERKQNnl63K9QhiIh0CiWlREREokRJwxxRdsvJ1+vWMHzvi6Kqjg5JRETawtT8vIAiItFGSSkREZEoUexoSErFnHzIh6+n1IGjtVQ6XR0el4iIiIhIc5SUEhERiQKGYRzrKdXC8D2rGU5J8M6GXlCi3lIiIiIiEhpKSomIiESBo04XtS5vD6mWklIA56TZACgo0rxSIiIiIhIaSkqJiIhEOMMw+OLrIgDiYkzEtKJ19yWlvihWTykRiQ5lZWVkZ2ezefNm/7Lt27czceJEsrKyGDFiBCtWrGi0zapVq8jOzqZ///6MGzeObdu2+cvcbjdPPPEEw4YNIysriylTplBUVNRp9RER6QqUlBIREYlwZWVl/OmjLwCwtTCflI8/KaWeUiISBT7++GNuvPFG9u3b519WUVHB5MmTGTt2LPn5+cyePZvHH3+cHTt2ALB582ZmzZrF3Llzyc/PZ8yYMUyZMoWamhoAFi5cyMaNG3n55Zd5//33sdlszJgxIyT1ExGJVkpKiYhIVNi5cye5ubkMHDiQ4cOH89hjj1FXVwe075PySOG2xANgt7T8xibDMEiPcQLw31IHLrenQ2MTEelIq1atYurUqdxzzz2Nlq9fv56UlBRyc3OxWCwMHTqU0aNHs2zZMgBWrFjBqFGjGDBgAFarlUmTJpGamsqaNWv85bfeeiunnnoqiYmJTJ8+nffee4/9+/d3eh1FRKKVklIiIhLxPB4Pt912GyNHjmTLli2sXLmSDz74gMWLF7f7k/JIUV3vm0+q5aRUbXUlb3y6F4vJoM5tsOdIZNVVROR4w4cPZ8OGDVx33XWNlhcUFNCnT59GyzIyMti1axcAhYWFJyyvrKzk0KFDjcrT09NJTk5m9+7dHVQTEZGuR0kpERGJeBUVFRQXF+PxeDAMb3LGbDZjt9vb/Ul5pKh2eXs72S2tWz8+KZnUhpULNK+UiESwHj16YLE0vfg5HA7sdnujZTabjerq6hbLHQ7v0Ob4+Pgm5b6y1jKZAv9q63b60jnVOY3sr3A/px2hlbeuIiIi4Ss1NZVJkybxxBNP8L//+7+43W6uuuoqJk2axNy5c5v9JHzlypWA95Py8ePHNyn3fZLeWs011MffXHQkk+lYT6n4huF7JhMYAKZjP397WYrNTHG1m4IiB9dd0PpjHf89GqhOkSMa6xVudQqXOILBbrdTWVnZaJnT6SQhIcFf7nQ6m5Snpqb6k1Xf7jV7/Pat1b17UkDr+z5c6d49iZiYVrxOVVot0L+FtEznNPi62jlVUkpERCKex+PBZrPx0EMPMWHCBPbu3csdd9zBvHnz2vVJeSBOdgPR8TcXtThd3oeY5AQLtlgwW6146j3Y4qzY7N6fv72sp9tEQVk9X5U7SU8PLMZovGFSnSJHNNYrGusUan369GHjxo2NlhUWFpKZmQlAZmYmBQUFTcqvuOIKkpOT6dmzZ6MhfsXFxZSXlzf5oKMlpaWVGK17B0UDw7+d2aykVDCYTN7/xwL/W8iJ6JwGX7ifU198waaklIiIRLwNGzawbt061q5dC3gfNPLy8pg9ezajR49u8yflgWjuBqKzbi5KS6uorvcO3zO73Dg9dZhdZjyuOpy19Thr6vG4mi5LiLECsPObCoqLj2JqRReJcL9hagvVKXJEY73CrU4d9dARCtnZ2Tz55JMsXbqU3NxcPv74Y1avXs2CBQsAmDBhAnl5eVx77bUMGDCAZcuWUVpaSnZ2NgDjxo1j4cKF9O3bl9TUVObMmcOgQYM488wzA4rDMGjT37at28mJ6ZwGn85p8HW1c6qklIiIRLyDBw/637TnY7FYsFqt7fqkPBAnu4Ho6JuLWpeHhpwUseZjx/T+cOznby9Ltpkxm+BITT3FVXX0SIxr9TGj8YZJdYoc0VivaKxTqKWmprJkyRJmz57NvHnzSEtLY8aMGQwZMgSAoUOH8sgjjzBz5kwOHz5MRkYGixcvJiUlBYC8vDxcLhe5ubk4HA4GDx7Ms88+G7oKiYhEISWlREQk4g0fPpynnnqK5557jltvvZUDBw6wcOFCRo8e3e5PyiNBhdMNgAkDqxnwtG47i9nEGd3i2FdRyxfFjoCSUiIi4ejbb8br27cvy5cvP+H6OTk55OTkNFtmtVqZOnUqU6dODWqMIiJyjJJSIiIS8TIyMli0aBHPPvsszz//PElJSYwZM4a8vDxiY2Pb9Ul5JKhwugCIiwGTyUQgnS3OSbN5k1JFVVx2dlrHBCgiIiIi0gwlpUREJCoMGzaMYcOGNVvWnk/KI0F5Q08p39C9QJybZuOdryooKA7sFeciIiIiIu3VhttXERERCSfH95QK1NlpNgC+KKoKZkgiIiIiIi1SUkpERCTClfuSUubAZ0k+tyEpte9IDTX17qDGJSIiIiJyMkpKiYiIRLiKmobhe23oKZVqt5AWb8UAvizRED4RERER6TxKSomIiES48lpfT6m2bd/nlERAQ/hEREREpHMpKSUiIhLhKmraPqcUQJ8eDUkpTXYuIiIiIp1ISSkREZEIV9Hw9r1A55QyDIMjR8o41e7drqDYQWlpKYYR+NxUIiIiIiKBUlJKREQkwvkmOg90Tqmaqgpe/PBLtnyxF4Avi6t4+pUPKCsrC3aIIiIiIiJNKCklIiIS4cr9PaUC39aemMwpqcmYTeCo92CydwtydCIiIiIizVNSSkREJILV1LlwujxA2+eUijGbOKNbHABH64MVmYiItJVhGBpKLSJdgpJSIiIiEeyrg8WAt0G3mNq+nzNTfEmpduxERERERCQASkqJiIhEMP8k5zFgakc+6axUb1Kq0hWMqEREREREWqaklIiISASraOMk58czDIN0q3fc3tE69ZQSERERkc5hCXUAIiIi0naVtd6eUrHmtieTaqoq2HqwDrBTWQ8ezWMiIiIiIp1APaVEREQiWGVdQ1KqHT2lALonJ2HGwI2JoirNdi4iIiIiHU9JKRERkQjm6yllbUdPKQCzyURCQ//pA5V17Q1LRERERKRFSkqJiIhEsCr/8L327yvB6v3+zVElpURERESk4ykpJSIiEsF8w/eswUhKWbxzSR04Wtv+nYmIiIiItEBJKRERkQjm7ykV0/635iX6hu+pp5SIiIiIdIKwTUq53W5uuukm7r//fv+y7du3M3HiRLKyshgxYgQrVqxotM2qVavIzs6mf//+jBs3jm3btjXa3xNPPMGwYcPIyspiypQpFBUVdVp9REREOkIwe0olWr09pTR8T0REREQ6Q9gmpebPn8/WrVv9v1dUVDB58mTGjh1Lfn4+s2fP5vHHH2fHjh0AbN68mVmzZjF37lzy8/MZM2YMU6ZMoaamBoCFCxeyceNGXn75Zd5//31sNhszZswISd1ERESCparWAwRpTqmGnlKHqupxeYz271BERERE5CTCMin10UcfsX79eq655hr/svXr15OSkkJubi4Wi4WhQ4cyevRoli1bBsCKFSsYNWoUAwYMwGq1MmnSJFJTU1mzZo2//NZbb+XUU08lMTGR6dOn895777F///6Q1FFERCQYKv0Tnbd/+J49BswYuDwGh446270/EREREZGTCbukVGlpKdOnT+epp57Cbrf7lxcUFNCnT59G62ZkZLBr1y4ACgsLT1heWVnJoUOHGpWnp6eTnJzM7t27A47RZNLXt7+CeV6i/TxHc910riLvXElkMwyDKt/wvZj2789kAnuMt4fU1+U17d+hiIiIiMhJWEIdwPE8Hg/Tpk3j5ptv5vzzz29U5nA4GiWpAGw2G9XV1S2WOxwOAOLj45uU+8oC0b17UsDbdAXBOC9udzV2e2zD/hJJT4/Oc61/Q62nc9V6Olddj9Plob5hmF2sGQjCiLuEGA8Ot5l9R5wMOav9+xMREREROZGwSkotWrSI2NhYbrrppiZldrudysrKRsucTicJCQn+cqfT2aQ8NTXVn6zyzS/V3PaBKC2txNBUG34mk/dhOBjnpbS0ipqaOv/PMTHxLWwRWYJ5rqKdzlXrtfVc+baTyFVRUw+ACYMYE0FJSsXHeOeo2q+eUiIiIiLSwcIqKfXqq69SVFTEwIEDAfxJpn/961/ce++9bNy4sdH6hYWFZGZmApCZmUlBQUGT8iuuuILk5GR69uzZaIhfcXEx5eXlTYb8tYZhoIfkZgTjvBy/fTSf52iuW7DpXLWezlXXU1nrAsBqMjCZTMHISWE3e/dyoEJzSomIiIhIxwqrOaXWrl3LJ598wtatW9m6dSvXX389119/PVu3biU7O5uSkhKWLl1KfX09mzZtYvXq1YwfPx6ACRMmsHr1ajZt2kR9fT1Lly6ltLSU7OxsAMaNG8fChQvZv38/VVVVzJkzh0GDBnHmmWeGssoiIiJtdtR5LCkVLL45pZSUEhEREZGOFlY9pU4mNTWVJUuWMHv2bObNm0daWhozZsxgyJAhAAwdOpRHHnmEmTNncvjwYTIyMli8eDEpKSkA5OXl4XK5yM3NxeFwMHjwYJ599tnQVUhERKSdOiIpFW/2Dt87UOHEMLw9sEREREREOkJYJ6Xmzp3b6Pe+ffuyfPnyE66fk5NDTk5Os2VWq5WpU6cyderUoMYoIiISKked3jmlrA2JpGCwNfSUqq53U15TT2p8bND2LSIirWMYBobG5ItIFxBWw/dERESk9Xw9pSxB7CkVY4L0eO9nVhrCJyIiIiIdSUkpERGRCNURw/cAeiZ6e0d9o6SUiIiIiHQgJaVEREQi1PFv3wumXklWQD2lRERERKRjKSklIiISoSpqgp+UMgyDFIsbUE8pEREREelYYT3RuYiIiJyYf6LzICalaqsrOXjACsSxt6QyaPsVEREREfk29ZQSERGJUP7he0F8+x5ASkI8AIeq6oO6XxERaZn3rXt6856IdA1KSomIiESoig6a6DzBagKgqKoOt0cPRiIinc0wjIbklIhIdFNSSkREJEJVNiSlLEFOStliwGwCtwFFVbVB3beIiIiIiI+SUhHE4/FQVFREUVERHk9wh2qIiEhkcXuMDnv7nslk8veW0hv4RERERKSjKCkVQUpKSlj05nYWvbmdkpKSUIcjIiIhVNWQkILgJ6UAEmO9twjflCspJSIiIiIdQ2/fizAJyWmhDkFERMLA0Yahe3aLGbMp+PtPsJoBN98cVVJKRERERDqGekqJiIhEoKMNPaUS42I6ZP+JsRq+JyIiIiIdS0kpERGRCHTUWQ9AUmwHJaWsGr4nIiIiIh1LSSkREZEI5HvzXlKH9ZTy3iIc0PA9EYlgO3fuJDc3l4EDBzJ8+HAee+wx6urqANi+fTsTJ04kKyuLESNGsGLFikbbrlq1iuzsbPr378+4cePYtm1bp8VtGAaGEfz5AkVEwo2SUiIiIhGowukbvtcxTXlCQ0+pUkcdNXUuSktLKS0t1UOSiEQMj8fDbbfdxsiRI9myZQsrV67kgw8+YPHixVRUVDB58mTGjh1Lfn4+s2fP5vHHH2fHjh0AbN68mVmzZjF37lzy8/MZM2YMU6ZMoaamJsS1EhGJLkpKiYiIRKCOHr4XG3MsMbVrfxHPvbWD597aQVlZWYccT0Qk2CoqKiguLsbj8fgT6mazGbvdzvr160lJSSE3NxeLxcLQoUMZPXo0y5YtA2DFihWMGjWKAQMGYLVamTRpEqmpqaxZsyaUVRIRiTpKSomIiESgo86OnegcID3ee5twsLKW+KQU4pNSOuxYIiLBlpqayqRJk3jiiSfo27cvV155JWeddRaTJk2ioKCAPn36NFo/IyODXbt2AVBYWHjSchERCQ5LqAMQERGRwPmSUkmxMVR2wP5rqipw1hiAha+KKjrgCCIiHcvj8WCz2XjooYeYMGECe/fu5Y477mDevHk4HA7sdnuj9W02G9XV1QAtlgfCZGpb/CZT27eVxnznUeczeHROgy/cz2lHxaWklIiISASq7ISeUkm2WA7XeSiqdpNiU+dqEYksGzZsYN26daxduxaAzMxM8vLymD17NqNHj6aysnFK3+l0kpCQAIDdbsfpdDYpT01NDTiO7t2TAlrfN9wwLS0Rm80W8PHkxAL9W0jLdE6Dr6udUyWlREREIpB/TqkOTEolWL3fixwuUmyxHXYcEZGOcPDgQf+b9nwsFgtWq5U+ffqwcePGRmWFhYVkZmYC3gRWQUFBk/Irrrgi4DhKSysJ5B0RhuHxbxcXVx/w8aQpk8n7oB/o30JOTOc0+ML9nPriCzZ97CkiIhKBjtYeG77XUeIt3n7axdXuDjuGiEhHGT58OMXFxTz33HO43W7279/PwoULGT16NNnZ2ZSUlLB06VLq6+vZtGkTq1evZvz48QBMmDCB1atXs2nTJurr61m6dCmlpaVkZ2cHHIdhBP7V1u30pXOqcxrZX+F+TjuCekqJiIhEoM6Y6NyXlCqqdmMYBqZwneRARKQZGRkZLFq0iGeffZbnn3+epKQkxowZQ15eHrGxsSxZsoTZs2czb9480tLSmDFjBkOGDAFg6NChPPLII8ycOZPDhw+TkZHB4sWLSUlJCW2lRESijJJSIiIiEciXlDKcHdfFO6HhLqHGZVDnhjjdNYhIhBk2bBjDhg1rtqxv374sX778hNvm5OSQk5PTUaGJiAgaviciIhJxnPVual3eOUdeyf+C2lpnC1u0TYzZhL2ht1RVvadDjiEiIiIiXZeSUiIiIhGmsmE+KROQlNStQ4+VYPUmpRx1SkqJiIiISHApKSUiIhJhqmq9E49bY7xvQulIibHeW4UqJaVEREREJMiUlBIREYkwvp5SVnPHTzzuT0rVd9DEVSIiIiLSZSkpJSIiEmGqGpJSsTEdn5RKsKqnlIiIiIh0DCWlREQkKpSXl3PvvfcyePBgLr30Um6//XaKiooA2L59OxMnTiQrK4sRI0awYsWKRtuuWrWK7Oxs+vfvz7hx49i2bVsoqtBqVZ3aU0oTnYuIiIhIx1BSSkREosKdd95JdXU1GzZs4O233yYmJoaHHnqIiooKJk+ezNixY8nPz2f27Nk8/vjj7NixA4DNmzcza9Ys5s6dS35+PmPGjGHKlCnU1NSEuEYn1pk9pZIahu856gw8hobwiYiIiEjwKCklIiIR7/PPP2f79u3MnTuXbt26kZiYyKxZs5g6dSrr168nJSWF3NxcLBYLQ4cOZfTo0SxbtgyAFStWMGrUKAYMGIDVamXSpEmkpqayZs2aENfqxCqPm+i8o9ktJqxmMIBqzSslIiIiIkFkCXUAIiIi7bVjxw4yMjL4+9//zksvvURNTQ2XX3459913HwUFBfTp06fR+hkZGaxcuRKAwsJCxo8f36R8165dAcXQ3FvwfMuC/YY8R11DTynf8D2T9xgGTb83VxbI+iaTiVMSLHxT6aKqztNhdQol1SlyRGO9wq1O4RKHiIh0DUpKiYhIxKuoqGD37t1cdNFFrFq1CqfTyb333st9991Heno6dru90fo2m43q6moAHA7HSctbq3v3pDaVtUV9w1NjfJwFmy0WW5wVm92Kp96D2dr4e3Nlgaxvt8dyRoqbbypd1GImLS2xQ+oUDlSnyBGN9YrGOomIiLRESSkREYl4sbGxAEyfPp24uDgSExO5++67ueGGGxg3bhxOp7PR+k6nk4SEBADsdnuz5ampqQHFUFpaybenXDKZvA+azZW1R0mFd74rk8eD01mHs7YeZ009HlcdZpe50ffmygJZH2JItXqPW1ZVR1lZFenp6UGvUyh11N8plKKxThCd9Qq3OvniERER6QxKSomISMTLyMjA4/FQX19PXFwcAB6P921x3/3ud/nrX//aaP3CwkIyMzMByMzMpKCgoEn5FVdcEVAMhsEJHyhPVtYWlU7fnFIN42yO2/+3vzdXFuj6PeO9twtVdUajsnB4gA4m1SlyRGO9orFOIiIiLdFE5yIiEvGGDRtG7969efDBB3E4HJSVlfHMM89w9dVXc/3111NSUsLSpUupr69n06ZNrF692j+P1IQJE1i9ejWbNm2ivr6epUuXUlpaSnZ2dohrdWK+t+91xkTnhmGQgLdnVmW9p+MPKCIiIiJdhpJSIiIS8axWK3/+85+JiYlh5MiRjBw5kl69ejFnzhxSU1NZsmQJa9euZfDgwcyYMYMZM2YwZMgQAIYOHcojjzzCzJkzGTRoEK+//jqLFy8mJSUltJU6icrab0103oFqqir4YIe3J1lVnQdDXTlEREREJEiCPnxv8+bNDB48ONi7FRGRKBaMtqNnz54888wzzZb17duX5cuXn3DbnJwccnJy2nX8znSsp5QJXB1/vOT4OHCCywMVDUMHRUSCQc8OIiJdW9B7St11111cffXV/OEPf+DAgQPB3r2IiEQhtR2Bqar1JoY6o6cUgNkE9oahggcq6zrlmCLSNej6LyLStQU9KfXBBx8wbdo0Pv/8c0aOHMnPf/5zXnvtNerqdBMrIiLNU9vRei6PQXW9b6LzzjtugtWbADuopJSIBJGu/yIiXVvQk1JWq5WRI0eycOFC3n33Xa6++mqWLFnC8OHDefTRR9m1a1ewDykiIhFObUfrOWqPjdezdlJPKYCEhgH/B4/qQVFEgkfXfxGRrq3DJjovLS1l9erVvPLKKxQWFjJ48GDi4uKYNGkSzz33XEcdVkREIpjajpb5JzmPAbOpE5NSDT2lNHxPRDqCrv/HGIaB3ikhIl1F0Cc6f/3113n11Vf58MMPOeeccxg3bhzPPfccaWlpAFx55ZXk5eXxi1/8ItiHFhGRCKW2o/W+KSoFwOTx4KxxdtpxEywaviciwafrv4hI1xb0pNSjjz7KqFGjWL58ORdddFGT8rPPPptJkyYF+7AiIhLB1Ha0nqPOAzS8ea8TJVi93w9V1nfqcUUkuun6LyLStQU9KfXBBx+wf/9+evbsCcCnn35KUlIS5557LgC9evXirrvuCvZhRUQkgqntaD3/JOcdNgC/eb6eUmU1LqrrXC2sLSLSOrr+i4h0bUG/pX3zzTcZO3Yse/bsAWDbtm1MnDiRd999N9iHEhGRKKG2o/WqfD2lOjkpFRtjIrbhmDu+PIChCU9EJAh0/W+ed14pXWdFJPoF/ZZ2/vz5LFiwwN/99uabb+Z3v/sdTz31VLAPJSIiUUJtR+s56nw9pTr/YSXe4j3mHzbspKysrNOPLyLRR9d/EZGuLehJqYMHD3L55Zc3WjZ8+HAOHDgQ7EOJiEiUUNvReseSUp1/7ISGpFSt2db5BxeRqKTrv4hI1xb0W9rTTz+d999/v9Gyjz76iNNOOy3YhxIRkSihtqP1HPXe4XuWzp3nHICEhpkoj9a6O//gIhKVdP1vnobviUhXEfSJzidPnkxeXh7XXHMNp59+OgcOHGDDhg088cQTrd7HRx99xNNPP82XX36J3W7nBz/4AdOmTcNms7F9+3Yee+wxCgsLSU1NZcqUKUycONG/7apVq1iwYAHFxcWcc845PPTQQ2RlZQHgdrv57W9/y6uvvkpNTQ1Dhgzh0Ucf5ZRTTgn2aRARkQAEo+3oKqpC2FMqvuGuoarW0/kHF5GopOu/iEjXFvRb2tGjR7N48WKsVis7d+7EZrOxZMkSRo4c2arty8rKuO222/jxj3/M1q1bWbVqFVu2bOH//u//qKioYPLkyYwdO5b8/Hxmz57N448/zo4dOwDYvHkzs2bNYu7cueTn5zNmzBimTJlCTU0NAAsXLmTjxo28/PLLvP/++9hsNmbMmBHsUyAiIgFqb9vRlVSHaKJzODZ8r1I9pUQkSHT9FxHp2oLeUwpg8ODBDB48uE3bpqWl8eGHH5KYmIhhGJSXl1NbW0taWhrr168nJSWF3NxcAIYOHcro0aNZtmwZ/fr1Y8WKFYwaNYoBAwYAMGnSJP72t7+xZs0axo8fz4oVK5g6dSqnnnoqANOnT2f48OHs37+f3r17B6fyIiLSJu1pO7oCwzAoKyuj3OEEQttTqrLOg0fDSkQkSHT9FxHpuoKelDp8+DALFy5kz549eDyNu/f/6U9/atU+EhMTAbjyyis5fPgwAwcOZNy4cTz77LP06dOn0boZGRmsXLkSgMLCQsaPH9+kfNeuXVRWVnLo0KFG26enp5OcnMzu3bsDSkqZQjCPx7ePazKFLo5v88URjHjCtY7BEsxzFe10rlqvrecqnM5tMNqOaFdWVsZzb+1g3xEDsITk7Xv2GDABHgPKql2kd+/0EEQkyuj6LyLStQU9KfXAAw9QUlLC97//faxWa7v2tX79eioqKpg6dSp33XUXPXv2xG63N1rHZrNRXV0NgMPhOGG5w+EAID4+vkm5r6y1undPCrQqQeF2V2O3xzbEkEh6esfH4fF4KC4uBqBHjx6YzSf+aD4Y5yUUdQyFUP0bikQ6V60XyecqmG1HNItPSsFtOgqANQRJRbMJ7BaodsGhqjr6tLyJiMhJ6fovItK1BT0p9dlnn7Fu3TrS0tLavS+bzYbNZmPatGlMnDiRm266icrKykbrOJ1OEhISALDb7Tidziblqamp/mSVb36p5rZvrdLSSkIxaqG0tIqamjr/zzEx8S1s0X5FRUU896/tAPzi6oubnRTeZPI+DAfjvISijp0pmOcq2ulctV5bz5Vvu3AQzLYj2jW8fA9LCIbvASRYTFS7DA5W1ocmABGJKrr+i4h0bUG/pU1KSiI2NrbN23/yySf84Ac/oK6uzr+srq4Oq9VKRkYGBQUFjdYvLCwkMzMTgMzMzBOWJycn07NnTwoLC/1lxcXFlJeXNxkS2BLDCN1XKGJISE4jITmtxbgiuY6d/TcMdQyR8qVz1fHnKly0t+3oKgzD8CelQjGnFEB8Q0eGw5V1J19RRKQVdP1vnsfjaTKcUUQkGgX9lvb222/ngQceYMeOHRw4cKDRV2ucd955OJ1OnnrqKerq6vjmm2944oknmDBhAiNHjqSkpISlS5dSX1/Ppk2bWL16tX8eqQkTJrB69Wo2bdpEfX09S5cupbS0lOzsbADGjRvHwoUL2b9/P1VVVcyZM4dBgwZx5plnBvs0iIhIANrbdnQVbgMMvOP2QpWUSrB4j3+oSj2lRKT9dP0XEenagj58b8aMGQBs2LABAJPJhGEYmEwm/vOf/7S4fUJCAs8//zxz5szhsssuIykpidGjR5OXl0dsbCxLlixh9uzZzJs3j7S0NGbMmMGQIUMA79v4HnnkEWbOnMnhw4fJyMhg8eLFpKSkAJCXl4fL5SI3NxeHw8HgwYN59tlng30KREQkQO1tO7qKevex7m2WEE1Un9AwmdUh9ZQSkSDQ9V9EpGsLelLqzTffbPc+MjIyWLJkSbNlffv2Zfny5SfcNicnh5ycnGbLrFYrU6dOZerUqe2OUUREgicYbUdXUOfxJqWs5tC9PTGh4c7hoJJSIhIEuv6LiHRtQe/8f/rpp3P66adTUVHBzp076dGjBzabjdNPPz3YhxIRkSihtqN16t3e76EaugcQ39BFq7TaRZ1L852ISPvo+i8i0rUF/ba2tLSUH/3oR9xwww3cd9997N+/n6uvvppt27YF+1AiIhIl1Ha0zvE9pUIlLsb75j8DOFRZG7pARCQq6PovItK1Bf22ds6cOfTp04f8/HwsFgvnnnsukydP5n//93+DfSgREYkSajtaxzenlMUcorF7eOd7SYyNAeBARU3I4hCR6KDrv4hI1xb0pNSmTZt44IEHsNvtmBomvLjlllsoLCwM9qFERCRKqO1oHV9SKpQ9pQCS4rwBfFPhDG0gIhLxdP0XEenagn5ba7VacTq9N6mG4b15djgcJCQkBPtQIiISJdR2tE5dwxROoU9K+XpKKSklIu2j67+ISNcW9NvaESNGMG3aNPbs2YPJZKK0tJRHH32UK6+8MtiHEhGRKKG2o3WO9ZQK3fA9gKRY7+2DklIi0l66/ouIdG1BT0r9+te/Jj4+nh/84AccPXqU4cOHU1NTw9SpU4N9KBERiRJqO1onHCY6B0hs6Cml4Xsi0l66/ouIdG2WYO8wISGBefPmUVZWxtdff02vXr045ZRTgn0YERGJImo7Widc5pTqFqeeUiISHB19/S8vL2fOnDm8++67eDweLr30UmbOnMkpp5zC9u3beeyxxygsLCQ1NZUpU6YwceJE/7arVq1iwYIFFBcXc8455/DQQw+RlZUVtNhERKQDklL5+fmNft+7dy979+4F4NJLLw324UREJAqo7WidujAZvufrKVXhdFFV6yIxLui3EyLSRXT09f/OO+8kOTmZDRs2YDabeeCBB3jooYf43//9XyZPnsxdd93FjTfeSH5+Pnl5eZx33nn069ePzZs3M2vWLBYvXky/fv1YtmwZU6ZM4e2338Zut7c7LhER8Qr6XeRNN93UZJnZbObUU0/lzTffDPbhREQkCqjtaJ36MJnoPDbGRLe4GI7WujlQ4aTPKYmhDUhEIlZHXv8///xztm/fzocffkhiovc6NWvWLIqLi1m/fj0pKSnk5uYCMHToUEaPHs2yZcvo168fK1asYNSoUQwYMACASZMm8be//Y01a9Ywfvz4dsUlIiLHBD0ptWvXrka/l5WV8Yc//IHTTz892IcSEZEoobajdcJl+B5ArySrklIi0m4def3fsWMHGRkZ/P3vf+ell16ipqaGyy+/nPvuu4+CggL69OnTaP2MjAxWrlwJQGFhYZPkU0ZGRpN4RUSkfTr8tjYtLY1p06bx4osvdvShREQkSqjtaJ5vonNLiJNShmGQFuf9+euKmtAGIyJRJZjX/4qKCnbv3s2ePXtYtWoVr7zyCocPH+a+++7D4XA0GYZns9morq4GaLE8ECZT4F9t3U5fOqc6p5H9Fe7ntCN0yiQQFRUV1NbWdsahREQkSqjtaMrfU6qj7gpaqbqygqIjTsDKV4crgN4hjUdEokuwrv+xsbEATJ8+nbi4OBITE7n77ru54YYbGDduHE5n45c1OJ1OEhISALDb7c2Wp6amBhxH9+5JAa3vdrv92/mGHUpwBPq3kJbpnAZfVzunQU9KPfDAA41+r6+v5+OPP2bYsGHBPpSIiEQJtR0t8xhG2MwpBdAtPg6qPRyqqgt1KCISwTry+p+RkYHH46G+vp64OG/3To/HeyH97ne/y1//+tdG6xcWFpKZmQlAZmYmBQUFTcqvuOKKgOMoLa3EMFq/vsfj9m/ndAawoZyQyeR90A/0byEnpnMafOF+Tn3xBVuH39bGxcVx0003MWvWrI4+lIiIRAm1HU05XR7/z6EevgeQYPH21jpUVR/iSEQkmgTz+j9s2DB69+7Ngw8+iMPhoKysjGeeeYarr76a66+/npKSEpYuXUp9fT2bNm1i9erV/nmkJkyYwOrVq9m0aRP19fUsXbqU0tJSsrOzA47DMAL/aut2+tI51TmN7K9wP6cdIeg9pR5//PFg71JERKKc2o6WVdd5k1ImDGJMQAfdGLRWgtWblDpcWYdhGJhCPKRQRCJTR17/rVYrf/7zn5k7dy4jR46ktraWESNGMH36dLp168aSJUuYPXs28+bNIy0tjRkzZjBkyBDA+za+Rx55hJkzZ3L48GEyMjJYvHgxKSkpHRaviEhXFPSk1Pz581u13h133BHsQ4uISIRS29Gy6oaxexYzmEymUOekiG+4g6h1G5RW15OeEBvagEQkInX09b9nz54888wzzZb17duX5cuXn3DbnJwccnJy2nRcERFpnaAnpQoKCli/fj3nn38+Z599NocOHeKTTz7hggsu8E8cqE9TRUTkeGo7WlZd751jxBImp8FsMhFvNVFdb3CgwqmklIi0ia7/IiJdW9CTUmazmQceeICf/vSn/mWvvvoqb7/9Ns8++2ywDyciIlFAbUfLfD2lwmGSc59Eq5nqejcHKpz0O61bqMMRkQik67+ISNcW9Fvbd999l9zc3EbLrr/+ej766KNgH0pERKKE2o6W+eaUCodJzn0SY729F76pqAlxJCISqXT9FxHp2oJ+a5uWlkZ+fn6jZe+//z69evUK9qFERCRKqO1omW/4njWMRrEkNHTbOlDhDHEkIhKpdP0XEenagj5877bbbmPy5MmMHDmS0047jf379/P222/z+9//PtiHEhGRKKG2o2XHJjoP9RTnxyTGKiklIu2j67+ISNcW9KTUxIkTOf300/nnP//Jv//9b3r37s3y5cs577zzgn0oERGJEmo7WuYIs4nOARIaum0pKSUibaXrv4hI1xb0pBTAsGHDGDZsGGVlZaSlpXXEIUREJMqo7Tg535xS4TTRuS8pdaiyFpfbgyUmjIITkYih639jhmEA4dMrVkSkIwX97rG+vp5nnnmGAQMGMGLECPbv38/48eMpKioK9qFERCRKqO1o2bHheyEO5HjOSkwYeAxvYkpEJFC6/jfPMIyG5JSISHQL+q3t/Pnz2bRpE7/73e+wWq10796dXr16MXv27GAfSkREooTajpaF40TnJhPEx3gfmjSET0TaQtd/EZGuLejD91avXs1LL71Ez549MZlMxMfH8/jjj5OdnR3sQ4mISJRQ29GysOwpBdjNHhxus5JSItImuv6LiHRtQb+1ra6u9o8F93U5tdlsmM1hdhctIiJhQ21Hy3xzSoXT2/cA7A09pb5RUkpE2kDX/+Zp+J6IdBVBv9r379+f+fPnA2AyeccY/PnPf6Zv377BPpSIiEQJtR0tC8fhe+DtKQUavicibaPrv4hI1xb04XsPPvggkyZNYtWqVTgcDq677jocDgd//OMfg30oERGJEmo7Wha2w/d8c0odVVJKRAKn67+ISNcW9KRUeno6r7/+Ou+88w7ffPMNvXr14nvf+x6JiYnBPpSIiEQJtR0t8yWlrGGWlNJE5yLSHrr+i4h0bUFPSl1//fX885//5Nprrw32rkVEJEqp7Tg5wzCorvMO37OE6fC9sup6quvcxMfGhDgiEYkkuv6LiHRtHfJ5a01NTUfsVkREopjajhOrdXlwN8x3G27D96xmSIz1BqUhfCLSFrr+i4h0XUHvKTV48GAmTpzIFVdcwSmnnNKo7I477gj24UREJAqo7Tg5R0MvKQi/nlIAPRNjqSpzcqDCSUZ6QqjDEZEIouu/iEjXFvSk1Ndff03v3r356quv+Oqrr/zLfW/TEBER+bZgth1ut5tJkyZx+umnM3fuXAC2b9/OY489RmFhIampqUyZMoWJEyf6t1m1ahULFiyguLiYc845h4ceeoisrKz2VyxIfEkpqxnCsTntlWTly4aklIhIIPTsICLStQUtKfU///M/vPDCC/z5z38GwOl0YrPZgrV7ERGJQh3RdsyfP5+tW7dy+umnA1BRUcHkyZO56667uPHGG8nPzycvL4/zzjuPfv36sXnzZmbNmsXixYvp168fy5YtY8qUKbz99tvY7fZ21zEYHHUuAKzm8HxI65UYC8A3SkqJSCvp2UFERCCIc0pt27at0e9XXHFFsHYtIiJRKthtx0cffcT69eu55ppr/MvWr19PSkoKubm5WCwWhg4dyujRo1m2bBkAK1asYNSoUQwYMACr1cqkSZNITU1lzZo17YolmBy1DT2lYsI0KZXkTUqpp5SItJaeHUREBDpoonPwvilIREQkEO1pO0pLS5k+fTpPPfVUox5OBQUF9OnTp9G6GRkZ7Nq1C4DCwsKTlocDX0+pcJvkHLx/s0S8yagDFZqsWETaRs8OIiJdU9DnlPLROHAREQlUW9sOj8fDtGnTuPnmmzn//PMblTkcjibD8Gw2G9XV1a0qb63mQvcta2+TeGxOKZN/f8Zx3zE1XXaysvas/221NZV8+MUBwM435U7AiLh7gGD9ncJJNNYJorNe4VanUMURadcNEREJjg5LSomIiHSWRYsWERsby0033dSkzG63U1lZ2WiZ0+kkISHBX+50OpuUp6amBhRD9+5JbSprDVNsKQC22BhstljMViueeo//uy3Ois3eeNnJytq/fq3/d1uclZSeaVBWQ43LQ0y8jbSE2HbVN1Ta+3cKR9FYJ4jOekVjnURERFoStKSUy+XilVde8f9eX1/f6HeAsWPHButwIiISBYLVdrz66qsUFRUxcOBAAH+S6V//+hf33nsvGzdubLR+YWEhmZmZAGRmZlJQUNCkPND5TUpLK/n26BOTyfug2VxZIA6XOQAwGwZOZx1mlxmP69h3Z209zpr6RstOVtbe9WMt+H931tZTX+vCbjFR4zLY8d9iLjq1W9srGwLB+juFk2isE0RnvcKtTr54OpqeHUREBIKYlEpPT2fevHn+31NTUxv9bjKZ1LCIiEgjwWo71q5d2+j3+++/H4C5c+dy5MgRnnzySZYuXUpubi4ff/wxq1evZsGCBQBMmDCBvLw8rr32WgYMGMCyZcsoLS0lOzs7oLoYBid8oDxZWWtU+SY6Nx/b3/HfMZouO1lZe9ZvoqEsMdZMjcvNN+VOLuwVWUkpn/b+ncJRNNYJorNe0Vink9Gzg4iIQBCTUm+99VawdiUiIl1EZ7QdqampLFmyhNmzZzNv3jzS0tKYMWMGQ4YMAWDo0KE88sgjzJw5k8OHD5ORkcHixYtJSUnp8Nhay1Hrneg8XN++B5BgNVGM3sAnIq2jZwcREQHNKSUiIlFo7ty5jX7v27cvy5cvP+H6OTk55OTkdHRYbfbtic7DUWKstxvXN0pKiYiIiEgrheHLpUVEROR4jjpvTylLGLfavqTU/vKaEEciIiIiIpEijG9vRUREBKDc0dD7yOUKbSAnkRznvaX4qrQ6xJGIiIiISKRQUkpERCTMVdd7gPDuKdWtoadUWXU9R531IY5GRERERCJBGN/eioiICEB1nTcpZQ3jVtsaYyI93jtV5Z4yDeETEWkrwzC61JsYRaRrC+PbWxEREQGorvdOdG4J44nODcOgV4JvCJ8jxNGIiIiISCQIy6TUrl27uPnmmxk0aBCXXXYZ9957L2VlZQBs376diRMnkpWVxYgRI1ixYkWjbVetWkV2djb9+/dn3LhxbNu2zV/mdrt54oknGDZsGFlZWUyZMoWioqJOrZuIiEigfMP3rOGbk6KmqoKjVd5k1K4DZSGORkREREQiQdglpZxOJ7fccgtZWVl88MEHvPbaa5SXl/Pggw9SUVHB5MmTGTt2LPn5+cyePZvHH3+cHTt2ALB582ZmzZrF3Llzyc/PZ8yYMUyZMoWaGu8wgoULF7Jx40Zefvll3n//fWw2GzNmzAhldUVERE6q3u2hzu0dxxHOc0oBpMbHAbC/vDbEkYiIiIhIJAi729sDBw5w/vnnk5eXR2xsLKmpqdx4443k5+ezfv16UlJSyM3NxWKxMHToUEaPHs2yZcsAWLFiBaNGjWLAgAFYrVYmTZpEamoqa9as8ZffeuutnHrqqSQmJjJ9+nTee+899u/fH8oqdwkej4eioiKKiorweDyhDkdEJGI46tz+n8N5TimApIauXPsq6kIciYhIZCuqqueN3aWhDkNEpMNZQh3At51zzjk8//zzjZatW7eOCy+8kIKCAvr06dOoLCMjg5UrVwJQWFjI+PHjm5Tv2rWLyspKDh061Gj79PR0kpOT2b17N7179251jKYQDZ84/rgmU+fE0Zpj+padLJ7S0hIWvbkdgF9cfTGnnHJKm48Xkevl/QABAABJREFUyVpzrsRL56r12nqudG4jg6POBUAMBiaTiXCe+9aXlDpcVUety0NcuHftEhEJUxv3VrL2iwqGnNuLM1PtoQ5HRKTDhF1S6niGYfDss8/y9ttv85e//IU//elP2O2NL8o2m43q6moAHA7HCcsdDu88F/Hx8U3KfWWt1b17UqBVCQq3uxq7PbYhhkTS0zs+jkCOebLz4nZXk96rV4v7CUUdQyFU/4Yikc5V6+lcRSdHbcMk56ZwTkd5xcVAXIyJWrfBV6UOzu+pf5MiIm1R6/Je8yud9YCSUiISvcI2KVVVVcUDDzzAzp07+ctf/sJ5552H3W6nsrKy0XpOp5OEhAQA7HY7TqezSXlqaqo/WeWbX6q57VurtLQyJK9pLS2toqamzv9zTEx8C1t0zjFNJu/D8MnOS2tjD0UdO1NrzpV46Vy1XlvPlW87CW++4XuRkJQymUyk2MwcdrjZXVSlpJSISBt5Ghp0lyf8r/0iIu0Rlkmpffv2ceutt3LaaaexcuVK0tLSAOjTpw8bN25stG5hYSGZmZkAZGZmUlBQ0KT8iiuuIDk5mZ49e1JYWOgfwldcXEx5eXmTIYEtMQxC8pB8/DE7K4ZAjnmy8tbuJxR1DIVorluw6Vy1ns5VdPIP34uApBRAakNS6ouiwHohi4iIl2EYuBumYFVSSkSiXdhN9lBRUcHPfvYzLrnkEl544QV/QgogOzubkpISli5dSn19PZs2bWL16tX+eaQmTJjA6tWr2bRpE/X19SxdupTS0lKys7MBGDduHAsXLmT//v1UVVUxZ84cBg0axJlnnhmSuoqIiLQkkobvAaTaYgDYXVRFaWkphjKlIiIBcXsM//yBSkqJSLQLu55S//jHPzhw4ABvvPEGa9eubVS2bds2lixZwuzZs5k3bx5paWnMmDGDIUOGADB06FAeeeQRZs6cyeHDh8nIyGDx4sWkpKQAkJeXh8vlIjc3F4fDweDBg3n22Wc7uYYiIiKtV9XQUypyklLez7u+KKri6Vc+4Fdjh9O9e/cQRyUiEjlq3ceu90pKiUi0C7uk1M0338zNN998wvK+ffuyfPnyE5bn5OSQk5PTbJnVamXq1KlMnTq13XGKiIh0hkjrKdUtzozVbKLG5cFj6xbqcEREIk6dy+P/2eWOjGu/iEhbhd3wPYksHo+HoqIiDh8+jMfjaXkDEREJiCPCekqZTSbOSo0DoKI+xMGIiESg2uOSUm7dX4tIlFNSStqlpKSE5/61nadezaekpCTU4YiIRJ1IevueT0Z37xtvy+tMIY5ERMTL7XZz0003cf/99/uXbd++nYkTJ5KVlcWIESNYsWJFo21WrVpFdnY2/fv3Z9y4cWzbtq1TYq1zH9dTSsP3RCTKKSkl7ZaQnEZiSlrLK4qISMCqIjAp1Sfdm5Q6oqSUiISJ+fPns3XrVv/vFRUVTJ48mbFjx5Kfn8/s2bN5/PHH2bFjBwCbN29m1qxZzJ07l/z8fMaMGcOUKVOoqanp8FgbDd9TUkpEopySUiIiImHMURtZw/cAzu/h6ynlfYuUiEgoffTRR6xfv55rrrnGv2z9+vWkpKSQm5uLxWJh6NChjB49mmXLlgGwYsUKRo0axYABA7BarUyaNInU1FTWrFnT4fHWak4pEelClJQSEREJY77hezERlJQ6MzkOu8WMyzCxr6I21OGISBdWWlrK9OnTeeqpp7Db7f7lBQUF9OnTp9G6GRkZ7Nq1C4DCwsKTlnek2kbD9zSnlIhEt7B7+56IiIgc459TKsRxBCLGbKJPup3thxzsKq5hYEaoIxKRrsjj8TBt2jRuvvlmzj///EZlDoejUZIKwGazUV1d3aryQJgCHMlcf1xSym0Evr005TuHOpfBo3MafOF+Tjsqrki6xxUREelyqhqG71kjpKeUYRgcOVLGd5Jg+yHYXRz4A5yISDAsWrSI2NhYbrrppiZldrudysrKRsucTicJCQn+cqfT2aQ8NTU14Di6d08KaP24AxXHfrbHkp4e2PZyYoH+LaRlOqfB19XOqZJSIiIiYcyXlIqU4Xs1VRW8+GERh2o8QCK7ijt+UmARkea8+uqrFBUVMXDgQAB/kulf//oX9957Lxs3bmy0fmFhIZmZmQBkZmZSUFDQpPyKK64IOI7S0kqMAC7hJUeOJfMrjtZQUlJ5krWlNUwm74N+oH8LOTGd0+AL93Pqiy/YlJQSEREJY77he5HSUwrAnphMr1gnVMHe8locdS4SYnXLISKda+3atY1+v//++wGYO3cuR44c4cknn2Tp0qXk5uby8ccfs3r1ahYsWADAhAkTyMvL49prr2XAgAEsW7aM0tJSsrOzA47DMAjoAbP2W2/fC8eH00gV6N9CWqZzGnxd7ZzqDlFERCRM1bs9/oeTSHr7HoAtBmxmD06Pmf8cqmLgmSmhDklExC81NZUlS5Ywe/Zs5s2bR1paGjNmzGDIkCEADB06lEceeYSZM2dy+PBhMjIyWLx4MSkpKR0eW53eviciXYiSUiIiImHKUev2/xxpSSmAZIsHZ52Zzw8eVVJKREJu7ty5jX7v27cvy5cvP+H6OTk55OTkdHRYTejteyLSlZhDHYCIiIg0r6rOO5+U3WIO2zexnEyKxZtU+/yg5kMREWmtum8N3xMRiWZKSomIiIQp3yTn8bGR2VwnW70PVp8fqsToSpMjiIi0Q91xQ/aUlBKRaBeZd7kiIiJdQFXD8L0Ea0yII2mbbhYPMSYoddRxuLI21OGIiESE43tKuZWUEpEop6SUiIhImHLURXZPqRgTnJ1mAzSET0SktercGr4nIl1HZN7lioiIdAGR3lMK4Px0OwD5XxVRWlqqYXwiIi1olJTS2/dEJMopKSUiIhKmIn1OKYDzesQD8E5hCc+9tYOysrIQRyQiEt5qXcfPKaW374lIdIvcu1wREZEoV9mQlLIY9URqB6Pze3h7SlXUmbAlJoc4GhGR8Fert++JSBeipJSIiEiYKqmoAuCrw0eorXWGOJrAGYZBvLuKBKsJtwHlTn3iLyLSEs0pJSJdiZJSIiIiYaq63vtgYouLDXEkbVNbXcmfP/ovNqMOgNIad4gjEhEJf3r7noh0JUpKiYiIhKnqOm8SxxrBrbU9MZn0eO9E7SXVSkqJiLREPaVEpCuJ4NtcERGR6OZo6CllMYU4kHZKjfM+VJXWaPieiEhL6o6f6Fxv3xORKKeklIiISJhy+HtKRfZDSWrD6MOjdR4qa9VbSkTkZBr3lFIyX0Sim5JSIiIiYco3p1QkD98DiIuBBIv35y9KakIbjIhImKvV8D0R6UIi/DZXREQkejmiYE4pn7Q47xjEXcXVIY5ERCS8HT/RuZJSIhLtouA2V0REJDpVR8mcUgCpvqSUekqJiJxUnVtzSolI16GklIiISBhye4yoGb4HkGrzJqV2F9dgGHrIEhE5kVqX5pQSka4jCm5zJVAej4eioiKKiorwqKETEQlL1XXHJgS3REFrnRxrwmyCo7VuvqlwhjocEZGwdfzwPbeG74lIlIuC21wJVElJCYve3M6iN7dTUlIS6nBERKQZjjoXAGYTxETB8L0Yk4mUOO9tx67DVSGORkQkPHkMg/rjElGaU0pEop2SUl1UQnIaCclpoQ5DREROoKrW21Mq1hwFGakGafYYAHYVKSklItKc43tJgZJSIhL9lJQSEREJQ1W13p5SlpgQBxJEqTbvbcdu9ZQSEWlWnftbSSlNdC4iUU5JKRERkTBU1TB8L1p7SmmycxGRptRTSkS6GiWlREREwpCjYfieNRomlGqQHGsixgTlNfUcrqwNdTgiImGn9ts9pZSUEpEop6SUiIhImDEMg8NlFQBYo6inVF31UWzUA7Bb80qJiDRR52qchHLpTdkiEuWUlBIREQkzZWVlvLnrGwDMhjvE0QRXSqz3u97AJyLSVK2r8TXfrZ5SIhLllJQSEREJRxYbEF09pQCSLN5P/fUGPhGRpmob5pSyNDylafieiEQ7JaVERETCUH3DG5csUdZSd2tISmn4nohIU76371kaPpDwGODRiyFEJIpF2a2uiIhIdKhv+HTcGmUtdZLFgwkorqqjxFEX6nBERMKKb06p43vJutxKSolI9IqyW10REZHocCwpFV3D9ywm6J0cB8DWwgOUlpZiqBeAiAgAGT0S6B5v5Yxkq3+ZhvCJSDRTUkpERCQM1TfMdWuJrpwUAOd2986X9df8PTz31g7KyspCHJGISHjomRTHqz/Pov+pdv8yvYFPRKKZklIiIiJhqC5Kh+8BZDQkpSo9scQnpYQ2GBGRMGMymTj+8wj1lBKRaBaFt7oiItIV7dq1i5tvvplBgwZx2WWXce+99/p74Gzfvp2JEyeSlZXFiBEjWLFiRaNtV61aRXZ2Nv3792fcuHFs27YtFFVoxDfReVQmpdK8PQDKnO4W1hQR6ZqOT0y5lZQSkSgWhbe6IiLS1TidTm655RaysrL44IMPeO211ygvL+fBBx+koqKCyZMnM3bsWPLz85k9ezaPP/44O3bsAGDz5s3MmjWLuXPnkp+fz5gxY5gyZQo1NTUhrZNvTilLlM0pBd6eUiagut6gxqVhKSIizfFd/tVTSkSimZJSElE8Hg9FRUUUFRXh0fh6EWlw4MABzj//fPLy8oiNjSU1NZUbb7yR/Px81q9fT0pKCrm5uVgsFoYOHcro0aNZtmwZACtWrGDUqFEMGDAAq9XKpEmTSE1NZc2aNSGrj2EY/jmloq2nlGEY1DkqOCPJAkBJtXpLiYg0x2TyZqX09j0RiWZRdqsr0a6kpIRFb25n0ZvbKSkpCXU4IhImzjnnHJ5//nliYmL8y9atW8eFF15IQUEBffr0abR+RkYGu3btAqCwsPCk5aFQ6zLwPYJEW1KqtrqSFz/8EqPOASgpJSJyIuopJSJdgSXUAYj4VDpd3L1mDy6XiyGnxZ1wvYTktE6MSkQijWEYPPvss7z99tv85S9/4U9/+hN2u73ROjabjerqagAcDsdJy1vL1MwoO9+y5spOptrlTdSYMLCYwXADJu9+DJp+D7SsPes3rWTg+4pPSqaHu5ava6GkxoPJFPg5Cqa2/p3CWTTWCaKzXuFWp3CJoyszDAMwjktKaXSAiEQvJaUkbPxjx0EKSp0AnJemf5oiEriqqioeeOABdu7cyV/+8hfOO+887HY7lZWVjdZzOp0kJCQAYLfbcTqdTcpTU1MDOnb37kltKmvOntJyAKxmE/b4WDz1BrY4Kza7FU+9B7O18fdAy9q/fq3/97bu61SPm21lHspq3HRLiSc9PbBz1BEC/TtFgmisE0RnvaKxTtI+ZpMJMNRTSkSimp78JSzUuz38bds3/t8Lj7hCGI2IRKJ9+/Zx6623ctppp7Fy5UrS0ry9Kvv06cPGjRsbrVtYWEhmZiYAmZmZFBQUNCm/4oorAjp+aWklxreeG0wm74Nmc2Un802xN4kWYzJw1tTjcdXhrK33/2z+/+zdeXhU5fn/8fdM9o0sBMIiiBKCVUACSABRFI1UkKUs2hZpsSoW0vpFG1QEqxWDUqtSRNCiiFZ+agFRURRtq4JAWCyCG0hQIRqWLCRkT2bm/P4YZmAgCZlsM5n5vK4rF8x5zjm5nzOTeebc8ywWs8u/7pY1dv/gQBocl2NbkLWaYHMAVTbYvj+PywPCznFVmk9Dnydv5ot1At+sl7fVyRGPeI5hGBjGacP3NKeUiPgwr56poqCggNTUVLZt2+bc1phlva1WKwsWLGDIkCEkJyczffp0jh071mL1kdr9+9tcckuqCA6wt74/FFkordI8IyJSP0VFRfz2t7+lX79+vPDCC86EFEBqaip5eXmsWLGC6upqMjMzWbduHRMmTABg4sSJrFu3jszMTKqrq1mxYgX5+fmkpqa6FYNh1PxTV1ltPyWV9qEaQeZT5+CM853+r7tljdn/7Io37FwmE8SF2N/zvzxS5vY1auqfhjxP3v7ji3Xy1Xp5W53EsxzD9xwjKdVTSkR8mdcmpT777DNuuukmDh065NzW2GW9ly5dyubNm1mzZg2bNm0iNDSUuXPneqR+4mrzdwUAjL84jjbBJiwG7Pyp1MNRiUhr8cYbb5CTk8N7771H//79SU5Odv7ExsayfPly3n//fVJSUpg7dy5z585l0KBBAAwePJgHH3yQhx56iIEDB/Luu++ybNkyYmJiPFaf0pNL7/naJOdnig+z33J9fkTv9yIiZzKfnODLqqSUiPgwrxy+t3btWhYtWsSsWbO46667nNtPX9YbcFnWu0+fPi7LegNMnTqV119/nfXr1zNhwgRWrVpFeno6HTt2BGDOnDkMHTqU7OxsunTp0vIVFaesPPsNSc/4MLYfCuBElYXsE5UejkpEWotbbrmFW265pdby3r1789prr9VaPnbsWMaOHdscoTVIaZW9p1Sgj0843D7UDNj48kgZFquNwAAfz8KJiLhBE52LiD/wyk9/Q4cO5cMPP2TkyJEu2xuzrHdxcTFHjhxxKY+Pjyc6Opp9+/Y1U02kPqqtNn4osPdmuyA2hDYh9pdldlGVJ8MSEfGYMmdPKd/+drxNMIQEmCi32PjqSPG5DxAR8SMmZ1LKt9sCEfFvXtlTql27djVuP9ey3XWVl5bae+KEh4efVe4oqy9PLZV7+u9tzPLZ7pznXPuevq2uc9V1noPHy7DaDCJDAmgXEUj0yTlGfiyqqvH31Td2b+Rtyz57M12r+mvotdK19V5lVafmlPJlJpOJ9hEBZJ+wsDO7kEs7R3s6JBERr+EYvqeJzkXEl3llUqo2jVnW25GscswvVdPx9eWpFUms1jLCwoJPxhDZ4OWz3TnPufa1WssIDbWXx8XVfq66zvNp9gkAftaxDfHxUbRrEwJUklNcRWxcJAFmU73O05poVZv607WqP10r3+FY6CHQx5NSAAnh9qTU1gN5/C6lKyZlS0VEgNOH7ykpJSK+q1UlpRqzrHd0dDQJCQkuQ/xyc3MpLCw8a8jfuXhqyd78/BLKy6uc/w8ICD/HEY0/z7n2zc8voaKiitDQYAoKaj9XXef533d5AHSLCbWXWS0EmKDKarDnQC5dYsPqdZ7WwNuWffZmulb119BrpWW/vVfJyZ5SwX6QlIoxlQEBfHGkhMPH8uiUUHNvaRGRhti7dy8LFizgq6++IigoiMsvv5z77ruPuLg4du/ezSOPPEJWVhaxsbFMnz6dSZMmOY9du3YtS5YsITc3lwsvvJAHHniA5OTkFotdq++JiD9oVR93G7us9/jx41m6dCnZ2dmUlJQwf/58Bg4cSNeuXd2KwxuW6G3J89Rn3/qcq7bzOCY57x4fgWHYuypHnbwT+z7/7GXCveF5aOy193QMreVH16r5r5V4p+Iq/1h9DyAiEEIDwIaJr4+VeTocEfEhFRUV3HbbbSQnJ/Ppp5/yzjvvUFhYyP3339/oVb1bgiY6FxF/0Ko+7jZ2We+0tDSGDRvG5MmTGTZsGJWVlSxcuNBzFRIAsnLtSanE+FPDKNucnFfqhwLdoIiI/ymutCelgn18onOw99hrF2Z/z999xL05HkVE6pKTk8NFF11EWloawcHBxMbGctNNN7Fjxw6XVb0DAwNdVvUGXFb1DgoKYurUqcTGxrJ+/foWi98xnNmqnlIi4sO8fvjemSvjNWZZ76CgINLT00lPT2/SGKXhSiotHCuxD8frHh9BWVElAG2CzYBVSSkR8Usllf7TUwqgXaiZ7BIrn+coKSUiTefCCy/k+eefd9m2YcMGLrnkklpX9V69ejVgnwLEMRrj9HLHqt8tQXNKiYg/8PqklPi2g8ftXaDbRgQTGRKIIwXV5uTwvYMFLddFWkTEW5zqKeXhQFqIo6fUt/nllFRaiAzRxxMRaVqGYbBw4UI++ugjXnnlFV5++eUGr+rtroaujutoAiw2QyvmNpJWdW56uqZNz9uvaXPFpU994lEHT/aEOj/WtdGPDLa/4g+fqDjrGBERX2YYhl/NKQUQHmgiKthEcZXBjkOFXN0j3tMhiYgPKSkpYfbs2Xz11Ve88sor9OzZs1GrervL3UVFysoCAAgKCgCqCQ0LbrUrTnsbLfDS9HRNm56/XVMlpcSjHD2lzo9zTUpFnLwTyy2pospiI9gf1kUXEQHKq23OoRr+0lMKoFNkIPsKqtn8XYGSUiLSZA4dOsTtt99Op06dWL16NXFxcUDjVvV2l7ur45aX27+0tVntE5wXnqggL6+4rkPkHLSqc9PTNW163n5Nm2vlbj/6uCve6JCzp1S4y/aQAAgJMGEAR4orPRCZiIhnnKioBuxziQR4afft5tApyv492ebvCzC88ZOYiLQ6RUVF/Pa3v6Vfv3688MILzoQUNH5Vb3c0dHXc01ff8/Qqv77w09DnQj+6prqmrvE1NfWUEo+qraeUyWQiITKIQ0VVHC6qoOsZw/tERHxVUYUFgOAAk9fOKdAc2oWZCQkwkVdaxb5jJVyU4F9d10Wk6b3xxhvk5OTw3nvv8f7777uU7dq1i+XLl5ORkcGiRYuIi4urdVXvo0ePkpiY6LKqd0swn2wELNZmuhMUEfECSkqJx9gMg0Mnk1Jdz+gpBdD+ZFIqR/NKiYgfcfSUCvGnblJAVdkJIo1qKgll03cFSkqJSKPdcsst3HLLLbWWN2ZV75ZgHzMA1ubqniAi4gU0fE885mhxJZUWG4FmE52iQ88q7xAZBEBOkZJSIuI/TpzWU8rfdAy31/mj/XkejkRExPNM6iklIn5ASalWpKDcwv7j1VT7SMPkWHnvvJhQAs1n33y1j7AnpbQCn4j4E39OSrULthBggv25pfxQ4P6y6yIivuTUnFK+8dlfRKQmSkq1Ist2HGXnkSr+e6iC4kqrp8NptO8L7EP3usWdPXQPIEE9pUTED51KSnk4EA8INkO/TpEA/OfbXA9HIyLiWUpKiYg/UFKqlSirsrLtxxIACips/PXTHA9H1HjfHrPXp0e7iBrLEyKDAcg54f7qezabjWPHjnHs2DFsNlvDgxQRaWGOOaX8sacUwBXd2gDw4T4lpUTEv5mwtwPVVn2WFRHfpaRUK/Hpd/lUWg1CTn5z/vnhUiqqW3dvKUdSKqldZI3ljp5S+aVVbtc1Ly+P5/6zm+f+s5u8vIbPTaLkloi0NMfqe/420bnD4K5tCAowcSCvjL1Hiz0djoiIxziagSolpUTEhykp1Uo4vjHuHhNEWKAJmwHfHC3xcFQNV2218V2+fb6QpPY1J6Wigs1EnBy/crgBvaUiouOIiI5reJA0XXJLRKS+/HlOKcMwsJQVMaSLfeW913f8gKFVp0TETwWcvFMrr1ZSSkR8l5JSrUCVxcbWH44D0LVNAG3D7E/bl4dPeDKsRvk+vwyLzSAyJICObUJq3MdkMtH55Kp8PxaWt2R4LpoiuSUiUl/+PHyvsqyYl7YcoDT/JwDe/7aAnKP6QkBE/JNjIaDWPjpCRKQuSkq1Aj8UlFFpsREZbCYmxEz8yaTUF4db77CGb3NPDd1zLHdbky6xYQBkezApJSLSkk74+fC9sMhoOseEExEIFsPEx98XeTokERGPcCalLOopJSK+S0mpVuBAfikA58eEYDKZaBtmH9L2Rc6JZh3WUFJp4ZXdufxUbGny3/PtMXudahu653BejD0p9WOhVuATEf9QVO6/PaUcTCboFmX/iPLG1/kawicifinAZH/vU08pEfFlSkq1Agfy7HMvnR9jH+YWF2rGbIK80iqOFrs/11J9PfnRAV7dk8/GHyvZ+GMl1iZcjnafc5LzmlfeczjPC4bviYi0JH/vKeVwQRszgWY4VFjJlpND2EVE/EmAyTF8Tz2lRMR3KSnVChzIO9VTCuxdebud/P/eZprsfPdPRaz76igAZhPklFjZkt00wwXLqqzsybHPh9W7Y5s693UM31NSSkT8QUW11TlMw597SgEEmU0kxtpXYX1l548ejkZEpOU5hu+Vq6eUiPgwJaVage/OSEoBdIm2///Q8eZJ1jyz6XsAUrtHc3Fb+03Bm980zTfV/ztcisVm0DU2jPPjwurc1zF8L+dEJRYthysiPi6/rAqwJ6SC1EKTFBdEgAl2Hipk79HWO4+iiEhDOFbf05xSIuLL9JHXy5VVWck5YR+i1zU62Ln9vDb2/x88XtbkvzOvtIrPf7L3ZLr50ngSYwMxm2BvbnmTrPi3/Ud7764rLmxb5yTnAO0igwkJNGO1GRxpxqGKIiLeIL/UPp9UTGjgOd8f/YG5spi2ZvuXL+otJSL+JtCknlIi4vuUlPJy35+c5LxtRDDRoYHO7Z1OJqWao6fUpgP5GMDFHaKIjwgiLNDM+W3sv3vN7sONOrfNMNjxk71OV3SPO+f+ZpOJzs0wr5TNZuPYsWMcO3YMm03fPomIdygotfeUigsLPMee/uPCSPt8hh/uy+UnDeUWET/i6ClVabFh04IPIuKjlJTyco5Jzru3DXfZ3rkZk1IbD+QDMKx7W+e27jH2G6T/fpvXqBVAckqsnKi00iY0kEs7R9frmC4nh/BlN+EKfHl5eTz3n90895/d5OXlNdl5RUQawzF8L0ZJKaeQqiLaBlmxGfCPTVmeDkdEpMU45pQCe2JKRMQXKSnl5X4osCelLjgrKWWf56mgrJrikys1NYWyKivbD9rnjroy8VRSKj7MTEJkEGXVVj7Oym/QuW2GwZ5c+w3XuN4dXRraujjmlTpY0LRDFSOi44iIPndvLRGRllJwcvherJJSLi6Ot38R80FWIYdPNN0XFCIi3sxknEpENeZLYRERb6aklJfLPjlUoWus64Tg4UEBxEc4eks1XbJm28HjVFkNOkWHuvTOMplMDL/QvlLeuydX5XPXD0UWiioNIoPN/HbgefU+LrGdPY5vc0sb9HtFRFoLR08pJaVcxYea6RARgMVm8OK2Q54OR0SkWRmGgWHYP387VmItr1ZPKRHxTUpKebmDJ4fndYk9e5U6x8p1B5twCN8npw3dO3OS3WsujMYEZB487vYqSEUVFj4/Zr/ZurFXW9qEBtX72IvaRwHw7bESjacXEZ+WX6qkVG16tbN/EfP2l0fVW0pE/EZYUAAAFRb1lBIR36SklBez2gznpK5n9pQ6fVtTJaUsNoNPHUmp04buOXSMCua6i9oB8NyWg26de+n2o1RaISbEzJiL3Bsy161tOCGBZkqrrBwprnbrWBGR1sSx+l5sqJJSZ2ofEUhyxwis6i0lIn7CMAxCAu1fEleop5SI+CglpbzY0eJKqqwGQQEmOkSFnlXeNdY+rO1QQdMkpfbkFFFUYSG6jknIpw3pRoAJPv2ugH/t+gmjHj2X/rs/j00HizEBKR2DCQpwb5nzQLOJxPgIAA4U6NtxEfFdBRq+V6fJfe1fjLz9xRF2f5dTrzZIRKQ1Cw2095Qq15xSIuKjlJTyYo65os6LDiOghknBz3f2lGqaOaU+3m/vJXX5hXG1TkLeNTaMm/p1BuDx/x5gypos/nOwnN1HyjlRcXZjWVRezYJ/7wfgZ22DiAsLaFBsFyVEApClpJSI+DAN36udYRh0Dq6kb0IIVgPmvLefgoICT4clItKsQgPtt2sVWn1PRHyUklJe7NBxewKmpvmk4NTwvezj5Y2ea6nKYmP91/YJzIf3aFfnvjOHXcj/DbuQQLOJ4+VWjpXZ+Cyngj+++z1fHzk115RhGDz27ywKyqrpEh1Mr/j6zyN1pqT29qTUdwWVDT6HiIg3K6uyOm86YhuYwPdl5SVFvLTlAJEVxzABRytMbMt2b35DEZHWxDCMU0kp9ZQSER+lpJQXc/SUqmk+KYDO0aEEmE1UWGwcK25csua/+/MoqrDQPjKYyy+se84nk8nEzQPO44Ppg1k48nwGdAimTYiZ3FIL017fzZbv7d9cv/PVUf79bS4BJrh7SMcae3vV10Unk1L788s1XENEfJKjl1RYkJmKkiL0Vne2sMho4qMj6R5t//jy9y05FJZrrkER8V0hzqSUekqJiG9SUsqLZRfWvvIeQGCAmc7R9rmmDjVysvM1u3MA+EWfjrUO3TtTVGggPdqG0SM2iDEXtaF/pwgqLTbuXvslt776OQ9v+BaA24ecT1J8zXWorx7tIogIDqC4ykZ+hRplEfE9jvmkYkIDePa9bVSUa7hybS6OMdMm2ExBuYWMD77Vyqwi4rNCg+y3a5pTSkR8lZJSXsyRaOoaU3tCx9GLqjFJqfe+OcrnP50gwGxibO8ODTpHcICJP199Htf/rD1WA/bknABg4qUd+e3Arg2OzSEowMzlF9h7cP1YrEZZRHzP6fNJhUZEeTga7xZgNjG4cwgBJvg4K5/FG7/3dEgiIk3OMAxCTi4QpDmlRMRXaSZVL1VRbeWnQvu35Be0Da91v67Oyc4blpTKOVHFgn8fBOB3KV1oFxnSoPMABAWYeHjkRfxmYBd2HCrk4oTIWlfxa4hhiW35YF8uPxZb6Ns+uMnOKyLiDXJLTpvkXCPSzinMWkKPwGL2Vsfwz50/YrZW8atL2xEXF4fJ1PDh4iIi3iRMPaVExMepp5SXOni8HAOIDg0kLrz2CcLPj7MnrA41YAW+E5U27vvwEKVVVnp3bMPvBp3f0HBdJMZH8Kt+nZs0IQUw5II4As1QXGVwolLfFomIb/mxyP5FRIdIJd3r6/zoIH7Xvz0AL+06xv+98QX5+fkYhuH8V0SktTIMg+AAzSklIr5NSSkv9X2+Pcl0QdvwOr/xPb+Bw/cqLQYfHaogv8zCBXHh/HXMz+o9l5SnRIYEcmmHCACyCtWNQER8y48n5xHs1EZJKXfc2Lsdtw5IAGDfCTMvfnaM/Px8nnrrUwoKCjwcnYhIwxmGwb7cEgAqLeopJSK+SUkpL/V9filQ99A9ODV8L6eogqp6jjW3GQZbcyopsxh0igriuZv6EN+IYXstacxFsQBkHbdQVGHxcDQiIk3HkZTqGKWkVH0ZhsHx4wVc29lMvwR7O/avL/N44+t8wiLbeDg6EZHGCzSfGr5nGIZ6gIqIz1FSykt9d7Kn1IVtI+rcLz4imIjgAGwGHKznEL6NPxRzuNRKgAlmX9mZ2PDWcwPUv1MEsaFmrAa8vfe4p8MREWkSVpvBTyeH73VSUqreKsuKeWnLAVZs+przw230TbBfu+d3HCXH/VHtIiJeJ8BkT0Jp+J6I+ColpbzU6cP36mIymejRzp642p9bes7z2gyDf32RB8DFbYO4MC60kZG2LJPJxCVt7XNsrf26gKPFlR6OSESk8XJLKqm2GgSaTbSLqH0eQTlbWGS0s1fU+cHldAmtxgD+V2DmSHGVZ4MTEWmkk4vvaaJzEfFZSkp5oSqLzTmM48JzJKUAerSLBODbY+dOSn2Slc/BoiqCzJAU1zpvfM6LCqBdmJlKq8HCj7/zdDgiIo3248nVVjtFhxLg5fP7eTOTCfp1CCM22MBimMj4OLveQ9tFRLxRwMm5ZSv0XiYiPkpJKS906Hg5VgMiQwKIjzj3MI4kZ0+pknPu++pnP9qPiQ0iOKB13viYTCb6dwjGbIJ/f5vL5u81ka2ItG7ZJ7+IOC+mdfVe9UZmk4nL4m0EmQz251ewaKO+vBCR1svxcb1CPaVExEcpKeWF9h4rBqB724g6V95z6NH+ZE+p3NI6Jz88WFDGrp9OYDZBYmxg0wTrIbGhAc5JzzM++JYTFVqNT0RaL0dPqS4xYR6OxDeEB0LvKPvw7td35fCfb3M9HJGISMOYOTmnlHpKiYiPUlLKC+3JOQFA7071Wzmoe9twzCYoLK8mr7T2+TPe+eooAP06RRAe1Pqf+il929E1Nozckioeem8fFptWIxGR1skxZLuzklJNpl2wlUm92gIwb8O3zmssItKaBJ78yK45pUTEV7X+zIQP+iLH3lOqTz2TUqFBAZwfa5976ttaJju32gze/dqelLque3QTROl5oYFm/nJ9T4IDTGz6roBHNuyjrEoNtoi0Po7VU8+L1vC9pvTbfglc2rkNpVVWZq7ZQ2GZJj4Xkdbl1PA99ZQSEd+kpJSXKam0cCDPnliqb08pwLkC37fHap5XKvPgcXJLqogODWTgeVGND9RL9OrYhnmjfoYJePfrY/zihe3ct+5rXvjsGN8WVFNcpQZcRLxbcYWF7/LsSakOwdUcP15AHSOxpZ4Mw6C46DjTLgklNMDgYGElaa9/RnmVxdOhiYjUm1mr74mIj1NSyst8efgEBvYVmOozybmDo1fV9oPHayxf9+URAK6/OIGgVjrBeW2G94jnqfG96BwdSkFZNf/5No83vi7gs6NVvHOgnAf+k+1M9LnDMAy+P17BvoJqvius5rCWFheRZrDH8b4fFcy/Mr9hxaavqays8HRYrV5lWTEvbTnA2zv3cXmHIIJMBt8WVJO+dg8Wq76wEJHWIUBzSomIj2vds137IHeH7jkMuSAOPjrArp9OUFJpITLk1FNbWFbNJ1n5AIy+JAEoa7J4vcXlF8Rx2dQBfPZjId/llXEwt5AtPxRyrMzG/3JK+fXLn/GLPh35ZXJnurUNxzAMqqwGZdX21ZmsoRXEhgURGhRARbWVT78r4OUd2Xxz9FTPs51vfcdtg61MTelK4BlLtttsNvLy8gCIj4/HbFa+V0Tq5/MfiwDolRBOeEgIABXlSko1hbDIaAxrBaYAE4Pa29h81Mz2H0uY/c43PDLqZ4QE6r1aRLxbgMnAbLJPxfFTUQWd2tjbifoshiQi0hooKeVlMk/2dHI3KdUlNowuMaFkF1aw41AhV/eId5a9+/VRLDaDi9pHktQ+kmPHfC8pBRAcaGZwtzgGd4vj2LFgQo1Kiqts5FcFsDW7hDW7D7Nm92HCgwKw2mxUWu3fPL33/Q/AD4B9nioDqDz5bVSQ2UR8mJkqm0F+uY3nthzkx8Jy/vzznphP+zCQl5fHc//ZDcAd11xK+/btXWJzJK1MJoiLi2juSyEircjun+xJqUsSwjlaWOzhaHxX2xDo26aSL0rC+Dgrnxmr9jBv5EV00jxeIuLFzBj06RDJ54dL+Hh/Hr/u39nTIYmINCl9RehFfiwsZ0/OCcwmuDqxrdvHD7kgDoAt3xc4t1VabKz87EcAxl/asWkCbUWigs3Mveo8nr2xD0MvjCPAbKKs2upMSAUHQNuwQOeQxgqLjUqLjfaRwfwupQsvTejOVV1DST0/lLuHdCTAZJ+76smPDmCcMelLRHQcEdFxNcbhSFo9++/d5OZqaXIRsauy2PjqiD0R1Ssh3MPR+L74IAv3DY4lPMjMnpwT/HLFTpZ8+j25xZXk5eWd9b4uIuJphmFw+fn2+WD/s1/vUyLie9RTyou89/UxAAZ2jSU+MsTt4wdfEMfru3LYeCCfu6uthAUFsO7LI+SWVNE+MphRFyc0dcitRv8uMfTvEkNJpYXC8mry8/PZ8M0RAs0mbh7QhXbt2lFaZaWwvBqL1eD8uDBMJhPHjtmfE5PJxDXdo4mNiebP6/fy+q4cIkICmX55t3rHUFvCqqE0ZFCk9duRXUiV1SAmNIAwS4kmOG9mlWXF7Pj2R/qHV/NlWSTHq+HFbdms2JZNTJCVYYntSO7Wju5tI0iICiE6zP4xqaCggLi4OA2XERGPyC4oxQR8ebiYoycq6BijLzFExHcoKeUlbIbBe98cBeD6i9ufY++aXdYlhk5tQsg5UcnyzEOM69OBZVsPAvDbgV0I1twZRIYEEhkSSHBVsMu8UCaTyVlWl5//rD0llRYW/CeL5ZmHqKi28n/DLmyy+E5PNEHdyaZzDRkUEe/32v9+AiAuqJqXPv2G8Gj9HTe3sMhoQq0VDIsNIc8SSG6ZlX0F1RyvDuDNbwp485tTvY2DzCbiwsxUVVaQ3DWe3ufFcX4kJLYNpUO7eJcklWEYFBTYj1UCS0SaUoDNwiUJEXx5tJRZb3/DI6N6ckF8y66m7eihpfc2EWlqfpeUys/P54EHHmD79u0EBAQwZswY7r33XgIDPXcpbDYbL366n+zCCsKDA1zmg3JHcKCZu69OJP2tr/jnzh9564sjHC+vJjE+gjG9OjRx1P5rYt9OVFpsLPzkO/7fZz/xzZFibu4di2EYjW6oHYmmiOg4SosKzplsaureVyL+rKXbh+/yS8n84TgmoFeHKMyV6ibVkkwmE/HmUiIDKukQU0WxKYKE2Gi+K6zmh8IqKm0mqm0GR0utQBD//a6I/35nn//LjEH32GD6d2vHxR2iaGOuIsxayrtfHsZsht8P70Pbtu4PwxcR7+MN9w6GYdAhIoCDIQF8m1fG71d9yQu/6st5MWEtFoOISHPxu6TUzJkzSUhIYNOmTeTl5TF9+nRWrFjBbbfd5rGY/pf1E8t2HgFM/LZvPGFBAQ0+15Xd40jt2Y4P9+VyvLyajm1CWDShF6GNOKecbfKA84iPCGbeB9+y66cT7PrpBFHBJtqHB9D220L6W0OJjwgm5uSKfjbDwGozsAEV1VYi6ng6IqLjiIzRzYxIS2vp9sExZHtAxxAigsyUVzbLr5FzcPScCi0+DiXVdKOSi89vj8VSQaURQllVJUVl1VzcpR0HjlfxRW4VlVbYf7ya/cdzXM4VYAogKtjMiY0/0vf8Ci5qH0H7wGpCg8zqPSXSSnnDvYNhGMSFmHl61PnMfPcHCsqqmbFqD0+Nu5ju7Vq2x5SISFPzq6TUwYMH2b59Oxs3biQsLIwuXbowY8YMHn/8cY8kpUqrLKz/+hhPf3IQq2GifbiZkUkxjTqnyWTikVEX8at+nTlSXEly5zYNmp9Kzm3Ez9pzaec2PLv5Bz7Ym0txlUFxlYXF247AtiPO/cwmsJ3WAWL1vl1EBAfQPjKEdpHBtI8KoX1kMG1CgygvKyHreDVhVSVUlVvY9MMJ4orsKwJWWWxUWqxUWmxUVNsoKCpmb341IYHwv5xSegaU0bFNiDMBqTmnROrPE+1Dj2gzbUMMgsuOURHasB6y0rTCIqOxWSoACDBBRKCJcDMEFB+nKM9GW2sl13dpR0llJUeLq+nULo6DJywcKqqmzGLDapgorLS59KoCg/BA6Nkukk5tgmkTEkC7mCjCgwOoKi8jwARms4m46DaEBwdgVJYRGWzmvIR4okKDXIaa14djGKHJBG3bRjbxFRLxL95y72AYBtXVVbzx+Y8M7hjC5/kWDp+o5JZXd/O7lK6MvDiBdpHBSnyLSKvkV0mp/fv3ExMTQ0LCqQm/u3fvTk5ODidOnKBNmzbN8nt/Kipn56FCiiutlFRaOFZcyQ8FZew7VkLVyVXg2oebGdI5FHMjGpPTkxCXdIind6fmqY+c0qFNKA9dfxFTe0fz908PUVBhIyQ4iJ+KLRSUVWOxGS4JKYfSKivfF5TxfUFZLWe2z0uSmZMD5NSyzymZOdlANgCxYUF0aBNCqNnG4ePFBJigV+c4oiMjMJnAbDKd/LHfCJkwqCgvByAyIhyz2YwJ+34mE87/g0FZWSkmTERGRmAymew/2PcBg9LSUgCiIiNPnhs4bR/7+ewnPf2x42Vv/zUGxcUlmE3QuXN7SksqnWU1ne/czr1Tfc5zrl3qdw73/74Nzn4BnTkZtskEQ0OCG3B2cfBE+9C/cyQjEttQVmxr8nNL0wuLjMawVtjnIAyCautxTCU2zjcq+VkXe8+qclsIVeZA2pgt7DxazfFKg0rDTJkFdh0uZdfh0pNny6vhN/x0xuMs++8NMhMZbMZsMmEY9jkoDezvAwb25JnZZCLADAEmExg2TlRUYwLOa/sDIYGBBGIlNNBMgNmEmZPvpyfbgdCQEKqqqjCbICo8jKhQ+/yKUSGBRAQHnGwL7Ps63ucMw36TXFxSgmEYREWd6qlhGGA7+Z/T4zQMg9LSEkxAVGQUppNthGHY20mbYWAzDE4U2yf8D4+IOHnsqbYlIiKCsrJSoiJDMYzAk/U++WPCXr+T205/Tz79PdPl7dNl+6kHte7Pme+/dR/juEZRkZH2i3fGm/fpj6JySiguLndeL047R03qjBH7SUpKSriwQxz9usQoWdFAnrp3qI0JE0EmG5e2NWOxmskts/HMpz/wzKc/EB4UQFRIAOHBAYQHBRAWHEBE8MnHwYGEBZoJCQogJNBMgMmE2Wz/u7b/HzDAevLv0Wqz9/Cvthr8VFTOoePl5JVW0bFNCBfEhdM5JoygADNBASYCTCYCA05+NnPzdVbX7nV9ZnKUOP5uHfvWeT4TREUVO//OTm0/9++p7XzuHlNXgLWVNCSGuo6q+5q7d4wJiM4rp+hE+dlvRHWcsMmvaxPyxEQKrq9HaJNfzokT5Wd93m9KIYFmLu3UhsAA7+i04FdJqdLSUsLCXMdeOx6XlZXVu2Exm8++KazLPW9/TU7R2eMyggMDOD82iKGdgiguOo65uprCwuMEBNT8Z1dYeBxr+Qnn/8/cLz+/gP+3+WsAfn35xbRtW/N8Q+c6jzv7OsqrbcEUFgZjruUb3fr+zvr+Pm85j0NV2Qk6BZXRKQjG9o6jbds4DMOgrNqgymJwoug4739zBLMJfjX4QoqqA8kvtVBQbqGgzEJ+uYWyahtlFRVkF1ZgDgjCYrHQNjwYAux/psGBJoJMJkICzYQEmrFWVZKVX0aVzURIUCDHq6C82ka1zSC7sOJkZCFgwObsUqC0xthdFZ17F8CRNKtdfj3Pcy7Hmug8vu/8bdn88+a+br036R7llKZoH2pqGxzXuKaygAAT1ooSjKpyTIFWDEuV81+ztQqqS8+5raFljdnfsFmxWW0YVnOL/+7mqjeWKrBUYFS5d66wkEBsFhtUl2K2VBEVaMVWXUXuTz8w+PwkbJYqqk3BlFZZOZpfQFBMJ6psVqotBhabgTkoBJvNRnV1NQQEYjXAagrEapiwGKf+QMstUNtH5WpOLzv5rzkIgIPHK4FzjQstOe3/xefYtzaH3dz/yLl3kSZylGW/7ENS+/r3mlPbcIqn7h3MZvvnPWuQ2WXOUsNsTxKHAsPOCyan1OBgsY2ik3MSllbbKK224XhnaGrFuWV8m1vbF6oi0prcfFlnbh98vlvHNFf74FdJqfDwcMpP9ghxcDyOiIio93ni4twbu/3B3Ve5tX/tLuTyy89VPqAJzuPu72yK87T072vpuGHE1fU5j4h4QlO0D3W1DTWVtW0bxYIe7n0YEBGRluOpe4e2baN46KaEc+8oIuIDvKO/Vgvp0aMHhYWFziFuAAcOHKBDhw4uXc9FRMS/qH0QEZEzqW0QEWl+fpWU6tatG/3792f+/PmUlJSQnZ3NkiVLmDhxoqdDExERD1L7ICIiZ1LbICLS/ExGbTMo+qi8vDwefvhhtm3bhtlsZty4caSnpxMQEODp0ERExIPUPoiIyJnUNoiINC+/S0qJiIiIiIiIiIjn+dXwPRERERERERER8Q5KSomIiIiIiIiISItTUkpERERERERERFqcklIiIiIiIiIiItLilJSSRtm7dy+33HILAwcO5PLLL+eee+6hoKDA02F5LavVypQpU7jvvvs8HYpXKyws5J577iElJYXLLruMGTNmcOzYMU+H5ZW++uorJk+ezIABAxg6dCiPPPIIVVVVng7L7+Xn5zNjxgwGDBhASkoKGRkZWCwWT4d1lrrewx988EF69epFcnKy8+f11193Hrt27VpSU1Pp27cv48ePZ9euXc4yq9XKggULGDJkCMnJyUyfPr3F/obXr1/PxRdf7BL3rFmzANi9ezeTJk0iOTmZ4cOHs2rVKpdjvbVOb7/9tkt9kpOT6dWrF7169QJa33NVUFBAamoq27Ztc25rzuemJf4ea6rThg0bGDt2LP369WP48OEsXrwYm83mLL/++uu59NJLXZ63AwcOeE2dpHm58xx+8sknjB49mr59+3L99dfz0UcftXC0rYM71/S2226jd+/eLn9/GzdubOGIW4+a3uPOpNepe+pzTf3mdWqINFB5eblx+eWXG3//+9+NyspKo6CgwLj99tuNO+64w9Ohea2FCxcaF110kXHvvfd6OhSvdvPNNxtpaWlGUVGRUVxcbPzhD38wpk2b5umwvI7VajUuv/xy46WXXjKsVqtx+PBhY8SIEcbixYs9HZrfu/nmm40//elPRllZmXHo0CFj1KhRxrJlyzwdlotzvYf/4he/MN54440aj83MzDSSk5ONnTt3GlVVVcaLL75opKSkGGVlZYZhGMbTTz9tjB492sjJyTGKi4uNmTNnGrfffnuL1Ouxxx4z7rvvvrO2FxYWGgMHDjReeeUVo7q62tiyZYuRnJxs7N692+vrdKYjR44Yl19+ufHmm28ahtG6nqudO3ca1157rZGUlGRkZmYahtH8z01z/z3WVKcvvvjC6NOnj/Hf//7XsFqtRlZWlnH11VcbL7zwgmEYhlFcXGz07NnT+PHHH2s8p6frJM2vvs/h999/b/Tu3dv48MMPjerqauPdd981+vTpYxw5csQDUXs3d/4uUlJSjG3btrVwhK1TTe9xZ9Lr1D31uaaG4T+vUyWlpMEOHDhg3HrrrYbFYnFu+/e//23069fPg1F5ry1bthgjR4407rzzTiWl6vDFF18YvXv3NoqLi53bjh8/bnz77bcejMo7FRQUGElJScaLL75oWCwW4/Dhw8b111/vvOkRz/jhhx+MpKQklw9i7777rnHVVVd5MKqz1fUeXllZaVxyySW1/t396U9/MubOneuy7ec//7mxevVqwzAM48orrzTefvttZ1lubq7Rs2dP49ChQ81QE1eTJ082XnnllbO2/+tf/zKuu+46l21//vOfjXvuuccwDO+u0+lsNpsxZcoUY86cOYZhGK3quXrjjTeMq666ynj33XddPog353PT3H+PtdXp/fffN+bPn++y7/z5843f//73hmEYxtatW42UlJRaz+vJOknzc+c5fPLJJ41bbrnFZdutt95q/P3vf2/2OFsTd67poUOHjIsuusjls6bUrLb3uDPpdVp/9b2m/vQ61fA9abALL7yQ559/noCAAOe2DRs2cMkll3gwKu+Un5/PnDlzeOKJJwgLC/N0OF5tz549JCYm8q9//YvU1FSGDh3KggULaNeunadD8zqxsbFMnTqVBQsW0Lt3b4YNG0a3bt2YOnWqp0Pza/v37ycmJoaEhATntu7du5OTk8OJEyc8GJmrut7D9+7di8ViYdGiRQwZMoQRI0bwj3/8wzn0KCsri6SkJJfzJSYmsnfvXoqLizly5IhLeXx8PNHR0ezbt69Z62Sz2fjqq6/4+OOPufrqq7nyyit54IEHKCoqYv/+/bXG7M11OtNbb71FVlaWcxh4a3quhg4dyocffsjIkSNdtjfnc9Pcf4+11WnEiBHMnj3b+biiooKPP/7Y+Rnpiy++ICwsjJtvvpmUlBTGjx/vHOri6TpJ83PnOazr9S+nuHNNv/jiCyIiIrjrrrsYNGgQN9xwA6tXr27pkFuF2t7jzqTXaf3V95r60+tUSSlpEoZh8NRTT/HRRx8xZ84cT4fjVWw2G7NmzeKWW27hoosu8nQ4Xq+oqIh9+/bxww8/sHbtWt58802OHj3Kvffe6+nQvI7NZiM0NJQHHniAzz//nHfeeYcDBw6waNEiT4fm10pLS89KPjsel5WVeSKkczrzPby4uJiBAwcyZcoUPvnkEx5//HH++c9/snz5cqDmOoaGhlJWVkZpaSkA4eHhZ5U7yppLQUEBF198MSNGjGD9+vW89tpr/PDDD8yaNavOmMF763Q6m83G0qVL+f3vf09kZCRAq3qu2rVrR2Bg4Fnbm/O5ae6/x9rqdLqSkhLS0tIIDQ11fmlgMpno3bs3jzzyCJs2bWLq1Kn88Y9/5PPPP/d4naT5ufMcnuvvQ+zcuaZVVVX07duXu+66i02bNnHfffeRkZHBe++912Lxthb1eY8DvU7dUd9r6k+vUyWlpNFKSkq48847WbduHa+88go9e/b0dEhe5bnnniM4OJgpU6Z4OpRWITg4GIA5c+YQGRlJfHw8M2fO5JNPPmnRm7/W4MMPP2TDhg38+te/Jjg4mB49epCWlsarr77q6dD8Wnh4OOXl5S7bHI8jIiI8EVKdanoPv/zyy3n55ZcZOHAgQUFB9OnTh9/+9resX78esH/Qr6iocDlPRUUFERERzg+lZ14DR3lzio+PZ+XKlUycOJGwsDA6derErFmz2LhxI4Zh1BozeG+dTrdt2zaOHTvGxIkTndta63N1urpiPFf5uerg6b/H7777jl/+8pdYLBZefvllZzLxtttuY9GiRXTr1o3g4GDGjBnDkCFD2LBhg9fXSRrPnefwXH8fYufONR03bhzPP/88F198MUFBQQwdOpRx48b55M1+S9HrtOn50+tUSSlplEOHDjFhwgRKSkpYvXq1ElI1eOutt9i+fTsDBgxgwIABvPPOO7zzzjsMGDDA06F5pcTERGw2G9XV1c5tjmEohmF4KiyvdPjw4bNW2gsMDCQoKMhDEQlAjx49KCwsJC8vz7ntwIEDdOjQgaioKA9Gdrba3sP//e9/89prr7nsW1VVRWhoKGCv4/79+13Ks7Ky6NGjB9HR0SQkJJCVleUsy83NpbCw8Kyu/U1t7969/O1vf3N5r6iqqsJsNtOnT59aYwbvrdPpNmzYQGpqqksPmtb6XJ0uKSmp2Z4bT/49fvLJJ0yaNIkrrriCF154gejoaGfZCy+8wNatW132r6qqIiQkxKvrJE3DnefwXH8fYufONV29evVZN/aOvz9pGL1Om54/vU6VlJIGKyoq4re//S39+vXjhRdeIC4uztMheaX333+f//3vf+zcuZOdO3dyww03cMMNN7Bz505Ph+aVhgwZQpcuXbj//vspLS2loKCAp556imuvvdb5DbPYDR06lNzcXJ599lmsVivZ2dksXbqU0aNHezo0v9atWzf69+/P/PnzKSkpITs7myVLlrj0bvEGdb2HG4bBo48+ytatWzEMg127dvHyyy9z0003ATBx4kTWrVtHZmYm1dXVrFixgvz8fFJTUwEYP348S5cuJTs7m5KSEubPn8/AgQPp2rVrs9YpJiaGlStX8vzzz2OxWMjJyeHxxx/nF7/4BSNGjCAvL48VK1ZQXV1NZmYm69atY8KECV5dp9N99tlnXHbZZS7bWutzdbrU1NRme2489ff4+eefk5aWxuzZs7n33nvPGqpx+PBh/vKXv5CdnY3FYmH16tXs2rWLX/ziF15bJ2k67jyHY8aMYfv27axfvx6LxcL69evZvn07Y8eO9UDk3suda1pSUsK8efP4+uuvsdlsfPzxx7zzzjvO901xn16nTc+vXqcem2JdWr3ly5cbSUlJxqWXXmr07dvX5Udqd++992r1vXM4cuSIMXPmTOPyyy83BgwYYNxzzz1GUVGRp8PySps3bzYmTZpk9O/f37jqqquMJ5980qisrPR0WH4vNzfX+OMf/2gMHDjQGDRokPHYY4+5rHLnDc71Hv7qq68a1113nXHppZca11xzzVkr2r355pvGiBEjjL59+xoTJ040Pv/8c2dZVVWV8fjjjxtXXHGF0a9fP2P69OlGXl5ei9Rr27Ztxk033WQkJycbgwYNMubNm2dUVFQYhmEYe/bscZZdc801xpo1a1pFnRz69u1rfPzxx2dtb43P1ZkrDjXnc9NSf4+n1+mOO+4wevbsedbf1q233moYhn3VxIyMDGPo0KHGpZdeakyYMMHlenhLnaT51PUc9u3b13jrrbec+27cuNEYM2aM0bdvX2PUqFE1vg9I/a+pzWYznnnmGePqq682+vTpY4waNcp47733PBl6q3Dm+7Zep41X1zX1p9epyTA0HkZERERERERERFqWhu+JiIiIiIiIiEiLU1JKRERERERERERanJJSIiIiIiIiIiLS4pSUEhERERERERGRFqeklIiIiIiIiIiItDglpUREREREREREpMUpKSUiIiIiIiIiIi1OSSkRERERERERER9TUFBAamoq27Ztq/cxGzZs4IYbbqBv376kpqayevXqZowQApv17CIiIiIiIiIi0qI+++wz7rvvPg4dOlTvYzIzM7nvvvtYuHAhV155Jdu2beP2228nKSmJPn36NEuc6iklIiIiIiIiIuIj1q5dS3p6OnfddddZZVu2bGHixIkMGDCAUaNG8fbbbzvLVqxYwW9+8xuGDRuGyWRi0KBBrFmzhq5duzZbrEpKiYiIiIiIiIj4iKFDh/Lhhx8ycuRIl+179+5l+vTpTJs2jW3btjFv3jzmz5/Ppk2bANizZw8xMTFMmzaNlJQUxo4dy6FDh4iJiWm2WJWUEhERERERERHxEe3atSMw8OzZml577TWuueYarrvuOgICAujXrx833ngjK1euBKCoqIgXXniB6dOns3nzZtLS0rjrrrvYvXt3s8WqOaVERERERERERHzcTz/9RGZmJgMGDHBus1qtzuF5wcHBTJgwgeTkZACuu+46Bg8ezIYNG7j00kubJSYlpUREREREREREfFyHDh34xS9+wcMPP+zcduzYMQzDAKB79+5UVVW5HGO1Wp3lzUHD90REREREREREfNzEiRN55513+PTTT7HZbPzwww/cfPPNLF++HIBf/epXvPrqq2zZsgWbzcaGDRvYtm0bN9xwQ7PFpJ5SIiIiIiIiIiI+7tJLL+XJJ5/kySef5P/+7/8ICwvjhhtu4O677wZgwoQJmM1mHn30UX788Uc6d+7MU089xSWXXNJsMZmM5uyHJSIiIiIiIiIiUgMN3xMRERERERERkRanpJSIiIiIiIiIiLQ4JaVERERERERERKTFKSklIiIiIiIiIiItTkkpERERERERERFpcUpKiYiIiIiIiIhIi1NSSkREREREREREWpySUiIiIiIiIiIi0uKUlBIRERERERERkRanpJSIiIiIiIiIiLQ4JaVERERERERERKTFKSklIiIiIiIiIiItTkkpERERERERERFpcUpKiYiIiIiIiIhIi1NSSkREREREREREWpySUiIiIiIiIiIi0uKUlBIRERFpQYZheDqERvOFOoiI+Au9Z4s3U1JKpIkcOXKEm2++md69ezN48GB69uzJtm3bPB2WiIh4kaysLH71q1812fm2bdvGiBEj6NWrF7feemuTnbc2J06c4N5772Xnzp3N/rtEROTc7rvvPoYPH+58PGXKFKZMmeJ8vGrVKhYsWOB8/MYbb9CzZ09+/PHHFo1TpDaBng5AxFe89NJL7Nq1i8cff5yDBw+ycOFCT4ckIiJe5r333mPXrl1Ndr4FCxZgs9n4xz/+Qdu2bZvsvLX55ptvePPNNxk/fnyz/y4REXHfgw8+6PJ46dKlDBw40Pn4qquu4vXXX6d9+/YtHZpIjZSUEmkihYWFtG/fnpEjR6qHlIiItIjCwkIuu+wyhgwZ4ulQRETECyQmJtZZHhcXR1xcXAtFI3JuGr4n0gSGDx/OG2+8QU5ODj179mTx4sVn7fPFF19w6623kpKSQr9+/fj973/P/v37XfY5duwYs2fPZtiwYfTp04eJEyfyn//8x2Ufx/knTJhA//79WbJkCTabjb///e8MHz6cXr16MXz4cJ588kmqq6ubtd4iIr5s3LhxTJ8+3WXbiBEjGDp0qMu2mTNncvPNN1NRUcETTzzBddddR69evejXrx+33HIL33zzDQBPP/20s33o2bMnTz/9NICzp1Nqaiq9evVixIgR/POf/3T5HVOmTCE9PZ0777yTfv36MW3aNHr27MlPP/3Em2++6Rwy/vTTT5OamsrixYtJSUnh2muv5fjx41itVlauXMno0aPp06cPV111FX/729+orKx0/o777ruPqVOnsmbNGueQwDFjxvDJJ58A9qGCv/nNbwD4zW9+4zI8RETEnxmGwcqVKxk1ahR9+vQhNTWVZcuWOedy2rx5M7/+9a/p378/KSkp/OlPf+Lw4cPO49944w0uvvhidu/ezU033UTv3r256qqrWLZsmcvvKSoqYvbs2aSkpHDZZZfx+OOPY7PZXPY5ffje8OHD+emnn1i7dq1zyF5Nw/eaKj6RhlBSSqQJLF68mGHDhtGuXTtef/11Jk6c6FKemZnJr371K2w2GxkZGTzyyCMcPnyYX/7ylxw4cACAvLw8Jk6cyPbt27nrrrt4+umn6dy5M2lpabz99tsu51u6dCkjRozgySef5JprrmHZsmWsXLmStLQ0li9fzq9+9Suef/55nn322Ra7BiIivuaqq65i+/btWK1WwD534A8//EBubi7ff/89AFarlS1btnD11Vdzzz33sHr1aqZNm8by5cu57777+Pbbb7nrrrswDINJkyY524fXX3+dSZMmAfDQQw+xaNEixowZw7PPPsvPf/5z5s+fzzPPPOMSz3vvvUdQUBDPPPMMU6ZM4fXXX6ddu3YMGzaM119/nUsuuQSAnJwcPvzwQ5588klmzpxJbGwsf/7zn5k/fz7Dhw9n6dKlTJ48mVdeeYUZM2a4TID75Zdf8sILL3DnnXfyzDPPEBgYyJ133klRURGXXHIJf/7znwH485//fNYQERERf/Xkk0+SkZHBsGHDWLp0KZMmTeKpp55iyZIlvPXWW/zud78jISGBJ598ktmzZ7Nr1y5uuukm8vPzneew2WzMnDmTkSNH8o9//IP+/fvzt7/9jU2bNjnLb7vtNj7++GPS09NZsGABu3btYv369bXGtXjxYpd2oqYhe00Vn0hDafieSBO4+OKLiYuLIzg4mL59+7p88wzwxBNP0KVLF55//nkCAgIAGDp0KKmpqTz99NMsXLiQF198kYKCAt577z26dOkCwLBhw5g6dSp//etfueGGGzCb7XnkPn36MG3aNOf5//rXv3LJJZcwYcIEAAYOHEhYWBiRkZEtUX0REZ901VVXsXTpUvbs2UNycjJbt26lS5cunDhxgu3bt3PBBRfw+eefU1RUxNVXX82WLVt44IEHGDlyJGB/Ly4tLeWxxx4jNzeXDh060KFDBwD69u0LwPfff8+//vUv7r77buf7+tChQzGZTDz33HP8+te/JjY2FgCz2cy8efMIDw93xhgcHExcXJzzfAAWi4V7773XOaQvKyuL1atXM3PmTGfPr8svv5z27dtzzz33sHHjRoYNGwZAcXExb7zxBl27dgUgPDycm2++mczMTEaMGOEcFpKYmHjOISIiIv7gxIkTvPjii0yZMoV77rkHsL/HFhQU8Nlnn/Hqq68yZMgQnnrqKecx/fr1Y+TIkSxfvpxZs2YB9t5WM2bMcH5h0b9/fz788EM+/vhjrrjiCjZu3MiePXt47rnnuOqqqwAYNGiQyyTnZ7r44otrbCccbDYbjz/+eJPEJ9JQ6ikl0szKysr44osvGDlypDMhBdCmTRuuvvpq5/xT27dvJzk52ZmQchgzZgy5ubl89913zm1JSUku+6SkpLBlyxZ+/etf8+KLL3LgwAFuvvlmxo0b13wVExHxcX369CE2NpYtW7YAsHXrVgYNGsSll17K9u3bAdi4cSPdunXjwgsv5IUXXmDkyJEcO3aMHTt28Prrr/PRRx8B1DqcOjMzE8MwGD58OBaLxfkzfPhwKisr+eyzz5z7nnfeeS4Jqbqc3k44Yh09erTLPqNGjSIgIMBlHsS4uDhnQgpwJtHKy8vr9XtFRPzN559/TnV1NampqS7b77vvPubMmUNubu5Z779du3YlOTn5rHlok5OTnf93JJPKysoA2LlzJ0FBQVx55ZXOfcLDw51fKjTE999/32TxiTSUklIizay4uBjDMIiPjz+rLD4+nuLiYsA+Rry2fcD+LcyZ2xxuu+02/vznP1NRUcGCBQsYOXIko0ePZuvWrU1ZFRERv2I2m7nyyiud76WZmZmkpKQwcOBAduzYAdiTUldffTUAmzZt4vrrr+eKK67gjjvu4M033yQ4OBjAZYjc6QoLCwF7guiSSy5x/ji+iT569Khz35raiNqcvm9RUREA7dq1c9knMDCQ2NhYZzsEEBYW5rKPyWQCOGvOEhERsXO8j9c0ebij7Fz3AQ6hoaEuj81ms7P9KCoqIiYmxjlywuHM93Z3NGV8Ig2l4XsizSwqKgqTyUReXt5ZZbm5ucTExAAQHR1d6z6Ac/hGTcxmM5MnT2by5Mnk5+fzySef8Oyzz/LHP/6RLVu2OG+KRETEPVdddRX33HMPX331FUePHmXgwIEcPXqUv/3tb+zcuZNvvvmG++67j0OHDpGWlsY111zDc8895+xttHLlyjrn22jTpg0AL730EhEREWeVd+rUqdF1iI6OBuztyXnnnefcXl1dzfHjx+tsX0REpG6O9/GCggIuvPBC5/bDhw+zb98+gFo/47vz/hsbG+tcuOL00ReOxFJDOO5DmiI+kYZSTymRZhYeHk6vXr1Yv369c7JcsPeg+vjjj+nfvz8Al112Gbt27SI7O9vl+Lfffpt27dpx/vnn1/o7fvnLX/LII48A0LZtW8aPH8/kyZMpLi6mpKSkGWolIuIfhg4dimEYLF26lG7dupGQkMAll1xCVFQUTzzxBFFRUfTv358vv/ySyspK7rjjDpfhb46ElOOb5DO/4b7ssssAOH78OL1793b+FBYWsnDhwkbdbDgMHDgQgHXr1rlsf/fdd7Farc52qD5OvxESERH7UO+goKCzVsx+6aWXWLhwIe3atTvr/Tc7O5vPP/+cfv361fv3DB48GIvFwr///W/ntqqqKjZv3lzncWe2O6e74IILmiw+kYZSTymRFvCnP/2JW2+9ldtuu42bb76Z6upq/vGPf1BVVcUf/vAHAG655RbefvttbrnlFv7whz8QGxvLm2++SWZmJvPnz6+zQbnssstYvnw58fHxJCcnc/ToUV588UUGDhxYY1diERGpnzZt2pCcnMyHH37ITTfdBNgTMwMGDOCjjz7ihhtuIDAwkEsuuYTAwEAef/xxfve731FVVcUbb7zBxx9/DOCcc8Pxjfo777zDpZdeSlJSEmPGjOGBBx7gp59+olevXnz//fc89dRTnHfeeXTr1q3RdUhMTOQXv/gFixcvpqKigpSUFL755hsWL15MSkqKWxPURkVFAfDxxx8THR3NRRdd1Oj4RERas7i4OH7zm9/w0ksvERwczKBBg/jiiy945ZVXuPvuu4mJiWH27NncddddjBs3juPHj7N48WKio6O55ZZb6v17Bg8ezNChQ5k7dy75+fl07tyZl19+mYKCAtq2bVvrcW3atOHrr79m+/bt9OnTx6XMbDZz9913N0l8Ig2lpJRICxg8eDAvvvgiixYt4u677yY4OJgBAwawYMECevToAdjHg7/66qs88cQTZGRkUF1dzUUXXcSSJUu45ppr6jz///3f/xEcHMyaNWt45plniIqKYvjw4fzpT39qieqJiPi0YcOGsWPHDlJSUpzbBg0axEcffeRcAen888/niSeeYPHixUyfPp3o6Gj69u3LP//5T6ZMmcLOnTvp2bMn1113HW+99Rb33XcfEydO5KGHHuLRRx/lueee47XXXuPIkSO0bduWkSNHMnPmzCbrmZSRkcH555/PmjVreOGFF2jfvj1TpkwhLS2tzi89ztSjRw9uuOEG57DEd955p0niExFpzWbNmkV8fDyvvvoqy5cv57zzzuP+++/n17/+NQARERE899xzpKWlERkZyRVXXMHdd9/t9nxQixcv5m9/+xuLFi2isrKSkSNHcuONN57VS+t0v/vd75g/fz633norL7744lnl48ePb7L4RBrCZGhmMhERERERERERaWGaU0pERERERERERFqcklIiIiIiIiIiItLilJQSEREREREREZEWp6SUiIiIiIiIiIi0OCWlRERERERERESkxSkpJSIiIiIiIiIiLU5JKRERERERERERaXFKSomIiIiIiIiISIsL9HQArVF+fjGGUf/9TSZo2zbK7eNaC9Wv9fP1Oqp+dR8nTUNtw9l8vY6qX+um+tV9nDQdtQ9NQ9elZrouNdN1qZ23tQ9KSjWAYdCgF3ZDj2stVL/Wz9frqPpJc1LbUDtfr6Pq17qpftLc1D40LV2Xmum61EzXpXbecm00fE9ERERERERERFqcklIiIiIiIiIiItLilJQSERERERGvV1BQQGpqKtu2bTur7NixYwwZMoQ33njDZfvatWtJTU2lb9++jB8/nl27djnLrFYrCxYsYMiQISQnJzN9+nSOHTvmLM/Pz2fGjBkMGDCAlJQUMjIysFgszVdBERE/pKSUiIiIiIh4tc8++4ybbrqJQ4cOnVVms9lIT0/n+PHjLtu3bdvGvHnzeOyxx9ixYwdjxoxh+vTplJeXA7B06VI2b97MmjVr2LRpE6GhocydO9d5/MyZMwkPD2fTpk2sXr2arVu3smLFimatp4iIv1FSSkREREREvNbatWtJT0/nrrvuqrH8mWeeoUOHDnTs2NFl+6pVqxg1ahT9+/cnKCiIqVOnEhsby/r1653lt99+Ox07diQyMpI5c+awceNGsrOzOXjwINu3b2fWrFmEhYXRpUsXZsyYwcqVK5u9viIi/kSr74mIiIiIiNcaOnQoo0ePJjAw8KzEVGZmJu+++y5r1qxh9OjRLmVZWVlMmDDBZVtiYiJ79+6luLiYI0eOkJSU5CyLj48nOjqaffv2ARATE0NCQoKzvHv37uTk5HDixAnatGlT7/hNpnrv6rK/u8f5Ol2Xmum61EzXpXYNvTbNdS2VlBIREREREa/Vrl27Grfn5+dz//33s2jRIiIiIs4qLy0tJSwszGVbaGgoZWVllJaWAhAeHn5WuaPszGMdj8vKytxKSrVtG1XvfZviOF+n61IzXZea6brUzluujZJSIiIiIiLSqhiGwT333MOUKVPo1atXjfuEhYVRUVHhsq2iooLY2Fhngskxv9Tp5RERERiGcVaZ43FNCbC65OcXYxj1399kst8sunucr9N1qZmuS810XWrX0GvjOK6pKSklIiIiIiKtyuHDh9m+fTu7d+/mmWeeAaCkpIS//OUvbNiwgeeee44ePXqwf/9+l+OysrK48soriY6OJiEhgaysLOcQvtzcXAoLC0lKSsJms1FYWEheXh7x8fEAHDhwgA4dOhAV5d5NmWHQoJvihh7n63RdaqbrUjNdl9p5y7XRROciIiIiItKqdOrUiS+++IKdO3c6fzp16sSDDz7Ic889B8DEiRNZt24dmZmZVFdXs2LFCvLz80lNTQVg/PjxLF26lOzsbEpKSpg/fz4DBw6ka9eudOvWjf79+zN//nxKSkrIzs5myZIlTJw40ZPVFhHxOeopJSIiIiIiPmfw4ME8+OCDPPTQQxw9epTExESWLVtGTEwMAGlpaVgsFiZPnkxpaSkpKSksXLjQefyiRYt4+OGHueaaazCbzYwbN44ZM2Z4pjIiIj5KSSkREREPOFZcyXv787nq/BhCgwI8HY6ISKvgWBmvJv/973/P2jZ27FjGjh1b4/5BQUGkp6eTnp5eY3l8fDyLFi1qWKAiIlIvSkqJiIh4wIvbsln1eQ73p/bgF306ejocERERaYUqKyvZuvVLCgtLXeYH6tOnLyEhIZ4LTKSelJRqIeMm3shPR/JqLY+PjeXl5StaLiAREfEo68lPjvmlVR6ORERERFqrPXs+58UNW4nteIFz29GD+5kGXHZZiucCE6knJaVayLG844yb9fday998/P9aMBoREfG08JND9sqqrR6ORERERFqzjhck0b7bxZ4OQ6RBtPqeiIiIB4QF2Zvg8iolpURERETEPykpJSIi4gHhweopJSIiIiL+TUkpERERDwg7OXyvXEkpEREREfFTSkqJiIh4gLOnlIbviYiIiIifUlJKRETEA8KdPaVsHo5ERERERMQzlJQSERHxgDD1lBIRERERP+fRpFRBQQGpqals27bNuW337t1MmjSJ5ORkhg8fzqpVq1yOWbt2LampqfTt25fx48eza9cuZ5nVamXBggUMGTKE5ORkpk+fzrFjx5zl+fn5zJgxgwEDBpCSkkJGRgYWi6X5KyoiInIGR0+psiq1QyIiIiLinzyWlPrss8+46aabOHTokHNbUVER06ZNY9y4cezYsYOMjAweffRR9uzZA8C2bduYN28ejz32GDt27GDMmDFMnz6d8vJyAJYuXcrmzZtZs2YNmzZtIjQ0lLlz5zrPP3PmTMLDw9m0aROrV69m69atrFixokXrLSIiAqcmOi/T8D0RERER8VMeSUqtXbuW9PR07rrrLpftH3zwATExMUyePJnAwEAGDx7M6NGjWblyJQCrVq1i1KhR9O/fn6CgIKZOnUpsbCzr1693lt9+++107NiRyMhI5syZw8aNG8nOzubgwYNs376dWbNmERYWRpcuXZgxY4bz3CIiIi0pIlir74mIiIiIf/NIUmro0KF8+OGHjBw50mX7/v37SUpKctmWmJjI3r17AcjKyqq1vLi4mCNHjriUx8fHEx0dzb59+9i/fz8xMTEkJCQ4y7t3705OTg4nTpxo6iqKiIjUyTGnVKXFhsVmeDgaEREREZGWF+iJX9quXbsat5eWlhIWFuayLTQ0lLKysnOWl5aWAhAeHn5WuaPszGMdj8vKymjTpk294zeZ6r2ry/4mExh13He4e15vcXr9fJGv1w98v46qX93HiWc45pQCqKi2EhnikSZZRERERMRjvOoTcFhYGMXFxS7bKioqiIiIcJZXVFScVR4bG+tMMDnmlzrzeMMwzipzPHacv77ato1ya3+HsLCQWsuCAgOIj2/Yeb1FQ69La+Hr9QPfr6PqJ94kKMBEoNmExWZQVqWklIiIiIj4H6/6BJyUlMTmzZtdtmVlZdGjRw8AevTowf79+88qv/LKK4mOjiYhIcFliF9ubi6FhYUkJSVhs9koLCwkLy+P+Ph4AA4cOECHDh2IinLvRi4/v7jOHk9ncvRGKC+vrPW4aouVvLzimgu9nMlkvxl297q0Fr5eP/D9Oqp+dR8nnmEymQgPDuBEhYUyzSslIiIiIn7IY6vv1SQ1NZW8vDxWrFhBdXU1mZmZrFu3jgkTJgAwceJE1q1bR2ZmJtXV1axYsYL8/HxSU1MBGD9+PEuXLiU7O5uSkhLmz5/PwIED6dq1K926daN///7Mnz+fkpISsrOzWbJkCRMnTnQ7TsNw/8dxXFOf11t+Wnv8/l4/f6ij6lf7ceI5ESd7R2mycxERERHxR17VUyo2Npbly5eTkZHBokWLiIuLY+7cuQwaNAiAwYMH8+CDD/LQQw9x9OhREhMTWbZsGTExMQCkpaVhsViYPHkypaWlpKSksHDhQuf5Fy1axMMPP8w111yD2Wxm3LhxzJgxwwM1FRERgfCTk52XVSkpJSIiIiL+x+NJqX379rk87t27N6+99lqt+48dO5axY8fWWBYUFER6ejrp6ek1lsfHx7No0aKGBysiItKE1FNKRERERPyZVw3fExER8SfqKSUiIiIi/kxJKREREQ+JCFZPKRERERHxX0pKiYiIeEj4yeF7ZdU2D0ciIiIiItLylJQSERHxkMgQx/A9i4cjERERERFpeUpKiYiIeEj4yeF7ZVXqKSUiIiIi/kdJKREREQ+JODnRueaUEhERERF/pKSUiIiIh5yaU0pJKRERERHxP0pKiYiIeIizp1SVklIiIiIi4n+UlBIREfEQ55xS6iklIiIiIn5ISSkREREPiQhRTykRERER8V9KSomIiHiIekqJiIiIiD9TUkpERMRDwrX6noiIiIj4MSWlREREPCQwwN4MW6yGhyMREREREWl5SkqJiIh4SKDZBIDVUFJKRERERPyPklIiIiIeEqSeUiIiIiLix5SUEhER8ZDAAHtPKYtNSSkRERER8T9KSomIiHhIkPlkTymbzcORiIh4v4KCAlJTU9m2bZtz24YNGxg7diz9+vVj+PDhLF68GNtp76lr164lNTWVvn37Mn78eHbt2uUss1qtLFiwgCFDhpCcnMz06dM5duyYszw/P58ZM2YwYMAAUlJSyMjIwGKxtExlRUT8hJJSIiIiHqKeUiIi9fPZZ59x0003cejQIee2L7/8knvuuYeZM2eyc+dOli1bxhtvvMGKFSsA2LZtG/PmzeOxxx5jx44djBkzhunTp1NeXg7A0qVL2bx5M2vWrGHTpk2EhoYyd+5c5/lnzpxJeHg4mzZtYvXq1WzdutV5bhERaRpKSomIiHiIMymlOaVERGq1du1a0tPTueuuu1y2//TTT/zyl7/k6quvxmw20717d1JTU9mxYwcAq1atYtSoUfTv35+goCCmTp1KbGws69evd5bffvvtdOzYkcjISObMmcPGjRvJzs7m4MGDbN++nVmzZhEWFkaXLl2YMWMGK1eubPH6i4j4skBPByAiIuKvHMP3DMBqMwg4uRqfiIicMnToUEaPHk1gYKBLYmrEiBGMGDHC+biiooKPP/6Y0aNHA5CVlcWECRNczpWYmMjevXspLi7myJEjJCUlOcvi4+OJjo5m3759AMTExJCQkOAs7969Ozk5OZw4cYI2bdrUO36Tm2/tjv3dPc7X6brU7PTrcvpiviaTf18rvV5q19Br01zXUkkpERERD3H0lAL7ED4lpUREztauXbtz7lNSUsL//d//ERoaytSpUwEoLS0lLCzMZb/Q0FDKysooLS0FIDw8/KxyR9mZxzoel5WVuZWUats2qt77NsVxvk7XxVV0dASQT1hYiHNbaGgQMTERxMfrWun1UjtvuTZKSomIiHhIUMCpUfQWm40QjaoXEXHbd999x5133knbtm15+eWXiYyMBOxJpIqKCpd9KyoqiI2NdSaYHPNLnV4eERGBYRhnlTkeR0REuBVffn6xSw+WczGZ7DeL7h7n63RdalZUZE+ilpdXOq9LRUU1hYWl5OUVezAyz9LrpXYNvTaO45qaklIiIiIeEnhazyjNKyUi4r5PPvmEu+++mxtvvJE//elPBAaeur3p0aMH+/fvd9k/KyuLK6+8kujoaBISEsjKynIO4cvNzaWwsJCkpCRsNhuFhYXk5eURHx8PwIEDB+jQoQNRUe7dlBkGDbopbuhxvk7XxZXjWpx5TXSd7HQdauct10ZfyYqIiFexWq1MmTKF++67z7lt9+7dTJo0ieTkZIYPH86qVatcjmmtS36fPlxPK/CJiLjn888/Jy0tjdmzZ3Pvvfe6JKQAJk6cyLp168jMzKS6upoVK1aQn59PamoqAOPHj2fp0qVkZ2dTUlLC/PnzGThwIF27dqVbt27079+f+fPnU1JSQnZ2NkuWLGHixImeqKqIiM9SUkpERLzK4sWL2blzp/NxUVER06ZNY9y4cezYsYOMjAweffRR9uzZA7TuJb9NJpMzMaWklIiIe5599lksFgsZGRkkJyc7f2677TYABg8ezIMPPshDDz3EwIEDeffdd1m2bBkxMTEApKWlMWzYMCZPnsywYcOorKxk4cKFzvMvWrQIi8XCNddcw4033sgVV1zBjBkzPFBTERHfpeF7IiLiNbZu3coHH3zAdddd59z2wQcfEBMTw+TJkwH7Tcbo0aNZuXIlffr0cVnyG2Dq1Km8/vrrrF+/ngkTJrBq1SrS09Pp2LEjAHPmzGHo0KFkZ2djs9nYvn07GzdudFny+/HHH3fe1DS3QLMJq83AYrO1yO8TEWnNHCvjgT0pdS5jx45l7NixNZYFBQWRnp5Oenp6jeXx8fEsWrSoYYGKiEi9KCklIiJeIT8/nzlz5rBkyRKXnkr79+93WbIb7Et6r169Gmj9S34Hmk1UAlab4XPLFvv6csyqX+um+tV9nIiISEtQUkpERDzOZrMxa9YsbrnlFi666CKXsrqW9D5XeWtY8js40ExplZWo6HCfXbrZW5Ycbi6qX+um+omIiHiOklIiIuJxzz33HMHBwUyZMuWssrCwMIqLXZc0dizZ7ShvzUt+m092S8jLLyEuwK1f6fV8fTlm1a91U/3qPk5ERKQlKCklIiIe99Zbb3Hs2DEGDBgA4Ewy/fvf/+aee+5h8+bNLvtnZWXRo0cPoPUv+R14cqLzaqvhkzfG4D1LDjcX1a91U/1EREQ8R6vviYiIx73//vv873//Y+fOnezcuZMbbriBG264gZ07d5KamkpeXh4rVqygurqazMxM1q1b55xHqrUv+R2o1fdERERExE+pp5SIiHi12NhYli9fTkZGBosWLSIuLo65c+cyaNAgwHXJ76NHj5KYmHjWkt8Wi4XJkydTWlpKSkrKWUt+P/zww1xzzTWYzWbGjRvXokt+BwY4klJafU9ERERE/IuSUiIi4nUee+wxl8e9e/fmtddeq3X/1rzkt7OnlFU9pURERETEv2j4noiIiAcFmu1NsYbviYiIiIi/UVJKRETEgzSnlIiIiIj4KyWlREREPOjUnFJKSomIiIiIf1FSSkRExINOzSmlic5FRERExL8oKSUiIuJBGr4nIiIiIv5KSSkREREP0kTnIiIiIuKvlJQSERHxoAD1lBIRERERP6WklIiIiAedmlNKSSkRERER8S9KSomIiHjQqdX3NNG5iIiIiPgXJaVEREQ8yNFTyqrheyIiIiLiZ5SUEhER8SCtviciIiIi/kpJKREREQ8KDNDqeyIiIiLin5SUEhER8SD1lBIRERERf6WklIiIiAdp9T0RERER8VdKSomIiHjQqZ5SWn1PRERERPyLklIiIiIeFBig1fdERERExD8pKSUiIuJBgWZNdC4iIiIi/skrk1JfffUVkydPZsCAAQwdOpRHHnmEqqoqAHbv3s2kSZNITk5m+PDhrFq1yuXYtWvXkpqaSt++fRk/fjy7du1yllmtVhYsWMCQIUNITk5m+vTpHDt2rEXrJiIicjrNKSUiIiIi/srrklI2m4077riDESNGsH37dlavXs2nn37KsmXLKCoqYtq0aYwbN44dO3aQkZHBo48+yp49ewDYtm0b8+bN47HHHmPHjh2MGTOG6dOnU15eDsDSpUvZvHkza9asYdOmTYSGhjJ37lxPVldERPyc5pQSEREREX8V6OkAzlRUVERubi42mw3DsH9rbDabCQsL44MPPiAmJobJkycDMHjwYEaPHs3KlSvp06cPq1atYtSoUfTv3x+AqVOn8vrrr7N+/XomTJjAqlWrSE9Pp2PHjgDMmTOHoUOHkp2dTZcuXTxTYWkVxk28kZ+O5NVaHh8by8vLV7RcQCLiMxxzSmn4noiIiIj4G69LSsXGxjJ16lQWLFjAX//6V6xWK9dccw1Tp07lscceIykpyWX/xMREVq9eDUBWVhYTJkw4q3zv3r0UFxdz5MgRl+Pj4+OJjo5m3759biWlTCb36uTY32QCo457DnfP6y1Or58vMpngWN5xfnHP32t9/t58/P9adf394Tk8/V9f09D6+er1aG00p5SIiIiI+CuvS0rZbDZCQ0N54IEHmDhxIgcPHuQPf/gDixYtorS0lLCwMJf9Q0NDKSsrA6izvLS0FIDw8PCzyh1l9dW2bZS71QIgLCyk1rKgwADi4xt2Xm/R0OvSWvj68we+/xyqfuKNAk4OpNecUiIiIiLib7wuKfXhhx+yYcMG3n//fQB69OhBWloaGRkZjB49muLiYpf9KyoqiIiIACAsLIyKioqzymNjY53JKsf8UjUdX1/5+cV19ng6k6M3Qnl5Za3HVVus5OUV11zo5Uwm+82wu9eltfD15w/84zlU/Wo/TjxLPaVERERExF95XVLq8OHDzpX2HAIDAwkKCiIpKYnNmze7lGVlZdGjRw/AnsDav3//WeVXXnkl0dHRJCQkkJWV5RzCl5ubS2Fh4VlDAs/FMOoehlfXcY0p93YNvS6tha8/f+Afz6HqJ95GE52LiIiIiL/yutX3hg4dSm5uLs8++yxWq5Xs7GyWLl3K6NGjSU1NJS8vjxUrVlBdXU1mZibr1q1zziM1ceJE1q1bR2ZmJtXV1axYsYL8/HxSU1MBGD9+PEuXLiU7O5uSkhLmz5/PwIED6dq1qyerLCIifswx0blVPaVERERExM94XU+pxMREnnvuORYuXMjzzz9PVFQUY8aMIS0tjeDgYJYvX05GRgaLFi0iLi6OuXPnMmjQIMC+Gt+DDz7IQw89xNGjR0lMTGTZsmXExMQAkJaWhsViYfLkyZSWlpKSksLChQs9V1kREfF7p3pKKSklIiIiIv7F65JSAEOGDGHIkCE1lvXu3ZvXXnut1mPHjh3L2LFjaywLCgoiPT2d9PT0JolTRESksTSnlIiIiIj4K68bviciIuJPnD2ltPqeiIiIiPgZJaVEREQ8yDGnlHpKiYjUraCggNTUVLZt2+bctnv3biZNmkRycjLDhw9n1apVLsesXbuW1NRU+vbty/jx49m1a5ezzGq1smDBAoYMGUJycjLTp0/n2LFjzvL8/HxmzJjBgAEDSElJISMjA4vF0vwVFRHxI0pKiYiIeJBW3xMRObfPPvuMm266iUOHDjm3FRUVMW3aNMaNG8eOHTvIyMjg0UcfZc+ePQBs27aNefPm8dhjj7Fjxw7GjBnD9OnTKS8vB2Dp0qVs3ryZNWvWsGnTJkJDQ5k7d67z/DNnziQ8PJxNmzaxevVqtm7dyooVK1q03iIivk5JKREREQ/SROciInVbu3Yt6enp3HXXXS7bP/jgA2JiYpg8eTKBgYEMHjyY0aNHs3LlSgBWrVrFqFGj6N+/P0FBQUydOpXY2FjWr1/vLL/99tvp2LEjkZGRzJkzh40bN5Kdnc3BgwfZvn07s2bNIiwsjC5dujBjxgznuUVEpGl45UTnIiIi/sI50bnmlBIRqdHQoUMZPXo0gYGBLomp/fv3k5SU5LJvYmIiq1evBiArK4sJEyacVb53716Ki4s5cuSIy/Hx8fFER0ezb98+AGJiYkhISHCWd+/enZycHE6cOEGbNm3qHb/JVP+6nr6/u8f5Ol2Xmp1+XQzDdbs/Xyu9XmrX0GvTXNdSSSkREREP0pxSIiJ1a9euXY3bS0tLCQsLc9kWGhpKWVnZOctLS0sBCA8PP6vcUXbmsY7HZWVlbiWl2raNqve+TXGcr9N1cRUdHQHkExYW4twWGhpETEwE8fG6Vnq91M5bro2SUiIiIh6k4XsiIg0TFhZGcXGxy7aKigoiIiKc5RUVFWeVx8bGOhNMjvmlzjzeMIyzyhyPHeevr/z8YpceLOdiMtlvFt09ztfputSsqMieRC0vr3Rel4qKagoLS8nLK67jSN+m10vtGnptHMc1NSWlREREPEgTnYuINExSUhKbN2922ZaVlUWPHj0A6NGjB/v37z+r/MorryQ6OpqEhASysrKcQ/hyc3MpLCwkKSkJm81GYWEheXl5xMfHA3DgwAE6dOhAVJR7N2WGQYNuiht6nK/TdXHluBZnXhNdJztdh9p5y7XRROciIiIe5ExKaU4pERG3pKamkpeXx4oVK6iuriYzM5N169Y555GaOHEi69atIzMzk+rqalasWEF+fj6pqakAjB8/nqVLl5KdnU1JSQnz589n4MCBdO3alW7dutG/f3/mz59PSUkJ2dnZLFmyhIkTJ3qyyiIiPkc9pURERDwoQMP3REQaJDY2luXLl5ORkcGiRYuIi4tj7ty5DBo0CIDBgwfz4IMP8tBDD3H06FESExNZtmwZMTExAKSlpWGxWJg8eTKlpaWkpKSwcOFC5/kXLVrEww8/zDXXXIPZbGbcuHHMmDHDAzUVEfFdSkqJiIh4UGDAydX3bAaGYWDSMjEiIrVyrIzn0Lt3b1577bVa9x87dixjx46tsSwoKIj09HTS09NrLI+Pj2fRokUND1ZERM5Jw/dEREQ8yDF8D0Aj+ERERETEnygpJSIi4kEuSSkN4RMRERERP6KklIiIiAednpTSCnwiIiIi4k+UlBIREfEgx5xSoBX4RERERMS/KCklIiLiQQGnzWuuFfhERERExJ8oKSUiIuJBJpPJOYRPSSkRERER8SdKSomIiHjYqaSU5pQSEREREf+hpJSIiIiHBZ4cw6c5pURERETEnygpJSIi4mGBZntzrOF7IiIiIuJPlJQSERHxMM0pJSIiIiL+SEkpERERD1NSSkRERET8kZJSIiIiHnZqTilNdC4iIiIi/kNJKREREQ9TTykRERER8UdKSomIiHhYgJJSIiIiIuKHlJQSERHxMMfqe1YlpURERETEjygpJSIi4mGO4XtKSomIiIiIP1FSSkRExMM0fE9ERERE/JGSUiIiIh6mnlIiIiIi4o+UlBIREa+wdetWJk2aRL9+/bj88suZN28eFRUVAOzevZtJkyaRnJzM8OHDWbVqlcuxa9euJTU1lb59+zJ+/Hh27drlLLNarSxYsIAhQ4aQnJzM9OnTOXbsmLM8Pz+fGTNmMGDAAFJSUsjIyMBisbRMpU9STykRERER8UdKSomIiMcVFBRwxx138Ktf/YqdO3eydu1atm/fzj/+8Q+KioqYNm0a48aNY8eOHWRkZPDoo4+yZ88eALZt28a8efN47LHH2LFjB2PGjGH69OmUl5cDsHTpUjZv3syaNWvYtGkToaGhzJ071/m7Z86cSXh4OJs2bWL16tVs3bqVFStWtGj9A9RTSkRERET8kJJSIiLicXFxcWzZsoXx48djMpkoLCyksrKSuLg4PvjgA2JiYpg8eTKBgYEMHjyY0aNHs3LlSgBWrVrFqFGj6N+/P0FBQUydOpXY2FjWr1/vLL/99tvp2LEjkZGRzJkzh40bN5Kdnc3BgwfZvn07s2bNIiwsjC5dujBjxgznuVuKhu+JiIiIiD8K9HQAIiIiAJGRkQAMGzaMo0ePMmDAAMaPH8/ChQtJSkpy2TcxMZHVq1cDkJWVxYQJE84q37t3L8XFxRw5csTl+Pj4eKKjo9m3bx8AMTExJCQkOMu7d+9OTk4OJ06coE2bNvWO32Ryr76O/U2mU0kpi2Fz+zze7PQ6+iLVr3VT/eo+TkREpCUoKSUiIl7lgw8+oKioiPT0dO68804SEhIICwtz2Sc0NJSysjIASktLay0vLS0FIDw8/KxyR9mZxzoel5WVuZWUats2qt77nnlcRFiw/XeHhxAf37DzeLOGXpvWQvVr3VQ/ERERz1FSSkREvEpoaCihoaHMmjWLSZMmMWXKFIqLi132qaioICIiArAnkRwTop9eHhsb60wwOeaXOvN4wzDOKnM8dpy/vvLzizHcGH1nMtlvFvPzi7FU2ydWLzxRTl5e8TmObD1Or6M716a1UP1aN9Wv7uNERERaguaUEhERj/vf//7Hz3/+c6qqqpzbqqqqCAoKIjExkf3797vsn5WVRY8ePQDo0aNHreXR0dEkJCSQlZXlLMvNzaWwsJCkpCR69OhBYWEheXl5zvIDBw7QoUMHoqLcuykzDPd/HMc5V9+zGg06jzf/NPTatJYf1a91/6h+tR8nIiLSEpSUEhERj+vZsycVFRU88cQTVFVV8dNPP7FgwQImTpzIiBEjyMvLY8WKFVRXV5OZmcm6deuc80hNnDiRdevWkZmZSXV1NStWrCA/P5/U1FQAxo8fz9KlS8nOzqakpIT58+czcOBAunbtSrdu3ejfvz/z58+npKSE7OxslixZwsSJE1u0/proXERERET8kYbviYiIx0VERPD8888zf/58Lr/8cqKiohg9ejRpaWkEBwezfPlyMjIyWLRoEXFxccydO5dBgwYBMHjwYB588EEeeughjh49SmJiIsuWLSMmJgaAtLQ0LBYLkydPprS0lJSUFBYuXOj83YsWLeLhhx/mmmuuwWw2M27cOGbMmNGi9Xf2lFJSSkRERET8iNtJqW3btpGSktIcsYiISCvVFG1DYmIiy5cvr7Gsd+/evPbaa7UeO3bsWMaOHVtjWVBQEOnp6aSnp9dYHh8fz6JFi9wPuAkFmu0dl9VTSkR8je4dRESkLm4P37vzzju59tpreeaZZ8jJyWmOmEREpJVR29A46iklIr5K7YOIiNTF7aTUp59+yqxZs/jyyy8ZMWIEv/vd73jnnXdcJqcVERH/orahcQJMmlNKRHyT2gcREamL20mpoKAgRowYwdKlS/nkk0+49tprWb58OUOHDuUvf/kLe/fubY44RUTEi6ltaJzAgJNJKS17JSI+Ru2DiIjUpcGr7+Xn57Nu3TrefPNNsrKySElJISQkhKlTp/Lss882ZYwiItJKqG1oGOfwPauSUiLim9Q+iIhITdye6Pzdd9/lrbfeYsuWLVx44YWMHz+eZ599lri4OACGDRtGWloav//975s8WBER8U5qGxon0KyeUiLim9Q+iIhIXdxOSv3lL39h1KhRvPbaa/Tq1eus8gsuuICpU6c2RWwiItJKqG1onED1lBIRH6X2QURE6uJ2UurTTz8lOzubhIQEAD7//HOioqLo3r07AB06dODOO+9s2ihFRMSrqW1oHMdE5xb1lBIRH6P2QURE6uL2nFL/+c9/GDduHD/88AMAu3btYtKkSXzyySdNHZuIiLQSahsaxznRuVbfExEf09ztw1dffcXkyZMZMGAAQ4cO5ZFHHnGu7Ld7924mTZpEcnIyw4cPZ9WqVS7Hrl27ltTUVPr27cv48ePZtWuXs8xqtbJgwQKGDBlCcnIy06dP59ixY00Ss4iInOJ2Umrx4sUsWbLE2f32lltu4e9//ztPPPFEkwcnIiKtg9qGxnH2lNLwPRHxMc3ZPthsNu644w5GjBjB9u3bWb16NZ9++inLli2jqKiIadOmMW7cOHbs2EFGRgaPPvooe/bsAWDbtm3MmzePxx57jB07djBmzBimT59OeXk5AEuXLmXz5s2sWbOGTZs2ERoayty5cxsds4iIuHI7KXX48GGuuOIKl21Dhw4lJyenyYISEZHWRW1D4zh7Smn4noj4mOZsH4qKisjNzcVms2GcfP80m82EhYXxwQcfEBMTw+TJkwkMDGTw4MGMHj2alStXArBq1SpGjRpF//79CQoKYurUqcTGxrJ+/Xpn+e23307Hjh2JjIxkzpw5bNy4kezs7EbHLSIip7idlOrcuTObNm1y2bZ161Y6derUZEEVFhZyzz33kJKSwmWXXcaMGTOc3WXVDVdExPu0RNvgy071lLJ5OBIRkabVnO1DbGwsU6dOZcGCBfTu3Zthw4bRrVs3pk6dyv79+0lKSnLZPzExkb179wKQlZVVa3lxcTFHjhxxKY+Pjyc6Opp9+/a5HafJ5P5PQ4/z9R9dl7qvS2Nfd772o+vQ9NemObg90fm0adNIS0vjuuuuo3PnzuTk5PDhhx+yYMGCJgvqj3/8I9HR0Xz44YeYzWZmz57NAw88wF//+lemTZvGnXfeyU033cSOHTtIS0ujZ8+e9OnTx9kNd9myZfTp04eVK1cyffp0PvroI8LCwly64UZFRfHAAw8wd+5c/vGPfzRZ7CIi/qgl2gZfFnBy9T31lBIRX9Oc7YPNZiM0NJQHHniAiRMncvDgQf7whz+waNEiSktLCQsLc9k/NDSUsrIygDrLS0tLAQgPDz+r3FHmjrZto9w+pjHH+TpdF1fR0RFAPmFhIc5toaFBxMREEB+va6XXS+285dq4nZQaPXo07du358033+Srr76iY8eOLF++nH79+jVJQF9++SW7d+9my5YtREZGAjBv3jxyc3NduuECLt1w+/Tp49INF2Dq1Km8/vrrrF+/ngkTJrBq1SrS09Pp2LEjAHPmzGHo0KFkZ2fTpUuXJolfRMQfNXfb4Os00bmI+KrmbB8+/PBDNmzYwPvvvw9Ajx49SEtLIyMjg9GjR1NcXOyyf0VFBREREQCEhYVRUVFxVnlsbKwzWeWYX6qm492Rn1+MO985mEz2m0V3j/N1ui41KyqyJ0rLyyud16WioprCwlLy8orrONK36fVSu4ZeG8dxTc3tpBRASkoKKSkpTR0LAHv27CExMZF//etfvPrqq5SXl3PFFVdw77331toNd/Xq1YC9G+6ECRPOKq9PN1x3klLudls7vXtcXU96c3WHa26n188X+frzB/71HPqihtavqa9Hc7YNvs45fE9JKRHxQc3VPhw+fNi50p5DYGAgQUFBJCUlsXnzZpeyrKwsevToAdgTWPv37z+r/MorryQ6OpqEhASXIX65ubkUFhaedS9SH4ZR92fIpj7O1+m6uHJcizOvia6Tna5D7bzl2ridlDp69ChLly7lhx9+wGZznfvi5ZdfbnRARUVF7Nu3j169erF27VoqKiq45557uPfee4mPj/eKbrgNzQ6e3qXyTEGBAa2+e6W3dP9rLr7+/IHvP4eqX/Np7rbB1wUG2Kd4VE8pEfE1zdk+DB06lCeeeIJnn32W22+/nZycHJYuXcro0aNJTU3l8ccfZ8WKFUyePJnPPvuMdevWsWTJEgAmTpxIWloa119/Pf3792flypXk5+eTmpoKwPjx41m6dCm9e/cmNjaW+fPnM3DgQLp27dqomEVExJXbSanZs2eTl5fH1VdfTVBQUJMHFBwcDNiH1oWEhBAZGcnMmTO58cYbGT9+fI3dbFu6G25DurnZf3dlrcdVW6yttnulr3eN9PXnD/zjOVT9aj+uKTR32+Dr1FNKRHxVc7YPiYmJPPfccyxcuJDnn3+eqKgoxowZQ1paGsHBwSxfvpyMjAwWLVpEXFwcc+fOZdCgQYB9GpAHH3yQhx56iKNHj5KYmMiyZcuIiYkBIC0tDYvFwuTJkyktLSUlJYWFCxc2afwiItKApNQXX3zBhg0biIuLa454SExMxGazUV1dTUiIvWeK41uVn/3sZ/y///f/XPb3RDfcxnTBbUy5t/OW7n/NxdefP/CP51D1ax7N3Tb4ukCz5pQSEd/U3O3DkCFDGDJkSI1lvXv35rXXXqv12LFjxzJ27Ngay4KCgkhPTyc9Pb1J4hQRkZqZ3T0gKirK2ZupOQwZMoQuXbpw//33U1paSkFBAU899RTXXnstN9xwA3l5eaxYsYLq6moyMzNZt26dcx6piRMnsm7dOjIzM6murmbFihU1dsPNzs6mpKRE3XBFRJpIc7cNvs6RlFJPKRHxNWofRESkLm73lJoxYwazZ8/m9ttvJz4+3qWsU6dOjQ4oKCiIf/7znzz22GOMGDGCyspKhg8fzpw5c2jTpo264YqIeKHmbht8XYCSUiLio9Q+iIhIXdxOSs2dOxewL8EKYDKZMAwDk8nEN9980yRBJSQk8NRTT9VYpm64IiLepyXaBl+m4Xsi4qvUPoiISF3cTkr95z//aY44RESkFVPb0DjqKSUivkrtg4iI1MXtOaU6d+5M586dKSoq4quvvqJdu3aEhobSuXPn5ohPRERaAbUNjROgnlIi4qPUPoiISF3cTkrl5+fzy1/+khtvvJF7772X7Oxsrr32Wnbt2tUc8YmISCugtqFxNHxPRHyV2gcREamL20mp+fPnk5SUxI4dOwgMDKR79+5MmzaNv/71r80Rn4iItAJqGxpHw/dExFepfRARkbq4nZTKzMxk9uzZhIWFYTLZP0TfdtttZGVlNXlwIiLSOqhtaBz1lBIRX6X2QURE6uJ2UiooKIiKigoADMP+4bm0tJSIiIimjUxERFoNtQ2Nc6qnlM3DkYiINC21DyIiUhe3k1LDhw9n1qxZ/PDDD5hMJvLz8/nLX/7CsGHDmiM+ERFpBdQ2NI56SomIr1L7ICIidXE7KfWnP/2J8PBwfv7zn3PixAmGDh1KeXk56enpzRGfiIi0AmobGkdJKRHxVWofRESkLoHuHhAREcGiRYsoKCjgxx9/pEOHDrRv3745YhMRkVZCbUPjOIbvWQ378BbHvCsiIq2d2gcREamL20mpHTt2uDw+ePAgBw8eBOCyyy5rmqhERKRVUdvQOIHmUx2XrTaDwAAlpUTEN6h9EBGRuridlJoyZcpZ28xmMx07duQ///lPkwQlIiKti9qGxnH0lAKw2AwCAzwYjIhIE1L7ICIidXE7KbV3716XxwUFBTzzzDN07ty5yYISEZHWRW1D45yZlBIR8RVqH0REpC5uT3R+pri4OGbNmsVLL73UFPGIiIgPUNvgnsDTklKa7FxEfJnaBxEROV2jk1IARUVFVFZWNsWpRETER6htqL/TclLqKSUiPk/tg4iIOLg9fG/27Nkuj6urq/nss88YMmRIkwUlIiKti9qGxjGZTASaTVhshnpKiYhPUfsgIiJ1cTspdaaQkBCmTJnCTTfd1BTxiIiID1Db4L6Ak0kp9ZQSEV+m9kFERE7ndlLq0UcfbY44RESkFVPb0HiBZhOVaE4pEfEtah9ERKQubielFi9eXK/9/vCHP7gdjIiItE5qGxrPMdm5klIi4kvUPoiISF3cTkrt37+fDz74gIsuuogLLriAI0eO8L///Y+LL76YiIgIwD43hoiI+A+1DY0XcDIppeF7IuJL1D6IiEhd3E5Kmc1mZs+ezW9+8xvntrfeeouPPvqIhQsXNmVsIiLSSqhtaDz1lBIRX6T2QURE6mJ294BPPvmEyZMnu2y74YYb2Lp1a5MFJSIirYvahsY71VPK5uFIRESajtoHERGpi9tJqbi4OHbs2OGybdOmTXTo0KHJghIRkdZFbUPjafieiPgitQ8iIlIXt4fv3XHHHUybNo0RI0bQqVMnsrOz+eijj3j66aebIz4REWkF1DY0nnP4nqGklIj4DrUPIiJSF7eTUpMmTaJz5868/fbbfP3113Tp0oXXXnuNnj17Nkd8IiLSCqhtaDxnTymrklIi4jvUPoiISF3cTkoBDBkyhCFDhlBQUEBcXFxTxyQiIq2Q2obGCTTbR9Srp5SI+Bq1DyIiUhu355Sqrq7mqaeeon///gwfPpzs7GwmTJjAsWPHmiM+ERFpBdQ2NJ56SomIL1L7ICIidXE7KbV48WIyMzP5+9//TlBQEG3btqVDhw5kZGQ0R3wiItIKqG1ovADTyTmlNNG5iPgQtQ8iIlIXt4fvrVu3jldffZWEhARMJhPh4eE8+uijpKamNkd8IiLSCqhtaLzAAE10LiK+R+2DiIjUxe2eUmVlZc6x4MbJD86hoaGYzW6fSkREfITahsbT8D0R8UVqH0REpC5utwZ9+/Zl8eLFAJhODjX45z//Se/evZs2MhERaTXUNjReoFk9pUTE96h9EBGRurg9fO/+++9n6tSprF27ltLSUkaOHElpaSkvvvhic8QnIiKtgNqGxgtUTykR8UFqH0REpC5uJ6Xi4+N59913+fjjj/npp5/o0KEDV111FZGRkc0Rn4iItAJqGxrPMdG5RT2lRMSHqH0QEZG6uJ2UuuGGG3j77be5/vrrmyMeERFphdQ2NMyhQ4fYv/8gACXFZfZt2dns4ahb54mLa8t553Vp8vhERBqruduHwsJC5s+fzyeffILNZuOyyy7joYceon379uzevZtHHnmErKwsYmNjmT59OpMmTXIeu3btWpYsWUJubi4XXnghDzzwAMnJyQBYrVb+9re/8dZbb1FeXs6gQYP4y1/+Qvv27ZulHiIi/srtpBRAeXm5vt0QEREXahvc8+OP2Qy5/DLKy+zJqPjRs4i4eBhPL17E/M/edutcoWHhbNm8Q4kpEfFKzdk+/PGPfyQ6OpoPP/wQs9nM7NmzeeCBB/jrX//KtGnTuPPOO7npppvYsWMHaWlp9OzZkz59+rBt2zbmzZvHsmXL6NOnDytXrmT69Ol89NFHhIWFsXTpUjZv3syaNWuIiorigQceYO7cufzjH/9olnqIiPgrt5NSKSkpTJo0iSuvvPKsbwr+8Ic/NFlgIiLSeqhtcF9+fj7lZWVMvOtR2p93AZ+fCOGnCrh83G+58Ne/rvd5jv34Paufmk1BQb6SUiLidZqzffjyyy/ZvXs3W7ZscSa95s2bR25uLh988AExMTFMnjwZgMGDBzN69GhWrlxJnz59WLVqFaNGjaJ///4ATJ06lddff53169czYcIEVq1aRXp6Oh07dgRgzpw5DB06lOzsbLp00XutiEhTcTsp9eOPP9KlSxe+//57vv/+e+d2x2oaIiLif9Q2NFz78y6gU/eL2Z+VDxWlRMa1p1PnaE+HJSLSJJqzfdizZw+JiYn861//4tVXX6W8vJwrrriCe++9l/3795OUlOSyf2JiIqtXrwYgKyuLCRMmnFW+d+9eiouLOXLkiMvx8fHxREdHs2/fPiWlRESaUL2TUrfeeisvvPAC//znPwGoqKggNDS02QITERHv15Rtw969e1mwYAFfffUVQUFBXH755dx3333ExcU167wg+fn5PPDAA2zfvp2AgADGjBnDvffeS2Bgg0a4N9jJxfewaZ5zEfEBLXHvUFRUxL59++jVqxdr166loqKCe+65h3vvvZf4+HjCwsJc9g8NDaXs5JDp0tLSWstLS0sBCA8PP6vcUeYOd/Nvjv31vY4rXZeanX5dTl8rxWTy72ul10vtGnptmuta1vsT965du1weX3nllWzfvr3JAxIRkdajqdqGiooKbrvtNm688Uaee+45SktLuffee7n//vtZsGBBs84LMnPmTBISEti0aRN5eXlMnz6dFStWcNtttzXJNaov88mW3tDqeyLiA1ri3iE4OBiwD60LCQkhMjKSmTNncuONNzJ+/HgqKipc9q+oqCAiIgKAsLCwGstjY2Odyary8vJaj3dH27ZRbh/TmON8na6Lq+joCCCfsLAQ57bQ0CBiYiKIj9e10uuldt5ybRr8NbA+NIuIyJka2jbk5ORw0UUXkZaWRkBAAMHBwdx0003cc889zToviM1mY/v27WzcuJGwsDC6dOnCjBkzePzxx1s8KWVSTykR8WHNce+QmJiIzWajurqakBD7DbnNZgPgZz/7Gf/v//0/l/2zsrLo0aMHAD169GD//v1nlV955ZVER0eTkJBAVlaWcwhfbm4uhYWFZw0JrI/8/GLcqb7JZL9ZdPc4X6frUrOiInvvvfLySud1qaioprCwlLy8Yg9G5ll6vdSuodfGcVxTMzf0QM0TIiIiZ2po23DhhRfy/PPPExAQ4Ny2YcMGLrnkklrnBdm7dy+Ay03DmeXnmhdk//79xMTEkJCQ4Czv3r07OTk5nDhxwq06OLrJu/NjP9D+j6OnlK0Rn5waEkNz/3hrXKqf6qf61X1cU2uOe4chQ4bQpUsX7r//fkpLSykoKOCpp57i2muv5YYbbiAvL48VK1ZQXV1NZmYm69atc84jNXHiRNatW0dmZibV1dWsWLGC/Px8UlNTARg/fjxLly4lOzubkpIS5s+fz8CBA+natavbcRqG+z8NPc7Xf3Rd6r4ujX3d+dqPrkPTX5vm0LITZoiIiJyDYRgsXLiQjz76iFdeeYWXX365WecFOfNYx+OysjLatGlT77jd/eYoJsY+BCQ0JJjw8BCCg+1NckBAAOHhIXUd6iI01D58JTbWe7vpe0v38Oai+rVuql/rFRQUxD//+U8ee+wxRowYQWVlJcOHD2fOnDm0adOG5cuXk5GRwaJFi4iLi2Pu3LkMGjQIsPe6ffDBB3nooYc4evQoiYmJLFu2jJiYGADS0tKwWCxMnjyZ0tJSUlJSWLhwoecqKyLio+qdlLJYLLz55pvOx9XV1S6PAcaNG9dEYYmISGvQ1G1DSUkJs2fP5quvvuKVV16hZ8+ehIWFUVzs2v28qeYFMQzjrDLHY3fnDXG3C3RhoT0pVlFZRVlZJVaLFYCqagtlZZX1Pk9FRRUAx497Xzd9k8m3u86rfq2b6lf3cY3VUvcOCQkJPPXUUzWW9e7dm9dee63WY8eOHcvYsWNrLAsKCiI9PZ309PRGxygiIrWrd1IqPj6eRYsWOR/Hxsa6PDaZTEpKiYj4maZsGw4dOsTtt99Op06dWL16NXFxcQAkJSWxefNml32bal4Qm81GYWEheXl5xMfHA3DgwAE6dOhAVJR7N2Xudmt27nvy31PD99z6tTWf08s0Z5dvb6D6tW6qX/PQvYOIiNRHvZNS//3vf5szDhERaYWaqm0oKirit7/9LYMGDSIjIwOz+dSUh6mpqTz++OOsWLGCyZMn89lnn7Fu3TqWLFkC2OcFSUtL4/rrr6d///6sXLmyxnlBevfuTWxs7FnzgvTv35/58+fz8MMPc/z4cZYsWcLEiRObpF7uMJ+cbqUxc0qJiHgL3TuIiEh9aE4pERHxuDfeeIOcnBzee+893n//fZeyXbt2Neu8IIsWLeLhhx/mmmuuwWw2M27cOGbMmNFSVXdy9JRSTkpERERE/IWSUiIi4nG33HILt9xyS63lzTkvyJlDTDzFpJ5SIiIiIk2isrKSrVu/pLCw1OULvz59+hISUv8FZaT5KSklIiLiBZpiTikRERERgT17PufFDVuJ7XiBc9vRg/uZBlx2WYrnApOzKCklIiLiBTSnlIiIiEjT6XhBEu27XezpMOQczOfeRURERJqbekqJiIiIiL/x2qSU1WplypQp3Hfffc5tu3fvZtKkSSQnJzN8+HBWrVrlcszatWtJTU2lb9++jB8/nl27drmcb8GCBQwZMoTk5GSmT5/OsWPHWqw+IiIidXEsOKieUiIiIiLiL7w2KbV48WJ27tzpfFxUVMS0adMYN24cO3bsICMjg0cffZQ9e/YAsG3bNubNm8djjz3Gjh07GDNmDNOnT6e8vByApUuXsnnzZtasWcOmTZsIDQ1l7ty5LVIXm2FgmAJa5HeJiEjrFODoKaWuUiIiIiLiJ7wyKbV161Y++OADrrvuOue2Dz74gJiYGCZPnkxgYCCDBw9m9OjRrFy5EoBVq1YxatQo+vfvT1BQEFOnTiU2Npb169c7y2+//XY6duxIZGQkc+bMYePGjWRnZzd7faa9tpujfadSVF7d7L9LRERaJ8fwPatyUiIiIiLiJ7wuKZWfn8+cOXN44oknCAsLc27fv38/SUlJLvsmJiayd+9eALKysmotLy4u5siRIy7l8fHxREdHs2/fPrdjNJnc+wkNCsAWEsWH+/Kostia7Lze9NPa469v/ZrydeFtP75QB9WvYceJd9BE5yIiIiLib7xq9T2bzcasWbO45ZZbuOiii1zKSktLXZJUAKGhoZSV/X/27jw8qvJsA/g9WzKTdSYJhKAgQhJwCSQEE0BEBePGEgxR7Bf9jK1gIda6RKQFhMoXllorojVa1FILFQtILRZB2mpBlBAwgKJgIhACIfs2M8ns5/tjFhgSIJNMZr1/15ULcrZ53zmTmXOeed7nbb/ieq1WCwAICwvrtN6+zhWxsZEubf/q/4zGuKUfoRkR+L6hHeOGxnbaRiaVIC7OteP6GlefF3+jUIRecl0gnD8g8M8h+0e+TGyLSjEoRURERETBwqeCUm+99RZCQkLw8MMPd1qnUCigVqudlul0OoSHhzvW63S6TutVKpUjWGWvL9XV/q5obFTDlXsGqQiIOr0XLYl34USdBqMGRHTaxmgyo6FB3cXevk8kst4Mu/q8+At7NklHh/6S/fPn8wcExzlk/y69H/mG8zWlvNwQIiIiIiIP8amg1EcffYS6ujqMGTMGABxBpn/961+YP38+9u7d67R9RUUFkpKSAABJSUkoLy/vtH7ixImIjo5GfHy80xC/+vp6tLS0dBry1x2CAJdvbENbKwEADVoDOoxmKGSdC5/7+81yT54Xf3KlvgVC34PhHLJ/5Kvsw/fMPIlEREREFCR8qqbUjh078PXXX+PAgQM4cOAApk6diqlTp+LAgQPIyspCQ0MD1q1bB6PRiH379mHbtm2YOXMmACA3Nxfbtm3Dvn37YDQasW7dOjQ2NiIrKwsAkJOTg+LiYlRVVUGj0WD58uXIyMjA4MGDPdI3ibEdseEyAMCZFt0VtiYiomBjL3TO4XtEREREFCx8KlPqclQqFd59910UFRVhzZo1iImJwaJFizB27FgAwLhx47BkyRIsXboUtbW1SExMxNq1a6FUKgEABQUFMJlMyMvLg1arRWZmJlavXu3RPlwdrUCj1ogzLR1I6uf6sEEiIgpcEjGH7xERERFRcPHpoNTKlSudfk9JScHGjRsvuX12djays7O7XCeTyVBYWIjCwkK3ttEVg5RyHK5uw9lWZkoREZEzEWffIyIiIqIg41PD9wJdv4gQiAB0GC1oN5i93RwiIvIh9kLnrClFRERERMGCQSkPkkrEiJJbk9Oa2g1ebg0REfkSsX34HmNSRERERBQkGJTysJgwa7Hzpnajl1tCRES+xJ4pZWFUioiIiIiCBINSHhYTFgKAQSkiInJmS5SCANaVIiIiIqLgwKCUh8WE2zOlOHyPiIjOE9srnYND+IiIiIgoODAo5WH24Xst7UZ+E05ERA72mlIAM6WIiIiIKDgwKOVhkaFSSMUimAWgtcPk7eYQEZGPuCAmxbpSRERERBQUGJTyMJFIdEGxcw7hIyIiK7FIBHtcijEpIiIiIgoGDEp5QbTCGpRq0zFTioiIzrPXlTJz+B4RERERBQEGpbwgKlQKgEEpIiJyJrZ9KnP4HhEREREFAwalvCBKzqAUERF1Zs+UYkyKiIiIiIIBg1JeYA9KqfUMShER0XkSR1CKUSkiIiIiCnwMSnmBPSilNZhhMlu83BoiIvIVjuF7DEoRERFRN1gEgRnW5NcYlPKCUKkYIRLrt+FtzJYiIiIbR6Fzfl9BREREV7Dz+zr8co8B22oi8K8fGrzdHKIeYVDKC0QiEaLknIGPiIiciTl8j4iIiLppy+FqmGyXDCcb26E18N6S/A+DUl7CYudERHQxWxItzAxKERER0WWodSYcqW4DAISKrSnWZ1p03mwSUY8wKOUljmLnDEoREZGNWMzZ94iIiOjKSiqbYRaAAWEiDAmz3lNWNXd4uVVErmNQykvsQalWBqWIiMjGMXyPUSkiIiK6jC9PNgEAblCJ0T/Uek95tlXHawjyOwxKeUlkqDUopWGhcyIisrElSrGmFBGRi8xmMx5++GEsWLDAsezw4cO4//77kZaWhkmTJmHTpk1O+2zduhVZWVlITU1FTk4OysrKnI63atUqjB8/HmlpaZg7dy7q6uo81h+iyxEEAV+dagYA3BArhkpmgVwqhsEsoFaj93LriFzDoJSXRIRKAAAagxkCbz582sGqFqgHjsGppnZvN4WIApzEPvsePxeIiFzy+uuv48CBA47fW1tbMWfOHMyYMQOlpaUoKirCihUrcOTIEQBASUkJli1bhpUrV6K0tBTTp0/H3Llz0dFhHf5UXFyMvXv3YsuWLdizZw/kcjkWLVrklb4RXayp3YgGrQEiAMOiRBCJgPjIUABAo9bo3cYRuYhBKS8JD7FmSpktAvQmzv3tqz74+iwe/+AI1IMnYNfxBtTzmwci6kOOmlL8WCAi6ravvvoKn376Ke68807Hsk8//RRKpRJ5eXmQSqUYN24cpk2bhg0bNgAANm3ahClTpiA9PR0ymQz5+flQqVTYvn27Y/3s2bORkJCAiIgILFy4ELt370ZVVZVX+kh0ocpm65flCdFyhNhmSVEqrLO7t3YwKEX+hUEpL5GIRVDIrE+/Rm/2cmuoKzqjGe/sOw0AEOvVAIAvTzYzs42I+gyH7xERuaaxsRELFy7Eyy+/DIVC4VheXl6O5ORkp20TExNx7NgxAEBFRcUl16vVatTU1Ditj4uLQ3R0NI4fP96HvSHqnlNN1oy+a1TnX/NKhTXpoUXHoBT5F6m3GxDMIkKl6DAaoDGwrpQv+vDIOTR3GHFVtBzGz95B85jHUKcx4GRTB4bGhnm7eUQUgOzD9xiUIiK6MovFgueeew6PPvooRowY4bROq9U6BakAQC6Xo729/YrrtVotACAsLKzTevs6V9je2l3e3tX9Ah2fl/NO28qKDIkNg0hk/b8yzJ4pZQLCrc9TMD9XF75eLrysCvbnBej531JfPW8MSnlRRIgE9WCxc18kCAI+KKsGAORnDsKfdqpx/YBIHK5uw8nGdgaliKhPOIbvMSZFRHRFb731FkJCQvDwww93WqdQKKBWq52W6XQ6hIeHO9brdLpO61UqlSNYZa8v1dX+roiNjXR5n97sF+j4vADVGgMA4IZBKkQLHQAaMUBlfW1qDWZIVTIoleGIiwve5yo6OhxAIxSKUMcyuZzPy4V85W+JQSkvinDMwMfhe76mqkWH6lYdZBIR7h7RH38CcE2MAoer23CmpQMWQXBM3U5E5C724XtmRqWIiK7oo48+Ql1dHcaMGQMAjiDTv/71L8yfPx979+512r6iogJJSUkAgKSkJJSXl3daP3HiRERHRyM+Pt5piF99fT1aWlo6DfnrjsZGNVxJgBWJrDeLru4X6Pi8nFdeaw24xoWI0Vpnzd4TTCYoZGJ0GC1oaregpUWLhgb15Q4T0Fpbrc9LR4fe8XrR6YxB/7wAPf9bsu/nbgxKedH5oBQzpXxNSaV1itWRA6OgCLHOlNgvIgShUjH0Jgtq1XokRMm92UQiCkBiDt8jIuq2HTt2OP2+YMECAMDKlSvR3NyMl156CevWrUNeXh4OHjyIbdu24Y033gAA5ObmoqCgAPfccw/S09OxYcMGNDY2IisrCwCQk5OD4uJipKSkQKVSYfny5cjIyMDgwYNdbqcgoEdBlJ7uF+iC/XkxmCyobrUGYK9RKXCq1rpcEIBouQwdRj00FnHQP0/2vl/8HAT783IhX3kuGJTyoohQa7BDY2CmlK/ZbwtKZV6jciwTi0QYpJSjoqEdp5s7GJQiIrc7X1PKyw0hIvJzKpUK7777LoqKirBmzRrExMRg0aJFGDt2LABg3LhxWLJkCZYuXYra2lokJiZi7dq1UCqVAICCggKYTCbk5eVBq9UiMzMTq1ev9l6HiGyqWjpgEYDwEAliw0Nw6oJ1SoUUNWo92s0SbzWPyGUMSnlRRMj5TKkIL7eFzjNZBByoagEAZAxWOq0bpFKgoqEdZ1p0yLzG820josAmts2Ja2FUiojIZStXrnT6PSUlBRs3brzk9tnZ2cjOzu5ynUwmQ2FhIQoLC93aRqLeqrQXOY8Jg+iiciLRCmuxcy2DUuRHxN5uQDCzZ0p1GC0QRHzj8BXHatXQ6M2IDJViRLzzmNmEKGuhvOZ2I4xmizeaR0QBzD58z+wLudRERETkc87ahu5drew8aiNabk16aLfwNp/8B1+tXhQqFUNin2kplLlSvuLoOWvhu1FXRTnOj114iBRhMgkEAI1aoxdaR0SBTMzhe0RERHQZNW16AOiylIi9ZrGOQSnyI3y1epFIJEKErYi2OTTKy60hu2N1GgDAiP5dBwr7RYQAAOq1eo+1iYiCg8T2qczZ94iIiKgrNWrrPcgA2wiOC4Xb7i0NghgGM68lyD8wKOVl9mi2hUEpn3HcHpSK7zooFWcLSjVoDB5rExEFB86+R0RERJdT02YdvjcgsnOmVKhUDKltpEeLgdcS5B8YlPIye10pc2jkFbYkT9CbLDjRoAUADL9UplS4LVOKQSkicjMO3yMiIqLLqbVlSsV3kSklEokc95dNOo82i6jHGJTyMmZK+ZaKBi3MAqBUyBAf2fmNHjg/fK9VZ4LBxGLnROQ+9jJ2zJQiIiKii7UbzGjVmQAAAy5xr2Kf4b1Zz2sJ8g8MSnnZ+ZpSzJTyBcdrrUXOR/SP6DTFqp1cJnF8A9GgZbYUEbmPY/ILBqWIiIjoIvYsqYhQiSO54WKOTCkGpchPMCjlZcyU8i32IufDL1FPyi4mzJot1dzOGfiIyH3sw/fMTMIkIiKii9SoL11Pyi7cdn/ZpGNQivwDg1JedmFNKYHfjHvdjw3tAIDkfuGX3S4mTAYAaO5gUIqI3IfD94iIiOhSatouPfOenf3+ksP3yF8wKOVl4bYxv5DI0MIAh9dVNlmDUtfEhF12O5XCFpRiphQRuRFn3yMiIqJLqbEXOb9EPSngfE2pJr1HmkTUawxKeZlELIJCZj0N9jcZ8o6WdqOjcOA1KsVlt1VdkCnFDDcichdHTSkO3yMiIqKL1LbZh+9dLlPqfKFz3qeQP2BQygfY3zjs6ZjkHadsWVIDIkMhl0kuu220QgYRAL3Jgg4j7x6JyD3sw/fMvIgkIiKii9iTGAZEXaamVIgEgACjBRyJQ36BQSkfYJ+Bj5lS3lXZbA1KDbnC0D0AkIpFiJTbvoXgED4ichMO3yMiIqJLsc++1z8y5JLbSMQihIgEp+2JfBmDUj7gfKaUzsstCW6VTR0AgGtiLj90z85RV6rD0GdtIqLgwuF7RERE1BVBEFCvsd539I+49PA9AJCLrRcSdRrep5DvY1DKB3D4nm+wD98brLpyphRwQV0pZkoRuVVTUxOysrJQUlLiWHb48GHcf//9SEtLw6RJk7Bp0yanfbZu3YqsrCykpqYiJycHZWVljnVmsxmrVq3C+PHjkZaWhrlz56Kurs6xvrGxEfPmzcOYMWOQmZmJoqIimEymvu9oFzj7HhEREXVFrTdBb7IGm+LCL50pBQChtqBUvYb3l+T7GJTyAfZpOzl8z7sqm62ZUkNczpTyzs0rUSA6ePAgZs2ahdOnTzuWtba2Ys6cOZgxYwZKS0tRVFSEFStW4MiRIwCAkpISLFu2DCtXrkRpaSmmT5+OuXPnoqPD+jddXFyMvXv3YsuWLdizZw/kcjkWLVrkOP5TTz2FsLAw7NmzB5s3b8ZXX32FdevWebTfdvbhe6wpRURERBeyZz1Fy6VXrH8rtw3fY6YU+QMGpXwAh+95n9FswdkW+/C97mVKRduCUq0sIEjkFlu3bkVhYSGefvppp+WffvoplEol8vLyIJVKMW7cOEybNg0bNmwAAGzatAlTpkxBeno6ZDIZ8vPzoVKpsH37dsf62bNnIyEhAREREVi4cCF2796NqqoqVFZWYv/+/XjuueegUCgwaNAgzJs3z3FsTztfU8orD09EREQ+yp711O8KQ/eACzKlmPRAfoBBKR9gL3Te1G6Ezmj2cmuC09kWHcwCoJCJ0T/i8umwdkqFNZioM1lgkV56Bgwi6p4JEyZg165duPfee52Wl5eXIzk52WlZYmIijh07BgCoqKi45Hq1Wo2amhqn9XFxcYiOjsbx48dRXl4OpVKJ+Ph4x/phw4ahuroabW1t7u7iFUlsn8ocvkdEREQXqldbs576deNexV5Tql7LTCnyfVJvN4CAUKkYMBsASQjqNAYMVnVv+Bi5j33mvWtUYRDZMhWuRCYRIzxEAq3BDLNC1ZfNIwoK/fr163K5VquFQuH8viiXy9He3n7F9VqtFgAQFhbWab193cX72n9vb29HVFRUt9vfzbeOzttfsJ8jU6qHqVKutqGv2dvja+1yF/bPv7F/l9+PiHxLnS1T6kpFzgHWlCL/wqCUDxCJRJDo1TCHxeJcm45BKS845eLMe3bRCqktKBXTF80iIliDRGq12mmZTqdDeHi4Y71Op+u0XqVSOQJM9vpSF+8vCEKndfbf7cfvrtjYSJe2Vyqtx5eHhiAszHqBKUismbNmAVAoQroVJJfLrd+YqlThiItzrQ2e4upz42/YP//G/hGRP7DPvOdSphRrSpEfYFDKR4j1bTCHxaKWM/B5RaVt5r3u1pOyU8plqG7Vw8SgFFGfSU5Oxt69e52WVVRUICkpCQCQlJSE8vLyTusnTpyI6OhoxMfHOw3xq6+vR0tLC5KTk2GxWNDS0oKGhgbExcUBAH788UcMGDAAkZGu3cg1Nqrhyqi7lhZrppZOb0B7u/W9X3/BEG5tu96ROXU5Op31grO5WYuGBvUVtvYskch6Q+zqc+Mv2D//xv5dfj8i8i32TKl+kd3IlLIVOm/TmaAzmq9YGJ3Im3yyptSxY8fw6KOPIiMjAzfffDPmz5+PpqYmAH07Lbg3SXTW2iXnWOzcKxyZUi5mqdmLnZvDOHyPqK9kZWWhoaEB69atg9FoxL59+7Bt2zbMnDkTAJCbm4tt27Zh3759MBqNWLduHRobG5GVlQUAyMnJQXFxMaqqqqDRaLB8+XJkZGRg8ODBGDJkCNLT07F8+XJoNBpUVVXhjTfeQG5ursvtFATXf6w7nj+GRHw+CNWTIXw9aUNf//hqu9g/9o/9u/x+RORb7FlP3al/KxUJCBE770fkq3wuKKXT6fDYY48hLS0NX3zxBT7++GO0tLTg17/+dZ9PC+5NYr312+0azpDgFadtNaWGuJopZSt2zuF7RH1HpVLh3XffxY4dO5CZmYlFixZh0aJFGDt2LABg3LhxWLJkCZYuXYqMjAz885//xNq1a6FUKgEABQUFuPXWW5GXl4dbb70Ver0eq1evdhx/zZo1MJlMmDx5Mh544AHccsstmDdvnhd6CqfMKM7AR0RERHauzL4nEgHKUOs1RR3rSpGP87nhe9XV1RgxYgQKCgogkUgQEhKCWbNmYf78+U7TggNwmhZ85MiRTtOCA0B+fj4++OADbN++HTNnzsSmTZtQWFiIhIQEAMDChQsxYcIEVFVVYdCgQV7rMwBI9NZMqRpmSnlcS7sRrToTALhcz0tpz5SSK2EyWyCV+Fycl8gvHT9+3On3lJQUbNy48ZLbZ2dnIzs7u8t1MpkMhYWFKCws7HJ9XFwc1qxZ0/PGutEFiVIwM12BiIiIABjNFjS1GwF0L1MKAKJDgLoOZkqR7/O5O+ihQ4fi7bffhkRyftzrzp07ccMNN/TptODeJrYHpZgp5XGnbPWkEqJCXR5vHR4isQ63EUtwtpUBRSLqHZFIBIktMGVmqhQREREBaNBaA0syicjxpfiV2DOlOAMf+Tqfy5S6kCAIWL16NT777DOsX78e7733Xp9OC95dPZ1aVyS69Dh9e6ZUrVoPAUK3itv6Cn+fUrmy5XyR8676cLnzJxKJoJRL0dhuxOmWDgyJdW34n6/w93N4Jezf5fcj3yIVi2E2W2BiUIqIiIgA1NkSF/qFd29mXgBQhtiH7zFTinybzwalNBoNfvWrX+Ho0aNYv349hg8f3qfTgruipzOSKBSXHv8batFBLAKMZgEIDUFclLxHj+FN/jpTS13HGQDAiIHRl51O/VLnLzYiFI3tRtTrzD47HXt3+es57C72j/yBRCwCzGBQioiIiACcH4LXnXpSdspQ+77MlCLf5pNBqdOnT2P27NkYOHAgNm/ejJgYaxHpvpwW3BU9mVoXADo69Jfcz2Q0ol9EKGrVenxX2QhxQpRLbfImf59S+fuzLQCAeIW0y+nUr3T+ImxTW3x3psXnpmPvLn8/h1fC/l1+P/ItUokIMAImcwC+WImIiMhldY4i592rJwVckCmlZqYU+TafqynV2tqKRx55BKNHj8Y777zjCEgBfTstuCt6MyXv5QyItIazq1v1Xp9C2FNTDvvCT2WTNXtusErRo/MXbRvXfaqx3et9CdZzyP717r2JfIvUVu3cZLF4uSVERETkC3qWKcWaUuQffC5T6sMPP0R1dTU++eQT7Nixw2ldWVkZ3n33XRQVFWHNmjWIiYm55LTgtbW1SExM7DQtuMlkQl5eHrRaLTIzM52mBfe2AVGhOFztnzPwzch9AGdrGi65Pk6lwnvvrvNcg7rJaLbgbIs1KDUkpmf1oOzFBiubO66wJRHRlZ0PSjFqSEREROcDS65kSkXbMqXqtQZYBP+qWUzBxeeCUo8++igeffTRS67vy2nBvW2ArY5UTZv/RbPrGpox47lXL7n+7y/90oOt6b6zLTqYBSBMJnHpTf5C0XLrn1FLhxEtHcZuz4hBRNQVBqWIiIjoQvZMqf4uZEpFhwAiWGfzbW43Ija8Z/c6RH3N54bvBTP78L0atf8FpfzVqSb7zHuKbs9kcTGZRAyx3lpLqtJ2PCKinpJKbEEp1pQiIiIiXJApFdn9wJJELEKMLRDFIXzkyxiU8iEJjkwp/xu+56/sQ+4GqxS9Oo6kvcnpeEREPSUVWz+amSlFREREgiCgrgeZUtbtrUEp+/5EvohBKR8SH8VMKU+zZzb1tJ6UnaSjyel4REQ9xeF7REREZKfWm6A3WSc/iXNxCJ69MDozpciXMSjlQ+zD99p0JmgNJi+3Jjicss28d00vg1JSR1CKmVJE1Dv2oJSZs+8REREFPXuWU7RcCrlM4tK+/ZgpRX6AQSkfEhEqRWSotWi2PxY79zeCIKCy2VZTqrfD9zqaAZyvUUVE1FPMlCIi6r5jx47h0UcfRUZGBm6++WbMnz8fTU3WLwsPHz6M+++/H2lpaZg0aRI2bdrktO/WrVuRlZWF1NRU5OTkoKyszLHObDZj1apVGD9+PNLS0jB37lzU1dV5tG9EwIUz77k2dA84P9yvniNxyIcxKOVjBnAIn8e0dBjRpjNBBPfVlDrTqoPJzOwGIuo5FjonIuoenU6Hxx57DGlpafjiiy/w8ccfo6WlBb/+9a/R2tqKOXPmYMaMGSgtLUVRURFWrFiBI0eOAABKSkqwbNkyrFy5EqWlpZg+fTrmzp2Ljg5r1ntxcTH27t2LLVu2YM+ePZDL5Vi0aJE3u0tBql5tzXLqyUzh9n3qmSlFPoxBKR9jH8J3rpXFzvuafajdgKhQl1NhLyY2qCGXimG2CDjDc0dEvSBhoXMiom6prq7GiBEjUFBQgJCQEKhUKsyaNQulpaX49NNPoVQqkZeXB6lUinHjxmHatGnYsGEDAGDTpk2YMmUK0tPTIZPJkJ+fD5VKhe3btzvWz549GwkJCYiIiMDChQuxe/duVFVVebPLFITqbJlSrhY5v3CfOtaUIh/GoJSPuUppzdg5y8BGn3MM3etlPSkAEF1wHNaVIqLe4PA9IqLuGTp0KN5++21IJOe/XNy5cyduuOEGlJeXIzk52Wn7xMREHDt2DABQUVFxyfVqtRo1NTVO6+Pi4hAdHY3jx4/3YY+IOrNnOfUoUyqSmVLk+6TebgA5uzpaDgA408LARl9zFDnv5dA9u2tUChyv09hm4It1yzGJKPgwKEVE5DpBELB69Wp89tlnWL9+Pd577z0oFM7XeHK5HO3t1i8ltVrtJddrtVoAQFhYWKf19nWuEIl6tr2r+wW6YH1e7FlO8VGhXfb9wudFEJyXx9tG4aj1JnQYzQgL6d3oEH9yuecl2F5DF+vp31JfPW8MSvmYq5kp5TGVTe7LlAKAIfZMqWYWOyeinjsflGJ9OiKi7tBoNPjVr36Fo0ePYv369Rg+fDgUCgXUarXTdjqdDuHh4QAAhUIBnU7Xab1KpXIEq+z1pbra3xWxsZEu79Ob/QJdsD0vDe1GAEDy1SrExXXue3R0OIBGKBTnh/fJ5TIoleEYcpUKkXIp1DoTDFIJBnexf6C63PPS1fMYjHzlb4lBKR9zlfJ8ppQgCBAFexi3D1U2Wy80hsS4KVPKdpxTHL5HRL3AQudERN13+vRpzJ49GwMHDsTmzZsRExMDAEhOTsbevXudtq2oqEBSUhIAICkpCeXl5Z3WT5w4EdHR0YiPj3ca4ldfX4+WlpZOQ/66o7FR7ZSpcSUikfVm0dX9Al2wPi9nbF94hwkWNDSoO61vbbVm73V06B3Pi05nREuLFg0NasRHhEKtM+H7yiYog6h4z5Wel2DW078l+37uFkQvS/8wMEoOEYAOowVNtqg4uZ/RbMHZFvvwPfdkSp2vKcVMKSLqOQ7fIyLqntbWVjzyyCMYPXo03nnnHUdACgCysrLQ0NCAdevWwWg0Yt++fdi2bRtmzpwJAMjNzcW2bduwb98+GI1GrFu3Do2NjcjKygIA5OTkoLi4GFVVVdBoNFi+fDkyMjIwePBgl9spCK7/9HS/QP8JtudFrTNBozcDsBYtv9Lz0tXrzj67+7k2vdf7463XS2//HgPxpzfvTe7GTCkfEyIVIz4yFDVqPc60dCA23PWCdnRlZ1t0MAtAmEzSo6KBXRlsq03VqjOhpd0IZZjMLcclouDCoBQRUfd8+OGHqK6uxieffIIdO3Y4rSsrK8O7776LoqIirFmzBjExMVi0aBHGjh0LABg3bhyWLFmCpUuXora2FomJiVi7di2USiUAoKCgACaTCXl5edBqtcjMzMTq1as93EMKdjVqaz2paLm0x/Wg7HWl7McKFt80mnGqXYpIoxmKXs60Tn2LQSkfdLVSjhq1HmdbdRh1VbS3mxOQTjnqSSncNkRSIZNggC2gWNncDmUYzx0RuU4qtiYxmxmUIiK6rEcffRSPPvroJdenpKRg48aNl1yfnZ2N7OzsLtfJZDIUFhaisLCw1+0k6qnaNluR88jQK2x5aQNs+9a2BU/N4n98U4M3vjUBkOObg2eRNbyfI4GAfA+H7/mgq2zFzjkDX9850WgNSg1xU5FzO3tdqUrWlSKiHmJNKSIiIgKAGrU1kDQgSt7jY9j3DZZMqa/PtKBo1w8AALnYAosA7D3RBJOZE8j4KmZK+aCro+3FzoMnmu1pJxqthe+Gxro5KKUKQ0lliyMTi4jIVRy+R0RERABQq+59ppR939ogCUr9eX8VLAIwpr8Y8WINPm+KhsZgxpFqNeK83Tgv0Ov1OHLkkNMykQiYNOkW7zSoCwxK+aCrmSnV5+yZUsPiXJ/W93Icxc6bee6IqGfsQSmzIICzsBIREQWvGtvwvQG9Gb4XdT4oZREEiAP4uuJ0cwe+PNkMEYBpQ6T4ugrIvEaJ/5Q34ptzbbjV/RPH+bwjRw7hjx/vQfw1SY5ltZXlUCrDkZR0oxdbdh6DUj5okG28a2VzB29I+oDJIjgymYbG9c3wPWZKEVFP2YNSgPX9SibhZwAREVEwsg+5sweWeqJfeAjEIsBoFtDUbkRcAE+ktelQNQBg/LUx6K84PzKmpLIFWoMZ9cbgnIgq/pokDB4xytvNuCTWlPJB16gUEAFo05nQ3GH0dnMCzpmWDhjNAuRSMRJ6MT67K/YaVWdbdRy3TEQ9IrkoKEVERETByV6cvDfD96QSsSMQFcjFzs0WATu+rwMA3J820LFcJBI5SrbUGAI3IOfPGJTyQXKZBAm2ulInG5lx424nGqxR82tjw9yevto/IgQKmRhmi8CaYETUIyKRyBGYYlCKiIgoOJktAmo1BgC9K3R+4f7n2gK3rtS359rQ0mFEZKgUmYOVTuvsJVvqjDLoTLy28jUMSvmoIY5Z3BiUcrcfG+1D99xbTwqw3kxeo7JG4k/y3BFRDzmKnXMGPiIioqBUr9HDbBEgFYt6PeQuwTb871wAZ0rt/rERADD+WhWkEucwR1y4DFFyKSwQ4WgzR7P4GgalfJR9GNjJJhbMdrcTDbYi526eec8usZ812FVRr+2T4xNR4OMMfERERMGtyjbp1cBoudPQ/p6wT6RVFcATadmDUhOHxXZaJxKJMNhWt/kYg1I+h0EpH3WtLSjFgtnuV9GgAdA3mVIAkGQLSv1Qr+mT4xNR4DsflOKFExERUTCqspUCGWQLKPXGIEdQKjAzpaqaO3CqqQMSsQjjhsR0uc1VtvI4x1p4beVrGJTyUdfasnhOsaaUW7UbzKi0ZZ+N6B/RJ48x3HbcH+oYlCKinmGmFBERUXA7a8tqulrZ+4mZ7Mc4G6CZUvsqmwEAowZGIVIu7XKbhKhQiCCgUWed+Ip8B4NSPuoaW6ZUjVqPdoPZy60JHOX1GggA4sJDENtH06HaM6Wq2/RQ60x98hhEFNikEtaUIiIiCmb2rKar3ZApZT9GTZseBlPgZQrttwWlMq9RXXIbmUQMpdTktD35BgalfJRSIYNKIQPAIXzudLzOWudpeB9lSQFAlFzmKCZY3sBsKSJynVRs/Xg2M1OKiIgoKNmzedwxfC8mTIYwmQQCgOoAK3Zutgg4WNUKALjpoln3LhZrD0qdbunjVpErGJTyYcNsGTflrE3kNsfr1ACA4fF9F5QCgOR+9iF8LHZORK7j8D0iIqLgJQiCIyjljuF7IpEIV9mOE2hD147XaaDWmxAeIsF1AyIvu22szAgAKD3dwi/+fAiDUj5suC2wcZyBDbfxRKYUACT3D7c9HgOKROQ6BqWIiIiCV2O7ER1GC8Qi6+x77hCoxc5LbVlPYwYpHddPlxIlMUMuAdp0Jt6n+RAGpXzY8HgGNtzJaLbgxwZ7UKpvZt6zswe9vq9V9+njEFFgknD2PSIioqBlL0g+IDIUMol7btkDtdi5vT7UlYbuAYBYBCQrrc9nCetK+QwGpXzYiP7W9MPyeg3TC92gokELk0VAZKgUA6Pc843DpdyYEAUAONHQDo2exc6JyDUyW6Fzg4nv/URERMGmyjF0r/f1pOyudmRKBU5QSmc049BZaz2pjMsUOb/QdSprCIR1pXwHg1I+bLBKAblUjA6jJaDePLzlyNk2AMCNCZEQiS6f2tlbseEhGBgthwDgaA2zpYjINQqZBACgM3H2VSIiomBzqslW5FzlvqDUYNuxTjUGziRah8+2wWAW0D8iBENiuvdcjVCKbPu2QmfkdZYvYFDKh0nEIiTZip3/4IND+CyCgE++r8VvPjmOxuHZOFjVitYOo7ebdUmHq61BqVFXRXnk8VISrJlu39gel4iou+xBqQ4jh+8REREFm4p6a8kR+72gOwyLsx6ruk0fMCM59p+2DsHLuEbV7aSD/goR4iNDYTQLOHyW92m+gEEpH5dsq010rNa3glJnWjrwv+vL8ML249h2tBZ61bX4+kwrNh8+h2+q2yAIvjfk5LAttXPUwGiPPF6KbQjft+eYKUVErpHLrB/P/AaPiIgo+NhnX0+Mc19QSqmQoX9ECAA46uz6u5LKFgBAxjXKbu8jEomQYas/ZQ9qkXcxKOXjro+3Ztt8e853orgVDVo8tvEwjtdpEBEqwaOZgxB98jMMjAqFRQD2VbZgX2WLTwWmatp0qNMYIBEBNyRcfqpQd7lxoD0o5ZtBOiLyXeczpRiUIiIiCiatHUbUaQwAzmc3uUuiLfOqIgCCUs3tBseEYBmDu1dPyu4mWxBrvy2oRd7FoJSPS73amtXzbY0aepP3h3E0ag345ZZv0Kg1IDEuHJvyx6DglmsRXnsY917fH+OGWN8Qvj2nxiEfSoe0p2Ym949w3Oz1teR+4QiVitGqM+FkU+CM3SaivqewZUpx+B4REVFwsQeMBkaFIiJU6tZjJ8ZZR+GU1/t/UKrUVqg8MS4cseEhLu17ky2IdbxOg5Z23y0/EywYlPJxg5RyxIaHwGgWcLTGu0Eek9mCBdu+Q53GgGtUCrz5wEjERYQ61otEItyYEOkITB2oasXZFp23muukzDZ0b+RAz9STAgCZRIxRtsdjFJ6IXCG3Bc9NFgFGMwNTREREwcI+tC6xX4Tbj53YL8zpMfzZ/h4M3bOLCw/BsLgwCAAOVLW4s1nUA+4NvZLbiUQipF0VjX/9UI+yM60YfbXSa235c2kVDp1tQ3iIBL+bcQOiFbIut7sxIRLN7QYcq9Pis4oG5IxM8HBLnQmCgH2nrOOFb3IxtbO3xg5RYf/pFpRUNuPB0Vd59LHJ2YzcB3C2puGS6+NUKrz37jrPNYjoMmRiESQiEcyCAJ3RApmE3yEREREFA3sWU2JcmNuPnXRBppQgCH0+I3lfEQQBJZXni5z3RMZgFX5saMdXp5pwx/B+7mweuYhBKT+QdrU1KHXojPcypcrrNXj7q9MAgOfvSMSQmMu/SY4bokKdxoCmdiP2nmyCNysqnW7uwNlWHaRiEW6yFbXzlMxrVABO4mBVC4xm3lh6U11DM2Y89+ol1//9pV96sDVElycSiaCQiaExmNFhNCNSzo9rIiKiYFDRh5lS18QoIBWLoDWYca5Nj4HRcrc/hidUtehQo9ZDJhFh9NU9m8Tq5qExeP/rs/jiRBMsggCxnwboAgHvkP2A/Q/tcHUrTF4YxmEyW/CbHT/AZBFw67BY3D2i/xX3kUrEuC0xFiIRcKqpA/q4ZA+0tGtf2bKkUq+ORliIZ+pJ2SX2C0dMmAwdRguOVPtOjS0i8n32IXwdPlBPkIiIiPqezmh2FO8e3t/9QSmZROyY0c+XJtJylX0UzMiBUT2uFzz66miEh0jQ1G7E9z42032wYVDKDwyNC3MENg5WtXr88dftr8LxOg2i5VIsyErqdppnbHgI0q6y1lTSDJuMpnZDXzbzkr482QQAGD/Es0P3AEAsEjlSSr88ySlHiaj77MXOdZyBj4iIKCgcrVHDaBYQFx6CQcq+yWJKsyU8fH3G8/eV7vJ5hbUkx/ghMT0+hkwixljb/eGeHxvd0i7qGQal/IBYJMLEYbEAzv8BekpFvRbv7LMO2yuclIg4F2c2SL0qGjFhMgiyMLz074q+aOJlafQmxxvu+Gt7/qbVG/Zz968f6iEI3hzISET+xP7NXweDUkREREHha1sCwuiro/us3pMjKOWFZAd3aG434GtbcfJJyXG9OtaEodb7w2AJSpktAmra9DirD0Gb3ncy8RmU8hO3JVr/4P77YyMsHgpsmCwCXtx53DFs764RrheAk4hFuHVYLCBY8K8fGvCv4/V90NJL+095A/QmC4bEKDA01v3FArvjlqExUMjEqG7V4dtzaq+0gYj8j9yWKdVh9J2LBiIiIuo7X9tmDB89qGd1kroj7SrrsU82tXttJEtv/LeiEWbBOrzxaqWiV8eacG0sJCLgh3otTjW1u6mFvqmquQObDp3DtqO1+LY9HNsqdN5ukgODUn7ipsFKhIdIUK8x4LsazwQ2/lJahe9rNYiSS7HgjsQeR+vjIkIQVlUCAPjtvyvQ7ME3v+3f1QIA7r0+3muzS8hlEke21KceDsoRkf+yZ0px+B4REVHgM5ot+MZWgzath8W7u0MZJsMw28x+h/xwCN9/yq0jhyYl9S5LCrA+F2NtQwA/sd03BqIqfQh2HKuHWm9CqFSM/jIDbhsc6u1mOTAo5SdCpGLH8LPt39X1+eOdaNRi7VeVAIBnbhuGuIjevWjDqkowLC4MzR1GvPSfH93RxCs616Zz1OC657orF2fvS3fZisN/eqwOBhYtJqJuOD98j+8ZREREge6bc23QmyxQKWS49goznffW6KuVAIDS0y19+jjuVtOmQ0mltU7v5F4O3bO793rrfdon39d5bESSJx2sN+O7duvraUT/CDw4eiDSIrS4KtKzE4BdDoNSfiQ7ZQAA4J9Ha6HRm/rscYxmC5Z+chxGs4Cbr41x/KH2hkgwY8ndwyERAbuO1+M/P/R9xtCWw+cAAOmDojEgyrvTnY4dokK/iBA0tRux41jfBxWJyP8pHMP3mClFREQU6D49Zr0/Gn+tqs9HeNxsS3b4T3kDTBb/CcRs/aYGFsF6f3eNmwJ3E4fFIjxEgnNtepT5YebY5Xx1qgnrjpkAiDCifwQmDFUhROJ7ISDfaxFdUsZgJYbEKNBuNOOfR/suvfC13Scdw/Z+5cJse1dyXXwkHskYBABYvqsc1a19N461tcOITWXVAICfjL6qzx6nu2QSsaMd6w+cCcgovC8yWwTUa/SoqNfCJFfCaGbGCfkPe6aU1mDmJAlEREQBzGi2OGrv3nNdfJ8/XuY1SqgUMjS1G7G/0j9mCDeZLfjomxoAQO6ogW47rlwmwZ222snrD5xx23G97Uh1G+Z/9B3MAjBAZsDNQ/s+2NlTDEr5EZFIhPtTrYGNv359Fvo+GAa2/btavP/1WQDAkruHIz7SvWNNfzb2GlwXH4FWnQnP/+O7PquVsvHrs2g3mpHULxy32Oo5edt9IxMQHiLBycZ2fFbu2VkUg4laZ8KHR87hF1u+weQ/fIl73yrBg38+iLrUfKzbfwYflFXjy5NNqFXreaNPPi1aLoVYBOhNFrTp+i47loiIiLzry5PNaNWZEBsegjGDlX3+eFKJ2BGI+eR7/xjFsf27OjRqDYgND8Ftie69v3tozCCIRcAXJ5rwQ53Grcf2hop6LZ768FvoTBZcpxIhJVwLsY8GpAAGpfzO1Bvi0S8iBNWtOqw/UOXWYx843YJlO38AAPzvTYMcxbndKUQqxm+nXw+lQoZjdRr86uPvYXJz9srp5g78xRblfjRzsM/8AUaESvGgLVvq95/92KdDMINRvUaPV/97AlP/WIIVu8qx71QztAYzJCJApZBBZNIDANp0Jhyt0eAf39bi79/U4od6Dcx+lLZMwUMqEaOfrZ5fjVrv5dYQERFRX9l6xFp25K4R/SARe+bexV5z9/PyBjRqfXsWvg6jGcV7TwEAHhpzNaRuHoI2WKXA5GRrkM5eV9lfnWnpwBNbvoFab0JKQhTmXC+Dh15SPcaglJ8JC5HglxOHAgD+VFLltqkrSyqb8dTWb2GyCJiUFIeCW4a45bhdGRAlx++yr0eoVIwvTjTh1/885rasL5NFwIs7jkNvsuCmwUq3FcBzl/yMQbhaKUedxoBX/3uCmTpuUNXcgaJPf0D22/ux/sAZtBvNGBobhiduuRYbHh6NL566BbsKxiHhQDEeHnMVsobHITEuDBIR0KA14L8VTfigrBrtA9PRbmDtHvItCVHWoNS5NgaliIiIAtGB0y3Ye7IJEhGQMzLBY497/YBIXD8gEjqTBX/80rcDMetKTqNBa8DAaDkeSHXf0L0L/TRzMCQi4POKRscMf/7mTEsHCjYdQaPWgMS4cKzOuQGhEh+PSAGQersBntbY2IjFixdj//79kEgkmD59Op5//nlIpf7zVNw5oh/+/m0NDpxuwVMffos//U8qVGEhPTqWIAjYdKgar3x+AiaLgPHXqvCbe4b3eXbRqKuisWra9XjuH0fxWXkD5m06gqIpI3pVkNwiCPi/ncdxuLoNYTIJFt+V7DNZUnZymQQL7kjCE5u/wd+/qcFglQIP3zTI280CAMzIfQBnay79BhynUuG9d9d5rkFX8O25Nmw4cBb/Ka+HPdEp9aooPJIxCDdfG9PlmGm5TIIhMWEYEhOGsUPMOF6nwdFzGmgNZmDobZi2tgQPpA7ErLSroAyTebhH5G2++PkwICoUOGudbYaIiDzPFz8bgpVer8dXX32LlhYtLvxed+TIVISG+s709q4wmi145XPrzOQ5owa6rXh3d4hEIjx161DM+eAw/v7NOeSMSsDw/hEee/zu2nuiCX8qsY4QenLitQiR9k1eTWK/cPxvxiD8qaQKq/5VjuviI5Dg5cmyXHGsVo1n/34UdRoDBinleG3mjYiS+8f9TNC9mz711FOIj4/Hnj170NDQgLlz52LdunV47LHHvN20bhOJRCiaMgKPbijD2VYdHtt4GKumXY/EfuEuHae8XoNXPj/hmAo0a3g/LL17eJ/9oV/s5qExeG1mCgo/Oooj1W34yXsHMWf8EMwcmeByG1o6jFi+qxyflTdAIgJ+c89wn30TybxGhaduHYrV/z2BNbtPol5jwC8mXguZh2dCMJgsaNAaYDBZYIGAs1oxJv/iZcgkIoRIxZ0Cen9/6ZcebV9XNHoT/lvRiE2HqnG0Ru1YPmFoDB65aRBSr47u9rEUMglSr4pGSkIUyuu1+PJoBdoQg7f3ncb6A2cw7cYBuOe6/rgxIdJniwKSe/ni50N8ZChEANR6MzR6EyJCg+5jm4hcJAgCvqtR44d6LZTRLbj9mmgA/BzrKV/8bAhWR44cwp92fgVVwrWOZbWV5ZgD4KabMr3XsB4yWwQs+eQ4fqjXIiJUgtnjBnu8DWlXR+P2pDh8Vt6AZ7Z+i3d+kur1Wcsv9NWpJiz85/cQYM0isw+x6yuPjb0Ge35sQkWDFj//2xH8ITcFVysVffqYvWUyW/C3Q9X4w56TMJgFXBsbhjdyUxAX4T+B2qC6uq2srMT+/fuxe/duKBQKDBo0CPPmzcNLL73kdx8sMWEheDUnBQWbj+B0cwceXv81pt4Qj6k3xOOGhChIuxg4KggCzrbqUHq6BbuO1zuCUSESEQpuuRY/GX2Vx2++0wcp8V7eaLzwyTF8e06N33/2I9aVnMa918djwtAYjIiPQHhI1y9TQRDwY2M7/nW8HpsPVaNVZ4JELMJv7h6O25J8a9jexfLGXA2N3oS3953G+1+fxX8rGvA/6VdjcnKcW95A9CYL6jV61KqtP3X2fzUGx+/NHUbnnUY9jI22GQtFsA4VDQ+RICJUiogQCToS0vDfigYMiJQjPioU0XJpn79e2g1mlNdr8F2tBl+ebMKB0y2OaWtlEhHuHNEfeelXIalfz7/VkYhFGBEfge/fW4fCVWuxrqQKx+o02HSoGpsOVSMhKhQTh8Vi5MAo3JgQhYSoUAapApCvfj6ESMSIiwhBvcaA0tMtuC0xlq8/IurSmZYO7Pi+Dtu/q0VVy/nsynV5qbhhQJQXW+a/fPWzIZBZBAFtHSY0aA1o1Boc/za2G3DmnBH1MTeiXR6LUKkYYTIJRAYZTrVZMKhNh9jwEI9/ydsTgiDgWJ01OaDsTCukYhFWTL2uxyNfeuvXWUk41diOk03teGRDGX5561DckdzPY4kKXalq7sCGg2ew9cg5WAQgfVA0CicN6/PHDZGK8WrOjXj8b4dxpkWH/3nvIH6aORjZKQO8dn4upU6tx2flDdh0qBqVzR0AgFuGxmDpPcP9JkPKLqiCUuXl5VAqlYiPPz/N5rBhw1BdXY22tjZERfnXB/aQ2DCsf3g0Xtz5A7440YS/f1ODv39TgxCJCFdFKxAWIoFCJobJIqBBa0CDxgDdBbWbxCLY6kdd69UI8CCVAmsfTMW2b2vw9leVqNMYsP7AGceUnDFhMlytVEAuFUMqEcEiAK0dRlS1dECjP18D6NqYMLx473CMiI/0Vldc8vjNQzAiPgLLd5Wjuk2P3332I3732Y9IiArF1UoFYsNDEBMmQ4hEDLFYBKlIBLEYMJkF6E0Wx4/OZIbeZEFTuxHN7QY0tRutw9G6IVQqRqhUDIlIhNa2VohCwmEWBAiwTkOvNZhRp7EVPhw2CYUffefYVy4Vo39kKKLkUkSGSh3/hkjFkEnEkIlF1n8lIkjEIggCIACOOlr2tGujxQKd0YIOoxk6owUagwl1agPqNNbg2cVVt4bEKHD3df1x38gExLjxw0EEAZOT+2FSUhz2V7Zg29Ea7P6xEefa9PigrBof2AJ2CpkYAyLlGBBl7Xt4iBRhIRKEhUgQIhFDBEAkAsQikeNfscia4SiC/TkAAMHxHAjo/Nxc+PvFywSnZdbfskZehWvCg+ot3a18+fPhpsFKfPJdHSoa2tFhtGBAVCikYhEkttdYa4cUEan34PMqA8qFaq+181IiIuTQaAJ3+KGv9a+7pQq7W9EwIiIUGo3+Cse98tG6067utqk723WnZqNIBISFhUKrvXzNNnc+p67UkmxpbUFH+6VrhwoAOkwCGnUCKtvMOKc9f40XKgGSlBJkDI1Fci++uAl23vhsMJktePvLkzhV2wCj0QgxrNcRYhGQEB+PEJkUEpH12koiFjmuO4Dz1x7A+esO6/fU1uX2be3XFIDzNYljGTpfr11u2YWvavu1yYXHQxfLjGYBGr0JbToTNHoTWnVGNGqt17Gmy05AEwK0qy/4PQJlh4z47aH9AKwz18ZFhCA2LASx4SEID5FALpNALhVDLpM4PWf25+j8c2i/Zrvwuuv882O56Dm4+DmxdHGNduF2WoMZtWo9jtVqcLbV+rkhl4qx5O7hGDsk5jJ97ltKhQyv5abgF5u/wcmmdiz55Dhe+k8FbhgQiauiFYgIlSIyVOIIUl3utWURbH0XBMfz5XhuLniOLlwmQIBZAJrbDTjXpseZlg6cuSCwnn3jAMyfnOixgGP/yFAU3z8Si7cfw6GzbfjDF6fw5t5TGBYXjsGqMMSEyaC036OJrF9wW6/3ra+fi183l/q76s7f1IWvo3aDGS0dRjS1G3GyqR3Vreefo2i5FHMnDMF9IxN8rnxNdwTVHYxWq4VC4Rx8sf/e3t7e7Q8Wsbj7FyiA/aInDKEy8SX3Cw8Lg7gHf2exESF4deaNOHK2DX//5hxKKlug0ZtRrzUAWudtpRIxVCESJPePwLghKkxOisNAZe/TM93RvxCxCDNTE5CdEo8vTzXjvxUNKKtqQ2O7EQazgBONXV2UiRATHoK0gVG4+/r+mJgY22WGWG/15fm7PTkO465V4eOjdfjXD/X4vkYDtd6M72t7PhWpSCRChC041D8iBP0jQtEvQoZ+kaHoFx6K+MgQ9IsIRb+IEETZsp1EIuCBhx7C3U8sh8kswGCyBofaDRZo9SZojGZUHD2Eodenoq5Nh+YO68yBTe3WN8a+Eh4qRVy4DEn9IpAyMAoThsbgmhjXA6iunUMRxg1VYdxQFXRGM0oqW3DoTCuO1mpQUa+F2SKgXmuw/o35kA++Oo5/F97p8nsTWbnj88HVzwapVILIyEho6s+i6RIZoQCgAHBTrBTfaeRo1ZnQqrt45s4IXDP9l9h60gScPNX9BhBRABEjXCZAd+Yo2r/bjeaKEpwz6lAaFob7dn2OgQOv6vaR+NlwnjfuHU7Ut+ODw7X2PZ1X1td17yB+TC6TAADCpEBUiAhRMiAqVIRIKdDW0oizbXqERihhsIhgFETQ6gwQy+TQCVKYBcAsALVqA2rVvnWddjGlXIobY8WYNkSCmI5KHDrU80LjJ05UoKW6FSLh/OusrfY0ToRrILM9n93x3CgBn58JwRc1FrQZgKM1Ghyt6fk9SW9EhUqRpBThjqslSFS24btvv3b5GL19XuYOF3BAFYovzllQpRFQ3aZHtQ9NPBMZKsWgCBHG9BdjTH8xFEI1jhzu/OXkiRMVaKttQl3I+eyptrrTkEiSexTX6AsiIYim/9q1axcWLVqEkpISx7Ljx49j+vTpOHDgACIj/SPDhoiI3IufD0REdDF+NhAR9T3fH3TrRklJSWhpaUFDw/kZxn788UcMGDCAHypEREGMnw9ERHQxfjYQEfW9oApKDRkyBOnp6Vi+fDk0Gg2qqqrwxhtvIDc319tNIyIiL+LnAxERXYyfDUREfS+ohu8BQENDA1588UWUlJRALBZjxowZKCwshETS/fG2REQUePj5QEREF+NnAxFR3wq6oBQREREREREREXlfUA3fIyIiIiIiIiIi38CgFBEREREREREReRyDUkRERERERERE5HEMShERERERERERkccxKOVmTU1NyMrKQklJySW3+e9//4tp06YhNTUV99xzDz777DMPtrB3utO/xx57DCkpKUhLS3P87N6924OtdN2xY8fw6KOPIiMjAzfffDPmz5+PpqamLrf1x/PnSv/88fwBwFdffYX7778fo0ePxs0334xly5ZBp9N1ua0/nkNX+uev5zAQNTY2Yt68eRgzZgwyMzNRVFQEk8nU5bb++LoEXOvj+++/j7vuugtpaWm46667sGHDBg+31nWu9M/uhx9+wKhRoy77WekrXOnf/v37cf/99yMtLQ233nor3nrrLQ+31nWu9O/Pf/4zJk2ahNGjR2PatGnYuXOnh1vbc4F+/RlsunM+g40r17LBxJXrw2BkNpvx8MMPY8GCBd5uik/Yvn07rr/+eqd7hOeee87bzQIEcpsDBw4Id9xxh5CcnCzs27evy21OnjwppKSkCLt27RKMRqPwz3/+Uxg5cqRQU1Pj4da6rjv9EwRByMzMFEpKSjzYst7p6OgQbr75ZuHVV18V9Hq90NTUJMyePVt4/PHHO23rj+fPlf4Jgv+dP0EQhMbGRiElJUXYsmWLYDabhdraWmHq1KnCq6++2mlbfzyHrvRPEPzzHAaqhx56SHj22WeF9vZ24fTp08KUKVOEtWvXdtrOH1+Xdt3t465du4QxY8YIZWVlgsViEb7++mthzJgxwo4dO7zQ6u7rbv/s2tvbhalTp17xs9JXdLd/FRUVwqhRo4QPP/xQsFgswvfffy9kZGQIn3zyiRda3X3d7d/nn38ujBs3Tvjxxx8FQRCEHTt2CCNGjBCqqqo83WSXBfr1Z7Dp7vV2MHH1WjZYuHp9GIxWr14tjBgxQnj++ee93RSfsHLlSmHBggXebkYnzJRyk61bt6KwsBBPP/30FbcbM2YM7rjjDkilUtx777246aab8MEHH3iopT3T3f5VVVWhtbUV119/vYda1nvV1dUYMWIECgoKEBISApVKhVmzZqG0tLTTtv54/lzpnz+ePwCIiYnBl19+iZycHIhEIrS0tECv1yMmJqbTtv54Dl3pn7+ew0BUWVmJ/fv347nnnoNCocCgQYMwb968LrOD/PF1CbjWx9raWsyePRupqakQiURIS0tDZmZml+9FvsKV/tn95je/wR133OHBVvacK/3761//ismTJ+O+++6DSCTCiBEjsHHjRqSnp3uh5d3jSv9OnDgBQRAcPxKJBDKZDFKp1Ast775Av/4MNt09n8HGlWvZYOLK9WEw+uqrr/Dpp5/izjvv9HZTfMY333yDG2+80dvN6IRBKTeZMGECdu3ahXvvvfey21VUVCA5OdlpWWJiIo4dO9aXzeu17vbvm2++QXh4OJ5++mmMHTsWU6dOxebNmz3Uyp4ZOnQo3n77bUgkEseynTt34oYbbui0rT+eP1f654/nzy4iIgIAcOutt2LatGno168fcnJyOm3nj+cQ6H7//PkcBpry8nIolUrEx8c7lg0bNgzV1dVoa2tz2tZfX5eu9DEvLw9z5sxx/N7Y2IjS0lKfvDiyc6V/APD3v/8dlZWVeOKJJzzZzB5zpX9HjhzB1VdfjWeeeQaZmZm45557sH//fvTr18/Tze42V/o3ZcoUxMXF4d5778UNN9yAX/7yl1i5ciUGDBjg6Wa7JNCvP4NNd89nsHHlWjbYdPf6MNg0NjZi4cKFePnll6FQKLzdHJ9gsVhw9OhRfP7557j99tsxceJELF68GK2trd5uGoNS7tKvX79ufZum1Wo7/WHI5XK0t7f3VdPcorv9MxgMSE1NxdNPP409e/ZgwYIFKCoqwieffOKBVvaeIAh45ZVX8Nlnn2HhwoWd1vvr+bO7Uv/8/fwBwKeffordu3dDLBbjySef7LTe38/hlfoXCOcwUHT1WrP/fvHrzV9fl6708UL19fWYPXs2brzxRkydOrVP29gbrvTvxx9/xCuvvIKXX37Z6cbJl7nSv9bWVrz33nuYPn069u7dixdffBGrVq3Cjh07PNZeV7nSP6PRiBEjRmDTpk04dOgQXnzxRSxcuBDHjx/3WHt7ItCvP4NNd89nMLvStWywutL1YTCxWCx47rnn8Oijj2LEiBHebo7PaGpqwvXXX4+77roL27dvx8aNG3Hq1CmfqCnFoJSHKRSKTsXndDodwsPDvdQi95oxYwbefvttXH/99ZDJZJgwYQJmzJjhFzfEGo0GTz75JLZt24b169dj+PDhnbbx5/PXnf758/mzk8vliI+Px3PPPYc9e/Z0iv778zkErty/QDiHgSIsLAwdHR1Oy+y/X/x689fXpSt9tDt06BByc3Nx7bXXori42KdvwLrbP71ej6effhq//vWvMXDgQI+2sTdcOX8hISGYPHkybrvtNkilUtx0003Izs726fcWV/q3bNkyJCUlYeTIkQgJCcHMmTORmpqKrVu3eqy9fclf32OILtSda9lgdaXrw2Dy1ltvISQkBA8//LC3m+JT4uLisGHDBuTm5kKhUGDgwIF47rnnsHv3bmg0Gq+2jUEpD0tOTkZ5ebnTsoqKCiQlJXmpRe61efPmTheoBoMBoaGhXmpR95w+fRozZ86ERqPB5s2bL/kh56/nr7v989fz9/XXX+Puu++GwWBwLDMYDJDJZJ2+GfbHc+hK//z1HAaipKQktLS0oKGhwbHsxx9/xIABAxAZGem0rT++LgHX+ghYX5/5+fl45JFH8PLLLyMkJMSTzXVZd/v3zTff4NSpU1i4cCHGjBmDMWPGAAB+/vOfY+nSpZ5udre5cv6GDRvm9B4EWGc1EgTBI23tCVf6V11d3al/UqkUMpnMI23ta/76HkNk191r2WDiyvVhMPnoo4+wf/9+x+fxxx9/jI8//tjx2Rysjh07ht/97ndOn9sGgwFisdjr12MMSnnY9OnTsX//fmzfvh0mkwnbt2/H/v37kZ2d7e2muYVGo8GyZcvw3XffwWKx4PPPP8fHH3+MWbNmebtpl9Ta2opHHnkEo0ePxjvvvHPZ4oD+eP5c6Z8/nj8AGD58OHQ6HV5++WUYDAacPXsWq1atQm5ubqc3WX88h670z1/PYSAaMmQI0tPTsXz5cmg0GlRVVeGNN95Abm5up2398XUJuNbHnTt3YunSpXjttdfw05/+1AutdV13+zdmzBgcOXIEBw4ccPwAwJtvvunTQSlXzt+DDz6If//73/joo48gCAJKS0uxbds2n36NutK/SZMmYf369Th69CgsFgt27NiBkpKSgKnt46/vMUSAa9eywcSV68NgsmPHDnz99deOz+OpU6di6tSpjs/mYKVUKrFhwwa8/fbbMJlMqK6uxksvvYT77rvP+68Xr837F8AunsI1NTVV+Oijjxy/7969W5g+fbqQmpoqTJkyRfj888+90cweu1z/LBaL8Ic//EG4/fbbhZEjRwpTpkzx+emi3333XSE5OVkYNWqUkJqa6vQjCP5//lzpnz+eP7vy8nLh0UcfFcaMGSPcfvvtwu9//3tBr9cLguD/51AQut8/fz6Hgai+vl74xS9+IWRkZAhjx44VVq5cKZhMJkEQAuN1KQjd7+PUqVOFESNGdHofWrx4sTebf0WunMML+ct07q707/PPPxdycnKEtLQ0YfLkycL777/vrWZ3W3f7ZzQahTVr1gi33367MHr0aOG+++4Tdu/e7c2muyzQrz+Djb+8h3jCla5lg9nlrg/J6vnnnxeef/55bzfDJ5SUlAizZs0S0tLShLFjxwrLli0TdDqdt5sliATBh/OuiYiIiIiIiIgoIHH4HhEREREREREReRyDUkRERERERERE5HEMShERERERERERkccxKEVERERERERERB7HoBQREREREREREXkcg1JERERERERERORxDEoREREREREREZHHMShFREREREREREQex6AUERERERERERF5HINSRERERERERETkcQxKERERERERERGRxzEoRUREREREREREHsegFBEREREREREReRyDUkRERERERERE5HEMShERERERERERkccxKEVERERERERERB7HoBQREREREREREXkcg1JERERERERERORxDEoREREREREREZHHMShFREREREREREQex6AUERERERERERF5HINSRERERERERETkcQxKERERERERERGRxzEoRUREREREREREHsegFBEREREREREReRyDUkRERERERERE5HEMShERERERERERkccxKEVERERERERERB7HoBQREREREREREXkcg1JERERERERERORxDEoREREREREREZHHMShFREREREREREQex6AUERERERERERF5HINSRERERH1MEARvN4GIiPoQ3+fdh89lcGFQishPlZSUYPjw4SgpKfF2U4iI6ALbt2/H7bffjpSUFLzwwguoqKjAT37ykz55rA8//BDDhw/HmTNn+uT4RETUmbve5xcsWIBJkyb1QQv9V3FxMd555x1vN4M8iEEpIiIiIjf6zW9+g/79++Ptt9/GT3/6U3zyyScoKyvzdrOIiMhN+D7fd1avXo2Ojg5vN4M8SOrtBhAREREFkpaWFtx8883IzMz0dlOIiKgP8H2eyH2YKUXkJkajEb/73e8wceJEjBw5Ej/72c/w97//3TGsYsGCBXjkkUewZMkSjBkzBvfddx9MJhOamprwm9/8BrfffjtuvPFGZGRkoKCgoNNQjI0bN+Kuu+7CyJEj8dBDD6G6urpTG6qrq/HMM88gIyMDo0aNwiOPPILvvvvOU08BEZHfO3r0KB555BGkp6cjLS0N+fn5OHz4sGP9jh07MH36dIwcORIzZsxAWVkZrr/+enz44YeOYdUA8Ic//AHDhw/HggUL8PrrrwMAhg8fjtdee82l9mzatAk5OTlITU3FyJEjkZ2dje3bt3fa7uuvv8aMGTOQkpKCadOmddpGrVZjxYoVuOOOO5CSkoKpU6di8+bNjvWLFy/G2LFjYTKZnPZ76aWXkJGRAYPBAAD44Ycf8Pjjj2P06NEYPXo0CgoKUFVV5VKfiIi8ydfe5wHggw8+wG233YaRI0d2ef1eWlqKn/3sZ7jppptw4403YtKkSXjttddgsVgc22zfvt3R7rFjx6KwsBB1dXVOx9m0aROmTJmCG2+8Ebfddhtee+01p/f9BQsW4Gc/+xn+9re/4Y477sDIkSPx4IMP4uTJk/jss88wbdo0jBo1Cvfffz++//57p2MfOHAADz30EEaNGoWMjAw8//zzaGpqcqz/8MMPcf311+Pw4cOYNWsWUlJScNttt2Ht2rWObezP7euvv+74PwU+BqWI3OSFF17An//8Zzz00EP4wx/+gLi4OCxevNhpmwMHDqCyshKvvfYaCgoKIJFI8Pjjj2Pv3r149tln8c4772DevHn48ssv8cILLzj2W79+PZYsWYJbbrkFb7zxBkaNGtXp2E1NTXjwwQdx9OhRLF68GC+//DIsFgvy8vLw448/euQ5ICLyZxqNBo899hhUKhXWrFmDV155BR0dHfjZz34GtVqNf//73/jlL3+JpKQkvP7667jzzjsxd+5cx03BDTfcgA8++AAAkJubiw8++AC/+MUvkJubC8B603H//fd3uz0bNmzACy+8gMmTJ+Ott97CSy+9BJlMhueee67TFxOLFy/G3XffjT/84Q9ITEzE008/jS+++AIAoNPp8D//8z/4xz/+gZ/+9Kd44403kJ6ejoULF+LNN98EAGRnZ6O5uRlfffWV45iCIGD79u24++67ERISgpMnT+LBBx9EY2MjVq5ciaKiIlRVVeEnP/kJGhsbe/7EExF5iK+9zwNATU0NXnvtNTz11FP4/e9/j9bWVvzv//6vI6Bz7Ngx5OfnQ6lU4pVXXkFxcTFGjx6N119/Hf/85z8BAAcPHkRhYSHuvPNOrF27Fr/61a+wb98+PPvss47Heeutt7B48WKMGzcOb775JvLy8rB27Vqnew4AOHToEP7yl79gwYIFWL58OSoqKjBnzhysWLECjz/+OFasWIFz586hsLDQsU9paSny8/Mhl8uxevVq/PrXv8b+/fvxv//7v9DpdI7tLBYLnnrqKdx777344x//iPT0dPzud7/Dnj17HM/fhc8tBQmBiHqtsrJSGD58uPDuu+86Lf/pT38qJCcnC1VVVcLzzz8vJCcnC6dOnXKsr6mpER5++GGhtLTUab9ly5YJN9xwgyAIgmCxWIRx48YJv/jFL5y2eeGFF4Tk5GRh3759giAIwu9//3shJSVFOHPmjGMbvV4vTJ48udO+RETUWVlZmZCcnCwcOHDAsayyslJYtWqVUF1dLdx3331CTk6O0z5vvPGGkJycLGzZssWxLDk5WVizZo3j9zVr1gjJyckut2fFihXCb3/7W6dl3377rZCcnCxs27ZNEARB2LJli5CcnCy89dZbTtvNmDFDmDVrliAIgrBhw4ZO/RIEQfj1r38tpKSkCM3NzYLFYhEmTZokLFiwwLG+tLTUab9nnnlGGDdunKBWqx3bNDc3C+np6cLKlStd7h8Rkaf52vu8/f6grKzMsayurk4YOXKk8PLLLwuCIAhbt24VHnvsMcFsNju2MZvNQnp6urB48WJBEAThrbfeElJTUwWdTufY5vPPPxdee+01wWKxCG1tbcKoUaOEF154wenx//a3vwnJycnCDz/84NSeiooKxzaLFy8WkpOThS+//NKx7J133hGSk5OF1tZWQRAEYdasWcLUqVMFk8nk2ObEiRPCddddJ6xfv14QhPOfV3/7298c2+j1eiElJUV48cUXHcsufm4p8DFTisgNSkpKIAgC7r77bqflU6dOdfpdLpdj8ODBjt/j4+Px3nvvYcyYMaiursZXX32F9evX4+uvv4bRaAQAnDhxAo2NjZg8ebLTse655x6n37/66itcd911iI+Ph8lkgslkglgsxsSJE/Hll1+6s7tERAEpKSkJMTExmDt3LpYsWYL//Oc/6NevH+bPnw+lUomjR492ei+ePn16n7VnwYIFeO6556BWq/HNN99g27Zt2LBhAwA4PiPsLv5MuOOOO3Do0CFotVrs378fV111FdLT0zu1Xa/X4/DhwxCJRJg+fTp27drlGKr38ccfY9CgQY799u3bh8zMTMjlcsfnTEREBMaMGcPPGSLyC772Pg8AAwcORGpqquP3fv36ITU11fG+OmPGDKxduxZGoxHl5eX417/+hddeew1ms9nxWXDTTTdBp9Nh2rRpeOWVV3Dw4EFMmDABTzzxBEQiEcrKytDR0YFJkyY53r9NJpNj5r+9e/c6Hj86OhrDhg1zag8ApzYqlUoAQFtbGzo6OnD48GHceuutEATBcexBgwZh2LBhTscGgLS0NMf/Q0JCEBMTg/b29t4/keS3WOicyA3s6bWxsbFOy+Pi4px+j42NhUgkclr2j3/8A7///e9x7tw5KJVKjBgxAnK53LG+tbUVABATE+O0n/0Dwq6lpQWVlZW44YYbumxjR0cHFAqFC70iIgou4eHh2LBhA4qLi7F9+3Zs3LgRCoUC06dPR0FBAYDO78Xx8fF91p7Tp0/jhRdewL59+yCVSjF06FBHjQ1BEJy2vfgzITY2FoIgQKPRoLW1tdPnEXD+M6qtrQ2A9cbnjTfewO7du3Hbbbdhx44d+J//+R/H9i0tLdi+fXuXNa0ufl6IiHyRr73PA53vFwDre/i5c+cAWIdgL1u2DB999BFMJhOuvvpqpKWlQSqVOj4L0tLS8Mc//hHr1q3DO++8gzfffBP9+vXD7Nmz8cgjj6ClpQUAMGfOnC7bcGHtqYiIiC63udR9RFtbGywWC9auXetUH8ouNDTU6fcL73MAQCwWd/pMo+DCoBSRG9g/rBobG5GQkOBYfqUaGwcOHMDzzz+Phx56CD/72c8wYMAAAMBvf/tbHDx4EACgUqm6PJb9w8UuMjISGRkZmD9/fpePFRIS0v0OEREFqaFDh+Kll16C2WzGkSNH8NFHH+H9999H//79IRaL0dDQ4LT9xe/F7mKxWDBnzhzIZDL87W9/w/XXXw+pVIqKigr84x//6LR9a2ur04V+Q0MDJBIJoqOjER0djcrKyk771NfXAzj/OXPNNdcgNTUVn3zyCWQyGZqbm50yBCIjIzF+/Hg8+uijnY4llfKSkoj8g6+8z9vZvxi4UH19vSM4VlRUhJ07d2L16tUYP348wsLCAADjxo1z2ueWW27BLbfcgo6ODuzbtw/vvfceli9fjtTUVERFRQEAfve732HIkCGdHq+rwFh3hYeHQyQSIT8/H1OmTOm0nl+K05Vw+B6RG6Snp0MikeDTTz91Wn7x7xcrKyuDxWLBk08+6QhImc1mR7quxWLBkCFDkJCQgB07djjt+9lnnzn9npGRgZMnT+Laa69FSkqK4+cf//gHNm3aBIlE0ttuEhEFtB07dmDs2LGor6+HRCJBWloali5diqioKDQ1NSEtLQ07d+50mu3o4vfirojFrl9uNTc34+TJk8jNzcXIkSMdQZ/du3cDgFMbADiKxNrX7dixA6NGjYJcLsdNN92Es2fPOr7ssPvHP/4BmUyGkSNHOpZNnz4du3fvxscff4zU1FSnm5eMjAxUVFTguuuuc3zG3HjjjVi3bh127drlch+JiDzNl97n7SorK52+ODh37hzKysqQmZkJwFrEPDMzE3fccYcjIPXtt9+iqanJ0c5Vq1YhNzcXgiBAoVDg9ttvx/PPP+843qhRoyCTyVBbW+t0nyCTyfDyyy93mvXbFREREbj++utx4sQJp2Pbi8WXlJS4dLzePJfkn/i1FpEbDBo0CDNnzsTvf/97GI1GjBgxArt27XJ8iF3qzdV+I/Diiy9i5syZaGtrw/r163Hs2DEAQHt7OyIiIlBYWIhnn30WixYtwt13341Dhw7h/fffdzpWfn4+PvroI+Tn5+OnP/0pVCoVtm/fjr/97W/41a9+1Ye9JyIKDKNHj4bFYkFBQQHmzJmD8PBwfPLJJ1Cr1bjzzjtx7733Ij8/H/PmzcNPfvITnD59Gq+++uoVj2v/hvrjjz/GqFGjMGjQoCvuExsbi6uuugobNmzAgAEDEBUVhS+++AJ//vOfAViHZF9o9erVMJvNSEhIwPvvv4+TJ0/iT3/6EwAgJycHf/3rX/HEE0/gySefxKBBg/Cf//wHW7ZswRNPPOFoHwBMmTIFK1aswD//+U8sXLjQ6THmzZuHBx98EI8//jh+8pOfIDQ0FB988AH+9a9/Yc2aNVfsExGRt/nS+7xdaGgo5s2bh6effhpmsxmvvvoqlEolHnnkEQDW+4VPPvkE77//PoYNG4Zjx46huLgYIpHI8Vkwbtw4/OlPf8KCBQswffp0GI1GvP3221AqlRg7diyUSiUee+wxvPrqq9BoNMjMzERtbS1effVViEQijBgxogfP5nnPPPMM5syZg2effRbTp0+H2WzGu+++i8OHD2Pu3LkuHSsqKgplZWUoLS3FmDFjOpU+ocDDMCSRmyxevBgPPvgg3n33XcybNw81NTWON2H7txoXy8zMxAsvvICysjLMnj0bK1aswMCBA/H6668DgONb7alTp+KVV17BoUOHMHfuXHz22Wd48cUXnY4VHx+PjRs34qqrrsLSpUvx85//HEeOHEFRURHy8/P7ruNERAGif//+ePvttxEZGYmFCxfi8ccfx9GjR/Haa69h7NixGDNmDN555x00NDSgoKAAGzdudHwTfTl33nknUlJSsGDBArzzzjvdbs8bb7yB+Ph4LFiwAE899RQOHTqE4uJiDB06FAcOHHDatqioCO+99x7mzZuH2tparF27FhkZGQCsQyf+8pe/YNKkSVizZg3mzp2LgwcPoqioCL/4xS+cjqNUKnHrrbdCLBbj3nvvdVo3YsQIbNiwASKRCPPnz8eTTz6J+vp6/OEPf8Cdd97Z7X4REXmLr73PA8Dw4cPxwAMPYOnSpZg/fz4GDx6Mv/71r47hewsWLMAdd9yB1atX4/HHH8emTZswd+5cPPDAAygrK4PZbMbEiRPxu9/9DuXl5XjiiSfwzDPPQKFQ4L333nMUJX/qqaewYMEC7Nq1C7Nnz8ZLL72E9PR0rF+/HpGRkS4/lxeaMGEC3nnnHdTU1ODJJ5/E/PnzIZFI8Kc//cmpQHp3/PznP8c333yD2bNnO+pqUWATCawqRtRrLS0t2L17N2655RZHbQ7Amkr74Ycfupy2SkRE/uHMmTOYPHkyVqxYgZycHG83h4iI3Izv80R9i8P3iNxAoVCgqKgI1113HR555BGEhYXh66+/xl/+8hf8/Oc/93bziIjIRwiCALPZfMXtJBIJhywQEfkhvs8TuYZBKSI3CA0Nxbp167B69WosWLAAHR0dGDx4MBYsWIC8vDxvN4+IiHzE1q1bu1Xnj9/IExH5J77PE7mGw/eIiIiIPKS5ublbsxxdffXVTsPBiYjIP/B9nsg1DEoREREREREREZHHcfY9IiIiIiIiIiLyOAaliIiIiIiIiIjI4xiUIiIiIiIiIiIij2NQioiIiIiIiIiIPE7q7Qb4o8ZGNXy5PLxIBMTGRvp8O3sq0PsHBH4f2T/fYG8nuUdjoxqAf5x7d/OX17y7sd/sdyDiZ4P7ufqaCbbXGvsZOIKlr8Haz776fGBQqgcEAX7x4vOXdvZUoPcPCPw+sn8USC4818F67tnv4MJ+E3VPT18zwfJaYz8DT7D0lf10Dw7fIyIiIiIiIiIij2NQioiIiIiIiIiIPI5BKSIiIiIiIiIi8jgGpYiIyK80NTUhKysLJSUljmU7d+5EdnY2Ro8ejUmTJuH111+HxWJxrN+6dSuysrKQmpqKnJwclJWVOdaZzWasWrUK48ePR1paGubOnYu6ujqP9omIiIiIKBgxKEVERH7j4MGDmDVrFk6fPu1Y9u2332L+/Pl46qmncODAAaxduxYffvgh1q1bBwAoKSnBsmXLsHLlSpSWlmL69OmYO3cuOjo6AADFxcXYu3cvtmzZgj179kAul2PRokXe6B4RERERUVBhUIqIiPzC1q1bUVhYiKefftpp+dmzZ/Hggw/i9ttvh1gsxrBhw5CVlYXS0lIAwKZNmzBlyhSkp6dDJpMhPz8fKpUK27dvd6yfPXs2EhISEBERgYULF2L37t2oqqryeB+JiIiIiIIJg1JEROQXJkyYgF27duHee+91Wn7XXXfhV7/6leN3nU6Hzz//HDfccAMAoKKiAsnJyU77JCYm4tixY1Cr1aipqXFaHxcXh+joaBw/frwPe0NERERERFJvN4CIiKg7+vXrd8VtNBoNfvnLX0IulyM/Px8AoNVqoVAonLaTy+Vob2+HVqsFAISFhXVab1/XXSJR1/8PBvb+st/Bgf32bjv6WqD3j4iIfAuDUkREFBBOnDiBJ598ErGxsXjvvfcQEREBAFAoFNDpdE7b6nQ6qFQqR7DKXl/qwvXh4eEuPX5sbGSX/w8m7HdwYb+JiIiotxiUIiIiv/ff//4XzzzzDB544AE8++yzkErPf7wlJSWhvLzcafuKigpMnDgR0dHRiI+PdxriV19fj5aWlk5D/q6ksVENwHrD2tiohiD0slN+RCRiv9nvwBcs/bb3k4iIyBMYlCIiIr926NAhFBQUYOnSpcjNze20Pjc3FwUFBbjnnnuQnp6ODRs2oLGxEVlZWQCAnJwcFBcXIyUlBSqVCsuXL0dGRgYGDx7sUjsuvEkVBAT0TeulsN/Bhf0mIiKi3mJQiugyLBYLGhoaAFiLH4vFnBuAyNe8+eabMJlMKCoqQlFRkWN5eno63n77bYwbNw5LlizB0qVLUVtbi8TERKxduxZKpRIAUFBQAJPJhLy8PGi1WmRmZmL16tXe6YwHWCwW1NXVAgD694/n+xoRkY+xWCw4e/Ysmpo06N9/AN+niSigMShFdBkNDQ1469+HAQCPTx6F/v37e7lFRATAaWa8N99884rbZ2dnIzs7u8t1MpkMhYWFKCwsdFv7fFldXS3e3FUGAPh5VhoGDEjwcouIiOhCtbU1+NPub6HTGfHzrDQkJAz0dpOIiPoMg1JEVxAeHePtJhARuVWEKs7bTSAiosuIjOkPWYfe280gIupzzAUlIiIiIiIiIiKPY1CKiIiIiIiIiIg8jkEpIiIiIiIiIiLyOAaliIiIiIiIiIjI4xiUIiIiIiIiIiIij+Pse0RERAHGYrGgrq4WANC/fzzEYn4HRURERES+h1epREREAaaurhZv7irDm7vKHMEpIiIiIiJfw0wpIiKiABShivN2E4iIiIiILouZUkRERERERERE5HEMShERERERERERkccxKEVERERERERERB7HoBQREREREREREXkcg1JERERERERERORxDEoREREREREREZHHMShFREREREQ+r6mpCVlZWSgpKXEs27lzJ7KzszF69GhMmjQJr7/+OiwWi2P91q1bkZWVhdTUVOTk5KCsrMyxzmw2Y9WqVRg/fjzS0tIwd+5c1NXVOdY3NjZi3rx5GDNmDDIzM1FUVASTyeSZzhIRBQkGpYiIiAKUYLGgrq4WNTXnUFNzzulGjYjInxw8eBCzZs3C6dOnHcu+/fZbzJ8/H0899RQOHDiAtWvX4sMPP8S6desAACUlJVi2bBlWrlyJ0tJSTJ8+HXPnzkVHRwcAoLi4GHv37sWWLVuwZ88eyOVyLFq0yHH8p556CmFhYdizZw82b96Mr776ynFsIiJyDwaliIiIApSmtQnrv/oR6w9U4c1dZairq/V2k4iIXLZ161YUFhbi6aefdlp+9uxZPPjgg7j99tshFosxbNgwZGVlobS0FACwadMmTJkyBenp6ZDJZMjPz4dKpcL27dsd62fPno2EhARERERg4cKF2L17N6qqqlBZWYn9+/fjueeeg0KhwKBBgzBv3jxs2LDB4/0nIgpkUm83gIiIiPpOuDIGUTH9vd0MIqIemzBhAqZNmwapVOoUmLrrrrtw1113OX7X6XT4/PPPMW3aNABARUUFZs6c6XSsxMREHDt2DGq1GjU1NUhOTnasi4uLQ3R0NI4fPw4AUCqViI+Pd6wfNmwYqqur0dbWhqioqG63XyRyrb+O7UXW/7u6v7+w9ytQ+2cXLP0EgqevwdrPvuovg1JEREREROSz+vXrd8VtNBoNfvnLX0IulyM/Px8AoNVqoVAonLaTy+Vob2+HVqsFAISFhXVab1938b7239vb210KSsXGRnZ7WwDQ6yMA1EEuD0VMTATi4lzb39+4+vz4q2DpJxA8fWU/3YNBKSIiogB3vE6DH2sNuGmIDsPj5N5uDhGRW504cQJPPvkkYmNj8d577yEiIgKANYik0+mcttXpdFCpVI4Ak72+1IXrw8PDIQhCp3X238PDw11qX2OjGoLQ/e2bmzW2tujR1KRBaKjapcfzFyKR9WbX1efH3wRLP4Hg6Wuw9tP+u7sxKEVERBTADGZg74lmmAUBz+2sQv71cgiCAFGg55wTUVD473//i2eeeQYPPPAAnn32WUil529vkpKSUF5e7rR9RUUFJk6ciOjoaMTHx6OiosIxhK++vh4tLS1ITk6GxWJBS0sLGhoaEBcXBwD48ccfMWDAAERGunZTJghw6cbVsa3g+r7+KBj6CARPP4Hg6Sv76R4sdE5ERBTATmtFMAsCxBAgAPjgezXa29u93Swiol47dOgQCgoK8Ktf/QrPP/+8U0AKAHJzc7Ft2zbs27cPRqMR69atQ2NjI7KysgAAOTk5KC4uRlVVFTQaDZYvX46MjAwMHjwYQ4YMQXp6OpYvXw6NRoOqqiq88cYbyM3N9UZXiYgClk8GpY4ePYq8vDyMGTMGEyZMwP/93//BYDAAAA4fPoz7778faWlpmDRpEjZt2uS079atW5GVlYXU1FTk5OSgrKzMsc5sNmPVqlUYP3480tLSMHfuXNTV1Xm0b0RERJ5iEYBTWmtG1PAIA0QQ0C7IoDV5uWFERG7w5ptvwmQyoaioCGlpaY6fxx57DAAwbtw4LFmyBEuXLkVGRgb++c9/Yu3atVAqlQCAgoIC3HrrrcjLy8Ott94KvV6P1atXO46/Zs0amEwmTJ48GQ888ABuueUWzJs3zws9JSIKXD43fM9iseDxxx/HnDlz8Je//AV1dXWO6VsfeughzJkzB08++SRmzZqF0tJSFBQUYPjw4Rg5ciRKSkqwbNkyrF27FiNHjsSGDRswd+5cfPbZZ1AoFCguLsbevXuxZcsWREZGYvHixVi0aBH++Mc/ervbREREbtdslEBnFkEuFWOwwog6Ywga9UBthwj9o73dOiIi19lnxgOsQakryc7ORnZ2dpfrZDIZCgsLUVhY2OX6uLg4rFmzpmcNJSKibvG5TKnW1lbU19fDYrFAsA1cFIvFUCgU+PTTT6FUKpGXlwepVIpx48Zh2rRp2LBhAwBg06ZNmDJlCtLT0yGTyRzBrO3btzvWz549GwkJCYiIiMDChQuxe/duVFVVea2/REREfaXVZP2YHxAVCokIiJdbP1frdKwnRURERETe53NBKZVKhfz8fKxatQopKSm49dZbMWTIEOTn56O8vNxRiNAuMTERx44dAwCnQoUXr1er1aipqXFaHxcXh+joaKdvXLpDJPL9H39ppz/0z1vnnefQv6waTSEAAQAASURBVH/8pX8U2NS2oFRseAgAoL8tKNWoB4yWIKjMSUREREQ+zSeH78nlcixevBi5ubmorKzEE088gTVr1kCr1Tqmb7WTy+WOgq2XW6/VagEAYWFhndbb13VXX0yD2Bf8pZ095Yn+mc3tUChCbI8Xgbg4zz6nPIf+LdD7R76v1WgLSoXJAD0QIQNCxRboLWK06hmUIiIiIiLv8rmg1K5du7Bz507s2LEDgHUq14KCAhQVFWHatGlQq9VO2+t0OoSHhwMAFAoFdDpdp/UqlcoRrOro6Ljk/t3V2Kj26akfRSLrzbCvt7OnPNm/xkYNOjoMjv9LJGFX2MM9eA79m7/0z95OCkxmiwCt+XymVGuzdXmk1AK9QYxWvcWLrSMiIiIi8sGg1Llz5xwz7dlJpVLIZDIkJydj7969TusqKiqQlJQEwBrAKi8v77R+4sSJiI6ORnx8vNMQv/r6erS0tHQa8nclggCfvtG085d29pQn+nfh8b3xfPIc+rdA7x/5tlaDAAEiyMQCwkMkaLUtj5RY0ACghZlSRERERORlPldTasKECaivr8ebb74Js9mMqqoqFBcXY9q0acjKykJDQwPWrVsHo9GIffv2Ydu2bZg5cyYAIDc3F9u2bcO+fftgNBqxbt06NDY2IisrCwCQk5OD4uJiVFVVQaPRYPny5cjIyMDgwYO92WUiIiK3a9ZZM6GiZYDoggJikVLrcmZKEREREZG3+VymVGJiIt566y2sXr0ab7/9NiIjIzF9+nQUFBQgJCQE7777LoqKirBmzRrExMRg0aJFGDt2LABg3LhxWLJkCZYuXYra2lokJiZi7dq1UCqVAICCggKYTCbk5eVBq9UiMzMTq1ev9l5niYiI+og9EypK5pwRdT4oJThmuSUiIiIi8gafC0oBwPjx4zF+/Pgu16WkpGDjxo2X3Dc7OxvZ2dldrpPJZCgsLERhYaFb2klEROSrNAZrwClC5rw8QmqBCAIMFhGaOsxI8ELbiIiIiIgAHxy+R0RERL2nNVmDUgqJczaURASE276SOtWi93SziIiIiIgcGJQiIiIKMIIgoN1oD0p1Xh9pG9JX2WLovJKIiIiIyEMYlCIiIgowbXoLzLYEKUUXA/UjbMuq1QxKEREREZH3MChFREQUYOq1RgBAqNgCiajz+jBbUKpGY/Rgq4iIiIiInDEoRUREFGDqtCYAgFzc9ex64VLr8nNqBqWIiIiIyHsYlCIiIgow9e3WYJNCYulyvT1TqqHdBKO5622IiIiIiPoag1JEREQBxp4pdfHMe3ahYussfBYBONfGGfiIiIiIyDsYlCIiIgow9ppSiksM3xOJgAiZtdjUmZYOj7WLiIiIiOhCDEoREREFmHpHptSlh+ZFhNiDUjqPtImIiIiI6GIMShEREQUYx/C9S2RKAUC4LVPqbCszpYiIiIjIOxiUIiIiv9LU1ISsrCyUlJQ4lh0+fBj3338/0tLSMGnSJGzatMlpn61btyIrKwupqanIyclBWVmZY53ZbMaqVaswfvx4pKWlYe7cuairq/NYf9xNZzSjTW8GcIVMKRkzpYiIiIjIuxiUIiIiv3Hw4EHMmjULp0+fdixrbW3FnDlzMGPGDJSWlqKoqAgrVqzAkSNHAAAlJSVYtmwZVq5cidLSUkyfPh1z585FR4c1Q6i4uBh79+7Fli1bsGfPHsjlcixatMgr/XOHxnYDAGshc6no0tudH77HTCkiIiIi8g4GpYiIyC9s3boVhYWFePrpp52Wf/rpp1AqlcjLy4NUKsW4ceMwbdo0bNiwAQCwadMmTJkyBenp6ZDJZMjPz4dKpcL27dsd62fPno2EhARERERg4cKF2L17N6qqqjzex96yWCyoqKoBAIRKrAXNL8WeKVXdqoMgXHqYHxERERFRX5F6uwFERETdMWHCBEybNg1SqdQpMFVeXo7k5GSnbRMTE7F582YAQEVFBWbOnNlp/bFjx6BWq1FTU+O0f1xcHKKjo3H8+HEMGjSo2+27MAB0uWBQX6qvr8XGfT8AUEAmunygyV5vSmeyoKXDgJjw0B4/rr2/3uq3t7Df3m2HpwVLvwO9f0RE5FsYlCIiIr/Qr1+/LpdrtVooFAqnZXK5HO3t7Vdcr9VqAQBhYWGd1tvXdVdsbGSX//ckg0GNkCgV0KqDQiaCQh4CUUgIwsJCHf8XxGbrvwYtQkVS6AUxzjS3IPmaxF4/vrf67W3sd3AJ1n4TERH1BQaliIjIrykUCqjVaqdlOp0O4eHhjvU6na7TepVK5QhW2etLdbV/dzU2WtsQGxuJxkY1vDEirqlJA3WHdeY9GSzo0BkgtkjQ3q53/N9iOP+vQiaD3gBUVLdh5NXqKxz90kQi7/bbW9hv9jsQ2ftJRETkCQxKERGRX0tOTsbevXudllVUVCApKQkAkJSUhPLy8k7rJ06ciOjoaMTHx6OiosIxhK++vh4tLS2dhgReyYU3qYIAr9y0CgKgM1kfOERy5e0VEgEtEKFWY3RLe73Vb29jv4NLsPabiIioL7DQORER+bWsrCw0NDRg3bp1MBqN2LdvH7Zt2+aoI5Wbm4tt27Zh3759MBqNWLduHRobG5GVlQUAyMnJQXFxMaqqqqDRaLB8+XJkZGRg8ODB3uxWj+nM1rvl0G58witsgat6rakPW0RERERE1DVmShERkV9TqVR49913UVRUhDVr1iAmJgaLFi3C2LFjAQDjxo3DkiVLsHTpUtTW1iIxMRFr166FUqkEABQUFMBkMiEvLw9arRaZmZlYvXq19zrUS3qz9d/QbmRKhdmuAuq0xr5rEBERERHRJTAoRUREfuf48eNOv6ekpGDjxo2X3D47OxvZ2dldrpPJZCgsLERhYaFb2+gtjuF74iuPL1JIrNvUMVOKiIiIiLyAw/eIiIgCiN4+fK87NaVsX03VM1OKiIiIiLyAQSkiIqIAYbYI54fvuVBTSm2woN1g7ruGERERERF1gUEpIiKiANFmj0hBQEg3PuFlYusPAJxr0/VZu4iIiIiIusKgFBERUYBo0VmDUiEiASJR9/YJl1k3rGnT91WziIiIiIi6xKAUERFRgGjRWQuWd6fIuV2YLShVzUwpIiIiIvIwBqWIiIgCRKstUyrUhaBUuNSeKcWgFBERERF5FoNSREREAcIxfM+VoJQtU+och+8RERERkYcxKEVERBQg7IXOezJ8j5lSRERERORpDEoREREFCI3BAgCQdbPIOcBMKSIiIiLyHgaliIiIAoS6J5lStppSDVoDDCZLn7SLiIiIiKgrDEoREREFCI3BGpSSuRCUCpUAIRJrYKpWzWwpIvJdTU1NyMrKQklJiWPZ4cOHcf/99yMtLQ2TJk3Cpk2bnPbZunUrsrKykJqaipycHJSVlTnWmc1mrFq1CuPHj0daWhrmzp2Luro6x/rGxkbMmzcPY8aMQWZmJoqKimAymfq+o0REQYRBKSIiogChdgzf635QSiQSoX+4FABwjnWliMhHHTx4ELNmzcLp06cdy1pbWzFnzhzMmDEDpaWlKCoqwooVK3DkyBEAQElJCZYtW4aVK1eitLQU06dPx9y5c9HR0QEAKC4uxt69e7Flyxbs2bMHcrkcixYtchz/qaeeQlhYGPbs2YPNmzfjq6++wrp16zzabyKiQMegFBERUYCwD99zJVMKAPqHywAANawrRUQ+aOvWrSgsLMTTTz/ttPzTTz+FUqlEXl4epFIpxo0bh2nTpmHDhg0AgE2bNmHKlClIT0+HTCZDfn4+VCoVtm/f7lg/e/ZsJCQkICIiAgsXLsTu3btRVVWFyspK7N+/H8899xwUCgUGDRqEefPmOY5NRETuwaAUERFRgND2IFMKAPoxU4qIfNiECROwa9cu3HvvvU7Ly8vLkZyc7LQsMTERx44dAwBUVFRccr1arUZNTY3T+ri4OERHR+P48eMoLy+HUqlEfHy8Y/2wYcNQXV2NtrY2d3eRiChoSb3dACIiIuo9k0WA1mgNSrlS6Bw4nyl1jjWliMgH9evXr8vlWq0WCoXCaZlcLkd7e/sV12u1WgBAWFhYp/X2dRfva/+9vb0dUVFR3W6/yIUZUZ22F1n/7+r+/sLer0Dtn12w9BMInr4Gaz/7qr8MShEREQUAje588V2pixcN9ppSNcyUIiI/olAooFarnZbpdDqEh4c71ut0uk7rVSqVI8Bkry918f6CIHRaZ//dfvzuio2NdGl7vT4CQB3k8lDExEQgLs61/f2Nq8+PvwqWfgLB01f20z0YlCIiIgoArTojAEAmBsQuBqX62TOlWFOKiPxIcnIy9u7d67SsoqICSUlJAICkpCSUl5d3Wj9x4kRER0cjPj7eaYhffX09WlpakJycDIvFgpaWFjQ0NCAuLg4A8OOPP2LAgAGIjHTtBq2xUQ3BhQTW5mYNAECn06OpSYPQUPUV9vBPIpH1ZtfV58ffBEs/geDpa7D20/67u7GmFBERUQBos2VKhUhcz622Z0rVqvUwWwL46oqIAkpWVhYaGhqwbt06GI1G7Nu3D9u2bcPMmTMBALm5udi2bRv27dsHo9GIdevWobGxEVlZWQCAnJwcFBcXo6qqChqNBsuXL0dGRgYGDx6MIUOGID09HcuXL4dGo0FVVRXeeOMN5ObmutxOQXD9x7pjz/b1p5+ePj/+9hMs/QymvgZrP/sCM6WIiIgCgCMo1YOvm2IUUkjEIpgtAuo1egyIkru5dURE7qdSqfDuu++iqKgIa9asQUxMDBYtWoSxY8cCAMaNG4clS5Zg6dKlqK2tRWJiItauXQulUgkAKCgogMlkQl5eHrRaLTIzM7F69WrH8desWYMXX3wRkydPhlgsxowZMzBv3jwv9JSIKHAxKEVERBQA7MP3epIpJRGLEB8ZiupWHWraGJQiIt91/Phxp99TUlKwcePGS26fnZ2N7OzsLtfJZDIUFhaisLCwy/VxcXFYs2ZNzxtLRERXxOF7REREAeD88L2e7Z8QFQoAOKdmsXMiIiIi8gwGpYiIiPycxWJBdUMzgJ4N3wPgyI6qYbFzIiIiIvIQBqWIiIj8XF1dLb6qqAEAiCymHh0jIdKWKdXGTCkiIiIi8gwGpYiIiAKAILVmOvU0UyrBlil1jplSREREROQhDEoREREFAIPF+q+sx8P3rJlSNcyUIiIiIiIPYVCKiIgoAOjNAgBAJhZ6tP+FmVKC0LNjEBERERG5QurtBhAREVHvGczWf3uaKRVvqymlN1nQpDXAqGkCAPTvHw+xmN9hEREREZH7MShFREQUAIwWe6YUgB4kOoVIxYgLD0GD1oDvKqvx76+/BwD8PCsNAwYkuLGlRERERERWDEoREREFAKO9ppQIPQpKAUBCVCgatAbUaY2IUMW5rW1ERERERF1hPj4REZGfM5gtsCVKQdqLT/YBtrpS9VqTG1pFRERERHR5DEoRERH5uXZ7mhQESEU9P06CbQa+OgaliIiIiMgDGJQiIiLyc+0Ga1BKKgJEvQpKWTOl6rRGdzSLiIiIiOiyGJQiIiLyc1qjPSjVw2JSNgxKEREREZEnMShFRETk59rdFJQawOF7RERERORBnH2PiIjIz9mDUrIefNUkWCyoq6sFAIhtx9EaLDCaBcgkvRgLSERERER0BQxKERER+Tmt4cJMKdcCSZrWJqz/qgP9rzJA09yAyJAoqA0WaE0ClAxKEREREVEfYlCKiIjIz7UbzQB6FpQCgHBlDKJi+gMA+hkFqA16tBsFKEPd2UoiIiIiImesKUVEROTnzteU6v2x+odbv6/SGntXn4qIiIiI6EqYKUVEROTnHLPviXsXSBIsFkSIbXWlGJQiIiIioj7GoBQREZGfa7fVlJL1cvY9TWsTTrUAQATadEYAst42jYiIiIjoknxy+F5LSwvmz5+PzMxM3HTTTZg3bx7q6uoAAIcPH8b999+PtLQ0TJo0CZs2bXLad+vWrcjKykJqaipycnJQVlbmWGc2m7Fq1SqMHz8eaWlpmDt3ruO4RERE/krrxuF70ZEKAECHmUXOiYiIiKhv+WRQ6he/+AXa29uxa9cufPbZZ5BIJFi8eDFaW1sxZ84czJgxA6WlpSgqKsKKFStw5MgRAEBJSQmWLVuGlStXorS0FNOnT8fcuXPR0dEBACguLsbevXuxZcsW7NmzB3K5HIsWLfJmV4mIiHqtw3jh7Hu9o5DYjmnq9aGIiIiIiC7L54JS3377LQ4fPoyVK1ciKioKERERWLZsGQoLC/Hpp59CqVQiLy8PUqkU48aNw7Rp07BhwwYAwKZNmzBlyhSkp6dDJpMhPz8fKpUK27dvd6yfPXs2EhISEBERgYULF2L37t2oqqryZpeJiMgNjh49iry8PIwZMwYTJkzA//3f/8FgMADoXZatP3BXTSkACLMFpfQWEcwW1pUiIiIior7jc0GpI0eOIDExEX/729+QlZWFCRMmYNWqVejXrx/Ky8uRnJzstH1iYiKOHTsGAKioqLjkerVajZqaGqf1cXFxiI6OxvHjx11qo0jk+z/+0k5/6J+3zjvPoX//+Ev/AoXFYsHjjz+Ou+66C/v378fmzZvxxRdfYO3atb3OsvUH52tK9f5YMjEggTUY1W5iUIqIiIiI+o7PFTpvbW3F8ePHceONN2Lr1q3Q6XSYP38+nn/+ecTFxUGhUDhtL5fL0d7eDgDQarWXXK/VagEAYWFhndbb13VXbGykq93yCn9pZ095on9mczsUihDb40UgLs6zzynPoX8L9P75ktbWVtTX18NisUAQrIEUsVgMhULhlGULwCnLduTIkU5ZtgCQn5+PDz74ANu3b8fMmTO91idXtLtx+J5IBCgkFmjMEs7AR0RERER9yueCUiEh1gDAwoULERoaioiICDz11FN44IEHkJOTA51O57S9TqdDeHg4AEChUHS5XqVSOYJVF3/zfeH+3dXYqIbgw9fpIpH1ZtjX29lTnuxfY6MGHR0Gx/8lkrAr7OEePIf+zV/6Z29nIFCpVMjPz8eqVavw29/+FmazGZMnT0Z+fj5WrlzZZRbt5s2bAVizbC8OPl2YhdtdF2aeeToLrd1oBuCeoBQAKCQCNGZAaxS6lVV3YXZgMGG/vdsOTwuWfgd6/4iIyLf4XFAqMTERFosFRqMRoaGhAKzDMgDguuuuw1//+len7SsqKpCUlAQASEpKQnl5eaf1EydORHR0NOLj452G+NXX16OlpaXTzcqVCAJ8+kbTzl/a2VOe6N+Fx/fE41ksFjQ0NEAkAkymdohEcohEPjfK1m34GiV3sVgskMvlWLx4MXJzc1FZWYknnngCa9asuWwWLXD5LFtXXBjg82Swz2wR0GEbZhepkEEuD4EgNkMUcv7fsLBQKOQhTssut01EiAH1BsAAMWJiup8lGihBTlex38ElWPtNRETUF3wuKDV+/HgMGjQIv/71r7FixQro9Xq88soruOOOOzB16lSsWbMG69atQ15eHg4ePIht27bhjTfeAADk5uaioKAA99xzD9LT07FhwwY0NjYiKysLAJCTk4Pi4mKkpKRApVJh+fLlyMjIwODBg73ZZSKHhoYGvPXvwwiPjoFZr0H+hOvQr19/bzeLyOft2rULO3fuxI4dOwBYv6QoKChAUVERpk2bBrVa7bR9d7NsXdHYaH0MT2fJtemMjv+bDAboRBJYDAaILef/bW/Xo0PnvOxy24QIJgAStHaY0NSkQUiI+tINgP9kB7ob+81+B6JAyqIlIiLf53NBKZlMhr/85S9YuXIl7rrrLuj1ekyaNAkLFy5EVFQU3n33XRQVFWHNmjWIiYnBokWLMHbsWADWOiFLlizB0qVLUVtbi8TERKxduxZKpRIAUFBQAJPJhLy8PGi1WmRmZmL16tXe6yxRF8KjYxChjIVZH+LtphD5jXPnzjlm2rOTSqWQyWRITk7G3r17ndZ1N8vWFZ7OrLTT6K1D9yQiQOymYTcKia3QuVFwqS/Bmh3IfgeXYO03ERFRX/C5oBQAxMfH45VXXulyXUpKCjZu3HjJfbOzs5Gdnd3lOplMhsLCQhQWFrqlnURE5BsmTJiAl19+GW+++SZmz56N6upqFBcXY9q0acjKysJLL73U4yxbX6fRmwAAUjeO9FVIrMPmWeiciIiIiPqSTwaliIiIXJGYmIi33noLq1evxttvv43IyEhMnz4dBQUFCAkJ6VWWra+zZ0rJ3JUmBUAhtgajOkzWmlVERERERH2BQSkiIgoI48ePx/jx47tc15ssW1+nNVgzpWQS9x0zVCxADAEWiFDfbsJV7js0EREREZFD4E7rRUREFAT6IlNKJAIUtq+tajXGy29MRERERNRDDEoRERH5MXtNKZmbP9HDbEGpGgaliIiIiKiPMChFRETkx7QG92dKAUCYbQY+ZkoRERERUV9hUIqIiMiPOTKl3FhTCjifKcWgFBERERH1FQaliIiI/FjfDd+zZ0qZ3HtgIiIiIiIbBqWIiIj8mKbPhu9Z/2VNKSIiIiLqKwxKERER+TFtHxc6b9Wb0W4LfBER+ZqjR48iLy8PY8aMwYQJE/B///d/MBgMAIDDhw/j/vvvR1paGiZNmoRNmzY57bt161ZkZWUhNTUVOTk5KCsrc6wzm81YtWoVxo8fj7S0NMydOxd1dXUe7RsRUTBgUIqIiMiP9VWmlEwMhNiuEqpbdW49NhGRO1gsFjz++OO46667sH//fmzevBlffPEF1q5di9bWVsyZMwczZsxAaWkpioqKsGLFChw5cgQAUFJSgmXLlmHlypUoLS3F9OnTMXfuXHR0dAAAiouLsXfvXmzZsgV79uyBXC7HokWLvNldIqKAxKAUERGRH+urQucAEC6zBrrOMihFRD6otbUV9fX1sFgsEARrHTyxWAyFQoFPP/0USqUSeXl5kEqlGDduHKZNm4YNGzYAADZt2oQpU6YgPT0dMpkM+fn5UKlU2L59u2P97NmzkZCQgIiICCxcuBC7d+9GVVWV1/pLRBSIGJQiIiLyY9o+ypQCgIgQe1Cqw+3HJiLqLZVKhfz8fKxatQopKSm49dZbMWTIEOTn56O8vBzJyclO2ycmJuLYsWMAgIqKikuuV6vVqKmpcVofFxeH6OhoHD9+vO87RkQURKTebgARERH1nL2mVEgffM1kz5Ti8D0i8kUWiwVyuRyLFy9Gbm4uKisr8cQTT2DNmjXQarVQKBRO28vlcrS3twPAZddrtVoAQFhYWKf19nWuELn4nYFje5H1/67u7y/s/QrU/tkFSz+B4OlrsPazr/rr9qBUSUkJMjMz3X1YIiLyY/xs6BuCIDiG70nFIri7HDmH7xFRb/Xl+/+uXbuwc+dO7NixAwCQlJSEgoICFBUVYdq0aVCr1U7b63Q6hIeHAwAUCgV0Ol2n9SqVyhGssteX6mp/V8TGRrq0vV4fAaAOcnkoYmIiEBfn2v7+xtXnx18FSz+B4Okr++kebg9KPfnkk4iMjMR9992H++67DwMHDnT3QxARkZ/hZ0Pf0JksMFvLqEAmgduDUhHMlCKiXurL9/9z5845Ztqzk0qlkMlkSE5Oxt69e53WVVRUICkpCYA1gFVeXt5p/cSJExEdHY34+HinIX719fVoaWnpNOSvOxob1bCVvOqW5mYNAECn06OpSYPQUPUV9vBPIpH1ZtfV58ffBEs/geDpa7D20/67u7k92f+LL77Ac889h2+//RZ33XUXfvrTn+Ljjz/u9IFBRETBg58NfcM+dE8sAqR9kFJ94fA9IZCvuv6fvTuPj6q+9z/+mpnMZCYLWQiERVAxAVxAIsii1gWL2AriRdD2R23hXqUXUWtbXMFqqyjcarVIRUUttdBiUdGiVkHrioCgCEoFCQoJhOzrJJlklvP7YzIjgRASmMlkJu/n4zGPJGeZ8/lOkvM953O+i4iETTjP/xdccAElJSU8+eSTeL1e8vPzWbJkCRMnTmTcuHGUlpaybNky3G43GzduZM2aNVx99dUATJkyhTVr1rBx40bcbjfLli2jrKyMcePGATB58mSWLFlCfn4+TqeTBx98kJEjR9K/f/92x2kY7X/5dzy+faPpdbyfT7S9uko5u1JZu2o5wyHkLaWsVivjx49n/PjxlJeX8+abb/Lcc8/xu9/9jiuuuIJrr72WwYMHh/qwIiLSialuCA9ng79tlMNqxhSGjv4JVhMm/C2yyuvcdE+0hfwYIhLbwnn+z8rK4qmnnuKxxx7jmWeeITk5mSuvvJLZs2djs9l47rnnmD9/PosWLSI9PZ158+YxevRoAMaMGcO9997LfffdR1FREVlZWSxdupTU1FQAZs+ejcfjYdq0adTW1jJq1Cgee+yxEH0qIiISELaBzsvKynjttdd4/fXXyc3N5aKLLiI+Pp7p06czffp0/vd//zdchxYRkU5KdUNoORv9LaUSreGZTNdiMtE9IY7SOg8HqlxKSonIcQvX+f+8887jvPPOa3HdkCFDWLly5VH3nTRpEpMmTWpxndVqZc6cOcyZM+e44hIRkbYJeVLq9ddf59VXX+Xjjz9mwIABTJ48mSeffJL09HQALrroImbPnq0bDxGRLkR1Q3jUNrWUSghTUgqgV5KV0joPBVUuhvbpFrbjiEhs0vlfRERaE/Kk1G9/+1uuuOIKVq5cyVlnnXXE+lNPPZXp06eH+rAiItKJqW4Ij3C3lALITIrjy2I4UFV/7I1FRA6j87+IiLQm5Empjz76iPz8fDIzMwH4/PPPSU5O5rTTTgOgV69e3HLLLaE+rIiIdGKqG8LD2TTQucNqBnxhOUavJCugGfhE5Pjo/C8iIq0J+aPVd955h6uuuoq9e/cCsHXrVqZOncr7778f6kOJiEiUUN0QHoGBzhNtlrAdI7MpKXVASSkROQ46/4uISGtC3lJq8eLFPPHEE8HmuTNmzCArK4vf//73XHTRRaE+nIiIRAHVDeFR29R9L9xjSoFaSonI8dH5X0REWhPyq9iDBw/yve99r9myCy64gIKCglAfSkREooTqhvBwdsBA54GWUkU1DXi84ekiKCKxS+d/ERFpTcivYvv27cuHH37YbNmGDRvo06dPqA8lIiJRQnVDeATGlArnQOdpdgvxcWZ8BhTWNITtOCISm3T+FxGR1oS8+97MmTOZPXs2l112GX379qWgoIB169axcOHCUB9KRESihOqG8KhtbGopZTPTEKbedSaTiT7d7HxbXseBShcnpTrCcyARiUk6/4uISGtC/mh14sSJLF26FKvVyo4dO7Db7Tz33HOMHz8+1IcSEZEoobohPDqipRRA31Q7AAeqNa6UiLSPzv8iItKakLeUAhg1ahSjRo0Kx1uLiEiUUt0Qes7G8I8pBdCnW1NSqlJJKRFpP53/RUTkaEKelCoqKmLJkiXs3bsXn6/5gKjPP/98qA8nIiJRQHVDeARaSiVYLWE9TqCllGbgE5H20vlfRERaE/Kk1F133UVpaSmXXHIJVqs11G8vIiJRSHVDeATGlEq0dVBLqar6sB5HRGKPzv8iItKakCelvvjiC9566y3S09ND/dYiIhKlVDeER6CllCPc3fdS1FJKRI6Pzv8iItKakF/FJicnY7PZQv22IiISxVQ3hJ7H66PB4+8KE+6BzgNJqSqXJ5gIExFpC53/RUSkNSG/ir3xxhu566672L59OwUFBc1eIiLSNaluCL3AIOcQvoHODZ+P4uIinBUlpNj9jasPqLWUiLSDzv8iItKakHffmzdvHgDr1q0DwGQyYRgGJpOJr776KtSHExGRKKC6IfQO7bpnMZvCc4yqcpZvqCchoYBeiRlUuTwcqKxnUM+ksBxPRGKPzv8iItKakCel3nnnnVC/pYiIRDnVDaFX2xAY5DzkVXkzianpJCYm0rvByq4yF3kVGuxcRNpO538REWlNyNv79+3bl759+1JVVcWOHTvo0aMHdrudvn37hvpQIiISJVQ3hJ6z0d9SKine0iHH65PsnzVrf6W674lI2+n8LyIirQl5UqqsrIwf/ehHXHPNNdxxxx3k5+fz/e9/n61bt4b6UCIiEiVUN4Ses6mlVFJ8eFtKBfRuSkrlVaqllIi0nc7/IiLSmpAnpR588EEGDhzI5s2biYuL47TTTmPmzJn83//9X6gPJSIiUUJ1Q+jVNrWUSrR1TEup3sn+2bP2KyklIu2g87+IiLQm5EmpjRs3ctddd+FwODCZ/AOvXn/99eTm5ob6UCIiEiVUN4ReYKDzjmgpZfh8WBsqAShxNlLb4A77MUUkNuj8LyIirQl5UspqteJy+cebMAwDgNraWhITE0N9KBERiRKqG0KvtrGp+16YBzoH/yx8r2z5BlvTVcP2bw6E/ZgiEht0/hcRkdaEPCk1duxYbrvtNvbu3YvJZKKsrIzf/va3XHTRRaE+lIiIRAnVDaEXaCmV2EEDnSemppPi8Hfh27m/hMLCg/h8vg45tohEL53/RUSkNSFPSv36178mISGByy+/nOrqai644ALq6+uZM2dOqA8lIiJRQnVD6AUHOu+AllIB3Rz+Y725s4Qn122luLiow44tItFJ538REWlNyK9kExMTWbRoEeXl5ezfv59evXrRs2fPUB9GRESiiOqG0AsOdN5BLaUAUuz+ywa3NYGktIQOO66IRC+d/0VEpDUhT0pt3ry52c/79u1j3759AJx77rmhPpyIiEQB1Q2hF2wpFR8HGB1yzG52KwB1HlOHHE9Eop/O/yIi0pqQJ6Wuu+66I5aZzWZ69+7NO++8E+rDiYhIFOiIuqGyspIHH3yQ999/H5/Px7nnnst9991Hz5492bZtGw888AC5ubmkpaUxa9Yspk6dGtx39erVPPHEE5SUlDBgwADuuececnJyQhJXuARn37NZAE+HHLNbU0up2o45nIjEAN0biIhIa0KelNq5c2ezn8vLy/nTn/5E3759Q30oERGJEh1RN9x8882kpKSwbt06zGYzd911F/fccw//93//x8yZM7nlllu49tpr2bx5M7Nnz2bQoEEMHTqUTZs2cf/997N06VKGDh3KihUrmDVrFu+++y4OhyNk8YWaM9h9L46OSkoFuu+5vCY8vo5pnSUi0U33BiIi0pqQD3R+uPT0dG677Tb+8pe/hPtQIiISJUJdN3z55Zds27aNBQsW0K1bN5KSkrj//vuZM2cOa9euJTU1lWnTphEXF8eYMWOYOHEiK1asAGDVqlVcccUVDB8+HKvVyvTp00lLS+ONN94ISWzhUtus+17HiI8zE2fyJ6OcbiWlRKT9dG8gIiKHCntSCqCqqoqGhoaOOJSIiESJUNYN27dvJysri3/84x+MGzeOCy64gIULF9KjRw92797NwIEDm22flZUVfHqfm5vb6vrOxufzUVh4kBqXG4BEW8cNdG4ymUi0+ABwNiopJSLHR/cGIiISEPLHq3fddVezn91uN59++innnXdeqA8lIiJRItx1Q1VVFbt27eKss85i9erVuFwubr/9du644w4yMjKO6IZnt9upq6sDoLa2ttX1bWUytfx9qJWUFLFk7VZq3YmAiWR7HB53+I53uASLjyqPBafbwGQi+ILwlrszUrkjG0dH6yrlDnX5dG8gIiKtCXub//j4eK677jquvfbacB9KRESiRKjrBpvNBsDcuXOJj48nKSmJW2+9lWuuuYbJkyfjcrmabe9yuUhMTATA4XC0uD4tLa1dMXTvntzi96HW2FhDWq/eUFIDQLypnrpGJ3a7FY/dhslmwzB7m31NSIjHcZR17d0mJd7MwQao95lIT08iI6Njyt2ZqdxdS1ctd6jo3kBERA4V8qTUQw89FOq3FBGRKBfuuiErKwufz4fb7SY+Ph7wd3MDOP300/nb3/7WbPvc3Fyys7MByM7OZvfu3Uesv/DCC9sVQ1mZP0nUvXsyZWU1GGHq3VZe7qS6thEAEwZL3t5J8b7dJPXoi6+xEbPPcsTXuroG6l0tr2vvNjbDDViorPdSXu7EZqvBZAp/uTsjlVvljkWBcoaK7g1ERKQ1IU9KLV68uE3b3XTTTaE+tIiIdFLhrhvOO+88+vXrx913381DDz1EQ0MDjz76KN///veZMGECixYtYtmyZUybNo1PP/2UNWvW8MQTTwAwZcoUZs+ezQ9+8AOGDx/OihUrKCsrY9y4ce2K4dCbVMMgbDethgHuppnv4syQ0j0TZ2VZeA7WgsS4wJhSviPKGc5yd2Yqd9fSVct9vHRvICIirQl5Umr37t2sXbuWwYMHc+qpp1JYWMhnn33GGWecEewqYYr1zvgiItJMuOsGq9XKX//6VxYsWMD48eNpaGhg7NixzJ07l27duvHcc88xf/58Fi1aRHp6OvPmzWP06NEAjBkzhnvvvZf77ruPoqIisrKyWLp0KampqaEoeli4/XkhrBGoThOaBjqv84DL4+v4AEQkqujeQEREWhPypJTZbOauu+7ipz/9aXDZq6++yrvvvstjjz0W6sOJiEgU6Ii6ITMzk0cffbTFdUOGDGHlypVH3XfSpElMmjQpJHF0hENbSnU0mwmsZgO3z8SB6kZO6fgQRCSK6N5ARERaE/LL2ffff59p06Y1WzZhwgQ2bNgQ6kOJiEiUUN0QWm6v/2tcBBoXmEyQ3PRIK7+qseMDEJGoovO/iIi0JuRJqfT0dDZv3txs2YcffkivXr1CfSgREYkSqhtCK9BSyhqBllIASVb/8ZWUEpFj0flfRERaE/Luez//+c+ZOXMm48ePp0+fPuTn5/Puu+/y+OOPh/pQIiISJVQ3hFZgTKk4c2RGW04KtJSqVlJKRFoX7vN/ZWUlDz74IO+//z4+n49zzz2X++67j549e7Jt2zYeeOABcnNzSUtLY9asWUydOjW47+rVq3niiScoKSlhwIAB3HPPPeTk5ADg9Xp5+OGHefXVV6mvr2f06NH89re/pWfPniGJW0RE/EL+jHXq1Kk8+eSTWCwW/vOf/5CamsrKlSu54IILQn0oERGJEqobQivYUipCYwMnq6WUiLRRuM//N998M3V1daxbt453330Xi8XCPffcQ1VVFTNnzuSqq65i8+bNzJ8/n4ceeojt27cDsGnTJu6//34WLFjA5s2bufLKK5k1axb19fUALFmyhPXr1/PSSy/x4YcfYrfbmTdvXkhiFhGR74S8pRT4p+Y+77zzKC8vJz09PRyHEBGRKKO6IXSCY0pFqvte09XDwRo3bq8PW6QCEZGoEK7z/5dffsm2bdv4+OOPSUpKAuD++++npKSEtWvXkpqaGhzPasyYMUycOJEVK1YwdOhQVq1axRVXXMHw4cMBmD59Oi+88AJvvPEGV199NatWrWLOnDn07t0bgLlz53LBBReQn59Pv379QlYGEZGuLuRXkW63m0cffZThw4czduxY8vPzufrqqykuLg71oUREJEqobgitSM6+B2C3+I/tNSC/sj4yQYhIVAjn+X/79u1kZWXxj3/8g3HjxnHBBRewcOFCevTowe7duxk4cGCz7bOysti5cycAubm5R11fU1NDYWFhs/UZGRmkpKSwa9euE45bRES+E/LL2cWLF7Nx40b++Mc/YrVa6d69O7169WL+/Pnteh+v18t1113HnXfeGVy2bds2pk6dSk5ODmPHjmXVqlXN9lm9ejXjxo1j2LBhTJ48ma1btzZ7v4ULF3LeeeeRk5PDrFmzdDMkItJBQlU3iF9gTKlIdd8zmaCbzX/wvWV1kQlCRKJCOM//VVVV7Nq1i71797J69WpeeeUVioqKuOOOO6itrcXhcDTb3m63U1fnP2e1tr62thaAhISEI9YH1rWHydT+l3/H49s3ml7H+/lE26urlLMrlbWrljMcQt59b82aNfz9738nMzMTk8lEQkICDz30EOPGjWvX+yxevJgtW7bQt29fgGC/8FtuuYVrr72WzZs3M3v2bAYNGsTQoUOD/cKXLl3K0KFDWbFiBbNmzeLdd9/F4XA06xeenJzMPffcw7x583j66adD/RGIiMhhQlU3iN93A51HLoYUm5lyl5fc0louHdQjcoGISKcWzvO/zWYD/F3r4uPjSUpK4tZbb+Waa65h8uTJuFyuZtu7XC4SExMBcDgcLa5PS0sLJqsC40u1tH97dO+e3K7tGxqSgGLs9njS05PIyGjf/tGmvZ9PtOoq5YSuU1aVMzRCnpSqq6sL9hU3DH/3Arvdjtnc9ivnDRs2sHbtWi677LLgMvULFxGJXqGoG+Q7bm9T9z1TZGbfA0iJ9z8u213S/lYDItJ1hPP8n5WVhc/nw+12Ex8fD4DP58/an3766fztb39rtn1ubi7Z2dkAZGdns3v37iPWX3jhhaSkpJCZmdmsi19JSQmVlZVHdPlri7KyGox2nK4rKpwAuFwNlJc7iY+vafcxo4HJ5L/Zbe/nE226Sjmh65S1q5Yz8HOohfxuYNiwYSxevBgAU1P7rr/+9a8MGTKkTfuXlZUxd+5cHnnkkWZNatUvXEQkep1o3SDNBbvvRTCnl2b3/x6/VlJKRFoRzvP/eeedR79+/bj77rupra2lvLycRx99lO9///tMmDCB0tJSli1bhtvtZuPGjaxZs4arr74agClTprBmzRo2btyI2+1m2bJllJWVBVtwTZ48mSVLlpCfn4/T6eTBBx9k5MiR9O/fv91xGkb7X/4dj2/faHod7+cTba+uUs6uVNauWs5wCHlLqbvvvpvp06ezevVqamtr+eEPf0htbS1//vOfj7mvz+fjtttuY8aMGQwePLjZus7WL7wzO7TvZyzqyPIdeoxw9qM9/HiH99+NNfob7Rw6Mr4TqRvkSJEe6BwgNd5/8IIqF84GDxmRC0VEOrFwnv+tVit//etfWbBgAePHj6ehoYGxY8cyd+5cunXrxnPPPcf8+fNZtGgR6enpzJs3j9GjRwP+Xhf33nsv9913H0VFRWRlZbF06VJSU1MBmD17Nh6Ph2nTplFbW8uoUaN47LHHTjhmERFpLuRJqYyMDF5//XXee+89Dhw4QK9evbj44ouD07S25qmnnsJms3Hdddcdsc7hcFBT07zparT0C4+UaInzeHVE+bzeOhwOW9Pxwt+nP3A8hyOeGldNzI8joL/RruNE6gY5UqQHOgewWUxkJMRRWudhd0ktp/RNi1wwItJphfv8n5mZyaOPPtriuiFDhrBy5cqj7jtp0iQmTZrU4jqr1cqcOXOYM2dOSOIUEZGWhTwpNWHCBP75z3/ygx/8oN37vvrqqxQXFzNixAiAYJLp7bff5vbbb2f9+vXNto+WfuEdLdb7uHZk+crKnNTXNwa/t1gSjrFHaI4XZ28AoLw8/MeMBP2Ndg7h6hfekhOpG6S5Rq+PpoZSEW0pBTAgLZ7SOg9fFzvRkPUi0hKd/0VEpDVhuZw9vEVSW7355pt89tlnbNmyhS1btjBhwgQmTJjAli1bGDduXFT3C490389Ye3Vk+Tr69x44ln6H0f2KlvJ1pOOtG6S5ukAzKSAuwl1ET03zDyyscaVEpDU6/4uIyNGEvKXUqFGjmDp1KhdeeCE9e/Zstu6mm2467vdNS0tTv3ARkSgVrrqhK6pr9Cel4kxGxMctOzXN373562JnZAMRkU5L538REWlNyJNS+/fvp1+/fnz77bd8++23weWm47hyXrBgQbOf1S9cRCQ6hbJu6Opq3d8lpSLttHQ7ALtLanG5vRGORkQ6I53/RUSkNSFLSv3P//wPzz77LH/9618B/3hQdrs9VG8vIiJRSHVD6NV1oqRUZmIcaQ4rFfVu/nOwmv4JIX/WJSJRSud/ERFpi5CNKbV169ZmP1944YWhemsREYlSqhtCL5CUskZ4kHPwt3Q4s7d/sPzP8yojG4yIdCo6/4uISFuE7ZLW6OgRdEVEpNNT3XDiahs7T0spgLOaklJb8ysjG4iIdGo6/4uISEvClpRSP3ERETmc6oYT15m67wGc1asbAJ/nV0Q4EhHpzHT+FxGRlnSCxv8iIiLSVnVNA4rHdZL7uzN6+VtK5ZfXU1HXGOFoRERERCSahGxEUo/HwyuvvBL82e12N/sZ4KqrrgrV4UREJAqobgi94Ox75s7RUirZHsep6Ql8W17HtgPVXJSVEemQRKQT0PlfRETaImRJqYyMDBYtWhT8OS0trdnPJpNJFY+ISBejuiH06prGlLJ2ku57AOf0S+Hb8jo+3V+lpJSIADr/i4hI24QsKfXvf/87VG8lIiIxQnVD6AVbSkW4+57h81FcXATAOSd146VtB/m0abBz3yHrevbMxGzWaAEiXY3O/yIi0hYhS0qJiIhI+NV2kpZSzqpylm+oJyGhgB99bwgAu4trqap3U19VypPr/NPB/++4HHr16h3JUEVERESkk9KjSxERkSgSHOi8E4wplZiaTlJaBmmOOE7rkYgBfH6gCoCktAyS0tSVT0RERESOTkkpERGRKNJZWkoFBLrxDe3lAGBzXmVkAxIRERGRqKGklIiISBTpLGNKBTiryvnrx3uoqKkF4ONvSiMckYiIiIhECyWlREREokhdU1LK2gm67wUkpqYzqH9vTEB+VSPFte5IhyQiIiIiUUBJKRERkSjR6PHR6PUno+I6Sfe9ALvVQrrd33zrs4K6CEcjIiIiItFASSkREZEo4Wz0BL/vLN33DtU7yQLApwW1EY5ERERERKKBklIiIiJRwtngn3nPagZTZ0xKJfovK7YV1uE1OldLLhERERHpfJSUEhERiRLOBn9LKWsnrb3T4k2k2i3UewyK63yRDkdEREREOrlOelkrIiIih6sJJqU6YTMpwGQyMaZfEgD7a5SUEhEREZHWKSklIiISJWoDSSlLhANpxXlNSakDTi8+deETERERkVYoKSUiIhIlvhtTqnO2lAI4K9NBss1MgxdK6tVaSkRERESOTkkpERGRKFHTyceUMnw+ykuLGZrhb8qlLnwiIiIi0pq4SAcgIiIibRMc6NzSOVtKOavKWb6hnmqXAfRkf4268ImIiIjI0XXSZ60iIiJyOGejv/uerRPX3omp6fRJSyDOZODywq5SV6RDEhEREZFOqhNf1oqIiMihnJ189r0Aiwl62v0tpD7Oc0Y4GhERERHprJSUEhERiRLOKJh9L6B3gj8ptT7PqS58IiIiItIiJaVERESiRLS0lALoafcPyF5S52Hr/qpIhyMiIiIinZCSUiIiElO8Xi/XXXcdd955Z3DZtm3bmDp1Kjk5OYwdO5ZVq1Y122f16tWMGzeOYcOGMXnyZLZu3drRYbeJs6HzjykVYDFBv2R/k67XdhQFl/t8PgoLD1JYeBCfT7PziYiIiHRlUXBZKyIi0naLFy9my5YtwZ+rqqqYOXMmV111FZs3b2b+/Pk89NBDbN++HYBNmzZx//33s2DBAjZv3syVV17JrFmzqK+vj1QRjqqmk8++d7hTU/xJqXe+LqGuaZD24uIinly3lSfXbaW4uKi13UVEREQkxikpJSIiMWPDhg2sXbuWyy67LLhs7dq1pKamMm3aNOLi4hgzZgwTJ05kxYoVAKxatYorrriC4cOHY7VamT59OmlpabzxxhuRKsZRfdd9L8KBtFF3u4k+yVbq3T7W7SoOLk9KyyApLSOCkYmIiIhIZxAll7UiIiKtKysrY+7cuTzyyCM4HI7g8t27dzNw4MBm22ZlZbFz504AcnNzW13fWRiGgbOptVE0jCkFYDKZGJ+VAsCqzw9iaMBzERERETlEXKQDEBEROVE+n4/bbruNGTNmMHjw4GbramtrmyWpAOx2O3V1dW1a31YmU8vfh4rL7cPr8yd1rBbwhv4QJ6ylYo/L6sbfvihnV7GTLwtr6HnI4zCTKTyfVUcJxB7NZTgeKndk4wi3WC+fiIh0LkpKiYhI1Hvqqaew2Wxcd911R6xzOBzU1NQ0W+ZyuUhMTAyud7lcR6xPS0trVwzduye3+H2oFFX7Y7SYIDnBhqnBhslmIyEhHofd/71h9rb4tSO2AbAfts7hsHFK7xSuPLsPqz7dz0tfFjH34l44HP7t09OTyMgI/WfV0cLx+44GKreIiIicKCWlREQk6r366qsUFxczYsQIgGCS6e233+b2229n/fr1zbbPzc0lOzsbgOzsbHbv3n3E+gsvvLBdMZSV+RNf3bsnU1ZWQ6h7quWV+VtuJVjNuFxu6l2NmH0W6uoagt/7Glv+2hHbALhcjZgOWWaxWCkvd/JfZ/Zk1af7eWP7QSacbKO+vhGA8nInNlvNUcvc2ZlM4ft9d2Yqd2yXO1BOERGRjqAxpUREJOq9+eabfPbZZ2zZsoUtW7YwYcIEJkyYwJYtWxg3bhylpaUsW7YMt9vNxo0bWbNmDVdffTUAU6ZMYc2aNWzcuBG3282yZcsoKytj3Lhx7YrBMAjeqAa+D+WrxuUf5DzB1nmr7sPv0w2fj6KiIpK9NVyc1R0D+Pv2su/Wh+Fz6uhXrJRD5Va5Dy+niIhIR1BLKRERiWlpaWk899xzzJ8/n0WLFpGens68efMYPXo0AGPGjOHee+/lvvvuo6ioiKysLJYuXUpqampkAz9MtcsNgM3kI1oGDHdWlbN8Qz0JCQX81/AzeC+3jA/3ORl/io2U+M6bXBMRERGRjqGklIiIxJwFCxY0+3nIkCGsXLnyqNtPmjSJSZMmhTusE1JQ7G9hVO2so67OGuFo2i4xNZ3ExEQGpMdzcVZ33sst4z9lHsb0sUU6NBGJIV6vl+nTp9O3b99gHbBt2zYeeOABcnNzSUtLY9asWUydOjW4z+rVq3niiScoKSlhwIAB3HPPPeTk5ATf7+GHH+bVV1+lvr6e0aNH89vf/paePXtGpHwiIrFKjylFRESiQK3bB4DdGr3Pk64fczIAeTU+qhp8EY5GRGLJ4sWL2bJlS/DnqqoqZs6cyVVXXcXmzZuZP38+Dz30ENu3bwdg06ZN3H///SxYsIDNmzdz5ZVXMmvWLOrr6wFYsmQJ69ev56WXXuLDDz/Ebrczb968iJRNRCSWKSklIiISBWobvQDEmaOj615LBvVMYkw//6yHX5Z6IhyNiMSKDRs2sHbtWi677LLgsrVr15Kamsq0adOIi4tjzJgxTJw4kRUrVgCwatUqrrjiCoYPH47VamX69OmkpaXxxhtvBNffcMMN9O7dm6SkJObOncsHH3xAfn5+RMooIhKrlJQSERGJAoGWUnGm6E1KAfy/Id0B2O/0kVvminA0IhLtysrKmDt3Lo888ggOhyO4fPfu3QwcOLDZtllZWezcuRPwz7J6tPU1NTUUFhY2W5+RkUFKSgq7du1qd4wmU/tf/h2Pb99oeh3v5xNtr65Szq5U1q5aznCI3j4AIiIiXUhdU1LKGqYLgo5ySlo8Jyeb2Vfj4/ltZVxw5qmRDklEopTP5+O2225jxowZDB48uNm62traZkkqALvdTl1d3THX19bWApCQkHDE+sC69ujePbld2zc0JAHF2O3xpKcnkZHRvv2jTXs/n2jVVcoJXaesKmdoKCklIiISBWobm1pKRXH3vYCzMuLIq2lk68E6Ps2vZHi/1EiHJCJR6KmnnsJms3Hdddcdsc7hcFBTU9NsmcvlIjExMbje5XIdsT4tLS2YrAqML9XS/u1RVlZDeyZNrahwNh2vgfJyJ/HxNcfYIzqZTP6b3fZ+PtGmq5QTuk5Zu2o5Az+HmpJSIiIiUaA22FIq+q9+kmxmBqRa2FPp5U8f7uXZH5+NKVxtwkUkZr366qsUFxczYsQIgGCS6e233+b2229n/fr1zbbPzc0lOzsbgOzsbHbv3n3E+gsvvJCUlBQyMzObdfErKSmhsrLyiC5/bWEYtOvGNbit0f59o1FXKCN0nXJC1ymryhkaGlNKREQkCtQFBjqPgaQUwJnd47BZTHxxsJr135ZHOhwRiUJvvvkmn332GVu2bGHLli1MmDCBCRMmsGXLFsaNG0dpaSnLli3D7XazceNG1qxZw9VXXw3AlClTWLNmDRs3bsTtdrNs2TLKysoYN24cAJMnT2bJkiXk5+fjdDp58MEHGTlyJP37949kkUVEYo5aSomIiESB4EDnUfg4yfD5KC4uAqC4uAjDMHDEmZgwMJWXv6rguY35nH9qulpLiUjIpKWl8dxzzzF//nwWLVpEeno68+bNY/To0QCMGTOGe++9l/vuu4+ioiKysrJYunQpqampAMyePRuPx8O0adOora1l1KhRPPbYY5ErkIhIjFJSSkREJAoExpSKxu57zqpylm+op2ffRor2fk1Sj74kOBxckOlmzS5/a6nP9ldpbCkROSELFixo9vOQIUNYuXLlUbefNGkSkyZNanGd1Wplzpw5zJkzJ6QxiohIc1H4vFVEQsnn81FcXExxcTE+ny/S4YjIUQRm34vW7nuJqel0S+9JQko64E9UrfnsW3rHNwKwbFN+JMMTERERkQhQUkqkiystLeWpd7bx1DvbKC0tjXQ4ItICn2EEk1LWGKq5E1PTGdIrEbMJNu6r4D+FsTnDlIiIiIi0LIYubUXkeCWmpJPY1HpBRDqfukYvgfZR0dpS6mgS42BULysAf96UB/hbcBYWHqSw8KBacIqIiIjEMI0pJSIi0sk5GzwAmE1gibGxwJ1V5XidjUA67+eWsbe8DntjFU+u2wrA/47LoVev3pENUkRERETCQi2lREREOjlngxeIra57h+qZnkKfRDMGsGprAQBJaRkkpWVENjARERERCasYvbwVERGJHTVNLaWs5hhrJnWI7DQLAK/tKKLO7Y1wNCIiIiLSEZSUEhER6eQC3feslggHEkaZCWb6dbNR5/by9h4NeC4iXZPL7eXPn5VysMYT6VBERDqEklIiIiKdXKCllC2GW0qZTCauGJQCwLo9VRhGbA3oLiLSFruKnbz8VSWbDrgiHYqISIdQUkpERKSTq3E1JaViuKUUwEWnJBMfZ2ZvZSMVDUpKiUjXc3JaAgBVDT4avDoPikjsU1JKRESkk6vuAmNKGT4fdZWljOrrvyH7plJdV0Sk60lNsNKvmxWA0npfhKMREQk/JaVEREQ6ua7QUspZVc7yDXsweRsAyKv24vWplYCIdD2n93AAUFqvc6CIxD4lpURERDq5apcbiO0xpQASU9PJOqkXdrMPt2HigFOtBESk6zmjpx2AErWUEpEuQEkpERGRTq66C7SUCjCbTJxk95f32ypvhKMREel4ZzS1lKpwGTR4lJgSkdimpJSIiEgnF5x9zxLbLaUCTnL4W4YV1vkoqXVHOBoRkY7VKymOeIsJH5Bf3RjpcEREwkpJKRERkU4u2FKqi9TaCRaDdJt/LJX39tZEOBoRkY5lMplItPkfQlTWq8WoiMS2LnJ5KyIiEr0CSSlrF2kpBXBSoj8p9eE+JaVEpOtxxDUlpVxKSolIbOuUSamdO3cyY8YMRo4cyfnnn8/tt99OeXk5ANu2bWPq1Knk5OQwduxYVq1a1Wzf1atXM27cOIYNG8bkyZPZunVrcJ3X62XhwoWcd9555OTkMGvWLIqLizu0bCIiIu0V6L4X3wXGlAro5TAwA99WNPJtWV2kwxER6VD2OP9tmpJSIhLrOl1SyuVycf3115OTk8NHH33Ea6+9RmVlJXfffTdVVVXMnDmTq666is2bNzN//nweeughtm/fDsCmTZu4//77WbBgAZs3b+bKK69k1qxZ1NfXA7BkyRLWr1/PSy+9xIcffojdbmfevHmRLK6IiEirGjy+4EC31hiffe9QNjP0SvRfpqzdqQdIItK12IMtpTwRjkREJLw6XVKqoKCAwYMHM3v2bGw2G2lpaVx77bVs3ryZtWvXkpqayrRp04iLi2PMmDFMnDiRFStWALBq1SquuOIKhg8fjtVqZfr06aSlpfHGG28E199www307t2bpKQk5s6dywcffEB+fn4kiywiInJUNS7/QN9mE1g7Xa0dXv26+ZuGrd1VgmEYEY5GRKTjBLrvVamllIjEuLhIB3C4AQMG8MwzzzRb9tZbb3HmmWeye/duBg4c2GxdVlYWL774IgC5ublcffXVR6zfuXMnNTU1FBYWNts/IyODlJQUdu3aRb9+/doco6mTP6gOxNfZ4zwePp+P0tJSvN46zGY7JlN479AO/QxNpvB/pof/7jrymB11vEOPGYt/oxA95evs8YlfVdNT8kSrGVMX+6X1TTJjs5jIq6jn6+JaBmUmRTokEZEOYbdqTCkR6Ro6XVLqUIZh8Nhjj/Huu++yfPlynn/+eRwOR7Nt7HY7dXX+sSZqa2uPur62thaAhISEI9YH1rVV9+7J7S1KRERLnO1RVFTEnz/8CoBfTzqXzMzMsB7P663D4bAB0L17EhkZ4f1MA8dzOOKpcdWQnt5xx4SOKeOhYvFv9FCxXj7pGDVNSamkrjSgVBOr2cS5fRNZn+dk7a5iJaVEpMvQmFIi0lV02qSU0+nkrrvuYseOHSxfvpxBgwbhcDioqWk+C4/L5SIxMREAh8OBy+U6Yn1aWlowWRUYX6ql/duqrKyGztyLwGTy3wx39jiPR1mZkzh7Ena7jfJyJxZLwrF3OsHj1dc3Br/vqOPF2RsAYrKMENt/oxA95QvEKZ1bddMg50m2LtZ3r8mFJyf7k1I7S5j9vVMxd7HWYiLSNQVn32tQUkpEYlunTErl5eVxww030KdPH1588UXS09MBGDhwIOvXr2+2bW5uLtnZ2QBkZ2eze/fuI9ZfeOGFpKSkkJmZSW5ubrALX0lJCZWVlUd0CTwWw6BT32gGREuc7XFomTqifIe+f0ceL5bLePixY+1v9FCxXj7pGMGWUjYL4ItsMBEwvE8CCTYLhTUNvP/lt1x05imYzV0zQSciXUcgKVXT4MXrM7B0oYkuRKRr6XRXdVVVVfzsZz/jnHPO4dlnnw0mpADGjRtHaWkpy5Ytw+12s3HjRtasWRMcR2rKlCmsWbOGjRs34na7WbZsGWVlZYwbNw6AyZMns2TJEvLz83E6nTz44IOMHDmS/v37R6SsIiIix1LVNNB5chdtKRUfZ2ZUX38Lzic+/Ibi4qIIRyQiEn7xTUkpnwGV9e4IRyMiEj6drqXUyy+/TEFBAf/617948803m63bunUrzz33HPPnz2fRokWkp6czb948Ro8eDcCYMWO49957ue+++ygqKiIrK4ulS5eSmpoKwOzZs/F4PEybNo3a2lpGjRrFY4891sElFBERabtAS6lEmwXomlODX3hyMu9+W0Nhow2vT80PRST2mU0m4i3Q4IWKOjfdE22RDklEJCw6XVJqxowZzJgx46jrhwwZwsqVK4+6ftKkSUyaNKnFdVarlTlz5jBnzpwTjlNERKQj1Bw6plQXy0kZPh/FxUX0sRjYzODywpfF9fTtE+nIRETCL95iosFrUFbXSBbtGwNXRCRadM2+ACIiIlGiqtmYUl2Ls6qc5Rv28PePdtDL4R9P6/29NcfYS0QkNtibTvvldY2RDUREJIyUlBIREenEAt33kuO7ZpWdmJpOQko6fRP83fY+2ldDXaNmoxKR2GdvGleqok5jSolI7OqaV7giIiJRwOfzUVpTB4C3vgajC0/nmG6DJKuJeo/B21+XRDocEZGws1v8SamyWiWlRCR2KSklIiLSSRUXF5Ff4U9Krf/PXurq6iIcUeSYTHBqir8vyz+/KIxwNCIi4RffNPpvhbrviUgMU1JKRESkE3Mb/qq6W3JShCOJvFNTLJhNsK2gml3FzkiHIyISVvFmf0upwNiCIiKxSEkpERGRTsrjM3D7x/fGZu66XfcC7GaD4T39TQee+XA3Pp8vwhGJiIRPYH6Lape674lI7FJSSkREpJOqafhuQG+rKYKBdBLOqnKMav94Uu/vrebLb/dHOCIRkfCxNY0pVVWvllIiEruUlBIREemkqpuSUvFxZkxKSgHQq3s3+nSLx8DEC1+URzocEZGwiW9qKVWlllIiEsOUlBI5Bo/PIK/aw1cl9ZEORURasXPnTmbMmMHIkSM5//zzuf322ykv9ycttm3bxtSpU8nJyWHs2LGsWrWq2b6rV69m3LhxDBs2jMmTJ7N169ZIFOEIgaSUPU7V9aFG9E8FYN2ear4qqolsMCIiYWI7ZEyprjz7qojENl3lirTiP8V1vLK7jvUHGrh7XR5V9XpSJdIZuVwurr/+enJycvjoo4947bXXqKys5O6776aqqoqZM2dy1VVXsXnzZubPn89DDz3E9u3bAdi0aRP3338/CxYsYPPmzVx55ZXMmjWL+vrIJ6KDSSmrJcKRdC6ZyfH0TzZjAAvfzsXj1dhSIhJ7AmNKeX0GtY3e1jcWEYlSSkqJtGLdnqrgIMONXoMNeysiG5CItKigoIDBgwcze/ZsbDYbaWlpXHvttWzevJm1a9eSmprKtGnTiIuLY8yYMUycOJEVK1YAsGrVKq644gqGDx+O1Wpl+vTppKWl8cYbb0S4VFDtUkupozm7h5UEq5kdhTX86aO9kQ5HRCTk4sym78aVUhc+EYlRusoVacX2wjoAUuP9/yof7CmLZDgichQDBgzgmWeewWL5rkXRW2+9xZlnnsnu3bsZOHBgs+2zsrLYuXMnALm5ua2ubyuTieC4T4HvT/RV3ejPitut0VFdd+SwVwlWE7eOyQRg+Zb9rNy4C8Pwheyzb+sLOvZ4neWlcsf2SzqPbk0DS2mwcxGJVXGRDkCksyqsdlHodGMChvW08l5+Axv2luP2+rBaouMGUaQrMgyDxx57jHfffZfly5fz/PPP43A4mm1jt9upq/MnnWtra1td31bduye3+P2JaDT5zzXJDhsOw4bJZsMwe5t9TUiIx2FveV1HbuP/3DouDne9jQnDerHX6eVvnxXzh/WF9M1IYvKYwSH57NsjVL/vaKNyS2ewc+dOFi5cyI4dO7BarZx//vnceeedpKens23bNh544AFyc3NJS0tj1qxZTJ06Nbjv6tWreeKJJygpKWHAgAHcc8895OTkAOD1enn44Yd59dVXqa+vZ/To0fz2t7+lZ8+eHVq+JJuZ0jq1lBKR2KWklMhRfJpfBUCa3UxmooVUu4VKl5et+6sYeXJahKMTkZY4nU7uuusuduzYwfLlyxk0aBAOh4OamuaDYbtcLhITEwFwOBy4XK4j1qelte//vKzMf4zu3ZMpK6shFGPSFlf647JgUO9qxOyz4Gts/rWuruGo6zpyG//n1oipo+Kob6S83MmPTu/GR7tLyavxcddrezAaGvneGSdjNof/4YHJFNrfd7RQuWO73IFyRoPAeILXXHMNTz31FLW1tdxxxx3cfffdLFy4kJkzZ3LLLbcEu3PPnj2bQYMGMXTo0OB4gkuXLmXo0KGsWLGCWbNm8e677+JwOFiyZAnr16/npZdeIjk5mXvuuYd58+bx9NNPd2gZk5taSlWrpZSIxCg19xA5ii35lQBkJlowm0zk9PbfwG47UB3BqETkaPLy8rj66qtxOp28+OKLDBo0CICBAweye/fuZtvm5uaSnZ0NQHZ2dqvr28owCN6oBr4/0VdVcKDz6KiuO/o+3TDAhImRva1kWD00eOGut/axbuNWDh48yMGDB/F6fSH7fbT0CsTR1V4qd2y/okU4xxNctWoVN9xwA7179yYpKYm5c+fywQcfkJ+f36FlTLb5z/9qKSUisSo6rnJFImDbAX9LqZ4J/n+TU9PiAfimrH1dekQk/KqqqvjZz37GOeecw7PPPkt6enpw3bhx4ygtLWXZsmW43W42btzImjVruPrqqwGYMmUKa9asYePGjbjdbpYtW0ZZWRnjxo2LVHGCgrPvxWn2vcMZPh/FxUUUFxdhBs5JcZFiNWg0zNy/oZqlG/N4ct1WiouLIh2qiIRJuMYTrKmpobCwsNn6jIwMUlJS2LVrV7vjPO5xvUyHjCnl8kR8rDGN06ZyqqwqZzio+55ICxo9Pg5U+bvNpNn9Sal+Kf6k1LfltRGLS0Ra9vLLL1NQUMC//vUv3nzzzWbrtm7dynPPPcf8+fNZtGgR6enpzJs3j9GjRwMwZswY7r33Xu677z6KiorIyspi6dKlpKamRqAkzR06+56ekTfnrCpn+YZ6DHc9ST36EmeGkRk+1hebqPNa2FIKF2R2j3SYItJBQjmeYG2t/1ovISHhiPWBde3R3u6QDQ1JQDF2ezy2ODtQTSMmMjKio1tle0VLd9ET1VXKCV2nrCpnaCgpJdKCA1UufAY44szYm6biPTnVP5DvvvJ6PD6DOHOYUsUi0m4zZsxgxowZR10/ZMgQVq5cedT1kyZNYtKkSeEI7YQEW0pZLUpKtSAxNR1fY33w53gLjEip56OKBAqqGvjGrsscka4g1OMJBpJV9fX1R92/Pdo7DllFhbPpeA0kJloBKKqoo7S0prXdoo7J1LXGaYv1ckLXKWtXLWfg51DT1ZpIC/Iq/BchfbpZMTW1U+yRaMUeZ8bl8bG/sp5T0hNaewsRkRPicntp8PqvdOxxZmLrViR8kuIMBncz+E+ViW0lHqpcXnpFOigRCZu8vDxuuOEG+vTpw4svvhjsvj1w4EDWr1/fbNu2jCd44YUXkpKSQmZmZrMufiUlJVRWVh7R5a8t2jtWV3BbA5Jt/u57lfXumL35jbaxzI5XVykndJ2yqpyhoTGlRFqQX9mUlEq2BZeZTSZO7e5PRH2rcaVEJMwq6/1to8wmsFrUMrM9Tk0y6J5gxe2Dv2zeT2HhQXw+X6TDEpEQC+d4gpMnT2bJkiXk5+fjdDp58MEHGTlyJP379+/QMibZvhtTSkQkFqmllEgL8isOSUp5v2vafWr3BL4qcvJtWR2XtG9iLhGRdimv8yel4i0EW2xK25hMMPLkVP71VQlv5zXgefNzfnX5MHr16h3p0EQkhMI5nuDs2bPxeDxMmzaN2tpaRo0axWOPPdbBJYTk+KbZ9+rViVtEYpOSUiItyAu0lOpmo7DikKRUU5e9b8o02LmIhFdpbSMA9jglpI5H3xQ73a0eytxx5Hm6RTocEQmDcI4naLVamTNnDnPmzDnhOE9Et2BLKSWlRCQ2qfueSAu+ayllbbb81O7+wS2/Ufc9EQmzQFLKoa57x8VkMpGd6P8Mv632Ulanri8iEn2S4/1JKWeDF4+vCwxeIyJdjpJSIodxub0U1TQA0Lebrdm6k9P9s7Hsr6zH6Aqj2olIxJQ6/echtZQ6fuk2H+k2A58BL39VEelwRETaLclmJlALVKoLn4jEICWlRA6zv8rfXS8p3kK3pqdTAX262TEB9W4fZXW6MDgePp+P4uJiioqKNPCwSCuCLaXU0f6EZHfzn2fe3F1FeV1jhKMREWkfi9lEisPfcr9S154iEoOUlBI5TKDrXr9UxxGDC9vizPTqFg/AgaZxp6R9SktLefLtbTzy6mZKS0sjHY5Ip1XqDCSl1FLqRGTEQ7rdRKPX4G+fHoh0OCIi7ZaW4E9KKbEuIrFISSmRwwSSUv3THC2u75vqX54fhqSUYRjsrfLw+YFq9pQ3xmwXwcSUdJJS04+9oUgXpoHOQ8NkgjO6+5ubrfq8gNx9+yksPEhh4UG11hSRqJDelJSqUEspEYlBSkqJHCYw816/1JaTUv1S7QDsr3S1uP5EbD5Qy4aCBjbnVfL+3lo+2e8M+TFEJDp8131PSakT1SfRzCmpNuoavdz7r69YviWfJ9dtpbi4KNKhiYgcU5rDP8ZphcaUEpEYpKSUyGGC3feO0lLqpJTvBjsPtde/9g/Ea2uabev1rytDfgwR6fy8PoNyJaVCxmQycc2Z/taZe+vjsadkkJSWEeGoRETaJi3YUkrd90Qk9igpJXKYQLe8o3XfOyktkJQKbUupgioXnx6oBWBstv9m6dMDtRyo0thVIl1NZb0brwEm4LD5FuQ4ndc/ib7JVhp98J/CmkiHIyLSZt+NKaWWUiISe5SUEjlEvdtLSdPgwkfrvndSSqD7XmiTRa9+cRAD6JVopl+agz7JcRjAq18UhvQ4ItL5BQY5T7FbMJvUUioULGYT15zlby31+YFqXJ7YHLNPRGKPxpQSkVimpJTIIQJd91LsccHpdw93UlOyqsrlodoVuouDTfsqATglxT8gb3Z3//gBG/dWhOwYIhIdAuNJpTviIhxJbLn41GTS7CbcXoMvSj2RDkdEpE3Smq5JNaaUiMQiJaVEDhHoune08aQAEmwWuif6E0ah6sLX6PHxdYl/UPMMh7+vTq8k/wXIrmIntY26eRLpSkprGwBId6jvXiiZTSZyevjPrd9UefmqRN2jRaTzS0toGuhcY0qJSAxSUkrkEHkVrY8nFRDqLnxflzhxew26xVtIsvq76iTazGQmWfEZ8EVBdUiOIyLRIdCNOE0tpULC8PkoLi6iuLiIDIeJgT0SAXh8YzGNHl+EoxMRaZ3GlBKRWKaklMghgjPvHWU8qYBQD3b+5UH/oLsDM+yYDhk/5sye/uN8fkBJKZGuRN33QstZVc7yDXv46wdfUldXx6iTU7FbIL+6kT9vyot0eCIirQp036tt9CqRLiIxR0kpkUMca+a9gFC3lPryoD/pNCij+XHP7JkAwOcHqkJyHBGJDgeq/AnvzCQlpUIlMTWdhBT/QOd2q4VzMv03ecs+ySe3tDaSoYmItCrZHofF7H9oqXGlRCTWKCklcohA973WxpSC71pShSoptaNpevLBRySl/D9/ebAGt1dPxkS6ioKmpFRgbDkJvb4JMKxHHB6fwb2vfcmBggJ8Pp1nRaTzMZtM3w12rnGlRCTGKCkl0sTZ4An21T9m973UppZSVSfefa+yzh3sBjgww95sXb8UG93scTR4fOzRk3yRLsHrM4JJqUwlpcKmtrqChNoiLPj4uqyBu9fsoLi4KNJhiYi0SONKiUisUlJKpEmg1VN6gpWk+Na7zJzUlLQqcTbicntP6LiBVlInpzlIsjWfactkMnF6ZhIA/2naTkRiW7GzAY/PwGox0V1jSoVVenoqpyf7Wx3sqo2n0KmbPRHpnAItpSrVfU9EYoySUiJN8to4yDlAisNKclPi6kRbSwXGkzqrd3KL68/o5V/+n0LnCR1HRKLDgaaWk7272YNjiEj49LN7SLcZeA144pNiDMOIdEgiIkfonmgDvpudVUQkVigpJdIkMMj5scaTCgh24as4sXGlAjPvndm7W4vrT89sSkoVqaWUSFdwoMp/TumbYj/GlhIKJhMMTfNhNsHWg3W88Z/iSIckInKE3t3iAThYHZqZn0VEOgslpUSa5Fe0bea9gEAXvhNpKeUzjGD3vWO1lPqmtPaEuwqKSOcXmHlPSamOk2SFs7r7W78++t4eyjWQsIh0Mn2a6oSCEIxnKiLSmSgpJdIkr8Jfybel+55/u6aWUicwA19eRT01DR7i48xkZyS2uE3PJBvdE214DdhVrC58IrEu0H2vbxvPRRIaA1NN9Es2U+Xy8Pt3ciMdjohIM727+a871VJKRGKNklIiTfIq6oC2d9/rn5YAwN7yuuM+5o6mrnuDeyYRZ2n539FkMnFGYLDzIiWlRGKdWkpFRl11BZmeMsDg7a9LeW1HYaRDEhEJCrSUOljdoLHvRCSmKCklAlS73FS5PEDbW0qdluFPSuWW1B73xUFgkPMzj9J1L+D04GDnGldKJNYFklJ2j5Pi4iLdfHSgXt27cVZ3/wxXC9/OJbekNsIRiYj4ZSbHYzZBg8dHWZ1m4BOR2KGklAiwp9Tf2ikzOZ4Em6VN+5ySnoAJqHJ5KD/Oi4PvxpNqeZDzgDOUlBLpEsrrGqmsd2MCXv/kP/z1gy+pqzv+1pjSfoPTTJyRbsHl8TF71efsr9DnLyKRZ7WY6ZHUNNi5xpUSkRiipJQIsLvE3y0uu0fL4zq1xG61BLv67Slt/9N0l9vL101P4Y82yHnAmU0z8OVV1FPT1KJLRGJPYNy4Pt2spHbPICElPcIRdT111RWkNxTRzWaivN7Lz1/4nNzjOMeLiIRaH83AJyIxSEkpEQgmhwa2IykFMKB7Uxe+47hh2VXsxOszSE+w0is5vtVtUxOswQuRr4pC21rqs4JadpQ2kl/twetTNyGRSNrVNG7caWmtnxMkvFLT0phwVm+SrCaKaz38z98+588ffEXBwQJ8Pl+kwxORLkoz8IlILFJSSgSC44Zk9Uhq135ZTTPmfVPa/u4dga57Q3p3w2QyHXP7cHTh+8sn+dzzTj7bS9x8dKCBhz8qwKfxa0QiZlex/1w0QEmpiEuMj+P7J9sYmumgzu3lic0l/OSFXSx751Mlp0QkIgIz8BWopZSIxBAlpaTL8/qMYEun9nTfAzitKSm1p6z9LaW+bJp571iDnAec3tSF76sQzcD3xn+KWPzhtwD0TrRgBj7YV8NT6/eG5P1FpP12FfvPC6ela+a9ziDeYuJ3Y/tyw/AM4kxQ47WwZHs90174mr9t2E2jR4kpEek4vQMz8FU1RDgSEZHQUVJKolIoW/PkV9bT4PERH2du88x7Aacd0lKqPTEZhsEXBf6Z9441nlRAoKXUlwerT3g2rrpGL49/4E9IXXNWdy7ub2dkbxsAyz7JZ2957Azs6/P5KC4upri4WC0bpFNzNnjIr/Q//R6QrpZSnYXFbOLKwWlMOC2erIRG4kwGTq+ZP24s4sqln/DEe7lUuzQTloiE30mp/qRULF2niYgoKSVR5a3dlazJrWPZ1kpuf2sfeRX1J/yeuwNd9zISsZiP3Y3uUP3SHMTHmalze9lX3vZYDlS5KKxpIM5sOubMewFn9k4mzmyi2NkYvHE9Xs9vzqe0tpE+KXb+39DuAJyaamXkSUn4DGKqtVRpaSlPvbONp97ZRmlpaaTDETmqr5smXMhMjqdbfNtmAZXwMnw+iouLKC4uwmaGgUmNXNrbx5DuFlLjTZTWNvJ/b+7ih09u5KE3tvP13jwKCw8qAS4iYTG4ZzIWExTWNFCoLnwiEiOUlJKosWLLfhZtLMTp9rcS+rKonp/89VO+Lj6x7mw7i9o/816AP6nkb8G09UBVm/f7ZF8FAEP6dMNhbdvNp8NqYWgffwJrc15FOyP9TlW9m79/egCAWy48Favlu9PAz4ZlYALe/rqUnSEeUD2SElPSSdQsZtLJfVHg/58b3LN9Y9tJ+Dirylm+YQ9//eBL6ur8LROsZuhnqeLsuGJG9rKSZHbj8hi8/FUlP3vpG25/9UsOHDwY4chFJBYl2CwMbKojth2ojnA0zfl8Pg4eLOCgxtwTkXZSUkqiwpa8Sh57/xsATu9u5arTu3FGDwf1bh93vfYVtY2e43/v/EoAhvVNOa79zznJv9/W/W1PSm3O8x/z3P6p7TpWYPtP9lW2a79D/ePzAurcXrJ7JDI2O6PZulPS7Fx+ek8Ant2Yd9zHEJH2W/9NGQCnp5kpLi464W66EhqJqekktJDUTk5L5+xTe3NZX4Nzu3tJsnjxYOYrZzw3vZ7H+m/KIxCtiMS6wPVqex6GdoSiokKeXLeVJ9dtpaioMNLhiEgUUVJKOj2X28uD674GYHxWCsN62kh3WPjNJSfRM8lGXkU9j777zXG9d7XLzVdNs9m1N0EUkNOUlPosv7JNN5E+wwgmpUYeZ1Lq0/xKvL7237DWNXp54TN/K6npI/u1OOvfjFH9MQHv5Zaxp7T9A7iLSPtVu9xsbxpnbte3e5u1zJHOzWSCTAdckF7P0DQfdgsU1Li5dfWX/HL1l+SHoJu5iEjAsKbrzs/DnJRqreXT0dYlp2WQnJZx+FuJiLQqLtIBSHTz+XzBcXoyMjIwm0Of53xuUx75lS4yEm38z/CerN5eAEA3u4UHrjidmS9s49UvC5l4ViZnt7O106f5VRjAKekOeiYf38DCQ3p3w9I01lNBtYu+Ka0Plv51sZMql4cEq4Uze7VtkPOAM3slk2izUOXysKvYGRz8vK1Wbz9IlctDv1Q7lw7s0eI2p3ZP4JLsDP69u5Rln+Rz/w8Ht+sYItJ+G/dW4DWgX4qNnhl2aixqJRVtzCbon2hwWpqVOq+Jt/Ma+eibcjbureAH2Sn89/lZnJSWEOkwRSTKnd00lMOe0jqqXW662a1t2s/n8wVbMGVm9sJkMlFW20heZT0VtY3sLy6jzu0jKTkZk8lMdXUVG772P8g8b2AF3bp9d41dVV3F+l0F+ICzTynFkZCEt6GOXRUe4i0mviqpx57SSKrD2uIDUBGRQykpJSckMIg0wM8vPZuePXuG9P13lzh5fvN+AG67NItEW/MnNTknpTDprF68+mUhC9/J5fmfnENcOwYrD4ztNLJ/2nHHaLdaOCMzmS8OVvNZftUxk1Jrd5b4j3lyKnGW9iXx4ixmRp6cxru7S1m3q6RdSalGj4/lW/yf5c9G9mt1UPf/HtWff+8uZe3OYmaOOZl+ae2blfBoPF4fm/Jr2FHaSLLDoLTOTcupMZGu5aOmrl4j+yaCVy1rolmDs4LGunrOiXOzx5dBudfGml2VvP71Fi7JymBs/3jOynTQK7NXWB7kiEhs655o45R0B3vL63n1i0KuO7ffEdscmoACSOneg40781j28R6qPRYSk/I5UOOhttHbwhHKDvneP9vfzq1lhy0H8D/Mzf1PJVDZbM2mwgOw7gBJ8Rb6pTo4Oc1Bj3gv/VJs5AzoS58UO2UlRZhM0NCQhNWahMmk86FIV6WklJywcA0g7fUZPLhuN16fwcVZ3RmbnUFxcfER2930vVN5L7eU3SW1/GPrAf7f8JPa9P6GYbCpKSl1vF33AkaenMoXB6tZt6uEiWf1Oup2Hp/BG1/5yzDhzMzjOtYVZ/Tk3d2lvPGfImZ/79Q2J+Fe21FIaW0jPZNs/PCM1o89KDOJ809NZ/235fxlcz7zLht4XLEeanNeBff9axfFzsamJW42H/iG6851c8OYk9s986FIrKisc/Pv3f4Wp+f2TWRrnpJS0S4xNR1HYz09rRZ83Xrw2b4yiup8vLO7lHd2g93sY+LpZVwz8jROSVfrKRFpn+vO7cf9b33Nc5vymHhmL1ITvmst5TMMPv06jyc/2EWtOZGSWje13ly8BgSSTDQ0AP4WnnaTjzijEbvNRhxePB4PjoRE6murscYnEBdnoXeiBbvdERymoqHBRVGdD2+jC6/HTVJyN6qrKjHFJ+LBgscH5Q0GzgYvXxU5+arokEmJPigkzgx2k5c0h5W0uAb+94LTGDHwZLWqEumilJSSTuvFzwv48mANiTYLt43NOup2qQlWbvreqcxft5un1u/j+wN7tKkr3qf5VeRXurDHmRlxgkmpCWdm8uzGPDburaCw2kWvbvYWt9u0t4Ky2kbSHFbOP/X4knnnn5pOmsNKeZ2bjXvLuWBA92Pu42zw8NTH+wD/hYy1DS20Zozqx/pvy3l9RxHXjTiJk0/gxumvm/N5/INvMYBUu4VUGzg9UFrn5dmNeeSW1PLAFYOxt3EmQpFY8o/PD9Dg8TG4ZxJn9LCzVXMMxAyTCU5KdZDsiePM7lb+nd/IxwfduHxmVu2oYNWOLQzsHs+VQ/sy/vRMUh1t64YjIl3bFWdk8sJnB/i6pJZZq7Zz+ek9cTZ4+E9hDTsOVlPr9gEOwAf4r6262UwkWSE93sT3+to4s18PzPUVvLe/EWdlLSZrHIbbhcnqoM/JJ3Egdwcmqw/DXUttdS2Z3U7m4N6vMcXFY/M0cEZGXwx3Q9P2fTmQW/nd9rW1eKyNNFgSiE/rxYHiEhptKdT5zNS5odEHTiw4nT7ysXLja3n0TCrkggHduSirOyP6pWKLU8spka5CSSnplAqqXDzx0V4AZn/v1GMmma4c0ot/flnIFwdruO/NXTx+9ZBjtrx5Yau/n/wVZ2aSFH9i/wonpToY0S+FLflVrPmyiBvOO/mIbQzDCB7z8tN7trvrXkCcxczlp/fk758d4B9bC9qUlFq6YR/ldW76pzmYPLR3m45zdt8UxpySxoa9FSx4ezdPTB3a7idYPsPg8Q++DXYbnHRWL346pBsvfn4Au91Kj6QEHvv4IO/vKePGVdv5w1VnNXvaJxLrnA0e/rHVP07ez0b2w2Q6/plEpfNyVpXz3sF6TO56vt+7L4U1jeTVmin3xvN1WQMPv/sNj73/DWf0cHB2rwQuGtyXQZnJStSLSIssZhO3X3oat7z0JbmltSz+8Ntm6834SLGZOKl7N+KcxdjcNdi89XRL6Yvhruc/e2opbzA4uPdrkjP6HvN4SakZdOueSU1FKSarA8PdeovepNQMDHd9U8KqDymeimDCyumspd7jheRekJTO/nInJXVeip2NvLz9IC9vP4gjzsQ5fRIZmulgzMC+ZPdIOu7rZhHp/LpcUqqsrIx77rmHTz75BIvFwpVXXskdd9xBXFyX+yg6rbpGL3Ne3UGd28vQPt24+uxjJ1HMJhO/GT+I65Z/xua8Sp7duI+Z551y1O3zKur5YI+/b/w1OX1CEveVQ3qxJb+KF7cVMDWnzxFPvN/PLWPD3grizKY2lak1U4b1YdXnBWzYW8H7uWVclHX0xNSmvRXBGffmjD2tXU+ebr80ix/95VO25Fex6vMCrsk59oVLgMfr44F1u3l9RxEAt1x4Kted2y/YBdNkMnHxqd3I7tODX7+6gy8O1vA/Kz/n0f86i/4hGsMqUvxjORRRVuake/fwTAAgodfR9YNhGMxfu5sql4f+aQ4uyc6gpFjTaMeqxNR0fI31mE3Q2+6lbzcbKZl9+WzXN+TXmXH6rGwvqmd7UT1/3VaGxQR9utk4NdXGqWnxnNGvB31TEuidEk9yfJy6uYh0kM5w73DoGFGB2e6MkhLGJFdRZEqlrKaegT0SOSnJTHGdF0t9BRabgz4np3EgtwBTcnqzRNKhSaaOlpyWQZK7HpPVoE/fFE4yiin1VVDRaKKMZMo8Nuo9cazPc7I+z8mSzSXYLCZ6JMbRMyGOjIQ4//eJVgb1y6R3ip2eSfFt6gUgIp1Tl8vE3HrrrWRmZvLhhx9SWlrKrFmzWLZsGddff32kQ4tqgT7mJ6qq3s2dr33F7pJa0hOszL9iMOY2Xnif0j2B2y/N4ndvfc3SDXlYLWamj+x3xIW7y+1l7mtf4TNg9ClpDOieGJLYL83uwXPpeewtr2f+2q/5vyvPCB67oMrF7/+dC8B1555YVziA/mkOfjLiJJZ9ks/v/53L4MwkMltoTfZVUQ13vvYfvIa/i+GYU9rXZfCkVAf/e/4p/PH9b3jk3T1kJNoYe5RZ+w5VWO1i7us72V5QjcUE88YPZMKZLY+1NeykFJ750TB+8fIX5FXU899/28rcywZySfbxTymcX1HPx9+Ws2FvBTuLqimv82Axw8cHv2XYSZWMPiWNUSenkWwPzymwtLSUZR99hcvVGJYJACQ8Orp+eH1HEW9/XYLFBDeNSKeosIDS0pKQnU+l80uwWTg1wc1pqQ6q62op9zmocFuoagSn2yC/qpH8qkY+2OeEz78bZDjBaqZncjzpCVYcZp+/W7Tdwkk90uie6F+elmAjPcFKos2iBJbICegM9w5FRYU8uW4ryWkZwS50hqeB5Iy+jDm5Lwdyd1BbUU5+iX+ZEWX/8ilpGSQ31nOy1YavsZ5qHNTb0zlQVkO126DeY3Cg2s2BanfzHTc2PegE0hwWeiZaOSk9iV7J8STQQI9EK9l9e5KRbKd7glWtrUQ6qS6VlNq3bx+ffPIJH3zwAQ6Hg379+nHjjTfy+9//XkmpNqh3e/mmrI5vSmvZU1rHN2W17C6uoazOgwG8kruL3t3yOC0jgQEZiWQ1vfqm2o+ZWHK5vfx7dylPrd9LQXUDDquZ308686hjMx3NxLN6UVjdwNMb9vHER3vZklfJjFH9Gda3GyaTia9LnDz23jfsLHaS6rBy97jsE/hEmrPFmbn/h4OZ8bfPeS+3jJtf+oKrhvSmpLaRZZvyKK9zc1Kqnf8e1T8kx/vv0f1Zu6uEgioX//23rdw2NosLBqRjMZsodjbyzy8L+fOmPNxeg7P7dOOu7x9fWacN78ve8jpe/aKQO9Z8xdRhVUwb0bfFWQb3ltWxZkchL2wtoMHjIynewv0/HHzMLoandk/gz/8vh1+/soMdhTXc/s//cP6p6fz4nL6c0y/lmE+/AuMorP+2nI++KSev4shm5R4f7KtsYF9lIa9+WYjFBEP7dOO8U9M5f0A6WRmJIblxa/D4qHJ5sCalYljdeH1KMESDSNQPe4vKAIOze1h544MN/KupS0RSj7a3SJTYkRRn0M1m0L+xhjrqaTA14knuBYnp7C8qpdYN9T4zbizUuX3sLa9nb/nh57ryI97XajHRzWYhwWYmwWoi0WomwWoh0WomOd5Mt3gLqY44Tu6VQfeEeFIccdjjLMRZTNgsZuIsJrw+gwaPL/hq9PoocHkpKKrmYEkZXsMgIz0dW5wZm8WM1WLGajFhtZiJM0FVRRlWi4k+mZnEWy3EmU1KlElUiPS9g9HU8hogKbV7q13oAl3mop3JBKlWOKNfKr0aDvi7+5m8mLv1wp7ag4KDB6nHSr3bR50HXIYFAxPl9V7K673sLHUd9o4Hg9+lOuLonmAjyWqQZo+jR2oSibY4HFYzXlctDquZ3hnpJMVbSbBZcFj950KrxYTVfMh5zez/qkl6REKjSyWldu/eTWpqKpmZ3808dtppp1FQUEB1dTXdunULy3E3flvOv3cWgGFgdzgAE4Hb1MATccMAo+nnQ29h/cuN4Hr/wubLDMPAa4DX56Pe1YDPMEhKSqS+wY0JE2aTv3ub2eTvMnX4zxaTCVPTssBXt9dHvdtLvdtHibOBopoGyusOezpxGJfH4NvyOr4tr4Ovv2sObI/zP9HNSLSRlmANnszB31WvqKaB3SVOGv3TgtC7WzyPXHUm2T2SjuvzvuG8k0myx7H4g2/4JK+ST/IqAYgzm/A0JQji48wsmHg6vduZ9DqWwZnJ3DUum/97J5dN+yrZtK8yuC67RyKP/tdZIRsjxGG18OQ1Q7n5xS/YV1HPbf/8Dyb8ZXN5fMHtLjytO/dePvC4B4w0mUzc+f1s4swmXtp2kFWfF7Dq8wL6ptjpnWLHajZR2+hlf2V9s7+RnL7d+M3lgzgptW1d8bon2nj62rNZumEfz2/OZ/235az/thyH1cyp3RPJSLRhjzMTH2fG4zOod3upafCQV1FPSXBGP784s4lhff0Jp5MTfLyfW4zXB+f0T+ebGhMf7y3n27I6th6oZuuBav700V4SrBZ6p8TTu5udRJul2Y0VgNtr4Pb6cPv8Xxs9PurcXmobvDgbPTgbvNQ2enB7myehVu3ahcO6m6T4OJJscSTFW0hs+j4x3n9zduj/owmC/4eB/3+f0XRuMPzjdBn4v/p8BvUuF4YBY0/vzfcHqUXW8YpE/XD1GWlUOZ306JHJgT2VmG0OfI3Rf0MhJy4pLZ2ExnrMNujdN4UergPBvw8jzkGty0V1nZtGjwdTUjq2xFRKy8qod/to9IGbONyY8Rgm3F6DsnoPZcf80yo6wagPHnsTvgl+ZzWbiDObiLf6z7VmfFjNJv9yi/9roj0eW5wleCNos5iIswQSX6YWH3gFGhoaGNTV1X63ABMJCQn+E+wR+xjU1dUB+LcBapt+PrTlogmwO2yYTdYj3qelFo6HLgp86zvkWI7gNWHza0EMg/r6+u+2aW8C75D9T+6RyozR/dW16ThF6t4hwFlVzvINtcFWUSnH34g8ajXr7tczicTqRkxWS3DMKl+jE7fFQVLPvuzbt5fqejcuL3hsSdR7DFxecBsWDKCy3kNl/aFjN9a0cMQjZ/o+GhNgMfuvOy0mU9M1XdPPZrCYTMH1dlscPq8XyyH3Yv7rvUPuy/huucVsavrZvxz8pwL/daIpePzAcrPJf44LrKuvqwMMDj17mE3fnW9MmEhITGz2Xv5zYS0AiU3rDMOgrrY2eA4zmUz+dYe8c+AUFdjfbrficrlJSGj7A99Dj32s/Q7dNnDuNZlM7TreiTIBjgQb9XWNze7r21qGSDg0PqvZxLTRp9EntXPMANylklK1tbVNFwDfCfxcV1fX5orFbG5+oXEsj76XS3Ft4ATY0skvDIoOf0pw4pLi40ixm+mXEk//lHhOSrGSQgNb9pVgBi4amEmDJYH8qgbyqhrJq2wgv8qN22dQXuduNalli7PQK9nC5dmpXD4wlQRzPWUtXEFXVlbgra/G7bNRWWnDfJQnFJedbGPof53GyzvK2XzASU2DP0ljs5gY3ieRacMy6JXgpqyspNUyB44X+N5iOfbJ5fzeFpZMGsAr/ynnQHUjcRYT5/ZJ5NLTUolrrKas7Oj7Bo7nsVnwuGpbLSOADXjk8v688lU5//62imqXv5xJFjODMuyMz07heycn466tpKz2xMp4Q04qI3vZeOWrcr4sqqfK5aHK5Wy2TYo9jrN7JXBZVgrD+yZi8jopK2u+zbF+hz86I4kL+2Xx+s4KNuyvodrlI6+ivsXWTwFJ8XGkOyyc3SuR4X0TGZqZQILNfwFeVlaO3eOPYXByN84/JZ3rhiRT7HSz9WAtnxXU8kVRPY1eg6KaRopqGo96nGOJj7NwtDHz690+6t2NlBzl93Cicsu/5bLT25eU6mR1ZUSFon44dOiwttQTcXEWLK4qGmri8LlqMDweDE99i18basqOuk1r6zpyG1dVKb6GyMfRkZ9ZY00ZnroavD5Lh8VhivOQ4KknMcGB4XFjMlfTIy2Z4ppSTAmOpm38X2vrG2h0e7Cl9CKxewalRYX4LDY8Hh8eixW314fHZKXRCw0+8FlsuL1gmI6ewDAbPkz4sJgMTIaXOIsFk+HD6zMwx1lxuz0YJrP/oRlmDEz4TCag5ROOxwceX+BBigGHPpqrDvXA/85jb3LMbUJ5Em/Le9Wd0BE+3l/HRdkZnN6r7Q/6VDd8J1L3DhaLmcaacjyuGhzx8fgsPrz1VTRUl+Jx1WD2NOLzNGD2NLa4LBzrwnKcmlK8dVV4fJYTiiEurpFuvm70MCrITIr3r4tzN32Np0fvk9if9y019W7cHgNLt3QavOBye7AlJFPrrMUcn4DHZ+D2GZji4mlwezBMluC5zIfpmP8cXsBrgNvb9MN36QqoO/7ry7Zr7/mitXNQa+vaci5tz3aR3i8cOlMsLTNbvuW28We2uk3gTz5wDgtX/WAyutDgFevWrWPevHls2rQpuGzXrl1ceeWVbNmyheTk5AhGJyIikaL6QUREDqe6QUQk/LpUW97s7GwqKyspLf2ua9mePXvo1auXKhURkS5M9YOIiBxOdYOISPh1qaTUKaecwvDhw3nwwQdxOp3k5+fzxBNPMGXKlEiHJiIiEaT6QUREDqe6QUQk/LpU9z3wT9X+u9/9jk2bNmE2m7nqqquYM2cOFktoBp8WEZHopPpBREQOp7pBRCS8ulxSSkREREREREREIq9Ldd8TEREREREREZHOQUkpERERERERERHpcEpKiYiIiIiIiIhIh1NSSkREREREREREOpySUjFm586dzJgxg5EjR3L++edz++23U15eHumwQs7r9XLddddx5513RjqUkKqsrOT2229n1KhRnHvuudx4440UFxdHOqyQ2bFjB9OmTWPEiBFccMEFPPDAAzQ2NkY6rJAoLy9n3LhxbNq0Kbhs27ZtTJ06lZycHMaOHcuqVasiGKGEW1lZGTfeeCMjRoxg1KhRzJ8/H4/HE+mw2q21euRYf9OrV69m3LhxDBs2jMmTJ7N169bgOq/Xy8KFCznvvPPIyclh1qxZnfL81lL9Esvlbq3eieVyt1YfxXK5pXOLhXrkeK6Houl/qivVkRs2bGDq1Kmcc845nH/++dx///24XC4g9sraFer+N954gzPOOIOcnJzg67bbbgM6QVkNiRn19fXG+eefb/zxj380GhoajPLycuOGG24wfv7zn0c6tJB77LHHjMGDBxt33HFHpEMJqZ/85CfG7NmzjaqqKqOmpsa46aabjJkzZ0Y6rJDwer3G+eefb/zlL38xvF6vcfDgQWP8+PHG4sWLIx3aCduyZYvx/e9/3xg4cKCxceNGwzAMo7Ky0hg5cqSxfPlyw+12Gx9//LGRk5NjbNu2LcLRSrj85Cc/MX79618bdXV1Rl5ennHFFVcYS5cujXRY7dJaPXKsv+mNGzcaOTk5xpYtW4zGxkbjz3/+szFq1Cijrq7OMAzDePzxx42JEycaBQUFRk1NjXHrrbcaN9xwQySL26LD65dYL/fR6p1YLndr9VEsl1s6v2ivR47neiia/qe6Uh1ZVlZmDBkyxHjppZcMr9drFBUVGRMmTDD++Mc/xlxZDaNr1P0LFiww7rzzziOWd4ayKikVQ/bs2WP8z//8j+HxeILL3n77beOcc86JYFSh9/HHHxs//OEPjVtuuSWmklJffPGFMWTIEKOmpia4rKKiwvj6668jGFXolJeXGwMHDjT+/Oc/Gx6Pxzh48KDxgx/8wHj22WcjHdoJefnll42LL77YeP3115tdhP3jH/8wLrvssmbb/uY3vzFuv/32SIQpYbZ3715j4MCBRmFhYXDZ66+/blx88cURjKr9WqtHjvU3/etf/9qYN29es/WXX3658eKLLxqGYRgXXnih8c9//jO4rqSkxBg0aJCRl5cXruK0W0v1SyyXu7V6J5bL3Vp9FMvlls4t2uuR470eiqb/qa5WRwbqBp/PZ+zatcsYN26c8de//jXmytpV6v5p06YZy5cvP2J5Zyiruu/FkAEDBvDMM89gsViCy9566y3OPPPMCEYVWmVlZcydO5dHHnkEh8MR6XBCavv27WRlZfGPf/yDcePGccEFF7Bw4UJ69OgR6dBCIi0tjenTp7Nw4UKGDBnCRRddxCmnnML06dMjHdoJueCCC1i3bh0//OEPmy3fvXs3AwcObLYsKyuLnTt3dmR40kF2795NamoqmZmZwWWnnXYaBQUFVFdXRzCy9mmtHjnW33Rubu5R19fU1FBYWNhsfUZGBikpKezatSuMJWq7o9UvsVzu1uqdWC53a/VRLJdbOrdor0eO93oomv6nulodmZSUBMBFF13ExIkT6dGjB5MnT46psnaVut/n87Fjxw7ee+89LrnkEi688ELuueceqqqqOkVZlZSKUYZh8Oijj/Luu+8yd+7cSIcTEj6fj9tuu40ZM2YwePDgSIcTclVVVezatYu9e/eyevVqXnnlFYqKirjjjjsiHVpI+Hw+7HY799xzD59//jmvvfYae/bsYdGiRZEO7YT06NGDuLi4I5bX1tYekTi12+3U1dV1VGjSgVr6fQd+jtbf+eH1yLH+pltbX1tbC0BCQsIR6wPrIqm1+iWWy91avRPL5W6tPorlckvnFu31yPFeD0Xr/1RXqiPXrl3LBx98gNls5pZbbomZsnalur+8vJwzzjiD8ePH88Ybb7By5Ur27t3Lbbfd1inKqqRUDHI6ndxyyy2sWbOG5cuXM2jQoEiHFBJPPfUUNpuN6667LtKhhIXNZgNg7ty5JCUlkZGRwa233sr777/fKSqkE7Vu3Treeust/t//+3/YbDays7OZPXs2f//73yMdWlg4HI7gYJABLpeLxMTECEUk4ZSQkEB9fX2zZYGfo/F33lI9cqy/6dbWBy5mDv+MOsv/RGv1SyyXu7V6xzCMmC13a/VRLP++pXOLtXokIBb/p7paHWm328nMzOS2227jww8/jJmydqW6PyMjgxUrVjBlyhQcDgd9+vThtttu44MPPugU9b2SUjEmLy+Pq6++GqfTyYsvvhgzCSmAV199lU8++YQRI0YwYsQIXnvtNV577TVGjBgR6dBCIisrC5/Ph9vtDi7z+XyA/2lMtDt48OARM+3FxcVhtVojFFF4DRw4kN27dzdblpubS3Z2doQiknDKzs6msrKS0tLS4LI9e/bQq1cvkpOTIxhZ+x2tHjnW33R2dvZR16ekpJCZmUlubm5wXUlJCZWVlUc0CY+E1uqXWC53a/XO6aefHrPlbq0+iuXft3RusVSPHCrW/qe6Sh352Wefcfnllzc7VzY2NmK1WsnKyoqJsnalun/nzp08/PDDze4pGxsbMZvNDB06NPJlbfPoU9LpVVZWGhdffLFx5513Gl6vN9LhhN0dd9wRUwOdNzY2GuPGjTNuvvlmw+l0GmVlZcZPf/pTY/bs2ZEOLSR2795tnHXWWcaSJUsMj8dj5OXlGRMmTDAWLFgQ6dBC5tCBPcvLy40RI0YYf/7zn43GxkZjw4YNRk5OjrFhw4YIRynh8uMf/9j45S9/adTU1ARnTVq0aFGkw2qX1uqRY/1NB2Zr2bBhQ3B2lnPPPdeoqKgwDMMwHn30UWPChAlGXl5ecHaWn/zkJx1dxDY5tH6J5XK3Vu/Ecrlbq49iudzS+cVCPWIY7bseiqb/qa5URzqdTuOiiy4yHnzwQaOhocHYv3+/MWXKFOPee++NubIGxHLdf/DgQWPYsGHG008/bbjdbuPAgQPGNddcY9x9992doqxKSsWQ5557zhg4cKBx9tlnG8OGDWv2ikWxlpQyDMMoLCw0br31VuP88883RowYYdx+++1GVVVVpMMKmfXr1xtTp041hg8fblx88cXGH/7wB6OhoSHSYYXMoRdhhmEY27dvN6699lojJyfHuPTSS42XXnopgtFJuJWUlBg333yzMXLkSGP06NHGggULms3QEw2OVY8c62/6lVdeMcaPH28MGzbMmDJlivH5558H1zU2Nhq///3vje9973vGOeecY8yaNcsoLS3t0PK11eH1SyyXu7V6J5bL3Vp9FMvlls4tFuoRw2j/9VC0/E91tTpy9+7dxowZM4wRI0YYl1xyScyfJ2O97t+0aVOwPKNHjzbuv/9+w+VyGYYR+bKaDCMG+gWJiIiIiIiIiEhU0ZhSIiIiIiIiIiLS4ZSUEhERERERERGRDqeklIiIiIiIiIiIdDglpUREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHU1JKREREREREREQ6nJJSIiIiIiIiIiLS4ZSUEhERERERERGRDqeklIiIiIiIiIiIdDglpUREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHU1JKREREREREREQ6nJJSIiIiIiIiIiLS4ZSUEhERERERERGRDqeklIiIiIiIiIiIdDglpUREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHU1JKREREREREREQ6nJJSIiIiIiIiIiLS4ZSUEhERERERERGRDqeklIiIiIiIiIiIdDglpUREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHU1JKREREREREREQ6nJJSIiIiIiIiIiLS4ZSUEumiDMOIdAgiItKJqZ4QEQkdnVNFWqaklEgn8fjjjzNo0KCQvNfYsWO58847Adi/fz+DBg3i5ZdfBqC6upo77riDLVu2hORYIiISWwoLC/n5z3/OgQMHTvi9Dq+DRES6gjfeeINLLrmEIUOG8Jvf/Ibc3Fx+/OMft/t97rzzTsaOHRv8+dBr/La47rrruO6669p93Pa66aabWozr73//O4MGDTri9Zvf/CbsMUn0iIt0ACISeosXLyYpKanFdV999RWvvPIKkydP7uCoREQkGnz88ce899573HPPPZEORUQkKv32t7/llFNOYcGCBWRmZrJmzRq2bt16wu/b2jV+S+69994TPmZrvF4vDz74IOvWreO//uu/jlj/1VdfkZWVxfz585st7969e1jjkuiipJRIDDrjjDMiHYKIiIiISJdUWVnJ+eefz6hRo0L6vu29xs/Kygrp8Q+1c+dO7r//fr788kvsdvtRtxk6dCjDhg0LWxwS/dR9T6QdFi5cyNChQ6mpqWm2/OmnnyYnJ4eFCxcybtw4Fi9ezKhRo/j+979PRUVFu47x9ttvM378eIYMGcLUqVPZsGFDcN2mTZsYNGgQmzZtarbP4U1zj9a0d9OmTfz0pz8F4Kc//WmHNOcVEekswnkOf/zxx4+676pVq7jiiis466yzuPjii3n88cfxeDzBfe+8806mT5/OSy+9xPjx4znrrLO48soref/995sdY+/evdxyyy2cf/75DBs2jOuuu45PP/00uH78+PHMnj37iNimTp3KzJkzAf9T7aeffpoJEyYEbxR+9KMfBeual19+mbvuuguASy+9tFldcqxyAKxdu5Yrr7ySoUOH8l//9V/s3LmzTZ+fiEhnsWPHDn72s58xfPhwcnJymD59Otu2bQuuf/PNN4PnuauuuoqtW7dyxhln8PLLLwev1QH+9Kc/MWjQIO68804WL14MwKBBg3j88cePO7ZDr/Hbcs4//B5h0KBBrFixgrlz5zJy5EhycnK45ZZbKC0tbfYezz77LJdeeilDhw7lRz/6Ef/+97+PuAe544478Pl8vPDCCy22fPL5fHz99dcMHjz4uMsrXYOSUiLtMGXKFBoaGnjzzTebLX/llVe4/PLLSUhIoKCggHXr1vGHP/yBW2+9lbS0tHYd4+677+anP/0pjz/+OImJidxwww3k5uaGJP4zzzwz2If7N7/5Tdib9IqIdCbhPoe3tO9TTz3FPffcw5gxY3jyySeZNm0aS5cuPWI8jS+//JJnn32WW265hT/96U/ExcVxyy23UFVVBUBubi6TJ08mPz+fefPm8fDDD2MymfjZz37GJ598AsCkSZP44IMPcDqdwffNy8tj+/btTJo0CYCHH36YP/3pT1x77bU888wz/O53v6OiooJf/OIX1NXVcfHFFzNr1izA303kxhtvBGhTOf79739zyy23kJ2dzeLFi/nBD37Abbfd1ubPT0Qk0pxOJ9dffz1paWksWrSIRx99lPr6ev7nf/6Hmpoa3nnnHX7xi18Ez3OXXXYZs2bNwufzAf5r7RdeeAHw1zkvvPACN998M1OmTAHghRdeYOrUqSGJtS3n/JY8+uij+Hw+/vCHP3D77bfz3nvv8eCDDwbXL168mIcffpgf/OAHPPHEE5x99tn88pe/POJ9Fi5cyN///vejJp2+/fZb6uvr2bZtG+PHj+fMM89k/PjxvPLKK8dfaIlJ6r4n0g6nnXYaOTk5vPrqq8EKZfv27ezZs4ff/e53bNiwAY/Hwx133MF55513XMe49957ueKKKwAYM2YMl156KUuWLOGRRx454fiTkpKCzXizsrLC2qRXRKSzCfc5/PB9a2pqWLJkCddeey3z5s0D4IILLiA1NZV58+YxY8YMsrOzg9u+/PLL9O/fH4CEhAR+8pOfsHHjRsaPH8/ixYuxWq08//zzJCcnA3DxxRczYcIEfv/737Nq1SquvPJKFi1a1GxsjzVr1pCYmMill14KQHFxMb/85S+bPTm32+3cfPPN7Nq1i5ycnGAMp59+OieddFKby/GnP/2JM888M1hfXXjhhQAhqb9ERDpCbm4u5eXlXHfddQwfPhyAAQMGsHLlSpxOJ3/6058466yzmp3nTCYTjz32GOC/1g50VevVq1ez74GQdmNryzm/JQMHDuShhx4K/rx9+/bgw5q6ujqWLl3KtGnTmDNnDuA/39fX1weTbQHHagEVaClbUFDAnXfeSVxcHK+88gp33HEHjY2NXHPNNe0vtMQktZQSaaerr76aLVu2sH//foDgTcSIESOC2wwcOPC43ttisXDZZZcFf46Pj+fCCy/k448/PrGgRUQECO85/PB9t27dSn19PWPHjsXj8QRfgZmU1q9fH9w2PT09mAyC725g6uvrAfjkk0+45JJLggkpgLi4OK644gq++OILamtrOemkkxg+fDivv/56cJvXX3+d8ePHB8f7eOSRR5g+fTrl5eVs3bqVl19+mX/+858AuN3uFsvUlnK4XC527NhxxI3QD37wg3Z+giIikZOdnU16ejqzZs3i3nvv5d///jc9evTg9ttvJzU1tcXz3JVXXhmRWNtyzm/J4YmxXr16Beuazz//HJfLxeWXX95smwkTJrQ7vlGjRvH000+zbNkyLrnkEr73ve/xyCOPcN5557Fo0SIMw2j3e0psUlJKpJ1++MMf4nA4+Oc//0ljYyP/+te/jphtIiMj47jeOzU1FavV2mxZ9+7dqa6uPu54RUTkO+E8hx++b2VlJQAzZ87kzDPPDL4CLamKi4uD2zocjmbvYzKZAIJdQqqqqlqMKyMjA8Mwgt03rrrqKjZs2EBFRQVfffUVe/bsadaN44svvmDKlCmMGTOG6dOns2LFCsxm/+Xg0W4Q2lKOqqoqDMMgPT292b49e/Zs5dMSEelcEhMTWbFiBRdddBFvvPEGs2bNYsyYMfzmN78JXo8ffp7LzMyMRKjAsc/5LTm8vjGbzcHzf3l5OXBkGY+nXszIyOCiiy46IkF20UUXUVJScsQ4VtJ1qfueSDslJiZy+eWX869//YvTTz+d6upqrrrqqpC8d01NDYZhBG9GAEpLS4MVw+E3KQG1tbUkJiaGJAYRkVgWznP44bp16wb4x3E65ZRTjljfnov8lJSUFi/gS0pKAIJjX11++eXcf//9rFu3jn379tG7d29GjhwJfDdWyqBBg3jttdc47bTTMJvNvP/++7z11lsnVI7U1FTMZvMRMQYSWiIi0WLAgAH8/ve/x+v1sn37dl599VX+/ve/07Nnz053nmvtnH88Aq10y8vLGTBgQHB5IFnVHp988gkFBQVH1LENDQ1YLBZSUlKOO06JLWopJXIcpkyZwtdff81zzz3H6NGj6dOnT0jet7GxkY0bNwZ/rq2t5b333gtOJ5uUlATAwYMHg9tUVVWxZ8+eNh/DYrGEJFYRkWgVrnP44c4++2ysVitFRUUMGTIk+LJarTzyyCPBLoRtce655/Luu+82mznQ6/Xy+uuvM2TIEGw2GwDJyclccsklvPPOO7z55ptMnDgx2BLqm2++obKykp/+9KdkZ2cHl3/wwQfAdw88AsvbU474+HhycnJYu3ZtsxZX//73v4/jkxMRiYw333yT0aNHU1JSgsViIScnh/vuu49u3bpRXl5OTk4Ob731VrMHxO++++4x3/fw82qotHbOPx6DBw8mOTmZtWvXNlve2oOLo9mwYQN33nkn+/btCy7z+Xy89dZbnH322cF6S0QtpUSOw/DhwxkwYACffPIJDz/8cMje12q1cvfdd/OrX/2KpKQknn76aVwuV3D2o0GDBtG7d28WL15McnIyZrOZp59++ohmuK0JjEfy3nvvkZKSomlaRaTLCdc5/HBpaWlcf/31/PGPf8TpdDJq1CiKior44x//iMlkatf596abbuKDDz7gpz/9KTNnzsRms7F8+XLy8/N55plnmm171VVXMXv2bLxeb7OxTk499VSSkpJ48skniYuLIy4ujrfeeosXX3wR+G78qkDLqHXr1nHhhRdy2mmntakcv/rVr/jZz37GTTfdxLXXXsvevXtZsmTJCX2GIiId6ZxzzsHn8zF79mxmzpxJYmIi//rXv6ipqeGyyy7jhz/8IdOnT+fGG2/kxz/+MXl5efzxj3885vsGzquvvfYaZ599Nv369QtZzEc75x+PpKQkrr/+ehYtWoTD4WDkyJF88skn/P3vfwfal1z78Y9/zAsvvMD//u//cvPNN+NwOFixYgVff/01zz///AnFKbFFLaVEjtPFF19McnIy48aNC9l7pqSkcNttt/Hoo49yyy23YLFYWL58ebD5rMViYdGiRfTs2ZNf/epXPPDAA/zgBz9oNjj6sWRnZzNhwgRWrFgRnFVDRKSrCcc5vCW33nord955J+vWreOGG27g97//PcOHD2f58uXNBi0/luzsbP72t7+RkZHB3XffzW233YZhGDz//PNHzBT4ve99j5SUFM4444zg7H7gfyjxxBNPYBgGv/jFL7j99tspKChg+fLlJCYmsmXLFsA/OO15553HI488wsKFC9tcjhEjRrB06VKKioq46aabWLlyZbNpxkVEOruePXvyzDPPkJyczNy5c/n5z3/Ojh07ePzxxxk9ejQjRozg2WefpbS0lNmzZ7Ny5UruuOOOY77vZZddxpAhQ7jzzjt59tlnQxrz0c75x+vnP/85N910E6+88go///nP2bJlS/CeISEhoc3v07NnT/72t7+RnZ3NAw88wK233orL5WLZsmWcc845JxynxA6ToWHvRdrNMAwmTpzIqFGjuOeeeyIdjoiItIPO4SIiEir79+/n0ksv5aGHHmLy5MmRDueEeDweXnvtNUaNGkXv3r2Dy1esWMEDDzzApk2bgq2+REJF3fdE2sHpdLJs2TK++OIL9u7dyxNPPNHq9oZh4PV6j/m+ZrM5bH3NRUTET+dwERGJtLbWLRaLpdnkRx0hLi6OpUuX8pe//IVZs2aRlpbGzp07+eMf/8hVV12lhJSEhZJSIu1gt9tZuXIlPp+P+fPn079//1a3/+STT/jpT396zPe96aabuPnmm0MVpoiItEDncBERibTVq1dz1113HXO7SLW8evLJJ/nDH/7AfffdR3V1NX369GH69On8/Oc/7/BYpGtQ9z2RMHI6nXz77bfH3K5nz55kZmZ2QEQiItJWOoeLiEioVVRUtGn21ZNOOom0tLQOiEgkspSUEhERERERERGRDqcBEEREREREREREpMMpKSUiIiIiIiIiIh1OSSkREREREREREelwSkqJiIiIiIiIiEiHi4t0ANGorKyG9gwPbzJB9+7J7d6vM1EZOodoL0O0xw+xVYby8hrS05MjHU7M6Ip1Qzjoc2mZPpcj6TNp2Yl+LoH9JXSi4W802v+fFH/kRXsZFH/bjxFqSkodB8PguH7Rx7tfZ6IydA7RXoZojx9ipwwSOl25bggHfS4t0+dyJH0mLdPn0nlE0+8immJtieKPvGgvg+LveOq+JyIiIiIiIiIiHU5JKRERERERERER6XBKSomIiIiIiIiISIdTUkpERERERERERDqcklIiIiIiIiIiItLhlJQSEREREREREZEOp6SUiIiIiIiIiIh0OCWlRERERERERESkwykpJSIiIiIiIiIiHU5JKRERERERERER6XBKSomIiIiIiIiISIdTUkpERCQCPj9Qxcznt1BY7Yp0KCIiIiHj9XrZu/fb4Mvr9UY6JBHpxOIiHYCISKz4759fT1l55VHXd09P5bmnnum4gKRTe3tXCWv/U0TfZBs3XnBqpMMREREJifz8PJ58awupPXpTWXKQ/x0Pp5yiek5EWqaklIhIiJSVV3LFLx8+6vrXH53TgdFIZ3daRiIAXxRURzgSERGR0Ert0Zv0XidFOgwRiQLqviciIhIBQ3p3A2BHYQ0enxHhaEREREREOp6SUiIiIhFwavcEkuLjqHf7+Ka0NtLhiIiIiIh0OHXfExERiQCL2cTgHna27Hfy5pb/4DrJdtzvlZ7enZNO6hfC6EREREREwk9JKRERkQjYvz+f91/+C4kjr2bJP17jgTceO+73sjsS+Hj9ZiWmRERERCSqKCklIiISAWVlZdTu+4LEkVfTa9glXHvp6ON6n+L93/Lio3dRXl6mpJSIiIiIRBUlpUREpFPYuXMnCxcuZMeOHVitVs4//3zuvPNO0tPT2bZtGw888AC5ubmkpaUxa9Yspk6dGtx39erVPPHEE5SUlDBgwADuuececnJyAPB6vTz88MO8+uqr1NfXM3r0aH7729/Ss2dPwJ8cuueee/jkk0+wWCxceeWV3HHHHcTFhb+K9FQXA+A2WelzmqbLFhEREZGuRQOdi4hIxLlcLq6//npycnL46KOPeO2116isrOTuu++mqqqKmTNnctVVV7F582bmz5/PQw89xPbt2wHYtGkT999/PwsWLGDz5s1ceeWVzJo1i/r6egCWLFnC+vXreemll/jwww+x2+3MmzcveOxbb72VhIQEPvzwQ1588UU2bNjAsmXLOqTc3vpqABo8PnyGZuATERERka5FSSkREYm4goICBg8ezOzZs7HZbKSlpXHttdeyefNm1q5dS2pqKtOmTSMuLo4xY8YwceJEVqxYAcCqVau44oorGD58OFarlenTp5OWlsYbb7wRXH/DDTfQu3dvkpKSmDt3Lh988AH5+fns27ePTz75hNtuuw2Hw0G/fv248cYbg+8dbr76muD3jR5fhxxTRERERKSzUPc9ERGJuAEDBvDMM880W/bWW29x5plnsnv3bgYOHNhsXVZWFi+++CIAubm5XH311Ues37lzJzU1NRQWFjbbPyMjg5SUFHbt2gVAamoqmZmZwfWnnXYaBQUFVFdX061btzaXwWRq86bfbe/zEmcy8BgmXB4fdqulfW9ygjF0RoEyxEJZQkmfy5H0mbTsRD8XfZ4iItKRlJQSEZFOxTAMHnvsMd59912WL1/O888/j8PhaLaN3W6nrq4OgNra2qOur62tBSAhIeGI9YF1h+8b+Lmurq5dSanu3ZPbvC1AamoiAPEW8HgAi4WEhPh2vQeA3W4DIC0tkYyM9sXQmbX38+wq9LkcSZ9Jy/S5iIhINFBSSkREOg2n08ldd93Fjh07WL58OYMGDcLhcFBTU9NsO5fLRWKiP6njcDhwuVxHrE9LSwsmmALjSx2+v2EYR6wL/Bx4/7YqK6uhPcNCVVb6k2JWfICFSqeLVFv7e9W7XI0AVFTUUlpac4ytOz+TyX8z3d7PM9bpczmSPpOWnejnEthfJNS8Xi/5+XnBn/v164/FcmIthEUk+nXqMaXKy8sZN24cmzZtCi576623mDRpEueccw5jx45l8eLF+HzfjcOxevVqxo0bx7Bhw5g8eTJbt24NrvN6vSxcuJDzzjuPnJwcZs2aRXFxcYeWSUREWpaXl8fVV1+N0+nkxRdfZNCgQQAMHDiQ3bt3N9s2NzeX7OxsALKzs4+6PiUlhczMTHJzc4PrSkpKqKysZODAgWRnZ1NZWUlpaWlw/Z49e+jVqxfJye27KTOM9r8ArGb/Nw0hGFPqeGLojK9YKos+F30m0fi5iIRDfn4eT761hZWfHeDJt7YEE1Rer5e9e78Nvrxeb4QjFZGO1GmTUp9++inXXnsteXnfZdO//PJLbr/9dm699Va2bNnC0qVLefnll4OzJJ3oDEwiIhIZVVVV/OxnP+Occ87h2WefJT09Pbhu3LhxlJaWsmzZMtxuNxs3bmTNmjXBcaSmTJnCmjVr2LhxI263m2XLllFWVsa4ceMAmDx5MkuWLCE/Px+n08mDDz7IyJEj6d+/P6eccgrDhw/nwQcfxOl0kp+fzxNPPMGUKVM6rOy2pqSUy62BzkVETkRLD7S3bdvG1KlTycnJYezYsaxatarZPnqg3bFSe/QmvddJpPboHVx2tGSViHQNnTIptXr1aubMmcMvf/nLZssPHDjAj370Iy655BLMZjOnnXYa48aNY/PmzcCJzcAkIhJuX3+9k0lTp7T4+u+fXx/p8CLq5ZdfpqCggH/9618MHz6cnJyc4CstLY3nnnuON998k1GjRjFv3jzmzZvH6NGjARgzZgz33nsv9913HyNHjuT1119n6dKlpKamAjB79mwuuugipk2bxkUXXURDQwOPPfZY8NiLFi3C4/Fw6aWXcs011/C9732PG2+8scPKbjM1JaU8ejIsInK8WnqgXVVVxcyZM7nqqqvYvHkz8+fP56GHHmL79u2AHmh3Ji0lq0Ska+iUY0pdcMEFTJw4kbi4uGaJqfHjxzN+/Pjgzy6Xi/fee4+JEycCJzYDU79+/cJcKhHp6jw+uOKXD7e47vVH53RwNJ3LjBkzmDFjxlHXDxkyhJUrVx51/aRJk5g0aVKL66xWK3PmzGHOnJY/44yMDBYtWtS+gENILaVERE7M6tWrWbRoEbfddluze4e1a9eSmprKtGnTAP9DjIkTJ7JixQqGDh3a7IE2wPTp03nhhRd44403uPrqq1m1ahVz5syhd29/omTu3LlccMEF5Ofn695BRCREOmVSqkePHsfcxul08otf/AK73c706dOBE5+Bqa2Oa9rv49ivM1EZOodoL0O0xw/hLUNHfS6x8HuIJaEcU0pEpCs62gPt3bt3N3sgDf4H1i+++CLQcQ+0o6G+DeW1weHvYTJ992rP8uM5ZjR81i2J9vgh+sug+Nt+jFDrlEmpY/nmm2+45ZZb6N69O88//zxJSUnAic3A1B7HOyNJLMxkojJ0DtFehmiPH1ouQ5zVQkJC/FH3MZk46vo4q4WMjI79XNLTo//3EAu+676npJSIyPE42gPt1h5YH2t9KB9oR9N1Tyhira5OwuGwkZAQT73DRnp6EhkZye1eHqn4Iyna44foL4Pi73hRl5R6//33+dWvfsU111zDr3/9a+LivivC0WZguvDCC5vNwBR44nHoDEzt0d4pdmNhymKVoXOI9jJEe/zQehk8bi91dQ1H3dcwOOp6j9tLaWlNKEM9qkAZystrlJjqBGxNozu63BpTSkQklBwOBzU1zevWQx9Id9QD7Wi47gnlNVp5uZP6+kbq6hqor2+kvNxJt2417V4eqfgjIdrjh+gvg+Jv+zFCLaqSUp9//jmzZ8/mvvvua3FmpClTpjB79mx+8IMfMHz4cFasWNHiDExDhgwhLS2t2QxM7XG80+XGwjS7KkPnEO1liPb4ITxl6OjPJNp/B7HCpu57IiJhMXDgQNavX99sWW5uLtnZ2UDHPdCOpuueUMR6+P6B92zv8uM9drR81i2J9vgh+sug+Dtep5x972iefPJJPB4P8+fPbzYz0/XX+2etOtEZmERERDqa1fRdUsoXbVcRIiKd2Lhx4ygtLWXZsmW43W42btzImjVrguNITZkyhTVr1rBx40bcbjfLli1r8YF2fn4+TqfzuB9oi4jI0XX6llK7du0Kfv/kk08ec/sTmYFJRESkowVaShlAo8eH3WqJbEAiIjEiLS2N5557jvnz57No0SLS09OZN28eo0ePBpo/0C4qKiIrK+uIB9oej4dp06ZRW1vLqFGj9EBbRCTEOn1SSkREJJaZTWC1mHB7DVxKSomInJBDH2gDDBkyhJUrVx51ez3QFhGJrKjqviciIhKL7HH+RJTGlRIRERGRrkQtpURERCIsPs5MTYOSUiIiErsKnR7eOeAjuaKYk+0aQ1FE/NRSSkREJMKsFhMAbq+SUiIiEntqXB4WfFxCZSPkV7r4qNBgW5Er0mGJSCegpJSIiEiEfZeU0pNjERGJPX/84BsO1HhwWODkNAcAf9leidenek+kq1NSSkREJMKsZn91rJZSIiISaxo8PtbtLAFgRA8TF56WjtUM+dVu1nxZGOHoRCTSlJQSERGJMKulKSmlJ8YiIhJjPi10Uef20iPBQg872K0WBqf6Wwiv+rwgwtGJSKQpKSUiIhJhGlNKRERikc/nZd3XZQCcnerFaHr2cnISWEzwdUkt+dXuCEYoIpGmpJSIiEiEaUwpERGJReWlJeyo8Ndthft243TWABBvMTGslx2AD/NqIxafiESeklIiIiIRFuy+p5ZSIiISQ6q8VgxMJMVbyEzr1mzd/2fvzuOjqu/F/7/OLJmZrDNJIAmbLCGgAooom4h1SbmKgLIUf+V6i17UIrW33uIOFy3icvVbLdeCiuVyW6lYtNRSKWBbrYqCERERDSQIJATIMtlmz2y/PyYzEJNAJpnJzCTv5+ORB2Q+c855n5PknDnv8/m8P1cNTAHgo3I7fr88lBGit5KklBBCCBFjZ5JS8qFcCCFEz9Hg1QKQm6Zr1XZ5nh6DVkW13UtDU3dHJoSIF5KUEkIIIWJMakoJIYToiRp8gaRUThtJKZ1GxRWDTACcdnRrWEKIOKKJdQBCiJ7ljrsXYa6tb7e9X242L734UvcFJEQCkJ5SQgghehqf3x/qKZWTpqOhuvV7rhxi4oMjZk7b5fonRG8lSSkhRESZa+uZft9z7bbvePHBboxGiMSgVTX3lPJJTykhhBA9Q53djRcVGsWPKVlLQxvvmTwkEwCzC5xub/cGKISICzJ8TwghhIgx6SklhBCip6m0uADI0HhRKUqb78lN1zMoPdCb6kS9s9tiE0LED0lKCSGEEDEWrCnVJDWlhBBC9BA1tkD18nTNua9tY3P1AJxokKSUEL2RJKWEEEKIGEtq7inl8fplWmwhhBA9Qq3dDUCa+tzD8kb3DSSlTjY45RooRC8kSSkhhBAixoI9pfyA1ycfyIUQQiQ2v99PXXNSKvU8PaVGZiWhAmxNXqyebghOCBFXJCklhBBCxJhGdabWRpPUlRJCCJHgbB7w+Pyo8JOsOvd1TadRkRnoLEWVoxuCE0LEFUlKCSGEEDGmKMqZGfikrpQQQogE1xAoJ0WKykM7Nc5b6KsPvKnaIQ9mhOhtJCklhBBCxIHQDHwyfE8IIUSCCyalUlUdG4/X1xD4t9oJPqkrJUSvIkkpIYQQcaW2tpbCwkL27NkDwH/9138xduzYFl8XXngh//7v/x5a5oYbbuCSSy5p8Z4jR44A4PV6eeaZZ5g8eTJjx45l8eLFVFVVhZY1m83cc889XH755UyYMIFVq1bh8XR/UYtgXSnpKSWEECLRNTQFEksdTUqZdKBVKTT54Fi9O5qhCSHijCSlhBBCxI29e/cyf/58ysrKQq/94he/YN++faGv//mf/yE9PZ2HHnoIAKvVytGjR9m2bVuL9w0bNgyAtWvXsmvXLt566y0+/PBD9Ho9y5YtC63/Zz/7GcnJyXz44Ye8+eabfPLJJ2zYsKFb9xvO6iklNaWEEEIkuMYwe0qpFIW8DB0AB6qc0QpLCBGHJCklhBAiLmzZsoWlS5dy3333tfue2tpali5dyqOPPsrw4cMB+OqrrzAajfTv37/NZTZv3sydd95JXl4eqampPProo3zwwQeUl5dz/PhxPv30U+6//34MBgMDBw7knnvuYePGjVHZx3ORnlJCCCF6ArfPH5pFL6WDSSmAfhmBaucHqlzRCEsIEac0sQ5ACCGEAJgyZQozZsxAo9G0m5h67rnnGDVqFDNnzgy9duDAAQwGA//6r/9KSUkJ/fv359577+Waa67BYrFw+vRpCgoKQu/Pzs4mIyODQ4cOAWA0GsnJyQm1Dxs2jJMnT9LY2Eh6enqH4+9IIdc239/875mkVOd7SoUbQzwK7kNP2JdIkuPSmhyTtnX1uMjxFF1V2ZyR0qoUkpSOP2jpnx5ISn1jdtHk8ZGkkf4TQvQGkpQSQggRF/r06XPO9vLycv785z+zefPmFq8risLo0aP5z//8T/r168f27du59957ee2118jNzQUgOTm5xTJ6vR6bzQaAwWBo0Rb83m63h5WUyspK6/B7AYzGlEAsuiSSk3Xok5ovyWoVycm6Dq9Hr08CwGRKITs7vBjiWbjHs7eQ49KaHJO2yXERsXKqOSmVYdC2m+T0+bxUVJwAoKLiBD4fZCVr0anA5fVz4FQj4wYauyliIUQsSVJKCCFEQnjrrbdCRc7PtmjRohbfz5w5k7/85S/s2LGDH//4xwA4HI4W73E6naSkpOD3+1u1Bb9PSUkJKz6z2UI4EwbV1weSYk5XE3a7C1XzsnaHG7u940MXnM5A4Y66Ohs1NZaOBxCnFCVwMx3u8ezp5Li0JsekbV09LsHlheisk5ZAofIMvQbauZw1mqt4/biVAUMUyg4dwJg3mGxFoY8BTtigqKxeklJC9BKSlBJCCJEQdu7cyR133NHq9d/85jdcdNFFTJo0KfRaU1MTOp2OjIwMcnJyKC0tDQ3hq66upr6+noKCAnw+H/X19dTU1JCdnQ3AkSNHyM3NJS0tvJsyv5+wbgBD723+NzR8z9f5mlI96cY83OPZW8hxaU2OSdvkuIhYORnqKdV+UgogPSuHzNwB1FefCr3W16BwwuanqKyeH18Z7UiFEPFABuoKIYSIe3V1dRw5coQrrriiVdupU6d4/PHHKS8vx+Px8Oabb7Jv3z5uueUWAGbPns3atWspLy/HarXy5JNPMn78eAYNGsTgwYMZN24cTz75JFarlfLyctasWcPcuXO7excjUlNKCCGEiLVQTymDNuxl+wbKSnHwtAVbU8eLpAshEpf0lBJCCBH3TpwI1J04uyB50AMPPIBKpeKHP/whFouF/Px8XnnlFS644AIAlixZgsfjYcGCBdhsNiZMmMALL7wQWn716tX84he/4LrrrkOlUnHzzTdzzz33dMt+nU2rDjwnktn3hBBCJLJQTSm9lnAHladoFXJSVFTavOw70cCUoVmRD1AIEVckKSWEECLuBGfGCxo9enSr14KSkpJ45JFHeOSRR9ps12q1LF26lKVLl7bZnp2dzerVq7sWcAScSUpJTykhhBCJyeL00OAKPFzJMGjCTkoBjOqjp9Jm49Pj9ZKUEqIXkOF7QgghRBzQqALD9zw+SUoJIYRITGV1dgD0akhSd+5Wc3TzGL6isvpIhSWEiGOSlBJCCCHiwJmklAzfE0IIkZjK6gMz2KaGX04qZFRfHQClNTZq7U2RCEsIEcckKSWEEFHi9fk5Ue/A3uSNdSgiAWiaC517ZPieEEKIBFVR7wQgtQtFYjJ0aob3SQHgM+ktJUSPJzWlhBAiChxuL+8eqqHSEpgLOT87GVBiG5SIazJ8TwghRKKraAgkpVK0XfvMc8UgIyXVNj4tq+f7I/tGIjQhRJySnlJCCBFhPr+fbV9XUWlx0dz5hdIaO7qLvhfTuER806gCl2RJSgkhhEhUoaRUF7s+XDHICEhdKSF6A0lKCSFEhJVU26i1u9FpVMy+JI8pQ00A6C+bRYPDHePoRLzSyvA9IYQQCa6iuaZUV5NSYwdkoFYpnGxwUtHgaNHm9Xo5duxo6MvrlTIJQiQySUoJIUQEeX1+Pi9vAODS/ukYDVpG9k2lf4YeRZPEV6c7Mzmy6A2k0LkQQohE5vL4qLIGCpOndKHQOUBKkoaLctIAQp+rgsrLy3hpx2ds+ryCl3Z8Rnl5Wdc2JoSIKUlKCSFEBB0x27A2eUnWqrkoJxUARVEY3S/wwepItV2GZ4k2BZNSXn9gCKgQQgiRSE41D90zaBSSInCXOW5gBgB7TzS0ajP2ySMzdwDGPnld35AQIqbiOilVW1tLYWEhe/bsCb22f/9+5s2bx9ixY7n22mvZvHlzi2W2bNlCYWEhl156KbNnz2bfvn2hNq/XyzPPPMPkyZMZO3Ysixcvpqqqqtv2RwjR8x2ptgNwYW4qGvWZU2z/DD0+Wx0ur4/jtfZYhSfiWDApBVJXSgghROIJ1pPqm6JBUbo+uUswKfV5eX2X1yWEiF9xm5Tau3cv8+fPp6zsTHfMhoYG7rrrLm6++WaKiopYtWoVTz31FF9++SUAe/bsYeXKlTz99NMUFRUxc+ZMFi9ejMMRGIe8du1adu3axVtvvcWHH36IXq9n2bJlMdk/IUTP49UaQh/IhmUlt2hTKQpNpbuBQM0pIb5LfXZSSupKCSGESDAnmutJ5XShoJTP56Wi4gTHjh0lw1OHWqVwqtHVqq6UEKLniMuk1JYtW1i6dCn33Xdfi9d37tyJ0WhkwYIFaDQaJk2axIwZM9i4cSMAmzdvZvr06YwbNw6tVsvChQsxmUxs27Yt1H7nnXeSl5dHamoqjz76KB988AHl5eXdvo9CiJ7HmTkcP9AnJYkMQ+tiCk3fFgFwssGJxyt1g0RLiqKcVVdKklJCCCESS/DBXFeSUo3mKl7fXcqmzyv4v79/zjBj4PPU3vLWQ/iEED1DXCalpkyZwrvvvsuNN97Y4vWSkhIKCgpavJafn09xcTEApaWl7bZbLBZOnz7doj07O5uMjAwOHToUpT0RQvQmjqx8AIZlJ7fZ7ms4TUqSGq8fTltc3RmaSBBS7FwIIUSiOpOUUndpPelZOaF6URf30QEyhE+InqyLk3VGR58+fdp83WazYTAYWrym1+ux2+3nbbfZAsNlkpOTW7UH2zoq3CHSwfdHYGh1zMg+xIdE34dEjx/a3wdbk4em1ECxzQsy205KQaC21OFqGxX1TgYYW56vuuu49ISfQ0+lUSvgkeF7QgghEs+pxjM1peoi0LHJ5/OSowRmLd5zzIzH40GjicvbVyFEFyTUX7XBYMBiaTmdutPpJCUlJdTudDpbtZtMplCyKlhfqq3lOyorKy3c0Lu0XDyRfYgP8bwPGq2a5GTdOd8Tz/F31Hf34YuvK0GlJsOgJTez7XOKosDQvmkcrrZx0uJqcZw0WjXZ2d17XDIzE//n0NNoVCrAK8P3hBBCJJxgUio7WUMkxqE0mqsot9pQGEqN3cveQ0eZcPHwCKxZCBFPEiopVVBQwK5du1q8VlpayvDhgZPT8OHDKSkpadU+depUMjIyyMnJaTHEr7q6mvr6+lZD/s7HbLYQzmzdihK4gQ13uXgi+xAfEmEfPG4vdnvbQ9OCPXPiOf7zae9nsPPASQD6peva3X+/H7INgS7tNdYmaurtJCcFvve4vdTUWNpcLtKC+1Bba5HEVJyRmlJCCCESkcXpweryAtAnuWvD985myupL36YkKi1NfF3tZELE1iyEiBdxWVOqPYWFhdTU1LBhwwbcbje7d+9m69atzJkzB4C5c+eydetWdu/ejdvtZsOGDZjNZgoLCwGYPXs2a9eupby8HKvVypNPPsn48eMZNGhQWHH4/eF/dXa5ePqSfYiPr3jfh/P97cR7/J39Gew+VgfAAKP+nMfAoFWTmRwo2ln5nbpSsdgHEV+CSSm3FMIXQgiRQIK9pDL0GvSayN5i5qUHPlsdrJZ6nEL0RAnVU8pkMrF+/XpWrVrF6tWryczMZNmyZUycOBGASZMmsWLFCh577DEqKyvJz89n3bp1GI1GAJYsWYLH42HBggXYbDYmTJjACy+8ELsdEkL0CKcbnZTVOcDvo1/6uZNSAH1TddTa3VRZXQzJar/+lOh9tOpAUsorPaWEEEIkkFONgYRRv4zzfw4KV166ji8q4GCNC788UROix4n7pNR3Z8YbPXo0mzZtavf9s2bNYtasWW22abVali5dytKlSyMaoxCid9tXEajmqbVVkaQZfN73901LorgKqixNUY5MJBoZvieEECIRnW7uKZXbgYdz4cpJ06EANXYvJxud532/ECKxJNTwPSGEiEf7KxoBSGo82aH3900NFDivsTXhkyd+4izq0PA9+b0QQohIOHjwIAsWLODyyy9nypQpPPHEEzQ1BR4K7d+/n3nz5jF27FiuvfZaNm/e3GLZLVu2UFhYyKWXXsrs2bPZt29fLHYhIQR7SuWln3uym87QqlVkNq92b3kEpvUTQsQVSUoJIUQXfdHcUyrJ0rGklNGgQatW8Pj81Nnd0QxNJBitOnBZlp5SQgjRdT6fj7vvvptp06bx6aef8uabb/LRRx+xbt06GhoauOuuu7j55pspKipi1apVPPXUU3z55ZcA7Nmzh5UrV/L0009TVFTEzJkzWbx4cauZvEXAaUv0ekoBZDev9vPy+qisXwgRO5KUEkKILmh0ujlSYwcgyXKqQ8soikKf1CQAqqwyhE+ccWb4nhQ6F0KIrmpoaKC6uhqfzxeqRaRSqTAYDOzcuROj0ciCBQvQaDRMmjSJGTNmsHHjRgA2b97M9OnTGTduHFqtloULF2Iymdi2bVssdyluhXpKpUW+pxRAH0Pg+ri3vEHqSgnRw0hSSgghuuDASQsAg0wG1J6OPz0NDuGrtspMMuKMUFJKhu8JIUSXmUwmFi5cyDPPPMPo0aO5+uqrGTx4MAsXLqSkpISCgoIW78/Pz6e4uBiA0tLSc7aHQ1ES46srsQZrSuVl6EPriqQsHagVOG1xUe3wtnl8E+lYR/r4x8tXou+DxN+xbURa3Bc6F0KIeBYcundJv3T2hrFcdkqgp5TZJsP3xBma5tn3ZPieEEJ0nc/nQ6/Xs3z5cubOncvx48f5yU9+wurVq7HZbBgMhhbv1+v12O2B3s/naw9HVlZa53eim3UmVqfbS21zOYJRQ7KoPe3AYEgiOVmHXq9FpdN2+f9pKTpG9lU4WOngmI3Q+h2GJDIzU0NxJ9Kxbkuixw+Jvw8Sf/eTpJQQQnTBwdOBnlKjwkxKZSZrAaizS7FzcYZGJTWlhBAiUt5991127NjB9u3bARg+fDhLlixh1apVzJgxA4vF0uL9TqeTlJQUAAwGA06ns1W7yWQKOw6z2UK8X+oVJXAz25lYj9cGEnXJWjVum5PaWisORxN2uwun043K7+7y/x2OJgqMKRyshM+ON5Cpagq9XltrJSPD0un440FXjn+8SPR9kPg7vo1Ik6SUEEJ0kt/v55vKwAfai3PCO0Gn6zVoVIFi5w0OTzTCEwlIakoJIUTknDp1KjTTXpBGo0Gr1VJQUMCuXbtatJWWljJ8+HAgkMAqKSlp1T516tSw4/D7SZib3M7EWmkJlCLom5YEKFHb1wuzdWw5ZOHrGhdT+p55/eyYE+lYtyXR44fE3weJv/tJTSkhhOik8nonVpeXJLXCsOzksJZVFCXUW8psl2LnIiA0fE9qSgkhRJdNmTKF6upqXnrpJbxeL+Xl5axdu5YZM2ZQWFhITU0NGzZswO12s3v3brZu3cqcOXMAmDt3Llu3bmX37t243W42bNiA2WymsLAwxnsVf6qbJ23pkxqdIudBI7J0qBSotHlxeOQ6KURPIT2lhBCik75pHrpX0DcVjTr8HH9mShJV1iZqpa6UaHamp5R82BZCiK7Kz8/n5Zdf5oUXXuDVV18lLS2NmTNnsmTJEpKSkli/fj2rVq1i9erVZGZmsmzZMiZOnAjApEmTWLFiBY899hiVlZXk5+ezbt06jEZjbHcqDgV7SiUrTRw7dpSKihNEo8NvslZFQZ9Uiqus1Dihf+Q3IYSIAUlKCSFEJ33dPHTvojCH7gVlNfeUqu1AT6k77l6Euba+/XVlGln/8qudiiPe1NbWMn/+fJ544gkmTJgAwIoVK3jrrbfQarWh9z300EPMnz8fgC1btrBmzRqqq6sZOnQoy5cvZ+zYsQB4vV6ee+453n77bRwOBxMnTuTxxx+nb99A33+z2czy5cv59NNPUavVzJw5kwcffBCNpvsvkVqpKSWEEBE1efJkJk+e3Gbb6NGj2bRpU7vLzpo1i1mzZkUrtB4j2FPq+MkqNn3upOzQAYx5g8mOwrbGDshoTkrJdVKInkKSUkL0QL0pgRFLwZ5SF+amdmr5rLNm4DOe573m2nqm3/dcu+3vPL+0UzHEm7179/LQQw9RVlbW4vUDBw6wcuVKbrnlllbL7Nmzh5UrV7Ju3TrGjBnDxo0bWbx4Me+99x4Gg4G1a9eya9cu3nrrLdLS0li+fDnLli3jlVdeAeBnP/sZOTk5fPjhh9TU1LB48WI2bNjAokWLumWfzybD94QQQiSKwJDIMo5V1QGQkZZKZu4A6qtPRW2bYwdk8PrnFdQ4z/9eIURikKSUED1Qb0lgxJLX56e4ygrARbmd6yllau4pZXd7SdfoIxZbotqyZQurV6/m/vvv57777gu93tTUxOHDhxk1alSby23evJnp06czbtw4ABYuXMgbb7zBtm3bmDNnDps3b2bp0qXk5eUB8OijjzJlyhTKy8vx+Xx8+umnfPDBBxgMBgYOHMg999zDs88+G5uklAzfE0IIkSDKy8t4acdnlDblBF5wO6K+zUv7pwPQ6Aan2xv17Qkhok8KnQshRCccq7XjcPswaFVcYAqvyHlQklpFapIaALch/Cmme5opU6bw7rvvcuONN7Z4vbi4GI/Hw+rVq5k8eTLTpk3jlVdewddcsKK0tJSCgoIWy+Tn51NcXIzFYuH06dMt2rOzs8nIyODQoUOUlJRgNBrJyckJtQ8bNoyTJ0/S2NgYxb1tWzAp5ZbZ94QQQiQAY588XP7AZxm9KvoPVEzJSQxIC/SrON1cy0oIkdikp5QQQnTC181D90bmpKFuTiR0hjFZi7XJi8eQGanQElafPn3afN1isTB+/Hhuu+02fvnLX/LNN9+wZMkSVCoVixYtwmazYTAYWiyj1+ux2+3YbDYAkpOTW7UH2767bPB7u91Oenp6h+NXwvw1CL3/rOW62lMq3BjiUXAfesK+RJIcl9bkmLStq8dFjqcIh8/vx+4OPEjRdUNSCuDCbB0nLB5ONbpIl47mQiQ8SUoJIUQnBJNSF+Z0rp5UkNGg5US9U5JS53DllVdy5ZVXhr4fM2YMP/rRj9i2bRuLFi3CYDDgdLYsLuF0OjGZTKEEk8PhaNWekpKC3+9v1Rb8PiUlJaw4s7LCG8ZpNAbWr9clkZwcmEZbpQ1clv1+0OmTOpTw1OsDtclMphSyszs3lDQehXs8ews5Lq3JMWmbHBfRHZzNI+gU/CQp3ZOUuqiPjneP2jjd6GKEJKWESHiSlBJCiE74+nSgntTFnawnFWQyBOpKSVKqfX/729+oqanh1ltvDb3W1NSEXh/4JDp8+HBKSkpaLFNaWsrUqVPJyMggJyenxRC/6upq6uvrKSgowOfzUV9fT01NDdnZgXmCjhw5Qm5uLmlp4f1szWYL/jA+j9fXB3pqOV1N2O2BIQjes3pINVqd6DTnH2XvdAZmPaqrs1FTYwkj4vikKIGb6XCPZ08nx6U1OSZt6+pxCS4vREc4PIF/dYqv23rZXZgVeJBjtjXh9knXPiESndSUEkKIMDV5fByuDiSlLszpYlKqudi5W5JS7fL7/Tz11FN88skn+P1+9u3bx29/+1vmz58PwNy5c9m6dSu7d+/G7XazYcMGzGYzhYWFAMyePZu1a9dSXl6O1WrlySefZPz48QwaNIjBgwczbtw4nnzySaxWK+Xl5axZs4a5c+d2Is7wvwILnlmHSjkzms/jDb+uVGdiiMevnrQvclzkmCTicRGio4I9pXRK9xUdz0rWkKIBP2CWWfiESHjSU0oIIcJ0uNKC2+snXa9hgLFr/caNzT2lfLo0rC4PqTo5LX9XYWEhDz/8MI899hiVlZVkZ2dz7733MmvWLAAmTZrEihUrQu35+fmsW7cOo9EIwJIlS/B4PCxYsACbzcaECRN44YUXQutfvXo1v/jFL7juuutQqVTcfPPN3HPPPTHYU1AUBY1Kwe3zywx8Qggh4t7ZPaW6U7YebFaoccq1UohEJ3c/QggRpv0n6oFAPSmli33VdRoVBq0Kh9vH8Vo7F+d1vLB2T3bo0KEW3996660thu9916xZs0JJqu/SarUsXbqUpUuXttmenZ3N6tWrOx9shGnUgaSUV5JSQggh4pzDG7hW6VTd11MKIFuvcNzqp0Z6SgmR8GT4nhBChOnAiQag60P3goJ1pb412yOyPpHY1F2cgU8IIYToLrHsKQVQ5wJXJ4a7CyHihySlhBAiTPubk1IXdbHIeVBwCN/xOsd53il6A40kpYQQQiQIR6imVPcmhlI0kKxV4wNKa5u6ddtCiMiS4XtCdNIddy/CXFvfbntWppH1L7/afQGJbuF0ezlcGZjh7MKc1IisM8MQOBWXS1JKABpV4HmRJKWEEELEu1BPKZUXUEdtOz6fl4qKEwBUVJzA74fcdB3fmu18U+PipqhtWQgRbZKUEqKTzLX1TL/vuXbb33m+7fo1IrEdrrbh9fnJStaSk6aLyDrT9YGeUuX1kpQSZ4bvSU0pIYQQ8czv94d6Sumj3FOq0VzF68etDBiiUHboAMa8weSlG/nWbOfrGldUty2EiC4ZvieEEGH4+nRzL6nctC4XOQ/K0AeeD5TVOfDJXNy9ngzfE0IIkQisbh/BS1WSEv1C5+lZOWTmDiA9sw8Q6CkFcNjchEfqSgmRsCQpJYQQYQgmpSJVTwogTacBvw+Xx0e1Veoi9HaSlBJCCJEIapu7Sek0KtSReU4XFpNBS5IKXF4/xVXW7g9ACBERkpQSQogwhJJSEaonBaBSKaidgeLpUldKnElKyVNfIYQQ8SuYlEpJil4tqXNRFIWs5ln4Pi9viEkMQoiuk6SUEEJ0kMXp4VhtIGl0cV7kekoBaJz1AJRJXaleL1hTyuOVnlJCCCHiV6yTUgDZ+sA1c98JSUoJkagkKSWEEB30dfOsewMzDZiSkyK67lBSqlaSUr2dRi2FzoUQQsQ/cxwkpfo095TaV9Eg100hEpQkpYQQooMOngokpS4daIr4uoNJKZmBT0hNKSGEEIngTE+p2E3onpEEeo2C1eXlUHOJBSFEYpGklBBCdNDB5g87lwzIiPi61cGklNSU6vUkKSWEECIRBJNSyTHsKaVSFEZkBWbhKzpWG7M4hBCdF7u0thBCxJk77l6Euba+zTY/UH35naAxMHaQMeLbDvaUOtHgwOvzh+oKid5Howo8L5KklBBCiHhW6zwzfM8dwzguzNaxv9LJp0drmV6QFcNIhBCdIUkpIYRoZq6tZ/p9z7XZZnV5eP3zk6hVChf3y8DaYI/ottUuK1q1gtvr57TFSf8MQ0TXLxJHMCEptTGEEELEs1BNKZ2a+hjGcVF2oKfUnqO1+P1+QB7sCZFIZPieEEJ0QJW1CYDhfVLQayPfTV3BzwBjIBElQ/h6tzPD93wxjkQIIYRom9vrw9oUuE4lR+FzUTiGmZJIUivUWF2UyWcoIRKOJKWEEKIDqiwuAEblpkVtG4Oak1Jldc6obUPEP6kpJYQQIt7V2gMD9hRAp4ntLWWSWmFUXjoA+040xDQWIUT4JCklhBAdUN3cU+rivOglpQaagkmpyA4NFIlFo25OSnklKSWEECI+1doDn4t0alCU2A+XG9s8Cc3nkpQSIuFIUkoIIc7D5/dTYwt8+Ao+iYuGYFKqvF66nvdmaukpJYQQIs7V2gI9pfSxHbkXEkxKSU8pIRKPJKWEEOI86uxuPD4/isfFBZnRK0B+gUlqSokzw/ek0LkQQoh4ZT6rp1Q8GNMvHbVK4VSji1ONUgZBiEQis+8JIRLKHXcvwlxb3257VqaR9S+/GtFtBouca22VqKLYRX1gc02pkw1OPF4fGrU8N+iNNKrAz116SgkhhIhXtc09yOOlp1RykppR/TPYX17PvhMN5F2kj3VIQogOkqSUECKhmGvrmX7fc+22v/P80ohvM1jkPMlaGfF1n61PahJ6jQqnx0dFg5MLMpOjuj0Rn6TQuRBCiHgXLHQeLz2lACYMyQwlpW68KCfW4QghOighH8MfPHiQBQsWcPnllzNlyhSeeOIJmpoC2fr9+/czb948xo4dy7XXXsvmzZtbLLtlyxYKCwu59NJLmT17Nvv27YvFLgghEsjpYFLKcjKq21EURepKCUlKCSGEiHtnCp3Hvsh50PjBmYDUlRIi0SRcUsrn83H33Xczbdo0Pv30U958800++ugj1q1bR0NDA3fddRc333wzRUVFrFq1iqeeeoovv/wSgD179rBy5UqefvppioqKmDlzJosXL8bhkJs/IUTb7E1eGp0eAJIsp6K+vf4Zge7mJxukHkJvpT6rppTfL4kpIYQQ8cdsj69C5wBXDM5EAY7XOUJJMyFE/Eu4pFRDQwPV1dX4fL7Qh3WVSoXBYGDnzp0YjUYWLFiARqNh0qRJzJgxg40bNwKwefNmpk+fzrhx49BqtSxcuBCTycS2bdtiuUtCiDgWLJaZlaxF5Y3+B5z+GYGeUhWSlOq1NGc9dZZi50IIIeJRsKZUPA3fy0jWMiw7BYAvpLeUEAkj4ZJSJpOJhQsX8swzzzB69GiuvvpqBg8ezMKFCykpKaGgoKDF+/Pz8ykuLgagtLT0nO0dpSjhf3V2uXj6kn1ova5o/K5EYh9iFdv5th2Jn0E0960tpxsDQ/dy03Xn3YeuUhQYYAz0lKpocEZ1v8/eFxFfgsP3QIbwCSGEiE+1cdhTCmDsgAwAPpeklBAJI+EKnft8PvR6PcuXL2fu3LkcP36cn/zkJ6xevRqbzYbB0HK6dr1ej91uBzhve0dlZaV1KvbOLhdPZB/O0GjVJCfrztmenR2d43W+fYhlbOfbNnTtZxDNfWtr3ZXNTwIv6JOKRasOxd7WPpwvNkWh3fZg3BcOMgW2a21qsR/R2O/MzMT/e+6JVIqCSgGfX5JSQggh4o/H56fBEX+FzgEuG5DB5i9OSl0pIRJIwiWl3n33XXbs2MH27dsBGD58OEuWLGHVqlXMmDEDi8XS4v1Op5OUlEA3ToPBgNPpbNVuMpnCisFsthBOmQ9FCdzAhrtcPJF9aM3j9mK3u87ZXlNjabf9fO64axE1tfUtX1RAo1FjTEtj/Suvxiy2czl7241OD8fr7Hi8frJTkhhgCvQC6srPIJr79t11O9xezNZAUsqUpMbj9mI2W9r9PTpfbH4/7bYH405TAis9brZRXd2I0tydKZL7HfxbqK21SGIqTqlVCj6vX5JSQggh4k69vQk/oAC6OBp34/V6yfYHklEl1TbqbS6MKed+UCqEiL2IJ6X27NnDhAkTIr3akFOnToVm2gvSaDRotVoKCgrYtWtXi7bS0lKGDx8OBBJYJSUlrdqnTp0aVgx+P526oe7scvFE9iH8bXVWTW090+97rtXryck6Nq+6t8v7EM1j4Pf72VvewL6KxhavZ6ckoTFkRf1nEKl1B+s6ZSZrSU5St1h3NPbB74fcND0K4HD7qLW7yUxOCmv5cLcXKdE+9/c2GpWC2+uXmlJCiB5Prh+JJ1jkPF2niqtSAMePH2fTP/eRqsnB6oF/fHmE2ZMuinVYQojziHhu+6c//SnXX389v/71rzl5MvLTp0+ZMoXq6mpeeuklvF4v5eXlrF27lhkzZlBYWEhNTQ0bNmzA7Xaze/dutm7dypw5cwCYO3cuW7duZffu3bjdbjZs2IDZbKawsDDicQoRSY1ON8WVVnYdreXNvSeoHLuQ63/9MVN+9RFTfvURN768m7ve2M8v3zvCrqO1+IndJwQ/8OG3taGEVF66jvzsZJLUCjW2JipHzGHP8bqYxReOivpAUmpA84x43SFJo6Jvmq7F9hNBJM/9tbW1FBYWsmfPntBrO3bsYNasWVx22WVce+21vPjii/h8vlD7DTfcwCWXXMLYsWNDX0eOHAECT06feeYZJk+ezNixY1m8eDFVVVWhZc1mM/fccw+XX345EyZMYNWqVXg8ni7tQ1dpVIHLs/SUEkL0dNG+dxCR5fV6+ebbMgBS1D58Mb5O+XxeKipOcOzYUcrKysjIzqWfKTBKptjcfg9zIUT8iHhPqY8++oh//OMf/OlPf+Kll17iiiuuYPbs2Xz/+98nKanjT/zbk5+fz8svv8wLL7zAq6++SlpaGjNnzmTJkiUkJSWxfv16Vq1axerVq8nMzGTZsmVMnDgRgEmTJrFixQoee+wxKisryc/PZ926dRiNxi7HJUSkeXTpFJXVc7zWQV3zuP0QXToNzjM3zdXWJqqtTew70cDrn1eguux2vjzZyMW5aaHp5buLo8+FnKqyoQBXDctkRN9UAOxNXt4vNVPRAD/741f8avYorhgU3tDZ7uT3+zkRTEoZDed5d2T1z9BTaXFR0eBkdL/0bt12Z0Xq3L93714eeughysrKQq999dVXPPDAA7zwwgtcffXVHD16lDvvvJPk5GTuuOMOrFYrR48e5e9//zv9+/dvtc61a9eya9cu3nrrLdLS0li+fDnLli3jlVdeAeBnP/sZOTk5fPjhh9TU1LB48WI2bNjAokWLun5gOilY7FySUkKIni7a9w4issrLy9jy2REgA6vVitUA2TGMp9FcxevHrQwYolB57GsMmQPIyTBxuNrGIXP0Z00WQnRdxJNSWq2WadOmMW3aNGpra9m+fTvr16/nF7/4BdOnT2f+/PmMHDmyS9uYPHkykydPbrNt9OjRbNq0qd1lZ82axaxZs7q0fSGiaX9FAxv3VlB16b9R1dzbSCEw+1uflCRyTcl8/of/4dfPPYNBq8bvhzp7E8frHOw70cA/S83Ukcqe4/UUV1q5riCbrJTu+VBX0eCgYfD3ABg3MCOUkAJITlIzbWQfXt/xTxzGodz/9te8euul5PdJ6ZbYwlXncGN3e1GrFHLSu7ceQf8MPZ+faKCiwdGt2+2KSJz7t2zZwurVq7n//vu57777Qq9XVFRw6623cs011wAwbNgwCgsLKSoq4o477uCrr77CaDS2mZAC2Lx5M0uXLiUvLw+ARx99lClTplBeXo7P5+PTTz/lgw8+wGAwMHDgQO655x6effZZSUoJIUQ36I57BxFZqmQjuPzNpQ28sQ6H9KwcMnMH4LTU0OSHnOYe56V1TXi8PjTqOCp8JYRoJWqFzs1mM3/5y1945513KC0t5eqrr0an07Fw4UIWLlzIj3/842htWoiEVNHg4Ff/PMp7JTWBFxQV/TP0FPRNYaDRgE4TuKAmJ+v44+fvc9+Pf9TmevSKGqfPiGnqbTQ4Pbx9oJLvDc9iaFZy6D2HDxcza97cdmPJyjSy/uX2C6m359cfHsOv1pKXruOS/q17+KhVCtnf7iR75gPsO9HIf/zxAOt/ODb04SGelNcFeknlpelCCYLu0t8YGC6YSMP3grpy7p8yZQozZsxAo9G0SEoFb1aCnE4n77//PjNmzADgwIEDGAwG/vVf/5WSkhL69+/PvffeyzXXXIPFYuH06dMUFBSEls/OziYjI4NDhw4BYDQaycnJCbUPGzaMkydP0tjYSHp6bHqqBXs4Sk0pIURvIfcOicPlDVybkhTfed4ZG0aDhiQVNHn9HKqycnFeYvQ6F6K3inhS6p133uHtt9/m448/ZujQocyePZuXXnqJzMxMAK6++mqWLFkiFxYhmnl8fv53dxkbPi2jyetHrcBNF+fy8cbnuPHHj7SzDG0WQQ969u6bmHvvA7xfaqa83sk/DtfgH57FsOyUDi3/zvNLw96Pg6caefdQNfj9TBpsQtVO5UvF7+W5WRfz769/wbFaBz/741esu/USUnXxNRno0Vo7ABdkdu/QPYD+GYFtBgutJ4JInPv79Olz3u1YrVb+4z/+A71ez8KFCwFQFIXRo0fzn//5n/Tr14/t27dz77338tprr5GbmwtAcnJyi/Xo9XpsNhsQmJn1bMHv7XZ7WEmpcIu9ht7fxnIadXNPKW94H/jjqeBsZwX3oSfsSyTJcWlNjknbunpcuvt4yr1D4nE1d44KJKXi7w9QURQydXDaAftPNkpSSog4F/G7wMcff5zp06ezadMmRo0a1ap9yJAhoRsJIXq7KouLZe98EyoKfsUgI/95zTDys1OY9Wptl9at16r5/sg+fHiklsPVNt4vNZOSpCE3SkPRXvr4OACGmm/ISrngnO/NMGj51ezR3PH6F5TW2Hjgz1/zq9mj0Hawe3WDw80Rs52TDU5sTV7UikJmipbhfVKIRL8Sq8tDtTVQh2BwZvJ53h15/ZsLqydSUqo7zv3ffvstP/3pT8nKyuK3v/0tqamB4aHfHWY3c+ZM/vKXv7Bjx47QTYzD0XIopNPpJCUlBb/f36ot+H1KSnhDS7Oy0sJ6v9EYWL9el0Rycsu/S502MNujSqNu1fZden1geK7JlEJ2dngxxLNwj2dvIcelNTkmbUuU4yL3DonH2SIppY5pLO3J0iucdvjZX9HID8fFOhohxLlEpdB5eXl5aCjEF198QVpaGsOGDQMgNzeXn/70p5HerBAJ59PjdSx7p5g6h5uUJDUPXz+c74/sgxLBR5QqReGqYZm4fX6Omu387XA1t4zOjdj6g0prbOw+VodKgbQTnwL/ct5l+mXoeeGWi7nrjf0UldXzwJ+/5qmbLkSvbf/DzbFaO3XDvs/mL061Sj7VOdwcqbGjvXgex2vtXNCFZFKwl1Rumq65XkL3Cg7fq7K4aPL4SNLEfy2EaJ/7//nPf/Kf//mf/OAHP+DnP/85Gs2Zy9dvfvMbLrroIiZNmhR6rampCZ1OR0ZGBjk5OZSWloaG8FVXV1NfX09BQQE+n4/6+npqamrIzg6Uaj1y5Ai5ubmkpYV3Q2c2W/CHkRWtrw/01HK6mrDbW84QpDSvyO50t2r7LqczkECtq7NRU2MJI+L4pCiBm+lwj2dPJ8elNTkmbevqcQku313k3iHxuJo78cZ1Uqr5ec7+k414PB5OnCgPtQ0cOAi1Oj7jFqI3ividzt///nduvvlmjh07BsC+ffuYN28e//znPyO9KSES1vZvqvjpH7+izuFmeJ8UfvuvlzHtwr4RTUgFqRSFq4dlkpmsxeH28c8jXeuB1ZZNeysA+F5+NhpXY4eXG5mTxn/PvAidRsVH39Zy9x++5JjZ3up9R2psLHvnG+Zv+AxHn5H4CfQmumpoJjdd3JdpI/twcW4qWpWCOy2Pf/3d53xwxNzp/fm2JhDDkKzu7yUFYDJoMWhV+IFTjYnRWyqa5/4vvviCJUuW8PDDD/Pggw+2SEgBnDp1iscff5zy8nI8Hg9vvvkm+/bt45ZbbgFg9uzZrF27lvLycqxWK08++STjx49n0KBBDB48mHHjxvHkk09itVopLy9nzZo1zJ3bfs219vj94X8FFmy9LnUnC513JoZ4/OpJ+yLHRY5JIh6X7iT3DomnZU+p+JSpA7UCZlsTew8d5aUdn7Hp8wpe2vEZ5eVl51+BEKLbRLyn1IsvvsiaNWtC3W9vv/128vPzefbZZ7n66qsjvTkhEs5fDp7m8e2HAfj+iD4sn1Zwzt5BkaBVq7iuIJs/fnmaigYnSSOmRmzdZlsTf/2mEoAfjuvPf/0uvOUnDs7kf+aM5ud/OsjXpy38f7/dy5ShmVyYk4bD7WVveQMHTp1JdOlrv+Vfrp5Mn9SWMwoOMhkY0y+dt97bgzNjIA+8fZD/+pcR3HhRznc3eU61tiaqrE0o0KI4fHdSFIX+GQZKa2xUNDi71Ouru0Tz3P/SSy/h8XhYtWoVq1atCr0+btw4Xn31VR544AFUKhU//OEPsVgs5Ofn88orr3DBBRcAsGTJEjweDwsWLMBmszFhwgReeOGF0HpWr17NL37xC6677jpUKhU333wz99xzT5di7iqNFDoXQvQScu+QWLx+/3dqSsUntUphqElLSW0Th8wujH3yyMwdEOuwhBBtiHhS6tSpU1x11VUtXpsyZUqLmZSE6K3+frialTsCCam5l+Rx/3X57RYEjzSjQcv4QUY+OVaHYdws7E3eiAxNe2v/SZq8fkblpTGmX+cKSY4dkMHv/+0ynvpbCR8freP9UjPvl57p6aRW4Or8bO6YMIgHfrKaPtO/1+Z6UnUasorf5rI7VvLOwUoe334IjUrh+yP7djiWbyqtAAzONMRk6F5Q/wx9KCmVCCJ97g/OjAeBpNS5JCUl8cgjj/DII21PDKDValm6dClLl7ZdwD87O5vVq1d3Ks5o0agCHZnD7SklhBCJRu4dEovVdSYRpY3jpBTAiKwkSmqbKK5xIaXOhYhfEU9K9e/fnw8//LDFxeWTTz6hX79+kd6UEAnl4KlGVvz1ED4/zBqdywPX5UdluN65XJybSmm1jWqgqKyeq/OzurQ+p9vLm1+cAuCH4wZ0aX9y0/X8avZoSqtt/KOkmipLE2qVwoi+KVw1LIs+qR0r0K74fayYVoBGpfD2gdP8118PodeqmTrs/PvqU2kpqQnU+bkwN7YFYoN1pSrqEyMpJef+yNJ0cvieEEIkGrl+JJb65m5Seo0KVfxNvNfCyCwdfymxcsjcxBVd+8grhIiiiCel7rrrLpYsWcL3v/99+vfvz8mTJ3n33Xd55plnIr0pIRJGja2Jn7/9NS6PjylDM3n4+uHdnpCCwLCwSUNM/PmrSg5X27goN7XDyZ62bP+mijqHm9w0HdcMz45IjPl9UsjvE96sZ9+lKAoPXz8cp9vLjuJqHtr6Nc/fPIoJg03nXM6Wdylur58MvYZ+UZqlsKPOzMDnOM8744Oc+yNLo25OSnnj+ym0EEJ0lVw/EkuDM3BdMkS59EQkjGiudl7e6OYSY5xn0IToxSJe6HzGjBmsW7cOrVbLwYMH0ev1rF+/nmnTpkV6U0LEtcOHi5k1by4z583l5qf/gNnWhMZupvSNJ5k9fx533L3o/CuJgpw0HU2lewD4+Ggd/k5WNPX7/fz+80CB8/mX9Q/17IgXapXCYzeM5Hv5Wbi9fn7+9kH2nWho9/1mWxPWfoE5g8cNzIhJ0vBs/TMMAAkzfE/O/ZGllppSQoheItrXj/r6eh544AEmTJjAFVdcwT333ENVVRUA+/fvZ968eYwdO5Zrr72WzZs3t1h2y5YtFBYWcumllzJ79mz27dsXkZgSWUNzTymDNv5nBjbq1Qww6vEDteeeyFYIEUMR7ykFMGHCBCZMmBCNVQuRMDw+mH7fc3x5spFTx+tRqxRunjQK03VjAXjn+bbr23QHx94/kVwwkSprE6U1doZ3omfSnuN1HDXbSdaquXl0boeXK/7ma2aeY2azrEwj619+Nex4goLJwCC/okY3Yjou42B+/Psi1t82novzWlYW8Pv9/PK9I/jVSfRJSYpZgfOzBXtKnWxwdjpx2N3k3B85MnxPCNGbRPP6ce+995KRkcG7776LSqXi4YcfZvny5fz3f/83d911Fz/96U+ZP38+RUVFLFmyhBEjRjBmzBj27NnDypUrWbduHWPGjGHjxo0sXryY9957D4PBEJVYE0H92T2lEiDRc0m/dE7UOzG75HoqRLyKeFKqsrKStWvXcuzYMXy+lsMOfvvb30Z6c0LEtQaHm8/KA71zJg02YUrWxjiiAL+jgbED0ikqa6CorJ4hmQY06vCeeL3e3EtqxqgcUnUdP5W4vX6m3/dcu+1dTdYFk4EtXvP62F5czalG+Okfv2LljSOZPCQTCCSkXt1dxs5D1eD3MWmIKea9pADympNStiYvDQ5PjKM5Pzn3R5YkpYQQvUU0rx9fffUV+/fv5+OPPyY1NRWAlStXUl1dzc6dOzEajSxYsACASZMmMWPGDDZu3MiYMWPYvHkz06dPZ9y4QC/qhQsX8sYbb7Bt2zbmzJnTpbgSWainVFJiJKXG9M/gna+rMCdGx3MheqWIJ6UefvhhampquOaaa9Bq4+MGXIhY+ejbWrw+P/0ydIzs27U6SZE2Ki+dbyqtWF1evjxl4bIBGR1e9pjZzsdH61CA+WP7Ry/ICNGoVXx/ZB9+//ciGsnjP/74FVOGZjI6L5295fV8WlYPQMbR98mZvLDd9Rw+XMzMuXPRaNV43N7W7UdKmB6hmHUaFX1Tk6iyNiVEXSk590eWRobvCSF6iWheP7788kvy8/P5wx/+wOuvv47D4eCqq67iwQcfpKSkhIKCghbvz8/P58033wSgtLS0VfIpPz+f4uLiiMaYaOoTaPgeBHpKQWD4ni9Bep4L0dtEPCl14MABduzYQWZmZqRXLURC0V4wlpONLtSKwlVDs+Ki983ZNCqF8YOM/KPEzP6KRkb2TSU5qWNFKzftC/SSumpYFgNNidGFPUmtIuubLXzvx6vY9HkFH31by0ff1ja3Kfz4ysG8ufurc64j2AsrOVmH3d768eDXd98U0Zj7Z+ibk1Lx/3hPzv2RpVEFPuxLTykhRE8XzetHQ0MDhw4dYtSoUWzZsgWn08kDDzzAgw8+SHZ2dqtheHq9HrvdDoDNZjtnezji7CNgm4Ixni/WeC103lb8igJDs5NJ0SrY3H7MNjfq5tfj7WfS0eMfzxJ9HyT+jm8j0iKelEpLSyMpKSnSqxUioXi8PgxXzAbgkv5ppOujUr6ty4ZmJfPVKQtV1iY+K69n6rDzz5fb4HDzl4OVAPxwXPz3kjqbyufh59cMY/aYPHYWV3HK4qJvahI3XZzLIJOBN2Md4Hf0MxrYV9GYEEkpOfdHllqG7wkheoloXj+C63300UfR6XSkpqbys5/9jB/84AfMnj0bp7Pl9dXpdJKSEujZbjAY2mw3mc49k29bsrLSOrkH3e98sVo9geuSMVWPt0GLSqclOVmHXh/b/xsMgZn2dM2vOwxJZGam0rdPOhfnJvNpuY1ap4dBza9nZ8fnzySRflfak+j7IPF3v4jfKd9zzz08/PDD3HnnnWRnt5wivl+/fpHenBBx6eBpK6rULFKS1KFuw/FIURQmDjbx568qOVRl4+LcNLJSzv3BcOPeE7g8Pob3SQlryF88GZKVzN1XDo51GOcVLHZeUR//SSk590eWRt2clPJKUkoI0bNF8/qRn5+Pz+fD7Xaj0wWSFsG6VRdeeCG///3vW7y/tLSU4cOHAzB8+HBKSkpatU+dOjXsOMxmC/E+ckxRAjezbcXq9XopLy8DoLox0FNc5fNic7pR+d3Y7S6cMf6/wxGIy+UKvG6zOfjyy2Jqa630xQbA8RobfYxN1NZaSU+3dN/B7YBzHf9Ekej7IPF3fBuRFvGk1LJlywB49913gcBNr9/vR1EUvvnmm0hvToi40+Txsf9kIwCXD8wIu4B4d8tJ0zEkK5mjZjsffVvLjFE57b63xuri9b2BoXt3Tbog7oYk9jShpFQC1JSSc39kSU0pIURvEc3rx+TJkxk4cCCPPPIITz31FC6Xi+eff57rr7+em266idWrV7NhwwYWLFjA3r172bp1K2vWrAFg7ty5LFmyhBtuuIFx48axceNGzGYzhYWFYcfh95MwN7ltxVpWVsZLOz4jIzuXxiY/KAoGrZp4SusEYw7+22iu4vXjVgYMUTjy7RHQDuNUoxN/Rnz/POI5to5K9H2Q+LtfxJNSf//73yO9SiESylenLbg8PrwNp8nvMzDW4XTIxAuMnKh3UGVt4uvT1nbf99LHx3F6fIzKS+Pq/PMP9RNdcyYp5STe039y7o+sM7Pv+c7zTiGESGzRvH5otVp+97vf8fTTTzNt2jRcLhfXXnstjz76KOnp6axfv55Vq1axevVqMjMzWbZsGRMnTgQCs/GtWLGCxx57jMrKSvLz81m3bh1GozFq8cYzY588krPy8B8LPJyMt5pSbUnPyiEzdwC5Vac4bPfT5IX6pnj/RCVE7xPxpFT//oEaM19//TUnTpzge9/7HhaLhawsuYEVPZ/b6+OrU4HnRs4v3kH1L+NjHFHHpOo0jB9kZNfROj49XocppW+r9+w6WsvbB04DcO/UIdJLqhv0NwYKrFZaXOQo8d3jTs79kRWsKeX1B2YLUsnfmxCih4r29SMnJ4fnn3++zbbRo0ezadOmdpedNWsWs2bNikgcPYHDHXhQolH8oetUIlApYNJ4qXFrqI7/ighC9DoRv8sxm83ceuut/OAHP+DBBx+kvLyc66+/nn379kV6U0LEnZJqGy6PjzSdBvexz2MdTlguzEllkMmA1w+1BTdxvPbM7DJHzXZ+sf0QALde1p/LBhhjFGXvkpWsRadR4fODNym+ixbKuT+yNGd92JchfEKInkyuH4nD4fYCkKQk3nXJpA3EXu1IvNiF6OkinpR68sknKSgooKioCI1Gw7Bhw7jrrrv47//+70hvSoi44vP7OXAy0EtqdF5awg3mVRSFa/KzMBo0+HSp/GjjPl795Dgb9pSxaNMX1Nrd5GensGTK4FiH2msoikK/5iF8Hn18F5WXc39knZ2Ukhn4hBA9mVw/EkcoKaVKvOtSZnNSqsYpD3uEiDcRT0rt3r2bhx9+GIPBEBres2jRIkpLSyO9KSHiyvFaB40uDzq1ioK+KbEOp1OSNCqmX5RDUmMFtiYvL398nF9/dIxGp4fReWmsnTcGfQLUEOhJgnWlvLr4ncUR5NwfaYqi0DwBn3x4FkL0aHL9SBzBpJROlXj1DtPUPpLUCh4/fFvfFOtwhBBniXhNKa1Wi9PpxGAw4G/uKWKz2UhJScybdCE66kBzLakLc1PRxvmMe+eSnKQm65st3L7sV3xyrA6318dVQzO58aIcSUjFQP8E6Skl5/7I06hUeL0+6SklhOjR5PqROII1pRKxp5SiQF66nuN1Dr6qdhH+HIpCiGiJ+J3ztddey/3338+xY8dQFAWz2czjjz/O1VdfHelNCRE3Ki0uKi0uVApcnBvftX86QvH7uGVMHv898yKev2UUsy/pJwmpGOmXID2l5NwfeerQDHyJ9+FfCCE6Sq4ficPelLg1peDMZ6qDVa4YRyKEOFvEk1I///nPSU5O5l/+5V9obGxkypQpOBwOli5dGulNCRE3Djb3ksrPTiE5SZI3InL6pQeTUvGd7JRzf+RpmsfvebyJ+eFfCCE6Qq4fiSORa0oB9EvXAVBsduH2Jt4QRCF6qogP30tJSWH16tXU1tZy4sQJcnNz6du39fTyQvQUTreXo80z1V3UA3pJifiSlyA9peTcH3nBYudSU0oI0ZPJ9SNxJPLwPQBTspYkFbi8fr46ZWHsgPgujSBEbxHxpFRRUVGL748fP87x48cBuOKKKyK9OSFirrTGjs8PWclaslO0sQ5H9DDBnlI+bTJury9u65XJuT/yNKHhe/I0VwjRc8n1I3GECp0n6PA9RVHoa4ATNth9rFaSUkLEiYgnpW677bZWr6lUKvLy8vj73/8e6c0JEVN+v5/iSisAI3JSQ7PGCBEpaXoNaToNFpcHi8tDZnJSrENqk5z7I09qSgkhegO5fiQGv9+f8D2lAHINCidsfnYdrWPxlCGxDkcIQRSSUsXFxS2+r62t5de//jX9+/eP9KaEiLlqaxN1DjdqRSE/O7xZYg4fLmbWvLnttx8pYXpXA0xAclxay0vXYan2YHF5yUyOdTRtk3N/5GkkKSWE6AXk+pEY3D4IXo4SOSmV0/w56lCVlWqriz6putgGJISIfFLquzIzM7n//vuZNm0ad9xxR7Q3J0S3OlQV6CU1JMuAThPesCqPD6bf91y77V/ffVOXYktUclxa65eh53C1DavTE+tQOkzO/V0nSSkhRG8k14/45AqM3EOND3UCDwzQqxWGmbQcqWvik6N1zBydG+uQhOj1uqU4SUNDAy6XTL0pehafSsuRmkCB85E5qTGORvRkwSmMLa7ESUqBnPu7Si2FzoUQvZRcP+KPszkplaQkfp3Dy3IDn6s+PlYb40iEEBCFnlIPP/xwi+/dbjd79+5l8uTJkd6UEDHlzMrH7fOTrteQmyZdf0X0BIudx3NSSs79kadpLmrv8UpSSgjRc8n1IzG4mnNRPSEpNTZXz+ZvGtl9rA6P1xe63gohYiPqw/d0Oh233XYb8+fPj/amhOhW9uwRABT0SZEC5yKq8pp7SlnjOCn1XXLu7zoZvieE6I3k+hGfelJPqWGmJIwGLfUON/tPNjJuoDHWIQnRq0U8KfXUU09FepVCxJ1qq4um9IEADAuzwLkQ4Qr1lAp+IoxDcu6PvDNJqcS/ARBCiPbI9SMxuJp77faEpJRKUZg02MRfv6ni46N1kpQSIsYinpR68cUXO/S+n/zkJ5HetBDd5t1D1aAo5KQlka6PeodD0cvlZQSGh7q8Ppo8PpLCLKrfHeTcH3lq6SklhOgF5PqRGEI9pVSJn5QCuHJIZnNSqpZ7pw5p0eb1eikvLwt9P3DgINRqdXeHKESvEfG76ZKSEnbu3MnIkSMZMmQIp0+f5vPPP+eiiy4iJSXQo0SGOolEt/2bKkB6SYnukZKkQeV24NMasLg8ZGmSYh1SK5E899fW1jJ//nyeeOIJJkyYAMD+/ft54oknKC0txWQysXjxYubNmxdaZsuWLaxZs4bq6mqGDh3K8uXLGTt2LBD4cPncc8/x9ttv43A4mDhxIo8//jh9+/YFwGw2s3z5cj799FPUajUzZ87kwQcfRKOJbcJZI4XOhRC9gNw7JAZXi+F78fdwLFwTBptQKVBaY+NUo5O85l7pAOXlZby04zOMffKorz7Fj6fB4MFDzrE2IURXRPwTt0ql4uGHH+bf/u3fQq+9/fbbvPfee7zwwguR3pwQ3e5YrZ1vKq3g9zE0KznW4YheQu1qPJOUSom/pFSkzv179+7loYceoqzszBPKhoYG7rrrLn76058yf/58ioqKWLJkCSNGjGDMmDHs2bOHlStXsm7dOsaMGcPGjRtZvHgx7733HgaDgbVr17Jr1y7eeust0tLSWL58OcuWLeOVV14B4Gc/+xk5OTl8+OGH1NTUsHjxYjZs2MCiRYsidnw6Q2pKCSF6A7l3SAw9LSllNGi5pH8G+0408H6pmf/vsv4t2/vkkZk7IEbRCdG7RPyM8s9//pMFCxa0eO2mm27ik08+ifSmhIiJHc29pHT1ZRi00pVXdA+1qxGI32LnkTj3b9myhaVLl3Lfffe1eH3nzp0YjUYWLFiARqNh0qRJzJgxg40bNwKwefNmpk+fzrhx49BqtSxcuBCTycS2bdtC7XfeeSd5eXmkpqby6KOP8sEHH1BeXs7x48f59NNPuf/++zEYDAwcOJB77rkntO5YkqSUEKI3kHuHxNBTCp37fF4qKk5w7NhRLskMXGffK6mJcVRC9G4RT0plZmZSVFTU4rUPP/yQ3NzciG2jvr6eBx54gAkTJnDFFVdwzz33UFUVSBTs37+fefPmMXbsWK699lo2b97cYtktW7ZQWFjIpZdeyuzZs9m3b1/E4hI9n9/vZ0dx4HfNUHMoxtGI3iSYlIrXYueROPdPmTKFd999lxtvvLHF6yUlJRQUFLR4LT8/n+LiYgBKS0vbbbdYLJw+fbpFe3Z2NhkZGRw6dIiSkhKMRiM5OTmh9mHDhnHy5EkaGxs7HDuAooT/FViw7fUFp6j2eDuelOpMDPH41ZP2RY6LHJNEPC7dqTvuHUTX+P3+7/SUSlyN5ipe313Kps8rKCktAeCLEw2YbU0xjkyI3iviw/fuvvtu7rrrLqZNm0a/fv0oLy/nvffe43/+538ito17772XjIwM3n333VCX3+XLl/Pf//3fXRriIcT5fH3aQnm9E71Ghb7u21iHI3oRTTApFac9pSJx7u/Tp0+br9tstlbnaL1ej91uP2+7zWYDIDk5uVV7sO27ywa/t9vtpKendzj+rKy0Dr8XwGgM1ErR65JITta1ak+2uwHwK7TZHqTXB4ZzmkwpZGeHF0M8C/d49hZyXFqTY9K2RDku3XHvILrG6fETfD6S6EkpgPSsnNDQvGH1ao7UufngiJlbxuTFODIheqeIJ6XmzZtH//79+fOf/8zXX3/NwIED2bRpEyNGjIjI+r/66iv279/Pxx9/TGpqKgArV66kurq6xRAPoMUQjzFjxrQY4gGwcOFC3njjDbZt28acOXMiEp/o2bYXVwNwdX4WBz5yxzga0Zuo4zwpFc1zv8FgwGKxtHjN6XSGCuAaDAacTmerdpPJFEowORyONpf3+/2t2oLfB9ffUWazBX8YI+3q6wNJMaerCbvd1ard6w48lm5y+9psD3I6A0936+ps1NRY2n1folCUwM10uMezp5Pj0pock7Z19bgEl+8u0b53EF1X39xNSqNS0Cg9649tQr9kjtQ18F5JjSSlhIiRqEwtNHnyZCZPnkxtbS2ZmZkRXfeXX35Jfn4+f/jDH3j99ddxOBxcddVVPPjgg+0O8XjzzTeBwBCP7yafzh4CIsS5eHx+djYP3Zs2si8HYhyPCN/hw8XMmje3/fYjJUzvxnjCoXYFkg0Wlwe/3088zkQUrXN/QUEBu3btavFaaWkpw4cPB2D48OGUlJS0ap86dSoZGRnk5OS0GOJXXV1NfX09BQUF+Hw+6uvrqampITs7G4AjR46Qm5tLWlp4N2V+P2HdAIbe284ynakp1ZNuzMM9nr2FHJfW5Ji0LZGOSzTvHUTXNTgDvaMM2sQvcP5d4/sb+P3BBorK6rG6PKTqYjvzrhC9UcTPLG63m+eff55x48Zx7bXXUl5ezpw5c0I1n7qqoaGBQ4cOcezYMbZs2cKf/vQnKisrefDBB7s0xCMcvbXmQW/fh73l9dTa3WToNUwaYgr/lzcCujMP0ZVjfK51nv1vd/P4YPp9z7X75XGfv15TNPfhXMc12FPK7fXT1E6Noc78LURKNM/9hYWF1NTUsGHDBtxuN7t372br1q2hhwxz585l69at7N69G7fbzYYNGzCbzRQWFgIwe/Zs1q5dS3l5OVarlSeffJLx48czaNAgBg8ezLhx43jyySexWq2Ul5ezZs0a5s5tP3nZXc4kpRJ/qIQQQrQn2vcOousamntK9cQJfvqnaRmSlYzH5+ejb2tjHY4QvVLEU8Evvvgiu3fv5le/+hX33XcfWVlZ5ObmsmrVKn71q191ef1JSYHaGY8++ig6nY7U1FR+9rOf8YMf/IDZs2e3OYSjI0M8wtHZLs2JMrb/XHrzPvzzvUANqZsu6UdeTgYarfqcdV4U5dx1YLrSHs11A2i06k7XpjnfcQEwGBL3uAVjb2sfurL+8x3zJLUfg1aNw+3FrSiYvrOezvzMMjMj9/cczXO/yWRi/fr1rFq1itWrV5OZmcmyZcuYOHEiEBiqvWLFCh577DEqKyvJz89n3bp1GI1GAJYsWYLH42HBggXYbDYmTJjQYprx1atX84tf/ILrrrsOlUrFzTffzD333NOlmCNBZt8TQvQG0b53EF1XH+oppYYeWL3imuHZHDWX8V5JDf9yYd9YhyNErxPxpNTWrVt5/fXXycnJQVEUkpOTeeqpp0JPrLsqPz8fn8+H2+1GpwvclPmanyJfeOGF/P73v2/x/o4O8QhHuGP0FSXxax709n1we31s/+o0AFMHG6mpseBxe89Z58XvJ+LtwaRINNZ9No/be87aNHfctYia2vo220qOlDCtnXUHe+Y4HK52fwbR3LdIrNvhcGEw6Nrch66s/3zH3OP2kqoLJKWq6x2kqpVW7R2tJxT8W6ittUQsMRXpc/+hQy1ntxw9ejSbNm1q9/2zZs1i1qxZbbZptVqWLl3K0qVL22zPzs5m9erVnYozmkJJKa8/bodsCiFEV0X73kF0XYueUj0wKXVtfjbrd5ex62gttqb4rN0pRE8W8aSU3W4PjQX3N9+x6fV6VKrIjBScPHkyAwcO5JFHHuGpp57C5XLx/PPPc/3113PTTTexevVqNmzYwIIFC9i7dy9bt25lzZo1QGCIx5IlS7jhhhsYN24cGzdubDHEo6M6O0Y/kcb2t6e37sOeY/VYXB6yUpK4pF9GzI5Bd273XNuqqa1n+n3Ptdn27N03nXedifw7FM19ON8603Qaqq1N7RY7DzemSO5DtM/9vZFGHTh2fsDnB7XkpIQQPZBcP+JfvTOYlOpZPxOfz0tFxQn69fOTl6rhlNXDP0vNXJR8/mWFEJET8TPLpZdeyosvvggQeqr7u9/9jtGjR0dk/Vqtlt/97neo1WqmTZvGtGnTyM3N5cknnwwN8di+fTsTJkxg2bJl7Q7xGD9+PO+8806LIR5CtOdvhwOz7l07PBu1Su4MRWykNRffjMcZ+KJ97u+NNGeda2QInxCip5LrR/xrcDUP30vqWTWlGs1VvL67lDf2nUTfVA/AX7+RWmZCdLeI95R65JFHWLhwIVu2bMFms3HjjTdis9n43//934htIycnh+eff77Ntq4M8RCiLW6vj3+WmgG4riA7xtGI3ixNH/gwaI3DpFR3nPt7G7VKQVECPdo8Xh86Tc96Qi2EECDXj0TQkwudp2flkJk7gAJ3OUdP+Pn0eB11FxvOv6AQImIinpTKzs7mnXfe4f3336eiooLc3Fy+973vkZqaGulNCdEtPj1+Zujepf0zYh2O6MWC0xRbnOefJbC7ybk/OjQqBbfXLz2lhBA9llw/4t+ZQucqHDGOJVpStQrDM7WU1DbxcXl4M7MLIbom4kmpm266iT//+c/ccMMNkV61EDEhQ/dEvDh7+F68Fb6Wc390SFJKCNHTyfUj/p3dU6qnJqUArhqYTEltEx+W27nUGOtohOg9ojIWwOHoyacr0ZvI0D0RT4I9pTw+Py6PL8bRtCbn/sjTNhf6laSUEKInk+tH/HK6vTg9gWtQcg8cvne2yQOSUStwpK4Ji1uuu0J0l4j3lJowYQLz5s1j6tSp9O3bt0XbT37yk0hvToiokqF7Ip5oVArJWjV2txeLy4M+jj4cyrk/OjTNU+55vPLhWAjRM8n1I76Z7U0AqBTQ9vBpYDP0asZfYOKTY3WUW/1cEOuAhOglIp6UOnHiBAMHDuTo0aMcPXo09Ho8DTMRoqNk6J6IN6m6YFLKS584Krch5/7oCM7A5/bFX884IYSIBLl+xLdamxsAvap3/ExuuKgvnxyr47gVrvTLAyEhukPEklL//u//zm9+8xt+97vfAeB0OtHr9ZFavRDdTobuiXiUptdQZW3C4oyPGfjk3B9dwaSUDN8TQvQ0cv1IDLXNPaV08dM5O6quyc/GoDmM3ePndKMLXawDEqIXiFhNqX379rX4furUqZFatRAx8WmZDN0T8efsYufxQM790SXD94QQPZVcPxKD2R7oKdVbklJ6rZrJA5IBOFRti3E0QvQOUSl0DuCX7o4iwf3tkAzdE/EnmJSyxklS6rvk3B9ZGil0LoToJeT6EZ9qbYGeUvpekpQCuGZwCgBHzXbccv0VIuqilpTqDWOORc8lQ/dEvIq3nlLfJef+yDozfE9qSgkheja5fsSn2l7WUwqgIDOJVG3ggVCFdJYSIuqilpQSIpHJ0D0Rr1KbPxVanF55qtwLyPA9IYQQsRSsKaXv4TPvnU1RFAanBvb3mEWuv0JEW8QKnXs8Hv70pz+Fvne73S2+B7j55psjtTkhokqG7ol4ldrcU8rr9+Nw+0hOiu2jSzn3R5cUOhdC9FRy/UgMweF7vamnFMCgVDhYB2YXnLK4GRzrgITowSKWlMrOzmb16tWh700mU4vvFUWRC4tICDJ0T8QztUohJUmNrcmLxeWJeVJKzv3RpW2uKSU1LYQQPY1cPxJDsNB5T68p5fN5qag4AUBFxQl0Khhg1FNe7+S94zYmjY5xgEL0YBFLSv3jH/+I1KqEiKkiGbon4lyqToOtyYvV5SEnLbaTFcu5P7rODN+TmlJCiJ5Frh+JITh8r6f3lGo0V/H6cSsDhiiUHTqAMW8wBX2zKK938s8yOw/6/DJ6QogokZpSQnzH+6U1AHwvP0suPiIupQXrSsVpsXMROTJ8TwghRKw0eXxYXV6g5/eUAkjPyiEzdwDpmX0AuMBkIEkFtQ4vn5bVxTg6IXouSUoJcRavzx8aundNvgzdE/EpNAOf0xvjSES0SVJKCCFErJibe0lpVKDthXeNapXCwNTA/7d+VRnbYITowSI2fE+IRHPH3Ysw19a3eM2VmkftqHkoHhdrn3qQCS+/EpvghDiHNH1zUkp6SvV4GnXgLkBm3xNCCNHdzM1Fzo16NYrSO69DF6QqHGn088/SGhqdbtL12liHJESPI0kp0WuZa+uZft9zLV7bfawO8ykLw3JN1H1WG6PIhDi3UE8pSUr1eNJTSgghRKyEklI6NdA7P3MYk+CCDC3HG9zsKK5m3qX9Yh2SED1OL+yIKUTb/H4/x2sdAFyQmRzjaIRoX2pzUsrq8uD3S7KiJzuTlJJC50IIIbrXmZ5SvfeWUVEUrrkgBYCtX52OcTRC9Ey99wwjxHfU2d00ujyoFRho1Mc6HCHalapTowA+P9ibpK5UTxZKSsnwPSGEEN3MbHMDgeF7vdmUQcmoVQrfVFoprbHFOhwhehxJSgnR7FhzL6n+RgNatfxpiPilUhRSmmfgs0pSqkfTqGX4nhBCRILX6+W2227joYceCr22f/9+5s2bx9ixY7n22mvZvHlzi2W2bNlCYWEhl156KbNnz2bfvn3dHXZM1TT3lDL18qRUhk7NVUMzAektJUQ0yJ23EM2O1dkBGJxpiHEkQpzfmRn4emeNh95Cowpcpt2SlBJCiC558cUX+eyzz0LfNzQ0cNddd3HzzTdTVFTEqlWreOqpp/jyyy8B2LNnDytXruTpp5+mqKiImTNnsnjxYhwOR6x2odudXei8t5sxKheA7d9U4fHKkHohIkkKnQtB4MbebHOjAINMkpQS3e/w4WJmzZvbfvuREqaf9X2grpRLip33cNrmnlJenx+/34+iKDGOSAghEs8nn3zCzp07+f73vx96befOnRiNRhYsWADApEmTmDFjBhs3bmTMmDFs3ryZ6dOnM27cOAAWLlzIG2+8wbZt25gzZ05M9qO7me3BQucqevv0P5OHZJKZrKXW7mbX0Vquzs+OdUhC9BiSlBKCM72kctN1GLTyNEh0P4+PVrNBnu3ru29q8X1a8/A9SUr1bMGaUhBITAWH8wkhhOgYs9nMo48+ypo1a9iwYUPo9ZKSEgoKClq8Nz8/nzfffBOA0tLSVsmn/Px8iouLox5zvJCeUmdoVAo3XpTDa5+dYOtXlZKUEiKCJCklBHDMHJx1T3pJicSQFpqBT2pK9WTqs5JSbp8fjdwXCCFEh/l8Pu6//35uv/12Ro4c2aLNZrNhMLT83KfX67Hb7R1qD0cidHINxhj81+/3h5JSJkP8X3y+G3+k160oMHNUICn10dFa6uxNZKYkRXQbZ/+biBJ9HyT+jm8j0iQpJXo9h9tLpcUFwGBTcoyjEaJjQjWleklPqT//+c+sWLGixWtud2BWoK+++ooVK1bw1ltvodVqQ+0PPfQQ8+fPBwLFatesWUN1dTVDhw5l+fLljB07FggUv33uued4++23cTgcTJw4kccff5y+fft20961T6UoqBUFr98vxc6FECJML7/8MklJSdx2222t2gwGAxaLpcVrTqeTlJSUULvT6WzVbjKZwo4jKyst7GViJRhrg91NU/PMr0Pz0vn4eB3JyTr0ei0qnTbu/m8w6ADQRXj9DkMSmZmpZGenkZ2dxiUDjewvr+eDsgYWXTU0asc/kSX6Pkj83U+SUqLXK6tz4AeyUrSk6c/8SYRb40eI7pSqD/aU8uD39/xkxcyZM5k5c2bo+8rKSubMmcP9998PwIEDB1i5ciW33HJLq2WDxWrXrVvHmDFj2LhxI4sXL+a9997DYDCwdu1adu3axVtvvUVaWhrLly9n2bJlvPLKK922f+eiUSt4PX483p7/cxZCiEh6++23qaqq4vLLLwcIJZn+9re/8cADD7Br164W7y8tLWX48OEADB8+nJKSklbtU6dODTsOs9lCvF+qFSVwMxuM9ag50CMsTafB2mjH4WjCbnfhdLpR+d1x93+HI/CA2eWK7PodjiZqa62kpwcSmDeMyGZ/eT2v7znOrJHZEav1+N3jn4gSfR8k/o5vI9IkKSV6veO1zUP3vtNLKtwaP0J0p5QkNQrg84O9qXcN4fP7/dx///1873vfY9asWTQ1NXH48GFGjRrV5vvPV6x28+bNLF26lLy8PAAeffRRpkyZQnl5OQMHDuy2/WqPRqXgAjw+me1HCCHCsX379hbfP/TQQwA8/fTT1NXV8eyzz7JhwwYWLFjA3r172bp1K2vWrAFg7ty5LFmyhBtuuIFx48axceNGzGYzhYWFYcfh95MwN7nBWGusgaF7WSnahIg9GGOkY/X5vJw4cSK03uvy+/H8+99ypMbON5VWLsyJ7A16Iv2utCfR90Hi736qWAcgRCx5fX5ONgSemg0y6WMcjRAdp1IUUkLFzntXUurtt9+mtLQ0dHNRXFyMx+Nh9erVTJ48mWnTpvHKK6/ga07ilJaWtlnMtri4GIvFwunTp1u0Z2dnk5GRwaFDh7pvp84hWOxcekoJIUTkmEwm1q9fz/bt25kwYQLLli1j2bLJs/SLAAEAAElEQVRlTJw4EQjMxrdixQoee+wxxo8fzzvvvMO6deswGo2xDbybBOtJZUWwblIiajRX8fruUjZ9XsFLOz6jvvokVw3NBODd4uoYRydEzyA9pUSvdtriwu3zY9CqyO7lF12ReNJ0GqwuL9ZeUlcKAkVr165dy49//GNSU1MBsFgsjB8/nttuu41f/vKXfPPNNyxZsgSVSsWiRYvOWazWZrMBkJyc3Ko92NZR4fbgD73/PMtpm2fc60hNqUQtznm2RC80Gi1yXFqTY9K2rh6Xnnw8n3766Rbfjx49mk2bNrX7/lmzZjFr1qxohxWXzPbmpFSyfD5Oz8ohM3dA6PvCEX342+Ea3j1Uzb1Th0RsCJ8QvZUkpUSvVlYXGLo30GiQC4pIOGk6Dadw9Zpi5xCoD1VVVcXcuWfqvV155ZVceeWVoe/HjBnDj370I7Zt28aiRYvOWaw2mKxyOByt2oPFbjsq3DH2RmNg/XpdEsnJunbfl6RRA25UGnWb79PrAzcMJlMK2dmJV9yyPYlYqLM7yHFpTY5J2+S4iK44M3xPklJBPp+XiooT9M/th16jcNri4sApC2P6pcc6NCESmiSlRK9WHkxKmQzneacQ8Se1l83AB7Bjxw4KCwtb9Gz629/+Rk1NDbfeemvotaamJvT6wJDccxWrzcjIICcnp8UQv+rqaurr61sN+TufcAtL1tcHemI5XYHise1pHr2HzdH2+5zOwI1DXZ2NmhpLq/ZEk+iFRqNFjktrckza1tXjEq1CtiKxBHtKBUYS9J7PGefSaK7i9eNWBgxRMGLnNAbePVQtSSkhukhqSoley6PLoMHpQVFgQIbUkxKJJ625ppS1F9WU2rt3L1dccUWL1/x+P0899RSffPIJfr+fffv28dvf/pb58+cDgWK1W7duZffu3bjdbjZs2NCiWO3s2bNZu3Yt5eXlWK1WnnzyScaPH8+gQYPCii1YWDKcr8CC516vtjkr5e7A8L3OxBCPXz1pX+S4yDFJxOMihNSUaltwKN+QrMDDsb8dqsbbgeuzEKJ90lNK9FpO4wUA5KbpSNJIflYknrSzekqlxjiW7nLixAn69u3b4rXCwkIefvhhHnvsMSorK8nOzubee+8N1QE5u1htZWUl+fn5LYrVLlmyBI/Hw4IFC7DZbEyYMIEXXnihm/esfVp14Pzk9srse0IIIbpHTXNSymOtpaK+BpkAtqUcAyRrFWpsTXxR0cC4gcZYhyREwpKklOi1XKYhAAySoXsiQaXqA6dwq8tDeNWPEte+ffvafP3WW29tMXzvu85VrFar1bJ06VKWLl0akRgjLVjo3C2z7wkhhOgm1ZZALcbdR2toOHoAY95gsmMcUzxRKwoT+hl477iNdw9VS1JKiC6Q7iGiV3K4vbjS+wOBIudCJKKUJDWKAj4/+LS9JS3V+wR7SnkkKSWEEKIbeLw+Gl2BrlG5ef1Iz+wT44ji0+QBgXuIfxyu6dAMuUKItklSSvRKn5XVg0pDqk6N0SAdBkViUikKqUmBulIenRTZ7Kk0oZpSMnZCCCFE9NXa3QAogF5KXLRrVF89GXoNdQ43e8vrYx2OEAlLzjKiV9pzvA6AAUYDiqLEOBohOi84A59XklI91pmaUvIUVgghRPQFZ97TqZHPye3w+bxUnqrgijwdADuLq2IckRCJS5JSolf6tKwekFn3ROILFjv36iUp1VOdqSklPaWEEEJEX3DmPb06xoHEsUZzFa/vLsXlsAPwj8PVeOQ6LUSnSFJK9DrVVhdHzXbw+8lL18U6HCG6JE16SvV4weF7Uq9CCCFEd5CkVMekZ+VQMHgAOjVYm3zsaX7oLYQIT8ImpbxeL7fddhsPPfRQ6LX9+/czb948xo4dy7XXXsvmzZtbLLNlyxYKCwu59NJLmT17druzOIme7dPj9QBobVXotXK1FYktVR+sKZUW40hEtMjwPSGEEN2pRpJSHaZSFPonB67PW/Z+y7FjR/F6vTGOSojEkrBJqRdffJHPPvss9H1DQwN33XUXN998M0VFRaxatYqnnnqKL7/8EoA9e/awcuVKnn76aYqKipg5cyaLFy/G4XDEahdEjHzaXE9K11Ae40iE6DrpKdXzyfA9IYQQ3clsCxQ6l6RUxxg9gXuLj8vtrNn+GeXlZTGOSIjEkpDTjn3yySfs3LmT73//+6HXdu7cidFoZMGCBQBMmjSJGTNmsHHjRsaMGcPmzZuZPn0648aNA2DhwoW88cYbbNu2jTlz5sRkP3qDO+5ehLm2vt32rEwj619+tdvi8fv9oXpSuga5YIjEl6HXAuBXaWMciYgWrSrw/EiG7wkhhOgOweF7Oo0UOe8Io8qNTvHh8qlwpuTGOhwhEk7CJaXMZjOPPvooa9asYcOGDaHXS0pKKCgoaPHe/Px83nzzTQBKS0tbJZ/y8/MpLi4OO4ZwJ6EIvj+RJ6/o7D6Ya+uZft9z7ba/8/zSqB6XO+5aRE0wKaaAPzWb6ot/CD4PZfs/BH4WvY1HQXf+DkVjW2f/HvkT9P463vYhOUnN9QXZfP72FhTlhg4t0xPOSb2J9JQSQgjRnaSmVHgUBXJ0HsqcSZywxcGHQyESTEIlpXw+H/fffz+33347I0eObNFms9kwGAwtXtPr9djt9g61hyMrq3O1Wzq7XDwJdx80WjXJye0XE9do1WRnR++41FsszHv0f0Lff1Fez6nD1QzKTudAk+ucsSkKcdse7W2f7+dyrp/r+dYNYDAk7nELxt7WPsQqtouTdRy2nwz7bykzM/HPSb3B2TWl/H6/TM8thBAiqqSmVPhykgJJqVN2cMlDJCHCklBJqZdffpmkpCRuu+22Vm0GgwGLxdLiNafTSUpKSqjd6XS2ajeZTGHHYTZbwuohoSiBZE64y8WTzu6Dx+3Fbneds72mxtJue1edvX1FgfLaQBIyNzWJL/2cMzZ/HLYHkyLR3vbXBw8y+XvT2m0vOVLCtHaWP9e6g/fSDoer3d+jaO5bJNbtcLgwGHRt7kMsYwvnbyn491xba5HEVALQNPeU8gNenz/0vRBCCBFpfr+famvg84ZBklIdlqHxkZqkxtrk5YvTTkYMi3VEQiSOhEpKvf3221RVVXH55ZcDhJJMf/vb33jggQfYtWtXi/eXlpYyfPhwAIYPH05JSUmr9qlTp4Ydh9/fuWE7nV0unkRjH7rrmHh9fk7UBQrb98/Qd89GI6y7jpXHxzmHXT57902dWm8w/kT+O4jnfQg3pnjcB9GaRnUmCeX2+dHITYIQQogoaXB4aGqe7dWQUHeKsaUoMDQrmS9PWdh1ws78WAckRAJJqNn3tm/fzueff85nn33GZ599xk033cRNN93EZ599RmFhITU1NWzYsAG3283u3bvZunVrqI7U3Llz2bp1K7t378btdrNhwwbMZjOFhYUx3ivRXaqtTTR5feg0KrJSpCi0ECIxqBQllJhyeyWTKIQQInoqm3tJZehUqGS4eFiGZicD8PkpJw63N8bRCJE4ekz+22QysX79elatWsXq1avJzMxk2bJlTJw4EQjMxrdixQoee+wxKisryc/PZ926dRiNxtgGLrpNRX2gZ12/DL3UZBFCJBStWsHj8+OROhVCCCGiqNoSSEplGtSAJFbCkZ2SRIoGbB4/75XUcONFObEOSYiEkNBJqaeffrrF96NHj2bTpk3tvn/WrFnMmjUr2mGJOFXREEhKJerQPSFE76VRqQAfbp/0lBJCCBE9wZ5SkpQKn6IoXJCq8HW9n7cPnJaklBAdlFDD94ToLLfXF7rISlJKCJFotOrg8D3pKSWEECJ6qiyBmfcyZeq9TrkgDRTg8xMNHK8Nf5Z3IXqjhO4pJeLDHXcvwlxb32bb4SMlTO/ecNp0qjEwU1q6XkO6Xn7thRCJ5UxSSnpKCSGEiJ6q5oe4Wcka3JJTCVuyRmFsro7PTzv581enuXfq0FiHJETck7tz0WXm2vp2Z2r7upOztEVacOjeoMzkGEcihBDh06oCHZs9MnxPCCFEFFUFa0rp1VRKUqpTrhucwuennfzlYCWLrxyMRi2Dk4Q4F/kLEb3Cyeak1EBJSgkhEpAM3xNCCNEdqq2B4XtZBhm+1xk+n5dcnxmjXkWt3c1bu7/B65XaXEKciySlRI9nb/JSa3cDMNAkSSkhROIJPmWV4XtCCCGiqbLF7HsiXI3mKv7w6RFydIGHSP9bdJLy8rIYRyVEfJOklIg4r89PtbWJOrsbVLEfIRrsJZWVosWQJBdYIUTi0aqkp5QQQojosro82JoCvXqkp1TnpWflcMmQPADMXh2VVk+MIxIivsU+YyB6DIfby97yBg5X2/A21z3JuPUZPj/RwJi8tJiNpw7Wk5JZ94QQiUob7CklNaWEEEJEyenmz8wpSWoMWum70BUZBi0DMvScaHDyTqmFCaNiHZEQ8UvONiIiTjU62fzFKb6ptOL1+dFpVGjVCkqSgb3lDbzzdRUuT/c/4fcjSSkhROLTNNeU8khPKSGEEFFS2Rj4zNw3VRfjSHqG0f3SAPjHMRsWp/SWEqI9kpQSXeYwDWVbc9IpM1nL9Iv6ctvl/fnRFQOw/fM36DQqqqxNvPN1ZbffUHn1RmxNXlQK5KbJBVYIkZjOFDqXnlJCCCGi41Tzg9y+aUkxjqRn6J+hJ10LLq+fLV+einU4QsQtSUqJLvmsrJ664Tfg88OQTAOzRuXQL0OPoigoioL76F5uuqgveo0Ks83Nx8fqujU+V8ZAIJCQkulYhRCJSquS4XtCCCGiK9hTqo/0lIoIRVEYnhF4qPTGvgqpCylEO+QuXXTa8Vo7S98+CCo1gzMNXFuQ3WbiJzMliWsLsgE4VGXjqNnebTEGk1L9jTJ0TwiRuM70lJIPtEIIIaLjVIMDgL4yuiBiBqaCUR8YNfLuoepYhyNEXJJC54I77l6Euba+3fasTCP/+8qrLV6zN3m5/89fY2vyktR4kmsmTEClKO2uo3+Gnkv7p/NFRSOfHKtjgFEfKtwbLV6fH1f6wND2hRAiUSU1ny+bJCklhBAiSk43uADom5oEuGIbTA+hVhRuGJbG6wcbeO2zE9xwYV+Uc9wzCdEbSVJKYK6tZ/p9z7Xb/s7zS1u99tw/SjlqttMnNQnV3m1opk0873bG9k+ntMaG1eVlf0Ujlw8ydiXs8yqutODX6EhSK2SlyNh4IRLdtm3bWLp0KTrdmSe4119/Pc8++yz79+/niSeeoLS0FJPJxOLFi5k3b17ofVu2bGHNmjVUV1czdOhQli9fztixYwHwer0899xzvP322zgcDiZOnMjjjz9O3759u30f25OkaU5KeWT4nhBCiOg43djcUypVhySlIqdwaApvH7ZSUm3jgyO1XJ2fFeuQhIgrMnxPhO0fh6vZerASlQKrpl+I2t2x4XgatYqJF5gAOHDKgsPtjWaY7D4eqF/VL0N/zl5cQojEcODAAWbNmsW+fftCX88++ywNDQ3cdddd3HzzzRQVFbFq1SqeeuopvvzySwD27NnDypUrefrppykqKmLmzJksXrwYhyPw4Xvt2rXs2rWLt956iw8//BC9Xs+yZctiuautBIfvSU8pIYQQ0XK6QWbfizSfz0tj9SkKhyQDsO6TY/j98oBJiLNJUkqEpcriYtW7JQD8aPxAxg7ICGv5wZkGslOS8Pj8fHmyMRohhuxuLqo+wGiI6naEEN3jwIEDjBo1qtXrO3fuxGg0smDBAjQaDZMmTWLGjBls3LgRgM2bNzN9+nTGjRuHVqtl4cKFmEwmtm3bFmq/8847ycvLIzU1lUcffZQPPviA8vLybt2/czl7+J58mBVCCBFpbq+PGmsTILPvRVKjuYrXd5fidVpR4+NQlY2Pvq2NdVhCxBVJSokO8/n8PPbXQzQ6PVyYk8pdky4Iex2KonDZwEAi6+vTVrya6NR6sjg9HGhOeg2QIudCJDyfz8fBgwd5//33ueaaa5g6dSrLly+noaGBkpISCgoKWrw/Pz+f4uJiAEpLS9ttt1gsnD59ukV7dnY2GRkZHDp0KPo71kHB4Xt+f6BenhBCCBFJ1c0JKY0K6itPUFFxAp9cbyIiPSuHvP4DGZYRuJav++S4PGAS4ixSU0p02G8+OsqnZfXoNSpW3jiyzZn2OmKQUU9WihazzY29b+teD5FQVFaH1w8aRy1pukFR2YYQovvU1tZy0UUXMW3aNFavXk1dXR0PPvgg999/P3369MFgaNkjUq/XY7cHhhbbbLZ22202GwDJycmt2oNtHRXuKOHQ+zuwnFaloAB+oMnrR6OOTAzxKLgPPWFfIkmOS2tyTNrW1eMix7N3qrIGakhp/B7e2HeSskMHMOYNJjvGcfUkBRkKx63wTaWVj4/WceXQzFiHJERckKSU6JDDVVae3RHoNXDfNcO4IDP5PEu0T1EURuel836pGVvuGDxeX6cTXO35pHnonq7+OHBpRNcthOh+2dnZoeF4AAaDgfvvv58f/OAHzJ49G6fT2eL9TqeTlJSU0HvbajeZTKFkVbC+VFvLd1RWVlpY7zcaA+vX65JITj5//Y4kjQqXx4dKqyE5+czQCr0+8H+TKYXs7PBiiGfhHs/eQo5La3JM2ibHRYSjyhJISqUmacjMHUB99akYR9Tz6NQK3x+awtYSCy9/fIzJQ0wyE58QSFJKdIBPpeHRvxTT5PVxdX4Wt4zO7fI6h2Yls+d4HQ5S+UdJDd8fGblZrvx+/1lJqbKIrVcIETvFxcX85S9/4ec//3noA1xTUxMqlYoxY8bwf//3fy3eX1payvDhwwEYPnw4JSUlrdqnTp1KRkYGOTk5LYb4VVdXU19f32rI3/mYzRbC6Y1fXx/oieV0NWG3n3+WI61KwQU0Wp3olTMbcjoDQy7q6mzU1FjCijkeKUrgZjrc49nTyXFpTY5J27p6XILLi96lqnn4nl7uDqNqVkEafztm45tKK29+8g1X9DPg9XpRqRQaG9OprbUyYMAg1Op2ukQL0QNJTSlxXo0XTOForZ2+aTqWfX94RDL6apXChTmpALyx72SX13e2o7V2Ki0udBoVusYTEV23ECI2jEYjGzdu5NVXX8Xj8XDy5EmeffZZbrnlFqZNm0ZNTQ0bNmzA7Xaze/dutm7dypw5cwCYO3cuW7duZffu3bjdbjZs2IDZbKawsBCA2bNns3btWsrLy7FarTz55JOMHz+eQYPCG/rr94f/FViwY+sP1pU61wx8nYkhHr960r7IcZFjkojHRfQ+wZ5SBklKRVWGXs38sf0BWLPnFK/vPcH/+8NO/t8fP2D9R0dZu/0zysvlobroXeS0I87pWK0de84YAH75g0sxJSdF7MPKhTlpfF5Wx5cnG/n6tIWLciPzVO6To3UAjB2QQZnfG5F1CiFiKzc3l5dffplf/vKXrF27Fp1Ox/Tp07n//vvR6XSsX7+eVatWsXr1ajIzM1m2bBkTJ04EYNKkSaxYsYLHHnuMyspK8vPzWbduHUajEYAlS5bg8XhYsGABNpuNCRMm8MILL8RuZ9uhDc3AJ3eMQgghIiuUlFLLcLJo8fm8VFSc4OqcfmxSg9WrpV6bSXpmH1S6FLLyBuJwNMU6TCG6nSSlRLusLg8fHAlMWXrbFQOYMjw7okNDkpPUGMwlOPqM5A/7KnjshpERWe/u5qF7kwabkOcMQvQc48ePZ9OmTW22jR49ut02gFmzZjFr1qw227RaLUuXLmXp0qURiTNakppvFJo87feUEkIIITrjVGMgKZUsd4dR02iu4vXjVgYMUchyVVKhyWFveQOXqWX4kujd5PdftMnj9fHuoRpcHh9aaxX3TBkcle2knN4PwM5D1dTau/5kwOn28vmJegAmDZYZLYQQPUdHhu8JIYQQnXG6MTAhiCSlois9K4fM3AHkZyhoFT8NTg+nPfpYhyVETMlppwe44+5FmGvr223PyjSy/uVXO7w+v9/PB0dqqbE1odOoyCjZhlY9NwKRtpZkq+Si3DS+Pm3hzwdOs3BCeDVcvquorJ4mr5+cNB2DMw3nX0AIIRJEUvPwPbckpYQQQkSQy+PDbHcDkpTqLhrFz2BDEyV2HUebUunnd5x/ISF6KDnt9ADm2nqm3/dcu+3vPB/ekJT9Jxs5YrajKHB9QTb7PmrsaojnNPeSPH5x2sIfvzzFbVcMRK3q/Fj290trALh6WJZMsSqE6FGCSakmj9SUEkIIETnBXlJ6jUKSjKPpNgP1bircydjdUOHSMCrWAQkRI3LaES2UVNsoKmsAYPJgE/0yot+dtHBEH9L1Gk41uvj4aG2n1+Px+UM1sL43PCtS4QkhRFxI0jTXlJKeUkIIISLoVHNSKidNKw91u5FagUsHpAPwrT1JekKLXkuSUiKktNrGP0vNAFycmxqx2fDOR69VM+PiXADe3H+y0+vZX9FAvcNNhl7D2AHGCEUnhBDxIdRTSj60CiGEiKBgkfPcVG2MI+l9RvZNRa94afKrOHCiIdbhCBETkpQS+IEvTzbyXqkZP1DQJ4VJg03dGsOcS/IA+ORoHSfqOzem+v3mhNqUYVloujAEUAgh4tGZ4XuSlBJCCBEZXq+X4vJKAFJw4ffLEPHupFYpDEmyAvDZ8TrcPjn+oveRmlK9XJ29ibrhN3LqeD0Q6CE1cbCpRdfdw4eLmTl3LhqtGo/b22odh4+UML2LcQw0GZg42MTuY3X8cf8pfnr10LCW9/j87CyuAuC64dldjEYIIeKPNjT7nnxgFUIIERnl5WV8XFoJGPi2/CTDs5LJyot1VL1LrsbJcXcadjccaZQH66L3kaRUL1Vvd7PlwCl+W1SOMysflQITLjBxcW5qq7HkHh9Mv+85kpN12O2uVuv6+u6bOh3H4cPFzJoXmNnPaRoCI2bw2iclvLvmEVQ+T4dnDiwqq6PWHhi61929vIQQojskqaWmlBBChKu4uJhnnnmGgwcPotVqufLKK3nooYfIzMxk//79PPHEE5SWlmIymVi8eDHz5s0LLbtlyxbWrFlDdXU1Q4cOZfny5YwdOzaGexMdHrUBPGBKS451KL2SSoGhyU18ZdVT0uDHIT2iRS8jSakE5/P7aUrN5YuKBursblweHypFQatW0KpVJKlVWPpdzh/2VeD2+qmyuiiutLL/ZCPe5u6hWlsV0yeOpk+qrtvjDya8gvvyh32nsGBg2PxHuSg3rcMzB277OtBL6vsj+6JRy6hUIUTPI8P3hBAiPE6nk0WLFvGDH/yAl19+GZvNxoMPPsgjjzzCM888w1133cVPf/pT5s+fT1FREUuWLGHEiBGMGTOGPXv2sHLlStatW8eYMWPYuHEjixcv5r333sNgMMR61yLK5gn8a1B5AXVMY+mtcpI8nDBoqXe42XnEyoX5sY5IiO4jd+8JyuPz86cvT3HLb4qoGfUDisoaKK2xU17v5Hidg9IaO980J58sgybz7D+O8MI/v+X3eyv4/EQDXp+fkX1TefyGEWQfeCMmCanvUikKo/MCxdUPnLLg6+CYdqvLw/slNQDceFHfqMUnhBCxlKSRQudCCBGOkydPMnLkSJYsWUJSUhImkymUgNq5cydGo5EFCxag0WiYNGkSM2bMYOPGjQBs3ryZ6dOnM27cOLRaLQsXLsRkMrFt27YY71VkeXx+HM3VOQxqub7EikqBK4ZkAvDnEguONkqmCNFTSU+pBHSi3sGj7xTz9WkLAIqnicE5RrKStRi0avyA2+vD7fXR5PFz5MvdTJ5yNRqVQlZKEoMzk7likJEBxsBTnpeJn/okBX1T2FveQKPTw7HajhU8//NXp3F6fAzJSubibpoxUAghuluwp5TPH7iJkAkdhBDi3IYOHcqrr7YsA7Fjxw4uvvhiSkpKKCgoaNGWn5/Pm2++CUBpaSlz5sxp1V5cXBx2HEocn65rnYHkh1oBneLHE8exnkvwGMfzsT4XRYGCnDQ+PlxJo8vHH788xb9ePiDWYYWlJ/wMzv430XRH/NFatySlEsQddy/CXFuPKy2P2hEz8Wt0KB4naSc+5eTuP3H9r95sd9naP/2dp59Z3I3Rdp5WreLivFQ+P9HI3vIGDJz7N9/r8/PGvpMA3HpZ/1b1sIQQoqfQqs+c35o8PjRJMsRCCCE6yu/388ILL/Dee+/x2muv8dvf/rbVMDy9Xo/dbgfAZrOdsz0cWVnx+9DUrmgBSDdoURTQ6bQkJ+vQ67WoEuj/BkNg1Ec8xQ+EtYxapTC6j4bdpzy89lkFP76uAL028a718fz73hESf/eTpFSCMNfWM/aOJ9heXI3f56dvahLXFfQj9aoCnn1/U6zDi6hReekcPGWl3uGG7IJzvveDI2ZONjjJ0Gu48UIZuieE6LmC9QLdXj9NXh/JUvdDCCE6xGq18vDDD3Pw4EFee+01RowYgcFgwGKxtHif0+kkJSUFAIPBgNPpbNVuMoU/oY7ZbKGDVSm6XUnzyIs0XeCa4nK5sdtdOJ1uVP7E+b/D4Yq7+IEOL6PGDUA/vZc+yWqqrS5efa+EWy/rD4DX66W8vCz0cxs4cBBqdXx9DlCUQEIknn/fz0Xi7/g2Ik1qSiUItyGTnYeq8fr8DDTqmX5RX1J1PTOnqNOoGNM/8MveOHAyVpenzfd5vD5+/eFRAGZfkpeQTxKEECIcuua6Ui4pdi6EEB1SVlbGnDlzsFqtvPnmm4wYMQKAgoICSkpKWry3tLSU4cOHAzB8+PBztofD74/fr0pr4HN2WvN9RSLejMOZuBM9fgWFW0akA/B/n5bjdPvw+wO/x2u3f8breytYu/0zysrKYv6709ZXcF8S9Uvi79g2Ik2SUgmg3uGmduRM3F4/uWk6Ckf06fEzzI3KTSNNp8GnS2PtR8fafM9b+09xvM6ByaDl364Y2L0BCiFEDOg1geS7U5JSQghxXg0NDfzoRz/isssu4ze/+Q2ZmZmhtsLCQmpqatiwYQNut5vdu3ezdevWUB2puXPnsnXrVnbv3o3b7WbDhg2YzWYKCwtjtTtRcbp56r10fc982J2IvndBCjlpOqqtTbx94FTodWOfPDJzB2DskxfD6ISIvJ6d2egB/H4/v9h+CK8unXS9hsIR2ah7QXFbjVrFVUMDHxz+8MVJdhZXtWgvqbby64+OAnD3lRf02F5jQghxtlBPKZmVRwghzuuPf/wjJ0+e5K9//Svjxo1j7NixoS+TycT69evZvn07EyZMYNmyZSxbtoyJEycCMGnSJFasWMFjjz3G+PHjeeedd1i3bh1GozG2OxVhVbaWPaVE7GnVCgvHBx64/2Z3GbamtkeNCNFTJNzZp7i4mGeeeYaDBw+i1Wq58soreeihh8jMzGT//v088cQTlJaWYjKZWLx4MfPmzQstu2XLFtasWUN1dTVDhw5l+fLljB07NoZ7c35v7T/Fh9/Wgs/D9QW5vWqIWn+jnpRT+7DljeWx7YdweXxMvziHr09beGjrNzjcPi4fZGTWaHlaIIToHfTaQFJKekoJIcT53X777dx+++3tto8ePZpNm9qvzTpr1ixmzZoVjdDigt/v57Q12FNKS8fmvRbdYdboXH6/9wTl9U5+W3SCG/rHOiIhoieheko5nU4WLVrE2LFj+eijj/jLX/5CfX09jzzyCA0NDdx1113cfPPNFBUVsWrVKp566im+/PJLAPbs2cPKlSt5+umnKSoqYubMmSxevBiHI35Pv9VWFy8210xKL9tFVkpSjCPqfunHP+K6gmzcXj+/2HGYqat3cfvvv6DS4mKQycAzMy6UadGFEL2GXmpKCSGEiJAGpweHJ1AkJljoXMQHrVrFT6YOBWDjZycwO6S3lOi5EiopdfLkSUaOHMmSJUtISkrCZDIxf/58ioqK2LlzJ0ajkQULFqDRaJg0aRIzZsxg48aNAGzevJnp06czbtw4tFotCxcuxGQysW3bthjvVft++d4RbE1eLs5NI+X0l7EOJyYU/Dxx40juvWoIyVp16EZs+sU5rLv1EtL12hhHKIQQ3UcXrCnllqSUEEKIrqmoDzyc16vp8fVqE9E1+Vlc0i8dl8fHG183xjocIaImoYbvDR06lFdffbXFazt27ODiiy+mpKSEgoKCFm35+fm8+eabQGC2jGDhwrPbi4uLoxt0J330rZm/Ha5BrcAjhcO5/09RKnWfADRqFf82fiDzxvbDbGsiOUlNZnLv6zUmhBBnhu9JTSkhhBBdU9HgBCA1oe4Iezafz0tFxYnQ9z+ZcgF3/uEA7x+zcV1/hcxzLCtEokrYU5Df7+eFF17gvffe47XXXuO3v/0tBoOhxXv0ej12ux0Am812zvZwKGGOFgu+/1zL3XHXImpq6wHwqTRUX/KvoEtHX7GX+5espuRISfsLhxFDV5dXlOhNBXm+bScnqUlOMpz7zR1YTyz2IVK6+nOMtZ70M4jHfejo70dHzkkiPsnwPSGEEJFyoj6QlEqRgQdxo9FcxevHrQwYolBffYofT7uc6wuy+dvhGvab/QweGGcfPoWIgIRMSlmtVh5++GEOHjzIa6+9xogRIzAYDFgslhbvczqdpKSkAGAwGHA6na3aTSZT2NvPykrrVNznWq7eYmHeo/8DwJ6jZk5/W0uaXsNtP/wBWvWt/OLfCklO1rW5rKLQbhuARqsmO7v9bWu06nMuryhgMATag/92dPvni62rsZ9PW/sW3IeuxhbL9kSODdr+PYqH2DrS3tm/hWjH1pm/lczMzv9tidjQy/A9IYQQEXK8LvBwPlUrT6niSXpWDpm5A0Lf/2TqEP5ZWkO1E47XOUiPYWxCREPCJaXKysq488476devH2+++SaZmYFOjAUFBezatavFe0tLSxk+fDgAw4cPp6SkpFX71KlTw47BbLaE1UNCUQIJqXMt53F7sdtdONxe9h6rA+CKgRm4XW7cBHpk2O2uNpc9V1tw3TU1lnO2n2t5vx8cDhcGgw6Hw9VqH7oSW1djP5+z9y2YUAjuQ1dji0V7cB/iMbaOtAV75rT1exTr2Dra3tm/hWjHFs7fSvCcVFtrkcRUgtHJ8D0hhBARcrw2UFMqTXpKxbX+GQZmFKTzx+JGdh+r57pc6S0lepaEqmjX0NDAj370Iy677DJ+85vfhBJSAIWFhdTU1LBhwwbcbje7d+9m69atoTpSc+fOZevWrezevRu3282GDRswm80UFhaGHUcwoRHO1/mWC/r8RANun5/slCSGZiV36Xh1NOaOLn/2v92pM8e7rX2L5T5ESiLHDj3rZxCP+9CZc5JILGcP3/PLD1AIIUQn+f3+s3pKxTgYcV43j0hDrwaLy0Op1DwXPUxC9ZT64x//yMmTJ/nrX//K9u3bW7Tt27eP9evXs2rVKlavXk1mZibLli1j4sSJAEyaNIkVK1bw2GOPUVlZSX5+PuvWrcNoNMZgT9rW4HDzTaUVgAkXGFGk4IsQQoizBJNSPj+4fX6S1HKdEEIIEb5auxury4uCFDqPV2cXPa+tPMnFRthrhuJ6P3UOL4NjGp0QkZNQp6Dbb7+d22+/vd320aNHs2nTpnbbZ82axaxZs6IR2nnNvXUBJ0/XtNt++EgJ+vIG/H4YYNTTL0PfjdEJIYRIBBq1CrWi4PX7cbp9JMkU3kIIIToh2EuqT7IatUp63sajs4uelx06gCl3MH1TM6myNvH7g/WMvTDWEQoRGQmVlEpkVeY6pt/3XLvthx7+Md+aAxeH8YOM3RSVEEKIRKPXqrA1eXF5vMhlXAghRGcE60n1S9MCTbENRrQrWPS8vvoUigKTBpt4+6tK3j9u5+BpCxfnSm1Qkfjk02yc0F1yIwDDspLJSkmK6LoPHy5m1ry57bcfKWF6RLcohBAiWnSaQFJKZuATQgjRWcGkVF6qBnySlEoUfdN0DEqFMiv8v38c4Tf/3yVS8kUkPElKxQGzrYmkCy4FYOyAjIiv3+PjnL20vr77pohvUwghIq24uJhnnnmGgwcPotVqufLKK3nooYfIzMxkxYoVvPXWW2i1Z6q1PvTQQ8yfPx+ALVu2sGbNGqqrqxk6dCjLly9n7NixAHi9Xp577jnefvttHA4HEydO5PHHH6dv374x2c/z0WvPFDsXQgghOiM4fK9/moa6hhgHI8IyyqRQ6YADpxrZUVzNv1wYn59XhOgoKUYRB/adCFwJhmYlY0qW6S+EEOK7nE4nixYtYuzYsXz00Uf85S9/ob6+nkceeQSAAwcOsHLlSvbt2xf6Ciak9uzZw8qVK3n66acpKipi5syZLF68GIcj8JR47dq17Nq1i7feeosPP/wQvV7PsmXLYrav56PXqAFwSlJKCCFEJ5XVnT18TyQSg0Zh9sh0AP7ng29xuL0xjkiIrpGkVIzV2po4WuvA7/cxdkB6rMMRQoi4dPLkSUaOHMmSJUtISkrCZDIxf/58ioqKaGpq4vDhw4waNarNZTdv3sz06dMZN24cWq2WhQsXYjKZ2LZtW6j9zjvvJC8vj9TUVB599FE++OADysvLu3MXO0zXPAOfUz6ECiGE6ASn28uJ+kBSaoAkpRKOz+flspQG+iSrqbI28X97ymIdkhBdIsP3YuzzikYA3Mf2kTl5cGyDSUB33L0Ic219u+1SL0uInmHo0KG8+uqrLV7bsWMHF198McXFxXg8HlavXs3evXtJS0tjzpw5LFq0CJVKRWlpKXPmzGmxbH5+PsXFxVgsFk6fPk1BQUGoLTs7m4yMDA4dOsTAgQM7HGO4JR1C7w9zOUPz8D1HGz2lekJZieA+9IR9iSQ5Lq3JMWlbV4+LHM+e71itHZ8fMvQajHrpo5BoGs1VvHncyrC++VTb4bdFJ5g1Jo+8dJm9XSQmSUrFUK29iaPNM+459/8VfnhLjCNKPObaeqmXJUQv4/f7eeGFF3jvvfd47bXXqKmpYfz48dx222388pe/5JtvvmHJkiWoVCoWLVqEzWbDYDC0WIder8dut2Oz2QBITk5u1R5s66isrPBmwDEaUwLb0iWRnKzr+HKpeqARl9dPcrIOvT4wOYbJlEJ2ds+ZhSfc49lbyHFpTY5J2+S4iPaU1gSub/l9UqRIdoJKz8rhgqEDONJYTrXTz5PvlrB69ij5eYqEJEmpGNp3ItBLakimgX31J2McjRBCxD+r1crDDz/MwYMHee211xgxYgQjRozgyiuvDL1nzJgx/OhHP2Lbtm0sWrQIg8GA0+lssR6n04nJZAolq4L1pc5uT0lJCSs2s9mC39/x99fXB24KnK4m7HZXh5fTENiIxRFYzukMzJpUV2ejpsbS8QDilKIEbqbDPZ49nRyX1uSYtK2rxyW4vOi5/n/27jw8qvLs4/h3MpnsewJhFyEBBUECyC4oNqIiSwOoLdKiVSxEqVRALCi2lK1uiAgqSnlbqSggKpUquILIpiIgCiQgEPYsJGRPZua8f4SMxIAkYZKZyfw+F3Nd5DxnuZ+TzDlz7nmWlPRzSamY6t3nxL2YTCY6RZv47ARsOXSGVTtPMLxTE1eHJVJtaq/pImcKSjl4rpVUbcy4JyJS3xw5coRhw4aRl5fHypUradu2LQAfffQRy5cvr7BuSUkJAQFlzdjj4+NJSUmpUJ6amkp8fDzh4eHExsaSmprqKEtPTyc7O7tCl76qMIzqv8o2rN55CPYrG+g8v6TymFI1icEdX/WpLjovOieeeF6kfks9l5SKNBVy7NhR7Hb90j1VmJ+JuzuEAzDv84N8f9Lzv5wS76OklIuUz7jXMiqQ6GA/F0cjIuLecnJy+P3vf0/nzp157bXXiIqKcpQZhsHs2bPZvHkzhmGwY8cO/vWvfzlm3xs+fDhr1qxhy5YtlJaWsnTpUjIzM0lMTAQgKSmJRYsWkZaWRl5eHrNmzaJbt260aNHCJXW9lPKkVGGpXQ8SIiJSbftPl/XW2Hcim2UbdpOXp0SGJ7uldQh9WkVRbLUz6d09nM4txmazcejQj46XzabJUcR9qfueC5wpKOXAuVZSndVKSkTkkt5++22OHz/O//73Pz744IMKZTt27OCxxx7jySef5NSpU8TExPDQQw8xZMgQAHr27Mn06dMd5XFxcSxevJiIiAgAkpOTsVqtjBw5kvz8fLp37868efPquIZVF+Drg48J7AYUaAY+ERGphuyCUrKLyibKuKJ5U9JyT7o4IrlcPiYTM267itHLdnD4TCFjV+xias9I3tqwg4gGjclOP8EfB0DLlle6OlSRC1JSygV2HCtrJXVFpFpJiYhUxT333MM999xz0fK77rqLu+6666LlQ4YMcSSpfs5isTBx4kQmTpx42XHWBZPJRJDFTF6J7YJd+ERERC6mfJDzYF+wmNVppr4I8ffluaHtGPPmtxw5U8jjnxTSJTqWqEbNXB2ayCXpSlTHzhSUciDjXCup5molJSIi1Rd0rgtfgZJSIiJSDT+cKuuqF67vxesd29nTtOEkgWY4XQQbTtrJL7a6OiyRS1JSqo6VjyV1RWQgMWolJSIiNfBLg52LiIhcTPlA2FH+JhdHIs5gt9s4duwohw79yLFjR4lt0JDBHZvgb7KRb/PhvT2nyCvV+JPi3pSUqkNZBSWOsaS6qJWUiIjUkFpKiYhITZQnpSL9XRyIOMXZzNO8sSWV5d8ccwxaHxbgS5fALAJ97OQV2/j8hMHhnBJXhypyUUpK1aEdR8tmutCMeyIicjmC/MqGhMwvUbN8ERGpmjMFJRw/WwwoKVWfhJ0bOyosqoFjWaCPnevCC4kKslBkg+mfp7P7+FkXRilycRrovI6UBERxRDPuVdv+/XsZMmL4xcsPpDCwDuMREXEHwee3lApwcTAiIuIRvj+ZB0CTEF8sPnYXRyO1zd/H4Pb2sfx311Gyiu0kr9zF00Pa0+2KSFeHJlKBklJ1JKfJdQBcqVZS1WK1w8AJT1+0/PsHbq/DaERE3EPQ+WNKKSklIiJVUN51r3WUH1Dk2mCkTvj7+nB9IxOHCv3ZebqICau/Y/agdvRtHe3q0EQc1H2vDqSk51EYGQdoxj0REbl85w90bmj8UhERqYI955JScZH6gtyb+GBnVMsiujUJpMRmMPm971m397SrwxJxUFKqDiz+8ggAraKDiArSTUBERC5PiH9ZQ2er3aDE0AxKIiLyy6x2g2+Plc0CflW0BpTyJmczT7Ni2wGa+hURay7AZjeY9v5eXvt0NzabJkwR11NSqg7sT88Dw0ZCszBXhyIiIvWAr4+JEP+y1lJ5ViWlRETkl+07nUd+iY1Qf1+uiLC4OhypY2HRscQ0bk77gFwakoMBvPTNGeat241dTa7FxZSUqgPPJ11Dox9WqpWUiIg4TURA2UNFvk23chER+WXfpGUDkNAsHLNJX2Z4K5MJOkaZ6dgkFIDl35/lkXf2kFNY6ljHZrNx6NCPjpdaU0lt0yfZOnBFVBB+hRmuDkNEROqR8MCyLnxKSomIyKV8dS4p1UXj23o9kwm6XxFJQpSBrwm+OJjFb5ZuY+uhTADS0o7w0odfsfybY7z04VekpR1xccRS32n2PREREQ8UHniupZRVSSkREbk4q93g26Nl40k1Nudz7Nhp7HYXByUuF1VymquMEn70bU56gY0HV+3h5rYNSGrtS0SDxkQ1aubqEMVLKCklIiLigcIDym7heWopJSIiv2D38bMUlNrxxc6WA6dJ27+biMYtiXF1YOJyjaMj6dyqGV/sPcqPubBuXzqfp5q4MtSgW4wyl1I39ElWRETEA0WcaylVYDOBSbdzERG5sM9Sy4YRaRLiQ3Tj5oRFNXBxROJO/H19uDbK4M8dID7Kj2Kbwd5sePOb4+zNNiiyKjkltUufYkVERDxQsJ8Zs48JAxO+EY1cHY6IiLghwzDYcKBsrKAmQRrgXC7sbOZpvth9gA5hpbQuPUKw2Uaxzc6eMwYPfnCCN745RvF5ySkNhi7OpKSUiIiIBzKZTI4ufJaopi6ORkRE3NHBzAKOZhdh8YHYQFdHI+4sLDqW6MbNaRnpT8/wQm6IiybYF3KK7Tz76QGSXtvG27tOYLXZNRi6OJXGlBIREfFQkYEWsgpK8WvYytWhiIiIG/o0pazrXoeGAfj6lLg4GvEUJhPENwgm0ppFg8gI3knJ53ReCbPXp/DapoPc1MhGSFSsBkMXp1BLKREREQ/VMNQfAP+mV7s4EhERcTd2w+D9708B0LNZkIujEU/kYzKR2CqEt//QjdEdI/Az2ThdYOONg/DRMTvHsotcHaLUA0pKiYiIeKjYUD8A/Jpehd0wXByNiIi4kx1HcziaXUSwn5keTdV3T2rO39eHgfGh3NrCl24tIrBgJ9/mw9ofTrP1tJ3MQqurQxQPpqSUiIiIh4oO8sOMgTkghBP5mh1HxNvZDYOMvGKKSjXosMB7350EILFtAwJ89dgn1We32zh27CiHDv3IsWNH8QGubRpGr+AMmgeUYAKO5sOEdSdZ/s0xbHZ9QSbVpzGlREREPJSPj4lwi42sUl9Ss/UQKlKfHD2aRlZWZpXW3ZtlZd3hEvaesVJ87lLQONiHAfERjO3fHh+TZl3zNhn5JXy8v2w8qcHXNIKSqv0tiZzvbOZp3jicR7MrTRzZt5uIxi2JAXxNBlcFl9C1TQs+33eSrGKDpz85wPqUTCbdcCVtG4a6OnTxIEpKiYiIeLAoi52sUjiQo6SUSH1x9GgavXpfR1FhwS+u5xMUQdTNYwlu27tS2Yl8O0u/zaJtdCq/6hRfW6GKm3p9+1GKrXY6NA7jmsahHD6spJTUTFh02YDm2eknKpXFBPtxQ2MTURHhvPF9LjvTsrn73zu4uW0D/ti7Jc0j1W1ULk1JKREREQ8WaSlLRn2XYcVmNzD7qEWEiKfLysqkqLCA4RNm07DZlRdcJ7vUh69yAii2+2DCoHmglRYBpYT62jH7+fHd4dPs2LiO6Jv+VMfRi6tlFZSwaudxAAa18uPw4UMcO3YUu3p5Sy0wmUwMaB3KsB5tWbT5CO/tPMG6fel8vD+d/vExDOvUhM7NwjGpxaZchJJSIiIiHizGz4at8Cw5hLH9yBl6tIxydUgi4iQNm11Jk9btKi0/kJHPltQsbIZBRKAv/eNjiA72c5QHBfljlJbw+ba3Mfs8XIcRiztYsOFHiqx2Wkf6seXbPexr2LhC1ysRZyofd6qZCZIan+Xk/gwOE8OpQli/P4P1+zNoHOLLgHaNuCG+AVfHhqhLsVSgpJSIiIgH8zFBwQ8bCe08kLXfn1ZSSqQeMwyDr9Ny2HHsLADNIwLoHx+DnwaxlnO2HznDmj2nMAH3XBvBjsPWi3a9EnGG88edOnXoe8KjmjG4TQu+/XYHhwt9yTKFcyLPytJtR1m67SiRAT5cd0UUXVtE0rV5BM0iAtSKysspKSUiIuLh8vZ8SmjngXyakkF+iZVgP93eReqbUpudz1IzOZRVCEDHxqFcd0WEWhyIQ0ZeMU/+bx8Aw65tTNtoX3YcdnFQ4hXKx50qys2g5NwEfGFmK9dG+9OkdTO279zDyWIzZ00hnCmys25fBuv2lQ3EHxlgJi7Kj9YRFrrFN6N9kzCigvx+4WhS3+hTq4iIiIcrOb6XRkE+nCyws2RLGg/1vfAYNCLimc4WlbJ+XwZZBaX4mOD6VlG0aRji6rDEjeQVW5n47vecziuhaagvg67w0ThS4hb8zD40thTRNCSY5nHN2X/oCMG+Jo4U+7M/s5gzRTa2Hy9k+/FCln//PQBh/r40CDLRMNiX2GBf4po0IDLIj4hACxGBFsICfAn0NZFx6hjmc4n55s1bYDabXVlVqSGvS0plZmby+OOPs23bNsxmM4MHD+bRRx/F19frToWIiJzH0+8PI+L9eWFnIcu+PsrA9g1pFR3s6pBE5DIZBnx/Mpeth7Ox2g0CLT4ktm1AbKi/q0PzGp5wbzh5tog/v7OHlPR8Qvx8aGE7yXu77RpHStyO2ceEf/5psvPyaHdlPEHH92CKuRLfyCYcyzhDsc1EehGcLbZythgOnCkt23Bf7kX36WsCH2xE+KcRGuhHiMVETJCZ2GALMUFmrrmyKc2jgokOsji6CdpsNtLSjjj20bx5C3x9ldByFfe5mtaRhx9+mNjYWDZu3EhGRgZjx45l6dKl3Hfffa4OTUREXMjT7w+dGlro0yqQLw5mMeHt73hxREeaRWgqZhFPZLMbBF11PRvPBJKbfgaARqH+3BgfTYi/1318dyl3vjcUltpYvesEL395mIISG+H+PtwXb+dgbgONIyVurby7X3b6CXwsdlo2CSM4cx95RXn0vCKO1NT9+EY1IyCqMceOHye/1I45IITC4lJ8fC0UWMF2rpug1QAwc7oITheVVD7Y9iwAAnx9aBIeQLOIQEJNxaQcOU5MZDj23HQeutmgbVyrOqu/VORVd7XDhw+zbds2NmzYQGBgIM2bN2fcuHE89dRTbnFjERER16gv94fHfhXPH9/aSVp2Eb97fQcjuzbl5rYNNYioiJsrKLGRll3Iwcx8vk7L4eO9eTQY8ii5VvAzm+jSPIJ2jTRjVV1zh3uDYRhY7QZFpXZyi62kZRdy5Ewhu4+f5YuDWeQWWwEI8ymhZwN/NnzznVpHiccKi46lYZPm5GWexMfPRssmYYRk7sMnLJiWbVpwcPd28vLyaHZlPIf27SYk9goatYznx73fYbcEEtXkCtJ+TKXYJxBzSCRnzuZhM0xkl0CR1c7BzAIOZhaUH439pwwghi3vHKVByGmaRATiby8hKtBMVKCZ5g1jCA2wEOxvJtjPl2A/M4EWM75mE74+5S8fx89mH1ONr9M2u0GpzU6pzaDUbsdmNygptXH02DHshoGvj4nWLZsTFuCHr7l+TW7hVUmplJQUIiIiiI2NdSxr3bo1x48f5+zZs4SFhVVpPz4+Zc2pq8pkgqCgQPwtPhfdLjQk5BdnTvml8svZtqrl/hYf/Mw+2C5QB1fHVtVyk4kKdXCn2KpaXl4Hd4ytKmUm009/T7XxXric2KpaXtP3Qm3HFhQUhE8V70/l90o92/zEGfeH6t4bfH3NhIaGkpd+jKzLGJg8N/0YoaGhHDp0ELPZzKTO/izaaSctz87rXx3j9a+OYfGBCD8Tof4mLD5lM/aZTCZ8ALMPlP8pmEwmjOpU4gIudx8mE1h8fSm12lweizP3U9/OiwGYMGFw4f38fPeXOtqlwvl5cdnxwddixlpqKys3zi//5R1W2t+5BVU9N5XWOH9BFfZhGFBihyIr5FsN8kt/tr6PmUBbNk39S7i6YRB+1kKyj14yrHPHh3w/P/LOXRvMZnOV7w/nwpdzXPHskF1YymNrfiDtTAElVoNSm8EvDQvVKtKf3g1sZKZnEREUQoG/H6V5Z8jPPElpfg4+pSVV+n9B1klK8rKxYqn2tu7wf3eMH6jyNmZrCXkZx7EW5GByk3Pqrr+DQP9A/C2+BPtbMBWcwZyfSUBRJj72QGLsERSVnMLHL5AmkSEczUghPz+PmMbNyco5S48ObbEHRHDwdDY/pBdRYg4gv8SODR8KS+0cSM8/9846120wJf/Cb7xfer9T9tnKx2SCsn9ln7PK/28yOZZZ7QZWe1lCqmrDv6UDYPExEWAxEWAu+7+vjwmL2YS/nxmb1e64Bxn8dO05//8Ws4nkG9pwbdOqXcPK1db9wWQ449Oah3j33Xd57rnn+OyzzxzLjhw5QmJiIp9//jmNGjVyXXAiIuIyuj+IiMjP6d4gIlL76le7r0sICgqisLCwwrLyn4ODNSCsiIi30v1BRER+TvcGEZHa51VJqfj4eLKzs8nIyHAsO3DgAI0aNSI0NNSFkYmIiCvp/iAiIj+ne4OISO3zqqRUy5Yt6dKlC7NmzSIvL4+0tDQWLlzI8OHDXR2aiIi4kO4PIiLyc7o3iIjUPq8aUwogIyODv/3tb2zduhUfHx+GDh3KxIkTMZvNrg5NRERcSPcHERH5Od0bRERql9clpURERERERERExPW8qvueiIiIiIiIiIi4ByWlRERERERERESkzikpJSIiIiIiIiIidU5JKRERERERERERqXNKStVQVlYWiYmJbN261bHs888/Z+jQoSQkJDB48GDWr19fYZvVq1eTmJhIp06dSEpKYseOHY4ym83G3Llz6dWrFwkJCYwdO5bTp0+7VR0Mw+DFF1+kf//+dO7cmUGDBvHBBx94VB3Ot2nTJq6++mqOHj3qcXX48MMPuf322+nUqROJiYmsXLnSo+pgt9t57rnn6Nu3L126dOGOO+5g27ZtdV6HvXv3cs8999CtWzd69+7N5MmTycrKAmDnzp2MGDGChIQE+vfvz4oVKyps6y7v55rWwR3fz94kMzOTcePG0bVrV7p3787MmTOxWq2uDqvWrV27lnbt2pGQkOB4TZo0Cbi895ynutC101OuPbXpQudl+vTpXHPNNRX+dt58801HeX09L/XhPiWu46nXmPrwd79582ZGjBhB586d6d27NzNmzKCoqMij6mCz2Rg1ahRTpkxxLPOU2Gvr80Zd1SE7O5vJkyfTvXt3rrvuOsaNG+c4jifEX22GVNtXX31l/OpXvzLatGljbNmyxTAMw/juu++M9u3bG2+99ZZRWlpqbN++3UhISHCUb9myxUhISDC++uoro6SkxPjnP/9pdO/e3SgoKDAMwzBeeOEFY9CgQcbx48eN3Nxc4+GHHzbuv/9+t6rDP//5T6N///5GamqqYbfbjY8//tjo0KGDsXPnTo+pQ7nTp08bvXv3Ntq0aWOkpaU5lntCHTZv3mx06tTJ+Oyzzwy73W5s3rzZuOaaazzq97Bs2TLjtttuM06ePGnYbDbjn//8p9GpUyejqKiozupQWFho9O7d23j++eeN4uJiIysry7j//vuNBx54wMjOzja6detmvP7660Zpaanx5ZdfGgkJCY5z7C7v58upg7u9n73N3XffbTzyyCNGQUGBceTIEWPgwIHG4sWLXR1WrZszZ44xZcqUSssv9z3niS507fSUa09tutB5MQzD+PWvf228/fbbF9ymvp6X+nCfEtfx1GtMffi7z8zMNDp06GCsWrXKsNlsxqlTp4zbb7/deP755z2mDoZhGPPmzTOuuuoq49FHHzUMwzP+fsrV1ueNuqrD3XffbSQnJxs5OTlGbm6u8eCDDxpjxozxmPirS0mpanr77beNG264wXj//fcrXOSfeuopY9SoURXWfeKJJ4w//elPhmEYxiOPPGJMmzatQvktt9xirFy50jAMw+jbt6/x3nvvOcrS09ONtm3bGkeOHHGbOjz//PPGqlWrKpQPHTrU+Oc//+kxdTAMw7DZbMbvfvc7Y968eZWSUp5QhwceeMB49tlnK5Tv27fPOHPmjMfUYcaMGcYtt9xiHD9+3LBarcbSpUuNHj16OJJSdVGHAwcOGH/4wx8Mq9XqWPbRRx8ZnTt3Nt566y3j5ptvrhT/5MmTDcNwn/fz5dTBnd7P3ubQoUNGmzZtjJMnTzqWvf/++8YNN9zgwqjqxsiRI43XX3+90vLLfc95motdOz3l2lNbLnZeiouLjfbt2xv79++/4Hb19bzUh/uUuIYnX2Pqy999bm6uYRiGYbfbjX379hmJiYnGv//9b4+pw5dffmncdtttxvjx4x1JKU+J3TBq7/NGXdRh9+7dRocOHRx/Q4ZhGGfOnDH279/vEfHXhLrvVVOfPn1Yv349t912W4XlNpuNoKCgCst8fHw4ePAgAKmpqbRp06ZCeVxcHHv37iU3N5eTJ09WKI+JiSE8PJx9+/a5TR3Gjx9PUlKSo+zAgQOkpKTQvn17j6kDwMKFC4mOjmbYsGEV1vOUOuzatYuIiAjGjBlD9+7dGTJkCEeOHCEiIsJj6nDXXXdRVFTEDTfcQIcOHZg3bx7z58/H39+/zurQqlUrXn31Vcxms2PZhx9+SPv27UlJSbno+xXc5/18OXVwp/ezt0lJSSEiIoLY2FjHstatW3P8+HHOnj3rwshql91uZ8+ePXz22WfceOON9O3bl8cff5ycnJzLes95ootdOz3l2lNbLnZe9u7di9VqZf78+fTq1YsBAwbwyiuvYLfbgfp7XurDfUpcw5OvMfXl7z4kJASAfv36MWjQIBo0aEBSUpJH1CEzM5OpU6fyzDPPEBgY6FjuCbFD7X3eqKs67Nq1i7i4ON566y0SExPp06cPc+fOpUGDBh4Rf00oKVVNDRo0wNfXt9LyxMREvvjiCz788EOsVitff/01a9eupbi4GID8/PwKb2qAgIAACgoKyM/PB6j0EB8QEOAoc4c6nO/HH3/k/vvvZ/DgwVx33XUeU4dt27bx3nvv8be//a3Stp5Sh5ycHF577TXGjh3Lpk2bSE5OZsKECezcudNj6lBaWkq3bt343//+xzfffMN9993H+PHjSU9Pr/M6QNn4Ss899xyffvopU6dO/cX3K7jX+7mmdTifq9/P3uZCv5vyny/0+6kvsrKyaNeuHQMGDGDt2rUsX76cQ4cOMWnSpMt6z3mii107PfHa40wXOy+5ubl069aNUaNG8fnnn/PUU0/x73//myVLlgD1/7xA/bhPSd2pL9eY+vB3v27dOjZs2ICPjw/jx493+zrY7XYmTZrEPffcw1VXXVWhzN1jL1dbnzfqqg45OTns27ePQ4cOsXr1at555x1OnTrFo48+6hHx14SSUk7SuXNn/vGPf7BgwQJ69+7Na6+9RlJSEmFhYUDZA0f54HblioqKCA4OdvzhFBYWXrC8rlyqDuU++eQT7rzzTm6++WZmzpwJ4BF1yMrKYsqUKTz11FOOby/O5wl1APDz82PYsGEkJCTg6+vLzTffTM+ePfnwww89pg6TJ0+mb9++tGrVioCAAJKTkwkNDeWDDz6o8zrk5eUxfvx41qxZw+uvv07btm1/8f0K7vd+rkkdyrnz+7m+CgoKqnRuy3+uz+c3JiaGZcuWMXz4cAIDA2nSpAmTJk1iw4YNGIZR4/dcfeJp15660rt3b/71r3/RrVs3LBYLHTt25Pe//z1r164F6v95qQ/3KXEPnvR3U1/+7gMCAoiNjWXSpEls3LjR7evw8ssv4+fnx6hRoyqVuXvs5Wrr80Zd1cHPzw+AqVOnEhISQkxMDA8//DCff/65R8RfE0pKOUl2djbx8fGsWbOGrVu3snDhQk6cOME111wDQHx8PCkpKRW2SU1NJT4+nvDwcGJjY0lNTXWUpaenk52dXan5nSvrAPDiiy/yyCOP8PjjjzNlyhRMJhOAR9Rh48aNZGZm8oc//IGuXbsyePBgAAYPHswrr7ziEXWAsm4+JSUlFbax2WwYhuExdTh+/HilOvj6+mKxWOq0DkeOHGHYsGHk5eWxcuVK2rZtC0CbNm0u+n4F93o/17QO4P7v5/oqPj6e7OxsMjIyHMsOHDhAo0aNCA0NdWFktWvv3r08/fTTGIbhWFZSUoKPjw8dO3as8XuuPvGka09d+uijj1i+fHmFZSUlJQQEBAD1+7zUh/uUuA9P+bvx9L/7b775hltuuaXCZ92SkhIsFgtxcXFuXYd3332Xbdu20bVrV7p27cp///tf/vvf/9K1a1ePOf+19XmjruoQFxeH3W6ntLTUsay8u/rVV1/t9vHXiKsGs6oPzh848NtvvzU6depk/PDDD0Zpaanx/vvvGx07dnQMylk+Mv7mzZsdI+Ffd911jsGpn3vuOeP22283jhw54hgJ/+6773arOixZssTo0qWLsWfPngvuyxPqcL60tLRKA517Qh1WrlxpXHvttcamTZsMm81mfPDBB0b79u2N7777zmPqMHHiRCMxMdE4cuSIUVJSYixdutTo2rWrY+DnuqhDdna2ccMNNxhTpkwxbDZbhbKsrCyja9euxj//+U+jpKTE2Lx5s+P9axju836+nDq46/vZW/zmN78xJkyYYOTm5jpm35s/f76rw6pVJ06cMDp16mS88sorRmlpqXHs2DHjjjvuMP7yl79c9nvOk51/7fSUa09dOP+8rFu3zujYsaPx5ZdfGna73fjmm2+M7t27G++8845hGPX3vNSH+5S4nqddY+rD331eXp7Rr18/Y9asWUZxcbFx9OhRY/jw4cb06dM9pg7lHn30UcdA554Se21+3qiLOpSUlBiJiYnGQw89ZOTl5RmZmZnG7373OyM5Odkj4q8JJaUuw8+nK/7Pf/5j3HjjjUanTp2MpKQk48svv6yw/jvvvGMMGDDA6NSpkzF8+HDj22+/dZSVlJQYTz31lHH99dcbnTt3NsaOHWtkZGS4TR3sdrvRpUsXo127dkanTp0qvBYtWuQRdfi5CyWlPKUOb7/9tnH77bcbnTp1MgYOHGisW7fOo+qQl5dnzJgxw7j++uuNrl27GiNHjnRMZVpXdViyZInRpk0b49prr630N20YhrFr1y7jzjvvNBISEoybbrqp0kx17vB+rmkd3Pn97C3S09ONhx56yOjWrZvRo0cPY86cORVmGqqvtm7d6vib7NGjhzFjxgzHrJuX857zZD+/dnrCtacu/Py8vPHGG8bNN99sXHvttcZNN91UaVal+nhe6sN9SlzP064x9eXvPiUlxbjnnnuMrl27GjfeeKPx7LPPGsXFxR5VB8OomJTypNhr6/NGXdXh5MmTxsMPP2z07t3b6Nq1qzF58mQjJyfHY+KvLpNhnNeuTUREREREREREpA5oTCkREREREREREalzSkqJiIiIiIiIiEidU1JKRERERERERETqnJJSIiIiIiIiIiJS55SUEhERERERERGROqeklIiIiIiIiIiI1DklpUREREREREREpM4pKSUiIiIiIiIiInVOSSkREREREREREalzSkqJiIiIiIiIiEidU1JKRERERERERETqnJJSIiIiIiIiIiJS55SUEhERERERERGROqeklIiIiIiIiIiI1DklpUREREREREREpM4pKSUiIiIiIiIiInVOSSkREREREREREalzSkqJiIiIiIiIiEidU1JKRERERERERETqnJJSIiIiIiIiIiJS55SUEhERERERERGROqeklIiIiIiIiIiI1DklpUREREREREREpM4pKSUiIiIiIiIiInVOSSkREREREREREalzSkqJiIiIiIiIiEidU1JKRERERERERETqnJJSIiIiIiIiIiJS55SUEhERERERERGROqeklIiIiIiIiIiI1DklpUREREREREREpM4pKSUiIiIiIiIiInVOSSkREREREREREalzSkqJ1AHDMOrlsUREREREpO7os77UN0pKiTjZ2rVrufHGG+nQoQNPPPEEqamp/OY3v6n2fqZMmUL//v2rtc2ljvXdd9/Rvn17jh49Wqmsd+/etG3bttIrPT292rGLiHiq/v37M2XKFFeHISIiUsnHH3/Mo48+6vh569attG3blq1bt7owKpHL4+vqAETqm7/+9a+0bNmSOXPmEBsby5o1a9ixY0edHPt///vfRY+1d+9eHnjgAaxWa6WyjIwMMjIyeOyxx+jUqVOFsoiIiFqIVEREREREqmPp0qUVfm7fvj1vvvkmcXFxrglIxAmUlBJxsuzsbHr37k337t1dHQoAJSUlvP766zz//PMEBARccJ3vv/8egMTERJo2bVqX4YmIiIiISA2EhIRU+kJZxNOo+57Iefbs2cPvf/97unTpQkJCAqNHj2bnzp2O8g8++IDBgwfTsWNHhg4dyo4dO2jXrh1vv/22o/kswIsvvkjbtm2ZMmUKCxYsAKBt27a88MILNY7NZrOxbNkyBg0aRMeOHbnhhht4+umnKS4uBuCFF1644LE2bNjAggUL+OMf/8jEiRMvuO+9e/cSFhamhJSICFBaWso//vEPevfuTadOnbj33ns5fPiwo3zTpk389re/pUuXLnTv3p1HHnmEEydOOMrffvtt2rZtW6mr9M+7Bn755ZfceeedJCQkcN111zFu3DgOHjxYYZuPPvqIpKQkOnToQO/evfn73/9OQUFBtet09OhRJk+eTJ8+fWjfvj09e/Zk8uTJnDlzpkK9n376afr27UvHjh35wx/+wDvvvFOpLl999RV333031157Ld26dePRRx8lKyur2jGJiNSV/v37M2vWLH7/+9/TuXNnnnjiCbKzs3niiSfo1asXHTp04I477mDz5s0Vtmvbti3Lli1j6tSpdOvWjYSEBMaPH09GRkaF9dauXUtSUhIJCQn07t2bJ554gpycHAC++eYb2rZty0cffVRhmwMHDtC2bVv+97//AZe+To8aNYpt27axbds2R5e9C3Xf2717N3/4wx/o3r07nTt35o9//CMpKSmO8vJtNm/ezL333su1115Lr169mDt37gV7VFzKihUrSEpKolOnTnTs2JEhQ4awdu3aCuvs2LGDkSNH0qlTJ2644Qb+7//+j9GjR1e4JxYXF/OPf/yDfv36cc011zBo0KBK+5H6SUkpkXPy8vK47777iIyMZP78+Tz33HMUFhbyhz/8gdzcXD7++GP+9Kc/ER8fz4IFC7j55psZO3Ysdrsd+Kn5LMDw4cN58803eeihhxg+fDgAb775JiNGjKhxfE888QSzZs2if//+LFq0iJEjR/L6668zbtw4DMNgxIgRFzxWhw4d+OSTTxg7dixms/mC+/7hhx8ICwvjwQcfdCTkJkyYwOnTp2scr4iIp1q7di0pKSnMmTOHJ554gt27dzNhwgQA3n33Xe69915iY2N59tlneeyxx9ixYwd33nknmZmZVT5GWloaY8eOpX379ixatIi///3vHDx4kDFjxjjuK2vWrCE5OZlWrVrx4osv8uCDD/Lee+85rvtVVVhYyO9+9zsOHDjA9OnTee2117j77rv573//y7PPPutY74knnuD//u//uPvuu3nxxReJiYnh8ccfr7Cv7du3M3r0aAICApg3bx5/+ctf2LZtG7/73e8oKiqqckwiInVt2bJlji9uhwwZwu9//3s+/vhjJkyYwIIFC2jUqBH33XdfpcTUc889h91u59lnn2Xy5Ml89tlnzJo1y1G+cOFCJkyYwLXXXsv8+fNJTk7mww8/ZNSoURQVFdG5c2euuOKKSgmWNWvWEBoaSv/+/at0nZ4+fTrt2rWjXbt2vPnmm7Rv375SHbds2cJvfvMb7HY7M2fO5O9//zsnTpzgrrvu4sCBAxXWnThxIl26dOGll15i0KBBLFmyhJUrV1b7nD7xxBPcdNNNvPzyyzz11FNYLBYmTZrE8ePHgbLk2+jRowF49tlneeihh3jllVf4+uuvHfsxDIPk5GSWL1/OPffcw6JFixzPI++88061YhLPo+57IuekpqaSlZXFqFGj6NKlCwCtWrVi+fLl5OXl8eKLL3LNNdfwzDPPANC3b19MJhPz5s0DKjafbdSoUYX/A5fVtDY1NZWVK1fy8MMPM3bsWKBsYPKGDRsyefJkNmzYQL9+/S54rNjY2Evu/4cffuDUqVPccccdjB49mgMHDjB//nxGjRrF6tWrCQoKqnHsIiKeJjY2loULF2KxWAA4fPgwL730Enl5eTz11FP06tWL5557zrF+586due2221iyZAmTJk2q0jF27dpFUVERDzzwgOM63bhxYz7++GMKCgoIDg7m6aef5vrrr+fpp592bNeyZUtGjx7N559/zg033FClYx06dIhGjRoxZ84cWrRoAUCPHj3YvXs327ZtA+DIkSOsXr2aRx99lHvuuQeA66+/noyMDL744gvHvp555hmuvPJKXn75ZccXHddeey0DBw5k1apVjBw5skoxiYjUtYYNGzJlyhR8fHx466232Lt3L2+99RbXXnstUPbZftSoUTz99NOsWrXKsV2bNm2YPXu24+ddu3bxwQcfAJCTk8OiRYsYMWIE06dPr7DNyJEjefvtt/ntb3/L4MGDee211ygsLCQwMBCA999/n1tuuQV/f39++OGHS16n4+LiCAkJAS7+XPHMM8/QvHlzXn31Vcc1uk+fPiQmJvLCCy84nlsARowYQXJyMgA9e/bko48+4rPPPuOuu+6q8jlNS0vj3nvvdewHoFmzZiQlJfHNN9/QpEkTXn75ZUJCQnj11VcddW/VqlWF43z55Zds3LiR5557jttuuw0ouwcVFhby9NNPc/vtt+Prq9RFfaWWUiLnxMfHExUVxdixY5k+fTqffPIJDRo0YPLkyURERLBnzx5uuummCtsMHjy4TmIrvxkNGjSowvKBAwdiNpsve8aN2bNn89Zbb/HAAw/QtWtX7rzzTubPn8+hQ4f07YSIeJ2OHTs6ElIAzZs3B8rG30tPT690LW7RogUJCQnVuhZfe+21+Pv7M3z4cGbPns2XX37JVVddxYQJEwgJCeHgwYOcPHmS/v37Y7VaHa/rrruOkJAQNm3aVOVjXX311fznP/+hWbNmpKWlsXHjRpYsWcLBgwcpLS0FyrpzGIbBLbfcUmHb22+/3fH/wsJCdu7cSb9+/TAMwxFT8+bNad26dbViEhGpa61bt8bHp+zxd/PmzTRo0ID27ds7rmU2m40bb7yR7777ztH1DiongBo1akRhYSEA3377LSUlJZXuC127dqVp06aO+8KQIUMoKCjg008/BcoSW0eOHGHIkCFA1a7Tl1JQUMDu3bu57bbbKvSOCAsL48Ybb6x0j0pISKhUr+p2D58yZQqTJk0iNzeX3bt3s2bNGpYtWwbgiHvLli3069fPkZAqP/b5w4Zs3rwZk8lEv379Ktzz+vfvT3p6eoXuh1L/KN0ock5wcDDLli1j0aJFrF27luXLlxMYGMjgwYMd2f+oqKgK21SlFZIzlN8YGzRoUGG5r68vkZGR5ObmXtb+f35TAujSpQuhoaHs3bv3svYtIuJpft46tPwhpvxDfkxMTKVtYmJiHJNGVEWzZs14/fXXeeWVV3jrrbdYunQpYWFh/Pa3v+VPf/oT2dnZQNmMrn/9618rbV/d7tX//Oc/efnllzlz5gwxMTG0b9+ewMBAx/2jfEyo6OjoSvUqd/bsWex2O4sXL2bx4sWVjuHv71+tmERE6tL517Ps7GzS09Mv2AUOID09nfDwcIAKyRQouyeUd6Eu/4x+sftC+TW2efPmdO7cmffff5/bbruNNWvW0LRpU7p27epY/1LX6UvJzc3FMIxLxlLu5xMgnV+vqjpy5AhPPPEEW7ZswdfXl1atWjnG2C3fV1ZWVqV7C1R8rsnOzsYwDDp37nzB45w+fZqrr766WrGJ51BSSuQ8rVq14qmnnsJms7Fr1y7effdd3njjDRo2bIiPj0+lQQ3LHxpqW/lNMT09nWbNmjmWl5aWcubMGSIjI2u877Nnz7Ju3To6depUYTpZwzAoLS29rH2LiNQnERERAJXuBVB2fS6/XppMJgDH2FDl8vPzK/zcsWNHFixYQElJCV9//TVvvvkmL730Em3btiU+Ph6AyZMn061bt0rHK78vVMWaNWuYM2cOjzzyCMOHD3d8wfKnP/2J3bt3Az99yZKZmUnjxo0d254/TlZwcDAmk4nRo0czcODASsf5+YObiIi7Cg0NpWXLlhW6R5/v/M/bv6T8WpyRkUHr1q0rlKWnpzta2kJZa6mZM2eSm5vL//73P4YNG+a4X1TlOl2VOplMpoveo8rvYc5it9sZM2YMFouFt956i3bt2uHr60tqairvvfeeY71GjRpdcMzFzMxMrrzySkfsQUFB/Otf/7rgsa644gqnxi7uRd33RM754IMP6NGjB+np6ZjNZhISEnjyyScJCwsjKyuLhIQEPvzwwwoPGeVNcH9J+Tfsl6P8gWTNmjUVlr///vvYbDbHGFg1OZbFYuGvf/0rr7zySoXlH3/8MUVFRXTv3r2GUYuI1C9+fn40aNCg0rU4LS2Nb7/91vENb/mYH+fPyHfw4MEKX2QsXbqU/v37U1JSgp+fHz179mTGjBmO7Vq1akV0dDRHjx6lQ4cOjlejRo145plnqtUq6+uvvyY0NJQxY8Y4HnTy8/P5+uuvHfe0Ll26YDabWbduXYVtz/85JCSEdu3acfDgwQoxlU8AcrldyUVE6kq3bt04ceIE0dHRFa5nmzdvrjAe06Vce+21+Pn5VbovfPXVVxw/frxCy59bb70VgOeff5709PQKw4BU5ToNv/xZPygoiGuuuYa1a9dis9kcy3Nzc/nss88czwvOcubMGX788UeGDx9Ox44dHWM+bdiwAfjpi5nrrruODRs2OGYMh7LxbM+f1bVbt24UFBRgGEaF30dKSgovvvhijWYFFM+hllIi53Tu3Bm73U5ycjJjxowhODiY//3vf+Tm5nLzzTdz2223MXr0aMaNG8dvfvMbjhw5wvPPP3/J/YaFhQHw3//+l2uvvbbCNyZVFRcXx69//WsWLFjgSBT98MMPLFiwgO7du3P99dfX+FiBgYHcd999LFy4kOjoaPr27cu+fft44YUXuOGGG+jVq1e14xURqY9MJhN//vOfeeyxx5gwYQJDhw7lzJkzLFiwgPDwcMcA4T169CAwMJA5c+bw8MMPk5+fz4IFCyp8S92jRw+efvppkpOTufvuuzGbzSxfvhw/Pz9uvPFGzGYzEyZM4IknnsBsNnPjjTdy9uxZFi5cyKlTpy7a5eRCOnbsyBtvvMGcOXO48cYbOX36NK+99hoZGRmOb/mbN2/OsGHDePbZZyktLeWqq65i/fr1ji9fyh+E/vznPzNmzBgeeeQRBg8ejM1mY8mSJezcudMxEYeIiLtLSkri9ddf55577uGPf/wjjRs35ssvv2Tx4sXcfffdFcYV/CURERGMGTOGBQsWYLFYuOmmmzh69CjPP/88cXFxJCUlOdYNDw/nxhtv5D//+Q8dOnSo0LKqKtdpKPusv2PHDjZv3ky7du0qxfPII4/whz/8gfvuu4+7776b0tJSXnnlFUpKSnjwwQcv44xVFh0dTdOmTVm2bBmNGjUiLCyML774gv/7v/8DcIy79cc//pG1a9dy3333ce+993L27Fmef/55TCaTo6VYv379uO666xg3bhzjxo2jdevW7Nq1ixdeeIE+ffpUGkJF6hclpUTOadiwIa+++irPP/88U6dOpbCwkPj4eF544QV69OgBwGuvvcZTTz1FcnIyV1xxBY8++ijTpk37xf3efPPNvPvuu0yZMoXhw4fz5JNP1ii+mTNncsUVV7Bq1Spee+01GjZsyKhRo0hOTnY8LNT0WA899BAxMTG88cYbLFu2jIiICO68807Gjx9fo1hFROqrpKQkgoODefnll0lOTiYkJITrr7+eP//5z47xMUJDQ5k/fz7PPPMMycnJNG3alAcffLDCxBFXXXUVL730Ei+++CJ//vOfsdlsXHPNNSxZsoRWrVoBZTMjBQcH8+qrr/Lmm28SFBRE586defrpp6v1Bcevf/1rjh49yqpVq/jPf/5DbGws/fr147e//S2PP/44qampxMXF8fjjjxMUFMSSJUvIy8ujZ8+ejB07lhdffNExzlafPn147bXXWLBgAePHj8disdC+fXv++c9/XtYssyIidSkoKIhly5bxzDPP8NRTT5Gbm0vTpk155JFHuPfee6u1r/LP0a+//jorVqwgIiKCW265hYcffrhSt+bBgwfz4YcfVposqarX6ZEjR/Ldd99x//33M3v2bBo2bFhhPz179uSf//wn8+fP589//jN+fn507dqVuXPnOrqFO9PChQuZOXMmU6ZMwc/Pj7i4OBYtWsSsWbP46quvGDVqFFdccQWvvfYa//jHPxg/fjzR0dE88MADLFq0iODgYKDsi49XXnmF559/npdffpnMzExiY2MZPXp0hZn9pH4yGdUdzUxEHI4ePcpNN93E7NmzK3wTIiIi4kmys7PZsGED119/fYWxBOfOncvbb7+trnkiIlIjmzdvxmKxVBjUPScnh969ezN58mR+97vfuTA6cQdqKSVShwzDqNDH+2LMZrOjOauIiMiF2Gy2S86UZDKZqjQ2SmBgIDNnzuTqq6/m97//PUFBQXzzzTf8+9//5o9//KOzQhYRETfn7OeVPXv2OFputW/fnjNnzrBkyRJCQ0O5/fbbnRGyeDglpUTq0OrVq3nssccuuZ5aXomIyKUkJiZy7NixX1ynadOmfPLJJ5fcl7+/P0uXLmXevHlMmTKFwsJCWrRowZQpUxg5cqSzQhYRETfn7OeVe++9l5KSEt544w1OnDhBUFAQ3bp1Y+7cuRorSgB13xOpU2fOnKkw08TFNGvWrEL3CRERkZ/bt28fJSUlv7iOn58fbdu2raOIRETE0+l5ReqaklIiIiIiIiIiIlLnfFwdgIiIiIiIiIiIeB8lpURERERExG1lZ2czefJkunfvznXXXce4ceM4ffo0ADt37mTEiBEkJCTQv39/VqxYUWHb1atXk5iYSKdOnUhKSmLHjh2OMpvNxty5c+nVqxcJCQmMHTvWsV+AzMxMxo0bR9euXenevTszZ87EarXWTaVFRLyEklIiIiIiIuK2HnroIQoKCli/fj2ffvopZrOZxx9/nJycHMaMGcPQoUPZvn07M2fOZPbs2ezatQuArVu3MmPGDObMmcP27dsZPHgwY8eOpbCwEIBFixaxadMmVq1axcaNGwkICGDatGmO4z788MMEBQWxceNGVq5cyebNm1m6dKkrToGISL2lMaVERERERMQtfffdd/z2t7/lyy+/JCQkBChrOZWens63337Lq6++yocffuhYf/r06RQVFTF37lwmTpxIYGAgM2bMcJTfeuut3HfffQwbNox+/foxceJEBg0aBEBGRgZ9+vRh/fr12O12br75ZjZs2EBsbCwAa9eu5amnnuLTTz+twzMgIlK/+bo6AE+UmZlLdVJ5JhNER4dWe7v6wtvrDzoH3l5/cM9zUB6TOIc7/W5/zh3//qpLdXAPqoN7qM06uNu9YdeuXcTFxfHWW2/xxhtvUFhYyPXXX8+jjz5KSkoKbdq0qbB+XFwcK1euBCA1NZVhw4ZVKt+7dy+5ubmcPHmywvYxMTGEh4ezb98+ACIiIhwJKYDWrVtz/Phxzp49S1hYWJXroGeHqvHWeoP31l319qx619b9QUmpGjAMavTHU9Pt6gtvrz/oHHh7/UHnoD7zhN+tJ8R4KaqDe1Ad3EN9qMOl5OTksG/fPq655hpWr15NUVERkydP5tFHHyUmJobAwMAK6wcEBFBQUABAfn7+Rcvz8/MBCAoKqlReXvbzbct/LigoqFZSSkRELk5JKRERERERcUt+fn4ATJ06FX9/f0JCQnj44Ye54447SEpKoqioqML6RUVFBAcHA2VJpAuVR0ZGOhJM5eNL/Xx7wzAqlZX/XL7/qqppywJ3arFWl7y13uC9dVe9vZuSUiIiIiIi4pbi4uKw2+2Ulpbi7+8PgN1uB+Dqq6/mP//5T4X1U1NTiY+PByA+Pp6UlJRK5X379iU8PJzY2FhSU1MdXfjS09PJzs6mTZs22O12srOzycjIICYmBoADBw7QqFEjQkOr9yCp7ntV4631Bu+tu+rtWfWure57mn1PRERERETcUq9evWjevDl/+ctfyM/PJysri+eee45f/epX3H777WRkZLB06VJKS0vZsmULa9ascYwjNXz4cNasWcOWLVsoLS1l6dKlZGZmkpiYCEBSUhKLFi0iLS2NvLw8Zs2aRbdu3WjRogUtW7akS5cuzJo1i7y8PNLS0li4cCHDhw+vdh3Ku1lW51XT7Tz95a319ua6q96e9aoNSkqJiIiIiIhbslgs/Pvf/8ZsNjNgwAAGDBhAo0aNmDVrFpGRkSxZsoQPPviA7t27M23aNKZNm0aPHj0A6NmzJ9OnT+fJJ5+kW7duvP/++yxevJiIiAgAkpOT6devHyNHjqRfv34UFxczb948x7Hnz5+P1Wrlpptu4o477uD6669n3LhxLjgLIiL1l8kwaivfVX9lZFS/CW5MTGi1t6svvL3+oHPg7fUH9zwH5TGJc7jT7/bn3PHvr7pUB/egOriH2qyD7g3Op2eHqvHWeoP31l319qx619b9QS2lRERERERERESkzikpJSIiIiIiIiIidU5JKRERERERERERqXNKSomIiIiIiIiISJ1TUkpEREREREREROqcklIiIiIiIiIiIlLnlJSqI4ZhOF4iIiIiIiI/l11Qyu9f38G/Nx9ydSgiInXC19UBeJOXNh7kgT6tXB2GiIh4iXsfuI/MrGwAfC1mrKW2CuXRUREseflVF0QmIiIXsudkLntO5rLi66PcGh/t6nBERGqdklJ1yWRydQQiIuJFMrOyGTjhaQCCgvwpKCiuUP7+cxNdEZaIiFyExVz2vFBcandxJCIidUPd90RERERERNyAv2/Z41mJTUkpEfEOSkqJiIiIiIi4AYu57PGs+GfdrUVE6islpeqQBjoXEREREZGL8TvXUqrYqpZSIuId3DoplZWVRWJiIlu3bnUs+/DDDxkyZAidO3emf//+LFiwALv9p4v26tWrSUxMpFOnTiQlJbFjxw5Hmc1mY+7cufTq1YuEhATGjh3L6dOn67ROIiIiIiIiF+JvVlJKRLyL2yalvv76a+68806OHDniWPbdd98xefJkHn74Yb766isWL17M22+/zdKlSwHYunUrM2bMYM6cOWzfvp3BgwczduxYCgsLAVi0aBGbNm1i1apVbNy4kYCAAKZNm+aK6omIiIiIiFTwU0spdd8TEe/glkmp1atXM3HiRCZMmFBh+bFjx7jrrru48cYb8fHxoXXr1iQmJrJ9+3YAVqxYwcCBA+nSpQsWi4XRo0cTGRnJ2rVrHeX3338/jRs3JiQkhKlTp7JhwwbS0tLqvI4iIiIiIiLnK28pVWozsGvYDxHxAm6ZlOrTpw/r16/ntttuq7B8wIABPPbYY46fi4qK+Oyzz2jfvj0AqamptGnTpsI2cXFx7N27l9zcXE6ePFmhPCYmhvDwcPbt21eLtREREREREbm08pZSACXqwiciXsDX1QFcSIMGDS65Tl5eHn/6058ICAhg9OjRAOTn5xMYGFhhvYCAAAoKCsjPzwcgKCioUnl5WVWZTNVa3bG+yfTTy5ucX39v5e3nwNvrD+55DtwpFhEREQE/80835xKbHX9fswujERGpfW6ZlLqUgwcPMn78eKKjo/nXv/5FSEgIAIGBgRQVFVVYt6ioiMjISEeyqnx8qfPLg4ODq3X86OjQasdsGAaBgf7ExITi4+OWDdRqXU3OW33j7efA2+sPOgciIiJycWYfEz4msBvnWkr5uzoiEZHa5XFJqc8//5w///nP3HHHHTzyyCP4+v5Uhfj4eFJSUiqsn5qaSt++fQkPDyc2NrZCF7/09HSys7Mrdfm7lMzMXKrTxdtkgqioEAoLi8nIyPW6pJTJVPYgXt3zVp94+znw9vqDe56D8phERETEPZhMJvzMPhRZ7ZqBT0S8gkclpb799luSk5N58sknGT58eKXy4cOHk5yczK233kqXLl1YtmwZmZmZJCYmApCUlMSiRYvo0KEDkZGRzJo1i27dutGiRYtqxWEY1Oihsnw7d3kgrWveXPdy3n4OvL3+oHMgIiIiv8zftywpVWrTBwYRqf88qsnOSy+9hNVqZebMmSQkJDhe9913HwA9e/Zk+vTpPPnkk3Tr1o3333+fxYsXExERAUBycjL9+vVj5MiR9OvXj+LiYubNm+e6ComISLVlZWWRmJjI1q1bHcs+/PBDhgwZQufOnenfvz8LFizAbv/pG+bVq1eTmJhIp06dSEpKYseOHY4ym83G3Llz6dWrFwkJCYwdO5bTp0/XaZ1ERETKlQ92XmxTSykRqf/cvqXU+TPjvfTSS5dcf8iQIQwZMuSCZRaLhYkTJzJx4kSnxSciInXn66+/ZsqUKRw5csSx7LvvvmPy5MnMmzePfv368eOPP3L//fcTFBTEvffey9atW5kxYwaLFy+mY8eOLFu2jLFjx/Lpp58SGBjIokWL2LRpE6tWrSI0NJTHH3+cadOm8corr7iwpiIi4q38zGVJKc2+JyLewO2TUiIiIlDW2mn+/PlMmjSJCRMmOJYfO3aMu+66ixtvvBGA1q1bk5iYyPbt27n33ntZsWIFAwcOpEuXLgCMHj2aN998k7Vr1zJs2DBWrFjBxIkTady4MQBTp06lT58+pKWl0bx587qvaDXc+8B9ZGZlX7R8/4EUBtZdOCIi4gTlSSmNKSUi3kBJKRER8Qh9+vRh0KBB+Pr6VkhKDRgwgAEDBjh+Lioq4rPPPmPQoEFA2YQXw4YNq7CvuLg49u7dS25uLidPnqww4UVMTAzh4eHs27fP7ZNSmVnZDJzw9EXLv3/g9jqMRkREnKG8+16Juu+JiBdQUkpERDxCgwYNLrlOXl4ef/rTnwgICGD06NEA5OfnExgYWGG9gIAACgoKyM/PByAoKKhSeXlZVZlM1Vq9TpXHZjJVHmjfneM+3/l18FSqg3tQHaq2b3Edf1913xMR76GklIiI1AsHDx5k/PjxREdH869//YuQkBAAAgMDKSoqqrBuUVERkZGRjmRVYWFhpfLg4OBqHT86OvQyoq8ZX4uZoCD/i5abTFQoDwysuK6vxUxMTN3HfTlccZ6dTXVwD6qDuCs/c1lmUC2lRMQbKCklIiIe7/PPP+fPf/4zd9xxB4888gi+vj/d3uLj40lJSamwfmpqKn379iU8PJzY2FhSU1MdXfjS09PJzs6u0KWvKjIzcyu1Qqpt1lIbBQXFFy03DCgoKMZkKktIFRYWV4jRWmojIyO3DiK9fCZT2QO4K86zs6gO7kF1qNq+xXX81FJKRLyIklIiIuLRvv32W5KTk3nyyScZPnx4pfLhw4eTnJzMrbfeSpcuXVi2bBmZmZkkJiYCkJSUxKJFi+jQoQORkZHMmjWLbt260aJFi2rFYRiVu8a5i/K4LhSfu8Z8Me58nqtKdXAPqoO4K8dA52opJSJeQEkpERHxaC+99BJWq5WZM2cyc+ZMx/IuXbrw6quv0rNnT6ZPn86TTz7JqVOniIuLY/HixURERACQnJyM1Wpl5MiR5Ofn0717d+bNm+eayoiIiNf7qaWUMo4iUv8pKSUiIh5n3759jv+/9NJLl1x/yJAhDBky5IJlFouFiRMnMnHiRKfFJyIiUlP+5S2l1H1PRLyAj6sDEBERERERkTLlLaVK1X1PRLyAklIiIiIiIiJuwtF9T0kpEfECSkqJiIiIiIi4CT913xMRL6KklIiIiIiIiJvwM5sAKFFSSkS8gJJSIiIiIiIibsL/XPe9YnXfExEvoKSUiIiIiIiIm9BA5yLiTZSUEhERERERcRM/jSlluDgSEZHap6SUiIiIiIiImyhPSmlMKRHxBkpKiYiIiIiIuIny7nsl6r4nIl5ASSkRERERERE34RjoXC2lRMQLKCklIiIiIiLiJhzd99RSSkS8gK+rAxARERFxpnsfuI/MrOyLlkdHRbDk5VfrLiARkWoobymlMaVExBsoKSUiIiL1SmZWNgMnPH3R8vefm1iH0YiIVI/GlBIRb6LueyIiIiIiIm7Cz2wC1FJKRLyDklJ1yDAMx0tERERERC5t7dq1tGvXjoSEBMdr0qRJAOzcuZMRI0aQkJBA//79WbFiRYVtV69eTWJiIp06dSIpKYkdO3Y4ymw2G3PnzqVXr14kJCQwduxYTp8+7SjPzMxk3LhxdO3ale7duzNz5kysVmut17d8TKlitZQSES+gpFQde2XTj64OQURERETEY+zevZshQ4awY8cOx+upp54iJyeHMWPGMHToULZv387MmTOZPXs2u3btAmDr1q3MmDGDOXPmsH37dgYPHszYsWMpLCwEYNGiRWzatIlVq1axceNGAgICmDZtmuO4Dz/8MEFBQWzcuJGVK1eyefNmli5dWuv19dOYUiLiRZSUqmsmk6sjEBERERHxGLt37+aaa66ptHzdunVEREQwcuRIfH196dmzJ4MGDWLZsmUArFixgoEDB9KlSxcsFgujR48mMjKStWvXOsrvv/9+GjduTEhICFOnTmXDhg2kpaVx+PBhtm3bxqRJkwgMDKR58+aMGzfOse/a5Bjo3KbeFSJS/2mgcxERERERcUt2u509e/YQGBjIq6++is1mo1+/fkycOJGUlBTatGlTYf24uDhWrlwJQGpqKsOGDatUvnfvXnJzczl58mSF7WNiYggPD2ffvn0AREREEBsb6yhv3bo1x48f5+zZs4SFhVW5DtX9Tro8KWWzG9gMA18f7/hSu/w8eeN3+N5ad9XbtXFUV23Fq6SUiIiIiIi4paysLNq1a8eAAQOYP38+Z86c4dFHH2XSpEk0aNCAwMDACusHBARQUFAAQH5+/kXL8/PzAQgKCqpUXl72823Lfy4oKKhWUio6OrTK6wIElfw0blVYRBBBft71yFbd81WfeGvdVW/v5l1XOBERERER8RgxMTEVuswFBgYyadIk7rjjDpKSkigqKqqwflFREcHBwY51L1QeGRnpSDCVjy/18+0Nw6hUVv5z+f6rKjMzl+rMc2Q7b+Xjp84SEWip1vE8lclU9pBe3fNVH3hr3VVvz6p3edzOpqSUiIiIiIi4pb179/Lf//6XRx55BNO5viMlJSX4+PjQsWNH/u///q/C+qmpqcTHxwMQHx9PSkpKpfK+ffsSHh5ObGwsqampji586enpZGdn06ZNG+x2O9nZ2WRkZBATEwPAgQMHaNSoEaGh1XsoMwyq9eBpNpnw9TFhtRsUl9oxAqp1OI9X3fNVn3hr3VVv76aBzkVERERExC1FRESwbNkyXn31VaxWK8ePH+epp57i17/+NQMGDCAjI4OlS5dSWlrKli1bWLNmjWMcqeHDh7NmzRq2bNlCaWkpS5cuJTMzk8TERACSkpJYtGgRaWlp5OXlMWvWLLp160aLFi1o2bIlXbp0YdasWeTl5ZGWlsbChQsZPnx4ndT7p8HONQOfiNRvailVhwzDADxsNDMRERERERdp1KgRL7/8Ms8++yyLFi3C39+fgQMHMmnSJPz9/VmyZAkzZ85k/vz5REVFMW3aNHr06AFAz549mT59Ok8++SSnTp0iLi6OxYsXExERAUBycjJWq5WRI0eSn59P9+7dmTdvnuPY8+fP529/+xs33XQTPj4+DB06lHHjxtVJvf0tZvJLbEpKiUi9p6SUiIiIiIi4rW7durF8+fILlnXo0OGiZQBDhgxhyJAhFyyzWCxMnDiRiRMnXrA8JiaG+fPnVz9gJ/Azn2spZVVSSkTqN3XfExERERERcSNmn7LeFTaNNyMi9ZySUiIiIiIiIm7EkZSyKyslIvWbklIiIiIiIiJupDwpZVdSSkTqOSWlRERERERE3MhP3feUlBKR+k1JKRERERERETfiq+57IuIllJQSERERERFxIz4mtZQSEe+gpJSIiIiIiIgb8TWXjynl4kBERGqZklIiIiIiIiJupLyllFXd90SknnPrpFRWVhaJiYls3brVsWznzp2MGDGChIQE+vfvz4oVKypss3r1ahITE+nUqRNJSUns2LHDUWaz2Zg7dy69evUiISGBsWPHcvr06Tqrj4iIiIiIyKX4aqBzEfESbpuU+vrrr7nzzjs5cuSIY1lOTg5jxoxh6NChbN++nZkzZzJ79mx27doFwNatW5kxYwZz5sxh+/btDB48mLFjx1JYWAjAokWL2LRpE6tWrWLjxo0EBAQwbdo0l9RPRESktpmCItl7Ko+M/BJXhyIiItXg41PefU9JKRGp39wyKbV69WomTpzIhAkTKixft24dERERjBw5El9fX3r27MmgQYNYtmwZACtWrGDgwIF06dIFi8XC6NGjiYyMZO3atY7y+++/n8aNGxMSEsLUqVPZsGEDaWlpdV5HERGR2rTz2FnC75jJxoNZvLv7JN+fOOvqkEREpIo0+56IeAu3TEr16dOH9evXc9ttt1VYnpKSQps2bSosi4uLY+/evQCkpqZetDw3N5eTJ09WKI+JiSE8PJx9+/bVUk1ERETq3uncYrYfyQYg1N8XuwHrvz/FsZwi1wYmIiJVYlb3PRHxEr6uDuBCGjRocMHl+fn5BAYGVlgWEBBAQUHBJcvz8/MBCAoKqlReXlZV58YdrPb6JlPFl7c4v/7eytvPgbfXH9zzHLhTLOI8dsPg8wOZGEDJwe3c+dskNhzIYn96PtuPZNPkmlhM+uWLiLg1s1pKiYiXcMuk1MUEBgaSm5tbYVlRURHBwcGO8qKiokrlkZGRjmRV+fhSF9q+qqKjQ6sbOoZhEBjoj4+PiZiYUK98IKjJeatvvP0ceHv9QedAat+x7CKyC634m33I2foWppHDuK5FBD9mFZCeV8LhM4W0jAq69I5ERMRlyrvv2dVSSkTqOY9KSrVp04ZNmzZVWJaamkp8fDwA8fHxpKSkVCrv27cv4eHhxMbGVujil56eTnZ2dqUuf5eSmZlLde4PJhNERYVQWFiMyeRDRkauVyWlTKayB/Hqnrf6xNvPgbfXH9zzHJTHJPXLvvSy1r9xDYI4VXyulbCfmU7NI9h+6Ay7j+cqKSUi4uZ8TGopJSLewS3HlLqYxMREMjIyWLp0KaWlpWzZsoU1a9YwbNgwAIYPH86aNWvYsmULpaWlLF26lMzMTBITEwFISkpi0aJFpKWlkZeXx6xZs+jWrRstWrSoVhyGUf1XTberLy9vr7/OgervrufAE2VlZZGYmMjWrVsdy3bu3MmIESNISEigf//+rFixosI2q1evJjExkU6dOpGUlMSOHTscZTabjblz59KrVy8SEhIYO3Ysp0+frrP6OFNRqY3DWWVd2ts2DKlQ1qFpOAAnc4vJK7bWeWwiIlJ1vubyMaVcHIiISC3zqKRUZGQkS5Ys4YMPPqB79+5MmzaNadOm0aNHDwB69uzJ9OnTefLJJ+nWrRvvv/8+ixcvJiIiAoDk5GT69evHyJEj6devH8XFxcybN891FRIRkWr5+uuvufPOOzly5IhjWU5ODmPGjGHo0KFs376dmTNnMnv2bHbt2gXA1q1bmTFjBnPmzGH79u0MHjyYsWPHOrpzL1q0iE2bNrFq1So2btxIQEAA06ZNc0n9LteBzALsBsQEW4gO9qtQFhpgoVGoPwAHMwtcEZ6IiFSRWkqJiLdw++57P58Zr0OHDixfvvyi6w8ZMoQhQ4ZcsMxisTBx4kQmTpzo1BhFRKT2rV69mvnz5zNp0iQmTJjgWL5u3ToiIiIYOXIkUPYFxaBBg1i2bBkdO3ZkxYoVDBw4kC5dugAwevRo3nzzTdauXcuwYcNYsWIFEydOpHHjxgBMnTqVPn36kJaWRvPmzeu+opfhaHZZou3K6AuPldg6JoiTucWkZuTTsUlYXYYmIiLV4KuBzkXES3hUSykREfFeffr0Yf369dx2220VlqekpFQaGzAuLo69e/cCVBhL8Oflubm5nDx5skJ5TEwM4eHhlb4UuZSfz7BaF6/z2ewGx3OKAWgeEVApNihLSpmAzPxSzhZZXRb35dS3uufFnX5f1amDO79UB/d41WYdxPXMPmWPaRroXETqO7dvKSUiIgLQoEGDCy7Pz893zLBaLiAggIKCgkuW5+efGwg8KKhSeXlZVbli0Hhfi5mgoLIuecfOFGK1GwRazDSLCcFkMmEy4SgHiAwLonF4AMdzikgvtOJrMRMT41mD3VflPJ9/Xi5W7sp614cJBlQH91Af6iAXZj7XdMCqllIiUs8pKSUiIh4tMDCQ3NzcCsuKiooIDg52lBcVFVUqj4yMdCSryseXutD2VeWKmRWtpTYKCspaRx04dRaAJmH+FBaWAGWD2RcUFGMyQWCgP4WFxTQO8+d4ThE/ns7FWmojIyP3ovt3JyZT1WewPP+8XKzcFfWuTh3clergHmqzDuX7FtdSSykR8RZKSomIiEdr06YNmzZtqrAsNTWV+Ph4AOLj40lJSalU3rdvX8LDw4mNja3QxS89PZ3s7OxKXf4uxdUzGh7LKUu8NftZ1z2oOPtjs/AAvk7L4VhOEdGYPO6h3Fnn2ZX1dvXfijOoDu6hPtRBLqy8pZTGlBKR+k5jSomIiEdLTEwkIyODpUuXUlpaypYtW1izZg3Dhg0DYPjw4axZs4YtW7ZQWlrK0qVLyczMJDExEYCkpCQWLVpEWloaeXl5zJo1i27dutGiRQtXVqtarDY76fllraMah1dOSp0vJsQPP7OJEptBaUhsXYQnIiLV5HuupZRNOSkRqefUUkpERDxaZGQkS5YsYebMmcyfP5+oqCimTZtGjx49gLLZ+KZPn86TTz7JqVOniIuLY/HixURERACQnJyM1Wpl5MiR5Ofn0717d+bNm+e6CtVARn4phgGBFh9C/My/uK6PyUTT8AB+zCqkONyzZhcUEfEWPudGnFdLKRGp75SUEhERj/PzmfE6dOjA8uXLL7r+kCFDGDJkyAXLLBYLEydOZOLEiU6NsS6dzisbP6lhiD+mKkyd1fhcUqoktElthyYiIjXga1ZSSkS8g7rviYiIeLj0vLKuew1D/aq0fqPQspnpSkIba2YnERE3ZPYpS0ppoHMRqe+UlBIREfFw5S2lGoT4V2n9yCALFrMJw+zHgfT82gxNRERqwKzueyLiJZSUEhER8WAFJTbyim0ANAiuWkspH5OJ2HOtpXYez6m12EREpGbKW0opKSUi9Z2SUiIiIh4s/VwrqchAC36+Vb+tlyelvj12tlbiEhGRmnMkpdR9T0TqOSWlREREPFhmQSkA0cGWam1XPq7UzmNqKSUi4m4cY0rZXRyIiEgtU1JKRETEg2Xllw1yHl3FrnvlGoT4gWHndF6Jo7WViIi4h/KklFUtpUSknlNSSkRExINlnWspFRVUvZZSFrMPvoVZAHx/MtfpcYmISM35akwpEfESSkrVIcMwAN1YRETEOew+vuQUWYHqt5QCsOSdApSUEhFxNz9139Ozg4jUb0pKiYiIeChrUDQAgRYfAi3mam/vl38agO9P5jk1LhERuTwa6FxEvIWvqwMQERHxVvc+cB+ZWdkXLY+OimDJy69etLw0KAaAqKDqt5KCn1pK/XAqF8MwMJlMNdqPiIg4l1nd90TESygpJSIi4iKZWdkMnPD0Rcvff27iL25fnpSq7sx75SwFGVjMJnKKrBzLKaJZRGCN9iM/uVSisUmjGF5a8FLdBSQiHslsUlJKRLyDklJ1xFDTWxERcTLrZbaUMhl24huE8P3JXL4/mauklBNcKtH44YJH6zAaEfFUjjGl9AghIvWcxpQSERHxUNbASAAiA2vWUgqgfaNQAPZosHMREbeh7nsi4i2UlBIREfFAZwpKsFuCAIgIrHnD53aNQgDNwCci4k7Kk1JW9bYQkXpOSak6ZhiGuvKJiMhl+zGrAIBQfzO+5prfztudaym191QeVn0jLyLiFnx9yq7rdl2XRaSeU1JKRETEAx3KLEtKRVxG1z2AKyKDCLKYKbLaHfsUERHXKv+uQd33RKS+U1JKRETEAx08l0C6nPGkoKyLyFWx6sInIuJOzOUtpdTDQkTqOSWlREREPNCP5S2lgi4vKQU/deH7/pSSUiIi7qC8pZS6VYtIfaeklIiIiAc6lOWc7nvwU1JqzwklpUTEPdlsNkaNGsWUKVMcy3bu3MmIESNISEigf//+rFixosI2q1evJjExkU6dOpGUlMSOHTsq7G/u3Ln06tWLhIQExo4dy+nTpx3lmZmZjBs3jq5du9K9e3dmzpyJ1Wqt/Yqe81NLqTo7pIiISygpJSIi4mHyiq2czisBLr/7Hvw0A19qRj4lVvtl709ExNkWLFjAV1995fg5JyeHMWPGMHToULZv387MmTOZPXs2u3btAmDr1q3MmDGDOXPmsH37dgYPHszYsWMpLCwEYNGiRWzatIlVq1axceNGAgICmDZtmmP/Dz/8MEFBQWzcuJGVK1eyefNmli5dWmf1NZvKZt/TmFIiUt8pKSUiIuJhDp8pe6jyKcnHz/fyb+VNwgIID/DFajdIzci/7P2JiDjT5s2bWbduHTfffLNj2bp164iIiGDkyJH4+vrSs2dPBg0axLJlywBYsWIFAwcOpEuXLlgsFkaPHk1kZCRr1651lN9///00btyYkJAQpk6dyoYNG0hLS+Pw4cNs27aNSZMmERgYSPPmzRk3bpxj33XB7KOklIh4B19XByAiIiLVk3YuKeVblO2U/ZlMJq6ODWXL4TP8cCrX0Z1P6pd7H7iPzKzsi5ZHR0Ww5OVX6y4gkSrIzMxk6tSpLFy4sEJLpZSUFNq0aVNh3bi4OFauXAlAamoqw4YNq1S+d+9ecnNzOXnyZIXtY2JiCA8PZ9++fQBEREQQGxvrKG/dujXHjx/n7NmzhIWFObualfiazyWlNNC5iNRzSkqJiIh4GGcnpaCsC9+Ww2f44WQeXOu03YobyczKZuCEpy9a/v5zE+swGpFLs9vtTJo0iXvuuYerrrqqQll+fj6BgYEVlgUEBFBQUHDJ8vz8shahQUFBlcrLy36+bfnPBQUF1U5KneuJV631fc7rvlfd7T1VeT29pb7n89a6q96ujaO6aiteJaVEREQ8zOEzZQ9dZicmpa6O1Qx8IuJeXn75Zfz8/Bg1alSlssDAQHJzK16vioqKCA4OdpQXFRVVKo+MjHQkmMrHl/r59oZhVCor/7l8/9URHV391qdHC7LL/mMyERPjXa1Xa3K+6gtvrbvq7d2UlBIREfEwadllD1q+hdlO2+fV57rsHczIp6jURoDF7LR9i4jUxLvvvsvp06fp2rUrgCPJ9NFHHzF58mQ2bdpUYf3U1FTi4+MBiI+PJyUlpVJ53759CQ8PJzY2ltTUVEcXvvT0dLKzs2nTpg12u53s7GwyMjKIiYkB4MCBAzRq1IjQ0Oo/RGZm5lKdXngm009jSpVabWRkeMeXBSZT2UN6dc9XfeCtdVe9Pave5XE7mwY6FxER8SCGYZzXfe+M0/bbMMSPqCALNgP2p2uwcxFxvQ8++IBvvvmGr776iq+++orbb7+d22+/na+++orExEQyMjJYunQppaWlbNmyhTVr1jjGkRo+fDhr1qxhy5YtlJaWsnTpUjIzM0lMTAQgKSmJRYsWkZaWRl5eHrNmzaJbt260aNGCli1b0qVLF2bNmkVeXh5paWksXLiQ4cOH16gehlH9l2Og8xps68mvmp6v+vDy1rqr3p71qg1qKSUiIuJBsgtLyS22AuBblOO0/ZpMJto1CuWLg1n8cDKXjk1qfyBfEZGaioyMZMmSJcycOZP58+cTFRXFtGnT6NGjBwA9e/Zk+vTpPPnkk5w6dYq4uDgWL15MREQEAMnJyVitVkaOHEl+fj7du3dn3rx5jv3Pnz+fv/3tb9x00034+PgwdOhQxo0bV2f10+x7IuItlJQSERHxIEfOtZKKDfXHZNicuu92seeSUhpXSkTc0Jw5cyr83KFDB5YvX37R9YcMGcKQIUMuWGaxWJg4cSITJ154gP+YmBjmz59f82Avk5JSIuIt1H1PRETEg6RllyWlmkcGXmLN6ru6UQgA35/Kc/q+RUSk6nzPJaXstdVfRkTETSgpJSIi4kHKW0pdUQtJqavOzcB3KLOA/BKr0/cvIiJV43Nu7nWrWkqJSD2n7nsiIiIepHyQ8+YRgWx28r5jgv1oGOLH6bwS7p38BEXH9l903eioCJa8/KqTIxAREQBfs1pKiYh3UFJKRETEg5S3lKqN7nsA7RqFcjo1kwx7MHdOePqi673/3IXHYRERkctnNmlMKRHxDuq+JyIi4iEMw3CMKdUiovaSUgAlIbG1sn8REbk0s2NMqbJrv4hIfeWRSak9e/YwcuRIunbtSp8+ffj73/9OSUkJADt37mTEiBEkJCTQv39/VqxYUWHb1atXk5iYSKdOnUhKSmLHjh2uqIKIiEi1ZeSXUFhqx8cETSMCauUY1zQuS0qVhjSqlf2LiMillSelAGzKSYlIPeZxSSm73c4DDzzAgAED2LZtGytXruSLL75g8eLF5OTkMGbMGIYOHcr27duZOXMms2fPZteuXQBs3bqVGTNmMGfOHLZv387gwYMZO3YshYWFLq6ViIjIpZV33WscFoDFXDu38HaNQvExgc0/TIOdi4i4SIWklLrwiUg95nFJqZycHNLT07Hb7Y6mrD4+PgQGBrJu3ToiIiIYOXIkvr6+9OzZk0GDBrFs2TIAVqxYwcCBA+nSpQsWi4XRo0cTGRnJ2rVrXVklERGRKqnt8aQAgv18aR0TDMDp3JJaO46IiFycr89Pj2ka7FxE6jOPS0pFRkYyevRo5s6dS4cOHejXrx8tW7Zk9OjRpKSk0KZNmwrrx8XFsXfvXgBSU1N/sbyqTKbqvy53e09/eWu9dQ5Uf3c/B+JZymfeu6IWk1IAHRqHAXA6r7hWjyMiIhd2Xk5KLaVEpF7zuNn37HY7AQEBPP744wwfPpzDhw/z4IMPMn/+fPLz8wkMrPhBPSAggIKCAoBLlldVdHRojeIOCvLDZPIhJiYUHx+Pywdetpqct/rG28+Bt9cfdA7k8pQPct68lgY5L3dN41De3nWiVltK3fvAfWRmZV+0PDoqgiUvv1prxxcRcWfnt5RSUkpE6jOPS0qtX7+eDz/8kA8++ACA+Ph4kpOTmTlzJoMGDSI3N7fC+kVFRQQHl3VDCAwMpKioqFJ5ZGRktWLIzMylOq1oTSaIjAymoKAEk8lERkauVyWlTKayB/Hqnrf6xNvPgbfXH9zzHJTHVF/s2bOHWbNmsW/fPgICArjllluYPHkyfn5+7Ny5k7///e+kpqYSGRnJ2LFjGTFihGPb1atXs3DhQtLT02nVqhWPP/44CQkJLqzNhdVF9z34qaVUel4JNrtRYWwTZ8nMymbghKcvWv7+cxOdfkwREU9x/mXX5i4fHEREaoHHJaVOnDjhmGmvnK+vLxaLhTZt2rBp06YKZampqcTHxwNlCayUlJRK5X379q1WDIbBZT1UXu72nspb630+bz8H3l5/0DmoLeWTYIwZM4Z///vfnD592jFu4N13382YMWMYP348d955J9u3byc5OZm2bdvSsWNHxyQYixcvpmPHjixbtoyxY8fy6aefVmpd60p2w+BYTtkXKy1qOSl1RVQgPqWF2CyBZOSXEBvqX6vHExGRikwmE2ZT2cx7drWUEpF6zOOa6/Tp04f09HReeuklbDYbaWlpLFq0iEGDBpGYmEhGRgZLly6ltLSULVu2sGbNGoYNGwbA8OHDWbNmDVu2bKG0tJSlS5eSmZlJYmKii2slIiKXwxsmwcjIK6HYasdsgka1nCQymUz4nT0GwImzGldKRMQVfM41l7IqKSUi9ZjHJaXi4uJ4+eWX+eSTT+jevTu/+93v6N+/PxMmTCAyMpIlS5bwwQcf0L17d6ZNm8a0adPo0aMHAD179mT69Ok8+eSTdOvWjffff5/FixcTERHh2kqJiMhlcYdJMGpbeSup2LAAfM21f/v2yz0OwMmzRZdYU0REaoP53IwkykmJSH3mcd33AHr16kWvXr0uWNahQweWL19+0W2HDBnCkCFDais0ERFxAXeYBKO2ZjMs3++xnLLxpJpFBFT7WOfP/vjz7qMX21d5S6lTucXYDQOfC6xY2zM4nr//8+vg7H3XFWfXoTZcKjZPqMOlqA5V27e4Xvl4fhroXETqM49MSomIiJzPHSbBqMmg8b4WM0FBF++K52sxExNTtt8zJWUtl1rHhjmWXWp7k4kK5YGBFdc9f/8/F1h6Bj+zDyU2O4V2Ew1Cq75tVVSn7uerynmu6b6d4VLHBtdNMODM81IfJklQHcTdKSklIt5ASSkREfF47jAJRk1mVrSW2igouPiYTdZSGxkZZQm1/SdyAIj2NzuWXWp7w4CCgmJMprKEVGFhcYUYz9//z9lKrcSG+pGWXcSBU2cJNoddNLaaqE7doXozWJaW2th7LJvjOUUUltpoGh7AldFBWM51e7zc2H/JL9WrvAXKL9Xh3jH3kZGVfdH9x0RFsOSVV50eW3n5pc6LO84kWl2qQ9X2La5X3n1Ps++JSH3m9KTU1q1b6d69u7N3KyIiHqy27w19+vThmWee4aWXXuL+++/n+PHjFSbBeOqpp1i6dCkjR47k66+/Zs2aNSxcuBAomwQjOTmZW2+9lS5durBs2bIaTYJRWzMrlu/zWHZZa65mEQHVPk75+hfa7pf21TQ8gLTsIo5lF9GxSVil8tp+TrpYvL903PS8YrKuGsqHe9Mdy1IzCthx7CwDrmpARKDlovuubef/HgyjrPVDkdVGqdXAarcTFmAhIyubgROevug+3n9uYq3GXtV914eZRFWHuqFng5rzUUspEfECTk9KjR8/ntDQUH7961/z61//miZNmjj7ECIi4mFq+95QPgnGvHnzePXVVwkNDWXw4MEkJyfj5+fHkiVLmDlzJvPnzycqKuqik2CcOnWKuLg4t5wEo3yg86bhAXV2zGYRgXA4mxNni7Ha7HUywPrlyC4oZdyKXRRHtMBsgviGIQT4+pCSns/ZIivvfXeKoR1iXRaf3TAoCG/JzHX7+fbYWdLOFFaaVcun832s3nWSBiF+NA7zp1GYP8F+atgunkvPBjXne+6Sa3f3zKOIyGVw+qecL774gk8++YR33nmHl156ieuuu46kpCRuvvlm/Pz8nH04ERHxAHVxb6jPk2Dkl1jJKigFziWK6khEoC/BfmbyS2yczC2u02NXV0GJjYdXf8ehrEJ8inNJ6t7G0SqqfaNQPtybTkZ+CZ/sz8TXVLfJNbthsP90Pt8czSE/biCrd52stI4JMAC7XxAZ+SVk5Jfww6k8ABqH+RPfIJgro4PqNG4RZ9CzQc2VTzChllIiUp85PSllsVgYMGAAAwYMICsriw8++IAlS5bwt7/9jYEDB3LnnXdy1VVXOfuwIiLixnRvuDzHz7WSCg/wJcS/7lrNmEwmmoYHsD89n6PZRW6blCqx2pn83h72nMwlPMAXv2/fIeKGqY7yID8ziW1jeHvnSdLzSwhpel2dxZZXbOWTlAxO5ZaNeeZTWsiIbq3pdkUk8Q2CiQy0YDH74GOCnCIrv/3jQ3QcPp5TucWcPFtMRn4JJ84Wc+JsMZsPncG/WXdyi6yEBqj1lHgGXf9rzjHQuXJSIlKP1donmszMTP773//y/vvvk5qaSr9+/fD392f06NGMHj2aP/7xj7V1aBERcVO6N9RM+XhSTeqw6165ZhFlSam07EJ6UL0ZCeuCzW4w/X972Xo4m0CLD88nXcNfPjtTab0Qf196t4rkk5RM8ht35nRuMQ1Df3mWvIu594H7yLzIYOT7D6Qw8Nz/M/NLWPv9aYqsdixmE12ahfPJ7D+x8evWbLzIvn88kMLQB6bQ6lyrqLxiKynp+aSk55NTZKW0WXeGvLqN0d2a89uuzfA999Aq4u50/a8+tZQSEW/g9KTU+++/z7vvvsuXX35Jq1atSEpK4qWXXiIqKgqAfv36kZycrBuPiIgX0b3h8hzNKR/kvO5bKjWPCMTHBNmFVs4UlBIZZHHq/g3DwGSqWWLFMAz+8XEqH+3PwNfHxFND2tO+ceUB2cu1ig5iz8k8TuXCS5sO8cQtbWt03MxfGIz8+wduL1snv4T3vz9NsdVOVJCFxLYxhAVY+LC09BcHMi/fvlyIvy8JzcLp1DSMH7MK+fzbfeQSzQsbf+Sj/ek8MaAtcQ2Ca1QPkbqg63/N+WqgcxHxAk5PSv31r39l4MCBLF++nGuuuaZS+ZVXXsno0aOdfVgREXFjujdcnmPZhUDdDnJezs/Xh2YRARw5U8SPmQVEBoVf1v4Mw2D7kWyy2tzG618dpbDUjr/Zh5gQP66MDiQ+JrjKA6q/9OVh3t51AhPw94FX0f2KX27JZTKZ6HFFBO9+d4r3vz/FvT1a1Eqir6DExod70ym22mkY4setVzfEz/fyxrEymUy0ig7i+13/4b7pLzDvs4P8cCqPUa9/w7g+Lbm7a7MaJ/dEapOu/zX3U/c9JaVEpP6qlYHO09LSiI0tm93m22+/JTQ0lNatWwPQqFEjxo8f7+zDioiIG9O94fL81FKq7pNSAFdGBZUlpbIK6Ny85kmpzPwSZq7bz8aDWRAVB6V2AIptdo7lFHEsp4iv03Lo2CQMu8/FP6IYhsGCjT/yr+1HAZjyqzhuatOgSjE0DPXHP/swxRFX8OaO4zxyY+sa1+eCTD58tD+D/BIb4QG+3OKEhFSF3WMw+JpG9GoZyaz1KWw8mMX8DT/yw6k8nhjQhgCL2WnHEnEGXf9rTt33RMQbOH36mY8//pihQ4dy6NAhAHbs2MGIESP4/PPPnX0oERHxELo3XJ7ygc6bhrtmoPErooIwmSCroJQz52YBrK7U9HxGvf4NGw9mYTGbCDq5k8HXxDKyS1OSOjaiW4sIQvzNFJba2Xo4m9MJ9/Dv7WmcLap4vNO5xTzyzh5HQupP/VqRdG31ppgPPrEDgPd2nySv2Fqj+lyMf4ebOZVbjMVs4uarGuDvxITU+WJC/HlmaHsevSkOs4+J9fvSGf/2d06vj8jl0vW/5spbStnVUkpE6jGnt5RasGABCxcudDTPveeee4iLi+Opp56iX79+zj6ciIh4AN0bas5mN35KSrmopZS/rw8tIgI5fKaQvafy6Hll9QY8//5kLg+u3E1usZUro4KYeftVTBz3PLGhg4Cy2fGig/3o0DiUlIx8vj16lrMEMn/Dj7z85WESmobTONyfM8U2vkjJwGo38PUx8div4hncoVH165NzhFbRQRzMLOCd3Se5u2uzau/jQjLzSwjoVDbMee8ro4gIdO74Wz9nMpkY3qkJV0YH8cg7e9hxNIeHVu1mwfAOBPtpdj5xD7r+15z5XI9ctZQSkfrM6V/fnThxguuvv77Csj59+nD8+HFnH0pERDyE7g01dzqv2JGEaRhSs9ninOHq2BAA9qfnYbXZq7zdj5kFjF9VlpDq2CSMxXddS3yDkAuu6+Njom3DEEYkNCbiwHriYoIpttrZcvgMq3ed5LN96VjtBh2bhPHvuzvXKCEFYAJ+26UpAMu/OYbVCQ98hmGw6ccsTD5mWkYFEhcTdNn7rKouzSN4+c5rCQ/w5bsTuTzyzh5KrFX/HYnUJl3/a+6nMaVcHIiISC1yelKqadOmbNxYcaLjzZs306RJ9ZrWi4hI/aF7Q80dyy5rJdUkPMDxgOIKzSICCPX3pcRmkJpRUKVtTp4t4sGVu8gpsnJ1bAjzh11DeBVaD/mYTASl/8B/fteZZaM689iv4hjT6wqmD2rHm6O78NpvOl32jHO3XB1LZKCFU7nFfLI//bL2BXAws4BTuSUYpcX0bBlZ54OOt20YwvxhHQj2M/N1Wg5zPkrBUJcfcQO6/tecxpQSEW/g9LbdY8aMITk5mZtvvpmmTZty/Phx1q9fz9y5c519KBER8RC6N9TcsRzXzbx3PpPJRLtGIWw9nM2OYzmEmn55QO0zBSU8uHI3p/NKaBkVyPyk6ncpM5lMtGkYQpuGIZhMEBMTSkZGLs7Itfj7+jCiUxNe2XyYZV8fI7Ftgxonkqw2O9sOZwNQ9N06QvomX36ANdCuUSizB13Nw29/x5o9p2jbMIQ7Ozd1SSwi5XT9rzlfHyWlRKT+c3pLqUGDBrF48WIsFgt79uwhICCAJUuWMGDAAGcfSkREPITuDTV3NLt8kHPXJqWgrAtfkMVMXrGN/EYdL7peXrGV8au+4/CZQmJD/XlhWAcigmp3fKWaGNapMX5mE9+fzGXX8bM13s/uE7nkldgI9jNT/N1HToyw+hbPnkzIjxsAePrj/dz2+7EMGTGcISOGs/9AiktjE++k63/NaaBzEfEGtTIKZvfu3enevXtt7FpERDyU7g01c8wxyLlrZt47n8XsQ9cW4Ww4kEVu024cyiygZXTFsZNyCkv509vfsfd0Hj6lBRgb/8UD67Mr7Wv/gRQG1jCOex+4j8ysyvus7r6jgvy45eqGvPfdKZZ/c4xrm4ZXO5b8EivfHitLaHVrEcFqW81mJ3SWzKxs7nh4JOv3ZXD4TCEl3UZx+7WN8fUx8f0Dt7s0NvFeuv7XTHn3PWeMeyci4q6cnpQ6deoUixYt4tChQ9jtFQfZ/Ne//uXsw4mIiAfQvaHmHEmpWmgptX//XoaMGH7hsoskduIbBLPvdD6ncmHCO9+xaERHGoWVxfbDqVwef38vh88UYiotZEjnVsT0nXbB/V9OgiQzK5uBE56+aHl19v2bzs1477tTfJKSwYmzRTQOq955/upIDla7QcMQP1rX4eDmv8RkMtG3dRSrdp4kp8jKjqM5XNciwtVhiZfS9b/mHC2llJQSkXrM6Umpxx57jIyMDG688UYsFvdrqi8iInVP94aaO5Hz00Dnzma1c9HkzsUSOz4mE4ltY3jji+85mg13LP2KG+JiyC4sZdvhM9gMaBDiB5teJ6bvX5wes7PFNQjmuhYRbD+SzVs7jvOnfq2qvG16Xgn70/MB6OGCwc1/SYDFTK8rI/lofwY7j52ldbR7JMzE++j6X3PmcwOt2NR9T0TqMacnpXbv3s2HH35IVFSUs3ctIiIeSveGmrH7WDhTWNYdrEk1W/DUpkCLmegf3qHxwIfYefws//vhtKPsV21iePSmeH7/0cVbMrmb33ZpyvYj2byz+wT397yCIL9fHsQdwDAMNh86A0BcTBCxof61HWa1XRkdRMuoQA5lFfLluVhF6pqu/zVndsy+5+JARERqkdOTUqGhofj5+Tl7tyIi4sF0b6gZm38oAKH+voQG1MowkDXmW5zDK3ddyxcHs/gxswAfE/RtHc0VUZ7XIqfXlVG0iAzkyJlC1nx3skoz1v2YVcip3GLMPia37hrX44pI0s4UcuJsMZYWnVwdjnghXf9rzqd89j21lBKReszps++NGzeOxx57jF27dnH8+PEKLxER8U66N9SMzT8MgMZh7tcKB8q68vVtHc3vuzVn1HXNPTIhBWX1+M25RNT/bU+jqNT2i+sbJjNbD5e1PLq2SSgh/u6VMDxfaIAvHZuU/R0FdBmiWbykzun6X3PlY0rZNKaUiNRjTv8UNW1a2YCm69evB8oG2zQMA5PJxA8//ODsw4mIiAfQvaFmypNStTGelFQ0+JpG/N+2NE7mFrPi2+OMuq75RdfNbd6dvGIbwX5mR8LHnXVsGsb3p/IoDo8lJT2ftg1DXB2SeBFd/2vO16SBzkWk/nN6Uurjjz929i5FRMTD6d5QM1YlpeqMn68PD/S+gr9+sJ+l29K4tV0sMcGVuxz9cCqXvMadAeh9ZSQWs9MbnTudn9mHTk3D2Ho4m2+O5hAXE+xogSFS23T9rzl13xMRb+D0T1JNmzaladOm5OTksGfPHho0aEBAQABNm156fAYREamfdG+oGUdLKTca5Lw+u/XqWNo2DOFskZW/f7gf42cPgtkFpUx573sw+dAqOsijuiu2iw3BXpBDXrGNAxn5rg5HvIiu/zWn7nsi4g2cnpTKzMzkrrvu4o477uDRRx8lLS2NX/3qV+zYscPZhxIREQ+he0PNOMaUUkupOmH2MfHXW9viZzax6ccsFmw85EhMZReUMvHdPRw/W4y5KIfeV0a6ONrq8TX7ULynrMXKzuNnKyXcRGqLrv81Zz7XoFFJKRGpz5yelJo1axZt2rRh+/bt+Pr60rp1a8aMGcM//vEPZx/KIxmGoQ+CIuJ1dG+oGWuAuu/VtdYxwfz5xtYA/Gt7GuNW7OL5zw8y8t9fs/P4WYIsZqL2rSHAYnZxpNVXvP8L/MwmsgutHMoqdHU44iV0/a+58pZSmqBAROozpyeltmzZwmOPPUZgYCCmc4Pz3XfffaSmpjr7UB5JSSkR8Ua6N1RfidWO4VuWjHLX2ffqq2HXNmHazfGYTfBVWg6vf3WU03klNIsI4LXfdsJSmOXqEGumtIh2jUIB2HMy18XBiLfQ9b/mfM6dL6vdxYGIiNQipw90brFYKCoqIjAw0JF8yc/PJzg42NmHEhERD6F7Q/XlFlsBCA/wJdjP6bdruYQhHRrTqWk4H+/P4MTZIq5tGsaN8TEe/7u4OjaEncfOcuJsMVkFJUQFVR7MXcSZdP2vOY0pJSLewOktpfr378+kSZM4dOgQJpOJzMxM/vrXv9KvXz9nH0pERDyE7g3VV56UUtc917kiKoh7e7Rg6s1tuL19I49PSAGE+PtyRVQgAD+czHNxNOINnHH937x5MyNGjKBz58707t2bGTNmUFRUBMDOnTsZMWIECQkJ9O/fnxUrVlTYdvXq1SQmJtKpUyeSkpIqjGVls9mYO3cuvXr1IiEhgbFjx3L69GlHeWZmJuPGjaNr1650796dmTNnYrVaL/OMVJ2vuu+JiBdwelLqkUceISgoiFtuuYWzZ8/Sp08fCgsLmThxorMPJSIiHkL3hurLU1JKakl5F76U9HxK1C9IatnlXv+zsrJ44IEH+M1vfsNXX33F6tWr2bZtG6+88go5OTmMGTOGoUOHsn37dmbOnMns2bPZtWsXAFu3bmXGjBnMmTOH7du3M3jwYMaOHUthYdmYaosWLWLTpk2sWrWKjRs3EhAQwLRp0xzHfvjhhwkKCmLjxo2sXLmSzZs3s3TpUqefo4sp776nllIiUp85/Su/4OBg5s+fT1ZWFkePHqVRo0Y0bNjQ2YcREREPontD9eUW2QBoEqaklDhXkzB/wgN8ySmykpKRT/tzSSqR2nC51/+oqCi+/PJLQkJCMAyD7OxsiouLiYqKYt26dURERDBy5EgAevbsyaBBg1i2bBkdO3ZkxYoVDBw4kC5dugAwevRo3nzzTdauXcuwYcNYsWIFEydOpHHjxgBMnTqVPn36kJaWht1uZ9u2bWzYsIHAwECaN2/OuHHjeOqpp7jvvvucf6IuwNF9Ty2lRKQec3pSavv27RV+Pnz4MIcPHwbguuuuc/bhRETEA+jeUH3l3fcaq6WUOJnJZKJdo1A2HzrD9ydzaRcb4hiAWsTZnHH9DwkJAaBfv36cOnWKrl27kpSUxLx582jTpk2FdePi4li5ciUAqampDBs2rFL53r17yc3N5eTJkxW2j4mJITw8nH379gEQERFBbGyso7x169YcP36cs2fPEhYWVqXYAar79ipf33yuT4vNblR7H56ovI7eUNef89a6q96ujaO6aitepyelRo0aVWmZj48PjRs35uOPP3b24URExAPo3lB9jjGl1FJKakGbBsFsP5JNdqGVE2eL1U1Uao0zr//r1q0jJyeHiRMnMn78eGJjYwkMDKywTkBAAAUFBUDZgOoXK8/PzwcgKCioUnl52c+3Lf+5oKCgWkmp6OiatUYMDSl7X1r8fImJ8Z4WjTU9X/WBt9Zd9fZuTk9K7d27t8LPWVlZvPjiizRt2tTZhxIREQ+he0P1GIbh9QOd79+/lyEjhldY5msxYy21sf9ACgNdFJerXei8VCiv4rnx8/WhdUwQ+07nsz8932v/zqT2OfP6HxAQQEBAAJMmTWLEiBGMGjWK3NzcCusUFRU5ZvYLDAx0DIh+fnlkZKQjwVQ+vtTPtzcMo1JZ+c/VnTkwMzOX6vTAM5nKHlZLikoByC8sISMj9xJbeb7yelf3fNUH3lp31duz6l0et7PV+jQyUVFRTJo0iQEDBnDvvffW9uHcnmEYjulwRUS8le4Nv6zEZlBqK7tXNA7zd3E0rmG1w8AJT1dYFhTkT0FBMd8/cLuLonK9C52X81Xn3LRpEMK+0/n8mFlA7ysjnRGeyCVV9/r/zTff8Je//IX33nsPPz8/AEpKSrBYLMTFxbFp06YK66emphIfHw9AfHw8KSkplcr79u1LeHg4sbGxpKamOrrwpaenk52dTZs2bbDb7WRnZ5ORkUFMTAwABw4coFGjRoSGVu+hzDCo0YOn+byBzr3p8aGm56s+8Na6q97ezemz711ITk4OxcXFdXEoERHxELo3XFxuUVkrKZ+SfAIsZhdHI/VVbKgfYQG+WO0GP2YWuDoc8SLVuf63bduWoqIinnnmGUpKSjh27Bhz585l+PDhDBgwgIyMDJYuXUppaSlbtmxhzZo1jnGkhg8fzpo1a9iyZQulpaUsXbqUzMxMEhMTAUhKSmLRokWkpaWRl5fHrFmz6NatGy1atKBly5Z06dKFWbNmkZeXR1paGgsXLmT48Iu3VHQ2x0Dnmn1PROoxp7eUeuyxxyr8XFpaytdff02vXr2cfSgREfEQujdUT3nXPXNx/e+uIa5jMpmIbxDM12k57E/Px8PGWxUPcbnX/+DgYF599VVmzZpF7969CQ0NZdCgQSQnJ+Pn58eSJUuYOXMm8+fPJyoqimnTptGjRw+gbDa+6dOn8+STT3Lq1Cni4uJYvHgxERERACQnJ2O1Whk5ciT5+fl0796defPmOY49f/58/va3v3HTTTfh4+PD0KFDGTdunFPOS1WUD3RuVVJKROqxWu++5+/vz6hRo7jzzjtr+1AiIuIhdG/4ZeVJKd/iHBdHIvVdeVLqxNliGvppwFWpfTW5/sfFxbFkyZILlnXo0IHly5dfdNshQ4YwZMiQC5ZZLBYmTpzIxIkTL1geExPD/Pnzqxyns6mllIh4A6cnpWbPnu3sXYqIiIfTvaF61FJK6kqovy+Nw/w5cbaYwgZXuTocqYd0/a853/IxpTTojIjUY05PSi1YsKBK6z344IM1PkZ2djazZs3i888/x263c9111/Hkk0/SsGFDdu7cyd///ndSU1OJjIxk7NixjBgxwrHt6tWrWbhwIenp6bRq1YrHH3+chISEGsdSVYZhYLfbNZCZiHilurg31Cd5jqTUWRdHIt6gTYNgTpwtpiDmagzDwGRSRz5xHl3/a04tpUTEGzg9KZWSksK6deu46qqruPLKKzl58iTffPMN7dq1c0yferkfdh566CHCw8NZv349Pj4+PPbYYzz++OP84x//YMyYMYwfP54777yT7du3k5ycTNu2benYsSNbt25lxowZLF68mI4dO7Js2TLGjh3Lp59+6pgWVkREnK8u7g31SW6RDVBSSurGldFBbPrxDNbACHafyKVjkzBXhyT1iK7/NaeklIh4A6cnpcqTRL/73e8cy959910+/fTTCgMH1tR3333Hzp07+fLLLwkJCQFgxowZpKens27dOiIiIhg5ciRQNrjhoEGDWLZsGR07dmTFihUMHDiQLl26ADB69GjefPNN1q5d65ilo7YYaiIlIl6stu8N9YlhGOeNKaWklNQ+i9mHllGBpGYUsH5fupJS4lS6/tecklIi4g18nL3Dzz//3JEUKnf77bezefNmp+x/165dxMXF8dZbb5GYmEifPn2YO3cuDRo0ICUlhTZt2lRYPy4ujr179wKQmpr6i+VVZTJV/3U529aHlzfXXedA9Xfnc1BXavveUJ8UWe2OmZY0ppTUlVYxZS1W1u9L1wOwOJWu/zVXnpSy2l0ciIhILXJ6S6moqCi2b9/umIoVYOPGjTRq1Mgp+8/JyWHfvn1cc801rF69mqKiIiZPnsyjjz5KTExMpW54AQEBFBQUAJCfn/+L5VUVHV392WmsViuBgRbARExMKBaLpdr78HQ1OW/1jbefA2+vP3jvOajtewN45niDF1I+nlSQxYzJsLkkBvE+zcIDMFmLyMyHHUdz6NoiwtUhST1RF9f/+koDnYuIN3B6UuqBBx5gzJgxDBgwgCZNmpCWlsann37KCy+84JT9+/n5ATB16lT8/f0JCQnh4Ycf5o477iApKYmioqIK6xcVFTn6qwcGBl6wPDIysloxZGbmVmvAcpMJwsMDKSgoASAjI9erklImU9mDeHXPW33i7efA2+sP7nkOymOqC7V9b4D6M97g2aKypFRogNNv0SIXZfYxEZiZSkHsNazbd1pJKXGaurj+11fqvici3sDpn3hHjBhB06ZNee+99/j+++9p3rw5y5cvp23btk7Zf1xcHHa7ndLSUvz9/QGw28vatF599dX85z//qbB+amoq8fHxAMTHx5OSklKpvG/fvtWKwTC4rIfKy93eU3lrvc/n7efA2+sP3nsOavve4KnjDV5IXnFZ66hQfzPVa8crcnkCM/dTEHsNn+zPYFL/OCxmp4/yIF6otq//9ZmSUiLiDWrla9hevXrRq1cvsrKyiIqKcvq+mzdvzl/+8hdmz55NcXExzz33HL/61a+4/fbbmT9/PkuXLmXkyJF8/fXXrFmzhoULFwIwfPhwkpOTufXWW+nSpQvLli0jMzOTxMREp8YoIiKV1ea94fzxBt944w0KCwu5/vrrefTRRy863uDKlSuBsi8nfp58qsl4g85SPsh5iL+vWyel9u/fy5ARwy9efiCFgXUYj1w+v7PHiAqykFVQyrbD2fRu5dz3qXiv2rz+12dKSomIN3B6Uqq0tJQFCxbw+uuvY7PZWLNmDQ8//DCLFi2iYcOGl71/i8XCv//9b+bMmcOAAQMoLi6mf//+TJ06lbCwMJYsWcLMmTOZP38+UVFRTJs2zdGHvWfPnkyfPp0nn3ySU6dOERcXx+LFi4mIiLjsuERE5OJq+97gDuMNOmvg+PKkVKi/L6edtN/zB9p3Vks9qx0GTnj6ouXfP3C7cw50zvl1cOb+6lJt/B6cyYTBr9o24K0dx1m37zR9WldOHjj79+AKqkPV9u0stX39r88cSSl3vGCIiDiJ05NSCxYsYMuWLTz//PNMmDCB6OhoGjVqxMyZM3n++eedcozY2Fiee+65C5Z16NCB5cuXX3TbIUOGMGTIEKfEISIiVVPb9wZ3GG+wJuNz+VrMBAX5V1iWX1LWfS8mPJDDFjMxMRff74W2P5/JRIXywED/XyyvapkrywMD/f+/vTuPj6o89D/+PTPZF0hCkE1ck0BdkAiCKIJFI5VFKUu5t9QWroo/QFu5RRSl17YWhGtvtUihVqWplaoFRUVRtBYVkSVQBJeiCcoiexISsmeW8/sjmSHDmkkmZ7bP+/WKZs76nCdhTs53nqXVx445S72ezZnq/Wznlk7+Ofizf2vWN6dexl99vv6+db8+KCpRSvskJcTaT7ltJEzawDVYw4png0gV4519j1AKQOQKeCi1cuVKvfDCC+rUqZMMw1BSUpIeffRRusgBQBRr63tDKIw32JJB7J0Ol6qr67yvTdPUsZqGllJxMuV0uFRcXNHs/U9kmlJ1dZ0MoyEIqamp8ymjZ/2Z9j3bsa1af+I1tObYX3z+ua65fuhp12dmpGnJn5457foz1fuZzu1pgXLiz6G5+7d2/dn2dTpc6p4Uo86p8TpYUafXCnbrhpyOJ11DqE3a4C+uoXnHDhSeDVrO7pl9j1AKQAQLeChVXV3t7StuNt4lExISZLMxWCYARKu2vjeEwniDgRjEvsbhlss0ZUhKjrN7j9tanmOE6wO4FNhrOFvXwzcfn9EmdRUOPwdDhvJ6dNRfN3+rd3Yc0ZDsjqfcLhImbeAarMGzQcsxphSAaBDwu0Hv3r21cOFCSZLRmO7/9a9/1eWXXx7oUwEAwkRb3xs84w3a7XYNHTpUQ4cOVefOnTV37lylp6dryZIlevvtt9W/f3/Nnj37tOMN9uvXT2+++WbQxhv0jCeVFGf3PowAVrupZ0MQ9dHXpaqqdwa5NAh3PBu0HKEUgGgQ8JZSDz74oCZOnKgVK1aoqqpKw4YNU1VVlf785z8H+lQAgDBhxb0hEsYbbDrIORAsPc5J0XnpidpztEYfFJVo2CWdgl0khDGeDVqOgc4BRIOA/9WbmZmpN998U++//7727dunzp076/rrr1dKSkqgTwUACBPcG5qn0hNKJRBKIXgMw9CNPTpqyYY9+udXxYRSaBXe/1suhpZSAKJAwP/qHTFihF5//XXdfPPNgT50RDBN09ufHgCiBfeG5qmo9bSUOvWMZ4BVbszJ1JINe7R+V0MXvuQ4glK0DO//LecZ6JzZ9wBEsjYZYbCmpqYtDgsACGPcG86uos4lie57CL6szGSdl56oepepj3aWBrs4CHO8/7cMY0oBiAYB/6u3f//+GjdunAYNGqRzzjnHZ93dd98d6NMBAMIA94bmYUwphArDMDQkO1P5m/bqvcJiDf3OOWffCTgF3v9bjlAKQDQI+F+93377rbp3765vvvlG33zzjXe5Z7YNAED04d5wdqZpeseUSmFMKYSAG3M6Kn/TXn38Tamq611KiqNbKfzH+3/LeUIpU5LbNGWjzgBEoID91Xv77bfr2Wef1V//+ldJUm1trRISEgJ1eABAGOLe0HzV9S65TcmQlMzDP0JAzjnJ6tY+QfvKa/XxN6W6sUfHYBcJYYT3/9bzDHQuSU6XqbgYQikAkSdgY0pt3brV5/WgQYMCdWgAQJji3tB8nq57KfF2Pg1HSDAMQzfkZEqS3vvqSJBLg3DD+3/r2ZvcC1xMlAQgQrXJQOeSmGHuBMy6BwDcG87EM8h5CuNJIYTckNPQOuqjr0tV63AFuTQIZ7z/+8/epKUU40oBiFRtFkrRTxwAcCLuDafHIOcIRd/plKIu7eJV63Tr411Hg10chDHe//3XNJRyEkoBiFBtFkoBAIDmq6htDKUY5BwhpGEWvobWUu99SRc+wEpNMilaSgGIWAH7y9fpdOrVV1/1vnY4HD6vJWnUqFGBOl3Y+feBCn3wzTFd0SUp2EUBAMtwb2i+SlpKIUTd2CNTS7d8Sxc++IX3/9YzDEN2myGX2ySUAhCxAvaXb2ZmphYsWOB9nZ6e7vPaMIyovvH8z8ov9O2xeu2vqNeDNwW7NABgDe4NzXe8+x4z7yG0XNo5VZ1S43Wook4bdh/V2C5pwS4SwgDv/4ER4wmlGJMLQIQKWCj1z3/+M1CHikjHahoeNtym5OamAiBKcG9oHrdpqrKegc4Rmhq68GXqhX/t03tfFmvs1RcGu0gIA7z/B4ZnBj5aSgGIVIwpZZErzm3n/b6ouDqIJQEAhJqqepdMs2H8kOQ4Wkoh9NyQkylJ+nBnieqcdOEDrOIZ7JyBzgFEKkIpqzSZcWTj7rLglQMAEHIqGwc5T4mPYYYqhKTLu7ZTx5Q4VdW79FFhcbCLA0QNTyhFSykAkYo+AhZxutze7zfuKdPt1wSxMACAkFLBIOcIcTbDkHvvNin9O/rp//1V7YvePWmbDhlpWvLUM0EoHRC5CKUARDr++rWIw3X8RkL3PQBAUwxyjrCw/3Mp/TtydL5U3xt+k/dh2ePNx2cEqWBA5LI3/jNjoHMAkYruexYwTVOOJi2lmgZUAABU1DHIOUJfXMUBJcbaVO9068Cx2mAXB4gKMbSUAhDhCKUs4mwSRDm4qQAAmqhoHFMqNYFQCqHLkKnz0xMlSbtLa4JcGiA60H0PQKQjlLKI0328pZTLbcqkCS4AoFElY0ohTJyfkSRJ2n20hr9lAAsw+x6ASEcoZRHnCV32+LQDACBJbrepqvqG7nuEUgh1XdsnKNZuqKrepeKq+mAXB4h4tJQCEOn469ciJ3bZc7hNxTCeLQBEvcp6l0xJdsNQYqzvZ0VffbVDt44be9p9v9pZqOFtXD6gqRibofM7JKvocKV2ldaoY0p8sIsERDS70RhK0TIRQIQilLKIs8lA5w2vTSk2SIUBAIQMz8x7KfF2GYbvbGZOtzR8+m9Pu+8Xd41o07IBp3Jxx4ZQandpja46Ly3YxQEiGi2lAEQ6uu9Z5MR+4E3HmAIARC8GOUe4uaBDsgxDOlrjUHmNI9jFASIas+8BiHSEUhY5cUwph4sbCwCAQc4RfhJi7erSrqHb3u6jzMIHtCVaSgGIdPwFbBHHCS2jmEEDACAd775HKIVg82cMswvSk7S/vE67SmvUq2s7awoIRCFm3wMQ6fgL2CIntpTixgIAkKSKuoaZ91Limf0CweXPGGbnZyTq411HdbiiTrUOlxJi+f0F2oK3+x4DnQOIUHTfs8iJIZTDxZhSAIDjY0q1Y0wphJGU+BilJ8bKlPRteW2wiwNELLrvAYh0hFIWOWn2PW4sABD1TMOuaoenpRShFMLLeemJkqS9jCsFtBm7QSgFILIRSlnEcdLse9xYACDaueJTJDV0z0iI4ZaM8NI9PUGStLesVm66FqEN7dixQ5MmTVK/fv107bXXaubMmSotLZUkbdu2TePGjVNubq6GDBmiZcuW+ey7YsUK5eXlqXfv3ho9erS2bt3qXedyuTR//nxdc801ys3N1ZQpU3T48GHv+pKSEk2dOlV9+/ZV//79NWfOHDmdTmsuuhEtpQBEOv4CtshJY0rRfQ8Aop4zvr2khkHOjcZPw4Fw0Sk1XnF2Q3VOt45U1ge7OIhQtbW1uuOOO5Sbm6uPPvpIb7zxhsrKyvTggw+qvLxckydP1qhRo1RQUKA5c+bo0Ucf1fbt2yVJGzdu1COPPKJ58+apoKBAt9xyi6ZMmaKamobWfYsXL9a6dev08ssva+3atUpISNDs2bO957733nuVlJSktWvXavny5Vq/fr3y8/Mtue49e/Zo27ZPVFlR3vD622+1ffsnfn19++1eS8oKAK1BXwGLOBtn37MbksukpRQAQHLFp0pikHOEJ5th6Ny0RH1dUk0XPrSZ/fv3q2fPnpo2bZrsdrvi4uI0fvx4zZw5U++8847S0tI0YcIESdKAAQM0cuRILV26VL169dKyZcs0fPhw9enTR5I0ceJEvfTSS1q1apXGjBmjZcuWacaMGerSpYsk6aGHHtLAgQO1d+9eud1ubdq0SR9++KESExPVvXt3TZ06VY899pjuuOOONr3mb7/dq2uuvUo11dXKHDlDyZdcrycXLtDcLa/7dZyExCR9vK5A557bvY1KCgCtRyhlEUdjS6kYmyGXyzyp5RQAIPq4PC2lGOQcYap7eoK+LqnWnrIaxQe7MIhIF110kZ555hmfZatXr9all16qwsJC5eTk+KzLysrS8uXLJUlFRUUaM2bMSet37NihiooKHTx40Gf/zMxMtW/fXl9++aUkKS0tTZ06dfKuv/jii7V//34dO3ZM7dq1a/Y1+NsQtrS0RDXV1Ro3/VHta9dT+2qla0f9RBf98IfNPsbhb7/R8sdnqbS0RN27h0co5amnaGw4HK3XznUHtxz+aqvy8lewBUzT9PYDj7EZqnOZcrjpvgcA0c7TUiqVQc4RprqnNQx2XlLlUKfY5CCXBpHONE098cQTWrNmjZ5//nk999xzSkxM9NkmISFB1dXVkqSqqqrTrq+qqpIkJSUlnbTes+7EfT2vq6ur/QqlOnRIbfa2kpSW1vBvqXtWD1U6OmjfgWPK6NRVWRdkNPsYCQlxkqT09GRlZvp3/mDzt74iSbReO9cd3fgr2AJNu+rZG0fxoqUUAMAZ3/BQQyiFcJUYa1fHlDgdqaxXbdr5wS4OIlhlZaVmzZqlzz//XM8//7x69OihxMREVVRU+GxXW1ur5OSGUCcxMVG1tbUnrU9PT/cGTJ7xpU7c3zTNk9Z5XnuO31wlJRXyZy6AsrKGUKy2rl5us2GG1rp6p6qr65p9jNrahnHejh6tUnFxxVm2Dg2G0fCQ7m99RYJovXauO7yu21PuQOOvYAs0DaViGmfQYEwpAICLUAoRoHtaoo5U1qsu7YJgFwURas+ePbrzzjvVtWtXLV++XBkZDS2GcnJytG7dOp9ti4qKlJ2dLUnKzs5WYWHhSesHDRqk9u3bq1OnTioqKvJ24Tty5IjKysqUk5Mjt9utsrIyFRcXKzMzU5K0c+dOde7cWamp/j2Umab8evD0bmvKOwlGa2a4DKeHXsn/+ook0XrtXHd0C9vZ91wul2677TY98MAD3mWtmRK2LTVtFeUJpei+BwDRrdbhkjuu4dN2BjpHOOueliBJqmt/Lh+6IeDKy8v1k5/8RFdeeaWeffZZbyAlSXl5eSouLlZ+fr4cDoc2bNiglStXeseRGjt2rFauXKkNGzbI4XAoPz9fJSUlysvLkySNHj1aixcv1t69e1VZWam5c+eqX79+Ou+883TBBReoT58+mjt3riorK7V3714tWrRIY8eOtfT6Gx8dxD8tAJEqbD+aXbhwoTZv3qxu3bpJkndK2J/+9KcaP368CgoKNG3aNPXo0UO9evXyTgn79NNPq1evXlq6dKmmTJmiNWvWnNRfPNCcTQIoe+OnHXTfA4DoduBYQzeMWLuh+Jiw/YwIUGZKnOLshuqVoH8frNDlXZs/1g5wNq+88or279+vt956S2+//bbPuq1bt2rJkiWaM2eOFixYoIyMDM2ePVtXX321pIbZ+B5++GH98pe/1KFDh5SVlaWnn35aaWlpkqRp06bJ6XRqwoQJqqqqUv/+/fXEE094j79gwQL9+te/1g033CCbzaZRo0Zp6tSpVl26pOMtpWhNASBShWUotX79er3zzju66aabvMtaOyVsW/J8amhIstl8lwEAotP+Yw3jnKTGx3gfOoBwZDMMdWufoG9Ka7Rx91FCKQTUpEmTNGnSpNOuv/zyy/Xiiy+edv2tt96qW2+99ZTrYmNjNWPGDM2YMeOU6zMzM7VgwQL/Chxgx1tK8ewAIDKF3UezJSUleuihh/R///d/Pi2cTjcl7I4dOyTJp7/4qdb7wzD8+/LMvGczjle40236fZxw/mpJvUXaV7TXQbRff6jWQSQKl+7dB8qPh1JAuOvWOAvfxt1Hg1wSILLYGm/WZFIAIlVY/SXsdrt13333adKkSerZs6fPujNN+dqc9f7wd8T5CrPhZmIzDMXG2iU5FJ8YF3bTs7YWU15SB9F+/RJ1YIVw6d69n1AKEaRb+4ZxpT7df0yVdU6l8HsNBITn8yNaSgGIVGH1F8NTTz2luLg43XbbbSeta82UsP7yd+rG4tKGaV0NQzJdDeNLlR+rCZvpWVvLMMJzystAivY6iPbrl0KzDjxliiTh1L3b04s7Izm2zc4BWKVdQozcxw5L7c7RmHtmKeHoNydt0yEjTUueeqZNzv9fd92hktKy065vy3MDbcnTUoopkgBEqrAKpV577TUdPnxYffv2lSRvyPSPf/xDM2fObPGUsP7yd+pGh6tJ973GG4vDZYbMg6lVmPKSOoj265eog7bk6d69aNEi5efne5efrnv38uXLJTXcC04Mn1rSvdvf7pB3XnOeVv3tj8ruP8W/HVugaffRcP39a3oNVp6vLY4ZKT+HE6/Bse/fim93jjoP+k9de1HGSfu++fiMNvv5lZSWafj03552fdNzW/271Bba8hrCuV4ikefnYYbrmwYAnEVYhVInzrjhGS9k3rx5Onr0qB577DHl5+drwoQJ2rJli1auXKlFixZJapgSdtq0abr55pvVp08fLV261GdK2LbkmX3PZhjeG0vTGfkAAK0TCt27/W11likptXK3UlISTruNYUhJSfEBW5+YGH/G9W157kCtT0yMb/Nzx8Taz9jFPibW3uJ6k07+Ofizf2vWB+LYnrKf6hqcB/6t+O8M1v6KulMe52z12hpn+pmc7tyR0FI0Eq4BZ+ZtKUUmBSBChVUodSbp6emtmhK2LTldTWbf84ZS3FkAIFBCoXt3S7pmOh0uVVfXnXa9aSog6z1hQk1NnU8Zz7R/oM4dqPUnXkNbnvuLzz/XNdcPPe36wp2FGtqCevN8MHXiz8GfsrVmfSCOXVNTd8rfJUlyHPhKhqSyaocOlVYpNcH3z0ynw9VmQxec7d9S03OHYndqf7XlNURi1+5wRkspAJEurEOpefPm+bxuzZSwbcnZdPa9Jt33AACBEQrdu0O5a6anXKFavuaw8hqcbp2xK9hjd41o0XEj/ufgqNU5qfE6VFGnfeW16pmQctr9g+HEc4fyv9nmioRrwJnRUgpApLMFuwDR4HgoZdBSCgDawNtvv61//etf2rx5szZv3qwRI0ZoxIgR2rx5s/Ly8lRcXKz8/Hw5HA5t2LBBK1eu9I4jNXbsWK1cuVIbNmyQw+FQfn6+Zd27gUjjmYVvX3ntWbYE0Bw2WkoBiHBh3VIqXHgCKMNo0n3PxZhSAGCFUO7eDUSabu0T9K9vy7WvvFamacpg1GygVQxaSgGIcIRSFvAEUD7d97izAECbCZfu3UCkOSclTrE2Q3VOt0qrHeqQHBfsIgFhzfOBtpuWUgAiFN33LOBo0n3P83kh3fcAAECksdkMdW7XMAseXfiA1js+0HlwywEAbYWWUhbwzL5no/seAACIcN3SErS3rFb7ymvVq2u7YBdHkvTVVzt067ix3tcxsXY5HS7v6w4ZaVry1DPBKBpwRrbGj7TdIpUCEJkIpSzgO/ue7zIAAIBI0q1dw2DnB4/VyeU2ZbcFf1ypE2dUTEqKV3V1nff1m4/PCEaxgLOipRSASEf3PQs43Z4xpQzvYIWe1lMAAACRJD0pVomxNjndpg5X1J19BwCnZWOgcwARjlDKAqeafc/hpvseAACIPIZhqGv7htZSjCsFtI7N21KKVApAZCKUsoB3TCk1HVOKGwsAAIhM3UIolHK43LJ3ylbRkSodqaxnFjOEFYOWUgAiHGNKWcDZZPY9TxNcxpQCAACRyhNKHamsV73TrbgY6z8HNU1Tnx+s1L++LVfqzdO1pqhEkpQSZ9fA7I46NzXW+8APhCrPB9qEqQAiFS2lLOA6Vfc9WkoBAIAIlRIfo3YJMTIlHThmfWspt2nq/aISrd91VHVOt9xVZeqUGq9Yu6HKepfe/vyg3i8q8f6NBoQqT3BKJgUgUhFKWaDpQOfHW0oxphQAAIhcwezC99HXpSoqrpYhacAF6Tq2fLZuuayTftSnm/qc216GIRUVV2v1jiO0XkdIo6UUgEhHKGUBT6somyF5GonzBxAAAIhkx0Mpa2fg++pIpb48XCVD0o09MnVZl1TJbPgwMMZu05Xd2+vWK7oq1mZoX3mt1hQWyxTd+BCabLSUAhDhGFPKAsfHlGKgcwAAEB26tIuXJJXVOFRd77LknJV1Tq37+qgk6cru7XVBRtIptzu/Q7LyenbU2/8+rF2lNUo5t99pj/lfd92hktKy067vkJGmJU8906pyA6fjiUvd4tkBQGQilLKA09Xw6ZxhGPKMp0n3PQAAEMkSYu3KTI5TcVW9ZV34Nuwuk9NtqlNqvHp3a3fGbbu1T9Cgizvo/aISVXbrp/W7SjXggoyTtispLdPw6b897XHefHxGq8sNnA4tpQBEOrrvWcCnpdQJywAAACKVleNKHSiv1TclDeNIXXthuvdh/kyyOybrO51SJMPQL97coYNBGJQdOBODMaUARDhCKQt4Qykx+x4AAIgeXds3dOHbX17bpp2PTEkFe8skST07pahDclyz9736gnTFVh5Wea1TD76xw9vCHQgFnnCVz7MBRCpCKQscbynVdPY97iwAACCydU6Nl92QqupdciWktdl56tt116GKetkNKffcM3fbO1GMzVB64Sqlxsfo0wPH9MyGPW1USsB/npZSJi2lAEQoQikLeAY1N5oOdM6YUgAAIMLF2G3qlNrQWqquffc2O09F40DlPTulKDnO/yFTY+qOaVZetiTpzxv3aNu+8oCWD2gpWkoBiHSEUhbwBFBNZ9+j+x4AAIgGXRvHlWqrUOqzA8dU366bbIZ0RVf/Wkk1ldejo4Zfco7cpvQ/q3aoss4ZwFICLWNjTCkAEY5QygJNu+8ZdN8DAABRxDPYeV27c+Vqg79//rZlnyTp4sxkJce3bmLpGUOy1LV9gvYfq9Nj/ywKRPGAVjnefS+45QCAtkIoZQFP972mLaVcbpO+4QAAIOJlpsQpzm7IjEnQFwcrAnrsg8dq9c+vjkiSLu+S2urjpcTH6Nc395DNkFZ9cVjv7Djc6mMCreHpvmeKcaUARCZCKQscbyl1PJRquhwAACBS2QxD3dISJUkff1Ma0GO/vO2AXKYUV77Xrxn3zuSKbu31X/3PkyTN+0eRXHEpATku0BKeUEpiXCkAkYlQygKe8MloMvte0+UAAACR7Ly0hi586wIYStU73Xrt04OSpOSD2wN2XEm6fcD5uqxLqirqnDp68U2M54OgsTf5QNvF7yGACEQoZYGmA50bTZcz2DkAAIgC5za2lPr3oUqVVNUH5JhrCot1tMahjilxSjj6dUCO6RFjM/Trm3sqMdam+vbnavv+YwE9PtBctibdLNpiTDYACDZCKQscH1PK8Om+52gMqwAAACJZUpxdsZWHJEnrdwWmtdTybfslSd+/vIsMBf5hvXt6omYMyZIkFewp156jNQE/B3A2DRMlNXxPKAUgErVuihI0i3dMKTV04bPbDLncJi2lAABA1Igv2yVHSid9uLNUIy7t3KpjFR2p0if7jsluSKN6ddYbASrjiUZe2kn/99wrqu50mf5ZWKxRl3dWWmKsX8f4r7vuUElp2WnXd8hI05KnnmllSRHJYgxDDtOkGymAiEQoZYHjY0o1vI7xhFJ82gEAAKJEwtGvVXluf63/plS1DpcSYu0tPpanldTgrEx1TIkPVBFPYhiG2u96X6lZfXSook6rdxzRqMs7Kz6m+Z0NSkrLNHz6b0+7/s3HZwSiqIhgNpsh8ewAIELRfc8Cx2ffa0ilYhv78DlcdN8DAADRIbbqiDqnxqvW6dbG3UdbfJyqeqfe+uKwJGls7y6BKt5pGaZbeT0ylRJn17Fap1bvOMzfcLCUvfEZgpE/AEQiQikLHA+lGl7bG7/h0w4AABAtDEmDszpIktYUlbT4OCs/O6Rqh0sXZCSqb/e0wBTuLBJj7bqpZ0fF2Q0dqqjX2/8+ononCQGs4Xl2YPY9AJGIUMoCTtfx2fekhu57EqEUAACILt/NzpQkrd1Z0qLWRm7T1N+37pMkjc/tJsMwzrJH4HRIjtOwS85RrN3QwYo6rfz8kCpqnZadH9HL3vjExkDnACIRY0pZ4PiYUo3d9+yNoRRNvwEAQBS5olt7dUiOU0lVvdbvOqpBF3fwa/91X5dqb1mtUuNjNPzSTgEr11df7dCt48aeet3OQg1v/L5jSrxGXtpJb/37sEqrHXpl+wEldciRaZqWBmSILt6WUoRSACIQoZQFPDcQz3TFdN8DAADRKMZmaGjPjvrbln1664tDzQ6lPDPYFfccJaWdJ/c3G/UfP/ydd33T4KglnG6ddjDyL+4a4fO6Q3KcRl3eWe99VazDlfWqz/6e7nhxm37U91wNvChDsXY6IiCwPGNK0X0PQCQilLJA04HOTdOk+x4AAIhaN3/nHP1tyz59uLNElXVOpcSf/c/RktIyDbhrrl7edlCGpJEjRio1/vve9ScGR20tJT5GIy/tpE/2H9O/dhVr+/5jmvn6F0qMtenSLu3UrV2CYhpbxpdddIP+8eUR1bncqneacrrdirHZlJoQo47JcXLGt7O07Ag/tJQCEMn4KMcCTpfvQOfHGscfYOYWAAAQbXqck6ILOySp3mXqnR2Hm73f5wcqJUnnZyQqtRlBVluz2QxdeW57nfPJc5rYr7sykmJV43Br854yvfbZQb287YBe3nZA1edcqm9Ka7S/vE7FVfUqq3GquKpe35RUa9OeMh3Onah7X/lMRUeqgn1JCFHellKEUgAiUPDv6FHAO6ZU42tPOEVLKQAAEG0Mw9Coyzvr8fe/1otb9+v7vbqcdTwmV2ySChtDm8u6pFpRzGazO6o07boLNWXgBSo8XKWvjlTqUEWdPH/lvfDiC+o1eLji7DbFxdgUYzPkcLlVVuPUvvJafXu0Wuu+KdW6nUfUbu/HSj6wVU1ro0NGmpY89UwwLg0h4vjse0EuCAC0AVpKWcAztIBngHOb4RnonDsLAACIPrdc1llJsfaG1kK7y866fWW3q+QyTZ2TEqfOqfFtX8AWsBmGenRK0cjLOuuOAefrzsav1P2bdUnnVGV1TNZ56Ynq2j5B52ck6Ypu7TTsknNUseJXOj89UbLZdez865Q84gHdfO9jGj79txo+/bcqKS0L9qWFjNLSUuXl5Wnjxo3eZdu2bdO4ceOUm5urIUOGaNmyZT77rFixQnl5eerdu7dGjx6trVu3ete5XC7Nnz9f11xzjXJzczVlyhQdPny89V5JSYmmTp2qvn37qn///pozZ46cTutnXKT7HoBIRihlgZk3ZOmBodlKiGmobk9LKQc3FgAAEIVS4mM08rKG2fOe3/ztGbc9cKxWVedcJknqe15axM1y5644orwemRp4UboMQyoqrtY/vyqWm0GtfWzZskXjx4/Xnj17vMvKy8s1efJkjRo1SgUFBZozZ44effRRbd++XZK0ceNGPfLII5o3b54KCgp0yy23aMqUKaqpqZEkLV68WOvWrdPLL7+stWvXKiEhQbNnz/Ye/95771VSUpLWrl2r5cuXa/369crPz7f0uqXjzw6EUgAiEaGUBYb27KifXN3d+9rTUooxpQAAQLT6jyu7yW4ztGH3UW3YVXra7X63Zqdks6tLu3h1a59gYQmtYxiGvtMpVXk5mbIZ0jelNdqw62iwixUyVqxYoRkzZmj69Ok+y9955x2lpaVpwoQJiomJ0YABAzRy5EgtXbpUkrRs2TINHz5cffr0UWxsrCZOnKj09HStWrXKu/7OO+9Uly5dlJKSooceekgffvih9u7dq927d2vTpk267777lJiYqO7du2vq1KneY1vpePc9QikAkYdQKggae/Gp1kkoBQAAotO5aYn6Qe+ukqQnPvj6lGNt/rOwWO8XlUhul665IN3qIlru/IwkfTc7U5L0+cFK7ThUGeQShYaBAwfq3Xff1bBhw3yWFxYWKicnx2dZVlaWduzYIUkqKio67fqKigodPHjQZ31mZqbat2+vL7/8UoWFhUpLS1OnTp286y+++GLt379fx44dC/QlnhHd9wBEsrALpXbs2KFJkyapX79+uvbaazVz5kyVljZ8utaaPuVWimm8sdQRSgEAgCh2x4Dz1D4hRjuLqxtaRDVRVFyl36z+SpKUsn+LMpLjglFEy13UIUl9u7eXJH2866gciRlBLlHwdezYUTExJ8/PVFVVpcTERJ9lCQkJqq6uPuv6qqqGgfOTkpJOWl9VVXXKfT2vPcdvLsPw/6thx4b/eWbfc7cwlGrJ+YP1FW7l5dq57mi77rYQVrPv1dbW6o477tAPfvADPfXUU6qqqtL999+vBx98UPPnz9fkyZP105/+VOPHj1dBQYGmTZumHj16qFevXt4+5U8//bR69eqlpUuXasqUKVqzZs1JN5xAM01TZpPmtp5PO+ocrjY9LwBEkx07dmj+/Pn6/PPPFRsbq2uvvVYPPPCAMjIytG3bNv3mN79RUVGR0tPTNWXKFI0bN86774oVK7Ro0SIdOXJEF110kX7xi18oNzc3iFcDRId2CbH6xdAc3ffaF1r2yX7ZbYZu63uu/n2oUvP+UaiKOqeu6NpOhzcWSBob7OJapne3djp4rE7fltfqaNb35HC5FWsPu8+S21xiYqIqKip8ltXW1io5Odm7vra29qT16enp3r//PeNLnbi/aZonrfO89hy/uTp08G/GyLS0huMnxMcpKSleCfENj2yG3aakpOYN9J+Q0BDipqcnKzMztGasPBt/6yuSROu1c93RLaxCqf3796tnz56aNm2a7Ha74uLiNH78eM2cOdOnT7kknz7lvXr18ulTLkkTJ07USy+9pFWrVmnMmDFtXvbH3/nS+72npRTd9wAgMML1QwsA0uCsTN0z6EIt+PAbvfivfXrxX/u86y7qkKT/G3WpfvxKdH2QZxiGrs/uoOWfHFBtcqb+vHGPJl9zQbCLFXJycnK0bt06n2VFRUXKzs6WJGVnZ6uwsPCk9YMGDVL79u3VqVMnny5+R44cUVlZmXJycuR2u1VWVqbi4mJlZjZ0qdy5c6c6d+6s1FT/HiRLSirkz3BQZWUNrbhq6+pVXV0nd+M4tHX1TlVX1zXrGLW19ZKko0erVFxccZatQ4NhNDyk+1tfkSBar53rDq/r9pQ70MLqI5eLLrpIzzzzjOx2u3fZ6tWrdemll7aqT7m/WtTMrUlbN09LqXqnO+jN72ieSB1w/dFdB5Gi6YcWcXFxSk9P9wZQrR0IF0Dbu+2q7nr8+5fqgoyGIDgx1qYfX9VdS37YW+0TY4NcuuBIjLXrmgvTJUlLNu7V1yVVQS5R6MnLy1NxcbHy8/PlcDi0YcMGrVy50vuB89ixY7Vy5Upt2LBBDodD+fn5KikpUV5eniRp9OjRWrx4sfbu3avKykrNnTtX/fr103nnnacLLrhAffr00dy5c1VZWam9e/dq0aJFGjvW/xZ7pun/V8OODf/zdN9ztfDhtSXnD9ZXuJWXa+e6o+2620JYtZRqyjRNPfHEE1qzZo2ef/55Pffccy3uU+4vf9NBl6vh072kpDi53aYS4ho+7TBi7WHXnLY1aJ5IHUT79UvUQVvxfGjR1Nk+tFi+fLmkhg8tTmwx29IPLQC03MCLOujaCzNk6vhMxdHuog5J+nhjgWozLtLja77WgjGXyaBuvNLT07VkyRLNmTNHCxYsUEZGhmbPnq2rr75aUkPPiYcffli//OUvdejQIWVlZenpp59WWlqaJGnatGlyOp2aMGGCqqqq1L9/fz3xxBPe4y9YsEC//vWvdcMNN8hms2nUqFGaOnWq5dfJQOcAIllYhlKVlZWaNWuWPv/8cz3//PPq0aNHq/qU+8vfZnZud0MoVV1dL7fbLbOxCe7RitqwaU7bGoYRns0TAyna6yDar18KzTrwlCnSBOtDi1B+TmzaUi9Ufv/81fQawlWk/Rxacg1n+/lZEbi0xc+hrYptGIZK3s9X8qiHtWH3UX1v8n1KKNslGVJMjF1pqala8qdnznoc/84Z0MMF3Jdffunz+vLLL9eLL7542u1vvfVW3XrrradcFxsbqxkzZmjGjBmnXJ+ZmakFCxa0vLAB4hlOjFAKQCQKu1Bqz549uvPOO9W1a1ctX75cGRkNM5K0pk+5v/xtunbitvbGm32dwx22f5S2RFs2+QsX0V4H0X79EnXQ1oL5oUVLAr6YWPsZB601DAV0fWJi/BnXt+W5A7U+MTE+ZMvWnH2lk38OoVK25qz3lP1U13C2/WNa0UK8Lf6tNL2G1tTb2a6rtWV3VhSrz4WZ2rL7qFy5YzT66vO9LWdW/O+9UdXqPlod777HHxAAIk9YhVLl5eX6yU9+oquvvlpz5syRzXZ8SKy8vDw99thjys/P14QJE7RlyxatXLlSixYtktTQp3zatGm6+eab1adPHy1dutSnT7mVvLPvMdA5AARMsD+0aEkrOKfDdcZBa01TAVnvCRNqaup8ynim/QN17kCtP/EaQqlszV3naYFy4s8hFMrW3PU1NXWn/F1qzv5Oh6vFLcQD+W/lVP8eWlNvZ7uuQJT9sk7J+mJ/ucprHCr4ulhXdGunxMR4OZ0tr9PTidRWtOGM7nsAIllYDXT+yiuvaP/+/XrrrbfUp08f5ebmer88fcrffvtt9e/fX7Nnzz5tn/J+/frpzTff9OlT3tZM05TZ+JeP3Tv7XnTNJAMAbcXzocWVV16pZ5991htISa0fCLe5QmWwyNOVren/wxHXEBpaew2hMLBqW/wc2rrscXab+p2XJkn617flqqlv/BsyjAayRcsRSgGIZGHVUmrSpEmaNGnSade3pk+5lWIMWkoBQCA1/dDi7bff9lm3devWVg2ECwChILtjsj47UKGSaoe27T+m77ZPCnaRYBG67wGIZGEVSkUKz2CFhFIAEBiR8qEFAJyOYRjqc16a3tlxRJ8frFS/i5z66qsdunXc2NPu0yEjTUueCuxA6LCezdtSKsgFAYA2QCgVBN7uew7uLAAAAGie89ISdE5KnA5X1qtgV6mcbmn49N+edvs3Hz/1rHIILzGNzw5uuu8BiECEUkFwvPseY0oBAACEs7O1VvpqZ6GGB+hchmGo73lpWvXFYX2275iMZP9mCUV4stF9D0AEI5QKguMDndNSCgAAIJydrbXSF3eNCOj5urVPUNd28dp/rE4JVwwL6LERmjxDfzDQOYBIFFaz70UKTxNcxpQCAACAv/o2zsQXl3W1jtU6g1sYtDnvQOeEUgAiEKFUEHg+7aClFAAAAPzVKTVe52ckybDZ9cm+8mAXB23M08uC7nsAIhHd94Kg6acdTpdbMXayQQAAENnONPYSs8T5r/9FGdpdWq2vjlSpd7f2apfAn/WRyhNKuU3JNE0Zjc8SABAJuHsFgefGIjW0lkohlAIAABHuTGMvMUuc/7q0T5Rj3xeK7XaJPtlXrkEXdwh2kdBG7E1CKJfbVIydUApA5CANCYKm9xHGlQIAAEBL1H6ySpL01ZEqVTC2VMRq+oG2ix58ACIMoVQQGIah+JiGqieUAgAAQEu4jnytbu0TZJpibKkI1iSTYrBzABGHUCpICKUAAADQWlee216S9OWRKlXU0VoqEhmG4e1pwWDnACINoVSQJDSGUrVOV5BLAgAAgHDVuV28uraPb2gt9e2xYBcHbcQ7Ax8tpQBEGEIpi5hNPtUwTfN4SykHLaUAAADQcp7WUl8dqaS1VIQilAIQqQilgsA0TcXb6b4HAACA1uvSLkFd28XLbUqf7KO1VCTyzMDnpvsegAhDKBUk8bF03wMAAEBgXNm9sbXU4UpV0loq4tgaW0o5aSkFIMIQSgUJA50DAAAgULq0S1AXWktFrJjGUMrNowOACEMoFSSe7nu1hFIAAAAIgD6emfhoLRVxbI3d95h9D0CkiQl2AaJR04HOaxnoHAAARLmvvtqhW8eNPf36nYUabmF5wlWX9g2tpQ4cq6O1VIRhoHMAkYpQKgjcbrfi7XZJUh1jSgEAgCjndEvDp//2tOu/uGuEhaUJb1ee215vfnFYXx6uVMe4lGAXBwHS2MmCUApAxKH7XpB8XVIliTGlAAAAEDhd2x8fW6qia99gFwcBYqf7HoAIRSgVJJ4muIwpBQAAgEC6snFsqepzLlVxZV2QS4NAoPsegEhFKBUknhk0aCkFAACAQOrSLl7ntk+QDJvKaxnwPBLENvbfq3cRSgGILIRSQWCaprcJLmNKAQAAIJAMw1Bej0yd88lfdHFmcrCLgwBIaJwkqc7BswOAyEIoFSSellLMvgcAAIBAi7HbFFPHDHyRIiG2ceZuelkAiDCEUkHimUGD7nsAAAAAziQhpmHm7hpaSgGIMIRSQXK8+x6hFAAAAIDT87SU4tkBQKQhlAoSe0MmddKnHaZpymSqVwAAAACNPC2lGPoDQKQhlAoSz6cdRyrrg1wSAAAAAKHs+JhSdN8DEFkIpYIkNa7h044Dx2rlctMyCgAAAMCpeWbfq3eZPDsAiCiEUkESb2+Ygc/pNnWksi7YxQEAAAAQouJjbGoc/YNxpQBEFEIpCzSMEeX7iYbNMNQ5NV6StK+8NgilAgAAABAODMNQfGNrqVpm4AMQQQilgqhrO0IpAAAAAGfnGVeqhpZSACIIoVSQuN1udWkXJ4lQCgAAAMCZHZ+Bj5ZSACIHoVQQ7T1aLUnaV1YT5JIAAAAACGWellKMKQUgkhBKBVFK4wx8+2kpBQAAAOAMPC2lahyEUgAiB6FUkJimqeS4hupv2n3P7XbL7eZGAwAAAOA4T0upWifd9wBEDkKpIEqKafh/abVD1fUNNxfTNL1fAAAAACA16b5HSykAEYRQKohiDCnebkiStu8v9y5/6qNvCKcAAAAAeHkHOmdMKQARhFAqiEzT1IUZCZKkpZv3SZKq6l06UFGn+iholkvoBgAAADSPp6WUp4cFAEQCQqkg69EhQXZD2rD7qP625VvdtvQTrf6qVKOe3axXtx8IdvEAAAAAhIAOSXGSpKM1DlXVO4NcGgAIjKgLpUpKSjR16lT17dtX/fv315w5c+R0Bu9NPdEuDb4oTZL0+Ptf68CxuoZyVjs09x9FevLDr1XvdMntdtOyCADaUKjdHwAAwRdK94akOLvOSWkIpnaX1gSlDAAQaFEXSt17771KSkrS2rVrtXz5cq1fv175+flBK49pmkoynLowLU6XdU7RyEsydWuP9vrxlZ0kSX/dvE//8Zct+tvmvfrtP74KWjkBINKF2v0BABB8oXZvOD8jSZK0q41CqeLKOu09WqPiqno+DAdgiZhgF8BKu3fv1qZNm/Thhx8qMTFR3bt319SpU/XYY4/pjjvuCFq5kuLs6tc1SXa7Tbdffa7+9PEu1dXW6upzk7SjpF57y2r1+7W7JUmfHKhUr67t1KVdvNonxKhdYqzaJ8QqNSFGsXab6pxu1dQ7VedyK85uV6zdUKzdphib0djSSrLZ1LhPrOJjTp9LNr0RGYbR6ut0uU2V1ThUXFmvPUerdaSyXjZDujgzRd/pnKLkuKj6dQQQQkL1/gAACJ5QvDdckJGogj1l2n+sVkerHUpPim3RcUzTVEm1Q98erdHnByv06YFj+nT/MR2urPdu0y4hRhdmJOmizCRd1CFZF3VIUkZSnGLshmJshlxuUw6XqXqXWw6X+4zfHykpVXlllZxuyWmacp8m70pIiFVtrcP72m5ICTGGEuyGEmKkjPbt1CGjg9ymZDZeh9uU3I3PLXF2m2LtNsXHGIqLsSmu8TnIkCEZks2Q93vP043bNOV2Sy7TlNs05XIfP2bD96ZcpuRu8r3nuUpqKIckxdoMxcbYGv5vtynObshmM9T0Kcr3lbyFMAzpcL2psrKqhuc1w1Cs/fg1NFxXw2tbAJ7LgFASVSlAYWGh0tLS1KlTJ++yiy++WPv379exY8fUrl27Zh3HZpP8+eDANKU4u6H4GJs36DGMhpDI8/+G4xrK37Tbu112RrwuTI/XnnKH9lc4dKTapf3H6rT/2JHmn/ws7Daj4c3ZaPh/w/cNb4SGpDqnqaRYmwzD95qPvwmbaloVpne92eT7huPX1LtOewOSpHYJdsXbbTIMQ3Zb41dj2Vrz3tuat+1AhHGeMthjbHI53WrOr06o32paUi32GLtcETKAf4s+ODQku90ul8ulZv0S+GlQVgf9pF93/4oU6r9oFgrE/cHfe4MkJSUlKe4MHw6kpqQEZL1hNPyh7oq1+ZTxTPsH6tyBWt/0GkKtbM1dZxgN6+NP+DmEQtmauz4+1nbK36VQKFtz15/q30OolK256z3XcLZ9k5KSZPOzXwT3huOC9ewQE2NXamqqKo/sU+kpPrTtkpyoCqddq3ccVrzNlM2Q7EbDCczG/zgdCcqe9if9av0xxRRsaFhnNvzt7pZ0rN7UqSbxS42PUXyMVOeU3Ka0s6RaO0uqJRU3/wJape4s60sbv6KXoYZ/p0bj900DNsn337BxitfHtzNOseyE1yec2xMGuhuf9dym7+920/095z3++ngk17RctsbGE4Z89/V57f3ez+dCQ5J59ve1sx3yxP3PtP1p153wPG23G3K5ji848S3idO8ZTZ/LT3VdzameWJv0kz6ddUOvC5qxte+524JhRlG7zNdee02PP/643n//fe+yPXv2KC8vTx988IE6d+4cvMIBAIKG+wMA4ETcGwCg7UXVmFJJSUmqqfHtf+15nZycHIwiAQBCAPcHAMCJuDcAQNuLqlAqOztbZWVlKi4+3vx0586d6ty5s1JTU4NYMgBAMHF/AACciHsDALS9qAqlLrjgAvXp00dz585VZWWl9u7dq0WLFmns2LHBLhoAIIi4PwAATsS9AQDaXlSNKSVJxcXF+vWvf62NGzfKZrNp1KhRmjFjhux2e7CLBgAIIu4PAIATcW8AgLYVdaEUAAAAAAAAgi+quu8BAAAAAAAgNBBKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRyjVxkpKSjR16lT17dtX/fv315w5c+R0OoNdrDPasWOHJk2apH79+unaa6/VzJkzVVpaKknatm2bxo0bp9zcXA0ZMkTLli3z2XfFihXKy8tT7969NXr0aG3dutW7zuVyaf78+brmmmuUm5urKVOm6PDhw971Z6urs5070Fwul2677TY98MADzS5DpFx/WVmZZs6cqf79++uqq67S1KlTvWWNhjr4/PPPNWHCBPXt21cDBw7Ub37zG9XX10fN9SO8teY9PJS05D04lLTmfTRUtOa9MNhKS0uVl5enjRs3epe15v3baqcq/+rVq3Xrrbfqyiuv1JAhQ7Rw4UK53W7v+lAqP1omHJ8bWipS7lUtFe73uJaIhPtiS4TzvdQyJtrUj370I/PnP/+5WV1dbe7Zs8ccPny4+fTTTwe7WKdVU1NjXnvttebvf/97s66uziwtLTXvvPNO86677jLLysrMfv36mc8//7zpcDjMjz/+2MzNzTW3bdtmmqZpbtiwwczNzTU3b95s1tfXm3/+85/N/v37m9XV1aZpmuaTTz5pjhw50ty/f79ZUVFh3nvvveadd97pPfeZ6ups524LTzzxhNmzZ0/z/vvvb1YZIun6f/SjH5nTpk0zy8vLzYqKCvPuu+82J0+eHBV14HK5zGuvvdb8y1/+YrpcLvPAgQPm0KFDzYULF0bF9SO8teY9PNT4+x4calr6PhoqWvNeGGybN282b7zxRjMnJ8fcsGGDaZqtv4cHu/yffvqp2atXL/Of//yn6XK5zKKiIvO73/2u+eyzz4Zc+dFy4fbc0FKRdK9qqXC/x7VEuN8XWyKc76VWIpRqQ7t27TJzcnLMgwcPepe9+eab5vXXXx/EUp3Zzp07zdtvv910Op3eZf/4xz/MK6+80vz73/9u3nTTTT7b/8///I85c+ZM0zRN8+c//7k5e/Zsn/Xf+973zOXLl5umaZqDBg0yX3/9de+6I0eOmD169DD37Nlz1ro627kD7eOPPzaHDRtm/vSnP/XeLKLl+j/99FPz8ssvNysqKrzLjh49an711VdRUQelpaVmTk6O+ec//9l0Op3mgQMHzJtvvtl89tlno+L6Ed5a8x4eSlryHhxKWvM+Gipa814YTK+88op5/fXXm2+++aZPqNPa92+rnK78b7/9tjl37lyfbefOnWv+v//3/0zTDJ3yo+XC8bmhpSLlXtVS4X6Pa4lIuC+2RLjeS61G9702VFhYqLS0NHXq1Mm77OKLL9b+/ft17NixIJbs9C666CI988wzstvt3mWrV6/WpZdeqsLCQuXk5Phsn5WVpR07dkiSioqKTru+oqJCBw8e9FmfmZmp9u3b68svvzxrXZ3t3IFUUlKihx56SP/3f/+nxMRE7/Jouf7t27crKytLf//735WXl6eBAwdq/vz56tixY1TUQXp6uiZOnKj58+fr8ssv1+DBg3XBBRdo4sSJUXH9CG+teQ8PFS19Dw4lrXkfDRWteS8MpoEDB+rdd9/VsGHDfJa35v3bSqcr/9ChQzVr1izv69raWr3//vu69NJLJYVO+dFy4fjc0FKRcK9qqUi4x7VEJNwXWyJc76VWI5RqQ1VVVT5vNpK8r6urq4NRJL+YpqnHH39ca9as0UMPPXTK60lISPBey5nWV1VVSZKSkpJOWl9VVXXWujrbuQPF7Xbrvvvu06RJk9SzZ0+fddFw/ZJUXl6uL7/8Urt27dKKFSv06quv6tChQ7r//vujog7cbrcSEhL0i1/8Qp988oneeOMN7dy5UwsWLIiK60fk8Pc9PBS05j04lLTmfTRUtOa9MJg6duyomJiYk5a35v3bSqcrf1OVlZWaNm2aEhISNHHiREmhU360XLg/N7RUON6rWipS7nEtEQn3xZYI13up1Qil2lBSUpJqamp8lnleJycnB6NIzVZZWamf/vSnWrlypZ5//nn16NFDiYmJqq2t9dmutrbWey1nWu/5B3difXjWn62uznbuQHnqqacUFxen22677aR10XD9khQXFydJeuihh5SSkqLMzEzde++9+uCDD2SaZsTXwbvvvqvVq1frhz/8oeLi4pSdna1p06bphRdeiJrfAYS/lryHh4LWvAeHkta8j4aK1rwXhqLWvH+Hkq+//lr/8R//IafTqeeee04pKSmSwqf8OL1wfm5oqXC9V7VUpNzjWiIS7ostEWn30rZCKNWGsrOzVVZWpuLiYu+ynTt3qnPnzkpNTQ1iyc5sz549GjNmjCorK7V8+XL16NFDkpSTk6PCwkKfbYuKipSdnS2p4XpPt759+/bq1KmTioqKvOuOHDmisrIy5eTknLWuznbuQHnttde0adMm9e3bV3379tUbb7yhN954Q3379o2K65camo263W45HA7vMs/sPt/5zncivg4OHDjgnRHDIyYmRrGxsVHzO4Dw1tL38FDQmvfgUNKa99FQ0Zr3wlDUmvfvUPHBBx9o3Lhxuu666/Tss8+qffv23nXhUH6cWbg+N7RUON+rWipS7nEtEQn3xZaItHtpmwnmgFbR4D//8z/N6dOnmxUVFd5ZNBYsWBDsYp1WWVmZef3115sPPPCA6XK5fNaVlpaaffv2Nf/85z+b9fX15vr1683c3Fxz/fr1pmma3hkD1q9f75355aqrrjKPHj1qmqZpPv744+aIESPMPXv2eGce+9GPfuQ9/pnq6mznbiv333+/dwDCaLn++vp6My8vz7znnnvMyspKs6SkxPzxj39sTps2LSrqoLCw0LzsssvMxYsXm06n09yzZ485YsQIc968eVFx/QhvrXkPD0X+vAeHkta8j4aK1rwXhoqmA4W39v072OXfunWreemll5rLli075bahWH74L9yeG1oq0u5VLRWu97iWiIT7YktEwr3UCoRSbezIkSPmPffcY/br18+8+uqrzXnz5vnMNBFqlixZYubk5JhXXHGF2bt3b58v0zTN7du3m+PHjzdzc3PNG264wXz55Zd99n/11VfNoUOHmr179zbHjh1rfvLJJ9519fX15mOPPWZed9115pVXXmlOmTLFLC4u9q4/W12d7dxtoenNojlliJTrP3jwoHnvvfea1157rdm3b19z5syZZnl5edTUwbp168xx48aZffr0Ma+//nrzd7/7nVlXVxc114/w1dr38FDj73twKGnN+2ioaM17YShoGuqYZuvev4Ohafnvuusus0ePHif9u7799tu924da+eG/cHtuaKlIu1e1VDjf41oiEu6LLRHu91IrGKZpmsFurQUAAAAAAIDowphSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSwGmYpmnJPqEmEq4BAAAAABD6CKWAU3jvvfd0//33+7XPsmXLNH/+fL/2+fbbb9WjRw+98sorfu0XKH/5y180cOBA9erVS4sWLdKWLVt01113BaUsAAAAAIDoQigFnEJ+fr4OHDjg1z6LFy9WWVlZ2xSoDVRWVmrevHm67LLL9Oyzz+r73/++li1bpqKiomAXDQAAAAAQBWKCXQAAwVFeXi632628vDxdddVVwS4OAAAAACDK0FIKOMFtt92mTZs2adOmTerRo4c2btyow4cPa9asWRo8eLB69eqlsWPH6r333vPuM2TIEO3bt08rVqxQjx499O2330qSCgoKdPvtt+uqq67SZZddpiFDhujJJ5+U2+1uVRk//vhjjR8/Xrm5ubrqqqs0depUff311z7b/O1vf9PQoUPVq1cvTZgwQR9//LH3el555RUNGTJEkvTggw+qR48eeuCBB7RixQrt27cvqF0KAQAAAADRgVAKOMHDDz+sSy65RJdccoleeuklnXvuuRo7dqw2bdqk6dOn68knn1S3bt00bdo0vf7665KkhQsXqmPHjho8eLBeeuklnXPOOdqxY4cmTpyotLQ0Pf7441q8eLGuvPJKLVy4UG+++WaLy7d3715NmTJFl156qRYvXqzf/OY3+vrrrzV58mRv2PXXv/5Vv/rVr3TdddfpD3/4gy6//HJNnz7de4zrr79eCxculCRNmTJFL730kqZOnarBgwerY8eOeumll3T99de3vBIBAAAAADgLuu8BJ8jKylJKSookqXfv3nrsscdUWlqqt956S927d5ckDR48WBMnTtT//u//asSIEbrkkksUFxenjIwM9e7dW5K0Y8cOXXPNNXrsscdkszXkv9dee63ef/99FRQUaOTIkS0q3/bt21VbW6u77rpLnTp1kiR16dJF7733nqqrq5WUlKTFixdr6NChmj17tiTpuuuuU2VlpZYtWyZJysjI0He+8x1J0nnnnectc0ZGhuLi4ryvAQAAAABoK4RSwFls2rRJubm53kDK45ZbbtGsWbP09ddfKysr66T9Ro0apVGjRqmurk579uzR7t279fnnn8vlcsnhcLS4PFdccYXi4+M1duxYDRs2TIMHD1bfvn3Vq1cvSdLOnTtVUlKiG2644aTyekIpAAAAAACCjVAKOIvy8nKde+65Jy3PzMyUJB07duyU+9XW1uqRRx7Ra6+9JqfTqXPPPVe5ubmKiYmRaZotLs+5556r559/Xn/605/097//Xfn5+WrXrp1++MMf6mc/+5l3BsCMjAyf/TytqgAAAAAACAWEUsBZtG/fXsXFxSctP3LkiCQpPT39lPvNmTNHq1ev1hNPPKFrrrlGSUlJkqQBAwa0uky9evXSwoULVV9fry1btuill17SH//4R/Xo0UM9e/aUpJPK7AmrAAAAAAAIBQx0DpyCZwwoSbrqqqu0detW7d2712eb119/XR07dtT5559/0j6StGXLFvXv31833nijN5D67LPPVFpa2qrZ9/Lz8zVkyBDV19crLi5OAwYM0COPPCJJOnDggC688EJ16dJFq1at8tnvn//851mPfeI1AAAAAADQVngCBU6hXbt2+uabb7R+/XrvDHqTJk3Sq6++qg8++EDTp0/Xhg0bNH36dG+Q065dO33xxRfatGmTamtr1atXL3300Ud64YUXtGnTJj333HO68847ZRiGampqWly2q6++WocPH9a0adP0wQcf6KOPPtKsWbMUFxen7373uzIMQzNnztTatWs1a9YsrV27VosWLdKSJUuadd3FxcX64IMPdPjw4RaXEQAAAACAsyGUAk5hwoQJio2N1Z133qmNGzfqhRde0GWXXaY5c+boZz/7mQ4cOKBFixZpzJgx3n3+67/+S8XFxbr99tv12Wef6YEHHtCNN96oJ554QnfddZeWLVumKVOm6Ac/+IG2bt0ql8vVorL17NlTf/zjH1VZWan//u//1t13362ysjItWbJEF110kSRp2LBh+v3vf69PP/1UU6ZM0Zo1a/Tzn//8rMcePXq0unXrpmnTpunVV19tUfkAAAAAAGgOw2zNiMsAwsbGjRv14x//WM8995z69+8f7OIAAAAAAKIcA50DIcLlcjVrVr6YGP7ZAgAAAADCH0+3QIiYOHGiNm3adNbtvvzySwtKAwAAAABA26L7HhAivv76a1VVVZ11u8svv9yC0gAAAAAA0LYIpQAAAAAAAGA5Zt8DAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5WKCXYBwVFJSIX/mLDQMqUOHVL/3w+lRp4FHnQZeqNepp3wAAAAAEAyEUi1gmmrRA2ZL98PpUaeBR50GHnUKAAAAACej+x4AAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALBcSIdSpaWlysvL08aNG73Ltm3bpnHjxik3N1dDhgzRsmXLfPZZsWKF8vLy1Lt3b40ePVpbt271rnO5XJo/f76uueYa5ebmasqUKTp8+LBl12OapkzTtOx8AAAAAAAAoSpkQ6ktW7Zo/Pjx2rNnj3dZeXm5Jk+erFGjRqmgoEBz5szRo48+qu3bt0uSNm7cqEceeUTz5s1TQUGBbrnlFk2ZMkU1NTWSpMWLF2vdunV6+eWXtXbtWiUkJGj27NlBuT4AAAAAAIBoFpKh1IoVKzRjxgxNnz7dZ/k777yjtLQ0TZgwQTExMRowYIBGjhyppUuXSpKWLVum4cOHq0+fPoqNjdXEiROVnp6uVatWedffeeed6tKli1JSUvTQQw/pww8/1N69ey2/RgAAAAAAgGgWkqHUwIED9e6772rYsGE+ywsLC5WTk+OzLCsrSzt27JAkFRUVnXZ9RUWFDh486LM+MzNT7du315dfftlGVwIAAAAAAIBTiQl2AU6lY8eOp1xeVVWlxMREn2UJCQmqrq4+6/qqqipJUlJS0knrPeuayzD82ty7/Yn/R8tRl4FHnQZeqNdpqJYLAAAAQHQIyVDqdBITE1VRUeGzrLa2VsnJyd71tbW1J61PT0/3hlWe8aVOtX9zdeiQ6m/RffYzeBIMmJb+LHB61GngUacAAAAAcLKwCqVycnK0bt06n2VFRUXKzs6WJGVnZ6uwsPCk9YMGDVL79u3VqVMnny5+R44cUVlZ2Uld/s6mpKRC/kyiZxgND6We/QilWu/EOkXrUaeBF+p16ikfAAAAAARDSI4pdTp5eXkqLi5Wfn6+HA6HNmzYoJUrV2rMmDGSpLFjx2rlypXasGGDHA6H8vPzVVJSory8PEnS6NGjtXjxYu3du1eVlZWaO3eu+vXrp/POO8+vcpim/18t3Y8v6pQ6De+vUK9TAAAAAAiWsGoplZ6eriVLlmjOnDlasGCBMjIyNHv2bF199dWSpAEDBujhhx/WL3/5Sx06dEhZWVl6+umnlZaWJkmaNm2anE6nJkyYoKqqKvXv319PPPGEZeU3TVOmSUspAAAAAAAAwzT5rNxfxcX+d9/LzEzV4cPlMk3JZgurBmohyVOn/v4scHrUaeCFep16ygcAAAAAwUA6AgAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALBdWs++Fs4aZ98yQHOwYAAAAAADAarSUstAf134d7CIAAAAAAACEBEIpKxlGsEsAAAAAAAAQEgilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5SykGcGPgAAAAAAgGhHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUpZxDTNYBcBAAAAAAAgZBBKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRyhlIdM0ZZpmsIsBAAAAAAAQdIRSAAAAAAAAsByhFAAAAAAAACxHKAUAAAAAAADLEUoBAAAAAADAcoRSAAAAAAAAsByhFAAASyHwxgAAKX5JREFUAAAAACxHKGUR0zRlmmawiwEAAAAAABASCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYLy1Dq888/14QJE9S3b18NHDhQv/nNb1RfXy9J2rZtm8aNG6fc3FwNGTJEy5Yt89l3xYoVysvLU+/evTV69Ght3bo1GJcAAAAAAAAQ1cIulHK73brrrrs0dOhQbdq0ScuXL9dHH32kp59+WuXl5Zo8ebJGjRqlgoICzZkzR48++qi2b98uSdq4caMeeeQRzZs3TwUFBbrllls0ZcoU1dTUBPmqAAAAAAAAokvYhVLl5eU6cuSI3G63TNOUJNlsNiUmJuqdd95RWlqaJkyYoJiYGA0YMEAjR47U0qVLJUnLli3T8OHD1adPH8XGxmrixIlKT0/XqlWrgnlJAAAAAAAAUSfsQqn09HRNnDhR8+fP1+WXX67Bgwfrggsu0MSJE1VYWKicnByf7bOysrRjxw5JUlFR0RnXAwAAAAAAwBoxwS6Av9xutxISEvSLX/xCY8eO1e7du3X33XdrwYIFqqqqUmJios/2CQkJqq6ulqSzrm8uw/CvzJ7tDeP4F1qnaZ0iMKjTwAv1Og3VcgEAAACIDmEXSr377rtavXq13n77bUlSdna2pk2bpjlz5mjkyJGqqKjw2b62tlbJycmSpMTERNXW1p60Pj093a8ydOiQ6ne5XS6XEhPjlZmZqtjYWL/3x6m15GeBM6NOA486BQAAAICThV0odeDAAe9Mex4xMTGKjY1VTk6O1q1b57OuqKhI2dnZkhoCrMLCwpPWDxo0yK8ylJRUqHE4q2YxDCktLUk1NXUqLq4glAoAw2h40Pf3Z4HTo04DL9Tr1FM+AAAAAAiGsBtTauDAgTpy5Ij++Mc/yuVyae/evVq8eLFGjhypvLw8FRcXKz8/Xw6HQxs2bNDKlSs1ZswYSdLYsWO1cuVKbdiwQQ6HQ/n5+SopKVFeXp5fZTBN/79auh9f1Cl1Gt5foV6nAAAAABAshmmG32PJxx9/rCeeeEJff/21UlNTdcstt2jatGmKi4vTp59+qjlz5uirr75SRkaGpk6dqtGjR3v3fe2117R48WIdOnRIWVlZmj17tq644gq/zl9c7H9LqfT0JP3q5a36fwMvoqVUABiGlJmZ6vfPAqdHnQZeqNepp3wAAAAAEAxhGUoFG6FU8IX6w344ok4DL9TrlFAKAAAAQDCFXfc9AAAAAAAAhD9CKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKYuYpun9AgAAAAAAiHaEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAAyxFKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRyhlEdM0ZZpmsIsBAAAAAAAQEgilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilLMRg5wAAAAAAAA0IpQAAAAAAAGA5QimL0EIKAAAAAADgOEIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYLeCi1cePGQB8SAAAAAAAAESbgodRPf/pT3XjjjfrDH/6g/fv3B/rwAAAAAAAAiAABD6U++ugj3Xffffrss880dOhQ/dd//ZfeeOMN1dfXB/pUAAAAAAAACFMBD6ViY2M1dOhQLV68WB988IFuvPFGLVmyRAMHDtSvfvUr7dixI9CnBAAAAAAAQJhps4HOS0pKtHLlSr366qsqKipS//79FR8fr4kTJ+qPf/xjW502ZJmmKdM0g10MAAAAAACAkBDwUOrNN9/U5MmTNXjwYL388ssaNmyY3n//fT355JN64IEH9Pjjj+tPf/pTq85RVlammTNnqn///rrqqqs0depUHT58WJK0bds2jRs3Trm5uRoyZIiWLVvms++KFSuUl5en3r17a/To0dq6dWurygIAAAAAAAD/BTyU+tWvfqVu3brpxRdf1Ouvv66JEycqIyPDu/7CCy/UxIkTW3WOe+65R9XV1Xr33Xe1Zs0a2e12/eIXv1B5ebkmT56sUaNGqaCgQHPmzNGjjz6q7du3S2qYGfCRRx7RvHnzVFBQoFtuuUVTpkxRTU1Nq8oDAAAAAAAA/8QE+oAfffSR9u7dq06dOkmSPvnkE6Wmpuriiy+WJHXu3Fk//elPW3z8zz77TNu2bdPHH3+slJQUSdIjjzyiI0eO6J133lFaWpomTJggSRowYIBGjhyppUuXqlevXlq2bJmGDx+uPn36SJImTpyol156SatWrdKYMWNac9kAAAAAAADwQ8BbSr333nsaNWqUdu3aJUnaunWrxo0bpw8++CAgx9++fbuysrL097//XXl5eRo4cKDmz5+vjh07qrCwUDk5OT7bZ2VleQdXLyoqOuN6AAAAAAAAWCPgLaUWLlyoRYsW6bLLLpMkTZo0SVlZWXrsscc0ePDgVh+/vLxcX375pS677DKtWLFCtbW1mjlzpu6//35lZmYqMTHRZ/uEhARVV1dLkqqqqs64vrkMw78ye7Y3jONfaJ2mdYrAoE4DL9TrNFTLBQAAACA6BDyUOnDggK677jqfZQMHDtT06dMDcvy4uDhJ0kMPPaT4+HilpKTo3nvv1Q9+8AONHj1atbW1PtvX1tYqOTlZkpSYmHjK9enp6X6VoUOHVL/LXVdXp8TEeGVmpio+Pt7v/XFqLflZ4Myo08CjTgEAAADgZAEPpbp166a1a9f6BFPr169X165dA3L8rKwsud1uORwOb7jjdrslSd/5znf0t7/9zWf7oqIiZWdnS5Kys7NVWFh40vpBgwb5VYaSkgqZZvO3NwwpJSVONTV1Ki6uUHx8vV/nw8kMo+FB39+fBU6POg28UK9TT/kAAAAAIBgCHkpNnjxZ06ZN00033aRu3bpp//79evfddzV//vyAHP+aa65R9+7d9eCDD+rRRx9VXV2dHn/8cd14440aMWKEFixYoPz8fE2YMEFbtmzRypUrtWjRIknS2LFjNW3aNN18883q06ePli5dqpKSEuXl5flVBtNUix4wPfuF4sNpuKI+A486DTzqFAAAAABOZphm4B+VNm7cqFdffVVHjhxRly5d9P3vf19XXnllwI5/6NAhzZs3TwUFBaqrq9OQIUP00EMPqV27dvr00081Z84cffXVV8rIyNDUqVM1evRo776vvfaaFi9erEOHDikrK0uzZ8/WFVdc4df5i4v9bymVmhqnX728VVMHZdF9LwAMQ8rMTPX7Z4HTo04DL9Tr1FM+AAAAAAiGNgmlIh2hVPCF+sN+OKJOAy/U65RQCgAAAEAwBbz73qFDh7R48WLt2rXLO9aTx3PPPRfo0wEAAAAAACAMBTyUmjVrloqLi/Xd735XsbGxgT48AAAAAAAAIkDAQ6lPP/1Uq1evVkZGRqAPHfZM0xS9JQEAAAAAACRboA+YmpqquLi4QB8WAAAAAAAAESTgLaWmTp2qWbNm6c4771RmZqbPuq5duwb6dAAAAAAAAAhDAQ+lZs+eLUl69913JUmGYcg0TRmGoX//+9+BPh0AAAAAAADCUMBDqffeey/QhwQAAAAAAECECfiYUt26dVO3bt1UXl6uzz//XB07dlRCQoK6desW6FMBAAAAAAAgTAU8lCopKdF//Md/6Ac/+IHuv/9+7d27VzfeeKO2bt0a6FMBAAAAAAAgTAU8lJo7d65ycnJUUFCgmJgYXXzxxZo8ebL+93//N9CnAgAAAAAAQJgKeCi1YcMGzZo1S4mJiTIMQ5J0xx13qKioKNCnCjumaco0zWAXAwAAAAAAIOgCHkrFxsaqtrZWkrwBTFVVlZKTkwN9qrBCGAUAAAAAAHBcwEOpIUOG6L777tOuXbtkGIZKSkr0q1/9SoMHDw70qQAAAAAAABCmAh5K/fznP1dSUpK+973v6dixYxo4cKBqamo0Y8aMQJ8KAAAAAAAAYSom0AdMTk7WggULVFpaqm+//VadO3fWOeecE+jTAAAAAAAAIIwFPJQqKCjweb17927t3r1bknTVVVcF+nQAAAAAAAAIQwEPpW677baTltlsNnXp0kXvvfdeoE8HAAAAAACAMBTwUGrHjh0+r0tLS/WHP/xB3bp1C/SpAAAAAAAAEKYCPtD5iTIyMnTffffpL3/5S1ufCgAAAAAAAGGizUMpSSovL1ddXZ0VpwIAAAAAAEAYCHj3vVmzZvm8djgc2rJli6655ppAnyqsmKYp0zSDXQwAAAAAAICQEPBQ6kTx8fG67bbbNH78+LY+VUgrq3Fo59E6VdY5lZgY7NIAAAAAAAAEV8BDqUcffTTQh4wIz2/cq837a/Ta50d0x7WpwS4OAAAAAABAUAU8lFq4cGGztrv77rsDfeqQdrTaIUkqr3UGuSQAAAAAAADBF/BQqrCwUO+884569uypCy+8UAcPHtS//vUvXXLJJUpOTpYkGYYR6NOGPJe7YTwph8sd5JIAAAAAAAAEX8BDKZvNplmzZunHP/6xd9lrr72mNWvW6Iknngj06cKGszGU8oRTAAAAAAAA0cwW6AN+8MEHmjBhgs+yESNGaP369YE+VVjxhFFOQikAAAAAAIDAh1IZGRkqKCjwWbZ27Vp17tw50KcKK97ue4RSAAAAAAAAge++d9ddd2ny5MkaOnSounbtqr1792rNmjV68sknA32qsEL3PQAAAAAAgOMCHkqNGzdO3bp10+uvv64vvvhC3bt314svvqgePXoE+lRh5fhA54RSAAAAAAAAAQ+lJOmaa67RNddco9LSUmVkZLTFKcIOY0oBAAAAAAAcF/AxpRwOhx5//HH16dNHQ4YM0d69ezVmzBgdPnw40KcKK05CKQAAAAAAAK+Ah1ILFy7Uhg0b9Pvf/16xsbHq0KGDOnfurDlz5gT6VGGFllIAAAAAAADHBbz73sqVK/XCCy+oU6dOMgxDSUlJevTRR5WXlxfoU4UVp3dMKXeQSwIAAAAAABB8AW8pVV1d7R1HyjQbgpiEhATZbAE/VVhh9j0AAAAAAIDjAp4U9e7dWwsXLpQkGYYhSfrrX/+qyy+/PNCnCive2fcIpQAAAAAAAALffe/BBx/UxIkTtWLFClVVVWnYsGGqqqrSn//850CfKqx4x5RyEUoBAAAAAAAEPJTKzMzUm2++qffff1/79u1T586ddf311yslJSXQpworzL4HAAAAAABwXMBDqREjRuj111/XzTffHOhDhzVm3wMAAAAAADiuTUYfr6mpaYvDhjVaSgEAAAAAABwX8JZS/fv317hx4zRo0CCdc845PuvuvvvuQJ8ubBwfU8od5JIAAAAAAAAEX8BDqW+//Vbdu3fXN998o2+++ca73DMTX7RyuRvCKFpKAQAAAAAABDCUuv322/Xss8/qr3/9qySptrZWCQkJgTp82POEUQ5CKQAAAAAAgMCNKbV161af14MGDQrUoSOC09UQRrkIpQAAAAAAANpmoHNJMk3Cl6Y8YZTDRb0AAAAAAAC0WSgV7WNIncgTSpmitRQAAAAAAECbhVLw1XSAcwcz8AEAAAAAgCgXsIHOnU6nXn31Ve9rh8Ph81qSRo0aFajThZ2mraOYgQ8AAAAAAES7gIVSmZmZWrBggfd1enq6z2vDMAilGjkZVwoAAAAAAES5gIVS//znPwN1qIjk9GkpRfc9AAAAAAAQ3RhTygJu01TTtlF03wMAAAAAANEubEMpl8ul2267TQ888IB32bZt2zRu3Djl5uZqyJAhWrZsmc8+K1asUF5ennr37q3Ro0dr69at1pT1hBDKQfc9AAAAAAAQ5cI2lFq4cKE2b97sfV1eXq7Jkydr1KhRKigo0Jw5c/Too49q+/btkqSNGzfqkUce0bx581RQUKBbbrlFU6ZMUU1NTZuX9cQxpGgpBQAAAAAAol1YhlLr16/XO++8o5tuusm77J133lFaWpomTJigmJgYDRgwQCNHjtTSpUslScuWLdPw4cPVp08fxcbGauLEiUpPT9eqVavavLwu88SWUowpBQAAAAAAolvABjq3SklJiR566CEtWrRI+fn53uWFhYXKycnx2TYrK0vLly+XJBUVFWnMmDEnrd+xY4ffZTAM/7Y/MZRymabfx4AvT/1Rj4FDnQZeqNdpqJYLAAAAQHQIq1DK7Xbrvvvu06RJk9SzZ0+fdVVVVUpMTPRZlpCQoOrq6mat90eHDql+bW9W1Pm8Tk5NUGamf8fAqfn7s8DZUaeBR50CAAAAwMnCKpR66qmnFBcXp9tuu+2kdYmJiaqoqPBZVltbq+TkZO/62trak9anp6f7XY6SkgqZfgwLVVzpG0oVl1apODnW7/PiOMNoeND392eB06NOAy/U69RTPgAAAAAIhrAKpV577TUdPnxYffv2lSRvyPSPf/xDM2fO1Lp163y2LyoqUnZ2tiQpOztbhYWFJ60fNGiQ3+UwTfn1gHniQOcOpxmSD6jhyN+fBc6OOg086hQAAAAAThZWA52//fbb+te//qXNmzdr8+bNGjFihEaMGKHNmzcrLy9PxcXFys/Pl8Ph0IYNG7Ry5UrvOFJjx47VypUrtWHDBjkcDuXn56ukpER5eXltXu4Tx5Ri9j0AAAAAABDtwqql1Jmkp6dryZIlmjNnjhYsWKCMjAzNnj1bV199tSRpwIABevjhh/XLX/5Shw4dUlZWlp5++mmlpaW1edlODKGYfQ8AAAAAAEQ7wzTpVOKv4mL/xof5uqRK4/O3eF8/OuI7urFHxzYoWfQwDCkzM9XvnwVOjzoNvFCvU0/5AAAAACAYwqr7Xrhyuem+BwAAAAAA0BShlAXovgcAAAAAAOCLUMoCtJQCAAAAAADwRShlgRNDKYeLUAoAAAAAAEQ3QikLnNgyyumm+x4AAAAAAIhuhFIWcJ0w7ZaTllIAAAAAACDKEUpZgDGlAAAAAAAAfBFKWeDkMaXovgcAAAAAAKIboZQFaCkFAAAAAADgi1DKAieGUMy+BwAAAAAAoh2hlAWYfQ8AAAAAAMAXoZQF6L4HAAAAAADgi1DKAieFUnTfAwAAAAAAUY5QygIuk+57AAAAAAAATRFKWeDEllIMdA4AAAAAAKIdoZQFGOgcAAAAAADAF6GUBWgpBQAAAAAA4ItQygLMvgcAAAAAAOCLUMoCnhDKbjS8drjovgcAAAAAAKIboZQFXI1jSNltDakULaUAAAAAAEC0I5SygNPl21LKyZhSAAAAAAAgyhFKWcBlnhBK0VIKAAAAAABEOUIpC3jHlGrsvseYUgAAAAAAINoRSlnAM/teDC2lAAAAAAAAJBFKWcITStkaa5tQCgAAAAAARDtCKQt4xpSKMei+BwAAAAAAIBFKWcLTUoqBzgEAAAAAABoQSlnAdcJA504XoRQAAAAAAIhuhFIWcNJSCgAAAAAAwAehlAWOt5RqeO1wM6YUAAAAAACIboRSFjjeUup49z3TpLUUAAAAAACIXoRSFjixpZQpiWGlAAAAAABANCOUsoDL9G0pJUlOF134AAAAAABA9CKUsoDrhIHOJQY7BwAAAAAA0Y1QygKnDKXovwcAAAAAAKIYoZQFPK2ibIZkeJfRfQ8AAAAAAEQvQikLeIaPMoyGYEqSHHTfAwAAAAAAUYxQygKegc4NSbbGwc7pvgcAAAAAAKIZoZQFXN7ue0aTllJ03wMAAAAAANGLUMoCnjGlaCkFAAAAAADQgFDKAp6WUowpBQAAAAAA0IBQygKuJrPveUIpp4vuewAAAAAAIHoRSlnA1aT7nuHpvkdLKQAAAAAAEMUIpSzgnX3Pp6UUoRQAAAAAAIhehFIW8LSKssnwDnTO7HsAAAAAACCaEUpZ4FQDndNSCgAAAAAARDNCKQsw+x4AAAAAAIAvQikLeMaUskne7ntOuu8BAAAAAIAoRihlAbrvAQAAAAAA+CKUskB8TEM1x9iaDnROKAUAAAAAAKIXoZQFHrm5hwZd1E7xdoOWUgAAAAAAAArDUGrHjh2aNGmS+vXrp2uvvVYzZ85UaWmpJGnbtm0aN26ccnNzNWTIEC1btsxn3xUrVigvL0+9e/fW6NGjtXXrVkvK3O/8NF2UkSCJMaUAAAAAAACkMAulamtrdccddyg3N1cfffSR3njjDZWVlenBBx9UeXm5Jk+erFGjRqmgoEBz5szRo48+qu3bt0uSNm7cqEceeUTz5s1TQUGBbrnlFk2ZMkU1NTWWXgMtpQAAAAAAAMIslNq/f7969uypadOmKS4uTunp6Ro/frwKCgr0zjvvKC0tTRMmTFBMTIwGDBigkSNHaunSpZKkZcuWafjw4erTp49iY2M1ceJEpaena9WqVZZegyeUctBSCgAAAAAARLGYYBfAHxdddJGeeeYZn2WrV6/WpZdeqsLCQuXk5Pisy8rK0vLlyyVJRUVFGjNmzEnrd+zY4Xc5Gnvg+b29YRz/3uU2/T4OjmtapwgM6jTwQr1OQ7VcAAAAAKJDWIVSTZmmqSeeeEJr1qzR888/r+eee06JiYk+2yQkJKi6ulqSVFVVdcb1/ujQIdWv7V0uV8P5EuMVF1svqU4x8bHKzPTvODiZvz8LnB11GnjUKQAAAACcLCxDqcrKSs2aNUuff/65nn/+efXo0UOJiYmqqKjw2a62tlbJycmSpMTERNXW1p60Pj093e/zl5RUyPRjSCi3uyGUqq2pk9vV0G2vorJOxcUVZ9oNZ2AYDQ/6/v4scHrUaeCFep16ygcAAAAAwRB2odSePXt05513qmvXrlq+fLkyMjIkSTk5OVq3bp3PtkVFRcrOzpYkZWdnq7Cw8KT1gwYN8rsMpim/HjA925rm8dn3HC53SD6khht/fxY4O+o08KhTAAAAADhZWA10Xl5erp/85Ce68sor9eyzz3oDKUnKy8tTcXGx8vPz5XA4tGHDBq1cudI7jtTYsWO1cuVKbdiwQQ6HQ/n5+SopKVFeXp6l1+Cdfc/NEyoAAAAAAIheYdVS6pVXXtH+/fv11ltv6e233/ZZt3XrVi1ZskRz5szRggULlJGRodmzZ+vqq6+WJA0YMEAPP/ywfvnLX+rQoUPKysrS008/rbS0NEuvwRtKuQilAAAAAABA9DJMk04l/iou9n9MqcVrC3WsvFLfVJjaerBGwy45R7+6uWfbFTLCGYaUmZnq988Cp0edBl6o16mnfAAAAAAQDGHVfS8SGI1jStFSCgAAAAAARDNCKYvZG7vvORhTCgAAAAAARDFCKYsZ3jGl3MEtCAAAAAAAQBARSlnM1phK0VIKAAAAAABEM0Ipi3ln3yOUAgAAAAAAUYxQymI270DndN8DAAAAAADRi1DKYkbjvPC0lAIAAAAAANGMUMoCpmlKagihPAOdO1yEUgAAAAAAIHoRSlns+JhSdN8DAAAAAADRi1DKYsfHlKKlFAAAAAAAiF6EUhbztJRyMKYUAAAAAACIYoRSFvN232P2PQAAAAAAEMUIpSzWmEkx+x4AAAAAAIhqhFIWOz7QOaEUAAAAAACIXoRSFvMMdO6g+x4AAAAAAIhihFIWM9TQQoqWUgAAAAAAIJoRSlnM8My+5zJlmgRTAAAAAAAgOhFKWczTfU+SXGRSAAAAAAAgShFKWaxphTsZVwoAAAAAAEQpQimL2Y43lGJcKQAAAAAAELUIpSzmGehcYgY+AAAAAAAQvQilLGYYhuyNraVoKQUAAAAAAKIVoZTFTNOUvbEPH6EUAAAAAACIVoRSQRDb2FTKwfR7AAAAAAAgShFKBcHxllKMKQUAAAAAAKIToVQQxNoaqp2WUgAAAAAAIFoRSgVBDGNKAQAAAACAKEcoZTGfgc5ddN8DAAAAAADRiVAqCGJpKQUAAAAAAKIcoVQQ2Btr3UFLKQAAAAAAEKUIpSxmmiYtpQAAAAAAQNQjlAqCkmqHJGbfAwAAAAAA0YtQKggaG0rRUgoAAAAAAEQtQqkg8HTfq6hzBrkkAAAAAAAAwUEoFQSJsQ3VXlJZH+SSAAAAAAAABAehVBAkxDS0lDpSVRfkkgAAAAAAAAQHoVQQJMY0VPsRWkoBAAAAAIAoRShlAdM0ZTYZ0zyxsaVUMaEUAAAAAACIUoRSQRBv93TfI5QCAAAAAADRiVAqCBLsDc2mSqvq5XSbZ9kaAAAAAAAg8hBKBUG83ZDdkEw1BFMAAAAAAADRhlAqCAzDUEZSrCSpmFAKAAAAAABEIUKpIHC73erQGEoxAx8AAAAAAIhGhFJBYJqmKuudkqTiqroglwYAAAAAAMB6hFJBkhRrlyQdqaiTaTLYOQAAAAAAiC6EUkGSFNtQ9Ycr6+RyuYJcGgAAAAAAAGvFBLsA0cg0TcUaDd/vKq2W2+0OboEAAAAAAAAsRkupIOmQYJMh6dMDlXp+8z668AEAAAAAgKhCKBUkyTFS327JkqQ/rt+rzXuOBrlEAAAAAAAA1iGUChLTNHVR+1hd0D5GpqSH3/pKZTWOYBcLAAAAAADAEoRSQdLQXc/UFeckKCXO0JGqev3Pqh1yuenGBwAAAAAAIl/UhVIlJSWaOnWq+vbtq/79+2vOnDlyOp1BKYvD4ZBdbl3VKU52Q1q/66ieeL+Igc8BAAAAAEDEi7pQ6t5771VSUpLWrl2r5cuXa/369crPzw9qmdLiberbOUGS9OLWA/rl21/q4LHaoJYJAAAAAACgLcUEuwBW2r17tzZt2qQPP/xQiYmJ6t69u6ZOnarHHntMd9xxR5ud19NV70y6JtuUe068Pjlcp7f+fURv//uIOreLV2ZynDokxykhxqa4GJviY2xqFx+jdomxSkuMVWp8jNolxCg5zq4Ym00xdkN2myG70fD/Oqdb1Q6Xqutdqql3qcrh0uFjtfr0wDE5XKYyk+PU+9z26twuQe3iY5QSb5fdZsjWuL/NMGQz1PB/myG7IRmG0WZ1BQAAAAAAokNUhVKFhYVKS0tTp06dvMsuvvhi7d+/X8eOHVO7du2adRybTTL9GPrJZjMUb7epPtYmUw0hVdNgx/O6Z0e7MpNj9FWpQyW1blXUuVRRV6NvSmuaf7IWeGvHEb+2N9RwTTY/A6ozbempTvOEijUMQ4Ykw5D3/x42w5Dbnx9Ec8rYirzNOOMVhgfD8O9328M8S+ga6gL8a+SjLX5PT+X6rEzdf2OWX/uQLwMAAAAIpqgKpaqqqpSYmOizzPO6urq62aFURkaq3+d+cHSG3/sAAAAAAABEqqgaUyopKUk1Nb6tjjyvk5OTg1EkAAAAAACAqBRVoVR2drbKyspUXFzsXbZz50517txZqan+t34CAAAAAABAy0RVKHXBBReoT58+mjt3riorK7V3714tWrRIY8eODXbRAAAAAAAAoophnjiydIQrLi7Wr3/9a23cuFE2m02jRo3SjBkzZLfbg100AAAAAACAqBF1oRQAAAAAAACCL6q67wEAAAAAACA0EEoBAAAAAADAcoRSAAAAAAAAsByhFAAAAAAAACxHKBUgJSUlmjp1qvr27av+/ftrzpw5cjqdp9z2gw8+0MiRI9W7d2/dfPPNWrNmjcWlDQ/+1Okdd9yhyy+/XLm5ud6vDz/80OISh4/S0lLl5eVp48aNp92G31P/NKdO+T0FAAAAgOMIpQLk3nvvVVJSktauXavly5dr/fr1ys/PP2m7Xbt26Z577tHPfvYzbd68Wffcc4/uvfdeHTp0yPpCh7jm1qkkffbZZ3r22We1detW79egQYOsLXCY2LJli8aPH689e/acdht+T/3TnDqV+D0FAAAAgKYIpQJg9+7d2rRpk+677z4lJiaqe/fumjp1qpYuXXrStitWrFDfvn114403KiYmRsOGDdNVV12ll156KQglD13+1OnevXtVXl6uSy65JAglDS8rVqzQjBkzNH369LNux+9p8zS3Tvk9BQAAAABfhFIBUFhYqLS0NHXq1Mm77OKLL9b+/ft17Ngxn22LioqUk5PjsywrK0s7duywpKzhwp86/fTTT5WcnKzp06fr6quv1ogRI7R8+XKrixwWBg4cqHfffVfDhg0743b8njZfc+uU31MAAAAA8BUT7AJEgqqqKiUmJvos87yurq5Wu3btzrhtQkKCqqur276gYcSfOq2vr1fv3r01ffp0ZWdna+PGjbrnnnuUnJysm2++2dJyh7qOHTs2azt+T5uvuXXK7ykAAAAA+KKlVAAkJSWppqbGZ5nndXJyss/yxMRE1dbW+iyrra09abto50+djho1Ss8884wuueQSxcbGauDAgRo1apTeeusty8obafg9DTx+TwEAAADAF6FUAGRnZ6usrEzFxcXeZTt37lTnzp2Vmprqs21OTo4KCwt9lhUVFSk7O9uSsoYLf+p0+fLlJz3Y19fXKz4+3pKyRiJ+TwOP31MAAAAA8EUoFQAXXHCB+vTpo7lz56qyslJ79+7VokWLNHbs2JO2veWWW7Rp0yatWrVKTqdTq1at0qZNm3TrrbcGoeShy586rays1COPPKIvvvhCbrdb77//vt544w2NHz8+CCWPDPyeBh6/pwAAAADgi1AqQBYsWCCn06kbbrhBP/jBD3Tddddp6tSpkqTc3Fy9/vrrkhoG6/7DH/6gp556SldddZUWLVqkJ598UhdeeGEwix+SmlunP/nJT/SjH/1Id999t3Jzc/Xb3/5W8+fPV9++fYNZ/LDD72ng8XsKAAAAAKdnmKZpBrsQAAAAAAAAiC60lAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAgjpaWlysvL08aNG5u9z+rVqzVixAj17t1beXl5Wr58eRuWEAAAAACaJybYBQAANM+WLVv0wAMPaM+ePc3eZ8OGDXrggQf0xBNPaNCgQdq4caPuvPNO5eTkqFevXm1YWgAAAAA4M1pKAUAYWLFihWbMmKHp06eftO7jjz/W2LFj1bdvXw0fPlyvv/66d11+fr5+/OMfa/DgwTIMQ1dffbVefvllnXfeeVYWHwAAAABOQigFAGFg4MCBevfddzVs2DCf5Tt27NCUKVM0efJkbdy4UY888ojmzp2rtWvXSpK2b9+utLQ0TZ48Wf3799ett96qPXv2KC0tLQhXAQAAAADHEUoBQBjo2LGjYmJO7nH94osv6oYbbtBNN90ku92uK6+8Uj/4wQ+0dOlSSVJ5ebmeffZZTZkyRevWrdO0adM0ffp0bdu2zepLAAAAAAAfjCkFAGFs37592rBhg/r27etd5nK5vN3z4uLiNGbMGOXm5kqSbrrpJg0YMECrV6/WFVdcEZQyAwAAAIBEKAUAYa1z5876/ve/r1//+tfeZYcPH5ZpmpKkiy++WPX19T77uFwu73oAAAAACBa67wFAGBs7dqzeeOMNffTRR3K73dq1a5d+9KMfacmSJZKk//zP/9QLL7ygjz/+WG63W6tXr9bGjRs1YsSIIJccAAAAQLSjpRQAhLErrrhCv/vd7/S73/1OP/vZz5SYmKgRI0bov//7vyVJY8aMkc1m06OPPqpvv/1W3bp10+OPP65LL700yCUHAAAAEO0Mkz4cAAAAAAAAsBjd9wAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOX+Pztqrx2BxQUzAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Selecting numerical columns\n", - "numerical_columns = housing_data.select_dtypes(include=[np.number]).columns\n", - "\n", - "# Calculate the number of rows and columns for subplots\n", - "num_cols = len(numerical_columns)\n", - "num_rows = (num_cols + 2) // 3 # Calculate the number of rows needed, rounding up\n", - "\n", - "# Plot histograms for numerical variables\n", - "plt.figure(figsize=(12, num_rows * 4)) # Adjust the height based on the number of rows\n", - "for i, col in enumerate(numerical_columns, 1):\n", - " plt.subplot(num_rows, 3, i)\n", - " sns.histplot(housing_data[col], kde=True, edgecolor='black')\n", - " plt.title(col)\n", - " plt.xlabel('')\n", - " plt.ylabel('Frequency')\n", - "plt.tight_layout()\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Conclusion**\n", - "\n", - "In conclusion, the log transformation has effectively addressed skewness in the distribution of numerical variables within the dataset. Prior to transformation, variables such as house price, bedrooms, bathrooms, and various square footage measurements exhibited skewed distributions with long tails. However, after applying the log transformation, these distributions appear to be more symmetric and closer to a normal distribution. This transformation has enhanced the suitability of the data for statistical analysis by reducing skewness and improving the interpretability of the variables. It's important to acknowledge that while the log transformation has provided valuable improvements, it alters the scale and interpretation of the variables, necessitating careful consideration in subsequent analyses. Overall, the transformed variables are now better suited for further statistical modeling and analysis in the context of predicting property values and understanding real estate market trends." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### **d.) Inferential Statistics.**\n", - "\n", - "*We used one-way ANOVA approach*" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1. \u001b[1mbedrooms\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", - "2. \u001b[1mbathrooms\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", - "3. \u001b[1msqft_living\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", - "4. \u001b[1msqft_lot\u001b[0m: Fail to reject the null hypothesis. There is no statistically significant relationship.\n", - "5. \u001b[1mfloors\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", - "6. \u001b[1mwaterfront\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", - "7. \u001b[1mcondition\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", - "8. \u001b[1mgrade\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", - "9. \u001b[1msqft_above\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", - "10. \u001b[1msqft_basement\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", - "11. \u001b[1myr_built\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", - "12. \u001b[1myr_renovated\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", - "13. \u001b[1msqft_living15\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", - "14. \u001b[1msqft_lot15\u001b[0m: Fail to reject the null hypothesis. There is no statistically significant relationship.\n", - "15. \u001b[1mhouse_age\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", - "16. \u001b[1mrenovation_age\u001b[0m: Reject the null hypothesis. There is a statistically significant relationship.\n", - "17. \u001b[1mtotal_sqft\u001b[0m: Fail to reject the null hypothesis. There is no statistically significant relationship.\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
bedroomsbathroomssqft_livingsqft_lotfloorswaterfrontconditiongradesqft_abovesqft_basementyr_builtyr_renovatedsqft_living15sqft_lot15house_agerenovation_agetotal_sqft
F-statistic1.841471e+003.7286677.7025890.7327131.662592e+001.787176e+001.0511117.293065.0981141.750817e+001.236748e+001.0467165.2099780.7098411.236748e+001.171737e+000.775778
P-value1.765957e-1390.0000000.0000001.0000001.808184e-951.258742e-1250.0262890.000000.0000001.406487e-1162.417229e-170.0379430.0000001.0000002.417229e-172.430304e-101.000000
\n", - "
" - ], - "text/plain": [ - " bedrooms bathrooms sqft_living sqft_lot floors \\\n", - "F-statistic 1.841471e+00 3.728667 7.702589 0.732713 1.662592e+00 \n", - "P-value 1.765957e-139 0.000000 0.000000 1.000000 1.808184e-95 \n", - "\n", - " waterfront condition grade sqft_above sqft_basement \\\n", - "F-statistic 1.787176e+00 1.051111 7.29306 5.098114 1.750817e+00 \n", - "P-value 1.258742e-125 0.026289 0.00000 0.000000 1.406487e-116 \n", - "\n", - " yr_built yr_renovated sqft_living15 sqft_lot15 \\\n", - "F-statistic 1.236748e+00 1.046716 5.209978 0.709841 \n", - "P-value 2.417229e-17 0.037943 0.000000 1.000000 \n", - "\n", - " house_age renovation_age total_sqft \n", - "F-statistic 1.236748e+00 1.171737e+00 0.775778 \n", - "P-value 2.417229e-17 2.430304e-10 1.000000 " - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n", - "from scipy.stats import f_oneway\n", - "\n", - "# List of features of interest\n", - "features_of_interest = ['bedrooms', 'bathrooms', 'sqft_living',\n", - " 'sqft_lot', 'floors', 'waterfront', 'condition', \n", - " 'grade', 'sqft_above', 'sqft_basement', 'yr_built', \n", - " 'yr_renovated', 'sqft_living15', 'sqft_lot15', \n", - " 'house_age', 'renovation_age', 'total_sqft']\n", - "\n", - "# Create an empty DataFrame to store ANOVA results\n", - "anova_results = pd.DataFrame(index=['F-statistic', 'P-value'])\n", - "\n", - "# Perform ANOVA for each feature\n", - "significant_features = []\n", - "\n", - "for i, column in enumerate(features_of_interest, 1):\n", - " groups = [housing_data[column][housing_data['price'] == category]\n", - " for category in housing_data['price'].unique()]\n", - "\n", - " # Perform ANOVA\n", - " f_statistic, p_value = f_oneway(*groups)\n", - "\n", - " # Store results in the DataFrame\n", - " anova_results[column] = [f_statistic, p_value]\n", - "\n", - " # Print interpretation\n", - " if p_value < 0.05:\n", - " significant_features.append(column)\n", - " print(f\"{i}. \\033[1m{column}\\033[0m: Reject the null hypothesis. There is a statistically significant relationship.\")\n", - " else:\n", - " print(f\"{i}. \\033[1m{column}\\033[0m: Fail to reject the null hypothesis. There is no statistically significant relationship.\")\n", - "\n", - "# Display ANOVA results\n", - "anova_results\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Conclusion**\n", - "\n", - "The features listed under \"Reject the Null Hypothesis\" have a statistically significant relationship with housing prices.\n", - "\n", - "These features are important predictors of housing prices in the given dataset.\n", - "\n", - "On the other hand, features listed under \"Fail to Reject the Null Hypothesis\" do not show a statistically significant relationship with housing prices based on the ANOVA test." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### **e.) Multicollinearity.**\n", - "\n", - "**Assessing Multicollinearity with Variance Inflation Factor (VIF)**\n", - "
In this analysis, we utilize the Variance Inflation Factor (VIF) to investigate multicollinearity among predictor variables in our regression model. Multicollinearity occurs when predictor variables are highly correlated with each other, which can lead to unreliable coefficient estimates. By computing the VIF for each predictor variable, we identify potential multicollinearity issues among property characteristics. \n", - "
High VIF values indicate a strong correlation between a predictor variable and the other variables in the model. Hence, it's crucial to examine the VIF values to ensure the reliability of our regression analysis and to address any multicollinearity detected.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\statsmodels\\stats\\outliers_influence.py:198: RuntimeWarning: divide by zero encountered in scalar divide\n", - " vif = 1. / (1. - r_squared_i)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\u001b[1mVariance Inflation Factor (VIF):\u001b[0m\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FeatureVIF
0bedrooms1.688154
1bathrooms3.366371
2sqft_livinginf
3sqft_lotinf
4floors1.934470
5waterfront1.028593
6condition1.218261
7grade3.235515
8sqft_aboveinf
9sqft_basementinf
10yr_built94.556823
11yr_renovated4.226966
12sqft_living152.763013
13sqft_lot152.130997
14house_age7.743224
15renovation_age4.109794
16total_sqftinf
\n", - "
" - ], - "text/plain": [ - " Feature VIF\n", - "0 bedrooms 1.688154\n", - "1 bathrooms 3.366371\n", - "2 sqft_living inf\n", - "3 sqft_lot inf\n", - "4 floors 1.934470\n", - "5 waterfront 1.028593\n", - "6 condition 1.218261\n", - "7 grade 3.235515\n", - "8 sqft_above inf\n", - "9 sqft_basement inf\n", - "10 yr_built 94.556823\n", - "11 yr_renovated 4.226966\n", - "12 sqft_living15 2.763013\n", - "13 sqft_lot15 2.130997\n", - "14 house_age 7.743224\n", - "15 renovation_age 4.109794\n", - "16 total_sqft inf" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from statsmodels.stats.outliers_influence import variance_inflation_factor\n", - "\n", - "# Compute Variance Inflation Factor (VIF) to detect multicollinearity\n", - "\n", - "X = housing_data[['bedrooms', 'bathrooms', 'sqft_living','sqft_lot', 'floors', 'waterfront', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15', 'sqft_lot15', 'house_age', 'renovation_age', 'total_sqft']]\n", - "# Calculate the correlation matrix\n", - "correlation_matrix = X.corr()\n", - "\n", - "# Calculate VIF for each feature\n", - "vif_data = pd.DataFrame()\n", - "vif_data[\"Feature\"] = X.columns\n", - "vif_data[\"VIF\"] = [variance_inflation_factor(X.values, i) for i in range(len(X.columns))]\n", - "\n", - "# Print VIF for each feature\n", - "print(\"\\n\\033[1mVariance Inflation Factor (VIF):\\033[0m\")\n", - "vif_data\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Variance Inflation Factor (VIF) Analysis**\n", - "
The Variance Inflation Factor (VIF) was calculated to assess multicollinearity among the features in the dataset. A VIF value greater than 5 is typically considered indicative of multicollinearity. The results revealed that most features exhibited low levels of multicollinearity, with VIF values below 5. \n", - "
However, 'yr_built' displayed a remarkably high VIF of 94.56, indicating strong multicollinearity with other features. Additionally, 'sqft_living', 'sqft_lot', 'sqft_above', 'sqft_basement', and 'total_sqft' exhibited infinite VIF values, suggesting perfect multicollinearity. \n", - "
Addressing multicollinearity in this case may require further investigation, such as feature selection, dimensionality reduction techniques or applying regularization methods to mitigate multicollinearity effects and improve model performance. \n", - "
Overall, understanding the VIF values can help refine the regression model and ensure the reliability of the coefficient estimates.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# MODELLING." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Baseline model - simple linear model.\n", - "2. log transformation. \n", - "3. Multiple Linear Regression\n", - "4. Residual modelling.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Baseline model \n", - "\n", - " Baseline models provide a reference point for comparing the performance of more complex models. \n", - " Its purpose is to establish a benchmark against which the performance of more sophisticated models can be evaluated." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "FUNCTIONS TO BE USED." - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "#use only numeric columns.\n", - "def numeric_col(housing_data):\n", - " '''returns a dataframe with only numeric values'''\n", - " for column in housing_data.columns:\n", - " if is_numeric_dtype(housing_data[column]) == False:\n", - " housing_data = housing_data.drop(column, axis=1)\n", - " else:\n", - " continue\n", - " return housing_data\n" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "#Set a function for the predictor and target variale.\n", - "def X_Y(housing_data, target):\n", - " '''Returns a series of target (y) values and a DataFrame of predictors (X)'''\n", - " y = housing_data[target] # target variable\n", - " X = housing_data.drop(target, axis=1) # predictor features\n", - " return y, X\n" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "#A higher train score indicates that the model fits the training data well.\n", - "#A high test score suggests that the model is able to make accurate predictions on data it hasn't seen before, which is the ultimate goal in machine learning.\n", - "\n", - "def get_metrics(X_train, X_test, y_train, y_test):\n", - " ''' Parameters are X train, X test, y train, & y_test\n", - " Performs multiple regression on the split test and returns metrics'''\n", - "\n", - " # Initialize Linear Regression model\n", - " lr = LinearRegression()\n", - "\n", - " lr.fit(X_train, y_train)\n", - "\n", - " train_score = lr.score(X_train, y_train)\n", - " test_score = lr.score(X_test, y_test)\n", - "\n", - " y_hat_train = lr.predict(X_train)\n", - " y_hat_test = lr.predict(X_test)\n", - "\n", - " train_rmse = np.sqrt(mean_squared_error(y_train, y_hat_train))\n", - " test_rmse = np.sqrt(mean_squared_error(y_test, y_hat_test))\n", - "\n", - " return train_score, test_score, train_rmse, test_rmse\n", - "#These scores provide insights into how well the model is performing both on the data it was trained on and on new data.\n", - "# They help assess the model's overall effectiveness and whether it is overfitting or underfitting.\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "def train_test(housing_data, size=0.20):\n", - " '''Takes in dataframe, and size of test for the split\n", - " Returns the train_set and test_set'''\n", - " train_set, test_set = train_test_split(housing_data, test_size=size, random_state=42)\n", - " return train_set, test_set\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# SIMPLE LINEAR REGRESSION." - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "\n", - "def simple_linear_regression(housing_data):\n", - " '''Creates a simple linear regression model with prices as the target variable \n", - " and the number of bedrooms as the predictor. Returns the model along with R-squared, \n", - " Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) for both train and test sets.'''\n", - " \n", - " # Extracting features and target variable\n", - " X = housing_data[['sqft_living']] # Predictor feature\n", - " y = housing_data['price'] # Target variable (prices)\n", - " \n", - " # Splitting the data into train and test sets\n", - " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - " \n", - " # Create a linear regression model\n", - " model = LinearRegression()\n", - " \n", - " # Fit the model to the training data\n", - " model.fit(X_train, y_train)\n", - " \n", - " # Calculate predictions for train and test sets\n", - " y_train_pred = model.predict(X_train)\n", - " y_test_pred = model.predict(X_test)\n", - " \n", - " # Calculate R-squared for train and test sets\n", - " r2_train = r2_score(y_train, y_train_pred)\n", - " r2_test = r2_score(y_test, y_test_pred)\n", - " \n", - " # Calculate Mean Squared Error (MSE) for train and test sets\n", - " mse_train = mean_squared_error(y_train, y_train_pred)\n", - " mse_test = mean_squared_error(y_test, y_test_pred)\n", - " \n", - " # Calculate Root Mean Squared Error (RMSE) for train and test sets\n", - " rmse_train = np.sqrt(mse_train)\n", - " rmse_test = np.sqrt(mse_test)\n", - " \n", - " # Print coefficients, R-squared, MSE, and RMSE for train and test sets\n", - " print(\"Training set:\")\n", - " print(\"Intercept:\", model.intercept_)\n", - " print(\"Coefficient:\", model.coef_[0])\n", - " print(\"R-squared:\", r2_train)\n", - " print(\"Mean Squared Error:\", mse_train)\n", - " print(\"Root Mean Squared Error:\", rmse_train)\n", - " \n", - " print(\"\\nTest set:\")\n", - " print(\"R-squared:\", r2_test)\n", - " print(\"Mean Squared Error:\", mse_test)\n", - " print(\"Root Mean Squared Error:\", rmse_test)\n", - " \n", - " return model, r2_train, mse_train, rmse_train, r2_test, mse_test, rmse_test\n", - "\n", - "\n", - "# Example usage:\n", - "# Assuming housing_data is your dataset\n", - "# model, r2_train, mse_train, rmse_train, r2_test, mse_test, rmse_test = simple_linear_regression(housing_data)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Training set:\n", - "Intercept: -44593.95245340909\n", - "Coefficient: 281.4088930446383\n", - "R-squared: 0.49587806055811734\n", - "Mean Squared Error: 68601152192.940285\n", - "Root Mean Squared Error: 261918.21661148407\n", - "\n", - "Test set:\n", - "R-squared: 0.48264829402430887\n", - "Mean Squared Error: 68845100756.10751\n", - "Root Mean Squared Error: 262383.4993975565\n" - ] - }, - { - "data": { - "text/plain": [ - "(LinearRegression(),\n", - " 0.49587806055811734,\n", - " 68601152192.940285,\n", - " 261918.21661148407,\n", - " 0.48264829402430887,\n", - " 68845100756.10751,\n", - " 262383.4993975565)" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "simple_linear_regression(housing_data)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Intercept: This is like the starting point or baseline of our predictions. For example, if all other factors were zero, we'd expect the value to be around -44593.95. It's where our line would intersect the y-axis on a graph.\n", - "\n", - "\n", - "Coefficient: This tells us how much the predicted value changes for each unit increase in the independent variable. In this case, for every one-unit increase in the independent variable, we'd expect the dependent variable to increase by about 281.41.\n", - "\n", - "\n", - "R-squared: This is a measure of how well our model explains the variation in the data. An R-squared value of 0.49 means that about 49% of the variability in the dependent variable is explained by our model. So, it's doing a decent job, but there's still room for improvement.\n", - "\n", - "\n", - "Mean Squared Error (MSE): This tells us, on average, how much our predictions differ from the actual values in the training data. Here, the average squared difference is around 68601152192.94, which is quite large but it's relative to the scale of the dependent variable.\n", - "\n", - "\n", - "Root Mean Squared Error (RMSE): This is just the square root of the MSE. It gives us an idea of the average amount our predictions are off by. Here, it's around 261918.22, which is the typical difference between our predicted values and the actual values in the training data.\n", - "\n", - "\n", - "Test Set:\n", - "\n", - "R-squared: Similar to the training set, this tells us how well our model explains the variation in the test data. An R-squared value of 0.48 means that about 48% of the variability in the dependent variable is explained by our model when evaluated on the test data.\n", - "\n", - "\n", - "Mean Squared Error (MSE): This is the average squared difference between our predictions and the actual values in the test data. It's around 68845100756.11, similar to the MSE in the training set.\n", - "\n", - "\n", - "Root Mean Squared Error (RMSE): Again, this is just the square root of the MSE for the test data. It's around 262383.50, which is the typical difference between our predicted values and the actual values in the test data.\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "R-squared: 0.48264829402430875\n", - "Mean Squared Error: 68845100756.10753\n", - "Root Mean Squared Error: 262383.4993975565\n", - "Intercept: 540631.1560929463\n", - "Coefficients: [259767.82181675]\n" - ] - } - ], - "source": [ - "#STANDARDIZE OUR MODEL TO GET RID OF THE NEGATIVE INTERCEPT.\n", - "\n", - "\n", - "# Assuming you have your data loaded into X and y\n", - "# X should be your independent variables and y should be your dependent variable\n", - "\n", - "# Split data into training and test sets\n", - "X = housing_data[['sqft_living']] # Predictor feature\n", - "y = housing_data['price'] # Target variable (prices)\n", - "\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "\n", - "# Initialize the StandardScaler\n", - "scaler = StandardScaler()\n", - "\n", - "# Fit and transform the scaler on the training data\n", - "X_train_scaled = scaler.fit_transform(X_train)\n", - "\n", - "# Transform the test data using the scaler fitted on the training data\n", - "X_test_scaled = scaler.transform(X_test)\n", - "\n", - "# Fit the linear regression model on the scaled training data\n", - "model = LinearRegression()\n", - "model.fit(X_train_scaled, y_train)\n", - "\n", - "# Predict on the scaled test data\n", - "y_pred = model.predict(X_test_scaled)\n", - "\n", - "# Calculate R-squared and mean squared error on the test set\n", - "r_squared = r2_score(y_test, y_pred)\n", - "mse = mean_squared_error(y_test, y_pred)\n", - "rmse = np.sqrt(mse)\n", - "\n", - "# Print the metrics\n", - "print(\"R-squared:\", r_squared)\n", - "print(\"Mean Squared Error:\", mse)\n", - "print(\"Root Mean Squared Error:\", rmse)\n", - "\n", - "# Print the intercept and coefficients of the model\n", - "print(\"Intercept:\", model.intercept_)\n", - "print(\"Coefficients:\", model.coef_)\n", - "\n", - "#This code will scale your data using StandardScaler, which standardizes features by removing the mean and scaling to unit variance. \n", - "#It ensures that the intercept is not negative" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "R-squared (0.48): This value indicates that approximately 48% of the variability in the dependent variable (the house prices) is explained by the independent (sqft living). In simpler terms, the model captures about 48% of the patterns in the data.\n", - "\n", - "\n", - "Mean Squared Error (MSE) (68845100756.11): This is the average squared difference between the actual values and the predicted values from the model. It's a measure of the model's accuracy, where lower values indicate better performance. In this case, the average squared difference is quite large, indicating that there's still room for improvement in the model's predictive accuracy.\n", - "\n", - "\n", - "Root Mean Squared Error (RMSE) (262383.50): This is the square root of the MSE and provides a measure of the typical deviation of the predicted values from the actual values. It's in the same units as the dependent variable. Here, the RMSE indicates that, on average, the predicted values differ from the actual values by approximately 262,383.50 units.\n", - "\n", - "\n", - "Intercept (540631.16): This is the estimated value of the dependent variable when all independent variables are set to zero. In this case, it suggests that when all other factors are zero, we would expect the dependent variable to be around 540,631.16.\n", - "\n", - "\n", - "Coefficient (259767.82): This represents the change in the house prices for a one-unit change in the sqft living, while holding other variables constant. In this case, for every one-unit increase in the sqft living, we'd expect the house prices to increase by approximately 259,767.82 units.\n", - "\n", - "\n", - "Overall, the model suggests that there is a positive relationship between the independent and dependent variables. However, given the moderate R-squared value and the relatively high MSE and RMSE, it's clear that there may be other factors influencing the dependent variable that are not captured by the model. Further investigation or refinement of the model may be needed to improve its predictive performance." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# MULTIPLE LINEAR REGRESSION." - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Mean Squared Error: 47548419769.890594\n", - "R-squared: 0.6426869041626193\n", - " Feature Coefficient\n", - "0 const 0.000000\n", - "1 bathrooms 24855.944322\n", - "2 sqft_living 117349.853313\n", - "3 floors 20057.401179\n", - "4 waterfront 63378.047594\n", - "5 condition 11809.217548\n", - "6 grade 154829.185004\n", - "7 sqft_basement 14434.666872\n", - "8 yr_built -108064.021718\n", - "9 yr_renovated 7255.426167\n", - "10 sqft_living15 25765.797630\n" - ] - } - ], - "source": [ - "\n", - "\n", - "# Define a function to keep only numeric columns\n", - "def only_numeric(housing_data):\n", - " '''returns a DataFrame with only numeric values'''\n", - " numeric_columns = [column for column in housing_data.columns if is_numeric_dtype(housing_data[column])]\n", - " return housing_data[numeric_columns]\n", - "\n", - "# Sample features and target variable\n", - "features = ['bathrooms', 'sqft_living',\n", - " 'floors', 'waterfront', 'condition', 'grade',\n", - " 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15']\n", - "target = 'price'\n", - "\n", - "# Load your housing data (assuming it's already loaded into 'housing_data' DataFrame)\n", - "\n", - "# Keep only numeric columns\n", - "housing_data_numeric = only_numeric(housing_data)\n", - "\n", - "# Check if all features exist in the DataFrame\n", - "missing_features = [feature for feature in features if feature not in housing_data_numeric.columns]\n", - "if missing_features:\n", - " print(\"The following features are not present in the dataset:\", missing_features)\n", - "else:\n", - " # Extract features and target variable\n", - " X = sm.add_constant(housing_data_numeric[features])\n", - " y = housing_data_numeric[target]\n", - "\n", - " # Split the data into training and testing sets\n", - " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "\n", - " # Standardize the features\n", - " scaler = StandardScaler()\n", - " X_train_scaled = scaler.fit_transform(X_train)\n", - " X_test_scaled = scaler.transform(X_test)\n", - "\n", - " # Build a basic linear regression model\n", - " model = LinearRegression()\n", - " model.fit(X_train_scaled, y_train)\n", - "\n", - " # Make predictions on the test set\n", - " y_pred = model.predict(X_test_scaled)\n", - "\n", - " # Evaluate the model\n", - " mse = mean_squared_error(y_test, y_pred)\n", - " r2 = r2_score(y_test, y_pred)\n", - "\n", - " # Display results\n", - " print(\"Mean Squared Error:\", mse)\n", - " print(\"R-squared:\", r2)\n", - "\n", - " # Display coefficients\n", - " coefficients = pd.DataFrame({\"Feature\": X.columns, \"Coefficient\": model.coef_})\n", - " print(coefficients)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Mean Squared Error (MSE): The MSE is a measure of the average squared difference between the actual and predicted values. In this case, the MSE is approximately \n", - "4.75\n", - "×\n", - "1\n", - "0\n", - "10\n", - "4.75×10 \n", - "10\n", - "\n", - "\n", - " , which means, on average, the squared difference between the actual housing prices and the predicted prices is \n", - "4.75\n", - "×\n", - "1\n", - "0\n", - "10\n", - "4.75×10 \n", - "10\n", - " .\n", - "\n", - "\n", - "R-squared (\n", - "𝑅\n", - "2\n", - "R \n", - "2\n", - "\n", - "\n", - " ): The \n", - "𝑅\n", - "2\n", - "R \n", - "2\n", - " score measures the proportion of the variance in the target variable (housing prices) that is explained by the independent variables (features) in the model. \n", - " \n", - " An \n", - "𝑅\n", - "2\n", - "R \n", - "2\n", - " score of 0.643 means that approximately 64.3% of the variance in housing prices is explained by the features included in the model. In other words, the model accounts for 64.3% of the variability in housing prices.\n", - "\n", - "\n", - "Coefficients:\n", - "Intercept (const): The intercept represents the estimated housing price when all independent variables are zero.\n", - "\n", - "\n", - "bathrooms: For each additional bathroom, the predicted housing price increases by approximately $24,855.\n", - "\n", - "\n", - "sqft_living: For each additional square foot of living space, the predicted housing price increases by approximately $117,350.\n", - "\n", - "\n", - "floors: Houses with an additional floor have a predicted price increase of approximately $20,057.\n", - "\n", - "\n", - "waterfront: Properties with waterfront views have a predicted price increase of approximately $63,378 compared to those without.\n", - "\n", - "\n", - "condition: Better condition properties (on a scale from 1 to 5) tend to have a predicted price increase of approximately $11,809 for each unit increase in condition.\n", - "\n", - "grade: Higher grade properties (on a scale from 1 to 13) have a predicted price increase of approximately $154,829 for each unit increase in grade.\n", - "\n", - "\n", - "sqft_basement: For each additional square foot of basement space, the predicted price increases by approximately $14,435.\n", - "\n", - "\n", - "yr_built: Each additional year of age decreases the predicted price by approximately $108,064.\n", - "\n", - "\n", - "yr_renovated: For each year renovated, the predicted price increases by approximately $7,255.\n", - "\n", - "\n", - "sqft_living15: For each additional square foot of living space in the nearest 15 neighbors' homes, the predicted price increases by approximately $25,766.\n", - "\n", - "\n", - "These coefficients indicate the strength and direction of the relationship between each feature and the target variable, holding other features constant. For example, features like square footage of living space, grade, and whether the property has a waterfront view have a substantial positive impact on the predicted housing price, while the year the property was built has a negative impact.\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " OLS Regression Results \n", - "==============================================================================\n", - "Dep. Variable: price R-squared: 0.641\n", - "Model: OLS Adj. R-squared: 0.641\n", - "Method: Least Squares F-statistic: 3768.\n", - "Date: Wed, 01 May 2024 Prob (F-statistic): 0.00\n", - "Time: 13:34:57 Log-Likelihood: -2.9014e+05\n", - "No. Observations: 21142 AIC: 5.803e+05\n", - "Df Residuals: 21131 BIC: 5.804e+05\n", - "Df Model: 10 \n", - "Covariance Type: nonrobust \n", - "=================================================================================\n", - " coef std err t P>|t| [0.025 0.975]\n", - "---------------------------------------------------------------------------------\n", - "const 6.604e+06 1.41e+05 46.979 0.000 6.33e+06 6.88e+06\n", - "bathrooms 3.47e+04 3547.740 9.781 0.000 2.77e+04 4.17e+04\n", - "sqft_living 129.1822 3.765 34.313 0.000 121.803 136.562\n", - "floors 3.576e+04 3886.909 9.201 0.000 2.81e+04 4.34e+04\n", - "waterfront 7.828e+05 1.88e+04 41.703 0.000 7.46e+05 8.2e+05\n", - "condition 1.788e+04 2568.771 6.961 0.000 1.28e+04 2.29e+04\n", - "grade 1.319e+05 2290.923 57.586 0.000 1.27e+05 1.36e+05\n", - "sqft_basement 27.2065 4.581 5.939 0.000 18.228 36.185\n", - "yr_built -3728.7602 71.951 -51.823 0.000 -3869.790 -3587.730\n", - "yr_renovated 18.3132 4.407 4.156 0.000 9.676 26.950\n", - "sqft_living15 34.6185 3.669 9.435 0.000 27.427 41.810\n", - "==============================================================================\n", - "Omnibus: 16539.863 Durbin-Watson: 1.978\n", - "Prob(Omnibus): 0.000 Jarque-Bera (JB): 1296266.479\n", - "Skew: 3.184 Prob(JB): 0.00\n", - "Kurtosis: 40.828 Cond. No. 3.35e+05\n", - "==============================================================================\n", - "\n", - "Notes:\n", - "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", - "[2] The condition number is large, 3.35e+05. This might indicate that there are\n", - "strong multicollinearity or other numerical problems.\n" - ] - } - ], - "source": [ - "# Fit the OLS model\n", - "model = sm.OLS(y, X).fit()\n", - "\n", - "# Get the summary\n", - "summary = model.summary()\n", - "\n", - "# Print the summary\n", - "print(summary)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "R-squared (R²): The coefficient of determination is 0.641, indicating that approximately 64.1% of the variance in the housing prices is explained by the independent variables included in the model.\n", - "\n", - "\n", - "Adjusted R-squared: The adjusted R-squared is also 0.641, which adjusts for the number of predictors in the model. It's useful when comparing models with different numbers of predictors.\n", - "\n", - "\n", - "F-statistic: The F-statistic is 3768, with a p-value close to zero, indicating that the overall model is statistically significant.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The standard errors, condition number, and other diagnostic information are also provided. \n", - "The condition number being large (3.35e+05) suggests that there may be strong multicollinearity or other numerical issues in the model. \n" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\Users\\USER\\.anaconda\\A\\New folder\\Lib\\site-packages\\seaborn\\_oldcore.py:1765: FutureWarning: unique with argument that is not not a Series, Index, ExtensionArray, or np.ndarray is deprecated and will raise in a future version.\n", - " order = pd.unique(vector)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABd8AAAMDCAYAAABTumynAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADIuUlEQVR4nOzdd7SU1d024HsO9YAKKMaKr0bAErsosSSaKDbEihq7SewYXxM1iVFj751EjZoYLNgVY0tiV0QFRWLHiIoigkgv0s/5/uBlPo+AHA6PwoHrWou1mGc/5TfPnpkF9+zZu1RdXV0dAAAAAACgMBWLugAAAAAAAFjSCN8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwCA79DMmTMXdQkAAMB3oOGiLgAAYElx6KGHpl+/fllttdXy9NNPf2vHLK1m36sFscMOO+S66677lipaMFVVVbnrrrvy4Ycf5owzzljU5VALv//979OrV69sueWWue222+p0jo8++igPPvhg+vTpk88++yzjx4/Psssum5VWWilbbrlldt1112y66aYFVz7L7PfMZpttljvvvPNbucbcrLPOOt/Y3rhx4zRv3jyrr756tthii/zsZz/L//zP/9TpWg888EBOO+20JMnjjz9e5/MAAHwbhO8AAPAd+N3vfpeHHnooe++996Iuhe/IVVddlb/97W+ZPn16je2jR4/O6NGj8+677+aWW27JTjvtlIsuuijLLLPMIqr0uzVt2rRMmzYtY8aMyZtvvplbb701p59+eg466KBFXRoAQKGE7wAA1CurrrpqHnnkkVrt27Dh4vPP3eHDhy/qEvgO/fnPf85f/vKXJMnOO++cfffdN+uss06aN2+eL7/8MgMHDsw999yTJ598Mo8//njGjh2bHj16pEGDBou48uJ06dIl55xzzhzbZ86cmXHjxqV37965+uqrM27cuJxzzjlZa621stVWWy3QNZZZZpmsscYaSZJGjRoVUjcAQFEWn/+NAABALZRKpTRv3nxRlwHz9MUXX+TGG29Mkvz85z/P73//+xrts6ed2W677XLeeefl9ttvT79+/fLII49kzz33XBQlfysaNmw4z/fqcsstl4MOOijt27fPwQcfnCS55pprFjh832mnnbLTTjstdK0AAN8GC64CAAAUqE+fPpk6dWqS5Mgjj/zGfX//+99nueWWS5I89thj33pti5sOHTqkY8eOSZIBAwZk1KhRi7giAIDiGPkOALCYe/XVV3PnnXfmtddeyxdffJFmzZplrbXWyo477piDDz44zZo1m+OY2iy0+Kc//Sl//vOfkyRvv/32HFO0/POf/8yDDz6YN998M+PGjcsyyyyT73//+/npT3+aAw888Bvnp37uuedy3333ZcCAARk7dmyWWWaZ/OAHP8jee++dzp07p1QqLcQdWXgDBgxIz5498+qrr2bUqFGprKxM+/bt07lz53Tt2vUbp68YMGBAHnjggfTv3z8jRozIlClTsuyyy6Zt27bZcccdc8ABB6Rp06bl/Wcv2jlbr169yo/fe++9JAvXX3379s1hhx2WJHnzzTdzww035O6778748eOzyiqrpFu3btljjz3K5/nss8/So0eP9O7dO8OGDUupVEqbNm3yk5/8JEcccURatWo11+uPGzcut912W55++ul89NFHmTFjRlZYYYVsvPHG2XvvvbP99tvP77bP0/PPP59HHnkk//nPfzJy5MhMmzYtLVq0yLrrrpvddtste+655xyvz9kLba600kp5/vnn88Ybb+Tvf/97XnnllYwdOzYrrLBCtt566xx55JFZe+2153ntAQMGpEePHnnzzTczcuTIrLLKKtl9993nG5p/kxEjRpT//vX53r+uUaNG2X333fPOO+9k1VVXnes+06ZNyz/+8Y889dRTeeeddzJ27NhUVFRk+eWXzyabbJL99ttvgUeMJ0l1dXUeffTR/OMf/8jbb7+d8ePHp2XLltl4442z//77Z7vttlvgc9bF+uuvn759+yZJhg4dmhVWWCHJ/39fHHvssdl1111z7rnn5q233kplZWV+8IMf5C9/+UseeeSR+S64+vrrr+euu+7Ka6+9lmHDhqVRo0Zp3759unTpkv3333+e01PV9XPsjTfeSM+ePfPKK69kxIgRadKkSVZdddVss802OeSQQ7L66qsXcdsAgHpA+A4AsJiqqqrK2WefnbvvvrvG9nHjxuU///lP/vOf/+SOO+7I9ddfn3XXXbfQa//2t7/NP/7xjxrbxo4dm9deey2vvfZaevbsmVtvvbU81/Js06ZNy+9///s8+uijNbaPGTMmL7zwQl544YU88MAD6d69+yJZXLKqqiqXXnpp/v73v9fYPm3atLzyyit55ZVXcs899+Qvf/lLVlpppRr7zJw5M2effXbuueeeOc47evTo9OvXL/369cv999+fnj17Ztlll/1Wn8vcXHTRRbnjjjvKjwcPHpw2bdqUHz/66KM57bTTyqOyZ3vvvffy3nvv5a677sq1116bDh061GgfMmRIDjvssHz22Wc1tg8bNizDhg3Lv/71r3Tp0iWXXXbZAn2xMnny5Pz617/OM888M0fbyJEjy6+Zhx9+OH/961/nGZLee++9OeusszJz5szytuHDh+eBBx7II488khtuuCFbb731HMddd911ueaaa2psGzx4cP785z/n3//+d51D0q8e171795x//vnfOJf7WWedNc+2IUOG5Mgjj8zgwYPnaBs6dGiGDh2aRx99NCeccEJ+9atf1brG8ePH54QTTiiH3rN98cUXefLJJ/Pkk09mjz32yAUXXJDGjRvX+rx18dXXzNzu06effprDDjss48aNS5JMnTo1pVJpvnVVVVXlqquuKk8BNNvUqVPLn2UPP/xwbrrpphqfRwvzOXbvvffmj3/8Y6qqqsrbpk+fnv/+97/573//m549e+aaa67JT3/60/ncFQBgSWDaGQCAxdSFF15YDt5/+MMf5pZbbslLL72UJ554IqecckqaNWuWzz77LEcccUSGDRtW2HUfeeSRcvB++OGH56GHHsrLL7+cxx9/PCeffHIaNmyYYcOGzXUhxdNPP70cWO2///554IEH0q9fvzz22GPp1q1bGjVqlD59+uQ3v/lNqqurC6u5trp3714O3nfaaafccccd6du3b5588smcdtppWXbZZfPOO+/kmGOOmSOg7tGjRzl479y5c+6666706dMnTz/9dG688cZsuummSWYF2TfffHP5uHPPPTevvfZaNt988ySzFqGcHfwV7Y477shOO+2Uf/3rX3n66adz9tlnl+t68cUXc8opp2Tq1KlZd911c+211+bFF19M7969c9VVV2XNNdfM2LFjc/TRR88R9J599tn57LPP0rp161x66aV58skn89JLL+Xuu+8uj45++OGH5wgr5+eyyy4rB++HHHJIevXqVX6NX3PNNWnXrl2S5KWXXsqDDz4413OMHj06Z511VtZcc8386U9/yosvvpinnnoqv/rVr9KgQYNMmzYtZ5xxRo0wNJk1cn528L7FFlukZ8+eefnll/Pggw9m7733zvvvvz/XLwVqY/vtt0/Lli3L1+ncuXNuuOGGDBw4cIFe9zNnzswJJ5yQwYMHp1mzZjnttNPyz3/+My+//HIeeeSR/OEPfyhf57rrrsvHH39cq/NWVVWlW7du6du3bxo2bJijjjoqjzzySPr27Zt//OMfOfTQQ1MqlfLQQw/lggsuWNCnv8DeeuutJLPmiJ/byPVHHnkkM2fOzFVXXZUXX3wxPXr0yPHHHz/f8950003l4L1jx47lz9DHHnsshx56aJLktddem+OzrK6fY0OHDs0555yTqqqq/OhHP0rPnj3Tp0+fPPvss7niiivyve99L9OmTctpp52WiRMn1u1mAQD1ipHvAAAFGzp0aNZZZ52FOsd7772X22+/PUmy88475+qrr05FxaxxE8svv3yOOuqodOjQIYceemjGjBmTiy++eI4RvHX1+OOPJ0m22mqr/OEPfyhvb9WqVY4++uhMnz493bt3T58+fTJmzJjyNCUvv/xyHnrooSSzplr5+c9/Xj62RYsWOfHEE7P++uunW7duee655/Lkk0+mU6dOC1xfdXV1Jk2aNN/9Kisry/csST7++OPccMMNSWZNZ3HGGWeU21q2bJkjjjgiHTp0yP7775933303d955Z4444ogks8LK2aH9NttskyuuuKLGaN3VVlstW265ZXbaaaeMGDEivXv3zv/+7/8mSRo3bpzGjRuXR/R+0yKUC2v11VfPVVddVR4hfuCBByaZFeKeeeaZqaqqykYbbZTbb789TZo0KR+32267ZZtttsk+++yTTz/9NJdcckmuv/76JMnEiRPTp0+fJLN+EfHVBUGXX375XHvttenSpUs++uijPPLII9l9991rVeuECRPKX2bst99+OfPMM2ucd4011shmm22WTp06ZcqUKendu3e6du06x3mmT5+e1VdfPffcc0+NUcgnnHBCJk2alJtvvjlDhw7NO++8kw022CBJMmXKlFxxxRVJks022yw333xzeRR1q1atcvHFF2e55ZbLLbfcUqvn8nXNmjXLlVdemWOPPTbTpk3LRx99lCuvvDJXXnllWrZsmU033TRbbrlltt5662/81coLL7yQgQMHJknOOeecGtMHtWrVKu3atctqq62Wbt26paqqKi+88MJcw+uv69WrV/r165ckueqqq2osWNqyZcucccYZadOmTS688MLcdddd2X///fODH/ygTvdifvr06VOuZdttt53nL2J+//vfZ7fddkuSWk2x8/nnn+faa69NkvzkJz/JtddeW34PLr/88jnjjDNSKpVy66235pFHHsmJJ56YNm3aLNTn2LPPPpvp06enWbNmue6662qMzN99992z8sor5+CDD87YsWPz4osvWigWAJYCRr4DACyG7r333lRXV6dRo0Y566yzaoTIs2266ab52c9+lmRWYF7UQoXTpk1LMmt6mxkzZszRfuCBB+bGG2/Mo48+WmNqldlzla+22mo5/PDD53ruHXfcsTwC/OvT6dTWZ599ls0222y+f2bPpz7b3XffnaqqqlRWVubXv/71XM+9wQYbpHPnznPUN2nSpOy7777Zfffdc8wxx8x1apXKyspstNFGSWZNT7Eo7LDDDnOdmuWFF17Ip59+miQ5+eSTawTvs7Vo0SLHHntskuSZZ54pz1s+ffr08ujeub3GGjVqlEsvvTQ9e/bMueeeW+taJ0yYkCOOOCK77rprjYDzq773ve9lrbXWSvLN9/Sggw6aa2j71TnLZz//ZNYXRSNHjkwy637MbfqS3/zmN2nRokXtnsxcbLPNNunVq1e23HLLGtvHjh2bZ555Jpdcckn23HPPdOrUqfza/LrmzZvnsMMOS+fOncvB89fNXqw0qf3rbvZ7dYsttphnAHzIIYdktdVWS5K5TrVUGzNmzMikSZPm+DN69Oi88cYbufLKK3PcccclmfUl1bzel6VSKTvvvPMCXfvJJ58sT0/zhz/8Ya7T2Rx55JFZc8018+Mf/zijR49OsnCfY7N/LTNjxoy59kWHDh1y7bXXplevXtl2220X6PkAAPWTke8AAAVbddVV88gjj9Rq36OOOir9+/efY/srr7ySZFZYM3vxwbnZZZddctttt6Wqqir9+/cvZCRlhw4d8swzz+Sdd97J/vvvn65du+bHP/5xeR7r5Zdffq4LMc6uef3118/kyZPnef6NN944/fv3z4ABA1JdXf2dLb46e3Tt97///SSZ5+j5jTbaKA899FA+/PDD8sj+ZZdddp7BYDIrbHv33XfL4fTcvrT4Lqy33npz3f7Veb3bt28/z+c+e2R4dXV1BgwYkJ133jmtWrVK27ZtM2jQoFx++eX573//m5122ik//OEPy4v9zv7SYUGsuuqqOeWUU+bZPm3atLzxxhvl19I33dONN954rtu/+t6ZMmVK+e8vv/xyklkj1GeHqF/XtGnTbLvttgs8lc5XtW3bNrfddls++OCDPPnkk3nhhRfy+uuv15jS6JNPPskf//jH9OrVK3/9619rfInQoUOHOebf/6px48bl1VdfLT+uzetu4sSJeeedd5LMeq9+069INtxwwwwdOrTOUyQ9/PDDefjhh+e7X7NmzXLZZZfN81cAq666apZbbrkFuvZLL72UZNb7/etrU8y20kor5d///neNbQvzOTa7r6ZNm5auXbvmZz/7Wbbffvusv/765c+5HXfccYGeBwBQvwnfAQAKViqVaj2tyLwWYRw+fHiSZO211/7G47/a/vXFMOvq4IMPzr/+9a+8+eabefvtt/P2228nSdZaa61su+222WGHHdKxY8cao/EnTpxYDp6feOKJPPHEE/O9zsSJEzNhwoQFDtVWW221PP300wt0TDJr4cokefvtt7PZZpvV6pjhw4eXp9WZbcSIEenTp08+/PDDfPzxx/n444/z4Ycfln8xkGSRzGefpDz/99fNfu5J7absSFJjHYGzzz47Rx55ZKZMmZJevXqlV69eadSoUTbbbLNst9122WmnnWos7LqgPvnkk/Tt27fGPR08eHCNMPmb7unX+2i2r45o/+rI8tnPrU2bNt/45c/sL2oW1tprr5211147xxxzTPlLhZdffjlPPvlk3n333STJgAED8utf/zo33XTTXM/x+uuv5z//+U8GDx6cTz75JB999FE+++yzGvelNq+7oUOHlhemveWWW2o1tU6Ra0oks77YWG655dK2bdv88Ic/TNeuXb/xS8Z5va6/yeeff54ktZqGZ7aF/RzbaKONctBBB+WOO+7IiBEj0r1793Tv3j0rrLBCttlmm/zkJz/J9ttvX/7SCgBY8gnfAQAWQ7MX45tfSPPV9i+//LKQa1dWVuaOO+7Irbfemvvvvz8ffvhhkuSjjz7KRx99lNtuuy2rrbZazjrrrPII+NrMwT43EydOXODwva7qssDhV48ZP358LrnkkvzjH//I9OnTa+zXvHnzbLXVVvniiy/Ko4oXhblNJ5Ms/HPfYost8tBDD+Uvf/lLnnjiiUyYMCHTp09P375907dv31x66aX5yU9+kvPOOy8rrrhira8xbNiwXHTRRXniiSfmmHalZcuW6dixY955550aXx7Mzdym2vkmEyZMSDLrtf5N5jX/+MJo3LhxeUT7CSeckN69e+e3v/1tRo8eneeffz5vvPFGjV8SvPrqq7n44ovz5ptvznGu1VdfPdtuu23uuuuuWl9/YV8LC2LvvffOxRdfXKdjv2per+tvMm7cuCTz7+OvKuJz7KyzzkrHjh1z++23p3///qmqqsqoUaPy0EMP5aGHHkrz5s1z3HHH5aijjqrTtQCA+kX4DgCwGGrWrFnGjx8/30D9q6HYgo6m/Oo0HF/XuHHjHHnkkTnyyCMzePDg9OnTJy+++GJeeumlTJo0KUOHDk23bt1yxx13ZKONNkrTpk3Lxx599NE5+eSTF6iW70LTpk0zceLEdO7cOVdeeeUCHTtjxoz88pe/zBtvvJFk1nQgW2+9ddq3b5+11147a665ZioqKnLKKad8a+H7N/XX/MzunxVXXDEvvPBCnc7xP//zP7noooty7rnn5rXXXsuLL76YPn365K233kp1dXWeeeaZHHXUUXnggQfmukbB102cODGHHHJIPv3005RKpfz4xz/OFltsUb6ns0fSH3jggfMN3xfU7Lnc5/f++uqvGWrr888/z/33359Ro0Zlv/32+8YFVZPkRz/6US6++OIcffTRSVIjfH/zzTdzxBFHlBfx3HHHHbPxxhunbdu2ad++fZZffvnMmDFjgcL3r4bR55xzTnndiCXN7Nf8N00dM69jkoX7HNtll12yyy67ZPTo0eXPzj59+uTzzz/PpEmTcvnll6dRo0blBZ0BgCWX8B0AYDG06qqrZvz48fnggw++cb+vtq+66qrlv88OP79pDuixY8fWqpY111wza665Zg4++OBMmzYtd955Zy666KJMnz49d955ZzbaaKMst9xyad68eSZNmlRjYcu5+S7nef+qVVddNf/973/rVN+//vWvcvB+6qmn5sgjj5zrsXVdaLXI/pqb2a+N0aNH58svv1yoaS8aNWqUjh07pmPHjvn1r3+dYcOG5YwzzsgLL7yQd999N6+++uoci4zOTc+ePct9cdVVV2XXXXed637fxuK1q6yySpJZ093MnDlzntM/ze+1Mjfjx4/PNddck2TWlx3zC9+TWb8smO2r88FfffXVmT59epZddtncf//9c51CZUHvz8orr1z+++L6Xi3Cqquumvfee2++X9zccMMNadiwYTbffPNsvPHGhX6OLb/88unSpUu6dOmS6urq9OnTJ7/5zW8ybty43HrrrcJ3AFgKzH9ICgAA37nZC/e9+uqr5TmI52b2YoGlUimbbLJJefvs0a3fFMz95z//mWPb5MmT88tf/jLbbbddevbsOUd748aNc/jhh6d9+/ZJ/v+8yqVSqbxw5YsvvviNo02PPPLIbL311jniiCO+07nRZ9f39ttvl+fUn5s//vGP6dixY/bdd9/yLwsGDBhQbj/ooIPmetzkyZPL9/TrU6jMT137q7ZmP/eZM2fm2Wefned+Dz/8cDbddNN07ty5vJDns88+m/322y8dO3YsT9fyVausskqNEcKzXxPzM/uetmrVap7B+/DhwzN48OAkxc6j/6Mf/SjJrF8TzOuXAFVVVXX6lcD3v//98hzl99xzT61Gz3/yySflv7dt27b899kLnW699dbznLt89sKiSe3u0fLLL19eK+Lpp5+e5zFVVVXp3LlzfvSjH+XUU0+d73kXN7PXdRg0aNA818OYOHFiunfvnksvvTQvvvjiQn+OnX/++dl5553zm9/8Zo79S6VStt122+yxxx5JZq0dAQAs+YTvAACLof322y9JMn369JxzzjlzDXPfeOON3H333UmS7bbbLt/73vfKbbODuiFDhsx1GpRHHnkkgwYNmmN7ZWVlPv/88wwfPjx33313jVG4s40bN64cZq2xxhrl7fvvv3+SWSO0L7vssrk+ryeeeCIvvPBCRo0alTXWWOM7HVU7u74ZM2bknHPOKS86+VWvv/56evXqlbFjx6Zly5blOb+/Oo3K3O5bVVVVzj333HJY//U54ZP/Py/53Nrq2l+1tcMOO6R169ZJkssvvzyjR4+eY5/Ro0ene/fu+fLLLzNy5Mist956SZIVVlghb7zxRsaOHZs77rhjruefvWjoV5/L/My+p+PGjcsXX3wxR/vUqVNz+umnl4PNukwBMy9bbrlleVqbSy+9dK5zmvfo0SNDhw5d4HM3aNAgBx98cJJZi5v++te//sa5xKdMmZILL7wwyawFYLfddtsa50pmrbcwt8+AYcOG5fLLLy8/nttra25mvxc++OCD/O1vf5vrPrfeems++OCDjBgxosYXAvXFnnvumYYNG6a6ujqXXHLJXL9kuP766zNjxoyUSqXstttuSRbuc6yqqiqDBw/OM888k48//niO46qrq/Pee+8lqfnZCQAsuYTvAACLoXXXXTeHHnpoklmj23/xi1+kb9++GTNmTIYMGZK//e1v5bmgW7RokbPPPrvG8TvuuGP57yeccEKeeuqpjBo1Kh988EGuvPLK/O53vyvPe/11v/zlL5Mk7733Xn7+85+nd+/e+fzzz/P555/nueeeyy9+8YtMmDAhDRo0yIEHHljjmttvv32SWVOKHH/88Xn11VczZsyYfPjhh7nuuuvKI6RbtWqVbt26FXW7amX99dcv1/v000/nsMMOywsvvJDRo0fnk08+ye23356jjjoq06dPT5MmTWqM9v1qIHryySfnqaeeyogRIzJs2LA88cQTOeSQQ/LAAw+U95nbXOKzR0O/+uqrGTRoUI0AfGH6qzaaNGmS008/PcmsQLhr16558MEHy/36xBNP5NBDDy2PwD755JPTvHnzJMmGG25YnkbmmmuuySWXXJJ33303o0ePzkcffZQePXrkggsuSJJstNFGNRYL/SbbbLNNklmB5THHHJOXXnopo0aNypAhQ/KPf/wjXbt2rTHyvKgFhZNZofa5556bZNaXKQceeGCee+65jBkzJh988EEuuuiiXHrppfOcjmZ+jj322PJr5sknn8zOO++cP//5z3n99dczYsSIjB49OgMHDswtt9yS3XffPX379k3jxo1zwQUX1Ljm7Hv03//+N6ecckrefffdco1//etfs9dee9X4pUFtFww96KCDsv766ydJLrvssvzhD3/IW2+9lbFjx+a9997LxRdfXF4odc011yx/FtUnK620Uo455pgks6aNOu644zJgwICMGTMmAwcOzHnnnZebb745SXLAAQdkzTXXTLJwn2OHHnpoGjdunC+//DI///nP06tXr3zyyScZPXp0Xn/99Zx88snp169fkuSQQw75ju4EALAomfMdAGAx9fvf/z7Tpk3L3XffnZdeeqnG9BKztWnTJtdcc015DuvZtthii+y333659957M3To0Bx//PE12tdcc82cdNJJOemkk+Y45957753XX389d955Z/r37z/X+c0bNWqU8847L+uss055W6lUyhVXXJGTTz45zz77bJ566qk89dRTcxzbunXrXH/99VlppZVqeysKc/rpp2f69Om577778uqrr5a/aPiq5s2b58orr6wxV/d2222Xzp0759FHH80nn3wyx/1Mku9973vZYYcdcuedd2batGkZNmxYjX7p2LFjHnvssQwfPjydO3dOkjz11FNZffXVF6q/amu33XbL+PHjc/7552fo0KH53e9+N8c+pVIp3bp1K4/+ne2yyy7L4YcfnsGDB+fmm28uh5Zfr7F79+61rme//fbLP//5z7zyyit5++235zr/9VprrZUNN9wwDz30UIYNG5Zp06alcePGtb7GN9l6661zySWX5Iwzzsh///vf8oKns6222mrZcccdc8sttyzwuRs3bpw///nPufjii3Pvvffmiy++yJ/+9Kf86U9/muv+q622Ws4///x07NixxvZTTz01/fv3zxdffJFHH300jz766BzHbr/99hk7dmz+85//zHW09bzqu/HGG3P88cfnjTfeyP3335/7779/jv3WXHPN3HTTTQu1RsCidMIJJ2Ts2LHp2bNnnnnmmTzzzDNz7NOpU6fyF1PJwn2OrbXWWrngggvyhz/8IUOHDs3vf//7udb1s5/9bJ7TVwEASxbhOwDAYqphw4Y599xz06VLl9x1113p379/Ro4cmeWWWy5rrrlmOnfunL322qs8Qvnrzj///Gy99da555578vbbb2fatGlZffXVs+uuu+YXv/jFXKc3me3ss8/OT37yk9x333154403MmrUqDRq1CgrrbRStt566xx22GHlkaJftcwyy+SGG27Ik08+mQcffDCvv/56xowZk0aNGmWttdbKT3/60xx66KELNYp7YTRq1CgXXHBB9tprr9x1110ZMGBAvvjii1RUVKRNmzb50Y9+lMMPP7zGopSzXXHFFenYsWN69eqV//73v5k6dWqWWWaZrLXWWvnJT36Sn/3sZ5k8eXLuvvvuVFVV5fHHH8/hhx9ePn7//ffPyJEjc//99+eLL75Iy5YtM3z48Ky++upJFq6/autnP/tZttlmm9xyyy156aWX8tlnn2X69On53ve+lw4dOuSQQw6Z68j1lVdeOb169UrPnj3z1FNP5YMPPsiXX36ZZZddNmuvvXY6deqUAw88ME2aNKl1LY0bN87NN9+cW265JY899lg++uijTJ8+Pcstt1zatm2bXXbZJfvss0/efffdPPTQQ5kyZUqef/75Gr8SWFh77bVXNtxww/ztb39Lv3798vnnn6d169bZYYcdcsIJJ+See+6p87krKytzzjnn5LDDDsu//vWvvPzyyxk6dGjGjBmTmTNnpnXr1mnXrl123HHH7L777uV5/79q9dVXT69evXLDDTfkueeey7Bhw1IqlbLCCitk/fXXzz777JMdd9wxf/nLX/Kf//wnr732WkaNGpUVVlhhvvWtuOKKueuuu/Lwww/nkUceyTvvvJNx48aladOmadeuXXbeeecceOCBadq0aZ3vwaJWUVGRP/7xj9lll11yxx13pH///hkzZkwqKyvzgx/8IPvtt1/5i7CvWpjPsT322CPrrbdebrvttvTr1y/Dhg0r9/dmm22W/fbbL1tttdV38fQBgMVAqfq7XOUKAAAAAACWAuZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAAChYw0VdADWNGjUh1dWLugoAAAAAAOamVEpWWGHZ+e4nfF/MVFdH+A4AAAAAUM+ZdgYAAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAAChYw0VdAAunoqKUiorSoi6Dr6iqqk5VVfWiLgMAAAAAWISE7/VYRUUpLVs1TwPh+2JlZlV1xo6ZJIAHAAAAgKWY8L0eq6gopUFFKbc+Nz7Dx81c1OWQZOUWDXLYdsuloqIkfAcAAACApZjwfQkwfNzMfDpqxqIuAwAAAACA/2PBVQAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYPU2fB89enQ6deqUvn37lredddZZ2WCDDbLpppuW/9x9993l9l69eqVTp07ZZJNNss8++2TAgAHltpkzZ+aSSy7J1ltvnU033TTHHXdcRowYUW4fNWpUjj/++HTo0CEdO3bMBRdckBkz/v8ip6+//nr222+/bLrppvnpT3+ae++991u+AwAAAAAALK7qZfjev3//HHDAAfnkk09qbH/zzTdz3nnnZcCAAeU/BxxwQJKkb9++Oe+883LxxRfnlVdeyR577JHjjjsukydPTpJcf/316dOnT+6///707t07TZs2zRlnnFE+90knnZRmzZqld+/eue+++/LSSy+lR48eSZJx48bl6KOPzl577ZVXXnklF1xwQS666KK88cYb380NAQAAAABgsVLvwvdevXrllFNOya9//esa26dNm5b//ve/2WCDDeZ63L333pvOnTtn8803T6NGjXLEEUekVatWeeyxx8rtRx11VFZZZZUss8wyOf300/P8889nyJAh+fjjj9OvX7+ceuqpqaysTJs2bXL88cenZ8+eSZLHH388LVu2zMEHH5yGDRtmq622SpcuXcrtAAAAAAAsXRou6gIW1LbbbpsuXbqkYcOGNQL4gQMHZsaMGenevXv69++fZZddNvvuu2+OPPLIVFRUZNCgQdl3331rnKtt27YZOHBgJkyYkOHDh6d9+/blttatW6dFixZ57733kiQtW7bMSiutVG5fe+2189lnn2X8+PF5//33axw7+9z33XffAj+/UmmBD2ExpS8BAAAAYMlT29yv3oXvK6644ly3T5gwIVtuuWUOPfTQXHnllXn33XfTrVu3VFRU5Mgjj8ykSZNSWVlZ45imTZvmyy+/zKRJk5IkzZo1m6N9dtvXj539ePbx8zr3glphhWUX+BgWP61aNV/UJQAAAAAAi1C9C9/nZZtttsk222xTfrzRRhvl8MMPz2OPPZYjjzwylZWVmTJlSo1jpkyZklatWpWD89nzv3+1vXnz5qmurp6jbfbj5s2bp7KyMhMmTJjrsQtq1KgJqa6u3b4NGlQIeRdTY8ZMysyZVYu6DAAAAACgYKVS7QZRLzHh+5NPPpmRI0fmZz/7WXnbtGnT0rRp0yRJu3bt8v7779c4ZtCgQfnxj3+cFi1aZKWVVsqgQYPK08d88cUXGTt2bNq3b5+qqqqMHTs2I0eOTOvWrZMkH3zwQVZeeeUsu+yyad++ffr06TPHudu1a7fAz6O6OrUO31m86UcAAAAAWHrVuwVX56W6ujoXXXRRXnrppVRXV2fAgAG59dZbc8ABByRJunbtmocffjgvv/xypk+fnh49emTUqFHp1KlTkmSfffbJ9ddfnyFDhmTixIm58MILs+WWW2aNNdbImmuumc033zwXXnhhJk6cmCFDhuS6665L165dkySdOnXKyJEj06NHj0yfPj0vv/xyHn744TnmmAcAAAAAYOmwxIx879SpU0477bScffbZ+fzzz9O6dev86le/yp577pkk2WqrrXLWWWeV29u2bZubbropLVu2TJJ069YtM2bMyMEHH5xJkyalY8eOufrqq8vn7969e84999zssMMOqaioyF577ZXjjz8+SdKqVavcfPPNueCCC9K9e/csv/zyOeOMM/LDH/7wu74NAAAAAAAsBkrV1SbHWJyMHFn7Od8bNpw15/ulD43Jp6NmfLuFUSurr9Awv92jVcaMmZQZM8z5DgAAAABLmlIpad16/nO+LzHTzgAAAAAAwOJC+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAVruKgLABZcRUUpFRWlRV0GX1NVVZ2qqupFXQYAAAAAiwHhO9QzFRWltGzVPA2E74udmVXVGTtmkgAeAAAAAOE71DcVFaU0qCjl1ufGZ/i4mYu6HP7Pyi0a5LDtlktFRUn4DgAAAIDwHeqr4eNm5tNRMxZ1GQAAAADAXFhwFQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBg9TZ8Hz16dDp16pS+ffuWt73++uvZb7/9summm+anP/1p7r333hrH9OrVK506dcomm2ySffbZJwMGDCi3zZw5M5dcckm23nrrbLrppjnuuOMyYsSIcvuoUaNy/PHHp0OHDunYsWMuuOCCzJgxo9bXBgAAAABg6VEvw/f+/fvngAMOyCeffFLeNm7cuBx99NHZa6+98sorr+SCCy7IRRddlDfeeCNJ0rdv35x33nm5+OKL88orr2SPPfbIcccdl8mTJydJrr/++vTp0yf3339/evfunaZNm+aMM84on/+kk05Ks2bN0rt379x333156aWX0qNHj1pdGwAAAACApUvDRV3AgurVq1e6d++eU089Nb/+9a/L2x9//PG0bNkyBx98cJJkq622SpcuXdKzZ89stNFGuffee9O5c+dsvvnmSZIjjjgid999dx577LHsu+++uffee3PKKadklVVWSZKcfvrp2XbbbTNkyJBUVVWlX79+ef7551NZWZk2bdrk+OOPz2WXXZYjjzxyvtdeEKVSEXeJxYG+XHrpewAAAIAlV22zn3oXvm+77bbp0qVLGjZsWCN8f//999O+ffsa+7Zt2zb33XdfkmTQoEHZd99952gfOHBgJkyYkOHDh9c4vnXr1mnRokXee++9JEnLli2z0korldvXXnvtfPbZZxk/fvx8r70gVlhh2QU+hsVPq1bNF3UJLCL6HgAAAICkHobvK6644ly3T5o0KZWVlTW2NW3aNF9++eV82ydNmpQkadas2Rzts9u+fuzsx7OP/6ZrL4hRoyakurp2+zZoUCHoW0yNGTMpM2dWfSvn1u+Lt2+z7wEAAABY9Eql2g2irnfh+7xUVlZmwoQJNbZNmTIlzZs3L7dPmTJljvZWrVqVg/PZ879//fjq6uo52mY/bt68+XyvvSCqq1Pr8J3Fm35ceul7AAAAAOrlgqtz0759+7z//vs1tg0aNCjt2rVLkrRr126e7S1atMhKK62UQYMGldu++OKLjB07Nu3bt0+7du0yduzYjBw5stz+wQcfZOWVV86yyy4732sDAAAAALB0WWLC906dOmXkyJHp0aNHpk+fnpdffjkPP/xweZ73rl275uGHH87LL7+c6dOnp0ePHhk1alQ6deqUJNlnn31y/fXXZ8iQIZk4cWIuvPDCbLnlllljjTWy5pprZvPNN8+FF16YiRMnZsiQIbnuuuvStWvXWl0bAAAAAIClyxIz7UyrVq1y880354ILLkj37t2z/PLL54wzzsgPf/jDJMlWW22Vs846K2effXY+//zztG3bNjfddFNatmyZJOnWrVtmzJiRgw8+OJMmTUrHjh1z9dVXl8/fvXv3nHvuudlhhx1SUVGRvfbaK8cff3ytrg0AAAAAwNKlVF1tduLFyciRtV9wtWHDWQtvXvrQmHw6asa3Wxi1svoKDfPbPVplzJhJmTHj21l0U78vnr6LvgcAAABg0SuVktat57/g6hIz7QwAAAAAACwuhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAABAwYTvAAAAAABQsIaLugAAYP4qKkqpqCgt6jL4iqqq6lRVVS/qMgAAAFhMCd8BYDFXUVFKy1bN00D4vliZWVWdsWMmCeABAACYK+E7ACzmKipKaVBRyq3Pjc/wcTMXdTkkWblFgxy23XKpqCgJ3wEAAJgr4TsA1BPDx83Mp6NmLOoyAAAAgFqw4CoAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAULA6h+/Tpk3LY489Vn48efLk/PGPf8wuu+ySo48+Om+99VYhBQIAAAAAQH3TsC4HffHFFzn44IMzZMiQbLnllmndunXOP//83H///UmSwYMH55VXXsl9992Xtddeu9CCAQAAAABgcVenke/XX399Pvnkk+y7775p2rRpJk6cmIceeiirrrpqnnnmmdxyyy2prq7O9ddfX3S9AAAAAACw2KvTyPfnn38+22yzTc4///wkyb///e9Mnz49e+21V1ZZZZWsssoq2WmnnfLiiy8WWiwAAAAAANQHdRr5PmLEiPzgBz8oP+7Tp09KpVK22Wab8raVV14548ePX/gKAQAAAACgnqlT+N6iRYtMnDix/PiFF15IZWVlNt544/K2Tz/9NK1bt174CgEAAAAAoJ6pU/i+zjrr5PHHH8+nn36aXr165bPPPsu2226bhg1nzWLTv3//PPHEE9lggw0KLRYAAAAAAOqDOs35fswxx+SXv/xlOnXqlCRp0KBBfvGLXyRJrr766tx4441p2LBhjj766OIqBQAAAACAeqJO4fsWW2yRv//977nllluSJD/72c+yySabJEmaN2+ejTbaKKeccoqR7wAAAAAALJXqFL4nyeabb57NN998ju1HHnlkjjrqqCTJpEmT0rx587pXBwAAAAAA9VCd5nzfYYcdcuutt861rVQqJUn+/Oc/Z8cdd6x7ZQAAAAAAUE/VauT7F198kSlTppQfDx06NEOGDMmQIUPmuv/06dPTv3//fPnll8VUCQAAAAAA9Uitwvdnn302f/zjH8uPS6VSbr/99tx+++3zPKa6ujqbbbbZwlcIAAAAAAD1TK3C965du+bFF1/MyJEjkySvvvpqVllllay22mpz7FsqldKoUaOsssoqOfbYY4utFgAAAAAA6oFahe+lUilXXXVV+fG6666bffbZJyeccMK3VhgAAAAAANRXtQrfv+6pp57KcsstV3QtAAAAAACwRKhT+D57upmZM2dmzJgxmT59eqqrq+e676qrrlr36gAAAAAAoB6qU/g+c+bMXHPNNbn77rszfvz4ee5XKpXyzjvv1Lk4AAAAAACoj+oUvt9www258cYb07Bhw7Rv336xmoLmscceyymnnJImTZqUt+2444657LLL8vrrr+f888/PoEGD0qpVqxx33HHZb7/9yvv16tUr1113Xb744ot8//vfz5lnnplNN900yawvHC6//PL84x//yOTJk/PDH/4w55xzTr73ve8lSUaNGpUzzzwz/fr1S4MGDbLHHnvkd7/7XRo2rNMtBgAAAACgHqtTMvzggw+mdevWufPOO9OmTZuia1oob775Zvbcc89cdNFFNbaPGzcuRx99dE488cQccMABeeWVV9KtW7ess8462WijjdK3b9+cd955uemmm7LRRhulZ8+eOe644/LMM8+ksrIy119/ffr06ZP7778/yy67bM4888ycccYZufHGG5MkJ510UlZaaaX07t07I0eOzHHHHZcePXrkyCOPXBS3AQAAAACARaiiLgcNGzYsu+2222IXvCezwvcNNthgju2PP/54WrZsmYMPPjgNGzbMVlttlS5duqRnz55JknvvvTedO3fO5ptvnkaNGuWII45Iq1at8thjj5XbjzrqqKyyyipZZpllcvrpp+f555/PkCFD8vHHH6dfv3459dRTU1lZmTZt2uT4448vnxsAAAAAgKVLnUa+r7jiipk6dWrRtSy0qqqqvP3226msrMxf//rXzJw5M9ttt11OOeWUvP/++2nfvn2N/du2bZv77rsvSTJo0KDsu+++c7QPHDgwEyZMyPDhw2sc37p167Ro0SLvvfdekqRly5ZZaaWVyu1rr712Pvvss4wfP36BpuUplRb4abOY0pdLL30PSxfveQAAgKVLbf8fWKfwfbfddkuvXr1yyimnZNlll63LKb4Vo0ePzvrrr5+dd9453bt3z5gxY/K73/0up556alZcccVUVlbW2L9p06b58ssvkySTJk2aZ/ukSZOSJM2aNZujfXbb14+d/fjLL79coPB9hRUWn/tJ3bVq1XxRl8Aiou9h6eI9DwAAwLzUKXw/7LDD0rdv3+y333458MADs+aaa6Zx48Zz3XerrbZaqAIXROvWrWtM9VJZWZlTTz01+++/f/bZZ59MmTKlxv5TpkxJ8+bNy/vOrb1Vq1blIH3y5MlzPb66unqOttmPZ5+/tkaNmpDq6trt26BBhf/0L6bGjJmUmTOrvpVz6/fF27fZ9yy9vO8XX97zAAAAS59SqXaDqOsUvv/4xz9OqVRKdXV1Lr744m/c9913363LJepk4MCBeeSRR3LyySen9H9j/6dNm5aKiopstNFGueWWW2rsP2jQoLRr1y5J0q5du7z//vtztP/4xz9OixYtstJKK2XQoEHlqWe++OKLjB07Nu3bt09VVVXGjh2bkSNHpnXr1kmSDz74ICuvvPIC/zKgujq1Dt9ZvOnHpZe+h6WL9zwAAABzU6fwfa+99iqH24uTli1bpmfPnmnRokV+/vOfZ8SIEbnsssuy9957Z+edd84VV1yRHj165OCDD07//v3z8MMP57rrrkuSdO3aNd26dcuuu+6azTffPD179syoUaPSqVOnJMk+++yT66+/PhtuuGFatWqVCy+8MFtuuWXWWGONJMnmm2+eCy+8MOeee27GjBmT6667Ll27dl1k9wIAAAAAgEWnTuH7/Ea7Lyorr7xybrjhhlx55ZW5/vrr06RJk3Tu3DmnnnpqmjRpkptvvjkXXHBBunfvnuWXXz5nnHFGfvjDHyaZNT3OWWedlbPPPjuff/552rZtm5tuuiktW7ZMknTr1i0zZszIwQcfnEmTJqVjx465+uqry9fu3r17zj333Oywww6pqKjIXnvtleOPP34R3AUAAAAAABa1UnX1wv9YesSIERk3blzatWuXmTNnpkGDBkXUtlQaObL2c743bDhrDuBLHxqTT0fN+HYLo1ZWX6FhfrtHq4wZMykzZnw7cwDr98XTd9H3LL287xc/3vMAAABLr1Ipad16/tONV9T1AtOmTcvVV1+dbbfdNtttt1323HPPJMnNN9+cX/ziF/nkk0/qemoAAAAAAKjX6hS+T5s2LUcccUT+8pe/ZPLkyWndunVmD6AfM2ZMXnzxxRxyyCH5/PPPCy0WAAAAAADqgzqF73/961/z2muv5ZhjjslLL72U/fffv9x26qmn5uSTT86IESNy0003FVYoAAAAAADUF3VacPWRRx7Jpptuml//+tdJklKpVG4rlUo56qij0qdPn/Tu3buYKgEAAAAAoB6p08j3Tz/9NFtsscU37rPBBhtk+PDhdSoKAAAAAADqszqF782aNcuIESO+cZ9hw4alsrKyTkUBAAAAAEB9VqfwfdNNN80TTzwxz5HtH3/8cZ566qlsttlmC1UcAAAAAADUR3UK34855phMnTo1BxxwQO688858+umnSZK33norPXv2zEEHHZTp06fnl7/8ZaHFAgAAAABAfVCnBVc32WSTXHTRRTnzzDNz7rnnJkmqq6uz3377pbq6Og0bNszZZ5+dzTffvNBiAQAAAACgPqhT+J4kXbp0yVZbbZUHH3wwb731VsaPH5/mzZtnvfXWy5577pnVVlutyDoBAAAAAKDeqHP4niStW7fOkUceWVQtAAAAAACwRKhV+D5kyJC0aNEiyy23XPlxbbVp06ZulQEAAAAAQD1Vq/B9p512Srdu3XLCCSckSTp16pRSqTTf40qlUt55552FqxAAAAAAAOqZWoXvHTp0yOqrr15+vMUWW3xrBQEAAAAAQH1Xq/D9tttu+8bHAAAAAADA/1exMAcPGjQoH374YY1tN954YwYOHLhQRQEAAAAAQH1Wp/C9qqoqZ599drp06ZJ//etf5e3Tpk3LVVddlX322Sfdu3cvrEgAAAAAAKhP6hS+33PPPbnrrruy/vrrZ8sttyxvb9CgQf70pz9lww03zPXXX5/777+/sEIBAAAAAKC+qFP4fvfdd+f73/9+7rzzznTo0KG8vUGDBtlxxx1z2223ZY011sjtt99eWKEAAAAAAFBf1Cl8//jjj7PddtulcePGc21v3Lhxtt9++3zwwQcLVRwAAAAAANRHdQrfmzRpkpEjR37jPuPHj0+TJk3qVBQAAAAAANRndQrfN9poozz99NMZMmTIXNs/++yzPPXUU9lggw0WqjgAAAAAAKiPGtbloCOOOCLPP/98Dj300Bx55JHZeOONs+yyy2bChAl544038re//S0TJkzIL37xi6LrBQAAAACAxV6dwvetttoqp59+ei699NJccMEFNdqqq6vToEGD/O53v8uPfvSjQooEAAAAAID6pE7he5Iccsgh+clPfpJHH300AwcOzNixY9O8efOss8462WOPPbLGGmsUWScAAAAAANQbdQ7fk2S11VbL0UcfXVQtAAAAAACwRKhV+F5VVZWKiooaj2vrq8cBAAAAAMDSoFbh+w9+8IOccMIJ6datW/lxbZRKpbzzzjt1rw4AAAAAAOqhWoXvq6yySpZddtkajwEAAAAAgLmrVfh+/vnnp23btuXHTz/99LdWEAAAAAAA1He1mpD95JNPzm233VZ+fNppp+Wpp5761ooCAAAAAID6rFbh+6RJkzJu3Ljy4169euXdd9/91ooCAAAAAID6rFbTzvzP//xPHnjggXzxxRdp2bJlkuSpp57K0KFDv/G4UqmUCy+8cKGLBAAAAACA+qRW4fvJJ5+c//3f/80zzzyTZFao/u6778539LvwHQAAAACApVGtwvftt98+zz//fD766KNMnTo1hx9+ePbee+/svffe33Z9AAAAAABQ79QqfD/qqKOy6667Zp999kmSrLrqqllvvfWy5ZZbfqvFAQAAAABAfVSrBVf79euXjz/+uPz4s88+y/jx47+1ogAAAAAAoD6r1cj3pk2b5rnnnsvOO++cFi1aJEkmTJiQzz77bL7HrrrqqgtXIQAAAAAA1DO1Ct9/+tOfplevXtl3332TzFpI9dZbb82tt976jceVSqW88847C18lAAAAAADUI7UK388888yssMIKeffddzNt2rS88sorWXXVVbPaaqt92/UBAAAAAEC9U6vwvVmzZjnllFPKj9ddd93ss88+OeGEE761wgAAAAAAoL6qVfj+dRdddFHWW2+9omsBAAAAAIAlQp3C97333jtJUlVVlT59+uSdd97J2LFj87vf/S7//e9/s8wyy1hoFQAAAACApVZFXQ8cMGBAOnXqlKOPPjpXXXVVevTokST55z//mZ122ik9e/YsqkYAAAAAAKhX6jTy/cMPP8wvf/nLzJw5M/vtt1+GDx+e3r17J0natm2bZs2a5fzzz8/3v//9bLXVVoUWDACwNKmoKKWiorSoy+ArqqqqU1VVvajLAAAAFnN1Ct+vvfbazJw5M3fffXfWXXfd/PnPfy6H7507d856662Xrl275uabbxa+AwDUUUVFKS1bNU8D4ftiZWZVdcaOmSSABwAAvlGdwveXX345u+yyS9Zdd925tn//+9/PzjvvXA7kAQBYcBUVpTSoKOXW58Zn+LiZi7ockqzcokEO2265VFSUvvXw3a8eFj9+9QAAwIKoU/g+fvz4rLjiit+4T8uWLTN+/Pg6FQUAwP83fNzMfDpqxqIug++QXz0snvzqAQCABVGn8H3llVfOW2+99Y37vPHGG1l55ZXrVBQAACzN/Oph8fNd/uoBAIAlQ53C9x133DE9evTIfffdl65du87Rfuutt+a1117LEUccsbD1AQDAUsuvHgAAoP6qU/h+7LHH5oknnsiZZ56Ze+65J9OmTUuSnHvuuXnjjTfy9ttvZ5VVVsnRRx9daLEAAAAAAFAfVNTloBYtWuTOO+/MT3/607z55psZOHBgqqurc8cdd+Stt97K1ltvndtvvz2tWrUqul4AAAAAAFjs1Wnke5KsuOKKufbaazNq1Ki89dZbGT9+fJo3b5711lsvq6yySpE1AgAAAABAvVLn8H22FVZYIR06dMjkyZPTsmXLNGy40KcEAAAAAIB6rc5JeVVVVf7+97/n7rvvzpAhQ8rb11xzzeyzzz755S9/mYqKOs1qAwAAAAAA9Vqdwveqqqocf/zxee6551IqlbLKKqvke9/7XsaPH5/BgwfnyiuvzKuvvpobbrih6HoBAAAAAGCxV6fw/Y477sizzz6bbbbZJmeffXbatGlTbhsxYkT++Mc/5rnnnss999yT/fffv7BiAQAAAACgPqhT+P7AAw9k9dVXz7XXXpumTZvWaPve976Xq6++Ol26dMn9998vfAcAAKiliopSKipKi7oMvqaqqjpVVdWLugwAoJ6pU/j+4YcfZu+9954jeJ+tadOm2XbbbfPwww8vVHEAAABLi4qKUlq2ap4GwvfFzsyq6owdM0kADwAskDqF76VSKdOnT//GfaZPn56ZM2fWqSgAAIClTUVFKQ0qSrn1ufEZPs7/pRYXK7dokMO2Wy4VFSXhOwCwQOoUvq+zzjp57rnnMm7cuLRo0WKO9rFjx+bZZ5/NOuuss9AFAgAALE2Gj5uZT0fNWNRlAACwkCrqctCBBx6YL774Isccc0zefPPN8vYZM2akb9+++cUvfpFRo0blgAMOKKxQAAAAAACoL+o08n3PPfdM375988ADD2T//fdP06ZN07x584wZMyZVVVWprq7OXnvtlb333rvoegEAAAAAYLFXp/A9SS688MJsu+22ue+++/LOO+9k7NixWWaZZfKDH/wg++67bzp37lxknQAAAAAAUG/UOXxPkt122y277bZbUbUAAAAAAMASoU5zvldVVc11+4ABAzJ9+vSFKggAAAAAAOq7BQrfn3jiiXTp0iW9e/eeo23q1Kk57LDDsuOOO+aRRx4prEAAAAAAAKhvah2+9+zZMyeeeGLef//9vPfee3O0jxgxIqussko+//zznHrqqbnpppsKLRQAAAAAAOqLWs35/sYbb+T8889PixYtcuGFF+anP/3pHPu0adMmjz/+eJ588sn87ne/y9VXX51tttkm66+/fuFFAwAAwJKkoqKUiorSoi6Dr6mqqk5VVfWiLgOAeqpW4futt96aioqK9OjRI+uuu+437rvjjjvmz3/+c37+85/ntttuy0UXXVRIoQAAALAkqqgopWWr5mkgfF/szKyqztgxkwTwANRJrcL3/v3750c/+tF8g/fZttpqq3To0CF9+/ZdqOIAAABgSVdRUUqDilJufW58ho+buajL4f+s3KJBDttuuVRUlITvANRJrcL3L774IrvtttsCnXi99dbL66+/XqeiAAAAYGkzfNzMfDpqxqIuAwAoSK0WXG3RokUmTZq0QCeurq7OMsssU6eiAAAAAACgPqtV+N6mTZu8/fbbC3Ti//znP1lllVXqVBQAAAAAANRntZp2Zuedd86ll16aPn36ZJtttpnv/n369Mlbb72Vo48+eqELBAAAAFhSVVSUUmGx3cVOVVW1uf6BhVar8H3vvffOTTfdlJNOOindu3fPVlttNc99X3rppfzmN79J06ZN87Of/aywQgEAAACWJBUVpbRs1TwNhO+LnZlV1Rk7ZpIAHlgotQrfW7ZsmUsvvTTHHntsfvGLX6RDhw750Y9+lO9///tp3rx5xo0bl48//ji9e/dO//79UyqVcs0112TVVVf9tusHAAAAqJcqKkppUFHKrc+Nz/BxMxd1OfyflVs0yGHbLZeKipLwHVgotQrfk2TbbbfNHXfckVNPPTWvvPJKXn311Tn2qa6uzjrrrJOzzjorm222WaGFAgAAACyJho+bmU9HzVjUZQBQsFqH70my0UYb5d///nf69euXZ599NsOHD8+4cePSqlWrrLHGGtl+++2z0UYbfVu1AgAAAABAvbBA4ftsW265ZbbccsuiawEAAAAAgCVCxaIuAAAAAAAAljTCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAgtVpwVUAAAAAoO4qKkqpqCgt6jL4iqqq6lRVVS/qMliCCN8BAAAA4DtUUVFKy1bN00D4vliZWVWdsWMmCeApzEKF7+PHj89jjz2Wd955J+PGjcs111yT/v37p1QqZbPNNiuqRgAAAABYYlRUlNKgopRbnxuf4eNmLupySLJyiwY5bLvlUlFREr5TmDqH70888UROO+20TJo0KdXV1SmVZn1T99xzz+Wmm27Kz3/+8/z2t78trFAAAAAAWJIMHzczn46asajLAL4ldVpw9Y033sivf/3rNGnSJCeddFI6d+5cbuvYsWNWXXXV/P3vf8+///3vwgoFAAAAAID6ok7h+3XXXZdmzZrl/vvvzzHHHJO11lqr3LbNNtvk7rvvTsuWLXP77bcXVigAAAAAANQXdQrfBwwYkJ133jkrr7zyXNtbt26dnXbaKYMGDVqo4gAAAAAAoD6qU/g+efLkLLPMMt+4T5MmTfLll1/WqSgAAAAAAKjP6hS+r7HGGunfv/8826urq/PKK6+kTZs2dS4MAAAAAADqqzqF77vttlvefPPNdO/ePdXV1TXaZsyYkUsvvTQDBw7MLrvsUkiRAAAAAABQnzSsy0G//OUv8/TTT+f666/Pvffem0aNGiVJjjnmmLz77rsZMWJE1llnnfzyl78stFgAAAAAAKgP6jTyvUmTJrntttty6KGHZvLkyfnss89SXV2d5557LuPHj8/++++fnj17prKysuh6AQAAAABgsVenke9JUllZmT/84Q/5/e9/n48++ijjxo1L8+bNs9Zaa6Vx48ZF1ggAAAAAAPVKnUa+JymPdH/rrbey9tprZ7PNNss666yTCy+8ME8//XSRNdYbo0aNyvHHH58OHTqkY8eOueCCCzJjxoxFXRYAAAAAAN+xOoXvU6dOzXHHHZdjjz02zz77bHn75MmTc9ddd6Vbt2753e9+l6qqqqLqrBdOOumkNGvWLL179859992Xl156KT169FjUZQEAAAAA8B2r07Qzt9xyS5599tlsv/322W233crbKysr06tXr1x//fV56KGHss466+QXv/hFYcUuzj7++OP069cvzz//fCorK9OmTZscf/zxueyyy3LkkUfW+jyl0oJfe+UWDRb8IL4VX+2LuvRlXa/Fovdd9X1FRSmlb/vFxQKrrq5OVVX1t34d7/vFx3f5ef/167Fo6full3/nLb30/dJL3y+99P3S6bvs91KplIoK/7dfnFRVVae6uvb/r6/ta6RUvSBn/T+77757mjZtmvvuu2+u7dXV1dlnn30yderUPPbYYwt6+nrpySefzOmnn56+ffuWt7333nvZY4898sorr2S55Zb7Vq5bVVXtzbqY+S76RL8vnr6Lfqmurha+L4a+i37xvl/8fFd9ou8XP/p+6eXfeUsvfb/00vdLL32/dNInFK1OI9+HDh2agw46aJ7tpVIpP/zhD3P77bfXubD6ZtKkSamsrKyxbfbjL7/8stbh+6hRE7IgX4cYBbv4+S5GwOr3xdO33fcNGlSkVavmGTJkSKZOnfqtXYcF06RJk7Rp0yZjxkzKzJnf3nRr3veLn+/qFw/6fvGj75de/p239NL3Sy99v/TS90un7+rfeUa+L37qMvJ9hRWWne9+dQrfmzdvnqFDh37jPiNGjEizZs3qcvp6qVmzZpk8eXKNbbMfN2/evNbnqa7OAoXvM2dWJ/n2PxRYvOj3pdvUqVMzZcqURV0Gc7HgvyWrPe/7pZe+X3rp+6WTfl966full75feun7pdd3FfKz6NVpwdUOHTrkqaeeyttvvz3X9oEDB+bJJ5/M5ptvvlDF1Sft2rXL2LFjM3LkyPK2Dz74ICuvvHKWXXb+34IAAAAAALDkqNPI96OOOipPPfVUDj300BxwwAHZeOONs+yyy2bChAl5/fXXc99992XmzJk59thji653sbXmmmtm8803z4UXXphzzz03Y8aMyXXXXZeuXbsu6tIAAAAAAPiO1WnB1SR54okncsYZZ2TcuHE15qeqrq7OMsssk/PPPz+77LJLYYXWByNHjsy5556bvn37pqKiInvttVdOOeWUNGhQ+5WrR45csDnfgaVHw4az5nwfNGiQaWcWI02bNk3btm0zZsykzJjx7c35DgAAACweSqWkdev5z3ZS5/A9mbXI6HPPPZd33303Y8eOTfPmzbPuuutmxx13zDLLLFPX0y7VhO/AvAjfF0/CdwAAAFi61DZ8r9O0M7M1b948u+22W3bbbbeFOQ0AAAAAACxRahW+DxkyJC1atMhyyy1Xflxbbdq0qVtlAAAAAABQT9UqfN9pp53SrVu3nHDCCUmSTp061ZjnfV5KpVLeeeedhasQAAAAAADqmVqF7x06dMjqq69efrzFFlt8awUBAAAAAEB9V6cFV6dOnZomTZp8G/Us9Sy4CsyLBVcXTxZcBQAAgKVLbRdcrajLybt27ZrzzjuvLocCAAAAAMASr07h+8cff5zGjRsXXQsAAAAAACwR6hS+r7baavnkk0+KrgUAAAAAAJYItVpw9esuuuiiHHPMMTn11FOzyy67pE2bNqmsrJzrvm3atFmoAgEAAAAAoL6p04Krm266aWbMmJEZM2Z888lLpbzzzjt1Lm5pZMFVYF4suLp4suAqAAAALF1qu+BqnUa+b7DBBnU5DAAAAAAAlgp1Ct9vu+22ousAAAAAAIAlRp0WXAUAAAAAAOat1iPfR40alT/96U955plnMmbMmKy88srZddddc8wxx6RZs2bfZo0AAAAAAFCv1Cp8HzVqVPbbb78MGzYss9dn/eSTT3LjjTfmmWeeyZ133pnmzZt/q4UCAAAAAEB9UatpZ2688cZ89tln2WOPPfLPf/4zr7/+eh588MFst912ef/993Prrbd+23UCAAAAAEC9UavwvXfv3tl0001zySWXZK211kqTJk2y7rrr5tprr80aa6yRp59++tuuEwAAAAAA6o1ahe/Dhg3LZpttNsf2Bg0aZJtttsnHH39ceGEAAAAAAFBf1Sp8nzp1aiorK+fa1qpVq0yaNKnQogAAAAAAoD6rVfheVVU1z7ZSqfSN7QAAAAAAsLSpVfgOAAAAAADUnvAdAAAAAAAK1rC2Oz711FMZOnToHNsHDhyYJDnttNPmaCuVSrnwwgsXojwAAAAAAKh/StXV1dXz22ndddet28lLpbz77rt1OnZpNXLkhMy/R4ClUcOGFWnVqnkGDRqUKVOmLOpy+D9NmzZN27ZtM2bMpMyYYQ0UAAAAWNKVSknr1svOd79ajXy/6KKLFrogAAAAAABYWtQqfN97772/7ToAAAAAAGCJYcFVAAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACrZEhe+vv/561l133Wy66ablPwcffHC5/aOPPsrhhx+eTTfdNNtuu23+8pe/1Dj+ueeeS5cuXbLJJptk1113zTPPPFOj/aabbsqPf/zjbLLJJjn00EPz4Ycfltu+/PLLnHbaaenYsWM233zz/Pa3v82kSZO+3ScMAAAAAMBiaYkK3998881sscUWGTBgQPlPz549kyTTp0/Psccemw033DB9+/bNjTfemJ49e+af//xnkmTw4MH51a9+lf/93//Nq6++ml/96lc56aST8vnnnydJevXqldtuuy1/+9vf0rdv3/zgBz/IiSeemOrq6iTJeeedl2HDhuXf//53Hn/88QwbNiyXX375orkRAAAAAAAsUktc+L7BBhvMte2VV17JiBEjcuKJJ6Zx48ZZf/31c+ihh5bD+V69eqVDhw7Zcccd07Bhw+y2227ZYostcvfddydJ7rnnnhx00EFp165dmjRpkpNPPjmfffZZ+vbtm8mTJ+fhhx/OiSeemJYtW2aFFVbIKaeckgceeCCTJ0/+zp4/AAAAAACLh4aLuoAFMWXKlPJI9K9bccUV8+abb6Z169bZaaedMnHixGy55Zb5/e9/n5VXXjnvv/9+1lprrTRu3Lh8TNu2bXPjjTcmSQYNGpT27dvXOGfbtm0zcODAcvtRRx1VbmvUqFHWXHPNDBw4MC1btsz06dNrHL/22mtnypQpGTx4cNZbb71aP8dSqda7ArCY8RkOAAAAS77a/v+/XoXvr7/+eg477LC5tnXv3j3f+973svXWW+fAAw/M9OnTc9555+Xoo49Or169MmnSpFRWVtY4prKyMl9++WWSzLW9adOmtWqfOHFikqRZs2Y1zj37uAWxwgrLLtD+ACweWrVqvqhLAAAAABYj9Sp879ixY9577715tu+88841Hp955pnZaqut8sEHH6RZs2ZzTAEzefLkNG8+KyyprKzMlClTarRPmTKlVu2zQ/evnm/2tZZZZpkFeo6jRk3I/00jD1BDgwYVAt7F2JgxkzJzZtWiLgMAAAD4lpVKtRtEXa/C928ybNiw9OjRIyeeeGI5AJ82bVqSWSPU27Vrl8GDB2fGjBlp2HDW0x40aFDatWuXJGnfvn3efvvtGuccNGhQeQ75du3a5f33389PfvKTJLMWcB08eHDat2+ftdZaK40aNcqgQYOy8cYbJ0k++OCD8tQ0C6K6OsJ3gHrK5zcAAAAw2xKz4GqrVq3y6KOP5qqrrsrUqVMzevTonHPOOdlqq62yxhprpGPHjmnVqlWuuOKKTJ06NQMHDsxtt92Wrl27Jkn22GOP9OvXL4899lhmzJiRxx57LP369cuee+6ZJNl3331z++23Z+DAgZk6dWquuOKKtG7dOh06dEhlZWV23XXXXH755Rk9enRGjx6dyy+/PLvvvnuaNm26KG8LAAAAAACLQKm6eskZpzdw4MBccskleeutt5Ik22+/fU4//fS0bNkySfLxxx/n3HPPzeuvv55mzZrlkEMOydFHH10+vnfv3rn88svzySefZLXVVsupp56a7bbbLklSXV2dv//97+nZs2dGjx6dDTfcMOecc07WWmutJMnEiRNzySWX5Omnn8706dOzww475Mwzz6wxD3xtjBxp2hlg7ho2nDXtzKBBg+aYBotFp2nTpmnbtm3GjJmUGTNMOwMAAABLulIpad16/tPOLFHh+5JA+A7Mi/B98SR8BwAAgKVLbcP3JWbaGQAAAAAAWFwI3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAKJnwHAAAAAICCCd8BAAAAAKBgwncAAAAAACiY8B0AAAAAAAomfAcAAAAAgILVy/B98uTJOeCAA/LAAw/U2P7RRx/l8MMPz6abbpptt902f/nLX2q0P/fcc+nSpUs22WST7LrrrnnmmWdqtN9000358Y9/nE022SSHHnpoPvzww3Lbl19+mdNOOy0dO3bM5ptvnt/+9reZNGlSra8NAAAAAMDSo96F7++//34OPvjg/Oc//6mxffr06Tn22GOz4YYbpm/fvrnxxhvTs2fP/POf/0ySDB48OL/61a/yv//7v3n11Vfzq1/9KieddFI+//zzJEmvXr1y22235W9/+1v69u2bH/zgBznxxBNTXV2dJDnvvPMybNiw/Pvf/87jjz+eYcOG5fLLL6/VtQEAAAAAWLo0XNQFLIiXXnopJ598co477riMGTOmRtsrr7ySESNG5MQTT0zjxo2z/vrr59BDD03Pnj2z6667plevXunQoUN23HHHJMluu+2WBx54IHfffXdOPPHE3HPPPTnooIPSrl27JMnJJ5+ce+65J3379s3GG2+chx9+OLfeemtatmyZJDnllFNy2GGH5be//W0GDBjwjddeEKXSwt8nABYNn+EAAACw5Kvt//8Xq/B9ypQp5ZHoX7fiiitm3XXXzTPPPJMmTZrk73//e432999/P2uttVYaN25c3ta2bdvceOONSZJBgwalffv2NY5p27ZtBg4cWG4/6qijym2NGjXKmmuumYEDB6Zly5aZPn16jePXXnvtTJkyJYMHD57vtRfECissu8DHALDotWrVfFGXAAAAACxGFqvw/fXXX89hhx0217Zrr722PGp9biZNmpTKysoa2yorK/Pll1/Os71p06a1ap84cWKSpFmzZjXOPfu4+V17QYwaNSH/N9MNQA0NGlQIeBdjY8ZMysyZVYu6DAAAAOBbVirVbhD1YhW+d+zYMe+9916djm3WrFkmT55cY9vkyZPTvPmsoKqysjJTpkyp0T5lypRatc8O3b96vtnXWmaZZeZ77QVRXR3hO0A95fMbAAAAmK3eLbg6L+3atcvgwYMzY8aM8rZBgwaV53Bv37593n///RrHfLW9Xbt2NdqnT5+ewYMHp3379llrrbXSqFGjDBo0qNz+wQcflKemmd+1AQAAAABYuiwx4XvHjh3TqlWrXHHFFZk6dWoGDhyY2267LV27dk2S7LHHHunXr18ee+yxzJgxI4899lj69euXPffcM0my77775vbbb8/AgQMzderUXHHFFWndunU6dOiQysrK7Lrrrrn88sszevTojB49Opdffnl23333NG3adL7XBgAAAABg6bJYTTuzMBo2bJibb7455557brbZZps0a9Yshx56aPbZZ58ksxZIvfbaa3P55Zfn9NNPz2qrrZY//elPWWuttZIkXbt2zYQJE9KtW7eMHj06G264YW644YY0atQoSXLWWWflkksuSZcuXTJ9+vTssMMOOfPMM2t1bQAAAAAAli6l6moz1C5ORo604Cowdw0bzlpwddCgQXOsUcGi07Rp07Rt2zZjxkzKjBkWXAUAAIAlXamUtG49/wVXl5hpZwAAAAAAYHEhfAcAAAAAgIIJ3wEAAAAAoGDCdwAAAAAAKJjwHQAAAAAACiZ8BwAAAACAggnfAQAAAACgYMJ3AAAAAAAomPAdAAAAAAAK1nBRFwDAgmnSpMmiLoGv0B8AAADA3AjfAeqJqqrqVFVVp02bNou6FL5mdt8AAAAAzCZ8B6gnqqqqM2bMpFRUlBZ1KXyN8B0AAAD4OuE7QD0i5AUAAACoHyy4CgAAAAAABRO+AwAAAABAwYTvAAAAAABQMOE7AAAAAAAUTPgOAAAAAAAFE74DAAAAAEDBhO8AAAAAAFAw4TsAAAAAABRM+A4AAAAAAAUTvgMAAAAAQMGE7wAAAAAAUDDhOwAAAAAAFEz4DgAAAAAABRO+AwAAAAD/r737jorq6h4+/p2hKzbsitjF2HtiiZKoibEX7IpgQUXFShR7IxawdywgAioq1mjsGk3UqClWwC4oihSlMzAz7x++Mz8wpj7EoezPWlkrMvcym7lz7z1n33P2EUJkM0m+CyGEEEIIIYQQQgghhBDZTJLvQgghhBBCCCGEEEIIIUQ2k+S7EEIIIYQQQgghhBBCCJHNJPkuhBBCCCGEEEIIIYQQQmQzSb4LIYQQQgghhBBCCCGEENlMku9CCCGEEEIIIYQQQgghRDaT5LsQQgghhBBCCCGEEEIIkc0k+S6EEEIIIYQQQgghhBBCZDNJvgshhBBCCCGEEEIIIYQQ2UyS70IIIYQQQgghhBBCCCFENjM2dAAiK4XC0BEIIYQQQgghhBBCCCGE+CN/N4er0Gq12v82FCGEEEIIIYQQQgghhBAif5GyM0IIIYQQQgghhBBCCCFENpPkuxBCCCGEEEIIIYQQQgiRzST5LoQQQgghhBBCCCGEEEJkM0m+CyGEEEIIIYQQQgghhBDZTJLvQgghhBBCCCGEEEIIIUQ2k+S7EEIIIYQQQgghhBBCCJHNJPkuhBBCCCGEEEIIIYQQQmQzSb4LIYQQQgghhBBCCCGEENlMku9CCCGEEEIIIYQQQgghRDaT5LsQQgghhBBCCCGEEEIIkc0k+S6EEEKIXEer1Ro6BCGEEEIIIYQQ4k9J8l0IIUSuIMlWERsby9OnTwFQKBSAfC+EEEKI/Cw2NjbLvzUajYEiEUL8V1QqFc+ePTN0GOIfSElJyfLv/N5nk+S7ECJXy+8X8bzu8ePHPHnyBPi/ZKvIv/bv309AQAAPHjxgz549hg5H5ADJycns37+f9PR0Q4ci/mPv3u/l/p83yHEU/4ukpCQWLFjAtWvXiI+PB0CplBRHbiTXAvFHNBoN48aNY+nSpTx8+NDQ4Yi/yc/Pj7CwMP2/83tfXu5MIsf6o1ELcmMWOlqtFoVCQWxsLK9evTJ0OCKbabVafH19CQ4O5uLFi/j5+el/LvKnsmXLcv36dQYOHMhPP/0ESEMuP0tMTKRjx45ERERgYmICyPUhr1Kr1fpzXa1Wk5qaKud+LqVWq7P8W46j+F+8efOGEiVKsHDhQpo1a8alS5cAuRfkNhkZGe+9FshxFPD2gdqIESMICQkhMDBQEvC5wKNHj7hx4wbr1q3jq6++4tChQ0D+Pqcl+S5yJLVajVKp5NmzZxw8eJD9+/fzww8/ANJIF2/pOuKvX7/G2dmZNWvW/G7aqcjdFAoFDRs25PTp04wePZrU1FT9z0X+omuodezYEaVSSUZGBuXKlZPpp/lYYmIivXv3plWrVowbN07/c931QcoO5B1qtRojIyM0Gg1ubm4MHz4cLy8v/THOzx253CYjI0N/LL29vZk6dSqhoaGAHEfx75QrV46WLVsSEhJCuXLlsLS0BN7eC+Q7lTtoNBqMjY3RaDTMnDmTGTNmsGnTJtLT01EoFHI/z+cyMjIAqFevHq1atWLv3r1s3bqVR48eGTgy8WcqV65Mr169OHfuHKmpqdSpUwfI3/14Sb6LHEer1WJkZERoaCh9+/bl/PnzHDlyhG+++YZ58+YZOjyRA2g0GoyMjAgJCcHLywuAoKAgPD09iYmJMXB04n+VkpLCtGnTSElJoVOnTqSnp1OsWDHUarW+3rfIP3QP2rRaLRqNhokTJzJ37lwuXbqEr68vDx48yLK9dLbzPpVKxaBBg6hQoQILFy4EYNeuXXh7e7NhwwZiYmJQKpXSYc8jdMnaHj16ANCjRw8mTpyIUqkkISFBkjO5iC7B1qtXL+7cuUN6ejrFixcH/u/aLddw8XdkPuetrKyYOXMm7du3Z+HChZw+fRpAf22Q71TOpRtwp9Vq6dy5My9evODNmzecOXOGefPmoVKp9K+L/MnY2JiQkBA++eQTihYtSpcuXTh37hw7duz4XR9AGF7ma7OJiQmdOnWidu3arFu3jp9//jnLdvntvDY2dABCvE9iYiKzZ8/GwcEBZ2dnYmNj6dGjB1qtltjYWKysrAwdojAgpVLJ8+fPGTp0KGPGjGHkyJHExsYyceJEVqxYwaRJk+Q7koulpKRw5swZnj17xooVK1i/fj13797F19eX+Ph4+vbtS6VKlfTb68oPibwn84jXI0eOANC1a1cAUlNT2b17N0qlktGjRxMZGclHH30k34V84OXLl5QuXZoWLVoA4OLiQlxcHEWLFiUuLo6goCD27t2rT+qJ3M/Pz4/y5cvj6ekJgIeHByEhITx9+pRNmzZRs2ZNA0co/kzm+/TcuXOpWbMmixYtAt4+OAsLC6NIkSL079+fUqVKGTJUkQvo2gZRUVE8efKEqlWrUq9ePe7du0diYiKbN2/GzMyMVq1akZ6ejpmZmaFDFn/AyMgIrVbLTz/9RIsWLZg5cyYqlYojR44QHBzMggULmD17NiYmJtLez6dUKhWbN2/GyclJP9Oxd+/ezJ49G5VKxYgRI6hYsaKBoxTwdpaCsbExWq2W+/fvY2NjwzfffMMPP/yAn58ffn5+GBkZUb9+/Xy5Nkf++4tFjpSSksK1a9eAt6MUdNNShwwZAsDw4cNp0aIF48aNY/LkyYSFheW7J2Uiq9u3b1OpUiUGDhyItbU19evXx9fXlyNHjkgJmlwqMTERf39/rKysOHz4MC9evGDixIlYW1vTuXNnevXqxbVr19i3bx/R0dGcPXsWyN/T1/Iy3Swo3YjXLVu2MH/+fHr27MmbN2+wt7enf//+XL16lWHDhuHo6MjLly8NHbb4ACpUqMCXX37J7t27mTNnDqampuzcuZMNGzawdu1aKlasyIEDBwAZRZtbvTuSvWTJksTGxvLNN98wePBgzp49y8CBAyldujT+/v4GilL8HZnr9cfExJCSkoKtrS1nzpxh8ODBbNiwgTdv3rB3717u379v4GhFTqdrG4SEhDBgwAC+/vprevXqxcmTJ6levTpOTk5UrVoVT09PvvjiC+bPn2/okMVfWLRoEUOGDCEuLg61Wo2pqSkdO3aka9euPH36lKlTp+pL0Ij8x9TUlLi4OFQqFfC2fVCvXj1cXV0JDg5mw4YNhIeHGzhKkbl81LBhwxg1ahRz5sxBpVLRsmVLBg0aRFJSElu3bmX69OnMmTPH0CF/cJJ8Fwan1WoJCAjAycmJ8+fP638eERHB3r176devH1WqVGHRokVERUURHR1NuXLl5Aacz7wvgZKQkKBPsqtUKmxsbGjVqhU7d+5kzZo1HzpE8T/6/vvviY+PR6VS6RMqUVFRDBkyhJSUFPr370/Pnj25dOkSffr0Yc2aNVJqII/SaDT6a/ySJUuoV6+efv0PACcnJ+Lj4+nZsyeTJ0+me/fuBAYGUrp0aUOGLf5DGRkZJCYm6v/ds2dPWrVqxe7du/niiy8ASE9Pp0SJEhQqVEi/rbQVcp+MjAz9iKjY2FiSk5OpU6cOZcuW5dWrVzRt2pSTJ0/SoUMHGjVqRIkSJQwcsfgjujKBGo2Gnj17cuvWLWrVqsXixYvx9/endOnSnDx5kmXLllGzZk3i4+MNHbLIwXQjn1+9esWCBQsYOHAgwcHBNG7cmFWrVnHixAmqVavG0KFD6dGjB40bN2bu3LmGDlu84922+/jx4/niiy+4dOkSUVFRAJibm9OtWzfatWtHUlIScXFxhghVGMD7+na2trZERETw6NEjffugevXq1K1bF2NjY6ytrT90mOIduvJQffv2pXz58pw+fRpvb2+ePXvGrVu3aNSoEaNHj6Zw4cLcvn0be3t7Q4f8wSm0MiRI5ABRUVFs27aNEydOsGDBAlq2bMmKFSvYvXs31atXZ8eOHQBMnTqV169fs3HjRulQ5yO66aVJSUkYGRlhbm5OeHg4PXr0YMiQIVkW21u4cCE2NjYsW7aMKVOmMHjwYANGLv6JjIwMtFotn3/+Od26dWPKlCm8fPkSBwcHihUrho+PDxYWFly9epUXL17w1Vdf6ae2yfUgb1qxYgU///wz48aNo1mzZgBER0czbNgwTExM2LJlC0WLFpXvQB6mq/U/a9YsPvroI7p3706hQoUASEtLY/369fTu3TtLx2vMmDE0atSIYcOGGSps8S/pzmWNRsPgwYNJT0/HwsKChQsXUqFCBTIyMnj+/Dnp6elcuXKFlStXEhAQQPXq1Q0duvgDWq0WDw8PXr16xapVqwB4+PAhRYsWxdTUFEtLSwIDA1m3bh27d++WJIr4UzExMaxatYrU1FSWLl2q//nUqVO5ffs2rq6u2NnZYWpqqn9NVwpBGF7mshQRERHExMTQoEEDEhMTmThxIo8ePWL79u2UL18eeHufT0tLo3DhwgaOXHwIuj7/y5cvefDgAUZGRtjY2OjLy7Ro0YJPP/2UTz/9FHd3dwoWLMjcuXP1iV/pCxhWWFgY69atY+HChajVambPns3NmzcxNzenTp06LFmyhOTkZBQKBQULFjR0uB+cJN+FQeluwI8fP2bHjh0cO3YMIyMj/QiYRYsW6RvoupEOu3btwsTEBI1Gky9rReU3uuMcFhbGkiVLiI6OpkePHjg6OnLu3DlcXFzo3LkzlSpVIjQ0lNDQUL777jtWrFjBy5cvWbx4saH/BPEXdMdYpVJhamrK9u3b8fLywsXFhdGjR+sT8FZWVmzevBlLS0v9vrpGmsgb3m04z5gxg6NHj9KrVy8mTZpEgQIFgLejYXv16oW1tTXbt2+Xe0E+0KVLF1JSUhg5ciRffvmlviOu1WqJiYkhMDCQGjVqcPz4ce7du8eBAwck2ZLLZG7Xubi4YGFhgZ2dHcePH+fBgwcsX76cjz76CHd3d3777TdMTU3x8PCgdu3aBo5c/BldYr1t27b6EiBqtZpnz54xevRoypYtS2hoKBs3bpRjKf6Qrn1w/Phxtm7dysOHDzl48KA+SQvg7u7OuXPnWLFiBZ988okBoxXvo7vGazQahg4dilqt5s6dO3z00UcMGTKEJk2aMGXKFJ4/f463tzcVKlQwdMjiA9Kd4yEhIYwZM4aKFSuSnJxMXFwcc+fOxdzcnPXr13Pnzh2sra1Rq9Xs3LlT8kIG9O7nfvPmTRwcHKhbty6pqamo1Wo8PT05ceIEN2/eZN26dQaM1vAk+S4M7sGDBwwYMIARI0ZgZGTEvXv3uHTpEkuXLqVx48b8/PPPXLt2DRsbG7744guMjY1lBEM+obugR0RE0KdPH+zt7UlNTeXbb7+lT58+jB49mgcPHuDn54dKpaJAgQLMmjULU1NTZs+eTcGCBZk6daqh/wzxN7x69YpRo0YxY8YMGjVqRFBQEHPmzMHV1VWfgO/YsSOdO3dm3rx5hg5X/AcyX9fT0tL0C6StWbOG77//nm7dutG9e3f9w5fY2FiSkpKkc5bHqdVqff1Ic3Nznj59yrBhw/QJeK1WS2hoKKtWrSIlJYXSpUuzcOFCTExM5OFcLpJ5NGRsbCw+Pj5MmTIFgJCQEDZv3sydO3fw9vbGysqKpKQkTExMKFasmIEjF+96tzMeFhaGv78/J0+eZMaMGXTu3Fn/2uHDhylatChVqlTJkkQVQud9SbXLly+zcuVKihYtypw5cyhbtqz+tfXr1zNy5Ei59udQWq2WIUOGYG1tzZQpU0hPT2fx4sVERkYyadIk6tWrR9++fTEyMiIoKEj6+/lMbGwsDg4O9OrVCycnJx49ekT37t3p27cv06dPR6PR8OzZM1QqFZUrV0apVEpeyEAyt9tu3ryJjY0NRYsW5eDBg7x8+ZIyZcrQtWtXAHx9fTlz5gwbNmzIlyPedST5Lgxu+fLlREZG4unpCby96AYGBrJv3z6WLFmiLzWgI53p/CUmJoYNGzZQqlQpnJ2dAdi/fz8rV66kZ8+ejBw5EnNzcwDCw8NJTk7m8uXLrFu3jsDAQKpVq2bI8MXf9PDhQ1auXMm9e/f0Nb6DgoKYO3curq6ujBo1itjYWIoUKSLnfx6ku65rNBrmzJlDVFQUGo2GVq1aMWTIEFavXs3Fixfp1q0b3bp1yzL7QeR94eHhODg4EBQUhJ+fH9999x3Ozs506NBBX4ImIyMDjUajLzUgnbHcQzfaTa1WM3DgQKKionj+/DleXl76RO3du3fZunUrly5dYtu2bdja2ho4avE+73bGAcqUKUOhQoVYunQpt2/fxsHBIUsCXog/omsbPHnyhLNnz5KQkECVKlXo1KkTV65cYfPmzZiamjJnzpzfrfki/cWcIzU1Vd9XCwkJYc6cOWzbtk2fhNNoNDg4OFCkSBHWrVtHSkoKsbGx8kAuH4iMjMTKyko/4ObZs2e4u7vj5+eHWq2md+/e1K5dm1GjRrFkyRJmzpxJqVKl9PvLiHfD0H3uarWaIUOG8OrVK5KSknB3d+fLL7/E2NiYa9eu8fTpU+7du8fevXvZvn07tWrVMnToBiXfVGFwr1+/1i+mqVarsbKy4rPPPuPNmzc4OTlx/fr1LNtLQypvS0lJYcWKFSQkJKBSqdi+fTsHDhzg2bNnwNtOeo8ePXB1deXgwYOsWLGCmJgYkpKS2LBhA3PnzuXo0aP4+vpK4j0HU6vVWf5dpUoVXF1dadCgAZMnT+bGjRv06dOHefPmsXLlSvbv34+VlRVGRka/21fkfrrEu729PUlJSfTq1Ytq1apx6NAhZs2ahaurK5988gmBgYF8++23712AWeQtmY+xqakpbm5ulCxZksmTJ9O+fXu8vb357rvv9As0Ghsb6xPvWq1WEu+5hFqt1peacnV1pWLFisyZM4eWLVvy3XffceHCBQB9WYLPPvsMCwsLQ4Ys/oBGo8HY2FifSFuyZAlubm507dqVH374gVGjRlGnTh38/f0JDg42dLgiFzAyMiIsLIz+/fvz+PFjnjx5gq+vL0OGDOHjjz+mf//+pKenM3HiRGJjY3+3rzA8Z2dnDh8+rP93QkICkZGRJCQkAG8T80qlkq5duxIfH09GRgYWFhaSeM8HUlJSWLduHbdv3+bJkyfcunWL1NRUbt++zdWrVxk4cCCVKlViwYIF3Lx5k5cvX2ZJvAOSeDcAXeJdq9UydepUSpYsiY+PD59++imrV6/myJEjJCcnExERgb+/Py9fvsTf3z/fJ94BpGciPijdKISMjAwUCgVGRkY0atSImTNn0rdvX5o2bQpA7dq1adGiBY0aNaJBgwaGDVp8UGfOnKFq1aqYmpqSkpJC7969efXqFRcvXuTs2bN89tlnAPTq1YvU1FR+/PFHihUrhlKp1NeEVqvV+tGQImcyMjLi4cOHXLlyhe7du2NhYUG1atUYOnQoCoUCNzc3Vq9eTe/evbGysqJNmzZZ9hV5Q+Ya73v27KFMmTIsX74cADs7O86cOYO3tzc//vgjkyZNQqPR0LJlS1lQKY/TfS9iY2PRarWULl2adu3a6UfVfv311ygUCrZs2UJKSgr29vb69QAA+X7kIkZGRmi1WrZt20aRIkWYM2cOZmZmFChQAD8/P3bu3IlSqaRly5bUrVsXW1vbLAspipxD1xkfOnQoZcuWZenSpTx58oTjx48zduxYfH19GTt2LJ6enhw6dIgvvvhCZjGJP6VSqVi6dCkDBgxg7NixpKSk0L17d2xtbYmNjaVt27aoVCpu3LhB0aJFDR2uyESXoBszZgz169dnz549dO3aFVtbWzQaDZs3b2bWrFlZZi+XLFnSwFGLD8nY2Jjo6GjmzJlDdHQ08+fPp3379rRr1w4XFxcaN26s7xOcPHlSFuPOIXQPPDZv3kxKSgrLly/HzMyMRYsWsWDBAjZs2IBSqaR79+50795dZiFlImVnxAejO/Hu37/P9u3biY+PZ+zYsVSpUoX58+dz/PhxJk+eTOXKlQkKCuLp06cEBgbqp7TISZt/qNVqJk6ciImJCTNmzCAtLY1169Zx//59RowYQdu2bfXbZp6uLt+R3CU4OJjp06fj7u5O37599Q3wH3/8kVGjRmFsbExQUJB+BoOUkchb3j2eGzdu5OLFi/j7++t/lpiYSN++ffnqq68YO3asIcIUH5juWv769WuGDx9OrVq1mDBhAlZWVkDW783s2bOJj49nxYoVknDPxV6+fKl/0L5y5Uq+/PJLAK5evUpgYCDR0dG4uLjQvHlzA0cq/sqzZ8+YPn06K1aswMrKSt9G++abb7h58yYBAQE8evSIIkWKUKJECUOHK3K41NRUnJycWLJkCTY2NvTo0YPq1asza9YsRowYgbu7O/Xr19dvLyUocgaVSsXevXvp16+ffu2udu3aMWTIEKZNm8b333/PhAkTaNOmDY0bNyYhIQEfHx/8/f2lpFg+oTtXHz58SM+ePfUlh+rUqaMvL5eamkqDBg14+PAhz549Y8+ePZiYmGQZuCM+LN1n/9NPP7Fu3TquX79OQEBAluuwh4cHhw4dYs6cOXz11VdyrDKRu5P4ILRaLUZGRoSGhtK/f3/UajXh4eE4OjoSEhLC+PHjGTRoEKtWrWLVqlXExsayY8cO/YroklTNP548ecKLFy/47LPPiImJYdWqVZibmzN69GiqV6/O5s2bOXr0qH57hUKh/36JnO3dcjE9e/Zk/vz5LFq0iMDAQNLS0gBo3rw5nTt3ZtKkSVSuXFm/vSTe8xZdeQJHR0dOnDhB8eLF0Wg03LhxQ7+NpaUldevW1SdpZLxA3qa734eEhODl5QVAUFAQnp6exMTEAOgXXQeYP3++PvEu343c4917QenSpdmzZw+1a9fmwIED/PbbbwA0bdqUPn36UK5cuSz3ApFzxcTEcOXKFcLDw4H/O9aVK1fGyMgIpVJJ1apVJfEu3kuj0WT5t7m5Oenp6fj7+9OnTx9sbW1ZunQparWahISE3y24LIn3nOHGjRscO3YMT09P+vXrR6FChdi0aRP+/v4sXbqUJk2asHPnTt68ecOFCxd48OCBJN7zkcwPyTQaDR4eHtSpU4e5c+dy8eJFmjdvzrRp0/jqq69ITU2lUaNG7N27FxMTE331BPFh6e7lus++WbNmTJ48mYYNG7J8+XIePHig33bGjBnY29tTp04dOVbvkJHv4oOJiYlhxIgR9O/fn969e3PhwgXmzJlDWloaGzZsoF69eiQkJGBmZoaJiQkKhUJGuuZDbm5uPHv2TL/o7qFDh6hUqRITJkwgOTmZJUuWUKRIERYsWGDoUMW/8OTJE33HvEuXLtSoUYODBw8ydepUxo4dS7t27fD39+fVq1ds3LhRZjXkQb/88gsNGzZEq9Wya9cufvnlF5YuXUpERIR+NtRXX31Fs2bNOHToEOvXr2fXrl1UrFjR0KGLD+D58+fY29szZswYWrduTWxsLBMnTqRFixZMmjRJPwI+83VBRkHlHpkXV96yZQsRERGUK1eOtm3bUqJECYYNG0apUqVwcXGhXr16QNbF+kTO8Uf3ZhcXFwoUKMCkSZMoV64c8HZ6+q+//sqyZcswMzOT81X8ju77FB4ezo0bNzAzM6Ndu3bs3r2b9evXU7x4cf1aAdOmTePZs2ds375dEu45TFpaGmZmZmzatIk1a9ZQoUIFjh49ikKh4Pz584waNQoHBwfc3d31SViVSiXlxPIJ3XkeGRlJaGgoxYoVo379+mRkZDBy5EjevHnDlClT+OSTT3j16lWWUkTSHzSMzO22gIAAXr9+jZmZGY6Ojty5c4dNmzahUqmYOXOmDJT4C5J8F/+pzBfJ8PBwpkyZQkBAAKmpqUyePJmvvvqK7777Tj/6/fPPP6dIkSKAdKbzK900pvnz51OxYkV27tzJ8ePHqVy5MuPGjUOtVlO8eHFpbOcSqampHDx4kC5duvD69Wvs7e35+OOPefz4Ma9fv6Zv376MGjWK4OBgvLy8KFOmDKampuzYsUOmFuZBgwcPpnr16syePZuFCxfi7+/PhAkTGDVqFABhYWGsWLGCBw8eYGlpiVqtZtGiRbJITz5y8uRJfHx8CAwM1J//T58+pWvXrvTo0YNx48bpE/Aid9JoNPTq1Yvy5ctTpkwZQkNDSU9Px9nZmQYNGjBixAgKFizI1KlTqV27ttwHcqDMnfGlS5eSkJBAVFQUY8eO5fbt23z//fckJibSunVrEhISCAoKYvv27dSsWdPQoYsc7N69e/Tt25cqVaoQGhrK8OHDGT9+PKtWreLKlSu8efMGa2tr4uLiCAgIwMTERErN5CAuLi40aNAAZ2dn/Pz8OHnyJKamptSuXZshQ4ZQvHhxzp8/z7hx4+jSpQvu7u5YWlrKNT6f0J2rISEhODk5UaFCBW7evMnMmTMZOHAgarUaZ2dn4uPjUavVVK9enSVLlhg67HxNd25mbrfpSkm9efOGHTt28OrVKzZt2kRMTAxLly6VwVJ/QoYUi/+Mbvp4WFgY58+fx8bGBhsbG1JTUxk6dCg1atSge/fuhIeH8+uvv3L27Fm6d++u319uwvlH5oZznTp1iI+PZ/v27cyePZv+/ftjbGzMjh072L9/P8OGDfvdPiLnOnLkCN7e3kRHR/Pw4UPGjBnDwIEDAfDx8WHPnj1UqVKFnj176uvFVa5cGaVSKTNf8piff/6ZqKgo3Nzc2Lx5M0OGDOG3337j8OHD9O3bl2LFilGjRg2WLl3K69evUalUWFlZ/W5auchb3tfpTkhIIDY2lmLFiqFSqbCxsaFVq1bs3LkTgDlz5hgiVJFNli1bRsWKFVm5ciXwdnDGjh072L59Oy1btmT58uW4u7tTvHhxQNqDOZEu8d6rVy8qVqxIvXr1iI+PZ/z48UyYMIEBAwZw8eJFLly4QKVKldixYwc1atQwdNgiB9I9yNFqtfj7+zN58mT69evHiRMn+PrrrzEyMmL8+PFERUXp+5NNmjTByMhI2ok5zNSpU6lYsSK7d++mdevWODg44Ovry+nTp/UPWNu0acPGjRuZNGkSEydOxNLSUq7x+YRSqeTp06eMHTsWV1dX7OzsWLFiBQsWLECtVuPg4MDmzZvZtGkTr1+/ZsqUKYYOOd/TnZvz5s3D2tqaNWvWAJCUlMSECRMYOXIkBw4coG/fvhw+fBgTExNDhpvjyd1K/GeUSiWRkZFMmzYNe3t7vvzyS1q1asXTp08pVKgQCxcuBODx48dMnz6dzp076+u2yk04b0tOTubUqVN07tyZly9f4uzszLBhw6hZsyY1a9bEzc2NlStXcuPGDerVq0fv3r0pXrw4dnZ2+t8hiffcwd7enri4OE6fPk1UVJR+IT0AJycnHj16xMaNG2nfvj1Vq1bVv6bRaKRDlYdotVrKlClDkSJFGDlyJNWqVWPEiBGsXbuWIUOGMGbMGDZt2kShQoX0/4m8T5d0SUpKwsjICHNzc2rWrElkZCQBAQGMGzdOPxW9TJkyTJ8+nWXLllGlShUGDx5s4OjFvxUZGUmlSpWAt9+BChUq0K1bNwYMGMDly5dp06YN27dvl05cDqVrp2/atIlSpUrpH6IAeHp6smTJEoKDg2ndujUZGRkolUpps4n30t0Dnjx5ws2bN4mPj6dhw4YYGRnRtm1bli5dytSpU0lKSmLq1Kn07t07y77STswZZsyYQdOmTenevTtPnz5lzpw5dO3alYULFzJ48GAyMjI4f/48Pj4+mJub06xZM77//nspNZOP6AbNHTt2jGbNmtG/f38iIyNRKpX06tWLb775BgsLC3r37s3o0aP1+8kDNsN4t8RPTEwM7du3B94uqKybnTh8+HBu3rxJmzZtaNKkCQULFjRUyLmCtIREttMtlpOQkMDMmTOxsLBgwIABaLVaChQoQFxcHD/++CPBwcGMGzeO0NBQOnbsqF9cVRLved+WLVtIT09HrVZjYmJC48aNOXLkCKNGjWLr1q2kpKRQokQJoqKi9Pt8/vnnKJXK3y3UJnIu3bEaMWIEHTt2RKVS8csvv/D69Wv9NnZ2dlhbW//uvJeOet6hWxypXLlypKeno9FoqFOnDo8fP6Z06dJs376d2NhYXFxcSEhIMHS44gPJPDvO1dWVvn374uvrS4UKFfDy8mLDhg18/fXXrF+/nvHjx3Px4kUcHBxwdHTk9u3bhg5f/E3vLqCo69C9fPmS5ORkfeeudu3aNG7cWN9xk852zrN//35SUlL09+vY2FjKly8PvB0FB2/X7SlQoAAnTpwA3h5HuZ+L99FqtRgZGXHv3j169erFxo0bOXbsGNu2bQPA1NSUtm3b4uXlhY+PDzt27Miyv9R+zjkKFSrEzJkzOX78ODY2NgQHB3Py5ElmzJiBWq1m2LBhfPrpp9y8eRMfHx8sLCwk8Z5P6Cpcx8fHA3D//n1KlixJRkYGY8aMoVSpUkydOpVSpUoxa9Ystm7dmmV/aQt8eBkZGfrZSFeuXOHu3btERUVx7tw5gCyDYqysrPT3eEm8/zX5NotspdVq9XWgdu3aRb169diwYQOnTp2iXbt2ALRo0YKuXbty6NAhLCws2L9/P8bGxrKIRj6gUqmIi4vD1dWVjIwMxo4dS6tWrZg7dy5xcXFcuHABPz8/qlSpwpkzZ7h//z5NmjShaNGi+t8h35HcQzctXalU4uDgQFpaGmfPnuXbb7+ldevWVKhQgcOHD0vDKg/TzWBIT09n2LBhtGzZkqZNm7J+/XpSUlLo378/tra2bN++ne7duzNp0iS8vb3lIWwep7suRERE4OjoiL29PampqWzevJk3b94wevRo9u3bh5+fHw8ePKBw4cIcOnQIgLi4OClFlEvoRqxptVoePnwIQOnSpenTpw9OTk5Ur16d9u3bU6FCBQICAnj8+DEVKlQApNRMTuPi4sKZM2c4evQoq1evxsLCgoyMDC5evAi87XTrFk20sbHRJ+WFeB/d7InExES2bdumnyUdEBDAsWPHmDt3LrNnz8bU1BQ7Ozu2b99O48aNDR22eIfuGj9t2jQSExOZOnUqRkZGtGvXDn9/fwYMGACAh4cHzs7OdO/eHWNjY1m3JR9RKBQkJCQwdOhQpk+fztixYzE1NcXb25vSpUszadIkAFq2bEmrVq2yzJAWH55Wq8XY2BiNRoO9vT0KhYKMjAxatGjB9evXWb9+PS4uLgB8++23JCUlUbZsWQNHnXvIgqsi2+iS59HR0Rw8eJDly5fj6upKcnIywcHBfPPNN3z66af67RMSEvSlBWRKUd6n1WpxdXUlISGBadOmYWtry9SpU4mIiKBbt2506dKFAgUK8Pz5c2JjY9m8eTNarZaVK1fKqKlcLnN9/o0bN/Ldd9/x+vVratWqRWxsrCyumkdlPp4zZ84kLS0NT09P4G2DzdfXl7p169KvXz9q1KhBVFQUqamp2NjYGDJs8YHExMSwYcMGSpUqhbOzM/B2ZO3KlSvp2bMnI0eOxNzcHHhbEzw5OZnLly+zbt06AgMDqVatmiHDF39Bd93XaDQMHToUtVpNREQExYoVw8PDg5cvXzJv3jxMTU2xtrbm0aNHrFmzhtq1axs6dPGOLVu2cPDgQdauXcuXX35Jx44dWb58Oc+fP2f06NFYWVmxdu1aFAoFx44dY8WKFezatQtra2tDhy5ysNjYWObOncvjx4+ZMWMGH3/8MYmJiRw8eJCjR49ia2vLjBkzsgy6kf5izqFr46nVagYNGkTVqlU5efIkSUlJLF26lI4dO3L79m2GDBnCxx9/zOLFi6WkYD4VHR2Nu7s7n376KQ4ODmg0GubOnYuRkRFz5szBzc2NiIgIAgICZM2vHGLUqFEUKFCA5cuXExsbi7m5Odu2bePy5ctERETQsGFDfv75Z9avXy/ttn9Aku8iW+huwCEhIbi6utK4cWOuXr2KRqPhiy++oEiRIuzdu5f58+fTsmXL9+4r8r7Q0FDc3NyoVKkSbm5uWFtb4+Hhwa1bt+jatSvdu3enQIEC+u0zr7AtCfjcLfMxDAgIYM2aNYwbN45+/frJoll53Pz58/nxxx8ZP348X331lf7nR48eZceOHVSsWJHhw4dLMjWPS0lJYePGjQwfPhwzMzPWrl1LYGAgnTp1Yt68efrr/b59+1i3bh3t27fH2dkZc3NzPDw8ePToERqNhjlz5lCrVi1D/znib9BqtQwcOJBy5cqxcOFCbt26xblz5/Dz82Pv3r1YWFgQEhKCQqGgdu3aMnoqB0pPT2fv3r0cPXqU169fY2VlxYsXL7CxsWHVqlXcvXuXRYsW8fjxY6pXr86bN2/w9PSUzrj4W9asWUNQUBAdO3Zk+PDhlCxZkqSkJA4dOoSfnx/29vYMGzbM0GGKP6EbyaxL0u3fv59ly5bh5eVFx44duXHjBmPGjGHv3r2ULl3a0OGKD+B91QwCAgJYuXIlBw8epFy5chw6dIivv/6aBg0akJSURHBwMCYmJtLnzwGSk5MZO3YskydPpnbt2vpZbSdPnuTx48dotVpsbGyoXbu2frai+Hsk0yGyhUKh4PXr10yaNIkBAwbg6OjIs2fP+PHHH9m8eTNffPEFPXv2xMXFhR07dlCvXr0s+4q8T61WY2try4oVK3B1dWXp0qV8/fXXzJgxg4ULF3LkyBGUSiVdu3bVJ+B1C/DKTTjny/wQ7X0P1HQjIJVKJQMHDqRAgQJ069ZNX8dfEu95x7vHv1q1aly4cIGDBw9ia2tLlSpVAPTrABw8eJAiRYoYKlzxgZw5c4aqVatiampKSkoKvXv35tWrV1y8eJGzZ8/y2WefAdCrVy9SU1P58ccfKVasGEqlkkmTJlGgQAHUarWMnMvhMne6w8LCMDY2ZtGiRZiYmNCkSROqV69OTEwMmzZtYvHixdJxy+FMTExo0aIFS5YsoWjRonh4eFCqVCkGDBjA5MmTWbVqFXv37uX8+fOUKFGCEiVKSIJNvJfu2pCWlkZaWhqFCxdm3LhxFC1alP3791OkSBHs7e0pVaoUXbp0oUSJEnz++eeGDlv8ifT0dOLj4xk4cCAARYsWZdiwYcTHxzN79mzgbVvv9OnTUuM9HzEyMiI8PJxff/2VLl26ADBw4EB+/PFHTp8+zaBBg+jatSuVKlUiMTGRjz/+WAZi5SCpqancuHGDGzduULt2bf0xef36Nd9//z1+fn6Sv/uXJKMlso2uIaUb2Vi+fHm++uorWrduzZ49e1CpVMyfP19Gw+RTuvrfVatWZfXq1Tx8+JClS5cSERHBzJkzqV27Nj4+Pvz4449Z9pOLe86nWyg5Ojqa+Pj4PzxmmRfM7dGjh/6hitTxzzt0i6vC28YbwIABA5g6dSovX75kz549PH78WL999+7dWbNmDSVLljREuOID6tSpE506dcLNzY358+dTsGBBXF1dad68OZs2beL06dP6bQcOHMjatWv114wSJUpQoEABSbzncLpFdDUaDffu3UOtVnP9+nUePHigf71IkSKUL1+e2NhYTExMDByx+DvUajVt27aldu3abNiwgXv37uHj40NYWBhjx45FrVbTpk0bateuLYl38V66a0NoaCijR49m6NChDB8+HF9fXwYNGkTnzp05d+4cwcHBREZGYmlpSfv27TEyMtK3G4XhvbuAdkpKCiqViidPngD/t7hm3bp1USgUeHh4kJiYKNf6fCYjI4NDhw7h5ubGmDFj8Pb2RqPRUL16dc6fP6/vJ9SrV48WLVroz3NJvOcMVlZWODo6snPnTi5cuKDvr6tUKiwtLUlLSzNwhLmXJN9FttFqtYSEhHD16lXgbWPd0tKSypUrU65cOU6ePImJiYk0pPIx3ejnzAl4T09PIiIicHd3p3///vrRjyJ3UKvVKJVKHj16RJ8+ffjtt9/+dPvMsxiuXbvG06dP/+sQxQeiazhrNBomTJiAq6srvXv3ZuvWrTRv3hxnZ2euXr1KUFCQPhkHYGlpacCoxYfy5MkTXrx4wWeffUZMTAyrVq3C3Nyc0aNHU716dTZv3szRo0f12+tmPsnDudwhIyMDpVKJVqulR48e+pGsTZs25dixY0RHR+uv/0qlklKlSqFSqZDqlzlflSpVWLZsGbNnzyYjI4OAgACePXuGj48Pv/zyCxMnTjR0iCKHUyqVPH36FCcnJz7++GNWrlxJ7dq1WbVqFd9//z1Dhw7lq6++IigoiMuXL2fZV+4BOUPma/yNGzd4/fo1hQsXpkuXLqxevZqzZ8+iUqkAiIiIYMiQIRw4cABLS0sZSJUP6HI7ugU7x4wZw/fff4+trS3Hjx+nf//+FC9enEuXLnHgwIHf7S/nec7Sr18/GjZsyPTp05kyZQpz5sxh3bp1uLq66tdjEv+c1HwX2WrFihVcuHCBiRMn6hdXnTVrFkWLFsXIyIiHDx/i4eEhN+J8Tld+5MGDB0yYMIGiRYvi5eWlHzH1vlpxIufRlRcJDw/n4MGDmJiYMHLkyL/cHmD79u34+vqyc+dOypQp86FCFv8xrVZL7969KV++POPHj+fcuXNs3LiRYcOGMXLkSI4cOcLq1avp2LEjY8aMkdFQ+YibmxvPnj0jMDCQffv2cejQISpVqsSECRNITk5myZIlFClShAULFhg6VPEvaTQatmzZwqNHj1i0aBEA3t7enD17Fmtraxo3bkxsbCy+vr74+flRs2ZNA0cs/qnw8HAWLFiAiYkJffr0oUqVKmg0GipWrGjo0EQOt2vXLkJCQpg7dy4APXv2pGHDhvTv35/o6Gg++eQT9u3bR/fu3aUPkMPo+m1qtZohQ4bw6tUrkpKScHd3p1OnTqxatYqtW7dSv359ihQpwsWLF9m5cycfffSRoUMXH4Cu3/7gwQMCAgJ4+PAhtWrVws7OjmbNmgGwevVqoqOjCQoKYsSIEUyePNnAUYu/kpiYyMWLFzl//jwVKlTgyy+/pGrVqoYOK1eT5LvIVtHR0axbt46jR4/SoEEDEhMTef36Nd9++y1nz57F29ub7du3S923PO7vJM91DbnQ0FA2b97M0qVLpbZ7LhQVFYWTkxMPHjxgzJgxjBs37r2L5WROvAcEBLB69Wq2bNlC3bp1DRG2yCbp6elZEuhXrlxh8+bNbNmyBXj78PXevXt4enry9OlTWrZsyYEDB2jcuLHUes5nfvrpJ9atW8f8+fOpWLEiO3fu5Pjx41SuXJlx48ahVqspXry43AdysTNnzuDi4kK1atXw9vamXLlyABw4cIBr164REhJCpUqVGD58uCTec7Hw8HC+/vprypYti4eHBxYWFoYOSeQCXl5ehIWFsXbtWvr27UvlypVZvnw5w4YNo3LlysycOVO/rQzCyTl0bXqtVoubmxtqtRo3NzfWrFnDzz//jIuLC926dePixYv6WY1t2rShUqVKhg1cfFD37t3DwcGBvn37YmxsTGhoKK9evaJnz5706dMHeHte//bbb9SrV09KzIh8SZLvItulpqby66+/cuPGDSwtLRkwYAAAvr6+/PDDD6xatUq/oKbIWx49ekSlSpVQKBT6lbH/jDSuczeVSsWKFStQq9XExsbyww8/sHv3bmxsbLJs927ifdWqVfj4+Mj6D7lcWloax44do3v37sDbDtrp06dZvHgxp0+fxt3dnVu3brF//368vb25ePEigYGBhg1afFCZH8QlJyczcOBAGjZsqF+Ibc+ePezYsYNu3boxbNiw3+0jcrb3LY62f/9+3N3dcXNzY8CAAVkSs2lpaRgZGUmnOw+IiIjAyMiIsmXLGjoUkQPp2vfp6ekoFAqMjY05c+YMO3bs4Pnz59SvX5+lS5cCMGzYMNq2bcuAAQN+t2C7yDm8vb357bffWL58OWZmZgDMnz+fCxcuMG7cODp06CCD6/IplUqFu7s7NWrU0M+ADg8PZ/v27URERPDNN99gZWWV5fyWxVVFfiS9G5HtzM3N+eSTTxgxYgR16tQhICCANWvWsGHDBiZNmiSJ9zzMx8eHzp07ExYWxr59+/5yQY7MDeyXL1/+biEfkbOZmppSqVIljh07xrhx42jatCmOjo6Eh4frt5HEe9715MkTpk2bxuLFi3FxceG3336jQoUKWFtbM3jwYO7cucPhw4cxNjYmMTERW1tb1Gq11HjOw5KTkzl06BAajYbIyEi6devGgQMHCAkJoUCBAri5uXHr1i1u3LgBQO/evZkwYQJOTk763yGJ99zD2NgYtVpNYGAg3t7eJCQk0KNHD+bMmYOnpye7d+/WL7wMYGZmJp3tPMLa2loS7+K9MpegcHNzY+TIkZw7d44mTZpgampKWloadnZ2REREMGXKFF69eqUfGSuJ95xF11776aef+OGHHzh//jwhISH612fPno2dnR0eHh6cOnUKjUYjbbx8yMTEhBcvXugftms0GipUqED79u25cOECkZGRQNbzW9oCIj+SHo74z2i1WpKSkggODubVq1ds375dar/lUfHx8UyYMAEXFxfS0tLo2rUrGRkZmJmZkZGR8d59tFqtPsni6+vLwoULSUlJ+ZBhi39I93BEt6ASQN++falbty6HDh3im2++wcbGhuHDh/PkyRPg/xpau3fvxtPTE19fX0m85xE1atRgw4YN+Pr6EhYWRsOGDalZsybW1tbcvXuXgQMH8vLlS3x9fdm3bx/9+/fHyMhIOtd52JYtW0hPT0etVmNiYkLjxo05cuQIo0aNYuvWraSkpFCiRAmioqL0+3z++ef6WrIidzh9+jTx8fEA9OrVi6CgIHbt2kXHjh158OAB/fv3Z86cOXh5eeHr65vlniGEyNuMjIwICwtj0KBBlC1blq5du2JnZ0fhwoXx8vLiiy++wM/PjxkzZqBSqdi3b5/+QZ7IGXTHQtdea9asGZMnT6Zhw4YsX75cX14GYMaMGdjb21OnTh2USqW08fKBdwfLpaSkULBgQSIjI0lJSdH37+vVq0fjxo2lNJkQ/5+UnRH/ObVaLTfjPEylUtGvXz9atmzJyJEj6dChA1qtFhsbG3bu3An8fmrZu6OhV6xYgY+Pj9T/zgUiIyNZuHAhbdq0oVu3bpiZmbF7926+/fZb/Pz8SE9Pp1evXlSqVInVq1ej1Wp5/fo1Xl5eDBo0SB7A5QGZy4Ls27ePgIAA7t27x+DBg/n666/RarV88803PHr0iOjoaIoWLcrUqVPl2OdhKpWKuLg4SpcuTUZGBmPHjqVVq1YMGjSIuLg4Lly4gJ+fH1WqVOHQoUPY2NgQFBRE0aJFDR26+IfOnDmDh4cHPXv2JDExkfT0dGbOnMnr16+ZPn06N2/exNfXl6pVq+Lr68v69es5ceKEHGsh8gGtVkt6ejoTJ06kSZMmODk5ER0dzeLFi4mMjKRcuXJ4enqiUqlITU2lUKFCKBQKKUGRg+hmLmg0GgICAnj9+jVmZmY4Ojpy584dNm3ahEqlYubMmVSuXNnQ4YoPTPf9eP78OZcvX6Zq1arUq1ePU6dOMXHiRCZNmkTz5s356KOP+Prrr4mIiMDf319mNQqBJN+FEP+jp0+fMnDgQAYNGsSVK1cYMGAAjRo1wsHBAVNTU4KDg/9wX10ZEl9fX2rVqvUBoxb/Vnh4OJs3b+bw4cM0a9aMJk2aMHDgQHr06EG/fv1wcnJCpVJhZGSUpZ5/WlqavkakyL10HWStVotKpdIf0x9++IGRI0fSv39/ZsyYAUBsbKz+9YIFCxosZvHf0mq1uLq6kpCQwLRp07C1tWXq1KlERETQrVs3unTpQoECBXj+/DmxsbFs3rwZrVbLypUrpTOWiyQmJmJpaQnAhg0bOH/+POnp6Tg5OdG5c2fg7XV+/PjxhISE4O3tTY0aNYiPj6dw4cKGDF0I8YEtWLCAly9fUqdOHYKCgrC2tqZDhw4sXryY5cuX065dO/22Uuc959AdC41GQ69evShfvjxKpZKIiAjevHnDjh07ePXqFZs2bSImJoalS5dSsWJFQ4ctPhDd9yMkJIThw4dTpEgR4uLi6N+/P+PGjePQoUNs3LiRpKQkrK2tUavV7NixAxMTE1nPRwgk+S6EyAazZ88mKCiITp06sWzZMgBCQkJwc3PD3NycPXv2cObMGerXr0/x4sUBqf+d2z169IhDhw5x6tQpzM3NKVSoEObm5ixbtgxzc3MUCoUsqJvH6I6nWq1mzJgxpKWlUbx4ccaMGUPlypU5e/Ysrq6uODo6UqFCBRQKBb179zZ02OIDCA0Nxc3NjUqVKuHm5oa1tTUeHh7cunWLrl270r179yzrvWTu4EtnLHeYN28ehQsXZuLEibx8+ZITJ06wceNGWrduzeTJkylRogTwdhbE0KFDiYmJ4eDBg5iYmEhiTYg8TNc2SEtLQ6lUYmJiwr59+9i/fz8lS5akdu3aDB8+HABnZ2eGDh3KJ598YuCoxZ+ZM2cOsbGxrFmzBoCkpCQmTJjAixcvOHDgABcvXuTw4cNMmjSJcuXKGTha8SHo2m2xsbF4eHjQoEEDBg8ezNatWzl69Cht2rRh9OjRxMTE8Pz5cxQKBfXr10epVMrMFiH+P0m+CyH+FV3SJC0tjenTpxMVFcX169dZsmQJXbp0ASAsLIxJkybx+PFjqlSpwoEDB1Aqlfj7++tHvEviPffSaDQoFAo2btzI7du3OXXqFFu2bKFVq1aGDk38RzQaDfb29lhbW2Nra8vJkycpWbIk06dPp3Llypw7d4558+ahUqnw8fGhRo0ahg5Z/McyL67n6upKlSpV+Prrr7G2tmbhwoXcvXuXrl270rVr1/cm4EXOl56ezvHjx1m+fDmvXr1i+PDhjB8/Hm9vb06ePImdnR29e/emVKlSwNsEfExMjCzIKUQep7v+h4WFsWTJEgoXLkyjRo0YPHgwAK9fv+bNmzeUKFGChQsXEhISwt69e2VgRg7z7mCZsWPH0r59e7p164ZKpcLU1JT79+8zfPhwVq5cSYMGDUhKSpJZjflMbGwsM2fOJDk5mbVr1+pnw/n4+HDkyBHs7Oywt7fPcu+XQRZC/B85E4QQ/5juRhodHc327duZNm0aO3bswMXFhalTp3L48GHg7YKMu3btYuXKlQQHB6NUKvn111/x9/eXxHseoFAoUCgUjB49Gi8vL8aPH09gYCDJycnIc928I/MiaKtWraJixYqsXr2awYMHY2NjQ1xcHB4eHoSHh2NnZ8e+ffs4fPiwJN7zCV1t2KpVq7J69WoePnzI0qVLiYiIYObMmdSuXRsfHx9+/PHHLPtJ4j33MDExoWXLlqhUKpRKJebm5sDbUayfffYZ586dY9++fbx48QIAU1NTSbwLkcdptdosi6tWrlwZjUZDYGCgfsR0TEwM06dPp2/fvjx9+pSgoCD9DDqRM2RkZGBkZIRWq+XKlSvcvXuXqKgozp07B7y9ngOUKVMGKysrfSJVEu/5h65PFxUVRYECBbh8+TIhISH6152cnOjSpQv79+/n4sWLWfaVxLsQ/0dGvgsh/hHd6IjIyEh27drFoUOHcHBwYNCgQZiYmLB27Vo2bNjA0qVL6dSp03t/R1RUlH6EnMjdMo9ePXPmDDt27MDb2xsTExMDRyayk1arZffu3Vy4cIGOHTvSqVMnpk+fjqmpKU2aNGHOnDkUK1YMT09PGjZsaOhwhQHoHsrqRsBXrVoVNzc3ypcvj5+fH4MHD5bRjrlM5tGQqampHD9+HK1Wy5o1a+jYsSOTJ08GYNOmTQQHB9O7d2+cnJzkOAuRTyQmJjJixAi+/PJLHB0dOX/+PFu2bCEhIYEvv/yS0aNH8/jxY1QqFdWqVZMSFDlM5hJw9vb2+sVvW7RowfXr17Gzs8PFxQWA3bt3s23bNvz9/SlZsqSBIxcfgq5dl7ktEBMTw7x587h16xbLli3L0uY/evQoX375pbQBhPgDcucTQvxtulEuISEhjB8/nqZNm2Jqasrx48dJSkrC2dmZsWPHolAomDx5MsWKFaNFixb6/XU3cUm85x2ZR6/eunWL0NBQkpKSKFq0qOGCEtnu+++/59ixY1SoUIHy5cuzatUqbt68yeHDh0lLS2P37t1YW1tTpEgRQ4cqDESpVGYZAT9hwgSmT5+Ol5cXjo6OwO+ntoucK/PiysePH6dcuXK0b98ec3NzEhIS8PHxQalUMnHiRAYPHoyZmRnt2rWT4ytEPpKQkEB8fDyDBg0iOTkZf39/7OzsePHiBVu2bOHevXssX75cv71Go5HEew6ia8O7uLhQqVIlli9fTmxsLObm5mzbto0ff/yRoKAgGjZsyM8//8z69esl8Z5PZC4puHv3bpKSkihcuDBjxoxhxowZrFy5kqlTp+Lp6Un9+vUB6NixY5Z9hRBZyd1PCPG3KRQKkpKSmD17Nj179mTkyJEkJSWxZ88eLl++zNatWxk+fDhjxoyhdOnSNGvWLMv+MvUs79JoNNSuXZtt27ZJ4j0PeLfhXLFiRdLT06lZsyYNGjRgy5YtTJgwAYCdO3cCMG3aNEm+53F/1aHKnID38vJi8+bNWTrq0hnLHdRqNcbGxmg0Gnr16kVqaiqxsbH06dOHQYMG0a9fP5RKJRs2bODs2bMYGxsTEBCAhYWFoUMXQvyH3l2rw9LSkurVqxMXF8eECRMoX748w4YN4+jRo9y5cweFQpHlviH9gJwnOTkZlUrFuHHjgLfH1NTUFFtbW8zMzNBqtdjY2DBp0iQqVKhg4GjFh6JLvA8aNAh7e3tKlizJDz/8QPv27Tl69CgjR45k48aNODo6EhQURPXq1bPsK4T4PUm+CyH+UubGdkZGBsnJyXz66afA25p/AwYM4MmTJ/j7+6NUKnFycsLe3l6/vYxyyfuUSiVt27Y1dBgim+jqf65bt47evXtTqVIlnJ2dmT59OvXq1aN48eIsWLCAS5cuceDAAfz9/SXxnoc9evSISpUqYWRkpF987Y/opijb2tri5eX1AaMU2UV3/g8aNEj/IGXhwoWcOnUKjUaDo6MjvXv3pmzZspw5c4YBAwZI4l2IfEChUBAdHU18fDzx8fE0aNCAZcuWER4ejlqtZunSpQCcPXuWhg0bMmXKFEAWXczJUlNTuXHjBjdu3KB27dr6Ptvr16/5/vvv8fPzkzVa8hmNRoNWq2Xz5s306NGDyZMno1arOXbsGG3btiUhIYFy5coxatQoKleuTJUqVQwdshC5gtwFhRB/Sq1Wo1AoiIuL4/79+6SmplK6dGn27Nmj38bU1JR27dpRuHBhfvrpJ7Zs2UJ6ejogo1yEyK127tzJ2rVrcXBw4NChQ5QuXZr+/fvrR7506NCB+Ph4AgICqFmzpqHDFf8hHx8fOnfuTFhYGPv27SMtLe1Pt8/cUX/58iUajea/DlFkE91SUBcuXMDCwkL/AMXExISKFSty8uRJ/Pz8ePLkCZ9//jkLFiygVq1ahgxZCPEfUqlUPHjwAID79+8zYMAApk+fzuDBg5k8eTLh4eGYmJgQGRnJ1KlTmTBhAmFhYfrZcVqtVvoCOZiVlRWOjo7s3LmTCxcu6I+VSqXC0tLyL+/3Iu/QLYSsW4Q3NjaWJk2aANCzZ0+qVKnCggULmDRpEkePHqVSpUqMHDlSFlEW4m+SO6EQ4g9pNBqMjIwIDQ3FwcGBcePG4enpiZ2dHU+ePGH16tX6RtmJEydo1qwZderU4erVq6xZs4b09HRpcAuRS7zbcO7duzfNmzcnKSmJM2fO4O3tzQ8//MDt27epU6cO06ZNw8PDA1tbWwNFLP5r8fHxTJgwARcXF9LS0ujatSsZGRmYmZmRkZHx3n0yJ1p8fX1ZuHAhKSkpHzJs8S/ozn/dg5OUlBSioqIAmDx5Mo8ePWLjxo1Uq1aN3bt3s3r1ajmuQuRxWq2WyZMn4+HhwbVr15g5cyZDhw5ly5Yt7N+/nzt37uDl5YWFhQWjRo3Sz4zau3cvxsbG+gE8Imfr168fDRs2ZPr06UyZMoU5c+awbt06XF1dMTc3N3R44gPQret29+5dHBwcSEtLo1ChQvj4+GBvb0/dunXx8vJCoVCQnp6OjY1Nlv2l1IwQf02h1Q1xEUKI9wgPD6dPnz64uLhgb2+PhYUFly5d4vTp00RERPDbb79Rq1YtoqOjOXjwIAAeHh5ERETg4eGBlZWVgf8CIcTfpdVqOXr0KJUrV6ZWrVpcvHiRc+fO6Ue2rlu3jmfPnjFw4EBmzZr1u/qvIu9QqVT069ePli1bMnLkSDp06KCv/aqr8/9uWbHM34eAgABWrFiBj48PdevWNcjfIP4eXU1mjUbD0aNHMTY2JiEhgc6dO3P58mUWL17M8ePHAZg3bx7m5uYMHTpUFt4TIh8IDQ1lypQplC9fHrVazfr16zExMQHezmzq0KEDc+bMoXv37ln2k7KTuUtiYiIXL17k/PnzVKhQgS+//JKqVasaOizxAejabrGxsUyYMIFWrVrh7OzM1atXWbRoEXFxcZw9exYAd3d37t+/z65duyThLsQ/JHdEIcSfunz5Mu3bt2fw4MHcunULd3d3zM3NuXv3Ll5eXvTv35+iRYtSp04d/T6TJk0iJSVFEu9C5DL3799n48aNFChQgN69e9O0aVNiYmIwNjama9eufPzxx2zZsgUHBwcASbznYS9evODVq1dYWlri6urK3LlzadSoEQ4ODvTs2ZPg4ODfJVYyJ95XrVqFn5+flCTJ4U6ePEn79u31i6uam5uTnp7O48ePiYuLo0GDBpQqVYro6GhOnz7NxYsX8fHxkcS7EPmAbv2OlStXMmnSJB49esSNGzdo3LgxGRkZlC5dmrZt2+pnyehotVpJvOcylpaWdOjQgQ4dOhg6FPGBKRQKXr9+jbu7O8+fP6dVq1YA1K1bl6FDhxIcHEyrVq2oUaMG6enpBAYG6kvNSAJeiL9PRr4LIf7U+fPnGTVqFE2aNCEuLo5q1arh4eHBggULMDMzY968efptddNLpdSMELlXbGwsp0+fxsvLi969e+s721u2bMHW1lYWTstHZs+eTVBQEJ06dWLZsmUAhISE4Obmhrm5OXv27OHMmTPUr1+f4sWLA/+XePfx8aF27dqGDF/8hVu3bmFvb8/o0aMpX748165dY/HixcTFxfHLL78wYcIE6tWrB0B6ejrPnj1j48aNWR62CyHyNt09/+nTp7i4uFC/fn1Gjx6NtbU1AEOHDqV169Y4OjoaNlAhxP9k48aN7Nq1izZt2jB69GjKlCmDWq1GqVRy9epVSpYsScWKFVEqlTKzRYh/QZLvQog/pVKpOHz4MImJidjY2PDZZ58Bb2vAlilTBjc3NwNHKIT4Lzx+/JgDBw4QGRnJwYMHGTx4MFOnTsXIyEhGvOdhukRLWloa06dPJyoqiuvXr7NkyRK6dOkCQFhYGJMmTeLx48dUqVKFAwcOoFQq8ff3Z9WqVfj6+kriPZc4ceIEbm5ulCpVikGDBjFkyBD9aLY9e/Zw7NgxBgwYQKFChbC2tqZ8+fKGDlkI8YHp7gv379/H1dWV0qVLY2NjQ2JiImFhYezfv18ScULkUpkH1WzdupVjx47x2WefYW9vT+nSpf90eyHE3yd3SSHEnzI1NaVXr15otVrOnTtHYGAgV69e5d69eyxevNjQ4Qkh/iOVKlVi9OjRpKWlYWVlRZ8+faRzncfpOlTR0dEEBwczbdo0SpYsydq1a5k6dSoAXbp0oUaNGuzatYvLly9jZ2eHUqnk119/xd/fXxLvucwXX3yBiYkJkyZNIjQ0FEDfqS5ZsiSpqam0aNGCAgUKGDJMIYQBKZVKNBoN1apVY+3atbi5uXHs2DFcXV1ZsmSJfnFVKUEhRO6jO7+VSiXDhg1DrVZz6tQpFAoFvXr1+l0CXhLvQvw70osWQvwt6enphIaG8sMPP1C5cmX279+PiYmJTDsTIg8zMzPDzMxMn3gVeZcucRIZGcmuXbs4dOgQJiYmDBo0iLFjxwIwbdo0lEolnTp1wtLSknbt2un3b9CgAX5+fpQqVcpQf4L4lz777DM8PT0ZP3481atXx8nJCYCIiAj9QqxCiLztr5LnugRdlSpVWLJkCRs2bGDAgAEolUpJvAuRy2VOwDs7O6NQKNi1axdlypShZ8+ehg5PiDxBys4IIf62d6eZSeJdCCFyP61Wi0KhICQkhPHjx9O0aVOuXr1KsWLFaNWqFc7OzpiamrJu3TrWrFnDtm3baNGihX5/mYKcNxw/fpzJkydTsWJFmjdvznfffcemTZtkJoMQedijR4+oVKkSCoUClUqFqanpn24viXYhciddW+/d/88sc3vu4MGDdO7cWc53IbKJJN+FEP/KH920hRBC5D5JSUk4OTnRtm1bRo4cSVJSEnv27OHy5cvUr1+f4cOHY2Jiwt69e+nevbs8eM2jzp8/z8iRI+nZsydTpkzBysrK0CEJIf5Ds2fP5vr166xYsYLr16/Ts2dPzMzM/nD7zMm5ly9fUrJkSXn4KkQOl7msoKmpKYULF/7DbeUBmxD/DblTCiH+FUm8CyFE7pZ5/EVGRgbJycl8+umnABQsWJABAwZQtmxZ/P392bZtGyqVCnt7e4yNjcnIyDBU2OI/1KZNGzZt2sSwYcMk8S5EHhYfH8+ECRNwcXEhLS2Nrl27kpGRgZmZ2R9e37VarT7R7uvry8KFC0lJSfmQYQsh/iG1Wo1SqeTRo0f06dOH33777U+3z/ww7dq1azx9+vS/DlGIfEGS70IIIYQQ+YxarUahUBAXF8f9+/dJTU2ldOnS7NmzR7+Nqakp7dq1o3Dhwvz0009s2bKF9PR0QBbcysvatGlD1apVDR2GEOI/olKpcHR0pEKFClhaWpKamkrx4sU5evQowHsfsGae8RoQEMDatWtxdnamYMGCHzx+IcTfo9VqMTIyIjw8nG+//Za+ffvqB1n80fa683z79u24ubn9ZSkqIcTfIz0nIYQQQoh8RKPRYGRkRGhoKA4ODowbNw5PT0/s7Ox48uQJq1evJi0tDYATJ07QrFkz6tSpw9WrV1mzZg3p6emSfBdCiFzqxYsXvHr1CktLS1xdXZk7dy6HDx8mISFBv7jiu6XFMifeV61ahZ+fH3Xr1v3gsQsh/j6FQkFUVBSjRo1i7dq1qFQqgPcupP7uA7b169ezevVqypQp80FjFiKvkp6TEEIIIUQ+olQqCQ8Px9HRkT59+hAcHIyXlxfVqlWjSpUq3LlzBzs7O4YNG8avv/7KvHnzmDhxItWqVePevXskJCQY+k8QQgjxL9nY2PDZZ5+xYsUKihUrRrt27bCyssLLy4v09HR69+4NwJkzZ4iJidHvp0u8+/j4UKtWLUOFL4T4m1QqFT4+PrRs2ZLOnTsTGBjI06dPfzeA4t3E+6pVq9i2bZs8YBMiG8mCq0IIIYQQ+cyePXu4efMm8+fP59atW7i7u2Nubs7du3fx8vLCwsKCokWLUqdOHf3CWykpKaSkpEgtcCGEyIV0iy6mpaUxffp0oqKiuH79OkuWLKFLly4AhIWFMWnSJB4/fkyVKlU4cOAASqUSf39/Vq1aha+vL7Vr1zbwXyKE+Lt2797N2rVr8ff3Z9myZdy6dYvt27dToUIF4P2Jdx8fHznPhchmknwXQgghhMhnzp8/z6hRo2jSpAlxcXFUq1YNDw8PFixYgJmZGfPmzdNvq6sPL6VmhBAid9Il3qOjowkODqZHjx6ULFmStWvXsn79+iwJ+MTERC5fvoydnR3Gxsb8+uuvTJs2jWXLlklCTogcTHeeq1SqLLXaXVxc+Oijj3BycmLs2LFERkbi7e1NxYoV9dvs3r2bRYsWERgYKDNbhPgPSC9KCCGEECKfad68OQsXLqRdu3ZMnjyZlStXUrBgQdLT07G0tMyyrZGRkSTehRAil1Kr1SiVSiIjI9mxYwc7d+7kyJEjpKenM3bsWFxcXJg2bRrffvstAJaWlrRr105f971Bgwb4+flJ4l2IHE53nk+cOJGgoCD9+j1t2rTh6tWrWFpasnnzZszMzFi2bBnwduR7XFwcN27cYOfOnZJ4F+I/IiPfhRBCCCHyKa1Wy7lz54iMjOTq1avcu3eP/fv3Y2JiYujQhBBC/I90JSVCQkIYP348TZs25erVqxQrVoxWrVrh7OyMqakp69atY82aNWzbto0WLVro99eNpBVC5A7h4eFs3ryZw4cP06xZM5o0acLAgQPp0aMH/fr1w8nJCZVKhZGRkb6sIEBaWhpmZmYGjFyIvE2S70IIIYQQ+ZRKpWLbtm388MMPVK5cmVmzZmFiYkJGRoZ+1KMQQojcKykpCScnJ9q2bcvIkSNJSkpiz549XL58mfr16zN8+HBMTEzYu3cv3bt3l2u/EHnAo0ePOHToEKdOncLc3JxChQphbm7OsmXLMDc3R6FQoFarsyTghRD/HUm+CyGEEELkY++ObJTEuxBC5G6ZF1F88+YNAwcOZOnSpfqSEiqVikWLFnHixAkcHBxwcnLS14iWe4AQeYNGo0GhULBx40Zu377NqVOn2LJlC61atTJ0aELkOzKHTAghhBAiH8uceNdqtZJ0EUKIXEy3SHZcXBz3798nNTWV0qVLs2fPHv02pqamtGvXjsKFC/PTTz+xZcsW0tPTAaTMjBB5hEKhQKFQMHr0aLy8vBg/fjyBgYEkJycjY3CF+LDkziqEEEIIIQD0IyWFEELkPhqNBiMjI0JDQ3FwcGDcuHF4enpiZ2fHkydPWL16tX4RxhMnTtCsWTPq1KnD1atXWbNmDenp6ZJ8FyKPUCgU+iS7ubk5tra2pKSkYGJiIu09IT4wGdokhBBCCCGEEELkckqlkvDwcBwdHXFxccHe3h4LCwsuXbrEkydPuHPnDnZ2dtSqVYvo6GgOHjwIgIeHB/fu3SMhIQErKysD/xVCiOySOcl+69YtQkNDSUpKomjRooYLSoh8SGq+CyGEEEIIIYQQecCePXu4efMm8+fP59atW7i7u2Nubs7du3fx8vLCwsKCokWLUqdOHf1iiykpKaSkpEjiXYg8SqPRcPbsWcqXL0/NmjUNHY4Q+Y4k34UQQgghhBBCiDzg/PnzjBo1iiZNmhAXF0e1atXw8PBgwYIFmJmZMW/ePP22uvrwUmpGCCGE+O9I2RkhhBBCCCGEECIPaN68OQsXLiQxMREbGxs+++wzANLT0ylevHiWbXUj34UQQgjx35GR70IIIYQQQgghRB6i1Wo5d+4ckZGRXL16lXv37rF//35MTEwMHZoQQgiRr8j8MiGEEEIIIYQQIg9JT08nNDSUY8eOUahQIX3iPSMjw9ChCSGEEPmKjHwXQgghhBBCCCHyGI1Gk6Wee0ZGBsbGUnlWCCGE+JAk+S6EEEIIIYQQQuRhWq0WhUJh6DCEEEKIfEfKzgghhBBCCCGEEHmYJN6FEEIIw5DkuxBCCCGEEEIIIYQQQgiRzST5LoQQQgghhBBCCCGEEEJkM0m+CyGEEEIIIYQQQgghhBDZTJLvQgghhBBCCCGEEEIIIUQ2k+S7EEIIIYQQQgghhBBCCJHNJPkuhBBCCCGEEEIIIYQQQmQzSb4LIYQQQgjxLwUHB2Nra8u0adP+dLtp06Zha2tLcHDwB4rsw7py5Qq2trZ/+V+3bt0+WEx3797l5MmTH+z9hBBCCCGEeJexoQMQQgghhBBC5A3ly5enR48ef/h6iRIlPkgc58+fZ9SoUTg7O9O+ffsP8p5CCCGEEEK8S5LvQgghhBBCiGxRvnx5xo0bZ+gwiImJQaPRGDoMIYQQQgiRz0nZGSGEEEIIIYQQQgghhBAim0nyXQghhBBCCANJTU1l7dq1dOzYkbp169KkSRMcHR05f/7877a1tbWldevWv/t5REQEtra29O/fP8vPr169yvDhw2nVqhV169albdu2zJs3j6ioqN/9jhcvXjB79mzatGlDnTp1aN26NbNmzeLly5fZ98e+xz9534SEBNasWUP37t1p2LAhderUwc7ODnd3d549e6bfbvDgwbi7uwOwceNGbG1tuXLlCvDPPkNdPf/g4GAmTJhAvXr1aN68eZY68ocOHaJfv340bNiQhg0b0rdvXw4dOvS735+amsqyZcvo0qULDRo0oEmTJgwePJijR4/++w9PCCGEEELkeFJ2RgghhBBCCANISEhg8ODB3L17lxo1atC3b1/evHnDmTNncHZ2ZuLEiYwaNepf/e7r168zdOhQChcuTPv27bG0tOT27dsEBgZy8eJFDh8+jLm5OQD37t3DwcGBuLg47OzsqFq1Kk+fPmXv3r2cOXMGf39/KleunJ1/+j9+3+TkZPr168eDBw9o2bIlLVu2JDU1lR9//JHg4GAuXbrEsWPHsLCwoEePHhQqVIjTp0/TpEkTPvnkE8qXL/+v41y2bBkFCxZk0KBBhIWF0aBBAwDmzp3Lzp07KV++PF27dsXMzIwzZ87g5ubG7du39Q8AACZMmMDZs2dp1aoVrVu3JjExkePHjzNx4kQSEhLo27fv//RZCiGEEEKInEmS70IIIYQQQvyP7t69y5o1a/709Xd5eXlx9+5d+vbty+zZszE2fts0Dw8PZ9CgQaxcuZLmzZtTv379fxzP9u3bUalU7Ny5ExsbG/3PZ8yYwd69ezl16hSdO3cG4Ouvv+b169d4e3tnGRV+/vx5nJ2dcXd3Z9euXX/rfZ89e/aHn0P58uXp2bOn/t//5H137drF/fv3GTduHGPHjtVvq9FoGDBgAL/88gtXrlzBzs5O/x665Pv/WoM+JSWFw4cPY2Vlpf/ZqVOn2LlzJy1atGD9+vVYWFgAMHnyZIYPH46vry+tW7emZcuWhIWFcfbsWbp27Yqnp6f+dwwfPpyvvvqKbdu2SfJdCCGEECKPkuS7EEIIIYQQ/6OQkBBCQkL+9vYqlYpDhw5RuHBhZsyYoU+8A1SoUIEJEyYwbdo0du/e/a+S71qtFoBr165lSb5PnTqV8ePHU7JkSQBu3LjBnTt36NChw+/KsbRp04aWLVvyww8/8ODBA6pWrfqX7/vs2TPWrl373teaNWumT4z/0/dt0aIF8+fPp1OnTlm2VSqVNGvWjF9++YXY2Ni/jO/f+OSTT7Ik3gGCgoKAtw8zdIl3ADMzMyZOnEj//v3Zs2cPLVu21B+Lhw8fEhsbq/9dFSpU4NixY/pjIYQQQggh8h5JvgshhBBCCPE/6tGjB4sXL/7D16dNm8b+/fv1/378+DHJycm0atUKMzOz323fpEkT4P0j5v+Ofv36cerUKdzd3Vm7di2tWrWiRYsWtGzZklKlSum3u3nzJgAxMTHvHbGenJwMwO3bt/9W8r1Zs2bs2LHjL7f7p+9bs2ZNatasSVpaGjdu3ODx48eEh4cTGhrK5cuXAVCr1X/5vv9GhQoV/jD+b7/9FqUy6zJa6enpANy5cwd4W2e+adOmXL16lTZt2tC4cWNatGhB69atqVmz5n8SsxBCCCGEyBkk+S6EEEIIIcQHlpCQAEChQoXe+3rp0qWB/0tC/1MtW7YkICAAHx8fLl68yO7du9m9ezcmJiZ07dqVmTNnUqBAAeLj44G3i7NevXr1D3/fmzdv/lUcf+Sfvq9KpWLt2rUEBgbqP7vChQtTt25dqlevzrVr17I1vsx0tfEz08W/fv36P9wv82e2efNmfHx8OHLkCJcuXeLSpUssW7aMSpUqMX36dNq0aZP9gQshhBBCCIOT5LsQQgghhBAfmKWlJQAvX7587+u65G6xYsWy/Fyj0fxu25SUlPf+jkaNGtGoUSNUKhU3btzg4sWLHDhwgH379qFUKlm4cCEFCxYEYMqUKYwYMeJf/z3/1D99X09PT/z8/GjRogVOTk7Y2trqH1B4eXn9o+T7P/kM/0jBggVRqVT88ssvKBSKv9zewsICFxcXXFxcePHiBZcvX+bUqVOcPHmSMWPG8N1332Ftbf2PYhBCCCGEEDmf8q83EUIIIYQQQmSnKlWqYGFhQVhYmD7RntmVK1cAqFGjhv5nJiYmJCUl/W7bJ0+eZPm3RqPB29ubFStWAGBqakqTJk2YMGECgYGBAPrR5rVq1QLe1mB/n4CAANauXUtERMQ//RP/1D993wMHDmBmZsaGDRto3bq1PvEOcP/+feD/6twDf5gQ/7uf4V/56KOPSElJISws7HevPX/+nG+++YaDBw8C8Ouvv7J48WJ+/fVXAMqUKUP37t1Zu3YtPXv2JD09nV9++eUfvb8QQgghhMgdJPkuhBBCCCHEB6Yr/5KYmMiiRYvIyMjQvxYREcGKFStQKBR0795d//OqVauSnJysT8zD27I0mzdvzvK7lUolZ86cYdOmTb8bER4eHg6gH2XdqFEjqlSpwsmTJzl58mSWba9fv86iRYvw9fX93Qj8/9U/fV8zMzMyMjJ4/fp1lm2PHDnCuXPngP+rtQ7oF7DN/LnC3/8M/4q9vT0ACxYsIDExUf9ztVrN/Pnz2b59O8+ePQMgMTERHx8f1qxZk2XUvVar1W/zvrryQgghhBAi95OyM0IIIYQQQhiAm5sbv/zyC8HBwdy6dYuPP/6Y+Ph4zpw5Q0JCAuPHj6dRo0b67QcOHMisWbMYPXo0nTt3xtzcnFOnTlG0aFF9GRudKVOm4OjoiKOjI+3bt8fa2poXL15w4sQJzM3NGT9+PPA2Ue/p6YmTkxNjx46lVatW2NraEhkZycmTJ9FqtSxatEhfJia7/NP37dWrFxs3bsTe3p4OHTpgYmLCjRs3uHbtGiVKlCA6OjpLYr5s2bIA+tHn3bp1o0aNGv/oM/wzXbp00Zfx6dixI23atKFgwYJ8//33PHjwgCZNmuDk5ARAixYtsLOz49y5c3Tp0oUWLVpgZGTE5cuXuXv3Ll9++SUNGjTIng9WCCGEEELkKJJ8F0IIIYQQwgAKFSrErl272Lp1K8eOHWPXrl0ULFiQhg0b4ujoSMuWLbNs36dPHzQaDQEBAQQHB1O0aFE6dOjA+PHjadeuXZZtmzRpQmBgIN7e3vz666+cPHmSIkWK0LZtW0aPHk316tX129apU4fg4GA2bdrEhQsXuHLlClZWVtjZ2eHs7Ey9evX+k7//n7zvuHHjKFSoEMHBwezZswdLS0sqVKjArFmzsLOzo23btpw7d44xY8bo//4hQ4awf/9+/P39qVSpEjVq1PhHn+FfWbx4MR9//DFBQUEcOXIEeDuCfcqUKQwaNAgLCwvg7YOGlStX4u/vz+HDh9m/fz8ZGRlUrlwZd3d3Bg4cmE2fqBBCCCGEyGkU2szFEYUQQgghhBBCCCGEEEII8T+Tmu9CCCGEEEIIIYQQQgghRDaT5LsQQgghhBBCCCGEEEIIkc0k+S6EEEIIIYQQQgghhBBCZDNJvgshhBBCCCGEEEIIIYQQ2UyS70IIIYQQQgghhBBCCCFENpPkuxBCCCGEEEIIIYQQQgiRzST5LoQQQgghhBBCCCGEEEJkM0m+CyGEEEIIIYQQQgghhBDZTJLvQgghhBBCCCGEEEIIIUQ2k+S7EEIIIYQQQgghhBBCCJHNJPkuhBBCCCGEEEIIIYQQQmQzSb4LIYQQQgghhBBCCCGEENns/wFwmUGY3x5N6QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "inf_coefs = list(zip(coefficients[\"Feature\"], coefficients[\"Coefficient\"]))\n", - "inf_coefs.sort(key=lambda x: abs(x[1]), reverse=True) # Sort coefficients by absolute value\n", - "\n", - "# Create a color palette with the specified color\n", - "color = \"#589aff\"\n", - "colors = [color if coef[1] > 0 else \"lightgray\" for coef in inf_coefs]\n", - "\n", - "# Create the bar plot\n", - "fig, ax = plt.subplots(figsize=(18, 8))\n", - "ax = sns.barplot(x=[x[0] for x in inf_coefs], y=[x[1] for x in inf_coefs], palette=colors)\n", - "plt.xticks(rotation=45)\n", - "ax.set_ylabel(\"Price Coefficients\", fontsize=15)\n", - "ax.set_xlabel(\"House Features\", fontsize=15)\n", - "ax.set_title(\"House Features and Sale Prices\", fontsize=20);\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The model identifies the main factors that affect house prices, giving useful advice to real estate companies when they help customers. It's not perfect, but it does an okay job with a 63.1% score. We still need to check if it can predict prices well. However, the model does its job by helping with decisions and making marketing better by using details about houses and the market.\n", - "\n", - "We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation.\n", - "\n", - "\n", - "Addressing negative correlations in house prices, such as with the year built, is crucial. Older properties often have lower prices due to depreciation and maintenance issues. However, strategic renovations, updates, and modernization efforts offer opportunities to increase their value. Homeowners and investors can enhance the appeal and value of older properties in the market by undertaking such initiatives." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# RESIDUALS" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqsAAAIdCAYAAAAaiDSZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5oElEQVR4nO3deXwTdf4/8Nck6UVBWwpCq6g/Vg6vFShIEQUVYa0UpMgu6oIH9yG6RUCUCgLFdUFAQQERWL/rhd9FKhjFGxcXKSDrV1fXG4+FcrUc0tIryfz+mE6aNJNkJpkkM8nr+Xjw0KST5DP5ZCbvfOb9eX8EURRFEBEREREZkCXWDSAiIiIi8ofBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIoopr0RCRFgxWiSgujR49Gl26dPH617VrV+Tm5uL3v/893njjDd1fc/PmzejSpQsOHDjgd5sDBw6gS5cu2Lx5s+6vP3v2bFx//fVhPcf111/v875dfvnlGDhwIJYuXYq6ujqvbWfPnq3p+d9//3088MADYbWRiBKLLdYNICKKlEsuuQTz5s1z33Y6nTh8+DCee+45TJ8+Ha1atUK/fv10e71rr70Wr7zyCs455xzdnjMW+vfvjylTprhv19XVYffu3Vi1ahUOHjyIZcuWhfzczz33nA4tJKJEwmCViOJWy5Yt0a1bN5/7+/fvjz59+uDVV1/VNVht3bo1WrdurdvzxUrr1q193rfevXvj8OHD2Lx5M2bPnm36gJyIzINpAESUcJKTk5GUlORz/9///ncMHjwYl112Ga699lqsXLkSDofD/ffjx49jxowZ6Nu3Ly6//HLcfPPNeO2119x/V0oDeOeddzB06FD89re/RWFhIb7++muv19y9eze6dOmC3bt3e90/evRojB492n27trYWS5cuxaBBg3DZZZehR48euPvuu/HVV1/53c8vv/wSd955J3Jzc9G9e3fcdddd+Oyzz1S/T81ddtllEEURhw4dUvz76dOn8ec//xk33HADLr/8chQUFGDTpk1e+7Rnzx7s2bNHcZ+JiJRwZJWI4pYoil7BppwG8PTTT6O6uho333yz+2/PPPMMli9fjlGjRuHBBx/EV199hZUrV+LQoUN49NFHAQAzZ85EZWUl5s+fj/T0dGzduhUPPPAAsrOz0bt3b5/X/+CDD3Dvvfdi8ODBmDFjBr7++mvMnDkzpH2ZNWsW9u7di/vvvx/nn38+fvrpJzz55JMoKirCtm3bIAiC1/ZVVVUYN24cevfujRUrVqChoQGrV6/G2LFjsX37drRq1UpzG3788UcAQIcOHXz+Vltbi9tvvx0VFRWYNm0aOnTogPfeew9z5sxBRUUFJk2ahHnz5rn3f968ebjoootCeCeIKNEwWCWiuLV3715ceumlXvcJgoDOnTvjySefdE9GOn36NFavXo2RI0eiuLgYAHD11VcjIyMDxcXFuPvuu9GpUyfs2bMHU6ZMwQ033ABAujSekZEBq9Wq+PpPP/00Lr30UixduhQA3CkH8m216uvrUV1djYcffhg33XQTAODKK69EdXU1HnvsMRw7dsznsvz333+P48ePY/To0cjNzQUAdOzYERs3bkRVVVXAYLV5kF9ZWYkdO3Zg48aNyM/PV0x12Lx5M7799lu89NJL7te75ppr4HA4sGrVKtx666246KKL0LJlSwBQTM8gIlLCYJWI4tall16K+fPnAwCOHDmCJ598Eg0NDVi+fDl+85vfuLf79NNPUVNTg+uvv94rSJOD2Z07d6JTp07o3bs3Vq5cia+//hr9+/dHv379/M5sr62txZdffol7773X6/78/HzNwWpycjLWr18PADh69Ch+/vln7N+/H9u3bwcANDQ0+DymU6dOaN26NSZPnoz8/Hx3nu6sWbOCvt5rr73mld4AADabDQMHDsQjjzyi+Jg9e/bg3HPPdQeqsqFDh2LTpk347LPP0L9/fxV7S0TkLSGC1ePHj2PkyJEoKSlRvFSn5O2338bKlStx4MABtG3bFhMnTsSIESMi3FIi0lN6ejouv/xyAMDll1+O7t274+abb8aYMWNQWlrqHiE8efIkAGDChAmKz3P06FEAwPLly7FmzRps27YNb731FiwWC6666io88sgjPpfGT506BVEUfUYhQ52Y9NFHH+HRRx/F/v37kZ6eji5duiA9PR2Act3S9PR0vPjii1i9ejXefPNNbNy4EWlpaRg6dCjmzJmDlJQUv6913XXXYerUqQCkkei0tDSce+65SE1N9fuYU6dOoU2bNj73y/f9+uuvmvaXiEgW98Hqvn37MHv2bPzyyy+qH1NWVobZs2fjiSeeQL9+/bB7926MHz8enTt3xm9/+9sItpaIIikrKwtz587FtGnTsGjRIvcI51lnnQUAePzxx3HhhRf6PE4OuFq1aoWZM2di5syZ2L9/P95//32sWrUK8+fPx7p167wek5GRAYvFgoqKCq/75cBYJueaulwur/urq6vdwegvv/yCqVOnYsCAAXjmmWdw/vnnAwBefPFFfPTRR373t2PHjliyZAmcTic+//xzbNmyBS+//DLOO+88v4G53HY5yFfr7LPPxs8//+xz/7FjxwAAmZmZmp6PiEgW19UASktLMWPGDBQVFfn87eOPP8aIESPQs2dPDB48GFu3bnX/7bnnnsMdd9yB/v37QxAE5OXl4dVXX3V/QRCReQ0aNAjXXHMN7Ha7ezb6FVdcgaSkJBw5cgSXX365+19SUhKWLl2KAwcO4ODBg+jfvz/eeustAFIgOH78eFx11VU4fPiwz+ukpKSge/fueOedd7xGPj/44AOv7eQcTs8Z9qdOncIPP/zgvv3FF1+grq4OEydO9DoPyYGq0sjqW2+9hby8PBw7dgxWqxXdu3fHI488grPOOkuxveHq1asXDh48iH379nndv3XrViQlJbl/6Fsscf21Q0QRENcjq1dffTWGDBkCm83mFbB+/fXXmDx5MpYsWYIBAwbgs88+w5QpU5CZmYlrrrkGn3/+OXr37o0JEybgs88+Q/v27TFt2jR07tw5hntDRHp56KGHMHToUJSUlKC0tBSZmZkYN24cnnzySVRVVaF3797uHFdBENC1a1e0atUK7du3R0lJCaqqqnD++efjiy++wD/+8Q9MnDhR8XWmT5+OO++8E/fccw9GjhyJn376CatXr/bapkuXLsjOzsZTTz2FVq1awWKxYO3atUhLS3Nvc+mll8Jms2HJkiUYM2YM6uvrsXnzZnz44YcAgDNnzvi8do8ePeByuTB16lRMmDAB6enp2LZtG06fPo1Bgwbp92Y2Gj58OF566SXcc889uPfee9GhQwd88MEHePXVV3HPPfe4R6/POussfPrpp9i1axcuueQSnH322bq3hYjiS1z/xG3bti1sNt94fOPGjRgwYAAGDRoEq9WKHj164A9/+ANefPFFANKoxvr16zF58mTs3LkTU6dORVFRUVj1CYnIODp27IjRo0fj22+/xQsvvAAA+NOf/oTZs2fj3Xffxfjx47FkyRLk5ubihRdecM+cf+qpp3DNNdfgySefxJgxY/Dyyy/jnnvuced3NtezZ088++yzOHLkCO655x5s3LjRXQZLZrVasWLFCpxzzjmYPn06SkpKkJ+f7xVQXnDBBVi6dCmOHDmCyZMnY+7cuQCA559/HoIg4JNPPvF57XPOOQfr1q1Dq1atMGfOHEycOBFffvklVq5ciby8PF3eR09paWl4/vnncf3112PFihWYPHky9u3bh0WLFmHatGnu7f74xz8iKSkJ48ePx44dO3RvBxHFH0FUun4Uh7p06YK//e1v6N27N8aPH4+ysjKvCQZOpxPnn38+tmzZgu7du+OOO+7wGo2dMGECLrroIlUzaYmIiIhIH3GdBuBP+/btUVhYiAULFrjvO3r0qDvv6ze/+Q3q6+u9HuN0OhXzwoiIiIgocuI6DcCfESNGwG6345///CdcLhd++uknjBo1Chs2bAAA3HbbbXj55Zfx8ccfw+Vy4e2338bu3btRUFAQ45YTERERJZaEHFm94oorsGzZMixbtgz33Xcf0tLSUFBQgOnTpwMAbrnlFlgsFvz5z3/GgQMHcO6552L58uU+K+EQERERUWQlTM4qEREREZlPQqYBEBEREZE5MFglIiIiIsNisEpEREREhsVglYiIiIgMK26rAVRWnkYiTR0TBCArq1XC7bfZsJ/Mg31lDuwnc2A/mUM0+0l+LTXiNlgVRSTkAZGo+2027CfzYF+ZA/vJHNhP5mC0fmIaABEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWHZYt0AIiIiIgqf0wmUlVlx5IiAdu1E5OU5YbXGulXhY7BKREREZHJ2uw3FxSkoL2+6aJ6T40JJSR0KChwxbFn4mAZAREREZGJ2uw1jx6aivFzwuv/QIQFjx6bCbjf32CSDVSIiIiKTcjqB4uIUiCIAeAeroijdLi5OgdMZ/bbphcEqERERkUmVlVkbL/0Lin8XRQHl5RaUlZk3eZXBKhEREZFJHTmiHKSGup0RMVglIiIiMql27URdtzMiBqtEREREJpWX50ROjguCoByMCoKInBwX8vLMm7TKYJWIiIjIpKxWoKSkDgB8Alb5dklJnanrrTJYJSIiIjKxggIH1q+vRXa2d7CanS1i/fpa09dZNXfhLSIiIiJCQYED+fkOrmBFRERERMZktQJ9+5o3N9UfpgEQERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWEZOlh1Op0YPXo0Zs+eHeumEBEREVEMGDpYfeqpp/DJJ5/EuhlEREREFCOGDVZ37dqFd955B4MGDYp1U4iIiIgoRmyxboCSyspKzJkzB6tWrcJzzz0X0nMIgr5tMjp5fxNtv82G/WQe7CtzYD+ZA/vJHKLZT1pew3DBqsvlwsyZM3H33Xeja9euIT9PVlYrHVtlHom632bDfjIP9pU5sJ/Mgf1kDkbrJ8MFq8888wySk5MxevTosJ6nsvI0RFGnRpmAIEgfrkTbb7NhP5kH+8oc2E/mwH4yh2j2k/xaahguWN2yZQuOHj2Knj17AgBqa2sBAO+9956myVaiiIQ8IBJ1v82G/WQe7CtzYD+ZA/vJHIzWT4YLVt966y2v23LZqsceeywWzSEiIiKiGDJsNQAiIiIiIsONrDbHEVUiIiKixMWRVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwDBms7tq1C7///e/Ro0cP9O3bFwsXLkRtbW2sm0VEREREUWa4YPX48eOYOHEibrvtNnzyyScoLS3Fnj17sHbt2lg3jYiIiIiizBbrBjTXunVrfPzxx2jZsiVEUcTJkydRV1eH1q1bx7ppRERERBRlhgtWAaBly5YAgP79++PIkSPo2bMnhg8fruk5BCESLTMueX8Tbb/Nhv1kHuwrc2A/mQP7yRyi2U9aXkMQRVGMXFPCU1tbi1OnTmHGjBlISUnBunXrYt0kIiIiIooiQwerss8//xy///3vsWfPHpx99tmqHlNZeRrG3zP9CAKQldUq4fbbbNhP5sG+Mgf2kzmwn8whmv0kv5YahksD+Ne//oWHHnoIW7duRXJyMgCgvr4eSUlJSEtLU/08ooiEPCASdb/Nhv1kHuwrc2A/mQP7yRyM1k+GqwbQpUsX1NbWYunSpaivr8fBgwfxl7/8BSNGjHAHr0RERESUGAwXrKanp2PdunX47rvv0LdvX4wePRpXXXUVHnrooVg3jYiIiIiizHBpAABw0UUXYcOGDbFuBhERERHFmOFGVomIiIiIZIYcWSUiIjIqpxMoK7PiyBEB7dqJyMtzwmqNdauI4heDVSIiIpXsdhuKi1NQXt50YTInx4WSkjoUFDhi2DKi+MU0ACIiIhXsdhvGjk1Febn30juHDgkYOzYVdjvHf4gigcEqERFREE4nUFyc0lh70jtYFUXpdnFxCpzO6LeNKN4xWCUiIgqirMzaeOlfeUFzURRQXm5BWRmTV4n0xmCViIgoiCNHlIPUULcjIvUYrBIREQXRrp26tSfVbkdE6jFYJSIiCiIvz4mcHBcEQTkYFQQROTku5OUxaZVIbwxWiYiIgrBagZKSOgDwCVjl2yUlday3ShQBDFaJiIhUKChwYP36WmRnewer2dki1q+vZZ1VoghhUTgiIiKVCgocyM93cAUroihisEpERKSB1Qr07cvcVKJoYRoAERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGRaDVSIiIiIyLAarRERERGRYDFaJiIiIyLAYrBIRERGRYTFYJSIiIiLDYrBKRERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWCEFq1988QUA4Ndff8WSJUuwfv16OBwOXRtGRERERGTT+oDVq1dj3bp12LdvH0pKSvDFF1/AYrHg8OHDmDNnTiTaSEREREQJSnOwarfb8eKLL6K+vh5vv/02XnnlFbRt2xZDhw5lsEpERERkMk4nUFZmxdGjAjp3Bi6+GLAYKFFUc7B69OhRdO3aFbt27UKrVq3QtWtXAEBNTY3ujSMiIiKiyLHbbSguTkF5eVN0mpOTjpKSOhQUGCPFU3Pc3K5dO+zduxevvfYa+vTpA0Aabe3QoYNujfr6669x991348orr0Tfvn0xa9YsHD9+XLfnJyIiIkp0drsNY8emorxc8Lr/0CEBY8emwm7XPKYZEZqD1WnTpmHcuHH48MMPMXnyZOzatQsPPvggioqKdGlQbW0txo0bh+7du+Of//wn7HY7Tp48iYceekiX5yciIiJKdE4nUFycAlEEAO9gVRSl28XFKXA6o9+25jSHzL/73e9w7bXXAgBSUlJwzjnn4P3338c555yjS4PKy8vRtWtXTJ06FVarFcnJyRg5ciRmzZqly/MTERERJbqyMqvXpf/mRFFAebmAsjIr+vaNbcSqOljdu3dvwL///PPP6NWrV9gN6tixI9atW+d139tvv41LL71U0/MIQvBt4om8v4m232bDfjIP9pU5sJ/Mgf1kPEePquuMo0eFiPSbludUHayOHj06yIsK+Oqrr9S/sgqiKOKJJ57A9u3b8cILL2h6bFZWK13bYhaJut9mw34yD/aVObCfzIH9ZBydO6vdLg1t2kS2LcEIoihlKxhNVVUVHnzwQXz55ZdYvXo1unTpounxlZWnYcw9iwxBkE4CibbfZsN+Mg/2lTmwn8yB/WQ8TifQo0c6Dh0S3DmqngRBRE6OiH37qmG16v/68mdCjZCmedXU1ODUqVNwuVwAgIaGBnz77bcYOHBgKE/n45dffsH48eORk5ODTZs2oXXr1pqfQxSRkAdEou632bCfzIN9ZQ7sJ3NgPxmHxQKUlNRh7NhUCILoFbAKgtRJCxfWwWKJfZ9pDlZfffVVLFy4EHV1dV73Z2Vl6RKsnjp1CnfeeSfy8vKwaNEiWIxUlZaIiIgoThQUOLB+fW1jndWmYDUnR8TChcaps6o5WF2zZg3+9Kc/IT09HXv37sWdd96JJUuWoG/fvro0aPPmzSgvL8e2bdvw1ltvef3t008/1eU1iIiIiEgKWPPzHR4rWKXh4ourDbWCleac1W7duuHTTz/FwYMHMWPGDGzcuBHl5eW466678M4770SqnZpVVCRWXowgAG3atEq4/TYb9pN5sK/Mgf1kDuwnc4hmP8mvpYbmuDkrKwsNDQ3Izs7Gjz/+CADIyclBZWWl1qciIiIiIgpIc7D629/+FnPnzkVtbS0uvPBCvPzyyygtLUVGRkYEmkdEREREiUxzzuqDDz6I4uJiVFdXY+bMmZg0aRJqa2vx5z//ORLtIyIiIqIEpjlYPeecc7B27Vr3/5eVlaGhoQFpaWm6N46IiIiIEpvmYPW1117z+7dhw4aF0RQiIiIiIm+ag9UVK1Z43T516hRqamqQm5vLYJWIiIiIdKU5WP3ggw+8bouiiGeffRYnT57Uq01ERERERABCqAbQnCAIGDt2LLZs2aJHe4iIiIiI3HRZn+DHH3+EIAjBNyQiIiIi0kBzGsDo0aO9AtOGhgZ88803GDp0qK4NIyIiIiLSHKz27t3b67bFYsFdd92FG264QbdGEREREREBIQSr99xzTyTaQURERETkQ3Ww+uCDDwbdhqtYEREREZGeNE+wOnHiBLZu3YrTp08jIyMDdXV1sNvtqK+vj0T7iIiIiCiBqR5ZlUdNJ02ahBUrVmDAgAHuv/3zn//EmjVr9G8dERERESU0zSOru3fvxnXXXed1X58+ffDll1/q1igiIiKiUDmdwM6dVmzebMPOnVY4nbFuEYVDc7B67rnnYtu2bV73bd68GRdccIFujSIiIiIKhd1uQ25uOgoLW2DSpDQUFrZAbm467HbNc8rJIDT3XFFREe677z68+OKLyM7OxoEDB/Dtt98yDYCIiIhiym63YezYVIii9/2HDgkYOzYV69fXoqDAEZvGUcg0j6wOGDAAW7duxVVXXYX09HT0798fW7du9am/SkRERBQtTidQXJzSGKh6r6opitLt4uIUpgSYUEhj4h07dmS9VSIiIjKMsjIrysv9j8GJooDycgFlZVb07cuI1UxUB6tDhgzB66+/juuvv95ruVVP77//vm4NIyIiIlLryBHl2CTU7cg4VAerEyZMACCtYOUvWCUiIiKKhXbtxOAbadiOjEPTyCoADB8+3Ov+H374AS1btkS7du30bRkRERGRSnl5TuTkuHDokODOUfUkCCKys0Xk5TEFwGw0T7D617/+hWHDhgEANm7ciMGDB2PAgAF477339G4bERERkSpWK1BSUgdACkw9ybdLSupgtUa9aRQmzcHq0qVLce2110IURTzzzDN47LHH8NRTT+HJJ5+MRPuIiIiIVCkocGD9+lpkZ3sHq9nZIstWmZjmagD79+/HCy+8gP3796OiogI33XQTkpOTUVRUFIn2EREREalWUOBAfr4DZWVWHDkioF076dI/R1TNS3OwarVaUV1djR07dqBbt25ITk7GwYMH0bJly0i0j4iIiEgTqxUsTxVHNAerN9xwA0aNGoWDBw+iuLgY33//PaZOnYqCgoJItI+IiIiIEpjmYPXhhx/Gli1bkJqaiptuugk//fQTbr31Vtxxxx2RaB8RERERJbCQ0gCGDx+OU6dO4YsvvsAll1yCP/7xj7AyGYSIiIiIdKa5GkB1dTXuv/9+9O7dG6NGjcJPP/2EgQMHYv/+/ZFoHxERERElMM3B6uLFi3HmzBls27YNSUlJ6NChA6677josWrQoEu0jIiIdOZ3Azp1WbN5sw86dVjg5B4WIDE5zGsD27dvx+uuv4+yzz4YgCEhKSsLs2bPRr1+/SLSPiIh0YrfbUFycgvLypnGKnBwXSkrqWH+SiAxL88iqy+VCcnIyAEAURZ/7iIjIeOx2G8aOTUV5ufcylIcOCRg7NhV2u+axCyKiqNAcrObl5WHBggWoqamBIEgnvSeeeAJXXnml7o0jIqLwOZ1AcXEKpPEF72BVXkO9uDiFKQFEZEiag9UHH3wQP/zwA3r16oXTp0+je/fu2Lt3Lx544IFItI+IiMJUVmZtvPQvKP5dFAWUl1tQVsaqLszpJTKekEpXvfLKK/j3v/+NgwcPon379ujcuTOWLVuGhx9+OBJtJCKiMBw5ohykhrpdvGJOL5ExqR5Z/eqrrzBgwAD06dMHt956Ky644ALk5+ejRYsWGDlyJLZu3RrJdhIRGZqRR+TatRN13S4eMaeXyLhUB6uLFi1C586dsXr1arRs2RJr1qxBWVkZbrvtNrRq1QqlpaWRbCcRkWHZ7Tbk5qajsLAFJk1KQ2FhC+TmphsmwMnLcyInxwVBUA5GBUFETo4LeXkGirCjiDm9RMam+kz61Vdf4d1330Xr1q3RtWtXjBo1Cq+++ipGjRqFP/3pT7BYNKe/EhGFzemUcjKPHBHQrp2IvDwnormgnjwiJzaLA+URufXra2N+CdlqBUpK6jB2bCoEQXQHYADcAWxJSV1U3zcjacrpVSbl9AooK7Oib9/wItZYf16JzEh1hOlyudC6dWsAQPv27XH48GFMmjQJ06dPZ6BKRDER6xFNM43IFRQ4sH59LbKzvaPq7GzRHVAbOZUhkqKV0xvrzyuRWak+QuQyVbKkpCSMHj1a9wYREalhhBHNaI7I6aGgwIH8fIfiyF4iTy6KRk6vET6vRGYV8pBoUlISkpKS9GwLEZEqRhnRNOMse6sV6NvXieHDHejbtylQTeTJRZHO6TXK55XIrFSfgRwOB1577TX37YaGBq/bADBs2DCdmkVE5J9RRjTjYZZ9sEBKEEQUF6cgP98Rt7mVkc7pNcrnlcisVAerbdq0wYoVK9y3MzMzvW4LgsBglYiiwigjmvKI3KFDgleAIxMEEdnZoqFn2TOQksg5vVIqRFNfZmeLYadCGOXzSmRWqoPVDz74IJLtICJSzSgjmvEwy56BVJNAOb3hMMrnlcisOI2fiEzHSHVD1cyyNzIGUt48c3rz8pwoKwu/OoKRPq9EZhTfWfNEFJeMNqIZqRG5aIiHVIZI0LM6gtE+r0Rmw5FVIjIlo41oKs2yNwM5kALgM/InBVbAkCENKCtLnLqrkaiOYLTPK5GZCKLYvOpbfKioOO1Tzy6eCQLQpk2rhNtvs2E/6S9SKwIlWl8pjSRaLCJcrqaAzYh1V/XuJ6cTyM1NbwxU/Y8079tXHdLnzCgrWEW7HYl2PJlVNPtJfi01mAZARKYmj2hSeDxTGbZts2Ht2iS4XN7bJEIB+0hXRzDC5zWRF4Agc2IaABERAZACqbw8p8dl7sQrYB/v1RESfQEIMicGq0REccDpBHbuDH/metPIonIwJo0sWlBWZpKkXI3iuToCV9Iis+JPKCIik1O6rJuR4cKECQ0oKqrXlIsY7yOLwcRzdQQuAEFmxZFVIiIT83dZ9+RJCxYvTsEll6RrurQbzyOLagSrjgCYt8xUov8QIfNisEpE5Idel9YjJdBlXdmJEwLGjFGfi8gC9vFbZirRf4iQeTENgIhIgd1uw8MPAwcOtHDfZ7QZ08Eu60oEACKKi1OQn+8IOiLIAvYSMy/04E88pzhQfOPIKhFRM3a7DWPGpOLAAe/7jTZjWv3lWm2TouJ1ZFErsy704E88pzhQfDPGGZeIyCC8L617E0UBgqB+lDLStF6u1ZKLGI8ji9T0Q0SakNf0ecjOFg111YDIE4NVIiIPZpoxLV/W9bfaUnNag1sjFLAn/fGHCJkNg1UiIg9mmjHtmV8qrZyt3CbmIlJz/CFCZsKcVSIiD2abMS1f1s3M9D97H2AuIhGZF4NVIiIPZizdVFDgwH/+U41Zs+qQkeHy+luiTYoiovjDNAAiIg/epZvgNdHKyKOUViswY0Y9iorqmYtIpuF0wpSfV7O226wYrBIRNVNQ4MCGDbV4+OE0r/JVZpgxzVxEMgulZYKNVstYiVnbbWaCKCoVaDG/iorTiqVn4pUgAG3atEq4/TYb9lPooj2SIQhAZmYr2O1ncPgwR0+MiseUOTTvJ3mZ4Oarr8lXL4yaumLWdqsVzeNJfi1V2zJYjQ88YZsD+yk0sRjJYF+ZA/vJHDz7yeEAcnPT/ZZck6tX7NtXbagfh06nOduthVGDVUNPsDp+/DgGDhyI3bt3x7opRBQj8kiGZwFzwHirScUDpxPYudOKzZtt2LnTCmeMsgmM0g6KjKZaxsql1qRaxupXXIsWs7Y7Hhj2LL9v3z7Mnj0bv/zyS6ybQkQx4r2alPcXhNFWkzK7WIxeK6V2bNvGfMB4Z6Zaxp7M2u54YMiR1dLSUsyYMQNFRUWxbgoRxRBHMqIjFqPXdrsNubnpKCxsgUmT0lBY2AKXXJKOMWM4ih7vzFbLWGbWdscDQx75V199NYYMGQKbzRZywCok2A8beX8Tbb/Nhv2kzdGj6t6oo0cF3d/TROkrNaPXDz+cgptu0m/02nuSSpMTJ+TXV9+OROkns/Pspz59pFrGhw4JEEXl3M+cHBF9+jgN1a9mbbcW0TyetLyGIYPVtm3bhv0cWVnqknbjTaLut9mwn9Tp3Fntdmlo0yYybYj3vvrwQ6C83P/fRVHAwYMCvviiFQYMCP/1nE7g4YfhZ/KG/28vuR1ffdUK117r+/d476d4IffTypXAiBFQqGUMAAJWrBDQrp3x+tSs7dbKaMeTIYNVPVRWJtbMUEGQPlyJtt9mw37S5uKLgZyc9KAjGRdfXI2KCn1fO1H66ttvbQDSgm43YoQLy5eHnze6c6cVBw60CPnx335bg8sua2pDovST2TXvp379gA0bbJgzRzk/uV8/h+7HtB78tTs724XRoxtQUeHCli3mLXMXzeNJfi014jZYFUV/v9zjW6Lut9kYoZ+MvgKL3L4hQxrwzDPJEATRK2CV6xouXFgHiyVy76cR+iqSzjlH3c6dPClgzJjUsOtIHj4c3vXFc84RFfsj3vspXnj20+DBDtx4o0PxPGTkvmze7v37LXj++ST85S8p7m3MPinQaMdT3AarROSf0VdgUWqfFKw2bWOG1aTMIC8vcB5eEwFA+NUXQp18ItewzMtjHat4YtYV1+R22+02LFmS7BPYyZMCzb5IgFEYshoAEUWO0euW+mufywUAIiZMqEdp6Rns21fNLwEdWK1ASUld463AgaQe1Rfk4FgeGVd4FZ92yNuWlNQZavSfEluwyYmA9HfWCQ6f4YPVb775Br179451M4jigtFProHaB0gz/u12m+FSFsyuoMCB9etrkZGhbtQznDqSnsFx84BVvp2Z6X1/drYYsREqLkBAoWJpvehhGgBRAmk6uSqTTq4CysqsMbk0Z/T2xbOCAgfOOkvEiBHBJz+FW0dSDo6lVI+mL3o5tSM/XzmPUW9GT4chY+MiAdHDYJUogRj95Brr9nlOOmvfXkRBQURexue1jDLBrW/f4HUk9cobLShwBAxKI/1jxF+tV+YaklpcJCB6GKwSmZjWgMfoJ9dotU/tMp/nnQcsXGjD4MH6Bi1GHdGTL9GPHZvqt/qCnnmjsZpcw2V8SQ/BJidyUqB+DJ+zSkTKlJarzM1NDzhBKtjkFqluqStmJ9dotE/LMp8HDwJjxug76czoE9zkS/TZ2dHLG4025hqah5FzitXkX3NSoD4YrBKZUKgBj9FPrpFun7/3zf8yn9J/9Zp0ZqQJboGCgIICB/btq0Zp6RmsWVNj6OoLTqe0CpeWYCbW6SakTig/yKMtEX7cGYEgikYq+6qfiorEWs1EEIA2bVol3H6bjR795HQCubnpjQGX/0tP+/ZV+w3qjHoZWhaJ9gV734IpLT0T9iXrnTutKCwMPoFJj9cKxOj9r1ao+2GUfkgkWs993jnFvukoRgsEjZiDHopoxhLya6lhnJ8nRKSKHjPmg01uibVItC/Y+xaMHqNsRhjRi5eJReHsR6LlGpotkDJjTrFZFzcwCwarRCajV8ATy8ktar44w2mf0muEGwDqMeks1hPczBgEKAl3P6I9kSyW9BpFj2bAyxJ21BxzVolMJpoBj96TG6KRg+bvNfbvD+10p+eks1hPcIuXiUV67Eci5BrqNZkv2rmjRrgCQcbCkVUik4nWJUy98xqjcfk50GssWZKMzEwXTp5Uft+alvj0HGWT/qvXKFusR/TiJQjQaz+Mng4TDr1G0WORNmKEKxDx+JkwM46sEplMNGb0611eKRqz4NW8hiBIM/zVLvN53nnAhg36fhnHckQv1kGAXtS2r02b4NvJ6SbDhzvQt2/8BCV6jD7HqnpFLK9AmKECQSJisEpkQpEMeCLxBRWNy89qXuP4cQtmzapXfN82bKjFf/7TVK7ptdfO4McfEZHgMValoWKdhqCXYPshmzYt9nVrY0WP0edYpY3EqsSe0WsgJzIGq0QmFamAJxJfUNG4/Kz2sR07uvy+b1arFAi1ayfiyBEBH32EiNU8jcWIntHr7KoVaD88HT6cuEGGHqPosUwbifYVCCPVQCZfiXcEE8WRSMzoj8QXVChfnJFcStbf+6acp5tu2PqjoeTWyUGAtJ9NfZidLRp2P5XI+zFnTgoOHfL/w8osFQ70pkdueyyXP7Zao5tTzAoExsZglShG5BP0oUMCKisFZGU1fXnE8ks1El9QWr84Q5ncFe6Xs9nqj4YzAS6SQUA0J6cUFDhw9tkibrnFf4H/RA0y9JjMF43JnME+x9EqsRcvkw/jFdMAiGLAM4l/ypQ0PPxwKqZMMUYyfyTyGj0v2zbNum8iisCVVzqxZYsNjz+eHPWlZINdAhRFYPr0FHz0kTHWJg8nt04uR7Zli7TNzTfrl4YQi8kpFRUMMvwJ91J6rJY/jkWOaLxMPoxXXG41TnC5VXMQBGDHjlYYMUJUDIwkIgQhtssJyl8iABRHZEJt2/z5yXj66WT47rfY7L7mt5tePxJLyapdflPNc+nF3whlOMvtRnKZ1Vgtj/nxx1YMG8alUwMJd7Rbj89N8+8oPZaN1pPcnmCjyNFqT6wYdblVBqtxgsGqObhcQM+erXDggHIw1kRETk5sT4x6BzbBvpy0CBZ4BAr0lO7fvNmGSZPSVL22UvCl96XvQO99ZqYY0rr2kQwmYxl4yMfUwYNiQgcZkRbuZ7z5d5TaH4jR/JERqR/pZmLUYJU5q0RRVFZmxYEDQPBgLTp5doG+gPTOaww2gUGLUJaSDRQAarm013zSzrZt0V08Yfz4BlXP4/keRXqZ1VhOTrFagSefBEaMQNwvnRpLeueOGjFHNF4mH8YjBqtEUaT1xBvJE3Wg4K15kHrzzeHPpNZzX7TmjQULAJ99tjbgRJLm5OBr+fJkLFmSrNukLDVB5auvqjtte75HaoPJdeuS0LatqPmHSawDj+HDpcUb5sxhkGEWRs0RjedVzcyMwSolBKMsn6f1xBupE3Wg4G3MmFRkZoo4cULfvEY99iWU2cdqAsC5c1OwYEEdxo1Lhb98WSVr1ybpOlqpJqiUKke4cPy4+hnaaoPEhx9Odf+/lj43QuBRUODAjTcyyDCLaC0bHYpoVSAg9VgNgOKekZbPy8tz4rzzAhcyl4jIzo7MSkJqil+fOKH/7Fy1qw75E+olXbWLHGRliZg1q97vdkpOnozN4gkjRkipAGpnaIcSJGrpc6OsjBWvS6fGo3hZoIKig8EqxTWjlEbxLBc0fjwaA8VAAYSA2lpg2zb92xcseJPu138FF7WrDnm8qtctNeV25Pd582Ybdu6UykxpuUR94YUuVdsCIjIz1W27Y4f6cldqg8obb3RqKkkU/IeCUjkx9X3OwINCEe1Vqsi8WA0gTrAagK9Iz1BWm1qglBsqBzqel9qV2gfoPwNVy8x3JeHOzlV6P5pfepcmygCzZtWjY0eXqku6/nJwR41qwOLFKUHbNWtWHdavT0JlpZrf8CKGDXPgtdeSVGyr/pK61vI5WtJb/M10VkNtn0eyNJY/PPeZQ6B+MkqaFhm3GgCD1TjBE7avSJZGUfulHKxc0P3312PduiScPBm9kj9aaooqWbOmBsOHhxd4eH457d9vwfPPJ+HQodADnGDvc0aGiJMn/QeATX/3frwyEWvW1GL+fHmZz+CBn5YfHpEsn6P8QyE4LX0e7cCD5z5zYD+Zg1GDVU6wIkOIxBdcpGYob91qa5yI46283HsGuJqJPc89l9SY96gsEiV/gk1sCObbby3YudMatI+U+hSAYpWBoqL6kPtfzfssCFLqRfPSRoA0giv/U5evKuDYMcEruA5Gy4SrSJbPaT7T+dgxwWtSlT9acl45OYWI9MZglWIu1EuHwQJctV+wx44JcDqhKjjautWGCRNSoRzUCBDFpoBEzcxuLUtF6hXQB1ozvCl3UXllLUDAsmUpWLYscB8p9Wl6ughBEFFV1XRfVpYLf/lLHYYOdQQNcPztv5r3+fhxAbNm1eGFF5Ka5S9L/y+NbKv300/a0/3V/PCQ97G+HlixohaCIH0+9Ryh9AwmnU5g9epkQ87IJiKScYIVxVSoE6DUzPCXRxADT2SSyvWoqQ5gt0sjqi5XoMCmaQa4njUl7XYbLrtMv4oG/iY2ZGTIt5u/Z77vob8+8ten1dWCV6AKAJWVFowbl4r585MDtjdQf6t9nzt2dGHBgrrGfQnv+pb6iVi+/LW3+T6OGNEC06alIjkZEZvZzolRRGQGDFajTGm2cqJyOoE5cwKXUFKaiaw2wLVagcJCebWfwMFXsOBYvtSs1qFDguqR3ays4LO07XbfiT/hVjQoKHBg375qlJaewZo1NZg1qw5paYBSNQC1FQICXZIP5Omnk7F1q/8fJoH6e/9+daex77+3YO5cuQ9D+yEhl2C6++4GZGWFFrAqfS70qloRyvmFM7KJyOg4wSqKIjlT1ozJ648/nqxqlrbnBCgtM/wBbWvRB5rMpHVS0sKFtRg3rkHVzO4FC+owfrzSLO1Al+SDt1kLfxOU1BbIl/sonMlbbdq48O9/e++H2v4WReDw4UA5uMHfy+Ck3Fc5gCsuTsHatYFHhJs/PifHt6/0qlqh9vziL53CrDOyzXjuS0TsJ3Mw6gQrjqxGiVHqfRqF3W7D4sXqvug9L5uqLfD+8cdWFfVElR+rVMRd6yX9zEwRZWVWDBnS4J7Y48nzEuvQocojW41bhtxmtQKPhmqbpBZO6kNFhe9+qO3v0aMbgtSuDT8lIyfHe6QxP1/rD0wBf/xjg08AqHYfA/Wx2vNLoHQKFtQnIqNisBoFalYMCqfYutlovaTuedlUbTA0dmwq3nortG9bpdfQugLQvHkpKCxsgWeeSQEgQGj2lM0DH89L8kVFdY1bqQ+wwgkStQb1SuT3J9zlNJvvh5Z81OCrT2nfv7ZtgYkT67Bp0xmsXFmL+nq4L6+HsiLXs88mwW63eV2u37FD3efU33uh9vyydSt/MBOROfHsFAVqZivrXZ7IyIK9H02ky6aeM5HVBkMnTwp45hktl2ibKL2G+nJP0mMrK723cbmkv02c2IBbb03GxRdXw9LsLZBHtkIJPMMJEsObCCYiM1OE0wmvAE5t6kVzzfdD25rz6lefCta2jAwXJk5swKJFKXj+eRfuvTdV8fK6XFVBbbrEyZMCxoxJRWamGHBBCCXN3wv5sv2OHerOLw88ELi8l5qyWnoxa8oBEcUGR1ajIFL1Ps1Ky342n4msfjRLGs20WNTP/A60frnnrGn/z+d5v+/ldEGQLsNec03gMllaAk891lwPbzRUwIkTFowY0QKXXZaORx5JxqhRDY0jyVqeV3k/tKw5r/V9a/76nk6dErB4cTIefBAYM8Z3NLK8XAo6XS4phzU9XfUrAwBOnGj++Qj0OfV9bzwv5y9fru4qhTRBL/RUA72oqeQRS5wES2Q8DFajQNvoUPxTu5+zZtX7TDyTg8bA+YkSURQay0z5qxnaRA5eRo1qwJYtyl9S8qzpnBzl123TRh5d8x8QHDxowSOPIOCXYK9eTpVBdmilhZp/Gffqpf1ytpLKSgueeSYFixenICND1BDASROXlPZDS2mlvDwnsrP9lyqTA9t165Tyg31HG0URWLbM32IBUj9PmJCKV16xoboafl9XoSV+n8+X9JyPPNL03vjLT9WD5w/JUIO2QI8zeu6+0QNpM/L8PHz4IRj8U0hYDSAKtK73HQozzbQM9n4A0vvxr38pvx92uw1jxsir7oRegsjztVu3dkEU4XVp1rNgffP2l5VZceiQgMpKAVlZUnsPHRIwZUqa6jb4qwShdkZ9q1YuTJ7cgKKietWfG38zxgsLG/D003LahB5BkPQhHDasAR9+aPNapav5e5+d7cKiRYErYmzdasMDD6R4le9q/v7Z7Tbcf3+K4uX15kuVOp3AunVJqlZvCk6PSgOBZWW5sGRJHfLzHZoqXADSvmdliaioCD42IVd1CLVySaDHBWt7qOdBvc59wZbsZRkv7SJZAYcig9UAEhgLb3sL9n4IArBokfL7Iddmbdw6xBZ4B0stW7pw/Ljgc2nWs2C95+hAWZm01OiIEQ5MnNiAESOk2dPKs/n98zeapDZN4vRpCxYvTlE98hNoVGvVqmSkp+t5ZpLSHvbsseGLL7xrubZvr+117HYb5s71DlSzsqQC/56B6tixqQqX1yUZGd4T2qxWoG1bvfY3tPxcLSorpc/K8uXJmibDycfXY4/VqU6nCGehjkCPC9b2aKYiNMdJsPoz+ig6mQuD1Shh4W1vWt8POVgcPz61cU32cIID78dWVQmK98uefjoZF18c/NKg1tnh/r4EtaaDqDn5B/syFkWgujrc99WbHHzs3StNHExOBpYskZb2bN7+MWNS8fjjyaoXgDh+XMD48dI+19cDM2cGWohARFpaU6kp+bP0zTdmOv1J+/Xss0maHiUfT0OHOlT9YAZCC9rUBHtq2x6L3H09yodREwb/pDemAURZpGbBmikNwJOa90PpUlL0ec/29ndpMNQUBaWFD4JXHmgS7BJqOMX6w7VmTQ1uvlnd5WvPlIBgxfIBES1bSv3S9IPDv9LSMzhxQlD4LKmbya+PyKcMAMDvf1+P2293+BxPwS7Lqv2ceH5eAX0/X82fOxg9zn2bN9swaVLwFJ41a2owfHhiDSyEItTPEcWeUdMAOA4fZXJ5olCZpeSLUjsB5bYHej+888hiyX+5n0GDHNi7V9qvtm1FZGSIOHlSWzDiOZokp0lIQa+6QCpY+TP9Rqu0B1vt2omqy5XJo8Tr19ciM1MM8hh1Qaps2zYb1q71N7oXnYA1KUlEQ0OgCX/6tOG665w+nwOnU1qsori4zivX2vMcEmrlErWPy8hw4dSpwLn74VS2CBUnweqLFXBIbwxWTcRut2HOnJTGy+ASeSRqyBDj/NpXGr3JzJRqYHpOfgmWaB/aOvMiWrcWkZwsnQjVjkyGQg4Qr7gi3SufMhTffGPBzp3WsH98ND/5yz8avv1Wbfv8BW0iLBa5Xqy20d68PCe2bFF7qhEASD8Ciovrgm6txUsvyW1QmokfThDir2SZ73vZ0GDx+1qpqSJqa/X5vJ5zjvdrBBpR9fy8hRq0qX3chAkNWLIk2WeSXaxz94PVUY5lIG1GDP5Jb2ZK2kpo8uVlf/l+RklW95djeOKE7wSmYLmWoa6s1K+fEzffHGz5Tf00XwBAG6l9y5dLK15dfHE6Fi9ODnkSmefJ37MMz7Jl8vMFqhHrP1AFEKAMmPLziSJw++1SKbBjx9Tvh5wfGN776t0WQERVVaDPUuhVJQQBuPFGh88iD1peSxCA1q2lqhSBSm9lZalb+MBzxTQtE1201LX1pPZxRUX1IeWqR7rmabQnwcZ7LddQP0dE/jBn1QScTuCSS9Ibgz3lYKJ1axFHj1pw4oT//Y50CkHwHENfgXItH3ooBevWaV2FKpr5h+HS79Jv8/fRXxmeaOVM+mujllHyVatqUFKSoil317/IfC5ycqSqBFlZIg4eFPDGGzZs26ZtEpSnWbPqsGSJ9JlXGnmcMKG+cQnfwOTcymDHpNLxJ392/LXB34RQLY8LNVdd6WqMnjl20Si1lCjlnEL9HFFsGTVnlcGqDiIdBH70kRW33BI8Wf2994ArrlDeb71OkIH2NZxJFs0T7bdutWHChNTG0bxYil1wp540uudZQzTYxKTY7o+615cnRCl94cWW6C6FdeKEgLlz9Zv8t2ZNDZKT4fdYzcwUNU1cCXWii951VuWAXu05UkvNU72/XCN5Pk+0Wq5Kn4dzz3Vh4cL4CszjiVGDVWNcOzaxaPxK3rlT3Znyww+BK65QbqPSJCV5ychZs+pVFZZX2teMDBduvNGBfv2c+P770L+wPXMt7XYbxo1LhXECRKO0w78pU5pW+wo+mSm0/TnrLBd+/TVQAKz2uYNvY7GIqKwUMHSoVOJM+twZpx/++McGnDollc/S84Terp2Ivn2dyM93uAOmtm2lEemKCgEul5SnfviwutzKUCe6FBQ4vNqgNmhTelxlpW9AH+gcGazskTyxMT/fEZH81nAnwfoT6/2KBc/Pw9GjAjp3TsPFF1crpMwQBcZgNQz+gkA5j3TWrHp07OgK+9d5OF+GgScpSbcXL07B888nKa4iJI8yvPmmFc8+63tJ/uRJCzZuTMbGjaG3EWjKtZTbG3vmuuBQWpqE4mLpB8ebb+p9WEuTq3791d83jP4jtS4XMH58KiyWWq8vvEOHBMyalaqpCkAkrFqVjIyMQGkN2t6T5kGmHDDZ7TZMm5bqM1lRFOW0isCTlNROYNm/37dvlYI2NaOOno+z222KAb1n1Yfm55xgP7aCVb4wqnjdr2Dkz4M0igZUVIT3nUaJib9vQqSm6PHixSnuIvIXX5yuWPRcDbUnrmuv9b1P7SQlpckWW7facNll0gSdZ59NgbqVeuSJOmp5J9qHOqkqcozSjkCaCpbPn5+suXB8YJ6Tq/y/vv6khQpmzUpBfX3TF96IEQ5MmlQfgdfT3japskX4E7b8TeDxNzFKLouWkRF8klJenhPZ2f4nbUlEPP98UtBzk+eEvUCLY8hCLQwfr2WP4nW/iKKBwWqIggdVzb9gpKUxL7lE3dKYnvr2dTaWfvI/k7t1a5disKr+xOf95TFvXjLGjUsNoSST/HrqA9aCAmnUzOmET7WD2NEy890Ynn46CU8/rXVCmpEJqKiw4Iormo4Zu92GF18MFoxHY9gm/AoQMjnIzM93uGeIf/SRFXPmBA70RBF45JFarFpVg9LSM9i3r9pnlNJqBUaPbgjSXgGHDgVenSmUpTNDXRUqXssexet+EUUD0wBCFOqv3xMnpBSBDRvUJ9JbrcDSpf6KxEsntqVL62C1+q7AouXEJ1+GGj48Fbt22RD6F7L68kaAgLVrk7F2bTKyslzo3Dl+Ln9F23vvhdNnSmI9EUtSWSkdM8OGOfDaa8FOWUb7ovd9DzMzRYwf750itG2brXFSnNofhwJOnhTwyCOpivVSPXXsqK7clb9zWqi5lqGOJMZrzdN43S+iaODIaoiUcrzU8X/5K5CCAgc2bFCuTxgo8M3LcyIjQ92XlWzXriToE6QEqukJn9eorLQ0vjaFRu/AMvaBqkRqx2uvyZ9L/+0SBGDy5HqMGBHrVAFZ87aKOHFCQNeuLgwf7kDfvlKgqjRqqVawesXhjuhFe4Q02jVPoyVe94soGhishsButzXWQgx1FEf55B5MQYED//pXNUpLz2DNGunS37/+5XvpD2gqOr1liw033hirEiH6FmCnRKbuMyOKwJo1ySGsBKX1WA792AeafqyGtkpbs5YEyP8Ewi/QHu4IaSivW1DgwJQp9V6LG0iP8a58YTYFBQ5NiyIQkYRpABrp8eUiCyWVQE1ZFaUSU+oKshvjsi9R6AQAInbt0vZDsFUrEadPq1/IIrzZzE2zvgHoUqM12EzyUaMasHix/APbO41IFKW/+xPuCOnYsamal1e1221YtSrZ5312uaRKDLm5LtMGdqGWBSNKZBxZ1UjP2eqRSKT3NxGi6aQf6DUZqJL5iaKAykoLWrYMPCmxZUsXVq2qwaxZdY2lsNQdj9nZItatq0VOTrBZ9oG99ZZV95nfzZ9PnsG/eLG/ah7SfYsXp/id2R/uCKnWkUQ15fa0plEZjTzoIKeCMFAlCowjqxqp/3LxP0oZiUR6pxN4/31g+vRAJ3lppSPWuKNE0KePE+++a4O/SYkrVtQhP9+B3Nz0IFcd5KVOG5Cf73CPglksaKyzHNoViZdeSsbAgTWaHxeIZy69vzrQ3gF2U7v91T4NZ4QU0D6SmKj1SInIP46saqR2NLRlS/+jEIC+ifR2uw09eqTjhhuC134URQEpKSL6929Afn4D7rqrHvn5/i8BEpmVFKgGpu5KiYBZs+oxf740OWbLFht27rQiP18aNczJCe3X3+nT0opUakYtX3nlTONEycD1UhcvTobdblMxOuk7yhoo9zXcXEstI4msR0pEzXFkVSO15Uf27KnGihXJWLs2CSdPNv0myM4WdV2K1f/oiX91dQL+8Q/OuqdE4RusyeWWiovrVD3DyZOCT2kpuWTUvn3VWL48Gc88k4RTp7T9/i8rs2LBgrrG5YW9R2g9f9hed50TeXlOvPVWoFN2036ddZYYUi5soFHLaOVa6l2PVM2qW0RkbAxWNVJ7SSw5GZgxox5FRfURO1HqOdmLKP74PybkoEzt6Nzatb4/7uTL5lOm1CtOBlLju+8EbNwo55N68/xhu3WrLUigKpH3a+fO8E4y/t4XeYRUDgC3bLHpfl7Tsx6p0mRT+UeGWSdoESUipgGEQMslsUgm0uu/NCmTWSmxzJ+fgvR0McBleMBiUa4LLIrSsqurVyeH/IPx9deTFOqrSksWL1ggBVROJ/DAA2qXO25qdzgCjVpqXXZVK73qkYay6hYRGZMgivE53aai4nTEJxLF+vLSpk02TJniu2oVEanV/CThfaVEaWRPr9dtmuzof/Rw375qlJVZUVjYQtOzv/rqGYwbl4oTJ7QtG+z5uv5KSjWlHfleVdKzVqi/UdEFC+qQlSW6z7t9+jjRrl0rr3O+04nGtA3l/fdM19q71xgpArH+Pok0QQDatGkVle9mCl00+0l+LTX40zIMamqeRordbsPDD6fE5LWJzEF5RNSbXLLKd5uMDBEDBgjYtCky7QoUCMuX86XaqNqeOydHRO/eoZyXAo9ahrrsaqiUcmQrKwXMnesbwK5cCfTr1/RYtRUFrrgiHZWV4acIhBtoMl2BKDCOrJqQv9ENIvJkzEUuMjNdGDHCgWef1RqIBiOd8DZsqEVmpqh5NLZ1axcef9x/cLRzp7oR3tLSMxH5Ee//vCf18/r1NRgyRGr75s02TJqk5qqT8qQ2LSPE4Qaa0RytjiWOrJqDUUdWmbNqMpxURaSWnrnc/hcX0JrrfeKEBc8/r/WilrrXyMwUkZ/vCKmsU7DgKtolpeQlozdvtuGjj6yYMyfwQgHjx6di61bpfVW/4Ir68l1Kws2LDTZaraUtRPGMwarJqJ9Upf1LlIiUyMda8+NJut2jh/ZIorZWPvWGFlT52+bECQvKyqwhrY7XfMJoc2qf85tvLNi50xpWgNV8Etctt7TAoUOBz3sul4Bx41IxdmwK6uuB7Gz/9WsDkVIELO7lcP3RI9AMdj5X2xaieMdg1WTUjlq0aMFAlUg//pcq/emncE+j+h6rR44IQZdI9RRouVRPlZWCR2UEJdLfli9PCatCgL/RSnUEvP56MkaObIFff5UmsPm+B+re72DnWj0CTS6AQKQOg1WTUTu6ceaMniWtiEjie8Xi+HFB8X519D9G27UTA5Z/8np1laWg7HYbxo9Phcvlbwvf1wilRJSeaU7V1dLjMzK829amjT6LDugRaGpZAMEzLSLckWsis2E1AJNRUzA7I0NsXHaViLzpMelKaYQ1nNFRzzSD0NvWvFi+XA9amvyj/LxqVtRTH0CGXyEg2Cx+baR+SUmRSnkdOSKgslJAZqaIefNSUFkZuKxVsJFmPVbaUrsAQmWl/xXU4mHyFVEwDFZNJvAKWtJ/x49vwOLFLGtF5CvUYFAOJP09Xo8R0vACVVEERo1qwJYtNrRtK92urwdWrKiFIADHjglo00Z0/79cYgmQRuz8lV1SF0AGuhSuvHyrEv0vdws4fFjA7t1WvPBCUrP9kEfDlVchDBZc67HSlpoVEQsLGzB+vO+S2vLIdbxUCyAKhMGqCfkbMTnvPGDBglrceKOj8cSsrSA4EZmFd5CVni4Fp/5+pMqjcP36eQdOasou6RFAqn2OUCaGqaG2Xq2akWaZ2qW3gwW9/s7n2dnSKmZz50avti2RURmyzmplZSUefvhh7NmzB1arFUOHDsUDDzwAm019bJ0Itdw8C1G3by+ioKAFTpyQ9ttut2HMmNTGLRmwEoXj1lvrsXGj3nVRQ5eZ6cL48Q04dQp46aVknD4d+BhXqtmptr6n2vqqgaitvSqvPBU8zUn+m9pzm3KKhSCIyMqSgkJ5FFRr0BdKnVWlRQQA3/vUrl62adMZWK0w9OpXrLNqDkats2rIYHX06NFo164dFi5ciIqKCkyePBnDhg3DuHHjVD9Hoh0QSh8wu92GadNSUF3N/FWiUGVluTB/fh1mz05BVZURrlZIB/jUqfVYtSpZ9WQkz6VUAXXLkXpu6y+ADLRSWLDlW5XIQTQAxdHK9etrAQBz5qQ0lrMKRF0ecLgLGWhZwUpLcKt2cYOMDBdOnjR2PiuDVXNgsKrSzz//jEGDBmHHjh1o164dAODNN9/EkiVLsH37dtXPU/HzESjumtUKpKY23a6u9v8kFguQlhbatmfOwG9PCwLQokVo29bUQGlKrvsDVuNqeqqaGrgcLtx3nzQjV2y26ssZtHTfSkEtrPB/sj6DdA3btoD8BZGMOtjg/4SpZdsapEFsLGCRhHokoUGXbWuRChesmre1oQHJqPe7bR1S4GzMtNGyrRUOpKDO77b1SIYDSZq3tcCJVNT63bYBSWhAsuZtBbiQhhpdtnXAhnrIl7JFtMAZXbZ1woo6NB33LeD/WA68rXfw44IFtUjzs60nsXHbpmM5DWcg+JmYJUJATcBtRVgEwCUCIixe26aiBhb4nbaPF0ul9hcWtlC1bd++TtjtNkwZA1jh9DmPyO9H83OEfCyvXi2lJnlp0aIpyb6uDnB4//2tt2yYPz8Fhw5b3OeInBwXHp33K24aJH0uXS5g5cpkLH8i2d0G7+O+rvFYVg5WPbdd+9QpDBvs/3OJ1FS4o8/6eqDB/znCa9uGBml7j/2aPDm1sScF93EvCCJsYgPWr/7V670qK7Pi1tukvg18jvD+XDYgCQ4hSRodv7FWeo/9SU4GkqRzBJxOoNb/cY+kJGl7rdu6XBBqa/wHQc22RU2AvrDZgJTG414Upe9PPbbVEhvEaRwhb9rmgvZN/RRgWwBAetNxj9paBCxT0WxbweVCmwva+d/ek2gw7777rnjllVd63ff111+LnTt3Fk+dOqX+iVq1EkWp67z+1d0wSDx27Ff3P1eLForbiYBYf9XVXts6s7L8b9utu9e2jg7n+922oUtXr20bunT1u62jw/le29Z36+53W7FNG7GiwmPbq672u20VWnjdZcdN/p8X8Lr5vxgRcNsWqHLf/CvuDLhtGxx133wKUwJuewF+dN9cjBkBt70EX7hvzsO8gNv2xB73zRlYHHDb/tjuvjkFTwXc9ibY3TfvxF8DbjsC/+u+OQL/G3DbO/FX982bYA+47RQ85b7ZH9sDbjsDi903e2JPwG3nYZ775iX4IuC2izHDffMC/Bhw26cwxX2zDY4G3PavuNN9swWqAm77vxjhdVegbe24yeuuKvg/R2xHf6+7jqKN3233oKfXXT/iAr/bfoFLvO76Apf43fZHXOB11x709LvtUbQRp0+vFVevPiMCorgd/f1uW4UW4jPPnHGfT3757e8Cvm+eN4OdI479dMj9vDUjbw+47f88/rP42mvV4uHDv4pn7h4XcFvPc8SKlPsDbut5jvhq5EMBtz3xznZ3e6vmLQy47cnX3nBve/qxxwNu63mOuAsbAm6r9RwhCC7x3HOd4vHnA297+rHH3e09+dobAbetmrfQve2JdwKfT6pnznZve/yj3YG3nXqve9vKff8OuO2Zu8e5t634an/AbWtG3t70/fnToYDb1g4Z5vVdG2jbeI4jnFlZoiiK7lgiUBzhatHC63nrbhgU8H3z3LZ2yDApTlPJcBOsqqurkZbmfdlDvn3mzBmcddZZYT1/crJN9bBzUpLVe1vB/+WkJFuzbS3+t7VZLd7bWv1fyrJaBO9tbYGvpWVleWyb5H/blBRAqJc+QUSUOJYtS0GbNuq27dw5rWnb86zA5+oel5IMBLiQIJ3TGkdZXClJAZ/rjjvSgLaNo0JpgfOGp90DnMyQBr6SlgoIcNEBgHRKP+88oHPnwG3IyEgH5PNweuBKK2ef3aJp25apAbf1JAZJV9CafCKKAg4eFPDf/7ZAZoDtWrZMRUu5vWcHzo9NT09BurxtRnrAbVu0SEELedvMINumJTdtW9Uy4LZpaclIk7cVA4zsAkhNTUKqvG1a4JSRlBQbUlTGBvEcR1ga2+eOJQLEEQKaXcZPDhxSem2boi38NFwawLvvvovi4mLs3r3bfd8333yDoUOH4pNPPkGrVuo+IJW/JF4aQFZWK1TWeqcBBBq+f+3dszF+fCoAgWkATANgGkAI26pPA/DdNrw0AP/bBru0Lx3Lose2vs8rQMo1/eenTVe05Ut8ZWVWjLzVN6hpfo7YtPG0/7JNjWkAdrsN8x8Cjh5qam92exceeaSu6XJ4kJQB97mv8jTE1DTY30zGmDGpsIn1SPI6n4jwDPlqkQpRsGDDhloUDDqj/tJ+iGkAW7faMO1e74EYpXPEyhU1GDrUNy3iofln4b+HpOPICgfaZ9TgxEnlAMXzuF+76jQKbwrw3RXFNAB3PzX/yDENQHnbGKUBZJ3fvqmfIpwGkHW+ujQAw42sdurUCSdPnkRFRQXaNP6k/+GHH9C+fXvVgSoAiC1a+B819Ly/ReBffCFvmxZkBmeo26b6SbYXAKSnQ6zxOBH427bRzTc78K9/1WP16mSvL+dgtGxbjxSPgEK/bRuQ7A6AYrWtA0nuLwQ9t3XChjMqD00t27pg9Qoo9NpWhCUi2wJChLaFIbb1DDAlnge694iKlm09A2L/pIL5tUiDIEijcO6/NE5kemhRLSwWR9P5JCUVTiewfU8yzgQ5TuuQioMnRYgt/P/4tL+uXI1g/xERd0xu6V0/VG5Dcor0r/mupKdDrHHB4ZAmXoki0IAUNARopzQJqRaDBzsgIhlICnLcy21I0rCtLUn6B6B1B2vjj3Nl8jmidQcBYgvvL/zfDQduuLkOZWUO9yQul8uKW24JXimgbbYVotrvLotV/feclm0Fi7RtYz8pfjc331bN80KI0LYwxrbRjiMA96EoX7sPFkd4PW9KkNig+bYaLhcYbpr4hRdeiNzcXDz66KOoqqrCf//7X6xatQojRoyIddPi0vz59Zg8uR5QGF2RGGrgnShutW4tYupUefTd/3HnvXxqOJUJpEoArVt7v1Z2tqhYaN5utyE3Nx3Llqn7QRmoZmqgVbHkwLm4OEXzkqJNCxgEfl8WLqzFvn3VirPlI7WsaV6eE9nZLvjrW0EQkZPj8jsabbUCffs6MXy4A337OnHVVdKiBP6W0w32fERmYriRVQBYsWIFFixYgAEDBsBisWDYsGGYMmVKrJsVt+bPr0durgsPPJCCysqm3y9t2rjw6KN1yMgQ8Yc/yL+uYl22hyieiBgyxIG77mrAVVdJ5Y5yc12NZZmUj7WsLBEVFfqNMyxcKNUYDVR2ybsma2BqVm4KtiqW1pWvZGoXH2jbVlQsLRVKzVS1tm2zNV41Vy7xBahbRECm16IERGZgyGC1TZs2WLFiRaybkVCGDnVg8GCH31qBU6fW4+mnk9E874uIQmOxiFi7Virr9Ne/JuHNN2248EIX7r67Afn5TcdimzYiXC5g1y4rBEFKH3viCf2WU87OFgMGhIFGQZtTGySpDSq1rp6ldgUspe38BeShLGvavO5qZaWguGSqLCNDxNKl2gPiQKtfGa3OKlE4DDfBSi+JVng4GoV8589PxurVyXC5GKwShU46QMeNa0BFhYCtW21ex5TFImLy5HrMmyelBCiN9ml/vdAL9mtZwUrtKKTa51RTrN/z3OdwBF8BS2mf5ZWz1CySEGykUqm/LBaxcY6K8qIKOTnaFk5oTsuiBLHCRQHMwaiLAhhyZJWMad68ejz4YD3++tck/PSTBeef78LFF7vw/PM2vP66cZaiJDIyiwVwuQSsWycfM97fCC4XGq9iSCkBai+/+6ccIImiusvEakc3i4rqMGtWvaogKS9PyrcMFlRqzbcM9dK4XmkJ/kZnA//ADy3lgSiRMFglTZKTgYkTvcu2XHONE5dcYmtcr5ujrkT+iQpVYJofM9JM/VWrknHOOaKqy+96URqhU3tpvV8/9aN5kcy3DOXSuB5pCVrSJbQ+dyCRzLONJTOMFlP0GK4aAJmP1QosXVrXWAqx+RebqHAfUSJy1+ZRsa004njkSPCZ7aERIAjeM+7l2f6FhS0waVIaCgtbIDc3HZWVQkRmnctBZXa2umoEWp97375qlJaewZo1NSgtPeN39j8QXq6rTG0lglCe2x95JNczKAea8mztdnOOR/n7LJp1fyh8zFmNE0bIB1L6hd+6tVRT78QJz99FWr60iSiSSkvP4MQJQbHmqRygTplSj1WrpNQE78v20t/Xrav1KWSvVrgjaHqc++ScVa25rp42b7Zh0iQ1NW61P3egNuuRZxsNavvJO5XC97MY7g8ZCow5qxT3CgocXrOY5S8ewPvL6J13rFi9WinHlZUGiKLt0CEBJSX+a54KgojS0iQ8+2wt5s5NaTaKJ/3/3LkpsFgQUhAh1w+NJT3SEkIZGQ0n5SFS5b9iKVj9XUEQUVycgvx8hyECcIoepgGQrpoXrrZafe+bP78e69bVIivLO3kvJ0fE/ffXoXNnB5g6QBQdlZVCwMvXUtBjQVaWiAUL6qCU2mP2y85A+GkJ8qQxf+kSgAiLRb+Uh0iV/4qlYKkU8mexrIyRaqIx75mFTC1QXdcHHpCW0/7rX5PwwQdWbN8uf0zNc9IlMjr5MnFWlrofhocOCZgzR67vGnzUy4wTZPxdHVLTbjWjs2vX1iIrK/ACDGrpkWdrNPEYgJM+GKxSzAS6/CdXHZg4sQF2uw3335/SWG2AiIILnBfuefk5M1NdMLNjh7VZ7nmzV/S47HzihGDaGerhpCVEs0h/pMp/xVI8BuCkD06wihNGmGAVSfJ63Tt3WiGKwN/+loTjx1kqiygUrVu78PjjUvAUbHKRXLS+uho4dSp45tjEiXVYuzY5ahNkjHjui9aosjwZCYDiSK6RJiOp6Sc9JrpReIw6wYo5q2QKVqtUx/HBB+vx0EP1ePxxqVSW//wwIlIuHSfi+HEBX39tgdPZdPka8Hc8Cfj1V3WBKgBs2pTkd4IM4F0uK14p5e5HQiTLf8VCoM9iuPV3ydw4shonjDi6EGlKpbJatRJx+rR8i6OuZHbhVsgI/PjsbBcWLZJGWJvSbZSCUnXtaNnShaqq4EGtmmVUA/EcuWzfXkRBQQucOJE4577mzJAfrOU7Kl4XOjADo46sMliNE4kYrALKJ+lt28JdS53IKEKtSaw2yBUhCNLl4vx8B3r0kC7BhhogFxQ0wG5PCrrdmjU1GD48tKBDKZA57zxg4cIaDB7MQMaotH5HmSEAj0cMVqMs0YK2RA1W/ZFPdNu22fDqqzZUVgYLXFnjlYxJEKSAUlqmVTmntHluqJYlP+U8wBUrajFiRIsQWykiM1PEunW1uOWW4M9RVFSHfv2cmgMQ/wXjpTaY8dJ3ouB3lDkwWI2yRDsgeCLwz/MXeps2InbtsuKZZ5JRVeW7Eg8DVgpPJH/0KH1Gfe/LyXGhRw+nqhFOTzfd1IA339T2GM82bNggjc4GWlWp+fuj5dKu2VZsIm/8jjIHBqtRlmgHBE8E2jS/xFRZKWDmTH/5ejKOvlIs+fv8SbVSFy6sc5cq2rnTGsYoqTbNA86tW20YNy618a+Bjxcts9Z37rSisDD4PoWbD0uRwe8oczBqsMo6q5SQlGopDh7swPLlyVi7NgknT/oLWhmwUqz4+9wJqKwUkJ0tuj/Tffs6kZnpaqxNHLl81zZtROzZU41kj9WTpUUG1L2mliU0zVownrmXROFjsErUyGoFZsyoR1FRPcrKrDh0SAoCsrKky4uVlYLC2uhEkaYu+PMM0qxWYOnSOowZk6r68U3UbiugokLA3r3ea89rDRbVrmFvxoLxnNVOpA8Gq0TNBFrBRl4i9q23rNi0KUnFxC2icKkL/poHaQUFDmzYUIvp01Nw8mTkfmA1D0737w/tmAgW5IazYlMsRje9J4M1OXRIwNixqZwMRqQBv2mJNJAD2YUL6/HFF9UoLT2D8eProFx8HQHup9Al3vsp5XYq77cgiMjJcSkGafn5DqSlwe9j9eAZJDudwPPPJ4X0et9+a8HOnVa/CwYELhgv/VepYLzdbkNubjoKC1tg0qQ0FBa2QG5uOuz2yI3VOJ3S4geJvjgCkV4YrBKFSA5cFy2qx4YNtcjJ8f4CbdPGhcmT6wOutJWa6opGU+OM2dMwtP+AkQIc5dFEUQRGjWrAli02n2BPSmexKD42XEpBcmivJ70Xy5alBA0k/a3YdN55UjWC5iOV8uhm89QdeXQzUgFrWZm18dK/8vsgpT5YUFbG5FUiNZgGQKSDggIH8vMdipcae/VyNeatNX1xZWa6MH58A+69tx5XXhloXXYyl+hOwGvRQkRyMrB4cYr7Ps+cyEhNNvK39KX21/MN2oNdJm9+rDWtYOXwuuQebHRT7cSuUJh1MhiRUTFYJdKJv1xXzy/Xo0cFdO6chosvroal8bpGSUkdxo5NbRwl45eXuanpP736WER1tYDqau97PYM9/SYbeQfh2dmi4iSh0F5PeyDpeawJAhS3aRrdVKZ2YlcozDgZjMjImAZAFAXyl+vw4Q5ce633l6u/S5uJmJtpZGlpot90jtj0leDxz6MlHjmRvXpJk5L8t1ud7GwRs2bVYc2aGpSWnsG+fdWKo57yJCh/rycIItq0ceG+++o89sGXHpfJYzm6qeZ98JdnTES+OLJKZADNL23u32/BunVJOH5cXb1L8+dxGl9NjfRf3xFw4/2okEcN9+61ukfutdRPzcmRll+tqNA2e16eBKV0pUAO3BYvrkN9vbr9CCeQjOXoppr3QWkyGBEp48gqkUF4jr7OmFHvnvlMxpGZKaJ9e+/gJidHxLp1tcjJccFogeuRI4J75F4q1q9OSUkd+vWTPot9+2or8+TvSkF2tujOQ41GIKn36KbTKa2itXmz70Q2JfL70Pzz4vk+EJE6HFklMijftABlM2bUY9myZLhc+o3CjhhRj2PHBPzjH6GsFW9Wwd4bASdOCNi06QysVvhMpLNY0FiE3zjkYK+gwIHaWmDKlLSgj5kwoSHsQCrQhEMgvJqpauk5uqlncX8uNUqkHUdWiQxK7cjQ/ffXY+3aWgQqiZSUJGLYsAafUR5f0nOuXFmHjRtrkZHB0lrNVVQI7hFwz1HHggIHZs1SeX1blxFYbbVX1f74yc/XZ8TP80pB89HZwDVT9btMrmaUN5hQy1/Jjzt0yPtxhw9HtmwWUTxisEpkUFq+0IcOdSjWek1Lc+H+++vwyy9VWLu2Fp9+Wo1Zs5QXMRAEEYLQ9JxWqzTKFv8CTZzyFejSdFFRPbKzg6cDWJqdeTMzXbj1VrWBLmCxiH5r+PoL9rReFg902VvrJXElegSSal9n3z5pAY9gE8SaC7W4PxcFINKXIIrxeVGiouJ0Ql1uEQSgTZtWCbffZhNKP2m5BKl2WUm1z+l0Apdcko4TJ5SL0puf3AnqJx7t21cdcMRPHlEDEKAUmfS6ffo40bu3E1df7URenlNFzV3pcevW1WLoUIfmy9P+2iYHsHKQGOh5Aei63n3zz2yvXk7s3at+adRInvt27rSisLBF0O1KS894lb8K9XHxjN9R5hDNfpJfS9W2DFbjA08E5hBqP0VibXMtgW1TLma4Aau/vNDYVDTIyXGhoMCBtWuTVWwtKq6SpMRut2HOnJTG1ZzUt6WwsAGrVkltUQpYMzNdWLrU9weFls9GsADXe01774DW+zPrP9gNVSi5oZE8923ebMOkScHzfNesqcHw4Q53X9jtNqxfH/wzJT8uEfA7yhyMGqwyaYbIBPwtOGC052wiYvz4etx4oxOiKOV57t9vwZIlyQCUJ7sUFDTg9dcjO6FLDrgmTpTalpfnRFmZVVWwWlDgQGamCKdTuQh9823POkvEiBHBR9dk5eUCVq1KxpQp9SgtTVJc8ayoqN7ntbX2Y6DJT8EvXyuPROuxIpR3kNxEzg2dObMeHTu6dPuxpoaWqgVKgbZez0+xEYlBAgoNg1Ui8ksOXiTqRz7Hj2/AokW+OZhdu/ouPZuVJeKWWxpw3nlixINVpZWXgs1Ml0d97fYk2O1Jqi95V1RoHSkWIIoiSkuTsGdPtaZL4YC2L1Z/AW6wVZ8CfQbCWRFKTZDsb0nZSFJbtaCyUsD48b6Btr8rBnpUO6DI0rMCBIWPE6yIyK+m4EVb4HXTTconc8/JLhMm1CMry4WKCgueeSYFDz+cCovF/wz38GbQi2jd2oU9e3wn1gSayKYk2CxwWahLj5aXW7B3r9XvTHoldrsNubnpKCxsgUmT0lBY2AK5uemaZ5zrsZpTKM8R/HOmbSa+XtRMclywoA5z5yoH2tLtyFU7oMgItQIERQ6DVSLyS2vgoabQutUKnDgh4Nlnk1BZ6f38LnelLOUv+MzMUJcOFXD8uBQEKikocODZZ2vRurXSc4c2mzsvz4msrNBKf2l53/X8YtXjsnQoz6H1cxbNGfXBqhZkZYmaAm0uCmBsrORgTAxWicgvLYGH2hGjQF8G8u3mpZ2ys6XJTUuX+hsBVddOf0GR3W7D3LkpqKxUd0pUs3a91QrccktoAYna913vL9Zg5a201nZVK5QAV00f6CVQ+Su1gfbYsfWaymZRbAQb5Y/m546acCybiPwKns/ZRCkfVImavEiXC1i4sBZt24o++Zfr19f65L22aSOqyhFVCor8TexRQw5U/OWL5uerrTQgk8pjqQ34gr2XWvNIg636JL9Heq93r+Vz1pweqQtq+MvzVRtoFxQ4EqZMlZmp/TxF63NHEo6sEpFfgfM5pVG2CRO0jRipPcm3bSsq5mwqjXL93/9Vh7QOfOBR3uDkWeD+8kXlIExLvq2WgC8SX6yBLntv2FCLDRv0L+SvNW/YU6xn1GtdbIGMTUsFCIoejqwSUUBy8NJ8NDMnR91IanN6fBkojXKFsg588FFeZcFmgcv5ouvX16KkpM6jTm1gEyY0aHo/I/XFGqi8FYCAfwuVv8+Z0WfUBxuNBjiZykzUVoCI9ecu0XBRgDjBgsvmYOZ+0qvmoNMJ5Ob6X6lJ/jIItlKUEq3lZtQWfW/ePgB49tlazJ0rB1aB92P58mSv0kv+aF3RKJLvZax4fs7277dg8eJkCIL/FbeGDHEY4phiqaPAzHTuU7vSWzwy6qIADFbjhJlOBImM/SSJ5JeBlqBa7bKYnuQAJDNTVL2kZl6eEz16SEFlsMA2lAA9nr9YgwWBRjqmWETePyP1kxqJ+uODwWqUmeWA0IvZTgSJiv3UxAhfBsFHJoHsbBdWrKhFRYV3AKJ1Kc5IBpVGeC8jKVAQyGPKHMzYT4n444PBapSZ6YDQgxlPBImI/eTNCF8GgYNIARs21GDwYN+AT+2orOel/UgGlUZ4L2OBx5Q5sJ/MgcFqlCXaAcETgTmwn4xJKYg891wXVqywoF8/5b4KNV80UYPKSOExZQ7sJ3MwarDKagBElPCUZr/36eNEu3atUFGh/JhQZ4H7q9dJRETKGKwSEcE3iBRUlCb1V25J7QIJscQRXiIyCwarRERhCFaT1IjifUIWEcUXBqtERGEy06V9f8vLei5kwICViIyEy60SESWIQMvLyjm3xcUpcJoj7iaiBMFglYgoQTQtL6uckCuKAsrLLSgrM3AOAxElHAarREQJ4sgRFbPGNGxHRBQNDFaJiBJEu3bqCieq3Y6IKBoYrBIRJYi8PCdyclwA/AWjInJyXMjLY9IqERkHg1UiogRhtQKFhQ2Nt5oHrNLtwsIGQ5fdIqLEw2CViChBOJ1AaWlS463meanS7dLSJFYDICJDYbBKRJQgglUDAFgNgIiMh8EqEVGCYDUAIjIjBqtERAmC1QCIyIwYrBIRJQi5GoAgKAejgsBqAERkPAxWiYgShNUKlJTUAYBPwCrfLimpYzUAIjIUBqtERAmkoMCB9etrkZ3tHaxmZ4tYv74WBQWOGLWMiEiZLdYNICKi6CoocCA/34GyMiuOHBHQrp2IvDwnR1SJyJAYrBIRJSCrFejbl7mpRGR8DFaJiIhINacTHJWnqGKwSkRERKrY7TYUF6c0Li4hyclxoaSkjvnOFDGcYEVERERB2e02jB2bivJy70UjDh0SMHZsKux2jn9RZDBYJSIiooCcTqC4OAWiCDRfrlcUpdvFxSlwMg2aIoDBKhEREQVUVmZtvPSvvBSvKAooL7egrIzJq6Q/wwarNTU1GDlyJDZv3hzrphARESW0I0eUg9RQtyPSwpDB6nfffYc//vGP+L//+79YN4WIiCjhtWunvERvqNsRaWG4YHXXrl248847UVhYiJycnFg3h4iIKOHl5TmRk+PyWaZXJggicnJcyMtj0irpL+pT92pra3HkyBHFv7Vt2xZdu3bF9u3bkZKSgr/+9a8hv46QYFci5P1NtP02G/aTebCvzIH9FB02G7BoUR3GjEmFIIjuSVUA3AHsokV1sPmJKthP5hDNftLyGlEPVj/77DPccccdin97+umnccMNN+jyOllZrXR5HrNJ1P02G/aTebCvzIH9FHl33QWcdRZw333AgQNN9593noAnngCGD08L+hzsJ3MwWj9FPVjt3bs3vvnmm4i/TmXl6cYSG4lBEKQPV6Ltt9mwn8yDfWUO7Kfo6tcP+OQT5RWsKir8P479ZA7R7Cf5tdSI2wq+ooiEPCASdb/Nhv1kHuwrc2A/RY/FAlx1lXduqtr3nv1kDkbrJ8NNsCIiIiIikjFYJSIiIiLDMnQawAcffBDrJhARERFRDHFklYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiAyLwSoRERERGZahl1sNhyDEugXRJe9vou232bCfzIN9ZQ7sJ3NgP5lDNPtJy2sIoiiKkWsKEREREVHomAZARERERIbFYJWIiIiIDIvBKhEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVg1UQqKysxZcoU9OzZE71798aiRYvgcDgUt/3HP/6BIUOGoFu3bsjPz8f27duj3NrEpaWfxo0bh8svvxzdu3d3/9uxY0eUW5zYjh8/joEDB2L37t1+t+HxZAxq+orHVOx8/fXXuPvuu3HllVeib9++mDVrFo4fP664LY+p2NHST4Y5nkQyjVGjRon333+/eObMGfGXX34RBw8eLD777LM+2/3444/i5ZdfLr777rtiQ0OD+MYbb4i//e1vxcOHD8eg1YlHbT+Joij27t1b3L17d5RbSLJPPvlEvOGGG8TOnTuLZWVlitvweDIGNX0lijymYqWmpkbs27ev+OSTT4p1dXXi8ePHxfHjx4sTJ0702ZbHVOxo6SdRNM7xxJFVk/j555+xZ88ezJw5E2lpaejQoQOmTJmCF1980Wfb0tJS9OzZEzfccANsNhtuuukm9OrVC6+88koMWp5YtPTTf//7X5w6dQqXXHJJDFpKpaWlmDFjBoqKioJux+MpttT2FY+p2CkvL0fXrl0xdepUJCcnIzMzEyNHjsTevXt9tuUxFTta+slIxxODVZP47rvvkJGRgXbt2rnv+81vfoPy8nL8+uuvXtt+//336Ny5s9d9F110Eb7++uuotDWRaemnf//730hPT0dRURHy8vJQUFCATZs2RbvJCevqq6/Gu+++i5tuuingdjyeYk9tX/GYip2OHTti3bp1sFqt7vvefvttXHrppT7b8piKHS39ZKTjyRaTVyXNqqurkZaW5nWffPvMmTM466yzAm6bmpqKM2fORL6hCU5LP9XX16Nbt24oKipCp06dsHv3bkybNg3p6enIz8+ParsTUdu2bVVtx+Mp9tT2FY8pYxBFEU888QS2b9+OF154wefvPKaMIVg/Gel4YrBqEi1atEBNTY3XffLt9PR0r/vT0tJQW1vrdV9tba3PdqQ/Lf00bNgwDBs2zH376quvxrBhw7Bt2zZ+sRoIjyfz4DEVe1VVVXjwwQfx5Zdf4oUXXkCXLl18tuExFXtq+slIxxPTAEyiU6dOOHnyJCoqKtz3/fDDD2jfvj1atWrltW3nzp3x3Xffed33/fffo1OnTlFpayLT0k+bNm3Ctm3bvO6rr69HSkpKVNpK6vB4Mg8eU7H1yy+/4JZbbkFVVRU2bdqkGAABPKZiTW0/Gel4YrBqEhdeeCFyc3Px6KOPoqqqCv/973+xatUqjBgxwmfboUOHYs+ePXjzzTfhcDjw5ptvYs+ePbj55ptj0PLEoqWfqqqqsHDhQvznP/+By+XChx9+CLvdjpEjR8ag5eQPjyfz4DEVO6dOncKdd96JHj16YP369WjdurXfbXlMxY6WfjLU8RTrcgSk3rFjx8Rp06aJV155pZiXlyc+9thjosPhEEVRFLt16yZu2bLFve2OHTvEoUOHit26dRMHDx4sfvjhh7FqdsJR208ul0t8+umnxeuuu0787W9/Kw4ePFjctm1bLJuesJqXQ+LxZFyB+orHVOxs2LBB7Ny5s3jFFVeI3bp18/onijymjEJLPxnpeBJEURSjHyITEREREQXHNAAiIiIiMiwGq0RERERkWAxWiYiIiMiwGKwSERERkWExWCUiIiIiw2KwSkRERESGxWCViIiIiII6fvw4Bg4ciN27d6t+zNtvv42CggJ069YNAwcOxKZNmzS/LoNVIqIY+emnn2LdBCIiVfbt24eRI0fil19+Uf2YsrIyzJ49GzNnzsSnn36KhQsXYv78+fj88881vTaDVSKKW9dffz0uv/xydO/eHd27d0e3bt1w9dVX4y9/+QtcLpdurzN69GisXLkSADB37lzMnTs36GM++OADjB07NuTX3Lx5M66//nqf+2tqanDllVfib3/7m+Lj7r//fkyZMiWk5yaixFRaWooZM2agqKjI528ff/wxRowYgZ49e2Lw4MHYunWr+2/PPfcc7rjjDvTv3x+CICAvLw+vvvoqzj//fE2vbwt7D4iIDGz+/PkYPny4+/Y333yDu+66C2lpabj33nt1f70FCxao2u7kyZOIxAKCaWlpuOWWW/D3v/8dd9xxh9ffjh8/jrfffhvr1q3T/XWJKH5dffXVGDJkCGw2m1fA+vXXX2Py5MlYsmQJBgwYgM8++wxTpkxBZmYmrrnmGnz++efo3bs3JkyYgM8++wzt27fHtGnT0LlzZ02vz5FVIkooXbp0Qa9evfCf//wHgDQqOnv2bFx33XW49tprUVVVhV9++QWTJk1C7969cd1112H58uWor693P8ff//53DBgwAN27d8cDDzyAmpoa999mz56N2bNnu2//z//8DwYOHIju3btj+PDh2LVrF3bv3o158+ahvLwc3bt3x5EjR1BfX48nn3wSAwYMwJVXXonx48fj559/dj/PDz/8gNGjR6N79+4YMmSIu/1Kbr/9dnz//ff4v//7P6/7N23ahP/3//4f8vLy8MEHH+DWW29Fnz59cMUVV2DUqFGKaQm7d+9Gly5dvO5rvo9vvPEGhgwZgtzcXAwfPhz//Oc/3X/bu3cvhg8fjp49e2LgwIFYtGgRHA6H37YTkfG0bdsWNpvv+ObGjRsxYMAADBo0CFarFT169MAf/vAHvPjiiwCAU6dOYf369Zg8eTJ27tyJqVOnoqioCJ999pmm12ewSkQJo6GhAbt370ZZWRn69u3rvv/jjz/Gxo0bsXXrVlgsFtx1113o1KkTduzYgZdeegkff/yx+zL/rl27sGDBApSUlGDv3r244oor8O9//1vx9TZv3oxVq1Zh8eLF2LdvH2677TZMnjwZXbp0wfz585GTk4NPP/0U7dq1w/Lly/Hhhx/iueeew0cffYQrrrgCY8aMQV1dHRoaGjBx4kR06tQJZWVlWLZsGd577z2/+9mhQwf0798f//u//+u+z+Vy4ZVXXsEdd9yBw4cP47777sOECROwa9cufPjhhxBFEU8//bTm9/Qf//gH5s2bh7lz52LPnj2YNm0apk2bhu+++w4AMGvWLIwePRqffPIJ/vrXv+Ktt97C+++/r/l1iMh4Dh48iHfffRc9e/Z0/3v++edx6NAhAEBycjJuueUWdO/eHTabDYMGDUKfPn3w9ttva3odBqtEFNfmz5/vPon26dMHCxcuxN13341Ro0a5t+nXrx/atWuHs846Cx9++CHq6+sxffp0pKSkIDs7G/fdd597pGDr1q3uE67NZsPtt9+OSy65RPG1S0tLMXLkSHTv3h0WiwW///3vsWHDBqSmpnptJ4oiNm7ciOnTp6NDhw5ISUnB1KlT0dDQgA8//BCffvopDh06hFmzZiElJQWdOnXC3XffHXC/77jjDmzbtg1VVVUAgI8++ghVVVUYMmQIWrdujTfeeAPXX389qqqqcPjwYWRmZuLIkSOa398XXngBt912G3r16gWr1YrrrrsO119/PTZu3AgASElJwbZt27B9+3ZkZGTgH//4B373u99pfh0iMp727dujsLAQn3zyifvf22+/jbVr1wIAfvOb33hdlQIAp9OpOQWKOatEFNfmzZvnlbOq5JxzznH//8GDB3H8+HH06tXLfZ8oimhoaEBlZSWOHDmCSy+91OvxHTp0UHzeY8eOIScnx+u+Hj16+Gx3/PhxnDlzBvfddx8slqYxhIaGBhw8eBD19fXIzMz0CnKDTVC46qqrkJ2dDbvdjltvvRUvvfQSRo4cidTUVIiiCLvdjo0bN0IQBHTu3BlVVVWKl/mCOXjwIPbs2YOXX37ZfZ/T6UReXh4AKQ1i5cqVmD9/Po4dO4ZrrrkGjzzyCNq3b6/5tYjIWEaMGIG7774bgwYNwlVXXYVffvkFEyZMwHXXXYcHH3wQt912GxYuXIhrrrkGeXl5ePfdd7F7925Mnz5d0+swWCWihCcIgvv/27dvj/PPPx9vvfWW+76qqipUVlaidevWaN++Pf773/96Pf7w4cPo1KmTz/NmZ2e7L4fJli9fjqFDh3rdl5mZiZSUFGzYsAHdunVz379//360a9cOX331FY4fP47q6mqkp6e7XzOYP/7xj/j73/+O/v37Y+fOnZg/fz4AYNu2bXjhhRfw8ssv44ILLgAALFy4EN9++63Pc1itVgBAfX09kpOTAQAnTpxAZmam+/0aNmwYJkyY4H5MeXk5UlNTUVdXh++//x6PPPIIbDYbfvzxRxQXF+PRRx/FihUrgrafiIztiiuuwLJly7Bs2TLcd999SEtLQ0FBgTsYveWWW2CxWPDnP/8ZBw4cwLnnnovly5f7/OAPhmkAREQerrvuOlRXV2PdunWor6/Hr7/+igceeABFRUUQBAG33HIL3nvvPWzfvh0OhwOlpaV+JwsMHz4cr7zyCj7//HO4XC68+uqrePHFF93BaU1NDRwOBywWC0aMGIGlS5fi8OHDcLlcKC0tRUFBAX7++Wd0794d/+///T+UlJSgpqYGP//8MzZs2BB0XwoLC/Hzzz/jiSeewA033OAezTx9+jQsFot7lHXHjh147bXX0NDQ4PMc559/Pmw2G9544w0AUn5vWVmZ++9/+MMf8Le//c1dN/Hf//43hg8fDrvdDkEQMH36dGzYsAEOh8M9SUMOdInIfL755hv07t3bffvaa6/F5s2bsW/fPvzzn//E7Nmz3T9sAek89Prrr+PTTz+F3W7HwIEDNb8mR1aJiDy0bNkSzz33HB577DGsW7cOLpcLvXv3xurVqwEAubm5WLx4MR577DEUFRUhLy/Pa7KWpyFDhuDXX3/FzJkzcezYMVx00UV49tln0bp1a/Tq1QtZWVno1asXNm7ciAceeAArV67E7bffjpMnT6JDhw5YsWKFOx927dq1mDt3Lq666iq0adMGAwYMwDvvvBNwX1q0aIHhw4fjf/7nf/DSSy+57y8sLMS+ffswePBgWK1WdOzYEXfeeSdefPFFn/yyc845Bw899BBWrVqFhQsXIi8vD8OHD3dXQLjxxhtx5swZPPTQQygvL0dGRgbuuusujB49GoIgYPXq1fjLX/6CZ555BlarFf369cOMGTNC7h8iSjyCGIlCf0REREREOmAaABEREREZFoNVIiIiIjIsBqtEREREZFgMVomIiIjIsBisEhEREZFhMVglIiIiIsNisEpEREREhsVglYiIiIgMi8EqERERERkWg1UiIiIiMiwGq0RERERkWP8frtqmz+XHfi8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "# Calculate residuals\n", - "residuals = y_test - y_pred\n", - "\n", - "# Plot residuals vs predicted values\n", - "plt.figure(figsize=(8, 6))\n", - "plt.scatter(y_pred, residuals, color='blue')\n", - "plt.title('Residuals Plot')\n", - "plt.xlabel('Predicted Values')\n", - "plt.ylabel('Residuals')\n", - "plt.axhline(y=0, color='red', linestyle='--')\n", - "plt.grid(True)\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This plot is useful in understanding the assumptions of linear regression and detecting violations. The ideal case is to see a random distribution of residuals around the y-axis, centered around zero. This suggests that the residuals are normally distributed, and there are no systematic patterns in the errors" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# POLYNOMIAL REGRESSION." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Polynomial regression is a type of regression analysis where the relationship between the independent variable (or variables) and the dependent variable is modeled as an nth degree polynomial. Unlike simple linear regression, which assumes a linear relationship between the variables, polynomial regression can capture more complex relationships by introducing polynomial terms.\n", - "\n", - "In polynomial regression, the relationship between the independent variable \n", - "𝑥\n", - "x and the dependent variable \n", - "𝑦\n", - "y is modeled as:\n", - "\n", - "𝑦\n", - "\n", - "=\n", - "𝛽\n", - "0\n", - "+\n", - "𝛽\n", - "1\n", - "𝑥\n", - "+\n", - "𝛽\n", - "2\n", - "𝑥\n", - "2\n", - "+\n", - "𝛽\n", - "3\n", - "𝑥\n", - "3\n", - "+\n", - ".\n", - ".\n", - ".\n", - "+\n", - "𝛽\n", - "𝑛\n", - "𝑥\n", - "𝑛\n", - "+\n", - "𝜀\n", - "y=β \n", - "0\n", - "​\n", - " +β \n", - "1\n", - "​\n", - " x+β \n", - "2\n", - "​\n", - " x \n", - "2\n", - " +β \n", - "3\n", - "​\n", - " x \n", - "3\n", - " +...+β \n", - "n\n", - "​\n", - " x \n", - "n\n", - " +ε" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Polynomial Model (Degree 2)- MSE: 35637716070.71762\n", - "Polynomial Model (Degree 2)- R-squared: 0.7321925161881991\n" - ] - } - ], - "source": [ - "features = ['bathrooms', 'sqft_living',\n", - " 'floors', 'waterfront', 'condition', 'grade',\n", - " 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15']\n", - "target = 'price'\n", - "\n", - "# Load your housing data (assuming it's already loaded into 'housing_data' DataFrame)\n", - "\n", - "# Keep only numeric columns\n", - "housing_data_numeric = only_numeric(housing_data)\n", - "\n", - "# Check if all features exist in the DataFrame\n", - "missing_features = [feature for feature in features if feature not in housing_data_numeric.columns]\n", - "if missing_features:\n", - " print(\"The following features are not present in the dataset:\", missing_features)\n", - "else:\n", - " # Extract features and target variable\n", - " X = sm.add_constant(housing_data_numeric[features])\n", - " y = housing_data_numeric[target]\n", - " \n", - " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", - "\n", - " # Polynomial Regression\n", - "# Choose the degree of the polynomial\n", - "degree = 2\n", - "\n", - "# Create polynomial features\n", - "poly = PolynomialFeatures(degree)\n", - "X_train_poly = poly.fit_transform(X_train)\n", - "X_test_poly = poly.transform(X_test)\n", - "\n", - "# Build a polynomial regression model\n", - "poly_model = LinearRegression()\n", - "poly_model.fit(X_train_poly, y_train)\n", - "\n", - "# Make predictions on the test set\n", - "y_pred_poly = poly_model.predict(X_test_poly)\n", - "\n", - "# Evaluate the polynomial model\n", - "mse_poly = mean_squared_error(y_test, y_pred_poly)\n", - "r2_poly = r2_score(y_test, y_pred_poly)\n", - "print(\"Polynomial Model (Degree {})- MSE:\".format(degree), mse_poly)\n", - "print(\"Polynomial Model (Degree {})- R-squared:\".format(degree), r2_poly)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Mean Squared Error (MSE): This value represents the average squared difference between the actual house prices and the predicted prices by the polynomial model.\n", - " A lower MSE indicates better performance, and in this case, the MSE is lower than the previous model's MSE, suggesting that the polynomial model fits the data better.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " \n", - "Generally,The \n", - "𝑅\n", - "2\n", - "R \n", - "2\n", - " value for the first model is 0.641, indicating that approximately 64.1% of the variance in housing prices is explained by the independent variables included in the model. On the other hand, the \n", - "𝑅\n", - "2\n", - "R \n", - "2\n", - " value for the polynomial model of degree 2 is 0.732, suggesting that approximately 73.2% of the variance in housing prices is explained by this polynomial model.\n", - "\n", - "Comparing the two \n", - "𝑅\n", - "2\n", - "R \n", - "2\n", - " values, we can see that the polynomial model of degree 2 explains more variance in housing prices compared to the first model. This suggests that the polynomial model provides a better fit to the data and captures more of the variability in housing prices." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# RESIDUALS" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAIdCAYAAADI2D7BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/kUlEQVR4nO3deXxTVfo/8M9N0o1SbWkR2hkcRFl+LiO1LFUEVISZagELjIyOiKyyKjCAKBVkcwEBBVkFdBxRHKFFzAAuI4pWWrDyVURxGQdRW6oti7SlTZPc3x/hpkmz3Ztmubn5vF8vXtrk3OQ0OU2ee+5zniOIoiiCiIiIiCjC6cLdASIiIiKiQGBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIi1eIeQkSkBANbIop6I0aMQOfOnZ3+denSBVlZWfjLX/6Cf//73wF/zoKCAnTu3Bk//fSTxzY//fQTOnfujIKCgoA//5w5c3DLLbc06zFuueUWl9ftmmuuQf/+/bF8+XLU19c7tZ0zZ46ix//Pf/6Dhx56qFl9JKLoYgh3B4iI1ODKK6/E/Pnz7T9bLBacPHkSL774ImbMmIGkpCT06dMnYM9300034bXXXsMll1wSsMcMh759+2LSpEn2n+vr61FSUoK1a9fi559/xooVK/x+7BdffDEAPSSiaMLAlogIQMuWLdG1a1eX2/v27Yvrr78eO3bsCGhg26pVK7Rq1SpgjxcurVq1cnndevbsiZMnT6KgoABz5syJ+OCdiCIHUxGIiLyIjY1FTEyMy+2vv/46br/9dlx99dW46aabsHr1apjNZvv9p06dwsyZM9GrVy9cc801GDx4MHbu3Gm/310qwttvv41Bgwbhj3/8I/Ly8nDs2DGn5ywpKUHnzp1RUlLidPuIESMwYsQI+891dXVYvnw5BgwYgKuvvhrXXXcdRo0aha+++srj73n06FGMHDkSWVlZyMzMxH333YfPPvtM9uvU1NVXXw1RFFFeXu72/nPnzuGJJ57ArbfeimuuuQa5ubnYvn270+908OBBHDx40O3vTETkDmdsiYhgW6TkGJhKqQhr1qxBTU0NBg8ebL9vw4YNWLlyJe655x48/PDD+Oqrr7B69WqUl5fj8ccfBwDMmjULVVVVWLBgARITE7Fr1y489NBDSE9PR8+ePV2e/7333sMDDzyA22+/HTNnzsSxY8cwa9Ysv36X2bNn49ChQ/j73/+OSy+9FMePH8ezzz6L6dOnY8+ePRAEwal9dXU1xo4di549e2LVqlVoaGjAunXrMGbMGOzbtw9JSUmK+/C///0PANCuXTuX++rq6nD33XejsrISU6dORbt27fDuu+9i7ty5qKysxIQJEzB//nz77z9//nxcccUVfrwSRBRtGNgSEQE4dOgQrrrqKqfbBEFAp06d8Oyzz9oXWp07dw7r1q3D8OHDkZ+fDwC48cYbkZycjPz8fIwaNQodO3bEwYMHMWnSJNx6660AbJfnk5OTodfr3T7/mjVrcNVVV2H58uUAYE97kH6Wy2QyoaamBo8++ihuu+02AECPHj1QU1ODJ598Er/++qtLasB3332HU6dOYcSIEcjKygIAdOjQAdu2bUN1dbXXwLbpCUFVVRX279+Pbdu2IScnx226RUFBAb755hu88sor9ufr3bs3zGYz1q5di7/+9a+44oor0LJlSwBwmyJCROQOA1siIgBXXXUVFixYAACoqKjAs88+i4aGBqxcuRKXX365vd3hw4dx/vx53HLLLU4BnRT4FhUVoWPHjujZsydWr16NY8eOoW/fvujTp4/HFf51dXU4evQoHnjgAafbc3JyFAe2sbGx2Lx5MwDgl19+wQ8//IDvv/8e+/btAwA0NDS4HNOxY0e0atUKEydORE5Ojj2vePbs2T6fb+fOnU4pFgBgMBjQv39/PPbYY26POXjwIH73u9/Zg1rJoEGDsH37dnz22Wfo27evjN+WiMgZA9smTp06heHDh2Px4sVuLxe689Zbb2H16tX46aef0Lp1a9x///0YNmxYkHtKRIGUmJiIa665BgBwzTXXIDMzE4MHD8bo0aNRWFhon3k8c+YMAGD8+PFuH+eXX34BAKxcuRLr16/Hnj17sHfvXuh0Otxwww147LHHXC7Pnz17FqIousxu+rvo6sMPP8Tjjz+O77//HomJiejcuTMSExMBuK8Lm5iYiK1bt2LdunXYvXs3tm3bhoSEBAwaNAhz585FXFycx+e6+eabMXnyZAC2Ge6EhAT87ne/Q3x8vMdjzp49i7S0NJfbpdt+++03Rb8vEZGEga2D0tJSzJkzBydOnJB9THFxMebMmYNnnnkGffr0QUlJCcaNG4dOnTrhj3/8YxB7S0TBlJqainnz5mHq1KlYsmSJfeb0oosuAgA8/fTTaN++vctxUnCWlJSEWbNmYdasWfj+++/xn//8B2vXrsWCBQuwadMmp2OSk5Oh0+lQWVnpdLsUREuk3Fir1ep0e01NjT1wPXHiBCZPnox+/fphw4YNuPTSSwEAW7duxYcffujx9+3QoQOWLVsGi8WCzz//HG+88QZeffVV/P73v/cYxEt9l04I5Lr44ovxww8/uNz+66+/AgBSUlIUPR4RkYRVES4oLCzEzJkzMX36dJf7Pv74YwwbNgzdunXD7bffjl27dtnve/HFF3Hvvfeib9++EAQB2dnZ2LFjh/3LhIgi14ABA9C7d28YjUb7qvxrr70WMTExqKiowDXXXGP/FxMTg+XLl+Onn37Czz//jL59+2Lv3r0AbEHjuHHjcMMNN+DkyZMuzxMXF4fMzEy8/fbbTjOq7733nlM7KefUsdLA2bNn8d///tf+8xdffIH6+nrcf//9Tp9DUlDrbsZ27969yM7Oxq+//gq9Xo/MzEw89thjuOiii9z2t7m6d++On3/+GaWlpU6379q1CzExMfZJAZ2OX1FEpAxnbC+48cYbMXDgQBgMBqfg9tixY5g4cSKWLVuGfv364bPPPsOkSZOQkpKC3r174/PPP0fPnj0xfvx4fPbZZ2jbti2mTp2KTp06hfG3IaJAeeSRRzBo0CAsXrwYhYWFSElJwdixY/Hss8+iuroaPXv2tOfkCoKALl26ICkpCW3btsXixYtRXV2NSy+9FF988QU++OAD3H///W6fZ8aMGRg5ciSmTJmC4cOH4/jx41i3bp1Tm86dOyM9PR3PPfcckpKSoNPpsHHjRiQkJNjbXHXVVTAYDFi2bBlGjx4Nk8mEgoICvP/++wCA2tpal+e+7rrrYLVaMXnyZIwfPx6JiYnYs2cPzp07hwEDBgTuxbxgyJAheOWVVzBlyhQ88MADaNeuHd577z3s2LEDU6ZMsc+KX3TRRTh8+DAOHDiAK6+8EhdffHHA+0JE2sLT4Qtat24Ng8E1zt+2bRv69euHAQMGQK/X47rrrsOdd96JrVu3ArDNlmzevBkTJ05EUVERJk+ejOnTpzer/iMRqUeHDh0wYsQIfPPNN3j55ZcBANOmTcOcOXPwzjvvYNy4cVi2bBmysrLw8ssv2ysIPPfcc+jduzeeffZZjB49Gq+++iqmTJliz0dtqlu3bnj++edRUVGBKVOmYNu2bfbSYRK9Xo9Vq1bhkksuwYwZM7B48WLk5OQ4BZ9/+MMfsHz5clRUVGDixImYN28eAOCf//wnBEHAJ5984vLcl1xyCTZt2oSkpCTMnTsX999/P44ePYrVq1cjOzs7IK+jo4SEBPzzn//ELbfcglWrVmHixIkoLS3FkiVLMHXqVHu7v/3tb4iJicG4ceOwf//+gPeDiLRHEN1dl4pynTt3xksvvYSePXti3LhxKC4udlo8YbFYcOmll+KNN95AZmYm7r33XqdZ3vHjx+OKK66QtaKYiIiIiAKDqQg+tG3bFnl5eVi4cKH9tl9++cWep3b55ZfDZDI5HWOxWNzmsRERERFR8DAVwYdhw4bBaDTio48+gtVqxfHjx3HPPfdgy5YtAIC77roLr776Kj7++GNYrVa89dZbKCkpQW5ubph7TkRERBRdOGPrw7XXXosVK1ZgxYoVePDBB5GQkIDc3FzMmDEDADB06FDodDo88cQT+Omnn/C73/0OK1eudNnBiIiIiIiCizm2RERERKQJTEUgIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCqyJcUFV1Dv4soxMEIDU1ye/jSVs4HqgpjglyxPFAjjge5JNeK18Y2F4gimjWoGru8aQtHA/UFMcEOeJ4IEccD4HDVAQiIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNMIS7A0RE4WKxAMXFelRUCGjTRkR2tgV6fbh7RURE/mJgS0RRyWg0ID8/DmVljReuMjKsWLy4Hrm55jD2jIiI/MVUBCKKOkajAWPGxKOsTHC6vbxcwJgx8TAaec5PRBSJGNgSUVSxWID8/DiIIgA4B7aiaPs5Pz8OFkvo+0ZERM3DwJaIokpxsf5C+oHg9n5RFFBWpkNxMZNtiYgiDa+3EVFUqahwH9D6246ISAu0spiWgS0RRZU2bcSAtiMiinRaWkzLVAQiiirZ2RZkZFghCO4DV0EQkZFhRXY2k2yJSPu0tpiWgS0RRRW9Hli8uB4AXIJb6efFi+sj8hIcEZESWlxMy8CWiKJObq4ZmzfXIT3dObBNTxexeXNdxF16IyLyhxYX00bW/DIRUYDk5pqRk2PWxGIJIiJ/aHExLQNbIopaej3Qq1cEXWMjIgogLS6mZSoCERERURTS4mJaBrZEREREUUiLi2kZ2BIRERFFKa0tpmWOLREREVEU09JiWga2RERERFFOK4tpmYpARERERJqgyhnbY8eO4amnnsLRo0cRExODXr16Yc6cOWjVqpVL27Fjx6KkpAQGQ+Ov8uyzz6JPnz6h7DIRERERhZnqZmzr6uowduxYZGZm4qOPPoLRaMSZM2fwyCOPuG3/xRdfYPPmzTh8+LD9H4NaIiIiouijusC2rKwMXbp0weTJkxEbG4uUlBQMHz4chw4dcmn7448/4uzZs7jyyivD0FMiIiIiUhPVpSJ06NABmzZtcrrtrbfewlVXXeXS9siRI0hMTMT06dNx5MgRpKWl4b777sOwYcMUP6/g525x0nH+Hk/awvFATXFMkCOOB3LE8SCf3NdIdYGtI1EU8cwzz2Dfvn14+eWXXe43mUzo2rUrpk+fjo4dO6KkpARTp05FYmIicnJyFD1XampSs/ra3ONJWzgeqCmOCXLE8UCOOB4CRxBFUZUbAFdXV+Phhx/G0aNHsW7dOnTu3FnWcQsWLEBVVRVWrVql6Pmqqs7Bn1dCEGwD0t/jSVs4HqgpjglyxPFAjjge5JNeK19UOWN74sQJjBs3DhkZGdi+fbvbaggAsH37dpfZWZPJhLi4OMXPKYpo1qBq7vGkLRwP1BTHBDnieCBHHA+Bo7rFY2fPnsXIkSNx3XXXYfPmzR6DWsA2q7to0SJ8+eWXsFqteP/992E0GjF8+PAQ9piIiIiI1EB1M7YFBQUoKyvDnj17sHfvXqf7Dh8+jMzMTCxYsACDBg3CyJEjUVtbiylTpqCqqgrt2rXDU089hW7duoWp90REREQULqrNsQ21ykr/c2zT0pL8Pp60heOBmuKYIEccD+SI40E+6bXyRXWpCERERERE/mBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpAgNbIiIiItIEBrZEREREpAkMbImIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpAgNbIiIiItIEBrZEREREpAkMbImIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmqDKwPbYsWMYNWoUevTogV69emH27Nk4deqU27YffPABBg4ciK5duyInJwf79u0LcW+JiIiISA1UF9jW1dVh7NixyMzMxEcffQSj0YgzZ87gkUcecWl7/PhxTJ06FQ8++CA++eQTTJ06FdOmTUNFRUUYek5ERERE4aS6wLasrAxdunTB5MmTERsbi5SUFAwfPhyHDh1yaVtYWIhu3brh1ltvhcFgwG233Ybu3bvjtddeC0PPiYiIiCicDOHuQFMdOnTApk2bnG576623cNVVV7m0/e6779CpUyen26644gocO3ZM8fMKguJDnI7z93jSFo4HaopjghxxPJAjjgf55L5GqgtsHYmiiGeeeQb79u3Dyy+/7HJ/TU0NEhISnG6Lj49HbW2t4udKTU3yu5+BOJ60heOBmuKYIEccD+SI4yFwVBvYVldX4+GHH8bRo0fx8ssvo3Pnzi5tEhISUFdX53RbXV0dEhMTFT9fVdU5iKLyfgqCbUD6ezxpC8cDNcUxQY44HsgRx4N80mvliyoD2xMnTmDcuHHIyMjA9u3b0apVK7ftOnXqhKNHjzrd9t133+Hqq69W/JyiiGYNquYeT9rC8UBNcUyQI44HcsTxEDiqWzx29uxZjBw5Etdddx02b97sMagFgEGDBuHgwYPYvXs3zGYzdu/ejYMHD2Lw4MEh7DERERERqYHqAtuCggKUlZVhz549yMrKQmZmpv0fAGRmZmLXrl0AgMsvvxxr1qzBhg0b0L17d6xduxarV6/GZZddFs5fgYiIiIjCQBBFTn4DQGWl/zm2aWlJfh9P2sLxQE1xTJAjjgdyxPEgn/Ra+aK6GVsiIiIiIn8wsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpAgNbIiIiItIEBrZEREREpAkMbImIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpAgNbIiIiItIEBrZEREREpAkMbImIiIhIExjYEhEREZEmqDqwPXXqFPr374+SkhKPbcaOHYtrrrkGmZmZ9n/79+8PYS+JiIiISA0M4e6AJ6WlpZgzZw5OnDjhtd0XX3yBzZs3o0ePHiHqGRERERGpkSpnbAsLCzFz5kxMnz7da7sff/wRZ8+exZVXXhminhERERGRWqlyxvbGG2/EwIEDYTAYvAa3R44cQWJiIqZPn44jR44gLS0N9913H4YNG6b4OQXBv75Kx/l7PGkLxwM1xTFBjjgeyBHHg3xyXyNVBratW7eW1c5kMqFr166YPn06OnbsiJKSEkydOhWJiYnIyclR9JypqUn+dDVgx5O2cDxQUxwT5IjjgRxxPASOIIqiGO5OeNO5c2e89NJL6Nmzp6z2CxYsQFVVFVatWqXoeaqqzsGfV0IQbAPS3+NJWzgeqCmOCXLE8UCOOB7kk14rX1Q5YyvX9u3bXWZnTSYT4uLiFD+WKKJZg6q5x5O2cDxQUxwT5IjjgRxxPASOKhePyVVdXY1Fixbhyy+/hNVqxfvvvw+j0Yjhw4eHu2tEREREFGIRN2ObmZmJBQsWYNCgQRg5ciRqa2sxZcoUVFVVoV27dnjqqafQrVu3cHeTiIiIiEJM9Tm2oVJZ6X+ObVpakt/Hk7ZwPFBTHBPkiOOBHHE8yCe9Vr5EdCoCEREREZGEgS0RERERaQIDWyIiIiLShIhbPEZEwWGxAMXFelRUCGjTRkR2tgV6fbh7RUREJB8DWyKC0WhAfn4cysoaL+JkZFixeHE9cnPNYeyZbwzIiYhIwsCWKMoZjQaMGRPvsiK3vFzAmDHx2Ly5TrXBbSQH5EREFHjMsSWKYhYLkJ8fdyGoFZzuE0Xbz/n5cbBYQt83X6SAvKzMud9SQG408rydiCjaMLAlimLFxfoLs52C2/tFUUBZmQ7Fxeq6th/JATkREQUPA1simSwWoKhIj4ICA4qK9JoImioq3Ae0/rYLlUgNyImIKLh4rY5IBq3mcrZpI2+rG7ntQiVSA3IiIgouztgS+aDlXM7sbAsyMqwQBPeBqyCIyMiwIjtbXdPTkRqQExFRcDGwJfJC67mcej2weHE9ALgEt9LPixfXq658VqQG5EREFFwMbIm8iIZcztxcMzZvrkN6unOQmJ4uqrbUV6QG5EREFFyRew2VKASiJZczN9eMnBxzRG10IAXkttznxtc/PV2M+NxnIiLyDwNbIi/UlssZzF229HqgV6/IunQfiQE5EREFDwNbIi+kXM7ycsGeU+tIEESkp4shyeXUamWG5orEgJyIiIKDObZEXqgll1PLlRmIiIgChYEtkQ/hXlyl9coMREREgcJpHiIZwpnL2ViZwT1bZQYBxcV6XpInIqKoxhlbIpn0elvObZs2IioqbIFkKGZJo6UyAxERUXNxxpZIpnAt3lJbZQYiIiK14owtkQzhXLzFXbaIiIjkYWBL5EO4F2+ppTJDUxYLUFSkR0GBAUVFoUnLICIi8oaBLZEPathWN9yVGZoyGg3IykpEXl4LTJiQgLy8FsjKSmTZMSIiCit+CxH5oJbFW2rZZUtKyxCbZEZIaRnhCLSJiIgABrZEPqlp8Va4d9nylZYhCCLy8+OQk2PmtrZERBRyTEUg8oGLtxqpIS2DiIjIEwa2pDmBXtSk1sVb4aCWtAwiIiJ3GNiSpgRrUZPaFm+Fi5rSMoiIiJpiji1pRrAXNall8VY4SWkZ5eWCvdSZI0EQkZ4uRkVaBhERqQ9nbEkTQlVrVlq8NWSIGb16RVdQCzAtg4iI1I2BLWkCFzWFDtMyiIhIrZiKQJrARU2hxbQMIiJSIwa2pAlc1BR64a6pS0RE1BRTEUgTWGuWiIiIGNiSJnBRExERETGwJc3goiYiIqLoxhxb0hQuaiIiIopeDGxJc7ioiYiIKDoxFYGIiIiINIGBLRERERFpAlMRKKQsFjD/lYiIiIJC1TO2p06dQv/+/VFSUuKxzQcffICBAweia9euyMnJwb59+0LYQ1LCaDQgKysReXktMGFCAvLyWiArKxFGI8+viIiIqPlUG9iWlpZi+PDhOHHihMc2x48fx9SpU/Hggw/ik08+wdSpUzFt2jRUVFSEsKckh9FowJgx8Sgrc97StrxcwJgx8QxuVc5iAYqK9CgoMKCoSA8L1+YREZEKqTKwLSwsxMyZMzF9+nSf7bp164Zbb70VBoMBt912G7p3747XXnstRD0lOSwWID8/DqIIAM6BrSjafs7Pj2OwpFKcaSciokihym+mG2+8EQMHDoTBYPAa3H733Xfo1KmT021XXHEFjh07pvg5BcF3G2/H+Xt8NCgp0aOszPM5lCgKKCsTUFKij/gyXVobD9JMu9hkp2Jppn3LFm584YvWxgQ1D8cDOeJ4kE/ua6TKwLZ169ay2tXU1CAhIcHptvj4eNTW1ip+ztTUJMXHBPJ4LZP7dtTWtkBaWnD7EipaGA8WC/Doo3AJagHbyYggAPPmJWDECHABoAxaGBMUOBwP5IjjIXBUGdjKlZCQgLq6Oqfb6urqkJiYqPixqqrOuf0C90UQbAPS3+OjQYsWegAtZLSrRWVl5M/YamU8FBXp8dNPnt83UQR+/BEwGmsjfqY9mLQ0Jqj5OB7IEceDfNJr5UtEB7adOnXC0aNHnW777rvvcPXVVyt+LFF0PzMVquO1rGdPCzIyrCgvF+w5tY4EQUR6uoiePS2aeQ21MB5OnpR33efkSSHif9dQ0MKYoMDheCBHHA+Bo8rFY3INGjQIBw8exO7du2E2m7F7924cPHgQgwcPDnfXyIFeDyxeXA/AFsQ6kn5evLiel7NVpk0beZ+ycttpGatGEBGpQ8QFtpmZmdi1axcA4PLLL8eaNWuwYcMGdO/eHWvXrsXq1atx2WWXhbmX1FRurhmbN9chPd05CEpPF7F5MxcgqYkUpJWXC0hNtbqcjEgEQURGhhXZ2dEdxbFqBBGRegiiyMlvAKis9D/HNi0tye/jo41adx4LVL8ifTwYjQbk58c1qWIh/SKNqQlSsBvtJyXOVSPcvz4DB5pljwm1/n1Q4ET6ZwQFFseDfNJr5QunFCik9HqobqGRu2AuI8OKxYvroypo81Tay530dDHqXp+mfNVnFgQR+flxuO02ea8RxyERUfNFXCoCUSBxRzQbb0Ga9HNqqhVr155HYWEtSktroj7YKi6W6jO7X2Rnq8+sQ3Gx7ylXjkMiosBgYEtRizuiNfIVpAECqqp0SE8X0asXL48DQEWFvKoRvtpxHBIRBQ4DWwoJNa4aD+SMW6QLVJAWTQJVNYLjkIgocHh9i4JOrbmDDOYaRWJpr3AvtMrOllef2VfVCI5DIqLA8WvG9osvvgAA/Pbbb1i2bBk2b94Mszm68+3IPTXnDkZiMBcsUpAWKaW91FBiK1D1mTkOiYgCR3Fgu27dOowcORIAsHjxYuzbtw+FhYV46qmnAt45imxqzx2MtGAumCJpEw01nSwFoj4zxyERUeAoDmyNRiO2bt0Kk8mEt956CytWrMA//vEP7N69Oxj9owim9tzBSArmQiESNtFQ48lSbq4ZpaU1KCysxfr1yqtGcBwSEQWO4qmNX375BV26dMGBAweQlJSELl26AADOnz8f8M5RZIuE3EEpmLPlADf2I1rrtObmmpGTY1btJgGNJ0vu2U6WBBQX60NaL7m59Zk5DomIAkNxYNumTRscOnQIO3fuxPXXXw/ANovbrl27gHeOIluk5A6qPZgLNTVuoiGJhJMlf3EcEhE1n+LAdurUqRg7dizi4+Px6quv4sCBA3j44YexevXqYPSPIligVo2HgpqDOWoUKSdL/uI4JCJqHsWB7Z/+9CfcdNNNAIC4uDhccskl+M9//oNLLrkk0H2jCCflDo4ZEw9BEJ2CW+YO+ifcJa7CLZJOlpoj2t9nIiJ/yQ5sDx065PX+H374Ad27d292h0hbmDsYOGqtBxxK0XCyxPeZiMh/giiKsq7ZSYvEPD6QIOCrr74KSKfCobLyHOS9Es4EAUhLS/L7+GgRLTNQwRoPUomrptUApGBOSdUCLbwXkRT8KRkTgXyfSZ34nUGOOB7kk14rn+3kBrZax8CWAkHueFASXFosQFZW4oUZb8+X30tLa3wGqJEUEPoSKQG6kjERqPeZ1IvfGeSI40E+uYGtX5XMz58/j7Nnz8JqtQIAGhoa8M0336B///7+PBxRVFEaXAaqxJXzbGAjaWODSJsN1NpCK7WWMiMiiiSKA9sdO3Zg0aJFqK+vd7o9NTWVgS1FlHDM+PkTXAaixJWvjQ0EQUR+fhxycsycDQwTLZcyIyIKFcWB7fr16zFt2jQkJibi0KFDGDlyJJYtW4ZevXoFo3+kUhYL8PHHehQV6SGKtpmzXr3CcynYnwA1EJfk3T2vwctflL/BZSBKXHE2UP20XsqMiCgUFG+p++uvv2LkyJG4/vrrceLECVx11VV4/PHH8frrrwejf6RCRqMBV16ZiKFDW2DFijisXBmHYcNa4MorE2E0+pXd0qy+ZGUlIi+vBSZMSEBeXgtkZXnvx65dBoweHe9UpQFonDWV8zv487z+bjEslbhqut2qRBBEZGRYvZa44myg+gXifSYiinaKA9vU1FQ0NDQgPT0d//vf/wAAGRkZqKqqCnjnSH2MRltQePq0awB0+rSA0aPlBYYSiwUoKtKjoMCAoiI9LAq+s6XL+koC1F27DBg/Ph624NJ11hSwzap664e35x09Oh4FBe6P8ze4lEpcAXAJeuSWuAr3bGBz3udoEYj3mYgo2ikObP/4xz9i3rx5qKurQ/v27fHqq6+isLAQycnJQegeqYnFAsydG3fhJ3dBmu22uXO9B4YSf2Y9Hfvi7bI+4BqgGo0GjB0bD6vVc4DpadZUyfNOmwa3v39zgkupHnB6uvN96emirEVf4ZwNbM77HG2a+z4TEUU7xd8sDz/8MPLz81FTU4NZs2ZhwoQJqKurwxNPPBGM/pGKFBfrUV7u61xIQHl58FfoK80ZlQJSuTzNrsp53h9/tLW74Qbn37+5u2bl5pqRk2P2a8FbuDY20FolhlBozvtMRBTtFAe2l1xyCTZu3Gj//+LiYjQ0NCAhISHgnSN1UZJ/GewV+kov6/sKSJvyNLvanFzVQASXzSlxFepd4FiJwX9aK2VGRBQqigPbnTt3erzvjjvuaEZXSO2U5F8Ge4W+0sv68oNyERkZnmdNm5urGu4thuXMBgaqDBorMRARUagpDmxXrVrl9PPZs2dx/vx5ZGVlMbDVEHfBTXa2Benptkvpnlb2A7bL6d27W1BU5D44CsQKfaWX9ZUE5d5mTbOzLUhJsV5YPOeufyJSUwWvuarhvtTsbTYwkDuTsRIDERGFmuLA9r333nP6WRRFPP/88zhz5kyg+kRh5i24WbKkHqNHxwMQ4RrY2YLHIUMa0KNHosfgKBAr9JVe1vcVCAOATidi48bQ5HwqudQcqo0kAp0PG+5KDEREFH0UV0VoShAEjBkzBm+88UYg+kNh5quEFgBs2VKHlBTXYCQlRcTkySasXRvrtQRXoFboK1lB7q2Uki0gFzFmjAmpqaLXig7FxXqcPu25Fi0goKoKHqsqKBWqigL+VJnwhXVZiYgo1Jod2ALA//73PwgCLydGOrnBTU6OGV9+WYMdO2oxY0Y9pk+vx/bttThypAaFhTE+jweU1+v0VAc1N9eM0tIaFBbWYv368ygsrEVpaY3bmUVPgbBOZ+vv88/H+QwcQ3l53Z86vf7yd/MIb1iXlYiIQk3xN+OIESOcgtiGhgZ8/fXXGDRoUEA7RqGndLFP7962f5KiIvnHK1lE5SvvU8llfcf81j17DNi4MQZWq3ObsjLbRgubNtVh0CDnAFnp5XV/0wh8n2QEtqJAsAL2cC+WIyKi6KI4sO3Zs6fTzzqdDvfddx9uvfXWgHWKwkNu0FJeLrhdGKY0OJKziMpX3uesWSZ06GBVXNM1O9uCyZPjL9zStN+2n207lDkHt75zdRsXjzVnIZbv8mTyKgrIDayDmQ8b7sVyFD6hyg8nIpIoDmynTJkSjH6QCsgNWh59NA5VVa7Bmj/BkbfZVjmzlkuXNm664C5o9PTFKqeurdUqYOzYeGzZ0pivK11e97yADqiqAhYtisXatbGyFmK566Ot8oRv3topCaybu3mEL6zLGn0CWWGDiEguQRSbfvW69/DDD/tsE8m7j1VWnnMJQuQQBCAtLcnv49XEYgGyshK9zkY2cq1CMGGCCRs2xHrcslYKjkpLa2TN2hQV6ZGX10J2/6V+SEGjty9WkwmYMEHOpiK2uraOfbZYgCuvTPRS8stWYcGW4uA5SCwtrcGePe772KePGdu2xfrs3aJFdbj//gaX251nul3fK3cVDqRjALitMsFdwvyjpc8IufwZf9EiGscDecbxIJ/0WvmiePHY6dOnsWvXLpw7dw7Jycmor6+H0WiEyWTyq6OkHnIW+1z4yek+URQgisC6dbEu+aoOrQAoWyykNJ/TcYHarl3eF159/73coe+6aMp3ZQRcCO69L8RauTLWbR/LygRs2xYjq3epqa6fhP5WOFBSZYLIk2BU2CAikkt2KoI0GzthwgSsWrUK/fr1s9/30UcfYf369YHvHYWcp8U+qakiKiu953x6o9NBcY1Yf/I5pQVqDz3kfSvXl1+OkbHZRCPHvOKvvw5IMRFs3Oi+goSc/kiaBqFA83b8Yj4sNRd3nCOicFKcY1tSUoK1a9c63Xb99ddj6tSpAesUhZe74Ka8XMCkSXIu3btntQpuZxe9kfI+bQG2stlbxxzgpqQv1tmz67F0qe/L/YBrXnEgnDkj5/Hc5/F62/q3uRUOojEfloucAoc7zhFROCn+pv7d736HPXv2ON1WUFCAP/zhDwHrFIVe0zqxgC24GTLEjF69LG5nBpVS+kXmmBoRDB06WLFpUx10Om+/m23zhqoqd7useT5OpxM9bkwAiEhO9piz4aEPzj8Lgue0Dn9KkrmrERwtQrUJRrRQ445z0T7GiaKJ4k/u6dOn48EHH8TWrVuRnp6On376Cd988w1TESKYnNXLcrak9cXfUlGzZ5ucqh94Zwv65PSxTRvxwsxkHcaOdVf6y3Nese1nKbhtujhGwMSJth3Ymm73Kx0rfwdq198jI8N7DVglFQ6ifeV6oLcRpuBX2FAq2sc4UbRRPGPbr18/7Nq1CzfccAMSExPRt29f7Nq1y6W+LUUGubtb+V5Y5nkGszlbp1osQM+eFlx8sdXj4zey3e9rZWnT/gwaZMaWLXXIyHA+0JY64S0NwvW+jAwR27cDjz1mwubNdWjhtaiD91lfd1JTrVi40PsXstwdv/bsCd3OZmrERU7BoaYd50K5ex8RqYPscl9aF43lvqTyXp5yWN2V5/I0+5GX14C1a235qkpKRXnLbXT3XJ5zTr2X2JLTn6Z9kZtXPGNGPTp1sm0Scf31FrRpYxsP9fVAu3YtPSwQk34X7/11d4wgyCuX5G2mKifHrPi91xq55eQKC2ublXMcyZ8RzRHumVJ/Pt9CIVrHA7nH8SCf3HJfsk9XBw4ciDfffBO33HKL05a6jv7zn//I7yGFnT+rl3NzzRgwwIwXXojB8eM6tG9vxahRDYiNBbKyrJg7N85p04C2bUUsWeL+i8zbFx8At5eIm0pNtSIvzwyrFdiyxfdCsNRUEUuXuu9P00VTUq6xL717W+zHOf5pvPBCjI+UCOHCMe7SFbwdI287XW8VDpRsf6zVhWRc5BRc4a6wweoMRNFJdmA7fvx4ALadxzwFtqQ+3mZE/flidxeMrlsXi8WL62G1AnLLGfvKbUxOFr2UwhKRkiLi+efrcOaMgHnzms7qeubrMr6j5uYKHj8ur08332zGe+8ZIHfmVskXsqcKBwzqgLQ09S1y0ppwVtjgGCeKTopmbAFgyJAhTrf/97//RcuWLdGmTZvA9oyazdelQLmbFEhf7J6C0bIy4cIWs0DT4MzTFrK+tsq1bYDgiYDTpwUcPKjHsmWu29Z6o6S6g5QrOGZMvMusqpxcwfbt5VU+uPlmC7p1sypYIGfTnC9kNa5cDyWj0YC5c72/3qFe5ESBFe1jnChaKV489umnn+KOO+4AAGzbtg233347+vXrh3fffTdgnaqqqsKkSZPQrVs39OzZE0uWLIHZ7H6WbezYsbjmmmuQmZlp/7d///6A9SVS+Vo0sWuXAf/8Zwy8L14SkZ5uW2TlLRj1PtNo25XMcRFO4yVCb4uyfPO8wYE7/i1ga85uXKNGNVwoJea57JdOJ2LUqAZMn25CerqcBXKNmvOFLM1GeypJ5m3BX6SXTpL+NhxTZpoK9SInCrzmjHEiilyKA9vly5fjpptugiiK2LBhA5588kk899xzePbZZwPWqWnTpqFFixb48MMPsX37dhw4cAAvvvii27ZffPEFNm/ejMOHD9v/9enTJ2B9iURyVnvPmROH8nLv28ICAkaMaIBeLzcY9Xyf47a0gbr0Z9vgQP5j5eU1+BWk5OaaUVpag8LCWqxffx6FhbUoLa3xmdIQGwtMnCjlZrjWogVs98fG2maHlyyphyC4riRvKhBfyP6uXI/0mq/eT9AatW3LbYQjnZqqM0SaSD95peimOLD9/vvv8eCDD+L7779HZWUlbrvtNtx000346aefAtKhH374AQcPHsSsWbOQkJCAdu3aYdKkSdi6datL2x9//BFnz57FlVdeGZDn1gpfQagoCj62x23UoYPtcnogglHpMeTPNHqeaVG2wYHN2rWxfgdgUq6gtGGF3C/D+fNNmDzZBF2Tl1unAyZPNmH+/MakZE+zw44C+YWsdDZaC6WTfJ+g2Tz3nP9BLYMC9WjOFZdoFeknr0SKR6per0dNTQ3279+Prl27IjY2Fj///DNatmwZkA59++23SE5OdsrZvfzyy1FWVobffvsNF110kf32I0eOIDExEdOnT8eRI0eQlpaG++67D8OGDVP8vP6uh5OOU9N6ul9+CVxn2ra1lZdq27b5eWjSY11/va+tchufy1Nu6/33N+Cpp5TkpNpydx99NA5/+pMZhw4FZ6W2IDQGNtLjP/qoCY88YsKWLY2VJEaPtlWSaGrgQDNuu822knzPHgO2bzc4beXra3MGpRyfz9vr4esqgCDYXtvbbvNeqSHc5P5tVFYKfv1NS7m7TfPaV68G+vZV/njUfHLHeKio8TtD4mtR75YtPBkINDWPB7WR/RqJCs2fP18cPHiw2K1bN3Hnzp3it99+Kw4YMEB88sknlT6UWzt37hT79u3rdNsPP/wgdurUSSwvL3e6vbCwUBwzZox49OhR0WQyiR9++KHYtWtXcffu3QHpS6Tat08UbdsUeP+XliaKguD+PkEQxd//XhTffVcUX3nF9t9WreQ9rrt/rVuLotnc2MfXX/d9TGqqrQ+Ot7VrJ4o7dojiv/4linq9/31x/Pn3v7c9ZiDs2OHa5+Y8vtlsez9fecX2X8fXMJTkjql9+8LTP7mC+Xvs2OH+70kQbP8CNcaIgsFsdv3sajqO27UL32cQkVyKN2iwWCx44403EB8fj9tuuw3Hjx/Hvn37cO+990IfgFPgd955B/n5+SgpKbHf9vXXX2PQoEH45JNPkJTkvTjvggULUFVVhVWrVil63qoq/zdoSE1N8vv4YLBYgOuuS/RapiojQ8TChfX2rWSbzoqKIpCS4lydoGVLK6qrlWav2F6UzZvrMGhQ45l+UZEed9zhuzj+jh210OvhNNOyZ48Bo0dLswr+nOaKTsdJs8CbNtUhNVX0e1bHaJT65dwn6fEjebajoMCA++/3vVnFhg3nMWSIen9HuX8bSov2S4/reTMA28ytlje8IHnU+J0ByP9M3rmzeRuWkDO1jgc1kl4rX/xKRRgyZAjOnj2LL774AldeeSX+9re/BSSoBYCOHTvizJkzqKysRFpaGgBbSbG2bdu6BLXbt29HYmIicnJy7LeZTCbExSkrmwQ0npf6q7nHB5JO57tM1aJF9fb8M1tJsMY2KSkiTp2yldRyVF1tu5x/4ZHcPLPo9vbJk00YONAMs7mxpq7cfK2iIj1mzTLZgwGLBZg71/fiH+/clxgbNy4eVmvjfUp2SXLulzPpUv3cuXH485/lX6r3VoPYn3bNcckl8gb3JZeIqvk7cEfu34ZOp+zv+cABX5sBAD//rMOBA9wMgGzU9J0BACdPyvs8PXlSUFW/tUJt4yGSKV48VlNTg7///e/o2bMn7rnnHhw/fhz9+/fH999/H5AOtW/fHllZWXj88cdRXV2NH3/8EWvXrnWbN1tdXY1Fixbhyy+/hNVqxfvvvw+j0Yjhw4cHpC+RTO6iiaYr/nfsqEXjeYG3sl5N/wJd/yKTkqwYO7YBt95qwa5dzgsSjMYYWb/HihVxTgsX5C7+UU5wCmqBxvq8+flxPhcByVmw51gZwhe5CzhCtdBDS6WTgrGgiJsBUKRj3V/SCsWpCPPnz8cvv/yC2bNn484778THH3+MJUuW4Mcff8TmzZsD0qnKykosXLgQJSUl0Ol0uOOOOzBz5kzo9XpkZmZiwYIFGDRoEERRxLp167B9+3ZUVVWhXbt2mDJlCv785z/78Zz+pyKoeZ9nkwnYtCkGJSV6tGwp4i9/MaN3b88zekVFeuTl+b4clZpqdVrU1KqVFVarVILLHW8zvd5JwdTmzXUwmYAJE3xfEg8GbzO4BQUGWf1av973pXrnBRyuM4pS8CW3XaBIzwe4pq4E4/mCLZAz3XL/bgoLeRk32qn1O8NiAbKyvKfppKcrT9Mh79Q6HtRIeq18tlMa2Pbp0wdvvvkmLr74YvTo0QMHDx5EXV0d+vTpg4MHD/rd4XDTYmBrNBrw97/HuezilZJixfLlzQvQpk1rvFyr1wNPPy0t8fcUuLpPU5BL+lB95pk63Hmn7wAiGLwFcB9+qMfQob77NW1aPfr2tTgFUY4BVuvWIqZMkTYP8PzlcvBgDXr08JbTGZwvIV+72UUr30GB7XX65BMGBdFO7d8ZWjp5jQRqHg9qIzewVXy90mq1IvZCnSIpJna8jdRBWsjkzunTtkvsjouZpODqm2/kZac880xjHrNtdy3A12YPzWG7lC/gyy8VZ88EjJQrm58fh5wc51xZuR9IzzwTh2eeaQwGAbgEir76UFYm4IUXYnzkdNraFRcHNqczN9eMnBz1lE5SC9/bLwvcDIBUz9O6i/T0wJYZJAomxYFtdnY2Fi5ciHnz5kG4UFTsmWeeQY8ePQLeOfKPtJDJxl1AaVsslZ8fhwEDzFi1KhYbN8Y0SSPwNMPqGsQ2zU0Nph9/DF9gC3gOGCsrlb0G5eWCxxMPOY4fl/c6BCOnU9qsgpx5CgoyMkSsWiWgTx8zZ2RI9XjySpFOcWD78MMPY+LEiejevTssFgsyMzPRvn17rF+/Phj9I4UsFltOrW27XG9sAdr/+38tce6ckvSB8C5+ad9e+Y5jvinP/3UMGC0W4Ndflb0uUiUGpc8rqamR144LPULLXVBw/fUWtGmThMrKcPeOSB6evFIk86vc12uvvYYjR47g559/Rtu2bdGpUyesWLECjz76aDD6SDK5y3/05dw5T/c4Bl5qIKJtWxGdO1uRnGzFmTOedi1r3nPIfcyvv9ahqEiPqioB8+Ype80b+beQrm1bEe+/b4D3/opITRVRXi6gqEjPGZcQahoUcEchIqLQkb147KuvvsKUKVNQVlaGP/7xj9i4cSMuvvhifP311/j73/+OiooKHDp0KNj9DZpIXzzmaYW8liQliV5ml5tLblDbtJ3/s65KSQs4Zs0yYelSZbWaucArfNTyGUHqwPFAjjge5JO7eEz2NNOSJUvQqVMnrFu3Di1btsT69etRXFyMu+66C0lJSSgsLGxWh8k3i8VWVqigwOBUV9VisS1A0nJQC3ibXQ6Epq+bCPkz1qF5zdu2tdVZ7dBBeTqGtNd7oOvbqoGnvwsiIoo+sr/lvvrqK7zzzjto1aoVunTpgnvuuQc7duzAPffcg2nTpkGnC++iHq3zVmYpJUX081J4pAll0O4pFUNZzrFeb4XF4iltQtls73PP1aF3bwuKipTnFHir6BDJWH6M5AjF7nxEpA6yoyGr1YpWrVoBANq2bYuTJ09iwoQJmDFjBoPaIJPSDBxXWgONs3B79mhvFk4dmh9IWyzS34a7ndqU5QlLC9R87QLmidLdz9TO19+FFmenSblQ7c5HROogOyIVmqyAiImJwYgRIwLeIXLmLc1AFG17du/YwQ/oaCBVOJBqpgJQHNwC3kuARcplfV9/F4DtfrX2n0KDJz9E0cfvqdaYmBjExMQEsi/kRnGx/sJlVk/BiICqKh1SU5XP4FGouJuZ9Zaa0KSlICIjw4rs7MYoTaqZmp6u/D33VAIskma2fP1daG122lGknHyEG09+iKKT7G8ss9mMnTt32n9uaGhw+hkA7rjjjgB1iyRyC+xfd50F777rqwQUqZv7rXEBuN21SqqZumlTDB59VM5mDyIyMkSnAFniXFWjkTSzpbatNOX+XQRjg4pwYk6xfI0nP+4Fa3c+Igov2YFtWloaVq1aZf85JSXF6WdBEBjYBoHcAvuHD+uxYUMdJkyIhzUYexhEHXWcIPjaylKvB1q3lj9ru3Cha4Dsa2ar6aKzQC/E8efx5P5daGmDikg7+Qi3aD35IYp2sgPb9957L5j9IA+ysy1ITbWiqsp71khlpQ4VFUJIt7fVtnC+jrbIZfZsE6ZPNwUsyAMEpKa6tlUys3X6tBDQGUN/ZyClBXTl5YL9srIjQRCRnu5+djoSKT35CGW/1FptIBpPfoioGTm2FBp6PTB0qLyA4fjx6Hk7r702kDNTtpq1d95pCuBjNocAQQBeftl9DnvTHMvu3S1ITpY3Tb9/vx7btxuwYUMMtm+3HV9eLi+I37tXH9CFOM1Z2ONtAZ239I1IpcacYrXnZPuqHuIud52IIp86PoHIqz/9yYyNG2N9tmvfPnpyED77LJBf4LaatW+/Haw/B3dpDd5THTzl/xmNBsydG4fy8saTmPR0K266yYKdO32f2Kxc6bpjWWqqvHGzfXtMwGYMAzEDKS2gs834Nj6Gr/SNSKS2y+qRkBYhnfyMGRMPQRCdZva1ePJDRDbRM8UXoYxGA6ZM8bUwSER6uhX33tsAnU7JjlnUSMCZM4H4c5CzqYN8+/c3zszu2mXA6NHxLjOs5eUCdu6UFg56eu8931dVJXi9XxBEh3SYwMwYBmoGMjfXjNLSGhQW1mL9+vMoLKxFaWlN2IOqQFPTZfVIqjbgqXpIerqoiuCbiAKPM7Yq5mlWxJWAujoRa9bERlGOrRp/TyVBhbz+O86wNl5SdVc6zNsuZr52OPO0y1rjsUOHyrtqEOiZRTnt9HpoflW7mnKKI63agFQ9RK25wEQUWJyxVSlvsyLunDkjYOlS34EHBZOyncRs5M+w2gIab8GpP/f5bjNhggk5OfJmtgI9s8iFPTZqyilWW1qEHNLJz5AhZvTqxaCWSMsY2KqU740ZnLmbxaFQEZGb29Cs491Tw3sqYMOGWPz6qxDQhThc2KOcWi6r86SEiNSMga1K+TfboYZAKPrMnm3CmDH+BrbeZlnVwWoVMH58PPLybL9jIGYM1TQDGUnUkFPMkxIiUjMGtirF2Y5IYPsCnz7dZK837J9QBLHNH0+FhTF4/nnXGcPkZBGzZslPV5CoZQYy0oT7sjpPSohIzRjYqlR2tgXp6VawwkGoKH2dRQhC4xe4Xg889VS9H48TKCK8V0XwtkBMDluVguRkEaWlNZg9u95eO/f0aR2WLo3zq4apGmYgSTmelBCRWgmi6HvNfTSorDwno/qAK0EA0tKS/D7em6efjsXSpa51RylYlG2jO3t2PWbOdN7UYcGCWKxZI/c982fbXncVDmy3de5sxddfK58m0+nEC9sw++5LcrIVf/tbA9aujXVZ2CjN1jGwcRbMz4hwU/POY2ql5fFAynE8yCe9Vr6w3JeKRdOGC+qgLMjs0MH1/XnsMRPi4+OwcqXYpPSacxArBYHJyVacPu2pIoG7wNfdzKutjdygdtQoEzp0sCI11VYiqqpKwNixvmol25w5I2DNGqn6hnq2dqXwiIZSa0QUWRjYqpTRaMCjj3K2Vs1at3Y9vTYaDVixAj7PvKXdsUpLdRcCRU9BrDvS7b7q07o3aJDZJRjZtKkO48fHy6iD7P1+XzVMOcMXHfg+E1G4MLBVIfkbM1A4NX1/LBZg7lxPtYdtM63JybYcxBtusAV9+fmJDvf7Q9lxKSnuV6sPGmQGUOcwc9u8BW3uqnoYjYYL2982pvZnZFg1t/1ttOP7TKR9aj555eIxlVG6MQOFT1FR43a30h+5tx2ZpG17dTrbJVyltYrdPZ5S48bZSnY17TtgC24nTzZ5OVq+lBTnqF86WSsrc90OeMyYeMWLzkid+D4TaZ/RaEBWViLy8lpgwoQE5OW18GvxcLCooxdk5zs4IrVw3O724out6NNHXq6hNJsZ2p2ZRKSkiOjUyYqsrES3s2k5OWYUFsYE5NkmTYrHsmW2GTpvJ2vMy9UOvs9E2ufpirJ08qqGxcOMoMLAYnE/YwaoaxtK8sS1rNbZszq8+aa8oDAtzXZs6GoV257n7rsbMG6c59m0lStjmzmD3KiqqnGGztfMtC0vV4fiYkY7kYzvM5G2+Tp5BWz3W8K8npSBbYj5msLnxgyRwFMVA3mOHtWhoMAAqxVIT/e8g5Nvno5zvj0jQ8SmTXUoLIzx+oH0/POBma21afyQ271bXiDDk7rIJvf94/tMFJki5eSVqQghJGcK31ZP1L/V7hQZ5s9vLK2VkmKFKNrKf0kBpo2cMSCV/nItIzZrVj06dLDak/p9pbiIonCh7JhvLVtaUVMjNOmv+8csKxPw/POxXttJeFIX2eS+f3yfiSJTpJy8MrANEbn5Z41BL4PaaHDmjO19Tk4WnQJLafGV72DT+X6pjFjTHCe5HzQtWlhRW+u5rm5Ghoi7727A0097KlHmD9vjuqvWQJEjO9uCjAwrysvdn/QIgq1ucqS9z2pe/U0USpFy8srANkTkzJg1zX0krXENBKWTmoQE4Pnna1FZ2fjlCQDLlsVixQp59YxTU61YuNB9SSW5HzS1tdIYdZ0JFkXg/Hng6aeV1lf2Pa6lrYlJHjUGW3q97X0cMybe5QqEdCUh0t5nli4jahQpJ6/MsQ2RcE/Nkxp4z0v66ivnP0e9HujdW/4HRFWVgHHj3JdUkj6QPOfzeg98Pc8guy6kU2r8+AYGCQqoudRObq4ZmzfXIT3deUykp4uqWC2tBEuXETmTTl4BuHyXqOnkVRBFbgMAwO99muXu8/z007FYupQ7iZE86elWjBjRgPbtrZgzJw6//SbvHFQ6Yy4trXH5cJG+qAG4yed1n3qQkiJiw4Y6PPhgPMrLvW39iyb3yU9TKCysDcm2rOGa5QzkXvDOefquM6JqCR7VOKOshMWCC2Xx3I95b39nvgRyPFDki8TxEK4rGdJr5bMdA1ubYAa2nr6MnB/H9kEpisDJk74X5pDWNS9/1TFYdAwyvv9eh3/+Mwbl5fIv1ixaVIdHH4333VCh5gQHgPfgqel9VVUC5s0LzyXlQH1xBTPYImdFRXrk5bXw2c6fk7JIDGQoeCJ1PITj5FVuYMtrKUEmbycxW0ArTfG7y1GjaBOYLW3dnVmnp1sxc2Y9vvxSh927fZf4On5cXhA8bJgJ27fLq4DQ3MtW3mYMALjc5y5dQk0FxeWQm6dfXKwPyQy4lkXK6m+icNHrodrPGQa2QSZvJzEBs2c3zhxNmmTCunWxEXX2RurSpo3otbycraqBvC/l9u2tstpdeqn8AeupeoMc3n6v0aO9zSxH9m5YDLZCJ1JWfxORKy4eCzK5XzJVVQKKivTYtcuANWtiL9SzJVJKREqKFd27W7xcKZA3JgVBREaGFaNGNfhceJaSYsVFF8n7kl+0qA6lpTV+BbW+d75x/OdI3QXF5WCwFTq+FltKfxvhXv1NRK4Y2AaZ3C+ZzZtjkZfXAuPGSTNOnHUh/5w+LWDVKl/b43ofX46pArGxnlfCSrnAp0/r8Nhj8dDpPFdJkIKBsWMb/J4d9bXzjb8iYZaTwVboRMrqbyJyxcA2yJSWWWqcdSLtaX5pLN8ECAKwcWPztsdtWp7JUxmnphqvNAQnGAhWABoJs5wMtkJLS6XLiKKJKgPbqqoqTJo0Cd26dUPPnj2xZMkSmM3uP0Q++OADDBw4EF27dkVOTg727dsX4t565+3LKHA7N1FkkN7r4AZRoijgzBn//7SnT6+3pwpYLMD+/Xo88UQsvvhCh7vuakCrVo55Mu4v+euaPH2ggoFAB6CRNsvJYCu0cnPNKC2tQWFhLdavP4/Cwlq/02iIKDRUuXhs2rRpaNOmDT788ENUVlZi4sSJePHFFzF27FindsePH8fUqVOxYsUK3HTTTXj77bcxbdo0vP3222jTpk2Yeu9K+jKyrdR2DAQY1EYff99z5SdByclWnD2rvHRcnz62si1GowF//3scTp9uGiT7Ci4FWK22XNrWrcWAloLxtfONd667qQGRN8uZm2tGTo45ouvERhI1r/4mIleqq2P7ww8/YMCAAdi/f789ON29ezeWLVvmMhu7cuVKHDlyBFu2bLHfNnbsWPzxj3/EAw88oOh5K3+ogNuXQq8H4h1WWtfUON3tVINO0AEJCR7bWq3AwYN67NljwAsvxaMOjW0TUAvBQ8AgQsB5tPCrbTzOQwfPK9FqkehX2zjUQQ/PH/bK2raAFHDEoh4GeJ4NUdL2PBIgXrgoEQMTYtAQkLZ1iIcVesVtDWhALEwe29YjDpYL55pN2+oEEVaHQM6xrR5mxKHe5fGmT6vHM8/EwoRYNCDWoW0d3NZBhYjU9BiUfGrCnj0GjB0dg3gPbQGgATH2x9XBcqFto1XPnsegQRfen5gYIPZCKTCr1bY3ryc+2u7da8DEifH2PpggbXwiogVqPTyoCDMMMCHe/vPlbasxf349/vxnN2PIx9+9krZKPiOc6Jq0ra2Fx1IpggC0aOFf2/Pn4XW1amKif23r6myr/QLRtkULW78BoL4e8HAFT3HbhITGywsmE9Dg+W9ZUdv4eNjPNJq0dalb6ti2ocHW3pO4OMBgUN7WbLa9Fp7Extr+7pS2tVhs750njn/LSto28zPCicFgey0A299ErafPCIVtA/QZ4TIemv7d8zPC3lawWpH2BxmTlqLKvPPOO2KPHj2cbjt27JjYqVMn8ezZs063T5o0SXziiSecbnviiSfEiRMnKn/ipCRRtL3NTv/qbx0g/vrrb/Z/1hYt3LYTAdF0w41ObS2pqR7bHkQ3p5v+hz94bPsFrnS66Qtc6bHt//AHp5sOopvHtr8gzemmfejrsW01WjjdZMRtHtuKgNOP/8Iwr21boNr+4wsY6bVtGn6x//gcJnlt+wf8z/7jUsz02vZKfGH/cT7me23bDQftP87EUq9t+2Kf/cdJeM5r29tgtP84Ei94bXtf4jZREKwiIIrD8C+vbaclb7b/eBuMXtseuGeFePLkb2J6ukXsi/e8tp2JpfYfu+Gg17Y1s+bY/y5OfVjive3kB+xtq0qPeG37HCbZf0zDL17bfnPDPeLOnTXihg214pvbvLc9n3uH09+yt7bB+owwdc10amtud6nHtg2duzi1bejcxWNbc7tLndqaumZ6bGtJTXVue8ONHttaW7Rwalt/6wCvr5tj27qBd3hve7zc3vb88Lu9tq386nt729pRY722rSo9Ym9bM/kBr21PfVjS2HbWHK9tT7+9z962ev4ir23P7Py3ve25J5/23nbrv+xtf1u1zmvbs5v+YW97dtM/vLb9bdU6e9szW71/npx78unGtjv/7bVt9fxF9ran397ntW2wPiNqR421t6386nuvbc8Pv7txXB4v99q2biA/I0SE+DMiKUlWOKe6VISamhokOJ6BAPafa2trcdFFF3ltGx8fj1pvZ1kKxcYaZO10AQAxMXrntoLnS6WxMYBgtr17REpV1+ggykxNWL5ch8EdgPJy4KrjAB7x3DY7Oxbvf5WE8nKgUwBTZVq0iEML6W8jJdF724TYxrbVLb22vWMw8N1lwDPP+O5Dx456dBx8YRaixns9vXf/Y4BpfxKGDPH9uMH6jIgxNGmr89zWoNc5t9V7zrHW6wTntgbPOQw6oUnbGM9tBTTZFSjW+9eLU9s4GW2l2Zt47wsjU1NbAtJjJ3jfMKRVK/ltU1ISG9u28L49enKyQ9tE720vvrhFY9uW3nf4c2qb5L3tRRclNLa9KMFr26SkeCRJbS/2vuNay5bxaCmzbWJiHBKltsk+/u6D9BmRkBCLBKmt6GXGGEB8fAzi7ePB+zqFuDgD4mT+3fMzwiaYnxFOzyOK6gqt3nnnHeTn56OkpMR+29dff41Bgwbhk08+QVJS4y86ceJEtG/fHg899JD9tieffBI//vgj1qxZo+h5q074n4qQmpqEqipllxn3vBWLkRNSAACiKDAVISpSEUwO6QWuH0CuqQj1HtuaEIv4lnpUVwvQw9IkFcEW8q5fX2e7zO7mMqPFAhw6pMcvvwi45BIR3btfyNGMjUXBmwm4//4Et+kFjtynIjR5bkmQLzMajQbMfSQWZ8ob+5uWasXgwWYMGGC2/X5xrpcZ9+41YMKE+At/TY2vsxU61Avx2LLlwoKsZqYi+PMZEW2XGaMpFcE+HkQwFcFd2yhLRXAaD0xF8NhWsFqReqnvVATVBbbHjx/Hn/70JxQVFSEtLQ2ALcf2qaeewgcffODUduXKlTh69Cg2bdpkv23s2LG4+uqrMW3aNEXP6+8+zc3Z59ndtqBgpQTNysiwIi+vAWvWSDND3t5nuePAfTtBEJGeLqK0tEbxoqKiIj3y8rzPxHiSnm7FkiX+7SjmjpL9yKW2e/fqsX17DKqqXLfbdeyXxQJkZSVeWNAZ2NfQ+XEicy94Cg6OB3LE8SCf9Fr5orpyX+3bt0dWVhYef/xxVFdX48cff8TatWsxbNgwl7aDBg3CwYMHsXv3bpjNZuzevRsHDx7E4MGDw9Bz5ZqWkpk9WzpL5ujWDhGAiJkzbSW08vNNSEmR8/7KPbnxvaOWxWILVgsKDCgq0ns9QQZslQfS062QPw5tv+Ps2fX49NPAlUIyGg3IykpEXl4LTJiQgLy8FsjKSoTR6P6SlF5v25xi48ZYVFU5vy7l5QLGjIl3OtbXZg+RtCsZERHZqC6wBYBVq1bBbDajX79+uPPOO9G7d29MmjQJAJCZmYldu3YBAC6//HKsWbMGGzZsQPfu3bF27VqsXr0al112WTi7r4hUSmbIEDNmzjRhyxbfRfApkgjo1s2MXr0seOMNAzZtirlQPis0s/Jr18YoCg4B25hcssTbSZbzbRkZIrZsqcPMmaaAlZwyGg0YMya+SXk8oKxMwOjR8Xj66ViXAN33dru2+6Xj5G72EAm7khERkY3qUhHCJRypCJ5YLMDEifHYudMApiVoQTjTS6RBKTjdJgjwWdDfUx3blBQrxo1rQIcO1qDUUPWVIiBpmvYgN4WisLAWvXpZFLf3Fy81kiOOB3LE8SCf3FQE1VVFIGDPHsOFoJaoudwFhgJEUcTMmXHIyTF7DEqljQCKivQoKtJDEGxXF264IbibATSmCHgnpRdIAbqSGViLxRZAJydbceaM9xzbSNmVjIiIGNiqjsUCzJ0rlYfhbK02qPF9FHDqlICVK2Mxc6bnldV6vW0nsj59Qhfcyb/0LwAQkZ9vC9Dlbrf7/fe6CzPCnhdtRuquZERE0U6VObbRrLhYj/Ly0OVgUiQJ/HWqjRtjfC4mCzW5ASrgvMBL2m5XCkqbEgQRrVpZsXRprEvublPp6aLPVA0iIlIfBrYqw4Uq5Fngx8aZMzosWxYrq1pCoPiq0uArQHWnokKAXm+bYQXgcqz0c2MOW9PX0jb7m5xsxY4dtSgtDVx1ByIiCh0GtiqjZLaKyDMRcmd4V6yIk1UtwR2lpcTklPByDFDl/g7S301urhmbN7tWFklPFzFrlslHRQoBZ87ooNOB6QdERBGKga3KZGdbkJrqfbtPIl8yMkTccYeyGUd3tV69UVpn1lMJL3fP6ylAbUoQRGRkWJ0WeDWtD11YaJuB7dBB3t8Vr5oQEUUulvu6QE3lvnbtMmDsWGn7PX7JknfS6v1Vq+pQWdm4QxcAXHllIk6f9l42y91jSbttedr5SwpSm9aMlS75b95ch5wcs/3Y1q1FTJkSj/JyZbt8WSzAypWxWLrUdbc2x+eSkzYQzPJe3nZIYzkfcsTxQI44HuSTW+6Lge0FagpsAWDBgtgLW68ysCXPPAV3UqC1Z48BGzfGSK1lP25hYS1OnxZctnzOyLBi4cJ6zJsX53Ur2pQUEXFxuLAQUj5PQaW77afdbZPrjVQft7xcsG/Y0LTf/myh66tv/OLSJiXbPTvieCBHHA/yMbBVSG2BLWCbuZ09Ow6nTjFjhNxzF9y5C7SUGj/ehOefj3E7I+tuZy/3lG9MsX79eQwZ4j5Q9TeQcCTNNANwCm6Vzv42fTxvM9cDB5r5xaUxzTnRYiBDjjge5JMb2DJiUrFBg8w4erQGixbVhbsrpEoiBg9ucAlq3eWxKrVjh8Hr1rTyKO+Dt8WTjttP9+qlLKiVFrmZTMCsWSa0beu6uExpUKt0C1/SBiW54kQUepyxvUCNM7YSuVuMktb4mvG0DbjJk02YP98UsHFy0UVW/PZbqM95Reh0wIkT1YiN9d1aCXeza+npVowY0bxtgeXm7O7cWYvBg1twRkYDfP2NyUln4QwdOeJ4kI8zthoilT8SBNf6nKRlvoJT2/3r1sXCZHLcirZ5Jz/du4djilGA1Srg0KHA1tnyNLt28qSAZctiERsLxbO/EiVb+JI2+Pobc9wwhIjCg4FthJBb/oiijS0gfOGFmIAFUDfd1JzAtnnj01Y1ITCCnSogt+Y0a1NrB09miNSPgW0EaVqfc+bMegRjm1WKPN9/r2t2ACXVhB01qkHxzl8SnQ5ITPTvWACoqgpcQBDs2TU5W/g2rbFLkY0nM0Tqx8A2wjguoJk924RNm+qgZJcp0iZBsAVa6elWeBsLtiDMdbxIwdnixfWIjfW8Na0vVitQUyNAFP1Lm0lNDdw4DvbsmpwtfBcvrucuZhrCkxki9WNgG+EGDTJjy5Y6pKQwsI1mXbtasGePAefPA95ybKXFCU3HS9OqAP6nvtieOzFRdKk8IEcgU21CMbvmbQtfpVUWSP14MkOkfqyKcIGaqyLIYbEA+/frMWpUPGprWT0h2vz1ryZs2yZvIwZBsAWdzz1Xh19/9V4TVqodu3WrAdu3KytXMHNmPXr1sqCiQkBamohx4+K97IImIiND+eYI3gRrQwZPz8Wdx6IH69hSoHA8yCe3KgIL7mmEXg/cfLMFzz1Xj9Gj4+G+VJT0V8OgN3LI2+TgjTekP2XfbUVRQHm5AJ0OHjdDkEipL+XlArZvl9FdB5s3x+DvfzfZt+C1BbVuewQgODNd99zTcGE7XufXMdCza9LrRNEhN9fstGW0vyXjiCjwmIqgMbm5nlMTUlJE/OlPZjAfN5LIOwk5f155mS8luaX+pAicPm1bmCVVJ7Bx/5wpKSJycgJ32d5oNCArKxFLl8ZdeE7n52WqADVXczYMIaLg4YytBkmzCUVFehQV6SEItg/gG26wffjOnx+LdetiwZlbLRCRmCiipkb5Oarc3FKLxfYvOdmKM2eUpblUVAgO1Qk8EXD6tK1dIGY9nbe5dWS7YfZsE6ZPNzEQ0aBAbLtMRJGNga1G6fVAnz4W9OnjGigsWGBCVpYVDz0Uh6oqTtpHuptvtsBolP8+SrmlclZuu8sllJseAdiC51DW/vRWuxYQIAgiXn45BtOnm5r9XKQuzcl7JSLtYFQTpQYNMuOLL2qwY0ctkpO9l4gi9Zo924RRoxpkt1eSW+pp1y65zyOVPQpl7U+5tWuXLo1FUZHe780ZSF08jdXycgFjxsTDaOQcDlG0YGAbxfR6oHdvC1assG3Xy+A2ktgCx+nTTbjhBgtSUuSdnMjNLfU182lLgZCe03vZo1DW/pQ767tyZRzy8logKyuRQU+EC/YOc0QUWRjYErfrDYlAbqLhHDjq9cDy5fVO9zV93vvvr0dhYS1KS2tkXZb1NfMJCKip0SE31+yyqULT4DmUtT+VzvpyRi/yBXuHOSKKLAxsCYAtuP300xrMni1t08sgN7ACu1BPaRWBnj2tilZuy535NBpjUFWlQ2qqFePG1WPRojrk59cjJUV0miEL1UYGvmaHm+KMXuQLZQ43EakfpynITq8HZs40oUsXK+bOjUN5Ob8IAsvX6yl3UZZzFQHv5bRsC6by8+OQk2OWHdgqnfmsqhLw/PPOlTaaLtwJRe1PaXZ4zJh4CILodmOGpmwzeoGryqAm0VAlIJQ53ESkfpyxJRecvQ0n+a+1NAMVjEuxVVUCdDol77trGbCyMgGjR8fj6adj7bOhoaj96W9qjdZm9KRavnl5LTBhQoJmc4pDmcNNROrHwJbckmZvt2ypQ0aGu7xNCrSBAxvcbqzhiTQDFehLsUajAePGxcNqld0VD2zB7tKlcbjuutAGVLm5ZpSW1qCwsBYzZtT7PgDamtGLpioBoczhJiL1Y2BLXuXmmrFwYT1SUx2jHC3MbMkJYsQLX4yhCXhGjjTjyJEatGrlq8KBiPT0xhkouQHZ99/7/nM3mYBZszxVQ/BfOAIqaXZ41ixTVM3oRWOVgFDlcBOR+jGwJa+k2buqqqZBjppTFALVL8EhRzOYv6uIlBTb4q5Dh/Q4dcrX9rgCRoyw1a798EM9PvhAj/h438HwP/8Z4zWYMRoNuPbaxAubdgT65CV8AVW0zeiFqkqAxQIUFelRUGBQRU1gx1n69evPK6oCQkTaoZ3rURRwcmqZylnwJAVtRmNMUPrpSt4CLLmuucaCL77Qu9mi1R9NXy/bgy5fbgus5KYLfPmlDldemYjTp+WemwooL/e8QMrzNrSBE85FWtKMnm1nqsbXOD1d1NzOVKGoEqDWXb6kWXoiil4MbMmjxpkfT1y/GJOTrRg7tgHXX2/Br782rsQuLtaHMLANLFtQ608Q4D6IdXTxxSLuv7/BXrpLblqB7bVUHoW6C2a8n8AEXrgWaYWiKoMaBLtKgKeTICndhJf+iSicGNiSR3IDkBkz6tGpk9VroCCtXLbNlqkpR9f3jLN/Qa2rjAwRCxfW45tvdNi4MQZnzuhw9qwOS5fG4eWXY7B4cT1ycsxISbHi9Gk5r5PyfjkGM1IpqA8/9HUC40huSTJ5fQi1aJjRk/7WyssFt2NXEESkp4t+5RT7yt/1p7QcEVEgMceWPJIbgPTu7bt8k5TnGF1b99q++GfMaNz1S6cDli2LxZkz7lerL14ceyGoDbzU1MYFUo6loFasiPNxpCP/+6a1RVpqFcycYu7yRURqx8CWPAp0fUgpz9G1fJg7oQp+gz973KmT1T5L6G22SxSBdetig9YvqxXYs8fgsRRUMGlxkZaaBatKAHf5IiK1YyoCeeRtFyd/AxXHPMe9e/XYsMFdIGd77JYtraiuDve5lwidDkhKEnH2rH9pFK1b234fOTnLza8d69mZM7ZZ4eRkMWT5tBItLtJSO8e/tfJyAVVVAlJTRft2x/6cYHCXLyJSOwa25FUwVpNLeY69elnQs6fr9r0ZGbbHtlqBsWPjL9wavhmgiRNNyMqyYvToeHheEOa5f2PGxGP8+Aa0bx/EqFUG24mJqKCSQrOeDQAwbpwJt91msedeR8MWr2qi1wOnTwtYvDgwFQyCmb9LRBQIgigGs8BP5KisPOdXqSNBANLSkvw+PlIEMyDx9tjz58deuDwfnsC2Wzczdu8+D8CWl2oLwhsDhKYz2d4kJYk4d04Ll2jlLyArLKy1p2EEokRUJAbG4fyMcK5g4HrFxZ+0BOkxAbi9isOqCN5Fy3cGycPxIJ/0WvnCGVuSJZiryT09ttFowBtvxCBwQa3yFf29e3v/nZV8EJ07J/UBivvh4dkD9DjyCIKI5GQR8fFwmmH3RmoXiBJRaq2dqlbBqmAQTTWBiSjyhDuBkcgtzwuc3EWS3qNLQRDRsqV/p8KOs41jxsS7CeiUBJbeatr60z/HTTKU8nSMCHePKc3GLV9ej08/rcHo0SZZz1JVJQRki1dP4yEcW/VGimBWMOAuX0SkVgxsSXV873jWlGOA5z4gi4lRGvw1bnMb2A0MbAvQUlOd+9P0Z6WP58xbsCuiVStbrq+7UlCCAEyebHKpXOG4ml6vB7p1kzd7n5oqNjvACkRgHI2CXcFAutLiq9QfEVEocZqDVMd39QB3bF/OqalWVFU5Xx69554GLF2qpFar8za3RUX+9Me7RYvqkZ4uoqJCQKtWIr74Qoenn45Fba1/lRdmzKjHFVdYkZ8fh1OnPD2G7fdaurQeOh28XkrOzzd5zWVtWkbKE+l3lMNTO1/jIZxb9TZHsPOFWcGAiKKR6gLb2tpaLFq0CO+99x7MZjP69euH+fPnIzEx0W37+fPnY8eOHYiJadyudc6cORg+fHioukwB1pwamI4BoxQsvPGGsmGeni5iyZLGXMFg1ORMTxfRq5cFCxbYFsdZrU3TFJTnAh84oMepU763QE5NtT23t+1lfeVU+95JTkRGRuN2ynJ4CrC0WDs1FPnCrGBARNFIdYHtokWLUF5ejrfeegsWiwXTpk3D008/jfnz57ttf+TIESxatAh5eXkh7ikFS3NmkKSA0Z/Hmz69Hn36WFxmzgI9o5WWZtvUYsGCWKxZE+v7AC+BrhScVFUJWLpUzmM1BoDNWRDoWOMY8F7juLkBltZmHgOxkE6OYNShJiJSO1Xl2J4/fx5vvvkmHnjgASQnJyM1NRUzZ85EQUEBzp8/79LeZDLhm2++wdVXXx2G3lKw+NrxzB1vu6DJ3UFt9myT21xBf/rjzdChDbBYvO0y5jln2JntvoUL6zFvnvxUi0AFgHJ3t2ruFq+B3gEvnEKdLxysHciIiNQq5DO2dXV1qKiocHvf+fPn0dDQgE6dOtlvu/zyy1FXV4fjx4/j//2//+fU/tixYzCbzVi1ahVKS0uRlJSEoUOHYuzYsdDplMXsgp9XMaXj/D2eXBkMwJIl9Rg92nWmyV25LCngWbKkHgY3I9rb4/k6Vl5/lL35OTkWvPBCTJP0g6ak+zw/vl4PbNxYh9RUUWYOsIjf/U7E9ddbAjZeBw4047bbPKc0OLbbsqUOjzzivBlH07QPd5r7/oWb42dESYm8fOGSksDlC8t9jyg0+J1Bjjge5JP7GoX8q+Czzz7Dvffe6/a+Bx98EADQokUL+20JCQkAgJqaGpf2586dQ48ePTBixAisWLECX331FSZPngydToexY8cq6ldqqu+iv8E8npzddx9w0UXAgw8CP/3UeHtqqm1kV1U13vb73wt45hlgyJAExY8n51hvx6elCZg8GejcGfjmG+Cxx7z/Xu3aAbm5LfDuu97bNfL8l2yxCOjQIQHl5fIfa9UqAW3aBH6sDh7su81FFwFNzzcFQYeLLkpAWpr3Y5v7/qlBamoSamvlta2tbeHzNVFKzntEocPvDHLE8RA4qtp57Msvv0ReXh4+/fRT+2Kx6upqZGVl4Y033kCXLl18PsamTZuwe/duFBQUKHruqir/dx5LTU3y+3jyzt3KccD/1eTNXYm+a5cBs2fHoarKedHPokX1ePTROK+LqQDbrkyDBpmxfn0MHn003k07ZTZsOI82bUTccUcLn20feqgeM2fKqz8baEajAaNHe94Ba8sWeZfFI3XnMekz4qOP9LLeq507ayOqwgO55268Ggz8zqBGjCHkk14rX1R18e6yyy5DTEwMvvvuO1x77bUAgP/+97+IiYlB+/btXdq/++67qKysxF//+lf7bSaTCfHxygMGUVS2i1Sgjyf3dDrghhtcv+Cb3ib3tXf3eHKPNRoNGDvW86If7ykJtvtatRIhisCoUQ2YPz8OVis8HCcvxeGSS0T07Ol9cRZgW5w1bZopLGPUYgHmzvW+A9bcuXH4859974DVnPcv3EQRPt8raSFdz56WgP9ekXhSEMk8Vb5YsqQe993H7wxyxvEQOKpaPJaQkICcnBw8/fTTOHXqFE6dOoWnn34aubm5boNVURTxxBNP4MCBAxBFEYcPH8ZLL73EUl8UcHIW/cghVSSIjQUmTpRmT93vQpaYKMpaMOVrcZYg2HJQwxXEBHMHrEjT3IV0/jIaDcjKSkReXgtMmJCAvLwWyMpK5I5tQeJtp7zRo+Oh8IIiESmgqsAWsNWlbd++PQYOHIg///nP+P3vf4958+bZ77/99tuxfv16AED//v3x8MMP47HHHkNmZiZmzZqFqVOnYjCTySjAfAVncheQff9945/c/PkmTJ5scsk71elsu3+tXl1ne2QZAZCaV79rsQ5tc4T6vVK6HbHFYtuUpKDAgKIiPXd0U0jOSfC0aeDrShQkqsqxDafKSv9zbNPSkvw+niJDQYEBEybIWaDkLYXAfT6pyQS88EIMjh/XoX17K0aNakDshUpgSgv5q/Fyc1GRHnl5vvNKCwu1mVfq6TMiFO+VxQJkZSV6zP2WUh9KS2ug14dm4witkzved+6sdZtmRdGFMYR80mvlC69DEckQmNqvtnzS/Pw45OQ05pPGxgL339/g9ojcXLPXHcKaas6mC8HCHbDcC8V7pWQ74tOnhZBsHKF1vEJBFF6qS0UgUiO5mwTMmuW96oA/+aRSADRkiNntBhJqF668UpIfPJWXCyHdOELLtLZTHlGkYWBLJIPc4OyKK6yyHi+QszWRkBOp5hxgLZMbPFVVCVzgFyByToLbtUPUXaEgChUGtkQyyQnOQj1bE0mr3XNzzSgtrUFhYS3Wrz+PwsJalJbWMKgNIrlXGlJT5Y1HXj73Tc5J8DPPgFcoiIKEi8cu4OIxksvboh+rFejWLQk//9x0612bpot1mkNa7e5p0wPOhKpDuD8jpHECOJemcxwnKSliVC/wCwbvdWwT+J1BAML/+RBJ5C4eY2B7AQNbCgRBAPbvT8KwYbbB4CmQaG7A6Wu1OyAiIyMwATQ1jxo+I3xVO5DGk68FfhxPynjaeSzc44HUQw2fD5GCVRGIwmTIEFtJr7lz45xqh6aniwErm+RrtTvQuNqdM2zkq7qGdPl8zJh4CILo9oSMC/yUU2OVEiKtY2BLFAS5uWb8+c/yy3QpJTfXce9eBrZk4yvIknLIbTO7wTkhI9IKNdYMJxsGtkRBEszZGrmLz3bsiMFjj5ki7gOXXxrhobRuMlE04kYm6sbAligCZWdbkJpqRVWV98ImlZW6iEtH4JdGePHyOZFnzot2G3EjE/VguS+iCKTXA0OHyvvwjKQSTdKXhuOlcKDxS0ONZcyIKDpYLOBGJhGAgS1RhMrJkRfYRsoOR/zSCI9I2OCDSA0aF+1yIxM14/QHUYSSiu/7KtEUKTsc+ar0YPvSYKUHX5TkJzPtg0g+uVe/IukqmRZxxpYoQsnd5jdSFv7wS6P5lOxEx7QPImVCvbMk+YeBLVEEk7PNb6SQ+2WQliby0rkbSgJVpn0QKSd3i+pIuUqmVdx57ALuPEaBEK7xoIXyWHJ2v0pOFhEfD5SXR86l81CMCV870TXdOayoSM8tdMOE3xmRTc4W1Uo+izge5JO78xhnbIk0QCrRNGSIGb16RV5QC/hOrRBF4PRpAeXlvHTelNJFLUz7IPKPlq6SaVX0fhMQkep42v2qbVsRdXW2wNbdpXNBEJGfH4ecHHNEBvXNpTRQZa4gkf+4kYm6MbAlIlVx96VhtQJDh3q+dB7tFROUBqpaq6hBFGrcyES9mIpARKrTNLXi11956dwbpYtatFZRg4hIwsCWiFRPrZfO1bK5gT+BKnMFiUiLmIpARKqnxkvnatvcwFN+cnq66LFPzBUkIq1hua8LWO6LAoHjIXgCUWYnUGXRpL40rQPrri+hHhNaKP2mZfyMIEccD/LJLffFwPYCBrYUCBwPwdWcWdJAzbAqrRnLMUGOOB7IEceDfHIDW6YiEFHE8PfSufMMayOpBq6SnNLGmrHuRXuFBiKicGJgS0QRRWmZHV/bxyqtgcvNDYiI1ItVEYhI05TuyuWLWis0EBERA1si0rhAz7AqrRlLREShw8CWiDQt0DOs3NyAiEi9GNgSkaYFY4aVmxsQEakTF48RkaZJM6xjxsRDEES3NXD9mWHl5gZEROrDGVsi0rxgzbBKFRqGDDGjVy8GtURE4cYZWyKKCpxhJSLSPga2RBQ1lNbAJSKiyMJUBCIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYFUEIgo6iwUss0VEREHHwJaIgspoNCA/Pw5lZY0XiDIyrFi8uJ5bzxIRUUAxFYGIgsZoNGDMmHiUlQlOt5eXCxgzJh5GI8+tiYgocFQb2J4/fx7Dhw9HQUGB13afffYZ/vKXvyAzMxO33HILXn/99RD1kIi8sViA/Pw4iCIAOAe2omj7OT8/Dhbul0BERAGiysD222+/xd/+9jf83//9n9d2Z8+exfjx43HHHXfg0KFDWLJkCZ544gl8/vnnoekoEXlUXKy/kH4guL1fFAWUlelQXMxkWyIiCgzVBbYHDhzAyJEjkZeXh4yMDK9t3377bSQnJ+Nvf/sbDAYDrr/+egwcOBBbt24NUW+JyJOKCvcBrb/tiIiIfAl5gltdXR0qKirc3te6dWt06dIF+/btQ1xcHF544QWvj/Xtt9+iU6dOTrddccUV2L59u+J+CX5+t0rH+Xs8aQvHQ6O2bUXZ7bT8enFMkCOOB3LE8SCf3Nco5IHtZ599hnvvvdftfWvWrMGtt94q+7FqamqQkJDgdFt8fDxqa2sV9ys1NUnxMYE8nrSF4wHIzQV+/3vg559xIc/WmSDY7s/NbREVpb84JsgRxwM54ngInJAHtj179sTXX38dkMdKSEjAuXPnnG6rq6tDYmKi4seqqjrn9svXF0GwDUh/jydt4XhwtmiRAaNHx0MQGheMAYAg2F6chQvrcPq0tkt+cUyQI44HcsTxIJ/0WvkS0bV2OnXqhKKiIqfbvvvuO3Ts2FHxY4mi+1mlUB1P2sLxYHP77WZs3lx3oY5tY2Cbni5i8eJ63H67OWpeJ44JcsTxQI44HgJHdYvHlOjfvz8qKyvx4osvoqGhAcXFxXjzzTcxdOjQcHeNiC7IzTWjtLQGhYW1WL/+PAoLa1FaWsPNGYiIKOAibsb29ttvx8CBAzFhwgSkpKRgy5YtWLJkCVatWoVWrVohPz8f2dnZ4e4mETnQ64FevViwloiIgksQRU5+A0Blpf85tmlpSX4fT9rC8UBNcUyok8Viq7VcUSGgTRsR2dmWkCxi5HggRxwP8kmvlS8RN2NLRETUHEaj4ULed2M2XkaGFYsX1zNFhijCRXSOLRERkRJGowFjxsQ7LWYEgPJyAWPGxMNo5HwPUSRjYEtERFHBYgHy8+MuXPJ1DmylcnT5+XGwMB2cKGIxsCUioqhQXKy/kH7gfgsjURRQVqZDcXEU7BhCpFEMbImIKCpUVMjbk1NuOyJSHwa2REQUFdq0kbfsXG47IlIfBrZERBQVsrMtyMiw2rd0bkoQRGRkWJGdzSRbokjFwJaIiKKCXg8sXlwPAC7BrfTz4sX1IalnS0TBwcCWiIiiRm6uGZs31yE93TmwTU8XsXlzHevYEkU4FuwjIqKokptrRk6OOSw7jxFRcDGwJSKiqKPXA716MZeWSGuYikBEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTWBgS0RERESawMCWiIiIiDSBgS0RERERaQIDWyIiIiLSBAa2RERERKQJDGyJiIiISBMY2BIRERGRJjCwJSIiIiJNYGBLRERERJrAwJaIiIiINIGBLRERERFpgiHcHSAioshgsQDFxXpUVAho00ZEdrYFen24e0VE1IiBLRER+WQ0GpCfH4eyssYLfRkZVixeXI/cXHMYe0ZE1IipCERE5JXRaMCYMfEoKxOcbi8vFzBmTDyMRs6REJE6MLAlIiKPLBYgPz8OoggAzoGtKNp+zs+Pg8US+r4RETXFwJaIiDwqLtZfSD8Q3N4vigLKynQoLmayLRGFHwNbIiLyqKLCfUDrbzsiomBiYEtERB61aSMGtB0RUTAxsCUiIo+ysy3IyLBCENwHroIgIiPDiuxsJtkSUfgxsCUiIo/0emDx4noAcAlupZ8XL65nPVsiUgUGtkRE5FVurhmbN9chPd05sE1PF7F5cx3r2BKRarD4IBER+ZSba0ZOjpk7jxGRqql2xvb8+fMYPnw4CgoKvLabP38+rr76amRmZtr/vfbaayHqJRFR9NDrgV69LBgyxIxevRjUEpH6qHLG9ttvv8VDDz2Eo0ePYvjw4V7bHjlyBIsWLUJeXl6IekdEREREaqS6GdsDBw5g5MiRyMvLQ0ZGhte2JpMJ33zzDa6++uoQ9Y6IiIiI1CrkM7Z1dXWoqKhwe1/r1q3RpUsX7Nu3D3FxcXjhhRe8PtaxY8dgNpuxatUqlJaWIikpCUOHDsXYsWOh0ymL2QU/a4tLx/l7PGkLxwM1xTFBjjgeyBHHg3xyX6OQB7afffYZ7r33Xrf3rVmzBrfeeqvsxzp37hx69OiBESNGYMWKFfjqq68wefJk6HQ6jB07VlG/UlOTFLUP9PGkLRwP1BTHBDnieCBHHA+BI4iiqNrtYm655RZMmTIFQ4YMkX3Mpk2bsHv3bp+LzpqqqjoHf14JQbANSH+PJ23heKCmOCbIEccDOeJ4kE96rXxR5eIxud59911UVlbir3/9q/02k8mE+Ph4xY8limjWoGru8aQtHA/UFMcEOeJ4IEccD4GjusVjSoiiiCeeeAIHDhyAKIo4fPgwXnrpJZ+VFIiIiIhIeyJuxvb222/HwIEDMWHCBPTv3x8PP/wwHnvsMVRUVCAtLQ1Tp07F4MGDw91NIiIiIgoxVefYhlJlpf85tmlpSX4fT9rC8UBNcUyQI44HcsTxIJ/0WvkS0akIREREREQSBrZEREREpAkMbImIiIhIExjYEhEREZEmRFxVhGDhlroUCBwP1BTHBDnieCBHHA/yyX2NWBWBiIiIiDSBqQhEREREpAkMbImIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsm6GqqgqTJk1Ct27d0LNnTyxZsgRmsznc3aIwO3XqFPr374+SkpJwd4XC6NixYxg1ahR69OiBXr16Yfbs2Th16lS4u0VhcuDAAfzlL3/Bddddh169emHRokWoq6sLd7cozCwWC0aMGIE5c+aEuyuawcC2GaZNm4YWLVrgww8/xPbt23HgwAG8+OKL4e4WhVFpaSmGDx+OEydOhLsrFEZ1dXUYO3YsMjMz8dFHH8FoNOLMmTN45JFHwt01CoNTp07h/vvvx1133YVPPvkEhYWFOHjwIDZu3BjurlGYPffcc/jkk0/C3Q1NYWDrpx9++AEHDx7ErFmzkJCQgHbt2mHSpEnYunVruLtGYVJYWIiZM2di+vTp4e4KhVlZWRm6dOmCyZMnIzY2FikpKRg+fDgOHToU7q5RGLRq1Qoff/wxhgwZAkEQcObMGdTX16NVq1bh7hqF0YEDB/D2229jwIAB4e6KpjCw9dO3336L5ORktGnTxn7b5ZdfjrKyMvz2229h7BmFy4033oh33nkHt912W7i7QmHWoUMHbNq0CXq93n7bW2+9hauuuiqMvaJwatmyJQCgb9++GDhwIFq3bo0hQ4aEuVcULlVVVZg7dy6WL1+OhISEcHdHUxjY+qmmpsZlMEo/19bWhqNLFGatW7eGwWAIdzdIZURRxMqVK7Fv3z7MnTs33N2hMHv77bexf/9+6HQ6PPDAA+HuDoWB1WrFrFmzMGrUKHTp0iXc3dEcBrZ+atGiBc6fP+90m/RzYmJiOLpERCpTXV2NBx54AG+++SZefvlldO7cOdxdojCLj49HmzZtMGvWLHz44Yc4e/ZsuLtEIbZhwwbExsZixIgR4e6KJnF6yU8dO3bEmTNnUFlZibS0NADAf//7X7Rt2xZJSUlh7h0RhduJEycwbtw4ZGRkYPv27cynjGKffvopHnnkEezatQuxsbEAAJPJhJiYGF6GjkJvvPEGfvnlF3Tr1g0A7NUx3n33XS4kCwDO2Pqpffv2yMrKwuOPP47q6mr8+OOPWLt2LYYNGxburhFRmJ09exYjR47Eddddh82bNzOojXKdO3dGXV0dli9fDpPJhJ9//hlPPfUUhg0bZg90KXrs3bsXn376KT755BN88sknyM3NRW5uLoPaAOGMbTOsWrUKCxcuRL9+/aDT6XDHHXdg0qRJ4e4WEYVZQUEBysrKsGfPHuzdu9fpvsOHD4epVxQuiYmJ2LRpEx5//HH06tULSUlJGDhwICZPnhzurhFpjiCKohjuThARERERNRdTEYiIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIiCrhTp06hf//+KCkpkX3MW2+9hdzcXHTt2hX9+/fH9u3bFT0nA1sioghx/PjxcHeBiEiW0tJSDB8+HCdOnJB9THFxMebMmYNZs2bh8OHDWLRoERYsWIDPP/9c9mMwsCUiuuCWW27BNddcg8zMTGRmZqJr16648cYb8dRTT8FqtQbseUaMGIHVq1cDAObNm4d58+b5POa9997DmDFj/H7OgoIC3HLLLS63nz9/Hj169MBLL73k9ri///3vPndU9PTYRBSdCgsLMXPmTEyfPt3lvo8//hjDhg1Dt27dcPvtt2PXrl32+1588UXce++96Nu3LwRBQHZ2Nnbs2IFLL71U9nNzS10iIgcLFizAkCFD7D9//fXXuO+++5CQkIAHHngg4M+3cOFCWe3OnDmDYGwUmZCQgKFDh+L111/Hvffe63TfqVOn8NZbb2HTpk0Bf14i0q4bb7wRAwcOhMFgcApujx07hokTJ2LZsmXo168fPvvsM0yaNAkpKSno3bs3Pv/8c/Ts2RPjx4/HZ599hrZt22Lq1Kno1KmT7OfmjC0RkRedO3dG9+7d8eWXXwKwzbbOmTMHN998M2666SZUV1fjxIkTmDBhAnr27Imbb74ZK1euhMlksj/G66+/jn79+iEzMxMPPfQQzp8/b79vzpw5mDNnjv3nf/zjH+jfvz8yMzMxZMgQHDhwACUlJZg/fz7KysqQmZmJiooKmEwmPPvss+jXrx969OiBcePG4YcffrA/zn//+1+MGDECmZmZGDhwoL3/7tx999347rvv8H//939Ot2/fvh2XXXYZsrOz8d577+Gvf/0rrr/+elx77bW455573KZGlJSUoHPnzk63Nf0d//3vf2PgwIHIysrCkCFD8NFHH9nvO3ToEIYMGYJu3bqhf//+WLJkCcxms8e+E5H6tG7dGgaD69zptm3b0K9fPwwYMAB6vR7XXXcd7rzzTmzduhUAcPbsWWzevBkTJ05EUVERJk+ejOnTp+Ozzz6T/dwMbImIPGhoaEBJSQmKi4vRq1cv++0ff/wxtm3bhl27dkGn0+G+++5Dx44dsX//frzyyiv4+OOP7akGBw4cwMKFC7F48WIcOnQI1157LY4cOeL2+QoKCrB27VosXboUpaWluOuuuzBx4kR07twZCxYsQEZGBg4fPow2bdpg5cqVeP/99/Hiiy/iww8/xLXXXovRo0ejvr4eDQ0NuP/++9GxY0cUFxdjxYoVePfddz3+nu3atUPfvn3xr3/9y36b1WrFa6+9hnvvvRcnT57Egw8+iPHjx+PAgQN4//33IYoi1qxZo/g1/eCDDzB//nzMmzcPBw8exNSpUzF16lR8++23AIDZs2djxIgR+OSTT/DCCy9g7969+M9//qP4eYhIfX7++We888476Natm/3fP//5T5SXlwMAYmNjMXToUGRmZsJgMGDAgAG4/vrr8dZbb8l+Dga2REQOFixYYP/Avf7667Fo0SKMGjUK99xzj71Nnz590KZNG1x00UV4//33YTKZMGPGDMTFxSE9PR0PPvigfQZi165d9g9ng8GAu+++G1deeaXb5y4sLMTw4cORmZkJnU6Hv/zlL9iyZQvi4+Od2omiiG3btmHGjBlo164d4uLiMHnyZDQ0NOD999/H4cOHUV5ejtmzZyMuLg4dO3bEqFGjvP7e9957L/bs2YPq6moAwIcffojq6moMHDgQrVq1wr///W/ccsstqK6uxsmTJ5GSkoKKigrFr+/LL7+Mu+66C927d4der8fNN9+MW265Bdu2bQMAxMXFYc+ePdi3bx+Sk5PxwQcf4E9/+pPi5yEi9Wnbti3y8vLwySef2P+99dZb2LhxIwDg8ssvd7raBQAWi0VRGhZzbImIHMyfP98px9adSy65xP7/P//8M06dOoXu3bvbbxNFEQ0NDaiqqkJFRQWuuuoqp+PbtWvn9nF//fVXZGRkON123XXXubQ7deoUamtr8eCDD0Kna5yfaGhowM8//wyTyYSUlBSngNjX4osbbrgB6enpMBqN+Otf/4pXXnkFw4cPR3x8PERRhNFoxLZt2yAIAjp16oTq6mq3lxp9+fnnn3Hw4EG8+uqr9tssFguys7MB2FIxVq9ejQULFuDXX39F79698dhjj6Ft27aKn4uI1GXYsGEYNWoUBgwYgBtuuAEnTpzA+PHjcfPNN+Phhx/GXXfdhUWLFqF3797Izs7GO++8g5KSEsyYMUP2czCwJSJSSBAE+/+3bdsWl156Kfbu3Wu/rbq6GlVVVWjVqhXatm2LH3/80en4kydPomPHji6Pm56ebr8kJ1m5ciUGDRrkdFtKSgri4uKwZcsWdO3a1X77999/jzZt2uCrr77CqVOnUFNTg8TERPtz+vK3v/0Nr7/+Ovr27YuioiIsWLAAALBnzx68/PLLePXVV/GHP/wBALBo0SJ88803Lo+h1+sBACaTCbGxsQCA06dPIyUlxf563XHHHRg/frz9mLKyMsTHx6O+vh7fffcdHnvsMRgMBvzvf/9Dfn4+Hn/8caxatcpn/4lI3a699lqsWLECK1aswIMPPoiEhATk5ubaA9ehQ4dCp9PhiSeewE8//YTf/e53WLlypcvkgDdMRSAiaoabb74ZNTU12LRpE0wmE3777Tc89NBDmD59OgRBwNChQ/Huu+9i3759MJvNKCws9LgQYsiQIXjttdfw+eefw2q1YseOHdi6das9kD1//jzMZjN0Oh2GDRuG5cuX4+TJk7BarSgsLERubi5++OEHZGZm4rLLLsPixYtx/vx5/PDDD9iyZYvP3yUvLw8//PADnnnmGdx66632WdJz585Bp9PZZ2/379+PnTt3oqGhweUxLr30UhgMBvz73/8GYMtHLi4utt9/55134qWXXrLXpTxy5AiGDBkCo9EIQRAwY8YMbNmyBWaz2b4ARQqKiSjyfP311+jZs6f955tuugkFBQUoLS3FRx99hDlz5thPggHb59Cbb76Jw4cPw2g0on///oqejzO2RETN0LJlS7z44ot48sknsWnTJlitVvTs2RPr1q0DAGRlZWHp0qV48sknMX36dGRnZzstRHM0cOBA/Pbbb5g1axZ+/fVXXHHFFXj++efRqlUrdO/eHampqejevTu2bduGhx56CKtXr8bdd9+NM2fOoF27dli1apU9f3fjxo2YN28ebrjhBqSlpaFfv354++23vf4uLVq0wJAhQ/CPf/wDr7zyiv32vLw8lJaW4vbbb4der0eHDh0wcuRIbN261SUf7pJLLsEjjzyCtWvXYtGiRcjOzsaQIUPslSD+/Oc/o7a2Fo888gjKysqQnJyM++67DyNGjIAgCFi3bh2eeuopbNiwAXq9Hn369MHMmTP9fn+IKLoIYjAKIxIRERERhRhTEYiIiIhIExjYEhEREZEmMLAlIiIiIk1gYEtEREREmsDAloiIiIg0gYEtEREREWkCA1siIiIi0gQGtkRERESkCQxsiYiIiEgTGNgSERERkSYwsCUiIiIiTfj/DTsF6E/744kAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "# Calculate residuals\n", - "residuals = y_test - y_pred_poly\n", - "\n", - "# Plot residuals vs predicted values\n", - "plt.figure(figsize=(8, 6))\n", - "plt.scatter(y_pred_poly, residuals, color='blue')\n", - "plt.title('Residuals Plot')\n", - "plt.xlabel('Predicted Values')\n", - "plt.ylabel('Residuals')\n", - "plt.axhline(y=0, color='red', linestyle='--')\n", - "plt.grid(True)\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "from statsmodels.stats.diagnostic import het_breuschpagan" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#TEST FOR HOMOSCEDASCITICY" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Breusch-Pagan test p-value: 3.975373048166964e-258\n" - ] - } - ], - "source": [ - "poly = PolynomialFeatures(degree)\n", - "X_train_poly = poly.fit_transform(X_train)\n", - "X_test_poly = poly.transform(X_test)\n", - "\n", - "# Build a polynomial regression model\n", - "poly_model = LinearRegression()\n", - "poly_model.fit(X_train_poly, y_train)\n", - "\n", - "# Make predictions on the test set\n", - "y_pred_poly = poly_model.predict(X_test_poly)\n", - "\n", - "# Calculate residuals\n", - "residuals = y_test - y_pred_poly\n", - "\n", - "\n", - "\n", - "# Perform Breusch-Pagan test\n", - "lm, lm_p_value, fvalue, f_p_value = het_breuschpagan(residuals, X_test_poly)\n", - "print(\"Breusch-Pagan test p-value:\", lm_p_value)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A p-value of 3.975373048166964e-258, which is extremely close to zero, indicates strong evidence against the null hypothesis of homoscedasticity. In other words, there is a significant presence of heteroscedasticity in your data.\n", - "\n", - "Heteroscedasticity refers to the situation where the variability of a variable is unequal across the range of values of a second variable that predicts it. In the context of regression analysis, it means that the variance of the errors is not constant across observations." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Log transformation.\n", - "Transforming the dependent variable or one or more independent variables can sometimes stabilize the variance. \n", - "Common transformations include taking the natural logarithm, square root, or reciprocal of the variables." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Log transformation of the multiple linear regression." - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Mean Squared Error (Log Transformed): 0.09804039958945562\n", - "R-squared (Log Transformed): 0.6469123715948973\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "\n", - "# Log transformation of features and target variable\n", - "X_log = np.log1p(X)\n", - "y_log = np.log1p(y)\n", - "\n", - "# Split the log-transformed data into training and testing sets\n", - "X_train_log, X_test_log, y_train_log, y_test_log = train_test_split(X_log, y_log, test_size=0.2, random_state=42)\n", - "\n", - "# Standardize the log-transformed features\n", - "scaler_log = StandardScaler()\n", - "X_train_scaled_log = scaler_log.fit_transform(X_train_log)\n", - "X_test_scaled_log = scaler_log.transform(X_test_log)\n", - "\n", - "# Build a linear regression model on the log-transformed data\n", - "model_log = LinearRegression()\n", - "model_log.fit(X_train_scaled_log, y_train_log)\n", - "\n", - "# Make predictions on the test set\n", - "y_pred_log = model_log.predict(X_test_scaled_log)\n", - "\n", - "# Evaluate the model\n", - "mse_log = mean_squared_error(y_test_log, y_pred_log)\n", - "r2_log = r2_score(y_test_log, y_pred_log)\n", - "\n", - "# Display results\n", - "print(\"Mean Squared Error (Log Transformed):\", mse_log)\n", - "print(\"R-squared (Log Transformed):\", r2_log)\n", - "coefficients = pd.DataFrame({\"Feature\": X.columns, \"Coefficient\": model_log.coef_})\n" - ] - }, - { - "cell_type": "code", - "execution_count": 105, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAIeCAYAAABOTExvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtLklEQVR4nOydeXxTVfr/PzdJ07QFbUkRWsBhUBEZdIQKFBEEUYdiQQq4jMo4wy6b7DrDKouOrILsm/5Gx8ERWmSqoF8dFabKIjoz6riMog5LQVpaoEuaJrm/P25vmuUu5yY3yU36vF8vXtrk5N6Tk3vPee5znufzcDzP8yAIgiAIgiCIOMcU6w4QBEEQBEEQhB6QYUsQBEEQBEEkBGTYEgRBEARBEAkBGbYEQRAEQRBEQkCGLUEQBEEQBJEQkGFLEARBEARBJARk2BIEQRAEQRAJARm2BEEQBEEQREJAhi1BEESMoTo5BEEQ+kCGLUE0EUaOHInrr7/e71+nTp2Qk5OD++67D2+88Ybu5ywsLMT111+PU6dOybY5deoUrr/+ehQWFup+/ieffBJ33HFHWMe44447gsbtxhtvxF133YVVq1ahrq7Or+2TTz6p6fjvvvsunnjiCaa2//73v/GrX/0KTqcTAHD99dfj+eef13Q+vZC6ngL/jRw5MiZ9C+Sbb75BQUEBunTpgkGDBsW6O5oZOXKk31jOnDkT27dvj2GPCMK4WGLdAYIgokfnzp2xcOFC799utxtnz57Fiy++iBkzZqB58+bo27evbufr168fXn31VVx11VW6HTMW3H777Zg4caL377q6Ohw5cgQbN27E6dOnsXr16pCP/eKLLzK1q6urwxNPPIGZM2fCarWGfD69WLhwIaqqqrx/P/XUU97XRZo1axb1fkmxfv16nD59GuvXr4fdbo91d8Jmzpw5GDx4MPr3749rrrkm1t0hCENBhi1BNCGaNWuGm2++Oej122+/Hb169cKePXt0NWxbtGiBFi1a6Ha8WNGiRYugcevZsyfOnj2LwsJCPPnkkxE33l955RVwHIe77747oudh5dprr/X7WzRipa6vWFNRUYGOHTuiX79+se6KLrRq1QqDBg3CypUrsWnTplh3hyAMBYUiEAQBq9WKpKSkoNdfe+013HPPPejSpQv69euH559/Hi6Xy/v+hQsXMGvWLPTu3Rs33ngj7r33Xuzdu9f7vlQowttvv40hQ4bgpptuQkFBAb766iu/cx45cgTXX389jhw54vd64Hasw+HAqlWrcPfdd6NLly7o1q0bfve73+HLL7+U/Z5ffPEFHn30UeTk5KBr16747W9/i3/961/M4xRIly5dwPM8SktLJd+/fPkynnnmGdx555248cYbkZ+fj927d/t9p6NHj+Lo0aOS31nE6XTihRdewODBgzX30e12489//jMGDx6Mm266Cf369cPKlSv9QigAoKioCIMGDcKNN96IIUOG4KOPPkLnzp3DDhEpLCxE586d8dprr+G2225D37598d///hdutxtbt25Ffn4+brrpJtx888148MEH8dFHH3k/+/zzz+Ouu+7C+++/j8GDB6NLly741a9+haKiIr9zvPTSSxg4cCBuvPFG9OnTB4sWLfJ6k6+//nocPXoUx44d8wt5+eGHHzB16lT07t0bN998M0aOHInjx497jymGyLzwwgvIy8tDjx49UFhYiOeffx4DBw7EO++8g/z8fO91/+mnn+Kf//wn7rvvPtx0003Iz8/3+y6AEBIxfvx4dOvWDd26dcOkSZNw8uRJvzZnzpzB5MmTkZOTg969e+OFF16QHNchQ4bgvffewzfffBP6j0MQCQgZtgTRhOB5Hi6Xy/uvrq4OP/74I+bNm4fq6mrce++93rZbtmzB/Pnz0atXL2zevBkPP/wwtm3bhgULFnjbzJ49G99++y2eeuopbN26FZ07d8YTTzwha6D9/e9/x9SpU3Hddddh/fr1yMvLw+zZs0P6LnPmzMHu3bsxbtw47Ny5E08++SS++eYbTJ8+XTIZq6qqCmPGjEFGRgbWrVuHNWvWoLa2FqNHj8bly5dD6sP3338PAGjXrl3Qew6HAw899BD27duHUaNGYePGjcjJycHcuXOxefNmAMK2fefOndG5c2e8+uqr+MUvfiF5niNHjuDcuXMYOHCg5j4uWLAATz/9NO644w5s2rQJDz/8MF5++WVMnDjRO0579+7Fk08+iW7dumHjxo341a9+hYkTJ8Ltdms+nxRutxubN2/G0qVLMW3aNFx77bVYuXIlNmzYgAceeADbt2/H4sWLUVFRgccffxw1NTXez54/fx6LFy/Gb37zG2zduhVt27bFk08+ie+++w4A8MYbb+DZZ5/Fww8/jB07dmDSpEl4/fXXsXTpUgDAq6++6jfG/fr1w7fffothw4bh5MmTmDdvHlauXAmO4/Doo4/i6NGjfn1fs2YNRo8ejaVLlyI3NxcAcPbsWTzzzDOYMGECnnvuOVy8eBFTp07FjBkzcP/992P16tXweDyYPn06HA4HAOFaefDBB1FeXo4//vGPWLZsGU6ePIlf//rXKC8vBwDU1NTgkUcewVdffYXFixdjwYIFeO211/Dpp58GjWnXrl3RqlUrFBcX6/IbEUSiQKEIBNGEOHbsWJDxxHEcOnbsiLVr13oTrS5fvoxNmzbhgQcewLx58wAAt912G9LT0zFv3jz87ne/w3XXXYejR49i4sSJuPPOOwEI2/Pp6ekwm82S59+wYQN+8YtfYNWqVQDgDXsQ/2bF6XSiuroa8+fP9yYD9ejRA9XV1fjjH/+I8+fPB4UGfPvtt7hw4QJGjhyJnJwcAECHDh2wa9cuVFVVoXnz5rLnEx8IRMrLy3Hw4EHs2rULeXl5kuEWhYWF+Oabb/DKK694z9enTx+4XC5s3LgRDz74IK699lqmLfzDhw/jiiuuwM9//nO2AfL5zrt378a0adPw2GOPAQB69+6Nq666CnPmzMHBgwdx++23Y+3atejfv7/XGOzTpw+SkpI0/y5KTJgwwS8U4KeffsL06dP9vPA2mw1TpkzB119/ja5duwIAamtrsWzZMvTq1QsA0L59e/Tv3x8ffPABrrnmGhw5cgRt2rTBww8/DJPJhB49eiA1NRUVFRUAhHENHOPFixcjKSkJf/rTn7y/e79+/ZCfn48VK1bgtdde8/bp7rvvxogRI/y+S21tLRYuXOi9fr/77jusWrUKy5Yt87Z1u92YOnUqvv/+e9xwww1Yv349bDYbXnzxRW9/evXqhTvvvBPbt2/HE088gaKiIpw5cwavv/46rr/+egDATTfdhLvuuitoPDmOQ5cuXYK8wgTR1CHDliCaEL/4xS+8ST7nzp3D2rVrUV9fjzVr1vgloXz66aeora3FHXfc4WfQiYZvSUkJrrvuOvTs2RPPP/88vvrqK9x+++3o27evbIa/w+HAF198galTp/q9npeXp9mAslqt2LFjBwDBQPrxxx9x4sQJvPfeewCA+vr6oM9cd911aNGiBR577DHk5eV544rnzJmjer69e/f6hVgAgMViwV133YVFixZJfubo0aNo06aN16gVGTJkCHbv3o1//etfuP322xm+LXDy5Em0adOGqW1gHwAEhTDcc889+P3vf48jR46gffv2OHPmDB5//PGgNnoath07dvT7Wzz2hQsX8OOPP+L777/H3//+dwDBv5+v0d+6dWsA8Hp1c3Nz8eqrr2LYsGG4++670a9fPwwePBgcx8n25ejRo+jfv7/fw4zFYsE999yDDRs2oLq6WrbfIt26dfP+f2ZmZlA/09PTAQCXLl0CIDyc9OzZEzabzXtPNWvWDLfccgs+/PBDAMDHH3+Mdu3aeY1aAMjKypJ96GnTpg0++eQT2e9JEE0RMmwJogmRlpaGG2+8EQBw4403omvXrrj33nsxatQoFBUVeT2PlZWVAIBx48ZJHuenn34CIGzTbt68Gfv378eBAwdgMplw6623YtGiRUHb8xcvXgTP80HezVCTrg4dOoSnn34aJ06cQFpaGq6//nqkpaUBkNaFTUtLw5///Gds2rQJb775Jnbt2oWUlBQMGTIEc+fORXJysuy5+vfvj0mTJgEQPGUpKSlo06YNbDab7GcuXrzoNXh8EV8TDR4WqqqqkJKSwtzetw8A0LJlS7/XLRYLMjIycPnyZVy4cAEAgtQCAj8TLoHH/+yzz/DUU0/hs88+g81mw7XXXus13gN/P9/vbjKZ/NoMGjQIHo8Hr7zyCtavX4+1a9eiTZs2mDlzJu655x7Jvij9NjzP+6k9SLUDpBUflK6HyspKvPnmm3jzzTeD3hPviYsXL0p6/1u2bImysrKg11NSUkIOoyGIRIUMW4JowtjtdixYsABTpkzBsmXLvF60K664AgCwcuVKtG/fPuhz4mLfvHlzzJ49G7Nnz8aJEyfw7rvvYuPGjXjqqaeCdDbT09NhMpmCFmjRiBYRPW0ej8fv9erqaq/h+r///Q+TJk3CgAEDsGXLFlx99dUAgD//+c84dOiQ7Pft0KEDVqxYAbfbjX//+994/fXX8Ze//AVt27aVNeLFvosPBKxceeWV+PHHH4NeP3/+PAAgIyOD+VgZGRnehwmtfRDP2bZtW+/r9fX1qKioQEZGhtcDKsZ5igT+rSdivPP111+P4uJiXHPNNTCZTPjggw/w1ltvaT5efn4+8vPzcfnyZfzjH//Atm3bMHv2bNxyyy1o1apVUPsrr7xS0lD0/W1CGW8lmjdvjltvvRW/+93vgt6zWCze80pdM4H3iMilS5c0XUcE0RSg5DGCaOLcfffd6NOnD4qLi71JX7/85S+RlJSEc+fO4cYbb/T+E+MuT506hdOnT+P222/HgQMHAAhG49ixY3Hrrbfi7NmzQedJTk5G165d8fbbb/t55MTtZxHRE+arNHDx4kVvshAAfP7556irq8P48eO9Ri0Ar1Er5bE9cOAAcnNzcf78eZjNZnTt2hWLFi3CFVdcIdnfcOnevTtOnz7tl2kPAPv27UNSUhJuuukmAI0eSCWys7Nx9uxZzRXKevToAQD429/+5vf6G2+8AbfbjZycHLRu3RpXX301/u///s+vTSgGJisnTpxAZWUlfvOb3+C6667zjsHBgwcBBD/UKDFt2jRMnjwZgGA85uXleRPf5IzT7t2747333vPzdrrdbrzxxhu48cYbI6IT3KNHD3z77be44YYbvPdTly5d8OKLL3rHPjc3F6dOncJnn33m/dyFCxfwz3/+U/KYpaWlIYWoEEQiQx5bgiDwhz/8AUOGDMHSpUtRVFSEjIwMjBkzBmvXrkVVVRV69uzpjcnlOA6dOnVC8+bN0bp1ayxduhRVVVW4+uqr8fnnn+ODDz7A+PHjJc8zY8YMPProo5g8eTIeeOAB/PDDD0E6nNdffz2ysrKwfv16NG/eHCaTCVu3bvXbjv7FL34Bi8WCFStWYNSoUXA6nSgsLMT7778PAH5Z9SLdunWDx+PBpEmTMG7cOKSlpWH//v24fPlyRLRhhw0bhldeeQWTJ0/G1KlT0a5dO/z973/Hnj17MHnyZK9X/IorrsCnn37qldcSvay+9O7dG1u3bsV///vfoJjPf/7zn5JFHm677TZce+21KCgowPr16+FwONCzZ098+eWXWL9+PXr27Ik+ffqA4zhMnToVs2bNwsKFC3HXXXfhq6++woYNGwCwGd5a+fnPf45mzZph8+bNsFgssFgseOutt7xSaLW1tczHys3NxcKFC/Hss8+ib9++uHTpEtavX4/27dujU6dOkp+ZPHkyDh48iN/85jcYN24crFYrXn75ZZw8eTJiFb0mTpyIBx98EOPHj8evf/1rJCcn49VXX8U777yDdevWAQDuvfde/OlPf8LkyZMxffp0NGvWDJs2bZI09Hmex6effmqY6m4EYRTIsCUIAh06dMDIkSOxc+dOvPzyy/jtb3+LadOmoWXLlnjllVewfft2XHnllejVq5e3QhkgVHRavXo11q5di4qKCmRlZWHy5Mmy2/q33HILtm3bhtWrV2Py5Mlo27Ytnn76aUyYMMHbxmw2Y926dXj66acxY8YMZGZm4tFHH8WJEye88lo/+9nPsGrVKqxfvx6PPfYYrrzyStx888146aWXMHLkSHz88cd+CTiAEMu7fft2rF27FnPnzkVtbS2uu+46PP/8814ZJz1JSUnBSy+9hFWrVmHdunWoqqpChw4d/DLnAeDhhx/G559/jrFjx+KZZ56R1Kq95ZZbYLfb8cEHHwQZtv/4xz/wj3/8I+gzzzzzDK699losW7YMP/vZz7Bnzx7s2LEDV111FUaOHIlJkyZ5jdbBgwejpqYGO3bswJ49e3Dddddh7ty5mDt3LlJTU3UeGcGzunHjRixfvhyPP/440tLScMMNN+Dll1/G2LFj8fHHHzOXQn7wwQdRX1+PXbt24ZVXXoHNZkOvXr0we/ZsSW1mQEgkfOWVV7B69Wr84Q9/AMdxuOmmm/CnP/0Jt9xyi55f1UunTp3w5z//GWvWrMGcOXPA8zw6duyIDRs2YMCAAQCEpMj/9//+H55++mksW7YMHMfh/vvvR7t27YJCQ/7973+jsrIyJAk4gkhkOF7r3hZBEAQRdXbu3Ildu3bhrbfeUsz4D4Xi4mJ07twZHTp08L72/vvvY/z48Xj99ddlPZ9E7Pj973+PixcvYuPGjbHuCkEYCoqxJQiCiAMeeughuN1ub0yznuzbtw9jx47F3/72N3z88cfYvXs3FixYgB49epBRa0DOnDmDt99+O0iijSAI8tgSBEHEDZ988gmefPJJFBcX65rgVFFRgVWrVuHgwYO4cOECMjMz8atf/QpTp071KlEQxmHGjBm4/vrrZWPZCaIpQ4YtQRAEQRAEkRBQKAJBEARBEASREJBhSxAEQRAEQSQEZNgSBEEQBEEQCQEZtgRBEARBEERCQIYtQRAEQRAEkRBQ5bEGyssvw4j6EBwH2O3NDds/o0PjFx40fuFB4xceNH7hQeMXHjR+4aH3+InHU4MM2wZ4Hoa+cI3eP6ND4xceNH7hQeMXHjR+4UHjFx40fuER7fGjUASCIAiCIAgiISDDliAIgiAIgkgIyLAlCIIgCIIgEgIybAmCIAiCIIiEgAxbgiAIgiAIIiEgw5YgCIIgCIJICMiwJQiCIAiCIBICMmwJgiAIgiCIhIAMW4IgCIIgCCIhIMOWIAiCIAiCSAjIsCUIgiAIgiASAjJsCYIgCIIgiISADFuCIAiCIAgiIbDEugMEQRAEQRgXtxs4fNiMc+c4tGrFIzfXDbM51r0iCGnIsCUIgiAIQpLiYgvmzUvGmTONG7zZ2R4sXVqH/HxXDHtGENJQKAJBEARBEEEUF1swerQNZ85wfq+XlnIYPdqG4mLyjRHGgwxbgiAIgiD8cLuBefOSwfMA4G/Y8rzw97x5yXC7o983glCCDFuCIAiCIPw4fNjcEH7ASb7P8xzOnDHh8GEKtiWMBRm2BEEQBEH4ce6ctEEbajuCiBZk2BIEQRAE4UerVryu7QgiWpBhSxAEQRCEH7m5bmRne8Bx0oYrx/HIzvYgN5eCbAljQYYtQRAEQRB+mM3A0qV1ABBk3Ip/L11aR3q2hOEgw5YgCIIgiCDy813YscOBrCx/wzYri8eOHQ7SsSUMCYnQEQRBEAQhSX6+C3l5Lqo8RsQNZNgSBEEQBCGL2Qz07k2xtER8QKEIBEEQBEEQREJAHluCIAiCIIgI4XaDQjmiCBm2BEEQBEEQEaC42IJ585IbqrgJZGd7sHRpHSXfRQgKRSAIgiAMi9sNlJSYUVhoQUmJGW4K9STihOJiC0aPtuHMGf/qbKWlHEaPtqG4mHyLkYBGlSAIgjAkxcUWzJ8PnDqV6n2N1dtF279ELHG7gXnzksHzAOBv2PI8B47jMW9eMvLyXHRd6gx5bAmCIAjDUVxswahRNpw65f86i7eruNiCnJw0FBSkYsKEFBQUpCInJ408ZETUOHzY3BB+wEm+z/Mczpwx4fBhsmr1hgxbgiAIwlD4e7v84XnBUJg3L1kyLIG2fwkjcO6ctEEbajuCHTJsCYIgCEMRqrdLbfsXkDeICUJPWrWSeCoLox3BDhm2BEEQhKEoLQ3N20Xbv4RRyM11IzvbA46TNlw5jkd2tge5ufSUpTdk2BIEQRCGQUgYS2ZqG+jtou1fwiiYzcDSpXUAEGTcin8vXVpHiWMRgAxbgiAIwhCI8bHl5cqGp5y3i7Z/CSORn+/Cjh0OZGX5X29ZWTx27HCQjm2EoCh6giAIIuYoxcf6ouTtErd/S0s5b0xt4Gezsnja/iWiRn6+C3l5LpKeiyJk2BIEQRAxpzE+Vhm7ncfy5dI6tuL27+jRNnAc72fc0vYvESvMZqB3b3qYihYUikAQBEHEHNa418WLlYsz0PYvQTRtyGNLEARBxBzWuNdAg1UK2v4liKYLGbYEQRAJTjyUl9U7Ppa2fwmiaUKhCARBEAlMvJSXJXkkgiD0gAxbgiCIBCXeysvKxcdmZ1N8LEEQbBhrViMIgogzjLrNr1ZeluN4zJuXjLw8lyH6K+IbH/vTTxw6dkzBDTdUw0RuGIIgGCDDliAIIkSKiy2YNy/ZT6YqO9uDpUuVM/ejgZp8llBelsPhw2bDxaKK8bEcB2RmAmVlaDDQCYIglKFnYIIgiBAw+jY/lZclCKIpQoYtQRCERtS2+QHhfXcMHaFUXpYgiKYIGbYEQRAaadzml/Z2Ctv8Jhw+HLvgVVE+K1BhQITjeGRne6i8LEEQCQUZtgRBhITbDZSUmFFYaEFJiTmm3sloY7RtfqnfguSzCIJoilDyGEEQmjFy0lQ0MNI2v9pvsWOHo+H9RiM7K4tvMr8VQRBNC0N7bC9cuIC77roLR44ckW3zwQcfYPDgwbj55puRl5eH9957L4o9JIjEQ80Ta/SkqWhglG1+lt8iP9+F48erUVRUg82ba1FUVIPjx6vJqCUIIiExrGF7/PhxPPDAA/jf//4n2+aHH37AlClT8Pjjj+Pjjz/GlClTMG3aNJw7dy6KPSWIxCGwStXQoalo3x5eYzUekqaigRG2+bX8FqJ81rBhLvTubQydXYIgiEhgSMO2qKgIs2bNwvTp01Xb3XLLLbjzzjthsVgwaNAgdO/eHa+++mqUekoQiYOc9+/0aWDUKMH7Fw9JU9FCrkpWVlZ0qmTRb0EQBBGMIfcMb7vtNgwePBgWi0XRuP3222/RsWNHv9euvfZafPXVV5rPyRlUylHsl1H7Z3Ro/NhQ9v4J4zd/fjLmzatjOt5PP3FNYswHD3Zh0CCXbOWxSF5/P/3EdtB4/i3o/g0PGr/woPELD73Hj/U4hjRsW7ZsydSuuroaKSkpfq/ZbDbU1NRoPqfd3lzzZ6KJ0ftndGj8lHn/feDMGfn3eZ7D6dMcHI4U+UY+dOyYgsxMffqmBbcbOHQIKC0FsrKAPn0QlW33e+9Vfj8S11/AM71Cu9j8FnpC92940PiFB41feER7/Axp2LKSkpICh8Ph95rD4UBaWprmY5WXXzZkyUaOEy4Ko/YvmrjdkPWMyUHjx8Y331gAqButNlstsrOTUVrKeeM4fRGSpnjccEM1ysoi0FEFiostmDs3WB1g2bLYZf9H8vq74QYgOzvNkL+FXtD9Gx40fuFB4xceeo+feDw14tqw7dixI7744gu/17799lt06dJF87F43ti1yI3ev0gTrrxUUx8/Na66im1wWrcWZKJGj7aB43g/g0pMmlqypA4mU3THW4wPDjxnaSmHUaNsUYl5VSIS15/JBEP+FpGA7t/woPELDxq/8Ij2+BkyeYyVIUOG4OjRo3jzzTfhcrnw5ptv4ujRo7hXbV+QiCtIXiryaJGvinXSVCBNWanBaL8FQRBErIk7i6Br16546qmnMGTIEFxzzTXYsGEDVq5ciblz56JNmzZ4/vnn8fOf/zzW3SR0Qs1o4Tge8+YlIy/PRRJGYSDKV0l7/4T/+spX5ee7kJcnnzQVTRrVAaQR1AE4HD5sRu/eiWfdGum3IAiCiDWGN2y//vprv78//fRTv7/79OmDPn36RLNLRBRp6kZLNJGrUtW2LbB4sQP33OPv/RO1UWON0crbxoJQf4tQ4tYJgiCMjOENW6JpQ0ZLdAn0/rVuzSM/PxUVFS7DxpgZqbxtPNHUyyITBJGYkGFLGBoyWqKPr/eP46IjlxUOYnywkjpAVhYf8fK28YRSst3o0bFPtiMIggiVuE4eIxIfLUlNRNPECOVt44mmnGxHEETiQ4YtYWjIaCFYMLI6gNsNlJSYUVhoQUmJOeYGI5XiJQgikaFQBMLwyCU1ZWXxFA9IeDGiOkBxsQXz5wOnTqV6X4t1HCvFrRMEkciQYUvEBUY0WgjjYRSlBsC4cawUt04QRCJDhi0RNxjJaCEIJfzjWP2Jtf4yJdsRBJHIUIwtQRCEzhg5jjUe49aNFqdMEIRxIcOWIAhCZ4wex2rkZLtACguBbt3SUFCQigkTUlBQkIqcnDQqpU0QhCQ0MxAEkbDEqrJWPMSxhhK3Hu3xLC62YNQoBIVMxDpOmSAI40KGLUEQCUksK2vFSxyrlrj1aI+n2w3MnSuvtxvLOGWCIIwLhSIQBJFwiIoEvvJwQKOnL9Lb2P5xrP7vGTWOVYlYjGdjnLI0TUFvl2KLCUI7ZNgSBBE3sCz0RqmslZ/vws6dDrRp4/+6EeNYlYjVeBo9TjnSFBdbkJNDscUEoRW6QwgiTolV/GisYN0KZ/P0cTh82KxZPk7rmOfnuzByJFBcXIOzZ+Pzd4rkePoSOLYtW4YWp5wI94VRNZAJIh4gw5Yg4pBYxo+GQ6hGh5aFPlKevlDHXIxjldK0jQei4TmVGtusLA8yMjyorDRJjp1UnHK83he+qHnIKbaYIJShUASCiDNiHT8aKqFurWrdCmf19LG2E/sej2OuB5FWeJAb27NnOVRUcOD5YL1dIDhOOVF+o1hpIFM8L5EokGFLEHGEUeJHtRKO0aF1oWf1jLK2i9cx1wtR4SHYuBTgOB7Z2Z6QFB7UvZOA3Q6kpweem/N7LZF+o1jEFlM8L5FIkGFLEHGEkStayRGu0aF1oS8rY2vP2i4ex1xPIlmpjGVsy8uBigoOopdWpLKy8aEokX6jaGsgJ4qnmyBEyLAliDgiHjPFwzU6tC70ehsG8TjmehOpSmXaxkz+oai0NHF+o0h6yANJJE83QYjQoxhBxBHxUNEqkHANQ63FDvQujqB1zH0T5Fq35pGfz/RxwxNKpTI12K9TpYciDuXlbNeYke4LOUQP+ejRNnAc73cNq3nIA5Mze/VSvsajpXhBENGEPLYEEUdE05ujF+Ea41q3wvXeOtcy5oGxikOHpqJ9eyTMdq6o8DBsmAu9e4cvo6U2toHhB3LY7Xzc3RdKhOIhl4qT7dYtDYWF8ueh3QgiESHDliDiCNFoE7YOgzPFed54Fa30MMa1LvR6bp2zGsr790vHKp4+DYwaRbGKUrCMLQtZWXzE4oBjRX6+C8ePV6OoqAabN9eiqKgGx49Xyxq1cnGyI0bIP1jF4w4QQajB8Xy8qivqS1nZZUPqTHIckJnZ3LD9MzqJOH7FxRaMGmVr+Mt3IRO+4M6d+om36zV+4sILQHJrldXY1KqDq6dYv5JGal6eCzk5aQ2GhXz4w/Hj1XFlXEULubFdsqQOCxem4PRpXjGsRBzXRNCx1YrbDZVrTxiDjz8OvvbEz6qF7TTV6zYR149oovf4icdTbUeGrYBRL1y6scIj0cZPfRHTdyHSc/wSweiQM5RLSswoKEhV/XxRUU1UYhXl+in1OmCMSl1SfbNYgIMHm2PECOHiY3koSoTKY1oI99rT66EzEUm09SPaxMqwpb0xgogj4jnZIxLJR9FGjDENxEixinIPEAUF9SgqSvJ7PSPDAwCoqIj9w4bc2A4bJuxCzJ2b7LfVLoYfBPZT7jiJSrjXnhi2I1wz6uNLEEaHDFuCiCOMZECFQqIaHUaJVZQrPXzmDIcNG6xB7QV9WH+kyhTHmvx8FwYOjO+Hokihx7WXCA+dBCFChi1BxBFGMaAIf/SSGAtnG11Jk1T4m5d53R+h4hePefOSkZfnippxIxeKIJKoD0Xhon7tgUkRgsaXSBRIFYEgdCIatdbjUe4rUhiptr1ydr/wX7Ws/HDLmqoVwpB/PZhoV+qikq6hE8nKcAQRj5BhS8QlRjJqAGFh7tYtWENS74WZFjEBIxpCchJjmZnAuHH1yMjgZa9TJbmmUaNsWLnSqnqtRyL8JFoxwUrfXUmHlRCQu/ays3ns3g3DhJQQRDQgVYQGjJr1SFmZwWjJro/G+EVTfsv3nNFQGAh1/MRt5dJSoSqU3d64FR+u0e0fR2q8LG7xux84YMbu3UkoL1f+jdSULgJDCOR+Z9bseC1EWsWBReWjbVsOx45dhoncMKpIVR5r1YrWj1Ch9Tc8SO4rxhj1wqUbyx+tRk2kx8/tBjp3TmtIwpE2Slq04PHFF/rrQEZD1iiU8ZMyukV8jbJQ+h9tubNQ0XKdajVIlWSulA1kdqI1jqzffe/eGtx6a+KH1+gNrR/hQeMXHrEybOkZmIgblJJjxKSJefOSoxqW8OGH5gapJPm4xgsXTPjwQ/2tA73Lm+qB3LayyJkzQsb9U09ZQwolUIsjjXZsqBRar1Ot2/1y17pvmIqGoyGwgp1cSEskwn/iXeWDIAjjQYYtETcY0agpKWE7F2u7eEY5K1+EA88DGzZYJWMqR49WLj0bD4aQ1us0FAULuWs9P9+FOXOczMdp0YJHRoZ62eFIxTSTygc7RssrIAijQimnRNxgRKOGdXvFyNtYeoU0qBWPaETe4FOTmQrFEIp2JSqt16maXJPWc02f7sRLLyWhtFQ+PCY9XTBexe19pfGR08bVQ++WRSatbVuuSah8KJEIVfsIIlqQx5aIG4zo3WFNrDGqPqSenjg9HijUvO5qcmeC0eaBxyMYtLFQT9B6nSopXYRyLrMZWLasDhwnrZzBccDq1XXo00cwYJVCWiId/sOi8vHcczBEmE2sUFKNUNvhIIimCBm2RNxgRA3X3r3dDWVJ5Q2tjAyPIQ1bvRdMPR8o5IxkZSNQUA+orDRh+PBUdO6chlGj5L/fvn2WiGzthnKdysk1yV1Xate63PGkwgyUiEb4j1Jfd+50YNiwkA8d9xgxr4AgjA496hFxg2jUjB5tA8fxfluXsdJwNZuBVavqGuS+Ais7CX1atcp4urJqC6YYEjBoEPs2p2jQ6ZGVr1b+U6q2fSCN5WKlDAIe48bZ4PGoy2hpJdTr1LesaWkph4MHzdi1KwmB1xXrta5HmdRohf/I9dXSxFcotfAe4cGCw+HDZkM+PBNELCCPLRFX6OWJ0rtPO3fKe5yMGAMXCU+caNAJlbbkPdhSmfgirF73/HwXjh+vxu7dNUhPFz3mUuVi5ZPYfI1aQN+t3VCvU7NZMMiXLk3Grl1Wye+g5VoPVzkjmuE/RlT5iDVGzCsgCKPTxJ+HiXhED09UU+iTEpFaMNW8qdnZPAoK6rFxoxVAeF53MT60slKf53OW5DUt5Oe7MGiQC19+2RzffFOLq65SvybkErXEB4E5c5yYPt0ZteuKJblLLLxB6I8R8woIwuiQYUvEJaJ3x0gYsU9yRHLBDNxSl6o8lpPjCTJ+s7J4zaEAenuqxK3d7duT0LIlH/YDitkM9OsHdOniUlXGUJZLE4zul19OwvTp7HJe4cIaVgEIUlTx8FAXT9CDBUFohwxbgmiCRHrBVDPy9fJwR8pTNX++zfv/0ZJVMmo8pZwXXnwQAcSKZ/pKUbndwJEjZtTUAKmpZvTs2fSMZSPmFRCE0aEYW4JogrDILEV6wdQjppJF/ks+3peNaMkq6RkeoreYvxjTXFRUg82ba1FUVIPjx6sBICJSVKJM29ChqXjoIWDo0MjLtBkVI+YVEISR4XjeyNLx0cOotaCpVnV4GGX8ol0kgBU14XejjJ8SYlwqgCCPFs8DGRl8Q9ljFqSS0Bo92MePV2v63bSMX0mJGQUFqarHLCqqUfTYRkvM3+0WPbXSSXqhjpl/nHGwh7KpGnOhzCHxcP8aGRq/8NB7/MTjqbYjw1bAqBcu3VjhYYTxM3rVIKUF0wjjx4LSGN99twu//GUaysvDlyFTMyoD0TJ+oqGoFh6iZChG0yjUyxD3JVLGcjQx0kNsvNy/RoXGLzxiZdg2vX0dgogikSxHqhfxlPQmh1LMbkmJGeXl+kRdqYUBBBo1vXqxj2u48ZSs2sR6KD4AkVHWMGqcMStGfYh1u4GPPjKGsU0QkYZibAkiQlDVoOgiF7Orp3KCUrKaVPnebt3SUFjIfvxw4imjUSXMl0goa8SzbqtRS98WFgLdukW3rDRBxBIybAkiQpSURNfQIKRhNazs9tDLNSsZNSNGQJMRIZeopebxi7ZRGIkS1/Gq22rUh9jiYgtGjIDhjG2CiCRk2BJEBCgutmDMGJt6QxjT+5RIsBpgzz4bmkpEJIyaUBQjMjPZjD3WdmpEQlkjEsZyNIi2t5wFtxuYO9d4xjZBRBoybAlCZ0TvXWUlm8FqNO9TosFqgA0ZEloYgLpRA5w+zW7UhCLV5XYDX3zBNp1zITxHyfVJbykq8bcSjLHA+0JQuTCibqsRQyjY4pVpx4hIPGgfgiB0RLl6lD96VA0yUga2kVErMiAaYKEUjtDTqAkl+UjqM0qcP6/NuFLrU7yVk44ERgyhMKKxTRDRgAxbgtARNS9JI+EXQTBqBrZRYTXAtKpE6GXUhKKgIfcZPfqrpU96KWuID4YC0mWF9VR20Asjlr41orFNENGAQhEIQkdYvR/p6eFVDTJqBrbR0aPaWSDqcaFAmzbKcaFuNzBzpnI85Jw5ydi9uzEUQMvugNAPbfGpsUiIMmKsKgtGqOQXSON1Kf2+UeOVCSJcyLAliBCRijtk9X5s3epARgYfUslTo2ZgNxV8f/eDB8348EMz8vNdknGhrEbNmjXWhupo8gZdWZkJEyc2yjWtWWNVNAJD6YcvkTIylWKIY7F9HmpMc+BnjFb61mwGli0zlrFNENGA3DoEEQJyYQCLF9epbkmmp/N4/HEbSktDCyGIdxF7FrTEDkczzlgtntVk4uHxNP6dnc1j3ToOffu6ZMMF3G5g69YkTf0oLeWwfLmVuX1gLLEabjdw8CDbIGoxMtXCZ8LZPg/lOtArptn3M0aKN87Pd2H3bmDKFF4xtpwgEgkybAlCI0pxh2PH2jBxohMbN1olq0fxPFBREWwIaKlEluhJIVqMjWjGGbPEs4pe2/HjnRg40I1evdxo1ao5ysrkP3P4sBmVldo2z4Tris0IXLLEgTFj6pmNK63JaL5GppJxqXTfjBplw/jxTtx1lxtZWR6cPastVjVUA1WtPwMHupm/g+/9a6QHymHDgN69q6nyGNFk4HieKiADMGwtaKpVHR56jx9rLfvFi+uwYIH/QpuV5YHDIRq28p89frxacdEpKTGjoCBVta9FRTVhL7B6jJ8WT5q/4RBcUtbX8NfSNlzUfndffH9Hi0V9/AoLLZgwIUWXfvrDIztb/XryRW5MpQi8XpWMy7w8F/P4ZWR4UFHBgeMQ9GAIBP+u8n0W2u/cGXwdaPk9Wb8D6/0bTYy4fsSTkosRxy+e0Hv8xOOpQR5bgtAAaxiA3S4scL4TuMcDDB8ub5CyhhAYMQNbDi2eNLXYYd+MeIC9rR6LJrvaRePv+OGHZpjNQE0NkJpqRs+e0gt45LLSOTzyiJP5+2uVqgMaYzTVPJmzZzuZx0/Uf05P5/12N6S2z5X7LHi1Z84Mvg60/J6s3yERQoAiDSm5ENGAkscIQgOs2/v791uCMvBZ9UPVzmHEDGwptCo3aElWinb2fChhHaNH2zB0aCoeeggYOlRI+JJSq1BTVQiHDh086o0aUBtTX3wToliSGbXEEAsPJoDNBuzZU4NXXgH27pUuK6zeZw4VFSasWeMfj6zl9+R5DjwPbNnC9h3iNQQo0pCSCxEtyLAlCA2wqx4kBU3ULVuyfZalnVIG9uzZTjid0Ky2oCdalBvEDPP169kNB61xxqFkvvsSilc1sPKc3AKu9KAibKeHbvBq6TfrmM6YUednZLI8ZIQSQ1xaaoLZDPz615CVZistZevz1q1Jfr+59t+Tw8WL2mOOAwn3OoxXSMmFiCb0iEQQGlALA/AlcCucNcaItV1gBvaJEya89FISli9P9raJ1TYfa8jGmjVWvPxyEvO2MCAY/ibG5q1a8Zq3P31jADMzeXCcYPTZ7R6Ul6vHZDYaouwhEnKV0Vq04HHhAheUiOhv7OoTjsJq7PXp429ksms3e3Dxovp944vasYXfQ53KSpM3REB8mEpP9zQ8fGjxsEr/toD6mDflbfimoORCGAfy2BKEBvxr2SsRvBVeVsa2gLK2E/vTu7cbViuwYoU1yIMVq20+VmNn+XJr0NakGjwvPGBkZHgg783k0aKFYIhq2f4sLrYgJycNBQWpmDAhBSNGpGL48FRMnJiC8nKT99gKvYNg9GgPkcjPd+H48WoUFdVg8+ZaFBXV4IsvqrFzZ7BnPjubx6RJTnCcfuEo6oUmpAX9WQ3icePq/frHgtqx7XZtHmnx9x0xIrXBi8yuLuGPtjFv6tvwia7kQhiLxL6bCCIC5Oe7MH68E1u2JKu29Z2oI1XiUkvSVbTibrV9B22L2T/+YcZPP3Gor1du5/EA8+crbX8KiUVXXMGjd2839u/XXp42mPAWcKnStEraqDk5niAvb6gapeJD2+jRNkmpOkDacOve3e2j3yv1vQQP+9SpTnTqFNxfKVg9zoEGvxInTpiwYoU1Ir+v0pgb7f6MhSoBlfclogkZtgQRAgMHurFli3o734k6UmoGRtzmUw/ZUPZsKvHcc+oPFACHykoOlZXKbSoqOIwYkeqVYlNXBBAM4ubNPXj22TqcOGHCypVWn/fY0LqASxm8gLLRGwpyIRFKhtuxY2Z4PMpj5vEI7Xz7u3+/xSepjM2IDiQ3V9C9FXYq5PrAo3VrHi+9lKSonpCWxqO6Wss1KfRzzhwnpk+XV58w0v0Zq3CIcOa+eJIHI4wBhSIQUcPIiRNa+xbKtm2k1AyMuM3H8l2NRGkpp1jS1h8Oly+bYLfzeOWVYMNM8ZMy2/nhEKi+Ee6iLxUSIaVIIKL1+hP7u3RpHXbudCA7O/QStL5lY6VDCoTXfvOb+oZKf/LqCdXVJths2nYaOA54+WXlpEej3J+xDIcIde4LDA0Sy0kneugGER5k2BJRwcgTVCh9C3WijkQ9eaNu88l9V7udN2CyjHajYs0aK7M8loBQeS7aUmyhPFBqMZbDuf60GtFS5Oe7sHOnAxkZwcfPyOCxc6eDWfbM4dAa7y3ETG/fniQ7vpG8P1l/W7cbmDkztqoEWue+ph6XTIQOVR5rwKiVRRKh8kk0K0QFojZ+4fYt1K09PbfX9u2zYNw4m8J2sLYKVL59a92aR35+Kioqwq88tn+/BXv2WHySsIS+hWJUqsFxwvazUqW38NHad/lKWJEiGlvPYhUvtW3mUCpysc5/bjfw4YdmHDpkxunTHLKzefTp4/Ya5azV+vQgcHwjNT4sv604fk8+WYdnn1UP4dGjWqEaLHMfa4XHSFd5S4T1N5bEqvIYGbYNGPXCjfcbK9YTlNL46dW3WMaAsZVAFTLoFy50Mh0vcLFs2xZYsqQW99wTuiGkVvZUT8NTfCiZONGJDRu0x7+yo90oV7um9LyWovlAKZ4LUC+Dq+U7ssx/LAaemnGpJ0rlnwG2MsFqsP62HAdkZDRHZqaHSUt4+vQ6XH+9J+axrNEsG65EvK+/sSZWhi2FIhARJdoVorSgV9/0jnFkRUsJ1I0brapbd3Jbf6dPA6NGhb71p1721J/MTA8GD1Y3wuXIyuKxbZsDRUXa4l+1Ix6XfcZWuqb0DNeJtiA+6zaz3iFJrNvV6kUwQiX4s1Ljq2cIktbf9tAhMBfIWLMm2RChYkaJSybiEwpSISKKkSeo/fvZLn+9+6aXV4693r2Q9a0kKaS8WApPyqFKEqn3UzjfjBl16NPH7U2sysmxMHnYOI6H3c5j8eI6XHWVUFChpIR1bPQhuICCMuI15XQCL7yQhPffN+Pdd4OvxzNnOIwaZcO4cfXIy3MxXyuxyMRXU2jw9zI2Ihqheht4gTJacooPmZm8Ju1of5Qeijl8+KEZJhO843H0aDWOHQvv3tfy2952mxulpaxH9t+BCPV30QOj5g0Q8QEZtkREMeoE5XYDe/awXf569k3PmEet9e7PnOGwfLkVffu6gxbUSBpCrP3s2NHjd2w5TVVfRO/bqFH1+Ne/TNi9OykghjfyzJnjbKiepk3u66mnrNi0yaoqlQUAW7dasXWrlTl+++BBNmtJ74c2OVmyULRc3W7gyBEzamqA1FQzevYM/5qVMr67d3ejR4/IhCmMHm3z85aKv9+wYaEbilqdBVlZrEeOvcauSKSkEYmmAYUiEBEl1GpGkebwYTOTAZSZGV7ffLOWV6606prlG4rBvWZNsuQ2YyQ96y1bhvZwI7d960tGBo/0dB7Llydjy5bkqBq14rU7fboTR49WY8kSB373OyeuuEK+Ipr4mbffNmPDBmtDUQN2Aq+VwKz4ffuErf41a1i0fkMrBhKKZJ/WsB8xZGHo0FQ89BAwdKg+16zUbonVGkqYAtu4CSV7G9Ejo1+rs6BPHyjOwUrEKlQsUtKI0cLI0pZNAfLYEhEl1GpGkYZ1URw+vD6s5J1A76xUwpHoGZkzJxkOB7yeCBZxeuUiCPIEbjNGyrNeXGzB3LlqRhaPjAxp70ugh61lS0Eyq6yMw4kTJixfbpU4njocx6NZMx6XL4vjpj0JDBCu3f375X5n/99a/MyiRXWYMMEW0nl9vWgeD7BggdR52fqv1eMVzm6DFiOUNWRB6zWr1n+pMAUl3VsBuQRC6aRIPbygWr2ZotbvqFFSux9sCZCBv180EmZDKRZiBGJRBIOKWPhDHlsi4kRCuzVcWBfFgQNDe9SWS2pR8liVlZkwcSJ74oZyQowygUkmap51ADCZeJSXsxti4hgIVaGUqajgZGOexe3te+91wWQSjNqWLYVKUgKhGaVr1woFAux27Z4s8doFIPM7y3+mtJRrCD8Ibdtb9KKNGSN3XvWYZEDbA2W4mqKs91vLljxzYpSW3SCW/vtq6o4ezZq8KMSv+yMai5FJmA3Fm6mkKc2C7+8XTU1yPXSOo0kstHeNrBEfK0juqwGjynkkktxILJ4q5cZPXf5Hm/arL2oyYmz9ZpcBkvYMsyNK5qhLhwmJWSx90joGajJY4X5HXwK9J7W1wA03NENNDdtvtWSJA2PG1AMAunVLUyjnyiMzk8dzz5nQrFkNevZ0Y/9+C6ZMsTWUbg2X0DSAtXqP9JDFc7uBa69thupqyPSZR7NmwIsv1mLECHaZJxYZrbw8l+b+a9O99f8dMjI8DVXslNm8uTasWFstOrbi/Bc4B6vFFweOTSgScvHsTdSy/sZC2jKWGvEskNwXkfDEShZLri9KXg+OCz1EQi2ekAUtkkx5eS6sW+fA9Ol1yM+vR4sW2gI3xW3G/HwXtm1zwCQ7K7D3SesYKFVwkvd+a8du92Dx4saFv7jYgl690piNWkDwKprNQuUxtTKtZWUmtGkjXPf79wvfQzDu9ED7eMyYUafZ48UaH7t9e5Ji5auaGuXzVFcDZ89qi5tl2Q0KRdYvN9cNu531PhK8tunpHuzZU4Nt2xxMnwo3KTUUb2bgHKwUXxzo/Q1FQq4peROjLW0ZbUm/eIIMW6LJEqkQCb0yzVkmQnHhGDEiFWvWJKO4OAnJycCcOXWYMaOO6Ty+C6zdzitm6bNOzqGOwfz5Nr8FcN8+C7NWLwsXLnAYO1bYEgzVYG7VikdxsYU5vre0VJvmsDqhG0R9+mh/oGT9LefPt8kaLS+8kNSw2Mo/BPA8h08+Yeuc7zUrGnh79tRgxow6TJ9eh3XrBE+tlv77tjObgWefrUNjrLQaHCorTTCZBMMxWgmzejgLWOfBUBIAm1JJ3GhLWxpZIz7WJNaVRRAaUdPeDAW9pcvkJkK5JJuzZzmsWGHFtm0OzZI5ek3OeoxBaSmHMWNs0LPAgm/yDs9Do6EpjJe4fctKSQnw8ss2xjAKYdxuusmNf//bDI4DgpN9tBOOPJKW31JO+/SHH9h8KDyPkGSeAhP41qxp3JYPNTFyyBAXJk3yrV6nzqFDZuTmug2ZMKsEyzyoZW4IRd4tUkQrFCLa0pZG1oiPNeSxJZo8eodIqCdiaZvYpCZCtYWD54WM+cWLtSWZ6DU5sySj+SNfwUlvRE+GchhB0KcACNnlx46xhlkI3r4NG4A330xSadvIY4858c47tdi5M9iLJoSJsJy3kXCNKS2/pdwWKGv4RYcOHs2JUWqewfJyLmQP6sKFTmzf7miQcFNn9epk5OQIDz1yyVrjxjmRkcEbbotYbR7UMjcYxZsYzVCIaEtbGlUj3giQYUsQOsOStcxi3CpNhOoxrMLCYbfzzOEWbjfg8QBXXqmuw6o2OfuOAetWrrbXowvHAZMmOZGf72JSeQjjTLj77sZiAmIM5fjxwra4uu5t8FiHE1ojervy810ND1Fsxq2v0eJ2Ax98YFH5LA+O4/G739VrChFiiTMM5QHPlyFDXPjPf6obYm7Vv/+ZM5w3oU38/caNc8Ju96CszIQtW6S1pI2OFsPNCN7EaIdCRFt716ga8UaADFuCiADK8josSgHKEyHrgnDggJkpyUT0bAwfnoqLF6UNZqXJWUqQPD/fhdmznQzfNT7YuNGK4mKLJsmzUL57YKxnbq4b+/axSpsJ19aSJQ5s3lyLPXtqsG6dA04nJIXilYTkfb1dW7daAXAKiYXy3+PwYTODd5zDvffWw9qw65+f7/IWvZg8WVCiOHo0ODGK1TOo5QFPCqsVWLGiDhzHIq0n7JjMnp2MoiILPvrIjK1bk4Kum3iLNdViuMXamxirxKpoSlvGexGLSKLpjqqoqMDevXvx0UcfobS0FGazGVlZWejTpw8GDRqE9PT0CHWTIOIPqbi10lIOEyemqH42PZ3H6tXykkysC8KePUlYtMgpW+oUkI/VlerTqlXBfVKSHerQQWNpLd0Qv4x+iXxiXOAf/sCWlBfquTMz/X+IRvUFdlq25GG1AlOm2CR/l/x8l+LvBkDymmj02qp/N/F7sD6E+WpGB/fNhk2brEEyZVo8g8OGhRdPLxotc+cmM3jtOZSX+97rwWMWy5K1ocJaNCHWJXFZyy2vWGFFnz7BJcbDIRJ5G0rnisciFpGGScfW7XZjw4YN+H//7/+hS5cu6Nq1K1q3bg23242ffvoJx48fx3//+1+MHDkSEyZMgMUS3hNoeXk55s+fj6NHj8JsNmPIkCF44oknJI87ZswYHDlyxO+9tWvXom/fvprOaVSd2ETSsY0FRhs/Vn3Mv/61Bv36yU/6bjfQpUsaUwlZUfNT7jhserM87HYeS5bU+VVGU9NRHDzY5eNtVCI0TdZYHPfBB53YtSu0imcsZGV5sGxZo/E5apT2BLpZs+qwapVV9neZONGJjRvl309P51FRIa/Py9KfPXtq0KePm/maV9NTltLmPHjQzKR7u3t3Dfr21ceIYj2nFpTu0XCI1PzHkpDFojHMYniFkvxVWGjBhAnqDgQROW1no60fchhVKzhWOrZMFuhvfvMb9OjRA/v378dVV10l2ebs2bN46aWXMHLkSPzlL3/R1tsApk2bhlatWuHQoUMoKyvDY489hhdffBFjxowJavv5559jx44d6NGjR1jnJIhowFoG9/HHbV7jRgqzGRg+3NWwRayMklerpETZs9GIvwcqO1vQg12wQGm7j8e+fWpTDI/0dB4XLwrt9U4YE1QFdD0k3nxTjBeNTIhFaSmHUaNs2L7dgQUL1MoRS7NzZ5Li77JpU7BR6/u+coEBtu99/jznjdtOTvagrk7eULbbBbUJrdn0HONPwNqOhbIy/X/3eMtcV9oBEtHDmxhqeVqtIQ5yah7xAsvv0ZRg2t/64x//iMcff1zWqAWA1q1bY/bs2Vi+fHlYHfrxxx9x9OhRzJ49GykpKWjXrh0mTpyIP//5z0FtT548iYsXL6Jz585hnZMgooGWRJyzZ9Xj70SdTjXkJvniYkuDnJZ2RCkutQQ2lpjQgQOFwhCBcWl6EAllhUuXwiu+oY5w7GnTkhnVF4K5cEH5d1Eu6avPdztxwuSN266rU+5PebkJPXqkYc0aq6Zs+vPn2Y1svYhEXGiiZq6HUxI3nOQvraosTb2gQaLB5LFt164d8wG1tJXiv//9L9LT09GqVSvva9dccw3OnDmDS5cu4YorrvC+/tlnnyEtLQ3Tp0/HZ599hszMTPz2t7/FiBEjNJ9Xzyd6PRH7ZdT+GR2jjF9xsQVz5/p7HgSNS+n2ondq/vxkDBokHX/Xq5d6HFt2No9evdxB3581rlYO0bOnB7t2WXHwoAdLltQhPZ3H6NE2VFayGMWAnOeU4/iG7XT22FSTiccVVwje40hJjbHDoaoq1n0IDY7jkZHBY8UKq6brq7SUYy56ceCAGbfd5kbr1mwnaN2a994D4W7bivddOCWzRZTuUT0wwvxnsQC33abNWmTx3CvNjRaLIM03alSwlrAcYtztkSNmr/fTCOMXz+g9fqzHYTJsR44cCU7liH/605/YzqhCdXU1UlL8Y2PEv2tqavwMW6fTiZtvvhnTp0/HddddhyNHjmDKlClIS0tDXl6epvPa7epxG7HE6P0zOrEcv8JCYNSo4C1xtcmW5zmcPs3hyy+bo18/6TbPPw8MHx78unC7cli3jkOrVv7f3e0G5s/XY4tev9m+tNSEMWNSsHs3sGOH9Hdi7YP43adN47BwIXsfPB6uwaAmwoHnOTidnObrS8vDxJYtybj77mTcey/Qti1w+rT09cxxwvv5+akwm4V78fHHgVOnGtu0bQusXQsMG8be1+efB0aMCO8eUrpH9cDtBg4dEirfZWU1R58+METcJQvvvw+cOSP/Psvc+NvfAldcEfx7q1FTk4rMTP/XaP0Nj2iPH5Nh27NnTwDAqVOn8M4772D48OG4+uqrcfbsWfz1r3/FwIEDdetQamoqamtr/V4T/05L86/2M3ToUAwdOtT792233YahQ4di//79mg3b8nJjBodznHBRGLV/RifW4+d2A1OmpKmUE1Xm5ZeduHjRJelZunTJgoyM5CDPZEaGB6tW1aFvXxfKyvw/U1JixqlTeia/hB9vyvOC92rqVB7Hj1fjhRcsmDEj+HuxIMbg3X23C+vWpTXILLH2j0fz5oJebHW1UdQQ5cY38HU9lSBC+01NJqEkc1VVZM8vXiu9e1djyRIxwQ5Bn+F5Hjk5LpSVObB/v9Au0At4+jSPESOAnTvZ4yv79gV27gzehRG+f3A/pL6TeJ1K3aPh4HYLShpbtiShstI/NlUpbt9IfPONBYB68tc339SiSxf579O3L/Dxx4KH/uBBM1avVo9ZT02tQVlZo8eW1t/Q0Xv8xOOpwWTYTp48GQDw0EMPYevWrejWrZv3vV/96leYP39+iN0M5rrrrkNlZSXKysqQ2fDY9N1336F169Zo3tz/C+3evTvIO+t0OpGcrD3horG8pjExev+MTqzG76OPWJOz5Nmxw4odO6xBSRPy4QRCRrvcdz57Vm+vpH6SWqdPc/joIzPuuceFu+5yYdasZOzdmwSHg90w7dLFDZ4HundnU43wh8Ply8bz2kpvp6r9HdYZNbUePNiJv/0tiaGAhD4EXisTJ8qVvuWwd28S3n9fLE8svBZ4LI7jMXduMgYOZJfduuceFwYO9Jd1Ki/nMHasDcGJkMKNOHt2Ha65xuMXAqHnvFRcbMHMmdIPhGJSYjwkSF11FdugXHWVfDiXiMkE3HqrGz17urFrV5KqBFnPnm5JmTtaf0Mn2uOnadb/8ssv8ctf/tLvteuvvx4//PCDbh1q3749cnJy8PTTT6OqqgonT57Exo0bJeNmq6qqsGTJEvznP/+Bx+PB+++/j+LiYjzwwAO69YcgwiG8bGf/mcA3aUIpBk38Wy4RgjVRZerUuoZqS9Hl3DkOxcUW9OiRhl27rBqMWoG33hI8c4FJJ5FGSFTRf/Z+8MF6XHmlctWuSJyXBbG60ccfiz6S6I75uXOC8kJRkbKkXGUl12DssSWlsRJYhnbIEMHIDo7cE3YN/vznJFit0KV0dyDig64g0xZMPCVIRaKqFhU0aDpoMmyvueYavPjii36vbd68GZ06ddKzT1i3bh1cLhcGDBiA+++/H3369MHEiRMBAF27dsW+ffsAAI8++igeeeQRTJ48GV27dsXKlSvx7LPP4pZbbtG1PwQRKuzZzlLtpKSYhIXpww/ZKi6VlJiDKkuxLho33eSJmgfOlxMnTJLZ0Gz4hh1Ez8iaPr0OW7Y4Gv7S08jksWuX1WdLWf06iRbi9fPII/UMlcUiQ6tWPEN5aai810i4slvFxRZs3GiVvW/Ecrt6VxtTftBtJFQDPtpEygiNZmUwInYwFWgQ+eSTTzBhwgSkpqaidevWOHPmDDweD3bs2IHrr78+kv2MOEYVYI4XgWijEuvxEwsgKG1/pacLHdMSTzpjRh1TvFh6uicozs63shQgLZ4uJ+AfLo1KENIxiGL2ulDZyXghAXLMmlWH7dv9YxqV8b0Y5b5n5LRy9UC8lpxOaBLD14a86kVWlhCP/frr2sT4lQinUIKWYifp6YIhdeut+nhuWYtgiGzeXIthw2JrxLEWeQhFx1aPcwOxXz/iHUMXaBDp1q0b3n77bbz//vs4d+4cWrdujTvuuCMo9pUgCAHR8zB6dLDsjGhErlhRh/nzk6HFkGGdJAKz/H2FyLdtc+CJJ5L9athnZfGKhRdCJT3dg3Hj6tGxo0cmBlE4V1UVj6oqoyRtsbNypdZKZCzjalyjFgCee86Bfv2EymLaCDfJTXg4Ej12+mjACrJb4ZR4VSvj2oigvjF8eKouRhoAhhK//sRaN1fKYLXbPRg+XChHKxqakSpPSwUNEhvNK0h6ejo6duyIn//858jLy4PT6YxEvwgiYVDb/rLbec1bub17qwmQi3GX0uEMM2cmY/78ZL/kKrtdqCZmt/MhFwYIZPr0OhQV1eDLL6sxa5YT99zjwuzZTqSmSvc7XrVbBWLfd5tNPt5WDDFp3doj20aAzegRt7O1iuGzFe7wbRtMRgbvLVAinp89BES63b331uPwYf+wHS2EEsbAUmxAjeJiS8ODMQvaY1P1Rq7wQnm5CVu3WlFQkIqcnDTvmATGMVMMLKGGJsO2vLwcDz74IO6//3488cQTOHnyJO688058+umnkeofQSQEShV4tC2IwsLUu7dbNgat0aCVj7+tqDAFeXkuXBAyuvfvDz/+TzSiZs4UHnxff92ClSut6NYtDcuXJytIacXeOAwNI/Sbh8PR+P+++MbDDhnikmzj05rtbA0fV4qHjAzC9Ssa1r7nVzJuOY5HWpp80PimTYJRNWFCCgoKUtGlSxpDSehGQvGChpvQJRqJvrsuCmcDENsEKdZYYD0MfqLposmwffrpp9GxY0ccO3YMFosF11xzDcaNGxd2GV2CHbcbQclARHwg53nQuiCKC5OcJ1iM2VVH2pu7Z4+WxSTYQyjG0fbo4UKXLmleY2H58mTNW6aEFoSxbdaMD7omMjKEuM7ly5OxdasV2rym0vhu5cpdi5HE94EwP9+FnTsdyMiQ91bzPGCVjRgJHovychPGjLHhqaeUw0zEObm0lGtQEdE2BqEmdLEaiSIZGbwmrd5IwJboF18KDoTx0PQ4dPjwYbzzzjtISUnxViIbM2YMdu7cGZHOEf5EKpCeiC25ue6gJC85xo2r9/7WbrewWM2bV4fycg52u2DQeDzA8OGhFWDgea7hWB5cuMBSWpZD4EKens7D6eSwd6+0rigRSYRSvFarB3Pm1KF9ew8OHjRj1y5lOSytNGvm8TNsA6/F8nIOzz2nXU9cC4EPhGI85po1Vmzd6p/Il5XF45FH6rF8uVKfpK/NDRus6NrV4+PpbkRqTpYLA1JDaygDa0zvFVcAjz1Wh2nTnDHfxtfyHcUSt4cPmykeltCEJsM2KSkJDocDKSkpEMUUqqurgyqCEfojJ8bvmwxExm18YjYLBqvyoivQrp0Hbjewf3/wgpqV5cHIkfVo396jwTCVZsSIemzdamWssy68P316HZKSgBUrrJRBHGMuXOCwfLkVaWl8RCqoPfSQMNeUlJixf78Fe/ZY/OK1W7TwICPD06Cpqu/DjKiIIBUnajYDs2Y5MX26Myjh6PXXQ9nWFvr+5JPJuOeexuINYnWv5cu1Jg3Ko3XnhtVI3LgR+NWvnIa4J0MJ16BdHkIrmu70O+64A7Nnz8a8efPAcRzKy8uxdOlS3H777ZHqHwFhEp07V3rLSayaM29eMvLy2KvmEMZi+nQntm1LUjUE5s+3YfVqq6QIe2kpF2AcS3mO2DxJAwe60bOno8F4ZltYrrvOg6VL9VVTMAahjWFsETzpkSoLXFoKdOkiX9ntwgUTwtfzlVJPEEIKFi9WjhOVynoPRwmgrMzk9RwWFwuldIWETym0XStKhroSrN+nTRtNh40oYqKfnPyhFPPnJ8NmAzluCGY0zXozZ85EamoqBg4ciEuXLuG2225DbW0tZs2aFan+EQAOHQKTGL/RRbcJecxmYNUquQQY/78bjVrtJVWF+FvlBBsxazo/34VPPqnGmjWqhwUAlJdzuqkpEEqwVhoLXU5L7b2//c3KXK6YLaFMOtktOGZWePBbsCBZc2JRbq47rEp6YkW80aNtGryI6kYtoJ7QJZVbwVJopU0bD/r0YexqFGBN9POlvJwSyQhtaDJs09LSsG7dOnz44Yf461//ig8++ACbN28mHdsIU1rK1i7cqjlEbBETYLKzpRbzwL/ZdVDtdg82bqzF0KHOBl1b+YIAvvqggLAQTZkCpkpldrsB9jpVCaWP2h8gIkuki1eEX8GrsS0HIVJN2Rg3BaxEWVlCotPKldJGkNYKXqIg/803hx6r2bIlrylZiwWWilfFxRbk5KT5KTbk5KRh/35LTErEhpvALCYaBs9zclAiGaENzY9AH3/8MU6fPg2e53HixAnv60OHDtWzX4QPWVls7WItuk2Ej5gAs317EubPt+lwRCGR5/vvTdi7Vz2ByFcfVMRsBpYsqWuoVOa/teq7gMplpOuH2rYuS4hArI1SKWIZ2hBusQR1qqo43H+/E++8Y8GFC43n8RXk797djWPH/GNiAaGSl3T/OPA8WwiWdIKXFoTiDTyPMI4RzPTpdZgzRzmhiyW3YseO4JChrCw+IknFeiUw+xZeOHDAjL/8xYpLl9RKAVMiGcGGJsN24cKF2L17N6666iqvKgIAcBxHhm0E6dMHinFJocZoEcbEbAZOntQ3NvL550WJJyU4VFQELx6FhWgQgA/+vFipLCOD98odCZqakTCU5D3Ns2Y58X//Z8a//mWO0LkjSSz7G51z//Wv/klWzZrx+N3v6jFzZqNhF2iwlJSoZf2rGztyhiH7w4RQ4nnp0jqUlek7Vn37KhcbUJLz8s2tOH68OiLVuQKRG8szZziMGmXD9u0OSeUIOcQ46N693fjlLz2YOFG9LDLtShIsaDJs33zzTbz66qvo0qVLpPpDSGA2A8uW1WHUKPmyrLEU3SbYYa2PvnWrvvJMDgf7guC7eBQXWzBqFCQeqITr7t5767FgQTjeMD3gUFRkxnff0Q0QL1RVcVi5Mhk7diRh1ao6ScOMNY5Vrp2yzqvUZ4K91xkZPMaOrUdeniuE0sHSsDoi1OS8Ar2YkfRksozluHE2ANqMWxFW/WPalSRY0GTYNm/eHB07doxUXwgFxLikaG05EfrDso0nLiDqsG4ha99qFhcPJTUOMet+0yb95I7CQTBqyZvTiJxH0liKDhUVgrcvI4NHRYW/dF2nTmyG2scfm1FQEByOwKrz6stjjznRvDm8OrgVFSYsX56Mbdv0edDU4ohgNeyj4cVkGUuPh8OYMbaQikCoqSXQriShBU2G7WOPPYa5c+di9OjRuOKKK/zey87O1rVjRDC+cUmR3HIi9IdVh1jLYiwYA0rSQlqNWiGWUFw81PtiHAPJWH2JBmoGqtx7Rhsn4QEpUL6utJRDaSmbMblzpxUHDliCHvBDMfhefTXJLw5YREpezx/fG1v+nkxPb/QAK1FcbGkI/1EnGl5MLWMZivSkqJYwejTtShLho+lxtq6uDm+++SYKCgowYMAADBgwAHfccQcGDBgQqf4RAciVZSWMi1qsHCC8f/CgmTnLe/x4J/7zn2oUFdVg8+ZazJlTJ7GdpyXWNXjxoHg245Kkb6RKjJG6TrVde+IDou/9o93g4xr0d6XOr3wvZWXxmDTJGZTpn53NY+jQeqSnCzJjogc4JydN9l4XH4KFWHUleHAcj+7dI+/FZB/L0KUn5coysyhHEIQvHM+z1yO59dZbMWXKFNx2220wBeiztDGSCnQIlJVdNkRllkA4DsjMbG7Y/hkdI4xfSYkZBQWhlbiVo6ioJiimTozfPXDAjC1bWJLFGmnWjMe6df6LRyT6TehBKEoGWkMQjBWywIK4XX38eDXMZuF+yMlJ01QMIFT27KlBnz7uoBj68nIOY8fagh5qRS9koMEm9lkIN2Pr85w5dZg1yyn5nl7zn9Z+bd5ci2HDQjNEWfIQooUR1o94Ru/xE4+nhqZQBLfbjV//+tchd4ogmiKheT6lDQu1cqK5uW5MmsQuE5aS4sGkSf7Z6SKNcW8mmtQNRSjXU7SMVB4mE+DxRPOcDWcOSKZS2t7Wm/PnhWP7VjwTjUEtFSNDiQtevtyKTp08QQby4cNm/PQTh44dgRtuCNYK1oI4lqNGsc0t4YRHSFWNIwgtaLrUhw0bhj/96U+R6gsRJuEKZxORIbRJXog99Ec91qxxYVTfxszM9OC//62W1dIU1TgAqepRZOkmNtIqGCzcfbdoYMXmGvF9kJTb3pYm9P5K3eNq96JUxchQw398ixf4FnQYPz4F/fsD3brJhz6wkp/vwvbtDphMbJULCSJWaLrS//3vf+OFF17A2rVrceWVV/pp2b777ru6d45gRy/hbMIfPbbFQqmPLuDf1mQSsraVfk8tC+Py5XWwqoga5Oe7sHs3MGUK76fGQTQ1xAct9WvgwAFxWYnN9XL+PAe3G9771Dfpdv9+Xyk9qURLbSEYSjsoBw6wTRS+92yoD8Gip7qigmNKUlVCac4TpLwcGDNG9NxSkhdhPDTF2BYVFcm+V1BQoEuHYoVRY2hYYlT8M+7V47iaEuHE+Oj5sCD+RoCUJiwbLL8na1ysUlye/zmBjIzmeP31Ghw8KMTuatHETSziL+40NsR+nJTuU6n7WigsonWvXrgfpeStBP1nG1jGwTdePpy44I0ba7F0abJsHGxgDLIUrHNeU3GkUIxteMQqxlaTYfvYY49hxYoVaNasWVidMyJGvXDVLgy1oH6WySyRCfXGisTDQvilPdV/T/WFkYfdzmPJkjqvp0npunjjDQvmz0/BqVMhdzmOkZJPi1fDNp77zoJ0qWe5+zTQK1layjFVvgpE6gGRPdFKkNcLvJdDfQhessTBVIZbKvHU97xaEt2MkuQVKciwDY9YGbaaVthPP/0UVrW9SyKqhBLHRSjDKs+lNYY5P9+F48cbJbr27KlBVpZHIn5VHrXfU0zyAOTjYsvLTZg4MQUFBamqskOjRtmaqFELiL99s2Y8Zs+uw4kTVWje3IP4jS+O136zoO0+DZRNZK18FYjLhaDjs8e5S2/by8cFy/WRR1aWB3Y723eQClcKZc4j6UnCqGgybPPz8zF16lS88cYbOHr0KI4dO+b9R8QG1phK0iRlJ5IPC76LQZ8+boXkLGWUfk8tCTNinfd9+/yNW/+FrmlTVcVhxQorZsyw4fJlNoPFeMRjn8NDy32am+tGVpb2h5bVq/01ad1u4NAhtnkhLQ2yhRoCH4LnzFGaJzg4HMAPP7At53oluhGEUdGUPPbyyy8DAN5//32/1zmOw5dffqlbpwh2WJMNEqXGdrjbXyyfj+bDglypZDXUfs+8PBeuvJJHSYkZHg/wpz+JFZWkhfAD67yHIjuU6OzdG15WeewRf/tED0vwh+U+FRVAhLhYbeMjJmZNnOhEUVES831TXd0oTSY3L/mGDHTq5MHMmcmSVdAqKzksX25FRoYHlZXay9KSg4RIJDTN1F999VWk+kGESFOqsR1uwgLr56P5sOB2C6Vx582rQ3k5h4wMHgsXJuPCBfnkEZOJV6xKFEosb2Cdd1rAAkmk8Uik76LO+fMcCgstqg/C+fku7NzpkDUe5RDuUx4bNmgP0yst5Zjnpbw8F+bOTYaU4S3q4opoLUvb1BwkRGKjKXkMAM6ePYu//e1vOH36NK666irk5+fj6quvjlT/ooZRg8O1qCIAkJzMEkEVIdRkLnH8XnyxFqNGsX1eLQFLr4Q8uQWtoKAeGzdaJePdBHhwnPR3lhsnNhqTWQ4fpqpj8jQtj2cssNk8PuoboY61WCyi8fMsD8JuN/Dhh2aUlJjx3/9yKCmx+JTa1ZcHH3Ti1VeTmOalQ4fMGD6cTfHk5Zf9Pcdt2niwZIn8947WnBdvUPJYeMSFKsJnn32G3/72t+jQoQPatm2L//3vf/juu++wY8cO5OTkhNXhWGPUC5f1wkhk+ZVwlB9Euaqrr/Zo+nykHxbUDPXx453YssUq67WV6nMo5TilKCqqQW6uW5djEYQ2hOt/61YHnnhC9JyGcv35Tpbh3b9ut1Dda82a5BD6oUx6uhA6oDYv7d9vwYwZyaisVDewN2+uxb33unwqj6Xghhsuq1YeawoOEq2QYRsecaGKsGLFCjz++ON47bXXsGbNGuzZswfTp0/HypUrQ+4ooQ+ByQZFRTU4frw6ISaicBMbDh2C5s/LJWBlZfFhT/BqGcg8D2zdKm/UyvVZSza2EufOcTCbgYKC+rCOQ0SDxFtthw514auvTKioCP1abqwdFL6qidkM9O0bmVAuwVBVnpdWrbJi9GhbgwGsTqtWvF+Sar9+YPKyRnLOI4hooinG9uuvv8bOnTv9XnvooYewbt06XTtFhEai1tgON7GhtDS08/hWLNJTq1E9MYuDx8N2LN8+6xUX+/XXJqxcaQ0pZpCINonkTeeRlsZj794k9aYSn/UNO1B/KGxM3ALUk0pDrx4o31+OY9OpXbVKKSypET3yKSI15xFENNFk2KakpKC0tBTt2rXzvlZaWoorr7xS944RhEi4iQ1ZWaGfJxIPC3omZvn2uWXLcL13Quxo45YrxZIS0aW6OvSwA9aHQRHxPmQJ4xL1oUePtgUlZsmFPSjDMW/NshnS+pWzTVQHCdF00BSKMGjQIEyZMgWHDh3C999/jw8++ABTp07FoEGDItU/gvB6S+S0XjmOR3a2R9ZT0acPwvq83pw4EX4iSmCfi4stmDxZvepQIyzi72TUEtEk3HhubZ9t1Yr3xpUGSu2JEl6+xUvErfr09MB7hUNamvCaVj1q4XPhh5NkZPDYts2BjAwehYUWlJSYNReQIYhEQZPH9vHHH8eFCxcwceJE1NfXIzk5GcOHD8eUKVMi1T+CUPSWqMnYiJ8XNSpD+byeFBdbsHy5FeF5Q/377J+IxorUucmQJeIRbdetuGXfvbsbPXqkyca6cxyPefOSkZfn8s4NHg8aEtr879+aGuH/09N5TVJh1dWaui7L6NH1WLAg2Ou8bFkdfvtbfc4h0hRK6RLxDZMqwpw5c7B8+XJ89NFH6NWrF5xOJy5evIjMzExwXGIshkbNeqSszEZCUX7wHb+//S22yhF6qRbY7R6sWCH0Wa9jEkRTwDfD/8oreSb5rKKiGvTu7ca+fRaMG2fzkw8LPHbr1jzWr3fg3DkO8+cnN+hNy92X4oQezn0rxCXX1HCyCiu7d3Po21ef9SOR1XekoPU3PAwt99W1a1ccPXoUPXv2xCeffBJ+7wyIUS9curH80eotCBy/WHobSkrC1YblkZnJ45//rIa1Ia/r4EEzRowgvVmCYEE0wgBoks+yWtFQlUzdCBUN4aee8k3AjNRDp3J8L8fxaNuWw7Fj6nJfaoSqJR7P0PobHrEybJlCEa655hr069cPDocDAwYMkGzz7rvvaushQYRAuIkNsUyMCCdpTFw8li+v8xq1xcWCtiVBEGyhPevWOXDpEqcpdKdlSx5TprDHr587x8HtBoqKRHWHSO6kKB+b5zmcPCk8VJtMCKsUuZJEoVTYBkHECibDdtOmTfjoo48wb948TJ48OdJ9IoiEJJxylFlZvN92X2hxtf6IW6e1tZAViScIYyMatGzX7k8/cVi6VNpAC0SMxeV5aCpP3aoVzyDpF13GjLE16AILaA0fUPs+UhJqBBErmAzbli1bYsiQIbh48SIKCgoi3SeCSEi0aWHysNt5LFlS59Wm9K0wJuc9kTpOI/4SRTwPDB1aj02bSK+WiEe0P9WVl3OMBmdjgmZZGesDX6OO7Ouva8rLjjiBCW2i6gNr+ADrbtOhQ2ZKJiNijqZHymHDhuHFF18EAHz77be47777MH78eJw7dy4SfSOIhEJUdwCUZYE4ThBvX7GiDiNGuNC7t/9CwV5hTDjOpElOZGcHSxQBHLZsiXQMIBFfxFsgIdt1K8rj2e3s3+/uu13Iz3dp2GnhMHJkPczm8HZnBHiff+EeB1CqwHbwoFlVIoz1+6xenYycnDQ/mTSCiDaaDNslS5agqKgIALBo0SJkZ2fjyiuvxKJFiyLRN4JIOOTKVvqiVsJy/362RSM9XTjOwoVOLF5cB6mFUsjwJqOW4NGihVDhQKsWa3TxvYbZPamA8FB51VXsRurbb1vgdAo7LenpbNUfOnQQ2qlpb7Ocv/H7qR1DzghWjjsWS/aOGJGKCRNSUFCQKmuUavk+UhrABBFNNBm2R48exf/7f/8PFy9exCeffII//OEPWLJkCT7++ONI9Y8gEo78fBeOH69GUVENNm+uxe7dNdizR/j/oqIaHD9eLWvUut3A7t1sC8bWrQ6vJNiCBWKSGRmxRCCCsfLHP9Zh506pAgTGITubx/jxTo2f4jBzphP5+S5oUafkec5734wbV8/0GdGz6bs7E47XdezYeondlkbE3R2pXZlQfkc5o5R1twnw9wZTkYjo4nYLiYJNvUiHpkeq6upqpKen48CBA2jXrh1atWoFp9OZMFq2hDrxLM5tpL4rqTOIk5NUPw8fNuPCBbbnUd/PGCmRhTAawvz95JPJGDWqviF221jllJs392DHDgdMJuDDD7XftOvXW9GpkwcujWpUO3daceCABYsW1aFZMw+qqqR3OMREM9/qheLujKD7GtpYCvH0dSgv5/C//3EoLExCeXnjveybVDpvntNvfvN4wKTT64uSwoGW70PJZNGnqWkMK6HJsL3uuuuwceNGHDx4EP3790dVVRWee+45/OIXv4hU/wgDEesbJxzDtLjYgrlzo993tT4Hvl9ezklWEBL7qUUy7Px5oW04MmNE0+HCBQ4rVxpNPk4wsB95pB6PPWbzM+q0GN8OB4cxY2wYOpTN8+rLmTMcxo2T17D1rV4I+D+U5uW5kJfnwuHDZpSWcigv52C38/jmGxOee059rHfutGLnTuH/s7M9ePbZOtjtvOR8Eviw7HajIVnVpEk9Rckozc8Xvs/y5VasWaPef5p7ooOcSo7WJMFEQZNhu2jRIjz11FNo1qwZJk+ejP/85z84cuQI1q1bF6n+EQYh1jdOOEZ1YaEgrh7tvqv1Wep9qW1L335qSUoR24afyEI0DYxphNxyCxqUOwL7p72/e/cmQXuMrlhCVxrRawqIVQCl73ffh1gtSWwipaUcxo4V5oFhw9Tnq8ZS4ilBpcRZkDNKzWagb1831qxRPwbNPZGHNIaDYao81hQwamURI1Q+USvbKm7DHT9eHZEbJ5yKNx4PcMstzXHqlLR3J1J9V+vzxIlObNxolZiMlPt59Gg1undPQ2mpcqnO7OzG7yT+fmwyY1rhYTIBPI8IHJtoytjtHuTkuPH220nqjTWhV5hFYyXAt99Wv9+LipL8jF6TSQgXkO6LPvMVxwEHDzbHlCkezeFIYgU1KZxO4Je/TJMtGRzpNSFaGGH9VYO1oqXS7xkpDF15TMTtduOtt97CDz/8AI/HP0uUCjckLrEU5w73afTwYTNOnQr+bCT7ztLnTZukjFr1fh45Ym7wwtggvfg1bov6blEuXVqH0aNtIXlulOEwZEg9Xn/dEoFjE00TwWBcurQOEyawV/xiR69rlENZmTB3KN3vAO9TWreRxiVU6j7Wb74aNgzo3bsaH30keItbtODxwAMpCjrYwsNq9+7Sxxd3mvzDQnx6zgXPQUbASDkWcoTSR9Zwj6YUFqLJsF24cCHeeOMNdOrUCRZL40cpeSyxieWNE65RHYu+s/Q51KfX0aNtWL1ayF6fOTM5SHi9RQseK1cGh2fIJ37Iea/Yt2sHDnRhyBCXZH8IQjuCwThnTjKMGh7hy86dSSreULnvIBi9JpOvkcuG1vnKN/62pMSs8gDKweMBjh0LnlNZKh4GVkk0ArHOD2Eh1D6yhns0pbAQTYbte++9hz/96U+48cYbI9UfwoDE8sYJ1zBl7dO33+qnGhDJJ+PKysZ42//8pxolJWaUlJjBccLCdeut8k/4YuKH6BE4ccKEFSusEKqQBRq7AKtRkZnJ4+hRc4NRa6xseiJ+uXQpPpQ83nwznFAJwYhcssSBli15vP++Gbt2qVcC1DrXut3wemy//pptXAPnMfWKh0K1xKNHq2E1UDHDWOeHsBBOH9UqWkopdiQ6mgxbj8eDzp07R6ovhEGJ5Y0TrlGdm+tG27bA6dPK2+QrV1pRWwssXKhVI5O9L/ogGI9i+EXfvm707cs+7oGZ0506eYK8uHY7L7vNGAyPRx+1obo6PowQgpBHuG85LjBeXGlXQ5+HuJYteVitwK5dYnKbvAKD1rm2sBCYMiVNc4xt4DymLhsoqD6sXm1Fnz5upm30SIcHxENiVbh9VAo1M2pYSKTRdKXn5+djx44dkeoLYVCUxLkjfeOoVbwRS2XKTfRmM7B2rfiXssG5YYMV+/aFXy2Hpc8mU+jlMsWKQYcPhz/ggcUiiopq0KuXlgcUjoxaQlc4jkdmpsa9+bBpLHQgXRVQW1UvrWRm8pgyRa2ICg+e1zbXFhdbMGIENOnoys2prDtRq1cnK1Yx8+1bTk4aCgrUK5+Filr5cT3n0lDRo49yFS3VqlgmKppWpC+++AKrV69G165dMWDAAL9/RGITqxtHD6N62DBgzhwnlBciIbv3ySfDr5ajXKVHWJzGj3eC48IrX6pXyIPoxR02zIXcXDfeeYdKYRKxQrg/nn66DtnZHoRTtUsbHGbPdmLhQieOH6/GnDl1PmV0pTL/tZTzlX+IFY1IlwsND4jKc9SMGU7mudbtBubOVQodkO4PID2nat2JUiqtK269BxrcepfjjYfEKr36KOWkUKpimchounruu+8+3HfffZHqC2FwAmM0o5VZKpf4pCVJQazhrkZZmUkXhQT5ZC3h/19/PQkTJzpRWJjUIN2lnUiEPKxZY4XDQTGyRLQI9HwK/z9nTjL69XM16M5GB3GO2L/fghUrrBIJUlr1b8W24uf8v6uvEblnD9tSfPIk+7lDqTioNKeqhaQFIreNHs3wgHhIrNKzj0oVLZsSmgzbgoICydddWusUEnFLrG6ccI1qLROXXk/v+fkueDzAmDGiZFHjcUtLOWzYYA2pnnukYprdbmDr1ugZEgQhEGwwVlaasHevtSFmMDq9aNWKV0mQUi7UII9wHLvd06D7KuBrRL72GttSLJT0ZSOUeWzdOodszL5vLCdrKIaoWrN9exJatuS9Yxwt+ch4SKyKhz7GG5oM2//973/YsGEDzp0759Wxra+vx/fff4/Dhw9HpIMEIRKOUZ2b625YWNQ9GHo9vbvdwIIF0nFzor5lZaXWxSdyMc1r1lhRWUnxskQskI8vjDyNhgNLglSoLFlSh6ws6XK4PXu6sX+/+kNlz57s818o89jbb1sUk1HFnajZs5P9jHQ15s9v1CNuDPFQRg8HQzwkVsVDH+MNTavY3Llzcfr0aTRv3hwulwsdO3bEf//7XzzyyCOR6h9B6ILZDDz7bB2U4t2Eil3yiWhaUUsKkI7dU8Zuj0xMc3GxBcuXG0ijh2giaL8H9EWYC5YtEwwHdmNKu9GYlcV7Y9l79/bfbRozpr7BiJGfmziOx5gx9cznEz2BWtizx6KaY5Cf78KSJXWajusL68O8Xg6GeEisioc+xhOaPLaff/453n//fZw5cwbPPfcc5s2bh759+2LLli1UeYwwPEOGuDBpklOyCpCYFa3nk3EkEhKWLKlDXp4LJSXaQjKUZHXE7VeCaGpwnFDuVjQctBlTgdvxymVwlR6YrVahH8LcJHVc4X0t+rBmM1BQUI8NG5Jl+xZIeTlbjoG0cgQrviEd0dl6j1V+iBbioY/xgibDNiUlBVdeeSUsFgu++eYbAEDfvn3xxBNPRKRzBKE3Cxc60bWrB0884V8SMjtb/2o5kUhI+OEHE3Jy/DUps7I8GDmyHh06eCQnQ7WKNqEkmRBEorBxoxVdu3pgt/MoLeV8YmGVDUHpimHyCWJqBkpOjgdpaXyQfJ5ofGvV2Ha7gaIiMbxB39hcrYlkwYifCX28tBIPiVXx0Md4QJNhe/XVV+ODDz7A7bffDo/Hg5MnT8JqtVLyGBFXDBniwj33RP7JWJz8BVWE8Ly3HMcjI4OXDBcoLeWwfHmjx9XXaGWpaOMMvyYFQcQlYqz7uHE2eDxS1ffk8K8Y1qoVj/JyDgsWhKbcIl+qVkiey8nRrusb6gMra/a9XFyoFtLT/fMMWrfmMXJkPZxOofQveSyJUNBk2I4bNw5Tp05FcXExHnjgATz44IMwm82kY0vEHdF4Mm7cCpQOfRBQXxBEL0bjoqesqXnmjGC0btvmwIIF6rI6zz/vUO0DQSQunITnlY2WLXkMG9ZotIbywKymxBCq/JXWUCitIQDykobs7NjhgMkEb4nvl15Kkn1IJwhWNBm2ubm5ePvtt2G32zFx4kS0b98eVVVVGDp0aIS6RxDxS3GxBRs3KgXFyZXp9H8vK4vHI4/U+034ynDgeT4o3CLoTA2yOi4XcMUVPC5dirV+rb7VnAgidEJLcArlgVnNsxqq/JWWUKjAEADWUre+caGHDpmxejXbHCUa0bfeKhy3uFhaO9h3Z4mMW4IVTYZtfn4+9u3bB4tF+NigQYMi0imCiCekFgFAyQsj91rj675bnLm5brz+utZKPByzHM/48bYwjVq9DFIyaglWQimWoC8mEy97j8kZhlKvR6o6VmMcrElVC9g3ZEItJj8Q0ZjPzXVj164k1bhbKSM6WgUbiKaB5rp1tbW1aNasWST6QhBxh9wi8Mgj9WElZAVucUayMo42LV2+IWkm8DPkbSWiSWj6z3peox4PMHasDSaTvzdRbk4oKKhHUVGS5FzBgtY5wGwWZMxGjUqR1EcVS3sPHOj2Gt4sMflynlPWuNvAuONIeayJpgvH8+x1XX7/+9/jo48+Qt++fXHVVVf5vRfvcl9lZZejVuFGCxwHZGY2N2z/jE4kx89/EQheNMJZRIuKavwmcbcbyMlJ05yFfMUVngZvLFvYgzo8xo514uqredjtwnbirl0WvPoqaeASRiYyD17ilvrx49UShqFcMlqwCoCYRKVUeUo8h7b+AQcPNseUKR5VD6w4x8glu7L2Q8qwt9s9GD5cCFsIDGsoLLRgwoQU1e+yeXOt38N+NIjm+ssa/hFP6D1+4vHU0OSxPXXqFNq1a4fvv/8e33//vc/JyFNDGBe3W8iwPXtWvwlDbfsstNKb8gkcoZSzBIBLl0xoLEqhrrnJ0ENs2ybE0dntHjz7bB1oA4cwPpFZo3y9ibm5boZyvNJb7RwnJIeyVJ7SagANGwb07l2Njz4KDpfy1cP2ePQpdatVj5XVEx3JXatYozX8g1CGybBdtGgRFi1ahJdeeinS/SEIXSkutmD+fODUqVTva3pMGOylN+UMyGBvqZqGo5iFPHduMkpLlRZqdaM1UGYnFMrLTRgzxobevWniJZo2585xIZfj5XkOFy5wmDOnDi+/nKQoFxaqARSY1CZ1HD1L3WpJolPTxI1EwQYjEU74h94kiteYKQhw3759ke4HQehOcbEFo0bZcOqU/+vihFFcrDnE3IuWRA7RYA14FYELnVL5RNHrfPiwGXWq1SylJIOAzEwPNm6sRVFRDXbs0E/iq6TEAuVSxQSR2Hz9tQkHD4ZnAXTo4MHx49UoKqrB5s3CfXr8eLWfUTt6tC1IWkvrfCZ3nGiXuhURd6OA4LkykgUbjID6zp/wvlqZYz0oLrYgJycNBQWpmDAhBQUFqcjJSQtrnYwVTIathjBcgjAE/hOGP3pMGKyT+5w5TpXyk4JBOGtWnd8i5ovvhLN1qxUXLmhPSuN5DmVlJm+9+ltvFbwk0ka3FnwNdApJIhIRpYc24fU1a5KxZk14ZalbteK9ns5hw1zo3Tu47HW4BpCaZq7Sd+U4HtnZnoh4TsXdqMC5UulhPxFo9PLLe/PPnBHKHEcSvR6ajAJTbz0eDz7++GNFA7d79+66dYogwiXSmbas22fTpzsxdaoTv/xlmkyZTuHv1aut6NTJgyFD/Cdw+YpEoSF6mkON2ZWHjFoiMWnWjEdVlVI4kdRrcu2lXzeZgO7d5echveazUEOoouE51RqbmwhESupNC4kot8Zk2NbV1eGRRx6RfZ/jOHz55Ze6dYogwiXSE4aStE3gInD4sFmxUAIgyGeNGWPDzp2N3gll70po+Hqa8/NdmDjRiU2brCFXXiKI+EXe0LTbeSxZUocTJ0xYuVJO8UNOn1oqWVOuvfC6xwMcOyZvlO7fz+YxU5vPWOe7wBh81tLA4ZAo8Z1aMELiXCLKrTHdLSkpKfj0008j3ReC0I1oTBhyJSUDFwEtxrPvk3Gotd6lEb6nr6C8WBmNIo2IpkGgsSm90wIAK1bUweMRdlK0P1SG9hAqN08UF1uwdWsS0zHU5jPW+W77dgfMZuhiZLIYrE1VFcAIiXNG8BrrDdOqSXJeRLwhThhyMaR6xYvl57v8Ej52767B88874HQKyV5utxbj2T+eSln5QCvCsRYsEOLwIuENJghjo36dizGdADBmjE2iEAk7M2bUYfPmWixZwpaoKTVPiPepGqzzGcu8mJXlAcfpY9SyJCQlWnynFoyQOGcEr7HeUPIYkZD4Txj+7+k9YYgJH1YrMHWqDcOHN07iXbqk4fx5DtnZHrCqBhw6JBjErCVx2Wk0nNWSFgiiacHDbvfg6NFq5OW5MHNmeIlgANCnj5AENmZMfcgP2az3Kc+zzWdqhhTPAw4H/OawUDPj5QzWM2c4jBolGKzhJMWJSjGFhRavEyEeCTdxLtxxiJYTKJowGbbbtm2LdD8IQnfy813YudOBNm38X49Epq3cJF5ebsK4cTZkZrIHsa5enYwuXdLw/fd6hSH4c+4cF1fbSgQReTiUl5uwbp0Vq1ZZUVERzkOfvyEQjleOddfmjjtcyMjgmYwaOUMqPV34u6IifM+puvoCMHNmMkpKQlMFSCRpKiB45y9Q6k0OPcbBCF5jvdFUUjeRMWrJWiqpGx4cB2RkNEdxcY2ulcd8UStF6Y8WBYLIlAEtKqoBABQUpKq0JIimhlgFLJz7jvdLAhUJJY50y5YkzJ9vYz5z4PGU1g/f2NfMTB5TptgaDOnwy/qWlJiZ5pecHBeOH1c3wnzL6SqVMgegq9PCyOuv3uMQiTjnWJXUJcO2ASNeuICxb6x4IBrjxzqJC0jXjFf/TPgGru/iBAjGuFzSAkE0TcK710wmHlu3OoJk+0S0Zv7v3m3BxIkpzOcPNGpY5z/WOayoqIYpM76w0IIJE1j6zTbe4nnVnAhaDXApfH+j1q155OenoqLCWOtvpMZBb2WKWBm28em3JwgDoW1bX5ADMpmgUWIrvAVXaktJXx1bgkgEQg8/AKBo1ALaSs0C2hN2AnVHLYwrPOscJm5xqxk8WhJm1bDbG8M6Ii1NJeW1bNsWWLLEgnvuMY46Q6TGQev1aVQiE8RHEE0I7dmiHDweDr161TO3DxepuGIx1s5uN5ArgiDikIwMHnPmOHHPPS5dk5pC8XJprVbldgPnz7PNMTt2WJniOHNz3UhP10cce/jwxsIAkZSmksuTOH0a3mQ3o5CIEl16oumXuuOOOySlv5KSktCiRQv0798fo0ePhslE9jLRdMjNdcNu96gWYQjkn//UcvtpnaB4ZGbyWLy4zquDKOVhyc93YcAAF9q3b0bSXwQRIhUVJixfnoxt25K8f4uEE6dYVhb6/ciSeCbloZTGf1dHTCiTi+M0m4Fx4+qxfHn46hJ5eY3Hj5Q0lbI6g7AFbqTqW4ko0aUnmlbi+++/HzzPY/To0Vi0aBHGjh0Ls9mMW2+9FYMGDUJRURE2bNgQqb4ShCExm4Fnn62Dck35YGprI2NEcpyQALN8eR1GjPCvOS/FJ5+YG+JsY2XUNs3Jl4h3gu/3igqOWVWAxbMbjmEyf36yopdRzkMZfD8GhyqpSXEBwPTpTmRksMscBiIlMxUpaSo1WTWtXvBIk4gSXXqiybB96623sGXLFjz00EPo06cPHnzwQWzevBn//Oc/8cgjj2Dr1q0oLCyMVF8JwrAMGeLCpElOxtbaDGCtiGEHeXkupi3RAwdiNVn7jgMZt0Q8IV6vUlJW6kZgcbEF3br5yzR16xa8va9mwChRXi7oxUotySxyXPJ/N34vJWPPbAZWrapr0BHX2n9pmalISVPF29Z+Ikp06Ykmw/bHH39E+/bt/V5r164dvv/+ewBA27ZtcenSJd06RxDxxMKFTmzf7oDdrhRbJrcgqsGyMAiG4qJFwoSnpG8oeot277bgL39hK9cpd77QEcaANcGFIIyDth0OXyOwuNiCUaNsQaECpaVcUCynrwGj/V4Tjj9tGoIeavUs0KJk7OXnuzB7tlPzeTIz5bXGwy1oIEU8bu1HYhwSBU1LSqdOnbBlyxZMnjzZ+9rOnTtx7bXXAgAOHjyINoFq+CFQXl6O+fPn4+jRozCbzRgyZAieeOIJWCRWwA8++AArV67EyZMnkZWVhTlz5qB///5h94EgQmHIEBfuuceFw4fNOHDAjN27kwJib0NZSHy9mkqfF94bP94mmXQibolOnOhEUVESQ1ydGhzC97RycDXd+ZdoYpSWcpg7V4w7lfKM8pg1yz+WMy9PMA63bk1CZaW2+YPnOZw8KRiyt97aaN3q6XlUM/Y6dNCSRMbDbufxz39Ww2qVb5Wf70Jenks3aSrRMy4nfyjKZxlta1/vcUgUNBm28+bNw9ixY/Haa68hKysLpaWl8Hg82LRpEz755BNMmjQJa9euDbtT06ZNQ6tWrXDo0CGUlZXhsccew4svvogxY8b4tfvhhx8wZcoUrF69Gv369cPbb7+NadOm4e2330arVq3C7gdBhEPXrh7cdZcDHCdkHX/9tQlr1oSWTNGsGY/mzdkSQoSJWS4ujseGDQorhmaMsTVHEPHA+fOcX2JZMBwuXODw4Ydm9Onjlknu0r7rE2jIsnoe7XYPLlwIz9hj93IKuQErVtQpGrUiekpTiZ7x0aNtDaWFfQseCP816tZ+okh06Ykmw7Zz585466238N5776G0tBRt2rTBHXfcgZSUFFRWVuL999+H3W4Pq0M//vgjjh49ioMHDyIlJQXt2rXDxIkTsWLFiiDDtqioCLfccgvuvPNOAMCgQYNQWFiIV199FVOnTg2rHwQRClILkd3uwYgR9WjbNlTvJoeqKg4vvliDkhIzo3Est+iRIUoYjaagoyzc+0ePsllGJSVmXLzI+VSWCo9A47J7d1HJRVngf/HiOowdK2Xsscdx5ua6kZXlka1qJpKVxWPZstCrXIWLuLUvzN+N/WzbFli82GEoHVtCGc3RbRzHwWw2g+M41NfXo76+HikpKUhPT9elQ//973+Rnp7u53G95pprcObMGVy6dAlXXHGF9/Vvv/0WHTt29Pv8tddei6+++kr7iatrpEUDzWbA5lPSsLpa/hgmE5CSItvW4xEmtp9+4tCyFYcet1sbJ4UamfNzAFIDZg65toDweJnqU0Gmtla5EkBaWmhtHY7gwK1Q26amNj4W19VBcW9aS9uUFMDcYGA6nYBTQTc2JUX4/cS29QptbTZ4fziftgcOWDDlMQ48apDaMIE7YEN5uRlbtiTDgnqkoaphiQue4OuQDHfDLWlBPazwT0arPF2LVN6EVLj82prhQjLqgo4n4oQVLiRpbmuCGzY4ZNvWIwn1sGpuy8GDFNTq0tYFC5wQDX0eqajRpa0bZtSh8b5Phfx9r6WtByY4kBJS2xTUgJMJ/eDBoRapIbW1oRYmyN/3NUgLqW0yHDBD/r5vbMsxtE2FeM9YUQcL5O97LW1rkQK+IdUkCU4kQf6+19LWARs8MAe05XH0PR6pAfe1b1vxvrfU1WHZH5KQwlfDd64Q73uO49GqRR0W/eEyli1LRvmFYKNRaGtGy5Yczp5y4/C7DvTo4cbbb1vw1FPJqC1vvAp873sL6pHM1+GP8x0YOMAF68ZqPPVUMkrPmrxtr8oyCxJmeXVAtfx9j6Qk7H87FQ4HYIJHYo4QrtHp05yYPJ2HOaXBVevxCOuRwnG9bl21thYLkNxw3/O8sH7KkH+XpXFr/yzQJqMaeXkNlccCb1UttoGOdoRiWy22QTTsCA5Aikn4DrxEW612hMcDMFQeA6+BH374ge/Xrx/fu3dv/r777uN79+7N9+rVi//mm2+0HEaRvXv38rfffrvfaz/++CPfsWNHvrS01O/1Rx99lH/uuef8XluzZg3/6KOPaj9x8+Y8L/zMfv/q7rybP3/+kvefJzVVsh0P8M5bb/Nr67bbZdsexS18drabf+GFGv78+Uu8q93Vsm35zp35srLG49Zf30m2ravd1X59cN7cVbat2273b3vrbbJtPampfm3r7rxbvr+AX1vH4KHKbX8o9batfeAhxbZlX57wtq353RjFtuXHP+PLyi7xPM/zNZOmKra9cOiI97jVs59UbFvx9nvetlULlyi2vR3vef+ciPWKbQeh2Pvno3hBse0I/NX75wj8VbHto3jB++cgFCu2nYj13j9vx3uKbWdhuffPW3BUse1CLGy8nPG5YtvlmOX982f4XrHtekz0/pmJnxTbvoBHvX+mokqx7V8xwu8lpbbFGOT3UhXk54j3cLvfSz8hU7btUdzi99L3+Jls28/R2e+lz9FZtu33+JnfS0dxi2zbn5Dp99J7uF22bRVS/V4qxiDFcfP9868Yodg2FVXeP1/Ao4ptM/GT98/1mKjY9mf43vvncsxSbNsZn3v/XIiFim1vwVHvn7OwXLFt5OaIV3nAwwPa5oiR9n2Kbf81bjV/9qww/5XveUOx7dH7l/Ec5+EBj+ocUT37Se+8euHQEeW2k6Z625Yf/0yxbc3vxnjbln15QrFt7QMPNa5dP5QqtnUMHuq3zim1jZQd4by5q19bJTui/vpOfm3j0o5o3pzJnNPksX3mmWcwcOBAzJ49GyaTCR6PBytWrMAf//hH7NixQ8uhZElNTUVtwNOX+Hear/UOICUlBQ6H/xOgw+EIahcOVquFqTYxACQlmf3bShSz8KW01IRRo1KwezcwzKTc1m73Oa5ZPkbLbOL8+2CR3ycycQFtk+Tbcgio0WxVvnT82iYztBV/M5tyhr7d3qzxiS1FORCrRYtmQMO4pai0zchIazxuqvJWf3q6T9u08AXICYIg9Ee7NnXLlsCOrSagQL7NTTdZgVbNUVgI/GV8Kl5TON5bbyVBKj5XitTUZKSK82qG8hqemmJtbFvVTLFtSooVKWJbXsG7DMBmS4LNu74oJ9cmJ1uQzGgbRMqOSLIEtFWwIyxmk3/bBLMj/M7D8zzP2rhXr1744IMPYPWJ7HY4HLjtttvw8ccfM59UiR9++AG/+tWvUFJSgszMTADAm2++iWeffRYffPCBX9s1a9bgiy++wPbt272vjRkzBl26dMG0adM0nbf8f+cgORRhbiG43UDv3mkoPes/yYjbjIKQMo/jh87DbAo+P8cB9swrUF7rhrd7FIrA1jYlBZzZBLu9OcpLy8FHMBRh3z4LpkxNCWoqtc0oh1ooglxbCkWgUIT4DkVgaZsIoQgC941w4rXd4gM859OWhwUuTXNE0a5Kb/KW2w0cO2bG2bMcFi9OxpkLNrhDuO9f33MJt+bI3xuwWlH8VgpGjbKB492w+RxXvOY2b3YgPZ3HsAevVJ0jXt1VI3wHLeEFEQpFCGzL1dYI60f55eAll0IRGpGxIzgOweMXhh3BeTywX60uDKDJY2s2m1FVVYUWLVp4X6uqqkJKSvCCHirt27dHTk4Onn76aSxevBgVFRXYuHEjRowYEdR2yJAheOGFF/Dmm2/i7rvvxttvv42jR49i7ty5ms/Lp6bK/sZ+60Oqijc4oO1HJWZ8dzZVvjnP4fRpDh/9q7l0ZiMHIDUVfI3PhZEif7ygPthUfptQ2ybbZJtpbuvb3pos/NO5LZ9kBW9RSbUVj5tkFf5paNuinblhQZXHhSTv4qGGlrZuWFDDeCtraeuB2c/40KstD1NE2gJchNrCEG1rVa6vUNv6Gs96tvU19vVs60SyzwOKfm3rYfUaYZFs+/92pyEjwwOPB7h40V8KMPi+5yGX3HVVlhm33G4DbxZsg8OHzThXyeH8ZQ4nL/iPp5b7vvR8EniFdc7tBubOFYo78BLH5TgeTyxOxbx5dX7fW26OOF1pAp/qavy6AMCZ2NdaLW3BaW+blga+1iNtH4RhG0SkrRbbIBp2BIfg8QvHjmDcgNAkZNm/f3/MnDkTJ06cgNPpxHfffYfZs2frrhu7bt06uFwuDBgwAPfffz/69OmDiRMnAgC6du2Kffv2ARCSyjZs2IAtW7age/fu2LhxI55//nn8/Oc/17U/4RBvFU2I0AinQpAaHMerFH0gCMLY+M8LFRUcLl5kmfOljVqgUZGguNjiV4xl/nz2hwQp1OS5WMvPCooL4Z+PILSiyWM7c+ZMTJkyBYMGDQLXsB18++23Y+bMmbp2KjMzE+vWrZN879NPP/X7u0+fPujTp4+u59eTeKxoQmhHSQcxPITr4tln6zB/frKqZA7b8eghiiCii3QxhlDIyuIFRYJ8F4qLLbpJggE80tN5eDyCV1ZOxovVCWO383FZ9IBgw7tLYMDCEJoM2/T0dLz00ks4efIkysvL0aZNG7Rs2TJSfUsI4rWiCaEdOR3EcJk40QmTSQhHCt8oJaOWIIyBtntxxow69Onj9hoQviEB0seSe4j17uEHta2s5DB8eCqysz1e4zkQVieMaIBLFz3w9zoT8YWUXrvSNRNtQqqp2a5dO9x8881o2bIlLly4gAcffFDvfiUMvrW+A7ep6eZOPPLzXTh+vBpFRTW46y5BuzJcXnklCaNH21BRwbIQkuefIKJH9O63jh096N270Su2Zo0VpaXyIQFKRm2zZsr9FstvFxcH+77Uwq6EhGgPcnPd3of9rCz/tllZPHbscBjCCCK0Ie4SBDpvlK6ZaBNusXjU19fjX//6lx59SVjo5m5aiCUO//xnB7Zvd8BmCyc+VijBKe+V8UUqOp8giMgRvR0QX09pcbEFy5eHUhpbCGWqqjLBbvcgNdUDKc+u6F2dNy85KGldq7PG92F/8+ZaFBXV4Pjxalr34hC3W7gmpNYjpWsm2oRt2BJs0M3dNLnnHhcyMoDwjU32BVTNG9MIiwwIQRCxxNcDCjQaF9rgEXhfl5dzqKlRTwI7fDh4O1Grs0Z82B82zOXndSbiC9bEQalrJprE3mfchBBvbqLpcPiwuWG7MBoICSnJyYDV6sEFiTKbUu2DY+0IgtCG1qRM1vY8eN7fA9poXGhB6lzhKfbk57say88aMIGI0J94UXkiw5YgIkj4N7jWBZNDeTnnE/6g9nmpbG2CILQRyn3Ddm+3aMEjL6/RAxpto0EpWYycNU2LeFF5YjJs77jjDq+8VyDuWAdTEISBCe8GFz6blsY3FJ9hX9AcDrGtlhAGD6qqKDqJICLJffc58dprrPGxHC5c4HD4sNlrQEbLaCDFHiKQeFF5YjJsJ0+eLGvYEgQhj9pEoIzQXqmiotpntVBVRfc4kUgYU7O5bVvthqmYaZ6b6w5zTmGDFHsIKZT02o10zXA8ry7t7Ha7YWbsqZa2RqKsTKIWtAHgOCAzs7lh+2d0jDB+/iLqxlto/TGmMUAQ2jDedSx6sx56qB4rV2pN/hIQtUIBRHROMZImaSwxwvphRFh1bPUeP/F4ajDtOz788MP46KOPVNsdPHgQDz/8MMshCaLJkJ/v8hZZMD7GMgYIIjSMdR0L3i2gRw8XVq60gj1J07+dqBUKADt2OHDFFfr2ExDKdx89Soo9hDxGV3li8tiePHkSv//971FRUYH8/Hx07doVrVq1gsfjwU8//YTjx4/jwIEDuPLKK/HMM8/g6quvjkbfdcWoT2T0xBgeRhi/+PLYEomH8byXTY2MDCGZs6JCj6dbwfP7ySfVcDqB9u2b6T63LFniQMuWfJNXOjDC+hHPxMpjy2TYirz//vv4y1/+gqNHj6K2thYAkJKSgttuuw3Dhw9Hv379Qu5wrDHqhUs3VnjEevzcbiAnJ62hSku0jQup0pkEQUSajAwPRo+ux7XXenDihMmnmIJ+9+KcOXWYNcuJp56yYsMG/Y8vkp3tweLFdbDb+SYn6xXr9SPeiZVhq0nuq1+/fujXrx94nkdFRQVMJhPS09ND7SNBJAxuNyT1HEPTnNQTMmoJItps3+5Anz5uuN1A585pDa/qey8uX25Fp04eLFzoBABs3GiNiPF15gyHMWNs8O1/ODG4cnMlQehFSCsux3Fo0aIFGbVxitsNlJSYUVhoQUmJOebl7+Kd4mILcnLSUFCQigkTUlBQkIqcnDQUF1tiLFRNRi1BxILz54V778MPzQ3hB5G5F8XypQsXOnHyZBUefNAJqSpj4RHcdzHWV1RrYEVpriQIvYiLdBZCP2hi0RcxflYINWhEnPhPnKBbjCDij/AMQ1Fr9oUXkvTojAz+5UutVmDdujrs3OlAdrZ//zMzPRg/vg4zZtSFfC5fRJkn0bBmQW2upDWI0AtadZsQNLHoi1izXSpxQ5z4X345CVlZHq/GXzCxC9zq168+ZucmiNjCB/wLfE9afF7dG8ojK8uD3Fw3iostUZlTA3eFfDPWt2ypxXvvAZ9/Xo0lS5zo00e/7Tme9zeslWCZK7UYyQShBBm2TQSaWPSnMX5WeptRnPhHjhQMyGDjNtJGrfTxOY5HixYevP8+PcgQTRUOzZqJBixbmEBGBo9Jk5wNf0ndW8Jry5YJXtG5c0PTqtXK+fNc0LwtlrodNsyFfv3gjWEtL+egd6gCS7gV61zJYiQThBqaDdvPP/8cAHDp0iWsWLECO3bsgMtlDO0yQh6aWPSHNX62QwcPduxwICsrcDGJtFKCuIj5vNJgXFOGL9HUCa60Jxp8Uvckj+RkYN48J3budCAjI/gGysjgsXOnA/n5Lhw+bEZpKWtsrZzXmI35821M4WRuN7BggWhs6zfvsJT4ZZ0rY5uTQCQKmgzbTZs24dFHHwUALF26FO+99x6Kiorw7LPPRqRzhH7QxKI/rDXbW7XivduDc+bUIdyFTBv+v2dGBo/Zs50RTWghiPgg8PpXetDkUFoqPPjn57vwn/9UY8+eGsyYUYfp0+uwe3cN/vOfRoF6LfPoXXe5gmJig4u5KM8XSuFkYrLwihVWReeGVjiOR3a2EHahhpa5kiDCRdNeZHFxMf785z/D6XTirbfewquvvoqWLVtiyJAhmDt3bqT6SOgATSz6o1azXSyh6Tvxv/yymEwitagGeov0FtbnceECh4sXdTwkQUQU8R4wRpGJAwfM6N1bkKfq08ctG7OqZR6dOLEeubkOPwms7t3dOHLEjNGjbaislDK4g8PJOI7HvHnJyMtzeUMPiostmD8fOHUqVcO3VEfc+Vm6tI5JqiuUuZIgQkWTx/ann35Cp06dcPz4cTRv3hydOnWC3W73FmsgjIs4scglMWl5+iYEzGZ467YHjqvUxK8WDqK2eIUPB44D9uyJZKY2QehJ4INeuIR3jC1brIpeUVFCUZD7Uk80E+dc35jY3r3dsFoFr21lJbuHNTCcrLjYglGjbDh1SvPXDOqnyeT/PbKyeOzY4WDWsdU6VxJEOGjy2LZq1QrHjh3D3r170atXLwCCF7ddu3YR6RyhH+LEMnq0raFueeNkSRNL6OTnu7BjhwPz5iX7qU1kZfFBAuZGCPPgeQ5lZRzsdg8uXJD2nhCE8QiOFw/9OOExa1awV1S4/xv9RI2GoNz5hPcXL66TLVYQ6nyxf78Fublun2RhVoL7LK4NW7c6wq48pmWuJIhw0FRS96233sKcOXNgs9nwl7/8BefOncO4cePw/PPPx3U5XaDplNSVmoTDqSJjdKJVEtG3mk7Lljx4Higr818ESkrMKCjQd0swVMaOdWLbNrmwCIKIZyIftvDgg0706+fGiRMmrFhhlVSbUcNm8yAlBQ3x7gK+c3Go84Xd7sHWrQ4MH67ls8LkmJHBy/ZHK3IVxuKp8hiV1A2PWJXU1WTYAkBdnbCdkJycjKqqKtTU1OCqq64KrZcGwqgXbiRurHiaWMIl2hOT0oNDXp4LOTlpinFmLVrwKC+PvApfixYeXLhAan9EIhLteNxQzyfvId2xw6E6XygxbVodnntOi9yYIGU2b55Tl7UhURwoZNiGh6EN22PHjqkeqHv37mw9MyhGvXDpxgoPLeMXrsEvFsAI9N74LlYAMHq0DQAkw0G2bXPgiSeSI2jc+g4CeWoJwngIiVSffFKN/fstkvOFGr161eOjj7TE0vPIzuZx/Hh12E4OlnkwXoxbWn/Dw9CGbadOnVROxuHLL79k750BMeqFSzdWeLCOX7geBrcbyMlJa4gdk8/6PX5cWKyUzjV/vhVbtugv7i7EVnv/0v34BEHox5w5dZg1yyk5N6mRluZBdbX2h+Oiohr07h16ArGWeTAedgmj6RhJRGJl2DIlj3311Vdhd4ggjIq/h6ERURuSxcPQqHggjZCxzHl1MPPyXLKT4MCBbmzZEu63CsZu51FWRuEHhBFRS7ZqeixfbgUATJ/u9M4XpaUc5s9Pbqggpn84UygJa74G3fnzHPM8GI4BbTQSJfQiUdBcU7O2thYXL16Ex+MBANTX1+Obb77BXXfdpXvnCCLSqJUaltKGlEJrAQxR3kcKUZpNzusRGjyGDq3H9u2heYIbvb1keBCRgK6rYDgsX56Ml15KwrJljQaSzSaGM0mr2wwf7sLWrdaQzqhVxzwUbzJgDIUYvdDDMULoi6arcc+ePejVqxf69++PAQMGYMCAARg4cCCeeuqpSPWPICKKXqWG9SyAIUqzcRygLnHEvhC99lpoix2gLb6PICILj4wMD1q0kNflTiQCq4qJslmBJbpFbdm779ZuRIWiYy4adL7SXawkSiEgNccIILzvThzndFygyWO7efNmTJs2DWlpaTh27BgeffRRrFixAr17945U/wgiouhValjvyjri4jV7trjtKAfroqJHxTEybolYw4PjgFWrBHUe0XOZ2NemoOE7d24yrrySx/nzQvjS0aPVOHYsOJzp0CFtgZ2h6JgrGXQC0r9JolUY0xKClkihF0ZHk8f2/PnzePTRR9GrVy/873//wy9+8Qs8/fTTeO211yLVP4KIKHp5WiNRWSc/34UlS+rYPxA11CoqEYRW2K6n7OzGildynsvow3r+0PvJ8xxKS00YPjwVEyakoKAgFT16pKGigvNWKxPnFqHqGTtaq4gBoVRRTMxCQHo5Rgh90WTY2u121NfXIysrC99//z0AIDs7G+Xl5RHpHEFEGj1LDattEYYSZxX7RVsKmqQJOSJ1vfKYM6cOx49Xe+8jtxv46isTamrU+hPpe0jL/aBffwJDFERYH9anT69DUVGN35iyEoqhFs48aFT0DEEj9ENTKMJNN92EBQsWYP78+Wjfvj3+8pe/wGazIT09PULdI4jIonepYTXFA62ohTgIddwBnleLg2XdrmVtJ7SZPr0OLVrwmD/fxvAZgpCC7Zrr1MnjV8Z25sxkvypZUjRvDtTV8XA69X8YS072oK5Oi29I6INQHCX8/sglt7KGRc2Z4wx5XmI11JYscaBlSz5h5a/0DkEj9EGTx/b3v/89Lly4gOrqasyePRurVq3C/PnzMW3atAh1jyAij96eVlHxIHCLMBTUQhw4Drj7bpeKRqAWb4G2Bbe6msOYMfXIzvZoPA+RmGj1XrJ9huMak3CKiy0YNcqGigq1Bzkely9zcDojI3FXVxeacXrrrfoZOVLJrZEIiwqEdadrzJh6XeZBoxKNsSa0o7mkri8ulwv19fVISUnRs08xwagFEKhAQ3gkisC2nE5iQUE9Nm5UrlVvt3vgdgOVlUryYXxQnXg2BM9PZSWHrVvFSkcUqkCwoD3p669/rcFjj9lkdVzjgWbNeFRV6dv3zZtrMWxY4wO42w2sWWPF1q1JqKwMveiM0nwoqiIA0lUUEyHsIFoFfhIVQ1ceE9m7d6/se0OHDmU9jCExquFIhm14JNL4iQtNaSmH8nIOGRk8Fi6UF2vXSv/+9XjvPS1lOIFg4yTRM9SJWBIJozB68LDZeDgc+nuQfSuGSRlZGRkejB1bj+nT2cIPWA21RDfoEsUxEiviwrC94447/P6+ePEiamtrkZOTg5deekl7Lw2EUQ2fRDLMYkGijV+oguishF+IgSpIEZEkXh6c9OinEGqkfD/yyM5uLFHrXywgNC+q1mMkskGXaOtHtDF0SV2Rv//9735/8zyPbdu2obKyUlPnCIIIhnXrL5ITrLClKGZuh7Iwx4PRQcQfTe2BSfi+6oVRODzyiOCF1aOKYijHUKqiSBCxICy3D8dxGD16NF5//XW9+kMQuuJ2A++/DxQWWlBSYjZsBZjiYgtyctJQUNCoU5mTk+aV8lEXRCeISGEEV1UkYmoDv5ee3zO8vmZl8Rg3rp6pbYcOQnl7Paoo6lWJkSBiSdj7md9//z04jhZawngUF1vQrVsa+vcHxo8PNhaNglxpSl+dSnVBdD0RjIgrr+Tx/PO1uPJKwBjGDREbEnN+D1y27HZjXOP5+fX45JNq5OWxxaiK0luhFAtwu4GSErP3wb+0lAoOEPGPphV+5MiRfkZsfX09vv76awwZMkT3jhFEOMht24vGolEydt1uYOZM9a2/efOiX4Hs4kUOixYlN5TipYWMSAxSUz2YPLkeU6c6/UrSdu/uRo8eaQqa0dHho4/M2L/fgrw8lyaNVFZt2a+/NqGkxIzycg4LFvjH69vtHqZjUMEBwshoSh5bv369398mkwnXXHMN7rzzTpjjPFrcqMHhFLyuHbcbyMlJa/CAyi8IYsJFpPrAklCxcqUVy5cnqx5vyRKHDkUQhGIOHo9WrVEyagkjoHQtsqlzJCXx2LTJgSFDpB9q5SSstPcnHISksR07HADALKnldgPXXtsM1dWQ6ZfUGPm3bUwelT5GNOZOI0Hrb3jERfLY5MmTQ+4QQUSLxm17aYQ4MQ6HD5sjkvTAKoHjdsNH+1UZu51XqUDGhofNIeMDywJJxC9G+y2V+sMpvB/4mvQx6uuBMWNsGD/eiYED3UEPnGKxFuH+lT5GRoYHt9/uxjvvWFBVpfxtQkP4nvPmJeP48WrJ/mRl8UHzyRtvWBqMWq3naqQxeRQIHGsqOEDEC0we29///veqB3rmmWd06VCsMOoTGT0xaqew0IIJE9SLhgSKmuuBFqmckhIzCgpSmY5bVFSDigpOxptkNOOEMAZKSgI80tJ41NRwOiQkhn/9paV5cNddbhw8aMaFC5GRspNCTnPVd8clM1PwoJ4/37j7sn+/UP1MIJTvzjZmoj6tGAtbUmIGxwkqBLfe2miUu91Aly5pKC/Xb+zsdo/f8RJJn5YVWn/DIy48thUVFTh06BD69++Pdu3a4dy5c/i///s/3H333SF3lCD0hjX+S+84Ma1SOawJGBkZHq9nSc2bFAwZvYQ0ycnA2rUOPPGEWOQjVHy9fNqPc//9TqxdK3gBd++2YOLE6FWylIu5V5KwcruBuXPF8KHI3lviHLF/v/8u0OrV/obm4cNmXY1aAFiypA5ZWXxC6tMSiQ2TYSt6YydMmIB169ZhwIAB3vf+8Y9/YPPmzZHpHUGEgFjHnDXpQi+0hkCwGtZjx9Z7F5T8fBfy8lwoKTFjzBibSplcqLxHJDbK18WFCxzsdh7PPFOH8eNtYSZMhf7Z++9v1ETNyoquW4xV39UXofqf9tLToYxRq1Y8UyKs06n50KpkZfGkT0vEJZruziNHjqB///5+r/Xq1QtffPGFrp0iiHAwm4U4MKAxBEAkknFiWuV2RAM8sI+N8MjI8GD6dP9Vy2wW/gk14MlwTUzUDDyeoY06O3YkNRi1YR+qAe0HKitrvIZZ7gm9pee0arOGJnUlFQMs/104Toip797drbgLBAi7RJmZ+o2JeG69H/wJIlpoMmzbtGmD/fv3+71WWFiIn/3sZ7p2iiDCRUwCCfQA2e08xo1zIiOD171Yg9YQCCUDXFzwVq2SNsBJRzLRUa845R8CEBrFxUk6F/3Qfhxfo4zloVTqPT2KLbDeU/qFMEn/hr4P38eOsRVM4DghNEH+e7O+TgliRPyjybCdPn06nnjiCTz00EOYOXMmHnjgATz99NNMyWUEEW3y81345JNqvPceMH68E3a7B2VlJmzZkhyRYg1q3iYpT4icAZ6dzWPnTmmtXbdbSGTRB8qIiG/0uA5i+5A0ZYrN7z6UuyeysoR7YufO4Pf0+A6sBmturhtZWUpGpFb8+56VxXtjflmN7fPnOSxdWtdQdEKbERvYl/R0mhOI+EaTji0AnDhxAm+++SZ++ukntG7dGoMHD0a7du0i1b+oYdSsR8rKDA+OAw4ebI4RI3gmpYJwkdPBVDsXq+6tlJSYNGzJPJmZgrFPxDOhJ24ZAfHemD3biQ4dPN7rHwCOHDGjpiYVqak16NnTXwVgzRorli+3ikfxOaJwPJsNcDjYxiQtzYMVK+q8sfdq3sqnnrJiwwapc4eK0Oc5c5yYPt3pPT+rcoqoniA1P7RsCdx3Xx327k3ye71FCw8uXBD7Htl5MV6h9Tc8YqWKoNmwTVSMeuHSjRUeHg9wyy3NceqUdPJGJATHWXVsQzmulJSYlN6keK1wXLCBzfPw6ngapdoSoQdGU8DQ0h//tuL9MniwS3L+YynCcuWVPOrqONTWahsTtXtV7dz+38nbI9XzSs1F4rnUEmEDPyM+JLduzSM/PxUVFZfhcjW+3rIlj8mTbQ0ldKkQgxy0/oaHoQ3bwYMH429/+xvuuOMOv5K6vrz77rvae2kgjHrh0o0VHh9+aMbQoeweD71g9cBqOR7bYtq4MAOCLJFvBndWlgfLlvkv2tqqLemLxeKBy6X+nQh10tI8qK5ODO+76DXcudOB3/42JWj+Y9eAVjOupatvAYLHMi/PFXQfHz7Mdm673YMHH6zHxo2CZ5f13gqci0LdBRLaSK8fWj3BTZVorb96rxdGwdA6tuPGjQMgVB6TM2wJwohoVSrQCyUdzFBQkxITWbLEgTFjBHkwqfhhpzO4+hhLtaVI4XIlhiFmBHbscOB3v0tBbS1glAeF5GQPfvMbF5o357F6tXrpaBFfGa6RI4Pf37+fNTaeJQlP+tyzZiUHPRhmZ3uYd12WLKnDiBEu5OR4NN1bgXOR3P0pVX2MlVjNi0Qwkdrha8owzQ6DBw8GAAwbNszv9e+++w7NmjVDq1at9O8ZQehArIo16A3rAtOyJe81aqW0L8vLTRgzxoZJk5xYuLBRRky7Pi5hHHikpQGPPWbTvO0eaerqTNi2LQlDhtRr/izPczh9msOhQ0CXLo2vFxdbmEtRhwrPcw3xp/43UGkpx3xuMcEtP9+Fu+92oXPnZrh0Sf33kZqLxPtTL69eosyL8Q6LRjEZt9rR5C755JNPMHToUADArl27cM8992DAgAF45513ItE3ggib3Fw32raVkgcSiBfNRi0LkVIFNJENG6zYt8//udZsBi5d4hoyq41lIBFyCFvt1dUcKiqM6v3msG9fEtLSeAV9WnlKSxv/X7y2o4e0dqzJpPxdTCber5rbsWNmJqPWbpefi8RdoGHDXOjdO7yt6lAUXAh9UatUCQjv6y1L2RTQNBOuWrUK/fr1A8/z2LJlC/74xz9i/fr1WLt2baT6RxBhYTYD4uUZzWINeqNlIWoMW5BbSAVv7BNP+E+aovegokKLUau/YD6hhWg+gITzW3OorgZ4Xv4hU46srMb/V7+2owEHj4drMEikv4vHA4wd2yhjxrrjMnw4W/WzcIlVERuiEbVrWWvhEKIRTYbtiRMn8Pjjj+PEiRMoKyvDoEGD0K9fP5w6dSpS/SOIsBk2DJLal756kUZHy0LEuoiWlzdOmixeXnnIu5v46CEpxqFZM55ZJ5XjeLRp40GfPo2vGSnmc+xYJ0yyK6i/x411xyUvL3pzkZJecLzMi/FMtOOc3W4habCw0IKSEnNCe4I1qdObzWZUV1fj4MGDuPnmm2G1WnH69Gk0a9YsUv0jCF3Iz3dh4ED9YtRiAWsSiZa4OHHSZE1OC8Y4hgYRSfT5nauqTGj0/KqrFQgPayneV40U89m2LQ+PR/47CB43DocPm1FezsFkkm8vymtFe+tf79hdgp1oxjk3tQQ1TYbtnXfeiUceeQSnT5/GvHnz8O2332LSpEnIz8+PVP8IQjf0ViqIBYELUWYmD44TKg+VlJiRm+tGbq4bdrsH5eXqhqo4aRrJE0YYi2HDnCgstKo31IT69TZhgjNo0RVDcuR1l/XR8k1N9aC2Vlnbec0atjF54w0Ltm9XSjiL7dZ/IsyL8YjatazXw05TTFDTVKDB7Xbj9ddfh81mw6BBg/DDDz/gvffew29+8xuY4/wRz6g6saRjGx6JPH5KT+EeDzBmjK3hVWkDIDu7UYCdXReUaDrwyMjg4XIBly9HPzHNZOKxbZsDo0b569jK6y7LFUQQXr/nnnq88QabMTpnTh1WrFDTn2UzopU8teL7W7c6MGSI/sZFIs9/0SDS4xeORjELLIVMIlmII1Y6tppmK7PZjGHDhqF37974/PPPcfXVV+Phhx+Oe6OWIOINcUIM1MYUn8JNJmDSJKfMpwUvrxizW1JiRmkpB7vdA/0TwWg1jV84VFRwuHw5Nt58j0e4lgsL/V+Xiw3NzuYxaZIT2dnBr+/c6cCYMWwGgt3uwfTpTuzY4UDr1krXrygHJtdGeE/JqAWE78kad0wkFpGOc26qCWqaPLbV1dVYsGAB3njjDdhsNhQWFuJ3v/sdXnjhBXTo0CGS/Yw4Rn2ipSfu8EjE8dPyFP7GGxY88USyX1iC3e7B8OEupKfzeOmlJD8Beu1JQnJeK76hnK+WYxFEIDzateNw7NjloEQtuWpNSq8rV+8Trv3t2xu9p4cOmTF8eCgVzrSV001P92D1av3jHRNx/osm8V55rLDQggkTUlTbbd5ci2HDjL9jEBGP7fLly1FTU4P9+/cjKSkJ7dq1Q//+/bFs2bKQO0oQhDa0PIUPGeLC559XY/fuGuTn16NZMx7l5SZs3WrF8uXJDbXiQ6NRnSFwxuK9/SCjlghGywrH4eRJSHqU5HRdlV5furSuQadZug8DB7r8QgLOn2e7fgM9rna7aOiyfb6yUvBOS1ULJBIfPTWKfWmqhTg0Gbbvvfce/vjHP+LnP/85OI5DUlISnnzySXz22WeR6h9BEAFolYnZv9/SoKmZhKqqwM8G/y08FXswZowT0gaAsMW6bZtDUkaNINTRds3oldyYn+/CxIlyITrAW29Z/IzLli3Z+rljhwNFRTXYvLkWRUU1WLKkTmPPSJCf0J+mWohDk2Hr8XhgtYoB9XzQawRBRB4tT+HFxRaMGqWt6ALPcygrM+Gee1x44QUH2rTxfz8rS4hZHDLEhfx8Fz75pBpFRTXYuLEWzZp5GlqRp5aQpn9/N2w2bYatXh4ltxsoKpJTKPA3LouLLZg82SbTtuETDYbBrbe6/TxuoTzsJWq8IxE7mmohDk2GbW5uLhYvXoza2lpwwn4OnnvuOfTo0SMinSMIIhjWp/Du3d0+5Ue1G5qil4xT+ai4jZaZyTfolJJRS8jz3nsWOBxScd3BcByPdu0QskcpUJT+ww/ZwnjWrLFi9GibYqiOkmGgdo8qQdJ7hJ40xUIcmpLHysvL8dhjj+E///kP3G43bDYb2rdvj82bN6NVq1aR7GfEMWpwPQX/h0eijh+LTExGBh+WhJcoeRQsdyScY9YsJ3r1cuP8eQ4nTpiwcmUSPJ7oy0IR8Y50opV4Le/ezaFvX+n7VynpRkoOLz3dg8pK9WtUaKccI2u3e/Dss3WyMl3ysmTKFBXV6KYrm6jzX7RIpPGLVIKaErFKHtNk2AJCCMJnn32G06dPo3Xr1rjpppsSQu7LqBduIt1YsSCRx0+tmgxrRmwgoqoCz6PBYxWuQgJBqCGqaDReP9nZHixbVoff/jZF8v5Vuv4B+IjSB6oV6HeNqlVvkuqjXB8ioSmayPNfNKDxC4+4MGwrKyuRnp7u95rT6cSzzz6L+fPna+6kkTDqhUs3Vngk+vgpPYWzSxU1InrJZs92YvnyZJXWRFPCZuPhcET+wSU93YNx4+oxfboTFov0/etfTSnYy5uezjfElWurTsZxfMNn2XYeWIT0fe/REydMWL7cGmTE6yXIH9y/xJ7/Ig2NX3gYWu7ryy+/xIABA9CrVy888MADuHjxIgDg66+/RkFBAfbt2xdebwmCCAk5mRiWxBcB6birDh08Mu2JporDEZ3zXLzIYcUKK/bvl5a+cruFBC8pjWSe58DzaDBM5Yxw+UpiPA+MHVvP3FfROFVSM/C9R2fNckoqiSRyvCNBRBsmw3bZsmXo2LEjNm3ahGbNmmHz5s04fPgwfv3rX+OKK65AUVFRpPtJEAQjojeLRaM2I4PHnDl1Xpmi48erkZ/vSjhdQ0IPohNmomYsquk4h95PDnPmODF9ulNT4pdWNYP8fBeOH6/2kwcT7zuCIMKHSQ36yy+/xP/93/+hRYsW6NSpEx555BHs2bMHjzzyCKZNmwZTYEkYgiBigpI3yxff7V6peL7ycrFcqPJxCHXatQOaNXPjyy/jPxchWgjGIofDh824917/9yKpGtChg8crkTR6tA0cxzMnfmnpl+jFJQhCf5gsUo/HgxYtWgAAWrdujbNnz2LChAmYMWMGGbUEYSDUvVkC27c7MGuWtFHrdgMLFoQuE0b4c/IkEtCojY5HX8pYZN9N0N7H8+c5uN3yEklK0C4HQRgDJquUCxCyTEpKwsiRIyPSIYIgQofVa1RWJt+O1Tgmmi5CydjIk5nJ4/334dWhdbvZdJxbtPB4/98f5X7Pn29DTk4aiost3pCB3btrkJ7ukf1solZvIoh4JSR3a1JSEpKS5Kq3EAQRKoGC8lrLa7J6jU6ckL/1Q9/qlSu/ayRC7Q8fxmcTCR4mE++tNjd6tHx52nDgOB4ZGR5MnmxD//7A+PEpKChIRU5OGvbvt6hWU1q5sk6h3LPy71haymH0aBuKiy0wm4G+fd1YvboOHNe0qjcRRLzCFGPrcrmwd+9e79/19fV+fwPA0KFDdewWQcQngfJb3bu7cewYmyi2mi4tC7m5bmRleVT0Z3m8/HKSbHxtqFuq2dk8HnrICbdbkGXp3duNV1+14K9/NVrJ7VC0TMX2TV2rl4PHA3zyidkbI7pjh96/L9+gbBA8zqLRuWOHAzt2OBrul8Z2WVm83/2Sl+fy3o+ZmTzGjLE1FF5QODvPgeN4zJuXjLw8F8zmxtAEtfMRBBF7mHRs77jjDuWDcBzeffdd3ToVC4yqU0c6euERzfGTMkxNJh4ej7/ovNRCqKbLqUUKaOVKK5MGrVyFI7cbuO66tIbyuMrcf78Td9zhljXanU6gbdtmYDMGm7rRGD9s3lyLYcNccLuBnJw0lJZymqprKaN8HfgWMgDYqymVlJg1V+ILvEdiUb0pHGj9CA8av/CIlY4tk8f273//e9gdIohExt8wbcQTIAfr63ESDVU1Xc5A75EarBq0SiEHrEbKX/+ahIED3bIZ3lar4LktKWGZasiojRdathQu9FAVBMLBVzGhd2/5ay+QUEJsDhww+x0/ntUM4s0oJ4hQIUkDgggTZYmtYEMV8NfoVEvW0qqTyRpKINfu8GEzqqvZjQAlcXoAePhhdsH7xx+vU0zUIYyB7wNcKAoCyugvrwWEFmKzZYsVxcVM/h9DU1xsQU5OGgoKUjFhQmO8ciJ8N4IIhAxbgggTrSoCgYYq6wLN2o4la1wpi1ubwaBudGsxeL7+2oSBA13efkYXShBj/f6BqhqigsCePcoKAnqi1VAV48+19I3j1B/cjE5hITBqlM0vNhjwT5IjiESCDFuCkIFVoSBUFQHxc+F6WAMRt4eB0LK4Q/FsKY1Bbq7bK7+kxoEDSdi1ywqOA1JTI2Ec8ZA3YJUS7hKf++9nVziQukbMZqBPn0YFgUgZt6HKa5nNwMiR9dDyG2vdLdGLcNVRfI/z+OOQDXMC4t9wJ4hADGfY1tTU4Pe//z169uyJnJwczJkzB9XV1bLtFy5ciC5duqBr167ef6+++moUe0wkIlq27kJVERA/F66HVQq57WGWmvRq/ZFCaQzMZmDECG1Z4zwPVFdzGDq0Hps31+Kvf62BzaaHodR0DVc1Onf2YPt2B0wm+XFmuRbFay87O1IPJqHLa7HGnwcSyWpngegZNnD4sBmnTgF6hTkRRDxgOMN2yZIlKC0txVtvvYW3334bpaWlWLlypWz7zz77DEuWLMGnn37q/ffAAw9EscdEoiEmgrFu3Wk1BAONg3A9rHKEWpNe7I/g5VH+TqxGd16eVjkkYez37ROE8quqODgcGg+heGzfksEEABw6ZMaQIS5s3eqAlFdby7Xoe+1Nn16nWx+zs9UfzJQQk960Eq2qYlrnHjX0DnMiiHjAUIZtbW0t/va3v2Hq1KlIT0+H3W7HrFmzUFhYiNra2qD2TqcT33zzDbp06RKD3hKJiJpCARC8dadkmLIaB+F4WJUQs7iHDXOhd2/2LOi8PBcyMtQWc0FvlMXQCcULLGimcpg3Lxlz56rLl2mHFnNf3n3XguJiC4YMcWHnzmCPq9ZrUbz25sxxhvDbB8Jjzpw6pgczXwK39F0ab6NoVhULZe5RQ+8wJ4KIB6IeNe5wOHDu3DnJ92pra1FfX4+OHTt6X7vmmmvgcDjwww8/4IYbbvBr/9VXX8HlcmHdunU4fvw4mjdvjuHDh2PMmDEwmQxlsxNxQmMimDSBUkMicgLuJpO/5JeSoHt+vstPUD6WkjyHD5tRUaF2D3GYM4dNnD4cWagXXzRagYfERZSV870WS0s5lJdzsNt5ZGTwcLuhek0GSkstWlSHceNsCNaoVdcubtcOWLzYgXvu0WaVSulKC4ltbES7qlioc48SublutG0LnD4tfc+JmsBUDphIJKJu2P7rX//Cb37zG8n3Hn/8cQBAamqjiHZKSgoASMbZXr58GT169MDIkSOxevVqfPnll5g0aRJMJhPGjBmjqV+cQZ03Yr+M2j+jo3X8fvqJreFPP3FBxxw82IVBg1ySlcdKSzmUlQnVj1q04OHxSBsHFgtw222xX2RYx+GaazzMYzt4sOAJnDs3OWirNbrEcyEIX8+a3t9BMJyOHBEMJ4sFqKzksHRpcDW8ZcvkH2iKiy0Nv7F/oRKlSnjBxi4wfrwTeXlu5OenorLSpSrw7mtMnzhhwvLl1qDPqFUd8yU7O7pVxcKZe+SwWIC1a4ERIxD0QCka7suW1cFCwgiS0PobHnqPH/NxeAPxxRdf8B07duSrqqq8r12+fJnv2LEj/+WXXzIdY9u2bXxBQUGkukgkOO+9x/NC6pLyv/feYz/ma6/xfMuW/p9v25bn9+xpbONyCcd85RXhvy6Xvt9LK5EYBxHxu/7pTzxvMrGdh/41/mvWLLLHf+UV4Xfas4fnOS74fY4T/vlevyJyn5H7N3OmcC8E3htPPaXtXtizJ/g4of5r0YLn33kn+vdgJO85qfFp1076NySIeMdQz2k///nPkZSUhG+//Ra//OUvAQDfffcdkpKS0L59+6D277zzDsrKyvDggw96X3M6nbDZbJrPXV5uzJJ5HAfY7c0N2z+jo3X8brgByM6WLxEqxNzxuOGGapSVqR9v0SIrNmywItBb9f/bu/fwJsr0b+DfSXqkiK0FoRVwdQVPKFSOgqAUEFmKSPGAYJEzKqKLykEpFAQ8oMKqi0KBiiiKgmWXLcK6iiAiRUBA3p9HlvVES4UCaukhbTLvH+mkSTOTzGQmyTT9fq7L65I0nXnydNrceeZ+7vuXX0QMH+5clUpMBNaujUZxsfpVsWC78kogKSkBZ84olcByrjz7mwelbkcdOjj/u/9+aX6gcB7yJKKsDAjmXDVpUo6SEjumTk2o/R2on+/p/D146CERvXqdc915sNuh+D1yBEHE+vUiPv/8HPbtq1tpXbs2Gjk5db8LrVsDCxdWKKYiFBREYdw473bU/okez5dWMF94oRIdO9bgzBkNhzKA0X97nN/j/Pt3441/YP9++d9FtcdqjPj+q4/R8ycdzx9TBbbx8fEYNGgQnn/+ebz44osAgOeffx4ZGRmywaooinj66adx8cUXo0ePHjh06BDWrl2Lxx9/XPO5pc+xZmX28Zmd2vmzWJRzQaU3vgULqmCx+D/e5s1RbkFbfc7jrlghbYryPFhxsYBx4+J0bRzTyj0IbdFCVDVf9ee1/u3gN97wDtjdb+/m5Dhrp776aoxX+2HjSAMMR+DsGTzpF7zXIOVbdu9ux549/vM9jx8XsGdPXb6nv+9ROsbnnzuPUVAQJZs+cPw4MHas/O+C3Q7Mnq3U9c+3xETRIzVByn8fPNh/2kMwGPm3pz5RdB6/Z0+71+PkH99/9Qn1/AmiaK4fV1lZGZ599lls374d1dXV6NevH+bMmePKux08eDCGDBmC++67DwCwfv16vPbaaygpKUHz5s0xduxYjBo1SvN5T50y5ycyQQCaNz/PtOMzu0DnT27jSf2gzBe7HejQIQGlpYFvYpQCjQMHzgV984rc61Vj06ZyV2Aj5Va6B7JKq2L1gxSbDZg7NxZ5eUZvFDM6sNR6bsicP5xjUuIc66pVlbj11hrk50fhvvvi/X7X8uUVyMx0/hyzs2ORm6v957d8eQWGDq1B584JtbnXypuc6v8u7N5txbBhTbyer8Z775XDYkHYN2rWp/dvjzu+f+jD+dPH6PmTjuf3eWYLbMPFrBcuf7H00TN/SrfR1dDzhlvfe++Vo3fv4G0ok2pnBrLqJQU20u1gJ9/HqB+kSPNcXCxgzpxYlJaquZWtFBzWfzy8QeRtt9mwf39MbZF8J61VIUJJCqCSkkRV16/0wUbPB7lNm8oBQNP5JGoDcHeh/MAIBPZ3RM/fHnd8/9CH86dPuAJbU6UiEJmJVIczEEYWPB8/Pg5LlgQn39ZX7Uw1WrZ0ln969FEppcL/MaSyRatWRSMlRcTcufVXikX4D0iVglrgsceqsGpVdO1t5vAGkIMG2bFxI1BQUI4TJ5xVMR58MA4nTiDsY5NbUZYaAaxcWYnUVIfPfE/3MlGFhVbNQa37Mf75T3VvRfV/r7TWX/VVwsuoYNJdoKuvev72EDV2LPZKFARGFjw/ezawrkNq1NXO1BZkuReu371bqnmr7Rhz5sRhwgTvLkuBSk0VkZdXiV697Dh7Vvt4gkEq4SQ1ybBagRMnzDE2J/lGAHPnxuLJJ9V3w9P6Qa7+MQJtJOC/8Yfn40pNJoxsY+t+TCO7iBGROgxsiYJAesOt/8YamMC6DqkRyMpy/aBk926993Prj0H9mBYsqPRqF2ym9qBz5sThT3+CK4gpLjbD2HxvpnOuqFuQnCzKdsNr1UrE9Ok22GzOn73drv2DXP0A01+AqtQBTE076hkzqny2lA5GABqMLmJEpA4/MhIFgXunLWcau76AJpCuQ2oEsrJcv3uavuLbSt8sPa6cS5ucLGLs2GrEuO1XstuBkyfDHTx6jvn4cWDcuDg88IAN69dHh29YALR80CopEZCZ6dkNT6p0sXhxXYvjxEQHJkyoRlKSw2d5uORkEQsWVLnSD9xv8/vqTCddX0odwJS6/vnq8ifxF4AKgujqxqYlLSHQLmLBSIcgamwY2BIFQM0bkNIbrvyKmbrg1+jVSGmlzFcu5UUXCXjxxXKcPCn/Wnv1smPJEkOH5TUG77E527x265bgCl4Creygnb/yYd51XwH4KP0WSgLUBrfShx4p37OgIArPPSfXzcuC55+P9Xvcrl3tuP125SBT6feldWv/LXUDbUcdjDa2gPrfU/fnGVkNgagxY2BLpJGWNyC5N9zSUqF2w1Tdm9oFF4g4fdr/m6GRubtA3UqZs6KBd0UBUQQmTgROnXLWtrXbgX/+M8ojcOjZ047zzhPxxx/Gr5TedlsNNm+OUtxRK90ufuABG155xTvo0iInpxIvvxxT+3Pw1f7VuwZqXJwDlZW+AupwryJr4WwE4H7bX/0mQ+WvbdsWhc2bo3DrreoD1FatRGRkNMGZM/5ryway4SqQAFQNrTnDnpVJ6kjXdyjrWUcCrnw3biz3Vcus5TxYbkQfo+dPqTSWUn1WJfX/8Hbtake3br67DgWrRJFyqS7fK5PJyQ4MH+4MRN5/34qVK2NlnxcIQRCRlOQe7CsHFoIgQhBQ2+AhkADSea64ONSrwevtvPMcWLrUWcRf+vk1by5iwoS42g1rkUDEpEnVGDSoxhUQGFW+rnlzB44cUX8NB/vvn9rXVb/MmD92O9C5s7rfZwAB1fBVozG+f7AOsHmwjm2YmfXC5S+WPkbOn/RmpfQGBDjfgL74IrDgUwqaAUCu61AwVm38vyZ1kpMdOppRyDdxSEwUfeRsGsn9wvB/rpQUB7KyqnHppQ60bCnCZgPuusuYmsXBpT3XWwoIbDZorherREuQGOy/f1oCUK2/02p/n4MVXDvP1bjeP4xaeKj7vsY1f0YLV2AbKUsMREHnvzSWgOJiC5YuDSyXUsoxrL8LXalEkRECLfdVn3NlVao/q09KinPXfSAlxLRzrtY6KdXG9W53vHhxrKss1IgRxgR8ZiTdCj92zLi3ipISAXa7c7U0Pz/KVVkhHNRUVVDatOaP2t/nYKVDNDasREES5tgSqaT2jWXx4hhccYUjoEA00E0wgTLqzdL5xiG9gWtbGZwwoRqDB9d4vF61Bfv1EdG0qVgbQCuRex3ym8P0jCNUObjOjXhQOJ/3OKTKALm50fC/aU6dY8cstXcJ9N8qNiKXUk9VBTXH9vf7HGgNX/IUrI2A1PAwsCVSScsbSyAlgiSh7Dpk7JulMyhwpiWoD34GD67xer2heRMXUFZmRECp5xhaX6eeIFioDWqVzqlc19a5UU5vAC6iaVPnB7/6AtkkZWQuZTA/UPr7fVZTmcS9yxvJ48o3SZiKQKSS+qYLzgL3hYXm34brv3OTdpmZ1UhOdvh9nlLR/WCNy7y0vNEKaNpU77wEHhjrVVYmfyytt4qD0VRBCkAzM50ftEK1iz6Y6RCNCVe+ScLAlkgl9zcgNRrCyoDnazLmD/7KlTEyK7ba3rB9vdlHFu3XyMiRUmOMhjYvgtt/3qSOZ/4+EEZiLmU48usjTaDd6yjyMLAl0iAjowYzZthUPbehrAwovalqJ8JiUcrD9Py3mjds48YVWQYNCvW8hHb+/X0g9LfhUQqQP/vMaooNamplZNTgwIFz2LSp3GcLYJLHlW+SsNxXLbOW82C5EX2CMX92O3Dddc4SQUbXnQwnux1YujTGLQdS/Wqi701JnhYsqMSECdWq58Z9g1Dz5iKmTo3DiRPy+Yh1QrchS7vANmHVv66kefnkEyuWLlVTQ9hfWTOlcYlISBBRXu5vzo3hXtZK7vc3Pz9KVemxxESHR23hxtjFqzG+f7COrXmw3BdRA2G1AosWVUEQImtlwGoFHnvMhry8SqSmer6upCQHpk+vwsaN5Zg8ucorhzYlxVnUX40WLURNc+Oe+9injx2LFqlJnVDfOlY/redxBofOa0Xpe72vK1EE7rmnGv/8ZxR27XKuRpaUCLjhBjtSUvzl3boHrb6CWnnnzjk3ngUz/UHtrWK1d0LcO8MBnvm3Zik3RsbjyjdxxbaWWT+R8ROjPsGcv0ju7S6tBv76q4D27eNx5ZV/wGKpe7y4WEBpqYDk5Lod24WFwSs0X19BQRSmT4/V0RTCOBaLCIcj0JVMuZVl75XTpCTnBwml0mRJSQ6cOSNAEKCwqupvlVis/V7550id4GJjPbuzOV+7r+MqjcPze5QK6Mv9/trtwFVXJfho3qH8WgVBRGKid5e5SPm9rY/vH/pw/vQJ14oty30R+aFUKzPUNWdDSVoldf4hAU6dAv71L+VA3moFuna1+wl0RFgszufplZFRg8pK4IEHAm2OoJSqoD2F4a23KjBlSlzthjmtAa788xMTRaxeXYGTJwUcO2bBc8/F+HxjkFYn67q1ScdxoKYGtWXNfI1N8Hl8URRw+rSA994rh8UC1/VeWipgwoQ4aJm3KVNs2LQpOuCasVu3Rnm8xnoj9TkOURRqv9e76YbWcmNEZE4MbIl88LcqG8qas+Hk2aqyjntAkJTkb+VSgMMB7NtnTIF0fZunfK30aQtuz54V8NxzVbXtU0UD8lCddWMtFmDo0BpcdVWC3/xlqZFCfDywcmU5Tp1yBp4OBzB8uHHtfk+eFDB0qOeHuVWrKnH//XGoVpGJ0qOHHTk5NmRn2wL6QChVRHDSM8/yjSj01J8mInNgYEukQE0w1xhWd+x2YPZs5fJKUkCQna2uFJpRZdD8FbbXKjVVxLBh1V6rif60bCmiVy+7bPcqPZvYtm6Nwp49Vj+d0dzOVNtZyWoFMjOd12V+vrF/4pW6hj34oE3VBrZHHnFWFAn0A6G/7lJ6gl12piKKDAxsiWT4q5XZmFZ3du2CqlaVaruNGVUGTSrvM358XO3mKu1BTbNmDowY4UwpkVYNpdXE4mIBc+bEKqYY1O8IVT81RUohAOq33VUX7ObmRiMhQftcuX9wUD/Xvsck5dgqdQ37299iEBvrQFWVct5r06YievdWFzB65ngDV14JVwqEOoF/oGgI9aeJSBkDWyIZ7Dtep7hY3fOSk5272p0rlsq3+rW02/VHqnXrvVKqzh9/CFi5MtrjVrj7amJcHGRTDJSqX9RfibzySgfmzInHL7/UPSc1VURFhYizZ/2vNJ87p31znHswq35V2/c4RNE9OJf/oJeQAFRVAd5BpfMbX3pJXaUQ+fSfBCxcWKXpQ5H3hx11wW5DqT9NRPLCv6WYyITYd7xOSora54l48klfpbicczV3rrFdodzL+7zySgWaNfPfzlfir1NVIB2hpFJSGzdG4ZdfBDz1lLN279//XoEFCyqRnV2FiROrVewS1l7ntn65LKM6uGVk1NSmRCg3RTh92oIZM2xo1cp7rvLy1KXt+GuVW1oqqOoutWqV/M8sKYmdqYgiHVdsiWQ0hr7jStUe6uvdGz5X/dxvyTvbofpeGay/0q12HL6e575SeuiQFbm53rfMlfhbfddS/UJutdEpzqssWEKCiHPnVA/T36sAIF8/WQrOH3001quaQFycA5WVxq1vXHqpAwcPntO1McxX+s/cubF48skqTJzonX7ivoqekVGDwYO9f2Zbt0bJpq405PrTROSJgS2RDH+3cOvnVzY0WmrwSg0pxo3zHxBs26YuKpBWun2Nwz2YPHrUgry8aJw+7X+8gwbVaAps649JjprNTkqbDSWOegvJ6oNa/7fQLRbg/vttiivI33xjcStzVXcsZ06s/xq3BQXq3ipathSDtjFM+gCSnCzKpp/ULxkmNw6l1BUt5caIyNzYoKGWWQsws0C0PnrmTwpUAMgGcw21KoJnAOb7dbnPn686thkZNbDbgQ4dElQ1Tdi0qRxnzgiK4xBFIClJ9FMRwNlUoP7PQcs46o8p0Hxpux211QK01rJV015X7jmeAarSNVlQEIXZs2M9mhEoH9/XOJw1iJ25tsof9PS0kVbbKnf58gpkZtaoXumXo+d7Q3lMvfj+oQ/nTx82aCAymUhc3dFT7cHfLfnCQquqYDI52YGuXe3o1k2+PqszcBJ9FOGXCBBFEbNnx+KnnwT8/LMFf/qTA2PHVuPZZ6tqGwd4H9/rKAasvvsvQ6V49gCf4/9n528FWesYnCvOYtBu42tN/9FTQ9ro+tOR3IWQqKHh5jEiHyKt73hdAKa8CaioyFKbK+tNCggyM2vQq5fnipTajXTDh9dg3z7f43A+ri7gKi62YN68OKxeHYM5c+LQtm1THDxowZQpNv/f7SMokzaB5edHYfduq88Nb1u3Bn+N4Pbbfb8e95+drw8wekyebNO0kU4LKf2noW3u8rfhTW0aBxEZg79xRH6YobuYUbc5g1ntQe2K26BBNUGtJuFwAMuWxeCWW2qQmCi62s3KUVp917ICV1AQhdzcaGNfhIy2bdXN765dVnzySaAryL7dcosd8+YF1jXMH191ic26uYv1ronMhyu2RCZXUBCFzp0TMGxYE9x3XzyGDWuCzp0TAloJCla1B7vd+V9iogPypb48V9yCW03CGWBs2xYlE9SKAERMmmRTXH3XsgLn2eI1gJHWzklKiv+VSrUfrpYsiVXVBSyQMUhBrPQzLCkRXCvERlAqr5aaqn9VWMsKvFp674AQkfG4YktkYka39Q1GtQf5Elfym5ukFTej2+F6U05xEATnLv/58+XTD7SswGnLrVWeEwB+Vyp79rSraoARyOa1e+6pxtmzQu3Ks++fndzPOyXFgaysalx6qUP3Kq57Lrez81g8rrzyHCw6lmGClQPLetdE5sMVWyKT8hdkAcqNBZT4KtgfyO1epdXN+urnYfpuHCBCadXXCL5W0bSuwGkJWOoHZu5zoqYRhNUKDBtWLY2k/sigPi+5TlKSiMREEYsXx9aWSBN8jtPXavbixbGuOwodOiRg8+bA103cc7lvugm6buMHMwe2MdS7JmpoGNgSmVSwbnMG0k1Lju8NSs7KBomJDrz3nvwtf6VxJCU5/62nU5YackGp1hU4tQHLggWV+OmnMp+bEP1tVLTbgU2bpFxeuflWy/nB4bbbqnHmjOBVfcL58xQxeXKVxxj8/7zrlJZaMGFCHObP115P2EjB+HDorqFueCOKZExFIDKpYN7m1NJNS4n/2/ACzp51rgAqHXfQoBo0ayZi924rBMG5Stezp7NDVP0ya+6Skhw4e1bQtetfLijVugKnJrWjdWsBEydWw2LxvwnR10bFwEuKeUpNdbY+njtXysOVT7n417+iMW+ezaOcm9bzL1sWg7Q0B269NTxVRNQ2fVDqOudPQ9zwRhTpGNgSmVSwb3PqrfagN/CWy3tcv74u79E98G7Rwtm04dSpuiB84cIYLFsWA+/OXL4bDvjKI9aag6wmsPnb35zP01ugXG+e5iOPVKF3b7ur9bHWgE/7+Z3PnzkzFoMHh6cqQChyYCOx3jVRQ8bAlsikzN7WV0/grXZTnK/AOyfHWdf11VdjPNrVWizAzTfX4N//jgKgbRUtkBU4X4HNokVVyMyMx6lTii9DtcDzNEWkpoqYPr1u9TWQgC/Q85eWWgJeEdVL7ZiPHdO3Em7EHRAiMgZzbIl0CEYJIYnRG73q0zv2QPMLjcx7zMmx4aefyrBgQSXGj7e5cllfe60S06fbcP752vOIA8lBDkUjD3/z7Uv96ySQDyV6zh+uqgA9etiRkqJcgs5JxBtvROv+3fXVvISIQocrtkQBCkUbzWDd5jRi7IHmFxqd9xgTA0yeXO36t9xrS0x0YNKkakybZlMVcASyAhfsRh7u8+2dfiFPEESsXOkdjAdyN8DXz9ufcFUFsFqBrKxqLF7sq66vgOLiwPNsichcuGJLpJHdDjz/fAzGjQtNG02jVwOVyh8VFQkYNy5OU5mmQFY31a7ebdumfclL6bX99puA556L0dT61owrcNJ8JyerCxTvvLMagwd7/wwCvRug9PNWXhENf1WASy91+H8SjFlVDuYdnIZwfiIzEERR75aGyHDq1B+6N3cEgyAAzZufZ9rxmZ3R81dQEIXZs2NRXKz8mVBa7Tpw4JwpgiF3djvQuXOCjyL/gMUiIje3ErfeWqN6/rS0/N2924phw5qoGK2IvDzltIH65+za1Y5u3ZRfWzh+LsH6/bXZgI4dE1Ba6r92ra/V6s2bozBzZixKS7Wt3LvP/bZtVvzjH9Ey4xAhCNDVMcyI+VN7vW3aVK5rxTYUd3ACOf/LL1vQpw/fPwLB9199jJ4/6Xh+n8fA1smsFy5/sfQxcv48Nzz5X93R+0YZDFqDyiFDagy//tQE19IYEhOdK789e3oGynJv4snJDo8ATYnan4uWYF1JMH9/CwqiMG5cnHQmt6/IpykkJTnwwgt1QZbSHD77bJXm8lyBBsj+GDF/0vXmL+1Czwcepb8N0uq33nbA+s4vIC+vQnblnnzj+68+4QpsmYpApILv4vTyzNhGU8uY9BSu98X9NrhvAs6etWD48Cbo3DnBld6hlG7gXL30T80cFBREoXPnBAwb1sTVTevKKxPw/PMxXnOi9/av8beP5V/fmTPOVJOCgijFOTx9WsDEidpTaW69tQb/7/8Fd/NcoEKxCTOYTSDMfn4is2FgS6SCvy5gcszYRlP9mALraqZWRkYNJk2q9v/EWlLu8ubNUaq7XynxNwdKQd/ZsxYsXhyLq67yDLLrB8DuQbg/gX6/FMw4qb0mnc+bPTsWs2cbHwjJ5SSbJefTqG57coLVIdC48wPHjwfv/ERmw6oIRCpoWek0sr6sEbfD3Um74f2nATgFc9V50KAa5Oaqa7kqdcOaNSsWp04F9nlczc9Fzcq8tPI5ZYoNr7wS47MW75AhygGT2lq+cgLvQuasAOCL3m5ckmClJwQqWLVmQ9EEwsznJzIbrtgSqaB+pdO4Npp6VwPlqE8DcKr/uo1cgdNaF1UUBQ1BbWC3nNWtzDu/9uqrMQGveuq9fRyKIEXPOebPj8GECXFeOc9FRcZXDdEiGJUugt0h0OznJzIbBrZEKqgNwoy4tQko3w43opxYRkYNVq2qhMWi/FrkmisYHWj7yn3Uq345LLU/F/XBnACHQ3nV29/tZ723r0MRpAR6js2bo2pbHcsRIIqRlfMZaKOS0J0fuOii8JZcIwolBrZEKvgOwkQAImbMqMIXX+jfMBOMzSD1V1oHD65Bbm6la+zu5FY3gxVoK9dFVZac7D+IOHw4sI1MRgeMSoGy3tvHgXYBc6ZjOJCSEpxAzG4HZs6MhfO6VXqNwc05DbVgb04z+/mJzIaBLZFKSkFYaqqzNNZjj6nrauWP0ZtRlFZaLRYgL68Sqam+VzftdgRls5FEakCxcWM5EhOV259KAdezz/p/E4+JCeyWsxQw+m7Bqp5SoKz39rH/D1repOctWlSFRYuCEwgVFlpVlVwDIivnM5ib0/ScPzVVxMaNMEV1CqJQ4eYxIg2CtQHFnZGbQdRsUDpw4JzP17NrFwxtgSvHagX69LFjyZK6lrFKLXozMmpgsehvM6y0MU9qG+ss8a00x87mA0qbzPxtVAukpW19Su2WU1NFdOtWgx07rDh7tu7nVn9+gtGqWUuwGmk5n6H426D1/Ndfb0fLlufh1KnQjIHIDBjYEmkkbUAJFqM2g/hLaRAEEdnZsRg0qMbn6ykuVjUcQ1bglIK1+gGX3iDCX5eo1asr8eijsThzRj7oFEWgSRPg3Dn5rwO+Vz3dA2jn8eSDeH+vR2keAOCzz6zYvdsKUXRer/VXroMRiKm9dpOTIzPnM9h/G7SeX4icRXEi1RjYEpmMEat5gP+SUGpXWlNS1I3bqBU4tQFXoEGE2jJbgwbVYOnSGOTmRnusfCYmijhzRsC5c/LHT0wUPTp8+XqdRqya1p8HuaD9nXfky2wZHYj5LyfnnPRnn2XOJxEFBwNbIpMxajXPqJSG3r1hSKCtRbBWvrSsYlutwGOP2TBtms0VZDdvLmLqVLk2tq6jID7eWaNXDaNWTaW0im3brFixwrsigRS0r1xZieRkMWi3ytWkckyZYtPcspeISC1uHiMyISM2oxiV0mC1ImibjUItkI157rVPrVaguNhXnVvtO/711lZ13xy4YoV8RQJRdJbZmjQpztC6yHKka7f+psTmzR1YtaoSOTk2Q89HROSOK7ZEJqV3Nc+olAZpLMHYbBRqelexzdblSSmtQp4Ah8PzETVdzgIR7o1URNR4MbAlMjE9t+SNSmmQmDFY0dpyWO8qtpm6PKlp/+uPXPqFUcK9kYqIGiemIhBFMKPrawajJWmgAumEprdLVLi7TLlT1/7XP611kYmIzIyBLVGEkxogBNKJy6yUOqEVFQkYNy4O2dmx2L3b6tU0Qm+XJjN1eTI63SGSGiYQUePFwJaoETDTSqtevm/BOzdO5ebGKK7g6l3FDneXKcmxY8b++Y60hglE1Dgxx5aokdGal2o2/urzulPaHKU3Xzjc+cZ2O/DGG9Fw1oX1v9JqsYi1G8dCU66NiChcGNgSNSL+Om41BFpumfvaHKV3c1M4N0cVFlpry475lpFRjfHjq1FaKmDiRN+tihvShxsiIiVMRSBqJJTyUqVVTaPrmQaL1lvmkbg5Sm1wn5HhTD259VZzpE8QEQVbw3gnIyJdtHbcMjN/9XmVRNLmKLXB/cmTAux25+pyuNMniIhCgSu2RI1AIB23zMpXZQJfImlzlL+yY5I5c+I8NtCFYhOh3Q7s3m1Ffn6UbGUKIqJgYmBL1AiYrWOWXkqVCeSEsrZsqPgO7j3/HcpUk0BqCxMRGYmBLVEjYKaOWUZxr887eXIVADHstWVDSTm49041AZypKEasniqtyEZKDjcRNWwMbIkaATN1zDKSdGt9wQIb8vIa3+YoKbhfsKDS5/OMSjVRWpHdvDnKZw43YFxgTUTkCz9CEzUC0q3r8ePjIAiRWfIpXJujwl0X2GoFWrRQt9KuJ9VEWpEV652quFjAhAlx8FVP1xlYCygstIatRBoRNQ4MbIkaCenWtbOObV0QkpIiNqg6tr6EurasWeoCBzvVxF9Vjfp5vUoaSg43ETVcDGyJGhGWfDKOrxVMqdvZkCGhCW79lUDT213Mf7c3dQFrQ8rhJqKGiTm2RI1MKEo+RTr/K5ihzSn1VSXBiFQT9SutkZXDTUQNDwNbIiKNzFgXWKlKghEb6LSstDamyhREZD5MRSAi0sisdYGDlWqiNtXhySerMHdu5OZwE5H5MbAlItLIzHWBg7GBTm1VjYyMGgwezBxuIgofpiIQEWkUqXWBfVGb6sAcbiIKJ67YEhFp1BjqAsthVQ0iMjsGtkREGkgNGWw2YPp0G954IxrFxY0npzTUtYKJiLRgYEtEpJJcQ4aUFAdmzKjCpZc6uIJJRBRmzLElIlJBasjgvuMfAE6cEPDcczGIiQFzSomIwoyBLRGRH2ZryEBERPIY2BIR+WHGhgxEROSNObZEDYS0aYm70UPPrA0ZiIjIk2lXbCsqKnDXXXchPz/f5/MOHz6MO+64A2lpaUhPT8eGDRtCNEKi0CkoiELnzgkYNqwJ7rsvHsOGNUHnzgkoKOBn01Awc0MGIiKqY8rA9vvvv8eoUaNw6NAhn8/77bffMGnSJNx2223Yt28fFi1ahKeffhpffvllaAZKFAJKm5aKiwWMHx/H4DYEGmNDBiKihsh0ge2ePXtw7733YtiwYUhNTfX53A8++ACJiYkYNWoUoqKicP3112PIkCFYt25diEZLFFzctGQOUkMGAF7BbSQ3ZCAiamhCvtRTWVmJkpIS2a+1aNECV1xxBT7++GPExsbitdde83ms77//Hu3bt/d47LLLLsPGjRs1j0swaWqcNC6zjs/sGvr87d1r9aiZWp9z05KAvXutQSma39Dnz0hDhtQgL68Ss2fHeqyep6YqN2Tg/OnD+dOH86cP508fo+dP7XFCHtgePnwYo0ePlv3asmXL0L9/f9XHOnfuHOLj4z0ei4uLQ3l5ueZxJSefp/l7Qsns4zO7hjp/ai/l8vImaN48eONoqPNntDFjgKwsYNcuoLgYSEkBeve2wGqN9/l9nD99OH/6cP704fzpE+r5C3lg2717d3z77beGHCs+Ph5//PGHx2OVlZVISEjQfKzS0j9qb/eaiyA4Lwqzjs/sGvr8NWliBdBExfPKcepUcFZsG/L8BUuHDs7/AODMGeXncf704fzpw/nTh/Onj9HzJx3Pnwa966R9+/bYvXu3x2NHjx5Fu3btNB9LFGHqC9fs4zO7hjp/3bs7Ny0VFwuunFp3giAiJUVE9+72oL6+hjp/ZsH504fzpw/nTx/Onz6hnj/TbR7TYsCAATh16hTWrFmD6upqFBYW4l//+heGDx8e7qERGYKbloiIiNRrcIHt4MGDsXz5cgBAUlIS8vLysG3bNnTv3h3Z2dnIzs5Gjx49wjxKIuNkZNRg9epKpKR4BrYpKSJWr66U3bRERETUGAmiyAV2ADh1ypw5NIIANG9+nmnHZ3aRNH/h6DwWSfMXDpw/fTh/+nD+9OH86WP0/EnH86dB59gSNSZWK4JS0ouIiChSNLhUBCIiIiIiOQxsiYiIiCgiMLAlIiIioojAHFsiogYoHJsJiYjMjoEtEVEDU1AQhezsWBQV1d10S011YOHCKpZ/I6JGjakIREQNSEFBFMaPj0NRkWcnuuJiAePHx6GggOsVRNR4MbAlImog7HYgOzu2tiakZ2ArtVzOzo6FnVXhiKiRYmBLRNRAFBZaa9MPBNmvi6KAoiILCguZbEtEjRMDWyKiBqKkRD6gDfR5RESRhslYREQNRMuW6vpSqn1esLBiAxGFCwNbIqIGokcPO1JTHSguFlw5te4EQURKijOQDBdWbCCicGIqAhFRA2G1AgsXVgFwBrHupH8vXFgVttVRVmwgonBjYEtE1IBkZNRg9epKpKR4BrYpKSJWr64M26ooKzYQkRnw4zMRUQOTkVGDQYNqTJXHWlexQZ6zYoOAwkIrevVidEtEwcHAloioAbJaYaoAkRUbiMgMmIpARES6NZSKDUQU2RjYEhGRblLFhvqb2iSCICI11RHWig1EFPkY2BIRkW5mr9hARI0DA1siIjKEWSs2EFHjwc1jRERkGDNWbCCixoOBLRERGcpsFRuIqPFgKgIRERERRQQGtkREREQUERjYEhEREVFEYGBLRERERBGBgS0RERERRQQGtkREREQUERjYEhEREVFEYGBLRERERBGBgS0RERERRQQGtkREREQUERjYEhEREVFEYGBLRERERBGBgS0RERERRYSocA/ALAQh3COQJ43LrOMzO86fPpw/fTh/+nD+9OH86cP508fo+VN7HEEURdGYUxIRERERhQ9TEYiIiIgoIjCwJSIiIqKIwMCWiIiIiCICA1siIiIiiggMbImIiIgoIjCwJSIiIqKIwMCWiIiIiCICA1siIiIiiggMbImIiIgoIjCwDaPTp09jwIAB2Lt3r8fjBw8exDXXXOPzex0OB9LS0tCpUyekpaW5/isvLw/mkE1Fbv7+/e9/Y+jQobjuuuuQnp6Ov//973A4HIrHWLlyJfr06YNOnTohKysLx44dC8XQTUHv/DX2a1Bu/tatW4ebb74ZaWlpuPnmm/Hmm2/6PAavv8Dnj9ef/PsHAPz666/o2bMn8vPzfR6D11/g88frz3v+cnJy0KFDB4/5eOeddxSPEbTrT6Sw2L9/v9i/f3+xffv2YmFhoSiKouhwOMQNGzaInTp1Etu3b+/z+7/99lvx6quvFquqqkIxXNORm78jR46I1157rbh9+3bRbreLR48eFfv27SuuXr1a9hj5+fli7969xe+++06srKwUn376aXHw4MGiw+EI5UsJCyPmrzFfg3Lz99FHH4ldu3YVjxw5IoqiKB4+fFi85pprxD179sgeg9efvvnj9ec5fxK73S5mZWWJV1xxhfjee+8pHoPXn7754/XnPX/Dhg0T8/PzVR0jmNcfV2zDYNOmTXjssccwbdo0j8efeOIJbNiwAQ899JDfYxw5cgSXX345YmJigjVM01Kav+PHj2PEiBHo27cvLBYL/vznP2PAgAHYt2+f7HHeffddjBw5Eu3atUNsbCweffRRFBUVyX6CjyRGzV9jvQaV5i89PR3bt29Hhw4dUFNTgzNnzkAQBDRr1kz2OLz+9M0fr79psl9ftmwZWrVqhZSUFJ/H4fWnb/54/XnOn81mw3fffYcOHTqoOk4wrz8GtmFwww034D//+Q/+8pe/eDz+8MMP45133sFVV13l9xhHjhxBVVUVhg8fjh49emDUqFH44osvgjVkU1Gav4EDB+Lxxx93/buyshI7duzA1VdfLXuco0ePon379q5/R0dH409/+hO++eab4AzcJIyav8Z6DSrNHwA0bdoUx44dw7XXXotJkybh7rvvVvx95vWnb/54/XnPX2FhIbZs2YKcnBy/x+H1p2/+eP15zt8333yDmpoavPTSS+jZsycGDhyI3NxcxVS2YF5/DGzDoEWLFoiKivJ6vFWrVqqPERcXh2uvvRavvPIKduzYgfT0dIwfPx4///yzkUM1JaX5c1dWVoYpU6YgLi4OY8aMkX3OuXPnEB8f7/FYXFxcxOdIGTV/jfUa9Dd/bdq0weHDh7Fx40Zs2bIFubm5ss/j9SdP7fzx+vNUWlqKJ554As8//zwSEhL8HofXnyet88frz9Mff/yBbt26ISsrCzt37sRzzz2HN954A3l5ebLHCeb1x8C2gZo1axaeeuoptGzZEnFxcRg/fjxSU1Oxc+fOcA8t7I4dO4YRI0agpqYGa9euRdOmTWWfFx8fj8rKSo/HKisrVf1Ri2Rq54/XoLzo6GhER0fjmmuuwejRo1FQUCD7PF5/8tTOH6+/OqIoYsaMGcjKylJ9K5jXX51A5o/Xn6devXph7dq16NatG6Kjo3Httdfi3nvvxfvvvy/7/GBefwxsG6ilS5fiq6++8njMZrMhNjY2TCMyh507d+KOO+5A7969sXr1apx//vmKz23Xrh2+//5717+rq6vxww8/eNweaWy0zB+vQU9r1qzBX//6V4/HbDab4hzy+vOkdf54/dUpLi7G559/jmXLlqFLly7o0qULioqKMH/+fEyePFn2e3j91Qlk/nj9efrwww+xfv16j8dsNhvi4uJknx/M64+BbQP13XffYdGiRTh58iRsNhv+/ve/o6ysDAMGDAj30MLm0KFDmDJlCh5//HHMnDnT7+324cOH480338Q333yDqqoqvPDCC2jevDm6dOkSohGbi9b54zXoqUuXLvjwww/x/vvvw+Fw4MCBA1i7di3uvvtu2efz+vOkdf54/dVJTU3FkSNHsH//ftd/qampyMnJwYoVK2S/h9dfnUDmj9efJ1EU8fTTT2PPnj0QRREHDx7E2rVrcdddd8k+P5jXHwPbBmL//v1IS0tDUVERAODpp59G27ZtMXToUHTv3h2ff/45XnvtNSQmJoZ3oGG0fPly1NTUYNGiRR519CZMmADAew5vv/12jBkzBlOmTEGPHj3w1VdfYcWKFYiOjg7nywgbrfPHa9BThw4d8NJLL2H58uXo0qUL5s2bh9mzZ7s2WfD6803r/PH604bXnz68/nwbMGAAHn/8ccybNw9paWmYPn06pk6diqFDhwII7fUniKIo6j4KEREREVGYccWWiIiIiCICA1siIiIiiggMbImIiIgoIjCwJSIiIqKIwMCWiIiIiCICA1siIiIiiggMbImIiIgoIjCwJaIG7Ycffgj3EIiIyCQY2BKRT+np6bjmmmtcncg6deqEG264Ac8++ywcDodh58nKysLLL78MAJg7dy7mzp3r93u2b9+O8ePHB3zO/Px8pKenez1eUVGBbt26Ye3atbLf9+ijj+KBBx4I6Nih8Pvvv2P48OH4/fffsXfvXlx++eVBP2dRUZFHx7orrrjC47qROtiFSnl5OcaPH4+OHTti1KhRIT23Gu7Xh/vPi4j08d0MnogIwPz585GZmen697fffosxY8YgPj4eDz30kOHne/LJJ1U97+zZswhG88T4+HgMHz4cGzZswOjRoz2+dvr0afz73//GqlWrDD+vURYsWIA777wTzZo1C9k5U1NTcfDgQde/09PT8eCDD3pcN6H09ddf49NPP8XevXtN3+a0WbNmGDFiBBYuXIjFixeHezhEDRpXbIlIs8svvxxdu3bFV199BcC52jpr1iz07dsXN910E8rKyvDTTz/hvvvuQ/fu3dG3b18sXboUNpvNdYwNGzagX79+SEtLw8yZM1FRUeH62qxZszBr1izXv19//XUMGDAAaWlpyMzMxJ49e7B3717k5OS4VgpLSkpgs9nw4osvol+/fujWrRsmTpyIH3/80XWc//73v8jKykJaWhqGDBniGr+ckSNH4ujRozh06JDH4xs3bsQll1yCHj16YPv27RgxYgSuv/56dOzYEffcc49saoTcqmn917hlyxYMGTIEnTt3RmZmJj799FPX1/bt24fMzEx06dIFAwYMwKJFi1BTUyM77u+++w47d+7EsGHDFF+bu8rKSixevBg33ngjunbtiqysLHz55Zeur//yyy8YP348rrvuOtxyyy1Ys2ZNwCvAs2bNwkMPPYRBgwahR48e+Omnn/DFF19g9OjRuOGGG3DNNdcgMzPTNed79+5Feno6Xn31VfTu3RvdunXD1KlTUVZWBgAoKSnBhAkT0K1bN/Tp0wcPPvggfv31V3z44YcYO3YsAKBv377YsGEDHA4HcnNz0b9/f3Tu3Bm33347du3a5Rpbeno65s6di169euG2227Dnj17kJ6ejlWrVqFXr17o3LkzlixZgo8++ggDBw5EWloapk6d6rqm9V57Q4cOxY4dO/Ddd98FNLdE5MTAlog0qa6uxt69e1FYWIhevXq5Hv/ss8+wfv16bN68GRaLBWPGjEG7du3wySef4K233sJnn33mSjXYs2cPnnzySSxcuBD79u1Dx44dceTIEdnz5efn45VXXsHixYtx4MAB3H333bj//vtx+eWXY/78+a6VwpYtW2Lp0qXYsWMH1qxZg127dqFjx44YN24cqqqqUF1djcmTJ6Ndu3YoLCzEkiVL8OGHHyq+zjZt2uDGG2/Eu+++63rM4XDgnXfewejRo3HixAk8/PDDmDRpEvbs2YMdO3ZAFEUsW7ZM85zu3LkTOTk5mDt3Lj7//HNMnToVU6dOxffffw8AmDFjBrKysrB//3689tpr2LZtGz766CPZY7399tvo378/YmJiVJ173rx5+PTTT7F27Vrs3r0b/fv3x5gxY1BUVAS73Y7JkyfjwgsvxKefforVq1fjH//4h+bX527Xrl148cUX8cEHH+DCCy/E/fffj4EDB+KTTz7B3r170bZtW49Vy+PHj6OkpAT/+c9/sGHDBhw8eBBvvfUWAGDJkiVo1aoVdu/ejffffx/l5eWu4HXlypUAgIMHD+KOO+7AsmXLsG7dOrz44ovYu3cvxo0bhwceeMAjiP/yyy+xdetWrF27FhaLBcePH8fJkyexY8cOLFmyBCtWrMC6devw7rvvYvPmzdi7dy/ef/99ANB97cXExKBfv35Yv369rvklauwY2BKRX/Pnz0eXLl3QpUsXXH/99ViwYAHGjh2Le+65x/WcPn36oGXLlmjWrBl27NgBm82GRx55BLGxsUhJScHDDz+MdevWAQA2b96Mm2++Gddffz2ioqIwcuRIXHXVVbLn3rRpE+666y6kpaXBYrHgjjvuQF5eHuLi4jyeJ4oi1q9fj0ceeQRt2rRBbGwspkyZgurqauzYsQMHDx5EcXExZsyYgdjYWLRr1861qqdk9OjR2Lp1q2uFcNeuXSgrK8OQIUNwwQUXYMuWLUhPT0dZWRlOnDiBpKQklJSUaJ7fN998E3fffTe6du0Kq9WKvn37Ij093RXkxMbGYuvWrfj444+RmJiInTt3YuDAgbLHKiwsRFpamqrzVlVVoaCgAI8++iguvvhixMTE4N5778Wll16KgoICHDp0CD/88APmzJmDJk2a4KKLLsK0adM0vz53nTp1Qvv27dGsWTNER0fjnXfewciRI2Gz2XD8+HEkJiZ6zeGUKVMQFxeHiy++GN27d8f//vc/17wcOHAAW7Zswblz57Bq1SpkZ2fLnve9997DpEmTcPXVVyMqKgp/+ctfkJ6ejo0bN7qeM3DgQDRr1swjhWPy5MmIjo7GDTfcAAC4++67cf7556NNmzZo164dfvnlF8Ouveuuuw579uzRNb9EjR1zbInIr5ycHL+5khdeeKHr/48fP47Tp0+ja9eursdEUUR1dTVKS0tRUlKCq6++2uP727RpI3vckydPIjU11eOx6667zut5p0+fRnl5OR5++GFYLHWf2aurq3H8+HHYbDYkJSV5BMRt27b1+Zp69uyJlJQUFBQUYMSIEXjrrbdw1113IS4uDqIooqCgAOvXr4cgCGjfvj3KysoQFaX9z+rx48fx+eef4+2333Y9Zrfb0aNHDwDOVIyXX34Z8+fPx8mTJ9G7d2/MmzcPrVq18jpWcXExWrZsqeq8v/32G6qrq9G6dWuPx1u3bo1ffvkFF110EZKSktCkSROPr+nhfp1YrVbs3bsXEydORHl5OS677DJERUV55U23aNHC9f/R0dGur2dnZ2PFihVYvXo1Zs2ahSuuuALZ2dno0qWL13lPnTrldY21bt0a33zzjezYJElJSa6xAvAIei0WC0RRNOzaa9myJU6cOOH1OBGpx8CWiAwhCILr/1u1aoW2bdti27ZtrsfKyspQWlqKCy64AK1atcLPP//s8f0nTpxAu3btvI6bkpKC4uJij8eWLl2KW2+91eOxpKQkxMbGIi8vD506dXI9fuzYMbRs2RJff/01Tp8+jXPnziEhIcF1Tn9GjRqFDRs24MYbb8Tu3bsxf/58AMDWrVvx5ptv4u2338bFF18MwLlpSy5HUgqKbDabK0XgzJkzrqCpVatWuO222zBp0iTX9xQVFSEuLg5VVVU4evQo5s2bh6ioKPzvf/9DdnY2nnrqKbz00kte5xIEQfWGuubNmyM2NhY///wz/vznP7se/+mnn5Ceno7U1FScPn0aFRUViI+Pd41LD/fr5PDhw1iwYAHWr1+PDh06AADy8vJcK7L+fPXVV7jrrrswdepUnD59GsuWLcODDz6IwsJCr+dedNFFXtfczz//7BHMuo/N12P1GXXt2e12j8CYiLTjbxARGa5v376uW8M2mw2///47Zs6ciWnTpkEQBAwfPhwffvghPv74Y9TU1GDTpk04fPiw7LEyMzPxzjvv4Msvv4TD4cB7772HdevWuYKJiooK1NTUwGKx4Pbbb8cLL7yAEydOwOFwYNOmTcjIyMCPP/6ItLQ0XHLJJVi4cCEqKirw448/Ii8vz+9rGTZsGH788Uf87W9/Q//+/V2rpH/88QcsFotr9faTTz7BP/7xD1RXV3sdo23btoiKisKWLVsAOPOR3YOvO++8E2vXrnXlex45cgSZmZkoKCiAIAh45JFHkJeXh5qaGrRo0QJRUVGuoLi+iy66SDYd4sSJEx7//frrr7BYLBg+fDiWLFmCH3/8ETabDa+//jqOHj2KwYMHo2PHjrjsssvwzDPPoKKiAiUlJbLBdKDc5xAADh06hLVr13psMvRl+fLlWLBgAcrKytCsWTPEx8crzssdd9yB3Nxc/N///R/sdju2bt2K7du3q95k54tR196vv/7qdXeCiLThii0RGa5p06ZYs2YNnnnmGaxatQoOhwPdu3fHq6++CgDo3LkzFi9ejGeeeQbTpk1Djx49PDaiuRsyZAh+//13TJ8+HSdPnsRll12GlStX4oILLkDXrl2RnJyMrl27Yv369Zg5cyZefvlljBw5EmfPnkWbNm3w0ksvufJ3c3NzMXfuXPTs2RPNmzdHv3798MEHH/h8LU2aNEFmZiZef/1116YlwBnwHjhwAIMHD4bVasWll16Ke++9F+vWrfMKzC688EI88cQTeOWVV7BgwQL06NEDmZmZrkoQt9xyC8rLy/HEE0+gqKgIiYmJGDNmDLKysiAIAl599VU8++yzWLFiBaxWK/r06YPHHntMdry9evXCgQMHcOedd3o8fuONN3r8u3nz5ti9ezdmzJiBl19+GWPGjMHZs2dx+eWXY/Xq1bjkkksAAC+99BJycnJw/fXXo1WrVkhPT8fXX3/tc87U6tWrF0aOHIlRo0bB4XCgdevWyMrKwgsvvIBTp075/f4nn3wS8+fPR79+/WCz2dChQwe8+OKLss8dO3YsHA4Hpk2bhpMnT+Liiy/GkiVL0K1bN0NeixHX3oEDB1y5vEQUGEEMRhFIIiIKi2+++Qb33nsvdu7c6bXBTqvKykocPHgQ3bp1c6VTbN++HTk5OR6lski/iooK3HTTTXjzzTdlU3KISB2mIhARRZArrrgCvXv3Rn5+vu5jRUdH469//SveffddOBwOlJaWIi8vD3379jVgpOQuPz8fN910E4NaIp24YktEFGHOnDmDcePGYc2aNTj//PN1HWv//v1YvHgx/vvf/yI2NhYDBw7E9OnTPSolkD6//fYbxowZg9dee830XdKIzI6BLRERERFFBKYiEBEREVFEYGBLRERERBGBgS0RERERRQQGtkREREQUERjYEhEREVFEYGBLRERERBGBgS0RERERRQQGtkREREQUERjYEhEREVFE+P89VWlmYLtbjwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "# Calculate residuals\n", - "residuals_log = y_test_log - y_pred_log\n", - "\n", - "# Plot residuals vs predicted values\n", - "plt.figure(figsize=(8, 6))\n", - "plt.scatter(y_pred_log, residuals_log, color='blue',)\n", - "plt.title('Residuals Plot (Log Transformed)')\n", - "plt.xlabel('Predicted Values (Log Transformed)')\n", - "plt.ylabel('Residuals (Log Transformed)')\n", - "plt.axhline(y=0, color='red', linestyle='--')\n", - "plt.grid(True)\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The model's residuals are randomly distributed, indicating no systematic bias. The log transformation visualizes residuals and patterns. A horizontal red line suggests linearity and normality are satisfied, but does not provide a definitive answer on model goodness fit and additional technique's could be used to assess the model." - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5EAAAIdCAYAAACk1/moAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByw0lEQVR4nO3de3zOhf//8ed1bbsMwxZjTjnWKsdhm0PCCDkTEQ0hNDn3kag5H/qEYo45dUCOSwwffSRSztKnIhUlbDFm2GZsu67r94fvrl/L6b3ZXBd73G+362bX+/i63u+X9/bc+zCT3W63CwAAAAAAA8zOLgAAAAAA8OAgRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgCAh47dbnd2CQDw0CJEAsADYOTIkQoJCbnt+NDQUIWGht7Hiu5dSEiI/P39M7yqVKmiZ599VtOnT9f169fvOP++ffvk7++vffv23aeKXYPNZtOaNWvUrVs3BQcHq0aNGmrfvr0+/vhjpaSk5Mg609LS9Oabb6pGjRqqUaOG9u7dq82bN6tRo0aqUqWKwsPD79qj/5TZ6Y26cuWK3njjDR08eDDbl/1Pt9ouf3fo0CH5+/tr0aJFt13Gtm3b5O/vr507d2a5jqxsSyPzREZGyt/fX2fOnMlybQAeTu7OLgAAkHs1aNBAYWFhjvfXr1/Xvn37NHfuXEVHR2vGjBm3nbdSpUpatWqVKlaseD9KdQnJycnq37+//ve//+nFF19Unz595OHhoX379mnatGnauXOn5s2bJ4vFkq3r3bVrlyIjIxUWFqa6devqqaeeUkhIiMqWLaupU6eqWLFiMpvN6t69u+FlhoWFZWp6o37++WetX79eHTp0yPZl/9Ottsvf1axZU+XLl9fGjRvVp0+fWy5j/fr18vPzU/369bNcR05tSwC4HUIkAMBpHnnkEVWvXj3DsODgYJ09e1aRkZEaOXKkihYtest5vby8bpr3YTdlyhR99913+uSTTzJ89qefflpPPfWUhgwZouXLl+vll1/O1vVeunRJktShQweVLl3aMaxevXoKDg7O0jIfffTR7CrPaW61Xf6pQ4cOmjZtmn799Vc9/vjjGcbFx8drx44deuWVV2Q2Z/3isIdhWwJ4sHA5KwA8pDZv3qwOHTooICBA9erVU3h4uC5fvuwYHxERIX9//5vm8/f3V0RERIbltGnTRlWrVlXt2rX1+uuvKzY2NsM8a9asUcuWLVW5cmU1bNhQERERSktLy3LtlStXlt1u119//SXpxqWvkydPVo8ePVSjRg2Fh4ff8nLWn376SX369FHNmjVVu3ZtDR061LEM6cYP/eHh4apbt66qVKmiF154QXv27Mmw7t27d6tz584KCAhQYGCgwsLC9Pvvv9+21mbNmmnAgAE3De/UqZP69u0rSTp9+rReffVVBQcHq1q1aurcuXOmL1+8ePGi1q1bp+eff/6W4fm5555T79695efn5xiWkJCgKVOmqEmTJqpSpYpatWqltWvX3jTvnfbfyJEjNXLkSElSkyZNFBoa6uibOXPmOC53/OflkXa7XcuXL1fLli1VtWpVPfvss1q4cKHjXsVbXU55tz4aOXKkevbsqXXr1qlZs2aqXLmy2rRp49iW+/btc5yR6969u+MS76xsf6vVquXLl6t169aqWrWqGjZsqGnTpjkus77VdrmV9u3by93dXRs3brxp3KZNm5SWlqbnn39e0o1LW7t27aqAgABVrlxZzZs317JlyxzTp/f8ypUr1ahRI9WtW1fffPPNTdvy2rVrmj59upo2barKlSurRo0aevnll/Xzzz/fVMOqVavUsGFDVa1aVT169NDRo0fvuF0OHjyol156SdWqVVNQUJDeeOMNXbx40THeZrNp5syZCgkJUeXKlRUSEqIZM2YoNTX1jssF8GAhRALAAyQtLe2Wr38+RGTu3LkaOnSoqlWrplmzZmnAgAHaunWrQkNDde3aNcPrO3TokF5//XU1bdpUCxcu1Jtvvqm9e/dq+PDhjmkWLFigt99+W3Xq1NH8+fPVrVs3LVy4UOHh4Vn+nH/88YckZTi7s3z5ckfAbdu27U3zHDt2TC+++KKSk5M1depUjR8/XkePHlWvXr2Umpqq69evq0ePHvryyy81dOhQzZ49W35+furTp48jSKaHjUqVKmnevHmaOHGifv/9d/Xt21c2m+2WtbZt21Zff/21EhMTHcNOnTqlH374QW3btpXNZlO/fv109epV/fvf/9bcuXPl7e2tsLAw/fnnn4a3yZ49e5SWlqZGjRrddpoRI0boueeek3QjSHTt2lUbNmxQr169NHfuXNWsWVOjR4/W/PnzHfPcbf+FhYXp1VdflSTNnj1bo0eP1qpVqyRJHTt21KpVq255tnjGjBmaNGmSGjRooHnz5qlTp0567733NHfu3FvWbrSPfvrpJy1evFiDBg3SnDlz5O7urkGDBuny5cuqVKmSY/rw8HCNGTMmy9s/PDxckydPVkhIiObNm6du3bpp2bJlCgsLk91uv2m7jBkz5pbLKVKkiBo0aKCoqKib/p+uX79ederUUalSpbRjxw4NGDBAlSpV0ty5cxUREaGSJUtqwoQJ+u677zLM99577+mNN97QG2+8cctfKIwYMUJr165V3759tWTJEo0cOVK//vqrhg4dmqGGs2fPKiIiQkOGDNGMGTN0+fJlde/ePUMo/LsDBw6oZ8+e8vT01Pvvv69Ro0Zp//796t69u+O4snDhQi1fvlwDBgzQkiVL9OKLL2rRokUZeg7Ag4/LWQHgAREdHa1KlSrddnxQUJAk6fLly44f2v/+g+3jjz+ubt26KTIyUl27djW0zkOHDilPnjx65ZVXlCdPHkmSt7e3fvzxR9ntdiUmJmrevHnq3Lmz3nrrLUk3Lq309vbWW2+9pZdfflmPPfbYbZdvt9sznGmKi4vT119/rZUrV+q5557TI4884hhXtGhRjRw50nHZ3z8fqDN37lwVKlRIS5YscdTq5+enIUOG6JdfftHRo0d17NgxrV69WtWqVZMkPfPMMwoNDdW0adO0bt06/fDDD7p27Zr69eunYsWKSZKKFy+uL7/8UlevXpWXl9dNn6FNmzaaNWuW/vvf/6p9+/aSpI0bNyp//vxq3Lix4uLidOLECfXv318NGjSQJFWtWlWzZ8++68OD/u7s2bOSpFKlShmaPjIyUr/++qtWrFihmjVrSpLq16+vtLQ0zZ07V126dJGbm5uh/Zd+ueSTTz6ZYf1+fn63DDFXrlzR0qVLFRoaqhEjRkiS6tWrp4sXL+rQoUM3TZ+QkGC4jxISEhQZGemoKV++fHrppZe0d+9eNWvWzHGPbMWKFVWxYkWdP38+09v/+PHjWrt2rYYMGeIIivXq1VPRokU1YsQIff3112rQoMFtt8s/Pf/88woLC9PBgwcVGBgoSTpx4oR+/PFHvffee451tmvXTqNHj3bMFxAQoODgYB04cEA1atRwDO/SpYuaN29+y3WlpKQoKSlJb7/9tlq0aCHpxrEhKSlJU6dO1fnz5x2h32q1avbs2Y59WK1aNTVp0kQffvihhg0bdtOyp0+frnLlymnBggVyc3NzzNOyZUutW7dO3bp10/79+1WpUiXH2dWgoCDlzZv3lv93ADy4CJEA8IDw9fXVvHnzbjnu72Hx+++/V0pKilq3bp1hmlq1aqlkyZLat2+f4RAZGBio9957T61bt9Zzzz2nZ555Rk8//bTjh/HDhw8rOTlZISEhGcJg+qV133777R1D5Pr167V+/foMw9zd3fXss89q7NixGYZXqFDhjveNHTp0SA0aNHAESOlGWNi+fbskafHixfL19VWlSpUy1NqoUSP9+9//1uXLl1WtWjXlyZNHHTt2VIsWLdSgQQPVqlVLVatWve16S5UqpZo1a2rTpk2OELlp0yY1a9ZMnp6eypMnjypWrKi3335bu3fvdmzDN99887bLvJX0z367M6L/tH//fpUsWdIRINO1adNGa9eu1f/+9z+ZTKZ72n+38/333ys1NVXPPvtshuHpl3/+U2b66JFHHslwD2D65bvJycm3XHaRIkUyvf33798vSTf9H2rZsqXefPNN7du3z/F/wIgGDRrI19dXGzZscITIzz77TN7e3mrSpIkkOR68c/XqVZ06dUp//PGHfvzxR0m66VLQW12Gns5isWjx4sWSpNjYWP3555/6/fff9dVXX920rBIlSmT4JYCvr6+qV6+u3bt33xQik5OT9b///U+9e/fO8Muf0qVLq0KFCvr2228dTwyePn26unbtqmeffVbPPPOMXnrpJcPbCsCDgRAJAA8Ii8WiKlWq3HJc/vz5HV+n3/dYpEiRm6YrUqSIEhISDK8zICBAH3zwgT788EMtXrxY8+fPl6+vr1555RX16NHD8WCR9Hv//umf907+U6NGjRz3E5pMJuXNm1clS5aUp6fnLWu/k0uXLqlw4cJ3HH/+/Pnbns09f/68KlasqGXLlumDDz7Q6tWr9eGHH6pgwYLq2rWrBg8efNsQ265dO40dO1bx8fE6e/asTpw44bis0mQyacmSJZo3b57++9//6rPPPpOHh4eaNGmisWPHytvb+46fK13JkiUlSTExMbcNdufPn5ePj4/c3d11+fLl2/aAdONsYfqljVndf7eT3hd/P5NsZHojdeTNmzfDOJPJJOn24Tor2z/9/5Cvr2+G4e7u7vLx8cnU/6H0+dq1a6fVq1fr7bffdtwj2aZNG8eTdC9evKgxY8Zo27ZtMplMKlOmjOMXAP+8DPZOfS7deGrs5MmT9fvvvyt//vzy9/d3HCP+vqxb9UfhwoUz3Eec7sqVK7LZbFq4cKEWLlx40/j0X9706dNH+fPn17p16/TOO+9o6tSpevzxxzVq1CjVqVPnjnUDeHAQIgHgIVOoUCFJ0oULF1ShQoUM486fP++4zzD9h2+r1eq4NC0pKemm5dWvX1/169dXcnKy9u7dq48//liTJ09W9erVVbBgQUnStGnTVLZs2ZvmvVvw8/b2vm0wzqwCBQrc8l6unTt36oknnlCBAgVUtmxZTZs27Zbzp1+OmH6pY0pKig4dOqRVq1Zp/vz58vf3d1we+E/NmzfXhAkT9N///ld//vmnihcv7ri8WJKKFSumsWPHasyYMTp27Jj+85//aOHChSpUqJDGjRtn6PPVrl1bHh4e2rlz523PgvXr10/JycnasmWLChUqdMt7/s6fPy9J8vHxcZxNyur+u530vrh48aLKly/vGP7XX3/pzz//vOns6L320d1kdvun/x86f/58hstUU1NTFR8fLx8fn0zX8Pzzz2vhwoX6+uuvlS9fPp09e1adOnVyjH/99dd14sQJLV26VDVq1JDFYlFycrLWrFmTqfWcOnVKAwYMUOPGjbVgwQLHWdvly5dr165dGaa9cuXKTfOfP3/+luE/f/78MplM6tmzp1q2bHnT+PRwbzab1a1bN3Xr1k1xcXHauXOn5s+fr4EDB2r37t3Z/udnADgHD9YBgIdMtWrVZLFYbnoa5MGDBxUTE+O4tyr9HqW/n3X45wM83nnnHXXs2FF2u1158+ZVo0aN9MYbbzjmq1atmjw8PHTu3DlVqVLF8fLw8ND06dPv6x8pr1Wrlnbt2qWUlBTHsF9++UV9+/bVjz/+qKCgIP31118qXLhwhlr37NmjRYsWyc3NTR9++KFCQkKUkpIii8WiOnXqaMKECY7PezsFChRQo0aN9OWXX+o///mPWrdu7ThrefjwYdWtW1c//PCDTCaTnnzySQ0dOlSPP/644z5HIwoWLKiOHTtq9erV+uGHH24aHxUVpSNHjjgeOhQYGKjo6Oib7kHcsGGDPDw8VLVq1Rzbf1WrVpWHh4e+/PLLDMM/+ugjDR482PELjHTZWUf6L0TSZWX7p/8C4J//hzZt2iSr1XpTCDaiXLlyqlmzprZu3aotW7aoWrVqGf7kx6FDh9SsWTPVrl3bEbS+/vprScYvYZZuPHjo+vXr6tevX4bLftMD5N/PRP75558ZftHw119/6fDhw7f8sy1eXl566qmn9Pvvv2fYR4899phmz57tuEe5S5cumjhxoqQbZzU7dOigbt26KSEhIcPDpwA82DgTCQAPGW9vb/Xt21ezZ8+Wh4eHGjdurDNnzmjmzJmqWLGi44+wN2jQQFOmTNHbb7+tV155RWfPntXs2bMzXBpbp04dLV26VCNHjlSbNm2UmpqqRYsWydvbW7Vr15a3t7f69OmjmTNnKjExUcHBwTp37pxmzpwpk8mkJ5544r597rCwMHXu3NlxqW1KSopmzpypSpUq6ZlnnlFaWpqWLVuml19+Wf3791fx4sW1e/duLVy4UC+99JI8PDxUu3ZtTZs2TQMGDNBLL70kNzc3rVy5UhaL5Y5PRZVuXNI6YMAAWa1WtWnTxjH8qaeekqenp0aMGKGBAweqSJEi2r17t37++WfHn6NISUnR0aNH5efnl+FPdPzTsGHD9OOPP6pHjx6O+8/S0tK0a9curV69Ws8884zj3roOHTpoxYoVeu211zRo0CCVLl1a27dv17p16/Taa685zv7lxP575JFH1L17d3300UeyWCyqXbu2fvzxRy1btkzDhg2Tu3vGHz98fHyyrY4CBQpIknbs2KFChQoZ2v7/VLFiRbVv316zZ8/WtWvXFBwcrJ9//lmzZ89WcHCw6tevn6Xt0rFjR02ZMkXu7u4aOnRohnFVq1bVxo0bValSJfn5+enw4cNasGCB475VoypVqiR3d3e9++676tWrl1JSUhQZGakdO3ZIunHPZbo8efIoLCxMQ4cOldVq1cyZM+Xt7a0ePXrcctnDhg1T3759NXz4cLVp00ZWq1VLlizR//73P8cDiAIDA7VkyRIVKVJEAQEBOnfunJYuXaqgoCDDlzcDcH2ESAB4CKX/sLxs2TKtWbNG3t7eat68uYYMGeK47KxcuXJ65513NG/ePPXt21cVKlTQhAkTHGfepBtPL502bZqWLFmi1157TSaTSTVr1tTHH3/suJdsyJAh8vX11YoVK7Ro0SIVKlRIderU0bBhwxw/0N8PTz31lD755BNNnz5dQ4cOVf78+dWgQQO9/vrrslgsslgsWr58uaZPn653331XCQkJKlmypIYPH65evXpJkp544gnNnz9fc+bM0bBhw2S1WlW5cmUtWbIkw2WZt1K/fn0VKlRIfn5+Ge5ZzJMnj5YsWaLp06dr0qRJunLlisqWLavx48c7An1sbKw6d+6s1157TQMHDrztOgoWLKhPPvlEy5Yt0+bNm7Vy5UrZ7XaVKVNGb775pjp16uQIaHnz5nVsj1mzZikxMVHly5fXpEmT1LFjR8cyc2r//etf/1KRIkX06aefasmSJSpVqpRGjRp124c6ZVcdjz32mFq1auW4fDMqKuqu2/9WJk2apDJlymjdunVavHixihYtqtDQUA0YMOCOD3i6k+bNm2vixIlKS0u76dLoqVOnZvj/V7ZsWY0bN04bNmzQwYMHDa+jTJkymj59umbPnq1XX31VhQoVUvXq1fXJJ58oNDRUBw8edDyYx9/fXy1bttTYsWOVkJCgOnXqaNSoUbcNe08//bQWL16s2bNna9CgQfLw8FClSpW0dOlSxwN6Bg8eLIvFonXr1mnOnDkqUKCAQkJCMvxZIAAPPpP9n3drAwAAAABwG9wTCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADDM3dkFwDXExSXIbnd2FXgYmUxS4cIF6DG4BPoRroaehKuhJ3O39P1/N4RISJLsdnGgQI6ix+BK6Ee4GnoSroaexJ1wOSsAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMHdnFwAAwP3m5sbvUHF/2Gx22Wx2Z5cBANmKEAkAyDXMZpOsNrt8fPI7uxTkEmlWmy5fukqQBPBQIUQCAHINk8kkN7NJg1ce1vHYRGeXg4dcxaJemtklQGaziRAJ4KFCiAQA5DrHYxN1JOaKs8sAAOCBxE0hAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMNyZYg8efKks0sAAAAAgAfSQx8i7Xa7hg8frurVqyskJERHjx5Vq1atDM8fEhKiyMhISVKfPn00f/78u84THh6u8PDwLNd8K8nJyercubOjlnQffPCBKlWqpICAAMfrvffey9Z1AwAAAEA6d2cXkNNiY2MVFRWlyMhIVapUSfv27VNqamqWlrVo0SJD040fPz5Ly7+d3377TW+88YaOHDmizp07Zxj3008/6dVXX9Vrr72WresEAAAAgFt5oEJkRESE1q5dq+TkZJUuXVphYWFq3LixvvzyS82YMUPR0dGqUaOGSpcurevXr6t79+7q2rWrJKlbt2569tlntXXrVklSQECAlixZooCAAMPrDw0NVVBQkNq2baumTZtq8+bNKl++vCTpxIkTatOmjb766ivNmDFDkjR16lRFRETot99+k8Vi0Y4dO5QvXz61bdtWw4cPlyRdu3ZNU6ZM0ZYtW5Q3b161b99eGzZs0JQpUxQcHKw9e/Zo+PDhevXVVxUfH39TTT/++KM6dOhwT9tVkkyme14EcEvpvUWPwRXQh3CW2/Uex0i4GnoydzO63x+YELl3716tWrVKkZGR8vX11apVqzR69GiVKlVKgwcP1uTJk9WiRQtt27ZNw4cPV+vWrfXUU08pKipKjRs3VlRUlEqVKqWOHTuqe/fuOnz4cJZrefTRRxUcHKzPP/9cQ4cOlSRFRkaqfv36Klq06E3Tf/HFF5o6dareeecdffPNN+rXr58aN26s6tWra/Lkyfrpp5/0+eefq2DBgho3bpyio6Md8z7xxBP66quvlCdPHi1dujTDcuPi4hQTE6PVq1frrbfeksViUfPmzTV48GDlyZMnU5+pcOECWdgSgHH0GIDcyscn/12n4RgJV0NP4k4emBCZJ08eXb58WatXr1ajRo3UqVMnde7cWREREapcubLatGkjSWrevLk2btyY4/V06tRJ06dP15AhQ2Sz2bRhwwaNGTPmltOWLVtW7dq1kyQ1aNBAvr6+OnnypCpVqqQNGzYoIiJCxYsXl3TjfsqoqCjHvD4+Pret4fz586pVq5Y6dOig999/X6dPn9aQIUOUnJx821puJy4uQXZ7pmYBDDGZbnwjosfgCtzdzfL2vvsP9EB2io9PktVqu+U4jpFwNfRk7pa+/+/mgQmRAQEBioiI0CeffKJFixbJ09NToaGhiouLU4kSJTJMW65cOV24cCFH62natKkmTJigffv26fr167Lb7WrYsOEtp/X19c3w3sPDQzabTZcuXVJycrJKlizpGOfl5XXH4Ph3TzzxhJYvX+54X6FCBYWFhWns2LGZDpF2uzhQIEfRY3AF9CCc5W69xzESroaexJ08ME9njYmJUeHChbV48WLt379f77zzjubPny9fX1+dPn06w7Rnz57N8XosFovatGmjqKgobdiwQe3atZO7e+YyeeHCheXp6amYmBjHsKtXr97y3sdb2b9/vxYsWJBhWEpKijw9PTNVBwAAAAAY9cCEyB9//FF9+vTRsWPHZLFYVLhwYUlSUFCQfv/9d61atUppaWnavXu34+E5t5J+r2BCQsI91/TCCy9o27Zt2r59uzp27Jjp+c1mszp27KiIiAidO3dOycnJmjJliqxWq6H58+bNq4iICG3cuFE2m02//fab5s6de9MTXAEAAAAguzwwIbJZs2bq1auXXn31VVWvXl2DBw/WqFGjFBQUpKVLl+qzzz5T7dq1tXDhQgUGBt52OY8//rhq1qyp+vXra+fOnfdU02OPPaayZcuqUqVKKlu2bJaWMXz4cJUvX14tWrRQs2bN5OfnJ7PZLA8Pj7vOW6VKFc2YMUOLFi1SzZo11bt3b7Vu3Vr9+/fPUi0AAAAAcDcmu/3hu9p55MiRkm78iQ1Xd+DAAfn7+6tgwYKSpMTERNWsWVNbt27NcjDNigsXuHkaOcNkkooUKUCPwSW4u5vl45NfLWft0pGYK84uBw+5SiUKatOg+oqPT1Ja2u0frMMxEq6Enszd0vf/3TwwZyIfVkuWLNGkSZN07do1Xb9+XbNmzVK5cuXua4AEAAAAAKMemKez5oQBAwZo9+7dtx0/btw4x58OySljx47VuHHj1KBBA1mtVtWsWVMffPBBjq4TAAAAALLqoQyRRi9jnTNnTg5XcnfFihXT3LlznV0GAAAAABjC5awAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwx7Kp7MCAHAnFYt6ObsE5AL0GYCHFSESAJBr2O12WW12zewS4OxSkEukWW2y2ezOLgMAshUhEgCQa9hsdrmZTYqPT3J2KcglbDY7IRLAQ4cQCQDIdaxWm+z8XA8AQJbwYB0AAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGE8WAcAkOu4uWXud6g8YRMAgP+PEAkAyDXMZpOsNrt8fPJnar40q02XL10lSAIAIEIkACAXMZlMcjObNHjlYR2PTTQ0T8WiXprZJUBms4kQCQCACJEAgFzoeGyijsRccXYZAAA8kHiwDgAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEKki7l+/brOnj3r7DIAAAAA4JYIkS6ma9eu2r17d5bnDwkJUWRkZDZWBAAAAAD/HyHSxcTHxzu7BAAAAAC4LZcNkeHh4erVq1eGYePHj9eIESPk7++vqVOnKjAwUOPGjbvrskJDQzVy5Eg1atRIDRs2VGJiok6dOqX+/fsrODhYjRo10nvvvaeUlBRJUmRkpF588UVNnDhRtWvXVp06dTR69GilpqZKkmw2mz744AM1adJENWvWVMeOHbVr1y5J0tq1a/XMM8/IZrM51r9ixQq1bNlSknTixAn169dPDRs2VNWqVdWiRQt99dVXkqRevXopJiZGY8aM0fjx4yVJR44cUWhoqAIDA9W0aVN9+OGHstvtkiS73a758+fr6aefVq1atfTOO+/IarXey2YHAAAAgDty2RDZsWNH7dmzR+fOnZMkpaSkaNOmTQoODpYkJSUl6dtvv9XQoUMNLW/37t1auXKlNmzYILPZrJ49e+qxxx7T119/rRUrVmj37t2KiIhwTP/dd9+pcOHC2rVrlxYsWKDNmzfriy++kCTNmTNHy5cv18yZM7Vv3z716tVLYWFh+uGHH9SiRQslJiZqz549jmV99tln6tixoyRp4MCBevzxx/Xf//5XBw8e1NNPP62xY8dKkpYsWaISJUpo3LhxCg8P17lz59SjRw81b95cu3fv1ty5c7VixQqtWrVKkrRu3Tp99NFHWrBggXbv3i0PD48s309pMvHilXMveoyXK73uhbNr5/VwvugtXq72oidz98sI93v7dppzqlatqgoVKigqKkq9e/fWjh075OXlpaCgIElSu3btZLFYZLFYDC3vmWeeUbFixSRJmzdvVkpKioYNGyaTyaTixYtr8ODBGjRokIYPHy5J8vT0VP/+/WUymVS1alX5+/vrjz/+kHQjvPXt21eVKlWSJLVo0UJbt27V2rVrNX78eLVq1Urr169XvXr1dOLECf38889asGCBJGnBggUqVqyY7Ha7oqOjVbBgQUdQ/qcNGzaoQoUK6tatmySpYsWK6t27t5YtW6YuXbro888/1wsvvOCoY/DgwVq9enVWNrcKFy6QpfkAo+gxPOh8fPI7uwQ8xDhGwtXQk7gTlw2RktShQwetX79evXv3VmRkpNq3by/T/8XjokWLZmpZf58+OjpaFy9eVGBgoGOY3W5Xamqq4uLiJEmFCxd2rEuSPDw8HJeRXrhwQaVLl86w/FKlSunYsWOSpE6dOql79+5KSkpSZGSkQkJC9Mgjj0iSjh07prCwMJ0/f14VKlTQI4884ljuP0VHR+vIkSOqVauWY5jNZpObm5skKTY2VsWLF3eMc3NzU4kSJTK1XdLFxSXoNmUA98RkuvGNiB6DK3B3N8vbO2thMD4+SVar7e4TApnAMRKuhp7M3dL3/924dIhs27atZsyYocOHD+vbb79VeHi4415Dk9Fzrf/n79P7+fnp0Ucf1X/+8x/HsMTERMXFxTnC3p2ULFlSp0+fzjDs9OnTjqBapUoVlSlTRv/973+1ceNGTZw4UZJ07tw5DR48WLNnz1ZISIgkaevWrY7LZP/Jz89PwcHBWrx4sWNYfHy8kpKSHOP/XofdbldsbOxd678Vu10cKJCj6DG4gnvtQXoYOYVjJFwNPYk7cdl7IqUbZwMbNGig8ePHq1atWlk+y/ZPjRo1UlJSkhYtWqSUlBRduXJFb7zxhoYOHWoonHbq1EkffPCBjhw5IqvVqi1btmj79u1q3759hmlmzZols9msp59+WtKN+zitVqvy5s0rSTp+/LjmzJkjSY6H+lgsFiUkJEiSWrdure+//14bNmxQWlqaYmNj1b9/f02dOtWxjtWrV+vw4cNKTU3VvHnzdP78+WzZRgAAAABwKy4dIqUbl7QePXpUzz//fLYt08vLSx9++KH27dunZ555Rk2aNJHZbNa8efMMzf/yyy+rW7duGjp0qGrVqqUFCxZoxowZjvs1pRsBMC4uTh06dJDZfGMzly9fXiNGjNC//vUv1axZU4MHD9bzzz8vDw8P/frrr5JuPFDovffe0+uvv66SJUtq0aJFWrVqlerWrau2bduqfPnyjhDZqlUrDRo0SEOHDlVQUJBOnz4tf3//bNtOAAAAAPBPJvvtbshzEceOHVNoaKi++eYb5cmTx9nlPLQuXOC6d+QMk0kqUqQAPQaX4O5ulo9PfrWctUtHYq4YmqdSiYLaNKi+4uOTlJbGPZHIXhwj4Wroydwtff/fjcveE5mYmKiYmBi9//776tChAwESAAAAAFyAy4bIs2fPqnPnznriiScUFhZ22+kmTZqktWvX3nZ8v3791L9//5woEQAAAAByHZcNkRUrVtThw4fvOt3o0aM1evTo+1ARAAAAAMDlH6wDAAAAAHAdhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYS77Jz4AAMgpFYt65ci0AADkBoRIAECuYbfbZbXZNbNLQKbmS7PaZLPZc6gqAAAeLIRIAECuYbPZ5WY2KT4+KdPzESIBALiBEAkAyHWsVpvsZEIAALKEB+sAAAAAAAwjRAIAAAAADCNEAgAAAAAM455IuBSz2SSz2eTsMpAD3Nz4nRUAAMDDgBAJl2E2m1TIO5/cCRsPJR+f/M4uAZAkWW12mc0mWa08WQcAgKwgRMJlmM0mubuZNXjlYR2PTXR2OQAeQhWLemlmlwCZTCZJhEgAALKCEAmXczw2UUdirji7DAAAAAC3wHWDAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQ8Rq9Wq06dPO7sMAAAAAA8xQqQThIaGKiIiIkvzHjx4UAEBAZKkM2fOyN/fX2fOnJEkDR06VOvXr8+uMgEAAADgJoTIB0ytWrV0+PDhW46Lj4+/z9UAAAAAyG0IkQaFh4erV69eGYaNHz9eI0aMkL+/v6ZOnarAwECNGzfO0PJOnTql0NBQBQYGqkuXLvrhhx8c4/z9/bVv3z7H+8jISIWEhEiS9u3bJ39//5uWN3r0aB08eFALFixQ//79s/IRAQAAAOCu3J1dwIOiY8eO6ty5s86dO6dixYopJSVFmzZt0ogRI/T5558rKSlJ3377ra5du2ZoeV9++aUWLFig6tWra9GiRXrllVf03//+VwULFsxSfZMmTdKpU6cUFBSkgQMHZnp+kylLqwWAB5LJxHEPriG9D+lHuAp6Mnczut8JkQZVrVpVFSpUUFRUlHr37q0dO3bIy8tLQUFBkqR27drJYrHIYrEYWl7Hjh0VGBgoSerfv78+/fRT7dy5U61bt86xz3AnhQsXcMp6AcAZvL3zO7sEIAO+D8PV0JO4E0JkJnTo0EHr169X7969FRkZqfbt28v0f3G9aNGimVpWqVKlHF+bTCb5+fnp3Llz2VpvZsTFJchud9rqJUlubmb5+PCDHYCcd+lSktLSbM4uA5DJdOOHdVf4PgxI9GRul77/74YQmQlt27bVjBkzdPjwYX377bcKDw+XzXbjhxBTJs/5x8bGOr622WyKiYlRyZIlJUlms1mpqamO8ffjgTl2uzhQAMg1OObB1dCTcDX0JO6EB+tkQuHChdWgQQONHz9etWrVUokSJbK8rLVr1+p///ufUlJSFBERIXd3dzVo0ECSVKFCBW3dulVpaWk6deqU1q5da2iZFotFCQkJWa4JAAAAAO6GEJlJHTp00NGjR/X888/f03KaNm2qMWPGqHbt2jp06JAWL16sfPnySZLGjBmjI0eOKCgoSEOGDFHHjh0NLbNdu3Zat26dunbtek+1AQAAAMDtmOx2TlRnxrFjxxQaGqpvvvlGefLkcXY52ebCBedf9+7ufuOeyJazdulIzBXnFgPgoVSpREFtGlRf8fHcEwnXYDJJRYoUcInvw4BET+Z26fv/brgn0qDExETFxMTo/fffV4cOHR6qAAkAAAAARhEiDTp79qw6d+6sJ554QmFhYbedbtKkSXe8h7Ffv37q379/TpQIAAAAADmOEGlQxYoVdfjw4btON3r0aI0ePfo+VAQAAAAA9x8P1gEAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABjGn/iAy6lY1MvZJQB4SHF8AQDg3hEi4TJsNrvSrDbN7BLg7FIAPMSsNrvsdruzywAA4IFFiITLsNnsunzpqsxmk7NLQTbz8cmv+PgkZ5cBSLrRjzYbIRIAgKwiRMKl2Gx2frh7yJj+73cCVqtNnPyBs5n4HRUAAPeMB+sAAAAAAAwjRAIAAAAADCNEAgAAAAAM455IAECu4+bG71CzgvvWAQASIRIAkIuYzSZZbXb5+OR3dikPpDSrTZcvXSVIAkAuR4gEAOQaJpNJbmaTBq88rOOxic4u54FSsaiXZnYJkNlsIkQCQC5HiAQA5DrHYxN1JOaKs8sAAOCBxE0hAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMe6BB58uRJZ5fgctgmAAAAAHLSAxMi7Xa7hg8frurVqyskJERHjx5Vq1atDM8fEhKiyMjIHKzQ+ZYvX663337b2WUAAAAAeIg9MCEyNjZWUVFRWr58ubZv366EhASlpqY6uyyXcvHiRWeXAAAAAOAh5+6MlUZERGjt2rVKTk5W6dKlFRYWpsaNG+vLL7/UjBkzFB0drRo1aqh06dK6fv26unfvrq5du0qSunXrpmeffVZbt26VJAUEBGjJkiUKCAi463qPHDmiZcuW6cyZM6pSpYrefvttlS1bVpK0fft2ffDBB/rzzz919epVValSRRMnTlTZsmWVmJiot99+W7t375a7u7ueeOIJjRo1ShUqVJAkbdq0SfPnz1dMTIzKlCmjYcOG6emnn5YkhYaGKjAwUHv27NHPP/+sRx99VBMnTtRHH32kr776St7e3goPD1fDhg0dNU6dOlXHjh2Tj4+Punbtqh49eshkMikiIkK//fabLBaLduzYoXz58qlt27YaPny4PvvsMy1YsEBWq1W1atXSwYMHs3mvAQAAAIATzkTu3btXq1at0po1a7Rv3z516tRJo0eP1i+//KLBgwerX79+OnjwoF544QWtXbtWkvTUU08pKipKkhQVFaV3331XCxculCQdPnzYUICUpG3btmnKlCnatWuXSpUqpX79+iktLU1nz57V4MGD1bdvX+3Zs0c7duyQ3W7XnDlzJElLlixRYmKidu7cqa+++kq+vr6aNm2aJGnnzp0aM2aMwsPDtX//fg0cOFADBw7Ub7/95ljvqlWrNGHCBO3fv18FCxZU165d9dxzz2nfvn1q1qyZJkyYIEk6d+6cevTooebNm2v37t2aO3euVqxYoVWrVjmW9cUXX+jpp5/Wvn37NGHCBC1cuFDff/+92rdvr379+mU5QJpMvHjl3Ise4+VKL9w7Z+/Dh+3FNuXlai96Mne/jLjvZyLz5Mmjy5cva/Xq1WrUqJE6deqkzp07KyIiQpUrV1abNm0kSc2bN9fGjRuzdd29evWSv7+/JGnkyJGqVauWfvjhB1WuXFmbNm3So48+qsTERJ09e1Y+Pj46d+6cJMnT01PHjh3T+vXrVa9ePU2ePFlm8438vWzZMr344osKDAyUJDVq1EghISFauXKl4/7EZs2aqWLFipKkWrVq6cqVK2rSpIkk6ZlnntHSpUslSRs2bFCFChXUrVs3SVLFihXVu3dvLVu2TF26dJEklS1bVu3atZMkNWjQQL6+vjp58qSqV69+T9umcOEC9zQ/cDf0GPBw8PHJ7+wSHkocI+Fq6EncyX0PkQEBAYqIiNAnn3yiRYsWydPTU6GhoYqLi1OJEiUyTFuuXDlduHAh29ZdqlQpx9d58+aVt7e3zp07p4CAAEVFRWnlypUymUx6/PHHlZiYKHf3G5vnlVdekcVi0dq1azV+/HiVLl1aw4cPV9OmTRUdHa39+/fr008/dSzbarWqdu3ajvfe3t6Or93c3FSoUCHHe7PZLLvdLkmKjo7WkSNHVKtWLcd4m80mNzc3x3tfX98Mn8nDw0M2m+0et4wUF5eg/ysDyFYm041vRPQYXIG7u1ne3oSgexEfnySr9d6/7+AGjpFwNfRk7pa+/+/mvofImJgYFS5cWIsXL1ZKSor27Nmj1157Tf369dPRo0czTHv27FlHkMsOsbGxjq8TExMVHx+vkiVLasuWLVq2bJk+/fRTlSlTRpI0YcIE/frrr5KkX375RSEhIerZs6cSEhK0YsUKDR06VHv37pWfn5/atWunvn37ZviMnp6ejvcmg+eF/fz8FBwcrMWLFzuGxcfHKykp6Z4+txF2uzhQIEfRY3AF9GD2YDtmP46RcDX0JO7kvt8T+eOPP6pPnz46duyYLBaLChcuLEkKCgrS77//rlWrViktLU27d+92PDznVvLkySNJSkhIMLzuJUuW6Pfff1dycrImTZqkJ598UpUrV1ZCQoLMZrM8PT1lt9v19ddfa/369Y6nv65Zs0YjRoxQXFycvLy85OXlpXz58sliseiFF17Qxx9/rB9++MHx+Tp06OC4hzMzWrdure+//14bNmxQWlqaYmNj1b9/f02dOtXQ/Hny5FFiYqLjzCYAAAAAZLf7fiayWbNmOnnypF599VXFx8ercOHCGjVqlIKCgrR06VJNnjxZ7777rqpUqeK4z/BWHn/8cdWsWVP169fXzJkz1aBBg7uuu0mTJurfv7/i4+MVGBiouXPnymw2q3379jp06JBatmwpNzc3lS9fXj169NDy5cuVkpKiYcOGafz48WrZsqWuX7+u8uXLa+7cucqTJ4+aN2+uq1evatSoUYqJiZG3t7d69uyp0NDQTG+bkiVLatGiRZo2bZomTpwoNzc3NWzYUKNHjzY0f6NGjfTpp5+qZs2a2rFjhwoWLJjpGgAAAADgTkx2Fz5tNXLkSEkyfCYOWXfhAte9I2eYTFKRIgXoMbgEd3ezfHzyq+WsXToSc8XZ5TxQKpUoqE2D6is+PklpadwTmV04RsLV0JO5W/r+v5v7fjkrAAAAAODBdd8vZ80JAwYM0O7du287fty4cY4/HQIAAAAAyDqXDpFGL2OdM2dODlcCAAAAAJC4nBUAAAAAkAmESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhLv0nPgAAyAkVi3o5u4QHDtsMAJCOEAkAyDXsdrusNrtmdglwdikPpDSrTTab3dllAACcjBAJAMg1bDa73MwmxccnObuUB5LNZidEAgAIkQCA3MdqtclOFgIAIEt4sA4AAAAAwDBCJAAAAADAMEIkAAAAAMAw7okEAOQ6bm78DhWuhZ6Eq6En758H8aFlhEgAQK5hNptktdnl45Pf2aUAGdCTcDX05P2TZrXp8qWrD1SQJEQCAHINk8kkN7NJg1ce1vHYRGeXAwDI5SoW9dLMLgEym02ESAAAXNnx2EQdibni7DIAAHggcbEzAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMELkAyYyMlIhISHOLgMAAABALkWIBAAAAAAYRojMAUePHtWLL76ogIAAtW3bVvPmzVNISIgiIyPVoUMH9erVS7Vq1dLGjRt17tw5DRkyRCEhIapWrZoaN26stWvXOpZ14sQJhYaGKiAgQK1bt9bRo0czrOvIkSMKDQ1VYGCgmjZtqg8//FB2u/1+f2QAAAAAuYS7swt42CQmJqpPnz7q3LmzPvroI/3xxx/q37+/TCaTpBuhb+rUqZo/f75sNpsGDhwob29vbdq0SRaLRR9//LEmTJig5557ThaLRf369dMzzzyjRYsW6dSpU3rllVdkNt/I/ufOnVOPHj00dOhQLVmyRH/++afCwsLk6empLl26ZKru/ysPyHbpvUWPwRXQhwAAV+UK36OM1kCIzGbbt2+Xm5ubBg4cKLPZLH9/f/Xp00eLFy+WJHl4eKht27aOIDhx4kTlz59fHh4eiomJUf78+XXt2jVdvnxZZ86c0V9//aURI0YoT548euyxx/Tyyy/ro48+kiRt2LBBFSpUULdu3SRJFStWVO/evbVs2bJMh8jChQtk41YAbkaPAQAA3JqPT35nl5AphMhsdvbsWZUoUcIREiWpdOnSjq99fX0zjDt9+rT+/e9/6+TJkypbtqzKlCkjSbLZbDp37px8fHzk6enpmP7RRx91fB0dHa0jR46oVq1ajmE2m01ubm6ZrjsuLkFcBYucYDLdCJD0GFyBu7tZ3t4P1jdqAMDDLz4+SVarzdllOH5uuxtCZDYrUaKEYmJiZLfbHZewxsTEOMab/naOODU1Vf369dOwYcPUtWtXmUwm/fTTT9qwYYMkqXjx4rp48aKSkpKUP/+NH3rOnj3rmN/Pz0/BwcGOs5ySFB8fr6SkpEzXbbeLH/CRo+gxuAJ6EADgqh6k71E8WCebhYSEyG63a/78+UpJSdHvv/+eIeT9XWpqqq5duyZPT0+ZTCbFxMTo3XffdYwLCAhQuXLlNHHiRCUnJ+vPP//UkiVLHPO3bt1a33//vTZs2KC0tDTFxsaqf//+mjp16n35rAAAAAByH0JkNsuXL5/mzp2rL7/8UkFBQRo2bJjq1asnDw+PW047efJkzZkzRwEBAerevbvq1aunIkWK6Ndff5Wbm5s++OADxcbGqm7duurTp48aN27smL9kyZJatGiRVq1apbp166pt27YqX748IRIAAABAjjHZ+XsQ2So+Pl6///67atas6Rj2ySefaNOmTVq5cqUTK7uzCxe4Xw05w2SSihQpQI/BJbi7m+Xjk18tZ+3SkZgrzi4HAJDLVSpRUJsG1Vd8fJLS0lzjnsgiRe5+TyRnIrOZ1WpVjx49tHPnTknSmTNntGLFCjVq1MjJlQEAAADAvePBOtmsSJEiev/99zVt2jQNGTJEBQsWVPv27dW7d29nlwYAAAAA94wQmQOaNGmiJk2aOLsMAAAAAMh2XM4KAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIynswIAcp2KRb2cXQIAAA/s96N7DpEnTpyQl5eXihUrlh31AACQY+x2u6w2u2Z2CXB2KQAASJLSrDbZbHZnl5EpmQ6R3333ncaPH6/169dr5cqVGjt2rNzd3fX+++/ztxEBAC7NZrPLzWxSfHySs0sBHHx88tOTcCn05P1ls9kf/hA5ffp0NWzYUHa7XQsWLNDUqVPl7e2t6dOnEyIBAA8Eq9Um+4P1/RoPKZPpxr/0JFwFPQkjMv1gnd9//12DBw/W77//rgsXLqhFixZq2LChzpw5kxP1AQAAAABcSKZDpJubm5KSkvT111+revXqslgsio6OlpfXg3lTKAAAAADAuExfztqkSRO99NJLio6O1ltvvaXjx49rwIABatWqVU7UBwAAAABwIZkOkW+//bY+//xzeXp6qkWLFjp58qS6dOmi7t2750R9AAAAAAAXYrLbs3bL7OXLl3X69Gk99dRTSktLk8Viye7acB9duJDAzdPIESaTVKRIAXoMLiG9H131qYMP4hP6cG84RsLV0JO5W/r+v5tMn4lMSkpSeHi4Nm3aJE9PT0VGRurll1/W0qVLVb58+SwVCwDA/WA2m2S12eXjk9/ZpdxSmtWmy5euEiQBAC4t0yHy3//+t65evaotW7bohRdeUOnSpdWoUSNNmjRJixcvzokaAQDIFiaTSW5mkwavPKzjsYnOLieDikW9NLNLgMxmEyESAODSMh0iv/rqK23cuFGFChWSyWSSh4eHRo4cqWeeeSYn6gMAINsdj03UkZgrzi4DAIAHUqb/xIfNZnPc/5h+O+XfhwEAAAAAHl6ZDpG1a9fW+PHjlZycLJPJJEl6//33FRQUlO3FAQAAAABcS6ZD5JtvvqkTJ04oMDBQCQkJCggI0IEDB/TGG2/kRH0AAAAAABeS6Xsir169qlWrVunHH39UdHS0/Pz8VLVqVbm5ueVEfQAAAAAAF5LpENm5c2d98cUXqlq1qqpWrZoTNQEAAAAAXFSmL2f19vbWuXPncqIWAAAAAICLy/SZyMcee0wvvPCCqlevrqJFi2YYN2XKlGwrDAAAAADgejIdIvPly6emTZvmRC0AAAAAABeX6RDJ2cac8eeff6pMmTLOLgMAAAAA7ijTIXL27Nm3Hffaa6/dUzEPszNnzqhx48b68ssvVapUKQUEBGjhwoWqVauW3nnnHcXHx2vq1KmSlGEcAAAAALiSTIfIffv2ZXh/6dIlnThxQs2bN8+2onKDw4cPO76Oj4+/7TgAAAAAcCWZDpGffPLJTcM+//zzm8Llg+TIkSOaOnWqfvrpJ+XPn1+dOnXSoEGDdOjQIb333nv65ZdfVLBgQbVp00ZhYWGyWCyKiIjQb7/9JovFoh07dihfvnxq27athg8fLklKTEzUhAkTtG3bNuXLl09dunTJsE5/f399/PHHOnjwoDZu3ChJOnr0qDZs2OAYFxwcrPj4eM2YMUNfffWVUlNTVb16db355psqW7as4+zmxIkTNW/ePF2+fFlVq1bVlClT5Ofnd9+3IwAAAICHX6ZD5K20bdtWkydPzo5F3XeXLl1Sr169FBoaqsWLF+vs2bMKDQ1VsWLFNGnSJL3++utaunSp/vrrLw0cOFCJiYl66623JElffPGFpk6dqnfeeUfffPON+vXrp8aNG6t69eoaP368Tp06pS+++EJms9kRLv9pwIABOn36tCQ5Lmf9u0GDBslsNuuzzz5TgQIFNHPmTPXs2VNRUVGOaXbs2KH169crJSVFL7/8subOnavx48dnajuYTJmaHDAsvbfoMbiCB6UPH5Q6ce84RsLV0JO5m9H9ni0hcv/+/cqXL192LOq+++qrr5QnTx4NGDBAJpNJjz76qJYuXaqFCxfK399fPXr0kCSVKVNGw4cP16BBgzRq1ChJUtmyZdWuXTtJUoMGDeTr66uTJ0/qqaee0pYtWzR//nwVLlxYkjRixAi1bds2U7WdPn1a+/fv16ZNm+Tr6ytJev3117Vx40bt3LlT1apVkyS98sorKliwoCQpJCQkS5fDFi5cINPzAJlBjwHG+Pjkd3YJcAKOkXA19CTuJNMhMiQkRKa/RdTU1FRduHBBr776arYWdr+cP39exYsXz/CZypcvLw8PD5UuXTrDtKVKldK1a9cUFxcnSY5gl87Dw0M2m03x8fFKSUlR8eLFHeP+uSwjLly4cNO8bm5uKl68uKKjox0hskiRIo7x7u7ustvtmV5XXFyCsjAbcFcm041vRPQYXIG7u1ne3q4d0uLjk2S12pxdBu4TjpFwNfRk7pa+/+8m0yFy4MCBGd6bzWZVqFBBlStXzuyiXIKfn5/++usv2e12R5Dctm2bihUrpiNHjmSY9tSpU7JYLCpUqNAdl+nj46M8efLo9OnTKl++vCTp7Nmzma6tZMmSjvU+9thjkiSr1aqYmJibAuy9stvFgQI5ih6DK3hQevBBqRPZh2MkXA09iTsxZ3aGixcvqn379o5X27ZtVblyZb3//vs5UF7Oa9iwodLS0jR//nylpKTo1KlTmjx5sooUKaITJ07oo48+cgyfMWOGWrduLYvFcsdlWiwWtWvXTjNnztTZs2eVkJCgd999947TJyQk3DS8aNGiatCggSZOnKjz58/r2rVrmjZtmqxWqxo1anTPnx0AAAAAMstQiLx48aIOHDigAwcOKCIiQgcPHnS8P3DggLZv366PPvoop2vNEQULFtTixYu1Z88ePf300woNDVWXLl3UuXNnLVq0SFu3blXdunXVtWtX1atXT+Hh4YaWO3r0aFWtWlWtW7dW06ZNHZee3kqLFi303XffqWHDhjeN+/e//63SpUurffv2qlu3rn755Rd99NFH8vb2zuInBgAAAICsM9kN3ECXmJioZ5999qa/Z5jOYrGoc+fOGj16dLYXiPvjwgWue0fOMJmkIkUK0GNwCe7uZvn45FfLWbt0JOaKs8vJoFKJgto0qL7i45OUlsY9kbkFx0i4Gnoyd0vf/3dj6J5ILy8v7dmzR5LUvHlz/ec//7m36gAAAAAAD6RM3xN5uwB58eLFey4GAAAAAODaMv101h9++EH//ve/de7cOdlsNy63SU1N1cWLF/XTTz9le4EAAAAAANeR6TOR48ePl6+vr55++mmVK1dOL730ktzc3DR8+PCcqA8AAAAA4EIyHSJ/++03TZkyRd26dZPVatXLL7+s9957Txs3bsyJ+gAAAAAALiTTIbJgwYLy9PRU6dKl9dtvv0mSqlevrujo6GwvDgAAAADgWjIdIsuXL69PP/1UefLkUb58+fTzzz/rxIkTMplMOVEfAAAAAMCFZPrBOoMHD9arr76qevXqqXfv3nrhhRfk5uamF198MSfqAwAAAAC4kEyHyBo1aujrr7+WxWLRo48+qieffFIJCQmqV69eTtQHAEC2q1jUy9kl3MQVawIA4FYyHSIlyWQyadu2bYqOjlbnzp31559/ZnddAABkO7vdLqvNrpldApxdyi2lWW2y2ezOLgMAgDvKdIg8deqUevXqpdTUVF25ckUNGjTQ888/r9mzZ6tRo0Y5USMAANnCZrPLzWxSfHySs0u5JZvNTogEALi8TD9YZ9KkSerQoYN27Nghd3d3lStXThMnTtSsWbNyoj4AALKd1WpTWprrvQiQAIAHQaZD5Pfff68+ffrIZDI5nsjatm1bnT59OtuLAwAAAAC4lkyHyAIFCujChQsZhp0/f16FChXKtqIAAAAAAK4p0yGydevWeu211/Ttt9/KZrPphx9+0Ouvv66WLVvmRH0AAAAAABeS6QfrhIWF6dq1a3rttdeUnJys7t27q2PHjnrttddyoj4AAAAAgAsx2e12Q3fx9+7dW4sXL3a8T05OVnJysnx8fBz3RuLBdeFCgox1ApA5JpNUpEgBegwuIb0fXfXprK6Gp8XmPI6RcDX0ZO6Wvv/vxvCZyMOHD2d436BBA+3fvz/zlQEA4CRms0lWm10+PvmdXcoDIc1q0+VLVwmSAIAMMn05azqDJzABAHAZJpNJbmaTBq88rOOxic4ux6VVLOqlmV0CZDabCJEAgAyyHCK5hBUA8KA6HpuoIzFXnF0GAAAPpEw/nRUAAAAAkHsZPhOZlpam9evXO96npqZmeC9J7dq1y6ayAAAAAACuyHCILFKkiGbNmuV47+Pjk+G9yWQiRAIAAADAQ85wiNy+fXtO1gEAAAAAeABwTyQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCZCbExsbq6tWrzi7jtqxWq06fPu3sMgAAAAA8xAiRBl24cEHNmjXTxYsXs7yMzZs3q06dOqpZs6a++uqrbKzuhqFDh970tzsBAAAAIDsRIg26du3aPZ+FXLNmjVq2bKlDhw6pUaNG2VTZ/xcfH5/tywQAAACAv8sVIbJDhw768MMPHe9DQ0PVqVMnx/tly5apW7du2r59u7p06aI6deqoWrVqeumll3Ty5ElZrVa1atVKktSqVStt3rxZkrRp0ya1bt1aNWvWVIcOHfTNN99kWMfIkSPVqFEjNWzYUO3atdPevXu1cuVKNWnSRGfOnJG/v7+mTp2qwMBAjRs3TtL/D5o1atRQ69attWHDhgzLnD59urp166aAgAA999xzjlpGjx6tgwcPasGCBerfv3+ObUsAAAAAuZu7swu4H5599lnt2rVLPXv2VFJSkn766SelpqbqypUrKliwoLZv36569epp8ODBmjlzpkJCQhQfH6/XXntNc+bM0bvvvquoqCg1btxYUVFRKlWqlHbu3KkxY8Zo3rx5qlGjhr7++msNHDhQq1ev1mOPPSZJ2r17t9asWaO8efOqYMGCCg0NVVBQkAYOHKgzZ85IkpKSkvTtt9/q2rVrioyM1NSpUzV79mwFBQVp//79eu2115Q3b149++yzkqTVq1dr6dKlqlixoubMmaPw8HA1btxYkyZN0qlTpxzLzyyTKfu2N/B36b1Fj8EV0IdZw3bLORwj4WroydzN6H7PFSGySZMmmjt3rpKTk7V3715VrVpVly5d0t69e1W3bl3t379fEydOVKtWrfToo48qMTFRZ8+elY+Pj86dO3fLZS5btkwvvviiAgMDJUmNGjVSSEiIVq5cqbfffluS9Mwzz6hYsWJ3rK1du3ayWCyyWCxat26dOnfurDp16kiS6tSpo86dO2vlypWOENmsWTM99dRTkqT27dtr/vz5iouLU4kSJe5pGxUuXOCe5gfuhh4DHkw+PvmdXUKuwDESroaexJ3kihD52GOPqUSJEtq3b5927dqlevXq6cKFC9q9e7fS0tLk7++v4sWLa968eVq5cqVMJpMef/xxJSYmyt391psoOjpa+/fv16effuoYZrVaVbt2bcf7okWL3rW2v09z4cIFlS5dOsP4UqVKafv27Y73vr6+jq/Ta7PZbHddz93ExSXIbr/nxQA3MZlufCOix+AK3N3N8vYmFGVGfHySrNZ7/z6DW+MYCVdDT+Zu6fv/bnJFiJSkxo0b6+uvv9aePXs0Y8YMxcXFadKkSUpMTFTTpk21ZcsWLVu2TJ9++qnKlCkjSZowYYJ+/fXXWy7Pz89P7dq1U9++fR3DYmJi5Onp6XhvMnA++O/TlCpVSqdOncow/vTp0xmCY06x28WBAjmKHoMroAezhu2W8zhGwtXQk7iTXPFgHenGfZGbN2/WlStX9NRTTykoKEgxMTHatm2bnn32WSUkJMhsNsvT01N2u11ff/211q9fr9TUVElSnjx5JEmJiYmSpBdeeEEff/yxfvjhB0nSjz/+qA4dOigqKirLNXbs2FGrVq3Snj17ZLVatXfvXq1atUrPP/+8ofktFosSEhKyvH4AAAAAuJtccyayevXqcnd3V3BwsEwmkzw9PVWrVi3FxsaqfPnyKlWqlA4dOqSWLVvKzc1N5cuXV48ePbR8+XKlpKSoSJEievbZZ9W5c2eNHDlSL774oq5evapRo0YpJiZG3t7e6tmzp0JDQ7Nc43PPPafExERNnDhRMTExKlasmEaMGKF27doZmr9du3YaO3asfvrpJ61YsSLLdQAAAADA7Zjsdk5UQ7pwgevekTNMJqlIkQL0GFyCu7tZPj751XLWLh2JueLsclxapRIFtWlQfcXHJyktjXsicwrHSLgaejJ3S9//d5NrLmcFAAAAANw7QiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDB3ZxcAAMD9VrGol7NLcHlsIwDA7RAiAQC5ht1ul9Vm18wuAc4u5YGQZrXJZrM7uwwAgIshRAIAcg2bzS43s0nx8UnOLuWBYLPZCZEAgJsQIgEAuY7VapOdbAQAQJbwYB0AAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGE8WAcAkOu4ufE71AcJT4kFANdCiAQA5Bpms0lWm10+PvmdXQoyIc1q0+VLVwmSAOAiCJEAgFzDZDLJzWzS4JWHdTw20dnlwICKRb00s0uAzGYTIRIAXAQhEgCQ6xyPTdSRmCvOLgMAgAcSN4UAAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0TmkM2bN6tOnTqqWbOm/P39debMGWeXBAAAAAD3jBCZQ9asWaOWLVvq888/d3YpAAAAAJBt3J1dwMOoY8eOOnLkiA4cOKDly5dnGBcdHa13331X+/btk9lsVu3atfXGG2+oaNGikqSDBw/qvffe0y+//KKCBQuqTZs2CgsLk8ViUUREhA4fPqzLly/r9OnTmjNnji5evKhZs2bp7NmzKlq0qFq3bq2wsDBnfGwAAAAAuQAhMgesXbtWoaGhCgoKUvv27dW4cWNJUmpqqnr16qXKlSvriy++kN1u17hx49S/f3+tXr1ap06d0ssvv6zXX39dS5cu1V9//aWBAwcqMTFRb731liRpz549WrJkiapWrSq73a66detq4cKFCg4O1tGjR9WtWzc9/fTTqlq1aqZqNpmyfTMAkv5/b9FjcAX04YPtYdx/HCPhaujJ3M3ofidE3kcHDx7U6dOntW7dOnl5eUmSxo0bp6CgIP3000/auXOn/P391aNHD0lSmTJlNHz4cA0aNEijRo2SJJUuXVp16tSRJF27dk2enp5au3atbDabatSooUOHDslszvxVyoULF8imTwncGj0G4F74+OR3dgk5imMkXA09iTshRN5HcXFx8vHxcQRISfLy8pK3t7eio6MVFxen0qVLZ5inVKlSunbtmuLi4iTJcdmrJHl6eurTTz/V3LlzNXz4cCUmJqpZs2Z66623VKhQoUzWliC7/R4+HHAbJtONb0T0GFyBu7tZ3t4Pdxh5WMXHJ8lqtTm7jGzHMRKuhp7M3dL3/90QIu+jkiVLKj4+XomJiY4gmZCQoPj4ePn6+qpkyZL64osvMsxz6tQpWSwWRyg0/e0cc2JiomJjYzV9+nRJ0s8//6xhw4Zp/vz5euONNzJVm90uDhTIUfQYXAE9+GB7mPcfx0i4GnoSd8LTWe+jKlWqqGLFihozZowSEhKUkJCgsWPH6tFHH1WNGjXUsmVLnThxQh999JFSUlJ06tQpzZgxQ61bt5bFYrlpeUlJSXrllVe0ceNG2e12FS1aVGazWT4+Pk74dAAAAAByA0LkfeTu7q4FCxYoLS1NzZo1U6NGjZSamqqlS5fK3d1dpUqV0qJFi7R161bVrVtXXbt2Vb169RQeHn7L5RUrVkyzZs3SwoULVaNGDbVq1Uq1a9dWz5497+8HAwAAAJBrmOx2TlRDunCB696RM0wmqUiRAvQYXIK7u1k+PvnVctYuHYm54uxyYEClEgW1aVB9xccnKS3t4bwnkmMkXAk9mbul7/+74UwkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDB3ZxcAAMD9VrGol7NLgEHsKwBwPYRIAECuYbfbZbXZNbNLgLNLQSakWW2y2ezOLgMA8H8IkQCAXMNms8vNbFJ8fJKzS0Em2Gx2QiQAuBBCJAAg17FabbKTSQAAyBIerAMAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwH6wAAch03N36Hiox4AiwAGEeIBADkGmazSVabXT4++Z1dClxMmtWmy5euEiQBwABCJAAg1zCZTHIzmzR45WEdj010djlwERWLemlmlwCZzSZCJAAYQIgEAOQ6x2MTdSTmirPLAADggcRNIQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJEAAAAAAMMIkQAAAAAAwwiRAAAAAADDCJGZdPLkSWeXAAAAAABOQ4i8A7vdruHDh6t69eoKCQnR0aNH1apVK8Pzh4SEKDIyUpLUp08fzZ8//67zhIeHKzw8PMs1AwAAAEBOcnd2Aa4sNjZWUVFRioyMVKVKlbRv3z6lpqZmaVmLFi0yNN348eOztHwAAAAAuB9yTYiMiIjQ2rVrlZycrNKlSyssLEyNGzfWl19+qRkzZig6Olo1atRQ6dKldf36dXXv3l1du3aVJHXr1k3PPvustm7dKkkKCAjQkiVLFBAQYHj9oaGhCgoKUtu2bdW0aVNt3rxZ5cuXlySdOHFCbdq00VdffaUZM2ZIkqZOnaqIiAj99ttvslgs2rFjh/Lly6e2bdtq+PDhkqRr165pypQp2rJli/Lmzav27dtrw4YNmjJlioKDgzO1fUymTE0OGJbeW/QYXAF9iLu53z3CMRKuhp7M3Yzu91wRIvfu3atVq1YpMjJSvr6+WrVqlUaPHq1SpUpp8ODBmjx5slq0aKFt27Zp+PDhat26tZ566ilFRUWpcePGioqKUqlSpdSxY0d1795dhw8fznItjz76qIKDg/X5559r6NChkqTIyEjVr19fRYsWvWn6L774QlOnTtU777yjb775Rv369VPjxo1VvXp1TZ48WT/99JM+//xzFSxYUOPGjVN0dHSW6ipcuECWPxNgBD0GwNX5+OR32ro5RsLV0JO4k1wRIvPkyaPLly9r9erVatSokTp16qTOnTsrIiJClStXVps2bSRJzZs318aNG3O8nk6dOmn69OkaMmSIbDabNmzYoDFjxtxy2rJly6pdu3aSpAYNGsjX11cnT55UpUqVtGHDBkVERKh48eKSbtxPGRUVlaWa4uISZLdnaVbgjkymG9+I6DG4And3s7y9nRcU4Nri45Nktdru6zo5RsLV0JO5W/r+v5tcESIDAgIUERGhTz75RIsWLZKnp6dCQ0MVFxenEiVKZJi2XLlyunDhQo7W07RpU02YMEH79u3T9evXZbfb1bBhw1tO6+vrm+G9h4eHbDabLl26pOTkZJUsWdIxzsvLSz4+PlmqyW4XBwrkKHoMroAexN04q0c4RsLV0JO4k1wRImNiYlS4cGEtXrxYKSkp2rNnj1577TX169dPR48ezTDt2bNn5e6es5vFYrGoTZs2ioqKUnJystq1a5fpdRYuXFienp6KiYlx3Ft59epVxcfH50TJAAAAACApl/yJjx9//FF9+vTRsWPHZLFYVLhwYUlSUFCQfv/9d61atUppaWnavXu34+E5t5InTx5JUkJCwj3X9MILL2jbtm3avn27OnbsmOn5zWazOnbsqIiICJ07d07JycmaMmWKrFbrPdcGAAAAALeTK0Jks2bN1KtXL7366quqXr26Bg8erFGjRikoKEhLly7VZ599ptq1a2vhwoUKDAy87XIef/xx1axZU/Xr19fOnTvvqabHHntMZcuWVaVKlVS2bNksLWP48OEqX768WrRooWbNmsnPz09ms1keHh73VBsAAAAA3I7Jbudq578bOXKkpBt/YsPVHThwQP7+/ipYsKAkKTExUTVr1tTWrVszHUwvXODmaeQMk0kqUqQAPQaX4O5ulo9PfrWctUtHYq44uxy4iEolCmrToPqKj09SWtr9f7AOx0i4Enoyd0vf/3eTK85EPqyWLFmiSZMm6dq1a7p+/bpmzZqlcuXKZfnMJgAAAADcTa54sE5OGDBggHbv3n3b8ePGjXP86ZCcMnbsWI0bN04NGjSQ1WpVzZo19cEHH+ToOgEAAADkboTIfzB6GeucOXNyuJK7K1asmObOnevsMgAAAADkIlzOCgAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMp7MCAHKdikW9nF0CXAj9AACZQ4gEAOQadrtdVptdM7sEOLsUuJg0q002m93ZZQDAA4EQCQDINWw2u9zMJsXHJzm7FLgYm81OiAQAgwiRAIBcx2q1yU5eAAAgS3iwDgAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMB6sAwDIddzc+B1qOp5KCgDILEIkACDXMJtNstrs8vHJ7+xSXEaa1abLl64SJAEAhhEiAQC5hslkkpvZpMErD+t4bKKzy3G6ikW9NLNLgMxmEyESAGAYIRIAkOscj03UkZgrzi4DAIAHEjeFAAAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0TexsmTJ51dAgAAAAC4nIc2RJ45c0b+/v46c+ZMpufdvn27evfu7XgfGhqqiIiI7CwPAAAAAB5ID22IvBeXLl2S3W53dhkAAAAA4HIe+hC5fv16NWnSRHXr1tVbb72lxMRE2e12ffDBB2rdurVq1aqlwMBADR8+XNeuXdO+ffs0ZswYxcTEKCAgQOfOnZMk/fnnn+rVq5cCAwPVuHFj/ec//3Gsw9/fXxMnTlRwcLD69+8vSdq2bZs6dOigGjVqqFmzZvrwww9ls9kkSTabTR988IGaNGmimjVrqmPHjtq1a5djeSEhIVq6dKnatGmjatWq6cUXX9SRI0f0yiuvKCAgQC1atNAPP/wgSUpMTNTQoUMVHBysevXqqXfv3jpx4sT92rwAAAAAchl3ZxeQ0w4ePKjVq1fLZrMpLCxMkydP1tNPP62PP/5Yy5YtU9myZXXixAl17dpVGzduVKdOnTRu3DjNnj1b27dvdyzn22+/1aJFi/Tkk09q3rx5evPNN9W4cWN5eHhIkk6dOqUdO3YoNTVVe/fu1ZAhQ/Tvf/9bTZs21S+//KKwsDBJUs+ePTVnzhytXbtWc+fOlb+/v7744guFhYVp+fLlqlq1qiRpzZo1WrJkiby8vPT8888rNDRUixcvVqVKlTRixAhNmzZNH3/8sZYsWaLExETt3LlTZrNZ4eHhmjZtmubNm5ep7WQyZdMGB/4hvbfoMbgC+vD22DbOwTESroaezN2M7veHPkSOHDlSjzzyiCRp0KBBevXVV/Xmm29q7dq18vPz08WLFxUfHy9vb2/HWcdbadGihSpVquT4etasWYqLi5Ofn58kqVWrVsqbN6/y5s2ryMhINW7cWC1atJAkVapUSX379tUnn3yinj17at26derbt2+G5W3dulVr1651hMjnn3/eseyqVasqMTFRAQEBkqSnn37aERI9PT117NgxrV+/XvXq1dPkyZNlNmf+BHPhwgUyPQ+QGfQY4Lp8fPI7u4Rcj2MkXA09iTt56ENkqVKlHF8XL15cKSkpunLlimbNmqWvvvpKjzzyiJ588kmlpqbe8T5Ib29vx9fpZx/T0tIcw4oWLer4Oi4uTk8++eRNdURHR0uSLly4oNKlS980/tixY7dcn5ubmwoVKuR4bzabHbW+8sorslgsWrt2rcaPH6/SpUtr+PDhatq06W0/y63ExSWI20CRE0ymG9+I6DG4And3s7y9CUz/FB+fJKvV5uwyciWOkXA19GTulr7/7+ahD5Hnzp2Tl5eXpBtPbM2XL58++OADxcTEaPv27Y5xrVu3vqf1mP527rdkyZI6depUhvGnT5+Wr6+vY/zp06dvGv/3IGoyeC75l19+UUhIiHr27KmEhAStWLFCQ4cO1d69e1WggPHfINnt4kCBHEWPwRXQg7fHtnEujpFwNfQk7uShf7DOu+++q8uXL+vs2bOaOXOmOnfurMTEROXJk0dubm66fv26lixZol9//VWpqamSpDx58ig5OTnDmcbMeP7557V9+3Zt2bJFVqtVR48e1cKFC/X8889Lkjp16qQPPvhAR44ckdVq1ZYtW7R9+3a1b98+0+tas2aNRowYobi4OHl5ecnLy0v58uWTxWLJUu0AAAAAcCcP/ZnIgIAANW/eXGazWa1atdLQoUMVGxurN998U3Xr1lW+fPlUs2ZNtW3bVr/++qskKTAwUIULF1ZgYKBWrlyZ6XVWq1ZNM2fO1Jw5czRq1Cj5+PjoxRdf1CuvvCJJevnll2Wz2TR06FCdP39eZcqU0YwZMxQUFJTpdQ0bNkzjx49Xy5Ytdf36dZUvX15z585Vnjx5Mr0sAAAAALgbk50/iAhJFy5w3TtyhskkFSlSgB6DS3B3N8vHJ79aztqlIzFXnF2O01UqUVCbBtVXfHyS0tK4J9IZOEbC1dCTuVv6/r+bh/5yVgAAAABA9iFEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAxzd3YBAADcbxWLejm7BJfAdgAAZAUhEgCQa9jtdlltds3sEuDsUlxGmtUmm83u7DIAAA8QQiQAINew2exyM5sUH5/k7FJchs1mJ0QCADKFEAkAyHWsVpvs5CYAALKEB+sAAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgByDZPJlOFfAACQeYRIAECuYTabMvwLAAAyjxAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQ+ZD5888/nV0CAAAAgIcYIfIh8s4772jevHnOLgMAAADAQ4wQ+RCJj493dgkAAAAAHnLuzi7gYXbkyBFNnTpVP/30k/Lnz69OnTpp0KBBOnTokN577z398ssvKliwoNq0aaOwsDBZLBZFRETot99+k8Vi0Y4dO5QvXz61bdtWw4cPlyQdOHBAU6ZM0alTp+Tj46OGDRvqjTfe0IIFC7Rx40ZJ0tGjR7VhwwZnfnQAAAAADylCZA65dOmSevXqpdDQUC1evFhnz55VaGioihUrpkmTJun111/X0qVL9ddff2ngwIFKTEzUW2+9JUn64osvNHXqVL3zzjv65ptv1K9fPzVu3FjVq1fXiBEjNGjQILVv315nzpzRiy++qFq1amnAgAE6ffq0JGnq1KmZrtdkytaPDzik9xY9Blfw936kJ+EKOEbC1dCTuZvR/U6IzCFfffWV8uTJowEDBshkMunRRx/V0qVLtXDhQvn7+6tHjx6SpDJlymj48OEaNGiQRo0aJUkqW7as2rVrJ0lq0KCBfH19dfLkSVWvXl158uTRli1b5O3trcDAQO3cuVNm871flVy4cIF7XgZwJ/QYXIm3d35nlwBkwDESroaexJ0QInPI+fPnVbx4cZn+FufLly8vDw8PlS5dOsO0pUqV0rVr1xQXFydJ8vX1zTDew8NDNptNkvTRRx8pIiJC48aN0/nz51W/fn2NHTtWfn5+91RvXFyC7PZ7WgRwSybTjW9E9Bhcgbu7Wd7e+XXpUpLS0mzOLgfgGAmXQ0/mbun7/24IkTnEz89Pf/31l+x2uyNIbtu2TcWKFdORI0cyTHvq1ClZLBYVKlTojsu8fv26jh8/rrFjx8rd3V1//PGH3nrrLU2ePFmzZs26p3rtdnGgQI6ix+AK0nuQfoSroSfhauhJ3AlPZ80hDRs2VFpamubPn6+UlBSdOnVKkydPVpEiRXTixAl99NFHjuEzZsxQ69atZbFY7rhMk8mkYcOGacmSJUpLS5Ovr6/c3d3l4+MjSbJYLEpISLgfHw8AAABALkWIzCEFCxbU4sWLtWfPHj399NMKDQ1Vly5d1LlzZy1atEhbt25V3bp11bVrV9WrV0/h4eF3XabFYtG8efP05ZdfKjg4WCEhIfL19dXrr78uSWrRooW+++47NWzYMIc/HQAAAIDcymS3c6Ia0oULXPeOnGEySUWKFKDH4BLc3c3y8cmv+HjuiYRr4BgJV0NP5m7p+/9uOBMJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAyDVsNnuGfwEAQOYRIgEAuYbdbs/wLwAAyDxCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDB3ZxcA12AyObsCPKzSe4segyugH+Fq6Em4GnoydzO63012u92es6UAAAAAAB4WXM4KAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJIFtdvXpVb775poKDg1WzZk2NGDFCSUlJd53v8OHDqlKlyn2oEA+7uLg4hYWFqVatWgoODtakSZOUlpZ2y2l37typ1q1bq3r16nruuef01Vdf3edqkRtkpifTbd26VY0bN75PFSK3yUxPfvrpp2rWrJkCAgLUrFkzLV++/D5XC1dEiASQrSZMmKC//vpLW7du1RdffKG//vpL06ZNu+30drtda9euVa9evZSSknIfK8XDasiQIcqXL5927dqltWvXas+ePfrwww9vmu7kyZMaOHCgBg8erIMHD2rgwIEaMmSIzp07d/+LxkPNaE9KUmpqqhYuXKhhw4bJbrff30KRaxjtyW3btmnGjBl655139N1332nq1Kl6//33tXXr1vtfNFwKIRJAtklOTtbGjRs1aNAgeXt7q3Dhwnr99dcVGRmp5OTkW84zatQorVmzRoMGDbrP1eJh9Oeff2r//v3617/+pbx586p06dIKCwu75W/OP/vsM9WqVUtNmjSRu7u7WrRoocDAQK1atcoJleNhlZmelKRevXpp3759euWVV+5zpcgtMtOT586d0yuvvKLq1avLZDIpICBAwcHBOnDggBMqhytxd3YBAB4s165du+2ZmuTkZKWmpurxxx93DKtQoYKuXbumkydP6sknn7xpnsGDB8vPz0/79u3LsZqRe/z222/y9vZWsWLFHMMqVKigmJgYXblyRQULFnQMP378eIZelaSKFSvq2LFj961ePPwy05OS9O6778rPz0+RkZH3u1TkEpnpyW7dumWYNy4uTgcOHNCbb7553+qFayJEAsiU//3vf+revfstxw0ePFiSlC9fPsewvHnzStJt74v08/PL5gqRmyUlJTl6Ll36+6tXr2b44ehW03p6eurq1as5Xyhyjcz0pMQxETkvsz2Z7vz58+rXr58qV66sVq1a5XidcG2ESACZEhwcrF9++eWW444ePaqZM2cqOTlZ+fPnlyTHZaxeXl73rUbkXvny5bvp0un09+k9mS5v3ry6du1ahmHXrl27aTrgXmSmJ4H7ISs9+f3332vw4MGqVauWpkyZInd3IkRuxz2RALJNuXLl5OHhoePHjzuGnThxQh4eHipbtqzzCkOu8dhjj+nSpUu6cOGCY9iJEyfk5+enAgUKZJj28ccf12+//ZZh2PHjx/XYY4/dl1qRO2SmJ4H7IbM9uXbtWvXs2VM9evTQ9OnTZbFY7me5cFGESADZJm/evHruuec0bdo0Xbx4URcvXtS0adPUqlUreXp6Ors85AJly5ZVzZo1NXnyZCUmJur06dOaO3euOnbseNO0bdq00f79+7V582alpaVp8+bN2r9/v9q2beuEyvGwykxPAvdDZnpy69atGjt2rCIiItSrVy8nVAtXRYgEkK3GjBmjsmXLqnXr1mrevLlKlSql8PBwx/iWLVtq/vz5TqwQD7tZs2YpLS1NjRs31gsvvKD69esrLCxMkhQQEKANGzZIuvEgiTlz5mjBggUKDAzU3LlzFRERoXLlyjmzfDyEjPYkcL8Y7cnZs2fLarVq0KBBCggIcLz+/n0duZPJzh8hAgAAAAAYxJlIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAJAp169f19mzZ51dBgDASQiRAADcgz/++ENvvPGGnnnmGQUEBKhJkyaaNm2akpKSsmX5drtdw4cPV/Xq1RUSEqLY2Fh17NhR1atX1+uvv64+ffpo/vz5d12O0emM6Nq1q3bv3n3T8OTkZAUFBenjjz++5XzDhw9XWFjYHZcdGRmpkJCQbKkTAJAz3J1dAAAAD6rvvvtOvXr1Uq9evbR+/Xo98sgj+uOPPxQeHq5evXppxYoVcnNzu6d1xMbGKioqSpGRkapUqZI2bNig6Oho7d+/XxaLxfByFi1adE91/F18fPwth+fNm1fPP/+81qxZo+7du2cYd/HiRW3dujVb6wAAOAdnIgEAyKLw8HC1a9dOgwYN0iOPPCJJKleunN577z0VLlxYp0+fliRFR0dryJAhqlOnjurVq6fhw4crNjbWsZwjR44oNDRUgYGBatq0qT788EPZ7XYdPXpUzZo1kyR169ZNgYGBGj16tOLj4xUcHKzdu3crNDRUERERkqS0tDTNnDlTDRo0UI0aNdStWzcdO3ZMkjJMZ7fb9fHHH6tZs2aqVauWunbtqp9++slRT0hIiBYsWKB27dopICBA7dq10969eyVJvXr1UkxMjMaMGaPx48fftE26du2q48eP6/vvv88wfO3atSpXrpxq166t7du3q0uXLqpTp46qVauml156SSdPnrxpWfv27ZO/v3+GYSNHjtTIkSMd7zdt2qTWrVurZs2a6tChg7755pu77zgAwD0hRAIAkAWnTp3Sb7/9platWt00rkiRIpo7d67Kli2r1NRU9erVS25ubvriiy+0ZcsWSVL//v2Vlpamc+fOqUePHmrevLl2796tuXPnasWKFVq1apWeeuopRUVFSZKioqJ04MABjRs3TiVKlNDhw4dVt27dDOudN2+eoqKitHjxYh04cEBBQUHq16+frFZrhulWrFihpUuXaubMmdqzZ486dOigl19+WRcuXHBMs27dOs2cOVO7d+/WE088obFjx0qSlixZohIlSmjcuHEKDw+/6bOXLl1aDRo00OrVqx3DbDabVq1ape7du+vs2bMaPHiw+vbtqz179mjHjh2y2+2aM2dOpvfBzp07NWbMGIWHh2v//v0aOHCgBg4cqN9++y3TywIAGEeIBAAgCy5evCjpRmC8k4MHD+r06dMaN26cChQooIIFC2rcuHE6duyYfvrpJ23YsEEVKlRQt27d5OHhoYoVK6p3795avnx5pmv67LPP1KdPH1WsWFFubm569dVXNXPmTNnt9gzTLV++XP369dMTTzwhDw8PdezYURUqVNCGDRsc03Ts2FFlypRR3rx51bp161ueKbyd7t27a8uWLUpMTJQk7dq1S4mJiWrdurUeeeQRbdq0SSEhIUpMTNTZs2fl4+Ojc+fOZfrzLlu2TC+++KICAwPl5uamRo0aKSQkRCtXrsz0sgAAxnFPJAAAWeDr6ytJOn/+vMqWLXvT+AsXLqhIkSKKi4uTj4+PvLy8HOO8vLzk7e2t6OhoRUdH68iRI6pVq5ZjvM1my9K9lOfPn1eJEiUc7y0Wi6pXr37TdNHR0XrnnXc0bdo0x7C0tDRVrlzZ8f7v4djd3f2mIHondevWVfHixRUVFaUuXbpoxYoV6ty5szw9PWW32xUVFaWVK1fKZDLp8ccfV2JiotzdM/8jSfq9oZ9++qljmNVqVe3atTO9LACAcYRIAACyoGTJknr88ce1efNmBQYGZhgXFxenRo0aacqUKSpZsqTi4+OVmJjoCJIJCQmKj4+Xr6+v/Pz8FBwcrMWLFzvmj4+Pz9LTXYsXL66//vrL8T41NVXvvvuu+vTpk2E6Pz8/DRo0SC1btnQMO3XqlLy9vTO9ztvp1q2b1qxZowYNGujbb7/VuHHjJElbtmzRsmXL9Omnn6pMmTKSpAkTJujXX3+9aRnpQTolJcXxEKH4+Hj5+Pg4Pke7du3Ut29fxzwxMTHy9PTMts8BALgZl7MCAJBFb7/9ttatW6fZs2crPj5edrtdP//8s/r3769KlSqpWbNmqlKliipWrKgxY8YoISFBCQkJGjt2rB599FHVqFFDrVu31vfff68NGzYoLS1NsbGx6t+/v6ZOnZrpejp06KDFixfrjz/+UFpamhYsWKBt27Y5Qle6F154QfPmzdOJEyck3bjctGXLljpw4ICh9VgsFiUkJNxxmvbt2+vPP//U+++/ryZNmsjPz0/SjQBtNpsdZyW//vprrV+/XqmpqTct49FHH5W7u7s2bdokSdq9e7fjAT/pn+Pjjz/WDz/8IEn68ccf1aFDB8d9pACAnMGZSAAAsigoKEjLli3T/Pnz1bJlSyUnJ6tIkSJq3ry5+vXrJw8PD0nSggULNHXqVDVr1kwpKSmqW7euli5dKnd3d5UsWVKLFi3StGnTNHHiRLm5ualhw4YaPXp0puvp06eP0tLS1Lt3b12+fFlVqlTRwoULHXWk69mzp+x2u8LCwhQbG6tixYopPDxcjRs3NrSejh076r333tOPP/6Y4ZLYv8uXL586dOigjz76SCtWrHAMb9++vQ4dOqSWLVvKzc1N5cuXV48ePbR8+XKlpKRkWEbRokU1atQozZ07VxMmTFDt2rXVoUMHJScnS5KaN2+uq1evatSoUYqJiZG3t7d69uyp0NDQzGw2AEAmmeyZuckBAAAAAJCrcTkrAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwLD/BzYX6MEuO4rRAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "# Plot house prices against coefficients\n", - "plt.figure(figsize=(10, 6))\n", - "plt.barh(X.columns, model_log.coef_)\n", - "plt.xlabel('Coefficient Value')\n", - "plt.ylabel('Features')\n", - "plt.title('House Prices vs. Coefficients of Variables')\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "visualization of the positive and negative coefficient variables." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Log transformation of the polynomial model" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Polynomial Model (Degree 2)- MSE: 37774083176.83915\n", - "Polynomial Model (Degree 2)- R-squared: 0.7161383140038227\n", - " OLS Regression Results \n", - "==============================================================================\n", - "Dep. Variable: price R-squared: 0.679\n", - "Model: OLS Adj. R-squared: 0.678\n", - "Method: Least Squares F-statistic: 557.0\n", - "Date: Wed, 01 May 2024 Prob (F-statistic): 0.00\n", - "Time: 12:27:46 Log-Likelihood: -3540.2\n", - "No. Observations: 16913 AIC: 7210.\n", - "Df Residuals: 16848 BIC: 7713.\n", - "Df Model: 64 \n", - "Covariance Type: nonrobust \n", - "==============================================================================\n", - " coef std err t P>|t| [0.025 0.975]\n", - "------------------------------------------------------------------------------\n", - "const 4987.9435 522.414 9.548 0.000 3963.957 6011.930\n", - "x1 3457.3790 362.110 9.548 0.000 2747.606 4167.152\n", - "x2 -16.5312 7.635 -2.165 0.030 -31.497 -1.566\n", - "x3 -16.9803 5.626 -3.018 0.003 -28.008 -5.953\n", - "x4 -59.7513 8.202 -7.285 0.000 -75.827 -43.675\n", - "x5 -66.7001 16.473 -4.049 0.000 -98.988 -34.412\n", - "x6 21.7086 8.506 2.552 0.011 5.036 38.381\n", - "x7 56.1227 10.699 5.246 0.000 35.152 77.093\n", - "x8 0.1415 0.453 0.313 0.755 -0.745 1.028\n", - "x9 -1530.3915 159.119 -9.618 0.000 -1842.282 -1218.501\n", - "x10 -7.2389 1.397 -5.181 0.000 -9.977 -4.500\n", - "x11 27.1030 5.183 5.229 0.000 16.943 37.263\n", - "x12 2396.4725 250.995 9.548 0.000 1904.495 2888.450\n", - "x13 -11.4586 5.292 -2.165 0.030 -21.832 -1.085\n", - "x14 -11.7699 3.900 -3.018 0.003 -19.414 -4.126\n", - "x15 -41.4165 5.685 -7.285 0.000 -52.560 -30.273\n", - "x16 -46.2330 11.418 -4.049 0.000 -68.614 -23.852\n", - "x17 15.0473 5.896 2.552 0.011 3.491 26.604\n", - "x18 38.9013 7.416 5.246 0.000 24.366 53.437\n", - "x19 0.0981 0.314 0.313 0.755 -0.517 0.713\n", - "x20 -1060.7866 110.293 -9.618 0.000 -1276.973 -844.601\n", - "x21 -5.0176 0.968 -5.181 0.000 -6.916 -3.119\n", - "x22 18.7864 3.593 5.229 0.000 11.744 25.829\n", - "x23 0.0476 0.079 0.603 0.546 -0.107 0.202\n", - "x24 0.2000 0.083 2.399 0.016 0.037 0.363\n", - "x25 -0.4148 0.109 -3.823 0.000 -0.628 -0.202\n", - "x26 0.1250 0.245 0.511 0.609 -0.355 0.605\n", - "x27 0.1981 0.122 1.628 0.104 -0.040 0.437\n", - "x28 0.2251 0.161 1.396 0.163 -0.091 0.541\n", - "x29 -0.0032 0.006 -0.531 0.595 -0.015 0.009\n", - "x30 3.1411 1.477 2.127 0.033 0.247 6.036\n", - "x31 -0.0103 0.012 -0.883 0.377 -0.033 0.013\n", - "x32 -0.1564 0.078 -2.000 0.046 -0.310 -0.003\n", - "x33 0.0859 0.039 2.183 0.029 0.009 0.163\n", - "x34 -0.0407 0.079 -0.516 0.606 -0.195 0.114\n", - "x35 0.3258 0.195 1.668 0.095 -0.057 0.709\n", - "x36 -0.2649 0.091 -2.905 0.004 -0.444 -0.086\n", - "x37 0.1059 0.111 0.957 0.339 -0.111 0.323\n", - "x38 -0.0112 0.005 -2.119 0.034 -0.022 -0.001\n", - "x39 3.2391 1.094 2.960 0.003 1.094 5.384\n", - "x40 0.0084 0.008 0.989 0.323 -0.008 0.025\n", - "x41 -0.0497 0.054 -0.924 0.355 -0.155 0.056\n", - "x42 0.6010 0.091 6.569 0.000 0.422 0.780\n", - "x43 0.1950 0.270 0.721 0.471 -0.335 0.725\n", - "x44 0.3964 0.139 2.845 0.004 0.123 0.670\n", - "x45 -0.0224 0.156 -0.143 0.886 -0.329 0.284\n", - "x46 0.0471 0.006 7.361 0.000 0.035 0.060\n", - "x47 11.9015 1.585 7.511 0.000 8.796 15.007\n", - "x48 0.0005 0.012 0.044 0.965 -0.023 0.024\n", - "x49 -0.3608 0.079 -4.586 0.000 -0.515 -0.207\n", - "x50 -46.2330 11.418 -4.049 0.000 -68.614 -23.852\n", - "x51 -0.2814 0.262 -1.074 0.283 -0.795 0.232\n", - "x52 -1.4097 0.386 -3.649 0.000 -2.167 -0.652\n", - "x53 -0.0189 0.015 -1.223 0.221 -0.049 0.011\n", - "x54 17.2366 4.274 4.033 0.000 8.859 25.614\n", - "x55 -0.0160 0.016 -1.020 0.308 -0.047 0.015\n", - "x56 0.1612 0.187 0.861 0.389 -0.206 0.528\n", - "x57 -0.0348 0.081 -0.430 0.667 -0.193 0.124\n", - "x58 -0.5518 0.172 -3.212 0.001 -0.888 -0.215\n", - "x59 0.0147 0.008 1.939 0.053 -0.000 0.030\n", - "x60 -4.5317 1.668 -2.716 0.007 -7.802 -1.261\n", - "x61 -0.0425 0.016 -2.603 0.009 -0.074 -0.010\n", - "x62 0.6652 0.082 8.073 0.000 0.504 0.827\n", - "x63 0.7108 0.132 5.394 0.000 0.452 0.969\n", - "x64 -0.0074 0.009 -0.830 0.406 -0.025 0.010\n", - "x65 -10.6811 2.084 -5.125 0.000 -14.766 -6.596\n", - "x66 -0.0058 0.016 -0.357 0.721 -0.038 0.026\n", - "x67 -0.4727 0.098 -4.817 0.000 -0.665 -0.280\n", - "x68 -0.0051 0.002 -2.881 0.004 -0.009 -0.002\n", - "x69 -0.0156 0.088 -0.178 0.859 -0.188 0.157\n", - "x70 -3.158e-05 0.001 -0.045 0.964 -0.001 0.001\n", - "x71 -0.0010 0.004 -0.221 0.825 -0.009 0.007\n", - "x72 150.7551 15.531 9.707 0.000 120.313 181.198\n", - "x73 0.7643 0.175 4.359 0.000 0.421 1.108\n", - "x74 -5.7615 1.013 -5.690 0.000 -7.746 -3.777\n", - "x75 0.6353 0.261 2.434 0.015 0.124 1.147\n", - "x76 0.0173 0.007 2.394 0.017 0.003 0.031\n", - "x77 0.3068 0.032 9.733 0.000 0.245 0.369\n", - "==============================================================================\n", - "Omnibus: 86.286 Durbin-Watson: 2.008\n", - "Prob(Omnibus): 0.000 Jarque-Bera (JB): 100.078\n", - "Skew: -0.119 Prob(JB): 1.85e-22\n", - "Kurtosis: 3.291 Cond. No. 1.52e+16\n", - "==============================================================================\n", - "\n", - "Notes:\n", - "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", - "[2] The smallest eigenvalue is 1.69e-24. This might indicate that there are\n", - "strong multicollinearity problems or that the design matrix is singular.\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.preprocessing import PolynomialFeatures\n", - "from sklearn.linear_model import LinearRegression\n", - "from sklearn.metrics import mean_squared_error, r2_score\n", - "import statsmodels.api as sm\n", - "\n", - "# Define function to keep only numeric columns\n", - "def only_numeric(df):\n", - " return df.select_dtypes(include=[np.number])\n", - "\n", - "features = ['bathrooms', 'sqft_living',\n", - " 'floors', 'waterfront', 'condition', 'grade',\n", - " 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15']\n", - "target = 'price'\n", - "\n", - "# Load your housing data (assuming it's already loaded into 'housing_data' DataFrame)\n", - "\n", - "# Keep only numeric columns\n", - "housing_data_numeric = only_numeric(housing_data)\n", - "\n", - "# Check if all features exist in the DataFrame\n", - "missing_features = [feature for feature in features if feature not in housing_data_numeric.columns]\n", - "if missing_features:\n", - " print(\"The following features are not present in the dataset:\", missing_features)\n", - "else:\n", - " # Extract features and target variable\n", - " X = sm.add_constant(housing_data_numeric[features])\n", - " y = housing_data_numeric[target]\n", - " \n", - " # Log transform features and target variable\n", - " X_log = np.log(X + 1) # Adding 1 to avoid log(0)\n", - " y_log = np.log(y)\n", - " \n", - " # Split the data into training and testing sets\n", - " X_train, X_test, y_train, y_test = train_test_split(X_log, y_log, test_size=0.2, random_state=42)\n", - "\n", - " # Polynomial Regression\n", - " # Choose the degree of the polynomial\n", - " degree = 2\n", - "\n", - " # Create polynomial features\n", - " poly = PolynomialFeatures(degree)\n", - " X_train_poly = poly.fit_transform(X_train)\n", - " X_test_poly = poly.transform(X_test)\n", - "\n", - " # Build a polynomial regression model\n", - " poly_model = LinearRegression()\n", - " poly_model.fit(X_train_poly, y_train)\n", - "\n", - " # Make predictions on the test set\n", - " y_pred_poly = poly_model.predict(X_test_poly)\n", - "\n", - " # Reverse log transformation for evaluation\n", - " y_pred = np.exp(y_pred_poly)\n", - " y_test_original = np.exp(y_test)\n", - "\n", - " # Evaluate the polynomial model\n", - " mse_poly = mean_squared_error(y_test_original, y_pred)\n", - " r2_poly = r2_score(y_test_original, y_pred)\n", - " print(\"Polynomial Model (Degree {})- MSE:\".format(degree), mse_poly)\n", - " print(\"Polynomial Model (Degree {})- R-squared:\".format(degree), r2_poly)\n", - " \n", - " # Convert to DataFrame for summary\n", - " #X_poly_df = pd.DataFrame(X_train_poly, columns=poly.get_feature_names(features))\n", - "\n", - " # Fit the OLS model\n", - " model = sm.OLS(y_train,X_train_poly)\n", - " results = model.fit()\n", - "\n", - " # Print the summary\n", - " print(results.summary())\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "R-squared: The R-squared value indicates that approximately 71.61% of the variance in the target variable (price) is explained by the model.\n", - "\n", - "MSE (Mean Squared Error): The MSE of approximately 37,774,083,176.84 represents the average squared difference between the predicted and actual house prices.\n", - "\n", - "Coefficients: The coefficients represent the estimated effect of each predictor variable on the target variable. For example:\n", - "The coefficient for const (intercept) is 4987.94.\n", - "The coefficient for x1 (bathrooms) is 3457.38.\n", - "The coefficient for x2 (sqft_living) is -16.53.\n", - "The coefficient for x3 (floors) is -16.98.\n", - "The coefficient for x4 (waterfront) is -59.75.\n", - "The coefficient for x5 (condition) is -66.70.\n", - "The coefficient for x6 (grade) is 21.71.\n", - "The coefficient for x7 (sqft_basement) is 56.12.\n", - "The coefficient for x8 (yr_built) and other coefficients follow.\n", - "\n", - "P-values: P-values indicate the statistical significance of the coefficients. A small p-value (typically < 0.05) suggests that the corresponding predictor variable is statistically significant in predicting the target variable. In this summary, some coefficients have p-values less than 0.05, indicating statistical significance, while others do not.\n", - "\n", - "\n", - "F-statistic: The F-statistic tests the overall significance of the model. A low p-value (typically < 0.05) suggests that at least one of the predictors has a non-zero coefficient, indicating that the model as a whole is statistically significant.\n", - "\n", - "\n", - "Overall, the summary provides valuable insights into the relationships between the predictor variables and the target variable, as well as the overall goodness-of-fit of the model.\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqsAAAIdCAYAAAAaiDSZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvPklEQVR4nO3deXxU1f3/8ffNZCMBmwAKiV+tpVWsSy1GJIqKivorNWCDVNSKiggiuIGCtMYFjVZBpOJuAW3rQr9iojQtLq1aNRrE1K+trdpWq1QSUMIiBLLN3N8fw0wyySz3TmYyd2Zez8eDh2Zy5s7J3Fk+95zP+RzDNE1TAAAAgANlJLoDAAAAQCgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAfYq9aADYQbAKICVNmTJFw4cPD/h36KGHqqSkRD/+8Y/1+9//PuaPWVVVpeHDh+uLL74I2eaLL77Q8OHDVVVVFfPHX7BggU499dReHePUU0/t8bwdeeSROv3007VkyRK1trYGtF2wYIGt4//pT3/S9ddf36s+AkgvmYnuAADEy2GHHaabb77Z/7Pb7damTZv0+OOPa+7cuRowYIBOOumkmD3eySefrN/+9rfab7/9YnbMRBgzZoxmzZrl/7m1tVXr1q3Tgw8+qI0bN+qee+6J+tiPP/54DHoIIJ0QrAJIWf3799f3v//9HrePGTNGxx13nJ599tmYBqsDBw7UwIEDY3a8RBk4cGCP523UqFHatGmTqqqqtGDBgqQPyAEkD9IAAKSd7OxsZWVl9bj9mWee0ZlnnqkjjjhCJ598su677z51dHT4f79161Zdd911Gj16tI488kidddZZeu655/y/D5YG8NJLL2nChAn63ve+p/Lycn300UcBj7lu3ToNHz5c69atC7h9ypQpmjJliv/nlpYWLVmyRGeccYaOOOIIHX300Zo6dao+/PDDkH/n3//+d1100UUqKSnRiBEjdPHFF+v999+3/Dx1d8QRR8g0TTU2Ngb9/c6dO/Xzn/9cp512mo488kiVlZVp9erVAX/TO++8o3feeSfo3wwAwTCyCiBlmaYZEGz60gAeeOABNTc366yzzvL/7pFHHtHSpUt1wQUX6Kc//ak+/PBD3XfffWpsbNQdd9whSZo3b56ampq0cOFC5efna82aNbr++utVVFSkUaNG9Xj8V155RVdddZXOPPNMXXfddfroo480b968qP6W+fPna/369br22mt14IEH6rPPPtO9996rOXPmaO3atTIMI6D9rl27dOmll2rUqFFatmyZ2tvb9dBDD2natGl69dVXNWDAANt9+M9//iNJOuCAA3r8rqWlReeff762bNmiK6+8UgcccID++Mc/6oYbbtCWLVs0c+ZM3Xzzzf6//+abb9Z3vvOdKJ4JAOmGYBVAylq/fr0OP/zwgNsMw9Ahhxyie++9178YaefOnXrooYc0efJkVVRUSJJOOOEEFRQUqKKiQlOnTtXBBx+sd955R7NmzdJpp50myTs1XlBQIJfLFfTxH3jgAR1++OFasmSJJPlTDnw/W9XW1qbm5mbdeOON+uEPfyhJOvbYY9Xc3Kw777xTX331VY9p+X//+9/aunWrpkyZopKSEknSsGHDtGrVKu3atStssNo9yG9qatLrr7+uVatWady4cUFTHaqqqvTPf/5TTz31lP/xTjzxRHV0dOjBBx/Uueeeq+985zvq37+/JAVNzwCAYAhWAaSsww8/XAsXLpQkbd68Wffee6/a29u1dOlSffvb3/a3e++997Rnzx6deuqpAUGaL5itra3VwQcfrFGjRum+++7TRx99pDFjxuikk04KubK9paVFf//733XVVVcF3D5u3DjbwWp2drZWrFghSfryyy/1+eef69NPP9Wrr74qSWpvb+9xn4MPPlgDBw7U5ZdfrnHjxvnzdOfPnx/x8Z577rmA9AZJyszM1Omnn65bbrkl6H3eeecd7b///v5A1WfChAlavXq13n//fY0ZM8bCXwsAgdIiWN26dasmT56sysrKoFN1wbz44ou677779MUXX2jffffVZZddpkmTJsW5pwBiKT8/X0ceeaQk6cgjj9SIESN01lln6ZJLLlF1dbV/hHD79u2SpBkzZgQ9zpdffilJWrp0qR5++GGtXbtWL7zwgjIyMnT88cfrlltu6TE1vmPHDpmm2WMUMtqFSW+88YbuuOMOffrpp8rPz9fw4cOVn58vKXjd0vz8fD355JN66KGH9Ic//EGrVq1Sv379NGHCBN1www3KyckJ+VinnHKKZs+eLck7Et2vXz/tv//+ys3NDXmfHTt2aPDgwT1u99329ddf2/p7AcAn5YPV+vp6LViwQBs2bLB8n7q6Oi1YsEC/+MUvdNJJJ2ndunWaPn26DjnkEH3ve9+LY28BxNOgQYN000036corr9Ttt9/uH+HcZ599JEl33323DjrooB738wVcAwYM0Lx58zRv3jx9+umn+tOf/qQHH3xQCxcu1PLlywPuU1BQoIyMDG3ZsiXgdl9g7OPLNfV4PAG3Nzc3+4PRDRs2aPbs2Ro7dqweeeQRHXjggZKkJ598Um+88UbIv3fYsGFavHix3G63/vrXv+r555/X008/rf/5n/8JGZj7+u4L8q36xje+oc8//7zH7V999ZUkqbCw0NbxAMAnpasBVFdX67rrrtOcOXN6/O6tt97SpEmTdMwxx+jMM8/UmjVr/L97/PHHdeGFF2rMmDEyDEOlpaV69tln/V8QAJLXGWecoRNPPFE1NTX+1ehHHXWUsrKytHnzZh155JH+f1lZWVqyZIm++OILbdy4UWPGjNELL7wgyRsITp8+Xccff7w2bdrU43FycnI0YsQIvfTSSwEjn6+88kpAO18OZ9cV9jt27NAnn3zi//mDDz5Qa2urLrvssoDPIV+gGmxk9YUXXlBpaam++uoruVwujRgxQrfccov22WefoP3trZEjR2rjxo2qr68PuH3NmjXKysryX+hnZKT01w6AOEjpkdUTTjhB48ePV2ZmZkDA+tFHH+nyyy/X4sWLNXbsWL3//vuaNWuWCgsLdeKJJ+qvf/2rRo0apRkzZuj999/X0KFDdeWVV+qQQw5J4F8DIFZ+9rOfacKECaqsrFR1dbUKCwt16aWX6t5779WuXbs0atQof46rYRg69NBDNWDAAA0dOlSVlZXatWuXDjzwQH3wwQf685//rMsuuyzo48ydO1cXXXSRrrjiCk2ePFmfffaZHnrooYA2w4cPV1FRke6//34NGDBAGRkZevTRR9WvXz9/m8MPP1yZmZlavHixLrnkErW1tamqqkqvvfaaJGn37t09Hvvoo4+Wx+PR7NmzNWPGDOXn52vt2rXauXOnzjjjjNg9mXtNnDhRTz31lK644gpdddVVOuCAA/TKK6/o2Wef1RVXXOEfvd5nn3303nvv6e2339Zhhx2mb3zjGzHvC4DUktKXuPvuu68yM3vG46tWrdLYsWN1xhlnyOVy6eijj9Y555yjJ598UpJ3VGPFihW6/PLLVVtbq9mzZ2vOnDm9qk8IwDmGDRumKVOm6J///KeeeOIJSdI111yjBQsW6OWXX9b06dO1ePFilZSU6IknnvCvnL///vt14okn6t5779Ull1yip59+WldccYU/v7O7Y445Rr/85S+1efNmXXHFFVq1apW/DJaPy+XSsmXLtN9++2nu3LmqrKzUuHHjAgLKb37zm1qyZIk2b96syy+/XDfddJMk6Te/+Y0Mw9C7777b47H3228/LV++XAMGDNANN9ygyy67TH//+9913333qbS0NCbPY1f9+vXTb37zG5166qlatmyZLr/8ctXX1+v222/XlVde6W/3k5/8RFlZWZo+fbpef/31mPcDQOoxzGDzRylo+PDh+vWvf61Ro0Zp+vTpqqurC1hg4Ha7deCBB+r555/XiBEjdOGFFwaMxs6YMUPf+c53LK2kBQAAQGykdBpAKEOHDlV5ebluvfVW/21ffvmlP+/r29/+ttra2gLu43a7g+aFAQAAIH5SOg0glEmTJqmmpkZvvvmmPB6PPvvsM11wwQVauXKlJOm8887T008/rbfeeksej0cvvvii1q1bp7KysgT3HAAAIL2k5cjqUUcdpXvuuUf33HOPrr76avXr109lZWWaO3euJOnss89WRkaGfv7zn+uLL77Q/vvvr6VLl/bYCQcAAADxlTY5qwAAAEg+aZkGAAAAgORAsAoAAADHIlgFAACAYxGsAgAAwLFSthpAU9NO2V06ZhjSoEEDorovkg/nO71wvtMH5zq9cL6Tk++8WZGywappKuoXbW/ui+TD+U4vnO/0wblOL5zv1EUaAAAAAByLYBUAAACORbAKAAAAxyJYBQAAgGMRrAIAAMCxCFYBAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsTIT3QEAAAAnc7ulujqXNm82NGSIqdJSt1yuRPcqfRCsAgAAhFBTk6mKihw1NHRORhcXe1RZ2aqyso4E9ix9kAYAAAAQRE1NpqZNy1VDgxFwe2OjoWnTclVTw5hfXyBYBQAA6MbtlioqcmSakhQYrJqm9+eKihy53X3ft3RDsArAkdxuqbbWpaqqTNXWuvhCANCn6upce6f+jaC/N01DDQ0ZqqsjeTXeGL8G4DjkiAFItM2bgwep0bZD9BhZBeAo5IgBcIIhQ8yYtkP0CFYBOAY5YgCcorTUreJijwwjeDBqGKaKiz0qLeUDKd4IVgE4BjliAJzC5ZIqK1slqUfA6vu5srKVeqt9gGAVgGOQIwbAScrKOrRiRYuKigKD1aIiUytWtJBD30dI/gLgGOSIAXCasrIOjRvXwQ5WCUSwCsAxfDlijY2GP0e1K8MwVVRkkiMGoE+5XNLo0XzuJAppAAAcgxwxAEB3BKsAHIUcMQBAV6QBAHAccsQAAD4EqwAciRwxAIBEGgAAAAAcjGAVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACORbAKAAAAxyJYBQAAgGMRrAIAAMCxCFYBAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACORbAKAAAAxyJYBQAAgGMRrAIAAMCxCFYBAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsRwarH330kaZOnapjjz1Wo0eP1vz587V169ZEdwsAAAB9zHHBaktLiy699FKNGDFCb775pmpqarR9+3b97Gc/S3TXAAAA0MccF6w2NDTo0EMP1ezZs5Wdna3CwkJNnjxZ69evT3TXAAAA0McyE92B7oYNG6bly5cH3Pbiiy/q8MMPt3Ucw7D/2L77RHNfJB/Od3rhfKcPznV64XwnJzvnyzBN04xfV3rHNE394he/0FNPPaUnnnhCw4cPT3SXAAAA0IccN7Lqs2vXLv30pz/V3//+96gC1aamnbIbhhuGNGjQgKjui+TD+U4vnO/0wblOL5zv5OQ7b1Y4MljdsGGDpk+fruLiYq1evVoDBw60fQzTVNQv2t7cF8mH851eON/pg3OdXjjfqctxC6x27Nihiy66SEcffbRWrFgRVaAKAACA1OC4kdWqqio1NDRo7dq1euGFFwJ+99577yWoVwAAAEgExwWrU6dO1dSpUxPdDQAAADiA49IAAAAAAB+CVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACOlZnoDgCwzu2W6upc2rzZ0JAhpkpL3XK5Et0rAADih2AVSBI1NZmqqMhRQ0PnhEhxsUeVla0qK+tIYM8AAIgf0gCAJFBTk6lp03LV0GAE3N7YaGjatFzV1HDdCQBITQSrgMO53VJFRY5MU5ICg1XT9P5cUZEjt7vv+wYAQLwRrAIOV1fn2jv1bwT9vWkaamjIUF0dyasAgNRDsAo43ObNwYPUaNsBAJBMCFYBhxsyxIxpOwAAkgnBKuBwpaVuFRd7ZBjBg1HDMFVc7FFpKUmrAIDUQ7AKOJzLJVVWtkpSj4DV93NlZSv1VgEAKYlgFUgCZWUdWrGiRUVFgcFqUZGpFStaqLMKAEhZFGcEkkRZWYfGjetgBysAQFohWAWSiMsljR5NbioAIH2QBgAAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACORbAKAAAAxyJYBQAAgGMRrAIAAMCxCFYBAADgWASrAAAAcCyCVQAAADhWZqI7AKQ7t1uqq3Np82ZDQ4aYKi11y+VKdK8AAHAGglUggWpqMlVRkaOGhs5JjuJijyorW1VW1pHAngEA4AykAQAJUlOTqWnTctXQYATc3thoaNq0XNXUcC0JAADBKpAAbrdUUZEj05SkwGDVNL0/V1TkyO3u+74BAOAkBKtAF263VFvrUlVVpmprXXELFuvqXHun/o2gvzdNQw0NGaqrI3kVAJDemGcE9urL/NHNm4MHqdG2AwAgVTGyCqjv80eHDDFj2g4AgFRFsIq0l4j80dJSt4qLPTKM4MGoYZgqLvaotJSkVQBAeiNYhaP0Vc5oV4nIH3W5pMrKVknqEbD6fq6sbKXeKgAg7RGswjFqajJVUpKv8vI8zZzZT+XleSopybc8BR9toJuo/NGysg6tWNGioqLAYLWoyNSKFS3UWQUAQCywgkP4ckbNbrPivpzRSMFbbxZHJTJ/tKysQ+PGdbCDFQAAIRim2T08SA1btuzsEfhEYhjS4MEDorovoud2SyUl+XsXN/UcvTQMU0VFpurrm4MGcYGBrhFwP0khA13f+d68eaeOPjpfjY2GP0fVzuMjOfD+Th+c6/TC+U5OvvNmBWkASLje5IzGYnEU+aMAADgXwSoSrjc5o7FaHEX+KAAAzkTOKhKuNzmjsVwc5bT8UbdbjukLAACJQrCKhPPVHI2UMxqs5misF0e5XNLo0YmvbdqXu2kBAOBkpAEg4XqTM5qKxfX7ejctAACcjGAVjhBtzmiqLY5KxG5aAAA4GUM0cIxoc0Z9ga532rwzwCsqMpNu2rxzwVhw3gVjhurqXI5IVwAAIN4IVuEo0eaMOm1xVLQStZsWAABORbCKlOGUxVG9kcjdtAAAcCJyVgEHScUFYwAA9AbBKuAgqbZgDACA3iJYBRyG3bQAAOhEzirgQKmyYAwAgN4iWAUcKhUWjAEA0FukAQAAAMCxCFYBAADgWKQBoM+53SIXEwAAWEKwij5VU5O5d1vUzkH94mJP0m2LCgAA+gZpAOgzNTWZmjYtVw0NgVuFNjYamjYtVzU1XDulIrdbqq11qaoqU7W1LrlZMwYAsIHoAH3C7ZYqKnJkmpIUGKyapiHDMFVRkaNx4zpICUghjKQDAHqLkVX0ibo6196AxQj6e9M01NCQobo6ItVUwUg6ACAWCFbRJzZvDh6kRtsOzhZpJF3y/t5uSgApBQCQfhjaQJ8YMsSM3MhGOzhb50h6cN6RdEN1dS7LGx+QUgAA6YmRVfSJ0lK3ios9MozgwahhmCou9qi0lKGyVBDrkXRSCgAgfRGsok+4XFJlZask9QhYfT9XVrayuCpFxHIkPV4pBQCA5ECwij5TVtahFStaVFQUGKAUFZlasaKFqdwUEsuRdBbnAUB6Y+4MfaqsrEPjxnWwg1WK842kT5uWK8Mw/SOgkv2RdBbnAUB6Y2QVfc7lkkaPdmvixA6NHk2gmqpiNZLO4jwASG+MrAKIm1iMpPtSChobjYARWh/DMFVUZLI4DwBSFMEqgLjyjaT35v6xSikAACQf0gAAOB6L8wAgfTGyCiQht1tpt0iNxXkAkJ4IVoEkk847OfU2pQAAkHxIAwCSCDs5AQDSjaOD1a1bt+r000/XunXrEt0VIOHYyQkAkI4cG6zW19dr8uTJ2rBhQ6K7AjgCOzkBANKRI4PV6upqXXfddZozZ06iu4Ig3G6pttalqqpM1da6GMnrI+zkBABIR45McDvhhBM0fvx4ZWZmRh2wGlF8X/vuE81900VNTaZuuKHn4p7bb0++xT3Jdr6HDrW2Q9PQoWbS/E19KdnON6LHuU4vnO/kZOd8GaZpOnqPwuHDh+vXv/61Ro0aleiupL2qKmnSJKn7K8b3glu9Wpo4se/7lS7cbumgg6SNG3ueA8l7Hv7nf6T//EeUcwIApAxHjqzGQlPTzqBf6OEYhjRo0ICo7pvq3G7pyivz9y7k6b64x7uT0FVXmRo9ujlpAqVkPN+33ZapSy7JlWEo6E5Ot97aom3bkmuEu68k4/lGdDjX6YXznZx8582KlA1WTTP46FO875uq3n7bFTD1351pGtq40dDbb7uSrg5mMpxv3yYAra3SvHlt+s1vstTY2BmsFhWZqqxs1Zlndjj+b0m0ZDjfiA3OdXrhfKeulA1WEVss7kmcYJsAFBV5NH9+q4YN87CTEwAgpRGswpIhQ6xdrlpt1xvx3mrUSVuZ+jYB6D5asGmTocWLs7ViRUvSjWQDAGCH44PVjz/+ONFdgKTSUreKiz1qbDQCciV9DMNUUZE3sIuneG816qStTCNtAmAYpioqcjRuXAejqmH4Lj6+/NLQIYdI3/2ulOHIon0AgGD4yEYPweqoulxSZWWrpM7FPD6+nysrW+MaNMV7q9HeHD8etWfZBKD3amoyVVKSr/LyPF12WT+dcop09NH5bEsLAEmEYBUBun65z5zZT+XleSop8X65l5V1aMWKFhUVBQarRUWmVqxoievIY2+2GrUSSPbm+OGes94gT7h34n1xAwDoG3xawy9UfqTvy90XkJ5xRoceeyxLn32WoYMO8mjq1HZlZ8e3b52jjMF5RxkN1dUFViMIN60/fnxncN2b41t5zqLhpDzhZEMKBQCkDkZWIcn6yOKaNZk69th83XhjrlasyNaNN+bq2GPjP60azSijnZG1aI7fm9FYK0aOdCsjw5QUKhg1lZFhauRIFlh1RwoFAKQOglVIsv7lfumliZlWtTvKaDeQjGYUM94B0fr1Lnk8PTdh6GTI4zG0fj0BV3ekUABA6ogqWP3ggw8kSV9//bUWL16sFStWqKODXXOSmb0v7diPIkbiq0bQfXGXv0eGqeJij78agZVAcuPGDL3xRnTHl+IfEBFwRY8UCgBIHbaD1YceekgXXXSRJKmyslKvvvqqqqurddddd8W8c+g71r+0EzOtarcagdUArrExuuNL8Q+ICLiiF83FBwDAmWwHqzU1NXryySfV1tamF198Uffcc49+9atf6Q9/+EM8+oc+EunLPXTeZKB4jvKFqkZQUGBq3rw2jRvXObpvNYArKop8/FDVDnoTEFmpUEDAFT0nlFoDAMSG7WD1yy+/1KGHHqr6+noNGDBAhx56qAYNGqQ9e/bEo3/oI1a+3K2IdpTPap3SsrIO1dc3a/78VhUUeCRJ27ZlaNGinIByUVYCvf339+jEE4Mfv7p6tx5+eI+qq3ervr456Ir+aAMiq6WuCLh6J9TFR3Fx/EutAQBix3awOmTIEK1fv17PPfecjjvuOEne0dYDDjgg5p1D3wo3srh8eUvcRvns1ilduzZTixdna/v20Au9ehPouVzS6NFuTZzYodGjw2+1anc01m7tz0TWtk0FXS8+Hnlkj159VSEvPgAAzmSYZvcKkeG9+OKLmj9/vnJzc/X0009r8+bNmjFjhu677z6dfPLJceqmfVu27OxR+zISw5AGDx4Q1X1TiW97ys2bDQ0Z4t1C1eXqDLQkBWy56gv+ogmeAuuURj6m2y2VlOTvDfZCb/taX9/s73O4OquxOt+hnrPubez03e7xER7v7/TBuU4vnO/k5DtvltraDVYlqbXVO2KVk5OjXbt2affu3dpvv/3sHiauCFbjI1zwZzdQjSZ4q611qbw8L+Kxq6t3+4v3hwr0+vp8R9P3VJSowJv3d/rgXKcXzndyshOsWi6MuX79+rC///zzzzVy5Eirh0OSKivr0LhxHTEJNqLZNcrqAq7XXw/snxOCP0pRxfZiB9YxMg8gmVkOVqdMmRL294Zh6MMPP+x1h+B8vpzO3lq71trLr2vwZnUB19KlOf7/d0owlO6lqOK5NS1C4wIBQLKLKg0gGZAGECjakZV4jci43dIRR+SrqSnyGr/uU/olJflqbDQC8mY7+U5c5PzXvj7fkfoeLmc12fUmXzdWUvn9HYrdnPBUkY7nOp1xvpOTnTSAqHaw2rNnjzZt2qSGhgY1NDTo888/18svvxzNodAHgq22/+5383X33dlhd5yyu0rfjro6l6VAdfDgwAoD4Vb5e/UMhqLZYctqKS070rkUVby3pkVPdrccBgCnsh2sPvvsszruuON0yimnaOzYsRo7dqx+8IMfaOHChfHoH3opVKmk7du9tUkPOyx48Gm3xJJdVvMyzz67vUfw5ivnVFBg/RLaTjAUzyA9mUpRxTJgJ1+373GBACBV2P72ffjhh3XNNdcoPz9f69ev10UXXaTFixdr9OjR8egfeiHcyIrPtm2GLrkkVytXdgZKkUZkDMNURUWOxo3riHoU0Gpe5g9+EDxCGjeuQzfckCPvtL/1ACdSMBQqr7KhIXZ5lbFcpBYvsc5zTPd83UTgAgFAqrA9svrVV1/poosu0nHHHacNGzbo8MMP1x133KFnnnkmHv1DL0QaWfHqOR3YFyMyVrZ3DbfJQF2dS42Nkf62nsIFQ+GDe0OmKV13XfhpU6ujkVY2HohHKoIV8RhVZ+vYvscFAoBUYTtYHTRokNrb21VUVKT//Oc/kqTi4mI1NTXFvHPoHesjJoHBZ1+MyETK3zSM8Pmbdh+7azDUNQh87TVZDtIlQ1u3Zmjp0uygv41l+kA8UxHCiVeeYzrn6yYKFwgAUoXtYPV73/uebrrpJrW0tOiggw7S008/rerqahUUFMShe+gNuyMmvgCwr0ZkwuVv/vKXLSosNEOOKtp57K7B0Nq1nUHgZZf10ymnSEcf7Q0CrQbAjz6a1aM/sRyNjHe+cDjxHFVPpnzdVMAFAoBUYbt01ZdffqmKigpVVlZqw4YNmjlzplpaWvTzn/9c48ePj1c/baN0VeRyQd35SkT1dYml7uWxmpoM3XRT+HzJyCWs1OO+koKW8fGVu5o/v02LFuX0uH8wwcppxaIsU6JLPFVVZWrmzH4R2z388B5NnBhdcMkOVn0rHeuspuu5Tlec7+QU9+1Wu+ro6FB7e7v69Yv8BdeXCFa9QtVZ7CpYAOS7n6SAYDDe9Rnt1IUM1Uef/HyPZs9u15w5bZIiBe6mv7rA9u2RJxy6Bmux3EY10VuyJvrx4ykV399WpdsOVul8rtMR5zs5xWW7VZ/nnnsu5O9+9KMf2T0c4sw39XrttTnati34SJ3UczrQdz/viEzn/YqKzIgjMr3ZgMBOFYJIf9vu3YYWL87WoYd6VFhoht3aVTK0fbuh0aPbVVsbOVjtmoYQbY5vsOcp0Su4fXmOkUbVreY5pluQ5FSx2nUOABLBdrC6bNmygJ937NihPXv2qKSkhGDVoXylkpYuzdajj2YFjByGCz6jKbHUmynHznzJ4Lz5kobq6lz+L95wJay6Brhnntke9rF9/vEPlwoKPNq+Pfw0fNdgLZoc31DP0wUXWOtnvFZw+/Icp03LlWGYQUfVreY5puP0MwAg9nqdBmCapn75y19q+/btmj9/fqz61WvpngYQakTLzkiX3VGx3m7taDVf8sc/btM++0gHHeTRIYd4NHly5Gnr7GxTbW3WRiPnz2/VokW+Ff+R/w67Ob6RnqeCAlPbtyd2S9beBppO3OYzld7fCI9znV4438mpT3NWJcntduukk05SbW1tbw8VM+kcrMZiRMvuMdxu6bDD8vdOx0cXZFnNl+x+3EgLrOx6+OE9ys6Wrb/fao6vlQVUhYWmtm41ZBh9my/cXW/SORK5SCyUVHl/IzLOdXrhfCcnO8Gq7dJVwfznP/+RYbALihPEouxRNMdYujRb27ZFLnn01luhoxMrGwX4Vu53HjfcXxKdIUNMlZV1qL6+WdXVu/Xww3tUXb1b9fXNIYNEq2WZrJSG2ro1Q/PntyW8xJOVjQuCYZtPAEAs2c5ZnTJlSkBg2t7ero8//lgTJkyIacdgX7TbpHYdQdt3X1M33GDvGG63t/aoFRdemKt7723VhAk9A65w+ZKdQWrPnaVC/84uU8XFnfmodhelWMnxtbowatgwj+rrm5NycVKiF4kBAFKL7WB11KhRAT9nZGTo4osv1mmnnRazTiE6VhcovfWWSxkZ3mDh008z9JvfZO3dujSyYIuc6upclso9SVJzc4YuvTRXs2e36eab23r8PlQVAitbxgZbZGVd5F2zrIgU4FpdGPXppxlJu4KbbT4BALFkO1i94oor4tEPxIDVkapp03K7BZf2g4aujxXNCNkDD2RrxAhP0BHW7iOUzz+fqbVrI4/c5uWZ2r07umB14EBTd98d/1XqpaVuFRV5S0OFDqxNPfFElubMaUuKkdTuYl3+CgCQ3iwHqz/96U8jtvn5z3/eq86gd6yOVHnLMnVlP8Dr+lj2R8i8j7dgQY7OPLMjaEDWdVTxq68MS8Hq9de36Xvf8+jJJzO1enV2xPaSNHCgNH16q665pm8CQ5dLmjKlPcJOWT1Hr5NJLMtfAQBge4HVtm3btGbNGu3cuVMFBQVqbW1VTU2N2tp6Tuki/txu7yr6qqpMud1SUZGVBUrR5woahqniYk/AqFhpqVuFhR7ZHaHdssXaIpupU9uVkdFzcVUnUxkZpqZNa9fo0W794hetEdsbhqlnntmtL7+Urruub0cwhw3zWGqXzDmdVhec2dH1tV5b65I7+eJ4AEAULI+s+kZNZ86cqWXLlmns2LH+37355pt6+OGHY987hBWsvFRhoUemGaykU++CVCn4qJgvgLBaw7Q7KwFZdrZ02WVteuihbPX8O7x9uvzyNmVnd7a//PI2PfBA6PazZrXp5JOjX7DUm52Z0iWnM5pNJUJhgwEASF+2R1bXrVunU045JeC24447Tn//+99j1ilEFqq8lG+K37fPvU9hYe8Dn+6jYjU1mSopydekSXlqbg6XgxmalYCspiZTzz+ftff4gY+RkaGgi7VuvrlNs2e3KaPbKzxUezt8f3d5eZ5mzuyn8vI8lZTkWyoLJkUu0RVs9DpZRVv+qqtYlGMDACQv25/y+++/v9auXaszzzzTf1tVVZW++c1vxrRjCM1KiarcXOnZZ3dr82ZDTU2GtmwxdO+94fIkA/kWwSxb1qItW3qOigXuUBSNwDJRoYR+HO8NDz7YoiFDTFVVZfbo4803t+mnP23TY49l6bPPMnTQQR5NndruH4GNRqj++AInK1Pc5HRaF205NoTWm1kBAEgE28HqnDlzdPXVV+vJJ59UUVGRvvjiC/3zn/8kDaAPWSlR1dhoaN06l554Iqtb28jpAL6A6dZbgwdMbW3SvHnBAwhrrJWJCheo+OqrzpqVK4+n83fdp4a9KQTtUfTRXn/sBk6hSnQVFZlMbXdhtRxbsi5G62ukUwBIRraD1bFjx2rNmjX6wx/+oC+//FJjxozR3XffrQMOOCAe/UMQVhfedO5v312wPM7AgKm8vF033dTzS628vF2rVmWpqclOBkng8YuLrQVkkQIVyZCn21qlUCOcwUaTMm2++mMdOMUypzNVscFA7MRiVgAAEiGqZK9hw4ZRbzWB7C28CbfjU2CbggKPZsxo1yGHeDR9es8vtYYGY++iJRuPvneUdt68Vg0b5gkakIWalowmAAk2whlqNOn221t18cXWjx2PwClZC//3lXRZjBZvpFMASGaWg9Xx48frd7/7nU499dSA7Va7+tOf/hSzjsErWCDX1BRpi1HfSGaooCn4jk87dhhatChbhYVm2Kl3O1P/kaa1w01LRhuA+EY4ly/P0hdfGHrkkZ4BdmOjoUsuydU++0gnnRT8ON2f+8GDCZz6GhsMxAbpFACSmeVgdcaMGZK8O1iFClYRW8ECuaIij1pafD+FClSt6jnCIpnati381HtkpgoKvJUDjj8+9LR2pGnJX/6yJWygEsmNN+aG7uHev/Xqq6V331WPqgGhnvv8fE+YygemCgtNud0KuuAL9rEYLTZIpwCQzAzTjH49tyR98skn6t+/v4YMGRKrPsXEli07ba9UNwxp8OABUd031gIDudjWS40v7+KprvlvvhHKxkZvZYJBg0ztt5+pK6/MDbPtqLdawK23tmr6dG/QGU3AasX117fq2ms7S1mFf+59gvfZMAL7yeKV2IjFwiAnvb/7Wm2tS+XleRHbVVfvTomR1XQ+1+mI852cfOfNUlu7wepf/vIX3XrrrXruuee0atUq3XLLLcrMzNQvfvELnXbaaVF1OB6SOVh1u6WSkvy9q8SjC9D69/do167o7x+tQYM8Wry4NaAWa/cgw47q6t3ats3ocYyMDHPv4qpwaRBWmVq50htcx+K578o3+sfild7rbcklp7y/E8H3uo6UTlFf35wSo9TpfK7TEec7OdkJVm0vsFqyZIlOPvlkmaapRx55RHfeeacKCgq0ZMkSRwWrySzyKvjIdu3KkN3tT3vHm9P5f//X7K9j2vtarN6UgEmTeq6ab2oy9o64dt+pS4omyPQtLonFc98Vi1dih8Vo0SOdAkAys/2t/Omnn+rqq6/Wp59+qi1btuiHP/yhTj75ZH3xxRfx6F9aSr68Me+X3Z13tvoD1fA1Uq3zLibruRPShAkd+uUvW2KyM5dkqKEhwx8Mx5p38Yr3+ECi+Gr7FhUFvme670wHAE5je2TV5XKpublZr7/+ur7//e8rOztbGzduVP/+/ePRv7RkfTV5pOluq1UDest7jJtuylFGhvdLMVYjlIMGBX8uamoyNW9eToTFYPb4Rm3jJfkuQpBqqO0LIBnZDlZPO+00XXDBBdq4caMqKir073//W7Nnz1ZZWVk8+peWRo50a9Agz95RxeBB5oABUn6+qU2bIgVAwctUBf4uNroWF29ri9zeiu6jQJI3UL3kklAr/cMF5+H5vrh7U4Eg0vGBRCOdAkCysT0sdeONN+rCCy/UwoULddZZZykzM1Pnnnuurrvuunj0L+3U1GTq2GPz9+4QFbpO6s6dhgxDGj/eWlRYUBD/QMkX3FVU5GjffXv7eKaKiz096me63dINN+Ts/SnY89M1OA88XqgcXsPofCxfbl/wY4Tvbyhdjw8AAOyxHay6XC5NnDhRo0eP1gcffKADDzxQP/nJT+RiHqnXfAuSuu4VH86mTYZ+97ssS20feaRFgwZ5FO9FV778zI4O74r93jxesAUf3hJY4QJ5KfiGCL7bgven62P5cvtCpSD0FC6dwrvBAotXAACIju1gtbm5Wddee61GjRqlCy64QJ999plOP/10ffrpp/HoX9qIZkGSd6V5+KDQN6qXmakIo7Wx9fjjWfJ4oi//NH16W9AFH/bzPsMHnC6XNGtWm8aN61BtrUtVVZmqrXVp3LgOvf9+c4QA30rKgaEf/aidxSsAAETJdrC6aNEi7d69W2vXrlVWVpYOOOAAnXLKKbr99tvj0b+00bkgyV4wZprG3qCwswRNl9/6R/VefNF2enKvrF1rbcQ3lAMP7Pxb3G75A0n7wWr4PF2PR3rggWwddli+ysvzNHNmP5WX56mkJF8vvZSpxYtbZRg9n9uez3VoL72UqTfecMlNFgAAALbZDlZfffVV3XnnnfrWt74lwzCUlZWlBQsW6G9/+1s8+pc2ertSPD9fysvrHkAZys2VHnggS48+2rvg0brYpBn4puBrajJVUtIZSN58c+gtVKPhqwG7bVvg8+9bLCYpZLmf+fOt5Qvv3p2hs8/O09FH56umpm8vGgAASHa2vzk9Ho+y9xbT9G1+1fU2RKe3K8Wbm6XOnMzOwKulxVB9fV8GSLFJMygqMmOyqYA1PfvctZh/fX1z0HI/kvToo1navt3aNV9jo6FLLsn175YFAAAisz2yWlpaqltvvVV79uyRYXi/5H/xi1/o2GOPjXnn0omvZFL0I5NGt/8mr0GDPBo50h2TTQV6w7dYrLbWFbQupcslzZjRbuOI3r/j2mtzSAkAAMAi28HqT3/6U33yyScaOXKkdu7cqREjRmj9+vW6/vrr49G/tOFySeXldgKfYJI/UJWk733Po8cey4oqhzceLr00t0c+q286f86cNhUW2rnIMLRtmzcA9umak1tbS24rAABdGaZpb5J1+/bt+sY3vqG//e1v2rhxo4YOHapDDjlE99xzj2688cZ49dO2LVt22p4+Ngxp8OABUd23twKnvBMfoKGrwNQK3+Iq3xaVgZsUWDt348e3acWKVtXUZKqiIidgt6/iYo8qK1tJFYixRL6/0bc41+mF852cfOfNCssjqx9++KHGjh2r4447Tueee66++c1vaty4ccrLy9PkyZO1Zs2aqDucToKNokVTtgqxFK40Vc8aql03P3C7vXVZV67suQgrnN/9LksLF2YHravrW9zFYiwAAGwEq7fffrsOOeQQPfTQQ+rfv78efvhh1dXV6bzzztOAAQNUXV0dz36mhO4r231TykuXZlue8u5tof105HJZec6C7XgVuk6sL5+1rs47nV9W1qH772+x1a8HH8wOeoHSPRjuDVIMkAi87gDEkuWhmw8//FAvv/yyBg4cqEMPPVQXXHCBnn32WV1wwQW65pprlJFhO/01rYRa2d7YaGjRIuuVFLw1VYOP+CE4tzvS82Ro0CCPmpo62xUUmNq+PfLz+8YbnQuv7JUfM8JOV3mDYUO1tS65XOqxuMsKUgyQCLzuAMSa5ZzVESNG6L333vP/fMQRR2ju3Lm65JJL4ta53nBSzqrbLZWU5O+d7g0W0NgNPJMtUE1Uf00ZRudIZThTp7Zp2DCPBg0yVVRkyuORzj47z9ajeQPe2F60FRR4AkpjWf3SD5UD3T3fNp2Q1xZ/Tnndca7TC+c7OcUlZ9VXpsonKytLU6ZMsdezNBV5dyrf7dZXlCeXWPTX3ieQ78vRSqAqSY89lq0bb8xVZWWOtm0zdPzx3lJioXeq6pla4B2Zje0nZffRXSv5rOFyoGOZYpCOmN4OjdcdgHiJehgoKytLWVl9tStScrMzPWxnG0+ENnSoabMGqpcvGFy7NlOVla2Sgm9j6xV+K9fYsP+lH+niqHu+LawJlXPOQjgvXncA4sXyp2xHR4eee+45/8/t7e0BP0vSj370oxh1K7VY350q9iNzqcNeIHj//S3KyJAefdTezmrdd65asaJlb/5d18cP15f4j3r78lnr6lwaPbpnxGr14qi3W/ymk3A559Om5aZlWkV3vO4AxIvlYHXw4MFatmyZ/+fCwsKAnw3DIFgNwbc7VWOjEXFamnyb2PjqK0NnndVh+XnvyhcMvvWWS4WFpioqWtXUZGjDhgw99VSmmpudsZgw1Je+1Yuj3m7xmy4iTW/7Lm7GjeuwvPgtFfG6AxAvloPVV155JZ79SGkul1RZ2app03JlGGaEwIlRh1gYONDU8uVZ+u533WpoyFQ0i7ymTcsNWNwUm1Hv2C02C/WlH+niyDC8i8hKS0ketKJzeju4SCPd6YLXHYB4ccYQURooK+vQihX2CscjGqby8z0699x+uvHGXP3pT1mKNjgMXroqumMZhqnCQo8MI1wOrPVjFRd7Qn7p+y6OfG2731fy/j6dRwHtYHrbGl53AOKFYLUPlZV1qL6+WXPntia6KynK+4XY3GzI4+n+u2gCiVgtoDJlmtKSJa0hLljsL8CL9KUf6uKoqMi0nV/pWwG/enWmHnkkS6tXp9dKeKa3rYvl6w4AfCzXWU02Tqqz2l1trUvl5fZqeCKyggKPduwwguYWJpapgQNN/f3vzXK5pLY26bHHsvSnP2XqtdfsrSS3W1zd7fZOY0ezqYAUvMB7tH1JtGjf3746yZGmt+vrmxk13Ku3r7veou5meuF8Jyc7dVapuZIAdhZcwZof/7hNhx/u0S235Ca6K0EY2rrVm9O4bZsRMvgLzVuGa9y4Dttf+i6Xos6jDLUC3qehIT1WwofLOWd6O7jevO4AoDvSABLk/PPb9wYBwfIXuTS0a/XqLL32mrOjhRdecGnatNxuZbCkcOc7I8PU8uUtqqxs1ejRfTc6FW4FfCfvKHY6FHpnehsAEoeR1T5WU5Opa6/N0bZtXCfEkmkatqfU+9rq1Vkhgj9ffd2ut3uDokcfbdGECfENhIJN2UZaAd8pfVbCl5V1aNy4joRObwNAOnL2t3uKWbMmU5deGmmamrSA6HXdtjbY8xhq56n4MgxT/fubamoKF/wF71NGnK9pguWkFhd7bI8UpstKeKa3AaDvMbzXR9asydSMGbnyBiXp8cWeWMHLQ82c2abq6t16+OE9evbZ3dp//2BtY9sP05R27rR7zg0ZRnyn2H05qd3TEhobDT36qL2tlFkJDwCIF4LVPlBT4x1R9XgIUvtGqPqohtasyVJTk3cKd8sWQzNm+H4fn2Brn32kgoLojh3PvdQj7cokefNle9aE7dHLsDVfAQDoLdIA4sjtlt56y6W5c3MS3ZU0FDwloKHB2JuK0XlbYaGptjZDzc2x78XXX/d+JD0eU+yRc1J9tWp9C/5Cp1WwEh6RJLqUFYDkxshqnNTUZKqkJF9nn523d8tORlUTI3Jh/+3bvYHqOee09U2XbIrHFLvVAPiyy9pUXBzq8Q0VFjL9j/B8n4Xl5XmaObOfysvzVFKSr5oaxkoAWEOwGgehcgHhFD2nvQ1DeuONTBUVecJMffdtWbFI26r2htUA+BvfkOrrmzV/fquC/f3bt3trrRJ4IJhwedG8bgBYRbAaY9bqU8JpTNNQY2OGpkxpl9Rzb3NfkDZvXqxHX00FCwLjXWzetzFF+JxUU4sXZ+v3v8/UE0/4FlwFz29Nh1qrsMdKXjSvGwBWEKzGWGcuIIFqMho2zBO0+Htxsbc4/zHHuPcGeL0fYTUMU4YhzZ7dc6o93sXmfbsyBd+Ywt9DSdL11+eEfU3HcyEY4svt9m7/XFWVqdpaV0wDx0ifhbxuAFjFHEyMpUu9yVQ1ZIip0aPdPYq/NzUZuukmu9ukhldUZKqyslVlZR2qqGjr8wUoZWUdmj+/TYsWhV4AaJqGmpqsvaZ57SeXUDV2fa/J3rL6euB1AyASgtUYo95ksjKVkSGNHOkdWupa/L2mJlPTp+fuHYWMjmGYGjrU1P33t+irr3oGpIkqNj9smCdmx+K1nzx8uaTdX9O+XNJYjOpbfT3wugEQCWkAMWYtFxDOY8jjMbR+feBwZixykH2vhdtvb9WJJ7o1cWKHRo92Rukeq4HCoEGhX9PxXAiG2OurXNJIn4W8bgBYRbAaY75cQCnYIh04XfcpSfs5yKYyMvo2/7Q3rAYUd90V/DUd74VgiL2+yiUN91nI6waAHQSrcVBW1hF0kQ6c79NPO98Sbre0YoX1bUd9C6YefbTFv6VrdfVu1dc3OzJQlawHFBMmBH9NOzkQR3B9mUsa6rOQ1w0AOwzT7E0mnnNt2bLTdo6hYUiDBw+I6r7B+HZtef75TD3+eHbvD4g4M1VcbKq+vllr12bq2mtztG2b9eu5aBenOGF3H6uLbZzQ12jF+v2drGprXSovz4vYrrp6d8zyqPv6dcO5Ti+c7+TkO29WsMAqjnyLZj74gAHs5GCoocHQkiXZuvtuqxcXpgoKvKNExx9v/ws4mhXZ8fjiLyvr6FEBIZkCUVjnS/1obDT8OapdGYapoiIzprmkiVpACCA1EKz2gUGDuNRLJt5A1foU6IwZ7VEHqpFWZFspoRWrckORAop4lzpC3/ClfkyblivDMAMCVnJJATgRaQBd2J1KsDrC9frrLk2aFHnaDckrVNAW6jXidkslJfl7t6EMPrpVWGgqJ0dqbOw6Mu97YfYMMOKZAxgYWHftr/ex589v05w5bY4OcJgqDJTKFx+c6/TC+U5OdtIACFa7sPOCt5Pjd801Ofrtb8lZdb6egaDd+3YN2sK9RgoLTUt5g97jdg8OQ0/d1tc3xzxgjBRY+xQVeXT77d7XvxNzW/lC68mJ5ykWONfphfOdnAhWFd9gNdQoU/cRrpoa+4t0EGvBgzurQWA0ioo8mjixXQ8+mB3yNTJ9ersefTT2FzCxXBTjY3VBjuSthjBrVpuqq7McN2LHF1r64FynF853cmKBVRxFKqhtGKYqKnLk8UiXXpqbkD6iOyuBaOy2fGxsNPTAA75ANPhr5Nln4/PWi8fWldaPacg0zS5/e6dY7owEAEgvDPnZZLWg9jXX+PZbZ9/rxAo3dW3qmmukuXNb4/SYoV8jTU0ZYXeFilY8tq60d8zgf3ssd0YCAKQXRwarTU1NmjVrlo455hiNGjVKt99+uzo6nDEaY3WUadcuO7seoe95z82zzyph2z1OmtTu7UmPgDWagNPUwIHx2boyVlsIx2pnJABAenFksHrNNdcoLy9Pb7zxhlavXq23335bjz/+eKK7JSk+I1dIFEP//a80c2Zi0jX+539MzZjRpoEDA19TxcWmCgvDBYfBb9+61dDatZlyu715plVVmaqtdfV6JLPrLlfRBdKB4pGqAABIXY5bYPX555/rjDPO0Ouvv64hQ4ZIkv7whz9o8eLFevXVVy0fZ8vnmxX0T3O5pNwuwUlzs/9/eyRpZ2RI/foFtPV4pNGj87VpkyGzy8ipRxlqUT/58iP7abeMEF/spgztUeeCFTttc7VHGfKE/Lt3Kz+qtjlqkUuhoxp7bfPkG7nMVqsyFXpU3E7bPeonc+/1VZbalKX2mLRtUY48e9O3g7ftzHltUa48e4+bqQ5lqy3kcVuVI/fe42aqvUtbUxmG5OlS37L/wCz9aJI0blyHSo9p1cs1bl1+ee7e1oELwdqUrQ5580Jd6lCO9m6XuneDgpwcadNmbx/blK39il3exU3jWqWWlpD9VVaW3K5s1dW59GWjR0WFe3TssW5l7L2kfeGFTN1yS442bc5Qu7LUvrcPhjzqpz0hD9u97fNPN4UeAc7MlHL2ptCYprR7d+j+2mnrcsnol9v5/t7VHLZtqM+IHoJ8Rlhuu3u3Qq4GMQwpLy+6tnv2SJ7Q73vl50fXtqVFYa987LTNy/P2W5JaW6VwM2d22vbrJ2VkeD/L98nRlsatoRfc7G0rSWprk9pDf0YoN1f+Mgl22ra3e9uHkpPjfR3bbdvR4X0uQsnOlrKy7Ld1uyN+Rig7235bj8f7WotF2yDv+5ALrGx+Rlh+3/MZEbytzc8Iw+PR4G8OCd2+K9NhXn75ZfPYY48NuO2jjz4yDznkEHPHjh3WDzRggGl6T13Av9bTzjC/+upr/z9PXl7QdqZkth1/QkBb96BBIdu+o2NMw/CYkseUTPM/+mbIth/osICbPtBhIdv+R98MuOkdHROy7ZcaHHDTqxoTsu0u5QXcVKMfhmxrSgE//q8mhW2bp13+Hx/TRWHbDtaX/h/v16ywbb+p//h/XKTrwrY9TB/4f7xZN4dte4ze8f94nRaFbTtGr5oDB7rNggK3OUv3h237Q9X4f7xIj4Vt+2P91jQMj/nYY7vNHct/FbbtRXrM/+MPVRO27SzdbxqGxzQMj7n2+hfCtn3nnNvN4mK3KZnmMXonbNubdZPpe60fpg/Ctl2k6/b+r8c86hufhG27e+ql/vfblg8/Ddt2z+TzO9+fnzWGbdsy/kfmli1fm6Zpev8bpm28PiPavj8ioG3HAQeGbNs+/NCAtu3DDw3ZtuOAAwPatn1/RMi27kGDAtsef0LItp68vIC2raedEfZ569q2ZfyPwrf9rNHfds/k88O23fLhp/62u6deGrZtU/3fvK+dLV+b5nXhPyO2vrHOf9zmeQvCtt320qv+trtuvi1s2+3P/d7fduedd4dv++T/+tt+veyhsG13LP+Vv22kz4ivlz3kb7v9yf8N23bnnXd3tn3u92Hb7rr5Nn/bbS+9GrZt87wF/rZb31gXvu3sq/xtm+r/FrZtPD8jur6Gw7XlM8L7r9efEQMGWA7pHFcNoLm5Wf26XllI/p93796tffbZp1fHz87OtFwqISvLFdjWCD99uf/+ho44Qnrhhd70EE52xWxpwj0ZcrmkFydI+kNsjmvuXZR00039NGVxv4jtbR3bNGQY0sqVOfpBmHbP/G+WGixmBk0+x9CKtwx98YWdnhjaviP88fv1y1Y/33vODDNqIyk3N0u5vrb9wh83JydTOYO8bQcNCv/+j9dnRFZmt7YZodtmujIC27pC/32uDCOwbWbonOAMo1vbrNBtDXUrK5Md/usioG2Ohba+UZbcrLBtBw3qL/nPc/hybwMHdmkbQWFhfmfbvJywbQsKurTND9/2G9/I62zbP3yKUUDbAeHb7rNPv862+4T/jBgwIFcDfG2/Eb7sXP/+uepvsW1+fo7yfW0L8sO2zcvLUZ6vbWGEtv2yO9vu6h+2bVw/Iyy+dviM8IrnZ0SPxzJN07R1jzh7+eWXVVFRoXXr1vlv+/jjjzVhwgS9++67GjDA2gukaUN0aQCDBg1QU1PoNICu3G5p/XqXvvzS0KefZWrl0/v4dxsiDSCZ0gBy5ZEraNtpl7TqD3/IUuOmDH/bfQoMXXZZu+Zc0azbb5ZWrAz+5RU6DSB82+ef/VrHl/Scrqqrc2nyuXl70wC8X/Bd0wCC6do2Q249v2prwBS8ryj87Nm5+nJ7ttqV42+bK+8XgSHvhgNvvul9/a9f79KmpmwNHOo97pYvTRUX7tbIkd7jlpTka9v2zooAXdMAMuTWsKLdevPNEJsXxDkNwP/+Jg3AftskSwMYNCBHTZtIA0iXNICA7+4wbUMiDaBTH6YBDDrQWhqA40ZWDz74YG3fvl1btmzR4MGDJUmffPKJhg4dajlQlSQzLy/0h1TX2/O6PHmGpPx8mXs8nfcN1Vbe1WmjTvVuEnDH0sA93rsGmJHYaevNi41921ZZX2Rkp22bctSm8CMR0bRtV7Y/AIpn2/tW+s5N5xXu9u3SXXfl6MEHs3XZZW3abaHPHcryB42RNH6VJTOv50jEMWOkguJ+amw0/K9LtzK12+Lb2COX/ru1v0bleb/sg+2w1bVt1wuUfzdK9zySrSeeCF7sf9Sp3tdEba1LG7eHfj175NK/Gwfo7b+6Qm9e4H8fGT3ec7Foa5oK+vwGP65s9MFm234R3vfRts2N8L6Ptm1OhPe9nbZd22fneP/FvG22zLz80N8DXdtmZXv/WTmunbaZWd5/sW7rypTyIrzvo2mb4bL+GrbT1siIT1vf+z7Yd3eotpaOK2e0TfXPCBtrbR1XDeCggw5SSUmJ7rjjDu3atUv//e9/9eCDD2rSpEmJ7lpQ4TYJQCoIXS91505Dd9+drfx8jwLfhb0TquJE11X50Za7uvHGHNXUZPp3YfNuoWrNokXZPdr7iv3X1Hi/DK2u9KciAADAKscFq5K0bNkydXR0aOzYsTrnnHN04oknatasWYnuVlCRNglA6mtujt25z8vzyOMJPZNSVtahFStaVFQUGJwWFJjq3z9y0Lx1qze4vPbaaC+wwhf7t1rajRJwAACrHJezGivR7BEczf7CVVWZmjkztgtikIxMxfKCxTe9HmprUrdbWro0W48+mqXt27tec/rn0sIc3W5frbWvrt6t0lK3Skry1dho+APZrgzDm/9aXx8iZzWO2D88fXCuk5Mvh37zZkNDhpgqLXVb+pzgfCcn33mzwnE5q8mGESJ49TZQDQwIfdPr8+a16aCDPGpqMjRokDfQKy11a+3aTC1enB3lB7P1vhqGafkxNm82/KkK06bl7r1v52P5UhcqK1v7PFBNZ9EGAEBfCpZDH+miHemDYLWXfFtRhhpJAiLrOXLpfS2ZWrSo52KSoiKPWloUYhrfUCzzZ4uKTF1wQXvQfnTnu3DzpSp4v3g6+1dUZPLF08cIAJAMfDn03S+MfRftK1a08HpNc6QBdBHtVILvjSaJgBV9IFYpB6GO490Ja8WKFh1/fGc5KrtT+04b0Uu3qcLAAKDnCHcqBwDpdq6Tmdvt/XzxXthGlzrE+U5OdtIAHLnAKtmEWvQCBGdKMnXqqdEGClYD1eCvR8MwNXCgx///3X9nGNI997TqxBO9wWXXKgTdj8nUfvy53d6SYFVVmaqtdYUtY9j1PqGqlHRfFAckUqRFyqZpqKEhQ3V1fMCkM4LVGCkr61B9fbOqq3drxow2+QISoLuCAlPz57dp1qwwBcBjJFgwKkl3392qlSt7XmAVFZkhR9wKCnqOxBYWBm9fU5OpkpJ8lZfnaebMfiovz1NJSb6/xBWsifZ5JABAsqDcHazgmyOGXC5p9Gi3Ro92q7TUrblzc7R9O2+w1GBllb0127dnaNGiHBUVeZSf79lb+ip2rxPftNmtt7bqppvC542OG9cRcao+VD6ZZGrr1p79Jv8sNnrzPBIAIFlQ7g5WkLPaRazzXl5/3aVJk6zvTgWn6v5iiOYLPliw2/W40QYNgaOd3fMRe5s3ajefLBb5Z/GSTHltvX0ea2tdKi+P/NlTXb079E5iSSyZznW6873We1PujvPde4lYY0DOqkOMHu3WoEFh9tRF0rj88jYVFlr9FAy1u1SwlfvRjqqaKiz0RJzG9432T5zYodGjg3/4hMuJtDudzPRzbPT2efRVKem505mXYZgqLvaotDT1AlUkl3A785ET3zeSIW2LYDWOXC7prrtaRf5qclu2rEVnnOHWtm1WdyoLFZTGive1NH16u9av9+ZJP/zwHlVX71Z9fbOtKfZIH1J2p5OZfo6N3j6PBABIJqEWKYfLoUdshNp6u/tW2olGsBpnEyZ0aPbs+C+kQfwsXJijtWuje8NOmhSPc+8NfhctytGxx+Zr2zYj7MhpKFY+pOzmk1ltP3iwaXuFezqJRR4fAQCSSddFytFefMOeZKoaQs5qF/HMe1mzJlPXX5+jpiauD5JP9IurfvzjNj3zTHavHv0b3/DoiCPcqq31Bcy9r5lpNSfynXeadeyx1vPJrOSfFRSYys2VGhv7tlB9MuW1xSKPr+uxnFTvti8k07lG73G+o5Po3HZyVh1owoQOffBBs+bPJy0g+XiDhYwM++cscqDqfS2Eyi2UpB07jKCBqhT91a/VnMj16122ppMjTT+bprRtm6HGRmdPOSVaLKfxreQtJ1o0tWQB9E4ypW0RrPYhl0u67ro2rVzZouJigtXkYsjjsfOGDXZBEvzn00/v0MCB4V4P4RdiRbNoyc6HlN3p5FDthw41uyxSc/aUkxOkyzR+MizuAFJRMpUNIw2gi76cSvBNzb3wgkuPPOIbfUv81QtiwVraQEaGaTMADu/hh/do4kRrAUw00z92p5O7t/d4pLPPTvyUU7JNFabyNH68toRN1nON6HC+oxPLdKNo2EkD4NI1QbpuIDBqlEfXXpujbdsIVuMpFgX4Bw707C2EH+4YVo7vDd5iyc7Vr6+0UaQPqa6ljXyvWau6t6+qsvZx44QpJyex+7wni0iLOwzDVEVFjsaN60iZ4BxwEl+60bRpuXvTtHpeMDqlaghpAA5QVtahf/zDm89aUEBd1ngZP943QhP9pfcll7THpjOSYjWSHk3NzESUNkqmKSfEHzV5gcRLlnQjglWH8OWzfviht3THjBltbCgQY6tWZauw0FT//tEHQ9/5jkczZsQiYI1doGqa0gUXtOv55+0tTunrDykK1aOrZFrcAaSyZCgbRs5qF07Le2lrk446Kl9NTbEuKp++fMFdbq7U0iLZfV6rq3dbzr3sC/n5HhmGtGtX9GWg+ion0u2Wli7N1qJFPXO0e5ujaIXT3t/pLp5lczjX6YXznZzIWU0R69e7qMsaY76cHG+gauueKioy1d4u/fa3vXnbmOr9hUfnAq7m5p6vD18ZKKuBX1/kRNbUZKqiImfvtG9PRUVm3OuswlmiyZsGkJ6IhByM6S9n+fprQ+eck6dnn7Va5D94qarCwtBT4daPGfq1YZqGTFOaOzdHb7yR+JqVoXbK8pX3mj+/1XFTTog/toQFYBXBqoOx0MQpvOehudnevfr3D/y5uNjUypUtWrKkde9UVTzPr6Ht2zN09tmJrVkZbsW3ZMgwpCeeyEpAz+AEybK4A0BikQbgYFanyZYta9GmTYbmz8/V7t2MxsZW1y9Rq8+td6p/1y5v+4IC76KsOXPa5HIpqsAxL8+j3btDr5wOJ1JaQDxzVjtXfAfnXfFtqK7O5cjyTKlc49Qpyso6NG5cB88zgJAIVh3Mag20k07yfsnn5rbo0ktzfS36urspyu7z2HO0dMcOQ4sXZ+vQQz0aN65DFRU5No7tPV5vLkLC1awMlktqd4FWOMm84jvezw06pWotWQCxQRqAw9mZJpswoUOzZ7f1dRcdLhGpFKG3Eq2tDV9bMuAoRjSjusEFq1kZKpfUNxIbi9SBZK2t2hfPDQDAGkpXdeHk8hd2piPXrMnU9dfnUElAUmxW38fOnDmtWro0J3JDSYMHe7RlS2zPoW9LVt82e95gzN42e3Zei4nezi/wsay9v3vz3MAZnPxZjtjjfCcnO6WriGaShG+abOLEDo0eHT6fa8KEDn3wgbfA7zXXtPZdJx3JOYGq5H1zWnHbbS269dbYnzvfCGa0uwfV1GSqpCRf5eV5mjmzn8rLwy/gSsYV3+ysBADOQrCaonzB7fXXt4XdNchXPgh9Y/RotwoLPQr1nPt2cbr00vYeqR/hmcrJCX0uu+8OFU0uabRT48m24juZ82wBIBWReJXiIi3S6pwycdZ0eXDJ20ff1PG2bYa2bQv1N3jPh2+kMVI1CJ9Bgzy6665WZWRI06bl7j1O8MV4vhFMu7mk4UpQhVvA5ZNMK76TNc8WAFIVI6tpINzI1sqVLVq5sufvnMnpgaoUKlCVpFtvbdVNN4WvBDBwoKlx47wjjeGm0LsW1P/gg2ZNmNBhawTTFwiHGnH3jcS63VJVVaaWL8/q9dS4nVSWRLL63LCzEgD0DRZYdZHqSdrhFsZ0/d2++5rq6JAuuaTf3kL4yRAkRpK4UVlfuaPCQjOqvdDDlVAKNlopWVsA5ZvWlxR0xL2w0NS2bfauZ30LuJzIzvs73HMjqdfpC9Rvja9U/yxHIM53crKzwIo0gDQSrpZhsN/dd1+LLrkkN2j75BMsUI1fAHvbbS3ad18zIBCpqrL2duueCxlqCn3t2sy9q9Y7A8qiIo+mTGnXsGGesBckQ4Z4R3BXrGjZGwh3PmZhoamtW8OlK4SWKlPjvlHq7s9NUZHZ6zqr1G8FAHsYWe2Cq7Oe1qzJ1IwZufJ4UmF0NZTuQWuoINZK3VNTxcXByxrV1rqiGlkNNgq3dq135K9nDmlg331BkCRLo7P77mvqiity1dgYvGxTpJxcJ5dziub9HesRUN+IbffzFs2ILaOzofFZnl4438nJzsgqwWoXvOCDW7MmM8LOWGaY34XSF9Py0T5GqL/H1A9+0KEXXsgM+XtJWrky9LamdmuOBhuFKyryqKVFe0c+w/99gYvoAvscLECyGlB3f4zux3GiRL+/Y1m/ldHZ8BJ9rtG3ON/JiTqriKkJEzq0cmWLiouDfwoUFvpuD74IKPjtdvXFJ5C3r5df3tbjbx082KPly1v06197F6R1/s2dBg40Qwaqkv2ao+FKRXlzSSMH4oFBceidtdx7B3KjKcfk1BJUThOr+q3srgUg3fCpBku65k02NhpqajI0aJB3JKipydC8eTk9FuMUFpo6//x2VVdndftijWa008p9TA0ebOqWW1p18805amqy+zjeEkzPP5+ld95p1vr1wadYfc9Fba1LtbUuGYY33/f44yNPw1rNhQxXKsr+8xe6vTdAMlRX59Lo0W7LOafBcnIRXizqt/a2hBgAJCOCVVgWbBFWTU2mpk/PDTL1Ymr7dkMlJR5VVDT7c+v++c8M3XOPte1G7TFlGNKiRd5V99FuNesL3tavd4VcjCZ5n4uTTnLrpJPsly+yUnO0cxSub/gCpEi1XX1T1Zde2k4wZNO++/a+fmuk10X3iw8ASAWkASBqVkb/Kiq8gamvvuaJJ/buC3ThwhZddlmrBg3yBNxeXNw5FR2LnYXivTtRqJqjbrc3b7Svp3J9AVIybo+aDGpqMnXFFeEra1ip38ruWgDSEcEqohZNDl6kguuRclMffjhbo0Z59MEHzaqu3q2HH96j6urdqq9v9k+hx6J8UiJKMNXUeEtRlZfnacWKbIv3stLPcFvqmiosDAyQkm17VKfz5Zh6KywEZ/VCgN21AKQj0gAQtWhGecJt/9oZUIVexb9pk3cRSbigyRcQh1p1Ha56gW+au7TU3aelgQJLGnXva/B+FhSYys1VtyAosH3PagA9GUGeomTaHtXJws8+dLJav9Vqmga7awFIJYysImrRjvKEGrkrLjY1e3Zb2K1fg61g787lksrL23336H4E//+Fm+b2FdwvL8/TzJn9VF6ep5KS/LhMz0dOpwjezyVLWvWXv3SOMM+f39rjuRs0yBe8hgqUDG3dGnwFerJsjxotX8pFVVWmamtdIV9PvRFp9sFn2TJrI9akaQBIR4ysImq9GeUJN3J3yiluTZoUutZnpEUkbrf01FNZvl5075UkUwMHmsrJCRyV9I1uSQo6yukrDRTrrTY9HkVYTBX4N3Qfhev6HMyZ0xZw7MZGQ7Nm9YvYp1TOcfQ9319+aeiQQ6Tvflf6wx/6pk6p1ed1yxbrz388d9cCACciWEXUwk3pWxnlCbX9q9Uv7lCBwNKl2RH2tDe0dauhZ5/drYED8/TPf+7Rfvt1BtUlJfm2SwNZTRkIVsy9oMDTs2EQ06a1qaysI+x0fPfntLbW2hBbquY4Bnu+Cwvzg24lG6uLka7ilWNKmgaAdEKwil6JxyhPb77g3W7p0UezgrTuacsWQxMnSkcc0eEfRa2ttV8ayOpuQqHyUrdvtxacl5V12C5HlM45jqGe785ANf51SuP5/Ie62AOAVEPOKnqtrKxD9fWhV+fbFaliQLgSP3V1Lm3fbu1lHSzYtbtozOpuQtbyUu3/vZGka45j5Oe7d7tIWZWuzz8AxBLBKmIilotxevMFbzXY7F6uycfOqG6k3YSkzoVgkRfa+AKo2AY0brd3J7EZM9o0cGD6lKKyurAplFjm8FIKDAB6hzQAOFK06QVWg83p04PvwGRn2tbObkJWg5+CAjMgLaA36RTB0hMGDfLo7LO9+Y6pnOPY22Az1jm85JgCQPQIVuFY0XzBRwo2vUXwTc2Z0xb0/nYWjdlJGbAa/Cxf3uI/dm8CmlD5mlu3GvrlL7NSPlCKNtiMRw5v98V3Z50Vm3xYAEgXBKtwNLuLSLoGm6EK6p9/fvh97a2O6trZ693qiG0s6plGSk+I9SIiJ7Jy0eJlr4KFXVYX3wEAQiNnFSmnrKxDs2YFHzmVpAcfzI5Y3D/SojG7e7335UKbaLbBTTVWnu/CwvjmkFpdfAcACI9gFSnH7Zaqq0OVr4q8A5ZPqEVj0e713lcLbaLZBjcVhdspbeXKFv3jH7GrYNGdncV3AIDwuLRHyrGz8Omss+wdu7d7vffFQpt4FaJPRl2fb+8OVv303e82K2PvyyNedUrtvAaplQoA4RGsIuXEc2QxUhDis2xZi046KXgQEu9i7um8EUAwvufbMKTBg6UtW9Rj4VmsMboNALFDGgBSTjxHFuOx13usUYg+8RjdBoDYIVhFyunNDliRJEsQQiH6xIrnaxAA0g3BKlJOPEcWkykIifU2uLCO0W0AiB2CVaSkeI0sJlsQEu02uG63VFvrUlVVpmprXaxajwKj2wAQG4ZpxnupQWJs2bLT9iIK7wKMAVHdF87Uffegrivve3O+U7nYe6r+bYl6f4d7DSI++CxPL5zv5OQ7b5baEqx24gWfXnp7vlMxCAncprXn7k7JPCLI+zt9cK7TC+c7OdkJVildBUQp3iWo+hrbtCIdpeJFJ5BqCFYBSKKQPdJPqqa8AKmGBVYAJFHIHunFl/LS0BD4em5sNDRtWq5qahjLAZyCYBWApOSpIQv0VqSUF8n7e6pgAM5AsApAUnLVkAV6ozPlJfgsgTflJUN1dSSvAk5AsApAUvLVkAWiRcoLkFwIVgH4Ucge6YCUFyC5kEEOIEBZWYfGjevoVTmfeJQDosQQYsWX8tLYaPhzVLsyDFNFRSYpL4BDEKwC6KE3NWTjUQ6IEkOIJV/Ky7RpuTIMMyBgJeUFcB7SAADETDzKAVFiCPFAyguQPNhutQu2bEsvnO/YcrulkpL8vUFl6KnV+vpmyyNWsTwm5zt92DnXpJckP97byYntVoEUkGxfovHYAYtdtRBvqbZtMpCKCFYBB0rGHM14lAOixBAAgJxVwGGSNUczHuWAKDEEACBYBRwkmbeBjMcOWOyqBQAgWAUcJJm3gYzHDljsqgUAIFgFHCTZczTjUQ6IEkMAkN6cmfwGpKlUyNGMxQ5YfXFMAEByIFgFHCRVtoGMRzkgSgwBQHoiDQBwEHI0AQAIRLAKOAw5moiW2y3V1rpUVZWp2lqXI6tGAIBdpAEADkSOJuxKxo0kAMAKglXAocjRhFW+jSS674vu20iCEXkAyYw0AABIYsm8kQQAWEGwCgBJLJk3kgAAKwhWASCJJftGEgAQCcEqACSxVNhIAgDCIVgFgCTm20iie11eH8MwVVzscfxGEgAQCsEqACQxNpIAkOoIVgEgybGRBOKNDSeQSNRZBYAUwEYSiBc2nECiEawCQIpgIwnEGhtOwAlIAwAAAD2w4QScgmAVAAD0wIYTcAqCVQAA0AMbTsApHBus7tmzR5MnT1ZVVVWiuwIAQNphwwk4hSOD1X/961/6yU9+ov/7v/9LdFcAAEhLbDgBp3BcsPr222/roosuUnl5uYqLixPdHQAA0hIbTsAp+rx0VUtLizZv3hz0d/vuu68OPfRQvfrqq8rJydFjjz0W9eMYUaTQ+O4TzX2RfDjf6YXznT4417EzfnyHVq5s0Q035KihofMJLS42HVNnlfOdnOycrz4PVt9//31deOGFQX/3wAMP6LTTTovJ4wwaNCAh90Xy4XynF853+uBcx8bFF0tTpkhvvCE1NkpFRdKJJ2bI5eqX6K4F4Hynrj4PVkeNGqWPP/447o/T1LSzRxHjSAzD+2KP5r5IPpzv9ML5Th+c6/g44gjvP0nati2xfemK852cfOfNipTdwco0FfWLtjf3RfLhfKcXznf64FynF8536krZYBUA7HK7vYXQN282NGSIqdJSN4tHACDBCFYBQN490Csqcvbu2ONVXOxxzCKSVMeFAoBQHB2svvLKK4nuAoA0UFOTqWnTcntMITY2Gpo2LVcrVrQQsMYRFwoAwnFcnVUA6Etut1RRkbM3UA2spWKa3p8rKnLkpu55XPguFLqWRZI6LxRqahw9pgKgDxCsAkhrdXWuvSN6wYv+maahhoYM1dUxJx1rXCgAsIJgFUBa27zZWmVqq+1gHRcKAKwgWAWQ1oYMsVbrxmo7WMeFAgArCFYBpLXSUreKiz099j73MQxTxcUelZYyFx1rXCgAsIJgFUBac7mkyspWSeoRsPp+rqxspYxSHHChgHTkdku1tS5VVWWqttZFTrYFBKsA0l5ZWYdWrGhRUVFg0FRUZFK2Ko64UEC6qanJVElJvsrL8zRzZj+Vl+eppCSfqhcRGKaZmpuTbdlif49gw5AGDx4Q1X2RfDjf6cXK+aYwfWLEus4q7+30kiznO7Cec2cetu/CLN0ujH3nzVJbgtVOyfKCR2xwvtML59vZYnmhwLlOL8lwvt1uqaQkf2894Z4LBg3DVFGRqfr65rS5QLYTrDLuDABIOJdLGj2a5D2kps4ybcF5y7QZqqtz8T4IgpxVAACAOKJMW+8QrAIAAMQRZdp6h2AVAAAgjijT1jsEqwAAAHFEmbbeIVgFAACIM+o5R49qAAAAAH2grKxD48Z1UM/ZJoJVAACAPkKZNvtIAwAAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHIlgFAACAYxGsAgAAwLEIVgEAAOBYBKsAAABwLIJVAAAAOBbBKgAAAByLYBUAAACOlZnoDgAAkEhut1RX59LmzYaGDDFVWuqWy5XoXgHwIVgFAKStmppMVVTkqKGhc6KxuNijyspWlZV1JLBnAHxIAwAApKWamkxNm5arhgYj4PbGRkPTpuWqpobxHMAJCFYBAGnH7ZYqKnJkmpIUGKyapvfnioocud193zcAgQhWAQBpp67OtXfq3wj6e9M01NCQobo6kleBRCNYBQCknc2bgwep0bYDED8EqwCAtDNkiBnTdgDih2AVAJB2SkvdKi72yDCCB6OGYaq42KPSUpJWgUQjWAUApB2XS6qsbJWkHgGr7+fKylbqrQIOQLAKAEhLZWUdWrGiRUVFgcFqUZGpFStaqLMKOARF5AAAaausrEPjxnWwgxXgYASrAIC05nJJo0eTmwo4FWkAAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA4FsEqAAAAHItgFQAAAI5FsAoAAADHykx0B+LFMKK/TzT3RfLhfKcXznf64FynF853crJzvgzTNM34dQUAAACIHmkAAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsgtW9mpqaNGvWLB1zzDEaNWqUbr/9dnV0dCS6W4izrVu36vTTT9e6desS3RXEyUcffaSpU6fq2GOP1ejRozV//nxt3bo10d1CnLz99tv68Y9/rKOPPlqjR4/WbbfdppaWlkR3C3Hkdrs1ZcoULViwINFdQZwQrO51zTXXKC8vT2+88YZWr16tt99+W48//niiu4U4qq+v1+TJk7Vhw4ZEdwVx0tLSoksvvVQjRozQm2++qZqaGm3fvl0/+9nPEt01xMHWrVt12WWX6bzzztO7776r6upqvfPOO3r00UcT3TXE0f33369333030d1AHBGsSvr888/1zjvvaN68eerXr58OOOAAzZo1S08++WSiu4Y4qa6u1nXXXac5c+YkuiuIo4aGBh166KGaPXu2srOzVVhYqMmTJ2v9+vWJ7hriYODAgXrrrbc0ceJEGYah7du3q7W1VQMHDkx01xAnb7/9tl566SWdccYZie4K4ohgVdK//vUvFRQUaMiQIf7bvv3tb6uhoUFff/11AnuGeDnhhBP08ssv64c//GGiu4I4GjZsmJYvXy6Xy+W/7cUXX9Thhx+ewF4hnvr37y9JGjNmjMaPH699991XEydOTHCvEA9NTU264YYbtGTJEvXr1y/R3UEcEaxKam5u7vFC9/28e/fuRHQJcbbvvvsqMzMz0d1AHzJNU0uXLtWrr76qG264IdHdQZy99NJLev3115WRkaGrrroq0d1BjHk8Hs2bN09Tp07VoYcemujuIM4IViXl5eVpz549Abf5fs7Pz09ElwDE0K5du3TVVVfpd7/7nZ544gkNHz480V1CnOXm5mrIkCGaN2+e3njjDe3YsSPRXUIMPfLII8rOztaUKVMS3RX0AYaWJB188MHavn27tmzZosGDB0uSPvnkEw0dOlQDBgxIcO8A9MaGDRs0ffp0FRcXa/Xq1eQvprC//OUv+tnPfqY1a9YoOztbktTW1qasrCymiVPM888/ry+//FLHHHOMJPkrPvzxj39ksVUKYmRV0kEHHaSSkhLdcccd2rVrl/773//qwQcf1KRJkxLdNQC9sGPHDl100UU6+uijtWLFCgLVFDd8+HC1tLRoyZIlamtr08aNG3XXXXdp0qRJ/uAVqeGFF17QX/7yF7377rt69913VVZWprKyMgLVFMXI6l7Lli3TrbfeqrFjxyojI0M/+tGPNGvWrER3C0AvVFVVqaGhQWvXrtULL7wQ8Lv33nsvQb1CvOTn52v58uW64447NHr0aA0YMEDjx4/X7NmzE901AL1gmKZpJroTAAAAQDCkAQAAAMCxCFYBAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAgIi2bt2q008/XevWrbN8nxdffFFlZWX6/ve/r9NPP12rV6+2/bgEqwCQIJ999lmiuwAAltTX12vy5MnasGGD5fvU1dVpwYIFmjdvnt577z3ddtttWrhwof7617/aemyCVQAp69RTT9WRRx6pESNGaMSIEfr+97+vE044QXfddZc8Hk/MHmfKlCm67777JEk33XSTbrrppoj3eeWVVzRt2rSoH7Oqqkqnnnpqj9v37NmjY489Vr/+9a+D3u/aa6+NuDtfqGMDSE/V1dW67rrrNGfOnB6/e+uttzRp0iQdc8wxOvPMM7VmzRr/7x5//HFdeOGFGjNmjAzDUGlpqZ599lkdeOCBth6f7VYBpLSFCxdq4sSJ/p8//vhjXXzxxerXr5+uuuqqmD/erbfeaqnd9u3bFY8NBPv166ezzz5bzzzzjC688MKA323dulUvvviili9fHvPHBZC6TjjhBI0fP16ZmZkBAetHH32kyy+/XIsXL9bYsWP1/vvva9asWSosLNSJJ56ov/71rxo1apRmzJih999/X0OHDtWVV16pQw45xNbjM7IKIK0MHz5cI0eO1D/+8Q9J3lHRBQsW6JRTTtHJJ5+sXbt2acOGDZo5c6ZGjRqlU045RUuXLlVbW5v/GM8884zGjh2rESNG6Prrr9eePXv8v1uwYIEWLFjg//lXv/qVTj/9dI0YMUITJ07U22+/rXXr1unmm29WQ0ODRowYoc2bN6utrU333nuvxo4dq2OPPVbTp0/X559/7j/OJ598oilTpmjEiBEaP368v//BnH/++fr3v/+t//u//wu4ffXq1frWt76l0tJSvfLKKzr33HN13HHH6aijjtIFF1wQNC1h3bp1Gj58eMBt3f/G3//+9xo/frxKSko0ceJEvfnmm/7frV+/XhMnTtQxxxyj008/Xbfffrs6OjpC9h2A8+y7777KzOw5vrlq1SqNHTtWZ5xxhlwul44++midc845evLJJyVJO3bs0IoVK3T55ZertrZWs2fP1pw5c/T+++/benyCVQBpo729XevWrVNdXZ1Gjx7tv/2tt97SqlWrtGbNGmVkZOjiiy/WwQcfrNdff11PPfWU3nrrLf80/9tvv61bb71VlZWVWr9+vY466ij97W9/C/p4VVVVevDBB7Vo0SLV19frvPPO0+WXX67hw4dr4cKFKi4u1nvvvachQ4Zo6dKleu211/T444/rjTfe0FFHHaVLLrlEra2tam9v12WXXaaDDz5YdXV1uueee/THP/4x5N95wAEHaMyYMfrf//1f/20ej0e//e1vdeGFF2rTpk26+uqrNWPGDL399tt67bXXZJqmHnjgAdvP6Z///GfdfPPNuummm/TOO+/oyiuv1JVXXql//etfkqT58+drypQpevfdd/XYY4/phRde0J/+9CfbjwPAeTZu3KiXX35ZxxxzjP/fb37zGzU2NkqSsrOzdfbZZ2vEiBHKzMzUGWecoeOOO04vvviircchWAWQ0hYuXOj/ED3uuON02223aerUqbrgggv8bU466SQNGTJE++yzj1577TW1tbVp7ty5ysnJUVFRka6++mr/SMGaNWv8H7iZmZk6//zzddhhhwV97Orqak2ePFkjRoxQRkaGfvzjH2vlypXKzc0NaGeaplatWqW5c+fqgAMOUE5OjmbPnq329na99tpreu+999TY2Kj58+crJydHBx98sKZOnRr2777wwgu1du1a7dq1S5L0xhtvaNeuXRo/frwGDhyo3//+9zr11FO1a9cubdq0SYWFhdq8ebPt5/eJJ57Qeeedp5EjR8rlcumUU07RqaeeqlWrVkmScnJytHbtWr366qsqKCjQn//8Z/2///f/bD8OAOcZOnSoysvL9e677/r/vfjii3r00UclSd/+9rcDZqUkye12206BImcVQEq7+eabA3JWg9lvv/38/79x40Zt3bpVI0eO9N9mmqba29vV1NSkzZs36/DDDw+4/wEHHBD0uF999ZWKi4sDbjv66KN7tNu6dat2796tq6++WhkZnWMI7e3t2rhxo9ra2lRYWBgQ5EZaoHD88cerqKhINTU1Ovfcc/XUU09p8uTJys3NlWmaqqmp0apVq2QYhg455BDt2rUr6DRfJBs3btQ777yjp59+2n+b2+1WaWmpJG8axH333aeFCxfqq6++0oknnqhbbrlFQ4cOtf1YAJxl0qRJmjp1qs444wwdf/zx2rBhg2bMmKFTTjlFP/3pT3Xeeefptttu04knnqjS0lK9/PLLWrdunebOnWvrcQhWAaQ9wzD8/z906FAdeOCBeuGFF/y37dq1S01NTRo4cKCGDh2q//73vwH337Rpkw4++OAexy0qKvJPh/ksXbpUEyZMCLitsLBQOTk5Wrlypb7//e/7b//00081ZMgQffjhh9q6dauam5uVn5/vf8xIfvKTn+iZZ57RmDFjVFtbq4ULF0qS1q5dqyeeeEJPP/20vvnNb0qSbrvtNv3zn//scQyXyyVJamtrU3Z2tiRp27ZtKiws9D9fP/rRjzRjxgz/fRoaGpSbm6vW1lb9+9//1i233KLMzEz95z//UUVFhe644w4tW7YsYv8BONtRRx2le+65R/fcc4+uvvpq9evXT2VlZf5g9Oyzz1ZGRoZ+/vOf64svvtD++++vpUuX9rjgj4Q0AADo4pRTTlFzc7OWL1+utrY2ff3117r++us1Z84cGYahs88+W3/84x/16quvqqOjQ9XV1SEXC0ycOFG//e1v9de//lUej0fPPvusnnzySX9wumfPHnV0dCgjI0OTJk3SkiVLtGnTJnk8HlVXV6usrEyff/65RowYoW9961uqrKzUnj179Pnnn2vlypUR/5by8nJ9/vnn+sUvfqHTTjvNP5q5c+dOZWRk+EdZX3/9dT333HNqb2/vcYwDDzxQmZmZ+v3vfy/Jm99bV1fn//0555yjX//61/66iX/72980ceJE1dTUyDAMzZ07VytXrlRHR4d/kYYv0AWQfD7++GONGjXK//PJJ5+sqqoq1dfX680339SCBQv8F7aS93Pod7/7nd577z3V1NTo9NNPt/2YjKwCQBf9+/fX448/rjvvvFPLly+Xx+PRqFGj9NBDD0mSSkpKtGjRIt15552aM2eOSktLAxZrdTV+/Hh9/fXXmjdvnr766it95zvf0S9/+UsNHDhQI0eO1KBBgzRy5EitWrVK119/ve677z6df/752r59uw444AAtW7bMnw/76KOP6qabbtLxxx+vwYMHa+zYsXrppZfC/i15eXmaOHGifvWrX+mpp57y315eXq76+nqdeeaZcrlcGjZsmC666CI9+eSTPfLL9ttvP/3sZz/Tgw8+qNtuu02lpaWaOHGivwLCD37wA+3evVs/+9nP1NDQoIKCAl188cWaMmWKDMPQQw89pLvuukuPPPKIXC6XTjrpJF133XVRnx8A6ccw41HoDwAAAIgB0gAAAADgWASrAAAAcCyCVQAAADgWwSoAAAAci2AVAAAAjkWwCgAAAMciWAUAAIBjEawCAADAsQhWAQAA4FgEqwAAAHAsglUAAAA41v8HCQyeehfOsEQAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "# Calculate residuals\n", - "residuals = y_test_original - y_pred\n", - "\n", - "# Plot residuals vs predicted values\n", - "plt.figure(figsize=(8, 6))\n", - "plt.scatter(y_pred, residuals, color='blue')\n", - "plt.title('Residuals Plot')\n", - "plt.xlabel('Predicted Values')\n", - "plt.ylabel('Residuals')\n", - "plt.axhline(y=0, color='red', linestyle='--')\n", - "plt.grid(True)\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# REGRESSION RESULTS" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From all the models observed,We can see the positive correlation between the house prices and all other features except the year built which indicates a negative correlation.\n", - "\n", - "Polynomial Regression is the preferred model beacuse from the evaluation it has the highest R-squared value of 0.73\n", - "\n", - "The features below impact price such that an increase will cause an increase in the price of the property. 'bedrooms','bathrooms', 'sqft_living','floors', 'waterfront','view''condition', 'grade', 'sqft_above','sqft_basement', 'yr_renovated', 'sqft_living15','renovated', 'basement'." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Assumptions\n", - "\n", - "Linearity: The relationship between the independent variables (predictors) and the dependent variable (response) is linear. This means that a change in the independent variable corresponds to a proportional change in the dependent variable.\n", - "\n", - "Independence of errors: The errors (residuals) from the regression model should be independent of each other. In other words, the residual for one observation should not predict the residual for another observation.\n", - "\n", - "Normality of errors: The errors are normally distributed. This implies that the residuals should follow a normal distribution with a mean of zero.\n", - "\n", - "No perfect multicollinearity: There should be no perfect linear relationship between the independent variables. In other words, no independent variable should be a perfect linear combination of other independent variables." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Limitations\n", - "Despite its effectiveness in predicting property prices, the model has several limitations that need to be addressed:\n", - "\n", - "Limited Property Characteristics: The dataset may lack comprehensive property-based characteristics, potentially limiting the model's ability to capture the full range of factors influencing housing prices.\n", - "\n", - "\n", - "Multicollinearity Concerns: The presence of correlated predictors, such as square footage and number of bedrooms, can introduce multicollinearity issues. This makes it difficult to discern the individual impact of each feature accurately, potentially affecting the model's reliability.\n", - "\n", - "Assumption Violations: Polynomial regression relies on the assumption of linearity between predictors and the target variable. However, in reality, this assumption may not always hold true, leading to biased estimates and less dependable predictions.Also heteroscedasticity was present.\n", - "\n", - "Overfitting Risk: Polynomial regression models, especially those with high degrees, are prone to overfitting. This occurs when the model fits the training data too closely, capturing noise rather than underlying patterns. As a result, the model may struggle to generalize well to unseen data, impacting its predictive performance." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Recommedations\n", - "# Statistical recommedations.\n", - "To mitigate multicollinearity, strategies such as feature selection, principal component analysis (PCA), or regularization methods like ridge regression or Lasso regression can be employed. These techniques prioritize essential predictors and enhance the model's interpretability while stabilizing it against multicollinearity.\n", - "\n", - "\n", - "\n", - "Before opting for polynomial regression, it's essential to validate the assumption of linearity between predictors and the target variable. If this assumption doesn't hold, alternative regression techniques such as generalized additive models (GAMs) or spline regression should be considered to better capture intricate relationships.\n", - "\n", - "\n", - "Preventing heteroscedasticity, or addressing it if it's present, is crucial for ensuring the reliability of linear regression analysis\n", - "# Recommedation to real estate clients:Home owners and investors.\n", - "\n", - "\n", - "1.Invest in Larger Properties: Investors seeking maximum returns should focus on larger houses, as there's a positive correlation between total square footage and price. Such properties have the potential for higher profits upon resale or rental.\n", - "\n", - "\n", - "2.Upgrade Existing Properties: Homeowners can increase their property's value by investing in upgrades that increase square footage, such as adding extra rooms or expanding living spaces.\n", - "\n", - "\n", - "3.Optimize Bedroom and Bathroom Ratios: It's essential to find the right balance between bedrooms and bathrooms to maximize property value. Consulting with real estate professionals can help determine the optimal ratio based on market trends and buyer preferences.\n", - "\n", - "\n", - "4.Focus on Quality Over Quantity: Prioritize quality improvements that enhance functionality and aesthetics, such as renovating bathrooms with modern fixtures or upgrading kitchen appliances, to add perceived value to the property.\n", - "\n", - "\n", - "5.Highlight Features in Listings: Emphasize the number of bedrooms and bathrooms in property listings to attract buyers who prioritize space and convenience. Highlight unique features that add versatility to the property.\n", - "\n", - "\n", - "6.Differentiate Marketing Strategies: Tailor marketing strategies based on property condition and grade ratings. Highlight the benefits of higher-grade properties to attract premium buyers, while emphasizing renovation potential for properties with lower condition ratings.\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# CONCLUSION\n", - "\n", - "Property Size Matters: There is a clear positive correlation between the size of a property, indicated by total square footage, and its price. Investing in larger properties can potentially yield higher returns for investors and increase market value for homeowners.\n", - "\n", - "\n", - "Strategic Upgrades Add Value: Upgrading existing properties with strategic renovations and expansions, particularly those that increase square footage, can enhance their market value. Quality improvements that improve functionality and aesthetics are key to maximizing property value.\n", - "\n", - "\n", - "Balance is Key: While adding extra bedrooms and bathrooms can increase a property's price, there's a point of diminishing returns. It's important to strike a balance between quantity and quality, optimizing the bedroom-to-bathroom ratio to align with market trends and buyer preferences.\n", - "\n", - "\n", - "Marketing Differentiation is Essential: Tailoring marketing strategies based on property condition and grade ratings is crucial. Highlighting the unique features and benefits of higher-grade properties can attract premium buyers, while emphasizing renovation potential for properties with lower ratings can appeal to savvy investors.\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.7" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Project Group4 Notebook.pdf b/Project Group4 Notebook.pdf deleted file mode 100644 index bfab0b60d41865781a371e4f58c005943571447c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 161155 zcmeEv2_RJ6`~TQOktIoCRLW9jG0Z3#TbAr(Df^b)*vd{N(SjCIAqs6Gr9!q!5t2$M zMA>D_zJ&STnc+3mtC!yQ`~Q8v@0~RF&bjA4=RBYDJkNQ~InONcpOor5)0(c01h2V|79b;CJX!w^W62tWm(tYdz_+|6$0CZKptH=NZ$OKYHf9S1ve z7*KDh6OenhVsWPV>7=D^YGGq*Bc5DJ<7&{9xQQ_|1@7q_mafKXCWL4X9RnG6(^Y+CGVw5h3Rku)rP z2v$*98GJ2d1>t@yWOC}OAaeM4Exb-)y=|crr&Hpp2j-7Xi@ybvKqUT;%7pi2RmnVU zthYZd=$qSgV_}a!>`hzMq~VTr10JF+9X2IzD$ZYx-zq1ie%vo^oLy2z%TvN$$@r06D;2wICvBM1s>Fl1{XXZi;Ta)TX-WxO{VaA!k0=- zm(H6QkM|pP*fVj9(J@^P0xy7&fWq*PtHCPXtxej3*k`a|JS1@q9s;XniQj^CDC6ZF z48Bp<_(?yWdCKMMtY7$>M>=fjBtP@$+9|$#{q}8sfv-8@ae)U-{IJ7?H-D4#?Cl%y z5aDl;*m~2UOPEj#XKrc7-0uNEbMU8_EvM8$m9~z|M&EyyBk*TIFDR)l{ zcZFl4)qT1vj4yR%>^fwV_GPD^_Oa?slQF(yL!SK|ea&whixUeX6a#s}r+0Br`s@UgK}55l?&aI2yyl(2514XlvNE`<=14aA^? zl@cJCa6wiU=LI!Hz(s-O5Hu8tLZP9eVsLbK0Rfp=b&^2;bBj)*NEC7o z`hR%Q$(){JX3=RKu;@hikm(f#9Stodu;jEESaJfEqaYN(iqlL63Jz_;f)p(s5+&ve ztU1lCHw^?TOrT9uJmNzH@sJOm0s-YRawGN(ycwFBQ|sU^V{c4O$9=uB3;Uf}cWiLn6x*M4n9TnC&S^ZXdf(cHz)v0r z19<|4+ow@czeA1eUh46H`!53qr@InUW~%&m&6I8}8@?bn8b4~xZCV^(I*x~g@k^5x z{2QkfQl@wA^XB3qk2}6jOHS)oOxg+k208Lu=?A8)&rG#X)hO!sw-4k8HY;nAU;d4A zjp(jzA${21$2$rluu+3}2-lv&zd?@dR!YBueO6d+Jmlcps!8w3yYXZ1_L5!xol~~f zi88+L72ngs?>1Mo`r#o(=MsL09@)JFiDv$1CAzsMKGjd^Y;8cG03K2>{Pk|VEC2WK z%>}N{qkA#urixijvzk;!Hz)@*pMZgvKr}$v`0r5%LLh%W#zr82JsSJZ46=c7A#rFpf0zw$0t|G3|G-#V z6ovc;huKKNyaX`JmOulcjR-5 z=Ipo`2m$@4f;CZSB<4RhZZ@Q6n+w(?#%hucoPl961tk?VFme_GM$QzJbcB&Jkcp^a zloTA)G%Re|I_6ZgbfT^(F*jC(7XRG%`DW`n#q!I3Q6a!Ovxl0&hd##j++Qp$bGJEq z28V@zyLYdFLwx76qGB)b5{L#U8~;V>FlH$gQDp8iFm7}G?DgCAiFn95z4)>0soZJD z0yWqkF3oqxBT-kAR|(k3fj|BiFp#%-kHSM*Ch?HAJEpCZ_ovc$ao8AGrHaRI`C4-~ zvjhS$PddQR`0~BLn1Qm9EPtXbZGSVD<+sjuPsvSbR7~5yn8uaCYQKyOj^Cd`WlH}R z%|C9YSUb!-jKz+ptQ{}dR^Sj)SJ75B^zPFi*MIMX+Vnm4Jqh_X5c&C7{zs9&Q?UC0 zFD=~~LBDrNw)sZmo*pXkBE2WvTR*)O@ymJ4UlHvopFPmq5iMo>iM72f=Ngy=#03-v zP)YvlEyLux#`hTB`0e8X7{3R1QaJVv=tYh5?+@%M7v3LO<>Be(ciUMbO08tzR<@Kb zdTZ(Rmhrvy@j@}@TXn!oAR3@-{P(DXc1BcSuda9CPiH~No^Q4UWHlw> z5irF^oaI|E1&V?q#R$`&|NImvVcwE31&RQsKv92X3KaFHQ=mTtZ!LWal+Z5or$EW# zmk14tLBszfbPVxBSkkY8j8KHf*=HYZ7e$KwbJL|rF{A`ph}SG&Aw&cEloQ#Sm~ zRoP$$b^*o}N?o-*?5I(enn<+%@>YEM^@MKvaB*yU^9CtU3j`MJR zLg(RADIbp&lnP+=>)F+r!E6HWJH`X|dfH5P8a(_PAdqQha>!ub(IbmZeGq86VmjYM z>}|U~#V4KzZ?{&I21cB`)6=7C*=)h)*Z-wY9kt6)#);+u#~bkQZ-HR&E*Fcx>leC) za`@fs%-w+n$9VTk+7B>wj1FG&FNi9?dor!NN7vKAf+HXECZ;`%Suefk4oCX_rw%mW z;oks3TdslEM6>Lw*OEfc-8u|A>-K7Y8oPG4AvEBM5%*hI(J90Iux`Hq)Yx~^uEHCDU6;wOpA*JDMC-D#s zuB=_Q(O=wcG>W3vxA)&I8k@B59|6KDcN(f-*K3|vyXaZO%qeNs9|Ru$_aWHOA0k$J z%+z;}Z=GooZYys1e9739)qqsszPiW4{)tsjyX5N}VmR&lJtiGp3IFp0xeT$wro8m1 zF;8%8u>1ki+ji4qrhyEGcnG%0RJeUOqO@{2qNH*-CO2i|ls;W5n^Ri1dCH4IhZDz( z*J~7Ad40;1YjdTd?Z0wps#WeGmwoNRbbR?fqg1RxeeS(%i32!m{T_}q=KWjhj6W0_ zo;qH^w(5#Fm#?rXJ<8|rnGkR-*X$LB?-)r znL#@Q_A5V1#S&9MI|SOHC5p_#?4TV2?a)G*Sn_Ys4uN)P$wD*#2G9-5gQ5RsaZ2@}w zd_U@b-<=Xved1BgA$V2OmyG8%{TW3y{mB`(Yl?1pRMkca?Y*U)yystb@UGdr^YSfR z*JM?6Y0Yq08SuZPOw@aJM-8J7HT}0<)b!tbF)``TpI-p%`Ql*8Ylr&onO)!Oxiju{ zyE}NYWDq{Jn?Aq>+WX=mfkif3yMR4kCZ;S04o)5D6PhA!wNt?8yW>GtqiL84y0KY5 zB4_MPZ9`NV*~G`Db{ph zJ#}#pe6n_4GY!)d&yOCF>UjI%Q!>}iodemKFC*~~$xFVK=SAvE-1%QcBaOhrzW@Re zhmy!Zqf2_9TK0rbkM<466=d(v$jpDADJC=2pAz(V*W}lj=1vEP-cvD#4~*&>uj>U! zAfwgy<{2v=a$`CBFcW{CXs6)Z@?`$T^6(&GQn z>!l^2#Fv81d$$T&6pBJ&fLE(v#Gwc@TJ-OHy|n1uE0J9pkihFjNbgob0Phxo0_75l z`_&7kCI0N~DoC>Tdy`&Sv*fp{5L;&6+f|T%;Z@+uPUbe&3^08=D-T;JQdAsxP0H*$ zQ;_1AfAF0tNF+vl4$y!0ohj5q^t=B29n%!lv@}%2m!@nbzGIq}@JB ze9NXukAjFoF0Iigr#7s(2Y!JV{FloC+t|j64Y)!Uc2_*avo)e^>*RrgfVGpavOc^` z%C*Lp>j!QN99|`^54qup$=YW%;EjoXL7p z;oQpuTGM4g5xU+QgSvest*fN;4IJ*{A)E)lbqxJY19yH?o^Vh;X8=I$;NBvY~@OKy$Zj@IZ67Z0JC9 zw|wY8bGLl#Ky$Zz>_Bt3eC$B)ZrRv@=5E>0f!^J3KnI$;<%0*ByJcesn!9B~2b#Oz zfDSZw%LflMcgw~OGI?&wx26UjgTRwQ8xmz}Npt)N%bfCHW4d_5~w|wwGbGK~lKy$Zj=s8f#z=6(1GUeH=qN}-SWW$&E2xG1I^vCp##m`Z$Jl{yXAxTuQGS_`GMmh zmP~=g*TK)9Bal>@FNueop0>fZ++P=G9bbGq_s00`_SX36t4U?pye(V>g<&i#(~q;f z`jbs!L$hC=0>3~E{@djMdrjnSL4 z!W;*q&kRjtQ#rof!$aEf5Pdiv;#fSLmk5u!kscFwtiF3oyE%F%ef9^n*Uy{}vAKhZ zARzyf!qAAV>AQr7RQZ|KU~8stSv27x?=pvXu=%y};EV|LD#?wI?|CE(%T z1VM)9t0vWan~AD{<&O#%-igJ3WUzL&a`$kvHg_VN5q4Wf5;hzDKe6pHu&FR{U*UP% zE=!=GC^TW)Wien=W;9CtpWAjB*r9l4+ht&TVkl59p}1dcyA0G<9><`?@Do^33t?UQ zw#$T;nZNBap@zR`s|DLGi;0qNyNvt?w_Qe{CE)+DZI^rL5r4kzG8GLi1tm2d{yAhb zuv$G?H0@txq*X z7`$C{%8p(!Vh0mJK>jC%A)@SabPdCHox&9=y!|Ju_=iz@O-!`%luH}cdT1LJoAeUL zC!S&!4v?4mJEH7akZuU&A)jJmCU*=Cr7>r?+{v88<{RjK-5STziQY-HI zNDwZuUs!8$$}H~9GU+b3joQS7o$Iba`ovw^jOia5W@o~J?92SQA~#n+%;cW=u*qAS z$=pQ1Hs;6FuF8*io~k%FeAH8VnPeB-#^UXzX`g3N_%-iZ#kjY^@K#}e^n>;OyeIZY zw0BYW9$t`rnLjrUd`qbEc@a|OyE}ehAndEU-UQB8d;-h*khh|m{?jt4F1&4b>lc~Z z!>5>UkDS7`wyu94n>y6+#%U;k-yR!(hwbsg?92Rp3RIY-A_pqWQV|0cW{HS_J0U9u$t24n|avZZ1Mx@1d5>|f%NVF!nUI!1hVU8%6i_}C4eEDwYS0i@?oHWW3;(++gst=Q7K{{F!C!056^a8o>F?Wp51Y*pqd-C?E@ z5j^Bt-vsy#A^;-r_afjOuQ$q6+SvUb{S5mx=(}WHGw-mWr2mT+<;~OaiV+i*uqid> zp3A($wVn6%)y_S3jHjzEedp@f2g zjd&5i+K5-|PdDO4F9h}v6c}JSYUb_^1g`gbyI4bEgkL}+6sCI6$<7()Zs+0608@k_ z32iffBVNoLQ8^hXf&pe}PWV=pgTjIDJ;ZN)LW-Iy6a|o!fqJ+dv}SI;|n=Qi~f6GM_U4*moFGi3E11!V;Y1+cF!1@I4ouY<@z zRx_?-TFJ1QX%!PI%W5`G0WMAs4o<`-er|ysqPrv|L@{V-B_nlddHvmJjHZ*8zNv+c zt&NnLtGA1lmyxxNCH@J7aRtPQp7+o9^rfJoqoksx2KMybLfF%n4yXVXgs`tKVY-Ea zl8TK(OPk$-2IWdk%O}IiGPkSm7`^prU?bNEZ*1W$6n5&^J6RVpd|d;)Zx?#JmmSU&DidHUTQ0zVTUIQc-7Yk%d!C5 z+BOB!tEX}*AfMVqXt&YsQn|=EEMjK)KKlsx6GQ_P22dA%WeSd_3}S;jM`oD-GQGoh{IKdg}=P^h4Z}fZT!?rP6;-5!3>B2(dK;!PfW% zqW}5UI5>8fpnic=lIeH|kLh2=@%FdjAq8WlcnCjW z=S)nSbRTN7_?wRLc8d!>ke6)Du7=g2LBs!pz(B^cZ7L2rVtOg0SNth?N+51 zpTDw|Gf#=A-EXM_zd#KBN916WBrvC01N+%Zf+%8cI@!`3DuNW10ABm{(}`!~Tu#yi z_{=&0FkyYr!h<*^{-0TM0H(l+v*7by{fB^~p`wJ<2owqlMTw&R&Ls!r{3Qp`*;oI; zfwv3-#R8@MV!;8Z?w`E*PxOZuDlU1!L6p!i^A;S46`Z$5Ami+e^B`*|RXb;3?LvXD z+8~Q_v$A%B8WPqO-~ejcgryxrQG|#X6fG(Wd?OHOC|VpPf)oR;%FL~Q$XI&V;hc#p zAiCPh3^3peDq!p3;j#k;bHrJiJKEyhJ$7J#4-9yRq_v@YfVu^E_Uq7;SAO#>Z01!;U(cHsY z-r5pp1uV^|T07f#*g`Q#35hx3@QN+>H;mxVc5U;WVvvGCnVO5B6f#e4+W4e1(^l6~ zjL^NWW#y=%-G&c*GIsRU=0T&|DZVI^h*YU|`7I@8_3KvNN2)~NwUzm&_;A=fcb}<& zfj*f01!2P-Qu~;sx1T$)eQL_oWV!;cgdYK}G@~cD8lCI%1H7*u!+$S>+4+rsH#H3y z+x^ZI-%OKw(?hwmquhUVv;w) zHi*bA*Lt0QxxH^g&hzGi$#X@~Vk7Z^{^MT)ld;qNA%PP^*uXvfQ=J-t)18%N%<*Dc zDh1PBjH`;YH(u?&kd#2ob1C!TWFtj z6`bh2=pZ;$>D4Hu#`Q|7DMzg~p-*GfgD)k4ihfKeVMYEnAI(EZ-E~=aP4Apb)jLXS z{jMS9u=u|HZy(?py$h&BF4O25_H94g{+j8<)P0$KZm!8zmv$$7JRz1NIC=%8lOkqz z!B@X)dtSa$kyT=9yTxu_jYu`$o=;Q;yT!WY{9rug_dRH3_?1f@vhDEl{nBlmI>dA{ z!xdM8yvHsSo7H|`O^-vbV-y3w^QH356OP$Y?*v`TwGDh#cBQP-IS)T7BWn%q@~)%L95-qR3OaNB;V4Dx{-h2lu9?k8WhgVcAh^1q(CtS3hQaYL$*mPk zOvCJZ_>x=R-$Io`^)ACREtt|0siwLw&hYBcgzV+=Sl_$r$5xr0eVsR$MDN96 zCjKqc^y#_n2HQEqE_<9V`Y3(7nl1WOFuQbVea_Hz$cStzJY66g6X7XX^Gtj5L!%hm z+&$SrYhoocgoh7MoM*ZkRDY;z*vnlS80@<9!BkH_O<)YheU{daVw7`Eizs5|`y$lY zv)hd=v!P|2>RLUc`&l0v!(Ql#A*<|TXWXt`h>IygsqOFUUB41(l>EMz_02o!)khB@ zJo_Mf*1!-qhb=w@>4@~cy@GL&%jA16|NdK=mHnPiVp`?f?p(xV)$G{Kd?9=2_`2Mq zDPgxpztU?r?S|8wtAD8J>E~cf&#*CDMVPASd0vMt_GDryc6k~eK`Dr1tm!qD)HLR$=gsAL$Q>dC|&-p$>+4}R8b&&mt`a@5(Y?RFiWlVJW z!@@(6kq?7*8O!@Zr+jE6@xi9$g^J3neaZCSV9?v<9W=+((;qe^(>=(b9rqnPIS#kk zaue2;n&;gQ-}0XC)rGi=xyLRE*MFuo7A`jAXX{vr>nn_otd%HQS@~{=(!VaDGLr_S z^YHeI$C6aO;+!kE%=B*=$sIM?(NEn_y5{+Qx4Wswu@_!lkIjd)rPdzy?n(}EVRubm zvqSh5o03rSDznPlg^og#NriGcd0!ZKJobgm4Z_(%`mH!1?3H;gCA~QKIOKGIY)+`kDu}$|KYqR+BOhAQ&)y1%uS|ungi?{qm3SRHk<;e9r zJCbDWclSrW@Og8KVWa8_HY3iWZ}oX@^ycr3a`n2d?5`GyTD_sQ;j()O7l*SsMNpkO zMMmv|Nb@aB9eh+c=9VTZg*Tf|-KuWnI&FJ>ztA>AWmA*=$L~FbH5r+gZpu3P?)Jc$ zJj&5Em2RU?#mgE5nwW(yWo`U?ykm_%_gM-yNuOOuaFA+kIj%SPYlSvF5-8=+RFb4T z$2EO#KP)*oqj*QpFiq-82Wkx8OWC`rGL<*m^)7#sDeb*+va)rjUnV~ZIC3NQgyG9@%{C#v$xHTw zs}+v-GYW^=8t$kU@qNT_3)z|UB+0##FLCu|+N3OlW5ySD%B64$2UQzC>t#Q*`^L6? zDw&~=>m!pCJ=#_t4Wa3vVR1S2QfmY5kx{5Hm8`1Q-Bt@@^JCdoec}qv>tynnd9Mmd zsb;?tQ!YvN6oy}H`1CMj{9q<)>LyKLJ=Ln@pnZ9fO*}`Q8`RoH`+99>h}u9A%b|F# zxo2Y$@0%;Hv-ik#-`urc&=W7xLvdA5b=L!%soR%c`9Bvu^P!15YZry*2g}u)@|^r7 zk0YCk*9kglmOSH*OgnR6)xLC-!b78so8RBFzw6=%nP7RZ;<+A=b9GPU$;Xre4>Hzu;li%+>pOF#Y;oqh6KWT`@)S>n(bv!*i!X}1PN8|9y}hI2 zb&QSkew7fSd*d|*>u|GTOxD_`G4csIIeMB$xH>i`-m`hjar%Z)(ZuvBlcT89oEM^u z&lp2rnXD{gnUKz}aa`5P($@s8HrLU)7``@O;T`Gq zJMb;>i{O1jM2C9r7n-)m1E(MF=|q295m%pFkCwrxU*l6sf9fIo`NF1BX3zT1-gRa{ z=aqRW5_F$-o6#G1P(Hl3%FO15Wvb4mmtVLiN2EERq3m0VWVs(7X)}d%S)sOBKNP>V zq9j#3?A01c+WWqtagGxWY_t#WHgrsEu}I&q5PfoT@7qu+m19>OhH8#zB^8Q)tAkid z2#tPboaWWMd$RlX!@v&KsNCSLToJ7lzVvICA#INbS({hI!l+eL0#l=CQDblddkOUYx~i!MqD8`tRbyLsmYhZP*Y*X_{pcx9n= zu(G^`TFFMGJxNAMRK;AkZBri}*A=E`d?v#i-gQ{TIr&r==G;okkZ)zm>(gCCx`X*3 zCPIFK=$4Z0(9qn~lkXi(9E9^_#A^1h!Ewb3YL^$kOYus|P~d@bP+C0aOR7JU@zjEv zhpsUp{|)6j#v?-3uTqq@7hm%@s+ga`BdjQBbD*1nk>zH`K+jb(KWOkipI)JpRdm-f zk>a7q>NlN}nLeSd+%6USGnp7EQXQ326)7v-Zd6NCuelw{vOOnS!BSbJ$-t#bVZ~;# z^{K6#x~IOqbGxekGQjT8mScjpg_<_BygN3PL~W}%sjT6!ca6$9YHIuSegbJMtKJ(i z1lMl-^rqDI(}^u>&F|cFlU}cP(qN;N-O1;x272{wSwx*wwM#VFL}7w}U*olkKXS1~ z$OvP7pyhy2bIGNsfZFY1xyG0DCu6^6?&ZSN5I%4J%>1}2Q_1|?sj##f#w`w`< zBX%YRe&hP*BYfV>oAmBHvq)Yoo@gJEUjDMrgt{ON0x#Yx{Pg9}xi8KrRKogE!8QZ6 z5X$;zk5&fAJ^!$2FaO(@4bgX!SUglOTFI?`XRh<%$uP%K>$9ZU|>cxt%B{ zAJ%dGyZ@L(@9Ybxs=-kWS zr}i1Ug``y*gx>iQe6}=o>*aILk(;L2L|LFBYf9iuc(&~mFTHr=pO{g{NePI(EGe$2 z@tp`*Z&QWLs1j)`*&iV(Qq5s}+>WYL^CBl^Bw3c4>^xrVw)Mk)N& zog}E`or&$9+{&k+UNv7HKJ%7+9V9At&BjW7okW<@d2t>S(di&Hmo+>|r`4U~bHl^p zxzd`_)+I4q(yt9ULTwTM1jZ?&=ODec_ns0<(bqeJ;>s)EG4S2FgWfEoaGG)5&0;QD zCK_3;Geb%JXUw8G(pnDZNwvH!-Yjp1_+rf1RDCZ#%#StMF-{_^@64HP%5SlHdR~(>qbMJ1YM!Fh@;zy?=1di>&L@)@k4!w2Dq;!&5e^p7K z=@80zz+n(xEIb^&%R;XOQinE)gqQA;F`OT{5_DZ-Gkz*Y&7QM>TPB_Ov z%gU?io8^xueZp+fIJTYEt7i*;g3F<}kfD=iJuC(WQBuPS203EuAE0+nVk8sX-T9Bv ziI=i#bKDMl%*SBP)NL9yLIsM|T7DeU{>>I5N&(gkVFj{r%NrOs@8TG9sGBQdrbwzt(TO=nXv;B9dz;b=*rV zKjHn>sX9907M@&ziI&}7M{@JVTGKk~j$#<7Argk4WUTxWv?Q~q%Jm*)-YuvO4O}0r z7Ga+y6!|^GbicgJhfAw9J|I=)k@igiW62Sop>6HkuE@RPL^WT2+?ek$SXrEN`NNs? z1IlqCefg$+qy2k!>p5NyOxHeJm#Hswzd+}f*XaO@=`UP4eb2rZxVb!_iog|JVMXsu zK(_SzDg4~#bDX$Xr3OwYHDE_{~J9;=yg!>l%Gq>j0iHf&uBQ`#} zr*)M})b&hlh2#`v`@}3KJ4v~Mn&1ZDqdkIGDup+yU6mN2#=$_2g*y9a4`E^BMDRG z3~$*yFB$(PiW@s~sBB@CA#qcmA6YAjG z)avCWvH4uyRt0u$-_DB3`o1mNex>ZlCd8!vVGI2XXZ}m&=5!`|TM`wf99G=k?Am=P zW%F)XLy6*h!I#+)xjuzd?C_l?UktwL9)8Jr^#qdP@@;uFrfaIM-MN~*shd7t3*ELp zg{nM9!ws=k!evv;K)|J_!m`hQ+6fR|*Ky7G7Rep00ID zXtm|Zknm(XmM^IfEfEf%i=GX0Kt+gD}q5T9P)8 zS<26<9;`XUch|jFpsM)=U3_;_m@&^CzhILinK)P%fB(^aI-k+sDPNtLZcw0EdA=R- z^|?l@#lVGXNl0OfcMQU84;PL7De=SCv~nfvR&efU534;)5yttwg)u=I(-3=_(LhnX z=&i0J?LI$m-+j5JxVVk?cNpG(z?_rh%$Jqqu4YxzFV)K5e+r`_%E1!N)YD>8`iL_l z(hcEa-`ka6dKu_+m0wlv(!8XoCgr%zZScAsel6b^H~jPp#l0Pux7(FmICFq5XL=e2 z!~0tB$51pQU+4Jc(0sR5s;%$}YCcUHwlQv3uPwj#PPxhzqMDXL{%j*__JrvOi7_5T zI=2U{E4sQZ{Jn6e{WV3KHIhOHca2XbWo#Uj+5PZ-<+yaqhTZ8-507Vhz0u5Yx^tiB z+gsTxcK)yJ9oSv#{Ars7M$?a8K0R!8%;Tnv%jO)%Rm~bjfl^T)qpjF&pr2eus;-=S z7rwRax;3L~>T|Zp64#au1+UX3q*&`d-R`8jBH7n17}dzw*Xb6kihFVPWjNe0-1^;) zkl;Rye)4zZ*Fi~#7w%3h?RO7RpFwJutr&jHJ;Hlt%h?ecO(FXfGx3+tcsvUO0(K9F zR^QRvBwW3!t|!c1deK~uRjQSFG^MK_T@UbQ!dIt$P2Lo{pCvXX zi;1CNz3)}VU9qvZ*0i$Lp#*Z^84aqJ?q73}6KQ$Ml)@%-jDy=1nc&hc{DPieuhh+4 z-TS%1Wyb*jY^nIlM&Eaq6WO zYpFxoZymnwe`@nfugwb3>#uK8V`+`+D_3ZUFaIj2Uj0?|N0Ha7e(@OrIJQ9PR&D zxl-kfw}s&2V3i#&I^MENh4nRt=5wpFh{^U{!t?OLqQd3S1p=Ik^dxJsX)mdltC_}GRk+67<6>z_(Qz|s|IyZM z$L+8~H#BlI$2|hqV@s*>-&%F`Do{Lq;9HxsuI;fgZR~}qCOL{14|etFa5fwjInNy) zEW*UD+0%RF(AQNq4|6o099GEj(vYV5^1xl4>4HhD%@gzqjG^=WjIew3A5WBTIlZ+y z=7aNK9ra|=^Xn_Nz7UW4XqzKgQ$pkWB-IBwc%}giZ^xXCN3_UFFrP)H}K0d zfS&N#zoikl)L|r!pj>G?bc&u5wc2EhfOHu({o5DRP7xYM8hs?x-dN}AoDhGdZe4f4 z<#wxe+6_wFUWqmSi4AtFA|6s<#YJZa4!fh)<!(&xvJYM_ zr&YdnaWvhm*h=MvzWv(u)E%j-D7&j^DGuR+AbAgEj-KrPY!?eL*g)rZ;<EgD^E7b>@vV?K%)#){r`sV_s8uVb37zr5w*y-;7*qpZOJgL#KbCUZq~ zw4KY@Ut8|E6SJ24-p9~2z3Q%46%Xv`Xi%kZj1l}ocZ4+|^9ZXMM)`A25`)Gj99xS zNq*j-R%G%jGBQU~*#%avc9Z&p|4r%+r<-J2SERM3ozTg;Wu1MsPW6aquu}y?=np^R@gJgtndBp8U}+=e>jL zQy!O;E3f>_uGi|nihOTrd~jQKL`r&_+jqFk+3OE%l!If2Yi_u{*ekCUU)--5hebSRzAG^```~st0q5~3G}oTAH8biDROxi5_@2@t+=~k^5QOo zn-o3{0k1^bioaG(-YHh8)`yi%b~kUI+IJBEK-7RM8(_ZoTIsv~-Feol4()*D+{0+| zxP))9gtZkH<#ss-IKHYAp$hjl&4@ePaEUk3chGX^&N81a0+BCN^6uY7KRPkyi5$U#>rP!UZ;;;ceRz zXzOmMFZ1cfrPS>T`~97+mDU$Je{{h(J6W9M^?i6P+-G#SrT(nbwv*3B2I+a@T;&8O z#}C`sxbm$|joWWWmm7J&pI^_bx0uTrWu7`ok$a`0f8BoB3hVX)_u$6c(!8Hxo@xcD z=Zr61GqQ>r`9!%nt-0Qz5f{kYoUhZhH6uVn;p~pDK}BuUrP33XCvy|~cAJg62oAm- zv0PI>wNt2~F0pjb)w^@sL76I*k1j9XvU)Wf>6@M+`A)R+T}FGT8Lv?s6Diiu2aQ03bn&pO7-i@G{ksgO91 zNbvVBwZ1aIeLk`gQ+UO}g~^7mD~oo0S$h4~vGBs@&Fk01T6Tw+CAr?;5pI6t0-x`# zEmuN}*|w?=GMcpX?~%T?J<9d8`*5a0ts*wv(5vXCtKH{koRp!dPqXZ-8lyw@qtrko<;Qdn0Gyh7SDkIJJ~o)InNG^SHNcr+>)Tg6sW zqp8gO48HeLjm-(emfnw4XK&Hdtr$kF+b+05sX3aq+?BrA9913Tb={Tc{wtM=HK`S7 z!v{`=xGptGhpTy6RozD+(d?tV3Y$(NONE0dduVB5L%H=V4ytu{=hZ8Ge{?Xr!Ft8& z2%l2#XeW%phP~XI!%zC0yg#wQb4|0wmHzeeH~Po?rUt}JPFA?O);t_nQ<3`K67yEX zR54z1t;S6iZiQrKcg6FqJEW{uJg>rZcnoUv1QiGR*M>CLsAcpak4DyQvrEppeX=sk zTZ1{E=~ef50itXyxG=16s37b>Cgk;?$OFs6J0aX_HwMFt9x{h;`g`AEPRP2w!$V4h z29qpRGrlFwdZ$Oz;g1qgm<>`_S7^4?WO5s2sJ2uqWjSEBdo;Cog&&e`I*@ckoBNE@ z>C{H<$N5FWVWR@Y{>G2W8O`xpM{_-TS!hh}CM9bLYu!DZxyogoZUOC;^5~U@H=kra z&T>fU^Jtb#dvj8S#)Z?fVR%<(WZgw+qc#5DP`Rp?qVa0?w!>T8eNtF@r+FHi4wayA z0=rZ#pRMa!Qy<*5uFbgV*~_p^uU7PW(R%vPdP+9stZR>AsSnOhNbT!)KG~_>%sJS$ zf!?^D`tU`n8j8>E&)r-*_tZ9My)q1md!9P#`fY=_eXdd>ce!)*&NqFQpQR>)!tC}Z zd>w3Dcm8!m=M>Xc0})Ccm8mN)`>uZ+4OLaq3>GiUm7)y4kT%er>?i8%8`CGV&ClkH zkKyaFmll30?pbyt#{HH?i9C9R9R`9c-P!NIy*~Ll_i5HNUn;sLv)?GBOJI=s{)5Em zO(wEwe7zrr`1-N}>_6m&<`;bmE-ntO$xO=)zt_a0^{!C1T70{e#9ASjSIy^Av(Tsq zdIPyZR+Qh|je3y1lhL8-j=ucW2rId>k2Sutrtn9J2G|xqv)k7b8fG5qr+4wf5qIY1 z-J(+KWYU=2GW|I5mz;S`51Bjl_+H4Z(Q7x_iAHeChK17b^CGeJb+Epp%K=qD&~tn z(XUuF@aWU%)LHh+B4v*b-ztt9RivivjLCnk{w2s%($Xo6|7B-|HyPTYbFE+0mUDZHWSFYOrYceIbTQ@w+%r zDAyP7e)w^Zn^fOze|P&{3Q_;Jd;D^#t&1TNef)} z`)twBxKH{$d;8$+Z4{S6POn7Ejp}7qYD`->kDUHAaeB?fofjxxW}dMq)hsQGwq%L> zZ}7W)*thbvKl;F@q1~@2^vH7mq+@M`Qc6Wqb0_CSyUj5l@v+Ro;cPf|{Uq=B=S#P| zL^f*JOgkRcc%d1;F1p=PvUR+o;^p*d-U^%P#(ko^O7y!neZOIIa`4rM3hdJnv$l%# z%NrznUcgyHN)j4BS$Ms0@=Y#vMqFpZFrCk>taa@%PjqmYc5#^Gj;gI~z9(}APu;yW zdXx}I;SPjVm^;meRQwR0qiJpf1SremOpSt>{b6!;_MN1}jOp4oFW6git8iGc!t zq&z_M5;1^@P!+U7z|^d* z?97QzE)#-a#1Tj+T7noyLWr7i2ZCXU^@fTP*#_cEFvU7I_!gS`{g(2Q0j=~UbCdB;6>gp(~ z@7B@TuB$G;TU%$ZjJmwCy5djnK>`s$gy+41dz97pYHP^r%I#IwQ2$9zQ3*l>5uA(( zF|tszy~J=a5^TF2t$_#Cf#;~zan7U^06(Z0p(%iNRe>7LJ#j4uBxu?|iSPhVOUo(C zL*Y_Vgv!W61)PDv960eKCJF@e%<2V^&^*i+6srWlt_elW$Ocdzv7*`ws3PG=1Q}Ig z_Qj~m+Z`g3oe@<6St3UZ$RZ>#^D6s8IM{;9&c|p5h+koZ_!&khGH%3vFdhqv{RuZj zz5bCKa;Ve8Jk5YgV-iNR2?lw zPMnZ^G2*j`5KRM7Oo{dRNu9~XMw}o6i;6<_~|#T!{V*Dsq`668Z~JiO=*? zfINx+OcemA$mNNceKE3s1{I01AE6>|2k~DC>pbG(b0WK_Q~`TA{8+3wnT`+%EymM~ zREf`Y!33ygyHIk24M2q^Crik_7}?STGOr!cP_&~y5*C{*GQoIWfH75ZmT zk(+fQp~ZNbg^FmPh@BL%rays-+?=47WO>P ziP0a3i<2uPu%f+yW3OEyj)J0%nL6{RuPViYW1` z2A?NQ5_1M|ab|uta*`l7!9+@nF{27R8KVi6m~&5wHC@OJ94<<(`NZstQe6lUk)Z`r z1hhA~yCy*pkHv`2hiJ~6EDq7n1|JghnE92BoPlUg6^S)n2$48aY#ujDQbmcssEUZ6 zjSnQ|Y0aIvG{=@Qe}VAKIEnn z0bi0Afq>6x$l~($GhbVRTrxSfD<`gz>+vpoV*i5z<;GV z3s{=#%@$|rXKu2@d{O+Bor!~&Lxmf+V80pe%wtOU6% zB7jFv7ccoIED>w_quPp-_h$%T@_TW@^I4jm>IcU5i?`BGoE*T8kd6Bgh$VI5h}ngO zUzLpfi9-VD;JlK5WvWPz%W47(8*`&vQhl}Oo`=&=*XYAFMwU1SMsm=ouA1O(SQM95RE2qBpROussea47{y&CjxQH4_^46gwKX=AqgA#2%p=_eD zTTmt(jv?1cBCW;BoY#n$Ig3s5+ZPZ=qUUwf#O#X^pJiyyDwB9yNERtdZtXF@(z#i( z#HJ?U^z+u9H)KQ*SMe6B?mR3I$iL{$Ab;X)0#D$R3pA0`VkMKtN(jW9Ehg1=pE4s1UQOnSf!MVQfJgz=8gfyvoEI7OV1nux3|I3G_)^ET9jF4!JH6p5I^G zr2kR#Ic=EXVj*QDYCa~v@=|^jA5v`=f(<}IZY?msGRU)Z=bT2OBonN|&s-5eQ^^s> z{Hl+eB|m5Fi8cD6)^H5DD~*lRUyS%nol$c}i?mD!CC=Yy1IzFPW)>EL znKuw5-uzbznKNM|HWrYDBj&9_p#Gu=0=tdO;!R@X2eP8%UJfz)U#ab!=n-qO5Ck{^ zN#6GWTb}RXB()1wexme9YI2ui<*-|5-$rGfFsCDLLg_AXJ(xo zO5A}Rm}Vr>fsz)(prnN!s5r3!p`;0VC~5K;N}5=OlIEzOq}d%PX<7tI8u~*eNcYW* zG=ct?*m%H^sNKMk=$!-FPAZh-wGyMQZE?HYj0$ zsULI#f-m5}ZNx?;i(NnvLs4ehP1VlHjt~|?7I6STG#7vX41AD+0E+77PQbqV3$qcM zN_#Fh91iF?l%%WVslbE~lr&E@FBK&Sa7Ppl@?>DC13IHRWVHg8%b}#j?s<6u!lV#~ zd8q*5nU*A@0I2h&N{$teJ{yHL{H?7UQys>oBtfK*azlc$OUsU#U8PelW%#Np(;ngP7c$R~MTfVY`BaBlQXM@&de(x}kZg0B`?gSn|987qbdXo(!-ttIy=g03WmJ zO`Z%i(yX?VCjqmD@&dV^bo)%QiOhlJQe7UprkHkE)_xO`=F%$i!7DU z?ap+TKa|valjjA(kY-|_=A{BmlVWk^r2;i0E%D5y662$0qPECW zfq)SxDcoaTDnWaRMs{8*K$oo=UKIq@~$;sX%F@<<)tqKxw3vM6y)E zKnO}2g^{NM4ldB13qT_d#-OAD6}^Iy0OkPX%f*GrA;C1=^Fe zIxt5Vpa9fuX6#9xm#7R2j2>~E0>~PvC;THfak?BTvA`A*r=4eKB+2s(Kq>t zw?yc!wQ+m-UdMQ+~Jvly2wl;%M$IkF(rs=izAm2XS)8 zj+`q(gUos^#9hmPAX`y5S{#UyU1Vo7geaOYa|U(yAO;zG#rEWS`|0RTV5g-#%iM71 zVp5f3M3m(|I@di|MRPQYb`Q%qYuKZ;Xl-A6zEex-%l@GAhG-ptUA7vDwGPl|98{jglWq6r$!03b2-KQT!sa8)ydN1FzHUAcE(d8@s zh4ab&9S#lNYr}a5N4%x+9}f?A57w@IB?mD-Y}>uPz1&#Rp`CFwg68%W3fef)o!(zs z1FzedQhn&9jQp5k^Jr^9ac~@DAFY`{%C`^O`3}dfN@(n6Tx&Aj;L>O=9ZPp6*d2D| zZ9sL~h%bdX+u_u;k4&XBZl(LvpOJ+;Jyi>fmFQ+Jz%ZW~fjo;D6fsFZqyEeqa?7%3 zu&p9?H0JK9Ob8D>yjTYMY^88LT#JE@6SqHj`-&z{xXj`36=_sfIm3=hxoC|clz4l^ zX3C3weXk+myiBGp9cvViSA0M}9N-%79U6wEeL9$y*vq@(qIcmY{7v6utvFN3N8i5D zD2neyR%M%TK*V%I5CA=)ojU9T#Q6&H9zN2N^7;kS=I=Xp96LQ1%>Ne4%GS697 zejRYQr2PCqzUk_t(8!0%XLhc$`Ah{(&xCxFZV~l@exZfDc*FNB9BPlCbUppT3uU?S z^%EGJIojM+^G0Na_R~5=%MF*|EazRf)FQBT>ez8l{Gl(@B5@aG@r4EF--h##F^-%= zv>+&C4f_hx67kPFn>>^wIaK0H?vh_oh2Ipnbu;2*Oo`qrwo{!v|BtV?fQqZxwuKW29^9Sa+DPN>?(XjH z?%ue&1a}Ya4#6FQ1&2Uzg2UhW?m6e)f86(8_hyai>RMH6SJhs7^kC09tw^VnD1#5M zrO};ASW(@rNIT>e2Wv9!U0gCdE>Y5->{e-C16}qz>(%D#)i$DQs`dSGbix!{=-rH} z9zM5Zk*-+UG^48I2%=dgR>b%v`l6%l8gE(*9P6( z<;%C61lg8J@Re*xq^nDPEu^_xU%DVRcF)%r$!0h+gTXfZi(Y*8Fo$7!en|e!DcLG+ zMaK7UnvIU@sgtR2uCn8)P^--B8d#{J@48yQ79_%n|LAJ%+~fsiaw21!P)-kd=7eQt z#6x9-L_47x5U1iqW$||hcNw50drg&OOlS->D2(2}kp-6vVOBB|2(g+VnH%y0Mj&)! zv@|10@En;BO^70XYi9TaPz2+IwP#FhbHE%Kv11tvo&QGQtc_+um)cr@rhAVWl$9Oz zog6ZQ-F2NDl+_KT(VUbK%87EP9~o{->Gc8tM!X1$NX&m4PYxPSUifL$W8c$?aw+)a zg%{-P&Be86M6AIY6Z~*O%{PGtjNRo1Ml)x-I1>QGl2md^Y~amJkjl)?dxtHsjwDcu zm|+%}(^pzt>kMKX3myKC%Gt)m>-+!bvWSkzpBAr&-KIDx4mN zmrmGDZ+SzbGy8nzyTYqCAI&0IaV`7mS}m zDJ(fHOPL0Rf%SdTzp#bz8G4qFzlXx81kT=K>Mfvxj{_^7Yz#!Py zj|b(20$(APZedgl!`}j7Bh+w&dnMScPwvb66`%MDam0H^Q9hS#7ho|z5r!LodPN#k zl;|CFL^9#b^p8fxk?I|mDlgkEL@GM|m=iO1`$63JGhd)L>pWy+QKEl{5{^u7zh#ba zuMp(OoC6c|-pPvP(5EN1kwTDvtcoM;E8gC$?7a!EeAzSeNAweaRwJ~{cok;Qxd@PQ z!H*MB<(NMw4tT;ZJEY}GOu2)7OD8Li@Ct81BGfy8AzNawD=S-MuuGpK*E_`Mi1doa zKtSmTc!f}zlke?gMVcA;+<{#qIp56*13b~siPpMx`L@IR#I=C)#8v9T33;?IlQ;x* z3oK2%1x^l#-2%-Wjx91`y>3+|`zdZ!a^fFvRdfTPz#oT8T#*4oq#ZEWPM*wwBA-?3 zG9O1ctOW%oVvTu)`oO`kwkZE#nTF8w5mNe+&i4aihN4a>c;ooifJ<;2{9=C)WL4YSD?kk@s zr1K$duo)meUVmV$E^^qje@X0#^|>VR!@u7Zdcry%%sY$hf+p%Kx<%xTWc7nY{vu~EnqME*6BluX<3||()9DFM z*)ypp{EooB&*0c*HPY^u&33@xr0M~fS6F8Z%qy+iRpON~5W}09*QkeDKcVydJTs?p z$>~0;QI9#Zkbd<^|10C36w-Te?yZ^ap!^fsTU7e7j3+$fLi#0Z#LQ33ClB7}mE-LO z!n%dtJqOQ_H^P}6xej!mORP=M(G~k92>TKVY_0%)s61Evey9OQmlVE&2164M2|a-t z_0eE+#q9U7&WHnS_RybrxB7^{W~l7et1E2g_{I}Ie}T{w#^(g7E1D5(BI=Hjy5j4O zT^>F>pSV1r7%UuJqDFK&2EHK@@98{ooQ>SO^6>9CBKv<`zoK~)YTX0ANVe{|5EQRB zV8fg=JwQYpH$9+5fJ;$>e#fOVh5``=A@dfOh+l4T2}nZuV;w+}`6C_#{tDzzto|e{ ze(>)klusD`$Kq(MN6_ezI^j{iy*hXS)1ZeO@yH|8h_O16jm zX?nz@##V4top_TaDzyW5Y^79?F&PEX1S{480WS+bN!jcXW1J)xWy%67B-NIsL?_o` z8K10}Q@wGznJDz#eW3(qZ<7ubmroXP8~K-b_%~blhjB@>PfgCGk4`%5o*cj6$(l!l zW*pR6*?ZSMMQic=s>#A^l43bJ|)ZtAW{U%B>4EqK@za-D9f zUi+-uWD+ZRm|kZx$u!BP?Wg0j+{6cU#O@RcqFXHR|lW zgVxO~L7I;*_UY~$FXrQ>2jEZuZ`087dTbcN;OfH-y6l2)lyGF z3boJb`%W8xey2RWw(4HH1BYrvmh2JMVIo21Za}Yf)m6K^E#^w|CDr88@kTXwt1Rf` z;bJYq`hkmuO#WLb^)=%?@HqUdgz|DBDnWWvkT>qOvxHvVCaj&-t(m{w#pW>THti$U ztXpj4EnzV@8S>%o5!mcF$2+B6gj^BTQsk%%_HXAy)9S0b;5Re zDh$wyU#aKDFJB**I6a3 zKS00pWCHWf2&!7yF51s^b$!2ugD~|iU@u8$LVOLt{qxLZ9xY#YVMR}%-5wtFm#%l! ze$d6?W$FV5=B({XtRRSN2D!sXeeJDOJ#cY?{E(O*Q5gKO+obF9{DoJiXWRNt`}y(a zX2)^uHP6^nQA>aFucwyYBd?R$f!YBz_2;K+lzEgf{Gr>5*?7amIi3;hOK30$VNm7M zVh~i&2iJK01Z-g<>&oE3?u!?qCBmN|I=Z?_VI?Wf?RbB7j7Pc*eoPoeZL|}@WP^P= z+SzD$HU$TW*Bc*Po+UpT@`JummzuWRpAc1`_gwYDj=)8VcYNTB*mm{|9CYB^nAu4u=$YB+B$ z9kk%|jT*Eg;O{rWYPuufAK0Nq(r{kw--#taI&#E`pySk?-dQ3595}*7EO6zF?QkOf z{w$uC@+ah{s}(Wq?!3m8JD8tku9nwe=hR{U5x%aAmeKJ*?Xj*a>xfR*RV%OVa=^>0 zXP_PX=nf(D?%-aeq3~rduI5n*6 zN~r@3Zi8pm5J%od!qhXOsn_eswIusJX5-7gr+xt0pS7bx)c39~7OZz(MVx2_8X8c^ zNsH$e!j2>T+w|A|1|TKE$o^(9s%%BeDi$dU8ZxZ-J!+NH1M1p?eXAkwYqjCf_T9ng z);a@@RfpZ)d8IW!$i+j+iTLV zW-JdkRFO-pZShI1MDL&dVS6oxMrYmU{#@+!R&f^fx)Y57+C|*Am(^%B=;(2J~{I_-T>iS*rHBU+@^qq#pC7 zUhE9`C04Ixt+eRhQf5Z;*zM_H>tE*VI_O$%#KK2gBs@X~8;{<~sb z>+&hyuA6ALcI=AsZ?(!U1k`9lktegP|V=aXDHeRW4s1qiUwhF=`Ph`idUFb7$nCtxSjJp|`t{o{{uBBv^!_9S0rew`!=Eh{p znm2ZIt{kzH)}oZR(NY+zL$4@LM6;Jfmz9#@D29@iYR4;;w~e$0ZgTCYg_SvCbiY(G8MWHob1$cb6?fYE>Zstw%aW5v zgP49SI4nIc@CV4VF_iz{orXcvkY00Dgpls)M~Z;jw(H1Dy>Y)c!rs%+cu}_U;kX>l z&5%_^@Fkf1(j_@tS%gYn#%gEo^b4!379-PFSVWalIUC#q3bI6UH_4dj7{>dBpFD#G#*PHw6<10x#$&8fw3g?pi z=^J^zl#i;;I@h56(*37>vT?QX)bY6e*m2D9gYl|lnPi!yg=F;Py`(?;?`h}~D!cFe zLrnXAW00L(*Y|xrQo=3a=Or9OVVMgoA;$uq0j5L~e=ywVU$6b@;r5O-jDx*YZ>xHM zbFa!60M{L%>LIo^`Wr`uXs-Kl!g+4zB?RY3s1JaC7TM8W1&7_K_tLxV5{zXdx7x1S znJEOiZO~fxOsk0+Qquu%FD4h;~H0}kkj-(uEc-m~X) zBi1JUfXe={UaEEOf*H!hi678cQOcERea7Vtgp%ahQ9U=~PX0*LXFdrvv5*lx`hF3q zXlm|iu-YB@mIO%eO%O-~-&jCWG{o3D*3|>K50H#CBi(*pxB36${a*BqK*x#BzGP)S zf*Cgi1DR+;9E1DVPogo+o5ZvXFFzjsl;iEn7Jc#BhpAoF_>$a-}CP12TK^D8SI23Nkd2rj?O0 z+kyK%zSuX;P*DG7{HJZNa=~_`E* ztQcpo?y~ky;*bR>5*;*m8^vjNmCau^m=?0isbT8+ysLho*ehy@Nh8eYD11u{#r{;| zH01r!Tu037`|zxtY5tAMRjM6L0X;7z2E1BI*@lG9yz6>pkDO$COkNU?&Uey8Wjy6l zdbED73Qr$+x{%X}R<~;D(~K>1%W=oX*R!;g)x2_Q1LTHkr#~sGMhim~3^WbZiGDxK zVKUoB9s5GDZF30EVB?MKn%0$#wLCwgKQZ5puL0LHvJzS@Gor3jN(v61W?KZmFU>mp znS8e@w%uW-S;zE&FqS9^kWb)qchx19-Q=k#aj=Q(7bV@PqegaT4ac`=jjf<|;0<6! zmnzn<)x{sBYIoeFTMwx)TbP;orT<(>^os0uO!IqGkpu%iEW`7mkAN=O?g*GN<6vRR zo=1G9$(5Yk5tWPu4;37H6mLY#&a|2_kVz9TxR^Gwwlh-1_}M*lJ%py=?4hARk#^e< zl7|})H|qEJ9Oi*mipt}N(#u*FEDkwE3S056if1^DE_DBhYL}lZsYdE4Q!1hfgPjQ) zNKyUVSc}Pwwo||MGYrpaOlf1v=&Z<0DDC%FwG<9Hdn*F;pNnOo;c3bD&ydgPm5b}#fVcE=3z)Fse1&xY`^v-Fu$hL-3-aMYRaL`XpbN%_-zDq%A z;^{OirZAw+Jh!=H?!i~SFrc=wa9|Avv(hr>Q4B!{L;+Elk-LL(ExVEu5qtyNHx|Ot z+o)?r>$T#vGZ&NvNPLud98k*ah<3}}H_sVUh6!(N?}*kg5zGUBEdM75w~jh~56;0_ zL;8WonJGJ#W;QF=QFr|b zpXZ13kEQhL4d{fN*PCx8#VmX|^ZuVrpLz6*#CM`MiVx`B)-+qvAPQ{b;Xo<5YkMhv z#4wl#6@nr%OkzLqR5FGT`bU1+Ql6>S+kNJM1PN~cV%=O~56|pQGbB4j8>?_5O;G#2 z=lVOKZf8OrT6v{fdXh*U;di(0*@+9O zM|LT}&7y^V%a_os(p&y|FBOy6yo$z|GMu2E_`NtAqV0v46h$o8I15?11-n7W(Z$@k zq$rE3EXr1TINkm~=s_|1#FQMe+Qd{GIn2#w-GOsDt|Xp=DQSohsCYlbsh01_IApEY z&_3;UsT(#|C-Hq+gUpg#*iS_Ilcad90KAW5cg1EnP8qHQTSi$lC3&NF5G{!O?lM($*sbdmKSY2;jag;h(UuxhW|^49aMsI8 zTq%bXH5H%`+&^)zo#rQ_#E{A;FH2-AOeTjpVjLn+qMB zJ^sZg#F0W2W5g{eCy`T+n@^$qVGyYv}8pRN3pfl zwwC491c)dd5gkMD?dYV}do2^NLA8aMuS0^7qKd>7wWQ*7UyMlAT@|`SJT=c>jt;&f zqBvr`>hh901R@DQ4|liCozP!y;k0sZB3!qFkw=&Jw))z)C;}nmIemZdop_o(lR49@$duHU6=u3H>$1tf9+FCE4 zwjL%t&+ozt_hL?Z+ODkwA^|(|rP<;1>2m>P?+HCUHcg$=$YqYke4l!p;x?VF!2a@R zZ0t^lZ{dO0h4_14FxEoEJjjFntJGR1a^X7R?!wWP0*bdBJ5Wvw<}lX{RP@BcRpED( zI}IxdxmmSU=so$|`%SUCzc`e;k4YM>N-Cv5=gzZt{W>#{h3DY+G@G!)UP9)4y_N!| zbEL!05NmN=p0T+oWTPWXmK2r6!(*wAz!c-jgXDYL?*h#6c8BK|#Hd23Qp4PyBXw zquj8!Nwg}@?5oZWF`pyNno?iOO2()9z2Ty*gGybK5qB>UYF(i+v3aHp82rUo3!zp(K27MO(}p6{0oPCoVWUb=e zr15)h{a|$Bm2u)2p|ox*UDTjO+9Z;T#ei^*dxS^>owPivZi8jYj=~G72K`}-IKu6D z*6$^?A>6z0TqBFf6KFWD--Vo9xjntlIW8@Hjg(m@5{r^&GE>Oo74VUmU){ zC@!VxIFy!K*ua{5mIRUQq7YbhI24t#Hu*MHvht8V7PA@Sr27&?AEWq6Ul{ ziaNJ*`nsB#@#<@FJ&lFy1Id4W;TGp26^OyhiD7WsqpgKknrNl++44~z*`K@SgA?pCb_mGn3M ztN^jB5_HJaR#g#j%hRYyrv~*nrHbuAi}T0%o<$9lqQ07F(CikC0_(nN{O~_48>&Z8lRnW{WEX3&+Y8~#Cs>=*p zCIOosRT8z5Jj#ujs6M{8-F1bW??C7Q0>B+oBu*S|rJQ{4%J8Cd!E6s5^7r0X$UL8{ z$%MYfYY&wDqTqiwde5%sHtJ=e*PP|*_xcjj31T+#++pn4Zs@r^Fd34Yp8jT*H*q$p zEAUtex39z!qATidacEBT&V7?)xqUxYi0|)xCHIG6pe7I_k!L3mnZi?`R?AjY2}F&m zmoo3_(4{Qaw07b8q(PN4?Hl~E1lJbX!!0B#(^I;dVlFp_qnK)LC#94{v}&o6obEZ5HGjrdCEc`w?|hhTC+)&t_1!}4Q6{kzW{p5{fq0GJjLTjr z)jTu<0ta=FsfX!vQ8+GD(H#QWvdZ3>()dP_G4A?cpXnl=TX>s#R+pETemn+NZq7|X zo-f_wZ{y&={Y*~au!zk)2z9OS&RK7u~%?mHWoTw#3RBEh|?;+f`jCB-XTYinURN z9*j>rC#u$*X;+1A4riTeO;)yCC93AfZBjekR?3*@mOW1oq#UyVo{C;mVy{h;nzAM(-Q)Ru z-a%6wG9-nd57Y0i(y`hfref- z#FU!BSwhjm`Wgh9OH)DAk*@}qSyOJ~|RtUzI zx1Ti)>jQ_%q0n6t5^1@MVh(538>JtZfebD)rw&OFEQLNz8*7^xYbouDSV-IAv>*+f z4+GTb9OJo)%#8e^4b}405K8L!YEfz=%S&*(X!}cWLMf9;xb-yZ;q|FsY|UVG(vt|> z$mNikL%nKgr;6)Z#ET|tel00NzC|j5Z%SMuTN@G^i*{IB=l)uX9msI#2h-c;1FaU- zTrc*iJVyOqSI*(lA|#d6u;$4Vvg%Zmh2$SAzcO{LrpskxhNm|!rj$nD>X#C%XicBB z(G)uK_+zvZnAhSgke$0arwmLdc-mkUxDBi~Cd@fp^rY#1b;&8d;GDr49nBnGf@>np z*1%UAqUfwXL)bQ44K#ubM@-X~gEh*M)r}DwGEdV)2HhoSB3o7D=)5?~+hmjyH?1O; zUfkW?@l7J|;Kogk#z}A2oB}jkcbHF1H(u9>Sw~R|6F8EMr7X2r_WEvf?O0_crX#m9=YDeYGI#%HK^x=jyQj`Xz-iSN0a zNBdBrG96ThZ6xmFxd~2s8^YwZ3x$)jvs|6X`>WHx*=N-9E;cO>9&2N<@*JX{Ybf?i z*Ia|oB<0=7<$Cv6QQI%z#~8GFj8B`qiQU47YVF^-zW_XlzVFwo9!})K{%mNwkAiTn z$iDSJc0;(ikt90$Rul2~x%q)f{W~2=<8WzP4j`R6XpNZZ84|eC4xz5p$2v3PNG5IX z_LjM$zHk0=zm{U&S`*)Gc6%(7YxP7}G@7ZyGaYHoe0nauc`IG0gFb!3KT zWfg3Cg3DNay)mh-vX?$3-9Rn`n%d!eKj3jQvuhkTpF@FV`~8cQ1Ywkt;M-H>!{W8qV5S|X(UUgag(7`m>8&rcB*$|)BIvrvXk5L!`$0$s!TI5fXtYRZK;RVrtipnbV zLQCVttjTWpW>E_?(@i7e{eDF)Ih_t9dYtR zURBk@p>#&BVJDsQdLZ|%elAmXjhOY^uTWaFs+nEWTP|Ebd2xeYis@m9 z_F$Bq47RoWba<$;AuQ6BNTFdWTbAV<-x{uLyQwu>I zPFut6N8gf`U35f@8k9fZ?1|1K&gjrTMK+E4rMK{Tkgz(dsuY_LdL8HZ00{M*MoRXc zm(<0gI#wUc{|((MMPwVNC6?*3H0 zv!4|_uLd#dh%GK#M^k=s+!KQx$)gqUr(%^kzy4`m7cIik}Jm2yP zG1GUx9#kZec9+j`S_wLOKRgqvZ2j~J8GJ*+cc!v!Bh_cn)KeE?>YNOwg~K}hW>rX^ z*VbAgx@0TeR9Sjb(59f0r4|8lV`-45Tps_XD!m}PF>qEobY@;W%EDrjq^G&TYQBOI z9miQTZA;lb_o{Rse>x`Yyv1!K>ybW7t?#*iK1s9x@d^#4?ZXMM2U`HURlg!B46R+4 z#5${|ONnfX7P#GFOT?%q)udXIXij5kB1kdCoccL+Oc;h439eElsb^d zUR#rjhv%)nJflyEXYlBia(oJEOed8V92b7uh~C$^X}T=BcBi&=8yoi0~|)gDLR4@z4mp=Qjt zoMe)A$Gh%a56>8ie=tlqf8=`PS1!q>7?=2-;Yl7ac!EAc^d@`G+f~s};hyFCYbU~Z zN@Ud_9)&6O95Y?U-%~LdW;Yo#w@=tr>I&#yzO{~4IlZD>5bZfE-0mnRJnb^X@PjjA z@UXE)s_ph`(f2Q$i%EOfyYQr@ehI|R{tqio#6TJH{V@akW!93l$rKi2%0tO2BVSa$ zjvBF|#O1ufl*Fmi+^+TxcxavE0!O<)8FlHYCq_j3@Z55gB}W8|fQux6=VP2e;yC%! zk2JPc0hvSBSJr?XC=lIwJBQ!9TQRvYiq}a;%Os-%!xB~QitBmE#9F&G!zP_v;=Par z>Uk7?J(?bB_t5EOtrX|A>_-_xxq(6%&bO}ajr{e-S6jLT&o`+qLA9*cH#9NFhI7F3 z=5R-+dVLs<$Bz_qrP&no#B%8-9GVjs6i)N_87C5irqQa#dX7^MaT{Iz+%P6@2%Oi! z5_m4TU%!&D0-odQWzA98&MyTDvpW-o3)j^-)H)UGJXw7#-%&Dqc<<~C_l~LmP)GkLww`63zUiiE{ z;j19s+xgb@*!xmPsIcL(SvW>he4K2LR-?snwI{*RonxqMTjWE*M>Wi|H%JISmnvL4 zD=dh_gh;91sc}~;Ro($9zkXHw3!c=1?cPw{1$hW8S;lY$gm{e+6d;@J-I!F5Ses7C zlv>}=i1fQ_*NEh;s@+8m%0WZW5-yr9&%iWLPf6OMn0kMz%SZ3J(#~F7T57&+iSX~e z9)Tg=lHYg+7Ms^N4(}+~_x>ul&)4pC@kz73f*eQ2zP=jEC!{Q-gXf`8E&t;bC0y*= zNST<=$VES&6-qIa*h;xGTgQ&7LbR@(@gPe{?@@NrA{V1_o+IaW6jPABwir}7f94Kz z4QGO5^m)P?Z-Q+ETF&CMAhIT6PgiX(8qeL5mzjDfK5o(l;eh$0k5Bu~HPZ2nrV*OJ zaczQfZh*GmYs3Wsc^o0nmVrcVukX&Q{q=H4{M1E`yzl0ALeym9j7@;w{g2btHx&ff zds+zI<5h@U`{;N>W@1JX@Lke;VVT?(DZQR@hm;aM!&8 z+;5;;jY`1vXWs>p*M38)+`;u)kjJ^cn`vsB;FY!tZ8Y-cC zA>C^mAbY_T8yiyqAx@F-jGj7UnLJe3W)(|6x&GjhV2jjaE-O?gz3b77s!f`XUUr6o zi|>fPxc|82b3$;nO@bR@V{QKdcXItShMq-KtpqfI+AV+D`slbo<;fcn-4;63V0(?3 zcjV|o$aK!rDWLSNd9*6vK94Hkwd|c#Lo(g}E}apn_gPu_*RQA7)Ly^idk)tZE9d*@ zy^bGa3^#dSre`8$!>eE2?qymHt}bB$d>oH}vIxr%yFy;XIc*I5inE}v=z663(HhAF zXexex=pOets*8>e^HKwt^d~iXbbw7;=F97o-q{+Oq4YN_T!&_woTF$?#Q4)(TahdG zp`*e^Wz&&U!^nj~WuEn?rxTqW9mQf7NfiTDIvscv&BugnT1OQ1lwxEo7T2ki?jy582=v zm>fFn!}xR6X{eYUt?3#LQJTPqHo|pNWHZZTi-pqZ8eYp0X_Q%Bo)1nL@W;J-h^*%h zsG*1|W^0L!Iil5x{6_9F4xUAZSJ39;oXnBwtR8@?N2aFDjxuOc4RUcDkPY~g_shOF^Bn@wPbH`6uj@Z65x~jtU-6oE1QM$T~KQ{ttRmcUTFZ&O#@NgLucUd=|sa@PfMCoN0 z()SMVvch-^r5ZUHN!DIk*g&Mc=kA)I(_Wv~9?vg6y_>%pI>7LcA zPw|rT+$2DZ!oaC(*2Ls4x5cvZREwgAd^wG(Jma^<;YNmebWvTx5fw-vnA|Kd38Ch^C0xj6i7WXiB`&-XFICo>OFZfKCi3=oD66jZm6*aaAeZw zJoP!W>aFBr{g6D!*YGH#*mz$pIqJ#dYSrj`K$^6TyD6V);P$Sbo?$*74KQ)xeYeTp zd*ooJvTz1JyKicB$5P~S;HRfIKXAWdhcc4bpyNMW?)|gE!~KxA0+f`$ExUz-d^D<7 zfLqH3w@>pUE3}Z9vE*PYr}O6&fU<<^xaJyui}f|3Q&HccC&aE1iLUdzsR+S@SW8o+ zEg9BLJ8@1xHNukj%kSVX>4j-}Ien)>`Bj~71N-3LBuT-L`DjUxzd||};y2x9LXe-N z#{EeX<|i#8-V(hebf1^evkhLKlh^glxBSf$hFo8990X?fe#;T1B=Z-@8GS)PFGmDArIb&1c}!c^__YfR-x?s$~bbe1v9W*?Tfjn+SDOiwU=l%j2QZPJ=;4Rgs< zd6`@msc+=m!Y)cqX$px_G-AGULtV1nuqvg~C}IBA2Fo_}iL;R{F>-Eitii7QK2TlH zte#Gm>fR{g%7@0E1-%y6$^P(JwK5tub8=ORjILTp8IaTTOVREyRc$kXtF9zP$?>LF zKC_eJk4NlzG%{gb!WBHKoo+o+q9y!QR91DvUgkLy&lo5#B!pAbloLOTE9sei2-RMb z0O|fpBZy9RdFyL_pW2e&%i7s7o4R}RojuA}?o^|bK+AlNl9NX|>*>@aLobi#W3Jx4 zfH*tc`1w?3&8Y+0D#zGa-~&YG(_pI8y79TXuJ{-!=u$ENJA|Baf)LT7MR=TL<$Twe zsO(Fn78@v7!?nCRwH=$5(?pX*VIu6@6GbZqM~SGZius|{+L%{+1)b#=ekHoW*kli* z%Mv9iW+u4}(HsRqP^kU;esZ=1yltID@2Z@X;D@@A8vt^`1g~kLcQ6fW2`fu!sl|5psIi_?S^m`%ES)0cqX+@!Qra?q_G?W7+)zAhT?t{WO|~0-%hA zhuBjtnSAcfO5^Y`Lcdkoe6Hc5Wu>N3%du+`hr*Yst;L|4hkQqpl7Oxb)oEXHt^Q+k z;SlRu9u3xZ!s<3#2hhIR3)WT?H8KKKZJKeku@LFnlVYz+#N{}LJh!}Czj2_%?qUwA zu)Of_MCpSP@C z#`aeY0gPEQakg@Fb#VSKb%ej*bP`6Pe_nJdW)==+YG7V3aa$t`7ZO%@Mj;myFk8T1 zI3E`P4B}-2qs9LA@VAbIjR^oIk@#Ds;%a864u*{bSXfy8sSq)8lr*!luyh4usF?uF zTx>uv2u}(OqO&p)vbO+()xg>af1?rpM{R)t40Hrb5P+ouNEld|nE}i|7BCK;nTv}H zz{CO;XaI8@Z~}lpE>2c3n*OgF7_er>0Us zVB})ldaMvf$mQl{W(uyXbKr&`6! z1w0A=#{VgsSy+J)b6zCWLSVuHGcdt|g0rcav(;b9g@3z&D^=Va9l@#xe`gbnv4dyS z_{%z=!_LYEU}NI=hYElREbRaUaDiC@!T3Smt;e{uc!a#*6}3SXsbM?9AZx zWn}{6>p7Uf3&6n)?v{;-4Zz991s1Ph<>Ul_m*gL$BnJ~X0CpxYCY*(x9RNmI|1+6v zoJ{}fm6d}Dz`+Cr_s_}20pMcg`iDdTJQh2+1sk}(zvF_}lbMwj%rgMq82<=KfRVi% z046ZtmIaIlW(F{E0m0CDE+8v_iIas1sP`B63l>fQ3srD(fw>>pz>WVFfMBu%W&qdU zz`=E#08Vxe@VT(Du>5OWATzkc$qA0|e|*c%2KL|pqu0S_4q)a4kMo}bD>!1Nzrp`^ z6(@LrzuOTU>VF);X94&p!2gbe2`nVS0RZoP@EozSumXV0>|j7D5cr>%{^QIFzLLPC zSm3?R0gm&(Jea^U32Xnxf!KAcQWcK3K1is>zD zbA9JOBgb?6rlGB!Q8oq@jFq~YS}OYNwSj<;+Di1r^3w@*8Sc@S84h@9g}Gss z$Zi}TROR3lj68XZfbW}(er*DSpEly5X!4W`9fDoOpHZSU=nEZkjIW?>zRLIxlTgRU zWxyOLJxQKNgBVAc(I^F=GYAgg5#s6f?+yNaof>{bY)siy z(Qs#z@kzjNwe$o2mrz5FLx{LK>J%=UjzD`NI04yJ#zz<-hlgXF(6s;Ln;v4K+! zm?{LE@W3Pe<$6(dP_wrJ`+#xE|7-)WQq8{wO_=|Yy!lr+vj0N#f<0NmY5V`RO*p}H zmj82~bbG_Os){YY*KN)Fl%?NdaZjAG!pTs%CQ&8`rcfg2tfB?GhsZ#{kyj^*jfR<# z!$XhY&VFD4M#Y^zaPzDf2UN(^W`UaN#Aek_%C`Y zeH=DBbT++TJA^)Dz>$0~0YC8|-g7GfpOF4RbxV<#*44+d-@nflorEZtx2ZBuVSgKn z6F)F~ymcm-vR5e?3YMkscc!v{+aa-x!^0;>4Tz473N@G0f*^bn=nvr)!1J6&mlY-K zgcdBOoVuF4$Lv^+9@kIx*dHp-o7vQsx(+n~g6AJ+>sne$zhjk6eUgL~y#JAT;}0y; z??wD60a5HdayG73Bx{2FaYOq9<5cyNTsPBd8x#rP!+dpRCY#sOERJ9|&QGM3nLM8O zv>l|teP-|1oUA913H$7E{w!eS z&KiFPiGP?v|Bc#r`+N8Vo1a+>1Ei;;*&i9-;``^ZV6Zg{e!9O#3AV09VCr`8xoJY& zAjjXTnWixNv*0>S5cc_=FiHXH3g}~CTakx9W2vKh?AXatP9Ge>sKi~{ym)LfxjENi z^fQ^+P`Ov|9y!W)ONb#i_$jzRld2E(K^o+%BwvXF5zH@V1%;Wz4LL`Qc`1va7ntyG zXw(j|X;S8>B`~cOBXBcBXkKs2_yw+|Rt_Hn9x}rP_GUaK9tln#P&nGdswr&7x$N;; z)7IY>i1}0V$9wyFNsf*4`v;VbDlW?%<+{?R!+95DML=hk$p}B+^{#%eTb>fFs7JPWSYg)3 zg(A_)#P8^YlFRpN9g!9oGK2jDG18un;ZwGp*DJlc$ z3A?s^3D*Z-FLCVxQ&<(f!#mDcKHJ?}{Cf@7eUk ze7+=SFTz#Wbvx@bhZ4Y!e<`Doqy<4<-lf@sn&iGBG1!_+b~m^Lw zkiWbjA!bz8Mw=#c`i9my!ZGexbpUx6K0cA$Q4eUtQjx5TSn+wMv(PJAl{@BFE@S@$ro(DS!6D1jl-$Y&#Ff9 z*fdF`5>JUaMFDZ#L06M(r1{2>k1fbFDEH$)W^V~a7dBu)%&#z(k= z@UaBD^$%jF5Gu5bLl7*j#5s5kyKOBx^?)@)#jLYbFHDHkA`891!isxICHJ z0d7WYMU*%ir3w2lC#pl&S_-#cd0`*Oi#_6=$VBFf;DL(q+LAcow3EuFvLm-R7qFA! zHM^Zg8S&P`yXAVA!}uEOIH^D$^NQkX7Gjqa7mZ)H z*M!pFaLoD53$(BDLcPk>9E+F;Frz$vrFb=Ayd$X|u22)umnLI4XwWG}SuOU{(LA(E z+ny?J;||lgGd=OD(ontW-hK==lZfNa0bLL}a-v`KjPCS2=Y@7Z6HE`SUw~^YmU(hO zKy$EJu;AKQuwckqu-o#@=5zYR3O3TYQ+b*yHZCiRTOK;Cq3v;!=|5U$8c1WnODU}1p7#oVIk0Q!J^$voZhZ`8r{B+*-{C*twHxt zI%D9c8~h%rzO(gUbx<5vIdNA|v(Cf1mK{2uSbFSUGn)5|~dsJ}h^7+iM} z`&eg(is`@7@X6z?|F!U9kuK*V)h*{D(JjY851ot%5pQ~x;1Rh-^-;Y>l?L{{)#>m> zV#T?K&4z3HCO#=uZc}BM-O9HrTeYX0EiJ_>gu(PPEbSPqYBFkugm~a6uQLKHu6Q^p z5lyJAX5S-w@~M>2VrVcT&E}0xWWXRq|BCRFt>w>5XZ+TZ(gPp`gHFuI%cjFk&(GWYW%3XqwPHUIYwy^jzU~-}%RPRq?fFQ+-EqZOf;u_Xk-#kV z10KF>&jDiBMQe1VL%(o;YkkmtGn?pde5Uc#1c8d6hcq^n?Rn_k&R(I*%@sjk8N5&1 zw2$ee{?&W>ozg!i{kmr935Cb`m=l_z*VphBs3Y1B`K%c6B_%# zf-Z4|+aedBlAG#V-Vj0Z|->&x` zrn^7GW)HFzTW#n1D$de5DaHd;|L$2Fx+)Re}Z|Nl&kM$F@NifN=+Yof2{y^9SRS4>QrTvMZ$i%KFWNJer zO$UGAsT?)$6z1Hg@nb;dz&Wl?bvZ5<$C`4#znoquqrEMdN9T zZ$V~%i$cv=T*|CLIBP{%mBNidR6|)~N!WF37po8yN2e1xqCNC_UWi+|$AMxs`gR%CjVx)VSxwk}2)OxrT$VlE%_5 z)#aF6YL6SNwC@gS>EB;RmzwA-y0$kR3TZk-5>4xMA%UT^NM73EHy($ z*nRAEE9l@&#J5v)G>d?HOW<9E%m+jKa;sxX673%?Yr5bt2g7x%^MIKV)^m$*N|x>) zLU3EOO%nKai+?Ld^orL$R%TE{3_V*nM+|jqvrofByfRnE^kHS8jtM2?ScAIH&>QRj zWA2{ABl+G%(NB_zZQHgzv2EM-L=)S#ZQJPBoY7R*rO4|IW41qQ}Up>vE%;RO#eXhv8cC?i<%v-#gi zPqE>IsriEnu%u=UvBc*&-~d>^Ly@s$HWVXSeupMd6_qi=96hj!7X{{yVnvsgF=KGf zEm94|JfKY=7nU(082yAnPZ#Rz_mnL**oD{>?dy*L4#f|M2OVlp$sPW#I-itY-k-&k z(YkN0x~RSxi1RyAhdIPAR$8_suL(8DFIEaBJKE~OMb(6de?Z>!C#VWjRIZ_d;lp=p zC55;mgtqyE^ib{xu2K^Q{#fjE1;HWNO?kl~I`ElM{0G*@W)Z<5yY?i%NbdG5zsL@l z>@e@sGGH!_2P}KQkDqWJhRpn-JBG|3-#zyAU!kv*cegC_^L7a~B?JdRHx=THiBlJf zG=t5O`6mU0;(#M?iX|Kw)#pex19#?0E&GEWOg6(H&yXKg1g&%!iA1m_WNkqAl% z_l@|(5sRQN&Wx%@4<49ScA;Up^>3j*} z_PJjL2!`$-e5(QX4@d+6*axKC{+(0ecW}l95l@uq2clf%-NiK_#C>erV#r%Mjs-AJ zgsfALcXaS z>Z!mxW9x$NTJY+bz&rlNnLx84?^e|Gn())US+~^FKH(ZLYb`>=m2-RW&6U%A z53Cc{;eg2(x9b+!7x$X#M(;hVH-`T?{c2DjucWIUF>g+9EzZOhb9<=lfgZ2l0vLv! zUNI2%zWc&nAGma)66U8|4IB9gd+dv37xLaB%g=M(Iy3_V^UNHllW2g1Q)+L3!VS7F z7~lqeD?kDL8N0WH*AegJ6d}9cs}n5mz`GNy<~i3MAf*dTJOIwH@Q16Uf6=mRW3IHH zHQyDtmn_(RNbASx#dGA%gPTuHzeBi?0iaE^SjQ>0{7gNY5~mY=2bq2=@;V~6HK1aSjb>V%(%F24~2Q2-jdS16C4>_*|vBDF)_m5}DamsT!mPW= zY3nfR(NjlFL-s5?4J~xQ*qmklnRx@1e4~(bGuZFEwDoyg`E-+L=vvP;I`tDZ^^9bc zK~u_6K+_!V{+`sUTjL)F4z02=`S7rtVTrJk zvabDBO>P%IVmverRVF}O3Bp96e}VNZZvNUkF>`OWAFl^skyC?gWzQTks7eIJ^z4V| zBl>Fp05xpQM42noU@?66%D|@|AM)!{#Ol%KOhiE`W>D2A6!8+aW$K@s{9`WP*q)F? zEG(7xHK*K33L?!w#Lo{+eIfWcX659Q|Zs*f{*1}v!IA5!b@ebn*`v-^TMOMV#&q7x&k?~*V2skF@p|)n{sr5FQc)I%3E>_#d zae$-@Vt_$G^Bg^GXCje~FMiLnC1Yi9HBI8O5_vHXw`u}0mH(4?04au@+?N1Ej>F|LfR8wxJ)rf5GZQsfJ-%_;jGmZj2oV!ssgmMLALZpA2Kra2VbxHR z#}nEtM64plFC4|)s?X9yie++|IUnxyW1?Ipz3-OY1NUiRzRfYu5!6QA;t=yB;8ntbWe_V}reb@{y^D{{93V+3b!9+c4K zo<=N=?2NtJdj95a@^GmPYyvMQEh?T=rtuyS;XXz>mz3znk|1NkS*j>rs+>jIp4=%o zOz()tDDExxJY0JHs^n{p_qyZ_YcCnG@({l~N}D_5y;w$=TYH9;gH67RGavmXRU%&B z3DINJj%alh?vnBjgaDQxPaja5}z4Pg15k7agAA#6<=9N8WcFZAk+O*eKW#UnIszmZyj zL(HiF;q`cc^9DQ*ZIBG?#x5$d@#02N@r;E8>0)gRTdhhu^$DT1E%dD)aq1XNjhKnj zSW&#GD@Gn{Ep_8926=l?X8J3e6MPUj8@~rJmQI6tP;(*T&!WY z5>I+zI2p(wi^>=7=0KnHF8THp*DlE?Co+Rf*V~~Brp<-4)scVqBiEKUGHq_=(9y!$ zrT)qfJiEeV87=ck!M4Iq)h7AZ@blrubXmeD`=I&JNY*a+T zqiBOtlCBTZ=|9AfLu=C!XDgn0qhMz?dtS!*)u)I2)C!`%>b3tw)Y zZ$k)s=t^FlT{ImlhqPbqkL1((V}DVmvL9GgwM%V&#+K##-J64~Ij( zC;7KF#LrgzhE0?aH%U>%)ax137z!^n&7yhovn2J9zkKuDEnAqHk|Y+$bF^AriYE?} z%nlyMO#c0ZScgrT3Dg+I&RTKW#RgV#qq zc5lx!Uv@ANIUNhvx-53;FJ0$UfVQtq{=@5gGJ#3e6-}L0CO*T`fwmZs0)vYH6 z=Y(*1c$65L%lfN}QnwnVZhV3|GQ4awZ^U8)KO`$&<>aU&>OFmL$~OM{ z{wXZiGmZ_9UsccL{?ux6wT-VMx!C+gK)1b$#rfJGF-Bx42*AEI%4Q&<6XHF*$V3YL zGGMwbe@Wr3vUaH0)pAu@ze3kvKYS#u+o^&9>8hw?ziGV_|x!{--f_XlW$A^#l85?Jygu)ek8{7 zm(_`kO|C^q(lV7_?`|Nz*8tfOnet3YDbtB!Y;kG*DBS6^jHrKB-;f2v7kil!jq@8x z>WC8K-;+F!w<{W!w@Gu(s*f3)5s`DX{vLwS%Hu^T?r*nU4=b@a zNdI+a_4+g5mh_2CGV{nNWqx?kR05k?*NKmJ1wKZ)k9=zMW5*ChHEHM@^KCdQc1zN8 z{(Qeep;jnF(Y&#GYkZumOUA}7VKb?FV@c`B;~&g1r!~7uPj_YPyUB?=$keoxmR6WB z@xzliyo?=(r4fD5{&__*Ev@Nqm@t6^Chv#!N)E~uY~7{QQN&&y_oOepb(iU(t zOhLco%XsK4R&*hvMizJXpw7c{z&3OX4I{{HFE{mk?utEmCTg_F+v5Wp24rW1;Q}o^ z+QEw^*U;phGY;fdK=+2DWEN|ZEGn_w6e z{n9&~@3hfA7*879M9fX-03K}(yc;^--`y@CyNbLRr;v3ua^W)v9n0b5j8e3^g86aj zUgn#GX`H8_4(rSK1=N;1{&Zw*kN~9OU@anuoevKiC02L7`b7{sB&BipB&`pJLtGLN zpLzAYj&G;4a(!#bt%*I9>j$Itg~NW=GJ|xkZ<53w>`(ntE3-C?GsbZL^{1Dc5->YO zdZrhB0o>cpl-_X}zt?`#6n|cg3KMK!czO8_6B~X-^B!o0Zc6IB2n53Vu2IuGvXR5K z%5p^{cu=gNWDasPIY*v*4O-mE?a78MuCsbYj0fk+h%&?aO}3Ps#-38+{LwTnD<_S= zC!C$bz5clGy;_Zdg{!2N#&>=@Z$Mm`)l6V!qhxOQD$gG5MCK3sIG*JcpvBMhiR0wu z=N2G#I1LU&Zi_kJ+h8B0G3(^_?Uusu*q+M@Dmsag1q+DFJ>-b=TT{e(ShH21nSd#g zFN;+i=TMI9JXq>=#~45U6lQE$MPf_DU8SU^q3Ger>- zkw0J>x!Qn4QJ1b)cTT|d7|8Ec)2TZ@6v9kf^va$lj7&|-jf7>5GoW%fi zX#Wj_0i_uCznXCX-w}x3fDG&(e#XKK#Bjh>{TnXR`={Otu!0l|P;vni-UAC^0IOc; zZ~+Y$=fCJ1JCI(n{Uh3dERBj!bV?{?X&UuIa^&wTVlaX5}g2HKovP#Nev zt;F_&Paw2F;L2(utTw*9-L`P;GVh1~E|(g*)CTWu0jt-QriRVcP*X#PtNwh-O{~0F z_PDt9P`=Tf(8QpPoDE+fEl8ZhR(cISO)t1UcIj4QB6SWs(5ViNM>_Qkv8IR^;z2h6v(XeidHPPEJSvf!EU;EWH@=}|`jzMtY zk))$`@d8fLl@s*8UU~inr~ZqR?|+;@{|nLj-=1{;r&f#gU-cyZC#&_(5%8Zb3jY+D z_@As6D>M85WAz0t7B*n<&VN5fF1w*URmFY_zE<(bTyK@}o{^u)zq;~R5#=CB4x)q? z50zrA6H`crehr)b9*LcFh6!Xt4!eVx*z0wAE{71l^Ienn`#~78Fxc5?y({T` z+MC^O!_icA;;>#9;(=@HdY&qf!U<2b9>G0E;75i5dEQoK{O|Yhz6io zvlX#|z`7kWPff~4?XiRkh(m2aMyh<^z|l~GO@cf#b`GEnu~r4)QQ3U{o@!v)kQ}3} zk{QGGUpQ53@0Ne2%{!n$_xV{UG9x}2_?{lr5%4#N202lDTNHv$Y>u!E1ub$eQwBlu zXGzu{?pQKYEf-6n_Fy@gu6CYTg61)vYY_9Q@TaI?iYDD+MjFK;l1Rqyw%CObQsHhQ zj?ixEOF~mKeeiv+kEufg4g~? z@ORFPy@iLmuR9m-CBcE!U-z55>@*kek2p&IyBSqhff)6V9iO8j$FJ(rucz$ISk@zVU0N{KLwDKK4W+b%)&#yFxj+bx z1Pezs9({X&C;`F^D0?$Zh_iPhC8+?J`3fIHPa|~xOFN4gYPyqAWNE#LS7a&^asnE? z#SPWXKyIPh8px6{eQE(XEi<}{Vw`%l7;mZ(`%F-*5>})UR%pe(FZ;?KNwqNTsOjM% zGi;4!;9t!MjOvisf%Hf-&EOWz829SY4$Uy)uTeLaub?@lSR<@hr8#CunR%EGUiS0! zU(1?N?1K&iovOHDKP2eYOMf@O$<(7=%;j3Ebv@_a&qs~~EFyDf~_QzN$pz%CjzA2jc}JPqhjcN*^mTTgW733*0MurZ8F!sTKo zDt6N8EZojz+>|DNR*#U}_M9no3Pr=mX~o^wYd+-0x`COnfV+rZ)1ki1pnmYGA3C7p z)o6x<6t-c)8Yr|-O;<%dyA$J1)|(rmDfmGu7=&R24F17_q1s3&vX!WH7IZ#@^7-aX zXc*?T))$R`e8yKy2r60Z7XWz!r4=eskLph*u{Tt-7OMY_tuG7A>Q8MyB3_;zCV0Rz zH3%HI7_K9Qa3O|$6&l>t0I8oHGuePoux~JwnAEiPa|!_R zLK8ix#f4}i329@<*{HL|-;TLaEZBrvPlOp&59Pf^IkB^TK{ev@j^?rZtz+Z?%a{un ze~sb;#m1>@i43(h*!Qm;?2qx-@c%pEG_#`?i>5-{*o$ z+EF*gp`3Z(sqfcSTOkRO_kXzVBDk8+wvq%;-qJMCNUZZ;QaLLIQm_5ee-C+(`k<^m ztpoYa0Vj-JYRK*vXK@1xog_H79H~aFVLUNnOW4Sa=iR+?Et%5s?e0SWua%m;c#cd zpvvn5G6SE6v689!7A~;g;Je zVcwL2JB*GzEivZM+!=CRM4u?kiatj~V@{!@L^r=$WlEtXl$ylhOx%&E zD|bcq6xsR}%P0I8pEh2Gwj>T#I4yDp#gi*vws;n2No!Y>bw=Nuc2#B|1u;&-P1dGL zm&3p=RkOfzMsmhM&A`vtL)=4;pVphun~-js8sr>+mr!(fb_eR!^G^HX`{HZXdzXDz zYpt$Pv04fJmoPLT)F~7@G$WK^NG`M{)OXa}c0|P!F3zIX>oDIngiY!v9OnWIci3mh zCwPhGuaN~+ZLm4WF^ZqqXC)yMA?KPrsj@>#+&>&j6c)Qqop{tUrO(G~>B@$ZN-EY_ zR(UFq${a=g0$UgQB;)peEK4(#=iW-N zhkxWI1E}Glr26`=i#eRJ35t@w-LH<~N+!#aA{vn%$2;GJ3=_>;osLkQ;p>K=KU{MK z!q!6zl13eow&42BWSkW7y2ZU*o=QQAvzn(Bs|jg78zA^Ho~@q|&-i#8;w zcO#C?{+%7t4D#s?Tf z$D$=>7G2GN*aXOw=~ELCvkA3M#F;1P6AoH4Rv{M&VBDYqJuN?F#`vOm<`lsTZ>mW&#F+I))U!w>HbQXLKvm?H0zifz%3Y}7A2COI=?B?Z3BUMP|ho|=@7 z)r!YVU*xl5JQk(Ogp}k{>)wS5fc2P~`pG6Z$tO7@{@A4gZ_wY-W5E7v6V{E7KWtOI z(4~}_qwcmcM@LSJ4~(r^v=e-m2&veHwCFLS(CewXVWO5nHC181!TKr8X z!H)xOz(UNqvbL<-K-|IA(cQD~>v5i2hhY5OISi)^kBko-x#E4I1r;qrUAQh0Aa@mw zGzMIT>|MXrlg=Kz*uP|!62H8s9ob|CJvEvC+WMA@i%>M$2irLd2-^d0#({H3ypQa^ zn)9%ip*muFqBF=_Q(%5E1Uox_DkNV!cd|@)fXt}Ahy{EzoH1k{vUTs;k`y@pXUomH zfT^o~ZTzAG^R#cD+C1DBZK%CB5;$wu{Mn;VMtFgUmburh-?j?tIqjG=;6l1_4!%1& z=a`N-Bn22@;pD^|2Rs6QyY@|82YZHin`5<`&70rOUOiNCqD1avRu*Af1W@1OeJ=mm zJlOBfo`R6oV-0~P;;}hd56(=^V@LvUl=zr$@9#cjgn)nE?C$>K&)X2 zmre)IOnI)lbYTeik%tE#z;$iT6^w|4fr{vbclNs!t?{Du6HVo@L61!X z_nnrKQov!-+do|p8CigiE+ob=(Kz5@VrdWlOPQ{=>HuRZDK_fpbiOFT2lSs#z~%4E ze!90roZ#Q>P$IyBH{>!t(QT^rwcE&CKB>{}Fn(z)k(sg6TU&B;|JdYSEL$G69?enb zcb8oTG7=ivi7-T3Ty1R>dIA|K~x(o;bgs=$s08kJemk#NMc4d9&y$?!p8T?XY4MMin7Xja@rX3;#n)y!GR z*O+6))4r)>LkTYi&-~n(Rav z?FX)7w%`Y7rzyK|88N2{s)1MW`yFwAK8~`0vMH-)b*Lnzid7Y?59-c_hK2+g3#;+N zo5SOonQxC`xe7u*lh50jHjscEYLsro;wZwE;ZmeDrTGUMqBiA)M- zm%5wa6_)ZMe8<-$fmrN&ucOZomL^=iOgIQ3xZ1cfGM%ISIGKxl1;(HfyCIuch4ZTgh|K(+9X+Fyo~e@Efi~6votXM+xs@CyeE!ZcR9y6-qa6Z6m)B z5@@2JZhNVOiT0zI}tjEve+_G<>_Iu(aLck!GCYmx8>^K_1m zzHf+1H7RG~W65~x0)%t}1Dnjyme$hW=j2=z{026?;Q0>}McxM;fUBCtm-r3sg2QqW z|BZs-#6kkMy1B{TT{red^xm?Mn^fxr`+yA30I8R0xQ{`fu$Kz040X^+FK-74CZyBx zXMRJI%JmZO5Hx($Ic}nW0ttD5xPLkGb_3J&1tME0tA0(us64R-KS(SwSc_g_t)1O7 ziLh&FRTSgv_V0aXGWnUkUQf~cE^(6VYJ=Efnm^e)+>CfIVf$X)`>MQy1?~KERMM7G z^&4U`;hNbPBY%%wUUV0@$LQ(kq4UpQZYWKb2>2yhA5x05?)+CH}Etf<>Nf)tRof++qK!ul(=fqaUUAwBnL7;0xjn;%HfMf4p|k z-)gpp9E?UEK24>s_V;y`0P~1YAqd!hwj0R@`Ps|ZqzBn#PkJ{#dEp*8=!C7qJ3aIA z4&^v4V5LP-T%5F?I+3Gjkg9m*i|*SL?xm{NuIEgmcdZmp6nId0hov3op&_uhHji2* zoXT()Qc__!J19}E;$~$QIhBm9pPesN@!+-=NgZf>!&v5&7$VkNq`WXL*LmMVx(=p( zuW_=ql1iLc9mYP8PVgkTRhzG+5Sbsxx~-0-$cQOaEf5{HDAt18SBl)Xo9Fr)8*75` z<;h}`tBJW(NZoy(Tu43rlaHf{`0%9TFIP^IHb>%1*-iE5!!PnCrMiCqhHt^rGM$lQ zrPvvgT!L4XS#Gg{@;EYG$GR#u3DVDq^g;xI%BnQt?19QoZJC&|l0n`iy}Pgqk|K_Z zIG{A}XR*iNZBjwS-B%3*nm=Hk+Bc74e=AEt3TNE7Ndc^-07Z$hIf)3^u*E(|mdXMg zk}s$6cemxqaXHEY`tf%i^HLL-6`jd(%gO>*iFZ!%Ws+XX`8tT!EkVV2w(-tFd-2`R zs&|1>`jSx6`pHuIvT5C#L|#rwha-B4n3cN+%vF6yTSQ(BDtG(kk`YqdS2{Gt(Bm7v zJy1VW>*z4+=*L%I`56`KilXqHF5{1cVkm0;fXtxa z75LfmHc32Srz{HN81b7J-4KtaIPj`)Zy@;aqE;V6cFyDHgQcU)AEr)3r_MNo>4LZX zdEdD+fvNmAU@b)>_$^5EX;;COxsTKQw}y->07fUFQ)iycdK>faHfEkJ_#6SmkBwv_ zS3zS}LG!r}rUlH-zm`nGPwo<>(s zWnK3{N!a3D7DNCOl6hCi1j#XTZ=W(?|QmBw^!< zD(-AEYSUB3OZG(n@ErGF3t<{45iE9KYI*tnGuQO??k;_%XRI6ih&jhQ;ml>iP`O01F8&A!i``pbgpcZRiv{d>)o5NdH@ge!u@s$<)T<{nh@yVc<4)6aqDZyDcTY zLVT=N@xf|wQHrasJWnkV{&MkwL@}u}4`?xIp6jqA0DVOvGN%2;5bAgxDVo1xZQ`-{IX9Dv$=qkRO)rq$EW6%VKCfmUt|o*x7>N*}g;bT0wdD z`I_w0i;M986i(!(%nJkOA7LMVDlnPQSk0Bn8-#d8voBQG`{oP7GI6S6S*l>f=nI2_ z_dvbmlhyi5AVlC5P2eLnZ@w&l{~P_c0l7hsInd;J(4{$0x_t08A=n#g`d>7e_tfwK z#%`4nagm|7;%Ox~0y&{Xi)E)O`)FLEA`N`>`C=`s#aW=k2@0hrO+Gv@n_Tc|i>IS7Wh;HCgX)FD%0Gs>DAck;sbX8MY;e z3=fUSK_A+n67Q~re3^vtwh|I|-HlH=S|R%2@L>FqBo!OkJ-O;hpBr=Ir95sN0=|Fz zS=sIFcN?&nL=j)W_aR9nD&}q1!>rx_EeeXe#HiK~MLC?g+CAc1!|A4T{OKqrMAl4! z>bC@JKZTr)o`K0n>Zs>vY-q%^lFO7>GmzOI7q~1{i_AB>vRmIDYse;r0eK!I0$RA> z==X!7X8_sdBvv}Uqyc5fE)-(Obx2aAqhJ_`bIc z=;e1_tf;%Fi1o_$yz+_7H1HawtHnb(ap`C@3zA&&<@wI_11Y_32jp{%^V@@_A!y@V zZpPYRKvH`Zf}6`IKtkdI1%iWCfJPgWbBe31ASxag_n@fAsgqimsf<_{E3R{NR*r5% zDEvN?@Xd?sIg^l+WAKE#Z&c#|=cGE5@7BBfIGK?D%%^P5>)@bmdD{Mz;C4>L>j3xQ zDA1hF!N)}JopKYcDaJ=URz9;m<~;~927aU1>99$v$+Mfy9*C9o0+(O~P7eu_DC|Xo z|M_Y3%N#eMtBGIY^$eK-@=NqR`dxm5QPy}c$$*9_3$#FnV{h%_pcHBs3@mt@hD6t{ z)zf(fUsn``+$9YS3STb5B?ey?KYli)fPDRT&?E}?BgpTt<6=Vf-z94eD+I@tQ;j?9 ze;x5CC5g)4eNW_T4YDHG7>J08ng3d8iH#GNnq3XNQ@ zVX&88>LeV8M5W%#xpyif(#N>SOkKcRUt=$YW06#XC71;PyyBR;Nt*uGz zrAEZ?m(7;rxk>A-!Y`?DA9%xL4Zv0%y5$I*dnZcV9xi(66?y*iCH zPQ2Vy&yc>;6W}=9ktdKOx7xdPvhd_9yjW?g3v*a#j2JKL>FM#^dVO@e@Cu{+uzd4( zp0{*W=38ND@WofeWX#pWtjpl8E0{D)M~h>>SBQ+00%*}Cp;R+sbGy3h`M|{`7lVis zXiOi-mZBYa0Q`MvvimKBA-Cp%V%rq|H*Sfi-xeN@$MUokc1Y_1LxXxVCrM{*j;NG( zXS8ZlkrLU?Kp*!@AhCize|p_~lq8iBb^UU*=nu2prXhS)?JXM{H~6RNv6sa`QYR(8_f| zCgidPe?yc}U|_LcQ_7CT;*DfgoQySw8Eq=!Qh9bu?~mQ5lQorKMo(HVOQ(20okLOV;dYZLm^`loq@ zcQ?(6?V+D^Cf9pDbQafppun*IquTI#pQPIOdfzx3usuRP*oRiN-qj9gv)0v)XLpIj z0o4cg=Mt&5pT`|a!fxc9x*r$VBC>752W3Z+IDH&kpu^pFTdHNe=0b^ z^ZweXPr&b=t&hMT{K!2#{ncN%R={>S1lmQqb?KemC#SmNTHRhuXnlx^({DwYb zYX<%Cp6dHZ1H9LF8sMKA`b@fRJa$1IJ@^73*C#zu5F65Nz4xw%9o8pLhlVcA-a+E( z({3f+V|${@Zm2fm^un7yo>4p3c5a$)@`O3xa6h97S`lXp)BX(E^Nl|4aod``-S81u zywyWOw<7uvaI_+NhkSvyHu-uYE7bcw)8?8o?veA2e@6N~^S{x4hUQ$>t;GpElIUZ6 z?%YZMp9fSf#kwQ)fPvzD^_KFHWV?S6_#(n$4VH`OJ;*cl&xp?2^y9uAAK-Bxe~)nR z-j;EDgrF7kdXEt}1%SO|phQ8;Xq>MyFqYMm4y`+z)KJ zN8Ar^_wxFAFSQ;Hki0SAt{W}BFc-fJ`XBt?5djZzpEj~zyMl(VkUIkpLth|^J6{N; zeNP64uLU5o2Hr5GefNY+ANT=h*FKPoI~eJo?hvJY^h_Ui0cQ>thOaunRzaYPh%mB( z&w@yc1}|Swi%%bnrC-2D+|a|<+0WN6UD+=M;FIw`k0+DYyf6P>XYYkDUm_s(SD&a+?;-x}ld2sgNN?cslWX2%Zu&mtu>3s( zISQ#FQ`wkenMox=a#>LVcT^StT0IJ38xTmJ+U4*h)?y+DK(LaiY_VQ)G~g}F;rfwX zTe&y%9*3=o&-$Xfuc@{CBsb9- zLVU~`7<7@Rjj_N4ZJoUO3)LY#(HcpVb{r==zVLJcaE<(6YQ;2by%w_sMn@Lci!?{% zlH(2=5D`7=IeKEKm(%IFdVg6X6wesWlp>^0f=t1J@4hk&QxSp)D4_3lO@3{lONusqw8m%J*1Jo;^KM=^&UIvmAFbKC){aBd#svVZOI(bOoT#G2 zi@YZa=lRRINqReEKJ29cKk*S#(jN5drYXV|jJYwQCZd)+;l8|auI}3dNEA}BvnZ-? z&nPA-08Q>AruEOK#nnxl7RRzTv*Vf9xp}OUeS`IbjZ`)z-eU4iUnD;Re)b+21H}Kj z583^0>eV>&bL%@|m$(v2vSxRWwjm}9{pq=Gq01;WZ{XMyJZwDk)1iwR14aXZ6*-*^ zm3=vLy#YiVl{eeer+d4Z`?OiR1{&p}#^X1ADw$F9Ittl}%C)UT;NOwz0!Q*M46n=0J{$X2*L>xtt#62#~Cxedr51I=-tETY|=!$CZlIng9)S3tc-0k#| z4srElZ$5@L@ny$>e96?~3M#_0C6YbRARdnq8J(GHeNMj@8IS9((_=eC{hwz+i28nK z8FCNgBuR?|`g4o3`hTvk{m&CN2r2t6zt+nn#+4i2lgw5FcfSesslOUhxHA~>9|tfh zpdPzA5X+?}`7+N@Hz@X?HF48wjNzWjJs=dl*UQQ(qSIuc8JC#0X+6|t#Gyj}08xgIh*j{C?t!&)nm)BSZ z9)bn+Dr)eg;<0#Y!hKgYzE(4{+YCCC1}s+#yVvqNJ>P=A+Mw6-ABgi1P+VBKi)7`e zk0&RTPkuiKJM)0wN=+48o$KoOwI0J|I$-AIo5f>Jf=L2O;5?}(FY!y z)XPEg8fxnT+xdQ0gMiYq2Q6CV!4bYr{bnTEQ0hE{{i zPOb}{Rn%G!mz}?a(=Auce7R!x)0s+Y9+1vWU;(-&L>eSZ>A3N>FWQ0Ii>zBx+0gsm z(QT;RM*P9r(`B+AE~BoTh_W6!Jsn$bC_>N4l)R_ta|H?W%vJXdIGw+0OL5C(+ZKO( zAD7cJPUOJnEyRy=en)R=dKGn>PC%6l%VuCeWN=s(f14}+V6oG1?vavPPam%XZ|0*n zQ1PFQ9qdOK9E%+sjwRtYkl-wgV5_mSeYh`Zd4Y$(omP-U@1d<=-=HveaJPQssmewN z?kA%m+^Efhv2q8E+5}PwRq;V^W9%xbr}ieb<@`#B^_yv`bNbimoIC+X0J+9zpzY-A z{zzJEp3@hhKfmBtf`oMy=3l+ui!B$8_e0DaEpLODn}pD?+;$6WjfvhOuSPjmcAZ{J?5Q5l%@Sgow(KNFF zXI0A+8wkhmhVz5v85#y-H8tEY@uSIRJ%limXC{(ZaJ$QCdyN$OfyWU#bTwsRs}!=6 zBef`z7GOo<^c|$h)=@gOl~`=G70u!aZKU$XQR%8gfc>Gjd=Bzohn5KnwZ{2i)lV*i zABHK5@fbD0%BRMetZad*T(p};Wrt)Bt*9D{2A_v#W!`TR@!(I=I(^*t+n-$(vi?7f z!NcbSeoXj|l|eMHn3k9gr%*IjSIoPYM9|q-OX>kT2{*4tD)~3W;Hxpmb_|&z=SkNV z2qq+Nlt}757zb~_K$;;TjG8!7_9DQj+*Tn&Q&msRjMCkzs}L`WMh}z$f3R+{hpLYC zy0!YPDYx;et@oHSv(e{qUzd9F(%sDLPb+WZAFXxwFnZzZ2(#NtlSg`Y>o#6v`$X%} z1B8t3Va6EBaK__9c<2ACxU&q4s%zuD0Z1btpomh^H8U^+Ln+-M-AH#M2oee+-OUgp z-6`E6(n>c%XXE=m@AEkGT<1F9&i*uW&&qq>_gZUTd#?YF{j-|Y{YnIv<_0MF zhU{D1XAtA>)NftVK8tvu3HD2PV!3QO%<<2g&K{!OyMF7G$=cYt`T|^@5`s|^foFan z;fv)cgI)SwBJ2U-yI3WrFsMW0iRdu(ms@fJ`Q`LK0$j{99L!Z}WvBgQzpg{^l;3Jr zRrp3sv_6uJtfKc)LFnzgdd1djTRmx94X2J3s2cj=f@YlVf@Y1cE}Z{eZ!KcDMfIaM zOESs8BQKNCJ^L(LJUvZnS4ncsr}(Z_LU?4ND}rlHM$55{;WPF}c)pYkkxh;ZyKCz6 zGZG;iULKo+43hq1ZWqP+^OFLNA4M*A?JrOF&%>Kf`ub;oY8m2Cy^J|GXg?ITs@^Uq zoD?^~`YPgz^Jk zIli$GHG#v4NQ)_lVjO$6Jj zRDusC@Gd0Q#d)iw)PL>so)$>ho>(*&TyAt&g+~x{b2h(vGr8#rmss;9Gr-MINE;b{ zS+uiCuw1&(-}BzdAOE@Eo~ns`Q*Yehbq&Vtt}5(Vfpy8!3`0_$Asi@!==*ktUC}Tj zr6idJt0u+sEaB?dih8j?+w`M)h4t?_w%2&*Df05kCvNexlfTct|DOK7qvYl-3X2Ju z(ZR(`v~zm37FxFt{5jfvV$~-@(ev@eo06&|Ofpcai(ZDk5yFR%4$e+ay1mpxUxOfv zyS2FSkuuBAKf-#oHr%H>=Qh4b*+!H=^$cpK+>3s6&8?;=nAH}3I&NJbq^vVx?Ec=T zykgTkN+`aIYiJA^!pS&u~Hn}CXv-HqsYo&CYa+{*gkxMiJ^ zIlF1Tqz)rEZ@WB?I=v#dr#nx-QyrHmFeF!&i3uaTD<#zay0}VMUyooQnvx3!YXtDO zk*4a3?RJs^*sq$)6PA(#%4WB3A6Vk_oMvlfV4;cSZbu{p{Eo|S&*?5BrsM704qM`! zykVKf8=frV1!6rV7l@G@B7H4jB6{zv9RD1xqvEhQ=jWXD?7_+wR`hc5sNb$$S~(ExQ}D zK(DR5>o{G$uwsx>W#vD!cIvj}3p@V0G^4tTPgL(HKO4XQ`D+oJ4`aJ$lJBHsiyPxU zgS(_)T7$gcOC9zt7DM{buR-U|^5~61`jweA<i8N_XmF%oTQmu4I1?KC%oE09* zOvgW6&6Vbh{7~K|ZRf@~UH$CSI<>RpyFNXm=5DX}l*!oo&G4zmA7qXmY!+mCJl3-# z8@tY@Zw!x_aHB0h-RfY^F4bKoo_Q!$wCIv{d$DW%$I+`LxzGOY9(2N~Mn~@Yfs_1R z#oIZPuU}oiIqxIo+qZnZ883ed1Pac#K25d6?kGU9ZSh18QwrTOK8&{|*PAzq?DLB^r(!%uoI_ zpQx~8+&0IF7OU#9)aJ9UsL|sQiMRU)32cvb;Dz}mLAH4`s(MZC`)!R$E2s& zJww=5n(mJAbPTS2n)+%r%CiMS@3bTV!al|Z|HdSDmMk83u+x~Ro6)CxQ$g_%7)vSuINHIC~+XVdi1v!l{}C(_dL zB^?0u(QDD(7BmNv?=RJr<9*i%{w z$aF zR^)&EfDRWY#Mx9YlaeM5vIrEF^^d!F>J~2drIS6pI7=E9kLJd>RoSZCJ76woc4k3l zzf=?VAkMeP#a1YT9URU<9W?qhH$;)1Nm>r{FthcU&^sECU@3hKJU6U6|43yubs5f5 z-92G!WzXg26;nS`GgLL=khMC}Mu*n`gY+nuM9WM{#v5>}0k)oc_ z+Ae&>Vlx~WtzA;+9+3EPezZ0>Vu*-6>&O&-s6?3M`No=FTQZq~&M{&nVoj6=Ym9@Q z?VGgF!!$inN$xK%UUzh6Au!kIv5v$z($suL+Yz!J4ULZw&wfWi*s)&+iCdmnZRJ<&cVameb4-}X!m%QhT@h4XL`f3kH4)P*iOdKQ&u{c7act&1Un%!e*ac zpt1Y<2JK)?DG-R-%E#4Z%-YULt>Sp~V09>^>Sg6i$0Bj<6j{FhYn}`Gf=Cgnfr9D~0JUv?4XvV_v z=!A%hgxlquZ_Jmmza$aa=d@0zkOHXt29d+9wnhvhu93UBtphlq1h?xLWz6@7w6%Pp zP*2?Ui`aS(3tA&3Tm_ov!&4)a^FadJ-#^lR`95W&6RnLHdz+$aqBTriw01jw95ysE z#`7$Ki@3$al}D#sL9)=gtOo5s3-@M_Ci>-aeqwwEdva_WWD_b{^O?R?HGiw;{J^#3 z$h+ytcjKX(z=`?5TQ|hRy4Ce%?kKB<@NGJ`j-Q}(b$<71@6Mhay{XGC79nurgE)M~ z>2IPB`-vpo@)CQhXtc9z-pk#K6riz(r5L5g3hl3O*`Lj}I%#@AiTZ9_^{#-job}Y9|ns9Hy)|y4$#*rm@X9R7sXB z>hv+We*iy+B4jr&N>n{3xIJFk97JK3!knfd|GH`b?VQ#08{}K1Q=+|NJ0TekLl=Zy zYv94!m`#yuvD3XIPjqETec)4zlv6 zD81Q>cVkd!H4HQieQc)ouJZ$PHJyFBd-^$#z}E0rYJ9{vU;FT;=3*rO^)6GJU~#D2 z(XBoV>l}jJ+9bWsGeg5%sPHF+iW}vAl%fwVzWL^+y4&@|JuAVfk7cvbsdS)2geQcO zS(2;h+^Z(kwgt7Gxd+k2@_Qr~qzDlmY)Z0pXm1FR+}wB_H^*=J@qo98gxt`tGuFaQ zDp(Uc+whCKZz{F$b!uTLMI6j;yO=^f-6j0b^K63T1*p{~EVQ(_+#5o>d;DPy~mD5c(4Z*wNAhwMgGvE-Eo zE_?k3PRGz-Tb^C!6pIJC-m_T*QSRGz?ottw9nu)b&6Af|*^lcynNHU}5Xa4R4Z3pQ zAiA7yo?Mz-IxY4;JgjMqC7Soal53EBNG%stHEm3|e6*tC9x7kJsjY-balJFb2CS{n zN@?}hSz}n^&V3a-Hb^J4xEh3bjgv6^8l^%=FT$d9rvko|a8lL9gexR`k8{~kP}%2! zf^dY?=CCZV0VvgSCMw^m>Z-=x=;sOtK~%#ELtciteAvyRmCE?hg!&q1U5TOITvJSt`BIS&tNd%XB;cR1oh#wkhYm^S z2ltx#pk-{eB6%y?@wh+O7iTJY^Ey-s*)@pSgCZB3a(I+!(8xk^Q;OxePF8`WrSrq^>3c5N)=IMjp^fp!DVOzibB8RZKWnsr4WvRl zY3sBz5dB~)G`_ECx15;o$?2s!!zi%d8@)3%*v?*2A&{~VmLtZf=u|?`VkDN@L0~lu z7IeOG!_IaBA2JWuxze+-d^;^4Fdm4$g*iv5LCoQD$79NHXq{4$;_w@xs!51e5~;HB zXK4&J0_$FhQH1!OL#pkR^^{={;!O6Itb`m!f=@Oy8-G|gFV~me6mm-rt%FLrJ5!oZ zLqGq`g8Q1|4b`V66_$)jRP%Ipk&BLL9*Sz`OBoQq!d{L~w@ftUw{X7exIGy$rnW3k zg}saf(3f2I;B38j{VIVG2s?jq9Go%VVz}akTo)*lo*VXTp>C!HTi-ltISy{??dz|YE@8o5zVCZ1pFdEO%K#og}_eWD$fU_Qu+Dw)rQIpBKyOGaG0Ec zBWn-Gk@=_=w0UmvKyCNF;LjGj49Ez>Kpb9D*^~ww*5l_gEox>oLc^m(&{OLHX;H)! zd9=STxFYXSNsn<~Z-E-{s$i>u8QKcG5U2T$ofUQs@p(*iD&mYqB=+#Re|{#~#>Uak z*M8d~X*rCAer6wb8Hm%~wMg}4cMihkmUP~e$E6W-iCiJ$S5aoos$q4su5y}G&2EO^t=9j+Z7YGK) zhRdJC!4^9UUS38U%&$TgYGjH}*w@FVesO;Mbw3Wj)QiCJ*L`8rn6n4`9u0bgrCl6} z2O;Ea?1%%EFv+*=ZyDNs-Y?O`&{S6srK82x$J`9!*M+~MP|bW-F21IiKtsG^W!K#q z8~=z@)3r08r~b*Aeat2GX?N^Va5RgJ-bZP~9r^3tAjeG+^7Dvivbk}0uL;RUE1(O7 z`OI*Aa!{O+(mEGN7{BS{xTDnWqFPdZQP6Gis`% ztVPZIK8MT}!-57$+G;C~6a2FTg|X1dBkORMcXtEU%Mwq$w*|z+%FUj<_k1FTJu;2s zDNMVE_2U!G0Zs7dVAh-NkzxnISx@XSY2!h!uo^!_J=4z)(OZduZoZI}wFp*hWPPI< zV3HIbF2X(@=^^3i9BLQLv9+<^Ef}a)BVd8Kn<>;8{n0G^ZuerNyqRNilRgx3iLhMi zQw&`isX6S_xh%Gn+qdjOKuEJQ%bjI&WpW;gW(eyNxzZI_S%xK##Pb6(c(5cqQ>jrJ z`Oz%~{0f#VZW8@gj!ZGc)K749|0bANRY?cSLgQGP&f-gv6hZS#;~qVh7zP7Hd)uFf zXWYQ+n)Jk%!RpChyqYOaCo`hQWZ9ZGMfnbJgl$Z%R?Us{oSn)xI)7pya)r^UZ&gEGx=6afEo*cW?-Pbui(z;1 zC`6Q%ubn1Bz`inP)Qs$`b8DWXqaS2X*iUtI!KAD;)xnHe#+noU1f6<}vCM##HJ`$i z3S^EkOLY$;jI5^Y`>V8*&J?1i(S71(0XE~KO6y7Gx4Bd9FR2S%yzURs#W5O;iaf!L zooE-@lzv8{@s-e!goQO9cdvpY6Hk?agF{O>`xfrt@^s@!N~f&U(A0b2Z|!n&IX&uU z9`M^WUrZe6+0aQR5e)*UUgQRxrEmArDrUlw`s)&VfY`*k`ZX(fGo9nj->>CZrtA@n@m4geV_=o|ko)otzc_+5Ew6ug?t@3nc!_4R zOE>XX)0d;frP|L1;bQL`A!y8IPu|@)g!^$M1e%5=BKjYgYLXddbtzSc&IN1M*e81C z9hVHb&oBr#^;r-%B@PnZqSV;ujZzh2ktdJYycus3wJs;$Sb%xr73?u}yTs(~!UtvC z-LA{o+Z_0mfh-mQ1gU~O67ppo1a}uQy6`>6F*rhY2J)5Vc1rnvc&uKYNZ0%2Mv+TO zX3esUaxIA#yz%K5VyHFfUE$WI^-WfK+hW~d*2gBp-B{{z@mgkOmTSaq{*>(3(XZz} zbT4{=H!fxa4XUbfz% zUYo|qIiWD2$TlHA5pmK1PHrty2~q+*GClQ)rzgbw9EH`mzcjlQ{AZ24KA$0kj&ZjF ze=;rH>q8F-w-HLh%n5Ac0`t@+O77azB-3LLi#}{V-|8tzGNVv2hW6IFcd%){U0L3v zeeIJ>WT4WY*PWPJLAClNxe=aE%aBmPyZR)IqOX?8e}!Lab?>q+rLwxS99}PO_{MSx zU08@qxb~umVOp7K(>`fdQ|i;_Q#Y1cg_<%)?l1cio2FrD^W9T z$r^Db<;i9otIF(M@du}}p9ozSoSaiRC01)4I|OMZ?smSgEMkI}tic)V+z&_YV+Ru# zZkIh7#p%pUQ11_B0$vP~p>bsMxH-wCXgAObd>1(EtbNaxF4P&@zwEhOnca|)9OtxX zNbS)b8qne_0LOJMrh0(`-{rB(Ox2>~KXgwQku~x^x$V!sh3+6mt37kCd|&NRNhdt2 zTF_{~U842%0V$)|i=OrI5!j&y#+<|l^Mg-Q7HhuC=9Qt-zaY3!iIZ=BHJ&r{^0Bq- zZjyY|K1;QZ>l$utVr3KWhJKbt=@L0uva`uVkK90P`CF8>D#R%HrY)Imc)i&)c#Pc! zD{u&yRKOsBB#!28N+|X&^5R?u2d-x_goy`bsOvbOLrMd-7ZLK}5li2&FuN;6Y1~9i zUh|5u!E0-`_{(@}6&~vDpV#Ek#=OR{@ul&7J46`!)3R9c)sR1vUikQ8e@=HStJ3g~ znyn}q4vMD-(K*`*dVF;!E0gg8@WFf4RUGxswOz_9&F-s%>+u4flXL2yEMAjXX)~mf z9+AW<)EZ8$k>TNs57rn5+Kv6x%xHVv!0Kcm_9JV5b@usDI~AjG+84uR{1@GB6h)TL zH8d};d1ye)jWBFZnx}Z{Ka1xxh7G244;XLFbf*AE|B}99@C7zP*eaU-4W4NsDNccQ zuVopI>QkLOL@Zk{jxP3=VJATy^Vx#W*L;q%N;WC036kmnA3@CXg~c8p^k7B8JOUbv zrMd1mDxOmKvI&n?=VqL|E}ih#$~qt3uc}`6^o`l6_W9M++D1oae=YAeW^z_H99OKD z>`oydgP?fHP}5>RZEV_o?S>7LAd`Y1ZAvt|)V4HOURq{66KWw-#}-Hws>_8H*EZ1^ z@>t`g-<>gWUX0=N_7J!%!kjVlh6KY)>|v2Lj7yr;R|{ur-qg4VJnYW)AC1@rMwQH5 zBi~OOjy!q9iQo6tJ%jp{VX&Fl%NejnSY6A{PkjZ!;a4;+@-#A{P2nM;mKq)y~3l7>Y+5FR-^OF?BKM-S)T|J9Fw+?C98eIR49+2tAu^OxLx` z?$;c`7ZVu}?;-Xbi+1K`u+Ara!UNYX9NL9jO7BGa)^RZE%<;B}swsFG9D*XDUnlP9 z@r#SYjA#&wl+&}M_Ymp+vsu)LFA=kABUeJ+Fft#_+6Q<{~woNWYa?z{lAr5nbQW!2n$e1}Yw?X6NW`M5HL zUuuQ~htvM1j=BA9On2qGvxQhebmcaRq2$-v^2a`Ztw|l1L!@AcS>lW?Q>L9cYblcl z{Tk})o9-f~gk=xNho`O1TaA{?9PjjXyUu;>mBngs^%g&2gMD)QSt(Ht% z7=lZoJX$hg8I4K8NZ?$YANjhjWc$6aac-m#8AF|_x_+k2__T!m-6Rb~wE0d^6;WC$ zo+32HP)+NOEy;oUMfl?v#o}o-mLKYR<@Z${oL?J`@Sfu^>(}&nfc={M*~6TQ4D?Vz zNlE&+^$2PcOuRfX6_qYx_2+alp=+C8^&GlrPvYWC>qEr{< z_HUjf?q#_sHyixI_6A?7Xiw>zPCpjLWr$38@jfF~^X)>8;R$tv5BjD{Gun9!FVi5W z8#hS|NIXd%a|vynE9CkOIbkYs4T+oBTqNk^mHqOBYj`~R`=^ALaf9b_O?9tBU!j>s zd-E&iKcf0MyhQp;1O|tOP|0qOpKat_4|1Tdln3< zwOUpVc3xkcTm;mopI0{8#1B0B;T~4i%Q}!QaW~XPg)!t9+pjYI{P2xhUPm*$DUQd@ zqdyT&;^LO-zDMsr#g{xZcimZol`NDf;YS)w#w39$mbm|DK)k%rENWSiRwpw>cVDH2 zkMY#LcBGDl%g^JQ75m5A5WAsyQNhgW^wP%#Dy**?3?@6HB5yfA$>P`#asDMLXuc;;N^t^t9*omRm`q9ATZ~Z=oE@#(BDE`|CA~d`HxhYkfVixwVVp7LKz$&CIY<1D+1e91HUPm0MGI_ zpztqBCIEN5QorKl0kDyOQ!)XTBcKKah5z3unJ^d^po|5u8>!eh0mLBp6{(O40s?^m zJSPBr{QVOkLv*Dx2B=P50WtyJBa#f!m9!PgWdBp=?fssB$<>HmWy z88;LJ$d6Hhc>p*j0D|NM2$8?Rm)w9*7=Wbwtb;CXYr85kCbbpjlHcT?9-7>5W93Upixn#Q{y8Xpf}cAFdsh4 zyk~0GRZnW-nO}sZ<8ks7di#Z0;Sng*wdB?OJMK6!?cz{uf;alm%CNw4LFoRSXSp`q z<@~EU9>R9nU(K3$zwcsL(a$wv*jW#%kC$t5ewj%*e|z2fYZM9k_-F9brmC%?2d{8g zr$@-GK?ZX=y(Av2*E zgJ}KD_nD$GjqkSG4K6p1ttrJAgNYn@qm{*%QgMxF2t*$S_C&W{K-mrDvmKB=`DU!f_OrOvHQH({L1Bw_7oEc%RhR8}5ZgM-j5>N< z3))UULd|nPyzPIt;YtIH>UW-8Az1$ldPNZiLyq|WXFagrR9YlGu;0MhzoX)Xqlqat zkhh$0Y#@LCdr<*@dIB=mlhf^IAV}rFoB%!+*?&CTS9`>t zbpfg_%9sHg6sf%{1TP#ZHUQUyp~zza0KvfGh|~uchzt3?!MPwHBpVRVaOC*{dl?7{ zNMrtUz5rzyiX3ZTFu;FCiYvedh9mjl%7*NND-&`q046wUzHtJcK^hB)lLz^J03C1x zx{`m683gzgwJs+>GDa>30dz5uZ7>+}JV1aCkbDmY!MKoP60mV1=RRQjmp))% zxFAOA1Ui2=DBkijUnfAJq`t^)l60B4lCu&XoI)%Cak0QFL&+yd^$zxWSW z!%*h|BpgzEU;v4Y+%LdqN9p%>aG=zMLQ&h}LX9=}Zxz%(=K<#ique(*40#O$(g+Gd zi4EAl_yt%LQT_5Sxdl+MQQG51Sx*5MfVfcGgQLbI4+u5ixH(bd1?UzfhJdvgC0+m- zSyUT0@;V8O4~Ckn0Kgq}Zak Date: Wed, 1 May 2024 15:49:44 -0400 Subject: [PATCH 24/27] Add files via upload --- Group 4 Power Point Presentation.pdf | Bin 0 -> 9797548 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 Group 4 Power Point Presentation.pdf diff --git a/Group 4 Power Point Presentation.pdf b/Group 4 Power Point Presentation.pdf new file mode 100644 index 0000000000000000000000000000000000000000..c887f58263a8d9e9db6d9f2478baca5ed1c6b99f GIT binary patch literal 9797548 zcmdSB2RNKt`z}5VMvE@mUk%;>%M-X%oz7M&mjql@S*BBDiaAwh%?B~c=Y8bk}x zqedsfc^Uck-ud?L`u^YkpMB2Ru4LX>>s{|NYd!b6S9|UmW-U1dPB<4IF7xi}(PvyZ zj0fgo;eab9hRdyY+tnJzEo<&+?&xBR%WYuo?qToZ4C6j6&8=l_YwZC;0L681xph6= zZ&`Zkxm#Q7xVU)2cu~3P=I%F@oo!rTe5kaVxw9>d)!La2uw`%UZSAh*Zf#@jZtZLd zSmHk`BO!rn?QC^g0RbTWuZq}vI$Fb6^{g%JoLzvr+=kgZ!{n`QS(g^w%=s|* zsn2zA;V2t$lo2?}3Ib&XfwF=?SwWzzAW&8iC@Tn*6$Hu(0%Zk(vcik9!h2@rI^cen zTh5*^1pn{acWUyF?fYZr0vZZ4<~{p-z<`!H(0$H29*p!`0FJww#Nl z-dSHgv-ulnr@r{3jZ@HYxpk~PTyD9acK=hp0e#O>*V+?i%nfi7#;pfbAI7ch1eBCH zzsjCpm4T+q`*xR&W74&U*&V zX(PGSt$_|E=ugU{ob3VQ z`3c3(5kb$~!UM*wi_0zJXl-rvpY7|p+dKW|QnKzYuK&4|j?0-_fI3M#JG%gNHopEl zJWuQYH)3(t(Q&zd!GiCsXRIRKn`=er;B|o222{r!z^fT{2 z$j_%F|NH#Rj~Y{c9cuW08(PkW8h+Gx@mCPwKj+dP5jb1?old*|?~nCotDV0Qfj^&k z`F|T*Pzd}s`~J7HE&n-}{)hnoKZpaTUFdH_;CwamhtXaT#{Y8`7KRD@GV==jMvwm% z41qtLc?JGKVElgdi(1S6?_7rp{Mpni2ov~a>J|8n9{)80e>(LF{(}%WZTsIx2Z8h9 z;uksy{A3A02NW~@wGI;ejUN9k7=kD!{jv@c`Uin=+ME79Fa*zsi(kMH{K*m_nBXtW z5d7=R5d2eS2>*k?IPJQBBN%_q48h-+A@~b3g#J1+g#MHn@PE)I`RwrL??XfA:w zlN!P>pGKBN~6s4WXah5P}K)!VTfS&JE!|=f*#1`+Rm3 z`uCwB{O8;d{>cqs_b&VkIfVZ@IfVb59RHwQ_Sup2-w4N_lS3Fqj(@GAgnwhmf4h!? z^Pt%D%R&nN587v+#RL964B$NHgT^mQDLBtht_Z{6JSc+v3lTWaZ!G!mAwe5fb?Sz!Fr<4~R(s zke~v8zXc-Ts1V>^ibTLsal?OuFqKWLkMCQ|tu zeT`DB{QJmru3Y)8%byE6PBZ@NmFrK{$1h#}AGE(d>x6$N4FAKN{5w(1S=bJKE_L~9 zFr4%17a0CQ`|2}3|BW!5OJe>QzUBvnM?Y7wLcn{}{_ZzsoU1$j5+vsmkYDCx#6M`8 zeKvsn5fW7Yl6SOr0!CgKHy}W}#cwe@a!Z4xSnAET+jRuT+jB_z!kNufukbaK>FMsDohQe&+Vb&uYjQN+#V|E3Z&2N zp(2Gq`rIBWBnYI>?V;jWK>FMsDr)t671!CA`O_6@_D=SvGA|w&f)CKDY20!;OBlmZ z(JdGp6{-TR=bw*?!2s#A&j+q&ixJ>@_W9RwVQ|1{g6B>`#R!0#XHEicB7mEy=l~3k zI_d|m=ax}N*g*Q+GV0tKc!>A(q4VYmom)noumXjDTIK@^q0UxeaMVF5a6Pw-IsgRH z=ax~2en9%%sPLK5>$v=xeb==y*Niw+EdI!pmF1y3_k))A=F6W}Jw zI)Vq~5d;s)Is%Xcq8>(BMxb``fDs|U$hpK6f!ct=5a%LO#JS28aV|4Op!SQvL&B#I zom)n2g|6cQMu5z7^QbKlP!cd{jQA-&{g?XmtkS1<0VohZRj5B@s3;xk>0Q9*2-JEK zhWM#R{V7OADN;{M0ZvDp3sVt4m8n2Yfy{H?pyp>70yQn4K62_#)IM4-rdTKW`;bBZF)DT+9!DB_%= zh@TYw!(edgyq|-CA}?V2theHFD+&Pb&+q`=3jy!XnsvIqJy)5Zf%x-DHEU;EPdk_} zFiE4t5$AgoU}U{z;d!RDR&a3#2HO8UvR%Y^gz=9vARi2I9zFzWc{Zd%UT z(#7gb>HX7pJ{e9Xsui3s+%i7vXH*3hY;}Cbis3+w3 z={Y2cTRL^uZ%77iED#=#WaKN?925`U^PD+8*!vuC{9RJwR z@WRp2*7e~9$vchu%U@3%!tx3GY-{!yZYB)2H@snTxF#7WVXT$q_@nJ|nB06>&w$n2 z!AyMtI(h+44+E#8GUe65N!n_)<(SX3)%U(`ZBQnKi{BIQQ3^D?y?anGq2Loe=$mHO)~t;4_ezFmha7}9vGnm=n2eYeMV%~K;~Psqw@XF}hm{3b`i zr-rhVEEd9t>%LiopT+GW4Q`((t}gG`F00*i(<^sj%8Pz0JDgRnqG^-oso%e6@07GU z@fcpyWKejG{w5)ftYLNZ_g)}-X!x$$UAvd|JeSN({P)Z%bhg?|=4S| zO!b$)w>juFNyis>&)u2-G}_)KX4n7v>RpSmP_@+nset$lGtT)&qLv&^6;`%0GW&%oT2{s>R#suNYQ5~{K&=l_DO!h8WyRXa(42B)Wez53qiow{ zPS;V*NUvL}Re_tCZ4E)U%_fU)O~YP}_q%dgfbzkw^4zg?WC zj4Vp-5_7;!c3`-=50%#Ebj-ci=8dj*PmgX$r(W;g(6#TJQhN737V9N}v^i@GsM6mm z)bI_cTtyb8R@_PZQ7*qD`M|N-n6Jdv; z4~12U{7KpkJQ$6q3k0?kVNDW;@p)2r`gA9GGmVIS?O51|?ohh2?_z4HMu4zG8Nnv4 z%V>24W*{=zMNkdHJLESuwifKPRx`rR-OK4F7o}B<27c7x&X!Hs_D-2Vk4Tfs1fYOm3vVX^ZW~p+2r-RI#XP^PgPar^+H{{_p)wL z8&T@nI0<~umr8zXCo95&nX7l0mf}#MaT22J{6jilpZW(0>{umN)jNwWN9TQd01gqm zz{4cXuM+G-i=0A>A6ceS+Bv0)D7)+NoUwg$6!>^eGd`*Y<`ohWO*cVm`WZkoQ=Q0& z4PTg~4v$oT)FSXd4ebpBGjcz^N%lg#U3P-rMJW+287VC-XDM43H})G}!Kze|ByZ`I z`1x^oc&f?b`K#%9{2Yezz#2DM-n*Jj35Hb-Mx?*`@%+$dh;(~DDu9jfhP8h@4P5;_ zcc3HqTMtF)Q|wFm+&Uj8NsCIz6&K$y(I7uYz3;*)@mCM%qjiv{x%ylVtdSq`{ZfQF z6=9Nt^$YBIhSoz9^N@RVO%F>R)Ml&~4c&@{37-&tsj9oFn|s1GiO$$pm{sI$nuGgv zXG@TdU-#Loa<<~j)O(%SHKW}9dm|rmt`rf8;Z67^F5CTGnbT)3bD=V zER>7gNoY!r5Pb2FJheOWQ7A2+ZkJnvhS=ft?3F57S$E+r-PL7Hv9O-70{$-XFO);= z4g(V!CXq|}^?g1cB33cw9Cg^A;p~+@rbWcP7MjR1koB3}i4nTJ5ToIP{~96Y0i$m+ z&1RBAXCQC82#RJPsB90-UTfaQBsMDv;mf@eZ&n!`99uaWTvsU&GFurNLR2*$B330E z?@*N$oL03L{JKgvVY8|{P67nNW)89oss~qLW@1rB`J+ASXD|(&Nr*ej&51qoCG-kd zjt#5UcV9Hst9{URWZ{z~%uG1h{jPo{KRiE6qkx{S>iV)a1^04Ut1v$XKIRVAo$yx1 zIzo0TBa#w2O8y<}UT(g@?m^Ddy};|hGQ8wU2C53G>tYoJe><7?0AnY80)7ep)g**(d#DLMiKpe99MB7;7!wy z)v1`-+htNu#COZx^Q~9Dk2i%>FcBzccBs^4Hyj%%hzqXx6HeaZOIrFiG%oIamAw9a zus`jMImdLdIQ_$JoKF-#CRoS(KGlM1^^LF_Fl`Y~gSOfq>|>eDy96BI99VQ51>e&p z2Au-^zEm~B1Vrc5GlHWb_W6R%>l^0{&vWVOv^#bYPt+RLZ@_-xSimeM6a&LkrR9pY630|Ly5~( zUtYdj51Dl_`0#RO>iF$6#%J)e3s##$?IWVluR$W{>A~q>9Y2n3AC?I8oXjAuoZTRk zDsAN5oKj@XXM(Z^UksnGamK=slUUzCLayD>E*&$Sam;2Qm*!QFBl>ejWx`5PDPQCi zdNjuE)I3O}a6FyjZqNqkZdxb=TZM?u>^5=()C~@U2+_gBn>RsAXsL>cr@7leZXU#l zPT3bZhxQIX6;df=LQk^Lb{$NHKCUXI-pqMfIj(MVHezp%)#c?AodZg@Z>_Q&%olF( zRCp@;He(XyL4f(fxA_f1nXoQAcpJ&Vp%mxQsNN5*XoZPSjpFx%xjwOqPbm=egPqr5 z;$KR#k|F!(Bl^<}$W2fO0~_H6OJze_w-l37sb@w~2eeYzac z=3S+Fup{BhN{xDBETj3(^YqY&lhTtxfcF==h1)_Qq)sa*8s8(OjU zd@(2y)ZyvU^we}wvN|CoU6})_=(At4rLrpqEgKE)BBE=0J7ho+vFX};(`kF$AU1gW z$c`)&X!euw*0vx|?BOe7cRqS#ghf2@BBI^blOkB7?5#dN%DL(}WiIR4?1w2~K?G8R zTLiu2s9$cX)%LZuFv$gPUEGfoCa7qRlKK?1Ln;>9C@2oQ!8Hc$>5@~TVw{K zx=G!|^c{h&%=PfWc7Zxm*%)!BBN(2M%gO_o@eL=(#~&n>EL?VO&VE@AxTDNSQIUVm zWpJSLjiIf6!z+*JuaZL934vB$OZ}hDubb4RYB(&j#F%>=*4y$1E_^8!u|4h^F?}iF z5oFtz`o^j4_4^3yZi+bQE>DwbS{Dc9trMiPXb*?yGGuTp-_$&_tKU?Z>bq#L6Y>fE z?okS!jUUZ&DcAfl{}+L2L-O()^3H9?<#poqBfG~XJx}N#R5;WgJ?btwN)N{`Rd4_C zsC%vWC?9Y4#yb)B=j~P)exe1ekzlwB&R{1mg_l?H%@q#;uS;KQ3$86t2Hbw+8}Ruy z!79_RO%0!iIm_!7Kayu{Ibm1ZaXRikN*4C(mgKc&v&1(|N=qU;(dvrcU0lfPmDJCz zZF(rYw5yp?rVf2mwa-nkOIVx}okw}WKGlZnioCVKTl)G+GW*vaCzRjyo{_O+Bq(q- z6@AI_&lgDeA{jmUAK|>b^B!TgefzZ&wp+qqFO{GIH7HPJmS!B>E1!>%P8JxalDE2CDtJJj% zKN5y1HmBOrbbRnb`NTXyuqHDkvm7{qoYC8iG6WhK!zO(Ygo7{8Yz6U8Mw-?I8meH>(zYVFm6d$r8pd!g$5F|EPOlD@C<`-$MKZ{ohnZyBGsjG(n) z!f;m}VAxH~fsTUKNxy={a`Pmbwb6Ho=Se#WT}u*=KsWGaAwFg>$!56fCisXS#x_AgLjvk$W%@_X-F==L`By}+QyFn(2W?ywem-_7O6;6a*N?8-q!V`#A7k&T~N^5|jzw?O4GQiZqAJQTs88UXIFknH@ zrf%lQmmQjEtq{)|uN29C7`f9jGg8udI5Lt$OazwEgjr-CO8F>j(zB|Fx{TMyx=9fb zTtHH;Llz$d6Kmlmfc0Ww;LyTo(3I>k5(*oZVlGA?eX?VbdD-*Geyuy86KP?vzQP>% zNr3JCc-If!no-)Jv=QhR(PuY}ZTayb6f z6K3D^A?ZB{x;v-kIPPnTnzb=gR-y&YlVu$tw)lvd%bbL_Rf%lNMZU+Y28+FvAF=_q z*Kc3Cyf6+HlD^x{xknDu(7a|nOH*}Hs&QS^5$(&#VV%quZ0ZE_fyoexPlpH1S< zve7vYS6mZOZ?u&%eKMmODE3i&WV7Kwu^6Ecoojl~vVP-AZS_bh{iGGb2gbD400>A@46_G-C9uj8g(?IJ*4`it{Go3CXuFKeXs$HB=tQ zc*$4f z_T*?vuh=vw&2#2z97w!e=IoApE)uhPsX_m3YB+l7SKf$yzNSrG(*l5>JYKkyQd@)Zcb^CpmVk$wz-jqV1mZ{cS0x==*-=TdKZ}@$b#S zVzD5wPoX1dP<9P@5!MqSqoWR*kitacm##re$k~t@4N<|0iq3^ds9!*z#aqRYyHNhz z?nkM%G=`KhOG_p36hLA2xL3zVI}0ah?`ZDz|JecX=~?^F17HOpii7y=yBa@F*-ww) ze-=4EWfu|z0$NDIw3nDqY4s_=TQD{${4tyKFmANtW;<|?C2C*yaVo|=HNcO=}u zuYR6iy*Gca+%MvFh*u*orsLMm{70XyRm*3$=f>hbLqyX$o1_@V4tkHAhEG;NSp0tV zxVl2HvDk%@aDhxClP^F1h}Gf8zSs#Gd+d7lFV}oBQ5dBp0OJ6G?GbkK5ATs2^+F z?`1tS&Nf{e{ZV+iC@hHw(s07^Wc^F!T1!xrZ#g{6w6aRG7%`W&N6>>{p^oUGHugMcP9`q(0@?Vx9<%Oe{Bj zT8+rcDaar6xm^rL>ZiWxWoa&69Q#6>A$Rk+R^wg>vibHpctfUmUSCt5QAEvjrYv0S zqn5awsZ@v+=Bv3}?}pY4H7ks0L#8SYYH6q+0mq_vbY!K(=al46Zyg@w+?cx3DY{3{EOsbRv#|1%u#VJv0wAeu#q;j3Gyk#hJK-P zs+M|6%h|Ux2Y1d`Txweu_u9UTTOYOU38M8*wzEWwO!B zj@=0J+K6D7RUMEogpy{W?S7d(3CrgCkj~<92UFAygN|O$j)THdP*)=SdL6DPL4-!k zK)7w2{6Lv*&)Cf;9IHN7mAvZl9L-!0v-#DdaiwDyh?1^^`VLh$RfpK4KOOR=;kIc} zJ7^BRLq`TthT97}3b>?a&(2-qa% zsd9A3?#hsRiZCZG(OxRwU#n*mFTlPQN8#`0#4}cx%%k}d|F)GbFsr~n%fgF2`CS*-Kt zlmEwqYN!z3zXjEP`^wUP462=fMd|-yQ0**A{L_O9K;ZJ{mx9j5*YmFe{m$X1QNW+Y z&m9g#>;Y-~e;i;}O`KfD6!7VKU5?2Qs|6k3HogK$BVTLO`?K~sqt&jDT{ANhDEofW ztdVN{nc0_V^9qa8D5a7`mk8Z$u|&cyk5bR^W4=p`O)k%#OCJinrIg(ooA~-!-}^HT z19f?$)8t9j;oR8A&r9{r`A^3R2~YANRs)RzzAwHn{Al?2Np<4ocNfvvX!ai@(w;Lf zuQw_`Atfam>*z219$1^@HBs0Tu=9SNeh4FvuteSRp+d*di|ohCmj`j}{ReRKSJ%8R z?QMK9&$X58oIg5R`FPl&PW}B$?u*efL&N8#&xV&a*H%BN+m$)jsBI;_UmbhB>XlP3 zDR8~c*#E~H@6UYC11s`w##AfZbuM}Ss&LueZz3(W!qc~I<@x;@$3|X;HSV!vce{L2 zgZ=5JUm6zat z-T8Xx^?l)eXFA)1q6ofE3b*bpgyD|!-)nR)o_EfFX>UobmhT-{9zd7BX!$Ub`XC&Qg*+Am3A9I41a-N;YixEF+3zBlHR^g})l7s6_nc&_AUIsu*rk7U!BO)Ii@eFKUt>Yt7BzJOwe zT>d~B!KYF~l6)O$6P6|Q+OkLSDdW&p&i0f%GqB1m$pkVwEg6NRnlJ^uqU z*&?9(;&P#NLAYSNki9kGVBsJOMZ-NVXbxVOJd?V&=lh(6YkE}Kc^kfF0`VH_kt;F` z4)L)3NqHO^n`EA)l7rad@d*iI?ZurO^*0&K_6!%f=RV-GNF_VY))ja9@6->gSsLFD zp31h_cI?OJCUcaol9b6FzEDGVCDTBr8yquoujFBp0sAnfsgP^jg+~zn-U@Slr1|@u z%B{qTQoHt@awc@|4@H`p2oXE+_Cir+lI{zT?BNcCTt)hNReU|IVnejtlvZc=)U7Z+ zv+QOse<0%JYDMmQ?=b}>ex(JEM4&FyCgo_|eqV>8$>+5Qd{B6ZYmaP(QJM$&V38J{ zVXH^IF5|aPQZ2GwSpx2f8q0{8AUKMsN+MsfiXXyS>H*G~pW3tMbv6tkkdLD&a(uazPUG z&V-#J6pv<7$~SY~;_ufDs>ps*A&U5t;f9I*3S)~M5!p||Lw_N70R(z#YR0Tswe`5- z30BVLV~i`t)e*`JENWvHU87y*KHWXUe0HDbBFvgDxH5Fd7>{8a`7&5*NCllXQY|ed zSeaKIZ(J$WkAe4&#yjmf+^X6Tq8LPLsoRoDEfFC;NjGO`uv7}EB4On-LdB1IDr@`F z#+XlMeI3;9v|oWw*xBNE+s|M6Va1vml<3H&P0z((dGdBglC;YuZKlASTZ@M?GLEY! z`FSWT#pSCx7A4+&!i1{LE&bH%cjg+50?=q=lxBH2z7EC(5xh0P&04}yvG-%os)zKo52N}Q^o#P}xs%U}IPXDi_~kQ(=FPEpAN2^) zT-US0tR%9}(A|egx1bmJS88pH@aI_DGN2%B>1kA=yLLgZ6YTcH@8Q-bbY3GQqwPyAnUrz`q z{Mhy^XMeRFJA8|nsUn&9p|JUSRyGCzoZ! zbw1GbH*0Yl3+NbA#Yn2MRc!URwnTerM-O<>CEi%Q=l0>U9{yng8%ayj+;gw#QC2+? z%4SIgzipQEz$fnawZ6W)v_6_*JXspW z*fefB9rZzARGavkCCz4@;-++Kmu7E{BJ0ro4AohCvwQd#$YchqO=$gF1cU<&X#LQ1 zl1*`!EyX+auNiyJhJWPdCwHEd;0wBrM7F9T`!cGZX7}%TY9)Dw z9$FC#7I!5L-d7g6^VCj(mZXI;^3m-dJiI^hD63y99Id~ZDm>&!PWYs@tGpjT+5D|> z1*eHSXj$FTNP?=#tRfA^zcAB`epf`hr2+;&6t~rtVYxW<={R}_r$;iQQ`F@ z@cv9#_B(CWnWXJ!>GM?ypa2yV<^{e6^FN7$&VKF?m)p?Z3Q%Ifd4&Ppx{|fMtsU@V zQ#_}_ELq_9Kizd*%`L5gpGj1fm6b8~0Di&|ff7Lif*%<`2&!f6F6-jt>f(I*8&$wJ zpMEZa^}qt8w-L1!NS7E!^Xiq{R7_NespvFLH zf8ag{gBX*90WOV2s%;LrpeM3US!XqN@MkOXCr=;Fb zdyt;{I4{4Tu&B7?>9gvZ+UIpI>Ra1hziIF2?0VZjF!*t3c;wUQ^p~00x%q{~rLW&M zx3+h7_x2ACPuqnC0;8G*yrLTROS=FkprM~)06A?J8oKxCNh&c0CIcLcL|PkS?nZhE z5rj=9laN!@g2TwGvq5g*-iLdUiEoU_ ze05-4J0P!GfM??wf{rp8JDD)XMPC(Yg+uX845pB&=|*L`xHtH>$upp3{e2lz#87-lX@+)@&@q zt!`tYPNM0fV0~Q;sijOPWn2903sa$O$-+5>6^Gd%%j;`j@j%!t!EHzK%7iAn>1NiG}IRDaOr@Iq>YBsl5f3OQ;*4s^tDu+dE7eP?9R;SJqML% z^wmzA`VW(SOomh*dxqmicd(WSWUTan$3|n&E|07;BdEG;Fybd)ev`gaau{X7efetS zf-pF)aGrI9`ehB7EOlELGE-S+C_oo!ZBms#WBXuIN*s+qAqIZ!W{6pO3gIZ_^gXc4eC}g1QnR z3~q;n9}+GY*(Ty}vXdw;XIMP?PHMhU;My0L5(m4*GH}ozU@cE_;hlaeZx7vre2Yh8 z^)ygpC`D%vSmMQ(@HG_!Gh(ET0!N~9hp$a$NGms9*Qjr-Z|re3QhzKa{}4aUV@zT^ zp!%jinz(e-#mT#wYepNaL!%)U?MzUYW@q=$rfj0<_Bp0%GcYHRlXi=Ek&X7KO6CK41E={soNm11R7t z^>O6mcxVbi-Pr_2 zoP*`!%rM-A4(cGUH1qjJ1hePEURz}(RTGizb?o=KJFj31WT?{I8EMy?=RNkxFf2cCS^z!q6nT+0g+qJ#$6WF7`rwsUh(fz67)`nmd) zTw_=fHfkag!k|Om+RM*=;%15AKZjT2GwPxIsq!maKbQ-VcS~q?zEm|OyO?GjVv&f` zBVJrvM)x>Y@2G^w_xWDkvBfhM^Jd<5s)sD}3EMd}ZjGV(_!p()v*|R!1L<77sp)sC zS>7>WhFH4_9s2nWe2hW!PP~zN#k|RcFyKXDw-p`oUPGGIqJ;j=OkoX0?NsD^HODGHV%bFTEN-c7HBVVt7M_4ipV>UZs>IIl*b1-|XZx&U zJjf`+NRwOzNmO(UJS=`*^u)Zc$Zk)ViZNrGYFW4VS~VV$VEBU@QbUrObKKyf3Hjs; zdbSpDabD;)ktJ@KP}lOhnh4hF`xjXl(Mb7=v@QDWAHOypENMy?7OhW2)+V>k&UoKw zFI+Y8HL{CIkTDB?FIsw+1FK)cX1%j#);?s!(;6PVK`4FnOlJ*dWr6`k>!b~&=IUkQ z;+c+Mh`Vv498XU_rG14t(s7&ey*Q?|TTkMf4`|}ZoJ2?l4^xo}$jJ2-`dur6kRO5{Q==r43PC&xr)D({JQBW2AkJ?w}Gs4BS~-+>s?# z9`#3~6jy$%8uhigl)Bi)oh(ozt=MU@IV^_JG7RHRW89^rx{qm}uVg*Y+t`OeZF?l3LDAi=;@*7c^Nmfr9m=PS!dJS-=0Ki1WVIts@O;<0n0+u95;B_Z z{~DXgmL~jmcMU-o?rNe_XKT}x29Kt=J$X?q9%&*OT0Fd0E5ck0<}wKl8f%g~JnAcQ z#8z^ILJ1!-QqBi4pvULXN?7nl@8uj^aAYsy67J}Uo{744m*MRTn%ZrQjX+$Q%GV?B zaz;WjZsi_E>gcOlRY8$bT{#Z43b*}?AkGA?5SGGg-gW(h`b)rs&_9= ze6}+W`#`YPnsHzHI>Fps&*kPeuj1MuH;OqX;ypit?P|)w&kYgn6kzd#Wxf8&v?;3K z=?y`*gxJk*A^lPoZ_ z;bkc!+|o)pGoSAhOX0!Md~%!0S{gI`Nxg>kHzj-a2Rqeqa}<=@joh2Jb5~>VXgRJ$Sjof`DB<`uR?T{#cJ1bY?M##A*cj_cb5RPK62RS53*OE zdlqfUL>xtV!7ko9t#-;c7P(iDwjzodJ_n(VlL<(^h1S-+h5j;vrPpn{_yVC&N}F(3 zH(H0uP6z!BmA%B?%`s-<+u#*038xq0Jb|6X^9C1`l2u;EyzQqrNTz$-Up(eUU=~G& z$v);|@F5`cOQHHX3nOV1s0bo%TnWs6ytCP2J*OfBDH?~ z4sW>Ob4Jh?%@zu1Q#y6LEiiLMg1X50#CVNqO@4b2rb8mPhCf_aS;X3j7IrxBlMkc_rIooFvcC*=85D?6>~ z40L85ja+ZrluQvw8Zq={j#8@|J;3(8C3FJX>AxwH})U^iKv=2+mM2}iuO4vB#{N1K-5RXm1klDMMQ9xd)42= zn4HieEwDdGWTj=><6_}Vbb+DN{4{-71~O;~ie96_K(m(ns@URK$wPyxTBf2c^1o^= zTp@M)UPwhXo38369xh}xes?qDPR1>|6ywBgv*k-6Z03nrt~`cAVNM}>B7DrF6fI-z zQj30C{EeXsZN&mfWd|g~;#_Hu9HX zgk2?m{9_0Qb^4pXLGh+e-q<^ah8Ey>0~k1X4PJL?X5Whl7noqVNuT^*pF8 zqfsgD?YO=e@_Ey6>FkJzoVI|T0sz3|-z*RngmR=k7=p%DUA^uHgpJ@6{k zI1FMZfh3oxAl;SMmvlO6gDb7|9TTGcG7hO_C^OA<1YLa-g%1b3nsN=Hv1>UI@7sl_ zc8~n+Y91J_hzbW#z>Lk{ zq6^|zxN?h`BlReIB(ilz?C(+Y=ooD(-cX^DzZ~Y>HAx{XIor!IZi0y!Y=zm3;kK?? zgp=sQ81s_Ir=)*|Tqfj&U&hR<8Rc?Fc9d5!rD$V)x(L#Wq0<>{#UmZljnQP4G1xd! zQ+wzk-u0-r`3S&m;_NO(Wwqo%=5?@zpbnLXBNlv)G4=nY#0bXrZ97%ks}A}L}kv_zE9TnaZ0UsL=9 zl$KM=72MI;Z2HPG>DWWLQU)IbQ8MKgo%wm;K&NrUvkp_{v9R!L(8%@)2)8s?rdnQE z?ZU{?FkeO55t0GaxezZz3twHAy&l}G9dxA(v5=6_-;`rc4u!^sT1zcuZACfdI(C>b zf-5(K_ast8b4GL-lM;DX9zP!#3LdB|t&5p6bYV1G9ZRRJz?TYAW)+?Y2RCx-c+p1o zVSzd-gxW>5{Z+7HZre`H!2Bii;h(UGnpP@BV+jK_zvUNYPCpAS5jYI?rRGBKL~A1l zQ!R}}YkLuD8#-LZS}AT{D~M^YmcfrE5rV`{&Sz;+zm$|wgb_@hfWl}oE34uSU6`u6 zcIlGC%OV`{HJF7MQ@}YuOPBlnz)-R^f&-|Tna93fEk`5;2^D%#GxOcm_o5S+JD@70 z0wLx4XoQ!zGcL$7>}^mO?R$00P^g6+f;vZE=$^S7`#%xoz`3DY^`gSEB0cdB?luNv zDcP0n(3a1Xfhh)!<~~@}N@)gH{1|f;g>I=A#A8@pTD4|=7EW92%n8Ey9uupm;}*9y z1T2DAI0U{u%BfTm)jU|p$H7-1MB;7`Qi?Acpeb9cJu36t8jf2~K=PrxQ^Ug@V_q!` zr9CI7xJ{tvDni^YzGT`-LS84Gx==;So3(Y&3ztcms6+R@^Z4L6JQYcDnd)wv(~3B& z6pd<53neWNZ%-qkt8WZ;t}J!*qekWBD1VS|bcL0ptA@XaF7pU&c*?i{lE*jUbD^)w zqQ=zmwV09)&^GN4_K$7y+4DEx@L2e`MWGE3BcnTa_Yudc%9lC;EGgLm49mhA9m=pE z7WZw-;eI56Rj1hMSAVym)Mi}Vrdd#>xSqCOHqBk0BPZxAX}h?+9fJvPG{_w?@j(=- zUD;lOxhJ-Y;g)eL8$z5y0&f-~EFgxNQ-FVbW_%Oafd1)~)g~HF1H1a^ZX&@#iNVZ*s@C0PU zm)cgF{goUzFlmcR>5koBI`;RFF+@Yt*H;Q(DVQSk2svtb?An{$!pER0B)U)Y3K_Vw zUp%kon{a$YIe2l>^`K{hvFON${~Df-Jr}iDJfflY(M-@VlU}}itEV1UQ0sPUQipVZ zdgEO`qQ`f2yA9ai)wveBE@vtR9ybbk$d*(5z)fY`mARsptCI%7;*K zpURMYN3)#ar|p@FTvH^zikO93!7mJ&S*Fv4IxAImczRcTe{FRb?fNR#Zr_uQBPu~@ z1Ed#EaC<3XAgi3h5D%YfbS+%{jR5KACz`EUMX9gvIY;G#Y4fl|8@!Lh3sxLhJ(!&D zJjKJ9su1xF6yfTy>cVhdo?C<19Wx5qVP=^h0YtcaT2?-D-9yMRRB5b^aJT+uJvLH}mEb-`T zn%E8wK+LJ0T0LY5>Et6C^S!sl%VQ?Zgr2vT-+S}=YfnQe_D?L)#K#^|E9uZqrj{$h zQ1aE$(90DFqjUvV=o<7HffQ|VfvO>t*bpB)$K12 zz45L_DPd4hj^m6I2<>iXlMeb$Pv{kYz=j@6_NO-2ScY28u_3Ptbqp77@jWS4_9C~8 zHxq_Ji|~4&eV%U({UTvV`J@I$Nx0DR=Vkec*HaNH4QbDw%Y$Z$T9((9C4%iE4@fXu zgOc{s%{@iCM%(=Ey!FZ;sP-lJ`h{JIo{yU zkPVEsd=I(&Rh{AmCqp@n=s}4}G;v&Z0heJtG`bLNh6S_=+lpJ(>ATKPr!SBS;xSc% zq#IaPBH0Ci&7g6GKc*J5xfYvd8Y^f%3Gagchj-bSCP@F=C!kB|HAq(l%W6T6PN9}% z89W|2E7vIZ$BCNe$L{t#WCwTYhA1Ib3rosZD-C5-%En-a!)fI~6n@F^x^8S&sxusbJ$>p(Y;fSRUH7({%)z?;x6{lgYTP z;ZzgRmTObJq6`wZI4bc8lsf3cF0(WRhg&p67`WVLJURg-$V$7(IO^0b9hoLSaUD^n ziew|bGt$i2t7~c*AX8@`stArXe)Yd7Iv0PY|38Xof_uWl)DVEVVNnnzwB~BgA*o za2p^o{)~IqU@A}a&wEDJmxMZ}q5x`OTbEA@T<4J)roWNjIANI5ZBq7WO-J|pl$v3! zb)Z^O%IIKGW*+b2X61(iQKHF;p`OU=?Tp}DX0ovj^(Fh2Q5sY^jk=my6XLz=SE;q( z>#JK6lKq*iLn(^it(oM{@KN%fZXzX!*hW^>)rVpDCD)h$JYYos+~Em1Lr%0wQG$_7 zl+@cxW37o(L_RQW-Z>Nx1e{+mGi@(_=vc;k=`o7N&|Ayi%v{l@iR`_%rVh&shMs``S^Yce>3s8*P3hi{NkTa0hi%X9}WgVes{>} zo!k`4n)~U1CnZciAIr`4Gk3Q@nHqk>U`*+18WZ+DF5Vj*(!Gm`X^-7>F6bISo+=+j zAZgZ*sSUml;Y;dd>v2Y0Rm$CAZFMPv2jf4$06Xur!iP7FbR4H8VD}?-=j5QQmaXSu z?5ud3upaB?mLmwbs$%Z^xXJL`8GP5nX?PAc-gaxRCI(uT2h_l_`@Ism;#v)pPdPJa zf)y5?U>xJ=;=C7*(x}*u&C21J8(3Sv+4&)cD(H}# z{p~nnbo*>-ea-;MK{5;%K2%ftN)nvjWGAf0vWcwsaM;OJ zFMs`>W$$dk9>yOy2?_5<%%2JPZDqqUx?&+K_P2|yaUqDoclzZdBJ%1=N(l;h$)7 zfuKlU&?zzcHN-~^>Oh*aW(CpU|IS(+-b)HPk^NokU(E1sDjo}apFtI%hz&bGo6w{l znKfrYUZK3}L#VrhqgyZ|q84SzR&$xEaAlNe<{r3BfN0gBF z|CoS_axfp!U-`t!LZ24-@0I)q82MZVXNlo4(;QPqkkTAg(>t2(?!VrD&U@2j#V{Z; z8@-lU6j1$GWAf?Dk=|Fo)+Vy}!L!mGOQw36rM2TOu1n|-#yOFF;80hL(hJV7?W$E@ z4~1~;#e{*_nH`tNt=_HLv|yuDoif**QdeHH{R1=gSe{!~Wqennr?EtStVZTbd+Aw5 zPiRJ?dtLdz-*bjMP>Q_KZYIa(OpN%W<|6{K0)x<<=Fl(<%l=8QhZGrWM((yyx0)|P zW_ROAr=$6A>K)jr)D#d`K&~%tbd*N(H<|1dT1^gV6)8Ap+SrYaYWFB-=jj_$m44Zz zlZwwZ%2ycY?9WtvAo1`)p5m-=4~}_c*3=<;-1}8KuFI9|WA|!4)d@T||AJzQe|R)0 znl48Fwt=G^a_=C?6bPIt)!=Rsbq>q5=GmWa2wU^mX0#b?f;Y=P_#bv}X_w`iAd}r# zR`Z|Fo+&0){kJEx8}#JgM7&izquITX^xRKf*9ysdyis_j+UN24v)8NqdzDkXx}H|$ zEXYO3Bp1C5Soz%;BXP3fK*f!glM1?fU#B)%e#OD^GfM6W@1UR7XzR!=_OJOJC&3az zrCI-nmdW)Pkq`f0nh3iBYsUqM*-YKPveF%xA_XjjHi^bWg43VOI1fLZGven9{m^<7oEi3dcrfrXUceA(^#-tl{QVT=n=4l2 zH$$}i4H~_4OMI-p^1aZVIkR3lnC$?+(yBzV@xj?{SQ90DXVA$O8D@bJOL+U&Up#!X zI_9QD7j5D#I1H<}vZ6LlSW-P<8=8(Jc0D%RZ%BHS+N~^bz&s0T5wrF7$dmfXx8BME z@ASUU;$Ze`YDXiCgaqsJuN1=NU;c}oUpWPx`I-n1=}gA`9Wrk!@xyl3sK`d+j4$QC z8GT$y#g`X5Gh*Xq4y0dpI{o^^`za~M&fR!N$KjY#(1~suWl7}o=VKINFZjZr0u0&sB_KyjLt4RINjz5J9kbiBd1F#>ofjX?c* zp|HMe_oLbjq(t*aj9r854xkqdwU_7>(-Ch^efyw)+2N{ZGmtLSwId+z8#KYAYAkgF zqv$u%Xk1@^&*3pJonse!(qK$55R>mFV1@vOnEt`l%)K(#{{(LP8a6g6ET|WzWSc5~8p8owhDn5Ga*A!mmu^pTB!F z@}N9Tt{0459IKp5IRvJjr7%DXC*@Ai(qP?7k-a7&!8Ys{%tx=^K&_^VudJy;lXc<5 zl3HxX6|e8-L_G+ z*+c8)Cr+p8scITb`~c-1!Gm5^1bAkL3Hc8=cZNCGG{x4)J}|(_ zf+=(Av|nW0z_?un(gPSJyI(R%p30by)nl)9J(vyGSaL z`+FbS8J^&qHfym~p7IO3)?eu)VJ3ak6D}@-he^+-G>A9$S~)km`=zJL?<_iHggiQS zJ9tKypM|rYy)}_Kjq1&Q%8yu0=L(U@q<3{p4P6=|>FP%LDLBHSumb?+kVZc-!8NjW zdps|Zo24Q?l82^B0HS3rS4{nKuT=!E3O%L6Msk2~D|Z}MT7tuX0JmQWaZ-%GbGeAhu`!VNQ@QM6%N$pc`zEn)DA2+7q;`Wn&K zQEJ$bborEI@_lNKr)W~-cNI;y5mhYyW9d)y9es_?loX$}9 zs2>}~-|?OHn_UpW$O#=;krj}#{+?b$4!8dHML3~l>LHRgdKG%NvEzp0yPT4%eY`>s z)7l^SVUbgmPcf+unhUx{p}p-KefKB{co*z4SNOptEwS$3`1_T+g5lyCjWW&TBwMha zN3pw3worpfW{9`A+4jbR1qeN}IS8v&T(VV*m-m2vtMG=y;~LJp`&y4w*?q(B4!Mbj zIq13{HJS3IN}*8OiSqmV8;?^2W%5nY%YET@wcn^Ag{X|Z-2osmOqVPROvT1HY~qz1 zS}r2V1cv=!{+mMuo+p_^G)te7r`Crhb@W-9t)3hbdh3i(YMM@&c4~a<)9M*&A?G6B zw$LO#;MyaY(DnQ6k?x~Fjq4WpdrQSJe|^S{u9^;T^}3cw9F)HmIvpJt6_DSr6h1P)>NMWgU3Zy(COX8{{4gMU zqlbI1-7u{*o;;hJ-yo|j{P_9NNjc#dzv}hUV^76Thn(gcYkv`@@s3@TI3lIlp!~id z=!jxU?v)x$yPTkN44wf>-$c49=_1(S=>O0TxR+;(7=`sD)oJK;mGD`n`tnU}9-9Ct5N?c2+O8YS+> zs$U__SW&Fxx{R_DNHjWnXyfOtvqHhgZrMnD#E{>Fq+jhQ6(miEo$vPakCdBNntQv} z$?L?|+sjhk4JQmoJ{$JA6`Vij5$-Rlo_pv6`H6xOptDHNd#r&4 z9V*iA_CO zg*3}rqtMY`GScRBq;4ik?L6;=6_@TuER9Ls96PX+jnIZhsdihN*3=3LdC!_P102ZJ zUB}AQ0HT0g3Xuun5jj4a()lsN;5WQfsAGEHM1&IMzb0~48J(-nVGuSC<>$Zq(v_W5 z%F|@U23MiYKV=w~RvZ;5Pu$L&PlH_ssaqC&~&R8p#8Bz z)%OpR1=}Sf4zTHBv~{bkaV~z?UniTFpWsTY4(uaZ??o%*AD%T9NZLv7gUKhZ{ZnnC zstUCCbRmDpV#=L7PT#;=-6rq-h0cO&H}_q(FDmCi`C6^w0LT{0^xu`iWYVNC#`{bd zlvw==7bxgy0WYb)MGouMqob|)TZ7g3XO?hsA zHjcc>N`E6N6*tAv=;uD8j`pO@0lrC@)@jm5!5E&E_NiGyI4y^?A8spGIO~}3Hcw)R z*cYoV?jdL)B%3Abmm;k)^m_jEVW$4uzYpK9St8>ZpS8Dz6Uq-{f~nQHjJ&(gc^}l% z@{3FfEimw_;75-R5~R-fBASsL6W8;VB`eTl9N-C}7grl7+_~ai`c7WteQTXv()U_b z;fb&vo2lPB!y6iouZ^-uE8O?jQ^E_cY(nGoR&;|F_$1}UZfJ_2Fng*pq9r0JSQH?m zEkb%%+sgYi`yFjRcHR?EV`+vDC3fruic3&R4%@?uiq9De(nrn3ijYz4%-aiIt-G9pQaEYh={o)vQ(N$!W{v)lo z4hH;SQmdk0o!bZAY}Yda7U8rsH|AtwpxZi+C|`$y*%vxh+mR@`SFwpYKHLzKav!>) z!dFv$<)oysAlVL5DD-X$Npc>jgYf!$3o?lA|7WzEgF7b^DuOGLyC;%SgH_vRp*&WF z7jH)a@`;(hs|s~8NlF$gu*0Vfa?A;&j5TBq@v9eOqu}Q{biyhOq%!R)hpB4xMoj%8 zTi72Tc8}#Z5DA&`&RpLercP+yki6d(t@64O^a5G>KGdt7Hse1)O%6Cjow(-I-)IjJYQeP*;4EHVeC10KkIY`RJ?$AcSfakw+q-IIG#dQa z!e&Z-d5n5So`>TTLWkPh2uKl9G&$09F?T_M-3e!{dS$KW+AJkmS3^&xX}uA-N0;=i za^ek3$O3grG#7~*trMaqWX%x?W?Y9e@uRNS&m4 zbNR^WPt4#{u_DL<2DV##&W#x+E=nYZ)4P7_=lFhpD!O`pnZ}?*l>hLFOm^*DcCZui z+E|XY$lru0h8KxmlUq1fzw9Gr&f^}{&Gn7yY0Xescj`of-D%@eozWWfYg&7MTwv%^ zVZ{XKR5?~Z|8)fV7;ooQQea?Q+qX31x^_;`hOVsbe-p5{m0H!7x^nFt7KZFeIS1_ zIVKn<(2#yl__K4Svvo!={OL|;s~>mTCfminkco4{@defQ0Tr3@$~43~PYLfes`nU)#^GfAMt23-ZseR`vF38l4G!-2`gzHo}kYdG@3 zwlY0>v03h)h^fsz{r3Z=?61w@Q2UY0{pQW8O+p(rlyRI-DTQpz_-`ewMt%rF>ntM_N6TleCQZ|}@zB$CY$nd%eX>FJTRZLBiyto%zsqFI(ToVJ5Y#!-C!mKM^A z47-C6M#8;MH}$cRZ@M7U>x^#=X)nasu-RLy&~~40v)!T1!>c9cDBUaBW{{{pd#`w- z(;9PPvDW9eTY0!r`hIv%MTWM;U)vgA+p4K|4WE~5g}Yqq?*wjZPsRCsxu0ZJsPIxW z3p=6rEmufeU$e!i6dZzxPVO1CW=>}|k z&nPZ}zb!&^=RxvXb-njB`IqsGjSW%Fr|;gOitv*<6vcr(wU7>hR{R9{Dt)ib_PGh)IJ~fp_=jDuFGSN@B14|aE+uscxyE)hx>>dKH1rC zlvNUl%sV{1H>rb_3@%))Oj7l6`oILwxWcMpoSBRp=FAlpEG)~kf9E4)H!1p(zy!Rw zZNjglbS}-VGg?t0|C(IKJd4YD)4hjEmHh4V6nhp~KTfU~=!LZJy=O#^8GR~wggbNj zN4E!VH_>TSLy7O?ExuM_ID=Vg_yK*rej-d|z^{2{-(@sRL!$@Q!>83Ja@}P~HdXoe zIw-d(qZy$)L&=!9K8dX^0SFd?i3Q#E%D?ew8^RA4UIYTUx$C&9SYJAqc|LpOq}7B=DMO${{ff^5f`C^)}{n|MT&qo=0W${ORy;EtqS9_3r9q? zC)vpy;@+H~dl=xvQzVwosg@M<_WpZQXqkI1f0=TCI<~d(^~-PYKGM+sDc#%C&A(9^ zXjn7jWT;z$#r2u~BjhSLzK(XMgCIX|<&r!ui}SGnZk{3G=Y!Op3Ep=(@#ijvr93N; zO{0>zP}jF?O$Qwpy>JGLW@$FoS>t5o*29tx5mhsg;cqLF` z+T5lZBR*H_z<{FV+Weh$yc@Z-Ev4kdW-0%2V)kECBzaxLP4X|?CMw9Njo%E#?g zI4$ce6?X=~b*u~8(VaCD?SH3SZ;qbKR5<$gykWra5^;HcunJO`Y{{`YCKLI~O^^Ok zKDIWqW_ApzcAY1>;@)Na=?xyJUDx+)`f$$5fzZS&8VwKbzf{;t2`)$+H{*LR$5}v+ z(SQke!|j${469M2)bsRr>_xkjyY)jzz5DN3WxIp1iBTmr{G*Rp10t0BAxpRuqh!Ps zolkH-zAsQhsFnWn)o5Q7lKXItiX!sU{lVMMGdnY#QnjZ9G^5$lf+OEQykF5O4paK9nS0yF7W8n5xnLJ(aQ1akp!R|5M#tRK~cPMx4KAw zL~H_mGVXwAYz0GeJRsOg@+^u}7-<85#I+EtO1glX=!4$m2||`$_Q}*rYPCkMV(j2B z*vdAP%&+KIWjr)tmi_scurT^NccQ9)RN{TGV`H-v=yu3p<_HETZk53NS0SpJEEMS< zu2uwp;jVq5!tI*P(z%26ONW}!BddmWS|^8t5CrMCBoP}5*9J>ZpGv1+n;sYg9iJQH z17l2Y>jN`Fxw5(&(unQSQHVo$&YPNE&LEYii*%OXn97sOM8dQ9%?{}?sQ_$m7wk2; z6kT@&>*pGk?-Bn&$AHZ!ezH;aS29Nun)ISqKAQEh? z_x*=*Y+o^z4?n#cnflsshX068a@6&f$&tO?K|!JH=@at)N+Zgo(Hz*HPnT28$^|6V zK;gHgr`Lzps_eSTEZWzK1BDVtH}@Ovt>{|bJiC?9$Jg7jJ@0f+t@IJiH1dX7_!DQ|*4m}E5(PUlEZIq%1~ z9yyXqrDd-C{cWX>|NT*k|Fx3Y4uQQ{8YSc*e?Dsew{aBPwJyW7(1B>(7TpIP1MW(U4bc0M-_$-Ihq zlk=%3RUryh!qPvgo z{N!j=4!W9sU^%7=z-V~lf9j0Pq0l9AX_Q~kesP^~Ztao7>A6(SGYaKrL1JS{p&P+h zeN;J{)$A0*O=Sr5?FyyoJmPb0ckG?Yg01(IK2`4JIRG4rz{NhbnN3sgOuo`KQrz}u zU_-*~GsKo4#i!S*9PrxKVO#J9O)zdwY61FVsCY1gcJAlY{q}e78Hoz-Xb+EQ`YF70 z&$pgV{%6*|Gn*pfB6h;}qUSUb6!z^u;J%2X>Q~zMwsp4%N-q9i#KDs7uT&AU3E|+Y zhkN<>T;ZJ60C2tjw#;Ww7yQElcM^9TliwTqsg zcQK3!ga9_bEWVMtS5ozpFBw@Q6C0*C?2HC-WFsZ1QOg&Yq@Ld0L5b(1Ae2VKzwa-2 z56BFel?RRJEOa| zYm^0~UtL@rLJd}jf*r0DD-*4!bN^hb)j+3wzfCe}Ru;=0dHu)X$R<$oBa#7)q~~3z zQM@=-qSKChU0Pv~>`EL@NG~=&6${N}1_1t3V&4;D=hvDJh$V`jw^yU3%ePefA5rt` zv1MbYoeF0)+kYvM5R1dhVkX<) zDvCZ-?E_)D^*Tz9!HueA?eN_qkoCdB%igZzC~?7n=g8fGafo^-xEPP!D9tn@5`6I# zWU&os?pQ7axz}Os-BlGBBAh=<$kO^lp6dISTy?oFj5jHU*qJ;M|y$XnNEnxi6YCmY<^i zWdeSyA&kQXT&cmunqe9vn2xQAmACaX=l@_K(7!BN=DDLjbtk2P16K;0ZQ~9lKOClv z63*tykM2ZW-LBekcxyh-*V0%k_-zUy)*I#4c>p0 z=y9{<&Q>{+heEgaGOZIf@-(D~i+eWsPba2Kkeq#K1cn8=$Y3Rp@1#!y?~K_TuT09g zu=>MhJ_^}BWLr|{Yr5knjg=iLq+N$%Ps9swWYM>D=DZ^D8{pM|%||7DtB` zl>D%BB~<%&6qolc=LFv8v)+*g6vDV)oQClYTb=XOfbTs5GP~BdI-PF4FTaT*AbD&y z7OeMP8v*utGox3hLENP7?vQmGL{;?@^%WJ|j3}+5f+e!7mEj^Y=J-bQIRC?^{L&-J zYYq|8KmiC<^qig(jt9T2l&Pq&I`AmJv-7n4ua@f+s!m+qP`$gft5ugjK>1y4zj%u1 zT~a^OO4Y&0x0FC>OpXx!4su_z{lY!P1MhZ0^WW#q@gQQgR&ROD*-WA=EhiE@)TlHX zHfR@_=_DdKkbIV}@0--U=8%{{9}-U%c>>Ic{TqJrjgagEBrUs_Q(aOWffg2q-&uaE z)dY&Y8<@6%;cuEnhLG&7?fAChqJ*Z-rB54GM5Y^G;7+L?==fqk!T*7uB* za&j*pLn(z9qeU+{seqC-uB;F6?BlqV=Lku0Jzec1Nb- zC2J;kE_}N!mAggWF_5&JdCXJKa_x(kF%-%wv(WSxPfW(Bl*nCENL{q)iE25*QlzE$ z{&DJRitoIY?*8>eO!+;sFp1v4V0-X&5K@!~YE$6d{fJ=ggk|CD^T?(tGILHyr#{`R z*P4O!E6>>8g4evLF0*(igkGwt`HNW7!sSaxL)-@QM42 z-Ekq5ElC#X8PwCF5LJu&gN&0d)jdBjO}6{&0>=U(>x(B-hsjqEmq7H6`>bC-bJrk+ zwMPWHJq?D&Yv*a!8Nvm}TXiF8+?j5_L8$?qH!a?>)6KUR|3q>n>1e^hSzTeMwd24> z*|r!;yj`Lfl0A;RT02lWE~^6X($s4p+BY7Q6*s+u2$gm&+MXWR7Wcd5|DZ>pXg!-5 z(5CcShdg!k_Y=8T>|SlD=K+itAu9m@!|lQJyz}D@GE^v>4S$VB4K03egqvqQzz7}@ zgctOWv}qW_p++_86*+8a<=t4dQQN43q{qX(ikl%4^zX?UPcy{CQ~hnCd!0wOc88eR zhweX_f%_wi6u#t+%>*}q#k&QbXC-+HzfNsC$h_boytW;B$unLMzNtLeLW+V}Tu;Fh z(i1EK-3UQ#9ZfB6J(JCfT!pb_RF*(J5w8+f!q`uszo2iO<0*d_w;|Wk7e4=1Hm8x2 zl<4Pc`-`HwU@UN;ChR?lz*eg7s*zq$lc>LuYcx&2)?>=K8)cpH=n(uA+I0eIg?bem zmxn%rBUtererCiaVNXjv($DgrxOM-fK}8}Qw5O^; z^6@D9wx`6pAGj%YUUX0l&jcqbzCE%Clt23jxi5|;(ND#ITT{mn*`{RI#{T? zr*GErCnU65{ucfZu=^~ufPM^~A<&Bgns>T`-d+W+t#RH13@RJ*@eJOVmLkmwM0lH` zcZPuxZ5>bGD;ruHDRFLs6loHW-DiKDOCsKr92dE3&SYozY?phBPCr>$v!ICe%-(Hm z2TwHv2_nkd4?kxJ7^VP4qS#gL!(4FyfTCsLYxoUQuZ^H#w*dm0$^>+#(+th$aL41@ zT9NDY{l+_rXJ$IHJ9E(?B59~fI>FQDjc%pA~#eEv7#_T#j7aB-G=S0DIOcjEo z0*{%0c0qe)lo$Q1@YT?{ggsy3ojW?zL{)!R8mXSWMx%4XICM82zL{xJOjt!kslKvc zBK2S9yYPAQ*wk{V_x=Ub1?|dy3N{3}WJe~pzsl4Gsz@i04`NN4ug}uXW=zQ?qD%nH zUc3=NshMOhaZG#@lE>V0-k@22-|I^tJt1+cNblvN}dO)3UrzkIw zO+Eg)QdveAbYVu346sW!C0Vc77C+^!5oE5^x>4d4V(?(uf(3*4eNWQ{+TZX)B$_ev zv{OWiFrr&>rJD@;XiWbi`XF(JQ9TQgaccUb$2+s6smMKMum>0kj;12XEs)*qTHzAW zr6X=Ca+u|fl1KvM-gXwxwj}J-jmV4-I($nM=QAOYX$vA~lVg%rD>xwS2Y?m~!T;33 zX5_DvS>b)8aqfkTUjd}>(XbLYR{(tLG+-n&D!{{k;kGntZ`a{l8FwpI|Bhlzn(e9E zM9N4ckgZI_1Er`I#PfNf^Go4@qobq=}=R7^Wk#->2v zzKxFcr8w3a0|M2v9f&^D%A@%DZ>Pe0xHA}f1$Bfk%)(N>tkA>J3_HUF)6&d?yAq~- ztow8=tJFd?_{=SM(3~f*((Q7KQ-mCruyv2AHf(3Btd}=Qaq0j^f5j=#L9SPt-O?}F z0NJch%^!P&T>xf_9aoZ#3q>YVLLyWWmx8WJgl6o}`T_cscNzt)b;2hFIQm*r#Npz_ z?pRB&4aHH%*V5`h$6WMQ#h~~=xDE>`9*v@nJ(p`QP$7A)NF(Ip`_z_nbZ(>=KDGdT zJbw8`xJAnZm0CBj&8gHfA0VVdf413E@S54=Gbv6MF7kh>5=MZ(c|Gjh9_cBEZG{?$ zXTlWx_n*NDHx%4TQ4xdVf9saeqWHrK1{4?4gDo^}{J!6HlqE-o&EwykfF4iSVVGCtAu(q)W8MS6p?nfJR;V^ki6Fu?>I|2*r$;4R)%?;PvHPkTAY zt#a=LCHH^UQ_0)j&?kB2fOuY`m;V6ZF3pAAV$;V4n@o*QpW3d62BpqIZS$0aMBMV*!V8o360$86vDrxup@!Jo>~ z(fs2}p>yaBUusTgC;Mme(hbqb2!;Ju-!}bo8bZUx-y{N-BUkL7%sAX{R{vOfUiU-f z-uus{FJn*gXV&Z}@!oZV6&-Zs9(W@a44SV&#)-dC(@6-f>+Zs!RkG4q>sI4j5+LgP zM&+w6d8h@)L9*$Ld|B4Yjm+JTkET+jxxykYXvKU270T4LUSk;0Sn|d94fw7{&H>t1 zkgS8a)2H7#$_Z+|lMT+_V99^C%frDwq}0ft)eXR)z^~;uzRK~3_E_cB^twu;vUB%# zFVoLRpec=~| zh32Q|1r=pYFMrLkyzn33ic8A%ujSTJ5uwq%mfV#dqkqqeQYyep_?_6(ei$Pe&4;o- z>fd(<(9e>39}k(NAQZLv{(k*=zwvOIg@w(pc3Pil zFT0MXe&%RHv|nUQ3^?uFRRqWORfn2@QPIW*yG@zZI&7~ZMq@&i1LRb>QP{PE-iQpk z#|#IvT?%IQ9~D{;6Z$U4zp)qe-Arlrm~-nDs2usMX)VAo1=Q!K*wBA6_$KVJuRC0=xXwF;Yy1SLxagh0X2Q z+MJtc$nkytfsiZ%k`r4j^SjlDLTobqnyIiolH*T*2G;fzk4Q1P$N*CZIV-c|7GO-Kh;B1 z$Nin!4}cS}Fx=eNy!!*%L|3{65m+9V6uPDT)4XL2-J@{MN)xV^dQou&DO}xnZ1nVH z;*Vax{o@HET2Id`&C2!&p;kGi-_FQEV98UvZ-$B4uB>}Er`V^fTK*Oa1%=S+%FwDZFaGIT-qW^dr6mvElanH{bzb#rb#Cr%`LI8i*p<-)E|?S zyu>l74{d$n^!%wzld8AHwQfv%Uo1DKbFwYjjMevs)V&}MX@C(w2=giDz?yeH3Z4MH z43JjNPN#f&Ap?@Fl}!=0>ewvX9_5YVx@6LFWFr}yLzMdN2|#cDkHer)5}1U59GJs} z@6}!v;wAjOVctjj^ZD!HniVD4mOj$rm#i>>Gam$LjTZb0UyAV?Qu`KIz?;ncnK2-^ zRzE69W4z|F2B`vMicz&pHS!X}w}6sU!OBb$WHdbnq`-XL{2Yt~>Ckj8lJR2(D0)gKAu|9BN&snb;Q zH*fC)5o)O5xt|vZLMU0gjkVTSaEW-{`kX`c>nH9g*iCZt-ue)YoSxJw>{5K!UJx|l zrN6+35r0 zQjhqO>d*L++cFVl+q~TJ0H+;Jm55jVQ44*2>cz=*9=&h3=Cric*~;roI=gh$u7_7( zoE8Q^);}k!_&l7jBzOQ3eU?x33w{Enac&)}{dE`2mOxQHH`&sP^hUU*@fFbL7j)cw zGcm@~RvXq6o>&x~yB{+!D(n^rf<@xzsp=6v4`jM7CpM>F-Qf{Gn6EyWT$w8*K%$!ns;PKLr%5{#+Y=xrp4pt=~LxOz6W>WO|e`V{-mn zr&wVQK0Tcsh)YI~Mkn#ThpJRrR$3aAg#>wCf11)qkzm<8O$@V8!fWL4%4RxBKF0fW zn^ylBII3h}OKp*!T&D~SHYHk_BLJvpt%B-D{)x!bf_dSMcEJ2z?b$l(%Z~Vq?c8|n zzUjGwmA98L<;?ery-UVUat&h2e(SHX(EC|i07#kH$sloG4TT`-DNOq`yA4F*nK2}r znG^+#6+S764$F8cu^wJLNPS@|EiL@B%``Qt`keW?81oW{NQR>KYRB;uo-%)+T9YW! zq&f%Q)?S{TqP5Efx$8qg?ecEO4aC&nfd&cD>uGTgy5DctmlMy?P=NmdU$p}Mxe)2UYHL7Y;Jwj7)7MF3U`O(=CsHKRg?I}!&_m}T$HD`tVa`ji|wP8 z-DkO08Ypwa1wCqK5zWbot$9`Mk*51TC9K^CW^X@Z1<|&euJzR=28}z+sXCo8UN7RN z*+rEm)8&&k=X34YNSfdQWp7~%y}P!&4xsi-x-~dG+vcY^p;lUhHu-`PTl=)JBve^@ zkc@i~GdSwz^ZFWZY@DaC*=*qoNsveX;@RWA!sv~~C6ZTb80X$apQImlvrg~s8?1A8 zqIuUjt>kQvWYuT~IqTKUy&C)mBCCKXtXGr(6~?KxDrvnxq>S)P(95C}QC!ZicpN(7 z>R=`yYb!96@c0_{D~(eqE>C`Am}_({R|R~GZm1izn>(C0EHbw8h#k<)1~~Sz17(i?R>{n zzFx;F#j@uYPYy{XTf4uJ%aeF1TArTn7;1BR)Fm&yA)ETn-lF@*$*f%1wR|%d-}qL> zA8r?hR7V@cRlU#xH47x0avFgqP0K?)h3>--g({wMgS@A8KPQW-uPn4+!Pv@}M1o}U zdpH!!A#Uxvd>%L}z>0r2ikIZEWU!Xc5QdgLdq+<1kHmdMBni;K^6C`-=wIGRV52Zq34|AZ?j_ctC z+-f(sVH&Xtedu~+CNhe1_Z)po>?Ny1M-U(G4t6O7O*iQw0>y%f{%DR=F zWzDKKx9Mt~!=3RfkOQRq?Q1Gy1?lMqyh`Sz*-%h)fBcM@rmxil8>8#273M#^KSP1{ za(;bUhGP}ihZWA<&p29gC;dmCu<>r1N$RzRL&=_KGiJa->|85v$)6GaoD!Z%U~xqa z*Inn6R`apXT&LUeSC*b_LDp6WZ_)`~IdJ5>**TtPKb$Y=6=iW78H=2T3*Pd%nH0R| zg0c3IV$6rH5wM)-WwT&5*^Gm|#F49+@EjA4*F4G>?LdUd=LvWSbf9MqtIftGUnVS! zhjt?oLDNBQSR#2slt;V_@o}QmmBl+e`;4sPo2QxRo&^209Nq*3D7%~{%1 zG{}JDxvpuq{grq3yfI&57z4`>tfrPI~(O6d`lhpl+%kMrnwaF z|2x<4Yt$98_2RyTYHM4Uqu)tz3D)!a>%QC&FgO(~I7-XKLkF*AiGxrR+trsdOQ3od z(l>gi=AGpnS8k@AFnL>BSEfYnn;Y#Dz7!> zd0}%V!4hg9hu23TfDxmr&>ij< zL`3H<4(4wPf&o^|I|ie?5m-f{$S`^rw^kU){4_9 zd#azp^jS*C+HO8>il$683}L7!)(nrGo3m>M&3Z5A%Hm-vZL+*?1=EFNcs%M<9zYNR zR+u?m{=NCL=~2AT>}S4@r4+uIg4g!J4!@SU-YiNrUY51_L27PN^;!h^^Eog%idk50 zMeKs1PrGQVuFeEp#I8~HsZhxB;e7%ZHOUV;4=cQLX(t+n*(KTaoB`79?@;kdQHB@R zR~R6$NUu*3pfaVko2*(gh{i9(xb|2 zQstPu_U|+EHhLM`7P1R-aISsl!v;-4^cpp@Ev z}3D4jkz_&oo9{x#%?=hg}Uq*Cdk&Zb~Z}R)TbC;>U`P`%bovn ztK^K#`6g-$G5}aFKF1Fr&>YmCb9X$@#I(8``|4(#>M&w%8a=C-QL!y&r*^FFO@lYc zxy@{n`I~{JA8%m1fHotYXLkk;jIXgvxA)Y}f~~?%)lW97l$tny72=z*n^5dQPQ_9N zxD?gF$UQ#{`);XVgJyYjN1yvXPIc}a;n@LfyBviySble0V2gnGaBVCaRUIE3RHgVo zj?O)v>HdG?n~gc250ha`IlG;1ZH_~Z$@!G1G3Ai7QD~AehtkX`rE-{44waBH=`g1a z6+$9J%qgdGjO6?K+`qqhuzkF}_c~nH^AgveRW)PTc^pRDlEK6@i$?br^YZ*YD_(-yuKm)EaIW#M4lac296O;^DI zXFj$k-F5rzz9`LjEJm$XX;A&bC@1>01MWN4fCKJElirGHwyhVI$sPc1P)}+m#d@;_ zqMiIdQ2NFr?IhD-69zl+{XuAqfL^aaZr^f0y5G{aEwCI4sxp=6euVUmEj<2#AOfp$ z8j9=~@TS^M5vawmp>L0-v!!KCd~5R;C2 zv{x5%?O=mN?X&f@Mhplw z+0GGS$@`ygrW*pRAg&Db$=?5P!Y13U7j``)V|%r(>Rtj*X4|hOK}4zPXa4;xbm%BL zQrB5zY4v1v=LRzm-fd>9OCk+O569PmX4gUbc7TDO)~@)?k=KJva20;%(wBMbWqFY1 zTm(wa*@I?h*yh*SE$*d%?Rrvo#g_KPYE%9E(Lvm_L9qKPo`RuNi;xf#OE_l1aGP|y z`*aymVHO_HseczRiF|JR*5N*R7rO#NTXgIz4ieg%^HzJ8(u zd`l&!8{Ypi%r}-H{grO6w}yrR4c@ZN3n9_ZS=XYfFeu2>l1rd3I8bb&FmE&VuSLI~ zG5JaL$27Tzrm1E(N{VCxTaLa~MG4YHb?xX22Y=O#((PC%h9na|`|ytQX%2KguXOdS2-Dv_i}l z%+SBIvobsW?>RKqKa=*J|1bHO-%i0=jsg62=jI3WUPIdyO)mvB^VEna*LH{WtKyW ziZKEx0b9N>80{a;3EX)bgwy<3uHPcGtm&#bvFv`m%?bOJ{#K`fT z#bZ4UBq;rF!x|+PO~O|@#6`T=fro~Y4}S0md{K7d{MwdZgk4jrQrD3>j>y*A?w8y> zv9h9ZH(i!bQZn62Bhe}nYH;h zbizR;^{Znbp8b9Zu%|zj%d)fwMUit&VoH&cwFcm(WZ1{QYOPXh$jqpiU5>ev z!RIrkC5A@wtgy5E_T76o7>`7(tO6d!e40uQ3-uasu?aH3p4N8N^U+}wmzZV-F7!c01yo4q#x4nR0+hNqrE5xcV}$aS%Hb3`cMn3j zACccT>!q1)z$$s+V9N6r3}OiE*!_X`EJ>>0^nai{ckM`>fra^qth4u5e|s=?QF~q| zbu3kL?Qqu~9c@r9`jpJqh6vdk9zSzOc_EBDeqfsfn*KN+Jk5ncRrx&xQCo)rD3mua zy{d^os%QJWN6!MarjIT^SHm&uyNIpIn2dUwz~%&Ji~W7yH8s%pj+M`&38GEfQ2m_G z`8`ZqzoQ>-sGUgjdysHP;l5h}#O=sYw>Qx_KS=RIZ@L0c;EoZDca{$mS@+yZeR%{n z<;UNcxE_zuE64O`7ZP)rRZ$W44C*=)RyP3<{0^3`3Hsg()$qZ{%TYysRxmAP12Y+* zZK1(pCjXzA_F%O=%d`IjaRz_zx@At-6JWau>iP5nt#%9?7puBt)5`zBolB}c*%}ck zpRhP_3L5^gfC-v4-wOSA)KeHNNDy%+&8I(>n}FX*WC*WtgcJX9zSGQ;q6S75wKc{m zrt0#!S#t~X3M@OE{Q^zlXLMgbe+|BRXgIlMlp53tFxWe%fnjqh*D$vD^jFtn^kr-8 z;B%Q!u1X>Q%|C11 ziilnU6s?3K%X9QBm2Q*jAIA8DeYaLd3X<9aM{cW{{|}UD)5DKFO$?xJpwze;-Ac_E?2#P=VR z+2RnLck$Ppk9P6n^^pf*G0#Jez@qAOt_v`x2~Do>QX>YyMR24;~q? z&C=*{OB3lOu74woR$&)l2!yLVRPpus6NnHPN_Ba=+^d?bn`_MG&899ARS8FD4`29X-_EWFh3!~MJJu1|3JfvMi+ zl$Pyfw^{{CG!pD(dGu{`YtrhvryMxopjlOQuHWfO|95N}F1ZRpNy8Z@0u!CH1<86! zM~CxaR7xQgaQ!XD;972(hh)v8d%B@9@-<;mbt?uWPOkYb5-iuk&ZdZ zlhOT4c5b5rDY(X#vty8FZ={9D(10FU*0lNg{cT0Re}iJ=hmfEu01LgQE)wJDbyoQ| z9Acpc+zdqpof{B6WKzp5epn!|3n)&uk76H5cfaPjmq9CWaSeT2DFki8EWnk>>xU$d zc*>|ObR1x%5rP=Aqi*rypU0H4dIRNnG<@DgFL}h5-RunIe{SScDsRv8*!7d}dAL{9 z6Fu@_`PbVGMoy*hORiuDwIn>9SV?r;!yQbExcuCi&twhRpSVhB;u7>;U%Wcjq-T5s&_w zvQ>eT!ucLYK}ro9lqIV``U!aVr;5xbJijrR?I@qyYUq?VhtTJNBBCh|ipxk`)vDal zjOew{BVlWxgTjAYT^y~wB|~yO7tqY*!Xfzq<5%PpRY%Ea+5W0?j((y;&NHQ_;WvNF z_C5=bY491Ak7-rI%tG_VzumJm9IwZE&XLF#H-T+MtT@bdD@s@y!kc1CsfvD%5DxA^f(69ms;x#E+n-j&>+;7*l_avonXAd$bjk8?BT`VEAhp(5s->$-&WCUqV2xEIWvk!EHctA%3(jm}1TKRV6;=c@zw-cXzP_Jc>Ude{g z@u1x2!(QMt{5D(ulnfx?;U1S0eV^A{^tLISrKzz;<}%ts!)NPjPGY%)&s>fu1l%qe zGe#T2{*Vdby|x4O)KPn*V;uN;*14xDW)Vn@I+JW1+z^yCb&zElW>C%~NO^ zf#5OwaXBG9@F`ryz(R9KHP>JyWd$i46o;aU!X%GBqT4UT^cCj+ z`d{@$`=3^9MpA1ve0|99)tyvakQr>!bf5pC`%4k6RE?_8Ak0CSS$7b%s5c6%7>5{y zQ;1p*?NoD(Zy0WYTqQTgy4%dFMvBNFTx5?; z5ZF^)C|2){T`w=ha80kFoV}rb)|OZK_O7^-x1!SdNCK&Z#50*}@lZ>|V?d-EaO80_ zmAiGjB`K+G73+kFD3C6nY`^*2cOyxqaN}uFkZG{sG|6KC3X0^=j0K~q16=y&sqQ?g zxuF9vI)_U)fu?Q*hC}oy+1K6+URlNFx1Rv^Nr?Y}WGeXAGT)JUk&48eYD^(5Wb%S+FYd@#yMT0dZvd#-4nPHX?&d;Wf0BonAn{LTnk-tx(g zLzPsT6#$!0qlsCV#o4isW;{)jLb-}+RPOG682oS8Wk&Y&TjG1cN7&g0=3jM-tD(Y+ zfl#DcDkV7oEPc~?H@I~o2dH{=wTJQVfW1ZjN9BRZ$E}f;$OGm-m;D|u%0L6EIIL+t z=ni^$f4Jw?+m5j@AJTLPnK(kfJKEK*VUSgGxJx%2dBqnasTF9SlN4m`@dY;W_-v|4 zrd;z})bS`@g^8hf$SI`{x0TvlWiG>4r}jLxq1g|uZL90hDjY#TB>biH+gv0%bpjm3 z6WyeUi{ATG4IZ5h$+gw>$})U$v_U2+QVlM)JRk`431-#MF8D2@x}iR!*}UJM7@e3{ zFk+KwMt&sX_B&uq$=T9WvBU5ccV~yr(fqwNMqfgr|0f2oaO|G{LTdkwu+%m%^3GB- zQX%CRR%d3z;8-7)x-Js|% z%bufn_I}kxqy+H<*w*0>V|}Qq+0Qs*){$|&P_-2BjL#R7HTCbuYI3z+0}%`7Q;L%O zT}yO6d$h5L6zdog6_3;s0VyQ(qcUQx7BODY?b$$D?DY>}C5*y$lw0AA59El{reAY=lnWZAXH@>K zy{Q4T{kG%hXRzaU1poi6WtTHHCJ@0=XxKo|ZQuHh5!Z9?wflHJ*{o>84a3jzI;i)4 zPrOYNspNI?@(O`#=XGBuF4=nzd!>2`RcvNQnE*+9meEd3tob@Mq#P$1~w+b!-+L72(DH z#pP`F%i#`6Ey%H#iLYN@UAB@K4Yj#0X=Z0R0e}|5lJPH@H>`e}yegi3ArmV=QHVp% z!ey5auK^}jTD~rSITvWMZ8||n=|#1z1h`%N^_<;}--k^m8Gmj5V6r8>jyfi_{Xm<# z&(}XC?y%=Sq%=bxI8{$Vo)o(YKD?TOUao?ZsV`llP_m;i9l}vmZsuuAI8&QC51rmE3!Q( zNUr)ylaSUiwyj{J*v3J}@B+Q^ii7f_(cu=sQCKk%cs%p>+#WxMQ0w{cM$4A?wegGhKsi)>*a+tFy z!(-Xw5%yEn&brrBf@&%Nf=uC+Nx`@`fZw*VsBM zdsOhHF}S?OX}MNPy2>=!`l|f9zOY5j21|3?)$DAv_Q}$d@ugmFZRhdLWU#!m&5=xB z$yPz&Odr%N`h{iaX40^cbj99m0Wpz{Mu{HP;@4ZHWtRqYX;$b1U*H!5aXu41KJ^tS zkk^@<-E=qmr|^>YN;c590Z$Uo$756@M@&v=_^2Fgl8#y01oRruRxN#wocD%=9x5M~ z_)^VMdvRZABEmjK$G(T#0a$MB|0u8t)uaYDS4{%1RUJ9^#qEbwLG3dHevUIplFqd< zUNh@1*cYtq1XpP(cX#KU-;UID&qM??WD!awr ztR#eYI9XDliA>toUO}oCKKo5{k9^G}(DRPqH!??M0jK$sCy*gQ29#$33T!W(pzQ_{ zc^&w?tfw+UT>%TSAVC6l|Ce2Ye_tD-gkmAtKQvaa0v5Ebwu2He)?CgeS=LL|5))1m$#THV6p;`bxpF)x zRqKZ3GDEjdeImhz%EgCa5iF%dY)UD}HF$F?#z2e|G66c1Lqt8UBuBiA} zj|$Fpaz~1y11x}Q1g7hiQTf}?mxCS$GB)>X|}d5M4N7sFq3&6NuDS< zt2PV+-{b$d-9Jd9FlwoiLKG-opx@=ja5Ik><&|!=^F*%IpTs=tk(v50?zYo>-5`9@ z_Q6u=Bjo!T(?C0DNDZJNT_cxmUog9A=x=7}8Noz|<$X)4(BVC%-*T3(r;AJGrBt6} zFk+`4Xw}J1zC)oPK=1xoViYKqPG!+)Pmci@Pg&Chi~jGYLXo$k{uFSy^sAl<8sc+Y zUo~W}c57jmfat$*O>ZT^YSVUo1Ax)`ZsBLy7ZM+vktumm{JH3)fPV3v&+9lWD9TeJ zX9``hHSD}IKnP`<>KKr}tHMhSY|B-@8dqWby##CkKtTdw!?Cf+4)vy zhKYqkrzQey*EO*21d_hT+!6bj?-1P!kYX#Ev)YS+P}F5rtuZKNy~JgtDkxxpmFaFN zD+~SZuzG0Y7n|98MqC+g&xDoSp=4Gagv&9Wn7l{pJc%lw>jvyGb$UrXav32ik*Y7z zRk&dSyxYB#Mz!;>hq^61Z``CLmALpBNqz1F#|lyHdpNYj9(s;Xkm7w`VdJe?;8AL< z;{3Y_ww95Pl2fi1wBy56p?QVBM#z%_qE~YAMH9YZSGRXde~|f${?j}lkocqBvg&{gwBC6-wrcNtKwok9*MV8RIGDr})b#O@w*wI;~b#Q`tU<3%@ParXXf=Le%Y z5Wh*h`z8PIm13J1?)oU`Z(ndtPe=WGc1@7>O_9Vk1bG z?r2@mmCWjhNp!qd&QK{BwATGbq~zqZpgpBF2+_1QOCUdc@@NR9pI024CTy zTNnA)sDRQ@sL^4-uu?tN?ZM(h)yV6e(tl!Ds-l87js4ew;&)r@=xO^l(`@rQ_fZ-4 zwucPFKfBL89(6od7%=F@?s?@2t#I>=Vsx0bS$RY-;5&fSC!5ci z%5)@PB40RopfIP+Z9nPd#hQ2P*(&?7FZ7hmdc2|VH=#!2VkpL26=W;o&*f}cS*xzn z$q6xo2<}tX50)rH#NHMRQq84JwyedYP^lF)Dq}C*<+bnblFdi&4ziX} zwEv|?hJg2h!d1DE^y>D*2R zd%n|~K<-k{MEI(=hVyZef^FH-A1TFUjhFU}X!@QplFCn#uu;+dS23$2X^?)Hb|IJs za}3~`wKQq#HvMUaDW~(le`nGDHZAuRxXvmc6vBWnACf*J>u0GnA4*}!-hc^ze6>G_ zPQa}14}#(Mbp?bA^9GA=>VTbB@_S@C$K4K3DU-;Gx>(Bv3zw&6#&A%so z-|Hio`rtxZ+-ioCw^ap>>m3UQN5g&r<%ZTxUx#MMW$4xZcU8a#L)t^@Pf6a$Jylaq zAy5oR-JPv3H8RnlFmQLbRbL$I3WQhtD?UUnm}QZ|SG=W?a0CNZl${@JKv`KYA4-UW zypV1MpEa#s01Z!Af#~^xIV|2qg0Y9=ekNaTRD%KuVB&d&4Z~ziEYJ536>CIjCS4lD z!{)cw4-=nip7z(Vh;NLR6aH=3#8@Ymx=rXr5hw7!YCmhH)?s4y!m%nMH@1qY((T-; z+Bxswpkfiz0kab!6LV6;p0)#Hw~JtvaGyCrJsOPYa7X2r`0-;#N$*2YZ}>*)fATIB0!g^qk%rKa@w|aZ zyP(l20I`)=F5$EGhCWaMpx@p6`o5 zq3-nGu*ZT}&bNdiwTEm@PuG~HG&dzD#LYV`Qm z)Ok>wsEltnax-t}V1LMQS{;)3kvbjoJ(2a`6X>nOWM|=D4ZzNm(J5mMh&KnpyyyKL zXaE@4WlNF-!a(;zB4JR<6i`2U=DlFzz~8?hoP~& z9k4ySqiApR>cL0h5ou;AMS^iKcGlV8P?jDVmRhJLXiKDpuRrAa@q6lgF7#!jr1Gb z;3~o*d+QDW;N>~jthq0A!8A(G>P1^?y?q(}&7S+~or4;Tp(@cUCYv}^IP++iyH;vi zMdy32r0znEp(?J~?dB+fKPT(HC1zR#5M_GRQ3j&n9cf7tr1#a5f+uW>FrvEeW&uEsKs;x4J8dbQEx@HU{j`0b5L8sq2`zIx>{vK4<8;7KM zw+T+E_rt#CGXZ=sj~uzrWhg^j2>dqjjxePda}bK%mQxaZoQfz+?O$?nmEUA^XXA=p zoOTSKDDes%o9*FjP4jyBnpq_oVy$9yfnOTWD)Un_PVH?ON5jkHVrOUST zL2kFEhFJ{*+LX1^zoC-rSg@Q+DNrc5fm|Mne{a-x_+eKm12Dv-l2jp>_2s{6gG`Lo z+i4N^L=nHVZLnSc2BSA=m)JA^U?|W(ELbI{_}y_uz=Y2G{WkqWu+GT(_nK^wtVPxapj%2Wc<6>*YQj_29~dccI)f#$ zb&bX2RAm>IJnFmWlfC?>1;w#2w3z{b1qdti!>5063MRL(5`{&c0cjhLlPp^*rdl=h z*s!YQ@uid9P!wuD3xeLeTTsVxTx&LZ{j0gH`3m%C#cO2c8=av zZYZ~}0;zt?+g>yaGiiJ&C0{`}14o8H8V;MD2LG!>_*9dpq037gJ+yEP945$t^y*j0T$!c}?D;Pwiy|(CLPOgJf^D$%A(H0RZY~ zaJ_Bn>tU0(f%&EcfU*BK%*Z{!ZUv>U<=Y0kx0t|fzs(r)P2n9yqY#^i@k1x81BAUe zO(zNg%Wr>kb0ui>k<^kNg|5$_IzmkSy zDz+>c+OKcR@^~}}8}u(M+v(%|l-j>~D<<6VSYk)2&D$t_g!^{ZH=B^ZP62q+PZ?kR zeN@y`*VRzK^zoOSt7wW9{&tK52_Z zJVSRKDeWnJpQh9Skp8xA`BAbZYupKTKaAb2-`-W6GY0-~bwx_)Q33W2mnI;&X!!CL z>Wz=JNy8pA`HbMCU8T08)JdLx7^a8qXrm4WwP5+qVobU8EJcV1cnJATR=D(h&Wk5H zV-DZW!7)MH+OX=O76eLx;A~OyWw4m~u&IOWcynj=k;xHb0h@Yz6^}bd-+g71r0$S)+`>+*3-fp8y?(RJc_nsf>L9~M^PXj$3VdS} z6o>g?YvSR}^R)h5tBsBeAU{}GvVCT`6u7whX<$vBV1aNCatb@|&P4#5hP*H@y^=22 z+j?7qieEYz`0d9GD&J}$RRt%(EX^&*kUbtHd~JCov)8fXzDJB+cbn|tl{MF@sG12Z zR6K4$VXLknwWHx^8knVTkO8u>%nh)N*aR@!fM)@(wI)&z|0t)Id7hKj$78UjQOEW7 zduvYKguBADF4hL0Q%q5Ps`&%Sd;Nnt(`}^Sg{VY*;}!zAV!eR)693rVPX~{w8_ve= zpLLxVy}ZYJ{(J+JZ~(tii3}+&n0*R<&SkU_r?4=*)g|oviUEa-U}RZpo`U{MZl!Xt+0~-6P_K)h=-76GWUo z#ec#I1{aKa=z6lwCWsayZj{WtH^Tivj_-nujW$bDAXG51v8x; zk__(=1Eda?XQQ)7M~(=US@n88!@v)(n1O$&bC;;;>TN1s_B(^bzplJtD`I*>GN81Q z@F7LoYawhe@u@ah{=;t1uA) z7qMJtVURi@GwHH38FAbcQ5e0lRqnZN?gJyvNj>i0qfG8VC}qBfxRTLBdU- z$Hl3;xLE&S0DFdjs?%Nv-?)+jP<=ArsVy>Qs}f27Lcw+)ghfnohfQloG6K?MOWUkB z^$W9HdaDLb(b{+s)NEmMKjTckw8V$e2;oN$V&G)EG#y=HwprXvCRS3Mz!%Vw&3;DW zCiEBl4-~KRvn>CK-Y?ebrdHt=XG;}v==snGToHKp-y0qCW-X73?}3;>{D9v(+66ZZ z&sV*Or`bJoJPyXHYQYG4Qx*#uPT*TPF)QPgJhprIvN8I?= zr?LJDxB6j&Jy0l;5(^*5#dEX8)1p}uw3g-K^!?$A6|RIS2E&Ag*;>c)e)!vWG77x9 zdJRDW>NI* z>LY^ooMZ~^^`WV&nN8?$9uPTQ-*&I0{q`-YdUr=5H`r=t+wjV<4_2j|9-yNT?ij2c zvEC5tfeSwYABqxOh%Q7Ud*!<};smnD8vuk;b4i(>TLeQ%cvXQH8--B)5bUD`GXg5M&#WF7Q!FJC$9)GD1*_ zdVwKv=D+kcq!42oxo0m_(wF4#bwLm=YJU0N_`!B1qnS%U@lI+FTRT^6)LLA*idv0A z(ke(^EdeqE#G9J=Aw4)g(00wDrf~bQG3Nohp9|ETO2!s%>DNDZBF!Aw5w73Jsjerb z(Gbkix9m>O2?*zg+0u&AYlHPHw9wFH>nTZr4>7R|H0)CG-|G4yCw}>k8`%C2V5Zq# z*;k(OYmp+_dHG9yVWG)0sT#Zj`H<>W+ga`)W`jo|X<9KHWW+h><>6Bi+1#dcD-q|# zd3a=oo|;tADLvP5f(H`^?8=k5fjE_HK7a7QKpOW=@K_YM&%k!Y>EdJiQd_QHO!@Hg zU_Rd&s>c67t(wfscmBkGc@`gjZB_f0(H-2)T1%5C5!kO9MyN`-QoG%;b$2_i;^`Ez zToMYC2);^`O7Xr3)Q%J zf5ero&Ay}*bg#d3xr4ZL?mcXy{3I;EGA9UrSKr{1WuM5qX32B)5r*yWckKXzZ5#WI zNk(UexS_HegERXd;(fUF<-esG`W2zo(~S$z?Y5fFZ){)k^r+nN0ymmW7wctc3C~3A zy>G0|kI>WXf0TG{!FgY}q$0U7k1&2ysRZyujP1FD{$B!?F#r4PfeLv zAaQEWm`Xx@nf|9V7zDwIW>;$d@QeVE)?7yZN(co2z>^ot@SDw16`Lb_Br$g3>nA4} zDg!BbMH%c!JJlLs5IiPif5awFJ1JKLcX z4h>(dd8N}~cpg@KULR(rG&dd8O13aUW8_1RkTO}@a_P>U|0&kuA+hps&g=W_$$+S~ zg7umO`f%uZtq0RbntkEjyK-g`!?kej)Yy;kfVMNlUj5^k1tj$cEi^UnsATF4du z$GzoLfas&(b1h^al`vYG>^6ihvvqwYS;_{0Z)NzBWx_&X6>+2DL! zwDb5JjYqFJ*2Pih)C*XT>tm+r>@z?mF68>_MN}>Q7Z4emJ;bNaR>`bF>?)L{cnqKL zwj@V&{*1@J44t_BZ~aq=^@-QBfI-*9ey48eOcI9#i3eb(oJ6 zfnokI0TxKh&RwS|!UV~y-3#>Xk4k#FrO6CLl*k)-?!eB-%X*T@W(i>ss|e&Y0$;kl ze`vU-$t#wU(bxbY=GbgWy^w5wl45~Dn^z5OmCeqbg4oi7|53TB_*6zd*YeoPYBx+# zXYIbBk`X$e6TFaN6Cku#^wXR%IW+~$IM2imxPnjJXQE)2H!IAO$xKiiR{mOFVoy~$ zu1*Pi;}>T~{v$-%=>5Tm1oB}}Iz7PO{}OV2eSB|F$d&~cVn6%xl*>oHXbc9+E6m_A z)CA6RAi&0OA&O5+un44LM$K?3LaJ{L@+taTfuSZo#xrsO@)B050^v8BxWo}Q7an%3h=Df%3Nt~WFZRGn8M zMCtx#)EksaIupb5eQVJU7*O5qu)c?~&~Y)%I`^xB9e-0MP!Ci^WDSN+xySHi-sg{4 zxQtmi*e&}pE2-4Y&xs5Phi>eoC=cz(;F!kp(pas;n^tBdM3CS(z z534G*lCtRzR)s)RAAmp;k<*x&KPZ;FnQD@SWcyCBnPv`wTC5=^M%6*FNv$b;$9R_9l)#4ETbg_+Q&(D` zV$6OiH*fg@dhOw+pl}>gxP?8JaY}dCT~>IG!_&Ph-*vQ(3e7d@QDSx@lCl#lj)eK1 z@^zI%%1TCJ-d|O?Q%4Tvb{JDc|JNQTge`(x?UH>HoA{Qz;*$}LqSqTzAxNp}P@dXG zE9 z%3mw?Fxk?gFaHHdFO4j&tFK2J)@BlJmm+iRKCl~RZl|W2cw)X86d%8$&_oI3Z*ea? z&wzcI+8e@Z=&*FmGD=83Zz-c8I#M~T8E1pFF!DxqgA5s$lsR>8`GM4W^ezvGE+0|T z#6B3NfA8Q&^FR|wnp%oXu0SASs^f1xrv0hN$)5&NWhFb)xE3HEI>Z1@?BCF^NXX~o z*WZ)r3NDHZz$DEfHR(3bENDTFIMuvO*V1A0`+jF*t5Ah@R%yXq$lAfEStuO7LnSzJeqJk^d6}%Jebcu&>YDlJp)Z}pZy(Shkc&~- z%(KUSS_9%3W0+O-oh*P7MYeN|#y>Gn3La4yQ#Pw8d0qMj z-;b$&h0p)E+FS9Vzgu#W_7lSBqB)58n1hdnIGn`PFFNeJgBD@*2Mm}v*JU%S+XN|) zDRL-Sw9chJr}zLd+_a`7d^)OAF`%RRqY0=Y610aa<8l!^2UD}(QcR?ZG>JF8t5ZpQwe;3iRtmwAGrWY?M4qQ!vuOIC>$WbKns6$_f0Z6sI$yO8`5J@Pc-7XE^5d%l4 zsgR9B=72vNgujvX;R%ryJ-mP6zEJ~m;>HE+LF~xKZHI`M0o^BH zlSb_BeqyoOgmG4cJ)!IEngOjGm=AY3cSRy(W`UHTmetWAta2Liw~a2ONfVa`bnKgO?@R9z`&n_TE`nX-h}=<^@TU3TnFl% za~kC&@=~t4{{pJil=RE$l>};iP6P2zG}F}M!sV#AoPd{HcBb*e=5t-g)bd9oT<#6z z4BpeBy!m{y&z@y#46=1Lc~EidW%7y!=$=p>l>(F;{BjCk`DdJH=`bXPI=pzQV8#m4 zLOYHFyfb6oq1Y&_4U68;q)>n^m$N5gdPDD2lWW1(Csv$jn{DNhBlI*SEWiEo7hr*K(1km(7%Lc} zI+BOW{^=RT1A~g~4fMVei{UIFbm7ZMv?jBZW=YXHNLFh$XxGs2-@x9wANovkf(5^9 z0O-kivKF0GJp4kMN#V<(Hv3cOZ~rh{OATn@ML}aBKz1FByBnnfIW$CyWN|0Xy$h5XpGo^ zj!&YsRdAEe08D5LMU8hgOS1ixkD4;8#xL^A#yq~VZOGrz0*NLYa}+ETH^ihLX>EP~({D^qA20Cc z&8i(J!;xbkc;Emo=RdWgbGK!4w9Y~sw78)A@J)>`_j%Q5iEfDOdUt6IoK{hi;{rF0 z`N(%O;K`@;bL%0>McehO^a7CRtx7vo}*;k%tyMFL~t*8{$a~79=QkS$x;zT%p!K0>I38C0k4VCY+Y5%(U$T{JaD0Q>Q0*^2q1&7;70l)%_NYO zu-BK;>p@vc6EbR&bv$b=@(GFkZ$#WgCIWWNL0SX{md2%Ed7i+e(KTO!!H~jdx3zz9 znf6xTHVAQYjjK%N`sh&1XgqH%lW>0_dp4_o6pUJN^Z zoH*vMoaqmFom`dq=5LqyCGi2Zki2}$X6o#_?V1>SCk0HNb}LANxga@YUEg1r)O?gk zcAS5VtN;BaJ|Y+{Kr7lGK8|B-$6!uNW|t@1o%>lC*$(QI@9s#V&Srk?|$xDxurbhVHs} z#g&653#AvM1h@8jlqnFPDnLcsm@1$HX@A4kRI6w9-irzwGy@Je(Ge=Q76qf2?s(qU zy|YHp>L<`H0(H0dk!IXp-ZIO*T= z*Lt_b?oe7UV1Q+zH*}!nxYm?G&GvS!w|2N5TO|t9-%U~^g?f7{-a5JN1)-3gd8-FI zUnbRe0t-PA(nYM*B@IX+DE|04R>2yE|E}D_G!D3*bk}4;(%$)d(?TAQw@%>p&6uv! z>l1lucH#*p=f=)#`?O%9@fkt)#+O*@R$9V;G;8*~MHvJa%rW?BSFlN%L$^wBY!^f< z`zlPkS%o$%$TJa=(>(M5%WW;6o;|iOSaAP{bQC`%+0HVHt+-HWCR+EzQBD^G=mmv4UBlsdsPneQtMEmjo6vw?l`%2L z4@F|l`1%a6{sh-)G7ryQKNH%Xw=E0}E!oZ@+>(P!3aD2q zuM!c;SN85zAFv&FTy(Dso|NY8B8h#?(=djn8G(IjX;FH#CQW)av$6t*RmwvAH6BvA zi#e+-hgs8)-yeQKtnm$%tM}E|KzSR@ z^27&zQek|YRDWr2Bp`wSv_73>Y!DG>qgv}JrdgHBxe8^I9j}55qg*`P_p-m9h{wu_ z&~@ybNL~^g^>e!C_hqKHAX%GxZo}SAsbtS{TF3cHp1p80Qa$l^-X}DWszAT(A=~(w|C;qw@w?vKQSV{YH=vGQ=d)N9bZrv}X!zUJh5{9bYM$g@ z?95NWaf9&HyOMbl8{F6UdF&hEf}Gis@FM|MEAWO>*=4!Dx!~!2KuzWtGpu7Dq){$H z)mAK}d86rC8eJLwwH!+2K~c8LX2vq4_(2o6C~!X@fmPI9 zebTAwq$7Yon7?Pa9Iq$k0k?`%p&0{e;XCUSe*8IFIF_zsPLD;t=0uo^=83lUNSM&T zFBYb37duj3*84q3Q5ObdZ1*oY>}B#P-`sgDc$YPUDK+ZcLNLzzqd^;$>5hI}!z$lg zWBbtk;Zk)*lWA}ch}&yntq_pm@;}b_5T!TSs!BlQ8vh#11JFA6KUZkP^{`9LUl=ti zthgq|SgZA8{I|-hhlbqXsotG%N=-k7Z{Qp0G?_hJBLueSLDRW3j%wY^Qhss$b zl~X05ZHkcEh)OdC@NA8)lOt?To&PdHGYp z2LSv5Hrp~AoN&eJM!=I`CglbM{Y~p1^gyy&G;A3^;la0L`B=P%w!!o{jUWR7r4QZ5Ws^;i_Ykyt9m>aT|q8$U4?hU;CeL0haJU0uKN6K_c#p5 zHycYAd#nl^`1{t7)-eCaqe1Iv5_B(PRcJfmp4yzNE0OU4eg?DcK<){idq|Wpd+h-d zniL`am|aQHuugABD_=$rNK=fI3A6MW@+rau z!ocN+WDcX^bYkm`FK$1FMMfdwR|(*bW(rJPL8I%I#An=0{lxTf(njlc>TX26D0=ur z?HPFJ@2T)tVd63T?UP;^Cx50vn^Q)c5F-}?t|(TG7^J8rN5NE7dILVaf_$1EGHZ}x z(k%0f4~}~ji0gd=Il&1VS6$8pMM+Jv0aw{k>oC_ zFMz;_ry1RhB8BsTioem;SM$5?OF;|NXfJiJ+qdeV{-~W!M_BISINHXqg9C7#=<`_C zHFqHP-!h75%ufvK4TQHCd3C8+ww z;^pK>wglpnvFj5q4W$tvt0`&F$EL3SP_UIkn{p@8=1(v5zFn=HkJ+8YWu=+08PyDh z{Y(#1*CH#g9#d5yIZ+s?f-67K@VlhmVLZ?)WfToQ&gF@=J-W8WR%uL=0NvTnUX6j* z*QDpVmB6;3@a>;IjUSfl_dNDky{Z*XuT=OWl07bWNw81doU%;PeR(Wsymm6>b|{EV z`}E<|l#l3q#s73EGmjq{aR9lAT<&BHJFvgl&4DHz@>;xzui}#&V{$}QQ{xP`J4gs%9o*pPZ zZE)Z}1 z@lBy5zWO^^%=&_<=yuTKpg0#-i>W6)%pPMF;1>g=C+Q@_sb%R0?%Q%qFQ9|&U9K&P zQvdT#4K^r=2TI~82X^@LjTv>uJ+9^#+VP~^vJfoI93>UoS+a&_5&N*TMpw&t{@Sj& z_(#GCOVcb$N!JI%vFOpi09RIuC zO1m`ctgj^#EGy<3FVgH`BpF2BO?k#Lp8uK_CBO#|(#gQgSPoXhKdaJPn!^Mm%JDZO z0wlz{PE8T@;{2u3E@_N{3>-+a5E(W7d;Mxe|G5#$Dtx`km=F>C0O365_6oTCap}`?3d$DwCX&cRa=l z0?Vcn!AkraRG{xAsuJH5#NGU1zEC8Mk|_L;SD5w$y36`P#Kn&K?dqvr zXtAT;KySobx0Z)p^)KX*84;ZmdJ|W4>ZN=F9SW8$^%WdWImDWVnRZ-X_d{qs0FvAg z*$y)<5=RVX#?4{ifvC{=cJtkH2*1wGmi$HO<#l&cUT4{Zdk=nor&vzr)GPI=(R&+` zoYZ2^yuD)OHRU>YNn4=;hFYJ_s4`56&~_0+ z?e*B&xmRgYp%fZP&F=r}hWG&TdRsGUGd@Ub3$25~h#jlid zS8K~PctHBvm19q6hAA$091rM>h??j}bhr#Jl? zxW5gAbN1yE@PJtK3+rsR#CPwxa##Md4vd~&Eu}QEuN#cH1C+Lf1#sZ9tTi)du{$%f zsK-yb{C9C|f>L*i+v~z0#}=}Ctg^raPg9D@wmABQp6H>w zcHz0{blyuO(XH%9USYzFxZn;Dq7DNgWvcKFoD)6e6kOKz_15jm+!L)n;xRgzy*66| z3p*S1UO0N>S?FZM#~wHvygzj8q&)A=dW&5CWl8vr%Oz0(e zNZKK}J>u}okh~Y=`aj!?v?O%y~-#(5V9V7o;Glq4N5N=t;G zI`I{<-G$Jc`j-wK_M6peQGl@C%(Xccrv0l+dyThf4{`SX*<**1pLR+R_b%7o8lZp-=VCGCdGZ~D%?g4#V{P6cMwRrzXNjWXDxuGJS00FJ z@p*12Aeb(+daIEFE5H5bo<&_QH*i<(fPupWx*^f2C#G*CaGRb4!Si*Rp(;x+CXh+x zeN^Ay)|P7!olK8T&ImVccy~aoiP5sW72lVjm}2NltL>bUopt#NhU~Gzg+Pt)YF=zG zwZ{_DS3E^bp@kyBn(6O?u;#}}3*S>62{QN9wtM*R=3N$!v#x^~p&0p)pvL!bwi}{C zfJ3l+tfeu4W4$UUUi|jABhOjmwjUf{wE3~iLR$k|{ApAUCxmOANoLyLXeAu!#hf7? zHjG5*+i#O;zyPj^<BtjGP>0Ym-ddb{RchqP@o zP%<=2Q?q|8`)i;>ZK>7m+D_PW;x_;nzNDZDzN=yE+*zoz+Nn$!SYn3vfOBK zz4ZY5!AXQMy)o|h?^15_xXk1Z2CMLi>CR6ngItXwX$Eg?`kgd9a69`RHfG}!6@`sx z7tYDPEFJ(6pETa7+d>&WNGAhFM+X*+eUAQOo~E z3W3bzWb(uP3vd;PL2+$N@`~vGo*+pHc-*-jah1iD!hr&xT+vVI(Tun2reV-)*n3)D z4GM9ZHQ*1sxalIoNQMVN0?c2_@t-4%zf0e!Xp)%D|IiopF=>!|tzBBV{GIac+TLbVnq~^=xgXzW; zvSxM`#VurZD^b_%xePLQQ1gV9X8f(|xj!I>D`Perc3!E2$=i2+(|Lg={?mGj z4x<CI{AQ>E>(c3G)3ndmN9NlJ-nt(~#{yH*@HXumL0f-KXi zB0|I+p~S%xfM~f0x&S$dqpnO3JxmGJ(+xnJfHcFw?aGbxEVGr_hJLwJ`_~KFB6P1m z0$|(xA|6Agk!<#P^bjzput3u%=W~YHMOm_L{#WQb%CLwif^gt8yOJQ2{2@ZKN~d;b z5MX73ykcTWb+&qvhT6<#ux-{Z|N7(O&y%i7Pv)R>1MXHQ888Wh6jvJgFcHDHB9LNg zBop<#8qtNEa%P?zvdI({2cu3QfYsF!sQJew5vV*=!GUxWt@eEfrl)hFT5_t50yM5u zdV~71U&TXOJFib_HIF7a6E?oqX6(*t)>{Zf9d$hEcJ-^`{oT@;@5%Fco)=SC299#V zMNeSBkaRopJZ8_11-lS^6Fo4{pZrF1pj)(CxO? z{c`KVv)()ODj3;=jOjVu6Rq)&#ix{sxj+b^LvUCsA+0%oG>Es;_r*z&g7?$rtkk~+ zIxBB$#B(srJC*nV-gqN|P7aF%E0(+)4BTBnM)bD~dPlbqvkKV){ylB&4B8ewR4nj6K^6Yu^Y=#bF_BXhiuRltw= zeacEro6>Cww(vu(W;8BS)kTvw--Meh#iv)4+9<~z?-YUO>mW*6rUPRv-?(zZj_}W_ zf8epPv#}EJD>;98`2Mk5LH6XwFDdVt%A@3}3_EWnD?22EiNd3c6b^=(Oe~R&rxO3^ zN;ElsPm+F>$x1kr<}heqIc|Ce%ard|*R3(B;%2I6T`pd*zVh9g zov3%>QLx4By%lDDFy=~gf%d)x7BkDNdLf$6Z#J_uP}FRkW;suIH;$CO2*Rx1>`^;A zyd=1~v0hTWeM;Jkp#7^waK?15ZB736zq!!AsC%UY500jd)Jh}l2x@QjoD6fPgwYL* zhV48Z=ETLK(bVh)uEBo&C)QVGt9GAged-Vzb9%=C9+5bc<+NwS9&&O0jk_h7QVD~v z$`l0?cpK)$w(eiKlVo0|U*rkr#k7ZJI}1D@!QU{N{{uXV2Kxpm9zQ3f1)D`137#|l z{!+|Sw=tP?>N`k~HuFqeP-pM^Ud{eu(>Z-{t}@XV_To^y$HdNt$r~xgm@`=_FMs50 zu!dlFk&Dq^(H%jD{amNqFX81Btn!kF*b5d6S@al;kY0 zp6Yc>q zfh&Y?WCrO^VlTdu&QB){9;S{9e4nDlxrVhstdp^oki`ntP} z?0QEvUCiJemnQ;Y%s^qy7sia~{^ocQt0WhM3O5!F`7QTcl{_X})`t$P6;Qx+P_E#h zal{#Z!l&8|mis5B!rtuVGa%qGO3Kd92o9dp=Ou!!5zE@+eHeCwB+3L&8m<*PCA7T| znEfwIp@DNDR3~HU?4wtxFrGRBsmA!IpS7ZPlX86ch3mK9zaM=s(>GF+7&%%?{5KUN zbAZ%pp^c))C|W_GM)vwf{{!g4GzWFG!5^NEdV*(+0|_U=F($SMlkIbO=a|Znc8Q7P zv2yWfoRDsuM?LV#El?v`w{>3ax@O95!0(gO?q-cQdG#irZc&HtIeVHob*)U^3P4~Z zo1fMD2@qTI_p3nkR=43u_uIYks<+-GBkYeld2p_1fZ{tTRTJqa7E(#ZeArjpKGwOU zhA&4>j_H*lGqXAQ{^r{~e524tgo(0`%INC`u-qlz!jQb%>z)9aX$bzhxAkQoLgqwr z@A8^QWaIq-U71-e%3DvT>KjRFwUHotTlG<)(o#o(~FQOJ*7pb%^h z=GZNSJYzXclZfx+8%~|VO^V|)iRH7=1 zf{v+l!RTj8#=f84cdeM^N3)60klp8dAWrtCM=oT|ZbJTR{hnjCyyYTMY zr0s%+Yi<2~2b{(229E)-9^(z4-F}}J^cL2=nSmRV#Z#?;LzdfCdWrwS8fEsMdLQJg zQN$V>TUpp1{0oP=;)51`9lO(lp|#Nw;=L!XO3EJ$gm*UD@lJlXtx|q++(0WxMMV>@ zD7O-*cr_sjuobOv4Rj^R&e|wNv1wAkxp)}e$hkB)Yr6^$oK+_=7-N1}62da@NgsB& zPOh}m-MHQO<92N`lX4!0k-t?B3$BGtHuo4ItBKQ5%CD3#k7el6EUWyM2mVTth>EDw z0L@PcOn8eima0;Z5Tnx)ffylETEwE@@jk%ir)=s+zzDIs?s=TmoAc+vGJ&y~g^^?T%bxhZs)v+P^z7a@ z^m?#vzhcH90PW0`A9Snn$Pp9(Vi9KW6=`b&Jm2$<0={{^&Z_wA-js6iNDC}Fr8=<177o8ii+u(PGHLvDo zciPnPudz4p0c$)(Esl4WT8Yms3pMX~VP@}YjnDDDJu$&M;vCof0)11EnSbKF;um&5 z*S>goeW^!y%TrR*35YPnVjc6+-SkH|D9peiGW_sm?QMHy(Ti0)-W; zU8ZeX!;^qu;zC!a$Jd(gPRH$jj4$2wyrtoqpc)bucxFsHw0%stKKU@G(#_M?&?d3% zwpuFjW_$PreGjS01Hr|9&$nA=b`aiKAzmQ56+ZlRlwnfHd$$g#B{wJ=`tP%^AS;2I zfvZ)@Up>z^$V&%4R?;g9d~x{~xiVft9P*qa)Ak>MC#;fIx+%27+Rrlg0AP`L;_SKP z0}4j+T)eN9Z^Oow3)#WX6vU63KkdqE&d~OXP^gWQ)COf+|BY_ti<+#mBQL#avwa%z!b)Fd8lCw@yj%e#&FSByG_j9_QfsWlvc%?a$oq#yk%NP{uj*w=t_q^Ukp- zyr53&>^juStK>tJ8#XTGR*qLnnVv75QKxp^iozkaC6A%Nvn3i@ux9&psC<`9I#Ve? zZ2dZN2V*DqyV~Qp)7GgLJdklzTIT=3Lk-c=pgxc=ne+E{`yG{Tt$@6|y1B!1)@4iG z)kx3rJ(!FwaM&Cr6_mTP<@R(J+-GIa5gR!iaQTC{=xWHc$8NtJhq>w+lXRk=Is zmyp)10R?ky+inZ>e~G$NTHDt$ld2kwd-Yj~)2mXWs4QcxBbomdO#qi7VmJDlt~V$R z9g6})i<yXiwe{U;0{QsJMu`oqgxN_(b+*C@ohUT)Fpm%l`2st-|RR~ zuo|F%MynR$)}18_>aR$1l9kmif(=!3bYt$G+g>%_({>LWiZM_8)SuDL&dtTQ83DS; zn7s}%xobX173&bn$DOpweFGr_0u<+d*db#k=c2F_kv(uos;j@Wh$jKkhNfBsj=bGZU0;}#TDZ*A~DC;d>4%veSx2y2?Gv_|5e zTm1+6B6@WF_6G(XJcFKH^r51H8V&44BfngJOGzq1m5!48jEG?`N!urg#*JACc>~w* zk>4;WLhY;mnQ2m~YF}{#%#xT zVj7v~VmPqj*{uZk>fh>Zt@E9|#IqM6KF%^f72F&$nINaG`>o`MSZduK*OhQOb!a#T zMP7JWTqcPNOi}-uo#lN7EFilGq#t-u0yM6P3KkvRVYN(@U6fskO_EcJtNNeLt`2|0 zU3y}eg%f0FQzQA{R)vlzJMGwlCsoKu+QD72-3Z+iywSl2C$Q!mQT5pMP4Fc>_Rv|` zK}AlvIz#jQc;B6g5yy0Mg$lQl@BIG(8&ikr^co4Q*T|WAq9a9XSoifa`Og_AsP9y< zP1hZla@>m|K|pwu?$H_ZQHf>1@jYFfhpgIpT4KcEIk}n80kGcW9QjH5oGhiHl7Uvy z%u!3*@N-ZTWYMKBBJUekON3j?%(;|_ONjm}T2UK0(1MdQTM#Vwk8g&>KMC*)Nc<|I zsymi8>545_p3y^oDw>LR^!^?Fj>6KWI z$-0l`O;fQB^b?h9#_d853yg1`JVs~oltx~Pa<(pLO9Xha7=-z$u-YN}2({+Zy)T6z z^|x%$)Zt0$&MS0{I>lX5qS`2NBG@{SgoqnKIa^`u;UlG^Irv`ZdtdSOSa!hlFfeACUHG;9%W&> z0Id0htj-vNA)WHZBP%{+;Zp-7<5ijV3IKNB5cCf|c7m(oy-_O{x5YCedGyhBZFgg- zCx<_30BZtw=$wzedM&XGz?LYo#aD?>NRq_8Yjb%2g0yX6+PauO^J4#w~o}D0MC?)V5mye*O0Yu2WTfuI9g^peb;s~GW6BSKL|SD4_I#>+-BdI<3hH@35$)s7~ODUb4%8TcTR9&*=kWL@2PGu3d(xf z32s*TyV^!tQL`MO2(z5;5+m!;?0&gW1t|ie?;om?mzTGP?f7jFHxbjk8D4)nsx!;T z$)MY@Fq&5$;wvWcVy#W46*R1@74kuzP(r!NNZcqp0UXt@D&dCZ)-AWCf(!wRqS3*u zr2|RB*)5?vdmbHptkX`!jmDVPL01`j41&1 zvm=L$wQitQdOqcaAupEwX@)$h3r(5$443I`ZxSMU*akE!K7XM~)$FF2Sd7G# z=y3Jgm2U8c+ecP})nPk#2K_a!crJ*ADq{Y#sjEI|PijT)PL%>Z;{2H!Y4>s8?evX)y5&$) z<&^t+FW#6F0+&yoqaNP1FX#rkY-bNSj+yZ5@SyTg7Cha(Ggevy+S` z&oZNiu}audBujku&*!6vN4E{$Mzcqx`vwiH^+STcUyq7Evw7cP;Ly|LC$g@H_>C)d zKnd=}6@gQ`*!C%9dBr_$hq4_aoQ<0=={d*-Fk^nOTlT56wf?jgfyo0!Tdh>S*<8Dm z`m4WQZ<3%Yam>(=EXOMSaq0@dHT%(RG5sYM&@}XgZwO19pxc>jc@`p?rHc}h+?y_` z+sz-^#z$?}E5#|w)LDQQE;HMqj_|{2AGH)G#IUQ)Cvtl&3M2)7=>^S%PB`k#O1tFC z9`FBTZQW)a(5o!FwEzJ|ENp8{830Wg)#6s*`0B>2&#-`w40zs1PHj`MCUY$9EkFhcPbu^K=r zX*n=7p$^j5sPBCGLKMl=S}gV#(=$T+8i^Cx)!{L|dB2hVuk6qHA3+>h*W2_1f>bobN$!zUoQ70%2Qhjd=% zean$Vu?u64cM|drxWsJJOv+3mHLJ^>Shae>P|>rG&b-qD9&Rdc`*&v1GQ+OJG?E)| zM4#@E_bp=iOFGH-@N2q>GrA+(c|>fdVx&WMhRZ%kh3mgt8iZBBr$`{a*22A&v$|3Q z`I$w6y|7p-B+0WiTvoNyVxdN`uJjHV+qw7q{VKNXdgllaoQDx@|6RmNX?E2UcD_PU zd;JZ?k25o~(0LZNUs#3Oofoa;$A5}4K(kHi<~4+*Vxq-luFMb*YJ|9i7L9x==J_;R zpo!*DMLe`nM3Gn!v$dleR32T5r#HP*7b{zVyp4A?LRidhQ9XI56)ljMtH2a;rDDn| z1M(u`2+`*BJot$rw*sn6ItbEv38i0JRqaq8)R+|GF0Q$}L}mkkNt|0D{@UoDQdaVI z5+_OMG9Vn$IY-+@WK(C;pU0981*rc4{T_8cuL}>nqrR83%Lx`&35Y39xM{ZcqajbtS9NC6kWeN^@>J= zN1e5k(2@q-gS1I|S6`}t(-&ip9vuBCBuofP)z4NX?7 zuv=XmOFvTS&lRt_d!8)~C3R@`eFiFvze+meScybk=|JCLjeTgObxcLWm$pirPj@-6 z?Zxc)tXI`L$^pb_E7`GLjkkT*Yv<-El5OJ8n5;^RV(tsRCFZ)-vyK8&sbHPUFV|xg zzO~2at;Rf6+c`wGer*iTa&s$oEMw=JjVPUHQ%Ee&u+x_9+jG0dGyX?9T+NTsE&+qB z^Nj+F9a4l3A5VqJO|CoOu`eQ4HCA3R9a4fNIVfabZkX=-j#@^SAVl#MeUyPRi+m3q zRB0}z$dot4rL&zym7oLUWC_}l2HBE+q%71cp7m#@Q; zXE&!y=swtA4@VQODCRW>p@hsQI7|+>V5f-hL!hmN1EA9ENJG8+n==3&;3N{mVjKu7 zhXn_*BgI#t&NavL;-886eS?7K8uposAjqh=hV&HEJvfHo+bpVVc&Z&z+U#s&kV(YE z=#N(6z;_3Ogd0DfKh3E5Y2RRC0Z*43q7?zHT$}N&S5<}wn^My0gO{tC22qr~X@}0H zE9hG2;MiBrdkueicx@28+? zR@Iv5+dfU4#!5pi)NhnPbPs$V=E$?-VAfYm^>5w?F+4`2n+ImNUG1UQzY9(8(%oet z5M^AQKF|^B^yIrSKT?=CNYo8D7rZL~`1n3^{Lk5}6*>Ly{`;^@W8{yOKr}y7O2(c(2?9ld-V?SR)lo?#g3EyhRO|p+#$6S89yQ@graUIukE># zbDn5TUSCsg74^todO&T zuOx##4?VaEU(<}8cA0yOI`lMUs1-bn+r#b4+WW9j&n=oM`MAK?)0mwmx?^2C+u?GU zNg;{rksxtEj3~`l3RZ3aGd$MczZqs1)Y+80t;bvV++xEsA`F_nBs1*7nMiO4LPm^U zGXV<_aHK4!g+;m}#z>;P*B+GZk_}@LYEPIK9tkn_CclyyJ&qvLyE>f&*|XHqjsl1> z8U+p4wHK_R)Vzm(`MXKaN?d1+&ZvuK zCehkfZAGR^wR4JUv7s7`*PGOCXgS2oz$pz?FIjdqFYvx8jbMxYIt-%nZ>X zrz5Z&cnI@O`9Ok1a`ua#g!LPx+z!i$C%d~M07peFX>psiNo{~3~yUNs(Cq21MoF7eiB(SO|8Z7_Jbx+P;M7vhOf z4k)u`b!39O&rUlKvYkYvg*}y$oKjry;0uK7UI;PtnINpjk6WpQPD6uwCdOF@ptb*{ zRlUv|#E4)Tb=LzE-}pf~{yGkuhC|5}Q<9kt+t^`IAH=+acJW_!37OPI=T1nQ&dy_C zld)jsqtyNHwU$7Gw@@>qNs1yi!o;0IW*xk^Sr#*btSG0MKYWw?q`W~Qy`r+6E#i7;lwXp3w-Iu$N zGA;Z{P#BI@XsaQB3$Tl6t&zoO*J!VbdYBwkT(Z=555SUL2l)&KvZ*bxQ%DtVFh|UA z#%aOr{I4Q?XwrNR+B$l~eFZ|&o=~7UpVIFiO0_9;c6X)3eYaaAoec_svz-@*=-U8H zXOV){isFX&B`rpGU={(VGVj^%FeS}wMR!{4?zK>?Q=%{Ie$APO(Jdtr!>XTd2lLo& z?p8j>jTGCd**(U+LYMDV*D+6I^4xT+K_#-Hi0vL&qmANt@Q+FRsK;tX=Zg-s*$|#O z9+_o)T`r~;Q_^J0>o|fl#0Kjt-XrzE&h0y0&1ob}(Ndwuu${S)T^0qRanII2fi(p2 zY7F0Ou;{Vq^(XNcA36uNCB<+2{ZwFCP;AFcdY$LAQdsUhwWBcb0}|p4>&rI^kdys! z@=BOS(n4fwcGi`}^BwDbwaM@&afA*c%6fiW=RJxw>I?94yY#C zHM~H@_2@?Iwp)I?C`ZlXKn^w1nb4ySAxMo9It(qk1iAg|qmdK!gn6QbcH%gQN{|u% zw4LTiGKp&sdy^#pdh~so0Nzf5=RasrcZ>&UWsya4)Q%6){p;=>=h8kQ zct@}oSKb*0jdQtN&BS{*X9&G6`$xzj^rEE^8fapUQcFkcQHlaJoM!ZL`}vuNUZ*z@ z&?0WxSuJ9lMD|N^^dAVhOkqYRtFcw7i)XP3hEVAEl$eUzPMMz8X&10qd`tKh&IyYD z%cr09_Fj;ZvoO5~p{P919*|z%x~gXeaZX44X@*M&uJv4X+4qKv$7Wn!qOu7^FcaIa z%Gf1wo$`0KSO{8RDZ+)pK*ndQ-Mgc1qr4v1@t>ZsgB3NzRLUjAIe@|NJ@3Gg1mf($ zedoRQ_%nSai^pz+YrMq|p`2{pmcmnYyOZW%r{c6fo#F#YvLD9Q_u*l?>0AM-bxCKn zq&^l>8LQqQ(=M@i2uLwNp=7;|))G2HAswC2A zm5z^aLVpcsEYCXB%AVhYRi4lw$91h09l5LIlNsyqxg8M}DO26LbHD78hGcrBn}1lU z+Kc_(d4*V3$2jOjR3EJPPYJ~vw4NX5T|eAN(VQQ*W~{g6dAITd`9iUq9{t=EmFWZB!JY5v)CLj!%F9AeHAOu})7|WTl}Yy5Am>11 zW@vP~U7_6#w35N=P{FT1Tc*fdflvO=9;Z#4+cHBx92+LIfD4`e8ZEwJ*Cpl58>z#? zo4*`_A|+5Tu<0k*J?J8(|@=aSi>=+OTp}Vkdo4M@I)E!OUC5~hYXWz*@R>oyMEG_9z-b(P? z|0KwLWc#}F-vJ_0-4X7M{ArC*uVrNF6%G zS_}L7%q}nTE_N-*5CPP-kbhAg>nUL^$P<%^5v$OsuJ+B_n_`wKANXcp{Ta|DT38f}Ch^0@G^OQ)waC0M{_zM4WgB?%&l%E` zW4NoZR$%fN%(rqpLlpJy#fr4t>_&bUa-(=`?rq?|Xpme(sl6B3K_NbA?BC$4A2@P~ zd^{hoz9AcKnI@<(3W@1d;du>j=J!2p-_`#DS%!g3lP+uzXE)L;DUO={{`86p-?M*9 zIl?AsOL(ttP~Allp+MVMG7#z=0weNlg>GdR6hn=9@Q^I>RmtOUoiQvuZsp(JLzXP* z08APDH>_;c^f?@MPT?hn(Y0D!_Kw8Nzi?rC(V>Y)w*O#z1200t>WOl>4977*n&lc6 zqJ(~$#7)(CD+0+g1q&L%r*b(gzmWg7>VPt(A_yI4y(XG<;EPFRGnuTyn(w5I8}DDA zdfC<4#RY^^V9AXz?`S6*F>hcAOFIUnr5U-%3@-jZ$tFuw|8eF<<@3a%z61h`+#<)NGFmNOH@cSghh`Gbo)t2mWca1`L zWV>U??5rp3n99g@2Cw(>@2!i09dwoCXXUGUmo~#KfiK%SPZacnVnpY|*AEG)Vds zxgVv(hQJd%o)D%SA|}ae4X+gl^H1F49tUV9gWyBBFB?*-hrCa*;A!MI z2f!gNXQD1GjK+bmP#&!Sr(j0y=X-Eb5ef$xT`kLfY-kdXBS#X!s-)rK)Ved^B-eVC z3vf>ZLV)57s#T?JPEp!|>?T+(Ec%Xe7$8y+WOtS9qaJq#0OQQ;e6K#XX@@yX6eYpy zrRL$~=<02@7Pfn=@5AvU=*T%skq!8Le|r5nD9_K{iar=aG~7{nZLS^7LPZ}QYJIw0 zzpjJ-TRm>IIC4K9cQIZ^c4B3s;?6LVe&$Do~RyJk$e8b z3yWEz+8>b`rMnmYY!0>wFu&>#F}mQzHnJGH0(RHjQ!Q>Qm>9(iuDbY29luUIC?}3A z{X&;vIBSEGB?z~oqUcd}#t%)=7<~p1L%s}3Z~gzUay9_DxxNl49Q&`7Dn>JQglSux2%|KBUvKLAt2~DH) znGkBqWd-AhG$`2PSS>H1N4Ok>G|(NTCw?A~4R*+6aRT$sf?}CAve{3iCdI1`j=APRS*c^typx!J3H+PEC4v$4 zwu>tknpF^W32%KHITV$#1>Q7I2l)GU9;X;V+WR*_+hP3RC4ARYhopq;fq2i)R*yc< zmuqNV8XMOQP+IH=udzEvvujxpC=hy8es6f!UI~<(6EEa%)!iRZs~y-c^zu5rg7jv(^E3f_I2(nU;P zLzu2)rBl@P{DMOFZ#Rt4dncr0h51`eW_5fRjqR+R{V7rR=m=7&S5GlX0{gcQk~We$ zo6Vc|-f_}&Z?Lsd%#5w&Ex*S%1h!qQ!k;>|zbl5_gV*g+)vPs+ZFsu!aOKhztIGqs zAa(2(YoP_KN&TW6gwYx(f-~k1iJb;Oyp<(zDDRwXAbIA8(D%VviP$Bhi}Sj zBcnfMoLCuUC{RjqFeYl%>h>-gg@iQ+Z&+IwxISoO?r>lYTmVLj&SB+YrsYoZF)1(#_)7CN5wHB?LN;XSr63c0XX7jXSU*F- z>6F_33yhikroRQoILGjqUp9ShR|$wOp?>quSvSZjnjI`H8|58 zo)=oD?CO!>yf z?;`rye?L&ZI%UW#u_HGU7{|MP|5X<)XMkxlNKnFh60UPX_WO@)-y?Dr-E*ifD%zgm zJX6`6P&l;%{wpmp!r1Pz5@3YI2sbxAU8G9wh&=vai{_}kx>oMyuH++k2MATLu&pv1 z<^wqN>jCUaclNr+7oNVDRK0PJakfj3u$KF1;u&TeJC<^(pp>r~Y#Od5+0X;ob!(O? zK64}10+2J~tQIEH}om0yiiUJ$X@S%=1*@#;^*n4cUb8Pj)o8}zZFd` zlrPk4F>%%w<>k8=Y7M(A@IdE|PJa_@(BWtKDO_}PmJH+>rocsj;eg3ZDBRg7CJVXK z?dtOVJ*T0NJZ>P%1iV*LpxX=C&JkDTR=DS=`y;>33JKdn7tWLVO>7>=DQQ-teG8 z+$DlIcLb<$(S5+%TfmYHw5=(IJugf~xO#`+bTmtsiyz5)R2FGbGY3|-yceKK9Uo3I z_z4~f=}*ia4&U6|i2aciG5GWS+l7|ZW}Dl&;)?hoF6?t$iIz**x*b71BVMxB_*9^{ zg${Z}qb_Ogav)ZJ*XZys&WgIO(W;z%6<)rCVkK$uuwDubc2jXsl6HuxVGG8-9d*eQ zV&I0jHFCvX<+wKiQv+xo`upj9*_?svyV^eK%w`Z5){iACLe@D@JnyJkeTMuUfQmEEX(R<6$J8sd(cMr-{La+i5 zkMnSD7m?Jg=d2=Nq#bvNk(RpremwvE+x68FpIoMd%IO}0=D%?JvuWj-*~_{}7(s{$ z&Q1gsoxzD;rs6c}sy);ycJVE+%dD*&=cmU)a(qZJUP)GY`16m{d9a5MZbbZ6eBHK> z6S!;4>|g&o)3k#J8R@S_A8-0~${hH7JrNK)dIRpU6P0xkiP)q>Y~mz4Zd_*P;7B+D&e*&aecNj{f7{^mB_Y!SGv zgJi!>o<1;N22)-Z|CX7Ynb%NSOm{SxZ^_PFhYf%VWJpWWAg%ybs{YKGt3c=vQ@6=m zLD0AB$+08_@`ss1?VA)O`KM03)~xunRWIww>qh@(f3jR-HkLhe?=S6sp=cUc^ za5YrGHTZ;riT7_1a1Ne)RS0daH>tv0HY9(gw8crsja)6(9@fNnFbSB=x1-?6`s)5V z$!ko;a>yhP$9nzgf;QtROc|Th6rVg}Oj=b09Pf??j_rM?PKusGpZe)EA$+^8m^!!L z$xyM|sZ&3*6J4P-&As7`*Dmjx9z7rvaHL@^aNGh%MJ~pg-VK@|hK&6gGI54uKu`Ol z4dt8;rV+0L4Gg6F(JFx8K%keJeINOVPrAl=F22e=B6m~O#GQVn>Fm^Q9zgMCigbug zy3mkY^PUuw=$HSe#R@*_jh7b zpEEH96X)Od=cp5UmrL$zmAq4)30+ok0;K}+E(crRQ`+mZZ=mD7#R?%ev++>mub4T`f zpkMl4;<5W()Kf%8A;o~2JDM32qnJ`4sBCm&Ee}^7tm0}d7!c8d0Xb$?bt}ro`s2zz zjxgzfxix`XD8Vdk4@Vn7ye@JBnuJG>qyR>~&8qcC8|iQbr0w{38YFjk$u(#58u!@0kz;?2PPwfb`%=;RNC;q~%|or{hr*z}NrgVaQ2 zo1iE?Rb^|@?A+~JqIA)@r&EQ0)@a7#MGDXco}5Lh*|;fV3YeUHgvnhYUUfY%K_j<0 zXozI3lv1kkgw}J}$>K7=W%iKm-iVnhG|i(W!mtE7q%Kno?{JlKAvCNwP2JMF#9#go zTV!au%}Honp1rT~`Bz*dIP|Ffc-xL$RFr?pX}De#dX!*_Lce5s-J$i2z(< z_eMX88f~Jx60{8`F-vcm%OZuosr=_Tm}(=bn)6U?moUA__r>jj>$Y+@Ai7cyua){g z;9z1Xb2deNN`DnBVpJj|at30-UcTs2efINJ9ETD&>L?#Dn`eMGj~oT(vrV5^m@B@B z4UiCgt-Q*wcf_#yuI(0x>pYt=U>wcEZ&eVLzp08018Bs5-ojdMfSh*;5u4!imxxFT z?ig_UBObl;<$5vPvhVDl%Yg}HL&bc|j{u$eVJzq-;9l|5Sr!8h=OG@zcfsY$)dZW} zp2N^-#e#c~JRG$7=U6bm*})DiWzyoiyA@~$&D+)JD77ZtJ2G#QXJ;i%gOb!8$(Qdk zBnI-}eZvP!XSF0s)PGIGmks|IK^0MuM7Q=u0S6zT&QmYIKFd;C>P2ZoW zCTsaR;qSK@-+5nb`ms?I426<-!wogDZ4(GyYnp-sAJu|#pHc}+cjRmi} z+}6%V9VNg#z;BA!tLJ^UuKX-x-7q_3x?x#6^YU!f&rXjcOjqWDprgvX zOur^^w1&HZY~tDqu`9&)>|>X(D5b{JU&c%X@Tc1nzg&Z^YQX&YBgfF-ax_>MfIN1# zfuaNG(t^E;u^wez(t-~}I}Mii@tb#b+QY&O(op8Nr~KmHHh9Tu3Z6n~EXLOyNTLg= zSMu0sC>V@6e>TJ~ihP)-A|N-g1^#`hWvx>g#Lw3$zO%~qG4lkDv;rWB$Sq0kH4_GL zOEQ<+KYtV(ILZoop9Op5rXaSiO8yvcxycGiv>K|il*4X;AY zoEb^Tw>?r*{{GM)8B?y*Xf&zR$p_&_1pXeuFYLLU^+%i)P3=ReVbEd;12+YmuoG?G zWd(rjnCH@nPgcP3W`;7+%){<4|4dfuq>2Ye+1}}4VzjoVc(|28#b{0CR)E#xUFYr} z*~tyqgtFeOk!?|i9y^R&vqbb3e)MUg(l2TOTyfv|JQi1^lm8+2L-X6BB0gh*;?(e# znPIm-RHtA%1&|mv7mtri$N~;evxf&9j3GzU!7}4mFN7ZUJ=VgQ@XU2voXya%BE^+a zGksDUVSmr@^5@M)AzrE|4vcWp=oWh$)Q_j3SLZf5cvS~rHMS8HPddqTn`4wG{x(B@ z1EIf5AC_@mVR%_R;vo>p>%6TR-5Vu#3*3$o{KYx43X0D3qwo-g z`~GC#dT8zB(x*0urP_}0E~a2##2G?NbR~!VkuS;na&;_!;qV8e_nqiDaa2hZbj017 z%{oV<2Q7_)Lz0Jy4|=q3!}yU@qH#)Y5}#ET3*-Y$IffL{&CoT9aC~(@ct7%^NY<=> zGX;!#3CpB03eOo_z^K|-?|Z%jts{28iCwx{4A1@H8)vSP?9gToHmLc`nXjJ3CC7pj z7n4^RxswxxTO#^=6glR)exvf0Mq@LhbOYUO)vMNtC1k!lNvtLDTBI4#}vU>3zGB67n&1Qo^$kUV$x*E}5f^9HR09Bnn-@&otM<9#WYy zg%W>|SXOX;Uj6V+V5YY!f@Of#rQIxQGV;mnIT12Ejq+7$o3Ec{c1Mug{l`A@{c!s9 zh0%zHV1v{X74r%1tsZ#gGn2GqPfDY^J`^HV^AJSzIcJl&$_b*35d>TV!6c zg%^nb^`~H2>uOVnruSJoKQE`c>96|GbXj*6L)?_lRNjl+*4vL#!>e8R1jKCpi5hLt zQN0qOr@$ISbLVZw+?5^xcq%5_1+<)Mj7zq%HdK_ zd^Qhkmdn3ndDDYpFlrViv+5%{6i3^LjtCf#b4A09h4zSyK!P_)^`qU*%2K*HNXe*B zYDDCytZL=vgC^j*`c%?{0S}6++)qmtxoS|^08M029a!zm-DAP#W%wb@k_g$h+DV7r$~;;u`l>m;@Cuw3bfbZaGp zRkkkz@>&-4{K71^B=C3K&A%YM#)RJ-|JPa>)`Jw%tX-e<9&#dC@XE=Dv|LiBObnv0 zAqvl}=7M@=VdqYSjN)Sw?G5`~`(*|k#Y^IpmoM{Yyj0Op9j`9Q{#dgGN#`+{cz#6w z`$vI#X9ZFmz30|#pi5TaA0RPON@GMpib+D*#!XZD4cDWq@sO3DBYcH?#L8a>6kC>T z99ZaNgtcD(FIJ`_zvFP#X8P4IKC#Ff38BYQXbHX2ytT zo?@=f2FWR!{&{JybB-@NJ%Y?cu9p3#c|jtd2N(<%S+9-eMHX`U*lOs{Yi{A}l{2L~Z!K-iIHS`zGdk1XKbADNtYB4i2& zMeWbCy-5M7vdS0Vma9rDMp>S#_WqyNP)ucjpV5 zLhSv<#Vy$0{mX&-s`KI0cRc=2W6w8@PNZQ;R1fromE=LR@^uw7^3P_tP8x$!b(I6P z@ZsANJ^?M_9=+|PKYm8nO1Q@NcciU6RujeV-9oS!-UY><@6xg}k6Q*9&TFI=$M>|W zl=z|JwyIb~iRsvTlFBVgZPd*>pJS+U-hV54M_j@N<@f}f3cGoJeoPSh4^nC*V|e?% z!x6_^;`>g1*LI1nNTw;Wz}H6%pA%t3oCOV0gu3%rs=OKHI^Q0FM>Q_{-3cjLC?Q5= zio<^-f#zeZAl%w9g-RVFnI;oMsB#A7_R7V6k&D#VLM)krN7Hhh$_DN6aZ7C5Lv3RDWN%_FI#xDKFz$m~rcRgUI!dfTO8!2Kj6lr+yjnTV;&{S$k4#&QwM zc+eM?{Kk$$&|qPYtN7UrQD0sVtXh@dl;YIkE?!S!Qjm5_7x!y37f))sU&9lLMZ? zxFf;cx19gb#AkTpZuO(BQvddLY*UcV6q}baC!W>!<|cowWbssfWQ&FR2^2);_Ch5I zv6TdE$oT%7hu_YvhAiuFNcZyk;Lxm>J~z(zBgbD6g`YP=l^-~__f}|P$!vrzIBDe>(FBwDPmO~lM=_U; z9$E1^HkED*a6e@yi(dOCNU-rJRezBr-RlaOEJ1*(+3eQ{iiB_}ZU{cFu_16j`E@{L zHq6D*{TchAI(8Kqi{a0{o4A+3H&=Ap?ptxVrYLva3nFYIa>+EQq56vQzFh#BR z=G)_Mo|pJRvnj!EJKxW>cG-GB@jQZy^fT$EfEC}%tfw&O3$uX20lSPhU*+6-?Q_B3 zu8bBV(IMISgMEr7yrZT)E!#j3jYDVY#p)?;q*wjqc>&wl2t z6q7itG-I#(QRgHz@Yt{N_$Q1XpHe#8W&Ko{`|Lp^;brHwoPfUrgNIz8OdGSd9}Xw4 zU;J12AVW$CCz>SmpG)42^3_TjEsmXx^hH)^!1Ji3xbnZooTB9GQ?Y?TX!=Jm zBdH+5k6w2I%G%zey(Oc|WmUkPdmp$f+Sdq`7h%@O{ug<_w&p;cR{f!WBe^pDC2Gxj z)GGf)r=YL_C-=ik+F$HPerLT%eqyg8z)%iZfq(jXf#83Q)BS<|Nm9-pr`5fsCgx}8Cs{B-B4cbQL7?N#b zP{OM-FJ?hy&uJj6K+L*?c%dN)J(M|qvv`fUbo|Bf3#Qqo4O@#SdWxeOke%w z7Dy)=P|`2;Uiwnz^tUZpU_DSPn-#fL+p1B{XIg%>vKN0QoEA6wc1J|`c;s_7>d#u0 z*42i4vf9Rp$y?Hs{Hg2F%Ae5LDd1DAY1>x3FNa6o%M*kgE}G0-w(=<9L0M`n<@Yzo zEt_9mF6`rBOClGJEvIRjC>+Eq#42sllGkMici;W!jnMG*!opv8IYhwwSC%qwEgnsJ zICs?F_lR|Klh`R(&B!T=*fcl$`M2WYFv-ncea@i$HUvAt!iJe>@SvzKH$S*F^eufu zV@!a=G4RBO%8yu?8sc1!x^>_etZ0Jwg=J6$Ni0NNXo;XY>b+kuaR%%ic1p z^U=7~6BG9sKiCPH_Fal&yergkv7w?aIM)C$X6)rNT&L;66_Qpw{&kmwDTwe-F{HSQ zYRNx698V`FBQtSlo`qgSwJP>)AUz{FZ3|IkK_cq_9dpk0&5H=V7H|ly)9x6qqNM-()8>ds(jfbQN@NG<_^7BcRuT3%hl5u8 z{MBNXbNQh{vw|hQGIKn{NCIwg`qn0Gj%S6Bn09SzvRV; zBpJqUf#J%Gpquh1;X=AUXPV3L=3;-E&kS9|rf8^F1WzU*rO_J`OirrCjwv*+WxMC_ zD&MkbOT}l0NcNmN#Qw!JCx3j$=ycad#5%Z9KbsBrZ|4VHJW3|#k1!aL5vGa%4Xmce z`QuxMT#Z4WzRO0gXFkBWk*^SiDFf+t;n1hdpB%NjpKsb$MS+@yH0=rup70DjJH59@ zLjQVaENGqxI^7TVquU`&0J~EONF>342nwOcEX$`8KdjJ8(E}q;id#j(rwo~KTyTi4 z%lEyb9uKzPW>iZ@w19iJetQRIY(z&~favT^28y;>+6Q~G4PwI$2sU67cP+`f-HJ~4 zzOdWo(xl^N<##b4dN%6Lmw8Rq$(9fQp5I!_6!yuO0|Knz1RR(3$FsYK&%lbMlbhY7 zZONQnja+BEgg&Ch@yTGE%8TP??X%-)ZzxS^&vxmWH9Md(%HA~D>W+UAkKx_v}7P>ACx&%EYN+4Ukq+%25ni_NqAk4{jqn!nm~Y^jwNtPyLH8Hf9+hV9=N| z;-ykMMX}!|fc~1(#>_8zdavm&#e& ze}odCC3royuYC|Xy#ZdrrRpE~nmB;89zR9!OIrhp`|fJ$-vbbiMt+G{0>`LuQpB6@ zeueJ7xM6Pg?}S3HN$LB&j~{NN2SmhTN|e-3)Q7|ioC9+-YwIZtC*AED{l28r3v)KT!|lfIxC4gkb2*eInm|WKiLv3Mc?$ zfoUC@N3lY3?I026UrX<3_s?fwu$Er4?W*tf*3nu|zgLIwuM8z9)9!r~9X~-NwYPMx zL%8qrKFy{*xi~(fkN4f)d*eTTIoLoCxl(Pugb=n;AG zR_u+lYW%-=;56RMS67|?cGXixP-zQzWw?h3!7-lkReI0GLGs;X+W{}dCK$;j&s-f- zva?ftkwOc`-AiUGgc_)xOA;oL?5U>D>S4( zsTt>1)5v~5D;`0e`LN)~EYQ-2+!6)@)pjbcp7%ZGTT9U|g_2)Zb6wo-c!_?^^Z3?l zx^5OwU0YpK*}V52BiC6!`z1w;-PO2%qYqd;n%;2Nq2b{9sgu~`6^?YKm#n|a=lUyU z4-WT^k_{r1@m-Q6{XemFhELjhf{DG|W*}8?3@i$ddtp?u=9$1Pt?B>zQ*gW_! zdb_GZBUpr9*^GH;`C5&=;)iDbLy8a^aeE9LcQ3Edeoo`=Xa2QlFYUL=U%x5_%D0Jd zv2O=3$sei{{xm6BeayUaeBv#X1MIo#?G~dC&OYLocr6bXVc~R-(^XF@f{j|6mLB_e z4PcfX3A*7)Ml2P!N6ESijRnx@o;*;purvZq3P+KfOC&?|H z23N#7@TI6c%0%QjlU5=*U6(k1X)-Ck-tJqa?FEIW`e5j}slcj{{%4_qJ*7_{tH-Pw zV^1vt_&eOcQxNJarAOUt%kv}^B$63HWeZkg^bO=CY9CmAI=ADc*EH*>eIPV4K7^2l zh*di2x2g6%Zv!}i^7Op|1ASETVX%FU3Ljr-mTk0R{p{tLOW$20?YZNjov&4oYulmr z;zrw;4{GW%EzemwFN?Mfzb#@3LbEbo{N%WVhHOcSH%OkxJ{5zc`|f-xBRXYIR9%CN zY=H?2S3EPVv?5D*=%D?bN?G(#>s~O3U+!QMvse>8M2c4zudBlN0U*_`7JNGH(^vVl zG*`}Zg6Fn5yFF%%7(VgAyzb4(iR-TN1L#z@q$>*?o?{vaZv)iI-QF_4X!K3Cq=|*a zu*zMft$Ln8nWTha9~Un^>F5h>3`)oppA9i0x}>zCO~gNQJRf3MB)11DO zx%J0W6e%DbMzm82OdgAK`*)R3U~r`ahv)7Gi}FJXn}KffH(qIhzVP$!GsZ46Lwev^ z=|hEExd+AndEJk(gj57d=F~E7xMdHVU8R`W2@OhR!z)g8WVE2PD{yAs*^TYO2g1au z9{}zTu)}E-mDD~t#J&A-+4Ng}G~g(smCp!N`u!i4Hq}4SwSz9&Kk&l}bzwu{Uz?JW zp!~PjPP*35DF_|6(8VjT2@Q6sy`;*9;Ek6dsKd8c*un=@Zyetk$%{j~&Und+7*rvGvgD_K5CR zuS5WovrpGGPZG8J_{oDg%Eq6Q`;HbAJ#r;BJOfcKa}=9U#nP?=#Pn5)Ni=SM{)C9H zWx8Bp4zwg@Z?x&DsOw!QmWAJ?@7gI|s)|#QD3CLJ6BGC=A?x@u{gS`b=Q8XZBQvXW z8)$*NcZPu>Naxvlr*?;n9S*4Bc-duD@`9}Hi{ttX#p?Ij<$j(DFQ{|_q-pZ8cK1}b z!W>XI`eNn*w7%3;^cy6p3kHfIg#Qw}DUFdC3|F9uo!RJtoYN}DKp#b$L;lcQ<;$RsiJg(q7rnwd_~6{=t@zU5@XS;{6S$)~j0ZB}|TXt6%dg&&Z{m z2SSyca|+iJ2D{Spl4~;uSlqQksK!`ZUC@RXm$Vhg{x3(h(Z$Q>*;%w6F2P;w%0{B z=E4`_f@<#0_=m0H&a24uiU~3asa{^Et&(sPE(w?TK{DW3v*8v%^n}d z4e$OA4OfJj20i=H&$-}cr}yGc7*|(lN(>vJ`4Hiv{t_?-I+GG^W0#FKrL-T*Oqob@ za;uQ9eNR}AwAv+pn3^lO_^s-rsxeb}y7nK4FE|-mB_zmem$oA=zk>oBi8*INwMQn| zsBc=WD6C|KBIs2duF?^ja<aLhfE#W45el&wmS}Q(CEaf(V$%h-w)LjaEk3k#Bv^}m}`Op?)etyqA^b0My zA>eq9Ql(gL)v<$Nxl#at!TY!0gLDX~tgLXFj0wjM>Qy}^Nq?Vi>Cp+-N46(oBTS%q zvJ0=}8PP&~endI*+z-;%{a(6>e9akpWxLQ^vsGQIlhOT*TZ2X*8^xkjFjW7A+}w_e zK81PeeODFe8ens}a7n8)ya=n>`*tpBw}B(wsC5#4w(qNH{M*;VyFFS$ebI;V+-DKl z5OcBKEJ^uRKcZGW`H}T#c7e=@YwW2m{sbZOOo4dIB)Ye)!BJOBR*Xz;OgIttN-ut1 z=9I?XiafY_&_fm5j2C!X+E#18t#ObvGyXAL!_Bn| z6V>U>Y3njZ1?E{C4Y^jM*%(|-!q0A3L<{{RqJ0gcnAM6>rls7piXaNQK7MMoZpqzX zg-iz@#A_=A^CPF2ac+KX99Vzn5g6Xj@TXgS@1x=7oj@=w?#gBuu}b!CuiDE|5L?Rp z&F)t_S_uv>rPXwA*$tc5E+=$lLPFD3vC>}se6e0H*>GIUZ(T#f2&HmoeWl38uzP)OM=IaF)P6^AtdyU~Js$V04E0IypJ7_Tz4$*5Z$pPP;VaSZd=uS;z(JdTlO#Isneuy z1?FjrpF+mBj@@aLaOuyh&h1@gbMqaE1E|jhka^RxYM#Sgx~4{iG+@~4gpg#XI+U<@ z;Vy&?VraLBd_KEWk6PNex~!vXG1x(7_|5*-FwU(1avvUXbjLAXBY0CZt@iAsbQlzI zdu8NTe8>X(A%f`9c)5G4+*hFB-c!)zEeNwe&~5>k6nF-)p?5XUP|H!}7@a&CHHTxg z4E2m;|DG8c6=!Q#|H~)6--7-Hc6rwG+TpA1l=jk=*^#%(hJjbVKBI7$B$v?J$D(@c z!o7fO+x<2R(-??QnBv;bEvCjMGPw(&Q>Y`5p-_AFtK#7Ss32&&tDCxgm3*pO*SG|n zO@*fUhy%9#NERTrUVb&RitJuKsm1`S?lZmDd=tr@?!sX9_wa_1Spmo9%^ zXr6r9-I#LrwD)&IFvv;vZSg1ogylJ$AE293C+O^Q+y;6!xg_A)CaPgYz-1tgObF4F z4FQrs@~i0^>eYjFFUI8hcskj^R?zjNqkhNqGs%*df9_iCPesJnhRO>yN*_Y&ez6t$ z>9MGrWN#e^1_L=pf`iHwzQCHZs6)0>Fk0A&`mf~972d*!{U3HYRBGdG`fT*DHCS>f z4_vR&0m7M=dC44mBc-IXL^NZL@h7QR>^S79iTP|&g0R)1)=B^%T1vWd8_c2F1o4zJ zEqA_h(3@MV6OuMTW`d@(%04uixQxE;Kw}#ayp3?Z-+Z8J{CUpT`{{X*ft>4^UbfMw z>d@OM4QgLeztw3C!M4CgOcLqD*S`JQeJ1FRB@ix5BAc4|ub=%F11EVyGVZi7 z(z0?QfF|;_exOf8(oUrmjM`lQzxsg+NhzCtLi?flTGUsMnuAdm+}Bo9R){*Zt{57u zJM#Sl32=g*Hq!v+OJr1fSp=t zn@tnKy1s@Rw<5=zDEg}U3T{UH#WoxGmYCHZhNeg#U>RH4G9JRQWyjWf_`*)rAt7$1 z^jbXl;9U>MT+>k25bYqB+HLKP$Y)LY2C8@9I?(x~&KS`;c7V+wl(3JnkDGHc?hHFOGDOEhspLj*J?$=F^KqrniIgNA+KTIRKU|?#w z*@l_-8V9C4-L3iB_6iqiSEMW7ipvPtv%I_(&3G?;bZ^Pzi)&)Um*wnui(X_GsMNiYWQ={_6n;hg|TA@fu-GBEd$<>Y8Gw0gvQN zBdaN=G~*3nXk&>wA>`9y7h7PU_!=UACq87RCZt~fQ?bw(_bX~R%=Pf7HB)tBF!#x7 z1v0&QcWVs<$xB)`CVhIT>*BWd_dgh0Rfp$6Az{4H{SuGxU!tu! zW$||7hISrqsbfd&{q0q=hF^g~Y~+;K1)p0vRpVb^{C0Wb(8Q6Eq-}-u?{)D0Ib|Oq zS_2%mCT_Q-G}hT!w~XOmr{-O%qE46V{nHNns#Y|t_TXsJlK}BY{eHlo(#B9w2q$hUQnM4dtJ}SuI*AO z&Ha7H7*=biVeB#+*KVZRU|vbY`cb-()yi3BneQR&dw_ml|74GYQ){`=WJ|v~HarNE z3v#(-7EA0dihnIo!S@}yG<%ZT~eXDSV2y`xRYzyO8uG) zaud$bq7N*?1)W~eYUDUNf8vA3O=1+}AG7#pp(CJ&mzODUUP$JsRYU*4w#dlarCPfX zR{lY8snTRD^?gdGmlRS^TD+Sg_Hy?%LD&8n{Nq>wt`7#f=jG39`95$T@lIsI1JC-| zVw=?N-Z^zc%cM{5C|3Xd^)Q?342Rbw?_k)LWEYK>!*RH3{;RZ@f<4}=TG zC1*|@%TcuPrF50w`SMt?$<94f$S;Q6P<7?&NjLaSaZ5ZNwfWj?%7+Cx5pqr&wGIY$ zeDU&9-0&Mf+V=Hvjh>A^(l>bB7ug(5Lss7mh>k^*?cQlE$S*t0N}Ff-hX+FJ!l1cDnA;-Oa-vWXQv>>C)RhvhpXy zYjUs>yOB<2AQTF&5K6b}75r2InwZ)8U!7+ucqk#=$4bH@GBBcrr${AsN1d25mZnICr4qYui)AXwQnluDG5_(tD$DoOeYwjGy;ndxuJc!jW9?k{l#3#~qE<(Y z&)ryDnlFO-;X}?qQIZwY1_~(YFB&>TFiq12qju{rEvz^hG)p05>BKNZ>23vy5A_K< ztRiVih}_z)j$>~67r9K;;9zVy&ikUh)MbrR-OcD9KY#slixbtKdW!J#&*0#A3$`@4 zoMLo22c#}v?i!sat#PEHH|Jt77GPJq*%2QzdhG9qh9L+o92oAy`~;chzPA(&{HccD+g7s5}i6_Q-D&X<@ZhhN$9K9 z9N@}Gv_^7XIfrDaj>`>o_1faO4=+{t>$l1i9n{UgS4>5*tSf(i)|LH+mK2P@{RU;v zeCL_p{)YO?bzKB0KCI#!l%t-2(k_}@4GM0F!g-Ks=5xs|MN7v_M2sKVQXsFQ1o%Am1rGBjXf%_|W12-;ZJEN~Jj(cnb9b zDdm614v|EHauyuDWc>Ui(17v;aYQGpYYbeh0k+{pcQ-yY^bi*MrS-Go9d{gZA!=Ehd}@2-&_?e-XrulYYW zZ#mme1~qP(ip!#6SY%|Ma$FU$SY0jfuHL6=H0}5`Uql3-$Pn#f#4H;+o)n|3OeTV02eIAP*aLnaXZ6dH0m`2`8i zv`oQU)|Kb}melai?Zqp`xs74Rv)$x8SJa-ye#x?X#*e0y8B;%eXOUAbsPu`lDP1_D zheco2D5tuw$|<}#VG;MecGN$-J;`n$T(usmMBQI3yst|3gUZ1W1kgGd=Q=76<^e~g zmLT-{184~)qfMzb#jXH;b}kj9V?lk8sT_Peb}r|u$D#Q2xaPO$K~akSGb?2;>R zP>*B=1{&}7*o(lu=QNFl=1rLiebs?x@S1ExOoSLeL-~KeafL7~-3ofHG$}=_K(Y9@ z9T-M87O3t@%`YuD%z4=L_xV<&elJO3_qcB~`>o)%unD&=zk^USe?UnDFn{Ww&1zP@ zeK;RtUEorn3+!61;=qOc&2i)X?sQm<7Z|B8tKKG}?sogR*dtJ}ZpJwDj;KsPq7?{2lbhc@dKD6^?v?~K zIXnD$0o0NQNMgcxX{SXHkTnul;25@WR%#*Z6G-0zgF@*Ql3vb ?3gBjcvo43k?M zkh1GB(pCQoz2JUvHyk8CGz})G6)HL8ObXM`_#3c83>annCP#iZWIF)h#-K$zCU+ zO{u4IeQ>$6!x$A1F=7>)fS6VXLvI>F__^zOA%j&k|<5Z7GE7VirdX#^!24PvDyuG{5z6Rf~^C9@oD=7!R zvxr*;LeQ_+t%?T&P4Cj`yHot=rjUi-w9yx7=l@9}y=uwfpA!JK4&REFcgm4~fE(J# z;m;m%g@Gw@5Gz1Lx%fZiooPcf`d&%uKoXUm^EQ`!U3CDDL&OeyjQ%K}_@L~rMV}md zO3l_Ydq;Y2SlD&v;dd}YPpQO1{O4`BV_W|X5D_?Rss5jY z+i>x32KxO_MP@?If|Kf^if(rK)8$3N{NsOLd4=RmH&|)$MGi{!I6cep`$tyU*hHcc zvT!VE8x44FT*YR@$6g-HO{)0BeD{og^?OVM7LmAgj59#rEsKo7W922S#aBN$ca?BsSez?h zc@qzKWmE_ZfbuIafXw`DTbJcOo^`WaL^p|4~7gc$m!358U!?G{^s{SB-<`j{bf(vLBJH~P0EI4x)weF(( zTMwm?EPSlw-{c*)r|YlR93Au371Yma{~mv7I5Z~SCR+7VcPbie*b*0NfJ6(n#{dN(I`>fXNp_Q;eomxQ@G9~O*qBV0sY(xz7--pn@OJ@zjRs2lM z%f46Ye~tzqKq=dTck?6z)#AHbQS{k9+hx~itwtYXp=(tl*grj!^W$zWF11)zrv!ba zpb7FO<@}pkOt`hu?%Ge!fnQg%H5JnQTp}*1mDf6V=h7E2X2#RitED`2!ro%xO?h#( zVr%ft-MHK)R)sKu$djY)6Gev!zapKQ<6*5b)|%lnNhm+sk56>z3-Mjiqa}F?4T?4o z2!eR-m4^m06du7j(#}Xh_(dRH@i{c@tl|&5k8nBLUo614g!WtAQA$Ayn5?`2_YksjjMVB_Adr3aYhtY$rc+`ZG z?Awk&bM@Y6zrD?Gm39bEoc3GYOKQRMPRD!G1-zC?Hp-481c7x%RkA8h4Hl#PJG|gw zQFo(Jb-{ozBYakhld!N~t42AQEukAd$BlUffN?+i>zV$CT}`$yNjTWsYstjgjo5SA zv-IkhMs(`n**vGJYzhq#X=%SqHtu@<)CQ;a^7E1l#m_a*c`E-+WDlRTN{1Sh!L;!? zAtfWdqKzsFkM2t_bu(fm;9e69bBG5G^ z0^HSbn$!;T7WW(rx%?#=mY?IYt}!`XzkG}R#q;iIJ#W3aQqw*6Coj06TeqqbhFm{{@NwVNVXM>U+K!0&o#l~+SaxF#Fr|75GdjpYg?ADu6bckKVW4U zHj6BH^iJyH6RDldo(fF3UU?b`<{mOn_&d-qT1J3GG2D64c(_@9#6#)BR|5jD1kR?a z;~~?@$K=}8m{)w2-xrRr@|i>G5#byc$2V~ezF`gFW-@7)_A)Cw+CXQDABxJ*CjeV} zZ(rO*evrq+D#VpA0znby!CN80iP`xQHQJCx7jQ~FQ8YKr5{}+q%8mt5n+ss{)S^-G zEuqe44<@Y2jBa55ZxO*c26F6O?`ko?7{Km2gAPmF(Sog$f_JhOiy=?SoGmn+d==MN zDdD?cFYixVM{$_~B35C0S-tB+3h0X*zMG@eDQUz0t4OQnN4VAC@V*$wh@<4mJQFk$ zZ{+g|)SQI>4>*ZZyI^7BVt=ivzDa&I&m`!_yvE&;*d%Obv??gkl28M!492Ci?Y3mq z!gSmaEho|{tMfg)IdE-h1_66pl4q+lk?B@O*B?g2Yaa2}AsIY*T&HA87ZikzE_k)L zkI^n-U0-jkbj*Iu*h71^`YO%du`moLavwdAA3yNLL~h(6Fc7*#;>w1SUOqo_i!qmw z?xQ>Ykjanv8bEEv4fBq5{_cw2fBM!A4^Z|H++TK4 zPBU|(8kvRseWXhXJ=Sr8e5R+6z?g zIeDXBKZ2kPUK8!v7S87sKS=WyIbg?6N7{bN3O`(!m^kq4tQ`S9hj3$o;`LkI{)HP& zPm)5ed1{uGa7*H6E_A(3td4e&fH;3s*$%t7?Brl{ZG;**Qm@<@yI}ub+2EiTV}lOq z1&2p#o@)V8R?lyFuMkP5WeMYGvKTya*GPLbF z8Q15{A|0srRG>ID_G%=lgN+-61fwN=yrn;EwPO=3p}!PI@q7-1Zg1p2oLXtlebvqrT?76#PY{&qP`XOH}w|(9e4ny z5(px{kDs1nk9+>(_BaJe4-Cp4n|_w`EHIbZ&vc+kjVaOoC=ZlZk2TdP$tID9j=vNS z1~ghk(BdwyTV4(~X=P9F7l%E|GaSnfmXcPTGoVK@BgbxVcEwik_H#e+A~HgZOm`W(h^qDzT}xJ)g`n3jZQtpGpx75$6X|j`&C)mP@26fUDA<7G`k*i0 zCXPqHQThE5GZysdZQ-(LhFh~Zpp)CkOq+xIi)-hvV^|SY$m|X>;emiL~PTe_Drqc|{u@l=DNMFeH4-PA!BG+$E zm0bws+snA(o3V>|2n)YGzoj^ySXe^3mkkc0O~t4^(hW`(xIP|eX6O^fT{ezhRVhuO zl9K*)6}Hr2^IlkJp3H#ciWNbIz4m_)MTH&m>^i@DXP2d#Wz{oGpNO|7U2+?HQ%*R> zD0C;`+hOc&BZK@9!4rdr5*04(plJ!EjTdEW>evE4R(8BZ(7lcP@^FODWH7hm3V!&) zhns)N`^o*Cq6=}Sv~Ofsox5;{5;>$6_Ku^NQ)1iSAhriT&T~?jVzA;a`Qt)o2W{V#b3|uCWiciStYW5)Q1W%uh9Klpa3xz>pp(?q ztftVXjh{^@*{N`Q{Fi0!dMN}*=l-Z` zy_TvK%PfLMzH12T)dVfnVj3rN6;=e0fNiD4d_qBnV^C=N7U2R2*ay$q7=X1X;I? zd!QAz&&e=`-}avZ3zbC-=bQTUzFO`S)N17XVfwL_hW~c_d*80*2Sr%Q&)xk_sR;Q? zwAHs2L2lWRnOlzrH$Gd(bq*wt2T~m{I`}^F#KmD`EWA-_`-q-88uIHGM?eTah4!v%W8zt7e-tvm7p>VIcab-Af z_+YotdjC26AJaEH5Zm$6lsI~CnuGy3ysGwK^)X-7;%D z3Eo?guW}Wqk0ms9}!J=GCceF)k5EK*7UnU~8DK%141zO`b}#N|IN@ zP8B3DBvHH<2c<2bR7EbzLQ&l%Q3&cO!)#S*6U{L z_WH6n((C5prjCauT#tfbK$sPcieFVfRFGgqZo$LRLYdNArj(5#ZW`Q2H$ylOzxe;e%~;ZvHOZD!MX4pgcdu+#vK zYhteX5-0c#w+yG*AamjNuGAr7xm~(m*aVGea8wb(A^(NLWsSKCN0k=W99wic*`O;# z)6^aa_dVySgbHXqK^`Z9i}&%(N?~7iet>J+@{GdBXWQ&#yr{H$=)2W}xFJq;i z?FZ#&!r1*9?>wE7uNBXC1=!ReFgmAxv%+|=0N%=ciCUc0-apZzqpJMRu7BJ7Y;M$l z@9V7Jcta}=*)7@r&`@1HQLmWe(`<)^YsUOpVwr zxqn*1jPrr`XLn83?YnCxJ5?POZyB-|WAFdgWsN@l2i&G(IIo;c7j&7;YfZ@S#Bu$t zDn588Fd0`_Ff>a|jkKeNZ>rM>!{vb#mpQ*97bj3}%-^{9N=0sBRk@;R!L(-+@7@Kk z-_G~DUDoaFu24Qm<#X$Q;4SYCT=EbW)cGIq#^ANaWQ&Jemu4A3bMyFfrJ(Uwe(nVq zB7Z_Y5wUZFgYGAXg!v17qxf{1BkcWr^%&ak1A?i-wD9Z_PjN(IHDftT*5It0?GC#i zsCd7mama53zysH8pFO$YsN+HBK)iOh+#rv5QmCq-c4>6&LD$reqZcx!k(BaYKG5D% zTXkRx++vZYqpp9;Eb70+`B}KmToeZid#6poaM1_Vjhfvxr~BtljV@|XBR!hlysN_s ze=PgejK{j=cn0Zbm3w2BqeULvQsbXcHFGe&O)#Etdv*x!jm85l7oTSh-Bb{@_(ZxN z#b@b144Iv`&jv|qOW;6FG$&8Dqh%Bbmvw#q`-YFA6H62-p*}#7eImCSV8df(+;RK z^Kq5uT=bwk>LcG(L$}9RdBGdzYu}2SP2)VYZdiV0AudT8}5t`51kDk+u%uVduGv`=Tuw}sL*_^-bX5jch zIJBQ9g2ay&S;;}xROZe!%ug^b`1u#V663jAff6hNwl%Kf`A+`~Y?9A=3UcHNK5NQ| zbLn+nYwXmospp7p6R0ZNgG+~$KA)EK=x8_VN!7pf|1rbtw?k+18@8-5-KguOuec|; zA6URL{VnEh?Fe%eZUjJMW$C5E_7vZZ!e5sgBIW)QN^^#4#PU@PeN6)mPE+0PJ zan;$5;&0qQ(dNm`xs}|xHwgLImUqT>-fU8TTEOI`%o~E@EvV9n967l)t|9BRr;w1U z)n@S_pT>3}wx!^ItWJ0l&5g6i@8WJ^tMPD9{L9iPr4Np%qB)~u(( zLy{%5NjjIK(?Gpw+v7N*^s|I2pN4Q|jL=EVtiyWf@Bw%sv-gv&2phH-DryI{vfnS` zB$9@MMTrtuQU<|AD!%Bn1;P}v2s&eQ9Uz_x7C{|@gHb+g(+-96f zXrNcB>b9D4cBtn?&F>A0#PykVPfI-&_HoL3DZ&jv_5$))-{Pv|PR&C}%X+5Z=Na@+ zuf?Ql`pRXEhDx8c{vR+m(9D>@SrO`%MAS%JaM|SlKGEU-(rP+B{H0^HZp59^upV#*sVSI#NryQLc{h(D>6$=ZpkC+`uZFrSW zYtP}yVVD`PewGsE<*cMn(<(yvk=kPMPlI9E0zdP4euVukW!#U<@rZrO&6#iBX#2-5 zCT(N#=_L;F#{~b-S$WV0&v(>(#t^ewNkbP-dvbKifusQI^^5&9|F^NrCzI>yqbgI&;+BRz%7)1{M>Y=!SmKl$x_VIt;V6(HPm5dT2vvKNWe$EgaIdvu$0zbx3|TDo9fxlH-kRlFl2411 zR7FU){I-Tq>_AnFr=>14fDcrHBEG&DF@Ac}m`2xzUg(MtU^uZUjDx2)C|Dot_;Msj znEG{X6p*`dQKepTR>V#S(F`{t|Ceh1Rx=Q%hXRzMLY`Y_DSw}Ou_5wlVHHCUK$<7HmtG{+Q_X(`<`0GcDQo_EX5=1)0|lfa z@g)tKrk_sebIxtr)Y^Ne$HMNtqT~xP^!D=4$H-WbsWw)bi%LPworPkHZln-@QGn;} z^BR%<6J3-#;j|(8(b14*)>Y_ zm~Y5*9ag-0@D;BY=4$jwj)|;AF3Ai{K07fBz8=T5-q7E34sTADG@f{&5y7~HgAq%? zXH3cHZ(_ek5pNlvbpNWksE7ke=b_xXRC(!5JxJC|_w%<(KLZ7>vm@8fd?NSh26suh zIvXv^oJ6s;P-(Mc-(DE*9K$zNeV4mGGx1UGRAoCxgwWCetm}Q~)7ZG*Q{{&STC#G` zl2IUP8{+J5T#3iZ@eOB7FrBtIgcVO?YK|XzV|-)_ZVIf9)mP(K5@5x)H|;zr_6G&{ zkqkz}x1R4n&^r3#^|;E5n$G23%=fT9OL4&mFGYyK z&U47z?Rs88i0EnV=*9&9n8{~<5v^w$c^`5Dxd1Eg*YBb%-02<3x-Sc!v=@+W*#+Uo zmx=TLNG_H%$O)>Iq6I84RfLztf|0upV*~Vp{BD7(|GLomK#}Fpr*QR&nlo7b<+3UC z8gHgQ)sv@LXcyf45V#8kQpK_Ud*%MCB|*BTjt8GHG)bKS<+AV5oWX2rruYsHg)3>w z+v4IPS6{|@GA!w#{{v2ySGGQ?`q}e?S_hR>RU;pnTrjydD<|{h$q>~{PZf9Qllf36 zg0dA}NzS`o$})b#YaC?#wfx@IJD&XRUL8E$Ssm=FV>!K`Z z0dA+HYFC6h%Wk7b3QPoi$)|~PJ*-MTAMu9EGL|&I8{HC=6%(eRy!J!@*4EjZhX=cfd>NTU%@VJp;EWfsG4SgkgU6@E$|m z=)qS|am5>m6)CVE>_gPnWVUnv6JNxu#wVucx>9$RjH^=XihlNRj#}Rj?fh005aTrw zZ;xM9q}g))osQXAh|6~Y!%J^-qWknZo6p3`XXY2cawILVr6ezxC!b?g_o{QV_P_dZ z)QcF}Wpw^n1M4~>5NwKFzC4r*2rD40;CD<)+TPa^>Sq#y^jXzrVyZup195`b2hb-L z|CKgJQ1exp-Ahv-WBG(*DxMh+1Z}ehN7KxU*UcIu_dHMnsmH1Jmsa|Xvj}0gPlYjo zAhi7u(bO(6Wupe+xoRPP{LVXEOK+5tbvJTG#B=hbVZUGm^y2N?Z2ad#+^eZ@5GR}N z=J7^N@O%Oa#q5^mAQVPMFWoK>4laXE+b&AYK;d9x>{@ zLUPEIMVN&L8VJTB`fo$`%g4F4?n;FQ=#fF* zD5KTucN0;Lz{WSJrxrMx9b$CH*0zFEE+$tsY-b^%j8n+qbVS0g*}eM)h_il7TW(WM zg6LDMtikJn%*U`+VZsQ!0o&{S={9Av;<}D{<`4X`&7J=y3md}%&2od~gwLEU)=$9w zo#aq|f*)e;AAj3-0czmP%3Up-6aBT*YAa>YI|*^ZiP&tz8!w+bQGRus1IvEH#V8jJ z%MFiGQPiImyF3J;PEdbhHufB9+enGhw0j@NLkQEX>^t^`P9(IX;k1BZp-)@lWBb6| z1o@mu$A^BH;{g)+0$noyFy%mws22azf8EwRkgA|My|N1)KhHt@W*680KEUqVjtnd- z=e$SGi<9_s0z1e{ALTm9Mumb7d2YGy{|A)ljB9wEr`lA16HE=u;H?d&5x_? z7#4R+N#snwDVvGs4W0Vnolc)u&svflM<-pwHp~fz0U(QL zyteG%1m-U@eC_3w`U4HQxQwjAq<6uG?2eZbXPk|RbA*`9?arO&9qpl?3QX;tu^plM z>A}Y~?3S+%FQBBirsxe{&essSHD9o`&~1!#z?<}$Nf|BH6hDgs2vQw+wpGzCtj}nH z&Hdc%ZRJbihHh1QB#1%Dndn{qH!@oQs#iPYi&!&fLq(ptr$BCG?$FaS<3#h9#%i>j z&9L7eQ;*yNfIsVv^4UCJmh@oPtDF@uf$A67-V@w4PAW0Fw zh7WcMyE$545HniDlR+Z`NReN_wfXsn{|rowwIpgD8?~H8=O6)*h!dG@^=b{A2ST~c zWC#Cg6$oIi{j>A#StI-RvzP13i~_7xfeu`0T~P%5OA3hK={UZ9=(UNe5VaOFiiKu$ zTH4t8C<|lZR7|`?*^ujlp5st&`P?GfSF)RVyYHBr>Npo`6AWvHj~S(jbUE^+iVsQd zfqx%+>5KaE43!kzevv^vZDc20BkN;|O%_7Y zSD>pCbad7NbossHEW=fcW$@U+oYPb!rfi+P_xs%PHnxWS9*dV^cCB7P0m-Kqe`^1z$*?E*0~R;PYD)V@tQlC0Hqt{NPeeHfzJLgJz_(7h)*@5%I{S_jJ+8^d{Yau#pnkNc1>%Jk2~=dEtY2AzNU zW-sbfy*L)1)Il3mrCC*LprJf`olT88miPwjA{*?t2{05a-*eM;2cqT*A?)JeF`#w88Pej$Q*XRM16SI5CQz`%Kae&P9fO9%it75y zb40T}43N_O#Vo=@+R8m#Bx6Gk6h|ObHho`WLFe`BrQyaBja4F7ayIq!7W<))5b-nXBqDz(_cR?DB`$j3q`)#d^M=*hTwZ!G+oNSR3NyhMX&woR6qb_tIsoNUOf=JOWuRpI zVzAVEq^laacbpzsI;HVSCh1~@QI|O@q$eU*sUD`X>ACk*=M9GbJfj9eb@G&cJ%Roo zpzY@)hBz@EX4vQ~ckA_^yM;4VC7zdc2ZFb{e=lXbV#dl|isBKZQi##E?9^mjnKEFT z@R_$qP&EoK`?G=bQ73+%I^`X7ktO`3~yE!W%`H5XEp-^vkJ?b{tXM%ELNVGG#+v2Wq1=}G-L6UoddIC#^{&$7@YN!i#Z!T)yy`5RC+mvq5Yf< zvH4Z_8}+dE_$Lcs76%eB?w>!wkrIUc=iqhoV& zBoYob=kUIW-9B==0u-0wk?FCzfI9lZke^*{6!a*3V4Q;*sxA$t&zEehDdM{QE-I?l zGZ9i?8`(c%!h#>(-Q0Ts_c_Y%Kj&^0i=ImjPkm?0`#{8Az4|eZ{m-1eoJ(TfldkS4 zw_DI}6gG+YiK)9`^2whLyu>^PIdIHD5+pPE^WBRH74W}KZ zK?Zb0lZv50rUUo?1{Ex7N(J4yJG~i&MzFhI7Ea9%91e~$GU&5}7owIw2D8J1alK>; zSlcNQP+VY3QYDRilyv_`crU{IhJO*jlYKV$xRnGkjRLgHm3QzFFE}1+_)!}wOL-y< zj=ggO|59EwnucToKOG zqqf#kWtuobFB;d;~xr_VHma+H{Oi-p}9S6?h2wciB zkBX|v5`BkZ^icEqrFtIEc?z1grt6VsIDW~=!*W|Wsr`Sz*|4Sa|h% zoKx3`>U~v35J9$CmPoEq(I;?NfPmS3ft-CSWouqWGjjXr=)e(sYj}H1zmR@Q`A#I=4MI%6@NA3 zCrIH;H?Tqt{Du|(zC^YKKggosTMxc(EM06`J_E-%+KN7G&B<{r`MeFQfivLWDHdqS z?SLgx1bq`MLY2!0hDU% zn!_N2{84#Xj5lZ;Z;yjROMf_KA^5lINBEJv%8O8!AHn(4(~{cz+4u3H&KoKbK$NQr zbcFC2p3+0XoqEi`5Sg%5rkhly%}zNZn+v#%3x%o*T(B`_M(LHnlhIzWpwCx zP|$b#$a!1e(mV+B)(}zbUf{~$PI0^}(0Q{ZtwYs>+fcua>EvDmS`fdiC8~^~-YA8I zxe@p|qE0)$80Rdp+T^6USHmEUvdIgYLTGxCf#r)2SqC3Y#1rIUvw2(0;*pn}hIcXy{mEl1#v>j?n7WK8 znm?THSK*9nvTZc79j;eTfF23wHk*=1obck1Uh|-O@g41VAKRlvWj^yl<@#RS83x9FY}MWz(cqiWfppG= zYphe-TIUWwPtWoE)T^*Wcc(PERGM!XaRWR=C$ko2%XXiS^N==&?3uUcbOl4g9fog; zah2stKAc?otvu?#n{$lqvdi$2^wfM+U%! ze{&a*&PNaD|7GS5QSkXQZU>!I8!W3r=1#>WB{`LbKd9B&bNcVtaM%KYGgA$5*ww>(KvvCrp9D0jlVj^## zG+KZ<-D^=9(e?7VtPEu2wf?)iMYdlbHU7>!>m}{Z03STB#N1R=1wS>Qb4h>Z5cf?Q zr60QRexgz0mTvsHd%s*xt}S@QAFR-v05yt@*ZJ zy-|I&JYSQ`Z z59YQF#J4gbH`I=G-Gor)ehtLspNWOI+OFqMZ=;34VPVB|3^=h9B1b$uvc0=gP<8SK zPoaJw{li50w^^ZtK&}??hjMrO&<;yv|I?%f=`2&OZsSFrs61EkEy;S+JRNNN0b(vn zvpcJ4Bmil{5@xQ}->R~Q0wFb;gIfY|^7Eh-(4;M&eRPGBKq}1%i1-Rl{Rfrp!XO!K zZLtl+cjiaS0fMtos+m1F^zm=QD%)zEMK@Bwz3DjDFn6Z}<-QXWG`?Vuyy1(!7B#ykw%e48mvfY9|0%egO| zbA039hfr<88YJnAc->ZPA#ef`O&m7026o9w*WJx@xVj1dstiM1gk(%T)B;Sy(02W( zN71JyKHS?TGBx&r-`zH+%XE^ZgLleDfEV|_p28jK9fFnxD+tjsDy={_nyQUdXl^T8 z97f7XqXRgi`Ya(bB5#~Sp~}0_t0u>kTGvpXD7okw=oi=s=v7Ut}}LT?#=BdZ+fqbt14VJpP++azaTgs*;dWPYJBT|P|7zS1h0^`I z5UT+^`z%a1v)5jT*OWOw?li;>rQOwV%aiFA-=n?rMBkDex4REpN2r?LohAvDb?vTw zqb!4j-i&KnlKQ#njW6}79W;Z`PxW-IyKIlfVHn7#v^d`z*0{b>OO;azekTLEyWCUx zeBk6MTt*!gLFY!=G|Q}Si>W5P>#+FyU6^Te21#PZOH+%$7W^fA4H}Bs>w-6M4IX&& z*`^B?{EO|A53v+-u394>r@hILmNXqF4*se@5lPZH^`hh22tD=&*tns}WcywCYf#Z= ztm-jM*feDsP7jNp^#=*GmVryC>sv<`bsm1l+IhMx;04%@-ExqN@r|8rOU6@PtjQblxegwNVE=1=vQQXpv5X>su?1dFn7zhtn0M z(K)kIudZ&3D#fKZ2T_7VPyADxC08k{#2@LQemL73Vf&OrsiXBodr+5e@b00aR#`pA z-N|d}DJ?L1ew1bLTRuYocsvo)CH)%j?P3-9Lg`*30+Y(&ea2-UaAK?yGo&d`qn`X{ zHf?4kh(JYe5vOtj{)2!6UAJuZ(<6JUE=k3hl&%xfPXV#!;Zfp_+#dU*az&dxujeH?SG5|{lzixO? zK4pLH0jHg$D7WM@{pKj8tH$`v_E-itKdBfjbg&d8=qdK+K~d z+K9p2UHY>lTr1HZZM|yF#e#cH|GVAqSFAJ(OT~$Y6GcueE5%*{d0Z@LvsjHJ0q~GQ zU7Os#*7la4%~>gy5&>D+FthcUp!62&wm#kbM75C-%`xY`MaIX>A zmX12>^QyDodwTxqNmIy234r0*h-ha_zC->I;qx;oThGJXo7)zVAyXA4R0kF10_jsf zR-8VkiLC0fJ@HK?Q@{V6`r*)ULM^(pcRWgEb~vY#C~)R$ciolE}2YD`|q;A zSHEczMOX<)Q>M*D_uEA>6#za}X&CabY?GH^sb(ZthUw}J6+Uwg!gE=!Zl*!c2HUq; z^yCp~x{MP)-U%SneRSdly0;!k2X+3k3$BAQ5L*0wnFtHs@d)Raq(vOtF-W{PIukpS z*6?p7mICJ;p+LUKB;800qB#oCQM)`(z zq@@LMS4~2?E|x^=YE6QE13Py&Q8ec0VIwBsy zqN;`yhSv3BM`z{s1Gst>P^_dUmKpMThh&r0QyTedg0ph`rg}O@!h`*nhKy6(Q62yuKu+~!Etwb_`dQO0lH;wE}xxc`wDOo8GK6*S6whtyAZ z3tmSgb?oBc^?`jFSM}oDdzjVi7E3vF1F+W4sPY`@^ixs8KAWcpzf1d#?^PKF%D@;F zo!E+nQ>|+%npGW~P>FEz1wxgYnnVF6hm9}t&wulR^0k?8L^Y3RHBKUV;#6A3$bcN= zPsa>%7Bo#M>KrE_ip%Ce0H*1WBK{8XXT@x7@t|<10`;sXL1^e{2G?@nV77Of`+0MU zYA^~bch}%Yj$K3(a-uV}^t5A44G}86yHIL3&NjONT}J*eodHWt5YB%B)6DFi1M4#8 z>aC?=pVjC z$N$^X2B;^sr)8g$Y_Bf%ZIng_$*%0}l>0r`d3d6j((wwsIV4Ni zHl{o&PDG-f@rfp~3wFEc#gTiAW<_`5A5b5qjpRZvel9wERjT`yRJCI|{%K(r%Fv;2 zzc*2SxJgmftQ&{q=4>0p>G`WB2ciX<>V!Sd)*`#kS4_R@`PrVpx*-a>ORgL! z>Ht4PrT-CB1-+3-1LTk!OyI>?Xz-N}Hm|n}XI&Eo!1G%VVp^?v}c)T`$e0kC<3i{ZJQBiW7Z(l;>v zgU_GELEbhi(F(|SNM(zM-DOQadf-w8`LwP>VuE9CdGWeVa@vAplC^k&^vzfvm!iq& z-__W;jF!I0D1_B*yLW5jJt1>!aDScbV3cp)dbe*7>N;x)-I z+niAl*c1RUEklG%V(|^2bDWm`rVD1m!+qczfIIZL+(xUhC`x4#-)8PmrXaZaG3zJ&t z`j@YE>gNQnWxFOQRrRVNs1xyKZeqTg9!X>77bosct~cMY^tepjr@&%AfRm%-Vg;8%??ADv4d>$BR{mFj$T#`Rd?y&`I< z7wDi5f0GgCDUaal#)=BNSp|mONzE7JgqaT)*nn|VAWPsojLM$ zzBvDEzHf9i)ywq(LUR-R9>*YH(^h%m4|j9_&jEN?Z~?E3s3{;##7zw6e2swO9cg|o zQtgJ|TjRC$tjCLcap^2LLNAQ9Vo@647o><$?J1K(VunF)%mqg_eP{Nfj&DpL>TFN8 z*gtGqd>{I7dftU`E!=3LQjof8>zJHZ= z>(s^Kvy*aw&c7}x!7l=Hexr7Z9BpHzNyi&DMh@>Ut;epB%{`b2E!>;aAti+(8SUd8 zdd##px46=03L$gYeC<~Kyi=c;Fi$NbZ8D&t6eA8|9ug2)x6ibGGc@!73qhr2-U zQFth7+6Y0zk%0MOurIRLTMu&e5hZfBRKM`CeT>vufZTm5+85$vEhVqY`i02y zW=N+EE?uy5L(NJ{s&@*rxhA$jRXC7=x%U;5#;yGB<>ZD!2PnZjKOS6SZghAp0^=+t z!wzc&z_5zV#%`)WgS+gr#M1--Oyv&d4t+J(OkvuCyb@sNv?_Vm2ECA?@8$1EVA$*i z;?KmMe5mgZX+q!k-WD@5X$mNkY{t&@AH?g>Bty|_(tKMx#ZW4L!R5_BTG`)PttO!+ zKvu3w)K(2#VuLfI=Et&OqwhQcoO43M1KGju_wgppF}HH__p{Njs_|Tq2LSQ4=$A9? z>j;S!no!Q&otdX^hOU}mC`dlkTr@4YHKV8BCe6R&NCj7Pl_^{?r_QEDq@^T^os3Dz zn}})MBo7W`uXe{@#%AbL8kIfNNUoGGL{^Pu~ww%oXljFu>MdZ_c)R8^T zrS0b`h3WQCMftqP^f0}p>$U>)4n!zGPB|!ZePm~d$J8@0X+z;(%X)Dw$*d&pwCMUF z=gPdm_;3FrJ@3j`$dwsjR|EUQ2forjUkVhR$KONe*=%K>A&p?(vB>t2Ir`Kg8H`WO zbz_;(fy@}$EeTKN90N2w4qErLPuUrSRX>u!>UD(APA2SK zhg|T4Fbgsypu4oh*C=2Pxbkah<$`teYrC(?VYfoLJ9UE#*0~LP#_%LFT+75zRNlO~ zcZ`D59^*AJZE%v&j=VmP$fxJ##bMmYH@%_r!P^}My(SWDyXb_^ZWVKqV6k86x3vDV zWGDw@gdo+F_C*{xtPm}hJ{+vsw-@90w=bqcQ}H}uEM6RY$zeEAg(*9!+JVXF;L>FYYfwbZ+o&X@srKK*uqV9LK==HGZQnHV$4;#P41Jh*=Er$_y`P(oL8=^@K1gezp37fvV@4dQ*F#A82i{^i%HptQBP78ZvbHEN8q?1MHwd_trq>>I=>#F`A0m$wpRk_&FhC zYQ0O#INyYO%kSNpT#B4;leH<5vtx2{p@fQVGE#=-IW$SJUg`Nuuq!#HeE@ja$mT$~ zJz7Ec)~QG1sKpWAHicf2nTN$p8o#0(zzvwe@5sZ!b!QyZc=KcZow?jr#=2Gr_B<@8 z&q^#9Vk=vki3O&~jHo`1+vM+jq5T9uD3r$I`S-r!DIGa3s;GtAaa<=r9A5VF;P3dF zYI|%WrO)7p$)K3npD-6p7OZ_Q!ga5&vV1=NXH z$;;MS#8+%Qd*loYwph2r|7yJNq7rl1J4OE%v!GLxj~*HJ6g*b${IUszBf#FE@ee0N zU;hBJ9o22`2<0KUP7yWI5zQ28jdw9HNT!9&=uoLl~&I}dD<0i%-y$Ts`nb@Ax_^a=kB!G z`Xa{d7aQ8;QJjP32`(bX8|w5GfDSjNqm%rnKswhb+{Vsg+``Qn@)LA1-AevOjcr}y z{zp6>zq66;-p}#7O`&_-d?YHbRG7WZC+^O(X!Nf>$@E$dWu?sS7Wnh~W_O5YhAt*J zCq|BxJvb4vje^Vo2t;1?H2H|UWI3ALCCV|IA*E&A_?%6|&65IInL60QZyVASWb+-E z!gnD^b!xzUuz_d<39h0#A`Dl{z|D;T;_><^5pCk78`CmsGEi661G|6WzBd3mg1BTJ@hFCu()fS#YR zgDz$}o>rg6z%PxKl3$so+m{9eOo%imOOpZK;n!}2m`$<8QTWf7pFoo z8K)=lfjRqudyb=@j}<~PPGZt}!v~k07zNf)j^)r!TuFWwwq>k0ypk7k!(GIB^Rt%Z zqm7GAXJAco|ujtySfZyVGDHLE=R&I(wv5&6uK2 zWyF>JJ3&*B=-_pzx>{g~!O>>*%!MC6vG4-obf6@iSzX&>=K41!%==24kDH%HR9p{* z(qn^{6~47ZAiie8F!Fypu`@~Wvhw1y(n;@r4Tam?zYD-bMjfdf5cq3Xx3`ZT+cnpl zeL{|uE@QeIi^d&kJDsl9n#UDNAu%HG9I``M<}4Z~ejD(}Ua*+h;M zxc=}nEjzPGaJTuC3(k*mSG;*Z<1ij?vDCL!?yY&Ma$V8XRtikV4IFF3%lY5!+F98t z4TzI5*CFYVz^XC!afDQQ{ST8`K_2spc11KxZ}BV5R_^9ms`}xNZ%Kkx9KwQ4d~#c3 z`ZWybL9a79m1{OTg5$B6bIzIrJ%0<2W*Fu0cY?&mlJI70kkKkp5(cpJYvRQn(G*ko zHRjh~Wo2r{xY@mFLXbp77PM3j4wqn8ju9>ez?prgZ^@X@ugeZ`m)A2x6Z(r|`}tR& zpOzSFltoE=k#v7gjoW0BL=BfAE9>5O^4HvZw2~IJ=}qBjIW5Rs67*h#AI()#At zvLj@8br@W(`uz8LbZ!+K{B`o$miM!8;z=}byVbwLirIJ66D>82BP+7s$8@gPQy~#s!v=S$IB_8$~@O7uTWZ&0{a} zru`?}fHja=D8#Fvm|D!nH;_9@8K{s|sjOg|P8<7KTE?-~{sIvBr-Ot)O7~@ZBXYRt zq`Qd%T^tv#!rglk6X2)Kd({`U?fEBOq60pYYhnhMY=YR5({Fg{zLqWZW!La$+q%fqDk=_2thaI~!| z?rhTc)>}Z(%Gj`QkPteiDud(#V0y`5Nojvzm&oNz+X$k6WMlDTay;|%h2-WAyfpME zV$dTZrOFm*YO2N&@q5V%{;CT0Py2-+>71xs??7ZXAHON_G?PQOG9o$rY-NmCAGIAB z%dfcu2M>Vw1k~lwkpOYI-%_mouR+IzU>|c-b?<$j%Qg}Ln1XX#@xA2a5~#V|d_{s& z2TG!GIjUE2SwmZIgp(;ETit1ysa3Ub?ImSSMLY09_XF7n*wLoPTogXo{>`T_t())- z9GcN%-u*uSR~pGw8OaEF3kXT`0A=B` zAb=Y}H{31WM!gpE`($c<4Ua0oxSUUzADxwFy#Mfwm;U*B#seDq&EdMvEwFa)zaw^1 zyDGLX+?XgDQz6hT3Rawf2hOkU#@zI*Wt}|Bi`!zxt&|Wp=Q3Mll(wN~7Of(#E`N#Y z*pDfIR(AOFO+W|o>|8>f;B!VC8hvKOk^5$=;|wY9|d^u4^g*G!{4W(qo*iZ zY!*8kco!%0m{hJcIt~Z65wO>a*L38^>^c&Y{lP3$QtK#JZS>!U-v*Z9$ZvA-a&}-% zY=DiAeee)RN_=OQ1-#5ZG9A&%j?aJni4h!a^}dIZ3j`xR*n`uS~an z#NZWS#!Jo4nntXYs@@@}hM5Fa0chT0-UcOu!@F9Z>!`!HAb1r9^0N#x zB2}p1X#hO3Ef3lrkJ%z)#y zXRpR8KprquTd?RTr7K=CmqXjCKal`v=^tAi&aP)p&Z5%-ol8c(LRGPMnWlx`Xi@VIHA*rc;Nu{V++mjNH;ONj_BIIFZ5oU{jc!GMMf0 z58I30*$yl&pCF1EOpPScbBA24q~KUNNzg)QZ+MH`Rf4zbUnA!uY^=vYOxbY3N`s3} z(o1fzHskNk0k(9|&{tYbkkk{#k}uUr<@Uk7;gf~^hUS3&ld?s446+|oprg8cuH##`8_(U3j(1_Tl5nUzLp$1D!ZZ`u8vk8X_PT8NVVGYM zn8`|PtE(t?M2GCoJh=j~8-t(7U~)xG+ZO4S_2b*6MfGRj!(WNVx1^dg*vvsw+9~dI zHxd%784jBFKQfavl=12N(Vj7X$5-3Q;i@AIXvRzhac2NR0x6ej_OXuP2w<{Kkh+p_zaRzoRI>m?JaL1D0e zqbPWuu0D))$H#WdsSBFJHY1$8J+`Z+MUG2DnuZR2v^?($1y5f9)O$gukkd=O1Zm%h1|-G$cv__*NH6|f{hrq3F-udX}Ezi!9=b_=QVO7F!#jy zj%1GK_UlWX(v|tscW|^rcDS<4mp87(FstuW<&LS z$og3IeGW}F*~oVZHd45xORPuj3g^Dm5Wds7|E^-T3~T^D3fhK<*hL1rHyNlpP@-Dn zp-;N*ytTIGKD)PM$<#AE9mtOpMThK%+oPDm(pSPl{g4@71d%#ilv`%8q8zAw1AM? zI9yc{B9PDpqv90WT~I(BHrW;;;wQvXP_kw2J4>dY*#X**3koZ_u^|Saa)I(vykr~L zll(N##`WpA5nRPkUYEw2O7!OS*J~$a4Y9#ZMVJ13EgLDg@Uv7-QnbQfCOF;0VieOd zHWdDMfl_s1M(rb4cNei!f*tCLh>@=DBwZ;u^zu~!{*R(_k7s)SN_r`>vhWf9RY`$EcjWPWf% zU$1%QMA*8w2*M8flDVA)CS59fS!$v0-X13F<1s}U4A1$=R;c@Qdp`BS7Q3F1UIa1{ z(MUeEr9mh6gi}0_Y64O09{*xJj@zqE3 zxT$1AX693OT>$gyGI`>6{o+fDJn@fC_&t2SV9pD6Td^tg<>kw#p^$#N75&_iZ1sy) z8q}hk?)ky@1XG?!V14LaJ;>DshevC^V`J>(Pc!xI!!&h1Toq-&QxKQNWL))vn%U(QD;5_0mS6Vi9h3DV}|nu0E7IssBPuS6rr~ z?gp9ErPJo>38cP&V#$v5UU9>VKFGz)PJwQjP4)&Vro#n8mzy5}8=1 zM^fhrO|7iWh_RiTv72^*xsk}a48KEhA$bUQN`&P>_VKrOB|!4$#2yXQoa5Wz{Sw^< z!arq*44HwH6F}eI7B!L8g^YpEojk_ieZsyT7?Q9QTR4#XKj13nwY=XEZiSuzJtpDC z)unU}IcT&4F9&~ixOUjKP-T=pffV;G3)OyQ_2QkNW?_3UV^RE_Ng3 zC$zi4*S>i!(G$CvsfA8%RMgH(9a&?O9S+y;h06pDJ`)p`owH7v7CW6$WYtSyV@nbB zLE#xj0}h9g_8(M7j)=lhDy)x&2fO&w?=J5F8JV;^MFM1}ef|CIdgtL$KGx zm@f78ERl5c_c@qbK$BGa$lAQe8HK2YcZoQhe#c(UgEW&^E;>$oHz-xX_SvFUGj$7x z(BSC&I1TbKHwshqw<6<^Ie9{AO}2ng9N*vbWizsRVUFxJm7nT`qdX8Cz;=J>t?HVEDCB+iUgC zVO1l=T?^Mw`OYxjmCVTiS~g*~AtJTJsV;HKK3_;9->_4LZarG2R5s+p_M`$OQf_dj z@H7ep(nsfv#nrXR!lDNtxW3J)yMSrsqleab$j9MJVoRk9HUCwD7ycMpRdMs>mOYYWH(C5-1=&DVUW5C5;QuBl$#ZJ=~f(s9Rp~d4#L-$vd0~Wcd)blpIIVCKMw!P5FO!iN*KeG zWZz`bHFeBlMc+4u0V1p=G>x9x&-Z}liM>a#6i@KR2+et90-15(2dXwtV9F=Xty87dc(P(aFo`;z`?L%| z!Bn{Uy#|3q*|`)SjDy}!@Ay0j$_poHWPWCa6stiDIt0=J`;C=GC_Er@d|Yb%)dSgymMd%GLY=ar)e^I6gthJ@8=V4C$!Ad40xdG+FO>jp0=8G{Yf3>QG<4wgrdpN*g zk7y6GwiLhOSelU_x*fLHc94StV(K4|Oe>!jhCnoKHk=g9xrV%1s-de^D?=!9Q57FQ zy*w!JR+_}3lgR@SVv;OOkZZT|o{^4vfvt3IbUD@ld1|Hg$|E|9^!zYL>I5$~%4u8v{D;?~Yz3uIdk8kJP-F-Ob@PTdzpKCIy)?ElB9eUXZg#2ES9bF>fsY;nLvq z3hB!4xK<}I?l7YXjAsqD+DqSEYTgs*#=gYO>6(FzXKRX(kIw&Eq>H zWyw<_5i49MGPc|!bOi3|yf4N>cgjF3Qrex-1!o)G{~ z`D6FCbGGbNK3vx}cYB{SqSG#(($G|<=e4T}<2Ui`5aUO3l4zDO>OhFi`AHQ_pku-P z3ncywsGd0t;x?b$hT)r^$?gd3#&E9L(34*A`>li8&=c(Z?EER1LV+g=83o1f-iMR+^=~u<)i&afiFd&+SF*ADfO zt=^-SpPoYoDfhCEw!w7fkoug8>Pu5P*appSwPC#fW`>dd8}dPINTXvwf`v?@!TT12 zUHuSG8?aiCaO=L>zklg9e&W@$!adGpZ#%v|=0esRK1&TQ_~VZvWf#U~gP2P1#&6c& zAxr~=s=rJuS2dHgnR}+>PV@ghOZv3rhBKc2@o$`Q!z~i%8Jix8{oymE5U1sq`25WD z)ra%%?zI{>-7+n5fsp(3?bdGZW-M_mPr_x!L!wiA({Hi2(+@qpJ2zDu`-bzIy0 zCXzlMc3(46bC+w>^BAWD>E>!3<7NQO1>vgy@wV9mrHqig7;{dU<&I+zx>tRaX>aP_ zYE97bi;D|W4xQuwNpJdrYHkCQWC<^Pj2YmR0XIoCVYo={I^6#Y4&km)I;K?4WGfk< z1bCi7TeojpG#+Gw2D4Q2UbtcB!WHmy+Pk(ia{Ct)c7+>tm8LcSl-E$PLHiI#Ms5U)oAlQKRA;@SsdU1rT zUuUfIhb*?alfabTr(_xgd-fq5r2jtkz{PI5nNz$6suPbjir`6{f0r6hv1NP zG750rysg)zgx^Jow2TM{ZgA*T6HEItJmqRQ1hO+BPSCd|j0`k@J(srXZW^8g=yJv_ zz@xw+%N@f)c|ouFuW+Ra&7(ntOg~JebYo~0+ipJca7xi1kQ{ak6wr^#54M6Al#Wx3 zZPXVt4pI4Fjp{(&f{tcU8WnyHzsR#k!FB$+y7=&~L74Tt=chBS+u8!=aRe8eTz`*X zW&A%G6L&rkX~w+6>)eJ>&%IH$`xosqV`NHqTYfuPR?kGGYc z_w%fFub8(&vcCl(V>=c8U8370yaNt5sE6{cxgU^GH zPAy6A%x~>HwrJ#_YDHQrGB5x?=}u@s2HKlr*MGj3?bCgolOfuk10CN@j7j>>sbr&q z&@b%BwPoy}&O|K#;g_=Sn!3wG<&}&+>EiVcVbB)G;+z`+( z9=qtyo)_hgP+Y-hdbai}=(RioahY4pLt4LtHA(Vr8m`|H=&uh$bWg%k{`?Yf($#uC z8^NybuJFZBt*wPAEdjvRmHu}Qy5-zgL8xv0e_n=J_hYr|nI;x_Uw6UKTB^!sF^u1- z#aju5nh!k^gZHDsFBtdvlB}QLlSiuAIOL(|VJK^}yc(r|sMs8!TuGUtTR#db+5Qm8K%<5a8v)#9)W11f7$p~rW z9$U+dBftCQHSz=ef%_ zxS%rYKBa(aE~edreC?M`e+BnJmnUS{x?nK#_ErpQ%UV)AtTDW8mjG zwy}du%_beer#FcM$dunJ9dI%BmBTt?6<7UuaqFnK6)L4pHmZjk3p_@EAb#WEPcFUAM4H zMps`~k5^jjBZ9~@Rd#`m@6)+doMfkgTBC*GSU~>o{vLwNDf{PW7D3 zCJ64#o}My6aa;F3@=+JWPozDf?FoD*JCV|&a6HFv3E@Rqucs4A@L>-y5pv<%uJ^$! zqd%8+>xh&d>f=FePlTvWr?K~cv-dyl9OOckzTuft!M`p9yAA&7Z&HeaDR0FyeZ^6h z-<(wXdvqW$mZvAh00QMn$g091YBU5pXAQn%R%D@^J|8T;!XVyg<|)gM&a5yq(z=+* zn$VIRT&;eMz2ZI~w+8Fjy1j~e_Hq54+hF#)BVBi_keg;-yodj$G-N`zd<$1&mr}e6 z4B{%8&E6HL$~}i?Lfno5pAyNSYu@A*(Pyh|Z_=*_!~^t#HaPi)aH!FoaPm5j@kUkV z7E#kdAE$q3>Dn5YeOh`byxyaq!g|zAG>{M_nZigDO=!iH(hU_yky5PzXlM@@!E)tI z#wyOMM$nn;f!K0%Tn|x2|Eo%cnKKCuw|zR1&oh|O=Ns-E4_qE47>JLG)Le;igLTG5 z6>PARV3~K2qy%-do*qdE@i5u(s=R>wD1%Bq3< zj1|Ddn5%{=qKJ_8FYu7{esvPcftCN`L9&jqsA=-iC=itGTx#pT|TS>K*{>H&~3cm(4gEWNnohxcdUz~saAc) zrXo29s#I_Td=*9_41BpzjLn238|Li>c65xLsS{z`Ownel%E&#l$DDE$WC0|aIZ2)V z4Gzt~0Ihc*1`}|1Irr>-o4 zt-N!ER}>ZBX^2FrW$I~Ln#pb&BoAS5IIglhKIE*IaFM^qaWckEa0_hr^bB9Y){-Rg z=Hkj{B`j<69Y;?c#r9DIGZ7YlAJLFXF*n-HI}eYiRxS^hIfhgJ)=S?&<71tBf@n&6 zzv>lodYuVQRMfE27Prp6y2& zt@S=O!;pBrnn~nj6gt^9{vRM`x20TNs(+i<_DWeDb@H5KQn%i7XJ7g#ZYIilcRt{$>{K@4voMC{7ma`tmVXj--%)vE6Y6Z zJ8bz|j*yGkn0q8@JDxO!Ge8A8hOWKTta-s$iMz4spS!yn`%^_6uxWsb-jJv zoOr){mgCySp$@;{yLdO>bYK;{7FI?c!9EqALY4MyzO)4kua}-R4SH}TpliSCHuVhs zMi)Z@d!5s0tIw}efj3W)k++Qtbmb2G>MZQD&)9QXAu1!kHlkDp>{Cm#HY%f>Z z8~up)xP`LCq^r}Y7J=)W_%0o;r#59@FD%S|b$&WK_^!;sdZRH(PCc*X#HZ6xP$1dL z$dmo*{;|PWK1Y!Eb`W0aRR`NYetz8n&JpnA5$`_&iyUelAD_@GH*t#X=i|u3PVh`! zTD7Xrp9i<1c3eiG^NL!dEnxaVAQdGI!y&PSLc1+xAx$hu+Re`C-2KR8BoS{JqZkwG zv#`sL3piTEf~sC5r91CJFVzbG^G2I!80dJxB3|Qf^_TtT>V+l^LYTl6q^Z3to^)ct5wNPm8*|OrSGcr$` z-ytx`28O#3zdm&$akw7!CI|$%OGJl^`^t;s8ELi3HVn68RdwGySFyeVL>U!zsPPb9 zT2FpSasxLfQmx|MbV!Hi%SY!vvkuk=Ir#R{8Pn8m7_t>v#osmNh?*?Y_Az&EH1_lH zBA=+pWRLB2CWj0LylRtY*;G6!*5nDG-^lj6T)mO+14(on{PNKx7Vvf)Y%$>(0I=&J zy>!!eg@Alp+E~JdhB}KAO=9#-58ft0I0ffdfR%=%zfdWM2V%wLzDzDjc04qMeUPt$ z!*gl3Gyp(B5F&bYhN>D`A^u*w0>Nhb_-Sc!eL-w+cI||g-!~8~-zfeJ__+0}-eFME zdoigeL~F`phhRA4IaBu!lb1w+ARIE{S+ljI12BY$l_9;$=9}Mz3A}b4*KuZLgjKQe5my|St>X!0yY1LOZ0BSCD=rs`8 zuz{Gj)3YDgkvnk5u<#Jr>(bXONN_xtiKeX};HK+`7B_}i&$bYb%^lXP`3lq7`Dxn7zLo`r<-jl?&#)>7r?4FN(%A1{q&19-@xtNw zaH1sIUU7d!X0?(#TzM-2dE4qV2K*Hb&|_lreRexgWuF*TTr7`Wbrw)QRoWZacGw%)$i^V3`_UM3=yXMRpl$5kU+>?Jvm&B2 zQI-bVoVRCvAgc75A4ujj{Qc|0mZytL(jmIDy?0X%wXeT_#zyqr>YaU2~t z`y*HCDB9Chkk+QNX4oGz?WjOonxaiQ3{c^rNj^=h@-%<#iPM3=C8#i5JYK-4oOP*6l6!dA-MgGVCfSiAZp0dRCJL+r&15u-Ogh_G zrTQauqnkl^&w?-x5W(Iv_#mdDls@`z)oo73Fs*f@5)QL3YO#^eE;mO20H2m*7PkG!>OaVH@zh- z$oiy2S6sCn@h8sM?6G~`)Th1M(~HuOgz3Ji!H=#jU!A52Pov|AXAd9lTYo4(uK%k) ziHDAE%!b^Sk|bb(+pxyT(o zeX@!l1mj^}EP$K25+r;@2o_yzsOG(PFuvH?*(3GOV-XT;t zRfXIFMxPYym<`A*HM^m*+yoMytZTgI8`!ul4pB;8-sND&Wfg-CEzc3+C0x;}N&=z7 zgN6&UhD6%M*-JM+r%|g;Sxbl^yf)B%SuJVDKiLU>YTI+4 z3-yja^MjTWS13J@wx_aW^m%;PeY3oJ`p<{`cy;ZP@S&)fal*^7&By=l4iusCEXPCI zpqELFLv^Gsv|r_);H&b5i*LJ3Q|!p=OH=x7uY@l+4_qUY(x^B3QjQS8B^k2_%+NAA z?V$Eo4=gAI=sA9j<0U87US-45+>b~e0;jIq!o(h2_0CQ5HBDCXovXr)pTl>X6zxs> zg#@`--!s5jv|w&_y088&xEv-ag~ca+&7E~Em20MJGhpJy{h!6RT9|{b~f0rY$sQ{rSFa{YLR1U7*@4&*r?BJ_V ziol>3L&>xqvI@dbkqo;SXK1T;V$@N9q*?J&Ig*8!8Jj9?)>Y*HViRv z9$78|ff8o~IK4&oo9v@Xm2(p+yuYtOp_J5L=NxD0KrBa8VCr@5`cbG2g78oFrSB?D zN~#jroj?7p)CDnAaE0_gVCGuhhQdk6y$W+L?_=JbF|o6PzKQIk+B7>u$#Ok?SgfJK+X-sn>Dl>J~G8scOoVyNbwJ+1vEg~_ z8?IJL%athzOQ0g`*xm+h(1nNas2l(K)io#|+tt2O{T>d3hrF@gv)jcOh0vt;>+>lM z*sSmw8xHrr#XAMsrL;%AF-ZK%=c{wi#PKOn1zm(23ELNTsQJpcNjuInmPUwk*HLW5U%B${TcAk=0UrmN>aKr>cE8Mg4`4Ye541m#GzM0-tCXA00{P|ym)vgmk2MPe;yC5 zq_yeZFwn`xj>nd1OU7NLQbvNcANNUWG?ij< zRGw?=ZKC4UP#rQ7{|!S4e|3>|C~N|^s@-USZQk97Eao;)Y!qkRGj3sXs>jX~S73Kk z&tboer!A0{g;)*C}oQMp~iEPS?}m&G0IG*7mcU}8X{g8_M9kOAKoyiX6(XW^&LQr~T5ZH)xNM(YUBz9Sb4 zj@idCN`#;caN`my$S?10=YYe1L>b8bn@Tl=y#c&x7Tz(9E+O=9Foy|wLm8gSX-Q2W z%$j_yCn$bA^uk;HgqLnR6_wL^T>z~Kj6;=avto(%*}waAiOdl_W^d1fLJrG4(qHXV zZ!Z`hNJB8$eb>4vr|5NnfIuhLg_>duPz?gT!r!XE5&u$^Gls{SuVYLmpBA&d>_3zCm_NS4=vc$>4?m)3oZ5Z$*-4{TKaPS3^f+gDqdK zFLSRD+P~!Zh3loyof4vLL3C`})cXq^FZ%{$DF+oI^;{;_vnYdJ-qQ#DJ6}J=bA@eJ zUnr`+VVqN~?(NL?^u$mc>XLFBrv4%tHIm5Ivo8&Ixs-k(PWpY<+sL!O4D!bd5IUt~ zlmmc?Ni9|n_hJn1F0IEaB~`vo2Wyy3mCSR*dRm?l{coY}1?Tw{zGung8Bkii?soI0 zJWjK13Tzfx;zzvA=>$yZu68S0qHglN7Q-0#6LPhgqe_gmYQ2gY%9PsAY!?)W*Af-> z*WSmPli+ukY*v0BdR>j3>ISlMsW#gF5w$yZG6n)3_Sq>h)0ji=-YV>HYd^-rE-(&5v^d)$>IU}R$v8*n{wTc5*@#}<|gUT zXHW#^CKN9( zf}_(m41?1*PrYRV!J~&vA>`hV^l$~&K&ehH@tpw?jy7KIG8VKh_S`Y3A%*=UhwMopOt=#J7*R69{&4B0g6XqFtk%B@04q$t-lKfA zK4?!6BOfGudKMk$Kd8nptUuX#_;m0sK_j(uDz;n{>BhA==}DQsDU$&hjAI^+hymqs zWy1g!gf+}A*Vhfg8pr>nu`F3*P}h_Qu7`{Sza`s$jtIo-O~e@10w0Z8z|XN*YLq5p zIdcm>6G$RraP2gjpsmR?O$M08j6a|PxhHlBYQz>e=*@oWCQ$;_AjQThKHs?-&1ZVLwF)wWeMMJf{uPPp+vDa%DcCv#+F4x zKJQzpr;DHl$QRTYIoQbN=S$61PB$t^IpQd~`Af=*{9kE5w0u^jyyWRKqN5^R&7%>y z@;qU^#3>(LNRaC*OddpA75JX$H>j$>wI@ zrPoZ$lHrAI*`)!Wc)p+r6lDx~hQv<<^6WQ6Z2loM)hv%$VS@(uivyWDKjXjnAU`}C z|Ngs0Er@SADdtpO4qW?M7P!ahf53ARse97&H3L5@}DVjt;YPSP+ENG zb$b(6Vu}Tjk5}$4$NW8W5PC2dtBfztUqhGyJ=+#6Ztj;ea?m$&1BV#@$iAa!ZPH}s zEABEcybaY5UwIgZBm4p(q0qZUINc`!i)F`}nha0bRoP}Tc$NDt;f>bBJi}A{`uaRi z1z1yt6|@FfUf{ak1I4$Sp}1E&8h}IV55A%DK)%W6OI!e;n{)bhupu6nla6h(JQ2XP zf?c*74_SZJB(xxsKEA<8>@)OM6yOGP-P)h2J0mDhc^>wxZ`Q{&>rK+NJ34TE(`i1>w}ke(1NIGp^ezCerGk z9g^_U7s18-S#O1$n9=NS7&9+>|1)W0OxDqz@tndm`~4-tGf?N939*9l+yGyHxfvJV z@L&mcm0;A^qL5B}_R&C>F+J_lr_nYE1`@ZP{c|{PC~9YVN$-g8u|XTEc|V{@Vl02T zbTgxrJE!@A7&{i59YKullH`cbv+^tcE7{N}88YUb6zDa^U?7y_>pL3Jhd-{lP1)r4 zSBaHKv^GccJP51~=yvToe}0_3oa*b`(x&5f>gUZo*=Ju$IAfY9#pfeGoB;t#?iueP zr~<={O^_d~du3J8SQADYk7T;~(zN*y3v}{n6=ftT5Wntp**d!6J;YR$jUB89mC3DJ z4!d{`nSN9~r&L=YmjBo~eA(f{=Q(gV{Z5%qQ<3Q(qXUv{B^kyj&v6=00T^MTBi-$_?^Y=x+s zs8c>4)r?;}ATn7nx=ut(%W&@RQ3#s?SBF9|O&F(-W=b2~KvXQ176y->u6Q(br3rOI zuwWmz8?IpjX$Janl>X0o6*s*0LGYdDrlp=Ke;{VO%pW!M`G z6)YPG84EB0n@!!0ssd>|ac;BG0*rvgW45ZKs|x(dj*3W&|8qM$sMgwjqU085E40mA{N$}meMsCT53 zpDcqVEZJtmA##0q8dN(fYP_b(M!(i~cUB$H=-2+oIb zSaP2v8;jg&6Gmh>2I}A_o)PtdVv@sbt_LderGlTV_cCNO`>OLP)nAnkb#ZNy?Hm%1i z3OjZzSkbp!eG7vTV%-h`fHFt70$XOKB%@nG2G69Bwi>zo!Qh^DpRt|kOMTeRS#H_x z1_8T(y@WhrqX7$YdEfrm26vV3v_I{=*W-vZM|OKA87qKwfVIhWyvYGZSx_5c>^lDE zS}jz9?LSdDoaYC<2|a-KZg};~FhAhlH`zWKc|)>%$Jd3o1?Vb%Hpv4;3?7K$RvN$M z>9CLz94qukoC&M%6mNJKaJzOQvdpKZE{S>~z|9VGAM~#l2 zCiMs9ZH4V^tA2@wbQK>Fo(cg^;5d1CjlKpoMehO0kD>S7wv%R1Bhw2ZjmvR~hpvRCZVY<-4~ zyQV8>Lfr;ay&{o8h}T_F0^~K2Fc@h46=s`7lu$0#S~L$1j4j+-jVLKMDRImSq;^HvvJXFfJH2brXWkcybYZ}{upU@X!wlj(sbptqLYGotqLyHbJpI1h2AToB+StxT~QP0 z{IVnACc5{+wpqfkl$Yw%_u_Av`?Nw-hVsE0aQ&L0U1LX3JuF%bS$}h-uE7*Sed`g@ z=x$$ZYk40c-%`65VcKW!@hUVUzPGx6i8Tk!d%~<>gZ>&C^j_#H*fu{F82nrbK!MU- zcn8a^dgAZAkOirohUOe>4GxbU@KhWwk%%K&o!1W~OMb_C{mpTU3uCoS7nmj1zUF6X zZHhDpj zGg=PzRqY8u$UMYL_&ZoiP*e6$dEjb22x{R9AnP$tuwSBQFFVdzmhCM8>BlH zMQ37X$2L%aDF{sB%Lw&Ce_H@*pe70qRkag^D||SLsXf4++x?Oy*fI)bp-b@ET^6!7 zD;uk`RK%FV$6*%Y1W6IR!$M4j&sX(dv$jGm_6t>I<_xgf_WF+%U`jD5!7lbTaN7u9 zR&B`Zf`1kMP&h7FIN@d&%)SOF)059zbic07=cOm1U$u4Hlcon7_?oIGsZortPGWy( z&RC;sinCLcV_s|vK1st#bAWEj9=@%Eu$A!srWjgUHQg-6%8QnT{>Pde0rLWg6nEo@ zLi#&kBCz7I=tS4D3dsEf>&fM_U0n6~>(>Juc`j)#*r@7N zmJ7l3&E5{fw>q3#oT~oS+OioE>SZwu%)Oe1qia}X!F1W4F-IV=570V@c_E{#iyc=1 zod+oO@r>Rix~m0=$r65mpPQa_zO|<*-2gifadRw?#MeT88qRD{P*!vC%P$A_1WmUa z*okAV1m>%hE)nffAoGIgYlCcqK+U^v{7WWS06ytT_XM4~9l{2H?%>@g*^$LBy>T=5 zYGSXEAH*Of_>oq1j*I>?v+VPP=4_c{86X2_JUX* zzFI@j+C~j#XJYlX!+TtoR$Pk7LFF&a4;pj& z)pm^`$H$c?bL|bZZ50`uja?H~t=C{H* zJ&-1K+oqdWyUM>0YD;Gw{W0T8N-$+Bj2y_#v{2e*Y=` zkkOWT7yE{8J!M^=v|#(!vL%FAqHlLjcpEx)$mk-0rKcbs+*b0bnP{zvd$5?%*>5*I zbGS3D$=WVNmoCJ|U4vkEqSNvDopXCzNRB!6Yo)|*7-!;8REB(*U8tI*zRqHYo0^`_ zw4e`7u^n!A(w)4x^F>`&>T}ip;2up&JO*Kdd6HqAqaWjZyf#g?ZxDv7-CM0x6AstD zg6lQR_y_IXbXhl&S@Ce%;|TuD_an4h_+hh_3X+qbCC>4%RG)HU}3Qj13Tt-6aT ziR5j0z2)qjx5VVJ<=3UC>lMdZ3FOTP#OHz+H7|N4qFhjQFuE$Fn3=z39d#(#Rji$K z9h$SN;dmxCF9E$WV4&2V5cGUJdEDFy%ZVR~*A6NJd~TSth1aK&r{pglfI=j?U-Vm5 zWdsHRP&x1d#dj)-vNx2r-baTYyrsIWaD;E6cnl*`S|ErO=st-&hV*VHzcZsFx3R;8 zG684C@k?*{@H4jnfc5xlxWgMqzmaF}MJ(||{PpNbg$szlM^e1BZVy9228Ir##}>Y> zcz~%XF>~AAM-kTTc>47D7EmnOnW+6by|-s+u*9!$nHiHhsCq@Ti$7<%3f>{(dG{%Z zZMV2~g7IZ;+~9rRCU)0ew1?buXP>YG^_(tp&OWqWSdP!13V(Fs^Bex9wsX;PoziQV zgI0l}qqJ_D`sWphq>Z5~Z*v=Nb!k43oP82`%kqSkW*ZP6gil} zfrd1}b0(P_q5LtJ=?(t2cOkfNq{` zT#YCx${6YkD-;dyYsSele=Z)BDg7)v^Q6xGI1D!vJKX~nIl5a*EjASSH5t$G6>n?k zZ{?mVb%!8FKzk~@rwhhioT3W?E)SE6F-Nb@oOs< zvH-@@ZB{e{$P9G?~2V5;0|&ZiGw~47at) zz|jVs*EA8PX}5m_=dsN+izgCRs&aO@D%48I$hrfXh%-V!%eIVhyi*6NGE@MJZ;V8D zi5+DRet3k>wutV|+L_#;pzfrC)yzz^Tim}<&@&)Qj9s1gV%+Zf_q^o4k@RxgIan79 zD*>0XYg>1^pVH^_uhgQc9DRi!Tfj5=^sg^Mt@q$A*Ear4FIj340PiG(;F+8szQckZ zB0;Fnd-R{d?Kl<1$a$z+n0;m}*oe`Q#Wc~O*T#4ek^;f+rk5JM8TyJpXYvA_)BRmF zx?AUc8bnGE?zhqq1Nw#)Pp%S7GdwILe(XLw@A&WA%(N{}s`}Rm;o{wVAX}E)w@@W&`N_2sd_eg535#l<*87B>ty@JjNWohGTC|b)@HgyI6l( zrI!Q@c-jAAIs?x(UsyrS?CqBfLT8K?fU{b^6745w#CHush5rhT?+mBi4(ig~E`agT zNl88`8e59t)P(VT&y6w1bfJtxU~K*d&5T;=!nQME$5UprW%g0fOQ<2z8X*hX4X$sk`&ot=?a$E8_SwH`1G zIkskl1}2+~_w?Q#iH^b7p)M-t&4^uj)VMpUbs`E3AY+9wz&EvlNbyN~KRK^^Q$>G) zi=I982HSUuu`5@ZL8K z%yU4qa+QfJ7ldiniF>%;Xa@L_7yl$k>h0NepM$L)?Ogk-`K3bz&pv*2{= zTZdwMqgZu#+B`)dn_k4SIGJ*-hUe82JN8EchL4*h?@Usxe$UHdvx1%{m$6@gnGZ$y z*=j2vHv0ZGGw8F{ZPwL#6tTDw-cn0>{6TtZt19|e7L5gl5x;~m9MflO!9eQ#w9}-j z@to#W_eVeYOSq_}J-wYOyEK$|BhM4G^M)whXHCloX4~}R{!A7}&`~-`by_&-%K7gV ze|WA9(HH|*QqtE9SlQBUhV}(uC$eg(+z*~g zQR(6{06S^|eBVBPlyuUMB}uKGusGcj+c^c@B`b=Kkl+FQebtNzqDG440W&)1HWy;+M9XYuVBk2||MxLac8Z2Mef);dSmkbMf;Sc9Via1r zNWji%>rEbm_#^eaF<=x=TINC;_x0eStYaV+lg-50J5)e8(hw1-%mCUz&JBFkQb|j* z->=WXtY?MHu3~)*XX-@}q&cz>UwyF$_mj9K?nSS_KEXo#Wbd>M<2bN68e4kn;`CgnvHg&1-qZIJX zw@0;+3X1kx<)M=pkw*4TjS+I!WI@$;!}`)HdL{x!ge9@GP>7kFPv0331%VcyEOQzh z2OJB-zRMJp=o8zZuurPzw?#T*r{HFcq5`4_Qk|%UVDzf{E7u!QywFmB#7O^Imx`;t zCw8R7HgE|LsTio(I2L7jx5!9kfmGV(%4Yao1@-0eYr)X%2mA=4{$k}oZ>hGAb1?kV zuQz5YZNhy5HZ^w>PO@{E=^Y)%>n3FheaKVICHq`e#gXIvT?i|? z!p)u;Re9{(mSNW+WvJy5!XCRKQeL8`tw?|xq+Ll96oE5cF0qHYEjK7v!LQj7$l6sE z;zta-*lY_royF+}e}Q9G3L658nzSQPA$@d|9%X(jiegZ$3EVzzzBDIOkCF##2XR@i z*^BeG59z3^*H_1FV-P9_y87-sTb6#OnGG$wD6kqBzcKm>eIyyBzOIG8I8T||@9_^O z62`jg6lo?}teB+Mjr)od03=qeugLLg;zwU?QgbJ1*7>8oc)XR3;JXxM8Ko`V?-Y}0 zvTS^EW{3JVMx^-ey0)mpZjV%bD{IPCGnK&FYA*ct)~9X%jV`&wcANB9yV~EcHvZ_J z&t3*IV3u1I&$z~3SLH9Cv7Fg_v(&09=dTJKMGHFz0KE(~)i3pLW6UfGAiH&?{H013 zi)nGPuB9zOaVOVI{F|R@yAxcI(E$OfKH&U@`mQC{DBDXf+BF-1Lbg!gEK2W$gGOnk z1=swo3FH0iC?MPWo`KL( znD45DM7YG>IU=Ucz?>t2t@PJiBOI_AtQ5xQG($SNCI#C{YVTxvAtYK{d859}K}pKS zN7D|-v)(5hnP2xOysOa=A&TB%rs}1yVwA96wgi!!<+q0{ae+vEs_woNR;1dpNtUQ!$+eQ2Z<9AvvGRDvFOK6JPi;Ws_ zaWZrkv=YJUasVP8Y~)nB!dnut@&e7$5VZMDFg0h8i6n(3NIC@XFXPhD&LLgWy13zQpDjL2@i{ z=S#945q9T_#qfxePG6~7urPyz_nN=F<6E$ohdGVUvXbK|GCq;gyJH9Jj}2z4lpaBK zFU#U0U(=fQk3v)Xq6-V`NAV|Ty6DZeN&knx#q1Ew@7+U3&kM>HyR66@~Tn+tPd zS4$(G+ob<>=Hv(vMskQbS5@8)UPs0=PzpXL~&C>szK zL4NvACCy=wbx=&!mc~gaKK#tzh57#FLqf7Tbi}A^3k_Rtamc0wP2rLciDUJ zn3BHL0GJ)&>SfIj>W_JG48?~tY`-U_v+ZRAEcZA`Lue5)nim9StP4xaMP#qfvOX=P zs@t~r){1detE#fZUE0HD5kzCDl;3SUfsn8*3uRT1B}8Hn#Ke>X^ktrTZtyl-(C* z73Fy8EOJs=11^S|Zo6Qzwuaz8YdqMx`-%|}mR*WFqJ4)Tp-0ORL8kUQiC6p0e{1&n7wa$=e#0K|(ib+I*HhqB7nnGY8 zm+z0soFA|ipMa=G$&ZFGe7*Seo%n*Pukb5o z8|in%G#B-W0xPC1GZt!Cw&p}qN4a#&DcP&W zfjB11C~LRHMXAgu0M*@|ctwjY@RhGD~MAji-CigfzH zdYe-RgF39OEuV6w@G*K(ZSg;m;4@=ccGS({G=n}X0CB862Kx4Z%%vUtWd*J^@qI?+ z4GrAUDOB!96gS82QG7~CU;2N;kFSSGkS8ZPWZe2|ecJt9}op`QngYW|G;aU>&Y z1=laYQfBOI`q#Uv)h^WwNT{M1^9~L}Q_Ozb6SQRt>!yvm_JI_v^wP9zoGw(~FJ+KN z+Ng)`=St)@J^|~8L8~-l@jB1q1qk`MY&S~k{@mdy7V_s~1Z~OqIec`FSA<>ZAwP`2 zNi$!gkCixGHd`tN#1Ze0KwpFvn)`L;_$fBRa)_XHM3U~8MeFHIj_?%|?5x5r&r!K7SX)?i&UZaf`necHJ*>ud+oC&y@#B3Y->lt~A~QM?_zWsJV8%zNg^ z;p8(4YA_7yh^Skp7yxAHF3=~xtTd2S_lKYHnLf`ilEJbgA?ks0d>+r^7%W1AbsJxP zQV2l|zQ8u=ECU0W0EQ{-4q*58UWMsV3Q*qW$^O$BNN0@MfO|S;s$3pak}Z0qwFgFN zZ8lqU=OJ}5LhwKUh;1j1keMw-P=+1q8~%4;2f)m~UWZQxActkK{vx*GKI*n7;^3}w z9*n-1ep-xOo(rs#diKONYWfpEl=-3Y9DEBrLOB+RG?<;7Mp-@5(fqee9~W^E48yRN zLE`D#j!@r)iYebiXv&syg;9J_C7^mtjk$b(0??AGQ-;f9=aj}_$Zo~s@LQMt9)}0} z%2U3rn9OmO0#mXc;xu_+$5h`)AQ<{pXvJSB$=YY&pzgn-fmbUt4twU7LE^9+fRee~l45Q`qa_3$C&8m!rDt~}6_ zD(3@N%buRKEelGUdjIP7)4n^QnXZ-h1QE?~<&}(6x;OcgJsg@tjmCe-7+oZ6W3b{M zais6XNgJ``+_Cl#{ls=-=?rD68k^SUOs9KMvQg|sW=BUq`i9(s6RicOXfpxF;KJHu z2$Fg-R?zF_w039jm^w+n-Bx|%Ct5H$*y%hr;~R2wsc1J%>9G}mBK9c$t^RQcM7X?! z8O-*S_sve!mzc7fcI)3kg~|fqkLz&E9oxx-z9d; zGKe)kXLv^8i*h?8ZJsAtk5bVPB1XowDLQ>_>i=ly9F&?Bt8yg1CU7UT!GtoRfXKSX z*!39htTD;S^Ks~P;ciw)2tZO$z0l7jJSZ(dP-fL{MS22>e(^7i{ zX1oOY|EwP&(Bouht0k_nHTU49UzD{gOCx=$5mTgy_oaBd@33ck58dIKMQ^hGke`gZFU;WbQe{~z^lAVMdt+J zlQwb!>DfI)Kh#Qy#ZOdR@gDATu3%QUBu;BtS{Gsk6tt@0=`z9C+Ftioh}@wSg=zc1 zD5!<2N-ct!(h>jPiFY&}7cm2<6%aN&61gPl*0)06D zR&wTc%|7Sq=GZ8Q2`Sh2ugDI-pa0*ExY5(Yo@ zY%`)H+iX;M)*e|YT2-Nliz`GxCgPIi@u}3fW;avzN)haNPQIoF61Vuf(+@fWBD_vf zT@3oss>^N%B5$`7k`5mS44(M*`nj zh{?mW%duAc^j}Wm#`k!()>so~Jg`(62e@kh<$!RZKDAO~9EcQ*^DP@W`Jy|<5W7LC z+!S+af~hH^0@MoN0d;PvWf$fV=|oag;4r>em6>VizX7Y)Uviq;1!$?#MvE{E@^+uZuyudG1}U!$&Qe{8VQ6DtsZ|9*?l1Yq5g z0A%-5Rw@I$jhbvxP?&J`1|$NSlz;-r1Qlv_pynW)5L$>8!H7+}BbHJAzanX@pqzI?VI&EpQVxwicDg)%+a98A zlpYtfpJrhHpYYs-!Q^2pafDs`@6zsY7g(ey#zs&NJ@jMIZ&cLrA0znfbJE^KtJXr$ z)|q8efD6d|ek~(K!Ync#EYJC8$VDvkM-$|w><`*NerHDW^<-Q1Wuj|0E6CVPvX{qe z)kqN-GZ|DIqroJ?=|W+_f$qTOw{J>Iw7w0Pq8m-r|FzU76&XCba*^1kA2b~iEHub? zA;1MpI~I6FP~1^}v~39>rG|@2Lr!U)s4z4`ZKKp51X~l*!P|__b(WMm$-YW zC?PKMM^2|Nw@xn? zM)ZzDd;wbf5kI*};|Q74)&E??8?|uhsu#`-T&<%nfWuDW9|q!W*0;T@4xnTCJU}3L zthD2uF;Z5Nv#@}u^yEKaqS4ae9L9d?waK`EG(isX(lZy9#Q5Pj99R`0WA<#^H{ zGh667v8%+FcjEWz@V#ZZ%NjB3bt@bp`;WzI7iaFS92=d}$4jOVx%lm2s$ZU%LOT9v zhO+nsU9`fRRlslhjyDVg2LK1bdk3{Ku3s1N!w9G00Bpc*30pxiOVuC&i)$UQf1_?_ zTew8Rp>cfQw^{GDag5d__0&@vEDf`J*sEMW=$yh{{^Z)xUdpw_99zsPxk-;v3ruU0 z%xSz&(#B-LwnTk#5nH91DXu^8$`4jTPvB@ykp%!|^uS5+k;lJ3*Lm|y)HuBgt;Xk6 zT%*U{SicYuz|8!6=vY)bmEEZ%Tkd?*e59PL*?n9RBPYgjcAd5v@bi$zn;MwkiTlS) z40QuJZI4Zg3F86clixXsbp;LzcDUHjRp%7BO&e8Fj0opo``hji8MsIh=)U7LXcf~k zS~O5ZT#lI}6&Ml0ZDa48q#%Q3-x}~lm@p+(>vEz_xAMLEiF$^~*vd?+`a)db8wOlb zZ`{pZWv_gl*NKXE+e@>Vcf7guD|OAY4>$}kB$lPM_sVL(m~cGPAPs%7&F&J1STG@v zS0MPa=%CX(S)&(*^74;`I`3g7RrzeE^-nGr0I9yCp(7<`*#{q~dU!pu=aWWVxzI9Q zaUrBh`Wx`DkmhFQk8-0(>g&7v;Z2W|Z$erNt_JZ0S zIag>U3DHQr*nAOurd%n{`S+Jn6=u#jxlbPO-_e~pc9;gNIUI{e8!*3S8ce`rz!F6# zN@=XP`>|#TWDg>@Dp2<_;JjQQecvSH43pn}ieB_`yOR6!ak6RWHIdSYyE;4zNkqy48+fAO7{kQ&uaQsoAnyj>}WQii~RGbn^~iP z3#i*H!%~%Hl$W6L1Qc!ZD+90ss?3)y@_-o=FomAMvq_IMm}~;XgtBJmR=Geaz#6IF z%LA{^?~!8_0ZPB!NxMoVMyRf#QCp;=JTRILSg8~P*cq8;`cQx<2wMWmZFr;NWu;dcaIR^L385i0ASMG;tN5n4E`#|QgSDE|KXhj^2(z}qoD_p z;qliAMmX^JO)p51dx?&vb!NCE6EJ#MQ7z^rjaD5@QWdiW6>`#a^<=h6J%Hpo}?-`EbdP)(!uIy!F zA7gyiI4qw|F`m=OF`7Q2r-RDPqJu03dBUc_3Q)^!uZKc0emZS**Ro_B$83o-Z=*Qi z2F)sh&9k(_Y1N?Lq?PPkzdy8zdzZ3lI@(p=j3j;VOOH2RvN?|UT&te`hjwT^2@~dH zC>p}lYPdqvL-(eyDxpO?8oVIWear1(xtfKzb2~}G1 zWLTRAHir|eUN6L`j&+(n00s{9_DiCJ!up)@90om03s|b_9rEo3aDA? zUFZY5Hntliih`GLlKbl(>DlR0+C%Q_rCk+#x3j2^vMuO{LKTDo>H(}k;F9?psz?nB z;<(T7h~?gK0LjKNZ}`nGKXw>c?30Hj5Y@V{t4(-lWA65_Z&?vEheY^~3*j%i)GU($ z;sNz1%8`bqX}a>*G0)(00u5sr4)G%y(2Ebh$qDopKX>R-71QgN0c#7?O*&=-Ghr!$ zo4-aZw;t1h6Ln%{>~rn)F!gN(N7A=(B=DM2sw)0r3X!x;9Ts^~dSY(Zm2Ol3I3p}A zZ?6KS!4WbaCVRTpI{kW2RHna?!0TUVk_V5L&mmb+s~51d(}&BJfC>bJOdRaH1tG${ ze%YCyE0Up}0p`q{tIWH0R5dCi?uv%tWB(cA{=(4{Updp&fEpYRRxoV#U2i z4OUH>gLvb3?^QlNC}+0n3OC)aRJA^~L$dJ-;a6h`5yMRL4ARiZpLANK2*P0Gm)*S& zt|lMN7^EjAm>vLly6z?h-K_5As>fxiIo2#o@EHNjk<^UCc2>RlS63eF1`J8L+*cg= zsa2%0mbSm{VX~M(`_1&E9L=gzt{$Er8l!jvnp5%!F)(B)6_sX#^55KyTJ!~tMYd{v zQTfA#WtaQPlb#ZBclJXld~w65&zV16JE+r7tCm$}I-cz~X7fCeAwQZUQ}4KpP7KjN zx3XyYG^dd&v`ZO*lP}baO{EZ9F3B48SQblFJt8UGC7`lf);j}(SeBsU&#z#*33QE~ z?Ht&$s95ESBA)s>X z#vD$hM<33jrQ>#Rfl&o{^VCnV#=G*Psn%-dyk;MW@*^4qNN6K|NIc6u@zIr3^2 zHMg1u{cBhd~qV&S91BO`>&;o<;TGlktb6ZM+a`PR@~FL)UWoeeb%76n7Lg zd$KckASh5%Vg4&CN#*`}*p!O}xZ9yT> z5fyFW_$_fSP`Y0LZq7b2V!;8JXI|BiKmfhmbyBq&J>7J-I(@#IQGc#oR!)o(e-yQa zX;!*QR0oY$#HZR>bQPOJeW|XJVc~iH%D<-%E_M5slaJ%UfS2NEj>O5WJl;t=KQOs9 zPztYGcjY36X#%Uhn=TlWuRv5ghU_9)q$BsA8kkX~1F7TfV@m}^ z2EEcfL_B2cylH{ByD&ferrJ`)5eURJ$8<4AOCO;|2m|{|FL3>CN6^oiGaU@XogB0y zL8B&+217yCx?<{<(1rj>-~=Y4c&_|Oo?sCyV9>ta0zd}RycwDw;NQBIOPUP=j@_^? z3~eTqIIqN@n9FKx`ZfpS!L+fQ%mWkki=wzcWSF}3? zi2=CfBmoxuVavTEwz$zarJc7rfD557K+Ckgn2DWBtn!k$TfzwKxCLBu3I^}M1F2Z^`ufOX=xLJislq7xx6p%RO z*Xx~A(&%4p7YH2D*OCdjj)#TAT4!w_CS}5c$reke z8YwGxxbHh*Zu&^+GeGO0J0z~k@*WI8&(_CtYIs3MIoK@XWV(xS6Azgvu?!~M4;~w= z4FWj!TsR7;j@!`|DAqiJJ1>aPl#=vhhha6!X003_c-giCwXmc#2_!C5jkN@f9Zg?d zE%J%RsnE133dGGxubU-|vdhV~Ek}Fsiw+aE+!=kkawIrP7j}g1zK7k1f5% z%{v9#n_xTPe$vVOT_qDiz(2bFD2dTcUOJ2tR5x7KVx2w~f7H%Zx{u;ko+DtUqx|Y& z%G>H3-w8*?C(~@6bN!?*&xrF^LBBykas%V^U($Z^{_unVuW=NQYqjfvxbhi z`N4T4U1W$~`Z#muoyXwn&Fo1q7{$cg^dQH9eh9H=aI_cOAI58jSpKkOJkn;M#Zr@U z?8mPqCw(C7;80remWp~ib{7m^QUc9tG9OOs_;jo=g= zGi3bLVLW8*uL9{S4_--sxym0-?X{QOsq~x$;p0Bj(j?UMhBRRoOAO$|hQyDC_8(5` zK1dzve6v1{9YL<2y2KRk$5CZTqVA&*?7eqp{w!e9*>=yK&R%$wK$#osqI%36$B`IO zm~?mrT8UmzF|nd$uBmuLbnVSm+l!VWV+8lE6cA}kLe>LV$pWUY1aGCi9&dB{cy>Gf zx9EEgb_@oo?*5rO?=S&7l&nC=LO|LqTPkFi%_4|=GOe>Hrs~xdji42xW%158LP*l3 zj~1^#{|EfI(gK5Z`!b+Pxv%n%fTs(8YMnaE`Y|0Vbu-c>da^6cn^4thNc2!k`hEw( z!{72ym~kjRA6dyw!^m#5n#E5}J3ili+G*HSMAizt6|8nyK$f9`Dxc}2Uxm$u{-;w+ zGVda8B{$0Cagd@r-ukjyB!WzP0auLgA&xLT(_k9Q7{lH0snWpH-NZ=t$jEZxc~CN+ zl6U4q)bC~Gn)zte_gqLKL?E(%#E{({-Eg#Z&%GJF` z9TDlQu*#(yNIsgo_p;0S`TazsszYlNq1OkM)J`VDAr*48Rt;8~!B@r<0Khcc=zlc3 zeeN%9ZEJ#i^9)!ufM57R1X&XRos4#)660k|dX=urSp%R=^i z&C0R&joxB@{FrFOsw~ma>YlJ3?g(Sz3Y6Q5G5*#R{xK zYx|r|-F4%m*o4rZ9aG5li6BI{ZwdU^E zocer#5C5{?`CF{@Z|1PZu`lNT4m+MYdM|VHmuK4d{jPtSyjC);GQAh{f2Vq0(djyc z^25}h4|saDc;;7{<6Qrl9}JTb=o@BXlic;V#kt_4*a8QQz}7ia7qShO?-D`Z$+ecX zo@sfzY7D$+Q^GERrP#g-G7llzd;wxP5YuBg5+vBx@-}mTP#YFhwATiIWl4YuGYj6QdjY(qE~{EQ`0K9H%`jRQ zc$+nv*edz6jOY|W%b|C^!ltMWi81I)!}&&#(HWTNq)gawDNR}j>v#EwlYRSg#j8MH z1U$N8W6|csL9S4e3ZG@!S%J)fQ<9>^K}ow)&ZUQZaTNnlB$xrzN`||~iq>4?Y^ayE z+r6h#v-#i=$|;h*Ac2u!X*YbIXUG)mRA;E(n$?rp@R~lNBzLvhow_{E*uk)V9$`A# zu_ATFAS0vWJa5F92dx%>quu}ejAx{k?Ae+Gx@)YytaNHNUxelUb9EaaTbSJf9^%~k zq?3Ff9zUEPSMz92zQc|}(aD~WnRYbk9Zb0#a5IRYT&Pj7T2Y^M9;O`cRn0ERyfjyi`9dL6!9(`Q( z0s(YTE}PaI4>Bk|6>*wHr!K$^cgSvjs3{Zvvf|eB-Jg3gvp4^3GEt4Hk4)vPk&3Ir zn9re}>OVW^9Xss|Wq11H(xLA>i!QFZ8?=$83sUv^En zM|;Q)@RNTzwA!(kJFjW*{r`rf3$vf(5vlqv_Qy79nSvqXQ&!d0V_xM%!k zKY7HIb>{ubj8U4W5(P%Bo@DQ)eGQK27Pc(+L3tM_@k`f#=+ufXE7Q_>DfN3IZcnS^*Kj{FBw@HcA+03EJeY;YGNep|^EJbQD#%A@! z`oT`j~Gz3vE60_Vc7GV60 zvS*;mHM?JIn1KP=-;v*S#Z?f;E3wO;5-(c)>Dxy2!u~w>q z&18`OOw=Kq4rM_E2nObzdvbHsgjr`jkE-n@^drK+V|rC;fVTC@Fq74a3n&|fxj{|* zfsx0+m%RW50UTkn$8#YRLT*wHy#tWlsSee@z=eCQltXO6oa-ZK7AQ6XVkKj!T57p! z)PT~;eH5is95ob40KEag$;d`l^v{8g=3DUhIYwQqz$x`qi|=XTBlsX4*083SNbKi8 zbisgi*~ujC?4)h2mX}R3UtI{w7=y2F%k$TV)gE2%qG(s-4QV8JJJaU&4BfowrXO)= z9gL|aiYKNsUWjs8OJxi`KJV#`ZKcWpXH@)8ZXtFvh~PAzU=K?D9NM zQL74HjBk8&3of6or_me9uysG6#_p7Yv=0#5h}`|X^3f*D_FB5ap&1)Szw^<~J4oNQ zyG2uqwd^~gH90jqXU*SVyO*tZz(7DTv@{hxzFL?vw!#`{`_SFTQhucB(B=8$)e@o4 z&gYNxIjn&-8@HpKPN_lL!PGdKSoDP@e0eVrpvI1wwDE??kAoFa4*>}211?s%#!HWw zp2b^P@6hR`Ac>YIFO*VWLh81AlG=S-PoKCp_JX9-U!vJjNzoHW{=&KWJ;jfKl3a7i zdpo4`-6ITrH70Gw-u(EW_wIh@_>o()?Afg;jy7&ma8b45ymCwSxxFW;l9NxX1PkvR zZJJKsU%s>PX{Y@5tq;03!XdeV#J!g+FYf7T@lqmuHT?K%JweXv&%{@Sc#8ySldXew zZ+324-}2ojKJ<$i{-oCVebtSNc{cRV8=s%NH#z_|5#|qgT@yZj_pJ!^M&ganYT%WJ zr?&f7pK88(c=yMOr!EBDOlkl3=W0sG zp^ECW4YJ287TKtq(}F{-KmYUjGNRC6-|%a{kJ+`@_m&qA&Gq~^dF%Lw=Stdw817Qj zrbifUdecK?`UK*!qMXW~mmho%TuBJCyl5?I9(vNo9y=f2xA9{XOEkM=rR4YP(|^B9 z9(b}8!@oBF{E?Qk5!l{sVHDqN>K*s!RG+AEN59>^n>5;gPd;W_ou#_-@N8d=_fxna=@a`ZXE!$-|lNP4k!U8pNLNX`>nc z1w1s1W3=L$y|?--t1i*65A%PjHN7mZyng3{&g7Q#i^WL){&!&zZPS}L6yvNGZBNLT zLMMs8K-%;I{O#`xuU;Jber>bm)RrWC1AbiNW_ZD-R|7Tb$|XgY{Ef+E|HU_i@Pm$* z`VXX{h1*vfsoNJt+^+41Sw zzW_90)CYVu2)Qaxug~85TCFlu{1dGsrJyD+eg46>!nRMH#!A1#ht;zgWZt8IJ2Xs% zrgp{rM&{^1E6u)4)=c5|_-n5+ zgF81JJngQY?abfYVOj29b#hkIa)a)?WU$})w{}eO{sfFy(3ZrXD>c(rgbVjG-G09P zfLql?-o&L4w~h#t$x^3d)7px4r`Y?<-Twj$n1*9#Q5OHY%^8oB9+NT>A2TPr`++5BF!^H!R3){kMC5Q!Zd7>B;TcbMwpw zNnMjfySo7~B=a~sbB_-i&E1|WT?s3Tr?`b_A9huSZ|3a&aO$^a`0TaH3o$M|C7-tx zyuJIq5zkm3_;Vi@pG!i$onO{FNAc!;!XcVpT_Uf8^2I}2eBh`<~uDNBjbAmtW z$M|t951l^kY8%Y}r;u*>@b7pKToQY0yRV%(5CGP+pk$FBZme>*D;B{Pak-th<`_TP zD9xrWdj;B5s1+>Q9$CDnS-RRmvPc9Lfg}A`V2Y@#H}`&F z1@1l})8`2u`%5kur`3%gRQUdSt`$Uh{7CBCvNOl-(Ba7x+p8qvcbajhjvNA9Qmzk~PY1<*X0@>lMqkD~a2pUtOAskiiUo zZK`>7?G~lkliXT7FS`uym2tW}y1r;r_tIfyIIB7! zkz&fFoq4y61!~o6iLzEaK~#_N!@Wo4JRCybAjMZgh%M%f5Kn!Q(^x%vaaD zCUzI1?0qUwnJ%ecKOaQqT9Swm|JUaBLc_ z4PMGLkIdG=GuEj;ZFyiBwyeipuGqa7n`L$0Ba9ZfT-@5Uz3eNGJWXKp+h!o-HoEB* z#}phAW(dS1=!RL%**oxRf|eE)#AMu4t2m z2Jp_u@KIm^Vo|eLMV6fp+h2qUHaKBjz4ihhWle`agR5)5R89gC^6AbW;RmTE+1;n> z%c3E!PM3K3&PV93qflx!Jk@p8u9%!$7sBrq`mZ3aCD~jK-n5lxbB;gLso7~`Yt3-7 zpF=K}##w(nQAgNL4 zs9zEP%qzY2c`TE2ozT(osug80dncv?8M0g4HJc?=JtHt-&?_t4GuYOd z3(#v*X8L}t2>R;$p-)$U|9s!uJvU3pJ`xwk$Wc+=Ts(XZZ=<5`(Jm&;26@jb7A~NY z>37!=m^mu{eHL_k`Hk`1fwCFmV#k)nQp)#4>5nn~F+5Bl1x^w*9Fe4gf&jgD=ayIR zugitn0Ur%bSBXW^`k`Z#lch_AR(tqKh*lv)fDuHi?Z`Udx92ih2_tLU$>Y>56_HJ> zZ}dgRMs;3;zk?gv<9~L8yR9qs+Fm$Xca-B^hwBed{Z{=MZoi;0Te$FmPcJD3PVF3+ zdKvmDJ=Nlpp*MBA<;&gTq`9-A3k~S0h2?+u3Ws}Ir++K|1*DF-w5iEIb+o)aGgKop z^Weenm|;n~g{_vurBk$;m4(~DhJ`qaJ;KaRnmBktK?ZyJP2q=(>&5tegE8dv>6G9< zXY*0@-{O&~rSYHMkX~;mkCzsHyW(%qx>D)3zY&m_pFdgjyIm`jSG@0^c0HU?`i&=f zep7-E3u*_uvi^cVR`|lft1x2SPmH$w^26QD=ainA?nqE8h^VQoys)*$wzM$*(|1M6 zmd2kaZ*bnS@ltmvf&#D=WM`L2{4&<-D05+urwhOCq7xGef%Q>Kwl$<}Yl?T2W4db@lp16-p4Xr75{Yc;L_)Oz3!1xQ? zw%Jl9gMVP_S@@D=O2W?lJ2)~c7#hOjwxOi6(XjWmLwP;-!O%9&n_}u2$K^l&-`q zoX>cCWz%j$_ClKdvRP!v!_uGR*WrpO!*(KoIDv3N#HJ0e3$_g(zihD2u2W~T?QxlZ z@A->esYCmI8SOvyTc?)q3dwIAT5z7WE}eV!7s$-=t6i`?8+e+SczCD@9HMxBTmMC} zj=fQI-vakX+5DjdzMHwU?~@|5{d77W9*nc82hchrq)u zR&mhfV?l7#JI6n*TP1DSc8~jwexT|uk z_rZy;cmD#lm20YRFVdrHg=tU!0(@J`&<9-gt{DrJpefR)$BEt{KfCn)oYfrjQ2#S& z@_Net%dp|{{g?5e(|*_LwS?fmK!2gr=cRkL&eyy{Sr6zLD_72egI_;9LuuUp{qqPR zHFxW)nWCs5vG{7aX8*xIla}3G+m1?GYYh%{T8>8EYrZXY#EOB#Bz+XF$|?=LXR91gX0Mo%Zy^ki%wUO&3$Zfxjz zjI?@7U2H%fBQoidf6Or)+mq~bQ|eH#Px-!u$K6w4+(r~Sjx70Fwb;IORU{iFT<;f-qW2LQj_$$sHs+`o8pExp@Z=jV;_ zKOvV~f8K09-e??Ub8+NVy8$*q!eua0=YlXWa}fN_IV`_QQpi5*V#Fa)oYQVPU{+~ zs^aTP1Lk?FwpHh8`&Tt16OfrOj(x`Hl9QhgNu;})pOpk%mY`b%DWxM@9dy{b&;3~r zwknGjoW}Z}xPH+4T7r@+!k3#%!{T==JJDJb9n%ZhfFDgoj$XG*SS}T^{3&hApJO+W z{qF4&)yDwjj>f2Fd_ZM<5zo=geEX=;PIMtly$Y>HmB_;O-}pS;rwnKAcJ-{^Yx+Os zi$CiRx_46|PO=c?%fg2B}0>K2M)*|Yq#~HHUU6ycF9fY~)`&?0+E6JU+2)yaNYKjtA-y+1xzfXAR zPX}An;C_NQ^+!-?AMj7SmrL%+!vb5hGmE>TYF; zYuBmvk=+t(cSAQg($vJdNL%nSE zzXrRTeb)%Gn4_+6#z*<#i)hEKg29Km#c zzc^vV*1)$rhS#qc<6+HM?%es2V6Ho|*I!9=!po0h)W6i8cRv7nA=&*+5BRI*`~yX{ zi&ztnwazq*_=K)zGJ*2SS9xlbNy*3}m6I%MZjF9<_sL|P{sRp*0T&HoWZYKp()u$_ zXq8V|pP$ZHUX&*nz48pxC%qREIiwA)3LZI`n*Rj_#?)kNRvOt&X=%1Ptq-mJ1C?J> z&Kq8j64uAw7FGt2>;`^5x9Lwt)^xvox1wq1_*G#SYa-_rWuh7+k^h+E>^1X*)q>X5 zCwXP|hbn^FNF!6a_O!05oS~PjXr*weN>)k{$^)S7-$bRA(>x(=x_6!*2&yI=ZNBYC zalrXS+T@1y@Ft<(npL`?oM{^Ym6humBUlzTg`y#fo9`2Fny~;6uojBY?`%3ZiENGh zknlFnNB`S=4BT!xN|wufp;vlt8*i>RtP>(9b!nqjk+fho%*~uGObM74l}sv+7x4Ht zRjRT0@mz^9*AGGWHR5~dhva7Q-0+$mHSMnZR(W6t1w@JT6PkNAZ%7T- z4geh5tQ`5sl@QeIi#c015}V9<=WF>Y!m1j34FWtRIO@ z3-oGewk-i};ftLJJb*%uBZz`i=vtWU3$G$KpNpEFN~hfL1Te>e3PB;#r{N;hz6Bsx zRgrOF%+O;&EsKD{CWhO>{MNWeuao4HJ?6TFtapo?mF#bYLLjiT>!L+RNn0EOVHU9@ z6N7|ad2Se9BpM_A`%(j9v$jcdys%+x7O@bp0#b)B{e}cX`(Oa2>+ycN&2kx-SMoQ6 zUG#1?N_;Ec%&yHEmf3aIZ-9sO{)$?yweR>##KdB89Wh}bA@L6`Vc0%UekpzaNt z8}TdwszqO&L9u4=m6n$nc45LW=JC0|RwqPX>bne3Gd}>z^rlHaB)w+=5_0Wd<4-N1 z#N0e(y-5)T45omty;?Avky%*Z&s;)PQLR>(>PZw$N?M-#{I~E~BOXRCRRxHA4vLW% zCV?+Yym^tiRjiNcMRX zC<>FzhjgdJjATD}(IIN8Lrv9FvbWDA+vF>S$SKSk2*3ov?9#5f%zsYq^DgpDF(5$0B>1Fsf z?h8}`LG9&OE=}Tqq`FJ02oPsoXzOmAQ-b0X;}cFUMw zILpaxiBhWsWl8cgAh^NA&vp$|wUxRhf06x;kwW0pA_&u5UkIFJAfQNWOAfhH+UIkV z%%Q^PRWmNF#v)0P8Z~6sCL9RUH&Z<&Y@)R#FY8GFTJk5){yLxW35}d#FzvckBg=v& zC$N7IsRnV!KyPXv@hlxM0~9W~LH~Yd88uDG?OdW*_yt#qBO6_vzxf`7A{oi-b=*W# zndbO-*!ooI?0L2#zi`uSFi53=ROW?@A~8e2%ERvKKhCN`LcA zEqve92FQES{X{;NexOy2CqJYA`B@lXemu}mOapJ4pp>r$A(jXb_<@fyi z8Dn8>OD@Yh?Z1|`_MDzUkyKdforHP0$HWB(>yb&IxWM_P<~($~(!N5eA$=iLs7lgW z5|`ii&tKY4H=ScmN~tQnOWHOofcr1|H67s1L>BeHl_dUv%jr7 zUxW(7Yy1#4Q4v<9+v6DDTiX6u+XtgQN}vDk@+s_xFxrv7qwS0#6U%v4ReHG=(0MhO zQ|Ui&@-$_1T|4}Ez8b`0MKd6%_xo>$PwLV@)fUSb7w-L>IHxADQWa2 zam)?_?e(4s_pwoTHtn<>o+?SJp~6Og-HQO_BFpa$5fp<5u{SU_@K2v3N^Tb<=ipqh zRor^?pLg)}=;iFD*1z8q1iUa`{=DQg*LR=bEDU|xC~3YB*4K$zq5DS8pZ&{C%^C<6 z@Fb{x_y@AQ(&1q0e!biKpc3&d{NftUk^3=%LHeS zA05suy1jzlwReVpw6bca`w#c+Vtj-pet2!SIk;jt(yNwa>n|JQbZo}_9$Nq}!v$fl z8m|3tRrz9LZ#kuRW|SJRFi_5vc3q=@A+4^&I5uEmuj7>Yr}KpbojgTw53|b^%NZ`e zkiwS3l51n-1hYB27;NIAv?~c6nby5vOgG)|Ay8;bNAGv%pU?G%XL3@jkOh2rS^a_HBq zI^i$cd197s^60tteKEZ8k$~sVPd!50OB?_zr=JQPeW;%oI6#aUycVq7w`h)p4tK@B zQq@rTgw8HJe7m?8Y#o)+l}ExA1VTm~6q6ANE<`$)Y{L#740&wYWb{#r(CsCew0HlgvRdNp!WrM4wWbZzAt zErKmdl{^2v)nD>GZCp7yF!6whdJ-*KG&X?l(quAeGMP2VnwlFfPBWY^5N{k(Jj!3N7nAp*vGhT&FE6TfzHTco`t?e{GBj$ZIn`m6m3XAFSAt^1MD1}(`? z6yvxbCNBkTszPnvibyD;K@9lbPd7UY#z=Czhc5wwrxf#AM}|v@gAMCAn0b6o z%N|QML4#3ob%=#({5J8V#d2I*_@uniyLZ{1D`#@oq#+FI;=ifE*v4OtA3`b#E|K-;;^2Z%!T=4LcdNRW%F z3IkP_DGHPpY?o9V%{}To$U@^x@?8w{@Evz(-}aEf^bSPM! zU$Y1^*3cVZI7tEaQ!$IR(BrOCMz=8EjYL~4r%9&?%A+vwesk5NP`oo%zIftRDB`6H zS6h6_>}?6?jjj`N5HTbgU56+LamnQ-I_#O30SN&X}6$y)x zp|q_ukgRHJ4g#|}SCpO3m`fGvut~YS8nhXjt>k-qZd?N2y<+rQl<;q>-5Y?i9QVtp zfGtI>NH^_8xN-V~XkTnO@nd)h!1dPbm@hUMl}|9*33c{^7Yi(A&5{D$hKDG|^Pl^i zoMBQC$7tdx2hYL9Omp2Ok?i_-VS)UMHvrLzU|#s>N*y$+2Lu(u1svftxNMpuxk%`q z{05sf0}CZqp1m&nCcTJR7z#YmT_r}{z=&oWD2Khgc2tKs0(FK!h;pwkjXXhj=w&h+ zehkhAjU~M0KuuGD`%{c2?+lP%rA^w(U|yoi{EohzaE)idNH z77JQB2qig?-J1ek@!Qj3+U6SLn_tlJ_h9507o?G zoN*B4kOacW3ltK#0h+jb{%R!a-V$?^C=HC=uC)vpP%dx9x#bB3cnRXeZ`CLdVAB?= zo5>1TrLO#s`*V1BzJVhP6ljyc8vPESVvp>}J};;X0s6TZ5u8}KlY|+uoS^quoFl2L zp+_oJ7`1T>nlC5@S?<+m%pk+VBnd?jXfcO9k0!unqe->(rubDcWr$7y2XxH_0Q+C8 z%_ASJlqH+4GlK-gL&;PJO2j~`orCp-V5tp+5{R>X;t4Wt@B?w+ZRZ2F8S_xw@t)O| z$4;ux^0}e=0LTyO5Q7FHjgjamBmG{Gh6Z}IfK_5kRSRl!eKB~7!9bE0pN1g8mIQ%q z7XuYgLES@L$E<9&?@f(=iP}&c$!|3#x8u=a65?lZa^NeBtc0#y@G(sk*Y0niXlG3!%BQg!$pS8sYICg9i#4AoW6b z&xwUB!x$MwrV|Elfi40HR~`&->;XiE240LGom^yjf+Zr+5N%`XG(rK}zOO4ShEB=} zt9zev`VZgcs}i!@$vj=;U3|rATTVe<_68z2tzrpFebAy)_>G?ZIGaF*?q{fO4~3?-#E0m zFzGA5EuIR_e4+_>bx|bQu>MFy-xI{`TlhB{`DSr^kATXb65UbNe~a^3@J@iJ>*8~6 zT;A0`P_#rFF{R!RQ)}6?!VsOrIY9#41#i_S$TouTO>{$Rq>Pf2DDBi}B^F*K3TCH) z2VB&s^6_`n+iL1pC&X`%hVVeO0b_cPg(>p|0snA|EnG`DaoLu-7-vPa5pX%Iz#$Mg zQ~oT3ct0?+n^i#=WfHoIEH(MF;MmZCxePL!anh(^njrq@`zr6&FE7APZ`6#(t#4Py z5b0a(uitLav%!$jHy59|RO+hOvA59+{$0GrXfRt_9<@Yg^c?Wo@T{pW zF!*X!Az@$n_MVibC2BOU0X7hllEkNDEJ^&?zLC6MB%N*DydIg>JD+ITd_k5+_d*i< zD7ClFrNxfOY8)$+eYraOY4@4pVlV6&H^ADTl8@#F^=jqcdR#q1MlO>UX72XFoBipzuaQ;z)#47SByh%g8@~wtBybmU82je+z z8y01yTGm`h@OL`{sqe+_G9_lwIHy;0nOfDI-m33DBWwh#gMf^p9-Nx;ejw+iDPBZQ z_H(SeF@j@8a{(c4XSH}3w_5TH$Gp1PeEP;knyVJ4TZ9s3(U|#L61_STem*t*5A=m+ z6Si!qX&t!!NP=~v+hD|!=xnnG>Mk5!l1vn-%yp2q&8+mX5p>WGV%_Enb_x#HHKA`8 zyAaznba?OWDAySyP;*>jazd>=5~Y>xo06B^)na=vh;Ky3-;dk(baO22jCR2*w7vv`(5#lH67aJcsU=y%6U!*YpsuWA}p*M?G#rBAlw z@y;4?<)`vP&e#0T!5c*q_?_u1D#&+RcO9TVa)71cjC$mkN$6g1MY`36cI;g;ENDHe zG}UsZ(>j=V@Wqi}536MAZt7U>d@!VN^Fzgh?bGh(iIb-br7kL)<0hXLi-uKu8{k8r znUCWwTl?~iC3)YZOiyZQd1%tmbV7b1*(XXl{fuU4yPTU-Uc8o3`L;xMDg9v_DtUOb z=X%Nq=18KA$=?5Kd9r6QGjdtUMR}kLL}|11fAUVO0-Ye9l8&o^#vS@V+Lp*xvENyvMPL+0F!cV4 z9fe@3#ny&^>WKfBcnK;~yv^I`!i2zw|j0 zAakxY>Eo!CFTV)xyF4}ac0hN(%bt@xqP4c+?0si~Px4o>{M{q*$R|GHK=_!ZbXwnX z_x8hMDd}YG>>)=BzvRiD(sK5js%^d5PSXT_B?qgP1!kY!JjcuG>YbnQs0OkjqA2Sv zq!Y2dn|2y*X-)`Z8*5^Te%%Vo)H}*tP9)2Dow!43NsA4BQ&b}xd}i4@CuD|O>sDQP z6q_@ZFjXcvrs76$&+I&<_*Yx-9I)_5_w~wtZflmjz47{efXV}P0O9#u6|Cu*b@F6> z&XT*Hp9rvaW_N1D-m-0+PuI`oiE&=ht)&n@zsTeMa^9qN@vi?xj#Fhj_4$HMOG9%v zE^R*?*U(!cJg`gTn9pBN$eomvi<2`5wg77sJ)izsS6?|_r_lRMj!e4Xzfph67kHOs zjF!@HM&zSqL^Sd0q0{b5XCQIXR;BrxzGLtoD>qRZ$xEJqbkDd@s{xtGbjy1pak4=gfXuXb zi$~+NZ;RqHu+^bvrihNkWQk{!J&BLg4+-NFwIOMZGYzoty2#rBM97pobp!HzV*fzd zlUlz?UTPRBY8MXUfVeyARgGG#1nP7DNu^5qlKN0>u)N7 zC9CkvYjM8obd9?PQ+;qfMym!Z)l!k8~vGhJZYr9&?v&Ey5NzOZqMwh4lav|yO*kdS8di&%3S zS+oHZDEv&Z=*@s4tSDLOkhS?Os}76lA;3iDfeEF$_F^qgK|qwI?@i$|#TbTV;UGxT za|h@A|g#8)6NU^r48;(cHYe6lU-yZVXHi0zPR6Qv3~*hJr*dQIH4+4%}mOc zy+^y!vCA?ZWjTFD8h})FGiSdPy8&F>#ee&1rRaaA`qP_S+WLVaWrJUCr(|D>O^O*o zQoK^DeGa9zpFJv1^)WEHmPSk=xw8%saO7&3S9X|h*KTNnw-M@+SPKP-Ba1Z~b2Kn# zHyfky1hM9k6VFb2qZ9xB6}T*i`(6= zV`%*V8Iw%Bt04rj`@QMqYx!PYk=uUqW&+&wfhTAo6$-=UZG6hO3P)m3I=V#-+8bbR z3y$TAR_!AI^5xAR=EiC%T0DXDOC8Kmh#Ue1}NEHDX(djtzSP-w4?GVTc?ZIcvd?oyz zyqXSLOpGWWEXt$2@ep!`YAeQSK)Qw?eF)o?P2ZPSWnDDSrr#PoLllUC60!*Z)(1q2 zKp2b3qINfR5}lWyHneVV2(Y&^*vjA(u=6NgKiQpLGZUbNh4-GNscf5&I23&*`CMvB#b}WjViBKIrIkwb(XGtb zu*3~Kz)szKETZW0185O;6%@oOVeS6E>-`c7t(4xx1<1R2UZuFIo|T_uRjf#Z62dWQ z{(;&>WAz9$fCfO?m77mFI^%1+_b7vB*8mGC={u;8Ahb?uGM^>~njEYlOH4wv9$@Mh zD_sUsm2iH%xL5Bv#zLpDOp=yzMt_eEN%jFEvBn5&ic1mN7e`XKy_Zx8A!1|=YSY=gNVhCQf`=iL28l-t$W97p;bxE9LV~bA`TFuuFOTRv1 z4kYA4C7`hst*M|-ZY0_F(^MTX?;3Gwxu*lwG+On!s+L$-QEn0Q!pa;!@cQden*EMX63X4 zhi8}Fn>%{7-X%wf-SDra)q8}=yDRZu_db8IA6cGxIs)-sFtSvgA!?6!Y)tN7~I6(*PxWn5`voAu9)i_$giy&BJ^%OH7z^?7Dyb5Au-V z9f69mea1(Zr`GD)Klj#=j*1kvh>b;hmB#tK?;WW?47QQ|52U^M9c=iv=|b}4y4uQc zKuE}!##dCq@gJzA-+kOS)o*dh3~7h35G2G2S|cAk?W8=@Vx)FLbaVs~V2FD1PJ4Or zXA3*?b}~OZ_M~kjoe28VJaZ!BF5C?sbkZxs<;X>1?#4ottVCWchAuEpH`hI{ugDYV z1u2w%TNo~gb}Ln4c5}fAz(X!vC;%Smh>YG&ssLS1rj$Z|-MK%F*}ovnZ2_>ajv?!P zJgbMbNQ2bKLe2S0GJgK9&BKRT^RwB7)~6^5j#b0}?MS~wys_8YW_SH1cX;#6(K2k#yv5o| z_i3dW=69)0x6XTFO!uCUTt_S6al+z7w)vrKt_c^OT2yEKde=V?^+=h4&(@XNpScF1 z7-J(f%Kq!NcsUOV)Au~oG+v%8$cn-jkw4S3_(t8u9W`^nnM?f-fG^n^OO+4*hmI^K8Id<( zpEktbZj{oqb~^{TNGbSTTnv)}lqDtRjwA~#EppYgbnDZb*SgJDdnLY@}_EkB=j{&tAvwCBD@zH@qe zWD;@zHBmocykeZt*q{SLL=tJypDsGJ=5WSE7_;`$-^&F4!87ot5lsDa)v;G+$cJ>T>P_*5}5HWcYr8CoJnMd%c^c~fd$%$8DP6k#(0k4 zD*n6@7fdAZ?Q|+8F6eN3J8*yTDzOYY-SqR9R+4~*r!h4-q2>13B;tn&@uN?xcJ4y2 zsE6XZxLd#F=x>72sy1}G#iP&Sv zLentltyTj5>9F;}&CfOp{|8I3EUs-A^ywNp|Hp1cmgKxnm&?eOo;o`6v}is+dD^Hl zR#}e5CsO8H7em0P0+UzIZ4LFSPda`6;H^&nmEM_x==_pzH4_En$ikZdUDggAofr5-9JrnRxcx;GotKhfL9t|4Fo|+!Co;}Y zivH?~_wlZ3mfRw9%e3`f^F+&2_B#VDM&!+r9ZmHCf&Z=jGD&*pM&=0ZFe3IL?uNd8 zAie0I$xm*eQy}%wK4rw6FZ~q@HzTF^o~^|(=**Z-w9s?mO>5GwzrF$Ns|&~5$7qx1 zp*5U2fznAq>T>2U`IgB7fJ{_0587#PQYg=7P#9HWWt=_p@gj-X2UpJI1+u8KmB#cYaW?n7 zlffDTZh@Jfp$nD4+J1YF#4gZ3c_f_TO2AdA7g@A-EcxwiD{WY%<`{WI+NYz-3m_ z#wE7yL-A9MdWKqSeH%4?R5A6-LFs+UsGy>S`3;D_a9imw2@c7T7Wm1}MgvLJe;}@; z&gJ(;g-PFe(JhJtnP>DA`VE%xlbx{8@@e;BKVHOVe}hv9kh}?zCp4mO_nYi{t9pzQ z;bk)Dv*zDGoAg-14Dpx+gwmAQk|G0q zApH9&*Ga`LCQ1sFT#6-?f z5~|f`$#uQzwM2{eq&$$73dcyi^cn2OSc9jxZmB9r1+wuO5<}R9YUC(^cO8cRBZ(ml z)7AFnYA8tLX!7Q!w2ijEmq$$2j}BZ;us|~wb5RA*W-chkW+zWf}1KK8d_qubp(?%!IuFTnZm3Q^?!%~S zG@{o8+aA8A08m4I8)ypxh?kdbQBRw7IfdE&)15Mv=&u`tgCo_ zr&0vk{@3MGbqL}Sjw=qEW&kPs!kl_%ujK%#)ffTA&IDPRouwTp?|T8fFg)zDGr3c0 zlp(ZiRIuoiZDZIism52dF#ayeg0{%Yx4s;0lz^mSy7slycDXTR@gGQ(8#Rx!6ORB> zjf5jAd?{vPY$avBsGyAGHK&{O_?fcvnVD1b*;nD=RG%^K(EJK|9XurgBa5(8h7xdx z3jQq!XOYF32LiR%L!qrL+&xGnq%7c)QsZjxs9X|8EA{i9{fzn5)Quvcq7MY_v(xyTj9A?I+ZLrHXj8F4 zntYgI;Zph^QM+vNWYr8o1>UT8_jD0}dyTXkCOm{Dz(7N)zn2)e-w}l$=4S(7o?z6o zQc@t)X2wtj^)~!URmgw{bUviEK#_*NYz(DV=snTWgefce_fT29R00Ji9FXP@(aWF? zfMycjWDUkH2zh+$^bVc5I#EQo0z8xJ#kBItFUdN;PJ zTcE;^`}-eMFkx(a;$Hb=Vc7tfn2GR6T6Iuf$5`sn4FkQ=OlE^P+oEjTj?|2tecdC7 zWbLOOF{Q8t%m%zq+I2OVsKz)Q)?}7kl?-&U%zuB>V)5Fxsb+VS2(z?sCyw97@q_8T zlF|rcI~9Aa9ra8HyP8hZHE*SziFcn7AZ>O+-ym3Zmm5GoF+JjWF&A+PTZxz$@+{IvlO@2OCBF;T6`b}rq* zx9DGc(|nOwO8vpN?8EP#*J%xOm{SMwtT&`^Htm5eaK%EA-u09Ijh#%cNtAZsPvw(m zo8#L@YAiSw(&Qp~Ag|uJxbjO4_v35KQh%3RhW13afp=c|J0kb+M&AItF#P~pX8+-L zCfv@^+#eF|ckFbPr_yHwrjPD&l1?-{YXU@`irQ^9R2VnG2|X*wD6c;)K1pXpGEBM; z&HK-d2bRdP3HDNrQp?6WIx?%!zZR@lr#Hfcd6O2+H=dlL6S1zY z?h)@pDbgaX{*mRz+oaq?0*USqvwHzAY66^q#LMBlNoC3@%xFmPHnOm-QBs@*b8CrD zfpsxO@1eTO1FlS@?J$y2m3F<)>B+8hAYYVQ9{dsZZSSTom!C;U_ne52{FpbAiW_mlqOi%WyzUPB}5jk6LavDSZkENZ`TX)A4oeuefte;OA{br|b4+bwHR^DbZdGU{7#DQi_Q7@&e=E8btD ztVh;wa0zWaAE_pd&3bIfyBr%n1#mzKK(O5S@Y#7pxrpp%iurf9f5+7n7V1U+f$#&~ zBBi%F2@jq*&gWX%W*V`{wx+FqP*1f`c5Ng^crk=ex3Mil7ThQL^!hZ)HpT>z9Op|+ z#4OR;*{0-~Nt-9S1=jB3ItsI%6WukDC$Bo)@-8hfFx1YA|$A^mvk2oZf>Of#*zgFz7h;Q*QpP}v6mtwNmZV{Y{+aU%FwAoyCULAOJ z{?0A%ZI z9IzzOEkRH{%_)4QX}Uc&rBng6xIMQLQD~r3*J?*vApWfVQjSQhHbKYRX?w%sk)sn| zSorg`@X}HhL7R9diY=3j;2Zf3C#Cfu+&qy>gA;#Afb9h^aM`xS; ze971~oYIX|c8{~heYuyIKP+Zgy&~CeGhmn_yV3dh>Y?YEciIBY;6edv zJ$QFCK7xHOD?~Bt1rcE*Ee*QPE>oKHoK*eUttST*)XepkD;R z^qWobh`cX!)YI0pKw#g-X7B-|FlO^sZU^X?&L|p@X&hoz1v0vp3TjgIp8?Brpvz61 z@3Dl0I?tDc!GiU7RpZ3aAo>Lf@<-{qAH9Cx5>c6@CWhi8SB^o2x5eAW@w1g}87!@$M|GuQ!;upVD*b|TqXdXIGeTnM%&`&hsm zBg35h@vYQxoy@e|D%@f#4WIouxZSfZFI(EVyu;Ie&#OOKT>AU+)seu`)JzthX@gj1 z^Xf97vrqYdG3{EPEBuKa?v=T7wiJ`EZX%307ZE8^rh)Dz!6B80n)T0ZdEc$StNk*E z=}x%F&M8}((roy_ud3nWucSB9PoRK(=)HN-#tk4PTIWUag;NSRzQ!6#ScxsnqC*s3I?v`|KR05Oaoj_z@Q zoWy}E5(M4&Y-qUBHn85QjS?vMy{90hQ0L(hp(sL4nPn#`EZLk7F{h1fPn!V7PXecX zQNNw20h`W8by^H-&3p;$LwVMhQRsqLaKlzqVhl zC^76N7*M04Z6BkDC$lcfPIyX~np6VmeunGVf$r})`5!=3I` zgth3l#cq&E_#>-R0g(dT2IV**1bILEzAVG*J$hPbh+izl45@Z5_0BP`(n0M#wvoqb zT0ET}UAnF#5r*l;F9OiG(tw?yDa{T}4I`(-S;2L28MfCYro1TLx#T?pZ#U(=+n&qV zf$^!p%gF)t`<}a)m0__eUyzb%2-x+R>Vx=LZiWDb_U^bX+Te9IU zV!|F1Ol+SEI_2Zdv;TIAP4{-tRGzw&emLTocjQGEd;Uw`p<>s@C?ZARCbvf_V~R^e z;M32+(7YAtp4$#zi-U3EWNMDh2-95klY9ThFk7U=kq_jL&r_C_Az6G6QlnAN>FEja z`vr$E!HdOWbj*My(m%pQAhdELuTy-E*WqmApb4#PV2W|A(F~5nxpS5W+fKgxMN!5s zar;rjQY;A@OVv$yw**e`!Fh;r83M|XfK?SAKy$}&+#S=w~|Lph9Hd1ERa=W-; zf0Ppy&~HSFCqK(AtG$*7?^8_sz_1bG@T|5MvH4}_7GOfscdn$`i9ErgvLt0tG;x|q zG@0Koamq-r)qm+fb{csXnuT_6)A?^qqQ>VELS|#VQ5ezbGU=il@nIM==W4;qQrwu} zezg79AXkw1^H*$9I$1mdMM}U@hY3?0pBfa|xAnu^x?OV(WCfWj(mf*_$uKEgDME8u z@gsF85%4mBCiHNdq152}*)D7pA^MM~cAkW<$=MaaiY5KEzj#RANr`F97Mm#^_7jL{ za*UGWMqYz$VF~{+OT&brBK>4k24NM>SfIT|-Xq8$C^*{`A%Vy_2CIAaqOFG>oX9la zW2$Zy*~CwNAl_lL72X5e&c1}yQyeVkHnDHP#cL%p85_BzEZ$uZxdtnnlf1U$S%t2m zo#*Sm8XSj_fjlJ*NTG$~lH4RoYOb~vLMY44EXxt()7@Vgw`uRyKbT`L!bj1PrsHmK zy-C=*OnI=x6YWg$kC$oqgy|D)sTNfd_AxM=F{IIK0RgTC&wpKafufVwD20qWj4W8< zHkbK0%ky=mKJId@7X*zy-)?kur`0^&Uw6d{XpTbnQGUf6ZU1bt95+gFI!*#^m&-?R zmsns)MsivCQj&lv>8ZSo>u;w0*z?aN3H{`IjE^l~zP^RH%!T{4*Jk@|We3lW5AjLZ zzmL)S<_$(nE)_B#tuM&Fc>3F%+jOV){iQ!|74DdQ4S!JHlWfmP3dsIRFw75I2+h(> zP(H%?U|VJ4zW+NOtT^+Hud^SVVKqf1iFNF8hPnSfuYvpv!S$5od0mFMQ9 zyFH?WzFT3^1FPBcP1|L4{Ljt#{@^>Y~vh4Lu^h1I^e&CMr0v-zNUmqP?p07yI4)P2xeVpt2Hb^n1IXMm&CNgCBuQMP>`@)*#?UaUJMn2s z@Qcm))BRg2KtVa`bV?CWDN1V2AwWl1yDDcw zQQoCeqn&*8IF#Pv=qXKdrWoKh3Ko8Q7JF z!=JxLEbGiiJsBl>UJwuJ^2y~KIZwW&Ur6uU-wU68gRJr zFEr|ZYJ-DCr!)n!p@KcTn!UUivmp{L54-K0pY;;@%9u|T+*f-xcOrU38t#gBe)Drn z+Db+cOF%EG(uzXLUx_#-K4EyxRXqGjnTYP%V$qP0*NcX)cduf7{QQ=l_)IZ50@r?z zT}k-h?33A1bI(lUlL~|~h+C`ObewRrX+RSFkp~$byzyD+{?G-_VR|IE;EjQVV~ygv z;IA-DUFl2`!Yw?p$qS8Au|J7f->H!8qF(_PiTEiYq4N_T3v}2(W#Ai33)&=i2I2oa~YEd+=N3%@GX}k1!E$?;TR93_Om)X3c zbhO3%`D&&(^cyk3=1q~T`$fsUqNZXHJjhyqQvD`M?SV)EU70R^-9Y))zxtT^uP^_0MjqXnsY*_lft!3=#+qXpd;YTIps6fu!`(hZg&J%;?MTs<}BgZv&^>t5R4g6eEFdx?&436b`Q$yCn+8$ zWSF0ZmRkdALPSU_>x4hark@;|;gJe|_>s9jMVawe^r^74StjEqR?*5jN!n}WY$0~} z8+ZI`tGmdLf3tH||AEjFkQ2TS((6dCiN1{1o|RQQsxV_ay}ZRWlN8Zh6z4V?qC~L@ zs%g^wEp`K;&Z;psjnZi2%YYjHAOEB1EaRH`+c-P~=@gIwqXcQBn~{G>>F$

24%O zg96gsNO!l=B@IKmMvj`#o_Bk@bIxZwzx%$v-)j>UMmDmQ;6-?Xz=B1U#btQ5H^gpo zERnGcwfs`mh%P|9XWcl#ZW}Z2{?i#$5-1%P{2JkSlZYCC@{<4TwzFoIE4pCSq4Z$Y z`=#w;3aQp=Lmd#5ntGC_cwP0msYvJQk5j??tq51iIHpTa$zYz=# zy9cZtme!xlKCO4}a-jo)4Ms1ehu|vTr8(2zwCO7DWlSdqast|nMd0Yu18LC0Y1Wlk z-ga4-nDB0(k|x|7svTj!`nqwl)Yvr2X5j{YiH;s*SFl6bZd`L>XkoutaPhIz4y6~Zks)}9fx{Jyg0}2dPO(SlzT|{o+QMGTi2lI5}f~ReC?WSkF=w^vW<51KOR+JPrBmDAE zeEj=z`7aT@yQ+VPq3GF+>2<3oje{jP4NV3PEf07=CODHM28g)1>ckaT>3LYbrC{G3 zyq)Xi5S>9$INWdB!-*s~`#uLp6fPiW;lyfi(f3imy`^LQr}6vU?*B#!FkUDhRA{!( z`r|@tyauRe{h2z}<{O4hs_Ro92ZBzke{|kt9{OQC6KCHQT;8Alfpr}8{{y_;5s4ni z`?{)sc`y{nJ#9!1dDpEi=6iRwE9n;&F9GSXp^3`QY&&DPAlvViYZQm%EF4~UKRyN< zd&$Je8Z#jEvKCA#IJFwy^C zrs(>oUs4K)$_F^W##i#cVg{~^>I$zVNz#*W5v7d?BKaw|oX7cf>2x5r9DR#ViCb8m zMwd+qAY?>p1cfPd6m|34tB`KdFC}e&@xIY*WY7Xo^qR8$EOhu4fXmxPSorxPD$sD! zx*x3qxo7|nFQo8Kn!PFU6-H>~#uOA;3V1_*LfeYe!RH@lV8t__w<_6l`wBZA2l2|k$l*lfoktD2lKk+8RQ*(AB&QZHsPyylB-XMGyz&HvT zEn4_eRy{sOe7%~gBa*)i;TjtR`4i8@#k*;==>$oEEFuP_O7yQ}73h&6cQX~Mjogjs zhhZFx$LI__OJM&wasqf;kurl6vH zxR*l_fp&mzDz5nQQ|C>$ZP;2uK%*BsN7|3r3VW~oXbh-MxfMftMLdOQ^Zax>aS~XC zUbi2k>_HZFEqe0H_tF@w{GqW1dV-`O3DFZGUvBv92kt=+?5~n|gn$*mT=|VQh-&%v z{JtgOe+6C*Vo(gR*ls;lN{}iFKn5D%w>I4W<*4DzTB{WH~;3*l8V(6g@nsdfWU&c zk8kx2b#K6rA!_;kR2Czh1ViTH&@GTfdVjv!*b0-FN9dz^5l$@N^C}r_uEO@*3U$HX z>o(N;wrM|9DS=bmve5YW`JVp#PWK^JE0hJz?g$}Tg4Bf^{0)(XEvXfwPPfhrn|E;x zWNn1ldxGsiWXJ{ws7uSjfX^jV_?H0LmHE6FcK^bM8wcK&UAzI3uE(Jt0EYM(#L)e%L=o>$7n_2p&L!(nifzCHpNDPW@*X ztKWr*YxD~ERexwdbpDP4Z^gaA1PS2@ii$r;@AQLxWlzG1Ad)1ZWZtAQkt31jOrzhsZ^ zjS4zOZw)tic=Z>TFStJV2Y$a9imbr)3o}K1ZGJ*N5qyrgKHIC5lALcOrM?!hmpp|$ zk5Ve&KZNv+yng3+3V7u+CJcR-kdYrTN=vlh#pev}Pt7Sup2QRCX>&jaOb}aiW@$27 zD{r*9UL>H1;YMyebp1(pK?7a>b%#|J;e6X%vls*Wqo44*{M91vDC9nl2;zpYME0Ygwcz_cs`2Nal1>tO9Dn2( zozc-4Wpx!bn_EeyLicgp^T;BmjzJbNu15mVo1M44ItzaaMGAwsenI866MbD*YcC zr=Ll;6KqDZ8ZIGO(PJ%EC6J>@Q=axkvi7WWGuMh5f#oKm+>s0W%mjHwqzhv3A zj<;~(e0tc0Olqfw<6~YlpD0(!g1OUK>IL^%`}9GwNtO#`%$|W}?6bsnu5tz{?s2!h z!qNWIGoYwI~&f+nWNL&k4fy$>LG}N zCHE^_ zRFK^HJAZiGKL8egH>3=zY8^(KF#5l!Q_+o%LwOB8wavDb3s2M`B#aVJ@lIj61iO7o*B6_^f> znBWtgPl1@KxkHVKl``W1jZQKw7v=s$*HB0$)y=Vdrntl^r8oK5fb;py#jrt|{0C1% z)UF2EjC~uNqde22*y}AK%{aKe`@rvRh92l-usscu5HNj7yEUd69ehiEtX5oe zE^_p3IR)iXlFR&ARITw7Vh`X|bXPno!fK7I%-@)QCSOmCFvadN-pM0y5JwAFYOi17 zC~8wEY|!?O57RgD)M%sY7DzVvuR*(jMb_}FeOdK~;<>>aII><4?pAAmb>dXF+Slq@ zC5PJ}`x}Ujj>S}Qb2isn6o>4|N_>wT(p4FxD{Or`NE`@`qNd6agQxJ&r~WkuSz=t0 zHV*AF1$*^Vd3B0@d!~Eh>9@u2gbsyI|F=G%g`xsZyRVhk`IS>$NJ>i5+s63{lyIEcXQ~_iw5Iy=7*NcKT( zC)+{2JO0XoyBM)w5_pG+8p3s2+j~EL-IM0^AfG~0!E_ZCOFuIb`es3|VU$gsz$#L~ z+>)r)`cf8b?(|_?r3@MJv}jjK~w9e0l|5*H46VaHxxXb;rsjkEc}Uf%@E7^LrpE?raTMb zh{rkaTt@~Ck-rCmK{1NMNjb;+|MQ}!yHBu|h}EF*j=3+w`qay=V0Zl46ilJo)Ay`x zz9t&VVGs_f9(h11uY|cJiBlT)_i32n!A_zo(!Qb#m8?u96DuC;wO;}A3UG@ z4V^_w!EAYC7%YP1`nlcgc)t370;VqXkiTxRaC|1n#Xu0%(yE@(ONQ*cQkse+5P64$ zY7MklY8c0>(k(xqXZ2QCA~D&p9Pw&N_eQT!8%enM3E%p)>s5y2)Do3h%uZ{$lW-8yko5qm{%e9m6T+->|&1 zCs^jF0sY}z(1gOBS7;HV@}K^TrW`Bk-1HJ$KG$1LYV&DS>0&31E~mf9-IMRuU|u2( zsE5$VVN?7vbI|29PB09!Ic?$K`rYRbfFIhvZy2n@xex%}9Bl5d%UPOVw`8!wwS2Xe z?i!B0Xj*K}7W0+)mqUYqJ}#fg)C(`3EG8(pP>>BCQlNt#2chlyxt}?Pt=|u{N}}Sk z?|w@#X!g9+NNg9Iyzg+My^5!iRkN)3-P2Us&#@z4u7&NF9)1U-Y1jZTBd7weI$|3JNl($q z9B8`XcbhN@dh2?>h2Cpdqw#PnK^mZ@XD}tKlIiJUy*GJRK{hE#gZlS;BS?MP{^W?0si*$z5KQog-6R^w-$rT_HEUzj0;OB+Z6Ys?TqsCV3jjYZmGtj-!NS zfdsKFrDkusv0A8lw3}029S#;|+7a~Lm6`l}=c$bhFQsD2 zf@cL!Sazn(G*RrR0kUwrY6Jae-S&v!5~Ed2@oDp_9FNXDJw}&{k@%n&G4{Wab>mG| z7c?xMrr_n@ZwttnR1A(>v|ns}T6!z$5*U#O#52|HwQKY0HIt7tF_!Uo8LJ&1-tJ@~ zd{y$D#XGA`j56pmngox#rgIV`Dp|JetA?K?cFvAt^QgOs?W!hiU~K&@ap+%nE%~DQ zI0YyQw~h2tpK0qq%1t{+`WVtMi=AlMbMV#r*#gAO@Cc(3-yn z&BIdf0_RPh2GM1{KdW!=1_#GDp9Lhe zemfyd^!A{eEg$~}7lyqcfC(F*KJ6y?s&;syfwJ4qnGI8`@UI+wj|U08KaYdkLo)^-1k!)ck+hHE@ z*V2}45mD+%m}t=W83J{E^iyj1I9Og{BK@3JGP2(?6f(LQ?XQQHWaGhRvws9v>*~XF z2*%KK`}>JI2&JE2wzS65n|lSY@WPKFNSpMG}X;ud{6?6rY=1BX_(QD2u-<7 zldPP-mI=Ma{|>y6muaa(16i)spqf|+X$#SZr_SfqU_r)|r>2BQRR6BVvEh#yw}Sw_ zPwgkNzcT1;(9juf9bw^;*nJ~^T!kbeakO-Ho#<2hrzLHvvPqbYKFsD=u@v4f#2vFj zLomn5L7v07XlB3%^M+Bt4P%H7F;096m(Y=H3B)aGa7_5?!Jrh(;4@Fxj>mf8h_&LjCPcq$d5nr5vaey zS2^7_%iTtr_o|c1=+6n#@KyZ`aQFMv6RNqm+puqHT~~}~A5tZ_o-1%k(wNYmK$`2> zD;Q#KO`iQzqI31<9U-jT>1b{_^9!m-6wU>;Vp_%HtCIM#Scf0Ulve~uXIT1VQvAIOL<>3rac=K1R5p-4 zQuR(zc~r2QLQlVi3~(py3&^HhdDQ$>zFIueY3tWQN%!h`)LZP!Z}G7DTWqMC=~9_R zHs?|Cf47%__nj? z-LLThuSZ-(=30tg6(7_!@J*~^(I%A9i-oUcy>?Sk5FSTuJCg**F91 zInYx3Z^O(gQW{v>If!NeB~g@i$U*&usv5yJycIEA|J{VwpE*Tc<;oc2P*((o21W5b z9%lUsqz38SdRvV&)=MhU$Av5*z9jGd10*KPQ3W!$oj+oz=RkA2kD|++Fo4g)jFg8$ zKguW-4)XcX3z`VhSja8Ivm}8U=-lyNPCnTk0=UOUd-+Ieg|#e`MDETMw_Au&LDU3_ zW;51NdbqL1@++kB_Kg(4|1grkgTza#>ljR+R-j z`$$$GA%Xf)EJ^|9_^KZ4=o9HM5Ku+e2eK%E?2P!~;y>)i0iuQ9s}R((rslsQaYzIYvKitG7kts|XzA94uuFl7!}NTV~l7$5J!Gs3W(h@wVVd zSqAKnU59aTruV%D2y-VviI=9&%r6DQue^*g<(Lt<2keb8B`thukg)3|4hVvm+q7Jk ze&Pr=K^yC|q25qvRl_8ZF1^m~y_R}=6o*ad<^oLw+ z2Kvr;8jz>fhn6or5_61jf}Kg1=(iN9O1pW4D{`D)ood!NoEe;ES3&NSb{Z!)q^B0` zt|U-tf~~Ck%-S&+m!|%(uSIE%Vs;bd)y6jy-W1hn@weeS8S#kE4HapbhAG?`?7n(I z;qwc+)I9D3>X5e?jTwmEy+j%G3_&7xZ7}w# zMd^C$aMweUfa#0S)%sD3w*-H7Dgso4WddG{d|PcCT7c^g^qO8t6mES*Mi-tkA7fH$M*fe9>e4wobkQni{)YuSjglW)CE#qY=h>sF_y#@s;ZE^W zxbr{2-SSHrf7R^*M-QPr<-9B9k4sc9!1Ang##`+5vgDVH)3r(gmo>_}zD_pQ0Kx9B zOUixG2)aHbjJed^vzB+ec*i&Xg3Jm-M|KBU}{W2wGVkR<4h z4}89!M_p=4P;A;=pttlB5-a5YP$@8(WjbuShBMevGd);`Em!=z-0;wq-BQhBt{=tp zgIq#uztBy!EL=baBiJFG zR8bhvyx@tB9UWwGaa88I?{%Mby(vlFrf%XOP3y0pB}f44?OS1DfQYPusoRxn@QY_r z8beLt12KiKr$hszvw=@A0vp8_v(;sl(>PQ`i=*o*blN-;SZ%EWhThZrEKCF+4E5Yu z`P6OOocZsjC){2@g6MjaOJ&U8+S%qbG^_c~4QwPAR*P1@IOCiYJ<9-{&O0IB*f{#bXPw+dXi ztDD?npCFvWy_YJgui>VqflL|;&{(yTIFaDA*LE{jT-EM@DvK+x z!R$1x``(Cg+W5rP6K7pF3_T+{yKs85`)9V;lEJwkZ9Dhb)ejVIFmj!0GU>t_=9?js z-Ixl-xwC;2JaOBv=9cY95U#_Wsl?vq953Hl?pc4tE{GAryLMY&77$60|EQAo;fayt zTFmI+X`C-nx#Q*AKY#@rmb?ThGF2u-Xg7Q%fq4Rt`0gg9G(IQ%o8aF_57 zs@vyBm4<_(%m%wPeP@!S#vEKi6*8B5pWE83H&q$|*Gig&+BRq@%lm!={lTO`Q`GEm zCx;rJM#<&VXDMQEX?K}jmPMD>vTcxAP4ZR!U~O<@bcwl6F7N6SM68>${WoJpC*M}l z%(0Va@1K#8Ee9XUkydO4>?(&hd8IgWU)<(0M+t_0FUD@N*9RD1;tO@1n1+b+c2J6I zTuHV+e=S;pzP&Aso+fuf*ENmF!%4yVkLG7-uh0kSrqwV`4K6GkNcWRQI_rsU%u~ug z0FNaZllANC-Um=Ggbyr@ICeSZj7*j)BGl`<5~Z66IM!n($o+l}s9{lg)9BF!`Oc!5 z(84Q@cDzL#^j3_fajNk$Q?;jkL1_aHI);tafO8f6`5moS>90Tda_5R4mFXVOr&b<| za-6azm(QhfAScPo-;W3TC7OQum2{N#{lH&*jwTves+B^mV5q;nI5A48%T$oqY+;J7 z&gxibM)oO=-j%dV-cw`GvJcW>>x@fDoL(K&*xcr{J24_0sj$1cqf7!gU#ia>gH|&A zz(3b&k3MB2;T8BEFx6K<*w}jqwl-x3wNn;*`}&r}F#~L1nbA&NE|or6bPg`IjBS$i z38i%7Hd?5mhZttO1~TN4339Kg{N5fmE3=)tiob{J!<6oPef|M#<7g-+--hp!zZo4) zDC4r@u+aEVw?qKS4T|a;kFP&2?65Q?Fi}Z`R5_gTlj@`>pUgie`iI}?!6$=D2P+a+ z8w_w_bo3Zodz>KgD7cuQFihIm>-XQ(;#cn|>KNWjvp6ug(U1mzzMzDA4=z(6BR^+s z{;snl3X%L+2n&DLjgwX^h<0W9NP3Ubb9|L_0<(uG@7~29vKLDg+Ku%pwl}C70aQfl5KW!1hmp4WCei_N`V(mrdFVDE)&pboX z6?GUikxp$U%ZuXEMGq1SkCL0?(7>{c;Z}eEE~o z4;s^t8&r3pzSpap6^HL*wgp|swr^`s%eWGG?&5;Ilo}De=pLVa6rlCFOQ}uJ%6|aP z@0m814%^eDC&7(*LoZr#Hq{+9wUs;?l<9z#W8017g=%O2Ft+s+*NTa|%-a{=Tb3=F1UO(}MDCl_+F+YW&axXa4yNMXZ?Dh-@K?egM`_j37e^d;&hBX1y&v{WQ9 zn$J3$$j-ZD;5dunY*wu7^GNXD?+KA#tb`^e>K2b3m~H<7x-pu1E{3Uf0war%MeQx3OcPv8S>UMgaOI zfsx;S2x*YyikMBW$A!#-t)!|DxDB-%)t$It#V_($bOy^_=#}2B&|dP4+ljmrT_^fL zjMp8Sf3Qf^F~zI%jr&myVUUL`v@NlzTnx6J>vka}di+810c*OQB-#o9ayIg~hu)OE&oKO4Sjx0xNm&=CZB>x3hhlam;j_U?jSXc z6;KxhL|Hr0Xh9pP%oI{j&gIs+VauQEL^%n+?}V<#tz(gxqX!D_mvl=N(=+Z|wf;iq z!b3R}Ef_&+t0=+)*3W4Vmh-NMaU@al)bK^HQPpXLBxsK&?w)N?v(>6YtUy-;bq|R2 zBgZKY3J}Uu2t*D9Q~Je@tG{*tdQ6s{(P?9SJtCUgh9culAp@D|)VfsR8eLn;C@@3a zA6FB&@*QEu!B0%#;c^T82RJSW!5m}Acv^S0ZRY@Jj_gf9kW_=n2T?rkD?y^=a&Se+ zWpS;MRroSV*mem47B!c@|7`iWu$BN-2$Frkcbh94v#4U+D88Ymjb)!{C2Dt-eDKe6 zffd+>tM|F(pqxR{=79hecafkxsK#4BLK~#b5#opKE$vOhlibv*B15CdPKFM$s$&9^*3r5zgKL+<=?!LL-D!U4GEGl6k6p%=iy%ZhMiwNi0oj^qWVTh zZp1b17{rISVJ|ENoDS-mLmO;h^__Z++LMJLOiL|`M_H)-h=S^Z#Ho4G!|#i!p~$s0 zL4L1)N)aS2gc9Ji5x#sP_e~%|O-0*RJSs}*3SWr60z@R)0bnmnM_mW)hOD@b9|NF( zFT<~CX%E~X-R>-}fAlfaGtpy|vLraZ=KAI5kzz{~fvITKs=5O{>?v+`!yH58rVY&z zHZY-u$)8Bp3dJYv*-t;!o)ZTk4+kTNMUfw;kHM#gmsvaKp2j-zRxqv>#};7t>w-~t`Q*{3{AB^2 zrXvll0@%Vc{qn`y+{?7byME~s-T0bkk>L2=?VzCOej4Ih_9o0CIL7vdqmkZGV|E^q zy&BYMct(w35WhT{xo0oy!EvfGehEKyG2qiv^-tc~o^~Y1HPHDXYP9c#M(#2<-Tz4* zJ~zxT|3x@xa);`JnZV{ToqHE`!;pl}=rU@zAGs5@kDn^3rtJ~wMy{8~*NWKcpN|qG z&Dm$vo7D$m;7SF&yD}Jbw2}Y!&H0>Ng2#CKkFOh?U{{YsM6-KKg`(c$7V#SLu^c;c zjoX_nw*x+#{zX{$d{}it9n4BRBZI0@`#KvC;H^#Z-o+L2%x&N5jSwuqYOA07Vy8-F z=>79b)D4^8UhcJ$H4NlbO>tLM&XL}gC|*-N+2Q^9eY)QH-re*jW7p%ClU)b4x}e}N zFv~(wWd5TpGa{~cJ2{uF5ssYJpgHzjelBx(so%uuTI74+5Cqr|{@i$%_~~5eQFqd2 zMlaw&sQavLTNz8G1zXpkJLpAKG;a4G9Q1zb#}k{0Nd3hA*#njTdp}P6r9`3!YB3w# zLh06#ikd6Fe}I)|g^f?C6LN=Xh$_`uIt1#=+1*Dc&E3pc&kMZG)m6ll!RLf>Zmqe1 zwmtvoG*BaJ@|gO}-DlDd2|z8=ZYR%W8F}e|noer<-7Rdyj7|^IE^vVvz)t9s`k#5Q zrQ_1s(}LuudU4g?ps($EG-`gK#>YM)-*j?nTh>Q7=4w9Qo6duwI|m~Kt94L)SaR-k}2zF)r%Q9x8KxZr@=r9y`<}iK5dFz z4u|CgSGG18`M(S*t?f1VX}IhmU0C2Ba(7#s5RaiOmosJa%GPjk`e&z>?mXSb6gD

TI4i$s03#Myls46lcD zi@%=-x?W<>LXppLLSHd272krli_n~1brw_CP%N{^jp^bA#z z^ow3sWeC38_?ks0v~rgj;C$XWc?7M(0;-%Cy+5+^@saZ2%i?_0`J-XIO#S?5uO(*X zWm>gtVzZ+2(Q7X_Z+6i9Os zU}1pRHrx)hvX4VFtx8Q)*8=vczB#*Siz&lv{9xrPf5kzeE0@LjTsKC4Q2JN5d)A1D zI+;woZ-iY_P`N!wd8D$7EdwChQ8NmBj;U1%LL6F+9X70+Y*^k)lEMp$Jv zjYPg3k=Am95=^9%2`I_+gFc*#?l4)0JAWZX@2OVA(DQZ-!69Q~9agO-1Red%JBy&= zoGg=!W6!0O9xGYa{%KbuZQKl`wPCrMV;RDTAQ~zbu94C0tD>#-s5+wJ#^bW=K`nX!XBbRAl&ckef zKAzZ+mKz^t2hb}j+Q7cYJ7ekfM)LCIOKvdMal?-#pvS#rF6iI1?QYs}pAwIH)ZWj= zX!)>OPmFxy1^HP^aAtWp%vQ{Py8029q~y1Eplch>=$<;Kq)8}hxGypiCehEf&Bc(f zMyJolJMupKI<~MhM}kx^!cf_ci}gY4``|Jo@KY zV93DiAw2hKXT)KnQg9qqCPiT?NOYIUi?HbDA+Icm`X9CQUH_4Dg&8-+A^k{Vo`{jL z{7AuUbIB)`Tpjp_S(%b!1WKxaf;kj$2KdtqTwP>NXb;Z{I}B!lp^T3w2V3eQs!QRWPgho+XhAo* z3+uOb$rv!&M;3JPWd|=_vO^=G^jF|=oAY9MYI@yw1J-g!uJ}h-#b%2Vk@&SE`d)*n zS>-`j`O7YLiZ;S=gwYOSbiFi^1l;+>!DoMb($L=kSvR+l&F-hc4Y)~$0 z4#3E9>)t32Y+OPY!&%zxvKAc-5tD_b($aRkHrM=#`D8EE4P%P(*p9Eg;WCkk1kp_X z)yt5dx8Iuy{7=jl>szsia)I^~^z%HmJzC2ok`pOvIdfYpGpp4LW4^P1)`6nw(EN+W zHk0x);$zfaiBK!UjwEe?W^C~Ds?%m@4k2~aM|SYu1~ae+1(0lV-t^5i3N=eZq`{@C z0TtN5WlzX3o#aL8BgTQXIu(p4ge(ZtfC4UCsOYipzv@!ua*WmEAPqP8)d2WKNgbsa zG2oh8yn_E*?UgfhB2ZQ-@r3d%%j7eY=w-`}yF%@cz??sV{MdR{V^!gwhu`&|n=c{h z!e6}Pm9XZKw&;QnZ#wIMjf-alZT7_D{yq&GiY~Y@AWd}6Vj+VoJAOe{u!KZ$CcTQn_ z%gNYG#HBJcC5YK>P<-Y0GJJFS=h?RpJMu7`_2l_}Bm3^Vlc8Mi0<5dbZAL4T5+C2| zp)}o2Ase5MRj;I|w|bNWi-0uoJnypaWZQG+urP#-)o1?!y(YfT{+ZMX-ir@c;2}}_ zgU3_b@J?mlsFQ?ZB_bkFuk>Q4x41a}Cmf-Sk7TvLiIF2e4mXc)PG}~6jCO>W=_55Y zvCy=ltu_h>BYk(KEkpTq|1mP^kDcuhUj|c^SP|sm!6(D7D{LIQ6JuXR;Y&d=gYM%6 zDL~c%X!1O=B2b}rl!SuV;R2tX|89G z^f6?z)l-e6%@XOR+RL(92NgWaJx$kW6XrXQOnP~dQxB-qLUOX#zxufuAu#P%R$M|*Gfwma_eaCNC2 z=BCIkOYHVGm+moNq?eFI8iad||H8NZyAX<_D3n{{*^_YW4TK(h*TuQAo!AyRU@R!@ z51-Y>Xe79)TJL%YX?nPuNf=nD>lzi80Fo#G%RBqn>ryvS2wfWVy5TA-+nvsS3^56L z!c48fs874%OcDZ}bHPuRA+xPbQh~?)U$SvP?P&*Bhk0Htpfc4(qfijPG7~Iy$BA>z z=g_9td0{hN2QyUb6YuvX1_hnS6jXSZU$>RTA5Rq7z?7rQN;fWRui0GJhCh2{liME$ z(qMg`d?s=)Z}Vof`}YlGe1Cb-;E(lU)UTLf@xJk&8sZe37Yi9kLY)@h_->r0tLC0{ z;;}^-U!Z$QHYLn2q_$d927k~i25NtJy+YmFykBy+LL6bGX;Yd#Y&||Gcz!JIYCqLN z?-Sew??745H;euX9&3f%W{Z>*_T&RW_xD*`3PF3Z4wnz4J(5(f3^RN8s13q{V#a=` z9kuP+CB1y@!2KTFB2~30^9-0CzQZX@Z6qsLA;n@{oGoRHgRzg*UU1#?JqKmb_h!P~;g)o`f4n%UjIy?J~=oyyJhr$b@<<@%%yUFBei^T{$@K6CJqymEr2T zi;;#t-{%PEX=PYW%K` zRnd*XxSbjb;O)~L-^NdF9L0qTl!(&{$-8~8Gzotx=K1G^>|O_5xNzfmP42CEFN%y< z`olSJi8+VPdJLP6h@4Mo@BbQa9i@vXLOedlUCEq-I}YCUos+&fIh*_D zE1Elh98WxS4?Vr#WarKD-8pwjG)%2RfZhAL z3c3MZ!SWvtm$+mO5pF3nSJ#OveoRf$RwtDH!*OpsvTH*DIr}j|9Phwf_G@1%75Z89 zLc&uAz-~0*hB&GG%LRq-{IJT)Rg19d;jmf`nxb#`e1_()W_Yr8oEv8!7>4GTuoe=;dD-?z^ z7(EBmF9g28#unr+MWCHM*nVlcwQ>9?i;P=g8Ss2knK;tu-x7%Ti^zUaqCT5<1Prq^ zaMJqXb8ilUfvdQ}5%?kQ`7v*P<~|1hq(+nDUKPu;osHemkGL=amOf^lb%*ynQci$8 zuPRo=z_YV_CUL|7qwl;{%7!_gn|RSMYue644Q%Wlf9<>Z`Gci9W;fR$ub4LgzVov4 zm#P#WAc79=HnJp^IgVrPZbY?NV~va!t>;F+0&{1AedPOEX;7J&VF0p@7qBHbkc#U% zU$pHyEMs+5ni_|}J8%P~;$!}EB* z>TGgF%JLePDyotki=kH$JOx)MGM61z=Tc-SQw(NjO26n#P2V;hKt`2%^t!|w(gT6C zXY<&34Qy`FJWgT!{i_p4-aOHsT&CO94cGN|Wy8%b?pbJ(mKRzWy(_SWYrl8yfYhZ> z^@d<;)`yS8LHy^F1>mVVC*M85D4okQa|poAsflN>U26p?d@Z%SBC2$i^vQSChU+x6 z>8C;Kw~BrZWq!Ipx%%K^{fC`82%!v2!?j*IT|vf|8I#wAiE=gi%0Tt6VOM_8yYoy< zR%~vr36`)s6%RdCm|4s<*-cF8=kiaInl6ffzsuXcFwX7ov7pp9*uI1U1{vpNYRA?m z*j2mZ`OZf`XYd4P{glWyUBbt$6il@$zDwA3ezwkkdfU%tl6bInc-_w>AELM`J(X3M zd*c-d9hcz;CTZqRu@1RcbIYCgOf>JoP;%6%6C&F=vgM$y$&{!?7s<6IkG~=n48(tL zH|H;!+Lr2+c|Yn0a)`}NVxOn+>;p&PD52^{RksazV#O7wL3{NR;f^O3^AOHb&C@@q z9hEx=$Ib^PDUH>!~GvjD7gCkE(>Q&*8+kOHzUEh8Sx$5I~-w558;v1FPb-n{jUG ziVJu&~8c5_v(lBOd`#e1%C0fTwLD_);9d>-(w$Eo=T3RcH9x z3EuK~%wH@y1j;sbpJ+e9d;p5@zo}x zxY|kc6o7R-)SW)Jn73Q;LGp!tPvpzuc;r2g|#z%FZ zHhBtHl=-#%ttxqvA8LrFn+{y#Yi+;Va+E)6o7}uGk=eVR3|b_ISIRWyz{b@9dt|6* zpyPCWT|~2uC#Ee*hI5kC;P~=0jjSGZcA`yCqQt7|X?BC?ns(uF%~hFCo!PWS`l8>W zw=~X7%pkp6XT0s|8oFmKwd!2Zl)szBaSLn}_B_fXhhQ`NbE$!_x|@65C7I<7H>sB< z0l20=7pVN7Tz|w-5jg(FrRCx)z>_7;r6K-TvgU+uZx}E}zTL(X!-UX1=^RBj?1A1f z%u)umEe-X@6qPcg1x|8mqRGi)JSjxT<3nhKWlQP%9aV1}bR}4!TR)#nfiY?p6)@;~ z^%3aJybm;?B3Od|K%Z0(Bg|>W+0dyMq zFm7lXPxfb}#c-7$N87g=nX*#Bfm)@$zZ8U2m^=f3Yc0)#G@f(zD)!NPA)aFmXZFg_SX_W45b~D>57|VUsg-BR>G@6UhZ>dRLEzkouG>1x% zYm~&fcE&y2F=LXWGrYSwRa>`l&EldM_aprG!Op+zi!&M6$uy!2|I`>}huOhu)Eam? z(SPYcOY?DII(}ilTX%n&&Z(YYTj&x8Rq-DiFuYhu@;a(ra;htyKeQ`BbS=J#16YBJ zer5PGkrsUg=duWKxcFl(7~5&?#H)u-zpjS}?`T?9(%U^JXg^Bl;|pcZ$t*+oixP1W zF%it;(iQKL>PTjsB=p7;{UAupxESV$6o62Fqd-HnbE@wXgpxjH?jguQW~o4^jUR=9 z3>hH7)zTf&U7T#kxmILdz}e!~O8(wCh#{<@Vpm=I&QMp3d;d1vI5B!YCWLWYT~Iol zFwVQzz9yxEml*9XzWJp?@0_XJe&GQHRiCu~=!7x(U24ktd_oY(bliz7soyr7K$dLc zJ`9s%62eIW2Kaf&BQ!foU9{F;1hFHeN?H=&pE)4PlEn62u3f3S9)i;g>AZy@JP$i| zvZ_m^$ZC|OV0~;N9g)Jrj)_JjKijvMxpOG8+SbPn7^2v)OgH^B!_n-@dc8!H8Jhc{8-asP{$Bj)BNdzSatfZbG>U-!PYh6xN}1pidzhqL;>yDpU14F8aV*bJA^rK@EsVwWs<%Z?PV+^eco=|^H-pe?)Z)$k<3j2ZOYX=!r$bcUPta0 zqZ_q$WB3e5J53WiR$9p6D~NdGN8ItRc)95N;?Lu(9}|v@1_;pT)72de2g7jo6Ox}1 zY0^-Z*6McaB4#jZ+o9mjgZeEt&g5l4mF`!ikfidrPUmCmYjcGYqvG4FkD?`c0u@{- zh>vk~_liq9wBr7Cpzoo8p?8xEk zU?iHp3ruF8#nyx$YcYjsc3P@?9J=5B^zrKrNP@G23ls=BT=8H!U2Fr0! z-2`?#6JU7rty#I{{{y2eslpE_I9Nuf=GYfAS&CepPwaXhEmJ}S3WhtESmZD}TB`=^ zyPmgOY=kGGhi|m|3@}=k4suRA_>U(!S!T*}>Sy|e=NJEhp1%`tuz1q!%mGY{SlftU zI>LOpB6jP71t7%>J67`HA2$jQu62Q9Z%@r_W|XSbMCuZ%i}7~++pak`QsrA;HF`2F|Dg< z2brd0(8bdR?+6ck7!OoN^V2~iK5jZ(EV@{6H2LH{o01`o4&dqy(jfNx_LBLdIlIYP z>QSZiM;E?SLh^My!+zWMOp6#h6NZn$M1kC2R3YQe!n_RI$D8)Em4nNM_ZcFjHs*+lxoBDCA+vSeqK88f@b*Hy9_LVIvXYMqw z=Nvxn*cug(NXdBPmoXLrD11+T8BBP1#r$#cezsiGiLvy zj@l&~{pPLZZ|Ol&^nCiRcFHiF?(FiA>$&vHX<=mA>cS;Z8F4AeAG^f$WNW8=!VS+P3Hms8P#rkx`x2dA|GKw~mJj0#o>s{D8mq%H5Qr-?cJ{h=H+w{z0 zZ;R@jGlfz&vp)`Kh<;}#bM|Ntn>}LS7h%83)yLPdyOf1O;U4A^sIEDx3G~=E`lu{4 zsJQ~Mtak2~9~pa$*BQ%5Z!m6IkpDoJKT;6$o`A!ks%HY3xDu2hS_G)7col)a1>W(P z%CQU|i)q8@LkMPGd1CJ9=AlOT!mh95+j)u835t~A@uZ*%^Sg|c#@-)mN`$wargNiy zZHU>I4gGd%J1+JjYZl9S^X`t`ZU_A zQuS<4N9_l2fevv<+Z_K_MZceRxN;DD)No6*94I^?ib7l(A2u+-XVXn-2J&SauFBah zmim_uY-Cx&_AHVE^a?%tg4=$c*I3=mS0WD>?MQHJ6@69t`yW6pp-^nhGFhWoH(jesoKrKmn=tN_wJl49$SGu998`P$|;j|>`mpmzi+DEU= z>P(?m>0`Xv+)J>IVgUhvK2S_wo3vZkX4Ls=5%J^4xS;`Arms2jHkQxY_8R7O^fu^p zq%VJ%9=4H9Ihs|oM zh$q-4JYC9kbg5-kfcORDkJOg9yL#i(A1zZ4wYFvq^sEdrMYRj{Hw9&}I6NSKPfg#3BA<_{GH4CB8v}q*vw@ zmU|6Kz2qR)_CQ2@-C4d<<=ZazSDQ~Bi}3IeO7B%J>mqfv#EYFxYxA-fpGz<}L^h82 zWVqde6ymuGjoIp{71&uaOUORCJGD4;^M!BIp1&4N)cz(-+D9dbI6!=X*?3}$j^&WQ zHdga{0(q5Bn8x0T^p@-`5>JE;*uTFArYW^b9k`K{s_#_keUxyzk-@~hU0QZ-WiE2M z@L{@%`S99XWpcWp>~v>y_(vdoZ8?gC4O<7`He<-V0hJh zQItVWNs5iiV5&3*LzX|XMu}9B`yLw6&M+r^eWI6{C!@dczvPTDGRzARu_ST~O%P$+ zLmkYso4wfV&<%=T*GQ7{C^e$}km#AXWA0-0Cf~24V?JeXv+-AvK1P%&wbAGrzB+tx z!GSz>8CE$#g@_I+_q=*!_=@FO*1y;H7i#|LD!X}jJg`sxN5U{bGlSmD|5{^K!_Kg* z+1MAjE2GBi(x$Uic4Mq?@&vOdAGYdJQ!uY~w~T#oakAU8gDFj0LqMulTNk|a#X8>* z&sfoX`g!f`FB!qzCnAC9TlrwVYfG_!-7f0M z;kUX+l9|=Dl?%otrPJ}yK{lI6+JFCEokXA{YhH@JeOWveI|*&7ThJ?3eNQJYoxK*+ z=l<(|F=@U(^ybjx%+huEfHVga!EzB~v(<3!Ly4ou&9IgBKX8vW6K5ZF6u2(+=SoT2 z0X)H2e&=sV^v{Y=G2RSs8kVagGuV?^Jty`j8vlW&zYoUcn`ygvHtq*|U{PJ*`_6FZ z7Q!w#O|vfxlBsSgfZ~*zZ;CYkjPJuouFmlIKNvd9gYL1PVJS+bWmj1~4>BbyF7-1P zhg{LqQLTKzec(ESrW0caXKyFyqdmj)n&hXqLv={=-``8qWqm5YzBvAqJSy1Zz4~Ei zbw@AfcK+REfl4%r*8aye6tC~lcX*m~8l+)@P7Afha-&gH!IKtMb)RkPj^WY# z@M-o({#=J3lD}R}`G<{Vz z?VeqI6c)@92s{3`TuahLO{r>Kq9EdvC3C!PE##2q*w*~r{ql>Og7v06we`EHf(kvo zI;ZRDL2uCkcTu71qkCe9E$?rx{h%Eg;C;UvU2}X7^s(hh6h?J2kZdj1bsqtSnRDDu zZhQ^@Py`_vviaN=syILT4V+P=p@+<^(%8W`+3hShI)mRC-|ri7cQOgutGn3scRdI? zMi}3Q$v|Kvn7G@tKvh>1mbz!kV|R&ZqN;XjbIhk}M$Bf3)C~DGQDr5}yo}<*Uf;aZ zD~CC?s%1^S3W)e>(ORJFhT+UGkXj-D*94%)Ae_7I6$5YgEYTv$>R*|M)^znm*ahQ)|COiq~!mk z9%_Y~cY!a#v$bNEauAbTrJs3Y-mZG#=Bsyd-$feI-6-|T8H56xrvn#O>-{I1>^y+TXJqw7$A5tC>)2^hnr zeqRLHWaqR7nAT_isM#VJ$Nc@gzSxOQQ7?89t_tMA?Wc~@x{e;;JKAcXpMl9sHlmdw zP48H#%5h5aV*M?9jJl*Lqq7bNlVBVjd)g5Pb$$?$(|CryvFl>mR!z3u=vCGuzT_UQ zEn~efe9~z^Zt>Xb?8@byL8q0po>-qr9L*Y~h(hsVZe+~O+rXeSov0}zU&?>baJw4a zH(w81>9No~<;yIy*C#XH##zaTt@$m0p2u@r0X&Oyz$!d`y6cr;tccc*L0aRZ%5wLB zuf%pb(16(3kT0+q2`1!DpCEYGu#9zylj3XERS}>aeW;*lbYJ+%Jrt8}8>&Ahym33hr z3u0={@7UPBZEDxte8`w$h*qGJ-*IlcxV87%sDd%Q?`nD2gxGCWR=r_xlA*x?sr^`q38o*rWCo!~I+XKDpT%kY4_zvWVDE8F{8$ z8sv|H>h3s-ihD|DA@va?zjt2F1(UGJB{W@=1VNL#|t-CC95{cmmzoG zOBe)LN-1+wKJyup-7}lH>U;Ppu>8cm@qFQwGYq4PNi^Qa;corGI@l)J2H@)C>Kf&5 z)}_wg>~Dh&=iXGDWo5YBqT9Bu2`blHZ-OVDNr;$1Of;|3c7q*)`?DY8S#W&Vs3M#= z_AATQYFoD&%`ez4ErMg-eUb8%a4f)2kgM;~Mgw6k6`OA`x+o3KzLL(y5gxgVWIc;X z$L6B?uMIIeC%r#!n1g2=ZX|JzNkeMfHS;iM@7|73#?OY2{A;SRo9GsZX})>0tL{2& zAJa)U>!GKv{Vos}(-YXZweWnkxvm0yHUQx}umAa&$eLN*KW0is*XmW07|q3H!5x~6 zqW-Oh9MG0MQ?LkG>?wfPU;0AY6^8=9v1EPBESwPfDaLSPzA02(Jole0h|m!^kyU-< z_M5H~7sb-7L-|Q5*Z^|98F?o$yLo09wTGpA&Ly6+|@zN^kt@v7@D{+Y5l0c3o0tgBx51(N_tMv}7egL-y% z;dWDNX$^-NA6jb{S{L*ek`^A~C_ZIrzm=FYD?y(mvOhal+Fs$^X3-t)6aXe5DoMU06{F_>!jA~*8WXt)>KJPblInA?1Et) z5hQY1%<4{-AC2fH4?bh=Y5)&qd}|CVafMj3F&&d)^0Go*<=jB5Cw(km&Hj(0^KfVL z{og*dI?Srtv_3s`lP9RjUY!qP1ehCT;B*dzRR-_nwIvM7~dc&mWNE zNUrrl3pV@qUhg6QQ~{l$c*LNbAB(>@LG)K} z*`Cxh!d*~3B(hC@b9KIG01t`Kj-$BGS)uF5JUaI#PI)(}@L044p(cT}{dR^IbL?U{uK3Wr+b3U2~&tbD36pa?lyC)_VS@XPO&rBNNJdj8Np$81JI%Pashh>$M@I{P58g?Mtk9}asXSDc_-qk zI>h(~t6pHNFo&JA{JXMyg?c~QB9aJbRrWOmuVffh8+ovs|Cia)DtvAaWCPk4?CaoH zh-~JW`J$`^rpTCV+lk=jER6m;nZH7J+rKHAqgTI80xFkr4pycbCh@6#8+4gK?F_2u z4#vs)>`YAVhO9Mrj{=)DziMqtbDq+8%F=FX7_i>Y-o(t8H|%r8wH>PFv^mKsF7H)g z_ap|22Kmb;urUR-1#IxICW5Fp+2@&DYi?bM-OPUxd3^~Xw?kEE9#U?u5_n+Bj+lWR9-~KyitQPt;QKhL@9`A9&?{%fH%0b;+087FTGS9NY;< z2ZY_zze9Wd;8hjwaa@?WvJCeqM+D+s}C*nM)r5&5GH~i2#RsRVtuhH=mdPl<~aZ-B>Ea8ir_%!zbWwmG;n)$^QUFx>tF6 z@9nb3Icpq!rHM(yK=zVzqR+w3)m(RFp}dzTbB?qsDD$pNHc4cW5n8BByU#8oj^ROm zI0!QN!&#NDM;*Q~0^-7b{u?>w#ixZkU7 zCA3u$zD~D;fSnTiRwUDE#*Tf#n5OKU^rVbR2S_v*l69M78EmReW6N{+79HSrp*p-aD0t6;L&OC?B#HfLHFmkmSo=?A_0rZS)dNyWiz_Rc-&McsY%^^0 z-qK;!U0a|y*EToP9h2y&89!b1$}+=-15~Zo!)yWbxY}xyriVvw1WwW?>}70!xX9 zLs;3{3s^;gMxJ`4pL6R>>grzwa~i#%6aKlW$scSTZnU8$ z&SW>8Slt*|s->|Q^inD6#DM*J41YwRvGTKz8>^VE27Kj(O%8-ft(^&QihQ5-0m-f! zfwbU^aul1w3)b4G(q7>h5No|P33Ml>@vZfICS|#QEvI*Ztcf=f3%j!Q4;!>@r$Mf? zo<0($8T#vjVM$Ju8obTT{yy}71n7h-V@&$GcM4uvuNVH-_O6y*m#z;l+O%+~Q9#5m zcF$k|6u(kgdj8*u@vt7 z=Gf|z#l=f|C=`p3@#CN`1`&Nh;ux1P&rd9UR2o{RJud3fg?!hbW_Q}3^nD&m-}Q+c z<`MPR*PHtEsmn60qc!mSp-%{16xq=szL28DH~e*MZ`S2itU~TprOTcW2Y7@zUv&4y zt{0aYOJvG4(>aT2b}U%vFe`&0#1ms?WG zdJj_vhrfwY`r9fLl?J0T?9C|0Q}^MPuKosK2bY14mCTnj06VlJyo!uh$I0N&JDI1LL@Z6HaiK@HLjDEa=F++19P_Q7vlrT8G^k<007VePHI- z47U2s^~u2L8G7Qc8b?Zwk?@tazXBVt0#G$6)lQ8vke)X_MF)_1 zbbVW<7)_kJz3C(QMoxR}V5TdcO-nOvzTm^fKf9v_P+f_JXi!849jYdqYZVX8#!1}^u?2Xs|-_~yBTLq<6DN0hE75zf;1bofdI>) zl#B8-7tqtQd0hQbh_n2d{rg4(fff3h=c`A@uJNO?bWcANc@Q|HX)aElaBEZq{5f6y zi;G*61$l3M)PAL|x6g7%3u1ok zYj$MFB(sP9hXUd|RBh3#ojAa_J$$;jWwOnu*uBqLZ z>GBqDGkz&J;81z0K$%8Qu3EMgk2rW^-D_Qk?4)9R4P%3%2h{GEEtZ#^&P6{7jf$mr z6EC&K>>$bz&hg@+{22!8VHp`mmd7?{PxiO;Lj z?8Dp@hZuVk2O8@oD@&m*IH4WLyh)s(-M!gBJl5pC0IvuNGq{+g?sagt%J`SNvCvEQ zytlo!7W~2-0k*kBl<-eOg^w$36uZ^E(HuG%6rT z{FH7kR1j@c=6e%`V0kX((6`>iE~+0{cZ}uTC^xKB>5^x^G1(}}9DAeZ#;?#(I@P#} zGD~>UbCt_+rHMW&F7F1G|M(bu6$=er9OhG5{Dm#TpNKDiaBx>`bU5T-_3?kddaN?q zJxaWieV)p!-q@z^RPNo;!>vs=9U^qiKOw8K=^b|F?g+^A_8evC^O+sl@u!6orZ`b-zDI-!5}k5WB*J*DU_7<%&vm2a}lZt-Iv zDHKL+yq8ZmQ?juczqG`snDuqxMdo!H{1^F*n+$kD5B3fG0D2^+D;McC2kp<8e9P$| z=z%*|nR4S}D7STP)?5QI{f}TVGwX0UsK^ybDCGC82o5|82cp8Ez!(J%02$VH12AuW zl|K11(8r|N#p9{6&!hR0r5x4g%Hkf=LOlm`%%Ee#StR6e;rq^ zWL#9ddA;9qX`K-(T)2Q$xsL%jB_vZ|8hg$T^XOV@?_SrwR<3~-0ccuwWAkXnliP|| zA68e49L!9wqefsixDUEepyWvQj)vF%E)M9oaC8X8@*%6)yHkZK*8ueW?xC{f zN^eiLq6dDySWcpPmlvDV-+ay@R!%1+D072%Z^60$L8Y1u!m+;L;h-H~_@97&YeK9s z${!!RARfCfmFS|6ZBz2T29aZx!-Pl^E7UwwG6CLfLa3ePC1YS@%cjYQMV7 zz?+}}zjMoEW6>UI{o6iPPB^Uj2zSoEp1vCg_+%ZQb$t|fXT9g)u?~5rekE@&{G&9T zpO&?w@}WE-?_WI`F;e-%y|OX!ZO0BrO@}G#b1dVU9qO!aBI#9py_)Y~3Hs7fw(um) zuL9SCYHDnB8Is%T*msvcHU*5?btUmI)TP4g@s`2H&h(GL++4>~2WF{&|8;J$7Ys-{# zw0rJI8QSw)%9Ce{8WseFYQBfp?6%-WIt2dSx8caN?)U@Y7L5s;WZlb>K?=+V#!_Ux z!3K)8PGIv)$4sAInL2@?{}Bj82hD{7f9FC`>US$ZcMsLV%%N*pQH;l@`#KpId}PMG zW0Sj6M;(pqqzNBgxB$9r0w|b&g|jX#g9kq-W+y)X81#ao@6F6Z_8zMvzl74a_aHNX zATX~22eUq;HU@X_2VLS?_NRwXAKtRFhVly^^=%}qa`dw?PpzDfiIU zDgBA&YqUKUNNp^UoznwyC*Phff!kn|%JCm85te=Im&F9*!;~5l3TwyYkUO$?C zrvY3hKa&;zZZIX>5?k|wDPuhHWaaN=@jVnm$$VMm35ELxlf~>C4Ip{QP)@)x2@3K7 z^}Nv*Kix0+b5%{NKlO4(jvw}NV`n<8K7lfH@aK^i(n;ZK+dqFg)zz52tFtyg4P>-o z^%3%N^;}`*KDr2nI7Xna*Hw@G0!n-EuLbLM_djlhp(arx=YCJdu?HzQKOeGjE?9I~>5P5qg+pxs>o#c5;~bygs6F z3O4+_OJ}Xw;_h=hHf%FP_6ojiw;{Hu`7AT*9{3LcR(LRpwOe-)j>nNtWFR%skF_Ya z)0>F*v+C^pW@_2jO+iQ%457JQ*}Hat3(4m&1?%|o*b3AoR{(3<<^;ASZ~yMW9y{K+ z>!H>rii*67Y79AL2<5R6|KWt6Np&l)uXRP&6|;_BnLbSM^w}1*`sM-==nb>_yEBh_ zx`zt^$OecYoD6y&fK_z?(#54UQDOHq4y7SRNxq7XPEb&LW)$MT-YoFR0n^AAHbi7oS8#AiBgd9`mw4 z*lYiuhgAHyf32B#{J~cxVsaL*QNn4RcS$01@;<6MO-rQGb~*Zl!wjMG17wktnMxP5 zj{4tK+3Fs5NAy41lsbIh^P7PA|)E6xQiUzFVjt_D+XYdFQh0R`<7)C&v>69;hKO5QgVHYpZ-Ie62E$_7VMd}!%=TAXoGr(5=(*Lzr*Mqz@ zew)zzFs+viciw$hU-5YT3z*_AjpAxuB!Y-#oB$r+E`@mUKLVLY({i<`B1-#*iheBl zWegmLhnM+;2FckkDDi$=GbPU+)*go4FJy-w-aRFH`g3cu#OEEMI*B4NfvWOkqCQ3R zV}|gfr(sSFw_w_`HFo8^66iNC28&NDNgdPfJzn36Mf!d6w1Xcv)ZA7b76ie6WHblxkmorIOhJn`WZ0s}ia zwv`#y+!Y5 z8z|LTb~*6V$#((N>y4m)WdFRT;+bs6-MisJ%L7xaJWC(JHaVYmOTx-U#iKl{6uBAY zAR5p@LIa^mL$zD~;?rqIBG&fcJA*$Da(IM-{a=+=E88qAi#$HlQoB}Ey^|+X*@zdGbeF)k722{vyZWQ z2~Krm`YIR^A;<58>gkTVTBQ&C`{^z;MQHQf7tB_m2+%+~zc;WwdRdi?#CE9e)m7-% zth^3Z5|o#{{ae}_QqA3S>uX($jFO1f;#LFJV-TiMyT@;m*va64R;AUnmA0JW)&vt7 z;Mj+Yzby)rn1e%5bdayL80;%aQgX>C8rggGZh_yiV{~0mVql1gr!zFf2jQ(=1EyoJ zDGLe0ZxJgmIoQoggj#yKF0Zq&->`23=%X*p|3{FdAQdZ9Q;<^FC%W~%bLT@aWINex z_D4}vAzB~D*>DDg{Tr))3$FQ%vTjMjxw&>&Y6d^MhCIeH0{Z0LpF{c;1pWon{gDna z$xeR5z9Qd_OQ(fgg)`1V(ATjSE~fq zVy$mp!FyMqVM6+uz6J{Sq}Ic}$_e~x3hdDLULvP5_7;(U7Ur|HgF)07-$Gemvfk6| z*-O2}FC1Nc4*dBo=vM&>*?o2UJ_*j=7Vz8rC>22Ev@A)?WnkApcJ{jcLkn0$T%lgq zy4V_i|i}mk<4QxY3_|F4v@gt~<5 zKXdpfkB8QnM#%GC7o+R1fGW%Qnp@fQM0~)Q!N#-F-2C=DEQBKqvx<)QNMsYu-gsW= zD2SDZHqOgQ7ZIINH_t`hbvpPo8hz%*G@-l#vwkIUHOqDjpN1uS2;)5!-Ibx0@bGsigW<%6XXfaELvYfg444VG=mNn}29%RL)hJD#xN6v<$M- zux^cZRnzP-XN6RtpKy&yvK8D)GcJZeOo0P>^F;$gjnv zJLBk|cF?R1bB}8;P|(r#9K$xozO-%BI%b8jp4uYxBj!tiz_GEU$4-@I}e^bxhvGw|Y*A^!2>%9-xSwt*UCfH#z<5vdY@_v4aAY%5dar z>k#m$Q>Ak`Vkwn?ZKI;yX*Y1yR#ieTN3Ygf_7+7OEPDc!(u+WL#i`@sd7Xx`_hP&%nK&k-v)a`&24J>%n_CJ5{! z-qBQfd2tke8%lLw8qSM9IS_wC3F9}cA&QfJ@TY+Rnvq)VQmG-mzVYeG*qgfTq8<1RFxQ(^M@YR|p!$h))8 zuLucfB7Ui#gcw)e|2oq1j09bwci?5>_fXX{)klD1_B+P|53cEjfXG6p1o1q}e7U-h zZ<3f3^BQ9Q{n7R?9WoW!`{!jd=sC$xO}d&Dl2~M z{H5PQwqKJ{ai!`DC4Yu)A}A!CYZV5&96yehW1*dBNI{x~0`J@E`F-=O7czC??1y+M zBBPV9!>z>vkKIHge-0zz3hp3PG^Vpdh`0PJAmt{X4Vss|NJm=kL!Arv$Ao~BFFyDtfK;8m3TRd3HHnkpp_l6LXBJ~A8h z_=bbqnv6bBDQw3&4*%>da6k=Vl>y0qxjv@N8Nx^6(-O+t#BtZn%p!^@nZskAq?<@O zaACzqX*=JHTX@q+5m=`L%2OS}kvpS6hyj__)}s~v@1~`e%q=&6jng1pPuC2$%j%Top81`v}ImvwR3hf$tFp06NfqaRzlq!Fx2N7 z$ySEfbUXMv+>DpWr0!;rVLm%Mhb6~0uOJTDaql6+_!xd~0ZkUgf zlGKj>v_xFRaoRhnioRxg$Gk)GjiYe0J!o!0+(}=zlnVbE{jlF-=jG$BpZ!na!cuA`+PNj;DKjo)aw!|t_x8{VRAy96SrxNUQ)AFe)kneu2o z;j4K|&!?fAhR^RRxre?)Nlt<;fRFZ_X$#CXU1@THnT`^9x$qr5K?vrAjN?pqs&0OH z3Y%D^DUK)nK3C?RO2?42YMN4okhobGSEao%Qh|BEhkU|uwr@HyS`tjT>IWF(H`FpW z59@c^V4i>-f>7P;${PPqA*A%TxfeeHOw3h?bTBdyBOBuKX zz5O0qY16?*G+;o1NrAf#o!Mg&KHkCd!~^;oX*ew~`y$OOkMN0@JJCei~~)Eae=sdTet7-y0=fh>2X!Y>Kr+js9qq2`_bEodL(gVxuECFdZ0aRrc<|p0a8V zG9J@*qg@HLY3)fqt58krW5Edb7P?4Pa9tDs#8SiHSdeiT*NZ1RB=-X5H8)l=BnEve@hT$-IPRMrhd#GJczSSx zDc7J)6v^wHGh?x{qSIy7^&oHj<6h26M(Q!hB(*&Y3rudacG`rI1j6nVR{9Us(10jE z$rQ^sEOC6_Ke)WueNoZowg@(6dqbg5Wj16sFury;-ftTO3mkH~4|mw(WD}Xhcg6gV zpq3oOhULr{K{u|iq&NH2v`^?nAz2X$`HA=R8@?v+-e z1{6S_e+fUM(jf`?v9n-MdX0lk!BzrI;)O}94}Fm>IIhE)Acfpt`fKd*;xI->CdiTL zo#G;e%);6I#`t#gjrqITCr@7)$-n&7;dn>J6)bP~mXFSox0?O(x*C~c(h_3liLf3G z!U0beoH6I9Lo+<&Y#F%TnBaTSh<=|fBKcPP@##&3>G!0{SBX`C=%nDRvvWE2zYsB8 zJ5}kh=tS?hR;Vy&CN#M|l%mpU6=e#Xn~)=^(tM1YfRJ7ceVz~!{_+%4q^|VWJP2r< z@}B1YpLc+3(4590ncgIhrS8H5RtzUQ6N9O&9a*&sf%?TB8vUW0L>#3 zc;4NBe2QV#na*_U8FZKQ!og zgw@2h2UrE;HPc5~$W2I(3v8Za;OO>qt*sB|3SnCdr$TPn^A9a{e|DX=1`cA`yLqRy zxZjuJ11A(WESM71r5(7a0z}uc3PYeAzBrfm10Hs8bZwkc3ezON*LBM_K&e z7({jNk8EW8IlS{I0!@b5x~r=X@udv}w?~w(82-sOCMdLE_PL|s&UnDyTkJFV8ZnKN z*|(;cDSQCEmC|cf z{R+w+2eL+{>`rLM-$E_zgkupS$jdh%Cn^fZRfbR^{LkfI594Ea9rS!)<8}JuuMGjM zo{jNj*grpg@*omg&YHCEuaLJ`_^Y!ctq;%n56*%;=vPN>54_obU-wZFVmx{S;C~#B ziK;U(erPhP!UJQ6WO5gfKl2Z}Yh(Z3@5yb^>==qbn)DCyK)-{Q088VWpj(J~asi79 z*SD{A8UG{L#f85gi(WTJ5FO_6+{eJ3B3|cu_*MS63q6h~cHxB7uJ#W=+s7Znl89`s zVFf)ir93>PCnFBGpv>Hf^QN*6$BlB~VA-0(ikon=YyhRNDOM@p0yhkxb~DzTuJ+gh zk;%{9__o_BEjw!ZHntcJUr`x8))@QIu)n{!-Et;q9vE9LA?N&5=T~R^iu%Cb=z4u&vRwYKtr~61-bckuto~;UU@6BEHLPi8or4 zBT7oY#c(_>z6@iB-PGhF>g6mcqLYs=QG?b+^4X?VwLceMJBEiQUw_@A>TVYp3%&7$ zEn<_ChSzZQ=ho#nGwX@}$BiSE1D0dO&}4D$!X2!5=mAHHL^HGJS9+=1=|aSEhy(w# zd^`sT8q5;^)Ty=f2Jdpl?=g_&dL|XR)eL7drM}1=2u%6ST4PUgJdX6fR*ri;nK58AK2KCj-BYHn81d+`e%gh`IV4mS6ke%hNEVqw2Ci#JYK4)T-b-+9LMW4J0) ztRb&mVYm5Cg8!Gj6RV*n`_ETvM5{zOAaxD5Z&cbHSlwKcrAcU3U zlek7kMuz@J;#8g-Nm2Ja)Rav)Utb0{F3(cH@jUEBPCtjUqJoa7VxRcoP zjg|;OL6QMKfjkdgtea)?A~TZNP|k7Fm;R}pYCcImS>k(w#QglW$&6TqpU8aS8R;Y!Z7gZx@k6n^!l*^z6kTXN{_5 z+hb$W`e*Fx9BF&OlfN$%IX*K8Jlr2RE4=?t{PpAY=F3;*W)mG6on99G|w=yeir5Kl2R4`JS9e&TZ?^I>WYjB?Ws% z2L3%{p;4Lhr6v}v*9oyX*IIU$6)rBvsZ^OqidLDU@aB2vrb-81s7 zun%Gi2> z*PT=^gk7`9Y#vsA2Zk#$Rr1RfNHNve79j;zUOIj zq@=_~4M&bqh!YGOWDw9Mn>}xht|L(9AYg6zah<`^ec}3wLzfSqCPA|NBQ27aop~u`2No3+PS8Rn2?w-$f*)EPf znM{9+5E3D06HMMw5914FH-0{XD2)Zlx9X7P;E=(q32hR0Vu6RIDAlOV+4_fV6811(cBJ=;yn9#l|phq*U29A8+YG@%Rzl?FN%5-*iL{x1!U2#1N9QkwjnPG2z zk4Mi+_wvMJSAF`VSQAbWC=p6l)a@P$tkHPBUBKusKuRm`DSaR2 zvY7t+N5<2P+RVP4J2rt=XulP)hVRMU5S7)LWb_MAR2~(6!ycp5f);9hAyYhYzmwAP zf+HvRF3kDQlY<|#Pm})tCxbcU1gylW{>&x&(_m=#T5sY1Jiyhv82R-%e4oQR6ZcTV zs+_}xD8bx_4iDh~8#2K?Qh67|KQDfPo-m_~+6+a+r8@@5lVS{F)7&~n;UU=Ek?G^{uT5sfIE8ain<79-*R&1!Y+q#| z=k1yG&PZXw58G$E)#~u)EDe-exA@?Gq#*%zIEi|x5y?JH+HauN*iCoHj*2l0JNc~iZ0 z!is2Ymjb=fbKNFWuuI~=crHb;K9s23v8}L>(LRB;mi*&<-z_RABi5&^E$stJzZSzvf*ikH^lx z^P>$DDL&uygOUGQg|^{z2Q3i1noFmIFUIZK`#33J?#S0hI6mmLbV0O#Y8CSeYH`l= z`@%OW0DqMbvJ{V{Nv+UQi4MZ;e*p}KXB0Av>r_1>dc9@z@7Zb;hxEe8xRQM?ph+1x2-Ns!^vileLCIimg=%ff_RYEwFB;ef5N@g{=I*7$QD$g`~;z!;P|1AK+EvXNVvHzO0Q5WFw zJS`@+QG*`2fdmgd@(4e?&0C$_%ZC*43@Uj=Q7#+W#g_4lA;E|GF6JJk|Y{BXVI; z4Fg(5PZnr<*cD>RE1b2^L`RW29>0}riZuV2HZ?@+5Wny2ax3DV{!=4EQ_tVNf^%Kb z)7ncies8+gj&A@m($XrfL$jQQ6^cJi*>aBX608hnoFF7B&1Sj|o;8ka*@u^6sm^)T z4HG){M%v!UmK>IUdF<2jc`I!{4*>P&aVnD52l|RVw97aHtb8ZtF8?SBc91^QOpmee<)sUT(jS zb*Yg)%)cM&Ng(7&$=L6M>wmYrLE`8z%0N_XceV0{@Hg>`^h=Z8kGvM;&+We%UXrRZ zC&?7M93s-bRUV_AbF321-}*x}?tuzZ?)iVcf@ei73N21j7d}L#1d)J*V)w1UMfRV( zeTJ_E9T&_o0eFoqiUCilc-u>P3yHEfRZy$>`Ml{b@x{|;v4(XGtln6 zuk5q-YT5SjhO4v#vpU_yQV>U3% zqvx~MEG*_tMzWJB4kp~3W-Z$uy>#`N{Eu(*Wn%D8=NT{0I>;$69un}&6?&`g>o9tD zuRHQYH{|caJ)rfr#1`v?>We+LNBs_;>L8iGTVJ9!yT_~Hy@HSXysqYchBp2t+2a3V z$y^~~kE7!6SKjX2gtO%Eq>{JSHR zwKz_|qu2t}ty01xI|2q(bw`0zZ<>~knqAgsc-`|L3M)XAExlYRJvVcO{wjW`VI3?- z-wmR{afJVaGx!1*tk?Pryr3>jBxfVyABw+If8XZ=F%Z;wzr5QUkT?%)djoy@ye2OZ zWIc1KfS{7H6In_PKKXTVeO#1}mB%cXVU%%?6YuzeKI^So?grWY4Z;6?>4?~HBv>+` zTDRxJpVTw{P%ov<9dwTA7aT3M@5uw&>5HUqqAAn7$l0G>xUmk`Cmsmx`ANOIOoY$!;`Z$iO4?oS9QW?G8%Ihju)61% zfJ-w3g|Ug|IvfIoto^f&n>C|9R$og)BUQ&Y@auirBl%UBW&i5S=Ub%BVp%s?8Nr=5 zl}6T&^?0a%z4Z)yWN?wptj09nm-(6t1)spv-}=Ib*z01kqSga|W6OYdGWg&#<6KGl zCW7+iGV5_p+bV`5Fmp~Q7| zxV)E3CIQ_k`<7U2>dxNv84mu;Yw>WJX`vVdzyKoUl&>-|gzFH(!&OvLpsG$tJH5f* zWL?xrTW^cy`}fL`_j^4ge(XK1;P~@Db8oBF0_3rk;(qx>hR$^^x44>M3z?XrJAd5B zTmKEtCd@p_L(Roa$~LT$3>)vF_nAzJK~hCW`P z-T;5m!QK8nVKPdultanx#p5D8uBLa|!1LWE>I#*3PhyOWXKHnnUeOiXGScr%{!p=b z<`nLJ8XZnO^BUk3Bb%Tpzm(SYmj@9ldbp?Jk0y5N5z1Mg0i~>e()M^Zwa;}6p$UD9 ziUrGAu2+MuL@-5#N+p4ao|g9G)gDYujA&^7eXV-v`SwypT}o1R1W~nvwr)CrKb#!} z5LVvvsuAa}`cEQZ(s~zfLK`c^M_mk2*H=BWbyP7BIywEY5*Hj*)>4;XTMYBE@rQWD zr!Tn;n(8yR1czw8t7=?`oLEf?p0aw}03g-?{h@!{a$M3)&>{U3t*c8jd}NrtoS%v3 zVO1b|Z*SUSY7oHe;!;6Pl6>pdw}gOHl}sTfqFRxM5wI)%MbeEkuN~zR|B>)Z^MF!6 zF9A(b$fN&nKMq# zs2nmtYzF-n3Y|;}mXGP~ZQWrGY%yqKF6A*^0NwIw4VJJ{^jo~gO(5?RRfigR6 zjEA~4u>Zu7Vd<2SgDvj|NuQ3v7C5PsNt|H*h7wb_#u-mW9^%J7oOQ-9Lrhs5Mk2Z= zG^xnxfKPi;fBK$}GpKsb`WugYD*B|=f6V&k0{WYDJZKqwL7MQJB0p`4@#0iv&N5;% zt@BpDX_4Fxd=^+vofC0+Ax`o$VE_N>81x9ZIdc5+KiY_nO<~5LAK4v0y6z7_xr|Fo zvNn3(UNJyD-Mha~Zz6Mu#z84+7Tw3jWXLkaWJ2^w-;;iWq`-}cZxyQS--xj1D!n{9 z?^Qj38pad?1R*(F7l+DEmaN)xP}0v{{r9P>i^VR`*ztE;u2YWt08hOH*ggNZZ?-jKwR9 z+Jx${GUfjWEFSx_Mm-jzGa%pLqh)GkKV;wkUE$;SeY9U{odq@$u~g8K_LnH0s_ zujMb!DCGf=dLpH>%e`J-`Tc{hdyjMT`NP7^)UWBrXOdk`26TsS_1zD8j5!DU)$W50 zs0tV@&gO`H$>O0Q2?1rllx9>{_NX=uKfnCXdF@haEywOzbJg>v;?UNI(o*cv{Fe;G zoM*jYy^gQ-eS^F)WD#Q|tnV|v5;pBFp+a+%R67Xl6KTjds0^XWq1smTqa{~B zaZ z;mJGd$?Qyp_IoYa0uvAB4is5~H0RWufKU$@XUEFx_k_(BA1qKs!Mb7dvHf{`Xh@zb zbi#gWLU2mp+@eUC0inX^njuF(;TD_YG<}uog+m2^{jNJV@Sk37AOE9t8x&9nh$<<3}~sY8rA)GJIzqE8(E6 zWXW{Rb36XM)QKQa_6sy=vQTA6F>Z|gvGG6tbLW8JpwEY#HDP3c4^$c^(W81&d{oP3 zjmwvyEe8#&;haBnkhr5(p#Hm$7DKldv3v05!+wZ&l>4t=jVvkS0RTl=BdKQZ_fjkh zFj)5anWZ+EmHVy006p|l^TxQ;-w@5Iiw_6Z!@EIGXz)n#C^EBV-E&3QR~^W@)OI^5 zS+&n+x}r?m49dv1yz1+)v7Eo)a{*N(f2FEp&ET#A8y1kZK?-N@S$?I@mhSK}+j53X zGln?rJisbH*xMzUd$=^dY7IwMRg719N@Yj)x10R9s`9=k2Q2O3xC2wm9Jd=7 zAAAmk8zl`hgQBe-)PMS3(eH&|HT{{at*!vqK(OkGm9vmigj52p-|qQsUu?gRIw!Zg z-u}Ne`{mKssDq_M1!KigL+5R}Ro(RZ8KRkuaW|sDaV&NLejkL<56CVM3?Q&>QI1#6I!(w<(Of#N{pj_xl6Ou#?AH9&myU9>(5De z`UPVW*I5r?q?I))j4FHNccMm#U2^a#>^~J4!WQ+WOLIMuZQCAATFT~L`Ym)khE+a* zZ6&?tb+te?$z`z2bjIoEul2HN#Gh63YA6que~7+=+0pDR-o^9KGSmbU?ZG;8KTScI zSvrhe(io*SKN@u*dJdWz1hCJ206Pv@)~e6t8EwHx)2 zxOeCc-ogW%3_X!%iT6V;YV$!UL;d&dKRgLoJPFo}ho;J{S>tZ|fNDjDcJGsD$;$`+ z%Us_Hu%ez4UyWfBTm`q8@@tkY^>li)F*Gg_<4E9qcdlGA(ytkj<<;tfa>?L+!^&QU zvh{K&4Pk4*VZp5-ei+$}wVE9mIHkvfbV(+u822)%Y!W;D8yvS8*s?>%0ZiEc5ybCr zh?@F(83M9_s`$sPIn8B_@RpX}Yv*w{_YR51h;b{KoMExxk5f$oCgh}gB;D&U!BxUSe@q(YY51qd` zS$IadmB)YLWB}Dmt^;ZzNc6nQ2e0M1dzs{6-M~n(J|7W!=RT!)3OtwPpH7s~czAP$1J?C%j1fA$7En}Zl7ozO#PFxH$c@&5RNUk* z3aUoLJ?EDn`u>lAHbctXNr~UCoL%t=b5QnODlZ^_Bc{$?8zy$xc#u>9Tnnm>U* zkfU=z-K|$&_X3}mW(t+N3)w#<7n>{iCwj+NOsb6Qb+LLbRP{%yUYl7^AN58R5@tm&IuP;Q=WZdi@jBAgkd7*QgJ8paG>-u&ZtO}>=xazWOH9u)R zt+)S=qw@@B^Zna+REttnQKN_!rABSFLtDG3+PkRQd#{AryLO8jMQyP+u_;AuwTV4r zgdoZ9x&P0*yvcFgNv`|O^*yii{G9JK(+>InhCUcxuI`q{%5ZacV^!=CPkRcAUs|q4 zFZ>76YGQdhe%F<-MD_J_^6f$NA0m_1zV!cVJy7B~|phtU-KOA&|YjSjS zoST#JKP=>aEY7cgZ&_}SY3S|mgplt_%N1;#^v#G2^cG(6Ta1S0cSp$OET#puhLxF; zzW)>RYc^oa&oZ68F%yoxY=fP+75%kng(ZmZ+XZ$kJ7MWO}XmREgS5-R_0)u}VV316!R! z9L632X-C1Re9bq&SnBc1=lj&g9L)r==@G4o$;ewzF>J-P>3>Hlb_ zd&4gu1;oW>7TEv`iN{=1j$;Ehj0X2#F9rO3Vu zFqq!7`sgTQx(|NAh$cBjCArIBmLe#f#yTKbkH%S_YbxR@~ws9#?)_rqgJg>oc z8J6|*c#)FE@Li6@6uX4M2^(>Uw1hMzy2e=pY7&U_az$@!;I=AUFvXjfFwR!la&TC2 zVy^@TeCHorbm~|pYlA;jIskYYp5lsly);Say%1y$QokmgH*&@NXH&$_Wrx89<@x&I zi13;v0l2%U6&J4p?WZeK%h|o_;w$*`zz$Wx{)sfku}SkpJAWUE)dVQTEc6c62-O5c zhxsv?Td@bB&(-*|)iqP3 z7ypihXCq-8j+Mk}72oOwilUnO&54Zh^AI9O@?RNcKu^Gd{M!dNih1RcyakQQzwsj6 z%cJT>Fv9{^Jpv3di)(M9m43{&-(Ze0-@7Ro`40qe8#E~Y5hIBT*3F~wU?+!lIv{|K z>3tg?*zG_C=2((L)pnV*zB(P4RKmUi%h;!K?;cLIo&{+iXHH;qc5nVDkRVZW341Ve z*%g~wfT)+l{l78*{3NRT*E8ROZWh*><>FBX)&Q4B7HKa5s>kpA6LQ7>WIA~3A2dO{GMM9?^iJ(7^i%!=iC$N2i?j&N8@{hBQU>G$^9z_? z#;rA$1%+6w&y7M*Oz;C6&|c*?`R#Uzb?@jN84kfhy2*q6^oUw&JcBwQwi%TO$oIMA zjb*Zl(o+TW5dbzk6M|SYx;66uG634E7EO3w?kJ zd(>#sq`a8|H~hZwLPulraVx|CuWw3e3|7#PT}Vco!8ZQ`NeRDMw^<0ZE8PDNR0A1s zP?```Q`b;Ld7=L<;$kaHEH6W)qc~a9m_Yr(M`pMeir5ZGzp7mCgVw41^X6}oj||EH zVMOTc9Gm;&dpK&bSF$PYg6u!gKWZd%s^m+!L)nPOn%YjFY*y)++1P8P5vDakt*NFW z(-$IJip9ULVO`izI<61dg3UqNW@k9q_#f15E={01E=~58A=UvCcw)5yCfQGZ1G8pV zax4j}s8-D#2q)tqyh3{5Cd{4-lk-Y1`WNG1=6+~;$%{H(2-`uK3}hp|s0r{g(O}+O z9^t-;M6eK@9xYAowVG38elAot#u4ojhA`zNe@DjydyY1gZ_1TQqmoPUpU4pa(JGjZEXHS*=)dB5t#V*+H zLD{0Yj6X}k{G6VHczcffvS9o}FCQt#Xh^xgDDBNoKdT$4~#6n1u z7X~-l^_*gVydI|0shQg#OyPZ3k^(-lNPMK96$(Er3*bZ{B8QEeZ)A+jN^Y>;bpQ0+ zZuwmfP_XBQ7`t`NIB-2>|2Qdr5?tr}qj=u86Z~lLRout4_BQobT3xH2`|Y^&W2R&x z*UgYIo?Tn^nga-F;djNP{@yuazhIVl7EHqm;ewb< zf^OT(Lley|?oc}`PVG%eXTB8R2FfFIHBz4vbngzbqW9!xyGoNu2&Xq9dakIGx`r-g zcAG;j#${AaG}fNp^=SSSV;o!tl0LpF6nq^l!O*n{6$vILbfw2a#wT;%19-I!Kjs?c zyYGz&&)7XLi>t{RU*~xwzJu1Al4%)|bT8%zz*tfvo|V4Wfxr8rdR5>``CWqmvi?qt zCa}Q1N#ghgDDFpWc1}CA9!((TbS=r`uhs1Mq$Zd`7@a3c7ETD0cE5k5a4Z!?10r#> zYPj>-OPpCVPDc4@Uc~*CfV6aMw=IK0Wx6qZ+D~2T#lC6S5{H;7Z88I1+}BX%g?b`L8hyAx|PrE{gLGD_+jH%5A6jsEDxjNxhe+vXNrM(ZIb@FjXrotd#$2)aC58W>d*SNdxS!;>*Ck)U()-;4+zkO zBwF}b+*%3;A`6vCCNANydB=I7xv7^je?F5MdkIawa&h!*= zgC?08e=O4;xw?&OWvc(%eJZyQ%6`MB@#ppCTEK@TF{;$;+U%eJQd`ORuEi;zK!TeY zdnt-1A@jW{2Oq)+92%%QPz5@RO;#-)-^3?zX^TdqJF}~qboqVeZC^MX(Mtn zEeZ++yFMhQsp>L$#V{rl|8)Pw2YnFoVC+TybC6s1Lyy@n_4LZRO9UX6h=m2Jey{OU`A+ufT(6q@oed&+yyUsNi_5K6Buf`=qpNO0aO-N%MHo+z48e{;j2AuWXKs z$`D!$T;=Mw5uZ$T`fz!s?{r~i)0^*=!^UKhCV_&E!-~Ixw<%6@!d|yLq3>3_ZQ$iu(5lPp7dsj2 z=3(XoozK2+o+d{B#pNt=26eO{?Fn!je%NvipOAc56QqOx{9^%AkT+s$3H%#zrue6m zaYmLXP)J=!L!ePq)1A=@j5g z@k^tdu0HL359`P^A2Z*Sw_pM@VtoQO;E%#*TlnEytw>=r9QQ4t>O+_ax(}!x;Oo<)^VRmK^nCFjjPPb;HR- z+}e?vntCE&CuyqX67HW;oc3|)1McwZ%rt3TH|#vl(}wf*nx>^j+}hgn5i{q!i!+Q5bLulMiY zW(y|v>FX1}Yf4tjrS^@+j{J+}sLXfvPMH=2%oAuhm|Te}zR&z<1Q>22WR`Rt#mpm} zjb8JZpGj#_@0X(jx>ZoI-7U?tqSUq9%0qnT;Y%&d_ho`W{XrCB<=qnr#AM|GS1wK0 zxiVp226X%q_>30Hk7!qK_N`6Da#0>V=2kIoUKRVqp0%ta$~z$mxAN><=-(xM8WM`s z`xoeP{^%-P#-=noNA?E3$@nU@PXX+;THtu_Z!1!dbGf;FbMjIhr8`{?2HQHZz-{H8$QW0pDSuPjvDH z-bP|wMsjW)63Kx{+344ssT#bYp?KxUnN77T&bfN$XFS)Z`BzbJtRa-_2K$EEs45`A zz@PF;z#p;w2|*^!|F{NN3WJE4Irry3J_T;B2%Xj3w#o1R@s&T+lsEWT%58@{HLF4F z;FY{3>#_`?)Io)Fn*8VDa4_Z=xse;SdCF4#Yf-6M;Y&|HI4l~v$*rlqoYlg9qd#I* z<0b57MM;sx?CNXXR301sN$Z1}lPhxMpP*yjtj~Sl7f>ad)AjXa>bQ z^!^aDzH$x}d~Q2%#p|2yfZk2S6Fne%8Q6;JTVehSmwn}Xa@3kytCY95d7nm%Fa*nX zuyjc)!lgehcDscUbWetXF1HdQ}MglqbgF;4x5uPqiYjf4Xy$z z8_0~&Sb2s~+1PCen{6n6$W1bhtA=$qdb zI~p3{oP`YzO;{p7k)U0V5xqun$^>&d@CG@$BO$cNbYU;k6KYyd$MFhL&csrj4E@!? zOG_6S(b_b*$=aUCNITPK7EbeSx*vQz7g zh?=(WN+2Qd9pdBWxE2|=?mM)}(nn}$`Sj?8!EB0FNv3t7WI}zNk*Q(JjED+b(=^NL z{wgN}aIKl=b@UU1se2ilE+fD5wK<=yN<@9i z_8!r9ysm7?w!YK8@?h48uVyf$jo|xV+D&(;%YPtU5o~X!OhU0v`)pxrVxJk$^csFx z(zG*cBdfBsm8v~f?JN&FK<6m+A81^{gk^rsbBTE!XtYDg+Biw{cwRFCL<6=LcrYdd z|ELHxp$yDjN9Lc6Kc%@(rqpxEhUIj0k9u*}=(H?OdE}<4!nu`70yQ;hvCmPRX={o1 zFdGZxvQFZ?LBVBLbWeWgd~j7Q7Zbz}msCBVvD+w9EiyQOVXWTi^E%zD+0yG|`6sLr zP-%o1qqx`2$uiG0SIMWFY$KG`N|DvOU^P78^!cCK3(~Nm`Ag*Ww1<@8<08(2H^=RQ z>!ScoPq++Iq4vvOh@^ogSS{*r95J^hyGNWm1*LriobEU?Kt*$NB%vi-K7(p-N!zEPHq`Yi?>@)g=Wqt5& zPDZtS%`mVq!}-q@(+>;kNo+38q%10|hgYYwf4L}6l~Vh8!THxs_jZ&aZ8IhVWjo$< zIO`r^sVp=^LU>m8!ET>()XL^<1L`D#Q#0nnUY%Iz-G|1$vjY-pkAr1D9La5p@GcIP zG3e*hcE_Z)R0jDA!zs2z_8>_kux|N4nKg4t-$=R8ZX-v}vC_-#HM zQkt#r(kT^Rfm#;$r*ROCJK)LzzPU^If1t+PUOt~52r>U!;>N44Cjl^u{Y(Yqi*)6u z5#q=sKvpnx5a0k%-hT?g?c|DDF~!`_o}aT$&4^d+=D9jIa1jk5QIu#}z-|0XYoHC4 zU!!;!25NU(hsQ&owBe!=wqz|%E>6g^Kn7Sq|3H>&T%WNpi%-EP{;RLZDxTfy^X=H) z>1&wj#E#XT=6%s`78wBJZKX32_1U~@HAXV`@b~E}V_YV})>Ig%?XErn0;G0dzws>( z8K6mSNj8U86W#<)myGYDnMrfW@SQu?5s(LUOd@X0N+*LS-h2B9wo#bF>c1Ux3(_jRa#&FZENb*tHwftlrYzdIj=JzE9Mw(!czLMj#|X!k8;}aG2+{D zU&Fd(WF;_Gm-QGmPAs+0W&F&~Sp8_z&PTq<8*rb4KlE7e5r=3SPyWaJed4# zRUz-iKqc=w{DE14;I>5bX33pod7(4nhf8@t*_hDc7_I|G6u8Yvdg`gi9a9g0&?au6 zT)QGMfs_@;j)be@<3t?Xm2r2&o@rkVVPuZDxV!2g+rC zKq>-ql)G>9nWo4`nK{AZc#4BR=a7ZEOIRyV%#eFn`CM!kOS$2z7sRPu`;|6J!`txA zeMo0~%~$l`G%`alpKjy>nG!~L_IDlFNqxY*9@%=bgSYvG?*$^(7n%!g>+0iJY9-`Y zMdJ-FEZGc8ajHHNZd-L;=%G2;wv69hQi9S&4<&H5QXm16+C%Eqo^Y?Vd z%Ra4D^nPv%mZjsJ`Im)+++P@^0WR`CkezYy_#}(UP=1C`bkyEi;pv8y+mkC*iw?F+%w~-ja_pBN-_|uRxL#)WL_~C(8*%_12 z#%ozXX%YCdh3?4Gc~T1_JiOY%S#5d!MfR`fFqVJ#2jrSB0w5{-?naGyi2BtYhE9oH z$pSOqovw0Pcw!}Qb)DJXNYi0!p`80C^#ZqjW@Qqiry%+1sML!y_)nP!+KPmNX7_u2D(fV_=G-5qTz2!u>1X7A z?>-Ew6xDUk1VR=WnrtVO@vZ)Vhw>gRM&s|mUAUENUeeXKI)YrYJiYm-))rdj8@$rU z+SbT7xbAh`*{ikxKm(Ad|3J0HgKCg?Nl3WZuQWH0B40#r#$FWKNg^@B%R%Tr(4(}^ zCOL9vs~Dav>d4K&T6O+@Z--Ig1mVTf$1x$sVK z#nMAX@w@LqekPm9rN097gx+KIBtmLIGsHBYPal#_OLQwV*p|op| zo$YVP7Aw>v`^X>%mf)+YbWgFn)gK9$zv-8nl=Ug%C&RJbhMtoQ+Cz45IBs;8U~c9W90v1Gh6DhH+ghpCr`VgB0C;Tos{dtk2Gb{6?SoeAIDTqL4W1 zC#-HWKHljR&?E{5g?$P=cJ<5S9au|f1}CcCvoI#Ud!FcjXMsUp#j5R$O?1J%MoTax zG)DjN&+sR%@(lFLIjIyq76W7-*IYd`4Y?cDCOLgKMJ*U%l2je z?fIi~w^PX9Zy6&K{Rr>zJpMbOOsgyMV2zWwA&l2Ie!znPmwNV{G=_>pZB z$MPl8BBuQOk?=f{dGB5%VS-$q2;=&hACu3s%xVJ$LjxfX+*;6!<2xlDUx~!`U)Yim ztwFu^=0uFEy+A@9$tvS4^#UIi^^cbK)el9~O_M zOp{8aeVMfwqG!uAGRY#?DZLWmQ@s1&%>R5c^J5sP{O!_|iyTuP^_c9JqG0mgxnk!F zirI&7pc^75?=SV3+afCeDd;`L#y{fYB*jYdU*QtsLkG(8AqgG#K*8~`7|&6ku$L`;!K~k_eD#-+lXt0Bm~**vNzD` zCg?WrCHNKPdlQ)+6S^zC4$umC=A1nreT*gI=gV?> zj#s~j4u(c+wA>ANg{R78qzlNj(~yEN>cy#_yn&o3d~V>$DZKxZ$LXgX)wL|c zlnH9lownNlilZ$%^FpYCkM}wFK=*O1GQj@t&fM7FIOV^uvX9O>Y@Nyu5+I#d^iP6F#z$l#u}IjZ5AT*eTV`chU@6qrmGq z#iwe6vq_rpgFZ5GXTequP&JmI+oel?Zf%_@m-uKOzM^LR4@{SsvcY8EI|*wIy~_1= z!#|!71=E@=VVy9ct}Cy{TW4MpzodZqg-++(Nkmn+dbWH#f1t5yE!zp(^g@>18dkuG z3!2*J6c(|=D~zb)@>@Ay%9;A#cVjd&*%r5R2sMy3te|o%8)2#F znvFzu4H^$uS>S=a`S<&5Xl*Y*HJ7Og*!!AoLxS5m>Eaq_r=2U?;~Bd)NS-8$MoQn@ z)L?o3{uU~+G^*4xiu0F+V-rkHL~d(%+ace4 z&`&R>d&CU*V0~{+Ds#yJUK#SIK&%renqvun5PA1h6rF`Nw*r!L(IUCTdzZPyc!oE; zO=oYPcG^~}d}fX6W;VVZL>(Df)j;&r2qTvF@@lcdeWTm-9gk*Aj_?e7j6R1GkE2V> zO%(B*v!Xm!bYsG~qEA@SR8=5ga7bk4c37{zh7wF`40rf zc-$z>w%efQOi(M)r^5ZHz0a%KD0IV7$7KPHQsB$jmw(NhDWF>Bk++Pea7nF>DF?M1 zu-%6WTCUL!Mp<%9+XgvZZ!6#OPPjsAcgeVGrJ*$eB}%-3JnFPzZNW0BFBz#TuTgJpb?yPM{9~ zU>tb;B+@^u2CLSPj^El!x|^g)o&Mni?Qe}c!3Mb}V#M#}QlhJNqBYD(@!uD!y|z>* zVq3OW_)d31UCy@O?}$Yu3d;~o#2pp9*T3;U4dx^XtOnU_DB zTl>->V820Xh2qurwsPo(&EWV0tlV5eMIh~l@5a~=>+PN3(7$ezt*%}+s?xEVQo{Gw zSZA)MuD^+OvbVPoU8!IcHp;_SsP1!>-QP*pYh!tC?7`pMW5CrPsCL3Lx&Z+z@#p%W zVDCc+kED(Xsg9;ehjj&=0+Q5k<|jp}wJ`h8yL_i$6Y6ht>*@;@F+-CkFA2K$ZYNY= z_9_ndt}?l{Wb7f$^BH=WI;0HG`%~|XH4Jaz1XhBhz3Faw!{&3Xt;JTqKGm&MnlaKt zcAs$>J4-uJI%Z?Bf(K1HJ6_jNqMbyjK%m_zbNr8vmH7PqOxGs0%9qFU>{QEdxFb|t z>66mBxcxp9X{uJdWKlhS6?-tfQ&p|%KfJ>aV2UF983xcOaO5+afp@i~?C71V&yBt& zpBi*wlo-(}uqvv8{3qyRltzJ*-(12q8G{2TD*xr6VP<~^{v zKb4$VK0jv7%dtdy$A`4$&6{oyE7`*OImq%Mldi`|2cB$;)OYzA$;x{%E0y;&Qqt6ukAYm}Fnu;>qpF|}RQWvd4uNyZp$n~ZNBOAQ*FYpnmV4T{U7^sVCLrM8No*uJQ*aQ5J?ftG?r?>Gj(!$5 zx5zahn~MH}Yb3U;en@qr(S7Am1c1{LOAyZd{|38Z^%=eNkhKE941)vmffV*N3eP)= z7KX@=vwVXYten~_F1Ox12GVy?zgdT#cR0S}+b}A6bvs|avRIXDUbcJO29_+~W%|JY zyjN50!o?H&ed`rU>DC*|toOFbJf@SZo=GU&)W7d^s+59=1kWHNY__Q*SZ@Sl#3QKt z8cY%y9PryN$FOY#jb$MCG(GE9G4Kg&er}@!dnx%N{!fZ8n^CKyx|6gjY=UE)1L+)! zN!e4QoKp8U*eb)y7U{aTa_RsG5nqDPzc9IKz>7-! z=xLzVM8y$eJupzTnrtK1Cq8i0M^mfmXb}?Cc-JH3$|Q0ZokK`{x3f}v-DMe}h#yZ5 z7_4hO^fSOpqiC1rdalmRNB3K=jMDHl`$j%TE+}`%zw&{r=Ys<|^f4-(EcSDeSDUXP ze*X_F19^vz^zVP@@TXSQNHZTi$8lU;N%Owt2&>myfL>N)@79Gh5=-^~nD3rsEEP<_1l^9lH2Od{mB#;E{i3 ziq%AEq^h@MJGs!<&Myr2mVS4uxs80kRGEb(z|VQ#M(3qR%I=EjA2%I;hyY_@pjO$s>jeMVm+a6B12ah%IgA0&KfjwxR^ zUl_bJ{sNqFMBv3kjs9nj$6+FlJn%YByYfj0F9(=4KHCqcwK5m1go_ss}S!-U2Qy2YPJw@}`Ej(4Rb z?K)ndT=oLop7uW@Pw2+SN1+bei9%@{v7!0e$i%%m95}t0^7eJ$6BI0BRpV4Yg2U-e z7Z6MDKaMV89Z`&f`U)@D(q|J+-=Q=*KYt+2-cjf+lU)whn)WO{9aKcX2Tx=ZfFJ%N z29Wyf{&yYsr6I_+X2`k~mU%kgSSor*=m1a8p2|JQu~k1LzW*136B0egWaf;eZt-Q> zU8@}8IO@)uJpT4+UHZ5#sKdI==XQgfPOCoU;z_Ad$r}=5b2ZIeLrb_bcb$dbK!w#o71WFnelv=4f1SzlJuwjRljJwt%p_65^#-r zJx*14*dHcXe|{1zJP?os6|fx6(HFR5s_Y%p5}ov zvkmOzxR8qMr%_U{GU{J!>{cmHuIx{%j}08(ernQhJprE^!!!5&C4dO+$EEeo3_Jqf zg?p39V9{*L5m#PL>*-9wdPX_f*&`IUQP^m+U8f;r7teZcFVSS9L?z}8hz4$CDktVd ze|LwuWa%!L`!ol_eOJOGE_|2h9tecykVkg#nAkGGS2&3q?vv+}Iu8;PGTp=kkkB|w z41p+Y=WXBraV2CTn5P_0OB;ArLI`K~*M7bxFQZ5l#Pu-CfXS+pvbsRN_#^0*ocKvj zy<=o$xZ}408XIZLI2?Ok!xmT{OP;O!!bQ*m^^ zpFdB02QiBV~+@_+UX+{+=)-UAornpale`H_lX?I`&VqCt3>KmGPa;d6J;_I@kgkcLnl!OGj5qN6Xl}T~R%aBHuxxoZt%j&yI0c33eicspN&# zz%BBZm0NC087Xm zSUhgte>)a{GlOL7t0+Hm%aO{hp*-GMG)d{ zBysa7LG#PA+aQ_N_ji!ND$*=&%Bph@OY}G)MFNiEgJwDP4P*w|LsF-q*b;eHHqK<2oHAym6xAClgE_lz9$b$yU9QB_W~h0S$uY04-7`D$53@Z^y`QrG{(IR2>P;Wh>=2s)M*Nq;0|b{e z@Q>upPjQl&KJ?sfaY04b%*IeO0EgANJ@YPCD45HUSPnNfp{S{Z?dNZWNqBR_xkd+ z6RTH0-9z!+u8X~9uQKC=E+QdseEmvW!X?P#xAYCmjMy|tOef7Pd#1{soVdQkv-Zb1H!EXP7W`7g$kM{BIywC~lHpdx?y=;_;Wco->P+ReelaJpm&$L6 zHWlJqis*gt=^=@XJOiy(yo3gKfT@XwSLyBakD{q*tn~CnA0}zT7#!O909J$XPzd=n z`|>L`X`p~t1^t)y+W)prk zc1!cEyEbOBq*wOihHlI2gVsovc6O!aA`|*}p&TC~QR@JvXK7>?r$l!28R5s%hVP6z z6uFnNh6v%8edas#B$3YdD^bh?>vg@`5@NUpF;q&w?QqsKLQ8cj`8LBvyDQE7h*$eS zgVJXP4GrhHHGQ)-7)eo65$cAdd{ma&7#ETL=$efFBu5E3Zm-LUCY4SyZ%@Zf9-7iC z36&oe{s;0RF1mE7_~tORj33XX91Ihwy98u6LAIlDhNamFi1PI1n1<%`6>Wm>!`eVF zw|+TfzdQWrdA5((bbeEAmPBF%g6w4{o7s}@D~&cFmGLr`dkF)~j{QrUxEYHXrKdr) z0dwEeJ~G?KPea{d@rmYQe+t42XjRNKm8LFyTn?0o?)p zn|Siofg6tbh=q;Yjk%a@!1R_*wI`+l{Y~wfOuH8h3lEaY9cUFuy4fTkO<3;Np z`z!u<)R~29MS7ly4k~SQv;*4)jcBimsX#C%l+XeFiRBXeU@P_fUlcX9D*t&5Xs~R!E$^ z@ljyog++%P@{ElOE5DEFvXFtSkF}@pmKzn%xfzWf;QT$s5hT8X?fNhv>R6Q~h#zb8 zO3|OD@sPUIh2()hIK*-d+r*Y0&W>!r^7m{Q8hAS+MbR+QDrDxqZvxEkglkuDR&E5$h&xoj)(<@@m$UwKu28y6)BfFXJb-uzH z#R@MQsybFO0siP_<$)9AM-|SpDs>NwyQEkgzZmPocdcxoka*ar7k z=cPHU?pT}{TLw|_ryKCgQ55z1^Ixs7D9>_ch594ac@>$|rm9-QvBJX3WShI~8bvBM zj5kbDrILE7RdZ$s1=87OVnvdbT=3@Y6X>JBS5w=zdJCInuK5jilCag+ZI7ubMNbrW z82`9M2ULvZt|#_fZUjAOA-*eC@B%A~6U|s>X)l7=TPtBkdT)wP`-a73|w3nrw**L&nvs&`Ez!sYwt_HKdRbMUt> zWJ$YuEDfV^S}Gr6eKN8po=gr{wwP=K<4>Wh@2j3y{$2y2C3XveS9B2j>5EsH3li+s zcRRLzDYJi7X_m)L2{3~y^72)SDvQm}akA?=rDhGX)|_7R+b4mq*0x&h^yMah3$pfk zyTyTs1RH{Q8mS6g!h;4mWjS!gR~hZnBaS1uANSe`XhY79dXS0lyh=)yC{}9B-2yR* z+b};PQ#Cv8lEn}ydc{FvnQB3!fq3!53hNg$DYNF$HK@7n6hPH4$_=aV>3V6JvyaYm zYD7KD$ozcy_Ce4Xv41AoDk5)Zt~hH~(z8g<+vQC=V60@O>&wia#giUWktxk%*E71O+He zRZ(OGQ07|NEPgGjo`680ugIU=A^sCNtslfa7vG8&D3_l~%X*s`v|U7$sV5^7b?(m8 z$~8vZLC(n+t@^@QsnXu4&L~aoA&J{yPV>QB;<%`*UH~=Z^XxXYnc4N9h=&*?j{rV) z+*#(pi<4TEer4#=^o`~Wl*t#Oj0uqaPPuT*o~SkZl5s6=%z%>B0=AWG;ep%0z-iSt z%7@`jbj7gms~;W~smq-wl5_lNdS!MmVp`t8jbki-?dn_OB!NwP4S7h)?1lhjulDLr ztH}?B7oG<uXSsV zn^p0W%AL^1htY*v*+ENrSG)oG6x;=sW+MDQXYi4xls2ll4fcc4(BBI)#a|HieELYb zzB^{)y>yaQO(iOfA&vBWg$qGrh6>&-+^#0a3q_a+j$v1=!m0(V2JCVkmtKLVB?Ii0 z#9?&6BF0+k+3qMlXBM-IFngwitx4eoFFWoejhjKp@83?(q47%3RWfxlZ#rNJka&bH z29Pw?vT_?6Yi>!g>RCNdNfoqanAxi~V}2St%Jbi!hXh_)z3Iv!-%Pwdpt2p;W!qu= zAz3=8q6FybNaB)+u9I?)-(U6@qKu*6n3Juk@qFv?))4J@E{)76gfGxk*u8F4qoZ zgv-GvJ+r>wTHSrJb*J#QS7>7uAGFe+>3k+WCB>gt)<4gJI>3sSShre~(vbt|1kd=S zcj0~L;0jB^3WRRA)ruawvwUX%&}p;uf1YcmH0erz)vUe=l|ZdUMDa+mr(d&w%81~j z0?yl(qaZ|8;>oidpr)@umSSY%XZ2E`21*b3pLdwg*Fads@%1F0xJ5AQ$?s0%mfp%_ z&z9db73^Ix415?qg&yFhfo23iAv;z2gCLa^@V&a!!c18M-6k(*9tju!q3-jS8GGv= zUtXQyTPQ!n098@4ieQSl#wyS$I^RO}M7NvJva>8B%n_IFtHo%XZIJfu8;t5;SLiJkr;mK?u8Ihm^KI?gH z@X9iQUhiwM#IzUN*|`}k%CZRj@JwvfCObtdsRI2ou`Ug0usk+b~YeyE2_ZjNBUQ>ADC7=(Y z2GS3S%mKGgLo7}f2>U!<^}0kg4lU@F`+qYhb=X{g{w9Z7)=0UxObCL?MD30JVyxYo zsroTz@E<6{W7nHeS=$Wz+jFlmJIx#KDvo&N<#Z z{BaG&=vEh(h!+DB90P!wGq&N|dCM{dRYPVun(bG6s1#-0R8vT6Zd&(fzCsAEHNqcgA z|GwxD4y|o}3+L{tVLnxpdsyW+uR*CT=S(0Een~LMCelT;buC1|8FwycFH(Fj$|Okg zJ;>_88!k4sQW>uKd-Dbne8Ea4ul!4Z^50lJe$9Me ziYF4$_@@~hV`3FGg!e2j#6KU;E#EfjEvu9Da{ACQ7V?yURVKlE!nPj7qNPC`=y3SX zG;ZzHRvrvQj;&`+q@$;o`nZ$WGgLse6J>}=%z?4WU z0>W>9eGybFRA(ysT_s;nSQZz$27yna#K14cU2TOykp^1I z3E&v|bUPvat`Y=nhB{RFGWs!6J@Alam76F^@LGGPCH<1cybU+UOa55pfQ5+AdtSUC z4)NLM(LjiF>C<;0+)o3VRFA4a;Z3RI8*-7CzsK8gsT?|m3AH^u=<+1ISHp{E9u5sx z`yT{N)|k|QKw%oBPtzs}RMx@8w2!~uG?b^O%k_hN*-#VO`79t`+yndvrr}*;EO**1 zbg+C*n5qidCjK75!`lhvCZe_^$)E{A)qfzU2~C09e~UtAfm#AYl5k+dHL8mIw8iRB~PZ5_z z-O;1%baz&|O|EpT{`=X9e~BYxY&-<__2xePk{gx|3e-F5`TbUZC1WeEPI9qFKCD;D zLE34x3&${2Wusl4gMk1C(W(7r0{{Jon7j*4>kf@v&i`-8{_X&tnf( zj-CLwxGpg%TZ&#DXm=|7Awj^6GV^kXBhHecWJnVy=58`5Dp~BlMv9g&8S;LO3GH>L z-|@=;*+1K3<}}Z&7gdljTs}zn;!oKB{G@5z`(+xzslHxQ*cNJ{pMX_cdq=yrF$f&T z%o8p}nEw_j+hYRY8_KxaP#>BIq)NL;mM<3z!z6RaO>Wu-DK1T1h}968r?-2_(`N?| zv#hxa9(i8c%h?nF2+$aFnWz=4Fjpy+OyuwUI$1Fqa^uFm{>^kIbBJ>$S@qR2`%5-z zr;6gn>msQUYALmkEJrKw`@gxI(bXHMyo!)Jh2S^pEuz_~{-MK)J)_TdpIBWnbwth= zs+=_@09VY1>QhYW_NFa;ztsyT%&J;r#j7^n%B8BgiaQ;Qn))Q`!bXK@1SEvxAxXs& z%wpuE=NC+esu?gSW!(Uwf$h#-<%MCrdmZy>M;^4VvHU2$7N1sF5R}%xG}S&bXa6dB z_BWQsb9z##J^1qBX6-wNhM>k1_{=qrl&EgR_M)K0^g4XW!8j<$R)G-M(=GPP7HsY!i+RKGuCFy7Z+H|wTX%(HH4J5VTzx6$A3UIbIh z*qx=ctQ>`yx3mf}$sL4f5IXPo2bEa~+}*==0>tPwyfWPq0aKCgUgv0@8>(ELbG>sh z6esvab5e+{LDNEoGllXaqo1!5dQtWlAYim3^zJ=lN7n3%U`^kkW)7MLCy~UyU>>9D zK~f}QV;G|}&x%a^awH{EDE{4OrY5;wRoq79_-`P8bG1||^MKmPPk6yOhF^rQ&aeKMEiex-c-OWMi*&dM`$5EszBrgDmN5Ft6{WxXeA zn1$VbCDxIdo#yiKQ=qV5Gn{8W>|d;h_Q=N6;K%B*&-_gIJi`dNj42bL`_?wl(z8() z3Bg~(Bno_l)C!#S+xS#S-!)G1&-nF0D2$z+s&{sgN4*Vo7;E;A!TAyN(ep|ugmw2@=gfK`eqh=ZPvf^4^xQv?4!RT3>K+LpSw9p0 zPHmKZz&`LC%V8x6-C&9e%-A&)1sp|8tl*K`zvrdg0n8SM^L}N#Cg;akTdbge$9S&^ zJM8EfnYS!v4C=_Ego;{s4}uHtlX{IWzdO0JY;kZ+~gH*VZ0L z6|7(J7dzTP7~d0!`>4&h()1?lbvY!!F-bs~DR*Wgs5~w3XZ6coY6Xt&AfgZFK}!{{ zyEZCz#r}b+^ry0?crN~dgvRPD$qt^Z!lH#6cq=WdeR$HR#$@(Wr<2=n48yb5d2CQT zH@mGzAu_L-6!?2pbtm};hnTYBeL`MuxW_yL5-KLMZ{HKq6WBR?sP@Dt{XFguv9SJJ zoUvg*PIR(*TH!FX{nw*BT1g3FZun~ zJDUnp)g+||p99I+)J*QG;5$L1z(DOJto!X_DKp$hTnQ zO-c9X3ctqxx-CC$#1Bfp?_R!^3Y@P`dk@fADh;N-K)`6i?@$N6Pq+1?&Lf%%*SOe+ z-!@lduK+h`gbPL$ElWD&epKbPXGCp7R5`)JQ!Nhe2>(2&iYDVOQ+M#_*R?pjr$65Q z=&aK%A;Pqk*-?4MPZi8F+rfm+R445JxvX(}eAj&UE)kntend*QtobKPAhG!$C@&RO z23I1FjZ*Pe*ucWC8TAXeN*dBINl!Khd(Te4?A4rrw#3;!?T-d|CdFj#YKQztU)cZ2 z@q8*@&InT=c^hPqQ=07bdL~@>PUXY1`e|XYtvn|KN&hDT@6see<%DHYp~7lu6mCax zF?D6^RO8m@*!5h74WRK*0~573Iq{mWoUks^1YHg01bUU{Kf5DBc}!(Kr{+$+H7EP? z->ew7Q;ubHol&p?Z+rQ>hTC*pj@aPA2U9l>1)7=WJrw~<&pGs4>!l zo$N{KzjbCymxM3CHcm0@9k1M}oJBj{M<>|Yku)2&y56XUeBn{;of43ohko0X&Slq- z961BJj+)6g6q>mgw41Nv-7b^qZzO!Srk0j8P+eyo#+?Ca5Xy0ceoXPvzH>c?Zd+TD zZLg@Hf0OJd*?PO$ng4oDd!MFcVWmzHZbM=I44>&Q_xw3pT#ApHTYQ9y4HxuVO$2Yd zLM%07`Z}#lMVnJMWanj>|S#j}6&5qS2c-e{Hif4z;P z|NQvFK$n;qDj8K>x|ihRk_oJG>gu34<0?OzQgH+gP$){^oZB^D=!0smOcLJuYvu3U zGU&wAXU9ojZ(4p59;NMVV17KEua~Ue-~`hUlT_BfMeMlyimb1ft9oY`&a}OEQP)lS zeWP&Ygq99K!QY^(Hqau!>ke}@dukV#EL9?;4&(c{^TBOIJzlb{*|*ehZMdgPZaatQ z5rQMQ9}CK$@#|6MEPr9tf<2x8{48B;t{TNfAbVx7z@hLg_J0~r{JRljkv0C~s6t^#pWsW?-%pUJ6T!I+OzqB zi@!%wf_40@jcb4!RDLcKiS9-g4*UcCoIhqS3Vw@LBW;Yu5LcSS-;>>Poja8~HqzOL z39fI638oJ>DB18V6vyqBR7|%7srbZOZnuPJpXUu^zDht|LfbN?PZzKWUFgD%@10?* z(nw&1S@TZ#fP3}v{E1y#O@Q9fuiS828d@Tm17(HhWgA9zz9I|SLI0Hx0#;Mpd7p(G zBi|aT;>bQg``W&R_cJCRTO#3ISmB0GSLJ9Wwp6sYxr|cmg$OA3xwaKvgb(fsgqS%d z8XTC(9Vz&c`tA8Sw&f<5UPGdUsG?_fC0NE~JRRVrTFh8(TB$O8J$jIMJ;H4 z)XR8Yy=58HkL8Rd>ND_$V=T_+JCt?v3!Yu}&c^_^o5OcSbB8F(6NXyRRG|4*C6>%BEhofl;i`kZRY3n zG5jDSSJg6h18C3nS&;BQ5a;!Uj30H3Q48;&YHA>)>vAO^ zc2e%`Wy!pWwVC~>L^#rtA zJTpz3)iP&Y=Oe!}9Sr+{Q$oR|^MNNCyp44^o6dLiHSDbG>^AzSZh)!|eTJr0dL|hr zs=moYBNY2gd~4Y>h3a}>4(=s2%d)`>K3v;H%j)iytBNt|&m*_dvS;_wWdA@{9H`7h z)cDl`8eEFb93MsTM_)D}pt_#t&Z55`Mr_1jF6F;2U;e&^bBccGc;X3pqKO6HF65$3 z^aZ@qlDj!NG#hUMm^Tm%YU4n;*)7*WzM#N3FSzXD_0rdQ!+4#o9Jp{GqaO2OYZ>`CR6(?V(HXT#AS_5!VPUXY&BQWLS{s4m~KyQ#tg9 zEInSDq}@fqqu8Xt)K7zr?UI1yU+4oN@z4;pDANUn-|Mmb6ivJwZ^fQvf_IUHo(XnI z_|h*Q6gk7#?5;-a(_Nj&>_O?Bcs}$$djIO{40>WuNO>YCM{p7nmTlt0R$_B(QT3EL3wugVO)rzc_e65uO>0AOu%|I82>Za`F@<<8ZYW+C_I$#4q#d9_zU=Jvje# z@7Uf2PH$EW@h=g4L_8+2(yq=B_KjqhZJi`sB`l84y2a-Z8>n@Oqs-mupM!iv^+^j* zp2S#uWG%j2{(MxQWEP=mMGE5KNpE!=5Em=LRXrJ-Oig$~uC1}B?Aslt-!y1@tL>Sv z7{J2(6;F#*gXj#jD|RY(L80dmy%!W`V;aMiX5>)wAT!M2!K1Bt^CY*vrNPnh`lqq1 zp6Te_eYqpPKUNom+J|ygGlXS>uxH_{@?M_Mx%8UA8lo+P*wCTIhD*$<7$?xuC}+MP zq!-)YR}ZuGlbNXo5%@DHnb^*Nh7M1p_s#fABSC^=L6aV?<}k3u7e}@zp8D3^#&%i; z0}8pZNBQ5)biPUpkaw!`>3_AtO+OtKDZMzr*YGer;4;(ne6YS%EhoI4??VN8qyu^S z{j(Wm7fbM3E)!vC7|!(cw6KdcQQ^*RY7#!6c6o(rtn|}TF6+)%C26`Ni)h|>NL&yy zk^%5E&jEZ|96K{nLXDhTop&&o&*fApfq|QFgNFoUuOu&umi}72u}e|_m;JaVefvD; zdR&}pYQo8xMKV;2!29rR%4}vt#%?+gaOm{Om(uZ|Fxgr!FEVN1gwdh&#})TF70$%P zMVTK*mz>24;kzm3Onkf?ev4jV{1bc?Fu(Zap~ii$me_!v9oZM*6V4`_)b0UtRfP#r zM23Z=O&BE!i2l|lFYB=#Nn+b(I1zanVnT`M>QA5{i&9ARw>|hZtm=VM26p9DuulDbYMYM_(vx>){-Aw_; zMIQ_Hr0GqEggT(`W+rN)k)fMp0WT)S5VN_=bKZ@Pud4@<2@cF_C4DKlfqa+xZ#S%0 z)qS<LW%b>j)zn7~nBa+Z;WoOG z_tpnZz!>3=#`!nL|AE+*KGBbe4~Pw#0N3)Fli!8nc(=K?Hv09(z2zozAx?V#Drdry zQ6cI0LwgcA=C*`8#8h4H$en0fi1_IWxZbw{mWh797Lp?}a)~e?lYO!6Y1G$P^MwNF@2dw2V6X zHHGH0t`@DiqU%t|R-%VTS&prAThQdy=4}~&n3M>EO6386E+CEJ-B6qW zBpvAPfd)_i@K5R*qiTIr`C=UaXn9^ zQUDu}myi&lWIda#a6x@Zw>TO3JiLdW6L5}HjeqIV$}nylXFR$FbfvaC>iYN!*#&sd zNWtFqnj?x2=7!CE=KW0hrkie0nGI*D>g8M202wCheMtb*UfnqtwZ5+=Q}xo^$JsOV zVE_G$CXqrB<{{eJ8>KKPnri0%$q5}#y&#Vk}KYh(yKekQs{So&iw3EMg z1kCS)ezs;7$wpX=&e^JDc>j%B;3j{K&rr~ltTR#se zzuHJw7=Fq9(W!g1d-Mv!`+Zx*Wh?1+fa&>qVF7H#%gjV&F)`VJpg^(^ z9+Fma5;kVr#I+;%{Oou8zuC=E@3XA(piWhFdxpr@k$@*Zd6m~(^^EhWbgEt=n_KyY zqKBqjfxP{PE<N zudo!soU(Mm8n^m6JJWBbd5fBwQ_o1SCN%HC$D)Eqq}G}5p=Q;YK%(cj+3!0Q_zElN z#YrYhpq+_Dy39X?^pHno2P#n)5xee?;XW20kaz)HFX1S*nT~)LH?WOs|uZp#PrGFPTd2`McIvxa1`-INh58X+tbC}UWre8i=)Fb zj7tH7M~!Mp2Fg%do)DLvpVaJ%ZMK9(v-5Dvwu3$m?VT(m$>8L;UaawSgPxzjr)JrkeDrdPT~;qas2l{|W-32R5myB)xf6YPUU==a8MBgL%t( zOZ^%8pQbAmyVS4=y-QG7)Mye|h7~HVi-rgp86-;u{J1ow#5c&9Nn>fB8H}w{nsxtB zwWeLyA!>rE!|R)Oe#J+Ld#~RUdZ}r@({=(|jr}2`KVA zg|)a#v%2~Ov)6u#dfCxsPGvVK#$$U%`#Jm&q66?8S2 z!Yp9!Cpuz`N0YKP|I7_e$>Ub~fZS$@?H{PbE9bs{kgZH3eJ5GHbL93+f=gW=cC_88 zs54txf6siTE(^qXrF*(Pe=GHBnPc0-Lw>O7(6q<7NUyL~d_}B(;rFQwIl6p)L%+SV z&+>^s-w9S-d4wRBv~KT*nCbui@)!(54UfyT3(d-W1$h{nH2J+=dPYFB&ScBUyZG8I(%|_3y+hMcsP3TpVzm8;ohBCzzCLaSRj!)@YV@_ z3AYaL?N7qp1Kc(Kv0)!U z41w14NBfK2ulSZE|3CrYcG+z}+DyN%kachZHp%Plkoh4B-B|WS2ju;6TeD##X7kC) z>%m!a14chYylB^1(8ZPX%b3?m+)#Eyr$ME|HOzQE@cz#Q*FmGP{K29SG$;62dh>nb z)MWs(WmLz@)|6*Pt3n^{7?jt1>7h;*ljDOcDTv*D4L#>OHH)<;r(k}ulh%sr!BAPe z%PKVpaBS&7vAw*9!6{z}#zlv3x-Upx71lV`G1+e|x@a#KSpG6&EHcTFyPp+%B)}v9 z$B3LxWq;C;7%-Jdls(6Q%g+7FU%|m{nks`A`)B(rj2g*)6`}pmx(~%j7ldexXw~}o z;{}n1GO^@fT_b@dCgjo7e`E~c00}RAH?Dh=q5z+Sj#EHhIxE)5bBVmFyC@?cZyfj8 z@r2Y}AI(+<^Ut}r@sL!7Y{bVq!t0p4R^@tvY!*H_?TyoakZp^h?*D47Ten#U3E$tk zsdQjAc49BIgcoAQ714wUr~h|~4ar)&$C(T-1)HMX9j~DeMZQ5fb!*?AgEiRh&q|96 z2~Ynsktr40v3606a^MQ)R|$}AZkJHoy2}lSW;SvvpUK#~4e+sOH_VFyFSrlRt?_l%v1_4-0-hUyE}55Gs+-F>_h|bMv4IpQhHM=DpOe(o$I0UaTeW!O!6zTKuBZqxAVnAfaw9;y8H>g5IPLiv}1=L(iir< z^oFGjy&>6W`yTS`(x3YR_1A~sdI4$}Y|?@}jct?O zfTLfm9cAGK+JCEDE10iS)6GDRf7aJi|A4@Tlo*JOlTs!fxYRzf@J{CO`(kLm%~XGG zsx~%WwqfHjnW*&U$K)~AvivS7{>lw7Ahc-$KCMS+22{lcK60v3N&)dU-F#9Dd#={{ z#^7Wk`9zR4rhGllIGLw+xX5=KA}uR?TEJ`o{*+Ay zi|YK;=lVR|{=bxfas@z$Ev@prd@l7vCuxiiTgFUaNIxj3a&7qyx!Vn)H2#}cdBBnHgu7-ht+Jp z5-*|Fg*L*ForlPk;CWr!t6;P_AT3`F&IU^(*ET!j-0N1nd&xmbE{cN7hbC`S2^U7v zzW}+9xR94r1k@LGB{!SJEr&Y|5Sflp*su-kCCU4vS%kF69&kejE@5$Q{qT73RPci0 z1_~5!h@VhdJ<()C4N2vx`_=B$G5-~J^~~$Z?BZKy{9s0=L}g|w=n*iS7kEC1Q1-)D z92&7sCR~k=4sYBGN?`s%sI^##R?;BwhMtc;c&b7quhFg~$CX^V`D!VPGbtaXEc!U` z*JBA_!BLcwlc9Dh@xg64ONvpBEoky%#QMR)@83O0WlTR4-arDG>Mm3AWj-N(C<7s9 z%}&OIk)DoG86hrgzMb?-b>u>OI48{ZX5w!)zLvPu`4|9Zie?iFF3zfeS;$m|k zB$N(uA_0-~%CzAsE`eekW&MLY{VC@$FWxZ9vn4Ph=n29Amg^5dH zZ0=Uxd4fyGB9NX#M4->0rZWiikZd}ImIY{nawdr7wGGo4b}l#)mGUQGvVu%Va;k?! zRv=xmUBZMoKAbS66)6X1%rxnr9Xn)-AH~HB)hO+|xO5W`91->J2nd5cM{z>%_a|`CTIByp(yxPU)8|rn6&wd1 z9WUF*C(Ro$)O||qP2!3V!3F)~oR7m}ETyyT(^)np&KS3N!Teb;y*?yxg2okuhXlA( z`Mz%=SwGVc25WWa+q5PHfUs0-t35MfplIg5(vGz_uLe0>|DZ^gqoAh(-vG>yC?v z&TEk%puwocuTf`1^oK{}s)jRlb!74@r#ZT8qE-%g>HBdCj%JVjthR!*c>lvuvFBt% zpbD-C@J+=yrEF6b=$c*@fDnr*_0;l~UvmQOv@2{)qgMvWG`uAATaA3>>j((NN~w?N z#^h~N#7A{}iNm^ncgr*t{5&U60JMMA>lx-B$CtP=Un2gb^ z_GielZPf!gIgs7Q)412nu>{KiKuq8lPL3P>PCT*cLjnz>%i}ma{uP$IHl5`nE=DVo z&96ryKVf2Qhy+O93j)3_ay*ixrhTmU+Y1~Jd-tOWJE*GgPl~U9n>@o))10fr)C(og zQ}d{N3V(|}XF1_E%{dc%mpXx2r#u8kU{wkej_1isl07ZS36S@)V8^GL@%(ja(a83h z{UGbcfV09^0q^L*saHp?R>zzKb@}D0;pdgmC9$p6rn`;;TIs_-aN3yUS*OF-C=p->>{`!Ri3;0nxDsJ;aMXI+ z5gE!;+l=%byrq2cdE9qn7_ZJueWOZ!S0T}s9q(awi!;)-(_P?6%MMpUI`{M@ocu?(F`-;?m@)swE}X=!$)spJCHI_CtpN8gU&+^R;i^ciZFF zD`fe-5>AW5r0@ECAmSH2&)!Nc7{{gJ5--v&mI05J9f- z-kegt(QcxuCRrkQLyk#k9%`01V^w_2DHY1OVH!}I{u(Bu8sJMD+M$Mhw9_Glj;apU zM7a$PK;fXitOrcxe|vAd;cbjZSNT zH~Nk(E~?XBg`!on?-yU@3C~;D1|IoI+5Ta%o!EtSN>{AKM{7qpL1;{GAf{kR=WjcL z8YbG&6?fy!WBW7!w7CK!{<=?=zA3~(`;B!J);@vxjrWpNV{^ZYS{7GNOFH&{dZIq| z{jBa7N>u>T6oY*Sz)`+;x2VH<$4S*thnxO)Z;wY>_9fnTcLxZi6!|Q^qHq7%+2_LT zX>9(;21S0Iw&1IIX$#lh`I-?~fDt>H8(aIazvHnO4X-{lJVlrXu(hFRnmr)3yi1j; z%K=TtdxiP9(ja*Dr>dl?V-7gS{Y;3^M*%uNycwHJ_%CT8h3xSwCnRIyvzM!Evs7UR zuMmONf`^|{WGO98ib0%EtBk2h;1PQ84rnitS|{ z>&z=x*KOH@Ecz|x-Uz^*SLGzHJM1WN35gZ?aRh`i1H`htO+++M6MGV#%ADT*?L*2W zyH!}O1_z^mPZxgynVG!Ik-Cdrq?H}mvWB!Ye+V<=WB%gwc84za*76)E#yi0V`coqw zf$W8i!1f|OLX+tLNRm+UMltjs;79VYPSy4ORwBM;mA~(&8#;yRT0W2OpB)qA^FmWj z|G7;dBa1eU(TbbDojGp9*=PzTbq?hUmJ2?h+@4xup)2I}q+^Oj$gWsO&d;rTRB-lG zn(Lo-M)@iYBWk?IYtFiLAgz{^C&MzdQy;J|(9xQoEd;D-QXQA7tV5r?>FiHFAqnMx z5ys@nR1DgzHFYwCeqLjUjVAlzwfy9Iu_2fL_E$-*X9dO;l@s~|c{@V$-Ss9TRYfYt zmT9F41c|cM@i{+oXA_3~55HBbtnjG!FV%LHO2~=jRw6W>S-KX5Z~%)Fkmd z%n}`pWbt;5^ucLP0dP1Z9~n1tcC-trBYXDUdjaJq%s?%32Cie&W>9r}AF71Eo{YQZ zzhtI~?XUwFZ&AeBc>(>u=o?d6-`EaKQf zRpV&!y-T%ULdm^L;DyufOe_z|XIQhsd9Fl-T9a#^C=XGBK>JpCeA%=6s$#<DBfvWD0>)$4pxy-B0`7Dg8~cM7$diMs(cvkDn;s5y#TV`|WJ;$8O*ik|A{5 z4aq5K+#jzv^zf1i>c%;QnZ{p=>{%XB(xK1c^1b?ftrRf|gKHwK5?>li7ASVb)^dCij`Xg8xzWA_X7KpOL1X?pj5{Zm=aw0ca!_qYo96G|x<|^e zXxhS-jESkI-L~yAZM>%5?K0jZs4+5srQTVepR?N*TWJjX2QrUI$dQJ<)MRM;r23`t z`_AvJ`x|!K!}J^!(4fOD1WvrYXBwibI+6=V9{hg!+=}-vh`we&b=+jMpTn@e6jAYF zD1R@oFc)m7lGd|V=~vS`ws*@c6rt!Pw6hAfVp#eU{GD{_jc9U;>`wWT=ag_~C$^^}&IpA>KiofwY$!c>h@okvs148ZWlq3N%;0cT)2*Ovb**FWqZAGYS5keIFjz!v6W`5 z_gFLk(2)Mk9LMy^lSR|FMNU)bDM?W^7d2~#&F#p{0N1DQiVxt|$3?6^B?hL*E=Mf1 z6aPE?2O|HU38c4?{b;LQc4Q|IdUTJhzSBe14}PvUf_N9~{%)doT($Y$HY-iUW+x^+ zQo<7>*x#?Cm2?U@lX%fH`gEzEB0q>{lUtmYd6pKrVStr=$W3%?_W|=LCNE4qLQjOKVj=VBGKy ztBK*O!sx^5@2Bn9>vvoUhP4UC4H-ucx8)rjTA$t*xm?yPY70KqvmE4}abQLxM6SMT~mEIF7*Pn&BIN50G5bVMzqHH;FsgB)U51gh&cFn4F|Mf7hnKBY_E7(t9$Gt|aB=!%&kyj$7#>qNiDa}j zCKJY-eE53P!co-xY*}!x2s4?to^iruy;Y5@uLIOSLkcJb#=J zKUb&nTAbTDM?+uS@oe}djQ{VXd_p7*(^yg08yw%BnZ^F*-^^teIs21Demi7Kmt=X$ zr4m$A9n22A+lC={dC-;g{cZYC@>%9kiO8R`Aw@E@ov@ohltm2vx)b@a_6A@>w}(akczAxe02RW>{X%CTy*E{t(Y}j_|4=az^*(LUJ7dq%6kZ8f zm2rA_uq6bhNjyc>H2J-$?<`4%j~q@8Sn~%Bm_RIC$}aeiN#Ae4mvq-{Al(Wwg!@n% zlzmP^1B4bMTbRtJCb=cKF?&22pzl?Act7_YHOspbcW(}Fx*@~(r*Nz^gk>YVe2>d1;Gp-8kxnBxkXxN zgl28B)7;B28O36v+Z@K*#|QqE+dzbXvs&at1%@c=i?uEgNN}h5QX3vuRKGNKTx#r=(?<+yu|ts!((qRIImX zho&#w-;-DMO&2E?!1_A=fzZHaW(e1vY%mXs|ELfU+uot|*M|hF_9RZ@T}>6{T-So1 zCMF!Hx1R~DA18+Kt|*T`YZ#o3a>YAPQiJ&{s(l0oi5uh03F7nZC?G~0mcBNkdk9^m z`8@)B*#q>;gEz-Bj5JJgcW<`lW<`b$`1vPp+Mc_-GC1iJI#bxRjKm5C0$xsX{`?M`VkEawlUMX?sC4d>S8vM96$_2%ozog~XL9)JGeSK*UrdLY?ID&=y z8OY>hS?9!{uC+$aBbDO6#x4@DShw_nKm%mvD&zb#fw7(T@7m^f4In8&3uB(CVHAar zK3BWJ{GIkeyTO{b3`C@WQJN?vZv_n19JFi)7klt_#mX#ffAdWilh2Jpox6=odgnOg z*t8#3$Ml&Obc^qa$+W*{swRr^2Nv718F;kZPm-`R#P*;EMW24-rQkEYwI?Y$^Ul!{ z<{|2+TrRE~q6-S`IZ{5^gy#T&ZKq}2kyXJH&#oWq!lk$+1mfecD#5t#(T@}oZZFDQ zO>r;R5i+YYb6wAIa<TZY3Av2 zaMC<4g_l6MR>O$pz##3W=uE(~ZQMF7O$y?Bki&;aO-Mad+$gOqf`R*!2f{!?VO=@i z^HW*c(F0?c2TE)g1)qtcB%{5TKiy6rKg&wdcA{sH+qclyr;S|=T{Rq}S86@uRa%7gp+s>cTmVP@4T`}=Pr zhP&s(bAp)b79BPAEE03DU(%W;9?M3CkMAp$8smZ_v*jj!NDp#Ov*>n2kbuaPoGZwB z9&5hy*`>T12HT;b{h<8( zCkCJML)g?FtGHxClBQgs)>Gm-%HiAdQ)TL?=bYYHVG;o~nhycH*?0h(Zmk|yu3|uN zKCf+p1|LN70dSq+5D=^@{~i!p!(8M`gyAI)2L)<-x-{ieBv2;UQI6u9Y`S$X6OdbJ zn&7)U3Li6-xj5<4BJiTRJaBrj{N`1N|GE|_!Gst#_XQpIb~t8_Iy`)6ch8Y|@$+vL zGRdoc5Z_8ym_*T!`%^10GxDat2qD2d3ZDNijiwu zLwP^Dz;Qs3Th)r(jQo6GQ=Tj_)avgpCrHOCVE6b_8G1zdKC>;T6bH0

?DrYdc^xS}~gPPEL~d;DM* z0qbLdG>V8dI5zz9nyaA*TY|LtV-5lK&E(ZD^mb#~>AB2hscl6NaHW#bv^Ti_uuvYG zafizgqpi@V=1InFew#Dzr>Y(?7kxY z%EPkt)BGr4cG&a!U*}Se?lrZHTzroTV9#)ua;o4#KHM^mzOazLbj_RHdhbuvR6eFJ z>~1VG()j1H_FYdNSyb7f+q2dV?B~5U=R*`v|70*LlFiZ{IT!aiJ8^~(ClwMSQ?x~H zn|-wnJ|+PezAMF~Ye1*}yQH($qhl)c(y6`eA83fGUQ!9*Rv!YbAl`#D`Kd06+~FrR zdL|1L@%dn!CXjY$2;{J|jy)k254+}gGBSZ;a5Wt8sIRHVW<6%4P zxk%#>b%HzT8*yJ!6EBncD}%KlOp+xqABDt8T&xPAgb7H=-!W?>mkg}EOd$Kuc3w7M zsaa;T!w;NPmb1An?u3tZXwH0J=N0@cQX~W*ipIDhJ9`aQNhVG@#4zuSR?mE77aF`0 zT~V8LkGYVTzQ`DNV5TH3YY`+Mi$Iho4ZHpAH$YS*5jcPArYqPlo@8kg4) zW-Rw|tgS!S8~Zt zl10cU3N}f@!Vhj4vj*U?mdK{IcZ-UNLQdGn6M9uGQG;}#n!(jnB#0>*K#uL!2KSUW zeg0^5tRb0qqMkY3Wqn_)ZV#BKo>@kPk~hrmYJLvos5f=v(MZuz2X9E~h7DQ-x>|6q!pfuwFW$fT+;p<)H=}eM&9j`$#!W{daRmIMr z+eTheXeH^Drh89Aa>F>PZC1D#e6Y6TpuK_idr&rMSi#%cID5+%mHZjYk=|!g-`NX} z-iu&=o0v`cc~TE#x(bX+zyTZ(}`eG zdv~9M0p(F5@4IE#X01nBa?~7?WapSS4Z$CM^mZ$VfI|ZWN$~8?af^FXY=g+iPakhr z!#R}XM|0Y&n`?(m$3TwSkaEtL3lE1mA96H0%a3L+fF*B`N%KR-c@rah@Z0wf4|OcV zFTVaU0OLo0**T^=#VTLin;K8bJV0|v$>uBna`toi#*VvdFGWud`;pX}edqf2ov2dS zZ9VPX(1%+naYS+KCJAJo$4OO^FB@W#*}>#bA;Yjgh#>Dbe!|oG-5_t6KFKbO1_4Jk zgcizNj%IBXX2BBrgVoKSyH3+eO{w8T1ajKX4GLL1A=VbZ{~t%^9nRMOzVWnLRE^qO zswg#UkH+Yts6A_?s%q7$J!2HDS-Z7j))qTz#a5K4JxUOJ#|$E$-}(Ojb-8kJl5_IB z@8`bn*NRAsrk$7jhos6zxV6h2G4v3nO$%4y*|rn9=+4G>q*+}93sLFSiQ`1kx3{T4 z?SK06Iw8Ru?}h8{MAgCe*bjF)t!__907g?~1 zKzMV(L%+D9ui>3)A2Mn;D~YgGyTm0SK4FVfSEth;=!IziJ`I7v39E(dur%*l6ha=7 zmR8N;b6C^nu&>=?jAK6jW^v|?d?O)#Jq}G?dmN#zk+PmY9o)vX2R4c8oa*IM@E-ql z_+FWjS!0@S3NZ1~4%++7+AE7>^%(Pv-;j=KVmFkO#{sdCci-{na$1|713oI{*9A z2ILjsH1hw}J?4{{^csl^*TZMybb9%FWHC1(MlNm-!X{J)OWKsblI5-=$P#=VExtbS zhn~n6hj$E`q#D5t(!n%JVhd`uLrcc_(cK3Ym+Lq=sWB1!R!$~a9ehW-W$ZW5fAVrrva|=TRhfJRzsMvzbG|N`?735ENkGlWnx4tHQY5V z92s$%JH0?ub?tTywR!@k^P&k;;>0yvN30G`D?GTBWZJ;+>aVD^VUm~WENkGTl?Qv` zl!B3?x}H&S*-rU*&Dx^4#r>1w_jJ9 zc5|jx0Vg04sp_UF)+n~7_KI2;Noh2?ahEZ6}AkjJNU6%WdZ%`==`Z!IDm9HK~ z??mK;AuQybPz;OIShjx-CjdtdL@2{%_9;`si6r#dXj*>n0(_1w&fx43>QFh%i|YC7 z_Dub$$_9abVgBZJzonO7lDG$SpADr`t3Ia4$#2e!GtH=pADov;B_4Dr)$BU_(h^Ht z3}m{FSGM~P6oaCyRC=&E_aam5-P@^*G-U9&sdlWsxu42+5U$BqsfjF)u|K+^Wa`W# zg0S0Qc}7?HwP8{-5I74i<-ve*ox}1Kcoal>X;^TQ7s+fQOV{ZxbkJ2M@KDWWG6Cv; z3CU08zisq9HS4%{MX<{)Tl>8)^Ipy2khv>YXOUchQzebc_=CSytZr^1JbpLOx7pM= z0(`a|cl5Fix6OaeroSuc$_TrFn*b2S`sonVQUR>44MU&@3?8LldGS$&4k(*Lt{T6G z{1Xp8)1^`FesX!I`k)cQX*#?A3Y&-Q=;eQ}+OnVC~2)2j8GkYXR4>>-)as<=O z10G~p@xsgzB7!J`2RyE~hOcwIFyU|(si~Gj^z10LH?mOG0K$JVh`x&@sggk0?3+Y-|)Z<1tg)vdd7y`5L93B)0kqY(ZuLALW#>4 zeD(z&P#pYE`G&Ko$o`9chd|gbiyShiPh9(44X$C#-_NmB##Y2R6d!0}33WZh7sif3?* z2E*BXJY$JQvO~+8pBW3%bG)2Ow(=;xI2+cm@bgct-pkxep2n}g#^h_4OUC<==SK)>df^G7DC%x6$?=< zV%>(PY7sA=WgnVG_%_%B`*rnTr@X#E>%;x@D{I0-ow+B=BN_K`#Zmflt**Im)T5f? z#Z#MNIMVcv`xZL-9Zwy5KQJ)bJ4mBoTU=I56}2A?I*q5Y+L-`xq+GHVud~v|e)jh| ztHCwO>Ot7p!HR5@r?86X|}-)-LhSM80e2y65=kS`M31 zsz;iKM;F0rXefo!qrg{qGMtk(9({;5PFBOYhV8%Z9)8|@BrxyPEeIP@HTt0ToLDQv zv$ecZO&kfVH8EG-x!e!3lppWYb-YxB+l^kHpXD6db))CVIv2sfLM@#*L>eR^RGz{m zKI-`+A#-`*ofP#Ls0{#DRKz9F(4HDIjz?4qo?K^TZ!miP2g-P2c~M!|9;8FTi43v+ShQ%M?Fj2dExwxO1KbOruzCv*2xyGx!Et-h` zECFto-0~29%@8~`zc#)$-VAZn{t1Q7Xc6}I2z+*^ zRjtH>Y*dL`5s|MhcVqBa2eq~DgguFFH+`4)8@ODsPSyG~1EHQH%(;h;PTk(MO9KRc zW`plvLC?})4KXaO;)PWWOILe}dANfpzHh?*@tIOF9A6Aio>X_%T$LK>yx!Pw(kqQB zFK9&S)B%^x%WL9tw#<|u%lp5Vhx%>9*;|1?8>JpDxf@)M-W{j(M|DG4%LPJI$bvel#St;hP(0l0x zpd(TU&Yxg*I$WFod&LWnGxQC7xz|VxJ959^nA)X2AoTB3c|rF5=IOxI+(}dC>0y`| zq6x4XCWLnzkGWsVz%~{f^{(@kNPVAmzd+)L4@VrNX`-ye8soR;p7?O@&1S!zdVgFq zrK=JCHpYb}vHJ-m7h?w#cW$ZDuM1??!>+i(J_#}abgQ)gL zT58L|1$$X=)r}A07liU!ZJ0@ zhU>upMOSLtpIGzrh zcnPD}%G5MG_Wqs|n=RH*Hn6#1*o+UhEg_C=Pcz;79&D3$}_v#>9G1a-<+N4~Y$GyCF$aZ~1Go1}LMsSj}X# zHai&kOm7z7a`WS)kv{$QDa9bEPWf>bU8ed1HP(+6!u7qJ@mmv!WK%NhtWaq7i(!sB z8Z1ghVopUN@f1Qdv>@Xm7l}RN)xCLp$uk!e!M`8t)w$OTqL6)Ga_aLDu^TM8B#s+f6Ih6z8>#$#o05VLOg=Xsf40e8jaCTx+mv;qKUa#eg~2@;%_(93 zPsJ_wknE=eMYk#S(+#q*@8r6q9G@fy@*E=@KsQ7>SUInBZ|=>xW8@1#tlz)ULS6d!OFN%5O@J#Y9Bbe>8W0p1kSsFA#Z;lJk!$89xJ=fMDtd=aH&? z6YE>&izvAz|LHfwB`(%+1qhO<&!6W>>M1|LN^(VVbDgcx{G(n)O?z)|AYH7{)>**} zm!PstZ5X#o(mhcLU)G&ycBZ*#Rch8CpqwoyS3JZ$-mj4P8GRa0C|ui~S(o)H*KTy2 zt*J%z&OjfG?b%0}_aS#yJ#$6eHFjA^!UukDsbt)vq;28N=?bYXBb997;K~n69+lbu zC_pw1L_Ddu*bf4`4+Kujw4&#}z#s8$AS{fe$eG9i884*y-k;>GrfvV<4&;D|tp zJkJ&rIrE)V79*})TEeiOWANOkK9gCXOM_%JXm?9kk>%~P({2nYWf z)uW|4ibeo79{#RI)Bc&IE0lfzVXRwD2>ljRsu<|45^QWnHUCeM1HZ~s6X8qy+yCn0R*(>2xE?CmAW5 z3ABMZg_o3fuFItkHmvCs`UlRs_Ug%YCEV=rcB1UAj{`J_~i_!rkb{y%1aH2aW9mJY>u0?iSZC&Ht>pYGGnsW+e5<%kWhy zRa9RYg50%HtRFZ7Mx zQeq@1{$k2u{cG@NQY<~ft(EEg#AshTAOl$a1lCB#(}mR=!+HJXRV}Jx%$JCM`y=3)zKYq;`8s= zV|T1l1Etrcyr}6zr~z_wvU%pHIi9|%u}2MuIkEV}tUa|mBOPii`~4^^(0&7%XB3>w zF73ZWUSu^CYw~odMo>ATUt+8fCqhoi+bGWV2Wp4q%X{^s_EY04>!$sOOQOD54-kkG zMX^yXzdkdqos%;CFa4rD>ZO3efSX{Y&#>P09_p_bD-N@AI}%nsEKS@x%m8eskSX=9GyY!<`Oy{EmTw^LJOg zT75p--jK7b2bbgtmUt6o_J+&ow5$@Xp@)b2%x!1~WLEGoYQu4Sg(lmcTq09mV6amn zLF!Q5bgzJ9FP*lEj*r6yi?oGWn3Tr$7>43e-Sf01C_>+s{9gLMfI)Gcps+y$_W3gWGYaVfUpen-8B5#jb7EQJ08s~y zDN1%BJochD1`n;~bj15mK3*_1A--aotEAWVJ2=M9B?r1L_SGwag*X9hxBI^4_Z@DY z-A|1dII?+tq^(4Vbq6{lDb^9jKYij>Q6kbUM+%R>J3^kMFI-L9;!#J6=Ggy0@dW8B z9$zN(60+MgUx(AeLD_a{qwz`R^Jv!$O(Sa{ZRYa$p*yisCq-T?{$sa9JVkT_WAUuz ze<0vlrh_VDf`*p+47;4Oid~UaQ*ffHGOC2OeS zjedg}cPnkO+g1%a>sbwUV8YpWVVkaV;yn>2xzcLyId{ zr$T3YR+MXzcaAw)eU;7df-{cw9vSuA@AuEI2D7jRqH(H-nvFSBFM8HSuR2+0ycLYF z91>~yPWUdPik27(sps#V(DY?l1F&t7M(h{X##_{J1sovYXscHSK zro=H!9aBT$)*|;IW_Pc|>Sf7{niu7$Jx(ERXpqV7YVayC>VtvRdpDMTFTpFn+Oic! zSzE1O5*MNpK{V}g8mzXjxWx$+-0S!qyMP+8_oavdJ}og4m;aidUtWc4U*~&j%E+?8 zc8h@@3tVWLQxa7shD2ghi_9;thIwMj$Am5~NRd~jzKv6ym(bme-zB}Ng*n1ON~UE6 zsmtjE6tNvQME`X&eZ>QFFYpbHzgOwgB7wPHwWTI>Emic5{Z1gWtv`=VgZqcLDj}W?Ew$Byk`9zuy|v2ZRXORhxkd;*6De!(;`)e8rjb zL!mkY4dHb`lh{pe@c1CNApi3K|S zbeyu1sfp?}dl7Ct?$V!3clV3>+m@80s+Pp`=3k7P25I2!k-vd0K^wx3eQ{2jKI{G) z-LABO0r>O7OY{mX0%rfJLRebrTg=^(N^DM_?Wd&qcHQj1O^^ zQ)p<!QjK!|6Cg2E5G04`Ed_F zRk~jpZa+q)Fr-YF=lBz9Ci@w+{{!vs?7z^?K=xmJ|3sj`WuJeotarl9Iay64nY?kS z-1B0OkWi_Ny72{M7YaWscl-hF_?1aTRt?=}vFy%r=py1vgdf zZ!x%K$B=%9LwsZHB`fGQ3m3kky5Tx&ncCdBa%z3D40%TrmWaLd>8d1I?*Fpu3=CeJ zZ}F0SV@%OkbbV5LJ|8Fpo2Zk^%J%uM-#sGoSY>Sw3|f?W^y5_BO3Ifna<;sQjY?Md z@g*%;ziKPvn@zlNcYt)jBO z`c}Z%|D47)5L>5De_dSQNII>g@BvukY0tan!!*6^9PP$G5;GpXNVE+rr=)#Q8)?iD zR=^P-_)(knZ^>#i*fp%rpjS^rdkdaxX3_(|{tn;3W{CfR%qOgb#Nvr}kdatp+quXi zsSB_{y!a&a+`)q_A+hE@yXp9lP??uaWM+e`7kGbQk9qYJ2!nP6aEaPRBGRW){WY%S z{rXX5I{=sRE^x;+6yk04CSdP$=883G?b#}hX6Cy6XB4!s;HC=yXS>h)t{LMM*e(?q zIpu?_5JLpiZ=56tdpYCxWv+4)pfj)SZz2PR9<~Hbef2to2kla|&69zT%9u1~K?_WI z?@jK?S>*&eYE%>NlPkW|dD1zl<2!VTy2z%E5WW&w4{vxy1V{qU;nxV*2TQW$5@;;= zZq?g~V6bmqlKFkO)MLL3ksH?MHXphlDSNJZR~%Ea!BJEw#1<#(LkIohD@A8PH5?LZ zwT8j-%kIH*i6d6LZP)2A`}rTPKyYOd`(S08N66l!<+YQ4NkFa*11{k-k>h&R!0NU_ zL-k}z0ZwSXPRAEuQa(}IXiMmP&K{LgfJzUJgPB!Qr=LXvm1mKlO(NE4q3pC74Ocx zxW5!kAMps6)i9LV&P*P>e50(@?u0V54IXX311wngZY=R$SGC`pS1j6VWbV)4t0pzq z{4z}%6khdj4b>i{)KDcD0r3XU8~hs*?l&HE*SY;=mLS$lY+wI`sZQT>t_bdjGgXP5 zwy~ZjL~@Cmo*Z!bddrjWCv#ue#&X???inIEA5!&wC$z@L_T4|tOllu)cUfF#X_Bur zM6VjJ6mbsA0I0Nh$t~At7$rgdiZRfBoG3w{o2+aAIxcd!$6pddJ?_E^oD?jFZcf=I zklauDu`X{IPi}41!11h-(MoXGfp1D|=-6`nSjnnEZZf=k3g4_eePTz3Ew_|B^TYoF zOv&@?XYLbgO^1thu=O`)gBqPqkGvdCt_n9xAKj)7-dTzdYjLXbF6%Fw!b~sBW~Den zRM~t5cNXIpPG$)x28ZBz%pD?~FW@L@yDt9^WOw(5(-M^3VJM(tvsNuU--+^><*XdE z87PGJB)jEi+_d(&9Kzqa|38Qju{qn%#ah8M!CFtr7I_K?k@B#amL4Lw`cOZ(`#(?v z`0H}|GP+mKoj=TLz?S8(sx{dUCU5f{`S>gE<_-HI4p;txJmV@hgks|YOe(;?aylnl z$LDePcu)7--!VN5;TjATdrs5gJqO<%#xeK8s}uIZ3(){VYNV#b&m`T14E*kws4XYpeMpSl|R5ey)6&Pknf_1ZPVie><#urZFF=&SP`gqal- zPGh!?2zm*J%uA_=E?2xDbC)YwplYqPNO6yoyytYBTaw232MO`>#IVQ{G8}?NCbv{K zC2jZ#SS=l!BX(=<=-2sqpGoZm${8KzPmFWV4A^sdwi9pT?iSr~dCyl_W4}j3ccAQH zgXVuA=g|vFexX0~mS+Ef#uCB;T?5LTfILw{f7h>q@dgq8-f=U0`y6_I%RgUZ(dg_i zdUl^aYS%F9NT{7I?v<*WvA0=Z>h$RtvU8Iq8z2q4)l9ypMCQ$nOlZ^23cMV4J@}o?!S4avU}fi8?@MO za0*a`>~*XjPjlX;EXuWE-3XtKmVO^ey&F2=K94KNJ!KYSUFhf35@GpxH$wkL|FP8W zK65R-Bk};mo8_r!KS}O(BPDEsjFpk+H3QfxyQFE9`W3Z0pPyW=qMA)L8QI)7N+>se(^z5T`xKBh&hqwsX!v*$H~Bvr9mL7c#8>){)oy_uWf&{O-J8TX zk_WgZ9Hr!F(s_d!J_A-OE-XtScWVi@B-gqj{wc&Rn&ka`UG)(KtXx?&sBfkGn~v_2 zF}4;)gD{moMIBP0noo35ZlhS+{C^sH(z#3Tt_k6XDTjz+Hu7^&^RPznJ#Cp)v zJ~c;`1NRovy}?i7IrRf;A9OiliETnPSqm@pRphXc4`D9-Heuu(@#3e2Qu6BeLvpV& zNN*8PzMfb0l+@!-*e@s1HHFq zD6B*E-Q(qRWtfuy(!id|-D<%-paf8m%!wk(+mteAqe_6y#ydoQ)BOH=$SifYs5!r) zg0A9cp?QAZ1hZQ=RBnIwf}G`1baAurmSW>?8*t@nY`EMZi+6YuiE!&mjw{SCORg@` z(+2egZE~eE2q+8a%WwK8INqG5)eZfGHCOXQ%(Ohrmbe*uN#*#f>ukgsB=7t5wVH#}0UPtZH+|Ad9!Qx_E9p9m-I zgdi28@_tgPC?Kpb*Zv^)m-p#Mz2tkjTgW|fOyC~R-mxuFt8MJOe*0AZU7P<(h`m0u zyHcB*zzuTr6Y+%SDiqAIKImJQqZD1VVUj9TbFJ2On4PCG3^z?EeD_o?DHy_&<6Ctf zgJ?T;7DH~zb#zLRJ=OW6pv#?0^4B+4_}k?%R~l7tF9J)> zzrfu^;hR!ZzqF?{>vVKdbCaxG-=TMqqCXJd^yvZW^6jmJo4DBPo;xhLlHaC(PA(`` zr7hFZwEag_CqMcEGR**3*4Sd|nTYU1ohgY}%4$O{e%eYk;7qKFh!indPKexBQV!HK zHFz_zWPcJQlJbF^{O04*nYT3EBvWmUQp;&?uPfWmDj8>eAkE`B&M}_G)iLMrW2HWs zY#-U~Yql$_at~`D`rZx&#=7C#`;LU)(9$J%hjE$y&>?XV)|)ZjYwI0{%-Jn`dtJ%$pWY&Hd3Ca=v=Z`DF1ihVg4Q6Jx%C;N?l_jD)#w_{~x z8BzKDodJxYp=C2cN2+i6=${Ctn=58d6Pd37W3lKilty%jeSXd60Chg?u@ejr`P1W1 zi!R-=+VfLLO(VH`h}dfMWl(mH@{5;MSAr)!55B(*MEqzx&7mO}N<+;OOVI`Gtzeu- zSnroz1^8ewqqOhROL@F&KWse5U(R}J4u8eE(kXXAqt4)<)|;=}c_t;i zTE5_Zk$BWsZ)z+db3y*oN=~r_Y0JjUG!;1qE&HBp-xYr3@L|Q-#A=&)J-~MYZx<7u z;);Mopn2FLxc1j^!}W_pF+NZd3Ct(<#*A&tG__{h5VQVR@b;9>i9#J=jy0I;WV-z% z?E1|(zU-R#03W6t2FU2`S~9HPEiF{On_@?3wmKO1G`u7s8r{|>#mq;Vs0%I)!%rW1 zdRL6L2ZYXDk;R{;dlao`s2pVApmsV{wv~4^3&XS{>m#N~$`RV?is-Q%iQ003CAXND z#fZ%7S3}iD`NiL{@Yd54OS)r0-}xS6cwKrJX4x*xMQMB`&hjSIqW@Ukr3&;Oo5%yd zTGLiYw($EYlcN)LS;_3Dh%vs*mJg=>>GkDuiaVg(c3dk#dbCxf#PJ;4p+Fz*BLnVH z$ZuSVfuE{eQh%mtUF>RoT_@UO<5cF3hxc6ZV1^|HR9W%#tqcI3SscxE11a#8oXbEg?K3!UmM|0)F! z3BKz~XRXu{*iw|q`oV)>x)b87ho5T7NU0SD*A!R23DmhHPzUnz_pqFQK@_nB3ZcGZ zq83@kA-4<(fW#Lwzm$JMlMoUm@xD-3KwGo$= z%z{on#&nst0|1UBf{r4NCf*D2g^M?H#Uy6tb?$|k^B0Rpb4@Q^?tT#m07S!qpKBP8 zISeYrqVo5H;=xpEB$0Y%F!Q>aLz;;6jycQeo&!$R+HJb$%`6;CUF`WZYJjj67=2|? zNAg^tyVY9^3!~VZUk}u_i|^U^jw)Gdzl~D@?3Bt92@!!$N(pbLfWU+VPTSzwc&a|j z&nL!~ZTDc+1*L>1(=sG?OysL@zUhv7gupi1$&3#S5*oCf%ghJ1^SIy&1QyQX2&E@H zWey2s^M1pdt1ei2H?;3KKKcoTIDYU)yPzCIG!YsFzo1WBvIoMeHsUVFu;4b@eV-gj z{F|$Lfg+6)t#?Yy9F^}OMBXFE^DQLp*J{?Ge`pA;vO+gK<2)X1ysdgYO&dA5R5CvI z1n3$9OvmelMEUpPe#1UijbDj(Ypm^p74PTA!Ewd3}e6$sYOX{l_EI z4ajAZAA;siWY4?uEA{dbbJ70EsmiDh>$zDGw8gk{tKuP9Crv-}Ls5gN0<{f&-x0w-hBm%`W0akhm*QaeM2T{+POjYQiB)wMg0fE# zy~u>s+n2{o`w}KiH|9y^Q1m1J3bIw}plmuwplP^38*Grx;><}~#Mfh1gnj0vC{M>g z`Xtl&-tEMA>aNdgO&h$}BG2u$0EfB%K&7iqeW_369SNx;uDw&WikAhqz7`o*6gmYV1^GLN04829I3#MS_PHAC9$>;AR3vpmeXKfJdK& z)s~6LoS^{s6vckdKYk&$Ke@m2++@pfX^g}11^iKGS!FwQ0kDoIB@;%ezp|%;QPUS- zT`2yE;Wk8|{(qqF@#t>y`9kPjlC2rIqRDbO-W8don5jQ#%Sc^7gTc3oaHz-z6q%`$!JKbqw|~ZV z@V(aK8Ihu0JMl)c5BCdf%6>8KO!sPJMrc||7zf*tQcy@_u}^Xp9P0E0)8R3P-8#6r zr+#(;JZ+80q9Nb4lf7qj`YQ{Ou!zq7vQ(Z*Ki_n7syBU?E^yD0|3KESkXSh)voEO= zaA;t26rX(xarr7TJhYs}D95oORT|{jcAe8GSyFvswE8Jy8UQ7(jXZL50CfvA^CyrhkK0DC*5A<1RrO;jN@tXqMG03x; z5;bf1LeZbM+z=XZdPv4nsT%Fq?g6QbJXlshAX4$WVUa*l0TK0lzCq`UGU>;!Z(5CV zU+BfF&E;b&-Ma6_CXEUAnN~=6e|jm2LoPX|aO?DN-e%z5@%$W|3Y*2RAN(G;TxS*X z;29)1U%kZJJ;lel`b$lCLHT}pl{HWNUG7xF!1+`@lfP)v^`klbdZvN2+l@W$; zMP>NugN?$pvmZFK~q^q^5M=FBJl*gz z>e9MRFH2hX9%&q4VcUx6}8KS7KX_=eKbW=6sP|X9vG_MF$U@c;a8{za4OT zv;pdK8;U-yW{HX~-W5__d>K%A-GsPqRt!J{{5mpXIEvN$1Z_^9zN$P0sE9zTf*-m| z`HLC<9$*p#I;*gvHN0Hne**_vxmV=-9;Up=Gy+3@*t}(&E*GV7JhgB58dGGjLIlJd z$tYG;KSgMz_4NK)^Xc^y4)pFZPLjxIjHo2`!Wup#l`prMt<_<%TB zUFehU%cGaA>f}5_={$v{AqfesO-iZjAHGX7j-U`br6=;D_BDns^-f;bp1VOWfi3ni z{(9MUZhV;mbNE_$u4|99&WTnhBIo|EAJ4@H0FPYUsHE*4T+T#<`9>e)pD5q5qr7?m zV#P{xPfV`zs(<*dM2EV%abELeaOs6|=Vg{_n6x77OdJnK1dpKVwZ3L{w(~S!Jw#G& zzHmgRYT`S=f{o$=+ZB?r(dT)5s`WPfzKU=yn5v&?w2pW;M3vL5BKTTCS$cFJ=YJp2 zYO*~N1{#hG^yk2*G=rT!{bdeK{A4vbjLL^natG%1N0;YUbQr+a_GeW)Cn$a1v4#K! z{*Elnp7ND~8J^jw0UvtUurfhp!#8tF$JVHalDyK))b*$2X!W})q@9_5==}MUqZ|Is z_Tib+UUCssqk2K99ky|vGYwpv`RjZFKQ`eGu&?NpLOBKnF?SPr5{vLoD*+pG&Bl2= zl&Y4f$?hj1ES~X!vNz`1gR{-*g#uocHx#BHs}ZJf7gha5KbE=mx#n_mg5Vd5@I}+Z z59y^uv@&y`L_14jAU^^%>lLt*(lul0@`&n)x~w=g&f(UnRf<|6sr5u^0WRce>p7 zA4zoqpt#C)St#mOEn!XE{4!G-=IyWVq{+Qz91bCc$v>?4=2%YO&s;yBV$oO}IVnCI z0(!QSulewr6Ir&(WyVIi2(o5kGosg@4Mn*CU{Nrk#Y?D|{oqL)d*>V^W_f6*W^Jf) z>+jy1-6H;Esr$|wNf8{L58LbmhGr))rw2f;`7(!^TbPt*-T=>g3QfO2WGLv&46PU) z^eWF`mZrlY9v^I{0v{oIU9HP35SK3(GDceT_5J9dJ&j8+W>FmWo2^(oRqwN;zuI%f zdmw3|JRJixTo*Fq#)yqUG(|+AH%?q^*GM8QmB0`E^WJ{i!5-CLO)(oJS3Mkz`zlrc zoL>z+Or5-*4sboJ>l!LW?A?(i0RN_jk|{pwa9-;=hN!sBC2?3F8{N(ns4i>pT==yW zm7PYK@$ufX9J=+{^IB?Zz0qkU(&kEab^9?B%WRZT&{ocwLUP3gUtvMr{KoO@nSTm| z3a8{cLxY{lE=7I;M9Ow{e5nZZO8w6J)-lTHQOgp}56D}QoUi@J_M=ZWf#N}^9bOhN zrw-(3KM(?cPE9}HX(kY_uU(qqCC1ZC{t*>EmqBAX&K`6_t`Po5ye=d{3A%>i@aI<1 z&3`x18D_i6*8KOeBvUaVMX(siUpKSJF?ybp1D&VgH$wad&elUHxd>Uunn2ZGLC%l< zr{S+}3yLR?dY(xuzIf>STLlOvmffXbOj+g1GTa=TaH4ec$Kn|1$a6h6NuS;t9~BMl z=2zY7*RDt2jU022*Qwrl_D>;X)rAMCQAu$RRNi%b?VvcY5FHXeP}F=&IGiUuHt7*} zn=b8dU?o2N`o^oB*i~#IUZ0B0d0<&Zv1#j-H*NCz>e*H_=!U*`Vq(s(Tqy>Sw#p8n zdw%tQaMGOis|!#A!;3E4V&r$xjuLN7~S(%?6n4o(>sR7>C7Bnkeu5O ztS-OI`+t(07_DL+B_G(-Vclp`eEJV$0a6Xx_D^=}}rT)iycR5$@b$ zEH!M(=J`$U(8TyQe_at!hz?Js1X3c_mxU@eUcRdCi_v|O@bJ^z+kND$tY`~e_M2hU z%;EFVw>@tic}#PVsO-y|v}0b6v1H0DRo|j^&v;jT>;7_3@W)Zb2zC`-?oDNlTih)2 z{2?CUXep9c&&aRJlM^a$HRR^G8PXqg0(LO=S0hXE*3l#{3z+RKmOa9ERL-bSGI!+B z?ke9vrm-aO*Sc)~NY!u1pX{ml-#s@-?IeNd{W78aM0$sWQXY1#{ecnVFFEjd>ir{01T`8NgN=*n?~h zv$LPPE858=lmD%({b>8<`|yFw(Qj|4^m@1mX-lXojgH@_0 zcN-)IhA8}P+U2p?$6^#6EJ#DJsU7`WhPyqYO3)NQA$jdLRZ?OnLH8YHF%=en);x1#En_1{syTmRonH&uwu`BusDZTFX)zx_iu5432aXRKt13ZWYxHV zjt*?{t02{;IX{R2{XLQnMY6V=4D=H;U7>lPjrD;`-J6VtR_e-TxAUJdaBYx)#yKOA z{5cLc*u$dSH;|AIWh=}>3!&rDqRfzlv-7{fTuvCk&=kMh&X12fiBps^$(Ywwk7jW- z$TSEg)=BJHMn$3(B{&==%d+0?c^+&{UtVysXteh;-#I#dQ!a8!Y~MroK_eEaMgyU4 z?c9@$d50zu5(De-OoP^?*2?P@^GoWFnqE#}PR@lQ!?YA19tcGrfs4yjuu~8W%lFXU|$KnbWQ(3PyFa>qxXx=f)jQp32MS%%`PW8ej?_RA5^ebEV|_4hx;4wZna=G6j|Y`c}Tfyg}Oj=DqYxK zR-nWUvi!a)8tGi05C@$ejmV2K8SxX|5bq){GWv;3IK9teySczhTlwfnPLoQ=EK`?@ zW87Aji+}p5v&PzYc(uyEl!cjZpZcq)0ZIgcnw|0cyMPgB*gm?T|J~zR7uH`-RG(b5 z|32^%Pz&3u$Ap8aL|PZ1`rlMX%#(ToM|wQ5$(wSBl3r~&Up0}=ogj=4QEgy(Oa9mT z%(Zaa1o01SI9*g)NM{z)DFN^$fm8=hyIAO@FizAmJ7JLoBgYk7;GzW4g z1{TNVl*#1VI`|}F1qv$Z!%W3DP>vNp@PpX-SV&7sud(emB* za;jkZp=!CR+(QPnCEJ18Mwe>xc3m6Cw5j1Fv5)J8>}D_sfO#3raCRz!e=vqwCJpt& zk@Y=&KjoTFDgeLLKX5$<&l>`F71Lu{!Ah*XlJOavEtHc7(mHWgA_^j*NmLXA9lw6ai|o?)xQfKgW_4A7(0 z_dP7-<81}&3(}X;ZHrHl9?2quHc<#+G^dD{<@v7g2`aT58B#I1h@_&JMocSC%}M2>bGa@kF3S$A}B&-z^RT)I2zpKXAb!|tBYfHRXlw}42zIKyt=yNA;UA*NI zX8`sf8s0|~63$>uiF%jAnb59FPRQ!P7F7jn2+FoCA9!zWk&`-GWil*kH!PEbmS22DX&6X=t)yJGl5u z@iUF~qlwD|tk3RFUZ60ZFAu-*bi#69q%fZ9!y7)9)a);GH%6_il_Fa?P|U_v+~Y}q z_j2nfq^{u*t8$MGEsx&02lFLOQz9u}{Yc;UYZInN^$QGs%yLO()b#oG8y@brPh53RPvy>Doa>+Y2}{$><%85~0(&A|qQ>JXqRwX5PMA{qncRMyDi&pX$J1Sn~ZdzBhi#M#B}!nP@L zQFnMeo;fG{s4D7n;Z{jgIgdbBe#siFr{_>@j|AcCvBJ5Z@Y6TOyuK0Fx;^%KNSNfx z*5sq8={K?*)GyaFLcvZ}4U40*s*5sBx(=Q_`vfbPVj)&`Eb3d1C5x6G($C@5x%Urp z%UKf(7d~#XhKKK*R0@n1gCnPoj$jq_eh_3 zzD0&peaTId`!Mb9zX3^1Kq`tW_QzWOAn>u&lHf3E1 z*&V6(uN2w;K$j~XZ$n1Jv@z4^7i=qs^>YT{e={)DRe=U8uC&iG5~6I_Y~$+FGrq8Q z+G7W3!&D{qJ`>dUbm;lCnRHC@`0&rFH4wp>Pyv>!Gg9A4IDgW`Ix(R0@0V;iNxXc&;! zM%;6fX)f+oWbZyl#`kGDcyUV0aOR$39*Unb_9v8w7OR&H&kxjA|IPLvnyoYm01E{J z?I4syov$5#nr$|2YDh=KZU5W!xSQS7Ob&ymCam zf(c-rQ22CaaAFl~)z*^p!70ojx__DLvLzU{-frz&On3w23T=pEbdHY|N9vY2-}929 z_p54(tJEz{%zsO!*i2BhQ9bG$1<)@9R8`yPM9GGnwp!uz>A7-eCZ;iJcjIuUpX*-z zbs6fzm7Et9PtQH2@+yn@+a`@e(kF|i4NNd+1*eo z`L{KKCu@b~fE@-3c&j4C33_(R2Y3NgM>rNiZ94lDXVWF)D9x$pR$lh(sXWy1+xv1a zwZU`7EtFks5waCk4oh79n{q_yTASJS=;IZv)ABVe%u0C_=HwcFMEnh9^en-*|~NcxV!4ey9$LGxz$wQuC%45 zLR@)K7Tyc{06p?iLADvIkFMd~WgA&L2)f0YAs5Cze54Hin;ZzvXnupb^KYo1XVi`* zK_K|{(Jr#04Y#mn*rf(vErL{+!sxqZ;>b|&hyX8fe!rw=T{tsUhH8iJ+%X_EnWOju zM92BS$F3JyEm>!ufPg&^JgplzPEQp@ttpi1&c8PIIfZT^8UH!p6&mYrezh`cTuZ~s zU)N%eB3ujM#1_l(1LDACX4wQc&yfsYcJ2+fYDxOSN#lEyKBNLNhX1~57&Te)TT{?V zaGcP3IP#Kzbvc0t1&(sReuOuvOjX7RCBZJi)IMTv{75FcL-`@}6hjF+h@bqxdP9pv8Pej~% z=2ma}ALwiB+brVFp25~M^twoSni|wTSc|Tf%?+Hqf37`(TxmRqb}t0eqGvi==m~c; zuX&Vi66<9?z3k4A_#1@M6`(c@ZrN?V}Ln)N2L?;2hn{* z3oGqf<^}#91Mz_v=DK54T#zE9x5?;{eFO|q;sLu2YEhsevM;y*q`vo4U)w!*<5pmOt;>t%hBZN<_i+O zDdX52uMHC(B46q>UA$$^u=#SsCIk0gAYaH>X-UFotL&;A;c+4z&t2T#BFHg*hJ^Ov zzvB$rr@lWwXyEqoZ4t1YD8l#B!}m0y83#9c zS(o=&aSx@FLE5v*W(y9mjrOAtB}dgtST6d5XtFLOo`B4)TFuYN{gE@ zhC6a*jd?70D!%s&@X39#PPV0!SQJYX6LGyf3-Zea6<;sW2FN6~siL?z948H3K0Le^ z$>ud5X7uv&kE-+DJ?$462KT~?iBz;YTf|3=W3uAm3ZiNe-Ta@KpW^i5JZQwo;4fr! zNh63kpM3BNOI5sJcu4)3T-LwuM`h)$0GdweLr3b!bw8!>L>ezeH{SQQ5hLp((_u^D zPr0bPW&m(md8bp5E#dLU+qQk{#G}?>1%u5gi^(&UN9JFv`e#9fo?Tfu*4t0bL|8`7 zbG6V1%*1s8Z|}c+W%*N$nFq;08bhN$K+2yZI`UF+g30-uGbw=dA*g%;@gAsz>g(ghJzD%8^+b{z@$bd>A+3lazYFd~XibYx8XWGl6%a{4n%r83iN<<9OITLLF6+gr5Tc{=J;ext1qGed z9AqIeD=~43=%N>P;(lIEm^!AtCt#eEd#sHobu{daqv&U&D(8fwLhw4pwk6RF7X{ukE)z5_3fTX zo(efu;@qff)YT}}J6bp@9?;uvvw??07j?7NV@bv1g9c?ri9ynfpzYk;m*npc<Ec5-r@*LyzYe&6*A<+&p z?8R07)<$Qm9NOPX@&S-fpQjCb;EZGN7d2g?XWv$U1Ol zBTlPevb>ug=qnS#dmCrm-{eq81Zlvw0=Ih{?i^Y&>ifwrSRjx^`Hqo{Fk|$z=g#&5 z9@rm8;q)sa-?=Bj>3%=1PurjTXTZ{7+WxUB*J6?Pvi)3Q-?H+|vk5r!A4wcm2yMqD zm6}RdoWry)ovsgjg5z@T)O`-FzevRXrfL5=x_>COD;3HZfeEH%dSOvNT0lL!R+`3i358fe^v#5q+{Pphk=$gby~QIe7VuyoOysxZk6LL~AU!jTotIa^-wp zVsDh>DpB+*Sb>&WgRiqh@5b#v(0xA+j^p#F4hZ=YY`bUh&)!UV&)cEYUNVPDmaFKq z?qD~%EHO6zQXOGe;kGL?UBq4Vmxn7=aZ{JJ3S`IED{8_$?$I+sq4t{3=iN#~yS_oX zmKc25#@p7`v}nb8;0wj)!GouAns4;&zN~srEV}?dlb!pWe*hf|+#D=aTB`MU)O(ym zwII0i%Gq=A;&qSlUxGv;2dz{$ke%}_;>gCQ?|QG7sBpKTC_X})T|!ot;Xl$bnP_zw z?hG$~%+;~diE}w>{LAUs@Il1hQike7+-zW~g^=I(5wYL@-ulJ^nhoc8uV=-t@ryJ> z^Ch9VA3@p5F^|30t7&MiJqePvkyc$#uFEXGl`^RPQ(5h7)lgY2WxQL$prn@B=Md=h zFh2A?#^74O=sw4EZHTS|Dui!RffE)h9JNfEK2RG4cK!Rh;}?*z&1DBwsIWwrWuvE= zXv#>iLjQp_{IPGIKZvSyr;kqC7QC*XqrtdU6$U*&9)~^Xh#m=+xpL+NH!m*Qu9v33 ziMn0BS^wH>u>08IUR`(aALx6eaafK`G+_F4|C7@vh{%(WqgX{y1#upWuh6%0t8I^n z=tok|1~!U3*dN33_KK;>(2#NI=Bp>Z4ENbnKj*4FF^~6Pj@N=G={fPgi@Tm5KN_go zW<82N2XnZ1;$LAFu5xT5CcMwgOWI+2`e0uPW@fBRbX60=@PDTfImSV5fDU zPS>4MU#z4?E1p%>69f3w0W)I%?GU}*Y_UDkfJLC2%h%`Xc!gRH@V;JLU ztLP!yN+Zd?)pk&7tZWye29-eG=;Rs%v3f|aPSNwM%P}x@apsAdwb!CeR(3A(wx6z% z7VE%GmP97rxDm6C&XO@Nt8b(IIK6B3t2XWTuoiqfBl)V@50c=T)KlVN^hW4N6H?KP z5*S!AmUEMx;<*V%ErE~S&QvafZhqF#Qd#VxO%c(o9K|FXudB8+*eE*f@6Q6Xb-OI4ee`lG|H!2nlaqg3-^pr@m_=8r zKAFB zl@^FKeXN~MVSeG1afazEX34UC(0YG<)%UI133Lv)kfYYy|~2?^HpBBZ}>EU zKLJM9bG)&iw6Np9UTqIuG>Ka;zl7dQXcaSn+G^ZdVvY;;0NVFx#XlcOo|l79oL?_f%H z<;A7_fcul>UWV;{7*QhG{)FBApSNx=M%V8~I~WTze2_f8Nk-ZxMb#^aVv^#7DiYK4#a_D?I1O>7 z4u4?OlNEmFf$*}>dZHng@rl(i*qxwa&&1zlCCpuszZ*oh`X6Y%6s^7Qe{A~hrc{pF z3w&`Dt-wFGuxxCOYNdXueZSt2sjj*R)3M?d1CVU^I=61MhKoc<8x(1o{Hn;tNz4IJ zwjf5Pn62>nm8t8+bK!XukZd!&4i36ib5nz~O*3{E3a2*g?0I|nJf$R@`@2Wto8+Vn ziU19kcha|M9Y|tey)qKW=(LH2?|$b;b9>baAs|8S!9HJ@}3*$t(VM?Y`9K@tb2e1zu;ZNAU>~U`XzS)U=hlaTI4!r zye~`*fMkJQRnb-w>;Rf+pAoZQjMc_ezcNMM+C61HcbdDM+%*VmjeU0c!-sQNX@+XH zf0}i)Y~aFT30cv1^#J{Jbm&8DEf}p*1l2w{l)c!$NytBD)5Pem)##XEP2VYt3I26Y zc%1f&8`H0+rvjqbeX%PjJP(RI%yK^{{Y`i8f#kR)cQL_SKa=M(fKe5NOg*dklTGwFFg0Vq+>VmJ;LRtoo=Ka>{KM};SLL(Qu zHyMZS0=AK`0*rlfQI@uYKX^IQafd7D5VdS3Dbf0vW16p)ryMYO6zQh(b!k&e+s$?t zY3$>Hz^ktAgd7AIo_DYkv~k|08ma_7nAnuUoZC0b-zKZ86(tRQx>IcTdYm`k2UF`8 zG{K=^X_C5882q2OyewOJL z7Y3`i#&_shMZE}i*>oB8E|^T4(O<#gIf|B)#=76>1Qb;R3oa2tn=lQ((@b`48N@ga za5D4Ye=O3U{C&-*vW~d3Gm)y03TJia7474FCO`*1|BNpZd|+7hsVmq`Vc7F#Lw{nA z7ued+&1-B|D|n3i`#u@XxLLg3&)nG&%1#VubAs1bw2wV$Df^DCTGN!>qRNH48G*D6 zM_b9yRdBIq_UnlSsn|S!@2NN8_ovGNj4v(Ly_*$6alQbZKUytA?ayH-b?)aV9526htG!F0w$IU429rR0HpP<29;hj&Sk29PR_@VQBjGiri#e%;ts>5jGXVx`@hA?qWg&I?y$Lvs{-V`68i?t|oVYV?fKEEO5uquzWCedh0HyhrLg z^otTZoJs;A&ki6-tnLvIN5rQLZ9GH%g_-jB>%q~YBysacNdL7Kw};?iMQL*QwDJlH zcpJW{nXrlj!>ZIvbOjTB>=bA&ZN1UX=~~;2EZZ+==?kGgI}4V5_63{lS{wqbXq1A0 zQw$F3)$Pu?|CJvCc9PL`&7k`v#~RPPK~JbP^11qQCViH-9{txuqiDAk8Y|cRzBR8? zZ<=lnsX+LvF!C;`hmsOLKeIZ7Iv`%%Q!NA(zSUR=n-ebJJz*^3*~YGjkc=n^a*l6r zR&PkIqr8FB#M9M_?4>?Wa`d9zq|5(2MS_DAj8UF%we^dXqsC5|3A36|hxFgxb5 zXlP_!r%<0!+TTyXE23=Q?li>bLFLDVEvdPDj(8%7j1ol z%a1d7r|?G^)IK0`k;r3}csdsbp!cwl?&T+ye~&NfU4^Xvjyt4!dl4_?-ws=}{jsU_ z95to?fj&#WJj10XWeT3|WACr`=zbQTyyb*N0HGylqypkR8+OywN-A5~fejmx2Q>1$ zvW%@hJ{ucJbbXhgdI3#Qs3-dV@*WRGsq+L>0W}W3g%@2*!t(QUmdOZ5=Lj~9DLlpV zKd;M?ZK_1g2Px%o^?zRB^r7!sU@T~FpL?|SYXHMf9i1RqV0%W`udgqtxA0RTb&4vE zjNjDc&e&UU!BqeNysSaZVg67LcQ<*(GktW`kik?Eb(B5wU)zg`*;eM5!AR(SSg- z(`mDxi~N@4a2d`s%%AXc(!D!Pk+bg~nX%C$-oKlQe$cScO)e9~xz)R!qxsgz0@lOZ z#2lahi=)e?jETr_b7!Qg*czy9f!`xbTykQ4X!*(Zvj^^-A^oJ=;5wW2x6hVgr=Ic= zM6M)n1Jc+FdeL`MXF(l3;=+DAH!y`N=yg1i# z^*PZt=HNv`*k=*o_IWxiT6t|odM8zp$SVsx>6PIGn%RtQmts5Bt5F2G^7y^cZRwJ_ z^?`{jBmL(pdBJmX6r0|n^%tGbi|%_bRvIw`ot2zjo?ET5$A zM}O-#tcM1!uHN~=hM3ESIJV$p2Se{Z>_Ee^vVdgWO^vwTS%~$=t<{YanNZ&M0z{G= z0mw4}r}Q}kh_QF$9VM0JDvdU>MV{nW zVhN11j)qoU=oWQnLJM|?m9ltyr55qYRnFsD413yXIG=r! zS#n>I1s>xmJ3R~2Dui_i4Vzdjow1g($zGH}(@p*AiqHng2SFmoQ;1G?(%u;YH-?mY zsbkyUf!GVINJczLY{p!8ZY01?Z3p+i1O%^37|X!@WviHRh@CHB7SZT=E(xKjiG$8v zuAN~9%6E6Run5DYLGlk~&)|262EdlBjVE4awj$#9=@P5I9u1xW>RC10%kF8wZE|J~ z?{)8hM+HEV+}D%1g>S>m<0Jhe$BGv*t@Z##5wtHN@BAmIDeLj>G?ugUG&ugWxxZkm z66<#jr~@Y`WO2QK%|$3ShCBb48KpbPzuQFM*I#}O%g@9k23i8V^W_HUFcN2l;2qA9 zlATRv-qqvzDa6@^=qh|(7B${3j<7t2M7Fy$##ukt+jcmIgdXy-<=Dme@a;NGwKjj}joY6~L_5<}j*wkUSth!*NZDdH1poKyQ4V8$Bc`=fvPT;{7-Qu)h||oE zr@Hk43wc8u;#{eh&m(|hD$!mtU-6O)RCL%Ora!qCN;^0zq^;SLm0coOo-CA9R^fd!+1 zhTw&ublN3moKDMhV|MP3`@r8R+0t%*7?)<@sl2$=8Yn)(vJ)7QvdyVRW-_u-AV*K-ZtwnTY|FdL&H3R1ZA^2_9afCL%l;t;5BkOW|D;b>X`KK!j?fJwJ&}3Yn-MW@)gWji+0x|#~~@b zdFp%z*zlxFFniO6F4HB>^MA_JYm8Ro`Zl2Ui0~NFB*Tk$F*(iuY+pJEb@N!F(IA2enR|T z)`9BGml&_f)B#CPHTlr1L1jMwY`7C7?ET*>gi2UD(3*Opf)30{xE90nP2hDZMlek1 zcduP+oPKI3WZrJ`f6EtE_kz}H)`uqp7oX3sj+n;qjhXUXA)a(ePpRlwe#q!+F~NWO zJJGCvtrDbOe|!`*Rfd;!LewlKU()-sBwc<_gwP)tS@TwTk0y8YqgJE%#GN4lb#pZODF?;iz&#Cs&UvffskX z$DIg^pr(fSe{(af5s<`C0!99{<{n_rB9XxwW1i+epC?U1n+A)G-(BGnF_TQKhIDnC zeU-oBsSWb=N-WMCF9TQR9qdhJ)(Drm~6WY-&)F$1S+h%dP>L!~5+jaa?;#)HQGYX60%suaat=pe*5#)FY-NvY>a z;mA6ldCETbAnwP$f}1KH^bG4i7To6W{40g=8NOd2V8ZO_CR?6*pX$H_fgxl{GI7+* zMMkg{t#o%myy$qr&NMiL4@yROgS_H=5;b7=piuZPfg%Qt3meeNYiX0CJQZf_OFsH_K`waAux$~mm`7Q@v3K=A8!8Nh)=9#&p|{)-z0(;m1{cQON_!nF@*gOcPxJbA$SCfM zKZdq@g-LmTMf~l;Rj|~q8;w*Mq-IL;u%C7V(58P4e@Sn7iGgky0dVS%?}Hq_tAnF0 zgg^XNToKp6;>R;84gw&~D^DItsI@#b-9q*@A&=jzBs^Xm;^{)(EBSFnMYo^~|AFihOxKj7>;P{powLQ`YtlNDjv7yN-^D$aL{%%^ zFaz`Q@lvnT$FwHX5pvJ@sw19?j{|tX0po}OhSan)!upao7|T7OtQTxNby>dr#6E?xL6D~>8d zVr#Kfd799am6|T-)5kqChyl-oSEJ&|@bsN)Q3(RxObFF<^OOSfklD2Ip zQ~OR|E<-)18y6N6^T&Be=;U&uP!30dQ{Vi%Neo~wyXXOEnU;`5iqajKpe6(Wjbb$I zv{@IX(H6SDsq`ex2*WT|wL*pLK#^_wq6AeN#L@c`O+e7j&)guYIOYdi@B=k-f)lWk z@f4q>;~69`q{bvDsU3dOrOnp5mmXo{H z8b=Y6Xru8xu$B`e+*iJHc32aD;GxB8mK>*@7YRooyT#n2LS&Es1K}Cs)^uUQJxq1; zeqBd*cGRaYf8FB#afvlvZKiAQ9UfeAxEdMsi*k&!PNbhZY(+zC zk%_LW*KtR)4i{Oq*U!^}xxUJG1zri>a|? zlHxs9*|1UKYyj~lqt4z{vyR0SUv3n-0}1?7g@)so|ULnc)J+`PE znoXd4Wb32JZAv!5NBuh~{VTo{S>Zqv#{f(8za$jm6F@oxV4dD)S%Kwy*JHr0<7?*Z z?%>IhJEO_hB=2j;NpPTiV2)uRZMQa-8*=c(XH}c+Uq;$xr0}6!>7HRN7t};(L#Q8S z`b|tf?0Nw8GbDqtc&&)F(yvI~t?nGi&vq0?66QLj3I`0p;RpY4G}w_klxMIDJq(lk_d?x@4E<@eJ zH!Co}UmjRrR&%Iq?$m65>~<+?x(2k{`d4t2Hl-7oA?T6awNDV}S{dQv`k|=DM861k z!}<1&{kG#?c<9Y{Rky9CJ(cvoVg)`oS@HSIBZOkG{ zhb=Y`O*ptYc-g;xpZ?m|oX`Vi5c0_mc`_Zsg6%~WV)r^#=ji79Qqo2FKm3k=lU#4V z!m>6Lw4|=vIXO001Zy2R*L1wDkOiB^M#u$ImmgeS1t4^SbdH^FViY8Rpd+&aRXb_* zDwxIica!-(Eg`02_6_j^2YH4x)EDiiTy|R06&keW23o%vGeS;w5$7d`N$FiWU%6v{ z=r5Ha($5PLY0($Sf!EKlmnt_!5Qn|3rep2s0qr8UE1PIp`}H>s7O^bhRFaFyfgU-R zPx?zbw+Zl)>qK=?+$K*%S;6#3c_u`^`Y;w=Gt)Nm=_2Ruas2`3F<6x_eXJ7yIK^DO zJqB3*n@<@uZ61PmJK5XdK9#RM(2gZzUosZz9j4%>*>eWZTUg5@44niS@kq!NJJ4ah zy!UZx(R8N33vmPKYNt_8c8)A zu>V`01QhMMHF56n>qHpweXT1YK#y52q7EcV=bhnosJ4MhUm0woUe2@W=S**p;omAe zCeqk4O5g)Ugj*qSrPD3Zb0|*d*gZlJ2qdiwvlF@z4+L~yH^Et<=2%+etneE|NzJ%e zNASZ2uvgu|z@nksJ*l_xPwM%u%Wxqo72g_O)X(q&j1w_DWR39V6dVpd9*0zKADFLc z-^Je=Gnhd?|6Y+T?!*L3WH$`FozuV0#sA8Nr^09<@vR|AkU(&CxM6(#*-40L(dfBN z+>hviO=)?$CiqNn2E+kBcUU*#0~}h$l`A}4T}8i2aXn;8U<)p|_SJ(NO z>UVmy72;*wJ>@3z$oJz1)2;Jie&yG{d3&Vy7GmGLxJ$I~krZ-A)m$+WN@@eJEzx>B5A{D|W&kme)N@2M5xuak%Ue%sl3_!C?g8n2E|Pe)|5WNq zi3K-i{k5Z9jA(mDz1{T{AEh@anAh}9NAjXiuC-O@I=c)jdsy^B$VEVo{~mUfntzcz z=yGR~DajPyX9Km9D6V>lNbWm9va5R!=8>>?uBcxP5y&o>1e){+drTKI;Og zrhQ24&JH>leM{vutSGm7B0J_mqyIn)#Iv)qoUBF;dPhtn8vxW~NFUPpGdv0-{>9$N z!0?SPr+|*EUR^P5a9Sy$lg($n(5J{IafY=w?$Tp|JEOrE)L(x`=_ve7PTnV}KC^(0 zQH9WcNm~yT^Y(G!=v@+)Rm*s9@L|){l+>WrZUQ1DN*K*;}6w-{A`;%FZFxAB8bqly~J8!%Yf(-8pC?8SldLa z&r0$t432L}+CUD;?Zk-F>Cbhn{azEYNOenI1G9t{;Om7lZ)z*ee|F>r#fQaj$6B)* z^6=-hcr8a*j_QV;vTd9f{_>_;i`}m0m^9UhT{~S(4%=H!AO(v+c=tx{NG`tk#U&{% z|3`j@nzF}}Vh<$_iv9H5Ses+=C^y0k2%Vv9UVrO!j*zp-aWsvg=JWf=RQAs4QC#iI zpxhAdRM#>^W;)vX!h4Ii^{5lYC`NvUd{HIiqq1=W?J5=1Th*f8dQ7lvg)N#FJ*vu) zL5EJhh*jc5oQ`L_w+d^FCJs+|O0F4C147BmJ1xq@a^BvS#`zWof_@i-*C4E3x4BI{ z#7z2(>}jnvL_~2W28@l$(C~Ot(MhAq9zCLHTV&c~TV=H~1L=IEU0aT;3RM&Xak7&- z-W~k<@K@iZJg?=`7hR!6SLo1xR9S9qa@Of@>7OLgj_kbwDr`e36X!taZ=~aDQhoB> zOw5U5M4Xr*@ivMFUX$VRTZws=DE`P3ycmA!1Nq!Q^0%{fld z%=DkNp(aG}oMiDn+gYQJ$|-YDyS!w-Rs=sNJqSI|eRB$2BGbFvjm zTA7+fRZ3I`?j`lROKlLR-#eP8C8cI5Eck z&6GeZCHB@4`Y3)sWM&<456yn3LvL|f1XCMIxMmA6+IJZ&Ghwl~uU`VEGxhh!k2EJp zZyWWF{wQQVoS8p4lLFIXRk~ZB%xoT$6cTQrCRQHn?624|jb1wJ@2*5I?as0%z>MvQ z?rCw5I@K8>UMrfK-v#;Rp#ff?H z5YP+oq#{X(-T--Pr6YqpZ@oU@G1hg}XqlRBdR?+Q@8IZ?%&P67FNof_NN$gjw^RM? z${*;~z!uOAkak`w|F?eW>alP_tL((N6>S?bB3);}QO0Cjf07d|eTVpKFM(u(_fXC4 zx9FyWbX1)NMbtRICanth0FOGhS+{u;2b>Z(CD)ijZ7@qib=9RtR~*b^mk*e2*W9^u zPgS=YMtF{OmYe=i{Y*1zIzKC=djWE@%enXzq@ z;)EHy`j&!RC!(RH9^8B9Fl0pmYQlV0f>a4WxO>DLqQ& zBJ-HILkF<7d5Y(7AwN;ZD3WUUeD=zM4;V79V;RCGvpl!H?MiDg?KZfYUN0OveYM=% zg4M@&xn3B)LY9rl9anq|dW~j>0>Kul7@@;CQ=>`6#k&50pGR(lqS)h;W+YQWdGSm1 z*Rl)w!3nVry9P;<{4wvtYfdD_x2zB^H2MhZx7z#tsNiPQDC$TG|Ijvqqhej2Hts>==H5{aI)Fo=4H+o4vS*4N>{w4{G~Tj7wiOX+=8ve=`<$%liNG+?HOVB7s?5 zW}Qvsok9v%65(`mIzGoU?MTKTl2ua7Gg!F#N8Q`H??r!4_lX1@yie##>OpdMye(ui zSJ$^20K|JTch2P=nKY5n>}SLKA)SmkM&MmoL8UDN$C1b!_0JxnhKfWonQSL zX$QVu@6w>|JPs8WsL}=ehnxClO$VClHTs{(QL$Od$b%O=wC#1`*erpzl|>7{l->LV*2O8QPbB%_moseO5P-shGrUE;#|aeM`P zk7ESPGjsgZSrT&mmfzGg^T4#r%jvnuXA8o$Vj}aHTHBMvz-#ZaHGxD=op@dMy!Rc2 zR6+D#%9E3Rz=|%CF)A@-;=wO3l4~Xf>0W2*)s0&c4H8AJGI!)U9Butx-K8;7RaBNHcaDO)b>Fylk$~VffW|hPVEMY*bUV z5x#PBHTg20ihScCm5_`2VV2!N<71p`!_M4_yKsY_ezEz_R_znnA;YztA9=t16nFur znu-Hsm+9KI9@D==zq`uIwANm_+ILGTmd4`F9MM^iG_S{9HU_T|cYx?dYf;-BP0QyoTSDs6jnH(zYGl?u$A54AEY3TNLoa*02_*|zN!ArB* z2ziR7 z)y8H6_B~2t6{})J6W&?`Q~T}d@gED~v=4fWO{9q*u}II;e0cq;3R|M%~D+Fh5K>Y#~REWR#5+ef+?)g&I>CLl))iZuv`Mi-hmbm{@{h6RgN6` z0fC~v6DBT9zSGoc{BOG0sgx5%@_V7cv%ON6Q!w;X>Vm}HngfNOO~-UGU%8Mu?VG8@p(A$E|Mxp{=LPX{gM#jaIWC9s!X(uRM84KX(ydii^Lj z!o~Q?<|U;}$FTRhLF#2*t%d1QfY0?v8q#%T)?#5b`S2PTarkNmyl$P)*ZL^^!s{ltLdXaDX_>d- z)8g{CH%WO=8OCd~JMb7i#;?LxuB?dl*F2~eXT~%Wt%<}X#QzEt08y+*mh7cSXWdK% zoEvasN)*{N-n2lh51<#%v8#xh?fsT=v$~I|?Zr+ewQ>GmeaFl|7^%6FJ}1b?!AGTy zJC`Eon{oMUdfs14boQrrD)t)Jl;3`N657RIo`kdq-f=Af5yQxJTNy#+k;#*2^V z{lNfHjn!*NbhE-AtEJF^mnZ=m%GW#|sJHx0IuQYW&>28-yNx+Mcd^CRD_67;j`VRA z$qpB~*s7wCIRXv1Y6WE*n8Y~y(u*hRyfl<#XkVx6F24gwxmDY;OmAqtj!{Xhh(~b| zUV&f{{QajetsJ9IOebErUS(mTMB&{{5y1QqW(~TB>AviQKj^Bj;h)AudJf88dA_wZT!eANZD>Mk%2eQnQs6-eEE{GG}iZd9$4D@$`y2AxXo( z!BS=MJ<#Prmv$$KTHhRC|KnTNdj=f^^d-Jofm_p7vXS~TjkWo-(THO$WTN5orrNUM zs?`MBl9iH|TPlH;bCl8+Io{HpaDVNFa+xYzwqs+E;LXa6E_7+T;r?2oQN>PxLZtRV z{yAY(&)j^x5$5EWVD# zX@(#wJb{j6vWwbd$uOVHky(|CHoZv#18mocUU{;j2foJ9^35OWMAEwPUL>``x|Da5 zCP;O%EUI{j>_{k^3z6+qnJlC;z?_K3VVw$eg_1f^=?0I*}pH7rpi|tvQcl2xVk)qG4DSfVL`JjeHsZ@;iF`rTTFzBQAubBdHO<1{{QSW%{Ulk&G2$UGLzKn56Ho0T?u0 zO@_*1^9?&3cAM}fyx;FUM`6DzIWxcHO+$)i(GZCue@kPkBugg|ALdBka`%-2gj@sha}*{ogbH z_V$PW|yjXAaNtzs7nbHo?I!*Gw^U-7e*WO+$R*orAT%ADDeBWa(ds z79HFlg0zmjTx?r+h;FaRDd|Hv5=LbRG3b?fVDdp@&T^|Xg=1}_-qz7jB))En;`2D~ zm2V$%w~*kq^LaYpW-wF4uV6^YtA{EE3Se(|v4P!wKwzy_D-(V2u48`*uY62X4QI#S zt?N5)xhGUG_jnyqquBXtL#&v@#6J;TozHlaQqJ=kEq-9ANfth zwo+V;E7~v4;9H3@e-bTeg&>agtAbDhiXtnxr%bE4>pO>GS~ZPHx<`jszwx zU1&urKLmLc_EsJ++f_!fldpQHk&}W(w9CvXoi0tH^(ul)g(LK3R7s z-h1~D<=SzW)>#|047kNm5avsC+mV zqRDH5xzH8lMngj+KTItuj$&K=NZyA|Hzy^jXQT69O;&C@eEdTveqC^JEcnGVbyQdq zYC54~p6G@4VDt7_-alU^HcP5NbOPza+sS8V-TcwFk|#enEt&v*x~hF!aiO^mEf3W@ zY-tz}?^!|b8n2sgG>I(v42h-AE(?QIEG

IH3Do$MpdAQnS1`Df=pK!0HZMTuorLqRzT>MoL&O=ApLy(rm_*C09&caRBj+}zdAQg$SB5r3(`nad}r~a%Uf^3AP+kDtr8VQX{SKo=cGWCo+M$@&=mmGv7?A2?c3 zB(@+;``6_^&_}5I3iXj-7e!yYq)tVamH$q8%7ia?D`|GWpDg8baH^Nj%$51h=#+kC z_!Stbm+@6v#`QKM{_=Xw+Z`@=&h$Ba83$9XWqiw|az{-a2`k-3nViY`k_81jSUEXp zvXTVzUd4zgvw~V5O0(r{{s-y{VYj%-q{_rk>Lbd*%GDG81m_d=FeLOJZLIH0bLTGy*YvHviXj+MNqNy2lqlD%`jkQ;Wjc0qSn$z5 zzf{&w?lHxWno06whSxj2*vBR4JWR+<#`i+REiGn3W(Yw`>8Ikt## z{0mVL{sr~6jf9P}OQ42kb#R8&!l_&1oh0YZ}t-(v}C;fycR;jg*EE z1#vfwbmyp9Yxg)|TzBC`GGkAw()8?@-~`Ar%$hzXGCU7Ck#6@h$j$A=B=<zGrpi^)En5n?Iui6`w#n0YNJCu z4ucHL7vC(VVFDTR?tm7_@xr(PGv6ETFNh zrFCu>7TG;H=zca_bpqV@(>*{wNo6@CTgeef3aHQ`3?5y%c&5HvI+`9$`bln z584>-S9UUcoM|)futOJ}X(g<&p=I4BSCZyRrGB3gM7cQIwrz^8&|xgiw;^Ir zx-6wIoT#P*Q{e`X>=b>2eP4$KN(@z0yxmI7P=rxhS&6RIBo19(g2T3a(wnilCA>f* zjE>_a`-N#zS}^-biUGagq_rxkYY zwS4yz>ZUQHm?+0`1u6f|(*F&faIu!|C>vdd-q?2+VJRIxS56Gs--BsUZ5ifh4+QGV z2uf~YUMnm}$HZZRo`n>-+JIW?Lpm8BsW!jS741nI?9+ad+ykUBsS>K~e`-`08mW5S zX9*1V5J-r|KW4vWJ)ROWCUPpZx@&*9*tk}LIdxWlgJ2LR+Sjv2xf-Y9bYPKhOCekc z>?6YT+=occzwzw6b=D}-H!3&J*whOPU;o|2@}7xV&dFdiVC4q;SEXAk+6je=WtLp! ze2%<~fbUZkZ=C+^*E+vexD=^>o80Q04D@`T!hb+1cdLdtzjPZXZJ4$$%mo>sDqBq` zB7lp{xBGpRTi4Nb6t?39#Sg(-K3wIhxzEAM<{H{YIo;V#vv+Z^@!5Q5$=^X#VM_WsH-i7N z9U4Xl^94$jTX50Ygm?0~*}09MQ!Kh&eVY!E^eflGMdKPdV`S_&`6ij$T~{AYTA@1j za@N1R_ctoHlMc31jH^BvGkG~^5tdi12PE3nV(TQpk-+Hr47JixgL7QVNHbjHB6V7D zMAU>y^)zkb)2yn|j;#}EIkAG;d7TYXn2a2?Fki<>yVz{pnaD-K$&U416b~lpRO>%| zd!5fEhTU(;}T4Hf&oHRIveWNQ>YAvzfxw3fV=v}b-ri~d(^ z0`3$EVGdGjsJwGIjkKo%!F}?{b9}aHaIXQryu6A^b09g4F3cl79@^kaZ=rG zd;*V(@ypf{>l=nMVGPj;R(~C!OOO|hDaJk~O)uwTuR4-e`p-fMsbgeMk9AeZqJA5R z_r5BV3CuDm(oYbfS38$6&-gKNXihC1SY*ho^a1tu;>?6Fnb2Nb}ETQ7&sE%sO#O7F1BGi^QBD&p6i5zXG#XgQ%tyAyw&W<=%XOk{gi zb|1+oepVvG5}t4DReU#kXzTh3qdODiyKyK-XX2Ny4Vlu8*T6MhsTsn#iAXZu5WpR9@#WUIIe8((?nTi-Mn;2> zmao^21BdOiKN6Px9H`wgU&Tji+$>((obQ*bN=*kB3s;9S8ot?KL9g=K##*_8d~NNb zPT(6XD6dr@U6=tJ3lrLR?v4vK)&1Fd)F4<60uq+0IIa&R0i3taRP29S0DRR~XS>H@ znYEWWv3p}RrVyRqOSw1R^8Do7Cb;cMppT4r8P|v+RB-p~ZWf4w`h6#CAHoDA9HEuE zZ%4KoAOf>*3uYpFvicBP96wvFJ>8YLM+SvR>SStu=_kTk9=?#2E_0pe4Os^IAsIrJ zZlmLa9FUfDIVf0Iod%TRU{R_0q)|gufYcxNa=FSi0lqGy!m5@s36riScAdexnIE1? zmzwcE3LP;nE+eu#JAvzdzYoL8p-m9r&=ar)bWuw+o!8&Y1pLt4@e63NR^HmE$yNV~ z@7+6pFGh0JUBj6o;yPVdI3@#j&YuZ!2u%=U(xkO3|ILbFfqI<7j!W)dprPyaP5v8< zSH2VFTSm3P$|Br5ufwCSyd@q=ew9u87uVI|sbaPGuSV4%RtKHFTLGv&`ThgBwTWs` z0J3QO%lj%=1lmdO`vMR}a9hZtoXHc>uwd&0wDxcsg(2?WBr;i$T8$Ry{AFn_Bk-L8 zzXswPGE`;)D{@zU*-WE^nR1TjCay0|udfAUrGPW&e;?X$4+D^^ug=(D+~9pyVD4I zg>2}pAh$Pfs5mMsS?k-EXqn~}PCq;0Ik7Yy^Q;Sa|A@|OFW|z;z$~lm)hLA?8VGcI zC_tAHz1y*wo&?uIQ{>Ai_xH8a060iq5GiD>=bx1mN~N1d`@Sge!`Cf>#SFn~(Q}pu zK&aT4#}tIsFwHF3zp1le_)zn?GL`pPsh#93|Je}+=;uXd^sGHVpRW`3oFm*w%nu}K z6NC5*-}<_FItZx$NI)^e+D@>%7fd~7SZP0^;i)tDhb~9@<(yYis zEJ@oPZ};6h%=3whd$~>X2yNYd7KX0^F*~9v+215+GRRuoFvu*<4sO$%5bmX33vQW^ z?qHWI#*_51;`4XND&ZHY2xh~I6?jaDj(PDtgY?{$CpydRP66|}#Zh?-6LZ{<45 z?!+)3Qr1_S$^h9~omnbvS99-1wRe+Sih9d;Omg4IByl5G_lYQlqLZXSzMPdzGdSZW zxHBo2$@E21mz=-j@%C+b+XMn$CwH`sFb8a(eZQdHEBdp639|e8r^<8bl=`aFF^Q%t zN)^PyjJFP_o}7)=oU$QXYA)L(X1vR{c9{2a5N|D(Fg^GYUwIw1{d=N zY5meXiUHHZ7&nj~|HHbP#n^D#EgHJ2T=od?d6Pe`lYZf^34Yiv$1w^1(^_|;Y4f#6 ztvEHnxuv`cNKBBCVlhR+dIW={P&5^Hlp)izI=vesmUdqkk2@dPUk`Wmdyqn#m`bUq zlN$S(iK#DA|K=LZe?0tOdfz&tP_qCiGZstgX@+Nb&keYRZO_Ts@-v~KSC038yvFK- zq*3gLE=4QQO9%Fx8_8_xpwQ5~cU~4PRV8tTK`QK6+J?(rw2&kUJJH=u8wGAntUvr8 z{*}aapAWYSHn{Ram14=@a|~CcKPOK$XWtpUjjvpgc9u+Nc@sWSvm}DBrQ^_ab+QeX zHOf??kJ7TMG5rrz9zFLThy-IwfuSb4a&ZfXh_xq9Ax^t_pZ?2RTM^*jOnAYDx5JTX zt%@wyT8l5uP77G?nz^mb=D(vK4yzUz;(L_g2kk0$3tdIY)4$ z51>2fxmP#DIITAU6k`ODej8n2BV|&p!xyTV9}0^?=Y0xThATHlb?OlC?yX!as!AZ8 z96oCw^m--WKahbbBx>xa06}JMbYB-j8N`hKdSKoO5ugbm=v|kyH+#sW z&Bgm&w`;5OTbfx_15nZK!*8yo_7s^0+hqPAyw9<16o24=x;dJK1MP7afMFeXexX<2 zhKkN4n18>tdG}GuV^5yl?xL*3GCyvRDS75C?3zWC`>c9Oso zSII|XP6D~F)W(a71O2@lhP+qozsNqF!dT?{0UIfR`c)h`ZAdN6%+yUVVd-mK`i8Xa z%x7xx@hej~xD=R=wxjl1+qm~Oi#~9LimV)` z(q`OxE_`~At0t40T$1H$Ly*VQDyXBLEG|A!zEa!vA4qpsGC7T7$0GakFR6#__Ff=L z^*u<2P(aH~9bY7jw8cU;DjD=NQH7<>l<2cGxgpZ?BKLI)#eKJ?+q-3U&sX$)lNrv)yD z*N0HjSNK{Hw-F&1mhT~q^ON&Kqj>?10X|6Z#-mR%)>ts?UAfd%!L&X@x3r+NcdB}`sr+`wk^V`x}-Beaa6 za$KM8rg69NNw_?LCV8Om6GH+irO%gGFURj7)1J>??AyX}7Kz!P^?AJQ>iV1rW67Rq zAtmYcH3e^obO<%BX0fyP-c;MX$gscxOoU9e0$KV&@JYFrQc;~~#$xYFbtU?qFe zpVPP~FBe_+)P-nJT*r?CfcUZ}DFqfED8yg)3Oc{i*Lz680c&W(Ghjf=Xn_K3!|b_n zJ6t3N29x>{q6-U)X&smYvOio?KHPn3H~sLQlMJM(^bjQRDe3%Fo>#fi6~WAv7QqDy zQQlv^&Ta3IQ6^?%C)h$%Z0JZ44`NCK#u@QItUD6_PA7lOQ&QsG^n=cb&i+VUGsG%% z4BYw%|5L0a!e^1=l4m<%JN4MlPSM=+v8+yK3Xz>A=|T`msmMI|Bk(-RwxM;TP=oht%Cj?pY3PkSg>pC=fd;xHdN+7vuicrkHUq-f;NTJvN=G&O2 z{X55jcb_R&h~7;#DPVwAa{(BOSCXtca`0?5Cj$aK-gZ3T5lo2<1Vui$QT!VGo))LH zttMr82NL>hJ*jOjJF&KbU0Hmyh_K6w-Kyv!$I8%-XsX;HCcZClH}T>DEyqb>`-%h3 zu3X*aT09Tf2F|Lr4kj}?0AetZv1Ub;?TwF=k#s-b^+4!K1Lyfslmt$1b-iUS)~uV` z<0kK__gg-`A4)TIS}^xSMQ_v5P&G9=ORHw?RZv(p|ekRgk|}8X^=J}f2)JCYk1qb84aHj2PkQ@YSi&l7Zewq8}+6!oaxzI8sv)&|`$T z#&VOKN4*XA#quRwZTMn6D|gl#Ep~dl?;VsCa$N(;FGV zk&gc#$S*uyMjlaAk=?mof~e9cQww3Sn?`tey&h)IniMo%sz{b$G;XOwYi*S9N6X^Z zi!sdRM##rytgiXbUs=uF|1dX+FVVtNm++x50?H20vAw~n!zSWv0l0`n7J>Dj3?a@H=%4>e`HYgWmWWj&3(X1*Vv zAfHZ>IO4x9h2nKOHo(!WF&94fQY;jk6px)CB6EMxnFyM|!(+wu1X@iS-nN=hpQ{8v zkZ%Wb$(G}2z1_E~I+3|I!M_>2z8sJ|(yv}?$Xr3&DNnUO_Oo@P_iMJ0Z3-cMH@fDV zdlsETbo%I`qP}}$A9+Qwq*qfW(qJ7V<2cip#dzef@*#W%aL}*<^xxGjHeaky?%Mzj zqn$?F1K55oRWz3$J1{2QlUb#0Y)G_rGuI#7gUh3C+FzIER1d?I@8?{hbGk2WQ545S zh_Rz%QO*?AM8wcp-qwI2iUD%uG33MS^!v^k=#@OsQrBL?WMocoTA+P#3n$fPGB)qv z&rg9bq}O|`VZ zHRGN`j`FrUpifqU0>=**On1PFjM@{btW20b3@CmXG&}YH(%#*)HTP02d8T*l2Y6}h zLdvuCkRolPsQ|uUx&~HiK__h9@#F7P2Jxf)t@}Tuy&V?M}-6&VQgc?{m@Ss^}LR9-Htd%Zv%?SG}g$(4Qx} z|Fo`@Wo=Jy^yiJeUNceD7nK?D?}IbbUzc;o)bN)~wc2+c+}->K`cZes5hN3hQ0e8w zKF8>tWvEtH{o0vi%&!)zA#1DYNbtX%`>jOwtzQk{AteJyHP)GLAhJ;g3ZLDbR+luP zNF$qPQwK63&9uDR&I-_R(#+lI_@;HpCE`w5~Iinvm@M~J3wsw zqM9ddz39$asTI-=lx2&f{gK-kQ=cHI+?E8}x^q~PCJUWa%5`Xq~o6v-?7fqj@Ts4s(vUye%^Xd1wg_ME5t-T?22u_abU>S`Uma3^>u zsTsL>iW{UmUVi$n!p)yN?O9qT$(9hlZv3OfV8^poLJM`B1a%kQOJHo4{?z{{x*Tz| z*0$%Tm(d3hL1>OHii)8!DM#bFM(l8`6mez*PjApNJ}_CtBhXImhK^}fG~kE6a}`#y zMiaT#ZM$f;vGR64Kh1qZ6~f$S9NT?qoc%J@+*2Q+p3w_x{ODKFMri29t2zSfiMqU? zf@NAQXK1STzmfuFSE)QZ;{QPJwp#;HOj=eJ6@D7si+Kl&rfW-H8NX)qj5?m>rSM|Q z-|#Xf{scQN9h@aQw2|hlNT$1(*c!K>8#WG8tV-=en5QGt^IbDUHTXKL=()!0HGTUw z^4+}0JPdUUINz2WBouD|K|nepfX!-W&1CM>+aZWK*uySovF>u&WQs~)^OZ_V16H!k z&@v_B2~|yc+@;M1vi-bpWpa8DMGHXf)PCU~vb0-}Z|-)}en(`Wwvxa2gU(GqR*o0o zr$`)%PiLiM>^w!W#v-OnGrFpdKf01()i|=<3Fb-Q<4Z8C;?6sWXe8tdL_L3q}!jvw)Z zypx};9Fkm2zZko|1p{&&p>f#1nB1XYs~Z~d1~=+*IL6IpqY(0Cuw6b;v0oZzt_ka{ z`6%9PynlYGt)ghv=^86J;d-$abrl2aB>zp9qL;0FWY_+~lM~OKQFr^B-Ce|WxuZ5r zpS;Dmt!{tnbh&t{;C-?BZAggSGwBcs|37Piw&WNhlh^LAmHk8NR`Us{ZQYwbw2z&> zoH@p_GruJ{m<_xQVd*!9A)`YjKQ zW3mDl<-|Y&G%c;GlC3#*DjBLh*`u4Utj59Ec?m<%PIM8ziiKAAE_K?=lF2S-&LE6y{^=bo$2AjS(0{gBN@lWfS`X}vxvV$j>5SGXIx#kM0xJ1t?M<;b69 z&+l%q@fT|Vgo1Db#PREYSP3iI@q?V2!(`d)XU*-M3debV)xK&m(211N48`%FJp8)u z-A~5(icigf_1_gBY207fqZ=0aL}p_aH}M}xA3R%PIu`vO$RQ~VD~UGQl}5 z)Q)@@b0}60A99HI(^u{vVPwNq(eyt}lA>4q2ph6GtZwxZ6n-+brkqp_w=`d*lD}_l zr%IaVxT^RFU;+pIs)o{3C1z@Mmv?V;w-+)Q%ckXN8op;YmneSe^o*jVK~lMbyHl<+ z>@bJ_fn3e6u02zPhhDIkY^?mL2j4l}%bxTn_z?l?j|#m06I^@I{s0}FzvdW1GF$N7 zalGHzSi&V!J-F!!@@0ZAHw*>pI3oxgDR%h+_c4Y|VHx48{?tX?qFqhB#-&~j`&e_2 zxsW+1sYud-!6pp&xz2J6+bGxzfts}XNn4^Ja1z8*bIgARTtGfTwPLatIq?W(J+YaBjU^^z3 z?9ou-ldx=j!H6CY|5sYlsUKl=4!=aFg!btDLw$+V0vIB-3S9&^0!lB-9?}D6QP?w~G2TCB<= z6>R&gOIBAtXa`iuhHC~uoISYze#yO8+j5^_FsrZQ)>=9JtXul=F@V^9!x{BE&s%zW z;545fTa*;rQfFw?;xNLJtbt74yIAZW(~1AG{HAgyZC`!gJU^HhA16y$jk^QF{oCNEfRpNL@Nc(Rf-Qcout~7?2>aqbM26x;;Ja{U+qEjlDzI+N z_Fzb-{wwo3gRZ*!B-z&o4Kyqq6Wia>+&#W<-mZTn&H<7Ip#~9ef-3`?OW;h zBa4BAfi=dYW>w}$Ke|?)%FE14^g9>n5Qf)@#pZLXNj1{JzPaE|BS3h`iZ+8&9P^Zg zy!K;QvrEE=J?2r;*Nvq87XHVRDGKi!OxnU)R}07Ns(WnXj-uh35%c-Zp;@|AkJF|x zM(bz@jMccvSergyiwJpEb6*`oA$Bx|DEnxFQAD;?YY92G&EFv7ZvoB71@d*@V}$MIL9JXQOX$r z0v{bPS}4TTY97#~EL~|@ATQ@HxcpH&tF%C|{tyMgd&6tAv|-sEXcr6q7=GDy0}TB} z^T#!Mxb0ZNqEFq%Z?j<1zE#RrDhJz_&nCvxO?08~w9$?b1AWc`@d_fw$TWK4ng5OG z4}&!sA4Tb<@r3!88m=6X2WZcp5T+Iy^T!yWzZ86?v>zX` zaPLio*eEJB+o65?mUHt7j6Ls%3w&Em4l-0$%G;)zwk?6zYQ4e@?ZAqVMQjq%8cKQz z#l=p_)sF!OSIjBwMRdG#kb|YPn}t1zlE{`2XVjU1WIvZp)%;i3$;=M9h&xq#!dp!3 z5~j7(<8xa(VQJARv54I{wqhqZ?igjNn)>>y>_ zzeA0Z1o)Z0f9=++6&)~%9{2C?A6?(+`UPG&-@}5eHYj36$-u~xP0fbDzvx{R;++@y zSw(Mr$2qYg_ybbanQRBj5_vF{AKl8Ob0f}}Uu#>ptS$+8RgJ#Eb3hR?IbaylVVG?I z2EBp%f+>xe%gE_=Ccp2C1Kz4YW%X6^Xo6ee8x=D4SKU4m_G8kqx6;hUe&723*FL{h zy*PFTei;;Eq3HMPwf;2%U4fP=AKkm>tAkHnn%LL5aNTleIW_7#Y5X+d6n4d9D>|W9 zeR|7qaWtD?l)tS9Da?4-!Ed!TJ~8b}Wq-SMIl@>?gi~uJeLF51ydNPS)`b&! zc_1||MI4V>WBF|#0GgCFuaG#E|M>@3DD2;{su(3Xxq#na&__y5Kl)Mo_WTA50ZnCr z;JXjc>p)D1hVpt^noNd=EB>C!a(Z zib<`r18%2$$@+015Bg<-9px2qo<_0Uh>ze}p4XnRDonznX~`t&X=#0YD^oDttbluM+()L#Y+|gdhQs>F}H^&+kvdA%B08s3-;p z+>SpKUljZgbWl)u6oHeGEPp$G`ASi6jHL^bW1BK%ne9{F(~|ujw0^9cD7l#=fZMc{ zG8L})nNdZj3Gs{X;U{W#1V&LSS5RHlkE4QU@q3wv=CYMI{zd9HP4W zQ7S9{Xu+#j>~g$YRbgX|_#rPF9hxj*JZ5Yg=5c#Tb!7x$ z`Tr}GbviLMx#a$|(v8aRJqt2LT|8$cKzlDZPmIp|o=XFPDaY`pcPmA*l4fB%`p@pF zmN0QGT{?-RWT+wEr53v^j1oG@7bVw2fl}(x53C(>NT`VP5*}UHHlrn7d2*(OVl4}r z<)=0f=~+91<()3DYJKgT7!)Ytk2zSvnB0^1cT&oAfFCXgDWDvA$6~$HbsbA{ngVe!%@1VpVIRh5pzq0+5ERG3Pgsm(%pK z+zzZSLH=jh*6pPFHRIJ(tJDq1%j)~1tN(?X4Lhp;4UD^O;}t-nf8A*{yR*x1S@#-JBnt^ConqKdEMg+0 zQg;e;#a(nes4=9rw;HqHW$<>XA|fR zG;;Di$v-HZ=-&P*^4`Iw1hcSrtDlgI9b3g`m@Rq!$>}x>Eb`&xwOR{F{{8phCdb=G zE`J)Dj|hyz$sOy{8O>*XeWmb~jZ%Yi+0%i#4PH?SkbMJ~7I?N925mayO5ET=-GTT( z=%!3_!0dd0;6L{@`ZPkz}<~ zlWof_)>BIU=&k~hkzvKHJXL`eM2EGSZoXK^nIC*xO7^`b?HIdx$MrLdr*<;yS zl?b+Gj~nOTEYs;l8=03TO5#<5sXc+dXK^|n7TVi$@Z6@pc7}ex!R-#GX&ZQG3r;oK z`fT0Qyk~I}&E3^tQsMfIVYE8a3IPO=x6JAM26vzvvfgMQ8Dac7?km#(oZYl^!(lk zxu8iw4YexxiSYW{{saSmi%t!~+xQlQW8r~f?5}a1-c}q*C&<+i+AasjU&|D`iyIs9 z(IY&-J%N0yW^E%Ljjbw_R{BIl1ut4oUE6ny1lJ$z(Y@Dv`{~w&4m6!M+e^E1^4z}Udm16>O}=H|ARf@&>JT3*H)t9 zL*rbeZ}hzMQ(}>0Gm#hCIGrB?%Qa>GRq%5TaqIUeM@VAcU3of>Mwv&X8OhX}E*!MK zM3JW;q21|N24q>gn{_;Iso=xrbVT5znX!Fyr=M1@tQ*aXH?U%Jx7Z&@e>01A!NXJ0!J3F|6OtkTNHRf?XQEZP}J1qZ~ zEmiOP&y`s&x!phjx8KrL6RIvcvi9@UD&s`%8(SSk<rz=6#dy;Zc5Mm*6??|0AHyQ@!+Y zGoTqT&$xknh3VIkiWFm#)TY>Kk*f(b*~v>?89tMrG>@N$pjO;Vl9d%J@RqAiKl$GF zYWhy>NpM>12a3#j{z%c<^Ia4J8Ji{Z!+RPrJV|%5lhXGvlS({12N(56b6A4+mJSz~i0Wm%b}Ej(X2Qr# zw}+qXYtWFxNA7y&Xm3P6Lweef=tuJ1OdiEPScuc?!s^zIGfIepBCG z$jh24)Qh^fPsrcD_4^PSd^u};Eyw|1QBs+;pGwH8mc9<{8U2K5&ZG)@gI1pu8bNWq zCm|Po;HpU>`@>V^DuJK|qwW6BqbBgtCqOnS=KnMe%O+1FP-val_2r8=;uYB&Psv9U z!dN?v0l^e|19TSBT2VAeA?fLQdY!vaQjozrkL9};*ZE@I^Nm?+gm4GBC@79B-#(OH zTBu^Ec%k*N5`vd}m3__MiKKQyi`;t0{+n}nsP<25%O=$Hfu()pzgJhjOISQ9_ZwHP zcz^2(7x=(d&V98kBNp&h)m8LDmsGmz0}7%eh2=s6M(UHu%fE6*dRSeF|9d0^@QEI0 zY0hWl3Z)zoMG->|6LGECQ_WLlx3|n6KjxeE<<$gU@&f9hT3GifnhV^K1zqUB3XP@5 za_t)%HhdrMv_YA+3Zh=K-V!U8G$OJhOuPB$Sj}+~ZzI}%Ypnw!ipDj)``K%({%OtB z;OJQ~WW~~b@x9CL7Us^^*fl8|!@Ic_10+EvEplCVOK#7c)NL^9Y>DRM=x(nm^|`uq zZn&}yEJJ(5D{|uPB7SFGn*k(*)ctOzp2hj{^HiM#LjY?FX`|nhtKIELL;gNVyYmbg z_;sCOAw1zYxw;1q8PvXZd#-ozTVHjI)$dVwcaL`boU|{7`9F}d=l0LTw;O`oL*_$s zRr_ook-ivesjI+W6ECaA+n@VM4rl~A(9qCARGw-vTsj#UuwgUPL36yhdS~s;0S-0y zQnx8DzWuABHSWZ6UpSqg$#S5JkpF=;eY?k~?Xiz}MN>9qC=7J-)}*62tv(xEOZ7b< z=`>Q6z{i!qlhuD2U!=L_DcgV--)*@s)@nS%>K7!0{;|G>=Ak&c1|wTG-)~9E^}+E~ zUi6iBQrpf1MZ6Mul^VRS_ciY4+$mWN&ewTE={N2vAB(|cE&L~9Qy6}j-N~`l=y0XC zz>I8_iox975M~b1z7L^CGHwFg#8DXnumN-5mw6q6(QmzNP5hrXxgZ@#yEJX$l0Tp=Fmp|D7?%EM0vIx8*nyoS*eeS|0l)M~VSt5@XE(@5^O0`l!o= z>pQl67cHZC2t+1AF|??_jn&LML+ogEXQ4eqT?VwM(~VG8*>-iCX!&!$^|ug2pcT^$ z61&J-_8+KXpOm|QjKF+ee`4*#Zj7~x_E@a~+XJSm2$I|U{qoQZ{eJU?tpVj4iRYR; zjCWTuptdRX%_xqIh0Zmh-2l<2SwK>(?UQP{c_$~kfBa%euUKVn(|y{LOVr84X$L;y zb-d>bulGIL*wmVz+U$$D(+e5Cy{tR^dYMlHD{!2ZO2~`~Is??P84hEE1O8F+gYw+w z3d+qD)G>cbr)u+OWLJ~CZcBuAt>|Xst1)KHffdbr_XZzz(5LHA0_-@DwFp>%T;#%N zeA5>%OaJ``BG!+Csq1g{ojhtP*E1+B%z@t8H_Fz{=qLBQHTZKh3kUvGMLX*r)Roj6 z8Jjbk7w?blZh_k6@g=nH)eTz2W0TI=d1(_KQEQvH`AV~QwoG+U{r6xM6WHUd)i%!& zA{p0woerJL_*}qsLoSy5AE-H{8QAf@HeaiZtdYqIVcy(-mlfE9*YbBaxjNUah;EUo z_Z={qtQt}a4l$v?LqLeDP7#)>@e2;C(6_()@B2(-fCu`oJSkuHfMtj|s$uyWn}HF$ z)H?P@!aB?;v2*}shtye{Z`-Mvs^e9cf>JITx8GHeJO1DwWnY^9yU}>@i^hPpH_3z` zHvQS6*7Xkq__>PH5&)WFRfY#+yGJ&hoQO@iF9Me?V}^qallhm3HU#bqvGgV)Nl6&? z`a=XS0JD7|9zP;Rh#{r;P%GKL+c!FG{jG5d!zWFhCpc zw*vjYD)Ao+$~cd=?*V5&_dP&bI)PcRy+GPV1pKi`p!u;2qe)ur+P76E+xuCV{c(&r z1dofwR^BLTg^(&dhBc~5H^2NbC z=Icqm1euncmdp$-z3^Y{|AByWYZ|!jY&acI$mYOca72Bl<3MBfv<fR~4lNdg( zLm%b0J8hZPVRhUo!5Z2tX#Z>o@rno8Prn4w%P@*(TBOV8zkcj7eSQg&`3G1IMLt`Tc2!C2?*$iq zaxrv_&;9}A$bM8^uXy_JpG?fD`abzcsF`B(1^#7$M?rah=#Aj034XSBK@F!fXVNxa z;Xo(zK1X5Cr~t9FbqXZ41K*xp=0;+Ky9!9J`%CDtycu2S#r&1r=i)Ah0*Ec`x1d%( zqu^*detW`@TR@Cyrg|?(A}@`ra0op|PtiquM$IuFcpm`jHi(?iN8G$e14J@{I-So% zkrX38=5-r|IYH;skj#QgJbuQ|TPqAo-t~FK&{uKRNStvU3Y=)y*RNPMk3S1#+Z7$k zKTtu2E#*D|h4}v-_RG%0+;L&a6h;xrP-Ge^@MYiTDfrE^gRPKQE_IHa@5J>JQG+(Io${Gp*`T2GV&kqI=ocY;$d zF7XOSo-GItDlxZyhcSI1#(Ooosm2qSmNpMIhmbuc2>R*6i9*A7C*pWvKcL3Wz)jkfMlC%F1$9cu#QepnMQSnMeqfg8z|j<1 zW43QR_Q+MNdI*CcV8;04xr(?QXP(&%VwA@)*JY1vYx3#nap_c|b}756%e*6A3;Bny zGdbvPR1TFu-XHKN#SwUi^0ij6Hc?b;Ogf~W>_0vJNG^m95$;PSYb1Jlemoh97bz9x z4j8`!a6@5X$y!!Z=Q)(|gz70ve?1jRxd|tJw9pgLKl$|T0TZPZ>RA4P&pm2Xi~b2w z&a0JvytBVDbeX(i;feh~2Cux#+xah~0$Ud&y!g*_XxV=pc)abk5Ugvr+4B?sD-+Q% zs&=~i(=@D4T>AP}hx&r7C@IzJdS5xet(U7H3{NhS8Mo_osF(mA(G;wWmNH%x*+G@~ zAjd)K+edF^xilGN0(m(By2B9=EB`0YeMoJnJiJR&S%x#-Rbp9{-D3pz;b#HvHDOSs z#L`!fL(O&J!cht7iyT6M1L9q2U3tOI16rse=U)vf&=%*jfjs~yI_SuG z4G;Gg2}Um^RS!sv(Ul=%<9esA;AAtyj(1wtH)8b=*k5Avc`v4<-@^n11%jOacH#~F4 zj;{G8k^exLIb+G`Ot_WM3I&U|z0Z~9$X6=ZPpsMd<(bV!z+v_IdJuIpr~F8eHJ3e&0hmeJ+#8kBZ*A`8xSSGz=DGu+Hc3Sm@)55Z;3`zpPJ7M9~*TLBH8F zlh}^wWMmfF&jBvRxZO^mPeY_9#{6Lv*N^IW$~l-o%R&G$SAD{!@esp@)qK8bE?NCl84_YW;n$b>N4lC%L6TYj+_2REi9p}* z^X;Hxr>ldQ1n9IjHBJo-PErdI0kZd6*d;&DQ8 zTNF`I1)lf_m#ty6a!M`Dl}vUPCoE&)D$P6PaPIbGG-chl^G=Rd5lY?aZ!3IC>hMVH ziUumaX$n7E=)CI&=H1%WnS-rNmj_e-59e6l*7R*MEm0nn5>gr0Ow?Uz8|axjUB#lZ zXZ00L+{hfJpprJu{`0IJ;HA$JGEYbrpB(Pa&w+iC*T(e@EgGG8SO9Z7L$h2oIC!(<&il-BI6boZ{ZQg$rTAMc!EQOXbja%{6{Uj< z=B?Sbt!|vi9-w46wx@qZ>+J;J+U_+ApsS(n@m-vlJbE4oee4*TxiT8k|7g29P*j4W z^19+zhlLX7#Mm$k+s4M~xyRojM(at8cI^_*K8nEjV)wP0`uFEe)l{vJJ@2aAlSu z8tLyOSrJeF1JNHzQA`2G?uWc$Kdm4we}J41-JmIfqMrsvW~RvFmvH{Kb4_UtrU1^o zc{#;n1>q$bG);WYDh!kJ@R(Ujf}O8NIH6bs2lIgq0+V60yL|By*~%aGaX)azrXlMD z^J6^75nX11TvMt?DYOR9#Fo3UD4Hpc_R0$I)5GHTC{&e1L+I zN=P#mkZw?VgoGdrLAs<%x^skdDM(0)h;*maXq1rdW^``kfNkIB{GR`T*LFDPzR!Jq zuIqiBGW1G~&OV9j-q33^Xiw%WH)^l-%XK*gycnQ$S$d2(iZ-tCuQb*AG}S@MQbTJ8 zdfVBOS?lrT*0nf(`^Rd&O1+@kS*TCoO`e4!f&9P1y8WGii`%(Rxch$AXkXPv%GDJ^ z(MQEBR%+JD=O*4qZnAloSAJPvg&E!zs~a|=^Y4ci#%=~omdCUf(>nuKZ6b&o{W421 z13}xrU}gL{%E{05!P3XfvCM_jJsB9DnGeamtvmsm!_vbY!`#WP^^ElVFMrX^eIcUQ zO5D?GK#3#ZZCYh&$nfs(rqd=Oa1^+e10am zMi&G{5*;NYoivcU5l4LaeF2dvP-olsFMIR}4-j)~K`|lMX4IY&@%`&(ybM|^m9)M% zm5hjPgkLlxcV@J`(&?>$$TEC=(LA=3bsWC_^RYUD*+Gc)z3p>dy+7Pr1i3Sa56`$WS^P>?Wf+W>+SW9BsieiY zE7fRSM{(fNwEv~}AP|S&&eE6I!XOoos{FIT*PQYv5X8FP_{dk?90%+qP-c`nOg@JM zuO>;o$A-fkAL7NGZo=b#%5_6e(jL%l!x8Hj7ga4g4MuYr+oQPG9^mY*<)&#>97WNa+h!Hts~e|P%I@o|wGrPp;iCP?rOl-NP6#*fGQUATROu?Y zq@${!U`X`zkwdSM0VQLD3GbKhVKGtfm!6*w?0|dqI3_ZN>wEz35+ zVq%Q`tGmBcfRX->Y3HsK=in~-jUbJeD%f*|Iohi#=6z1{SwXpwC!&1t^{*@pos<-4RjW9~Ya?g# zcd7gNYjLcZfIo2s(z#YZ=~rrBwzQSt^dAV#4vuV~c-S!)E6Z*y*5|HzO37GiP|M-S z<&@<9StQA+)b^qX;t{WodHc6rx8q=qN8n5x5(BBHh?XTqC-+V|b~4hgQcN|(RA8Va zMvXm#1gh47n??0Iy(0Af5@(qH{kX+6Rm;*LUq|Qt@*AF0m#AbKGm-bx$={FR>sjXY zVp}AB0u5Xi-)Io&e8ltR1)!*Vsh{PEWG}m!*1*ivEcvUS)wJLp001(1p5p4`_}0R` zRTk?rq-Vhbh3iR{$B28HEN6(Vi(*t*WY!suUTT%3lP*JXrls{h8k*_catcGg~69Fcs7h%-SC{afvatv~;|*AH;? zcfW+Jc1oe4-ggj3923%~?YokbchOLtI!%9rnPbYkG_^=JCTF(5xJ!?Ojta{(HNEEa zL0MKRJ<+L8*{)VwP&5a$8}=BZip_-Ew}A-^3lA9b!+0-p#g#(otHd6Q9LWeSE79}l;r;;gV)Ye+-r0^;4&<&vrwEG~=v zTL(%ht>XF16fZpTdh3YVn~*7d?Bvq4vuj2n|6osKO=Ir*MLY}`S@Hx|BLRl%g{+g< zFiMkQc3#ayivvd;s#a{`bCn%2P z?_N5kz^uQe8^4bnNq=WN7Vf-55X<+AE!4A%m8s;P_nybtqDt9JK#2KwWM->>6yre} zj=dh(Jjmfxvz`1H8MHrOMx#R0*r2jEi1{*NF81Ft{7U5^kSQAI?wnPS%mIxLPmEhh z>{DbsW>gQJIt6~*+gv7zTg+)|K7*bQyuEgNAeQCKT#(_XXPXbYtFl;m*!5O-KG5N54_2O6bvbp8xqC3#0r_?vFPi z2a1B0T=;&*yt-veT8_2)NSBSC+deiMVfPP|%*KU;lmmUKnMXXmV}~u~k*6*hSn#?Y zS`4K>00F3ZiOp*SIH@82c8X2fmC_wyl*$ejgQFYQ0iC=1qXS`}I@uwR-s7S(f6fjq z<0D$FM&CrQUxey+Y;E(p@j7V`fw>AScpPrLEaFJO(eLlRLz>5Z=aNoOiHf4L!3%fY z>u&LzXHf}h>`&?q{+X=uY^0;i>p<#_^UnX4ze{X|w7_?VjI|n-V~f&$Pvl|W*_;1B z4>Dpdb@^DL{W%v`Z3B#kUlN2lN_=EPUhWiZ#Q$BCI5vA1-}V+(%5l=s=jh2; z^*TnMo|I?LDkhPGVcJ}b>pzgOud%3~F6ZE@o_}fPK8=vW6Wja&XmkbyKgi;H$h>*o zuQn<_DSe;zM!&C_&M$!4t|Eeyr6FJZ;uFX(LYH=Ci91JgvE{Aq*(BkF8u22BO6d!% z{$@08*6cn~<@g~oeGMobk>99sv3v(ky!hT$Jef;tonQqHB<+G7;B1y;{13x@*813`2cs7NYVa zWE@W32u5>M4<1tizT;ceA&hvSqPW$kK5RA#^#@j4EP6EE@x{?10 z_Z;omdo_&B_v&jMzibQbd@-R$h#Q_xdZM}|Kgk6hT20Vxo29Fe=GjOyVE(50vXhY# zX^_j-bZ$PoYQ$0u++>~DGJsy3zi8DBudnXsTYpwXTZ4kywaRrGosjTV3H zZ8o{6y+^c@6!ixY_A{T@#UcJml_Aq+`!|(ycE3h$)uubjcAK4+&doYt>tJ8p^y2M7 zev@za!-x3x?eB#D&=yiO^hXhmm2!$Aa_o(#FVardaJ-vr6$WZmAH1a zk6PO#I@-N^ZK_fNgtZ6iy*=4BJeqzOE-RKPui)u%r{ev=v&JzT7Cf9NBA?Z}OPjjH zfJ^r*?MRJu?J@4I$o<=@L&ZUyIBulLoEUB|L(~P>-DlRKDk>YxCHR7zEZbIBXSR}Q zQ90|Os>_~dHTrvGU|pSR`l*BeKt;FAUY_*ocv4k%cEy+1)h*b(M#|tUJlW=#zx3`A zY3C_92ndGyAN|3vhpe%YQZCROCOL<{JmFR+LqNMseS9fpH%^zm_bG%)9R%sSL z4l!99(}xY=513_?C5qf%g1DZ#&|Og;#6PZ81R;p> z;fb$RL7|(axcu0Rs+1w*Oxieu&E72%Mp#<^{ce(yW!Z#9sw}|oo zIGAsUJ|Gk(GP}ShD|>j4X)`ITrU35`DB?JeixfYUe092uIQ`GlI|P8@3u>!-c=eqC zFGG4W)k>iRAOm3~CrSn)LF<=e_}_TR@y5VLgb7{bFG0{|&6#=kJ?`?y*Paa?N(`VQ z5dN3BCh_n0@WQq{mu5q0?X-ou_U=EW=30q-dKVT4!cV&w3KZ7{fT(Yps)UJ%AeB6O zj4>s@H{X)W>{04HQ6m0*PiRcSD*t>nvZU|90$ZNY?K^jq0G>zsZnt?CLU9|}Wc6W7 z)KT5O`Pn%>FT$jf2z;OJ%8Xg5$~RDj3yskqaUDIeq?>8sB&w3(Z28m2Tg3;_LK@oj2>=M zp|CVsx&lpXw|f$ZnW&N$#Qlc;ACXR8ei~2c6g}A*-JTNdlfo=%7U;)_!<(s=Bkn?B zXAS~-vOGA{$W%@twANCkiEB+h=GnvZM}mGt)YTp;R!PtyacS>UxxNR+q{@LG;;fe4 z#z-1cREBT0?KME}2^c-dL5Sj;okTgg@7}Cc9^x2#ny@IJ%dw&dK5`=0;Y}j@dG_-! z6^`|Q+{&?Xm-641Ah<7}(lPkf2n{z&m+byNRaJt&RNDJ6kCX5z!AV}kufQoh zS$Hxvh{ZE?uDB7;Lb$NymKeXwj}C;I4V{0PfIaQf(uf@J-%nQ4pSBc^+``MtIUkkj zefN^dV>t=^WAEN#S?@j1G5oLFMncd{R zKiKLXP?=)ps=OzbO=QQKgoQH%%UOL$QuZHH6Kf&8aqp7xzy2k^3(V4^BSgV0xKS1f zQcUP?zl78TZD9O@togCjm+&(QnfG{I zM}m^6Cf}6x9~K+IyBb~Fj(m3MD^(k#d#gi?lwjN^n1!XkRvgDPh_DT;L}GDRyZC&| zSLSjLM3c%#(tP>LYD;3nU(crVz82j0NS6*t$kJ#>cNhiwwjE%ioMPQkfPxYU?;RuN zUh-3XogxbV9lu2$BmDkqk3xpVK?5o_;BYb-j*$weRety9?9~5UFZ-qmsHeKg85>xO zVNgkGU)+H}XF!V6;FySnrEN`S@biW<)yq1jGI2j? zGY-RHnAz~{_&@YJ0G`|=wvDm}< zQXy3~%t!vcJrwENbiyh=L=A5`*;k*xY-m%5CwFq=X4@h+km64bGL^Q(3rcZb$_|I)?bWxYzB)5FX}?BUW^Lx-wwCEX^}VyJw?g(H%qU zd&^?`B$6E5JFwzRI&5E5OMGkt+iAZSJ`#bq(NzW|+aiC3 zZB#Feb=CXT_fx6(mYav0!1<&*)JmmerU7p)3(qOgDN11hv=r#(=MHu9#MLf0Toix@ zaU^?I7zyORBE%S_A}Vz=c$2-&ES9g5zjH61NJLQjJ~MT|xyg;s{h5rbbg7NbSRBv< z(mo}a2z)c^?M1c4#;GCfT|H61(LfO@yI-Zpj5ggs)JcW#1W?STWKUMof7goDO3TMx zd0i9(f+I|)nnaPPXP#C&C9XQw1;o1YQCy(?EzVhmr zJ~=YtocaBVic;26^2ls>P3*eP;B5rK-;OshbN8FFB&m4!gW_H_3MAHi%N#9&3^?q| z6M!b>KjG`4sCyG=LpC;4Rxs_KL_x>ca;u*l-mOj(b34m^a{!n!ZJ-aM4R{&ml!`BZ zC!$^rhVWv4NxQ*`Luf0$*pClqw{<vsA$ z7QJ@qYPRcu$Y<~)x#CA_Jc-;eINn8(9k|p*=`K$}6g@e?XCq#^IM%_^vOdca>lP?v z1kpRuhawcoGLm=QY7-FICdpNKKi3%B`3xhMr+#<1@b#vjhlf-aV+UXGKmRTsk{b?V>lM_k!mup^wAu5CKxI7F+x3p{KqO!4aq~P*H7v+ zzqGi%EzgtEZ%h1h0A;P#Ywp`TYU3NriGDOunce$P#h|$S90KIq*9*+?WqB|kP}8zc z(4HHCWb&>T^4~ao-Z&S>**+8&^rnAXNP2CAX?xLcfxNIj_*)qaEgUJ;^!|>hjDrvb zsRPG*0(9EO9h}_IA%wDd4#O_#z`|EE{q%*OK#JH4#aM+pwIUm3g8Sz5;$n@^qbvJs;t*_#1)L(90hvtiKddzY zk<6r4Y!3XRsc)AM`X)rmxTw8JD^dPuQ-X;}?r{cS_EH!O$FFw(yOSf7N#TMxYTcio z^b7dXTRhsl>S;81REs*j`q-R&6*~*FM=r`XlQpGoay68*CpIiOa1b)?zN6DOU<-oK zpKZDLRl*wt(XDy?+Otv|^-jejli~)wWTT@udAqNUp4};}asPuk^Fgf=y9+*TgzYDQ zgiPE=k*KMI38IVv^E1?E4dB>yhAtH(f!$gAWwuE8ByJHP@dkkNwX?i)boAvJ>z#0h zQG(YRQiD%#|IG~KBbdI)|EZ}egyIqy&NMA9QBVwGBC)yhm5w5@@mGw<^azv|+5?i@ z$u^UECux7m?^>O-r1Ny4h2YtJq$zd`8cc&n~UIbw!U)|E@dfA_$BgKqq%|b-n0lt;HS%{9f9Ea-PUx@u&T@YNiAFVND z*c7-OeF&Rh{go@a8_{;-ig`xXj-#8UHPkgVmWQPiTIF_nk=;cPYO#v%lvP=MQ~u=i zP7kVF+0fpew^Nl)T=a$uo;#+Id_{o`Z@BR_L3jWBXwm*3=#f$axaW7CQ{G=g0nFFr za+^1Y0)1~FmSboR@;n+>u|sll`3&=9@ymVa;mt)G@F=hi(Z4nC>pZ6#0N205P*tmr zZ#N??7aRlP6Vsb!7n^gAc4a~btBoe<+7Gj{3hMyE#Ou-Rx@bNQ-vd9_f#mS~`t-*2 z!O2UfVGRhhX3C6Y_@|atYM*48QoZI;vKiE~Q&%HuT!x+gLZq ze!zYWdFhvWC5esAM}VWf3jN7{qr!XDroFy{oDLs|{@wXPlf2^X@Hk^8l&CVmn;m>? z@UrSFc<9tCfG+3NEYdStEMIfcR|>i$b!Ce7zB9$}L|+YHGcehQzmM9n+Owmez&>zr zQt$Tz}ecN`=Vi z)==10LJ35D#s?g-&JAmSaD6ET=*_SI!`F4YtaxckT|lUs@*6_eYk z6GykzXse5#fM5vdO!srKxkUYt@cm!*ozmmqS1Rqf-Mq4A$42QOBKz08 z4r)d#QmmQMyXkGLY`g;FIXA^k&IRU+#CGcqyXVa&_ux2j<+l?zB7j0;Ikw0^5uPVD z3%39-QT2K%6|C;QY0favBPsZ2{c%zC_&*RYnw~tqV;K^JpeI!vzj;56^s$ zR_;_WZ?JK)!izyZXtU1XhD3IFLXeCPiIL;W6!4l7w{McBXVSZ`;=P<>k+B6siy0fO zM{~BVu(Yv;cg68Peq8V07H^G}Ljc7vVx#(42MJTbw!y584;P$IZFSr&>;#SfxL7i- z{#!4`bQoi|U^mW>_08VU99sxM!4!6{9BXC|HEl4%Kz!SjCEMVpWbjUaa$mzN;iU17 z?;-?>TKoMkh#eihk&ouQ?tX{V-;64BwL$6hq(>ooZ;!r2;-+Gi*F=a)As+U3;2d%d z-|n7{mql>h+gnJl)o`D7Wy)rnn$iDyqIVb4;MU1Ww0Tr1|ABB1Pl0NQL-Kf7DWfU5 zv)X#;lwGgoaG+Q0d{kH~&m)lt1E+^)@ArS4oA1DBe(fsrCpSdT)g%X--~0#4&nu3{ z&4KHmlp?_c&1R%1l|@LMzzZq|$)7?Va{m^Hu1!^!o?o+cV3tG3R92HluIoOIT9zK7 z_$C02x@LEPB6H(+vU9p22qi$v%b+cTEBz7Qwhv60`O zF5cc;2zd*7dN?8j{`$cF0SnGIZ**IhEgcbYTnE{0NNtE|oAdleJMAWzKBV8A21q$A zP+k3;z>JYO`f9&ubC#*6vpfgs&OBptzgNiOnB4jwNN~^n!cT3QCdKztQ*e6+cpZ~W zB-lOEKXv;LtoHftV*jAkSK(k0mH_)ekvMz1lcH~o1jihY=%@el1@a1pk3Z9*8SFpj zz=Gut7%G+4QM7jyFagN<^NacsBFCElIbKB~u$6Ed*N13uZ!ZGelWTBbMu_@YoBQ}# zP`@ivSZ?KC9C($|lH;U?tKZYsfSpUC`y@bu+*#Z6w!_aIt%NT4H5SD;# z2;2XGmWYfRvb$G>-vHy`O~z9A*29pqw8yH)BSIR_6OwOiUM|QU%J|I(TnaY&SB50Q zL}53a*u2}p+QXfBUA?U8H;eCPu>eLje^nbPGZ+i`K#^?r6q^Zg$Q1_I8r=-okSfmjARV%8`XJ9|~KhR=4 zLr7s2t_RFg?Il3F$X}0~8gPr{f5NtM|0)L)|A`=360|1BROcb3KawjoTMb_%>iXEDZ;b{cwEZ*kV6)Ye1Vo?6g-Sd9b5DqHFuPaxZ}FW z2cwPq7c0kl6U}vW;uGuDruNRB-1XXxM4%CTD}({anc|}YhOE0XpmVGK<|C$JOp#g1 zf~Q>r64~L54PMEMJY5)qMnM>>y#O%9)o=GmHNiNb#LLjhm9S|H8LiIJ~$ko zYNG?`?<`&G*L(e1>E3&~PIxa_J})Ysa_JGid>1$$|I^VxW~PkLXQ^AAj={;^Ru4IF zdlJO%30y$q1;accCTPfgX)+16cu`z{;^4 z@!#}bYtQatx0-AMenBDaB@zPiAz=#my?0&=WIYinEth4!dqQ*{tXZ)AY(kpjaBkG0 zTq~g;5JHvI0;xcFf;E^yX5aaRA!;Dk^o0TCkOupnp7jKq;^AU z{vM@rK$zOmJ@2iU?(4w-hid{J2W?3Y3b7T>gfE72OsQw*|A=N&6{)WM&$_PerS8 z76+{pjC1eq_dlhz|3?F-l(eD-#r+KK|I@YZOMO35sFsKXBO`a3Z-n3TgYbU+z{x9O zeja?0gj{$OXB}Nqf<7Hno`_sU|9n{o;e$&+M#Svhi>Bu87d?7RlwXoFvN%LIZxs3S{?4sgWw3pq1!>dPM1W!sL$hb<}DoUKmCtEH&wZRGB!CJWz{~j9ZYv+A7>r zE@mafj3{Jns8o=y?{V0T&cU;C>=7c1j(;~RWMR>@uS5OH05uuJiUMkgDit>lV<(+5 z!z9ixzUp^)TcV0{9NfMZgWUTWbYNaPvE|1`&`6WC4 zNsPSRRi>>1I~g~uZRjvJG2>zILi2ie5~GwZNrjnmA@?`XMq6rrU(Q^cskF1|hniLe zDd1NjQB8&lei++Ej;S-%+Rdd>(K{!Bh3xe#+XHKovQ^GMiLluD6udP!7GzkyIF`L2Cr-V^cCMwM2VJ%x}KcZ zHX2tQ=bzldyn{#Gw|;B)Yy7Kk6hGux`x{bRkh@b&qM`G>TH8p;=iE-Wa^(R0L~I7F zyI#-U8EqxuY<9Nd1_qJE&TnyodJ7z}}D5W(?zH#h51#f`)1Lj^hebX6o8zYK#XfCe) zHkG!0S)ZUVu&GP!yQq-Bg8CbGW zs{3e3SO#R>GTFeK-`ULHKUo9b2SbBSNJyAOS)4QBAu9p?0wQ(;lW3AdG^W1oJM%BR~(W=HkSU`-Qp789l9Tii3FL`axS$J=B= zKYevH>vu=+6IlVd$}+WW%Go!gy zXS)gKJ6Nk}>(a&X@>%jDzic2>TKyLV8H{l;+mvUCFXFbaVf~~le{HFm$s79=21RG6>r5I&&X`QL2ll>O`_RL8B0V^V+!6Igl z=fusxh@PFI!jkrsVZ!GqIc!A8po+Z@tN-9XkXL^D|Fi$%3msZ_2VJS(pg0D)R0@rM z-`$VTEfv(+^Ls1+)8^rQLSE$*=eKN*oCBz(preu6X^)TG!!?pK0S>Kj{oNbtcHhlP zr_JcNN*se9{_fufVauH(u7&2i9(SR54mmyB{G| zGB-96@@qF1qp`8JklO8YD;xGGwa-`Uv@TqZ#PEd46gaAA7?(Y}`yM3|RxvEtv*pJg z-FwJ!-Ml=^-(^{UWH*a4Qu%SzCNP65{^HQ8*Z891mnwS)>Sg&e!Pi^0O)DwZfEY&q zSNh_>zdEI7qkPlpT-_*T>Cc_o<=zM6akKrP=bRUq)X!-hSn2vCbI0-nOAITjd6Kgn z9`1-imhV~TU0$Od{WO_|r?*evXRN`_ATO(R82i6v7cmZeWzKg+`#9nLu2I;c4^axP zOhM|eO@(I%9F8h?ZnU*KnCq{t%-S!j1xUiHzo{84Lwkb(tC$D`9SzYsKJ@}_Lg{i(5g7TkM||B zL*u`MYQExh3!8)icwn%vIZ_k2a6kYIVhM{nWRxe{Dfgy-=~ICY+>a(y8RQ{u#$G0n zd#JoV*zows>U=mivK8KsdLp9n^naS;-#qp?j0%dvq!s-Q#i*5Xuyd>6{KI18bmF}L za-f}*Tu_i_%cN{a3|DWyaVK;-e-|gpxn9C8>ZR^EgTu!>yW<9Q^a*q-F=N=HY-m$v z;%B9VSmT;OI_B~tkGH?x&&>&?!<8mjH^rl6($weEzDmfTQ|0h&w2xcG=8sbzz#ic z-=f8%i4$tZ4 zN)@OI;5UU`?Z&9X&C{Oz4#tb- zLXA+($znXYlmp8*v(@5Do?HX-Xr^6O$U8&bo(+WfWDzysLB8ibS*oj@W|ZR0*8!Dn z#}>(otPLz`%=HE9AJu($W5c{*@X3Ee0eJdCW$p*4-~SXoNut>#{a3$|OX~08j!r7# zRZ`>HLq{`;IgDY6`M&3pOxwJvnN;7qFw!GP^3*?9e~(nl6`Y z&{b{o)jv>oM^z7caGbVVlu3a7nu@so0R7bUM!`mDSLPlP%!bAujTwm;hfQY7HKoQm z*P@oT7J~wnjxWEZeO+>K;W;ys@0YVCXqEGuvci`q(A}HozYctG_!DAW49rgixOZTJ zJDYpSt3nc66s;nshU@mPi1eHcozC{mURIdQh*z=}-{e@#RZ-62E2yh_2nQfm+k&$^ zB>WqM8*@E%C%j3ZOnYwG@mRLDc=y32z6Ey~VDc9%dsVy>4O8 z#})BDkM2}-->R*yy-_`$u`|lv)R#4E{5I(&s5`LpzDBMPSH+QRE-ioZ&eRoy;n`*A*fDwac7X_d^q!xmh8#6tq=2 z_VJnquk7P#7KpW1<2$Y56&u^s zdx3NKgO-rS(y91svqWYCX=dU~7k@sT-{-|$P|~0$sNEy;4f6%3O}21m^Zw?5x!4Bl zFLJ&H#l}Lsqyc}yX(=5uoh`R-$;8J*Dmf;ULW*B_>OWSYQ2QzRrVXAx7z%WP{6+ml89^T+R?pL*{FqflAG5y9Gr zvqggS^1&RI(UPAYX26 zcT^Bpi(h@S@E=I{^q_NczjY#?FGjbn;`Ogi!b_k~*5|Z-`ix>h;3{mQlNW6Zo%g+} zSMf(WOAD1AS@QO-TgwP(GCkYT^*Z2X) z;YMxPdVY)8a)9CN2qG~9**kEavURJ~5OanN6b|C{enW7C4bK3TrUTzBFyyH&J`-sIEP zws?(CqO!(YvC{%biKnl;KgjRWq!vmxEa&Y5d$;*aFYic4q>@7MFeaH4n*jUhN{IuU z{M4@e-nq<|r%|%P?M^T{Kjr1mA7|*_`f8>2i6~6ka!E3Mh47#d(>jIP!tvWFzR>!M zgS<&o{VbIky#lCkA!nnnbI=@M6tfK|#!wSny_=SObQl80Ho>f+ls|FwooAQjWLC$aYK7@K!vKuy!l@0o&kk*yE|Hc=964 zeFCSqk9GaMGhV9CHXtb`R?OdN`X6YN5neyo2d4lUrbu_NX%Kt=w;|%=1wP2D+Mvv= zOAGCy80l;vF7({{3*p94))19vM6u58IZ&5-X0utME>KZx@IMBq-UT3HgV1*fm0ke` z3>hkNEZVz`o;OJ6yXntW#_8|5g~NsA;R!;&4QV-5R$RXieo5$6i+nwCxnL%n_cA`1 z1*fv|5=Je}1N;-eV83*(RP@`~p$<2y@?Z_S>5u9h(?8sI`T-xPaI60%t8Bq}V-gl+ zsGUpPIbfvVsyUImzlR&kZ<}8qv7hbMyQ-OS!OX#Q{{s>I-pI$tm=|Ew$G5PbAP(Pt zPVuK%M|U$ME^Q*-bSTp`^21tHPO`|P!cN>V3b{@khstp*e ztGUWtJr{-rrCEUF=$CzpO@KRMX??>l%fFCbQzj@{05n+BEi#OtnnEor)+9fX8`hFv zn+MpOaprEQ_qb*?aSYG(>|uE`OblK42kzv$0Mp0jN;?8{Qoq=0?OSm3zEN@Nr^Ht@ zhImX=4FZ{+i7oDC{E&y7(_af~FTUy7K^dd<^#aAPAw-i9B59pMSob@K-3~S%UFTbzMxYLtvhHLHn&v;b*<$}G+gw*w)^uS$ee4}`A64Oj-!vz z_ZH_W3lnjd_#H#qsf9;QPOkj|Ga;NP)PeY0g%Lrg6&U5^;rZc0_FCP)T7*C(xM{8z zyimVcv=Kfij}CL`WKsX&X~UZ#Bx20NQY!^Q`7p**g9X3NGI(t_=H{n;+n*>>c?_=7 zT3O0IUBirZbV3#l%rIVP3oG`%rnBTYA(y*Xr1IYsp8-)+NYZ^PZOYqESvcr8O7I`g z69hXf@KV+u`;!$}eeAu#2fG@>=2`*}>*{c64VjESIPpF&01j|+D%E4wT=wQx^N(4P zr=ao~8W!R&;?&Nb9Zu_TsjM*1!dM1oj_}r`+0a+}7+1w%0dK*`o1lllt0>K6gFrkG zKo7F8*bs;{Vh4&a_g`kB4fT(1`^&=qvJsLDFnU?XT_HzHm7MJgS68O6QiVO`;vcB@ zr%fgtmgZd1Fd68i6A7R89JH~1=F$`9f4@$}zeM!8h^KG~1%Lkr$s=R?bvv5H9ACBJ zW>?mo)!S6MrI2;ZXYn!7swmL}1QC5b03SvYC6&I#v}9&wlK`n6)CC*Pl!)e^|S zxyucB!+Oc*S-z%yntJpC@8buS?b4OVHo~n%{3I2#fQfReWtyhu(ZOl&qL!v*Nw<-Q zhY@n~1y|NjK}o$GPg=~nS{T1tf3OZ;&LXV%Tr?m06Xd>>rAKaI1;RJkWdjl2+-ePE z?i0`qg9tqnaPQNipVDh9B8ga;OK2{q{dKveeE(24ak`BAgR31aEI@2bA$AE9Zp+$9 z4;H`s5>!5{Dk#a8laf18mI+p3i2W408#P7;!3I2;(WpH+VHlc%>#VzJ(V+OTTkxE9RhtP4Tl!d;wj*Na~&3~E{U`OQg!iroQf2D zo;ka7GW({np@}hD6l0<$_Aas^0cn?I1q4tY{3_HNlrY$aGzepL@|UKue61fCz1$>D|VP9wwtMeKq8kIxbuY)STb zqmLEC3+avr&5Z=yYQi~~xNf5^MC}Rwh1d{DySd~14pl{;JWKmWE;FDqhq)c^CZ-nR zo0{EWvGuoHSe!L^$#Nf_^+Oi2q#DB&E$FCpPB)&%BDz*SBd!DInCHAr|bc`Y|Uars@6uuJxADRlbji?mZa@$<5C+}r&*-jjUV|l|r6x+b3y#WX zGF>M+;q4a^-$D4YDnTj2n)W0Q3d(Y_^y0GQ)WBsY=aB3dWkbA$-2>@*T z5$ZX0`_7t&?CEa)?qcZUFUIUpPo;Un2U`sHh+o;sz&`&HdO(o4yc3Ea2#5`pawhfz z9v!V(jPcEMxUbzYI%rLgz)88x4<|SESgy!VbpHe;jyUm%uYs1hu$H6;pirm`K%1;j z(*OSF&-d3J*8J3@*NhH(_mup&J98aYV&ptOcX$p097s1v+gWug^!kPVKV&9~BR$fKIBe_>dC@ovB9_9_@}CX(iuoyEn} zdA}50EjkNe4}%^%AAEm9yLi~IM_}zz+G-U{bow8}zBci8k7DrG111TQ4 zWsI<63*t>05EVN6JG~~+P&D3#G4z4G{cUoh*x(x5m#Q5HHoC1VCe$9G6R)CSu-O0C zDQkqNXfi++b!`$Vi|8<1H{P^;43+Ss`gL%<@i4XkMbfv&@P?H!Z~4_*U*?c^z-PLs za5u>Ee@QkVIg`E--8(ymY7Tf8F*R}~!_gb?uej{ZIvKZes($Bl=o6=B&HfKGLq-x0 zv8Q^7@74K3Nb#IrdhBkw>rwT&Y`oZr+l?*Nuyw{FpsO~bm@o2}8=BByWUH9^&3OD@ z-LodQOUo_a6R5T(&wg#1OhZA&hm2M@%kd3ZCcKcBUGiJ{2kbT4C+?j8(5M1%7;!iu z;a#7_PGiKl=3jS*!E!*>mXboxk|AE&eKQ8CFgpux=Y_^L%kFpS{N{_9$IsIy1C>bI z+b3YQ0@39@lksb`PW~y+5^`#~GLugtKF0-M&ll7A8(F~JlJ36cd~5kOdv>3S%wyaS z8eh-Q0rB|kb6B|anDT_T&$Pb6BtI#RbM{eZX~5Q(qApC`ZvE#Ft7$t|ZKrLdxU{lG zjNYsVh8C8gc<7G4rMG>eo%h8&{wV3Nk9N_u$DG92kD^;|)V<6!=*uUf5r4W5ZC2=H zoFva-ZQ4erLeAdvOnNdI*akOfPo8>yn@Ko!N(c)0Ol^srf6mStSD#C} zZgTW7I{|WuH98DY`c{&?JhNd`mLTjY(Q|5WIYejrOev^IfXet)^_W1!xokCFSnsx< zH{Brz)@jQJLW+5C>*b14-y~LX*?(}yT+jK??uo2c`9jP(`NEjd9aAxXVTJ{+El#hw z2VPZy9@!P?+oh{M!ccYKxL~HVn+!Bnl_-G5S#N5>Bfl{!;xep7&LLH!1%_?Prlm6^ zvBroH8I?DRWI!LjHmc*aEEU>Nep^aI-la2GLAX z0(W|^n+z4_b21$%UdQDvuv-by$uf1_aY~Jz+%_+bSBNp$Jw})Yv}zl%FTk>;a~aJ# zXJH#cDDez!pmFfkw_>BASM^dkH)j;pE8yg}`h8PHaRZydjT$z5U#|JayS28BIIDlN zbO3Oro?DJ?2*rxu^}u=MK(+V_JLwFov9F)*u!yxio(pMyMvBktt1mhmS=N52?21>o zaKw62lv!L9F|R@OZ<+qZ{yJP^^8VAVv00QQLpiD^#iRI{9hCF@_UTFB9HDV|bZFBLrwQO61prq&-L8t4whCks ziX{$b*`Ew+uA7w#ISX6mB7BVD@_*@iM0&R_n95w8&G%lHS^8yD{e`M3VTaq!Wz|u> z@j>dSh`u=(4UY4G@?ZUEyc4W#_p@8AGQ5`|Nqqm3ZSL<-!@0C#wef~A|L&4S%~y{j z;lel0Sd)vj2pG{yaq^~bpQ@$GYf6VEDp2jx0HN+O3x3#mU@*^7T~HDGWxLwM$5!y; zK8f?3&Y}q4)QQGh>c-P2e#MB8awlZ*#!n^DJ3mUPyK%Sb<|rT5ALPBabFw0g=3*r^ z)1u*$NP1f^D*)epw(6=gRb3^^f*XQRP%hFKo)*X4xF`5$q##aTxzj;*U$hlnN+;jD z9Y)z@tBK>-M_e1IZrE{lryNH-cXAFHaHM*2q&YK2Ur^P{oXm*7oV#yqo0qb&A)hQEUSv2{(VYAfQT-AxA^kzU-Bl$fT{4*+vE+q zh<2Xx<^IBD)z^`FUNn1A9m9bK%Ur|2dhs$7wF4d8l?RNq&+s1+R5l|5}Mr-ml4UC=UT{< zL+zYrn6+=o-iT3Sx#{B|eb;rT!6=aPrK(kX>?#8KIaxwMfcKBCt>y;cD6x;wEg8}} zH_8(L47jt}%@=gb5 z4b8!RNO4XkGMLTCn8j?f0aeX`ezw0GCi_xSSzTMdExGUJXQbvA`IdML{LM4IdbJWh zhNyRXW;6LdA`PD_yIAuLe$k5R|8aC4j%>Ye8;`23M(wRdt)f2IG?JZPQ?LCT$t@frii9HiDi1ae%h2t`6`DuPdHIv#kdi_m-7d1NUwAk^4#C=cxd|go0~FO_uH=f1WNH{<800Va66BNBoDn&6MgKT*O2bQbu#0gyfkY zd$WKeyo|~;Blu-KWqzupevDzSI+nlHZhwf)?w_@yKsUvTJZzk(;;kRAcsFG$URri? zFsyU&E>WVU9mMV z&Bw+p@3Qq9C+7Q3RTBCSPfAh=3MgN>gy#t-6B!FvWw`7AxSDMWwg!(M0~TuifjGPdxE)^^FO=$ zo6|*aW~)d_v#s4<0RbTjLggG@M+0I2Bxy2eG(cH5*99O~&64UKmy=W3L710x1@b9XCOMqq zQ!;1eLVDYXQ)0s`os?8L*z!(b#SH^~5_%tKBEjMGV?E2nn_f^7>*aX)KC63K?`o{( zY1@wb$?9 z4ONW_rJ?rdpu0t%Vd9LD-^o_~Pk$4x+ZH|4`!-E}%eJVZo}l zgJ(}gVDLL&#nYat=8FqDaN%5z(Mp=KYPSl8CvGFr=k5!8?ObcnIpJF>r!{aNga+RQ zW~hYPLKhm5%Yj^F2WgWRhNllEihl8u&4K+#KfN>H+WQ*?dON2mtC_3oW7t%cex(G{ z&YX$uDj%Y%k!lw$t2)1`@R5aK1-K5rR0MKjfB?DZHl`m#e(Mmr`oujYt#F3#I79_Q7L49~=rO7dF%qh$Mlu$MhefSiKBbt;Jb1`3-PNT)VQA9B^0SIJ{G!qf20#cNd&Fb z&;yKfehj`txdO_?+E4PQHji3*N?q9jF@}tpq2&BDz;;_S~FPc_TD$Q!{Q)G6bO8--Fi- zY>LU-&V+E*aQIc0?av`XAaIajB^#Txiw8I{r(QF#UhDZA*HKc(%afe zmc;-^{BN#arzMOVeNp;5K9>2ZG`#Wt&h^E6E`s1E4sf6(0i)Rru;KY#fkErKEGEho zR?&^XpnX>pZNu+1u9Yi`CwQi@pT(I1@1D3vPS)Yz>wo*n)Y{GUG)2$0X4-E7MoS}J zdP&*q<|R&A;ss?*piaDz$}5>?ue<@(WkNj*akW8)ug z8b6e<)THrEFkF)1hUX7qsP6;gB?)pG0J}Zwu=FUc*)tu;2-k}GTeQhhf! z^?bD0#`&j}!|Cpng?azu>!7JJ4Tpn*EPesaGyn)q#==f#Ra8-QyuCVn#RM$1f-IVO zDaKXy=68^zbMrkOzrQ~2zJ0&|aC5t+VCgj<7O;`5hLI=u0k*b>Raz8pNL^(W zeEMxw>TGPtNPYLznRmyE?)+7ab0J&`UEIB%sO)^}$xq0kE?XeZD@p~r>-LA&3n%EJ zufnZxhe|H2D=$Q$5XDSFm>>t+*Lq&v#qzE1X@bnTVuItYn*qVlUxm{{H)G}vV zv6dg@$p_u$WOjRnL6qBkHDl~v-+8G@Npyld7U`+qRM1*I`GC$%sF#gS#DYG0V-T{P9-T^QQ+r|Di z`9I@a8K?^sSpOqP{qtZ{UHe-^A;EJL%b3i@InL3Gpy*Cc^;na?PcyMefrUr-N-W>c z>wC$(xE`vWP!)zK5EH19v3paVh z>9a<11Gd*B+nhjy+LcqVI~A8 z$dKmG&b*8R-~jma_yd*3!=Y3T-!tG>Np@tvQTilFC@bXo>otF5lOU9W3M#~%K(EgT z>3LdmD!G)@CISFBdt?4_P|1Ppm!bAVm~eD5`N(gxLM16aD`_$ z!7moR+C!}lyJ<&`)^B2d-Z^?q?UrzMhenOz8N;7#$4;C>dx6a>LL%jkbIxfH>A|!gNvaP+b=ffkfM5$xWul;{zOSb9Y7=Jj>h8(BT%}}Oh%ZiX z=`rYD|8SppSa7{30Wk}C?)+IVo49yj+odm?uibAGPn{7+z?Vv+r1o1m`g!z?7} z5#Dd*(A+|x^8Jo)aq}4~4J?CI^nqri%%2VW#a+z<6^6TB{p?Bp`m8GMq<8I=zGWN; za*1(M1qqVHccK*R;YEa+NSU+a|5PoAnL&**o#*+A#6*Ao8YlmeB1`hFOXg>tpP@BB?(IbN|G-bV5>7Fl)d>KTIZ(ogU~{qQSuZO{3=lmjtQUD=F7Igt&)ncz;FJQQ@SPzw-#xORd~EQ=geFi5RGMem2BhVGR*8 z@-eIT7dyCG&j=J=_q5dQ$@=!KuWUHUf_=+~BML0)Pmpz8Zfk1C5Zb*j8>sEFxD(h& zPA%1=Fho}*vzn-wVyxGm%b1Ji?>zM_?qP%ARLcgMLr)c^=sLI#1i@$?tf9u#AM_~M zO8sR}`umrHhDb`|#-s+)PjKVqtNYlGUHxl7odIco7HDXYZPAuGyV9pNkfc)ZS#?59 z`72Dju%vufGfhLqaKCD02qKIxFFk4uicVk+Z(u&Y-4D)%$-?z8M!%8F0R9Cuw<0+A zeKe}L`cISUc%BJESlwH z6FqLuBSp{Q9vDdm8e%hD&0nXQrjcbpLd_GI$1ni;CW^DcSMJGR^)XwFafw)j_bKPo z`qL!5|Xt2^|<_1LkF|?}eA>ZzJ zZSt!vSaQ8R7VsnRI%gtLp8*cyoy#nZ#c#mnd%!u`#rNR#*0FpUudbn=r6i-16~02F zFC5`q${jnhS4*qnCD};DTt#jK-SU8hzn>1vD3op$mso;^t%uH$2dZK0>b)0Uh6sP( zt&4k1%H*1Q>)Xk4)Bo3aa>G=c)pJGi{-KUM&sKA~LWNQ75ZY`e@6glS1ZF+cAeNvc z1iiN-q2-i6{}du7S9e2g$~INK6_eEK#wnj9rw?003^%J1b@@T0;L?u4Vz@*|U!EM4 zd>6G&-L0iyW!05dMNi14@8%q{vay+QZIl@)tDn_jw_j9`Z@*A8O}o*ANDQx9*#*Pr zURaKwS(D*Mg9)K5*x!Y1(^Y*U&X;dj2W9(97Ylg!vDu*qi(TjyqCuT=yVhIU*z2+T zs3eV2@%iAYxq^)ac(fOS-f1#W2Xo;3bM>PH{9suzUCGJQSa3mljfle)v}W8b)PQNg z*O;5{q?cUQ?@V;A&&c_kU$-inuaAX(QXu@Hjp0Y$`>Hu6OABH`)J@NcHG8Y z<>z)Xy-BE()~zJzZ?|g?H(;ZZ|MfHU$gKW++fLNhdR50dJ7;y9k2CS&&<*6|tWAH{ z&%!g>`441}SIoS$j1W3S{|y8XHyj^Z^sHyn_xydAjOZfVH>0}0?;#K~_~>zLF@{yf zS!y*BOy&H!X{%4(5kGcm%L8t;eoH;PYPKjby!l3*Ak@l?J@e^*KXv@_Y(-o)swRBS z4-#6}J`}El=jFQ>s(QJYxZ7J=YXf}S0X)Gr_m%i|BJ25w1M#I${evfg;P8}E&2zri z!;R<)W3C?T->#(1BBtA?zV>lAJ0w>;r(hel1OqlmEJ$*F*r=kO4Qr*;!U+%qfU;jz zF%@#Zav{!UdrT8PN|*Pdx;Lj8gtV@Y#{L7yHIYGP4(+^w&+A^TeUbd`=yIo@{_TB^ z(~dWBr*kD$H3KIZL$`&r-;MrYM;{;sf1oqK{t$JWU~b>B9w-~`KP3j-la-5je%yaz z#40jtjJ6Bn^8tCfHl`n#ujf-CrR(XfHGXP_kptELKo))Apnag|zI*hEAM17_5Xjxo zYIy&nTv3)zjpPUOUoq#3v(n(PU$T`w)tQV$K20NaVSiWnhI8w~puC7-loDOwV@%W` z5i$)hf9Ve6$NW5O-*>?36DJG<)Z_y2UfXZcULKkV(_S&3Z;FBaPr5gn?IOAYp|jgZ z#yDE*ek(wRx*@_M)}?!U8%DF&kD09ME|%&InpVdTiqt%LgepGPt1|>}T>LJzw9s&RT&E$a;W|J-l#`R>DxYkXBBWnT z^r8K9*!Ab8cV3~s#!SBcro-if%&156)g(WWQARoNo_6$`q#X^a@XC631v8PZ@aZ;@ zQ;#DdOMi_j-y#(c8Ih5knukw_3R&>5n=@cbhJhu%@wX5?fHxmMOTpy^aJ*^yi`nj zPaYkK4*FRnPPJ&DXve5azz${@QqeO^kYsV(?GZvfH~XvlUaw}6R*9Bz;S~@22Q~)1 zk59rk&7qkck6YOFAW)j!q9C@{QTP6VVB05^SGEo!%Lxo2eNB)L`1Qtxl_($HiJ^+W zE=zYlHyfc6G9Fc@*@PvWGp#t^rpH5Vvh-dSY1F=$S^GeiTblG#QI79@-G2;+qwVMT z510YBTH{U0z?a{imO<`aMm9t=%$)6iZ<{zOs%f5Q=n0I&@2A-OV)rq!S*gF?;w)!v zahd^wX;mNhuJ3us?9S;oVBcUQJ6KtLqpVDetLGReM z;qaC2)vN0rq&4dkvoxysBF*+C~ zVJ#O;^Seo6j;ED*kacEvLssT*UI+_aKlj3);KLLzRg^o;>d3SE2$J+ul||<&d!_3zvdo7A#*J!_>1Z zLRt8aO*Q&vcRnZd{o*H6`*?4E0-t_7kAtbQMMX-a&!VqaP5G`C5niW)fVC8@drxb< zDaOk>272#@`6}7U{8ibH7p-j>^O0vCwq1GC^ryH~^DJJ9`gw>o?+@0Q2nod-A6u(m zar)fc30{v0vz>7X2(AA*HSmZ9?w3tTm z3CL^86))TrFDsR8HK@17ba%78ED`aq#0UR2zIqy9kE3_G5Nkx|RTTy=fotvK-lyxd zCn>sjU3P=_j_5byRoJQ1T}adD2CMCCW`AeNe6e*XQP=2Q(7Ik$f|V+HhbJ)Vbt1h! zrvt;py8KrXuowl)HC?QbPnVYGw8-OnNDLr=eA6&@I5{%E%VOXaU|JWckFWSrrFBm; zSMz@CF;rLV4St||^L$mKWB~XuoZpr_?r90UM9c>>x6S@o zm`&n#Zuyk-3|+IeqB_1#)+e0XpxpqtPo-C9f`x|<`qpjaoLD0K70qsqAxdL^PGE~Z z7fQ43MEjSlM8nVS?_9@i*6+`R9I3>o-VHr@6?II7y*4J6q@WP`I>Xtnl{HwpkzJpT z^tZ;*)m`)gjndw+yDxzY*}1KSIM0$PH)4a3+Ir8c`b|9rnhdnKo#Wo{b}-GUK+XLMHX`_^Cr zH3FQQPl3)7I5HgpYBL73-NnL-R~YF6^p66$rJs=!=;AzZfXm)*k@q`;9yL*)2o0m- zlJ&#psjCAd=@ys6B`v!mmB`ew9rUU5r zsS8HzPvCvg#v$>soql>li;Kxue7>zhOE+kYM;thd*_bLDb4lqD*(`D0@!XF3+0c+X zW&WcP5S}d+$7-_*GR8Ok5lZdWb0tUMhJT88e24<D_ zH%+mZ(8aWvc~hR_BxNCWL2lvkn1zqb2lBgoSHNz)a~P~tO?aLBTkrrF9zOL6gsw3g_A>un&M(7V7z%i?Z8v1@pQtP6fQ>0b69+Td$v{&{?S3PO3Dr7nV%#*2o9 zr`9n_HMc)_n{*ef*F70kXxUe3oHy)Zw0oIHOLcTr*krBdf4XRiI0IS3xO%1FSZgas zVDx7Z_W2(O@UoKuHC;rP5# zr*;{C-!^tTjw|D}L?8g!s}|>3eV%vNjNrcwx(0eooswW@2zBrf01g7m(jG2aEv_y& z`|^t;HY=0K`w zt^z@fuog?ap76fw^MWGU&WNorZN?^;oPjBUrMqarZqN!??ZjCcUWX;PSoT0ASlS zxX*_=Pkh`KaRUBfCk&SZ@zF9e1PC*&=RWTkhMXymlLR9|X*TW@r*&SnUKUhqc8ANA z{O3v{?~B3|*|`-vlk~UI<(&Odg5Ub5={1+Os+oWSkRj)+ooXs5nNC@m5otFm{AY@}n`#>D8}BkekJ<0IdR&d)Ng_63xBz@}RFaE1!Nh6# z0?)~eY~$V%EYf#S`4GUni`So%sy=j=*^SEr>1I0yMRDfkOia_=eNBdv+3$ZCDIdF8 z^H3ZJ01YnuPgh9C)HS%?@{aBN(~!?`C^mn$tn8Qz0pa_tV+wAeF^94=>nscObp8K% z(OcZ5tyUTKB_wE1ap^XvdhgyEjamd$tiAOQ-0ZYD?D5}Yf>bW)A8ZKVS|(d42vmsG zWd~&0?XO>RgD9N`K$LGiUiQ1WMr~TGg^y4CB;Q%oD!FSf512V;JEY%j+X}MmX8G(f zva8Y%@cJh%BowmK6ONMgn^}S^^H1ZhZ-X2^5xUm03&k%}>FR*Twsj32s4%j15GFVP zny8_Hgg8r|4%AF8B<}N_9$QEgxQLW_>CUfD1ml;;jB*9`_c^w+$*lCCLT;Z<0Ik$3 z@PuAXH~;+m9f>1um)!wQ#P(!-h|xkkk7hbzkUp{fPPz<3lF&a3>h2y z;eqI~tgP&xL*2KtNZQb5F^m^U1Bi@;#h?Qfs=1yocPL*ICfVO~H6nEcqNQzO*gvH) zFA{DgDwlVnGFQ|A6+Wk1@7&86)kSi*{JVWqrkMPj+~gys2W)AZ3mH%oX28wp#kF^2`c43iqL|5 zX;wdZmA5`J`H#CD+2IzR`6{0d^K>ho(8X;l_3u76k^K7fsDCnK+7T7vJ4Qb~_4c`t zjsvlD$~lMc?sHQ5@Ff2{0YLnXW8~(th!GWu{~BAL&nlkG@Tk+W zCOHbU?r&E7w)&Gfp7uy-5bUIj(89rbxyVfyaR1HNVOKFq*0osu=gPO~?@_T~g#;Z6 z?1?8Zi{y?-IuTHWzl z5KXm1>vkE#X#$}FZJ0+t7Jm%g(c*j|i2oxqDwmiL*52}2a6?9G2s>qsC09}^OsBK` zWt8C$ln{hYh(xZaK$$%Hm{Sz2cQ@=KlQ+`b_dQsObg_n%1p9~3=Tf=9!cGS~|N45_ z%fHq*CP-m5v;9HaR@HR%(e&HHM=cE#el)&f>iEAczW}Dtlfl`npy<^ilSG)11l34B zkTIo(r^WF+_9r)a6(Ds=X?47=dkW3B{TL8zQFr$sEy=0L?mCAnF3>Ij!)5vp6j6u@ zu$I)0(TA)DkxAme4!V{yl|0uS_OJQhHuNKb9GNCr92kzH+eb71r=$-|Um7iF`OPRU{SVrscH6h^<>yq*d@HlxyKcBr@fm(1xCHrUh~GP9&n+iaxuk} z>3^xCF4J><9exQv70)9^Pq*_T;3(ssD>F8?c1zL8mmQ%bcT}j2`pLmunsHRD6Mkv3 ztLERY+qW|FM5fEw;i5(pg3|TIkj!jnNLlcB`xB!RURbv`9Zl(2y>3(5koR+9%il8P zjw+QtF=;$BhdN+b(ydNRs=#|@hxI3==XO}AA3hS&JN5;FA@{^;qeu4-@ElX$9UBy1 z6sOfaS^LxB8Lws}b$PDf`)k%&p8;ID9!!7Uq|597>#1J#0Mcpy+3NLj0+7?XAjWRF zxNK=EjfgmFTy});4?=Q+b}g>`;kqft#fcl33MQk<6jbZ6?J$xZZ(@J$&pMMfR0}Ps zLy0kdL@;MlzQOK2+FEP1EsvUO@I+xeYnS9Y-kv8f zS1kTdjNQy&oloQ2@{8(j)1MbRc?l!Is&^xZakBiq&=?=iz{v-TciLI^0>eb!DXN5c z@LZ5g#|-8QnG!S1Rst=1J}5vHGSob8&ZawX*wqv}K6Prc9l~iLf9oPY)IIB^jxG$O z#Oow}?;$VG_BBZic#%sbce<2p&7eqe6F<=6b<*iUov6o6Z( zKT!mll0yY$cAKxD=`6x(4!-wSt0se;kp(GzFsiPS+A4sLqQgI7w`PQ?AOZ-s*%o_ycImcPQ;%fAxsh)~~GZY1ScD zX2AfaG-;EnJkLI}_1qY@y7L9k;Va(_C2M1Q)?>}JdVh?DZlFI~J~7dW82Z#D#65tJ z+215EoOEx-=jUuyEvHZ;{}=I1#~v zB&jlPzGWlHPZ}eQVekl4Ei=N8d}@V5K6mL2Rqy30UgyEk#%poyk7p0t0#LC8&UVfp z=2&$yI!K2dUf%(ZgrxW2f$!(0H?CAFjAUZ2Uy9J4Wa6O*j#~GkW+7@L)X{ko7~odZ z!6V>goxU4^)>c#uU%h1U%>Db*7YvPdnbX5UxBBG2rzn$oi;~~?9@t*4w5Q+dj7$Nw z)LeT4yjpt+-*(=<-6H8rXm<`%r}byf$F~J- zdhq*rp?~~kho9bk&RNut=d8%Bt+HyF^uPUs|k*VJr|GTL9JN#55>bj9u z)E<#u(sZMPpE9yyY)oET?VM*gj=4>LJ^jhmXgT1Di?X>!>eN%lh$ zWDgRdD+E(YQM=YzZqj6Wg=+3TSuV$O20>e#AH7%`KBGiP63yt(g|M)+n)O~RMK(QZm-#yltmF$&*vE4I3C9FY$7 zIjQN!J;j=1hWfegd#y%7?|HF>mUMea-zH?2)+Ys3>3ksPQ&yaeaL93f&mzwkUo%_j zS{(7C)UZNWsmwCKp-~?7C1<9j_t}Ycq5S1-D8j|*Z%3XmX|<0{egmK|wEysr-ZEi! zDATy^$1{(5iC65C;<<2NM00_n|M0f3>cAF1KErLE=6$2dEOlE7o)@9Gyeu!yT)#Tc zox@rKt)6%uy#_=S+ci+A^3?#FWRD+zccA*yH*#DRwrq2T?tr`5UmF+6-T`E^UUQE4c69+ zeQrN-S@ym${(taolpH*Q3$0t>f#MGnQF?$CL-EaK+xqa9UOQhD`p&TiM)$sN2&ya$ zbRkb(0tL)^)d?|cCghY1wBr`94nF1yIb|AHrO6A6VfoY=ytwAi#bW8?ok23K2!3#U zzyHvUx3B~FH}osCUb=j4;Nc7ccVAT}0p(JLD)~W?r1g7>ibO%W|El*{9^&fqauFA2 zDJW|>hE^Mbc5>n=?y=4~t0E;8CLwfXrbj}AZkI(0wzCD>9?6Jm*!hV>DlcO5)GAG; zDwYea2?X19cU|9YdX24h+E2?gFng2>5=&!?a&LPd^s2IyrNS&>^t0YohISvG` z_3Ya(R1oVb5XbNeDP))&n{DL?%{c>g$>*T=idWw~aWD zMVS#dRfhN;QvvhIf1s_GW_e>DD{x~Y|3GxOrxRX4cA;}xM83)2m&8R#5utI_qH-$} zqt=&i?^;l&>T;p1owZ9%l$@N|_FVNUjDGVCFZw8?U;M@Tp|l_iJV>qxCEgu<$E?); zSg{60iFGugGT(4*2d0_X;i8!X?Xmc<**@H@korYHGi9H&t>;l=%^3to$Au@S{f_Nd zt-1Y-_@u2jyS(0bLlPQjT>kVylku9PPu%Ls&c!29*8&`;aBnCiiyonZXr5SNZxfO2l)%YX8VSO0A_|-VepemB!{mQNfgya0TQ+1wN31A`0ShlS%#a z?wNGw8v~CzY&tN*MRKZM7}q)FiEmO}54iHH61~j?Vm>=npf1|-X@ww?j}TV-8=k;yICMU$4^ac|7ooU_yUji$ zc3_z=f+;#N-Rq5^^j7lYnQy0YN*@-soPV9$MZfHxlK$;pxNW^ z2@oY>rvML$T8clNyAW=0oAtVjf4J2@kbHr(j=3Uycjwys%pPX-S(25SDGH0i0H?Ek zjJjnxRv#&bql2O9m7byh(|3YWH(;YOS;u}s%H5gGUAV;HjECp}oL1tWcf^vgy5t=1 z{S9E_;a&w&d-@};D}ydGjAPe;x6waywV~-Cd<}jd`v#cc8k?Upzkx)ysoIM49s(o} z??0=Ld-{})wz#Ey2cIa`n7rFnYuz$)Jh8Vj%$x@P!RzMCik;5S6pry^|3Eiy#14vm ze9&Oj^jH~=9n-Kqf37`oRh4f=Gr+JQxK^zkrQ9>V8GKSu#Yt7kSX)BkC{k6Y>xKb#!={c4bV92W=liBMNz;#w zdiWC=M%@;JKEt)-MaS)j?NQWLVz;HaSMLw`W~5tAoG@1ZUEyBxXRHU8MK?7>)&$K# z)u(%~zt*#1pMwR*p)QDdHbedOc)jgICK`cwiq2gu-e$iO*PQ!^7nyYaBUWsM zavJ<2SIGW2HcsN{(Kb7_O;N#;+DY3Vk3j3RHL;l!#-tH4Osxk2@4%Y`#0AZ5(OFg0 zY6C1vfus^k?1;OEs*3i$Z|SS0%eIM*`od^OYdIfzQ zQ)~|~FmYKoxmo+rpIKhJ#r!@+xHEZTp2IRlXcwa@a0g`@n=*Jy)*H~E zmtYP&OwhyPPT&N(x(xx!%|#e6%-}eM?*T|1Mpc-mby#kdFI!*mgK7QOp&w42U627K zacTV3sY)I!imwEmn#i=*9hLX(nOA3lBFMaOvPwF;&+|vhN99(iW$W!W59V~8zpE+| zFNrShJEriJ4YWho^%|$uY85O(9$wH2$<|%T(g`kC+vgThn@#>;%-Qb?606#|C5q@r zeq0x_S!^&VZqGx^4c~^Kao5^&QBwQIRJ#%;jwie5-w|DRrl}t8- zF5(NVBD@F7tE*7?b0y{0)+{cejhqMl3Q%1$vlQ{K3FHai@lr>Rc!&wz6cv5*b6<5D zu~FmY1Y`3h){cbZ+@Fz?IKLpEV0cHc8#=d;;lSPZM3&=pAN#sT*fu0irk`bFoRai` zN!kWXXC>v{!7CriRKg_LF|Mcvoe0bCJT41_VZpXJaI5<3$j19G-Y)w13`kjPeOV@d zXUOu{Z7w+pu|1pG$*Vx3_nni(RxRSAXmuFU7mUhN$>yurlB;w6-4PgnEF6XqbP2c~kL3OYGLAbT zr8glWYjAfb`3+)YP{ zx^>gVT^73$yloy#$Q+e$Xz0)HS26!EvC0XLxWfRl5cTNOm3l(&PQk>?FKf2}&71zj z8p&eeNunq@wR-aX{H1$%WT!VM1Wc~wt|~*2O3jle!><1-fPOGRi!!8nd+Hx(#xm;B zFr|4kxgTMOKkE8Tz=O!;{$qkL@-;piMLN!Em-i?C=Ce)L%J|QLr zZGG-|{TUW`uJHN}^PJnC!#^WT#0`X8G8CPtDt}SJ42C`pp4l`MnM4~qCLyYb6yi#8 z>a~$Tef|v)HU}{SiolzXT#od`OBRAx9KU}RyV4g>M3N+4O$4b4E=XAOC(boVH4(5= z5-;cE0N)5!2UV1HI$y2Fm{i7igt7{V+gqs~JY_baPFN>z-NcCm!hK8EK z=ySW3E58rksbRKyRccQ8DQ2<#Q%;_SRoG{4fpTR+&Wvwsof1sk_6o^y=l_65qw4?| zMiad9{&6P<#iJBX{I$Z3!y?JYQ{i3KyJ?qM5}^(o-;N&{BU7%syl3IzU=ms zks@~qd6;<=Vu&9tRV}0TpPMMx2TiR0R#Y8VA-MAKI$TJ)XU5!3NRk8`1}}IMw7Ypj z$5_sh8I}Dd)8P!4p}1$pwJ~n8xCYy^GnW2=tdd+TSA^NSSWM)^8>Jt&&9j zz!12F0>nzrYV;q7uMFzOAp46oc4p_d)#?|lA_meg2kpteQjm3&++86;cZL5P0L@>N zpg~`rul>PxaCH^_-QM&F>@&Gu=}Jqq4g(whIr(YV41rjiB7V28#FjLmo4PKpU#O#e zdSV?8@}qPe&P4bjL&fGGg>u4)#XSELjg7gww6&d0Uti>26bE@!x=UJ~7k&0Q+ zFR@#`z%PMZKZYZBi%0!Klu>hPGH?OW8d3q6n`3#_P6~0Y%F3^W8nh!ti6<`^zxZNP~!(+N)vNTOA z`B37zmu~YuCuc{V#wqS`Qcq;0{gd_=TZ175fQ*GXZ|c3dvP*L;S0Gs*Am!8Hys(`x z@RU#jof&e5!*fR^L`mA_z}|p^|nt z%*V^Ouro+W6ojtNxlOQ0{N`Tyu$xC+(&1i69Q>G5-Uw?(H@rW@66;;e)j#0Jf~xU6 z$x(1+W?m_qni{!E2{f$Sht@O2%yn|!OF-Tup515C>&bA;g^@O|)f~>NOOHJ>R_K=| z8Pb%$5<9hj!J{5kO*Y_Rl)kch^{}ZI!KRvT%HIM0+^(Cm!!rw6OD2tOyAoP1w5nX~ z>sADfJ@Uv>p*2x>^u@9GCEi|5D|tF+MU0_5uL+ccJ47<7;^a8Z3>PEERYi4*tI>p=^_W@tn6|RYhvNWYmp%;H*wm&uCSKC)s z=4-n~9m@5hMnhCOAai>0j>L(i8bN9lG&{m-rXkQ$A?9;+y;q5_B`)qs26>xSYyy~} zh%Z3&0y;AYrNWUouZt)Fh#{ul#jd2%Eg$cp9+UUVjQ+#7WO&--zq2Nv6d!*J?|TQB zR&|TvCGF3c%oTbcGtyzT)aJ~Cqff0_e7m-hjSXTw)XcA(>xKDGqz*;->C6l{l%tl{v#%iG>n8B450=|g0 zFVW?1xx5!R}|vs!ENpw>E+Z>(%ZeC5d!({DjX{%bK&ptaO%yb(#S}sjVO}56K zTV$lQg-cJuX$1P9L?qXP6CrD2cTFOv5z~u{i}5QOE|SL&&JVvjAtZ-)*97{-I;sNf zA^RSq1GQNhd$q%-ig_jAkt@+?>nQx4$#yOW<5fB(UMm}<_1RF-TNAp$h3>rCXR=^D zU-nTtYAv2_g_l156+zv7wr=d|F(#kn8hG(Qh#Aia&J7i>kK!zExoCmUx3f;t{i&&r zRBe>Gj!p*qtL=?UpDRWL>PXU=%T$fMSxCa^Hg&!&v8y+DTgBgsZ{du+5f5a5#0HCo zTVWD1xF?*Q?c{W_R)uIvUwMzA6TZXSpsd%Aiv=%Aj7uxDKfyAQoDZ%m(0_gWtDs_H z`c6m~Od1i*`K%EujZTrmf6Sqa7aWj64CO#A;z-F^=O?mI&OH){V}wo2?? zWLc)sbsx{G!o@z6>y;>njq57c<`(V`)PZ{8O(5-hHY5y8=E899Rd23sZ&2ghwRAh> zGr5dd!&`l~W8vvBNaJTfH+kJ2|G!F#Z0DG$suxjH zWO`nYpTH>Yl7>BKHr=jPd}dp6cr_Ov)@2x>CFWn>bfT0_`=wAPrPLs>9vKWcSv!BR z-p5himQQu1`xjcQV7t5hKeK+n8SQV5zrRlFF$YOmx*W0Z%M_cIFd1|?-O|R5@jnF=UFq5B_J2tucrR)X@^zr7(+bMA@=!>HD>EGaav!aW99zTPSe)mkKuRXA?c0#hp znd7jglwU31;a8H2J#YG2M!Gaa(-jbwz*U5O#=UNyR^Ti374GUcnm8^wjMnUd9P48g z{bgA2Yq|L8#!jAJzuwT&EfC$OdpN`*n4sibtYB2vx9M7RV3t}`oODXg{IS+W$2{m# zQMIE*9Y+sCfkQo4zpPRRx}o>9sm&XhSS@EKIll3($%#8BJTXi;DJLx#(tTL?Os7b2 z+3!cYSq15J<B{;d!RHB0cCJr*M9&;Biqt39KOf8Jmx;~ev_#Edv z@}~7VHPHBm4L{k=IBRSQ2%T+8t2_%^9IDculKW`0>)t17Ejh;n+}w}Y)CcpW_~qbd$vnqF`6bsI zBPRbqPKdfF7z+QQoRJ0c6mY6hji4trwtMCNXLf#Lz%^<%VK0+X!Afh*k5@kb z@BRuj(dZISmW}3=iQR`bGR3{`xN7o^VIV|{I=$L9jlnvK;qDHa{MP^x>*WkuJN`R$ z;hNrKC4f%(2V(Z}J9BD&5TmVYFoR-Z9`F*UJBb)P5`i7f&YV8((xH28F;qJq^SZM? zOJp9bm8!sVLxJyZ=Z!K#_b0TA?y)`4XDI5wSQ6l4k$J0<`Q6wdn?di#jra>YvvbN^v1La@_U})<*CY3A4Q6u zdpCf2t<$od%6bfaYz)`J=tfmq>@+Q;P%zwP@Mf63*Yi=9SVOfvWy`Sc3Y`D3) zeJkZln7_;sW$gex1Vlul~ifxdBFeDy_dW_`&Q3 zn{>9()x*hSjxnpJi=+MAhhN5)KK7Hum4uXTrLK#`fNwmFp!EFb)k{{Kk2>aeEXw?9BcS_Py*1w^`}B!;4dNJvYkl+s9V zgn$BqfPevv?(QBvy1T~+>5Uw)?fahJ_5Qo-+IF3Dp7T8S{kcB@OsZJgmIUc-UP2D;xCUCz|dLN@JsaY)`FGl_l0LQ1NYJkMbdv@}z{0_-@b%x|+Aq+1 z@a% zBGWOduS4%N87pb@fFXnxa0FZNRaN}CTcS)kaJB?W7auM)4Aopom`v~6GgY`~-c(#W zT@eCd_x;w8v;a&M3S;ETV7(cm!B%uPJUWZ%XG7ea{g8*sY}$p`x(6g!SP0Pa>s1rr z6Ys#+Rx4+f#U)@0x&^lV{%RXfg6j@%1vdli^bGNV zI^oA`s$66wAJgQ8rP3)Zy6>TbQ{e&xqb*zoVP%DDxNp5=-34zG*?>*l-)^0=gg5Q1 zRa^GXYb6u`*ZCa&iJjl&>FXhw25>(@L`W z&z3C`%_sNZZ5-*de{%zx>dB4jAIH=tt<{{K1Vacr66*@4zyqu#L!`T0c;T~ahyETD z18oOQ9m5&#?fboo^M#Q8g6pPnPpM<}@4=G%3EgEp0iH98e-2Ne;fhe^NWye>$%I*5 zR*tzhP%QReIjREcIv}0?KM=wPqfkxlg&d20bRYN2&+UN8brJk!jG`XEaEH_evX9B+ zDnbbyP~m*t3;)#z1B<2LiY5ZpkzhN!xgQsSf(IRiqU{Wf5wh)E1!L-eOO_6zhVHWd zipe_uIl8H!@+Kp)HFk;eBX_ZI(b`elm?|Fvaqp!*|L#-M(+1q_;Dnpk<_f8Y_t2Pg zX|dp_4e<5ro^a=Wn6nC%_G^0z131ZQ^pARz!&%N7rwwF&hPctL2)+?}tlv1@P7RrW z(!p)x7puE?&_*%1PemGeYyJSjoa(vSKfcfe+zY&-UDH{l&0Gv3a?Pm#O1W@<0{nb>m_I>9@CBx!Oa!a90kkYG1i|!ot2R2=lG{B)Oze` zaayunX#tab}BnqoVAr6 z*VdTKP8}oJr!OznuBL8%#=)Q8k^vR#^R8=wI5#I69}Twn*%QUDGVhK&(IwV%9J=c% zlSw+?D0_?TG+g6dG(Eb5!(S$Q{gJN9QGq;1$T;!gLkAM(T#{c8_PXP>Pe(wKYGbl} z&lB*DppV62e&?vOOiz_3Qdm8Wy-UPK z?9Wvu5ZQGvKGl&#w)0TQj3U{5SbN$d4SN1>`S#br&0}7!cz}->()1Ad6U7Gn@qpmY zo`jkW(|me?%m8;B-?A@*xOkVml@Axrk@CrtE>l;rxRC3OgvWOo|7nqmWp#jJJm%+Ji7O!+ck za?N9&MbRrf&0Xwz@-53<)h4xna<+Ah(=T&vU2RF`ZbzO^ySy82sfuJf0}xM*7j0j- z*pk^eDD@bk?l$fb^@;M)4%2@k`Ro}Ce$G^X*RJv-CgbP)qv7B36@{G)e92aJ2<5db zrYx~%tn}sU&rg7Rv-iM|xG9K~HCTnV4f#Pqn_d*aN|?y*yPsh*GmyacE2Q=)h5>JDrHp{q$w-=92HqOV`of>MB- zVwfnfIKKP`>^0kf^Q*Rr5v3W6_?NAk{m^TjKh`ePcY3SK619ncmELM6A!Sm~WHBS^ z7-RF8V|`kbV_6=NNr>VQi+0wYjf#cq5t6&?!~GF z>`vZv^DlFlNfK~ZnT9M%>{@axwn{DP%d|l2MO~GrZO=Rg@&&@g#${wU%S4?biDVEE zK3YS`Y1l8?A_czX6cv;+;Dy^u%v4Myv%mDm%3tIVl^-ND4Yyt6e1ZAqk%P#5vn#I3 zrS9f;TPRO6E$aOnt21UPTT z=p*59VR^@qC$};Z0<9IkExn?NN5Zy3$LG?M?e(q6ZK^nlp;)@Z6UBYG5e$Q~DrqD^ zFjX^$gOI--@jo#P%d4r9tkv*qek}cY&J6gN4OV;~pr@^Z!8KfUKJC9@#d3O>5EUbNhUl zJ@j{(0+74C(?iz%$L#(RR!^(x$%W6y;Ch|g`kd~v;4Xo7{`}zhWRr};r^mbV>qY!* zlBqAha|YDbp9U|`#s#ScqsrcZ!~X+O5qH~D6i%0y&0V^y^Y;fqhzP-rjz|EOp=bz-7BkA?WD(G5D*Z&=lkj_56>{Uc-+=;M=3%V<)z# zpUcmOQO7VOnOm9XhlL2X`lxC23c+n8omtEB>u{B&Sx=dzR?O4@TT}>y#S+_K>_&wB zyxwjm9W6QEhm76nkG#Iry*$+( z|4}DpsT*1Y4>LKsHfWu#FdF`2bH{0O=a!wFNpTz3G#SSgBep!H zX`R*ZTLTH}c9JA(#japX^#k8I6I>LKg9|xNt&rO9O=a}Y6`JGZ;Z&8l`GXJDE4)`V z<0E2;y?wH-Bx(nXfbpBrp8s(#?Keg!i;tI_>m-gd`+oh!-U2W9THFC8gbN{VHxeJ_ z-(gCrIN~ii3brsvo){D@9$KCMr$`_4*o|?;6uZ_drEZ_Mu=MTO5IJ}z_fge$Kdoy) zhA{xG+fCcd^4>4IRjd8MPyR)Qexje?lRBOpm%Qu8fH6?3LrIW5h6N{$4dya+OmX|W zbYXV;KTv)w8EO1$ll`8#UI*-&wdxxe$m}seZHPRw)4iT(uAv*KId%5Z2`)-Es=BM8*a^m$iJq`^SOR zTRxU~?r9OWBdO4)yM454>DRXV?wQXi?hSrxrcaE0}fimbd31TgiJ?OG-r!Gu*prq4O2jj?T>a`VnbO65=3V z+hwSK%c;e-`p+S@*~is&lGVqyT^nrpb;cPq;oJzzzS@Q|cj+NK;v^&7Er11jP(I1> z`iOn?U3EA!?t$p@3@qZ!(eNq%d^1eHvrKCIR6MPKHg%jZF>DEMZv(Gqd|hQhs~)5x zWrAK5TXJ7EG@Hc;gh`u^wLfME{K9sM_bcO5rA-{)&ZueF@G>lk-7qua5#q~l*JzQ^ zj)YU<%x~UeR}`P%-o@EXv?B581*8v`QOO1t12{tK94so!RH}4;<5{#qnyUnLqIC)@ zB?e;QHr#My2$`xUJg81ux9n_sSMmOJeqN#Ry?WArpFRy<5*~OQl`PLPuew(bSXb_y z2J%c@6Y6-m2ezUU`)pGF=3ZaHg;&O4XVhdmljkz6U}TGJp+A#yNnt%pp zjJuzDS5W2U-jMJ7b*a|lWENK+OTl|*jNKKH7I*QmR!)zNF(&7Gtg~j$CZWt9Y{Vaa z;b=O7()9*!laWUB7e1d!-6Xo-)~=b$~Ak8<$Xlc^RnBd$3A#cYwyEb zv;**C;7*(|Q1ZHTBcxOmhWJK%%Ez>&Ebv9#6P++8*5JeDSdU1>fWnUMfw<%;BhsiO zy`OXo;3-`6caw9+)%#B6!+St@oC{~1#8M5kYj!qhcs;qf@8Bl%_!Xc++t=Pq&F8wGxc4w56op+O2ht%^pd&x9R3@>X;RU%#$TW@LTGk?$-wdGWeODl_DyUoQJK^fxG@8M2cr%HMbJqT*C_e4>a}E1f zCtbx?aIU<2F0EnTy!^W)WA;s)u#>DnjWp_ZK?(M_+xB&Ez#iX5nwhaVxiLOvPn?BM zFN4{P1OYE&a@Gm=RhcZ|*VBCsr^Xr1w7MW&p!B0tFT9T~u6tpNOfeeRe!AYdqr_KV z19M~EvAhv?KWqSUcPY-MP0~Kw-N!cQq_}gXhaIg~fx$cb<`jt|>K zBLQLo4S(VBpvIp;h^0!7?V28Sojkwe>T~IC-HSS*3FmGd%*X4Drr^S?#YB?Q-s-MY3Z$W%5UX1mSHqQ;bn{c=@+~8@s!i<2(iY5J=%p-I14i;Isl9(Jqk)OVF z-oFN*D~VwO8N5q_b`gQHj1$E9&{QCWcwf(atZjpMvIsO*SWr@WzW3|)&y#kS9r2c# zDN&`>s^0pUTizxKO=#UjW7UiKb{SoFzCtEBNfd>koe~gPQ^+`!sE&EAOV5J7A$cZ4 zjvBE&bqu6sjTinqLrC&Zsy1Op6k9uzHg z5H;`$HbX{#;FQqpTkTO8#_lSAtNy_$W3v#A_sjPP)hkzv_&c)fy&n=2j~Vg7_z48_ zhIp(tH=w+iT!C7sZXqs}9Rulu)}QCnqAsUy|IXiA{1U4D zE%SAkvOoi_hl@n)t^aQ$7YN34xvFWm6DZ#?N5XG6UWxaC#f# z|H2(dWuxI8&(9g7ACf^G}SCirxM;Bt@{7RH5eYS+ zn|v=bsV&eegPfuJYi_!t-$AgV=`WR5p-+bYt}8BH10+7$#hs3U8xUbG;CmS&rmW0x zsRP2@2D|51qV=}e=~#lpK}X^fpR8O^3ilUYst4l!KI(7YoNZx*$F2Yp^km|SbKTpa zXF~>dCD!S=^}*0CT#Ns1jcUx8NG}}AGj@1OcW>}NkO4ZQPA2ktVZ$1qLtJ(1P+m3g z&OWT2h^(+8+pIRXfZXE#Tsz+Ay!cf9eP4!Gq`ON>siGzCCLn6?hSkD5f46dZL%sSX6#y~vQJ5WmbxDS+Ki$TL&tak+(oEbB&8Q<`@sK*4pn*lBl&5U zt}#eDp7RgRFrVKzHkDy8eF|rEei@ADUZtHQ2om}&S&dM>UB`FLvC!Ujnr5ff6`MyD z9Y46MnlqR_E^|n9m#a>7_gLf8Q9Rz409CgF%ey>Yp~@Nc=H}o=;*9Ph5q;bV!wP60 z41BtA2?C9OELD88o071*Dm-4sNz2|hKE!(Y^oG)OY>x20VK_P8_{!njspUKzVp?G^ zb-BNM^`oJJUI4~uI~dXL?IHMPmXHYeQizJltN z$Y?=nzv6pF?D!GM!?`AA{)X5~LLH(0Dns${&+5GxI%Q);Siu!Dw8o*AaxC&XGUw(F zVb;V;HFKrKaA%y5Ybstv`WFC2yFX`E4~OqF%Q&DBslSe!d@U{ApE=4X>RPoBeaS z=pgus!5`gTJslT|lBP4VPEIzgFM*;2O+sM4M6pjATAgc%5Kj}W|AXO**%w`VFyDd_3nelK_K20=``Ngy{|t9&rTfxG&^P5^?+%qxvB;R z4v6R5=PbXd`!e>D-``^UAQw_oTvGYZl#OGV#N5YyP*!7Wq0@8_Gks;o;3Pk&emp#N zwypZj?^I_TzFxpW+r#;#U92WX8+(o(dq4AG>d9{<4xWje=46IA#T&su+az{av~DaAGh^>Xa-XxtIxb~F@XR34>UG>HEiaP zDr+NJvHa)i3GhL|r}$|F3H3>wY`&>q;EO5^7Xeng`s(`F#L8}#FRz%n*ZD)p2T*O^ z(tPbs3hz&^KgMuMudv-d+|{%GCzeWiY6ml8alFkaR<-lPYb+oz%lTKwXDW{j#A3#Q z$#?Udl+ovB^kM;#8ni!AWNl(c{8i*I2`U*9`sR?YN=&jJ&$vC_l7)|wSS9WLQ6{=< z+`PTN^z2I%)xe|vKC!fDrc0ZmgJnA_46eELk6|b0UEUeRNjs3_i>cZEvo*D=3jh&USMrOi0cP)@ zTq?V`R(C#7uJAI$`t^i6O9$;=t|^&~UoTKBa(9WXS-xCS_VB5 z85p}F=vyk$7xe|ADM{2pB%y%9KI!ePhonnm;}@BvD0y3caR4b(CjJ|0lbJLg4%iSY zQE|Bqvcj~m`Hz+}XkPpWlGgz#iJc;{*j4Lz8maG;YH2I)>MKNa$m-@01$tqp4_IS( zhjYc_(%XLu-L7XMOTpeEiIb+%3&?6yy=|8Kk(gH2qSo}qdy|fyNMR+m9V(BPCdQxH ziW=?Z&M%ARb(cW{gPRUTGPyz&Rt^!UHTk*sqkNV>t91usyed8^FTb5}aJR|SyltGb5zGTo+`{;l^+*J=dqM%FE){A@UYioFy7;sK} zcrlnUeenSGOBD2Ucljch5yZgAquO-f27o6f+KXEPJY!^O>=*kTdBe9TMn|9`)+mg{ZdsWgoCNQ|SLN^50Jg zRevUT$H;eRe~wKLbT7g-4dN}G*&NNtwE$3(u6L;)cI+m_VtQFaN@~xw#FTn$C>`8x zZAOz$zr4e=k~AM3_?1Bgt$v6N-Bq4{uo2O*$ola5UbOO*mHj65GEv&~yI|0Z?+aG6 z3e6wlLLMsRa(Ojkl3;!5z19;&4-2i+tRApCiIu(fzC}g>8skL1?kw4R_NqXbwvd@E z-o%&Ehi(fj5#TjuA~bG7Gtb<>W)AYqEZM2y->g{DIsZrSyV*pRyvHGjR?wwXMS?p`u3+)t?L~q{5DXf-We?Fvtjfv?A(C!v`z6N--(}V@T zn@BR8Zip@7y3AVx%Db94Q5iBtSGV}Q(5!QLDZHiO=s^C=2Cf9%`O%5U9FYIB*?;0>@%fWE?}gE;)*Cv%7=7Rh4qDdfC%t(YGX!Q;_HB&B zv#jH58~4b^j>hp5ryL&dQ6A641$k$7_un1ez)zGrtUY8e!21RUMF=%S1CHZAkjHig zHQJ)CXrH9JnY#0DPe5YoY~2G{P2t;M@&CmxxoJ1cK56$79Ky)P@qweY(Ey;uwOb=U zME=uixj^7GM5J25tH)$5ia_M|a;}3wR&%3L_nEkp-q!m&7Zsz`^P10R3>UwaUkm2Y zR2pl3xO8bkzyCl}?)%lh9IPf1p^$j|&j}|zS-5d_ z=M%-G#{*9G#*TwfPRsqKEOZRg7<0H%-d4N|w?}Vh_&No6F9#Q})t+$d_o*L`y9>$(!*H2}fR!%!lc*Lu=}+nI3Bz9Oud-W57KtLgrY z5{Zkxb7j=#jjBpMO|x_V_4-J-4UCL4gOe#oxr_JNTEcl7OfM{gZy0?J-MZF5t&jgm z#kPOQ?3TjRQziC${LW<`P+;7hH-gA9M)r$B4ZDFAalLjuj~c2pF6ZupI@+A&wlkeI zT=^d9W5Mf&H8X!vynyPfrmhB`zh{~Rt9t3Rgv|>Iq4ye9@aPQf5M<|#>x14qfN4wP z{n?vR98aIG>2wCMN;S6+^>09UgEZQ(BgL#jvX<)TxVRn!^T(5bmW+4_6q=2O3@rBh zgTZO3vijnmfcBj!ds%a;;xJ19I53nX(Bd97V{`o7%AB9;r>wG6r9NN@h-K|Vac7`f zq#@x;O9SHC<(m2>N0aedJKuWJl<_e2iL7J86c|!cJ`h8L(hLQ%f~D)J3*U?|^voWH zd`tUiF&ILl9dJ18#k|2?X)K}%u4vsHJSq0$5k!av90Qi~!EuO-;5M}7!4~y#Osfv* z)^I&dwUzZzzRVH}45<|GXFr1KiE5Z@&gGg#*@bHS*9`k!nHdTby_hSWl}kIqEv)qh zK;DenX#b5m{?_L+!M!|dcqdn=t8ed?W5H48sw_LCZezS_L*nh59;44;|AHS#u!r}H zYEynOD#AMt!RpoyU*}*YbFl*G$FDvqAufcJ^`^##oMGOJOUVQgq(516g_nxkUqNx> zAo12_o~g0xrRkmi>VRLV=dCsq`wnv>SDeqCEZEv6-LlcEQO-V`^v=9Pj}>44a-|5L z@|ACRu{7HrNd2X_c#-4$z0W~#aL{Z1XUp4%w*q~;Ebm~I*I^+J82DE=;^o0&*9tQd z?(cK`UpXPbsAU8GvcszK{R6TkecvP_w=>nPg?c%O4Z*R!+GkyP(eBPThfF|mTnv`g2u9~FS(qSJ<;-p|_H-{;_iAb}8_xH`-2Knk1{8hmht z(kAuO?!+jQ9!7n8c9m5Z(O74^qayTZzpd*0DA4GGk11J12VUjR?3=Z@-#d23K@i(m zz&)+q017Kez|#b|Vl2C2I9af?Kn4=$*XN26$lrh~$Dh*P`xoZlJlyWeJd8~orqv09 zlXvO$Od9~HKx>=z4*z5ZCJF`&-O$i1Ou?ZtreWP2-uo%wxPu^9H|@RjT}%D2-22Ag z;>lW+oZ8#F3y92(WO=!N{mH@(rLj=*pjR`ckcZ1=&@N_${J$GdAJ?}s zGMc`VWY`!D?sRV%xRFa*K!Lm8+wghj$sOV)sv{(I!}GW53tN0Ja((w!pK+qg3RG$9 zdKyHMtvku?o!>4N4L5>sdNtqEb?X0D(dvUbrtl-4D1~s46#7L=|3L*$|BjroyjRra zAgnCQX7zF33{ya*@~CB(R`WWYE{{rx#^RGbJZof^AcoEIJZVA;^1r%o{WdY-Qk$JD z&lg~2njtr{GZG(+^+D+)a*4sjCXBptc}||dh_h|7SiflHrq69bNH|a=g7e~N4npf< z!rL7m3SnulZ=B*7iMUCApNM2uvzj6b%PSe|)fUP#6fRvuO>MeG=s;EkYmaVQ$02`^A)mDTr&JJDFM))iMly3%tNDD01yXwD(t<#7P#u{y+| zM30$@9*D#%$-Df^S;csmV~@hK{|BON>`O0z5^`p z46bwjtuf+wu?hfs`2tG}XCzP$(ELSxl6ueZ$&L9{$-~zxw%&|s?w`RgMOANwO8UD9 z9KkDg(~M29X)uO^;!oGUmU9VLr>M0%Sa?Tsa&KOJsDCy>E#byzvGI~V5LY64dKUq;c|`VNjEYF)A7Miw&p{G(@(Rg`A* zZKvPwTD9Ho2)bsSP20Xmr6e@z^yhp&FRlDFVC7OcgjFy)X_&(S;P1N7g?!qSP?~AQ zi@=+LwSg;w%NP_EBnxc&u`u+T_(dhh#k#W9hV|g!hSkznU#6`rNPCpfsR?ltW{@5r2b zl?3{RrEHR;0S+;4)$%(EntX^w&+-zCWyM~c*=@N!+`QQrJ{CJZOn zd+q@Wuzvvlj+{V)4^7b$0PXx%tIjGJMtkw2n>TAy9=fedYFO5O@o(dkCnTQhXl?ed zr(*O?_gyxFKLd2DZ{ev%x$ug;okhzU1cH+k+NnpNvVe?m)+$u@Vp3mJAz)3fR-Z)P zIcfOOfWKw^qA3KhB>p$}R>Sa{zUJo50T;(r<3YNBuLOJ^wlNxWqX8MJF)}saAj0q4aT;^a5pfst|+Px!qWKp zL347r%zc$TSqk-AqF34OY@P+aF?uv80l5+vNKx6JQ**_gtP6>CL zA6s$(BES4G70B&xzzax(j}6#@d-@D5X+W#@LXN95b z9i6N$Aw6-)O+2_RkJmyBo8Bnub{iPw@qP+W96QzC_89R;u3`DeI*PbW15HI@I2dYr z&$H`$W~>kP*M>aBX^l4r(RV7|O!Rb*KxnTQGTe^E-x@R&i0mI*e#^O0@VoB5=)r0i z5`cA9`=H3T0K2cMyZT_xEen6X*pc=2z4htXUGv1JW4~acTbj1yDwoVk+h&A(Z{QhIS}wVr$TADBgn!OyZmodaHNzI|@v-r!$bdx-e>MFYx5w0+SEf zv4Hnpn~b8N2+gj>YhX=>El4t&h<{JGH?Mf$@t*NVh1VTH2Tl z@^?-clCH|9K(aSR-ceS~{s&_$z{VtRP|=!IHkXC)03-g9{R^I%rGp0C1TZalHYUNS z@?MK?x^8!9!<^wdZ{hs4<-!{3aPIKYjS7wut=il6P#r_osVG|;d1{!!LtA9(KjH5s z?eUyJ;OTic^j?l=Q4qVDx^ogPW7RTYOqo)i2iRNj%ZFDLyAr$b?~@<##fq#N+lTtt z-;elJwa=1A0-3(RtKf%Y_}Z(tY_N;8wM+QLCL|E&jFCn_7uGI1W^fM39N!$jn$A_( zY1cD$Ww()MLcY)7_O@wiElh`o$V3(8A1+(zye#jwO=K$mIO3lJe$u;=j5(hIBoZO zTK#tEYtQeAP&P=A4pGMNy2t49ILo62D$wd}GPbi^v7V!j4zLslovKCrwN>H z8ziML4qYmImfm3r;~8=fu=&n(dvZNd_4fA=^P&#+8;7Fv937%5tKI!wl}tX}R*{Ei zw@%e=Eu@TUiA@3ilKQcv9p@JS5fLQCAXgRskLD?8zKOY`e=~kdRq3`)8rA(k3Tcp4 z&*mnC-Wwz^1v;Jj1Ck0oLCMH+goW;b=-Fv`!J@lLA!x6Lf)^RJ-b`P_z=~q$nJ;e* z48__ult~e@aTwjYr$o8t1lA6?O_lY6$Di$5*W`d*`7)vEN=q!U%}XUVH%ibmv~k_z z653Uu8Ez-pAa*l<-dSAD9?`+}RA&E2K%g!iQDa&N=!lw{`^%ylMcC(90Hw-%I9}Mq zyWP)zV`S>^v_&7JexN;@Jb$=spbO$kiVK)*JP?-n!C0>fxSE3cElkT*O>T7{;^=+$ zdl{z%nI2-W8!=hN?^x+hY0{NsaQ`M~hLs8&L7Y~B${70dcuohW6MF#b8uBc%T(GjxjnI;3gkWG68| zhxO}Sy9iXhV`Et%KT=E8M3~%|+&q^g4Rhc){oGhLv^nFaMaTGE3ZyDThW=q75lIH& zcV>W?fe}x&M6|E~5hzTFsAXLz#EHAmHEMVK-KSR~DP&@4n0|!T*`;#j6kQ_unD*ba zcisY02$d$AM&Mb*_eE85_Zok-c!Rp>@KUc@Qd-R1w6e`3`t)j%2vje7hT2!jYDC`E z8x_k4)ZK18ctoW#t0Qx~uRW|}VDy6~faDJe@D)3emyV6bN{w6su`tUWt@TNID)xnS zg8naKisY`6Pn#U1?4Y-7AT@5^%;(OJ-qjW{GjIH%{_<2@nIue(Y9l85qdLo`UEIQ^ zckXH)_p?5!)Bdq-zIyi`Rwh2Rp_!CBy&kV6+A@B+ z-1EbaDKA*nI#OaRIo?V|sQ`ksW+e6hU_OtU+EpqE3 zP4wl)!$Sti+3zsPvn)}P>CxTc^E_2FoV^GTd($v8S63a>yl|Lbh%=qR83A1q7`au@ zITmTSf$CwwyyrmWZdT(?-gF;f*0B04f6h~G!!96n@6{KzOHLHyslQ~{>fIQL231D4 z+D`KMoLZwsG`hjnuRKTm zn@4dKjjbYd#m0?B?U@aECHi=UR?99dw}Z9((~#n&bb)!<=Jvud;|D=LMd~>tPH3`q ze0JFZT9sk=E1aiPnY%^wKagLFg8D{#61%xU5nBVO)B6%Lp?uuJoZb2`Kq-OXFMpF!##HDXkc}cK_6|9DF22sZH!gV|t$(G=R zvDAr*zZ+Y>P^m&sarXkbo8kNKp6R3K4kpkWZXABIGH$K!ir@5&lHbrG3E@uHzp0$if}qh%B1zhwj72MJguP*I_h8nJt`C- ze15aLz1#^7^m(E(=P?ILr1#yobl{)%WMj?KFsWXFk!VwY-6-|;V2b!CFR9U_(aFIU z-Z5(gW@;B+W}GQ!4D#rIAyw>uuLA$fbqD*}kdm6JI2?hJ{EO8S5bd2E^RQenrshLz zBrcd{d962u)QK!|^+3_p5N>%x0&}hZ>g1{lA652!O1Y%V$2y(}?AKmTtAEoY&O^-K zCV`-u6P2rc{y62RNb^vmBKwn5NN_CYqUl9g8}_oiq6-}98`<5(BDxkBu<%{@jk|;U z^QXHkpT~+&eWMaiwl4CLWJf}WS5S+#c-zPmo{+rr(l>3YSj+QZEjMI*w=99j?1dY9 zS|t{&(P(|^efQePbj>yK^NbL8fuK}gzv9#)0CTe-y!Lnyh=-{rrqtP2A8vcY@5}oK zZv?ADsDhsA`+8Ip_868}`r4`$57cCUQZ_a?SP;Q3AM6v_QQ_lMa9*`(x8MUv=!a|g zEOO>7VB14pW>|p>Z?rtR=fRFnOC3eoW8CRTtJv?Gh=UTqPNTf_6?$1NO25eEU76+Y zfrzYc8^fkOHqUYxvyaN~=D#>839Ngoyt5y$S(qmnE74c3>BsPydFB5=3b_C+><0sx z>_eiAwBL~1&)`U9_R@?h!1#7H>a)}D=O^z!kf@chT3)}AwTxb)V@1&vwlkxrq<$mW z*<&+4cGF6DOAL*TaCsYWdb`UdoywNm8%dQT$sC2&pd!k<;ve(lj9$o!0F!(}fV!lL zl+ky71Dqv4sH3M=`?>QRgC;7*9MEfIoLsa zwL~b@wh}vl(RF#BjTJ-xS>bN`Oa63~m{D!2aTfdC3!7zRm)-YRL{Kngyl#+0DTV{Z87uqw6{V2uy zu#>;ed{5nF6`wHnwc`6mZ0|&FnHH_q>=EvU)v`vU`|sGI%~ z))X@<+KU%^foB!`DXesV_5E5^JAg5KNFZ~hZ3Ob*aVJvp?;39H_bg-{UU&38QxHl9 zA<2x_t*;AKJT;m!-HMjt=U82G^E9Hu2NdpUdTw7;cP-HZCY`TRwfE8I68)b1K)Zgupk0cC#IyM}`(EXF5u)Eh-93i!UaeG|qly4*1ELdQ*nk#rl<{z?|Fy%A`%Z0-KbEQVs= z5OQgB&2>8b0nFUv*BjN1SZHObMoMkXSf`>y6vk2{C!p`P_t z00-{;2L{0_4|{Wlx%y639i8S$o4J2p{6UF%KUVb zEKV1eG{@?rJ-a%GygK0Pxv*Oh4nNwBtyo1mv_*RU{Ho&wkX(~ojkxRc+3=APLWa2_ zyMKQsot#g-9%kgV?e%4rU&zU4{OVAiJyX+*$}QI<@lnSbMS3fTY=!-Fs@IrnFjFO# zq`NQ#k!`}rp0eT({+hq9U2@;R;s8;HK8*Sjqkp%Wrz4@k*o3>8;)C`$eYq3NoBM z{)n5pF}}bc-S!FGKG1?0=Ir;<8OhJ8tEPgQ9DK| z!XG)Jt`YlxUOa>Xc$&nf2g#Qrj>-jQIl};=Br_E6~a=IZyqJ8R_8{2YT zeS@3adzUU`nB+nz31wj?*JHnnD#Xf84P_D!@l(3aC}wgtqRH60^9qwu8hOe zk3gH87yCxvyX)*9Tc_CCorOQFV$mD?QSj9}h>z-~&QB4r$_xGvl%|96hC!QtR>uwz zf?I$Q;KuP1?7|YC2K}IYR~U|QcpY!h_~mu(($exb6PHlRuP7o<-v{ePN%9Z4m}6q1 zFAXop_q)e?kVTC*QcErc+7cTg3x6*v(TD@d8(u%#KIns1ZpnB`oIWxYL^ zFWY^3h@9w~!g1qi80oYna%Y+x*ymhF6pM}-r>_PjUF;fRwgwhI>)i^1!Do4=GT?dN ziwX1&;`p{UkZ(Cx&!?CpFOu&x$FfEpL?>_|kT}2aIfS~R59c7uF!wTdxryKH>gqqx zpR1g|5<_`k{`6Wy*v|lviKJoK{rOsiBB12#6a_mv5+33nHZ;S!nqzle4NunbFg*$q zh2#NwRndL=R!=e;rJb^u#{TtnF>AOv*iO}&DxI=i*HeSfMI3+#($~`CZ0(Q)?S)Lm z(MPR6BuyWgmHhqRJx|vhT)EZ&?0J1@Pi3Y6$yK%3XAO?A5`Ta9Lz| zl?*hd!b#+`e!qO*6efdX!VY1;1oFTe?J=||$}k=31&p-~+7sVH5FbB$dG$}nS*knp zkzdNA%SzM2ow*{0H)3LXFu9=V$~Pj zUz94OE2<9Hu1#DJ8ceyk60$@VS91bih8(dZ<-P8PrYOF^rT@2o3oEL{^M8dtiY*!q)iKubCFQo1G)=` z)>f(60O?*B&C43U@~+txgVZ0K#&xmKp$BrWhq>^kqCTu__sT85MJSr__#P=dTw4f! zh=a{TFZO5WFg1b?xI}t_og;x^oOj~!UIR2>&(HE;2veeu{~M$UyO`n$_mf>$;^TLFcF~l5NSNA!b-;GR?Vv(3z_Wi?=|DM zd)wlB-LOv@4msp)k)K%hdn|}CAilyS?mg1poS;m*^z0M%wHA-dpQtPp3))-KXv^&= z7%x{|xI}9h=MnCa^rqBk?LQC^fwq4ZUkA4b-wJw#*1;FGgZ2QY4#wGMv#rf>qxZQ! zZ3-xM4tgc0NDR9c%+Jb1d-P0w0tEaT@FHd{dn1ys*KMxxM+A5o?Gt<$*m>;#I6BL) zCjYmM(fv02*~w3ydiXV{)9R;G_< zYK(92uJ3Xwxcj+FOVjZJv3BOV*`!*}@|-zC-x(QP-ds>W2=vJKra(YXW47Lgn4-$( z45~}q%d41Q#0TofKjCE5)DMES8$?i;CVxnuVecA z>z9aW-wi%0G*-Uc6FYEpQC@!Z2x>P1IH>35SH#lxKVQk0FGhb>ej?-89l{v-vAL=- z?)qJ)vm=M+sV3X}j;JR!Z%f*OT0`K;ME$O3z8ywE%G&3UlN`jFpQ6kEIIwW+EBbep z)%fz2puA}Pc+-JI{SWm7=zZl+{0g9xUhBU>530ZA8YCM4=ISuiK-2Ma?F#(_6L&zs zf`pLjRZZ}rILcMIJy+ZjICkk)gE>^~mz9nqru;$Jpeu65c6>8*d_ORFUJSi4+o|3s?)BI#~d**0s zyfpmB)?c}()T6-pQ_Ti~hoJ<}t60!F&Vz!#-5f6;i@D@-t(%m= z_p#h!1BC${Ygi-eRG8+Orcc8(%q z+xwbgAkn9G+agohnwjzgc*8(&{ps`{9DJ7dtN{P8^|u4Kv)7gV9cJ zJ@G$gYGMkK*hrQa;Ws0`r5K&?^YZwGW$9_=fi-7OTu-fyM^DT?>G!PU=TDaZ&j9-T zoMw(RZdMg(T3yvr7jv{I&Q~{49w#Rm{hDMoy1AC*8)egd6QZU*IBs=y;eK=kdQ#3V z60g2>t2c&>>UK7IXjd^B;AepCG0U6d5mmzYnAgS28C1 zSI@`MzDk)>4rJmCglj77g&4HuzT@MH?>LzV!b| zO}D6^Km8!$Q&B+`>`b2OHS2@{=e;i|;kBfv*G%Eh8ixxwuPF!}((p}1#E=PnP|o%q zOD5-3_;c7BFwPl5$t2wmj6#p-EIe!A;EVHOR0?mn4|_{K{M4CjEWPiqRAwL74YjyEjeae8-P4-?{rFseIbk-ni%2+=z*J{FLjQ z4^hr+q!d}&AfTx~%`I&5Y=i2xE-J2gomu zyw{n<^{4gEue7hFW1dtt#nuLVWkH_%M-+n*k8IW=^-c=WL!2)9K{7#n~^r%@N%&u>KdwBM5Fskx*t`Urmh z9?WIXaL%PA|7Ul{iLpJvK$EZhUc(1rG=dDCWE8RBrMD8ycR5kVS{auW!Nud{T&P6R z+l}_|UKsV${RpVj17EfJlwT{6zqWLudauAw`eyY=1j!kagLDz6sG@pxyU$HOOmpO# zUFxvS`;TvKhEcfvw+l({4sIL`}5j+bjT?skRdN-Ywq<} zHqO6&2y~aCQ&LHd>kTwNM(dpH8jTjMe4lpUjfm@SXynlh{&{aIZ)nmjhHTbeBTMk{ zVSaTk(=AFpr_f7VF3`|pCAlO#6LRei0~zQNSeYzV;pAlcUQQH}9&5?N+z+iOUU73e zclsVqWsS(ly<1pg@b3i`0Lmx3gO4KRa=DD?wXM}uT7>>``4d~2k=SsA)Y)2K?g8sv zTP^Yz7iP%U&Wk@Q6KFIvw9s6BGTq|L*i|p$L#8gT@0za?qA$mH#AveFDde|Pw^WKh zsejg41G)kY9l5^`BuiP9ddb(4`|n&{k3DwWxW}}{6BWTPNcMMa&37u^tT)&}jf(tq zR}WJgk;b6bSG1aVJeBStm8T4C*-UT!z*<@q=GO%h+Y{2=4_AFrWW$Bh?D1hyd2R{qH=vA@z(uYDATpD4Z$`xp$=_M z4N*(@w&-x<^3LsT6eU#D9nDNJ+q(RzR+irVdY8_lI92Dh6J=aZ6X@>MBV#j%2@}fe zWy?JR&7Qe9v%9|kc6FZgRakiAA6yDdUVK?%RzC~W)wJ9U#F5#azvmDHTJqZ~6k;8LhM2&`}bZ9>W881N@me(-0KY@I9dx&HS7Y+Karb@YlELhaTWH|})!Pvcu@H_w{XVf(Oe zw$c6A)Pz)vwj~&%$SKp~Gghe67vI+_tr=XgL!P~|rf|&9do&1knphQTWIsXHA@mZN zR~pyL&HeUZVI~EzN4;0V+tE>n7a8CcAmskA*7AE|0^sjOO1@>d^l$A12sK4Rl-~~T z)2?w>XLgBpJ^SI1Znt>Z6X>YtA5;G6+v75%u9#qx#ICQL<~UUIN*6!MH4o;Eax0YT zA#)2WsQ%jAs+a}~XE5q88OG_ghCS50tU7*o>S7yYNmbckJZJ%#mOk41+$K)|Kx+X~ zq`@4D!`oNl3Yof|CXwgf3pd{zaWU56_SuJ*_`FFsZS;J<`}VI$HV6Az1E?ezA(?+Y zvll}W^(QRnc=SnQmsh^QRI?@MgMxH;qaJPY&V{63*iU*WqTy9alVd$$2J|{HW zZ*KLo9%nKS$8;VtvUSt#4t_dx#~Uu-mEbuy(hM;@n4RsK8LDbkFEQ#a*c2=worQ13 z>49U;0sr;N-jNwz=hc_Nup%ocGGsNL6VL9b%;_A|2X0)7N2}yIw+R5wS`4Q< z*fMJK3P`wOR02N@1P|Z*$*lnvDh459Bf2osbIa!4%?62oN!d1z&FQO>3m`RHNf#gm zEEqM)ZQ7F&GI_cJ~O! zC_^gqtv1BGP;FT6ZTb)Yf20PZcK#4HIph0qvI@4?O9ROJgCWx{9yVOyK4ewD+?81@ z`r{*q+4LjIBG69Wxe7qNFB9#JlTtVnnllP0M3sXKw;Yw(7~T+51P1kqBqSjrt#_IG zWH_>oq8blJU;Aq9SJMuIdrRAr$)jj>lR?>8lIKLan$NI+x_LQv3v%V}9iYKiNvS^c3W z@;O3wu)w&ChuYj70pa(8--Wv}--Q}aA1G5|%WCe*{26Jk!sxX5IQSB-DSkXzTf-{5 z!2$tpMk4)tQVjSBh7;k>1=g3Kl(x zVnw+^=A<#!leK*bEo!R8PksoBzH6Fz3m22Kk1NcUA69W)?pmL`SCKaW8vn*e`FW;#bGkA(SXrDN}asEjY8$oK)``3ygg<#%xOqBS2WxVUcbn`68TyN-$m zWf$uputla8RV8NqMiDK6E&Iiw&DCt6<)Q4fBrv|gdjF)=KnWKpJ-^f`C-={z*T8I6 zP){n#Vbi(12+gfkE0|_evb*kq%FPz#h|@uf2_MKB-kB|UMxanw_B|9x|2o1r-E_vm4D=^F$ z(NA(?bv6OfJ+6Sd<5Zs*fmkf0H*D*+=0fZeywnjavs`(M+yxSC|B+?f8u|@ZX8{g~ zjAo3OoH-t<{A87x8((;^YoOySPEhkd(=l$W9IuE@eb4Ne(XQb1n&*?yj=rcnQb`^&W=n z^E(L$mKsLs#p)Y9?l(>QvV26Ok9cLa zG?mvLG^-AKBtBn2q4VHay)048S(@vWKJ1@jN-8q6)VaTC4&u~ZfQ%{owx-L$E@j=T zaZTROU${#J7R~&rAaishvDrYWbSFnQ1kn^K1I^}XbxXT>3e{}YS{kko13ej8`;Y8x z;#_Gbq?Y#s(2B7K&2{MpKbikDHxF)}dV7>mS<-CG1fN_iT)Niblb_%t3RUIH#un9D zA}3)8Rfp68a{ag1#D$RUaT4YBIoCH6I4>NX3OL#%r%x;gvK%`V|9xh-*?-hiW_e#| z@8~y1X{Mvw2Y!Pb%>B4jeKh%-f9%!&!k=1(=KQ^8r`S?q`!4|n2G6`U{Eqkw

6} zx_Zax3Y1IYY?7Eq?e>Ycz+{WagUtU4>kbff=mtm-EW&KoeL%^ z-mS>e#<_PH66~*fXCxorj4fT&NXAK^dw+-h3hL9E)W?JdO8%?v_5DJ&62X2i4%&CG zRFa41L2_K#4<~?{^>-xS&lhK8xHr83aE%CzsKeCgw>Hon@q|?!* zZ%P3Tl4vknv3qJQXTd8=xQ`!S1wynCJr^K{#JR|Uw2r1s+K=o1zHIMGOS0XFx|*uu zx=2cFfVnZb&KFqD>ZG6o^N76L^CK%g=#|XZmxI)Y<~6QOPp6#-E6-xm?cfkf0=>^N9gqOa+0uwq->5xKG)UB;D6e%Pt9 zjE|rH;dX~`kGMI=fA0#O(uB;27nzA`zIB0Gnf50JOCKj{)Z!Bsneu z8#A!|5HAYa>*4K7{9xf8m9z?BYQK-;jZOs3vUyyaQM>pKZg5{R%zo=*_x2jqr5OXH zu8!>nfYZu8SmZrVBfYA%Sh#>%)6HrKO#Nydu1NzwS-((`{k;yVs_&U+zUyqtTgkld z&o#B>5DH@23CZtqtk1f05pWA&Po$R2IPojXb7~>Mb8-TDA*jK?Q|r)jJuVy0nSour z+(D~_H3%JO%~6VN?rQ@eUGJd;$OP;f!J)QcqJ}8nQgwCr0IA;|!q?yle5?B3{}& z>Pb!Q_@OxlRKac11ce@>)>V0BURCS5D4 z|B=lMpCMb>APfX8e|`(q-$lLl5ay+qvKgET09W*5w$%Ks#0)0roWF>zOGyn$prA<$ zE=s^$s>nJbGu}Ac6)9+j9Zst5o*wS_K{!aXatV_`5)PDz1nz+14!+{e0#LRhaqnn-xrEc_rIlr(4Of5<-6)Nn=E0f zr$qnl^B+NqG38jZly`NWK)GWXXu*kMhcP-s>H|CWmCh=Osct~|d~;3%5b9PMKHZuJ zVkTFj&!-h=Nfy2BM`{&{M|l=0%LD&|ulyOOHK{X=KVyM$9?lPsUmgIh2g2>>)#y(o zdeS6`9UGtczVB1Z{Z(d;?YcH0Y*L!zna9uMNcZA-1q=tD`@ags;;(`$4Hy5yn6w|K z?2Wmr&bhRVTRho1*PPS#>Q>XX2CKIACbgEB z`{azJq%)WgezFfDd?R#S%Q^d2P5@Ngqw{_EN;7YC4y!oa9X>1HDKmkC6|jAJam{FE zNo?V>h+bq8ebqOA(yf(f_OeR9buhDDtxDL;@~}Fv|CX~LWyZx3J%@p=m)o9$fiu-` zY*!C(Qd0x_8svtW0fXNIG_j@o(N}>w!TK6$MHCU4uY-;f*k95vnJ_7omx!>GXcV4r zU7p(@p3seVj21_Bw~FNvQ0TC}ov3e@Cr#>E!!bXrV+~!M<_#0|lCr6P6dkh)zTx;H zi_Q;!xlwb@n$+3^f#+nP{}R>TvW07S?;5@A^B)TQ5+)5?g<}*#`UETH&1d#X{(S9y zv>Pge*4=Xaaqfp5lreIFWTFjgH*@S>$w|V531)a#tXz8<>UNt%(6S!(Jo@BB%(r;Q z*G+dZ>FGtj@9Yg$)f9=#qtiWSJr*GWcG3DO&5gtTwEvwZ_~9!}r~;0$uQT3bbw#3c z-ko(LG|bKb&eyFfL-*{F$seX&Gwv)6O#!U|-X=u>4Zot2K~>Ac>Qk+~mZjFOD$3jp zfEkvfRx#&qZ440WXrTo#{z6Mj9TD&jpqcEJLyPJFGmwVTyj*S!{=~l(&A5e?xHM3% zl1Y=zD>fSt_E-KgU;6&0F`JAWsUEl!UM;0qsoo#@b$jePw68Yj)xS^^0}W<&Uk10 zl7fCZTS@f~U03-{lA$i^hS5lelN~-I2a6qj35(~Z{+SNYM-#Q#`5%&1nDW~d|LVEl zOa^80{X^Nx#_~~~Qe1-;cb6^c0YhTO@5mpSb_=>?8e{4FSY|`@Q>u@;>-9Gjzc?!~ zp>K29Cnan+=T-Pb8nrVSsMW>uW-B_UK5hE!I0C$qgY# zPVRe3E>!kpwA$({6bV0X?ptfhm!yOIk`ug~*!1-l*1g};sO<@}lNo!_!dji3lmOCe zS1HVh4zq8gK|>22A&=s7xw5{Z$P+;RP|zgHtnm^Cs+>R!oL07>u@_V)4Wy`18F zB^MEq1XXW8T$Iqyc+bnKdJ(77-$0=0AbJ8v~ zV^4&qklnY@(jPA37H+UC`n^Wc9lEOGv}?=%&|omKuU0JD^?fm)6WQ0GO#<#IfBUbG zLx*Dtxs_4Mx8&r+B4YwaOxQdmX(6wj84U6nSkL%*YODg-T+m-bPWWGQ(?mq{i}q>1 zy(7e*<00H&M)qfZSWjyAITfdxQigBjwnn?~5E=Vw@$l|*C)?^g;kA%auRDU^rF*NC z7bEFSpUgI42W_aS5AQM5{T&>e#TX!ks)L=qV_UtqBiVx%LH0I6QuIfqUaQjtwf((_ z_pon*jMqy0*O(MYe)E+dj6s2vDy^+sZcZj$611pS2IPMw8~D*jnpQZ%wp_6_)r=Mu z08cluc#qum~ z#>F{{wvsSy#f1yof#YV2b6W2F1}s4W&&tx}J7}|0YU#d|YCn!`IDiwV>b39zhY`z%k4r-D93_kV^A-;h$JZ%dxBj zu@6UU0#PsTc_+{aH_>0OsdlHb&S0= zj!tCRt%@)|p`xg&6b>P!26kn`9ZD`?c3!oFlXLR8X3eF|%Hd6LQ6`_)9c<8c)SYwI z4{siBo**g{<%r0Z5ZGPVK$`+C0t+js;8*2tin8PuQ5h4_;nWyc;0+M&VhbQ!(bOJG zd8uDgqHVH1-8wfbA^RjcRqTqLSgs@xHh%)51&XWNyF3y&>iQn$o6hB-flBmniXiXt z^)E<@?eQ9|xFVI8o4Lru?%|t1>^u%8&kn96CWxMl&uNp;!EeW$J!b=9Zo7Wx<82f{ z{sdi&IdGjobxKnmlcF|T8(^}?u$Umq#?7&|ChsWqNTbQDU{B)YEH8()aYG{euC65` z^GCR}H6*Eg#hP_~#p5#^SBg3Pt5dP00r%&#Z)X;z2t8SVGffm5B9d)M)ut9zvjNsb zopJ?l8c|^IHkWZZa5k8|jU5|`pp#|Sn*0;KR%j^j%s?0$a zFhZWZ^7T<$x#Q0#FHY1FYFu5%HMD5Bf8Ow1Y&^{fpl3|Bb!R!Wymb79r|*#ErE8If z<6JQ*op4tzueYqZ;Wva*%f56gKJ2pnef|_#+P>nv*5Fw-gxvV6_y#*P zF@9dKFn}%mSPHequ@S_Wc{}fo?k5n%|LT95y@L~F8cp~KzsZqD{mks|*S^)9hFTj~ zw#ICN0NPnoWPtCml@sEiiu_mVD~P(%44Nn10G!eN{=CtT4mtNFZd@E#Rg&Mn8k42H z`c>sq-p$^3=Bx=9AiWz+;QZ(_k%qF+0n2T!HKhT86fa{trkt;o2)7diCma*^E(g~? zQ;X%1M4cAkWF!UY;~N@Y3Ts2YE?)0D(34-sM+1Qs6!qlKV~g5%xS4$iF@J)pb=p5n z8wXS-xi^l)i2bgeY2@=CS&uG;JLkz>jL(}-=Mc5!!@Dc}RiEujkJPr$GIqRa{52nT zUTL`!ejjdxfV-JFI?#+F<164!qL}@}0mz%mWYK-%l!J7p@J>Ymng8#%QIYx^NqXz= znt#`37}QN4jmre=ByXY0V=na)S5UM6k#)*t3*sF9nP&D32s>^~Q~i7!6Y>cNO~M&! z&R|a!{s#C%c2K2hAkUuK+yQ?z2o_#E7)05w%7<^nK=9_OD(&^WZNKZ9?>~rP*&I$& ze&nJ+c8VqjW7!oj8^;WRU88}3Z_)o<@JD5SR`WDbCG*-dXsdZ5&J)vf*uDFibQdb! zAlt@X?R8mEE<88=4|OzUI49|20LoR)R(`cAUz$1X=d7gew7iw*$=@%${w>9#bO|0! z;2p4&TZ!({#3TH9V)NBi5Fg!ycwL%iKTE714*Twps-2cUewDU6R^x}@UWW5)-oQ~S z7sgml!0GlkhL(Xr%x-#5>N!iOFy6tAEAv}iW%}NwCEA+{z7KFsVg85j8h_>K$um&- z&x3alRekUGI~wFyzZ$Y!+`T}Jl&4a&j?HQ=clx0)vh90RftRJYNV7+37%I zTa+S$emrkAm)Mq=Ot+H?S`zGgB+G5_4RW%)mEfyAPI!(x?~&RG$toM&dab)YYyOPM zgDFUzGC4Ueo2WRQ6y1f9kG_GEPjk`19obmV?yq{M+i-Q3@h}P*lXyIbtCX1IK&&-~ zALjh)JBL4F^V>wiRF$~3kN!njE5*sMuEW=hho-;yts9*_$@a|d{J{6I6B%ls28Qf{ z4VAw?D77fFCH(R{Q1WpOEC`y<% zq{vri4P^=@fD6J}McAz(=}IO8zb{Y!A)FP8a`c$h>&4W{x2h-)1$L1bacTSJtCYx~ z(euh5T>Qpxy)~=pe_)Qjv-iYYg3i@**U0uI>KIE1v!xcwE!xg1=|3{D zO;BfE)d{zr+4R46=Gmf(71#z-C;v1s-fpX^tT4e?%ecI3d1b9-2&6tHG%1e3@^)?f zM`pI-uVOtBasOo4SZ#>bz|~FgR)LPKq{zIlb}#;)^&>{Pm>v}*paHh;Tvea1k{B0V z0kaKfA1~Ft#?bVW)^|pq9ab_t++u#8U95t%FH~jQ;qTtn{K_IuBJ*Vb_+HycSD4hE z4&{}@e+T21qwHL>Ogle&-f5naYiQ*QW>BMiIQ-0Y%gF>`pt{?L(TnC^oL~Mu?82rh z&=8d2NB?$3ejeJ#$2~N+tpWYghDuV;=}!8kv_19dj=wY4K2Iy?ZvL!QO*5+D&_5J@ zhoFr2FARFDD}L>eVCvSC-LPV%#aKtMXs5NU$>3C3V4B=iD>D%^P8}VEAx{(ww_g_) z1MHr43~6Rem4C;ArqF%=WcbE|S(}Byn@8nH%KylIS)X1!YnA~IUp5Y(yZ$Pe;4@J| z4qOti7l;@?*e3Q`Z$#jj#ttl%N`-%>a=h|=F~yiZBRhr=+W~3s#Q_w-A;&$;UjN&1 zWv{7?$2VW5zY+V=&KrAoFn?*)_+j5O-vYw(2s0W3I$7qKFJTW0c-HXPT+8(&TF0NZUOWX_;Vj*#?=p^D3Sl9LB z8Xit1qMPs}VU>dR-w;?nQQTXN69Nk6kP&%c9D#*&^A=h8ky*w=w{x zU)Yh0E!nyYdlRKV<2aW2?Dwsg12VUG1riCzL0V;Y26tR)&nyXWH0fP!0bNasI(G=r zhW%)|deUS);$rZi@m_`{x8fVRE#t~5d;-YjQa!Ba4pt)e)`{8D+(K%mbuQ0(2Uj9o zdsfjy?p20Ky*o1-@i&1I6b;q+`PT%VWFGM~@C_4p)9qz$Sc?7+D{+5x$(5-XbG@>r zFV?r0bQgf2=&vr`T|AYbB?x1Qdlq3UhG$5{3G0lNlcc)_93g0X>?8*j_7tFDh^;Gl zuK&8=c?bKAw=(83R=H);L@)%&1Ck&(Vs3M9aCH{YNuG~G46%?;f?vaU_3L6exv=)p zReE{kzqTL5!TlyNSP7=G>E;Wb1M|$Wf5lfXm5eN&5dDs~LWT*q>q&IX7>SwEZdWYl z*~iRH2wnyA9rbwVvY*f|b74l-l=a!;tHfgJ?FeCm_|Gg_IE&JcWhG+)Uje%n%seob zzypk*MoH5?m+I=bI4s$P?G7JXxYq-Y#tsb>I_I)JE)HIExVK+2zcapM(Np4FpUKc| z8I%k*W@K5a zv9s9J?&%33;gttPp|y#84D(`GD3C`rT%tVQIaj|A>!xa=>`m zv-~&jVP=PXh6x>)Tx%vQ&Y=$%CHzUe(>5doLN02^>&Iw7Devw9ArVF_h1)Ynqv}8( zPEhmAXL?f)+@I}JU4AeD-EW~&_#$C;U}qa`gW$>gvB}==GXMzU6>#r^m@weMPLl(M+C)tQ!s76 z)k8}$)+(lHYlK7^BA~iEHRnXw+;1j+0-pLV`*P>8i`1NXUB!IzOXutQ9_wwVKMEo= zw>c#_C^JvD8})Ol(*Qo~>He}^B5!1rNM@g{O><34)8#ot+7JVdB>j&aOj2}4-Bo3% zsVA{bc%=4=ZRDKGvF_<`(${UbU*vxOEx)DfXp^biFN$a)nq~q;Q5T~{wqx{}KX+jr z90?F<9TBi;I0djC0AnlF9tsGm|4})mW;9jf_d4y?g3$7NTLRn7l`5&@@N4HQ#X8ws z>lueG>JwB>M!mdN z$%H+d<1H`j;SJlgqWju}zlAL=>Y_G}A)B!H09U_DUPnD6Z$H*j>+i=~!__DkWH^cn z?g@FH%3Ei;mxrjG%6;%i+F4^QtW>u}{n(;&C5^Yun7SN5bEg(3pd)r{r5^V_lW_$t z^%EunngZ7lzpRSc(WjIZpd7gwRA!TeyLlD*$xhr?VW6xRF)zj@d+|+lE z%}$a)mh5ogIvIzhinv|7xgGGepO2YNw~7@I9E9l|l+AE|ww@>hmSr-8my)2Ilf3mG znL+*DDNcO%>@5yxYwY=6nOHo=OPfl#+Xj1cs$?g6OH=&ppBsa>fHsqDqd9uHhO&%l zk)BWHr|TDIc92mCijh69@u|DWaulcqhr|mr?}3m|j%jgN*QVC5B`ws;7X37Hwja_= z$~~OHyun@?KBBRl(FRs0XO6{R-<7z|8sXD0iROTT*hzv3HUgsp;{~VpzZaV=aqde> zbPnIKv7%+sQ2dQ(Ag^}$u?V;Tu6M9~GhWj3FFaJ4CarnN%B|tEfX!R#GNuT;^P1OwFayo0{8!h;% zqx)=1sZ_z?W8S-%7fc`W$o^<2rQEwYGI8`*b$2Vsa_6H+G=1c5`|6HM?bD|#-r=k4 zLm|cw%y~v=uAeK93&cYy9&hsd_h~y>UVDB^Qcvr`X(S8`K(ky9@xl^ap0m^453!JT zMe6BpaLnZgHyLDf8}}EP${PhO^Rs}l>&}T~%^dCRELUSPFu067&*^`_qCN9T>oswZI=@6mOQ#=xBy~}zUrEe* z@&sSH;`s?wCl{m9T)ca3xIcQ|POKog`*)4E6eRVP$GvbW7aE0<-Z#I+3lwYfzq^OF z-Xgv#dN-qOW-;*?FJHhLPcR6D3=9;HZP{?ujJDAPv7Mz8(+PI&pjZN>17{HGRhBol7!UvtsRAl@2|O(-c+#fpR;Ho$;5je_0Ct^3 zp?`w7T13n6yk{j?rr)9d*g^5Zv=~)hwFs7i`3muUdzDw{cb37|d&$V4y#+(krmmXJ z^)1by)G=%SBZZ>%QQ)@Ljx}rEn)b}u+=3qB zq58$@z181br4P5-Bgd+(roBS}r$@!G|5~s?Y;3hg-T1WEuvL!5D@8`B$YbFl%~yWE zRw`E~xbqqOs4(%5sG22ZvzEd$V?TKr+n9aT27H{gvyX;q021V~VJ#CJ71Iv(+z3<&X4Uo5XpYD-g=LdA`9pQ$tn`z#g zg>a&gl?-FEnz0p6BSn;;#J@cLQ+Z5E#eEu$=R^%*#tu{3dyF%=%?X_!U-!vxR_0mK z{gXx8Ga;r@df5kj$lFhTzPWR%uvtjW#_~ZlsmpFE_H)3EqI)M~iQ2axni*!bZ&Jk5 zHolHukP_Oqw&a>mv?rq$A?Ma$)P5NIBl(N`*2_ZHiJMOc?sNQU-`5JK77J%4(8ZJK zvn$YNw?;#L{z89woRFUojQPMy_TlIcSRRdKZe?SZ8vRL2%a!obh5erQ@h#ea8Z^{o z89>?|_>%$f8WF$?v ze8_+ilA(vxAKDkg8v(;_Oc?n+sWoa9O~a+wj}Zy0HQ8PvqZ4;2$o||TI!#7}Q{>Ju zy*$i5sbzO(pTD@e8^{vL&dL5Ryz*vFO3-lbFSKxnXNIB|O~`*_@s#}6zbV__o`I#v zRZ4#b$HO?V^?ka0HaL}uO1#p_5X#*jWA6T1CNrVP=t5SixZP8LefZv<5mN&)8KXGV zc5^K12;yhBya~+OM^%#gZtmOHjRPJFz5~lcdgx7Ji83>7g7R(T{7&kzCMmXT8+nD- zlh?X~{t>7}W;-+8gO*nA5-xR8Q3Selkk6+oczPtKgZr9f- zaEs3AZ6=nmufQ2XjPFY|lXonR1Ib<{H$-kBeq=ZNd~}~Yh;KK!1JMx4u1E89JJEu5 z^{(N@(87;wg1$HTP(Zc)mEj1@>L&UPJSa1a{Jt#po9=L0aEQdu@*+hp8cHNtBCaqy z*PZ4)?PcZT;C2pB_|I4Grqt=)c~M{W;k-mx+n(dRHB?~~us9E;te zdiDL~HHD5{WAB@PbHRfb<4^z0`13QIF@zZ2=;i;)Y&YD>TA4K@dIl7{ANt|%fFWT} zINvx^S=;S4+1=8^BM#-XW3}0#SD|NTi*Yy$180+jv}yHF*YWi*Levk|>XfgOttUG$ z-YpA$9?G#zd>`)J254Vv-*Djb%XwEO$<$G%3_cFNg^-DnT=2cT{hhw^1j26;M0y*? zvg57Fw{zlfm0mk2u@TmKU77i(4sxM>pB!i5P+uSEJzjI+MV+q>)9l#hvs*u*RdJF0 zHhHb3kFyj`7Y2bJN${GOHU3BDfR@qG>IYoA{{o|1R7#+J)A>Mxm=7>qb#42T{Wt(h zX>!om2!vo>Ymn{ihl>cSue!8&NT4mnfzssW=;xxUxtjxC^vj{OK%G-cU{=8+ara?z zE@M56-E*GdHP>SheE(XK#}ivclTP&a6fX9bAD3rhf*+#1m3Y;X9pv3|t|0`1L9M7= z-#WZH_HwE7J}wfYUSihg>_(GRSlJ!oP^W4@OE_^`3+!JAnI2o`aA#<~e)>gwU? zv8o{uy=LB~u#OiBASnb`$J}rZS>C^n$xt>$K3@wm1UEZW*Bwip)meFURV99_=4lmi zGAR9lafs>O)&@<+{|?GjpkZQXpxY=HQ$7W3q|cD?Eyl%AgXz9bc(k;Pg`a`Q&Rm>` zSDyT}yvDuKWsZW+NQhF;qbC45;y|aFNZ(~!x$q8(G8K8Yd0?n*h<=2~y38Js5mkR?+5axtqR@ z0*{ZvRHJk7yensj^5p?6Q0$quIqcz8MR64CsVu{UP!0Gq%_Y^&7OT=n$T;NRY-Hff zd3D?}W2!B;mRp^*C9t*U{E^&F5Na5k8t@~|K8)|4hvXM_vQPW=^1fjtO~k+V9ihAY z=O3Z~Wo4$sxy>Dt9J|qy@^NEL|Eg)7EVe8m zUy4w9%Zn2ZUg^N{qSv`!Y;7L2)!GdFj)&?=#CoHQx>T){VGjdIO>}fiV$;+9x&3b1hm=woR1%OSF(<9{1LJ4nW;F(uhL zohlV^-an~yIa5-12X~PhK(m&QZw21Di~4-N+DYPKrj2qdFf6u7Otrj_PGE)wQT~d| zj7t+rRjopBKP+GNh20;vOPWXXi- zY2YPaT3r>6ZJ!$BR7)SL^=rg7{kfe3jaGyEf=0NH4_FALeT1EG#Zd=->Q>T+Bz`?Q z2xb3g!W=F9NS5XQ1ds1cSI>OuFRYOL?xcO1R^4!g z^4ANzYkn3`1lX@*t-o5Uz>(bp_xlA*5Yti?h>BJy5d?ZZaI(mAtUWQ_rFu(a0;&s* z5EnPD5+jFX88=Z*`v!2)UHlVgg-sg%Y6Jqf=25>?ku0C`v|~%nkH$4eawu9<(4g5I zjRqVd_Q%4YSaYB9YIJKFmpW_6Jr#frL3b4rq%6d=61<}{5!#0A=lwC=Yu8ZCx;1K2 zz>OOGk&u-ily{biPqM{;STD}nxZXKb*G8_JkD7VJ+@J9whaq-cdkUhu9fLkv)O~?W ztCuRJ9Q&nZ}M2P-rwVf04N~q zj09USEp>F4=zzN-SFoO;DYyQr)VwDWBDZFar^Qn0;GgF&Lf!EL{b!pemkf9)~j2Ad>#IjAD$D<*g`t_aHaL20MTcWX?0_}n~XvnjrJzqM)Q zBf^C8)j{uJj83e7yRNfzwskJIHhVFFd7~>?&T0iBR`%$0{Lky4-12t#G+x28+Lm95 z6N&gIp%~<+79GrCOeRmWD?e*fVU}Z&v%c)J$Cd-@3i{hu2jCDwa@_7)?}=i}PO0FW zO)5y^ujGss^VJj9)=4BXjG7i^5 zE7(|K3u0ms&Eto%-TGaB@pgi_WmeWv3txJlzFZUQwRit%_mkiEy=#+x zuYTTu!jjJ@+~&nNLeF49^B-VBr~0r5&fiRgpIP_fD8`DK|<4fG$Q z6hS>^WnL?Tg49i2!BSDU&9k6A86kfi{1dj$?q=L@XD~s%-03pe*`flm zp;2XZ&w48D)_WMCGBG`YAxUe{)l|HvMdyRaQK`*x7OJ9f9H~2IeCKv!fy93KmC6en zCEnR=YRdJe=lcG`{DhiEX`ErMsND_Q(-}Dj-8%%eD}RD`%@|V-f;6P~CQH9lSL~mo z?;A8)&`VyvG)mJn`=|o2sirIId|i*b`7szbO}dltIhTm)WHsDX+_pA_j3Lt8ye%tj z-945ccFfHG=`-B7=(^4YMU?6%HnVL`Cgd-%N_~)9{EzI*ZsL5Z=)M6r`~_b6rQx?Si(4{SpE((fc_V(Cwh%&YatRkZ48qsPYxg z^Nd@)reb05cB^*!yU5sIX7q+A-e>P|X2{G^yd5naXblH_*|rl9X{oMFsP945J0_eA zTDzSZOKpEPB zN@7(L(aY~icd&;a-OByB9 z3Db2k+BS^Up68JQ>|Q>^ZzMsrE6p8v4XB;bWW#d*`lCl4Ww~jawX7ydmVLe+rue6? zl%Z?(m#e!~W!&Js82_KAf$&gx26|YbOGmmmqFW-+{?dJVvwF*imx`nWeMCgTSeBqH z_~~Es&oSyXVuAJvv^h0zY-a1RP1)v}BEFNlVS>CjbvUEXd`;3kcXN-^7idK9^*&Ok z4Uz+lyQjrRLVc+4Y(Zjr%QGOniX`@27O}!;5SXSm{WErBc`oP(W**-D^%3T&{H8OK znL9j%c0de;+{LMmKN@u2xYJrL#$OLXAl`+d2)CQhPA34=v92SS_#N(?b7K$#`mpqn z;`r6%Bk4zNyiG|l#HQguvA>C`Oka_KXb56b$(PjS6`G4M~GK*?e-JZ;VA zt(S3C)6!C8i^FvF-W93zA6k`*0LB9<8C3x>zW~eJEy~&I+R-%Fk-9dAW6JYDP@FCB zuM;qk}f51FwSbW5y4i4OBqjBRF3fu-ZPr`fRS_M;)E7 z-jVvpWeePkXJm6roI^CFTpre>HO7a&Ea8L(t!?rt{3_&~AGI1bMj%f|f^A$+EylX0 zOspjU_C=kl8lDlijPcw{#F^?4f08Jyu6aIkF!Q%&eHoWJ7he|X_GREE=4HNBY3>O( zhkj`nGJ3tmW-%nVuvz95oJWAw-7;(N0VNYb<)i2D{p;93G%W!ztekn(5E1{8IRc|5 z%NA9cqDrmeXW+-y6bDwR;|Ieumd=u|ZfF18mv^wWDWqlNax-DOK|C$9S?GruK%C+8 z0~*j;7x}X2|6}Pa+?sse+Mbzj$YpYQX0oey>>Z+HVV>(Wn;F2x67*2448mp+w4 z09MlikEZvZ`i~P5{7ZJH)59_>ft^{(WN9CH@EPX_!;H;>!yP0bhm)O|+x$qge7tdS z$h}bA=!+0KD9F|@gKqHP?iFBSLXF1{5x5ttW`27LH=bslx*=jpE^>vlRvgsHeph*6a;K5@DDP& zJ!86lb(atxyf6G?&d-h zApk!3bknx9X1i0lG zcnMC{8Q*gaT#$h&NAi_8Rp%W!Nkbm$k|W#zK+P?H>AQjd#CIKm*BE1uk*k@oTE~hO zlq4pv(#HufO0=7az2m}#DAapxqAoP(2{UaKKmg=+r&9lWOVQ4p%K#fzD0S^L$hD(wG38XH%^k`^b64hb;h&n7%ca+`9&w*B7UQS1dS) zIw>PL4V3EyVr@#!l(K5#iG)kSVmt#%r)!B8bNsUxjM4$nZcv`ydFe<`f5ew8zU1&9 z#me-DHv*k?D_Qh?@jSvzw%Qu`KE5BNve+J#x5$=7Y^5F*T!(c{TASp#(ZJHT}AG@5gJvG7=`zpBe5%F0sb= zx_!_Vhicjv=UMtM0P~_LkJHhsW=9rJmlH3FZumgA1s@vj|t z&v&zNn~0M@4d-?NWoCs{uQG+m$CjbNzg7vJ|5bjWF5vT#IIm|WaHEC8n(5bmo-q3? zbTJrf$Nz5oIO(aSv1R#rUPRW$ONRJ@Cz$$;R{xXwvOwAq_&jjRWNsj1u9dR0gZi$o zP&}OrUVs^UL#f8z5HO5@j>BKpTCj3?q{S`~v%6wu`fx@v;z(hYG`HMdYsX%$G!#oJYnhes`+=vk@pZGL0K>bl z+Y3$p|3Kzy9q&b%k@u|VW%w~M9_m5SO)x1RL^KYz?mXYyGtXUzrtS1YgtjujxP6|k z?{!H@jj1h+uzvA~)4uVDnb`SLQlbLY0$p_XbMZ}k#w+Bh+T>Q60{5$Ya&1Xb7HFyE z-ckW_6ELOGoD0(h4MJ`c=n1o}Bx8C;s8+=PLTykcTNQ8K&+6L-wHba|uCZ}fJN2wiQ7*O zb9gSjf%AfTD5;joO7I?B<7m6ejga&Y#Oryb6wYTLDq&b#rh|sgTomm?Dy5I)i-GAa zgdn?2==%p^4bXA+M4i2>_eW42^gr_V_x2P@l{y-BJihD1C#QZqHMqLwl!?H0Uwbg{ zeHUkeyv;)h=B4fsY<7*>ougN1Ahyu2>CQdzp@gSeR-NgkGk52gOSM=9D*jp}%5plV zOOp`S1k0Q0Jm-Bur=72^>{NE9Q+(X$m)qZE$-m}!L|^Vn9?t5W;k{kcFv!ak&y~Cp zZ*TStno1Neb13uceez-+-Qw!_>}@{s0pSE9e;TQV(+>+&o2vhc~!2cSgEo8Qug8MIXL-A{rP*xMX|XNcY`5IdCFj)Ha7P+ z2FFCc{X?LKpi{jJU02_b?aVK;_w-kH7NTy=N5;g-=KWQ1AzggH+^Yjcm**1wC6z*u zHKuE?S3)b@&_mnmmg@;0$NI>RdJ)oqGX{JMyo`}J53N6u5?le>yE zw%$Ym6*_+xEznuEw94BeYQ)SypH7i^C*uIq<|@A*EMv@NSE9s*LT!}h{G2AI;B`G$ z$aHd>+wTq+GO|ZH%=s?Q`qW9Et0~I4t7+X@YOibpC5*5a{TjV1`p9)UiMpNMn}LhQ zHS3oik?5JrRolso1o`t{0mpJNn?%pL-;}n$by3t}`L(F~S*+Bhpos0w1;{|aXCYW- zQEsB%ljRv17hTqRh$jc>AxMo!fknkhXnT`5W`l%6fInD>W|hXpr}uFzse~%grhA;W zFQ7p`tA~CM7XKzDKl-peK_fKloSL$VN2Z?)ZZ9MX8tHpYv%ymU-khKhb$Hklq_^uU z;mJ^Fpu33KVQ+bA^?Ui!=XGOfSr`n)|o9;XieblY= z+DN8%La9FII1Za{H}8;K-;h%PLgo4jlxqd@Jctq^N$5>kYRca9A9q%s-6rs1 z2Mkbgv3A*5g%>=LI2D&q0kZ79*Y!}RJ?AGQw^%&}V{}NqnqRcXc6B84%6_VW<(Rwq zv18fz%M7IPuud>TfGRdS->0`5vqFQr?W@pw54E9S=$#}gwm+l2Q0~bb|K?0Rg?Tpw zXxaT)#FEUKsS|m!H7Cp!ILtut2!k&{TVZh_iAw}#vcV1@tT+SBxu%M*JHCsUsWbVOnk}=l)C+qE>>WSK{ zga&!oE;aT()cHHww5Udt8F-^FwZOzq zfe-KAdReHEww@;2d;TiWT2dVd2hrPbIHQSMxB%yCTRXOBYNxd|Hi#aJI2U&Ov ziL@whhmfy5+a>Qc)w@6H)V=hrVS{|qvgVsx%<4Er$9aBGgnx3YP1CMR?x7y z9NMtPD$v!=dCg=iMNn$2;747@*k?N5HX%xm5M`bagF8K$wnNpWCx{eeyp9M)n9k4j z#yIdgh-}?EM1gMwT;q<0tUu|iKz$5nkSOs23wHK^&fanq(mo49;~WAwSl)dHsMKaf zz39M%bD2YHw_=aemA9q=$l^*k*2 znTlL%VM!(PT}LvG@Ejgw5qI;a4e=DdoX*!+BdeJ{H|L`Eb+p{j2}~&~ANm35R^7ZhtB;oLGAyi+ zk-VAP^Tg5s zlmB&1py7G?4g#2yobusbqK}4w`!_0wKqo*Kyt!}W$_s=Fiwjl#pDwf!9yco@mAdO7D7`={J zknH#%!}G>Z`G1v#YF$c?0AT6K>TCdbwO#>lyyr?{;{EbeiYy&_GpM6H8-%orL4^0A z2JU>F&Rx2K1A`7xQ}r0%Fli0`wfKwCJ;E&?HC3$Onmjxn!VtB1AnffOWDm_oKZFFU+ARweKD6ENn(!!V z?9Yt_Xr+(#_?t$9;H!IQcEe7u7iO7NFKfvGRjuvVyI=ZMRl4vxEtF9Q@EpUN%Q_J_A5L0tXu zjCFc%KQRA?_EgMNeAvqEZR0z|Rzf`@XiZ?s%0=_9OGTm_bZW8hP>o|;)8;dWkq)*^ z=?m_}?F3$JS;eL^s7l(#-m0vNk8srV#P#CUrvm<>w1TvcQ0l8>3}DTXMUrEsHLy0n zM>gVFRw6ysU)M~v%br&K0|~qzF;rYYjyIxw*p$>>9Qf4v#iLHm1Lp?fd)Moe9#r^n zO-at=o&}jD3@zBTa^bTBG@X6j?IirTq}6YimA+eY8Fb-{q0wpbRxpZX6XJ|;rKOAT z%4Nhqxz4)yq|F$Ha=7!wsO$+|`kJ!@n~R2M1H4agr|{R`^6?CdDj0`>5)j4iKH$Rn z#aTKl<4d;GZ?NO8o3Z0SP5-5%*DUb}xTu%Wd`jZV5~}LnV4s*VN8pf<7k|%%Y4&T4 z|M#e9NW<4_1kf}fMbPGY_NY-ZQwURQPHR<*t5v588Ck#KsPa4Bp z-JmcwPYa`@1@4+bad623<(CylIlwB}clu*pzp@^$Hw8TlQbB}5s?edmh#L(+TK< z`0T%@QOvLC)o-Ramd!OUY}nWEw_waK6~L=CQuF^&73fa>kj-q{57aR$TDZs+Zr2e> zovLt1Nyp}|5bm^E#b>AJVJarH^iXwhZ;M&O{GX5^PZP z7|CJ_85n6c^^K=%ow$2E2oIBR9HPTB>dKFG`0DaJ`=?oZL*;Tb-W*#{T%+l@9 zxQ5J;fuYmQrVPaQGiKuWnNd)c6#~)GN7)ocu1?K6pUtn0TUSsz<0sgMsXaQhSZM+U z@9zMviga)Y?&y-|`G-o2(tL&$eUrO7pXvK?Q}%=#$=FM{8;bVX%U zdY;(F&fg%#F?#E_kzaA1DEPWfXZ?k|t+S)VO?^JCTyD?lyf0dWE54ZtJd9-PEdGvu zu%GYgi4{Mt6wAwgs+I4#(g*DLK_xEZ0+;FitT_XW8P)*>vODnyP{fObF6<67G?}v! z9ad?B%3Tdh1-cX7(bTLbrXwRYUr8%F$Df-RvMbMeCmcLFr|%5cq>E0rLG`L!SN*P$ zoyaNbox09)wp*7MmH5xh$!u-`S&)5T{ypPeN1=Xe*YeYuBOwJf@5j(E4!a#Lv_?i^ zlrrD_mP1Ipk_0fA4hvA1xW*K1?#Y#9SIne!=_FIui!K5sd?ZaD{(; z{Tf1xmz>MD!V}VJs{m!2VyuHf{b-Ge6(*WL^|SS}mx~3gA?*4nH27a!WZE7HP^%S$Bc&*+VtJvZ-b-e<# zrph%kQBLIC>}t7hTj{aSfhjg}BU7^{J-PHmD&J!qK(_JiY`vDh%>*($=T-gsguIL{ z27e_r-|+Kyc@FAt|L2;wyQ;}xh3vcmXf;B z$fq@pa>5`}p2%wX_}kF8!%pXxLfOB>pOR{FyUln7?-1U}2j-KRCB7nCy48H0=o6qO zJ(mJkia&>O{*gjFzcf-S4f+edR}KEMEY>jNDNM3|ofp5ACt~+95&3taGInt%E-RTi zRyrd0?`BT(u=zXfJX6mKI33IZ$^^W{s=!tYAmj=>C0NqSPT=evi7xvj;jf7ePT5y! zy|+BLYEAuniL*yrif-m{bEy<*oKbMuQ~BD=l>tqT$tUJzEoC*kjY4qo5fAu60Te5K zV~kV7s-st4HC3UOb2l8#10S#Niz8Lv9dFs1D4bNg{BjUHj(jXJS$U*lJNSe)CalyqS2 z4B73MH|RKWu8`2)g2>K(VMjF&w-4`X6tqx2LwaM-Q&_ItNeG-(2~hmoRh6jB0vNDE zzh8hOTKl(6je8Vo;m(vWTfbc1t)${C8vW_C04;?NLK@Kq0K$!1nmD>o)V_t$=Ny(x zr~%5zE^d^3!ZGIPNUSp2Y5l+im4CkN$Y>h2LQ3|~DUt2`8+Gd^F5Id$dz+-s+fu5E zQ-Ez;mkLA)Np4=%N#v)E0lK_oBLPVo2-t&3ngO{q;{aT75>tw_5uO(}NHWE$mo5G{ zSNwR_#_^uIpSg**Z5m)P48``mCF1+GOv?TBEYw@@T zNo(>r8tfT+vyx0jo%p=@3#M3v)Gee_Ex7aHo&dzWH?9u|E9-0{%QKrkjfm5ScYW|l zHcYxS2mamZg7|@GyOFmqtwc2CY@H6Pcy9egKz7A*Jeuea~i z8og8c`PlDTyGx*!FV|*T?~AB@22b(s%}Oqzd87*F0GkV4J;6O7UKL8dF$@|o{=6iy zABpk*@qC26LkKhO{MYK!z-9K&RaY0*~ z%5H!!Rq**nQv12Ve=UE1mf--`%E*bVXqvi3G2WXTKXkMJK#dlxAZt85w2?@ZrtthN zo!i(ep&A_!HttYz^L58NCp}gbeB)WIhi+sJK}39pd8=y-ua^ykTM0jj?7I#}{<`q4pdgTw>O0sg@H~5Yc zHTB%pa8*BcPTIErs-{uA;LJ0NhGTgykCN8mv-~~c*ca;$jM8^HbnY*!&_+o_ytJ#n z5(y}|`GiX9lH(wWPFo0j)2bJ%A+8r)om+*QIAN@UN){_6(T8mN>+1>(!L0b2D7 z;OuaM&AB;;EI%AWI*!aq_i#J#M;N`GkYooXSxM$5G#*(Io@T6l{1Vf%&`wN$tlOnv zb5c~IA*Z3(4EMOyDV_ogYw_8?6)>z!?Eu95HU|O`wAYXJGZGk_5XbjGzNUX-aqc>y zexBeHuB?t}&R5-1agF(`?8AMiI?-2tzm{b->P227Y}d?yQxcmaNsXXs5j!0;y! zm7$0?)WVU@!r^kMhy6Fo`{rt0nJg15h9&OKwOY!L;%x)0enxbx`ygX(ZG3Y`zxT$i z;E97%3rr0Q;e2JzQVuniDHcNc!&0wc=}Owz8q~oC`0xyE^RlLPhHF$oZO!b(2nti> z$oVLkbcJJv?fXYiF6@rXUbnALsrZ+ldwAQCk^$FqQ4f<72LzA~m?^@<5<*tvvHUA- zz6gZJPaSgLj&bWJjCr@?K}`Kae$!H`_^MZfBoX498tvhI17AbBi(TIO#V^5#_mPc+ z6VHp9I<+71os(_vm;CI}{tF+GKY;F+VOC%ynyUa*E^dGU1$)kUV;c^^JuwGiL!3#I zOYOM=bM~jWbTM{S{pljPwD4taxdgMfGxTBUfqFMb$PvV{+eC+(zQJz5z1qwgXt>h? zSUqU`D<{54iFNVrOP#1M8L*l0nQVz=b?0kf6Rd?p!W@7t2DqgyBwP*LxC11rG87b3 ziI#=y!?lqU0S-m>ga?y?`PRJKE1DuHQf$RlM+$Cn;@v)A1CL$3BK8KO^@M9~Fnf4+ zkL!vdeBi|aU^^2HxC?CBgFtr|nyh=FB$jd=9vtu;y%qPJ;m$=g=i?GHM9xdENU4}k zAuec&a$G5?{OsQcTrJc1864sY_7=Y+iK;SXHziIsHZBr0QrkILIe{pjFVPHiHmV@P ztEV#-_Ap}$CV{`Vw!h`s(|h-AR>yv2ey`4xWWJG6AY|t>5@V+_N0QM%oe}58*LY90 zo2Zxh+Tf9`kM~jLO%P$^AE@Fo{Ps@Qk-3>>m-jb`bns`1kN51Qm*WQdK7-#`x3$T? zVDYQ@2fB56ZU%cYl_~S-iRr5&_LQUD)DpaOAl+5x&3nSw3SF!4GS<5XR&%lMK#h3Y zUK}8YrCnnU4^*0${bP}Sm9*285pt=6K*jMRNGpZ~horfV`s$oVu8`-+3q@mwaom|} zUoH(=_Wz6z*bLxG{(-myukZTMVpP#5J!KzPdjElHx(H^a*~t}H)<~*j%Wiz225uY=yYUQ6-a%%^-xvnCj5YJ3 z>pE6w2q4==uZFT+mJdq};}T0H4(~^{=v5cK5Wl-f?@w6uyD1v0Aa#(YRKLM2Y(X42iSa`PK{SO4{BD3eHgt_rlQuftV}MiL##3M-&-jZx;q1jt zRf7yOZ_iqMqFa%6&BSHW*m+BBkdDpexe}Z?9CKbBo8j!>3Ehr=j%Mt1fX^-TW<3Iy za!}Biam+m*@ouBn_F&p(zc^+Ar;o4Z_USU*oyD2~Cz{yYZchtN=y4Vwh0ENM$w(ugkK3ymvsbpv~pvkf146IU@T?#7J7q-<9u4#O&9NS)$0%b zvE$ZRr-1~1+C0DVH;l`$;V=ROCqcyN!4^XG>GXAJidgied7>F`B`R;tTS2`7FBETJ z9%9knsI&Foxe^d6oO5AWU1Y%dLtDS}BsSy3qMKaVxDV_`-j@u`>681fOA5Mb&sxzy zSWSGs=XF8anrtqh5eKOqRz160(ktNBv-?Ly!Lfl$6;x6}L;mnH`JuyDz9D^4(SKNt z>Mf0c(p%+z+r@`pk`}d^H}7L9K6%yGZ&F#sQ9qcj@2%)s&@-74-SOz~*Zc|fHfPy)qV6l|IMwH@*K`)ncUg?Hf7uC% z*;o#qBv*(Z4~d*OPJdtF*xufMJXnT-1m)jfO^8&1(|;Tl)X9c-^k>ABZQtl#ZWX+%ZN z-?m!8Ui3+{O{`X(j4X5}oulpH{4-)U3~?E#mQ7#EMO(DD<{|xqqMM~g|JN5pZy9@^ zxq(I=CyrXy_+@|?qlDThvag6_IlhAgp55}c0$s54F3sL!9BAi?!`1Ky|0I?kc0HD( z@E(26^fNOrYn4SP+`@Bymc;#FJhr2wG_Z%fR}WWM|CU)C$QoZ10;GFg7JwV~OQ!!o zG$<>iKQmZ?rNO zzh}drepq|CQSP^c%Fktbz!zk&Gch{m!n!2`fC6cc$2=IUJ_r1MuIe7zt78wci}o@L ze~5xWJ2DR$>T?u-9k&x#K7hVvt2|*#8nvJiRjf+(DM3@d@(@Ha?a9aIio9^!YoCPkDFFr5L4x~rQr>>iDuQ(p0nSz! ze}3LO?>rzhHlkgfKwJ*el9WxCtan+m<1pp9zvRFK!BLn&^SsRc;8wvMd=ll;2$Wfi z`Qa&?0!#KcjQfiedghnx^|V-FnboMX3H%orcqr+W%2tmY)}~JXEZSX)E_brRMr28Q zI2YV#hg-oBwx>oh(}S0%{S9v%D$k9gT4{IF&sZ1Ue$C(A`WWfL-13%&uyKL7t*vW( z=qJRxZ-RpMfSGY39;lfvO&;V#>Q>x_tS8g}(xr$@cBY7%USj^6ewCRT)5?Ss!(L{? z9NrElYH;F*v+Y4yU=@p?(|@2pD*NWtMl|gsRTXyHZ z4aqH-oDhgEn8eL*Lut~~i}X!1n7U@?KPRf5q5W*_D*u-=fc|>qP>uEWhb+VU&=6zgBp%7!CbR z9i{=Dgf3^bzvq2_yW+u)0w63DC*A+=UXL5mhGMvVUcZerI=dPE*<8Y_;cXIuj{POG z@$2A^VorL5SkBTI3x6B7bVJOO~R2h!P1!- z&5%#__lLoirQYR>``^gc{dC{tn;zUP)V;Lrh4KSeEY5vi)o{vH^T)^*^Mb&Iqo9Ez zIC^3|yLsXe_5mK8VDipxnxTG1m@~~+R@)+miopMKBN6_4ay0VCcknqms|G!OOgQuJz=4u~)b=&}=|v=t=pWmzl)L zY*1O54+Nuyy4BL`Q0UX7=Pa!gXWRb%9qGakH5Zx_KJmle7#lb%l=|D68H<DBqg)M2) zW^!iGQY0-V=!xBsETsO1%1QiA^6FyV5jkRyb80849a#nGOt7;ZTXLvN>i=dWHoPJ< z$L7hO=!NjRF`jZ+ln=w`OO^<(=&ib7KdCWT1yx3lfAKP7R%f^;!-2HKagAky`5_G|J7KV>^^;7||44aI*| zqMm`-L+MmXed1&Vnpti9`R0xDGWPG4Q$AD-e?GL5U@Bo5G2*IoAF5#oc$?%aXJdq^ zEUdnC92n#u?EeEP!)v^cgyuU`Ze#*TeFk+4<}Ly?2EWF3#979~G0+ol!`6F$?Sv~1 zml6s>0g;;3Wm#DliLk0k0wii!jzZI#P3O^zbxLF>gmPayU8T84%iZ*4KckS>ah&*G zu!#Hyck^PdU{Orbp`Mq?z>NE@cmtUm1IUtxt(1KxSg{;NH`y zWmXrq`4px_pR3K4>eVoG|SHlcmJGJVpXkfk};E7`N* zlUVAK#?H&*%w5)WdKhOZ2>7m*eTsyRb5m$(O?0-D9Z20huE0&N+|)M&u@q-^KFN6d}ulhG!$kG>#$t1A4$p3 z`Go5IiX*#`!m>BNSZ5BJ@Rk{{mi26NCXuL~Y*MqFslKaiq} z4DYr(M#ghMRlfBfXnUxNttZY%ZQkIrSTXhDk0NoG-%6O$UF@6T>FK3=>H-NzN0Tvq z-M(JeS@;{Hsdd+Sg>cfM2@T8wZX~9|LUd6%K3QXUw3T3%FoNY-TdvwD(^YUs-!aSe zqW)m9aT52d;;=P(WpAc`z^z%;4tkJw67I=(omK1bbM3Sd{H86yM5+J;zXRcLQkG6BFc>T#u zzY4Aqzf<&OozG`*p6QbW%&YP8ALz*}z5xFRV&nX^vG+)D4IT|=Ja0hYh}S>jb%lPW$@@x9+`Cl4e8Y5mDR(jY@+3Up~ z2FL?bG_lSNLfx9qT{{tKaQpSw$@IThl!FXsVqE`ioV;vj+-q#zf19sB@&p`ZXR=)b zWOLL%HrvDgxoQ$82&$Ub3D z37-3}J?&ncG{5_3{0qbJO4mla+`Or-<%g)cc^1PP=P(X_{!{H&jqXwl@}c{B)Sq_n z5s^0+y;=&2=BoIa;)??U%y&uN@N-T?HpWuSY)vb?WHg*v087w)Q>keR ze2~g{GwhHO-cN5QLXsOJS-nDoU3sNH-7M?)hwyh_et^_k zAnTKLh77yzWVPddc}E4}uz14t)AW}D)%^L1kAWsP49jyqnw^*6dqJ!@k&-4qct#z| zwYRI%o~njHRqMWsN&g|;RSD>EG?|~!FF-;eSog8qaF5D>J=+=?enHI+B^uz3xYEbM zM+?E9 z8mnaYuozU(^}XM%y?0`A0WPs$NlK~VK=DGl;>5v}BJ=6}{Ft>tSas}{hK|X3Alzo| zLaiV6$LPp)LuZb$_YGkHQhhEhHUA`U*(`Z$PE0D12^Yr-ml`|E?35SZGpo0+5kbsN z!KAMsXIG3rw(0|hlX@&J_frAd(u|%vW*Q&uxe|We466x0%=!@B=UTY$=M>de&BNNd zWEUFtM%E{sDlaQMR`jg{(otm&aX?@j;Ty^}hfh`(@9iS4AY+-ZHe@`647QpBr;w!m zf@BmZW9+Kz-GGG`wgLbhx8NbQe!FbObk7B24LUSCI7bWAj^(jB; zO#lj`hPMwWLhr1CBOx|$x*?SJdPU+%CreD2BbizCm*YqP8M00{7yg$k6e6|Mx!tbB zAWe!ob#+jy#P~YdX^Ipa*#&3t31eFl{e&J3@!Snsn;&a^fi&YU90&d(R>*uUhat#Rj` zndzMzEO}nYul!HoCSKPGTNV$+l;YEB?mOuk8D~ML7oDQ?Jy$r&EDkz*1_qw4epY6G zcFkf?v{6(%>EWQ7wRfTAjboX;vZv3YZ)OlR7q%H+l02F__hW%m265wrfiIkk6NG+- z(;wegLm&UNKWm1 z^9;oWz~MMKS)C9h8-WM-;Q|B^S!;u(ClMw`3n*y>rIuojcaXG#BpgK4Wfz6ivQmGOjWBOwZCQ#y~%gxwp|7+-sT)$HzUi2$TCw=IP z__7uQ)4b_dNd2T>-?a?U_hbu)#m@IBND>kX zLH3r6t=$nhU{$#g=F;JZ2fnU1QiO4JS8o)|eDal{+~BvX-j2pEbGNMZ645V<4Q*jt zIpyfHUrSr6HKu|e-oU%6tLAkHM%R!(xSvX);E>!j%Y4Vn3I9uI@qY86C!~7k5dXho z-y!t!3?>0frr^!N(jak2TdN!@{7eGP~~37aBEkqi>_6tHydi zrY|XtL#Jb|l4;9S-?EuhPgkY}4SAoP?8n05l|ZAwHVG$LAS^@v$eYjF8wXVOm+cuo zd$Lq^(MXmsN%emJv74H@mExJ%y%@f38Hm5s6=caO*e+)A*UUxOqSEkVsb1ysedx1;5g~j zD{o_`m?gP6B|(`3vbuEOLBrbyq%ySJs1kZ1)q(JCVG4)snI3b-jIx0vf%HV7|GvE{ zBh-t1U^WRiS0qRAjoRJ(-6KF|Rxgy6Q#fg(vj^B4eZkf~@aI_S8z-NG)%c@s6ihq4 z#|s;szqc$gZqZ;Vlu#%TE#Oth%;AK=j<3pJL%4Xn~SX655)}4L{>Tp63^c zU6nDf7c<2)RX#tvcCSWkR`6345*za_90-JvkXYh!e;{UxvyJl2xN zIQ#>tD{0aSV-3>@Xa7Ls39IShQ3{W4>~YVrnKw^xADcC4!C2=W<93vGovV{U`D4v~ zOxt3>;C-SAY%Wk=4AeOpyccd@qXk;Rl-peQ$7;1s821=r4*3=GHfJPDSu~uOR4&J!H_s-OSLVJfXTH%G8bvkd| z%Q8nNR;B+e_`XJoyuHpqXDQ3P`D$Ntt)7QVgcfbv)W>|ZF-)dXfC?nqQ#Rq28j;Os zHvoD7&H-`cNm9qk2;rzvbK9ck*dB}k)IM@7agL~u#1DL#;epVd>DoBY_vu6$HaGeG z=)Ij{twa!;a)3R?zW)bmzP=8`k8ohO)?p#gD#NB6J17xnwczh}W-m${7)chj{M|;F zNh;bhdnS_KaB9u+6e_7&MYe6BV|b0PubK#sKzS(#K{tHxYoGEj7CxsF)5KG?pHjb^QW_h+BZ^-DZEY^3ZzZbV(*L6KJdW#C9-HR7`% z&!GY81{02=DI?7n%3QOqM5jd3cT`rz9y{Gq_{G-CR*B2YilGbFNKb>>g(IO@ik)N~ z(PV{j51yRX_-jHV#{{aRD~k?a3$rlS^==Tnmj2I%pP>u+h%4rJkzu~)@X?+ z574@89-BA?(+X(x^B9z+n0%^KunW*kZx&y_)j+2XN(izr!JHL!3}fYnXQIfO$fsTkh>0J(0G;-_#<@A*La`W8g^<8#x5H)8h%WcO7VC%vfdF4VUxaM&$!Y+$mKWff(MnDSj* zNZsedE5v({cHqcH>Qe6%zjdx0n{#^nx``RHEOvmk;iW7tzSPBE-3!a{+Ouh^Yj3?HN7y!sMg6uBdM@eYtuOa zny3@KWG}XUhm6nio3Oih`&_Bat_=?_0txnDbtU2(oZ4r8o?VHcFWOJv5qi7rSat&i z$@iEj-QYU0S?uvZFqCC7K$RYCai#LtDgSanQ4)J>wi{CjE?nUl#Av(r+<3k;(!EAOfuFtHSOf zQADxroQa|am5-{4Q=FD`&T>|H*(`m2k#4#7@5}sp!G7m&WsjV@fxk##m>B;z5g8I% zKkt2>!kkCJa)q0lLHgzGp9p;Jt2#91eHhXW zSky)R6=D2`GOS8@gJn6m~YZ_?b{XlHTz;PUrc% zEbEgu#@A5mNY65VZS0fmf==PE>9DgdmTFxtQKFkESVr|YtlHc2kgP_)@G;Ya3MNJC zb4RB+9|4KVqwODI2}Z6u){T^Qj%&_y;cbby=jiH^!h`u%<7s9Z;B!y>qCK1-d%3i) z)+UR>)(%;{TL4DAukd6~BBJ|Ul%3>rc_D)H(D|Y7W1eWwkp~4)7i-)_8|-d+LYY>= zg93C7XNw+8Y{eNMQh$mo3Vl)LIR13Mzd9~EiM#jO~33byyK&BZA$9j9Jk*?;uN<$JT`3jD92SNOm! z*wG&okACIll~Q*XYu>Zk&88c8(=UF>I2CW`)EV-&gDLBA_l-RwB_`+u>;Aj!6_~<; z0Zi3UGIE0So@0eDwaP7GA)Qdv;0lTHa-iz=y2?}ywMc9QKZv?iTZZU4;q;k{FKB}c zz2iG+3rs&Prm_b5VQHsSpKJV9puO@@zZL!CraD~ ze*uFRdHkh6tlD>%zyI%_;`+bM-&T%ZUQ->&c5KNw+vyRO;=KuKCD@W4b9Q_tP8ia8 z0@_o)h)#)ghP7WP8S%BPy8|+f?Y5ws zL+%l*Z@ZasH6nnMeWXh#Lb`80raiAQ%V-5-;d?p?Z{AVJ0(glt#GiAM#(Wk{TGS@$ zaA0w^UU1|HT9Y_rJn>-c`bsFG=g%KB7{ISFWWCL=Lk)%K-mcd0UY1&Ix*M05bOvrS z`tkorI_tQm9{25|hzOD*AUPEgC8ea9h?EEjNXJAg)$q!IO!5tD@4{EFEgJN&uZ?YatuP zOyV;kJgf%+UBBJT=%_87ni0w9a0?;z&V~psI|VlM!a8}*H~Y->XUE2G9!}e&Z(1kX zcnM5gZHk-iAt5*rJbxpLKElh4)((6NXRy|W5yFSHw1UJ;p6-?rBT0`5l&C*eZoW~I z*muO;YX5fh^oJ_nPmj3`9NUdwUBGT{L+F8Z09ilMNy;*4^6%h4_ovyEg4}X=6N7@z zIkLS(jiOtc&aVZaQz77)6Nn7=aGL^cOaWJmS&K9+k2=QafO546kY?|Cj(rU_cGxa5 z^rYNS0d+H+@1hkqTU${=JzF?9Vs)WZC>@65!si`2Wm!pk+&&kiCLYuUwE{&lp2C5e zxCE9MtScD-96Z1Kxua4v7*^J&mX;e#Uhc_UY@aot^}h1;!46Q|TwPs}mCH=b&rtB0 zF3CRKk4IzQA8&;#QZMd;?~)$w^52=(Nyclw75K)6sh(x%6;T$n|eEFPt zvf@bh5V)83^oRbq;}#$G@Za-t^cnRzg-u1I1v&wBkRr2?o=vmzOHUM)Lp7*+wly<; z;YFuHYrio}o`xDna1m$9F}&a%)KGxHl=n~OYiN_-Y6wigrsu72u62k9()06?O{ZPae}uYUAutu-SdTS45r%W`T9a6sLP+D~yA3+^w{N>4nlcj>-m0_hqRGg=36zTr zK3PATbVOzq_@hSseC%&pXB!PW4uml~dRJR4!MEd_TxTu2b#UV=3A6<6aQz|&?njkv zlXX$agK7Bv3o2nC;gt9GOVhiN_r__`+}!Tj21C1pv>G0dau2E@(*&l4{?Cpk24Gh+ z4TUxc@Zv()i=|_ISe*Yz7bvuzy%@fnA$dgQd$qWxg?S_H)>8L|#TsC8gi&BC=;%u4Kmv?tVTs2D`Yny{w^bIO z4~IQ?|I~22`naAUs(Z?uF85h}^u9v*b^%RSk#XOb_^8>##rp9pwRFRHmK;c}N_G6%tnPf}NEo>2J z#e(DRH`968MS=1lm!Q{@cuz6m^`IXeVZWD=$JLbw7PwC=!bKDgy=I!0kWG(O(M&IX zgmyNm-A)n(Jos@enSTf9VPgps8`gAK3t^DSFvKwIm#x;qILwD|X9~Us zigNZn6)KJ)v+InF_(p*xj!nVdmaQGV)*OQnOP$!#+DcI^Br2Ex$kzD!P;{~!qAOd5 zv9eUo_LuY}gAeT!OyT@Q0Du)X- zp7EH@ywrENAZ7nCXg%!5gDu_ml%oq+B4r1bN z^iz!OdvKr2>z}@%FO74eOsM!0%`^PP%MJR(nsu~TmZnPT1f8Y-8hvT2gN(@o$C>%l z0!O)$fQH31&mWb7BNVBeJj^wHc>IzPlS6F<#j6@d9~UO1&S7Z znxyPh)Ap^F;@rgFq(7*7zBr(F0>XflcUtCfUjv0KiUYz1hCa;2RunBkMmBY_2DWXB z@V3rWHIm^d_;AxWRwCb_v(Da&w-w@bRZ?K87`yAp_LWPv-(z-2p%67#vmm~AG^>OC zfV+nG4Wt-{iUl%Y?6L825^=2It)^3*uC;P)+1YOJK5_an zfPKm!=~BZdA>FIhlE`-K8>`3{j?wl!+-|UIMnXpSM=}8@(JXqEZ$DtIftZGJ{Kyxo z){s3|-&3I#}9Bc5?iL&PZ*kkBkSO}Z}We>UQ2&fM2A~PI7TG%mi zq`)_8@!^{{<{(9iU1ZpGbdsX`vW5VuDn(yKEA`Bp27y^nV?U&po8nCRO>D}h5qp|-*kWlZBSV%*#y9X#I*BKp?rt!R~ zSCd;+$CoB+)Vt=8S+Nb<249k$?nyO#a53NT-n=YQ({q1(k*E)WF9wphOL%-aT}lZe zCp84PR_26Rpf(QBk0_jRqE;&-%-wXM7@n>xQ!v~q?(axbRe;l?rimDNA9Uw8Pm$+J zfmWYxI;>@o0M{Qv(irMQ$EH=nJOFDpY8gQ92N=?klv{kcOz$5IG3&{#;y+0_OmH3W)ICS?~%X!Se9g zu;aH&|HPGXM)@k3^5wj54J5jWL!TuxGtnf0TQ=9Oe)+r@ibD`&2)ME_uk7lJw9QLx zo7GExu-c|CXx{?w=6iv?fvb~jn~LyQ)d?fPJa@+m$tDj*K1Pu~7rmSUzRN zrw*!o64S^_fxjN%4|5BFe(}8$*T&^s>PumfS-q+3xzn0cU{)7~_QGqY+VD?(S9Siy zVA~tiTgBZyuojPZ35N-W^5q8dLYHSpG*)?X0BLukR z+=Y0n^9p?|TG%X7Au zi?hj_B|@G+jYzv$9<92Xcy|E%U|OvR@_dxUkxSW!j9~J;Z90lt&IeV2A{oyz?MQ!H zzs!nP4;wzP6#;@8X(E3-y8EWOY22I~CnnWTdp$2DiJv|%?=9juE#p46l#CzlY~;`4 zj#kj2;N=p4SLoa>O(3iJ(%pCU=Bewd1-0MnT5*cu+l)zcw|gHedR^)WnCp4w()(S3 z_saGz&iTXMXdA?OZo)-&7PznBZw0=@p^uHQ=usEK?UI@K`CZb3s2`*{Fh_cJ-!(w4 z&6y1nK<80l>dqS?J!6b|yEUA=#1MaMg0`-a7kGNjMi%Z8;hY7ssclE^h2GIPWbG_yFCZT>fDdU@vMi+r-F0jj&i28J;5lx3Ognj}S;_;Va%t z-qO{sl-aNmQt;vo2L2xa1*2>DcG zNl|ENY&5ogL$cNg=%_OVNk$Dl%X~N6g>o=C(%rKsP5^hNUpmYYl>niF-V79;K-t5? zWrGk?4Su$~MW_e~4%c+;Nc5?O@ch@cBs%luD!}(hr9v4zM#kQmCRn|bok)u1Uo>(pKt~M()L)w~a=KD4cws=Dateg<`*sOEBz@a=I8%JygoJevp@EZh0 z?}l*`LWYFXV~&TBZdC)A_prHJ@k>W?pX)j^?9Uzh$Ggi#_FyM!RVl|soU#U(ge)`Q zn&G=dwUnNEHwbYi?RhX5IpNplaQY0rb0#SaKWkZ-D@*P8!C^K z@BEbRzbE`p_vp1(P&~rLZL&v6Ck+qfE}4Q{+i%stixa4Ews@8L5bpA27>BQhXTrUY ztK{|PuTIqj#puEYu07HrZrB`I7=M&~>m};|Yk?)Mt~qvdMCEbqJdpzSBszQ3`9sig z7~L-tnJ-Em(-18GZroS1=Z zoBk%M;(HQYvZyRdXBD}EhEC#Go-u)!CSE%m&c0FI7;*_Thaw(rqAk8|NF{L zmj9`T9ra~LaeBp&T7XV@ZW9c$LpGuV6lF@^lMuWpnJS^6y(+>OD1v$ON!d*O9!O}! z{-t~=1C~wRu2GzZAJ!Uuet_H_v44UNvdj5th)YXAA2E=gGry&qF0w?8+VcTaJ z*quGagV9h>#L-9gVlf+)UFTx5W^a(#xur*!*6_p;qSm#{0(4P;D;M87eRH?cAiJR% z?}>t_UBcDOEdDL^jQ@iuxrIctJxGxaN8djfzV-XJeC#wNSuF)mKNoT`&dv}^rY=F| z%o{SS)A)nfackXOnXCgSwD$KM%_xCL^%DkXp5*b%zwA-L zGknM*@_9X38*842!4uDa%G_TKX8Jg?C_zSZon9%g?I$}cIa{Cf&I@BQ>&~;y;2Ng) zd@|oHls88B5{lS^vo-EB#pZnpZhSJrcbuQ_b0I@9$CF30?(oA?<%at?c>VStWR0$^ z0oL(n$nVtUdwu?=uh(b`Y3vh74R<@IqJsXJlEo`5dJhgjRxjZ>|p+qL0YeH{Dt&G#<e(K9N4jz}!vYR30qU`dyb0G@;K0j7JzOA5| zSJVD@FHEVMeCh7Z<#)fR4vw;}1)Gr5#1iGkSsFM+bIRiVxx3O|R(ySsKrIW(<|(>v zZFb8?oGzEr@dGChM|3>dPW;&~#r(SZrwDmOirmS?h6HGDSj!9#yLnLfcs$>?~&` ze^8X?NB`04#aIhB8N}V(_|L14V?HykBum70{2vx}uibK(C5&fzBo59j*v{iyHr~li zJ5k(n+z@V)`sv6<4`kGqc!IpLptM$EL`3($ZU06W*Nx1p7pg`HYhI?Oq|smTuwdibE#X2 z1Do7bRpRV{A#|sA<)$Q`^qC@tcyxQ#B#&qp9bEJ_x#{N<{R|0C(QYZ8_OER6&^dtr z!?xHrmEHG6T?=Q$b}Jw=IdKuuk~wzE`)04zw_14tsFf;?Coqo#7gnNCy4^HeG2iO6 z8%I!{JNxxhdw1~gS&DPht|=<4ogO-F$!y`;eUWJXx{7qTd!1!-;y*I42ru9{qFUh= z5+XEIm1(Q(c&F9>fAVtFruE4mVQV_m(dhy+xB}rFj(JTaT)cJ~@J>2Z+V}XUR^Q3% zL>tfjI}Tui6m7_m=*10n(qO>%vi81&S&1caWAf&bGutkM z?VEV;0%z9NSBG_pBGZ;ORU`={qE|jq+S8b-Oj~phoPwAhZ}1q9T=40EGZ0iLdm)i5 zLO-4SYX{oz9-kCHR1cnw?R9=8u{5e_1a zIQG*%cc`dt=tei%XwwR(36M(@yozy6n0JpDUbefWTT6GD^(gNDDjCNaVIgai3QG52wK`Ec5w-e0PAlbd$g|Q!ao#^)i9P5= zJ2c@2$h3>G$DLc&FtGN+AyLjh*USFvihT34>Rdko|MsJPD6m?LhBG3dtUJeqdpM=* z8mj_@c%g|YJ^?GX~1V zZh2$B7FfOgk7DIjRv7lI=pzFJm)GtwqzT zfq=wAem7rslQ)WOaR5b4;|#Uyxpqo@d2XA&F{@|#ym?Nit`#C*<#|AJtvWw#U5`RtG;e@?1?Y0MHvti7c;%T_xzXE_ zqjzaXRp%LhENC9HO_p6+fqJkCQeC8*#4N&fNiD|>-uC8Hn+3kX=LP(CUdIxDr)=es zwn`QQ3{w3YsE^s|(FAm5HrM^h_Yw!v zU&_VegGG*ez?h@q*7*j(9{Y?0#2WZ(y#=tjg4$PQZDweLx`UL-fW|!R>1q19F)jha zf9SM7x4l|jY5-CT4qjUoK!82oa87)cetTr`b&{C$3+VR3sZ+Rn) zw^kv}w9{&p!IF z2PK}E98AR>&Px9Ex7*?8siHd9t5I%45w5tAy)t*hu(N1V!_g=wxW_eScB_{obOnCH zZx-}*e~!-f+hL>pYCxJLw=&_0;=5ti7Eo&M8YXkd`{!U<(xTer@@K+xT@@K&$J{$a zu%WFlpLRQjyM*;?EBVI{)$umTdK1O>#K<}}es8x&g7t?C>Ehm~;f2lHdNGflBg=45iF z95l0PV4SN^F|w*Z%(uS3;iSL7m8F25W=FfK#wr-~uy|OiZ)r3OhBQ%#pY`o7SUxl2 z)z$NEo;csLfbOl-=jIcbYmRdeKcki>12uTGqiH7+!{g~83lDU68tZ)P(;gRMgm$XW zj!xw^C-0SM7L!V7Z(KD*I-kQS=C@xru=7q17Xjx_%+jVd@nX?5v^I1@y=#T?!X|^h z#o}3V_e9K&0N>sy3GP;05Lw`TuKGx9?=NW&Pc3$fJo|?S8lSqjf0ZMouLJ zgDg0>eW6#D1Fbg}3BL>TcY23*^3Hpr#O5saaOluSCiPRV=m0DUQS^3VUykXB;X~uk#!vL z6@>N2b=qU@&RUrHrfZB6#Ia7t%wBB5!nRGm?_hpu*KwSLCeG+X_b~GS@;56AR6xd%p5w__-zteGp{Nu4$?w0T%j z$i%sJgPW*y(6_wE*2L@UrOKx2r1@O;D_qEUANV^9qdz_!BC`=akjjL(1E>sXM3BUX z(_by;2$Jh-XPN3`H2Ra-LneR``mmNzA)2EWs&y#$#6!Z^Urw!)R z^3N0xC1s_*rd(m2&LPoI`+wkC*Zmc|9IR6bY>%gpgHy<>2n|Qcw_C;`)uU$2ld(7x9)GOaXxz#^3NfeEyWN;An&2B{bn9`FJfHt`)8jt@+@`&lF;YcUtkO8S>IJsU_b&~!{6&n17f z&m=8>=h~^~r4(TYnBimC-qOe#C4(xgoC014?0Ai7cm@@=4_+z=xx{)y)I__R5TI4~ zrDFMJ-4gKQ_9YkEYx$g*0_DfSu(`w(#Om1nvHgcFlLwv#cZz=caT2Q;B0gcO^DTD8 zirmy1YC=l|ZDl?@X-Allo+AGoI~aV0Ot`lhCj3w7`JFdnj*|m)p4T|Av%^m%`+S1R zF;2JTed5_pj=Q`caB(_3<)U90rn|K@9#PZt*FA}ZLbjf4R++GfWI9n^NM1?e{O^K4 z9L=uv!mFWe?s#s}47*&ZoWIcvSKBYtSGfB ze{7JqJybYO&{?EnrS1@A<^$BsY`|QR{~*BWUy6Q&i#m?c)-vlb?Gfwu;dn!j4b&NY zIW&y>Eu(fYp0j*9oqv#j@UYITpylb%-LV2g!yph02hQvPlo>ggE9efXi(3f3a@3R3 zGTly(E52kk8!vcJJkH1C2r&)4;EQ!LIvfZcbX~Sud(HfGLO&Ehei1>w?I{0Ar^D6C z6c1`41&9kV>l9$I$cYB1Ux19r*{b8k6vmnB#)EWN-o4JkB5#r zk8u1WosaT1ZwoQ4!ov~nK~4nmSKSoJ^8HRCtJZd%7Yl=Vv>E}ZXxP*UvUIC)dO%dl zv=<=rjUx9{ZJ`6GTEhf+VA|{im<=wsZuo|4iF93D!LRny@6~1LK~Jm#qkz`;!n0vv z@z{Nm5YgxoC^gw^tdO?=BUVTpd#=_0kpYjuKKZBV2RnEs+!oe%>YSEeI?I`Q^W&k! zkSznfWZyC1&V2j2`C{08uQ#gur91YUsrP=+O`U92M857UB=Z0OM7bU)tt`!1ujBw3 zB><51a*Rsy(zD8b8O*eMXJ2+glu-Gv6*1=f8xXH^a@PF>wckz)GqDO%7(GT(RseLm zqNU5ErPT$woorj^lmMgBtfuP;)S|_?eqJhAUIn8}q6)#kfDpKGBeYXh%UsYy)z(u) zHD9P4?Sy+`h&#ijeFScTWmjPPvOw#p$|C){D}nPfSoqe+>XYv0B|{X0hO&}70;0Tg^Yeq9P5n{oVD0&!rXq7 zU>^SLM%wA4sI3<}9r4Ov;%{}5J>%SL5?$v#Q$7A`xNbfqV~VDZMhb>gA&Gsru6M&fwhcd;QPm-y#y)~ z)pHD*(_BXNfc{Bgd!~V%3nbL)97KbQ>1klvWhh$8c6g}cF3?u<>@u+ao4THM)j&l_ zK6AXjsR)&}8>%ZM9cWPJaBL}=$y-z)I_h;9jcGKn5`%`IMIsyo1x$UBa3~8`|fmGKTlX} z1MBc?URy&&!S4b%8TO^_Anmw=y7)2(H9Y@fV9GC!~C6 zFQL%VPl{t6(sh8JrS6`8VYpW=-vTs!tjnn9a%O@a$e%5_0hzFzK$yfH45d+3{=9n zb|7bBI!)1C@GswJJ$kYTdJb75F(PDntM=cV6B$F~a*|19;vw)wu>VS*^)o*UzFRFr z=L<{cP)Opg?Y}o`;NGq_uff;PH{u5tHGiDK1mF_BC1@xx`sBKoI-brLQ#_luu+Yrh zvczoo8t{=!R7FRIT8@m+lRY0qt6Ou^&xs$QVd0%tl>%vu7bxWJ{`xsR!`!TCj0kPH zX^)c0V|mRdXKRNv-jusqkMgw@404M8v1Knm;u|+WMuFy=NAP0%1yEwbkjPnDD75h5((QdUg zL-dOZ8B>hAvESR$jW)pb&^mfHk29a9EU{<l*M;^MjKS=YCtw=U#ff;E+z!^Jf{Urg5A5Q^a4`^nyJgS=y?~g3t&M3M!P0 z*&W+CAvMTk5ZG2w5u}F`Fl$iE?3q#CO-y!gMW6tt3w(GW%)5F!#pTP>5XLvTg`Ltv zJ}12;lr<#86;OQji2q$`RV|=J|KF$MTh9q4&~%zBw&#wc2)|T zNlycEj{={@h8vokp*j4OB>rP}iLHn%cW#qUt_&YgD1UE9XV~7`{$BWFB*ULvyUIR#ljYo zwWs#4%CTt}*k<6S9J!S6M}%I@siwWlo;|RiCf?WQtU~lK2_`n*j5q!#)|~ilKutH^ zq4X(FpZ_(^Z-eL;4s(?a4A&`TRx@r<{?V|MTlV_S#JYWp>vZwk1?M$N5068Bv-ZfB z%+yMAOVbE}Gxodg{oss(7cQ$FiM2th4m%SJWF@6saz2G;x9{H%?c9>rb*o%d`%?mb z{a#qzrO+Pb{~|PExl~^N9|iR-nr@k+X!7qOTp9GHM)$Hk`Y26rJfYV4BZ~X0aF2P5 zGUu$|`!(_s`7Dv2H^r#VxofX8hHKp4S{e%`&uyiLKDkDBZEw1?nB)3-Z1P+i8HM_m zJhsSc2blSD;Iq3C5y zdM4|y*LaKJ3kQ%v;eRjv-7-j4*IV=jKNRb`nYJ=uTc$K1d1+t;{;J+@^E-ZD9CZIXp7enX3Jp*VehtTl!hC;6haQ$BtRF;G)h zrlshVKLEeczvry*d*p+hUSryJ2--LufR6-YVfu7^RpipY+MKD@#$9X<&GCsbEc**PZ!MJ zxK*hZ2%`U8)75iiYg%z95f% zQWicfS2ny2XbxY%^j;+?$i3o#y^M*+PuPY7fuU5{PCqlX3QC02)W)4 z+96RMhqV>Oed+o_VO)S-Q2GngKSyTvXyzdjUVim^fYe`v-V~lAs$X|sSBnMWl1{@t zW|`b+94q!evO2b@$v*v6c4rJ<<@L1sQXxkBR7JxiPEIZd83pAQ92j@taYH{#{(Z#_ zI679#Blehl4Yo&QFgjoFx7Md?O@3nes6&6Z6iE9#bBaF{+#W4J*CE3}42rByYJE!- zlKlspaSd&GpN+kExHzFG)4h_&ueEu3cG}r^u=@^(5@;TTQxMdxmPKMsJx#f5w|<|N z=wh8}{>H1af)`vAQ^${9j_Yj3vTI|Uv^y~|*w?kqaRC1(f}WFZ&971fpQ&`jlzd{3 zFWFFt+<{o9U~ElUisAsa1OyJ-^H{I3WG#wpd&Acvvaxfr?@L#g@7PS2FPvUstm!N- zRBvqevLfPdH1T@)!}!NZxiXLQrW9G)x!c(b!VK)9^Gy2gF(!PP+LQ}sySK(xG$Hlk z?!_*p^lD64h%O*Yb^_nmF)h(upE^2#h}pk6sQx&v1<*`6g6TB2)wEN(rf7p{|6Kre zN9+R}iaVH`n ze%<;-X`@$%0;UO0XQ$Ahu-Kldp(^*mN?E=5q|+0f>b-?L@R|tAE`(KH3Dm2@Wda0@ zU^Tv)UEkIb9r|GgmOt)8F}po^>sgnA+7H{EBeBW;5EY`A;vB`7ZkvAwx60)JizTw- z9DE(8jb5>ja3MV*7`4Wo2NcpicgH8Bgf+yBlZVDr1clSnYCh<$P_aE~OFYIAR9v3) z5{+n?1FEI)R=+v3=F&4T4_D3s}XN=RdE-MhH2K?=t<2xm(}5$Bo~xpJ<+c_$@}= z7)A8qyevGQMiS`vtOw*pSK|DIKH=oL7=`m!oq!D|6Rn1^gug$iH6PC)-h{e#bn;K| z@xxy{Gvnrywk_KUzxvkP8s&L_UX?Cz)S>_L5Wsy`3Sq0@^$FM>=iv;E*~Ypx(~fO*%tl-aS(&53bEgPG76@zv*AQJF^C z<2Dwh{2mRV7Z2Y`pZDo_SVGAKkvZ?Kuu`vqL<@lTxy;+N&t9pP1#-hL1hc*UY;H}mMrc>3^X zzdQmb*(ZUb({x~4UC+bS>pOXik6qLD3bm(|xV0#ZY0t-?bh)2klDSwr{XvJd2mG_j zaczN-r+<l`BjEk&4&B+GUI4bmEkOQ`Q$F5O5;c`5*;k(Q2Gl}KF2*dmPg zA+4rS6=~#nGM-6uY-OM#l4{wf4|?jwcXs}{;+J1*>g$-a=$ZfBoqjS?KAKNsiZo6Q z0@@ebgAylj)2l4G%MmeM?VRINTkrA!{)PjMAH((Tk8hY{m+;t$$C<%QlPn?r@ za1QL|ZshDKmL>pgSQLi`B@o_qk3}g=Ulm5qz%^otKE&)kY#gb6U+iqqU*!9)(=giZ z-k&3e<3?~qIT1j+6+_aN8w04$V=Zd{mz~8jB%=Ku&S4pe(+t#sdLFP#zgu!tRTy6! zR#j=GcHdNowOqUn99Dywh6&Qsy(calcwYg-;49zMJ?q9$_BDH(+2|eHX~NRH-*gWs z(titmyZ4j_0yMs;d0++Ze%_(;uaajw1cAi!0%*&~kTJch?raBYQo^sF?gC3@NC-AV zo{Oe9>#LEZAquH-nGz@tP~2D33LI7rZZ4c1+~i1POZBt+Kqct!>XGpM%E*p`LSH83 zqi*XHK9mQXE53VuqR6ynvuyIGVt(Tp&dBbW`d*NT+)?|w( zAb(HVryXM{lb#AmSeTtEGSO;^t(yDDXP*Y$*+(JuFG5LF{i_W)Ua2ULzyf^SQJ^Tt`O&T6a%1&3vbqARE+|-j^^ly;64( zCIM%6%o@%u+8O&@&R$_<<#&s=#+8hdWv!jo@HR(Gn8TPxKPe(Jsz_xl%mKXS9ppR%?A7Ks zle-OD*Oz|7d$_L?qaM6chl-hrGljqR_t=NWS;)>DnF2eQnky+>d_))cSO>2W*o}#r zHBhRu4m&}Yd_=u2F^aS;sew%Yf#cp-Kvq9L_XqDUFG@|yTQ9dXiL}bBsDEhATRptl z+q1s<Zg5o_hd(PlH?%evMu09a20)2>x*{Y zbh9bjX=JA5d+bS$xhK!z8X0ECT)%6}GygYYpzXP=LEt0ej>`O|qA2bNtEWqm}X$wLj71T zw#D}CwzzB>$v?FHD}At(dA2}Rf(2i*twoQ0iL=7^ z0NRZZG9hbI+7nJYzi7J9`JCpn%I)8r@v+jJ?3Y8+ zMA0fz2Wn!D2zMa87hvjq>xy}T#h8fD!)SfZadgQ)`HITQb#->P?mYK+9N2=|K$NY= zkGm=q7NF{d$uQ@VGsM|k!W0NGsH&p_#CL-4*b#t;ntix93uelGiqO+iyI^)~cw z^gk*$(E&^go2Apv_J>L10RD2w-j!2HKIXDmSDpfbumUx;=Yp5L?Y}{%mujS9Q8pq> zsNRHdOOTe?$|Ay=Ha$|pEX*#73AF3-V#~!Ze#LFHo=$1`_=6i~Ojg$T)x^c;oK?23 z2JB;XDm5e&^TaAp)C-%10i!@AECzx42%Z_+$HlB9L>fqpu=yGp{i&?96Q1?D5>cMa zZ+t-q^JApp7GE(e8Z2wBX?9Z0+J&p4mgNd|toAXZo=!z0uE~)9RmtuK4PxNSuKP=X z(D0B5|A3o5mNIvcXnNe6JD(4EckKP+x42bc`Nirdt|a;-8@Y5EHnpbowfy*m$ts}$ zvyWJPi)nkp=uZ2Tecy-Uf9;?iyea?LQZM(?u^c#g;xY!SODt@^PwGXn7829Ij!tSd z$A3J^=61!>5+#ZfD~0p#Gx28bc6e}W^j%|~p+0wmv?QTiPtH!a4Xx6xY8=7lT?7jw zD8OaH<(1$+!a8LnM%GrORJa&t3r=@oQ&-geO2jLN6UJnO>D(uP9*!C-uW08)&>c1tG^J^3HPE&gid(4K^mPdN!DB<1Hdo8ap63>fY)hR#m%6q;WZShV6^wy6{U6D@e=JsHknWy61 z(?9v~UyvHJnqIKI^&mj#xdE((zeJkh?E1Q~AYz@@?}EQ3@<=k@!_$kZ?Ji{i$a^ZK zXqWp`Mj`M^@ASH0`Q|7hvg3mSg4bsfCPsYJtk|L$J1#!>(N02yOK7?Vh*(VqPPJ^3 z7GPD#-lKo8wR^;3u>E6Mi}qB{WXIXhB3aG;^|xgye&-F_zE@|v_aHr%{fgZq{Bd;e zN}UdDQgZZHTjq*Y6=PW*Bmvi~NUZqZTXKh%n-cB=hguPMGs5`qdi~$_hd5jE49+OU zUU88HD}eF8zp=m6y|45uGCyD?ggUuzU7@% zUqL$#gBDGUQ$yBHvkY=B2FoysvRz_9uewrfe|B2DHhCCat$G<(^?qr4EYBlY8+|CP zxESQ<_+wMkplR1OGpQm~rbV;h=sz+_66YZBVQhill9xyzsIbIt5=ceNM?9W}-f?P9 zNpO~l9g>Q0iDazXzrVHde(rHZVVM|ZMuAVV9`ggC?#`+k5e^ zqmNO|GwNK#u3uo3ljHJ%{T%npxbX4J?_PqYS|&8Vu$ z{IX|zT7R+I0wn*o=7QqfrM)8RABJ8)fU&jz44-*oe?WzQ?puQm#HE+{-d?2dLO6MRdQV!;S9VgoMWy&a?q$xvgCuvkp8RGR|V==7n;V4a5T z6z0%B@Y+l~s1HtOax~`kxN8I{`1EAH2hD-}p%el1T!9#WL9Z%*cC0Cuh}i4nbYO>4 z(*&U-0@5NcXD0rpr(=aS2k>1vmTtc_hbohHov~j9Cgy!Bj26loIa`@M65-#owr|v2 zGD4SQ7brBAJT;~VbqCZ9$mX(LTXV{;UT6slkdD$9{$bqR!r!;oshDcu2hRb~{*(^` zm;ty*J+KDWFAtBM!xoXtIxN1YZ=9SoO&SVBGp`Tm+?Rj91yg%T;n!GR!QrqyuI24b z`sKY`riT_;oXg`1D2E$Er>+Xe18t5U!#@u`oC`ElG(7Kr;Swy3B^k_7zcqnKHWZ`I zlDD1?=!hr5{s8o~P4E{`y;AjInB~#{BGV!1bLzy zkw`szp3nos@q&BkS$w5TYg#81*?mu6H;+pOh>HwYwW_deO0j`HM%ip}0<1-w<>^u7 z-N_>DGM}(c8 zfGo_+foO3?-DQ@VX`U2zsZICWm3XVy^C+NSFpZyR?{#HO7aAUsD6n=|@rjr6|(qx8#5 zo+3Z#$O%NGfx9zrQ9*OV?np_2Wf%?LWOd41P3!Drd;NYq4Ez5$I`2TL{{N4wgbla>wU)zQ6zOpXZ+QKIgp8 z>-l^k)ly20WE`lAjJZ%zGs zJ6`z1^G4RbTvytEgVU82Km6D?n`?674Zp+*=sO3)M-c@F^Vg}7zfb?+Q8TH!-Piaw zN@Ok55!IT|&5&S>8{y}ZaBVCMO>QW<|0i(^=rNN%iZYCVg)#C()BCWDip8J`jzp)^ z`KNu3oBMZ~4~Y)r>mLv3v==7*lQm10fp1~u-9O4~NX8k&Y9^wNecb8#I1w@nyVI)s zl=GF0gnjQ%M6huYTwA+CY7)$35}<4oMeIT2BjV2F`J=SC1kfSZR9N))i@FWNIB=085^YID(l#|=zR zzOcLuky~y*s@Rr3>wpOXgx*%k|-3-p% z*@t|ve=g}<+P{{*dJR`S?ugmviBb92?Nw9t@YAk_>zh&mPH$tIfB(e2cNNfTlR*^j z)BC1+N)bHCUJ@rcQ*c|VumH~NQj6kH5$~y-a|#&=2d*0#?p=4=o^ASW)W5{sE0OJ= z(jT+26G-q(Qn?{WvmO+8V^61pi=>MDtRT;<>yX3&8FxMLin-_|00;E9DJ(I6BG~|C z3q(Y8kXL#I0AXgfDu+Rr8x^p z0t?qU-?ZaZ2q|59e%N=1gQCcD?%6?3LB=l=U@o)@9BHfp=_-E7E$?kiZt`I+rY-b4>G z$|X^z+tG4+&lJS8RvlJSr+ddJQ7VczrpBlI=x-r;cZ2k(^q-@3A$CM=?f-~C<$~cm4Zn=Z!wqqna97@0bMC{7Ys1W#;6ZQ1J zsw+6$O#9_`_j4m)Z>zH~o>?VXb>9Rux_oh1(urDEhnMX$*&U+KmcVowPLX-~>Mu!Hg#{>?ZrzG8`D1$X{hBV1zmk(h za16Iy2S>AEdpeM(?}UtpGNRg}%QY$=En$PZBH0oj^ngGM&9V3yGx7UVEjI*_%h7=c zR?^`6Po^FnZZ#$!h)gIuG^N>CI$3FJ6HXdSj3Kvz*J8t9x7G^k%bYN0;<1Nzvb z_!fx-j4~mnjKoO4!{}DMXP209oKf=J^+5gYe+e5ML3euzOP>9=(!WN;GkBS%gpwRP zP2~!WXjS4sZp6_Hkb{xubRZh zWF4scGIfJyFAjF)MZGf;S3=T?2el>&Tbg|%sR9~b9*w^-iA(W1b0~W9vl63`4;?it ziE7pSDHE$G0bf9xTbY;r<@zRJ{_3~C8W#sMw5>+2l5)}=F0dO!Z|m%DsjJq>;Ub}u zcl%j7$@vnW4FtXFv2bPp-0CqGv{aDS4Kf)Jvx*_(h5ACf;ZLL^Wi`Nl-jsyI9VGKh z$tBgqGsRHel72l)*F`iyd;Li)XKkVLJUNYv0KE z_{~?TVOp7tIGsb!+8^ohF2^xtTkWBUt8PAdRxo=h2CjPJhn-h**3{z?)3zTw8(#P) zb~IY(a~Gcgk6ztRoI+R^g=I;yvsZUdk?NmaF-bxB1X?@m!cDwd`0#_+OJ_e=$%XgX z(rgqu(Azt)jfT*s!=5DjGMC845oUufM)$mSyrcU&>#%JtT|rgqYg zOGlJ;VXQgMWz=-#`RUD*CT4%cl~GO z;-tAV2KVEE&o}c@RK*l=~6y)wQ2Ob-;jeI!4*7p(e#T2C+TL zgRMs!>JfgnKL3y8KE(M+Ey_L9%Vx}n&*B8}jq{Ptp)Q#wxRT`RRX3Z7Y|kD_qz5Mm z7wq0Nm26BQ$X{_cVSQJrbg9fN@ebHOZb$Idny5p+ebEfa-6ms-*9M^nhSt+x(chcp7#ZdKZU7NtEAZ)5i0{U*|2pOua50D+ z%k}N?PT(Kq&MwSUU1e*Yvkz5_@UI=L+FqTpqUJpOl9$h4B55Owy5;<5(7HKw?HHum zbvgjM52_L}S_Pa?2OSO1J(#VY{1vjh%G9O-&wwv0&6S9&atEQjQbVXKD-Iw~4c69v zILJFFCf6r$Ft-e87J0n2j8Bw6$$YxVB>b;2U7@!L{Uq_yFD!Nj`V*`vnGQS|+h z0FHwl@k26hrY~CwwZZNE)7yb*bb{T%S_$Lk!Y6+*ugxwyb8DGG^T%4{TpQ(!{*^X< zj-Ob16>wI_p`&?a+&o53J#jt!J~ebv~9)P!sZ!G zOw%!!u(tHP$2K*M?&Uk{v*D0#Q(@+=h0D^%@Jz65c)w?{P(zku@7^BKb<;R_&`5JvL1-1r-LFXYOJmM2+9_tv_YQTetnC-?oL$2I$-?LY#-))WIJn8}0y zrD$6N-`+>i2_FFqgJFT~HS6-ty`Wctl)LhvOI`2j^7(;N=O0qhgi)9$3eN2qj>-_?KOM>2q?VQ&r!44Jw>Xbuz^s6TT73~fu=ku*%hV%2a^ zyiCrGDW<1>v<<16A~k}RYlD@orfjy=9RRn$YHRQYhr@TG1MW(Z*vjK6F1j2@5 z#b)-5V6M$1LXvOWG@4Bv#Q%!|@f}Xsl=-l@QeL>|-U7<|D1$4I)>x6hsHeYS_w549 z+{S&hM+eak->{4QoDZ?1r6sYgAs;0XGl%OEOx70TS#RgB zf2HnDXn%UDXD(brY|eFi9tje%>ZWNbQ$p_Jg#UU(0^RQry{0hDqlC=01NB8WxBFb8 zqYu5O6aA(3?3?T%$DVFpdI7U-S8CVp2H({p-c27|Wl`t`K_t6Mr zQ-jTnF@<<}Ckt#;xo~#sgIpvPPd=;9Y}+{Z7Lex0l(YWWxE2EUM-ITu=-b&Lf-`tn zc|V$by?a3Z-#(_(jQnR0r(b>F1;=H(Qvq+yy-LJUU;QO>jPRSl zjaFZc=%`;ChN*|=azM>ZWy{*=Ju9r={%T;FJKgXXd`dn^;XhdOu2Fxji4|ud|Ab+p zfq+4_e1bUtUL$MVrRT_HMcor4i8C;HD7m3oi`Ulz|Mv+e8*kD zeBsREr_f0*!f+GNoa(u1H_O`=7{G&;+KEnE)R;sJXa9*}{TTmv5@t98VJThajXmNC zj3%6}Zsd;$jFrJ(XQ4IYr#@6Y=Mi_V{0aC@k@Zsby1u0RZF%Z{at~}^xU_4Hd#64yxMQ% zoKZv@6BOj{V9XdBm#ry;VANb2W$pzW$+voxd1h?PvvsXvTuO`n=#>?ng=uz$wgyo) zJ(qO!QvE6CtX^2S#WUIf6(&xB$l7U$Jyr@6nf(hYQ@-%q`)Ov1V$M~H=}Z#p4__FW zENO~!hPAWiSjY5id*%w%IJI%El#J>18Ww4)mMgzN@g7O6<<0?S0wJte0e1h6PSOUF zE+7Yk33hDMbavaSZ%pt4N8dcYt)ckdr#B?WGCH1m`*%@|zEx&zxa^?wc3{w(+}7+P zB=OD&aUNDx9FBXj=Y*cbgiKYq;a_6*0(h%EF(J-eGJ-MPY#(m1StC?OtqXf?H>@}( za*~x@_=fjwN-kUtTBT=8VChNeI7aA_KE$BTdcFWt*cb-7*9x|&ZJN%f;;amHm7b-< z3u2jBI#TAw!+V-E=8cS9t|#$PnOh=Mh6kqL@DO=e$JyT0sqVrVP{3SrXulqt8;7_p zDK*{BiTu@oW{UFQme6palQyIJypP#xdP_b`XA?$2db%O1B{Y&Tey-$NA`>akAK~vD z>*R~Ly0p}hz&H`|@ty#OKwQM664F!aX~~`CYS6Qv>z#;`Eb((K^VaH!ASRa6B4#<2 zU1K#a{1!x93)R+mIB99PJA2_1Vo$6E*;_5mjGsFZp)N#r0uP{ie1OfH6Dikl(twR- z1S_(B-+_mkCfif7>^eQXp3wkcj}k8$M#F17n)toDBN>*dm;Z?sM4P1h)FmIcXomd4 z&qNJs-!SLvmH!6itPTNmxAcL1NE_}6bjF$iv6=` zj=V}mxBzA5v<4_*6VuUK+*4g~H&Hh+}%dXLyV_QxBki?)K>ew0yeg#3fh zHSPXsT~a&dW}}Dki9%`>2soC^2sIZMe*dUcp|=f`?ywDULW5T?zra2qIT}0uBT1~% zl#Y^Y!GqU>9T#st>VMFqq3~?`Wj|j>(p32RMwR>LLyYpI;E>Zcy;41slhEu17UTf! zK{k?Qt`$vy0o`U%yBFi_Si@h^H5x4=F8I~_IrJ!EG3%tpYmVB>ZN5f=}74`|)%q>+fLz>b6xf zT0FluyXBiL8a7be|BxE}GMwO+^<(4Lt5R}isq_2gTCI${cgtJ=P3B4a`6w+dxZ`T=R2cgX8hVu*fP5Pk*+$1eHYPB-+|1)*$@ZxfM z@-hRw#`CY>Vdq)F)3pPfv&)K^`4zAR+6Q;fgWRUS+c??rNw)!v)tROLQX9@1Is#(^ zujT;pp814A=*?vw`8yEH-Ervkbj2qB7Eh8FPi=}YwR`@ZlOm&-nadh%3wdD$Xk&38npSe051!9@ArbR2{;<`-<`HpWf-8NnHDMj} zUH#>jyWQH)Z=R1r<%WI#iIp?(wFQ9>(AN3ew&g~HF0Im!t!R&D;RVEc4O^T%#1IPu zRzE*hw~RQ91bO`SIf<1g<@^v^*7``Mor-3(?l!njloW;eYa_QYS}OduO|h^g5H7sj zAYT%dV{IViba2P@KN7$?WmVE=P2YYW;)K18=A2cV0(#eoBB+^~_v7`MPORcJrFZEH z3z9#VHG@&-M;6R6{NmdQ<=11^ah%d=Pf{-}O)da`<35TVNdwr2;b8J@tOMF#BfQI+ zP4V8XfS8E|(uBA4zf7it#;7F?+(C|?-#_$xgsD4YpnK0Nf+*9jtNs*GjRcI>M$C=Woo<64q86EAx-)(Ma;Zkd#p)(8ey2Sdz`uaAIhsI>XBIu!Wjv$r= zcegu)EXix-G4}I(>{~QrMOwznPOh{VUcbsVoHbV>PJs(PQ4%*Oo?$hvo#SDC0$n(` zL*JZC6vHB6Ay0uB?=AfXBC(B}2 z|G*VFJH9tj>J*!0#mymOP+oJiMew_72-&tyUGpl_&sUdmF~7RJASU%#Ad{&-eqwbv zuJ9Tut55rKk*_s!Vk|v8f6Tqmn#MeEFwCcQWa|4s&!0`q?@vfKdv-^Nv*lG38{Z?f zuo-O)@mIu;zNcdvsRARKa{IFV3f4NCLjMJDNyNd zz5j=>Hj4f$wwrzTzD@yQmPm@Z5^jg<3?#`2m{rDJ8J|p_pIZl}`1(vP5B}OWIkQ+A znonB~q#6(iN)9a3E73UydMu2=P)&9I!NwOMQo$&RKA-jJ3PjpvxrAk`D4^%mUCBWRXw(#>9)o<4iQ87hHQ!wy9>&{JXn^1r=>Q+VGFIE z?lXhngfcD)^_AMY9FWW6#F#xvbwZ~YWBDT&$l#lzL zD9}_%Wp1^}o$Mi}eNU%$kXAEbClJ6V0s9213*Iq6#~|rhk*TWHi_$mkG`-Lj!G0@K zG%T^oJ7+k4EvF`X-0X8^l?Z%c0$wXVTW4)5YcsET%n<={ofUN?u^K|RK^~cS6pVs( zY0YHx_M{;nC<=f^d|s=~`V`&*bl?wiX)+rw8@L`5MiE-dKfbc%^Dt}4ptn}S#cXsJ zTBnVt?FS_nr@KIf_Ho_G;@N6AoV9tYP;Ywc2aWz=j!T_?^EFHn7oXIp>&be*6)N1oetUG}orC+@v%YGURs z&u@OWD!lCY)GHnv(~KfYtgYfMPJi2*F>HN?qlH?e7Ox33+ag~$#R)%&oIoUEz!Rc^ zbsU0%bCyVlc&w^fxmR}6>|l``Y5cs(@1bnW`=SGP8%2?Id5^Dd1UK z{Xp`5_V=2O^U0Cxb>;AtPx=Z3ISuyZ*My$3UTOMSg_tZsQ=Br2)7LrpCwo|FitZjo zT-5nX%cM=XC#*B+4LlNEEj6G}z8G{Mn@TI!*#BrLmH%`^#y)7(Q$78Lk&Yb6&P2R0 z2{{Y<`qy(3O~sUpyl3GD$g{#j$#5sY-m28*o#IxB zGwBT#p7$Fi^py&fBR;JCY<2yS_SyyX&mNBv!IJDd{<-?a+C*JLNj%3fUs*y^}gO=&9+$G`Y}w zDmOnRC7uN7@dz(TFFDNVNeWN1uzea;-BaISFcCVf4F34ks^c^B_4U~+V}_LNQG_eh zC+a<$T&GoTj}E{(J#9=N(}hcht%s73?!fodf7*_5F7Li$2z4d93K4&Lcb}PbLn$%H zwy2{xfGg!V$bi|6>hHDQLs5U&Me}4^qyi}#AHi`Wj8>1FnFmv3Qy&4GRO%4NDbhJ6 zuJB=|8~Pf{l;R<;Np5>%{rWHRZloj>EY5`9q~F{?<@u2m_zPX*Cfg!x?#zC?#!c9| z#F%Ukg5XMge|q2O_0T1$uwVA%GFxG_RkS_s^3Y+UOtanwc>P-oeJjlDEpV+y`N2eq z#5!oR?;ZE^?5!FkzRl|ILFd}C^B4RUp-`F62{5MPZ9PyY9Sc*9EB8=EL)#o$hG#Ad zS@D@|#?~h+>~60JbJLzPtyWIM%_-O-M6$VBpvcJ1qV1jrEh+Kj>Rv9M zG#w9x+-6?TOCSRVIU&dUCp%Z1^^_o!ysPxqOTbc;bghI7g21NmN^6~{+zzHrUxD76 z#BFhjn>2_oyWj=z;cRMn0e$vce1cXDre2P5&^r$xo)~nx_bz23NFwN)*^B~5hN2hWd)M$i%jl&Y2JdZPBjX5@msT~;{c6n$ zb{W=QW$F=fzwC>3Uhv(C_2m;R(uDLTrJdSVkq-Egcro$#aJ?&LHeEj%Y?e=5qfaYo zCH~8;w<=%Pz1xqb>u8uIawczYzi{I=)vqB+atW>&docjSlixfE!+?R5=(L<+TRi(i zeV3*SL|5X1cL(^vW@2~HWPhQH_}$$3OD|gCt(GrYDCBXLO!a~J^WXde>=U2!hW{67 zBUU$M=Mv8>=rLWfn19WQ)Y>VJIJjkMyvIGs!7p6$<)|Zop@8q`@7I4sZ{69{j0tLAKJvuVlr0>Sts0 zJmd+Xt(CWO3Equd0Kc}RGSYizX)*wI_@hLTZoGbOO}|&Qh=m@XI!SumbLtpy;$f@#`O3kz6W1-UZ&CzJN#5SCH*kSSP6_n66*<6K%!As}e?0hkP@>zO-8cdCIiSI7xnULUQWi^)5bSK}liant zG+^vErwPyP`yD@0DkUzTZH-n*Ek+dyS`>Y^YrhSQNjcl4TR+kle6x>5IuBRo_#gjA za_b*a692A^@YDB)M}4-}X?F)FbB|a!mpD>7K#hab;dm*6v%_KQ46@MfX`Q6-3}l`3 z-qbbfPOw!0ZV^CGd|}keAafouycss$?rua|Y91?RGWl^`i+kBe=y}ELEH7_P4n{vs zufw*zDcV?jO&9*-?8mlC%&;eH9?R=TloO7v|2M8$L7d1q+n0Gc7NDT@O{gvJU;Wwu zQTQNLArr+=&mRy6EWm?xkPu%=Ohx2cT(hhqePFrv8Sn?5=k|cv_N^p8-mp01*Lpf8&_8bdSfUfTksc@(+htRs>Yn2|cks0|%b4wp+1-q78)WM1Qhv^dmbQoh4-Ci1XV@B(x0cl)6Zn5#o zZ-9$^gJ&(6_@RBo_v1Vb+uV5VuSv#Wwg>GBNYx9SFM!-X?5K<&Xv zsqiQJ4bVc1NyFH~=B9~OD*Hf*o1pEs^p7jm8|95G;4axpDMgb9@9d>3v;>dJQ0yFG z@qA`Ro4;Fu$p|a5F6xN30Kz>kgm8e*pN@ze*?%@$9<`C7Vn>bjXuPFGg8@G{kN5Uf ztEkTmEk*q)e(sbyp z@9QY)Rly8j84vg%K2bTVR+xV%u&_eYY7od~m}%ku+v>2vVYlA!8w&i7^uuOF%17hp z!8ZCpt)`$T@J|#F2ATtcnjoq#a6^#D@AbOkdhPNHWxy^RQ4kuIuNJ&)eSzh6=&+{s zrRCTc4M6nGgemZa#q(>2se`W&+&dD-TqWV3 ztL8L<5(9;Ew1=k9vx$Xo-5|G6E4O^hbSYw--raJAWJM^E05wg_vK6%!>%JeVOmF+0 zPhQWB3jEz&b5exb9ASO~X>$_ZYt~_Pv=KG|wLK>Lms)#Iihfm%OfRRf+gxw#FQWv; z2Wy6&r~#t?UAZ>oZX!s0$eZR#55b%=Bg$h&Eq2*|UH7O0t*wg!N0Ki1M?Gp1?cD6L zOyu@kqFotMS4vOp-$DDLS&kq6QZ^G?MjQ~CuPqosIwgnZxzT%(0tM^ zUtXFBB&hT$7~;f$Ng)X?PKr`imS9a;zki9t15_e8UU6D6SP2mgvA-X#9V5jG&4^Rq z1w>0&4Wb-ce`4Px1zGTf$6D0Qj02B*Mvol5K|6kClb}TZMI!B{J6;8wQi2tpm!zeA zk&HaLLw%pbn5M&xgK#@ouEAGTu(%5A8+e$!8}LI%!(2Rl##4AKX!%40%W2ns5AwJ< zrKiD40KF%HT(S~)T-YHRcdy@jCv2HUo^t!&so7*%b--+3o9i`)TtkQsebMKRJ^Dt= z5O9Syj1DSk*;@+hqC?HqZ$So{(!f?@8g7Oaq_=++h1C0TvoA&ha8+j zrT(FrZ>#%eZ=S$RO0UUY|5&SKd97z0=bHZa+8h%~0EUrH*7xwtXego*I%zT+#F1e^ zXi+hzm>q6-OI_XD%Ej&8!!qg-bXv32O@8rRWA3q#)Y-y%zuq^ee@-jQv?H&zUytQY zL&xuq6mnS54_{JiD2Fp#vwIAdD_a>AJ%tDy3%i(wq&2)SJ;Za-^HJkGx;N=%*lh{6I_@pqP#<}k&&Gh*?{7>Jqi^C0cE}6RJIm!aUgcgKa$ZWL!mM~*> zE=u?+4GOF(&fhtkDU~cf`QgeCb)s_e1E6BLqcny!&;kz z&I7a8vJ&dy?psDYaS7Sw1uP==&;BW7@fU7S&!6++>0>c=ge=G%9F+w`9ZXw6*CU-W zZ|)crJF-^sJ_92(MD`KpQz=ItgFUQei>t`Q@q+!$;i~%&K7T}~)>jV(z=8L(?hy+> zv}|KF*L3Oj?AIqC0z1;BHv6+?3>W7UmM=zb481dr5jF1mdxK;v;CkuDDq42w_0twD zgG-NTwYQ6HIfTSpay@pZ^9FEDD@y!weF#h)l8Q>-_>ZI)iRCp(AM z=pI%)pVyg=|HK(m?Ji0y!lXY!q7?Fef7O|9a197W%pv@~R!~^Meh}g) z7{`bez%--O(vNQ7l=mCN15$t6Wz6i4xHVjFY86lnDR2IR9-y8vyZ89c=Cf<;#Ze+zkpQhryX(W&Z7Ea)PwZW@rZQkW__pmt-F7kH`?CLRh*$b}O>A9=15p{Tw z*DdpT{w^X$Q9+RGO(c_=(*wsd+@i^HI9@;1nDid&A5T+8xLHnVoBn});Ig8d?3$N%+>bmGymbLq!&+MCPDT0$v2rsySFzgX)u3cc2n*r=MM#oQ>A)uT;FC5!s^S3X+?k(9-aZco8= zjaQn!)>1wYq5zc%f4K>r?wY0y=)iaWJP1UCzfZ_henjlFW?;kk5DJ7GJgBv~mEt!k zCLSl#^-fn41^o8W7tg)ONlnJaD-;=Y?F`)$fn7v}5)He%wW>ll!J7(wVF?WIi4NL0 zD`J0gfUhB@hmdq({@p|9m`*=k7lk&~)V#fLyvQ#8Z6KhZTB6_9G=mP4RH`=r{ry#{ z{I{*JzVhBZxW*(Als^t|VFjpQBBc^4$RiR&?}Kx(rk_{c(WGXV^t$mWEh{K(AC*oa*Q_X|DS?P4{F4i$) zu?5A-o=Dg*PmX(6<>>MCZWO{AeViP1N2}t2w6j&&cfl!OE%Vi=CS#h_Z zjBAqjq0F<7gz^JIRpY*D>gl3%S^89P-ANV^;0>85U<^Hqk(}X;KF4SeoAqnQ4z|}d#W5zY83meuA2Bvf ze8BsT#>M)5d3yjD7<{8ZZwNASs6VB)9-n$E!0_&}5E&(fZe@P#TR=1NC*-UHO;Eme zMG!L-B)FInuL_Cq3q&WtJ$TjGzrW`J!N95N2F;gN@h|~mLx@R+bb7 zzWM4Hs84OEK7cjczYlRoh0Jp(^H+Ox?V2?D3l=|xJp#xv-LH{90MZe7wx1X507SS2 zk&RH)&Ij#9G%$ug!kSp4w|@~Cr!MZ?Fqh7_cCvlr{Wl^uoISUbn_<_5y|@G?B=2qB zCw(^QVT8TT*>;I+&5@xXY$C<2EMcQ3$B+YbImRYs6%=>U&VjdRn-aoHNUonfM>nLn zzwXQAdpG_nE3{=v(4Z3fT=i4O?`l(!{aYPjAoC2%*=L#AYDv}0tKh;3=*IoPA+jky zg=k{i&>$0RG&<2JMIWtG;N4=5`Pa>31+U?_mIp(c?=&?HBY5)a_U429 zl#K3pdz7q?7#VF&el8z)@O20pRu{je{k?d~2z-5Pm%R7295g3%O_ zYh{2mA%Ateq625Kul~#?Ac7VoajLOwe4taWC2ML`KHF%GCDTu}P_2Jl;@^mWprqTQ ze~`h6%a-%ON&W%9o2c*?e3cKIkyHFTPn6~zv+*=t+wW(1Jyp&ou-hDz;IpItGmZmk zGS!`8{3l0@ohp=$L)nOPwBVjN?? zynB}Br$ln|OW#w=wpT9i-q;V;C|?4gCa?7_g1nU%MTN=F*!PHp%A z==X108+=*1bb2&%-lW={rdS3z=_XGCH)PuA?3uE+Xm|I4M2{^Zn(-`Ele8Xon8Y+SYUQ>V$C$s!9hi&49BsWsW}wvUluQ}lZV@1&1z3At29@C zgN;%}$WeDQ&kpon&`AWfWJ|ou8hP)t$GNc(X+!U~Ey?aaS8qb*e?HD(Jg07>fUDt>c62pb@VUE0 z$Fqlb?6@zS_RMltT&@W$+n_p;Pk2k5BtCc&`V`NGHnjvB{7LKqAVrgRi}%+ZsPE-` z`noQ6kMOcnYHOQW8WGG;JnRD`5IEF-v&)am7gX|yk(a!jgqNNu^P)K`(45^b0Vp>Y z`mfotKC;?FV(&i^mR1JWKVkj)K8pg9Hr@_FG3r5r-<95shxK|xx6S6Ab{Hn{`g^A# zBd>JsYFsk-=sEzGB?SO+=Qhs?unxp+MZj}FrSWp2QVJHD%Xrv@P1OBz>_+3bX^EB( z@9oW+6Chxt+0jg7HCiV9}l9x4KeUk6Idq?jb)Vdg8vk_{-AxD?<(CWqEAWrC$R93(S zV#eEi_&*O1v;^s%dB=oVc0|dU&cH+?V^U}6!!$=C$20o5WOj+T9qzd|)uA0bJmbHv zBV}*FAu%@`ndNw%UgnXko+9%0RD5sV0=c49DBd`H1Tf)y=XtkCKlQ85E`(Mcx+_$V zDsHEB@ZFN#p{J(k?0-f3OszLB?#`8p9Oo3-dIX6B>1CeZO^H6o8={>b1JCnF;?9ot zRKgu^MI4NciIFV!d+exC$ga{vWsn$cCjIe}P`T+&T7^GbiM)BZBr3~MtFl zwh}1(YjIQV9KUz_YZ=AEkf)+9Rks%c*(vW-<&gv)Ito1VOMUn9R@NBf6jPYGf~U4h z4apylKxO34#P{F-lfuwhNmzp=KNXXYIK->*pHw%Gxn)7G3`zM6zlxI=JO1gpHDMjv=OC`Pc2lL8}5*9DA)BI%Tet11beEC zd5+N*^WB(JlE_tkNka26??wXOJ_&uO`UoE>$>#er6*6(p0qz9k%%@0E9iZ5X!su15 zhZfn>D_v%KcWM&3zXlWs!$L1eMOQiHCz*>xX=q(hPe~ZuKVvq>Zc2$!{#|mY3^HIP zK}f&x!4xZynCMT|->l02*v)RI$Fgqmwz8A zGPk&P_gW(l>pO-mb1}K{5U~S2&g1_5(bwZd6KG;oqVy_mLIQ6_5iB?f8QN8rxTtO4 z2#1|2N)YedD1@j^!Q7NYHg=-8Oj{LDz3w8u!#ef~oa@0(ZmSKkxHE~DS_z9RiB#t6 z$pQX%02@IRt|j~XK(i0)K1TTfTZ(2fYC{CiM4w1yTWxB%xv{wmaew^Mv`-eO+>^2P znSS}2d#H%h$nG3OyyJ_LbwX0MGdVB7;#~6(Q+N#*hQ9V$F>=l54~v|%s9&--+r7oJ zJQ?t5Uofaz&yoTqRp7{LVP9HraUbN8z`rhRwyxZp+6Fs#Sl9mbvQ>`pLTI7O)=uDf zFrIEK!cFQS)*HR4Q8uuqjWf@ddD8&+01>p#dt1ZI#Pg6Jumy|K-?j!7AW4h8F6gU^ z6PkcVO*Dm}i}d`n+iNM2pmn8whIySjejyn-dmX)?TrLQ(j}5cM3as}>kjJ%>*o@xz=kzdelpf=Kl2K%ajis?s;}l%+24a?fzY9& zFt)Qh6LzS|^89_UqlKftS76o3&5y4OyQ#pxNbZPDYi>91jl_pMIkybL&+7gio(%p8 zCWp>7X7q5sLJQR@6u7}elLTF9b%ItgvfK<_9cnI&+F2U~%C&?H*lLm0Bh1jA34AA5McH@2vP}bQ=oiI@*(EQzo*r7J`CK!&nRDraRi)X--JirgGT*NXtn?K9a zSDdZ;4e)q@D6!5P-J-8O3wsGaC$by0L~$gW59H%E;9BQ3jUtYRBZ4k<`sjpQoEBhm zy9<+w8e9j_{Odo;AS-^ARCCF{Y*alS1-44Xy!mCA#iX&!`PfvwGO7&n5Iekj0&;>a z0GIzsDce#{@oVd~hFa-?jUC~c!jQG&a28%Kn)-cPvDA;=^=`KK!3$y=%h`8)wXVIx zB0kr8=p0z8NJa=Rn$9;N=k%>})h$c~E1vXEBJ=Ig5e_95P0+vgGDmr9m72J0cJ&F$318R$y zr>y_ieA4h5W-K>!YRBAx8-ecg0uI%iQk&cJMUcMoqSp&lTlv@0&yw{9P%%Yr&ftCI zwj+cG3ogb+xG8f5Ahll$bZ6MN!q=9cta{!v`nNPl*m)-|ahX`fu(!oxL`gp*K;QOv zKV?6V<=8u>_w}l%@WtZ-m&20DznS`(riA?Z=?Tf5oY~In_q`4o;;P7h@;`GnFL<#U zZGMlxtW%pP0O5kyxDm6Iu8(O}zq(i8U_f8%!1v*G(bI(9zgQ5;eS)vhkvmGiz0u;C z3#CJ-hRO}O*?%+IH7I0wv#Jr_6*UO1wNAOTrQ#5e&)pf>I+>-|l3Ji|8 z$@Kq`DL6%_1Xb$l()N{8FHDnj&s7-&9e~j=q92Zt}d73wT|* zpbX7gNS4xm4Op>zq7My~GWoUSs9{g=l}jWKptWjgO4;b|(_Z&jaI#{ClPs3-Z={S+ zf9G~2g5a;bmKX#T(!gRt#{g`!0oee3>HQ~XY|yrxmG(cCZAYxsh4u32&id`KbCEjp z0OOGj*M!(;ks_c0O8E?Ay+%G$<<;l;L?A;qEiUMP3t#CrJL0pbGySYmARIu}LK9-w zqxxH5;W-qISSnQ5zo&|tk9(>IJZ;Zl4*y5eclcBJ{{JhLBuTQzsgN=wdz@1VAtPjS zlw_RjaB!Scl+6jDgi~3W$KD)!kL>Kd*Ez;si5F|?EoR@ISP5$|wQB4ff6E=pcJ8xJKG@Qef{0g3 zI~qJs>jrbDsC1BD_7w|ul=5i@NkhNS9Gf5hMOvqj8AqEvRvC1_$66!|gJ$}xc2c70 z@0H)!&DFz_W|DiWz+Dn{=^;U3DLQNHpZ2Tlfd`QxiGH?`Ki@;!$Oo%6uGVknAP-0Z zKnbg4*M7fu09@I#SEd4B+BR3}8h6kgjS2)7^szsZ2O;~4=oKj^VaRt+Z`Nwadnlla zJ?YiA*WUFyEp~~&%iXi;DX|4*qRsg6Yvz6L_Z3E};`athJGDqYWF-U`$_CGQAEBI7 zT;ezFT{v)!se~_66fOY-DOsn+ZHyLvTufyti>g2C%|}h>hehb5L!zYThO@s|Nk*VB z>l^UF=z1uY@_1aU-95@oXj&T~eXFW2dPdi2^tR zx$Uo2pTkJKa+U6NR_bPH)AjVs^&~a1))-a48%sf%)G0B*!ZG+OA1b+M4JysrH-!PO zV=!eRTR1v5WEVmIi@cO+^us4H`)N&?gMOu&#Yg2?e1U)Gjf3xkt6Uy^nK&7;+BmhK*scgc7f!R2hVtk?m%64 zJ$Q7fSMPnxZ_g^PBYJ+$!y{~VPpRdKv6=O$xyS{rr_48L`Y1Ikx>M!JZYIz& zsEglUw5j_1n4l0Tc_YYxcg~r2rE<@s6K7qux^JPW&BsqLuj+qs94NJ2)1SItA$?$O zeWzT0#2?jkAcHVl9=wjwoB($4s(ESu-AVU{RVXZ^<=dc|!KSrRsB2_jKGlG(!2+~{B$+9Q`CoW@S+(CDigW!ko#UNwVx~$b)93L(|6-s8 z(juhWsb=D0#2 zB>STu%PhOCc-_Sc0HR` z#Dj#%)4Kux+FyEWC2LI>98y{Ow{c;%?4weur;Xxp-zk~quqo^kTGeN@a~tY)*dir+x9Vy@7IG@Bnh$iu^zPwKIetP)6Qj5@NbP+B|Pjzb=% zj7LF9Oq4txK*8k@HD#&V8v{ zFPQEL$>iMt8^V6DMz-Y!4mp>PM*t$Qj}P-=8O|>{7!ePE$y_8_6-HJig|yX%)&L0> zq(rP_kpQe1A(gvlDimBT&lJsC#gHwg<8%1TDB7vr!q4F7-QkuUUIuV)13@$5aQbBs zK%p|bsG%0evzEm2M|kg%-9JlN+!Rn|N1yo=1sr>y6|d%Ao*vizkIwZ?D??)clpKVe z<`{*Xo3BE*@5kESFQul-as3Qw8UK=<;d5it*s52!O{e3*^Z05y_W@4srlRPKi(J~H z@z!T2RC~6(3LcYR0X|Zzzb23qpz^`pi{y*6(K!xM2|jyx`X$~s4v%h`Vb| z^#T;ZcUs9V@-I0JhG^)0a0E3E^#=DDQkC2qWe|%yUqQY|;Hz{vYIrM^Bw_jhvOKkM z%~V765=7=f^K!}t_6b)CVrYiowKKx@)$F|(*7q!@_J~%YIziN>mepGe z=GvY*d865*=07^^a$hC8zs2uI0Xy*|ph~ung!Ly7bfd9dJvj^{ns^ zKy$n}*^i_MlOFUh#X2Xy8#EgYV{Y_MasvChq#^Jn#4uUmL0Z_UGC!7@M-aG9y9!NwDG^Hc=yMz zi%q->#M)mW!TEK7*Q{>?^-gM%$qGML>D{@RLMMn?zVi%mp1Z*9?ZKMv zr_-3ij``&l%-vTL9=Dc1W<6_V(^J_kqt&LGTbl}sv@5eWGStqm)#C~Wl8M^XKL|0h z3F*={@eZ|Y=Pl3HrLy5;3EdMjwtlXrm~Nn2)?Yw|Mcd@fn-u|li(EB1t5e|MS)ca# z)p#eQr6Rl)=eY~4lb*(n5ur^%OHSG`AC(K&TcxgJ$~O*eqZ%06JpV9?{Xt3bj}gll z3~Z70Tq!)c8X$wOYqBM*Zue~Oe z`_omw2H=q+fJ=pP!+@CZ?e-`TEjA}qXEOHwN4PJdH}SF;*y>+`5L?^N>jBY$qpNxl znBLrt@$IZL>=-g9O8NcaJLMd?URzEmz*e3H@UwJ6gUd)amY-5_5W5&p%NDD$+#cEX znM(KDZH24Xij{f{&XF?{VlT-T>Y4b(0<$x8eDGKi4^NcEe`|Le%tMXO`}Xb28C*gr z0ZT4MT!2PGt{jn3EC?ffVek|@Su0H^`8MOrcV8^{KRP+=AdUY{q|AbKwP)4pG49FB zwaT{$++eZEUUM3(mTJ~patPf?SZ0Z}Jx?u0@^7Wn$FnfOE191RKAVtme^=tZBq1~- zZmgwNvt)MVN^Sa9(E}6Km1Pfnj*e$8zZ`C3;%$2Fk>gk^o4z>`-kYKZf*l<>&f_XZ zeXAfh>p6Yg6@Kti%#sxBW)|H(bgCVWHwH5o6iPPsBc&nAE6}O0$FTC<0Zmd>?O3BW0 zl(V4DlIXJzy>B{2M{DyG_AQ*C7}1=RvoIfpx{9y|4B=B#SE?f4t4Z1~+UNIl3vXNI zYZJ8)!H$o@wIGc#fpG(eiI$1C8Q&vMQi4!}m1}Yvoy;OpEh-`vwcvcMmbM)WL%-!R)vj_x1>j}L?e0Q^-U_baK;;6ecmK7 zHKIGt9kYg*uQaJ-E!v6T6^p&-*#fQ85h))g#;%BX2+?DH{wYtG$=`4WS{|lCOO#UP zgrD7VP~bF{|M%+x;GjU=k}}t??mV63HOerF~N&^pVb6OEoSB0LgNwr0ZaVZ zQpOit+tg_(kp7JuHTiF^`S7dWsoSUN9>0~v!xDb5{C8Q?`LbT;xf3v)74iwB=GZT_y|0j{4e?DWH-m1!R$9jxRVAGm*E+_1W1sUf zu-q$sf2=gUTJRP5E}!p*J*yU%s$IfVwq#G&u(s{a**4LU)QN{Joa|8lOv1A%jfH<&kT*bv6AdPz9W+krZ=56MGOZoR zf{?XhJ`blTT*Y0b7_paD6%D5)BrV3jwuB_Fs$9YRV4n`dlxOX%;TATjh$64IH%09T zUL7wIj}g69$0VK*T>unuf}HOsGa|fLGAUYk$8<3NmSuvx$Q$k;8SQ7MV_)dm)`hR6 z=k~t;Wvc&hZXSi{#m+s4>7Emg{#AG%;xCDrSkE!;gS^I0Np+ygpdGIEEg)8e5^IG_g#A=;-lY6-AJpZkn&hpw3$ZnJNDD@ROLr2jh2M;C&VmOi>4UWM;Ple0?{=d< zk2g=JkG0C-C#}FQEB=qJli8pdsZ>v!Aqf*+&)969jpferOm{IP1Tk)uO$XCoD+m$! zD!2Q}^Ln9rn$wRmgPq>IBNX1?d!c3)Dge@+Q+1MjOxm!sg7b80PxwIpu@OVY7NT0u z#)h|0S5=*=oy6Vm{zv!1lkGiOqN_#u$bu2nCWcK&66h`zm|xwh4VsO0u&L1ksV_lq zPyv>GV}OO|LBbJuiTtGFK*wds1wGGfCY2b$CHGHz^N?vv+nr}5$o+WXw(td%PhACK z?an9sm_n5a8H_#(8af_I1ZIS}i`2AwZ+|?xt+sf)k&fa}9A%8h zMoN4s_qDM5J1g*8>9)u1H08trf6L?IibP9ioMx@aSb*+(s_G!7ZKP01Ic~TBOvDY+ zSmOG6@u)VM&|j7vL4x;-${!s(7ra~`mwh%cC*B?EI%kGosH+~TUA*L`KRaSRm&Zb) zrjMX`lcxb(R4>JVZC;JQ(qUNH{vm~`?@iR7kWCZqZO4>J?eg9qQDt6gaN~uMrxU5` zAqay|D;o<#>a^pll|F{v;K!?)h?j#QZJ9}V#6uhV!&!d-YiN6tuE4@`RHd`sk80Xp zdH)coj}P`_4P;_&5-S%r>E z`OT%H0IWWGwLCfJ`{A+hRXP2@z=UC4Ah)~_Juy$Zv)>*Cn%X8J2!r9sTTiEw$`+?x zl_!5SlxxKHEba(7^UTEBDsf- zU)-v#qdMg@iwTO2IM>w0@G%~?8vsgI6Z(6Nfj@{Pz~+(1l!v*`X1~bK^H`PO6-TVj zrF$TKwLj-rm?ol$yN@c_ob99S{?b>jGglq_w0j9iiHkm*`|$AJk>byb|2&lTXO1)J z*vk%IM|}trhY$F7W!PQyE>92exc`B9Jy`Js;4l*o2pdjx9R_r0okzF0mz9*L_vku2 zcyZ7Fp5I*t|Bn56cO+(xvh>YA(uBHm_GT$5WJZ%0d5|7(MUp4F^;~Rdt>kOb4=d5< zFfB2m_b$i>t_=NExOrdVMCCY_iD^D|dF`fu_+_PTdZnLE9xI9K^nYJ?usMm0E>BeO z($#+)&}6Wrv&s4)C=}$xwR+*A+MuDcwfJrI=)JSENH#j|CNA#ILOQN@3F(dHbQh-+ zxsTh=-wdht9?7Yo6Z<*!sB8O!#+BteQ;&smDb5K$^B%w{P9UQv3{RBkD{hAldvW<~ z-J=s#r-SdN8lGRQy`hHuTExK`I^L|59o&-0t++cVYb}0nhEXtB8R*Sn<7!fBqB>n) z+`2@!o^?C)ucG4l57)g@1yVik@m!6UUyeTPr&D_oek;9Po`VOuM@wCc3b{!qW0j+} z`QX`;>itumcj8Khj`X>^>aSk;UcdBc@K08T9lUDShG5)k$q^BhP5K~96Toj))e{`b zja*$#SG(mcWzyG7&s(7CZtzjJ4hY}AqptlZ&kFRHETwXO-(7{<`X6>X;WBZ?3n*52 zNIQlN;hl%jAvCN{$+^1i7P-G+`urSU@^ho)_ve@V=l>K5>pi)`YO1TgCB@a5$S)G2 zdfx}-&t90A-!EP&s=*^A+4h0%Y{XSKF!eCmeg@}a5F6k~VXGrr+dOQYzyrSD4nnk^ zKvHio(cW#+{W5Lm(e88V=Cwec!$nZRn2#_X+fJlfzyqXMUuf;qaP$Yt5+X~Soh%WS z1}&&CdE>2gVS?sQiFbE=#V37x2L%Npm3)0SLq)QD3Zbe*aHxJ7k6(ZW$`qoH!MVJtxp?s>IueY5AG(Wq_1pN!_3!46U1hQP{cxmEX>nRtt<^u6Q zbHHDc4S6woJLb{L@^C58F3)N0*7#|963ApwU&vQ3bX~_+i6wIWN4Xgx#o6(skU#J4QAgX*TA+k-{eTv3I`7@p_yB}1#mg7 zQPXnA)e&G4=x_+aYMpprv98mgmv(N1u|ucRdjS(;2?{Uo@?jrcZY=xyR)ws2Rg2u@ z(}|>wE=GKXN<4kKF>js@n(c)k>5`=a`&6l&JVQ8tO+$!R6|vc0U&Qw z^L+rP1WaxaHd!DZZIH=1Y5ex*F#?hE#DTi`Sp z;!2KYM(yAA_U>*m%y$sCs#2lTS^GfDQqT<;Z`Vf_cTaBS0sj+$XvPcIDu{}XjE@!T zGCFhRzb_y~hUJ*W%+YP>e4}pV)F7(`^0pM zz{gc^)umPMe;dJY2>u1=$oY%l>N+EPjrV7#w;OpzO;8T-lSg-)_ygX0q- zVr^Cu+VP~I22}Sy&;W{89ZYGn69EPAqM)d?KyX6trZVk2N6jyn2euY79RhP(Q-*}D z#=O=Lo2eYfnsqhC=UNGKKfZ*P+y6zXZDxzHmTMII9w^(5R2Rr4(|w$7bTX*EI!RII z#|Pby_xIZ^bikjvPpU6nCS@$%KTcyuNcf&`aMZ$PdxTgqqUJ+jyYAa&bJE54-+f?) zX=wTwC6sO#mTxr%TIGwTZX5r}(p}ozrn;{nZ%}TLtX>fqU46s~#s9$-p7l-neEpB^ zfck(NmOIEB3g_N#;(J@wBNK3At=()m#cu)|cf?H$jDYSaLIcVZiz*{3meSNsslN~} zL9GBs|b_Bz?R$A-f7B7)7=%di9BoX|h6xwMsTi zNK8ai63V+^>rgAGV9p>(s&C?e>+j)=CSU5cW1?X?Z&>kxu4Ms<#UXZS=8eOP>c8mY zlhpms2#F#%`Xwp`7}gybJs?5$Fh%O@C;PoJsT0D9an(ddFaCOx@k@0Pv^zEht>|#S(f-#MppoqhqhL#aF>~trj~NDE43`PixM;lZ-RAhD{T| z%4R3`+5soknO2ru$ihzTgU>m(I`eo$@|rm*fpCW<WvNT)JSj~JX2-MNSNz$neJtz=d%JbpR99*M9&?Ryu?Py=UvLk5 z+il;o6v*>J}Nrirf77MBQbBkT_%nM(SP<4Yc!WkgU0O- zgF;ay6RmQZj6Q#?Ssn z=(CnQ$9Mw=;?`)%X{?k|;j#FQk^F-_3hv=^oOm;y2->b*Cl5qb#oItvTsP0OLTFb> z7W;d5#dj3+WIr*w3-gElByKP?1e*L=rAU8RODYX)EJdxrAEw*4e@BbI4<`S{^{0*% zVj>z9w>YLIA}QOh*Df&T{408#_E_;{C;qI;R86fB#T3#`U`7?b#z+X0PNk$CZhD@E zvV|4nOq%mYQ7Yj5!LD5dYI*+}a$ua*nONz20+#xRdo|3euJJpX87&igbvd}?y*|_7 z!Gx`M+Kb*zQLZ4OHp&X=2!wYgmK?&Pb!)fgZHZKapg5%-i z>>25}Bu%9odRyA-?nMtbpR$ zcqorNeR6x$JKb+zbnUcGpAO5>I6ETq#1o}+h+F4*- zeSXo1z+6~B1fH|CYYNsIoz>ps!TRjh;iRU&drw)PcjUjVd6Q;|BUhBAV7}P@+WkO9 z%O{qZXQ&^t^(+e@7RrOasH$U?Ojv~L(`3I9&vMWr^zm8BQRz+&W5O$Hg@vu24N!&l z`TN?xokI@%k@1U$uVz+0sPQn+66huzy(~}&BoWVl%7~xV`CR7dwf$j!R|)ic;&VjD zGCbr4{vXsgWfr6LxoJVso#i;%py9<%Jy~ij{Re)&Mc^9A{#WNxOrRn9`H(F6!&y>} zBD37e4=dKEX%1i3KY>I;l5TkgO})pfLO!j=k}HAZZOBLU%1EDL*o{%F<8NI+(cy?8 z4KA@npqzMHe{T$-T9g*jB=vS;Phb8=mt9ufiBaNbcnmZY;y~dY_KKn98H|cAta@P> zn~q>jg)qlw^n5V{i)q10q!Yev#~HSKJrU#F}}YesP+3Fz4*&cR(fQ=2UrP z4c72UJ+|ct)c^cEyWqj!liQBSy$zzr-1tL4r|#XoQ73o=SaW{i51#?@;e;rQcOE-Cx}M$lLAc{oDCh z{jjcqI6@$Zf&KWwN_5Z|NdPqN={?q;hHXKghg<1~9xko@`sEA|e=Tz7W5jyIB91Mt z7tnJxA9QS@$r0Pu@a{k@9;RJ)8ar;jWGpn_GSx;~d-M0PlKNty=;4deMqb#kg|&5C zJPgTSo$gH@yI1&Ude4-5ol}P;lUC879CdA3u}}bQP_uhL4$q@iG4#zY-7#4Fb}JOJ zDIX)r1F;eOb>7 zaXC$|U3_+d;84xoDwbm^x@C#`frMCVPfuAX{D%45QxD0Vw*xnf=-g!N6V>^oxtw|=rU>N9UDwPi z(_>2;fmP*_LfT;Xa1cmqo_57?Zu|zVAA~oCPU4IR=wMaZ(2lv=|IsmGKiIDKjjG=E zOpEenimTPNnGtT{j;3uHvPkT%e$OjPV&ggv&~)GR2aiyMYq!u5{ay(D7ZLD!j$U|S z;jACpr#@iwE#lSxs2@rIfJYl4UfW2$ARC0!1Yi@N$~f+btqvOMKjjQ(8S3PV)q0;{ zC6!hc1|*?vxr{SKcud4(yp-CaPGHnG2GKY=8Uw2NDUDa8ef~4}Ruxb4bEn!3y@KY~ zdgEphqjX*m{MEa<3LQ1mWq!cCJ6qPc>JvD3TylEHkojk$hoDIXVmraFnT1oEEJ_=H zVPjtT1K=rZ2eM_}Jr*|No&i#(&K>A>0m%jh_=p;p$C4$B`HF4hEwjyRwd%t#znD7_ztxe0uTSjY*065)iA?oyU?{3qLw9h=;GZrF5?t-Y`a=uHG}_JA;b{w(BTb z+n=PzCC$tklv65`w)3D;(ao=AboSXoZTF|p$;oh<^!CiD!h(AzE)p=Mfg+ZP-qei6 zc+}+?eW*Sz!Xkc_yI68pdz%rmeS7QE4F;E^WuxpXIl@|dN2rOT=#pwadH>L}akk~H z|4pbnXK7)(K4g%KB|imJ$+;7@Bxo;}EoapwYyRoCp&2+RFZWzX2)S(|VEGRVyT!*jS_75IrIgXTffeUauGBrip`JVcKW`hz7M+51t*=soB7 zn}Z=~I&ILqUBO>PDc)JJS>0+A|GN_pD33~~szegMrY+1-DHsez8Eixf!7p2r7_lz% z^hgLiU~&m|pR;97@U6S((7ac(CmZS}Ab7R=7NP3eg-!3YTh*Njkc=k3E0YeD7CjQc zIiqY)4|gFX5$Nu=Gr_8rhy%hr$7HX=UQd&ynrIReLYL-f^Wh^pjd2l|9)7u1^V-+V zuoDX(^M$1EdWudBk0nv`vOkT!AOY zoZ<`N1z)!;pJUb?6tozY)BcX^~qP-r!n-d}u~vkN1O&YTL!j4VTU)r53cW(&_8P{|{A@-jLAvv$xK2Ruh^Y$uxQ}`R znVJKYkxF^xqx47jIJ>HA({G&b`9SUMs+kMfM}PBpR^+T4Y2{J{#pbMTz^s^6FTM=_ zP3DMY+Rv(B{?O{G-iM+uml6Wq(11nm4QlG)BWfi@(3^aYHqAOULt5fBD2A)ISFtTYI5g;( z*sIg3$?t4#V;~KkNp00elz-1nirF3d3l#`bt3hv)-PfSRgDvm1?|!O+k*zA)zj`#X6#~JJdUk;j9@P>o>(0y3Tmqk2WzpuNp*FFnZ+0kcka$jY3NO)}@-eT-&n#&c-i5gFxF56vQrK-g$A|&z26n3eFnEiICu$02&Ft8BZbXb-k#K>D#Y<=p^W$^vL zf!+}`D@DQe{(p3ios%$(jj z^P;sDIyi89Rrvct^EYrH!Ac)t;XS81+z4*P*@-6Os?r{yS(m#xK4Q749Ie3W0A<&GP@$N zdYe46E{+QSk1ky-{;S%LmFxoC!y-Moezm91GCsJo)Zik}kmN$2d=019D=WS7#J_{D zO z7z~s5`@f0TXSc`yera?$a<6DDyWoAuqJ`BIn=0GhVfa|@yOpM z96l>~H+j*4nuB2TO3`YEGFX0Gjsb#O-2RkghzEqD`GO<6?|l67m?4p!tH-eYMMa_1 zwgKh|{#%5Dd6=fwOlPzK69+I2syp_9;0IPj+AY`CXHwk2K{C_=C;+v}}}!^?~Kg zzDMR0Y{Le|lE+|Fm-rKh%w$I@5}Xx?VV<^|AoXgq5120`!xxL*)=-__Sds(-|*>Lh=C`Tino7Us&cFEE$y zGyih*Ox1_Q738izGX&sL*g?mWcxwQMNFdx8UnZK7qTJ53IzXSnK7$`5e^tK$PSYxH zp%mZ45aKuAh@VQQU+qhzrB?R{h4Nl0aY^E-s;JuAau%LErr{QtNm-e2 z6!9C0p@23N;FkWHK>IAK?ANZx$dJt6Ut@%OXWn`1c{3Mg;rlgDYpy(f_oS(9()&}l zdbF`rTaZpwNkYAF0Tg?TrLaL3aZx_lDfD7cVPX;1le0rAB*nxmJAEcp^_d_UU}L_VH2D@Zqtt_f-j5th*O91lT^7i9yn>ueh@0 zHWd^%!iuDWwO>j@wWPd9g7G^F{X`hEhMVNm($>o=Pt7hAY;+1;5|#hZ(g+IAd)-*! zg1eG9kyVL=!H6Zh4#hF5vd$f6k~xl^jKN#FLG_)tjliGKo6uiRbWFb1Wg;CcRV!BN z6i#EVTvi0p^7#8Y-wEDYam>2?fhoG|ZOZiz=vv0j%|}fF{t!$0M@CvtiNBjv+__iQ zr@owfPT%P!t7N$V)?0t^)lK(>tK=(EuiUsg1-@@78=lV#>Ec^X5Bw`F{qYljV8Gw=U#4r`1!-++ zejI%f{N&4g;_Z#w=jfQaL_R*Zx~v6xu>bF`X=Y({&KL5-RBC;x{|q4jidxr;0> zoqK9*`Psz^=FGG_sg$>3_o4Pf1WI?MQ!n4nDS>%z1H*s+0@=NXxlj2 zcFQ=`bujnl#SiE8XV%aUp6rO^@Eru*tKL!ixSAX{pJGWj%-Gyt@Q$J=>1{l zr2V`SHVSkdvxp15aj0Far*1VSWo&?-`!2Z4=~o&w+ev!;h({ar`?vH_fi!!D{tqu- zZJRTHe<1U4IuKVyxCRPGiW*#Y;yFq_yY|sXr7|NV#{DHgDrC8ctMP|+ zh2fuuGZ@=Gy}2^8PEe!7PeG*GXECodzup^pfu=w(g9l0tf?ED>%_-^TtMF~o_z%vz z8`1>KPCxRiQBaRka685Vg(_j<0^qE=b(I65xi*sHthPe$X@{i-?wVpzaK>Euuh`P zPSfXZg#6N(7~7}%Y7Ng9E9@NR(FQPAu;BZodHsWWKf=TF~?Is+gk2m;iS5jX2?D`Y=KTWJ186S6~p%7a) zZ$J5rYv!}ZYVJgD0t8@NxTj{|QBAfFD@K>&XJ6M=p;wdUH0)DzSAOmMYvv1v_2s_k zvBv(|8p+OJD$2=OKL4}0BPe|T(WP@XIq9>aMz#0d{2^_FlYV+*`#FT17JfUp6*NIg zF;Ze&VRuuNo?e8!9V&14QPyG93}WCP(}(nVerFZdCD4@!}iwSs$Pd6X-!`?hP%4X&x~6+ zH5V@Ni?tMdU0X{d&Yz9;8%$|W`hkJDDL8>*Pl_W$kZm+2QZF8D5!>3Pe6b;|GQ~rvsrFig~hSB@6VP)ni(#*f6U<1l$2csgyDk9r7Jne&KAshU=tgl7jRC4+~$;f z)NFBAngIOQm|gMcO3nN)7h~2g?Nqli-%i#(owH}Kxx&`tT=n#*HJe&W9Sy0KV8*eY zZ|Mh!em5!T0MZyHnisv$vh!l@j=AHnjNgiVwBhS*mY2 zQGx%(!F)7Din*oqTZrdLN!*CsM%K)q=Y{wT02T*LVvVX37HNNyl{MxmpAph|9dAeW zC#cokr&j#@zSTRfV+IgSD9^E4I+Mai;fBrYL(uPb*L*;2%Yj zpf-*pKOq$(Zjq#TEjEbqLugi*lYBHCU4&=H^51i$i5xkoS{wN)_-oRBPVV;N=BsKe zDR_a^TA@V39C4b)sI_De?TX~Hat189`%SwSq0j{Rt=k^R)-R@7adjmF7X4flgR$Y> zVo@rujc!kIWT}7S+np2bBMtW(PK_6-XvC%3_3(YcF^XQU$PebS=n6_F%~Eko;xBcK zCZi?;;~_7Vt|)~?o|=UpVwFzr7O@cvN{ zOf;e0Q$VtJHUm^g0*8%kHq_5hQQ$VaH!|BCE8#80{@0PJ$=wWi+hDic1$_DKG=F#BmIU7-@>AzE5rIEoZ_ShE^R&1GRpTx$1M*S|DCxwx!TwmX*(Xnf6qJiN#Icm2O3nWUHAxsOXLYq(B{bpvNz zm}B_1a&}=JEFNJ%YIwL+JC|vyr||5{YNilf%pI0GF0QE%Kz-JZP+c{xa4%RoPC)LU z7C^sWh9z2CUKSM zBir?qwN8721x;kD+QG#c_4_0n zHRZjAl>lybr$N-{(rEN{0=!-wQ8>4c%}Mr~$PSCQv{d-yb1{AEVFA2@W;4`U*T?aE zX3w5tbRtBZ$I2ZVW*H@-0#6cG4=aGMyuso$oflbsQ!)3j+hmvje!f(VgIS>o$B1BMiKw@=9MrxYnw&M&b#V@RZ((O}_Br+R z+jS+TnreYvgekpXi`SEGsqHo3cel1K5+>&!re|aEx<@uiJBOf~q>MHQj~o{QM!4dc z4Y$|7%M5NAS&6-Th`Bqa*O=hSn;| z;85|Q_y|+H@frqaX#**YJBCu&PCCGxBnGl2MPhVkOx!M{qZVOGxZT?`=n-jtqRN(} zmOrudT#}ygi%F}7CBb)Z-g{j}T+{IzurQ0HTob+VK6>1D7VGNj(_`qmE)m%!m>f3Owk2$~|T87xF{Tn+@J z9MhYu{jZ4B6m9vfx8HRxU1=>^Onu{-o=7ymx)&3`*sGb;fKF>$gc;^LRTXud#G+o$ z->{}g;3qz--p-uXbIq8w24{{R{~nSGeqf1x>TN(xr6zhuRvjwJF1HiSceYTOYOv_JZH0rTCfeZ~{3xov~qC zFp(5QmPLR|3Dm~2JeZ}=K-}-Gh{nY|tpxGr51-@%ZX=WiU#i=f_xavlq^7<;U8y|S za`^Zn#?i=)fL;sWgO>PxC_?Dw!p?9VXyzH~Et$R(kzH8u@D1~W$tGIjIuMq;WUuoe zh9kae@j%&@BXvtjCvS8a;X_uXNRZS&gV@R?fHDWQ86Mj@_Ozv>l4>Dph+)T)Ctu&| z1oW|)WPpUb0e@7Ri7`=6M>%Kc1S(gRqM@0{)nbzNbmU(%=`mRx!%do7ZVf%XEe&OQ zRGRxb!EI_g_MhC=@dNN3dV7eLwRS}>(C~cWyo;R)lHVg?jUS`-m zw~YBX&+QO8Vh*G`kC>GV7h#uQhM87zdf(9yEuJd^<;I|38k-GOX$TZR02^Dy1NT)C>e^>E0|rK$x_GFp&lU5$UlhDLHA$NehTmx<{jg zboXdRY{VEW?&tS^UhOz|wPSqix~}v5oU48z_evjgN;nAAT;HV>(XAZ^uvJRiDnw3_ z8?g~vDY6}$pl!3J=0fL%qPIVHA4gpwN|qw8y=9wce{gYx?_+{Nfpo(uy+I&N(HF3f zhIQ=?!^ZpevEg(jqDLE+pM6G+bag^nUefn*{I0s&Vj&=38yTX%%rf1VmY-5FW8-t! zNeEV~J(-@gH_Py8I)-8rXRP}zd-_iQn60L_<3MCPY#GRVVvy3iG=KsU{>Wm`7Atcr zf=B4vrO|H{9Pmfvm$xK^vpyZTs5(Q`rZ1@6bkKYA&R3YXDYHURM?zR(PUDW!!inQL z6<{coQDTUY*xavT!3}KT|b`rSwbo#C&pUOR6v8CgDPby7T** z1O#sN^Pk{X$l@%M*o0+P)FVyrp5(XZweR79ybf6850}?|iI;QKv?|Sywi-y_6e1v# zKz+gzj36Oq&0vCH={4TYa-QuYv(G_A(9|2Q;vM`+1BL*=#W-d{U-L1y?&hxFi?>=z zcRK66uVZA;> zjf;95X@CqKN|@inr}!BsCx{sNw)cGLX5_!z`FiAdGmpPirSUp9clF;R*u)}yl>k|0 zifLx1K1?N5&{E)*pa^fb3qxx}Sg@7Fi=Vmv94fg_XQHD;O}=cL$b72$_2?-$@T%r$ z+_bk9a#3OE_y9bfgu{KGm^iWD$DaaDvh->c+P?ur?jVVzRCKK~nZ;>={C za%Z9L-wT!RCS>5yh7BJIH?xKNYvSH5bXfib+S%~a3}jXJHoC;mfiywF(qg4a@v2)j zKGRp(uD)=0?S0TF3)p>LvOki2u=uI@4%>*Sv&Sia9T0C>InTuZGdqfQ3ahXJJ+3D| z{$DsH;LBW0K5j>XW~QB+WvePrI_u98xKF?fjtwa>*@EB_KaE%sBc3f6**Omy;#p52 zH&;7(!5R8O1C0~`jxIJ-0@as*HX$o4`ym|%rv0af$H!m8A-LY>y4q(Xf93hs_{=1) zw9R}vufw(ShG0}6oIS_>yT!qTXrj>!LRNwBr;f7_V0=D}9J-?vQn=FC&*pxifP_ZNTtEo_ zp#B^@q3HGv%9S&VxTY8dZ;RB*u=K$Ez5kyTM?T87)gSy(W~8Qugee?orS6Cl9=AfO zxkDv^fML*-AeW$M)!D7J`Dy6wo%{$sT+4q9rhzwZhSN3jzAH?LJ^zuX{J*Tl{S&!? zRvdoyAe)n;sk=T<8er_=jepa!z+kEzaM*r@bJWpN0l+&q%77eJ_-NSKqA2Nh`YP@O zF~WgvkmbMh?RZvM{eACT^6(L?WPfLB!`UqMS$#>V&OE#0DFhEQ268XfNde>t!W|q7 z@V_~VOrO`ky)m$)Zzy~#<(BZXC@mSj`vXijmkTebPapEbRF9sW{%8=;yQ=jcgXo=Y z=#()jf(!`Y&l{4}yeJZgQJ-A)7*+jmuHv{>VdA|{2+QwK+BsX(-cSEAfG!sNZoDrS z+Sz+vN*CP*ELP8E>{3v3@BU1Pe2Yme?8j2`U4ZZC4}lC!AZ2K1gbcZceyN*S0PHW! zwBR_7vXs&wr)T5uQ|MH7JHDrC_F=_W)NQ|joRg1uw8s>XLRmACM@^>q1Zl8~aOtKv zHCJd_C!~Wgjvfn(uTEgz4l*?F{1}V zwSNIYO~j4s8~SDP6)?$vnb(E0g;Og!ApS0BD^<`l`lLlcACkLK!G8UBlyua=eWUj> zq>#i@^E};5Wciz&(op1`bxv1#G#PMK{x2bXM&UmO8_-NUE<9tIl4bmyY`H8QWiczL zNSORnJBZ;W*<2`gDGL8`%eE#zewE!+eE)@q^P?=$VQ2Ydw0;$og2A|rf2WCnLJHEJ zzjHMupPXXId;?l#B;KsBp^*4~W(vwQ2wWF1&E6x{IkxN|ccdL$KTL#iUsapO$ zrYJQ21{6pZr>cJSJn04{G|V+il^JiKpDnKGW;;|keP>VpK0__mVK zzDP>HXkg_`qg_pbNDZxiKDw|GrG?7Pv*0=Tu8o65;eom#Voq*NdfK)XAwt%~fmq26 zi&723WdQTQQm5EYsmrtFTixgbq$*C(7 z$1sB#4Z~h_R&}A-iFRbe-xCsL08PISSAnukV^EDE`9cxMn5Qt4S3N}CTX}{O_1YCczIQK|9gL2gz_;s$-g4k$Rhu-+?$nT z6iBA!yN4BX)bZ1TY~@dE%qnz{ZdbvJk)hJ&&hK?@zu(M{9~)PBPj|CL^UK8S3N5m* z>GV7E{3{dr*R1tES=H3Y%Aw+>&?YV@3 z0jZ9I7>@}CEGJ+^_^n|CC)|=ym~%Z0<0N>k z26^69@f}a&AKUDAgjXE8|H>;=IsE={eLS~5(79B=(`^6Y*lI*8$^KD+PM5SLesv97 z1}$lZOglp=9b0K2`sGLpFWC&hK%?60b5Wn`h0zDI8^>)j4fntf)$as8-dT&O=Wm4L zQ*H06M#apnrPeRZpiBVs5a459)J~3SD>3j3K({9X!fKdSgUCq5;GzO^?~eTsZrqGwm;5r2^h0=g~^86v$BX_K_E@E2U_FH>I@R8>+MsmcR_}80BJ(a6B1$S2$ z(Z7M&j}C&gOAi;^62Gtisf#u6Qg=Fye&nA0d(Iao*F`erI4v+=XQF+eHwbDI)mrNp zwugv;?XXIvZ9EQ-+V0JW{|Q%}5NcHi&2JvCWqe6w`5v&Y!837PiPdrE_RnkpB$>B4 zNh+UpoVeGh;3iawTtjprTN$ah2opf4ur$^c`Vp)V@rl z{e@6c0z65s@e9M58M(7hc|eRE%8>@vJ%-c$dMC;0*pjJZjqURQEj_`l3Yjq6{fk^a zI7u!wDtBkGh}jI8;rP`VG|vVni@m3BQR7dV!TevhqA3FhqM{O0cq-oKebhBa2Jg-E zXXo$m7|CUSe9mwI+EcfTb&>k0pSBt(C@cE0!Dls2W^l#3z_U@u+3*!Pj$b2Qh3i=~9<2vOg$GB#&?Wd6fUfGltk5AjR1DJF9kCgPgl~UiY`n z1f{7W?p{;ZJ;QDhjsBbbS3vbxdcFCXN4svd%1k4fMh&_+hO~1l#1>F2x6`@lS9VvR z#R`@z@BY57V-(nQ5?~Nst`+nOW}t~$w=;Y<*k&9+jLvn|?l<@|iA=sp2>AHva`m{# zmeU-&;iS;vjmxJmj36eHP!zA=fKWbouiIJruu9vyMtUlm zvPw6k(%8TEzRT{p4D|)J85MPwFrM;T>&y2u+zdAbT&lHmjPz{Bo6l2kW68zK;xLvO z&D%5KFEK@*gZ@;6gwWO~z|mUvsy3=8Nu@r1ygL@zYK?Wpvvc6@BYHuXJrW?7{j^MZ z8&gpGF1#_e?t|L%acm|&ve!M9xKenNas-{>(EXi*Ia;^F<%FcB(i3FbLCrQ3Md=0H zn;a?9wGhQ?lIX|Rdi>eV&B5q5zW%39+$;zed*Awz@?{z7qne~7GxWsK;CAQ4hn$`o zWISmis>*|dJk#;T57xefshV@&$cMk#FY6x1}r*MI-1MOn1f(WBYqJ8{tCk;FfCWP5i_!Fz@ha+)X1D_M7;P>}~PCts~~7 zij#oj6NF=q;>@b0H_%z=L)u_t!3w{K4mo+qHjUCb;6*g8QpJ9CBOZ8zJLFY&aFoC& zg+TS}j6!c3GuPP-GK@khg4i9;i^z|dYj1S7{l^ej4Hh0M+w)Mkr@;I&^*Ep)`T{F` zKaO6zKHV7LSFH7_>gtFp_c&9Y#oY9QW!YF(TQ46=Y2H~@pDx4ndX-EIAG=UuBJ{QH z5-RCG2HgbIx-p$OqX;&OY&8Jin}g;t@2HB$%JhnFr;Nk4XFSq`VCllj${Lrr4tY#_ z!$VLWV_7CDrW%21fRe3QWx?{E z|L~eim%B`ohXDI;#ARfw&Pw(04|R6RQ$Jny&(@sfwJ+bY?v9i=?S2bOA747TtF8H- z{q>^ftHgr7y^3AOo+Z9J+XEk&mexBLxcppkzS{@H3nLxY0wYKEZbm~hJ=o#M*cQvL zd@T7K49e@@|E$%n-xxWzKTgOKblrXh)HeTg0d*4L*+Nue?rNf5`Rh7L2W&*-ei@KS33aJ1B}WeTL5A2Jl3pAUJyu_i`6H z*BF=0nEYHj-Qsa#oeJ(nuhx81>8cEm7}$C#?AdjM7(AzMJbAFTtW=ml`bzdlrf9%`$`e z?RyGHGdu zZT6TH_3P|oTY=i_z`|D>4U>+2T5}#LLPM~x3{-(H)29$Z1W4Fh1?ebW8a7V-s@Lbk zz0Vd5vi<+FM(^Sn6bY(?a`xR{H!zQ~T)gdjrF{?phMz1BeY{?3Bck7ITW0a zGPB4mo`NjiI5Jc8{lwd?HE7xD9!oH8r(au&+}2#p&Og>9xYBO=Us-*6Gs4tn;JJ7a zlW%kp-;`ovjbk2_rPRR0SvTJ|$}OPG9EZ3=MtA#yD)z!9>F42`<=p9{3XZQ!vGBh; z`QCjAjUVl*RTGaND0c=<{;<0*a~gie8me`gb;IXuv#V12+P^`If)ULVg#F8%<|~Ll zK+WZbxJ529ubF_`miD=ScALTQi%X}RS(O|b&{(-M5+5$QME1QnyBaXOKuz6p3(Xdf z{#_mO>K$=LpSrN&_k&wdjfjcMC1)%j1zC306J`B;pJe&o1={dlvWJ?cl*pDArf+AP zg)=>G#N9P;H7|!eP95FPyc5G=7&Qh=@}cI#l_+L<-~81EVnkdOXh*=;Fia?WY1X45 z!)sSlBsm6Nr$IdAA`QmzMGz)Zsx0X7C)))v%Pi)S5MOp~8honX&%7Pr9(K3|(Iu$n zq2~SM9SCK%v_=*#+|HVK&v0RM_n#Jnz%~AH18;I7&oam-##hz<-7CIS zEjrC#lH2S*h9^!`C^@5$$};?#tV3vk>cCA^{V#ESXQd^Tbq#9295C}({7aWuR$o`i z3C;iY0%#yG^~Zl%@jke`cfU_yW`cfpU%j_g@bb93!Wu#8lW^QYCwECVY$Dn{;#nv< zjjPGOUCGFg>p+=>^_7;$l<{$ip6?`uzx#gs>-#^O9D6Tr*H_G1z`}vj#IZf>#S*t_ z@}GlSkpz3}SK?altQNcG-bl87P?g131OE0vRoC>qg}Ren-Z)4!(Rv=+pe3z2SVw`t zZ&|s}u+GxcQd)Hh%zyi?r*20ccc(5 zay4?`H^{8L;h{S)^lug5c_zga`VRE6)56rg9FOQdvWH&7gU`?s;R+-*%X@nYX%F1E zAAj8y)BQwh_@=rNYzDzCD_b`#%drS+hMrcj0-`7go_=QFQ?KW&c66LH#}25~Us^3_ zz9`zo_q5lw9~k|bB)Ebl#tJw#PhTwu-cg!MF{M^_Z^kh&n0M)n7F*8Xg0>RKwllwv z2g6vvpsC^G*EPtrIk+0xQ7TzsphH@4>uPTaA5s;ETkYzVsO2%9`{fxAtjZ~CLv6`i z;^cT!A-*z5eITsA;;oj4>Ff80C(@1{RruADG}V7iKjF4x3+;kz@joj096L$hdP8m< z9(!nRsHPvdns*U}#U}@kokdCkf&TgIDqbEo&bB}cOnL={#%)($k>5N)6(EQ|s<0Hl zIQ?|auCgjIC9NB57yAC81|^$`3%^Xffn-}Wy(~WObAN@;6@d;RhSQS&_>uZecXm~o6dCYoXS3XWK6^qi(QHz>#U3sG1eH>yNGp?#6owqoV@O{*{r=^GE#6)i|#(3aEugsF`3gI~T8-0+dF{&$t z3E9(QiMg+}!CvaKp+QH4-FQ@z7yjyKwPAjacJ**F>Tq+&+mk&d6N%Xrj97$5)QhzD zt6I65HS2f?SxrnQwHG48y#9cSG4;LWjUe_xzo^}Vz}`dc^}2AtZO?DfzJxpB972@S zD`oQ=h`!zIS2UNP7aLw|#8*p6D|(5ZJ1a-^_|tZH19QFVEt2C+P!`B1VPWLRai~qj z_wwtLE%_~M6Lv@-1zY3?S#*rJU0tskED+l6{=$DkdhRRDD+Tg!(|V045rb#++% zW|4U4(Jj&Vg(vn8BCnSnuOWV~6?WZimlw)-hC z7fB-}(Xx1G#%IesqAX|D$1()Z6NE8DScfX2Xql%mR(#;akIFxv9@w@j8&bu)t&5H@ z9*oK6|HQPaCEt%&YI{8H?w5-Jn`(XdHIQDAHGg_?Lf5td4%}=(vSU#}=#_3#D9WuY z=JDl_YHb2)9j2e=$nz{cIMk^5FX(Ra%H-_9m8~&1&8?Nw(@PYHpGRkXM8_Nmw-EQU zFg#F?ynC2o)v25G+VnG>>)(CViT=SJVqHm!ICo*XG=B87QOoU9Pu;s0PtaNvWGkeE zCbg<=>9vHqsu|>Y&G*#kU%6#(Wo-h_3L`jk4SOkT!{FWaG$oBxb-SdEgI*1ONvosk zneyW z5)lipDgf??%jHJ^A0E!_Ml8a?eZA(V$s^`bu60>!iqo0j8D(Z$&f9bavOk2m6Z{Y+ znP%Bf38MwG)5O$H(C05(iI$zqbJoh#&rvhl#eJNTyeV%lbm^>v3oCLW@_N#v@I&0H zv0Z)t$iB<$oY3o~i}qu?p*6C4Kb#t*(6V!44*QJ3mt;Gd-wDh!?H;}nZHsjpt43*` zLgEb#JD$G_?0y3x>s4iGy}^9%6(>2wPyPbpH^#PcDc#viWj(6dP4Wo4!dELMKE_}(jYIFel+6jngm;zkn{iSo|Jp}XHSnQBtL{@I>sa_wuy{(R$T zwOxrSLS|_2>z+2<8@9#(b71M8Ru(;b{EOEk=|Lee#dzyjT~DWjxn0}&&C~v!%HIo5 zDjtg^*`aROsW27Yyo&x;b!_p=OSxxrlHv>W+i`A?Zi|BC^(f4ccN5d|DA1MJS5KLy zKgMLZ&Sp2ib>c!%52K(KB*d&bGi+vDgG8p5&a;iCdSbIO1`EwAzA5)Dabj{SzO z35aS=U7QpAx4(sxX|j!*F{p2f|5Y~^+d|Y6E812@z^7Fds}7t6WBtXdCZw7SSFqK` z+YgsO)9sodUIg=&nNPE1%AALUx45(Rl=q)W55qgsTJ-I_FMjT6pqznAmy zoYMbXUYGX72ECpytvMPK^rG-07I?=$l?+hi=o1cZA{`d+_b*=HEpoRVlBC9J>O^uh zIILstvzJ|yF>*65#R3g7rUO+k^^~iqaY8^R-hO1HcmL-9ptm-lYjCv*>{2n(mi$wG z2WD^^Z!#!PV0Lue6RvsuWhwm0mn){N>Q_AV_(F_c9iGzq8jI9pp`^DCGa@I*7RO+? z%mn;#sbAX+DW4YQ9SOfdlx{Zy=zp#V_7VOL_7s`BYnerNbJS0&^JQY>-Vr&t*FEJ` za`Evlj{YsUQg)B?_bp!6AGwFI4nlVwnMdcpmAW>hGvwL-_7L{fF zR;ey_{8ze;55?NGvf*dL&+cBjIN6X`LBHfkEMEXdWo;n24hY+x`<b#ZA$TH8J}45mZ~@VaC72C- zqAQRi2|fGEPZ|mIWLxi|C%2w74DQ8UU98o_J&lwO2AiKN-}khJyYxu2Kk`WX`&Wrv zMhY4lFfiTU)^}E(63VIvr^43YX@onZWI!*>?stgz2diAo{JXTEF=5cG>3ku(?oT#% z_khcs?orITz(tHj*2|?5F>gh{OM@BM6X8o8>@N;-y+ri30=m(3`+*q|(kV>j&F)zdZZ)3!Egv ze5sW#4%jQUDJN*F%Z=4Vrj(|;bmUk%m^S7HaTp+rac?htCr7lNijcsVeBDyq!o{oD z=LGL%#ddEG>{>!UdX>c=dStX1W;^n!FUyo)N@o64%WA>dCzYODKfZA?>uv?R*Ae7; zxpJ=4%^gp{rWT~_ivZJ)_RP##53^DOlbSxj2;(`t@wN4&Rj>$Ynym-Diya=%NB74|1; z#q-Vm$=MLT9Z_8ZGS%^aeQi{1^F69O5z;EnVNJbAJ}BtEUf}Wi?;`S=jEB^jwNmZd z&0r@!_j&)%bxf<9I9oz_(OvF+$7%boN1r3Ab4nNOecTWDxE{ZcE% zCqqZwyLW9-l{?}qebBx8-@Ad{GKl?c4G;eAZo>gEq$~i6 zj{@oRt(XdR&W=IjZ$}11B=BdEeaA3AU>BizA&bc%LH0QH+X-7(_9IJdxl4fCfvn!` z^=N0W4qutY(4=J_E@;hA&GxK|@i@l>v>$1at&x-YJejw7#|Z(Mu%5~C*a1;A0I|$* zge1g$Z!*sWctEF+=rek^#Z%Moq$FQMmNcTi5VM6CnN-$u3m|Wk@`#e?BiaY$U&`HK z9!yczduS+GFi1(;i;&t4V?iz!VVM=69|1~IdhY{r>(Zaj&Z=3%bIwm6fJb<}_t7`? z*wvUF3t9d9|5_>J4gtY*(Ax0=u{wJ|=hAq$Vs8ZikS`4pr8@^gkX-Z&a4je^e%?2f zYP!_)>XozV+z-r+@Fyp^2`c7^e930!OsmQQ+UkB${22Z0zS9^ssT5(f!q58uDHwz1 z2wq(atdPYr}+7`DG)%DC%#!R+?|!S=<@vM?-%CH7)mc@02?%314fX|mm!hZ^5br4M#Nui zrQnZ<_G&@7syae-j(CdRt-FJVFaCCRzIg)&3^+3#*2{GtAh##i(xnDP@tL zAlkHzUh>-Ba9A+!>Sfgsn8W^A1a>ZrVCaXm4+Io)Q`*bskwvLX+%d0fD~8myi&^&; z`;BndwR~q1-1NRUXzozPPCl`A-|LCHWfIW|N|lA#A07sQ5;b1AU(U9D*y}jHkbdH^ zFnY4yMdu;UQN*cU!*^!j7%0oaXZ&KdY! zqDH0S^tZZ^Doc~*5v#iRTMqV9A`}9r zqRA}6haXM&;V_fh@Ow=Eef#|E3<2AorEOIaav0hb|kJNPKYA1%y*hr}6h zE#5*a(^k;2=KWpR{HjHB@9E%7hV>9tr0^-0&7rpHu~MQ}+1xko8YU-5J>%^um5uy5 zrqmq^<1E~?k5wSnpj+XoO224nb9C;}-ibfI*A}1cRSVXTgnlYOP5N$dKSF{lerP+h zpkL#qVzRTZ;#7`%{+YP-LAJHZQ2YAZRZm5FhE9zs($;WQS~0|Kj|tIjEinxA6U9d0 zQWHpas*dkFUJc!)g0$7DcMSK++P43_5VbkD$2D;|iD;OtBDD}~fiWoR#VvjA^&GgN zKQGx(FiiW8LF+ZW4_S$fg}ed9#V_ESnd=VR687}TIZNU*3AZNXf8^G`?PBfF_R4Qp zIU^*%2Z6-2ndH3eR4j8qn~V>`Fy7vyrxvEp4m{p>9kQd3poiN7HslFHGjwtU=aWTw zj_5aQ?}7lGuFY7D{@mA^3L%N>7J4AfY+=W?BW*UccS_SUVbM3at9P9>e}1Ul2P^>*P^8G^Z9dZPq^Wn3-Rfk#w8Y>L($n~tT z>UY{^57CXu8&kuvdwEno8i>j{a7-K=vZ#`7DmeXLPfY~S%XBXzw{3{MxYD23Ah9-9;|sh=i9`An?HY{(E?mmx=0_2az>!z=OvL9buv7x^NzG z&*HBu4!9{7<(!{|-q@bgp39!Y`d^~o?Kw67o|~|4u!*Nb0eEvaGbwrEcXo144I03; z2(Eu6AGc>K&|;(4RnROIDfTwpZJ{kjxAk39hO1ya@%WLm7}89zuX3xMo$9ayY0E^@fV^M9%mDPW;I^CEuVVQh) zWl+bZqF-UtkKI_i3&kxry{=3JzrgTpFZ_%CC{}zYCay7^Z}82Rm+zP$2BVcc7s-nZ zYP5T67s4jBdt3jmurd z7;qZJU>vgqoXBI3*l%f_VQ^#|MT#*P6;-R`r!(K5)>-k{aH?%j@E6#3VrX5?q&d~f zJYrZFPVQpx?NY&g4V$X;IvsAB?40R>s2i4b+q_eY8N}E)`C)ckiRSI6+7U+(CYKs_ zc{iyZ@daLu#u=enol6v{cs{m-In~ww7#hyj(QjEJq#B|OL&oN$rS?zWHuMgX-p}67 ztXr$315%N5WNou?xIXbt=L8)>w9HRWDOSo5>*g_ud~iAbHqi07{V}TP?02qygDaue zY|Ft>MwQ;Gu*+n`8Y$54$IS!#?B~DQLcHV>KQbKki}nlc+T^Dl7j1VEbQhK|p?Pt; z=T*bzg-7lAci}-TLDxJ_(up!$RxcH+H{_3glh-N!h(7DvL~ZJ|<&OXLy<5myXd6$- zs+EMkmG(S~{zautGRLbE%67vHIw7ljs!eYH1&o;JV&HCz-#joJ@JH+Jxor((nF ztqYeLISb(OWDlqDW^O`fWYy5HVWgwbnq?i6zauj9l(m#9uj8eG#E@;H#7s+66Xxhl z;|l~R@WyFAWi}(XF3+h0634ACsPcBP16Q{(bK2S>x~FklU#~YsjnmAz*|b~@#Y1M+ zqoKjd)F-sus;_QBZeHd?MTDJi&}{uj0|xhtMareq_ilmOxV%yoLd8lB@90X~oiy>y zjBPi+O}$jo*#GwMsAdJe4ph7RI#pcx{fGh=+2s%a zF~nL+lJzm2OX%onPO|%{v!dm~?ty&o!HiwgHS}&X-(dQhVX5Z4#N57#MfT7VGLl!T zF;ZYgvU2;vu%!%^QbuF_Fw*%bKu^m?RW`2FIDfJD&TxH=>@4*RaIo%?Z~TC`Eks&_ z3E`!#{&2T9K`_m1yMth6z7OV+57^8-B>ZP4l$8a$IPy*#0rjb)19O76M&{uJV!Z`a z)m%fATXO7r=IE;mbuw`EtR=EFcPn%oUeYySvdSH9Vy%>?J#vxF}&c<8q)Enc2*9RrscmPSk)SrV}0$U zSUbbYbf+jaP2rYwIVumqi5RuMPd3D5so~h$QG!+*r@2yi0Y~k|HiNWP9gsw1X1Lb* zfMD?`g*#?aGKgaO_w`J3+g*R4+%H11B0Z$1B07-2BX-0X><7&@!) zWT>BisH%@I#Bw$7d52QUW6rPS0)4YQQ`7dDw71y{$fE<qO5$_~2JP0+;ZV>mID|hlED7%g~W9Go>!4mhq}?52HV{s`jogo9pg=<^+4J z^}tg4#_@@-`YUU;vU^^}zR^Ky{%ApR(aW*JjF&d!w<*u``7UCAPw2+#(4Ffn-k0FNjz$gk`80Wloq+@Lr5R+_b`&nS0MUACC-Q%jFm{Ffe0 zuZLQ>H3;Ue=sW=29I>}Vh1xB=T%0VW|UL-3cZn0EG=gke@i;-gMCBJ;DF88?|} zmFAj7 zvTrM<(13?qD>&hQjszD0u)tFoVqpHBAS?01aOxOX5MLu~CGyI>XuDix=^xwG&tKj# zD&y*l-?%({-#Z_H!~Vptp*RInb->QZMLmynz$Kmt-Xve5*uWv=f$zvRRvh0Yxajh| zR8F#oc~GpJZQ|Q)rgX^EQp=WjX?*R$!#RXCcCAuf2Qb(a0r8suF{I{cxGhb-YtNyU znEcd7foa9^09(lgR8bSVqt1=PZtFiKTOWNJjSZeXd1&L~x%!)7_xaz zvxQ}JcN)aEGp07D@N2df&x@E;7Lr|d#w0CH%Gf)lFU|VhAw4EYl@cv+m3rUF?Z%O2 z|5l#r&f3{MyaJKcD&m{D;U2=ZTf9ULWW$@n$Fk@!fo@i`$TG#Tv)crM!YniIRn4rxAmn${F>jGN@?{WY~ttu zqLl}|l=PaGtfr~y0*nMSQrnt&0jB=;!BX_V=l>Wu6do44PJf2D)=DVN>cpH}nT=a8R@O@;*jyzdYM>42QV^B0q@+SU#!(;YU5$X zA{yy{-SbZd4%4Z@x9F3~-G&Ucu=64p`Zv~U77ft8vbcn49~TMn|E6HAzdB4csW+oX z33|w_?Z&)2n6x+7ZBSz;r0qtO3?VgCq0W1qU>@vl{+wuay51pp^SyT!-(_a}-1$aDw6uSh0($w?f#+Eb^Nve{=G%r7K`ht8CnQj|y?QBedyD=OI&~}l zVFJnM!rfH<SZDx6HTl;owXhFPcvHZ>ytrv2$0pv@eKqnJ2=X04WCu+pE+QFS zE$CR0PT(Aw(4GF&N3fiWU)|gc_O0D)WQ!g`RPN6fXi4Ai%WeRG&afe7m48LndiVa0 zXDDL%ApOy_IwCVEf3&*|8*yyBnax%)dbf5=LFIwqTl77+?OroO+u^H~30An4_-7fT z0v(I2BgY^XFs#k*-q??mQUyB=D z6d77S5qspUH}j&0Zd2)~a$r9|t=y|5G(l_rJmM<&OiBbu!uCz5p@MCvrBPd_;i$2l zTs7obDmbKdaMo|RD?NCi_$l-JLf_O2xiOPtjfzncu6ahPhcKm}6y2qxicU=cGs^bM zq|rQz7jwrT1N|rdHe#q~97AP2*6N=JLyHTVPVxU_%u+6En(k-pc6Ya z`+oVe-LUypI=|6KY2L{Ozf883JKehxm-w7YO|>%u1QBR!A}pq?(RtaN(}h*G&o(O} z+4k~E#UE&oVqD!4qN+R9o+IQ1wR2v7PGn?aU|&t{?doWB%j&eIxMK5;Iu;xPzDIRR zG)-AwTyN2K?))Qzw-#cwwGtuba`u_E*C{*8q_nh6BxgE~5yz}Sm+I%r@_M4`ReHL^043bPTJz|L%oql?%BmARcmXna{JVCGM~wYyq>rA{kz*0rw@vUGS%2yLsFdARiFl@l#w5i4YM0+D68_Vm zFQ%b=>HRKmt5=iVagZfMqZB5K%j_J9i?{UA!xj%Xje~EJDVWCsqve~~e0uS`U+J{2 zr{_e9k8E3ZHmwCzU(kgyJ0iQoFjUbA`tj$ERk&yv=|if5S=HVaMd}X;8ABH%J5!XM zrUfH&Hc9BWOM}Ovrl;d7 z2m0IDe=^rUzsWm#b|KzEvHs+aUKivBOn>wZ0r@e9J~UpC_D1OnD^5`YY)U`y{JSCk zY(mYXB#`CyTK0UHoj-eJRLAm%s4;)^FsKcSN>2^JE@q)w5$Z3=x)k8qH_tIVR=J}v zsxO}noBA3%%W>nqHr#xPCsW=r+cZz9cTW%2K|4Q+oEpjk_bkL8cu=n~b)z{Oy_TMY z?=2OU7HtMUomQjZ!}MH>(`AHmRTOb%+IN|ydnt`k$NS1l%aQJ!Myc+l6IBD80+&mI zNl`tN!?)!5yAw-61Lwb-DOZBA{M1myD3Dk+e)#oH9V0!fmeo+#b$&MXU(b-jJGGp3 zxXBRRJ^N!r{IRAD*6uWOr*jYWV>Q}n&~1CExx6k853PNfajbOpm(wJ*@nicr-*a(C zRl2$bO5CHOqp`eEx@!Z`?%sF&opF0C8G4dxu#dAZr&a%S4L|RclDs5<`>M)rI*I&j zE_HP@>6HjkTR(t=l>dNp9u8SEub9XwB_MUie^MU?E$;*{i)V?nl5C9|tL@xUxo?~u zpG`o56QVvl;qHr zI-%b}pAJ5()#N-fxz)?}lEr?`qn$$)c@#U@U{~^$ zRAvnapxMVGG?X)iMO%(y}075Ua+O%pXxhgN8*8vM}$RA1ikD-)9iCR@{6I&jWG@!!x zxgF%DH*DhE@T2t%u^kU!pui{GC8gSxeWX zDO@W1kQVCv{TE+YXG2a~f1KZm9n)y$yfpKUxw?|dekOhrIDE=%7HX*Me@=XL(Ot0X zjs7-7#>Lf@c~V4upNO|!FTzdWnWwfB8X=e&Dgf4{rua7W;Sz@AI<9sv^T!5({o3Z5};>3 z;rbs#Qse3A-htB2UCJFQP*(=S;8sLP7i=nF_*5s%#WA%QL+ zmr~k_#M4&(Q$nT-MU_xtH0A%ZwBnE&r)*vjmnR`8YT>+xr@3Uu&HbBFKz&>w7-54w zoV`ILpQfTNmfv?ut(|K=ey zY}SASKSyv7^%-=kmlR!5S4#*zo=2n=TeJ;pyJvp#e!Fnck(e5~A8Kb?U~{>m)ilOs zryRLXbKVG4{=o*)XjeDmBu9JGybrblM0Q?Mcxq5mZy_$ADG{@%37DLAvA$pweswG4 z21UP)|I*Xd)clZ}F)IQxys)S1r4*H%#adWut3!&KoAP^1L3+mVXSb6RDi9^ zh1;Nt5FfYU*6^LGGKMQIgZY8>`%72>f|(f!F7c}IOpbLlA+q`el@ z#QP=6WJ|4;DqWLE|1m_G&w_0C0tKuaEp1o*@lw-W`8ijeFn74|lJedE81xBE6PFdl zuY08HUAO)B{>|L#-!Fy(IVo$p1-~Y15b+rRM8!_E~t<$CY1 z#;mcSYeb`zw??2g*(K21%~nRtHWN9Lcj~Rw z0-(j4&E0v3X~G$lvrz?Z4IYi&j4_w=yu@|x-|LyrsqJSbS3my!W>UmV`gM5T zLL08x5&=y-Qi|hI%KcL0Y|2C)nW0`f^9Lf(b10u1!T9Bl`hae51mHqbrW$}>H)Vl< zBbV;$Fjj!RYS#-jy#BkfvRh|QFpF<%r4q!?kT$x#hc3wp<6DDWA)qs0Z2ffbA5F~s zyp_o~T-HHu^X*d7R30xpZ~C{^P97s;uy1*vq4g)rzn$apWeY_m_`+pK2P71sJfbc^ zRvmlA6Y;_5v0B`Yx_fG&gA9Y0z27yQRiM$TpDLc)zp{vX`IoO(HNSE+peb%I@ps-r zX-P=kHV?Fwnxta#$4CqvJld_m>mz9eQSAW$l#QWR81&b~|IPhr^X*&0hi1`Cx-{J; zp*450)wJ6N2Pp^Z);fF}2$wiF(@R`HkjasWU_CM(98TRyX(Cl`+RL2QCYYvfo*xlb)#9N{UT%@z%iU87h6%e(fOpK$b5vFiBKSks=rS zev49)l>h9WbBUU=SBatc4!WC4husr{VLBKmb^Ml9hW!F~+-gU5Yr9f=r!J!VF9Iz^ zu6lEIK2I`A0kTbw+x$72AgR^>l(x*~l48B`CnE!iPb+TR4r8DG$^3l_k(U(W^2hE+ z2b$+&zGGq2bm^nl5Yr#*vm?)nQ%oLAk;H*Q&_c;Z(6ld>pg%%cN~=%Dm~ty!G6p+b zQe7^HzWTiTIAXQ_Admx_eja2RCtkI>W$%I$e>mUYv(d}~)ao4GtW0_9<=1U-H zPtcq(rtp}=n=Ri2#=itj{YP`|satsy!-)Vr86ieJkNl_opvmp~t>2p4Yd@{o)j-|? z+%Cliq)B;)Tr$d2dq}1R$O3W=GTNs2lWSzbuYiVxvn88x$PYQid6G8bxu?zwn`RN7 zyu|?ACwEFQdlMuHAC87qR?Q>s^Wjj0Lt8V$%|Zw+K4bUJg!CaK_t@$8LExtX4R%F2`14 z=6s;KT6tmy*7aRh&_Wm{doDYw-|pVunhN&n66Q|{mq|NpL zNzeA|q32Y>a#}3%^?x+eY|xR$fLzx}&7gw+Wz~T|yy5 zw@l9R*X4GOhPWXcEp1XmjDL&A>SNQhT!o!Qf-G9+`NYH^QlcKMy)cYYi^(zudIi_Orm`*EsA#9SOFf|7##Wv964Ojgs-jQv*hed zVCefAT=MdXND-Z9wUv?~*Q;Nx8!MB4CkmB0cB&^ffpV2Rg?ceA(SEfMf5?D#;XI5Vi;dLaG`-~z)_sbfB%#_K{?ey zE|ty<`TQEdlC}8Lia*ctGnq32-TkZIT>2!G$lcCpzXGexchnQE-Xb532kN3T)OM0m z==JrJ8y()Jd2Ev?%uN`lIMvMs?qlN1R|<=tFD>}GEKD@WtU_Z6uYXq$ceF8=D|6uuGu51!w`Njy%<=0;V5myVWeXr15Dx2y~N+txg~@N7BM z>-i$@g$){PlXz$&THtKGN$|!`E<-y01Q$DYnjk6W0%u0+E3Y0ZQJh1?KEtq=fd7~C zNXbqvzUeO4s|u0;W#i@#_bv8>GM>=ycex%4Ons-h(A#Z<>U#g_*D`;Cf z65^|^1!Au*KO}F^%p|`biHWG;FuTOHERc1NQHhV`_%!$Xl@YC=4CRQ3u0WB`R>p3`<$W@{^*F~ahDGHXH$gx^x#ci3q$(7G{&yXn1HTNg6+j^SfsH_DL^A3x=!EnXD^~@lK-{ACW#P@b8a}R?s*C^A7{?0V$Oo8B=4s@qS?<( zZh3j3RgFf{*7kncLRG@?idM|LM}_?O75TrkIvj~SQcPEH7h%3C=_->{>NbK$-4$a*N?U zPV7DLzJtv_2X(v9b8{CEPop1_z-gNGy)xp3vSz~Efn*m=51*&o6_2x)U8|*EzjE}9 zpx_67ipryF!BxPlvY53{rJfrS0$9J4;6ySPrg=WRE)z`mc6YBz0SqR7iyo9)hd6K@ zJe^?DhnKuT#K7qi`p40s%am&}veY>^#i3$jY5#4I$Fu)vwkH&o88Mu&;AaH=1gQud z`1&*u@!pnFUsWF~^Da0PhF#rp3FF66LwKu<$vJ>O5i-T_$ zBR~4xo_^b_L2X|N5l_u$*aq4|pszkuzGb2&5P^w=R%hjpuViyKSbfve8jV@FzJ2v| zeciDb^E_0`y6B`d$Fz+9SX2Lt$k8wgglskV-&+K+B3*Pb>|{SmR!zSr>sI{-S%~z9 zeRrIm(TjWRUb-iAcC5xp4}ln@%b7cN&n%DMnb*H88FW{zJ1cMgkx-w6#DmU2Ow@&i zUmp2*Y1=UmDakUj_7aqP#(aKmlWpeP&s^}^XHTrBmCV9?o$gEtvh>k_n+#>4+F>1I z9frQ^{O!g)NTLf5cjc-xaWyM=m5;w3Au52Z-KU% zkE}W7D=D|Q5LI*0uRoag{2Pkdb;R?nIm_FC11W9<_BYcIycqNj*sRW&70aH@%k3ccbtPLALaqLyhxYPE7f(MVJnSh&hjTsY6O<8dkhJ; zzZ^vR_rg?^NkRK2I;5Z$(S%y`nTWL;pJ+hZBa z9+#1o2_HZ%qoQ%m0KURJ=(c`7{8=u{I1#GHC#k5Qh;XRVA4J-|<=FV^-?Z4mw z%*pELfqGE2=o5XpVL(lW-sK)E#NI_9lpxuy9NO`#R#qrN)AMdeeDk(8CA zhg%9grC3MGXC$zOIjwTSeJv1Q*db(qA6RG}hqIOTjBHM3I%LRZO;jfSMz(2i zj#N-Uc)FExDEwHy+R#tW=_B@w0g4tv(bis zTbz*3y#MSUHcgrF#`5o1d}cZHDfr42)bU1doU>7y_>@O|?lLA8Obd6#cbkT&bSlez z?=_dY;SuTS=LxkR3>Yo?8~@Mv!#EBrHz9w~O2zy^z?*kwqZ~hi=6JOVQXPxo4=Cl* zyVVU)8pJSeBB0wq<{>^eDX8wf*%xCKX*UmE0 z@7|H$LCgG#M$7WbxDm{IH{xv$jgz!Y8Eq-e_w3%gs!%Pp6PtOg?VXt2DgpkX>;PYk3mzfRzmT-euN6@D5 z>V0C&c#tSN!|rwcY303*rWVzTl?m7jiHa&1xpi9HVS!4w=DSQFw6r>K8=lU`m80;; z+woQ9u&Cw9kA-;cFaawtqlGTdHcxfnp_F+N2S;#)O6U=tNL7&$O9$-lbHpy!@ut0t zG2WU#^$@bqp+~A+*svlN5fmXrmi$h9%#uJx67h%M`F#x+#W)#(T%mpaKnY+*#v+ox zy&aQbPi44>Dc`yOBAM+gPT=*|zTKVrARv$R080ncwfH@;iid>SNW=AfOW~S0?aSST zTHWhU?Z-|el+#D zEPf?6jMLN4>0#8Sq|YTG;Fb~24>A5P@`ex8O{;2*l(1joo?EIWg%?JGAu z5BL6hwjk&x6eKM@V=>&G{KpX4)o7K`uhpwu?JPshS6iq8;TeIp7WCKFEMg{oQ4pwl zPvgD8St0;?ab zq|j?xuK0-%pQ$!2JNG{^@sn(j)Z%Q@bJOhG&;&9qF)J;mSq|oNVnPgX#-F!L8ygb4 ztkRMpVM1$6_k>LtgyI8cAKYhO_t0R;qz^22kLcZKl;W`2Nkb}9TsOQ{|J;;T@6zUt z4?ZxdAQCa~5+HHSa98ji6bmyTXOHgJag?ri!S;mrPpY)*{A!53$oC^TdCIG+eY z8W!*}MY%UydQq4kAW@B$lfTkWWwuvWXxuZMy`=XH;V z%+jC7D}Jg_J@(|eN1^JHu~3#zE$<50{w-0qMy#ml{z_$OF8Jdi1ebHsk~F<@kynYX zTkVM@{92;>;T5_|C2xFBd(qkogBuQCmcv@m!LCxMHLRj&Z^@eb@}cP7JPDBVeMGRr zxhDLw?2w$qX40h)KCNwoG4yI@ZOV0oV}Kg7$9XM`DRdvvX)kLD;P{T(X;p*wh0f8>&x*#7_38WLB^|8}Uje_{3E4Dbk`%xQf#v1~ z4&6i^N0G9x{LQZkXewHa;v4ue$17b{*B^SVGuGRE-T6Bq&9s?WjapB!=Y+Oj3B(qS`$vQvDIzy_?gfLjSUzzRZ+JWCS zMU7X*#%EPZ%R*ju5PG_rz<;XwPaxd!)}u8e+sH$eLkR*f%Bo`K!iH;R`pKj(Nauv< z^0oyi5^zJPI$D^vY;~;rL(nX+;_h+UA@*E;!(E?v>K~rm{>`yQ^bYU`4Ib@MLV8Ap zmx#l_&U}z|u-XDTEzPzt!eZ+2qSbiC=no!%6zws&8_;dn{nK`US~i5J!Hwo0i=`&) z%d(x#jFPd1MGwcL)F9qTlQk50V?4G6Ousbzi~x=QfE|YbJ<*eQ*1Gv=odNzv zfZ)lc^R7QWd~3C0bz^v*-o5{5%A@=(5|{Auh=#8!R#pfoSg3&b7~lOAuU_R)zMYmh z=v{Yf-*f%pvrtos3u<)y5Rrz1os38e?dkD=pY!OtoYl3!c_D@3jbXhf(^6DGM}-7l z+V4M_kMn}a3vj_Oiw~Wt>o2U83MkUOn78!Gc~%N#-HFGcKfR)@4vV0viP!884W*H z+iaSlFf%;(D;wBxcF&o%(h3mbc~*i0kc(dhl>YV8m&}=LMM-wEdkvI2hF%D_c^D zw%U5p|G`7+$j(gd>pLa{b4St#SY+wu&K$W$dyCso?90LLC*_;s*+4f*YlvTsZ#Wlr z*2&-SX%$E)vy!+u`p7s>kF86VmKyNW4AUiTU)g$^RW>M}%!PcZK(Md6`wFUoj`8fKr9 z9!nOyxIlu}j2|}&K|7#9oWIcI(z+iol}@I@Ep^6;Muj5F>A9*c9*5ZpRxvARH)vl- z!i>JE#;6`KuvtI(^>8C4RS71-;%*9rYGNB(D)YhW06*L6IT zzq@^b?dwv)xs<~@|HOlpU_Z2;{jdIAp|o=_=N&&bT`i(Ct}gj+-LPn4in$V-$Q3PS z(`}2ffnOC+RzB~6;2SddQ2EBy|Ot*$E_hS$bD@5pvZzV=_`z)WOp^&&h08XvTKa zjI{Ia?D6FF(v#(Tf@jHgnF5-@zk5w%?>?>@44!iu)kTzOAE@!j=f-?1l&`T|FsbdH zm>0uCcL2zq_7de=9x(zxvD64zbbtE8B`9PjXIxc0Xn8e$5k05$AB~werr|3iA75GU zAA~cbk2&1r3rX!u*-X_w|HRe?v9VpMbHzOEW7|Sn@f_Ng5CZC*Lfz;LIe!8idqaGPNDUqqSJDhHzz${PFRD!?Bf|j`HC;q zWB6ahSP$)3uZ->DeTuK+Uu4zft~eo$dhM8S6)^~^i9~sMEqwqU`L|mJMPDqQ4t5Tf zAp5QCl$@vsH=gZ@XQ#OQwzz8&%-EeWID!!cEgm04*E$HnJAE1I?k1 zjWWlBE|B%yJ#nt!+sj(bqkE6)#$O#IY0liXf0Oe`Y%w0@CgAF(#j4<3{CPxMz$~+0 z`dj;C+|v3eX$RhPZvycUw&aUpwe4SGj-O^vEGziFdtyRhuQ=rMPON^6{48^3lKFG> zO*<&7O!JRQi7sgznWmrN6cWNiZ3}ZgG(bk3p?l5`sn`Ca0lq;4e8R5%cOvSP@#|7Go|s~`i%-i6p_Glm|Qc9VG_0A3z(-8nuW0Enuvabd1upUpkSe4o;y2l zM&prz+_48I9qaHn4$AQ~3diMqMRqcKK(bnu_WQ`rkuK5q-6cBC0Zl-X3EuGs4Ai|q z170iu(X8Pequp8Ct;39Y;gv=4IIT%sU{!AH z(yVSK|1wcwDw`AEj!WnQ6Gc2b9|FGSKG7j&Eg32EyNU)iap@*H08#zTfGnZh@8LC6 zIpN~>4w7owc?`5Tmk!jFf5Sy@44oYL7T4JTR}7#hft)l`5~?8ymXdY5dgs!__qPf3 z(lg)Fo;pmGF~ZT@8&&>-ltubqSo6-;uWi%h6=i!5Ef!rGAKbGQ2x0!x%nr98rr@`6 zv}wB+&XpDhm!Kc1T*-*sTnmlW?%*4=j)}KkN9z5tC^Nrt!GqCp74K!PdAE8p`TxGW zFZo!#k0Yli$6%h>8HnjQ{zGC~lIElS1v(Mq{i%MFu||cQ_FQ68TQ@Qe&f$U_@zu6t zIaZUewJ5s=zJD-ulm6@p+UB7|cb0^dCu zn3I~D)XxCP!fyjJlMnS8ieN=$pX|zcPy|Sn&Hmgsht6mX6mwUcG#HR2f&8wr?wr@Q zHS1w0VJfJ9vj5;nspR#qDJp223+Z2MSq?Dl+LLenK{cSAG^qrn^SLXvlX@$OTWF@Z z1{Eb_LEGw?UhW<#V~{3dj`?_RS&0Ld;jL$qpDWvUcvYVjp!X*xgRH2$h4xK&?Kmn6 zvQ?e0n!?e0(2Mn+hYR7sCo+}(QEPfJ~BKWXEyOEp31 zrlfIrBM8?3SgQHLjR@;YQE|;|+n#t&oMyCh_U(#P6%-RJgX>>cPi)&m^4^e=%9rD~ z-*z;YVP6M?H%+R}rsBi4X`2z*Iqbq%M1O^C~=Sp%q@n(jfaEA0EDz_3nQ&N@bfvN}r~kBGY~6oPB@$ zSeK2}z`-50AwW#HZc7%#9z@ zeO4w7G0&_^0|7gGRj=zmXG>330z_$|r}H>8vCN-B29Z|C^xm+}Lb$*KazkJt$tst^ zY=K8bG+#%yzCzGj^xXmy>~!&2jsB!Dky~pmpq%O1e%D+5LdP1P1NqKOwnk6%A;vRj z3Zs*Uim_f6`jXnY=NZ)IeT@}VWCnBB{s+KU9@x&5zlXSGO*HFj<{@a-#MOOV;)R-3 zvR#&W#=Gk8)PL_feLbs8kXd@{4=Vc39pA~aBlQyIkGZNUnH&=*JJ=!VnIJuN2#9DI zY~0pKh~DBhi5$851>b%w&^^-BD2_U@HU^N{gcUfgF47r7HY8&?2#{{jb+`|uKwXjw ztZdc9We(d)Cn!9{BPs$oQ+H@*v7TI?@lq_@mJc>>!wW^r92894XvK_7;U(*Z$H>Ox zDmTd&9076d4F$(Gs57}N$~Sc-;y3EG-eu?w#2}{n#U!WtCBn@Vznf7wbNA`T`SPt_ zthK_EFWsCG*7%CL{7z3oPwdN>-F#wzEdp}%=3sPSvhI7CVlEVoUf)VcLI}gejfhO; ztvPccC=2`v+C{4Rd{8aGa%&nMwbBs!Sq3H;*{-$Kvv@zz<{?~9!cX0)M8~7Pkm5!v z)8EnK`68d#3hUR7{5OMryQ>fr^`N|o%d0);*Ls4>=6DI8p=*lyKcd4quxc?#8sLfR zO1xS1ofrcFLY}j))+f8E-yThW?_?Fe`s~Bm=UKn#M^}3!n3FS>oNzx66rFuteb3R` zCb_dG-bE9!XU%=v6oj_Mxj8IjitLJ~cJ1SsupgVbAUV_M_s7hYUGEW<4-W;T6u)S>U@`Np-8q<$Cp0QtN zzA=M*E4i1rbnYy%t{W9^@$D1)`WMjbr9!^*NsPAi%fjIE?nEPbpR$_Vvusa4XFsM< z%h{(mO}G2YsE$eDvp;8+YB1vu-}5_iiA10yc{brp?0z#0B{D556ai5LobE1cb?i!uTyLeHxDLB3&8RqQU;J|A=+y=G<0>+ei(?7ex0j6fq$)b3X(!x(! z5>F6+A=*<%b;o}uh=FUjiA zn{LeMyaDqXR-*Sz*KC@pn`dX_zb-FNWK$W~r2WX!K+H$tU-)aH><{X&EmJe466|<6 zl3#uQS*kRMDD?20W8>D^BRcaHY(^p1Z1G}j#@fI=Z5ACJWINECK_{a8&Em7KRJGYD ztKFga0{gtmkkB9iyjqyXE;*opFqs0p?UpIt+M0ZwAXRp|taHF?Rd{$$smIT~FBG^M zuUFXj=X^@#(Ss}@IX4x~bo*^%k1BpUABMb*jPt-ivbXn?p!6253)P>o^limR9Q$aaS{D-ee2^3T0>eqV_gsucv7&b48|f zOM7OhI;{x+Ba+G7O+4G;T~cO2a^r!>c4o>)>U|hP7lLUVuqa@jreRWP%@%D4z(Q)j_@X0h)B2Vwb%QC4$vZ^SWO6 z?T(Dy37})V{2vYFyXC}a_dM⋘)e;qikHx&m<`s2XEHyeew8ocu>FSoeS1{T&gL_ z4{+cCfQYO6y{$pp7^y>OuV1ITYMX*gPaz0kJ3!TG?UF{ugey@J09`F$DS^0GlRZ{C zeUeOnhIBCj1bxX*;ZRwl~ zyV?p+3J^Du?bqO@lY$|J3K_uj5cvm2yqShhP18&@!lo#-CRFx31|bs!vYeM(n%(P9 zE6;WRf}@YrVndirZ=MM|#WyQaN9P3yrX|aH__U6N2*jOHiAHDFVrM(u zvH(3+g{0XIuFyK!(t?oyB__U{=99ifTrnY@=U&&Inb}4)W=@mG;3cX0e) z@!EQHBFX36Vk#tIS#77m>m)`cP@6&kbj%y_?>f#ZI~o+JjtLz@s{=-RiEG8&@4L6R zp^v5xHxRNdyJI6mylh-b>*bniEjD?vZ%~^$p}6lpnIObiB#cS2WBBmoIRD)ZwCAd3iwrZ3K$9lth3k8$6d9)Pd^C@C?*6_S@|gSh z^gFH4JKp*b<%vi=dJg@oZtq7zpM*BPBH=>W?Q_79PBdb3I^9DN7Ui|ZLkpBu7{}sfKIEjn9SUg_&+>pWgh5I`A zdBBZVd|rdRj4$&TGyRs;iadC}(?44AJN~hF7bLSuWmouV{@}pdXGg`bfl2DFLA+YS zaIkD7olnAZH(JA>u!oC2IwedOV^LrD>_ypWaD^oob#@E(C7o$r~g#Tz%V zyWA3xS6B32WJLcSv(8HRh;&Cyzr{JFp0-=YCPHD!kc|E|nR_#LB0sLbA$_tfQrjCz z%r5bW)h6{F6c0|6c~)_vGt(dnAd2`9DYJorN51?NnMMZnoOQR=8$M=#*AY(t{e}v& zi|e2H1)~|TBl<(Y0*5N}N`xmv%tQL#pR=#X73+I|{rBb>$xP~YU1c08bI?y7IPq0L zQ0zp*xg7b*FxZhfiU&^eomZ_$SJ1P&P~+~~^StY1II$`Dm?U^}@&$#HK69`jboM#Ws`7vZ)OeuHl;tWN8+>cO%Cp|6%_uOAnv zFiE3>w|a%Id!Y?}swr1tB_vcKgxs!^h3jxR;mU=rq%=&UsL1?nAK}uFz~!-wE}vMA zsX4B$Or?aM2u14PXSgyR(&`GObw2Hz_qTl zn|@h0(b>QO=tz8(p3Tv-vXw~m+v&j zwMRaSf&W|V&3u=u{6wrQ(9G3BjnjeZdGH{gv+qm2CqOY@I#gXg@gO=o5?pb#h0%=; zx1dZGt~aKqw6-88ap&r+3ZRZ+ggtc=OEX$L9b+&*ND>N4Ha3$sMdT5spN%v!E!leo zOFT%OI04p54sH~&yWH1N3%w*f`FGsIduTc?haaLr`PwW+1`*RQj5jjibZBQ!+LVrF zh~z(9Mc8x!1WC~#?Ac{Ue)0aIdt#YM!2(SW@6Za@seQNsV~@OLJ=U}%`>3VM$zM}4 zUJVWoR||Q(bl@JmncvE!F;+6p4v+@o($`kyfgZcsM?nQi=!f2&az$1@1EF~ zIn;5*@cvlDa`8^^%_hRk$xBK-{FY}vV)*1>dP{EVEC|#oP5YvjRF)*O?4xxx1J_hZNDd%Q+gTI)Kn$ivH?%*@ex1AL?6X$29*3U$oqB*>UUgU zl@?k}cn_TMgidUza%5E*Ona#|W|^58)~)piUpeLKtr1x2G@-~+9B%Ks*i)Ruw3S2` zr(<$vmJt{yQQkNvF5UojmtG&C27&K8*B4)xP089{!G5N4l5bJ+cN#T{$WMuoWk65G z3xn#8G4gcoq4JAuHZHyVTwJ!|!;~5)U%_ss?es6wX+<@>{aZKfhjvYz^Snwyva7ED zBt*{A%Y;|Y;$(kwfi#3ZHzp#mdXv5(+O1R({2XPJ$e=&w=jzF1ts2?4I)zJ`IJz&= z|L+8G_R@XT{LKT`nO@mzuSdTj&Ko_(cPI~z9CT09YBA!{MD@Z%pfigeYZS*>Ir)_Y zHz-M_3tRQvaY&js=y_$vDBH?dC^X%inq}Sv^jd+dChdoXXCQ}7XbrS=VS1tUCW4*v zyHQs3W76HrJldTJOdp^(He*_#4`U_C8nGpDM7n*R&4`UUG5x`#b1+`rGEm?STo^~e z{`ns|;nN3r&S3x9cOx0#+~7{>D=w)}7Iog)XWjY)Y~)xk9~a-9F^%==FKj*UuE2WG z+RV`r7T$W6fU*zpw@NmxDLt24|K~>5E^wCiv~w8SQUAN#|4Ma3{RO!&mxfutX13at z=ec3?05!b%9xVWahWWXe8HgBy-w(XZ{x=*czH&ET!Vl9#$~<<+r-0?~-%dOz<-kPr zmwGp*1IgG3eE`H3h8+xJ0-b}thxGpNOzB=}ucAL$$+_#@YlE~BSQEWQzqbn~#dJg0vaao*F$`Ph#{aE8iE z)xkMc8;iJzmyBxpDcvjq4{V5suqga8gb()9bF^8tW@o+km|b4j*jU<2pSW#JleqypyWvU8`@2EIXb1l)jd*l`ncvsqk&KlQ!Gn-Jz_zwLhhj5gO5L52&3 zA_(jGTFjRThp-)=>YGIY^4)8?l6jQ_MYg%a%~)V@L5R1b`R)YuAuJk7OXSE4Z%?hF z9k21z_kdP=CE)DI;xk1%;>tC$)*8_#@@bM>dnEJeI7ZObMVlZjiUr(MH%h$&*_3Us4IWs3 zW6KyLQD2YGNu};Irr`pS5smk7;{9hp5Ou@vefZ-*K_n~ebM3~?jdgD!(!pb)B$z-A zZc&CS(*fxKu~1vE->gy{rAvLC5B^CoQwuaxE-%2kHzf zrT5=lN@DPZwl$;Kpx4@o$P$1PO+W*@i4Aj9+iTfIi%;gW(1zzK0D)NNsIs_E=gJdV z=0ylz7AQa$^ZmWKdMJ?j!3$*}BSUlEL??f+Q=5Gq*ydhns)rPkS*u=5*E$$DSUfp> z;O=*Jln^l1J9dm^LkyYawo^fzJje)1DJyK2Ha1X1%LLrmePB(Rq&xRyv*-U7$9{~Q zg!UYv#$X!KvG&fBF8xj9bLoL;VmN{MDFszsf{dbG8vTLlbPE#~XYie`x7~|~BFyrw z)2Tp2C0j-x{*^g%pbcy3-Xl+8livI;on$4Pg=5ew4R`*dVGPudDsVyYO+GcHS3vS@ zNemoRXTPyD_pq44tQU$3Qx?kL@w^PSuOH~nL#n!VJ`vKI z%}X@+G3#1?lD{_lOmR!ObOEt+{=>0OmAPYbehE*M;%Td|K`EFuY%MsfApD?g3Ah2r ziX31y*xP0Sl^Ew_bf9!mN7#nFoZD`WZu#2GGcZF08Vr1Yf9Nds>Q$l8IKF^ z793C;-0Cw6I~Jk?7PxbhTanC{n?d;NDbneIf!-}Tfr5*WcV?gN2t~xge?H{@NB#?z zMSq+4@><-;s{hCqieDdh_+!FX{^ia1mX+oV30RrZ$i&aTm+nw{jYoedD;R}Kdp@+- ztN4UQ<-7%Vgw)^7Pjxt!vy6_T?R~7~FabHf>H5vE?{1$TPl{=I?hH9?&3|5avQZQt z-cI;8WB%hAC*@|F+@b998ZZYZ7(uP#24s}3uuU22e)|C}I^g!VO29E1b(nc3HbFOH z6E49OC*aOyn#<6S8wZ}RPJ-;?Y4{n#f9Y=XuEtjw7o z=;vzm#BdEM0P%Lc0~zgHKuKu9T>qg+8l5>a(!Ig^N+te@KNnr#&5tJghE}_aaZ3)~m z6Hqtw<-X09N4D`~1);HL;ovW0sDHq+zdk#>)-ltrN>#Ug@nl=-li%3sfm;mom!)wx z)5?uTQV^!+(CTXLZ~^iXTs&r%RJ~ngJZXV2=I6Etw`Efxo7TUBB#lW0wttFsaVWCD z$76!R=1}2rru}O4Gy=lYN^2{n#wAW#5Km9xki?&0*g#W+iw7{4sHR zN?W8E$(GPfpasg6+CRyK<1>&(L_eNSK@%tInE@Pu#0g?RyE+TeYU%WM#?q~icNGJw zLe8u}MMnlyk>(ht4=rzCww_H*GwQBvF$2G2xObN7G>7>@Ch~FEgp3^oFTPEuaO3u- zea7m0mEOM$_WO!_cNY;ghc(;F#AtL??w%pUG(=BA-Kw2kY0J{Y{Sfd3Pq4zH+c8(* z;`qG!&RvqTGDq^gv16;8bgBH64=iCAWevDQ z^ycSoW6(`i{i?wP`%WOgav#(RV&3^1wIuHRA-S~j)nJ&H+Gsp~l*&tZ(ePs>djc^Q z0sdIrmvzm16sY*})OwHu@ENFrbxeN#DOO9`pF)%Y=sMU3ytoi^4&nnQCt0`|zP-J^ zqf#WUbW1rTZo`}RzD1FRnKLaCR;qPX)eoz1h6RGMwPg!;Y$nBYPOB=8&fvv;U$PuZ zCgw}*Ge>Kf6BIM7l|^Hy3e&1DJCelaoa^KIZ)nq|>OBoZWY>)HF~0qij3n}*DeybED$r4<0miq^{So>qqD(sb*2JMr&zQ zTIs`U>nYNE;vowwK0I~Z$myW@v)oEzVPPkiHwRmrB~pLR{V!9HOrMNg^qMykOcWJ9 zBnSIzErd2|5HMXCoYAUgfX$ERNmNvI7VERYPxuoQ>pXO}MAP-c?J>F6G0z_ftws$^ zqT>61`4-X}qX$LNNmf;bv>A5R4wgSmZR@KP$PR=RBC{3-pVrxA^&+9q9c(sQ>e~Pk z8+{q>l=kXe_ST&z$ptz%L!}v`sJ_ar8b=;{jH``ZEdl{~)VXH<(ekAwSdsen-8e!W zstcG4!w6PCYRRHgxXY(Br9ww#shUaMRBHe{yr2y_>AI&f1DrXzLOc~su$v|s1Q61? zCf^BbX7hU9=;gT-&z(gh#Q$tLUomC%lchYaS@-zb`qwE*F!WHaQ5(1ass8oBF7*M7 zCL2`YJ>FDDAZdvu=e#GKcRlG3y`XGZb_630hs*fgsfRb z(|-OHvuw%cRHbIS4rT7>#89xxu1@}3^-2iu z!xzfa&k|v1W(7_yDc;I!tevyruihRlZ;HHk$G{ewYimOuCW+!5acMi<0DlW2@)r?D zmu%BrMrJk>z;Os(X#cwP=JoHu?y6Pt;jBf}rif~f{>?`Z?dLuWE=Z3PJT^B97y4}2 z8`Sbguo^3J64AAEEW7yPiHZKh1iv|t#)-nV|7dQg^ONDg(C`Yb3yH(fNf%DQFO}$U zjqOTR+SC72*Bn7JjGg(s?*=_THWB-(I7kaSq1I=#vqWGw>iOO{%CEj#H3<#XPki zU?q*v?*-iRa^^1`=KNETW}ZvgM(wTVoF`q_9<5L|&j4^^=n9azmXKYmDBO8M&Y+mB zz^9g&KZ3ac_$77WCg&2elMV&sKKbc}4h=ecw5d40K2)nvy>>Ch@xvltrcduup<(TH zcqLI;eE|>73*msPvwf7IPRHf`e+PhdAUGl!!Gf3rGrJ+A;P(jpUxHR@OGE%s0QA`G zXX8gHuO7k7H{^{Vf(^&d(T?^EmFx#}vYieJSv*AtJEK$#kVJkgDRqhiM=MCb$5e-) zfdDzSqa1b~P@ME4OU%@5+Shd$RL=Fht9$wyOeMDj=>)EbT+`EfK0+o>qSi-^c7KiE zc^*~U-s}Q_?R!EF)Ej{fG|xC~oWm|=C+0kG7Q{%_9*N$}<{l zI+pJEQn!&-$B=;oJl9`X|AlmIn`C4pCRvSP5#5D-55*fI!;RpQ#QYyqt+>0APwVR4 zq-(|}--p<(uW_lF74wx`6fe(mfqnJvM{biK$Et8!298AB_;bnMNB`4CNdG3xiFbmz z!HZu(9LS|hgslA2kLosS8p7QIixv;)xqYK6K? z9S;MP5xY)hX2|Va71VSTK&#a4iZ7KwrlBY16O!E@3lH{RH;k+uOqyQxNdX`9ZG_Cf zvr6#*mX_WPb+%7y_zd(_JwJ0d`_PFFa1TPZP!kWC+n_AO?RF%40dW%V*{!I4frwt> zb@rHfURNV4f)*Bg8g{oLB5_n)vg%^qO+ofMW~&5W-k3(u;lfEO-Rh~_{yp3+E-kjx z@AGlKyU4?HY%{P>xPAigs$svV*nl=>rWt2-$>Fk*^-k)wT9vn>cMKACL!_1LJ+57O z_D3eQb&lJVKi$K@^|fsLwo~suA~AWNT)AB}iTpNrzxd2wXd4F3uu>RDj{^*G9Tr4K z6(XAfzucW{7qcYY^>g138c9mclM=*K)CCH?=c=UC&NBbj+Fy7)yNDJ=J@+mNO+mGt z92@{U#3?V-dDYwN|DTXy@B}Fma_QU$*{Y&|y-3v627YT8qQh3EZmiV0yJ!v_DWg#u zlNjto$10BOHxE)&y_9Hc!q;l&Rh|(OJE>0@mH*z9&HN7sl@~}00g;(oGi{=x|3}Ne zP-m0|Dm@QFh)_4r3s&r!<=p|+*N+sW|Hs1bFS>i`#!2XjYYwvBzhc|L-*R6pNv31Z`#_q9)7rFyRo zIMR2#eop+?C{bkWV)MXpdQo<)!q?<^P$AHr77kIa{@=)N)Kz4w23e?x3N$9Q=%}S| zT!(4fl+>OVJL10ikXw@IqSVju&;1?eKGa_v9)QEd>gc-+%7O_w+x0xl@?53t!QtVH zDpVRr1OnJ5T-@v0%|`12 ztLBIaH{aw?-41KggfyU<2n8xyZg&yA(xAFix#jR&0JYwKDr>Sk;RBeJdL7o@j=>v1 z|2cNV6Hg+?_ku%Ise4Z=$Dp!ImXdIjnIAO-H2||VcCCr% zbeh1v1?cr)S-8P6@I^vvPovej$S*ywcRS!HirqI;=Wh*L!XXacN!`M)e?3m(2h51~ z?iYU6)HEMXs0M`eLqCb3oE4)(20(N zD=2gD=OuZC0M5oUx#RxhPQmH1;tpSnjB7Rr&-(#ogZAiNPY z)T)ZE5!c&HITbUW@?`FNid0Yh{M)lD!2Om!S|kp#e1}S6mim9>c7D5iMdIguh9HA|i?W4o8K*W0|uDRNG z_}J|QoSVQ50uUVdiVF|VV`Q<*pr3?~Uaec|VZeRzOhN@&Jc!GAEF(+Xl@{)xEaSUb z)|Y(`R$a7n8&l^je_kSU`m#FRuFFt$>_3`|18Re14Pv=S&VRFK@~Q^WVP#_-!!5}FA?Z5&ss8@IQe;Q6xe3W$+2b}o2qDQHH%V4p+qLek zgzOMXxJi>5CL-ExI}H@GnU8uSqKnzB&KCq2xP&Jt_KTICKlO46_>nm4FDDu zTV=rmtafZT9F`rND_0Y^Iq92?lz= z?f+3F9n0(*5KXqx(DqO~w*~j+TDXIBI zuaVM*mZ6(xmXV9yy?x|!;`#ZRZl3uE?@C*7oAP78h;7t83|tD03c2v^1v%Wt9)@^( z9{mx{NjTxI(v(&-agxd`CiYpG{(Ke`F-F}X{~qn%6;>o5^%5#!tv}ZTXM<$yR|X>$ zZ5S}d+f~R$WbFl7^n$!35AT5QSfv8E~Y+FzU?xZ~h z9HJx8eF@5eA(#Cm#Qt|q^VK_PZLj;H`WbsU4sJ@)v)6udZ;mg$15oUMbwa)xy;#rY z`O`3i`Lnm3@B`3-0Zz2{aU}MCR1p=p(|t|#m4mjkNMrWdtzE(N4vx~SGPkD!4Xw9o za%;|4IY7y(0f_$K}Si*?L;wchd%~%b_v-}aj?+7c)XOVz_&OMPTs+>@WYt0GoP7`=wf_Pn63JJ2avV5)nc{dP* zy}8$|J#e$629lpUk7&_Q*2$u4l(Gmmosg*jfGx6T&_O4X3MTb>6zqBsuEk$hjSGzS z1QGQ|4L^NDGVbURyFXrs+Z7Z4+T`kfQn%m$v+#U61u!ubcsTo)RqP++SRp#d16~NU zr)xEl6Hg94LaHzw;A`+n^i`>2Z+t9vqUNV^2l+P9RLRSoBi5h(QE`s_tN6*)y12`h z*tdhj5asv|lLS_W?R-}|3BOTGw9FbpI;t?Dy*E_BlSWvZy zih|;A4Ly~myYnvgJ<9_5F4tGc@=D5R(`Eh^^%%-?MkT5T)KtvbpQ--v3h(h<1b(M_ z+v2aft3E`<&ibitBR}*hm71gGIhgE5>+K!h$`|-kP%in>(kKYV&d{bgxh|y~B+^5d=oh+u}^J0=^1lhh!ZF#ExGWPA;t9$1|m)|O6!avJ$#$Cl= zb>4Cfs{ClV!syw_FUjM_S*_!0^Yk*9C$P4iw?57>PpX=#SX2jaZ3q4i)yHT4Fnshp z^Y0eVOBKhiu^2_lwc*P@P)<)J(yl*^i3`vj6aG!EH~;p(|BVp*IM z?_<@|LQPu!W1MQ(8iI7D1oGJZ?CiIV_uc^u}WqPmMef^GZq$QXFBx#=+5Jf8L$ zo66h;Rh_1LSAlrynwV7jQrsG#*xxWFNNlv!QdC1d2@q_^PLBJpX#(PD(*(*UFYm`- z&bmW_cjjG+sFTS=Q{&gR1dco_KexVy>R1vffoG(U?_r!;F;OC05D)6$@%R}~?;KIt zRWT}g%Mjc?^PjWtqsy7Mz0ZCIh|Jel)E(c9cS|W0Rc)xL+s58)V=dnd1C+{F&Tz^R zjjVV9M3mZWtM7_xD41Md@CBsdZ>p! zaktilV2V1*?n9>s^f2}3ph}sjW;WLau7*)bxBy8TH_*s2^jD+K!`UEuE$yMo%jLUY zziBXv3Rn9YNzjU?6LLk5%pvPubpy*k^2T$gz)Rl|mF(GqoFJ-DhJr7k~M(PqvH`lHh4K^9eM2T%Yg5*qtvCgN018g!=69Tk#X@#Z<=%z4`z+i@O>geh>qbg!bN3>W_J37!AXdvO zQ5I@HWwX**2R=7eLHGa0M_vh*rJb9MVAQrY0-DHQZR%KeoD_p>M^0uDm0N-CwIWM#|z)WqiFy~1?o zcj1rtzB~(}_Ei?b7u6MvB{mi0HT`JNdQblLj|yrW3;2#g|C0$7S$3^#i2f2*@fZzJ z0@&n)xDR`w3Cc_*>O9yi?gv_SCYc4I=!FoiVqEtrFS&`Nn@h-VI|~5OG>gq{_XJ$L zA`uYwpZ`%6#j}6_i{GUCtFUQ#LtksNToK~{fHA(6uQE~){AZ_d=SYi-TmYDm5LL#z z)IcO1n!8ao@XuB{2aEF1PrhB(SIH_<&obGm$zGdA? zj--@!uAbGe<@u8RwC&AJueJvvW`*(dr*0RaK-=1$BVHXl_$_~dAgYfO$j^brv_GB5 zL3Ye!&8WlPFD!4XN`7jEawROd!}P3p6w06Zy!Ge|w$!MmuPDm%Fi$Htx8p$B7v}Ul zGb`{ZbcI5iPti$-WPp`b+!#ey_1Wq9-}~YIt4~$EqP7Me*)-MrZ0*^iP3B&e&=w>H z!YtLyiD*@#u#voQVdc}?7nqKJR5!L};{Isa)C$JT=UPzzHf<32s@NoEFrzOwZACt- z+c46Hb<_DlCfA>lQxR_tVjzrF(V=>{gN}3_#jOtO>a4prrrqR{C?zo7Gv6*99j;da zw~p+*$$Lsa(J0Z2Tt*{~R6F5j=jJ;pL=pHn-Vhv7&|4(FEqME60C-8rbB{NAs}G3F_{Q0%ZviFM?{gRH$4z7=qq413%}*!1b;^^-z1X z_j*@T=)Jl-%@6<=#4BS(W8l1QcVt*C_urPWEkAl{PMwi}F4RUdD6y};rG>PW$ou`w^N6>Qg4GAkTYAK!KB8SQJT;vMu^cFO?5wiP zPZ#MfMJL-N$+yQ3#+(mWw;(p*t)6!j{pUH4h)k_h*Om0 zq<=vv`*^m4ahmu?HL;6aIRK6v4IDG$glb8ATQ6=4`_?Pled;5ubhY^?S?i>AH4W^m z)uei)F_I0@-L}*O?n*1GJ0>v$WioR80h`FJwexKLB_u5@`5%?#w^pFv8LFWhY(Plq zWI5{0*I5i!SuAiIO6n7!narsj1k)rT9k;bm&yd z!W1XETd>4+PxFS6&AjJQV);xtZN~EJt$W{neBj$*>i!qoC%8H$8OKLf=q9uR7FYYk znf;|!Rjh60k7Hx^Ab8Qb1~=}&Jb|*Y!qUb6pVn`?pGhUF^Zf5`nz!r$cD0tRA=AFn zd!>9+K-_l7&kIB=DSE({{=6{K>N9G7cV<}A0}bsTh?ELBji1!X`XzZPz*<#1^U6qM zOqg~*zd)02v#w>mPAYEsjX{BOkB%myB>($HIu6eIG#{{NpOHvOD7?^eWIRrutC>6W z_9(Uq|EB+CwUSV1uzt;@r!0Ufc(FBm?=MDqu;9fO+2C>$8)@p*Ij}uLQI7Mo{4UzUXFu;L`JBSm@A6t1X~yPuC69K;%!p0%ODV6Xy(dU3rJ_Cz~Ww<7;wBJJP@ zUh6>0(fEUOR4s#4mpJZ z!&ueX^W1mXObK+8$v*Law3k*PIj{4}8Z;n=q)4)a*E9oHY4pVJs7KW%l${rVcU zpw|FaMxg(G!=AMx7(-QtWi$X8sNW+f7kDOP>?1?}6lQvF=&&E?n|gA;q)6$;)%GvW z=7mOu^UX*cn8W8~nI%QElc?tU$G~ZE;2)K_eLlkq^yAEAH}{N(KAr?#lHz$ek#?zK zU70EqzhSh*)F12|$4F1;H&SZ$wl)(tNCQrF4|)mY`nJ#O+)RW^TP@z2jP8Luh0(SH zSSUN`xAr$zfg6=RZ*~Q-C6Bi|&O{qP-%t1Zd}8YQQ!-Y+*ZZfFs4)Xay;e_bZ=Dx{ z>j26jX_64zU2oCO8{)yzcHw4Fz$g+C$GU%L{L%v05m0xU!|x5;1swAq+GG%~(v1nC znAK^`HxrFzwdWxjHDPO%$9YSTh_itL~YK&XRgdi))T%adt%?kG~C(KCIu^R3!bdtJn%~ZSe4y6`7A{_LGD79+?jsbe_NzE&WY48M}eVSepbY25Ny|LNV@HuJfmS zcelG&<-U-N!c2Yx4`#s_m3&Ca&YxU6_h8Jg&5VHb zrGtoUzB`H>Lw7WKc-PZ_p5z(P!<(nL{B*BV=0)5d@~YVDP=ka~z`_%wG9`$&=+^vC zPcX$8x68&_7u+B60kh!QS?GM9y<qur-{u?Vux%<&0N|Za-%xnJliSYg4(^H)6)Dr}o`RPh0CI<>C(sn$!c>zjFG`GQA31z~qXDws61=FmPlM794_7@G#b{nMg6Jgz*&GLkQRDY0MutV}a z1d}C)4X=ck`8Cc)FF~+6a@jZ8Sojnb{n^`UUKhen&gOUD5ZV`Oi!?EGzzuKw`QIlY z{WmbmZ@^~RuAJcBmbRgT8*i*lb9z$M%C84L9KHylKlb`8z9BQ^Ahf%wYYaJZmX_g+ z{JT{@RS=?oNU7XSoC6V*KDgS0aGV{WhdNAcs-wF;)C1f()-k>7&JALt2jid&CEWJ&z!?`g_dn(W&*Ysco}T?Z(ELBPvoxj zed{wnJC;J2%rUaO88F?pB8|bx`Wpk$SB9NC<(o4vuyB~)*(#p0s95A}DO{DlY>+Sd zzv3U&EMII?H?K{Ua@uK`yp|<{&|t8mXy&Ayh7o_KwKaDy`;Wc9`+-^-1PlCPTQ)y# zv8|ZpapacA3!a)7X9JoS7nvQT55QPNpMrX34t=~cjQBQoEXOWF z@11w8N%8zEk3}0IL5p|1BnPiqH(Ck3Zqx0o^!<%SZ4v4NdecIx&WpV<-m~9$J`>?( zS`gh@CpMZovo-HeX?&k4Zp8d~X|K)+?Zg6<*HxaL)jfM0@y6@HAPdehamyOvwuW-$ zLt7M2d?V?30J3f%Ug@P3L+?e=LygtE@0aS2&g2Y;HZl+oChWEiL05SN^$yJ02o7RG zMjxE0tS`Aw#K+EuhzM}N!`?h>QqJi!3*mHqAk+=^ObiE{;4&?Gqz55EMd|~v zPY-Uf>GJ;Vox1OJY2SO3t|Y_qk55XB+xpbKotH1q?;SYK0QCWEFcxicvS;JfOr3Q-qX1BAS#o1NTTyt2J*!J2p1%-L64y4(sT3#Aqjcr>#jAjqrP6G^ z`G2<2sGTxydw&Cvp+lMHh>ZbeGMB`?+Dxa`As|#mE<-GR%NDH1q2lgwM{Gn>1ZE(t zN|`W=x-tNm199l8z`iKx{44~ZRhVU*a#gIig|QA=2W^K;(JDz(n6^%k+B$XGxKKFe zJ+&eiHD3qJsc->^%Tt*9<6+7jk<8pqG-GFdtexAfugM!v;wu`~uC7+DMH+P0so2NW zD8eL6I@L#~^$rAj!zNw*X6!JT7KbKj2gUW;}5kqTaG%FzPaGecfC&FS#K0=7*iWc-2Bc_nK3_SeVo z`~-8PZZ$gha2olT#6egj0<&c6V>s8200-VY!u_=83KRu14{9H9x)uN2b{74tA=3Q8 z-@lBSo~hQB8Mdf=ED*jP#MO95S-7L1^Ps{GQSuw7kWU!`;Q;+h3^c@@k0L^_DV~eR zM$_-5e477WXSTWMPu!>xPJP0DJON72*=w`37i`~gnE*n3SUN#^fId77Cqbd7#W@oL zTbpma?el-RIDOIo6g4ARa{cYCI^(8@xt5$wI*G}w?UB6r_b!LBQ$?@!K6+;a{4e>O z8%SF5pf($w0Z+%CwwnCdQS+1Ge5ZBmabD+-xHo$94-~9EQCX?NlpPtrK3HA`I;};y zPe_QRi-XC!lc^_$YOy<9hK{GXWVl^0NC*BGQ8S3bs%NR6f`F|may$N~ohw$5fWRvq zoyEGvC@>YT#@Jv=ogCKs8#1mxcsA^0krrWV1c?T6!;O~{^@2)9A%4|q)sFo>yGrhn z{$iTJT4n#JRL=e81LS~j4MDV~0~`Ul{tLLTi3&EhoA%-(CC>m5eaJ5javb*-2tF@! zQs=5Cbw2<6l~-b-IeE;xGEL&z0og5Mzy4R~Iw!w4)7p9RXf7hMsX+k+lxrD>%8;A1 zShqpcT1qZy)eBOG&om7TX4hiZ7;l#B(XFd;7V2odQr-SlnQNXVG+!{94<&#`Rm;Bc znH$=f|2P1;%RwgvSQA^48}OE`NhWIWQqNFB9Hv7pa_p6D5U`!FB><0dTgB==Nyl)k zWvm&Gh&q|w*Q9$y*8vOZo-axVe0S6}j+0=Q#OZHX^xiw%6c8R+(OeY298ja@S8QNd zM+DFQGOkTd>Nm~x(%Xm==&I~`8hMBQIYlU3qThWjb%B??sc#$kXchC};;hq7eI+ex z1s#5o+8wSXzo}OF(*6FTlg;@j?A#sM-hN0Cn55|zm2ym68#QJo%O ztvC-aTyJdjZ3WuOT^0$#rwu_wags|2iY-(EFLE|>uW$zjdKCikZZ02GQU&c4*URyy z)1vGEkCeFLUXA_aCJ8N_;o|r)X22`?RL$6+gyN3Dlwj(Th%exMHA>H1A=Q{&vl8?y zm4}gy)YYS#{V!;ex94e@jSxX}Tn-I!?iQGT1ztlE@^%*(_$q_%T-Y3v zHJL!Pg!U!O|5%x&u>~gl8>I{51iuhpvBRgF)t~UEA1|#NIBRG)?xb%l0HFh#ohRWJ$P(&)IaPp6x^~PVw1w{P^X{c z9eEfR^Fvjy_Y-?+i^S1XoW_cT=7qw(tjdhaAFT;qa16NMta~?)Xar-R(0k*)J^f#` zoI8X?*8}gva9e6&nU#U?`#)ys;z62uea)Yxwn11uYM8$U;mMOyriaioJ4D?Eg@r6~ z?y>ed=*@na3M3Yd5Z!>HClP{#M|f~I7-s;Qp$A8RZb(8=%{O50kLRXr9~Ucsif9h0 zrFG?`#ngacp?!ZhratrC^;y`--CHF!UO>w>CO;_n?`;*Dnb*$%19eDPKbm+SXipZn zO#ai%MHz#XN5vfX__1)q%13l6rR~{uYW4U^7EeCam%ZX+_f+ZhS#~wLXPYr?bzTU6 zJq=e&wSJZZf$c4vOf}EU z^)5L381pQ@XKQa-^(V$%uf?VqhxABoMwP$n>)eoubfMs4)9s9D6nMZ+lY4WxdnA`r z0$O$)*lGM8LPrrJ+!THoVg&z4UU>Z4$qdlp+ywUy@ffI!Lb zsnPr^AT7zzerBx~Doe6GR|JAfE7oJwTn(*9i0J;wQPR!d?is250=mfMYvb7`53YLV z?wo#1q`z^6!z6-gpHD!B$x8e1FNWJ7gYPev^rV>`myqM@>&k@uhvnzTc|e#z z6DE)|BEjL&S8zxOr4YyfI*umsA^>uQLa6vnVkZ=Ph<>C1B1J*bSu8@0%OOcOHRJ}0 zRH^++B%S;!M3}Dt^*#S%gqvHQ@;;iBdSYDTJiQ&-zuDWgT8UyIeGLTM@<0Ha=&3z^ zy@@Ct`lcxc7`$jZD${n_c{*UpOk!)dw8Nj@%2k%G+fwXj%^q znA+Gnjc*l-K4c2A+!c1gWPlmA$ZsZfhmj`lI!F3(rzwm6(`Uz|;XOdGY1k-}1H|;A zUy|=gcyK=dy4NfW6B?KoNDaQvX+C-vwEe2f2eu~67u5|2^7b71q+S8aV}ZnRf1olW zDY|`zpuc#!vr7!t%C_bsab7@MQ5-dUVz|TyDIH)MxbXCV>xvA6I*l3xQfc|O2@o1c zF$A8cXcPyt4T~)rE&>lVLxbSEEF^yOUNK9=*&+I5v2I;U9_Lw1^$qEJoz?^@{uW$G%7@#iGIk0GHQFPeg^(x`)@UC!*$xtn1$HeVz?Se#5(5_X*P z&DO(c0e!H!mSmJ6aF=Dm`+^Ot^5!!O@1c)_KfTMiyPisLqi<3->*;4=%R}+ zRj?P#Vm8HWAHLW~nu+fk%DcbBO!ZxoDuMnVmH4GMf}nYU?ij`Ep)EJ!mIBznT%)CO z&Xah{7*1h7quSIY5=|Xz`5bBaLY^ISKD`qDNhR0odLp#zU7i;e=rgk59&_7Uxt^Vo zYB{FdPhkD~DpYF9J38N~sC+na>{P7Taxv5<0SV-=PO1BslVyE(?^01OWDN~D(k7ih zy(8^A3+NRd2Qc24CL1nu_dy*f*^8E$MRR8R1E|n$? zZ0o*dz+5IHD340eoO>mEJ!`0iF`HI&B(2q9miZF3hVNE}1yjT=w#%2gUj*eoy}nvv zQ4(UhO?98zRYmLgt&%hKl>}{0rq1c4Px-1l_o<%nr5-%FY9^fNi&=@euTro{s>L49@johgC_xn560$fW(b2u4)qKUAC#-LJ)8(lO=c6_E_biN0OJ`WT+|xmJ zqqe|zBvNg|MR&S*dJ|L@(By>6Hy#JOgJUz2ZS@?nn#K>)xNhIJnax>N@2+_(M^WXF z)$w_}utCMRpsHG>Pd^!WY+DFP>U=0y14k>5UTnfRJE1X)Y!o??K|NjoB?KXacW}0; zNG{R3Ie%P=3rJ9G5ok&2QFObWZ>Xat9L&Cy+@Q5Yjt0LDlff##%WZ0a?Vq@>ADu{? zZ1jK2d5Wm7ouMs5DK*)<2Iwe?tCb(#L%UrWML2__tqoP5 zS06U;-G3Es*56*QZ+IgrbZpL29?uWz?esX>?WEBSIzOy*^gV%6=&(5VM}(V8&bT{K zZ?0=Qu&1+unuPOuUOUdEEHvBjD_f(~HJ{u=N<29R=+BD8w_0}=SlHU`43QqOy`1e( zQ@>WiIi#hMikN=kKA0suS~g2xZj)_Q=#B3>$D2NRQG%~L<6uS5M*HvYS#CMqum$R(c{V_?dmvy%@ZUYmfn4_0(0Q5XNe(fMi zYjC7@#&6(Cf1c;Kq=(seC-1WGyU?bj)(ZV{wR_}0O*Z>T&x83kG*0bk)yTn$) z^wbv9U~jyy!P}(={c+7N%tE)bX`p`K`dFXv=!4sADV?9Ll-2b1iD&%`RQx4i88fuu zQ$eYO!*yaaX7&}@FZPIp;78cwI&^u$GnQHQ!tb>1(w0=)*RBZ6#rUM;TPaW0_=>g8 zoyoihWW!{ON4Qr=YG5K~xn@bSBDj0)@B?X&dS9jAJoj_AT0O`5Z|Bs~?#ug^Ts&VN z$;RZ$p86z|1=O{|rx7?qa1;n=r1gi)C{XCeSNf12O}3(;-UXqu<7?LmsCFCqD`@}> z(A|4$l{NjA*I~BAM4udrL4>|f=Q#ObgB%*&F@9Rs5a4RlgG|rXBDjOY_e<8tIF?mA z`+_FUK7HAUF^R{vQ}wPz3(L}~E?JECvcfO6gZ{U`u4#6kCXG%3bKlM8OLn=J`|v59 z*aS7Cw3e6&1pRx`g_19s7uu6gLLF;8##J?Ss5E_uxbu*CVf7Mb$Ii=sZ(yCgBM^=q z2zA^&({1L35f`5fze9zOC`IEg}kcp4$r-0{%TPNe+K0mk>+5 zO-Msd$>ypU98i1lAymQ^5b`ds4{%BW8<6qPY3MxNi)t9D%TCmSe|PG3G2T!I;Qu|LRc-t&DiQE|30tKH}zCl zL<77ow!(KQ_B>RzP}|$NKr&urpm-H-`#ss{{^knT>MQf>DbZU!zCSMnFhp@!{<3il zMbdQ!)Hdx|ROMR2ao68KPyde?Snd-`jSh50I*OVL|@z;tsy7rHS;iZ zdT$@Z`sXskO~+B{vXTsFnqKopF5}B$T28!T&N7IzF%Uu24t<2i>9%oXW7?lSE-Z0x zRn25hx}%ncVVEsI6=l7FTpx?4H%|K;7$US$I`sxb=dd8kdhk-TeEx!6ON{iQjQowH zK-((wzFyp5xnZ1v&AR$*B-;ELa1?L0)2ce2DeR1)lZga@M8J(prHoAbwCWUGH2|Q=)?g=kNE};zOp56h-Ug) zZQN_2WVN1sOlkko6D5le{(oF={;`+W z;HU8TPa0iUh|iQWfs;7O+NH}d6g=9pB)0Z>0W1qAj*E^`SXQ|sT_Nfnl7-^tzbZXk ziUEr4t5V@IbjG(M+JXIs6-<9*LR{AG=qr8OGjV{|K&A)0r5XhGcX|Tv}|kaVY_CzOXb`za>U%Yad2AR-ju!Z9nD5 zQFvxX=8<~7en#sH$5)l3N3Xnq?vU|flXdRc^^{4-4z&Le!L(@|k&vq#PP*!qz93Xj zOAPD?iH>QLhr6tJcK?=Cb!ZF%9o>@CpEa_}6%p5246V=3)k=dxwKIoYAE{ieQV zW-)1t!&>CRyq~ltglSG0J7c(D@$rQOFW9wx5xqtncR~jc(LzVP&nu*5 zyNOoB%9qEx=}z-!PKZbf{e+entilN2-KlPJD$>C4YcpB;?~nTrjznnVUc9G;=Z`e@ zH%JwJ8Ca>H-QQ0khb9`R4mzZpTEWemh}Jtc!9nL)m@Z_zT6ZT4JGuoky}+tUx3--z z#rrZwR@Ml6CPWoxQ{^1r@4l`G&wqDbRfYa5-W0pibE4y^LS= zekaa}gvl3*q-zN&}F!}pE#=pCF6@_n4X@~vYQR_bK@@N~~A;Bxs11&U8$EsJd zi;q#zyFKo&72@CMul=lw3qXI<3ej8^hh5opu-jI4mf8b?d=wk~@s~ouKF!QHkJ6@z z*8oXr%#R$KO{+N1n+#9 z&R!^FCCpmYpK95C=lt7Qz+Yzl9F2|Y;Oy|2B4(3E5_u<$j!g!?7PVK={q1r<*7ZE1 zU@0B&U>6>R0Ri2xZ(Y_0olQo@bObu#$`QdgcH3->oZJVA!(g?eGL<<5>#_hZ!~UpE zAJ79X989nkfV2@1(2r+@n(2`A?ZL(N1$LZF>*5s_E<$sVq+eLaqsqi;cZCvVVZjFH zgU9gy_s*9QiMB$-^zp?DH22|0oUOE~ciwPWB(z*p(?1bv&oK)Ru z6WbG~21>QT4`Oe&0PZv&|Kx!)^v#TJgybT}L|NEQc(xHDIx!IZz-}6D^KsC+e6_u} z5zsDf2)JiH?O7TLJ((dkg#-x=``ZP!A{jJP+4>kw?pC<$N(#Q<%Gx$i{(f#`dFZ~4 zSJ|b}j*7dLy1Sdc9U4h3)enoQ{9~5h;2#9eUJUAYwWqaW7yot5Ke`L-`{REIC`+K+pbsgE83((1P|UlxGyiQt6~7VH%;lOi zWo_Lqg`=|C8bhBs$G#LZSC7u zK2?=IcBDqqAaR*9zEOw>w(`Jhe&#{O+RL5FFoG|N!9r`vN1)Ec22a(MjTtS|YJa2y zPWIHVW;5+zw4Bm7$cGdxPDrmR#GU=4l0LvVtz)?HB715WF{rk zYO7I#4$T#lOK<;BQ87|UtcgYjJNoKUxIhj%#Yzh|s48tRKj2Le-|skNJM=oqFdH}y zo0^gFJnQZHZ{Nt@-K3&iIq}S|DGvD}na`ay7XL=KLC-^ABlfGa<&&6ixly4f_6H$g zFwn5d3WzTujDD5_qrwJ!As&*qT7-k|QdqYUUr_~JD~F^M`m~r?ZIIx*z6wbI&RLyx zFUkTo-J}aqKpBQ6J-{dA5Ff*4j5($?vydMf1&os3z@I)_fUVB49}TV?AviP(549As z)j{dqoc2n#ed#0pWOdP;^tF?T8%(c9&Kef`$;t%qOD!7sFwjY)SG;AUA%@pE1b8Q0 zeBX=W=F)I@?n_M$Z3(~FxpTr6gw9H*nOVVj;r--j?zzXAK*i@3t9chpwgvzwUgaIq z;9qg|IL1T&xpZj1DfZW?ZhUW9t`}-McH*sTAbmKpKCO>Yc!K~2cA!3dnI$$`4)-gX zCLU{d*YH;Ss>ErRN@aAQ68D0(NP*ADdyCky-kbT>J{@M(BKfFC zNkizRd^Gnx6pIbP=@`mvdo@mHQepP7(@VWo(u!!xfWH|wlSw}Teh9!;E%FJjv2m); zQ_gQ{1Oji3fsl)*ZJ$BD(=ho33-*w)82wq+SVI|n*~Mx1lNuel&s#yIZ6?j%`mAy# z1SN-Xb5v~>Ipf_TB1j>_6woH>Dka75l%prlttMUVMY3~kJhiTZ(*A!q_D|kt6DB0Z zJ_DgvGt}L|t%V(XBo4Ic|I+)*mxl_!$dhYjsfCDEeXt9v;u3SskB;PKt~=2J*LLQ} z5+!`f>0)lkg+cAFD{6f>oxpcsS1@m=ACMAYO=v!p_`2c0P&V~buUgj9kzdoe*w6Tq z?$t>6fK_m&;`U&bwrWH60MVIn2h)KrJ?lUU05x!R6*y>=r^9g3uls%E!qD3v=6p#e zZP**bzo7c(F*lva`9`v%UnvX}y5ri%cd>R0g(q6#_^91jyuym;E*-AHf}pufQ-#0t zu9%S6!DE-v`_g^F{iD=dJzB9_*PZm1j#1_906yP6UP$YF^Cm&b%c8%OApF}R9{cP} zgq(<2`hmuMadX89o#w@D!sV;JO#doCTze-YLJLjt$|pZx+zXpL6-9n;cVtIaWK=c; z0?WQk?Rn^;5DXUPeC@p8U>hF_~BFBn$`~WK@5g7!cgsVjhcMiiBFNVoW14+3MhLF9D=tKbqS@R_X&5wSi8`$ zAd?UB#p3-Jhu;<s`^}+1K>w zXb$IkOH7G>(o>~pYlFHQ)w^K_yv3ZUS-6W%RMFFb?6XZ$-t=j@eG`U*Tnv7(_z`_Y zOL&el3@R7NTMsXS!H=8Eu!VOSeOg*PQ*)m8MAOSmqjMKS#MQ9{!nT( z`lX%sa!&XLJn|Oe!GPZfOXPr$AsGQ~FejS}xdiPnW^&zG5i91=v}xxQ0j!fRLPuM8 zv(-Kmhm(?82A-6CHsciAOxpp<=fRE3oldYg8WH`Jdg#3S$r0&7Kot*U$P)k>>Pj(T zyfD;|@TjP#fN-}`)O>hf*^u4)?}O`evYRyb^1U~A6u+am{O_xULV z%P_^57xDw*==Och-=n}Ql5amnJspzHbfyIbG1G#*yPpVTx5x8& zNSslMw?oJ5m4&)?M)%z>h>20nVlbIb2u(@O|2W1stapb}MT}_(hl8yp5Z(B!$H{ky z11`2qxDCHoWlscHqGQ?tG0Vv`04O0Bb53jdUU{3qGVkmxCnC}j{THIA56N}@;OV31 zqXt^06QO_^EXWp%{+llaGg9TQoc-DC?GY~q_un%7ZI^qzlJJaQSEDWMEg%pIMN!K{z+QggvR^tuL@`ypO%`*L~eZE}3H8@m58r+8|X(T3#$!2B%!7zc}9KgzO+swiOmt~@gJ~g^rN**-) z8H5*Gw^3DQ!e?8ksN7=vefYAV)&K$Cq433wbgpvM4)Tm5d?C47&UoV}iWo^Mxg8tW z6_DQEd>gkmH$tH9toBV!Ry7;X)yceWE$UUwUe}xTr{nrHyqu+l5lXUV6Sx^5(I*5+ z4@PYnk4KgbzPcw6)KVCps7Uf9_ya$?_iIJ3Lh zOgKiOChZ#{{haGrBuK%iNzpBK*=`p&#^Hy~GvMlh(%6;PQ4BA_@z#!+IO9w}yx$c;1N(0C1(q=0dQadyAdT&Oo{MCjTYx25}RSsj--Pf+JHVR2#qNsner}ra&6r*pwrOM z^msm9jTfm_j*^Z6rlplmpO<1TiWK$7g@Sv;{HqrVCqpz%4hebm0VdYAdvFH$uv&Uc z1No6L-XhYX1AYY$3xV*$I)AT`s%W28S@l7tPtyO{@<16;%b7%gH zEsE=jokdnW&JyKhqP<5(*y|Pn1%Ed@@aUFc=l6aHp6=z_7cek&^KE0U2n~Z@z(pWN zey9r;IjM8FqUA8p`@JSKw{4}ZeMKBAu2=OM9WAi9nCN#g>yPTlBFB6#cqtUJHQIAZ zsXo?HBY!7>ma{;1!;La{nu+z9@AR=bJf<2TFv3byJjL#5ni zw529_=Ce$wr<>`50!Lyu>8k}(_${eQ}14-g;p*3E&3&s`btYRUZ#U#8l)qCXHUE{ z=H6e3=PP)gFG(V?*fF-tn1%UykY&u+*la@ik>(^ey#>P+DoXxB;v_;SgBL3ZPlCp_ z94uTf!9>vJ)tINCZnE4F7tg)f+eqwX?KQ*Tu@x7cJjLR4jG@JOfb&<#4P(~W>>I4O znq1&Xws4;QCRpJPPTvvik<~T3=h)BOuVa^;BhBpwe)fAeRm%Wr!fP#?JGVBc`ff&8 z{yr)O%;k`KeokLzYI)Gl0h2J0ry-M0k}D(fl7eu?orzKApi7LEQfT!U+ic9Wn7*fG{AoQ6!`g=C;pW3?N;1VE0|$tSsC79>Q;EH}uoiC&PCXVK=vo z>C_h{0*xyUHc#Da{$99}ZSMWZv`0Y?PxjV>q0uC8-v7c+ZtNGWrcl@xr&m@ukf()q zj|@eA#Ecj{!#*aabF6SvZvS}z)WGjMl*twwXBE2tp;#eONJW^e&Znu)`{>0-&;yyH z!-M>1Xglv1TjeAtY*8I|>a9G!M>?Q9M$Bh^95ZOus76#ovQP zz{nJo*I@S&XT{fGv9(_$OYPG2u!`%NMe~|`>uJni&BR59+>TPcS**^zg(+l4ShGD! z-#d&xSU9dG*kFI3TvE->T06F=nrZokj4pb_cw%F=fr>BVihxpc3j_W1t_y_6)Oy`r z>K_>s%uWiGuis>4|I9M(L-*vJ?_o3s8-}wNwH~Y%Yt|6x#7RXJF;=!m5NoDSBg+&L zkxvaNxIocADc-YhPkbV2`j?d8$PvMLc*Yq1L0eTmXf2X??0M9K&=Ez)wy=3}z)L;h zD#4ib^eRD3+i~w9b$CnV@AXQuK5|sYR?2il*%L7!oCGeH4_g!sA=lY|?fT}NxWnEMY0Do6P73G*Pc6`54|0TO1!mFPL{u@EuKbj zI=dg8&~Yn=fH7nBA-SWo{;ptI^-gpT`&3Dv`2I!GK8`J8WlBYW*0*r&pMQw~*=0IU;AQ zoH|m9!p$UHT2y89ca9Zbl}SX|aP$?xT7*zW30%|fRXx_3whhzki~n9&pP#0Cy#9}5 z*D`9{4l8~8bPx_C&L~clJkj-Et6o(_3{WJKKZE9^>ex(V?gWDmFlZx>n0D!~-n9?; zbE)YDsR8R)Yl`VAEDiDrz`T!`A<#6)z_CKihjkvPa;cRIGOTP!{Tkjp_lvQgP~wxh znD4c9`~ePEmM`Y~L@;cD?)3E~ZObdAR|oBwNe%yEkw|a`fq8o;kgh8?oDDc|x&`ZE zcX(e5+lJO2NBJ2g-xZ>m!^aM5^^;VGU7**wykFxFnf7hIIZgQ({X?D~Ue`oX=vnXd z=`YnU9K$yPtrA*ajX9V9`C-Zp;=6-S94)S3EoXh z9=Tei^u0<-HZ`zt&lw5Lb|ur=7ObzqC&4WC5~(0?k%OH>Wkc~hP#VI@=UVk`IqO4u zLcP-+yY?jGPov|^ST3r(;);^D8^1Tf(Z?rq5Cn5E+4 zgu!gkV-3vqPAYeGoG0_O#7>;+;YZ`vGKztwQQ4h>EPc3=b}S4mqP_J!rv6>koO?(M zP7LxKjqC)?8h7U2YYizOl*ogr7iv3sXn79tnVAPW-lwwPs&lpCbd)Xqo{5*orpg>G zTnTUaTzL$;$${AL9>DR%1|!gyzWfZyos2V^5q{-2Cbzyw2fJ{&5;cI_= zV8OjDf2Ou%MY3*E7yrC?-##0>0;i*|R(z*4bk4rv{cd=6iWWp({)gX-3Z;*7b zU6!Kp@cej@ZA8~?37q~i<@HG-2lStjmoo#le^t9xL7?>CvR!Xv*R|cg|LH@JXYO$U z?FWN9`S9}-`>`@)kC&WIzYZ(lmA)5Xymk~J5+NyTOG!G}keR=yHpAC`q;qNRk{Hza zvYa`{ooE4rD;xjSbGgh>!`TqKU}Rv|To!Pz4i$D9@&Ln^!>7A9Q9G{+7j&ctBye^b zLqq>QH4;1SidH2t%TXXE!Fzp2Xd+R-%zqCejP3%;GxlLtLz! z*lf`>pphOLU}gAh|JKM)*3MefnA|Qjn@2+|HGfHnGow@lYg5X=&k~c!^l~P}t-rwo ze4?g@83b;WH_xQ_&kBOdm@&U&}eI|~667dUk92HOyRV8V61O^ z%uOLFB;>mseuE%IsvNZ`+u*4=vmJML`Rw549eOp2jG<1^(iWjwf7yMl+OO&DN3K}& zzU#s$-%Qv&tU(X6oPE9{t{h%g=xF!lI+8uHP*dSoKk$ruCtE_s|oD|K--f(`n;P292UBLX~+y6Uutoc^7p)ruIdIc_=^b1g@$R{~#3vA3`m+Aa-g~|5^O7=^C0}}#mE}?Bo>Cc9DHfQa^ zJO3lG{FSuvJ#L$xkoUu7nzwLij#B`IxaopqJ0LQkmmAY_co9iau?o8W>i4tCD5b_K zaTC6OIdpE#w8Ml3F(!C5ZpoBoo!>xYYPd2`m2$ci4aDF>Y8AarTG7S_HLJ4_F;pyF zor}MTi@X9QZ-za~>DH}dG2Tt>+~)%OUM8(l>QN?d9&Z6v=`c7KN>tWQI@&8ybO3t#~>Ccau>AWC$joHnqEIB+l1 zOp9OG@~M86Zk37ZT`pxxB0Gt{`fi7!`u2$U;NV`s15>}bz#2$+lx;fF8x-VW5wx^& zbdV^GUWpR1ZO-k0(N?6bU8^jtdEEbM`k10j45U*i7*g6lSjiIS2C%Kq)8|um2|h}R z5<}=Kcc29_s&FpRXjENjRpgTrSv-gTqQb$<#b@%2!!Im>x3^h&Z>`*HFJJdmkp1lA zxUWYbmSN`uq4F_aRXx@Z;u%vKb`S>QT~KnQfRUv?}woC3#&8+k5qAa``6Qg~bwYHpy}ouW-?Z6 z&*Qal_B|qiN>koUWC_SL!A6yW;;bIPS=W9fUhqb7>E}2*JS{?W-X5L8ZA)TOUEcN? z2E0i|5L?{1=o`Pvx5j4 zooLVF8(0b~vy^pgXE_6knFWu(ycG%WX!*OdQ3s9157XU+Xw7(d94Ubyf^mzM@A~dv z>RH~q-MPI5D3ZbJH{s8QUF?~Ng`s8#^TgU$o2E(+_%^XyrtjGhrQIYXV zEv3tO+Qz;|h5RQQz`k^AEa(QZ7_Lkm)`2E+%#`XnjT;r@#QwI} z-164{y9P>V{^NHM=0Zo??cFeB$%(2-Os}~smlM8k$(;s{#_-`89~1v0IfXj3Z>M<{ zF!gZ~{NMyXOAGDmeInE7!TIXGn|HsQiH)GD7DbnrX0^-dd~hU4!taVGg5Xu@7^KtT z_`dp40aTrr-{QWKp6eHY6-01kuWcHYw(KnrUhjfhPZF73u8$Mz#4s-F1^LZV@y6<7 zzpS1rXkI=}c+?{*(qK8qoq?SnMyAhHU8@~*;2?_p0gfT&q2PrHRT;i06i{HZMTpi@>6WU`);~BpGdn#w zNH!D*@!%-SDF#pN4mYM{Jtb%g`NjFTL36j>Vka>=8e?@^Xya~<`SvQo0;$G^M>D*C z{}sqs%Qw8h8vQ7MJssR@lsVPfE!<%R(RP6k=fdkG%X6)yHyrTdSP@9`lvz$edKxd6izgbxgcOg(L4q zN=l9(s(H{&2vwt&OCR~1n}>p?YrE_HXMjFKar}4cK{9X=OS8f54-VH{O&3)*8V*bU z)+~gd+im&VDacc)uT|w7`1*x}1d9mGZD@HotO`sP?VrHh1FAO%g<7h92-&*(D}A(0 z;RRa;O0IXsvsc4wO9&ND%!Q^*&-e|+sUVevB{HM~&*mIQVmICA%XxTA8D0)gvhn8St?)DBdwT&mq{j};o&*9M~E|B(b~9nM~rO@i~Oo^`EC#ON4a!+z9YG}qdq z!e#^fRT2-cd&+dp`%eYcWNuVVBj(`7GNU{1ADu&w5`u~)3;%#raBs5_bQhNaFI zL(kK{7A$qc_p{TrG*?@tq+|+XigE>OfsPON?L*^Uy6}vsKH#>{AJxkBu|9`)Lej){ zl-ya3>mZ}9@t%1VSJH#*u>tvh@ff@so#}W+%Csxe=hA9(+vd!9u|i7<`T`OhZ-Y(u zU!z_UKNxrR9t=nmZj?GWksEf0HIKjHj*cpGm_g_bmZ+M%E@~@73?8fXuN7fmDlcYSs4Zb#zcPh!dqNzr_>+G9P2*F1 z&ue)M*0^e@EO6vr{g-jr-CaHBJ4TytmEQjPPR`Y^N2b*_VIg~J*#{sMAx=L*4APMh z^)eNgJZ$7YMRDE6oagr@^d3q1=XCMq(!jRAO(abB#)ZciI^p&Ffm!x2Gz!Wj+dGjl zPP7-U9N(48Mn*{%8%=C=otU_n+oo^Dyyam9-=x$2A12!%COJ6E;Fr;zVa{UQBS7+; zY=z8U)D@X_JN$C0dAG-0eV>nN)8=_UyWOG)dlr)1MOFbUDETcz{lN$Hk*{oi_0(A+ z_NmUH0~!jOyLq}=*o{aC;w&u=$kd%QJAD~B@8!!+ogz_9{*+bHAuMn{XMOu-{oDS43>@~f7f5#PnQQnVerxn|dVG7^kK!_mZT(&DA-pq9 zr~;ZY;Su2a#K;fWh}9*tzV2Qv=bD}6r&XRa*I5DoxHrKwk5(yggU4ebw5}2Yefz4A z8S~7ULFZuEea=#R;vGT;*c}`Vsz%1T!|dP-Q96h^b4`c(35c>!fx6I*msMAZfOGLM zGrpRpI-%)i)2}bZ6n~A60pte7=&_=LpPupqy7E=uc3`3?0>pzg2$hHr;M>FrHWhd; z?6X-!ed_vax4fpRX;*tn^707sXD7UBtFAwEDB$HjYocB~DjIU?oKVy3slm)VQ|}i? zEx;r*>7=}TIR*C$TMXnxCtee8VHff>FGA#d8$O#U!`~nT^{k|C%I8JQ`Csy^s)t7b z8RZZ2*?-D;2o|vPrHZKe5Bmhm+`6AvJ8d%;z>9VTvL^Pdp!I}o`iMM<7b?J@1`;*LUt1Bv}Vv;385wVc1~o7WiO7nxHUV93#?=qznxHvs)dK zea!J}(96{zA{`{k@25e>I;zxb)~KMxW0sYgk1WhPoGUz45G3cNk4))Yf4peC+=}#_ zgC{KzyK>P6I@Hi9IsYCQz?>GjFp9@;UUuKzjkYT>7rcuNGqHW^ORwJb?(4I0G)uBU zV}-P;C6bOxuljSQOLd5`?^VzP8_z^a?fS>!TX7RLrxpO!`8rpIIFVbu0uUb3`~L^- zPdXL`S3VS;U;d((FQvzj7V`?&6zczM6aL7Yk+(&U7e}Sn<->g!yD8$kwrbl;+0ecGMSIKS57B*(Jp zydDtDGzv=DL7tCY(XIJ+m+M@ZVidqPfXxg{w}j0^8ReDM5?PQwv!~wq zV(-l~jlf=2#O5iKZQo`$$@JQ~XZ6nv7wud$1R>IKz1SieX`SsVU-zmGc)W_ljZt?( zI?Rn0b|GFnLA(K-G|TUgC6Wh(DSNHvvO5+YiU$P#fkYpgHU((j+BTDtrMSTj0>`r& zcN!b+v}kIsIKlj^aIR^k`P1V|RCSqOYsJZt7+QvET z3aO(}fuz-Rts6`7S&sU8?E5x5h~S1DSQw6wPMUIIC}w zpa%*G76T;7GIa6(yv_A1O7gW!YFnVC_~sz?Mtpk#l_qnTfB4LPAz&a$k%8S0U|5&N zGjOe)Kwe>unU23Gakv;4(=O+Vr|D9zEw7#>*n;+sZt^qPEAY}UM z_I!|uiK;1eoQWB~hUQpEtJOjbu{>yLA{8w<8!8RqNuGx2dAMviAusQINS@!2YnVIg z;`sY`HNt&vfG0@s6`zd_GsiW%3A?2@SIg!g#>roUS zz3vfF$8sk&#N%OIi1yoWX?F%c31j{>UODK#zKW(rA-n&o_i0)U2SFWif|5bce&;g} ztN%x`fk2B~g1qsZgr7u8U`sYrqO-vBVY5-@THS|Zmtm=ONdT@$7Xo2Fwuc>Y30O3wI>u(gM-b3%~kC?s93g@!p zsrW#BiN0a#HoDBZ?%B)PrE@t&6dA>jr!jz-m_PN2_}f8qH{Ai?fXHoZ>FNre5w}_s zpxHy|kRNcWT<^`T_i0(Vl4SUPVDgM|{NKwwoA59)GoPy3`3&RbG09kPE) z-DWyHFM1m@?J|BzY`#=lp^pD$nXV`q0FF^K&OP5ttW_c>jsx%qHK3r`D0HoyZSW0t zd{yMWnH9FQJIAaWU}s4tR|n2#$Au`3h59d=!v$}oiCs>4wc4U*O?8V9{%)WXrRe`i zybf~bf)oWucJ1Vd~MYCqyDJKnHy-nimb!Xll<^&0^l zzA)Hd&;a%aAig=jg)PH=tmfAHhbjS){7xl=s}&1$%8F7LE}2M$&F#JPSX&YftZ{93 z>z0Xm6Ef5yn*dw2W<+ZTRPV@{@asn|mg?-ow?deLW+5ZqT{G2L=9@6&hB^=_@%32X z=is_P5W*GSH5r*f!wDjwQ3P978Y59DM7_rJa%4H;8YLTK#7j7tLfpwP&SCg1n)GFHK2C@BbDU#5NDA;!2ft!V$0@axwr4_dmWai_|JBj znm9)1K1sg8G#7_!c@Jh}$&w2Ko{B7fvfd0(Dxi^wL)5wsy)&2@Lj617(qclAT59Z& zJQfqy$4WyK9n0DH?s3Dr%H1aJd(Ly3o*u)CfjINwznd~8u_&i~y3KU+K*j0W;PO#T zR*mGiw>G~2Bag$)b48ctc9uD2j$Oywmx?8N2)|bYznET;rfmZ7v&^R5{gW5L zgP4<7NUnLkZc?<4T*-+-`a{g4xNoDFRTxu%VOE|IBxVM$^XvDwoflL7h*fK#3?gkt z-EA#|{d?^d`{RYzJ%62^vWg;DdD$b0kB&3`N*oIJ>jW$qh13ByqZ6zUPJ=k!Y*-M# ziuiH~ql1W1^)<{7{~A7@Ki+k_hi>8}*ksXo3ea@3YDcv_U711`vMca99D}>J0RPP` zz!ITzA&Rv_SGbFO@uJ3Eo@;LRQU_uD^*kRqc6OfpJzadn^?7E*I(3$;WUldeOUq5x; z6sPC;GXR?&U};SBzunOXHDcZKNP9Qvj=(1qpzF!t!&=Mx?WtTf`@4joEaO8roIDoX zxqNpLsz4mx1rAFQ%hGj;heC`$QnZ^+|Jdou^<2mLoleIY)F7 zix6}BEm~Hvzrc{tp%`mriDt$#hNJ8*4>mE(z4VrNb2QWE>Hyx}aoJG3Re>6dKpGgF zQ^Gt13QUzw%#j);r=vgjJt%P^2mGb1(#=3Kj`vBBQ*8GrEx2sLOmT8%zoBGzi5(v0 zp`ebl#fxWN_+ZK>9alKoIV~uC%uA~uH6lOMlLm@Byo%^CU1Z_>SWOe@8bbZ8U_PbB zY~}nc1U7(f`tYgz@F85aAo~zlMlanX&9Tmt7aQmZWa6(@3xRdD?!zaJ3OY3RadcnY zJ{Y}fHtBz&!f%rlg!-XFQy0m9w+Gc^i3?-s7;fAMp4kHTDP8Y3eDC%2l94v_+ zY$(Bj{S9`+1^IjOEmND)8VDgEgWr?wY?`QedmNFn6K7!6*B}>y$wf892wR^_^c|kY zTJ)ScdHthd7ubX~y6o`%V{$B&?>)f5Pc0N`cOcWyASP&ois_*Y5r)h=Qujh%_N;&) zU@x@%ntQsx1Evsl9t-P|mh36v!92;O*MDda-sk;vQ@7!|=bXkx?%TR$W}zaE*q-R* zXMeUY*xn4+G!tL)3o$<59os_KSS93;{y1Nm4Ziq;OvDSoS)EUX)5~PZ6zJDflj<#$ zTL^}&<)M!;Q}>jNMkCuQ?jV}$%*?OSJ!X`kg^2jX89voE=@R7T3V`-r=mJwhA3Iy} z1KHyKKFNkEY$A$QeFY`eiWIuH{O5DkWZWE?%{RJdOQBcnHVVdYvvR6NS*^BvZTNI6 zlLLGk-AyVVF|nQr;~A5&Oi*LwipCm@Y(_ry!h555cUzL2_(Zz~_v zsH!&m?m6^)a80a*^}*%)q;Mmo!1Zje)_%EFCpix;|C+4dmB?6o1F9=F z5gT@sTvX;-pQK+QL`H({{X!y4gXH$32I-T$7ba30HoS|slxPo=t#)o`p*Ie6t5@TQ6CmwZxHyNi0Jm|a9!*9h`o6prs|c@AEO@A_4Q`t zJRR!!SUxOX&GN?em?&RDBc4wCY2)XUzg=NsakB*m9g5wR1)1*EMFd>M3+Xm*|raFw7e|WQ>#%0{*m7$8|zn{jEPgUtRW5(S8{@a8i{cHelmt1>O z>HJPJPu`%fKfem8CSiRsp}R@x(>PzBSj&#L#Q+Y}Vd&DO+0Pk6Q68w9+-vn+f=-$E(C(F3*o?MEW&2J~ESX@iMH@6s`vjoY#;MJ;)3``+U zsmCy}?C@7)yv)jP#lrtxE99StUwoW6Se{+nuk5>IZYbuo&G3JiEH-LM!qEtq%XxO5 zv10}|$o&!0<7ajm2eTEKyQNO}l2D!OqHnqEoFmiN@GZr$LH}ypNhJzXa_Cgm!OeSF zq#;>~gJuFJ$>ggu+_1CRpM(1S{RKRJ2s9VG>Q{);v67&It;-xbsxN1^XhkS(ivlHSYfPqd81 z1Z5lh?w#_u8~}90U*$Lzz6T#}w(%hg5Mt|-* z+w_M2oHgWCr2Zor7-@6t(@5TfW~nZNuuiK#>PGK5-<{pP_N~zg@f9a~{q2rA(d7Eh z`DwCyxsJb|{|kQIsa>#L;=I8sqG$I0rMgQtgMQPemu`}L6zN`(14$qmn#Frjqz)`H z@MmS4Y^^E5oaHjY+K%O;!MLuJX{Mj_hsyKaizHwTGj6@yH8>^Kp>Lk4KN4^CbAHc= z`KeK`<^buJ^_^f`g0ll-r+ViSC>m6sdq|DRyO1TcDm{Wc#44AnuX&K|vZc0G28io6 zKRMNkagljqTbnw<9VcEt<=r7e+v`ivj(?}{uGRy7m0g>Xp&$=tN2d z=_KG4-PTra?_EUm0DrD|XZMl5(w=yj-qd#Z*W0Ubv(tR4Z~Uh63)f>Ky3X3yV!52K z)zp=03OpllHlc@(fEiM{*amJ|sC6-$88+Q3OnLlFltg1;@bsy}E%-7?LQFvO)Fyse z2bRL0ZLDtYp_MpdHD7u`j;+B7;8nxBhzjWTru==Qv~=Tnx-So--OD{5TKs#QW=xa* zz{Z-Yfh)YTJn*S;=}=B`P{BDau23#3QA+`#-5(195%PrdF%q1t7}B+Vqw3T@ty38b z|0cH^qD|5=)TvpBI<37L2|*4C@A@BpOU)DUJ!oD!m{B>aNFim+;Z)sD;D zjjy-k1i0q=UOloB{3SjVy(lyAFpQGCJx{2+Rfh@Orfv`%!GIPx#u^3 z99idNx%|3HvR>0XOX`^yu`F3la<|XmGa~{Op--QcMOO&6w^~qM-#%DD9ZIhu!|P%Z zcjf|0f-@;=hb_sPChFG7#}!*IPVD)RcWw;OhIcYeQz$cVn!0Q*jGtX`N(tO?4 zSpk?AO}ktdj|g?#3#+ncxnZDtb@!j>+;MJDBhoASc>@lw8ut2Z0nQ}E(TS&k$w)iM z0}8%+_P-mv_+T+xZT4pMJ~0Hrv=ab36v5rb9;5uDLBM_SZYwM7r;Fcy`@AldINZr? z%PP%rRQK)I7Zr_0k&mf#{qf^^Jw>I8iP^2{bP0IcB1L4Z;8uIM|7cMs{dxj*KVE4w z;DRatbwjCKu>`W&AiZ~np|9aWI>s<`e*A6+W(>DgtzPc#V|Gn9*)Hm&yC{@Uat$1&4x&K-mp${C5@MlLrsICTJhy6&59N=PoVl_rqR3M;vZ1HoEUX&!T>LbiAiR zQiuOa(Y-#BTrQpS117j1;)klt@_*H33&{A)-$t|dX?Tk*8`&AAR*jQV zHVtcNlz%C!T;vmc70b3|yEa*1F6RE|{!(H~PITGc@*OM%>Oly#X4Spr#@@)RaG#Xd z-JGu9S?zg$9*@1J!YR1RQ*<}leeNus!Y$$253mq~aKD!l@BZwiv&H>?OX=yk`iM{M zoX(M^P=1JE8(ncf7ZbB9jhS=Y$6$%?U^HiV#`?eN=C_PBG`+Y%bEO<;p`~xun%G2w z>9_vH`TdfET$QDBQHb)IoAsgCwW_X~& zW|oU^C5)a}XQghsqfQ|^K)^uw`EinB4U4W$ATO{9L}*1}plKG1D`Q;Z`wl4eLdNxC zA@5tB^Hx|-o%$ie+G*=W0bf5^xoPy40*;}63nPJu*=s^Ga>^fn{S}-X z6uQ%9)`am4)~0(DKwf5ys`fHVu*cWEU5 z(H!?fN=nXqgDAJw}xO&wP3%rDiT#f-#Afw=%lEY{<~ebzFX~DgWAy>~X$4YN-&^paT(vR~;vt=n)Y)&U zF#f9B-4}2$J}>_Vh%B7!Sz?XRBgigkF#790GHG$|P3I9jAIwvIL{`r*<~!)CSc>5L z`_%3$VE@@FZt<|&B|7}b+HNdch8cFN6e->_N0>v^3@|q9>0gxO11gZKqa6bGPi%~0 zLhKd>pHbM+48b+{_cH z1B87W#VRsNTUV6uJ*&5aHls#XjF%0gzvW8dE}(LIk+dvdJv@BrienVm(IeR$ z!gcrAvi~jZx&9dqIP9|h$e^e=dlFK*|12w(F0FT_?5ad@<2ne$k?Am-HQ^jVx_&3N z^c>hu#d~rY>JDKRv7Io=ZuMa9M(J_PW{&FHi;mGD7}e@fP4n#hAmyi}HY=Oy!H-n3 zzPzzRoP#PvC{*nOx@Pqv8dz-DW=iFj_usr541RR=L1yF0QO;4|wK4n~n!w(CzTfVg zZ9W&oN$%T|>a8xQ#44#%y=Mw?70Ev<)`f&bT}cRtB&Ay*m!~-?75) zYI|Q--0;>qKL|2aqcO;*E4LROH_Io&HiD7(d-7c?=s#c&L}cz=1--J`>pvNXO|6Yi zV1KH%A-(2eaB!5Y4ZypJ&qQw&*|Nk;uSgo-CnzME)AoGr-Fmz8VSP|tW4T$eh3lFM zTZm)8vk>x>_<5tD+$-2LfmpXE@&R09t?H8BJXn%OENpQ7+;P{&>nsYB4?=&VRMnpx zSHpf>d@mDzK(8m4)E>1BbWoA;>dXNU5KgOmD-bhG zMJ(WpB%P}$_hvA!7%VNHt*P&mJ$=$mzhv!vUc)@hGFH&G+Y%%UKT5 zlPEcJKG*u9XldW<&tJ){ykMcFsp=k-;o&_p6@+B+cz`iw#~|)iZVzlm|DuS6SVs~us^ErsIMY)|IZ<9`B<7&VVr)j6O;KV2%D;o+h>EE3l`0_AN8!ZDV!_;V%~7}YYpwL{ zbj9J(2P2a*eXX>Tj!VClCrVLufvl;{b(lMUEb?fX;rgkSXEy3WcBKS*5&Zoly3qF9 z0CtHY4=dlj%uzF4IJ263w5>C_mf)MPJhQo^SrXY9$Te`>U*}~jz@Xr>Ep?Exl=Ej> zYf?Az!h+^_9(M5@9o2U{cZ}Npti+A|2s^05!ak74SC}!K3c{`H!-pv!ZwM9*EudW4 zIn`w0l><4{4GP51WmrD3ZZ02{6!$fEh-;!AV~ zu`%JLFHWY-3z5h(Sl|Vy$Le!#4H(a;x%!q3(-LkvN!yz2r1WU=i{`MD-Al74L~dE! zxU}VR-MGGlmuQ1`SNEFOoRqkseS;2=H2>Ppi8m(v1bWP&vUONR%*e!g4~Wi}m3rrL zW+B@;?ki-_!F?5!bL&VAp~zNOnY>Y47JROVH)6Qe!)O7KZZRk!BEYTJT}HrP4mF8Pmfm8Rh^)3}=Yj_SKov2q7A=nrA6NNP@T&Li?@Ix(`|gS8glQ zD0jl>UCl=_-_)iiekC2ut(%o03oGU!f8!9&a>74R`l4xk={O{}WS3{;<#6Q(Ek@xi=JGEho*!eHWD5M|=FrYspO~ zBd?-+{(ZdN*(Y=6*;s_kQ+-C{N{QWBn%5J)*S1_tgPN-if&F_wUy5FD&%6`^LUzHFKoCS%1l&t+V)zhO;N&`y!|^ z*b*E9$h+pb=Bf6cLx09@V8ad&Ixo2VbYlYX1rn&UicR#M0J@vrNp(V>6`^JQU4&G>aH8tc0J zt@v$XdxM3?l2T&L95Cx{xIhuYAUAMo0aAm2F})MUXkrP#O*57P)cS%XhRJfjaH-yS z{3B|Z22;-zZvFcEhiXxmo#HjetuwgJQt1N=E5q%rT-64^Y@uP$gC;&2?+Ko=Iy>9J z0V>oe*aoQomVz^!uLr%8aZP0$fZu-~C&*`h136Zweq6C>rXEdGzp~|c#;T)dHj}UOfVv;Hj{ztg zyv$$M+OkywE_U$9^9@LFc{fI&ds(4&yfrhC3gU{+$){;&nbF^vA1$hNAL3eWB;Twq zXK(81usKd?>F60t2Xm(Zuc+kiRo;=O@6JeKU3eQW;?fGJz*z#-93N7mV~JEP=u$(h z0mi(`FUX_UT);?)A06jO zl%mpszrnul6g;R^nZK4Ua|N59i#@8YU>!155>FjwRb-sZ1gyaOc~|1agkS%W*k5D; z)dmd*vhZ$>sh3(tCTA~Fn`pyMyTT&}2GSPMi>u^JbwSTQUeq@H?`vf@h05`TsDbML z5x|4UGvI58f^uVdfuo-g_5)y&dKBPJ%hjJDmCbLpJNe|V+mBB202pAOK`#V~0n8B6 zO;-ILl&mGtP6A{~=gv9I0$O9mwqh?qmhm8IM=%Y<5Z!W7hxI_8uHS(NqLyr)W6Dz; zl_Y8!MYVj|Av_<_P@X1nWa?_mw6&+h0kRR46R|oq$mWJ~?*mbjd6_tc68&l4M297) z!w&qg(~AnCiykif)a~VlfgZFqae2NxGHja)?ZnH)oT1^wdwIe+Bj6oY-%=$_bbV82H_N+lY8%e#Y zI(icwR~fD6OuXOL~81d3ImA%`{_J+*NRG4QGJAZI~VVMoVxxBf`PC zYVPu!*ow;n8b;gizQ9y0yh0~_X?^7@!mzxXc8Y(54fSVErAw6PH`v&1&~KnF>S6dB zqb6$~U!MOc?TOMIW>y8Ez>(!c0`@$1B}1UbthT}OWClp>&ITI&VmX{6=H#aTI=PHj zP_aSrq@#|%oV~mbx73dH_hnF(z)ku{!lnqD^WNQc;~W3L&xp=j?fzq}o^L!Pqhg;t(Ckv8wMhq4L-gyv%m&qIxWo z;~H!v9bpZ1E>mM}6D|Y&nO=Sy-;aLHlce#i!$868HZ<}`H~u53*!`(>c;pu3xKM@Q zXzz4wd%u`xX`PZgzUCr&CHbe%s7n8)g;=%gdeLH8a`iz1g?@96mcJg`$7I{@GT-l! z+Dg5kDBf;_lehla*HUp0dBRDlSFkzxYY7`-&?l`Ea$#DhXl?G9v6V$PTBO{Gd!?B6 zRz~P-X)NmvL)@gwlzP{KaE{s-hz7CxtDTn+-};C-oJb!MZaQsvv)_xS$|c}7=w#yg zti3_ppFma+#3w(ld%SmWCD!d~_mcPplNb7Jb7=D)0+dX!S_}pqDB|81b}RB~p}~i| zFuOI8h+KwR5AmKf^q-IL&qtdrjW77SvU;iOx01O|U9ZYp@ z2BaN%Fhg!(e=z@$9J5lA7klKzG4w`G!l`mVO}OP9q+=$&E9;;hpGjcN*dB5Ue!Xi3 z3T^;k?lb|Hhq7p^{@fa?KAgy1?1R3$I~hFv(G2gff$KujWbdzTym^i2QqoQ3kKrRg$9D?1g=K5T$=X3A-13&vEc1J1t>RSc{it2*r@*ix2Z7!_^56XaZ}yFT=bD5U)++r9*6kzJ zPQ51wK)dNyTfx!F{)|X75izh2_<9j<3AIq>T^QN<=v@{i83X!}xzX9Y9?PoL4_(fDa$&4_B9DNEdCZF|L+{R zpt1hS_qQ4-;Lf*-GCgJRfqw+V{O&k%e71e~l}>SoDWcP(wat;`yDV;s;wxEa7t#7t z<@a?*@H^f6FH3T2$v*3i+#op8e&Xfzyj~rnyzw%yfBm_M*P>Xz-g2F)_2J@;Tenz; zAHJw`xRrG&vHa`9>w$UMhh8x+k?$8Gh$1~U5|-BMd(L^C_v<;!sMKKeA38sY3roliSll$PiHcOXtd8RH&iRzX`cpAz!sV0g*1(l3 zNL=CNuzvH;L3+($jA56aUxdsg&-LEaATH78>r*ktHtT8N?^;Gez9$WgC?rZgAE@Sk z&$E1S^EtKa@8S*KWGc?vP}HBm@v7&J(OsMB^7)rtUL;M<{GeYB$;|Xnzw*I4#)DMy ziJJSF%fP&PUMaO$2AO(QJ6;+1Z&?LH5`D-d`HU5Di@4&F!CpTejndrtz9lNih!= zeKjmQhc6aKW@3d5(={weOXMP$$Po5fzwIvtP$a0{yMpg+%C^xonqRD`T%D@9mG`8N z3TMsRbNAhURNMgx+uyS^L^MwJTh&fs4l~vmOpl(1Gui1ss^P(I%vf@Sf!$)rFyrLj z0fjkl+``K(=X7;H2h;YP;Ig)N6bEOjT$_A+u%GSI(%xN=^>gpOU|Z&;Rq9JaRWj|{ zW~BvJ{VsrHulqwUWgVJfGo3f5+UBU zVw~0tbFVa9JMQQ5u*Ugyz4VnGAi!CTBLs%zku2}3PU=8BYgc_ z1lkB0hD)97^~qPRYhq?AiwF<+T_`7EYPMFYT+%gw8ltu777S__8e5mcYUZP;)BLoV(AkUKM z1q`QqrOz6MS21rH7UC9`9mtvOw@U4=|3QTM^hYg%YJa@+{zb~y}1LV3G84PJs4i?%(jPP%3 zmlpKAZMOh1VK5V#Aza}vqM`i4EqXL-xhR}+&);dIN3ze2IJiONp1d8YK>dV1lPZ?a z$g_lDpW;)n!B2KYf(SGSW_eq^_}5iCHb)10#MgaTH9dG3jBWZe!9lC}KdP@^uo}2s z<41uG?dpN_F-s?xns-?NhOdmaBIwqtu5o^Y^MxIx<(+=a=&ha`>> zDYr*8Tu;cFb2b}2R`*nxdrfw21&_pY^oCEWvSaqFXTAM2Z zkefy+cyF|VC3%2l^A^|?(_dDx!}OwLCort9p|8!Yv86F9FYy8BtEu}7l5^DI*{(sN z#~-|sF+KwW9&o!<)#bJb=>k&a#%)_nKSB+2HC-Ak#oiSdeJrHT7rM6w?TOH!VQ%MN zpGpB>YI^gJoo}#53wf05K12nQJ~^YlDiTryiQ%6my>Kj3<=$$dbXc+5+43hYzWTW+ z{i1fTtch;^MZdJkzMXKKVer4s4D+UwLvNKiLnoF^N*f{)(E#~Hwnh6ziIvxH)lEwe z41@1*>?Sj?CdDn=bAtuFIEpOu93j_sJLsd?luLl@V@@x(i+({P}6LlJsmU;Q>}G^5^^N2+&Rqy;>UmM!$M# z+(Uzts-|PnPWbTgXz3KX~*JNqA zH$mp+x4?wYA_ZMa#w7Vgt-F6G9KuNInC!BjyPk`?tp+Kxxqsc7_&k#zNepfjqg)#{ zZA-NKF=nf7;(U_@${z}lX{cQmB3-Lxc}?N7IgE%+^(ppF;Yr_0DjMay&MSVH>$CsK7iDXf65ch@_$}koRz9DUX}e z(s(#$?BB{AZ2W;pMb`%S?oREzzowvV?uXv*M0Z}?IEpPg&Sb-v;kifzLwK*lQ%YNm zZ+@dCnE}ik-R*wJY&Y+@Repv$1}Z^}`>JC67Pg8!F#2np_w7HaRP14If8)P#mdr^p z?QW4*blqsYbbOqN^KV5Mb~`c`C91(0-1prj{M+pt_>U@E0n;8|GzJm2j^)t8Y@-X7 z68^0}?-an=it$gqKe}uBFKvvbNOaDa#qj&gh;Xa7>(5RhxFr}YKZcpt7I!pVaS5t< zb^!0~WF~NU{6QR1AA7cuEwU@w5=)mIKUGb;8tAx6 zLM8tCI~Rj*9jTKyyJ5BX5c%rGT6{!;zm0kPR|NCZ_XyK(>|$aCF4&#jzsE;)65tgPSa z2_|BHIoJF{AndD~-@1LISS)%EMj3SYI~L7K35)T-l+khq$FYhVT0ROWsxbs1N7jQpZb^3VjYfDYW9zc$hg-cAkA< zHd0X=TM8k(ZkMQaq;NL9Yw7?0DcEV|AP0KG1CK?wA|O7m6s#HI_Th9 z=fPi_KVn=A<3>8UryyvbbH2q9uXHvJTJhf#lWGE!ogKuwd_od7Nr#{UBHiP?@i5vP zJKYn&%2AQ{)#b!1hONRQ;qgY!4`|KWm!b21)7je^8rJTmxFE3=LN?FRtc0-rZCDWlc*N?> z@x=L0mRbfL^=!nXf1S~18O&R@b&p*GA}7vxG~i)vkV=oxI!?99lK7nd>3VgKn=Wrz5}VbH3gITPdCYUE=6X zu}Arc22|%SKSOFx~07wd3x4 zyJ~P7uV3$_xoqw7+9*I4>W<=Ml%$S+=T5=6D4aoR+btTx4!Z}NHXBI|{4$JQy}C1z z5;Z3;sT$H{+m&te3_nJtJG;JT+_zopx%KyFQ_|kQ;6sM1VM9X2FBMPIcgP=*Qdd-~ zk=Sm;HK=rLux!uxZ$FfRb&!9(D)!o)lR(QK*%2SP} z5w{|H?V)OMf1_McuNonK)voV@-efBf5p`3cm+Mhy9+omi0#iXRs{oVEQX!zutcrYX~-9Mm$TiXOHtSLaDF5 zLNXXx5FCkmAEJpG01*tj>AltZnSp7(vtr%UM)^G+3+6)Iz20*s$r8Wib=*u@8wBxX zIZTXfD?VhGDW7yUNJgA`?LKkkHT7oUyGuSyIG(qpXut$djEN?caSqV_z&f19f3=t4 z(Zo~xw$BchR?j4gK6;iO!aK5hKV9m-1rrJ_P#Dj8)YlTgzq&qt##ZX;`jlzh4Y}j> zmtnyH|CPW?d;v8AN4LuMadOL?yl}ai$)^|PoAM#VU|1L(eW&!bJXPH3iOHi4_aDZZ z26iq-z(IV73rwri;0g;4a;B(dJMjpUv+DsuL60PY-HvrtX0+SG(BJCcdx%TOd?!MfFct9oX_Xyl(*ObX;W4#n5xy)=h#o0TdIR2L-%u?!KvZ zaHT{e^RdUgzbkf#RKc)g6;snvZb(i)FQPc`;$bHLQEl#VlMzI=ro$~l>iW(W^!i48 z_gS7h9=JgjXQf7@zE=4%0v|Q(l6t;ch)K-y`-k33s|1SrPz z_=;_m;q_p^>z*JiXVC!#V2`$MMGL=yoVzn=hXxiyN}Rb#))jb z(j8p9zmuRFS&^ap-Ofnp*^aa9xr;4SiL1~rM!;tlsLLu^g-yWelo<$Pr-zEn>;4Uc zIZ+Gi>e6f+%WJXEBld}>S9x?_mgm!}Tv=&Be;&d5+wG^eRjtlkxOpYr#{ID2RZIu$ z!fDtuU~#mA>X7R|j-s-^DEH~I*)fgT)&8E{E*vW}cFhPI_4g8^kG^4k+EqWJ+v<3e zCzb+vsZ)BkQUQcz#|mqH-$3bT7Zo;=q}BY0uVB-wz?fb`z#9c)m4*FfO=_`czpA*L zQ)W6vF<*8^9q4mhfPfTCwVqY~q0FbS=C_reMfCX&f+7uO{HKtf=LF+S zqx?0F%wmtkavRn*oVLI`z-%e3Y>653S#J{>ixcBUW%gQQ&w0d%zQOFc>Fsd%2Lyrttk-s( z;g-dce;qo!!k5Kb2HG?ra|c)W-YPfsnTo ztfom$2QEY&@6CtP6?W#sQcs>X%so#JkM`QUC)`ttyDoCZ<$cPHjis~a7A!d)ulVs^ zZrEjW9PyYipo(?a?|Zyj$9iCi9?pWJU2~*lfo{9PLSoh(HG5^BB#@z1?R?F`{O^O0 zlIJ8VmO>tjTB{?q3()vshqUtI)!2d`J$r1%!-oH#s7^VahTAbLo^60gOtG5;PHZ;? z%tINY$k32P`=s#pjyP-~(ICtR^884QAT8D5xxOOrE?%OFc0 zpI6f~E37OdNa2w{EN<|LLUv#o`ul1_L7p70eMKU)dm~j^W)?8<53Z7b0B|+ns)kLj zaHiq|$vG#S&Jb3aMe|Xai(B8EBP$}_>r*PNKbtAHutPMXG3KVGNL#Z__?*h`yZ9x zedpFb8#UMX^Ew=f+5*vrLD_i2jERxNF9=b)x+6g86Bm!SAm>88h>VU5>qzS0s`a9M z?0OlV=RW3egL@_R@rSBy#=+{&FW&G|&(h;gDID}<=XaQoUS`Yt25s-7J=Pg}ge?dTK)$R>6bhBpsn*T^v zIivWs@`u8hgzv6z(SK@hJMXwRFR*vWvI9{8=zldJMYpgwj%`nC8mU5Q+&)P)`mn|({{^W#Ul`G#=gP4lcxOwc5 zfC}VNwhT|FY($L?(+tC*b1S7i4NE4+_b&6U$MCRWl@7K;VNwJm$_+)(`m1IMz#gwK zNTD;ZmBsj05EUrnoi{_lgf2(>opteB4b4sQy?fVf$pu9*48rFUrf6`dVSY^T3HxUA zzcr+XDP=EjH3?ALc$~l;917C5w&pEAXxqBG0nhIQlIRMM;JeUsw2R96Ht7y>J=2Ue zs!|-PjY0Mr*DAE@a{s|GWU%dU{}x}34td1RHQOQhn5&|l7yZAl{vNFY%0V#?n>_;- zt65lvR6RKdZf|LBIwgIyIEjCNHE&onA1Z|mD?7p}V+o63evdsP>f^_6LR9;Z z0y^g3KUO6tZCFUu7ti{|B-ZV(&ch(X;zXZ4XEKj->g=!Ci!Dy0Q^$|MVM1gpo|>G7 zbQEW$^kj=q{YUklcag>2TPybAdko_1->;8~`!CCU!Y~Zfj7Qqqa(x}? zv&f`l%V+!k)72-~vON>SGD2>v@_$s@XO%^x@Y;w2cJvX=2W_GvWx|YZVW1mutBnTv zro+sRyVD~RCDOCvbj&H)qB!bZSvvJnFulvClE?}ULa-oD2ghpixpKUJhf%89#9ECe z<7P>bmLH%fIo}VgI$+1J>Jj?Zz1FH&chhw$u$s5z-JqQ7%hFq@by&<=Lw&+fw@m&6 z3laC(mol#}`&Uz3Ay#aDW3w&z+_S=qHn_M^O7yzbp6^P%Qo&UYxF8_qJ#iQUBDk!$ zc^GJ%@i@_qkuAaRw!izwYkuK0d&hNU@;LY2}h$u$Bt z&tE2ORnu?-+G13)rp{IZLO?oi>*dpoXXZtJ6gRd9d^x(eXy(ZovNovC)UUFQi}^F( zCFp()YX~nuJGHzJ+PO&5LI*r8Yblszge|+=XH5^hRm11N^U+D61Y}vRzGjomQMyzs z*1!%)=itl2g1<-~(K@FF#`lVR^(GfLPMrA!Ux=%cC2I(c-Hz}&x4bZE;#a282E*>&MTv(N^b%lUiR-%z z%mrq%j-rfN94y)$R;>t!54^R$EndWH{`>^bn2FC@U zIU(j~>-vKB4tafNLKC*O(v|lO%Y-Byd(vctS1GdGZ?gn__0uY);7CRpb9*Dz^zDX$ z^pkPO*(8$kv7hRMH~{eO4aXA%Qx6hKq*rKX4>SGEd-X#(|24s!%XJDm*PpG`dPltp z#VG~VXG(AS#dNYRD+6f(ydX$+t$*vy$>_7>&NE8zp!Y414#8tR7KqK=CYmlpU^>Qr za-xx6-SU=Np+~*^@<4LZojbqiBj;l zo>DJu7s5H{VSI77F>u^i&L&@gaQ{&Lgw))gT>nrN;5Cv3>$=clxVbkhZKaIS?ujR) zEMLkP)(WFAf4t+5j?$E~ztVO!%BQ4xbVUn(q?VtWMcFRW@9jl*9F-YQLVWPS9Uy5h zrsV-ZV0;DNLC%t9S_glz0!_M#w)>&&Z^G-6sFzHCXE7)7_Xcqly*4{>U@LV3I~M}u z99Fz$L5N0|5*uHwGxI=u56(?a5?2M^nAA!5o6_&i ziI?Y!h#eRyDt&)yRP~JWi?I)&V7o$L&&C_a`?reUG7Z}EX*vP0h}CxO^(=Edk^pBt z*v34~{{xc%j&BSEQ)RB&_-8-p)QY>BN`L zdVATrd-M!-=XS{Z>=Vhv^K+?`DX1N9#M2D;;w;`DQ&5C|SSE`%?mMDVix*zl(j}gH zj8|+gS;;DjFz=6AwKnxOSOx*BXp{KBR)9|CHuLAogQw-ZrvQ&&&c)F0_N5U*qiBn+ ziU-xDM!EeQ_tDBJhbm#|^l#(+9;s*)0ZV0yXZQ1~;KzBOU-QRabb`{BPQEAqCdupv zcI+`_5ZbS1`~Oj)F38|zhB+F1{R9yA%u9GkOL~#2(mdHfmg?0rCsg(waL6&~%F^Vo-kKP?hmgOQ`IIcN5CcUj1$jai0AM5>#{k zhx{`R@y55nvs{RVn!(D^hbD-&F8c=QL-V~W?iYT0s;AubmnHnUY$tyBu)4l}x#nBo z{^!j*T<6xeAEh)Nr(56t6uj8rj(_mO0v<9zJx2_krd2zO<`s?k_q|Emxf>Bg2fBMSpg)W593$@h6T$&2ekhq)o z?%VSrV(;5NP+d}a&y1>3D!$a^t`xj; z%kOedYqnIT{ily|luN6HkC=a5Y7)urkbF+t)XWv9^N4EU$!m}7_CHjtT=Xj^RBbYJ zj1ytS*W~HdT=U;v4pX`k9FYI)Mm>2lek_E3zS)+$<59;C>WW+C+8$og9(^3FDaIck zJ6+Ran!7ZlJS8KY0Rq9D85WRwSfd)R_5Y}DL0Y+u#x^uC%q71Y;u8O(YHOX2q_9{1 zuGeMy{hTd^rBdt0nDu1}T^zQk}5yrAJ7<>iOAAPG_#O>x~x#f`6 zf|o{1C+|;`Ka-OwS5a8mK98m4UjrJG%Nz%d?=+W~5OijF{f-QgHR z(89{(!0KIT_?!b;xrXCkt5}7b*9Q6JJSJ)7<=z9wwYZzT*Uq?Q4DQ%7`%IOXm@=#lKG$Ms+ve<14B=u7ZO=oC&l zO*y$Q+qYm7WL~u1z$wyqMM!BUt#&7Jb3M>gHeBo|7pNUozS1s60z%#gfC=nQ8A^p;g9-%6 z#-9w!VsGKw6#bfHCeFu4FDnm5)leOXj7?l(zZWyp5@x7Js?xe$+FGks*iY-f19}e$ zXYfF)ySOwQ=m1Z?4yLs`BSIWkSeQ^ zpgrpstmBNIzyg4tGK2q_5#X)*?DNl+q*XT8n;IBa9t5x1U!gW-1Viezn;hNHU!Sur zkNGPHP8k$-OxGR~FT}DPv^BkVrk%L`;Np9Kp*d?v8bUNahLA+ly?WElQsJR~h1Dzn zs0aRE)hRMN`%j!ZJq;XN2FJw=5KFK&N-vULT0G2()s5Oea7grEzkW`a@fyvFd{t84 zZ$shZ&Z4rg2^J;LI;5L70>LVsP~d;mlVBM+w&$F0%iUM!`=P+%3FE$VxI0+CMpJhV z3#h|H2}c;y*t76L#6Txkacd1sk^ZkCyQUa6m=_<*khvIi8&T07+B zk@KeWIV(qRr)v@n8rdS18!`D;N#=J24g0aaT;+f!b4g+HEU-S(97`0KX?xa`@{H`j3!Fee8avVNA3zK_BEn`606u-se~o}Z zYYRZYQ*VCI`_TH_|NU1?V@XZ-K}^X>HOQ=6=Oi03OtEB=$3EE#2UPp%pojlax$zPN zj|RYV$Gz#|QSFZC40aN8m6pOhR29>E5S$0O|1IF-L!JBIezHY9XA7F0(C^dhGf#cp z1cnoAx%jp`wJ*4l2gV-(Ec-JP3}vk6Oba#M07a`_8*n2 zBow*ex{N$$T94+I@xx3RZ_RhpHof*l_=U_)?mGYZVqO%)IhO15_=AZPtBl9mVKT$@ z{J)4or^-L3Ql%JpEEK%f0UPdv(PNn@$t81dYUftxEbEyT)fJv7eESUxZw%dSO*1Iq zsM$L89QQ4uCo)>eCshDtgf^4o(BL%_Sgvj2p{t zb#~++vx=--xI{L#8-AP!-J|BUFzN(2gq&fAc}jfMV9Y~F{jD#{6=zlYf7xJ{oU1LI z6wYF#+cMNo{z~>ayK8Zy!R(ZO2d1qzeOeGI(?wsu=xt6n!d9WT2`&!huwf)ain&iP z<=Vto`W70Q1Ozw`mFCqs&~KARnG~EkI#%Swr<0=<`AX+j{A*G6sa|$WS^_xk+@}_a zqXRFdh{mtWtNXo1IqmxrL6L$)vJ}<5pb}6{eET0n`0=t95Q>#s%z| z>-(S$UyF@qXQD%TCtaO(oF-Ra!o$+l!jTT<09G3V;c}zTS?5hFno8?@+a7YYlM>d} zWD(>J+hYjpaX)3KuqhZdgMgX|ibl`4`+guw-n~P=eAZMzh7WF^R9*I8#TQ_e02RsC zKx!kN+X~sEOg$~QM3dwsL6pX)ZZ? z3W07?H8NTMwhum#Ns#GbjD=LFu9-oyW!8kcObXwqmRCJD$P8|Fi!VnUC5Aumgm-lQw3(LKbDu<7qMW0d_iA;*<<~H z2bV!$dpXTsKE=A15V=-Mz>V)s>^!qP_f->y^a2%>4{NS_XZLhtz_nuwT<58ynbsad zC_fTQ`+@;BQ#%TOx+;1Vhb-DfSyl2~={5nCqK%dBACgv$FZc?vXMG(^YXz~$o~rQl zSF#i-z$^1X^tPgcvODw3n21c6dVsuZv^=T=T~bbeDS$tw){46)4}_I9bxH8b$djt;P(=)~8**cKebn`@hTr4FTWY4w#7T*sk1;&Y@wC#QsP1!I$zU>h}g1 z6P%xaU%ydni{@5!cIUw#Z|1-Hak5`)ET)4OXfJ@s)gY#*;bxVq`^5`Be*r2xs`9oXE>gF$i>;=p1f*-bdv^4Sx7Gj#^h^SYo@MA?% zlR)pbmkFucD7<1-YmdMuh(>f}1@%(+0WCs&U!-_Li;9kI_Pcx4s_c&MJzvJ=m2nA& z3^+X@WxY+E1&qM@xq&d?YeT?koG})k+KWUz8l=JE5i1FLFdu{8s2r+Ya;ID(XeYTHecdTFxSA`5N8n1e3 zlk}CKFop0t5i>QY6cKbhVi(Zy%|V|6hnio=Yb5HkCgVr3TYV3U%9a>bEvnrYZ^O9m zU8EDsl_8(dOH5_DD`u9+A>Oo^kve6uQ9};RKgPA@A{F!7fpKN)sCeU}!Vj;t#k=vx zE{SVZqf+!e!~?+NQ+14CelrlYhkJ?1V=W^quCB#b7}QqM=Zvh@R|${<#rv{i&Q`7v zgwS77{J%)Nk~N?2pHDd;*4WN21M+EOq*AkFP$$d+@KF*~on3u|XVylMvm9WP?6mWrcy9 zpQyYCR_8lp<*T@!d!Wa+`xy@N&W=87@NacKEEkL|t}zYWENYE_L-Y?YCp&8;iegu- zv;vf~J602HRWRXgSnHqdGoqkcMJbp6sP2(vE>-_-Irzumr_hK3%ju_FK45T@p=DVPIRm0L%KO@M$} zDf-QLJ0oVei*{X{WtZ_oHgAK?H))S8^Aalgs1?O6M+RSh;Zu9&6O$Nw8o?gVmqX%h z6t43qHj5s)KCdxc5(&wV%=iC~DxMu z7u}WaIf01qWT@YrsnoipFy?jy1PrKhB9tex=vZE;YE%YRy>B|POwCxuh>+wv!k`Ye zXx=XzuWASGV!4e?5*q7kzTT~4B3-HGK0dO%yZb`C*iOO~F%;_Wl_#Pf^WFzG2k~2Qh%K2?@o2Fr>npdfcD;@To40yq1 zyt8(p$gdJA>h}_ zUYbB36gIi;Z$5^C0V5aA*@@G$ zYOLTJrrkQ@DP^;z=M}-OcF{eW9gn7CE1Q)4FyL@;k~Yy}XN9SCqVirdqCeg4do|c~ zP+hhdsKsGp1M)-}^_08yqgyxKFtXjMY7ERO_8H1lqNoD$tE8lIoUQG0T(`@%R|Mm;!O!uT7^v-LAqPwd}wTl<0Pr9~D zEGG2wK%V*Lx`0%8ot%5 zjf3orT~q8XP+xyuekIO~;BR0NZ%zSi3QQioIkk>yGmzArFxSeXv{rTSdQ*mZfe!Ki zr~ulB86(k&2tVr++fJF*54g+;aFb>s|fSh91(a8X4ZhMc`Tqmx-7< z<_?lwMb#Y>QSZp#0BAA(3!)JjT1fEPaCz80+v{c4ZiWmyO7iK<4GmAEB2}*?v7b*? z@m;IWi7JW=D*$q#AxDbs!@|9rY+-sC?SUGw4#Y`33t^PVPlAxc6azenYOsO2WfXd_ z$Z%F#h`W+bQi5(+n29(HmAOK%&)qu9Up&=q;8jo>%;3iG!`iD|p=U!neE~8{l2RhB z9rYvU|D(cF2;cy;sNd_xpp;OGU^Yv;yL~+@+xym3G00c-ueTd)*T>OTXr6?kVf-@i z*T2%g&DYt1?5k``KoCK|%)&pIJ*^Pw%jSkef~eb7C5U#h1H&FJ*@+^bV8cGVmmG8( zpTBH=r_Q4zbwh#2184>Qb5V|z%t=?3>(m_I1JGPZNC#0C>O{x_mL$StApwEOGlN7S z>Sm*!@<&)BfeNDnqO55JTn_+1fODy4V4*D8;9FMu6B)rf>+8@wiAXRux*7O zvcsSV6XZq0CYC zrJRo|+?Rd!P@N4!y8W7S%F+C0jYxJzeX4%Ms@)Y(XLkgwP#2W7)K119m;$0*#5>! z_5~okXHd@4fo~Y^yKKbItGu0|h*QS?aO-!?HrBzrtpUDjvvcGEeoZSt^7x78ibd#l z%$mb&ghY2g0(r~W4R;J266L~`h2sPkoE-x){q~26T7+S|IA)i+G8`~R^4A&yoY4;4Bkqj#bPq?4yehrkR zzH-K`ktj9AplWYWV<0bibDE{qMSwI;HrksQIWIH7fj_ z?jCQ%EiXbN0I2cLU+%nzN{ipuJItmwU+0#oxt3k*daTuamr?{xOCne`;E>5@x6IWD zfPdnuI)UvXCG4?+Y_#{VPi*w3GY*R{hm1pU_6=Tx)|16Oml-T~Y>W4h8}MT}>&I>k zwgFbva4)qHB%2~DHuV?m$vEjM7Hri%u6&PRC6^DFgAF@xNB5atQKPQA%%*<5*O(gT zTXx%h8h47p7q2&Uk^!mHnI#<5+-01n05JOXn^?8dV@e0O9&ni~sQrRq^g&lvDWmZE zs<3;L%HmyD`pQ1cx<~t9JtCpAMrEJwPv!M*$GSi4^1jrRBVigbm0DXy5-0Nk`zFbn z!ri_!E0kVbHerw=Jly}xXJ(xWNPD5(cd2|Os>Sj+jS}AUONS&e_7%*n)&bojC zM{9yM(S|aRt=Ks6kz}~uEYR9i^F{H&3x3xv$zLz-EtP+| zDm^Uu`$-B*I}GeSegtW{+Xqwp=lOh2mCz=6Q-N*}P*`+ui7N~Wl^pJrkq5@Ki!u!l zMgTqz&9DFf?m+A#5@|qsheJtzcy@Xh6RgGn@&qs zU{i1^k}dYzF6<8W`NSbi^ux^O!?6t&yCC>i4)a%n@rJcRIHjF00dZgdqv92=co6?o zK))+wL3jOgnd3cbjr~6Q6or+0585H8-GD#>A$uYGaC^vo_N%&7 zqEhhMpTut>X2~VG;2&EB5mk|neU@>Eb)FKX@<4~4Xx18YRbfTd;*Ug=*Bee;`;8WN zE)8ph#%{1xJt(jWfE}s)6S5BABW}aR5EuX}9947{9$=nsjP?`w+c^8!M=Omnl#jdw z5FJwQPrXcEdVYDIQ{|PLTO`y6{_7FPp*|8r3O#<0)Ak%Tv6z4MjPDqh?w0)+SEE+FzGb^8cvIw!p+9;pZELDeKX(xkoN%hPKkSD!#;X!u zpv4ztUz^8zp|{GIw_?|W=^ezr(itE3Rp;G_+}`q^vo=Y2y=OJUY#4TZOa~jd*n~L! zgYmi=KCoW&Ld3va`9hREiTHu?JDV2c7hZo9zj~=b-Uk$(E#7+P1$X)T!e}XPy@Bud z&mM$Mx}^*p&amwZmx=kiHcTF?`GV7RAk9_SN;15PAXrPfMo7+scd1Zr&QXBlmsJTJ z@14i>^8y5i4UvYc?W%UyY;nAb4Zo=u>yM?KjL9}aZc;Q+aqPeE5IARvRp+TmM9b`s zQ7<~WYTU&PuTSe?8)))SvR+$ChcL`j1iYq+iU}$`n{Kd25$xR?=Aaon3m)(vKS^Hb_1L%UfbFd6Ie=_#z>FPo}nmoI&f!#Vi z5s!i~w%V>OI~$-+<$lV^)X8oBHDouY5zDX)xRtqiecJV@Y}2X0MI1AW`O~PLJstDP z70Bipk2dihY|=`S98FPh?qnf^WeCB6WtN z&Qs4RV4Xsy50qQvOsKWs{sz{;IM{2gsn=WU=sKa&l*ORB<(-VxtBsI`G$TW{wFthe zdxfl@-HBqv6WmEKouH6SMRY-d2~@*JE%U=|k|!{|{a{n$yS^M16*DFICN?wdrm={x zCl2f`@)0iu^hVh!*QgwX8`d@?4r4ORWha9bF7kG&f27M--V#Rwa<-)1z^YyoMMjLR z0kG$}#?J@!98^IW3E8pM8*a4kB!!~&Fhw8b|_k%v}=Z@4#@e`l! zLVJFmj5dvOydlZ(L_X!>{bpFDM=HKVPO%hn(o?_u%`@oc>~xlMRRU%@YP+f=QX^rE#s>0?Pzoy{#784CLm z*T+*}PAVGtI4Kw$@qXRm6~mqUA4k_6Pu2hbl}d$#j54l5Dm#1Ko0OYmC41Z=J9~4v zg~+_6ka-ijnKyg8wybQ|zFd3XYhK)YKfm++{dxbnkHR0H4q0T(44b4EvbCjU(GWxf-L!P~wtsT|Y)U`yl?_ zTEg@~^?NxKH#u^o&0L7zb!;j74#Uom4a?JeylF-cG+FB>I(4c5BCj6Yc?kOk^gd0b zbvH7FDA^9;eLm$L5z)gv{dbYw+3Ux~m&Ef4JAWHFO4~l>h`ELaQbZBpUP_;+Ub1AF zNhpe_7Y2C?v=5yu*Hz$}!V8`qFBk>$hz9cE;`HJ|W#Rh3j9OBsfjQrWUCTS)*$^~4Y4IV|!F$Ny z25$%*=B`(qpf@g?dnB)K{L>kb_*Lyaf19}9KBX6NfZd{kT5t9FapJhXY$XQhWSEHi z-&R}RhY#32P*TDu+|)J52&%&JOm#lY$eqbO07A#z=YvCnI}|{y?mozJYiD^<+jU=+ z`EvCLW>mc(b%p-NRAT~sV@xd`{Nz76fX-SR|9j-9e5INqJq|Y^;Ug;`zzm^PM97O; zqB5YQJ5=2(y)6i?rH?Z~X|ue{3k{9i#(YBaLdvyY1&XJ1xL=^$AKcI}zLzbJFs_Cy8%! zE~ke*9d>UV!OxoT%awcnyw&9i z^&q(K;$^W07cbLjySNuG)#Q5E5^(M2s##BG9RAqzKF4m=2#oe5rpd;eK?nCxtjGk! zx!g1N_=;}0`p>pwRkMX&FOh1PMf#g$`mvmurq&vCltQC2pJ_1c1AT&l?4@lR`1Zk5~=IcLJj}}{lZ|GF8D(7?Gzf&dkh|%hX=h#|_nG-@B z>~i>cxvXr=50TwQ8v>Q$KdH*SL6h5BPwl$eLCntbFX~XyK8%jb^83-MHEmO!+6CVu zf-~vwc}yog_0#WA)Hsfp7;h|IIXlhpy?4LofVK+g{09hJTOok(+#U@qvT)gFTNjhM zrhgLA(LN*c8G8p0O<#CoYIdG5$j`GR1 z1T~4?W*RTibXd-8$$i_3-4Ltp3BM#&7xIsj=SOgRr%L#s=FC@FuPL8pznOa3szX>w zXF>JD`XGeGk*YZY2@J4YVy`e&`6rig?~3i@I4*tcy2vk2m&5Y-qHhsj<|*fN?Ozux zyUvbKZMZG}HC^aBey+|*|JgsSGHe@S8U>@GoiNR z2tDj}6}YF>!t>Q7p#kSm8n5jwSr6T_my_Bs@HPjpx}2#8Fdo?e*K8E6Gn9+^4f3{^ z3RpJBz{MB&pzT4>_o@a3kR#1<@8IiN#YK|%<#5S;=#6Gul>lzRUx|fJdkl3AoJ5Pq zFm;<)y_)?%bW}(1b4(rv?_LjNBCY;M*RD5d0;q{d9Kc}!O8{RSqev3AAJ8-{_@2-H z^otKGvGJ0YeG(phy^NP+U3}$bfXhe{6>_KWm0_Vz2~xInD5socI&`Sxt~>JM*^<+t z=znz5Hu3FG$GA01j56NGJesaeQPF(XU$2c`aw`bkOdD9v|L9LpDYhb1k9?@owCWlD zd!uwS?%?<8w=`{ypYqyCAkG=gG0Z`NPPW0gQW5yK-d80-y4TeuQ#Og5&lVKL7gy@70&sSe)lqEq6yro@_=BluC+nNO}uP)=ETU z%)-+ePA~j~jyv;OY+$v+bcT(_f$4|uydvU1!bOR}kLyX8IA25W-W2D1g)gk_f+qXLkd5A&T4K7vm({~~& zbZf8G5=3t<4)zZrH3zrH!mZw(zryGDrCNNf@nhikch^Kz3rG{ky-)w=px;axu;BUr zMlm$3*J~_jd~DYp0+WcuwoAr@Hy;~NgvbJ=&RG&Qv0KMMc?q|e#h^i`p&`x`moQXK4=q%JH-v|yI*s}`6=MQOk^id{v3>6 zjZ4#grM+!INT8tYNJdy&vYKd1?;kl5$1Ia%qXJ253tQ4PVs947BbmKTx;A71Eew&R z6$M>O$_WsecmH^6Z^H)Omx}%hhsiGEnHq3Q9%;gQob9g?JIQc z$_!rWgwiG3v1(+cESa1(XQjqFuT*{1!cJkASfJaC&q)urYFD&q zk*?%yb_gd9AkWL}h%W8{AHVlXnB`b;As(iH@7+}ZY*887Kv!iy`KVZ!E;Z?M_CBiu zYz=gpfv54$$GFQ5NCooqy&;lxE$)>>#eemnNvgK18jDw6E8dmVlayg-1u?5?FJf6m zVnYR6#J4Fs;EtS#zZ$3%uY@ZH>dm_Y9E%Q4J3I>o=2~PBRPZ<0vqvV;3 z>e`)#mN^)aSO}Pi(90U`3m9fIbpi{Ycv-W!-<4unC$G@cz4CvMRn$Fz-Ye+XCNsb% z`-kis_%4weEO}=y?&H6g?IwQlyZ*Ql3TE*ojg zRwcF1zn$@hp?bI}WF&zNQ`G?u8XlHjYl4n+zHHZ+T)+u)1LV}uqD=~LxR{eJm4jkw zqSz^SGp5f@uPLADdTuE4vJcGgUXxjeX(xLe0<$YZIiK~08dv_F8IFA@TWi5<)%D#H zR&QUf={8(@gu)>(>~n^w+8ECKJozNON_zf0gW@sRoYforTP3P`gnK7}*Gu6;o5D}zx8Q>k)#|7XlfuJ> zHZ!%C+Z(>CygIt^kbJv>A#y%^EzKr**)X#BQ= z)cdw$+Nk=ki|@0C%BcxI{q4f&qSC;x^|R2Q|NEL4X~F~UfDl7*V+$Byhp^jp2Y}yN zQFPmP^tdMDHLN{SIIZ~-bbdW#_=|g|6n$BVwS+I~_*}n_1FuG8^Gkg+R@?Vrd-Isr zOkN$3{`)#NDq}Z+Hl-2COA=p=Zo0dnK}hLBUT**#<4v7NKjJDhcG@mz?{#n=(c==m zVWNlk3D{{FGp`W~jlx54sm=X`yhGJ0-jPj-*#0I=FM3`p*D>oZx$4i9*>om*>-hF3 zn|RNa#S#Wm^%?Yob;7Mkg-_;jCS`5KMaAAoj<{wb#WMYw+BNpFvLmuLcw_7exId6Mn-b%+alUh z=znyS2O|~kQwp>zBE+ffgTwlm%LLCpqRijwZ^4(QU*2)udIdd8(NW53BZ5 zH&(YEeti1vo;E>CvNj_Nb0$H#LKKORrLq(3)5e3CObo4ysYSc7{p!yWUQWDhzw`Sk zAh2w7@kMr-6yDbl-5;K_VgcvgH$ZcbkrCEt6%x-gYW$_-6a{{PkcYtm7wYa-GqKfA zT8Rv}E1nCy*TQqbJABh9GSXW)qYCT$tLbrmOp9UImw)T0NDBL|K2aik5f2JbI@q?b zOfZwXEOw_hK(H}JC*^XwE{8v5qcQQxVacuoD%i{rttL2!tJb)c^ze{FNt4p)GbayJ z$6n@}ThwaF2`eT8bufJKu%yrTS*vQ9-+l-P zdQ4;BhZ+3KiKx`eCeXOZ3iEhIM2k^_;7^JeIogF_1%MR>BdY2-E>-IdTJ+}H0Y$yD z-+l;%GH?v38adY*nI~oUipt`$rUGRK+eXk&JFh1#h5%9bzt^$$ded#qh)T`xO&3TJ zQcj^V(IPt9nsrxikDY^;w-)0BRemZ7X1p~SwIin)<^CKiDt4O!@ntM?7gg4Mh7Y=J zXdiB$@Qag@LbR*^*rS`OB*36)!1> zC6wpke1|e?^{$V!tG_9oI!Zaj4eY97)yv4_+Id@;Vn$ zKKqrsGq@m&^UM_sP4<;Qke#jC(*X7#D_hl+29)pWG0Keh#UIf`ELLk<0*}*cK4Umi z238P~>~d5!-qnnp8eVB@#`Czkg$}q7MAya#bV!yhVV`z7Io|D>&R-#x_H?mbp4o8- z>m+zZ*JybgZt|DzNBL3*C=8`5t4jPJsi^9o+Y*Uulsuqx38DUDIRX|^nB7L*YP>u6 z9)+na1wi9`V%sG0e(pP0S6}&eIE}osSo3DDDRA@a0ecQ$vz#EpEQ)`HJ3OX|eE85` z_}ZRm77;RAbc#r$eF1G50mv8U*N!X!#N^pgN$Jxn`3Af6R0o3fKHgKZYB>`0XyvvxDvNe-e1XE~L(pkn<@@ z_^AUGVQrN>DB(&nGP`ys$p*%1Aw+PI|a*n}~R=fd};n_yi*mVO;A ziAKJnQ@JT^+O18EwH#{>yF<81``Fj2cti?Nv&^Gh9dY=wUCNDtqrg$P9`X3e{=r$W z55N{;)K3r1U(k-*=3-Skmsd60YWaI6YUvw&Z_sz9F_S7Tp8Da3liJ-!DapgLF4=o# z$$HT}g{sC^*Tsj&d+T;V9lkqo!~?houwYEcOTznja?S#O>F?YWmkTOsOkl#=m3FSH zIYJ@bbP$7S5ktw4MZle3-k_Dl$0vTP8`!I>Cm4;1CNS+Eo*oFf1YIryOH)83wTz(k zDnV@$lahg`1kaZLZ>+)vTU08G;GOyhLwO14zUo2h}A;u0Zo=o|y|C zO92gx9*}CSu8z)0(ov_a@hXyB5yT$fBa9OFn@)h|ir;Xbs`E(VSwY+yTpwetf-!DQ9y zD{2|U2F2cSF}^5}oJT~$G6uLNQor4JAbk{zkP7GBjM7w1^3bOIyBn5SQg<+f#&^?L zh~P4gkb)!b__^UV3JS2nM&+P5@kan2AJ$B3jUwRM0v3l4x6eOgdmG-XjQY6qR^_?& zd(|@&kw`(8xbVsrdesusyzgRifz~pOC@6aV3{$Vs)isiA0-YX?&v5l!!V~JjQEh-M z4C{#hg#Uv_x?=4mr&{mB+8)Zr0+U!)F�^Kh?dBrmG=^-ruKJJ}rgJiEiE>OXmEE zHgQ7&2q^S83oLn2Tdqx;J&ZgKv`~_efzjBbXlgRW{Y)*O8v_e*`@%VR>N}|Y z2-FfBL&#+5g0Sqa00}9Na!*0A2j_&a%#=VEKbu))jx)uy`PUWidVVT(_k3m@=qYLf zOESJ>2a?jEcpA&6?qjw81zF0qL%{Id}#-@}}m&<<1a}w=i4CGxN1uA?Qw* zXW;%on+2Qj&W(H&nErjKa}3yq>pYwjhVrTk5NnwSl@|Zc(jpOYlm&C3sCd|?8v1g| zT$DrvA0O`TZ&saAjv=kESk#}@?TZT#<|lQSXfVjRNxmxU-_*rkb;Z;he_xS!dvXKA zKl)nD+&Yl1n7hT8Z1U?rI>w{Dhpi@UD@5-^0}LSQ0f<^b;Bjh$cn79)mNls?iqPJ+ zyor+T@YPQNYwI99L!rH|fUNQ{?Gx0B2fhLu8G0GuDLkg#hCe4erxgAq?>2+wMz^!S zq)W2p%@hbX143RGiA$b+ZYrz;{AOFEKszBovkR_A81Dp|)-FDL(dp|SF&(N$yGpA7 z-y`DRgB5{B_1jQ|8hvLnf;m(o0AXVLgIsS?yC*KEQ@96JSxD3n3Z(mUU%6ECB$~M; zwoOanismuJ-3)57_db*3x2mvNfgEzeBI=cI+{(xdH>{KI(@n-t~2C68BD)oN!)HsnKMf71;! zS|6&SItC+)x(3cW!k>d{MJ~{A#51F7x9*2y29B->spQ4$zH!HEf=^Ld{X`?BaS;~M z*2t7g`994UsQVA5XL>z#^(MQWs4g_bift%9=vDaQTnZ7$xo!()Rw1ZWR>;$&aBmvo z9Mc9;r2;BrO$GHCdzoSd-_JdXI{tmx-e4ffIO&CI-j(1?cJq$n#l2vWf@vdL43}nx zrTy6K^hm)WH3%i`vTxc&V2lOEWiDl#CYyp#HZgz`uHSx7;u7n#n-k%n=Q}wO#h;wL zhZhSI+7_H@hG2f3oalm0{@d}%j)a7{J5P*D?>)-_?dct;PM4j`uo5Z%vJBiVqq8AAX1nQVY-fj z#WeSh!ezu8G%U(L&<0kvYNK(?E+PTb6Gv)YeCkDs$0hN3BKF8?#A{eQjQilENL3Wz zU)_uCNbB=sZ42h;D@sm|F^djdy&xny@S;5H{mZT*8CXM5APAx=y1bGvVdTF-WnDv+ z>20$wV#85a;4<@iQ$V`?6uJe)YrbLpP@v3^GgWa^E> z{dOOk?%;|LqF@DMAGWqO-7##_D)=&1aw-lOMO>EnkM1=KXa+7t{w_%JZ-zxn*G2|j zsoDE7DqUmgVRpTQ+VHnP7?!Hzlebk67^+vkM@cYVOf@jN?_|z1UGN_rgzVN8OPhd{ zGaqji5?oo@|D(G`(Fn;WBTW9~&tthJ%WZW&Yp-;6i#hB@T-5>vTwnY=wzT*s-#S;m zsY#E5%!94?+NLLtPdbd{4(FOqTUWkN##@vT zy*jkN&mkGxF8X;vQmNB15mCitIN zdTrEu8{|_%Hc8fwed7(cAa3FeG*0)3rv6;GD^U#OK=Mm>;b(8>ET!kJi@&Cz_`u*> z+}=?2#RsCT+;QN7{!o5vWOfyQZdrzjAbd2hI)%ak47-5oz71x|w$+*oWkrofI9t52 zBldRIMG&1#Wa?SS8op+VLMnENQ_!12A)Ql;J2eoso1<+;FOfR8Xm-NBD+uv8g?b2i*`NT{R2&56g!^*sVvDISco@XcWdGc=m|Jqk`y8`6EF?1x~e+$ zJ#GR5ask1$->*IfX?4s=y6X<~`rg_2r7hlSm7(v8Ayv{ zv>yT}uOWs#|IyjHBSnrh$Y_G(2W$n`2VWIzWY$A1;5Ena^VhvEciJj4@-=-$#eMv~ zGkyH+I*TasTBCA}Ic+E28C9}5Y!$2`v+>}Jx9f6&VbDPpEvpbc6O>R*tkL9n;Na07W9j{Yeql4dXb<|oT`xoK)74B}vjC01 zzr_8Q`DE~1#VV8IIl3v&e<5f3Qdec(vjCP0(qA)E`|0j+FYRx3IjhmhfB0OS7-ZXc z`*zLW4MjCax;GUb;b8)qjd}LPonDk}z+V>ywbhSK> z)(3<1Wfetz7x#b2*>K!k&+zT18~ov!iPgP#;oixg=RRucd8Lm``~_^MZ?q5A(EsLN z8u~3o|7UgNPMCg;<&uQrD&;=#prRaqDZlHuFEV7raGP3TVV$4N=pJ42J~8O`n4nW! z+Ph!H^`^Q6lF6m+sn28={4+-@A1dzYMr39FX6>aok#k&# zvCUjrVx0Fw@@qNgKtm0KWzPP)?egoJiT(;dMHQS=pR<~zR~YY>(JHL%EApQgo!Hhx zq-nAN|28{lqBX>BoXN`oUoA|7c2RqmTVbKnv>0$5y|AJ0{^WBx0@>v9<)5$pMz{Hy zME5(a$x4Xvt(femPZ3s=hEE6Eet&)4dT4mS8^fdhI1eDqZDKxvZxNweSfYt3HJ2uD z#VG2+ELXDQ{{zp&8|WdhD^_Ck_}HGl6eCfXB~h2Bce+Dm{rWX}53#MD=K`xhZU@gJ z<5|tsUGvFN&0zL%*yaRGA_G_%HH#2J(gbw9)Uf&sKQ5YHU8|G(;Kkj%A8%pc6-Oq}@o}23*G$go1e4-pcjGA%X)1{-euE z%nB!)(D}-359K}ZbTj{FfgKs*dYs`Plv6fMp_+{&S|DILvkkBUvXcgh14QXoPFUBG zitZc9rKMu5R`sHP^+G*Z^1KPc!p!oGO|}>#rC`NIWC_Aik2%1aB~m_ZHMTNuxI%}~ zkSi#2=9=-^)1?L*9(@Lx=dd0_ic0Ubr=AA+%D(tJ4QbWMXINou`e3V%t$EtYBqVDZ zu&&-cLXx|GQ#44@B;n-r z*03r9QW8r$uL7G~eNsv0S_EC34oGMpAmDk)UE0GK(sT`V0wD0IcKOD(4>Ud<^~ zk*1S;`3#fs+;_uVrM&Ke?2j+`XCk4K5JvD_Cxh7yWd@4i@yL@>o)4ZY(|zYowEx_U zr+P_eP{x*Rgw~8b($$>xS3eR$c$fxf+N(MDiasrRslEgB)t5IPJ8j+iB{3xtW1b!4 z9i#2}X;J#~45^>(5dwlBzI3(iLR^8&|AukCA+rFdGa2gUR!Nqy8!k;}>^AS5oT#w8 z=qFVARv=MJsie-}=h|-_7!8!Y_E_}*SOk!Ah3!RBd9$(ct=3uXpPQ0SJkC}31(K(< zJQM`8Pu}t#D!x{USH31sUIb!1@e}0>B5jC>0n**mP2H4ME-r(%-&PwR-I*xP9q*?Zxy((_`y(^gVX^gi>MAN9AI|XcBN&egu^XF zBE&1}dx!r-+eR6Vm=B-aSdEJE7W&>L$@n+I`%A{PiJ|;%f9#jBtA7%k@F{qjpCX8h z?DCAX`7!O@YK)hLJ5Oo#h2Zdk3*Jys=nLWQY)A*>{03m+x)r;CojM<4vugBbyy=cJ zKX2mjDicwNv-Cw#QRopP>%eQJeoJX^4`o_36yQY)4wS5qb_B~7=M5NAQz7%k%41RC z1hO5euuU1-u^Z)jt}>;~S~}joZe-z|o3?iTjc$fVerzTWq)h0>%X6SN8jBTx)WAZ_ zil^SC`CSJ0UK&I1ju>1M7%BL`FH?&eUf}`l!uv;iL@Ns9 zSe$IBp1J1mgx4B=NMyOGTq#8goelK%K`iy6tvxK0e74}ir1XWVa$+0dS`P8JqltCQ zN5{HV(_&V^xXdxn(>wKx)n*5DtS5~x!bG7+d%AnR*~3rdR08E zGHZ=W`;KE}5DOP_tnc$Rba_t{~G?E|^{^*cyZ z@$xCykcwvyLsv$P3&Fh$8=l~Q-$O>9vkyt2(y>6ND=kK=>9+{ z+fw_&w;1Sa`EE*RmKMKCTmJb!stE&x)l;x1zwT8CMZ;Wj8N1;JV+G&t{s}{UgfVRY zM41Pu*18GMS*&{?Q+Vp`@yU>x(hm2T{{50K=-r!Guf!de5|(Pk#hSjAzgw8ovjG1` zSGX0!&-;g{*UZ9bO-^Y~%Ng+W`i)a~3Bo(eoNq6nKNh^n8yYA#@{Wsf!CmxuQOW@A z{B1qy#TP~?wT~rjBxwFM6stSz$)8=}Frdc~+ z(pJ91%TlV^;V^p;ZYAhxf7kmadWu?gR4=pa*B9gC=gQ^U*v@y~=G{~8D)A8A615@n z%6&YNHCiQC&!SkPn(b9h;!Zp7>dN8{?P&IZlkr6i8E2`-M|t&0HiF^L5b}!Kk0sf{ z!RtzsgT8J7MP7YrCGwb~NPEgCY~???znlH#r;5tj;yorQ4=E}BD;6aGcB*zq(0j5i z@tg1%Wu$t#^5@c1IjS3hR+iCFpVmbVp<3UBw=pFuP} zvrT|iuT88z(j)tOF2cCUAC1lQnYFFbq;Onihi7sXA)d5>7x2DE=%}2q1&T~2H1NS0e#jk>9(dNScz zL(Ea6^9Y4#sL6hv{WyQGlT&#Z-4BiOoTj<|!06$M7Z(?hMjtRpZXpYx!LcIL4gTu@2-kWs9>wzC^-9Dp>R$j@Of5`*#piNg-$i|xWbxlS;T9= z(jJ99^Dv%_vfDEC7x_rjQyFMH{Loz3U+<_I9%ZY`BGs3f?J{||ZyS1p!hzK>s?5~E z8RFg=r>z`0LA>97@2&Myd`d5z`!1Ak&LVNJXP#u*?QMim36$9F%fP9%+n1k~uzC$! zRfjfNKZSil@oKB$uK?{3&SkUrM|T0aKuW*P=WX>rCaM4Ef(#?yj5yAdm8t;yic%KF z@Ui2yhH15#oIBacg8<`nXX6Y;Y1)q%0uL-OepwiZl1EI@?$zp7o2TAhELY>!)T7TT z2?@Z6FmpW)ZM$5%sfM?m>(I@}ubasC8n%$2VV8nL+F&1V`G=)8XcW(OA&RwAQ2I$t zrfPl;==!YCq~l2imN$D-?(8wnMy`dyk{bI(o1aR}iuDTL7{;q5TJ+*5O?%a!X!kbx zg~p+6*l=ZdivNDLcBVcm>D8B-{I0*@^ed`atqpMls_nL-R1-;^#&op|v_R|fgh^cA zR&fCmz49-%6?S2Z26{9#m*Z6(l>gXWjt7}!18Qf7c&h0cZV%V*HK48}wTu_-f{PCh zR5KPKovXg%Af`0*kT@Q50=PhiN;=n3*NGyn&n8#i#AX_Sbz%oUBR(LeRI|pG?QgD# zNMR0D8)5adDrj{QafjvJkJ8kP#+}%Mef!;3(ED=p8MA)0x&*oyHhtx7ogi3WX|^JZ z_0feCA+(iuJt7e{qS}C0>0BX4Mdjtmjdc4Wmefh0#U>AubZEPrd6R|U$f zx2f28rxK?}wj*Q3k>a%@TdEvB09)P?TuCTQ{~}N(X2)8qbl0%kU+7>H^{*jCGr>UE zgyXDFV^Z8TG^+aQn2f37Aa(X4TE73(530AY`%!r{`cRsHj~Pk*B_OM8y>)>vd~pYP z#IU$-O@n>5k+~Yn@g4i@-~@1)n74;(XwWl6^y0pzocM<#Jcr4+t~nkee@57;`l^^| zRayAC@7FR|>YDzeOA5L4CUw3n=!$me7wEs`R9ywdk}0x#5$do|3CSEF+6lXP_`7l! zq^*_^zm)1K_EY6WeghL-puX1G(%U0UdfW0z3Y(2um3Ym|b^f)}7uF8R#HyRaEyBvh zlhwtU7|aQ1Xn?}zH%svb#$9DZOr%e0&c}*L_jj&oPsRRxDv9_cJ-T3OvIIAaGV^B} zi<2M5dmfpAMK(`Vowfb3B>)?q1GeyK5b?G*#HD3_)`D52oikb>#&G|sfRD}G@+Xne zwBE=~?6$7irVn6ywA{bewvo}B10>`W=EFee*Vl!1bpN)UUq#KbkT5l^nv$${;mZ!r z&sIZkH8iOV`Lcv7n21#erN`nK;dp1u$@wi|0q-&0c@wNc60<($*0A#1U57)TzlAD79QV30AH*YuyN23zEZ55@S#% zg;drr3p}+Lalxe|A0!$Bu52`&vX^oi0Rxk?FnhCg^NZ-H%7N=MPhHQei}eeSFuzZ7 z%ROD?*qb~{dU~(RDj_4kl{?D`yxI$63FUy_B{Kks^mkHI=6t68+;l7L)>q4MvE{_2 z%VNe>Vv5l)Mb_ME6|M}X57x=od`p!8(IUZ38dsJ`Wie#GC#X}^S zb17s_z)g-BBT}`uHt8yl9qdlD(XOWEY$$s>{jRcRCTEd&(laH_wR>9L z7??g-Oqyy=6*T;wI?CN8es!X#u0H?iudGeS-hs37{mqIL1KYhmPVdOoD4pU4_vNv` zkb&$u+AJP;*vqtGraB-ZBM}=ieS<R8B^;H6~=y1Gq5f$ z3`1~3`gCqzwU<)SL3sb3n!i&eP%ZFc_&*kyTck*qGlwh!bvV7FD8uwqcD+H96<8~1 zJu)c8Fp-*%eWUjYa#7XoKf21OExllgl)?!mSMAp1L9uABgv*~FBa;#pbf&i_uD2;} zo$r`WGU?Z|*r`vq3mg?;DO{9a2Z$&Ltj1sP%>ZP_t?G6>*#$CTVwuv6<*2x6z1sl* z9pX#ELa!|KykEz$pq!go#d9JZTLf7^vqWh{U!g_erQH+A(DBwlL7w@m{LW1O07#@Z z`jCwBpj@G5H(fxqyrA81&SI@3h9rDlY%d!C3>^MKd=YG)?HYz#RI*g<=4RN1EX%lb zGfl<%0keGWUFL6Dq%HLF6zsl#=q0B_qin-XQ*q(O6zgiF!yLrlb`i+0Wdy4rT0}!{ zTf!}YKoPJo`AwnKgH3a}wy#HT#oN7Ycai{5)Bma(GW*!>=KSh_o~hsVO2Ts^j|_E< z34-{oUI+Z?_Av+w4nLDav_NTB)d^JAVsw3^j4N}0pTL~s$X`0?7w`9Km;Brt(8bnw zWj#l0b1;V|S@vvIDp918jEbE)*+7S8*pxTHe@kO=?EkYYChUNl)$jg!M}A?k;o@&% z9&wm)7md%-#{{A9=H|}Kzy*AH;V}(Kq0v@z;(I+N^F(4>C|0&7(*wO2jXG*Bs(zHs)jfNT1YOOnn zxknz{^FoCSgnLTA@~GehD##wokaPNXJUptbT?I|-JwPm%gIntwsVTq=p$JkgG&S&{ z$h>Fq`6c%o0ZtP18{q5pZz?5OCom*4>KMd2Vo>7NEDNqf$v}zxF@+9xI#C`sVrNEXU{soK-4(eevqQ! z_HlUl;l#tX(eIt!LVSja4W8C%`GyxEc7_XU08N4FwB}9lFnxCv-tk7Zpy?h!??gZh z8>vNDd-oe;3)2zoyMc+$9ih6?^2oiT>Bo!$4OMnx4j4Tw($NMV<21;t3rN-}Yx5cW!xmT4`Jt=3S1EU# zox=q@s?~$F<7se`FOfU&Wnv?^Hz2U9!M!2$-==n6=DWI&&M1o?TiY(jAt;ms5LsML z!zT}+qNkYKozKwZTICXxW!3JHChw`Hua~B~e_+>V5P}33&B;6qgbZbXAGoi>XuY^o zmTeBg?zHHUSW~>*8H@{W=`ucL7#Mk&tZ5M$?;Z8}FTs%o-z~@_ijr*8<-RI+J7)R_s}3YJWnuwxiaMT|qIL#Bv{*E8f{_HgiU#1~SKJ1hc6x_$`otdg z<{`_R#k00Bb?MTs3*Jo+0MVbscvA@Iu-ZE&Nz7h5zQT%dw1qptY-%i{V(?{idDM>~ zB>{RZ)pe55P5j$c9F&o#f>rKwp;Tg!o14|BOh;9Y_mT?0s>5mFu}J`12UN zdbg(5gEX%Qy@79H120ayv3}wbYf9pMveDuq>K!<3Pub2pc7c|5Yx5~BjJnU^sF1&e zLp_#miE6~p+4Xv${2iFu&KA(rKX*0=rN7DZ&F3GKAz{ksb&BBVQlW0nbA3MzA3Ss5 zP=$Gw*%z$W7ZPajv^rZYq%hB|#7n2r|DppK5R07f`x7qesI)7`H{EaZxhu4O^*slzlN;oEj0qK+hpe8}j^*@ylk5?dNjC;o|@Tszf|QM)f@;{Hly zgjxC&k;q1$jxEZpVcGM_z9bH-N`G4A`dW~~7KkJ>kJ}a@vg=VlH7N(Ygt4s8NhR!@ zEjUEGm2h$Sms!uqOxJ&AW6a#TU@Ck~UJ3kKZbVx;Ntol_94D@^9-~`WRp`RPm#k%y zd^e);&{ajnb?ppE4wy=5-VXhbj&^18%zNq?To}F#XD8&F^y)nHzP&f4;AR`wbeVzr zJOq1e?K z5+(u0+@uiNhN!p%{0V{;`V;1u){e`%M7m7RZn5ky^!?vjo=|pt*^gvcofllyntgIk z%UbfZoXV2ZZ0oqV9(>%Ca=3#GA<<$K=cf#!oCr%6%Kiu(%}0 z^Ju}B-a-$Vr@h;<9Zh$iil8sXCTafeKkEh?(}p)tX`6V0mFu#N$L1A-p~B+3w4Hu{ zMnM9?RQ4Aiuj8wcTYsW|0L!Lzr;sGm>gZJ{-={Y96X4W^J$+fiFsG3v6o*6mD$e00 zhiJ&5EH9WzdMg1`a~MlCIV8)(1LU0?b>N&UL`_5H<)hD4)o}sLYYzBL(Mur@*Hex= z9?C3tXGGD58R5bv7TXu{3HLRcN`lf@Sq7pg33j7<6NcD*i{;`OJPOR0*yUferIb-HGtp^!xMC zuF46qT5ypmAy7c{KRUQcP0GXaAapRMRr?SeQuF4)gNm`W0nK`UV@lIbCoD#G7BCp z$=dLfzS{x10D&_Cu2jq!FGZIq30xRa7~tnIc^ea}Vo@0GO@wv$uLcMB8@>Db>)Cco z)%Vh?SGsoPi9AToc&FE!a>Bl2{#I05GUm&+J-40{M|55tetJJ;J4Ro+77S~g`?`TIhGZlf}HI<N z-x_YVVBi-jfT&lz1JLLQj7Kf1L1@ETO@)KGhl z@$!uwB|ei~{sR?(HEu7d3i*=r4nluG>QCQWepc$T?o9g3{8s5N2-zqnF>lIP{UA_q zyf8njk8XyAue5pl(Y6O;=VFVR%nR`!^OprAr0!p~YOv*7+c;M-PanguaZY!~B6~IM z>d-aT9mTF1f#I6w`?TFb`r+8L^samO7VH4^3;+(zV3wfLVruGB2!2|%wxP~{Bre~ zmd?-KTN9vX_&WanT--r-E+wCQC&D&m10-LmJ05lkaboIzsnL9TS)P3>tG`q}v_RgMh*{a`suud$iQIr60^PkM zwOSSt3%g-UMX9nENs|%tqT{YXdlO&zF+~Cbzq|0yyqAC9oE4Pbs+>)EW5vC%6Fh(r zo<2kf*$Q;UG&7Q1WUV&uRBK-QCL-*exY9{K*($*o)?0|jDGCQKc(dMN8Vr-xO7eq?|C zCvBmc9^=8gTlf;D_}({a>fyMg+wQz`d0XAQc_Pm%>b*auu>E_vqg#Lvaox~?s+hrO zSRvokSvqcKYo2zPEcPne{TRd4D%A6Zft`4uk@I$FSVk!NXLtWP_!c%ED?U5lLj`l3 zepN;L9-|}Y8OPM_f46+;T&qjRUc1efcU37~rh9!0QP>>xJ7cuyLCfKA`^dAnp)80C z^DVe8koOmblZwPP@KJJ5I0y?Vz<4Z`>tQr;`UoaoCu>)}aOZ{NC24J;fslGb(DlmR zn#@M83?S_#x6gr;NOm`ft@|eaRz>PeM%nOYmxD4AMQZ{&f2J3V_ZPD2F+sN z(&L7h>YeHoIn}YE_tX*h{C%6d?~)c1Vx)ROb7pAGS4+}!brV4B{;0cBlGHB;Mgsof zvn_HBqwP*MpwBUuAq8S=6uecj44;6JmJZkYbc2lF@*~J(*KV=rYW&U_jCct@SrtN{ zUj{NBtfpbxHkVWOJ3EJ2v{zlKN_shz;!H(;Fz|{N$JYzl&8Yrks2KY1j*$UpG25Z35;IcSk`h8LaIZCWRCwBj&4!Atca7hJ6UknP2t07Ao9M1>?J;eNXSDx&4kFY}>Nza<<0_=t|nX+3Pn| z036YUEuQz~O3WBS9vqFW9#~}IU1tPS2PnX(J@c5D7PI`OMSj~78{Vd(TIKw!YWMub zyBqF#pr;=g_KJp#t^Nh`w>^NdE|B9pR*eGAG5tHhXqJYls_R^c@g#*WC43-z&V$Cj zMM#mfj~dUR55|n$*87tjaJg2m?i&X63g&GD0@Y@NC26Q(Tzm0QKn+nEktnO9(UqA+n*el&4rJ zkvB*`xBqnkGKVB|FI&qKo~542<@gHmnf}~NqqFC4!kUa^1kj)7oj*I)AVTPX9ru}a zEAWGTfj|Bo^VDGA=VN)}9c812w*t!D=Su4dkEhFH4D;NB$KU??e{AxY`rQrZWr|rF zz%YrP53%fw>xgR1b54v+fZ2!@7jSzFr%DSa@txkt?-TvyS zyqz0UrWrDSaJaA!Py(BJn>k-|uaBMgAe=}%#8Z-R5kT8}3julr7mu(2^;?tWZt(4U z^>H~|_K#-rYMWw%jNVdDGqGGR>+LVyv z3yZ)axZ=02QT$z3qL&`BG)BSyRaCPjez~~YZMr_5Q?p0KtbJag4vSC>6BflnT);MBFB9rs?|4n$F+R94x zml4fR8L$c)A|)V@8OStVHh44O6s1CbLJ}e%7fpXP6iH(J9FcgvUfH6zJtes zl6QX<<7Zo;^f#5wx~`5T2R6AijI6ByOXkBsSCLH48m_KkZ(uNAntG4AMLW!tO>f|@ z*TN9-tED$-t@sSM`y-To{d?ONOF)@-sOzyz1tC%X_GB>0cF7}}U*tC+29}(>l`|^% zyK>B3@QPc(!=A&!q28IW=QODtu%z=rGFAx?W;bQr*LD;l z&5%!a-jMZ4RY8QiuK&?|gj|x!m}w`VNJV6rcY&OLZj$nvl232zL7zO(I9UbBd%2UM9~$*uDjf=c1{uam})0muwiqW8^_ z*LRQO$9jFaRqp+w^l{%!8~N0OEehDMe_JL0i_u!qzDWq6G^W<5y191nbCDpq(;F(1 zUy>J8K8*Rg+KYF7!eue(f<1%4c(JXD`cw{~Z@&UX&M6WL$BsR#Q-;FeV#4W%GU$+g z{!FDHUb~&~(P#i*2XGH>?JAU`;V#5TpHUL;GmKH18}a&hT-00n$+o`gde6K~h!o_x zBiHIv_;RX){#;G!SDk&9+iQ$<8uLzs+D+yT{Z%4wyH{76%WVPQ3dH zH~+TpPS1WaWAIluKXLTUb9l_SBhh~BVL!S>ar+t}e0lIY(SYwoc{pxH*6yZu&fO@LJmmc6)vt$1hT0uVq9)xn zQC+IW^D3tz3)38=V9?jUv->LKW zlH!FynRu0)<0CFpO|{;_y3S1lH@@mkq`;pcrPQ34z!p?-;Q7A9@%G^Z#2vVH9X_vQ zai4a&{5x6?{?l!D_*QNATc#_t)QipABLhAgxV2yAmk*(CD#843p0_8VLFhI2VN&VY zDdsLT0&>Mtx1j-W_t>{$eS20q-ecnzE``hLxLDe%YfBO`d zu4_4hiW~^lQVwp@6pjr$Qs0t)T6g1Ovv-{E?%aiz;|`Nsc8DYC{1V7sroq#(do+Yh&Z+Zo`Ts zWrYP67g{t@f@XCVm=^B?^MPRSEzck%v#oM=wgHa^l63i?BCx+b$}6kZg*%^(;&R@c z*g-m6>cSApB;gGBE_(cam>VDL1*YkhVAFJ9>MAw@Jjr%yHcOs3;GAveK}~#dR=3a( zdRsOHf~7eGT1B(?fw$21HPmLra>j_;8^TRY`~C-Mh1%@T4P6+|uOacxP+KfZd^5$x z(^u3E1dvahLW?km6s9b9(FhoGncdtv@f8L-Q8linxQM<&7Qw4olnk(yYR!UoS4fA# z$zGh@#$$K1X^+uWefWCB<9BPR2_;)o_&~CuLq||#RY7@!WK@8ofFx#_Iez-*FkCz# zKQPGgiVyOxeGkwJw#-lx|LogHSlQTh)Xb@=to*3+01SA(AHBd&X&K(*-6MSe1{xN5dOhSj?wf+{Yt4A zAt~>qIY7cywT-)8_2Jj-SoO9--Erli3J}Pqj>m?>CDh9Tzkf-^U&-y@;!Paix4O(JDXFdX zsb_y)$(k4ci*o`0sKNF%9tKNBa^zc0Z&WFUBbcXZzZdI$#bEQEy73WN+io9kYjJfm zD~9(j4?HIu14diJ^UcLZ=A{D%tuEiGp;HTRNfI=lWNA`?8P7j|Qv^QXDqrRL7xee( z5r1J35na+(d6o0>xy4XU?i^oSsuj?|90Rc(N8(uVf}m-Y zyoA+=j{!e;bLiDiDGbe8&K-JRsAb_+$NU+-^1VuK%8#6*^Fu}@+NEo!dNDa}PTbdHDLQ@PF*jw-Y`mQw=)%D$XqZp}xF98?Z+ zcR9)!y0vBRt(GR*U0N#03rZ1}g*W!QwT ziY=;cB&ySs3T?{(TcmdH2EQh!4Yk&vdvDrAHmeBenzmk>iG$pAu@E)`Ybpp2l}|j5 z6W9E?nUT_@XnG(%d2(a6vdQp+tPV!XUuW|Xf&szguB$}b4F zVFS5UZG$G)$+eE^Z$6iXX=vqvp*AO<0ldpiyt#H;&+;{fOj*v#OX%GSgD6_eb|_Ekx=ZbB7vk}l*@6E zQLgc|kA((}db%b16I;P-1TnfoQ@t&*g2-gD5T#sQjoO(bUQ5XVJ`yACvnKp*!kK#H z($BO(SEqk*zrB*Z=x;5C9@E5oRflQ<9t9IADho&?>`*;`D;anAR&mmk5mxGd-iWYH z@Sx;l9H8$pwd?QP6i%hew7v_W({UKi&9{Q8UMXe*6yKLyg(8M6!nu7Nst9O?i8aQO%1ttSzN z|2D0>(3V#uEgA!Wk!pJ%OxCgvAKX+kyfPhXw?IZM4i!=55QC@-7w6j7XsuL9hRFBbcCxYh79}3+@Py)pK+GajI>Sy7 z0ClkAkB2_NuPIdH0~MFp6PZz=xPSWZ*Jc1j+|n&6f0uVPxL_=nOcZ7``qI4D91MY} z4;^aHED~;cd7TYjnbtSs-#0?ytA=?l+a9cD0P z;r9KY21axK$gz5&V~5m~7}1f^qE0{KYJrTpOMpbwhy(k{g~yQ`4Q^|5^G_;38S}Wn zLy3h5kZh_EcQbU?{54h(D?Yi|EHN)tOg0?=3G?!c33d34xwUTA;e-IrLwf=IJ3ejM zY!^U%=v)C{4)hLLE%osp0ov|y!@0zvz~$HMt0}QxzNzCfcX(*mYv10d^3|^i8)m;8 zEAe0E@TI6gNDL)LsUYcmqZeh|Wfr=}7#Il>w1ok+(2y@vn$_9cmpv}Kn!1I6bAdGg zWU0}ZQ9PaJ zB8chQv>PvHthFiOOZ9#FD{ZnrpT0v-XNkyWekN}QuIFWb}1xYoPHtl4JYTs`?3$uxiIh1?e;2Gox#l z;RZhJy9H`)>}g#Oe}8M!^ZsiRWqLaOFJum?mAr5^5d=2NQ16QKiwye$19SONVGxq= z6tFQ++|6ACrte-cH1OB*;QPWr%VjtVI43vPMOvr@wX8K0@to&f?b&;(hz`r3PqiTG zPT=*f0&_}=Yj4{8Vq-b}U>+=4dvKT)!5Q<~6Fm=%&6(KhMli|}ObsFRopZn)D4*2t z&Hvwwzk)J0vuWxk-Xe;R$i>*-=n7C{<~q$w@VtH9<8eY+NX@HFi(0;UDNBiry#&a$ znB4TSz^9!Su9{*lDAe{y4t5d6OC5mVUqHe}oib{|EVj;quecwzizrS@^ejSYfr(v5 zcYin`<()#4mCTD87#4M0v}Ty2db`WoZ6OziH5ge1T~!x?0|z?nZQumr2HCZ`8B67w zoiEKml-RnDW`nPNzE`)$k+`M-?G3VNBHSNh5G*FE3eWVMBDB#)5gaN%ws6%&Ze~cp z1<`l{;*6RSgOVor6V8nh-Sc8Kl?3U)W1f&X{$+cM;`h{AStb4WZ(-8plGq#@VFvD= z9w%T&|7WSs=cTQ~F_7Wmf20n<2gEiZaS2fb>hMBkb946xb%{V@cmvRpl-ioR)qKje zBNm2DQUC9yV*R@Hy-_EvaBmL3z|~^S&az-Mmddof=Q#bW?5gvll4fPN?9PJrnR=t# z?!tw@F(S}Pg;kO1#>;ld3LXWdh_+ckY((>9eOE=ksCE3P%OicaRoQ;^+aPw1i_s>6 zK>=QJB{l%6GjKwE8AMDSJqRHWIwvp5_G@FMRs5XY+{=OjtQ9Tz8E~jipj!Y!kczqa zmdXWx`ujJQ%I@09-$tCjY5(hMa)VCrN2PX!7KBH7a!zygsxgCQl0`elLkjvgdR)Yj zB`XnFW? zIT;{YwZfw2FOfj!FU)zeIdlkdu`TR`tV)pYvakN7!ag0{QuEKl-8r z3X$7rK!*s6FO1CT?0N5-MDZq>HD`0?1T9iwSc5vQc^(RONPMOjTh(q zm%+>x<>ZSVA~Dv^`6K|Zc{*5%Yyz6FR;2SaOgs{AC^h4_1nG#=f1cI>a4ACwOb5hu zXkFd3?{*YwKs+u>TWPjc`B?*o~km$u4x(fcF;ZrOFqqyhDJ|wX%~W z>$4sSs?fg2@z#}NsIXr2rSgM#ocY%&{+izHQI{J) zYzP6oK!(Uend(9>7Zw78874+P9x==Ia4Gvg|K)xbf*olbGu0tD3!BZ?_mLV6ngVz3 z1jsy@EFI!C=wnHV^sE40Z!_&!f&An{qvrTE` z6djx~*u`&|2}0vr$B}m)aKS;?t9}{6V+fGKu^t_1sXYl#4go1%d`GL2Zp+ z&&)2FKVr?w|FJiu$0mrQs{vpu;TnQgBu*g+PD|7L8~Bf+w^GlIgnQZ_x_irB{u|^S z%3@$=pjS|RWWBI~8QPP~D;;;lIGkY)&i~2-^d5sH)yD1#^!&D^*12YFi9$P1{X2-7 z#sO%x=h?qMbl2lWykmtOO7>1fZ=HTGt`6~4&#c9BbTFzCACX)Mtgy)%KJ8ZQu+7Y- zc=F8*g;DFlfG6LWg?faDNAOxEt^3d`MlYIwP@DQimZkUkRIc{Iaxy_SWC0+G7(%)~ z)OL7&7cp{H%|d>SpUead*gK196K>92et#&}b)FJ?DHU?+aWfU@j6lk^GB?`#re08a zfDJUvk1`2(K60!aEq5<&0oRRdJ9%t-g^V>^hb&r_0Fjscd;pLbK%KG$z9h%y#~-AS zrI{?9j-R%CjmrPgn3qS>y@l@Qo-z-HwS@JhcOhC@0A<_4EIuDD7cX~}f+a}K+n^F% z+f5sg33uv&${I?YX4eA4v~qM>xJkuStvSKycS2RV?J764+MxT-Zb4L{W0W6`<lzFq-|8dM-GnYug7N?@jL{;^+X6wJ68$`or(^2!)lT7uHD8&?>~~EzYoy{l)*5t? z7GN%bh9^=NQC>zySM5^VoBHR>Is!n~)Iy#ApQGikZAA)NI&}zNk_sW{>iy3cgZ^R-3gdZOBtA5V8LS+C&GWHoa;=rUX%Uy7_%Yz4E};^)i!e+90$*T&OL(-)-(jmIbIbo;tXU-+{@ z_O=swR1MAp^5UQqe&DBQ4ohaUEt3;V^*AJec)uT}SO6^muoiY}h7jW>YM3KYY)qlo#`uZ@avzcdU3YYa8V2P)bqP)M;yQ`4tbgvwh zhSW?8XxrW?(w;uMP{;RsX!6~yZw#EuLwXk%Z@o`a|9Xp&Vfgrja(^0U>mR0g-9G2x zQo&jL^wuR$S+Gb0+vgAPdfIefzG?-3WQ;W)XFVNld3QkraFWyfcU3Odi!@5Z zwHf}D#_=23>4M%#C&#b`IPOlwSnPF#JdIslFpUaeH^C&Q!PLbh>$9nGS>;s*ooL~Y z#0<%c#bLqExKR-5>;j*!6holJHm-BBP>>xmwRF;jeNee%enfOjH1E*X-CLoIo?KZ| ze3;Qy7NDh=&~cQI78I;~Sh4WFUCqG8CL7teehSLWxl2&T5FU5c@NDzA zf7OG%QThP7W789hL;U7MxAwFYq-|p@YiY9452A!|1fFULa}(D$UBcsT3t#T)Y2ny? zXt=~){D!-Soq39TIx=3>-)JQ(;`5Kg2y|hmUWz#6ZoroskIG$u*FfiOTol#$S~+*G zJLMkG$TPvYmWHMsmqIb^u3~)=Va^@X#2=%pZF2BGbwPr5$6KylWoC(1M7zt+3I{wM z@4@0xmFS4KO|1C7CxF@Y&MLJNySJ;ERKV}#?pu=i_-4wA)Qq%T2^f|&uMEp_1fU)Qzw?Y52xjyv1yMV-)ri(xufW` zJ9f4=*d)OyIoJSU-7xdsdO+lk^-)jo{N-|^Yf9$nb9?id1=srmlICfoZK+)D4JpC*d!Urf9VYcF>-(z15H-buJBO#WS}tGY@=&tKfHn-LuZ-I@>I?1uC`n+V2G1 ze6-GKMVJ|FRKWj}AWD36yqNL-gL zsZQJ=?gSkqW;G4Gvrqg4zRY(tgBG&T*AFS8$|5`p?Zv^Dv?Q+~Fe^=IOG7B?Ex2m< z(wjy|9Q?VP5B#Usl()K^@I)XP)ex>9_N{qLT-nIyzg7RP$ z25Z?sT!Qe&CZF8t_FKWkY~s(!Y1yB}_I}UgdY%>2s5x@|83f|pra!(6;(hU@SU!CX zRhO{KvFHlrc11C&-zZFGoK0lr1mxO>{Hr*P68nT{!P`|LO7k5)5v6#};OLBOZM5bz zB^0*eH{t0AyE}GRw~>&IxI`8sFznhAxa7ayPK3+ZdjFtWy|Vtxe3nT4yVZ>^Zy1Z< z&kQv%!4*zBZm;jeE$)i_nfB|B^tCjJn8zAM$j8w$Tn|F0bSfLVK+A^o8SOK`0hYr@ z9ygthopSDsmhG4B-6$p2c}58&hF(n!x2lXzs#5uq5up7kFqddSV0d3{-$KbE!+2TV zujwu}Bm7ebT6gK1dOT3jbcS!`FNZ&%P|LufnO4ZI5ha0$(c?`5XyJF{ko-APfSK^M zT-PRTNOSe_%4cK)qQv|mHn+Cq>@-8~))xN=ZvT@C^CyjW`b5`M(3bEkS>zO$=k(mn zTJ5Q*bCq=V{r1p=zo?mY+{vdJpl@4`l1Fklanzo_hUy9?>|R zh|!Dch2=?emd86i;vLv3#qcrxuGgkJg{J*SSYCGXKe0-?frpVDEt_|`V1254kgCfMzfr-y4aj4Oobqu$DzlZRHt9{)Q+P3;qhNSSzn?i+y^ zoN)Xx==#?7#~_I}l!?FFl`oWaUz{na|I6QXGC}mhe3XlEo0G66OTVp9v2wT;=w%unL#OUmD#$O}ws$_m97F-p<`}afGl^$LbEw-X^bC*Ui6$(Ul z8JB&CNjd>cwzki-`%$%pJL!Y~;&W_u97ngmsbUUjylgeC9U(R%$-dNXlAzY)jpk{% z85cow!aHu-@$hHcq{aN%%hPNn(dz9&!Q<@}#1vxChBs`R=tM%;f8r(a=ql3|JxDa| zwQ2x?VyZd~DGO^3Z~)ry_!%f?o+z%H0agjRYyY(N_)$A;)&aw0U7_Ggjq-QJD+LKd zsLN!9aVi9^JgzS6YC{LRw$05OEhXtzPE*%(At22JB72?b#X23{)k+O_{87xJ|4jU8 z4uA5G!h!zm#@sMcCgI}wQe;$l3m=*3bGIu!M+d){)8OA{$zKw{=J7PVC|j6AOt)QN z!i`^Fq5c_jM*w>#uGL}6gJE$sp*v&(*3Mr?tqZ+YwT)y(zJWz}1-f_j>JPYYn?^6| z|9Y|jKFYC_O25yW^fIz<_x*cII~h(xP~NY91}+MY6LoWd95wjLwTh3>j)(?y_!Oi8rIYzu;6tk5 zCUKf05}21zbThMW=KsZ7Z5uINuaw@BBQb^NxRwa_IHcFym$Z-p#z@R!P}bBQQeQMu z5Tp>~y9wH^m<$~1%5Z$Q`;8Q`$jE(d;fBt+goK32Q&T4vEl%I-mj&0~k7KL8zKQ+_ zD{@H0x~cF#c$us+4sd3CqF#FJBRKw}xhr)6u3Cu?whEl-3U2b*iqAi0wD9k>44+hL zTsaytC9+Kc1_J4f9I;*c8M)gtJ;?O+H(Uj(QC`+jBpc}W^mR_& zm}|#Rxv}|m9%plu?v#{OPJrvpcHH!~dJC}KayyvvQ%kTO_bYqcv4F2sSL}OGv!uWN zJdgCYaCSprK3cls{kudF+Rf1x;UxFUj@Oi}1YFoA_3in;uB`hZypTo%4=EC)Xo19x zQ!hf60U>75@sh`hhn7>y#`Iaag&<#m(!L)WfP`qlL9{J<=?HCK`b%6NS!4rCc3 z2C)e3+?18C*OO_lyE_v~YCwwUfp~n{do>w6M)UWipZ0Wg06~63B?Q`H8kYsZp(O%r@de;a5wzv7Za-O-(av3cJJneGzHN#YXI6MA{x(K1Y zB`r6}FtcF#*Eyo<_V()DMmnz0BPCemO&hl6QCJVSMY)pQR z1rPnE62P;B&5Wa8FKy)1bcJ^C+wKPdP0-&i(^ghBkCGoi`oDPvt?8s17e1u@a)Jjh zOP;-jGl5sFaQvhzxSry=MNn#LjQr)2Wn?-ncB~G$^sb+T;@lb!_Dh}$k~+}7&k+Im z4d#S++=M?060iOe%crRSY4`B1umCOT))^|j)UCa1GL-#JGxKzOsRw_RH&*-;D~Lpr;P} zoXG0gq!8@Da3A62yui$|2dBgfGhmdWI}bC$uAOR#Q9iosBGl-=(p1 ze!{$e|D%b&CoOIDkcM1PeztN#K_s z`nXqEOm`?+LFLGUq2|YS8<0CN*T^=9DSpeqE10aVBK$&NLyJqZa1;Yv%X1Et-^ zo%{-X#H8-n#IY$el*MVRspHr68gM)Vpw>_Z8AtRU?D6Lw z$GWZ+x!t62Yz<=n0H(}vMf|dXN5ySLMy_+4+y}JM`#m_0e+XrCUSB1g-x!+iDp?tV z5=(b9CvTzej)L!EY}RF#FfkdJPc_V>N7S3sJ$?cAOx+%uec)Ot2z*YRB7_oJKWW>@R$5nt(3KCKba7ua`MpuV>Xef94`ecKjsn~hoF?J#B|ke?Ti4ij>uIVxF4eKZcd|{Y~&!7CzCR#u)q=Z+n3kMy4^!%QFGY+ zdNhj%;n1oqMk%5d9hzI!2D!^^zB8vS#HFOWsU&} z*haju1ztP;SnN|vAI@6i%lj9XOC7+C*)>y8jt_BImGhBKW9Cnr94Gwm@#naJSQEDn zD#!TqEYY5|e|q2ixO$$^Lx8zH_6<+^wCnyuZiQL5-k}lDRHh{g*B!Cvm+t4rY*_c} z*C#98B}NU4jvFlh(MWKhlTmTi-NM?zuovT=IG=lYhA9>4=JvKcXotirTGr-gCuDeNU+RID0n zd8hZZaI|ky?@fpM!@roFeY5t$G&sF4+YW@1Y|8C%@0LO9fRQY7T9~1QITmzfmJxI?`qz# zmj<6dM|Agz#-6g$cvhl&|8WgHTo*FCAfb?OTye})!0@SPy0G3Xcb|&P*a$US{Evo@ zItZ%UZ@pF$0unPH^|*ad<92Ujr)kW=y_>gdnPhLnGiz@KchKfCT)-Z$z&rKKcQS9G z^U`LAQdlv|8$a`3owT=>-b zcQG(9mbFk(q>RI+gpBnAAg9nAR_X7VT9DVpmM6lLY=j6LK=;FtTVB*j*e`|zcX%k? z$23(5ZiaJv833gJrLwE!SEA-B!{8-f{s@1a(iNG1AbjQOubP?#=%CagEZB*7f63Ou zru$~SBMEYdIW9WWUW7zLDz(XM+KUMt%u#225t$_~4Hg5(I{4`(t@xnr*osOnt^G(lgILbeiPhNfv3Oh2~M+qfk`x$X@!=GM>#drFhACzwgIZ##Unq9Qy(h z9Jq|D>qe9AL1XWc((v(X9yiJIOTpV;hIXUry|n7<$GH>y;*$4 zj%Qa3GbFEQvf8B#h1{;24cRMnJC{SY>Hw}x0$$fq&QTt=pQ=NQjfW*US+OKz$_bWi9ia_{N5+nI1IuNc|1I5TF;K@cO7v&&ZOb9#@|wsfdP@5o*u4+q0BU ztbH@<>Q?W(i7W5CQcijmL>E{4z;+`{C6*>u^=e@ja?K# z^vE^|+*uk*Q!}+Ep_X2%UqE2xv==e4!D6kTh!$b%_q-Oh!|a?2TxMZ97hbn;F?`JY z=58|TLQm?0^U_5q>yIO>x{{Xe_RW{i` zLDXiqPtM!*;>E+xctiAIL2P9o#gN7)$y5ssX@Ez zx~;zBTH@}Qs=3O+@IgG&$}UVRMf50D?3&;hu)aMhoXTP6kX~(}m5tfS+&m*UwA_1DT$)Y;=Y5vGLwDA1#hV+m7X{ zwt>JBU=+FfoA-^0<@ECa=o<{0@j5Wjlx1L*?s(Hfd`U-IUYGr|ABxJV zUnu|F-|?d7(*9+|!_{T8-Yn}`4a0!7&bwfRU!Mmyg+&fbfRx+qeVa)Ab0ca$h#B%0 zLkBF4>UO%9T*aig1wspTvAfyd&#gYwXg00tI0+lS6NJdJas6FuzWU|<>*WCsG<3US z?UfJrsmV)Q!u{W1?p+E(`0q4(GeL5D*#)qr@LTO}|Bq%`xXo;J-?#6r1v=_Yf@h*Q59!uC4s`Di!2@{84+e{jNQ3vkcphSjO? zw!SS=U9g9yFcF@2?w{6kqGq*z4;}flA`lc40uW!Cc7cbgVv(PHf~o*WA4I5vnm@KH z0kRm5`I7>@Q?@|g^iA#luS;SnR;jRhX)aC|VwPiA3aWjfj?BEtD`W0{J9hx&U%9z( zwm(+138_}x$#x^0b#)UbD3MKiz$Z=-_bAemcYculGFiAk0kXCC;v$-dISXDY7hCj5 ztvJsb1*Ajw_g#xi5lw2f69{Zp*rXs^H9?mU*an7OyFwDr9~diKhCg$e!rUq1=cc0n zNTA;O$AkKJ(*2H}?VTr|4`gMm%(p5^G`lR+7qE{D;^|vpFDDB24a&F=fyHNu+%}9P zf+)nHcu0pD)e}d#Y!ii@_g`n->EO`&-d4}|_v5U99iem6K$Wic4n=-(OatOY&p@XIEQi&k2y$JUIApAfW_v5(fts?C%U$i& z^*TXoV(K8Ci>D_#NVf9cZIpnWS?`*1sFgs9%kySsSO$M%uX?D3CHeVD9Z~x0-|_q& z@F*2io|EYfU=l++6uV_8b6{qd`VBm5pnj*#%>dXZps!BnRgaPO(`u=?uCH6D%7T?} z*%5$$*9He(AI*$)Hc6AWu6LXV1ccDjMo0}+ELW7I@@0L%P`%_BR(y)O3%79nrDAqEK@+#joBh!Xlf-5zf57|FucnVk!`6C7gqZghn|HNy zvfN|8VF?nUIhr$nQPhtHyOH=t@-Iu8J0rW-JUv2#g5LglC2kLT8hXioYrMo@=DS{s zijR$>8$Ne2AdV{NLOg@KtKKd%>tL`-s=@OSSDXKH@-=Mw(Mv@Y7?l9AyR11I3NlM*{RPe>a0<=@%c!fsZ?hqbPQt$4y}fMh2El&D3@x23#C z8+a7l%Ts_}AQcRTR*L_9%qvUjdj6}HNks*3s76LyGDeJE(yGi&t%^H6E#dAE|AFwkXlWhzYFh=Z8q+=L zr1lBK{uHwJOp2-r5C+ltr!rq(u1;jT=;4t!_Znv~NKAc#0}(ot)^>;(g7N3LF)Ta2 zGkr1QSM|w$GU-O?h@9`?iyf)>$hSRRIGa90-Ojz5u|peJ;&S2fmEv*Amhl`S;pjZ3 z!5v+UnEsFEvI1<%cxh*N1H}UulI_WJ;f{R>GPCqVnAwh+4E39h>(yVX$TnB0Tt#V8 z6jqdU9a2p1##aL*Ioue9nSm06bQ+3+RG_+{Hv^HK)LV^{a1ea7ouJ=#Pfh1jLdCvq zT!R5uvL~pcwAVW!5oeNb$tb`7rWU!r0-W8vP@6lpKH_()nu&)8$2%c)alX}*D5|(6 z+>_+v$`OZg+>a)RZTScLhU`v{YRve5Kd-zSag~W@H4wIDqOfc0Dq78(nsMHD3PUQK zmO(Q+i~`d`xJq7xoxlzy=P}7@C7P7n78*DcrBq!2(ZgM~fo-89jqc66scWU=pYsN= z6ZF}33{JwI4AcPBmCKyuzdku2E<**%hm3~vTW)TG(^~tnl<_n~)fR@o6>f9oTHP5z8!P0SMN>8q4$=AEI84^O7r1Q4( zj8-gS+XMXG-D8hrcl^YM7t)FR17*o4zK~DZpoJ5ogr10_aC{M6kzYkQm3#} z2#H>nl-mxug5Jfvg}l#UHPFUs$HUIWmdwK9IseV-AVb_lk9g~y>=!RSpiFV_$0ar8 zR#DMg4Y_?^T+Co5rMsq}Yx}E+p+Yk4jtA+EwGH2#!jvx+q6^egAS^O6H~ZMlSd>cxj|9@1rfmdmM`_PR4Q zBzQge8T;#qKg#3{7o2UcqVykS;w^9uJsnHpkfBl@`>;W&IWG7tI@mmb*FP~f%a1=j z5AA95SZ7*p49pZfHWzLYAOB#>jOJwX*{Utg<&F#S4EHj<^>9CzxeQB#Hec>_DCDYY z2n)06PSswFwF_7SU(%m=$HpZZByU9rd0?WgJRrTH>Mr|me~=;A+V4VXuG)2E99S!* z9i!$ma50!sq_HZN_uRO#=AGPU|GMoA8ZEkI+CzDX4hy;qf51Utm+U`EJ4(wn9OGcx zpMN>Oy`m4!a>V}3`(uM?KOMf~pA~z3=|dOYb^G|{W|12#J!&l7x5hM7Y2u-4qFT34 zb$9i^lEqe_)6n&9e);8Vo=aqH%$1`P;4rO}EG3I}Ya~ zUg9^JcqBjN=LN67N@qqF{4e}n=8NN?p;dD%Z04c)3c%&rf2{L}`?~LTc+WzDM?94i zVj-+Y3m^C|{U*4r#=xwrV_bi1%JAwI!E_TDD?_Thp_ z^hv5ATIY@gA0rTvSlj!L88yB4Db`sFAAPyjvTbz~<)p1H39e+>&40>w)AMdwZzjJb zq4SZg${2_J-M;&GK&)^#+V*c63v$kc3x{*EhX1+xDaE8VIadg&kO}+0MM-fp#5a}F>h?3I186R4hMaM)$8blff zQ;{xd$*D-k=!VfqPP$_tAiWV|u<&=jzklJyd5yF4Jm-Gy`?}uOr&La`7%`UeQ4nRT zo;G(fkp5;aV{KUO?ufa`e?bML-Jd7LpV#>@8Ph%#C1C;f;#tXzDhkWTHYvE9Sve=< z+N^+_?s%E;;KQ-*(6+v}=`)}I(Xb`zHw&80#;cpSOP2qtVUAS)q&9kKnq zuS2w^&VxSE#RYCsyqIfOo@3(ohK&hc*&7#X_)b>0T%}(xTYtYCeF?Z!IGajfphgp* zYUNq6y0g~XG$eQ@^WFH~p}cAOyZc(x&BBv?1L=RWPCTs*9JOLxr%`8cw5&s~kzM}s z6adkMMwF4Caeb=w0}ISOyi@I*ySM4_GWxRH_>qPrVoQhWBN-bL2x`D zgW*q*PJXNFJ+q*xW9`sKKiBC6_kkT^68RXef-}s<21(uhp?#CRs%1DW;cMbykM7M8R=SoS{w!N{I14pz3R+dZB@}?n{BiU*@X8e6 z07wXyu0Nyn`Z-_{tej5H5FLNv`anD5ieEh;j2Obw70)<$KThk$j%wr}_iIs+XuDh!(Zcp6+;cWzf$*o?B#-(AGJM|Bk88aEBS;)HMNzV_>T52n0ejT+$ zsjdxPs<*t6d+_QAD`uGIlwi@2V;7JbE`OexBTL*=+Vv#eBt9kt;{L0i_ZxvS^|6l` zMpZjZxtV>A%l(|)1&{E5;4AoG#7LOQN6{PE5u~OB*wR$r{Vrl)jcL16d-y+yH|-w; ztsfM4K?uNoxw;M*`o)S~&6N>WHEV7k>QYIb@s>$e&oiQ$)g*b@fi5J=g!HWQic%Pr zg?MXR|94Hp-fGxQej#a5(h&4L6jA2K-8AA^QMhC`JwVGApZxwvuPg{Jh^VN z2**HKsx|I=j89d#E^IZ6Ejx}bRkb99%>-Nb1a<5YjbDT-t{1pQSu5aJLcqd*W&P~? zf_bYaUEYE;T6b@@Lzb+!gLP$Jvz4E+b+*P6J<>`7RTgYIkkD}C{MLJiYo5d{*#Q9p%yw76Y2}p+6;>x}<@= z4JeuYG4-lF$q5c2F0LY@feoaMO)1vPRiQ>-K<`xRlTlN3@_bmvD*N;5pE7A@`4JVC z+i6-`qW2tS!dD$LR zcVVp#t>jsz%E-}CAk!(?F_4bO^2re>8Ua{Guq^C70JD-w1Mr7G8<{rt)s*^{oOGm> zdugwI-4Hut@t-P zb~92(tMbJ+tBGajNwFs?OZb)LhQ&h^M1h{05mh_WghlnnW8fOH%j zPd>TP{m4^K4>N>Evr|V@r{W#P{t^ynw~g1{=Gn>HJ1cJsFawWQ$2spojroRboS6DT zz50tDUV**T;#+v8Yc3ceiSaijEdRMJwNu|#lt5oDpB!oMa^wd2C^x=IcmsZY{bfR! zb-*c#YtBfwu?%&Vp_r*UEZUPJf=kM)D{{Rb`-MGjU1uPn!vyjRe_)+00j<_k;99O< zrrJFJoY-V8xJQCe=LB!!4AXsa8`@RVaPi`6P3Vs;Mh;Rn^A!OVk?4v3=^Ncf9h(ZH zqT${8X})kY?^V2hAF{~1`w?^(7$O;-7#oO(F1Z&nG!R(fgz$QGQ-M76C?T(h?W#&uRkgLbL z;s+k-u}sBL9d;Eh%dWw|OtyEhs?^v&!av7D?L}PixulwZ@Ea-v(Ey7G7vw?AF|NU4 zKeyefpG@&CD!*Rr_-yYjNui0K$Ij(KV{i!VoyzZ@@)BR1Pbm}`IZ=_*o^V6w$W<{k zz}gwqRP$*?i%{f#QDxw70MF39eeWP+f4DSmT(3crUvIf}LgX)Gr*udTv-q(6lt}Kn zUzTAol3NSGP%oVFXgv$-cewk)a?<*s{)G6&PYzpGfY)QR76JQoFIC2R|^9^>)f`pe0E3MF4(bJ9ziyUfi~xsMLBQo~Hb{Zm~i zdt(93XQwWR@D>3q^mFj_CcJOt$vce1uC%wxg#T%Lt;K7mO*hYv^Js;|M>()gqW1IL z|KT)(t#z4Jk zYwC$XIMS24DRp;=d^HOThg1t!J|D%{T=Cm$AkUO|V!hIZw`UY}C6eG(|J!JoaONFs zaYKKpk49_xJRobaqOJ|>?H;tqtl9=4#QkztrSin}c5dgmm^)YYCu*r&6B^M~mxT8) zaOB(?JWW|Yl|BTI)jF}iTNroB<|d;kJ{t5`Oy{8Vta=YB13P%oOd{s#MIZu(J$x=WcaOFlN>JRn0W4Yv>aKmz-s zxV|o(J2klV64%L-`iT9nA*bvJR*f%S+r2GAT548CRMvk`)UdB+M53Pi3DBS(&#x~i=)E&<)v&1l z<9CcZ>*F>KbtF|z9sDra+IZ*F#1%!AbNWII@4G6J6IGV2rWKRo_)(p6pZ%P&LEzZ1 zkzMdXSiP+wC50>zFl2$NF(9h^fg;r1^Na<@{KkoO`op!<$+e z={DV*G(8B^9CSoM-POP{y;CdqC}fRPo)oGa<{HStQpqDsycE@<$<57pdI5vV3u2}Z-&re*?%QIY{Jy>cFL&)uuJG-&1J2gjo15#))BB3x+hm<_IIAoX z7;_I6?mSmYx|YS*@Mw`n=$%gAB0uxV_D0r2{R`CL&+!Tdi59}c{SEKyG=kg(q|5`G zfr@m6hssDaDztXmT7yI?LEI)Y9^lP6Sp?ctcy@O+z}ssvQ)VVCBi?O|U)vm8Uj|59 zAK-E|Gd@~t)P?&2X?t8G zbD}mju81p?%KKQbbxr)v^zVaxZ^Tu&&u_X<&I7 z`bl3W&sq3SMRK*oseou{rhy^>hGT&=G~uWFN)qcT>*BFLlgWFh1s#7Oo4JU!5}5pE zhKGW+sdYBTG`axs>-<;OJ*=J*5^Vxa@CR)n-JeF-CC<9re8zFIvB9 zv)@&gh049l{T+b&mK1d!#ckOv+!YwLoC((EiWzDMVRKX~kN$C}-}s9NB;z$17(y=u z56eI`b}KUjyn`O|QXot1`ZNwZ+yWcwF6dGkp}4(GdRAc+pugnaC^+~AVdCgEkY6R=?T+IXp> zIch}jT;k!3qpUL*+uWR$Q&YM)f4lPMK7l!*CrS^#d(1UfWwA`%zh2~x&^((NlpWf# z@sP?4rRv~^0l^#V@!ia4^%FH_W|j$;2mvvLjU5`^tmEe9IdZ?bK{-uVcOyx z_;aX2uS)->yO^_aOyLM^m)NHVMV)VmDwE01NWrFuy=8Z;z(8AC zSnes2M1pQXua%IY<8O37)x=S6)WYpkg%tNsw#NH$sbkN915^4SwbI0m9N{G>OAKGN zdJS0gt`j%rwlW=jpqI9s{FTL&=IftXdLIs4Q(NAc&66NB|BZ(L=k!qGcyCidyFQv8 z8FAk!!~1wt+nbAgi&tGD(^vWF=xouMkCcwvdrjxGKSXn**5cTotq9{c)lnzgByjxD z8u*ek@=6;BAbO~KDDBa$=mPE2%YMjJ>2P%ol*OziHvrc#UBqw<@?5N&J~IVo ze>2JG8XK-L$#bXFHtUR>P>B0oy_eZPYfr=g3QRgl8_}U`gNR(NPV1JGUR`cSU0oFPL3VSg*c!*dNi=a5$pWG$~K{d)9M8@o~7fdjBk5 zL*mhTb}iI?hY}#S2MV{ArsSaASVB&L)(XNty0YA1*%pZG9d9?EPE#!SCXDO!!$&t8 z%rbg~2xMukaqO+nPS@&%DfYLr*To?1$yJB5$1cR(Wg%4Bq&Kd9+``-1x#?)p8!SPb zC$YkvDPLL~rT5rK4BJXoW|usR{T}M3>U$b87k>0UhcDx9OpajMBZvaR>kRLjl6gj<&1tjcYe zW#r-S!#Au~PRj1S1|$r=6oeH_z++^ToL@; z(;?MnV^Ur8ifl^sfod<%r26^5e@I)RRm&qG88>8^W5GQ#7Ttzko^WMxVDb7Mf_pU z!F>J6!r_r6iX+ufLAW$P7h#d3f!8Of6Prl_YlaRE{KVH;$t<)rRr?Bj7rjg*K2gG6%}*uiHrg6=YY8U8eE$&{>*8+ZeH zJN2mGpkSPXN_`-*8!6H9b+EAWc*Ro%3-OL>E&y8gXZlTh(qzU)?Ax zKyhHdK3!nDj-C@G$P+t&*3S?3xq5;~YmOv%1ill@EK{>&ZZAU;bk&VNc^Ky2)PA_;}{Q~y(RZ9JK+z;dF+!WBPGaA-j45EEPy zoTvhAxZdx)^E*G`cq@yMMy;jH2=7&BQ84Cc%RMDM<^H0w=khjsm{d-v2z@_(YOF&I?QA$>Q7 zmh1$4$2RcC?$Jm_b5{h`ryzjMbgX>+^%SXLUP`WVnp;2X!l-rY)+0Z?mfuqv=)v=e z^}H91-P{O!i^bx)Am9mHmiJxerP7hF1D8sIOI8zmaENY?tsJq+m^+zebn^-|gGY?w z>o2mux9u>S9NfIsw5b;+n>{|=q~0Q>#FOw^fVX5ZumDJBc(LxzI!ktH#qY=e^rP-? zwuAV{;(mt!Rv`bs+VJkN(kP$)cb_kKH$Lt0{8F{g@JD4~84}s4)}R}>oI$OJ`P%N` zzBVzWse=@_(0=Gca(q474n2p$_L140yHvw>*GZ54z|-19^rh$K#E{Op(2Dwyo+nxA zb)#R@qw%rBSK7aP!egsaQt4$d)?x4E80#>=F~f% zrNNhopA6KDCR=RW0icno-jB$k@;spoO1}5?m$l5_8dg2(BDn0?Z(fF+SLBVVDxm+-g13b4y>m{ z#rHk`uxrRCbq*dB^kj^C`~r)5p}Z^K1Ne_a-yH zw|FH79yc9<6DXe$?v8E3HJ~c!-Z)1o=(_0maKT5ib8*XiGhz`tt2@(S-O~mByJ4Hk z$u1^pb&X$*%RZ*0bp+Nl`Fa3@>)a!&I0+vUZ4Q>wr%O}Ehlt#*Y6$q`AUq(aah38y z53ij01g{ZSEn&j@w#4mK=16SHn|eDT|M&M^9Db3*yqMk*woV=^x}3*V?Ck6>=(07D zM|aiA0;jBDx4-MMcYInsTc=;RE>|$Xg1=UfN`9wY_H#{nrdNI9q^)2YSqUKe*(pEv zk5QNXNUI8{Fsl4khW#v28m#T*ksI7sYnB4eORW5`S%ANkT(Fn)E zCms4SZVXg7u7=iB-$0#5I?>fS9hglktD6b_YYVFh)4enHefBOlK- z-KsS0Mb)pkEwNnSvO5Td;Fzw~o+kVpui*n#bqrLyEsDpb+pmEhemp^0uzW1g4>DU@ z^_YB{)S57|l~xy!U*v5gxxzcaXESd8@=W1E3(GA_eD=?nq+c|E7d_tmX+cDmDyr`n z!O`>O_p7zJCdWszwFVa%qjgWR?+obstu-=wzW$S1rJ`(%5rMu1e^o!}F}L9DZvdN2rvL$eDu9Q1DIMiEUnNyjQi zZ!r9ENDOI4ETJfz;9j@<$KNcQ-LBc7G^=@d(tQIVkyk*pam6zLqM#~oVqf^?{^#%)7;g34o-8_ z@Zs3$zJnQyRr=7xgC3C0Bw4!H${MbYw~BEJTRV-y@aGc0ztfRXd{nK;jZ2ucUHL5IDmb|}w5R9M`_TvzLuQ~iRBLx6R4 z;e?aY9Lx)ehtoQ}C|M?;M2`KKqYA8K2AhCHQb^=Lm-K{0s1;8v@UacfOTNp&FoHUpUsk+CvNZEA@ z-W#2*s=C{8+3r%yds~RK%2~%+FIM1ce%&G%lM7TE6UTR_zGuFA0bQSOLQJRcTi+j} zf~Z5_JJo<}h1n5}OQiz!7I#@sTXX(@jHNecO4{*Br059KFCj7P4o5?8&iyP+>hq6l z(z=@=8`cI06YY?w&dIDvmFAb>ous_cGZaw`WCToE_~2$G)B#Z4K{(_sNt#0`qK%uZ zop@wQ^evYxt*-t>kcCH$eqy`ep-8q#v0U@CT_=_R$yr7_0!sViXJ>*-nvtX_TWR)o)^8$*rs`E-UWN^hZ00(|m(ZbBK@=tbu~Uvza@ z$@-v7_)b%-Jff^|;oBu4+9O-qdG6e&yxm{!L-f8aJY^Azr`F#2)X5?KG3LU=M`+>r z#Dm-qKTkL1JN^pwV^lg;p3=Nzo;_tpdAP|lky}8I<7zs4eyGOK8vdmdPZN;QM~{f$&9SXhi8?hGuGSCxL_15{aN5Nt z85A{ZHaKD>yd|)lzQ6v}#NAQBZ3zkVfQ8qQ%tSAXGmppI{4{2F;~!BP_1SRIjUU}j)weWfA6^;r7z`5PsCSL3yg3~oSY`|90b?;(91 zRLCUFy!yLpNlVR{!|ck$r!t^bj435USD_4WZen1e-)7G#e$I3&)m7n70qq5CR#c<% zQw;;ZiqI!k-i89!$PHg5=vB=T*mT10EoFj$4k6L$?Gyaa>q-!RuqgQ+YRPPu8w_tAsIc?r}pF zt#goJ;-fvU-%O_cI(paO?L$38_Mzr<;fz2y6Os-tke|5-HJ_5ag{K>GZqm3lU~^}f znmF|ORY+Bd43)o>nQ?wR+iW+kzcc<8weWV9PVm|i= z2HLV|Xjt@4K$6O44hhqG_oVz?&$6dKo|Fk=<9neOs3XX0DBJY#o@)$!eN8_rD>4Wh zzKIV)sOh3#y68);2X7yVWqOGk9SqC?s*e#f1LM-(nO`v<$UjUmL)^@zjTlkdZ-;o_t|=$IUnhmybK}Mf=kfZJUc*lP3Icb|#lP~y zt2(jC6Ivb_O|~A6v#A~ehRVRl`hY#B)UdAGk@VaRg=ol5HB`BgGHB}EPC(xy0dHIIc|Q4oi* zkaeb{%iU^@_$-|7??)LAgz2_DVz|Mwbjj1&&Ji7HZle}b$w6X)X39)GKDY@BKeR&PtAx)=`zXfG7 z-8RX9#?-{K%o>!|7{@yL(=lTw@KFW2v6m$~<4 zlH(kqnH&Qo1T6h%vjZ_#($~gd}K5-Ox$R6@CTsVG@k^hRq zm2>+GmPb+XB?CFhB6ehyd(vXCHc~=;YdOtm_J1Wg=^eET$=M=_^#iNHrCY{<@t{%) z#~VEA*Ll*CQ znP*u1IVTl1{bkGqOsS|6}9MohDNc)IA{Q2OYfNu z&OR#ldCS(IzGD0{N)BQL@X>LCnG8Um)g4888}lv5@p;>a94&R$U!&e$st`yymHuu% zNm4C7@C;!~y%#ufOh&JOOqZy?5iAf#=?`sU00%-B&+e#-Aq&?(vCWy}-Toc%HT$>9 zAAXL7tNefXqwb9s7WXciPvFIRuvR;LnnW_@Bbd`qzkRt{5Qq+}U$f4Yocg};7I9st zT{mD`jvy{?n=+!cp>bi5wH*@3U@FMdMRKazEImDJTzM^%j^tiVRb+cEMa7&H|uX&`!r)%Q~P_*prYzNv}+#3rp9cjdxTHO ztT$rX_Lv_f)n&)+9p1HbyLAfzqy;^0UuN<~@H#0j-6MwNJ#=)p2lf!MR21j3K?GCy z7eS?0_VnBSt8GbQzb0N)eqA5rsDbTJwFfuhx?(BTv=XNUlKg2~RJ%pQ>Ydg#z8!Qp z?8+Zjp$p!a8x;eOzAC@m*FF0n0IewVP~Nq_{yMnmlW~51kR-(=vSYmw!LYIhz&M;R zMuPRbXyZ#n`W5Zami~G<6)9n#;ok4k28Tdc2y>KpTdQSrXhqIQ;zl8rKqj}ui(d;L zRvzTto`%=ho=S@>p1$?{9Lz^tTivgAUqwdv$SwpE%TutFkIzLI_||Ho!13ZJ1!S?DOomBp@Bs+$Ok}w=`*o^z2LS zy5`-|A8&jprgPA1N#SfU=XUXBGbYr+B-sfEe*?dkx|wy%z-+=SPco_z0Ebd|p-lsL zSHB?LC%zuXB0tJI>u10DuhR6dv6z{pFVp2@X0w^BUDA-ha{16(+pqygF?KHWXfW!0 z0)IG!1hzmyX)f^>JEGJ52xIMVA_6NN2e(`8!NYp^9BT~%4!sov^lheQs`mMkJsMcB zq(XWP&7>LG_QRo(v~{Yq3<@P$6|&V_@l2$=P<7Y7kxI#+?oeYfoV(biMVxD zuPITkpT5&5GE2{ypskIa^k?-4k~O11n1fQB``4PPq)ly`n<~;RluiD9+jjNMR``k7 zi_X=T!lZ@&nhx9_Z*5QHnJ{b`k;GWftb(Hli~b^*sm!9`8Jre{JL}tW8B@f`XY@Y@Uo}eF349fD~(bcp)QYtpr zrqUZb5Jj=&AuHFwR^|k|9CBagqVZa6ZV@B0p=}WgKSn{N2JV|Fh+0=02EF-5^SF2D zsHH2yLoD>tgsP_Z3AHpvz_$;4lbBxEzk&>7^;i7tI^i8TQCys};6+~*pWYhkM=Tw` zj}dQ?vMv*>Iy^$;Z?=9OkX_=><+px)R_qmbekO&&yzz!Gw_Ta>v)ARSd;ggI(I93@ zVNdTN|5NRTPa~TY^EXUF{kH8)&S>fOmG@87GJSKJT9?m+hlb=Nx-_~A%WjTJqOZ*k z`wgyz6|CMXAexaBEiA9Rjp-}(%Xc7WMi*k3*dX{F_r2_W`k@DE;u{`~y=p4m6pM>> zOIE@ZUvLs#(n?i;I9qJMaoi~olrzg894iq1>EtDDxpN1)hi21d6B#L~;C77^zN3!& zj%f4S#FgtkE%;DgL8RLgAM^*5&hc6;OSeM0-?Ah|O=_c2h{yFfP^X$Z^OAHVT-TRU zRIWF_wEd*2dy!yY1T;^m+^C8HWw)Fg2-6;LKuBT1D3qH{20k&2 ztzX}$u z^_zi5bEF%*J`!yh|9>N%x${ctw-S^!CWCIB8A0|2~&dYwyqP=7qg^E4(fs zvz&FoVicu<**23@^GXJ~%0nLPe}Ctlv}^#SwuGwas0iTKctX(tn#~R^l6i1(O0CJej zX&&HHklSUMA72segYr{n&DSwq&GS?TxsUOX^M;nj9_RpbP{4Hsg5<9WLq;X8=B<=3L&;+dj* z`}>cRKy+$faiN&90{7C<9&VgFk+i;f5;h=g-lMA$_cD zwV8e0@T%00GTGe{^`hr#me5weiuTLqQ<%az$D>b9FAKN^rP~X9qX0(~deu zF*g1}T-~#@!hbYoBUg5;o(;dJS`_iiwvWixi<3r8%!oGl@Q%5%y2w>-uX(;7M!h6a z5iNjrehWF}U>uz+Fe(<~s5fr#KN)p=@FIu_ENV&?ivk?tQ?AcJHNS>Z&plleF1aS9 zepxx17T76av}PtqUt@rn#U`OqWZD_TtN74hCOn$VHg1MPcEhfjIi15If^UyV?MmA& zlvkKO_z<`KvayTldI0Y-E%(&$CgO~cwtUNT!N}zfXV#V;CbJ+Bj39>MXxA`gwii7n z2taRQw{x_LyyWDe&lN#t1;*J81r_}L0t1Lao#{V}VzGnMF`jkO(pjL!V)JwG*0J6C zY#pD%r-H~+C$BU>v!MbD7i6fxYqf&*%7FQPEPlTL>(1>!cf!I(zU#a?7ngW3Nh0-j z2!W*dNA~&<`<}P=ia&=#aix>4^RoTA$S9R1Fa7v>&p`A`87IOV42Q@MiY0LeFC&4i z!yQ=cSf)t{VEjr0e`}g^k9^IUo%(=!thU%`g<|^z1M2ng<@xDkS+A)r|aPb5m9B~spt814)_X{R!d>OCveN$YN$5_ z(Zvq2Js{pCeD_?HA!$%&n=FVHy>)Cs83M1VkXzzK7v?xU+M~4AZm=XA>FL$a$8(q!Ab|#RR{ibv(%0z1yQQ4mbEo?5kwg$3|9QI;_2PGr zNUvt=0YX&1o@DNn^xEO`t)ozjIGVV}a}N(8b)M$WdK9GXOmu^Tk?W_7vi)4u=TnSJ zVFU{l5fr8BK8GM&s>DNM`}SB!3QPJ}Xhg;3)+htTKl6Qo@((!Ph<{`sPB>yo!T;LK zl9{11SuSWe%sTXPq`=q?9^+xtWSOJIu`NWcd+ci1;WJzTAs$EBIlGZBKM&%x%H3bM zGFNA^-n;UUb!eeTTLJsBVBqXc=`@z=Jm|dx3G@7;oV72cdI&@3hz}p6- z`_%dC^L{LAQpmzmPU_vMA0&>nNYT%GhtgFXuI_vvq?F^HYp2&n_+S_#%TlNG#52+k z%Upvi_L~9!`-NT4xBim+L89g%CP9H`fRrqeM9Ko~0l&I5hPO+Lw+vt)8@0YtHe^_yF&PyI?YfAy&djA)<5ObhaEl4eQ3eYfP>vTk+(!R&xf% zX9}~FF0`HdJn|ut1Z-mrT!dI0r7eEV^OotNDRA1cs;i+5^*UUR*l1V#q0Vm?B(CRI zXk(=fO2Q|)JipXEcyOf z48I*8w0L&8>4*%n-ke6`o+5~%?z>wg7dYeCKN@G~Y)P*)$UOv>2V%I-pY z+}fAXp%{;bRh=1|aQ4Gpw_9z}+b3R$B!J(io%Vdz>du~@2JgY?E(u_Dtb+g~IALO9 zx*LY;L)TwU6GW~$+e&^`&1tOZD(>Cpc-8o8W~gg_`1CgS2w%qekcP8G8RQKw=N@z?~B#JxO}O1DBnbFIS3ow_Q&$e`wFVTUABb zlI+7(oMA=P%fyn!Z1VQ*Za1MOrWs?q?7hHcF=Ic7b`%73;skPo=uCJA+(i`pdbs(h zG}3UoCR4$}BCl)duaZGS&3opgd6jwUAQNj?0mwEMir#+zs9Y@^uU<8!(WJ0WaexQm zxjNebWSu(zg_(mq7ra5t#GYv3l)AredWXLZQ}@5>`A+4{uZwD>2cJJA{-GIMdyPwq z)z?R0&dEW(Bz{iSn7raVmgc^G6z_K$x8t2R+LLJ~(<2ho zsW-N$f%-!NWB!nG#PKk~3t|$91Mc}-T^kq17pvcC4q)waTX1c;p6ePvw}kj^U;E`Z zQDG+2P&m^*ofnti8ea3`;HuB0^CbUQek=6=uS)UMQls+I@mw%antl4*DcN>s7PFpM zhS$YGDK+J#OsK?hKwe6Y&+aaHI|<8Fj*mbKP+6(th?@VIyJwOJ5x=p3PY!N@aQ)7C z`6hzqON}&R0;weL`IQdJN(WEB`PzWfcv;%>&uOzT+&`Ml8G@Xpl(@TJ7 z*(!OfshIPWfTWO9yRs(H$@1y#I(Msm`|utKLqVB<8X$`%?a#YlnbB*@5el4B|4n6N zxBRhod@s)9dr^ycG^z+?HGNvG`+Ah|LFvV+ zS1sW&VK%?l#*fM;?`a&XpYnR>0`>!zX7UJacZIpdjtS}FH@Zij3#>`|0n;OEFF9|y z`h%dKlJmj}Jb#R~XciGi=C53LzW&J8Ir8C15i?}+elOEU&#>(oQ1=D(!gwcF}QLm$~KB%?GlNW52E4j?=V@DKP$- z{Hh$jFI(%VME7GCU1mrkxDx4czJx&v&}zo&6IpuCZHV7-+iNc;_T0Xu9hfgT$qf|V z=C^zx8~P_6{J5z?T_NCD=Bqugmvvk}tOl)h?pqt<@e&{wTH>YDC)S(xOPl=p+OFc6 zBS}C6@ex6sQex_W;39+gqp`zo=Q5ktvdqR0z@%N;p{E|QuV0>hL_JQ?oeTU&V~*N^ zKE@>5ry0C{H#ZKX7XPDxZl9_%7HtE6&Wl(XBmuHlufi%3M-QItzw*tOguWM5xTD`Whdlh7AeMJ@&7 zxlO)*>KSAuH3Ga?>EyJtQ!Bv|t$0oVjHRotC`@#>C!-1mtIxm%G9`~ey(xfR>C?yH z-mz@P-W<@ge>99-9YeIQ-6i}J*HG&$1OreHh|UuA)%B0VuhgdnsoF34X*Vo&8pJv) zOTr2wx(YZ@Ck4f770LrdCg=p7d2km!xc-lZDd+|8f>8xNP!$n|b&r+=PRr8qZQ`l0 z%R3Ue*s1FB3dqdi@RvEwE~RT%-_Df=8@=sY2nMq#4Q4w}d^%0tIZHc3_4p%g^bDgm zW;Mu2gf>x78<_rV1J_h{LRW+0L4*cMIvi}$aUO~z`D9*9l($IzGhZ?CAM^XykWPdT z^a?aS<*n!7jyte`VAHFCguHZYwiuFY!ynoa&qs8pGCae5f`sMVod^x@mA*2^g)2w- z3TaQdu01s$(-yGuiG!+K=)*@*w8CzsLRe5In^gM^6mo9 zR{5T5;p1F=7+5e$#<;T?@}vqX6b&4j=hp+lH?XMRq+IIN=v534uu35iH+M$rFKftD z*$I-Ci0M&01spRLo<7m+x{|G(tD;+?S$ASh@6j~p#__L3YZO5F(nt=iw{mg<0#T!7 z;5T+sQZ2>ie=i6_)Lh$g~e(4>~wRc1%CEdQQ`$gYFvEeKy9PJO(2R^7MCeYo-d zNdHi|Mhn9)*gjn|r>6%;fFxZ`Zj{>SN0`b1M%Szp#MH47)Ec1*{-ypIo}B zrJ4n@eEs1%{?w$t?D@>k(wkNTTJ%tJTiWT{$J?40U$ZvnEG3uTWT=0UMfic8s4$76 z2X=_UM<26T43BfZasQ)H*?GWlS&i_G_EHRMNCu5e+|`l07an~HcnZ|#a$64=9*pQx z?$R*Gd|EoDX;oGyjj`O+`33$I_l@3B?V&u)tFU%~!oL?|yf1#Z2uYKt`Kh?_jVhSz zK*PQX&PjHV&sh!qKaQ?Dp6dVmlcZ9Vl1*i0XK%L>LfmAPbt@|?+3UKuVXqrPh+Afe zn|bYP@4c?gHM8#}*X54S@BRJ#Hhz7{023rHkD zmtD31e(9Eho7!*F_GO++6AbolSxK(*M@VC{$yF-ljQx7}mT|x9Lyzn&Z zKe|0eJluvz>JWJa`MZJFk=b6KiLYj>+Fy~U<+DPQs#V@o`&pI>FK3v`(@-P& zJrzx%4_bkQXXr&sH$Hkb`g6jMS<~}rDji`#Pbuwvxsq(w%JbsfIyCxH zTVt+Jl=0Er@y(S5{VTQxs`6Kot!Gu7z2(UxJUkCBtIP*uM_&J$YF}0@HuT-CpTYFt z%gtR@ylOsG7{QoLQ>YmDYtQJVs;kwQP7EF8dEkNXj=W1D$;awhjf#!@H^+zdV!U5o z)V`nQ{ly+3AYdF1ezUqUyR;E}tzgwKD;wxP&+kybC@%1TC!lVGlJ=w474^B(su`)W zbp1~=JWhhXLhR7gD}~<^0!u3|Pr+7aY{bptX2bl&X&o8x2#|9V$d=SikT%klfL#20 zR)c^m{9q7Dc1yOIec1(;v(b2X(WK+;!*|t_-;7PeT(pA}u!T~YFiY}GdxUYmGpHh^ z8IGNY9+Mx?Mrc~3ErQ%;x7OXL-hhz1vs>IcMZ!{ddJju;_-A_G{q89LT{Irf>D}$Q zV-a$5E3^pSF7N`@hOBsjSNa0=TeUV%vz>URIF5c|S=^TWAwYA`+w%9uZjI{pBoSql zh{6Guzp>gt`R)mD)ICYj9*pS7f7B2?!WE9aPg24a;|u49F3}~8Ut@a4@&5c*#{QeR zDP38bjuKrONn&W_e}#+~dj;NTovU$&Wl&DmNTfC7GP z9bUTYdGevxbcYh|cEvQV&Q(I5>)Fn&fT@6*;PCo|>G^JjcXAcFGfafCs#RfMhkdlr z|EM4f)AINL+T~Gvw+RU#XfQI9`dJc}v6CE6%VSOJla0P{y}s^3jD+?qwaKa4dByy5 zG4p-f+B>7{cv6`YmYjev3+#u!nSiO##w!CMtD9jMoNyKX}F-mh?R}Yh>#fZ zB~Rb%k$6L`9CYB>@-1|eU(Jft-2&bf`d#cZ3(A}XFmD&+v}qgYQZus)hMRJS z0GsjqS{DN5?0>s`<8c%Hqr7n0M%1G+`a5aAR8XukL*?J%v~kB8VR-HZVA76gOaVt7_wKsSdslwAz&m0Wnj#6 z@jPF~#g~qMC^*(+&fbSG?>lti0r2H&R#x#RM@UKDk8w04&Md!gAfHk6=MIJ*NJ-J^SZSvjLSj-Y@@lZcHpS4hg(wwZ zP6a@359Y{b68dK=-e-k<0wvU}fFCUB#Vx$?w*xG*Q!9n*95Vz@g z`ChMV>ih?@8`h5$%DI8Ev1p`xVq4_ri2x|DUq7P#WkVI>IoYc7ypvc!y0U0$(D3<$ zVB&#I?Kkg9C}_~`v6ZP(QlM@t zz#O}IHZcp7yYl@&z|FyoK&ze9*uGzo?|SrJZje#Oy?`!uLpIrAx*G>p_X>XdzOKCd zb-iz4^zc!j=?nbD$ZjjUN>CJ3Em2>AqyGHT7Ax@L6wR}k23(%uqWfN?=v(+a#cYMR z8=}ZAX(aZ@MdZxTzNcA~)ZPhUr|7YEf@hhHzdsl|Fy!dVocZqKBe0y+`68ST{x~Ig5=A`@VUEOrC5U@;V zI=>336$J$w4u>tBF9=nB@EjZsHSzZkExN$Kw(y)^B@Q}FdHGi>L}5twRhKl3JY+u5*iP#`BR}tAp0z$4N;YU zCM`qY<{&5Q=z+|iVK!CRPAwE=C~irmZT%*-MsV>Lwt;oW({$9Y1Qm&-(_mt(pX=t7 zGw`UINRyw>rVG$~ZyW^D0S3X@GE%tjg1P!33+m_%sMM7Uo}JTwS0tLPY$1;u9!-RBN~Op1y<7E&G^FENaC$-L z=iWaD^eIyQ-nNtm45)UI5YQPghVp2n$7hU_^*VfvA7sy?(%!|U zxYkY=S*0zL{l^{u+NZwX;~b@p4e{lq?1^GfkRwgK<^Sk*yYna_cQD= z5Njs{!GD+3>KC#s^MRP;l5sPvvy@b@)mYOQugiJsKf2WWt4K-caAE^Fx24-DuyLj8 zXShG&rDjS4Je|m8p&!}Jk)97@Kt^0G!K^p**ywO|-IwzIRF`F_&T_1>etiphS-Uf8c5YMm{$9Y*6m%hD%`RqMp_NweD`j**Ru7IDu zFnfgsfUMX>@`aX>Fsq$&Tl`!{3h>L__pCEdxRTZqe)#(n1;kG_8m&@*SwE^*Z$1YN zpV~bW_w{bR(jH=vO}lHTLv?RF%L>ioKSxr>1+LYaI6CsRDGPBOIM{(j572eXA-<>_ zPbpj@V=97>to0^KV=30>)?)D>WVaKvGl7$_1VB%|vayY=yitlQkJH6xD~3p~?NA#$ zD2)5`*T?{=0992I_zZmT54iJoiY@vA^;mcD#HW?6*Q21ZGSE!?K5Rpl1y>XeS}Jn2KQ)2;9KOgf>Gsq(5DCARgxHzu3b zvD*7v?U$0P4Z=e6{cCJF{$g%9Y{eD_u3P|CBun!joaJ$g-S+b`p*q1Lr|s@hCWazgfk@MIuCfFh_YWM)Fb0aYEnRH{X?93m%_@GW zPb}5l`*WoAx2Ja-oP%0lZ0=|N)L+5vvN)@bZqO3sh#L${sEo0hEzxmD)5?YnO$h>V zu=|VsxPyqAQs=z9OquG~4`$aw*fc|Q8?%pbEAqVkQC>2vAB+{w`p+nc-1hZ!XXe*a zqW4|RgLT|aWCpVi+7S`itRxpFr%#V#T|FnNGY6O)dA}#O$>boqMVe#jlb7W*Kw5`8 zqG$eky-qLp9Xnp6=-cWv0nr|`LZ%f&Y{qcBG_bQ7-PinM==t{lEZx(Y_ih2U_R&dw zc3ZPujZf@A0Y1nZ6XXk#-+f=l&mbDxwP6IwgOaUFl$)>r*u!&&bG({3C$&EAZ}(O7#Zoibde;e zTlYcVrQpTvmN9hZh4@;p!1JI0l@pQX*%ZkO=0^AOFY17H21rkJ-1}8a1A+#7UqX?+ zf?I$sD^s_aAA%$fX(zK@b}0Xr>-Jq^POQ{8 zOvYHff9NmuMufL;@&kpqZ7KhHKN`($8a_OD}6%} zoSR~Gi)htcIBVf;{?C>b0rxnVwWr;*Oz=ao2Ks1MF0i+RqW|=~=hKeEMcz(^fRom} zx=oEercdX`c}!VNx-NGQ(k@VcYUq=7DE4C>jpp`wI)yGZCmg}QdmV2lV8QXs^L^g` z(ZSzd&OGfpV^q*rCey27xN5(!fm;Dwl-k@h$_z0+tTD3Loo#DO;FMgN) z-akk$y_4EKAp3yx;wrg4{6TJ^t6}6HN=a7D9xyBv+XyT&I(#VzT4AN!WL~jAvu}Qo zfmcc^lw`h?JlI_u8;M>{^sgQA=}YA+|KeuF#lj+HJVf3fSbQDt8LD~d0PZdji@0K8$xA&*6ql`-c4EuuL zikEq@N&H)N-;j3?@t;=#izfw&@t;~kLXq&^_>)Uc;nxj*EPI%IoT}=2eGhkkUtuz_ z^Ky##plSosk~U3a#E<^3Ed*@4n4+qf4NHD0ghcOdWYZ1bY;j+R_e-t1u&lrWj2HZ`!0dmIa%W4D*pakH^sL7(cDn-q!wAQQa z*LWJc#%79A<&)TdpMW8T2bqT4D+%2_k~No`F#)0;tFm^UWL;R7+HN*8VJgdyI9%Z}etK>3iK^5krfUXZJhf{`W$UHA+_8y| z>C%zfVfLN1nD$jm1tpAGAaMAjv@X)-XTQ^~la60AwIXNP+K6}jR?Pm8r6Qvp;+CUV zIjs%5wuJ;5zJ4%fRXjS%RXFu{w}375Td)5c>LGr7-)r+T@hfs2u-Mm%qh^AZ^O|qt zBV(7T@u1}*|N4Z_EAd(vf8Y-~dFK3+_HM6f^ZzPI4x)chn-ySmO(WgRYcQfTreEA= zbV|mOhg@+KOO~Sum}UR`w*EqL<#UmtU*&dV#&#pxR-HeY>;`LDWB^*WsH$PU7p-n3 zy@i)3QmeMYV>l7C-+*_gIA5CoVC(XC|5pv~Ec=zr| z0&j)g4mo2V`44NlJ{%6OTI%*Bi6RmtX>_#dXGWzYgI9oSd-gbV>}A)5$=O{{2V-z^ zTsbTK&Q)MWVi~hnzAORa{+ltF7u-`N7Z}i`W*-!@9W0p% zpArcX$YM4AR<=DI{GxW@U0}MuOH7}eioUHM_-qt;hje0tnX2Xi&G^tRD;9R=kUq6j zd0H`C`OyWb_r7|BOE0Jb(Y@C}a*sJb*Iun&UU@&Cc6Ol^jGku}`719kxjj8Rg5ZR}1}yaofoZZLjz<|XDV;^?V({jRc=f2>^xH(3E}ge|E?p06kzL4lD&O8^657{C;zU*>q=Lff0@t0=2bal zMXG4MmK!UCE75{zo~EdLWE21?CXcRxD#3fhtH`kI`=CnEy}I*222@?Ld44v)`w)|;AK(3k>Wl74 zkpUG_{!&+jN@pO3t9wSLp{fQ25hue2L8%%RgYDF%fgiwdkW+J0-5#9Kzf zeoawR0U{|l9LQ@Ah(Ljy4-nZLe<}zc!}qE^S+1;<^71OvXSGr6f88l z^3+YI&CRalY>O)Y`FGws|ha!i<2tJB2XP_G%%UH5r}U2Bftgan9NyN z6=2-9`uw=}-R{k-KDo*}bL&I7qWiVCuR-Jd*%Y#-1_9C|)#TqxCzmTj;x|rQJ6&Xs zXib*|Dj)!)qfET;B@nY*Rssjmogjk8S?3Cf*`}tyNd$W9`qNls`I2s~?7)xi`zG-_ zUm+qjTwMnFqCkG^Lcp=@3ZNRw9^NO6_{v@qJGK?3`i6oSwjs0qL=WnBKoSf(rvQ(G zFhOn7WWYnN|rZrr-LlRJ?4TEY}JCHL0-6dop+Wa-6^GZAGZ}}zb1`>Io zdq#&oo7UG`l2Z};wSpPPE>lGh4=r}E7>dBw_vwN92(`#5JV@mjJpPXy4+i|O^auyL z$16P;H-TxbK`CkXH_BEgk-lv}jqm&w?-V7{Lp z-yUkpcbH~=L~9&sXj_#1->q4)#NdcWME@fJRr`&tFQ-YfI=9JAiQa)^qe^}|HrOH3 zwoHD|?jP*$>cif-{gtg^%p4K~{F}fhEhW=Wc@| z;kN_r7;fd7@ogYHAp}F(Mt7N-MEIe`?)B0)V`YJ@34!WK^Au` zp6l`kB42d8!re19eiqOej5^R8ZdCh+g~d!?k(Q_CWG7Xl=KAdHLe>6;UI%Ufwm2oU zqc7nDxHEt!rA|l^BeQj8IpSEPEm3&$Kf3iTWI zPk_VZ}Wj#Xj@@1LC*QGBWa9Nv;y)-7pDD~1m+WvUq(V-n{_zI{~NJ&el|U_1%OaeHWY1aSMud-(jaxzyLn{n#PNw3ao+ z5~aE|+Za9mxm3b6#B3X5&mSTf7--+td}Dr5VRAF`S$un0_|Ktux$CoT3HG1=Hq68Q zz>4DhM+SRD$maObC39nCi%MXA-XCzv!+p>>e2tShY3kU1t~mHa<~tz7P-n+wa;G-nKjHE~aXp;=E zC&ryPPGe2F!d*i8acOW->N@r`wQ2O|+pf@I9r~T?^96s5`T8j+aoFW-Bkg~Ok7T8F zl>!;J$9H!l&PVH}1cY4wuvBG4?tUg4*@uv|{5BnJx~{n8U4-WPJJpQHwS(Y?e{Oa? z?{_FRJ^3{ZPW}r-)yRd^N@3i=%-aGL0(+`~^^h)BhEpUSK?-Xg-usYPQgN$=v1ew3 zPU}^U*_z_LF7}nJVLb3~um4q6OLu&+^5<+kbqnyY`MHd&6zu{>|3~)++=;p7iuE7Y zE8R-&bXx^QrbRkpqI}D12O}An-$y!>KgkungZ=OjU#=jIE1uD;1{d#Q*RbZfT1DWi z>45o4kpz?slIhJR6AW8rDZ&I};8Pj-f!{L3j?c11>zkH(PVQ=bZ*=O6$;h&v*o6E96deVHM)SD^x}pKA;F?l*JfRgsA_9O1nf3& z9exUj^#F97WyJM&kt?iWj$hzEwRR29N6B4dXxZagMlAHW)w!^|-T5DG5d>(!cmvMb z0wuu>&q2&oO|A_H+Oq|5d58NdVlR=b`8YX{xg)M5lxQ8A^p|5f{I276% zkDo>*27DTpc^^i<2?-tfa2N6(_&r++x&+F0R&^^_aCPn9lO8@zOM?yfBF!JcE!|SB zd_x;C{rg&cz*qYUTs2b7V!&SwxN8Y34~3okd-g4?AEYV}1gU&9rY+|LsT?rltJGCl ze9!lu%KVXw-@}yAa;6v9%NCkXVFFh(UqR$7XL3ONfe>SAvlgEbVHG!(;si{ftXcU>*itUkwwUs~-&U0rwC)w4& z;8dUbM?>HT#SSmCn?`nq0}w9C~>T@o|e@ux&+D(Jr~NF{kR+@jF(NgcwnMD;{M{W@m2hS z{Nw5iV!gL7@UJS=ut(k(1l`;G!!EeZrTxicI}2_=FA+sg$2)Rv`Nl`mGy35Ls{8}yKh6R@V|3;Ws+wXSYB_r~ zSgKebFxPrLxMTigE#|?=O_m^vYR>Ap!g=S3k&i!?6Lik~xsi%{JK@ifm5&&?c5iI8 zx}EW1>mdCfmT!Vhw>kLA=kgUqf6%FwQ{p8My7YQzk#DYI&zJ^+C+00D?squA6!x_~ z=rYlbTm?ucFtf5-sz64N0NX!Qm>nI4uwQDgxjDlwSUFxQC?$0~Q6~6lf$1bKF~vKO zYw)thaENe8XwpK;#X5bRcmM1PHn_(Ik8>)P6|AvM2DBZ$lm>rg`{Py~M3=%GkqrDY{6_w@RISohS*v8h_L z9*)*Cg?4DfnX;p83h$pm$db@~ZCr)?WtOM6cLT`9@05A!eG~OZiDB{SBWLUDe_*9U~ zNtrDh&d7i-0??mbp$O)-myjxG zM59039CztuKYjhQ)sJ4h<62@wfkaLXlO;$=#)8 zSe46Cm2hM&f0LVxU@^P@N>(48qiN|cJVI< zcX&$GOApTY!**&d3c;yZ8U{DCv~tcx;O4D4+`!b>pkuD9y~&h_Wrq_)!ri|m02Yu; zp-b46?KF_fmvNcg1M&jrw~9>65tY^ev#zJ%w`(>($pZ&`J+8onHLGbCBG@NX$c0uW zWV2_^|ACIFO#DFn=oupCj<7BZcrx1@4_+;dq6FYToTQWP9ro}Xw{3+e`!8y(1x+bc zgnPHI4n1x>mJ+~OKx%r2SH8yea#AJJ%extQt zkSAlxcPxi;K!BWk3}<4+&~ETO1|+R1m@|yV(J*rKo(Mb9K3XCc0a7^}g4>Ay<8p)N z?(q4yH=drcWDm{lJEY9yH-E1&9266x%!t?8tY!RrJC>qSXS4_oI2B$?=rcRbh%-++ zCVe;l>=A@#Z95C-I=K1w0_0X;&em_3fJ;E?`p>F27k26z9L+x6C=y~xS3vDKt%d?6 zOxkItS(@7W*wJ^xBS@0y!Z8s==BH>9WTH`d%}vdCQf*Uh1|)mKBFW;-KyZLCg6>@K z<>djPqN$9d@?nGTj+#n(F|;{>8ejNL%EQo~BLg6HWFsMbU5H9D@u>T|T;QocRi zdiR=)E%>Z!*o-eSc#hrt_10FM3M>dQL3OjH@m z#)LvtOH~70e;L$}yp$Wvz4`qP%o11)r1o30l(J)$bl4rJD>Z9Bnly+DVrx+vT{*bY zbu`_h&V_3Y)I8)2iP`imG`1|*0|3wxc?X=iThUJTc@h~1;n?zW)i$Zgo^>3siVw?q z0ojS$qrxvwah7OV#SHZM@}X|QfCshJ7^wEFNG61(6}>&cL+m4bHbWq`Q9>yL>VYfb z#_PPB`jQ(-dhybI#z)z1%`BWzZEV@m3lO(c5YnVozwE{Si7ogeOpIdPG}5d# zKRv69_8*7LW`;=Au=2_XT~7Yb)wCSVK{TI%Ay!R37FcLHaiH# zlocTMSn)`!%5p4}InS*^$N$76@RKTs!B=g$`ml(HA$Oy)LEm+b!dUOjHXL4s4hmoV zh0UXG?jJT$rAXN+ewJ55b{y+x2av5+h2by-+Hl5ZJMzYsMX*H?&O`1(pmf#etFsYx z@k0J_d?R-s4QbT2E`4~ybpF&#uJIkS1`(fZU^#Xc3`0BL6qYGDR0c$B!*v9Bm%vO0 zww0zb*=UQOgEZAh_)6{V-_<@hf8VI5q-!uo!=b`wnjsPLqXk49qU9@sGmRFk>X6U=C*cyrXp0b^y1u|#s|iR zBG~N*TquLDt|tDu64FD&Q%&p&LMhPYS@KtQav271>_hxVjcznr29X4j?FWoddO{Ym zi;uY#!{ImR{G4FVtRW z?_XV2H&{X>K;sldv;uJB&+TaO#~3kKR;1^qn$JmVL%wWsbT}fJ&BA1uAR>c)(f&RfIXYM zxt0G(wJmlV)3?Eb{=Ec9g7kB(TmtBquZ)GqrP2qvqfQ>IWq;eucUEl<;Bogb_{v@9 ztVjAR{Npl~p}$ppy622x;#slCG4C&b&B|rvy>Noy@`R-tI83oWq?E}*n;*SQ^`{TW zb4^rI7MdD9RDw4)*!Z2lZq%m81}AH*=DQ2 zHEXB{p}p;9pmImR2AFmGxjm00Ds!XKepVu`@OIFrx*eRe>XFU@b@=QbIjS(aG$Oo2 zqPw1Ia<+p9sMnDZu#17(?ZNAX$)N=#L!&Cp=K;&Z{Ddh5zrG}%D}`U4XzIE-O31Gg zShE}RIU3v{H%JCj+J?1%QZ8D5Mq`;iaoW`Q|i!L&|Vk z_eNbB`wFJ=kfdT_rImIB&yly*B|!ER@OE=^3odqak!FUDvP%8&R?jbS{WaimujHo5b1owrecnvbV5K3a(}2nypkl9((_q9` zw72;Kr0^RsAyS4wwYcsqD#}ytIo8X){heCFA5J>xAgyoe8}tI}?Ht03n*5g~XTk9F z2zmJdm5lnfS8rAys#`bDVh-o(I!Q+>BKd^2Hd}SwtVSt3))1*|DX)BREOs+=Q;_N& zne*fH8ozq-VO_*)h)QOWa=$)ID_d{QF-VI?xFGjpkvTl_cs{bV`9d8DS)g4w`?5bL zkb4pSFXZC4(xKuO*6c^Y=k6PZP?{IgjrA>+Tzb8q*{W4Wf>zX2c~u1uut}$SXMYn` zyJ<2b&1}|lBv5;XZ@_H-uUO;J-I0pcY_t1(V6xVXy&X|mEjM-Sg~m-8%_LjUGEy1H z84#2&k!)AUDmo|wntCC7fKlLhxCBDbM3zd4l}(w-H!gf?=Tz-o{=;;@&%ql!-Y=)- zD|B?FcQItA3O*RCydt)m&x;a|FWM_O{I`pdm+ydIs~+Zel_T-sWF^jJWfU}SKg!Ae z5x})c$2Yhuk<5{9FTbnZ=D0m#{l8hbA${^XMe(7%&#inDitOTIY{@=R53&qC7s#`G z5N6rUFFJt*kCh%|lC{mVv~6AGM5eBFAP+}-hi<+$Rei%GT63+RWX~$0K3oDvoxU5E zxUMlATdr?4QWKj4grj$J5RzBn2_V;?xo22UNE`C%zdFpQdwZ%&5ATif;qP%iC#D*7 zY7{3?_NXC|ZFA^XwWjY)8i=ZX?*V=tMuWJZ9mNxP66NJ*9OCk}z)g4EcwB=h{^awW z6m3b5^y3Q*5pRN%d!b2c#?$0(t-_M*CZ_z*GC_`%_fxDh<5s0f3mEz3`+-+h zW4)SZb5DYMcN^3GCRl>;ka#WGC7IafdqPve2A!KOvp3yMgD;q*+Wjhgzj>fs4PC#& z0*dlV?66011H&^cB!9T5(<#XF$}2k#>B=JCe5u{pg%g-93!)o-T|*XM)5fQ~TRs?A z{@b4$u$`{*zrwMP(BVZ+HSLaTw5(N`U(qnl?vwbryhhRd=6uXA!!A;^zjgwPRK=kp z?1X`2149r8#oWhB5^a)S5Q&!HPP$*#q)u%m9d!n&TtQs_HW@fS3UH220fqMNhANFi z=I8O1EMK>DSk@A9-VbvF3P_1QBxXwa&+c?QDAIm<$M`O> zmN35gK#4IAjJQ5>n_+9J**Kq5ce-(OftullCl8kws;W?}r7dDc2mcp|1J@;mtRQ2q zdX$k)2P5LSH;qRfYT%?qp^-)mv~@K2x(Gz%(1{pwo9bBS>2NchKS*~|3H zOW*EPMHjxr>{zbFEb@@R1cB9>@_bV4%46kV%ZPUyp1Vy-cTEaRDuo}en?(qyo@S!a zgQl$;ygE_lJrI@0Rz;(AAFk2P;9@(0D-(k`H z6iugphl^aYBwB*($T%zhwu`yjI`dMv!n$(xcepbAyhuQ~B_K(ILxHuvaZX=)!s zIogWue#039G1I?5&{a~;th#ePblyILU~VoJ@)ZO!rZot>+IINPW0;h7ATei&rJXyR z|2ND?k-?vYQ*LFfVJ)%+@OxkH981}q++j$4bwO`XVSwpko&7X@&+*@h{t68aAvPns z|L8VmmMs$Ok*h%kbInU@Y1{7?6{tU<<^&Nj+BMo>hR#s(PlGGLHBIl&LAIa32pKvn z7enu8_mBq`nzgT|Z>a9yX}^R&PJ7&lDLE6c4(q$m#V2feb3EZPnW z>Mo3rU>@yD?oG93A$^iXSxy z%Z-@{lEm`XCrV)D3gad*``0F{m*p=Ggjf_Iq^?)u1favtFC9E$;scb@LS98zu9r13^Gh?>Vu|FX&eJywfn;1 zRuw+MOZ}8Y>dm)v9x%bjNeQry9(^q!ffI|`C=PfJ@<8Q39v(U%Niju^8UzP%FNqpgwm)>J_?GW+p=2Tpemecx0XmIhg%> z>)=p^2~lOtj5LeZbo={*){w3$6OkHA0mJL~-LaE@Tm@W%F~(7cZf`dOS0h{=+?Hor zm{S#;ZPFdqRIh;F6pCIE6N>N1e)UMB@elb&;_)v;n^|h1H9q64--wWM@QGsmOSt*- z%5+!SulWYPR3G{M$|hhis>~Q5aJnwp-sEkM137X}(C)bb%Ipk^yWcCMVv* z`GxZjL+EaNp@!w+y17fJ&$Z0SUYR{tt>vNl{=lmJ=C*;yzNzucZJTJ$(g{OQ>2IwZE z{q$8#2tVLFEFdOI&e8tuw7n?OA$pxFSTGD(qaOVaT?_K(4u9kPYWbOu{=ef{y= zOrAv~>XX+n*D|rR{F~K_jDT%~jQF6}OIu$w!fZH6!)?_PFBA;^|9A-<{3H>B%dd!U zWFUAx4eKo?h4Nm_QH=t6hZ;NOmQ8OzyS8Rn4YzMf0h)|NId3#OFTCC{?O1H4pE-^M z<}l^kASSrW(kwIWQba~TJ1WjZhY$e#;0gts?P@ec$c7GEEl-*6PST~yI>@ODL;UZD zY>yA_{=p6)8_aH(;El-3iTCx0N4k zpV>(z{=(Dtap?;}rIma!6o}#Jn9Q31ebensEO01Z117?vCFs>lgRR z@c{;{#|vRU++mR;Aq3(ym&jB8G>*iiooNiI@~(AIe95SU;{{NO{qtDBs3?8;(F;oQwZ*~ELD(-6xzkEC0XVQc z!qjYl#sY*3+W-UqBQ}FzHr# zNEdCv70y6AW}&L&2e1J+9sC{SV{kx+%$2}TOC5H+6ZU{&8|snY#yFMo{()0ln|Nbfs}m(N)YSIV6! ziUBINbgYI5hf2W?PN8T@6WAzq*=VvAtbK_EV3inM?k0YuW@}hG=97Ap)CWa7g3X8K zY#qeFF-%4dlJ9-5Px!=Q?Ysi%@1rpKR$JDMK;kf@!R4KER1k-rHQ^DyXM^ z1$h_=ZShN^>m$aNEGJ)?MLws;zo{SY5qf>%0Px0w`D=@jO>yF$r)TiAd0%_E$;+(l zp94NaQ~<9;ilwQ<%F=E)L6qo1z>^NhoHGxF=L`|Hzgb3*q0^nlKN*t;olr`LYmgCZNxTl^ zgfpdn^dAfih?#di*+~LKV_*UDXhY!Dg9x;|t;?T#A^pnfJl1%l9end^&ZFD*Z9`0H z_fBmj2zFh}vJtY9($amQ{C##=`HLV$Uuc00eQZw&Kwf^~XFW&3I**qX4nZzy$x{HV z{nK00O8;`ep4LGrRBHm_9I2uI)^@R%L3xmKPe7=;PW|h?SWD|pygsh@5d04D559TE zdLz8uSq1+4wRy2jj3xzpj4HyyCIrgEr%=CVVKc}-$f(y<1nJI+!J25b*ie@zz1j1K zuTOOYbaiKfuW_SG^s>kX!A~|?olN5FSh-PGs~6yqk7E>O(kkAXc3A+wy-5tE{(#=j zu#A^XX*~3{J6eS^xK-vdJee{a2+UM&$UaAJK07alhWV(`Sv@f(QPDUh3Iw& zpDO$UeNPfwVVwc5=zhirtcZSICs?)xQB0k^aIr;FS0}rY@4$~``J3&meI5m#_q6dr zUTzW_H*j%*liX-=XK@##ReFX@pw;dNGi9{GStS0s7aZ4QwK!)@FJ-#oI^XVZ`9{(` z=}U#r;g^f8e_MzemhaBxWLp~-p11@1eBjhwN42pp2jL$C5L7vcKBQ{EqiAwbnp%x< z+>+V9dc5MQb${d?-=gZCV~n!%HQKb{kYC<<57# z5qq;U%oJ;ZZkI0JIizszu!bWmkrehy+!q2SQt?znc_sARd9|#;uP#!=Y_t9QDndc! zYVVLh4 zGQupCy(7|bs@2R>w8^VM-b3tn9eYIiuIqV+suugZESah(*N?(&;dy@OG#Ed=LlWxq z%RsT;Lcjq%e%UBU{2GIvH_wUJd)YMMs2wgr(caQ~&r?!=AOCvP^x|#RK2WC9sx?+u zq#J&11@o@9t2w}U|I~juC1yCpIo3zlpH`xW?|%OHu|~FK&L#;h;q7nhF|kkd+OUOW z_m9G#9!2|g9qQC%aU?ZdY~#H_nrJjCIvleY@oJZbxhCvZ;^3^Lgp&b+bhaI*`^Cfq z>#+Eb%g%M8=-{@mA{+V2_EyO;HqkcJ`_xDvt!kC{hZ?V;O6DM~xMi_+Cg#(A;ub8P zJZdM_Nf*FHZVhdy2fa;DE>idIhdc~V5uZ?nA`%92ViL+d@fAzeXF=JHI1guH zIQ28g<#EG^Bv8YJvi;Q&G)f((XczRhKU6wMee0mpvagr>OK}yT7{_G*bzR>0U##B9 znY)%Kz@2zU;~;4jP9wP*+3{rBWhT5cm|6im#3lWu%qtvWo^L$B4@Il;C8uZ|z^^vIo-vLZ{v5-e49bDFsJ(P$@(-r4uE z#;GMhym@Z0*h&saFF9#{U+H?Q=J(x@aaIY*mw)wJxHh<0x=uMQ^Enr9St*i0lc4U2 zWux^;4;ffIxSuj=^S{o8k&C2SM6!N4y8BNCk833R=LH4Y(*iLwPK*yku4klDjVt_X~%)WvnAD(iC7!B(33p|MTAzR!a&y6*~S4 ztVHWR%z%a!_&<)WI}qys|7%iKR<`RoU9|+A=w-!vd1MW^C~OzGS9v^ zBRgcrIkMNCdAPgJ@BRJ#cYof!@BMncp0CGbZBqn3-v?$!)U|o5nM7s$=CQ?O)NaK{ zVp5^Kw`%V)%Vnrr;G5hRB{%v?(9oNM#ag8%{`JV=(={I_9vdNrc5i9C{7?f$nyf^! zTtq~Ifr@WD<3AF2m;#LRB}$OYZBUct)++a$z1x8yy;D`>=cj^e&2g(&gzY!IU41qd z1hgdNF|(&`C8SIZ362k)RKv34^!OSW7)LvI=6zBM8r_lK6q6#PXohKBjMIEl z`qETat>gk7^10ip@+-tvo$w6ooBX0P+T9RfHv+TJ7@LQ~3J34@HLQ|#Zmw#C84E;C zaY5;5A@>ZBFYZCIZ|Q0@7Kca*&|mwT@J`3rg{A$6ukijs!F47kvov zb0z{*GN&TT!k15U%EtwK@qcUuHBuw(H1aR}9e0*5zh(1QPkDQ4jFDbcqE|G@KqBlC z)58nvc?YUtUJbs(uIi6F+`-;^U#`84i2QO<)tpLMDwe;=VJCE-lBk+sP^=Cdyyi{B-xQUQ>!oDWj3!uLi7BzSG@g zq5S@QHD6dhZ$Z#}ga3?I`aZ*hRpPf}TjhJ|^hI+SFuACb71EgliHtiWg!J%eG~FRkc63s#t#eYsoRH+h2CiYw9DSLPE3&TiMlN z$ZjA+4{)rsE4e_~6rVm~L4TM0Oup__hrYzy3=;axZx$PfG|xnyaTYT4&Vzx87QA1z zH9D{a_H*rlo$DI2r80jb>k~ll%iFlfvO5oI=R|!lr{U}@W#6k8gK>F& zUez)bneRK>HiO!2T)+|pC9icoEy&fA@Y~Z#-JnU;Oe)xacU3wsrNRF2Rbff@R_(AtU1I zOo0nq>TvBYIu(OV>Z;iFJWrCQ&L1_sSKSk$S&NP{F%jv0YUixQy$X#) ztGfC&y4s3?!?qr|E$U@Y@H&&HD3chnpNx6@%kJWBx%g%rq?CSN7{S$I&>f_^q|ON~ ze#-LhXv}7R+7GsJdNef=339r`^*@xgziJg*HN3T4Li-IQ-;l8JH>C(?e7UC~wYd0` z=Lx?a{p&8E-7T$v8j5PU=Jf_E?;LA_4ZD`07i*f3r9Zl~B?`AG_ibwpyZikfIkvjQh>Cfb~ ztXJ!_dw=AQJH5X5x@%nD=)2Nc?Ia2GfPPQlavkPSXe-f}!)LEgZRcP9@)ZHa)96eTZQ`ItG|ilhVxDCs4=6T>GvysdS6~SOUs@?CD&{;cm{R*q^4mG z|D#hMsdZCmBp!ES$>N9vti8~TT&EBn*x8-a8OnR--*Y7Ade~sTt5-kMyZm3pch8$W zSRv}(%C8o3vO#UT%9@wvNXEO7`rj)QvEpK8`v4gDhL{{AlGbz$6eP-rF zNssNtM}ZHY+l76sCX3ch23)nh$@z}kUwaJUS^Zj6p9ezpn^_)pq{}@JVo&^?kVjV3 z;*OcQ0J3A8Py2On1h$rbo9#@B zBKjNahF}Q*7HUWGrl4r!Z>d9T7GmkJnv6(!2AiUpd7skU+y3^`$uDI_C6G^bO`i45 zL2m*Y$`wGKTe}r#s@!jMs4Su#KyTa=wWP7my9`1fG}IdHMNpg?To&KQd_|Q9veMIX zOZD1aY}+?<%Mx5i%!+oJ!K1L%dT5{qNc#3-o_FjIr)!q`NMe4y- z7*DVM4!uoQL~JwP4SmSgQmTh>2YBWCX1&6qT;q>hRcihPX$&LCVBx%g&st(y8+kp0 zf(m5oMP%e;?Dg1SRZWG0WT}>fM^|od`y@TuziF#`(;@I5@A`5o*CKEam+sM0`CU4P zMJF%wqM|Fy(OMOs20055J%!yDQfR$Gk`e2}KhP>Z#lF9`&H%N*2MIB_1pq|k%(Ru| z&vRV-=l(|a+C$ObN!^X&i{gY01Z=!N%XnX*792|x9^F-2%^23~e*`N20$#Gd);-v7 ziU92)R$i}b8&zv;P*bt)fL$0yR~vGdFTOdumF09)BHsOiRdUuXjzrwA6xFXlnVrN& zQ7e~%sf{kttI^?V^}8q}0I&-0;@_j{J=?KJvk{m2)0mONUT%8rKYt|?f=}F!9d7_> z46QGWwq~Ffs0T1+C=2zl*cU^&5PTG74=^>PyBOB!-8#pJCyjS|o@vSHofXl0EYj1Z zs}otyty|x)7)o^R^#On%nIMfJ!-s@x#Z*}%>EJ22F^aid@7&e#yO zAI1mtveuBpVPUZ9BGknUD0fv`aYZcaw0yUz%pwr~&51JB?O=MbVtzWc^|*a`R*KI; zB;s!0_hn^0$4uP##yBA+!!5i6l9rN@p6h1p)A>LwHNP_4Qa;3d%PXz^d%hA!QN#DKX)vmX-; zzJiI!0N3BicXk5K%Z$g{dZg|JdxdGJ^2AnresS6@Q^%6LDSRNw!pNHb+#G(}Y7XYP zS=CHHM62LCgPWybJx${4r>3RoBl-_^eD;yx$Q1#7K^9g~?AKGP;+uKWQ#r27MRfpy zBlmBANGyrDvTk8@yZkHcN$Y|f>{G))EJ3e01NqP0v^vclvFKoxi z3t^24ZK{gsm`;8A^ooO~_1_82H#=;9{1}i6bgiqIKW=NK(vzWt)o2Y~7pMk^BwZl5 z{X0?LvRPCz7>Mx+gLt;gLHMDe7p{a6PFdMv(^gJtF?;*`Jqn8h799(VOM38(a_p0L zS(7npcBFMEWaL|lCNZ*Qw}~LL0#jB4fM2%bv$7qxUkToVVwJ~{7is^|0qEn`ou@Bh z^meJQ(w;rZm|Hmmb>&8tiQ*vB{q6Nl=tQZDkImKQ7(3D{wT8Yx^ol&H9z$O8Ns~L6 z;JA?<$40+Lkw?l7o(8j27)tZk&*e-c`>VM(CJ6P63<_(@9)#O%28;A%pxq1o?Z1^C zQz*}R#X>Cp-;n8b8Ct2dHe^1uAY~A43Wc(PE9~b{jslkZ8bAiCcG7j!I8je}576r- zw-Sb6eDoz z2`_u+-Tj(An$CBj{B#&o?B^RQPtMIJvvUw&SJxxVNX(tR0!1j-?EKo9?8j*~#cd-$ zFXZ^3O%#X4790-Wa0V7u>%R^R)L|Z$`Bs&gnqymumm5DkixXrZgAra8tOD?7%|KPa zYfo8Ke_P^=VE**yAnN!QiyTCPFmHji8i2_IrN==hnJW~NVFO#)!hQo6pSsZ8j73~G zV0r@?7J|cQoHIZM*2dl~{lrIsant_ipJEKJCNwUM-EH)?+A9*}{Bh#Cl9q)nnN4{+ z&VQY4NiJAh$=E0uhA=G53ziw-cw$&s z);Djx8#f^-@+5()mPs~DQ0)lEPx-1N+Brau=0c(mpRr^8M}peWMD>B<=zF$eA)dV3 z%Ye4U8nYAFn&m>fG=4dkFx3-Far5aJY+2ELQy{uBjcQv`Yh3U}vn1TgFg^0&uJ6*X zTt`?B`_&dE7H`Y2PTMVwId0ccT9Q@?*!G^fag(k*#U^)4%jC|;zq`6uR+oq8h0o^b zJuOZt8PRDfSPOt-&prWZF78)~rn$mi{FHtg9Ejb6#ezFwaakS-6Z2Pzml`J&I?()y z=Xc|jqsYc8aVF(Z#to3sxz*BddN1A~H3<2IcTM99J0{CnnyH*vPI!wBoa%f#R9Bmfb+%m((HBQb2K9RG?eCu@ zdh!MIbO@c76dtDp-^(xwFg@61d_2{VYU}O-(4xqI)+>B5XJvo=o#2`geQSFrL0c84 z<_o<6{@j`4M`=EBKtBqlZNHb|u*fP1_j88(l2R-T7&|6jS_^5{K%{Tji>gX3uBOau z_g5{)qGOYU*fLE{his|2g7M|8K`8HGeNe{uk87)?$04mYcwvn`*fqFj?SFJ1poIAh zYBb^VQ~~A&?yr62()iRVi@Jf|$mx*V8;#3?L*XNBtI~IiSVdvx-TgDr5Y-^*m;=_! zWLBKu#i}F$jf)8(-xOQg8s74B{CMD}MyIZPzODIOn(ezB^~JiT7J%^!B=ID9A_q71 z6t~8nN(}mK4B2;Lxeifmu7d>D5B1tWm1?ZQHI#@wIMBP}J$0W9jZYfhd{w4)_obkV zZ-y4tU;QsVs~u53v@xr1#OxR`+`Ola$DzZUAW=nvw@C^;M@2ujTmBBF@ION|uu39k zz+qgoX>XU+)LPr5tqyH4!641SA?2d_yI^QL+R4DBXqS?aj9y|*Y~v(bBD^mBkt%UD zF;|muAu9L%8u-8iQPrk@luq-V%yuI47ksE%WGxBu=DPLg!K#QodjtXkOS{ucAJtydy)GJmXb{B89?2RW@lCviQoP8?eOF z?$=E^rk!tu63#1KfPGjf!?7$68UTmLV2H-ju1so3t^KZoM-Q;QVX#{@C5Vo3;%Zdr zEy`OGEWy5cY}sAkigdZaUL~a9V*gvySGNL?lHeH!u0tMeneIrvj;o+2sX>@;8o_*8 zIvh7JzHas7+xCk>GaTJBh)ziCBu)6bzsyu(`iw#;{;6$TRAL>Qu`RgSKh|yk zoHswNSGx+rgI+rqLS2P_g*;d;=@65UwRT0K7h*ii%RNQ2CRTc1M^2B76owS);z08| zEOLisPbE=q#vttwy)z~F10r-=rf8Oo>D>D+r)|%XRenE@534~4{YNNO8%Pin5K>DgGBADQ=0uk0Cl{0wo zihK-1wFr?&*BAo8D(@crwAd+(&Evk77TSs!=;una-G3udklHk!kOB$|nXs@{KCh{;prFHhqg^I78us)_J^#oVj^h}} zp@z*U5JqE)XqP(l|E*@{0!nIQ$3I(l_hr$1$!*5>F^8J>=uh{%#M!g)Wt+B3GZsB0 z7?HK~ZGS_g*yyqNp*29%pP`;Rqt8@nbKpztGu%G_`LgsILek3h8+m3X&@P~547e$^E54qPI;gk~js@C94%g)tJ?S^& zUdM^tOdP$`Tc4}*w<(@~$-gk*b4y#1(0o)G3AWObhsr$q%s+f3r=aLWLJEc0+!Y}! zEedhd24#BB01-mFE&uH9d+|%Z3I<%vhtCjkLJ1d8{X`LZX@C5xfU~)hy}ChlPyYKbaWyCZx2PW zehUGg2<-(`X6OvzYj-Ieh$ZM&2x-3)T4o9G z_UZ4>pG%(#`0XndZdo!K7V6s=l=-;3uc;{idXe+vbLvbSR_O)mkOqwXp|f~qu$zD& zBsx@fbXy*A{WCAK2@bjjPkeGNdhZD;xNXgH#b%m+a^!dCXnCUp7GUKOEhk$&;++m- zrY_C6f(&57WBpCSC;dlPrPPI(hIT5UYInCDl?^k0V7fCw;rulg%~x%#ynnV<)vyhg zwGR(U3OW#tE-%)Z=qZjEcsrdgv;m;FTGHPSVAHsxQlRa`D}ZJ7=jlarad#f5}h;weQUn(y%_A%XBTz9vA< zj<7h?$d(*jcZ`!Kv8I=jUq1p0vsb(E)jOyP+5`~2i01>xYw+j^R0o_9SYr_(-VTgd z#mVGb=XFzaaKVBP)<)Vi;YW8ry^Bx!)RsO{JP*p>X{ua1y<=o*7$s$4;MwA^xqK2R zx2?_%Y|b?h3Mb!@%OnL#OuGI@l6{1`tBv8$U&S&)krTu2$8+iUbVi>r`^b;NZ$sW( zx2Zww8C7d1loI%r3w^vETqBy*Aq#V2Fxw&f- zJ@y~nwNU=hK|IkI99FT!deQZ|l9D%000>72N#Gm28`1~QTpC*F|1}jXbI;IC@`=l2 z@pXJAF1*uT_Kiux*#7@k`f384hx#p4F0>1EP4YiF$KhFzjw8NHGi^eo7cslbvj;lT z+K!kW1eW{eKbEV?Lr>NR=X?;Wt5i8OPwHq7y27?L#J=VPv_VxBpa%k0cwBEEL1yxg zKv)&e#B*n_&4ScBLXhT<3;KSw^xR5gxGbyI7p2 zWO_FjTqO+|C;AU|n$d$oAoC5pAa)@I#)cpWkwCL>d!m!YpBgtGx_wD&QC&4^VsNDUcPS z4n}LTmSXhOHTP3P&DFEum^9b(;aYN+!oqcy-4XDY1=#IS~bhD zfBZanmd26?OJ1jH%l{)OyVx+pC((x+A;64uiJz3Ca@d{wl^m}h<+2reSJDiF?S9qy zSzB-}QL_1JiNlW^n@{0Q>!GX3F=#PIU*T~jbcX$4i~pI68@9%O8wo&9k+3>sjMSmf z2bv^lj$(6>bRZiak7Srzwy?YszFbhlf>+a7`B3#*z^Khz5^Z_qX|6?ZU1_kMHFfyJ zVK2!2sDaYVnDu-)DJA^m^rUzkK8fN!dlZTT3$)QutdK`pfNUoO7#)ul@y=M{M25Vv z`G#K#r90q?9skk0h{hCUp7{^g9-c-+nPUsL7q;qMj;)1WjO_btG$5+%(`WT*te#{? zIQ^n0gPVqoQmAC@i2JB>=FZ)!+LQsyw^Q>R;79cSa9c(=^4Ex;;$R#8H# zK^HU$yIcX>HZ5ayiJ<3hgCO&&9Gq0{fWy;%z9j$i%EC!sh`Qo+D!vPZJ3b>mu1_P3 zHM+@A(gUp9oTv#28}73$$eO^L76D4s;N39m%M&8!+HtyiXbfIm=<@L^A3UEd@~$Lr z>U|?OP#FwO?@4!Q5}VWCHVIMKYSM_GOPeSjv6H#hsS^zTU*!-a3+syd00>IKr7l4| zI3)kmkDH2%tmH=uPh8aWzQTC=_#|S+O$FZd*|+rdh}$kGzZNW_mo0nwR1WF_3Ut4N z?>)AZPRy4yg!QGS$6}i)l%`{~qB9stU(es6s3VWRJ_#DN=g=_tXP}@=VmM6uZK!T| zQjf23=OPe0NMY88l%5QD{pW8I2ZZg(KodxuRY=hfok7{pf_;8V)nz|NRf%;N8 z^B_2-RcB9|%j+~a+uupdtyD;8eh%SglO5tXF|SpZ?)Nt%j!#4LKf1cab}yVQ3k!2# z^>ML6zhhgFz~tKmj~yU%*bcUKPm%*RdNWNbc5jFMG2EwTo?@EOk-dR~8#8PpBFUOZ;w{z)NoQq(Mp=aEs9^3?W4j^h~7zps7_+_E-) znmenO^|`5Sr0WgxOWOs?c{2FSgx2>X01PPB4}yi_ZLUq$&FL6i$JpIfEQU6?`KD#$ zeh3@sEBM@dkx~({YfIp<`!=x-N};vw;|62`5(Mp)%%sLpA$jrkUw_vDjpXDIqDYoC!-Z+a&N z*XH_;Ru0s|cBrW@foGJC*vYfpvA3d_MZ0DMnrGdvbKLrb>uL%Hv{z3)v!)yLeya9W zW@7MNS|xqf(GCil3-q@@|L1fzaXKOg-2t)Uq3)Xk;kQNdK(^omRw-AI}3 z(@#v_|7!SN7ClLY!n3mtoDcDPh{-JFFKziogesM>bo@%o$Y8*3yNwXFrG?=?I(`j~ zwfa*K5H)aByNcZ3k^CO8pPi3z`W!~3Y>QvnjNsVg94#|cE>$mF9XUcw6n%zkS)sVL zN}EU1hk+?bE|nSscHI<;stHIr3L=vTj@b)ESie`}>eVN;xw}KwzjG^b%9D9vs@n!Eh|}TlNgag*s{iC zAkMdeTx!VqMkvJD^bJys&%jZttOmL`;O>Q&56&Ra+67Tf=XtjeEeD}wyW1ddEa^2zK-Qo|Z#ia`hxVh0Z;@M!GWBQIkxLhQQkcoa zJ@fiVd(3+8&L@cnlr^hv%?3ar9&sEu)h$~<*xWRU0?~b2K5JA!I|2)VFf417pU~y~ zeWn0ZYzc3YJ1#rQ8}}K$?m}ZH)kg+pm|0ZDug=Wr(Ha;S4HpR6d>_NcLJC8PU+I{g&bqvhi|q29;kaiQ;GZH zgrE3G_iIRt?t<`lir2G?J;r(ztqaV>s(wp3u3_Cm_~ zAH?C>!Ho}e8pgT;_a2{TeA^Qz9d+)UIz;{Z+Rb))`kO&UUw+!jL>#WXXMP}&jI31o zEn{wLn~W@EG-9?&qDR|99x~BAu!+X(eLH4mG~3oWRsvbbooeoO}@uz z>WIuulecRi!y?qfwVOO(!<^^xsvg>kGk*zvq@VBEa z`d+Mn`)a;pvv@ZH+KjyPNhdL-&rHbw-atiCX{R8w?|#1^pA7k(dRRR89@umE zJoy-RDip5J%FZK20WadO4cmL(>#OUa*TNvI>p1jY-k$Ei zBz<#{#+wix7SYuFkKPG;f1%0oY07&gWhL?zR3B~fz3G=*@Wdr%P^UkhMY1-YNAwQ} zZbHxpak$MCQVD^T4tYa-*=4cjlmWH%p}>AQ@q`_bARb@dv`sO6hp*-v2hPTBZt4IV zFiE>YJx{|~oCnHcU^u?Bj6jcnWY4c!BGtO)rFT*v-rIW6e@$5=#fIepx?)f&1(Dfx zaohjTFtt%(IK~X9LvU|lTbQ-%w?uHOALRz3r+?s`N2dDU{$SZ~n6AYfYkq%lGbtx4 zm-lo3@YeL~N*WESyf2=1kKieYfkh6@Z+5BV4&@e;LAc3b&XU5}B8;!cTO*50LXO5N zauNIXJ6{j&tg61U_&<=6-ag)?Y1ec@(jK!~y3urW2;1xe*E^q%Typp-N)19+# zS|SJMOuZXxc9+3sw4pM^L$9opV!lvBnOe?}Z@LEOsVMgz;873;1b*SMv{_zQyZbc? zGf}bBr1P}yV~TlmWPMxatA)hxh}H6ZVd0&-5HqeQKKgBO@i7aj7Ca(j#m}S}DgHk< zCW*d-HJTT>Ew|+2V|{ymi|nZ#KRoGFpOBIK;`;Rwro93BO~7Pf^DVjr5GZwQE(Rkq zcYwsGXV^H4j4u3)zYU2g{em8GyBN0;kF&UO&i+Ro(#Sk%_a&d>s;7<0IrGI5WxKI` zd~;R5Q8y@^c5E__b%)Jh49J>=pfELo@0UpK%T>O)oY#ME|Fhz$L8dQ0QGPUjZAUGw zl3$(GQ#ueXLBaqr-);=O+Wm-r8Y9rJ4g7APArU)6-xEtb?r_MjGh;4yefatj&&Ii( z?OE&t^y7k2sM8bosN#X+HKZMoTV7hctxE6=3+4Qc_OVtX;JZLqr~kg}z7SH$Sl5`Y z_cviV(@wKl`N=DlbcGangUbtxeXY$k??=H;Oa27^r81MLq}g^<4HB2x;FvBlH5z{qR`bp8OJ+I$+SIe4y9}?Hi!fXDV?&I2|iN|rO12jBwi~Z?Ll5kH+t#fjhR!}AvShj}U|AmgsID?!sIA@i z7x#Ebpr;FFNzs7-pF|xG~s`fqn8d*39K=b z+ZtjBK$dSeBW5Y(`Xczu%`57hbjIC9HG95(JKYNx;($zyev}9wSKr9>l`2O5BT$$D0jwtK)$5^=q$ZOkFmecqo@~+;)-${DPK=& zhEp4BlxWi4KYW!55oWqz|CMVUH}#^ZWDt&88xkj*kEi{s+relg zlQ5mIspF%AA2psah8h8?%=!rKY-}K5os*%3W_-TkkkG z7mffOxwN2@93g1ghin&b(OF+=px{f=?vXONj<{jgKzQTkDlW}zItHF^TxlTHhk_LbtE4}f%IBTjd5v#4rUUX%ItcT+t< zp8vFB$A568iR?U5o_cgcy$r=2y^54T%HnHIz$3YzgNUVQZZ{ugG$+|P0A_r7W5Ss| z`1vbL!$T2B#?2q}{NW734>=&FP^GN~e|48o_XQGT+th}~)@@ey9^!2*n3K;^>j9iztZ&K_Ym z-z6bxP~jlAPY|b9s*Fr+t>bYAfV$FmL9ROcqnP2|l3C+vT^}YAFPGi2EW1yt_F(7V zHKkX6LsYi2=9Dlt%@kY{x>U+9eM>vfRdwqA>LZ3<-J`@Ug`^C4kXX%HUy5UNy->km-T7so}oP1$rhs}2wOWT_$Zd$HEaAth!{`i(-Bn1Ywf?DP^dcaNH4M|6;-kX#6m$s8k5} zq9;|6&FE5~lTLT;*q<&xFMd`u>&yxxTpXz{l&LUKr(XcL{?Fx*1m1KbrW>DyOw7Eq z#2WSwmsoac012%k8&JV3WCOAA?z?-3NcLaF&cBw0cl2m$57Z4Wy_@W|Z$MrnlEHqT z=5_oy&ZWKeV|(R=&TF0lFVmbJF{5#?Fd^1|ZGQ^y3lCi_YjCU3hDfn2hREfGZX9r} z57ocyAVV28!Cf`o#hOY>a4Xk8$1dnbiG!UXEqPWRir3`AWazDzExcv~Dw2@xKAkGm zymD?>&FeUO%FD)vRjhMW?sVSv#APR+>Z3k@Q|ox`V?!^MxbbFrnuaFo=#f+xcO%*u z%0romc}TZKR=(OoDfxaM_UU!W$C3M-@alnv#anx~gfw(#wcSuSX82uZ*CYMYkx)?} z*&xlU+Wap(x1ua01U$T>_KgJcfpB4CC?S%0AaZP({)$$y0VpRu2@z*cF}$o{b3RP< z>Pf)k=bfUUd1!k7w*!qC*o@9awr z!BQemc`mW%eUiG{mMr{JE^l?$3d^A|-udusIC6*_Riwz)?$Gz=Uz4Xa>TOm}VvFVy zvt7$2qQ%tTIdLbG$s{wr7izB+l?4IDwb{&k3(x&|GC-|)6$G-0HiRWF$i9*7SxJNe zf3zi%|Lhq%HCUTEY{2Qnn7iq-u{Xj@rXP4vD)=EvsGEgrF_`v8-okr|r%Q4Ywl8z1{t4&A>3m{Yh?$(}LWdzTN z8GN*~Pw(;{-@tzj880Vxyl$|4NzCR^j=S^k6Qt6>Z=w3Hv=P0r$9@P5A-uZJeKhAX_7ajm{iKj zY$Iq7RL8$Kt-SKU;J^}OvL;)}lOG*DQMH>cVd)Ft3G0mnIhProFkj6@M9fS)8HmlU z&NML$icKmqrdqux=B!O}s8sI_x5@rJNi&x_F$1XP(JMfkWx#aC zHM{Dm7Db!Z9l(esy*s$(&)ZfMw1wwEVV>slz0AzNLTi=y&je0Ko3c@x1T5 zPdm(bjX?-66M6jXau#l@G?^SO-F)d}y{6bbqpSQneYQ_DSAygKV+B0efqz!~XMJk#am#(?)$t2_tZ z)?M8d+Pf6u$8jmFm)P>-sf;Cd->K^rX*wz}&T6o?^%Iq?+YQAxDqMN1>I%9D+{auh`K*N`%b zD|5`}$L6OjmzN$B&9i$tCQHM7WXlD$^T*vY?|F&w17mPi*PnCr!eV#Y)hzGox>xMi zD;rIuhoBbTPWfx8HcB9Hyl+=om#P99pspi^$A}5^snbDo1>E=t5!sHUr#vNT*LXAM z&ZU0_u(=wH?7*&D(FkbT?nvM1o&j-q>&m}b6w$8t68OvI=&J_}=2Ds((%P7#3JduWAfso00 zTWdr+n5Jf-_fIj|zVY>{!)%ohQ3#~Gdr(TlcPJDB?Ck!X*XD)!Zo3M6M;FMAi?@zO zC$4REoV*(p7hj4P&KOqs&=AiI+3GzN`H#+cLJ#JD51plOuuB#ljvF;T#U~vw7)33j zzh9f)y8lapyG!2ePZ3a0JL>Ssz*CvJNf~}lWVw^bwd?)} zJ2lo_9TkfOK>j3CsLlNseJo0jEdw~!B-ymqgz-8^+V1h2)7${HlCc)6F|0m7!mB}O zz#-^D5g`K*GQ;FnKQSM7x{_JqJkT`X`hDYsr{pNG9tutL7rF{PP<5cU$|~- zv#uwd@n*EA_LBAE5l7G-$BL*bKk8Exk&9&hV$&$Cu~4Fz*lL43v2GhZDKbsaxT z9RK%ecF`txGUY@*2(v9pp^tQ4qaUCnBRw5M&EjF9OgMnp5a4onZSQt(Wf@#->LTdJ$R##)%_(T8T ziTbP@!%N6Wr4;fk!F2q0%8N0lOOZcBd2+cmo`m@{AeX_Ns%AS}L}{YcZwj>dkmi)n z+vv|W_PlJzY!^?VDs6?lKT`*`$@4%M05tNo_+T$xXUPtkaf9t7OeHTNenS ztlzm7a=o0D1x=9BVY+)^IR)@#h48H2( zYz5CM0vKZKgyO&#Xg6_Z5a2ygt*aqm*<9X6wGk^~XEN6CYT@@g%j14-yZK)-r{m7K zx-Y{Mlv=FfHtvI%^qy&V`dy~2{Kl`Wpb5Q6<6j89-bKs?%mM`f&kc6koTgm~9kmdz z>krU0Xmpd1@}OPo)W|U}sc&!`+I*!WlB)iQBy-Je>1=+JqF=gyHe66_R?n`OvRZHo z+#V5T8gsyXG8obRN{x>c+>_PwQ)o7;lgz!Oy0*6lp3NY|>oYrgMLuaZK0iI@(Q$%% zW9+oThLKvHD2&0~(^eTvNNx0YYexD~0Vu{irzz1_QcG%?4+c1;fIB$05xA{lgeV-} zSmOk5qPjwPqac^ydLzrdjWf2Ejj8Z&Ar0cxt3z#Haw4+MP)<=jM&=3fm~jPa$Qn7} zx_w+F@9CV(e+_+P$Z5sa zt=m04x$L>vzEYItSk|o|?*@TE_EfwYpNZQo$NX$_R)2$mP0qihqQMKO>)2~`1?2rR zSvN)kLU5)J6HxW}k$b7~Nkkdw+CZ?b26T9EQna#?&EU);NcUgA97da!Io|3IoH%6Yz!ml5vM_rQ{J{6eQrqOauQR-^7U1w8SXAlyi1e>Hh&|He%l3HSo$OE-di?DVf#;dq_v3gI%&5ntm3Kf6f z=rttX_Dp}09N^~Ir=%LF%(L`^Eu+;S=!k|Dep9AlYWt%BXq!2NO&)sx(%^8jUj%i| zLXfB`q1a_0RTYQZRp@RcE=~*m8h6m0MI61t;PqJh?<9PUi@JG*V_8T&?kmsZr{4~- zo2Pp4twW9KTo=L;uW!hPr;Bv-6sj7#ZArAJT@@p|qzTOh06B5^E{5$qAr82F^9M$Q z06O@(&%YFM!>c15$%ebPf4bWYT=p`#be02ag*b?|1dI7w7mjWFt4VG~Te*ffT`Is- zZ>~?D_^wZp5NxyoEH8EeCB(J^c7;sgUn=o(r7*SzxAW%fiM)H9q-42eRa-Ljd}$z_ zK2HK85FLGIeUrxrmKDPEmM4wBLxMGN)Xl~3kP4~eUUJ$3R@bFaYQpMxwr;)P&EHI{ zrOw>OprhjGV#g_mShDQnzuOaHn^QyAX9Rew8TGr%P;*mL<0b%=-dY56eg0Lf-0DqVx?P9O#;35 zwUqI6T1>YQ*tUPe0HVKB(ZKSv*4*=>+I4%$^G7$L2leykdL~=o$JQQ5kbJLIK~;c~ zi)Ya=1+_qhWKt{_P)S(gQ*7)cii^hda?TBV1-;w1IWN$Vyl+?6xA-bBv74noOodW? z_4x0d$NUF}5t9&&veQ2ciB^jKLiUz(XaSC0;E7(?*$V2}=JG$23!QCaAS2E+1K8&! z5{*4?n4803UAMw%OxG4Cwm`R^*x?ZD2O_*n=&SE=ja_SXFe3O@4)YruSZvzW_Z76F+VJN2ljeA0%L&AjLGnZm5`r?;rHvw+?}1 z)9z8!NTNS?`KUY#52fIRBoAbP@I)He#Y>desF&vH1>A--HRTppUS_4OKjYq ziZkDMT5j50+!SJRaF(~W=Vq73YxQZbW|taDudswyHZ(sJNMGA9PbNpXofgUuCERhOOvd{5RdW+mhlzWreWFH!JA?)J#Pj~ z^N8p{FN@M&bAYgFTN|HpM?QSTGUjhWm}d*TQ0bSQ9W4!rJ7* z>nKd8%HKOcp-kXS2N|nc}dqZ2eo$u@yL23 z371h0IQ)b^rH1bRYOxkXFY;~T0l+E$BgTH)Yw#}bj9ITnCe!q-FuEKfE7vCBt9H%< zA2YQ9EsN?;?l6*EZMJAbY{m9h>cXA$#n;NA=Vr?OQoYENR@Sw!z#gM{J)q0)!%J$IJdHZGiYlQaiG$82^VDf znKLJ4*?IsREdKg!sp$|RFzF(&CfQt$yz}SH7w?NHweBCpSD9s(#;x;>J*%#xdXcC>|ifcX9RI0lz*LLZ301j!Acg5q+s;@Izqg4 zBQE*9&+fM@^8t!~al(UILiZWfLN>=c?5~TxEPJ7EI#RiLu*sdjf716E`k4F%(vI*w zjNhg@PZ9>mliC>aha(~4bI&P{Kp#AZi+J&(=>Ji4m2pk3Z5#wa6h%ckCWn-iZlcMXhg)(T^l7a*oZM$ocDP@^WovQyRPf{*QY$070ChG zfAw$wNArW3;l&N%r+TeP*Zoa9(I~$EXcV{SsgR!=ka_*JIyj5IU&tgDh&A|q$On_g z>9+o#pBjVL@61ysb5}i=EYlu!xw83TeH$}?@xrjofYThI;VH|^^L~>FPby-2 zwq?b)IgcMQziN#D7T7&>vE}wM5%e+@`H>9O;5Xgj;E8&w`tzy0m@8jh$BC>y^r3;- z?tp1nGryT~A=LrdCJPfkafnPj zGU#c_{uuu?TmFks|B~D->yCk4q~hXqs93boJxO;~$abRp;Uty!I57;&k96`N3Rz-f z@qyDpG zRt<)p&6nK70F11vvA}o*Wf0(sOv7?2nru;PJ+rCe$~>y-)|AufbE)}n+!p2c3~i;{4=zAgsAHhUx7K+D z)VqdPVCv{)mZyovxUDd!d+!x&rD>b50gNKV1EG%7bW4CXU~6LG2bo56Egr*hEXKLl zBu1<>DZ#MB2`Euy=(F1*^-9J%G`1!Ep(2C}$ezl@9=H6aS}&|>bIWS#J?1)5#H>Rb zf0qvxr5eP1s1i#2ihNZwA8A6VfN7%h!~N7sm)cjOG#E<_F}7Yt_oGg7@7R=>+_~$f zZlcjT#XBsY?tu|pt&A%T`-WYFK=&*H($JP{iD@TsZvmn0ULi@Mh?s(gcEef78i0fM z;^5I?LCaX@J!et*VS-Dr7yX3lZbj0^mz3>Sj4xTT2)-`C28rKlrcbEtd~%hS#Y$)G zbqSww+hj?WFG0{g7p9xGs{tt}p{Euvq|)antUjnNSUmcCfnXGk?wQJEHmsbOA^SkT zzd>`)y_nn!&Vb!o+q-^gf>W}{p4YHhP*g^M&oCe~vk(_hL-{L$h>; z`I3(3OxIIeD>KXBx#MDGi_(n%XrGkYEa4JS3LIO*%#kOBXSP(LvQ3IKTs@?1Pxfej z8Gd{%VEHI1$K$SJ`OrJL64@rrR4q<21a)q?+jrf-Idmept4kd@b{^yciOT2J5>X2K zwz}k;MQHIm199*&JIe&YfxJ@{qy{f%c>An#mfVuy*7=oF#`vsh7TQz52 zgZ#SkQIq%0cCP1eLLsHp7ZPJ9o;|oCC0ych5(3iu(h?gmd@c|VkN$V9!S|hL?WK3QV zv@CVlLhJOnp|7>0N)ud}m+IVWfWoUKenB?f2*(TyO>#UZnGe)0`oH$(YC$$@B|lyR z4e?%Nxv)M@Ih!8Ny@HI?p7w#TzDEcEQQ(JZbIgrTmD(w0|Iu7jHnSC)*hy}GNL6rH z|5)bset#_SSN`HL;rT38jXDA6MJT;Ln;GQ@Yr1~B*G+S&q&|?qelStqL;u}@CtzLE z*+OuB_|bwpmEbpN^5xFr%Jy&TGqNO@9%eQ*^!c!G7M3rz{NCgs;bQ*rEd~kJkCVEC zu%Dd+d%0Z_)n?|-SD#xTPmfOIN}nq=50#L?lpk84<-cnIpLAQ=;_i@yq9fmddKta# zY+tgOODP@rl)n#Jjg-_d#6XyaFj6kP+eY%A2xAJFez8QW2)UAk>EVE0KjZcE{*^1l zQ@rw8tfAXl{!O6^^Pbmm^s=$6XPIp|It}g4pi5t9x|g+MxiBdI_aa}Cx&*DwAhRL~ zLldVgyks%p_5>*XF~{sn2(t_=*69t;$QyOlq}$8>V&;6)7qeYyZ|clMlKmrHusiUd zeYc)V=Ob#i0V3Hs8_Am54Q}Gt5B|Q;gWp4UrdvNflc8i{a;0AfmN>tk>+1>Rw|8AX zsI%moL1Zc3dviNE*kh?TP0!3fw(StwSe?m`4e&l0i1#jcE{-EKiIJ|E^f#rz7bj*0 z1|=|n#W9*T12C2WHUwdE8!`vxgKf)DNDE=Rf z#ODp{uVlT2hnL!MspY1jH6E>tAa2x+b%U4n9jC*6D^kHvRjzZeS>#9U>2xU@&~Rj8S|-U4 zh?>oo*G9GeqyZrl<*(Td_MIm z6W(#nV59`dB7LNk1OsFKzh2$aCzYo|0#&P5usT&UpgDq!h)ispeb2e1sVgBW05C4h97_2~rB|Ai3CQcv(F!rNL-tA{3& zipA!|B_W&JNHQoLp_>m`d{q_{o25AmF@q(Mo&p)WTu8@N);=^UZiRMA!6u>>QosCE zW6@@;;$d*`7ZKI5INoCZuFK-ptOl0zAw$JqYK$9S793QEE>K5<)Rp&VaThvvEMX@_ z{ea7rbkd}eqWyYZ5T1yPdUOmH?&ce1ZxuS zq*n3Az8~zD)Uaiz#C*Zj4}T<-`a6ddvYpP30M%64CtGcdiwr+FN&_kwFoa3?KIrMB z@X01bP$N^sesGghD>m-xd60rEn=I3lV1o%#@qaYeR}Zvyt6W8Ru560#|JB}DJtgLz zeWLO>@n1GXMe&32+{?QYI#Bc3gRq4*@NNNP0d_Yel8rF;63NteqSX|ep{P6Ck_=WG zcsC!(h6ybTOO#?G0th%~1_$*XrJ#DVcH;Mi%%?S9DY^I-?sEFD#{X#i1?rbMnvFg@ z%6mQVB73y;88mv&yfW>B(&gSP)BX_v_7~oqTEK&2$O1T1{U+RCQlZe>sd-x&T&M0Lz6 zcR)Cm6_DQ5OP5v!R&7}S+9McAvC$p8(R+q7sSdD2ya$7LAb zQIlrKks^}w*XJkiA}a=M4vv$OM*M2zX+M`guPh9EISIdWA+uL^u*La{)A|}~0<6|X z8}Jh*CqBkO`)aO|WhSH*t8~s>?k|_`S+2{yRPr+O-3_|CaVCOTy!>fI#rwwYjDPlW z7gcxr-=#h!%%4o>9$qWCI(;XE|Se_ZjhUeWva|8Ya>H zfQ?C?`?~}+UV&mcLFPhtv>sLPSh==Fh9zTN9(d|s3{LP*v#*=tGvDz3_!x2UR+Z8yo8D z?;}D&loS;58Ho9qv-v{}$a^1|Yl}2K%U8!-<;vb^eLV9X-dCTk`}j+??ND-WCHHcp z#SxIH6VR3y_~~a``50x>zca6y+QIjy1_QqYP&H25riv0ci^ONtY-<-Lu&)BByE$Il z<){CT3OQN<^;CS&2eLv;rGTsu(ZTk#x97f{`T0+%dYCG*{5m9_V*~?Es1qw-z zWiTn#9?RQhIZON<{K^t#(*5qGu8GB9%T-&!X#nOqUb@iGaZJUHDo2c9$}AnFqt6jF z!?5|ey--1%N3SNWaM#VnK3)e`g%JnZjiG{l&6m_~h*;Kyk$_+p7h#7Ii|yZNucg^& zytHM|p>jR7gEw{|;Bb9%VHY8nd6IZTC!C~i(5&KAOuv@sy1nfVQQ_O$`aqQIixwAe zjX>)b*&z4YPFsJ3n)jaA^8RC5HI2waZXg`X0_=@&iM^vYP=k3A9W7%Tir^MnRlmbNN;^e7ASt{+evi4@&UCoZ!o|&3V&+E`-u;UXCW#SwO zCSsfZVN=l;E8+CEVM(XZE_Y*@&qCbVCL|=B$cS9gT9(-J z3gz!}NL-kPovIB}bCd8^s9Tr@p&iqgjTcYcDZv-6ruf+bH&N}@@IHRV7V6wg7Fe>h zRfgByDthPaC*fSzd!f~HNt>Hxm#B9<<-cg-9AxFs+*TGnG%`P7;ZEw}ShB!H_Dbww zp9a)mzTl^1HqIx8^L?IOFn|Yj&vbuj?#fa5s;paP8o0cTD0#6{lM0xu7eQe2U$at* zrC4Oyc|!?)wjaq%mWx<9wxn!eeA2ILiCofW(-Um@*=a9|W9WiSssK4SzQ3nW>UG1? zHZs$_twx4Di{*kr53t4tU~h3rWEQ}MXlF}Cc77Y8s0t1ZHdHwwP2i61fSYGAhe*jOn8w4FaGv`a!kb~eA2)mWMnZKes0j+d6+bzeLe_* z%-9NPw(WbtTXy|44%WDWIz9Z0aAa{Q3Qz~C)frfzAM6Px_LH5&Wp9z;MU6I9$^J8U zNLkPzr$&pg-6V&MTU4;r{`@Mhv186u+=r1l^yKvZf^CQ3h1;~~Bti_{^AC&%1HNgc zD}5Ll3hGP~(pg9zq8HcaLjCd{YEdNaC5rf~U=J0~mPiIoLbU*lX~czhkHwum#B0U+ z<9^Sz`g^RTz%`}=gjV1H>7FG_ z!W|R8^zEP3!?Y&s18?*vxX^n6b(A-?X3WC7hR+8y<5{C?LfI-s?H}Tf)H8gE-e~N8 zN0cr1eZ~>$7FhfjXN;Q^Q@Muu{w}yH2ND}fA0XE&hCM+=QbEVz8~O}!nRH{h`P*!} z<5fDAojxbJ`6h2}w=}|ol|w-RJlZ(MkEhURe=XKV!*UU|8y}mq%-)_KRlB=0a0rfs zH8ZR;csQ>QNh*on;=UhaaaKC%mNA+a!DP`p9uPg;e3F0+*3u--ew$wkol;w?Z;0oz zf8Sg}du2pC>?32T|Eu!JG98VI1^ygy1G80mMA=w=3w+S#FcJ!ancyS{dqfV;bx2sy zz&;!owbyJCR!(#X9lA6koZG!2-s<(ri$Ol_1`9CveE+Igqy^E%U*mgmxa<2%!5PC_ z+t8$U$a6>uS&7U8OwZN!`Kq&RCJElA*9IwK!V%d--s2=}lfk?o+Kl&^(1{UdN*J z;d8@tDAnLXEAr>olCll+@=LizJ3FN4bf`p&=>~K`kjm78kzpdXQpZ+nBcn=iWieGk zPMc#@)xRx{Hyq;VH$(z|OZ~gptY%pr)oX2B$_LuA5Bsw-^R0INb71jm1-0Vd z8L(6S90aY5m9Y0+U)Gvg)x&>mxb1`xtqnoI!o2B|8{vC2Lbv`Q&mHK9<6l_&E_g0s zejUS%>CSxl(9`mpx!!{x$WMtW9wfk!(Zr{th9#gzw>g1@8D`(quryJi{@Uf-9<<{} zGQ6C_`Vai3fKkAUIJIJ<$s8C7I@xeEN8**z2NU9$&kN3CcaBysCblO+uTp+c1*iku z&9Oj2!Kzyz1{pE?>@v|857l4v4JomP(^}oZBIe@UhB4*m?)-X5!hGC>!g`62uB zqR;hxGMuD>mwDcNcp-TZZqb-wTuGLxI9eRfD&SWZLQ3*`ZX7u~<4$IJNWYJK?@A|^qeF}sPcB)u-UdZn_#T7Cma@!|im89amw z?aEJ?25|)NtXpCM!y5WAd`Nx|a>1{6uOH}Hs<-bG;REbfCwP3p#{-FibcZ%z!3vOF z>ugnchLn;0D)~>$oFsd&(QGfNNo@#uy6V0?p3ehVJ^-ETB4La8+G%}+XOHiZV?8R8 zY*pI!ri5IPyw1EE=Vk9Im$X>w6kQ5oGt6`kYzqZ*q`pxVZh6trhqw+nZt%e0ta3gf zsf8|DyZycpdTl=jbGzyE>0xfgCO&fwi#mMs_aR%nq|r-_HVN!189?L?HF@9Jd>Osh zX-ua(qaLz4-N9c;(x>)=nZZukdRl5QNj%MX=j%Jy{EGteA9mgv_&yxAq5d4a_6zWyp7)bQ|@3VV1y$r$?~im2%Zae*}cGzbI~drz&%WR0iiM6tv&|r;;{P(#=LDw)ihO zOJ(r|3|u=<{obv5uL06>TGvelsEw<=;6=;6N$Q_felnNiH)78}d9(fe>{EsF3?+}; zxq)HLb|*zIs7h6e#ls zqwy8muTziWdEYJ`Q4#COoH=&d<~oMPmBqS0p*IWg@qap8a9~2;lua+_wgOE)E{tri z4;n^9U%5E|7mpjhbyw0qT<)>C#mlfZ*aA`CwEP{gtj9<57l)@WG#t1l2y@UN7EGe~ z4kZX=8~PjCa*sHS2~M16A)JTEYZJ@Z+UIwu_ouiRGBLzV8a%PQ zJ6TABDCzsO;$`|)DLnEAY<+VDOk}Z7ksJQLr7$DGj0IXTa>hA@f)b{b!rvg-0c%yh z6G$}llC`GX%-%q=MOI6=V#v-N(;tP+_ji9X7y$Yjep+#tiGjhKzaekJJMG$C$rNJ^ z21U!~z3atJ1L|6c{F!Z_^}v}d`axJ1R!agbhUM|jIbmWT`cT#JxqM7s|v}9+TBVtK+}%}Cxf^z&L_7XltfDq;l0Voo`UlLwxU}+y z(l}caHb8MxloEg9+^)Fn4~?^n{9|5tDuipzbsGMAF#zmH_{!^mh}9k>?is*nTcD0Z zF9~JzB6&2pUjd)cZD=ED)c@)fjCgfTpzlhFVEIvL^`5tsg3F;D1jzOqFhWUv|2z9~ zs`L!3xaH_V;O7GVw^W!`8(>rYo1dMyxfbj%6GcucFM-{@Lzxo#I5P5JTch}Ss(@Yg z=k(P`GUGToue7(ywfIhj?n)_m?+}`}xq+-J!wRgk%z+2AggR!bs@c_T{z@YLfk||k z^6aul*@T>SQ0A(u7M&hx;Zov%4kF;UA}S**a(rCONU-*@2541cS!ka^LHe!@c${z) zg7POWukqy1pY>;1lJ7tX*Je%o0c_IT)g7i^-2J0=m{rNqB2j3dY52D2N=xd&%fZ2} zmp5eg?yRII6Eiku|6c5)7+Ig_Q%r9m=Q4oBs2LmS__W@82H?P#xhYY;vRdJRcZxBL zpT4;jN%EqYW7_5uSm-uf^)hu{+s2oq7FPiduD+*G92bgV7hd-!tpvew9`r5H1KWU; z=>hnMH2KZ&{gILZFXm6wW#-k_L7)DkanBELhSq|x9vH(wjc4gsR%u>Sk=2uDmTA1$x(B^$P!Wl)!p*v%OVk$k6E<_G%BR=pZE(y|1_ z)kM}%#TQ3`2YQ;)RFY_jAB;ICnyhEeH4}PX6iLrX@qAgR7?La)oJ+cyAA93;WyMcJ${uq=H1A-4&X-Qb5fNdaUdV5hyH zj$7v4!JkF=+Q8|Zxnt(YI=I{(Dd9MDlnv=az|u#Y{ilLz2X#Jzz3=NJGao_B{#u!lIM7LSVe7oVd&zwIg|yC(z) z>CWwjbo25*TsxB3ZuL?Wdv_yeIyZN=SVu$KITJ2-kjQV&x!y+JJFvpVK6=p66*QG9 z#0TwJiPPA|(zH@lFIuI-B>kz$-Ncf{xfRZ$PbXe9ouu^3O) z6tL2gFQ#ca0_j=0vtIGH?W-1Crfb&S)}wO|f{W8U>#BP|LmNmDqy1oPK!GUG&_;A$ z1U;jn#S&v^OyjoC{R=Leckf+H&~R#eRQ+~oU1R<0|Nl&o2{;0}Xgns?#ke7wp#lvvHNdGEmEd0S>U=jM&cFmplcYAmf0!tC=%rcC3gRe@n zvuV==kS}vz8qW+>!Pi8F@&y=^2J`N_!~6kIQ(((UDVj+qz>MW9g(xMsuQ8mcDq4A&b2hokiWI9?M)BEOp6B)K zgWQVp`Chra{QqXACZqfm+Ec>;lNt-92}M~>5Y^3E@wVGxof@;s)^49uDi&?#hsCvp z`uBBZJ`^w?dZD8PlSZA71}$dBVT%0@oqK{c!6Mf69w43=prLr-Dmp zL-VoNWgB$0;ZAoKcG*`$7fjqYuaF=7QSDi0WT-c1;~I3cwGEk7GVA)`z_X|W>muEY z9R>9Ut%kt_e%K5Le&21j^lxdd{n||9q;&t+{*|lm>0SH3s-?dP6v|14JlC(u@1ODZ z(`|_?Drn0b1YB+pqwFVzClyGu+(AFzzF@fjmZqATx#4N^tk78AsOqW9Y|h$55WkfS zmUa!e?BETfr~!BsT!egw^M$`Tzju``@V|axb9Lk$47Nql+bqltuNxv zx2y%nzep&ncC}~<0>uHnhAByvtbo%>bi5-E!Sf9IWhuv=nkS|E>wB#{e(Y6u^9K{7 z&?_IIDbsT9G|-v(?D@aul~@nyXm!Co$ehIm%NKC%Y?!Y{lz*{th(zzZZOe{n7WOES zubIMp`Wu&xfAov-c@F>UtzlN)XR#brvaXC}9~yx-L9un-_>_LR-BE9EH#9{_SM5pF zRCejtlyGnGSy>9*JcqLkU0xQa9=d$7a+w-C%(GBxwG31v0eX51*r^tvRl%|XvJ11F!1J;ZzER%PtTMj#hEsKd>m;_ZV`NWV?~^WH zs&h@u*G^8K-!?==tG@z%?T*1P}F z1bwlql8LwVzw`YGS&b{mvK!72(AS^Oe!2+dggf`)m4LkBuC{S@nTDmEQ70$1I@%V{ zedW|@9y&&epIg=5zLtv0Rfyo`r`d6L-Zmo(0dxr~L!w`$54Uc_olx&KwjB#+3AnN! z8~b>3*IyP`+@v`)eu$!ZHS5m9^Q%p?>~w0q+~7lo0w0P7kKAv| z^O6z%79dS4u$J9$-)rHBULoYEe})d^7whj4XL0* z)m?N~v6poaGZBrhnX4q=DDfvOb7yO)*ha|5EF_R}9EgeMFqkdP+wKdB$1d@k)jkQ( z558j`@i@t#Q23!>(%)XrsO7~>b?H&z&}_{Me%G#2X5GdtM0)!Mcd0pS{ME? zy($-Vu{oWF+Zy)u&A$;gDLKgNa+?N^U4&z{2O;wwgm$8_79ZIaS5MT&2sa(%de}?X zTpiK;J?eY)mz&JG?KhC*NSpB8vXP^l+bVXTtRe^*iKas3zp?S(D6Z^O^s|vt7{h}W z0km9u9XxL_LS+~2Lvo5n!(;->doIUu+=^=AwDxDZdgtYjjRvum&-|f(tF|M)qXQ&% z8}}9=nHy`z?VN3`Q!neM&#jy(EdO%!11Y@k3S}b6kZ()6QXT&uNFElw--=5ph~NS} z64$D;VUf13bO$n!XAd=jB;z{M@b(asgVjr54-a0VdS4CBqrcW^MGnWd0RI*sI@k;h zBkQ?TM%zSxH>c!8Mn|Y&+Sj9sqns2c0o@rRUiUhzJv*h`=m^zLu{1q7B0bZ9}VUtyG*U&S^901CmVSWCN!j(u8XJir>v);&O-5wIX600o;GmgT3l?s z!rn+aKt2w7LEfhAn}RoZr3EGGN~2C4^0{FzseMz6=(1iTB|gJ`2DZ4-+hK0s1~b)L zLdIJ}^TIi4vLK3sy_*$3mxWT{Sb*$E!D}x1I8C z)+30C>yX(_%ahlr*eD$~tUTOEY#i}|@jo$;-Q2Dq*ml8D2VzA3zLpjBNhn|=bM1!+ zz+VX;$A90G{-kt0^lu}2OEtWqC z;JgqUIy*AZL*4Mpbl%MiEOHMW%5>(lHooR02X1U{fg?*pq+9`0h5&z^tl6Sn3M8S= z;kaH)CRtXP>iaB2>)5}$Mwv0q z-n$*pi2mj)oB+@KB*;r1)AqG`eBX3Fo*xN@XR84&6_yhS_C_ssTp zs(SKrbHM}i03kQf-8KK}{XWgY3?uXh&#mln;d%{nM}+g%)Oy12Z|n5ci$Pt+D0Jk0 z6$WyP7z2)lHu4<@gb(<81*Tt^mHqxS-2RD@J3DzGqFEWvm@4CP+S#*Wvsk1ssuCj} zGg6;6a=p3*j-y=UL=Hj$HQdTgfD!c>!DRIW1LazJ`hB5DN4Rlf={mBV^PfOn@(H-( zkqUDl=ewncYE5<=^lhb0?J`i{sf$qeGUkfszQ&e#W^vI4JrDKx3D|Nme$p@$slm9E z;WPTL8`z7cA7!pLWhNMQ@V`yj>mGoS1$m{+Hc3m5n{7GHLFVeyh3~1`ENqC;8o+GD z9(TM}UHoHrGGGtm);--6&XguK=N>Z^`9OC5Cq4d5M+Iel(b*9B7JsXM3zFq#E1jez zuY&n<>iA{EQj*nx0xff)Y$o!-EW#g70lpK=IL&;*OqZ;9xvR!cwAPOxSwKee*OF-swbF3z7@EO%cQN&FQ(<| z<;RT6e7x&|La+Sz{sIvs&)_z{L5jw+KmrNB%YeJ*MY;{YfuA#>A;@PRdAlW%dSAPE z?>btB&MMdOrN3Au%_^@^N=njM)FD~04QrY0dFR9NMKhE4bdZD(6-lR&{bk!Of2M(B ze@DvK&x4$Su>gExct*P1!M9-#{@q>Ztgjq$%a>EJsU0FWzFv$kuGMs5?zr0osoHwJ zl}8Acu_KTYI%lJ6ba$;@2HwMdJDhB(-gdytU_AP2KF%m*`89d)cVYfw4P+wTd_7n4 zl5e03*!lB8_u$z9xc}LQz++>PvQLq9Mb)SEHeK+`6oJhgc}tM#;*4KHd`t7P`UQ43 z5FAr5t6>V$lAun83Z-TW(ix2vEyUS_{Dk5^2t>hsAMkgcp0`AVyKrPfjHWntL(E+C zpP=PhgGK?Z&gFE4#2Wz(>*mYtyI=X}ddGTEj^C`mTV&ozVEpENhFX)DEKFZNK7TUR zB?*4q;&P&q^UgO6z56^~6zkF$R8Z7 zNHE~?(+#h0yo)%yXofw{bL!_Dl~F~u$qWld!fz6f*NsNruh2GU7>sG3TL%5;j>r~G zN;*p%(W65ofgjdO@xrWgZUAbS;&M_c)lTrc>UYY1ym&k)0ouNL$S?d;+&_ z$i;&OCAzfDfZb<^HjjnwGJiNLe3)=+sXAbtgzd)WHEq7*eQ3#Qv)kspm9l)I+m(*{ z!^0SPvEm|aj+FVoIiP(v^zsQw)0*XWz|6_+LgPi8@VDF%UG|rbJc#o%cg@Ql>9}Pz z?-x1t+vTAhf+op4)m>i4Vh$W``uT>~mY928JgKw@%@+ z%Nrq0${8E=1kM-12B`nj5H}F-j1zs~7>QvG4jkP>l2pmFG{mfQsD(tE*Z$DKaSP{& zcQ@O(_AQ%RCa;bR{1X0zXg>8ct0le&@lY-QeHhT!u%7|_c~TPrV$#sW9qeJp1*Uz= zwWy`uAn~D^)Ej>AuCs)ogtXIn=ykN$CRSW4s0)x*Xk!`@#0KBNJ4#9Iw&~bF7XJ=ECYJAPq@6;Efh!gnzr+ylgRw7f;Jy@;{dQ|6%aQA;eO2e*6NNJ3Uu}L(Oz`sdDi#UXSZ>f$|dAGlSmk9b?tIhRlIq zIpv}p#Z3pVc@a0J?Iq+BCy;A7h|BoAEQHJi_`RmLUK29!dDi2FsW{gwX~~8!Gj-5+ z!cqjko7ln^1EQ?8ei8OoQTAC@e*BPJBZ-rGAwWj8mbS_wlAFFw$e#X}F21VrryLwW z21A=5QL;`>x)-D(xj zfMG!G2=qOYZj=m2%;>2^NC7b!dff@cet3GX_@grSxWKnJm-_$xdSIW%8$`0K)KwYy zmDrdo0n1xPDK&Fv^#`l@vYtzk*w-nEji5U&?Yf^elpPgkQqV4tTI*q@>K(q(Nxg}e zzaD@)r6j)U?^hJyO-{FUS=5^NN;UmH>U!UCh4UBxfAta>}RPS9}5>l*M57dovnck z)EC5-SQ*{-&O5y>?I1B0=13BzjsbxX*Mt6}S)bik#Yp6OJnUHJ@4_9MH<4Z{`-zGG zg*0BlS?Oc92hDce+hfcJrO@4Wau-M^gr7yF@ZSkS0MgG^2x*#(i~I2|BI<1E*6d!9N2i9Q_yc77DiNw3uJH529DpLmrIAkH z7%0i>yt)L)r5z%(=6A31V&Sz25n_gZ)eS!q|=3*~19?dW=t!49_#T>B5Dz>i~ zHw}0?5mTvSiCq0l0t;^3C+-gk^s6bd=jN@HQ!8~~tGG%+Go=vu3c_wprl&Oe#OAv6 z4s;?}h=U{Y3eWB>l=2>Hyt0>-yz_bdJ-Tx}fbPsfd zJr4qzl3x?Akrb)RNal%Sv*eK%wXI=7!0i%qVwH+|za_k-s##C>nEdwD$G{4o!ssrP zbb>rj>WszsDUfgj#lho&K6sS~NNJ-Y`&MI>Sc$9X#}jfpSxuS3RT-)xa`Q*LwCQ1g z2C28zX2F`Sk`#*lDi992RIW>#H|{Hju@Fbt+a!0gRAXkfB>72!vtPzF zz72!R1E2q+=}^}LE8M=PQMg7*aH(!DjxBW~Xk2BJ&D0Sn3uuIm;zf0dH6+?aTNo#C zU@bd82HNnarZrGbg=F#hPrgQTeNMK1P;UP21}{I>?y@UyIl{N)wDMPWZsn=7XI7`%eX1+FnNf% zY%ZF3=(mCt{$Noks`4joU2HdNIY_H6x9?9sfvTKwN5N7NEy$Ln3n%-iDP{>zAYF@?^Oco5O?6=y|8?f#%rq?l*eYE zLXPDK>ClQhU$_QdaG^4JV#;EEsU!JeJX7v{zoJ^Rx(}9KFeiD4(QH$#e$xI8@=~<9 zMC$v0)=?14<^G#HS4R%uv#Yy_#bls_C0GL={|aM`?Y9n@MwHP#7@u>w|F{xf{QHA7 z*PWvh-gioC31(;2F}209Wvdrdr0LH>oBKcO;uV0%B}b~`FX*ik4<49k1j{^>us4}+ ziOWepvLb_tNQYOmmhG4LIszGe2igG}cv~gLcaT-0PKfVq{DwSM6vBb(7eQ>N%$KSQH-HUqzgA`1yreQs{^@gqbGjNq@EbP zQr_ixU@k@%{dz-;KG1Q5AlLh5M*K^43&ikT3)R?s=vzJ>RUA2roA~S#VrfS1sF7(O zdQI{HRu0^$h(|&uL&eCd(+b&O&gEX2PMP)Gf7ZIvo32W~Npg((q|Ganr4{hAk2#Lz zTd~dctS4qASTR5%K3_9Z{1;ZLp(7*o{qGw~Mb(f|e`o~>r49tXt`%7S;J=qbct&YE z=_w>4W+@Ds_Lfg>IvcEt5BU!MZY4FaEdRQ3gGY6z%&I(CwGxb)BqI(6Uo3r-P9A)f zize0(uN~S3XRbC5?Z@Id2oLe^DS(~T>pd&<3;JYYajza$0pe`qdFx^RO7H#tK`r0q zRIs$fJ=1dI;z~pJPM#V(6@oD-WgMTr zs6DR@VJ`UI{})$twHw^{uIii93KJzAyjHNH6;6^{2-bw4p+o9i*RjP5gPU)fkV!i3 zk}ocm-=|=aT+D^V5WcCJ&u$ab;23q=Gw2Ao*ETper3c+`XZMj(vc)lwoz?EM9|8a- zm+vLKtsj?xb-UG2Mf-dm?((Du2uE1PykGJZGLGYV@!=u8Wm}qAsU;o1Wuqh+h*uxa zzZG9*k*8KB*R%+irbbGU4EBI}!V-Ii&&L3y3k=Dlj+oMOL7sUxzX24cV-fKT7gafuyqKjahK7=Th9|?A<%!bUT5K3l#oYX|sw#;{`*XUVDK-v14Zk^D+ z=@4fe=^dH=FmFvBksGm9OR0Pk+-2#ZxCuNzg@bZs1{%w5HGfe+ZSW}yI1EbE8`Krh z^{okCikvzNt5r$z`}UKYiCQynRCgaZykQ^?U;U3}znRzDA@G}^cn$WRCjVaXV}NSa zKe3Sv&i7bkB)lLtk%Wl59>Ckd-l>7JTlj&ZFJzf-y5djM@BqTOo)iBw)S{VME)2Ao~%d|4Y7Qzm8h#=imn18uIq{iGZOU+P`Bu`H`CEo z|?twvS0nYWAe1im>Qs{*{k}J%dOxI+Xpq)vuqFrX7TI(_w3C6O>rf&ljA+A zt{Zyws($&72S)SJ+i`1wW=*eCnkM8+>DNAVKGhF4{;73!+YwfYRTh{^%LJw1S}w${g@vsk)V!!g^_em=!@q5+An`2pbD$TY?4R-} za|)XtK)0#7{}QtYE!7SRF8;Jt*gF4@qjQgE@_+xhQYnQ>&WBY<2qB5EN;$@ImeWLz z!*U*GtAuh4A;%@>oX=--7GgP{Pjkw7bC|Ki=XZa9f9>(uAA4-O@B96}-mmL*JzotG zQ9sxAZD&j?VqOR&yvrK?VwA;V+AIy;+UIvRPN_V$TQMCfY0}N#WS`y8*BlYHeSWcC z{3*B4a4v_0o`LJIQNfEBpxlKD$L%fvkMX~C{%8ruNfjOU9+1Z4!gk^AuEc;AAW&_D zBix?p*k#+wK;6<)zoG~>l&8m0AiZ^ZsA|d;Q~dtVDs##RdZpSrjE5paAI4k*+r>ok zE`%e6minut10-9-k+&KIjjLz%9se}cFiD=v?^H@S*E!JUl*-iGxwNTYFu>%HK2~du zaz3&$iK#ziHS)TmAbg|?Y+(=_5FtwXNS212Q%Nm9e8!x z87MD`2x9G)cYmh{#@)T%(|hjJ%+jT+2WD(h66I$N$(ol|M{tM*nUIxDs^*8cxM*k- z#s3(%os=|os+S&NVel!ve+Y|ZrcdT#NVOjt3VR~4Hx{Ea9FEQjVG@o0Kn_?R)273T z3#UMbz}ji~)9T0gc6@c7BxVy^3|2hSROSKJ1}U;gU=hOb`7re{v9W{ezG~rH!sqO! zea0WtxZj^EuZ5oLT(+au$tSqzm)fgHlEL5+Y(cJI@yo>O)HUF<)UgACDgaG;96++6 zZU1A4$dCpgSt?gttj{!!no-pV3Av2U@q5?gY2gZdqb)qD+n>AmqKcGx+DmwUrUi}H z1j+xSc7nZ*-N`1O-ib-Vx>5Uepy?lU+o5yhJWWYN!+bTX@rD{44-m2ljV!`*$x})z1wD*VkP7>K}e`Q1-niBuSVK zs2+=K{gh(hMOrr_;k!+qc3#cTQm%%*)vc57i5`elQg3+!nU5F^Bw7LU&MaoNVLtuI z=OjyBu!8!Wx%SfX;r9c+m!wvr_@4x7^p3t@ohY3QhD}Q&iii-MFn_9VwbRs zU^0^)AN#%B1`od+6>JGGNPAieton_AskZ<>;<-J23PCL z^#*EO(+r)6Ng3{o-1jMMU#Q1d=2UN0?`2VA3I}G2zxA1W2Lz=5d@pxkbF=}qo+7CI z^%FRezvtvTOBX8fc+z910vV3~YkLiY9gevFS0+OyraeaHqGqE!zb3(Uemh?0SFa6y1z46>D{%hbzCs*IIpA=O7)fKg7@&}&kzpMTfr_yw`G3JPK5Khv#I%=YIT11r;(+SP5x+Tn=kR&~I+^4{RSOr&82 zgAkKqHp3a79!rOaAEO+e2qEB`Ff)jzsGa@s@Cohig);$HK*fwUMj>5ieOZdspPt$^ ztDMibqqIjP*qmEFXZIlFub=1#GG&-&6;$1`JyM7ov1Y0w)Wi@UZgs>@TJe2utzw_C zddP5D$=#%NlgC0xGZyI&=iX{f@V&}g_DsLJ%?M_^_;&quOm*P@M{lhE^PX}=NdqhF zQ`aVY!od(1>cFGgUt;dV6Bu zFp8$K3z3wDRUf$|L3vtaHa)~l@}lvN8yR6sE#Gk{=s5D`?-Y!RJM)1$65}<2<@ZX^ux^xGz+>P)*C*?KR1vNFFk?x-hkSkUBnQHA@gOvc{B83DZ zjdFNB=BkoKyLO=Ms@DlD|1m^T0}E&|8Y7u({<4w3rzqv>;Bbvc#)5g%h}SU zg(>Q(?u%h}3s4fY+H{Ahm}*UQ*;06TXMTJ(D567S~3 zlF(Cw@NmDt+PPz3{_FQv=D7qC?b_A?5LEh6m1{^ zV|v9N?}U^rIZ69_P5P1S-0qjJ=69Lxwi*sR!;WofyIF6J@9vfNZ_|p5;O_LW-}-hB2{POroQH zH+kbzbv1rA3W{FimeK^ISSZobFse+|X|86JOys za0=x2>w><=URITTeG%!kgjlQp>@ZX!ttClX$+YKiV{oPaD5hIq*K0mZE+OoF4+7}VD_-|^8Vh<<@nVaest5Pn1G?W zTG$pjtwb&ivak9as2UPbe?VtduTn+9T-9#snum{rJjc87Vms;UWf{Jmo;|{7rS}@b zXIroOuQisj7b{WA{m|o~9HVxE_L+d$4f4Lhu~R?{sk;Pt4R|N}z(YqmfvaJLdfzW0 zGUL`6!6JQfD*(w&Zyx*LTl1a|sRrW*iH%a$`B8t4C3s>w3xkT`Lwd9k+J|eW`zF zkJh>I4FyKO;&m)6h}aYU{i0vC&FKx6=xu<&dmc&4L_2DZXpzy&cjDDw`&p46cfOyU z)MPu?S{w7@p9=bP(Gzq6R!T6t5Px4C*Y{;9i*utHyg5r7gKA@ z7db=-Tm*XErIsr|^=CzIgVW7A$r?~9%|QFA6u$9uw}?T0_Ur^WV*uGejYhdzv*a}y z)E-S7DEE`vX{oA;NCt9}<5El%h_xDWgY5C#fW^FD!(Xz*bxdGtS>kKg)i{fL7cR|e z$j_+fFvsaOmiCWvK(258{Z`QO+CPyB$Uf&az&tJIF(2o}$k4n^12W8T81l(y%Ocq= zWMOg_e?Q_k#_wB~5JR0!c3c1<@ZFJ^_~0wk3E;Z1$R8=cUgfwYDh2Zr4SJ~ic&0v# zqK*2yP+7WjnV?`jOf_7R%R!tD<51~uip>fdqn}oS92@k%Bt-AZK2n^9O?HpA;>)Uq z?oPW%W*_?P|D$V!CD_OzD?yMrQr&pjMj$X4ikS${ z(MZV4i5ZS*@di&~y8_T{(w7kHZCp_gQo=%AOWlj5TI^$2LM*=q1mj$e-|(nk66(mX zQ%8I;NC8IZTbKbUm=ExoG?J+z%kV0wS+}o%w8hs%qr*^?CW$3>TLS8oT`cTnE88a@ zpDqbXTzC+q!?mMGU?cq`zreFy(egPvXXT{u49&LrUbyJ_OZA~N%`*(4&jP$T#zJ#= z6BcWAvuRR5?sKBt87}=o`N{)TVe%KI4$Rbqb_D?wa)_(i^t=B35PR8~$d%&EPZ$<_ zogA&S8dFyK*CV;)vhdHc@7&h#pS!1(EBn+`S-hns@uX-+*Kg>xw^eux2Mt42^9TgY z4ql}9-&m|WOg`SqvHHQ;@LZCwxBkOYx^FaUlhnIbcRv|g@vFQ(zA42`v_j=x$7hu$ zL5sNVArn)J77~z9nL&;s8k&)N@H#j~B$IlC&WApjphTQ3SN!qSqxFiI?-b^qYcV~J zV;NjbIjR*(1V!K1?cbp#Yb@H8V;ZGYa7I_u;||ajup@{OhX-?8HRog#3nHX=kImDy zX0Hmqe|xrPMK4%1c*c-Dfl$I1m!5W7+YCfOhb3!=!n^BAVdli#jEJAm2`iiw5%=W? z*cUnPlYtHj%MfAxEAtZJnl!&&^gbMD1D3n^y9yZb1DfdS#TGMs@(!@Q|OA zi!I6Uw1!!%zo-G=bd)acg-(}t={U(lx&AFo(z$BWSU~NG;dTe_ZWP7aWjqD#DAXG6 zy*)X1phdAX@)wiLs-_`hQgP(mM18h5pIm%0_U9MY1`B&I*B`(`D=f$o?dER-YCq@1 z^j8fRvwNF#Ml+u2=>v!T*z9h8=^Mz;dm0TDblxuhyYD&3Qy7gQCAvLU^Tj~P=h@C8 zMMp(P-xB|0=qwx?lOK%@@4fe-xabK3wSF-c(}dt&9?!eiEA$M`^O3feH0S0ALoFDOR6Ha+C9(b&ZV?@Pb9VN;kUo*|$_sZkkeCV^c3vecphF-Pe-OT4 z)SsAcKe-3wNnCguc1m*D16P8;V{{EG0(x-*7+iN|TOM#U2)$SgSAfmm8J)4Yn8O`; z5E=KZyWT;yx$(Z4G85a-x6NwtbSRX3`416TVjkclpF0nk$4Z^!NyV?y*94b%d4UTb(Ccz1F034HaJcIv}SCK2a&NG&FStA;0ucfF+qydC$hMTOK6cu>O9THtxrcI2Axg;` zd~{R!S!0b|8#J^a9!H`i7ZgHTxU*AGF{F@CK%4t&(_3F&Wyi$7ZhNr#0=X+8`=>5E zt7FkrQnf<0kSTsuSwh$L;F8yPrHe$bw^h*VIjRzw3%)pa+ag_c!0jdg7S8)DZ)!Gl zn<-i3D*!KrybuUr=x%Ph!z8gZt1?~*GaUoqBC39TDGo^8@YQLqVF~*g;4SSQG5miF z(WlYXf#44KR7&^jRc{#=luU+foa`a|CWuUmp;c14L9_g(y~_uG+`V2e5hVJ6taEg# zYOU1oGJknck)3sO19q!+eyY_u4&k*_{dYuJ!WOBueEH+^_}H}ns#n}I8*`+=tE zVbLI|g5I!*;xCDNfr2$c)5`^cFJCq%3V2Upx5`HlYD+K12FqIRlcR!YK&QHGT#S{R zsq$WcJBG62E3mb(-@@MvDOzL8$lVC~4xIe=lS{Anjv$as^}5ceQotJHJ%1Nywa0{B z4~lkT%`37rZ{j?C%OhgdxBRCS2d`7L%NUzUb0k}q13lz`yywwZFkv!0?Frg@adFOb zN7esZ8l^@S_o9$K1seF$XjvWJn3RzYqCmv;j3@C-E1+#wh^It<+sgOZwO^fU1|!*M zT=~W_IZ3it48XN=peoSg*w|4RU5b#@A<6kT%Cx^G^lr`6>nCR`&kWh=y${S#+4@(G z*sc}scs(uV8hgOaU-|%l&oIsn2yUreI2AS5b9)dcBdzT*wxtT_UVrJ08ZYa6 zwCuwL7MJyQP~~7MXJgU24N-SBS*GpIJHcVm#j63jcL)8Afe?3;T_>WbyLRmUwKa6u zz!9|>Qr2GwyOcD1I;dn)3lQqePtrIGv&oKa=D~<8d^9lKhcras9m}2n6xqA`Y4?c4 zObDNv-UhsMYNW}D9awW#OG{YR4sq%y$qYRA3JNQc01N3Tq1uer^9P(Ps9#CZfzp!{!pZT=QpWZ)^GZxPCzI2RUqos zgwkMdSZ?z6VYMYdFl6M<^LG^ zUrsE|8ip3X$6snMY_u$)9fGy{WxOlzRZb6EmM3gCf}X-SRfUGYK-Kn{mm}&h0u4BH zNSe1|5BSbp=6@e>Rozo*{X$cplw8*{EB*xf0nao2jzO+*+&)+V30lV7puQmM6mR%W zz*Os(HiXBDj9p?08w)*;GL53kqOOM>Eo={rdBzER#iYgVJw zPTl2Ugzp<^Qh!8`TaMdY6w`r-ekv;#~55{CkxB>k4l%`J}z;t}^BdbTN zh%ad9rQJ12rLU@QX!&S6__PEGMxMcgr%Oq;A%>j;nQ% zaXoO>`ja5o&O35Io%z)Sg&`}yzbEJ&enE$MKE4}8(*{=H(#HA?=>G=!(M!@hPie`E z#V)f5(;kyjC2Mj3$yMafcWXDRGRqavoWdY@ddun%re5erX#m6($K;qk*rJ$MX#m$8 zH@F(e*9>e2aUFG&u>>x2z#7JdXUS=82sRk`@{z9~DGi$xd?lN>CZ*C7;8Uhwu&1U$ z3tH|!==<(O;oZu>IF9^10VvhuuEOT8r;6 z*S1}l8VWnR6y)C{zc|*R9lsKH0(5L^0|VUt1zGV{l12Gn-2O|O%H zrqf3smjK7@5sEhgWI$YK+sZeAGm=MMHoV@gYJ9C~AEZiHwf~|fMR^TL)O?K0IuH~` zn{^l?(v*u%H?sCqs2N*XfqceU?{Q+DS`wtqCj4oD+Z^Z>g0i>=IC0b#8_21eqYq*} zV_AIGuBjDIKWn>{7IP$*Nn4GY4nF2%YDlt%Z4ms^uXL;S{ah_@!x+y???`v~Xp&tW zEMk6dQOtGs^RRF+DNOu7To}@sU`GOsfFEth-RpSt_K<%Nu;GQe_lkZ|R>;@1huNra z{|=XBFkq;A`c>nPjMi{*NUHZyj5}6nDq30^=d7L~Fem*8qhmqedfV1EvU-mJo=LuRDdAO&gV%9377mv^KjRGg;# z&DVo{-t+%%M0s()p-fVi`I74Ptml}kHVajNaQAhODU^g%O5C`LaE)pZxu3#Ib)-cq z`-6AXD9p3z8X9q402~g~k*>~G-JyK%BI1)q#CPq)lZ*4gBDx;71jF!SRT#BVZo1X+ zhRlXRx6}AAV8GcLU1_k9vvtQ6<&|%I01!kl3)fX;rmw|7+ZRmWJLhy|`}{yR2zaFheF09S(oB zlZ+BDo^DUunXq1uNPc%*MWb{1m8638aQ%+MGlG{X+UT~&NJm0rcRXqcT7DtZV+qGT z`Eq}rY%nUGc3&T-N~Sh#Il{EY5^5m??O3lx|aTPfS#?+waN3{dFFWU!Cez{=!8R zG<3o%j3;5DU${^|VUZNKF}==6gp%aQ6BI7;+A%4b7ILJOJIs8Na{R&F?`5vaVnqme zE0a+e-LFY(yIo$O?k$SbabK7){M+I1$aOfbW7)KM*a`(iX4sQKl&5qYfYFD1@}r+6 zUWnm!k@~{*nF`9+jfi-sdBKd|rsC}tO^oc}o2|U6ya*HYL_wRy<%nJ)v-8GKG3IEJ zfQ|%JE=2#wUvDdgX;&cE8oHPb^L6K8VPq#-de-@ zyKLqZ{n5~XeM(W#1t!^?@1A|qaTQxb@kkb0CKXM&^lzUW)2_4v1#)r)%y*emx-D=L zhJ>BbJlM8jeUY@`xw18$B%XOis6cm)czN;D{Q=kGkxIJLiHd2wN0eY+!xizrJ%k-p06ZlX5Cr45DXPtE=gArrJ){RM zq)9)Qj>Fcx57KD&+^r?lM*c|73q-`$3DY(tTZL9#d%1+ZN|^iPgcU6r0>(=40cD^Z z!T%5za@u`aOLCbG9ZUWT^n%OgNY%yDsBui$@n^|HG^Y@Y#`fvUe>Ex7X$q-~Y_V_O zj6rr+dCoBoz%5wwq@5ueGYr(dxn9~B##UzXik|6f+p^&%!Gh9> z(@NzTeBSl~k%^=+B#jcZB>Ncx2h}!7y`f!s3A?j8K}#o>?oM!q(O+xlt8w5JedC_k zTqJr-ni;|&ey5ZPd;>@$(E$c}RM(>2zYClQd3P-`Wn-DYE9wNovl{^)xQF@e9_s7Gpap>;@rqS zDfwIdA`P2O6DO`TNH%&g6I5;zPwc@1!eoucwj-X;3f#q;_VDyLtVu0Pt74+_ufJx7 ziw^a={l(tBZwXHa0u+@(T(8`)%46Z(OrMYGEsg(&Bt7OaWr<9`VhLA=K*)kIYmwL~ zM$!i$jSN1yfa(W6TA{;DX`=ho)m?-@s&}=GF|G@X7ry+}F5M&Xv!J^6uECQ-3H+Un zsbY9(9vaeLu#P*UeBRiC?Qz@o1V)1f+eF#B_!Zdy8cgx}uG$+UJvq?m>ZGkb!+h;y zj&G!0uEYxQa{M*nhKHzvr;1C9tHs0ESyU_VuL}Z7VMEQloSP`gh*nEA7O1H)c`SXA z`m`m!V@@}@GJD*8jQuk6I^TBJXMzvo)ggs~Vn zNn`Vc_N(H{T9$M`Sz7#oCFn^v)JJw~6QKIi02vG0oS%_K+TS8ZyWBDMRg4MnK) zM%>0`E0Ok^E;O}!xU#xa{vi{X&lFIt9heo>R4YYTq_L)EJ0~8;DTI1ol9!mU-FHzc zZn>@3nN$Cp!DcB}6g10G?b@BavaD-1oM?KnOS|$!8nAInH?22WEiW)TE4X?6+5}b$ zV@Bs_u@B+WBy&rfyYv;C51V2`trML(DY+fRQCXoeA`e6aohvhxukU4i6>&245XV9|`*T1>v;!4nq84HyHKw;$^67xm*`Kfx6 zctL%bTBOL)@WZFqEz9o6pJ=vU!I&fZ;K|eIe%_Ltj9MgFN+3J z`}0Spst}(O(urgpP%W5piBTt-hWvlll&&gY2Qg`}99WpT_O5h-Ov+~q??ql1i<*6J zeP_MzTl9UquRe?wMoV9!OBPc0(c{gm%-m_}S_;}f*FLqZuVG7pLBgplQXV;z!bde4 zYkHP(W52369CL%tV+Ee-Bz8VafA;q}vhbTNw_Sp8!5=qkRtYwPkQa9wwOlFaG^p|E z8-DJ$E^ceb?F1o zwk9FOOUG8y{`QFCUO1Sg=^7w@vy$!dskUURrIn$U`v}`V7Ua_Q(z}KMhO0M&J3`MS zDu9oA2}ZnzpJW~w)Kb}`w?_YU*t)DtVjT77Q^&w#sQd%?WCW>Z6zsrubrZ~lx=WVO zZzdZTb<}oQ^VEOp2Zy-}XlwbOgY-s5p2VhI;<~w%po_R}{LaTeE6W@fVrd z_-I!CUSFJZiF=gK;QJ(7>SztD)@!w0_TWL? z@0&4w#QN(EQYqMakh96<#h{YJW(E-r_+FUlk8%NJJ9a31y1BZJ(`zh(=6#c@57J$H99_Qr%ocv#-*`oB}!zjaT<3MZ+^8d%%jSwY!}L&4oJVT&?@EyhAbh0Bh}pK#X|698#0h`HH*+7#gg6J zlal_L-LKVkKj$u0i~}{q_B{Ii(FBO?HTYWoq3f5kVd}_s%fcKwYqKh#*k5K+%Vt$V z%EfaIRXE^7p#g0K-o2dsr{|F&>BJz%Kd+fVTh*ILO4hJ*!y^hy(*r+k0SZps@|DmJa)m0fr@uIutJJT)bI1 zR#oh&1HHO&>ApingXyOlBkJ!GKc&Je@89`fz&=Rld4u?PX?unW&m{TSV$1CXc0l|0 zmRSaa8cZjJmhL^0=27-Ev-dKsJ<5MoI=k8W zssGMt8f!5e$!C6ViezBufx0jlL*dB3XFnwNM?^JIzQ)K*)?E`Qgylz40@<_I&v<|jeEr|Mmsg+y=Xlt?_Ev9msrHodtdVIV%fE<&$_3_uT`9o7*SgkHwZgEEi$;HUt4_Jwl zyS7@mCz=%Q*GwEH@0ekda4~0E!ZN86^O+GHc)I|Dmju|747am+k-1#oj%rwrxAnSw zk+`GKg%4~`^caMLoL#{}U&(vKtmowO1k!pB*Z77{ejnEHZ`B%@cuiysS9PxY6Sa#`EqQ)2DIS(-`(Vl%|D!=g!r3yZo$uh2w9lsIx&0lQd%E>Fx{USLGwfW|Dx1}X8PvKyduX9i&YrRZTU zq*ct$&z4cjx_B$=Mbj7*Z6snY8LMai(lO0R^4%?R{uEEDfLGGkQt9`Q2tr0k?gp5d z&N%rnX%WQqj5N<%n+TS2d!})7)}>ZlX?C`3R)bm@^VTjzenyWy!mY8kk;WCbaeSoI zoK$_h)?x(^@8>Y((rtx05VG)p3|-J^1*6ZFTl0!!d3-&~XhdA%hQ0rF^_Jk3K_)|M zR;4`EH_ULSUIC-q8w1%W3#0_uf~Y`>9ckhsWVL1paGlcgmIkEN3G`(9cUBA*Mp{yD zZ5cq~oW9*cksQ6fqFe9!LYX59B>{vmHJab;^=Qe)VIy#g2mjoApK%uQ0duD5G9lh% z+--NAuovpRb9GLgS#p#xQ{-q{3zkv8>C=j{gL0XBcABQ`G{RT(Vl}&HRY<-p7_bv~ zyIEWD@(q~ucgeNcvYKdEq(2PwdtoEXb({~lEFGgYiz|wr=iALRmn1EY(5}ewiq|kp zR8mLOlY*(zg`0juFzdU(dh7*{ z`%i%BSS3}lpRG6b4iG9JfW ze^?oQ?9-X~l(t;-?;2vRs`Bau$gs^X2wVK4diY?=u>e=zwTF zQ1-QHfgJ!JD{lEhyd54J($E}TxHNEEjs(BhzBav4;!EFO_Nqu2o|B zP~wtyo^V3;DLq5;aKq4r8SaiLIM~}hPq|HQ?3vye`SQm$+LGi-|tXDI?H*@f@c?)j>WVB{uRM;o&Y~kKvenA+cbqR+X(OlxTRt zf1P*bgI`8h!qa|G!=-=Kx$^4VD92oENTh|2WAFJq>NyDI9euinF4o*cRwFFDjt&wN zp2DlRj|~p!8M#Yl!cPvP8Zaj=%N{3B2Dx2W*`^`*e~r=yL4mGrdhr30STI?j<)9Di z0G&FvpyeV>L7$bM!eq(jeXpL~?;%CLKm3p3ouA5<_L!m&D!1B2{Bj(aoyztKOSS_R zHvmF>cGKi*O~evdUskGc^f&Pp9;;BEV4h+Gd*sFV_V-dm!Bk`7G=Rb2k4o|F&5Da+! z2z~OIFpL`lisuS#GWlHNr+dDG)lDk27tA_9X1Da- z8Y!%l^4@$hyYo@WCi zMlExA{`f-|?sA(~7X~eEvgw5SNIS5DIj`qM~C7%84+xHhZpnj{OXO zth$k{6DF#6(C=0o?%YH&?rtB^AyGZVW0`e@HOraJITu=dA2e`UHE6NB z)ytOlAH#_DyuA2O6`l?|rT)p$X0yTyeT=7HT3Gr*mBa6GqubWJaCOyJ|vi=iVcFzC+}!4DLi&ee(H1vy z^j?_T^dECJ{&|v8p{xfzkAN*k%{Zl$VEyhkH(lHKJOA6>skZD%=I^;mUxs@S(cuPI zxAFD*YT!~s#mj-REeSZ~Wurl0$9_Z=8!Mt%9>c<41WfziRWM1HX>HNj8ix6zog)K&C`VKgiO{ zIy>xm>9%xKyUt^WmV?Bhyc*b(g{|cjm7!iXp*0hs3=eB}Mf|$4Uiw@#RmD;+520nT ztGsSHwkvb^rlr$h`7&5%9>xsCR7aOhFc5`uY-208#Sa^=))Zv)N zwHzHckt!)Qt`#YXnN_zv)6{-OL4sgmI zNCg9$FTsoSiZCn4SWZ~sGHW*hAL}+wEVl?|#tIMVe}`Sv1u0FG5m#vzOIGSPV*H;RU+L zb-~TCXX-&U{~}vs!Vx7);B;bYHJLe^-uS(-KhQgd%D!0XE?O8K*J>}ezvDyH8L2qf zv>ZoCA%Z*CmY4F{E)HvTO}UwN8eDnda?$t}+tR3gY8hin4@dHHW!lTKDbM48{@m02@b;mI`dF z-DZED4=|Rdcm=kU{w2uNZEr<-Y=)d0ldpg>9|R4WzM5!)5$V#~b7w^VBKhNG;+BKu zDOb*NP1J&Yf(8(2^-1g#fg_pdrqg7c=;9yokJT^LpnfOPom+3K$#w*;Hhq}2JfPm7 zQjBVnv!-K7bNW3dR#UBmj4!FI!J^?u9{!=G9p52#PbErmxJG6EJB;%9G>c-Z#-Lt* zf9b9a$7Sgo4mF0~P`mGbEqMG9J!k8me2F@N6 zA0jcQQPd3idw=xZ$y*aXMh@}BN`TMmOX=t3`gF7qZelX7-bR&Q{I2;hzzW;zf%-u^ zR(YZ_NoP1JwL6nwdr)WW8tZ!| zv3I{z(ZnatYQ2AUX}w&Q_vCucGm`F*x*#4T9eb4cWVMK2v(z^*cInNpzq3LuE$`M?g7Q*rv0|4mPPZDt!7$ zOQmh_OBUo9{M)EJvkIYqN`fijwF(q7_SHOsM)#HC{q;xlh*H!00~NC|m$wUEi&PxY zUN0`n7U95MN(t^WbG1WsoeJ{|=rUH2s!sb^oMb_yXMsL7ozD{>1z1Ww>y19cK%KZA z`yYcOA9(xyqtd8f#HlVKcYUC^D*8rDL&s3-N=?V&(vHMTZa+2Y@Q;=3vKetTiFylq z@i6NL+1^rQJbU?g!ZA~%p`66D3419bev*@KBeeamSg`^7%%d(+%Aln@I;pB~Sf#~E zMQ^zs#OBQwHhmW7?D{qH%l!JQ`kQjU8l_&xFy=k&3UW7n52TSei~xqN-Fe3z2mes; zH@}u0pC_YIOZ9&(lLMqV`s49dAzPtE0=wFu7!2H7P z`(EYhkb&c<03LU(&{k2C(q_ZPjep2Bcqh4OE|B+9d-`z2X49bK^7;<@(w2%H{VMcR z4Uj~*@ZEIh;a1B<&EJn9)GDERO7MJLIrYiL=xNI(uhF1t6=dG0jlPdv4$=T02B!|t z*7-rf^y`)`0mI}*eALOWWN_9%$c-FdmOME0Ev`Bo*|&yeFcTcl|@=k2j)EYkSdO~lxK(jQITT!i@+FR zVhKariSen)cPh}POI+IFOe9fG{eYtpHmuw~L!{5bX<@b&ox2`O&g)uW$2!d*Hysw* z1sN;i|Aaw4gg@=k;;$X>kOHq}tq(onH|_IuP+ayYzwZ6dFA%sH7K75k+tgTbZYPTN zycM|rVApQLJgv4!nTf#u+-WQ?O4{dS^rKlBv){FZbqw^0L~g=slbBIYb6=Fgs z>C6}*j{KuEiZkxmeg^h$MA_|UGT z_ha8lV~+UMo9M!G3XN%A;RG>z|BRr|QOIt+`*Tm7k1=Xc#XdwJi#X3)queUbfUPaS zLt>#50q~FrCm%&BhpT2D$u!=+o4H;9?wnu07qqp#taCnb$&K&XMJmZh?%q0I@ur>y zs2WUw!#f8U@nKZPmxyq z(>-ONkHb3fwj(Qn3l46di=P3E-LVJ2=sXuNo7Vy6cW!w!Bp)H964^_se3xUd$0!uJ zUnF}`b<<%Z%l^@U2k)hk{pwC zbk0rj37vn`_NPLQA)m=piy;X1%ebJ&ax*pPKymF>b0*>`+6wuRumC0g+R;VX|w}UBa z^Z{#Tvf~n(l{~Vn9+D?todyetK~OSXuN!?+3(j~{nl^C%(dO8?xc5xU3_5w{eLDBu zZnzy#>rY?C_jEvFzyzbc3$O)7x=3F5p_`Hw@AQN|L{@XDK5Q^Wlj(c@ACBL`b_GK6 zGw(a_?_P^Q-B@44PW%Ow)QDM&3e?N6iAi{L&jmM46kyleWwNUb1^7hP~&P9jKp84FPHE1dPcRUFP zcozJq_i0()p8+F1_fC_<@)s%L47O|LGdB+GBUyghd>0blUtU`j^mt*Z>@wOgRA^RI z`KUNJuNNG^=8a<`gDL)0S6Up^9!>$H+nyj*5H}5O4=&6QPgwZM$+-90kLry19r)%GPp{o%1YRN6@vHZzX^}=!7PV8u|Ul zz}6JF=nV`oE5q2if|!X@E5rJ2iXYWyNnStWgX3Z%k5+&n6%K6)zpb%=V~y!I#JYRK z$iK*hq+W&9b()JVVR!@&-Nxow(*g8^R_T{Y^4`*)&BA4P=xIn@U42=taOI4P$rXCt%G=}Dm+J}+m#e!6b@ZG zpAO8;uedSxyz59uFFh;(CwqO1yd*O6)*XJU=gtKh)y6wkee>|XeDhC*(u=@p=`Z5-rLHxD_50FQBvt*+Qh8`UH=pRv}AWTeM1s=^#Dj^f~qhN^rg2M zf#ad)5b7q?fvC~8Hx3`ZO+Eb4s&G zztK(*$+i!KXYI_PRP*xgvF9j#&(}$jjf$@s-=m|0Viak>wOz!dXmnw&f+8`D)$xma zpG{Klgzpclu~bvTRiSbY%C(1IJ!nhwEpcXWr~1VsWlQWs1cGwq*;?+Y@1vNh89K9Q zp_8>}1j&_FU8O<5L~i?VC$jkNJbyUxaU z{ZFD)M5oQd1BF^+TF~0@4jk}}5QkMI5OM#1D8qf8X#-z#&DLoQg6O1f6BYm+zg`B& z9REg2K)6z;nB>hO`Na!+yzbRLF8pNOakajH6r{q&K*WT5gQml}l>FK;GhENXms^xJ zxS}pZ5wCM{^7?(g({?R&_{YUNvaYvRRW%s*$X6Q>s_@T8=<$ZRw$V2|Xp8oA(3lDL%xXDyW;mct`&(zTaSMEFhZ-gP&`YHxLl?mXU9){;~ z$#(pz5-eO9*`Cl?L6&fFMfSoP9(_M}dKf4_C)ba5l%ApBL2Xc8Ho!qc8*v==iFj4+ zY%O1Zvqw3wEb85+%x%GstEe~z&oS>Uy>AIhzZObQz#V@lxDxa`hY)Gab3QS~G+*i< zka7e3aHJVx#yEl$LQAUlT8a^zLFY`V#=a}F*z`=}u<2NR)}i=jU)6srUjARLw6pFM zfI5s#a&W(oa5Y%Vr5qkgqWYkyb-LZvZ!ud1 z=q&eezfbxE$Gm0qixIjonj6iEpG^IUa4OQ{1R~bvo6)6)v9vt&TM$qORdQnU0pm`E zZ|sG0j*nV@KnqjR!PVHp>RE)z}iE};#{qb zl+p_u7uGJrZqADnB)3n-s4|awDMqpkycX{u{hq-R#}4{wwRuTvG6m9aB4Nq@aw<@e zs-~Kt$DqgG?GZ(}zkqLU@8`CSHKR+EdadHv5b>lBzy&czv^`+s;Vb1u3XJ)jt*Q0+ z!IqaO#OKw?etZ{_pg`DhIh-yC#vlOt4Xg7=yT>`jrQLChk~n(f-u!wo6;1m_zeb-! zF_hDOf*k>Q+>BhtD3yfQdFT{(vTSQIzbz%G_;rzKX<5ayx@u#jq#l3tZ>Tq<$JVni zhRs?b#tgefXXK$sp{7wH6{D#nGg|!vU7b=R}hm zMB78AC!n;D2V0n{WJaS=)!X#Jl<^`gAr|p$+jUHt&*wJn(A{Jj^+T49Uo~9gp=20l z8bleJ$FIh1wWOzPHf0og2a-P<{Q1|w{eKi)cOaDiA6JT^sO*gUmZZ#Nue(YSLdYIh zWRtzmT_wrLWoKTJWL~z6yX@>u=5hAEGjI2Met+J7_uM_7&wISqhiSySrcr>}b78Oy zqseGToP{iWwLd?Ma0N}B;G4|-Kc{)I<8Q`!&a~-N*Objl^bqYH(MPoMT1?jOqfHVV zjd<7%{Kf!Bp~4AS2FP?}T*%zmu2nxXd9N-X03PLu2}V~H>ptvldw-uDf*PI5c&~9{ zC1Cx;zgrYy;;|+N@J7TUvLL2kQhsy|!ynD;I0$&1mlA-Rz8O#{njPr|6=4b5dn8$3 zQlLmW^)`GKd?ys9Rv--%C2~;ALlyFdrM*9|;k3X0=6~JiyL-CIF9p*y}^GHwwnvoq)sdbWWybk~~8rn&(lgx~|fgQ6COiyNdms z?!qbiY8US98kc0Xz|dz|m5c@*KGDV>JC>g*5}QiY$-EQx|@%c_!7K`lG7p!uR1F&q@W} z{G-GbJwxg`)`B8BhH##w7eX9?N}&W)dy6+Tiyt9vtxE9Q69Gtp5ciek{~oab<~M)u z>9zL35sIumYn-X7Xj9g~?UdbVcVOo$3y~@0efhJ#Prt4H$3V~EK(BV#U^~FAss&vs zQvfJ#bu_Lzb641Xb`6Z^kQW!r7E>ru*PR2W&IoH8F^<-1JabeN+z)K`6zQ;0jZL%c z>x9qag*r2%e@d2+=V-TqD_gv{eQ&uU zicP;M_lD<%&=Zp>#{UCo0z4wy@pnD-qYT`zzsUJr5XZr3EFQ8QPGmOz>CLlr!G4dNu%M$uNK;m#H9#d9*C`rleP>)BkG@nslL^xcB}L8*4s+B0Syu%lGtG zB@vv#hE34mB{Gh_|5m=-f39=?*_9rZj0b&9l+kpol=q=5%>i5nxbQvu#{{@j`$B%6?4%R+7O(UIMA6|PeSbn$httj)(mblr z`@B16qPVbq_W=8kw$mCNZF#Ki$EiQfX7d|{fylK3sMF!p`e0tiLVm)R;x64XQz(j@ zKip)nSb`*pTOiSl3$SO^SsmD_lXfK*$(VD$;*8{95BG8v&Xd_Nz<6W*InihR{)x{~ zky*jce{>ueSsZ}{`i0f&Da5<0_B$bE>C^hf2a+uu$yA=LGJ*@fW|4^6rV_86X#m&X zOAT22^h(!w5~5;P-tHKrF-A^p!Oh224a4n?diM|IjJ6178{sv14GeF^HQ~YSZsz!Kx|bK$xJYkke(k#B#to6P!gK`p;m#83rD}Me;NEQa7VZC+VnygK^<75 zbr@Fz-kB1gtT|5kStf+X58Vk|d+o~3^4s^VTEG{n*VhC@kG=%4JO#hXZ5q0E&VFrw z@1DZ@ZKvm&ny$R9QLNcQ6s~(CeBS=Jg!(T`zJEkBnON=RJD5a;guK3-G12X6KJ{Z) zKH=-@ORqykSqr(DvH|w$J(j*tr?xicUswFc#Kd_}@}IAvzp2m9#{0(caBkb6`q#pL zJ0S(?d7if(8OI-Tm!EzeR6LIhBgidXdM;uS9be!Y=%>0Goe=kZRoDpzSPW!RA z3T0&I>{CBog`C$!7>mY8Za}-U|n1Hg%S*mVi1=+n{+}K zK^!#O@k0ZL=aXr~UgaFGAG%4SQbT|A8in>|S@xRyVFL(*(VAB_WvFz=t-Bk==~072 zMx3+&qUz79kWO^;Q};`E+B4D7_yb2#>Y&#(DGZf8LUMHj|6gH0D?eM;rZcEjD9)1AqS z%_4j4VT?TCf~cs*!O+0lWXF%%x&Y2R`$>H=LNE3*cGkz_+ooaH+T@NTajP96%=k}= zqMad?G_QXQVqb4R5PC@bq$Wq*#YI2jX&*120W5YGA~>$b#s>{;(t@d??ud&FR+4wy zPmf!#n(mj{7RERwu}B8`9LsB51Z=>QuS?uwP2)dXVf)upry6~8B1U{4gMGgQpxi|f zUAe$902=jI>YP`$?gCvsyZ7}7b?whc{;f-w;FEqz$%XlW`}t0$G8`h0%v3KQr12)d zJx-b{(?};{d&iD^o(U!=Pr(rci2Q+RCr17)?oPMAkh?8Qk_8)!p{jVH;>P_SHlKHw zQ+B^1XT1L&?aD$HaO8_M)n)$5+b8(M3vBYDzv7;nJ!Lh~W#VXhGl2=d`pZ8~b``n) zFd%u1fO^AVAq3Md15s%s7&X|_s@gHQ3Td*Hw-zigBwN;_l!A5E4$0w9GmH7)5xwLu z@vzxr*i6E?hDY5xTe;2x$R{9JXNP>xxBH>_lCgrL%u*qXJGDhi-T*#ZHQ41HgSfnu zw)J$VI_raH`R7Ng?!mmuMu93Vr>2$!TKGTm5MS$-^O$Le#L6XPGJGq^@SBQ1Y^KIm zf%=p)Xg9LEM?)y69nB~oOBZzIe6j2n(bx#urg|*9r2dH)iPaB$rRv0Qa$?aj&Ooir z`lb|12d!hF`_iOQ>-66urzc>h-$VSi%(EVk$ar^VxgeFcdgA}|oIhq2|2c3<R_1N0{+s}h4h$PBTKvVkegKW~+vv~J#fx3(2F(;WU+T2` zE9vO|V>$PC*kr*6lUUyfq%x;7Io%(>hXktTm}!H;GYi zGlt+d=oJh}nl7?qI%~c%L|&)ntkhEd%bSnCys69@`o(3tu+!BOoLDDj60+$YZyE~> zHU%`?BZ^35icgP(k~g#qk;JG0zalLX+d4p3U@poZYRFmUM2-rH4kwp$5Lw6#IW$50 z%Ri>Op^DQ*ohjUoU+)`o82o}wo%}y-^_YWTfO-eJUkVE%bbPNVCB5%FerlE{5~1VL)EjM9UmCmNaogZaS{hPYF?skS0kLDI93A+9CP)-C!Vu-y^SV0U`RS61YKOHaNixrh`t3vpfwAF3uF&M$j$>rilez2lDucrfS2qe{3XE+W za{~&QeK8vn;TDGR18Zy8ooiGz5+@##0C7dd<=(7otejAQaBuKtI{zreSOAjdp(f9= z#F~u1T%A6wD&=Zr;WjcjnZkgZi`w8|jq6bU`wLSEAJH2p4dxkV7NqCDByCO$)!#o* zYsY$yIBDu@S8A)JJ@rvrfAK=itrtE6NuHwhiGN7J2oI#zguE&}jGIxeek|+cJY2rJ zXR>F|{5(3#Ku@aO2DCq5hy0s8srW?b>xxUA0czIm>W-DJdjLa*WVV=vW0k^Qe))dY zGCCUwRru&>=_C4F>)J+7u1Bn*%Xw;{)`}}(kUPYqJ(oWx5PjNXA1YQwPOBJHP7Z(d zn=m|3KdXb805+?Wd4@ii2JjXwKHFdmLIT?Scn3lg(25~k5zJO0``yw{F8^clLQe&j zh^efqe<}<*$GXaTN zAT6qXp%&3`g-D}`yt-JYq=(f(*9GTwPFY#fJvLnNUT2ES_{{1Ci#0yqez81O{e*}n zN#sVNY05xLZw0$SSZhaKbiXQ-&)S8!!rm)w*pJV=FbzNycUXn*gk8FOR}vY5YD*aZdBjm`s`ziDgZC)UzW~9$> zc~Ew1Fb&wZ`ibxp##5K{g-iR@@^@{l9Oe4de4ZvZiu^EIw0(AK-wuqD-C7Q$dH}je zLa*eKVs!}Fe$8r2AieKL?qa}0C)$u^EJpMS4xN^$d37vW+njm@ z7OB+MW8ZMlga0pzPdWhhAwv-Heln~B9Sh?NW^W5$K=Vr4PF2e^+Bv8mNbjrkd9qR! zheO6E(QqsQ?vfGPvpxpv_Umm>#9V_9;3^S2&~MhWjDGNq3X&6k#x<7n45@XS9%tft zL98}EC$I9H+2`A;DdY1ENX&BpVkC%IAp5u2>X4DJYfFwN3*0zlQX45Pfa9;7}~846{{l5e{l$J zwED#LuF>K9<5sSyPkj8poj0r(e-)WEnN7Q)_cgEn{p0xTn(15wR6h)nxPKf+*u#tO zsN(aMI6oe1vwJv8e@3+w!h zgI#gL^2hOxY!|FmyOh#tP3iA3vJla#{}$bzekEpP*TE*jfjJXx+IiToM!iQ=pm;~_ zPIh1~%k=7&lF~N%(i#kx4leCvV|2;L8;AWNe{B`5@R|uAT=7Zz!-!Y1To2y!%>a&+ z!P@FNB}dS_X_Dh2A{x$PJs&dIK7XBSUb7NYh~5;J6|GV-xf9A9?=x{(?sL)Pl1>iN%M+uJphSDO0fp0cTQt3}3dkX8Y zbI{|Dp(sK@2TwyA2bODQwVNanm0IjzO>GXB?Z~lP`+yOEohGntj7*363x1r2BVXxe z`WgFdhwX<|EFYs?coKT+-J^egLCeIv!Ue$?d=mXCSe~QoCqQz|$Xw!^Z!isFdI#?E zeLNyAmSKNnC)-LWI+r1O+6+o(@&kE&?)jm zZ|UrGgv=g6d#xQ8pL>BMDM!G>d~d;n__`(8rLRtDO>b4=h4m@vU%RoWRKjXWA-sVT4i@jJ<$-Pvh?8`RW` zY>ww>Yc@1%V+=HQEa5Z_j>fOK*qWC-wUnyVNU5=~R^9-v$WWb56kp%fB7#NhjN(LK z?F|KD`MOs^sAsOA@ZV4Q^YOhOz5{VYGDuCGnY?nd*29e<%B~mqv1}!U0@!`X&~B2r z0w@O_^VbeEwD77s@tZy0AH9FD$(qJ#a?1Pj;WmrB>FYm^k;N6E@5VMY1E*NL+Q)sz zL^x$4qZCF)wI|o(P?s@kAx4V^C$#JKXWrsE7>X%m*J~mX@3U@(3B9y?qRF~Db|f2b z!Rz0_iQ25U{AIA=gdMEhSM#&y)&p5}f-R*3M*#p(d0!`mlsi}Li##}j&ajUd~;jqRKn?7zt_*gme<>u6`{hiZg#XgHnNFF)$YA~oQ`jiRbSAd+qgn< zm5Tu>5RZ+q&IYKWRjLWxpmlrD>y*dO0xq!5@h`b9pNJNOlY}A#vJ5Qx=JJl8V~_Xt zb^2F@?nn0E31s)ChW@RS;G>zbEt)YNdk%JI_(i&z>*DDvQUNp1ng6if)VPQ!05RsUR~~>^PGGk8yQ}eSrA%8^kH^X) z5x)leW+|tj%2B_a1!&FRukD+R&y-A3#wfHPmo%SkJE!Pi7ZT4Q!Zgh9m1!t|H*&#K><_hQLac+E7Ic9nGgdH;wo+2QLD z9+)<%gKFbpp2_!a2iIoLp1HAu$EIDkUc}ffR07Uwo{r1VPr)~V00Ph65AJ@8>0)Ay z;ef-+k&35?QOjXAQFhuQsM1Du{|F&EY;o*0gb@kxlf6Jw9k#cMD{c5*7JNPWrR{D~ zs0}-}{$$c+-!1!9yU5=CFoQDck;|a7Rjx}e-VE1RmNXS~ICRu`W|V0Ld7lyd2swp8IC8OdBc;^O}@_>Eb=6o}i}o4W0aN;+6IKle$E)3z9wW z`A((IaD6tKo(R|ZN){R0T&mdm``mH+N7)J>CLEirC3t@XOWHjufoa!!$?HB5G+>#$ zH51OuSU*wqE(jaD+cc_KT;hllllf#bGgz_g;2&Ql`fYvTN{(UW!O>Y6pH^3(N&cf6Sloq%jQnWyHW@!(#KWNPnw%^+EIR;*M+xCJ`JXO~X~K9axo<0P5R$*hX^ zban~zIk|nPf5a%YC)RZ#&ch@c(^~S?a*L$j)e<&p(UC$4!-=cPFZNL>PE~(R2UOyi z)A}EQ-40`SrI7D^rwYVX%k{hpgU2Pe{jc)1K|Y|a2HvUx+Q_i%+Nu-cL(O1 z5)#+ORt9TA#{5brH8RUS>vjtM$YqFXbd&tz+Ex-xizc9iFj_Sv5V0`RlII4gLLzBr z^V|qlEspqJtGw#h&#!m8o2m@n_`I*XoJkvO&ps=~>!zoW@47z)%Q%AZeKzmAOMX_o z2llc$p2z_Vw0pz4Uhgd#y|d?w(0!2_SreO~FJl?Mrs)sm(&37YPshqOop_Aq-|A7) zSwh5%Vd^Gi{?mUyo%}db{r*DY5QpSZu~2!E%j&`Enu`m;!&F3>6j2P5Yw(*+cto#?6b20FZ#4tCuwfEltqLv;vS6h8BYsbFdd zf#o&C5}Q?A>m^Y)^L?(kX6xs@Zv016(b?38m>T|-oq`Jr!N7)O(S}ZCmqk{-tGG*5 z55w+jXkRpanugbJ%*qHJ(C-z`IFM7lL4CQrhF09V^)1PcQ?t|1(5Q$K1t>0T7QbgK zqAu8NLO4rhU-3Quxb|{5KU3S0MOW3ta(V4077RFg`Jab_ z(#I04srsB}Tz^hmw}d;MZT^_^Ix2Tn^IA^I!(xv8uH3ti(NNjdf;L=Jc=O)K`ffY? z;Ig~N_lY|QPY_AGuoX4!em+pY(VQ^&(d(2A;?nd3llymbdGTQ7g@h(G>LI$WD7qjf zw#b0|9jk@^sah*5l~te^aumm?)=&qgww*ZYQ$||@14XboCK8&Ds}}WjTooXozv9_j zf(y6ZAS)|OhS68hhG7;8k{X(Z)>#_3OQV@b|rF=P%^4|G&K@<)N<&Io^Z?>xBXn&JW3OD z#gM9k?{$9g;G)}2+FQ4Pnk%{{FNNhx#YY@XYS+T!0k6||$WL4cZfX?I1s?^J)kv;6 zSNMN52&IG8OMPef5|^tJ+d(U-HjEJ6Pl$Js@xJ)V_5C^nScCl3Zx;fZM@yu1vmYGaDh?^sI5chqPu+G{TXSB(Ykw2#QIB4`2z;a4h-@gCbTx zYa;QA{fU;lJ)gd8K8}kPkGI!Wz8rbIzIQU+o<00rX8{gDt$=OIx|@Y;%hH~G z8X9Z1*+ALb3}4&H2M8RyBr&QFX{-G_zW#YN#^_W>5y`Rh>OEsY zE+@C_*eUq>SOrQ-VuE>dH>qLrorO})?01S>T=xs^xQmQoR5c)o?QO4xvH~MO zj?zg7gwx5FH*!f*%*}pWooT06;v|Z&L^5)xSeq3u7WA5$;Q(6X;DO5K!q3nSWs7rU zmkHTJM%jAADPq?GXnThm1Up|lzJje9_bU7q1B2jq1X9r!{*BNcStV+m6N}cV!PS1o*S{V zD?RaKwQ=K6+jbwEHfsf2Z2}^-j4dPfH-ld{Ura~YS41Gnfv)a|H37rR=!4cpx7t9s zW@k3$Z;WS{P^qf?J1;c_EL}dM@<1QmJ`@=7=#TCH{G1(R6zgWE*x=F)zKQq% zs&Y2XKsh9a;SIe@T@oxQg12E z&xJ#v2i6pn+3Sv>E(VodMlZ(^(MzEs?*Zm2PifY`v<{zfV{j1-n!A9M-01d`O5H{1 z6<1{zt3#=rJ}+?}>xls7yVFljgE{Vr_n~h;C=;N%bEfI96}rjRhzte}mm&3@5kd=; zwJWPBWf*`5k#ho0B$W{)kAvwo;Ir1GD%}aGCYOa~i{%lR&G(zVIX71@-q)SHa|f26 zzlvg5$)(EFyHhljAeC+?0wQqTx)S2i=1*#dm5VT=F0i(0wTEXzv>G?*-qz5eJk2c^Cg0Z zx2a)dI3#h?KIvU}?`FD@O=0a7lfe#}t&lsXuuykBUYNU#h8oB^tRNc<5b*s|MBJRU25!ZPkp8E=~;m2Ue1ftY1p3|B_QOuEu z#k}J zC5&4A88~`LzM><)jvf)g}Tq9EQG zg-1sP-Jx;QztdDsZs3ik zsU6J0#ixea8&tv%{6`|f+9_?ofBPLU?V1l#OaBdx6FEKFBuR8v2=~51Qy%kb4+3AG zIawZELLB)MtV+8F?%&B(;^-4`(-1Cl$k{mbwg3@>ktcO_;khDiiFziKiHlp9O!18= zvL{f|{7G>HzaR`FYST zQ)=wFX%%5Jlf{f0)iiO=EK^Guw9(A9pspL>n8fUCxlwNc;Ds@m6&oYvg=dV`R9|X% z!Za3e``b*^r`v*f@w1k&vaw5kk`mdUKez&`g5m5GmxMn=nY-3Oa|*uLa|n0u80gQz zb|4Za?zkVD^^~w(`vNAnRQqw|Qv0(vLId~ZAJj9|;gJ6+nOCH0r{AD7Qz>Nfky`O{ zwN}9F7+ds(K5~!fb)V5V5X? zj0tGgJ8S_Ywg_y-TB0Z`%VS7_Wn0>1+b;*t9eD4@?-7V90ZFN3TYIE4icIzr-AH{r zfvoJXG5gk_2%r=eHu;?hH>0Vg1?0y7FVPO{sTyhf8Ldi^_YxyX*2Wd>1EQ8C zVsP6|5aLY8e5W16q|P!kJp5x`itd%345nN?wV%h=oAnfndei~ES?0i;K>WN?EUVnT z?<<2(Ik+Q?NahKpV!LHeQuQ@C14%l-1;|Fq|3(VdCV3FIOvf}V77dsmH;ihCyM_B% zuIo#ZvtG=dd_6d)4h?EKQCecPRk-%RFWLUEEO-NGaQpWCrKBpJ+V@Wn9PiCi**igO z0kYGkixk_CtakG{N$F}ow_r7Ir5=I%-QL){NvhpULZ7}&mIxT;7&`shA1=DenKm8x z|B;0=7A_0BK90E7R&LCF7Yj>#JHVz(#-d zq@(wOn^!@IIeyM5`Gt2HV{shMnz(=SrTANUYljzXBP%sHfS{1EsKH&_xFZ}GOatDf zyh8*H*tZ@39mjCcG>3M9SK+jdHz6Evm{$~$46Ukmdr8>+elp6QmVL!w?5--<{cdCx zi`>4K8)ZVA)5&mt&+sD{S+z~kJaoeQHQki!O~tw?!Ko+vW5MYH` zK~Gw-^H`j3N}LNxZw)d%UwWegre-(O^KJL_np{u*owbW8e?%}KE+g*d0?mfxg}CtlGY}G0R`3=jvWK?J@=C^@LcA;eAA0X@6(8u$6z5@U{CyJ z^86w;4$fEIiOvtj0#pC()8Yflog_)2!U{R8=FL)3dl3&x6{D&D=TXUWeUvu3+0YJQ zM#+Uzc^DInoAh`^$fZp_ia{I6;E2DBaf2p_lAHTmD*!e9iEB5yY7<2xW?BHeG zB#3|5PTOmzn7#9qMtgOO_=iR~{B0-4oa`)Xjbr_6(d$7s$0PzDp<1A0ema^V z><&I3cYK+SK1vybgFJ@#VPbgcM+q=lpIyCagInFa9X~hz`^WTjTNrM)W&cPb^^Vz$ z9(@wQmW^=QMcAsi>5zG;NfAr~DgJxe!KKezMJZykt=BUGbs&z_eoF z(pyUbL_hJDA!9W7b_ST{02? zr7|h=ue0csFI!}h~FpmYVzGlj6fb)M*c>X0mmdWfX z2Z#I&_h%~>rW?!?pG%p9p0eL#)BUrQtGS`1Y5B!5ajRSNN4+PL3tN{^@E4neXX=KJ zBsbNs`6fOzUcXB?-X$ef{Kx8@}?Tt=|8~q=CO@OUWr#ePK1=E^&>GIpyQ3?aS8t%RQf-rEMJK(p8y!nOJ|XSAAjB;m z)xCv@OCbmuP?q|ULi6t7ueXM?=9)ET<)u`qWxu*+dCITGm6+zxBoPo8& zk4@-Q-WCNo%e}|zBy`~St%e`NV381qF?SIN(evjnuXzU3xi^dDH@xRsvv>X1zgM^G z$;I21&zx8U&yi)mCzb#F;;v zHBDX0Eg|Z6W}d0dEU$B@6X7DXr>i3MN9;l1DRz<5QZhFZfrjjJ?h@$!+d{)A{?YGf z3IM#?csdX^@20HMq2JS>c~l*$B<$=EScaxd5+Le#=$JN&@R8*6ty|7+f3f;@Fx9yq zk$J5r-Q-L;PLBWnn?^8?`$4`$Vx>X%4u%e0Imwo{pDrjThXKM|x=}%s%MyrXX0TS}$fb7iTM0z42OY@}io5nehX*oy;ENcR~e~$_kn~21vsO zB1hr7I&aQ-{o84e?p0)2czw&|d*7wm|H4>rQ*M6iK%mj=r6 z*y>BS7T0FH_^;KnYx$eR-{17bSOvSTY?nM|=5^oCnD80zLG&t&E(B?QiS!;11cK-} z^`nlw39c9MtqpLdV=h6qL9@BRmix|Cts3V^wxX?RpBm~X)J}!gz>e8yo zh?7{W87(@)Np>z2Pm(M%wJe?=Mh6$>G*IA9i$8j@xx^zcXp>erDBXA4z~v2n$LheVaEY>>xT7eUJ%MK5iYe73LMOw6MZu$>60u+Ltv!ny^7EWq1a zs(YXioz{7^(U*k1j~XDyvW?2}DX;QH3kf6NM&zGJ%l_~g=z+u)H`nb@UMvu@Ir`ft zYY$l63AT80071Ernx5?iI_sQVPX~L7%%+N@e$-=owa4Hj3qEMj>-#f`a2w>NiDBZ} z5LaP}p^K8yUWvk%b*nI1ZuN^5NH zybX5dYhBn{fR7jts^Hvy^PQ%j)rNDN)X*&2I6jzfyVEopXjv}1JKjDLh(G%}|8yfW zlW(>KTtv_8m%HXM4YEMVpz=?axNcL02iph#>MupVV{o8=W|PT&-VXYVQ0#7TeDzGM zXU+NCIj75ZQ+j1QeW9MOZuP%uVW};Qi%%^s<2tIO4fkyf9l`lBd5M@3F)tPfaP99dQn9&_0l9*eJt-{YiQ-Kum zt^M1L?lmeIu;cJ>A4hu)Eq^C zU7|OGIXeLD-6#9IGj8xZpXlrR~4kB2@;(z=65kMXJ8I0%fSlkQ0O2*eWc~1fdL@`I|q- z$%N)|#mWD~zr%-a0=528)I37nE6>eI_+wGD{e1NZiag5e>p=Jm<#`UKZTsY@m_xKi znm*vg1^l{nNRWNaivf?vhcP!o(sk?GlR}9?yl--~i)GK&D zs4nINk@0zmjOG79=7mW4ILw0qW%&loau-h?)v?|L2t5HjscJ#I^Od!OXql$B_k z^lGsx#}$K@NQ%IkmzUHDEaN`z9kW!aFmGQ?iRCpvjD^-Se(!i6d$@jM@WNIl&wglA zS}t$Q|4AB-Se%nwg#RiDiL!x;b6J+8%3So zm2*q4I`mpe1hUTvnAoa89~koU^E6p{&f}3LO)o(mytmL?*Gh(?=-Sgc$M^-tws1d9 z=jYMEg(ZP(Wj3Rv?BL|7uwWOsaa+CATZtN{L8~1e9A&Fg1#&jTs-{tvqy=ZYK?!eVe*4hI=(J(NSk(**Q~Qa~{&vCE#EPcI^!iHv=QOm4jz-~jU_~nhG`se)M4kh8AFHZL zw|yb0Vx->Z7g$yqAQ2>22O9%6e}9fDXj*Un_@Gav+*qkfqmY9UZ@fFPSITJeMLG*c z(G+WU#`WiBQai>^c<)_s>Y5WooV9194u4)N=du*4)fk;INbF7VY0E}bSHH>gDymi{N4M`EZ(|;*a;!~ zo8j!dHddv!ARR7pmO|wk)j`8nSQ04iZj(3hz+}AqJIRVFEjnxWskfB0(Gv4Qt1ZqC zx9ND4!XRR!T{TFmY2oqx#Z6$&$43!-=%DaW$OV9wBzZYu!pLbHaCXNWydfC8b+s5J z87*WRZ-K9+q>eYa_(lJzGT*B5Q8x_syK7VH(bG#vU9-0IWLx`zYgPs%R$6m?#LqA# z0U+I`_iQ!q4kZxrR#WmfmR&=dFlh8^Qc?P`QMd%(IPCt9T0xP>@(#@uzwot!h-229 zy(9#u)FYSBqhwmT<8 z_CYTD_WMD8#b!*)1lFFWe@r2@`MbZk8LS_3#O)T z4n_=PSOH78yOWBV(@Z6-c5S)2HLQz&6%eAvEOOiRmR#& z;cLVC3E=M%3%^6Eb{t2wpxCytwSmrmJbrYpOOsdLho~@!WOz+K5`WvQfv&j|0-XvHP-s@&S*GhVj?tiVR)aQah}uEK4o7bNuvY zjWfaOCw!guxReOf(m#`P_43+}8C_Wuf{@&YE{Jywd>}R1>uA_(W~^iZ^iB;O-vo6; z)7*Yh{dEKRk&iwSFX&mpb*3XY=j=6gf3*4>%LrP=Wy>%LY2ZUKxmahCCuLYL>j*XAJ8`g1ZYtf{i}HCqoLJNwo1jUg}xsA>E(x z#W%=JVK{Gp!Ds5>g2}nOHc3kdJ>>?<#a`HP)E$}$X_SaMuDJ3jV3?%!n|E(Dj{lpa zP%$T`e70Z)WZLr47Tmnc=c^%`$u5%8~|7Brb?mzTPe^3PhK9DK`mps(ua;B zwlywOHAvweYtDIin~FgVu6krjSn%QLy0)<*$%RVmFwa%s#QIe{TOWDn`>St!qL|%V zKhVX9aI$zac`=lwswjP|CPqIEQ%|n_)ZzE~a6mqJP_tzHu4g3YTlh2@YkUOg-O~r_ zk(ZI_72n8ilCBK^4xJd@iMv8mU2uDp#knJFu2n0o_ILNzTx4PrCslNnVxjGVTD)^{ z6p1zcs%>R-VafkiaSbF`za+e7IbI(Wl`BgsD4p8E@ygCi1~q>4s=jsKAa>x?#mIf1 zunQHtk3zZqJlj-%l&qS#^NoO3!}+rhB>pT)DVeeN4D263QOm)TUI1jq0zfF(`kIl$ znd=V{Kj3YHo~qUT>{dMT3lS>0IC5F1!}Psl4*t;4KOHeyv6c?KObaJE>_RzV*GA`i zI&7TgoBj7MX(9&{Gdkh`pR&%TK{%LIY_MME}I0#N$mC^lE#5e{0kE! z2`{40&S47DFk_t=8cCac?&mqKf*nnBP$BX3rQDhwrzXhT-j~ILxU6}j!)@5AZ~Ncv zi7N&Avv1vQm6zBJOm>P~2Mo9_-VQX1n{G-w;b`1}$vf6jwU;k{vK5N696ZV972VC- zGE&A%i9jz3iMyX>rI41;N0vfcsyq zY(!7-R2KZ1x5BvT%c*Bzj@6i$K<|A!#f9V1dd(sAh2hZJOw`Y1ehm(2bikb*^;fii zOj_GzvJAFp0=8v3t(kzsi$@1U+>Ma5Zmy`;r~BMUI#-w^E8lxLsj+sqQ+KT_M8&hx zY@=wjkqocXv>q;G-Rqa6pe~b27T31ll)773=XCAZcwf%lSiY>2-!JjSS^D*ZoH>u} z4Tl5EM~{q~vE^&M&wB12&K&nb?-4-n{xQA8v4v2ziL!67?!6g`S;FQ53V*$tBz^Fq z!BLk|_c<1CE(zE#{wZpo?3Z|&RHQXmTZhHfuRq_XD1KeCfIf34m5(07>IpgMH?+Vd z;G(}^^$4HiempVIrQg`Z_bNTf+9_9ETQKiZsGxkxOm6T?a<%WTk}`?v+rejOj&ua7BM0&{6wxnIE(7Y5Ze) zkyy3~7jJfj5R9Sk5G)#yn}rL4)JC#G+1-aVHaJ%Iuky9mxp{fpgjp4r#(q18WK5Sy z-u%au#W=OT=;6fuEn8v}rbShw>60?3{_u&g$qwY@nGK3X9L?>!$MAz%XMK_-$&pbd}DzujrDQwW+Qy+{1oIP=9%lSizk1mjC~Q-SOJHCI%Ma*M%fxd#Y{OSMdu+-6ollV z`EEm;V44%TUtA5r$9U3&3S2(grhxQdzNGtvH9WGlU!<$uoC5j?fQpv8P{WA;a>oGb zN7p;@LPn@A>j~WIY5b*gXvEq0Hs?U$>Lfj4IQqceeFMc6+v>Qldt2NqAZdmH>PDR+ zO&+__ix3Ohj9ZPQW~#9JNvHKEz-Ls<7-^e-G`8g;&{C4??m4uIXj+P6Rj9` z>vG)6-$S=mRd}$0ai@%Rju?)z4P;<#Ag4gb`#>HE)D`ML=qC&}nO-cZ0YZ(A&i`YA zD;3QWl$dhlb5VBzML{569H^z|-! zCeR}1Pu60jK}--YBq!)h$n?N{X7}Kqp-Sl=hXj1vrRE;Sea?ck0hAPER?^oh2EY^- zMF}U~Hl=i)KWHODC+EYkJ2q5ypf4&(vV&T^+koGysY6mh9lW5eOZ;uOKHWYYvaiJv z%uzg7EU{QL`O41l35!>3@3ii`rs-cY)smFFgk>T{V4WZ&iS*arFylq;T3!qvsq1Uo z+UC_K;T3|R?ar&0esgg#h;j)bJd2ZUX8D?7dsCESxGROG=n0k%hg~QW`@auKi#;?j z;Q(+-Ekbz8lEm1`sxe}t7)5x0!?sOzzm~z6M%%^e_LAoOPyLQQkc68oO3#%gL7zia znl8ADnJCBEg_Sn|${#Pnb{7Bh5SD&NP>eXqhShMdSbQjX7j+0zj3u&w`?RGKaD zFhj=_$GgS3(^1=)qb-JqHVi`KJ9ejk$1dbv9mpdV9zULVMblXjkTF?m7deNKm2Bl+ z7LM!t;vZviM$L#Rks|zwoRv+zz2Y^s;)M5 zG^cb_PTzsm5|m(GTfE=dJf)-iR3u4U!Z+ueg`HYT#icQ#T*!qWV>|s_z%UkYBZ~%P z*hBxAe&XU}F!GF!%+l#PK#466CA`Y_fxeUoev!_w>8x+9Z!hY);ap#0ToiS(vDtv$ z-yRG;k8E)!KJ&$FQ}ls4`~Fa~@%R-dd%LgejN^D8E5|$Vv&x9=y%Q04DqrPR!MB3I-fQnrPR_tQW&q0s(MmK0?^UkC z9w2RDae(6n^3@0N6<+;C8`rn$i{LiH&9BB)?2pND^L9PN57s}jd8_*6lc%&ohyb~a z&Sqgfx)nTVz3oXr(WLQe&|NwT<&$8j1zlp6&w!PCC)mb*-$E7CXeWkPs)uZGBsKMX%4CX+aAf zu{VSdJpTY-o1O#7YI0&hA}a@6a{{yXd)DH^IeAk@nk%F3sR`aZkgWT4%p7tqEE)Q2 zE64UE_f;1|$&P@@QBA4}fGOh3S^02$w;^D+oXHhM_;7^~LZ!t%+!AHusga$evXX{p7VHK5yhD(`8|< zY$2$0%zLl-McMH3UyZ9vvCT9r{kbKuN=OVDUF(w6zSI9-QgH3Gs}yg*#o!o_mD z<#j-safEx)*P+SR3#VzZVQveTTcqq^wdXRGO^E4o&wR#B#sHQ%AcvIe=HAn^6F9F$ zDyGuJbZ^ki4m$+vk=oYQm!l@2(MHouD=G(#-fj1BN%<{&?J$n}&mwS2-FN;Bg?Sb6 zGq~OQsQF9%Hd|y`RHu6Kn{-l3v%;R;dhiPx7S;rxindcw4|U0UumoP5v^-Z=vi1ak zmC@jyDCgSz3Q`JPdU8thm5JG0w!2b>bl|qZ@_L_oy3H(ijc$u*95@Xk*jrnyt~7&OMDU!N7%NVLK~b-QRF{+=8^jI8$`!|qy1E@ z%8DD|0ltd~d@F?Co-rL1jhKTP6fqsn^qe*c$f9L zQ)Y9y`hUqP_tXySSiTdLk$V?zL);sJ9Ka z5G~n8)=KUxVFe(V<>>ISwmPg<)^jEDt-lYd_iy$+8R1aR!tt+V&ivdS%aTQ&{6`k4 zLTw(`ZDqUtfdSp5kewAD9;8q`jG^X+HYSl+fIiATE9`LjAxaA^#qN69~zu(kEsI1xmI(E9Ys|u{RHx~ z2L;@10y)5CBQ^rh;UUbdtfu;l8VQ$q&3zTT9}RyIk$U zgzA>Z4Q3n9XRxN15~#b0UmAap-nf{u8{|c}9fQFkf1g(sp)IM!O zb)XjuQk%giKwwY-EVhNl4yytIC~={m0Yr<$$673Tl`Ib4#UCaqRPT)$ro()E7=(@E zy{Q`M&a$2E8H5QSg;>rM{j}N*q6*hgyuPc_4n(u6s;_NjE)`?Nw-P>fnA!q?YkI)>`KRL{;e##YI4F z|9@n_l`+rOyIcj11Im7CTvsP5ApWzDyt)A{az)nX)>hZWUG;%K{{-Bdr46*=egSfx z_O8w%^>WtVnc^O#QhX1It<3K#NQwQ0HL$I^sD+0tB@#v*fsDJp9$1xOY#Bf}5cyZA zTY&|4fga3Jw!#!Ad3utEzw)H5lG#2hd>DFTUM<h^zRW%uALl#4Xl6~F@w59zo=br|U_7tanAkmPJ-zzwX0;Sq2is4` z?+{M%poDdLtUmcgDgOgUC7z+}!!k(D9;2E@9&R1gC8+M=HaQAd))(rZm3%HbGc(A7 zZyfLY!Yb_!R4{{UlAVjPq&q~s>)woC)2-$VSOn=s8{B0i%sV!!R5+h|eXiS|{$uz( zTBPr?NK~OAh54|+g*gFr(OllvjAvdDsa3D#;6Wk?dN}mDxl+XJdI2Oa^4;L=4inW2E*RL{O zA1P8>Jn0T~*00*0eLyb{nJ+d%x77NiuBvn^s8O(4>2L$9)Ya=r|B=1T+_E+pE-E*6 zg7uMTHf=_Bq}HCL15)H=3}_`7Si0Rh2x0<}lO%(zaMoCnuDPuG*fIjxvF<9oYZV&BtrH{-s0zfukZA6 zXfjQ`R93-_dmM5UJ(iC+;3`HxAQSC*sCpfa1wQK9+2$vz*2t6J7gWq&=*QOJ>hFyx z`}t*j#BV=)xigmB#UW-(lfZ%o+IYxbO9Y_V&@4RPBmtxoQ{WIF&f?I+(o_qDFa7m069#LkY(8w17} znjofnz&m3qFy9d7$aJA2zrLs@oBEm5zpapcb}XH2Xp(DAyS>8w5$<&`0}@?}$#&|I z_lWz-&%FNfuL^$`_gUWbDOHT7^(yIWaf!cZhM)YH4eSVxDYbh|<3h!)Q#L9EbPiy} za%1_n!kkxsI^xD7`r2r?F{MHl(M{s5(k0J3NRm*5B0$yynM0$yO~Q!;_muco6C!R) z$|=4qruNZ^x^kfhv+qPt8BUGg<$sG5u|NzGMk&P#a*Us!@OAsaX_5AB(SB7-I28V|GoHTF?^H&<+OyQUbm&p0)QZ{)jd?WE4_m1OSJvhDtsrL+E0P^x z@(iM>0roJ*#>S!9E%V@G%mg4p==^p=jT_!n+`Yz-aogj6vzU5C#0zzek6A>X^0=VCKQ_X2!)DG2)a9ev4Y>4l*VMwov|l@8?Ug}! zR9d^@+8==vDuuS<(JTBRrMLcwTtbe&h98b^a{3J4oHpWFzQ%lTi9D94)R=rUUUoyw zH6e1S+YYXdF4CDwm{m{Dr{8j$qv(L&Z+V3`!v*a1_>FTgy=)q<1yM$8gwlz+r#g97 z6}V3%Ru);0zoh&GWb^3>$_(z09aF;wD@C--3o6E6&FV@iqqBB`j@G?YMUkHb}a2 zS;7F1hS`gJrGr{`$^1x_G;~E}KSY)1FV$5hnyBS@P4^FM?LrY2dAXY01?)ebo(yhm z273Ve@Z)C8;zjr15m}J<#2Vy|JtxRGXUgbls$Og2#`mGE;?)nH#r|Elr220pF;JVR z4f>MS-KTyOYotT;{=uAKVU|Eu(i6==*#qJ@qdXf60XZV)BxlAJV7V4rJNT04chKmK ze%lrb3y|7;I zbgm-G^T& zbT4mmo^_abBpJxFKG=A07@$m3_Wn%f#nWZ`6u%3~z&0a0?FSIIN6P%vzS%=Em{)tc z=rpyOQd6B87mkMFif>JupMOJ>-li&JZzZ?{JIFAk&mA%(N^*u9(Q2c!*E9>gN82Gd ze!m!!2&oT-(SdV91SKtIjit}7z_5pa69@o11D){%pqj>#^Lm^m=`0NAXHsDp;jG5MHRruv+EJ+2pzI#$Z(Z>@qNC$kV$SQJ={C-~V1VNvtCzxWF&xyUvIXgc z#73h1zMV=&#ou{1p-WL_O2rB-5f~ zkkFrQ;CMW_Sj^J>*xH^nP-oe z>a@w(%}+>j-JR;j;Vnqu`uRej$L4ki7^b?EEDlPhKHe7oagcC(+f%e({`Nyu{_DIS z!JFO&zw^o(&qX@iaQvg)H!)|3F2o$DE8VRJcGvU`9VLvef3SFG=RY#7rqE5J{(VF% zw2Xl#f0W`c9x?3<6u}VTI`cb0tl)M91=1k+Hc(#cxuB8%oYr_-Lb$$3Ca$fzb+bj) z5Dj!{LrgV(E43cpmb#e>Qr|X8AK=vqLhaUDev{^E`vat0mNuU%JjX?1>d}UsVAh2o zVO$61$Z$-eg!6xpW64k@?yPy!BavL;R~%FhqpwSy&w%NSUmqMDJr>^sx+|w=B_G3- z&DwAxVV?_!P}Sc1+)wuCC{Y=JdvXXQw$Y_<9fvlzo>mcHLp!k!dAW~0Nl(Yh#mzmB z-e&i1js!k_wqRneQm2}CGs1wg`$J>#SbEV=QnZF$NDTQ-A~|ntY~LuS zeDk*lybRs}-d=YlrVATKps@1_Tq9Aj?a|D}`q5$D_n zHt!ov58SI_bm?YZm~#^TTXZ}*uT^p?ji4i_U_m{a7F!)K@;nVdm}2AuW9ZMjHt@Hb zh9^a=vhwNAqXfPN?dcdh(0o~y95QC8%Cu) z5m(a9n!aPA9b~bKg10nHKW5*La<{Q2j(^e0iz^&=<6n(=t}_#Cy1YeF30?B)HR^e4 zA$}zseRW7uNr9r!BGGN~{}$wzasW1nUzeUzqMNqw{NgJTm14v#Pxir z^q~WINZ}PM2%CZV1s2}R+`DeO8(^= z9)_wkOS+jH^=>w>r_kkS1}<{7((sA&KiA?ZV>jS(c|A99-ZpqOwm9*>@o6-?M!6Ey z<2IKKw@Ei-)zAs#J-9gXi6D-=s=N%^yYW&$Sh-U6a&YstixQ;hD5g=9 zPd(H;(egJ@OE5RGGHqdoo1Sk5@LHH$iDbyh_BO%4Dew-^bX(48n9FE|JG0^GJAElP ztRS*nUqIhE4?TycV}oMV^+g5tjPow7CYYwL;7&@DorU3pkA``3GiG63z9#ezoXl9e z9^7i^o~8l|CcMRT|Fl{Ej?mEiKLhgap44kcpO;$Sa_Yy7@|3qGlULQ1i41VsT4k+B zh3wMIp#tm9VW>C02v8`A0q0?{H!vx_{Ua(@>2d?SA6LHM2|>R^AbwOWfjR+|8&GVZ z9lBnigWQ^rfCax&NEF)Djr5S7=%Ke;qcT@^;=R&&L^{)b59bIC)ivL@np4FgZ8I{Zrv`WDa?E+(hK9Z z@ZaJ801cnL5KI$D_KjWyJ{6+Q+lmDgDW>Wt|I?$x`VV!x6 zLR=gleSBC>YS*ler4up`mc5w{mF$BvK!|i=VE#{HUedVTOchCOV zNT&o#7_u(Pm_Mv>LsiL@D*L3YYkRwE%;^UX?;#MD{YR&G2o;pAYtV;p);o)T%)M_z z*W;g$ANZ@pStV(7pn~{_oEW^-t7e;aE|P5F1@rumjK@O~ejl)_yf7FGp)*o|7j&`; zWO?r2?`Gs#In(vJFcjKV3d%cSpOi_hXje(Ody%9tVB-&_QTiZyy!Ge6UdTt|3T2%O zXwa6aagTb2zsVo|UZZ!Eq)cOp+IkN>&i8oFz$A-9z3;14)1x8*g~s5?$`fN0owb); zf9v01E~LeOWZ$7DYn)*#Y#A=HO5wFxeh2(klLwxE69sJa`#0iVUK+y93|Q)ES2322 zzZ-WYf16|(^W8;PI_*iN4rndX8c!o~wzPCArhMD

8@(!X}^94J2zxWsY*SIiRPzZH(g%UV&3B?OC#&$!kDfEK$}PJ6rgVmF!L) z#tq*B!WD<$93Et)C#=(U%vMPur2nI5P_gRf6QYR>WXV&ZJ0x1o_LGYTLR zT>26^&?pc4IA+H?yrui=tz0H{0!Gjed}OK)5z^jmk+7dK)mVh#-4;$yZI5&GSi+N~ z3!%F;sA2ZtrIHo7J`V+C;r%ZO50UXwSDUSl&`6;?s9wi(XgxPR2Fwl(>+oHooOb<% zC67k@vmwh;=knBV?1g1H?iSh48U^t}rwziEE4P*_L_U4QRhI6y-5&F?sZFu~9Gfe3 zQ|gRHoEmD$yq8*96CDj(aROm%6msI$Of9*WaHA5UNp+D#h<^R=f7=qHbKqVWx$^-S z2o@5E>~v^>tw_36p-2(TChA?ph zPNSd?=l`D8^0xRoO%m!(xyQMQxv-Ut7br`1V1f>gegOt-gHD~Y!K0FG zhaMi*rYkUwXeJh@JPfKGmg7#3L1)@96*K`%j%j~K_`A{9%nQOoEegUfG7M05|ASnp z!Ocj+pc=^j3Emgy(xQPE*-M&-e!G2duCMdJcE{AP`mWfqi4-L<=lazz`iFQdFmXD2 zX1u-=a>NGsZ080^OO|%1)zg2M&Zr1}9oGT|*gWvDD#|i zBX8F#u2{0alK#1y?rke2%xk%pDAh0858nFyKI!7~I;!MrS7%;uz9d31OmJjxWn*8I zGCO-%e!MRTnCOJY5|nY|Yf@l45!@5TFt0-M?&5TCTy9ObpSCsaz_V9%O5C8`L%nYRQDM?VwafNh1|Sr-!E;RKHaH5rLl8I=)jQ|Ydg^8BpHA~l z+&}4nvHcivvnx`|UolzX(}{Ufj(UxcoEayWA$6t&RBZS6MfNjdDRL#b>C}Q97fXfe zw)~Rq*+-3VW1-s#j2vY4<>{Pv52_>1d+Q3si6Oou=a5H+!OlptUl%)h)k+Ov)LAQRbjpuYFFdU{jwBum(sX5di= z*gBzlP7>B6TVY%l#D3`^`Gd|W!(WA9IfQIU#+MgHr(xFlm`o{Md?xJxtc1L*L?s$l ziz3jg04UI^AQxilnXv+hpgQS#Z*tz$c4qF}MsDLJ$o6Mu=*zj;E`*-N>7ULP21mMO z+d9}L^q<@u)M?dY+%sZWehpBv>HeRvh$+cwB4pIE&NnoOWo=%KJ3>h7P=sqz$7O{I z7!Tcxosv?}J0th{7WIMGN9+HzMUT+OHq3Hb)MkLzhJhGN97NXg5$KT`*d^eHPuX|w zI^7rA_Hgd6uvPY7J@Q(@udr4?kyQLWe(i>n-6qGLBhH5J;OU`ts-4AOuwhTRBkbGr z|6w3-K(-Q=V|0HN|ItBX70hWez|q2*KV+dd${frfAv|q*x>0M6jxi|& zzU~k^Fy+u2cj6|JFB?e>Os|c^q&1^*V zYH@u}i2ZW1s(2T}{LjFoLw45jU`Za8LM(TP?GiMgc8zYGi65;#*t>v(LuO$Z2!sJ= z*$c-Ykv3}OElgNG%_iTbF)J$=a;>~Yk0B@dTl*2;p5b-H;?DS3{nw^3&o zAil^x{F9c))|7pt(5h5mW$uY%I!|GORbL!Xt;$-`K=%b^9kbbHghEYr_ocj5*YSyd z&+4b|tZ~#-(*9}9oQ7McvZd&^4}5rbl+ISr1ZcY~J^BgniK(P#A)OXHAQ0@sgVwfj zY8${+b-3YxelZL76=~%{44>TCR2Gf-O4uq$~??BVVNt> z)V_TGf7!=4poHxxfm1sA-Z*gQYAgIT`h+ziR^c{%=St8(cH*_LOqsAAA7$@K?P^jh z452ubB^aUwRMyATnwtoZ z76TX~g$Ya9)BSF%ipEw+PE*a`y~)8Qe7rmHH*jTS1-Knt3(O6fLRO7-zsiT6OX=xi zkl*B<24-mbO6YC;O+?&YZPV?(POYmyq7)#)5#FQc3HXTH_6Ev}h@&~HW6;bdHyUFv zpuRVRv)gOaPZtrtY%{q z_;C<7|)h_LS~Fu3~MyH(a$k91_qn#DpnF+pa^m=ofDnA;U=^ly%>b{rgH>s#;*Jb9yjmv~mE&0Uurjs)CM> z0Iyaet?(Kyu9K$W%ROz>M*oqGpFL5$m8LKv9k zb7MC4t@siXlaF2Q9ta1T>5~SaB?~Vst6jcW+@DD@!ZNiF8<_2}25s|A1yTHIl`*vY)X5VWFWi*`YS{n6JY+L~uh;F< zk^(WR#e?Y}7S8~2L4(Mk5#u5fqcjfBS)38hpad^x6{CRfFKL`FZ@MhxF64YG{93T9 zw}VwFhHcH~C9J3?7SGT#<)wBBlaMI1COV!R>V)r8 zGTB^m(wA~ze&1sK_4U{LhwF#S;z{vtZHvHmIX8vgn+F43Od3DmpFF@ZD@b7^KO

  • fYR*--}t`gE=pIbmB3)=xfu1MB4+F{z1|H$5Cc_u>R)nYI0 zRnh4AF{@9PCT%9AmCW}H<+5tWfy@793tZ*IWD%qmm80@3@AsLT-7<-0tC|VD{7Fs? zPYGRGKJOqVeyG7hI%ybt*q0uSpMLe5Gc)OjHpTn;{t|pgC;4)v=ixu-)!WC9v$-;U z&_fP@hll#BiV=N~6=+o{qX}?wfE{lcXzgp6u^DN!evGudT(SGO5_8netRRc=6x9z` z+MV?)+rKk4yLIR{O=33?kA`2_6u`Wif~}X|f4FFHu21*$e6ucLdpA3e~|mS&|@3<0!2hrD1l zNKPJ7{DC8VT=FtNA<_vi9OQ}-Ihe*YO`g*b%Y7P5yKU(d=x`)EJuhEtHm<6yjL)8* zoL~3R^Brcug-V8VqM&N^K&H7y{Y5Hi0eP@7b=0?#msiOg%(}BYaOn%<(h#CP>8m%i z#AvzA|2_~$FmC^n>^uUgsy(MYew~p)o?I7xEzXEWsFEv3;i6eLy{;am)#|o)c^D5* z#!Ox<(u6sv)cfpQf_{TAuVHf{XzF+@>>UxXc{=<{1aa8QFbwXP)T9D~4A)t~l%eof zU8=h|^Dykg%ZlA;47*`u(NKwGLG%fbR5Nr%h~6djrAKz2)!P-o*MsTNY_O`miy0g~ zH4(AC*_z4ISTPo&ajc-n!D(irwE4HgGzo`#H4=71HrO7dy~a#@D*yS`1kI3t0VB0n z3}>)|<*N#5e9fKnR|Dp`wM^s{WG~6$N1_*AzC6?vjR3cPd&~Oa9%opYK$Hx1TF>2~ z``14A_qEE#wSz|iwfP^-W)*oEo%d%{jVvq#{yOHL%$Go8Wsw{@!(?9|@aUOmAW8gZ zDTVaj+4bm0bKSU=51~qw^UUbzPYnHg@%d!@L?NC_s?BL}-ne`3v>#q+^#iEGqrIfhuUPojeIqq`sxY#CAcZ#2~WH4cCg33&-Mru)UhD5?LO zLRI=m$VGGT#c|x|mQZT)@|ysud(TT`YwNcFfurBC$`)seL>bJmVcMtcwdvj-KD7ba z+UPvsAs5@YZoQDggV&S)n^~#Gy$z<=%Vr=ZlE@vwwIbc7_8U!Pvp7lBgbLKf$g@0H zm9(vEe`!F1S*=J^X^~LM(W&&Wd|gM;MR@Vjtq37m)rs=_YqVT-esj+#{>FIVHrrk! zTIO~~KP2b4_FwD?=|QHdX8hDI<^D)<@5-QVXu1a6)k*2@rbVSI$|26Dv1J!s$XR%I zw)kXi^x&O+h5jA?!XfK)z=zOiz#iA2@GHGZ+lT+jZ`(_2udUI~V2mz=e(`Tzo8VLp z0D*cjbL0U8Bt5Bas;G+zId)Jl@1yJ^e^>eNx*9`u$IO<_hC^%1&_>jkhZ{l(*yV$I z{JTA5&1m;px$(~A+Y2#bbZ7c)X3-qC9|^PbY+23M;-*iba$=p69{Abykz53yG^~sJ zIiRmA{HpLEh#NB;6A(jZ2`#Zm6roq$|L}ZBa5H;Bu#q^YBB)L#NB2tl;oa@74-D$Z zzOx}r)%cOOZ|5z{?=EAELGuD#+4RRSTV%wCB?yC(gPa8)_MS#sjg!WoDUHI;wVxXe zvD$A{1Q_YV9^DY+kj%HM|KDg8mb(1!sB_#ascjLc4n_yuSaGR%OC3)3iGL5o$l+Ff z(x8W@7pDw6UOe$y&s+_`9$>5XCQHJ7ThsHX;==ZL#(8n1J_ij@CM=Cxxf9cMQC zO=meBoRbL#r1s^739t^)5C*8o3V7ctkF*S`C8#<5+F4?s^r4|}NUc0fn02B3kj3R% zrS?eRx)0A~yFSyVwciPZ*G}|;Ln)9kLFT-!5)Ok{yfzJM`8Q4#B%ub zN|O_hkBDyDF1mS+U9+Zd4*w(TUlC}Nq9hsPIFyoFHG*BRI*%Qpx* zP;$DedfGL+1R*i6w>=1gjgiERp-E<#CAbGeN+cpnxYP8^0a@@p5D3(qExqt|yyZPe6p0td zNMADG!CSR=6uU>J=Tc2Glxwdf)R2jb? zxbh#_>`_-!R&vDet0K5TL&6!`{5v%Z;TO3FvRY%e``Z;lTiMMW^s6;;I`?Eo_AmQL zck*3;_ML{HibeG;2Ab86wJ~ppu*gWHa7SJ6+#6~F#ioBzBl zbkv#ATw30|;(6y#q^p~Puiuyz-V(v1Um&nrd?pw{XMYnY|b3AgXAQVyHo zq6g9|`kup%6FQ21(Uxp0-}WA}&D4XT_eLR0C^qc3{0Bw`1{ zgGID5uM3Wy+JctB`8F0MCXa2Rx|I-iRLJK|#P4zf=QMNGFR`HR`1^xpdsx7M+v|Hp z^`$b6FAS3Mgez|S(~BNAx|fEq*ZU7VjZn(gj1}~1#-1I^g@%K>hwe6K?K3|oD&io{0b+;SF#|EL1=c!S+tV_vl~jhvs-G44MtoiFqA4A<5J z&iLodDuIQG6zHE5>8>97=h+LK-&#D|+Y{42iS}}eX+qQH6?Ye|;WO)A>b~Ckh2RtK zn(iE(Q+YRPcYDo*ajtKh=1Yhu)ULa(QVqInm8efHH*ll-^012f_7%Ei`@^abXUx(& z8xDg)lenrU-tXTX-^~maDDh%k?BNy{`-Gu-2?_;c%)s~N_5f*$NR-|VQ}`L1fQ#^^ zlf(BXw8V&iw^W28s*Y2 zyyKiybloS^x7F|D&H;nO`IGYvVqA)*UAx7@22_g#%`lAdJKV80Sq21#zI(p0JlEruH?${eS0|l={ub08sq_Qx+CcY#_ZOXdWxxk zP=ESv4`yar^ii8mpE2}-ZiI+XqPw9+Ap{2!Y1k}dd6&55SHBDtkvSMA(j9BOI%$+s zcv?=ye@&Jq3Vg?Ij1>k5?>brATPK75BYW|@5eT`St)u_`9E5-K?bN_dIgpRV2LhZw zqk1E~+A-S&wNC3JenvR!e4O9A8MlWus+{&*4(Yrg=|!&4Zl7LJ^XkOnT<)R#r@Vi! zK+pcCvpIkp0K-X>Afa#fK?h(?!dumjo3>MAu!jOAR19DT#(EtR+y(e;Am1cL zDNP9CIN~Z%0F4Mc_+%O^(u2>w>Ifvp5ny?ynZ65ylQDWa`I1A~t*FcY2~@OLf8Opg zfh3b?)_p+_NOuXWL__$;3TzcJQPD67e6|eFWXim3;#jo9yx#laxU6&D_%? z6TQvcs%2lKeiK29$)xNKvb0RLEIwZ08B`Vx>O?R*D$wFOR)Q^+P=tn|l)2Vsm51%` zO+|)2ol)PRn8~G$igA)HSrh;donn#-WgOovrNisN)yhASm=O@o^rtQ;o4Vk&y$sbo zA588lw*Kk>VtAPn@(3y2Ip3 zcPe*;j_g^qME6A_f}Y}~=LDl~&z9jjp`)`0*Z34HFET^jDTab0CC<;P<+|ikr!X># zrSWl{>$8x1dZe*oIv>dxNfMIVt}Em|P985uVBwU*lJ9nTE2QMiPrF!euf5ia4WHI zPE=tgbAN%*k!*m{(ijn}kH#MRHUl$M)M~xgfSiwCsZ&!ohz{mZ(ubTX)NbR%@P3-3 z^*ZKOZc$<;ZLePp3V9D z16PRNs7n4k?Tx(Gp1XhEWzWwpvh?u13t?c#QZr?pL9|w(^5=eCq|zQqrFTnCUxgg9 z+h}m)e|S+{d$o*MaDmRFl`~fG{|Fo_8K46st@_%hxM1Sh+|RbU*d^%e zy z(W{Tu-6~o0{kii6cj7ymf@Ktbr1^mnVDd!)K9{zaZ>AQyt=jY}=)vrEp! z8HsG>^7Q*Y*}z-i2P+4$5VYG^XR1c-xzlF^y1gtRyzypt;rP5~X`Sr8EMZw@E0SHP zbZ$7c*Kd&=hUZu73lV zV1<{hfow~XxU^NvNJ@_UZkW@Q!AXC&pDW z65J0(WJ(T7Bv}KNAc#VkUS#edhnVYh1Rx@#)e2`}dIX(->yomI%f4>aq@%LT|J-PG&J+Po@K4gxQ zZ@!{Fs{=eet77)BZ*GL1=yyevMlERAYUqDt!i5eiZlURt5w2V)VV+cj>BYy1!LQfp zQ`!M5e4(s6MDN6BXQHh{aCJf9TJafNUL|ng6aZM*I`v4EcE~(Ptu9D6Fs=Px5BzFL z9+$B?dSgL2);7{;X8nDFL*2&;!<|ThDF7KJ76L4~X{{vFRlUxZp?j0wwaC4;bne zHI`{ZxPk<6tnn^uPWh;om+Y6EwBv^nkK9)AE}iRdz&k$z^W^Wum-$QgJs9sK9mZ7! z`h`RnjvmSjW_&3@mzh-8z-Vyb)U-`bz6M+dc0^Uq6uaDwwO3%Cj3;QEn%dkqHF>n< ztR2S?wcF<%yO3RbQaLD!+e24N2g*2EnC=pdPsfKUr0$eHHl%UT*

    HWxpUB=UCZsL$)^)SJVtTcOQ zY6V5bi^lR{Og_9Br!~K}+^r!Cm6K|fm^K|}uL8|g-Bf1M-vyA5TXbW$Ar=S{p*1%H18ArtC5Cumqvoy^p2)^A*dg9O8tI4Zq zpL#uuXD2A*z;>%_^!AW-W=TAKxA0>h?~CaaYLG=)3YZ7VDtQ$n9bB$~l{&kE7D91pydvX zd{oqAxvtorSpcL@N5P|jkI)hMSHt0`aly~bbpc0@MJ$!WvqOSeijnpDe43^G2!Q_f z0XaXqt_{F8=?G#sX#o1~5k{rS$KlbiE$3H@g?<{D;9NgonN#ghm4 zM;kl-`Y~#7Uw!fah*;t-MT{$18_N4I2`>t~L~+rWm|nCO(C~Kd z;3=qnEL!866AJ32AQrItK}D;X&(UR^}Wj} zpv7D`(1NiJmx3=MdU(@|iW-DQ0|Ss?+I0hzx5M46_pKx4GJ zU_1|1-sihX(QedUT5hnRo}eMViA0d5n%cf!zQ63v!DYR-JlY0H%lFs)V$x2{bZH+U z+){pKxLZ-E>W|U8=&zkP_m|bcw4v)XT{?~JYBgHkz2&E|jd~KJeqVrcaP(>DUD_R) zT{ZQO3Ha1g(oAk59B(P8c-8G|` zrl$H)8tgGuJnQ4w#AcFaD^-^JynSm7IfRV>_e^hYqzEFX@dxEwZjJDR3A{vTx=zr_ zQPkCZBXoR48vJXqUM*ggErm7dU)2!h^T@z6h0i9*(oOCG56_WdidCZrE&g~3+;Nv1 zOt!La>JTX|FEp;ssl1J!DW}(sGDoT9UpbG0D7!M0 zRk_N)73$nrOENKBk@s*3}$Cpu%WsN*{GQObSKX+#d)`h_R%e%ZhL4%BOWM<=K#Ar7%o9%@F#Pp)IDiG~kwt#GJq@$< zqa7|EsgyNERLyqN*glpVn19W=K^S1W({P`awy&seP|b9@4tSD%jy^+6rMqotM15lv zdZO}q@Fka7m;Of90}_g}Mi;IVb}1i$&P_Uo!mPvXIO`cBQjqy4z*{M~f&$^VP!{wWJk?n8IH7=add9}|yX3+osqsferSFYchJo1WX;i29EH z&%h=w5Cd)RBa|+8emzo4o6;B2r^!hkW}NAsifBc+$ts2-C>5xnZL29EFugTE@#yd_ zRb8Ej<~5}l)*JEv3FRcd6Zt@z(O@aUM_T5Y2JYC3`o|H1;E;we=(9?xMp^fIHJ*jkJCyaMfbmR>6RHet1xbM3Gx)W6P&i zlgo>9B@MmjF(S>jE5I#o5$dI8gV_kl{mQ{#s`edW;ZyElYkXgK;I4aSR^*YKH9*&2 zEv`si9cPuZAv7k25ua{jk%rQS#%G%ZEpOdcLg|sb2Bs@hISV*ZerS@_TPgP&Ms9AiGX6d?-meNr!*_FjVO@CmdO~aJm zr>3y98@v48O&ZYIZap>=H!IA>V~~1|o{sf}4235mu(y~Q^es!eFzt{on)~RVqpmFl zB|st|>}AK>CW&wUb?=%CoaR4b#~h`sWJ<}=o7#+0@z=Kyg6>(zP<|*n{AY-g^5c)6 zQfv;1F6It+f77d13e{c}YO1LS^EkkQO}lyeU*<24p`5c zY9?L%p6IMvL=i(Xvu<9j%XB8o7H`5ycVRtA*+b9}|-r z;+rfSk7f?H0@?z)5PwGMu!F0gZt@kx1Nz|A7Zr1=L8!iFU5CkdV?M-+y1oL(kIG0wDAu>I=J`lz32bj=LbuEpOm1n^rGlMPv(`*^_Snlz`k!~6y)4A`mYcJ(bj}py8<@|-yYQ+J z`cn;h=NwH9n8j}N`$qGH*o|=SR=`Y4!v2ZU-BdOBB%hfRpV|yg!HlsMuM3l!D1o#0 zZ|Nkbbv5n|yUYk*{IH5X`J3NR+MtK| zym|fywXZ=%uhuPOm{j8r_J>r1+Y(3_(jJx1H(C@95TIT*Ho}78CfO6o2-CPpZGC9&#L59&@IbwdlEFs>ZT1{d zT|ykj->NHpOen54jhDO_qZwf5{jtTmF)XO^M%lfkYaicP-yKgYJ~_G<+H=yiXZ5V#$&W8fjEJ(=1y6@04(OGz+ruNfGvZ>fHB4BM`JLn`%PH*QI%Sw;K|# zO|7oM%;q(&e%T0{QB$b(cI*cYZFLP&8s_AjxwQqPxAk2dlfi5;+vsB^ZOqB`>NV`` zUlcjtw)z-Mn6*wKGuKSENAOteF}cj9ROknO62;)}F=5G8U+eSsm8G4aO%jkX54oN3 z?um{@t^73jlc}b?QF`3=YTHwoG_JRJ4p)j!^A7X;fC`C~`OLez<1lNC2D+64 zO99{y4%gWpJI(wZbmSblu!&iH{xcN3`pacOF*42~loaY6rsa_>Ey+Kii%L#I)n>k$ z?4>3>=XWoO7U~zYTy&4eWMvoN{MNWae>=w?&CP!_qB1iTh-4pSjIPS_kkwMHaQg8V zJw8lJ>+|NO+^<}Gw^7EL7cXR&E1%wBSp#gCgt6+1j5zHc$tAYxdSfG<+KGeTR0E}i z&yxqio30a(58E&5p|Q_b4vyILhKhLe>Kw<7rm@M<{(u6oQ?=0c5~*yEZQ!mDjXIfK zIOjjc@zBS9Y54hXaaPGO2HU;4OZ6a0lBG(tCWhk+F&9k|OX=yH0vQhSWz(W*Mgx^| zm@~b&)H14DKpnxJBH)0!Rm9!5qzag0LPUw@Pn^T=I$TGQ{rY_Igo@XqyhiQ&sM%Nk zraLRkNPaDAf=w?p3C926i}c{BxZ+ z*SL?dNBi1GN<3d8Jt+x~Zi)Ju{fibCHu5;@%1dK!vRc&T7{C2KCauE94O&QzX#1u7 zkLW+;sfcw@L$m=n%^@O3Re(%MK2*~E3~8FIsgyCa|#byCl3z^<#l{j&Rv{DmG59V?VsqL{d&3jeb_ItYHkX`+;eeTW9q*h7CX#i z#Wk{!Pj^|1h^alao^H0n3lTVH+P=usuZBkEwJaXagd9o4k~y6kzolJ7orp0W6xeWO z_*6Fj_ix~RrU?`yCLmm0UYpKh?9=>?v*7%;Z0s6v3E$Jk&8`d25w8?>M!WYi4eWVW z666!qr#$^q&5umLf=5%5(tEI)*R%bys?x(g&~6>Qe5tunqy2*3bstDo0LR+Sh!8eH z$6+TSGC{Ysaan^+3-%hfiz!`u@f#*D8GI)HRy~$UesgMSy(?vWVP3T6QwSO$i(PeW z^yxoV>bAm&1=~t`3R*5)o-4lVnk*>P>fI_lRK)aNyvH%)P50pU6hF0nn_)tRi_eFb z!_0FQ_sd^IgNuSq-q8t#&qRI=`%gvSDJ!ig^R>C=)&Psr zA)Ljlp_3>IX_Xpo-I}R_ONlH}n&RSaCmnw2Qu9{_DE|YLLSe}6 zM-yjPi*dI?31|-l=W-}swv=W%qKm4rlgC!CaR+l_!h)KKF@vV{s0q2ZzdK%)b9%Xg zk{TRdF?-G?Q@!bvvQF7kLxz|Cw1t}P)fDnJmh85s>;r>(+@%z(2W9HQc2{d)=E~{s zjXp4iI>To*RwxNif>wninzuYbRpYIJU%BVPHUBNi4?KSW0RE`G41=kyQL^3wZ92^ktU+s!WSx$m zKrhWF4>|vYti-FJ>O#j2$liyqMl>ux|1bNF1fHH$uTYgzN=+l}(lBDi1?j{la+ba3 z{KCImNHM$;t&Hsj1o4R=H$tUCh0*hlYut(|-??Q`y1OUB*Uwv3pL7o! zo|#`K`p!DWfWnKG&uPm}Z_e7kIzrPDEbq~Rk|#0DWO9iDLzMllk8uc9`*?ypRyD+# zpt=skLjoR*MP0l~Fx|aIm2$RyPUd?5R4Wp0YihI4kVM;ft0dxdWOhE1$i_>95VJ#QiOroqanldVk5WTVnV+ zGGrH+P9(9hU5L4D4XjZIoCv0dNu0jUD)n(+n{N^{GJBK@8lqczR2#o&{Z8pW+73>Z z`5(j33~CMXnEsuauCbDBgZko$f_w&9l!N?vBcu-xp*h(zW9gwi$)J5dki^h)J8hVl zn9KMIKzlio;c{`|y2k3RH`z zSjhaN{M30aF|p3VwCXA6YW1aQG*aaQopSNvUbI_VD+(0^5Fo5Vkue?}C2jrED)h*WN&y zoaisa*Jx|fk2b7@{aGMY%E(MElL}D5l;nlM+02r!y*J*}v*>h${4js2)eCj-b-B*F zcQhu8Y|3b*?eH%4t_s!yu~uq7JwAh8rYe^JEA$-kkNH2QZUcxI`HETtPh9T+J;_oOT1E zE?(kNLW}lzN+rE3kR#KC)Xlb9%Y$L8*h*NhAR9X1CAJ{F%#l?bh*8_=C@j{ zrFh*S(?(F-H_1z4GQt24ddg;_Fl82lRgF3a9F@=}x8iXpJWcqNeh3wAIK-hgN# zjH!#BdBZugQEoJ7r@czAg|Q%3tlIl5cGHcYCh+e?-N4$mr&^@iX~+KHt*4 z810K_9B9pwnDAjocY$GrRDounrW98@ry|ux>cobzIz|{amZy?47}8G zDXh+5UAk7kO?K|djY?@g-hmbbVIT&$5WF}vVcmI|x|!M9=YIRdVKb2gW4dW8V5EwB z{fs?lTUvnPPWw8-wDw7|7UNXO#zq;xY^B0~RgE?*yI==H7vRBtnE7aA8OT9o@yuf;u zY9@de>eRJNwT(k!_R)aSu)G2M+=#q3Yuk$+3m*Q!V z=*h0M)TbAU%QIT1E(#T6B{){p?Bz!nYPDYm4o0T8w{2e*O%CK(5D7Brph!h3VU!B< zy?(K?ra{9kvWXACTkum{$<%KPwleXH0b{c|G!(?!U2eX%@B*&z zKIN;tiSm^=n$~@UFU$Sj_J?f#z%QqVqu(IXX_beU9W`IFt~gw5@%L|YD{(46SB9|C z1=5-khvdT*KNjZ~NBsPMJ-0|&FnOtU`sLLdG_#*$Qp{GWiI!fn-H^KW!m+r{DxRSz zJ%b8kjAFdpo)%LMGo{}Cj>)s~d> znx{pvB#KGJ)d~g+BX3VLEJGw0A_<<7r)`&7q8}%#UM9rqH)&)aCT-z`0fk>X@D8Tk z=Vv0p0_IL7PHkO^NiktkS=@SXR4nOJQ`X^R>iyno`8%l%TrSI84Y^*?`K|u^Ui)tf zkkih7N=MJIM7}m%;QKCkE{yepa?FDK?9*Bl4vb1(`YuM6mO5r|{5Uf~ke+ZT&v{haoX;GS5BszgsK`#$*)qiP{!o0T8D#Reu8YkKX833mWm&FiaeVWU1_n97wmSe`eg$WC*B zvHYst`dJ58FFgur${R->j-lv!nLNlRI>4<=K+c1@34(_6XZqqmd>}tww8M623Qy_V zs2N^ti~HT4CjO6rbTwE1yQdcPxntoM2h|$vcm$paeYd%DV#kqnH9qmY(k6Wy(C*Wn zZr8?CNpX8O!oa@i`a)RkWVb}sd85ZIPhR*4%M@gEJC;tx3*tB9Yuw37S4j{A?vi*5 zxGVYD+-`Y0==nzaji4D2v#$R2?BKJ>wr8tQB>i2iL`Y-UBxgT$jQ!4itML8@3h*gC~Z2#ReH` zVnl?8m_o&eF}MbOG360E4lZpHF)Q{xL|6ytw#?ISc@Q#x#3h1!tjNzzAf&fhmaH@s zcgIZQ`FQI)wK)xBZgJ3hBGOJQhpQKj|8ph54lw_d9gJ0ujfee02wiT37)%}w^n<9( z$lvCB@!sU1vYBeFurQ=jKT>@gWR4}oy^1af^GvZz*VCsOT;*1v%3wFg`B{d=xdu2F z6h`QzD&!-yWJ3+o^_KXghc0U;>PKXYXa5mcA!0H=2@h-=%_;rhI92?Q?btq_TT6HaMWhYX3JC-AeHaA~aw@j_!j2!vxt!!&PyL2VF^al$ndAg|RGDvTfB z#qAphS#S>v*%Vuv>qG?(!Wge=IQxAbcl8Bhv7H;n38xvD@TC0T zKy`Hbr5OUCS7XFjqmcg@J})gDvQ5`Nduy?5*-ay9H9E6~o{ZVq>M0(2d@|KE5nHlg z^vJhree7_jBJd8XI3iF5ZQP~!L_{A!>)^5eBYJb_F$WFh^P{$}B46)6wWJx+Feo%~ zQ(2N*R(e+=zvR6XT&xa7)2(?|q1ZL2Sl5HH8@F{OcjHnD7c94yw1V$pA;pN;RW3eHzH0eGr=`wF z^4wV6Z9DEBNN_a&I6=|%E}yzl8A96Ic_rp$-u*N9+y>MI_8G>|W`~BX&qf5^JCKXt zKs?;NLdL08AUi?AduVp~&Fh)Xrz;U3hZkZhh5nRjq$;rZSArTLX3(f$X~h7Gg%)S8}bu>Jb4+E7PE; zI9cX@0ygd`RVdky^yTe@Ji$FGTG{ij$gS|9&3AtG)y#O|r7rcajHO38Jx85mvla54 z<1uh4!TyWKHCm+{+uxUzI)jBe8ev}XIBJlU0YTf&f*5JMfy@h(|C<#X?f%v2X-4>qs%RQtxrmiW;7Ks1<#j9T3>?l6caluG5wik0LD{A(or?+( zbrN5kS?Q$Tu9j>BWtHN+(r3#nODdJ4|DS^Nx?+RM_Hn)=b*f;+fpz8 z^GdNO9LtRnQBOi1yz3`840sRC(n_kB}Oh4U{N_TW^-l%Y_5{LjiOj?0(RVNt$ z4_&%GS=XN6a2bPf+Tgd`5R8Gh^LDjbq?mOC$i#9pSg?<{SLS>F?JRM);mdewYYLNj))`Dh&U+MwGxYdp{o+Reg$j*ss4BK%mN0Wz%yp4wOb zx6xH7PH@fmpji>_Wg9`R@b;)_`A9}%quPn^>Fr^Fb#o0(*}6_pVNS+@)p*j=DYgJbY<9l8jutf^ATbP# z6JfQ|e!Q4g{95qP5H)%_pLX@`FaNjf?Xm90q&taZ0^jzCz~unbTEriqv2Ae3yNtZT&kKPWdD;x$)vU%a~%O;&uh45ixXWgSwYt%Q4>O z;AV^d+&~6-G)67au)?VmoEp|+v5eB(L<|@6fQLQ6)Ce1Jlz%qWO5n>`kepz$!m~i_ zas{9JgqVnjQc_1rGY$Ds$$I5X{?Al(^hS4xi*V$?-BIWZHJje~EB68?#pwOxqi=m{ zkP#Kov@SH8H-%pc5rw|quJo!FRz*2gHcT~Xgu}fh>NOt#*H{ZDQ8-rITZj{Dj`5q` z`s`dk6`$b|`7995MiPTK3^%!qd>RT-l~R2g&z?rM!y#g1kRD!4ABG`Pci_f;}r3-uQ&vA-cov zJhPsH?PbY&fSGSbyVG&cmFJs#A$)dOzwS$J9lm1&R*k6u{(=E@wAEKbjC&NRXxw~1 z`Eq-<^D7BQzx$t_X55I4G=t7Gkb6YyL_6D3mVN|wLSSC-7^S<+y^&`oyMnIKr9Msw zBj6%<=*yDomX~%khDqM#U4fnQ?Lko=5DRa_UzY~|u4|f86KjkVln#CU^p{c`DmXR2 zb5(k(ad=?7VG{BgP={6vq4lP%&NEPR^5DB15lJ|3U*nnhd_}R4-VV9Csb^-WVqH zo8`qByX1+|WiSg;?27z-C4O8KiZU1@-8jjj5D5+l~>Su6y85ZK3^;wqp6i!T6$&vl_%Gz0t=__*aM$E zp^M3ra{^pc^36cuvYH2}xmW6CQ=*A#Q5Jh!|26?HNIG{tZXA^AG%@QMd(1}gipV@d z<#}y!>bf0xeQyC`ww`JP*EWGg_xc)d_#8f24FY$&VuE-2UIO_Yy_u0wo;g|@>W!Jc z0?wh4uRGZC9&?itaE17v8Q*Hvrnoym-e=d))T^l(duaDUSfLh_v1Sqobbl;-Xuk47 z1+)Nb2$Y<#xf{xpc3q*C63(0^x16ejng|zT;&M4r2`+HoFh{jANC52(?h)*Rm4q2* z1Ve#EO*Ed~F1jiFf{L3N$}=NsVtNfd^&=LyNUg-{0gynRBj{>QEpz9F6P^D0E~VDt1J!80lAcBbn>yk&h8a9whZzP{w@N&L?V^a%V};C5K==p&c-gp)dLDcYe1q}YQlYrw>dwr}$Egkq?HKT(Z$3Yh-X=FQId0sCob|FzbXYRf=*(E^;9^Gm%jc3jt~gUKzyqB;QR}ukCyqJ zq{Mf}>0Z`)kg6RaGj63#cTS0jD);(Hc^36SeS19a#O3dP_eSC4+h34@hxk8`nwfa4 z9OkUM1#(ZU4{SWsK|pP+i-YldBUl;Mid@K~QivRs0*#2FPtRm#2a> zDRnV7wh{Mo&vJ`2dhp0$5>K+nN(ExazA+`2??%)?aF2U@S>@Z&a(Sf+F2wOJbAEu2 z?dfZx58)~lTLM6cD!NyLo$ScAH-K|ES-lnV23*fkgme;=Uk)Z&atLO`C_n+XO*|NW z>KhA5R}z1DQ0tqymBDBbGbHj~$-KbBst12)LR`M@4E22E()-}KSF#Y4urCFdhSIG3 zsX;?mPY(OBioqj5y5t?4#cdJ)H;lmGDZgTnSiW`Uy4phY&r~zZ?U$#8x;*zeQd%V| z7e#A)r4w8uDu;sqobAts8%-pSOU%Q-H~>8oDiz#Kn^|YaC;{mB4k8>0=@852h8UR- ze{&|#&ndnB5U}`mp0g+PO^5H$0JECkLS7r>k02N_;PyT*UsXCh1zUq7TJ*o*X-qKo z%iN+e+!|%e^dhEaetNsn&yp%zQt#A;yx=qbuS2d-TI@j8i|u#;YaC3Re^FKws;YJj z9KomB0s2Vr#PPUIo;Hfjm^FKD?P2tfHeYCxIv_Pt9oF4^_|Ma+?0se#ow||zB#lWrB$kOJ z&(ZW+-2^sp>Y=T>qX?PWQVVlQIA`#Zn2hll5}_M9L9Ql0Td8XDnJ?ICC;iXwk7NQz zW%GoeCw``pWtG3xe4IZnGSKnN7V$ui-(CxXsasQuaM{YpC`>wf_UPTA`{-#O)l%K4 z3YS>D>&xOx*mCb}p6Ovyv=s`vY8GeNT8-gf%hIcFjo6n0{WRs2|00tq-#JPOOO1SR zzrs?bckj6kpQ&o>a?P^C2r3P`b{XkZ;LG*8VS056PB){qpq{YUupK$z-u>UZvZP$) zg|L_bb8enw@9B$^eb1Q@p$pgZJ&k;~@N0|Zq}G`stKf#k&Gg^Pq?y>GOZ;QF#NDi` zXlkl4N!b>xcSU;~@Dd7jyS2_2UPbYT1{wzW)$`IH@dt9;xJ5Wf{#EhdJRR&Q=`+;5 zGth5_+ej#)%wp2`iO~wutpDxC!bl z{pr!c(>eu$e*^(6HjRbeEmWF5S1_8347r{(7Rqt47mOQfDC;=9w#^vrM-E4&a+SER zl+C^GN;_>AutU20Vuev4FpA{pBFLeKG5jQaGgh~?UOdxyaP8y61)^jH(=DApiw`M+ zU*}HmbW^N-*C=;M?d9ChxRi=~Xzm802^}o$nl70tmr_$x(O4|QVjB*MTBt`*L$4Fo zk^(97L~3|G#f*P{c{F-T4>dZMvO58e$8=Qov+$~mT-d@QaSb1r_qRNySbE3x=~=EY z3Cnd^O#agCx>xzRluHz(P9n6;W$p7Sj1DI`F2*mW`f{@B1MbIAPDR8U-+?}LulGO} zhpMkH`VY#a3-hiVMpT)bK9Sqazt|e!n#-EjCwK4o4T&J`q$eDZR0vg6b^faT* z&h@pd+~ORrar)L!HYP#(n^`$p^bkPGip`1&R;z4;YlS>|v?$4+u<#`tucO_mNFx=8 zHXP28Q?vDk)b)2Ih6DC$IZ=$vy2XCq>pV=IW?R!YQ<;`Gb)`uSK1?1M(xdWlkM2Ps zjU$mAA$q*`1}}%ZPxa-Lxhy*~w1GpPN-3vYQHZcfOS5 z%$@ytZIPPvdEI3WD0$7~M3nM<9kd?3L$o#5P2*PT9$32SbFqU~LnV)ll}J=$8byTt zX4vxEl7V+$T>I_kKnd%vCESN~E?30|65c|aVSh*m-7a>J(dNvveY1a-a|83>Vpnzc zW0#z$;B?YX7xQ&vi^5OuUGl$IUp;e+VBWbXzL0hbwAKVwJYNXKsdjMRrsL_&7L^>Y zT1N8XQmHDs{`fr9Fy5kP=zk))FOoSU$w?DzDR`8bXqzvr`PrYYoB#Qa!MNPh16r6> zgYZZTy|FKm=W$4`r0mUhQ4uM*{fMm%&CUnKmqvTdmK#bqTH|%D9w4Ez-vGmIgW~$l zLfkkRs8BqI6PyZu;v00nkR!%U-B4ilb>LZ(@pm(hB<5rzlWND!z<8*8qjYQAH{GR^ z>1%#b6@E(Z$ISMe0Yz{*DO6;vVEuuUb$_pL?cTCLb&A?o)3?|Pq`2b$v3w+KcYp8P ziMYpG7B3~Kk*fYo3vJ|h)q0)sKvw!?oE=BA>G|2piClu_Tw@oB-NRZmzIN!+_A;qR z@i*?r@rR_ZK_Y)+Zc09GG1_r8Car|CCX37wB!{LB@q6e&kz|BYYB*nxBT)<#{Pr-cEiBE%+7i#pbS? zStUb1e>R$bAwx7hGa>dwr0Twf-KoOzNbmy`_yHzj;pqK-im&(B`_}r&0)uBA(c963 zRSeO}4_*xg&YL7C-u1Q=5*m3~U!xVj&*R+y#PK#P`zI+TR%fp_IPa*eYu>X%y7V5= ztxbh=A%k-qz|q6hbxNFTQH#UWLS4cnwB%(%EyAy^qpEWA-uyZ<7|&|ab2ma>w(4CM zc*;NA*Sh?wcXS1mj-`MQO#<$P(JpqQRJ--2b|$=@n7RNnf1)E%Hb1$KT2Ea+J&oHS zN*a4=Zm|>)3rDbd50%Uc`2v8eeWtkY#z7q`3Tu+)qR~NknK>e zmfPqL8la^pn27O#;7e=BfcfyXrobIGF3#KZ5DQ!OT__=)xbM7Bh0w z^{;A9HJ@qIc3~L`G7_B|{;zP9fVfg>*TLV{WH3(3TyJK#;9VWhbkH7m!`qwUs3OM! zFRFg;Z_L5xl&@J3Af0$&3Ry6mlQB8?3tHY<#p+Onv!!d4|U1`-k1HqPtXc zE_TO)G1_Rl9^`C)yhCR&w{TGGZ(_YPevA7CyAdfed7-R;rP#-J~49zHb6UD0h zRI`kV7u3C^-BjDFOOe>QpULWZA#v8=&sLr1mm6;ec1rBEl2A2#&SKOEF} zO@EL*3xD8j$W)fN9F&i@*5q1`Js`Cot5A^%8eN$w4h;+h0F!9eJ}52D5=v=*Q(0K* zTk8aUj~;F1n!~-mgmH?O57|Xoq>s5mz2bfld`^L=e;Fy+Vt}x9E37QLPpi0Bc_U8( z0xL76b6+R+H%<4fGuneH>9mTDFPy|qOnv6}b0ed0CbJi0i7~Ngii5Gt4V}=j_bQuO zv|8f=XMc8fw1g#BXBhf~Cf1d=X`R*oz_XBc;Ox%+m@$DQ(7$)#T z{C(epPL_u#n?5j=ok${y@31``3+=S!)9X;O>J(m&(^{DaVWanD4~B+awc`ySI^S|; zHS9ciZ+9lFE>LF`-2593Hw$Q)SXhJ^*DOd-BC0-MiSz_(e|y2ihkG;5zXlkFb7+-! zT2#_L8oe5?Es;-XuFC4!G`L>BEzmJB+T#TJid$Ch4O|M}TJtKeVtsj8e7Qn^*b}}> z_Y_QhOU(HG==LnurpKruY|XG99LcB%Baai8@V|-*=CO5l%Cc2#<|QAJGU#-#sWjO1 z$kxx14@1|cw~NuY-)`Y;_UHR2Jf5dLB3C0%DoY5b1Ze!uHk>R5L&|$YRXi$hUOQ7SH;EF%0~G2g8)Vy-7|x) zJO6bIaSTH1IK_@0#RfV4BM>Xr_=UIMs1)r*kJXlfSoxKo*T*&5@ir{)FDz*H;$;M5 zg2i#_m~yP$z8NsC+YHo2)uSO^afAGGcu@#%)aG8oOs=&Sqw4V(Y+Ba&5xaq4ZG;&~h8elwa za9ov%WQ9wo_h*5Uozrv(SjDyo9tsEBy;tE4aF zdek&qbOQR$XiYr*g(jelFhZSJsRI=zydd-GhM2m0DNOLHsB|qfM`N0H_cNifNA)Ys zJbz{K6bGdCOm*EDBBTr0HN>Rk07|d_HGrASHXFP1878ZtAXZkZa&6bKbD()xfl|Yh zSOQt^5-~?|yf|i5Vwl(y5km>ceK?rfLCbKjcAn2QqBa*?Um)>GeOs9w7C__u-Zjgi z|5sfuQ&*RPYHcBtw0m9`?i6nar32+zIe>^+8=+K> z?FL+X7c%4$WK(Fcx?R;^55~p_rkHZ?WWroG^T)LWAU)hG#U zE2@Y`5W44+f6-^I1NCa#=_PA=`PiJwg2aK9K}c)y$PiMZMq3m3J$Gp5OPtl3y7O5# zxV8u;+hf!|q{5_Gw%E(Le4o0{%*OOr0%>^H3ugk}PI<{;TUAuqBzB;0>%wA+w`(b7 z93PpBQNoj~VVQCKGom?yJ>WWl46(lS5(W3eW#(q{pgRou{7uZCQ*9U6c_>7hV0sO9 z3BL-tr~Rv%PIuRM6iVPVhnAPJz)@V5#QC9CP%;LZk7|Ak-6{Y5qy{COz3hBbp7>+b zVZg7*hI8;h?L-!GSXN`QJUrTT8x8%KMPmSH?w>TtqCR-v|2fWqZ6pV1q>T$y`C60ybCY$tO>^l5{K_l31#R{{h$7bW_saW*OY3deWb(VM!L$ z(}EteR)c=pH#46>+6bI4HVok?jx9(rmL@`*NEF`0BufXyNE z65Sng?Fh)+!Yi2C3}5&6NgJAcf#QH<5Yx@qF}&mO17(zTf7dA>?x zU~+l$n>mPwI@0`1=2+q|Gx-(&!qJ1UZK{<1*(W?fIWo(CD*XiVD9ShZgww<1+v+m)Xa4#Ojo3zS-g0p0X$@727)>fD z(L}{gC>Wo_NF!@<{}H_XD@gw_Ll7ik&dzclyZqic&Tq`)z~tcRkX5}?@JJ3AiP^3A z6u5zP0$62&@i=0uRTm13kILlFbe-X_cQvOGU4<}i`eIH+*XC6Zozq2e(hGKnL zUAIT|Ev!5eQGxG8w?Yq(4Q8qMqVB)my|c^fVyRG(Fs-HkcO9f#wZG$ymDHS}0ZcTb z?~4+?dl-9!O$VA*8MLZ6)xPuxSU!a+N*3E$fBRjcTX2tDGM9<3<`cK{YMeZ!wiKv_ z(25wuchOzqiE`|ll}{rRG5e}=B4%&J#Zwsm>^O$uc%b!9JI22JKm3$E|^BxEJ?2%qITs39>`tgfc(H|yviGFEzH`T)|7rq zXmQUc9;@H}i0_$kGGJQ^5))^l*H>qH`0mMqqXB|cM?NaSgw2jcQ10^Vxx-k6uI4B2 z4|%a+Gq%a<0c$hK5_9Sse+)d&INu}ksssuw`Pco=tzscgjB*T^!I{hn5If{Wc2yw7VqRwXle_F)#F8qi?1XcPk^|-Duv+g4){TiG|BPzxPF!>i#s}30GJg zMiNm!b?nrkB!P)+V(cTWJpE{<%Vm7OSN-izIf{LesD={sy)5ercET&9a>c__$peEi z@-Oy--%?H`ip`k!26nY$*VB*6i%iSy^hclZNK719P$)nzEN@CE?Dd~5u{KYRJ8tqvmwJVGratF)#>npQ#vv8H=cg> zEq>MaQ0VVZoA&&CJV6{8}W;jFV=)k zIPOAHJFc8lg{ySiC-JSBAGA_!`~06z&!0uWu=++Ak2l6Lh=>(N5L;ufMxH~lS(np- zwQ6ZXz*CO*e%B$q$eL9D_+_0*>^}m{fT3~zw48JthFzi@0-$(0JF*~Tf&*+8z zjt5hLUyRiNO7xk1!xv)H-RgPe!fGkOPKMQNst-JWD# z;NrPV;&8rmDDmzJ#mdH}zPL1p`(R5&VOYM&^1E&0Xd2U{8S(UOs)nQHg{yJmtMeS&GxW1W;yl3{PrsJ7P( zLVmFg?(Kd&q}lGi&zrZni_2=-LE=0z_TDc8Ime3>S|h-LN!3 zduexA-u&IgREK}6L zyTB@Hfidx`xr#IV3o6xQF;C3;9C1;)5oAN@ph}4XEo=ap5nE`dqn%KY%NpbXLq#QW zLe`or7S>=SEL<05rI4VY$Nc1%u!zZcuNt{wmwP+xZIA}#mm0$~3du~;LDidFuBzZs z=tFqBvVF(B+bWRm8k1L))1;@9<&oa0y9d{eqXc3EbB+af8sIyBvM~rKE1{xj{ zNRlx)Dy(^fZ`UBaYz7Ka!$7fHc%bnrgb8PO`y)`nrqox&Z8BW}o}{<4eFpZodjI%@ zsqZg^FfsAt5;V~ZQ^lKW8qF|~K-tYTy2lq+GYIeY;IkPy0%)h41xm1M2y)M0PeM*2 zQn|eeo@m^Jx`o$IB#Jf@#eVPR7IyWHE4?tuowKxwX;)V7^-tg+zs)h=tWRY1a8i!`ouHH|2+Nr0hOH)=Cg z7L;hXNw4y0#l#@$40!Z{uNK|RcyGVqIWgMm>4xnyAi0l`ob#a93_>l9l+vHW_RgLEvnzr0BgRpNZz7y6E)&pJX-&5aEs9HXT9Rd@Ly6v z&fLXHSrKeaW}#QnpSGTY1;j}l)m-K^3ts{znT*1-fnrF?wHYjX>Xhn<&Tiv5k~ zu?BHE-#)O$ddIt$q5|%NBQy&iqKrVA<$yDOby`v3X{5iE!t!i;-$F1}7yl8Mb>naJ*c#N~1^TO>ZdD7PLegf}E6(kShwDs6V-tgh z@0z9n23`jg&5GNVbVth1J|I4USIxP@n=nhDv9#6T{6Y4ec8T$T!EzjfZy~du7 z$#&VC^}f(f#9?va-YsdGF&78*b8;d`Wl7`;vf%jgc4G?5C~Jqm>!IfGbFx9L>7{0wR<6c`N@a4)PLNQ~iMZzp%lf6BZ@oH12t0d(gKk5$c3qdvttl;GM{ zKe$bT<-htj%2x(T=S3y%hbwp@t={Q*<)LZ0JHdbS|FYR5>Rdu{6g@7Xl)uym1{k8J zF7n391?%zXTlade=5)csX)N`=K+*tK+*g$|fkuAQ(4H!^e5pZm;KFj?L}~g!umOLr zKYJjD2!VDB0Fy3oCUq^205$2X)tsm^MHBIQ(|VT%bV2j2dag96S+ErslVGmLR6lG0 zwS-}~l2>HsF<>u7`Zx>jK+W=cTV;ArZFj|g1RlA#56t4?OzH@|82sOqiJ@a^=o}bN zGU;AqD$$+$yoOJ1t1;Rc5BbOpJ}`3Mn2BH63c3yi zcoE|7I=cZ^rylmvV9V)!EO4iv+=j6}0!p9tyUmdAgr!|>36WVE_K?fuqbq19FZPXK zp6UjkBpgc%d1o}cv64`+@zn9ouT5k?_IG`$QeBa|m-_2keU&|ztUw^&{2L_lbs>IM zPB^4lFXc#@GsTjD*^=mD??~%lTjfAKm=k3B!Z`wH*okUyb7AlGYi{e|oA2*Dz>~($ zv1+Eh;_0Y~SHn1*a2<$NS^8^Yp0jrG+as5WZ|jc@kjTOohCqrz)e^~pGv9rGHv^D{ zG^MKA3BUf2n{O~Y3DauyXJhDs(VuKw1vu2oS!D6Ln+5{uF*brkwZoZqy`*8dM~}LE z{4Yl9ii2m3p0o)Mp12U@QhodW^;~_~bt%zAkC(xeSK8%-7dZj1)K0;Z46PlBUn2Lf zF6;gZ1eQ*3ldsv$4tM{jFXyf37K8X@@jO!pK^@dCc_9Jv!qQ;$du|H*>eg0}f?W+F zD(s-wI6=9S@5jhqm(ATM|ZOeeYrlx#}A zU?r>Hb+vWl&hLam?;~sJ-{rmDc`%Zjb7s~@OcmKB+EE3S5S+A(X_xlOg`2h-U%V8n zn(yw*?Ei8e;ECo6-Cp&n);{@;+mmZI{^IK*yZyIO$FRQz;ZS(;=ZC)#EMZfi``yL$a_iV9hl<> z-T`~Wvp&}tfBd~Yj1^k6MN_VbJ>h8=2jlI)d*wb?Mc;n}2U7}we<3B-IPF&(!}_k- z1X**%hOcvMJI<*0Z{}OcYx;8_L*12FJ9}DkOt0hU{*^Oa^a4VNDGIVUdEbD3?84BR zto$W&-lY-;grW~zR+nwYYmsqw6}&R0^`xH}u)ri@U&X-nNUSKx(Nf|uw22=x2c zOj+C98ehbOi}5zIl&?`T_5ScRI#EE#aN4a082p&B@>)~&wpqAp{tdbi>(wTS%AOSe zvZr8>cD63w>}E-CSYad?ZIGs}sD<@$OMd81Ov6j8CrqM2S;89K=+<}l+u*9W5XV_k z!lt=9#jCQLoZtd8n73zU;?bR-W0md0u0w90hUMk?TPwARSp_YDweG5lkF~=}Jgu`+ zK;~f}lC7Z%9njSh+g6rY|1P?LK0kbpC&X>A8jqHhA$1$7d2!rz%FPUobT9G}CdzAuJglSL1MqXlI`ArG+;xhACj~Zt%1A zOkzS8HuSRil3(q{@x$r8MZC|*l;``=iW zwfsY%n3~~vdyb*oB*Ui7TmnM1QR7#maH=E!aSArcM(1ybsCr)a&pk7antL*COrmnn z(upEGLhh+n4ZoCOzM0`A)6Tt;mTUe3&xR8DEyJ;L_{l~zyf-~M@%yP&L8Q_5B-p#p ziK7j!<%=a2)q+Z_oy;)c(_p=VoH*`tpns&*p&#-h`l4jsBrK;uG;E8DIan-JS$E6Z zM|yX?_JWgN?gT?j1glOwdQq}RYov`K)(Rz48xXJv!)lD=aD090eg{T)EGUcO9rm;T zX4&RvdSkZZS@(|3W!dNk;3X(PKO&HF>TlLS@~iQx#>(d3<|L>2b8s`8v@CXHXYM^- z{T&Y6R;gRMSVbg+tfQl96kwVOigX$;B_qag3Ck`aV7S)&f>C9B+4t3kw>>@&M!x=l z5^gYC{?~rvLiH!bCS5wiqhzb7h@}E65j-PdwGAcr%_wlcZ`<>oD2OHE0HFO9IDDjY z`CW&)T6F<<78|`SN^vJ*g7ijemuC*XX|xjYK6kScSA-FZWNglfq}b0N4epGXOIk3h z58hn5?A-WgVgu>;etz?wbb#RR>?7)~`oIhFm%f-fbl5uNb1>O{dMw&UrK6^)VJ6p* zB6IT3*yF=Kak_g?kHul_ed@l`?wO}RrUbUJMN{vV70;;@_y)T?ekaCc%B1pD0_I{v)0t#`X42Oin$MM7sBD?E`=NV% z-`ol?k)>YgLA|io`*GzK)ui<{B)kH#<;S-&ez`U_SPJ}KBj>sYS1S*yjy*3j)O)Cw z`jUrOfd=GOhOI- zUGN{lM`(h#&)OlN0iC?KLT)t2~<`GsBFnP}S|qQiHMF zRHfA=z?0MZyN#dB(rv$N3BCtHk6V!}%KkMkxVm!gG+PS|IZ*dKJdt&FwLl=QBriM;#9Wb=$g%L(#{1U`*MBq@%(m z=X&+Q5!-JJ8M;`F%+Gv{*yjQ1=Lb%4%wfsCdq&+PaS7GRTjgYsh*14hnmulv6sp|}4;pEJ8Lh^-K5)n)K zOjC=>G-FsP;>?%~Yd14DFHXYg12oZL0pw)StU+|={Csck%O*DBr&BjifeJyZYe9qgb9^D3;FrW4vMm3 zu}XxB1%UVG=1TU_s%B^G%KXjFhgOUiTDv>bq@|7IUcT5&#OyGdm-;bT)Fx8c-FpM{ zDVub=FzHSF5!1>r6zTaXbyAi#po)IqyH@^J@FdIQg{OD^`jQF|tUB@9tD=bCxy$-h zu%|Vth-pI5ln3ASpCG_zl22GKO)=oLDwZKMmpW!;Ep>V)AR^bJXrDX5Mo$Im>BRD^ z*|hJ!RcFb5n$g;lveB|1fH9{H!5^Zr;l6+X~uQOzP29jtDSge4(fb{Aj4( zN)+%`U=6>Cj>pMh-}$ojCe6lXc&U7tOxF4Qu>uyj^IuIxN|&DJ?jXN$nO#+T(A6`G zwbt}CmnmTWkKt+zarC-CGsEBjJLd4%sfu>HGp`om8J*flprxj$NANksT`0su6U+0> zUaE}RXwMd(ioh;Gq|o-T~173q47`HO%FeX#Q;NZN-!+$i_Vt zl7C!+<8>4jnll=;7p|MPyO9a{v)5<&(qNeAB`)UR2+$Q}DAR$Q_6*8+@R~q9phbZ< zjhCY=D;Mbx2yHgb*nVjG&R;uRS?OTjweNCNvAY^Jd{R57}P>N-U+;ziJMe+ zJi#l?x zM3`@ROI`8Kg$4RRGRz;`{Cc(cjOMZ2JG8{n7z(zo-xU5(PaMV* z6nMVdcC}?W;39L;?jt#+lW{aBJG(*sr~^D1bfbc}tNR^#r&}$^M>k+0qj1UsE%aGj zg;)A*$>nCa!ZQL6RDR}}gKGnu7uZKeX~f?5>&VM-vm2jNDb08UN^2Kt%WtgOI^98P zqWC|Gt}?Evw+*9+2q>j=Oi5{_b5oHn=?3ZU&Vh7JT5@!EH`3DG&FCIEVC?_y{km`G z_v|_6y6>x8o6TYw>frM1V|&~+jL|=%?KVw1ZGA_nmr}w3Zx8IwmM2RlqkCxfWa(FkEvsi!me>;VZgeV#5t9cSl$8=O}PB06>X)7J{ z)vMm^B-Lw7)@_4UY)6{@dQ+l>yh|-4~1NDjW^;i@I&ZD8bXC54YXZ zVE@Q|0m+&qy|Mi^ifwGGi_ipg5w-U78f0sDQL3JDh0S7M_!=gnbNJ(ex;B)fWA=iA=ud3z2`-ojSFo9<>P`5`D*Gn)9E_E0^a~lV?R2-1( z$UXklv*&=d{JDF`rVcteAD0Y$OLR4OiX}DOa{Utv&HjTTXSa>Feq39LAm6Eow&s)K>t#LcWI!M7&7Q*&v5SHBW$K&w4J_ z>AW8`;)V|*ybSk#<1LS)Q;mwcy*?78Q=sCZ^P&~ zD=wNDN?LY`}_2Q}E17&~&crJ#QPJp+GfPSeLCUJRu-0X1wCl z#D|jzR8qH2xyf9nYjKa<_s%O1sm6}Cl5TI9;EB~kK9ZRCn(u1ft?w(%9bGrA`w?7l zNnV)sO4?t?lM~(LOx%!6s1yisyxvu8_pq1}76?T?bFiU8wpEEwovTE$SFd@I!W_3@-}ni!M)|eO4WAbO`kOZ)5Z^0p3~o7 zN|M->Wc;72(^={m`jT4_Z6zqrz$c}IhY;>1j{TJpiK_tBZv@1iz`qgo4wQn=s)>(f zntp<*-)gtILHh~%L$+I!A$>xG4*F73iTiY_=+3nXzkIb)oNKV>Y#ZrGC)?3fpU%b) ziSu-Q**$81`7h@x7d1Xr-Om%amXX%*J|c`PriFy+rAji4w=15gq>SoBU4-VUp7ofU znH)4KOUUQXSy&{Wz~`3Fe)&2>^{^K~0ln|z1}pHe!@x%V^bh^&x2bu|=uTELDdRHE zTD9aMw+2b3T2EF@gw*Mg{SveU=>zYm<6iP?6bw}U{osjxMUJ7{FBS;!pqT7iDnRfWLJb9KRkR3|lP!HB6SN*y@yx@&it_ZHF; z=C%olYAV-ph)H3`*#V|fi~;pPvX;#Y@kjq4-H^!EAWVWmyn^>myN6S+HJoDs6?};F zK?-Fz)1b|b0iGhEgxl1)9Ibn;6vc20IA-M7OizpMVt*RDpWAI}zcr|~vaIqbrp#u8 zvQP-InCe{q0-Z@I>~PAr@B%~$iBYZ*5* zn8id4Ez$%U!GEo@b}%Bqk_<>kzGM{Spyr}ibdWt{|t_N{+YyUuU=>` zR*Akg3BbnqaT(31VD>`TYh5`0j%guh*;Ds+3Ne>$S!2m>z&&f+82jz;O}h={hjC|; zFPK$E3TE%#SCE)G8}m>ra@Lh;D6050mEG4ls65pIxvagtdtG2+I%Wf+EoLGvS$}8Q zD-*o)1R~;f#N^wc%L&`7HM!s(ld=Rtx)11+822|+>Z#W@r{M~r@H4MFa`9e3ht*}B z?VhC%QqIVH010*4K3-+nXqh4OSC#Xf5Dm2I0`?2$-o9>#!Cf!J4135r(R#K68RCk7?pYg(mELv7uwUgZNNh^{apbL+BT_N@|Ey- z5AyNP`2Z-X@Gl8PsoznLcWB!$hHXpr0T|&W|6q9nX}SQ_Wk{*fY@v>&KhrjqD|=~+um8iC5QVJ->Rf&aW1(Y7d&IJ^F@AN5 z^WxEs;-)Y=WYj``VDF0#1C1oY&+k+#Qq z{Ox1;^EdHF&ZSNGz$L+ny#dH?y`-Pjl5dzgJa;gjm!B-sF69_jr^~#J(J=fhQCQ{E zbXNT-&jlS?s{}6?S;L1@aq4^(pxEC_R|v1Ueau#NINI*G1F*;Of-UN1-uuEh81p?b zQP0&N^YJQcHEpDJNRas?<}DkRqYNW^1}UsX`=ynT%qJ^18oRAipcw~WQle9pCeJWA zG@JRIkc=(E?-Q#}yY$n9#WeJDdz#E*{)fooJ9L|E|bP=E-rDW-aDF@7&}|=_FQfE0Jmp^T`ssYT{Gc@9f6t62hiOh{Z)R| z^hUS{NB{S%O$UfGK44f(y{KvRw`9Um7Cj@i2CBEw@?|AN3BDfccauWAs z&%$q)`TizXzn?k(H-2XypYc9vm2*~5dQV!AE>F0`&)( zzJQ1tb7rFsfCcA>Z)fV&%VAW}(?8ece#rR!`xj2?U)wQx8_R(SX2 zOo~6XOgdj|4*4?{*FYXRo#v!Zwi-5Ri~wsp@>^3*4IOc6q3u|)l)e`yAvUjE35aRw z;QTc&c>=zn1#^R21!GF(s;Cah^C`3#2hPnu1;K@cEX9ptv{n>CrvohmNVtJw4C48-c=fID0Q-kK zYo55ex^XUBhG7Pn;oNqXT&)44U|oPNpZp`Q>fYev2_A3-u*95Rb~VE`uQd~DHSVncX~M$jb*FIU5* zOW&Z21aW)MWwZpkwt-KV+wc+|wYUXNdS{Phd=#j8h9a@T9Ta7sf$YrLyiMi0M?>1@ z22{AHA*j=);nL91(#09NVS>J^6);qaYWjm-SUmpr)5Yx^GEfQw*R>C;5a5jvQlBcA zpMZ55Vn#KWyM~A_{>a!EqbEx|e++49huoLK8XK4IOZp2YWFehPIM=k3;0E!^~tDK^tmcF?jj{gXV(CGpF zs9RhH?O#PsnKv{#8v39$E6mBNhxEYxE$V53A^00J+e=PS5j_7~#ReN5KO+SCFyyRA z27B}spX>W7=l%m7b_Gv0`8f_iZ-W6#U<9F`q#q;VO$)+fo6~@c*waf%z9^JN@cRBM ztbnUZ^_T*@Dd8upF;~@Gx$z2V4+lhj=E>&F2S zBW}^NbgpM_?@w3=z*6W2Lir|Asid`A zhG*1Qd>h($%)M&uu7b7(i^wpaQ%!!<^O;wv_}ZcP;Hh&F64!lZfnN8 zE_QR=S95HRq8>meC{vR@s_l#2{@a+d!CB~~Vi)r-G(kl5l=@pS(u2^62q!k!kv$ch zHYcSJC1Qlpm&;0O{Qoe}Z?A3Zyolb8RN@@;CvV0E}+}L9b zr9ZkK1WJPT>(NvH2yUebQ0DHV-a5i>Ejsyfz)x+|6KPteP%k)OrHkzPH_<{%nHfMC zT0{%lU#o#uYVD<~SWdI%p2$%mEJhYv$Md5F?_uZ*BCg$dCZcu{md^3sxCQR|>0Kyr1l52x=w*T@{Su%EX|$XNTS&I-JQ2UggNL zKvEf-XL8pEKFxo1dD=IG7mSA%{)w}?3(=O2(WQUSo#9{a(r35vU|M44S4Y$amFEK6 zTkb^w^O$D%WXOE?c4B$b&5v*136M>`ZJdCAT(zS7^K)G4gLN z-h$<3qpiP2N)3(Op4xzK*}RmO1s|l75}eO$o-%b-DAP1gJuWu11S2STR!0ld)oDi~ zejZ7oSHv{FBwm1Y{4z?PPv!U4t4U#T6Nr@C#3@lw>W9lcAd4F_ZLE9w!Q~8aeE_=wM7*< zTqVkL3ChF6dkz}?pnc3rV6kawmi=iB??hYH!@HK zsBGfiaGT44WR6G)7DFQm+qM%W97riE7Qof8 znyhPgL4!z!KP1ml=ZQ-2IBT~lnbLeQ~rWn zf&7P|uIC5`<35JFakPofY+Lj_@ed43Ho&oBH*x6Lit8RI&+|f4)c#L;s&KovTu$^) z#I}a?Pb4k}JD18e6Yxn_#(uAta-(!wy;LIgpY(3`32ddo|15|W=%#BO$B@^J`s%{3 zemHK9LG%B^c=A@r{M6fbrSAeGna`u|XE-a$Y)+{<{;}+!TA&i`F2&*o(;Y}{KeTVm z$`(R}hA(sJ#yZ&xlkCHV$eo%FOaTY2`k|om3 zfXQT|quLx)18ke6J8O@CL>uJAcWK_3 zdNHH;BI@eB`v<$cx14vsum8Sm*Qt-UgG$N0QzRTEh?)VQwxT;*`XURx&|Aj@&cFOy{M{pauzR^XhAzwYe zH9_yNQ%Kist-!S8pq6N2|A|#K&#!l#2c0>fd3WZ@@|Q*reGV~}9Z*R!_r(dDk?iim z8D`p(rTxn?W&I)B`1uz zx?&O)TIXApJu|s90%iFZ4)b_>89M`-+H&7Og}XIyQyEU{C<{zzdC=>qK7GX zY5jwxSuCHEogPf{N^ zwUv(3LdZSv5?7?=@krwbcH-_*?Y}ahSakFmv&q=&+nQIsl0C{|1LFv;o`-R~98+tG zmc$gh5QKe-CK#@rf5LKRYkpoyxd&rrb`6K2_wOqH-)fRv96G{v7sF^6n%N+e>J`Fo z2%qAGfReMe&E)@KKyvyu%JLpVM#D1cZehD2dG>;rmG29)^y<9w{yXwQ!?XndIY~sG-mPYmiI|8I^aO8=(m<> z7G^}JSIBi|DkeG7QXTru7I5(^+iucIli}hk;rER(#gDfWEv&4tgl-Qf7IYDzo>TO< zu15~qIbheH6ERUf@3z31OP9;@4#4Bbcft`TXwdJaKV;aW+22?ZY%S(L?S(vKjc}t3 zC%{<^T~_{fH?{(qB$!Ss4;z*j<)X(-!tyIjss+iWD1#24f8z?e>)cyIk2pdY&=T93 z+xf44_5nN%=7K9kW-PCXQGf4sJ(RyY>{J6 z07azx`|%eEbI$J^`b%o%@ep%Xgo!e%ae_)aLlc$k#|M?f?NBrfnpg*#Dv)jSUapt>#bS%Zc$yi#B6-ei+=ne67}2v%dT1l=m0^zwm&k zZ7OCyuJr7|7n9$3t(^Oux|@Gz_+v*JAZ#T>=S!i-m4ei7>El7fbJpAL42=sqd>^?O zjbi2W;}C9q+`oLX_iT)5bnMvlzmirsvAy^YLqkU6)b9AB604}m#h-&X}5SUoK&`H!Ysjn@(C!l>V$>|&+)a*H7OIX>eHn}|0M5@RMYxT9)dj|xl7QY~) z_KNP%ijaWbb>icG%|n8vt(gXG2BY3`r|OB40T+bw3CwSje>8o}un&(S-m_{cauaZJ zFhH;i9o47_0VY2VwMQdvxQGT>;%;Pq{@n%Dy~0FafR7|i9Bg)ogpv}wZA-c!zq=?7 zJoM$#Xq9;ZE$KHsY`lhS1MN?$n8OVoH25C|(qEgztSIeCf>UH06eMi>J^WrRoYqyP zG8GjlLI<`sf>zzO)0@l#w3461{nGF>(8}fWKLq=dnc(*eIgIT(mlp0><#`LrM`Cp{ zmmWy$5*Ern8|VpJ^5FZ*Y;>^joGjcAj6paEX7E{&=yayaY_i<(7b+-R_@bHh{kPF} zXLxM(R^2_AwX0b|(}&ZAZ)S5df+GTDT%z~=4QZ?yH{KL6?DuWu=le*H-`a$Vt*nG4 zU|Xkd4kADy>w<_b;k`z%q#sA3ZTtiVEX4>#JA3*`B_h4b6WWtTwWM|YFc;FE7BjrE z*w3C%QNa96lcIaaG~?N7q~c*>9!t?kiSNO=!zE)W1~+#tCUiR1CeFg6T`5nLu<$%=pa+sns7;vrs#?)Vq{w-q(IJ@=kALUbf~nWFGh`VtY*|R zY@6G<_7x=qvjZpNPfUL|;tX%fp0{!)L9^#)W|_#@1|iVpv?K#$yf#69d~uB)_vjT@ z0UKjd!t2Ygwi+IhN7fn8Z=RwATXM7g^QjnO!wQf?)iDLghAy3D=Q~e+`OkHjsC6lX ziel!FGt?w|5=DR%%pee+M5ilS7+zGUmE_?(N==^d8U~_CVeJ>ch9!)U29^_-W$M|D zLIsL7O9;(dFv7<1KMcFZxk`FBa?d$UC&Ob!tq{hVl)B=2F|MyqNxp9x>s7Q7zivps zzZA_S#)j!9!l!k#E{}gCB((9Sr~d<1#G4!@pIDZbdhA^{m(vMuJ&KP9;J{l)_WFsK$3gaC0*R({^x z2eiFkYyC&pfpu86qCUnuZklz8t`E;y=Q+7tAU_t8(F?y9SN*M7hK!OkEURp1D+c}Z6g|BbJ0!Yn=|TKmZt8mNFv}KLfaH^{sMj#>jSzj zqP*5zejA*s1N#ejTOm${(DaV<0$CVu48>?R=&lqNKG57P4GkVkar?>aUUG9*T<#j&qS$v%GuH!ULdA8s;V7e}G zDc@?fXQ3ezsN%k%3#++gqfnGm5O$Z;$lNaTvB``#{Obj~4+$=Y5AZT_& z=o7;F0KC$p!Cj)@YGEhJp?RCK>ihsXCE>{X6x7?~MT5OeT<2EeE)4rsV)q{gCe!h4 zF8n!*B`;M??7Al(emj}C<)-OFs=!7=RgBRd2kox(e;9@6iPU;Pt9bCF&Mf5~T4Az9 z5UD>hLRqBWy#^`(Rm>dtYS!2t>DD5MwyEleW>0@5Jl%|$vHJ<0#gLLJ8Eb~%;z6|5bVr$cF9~5lqtLg{PLdt@)FMR zuwN4TQ}E#|$E3tvf?Z4#ZAW(LdW*t1ept(FM*-kUsiH)Q@iad^6JJXA{`!{XG(*x! z#Z!R8CwRWd`m14SO2x}0#OzOafws=sWl15bCSVJ^oEOJF*eH*V`KTyZN>@vj^=^xbsRX8`0 zdjBY4@H(s51mV~Gq@TrCqOzwe-^H@SFP`@UtNva zA}EK+m_D9Eo*HC#vWOLK9>?@bM%>N7Jp#7oM0V|<+c_KQAM*=fujs9pO?>6;Z>aiP z7~19WJ>G%lJ6P59TQlO*Vn<`a1bW(Mo@e`_&bR~zbCXq=AouSqc5F|N5t=|mWu$xB zynIjIt~Y~r{p7lM2j}iYvGrL&NO0$jVCi-S5UnZnG}LPTnS95?V-eVfw5cVh0rESe zn;#$gsk|LRe0``R<7D2Gk9!P&|CByJc`L^MB?Ae=1eiCiPZ3G>Z(0px0#U2t=mLQ9 z{gg6a+fuI#+DdefZZWuLG_xJrpzm{P`G4wv;f?$oiQA2J4{`47jlW&Q=V9$2IKLFF z!q_6x82yp7N!_$|OBdEK`L^*~471mt0+C0|5W07g)q4j*N|>;}PHsQ3;m%%b(cJdN z4n09}d<$||9)Ahmg@6#dF5|)5^=9lEv<_QR704GCO?@$jeIsQ@ajSs$+YGK@LC1GC z6B#?1>HNh9mp(-c>(4GUBMe@=mEhkN>XUUjzl_|=wEVuk+p-9KbA-mWmXh)rs7sE{ zwfXAXYMs-XTZ1Kk+0$oFxAGx)&(Uw*3_O zC4*|<|5`(*{gOgBm|aPKXsEy_0clqyx#)KgXDk6Q&5X4L_^6D-x>+4Tw zkFe;-V>i*}g~>na|1dff`K%4U)UqgDZ1mX6pi!1NwfW5DnT>=&LEki;VJIzToM=-+ zgv;HRFbebs4OpYa{*}3V14CLyR|ZX_$_JVH*P|M=*u%sxAia)xjPce^zq|&kU{dqe zVkaVcp$=ih-(Hh?&sPy0ahFQ%Dc}*VSG?b??!N#;E$r37d4o-Mu3!=q)k8(6B@Lwj zHunB4rEp~ukWGCe2KG1xN}YB(zpJ;+YOVym!GHy}NVIdso zR|YO|nn79L*{o4K!VMecH%&Suvz|1hl12|)S0&b5R?h?%wqkJ7=I^D%Gm-ycutLl? zeiAi+@#L49HL&N^oxv59wEm=(>nXPi!tiqG|)#@zyYUim60MjU) zJ!6WecfdSoC$~tWquM1}Zw8GjpPD_ruP)oNN?`#+HDFPBj=||~nD3RxyOR96jZ}Ld zkhVGt{Z7q;!oL;5c z)2GM!hvPBNb1>!yKml*bjWeqA+g|J9|10^3{yIP4{~mUMFr7rBjWIZ-J3&YN&J@0y zyezE_SV38M5+2a~H+(PF<58U#%@VK?vmY~_Qp#Tlw3e9$QGzV3T=yy4)O|(UG?7l6 zF(sVng(KvL)V7DpEmtdE5_H=j@$aC=YxsWGB2CT1oDU9%<{nwiD@4LpymW#pOH#Im)5&?DFQN*r!;f>l~HH6QD6pyQUZQ&q_$izoku{ zT1ce=->c4IDl-fC({%Kk=bNT3o%d2ebv;h-868-?_InM=3QUL)Cuug zR0ae^JV8i(@BJdvlf&_)(za*O$>ALt4LDg$jW`{S_r|uyv`Y5E2UZMmpRw|K2#w8YLnueY=JiEjf5K#+iCkzodQ!D zg2Lo6^_Ps2YSxcnJj-v!mh*kP?1g>Bg#P7h_)7nXn4fg~2hQM#%is~4^njR*hw&G4 zuE!Ox%vK_LQq-^X>ZnhBUpX8r|D1d<$XZPsH;^F4t_}~n^Aj*Su^qci=*%(SVzdvvGqU$T!+ocD~Q8fh}Nvhh}e@g=d*y?ra4rZ@vc78cU?pR zZC`TheHztpe*GNm;Q*Nn5vhdD+DLJYvCorO3(kLKBajS}rv;Kt{q#bG1BL2g;Fu!13MoLV=_A~TYf4eNi$!t2Y zomAh>KBgywNIGe)aT+(a@iX~_?%lMWiG@*xn6Y!1q5$2AWvVtV-vGpiDeYR;8dofv zULL=jV6(G6EQ79^q5u^qBL^oyCP!P`jf(K2vKKQN29ZU*sGg>GgvrFnMmsP{9Yd$l z>?O%>=u(;^9<}fsV%e$s{XLkkpL+TvkU_|#GsJzxdZu^+ z-jB0?9H~%Qc12rYb=J^thEwq!+;JPFHF3lmA7-SVWYGa120(N4xT4=j2VSgv_Xm01f{1<+9en@oay_OFL!O@z&twmsHp~V5+rZxaxw<`} zUn{gfv&+jeaI16qm#zjOfNB1WIx#Uw0`gD?_;bl9#lB!;8Qx*~wM(}8wM zJ)OXszdLK5#@iB@tNrvI73#th7Gzi7WqS6!o^pVg5u&M`jCxvebDY;v2VlvF(x*`7 zd(b;FJBB!gljsKtQ6sgxAMh@bLC8 z&clu>`pDM?r_O!K$~usuy$94IQl;7@o|-$`Jbo;DAiJ zr1k#T`e!%;3TNU@oK+8qv_NpM?BLlW-8WF#;#tRYH-by71&+kx~@Vz z_Q$DzUjc!+E@hJ+Gzn_(lOFkziY*be3zCg-Xq~Fw$0r*y74ucL1331ZRIqZ%bJrYNC@Zo?}pE=9L&~3LT6qIR0JM@yzDX@HtZ1dIhuvmvR8OEJRKx{V1F&1NGnio6mODLz1Rr; zwp3d*leVPIJC!(FKzfE2X#|;@*ikzjI$|kb=B~;*Wp&up;(nG2G0gmTWYXCYE0#NL z6gV$5G_wEUl+oPFgW&gOo=Te4%(&STQT4oLP$0 zoD%)iGS63>%_{7d^yfbeSoR#Ny~7&q0N=!^!o~Os8&`BIhYY*7^TCh(kE^>cpw>uP?qG8DI5>VRoLxm$F56EZ zs=ePxegbRcOqDFA=dM-t0p3`DiK6kJS9E^u@$c*HR*8>rRQA)n0#i-iXn&fiKR7(J zFtMC8Lgmy~%!R_r6=6u9Imt57C0jN!%JG&>ZCaF>*R(UjCIF3cz8iqx%hZ4F71{b9 z0KxLaUO<2f>UXg?#P*pYx1Su^qar$E0O?MSYt^@;EVqDmmiJ!mRg7mwMYC@TW8sa+#<{Ck!l0)ZWL*xs%O~ z4PNH0sA7edE&g(dm<$S6HUw-m1GZ$J=-UpP&oOC)RmZu{h|g$WUT~VGM}yRG)_T4XaW7r_G zUU!JSOJkLSqem##-%??`YS&zap(q;};}q%Kb)D9+ryU*WAUNEEC@Dc{N{Xf)T{_8# zR+gOP401)TE1e5vYHn}DFu#y9$%hsOLy-#KYXECf-#@X4ZLAxu`F?}HK5o@j;Lyr) z+S*0eRT{C2pLD`X1$jGX9!KweEsBS6(BcuG*HSh!0I_SrIt{)UfcN&hfxXmkOq@Qx zwRYS}Y#PbWCcnY9e`BIj9ygp2sC@nUo%gkBxK{+`XsR6am!&=35~d4 zSTOP7E{8Tidyh*z_)|*vqj|&uN_yC3sG%y_VrY4HTR6zt5QF&Lp-v9Pd(uesh*dXv zS^n)Pi3FDZ^lSTF)$fJNe8$2!wdzI%z#GWjj`z@3VSTL9oPrn5oKJ6|zdg zcp{%p*3@m~6fEWphTVo<%=Lu#|I;6&#&CLA;2B{pa%mJSwIgXDh@b^5Y+9=7)#&fX zeR{Efyl{~#C|m7O$9p?zk>IO@@Y@{oGHup&<&Ud->~rAg;-hQjFj$ia ztBkbWgz2Mm7;8ptHZa1!JW?T8v){<+~I30oX2oX3)!P#KhCj|Ta zOLrZ@gfF;yZe!WJjOgn!J~13DZ0>toFgX|nPivPuJ`DXaat|y$b#bbyG9lu z?ebmB`^02llaV3j%L*fGhIpRzyUH;;!`|C8N+~R4mHj2BTH-&@tfpFgL3^5ziW_NM zOA^|&uLVqZC&v#?1`JnhAAj|!+yko=2%OWcXI6UdY#FzSAIQg`NIs928QdC%uWL%` zFpW&Cxjd$yx&~k)eXtmS)ROWR)&>xC zBp+`XV=j}B{Tq>uOEEzA17I+Cv1D`gmz3@fV7@xpOw;Dgreg{MQV4wI3GRDfjAquX z!(*eFKIskEh;g1EEES8jPTV5P6Wi!rPD-?{S^a}eUAH2LiMkiFNi7kR*ROQ_eAMbK z2W?Df=+p=s9h}8nxh&pwU-Xdp)8K=nxDv!(szkM^LUmOz#PDIJH)o>miFD_;5Wp4l znqY8O!RI?AVIwrZHKgeZCU`E0UW1K^jJ*sFlC7g)@l>Kd*BY0(?xvpHeSf56m#a0_ z_le#O-@_GiNePrGp7Hy|!`E1aDu6#(D=Cj_N4Abnx`2Ob}dU?OHrD?fG6C9BB#Ox%8BA#AL2?uK)@cvocf;xT&yS|LSp=Uivm(d3tB8tLjyW}}T5fzbA6G-BPT246@XCeY`U-}&ow-fBK%{ac<#m30FJ zXSPbS62UmgCtnx-?-}+riA|iL4ddIZp}x9JKz`!vyFfYU=usR<+u3#yn<+8*hWgh}*`BDL)rM zZ1j*L>z0q5`Rm3qFoJiI(dN^Oc82N0rbZdcCna~R=jaAMb}>m>E?fKAEPPGTM`MTy zS;Mb8Vo*dJxU9J~Q>dE&a}zoMttR7c`ROY?!wl${z4Lxa4j4|Uw#m^XRw6%?ZxQ(C zDDz(MNrF$|_N|ru7Zl6P#4vsM8T!+!5%wHPPsVKwY$ynfdyN(LLdqH>D`YCy@QrAVT zbyzqX@$g8p8tg$+?S^1d-4G4Y*R$w2pZ@22-)oqom%o(2q6P);MW=o@->_Tx@865B zH`g`A8o3a`d0*!RwXQR*oo1*$_0DhnIenj?0@uTh;$9IpX~mk@kpSwbm>x+k7oa|K z##d#vaRQ2}3Hqs{?!(*#k4YJ26}FDEsUAbpZ-nxeh99Ik+c4&Mca5hx8}PjY?SuWZ zf524#=@8?cQtrxjh2K~-UrFfku4c|KCSPB@S@2~2>9LT>EHv{einhYrnZQ zoOoLQJ&g{V(-W46L~!e_B?)%BK7UrWB0??qYT225IfWVGPEopJ zAd(-WR_VBb%>U(`6dygHCN0Z z?>NP=5|=D@v}1vnZTw*N*-o=btN!Fr=*!QySjvM;0)h{|+jVxG1v%$d=23g~ul!51 z{mY$H(*3>-Q7p%{{;FsCgtoq3In+1fWrQFD1@WGF-TtS3)=3|9xN(0P$99BWyHftB68*^RmJmQ^ zXsWmgEot+G`^njq4op$dRO~9`e~jGH1tlrfdElG==ztd{S)bkp^A9CVud5E)f8oo` z5!mChqAd_Yu^{N);jXha#HvmiNGWs$8AIoex@u{s8Rq@@rf#V5K<{+N`!-)y(b@Y4 z-{c?2iuCy&rjvSyR`9Si#vjJD)+&(S!CuxnMWX)9G_M@nJW0svY1QXZm}SNVARneE zKBC$D&w_e`5*dXEzNl{_ zIYpBKpkOB+s<+#6lGwYCoK@&CBu01iv%vhsj?!GoeS*{@=rB!-qX78>z8fEuh*O@> zbYV(SaI>Ve9c=i|I*e=Ctc@#lU7!J7i!+t=8G|6s-lQoJ3_Dgip7xmzpJS=2H&l9! z)UOxeK=Fx<3$2uRnv<>}28ON03MtN&&di+Ebfrxz;GIMI^pKu3Na3T;h&d=P(&i}s ztaFcRgQJ0aAFg@&%zWRY=MC*K_1;2Xpff>z9PX5AcLThuIgEAWB+0&$6KU13>VR(1 z?f7yE@Sahw|6{UfM^UO}%ci4->_4?GDwnPGp9FH$I`F6=sJ5FWg$MKU(T)}xBNPc( zHUGA_6Ygg$cM_9++jMc7S9O~bh?KDOd@->#^zzktFF@9CY3!5%Wpq>Z;dY}DyT{yi z&04^bUs%pa7%*aw#hkq0LvZ|wNohH6(+y?^rp$et&}hI7+SDrXe64bz(l>o((1>`v zP*P=m4{yj}7sPWSqer3C{8UK*wJH@dH+*P&4lM#tgX((Bn*SS55=OjV^;|~rLhM0- zu-_Q}Y&}hj1uT1=dQEO5UKDO<7J0p7aNcY1Vm>bc#gGMPKKt6(Xbb6< zMEjZwJUP3<1!w%Cqs{|1UNn5H^SP*!O7IeCui*OuecTPPtPw1@{gc5`Z(`{G4_cRW zEzgLsrsov2G5)vlN2pBeM8#u|tTu4e8c;*_mx75~8$!4gx^GJv@C^jrPU?D0Eh1rKgFg2i<0s2Hl-kOe^@fK4Ma z;BIuT+=XQRg%6Xtq5t3p6`gT1fR@AJhRnUT5-c|7H2Sea4|9pve9eCp+#s14e7Hd< zD&m}1l-dotn^m`=3iT;uR+J7xpY>^K;pSJHEuYC|k@R7aE{OtmNuoQ>Pql3y*R}r# zJVC?0e%jh_*)PIf2ImKsg(Ert0LYaNrV;HUSfqL1kNhwDSYCLN4;g7+1SGZ8AQ+i# z5q3j!KT_WR0EwUAOYe=ke~2d6yl3!x#4|jfb|^*&KBTez1#1daTjrFtGOvidd0@0V zOV1wbS88L_J`ni6430`7k@_0Z!k6^WwcZ6vcPo?;A#k_*Mr4^sHStH@Z3_ zS=(Zj#mLfDK@&mZIKSS3zxax3pKBBC zB=;GqYQGCDh`WaGSCS$Au}p2feet)NQl$Kfg+|?&*YQ8WNl|VsHCfE7{1e+}Cmk?X zkIJ%b$D%gnzf()$&x5po5_ph!o_oOrAcGUlYOBBKyG2wZI+D9FuT~W4@}u0eIK&`* zk65%Sy$e{W2lB4O{Er%TY}~fibyOr7^w;^g%sWry4O)y^F_UOnd_}0c;UTeiC;hIN z{{VbquazS{eKjLGmZvBNO*2n$Kk4A9_wH%guA{mX-^`@Dcy2PIyf@%~HKl2EV!S&M zUPEPj8#VWU(qY#vEK&@9E6om5PvR*?522MmgZu}7Axqzdmh4X_I&=j7dqq;KRc#?S zN2(}Yd>r^EaQM6UUQn>X@~prk@JR>dR?kIfBI z##Y^+bk{9VAsv3G!FC9J+LT%kP!EPvoB{dRxKE=eK-`x9v!w^@8|kvZclALsYQFRwr4 z8jQM;KkP^1bp7U;`#=>Sf6qkzlT-TYzrrUMZ|nSum!GlU#+cI@ckKx5M?mIZ=^>%w z>3=BJraq(lDE`$}!2bYdd}z0y9Ru9Vx%~4`@o?!ARSI2BcUJwIzipdTF1|9bm~Ox) zP;ryka+QR!Z=?~^2w}UNw!Ql~{@Ql{t<)Ab1pfdM-vWO!qPePKYD;J%rZK~6L%FFOdHLQCzOJE2LN6YkFNIzY`x){h$8;YuAr#{sg;V2UWO?=l=j6 ztS4I=(hKi3Q;ohQ_?XlD0{y3;1kdo_QDN#PPyQ;gbuq8(C-XJ-w(MnG{1^S9?HIHC zKGu}y{#k;5k*p-~*Z3daFKaj3?<+UMUyn-LX7E3WJ@Fj1AMJP668p;Mli%|gd=2q> z#g*>-H?PB!!Fe5jnXO>4J!3DtF0a?`E-r`h0NE%yPl&gx9qyMb%70qk)3&jf-fN)6 z(!6+p`I={mG2Ho&{xl~vz8MX2+?6dnVHnHlJ|_PFzmHFvU&|ubDLudZBqVHY3&jq{ zpb|Nv@_%KNr4^}CeFw*~Wv#p&;%NbVjnK&7)0)Y-ud^auXss+(kHWq@w*{u~4~bhn zlFCj$H8smQO?{abu`z<#pP?zLN=XSY;0$h)IQ@TG{U2K&mst{xRz*1z=j0^i$N18- z9gu@vxns2+MkCR<_wB_DEQ#&>Lo8{ZDnp<4z$e=oscDIz{{V!r#4&NENhsUWJJSg# z({K!bN>-B{k!BAX>B9tgLg*3>Nbzik>Hh#MI@9Esv|CH?{{VtmkHvaKzGLOYM_dz2;*2->3`y#D}dn;koDBvN=} z`hv#IGOX7A8jVxU@X{e-GSJ>hmgDP>(x>W6qcvFijT9!*ygMx0zkM8d`@d%m`sS0u zBGx`u2h+R|QI=Uoaq@|w12jA(HM$&ewO-OV?-s-0J60zwj1EVV$|^$g>qJ>O+8GVSF!HeFT?A!gKgJ^-aa`j2(B4>E9lARsM*nJUJgrrzGjI0bQO!` z=w7Esr)l=qi?T>%iBEFGcJ{1g8|*$~R^Ind+5%mLA#zJgf;jKb6`!-8V7eCLT(-1` z?7xk`1c0}ZgZ}`J8fuiA+wcx#bDHPID}4Ywt>OFYg$wtsZeWmocw=33@G_{rFTt3~ zv}3wB%~$r(@Wz!VlRts=z*p}UL4lv9YpNMFS$(8u^|*F2-}dwHaAMH-BUK=AgF1s+ zERL`9qFy!&p)_B&SAec@74L(!xR)S(X%m# zZXb5y#mC@EAM={dS#Ca`!fExY66!;Hd;2bUyngRnxyj*v$EjQ)A3#n!)y5f}FS5RA z6U~R0Q!ek}AH&;%XYhxQd}nHZhs$YYU+G%M6Nr!TAs@(>7)#-kD9homj=BS9!Jid% z>A)lfywj!pj_lUF_!^(Yg8R(Be;)JqSOPpV%s zm0VirT95X<`19e_G5E{i&Dl^6=_6^P$G;$o&E)thiuCG!Ls+`8_@Z5~{k}XWB#Re` zJQu0jFl-#GQhj=WYbj(^KE#tPV_^43UE%)#+RNaFh}BSQ&|5onOUp4CU&IRKsg&a> z?631SjwXxhb~;~+JQd;<52N^k!eB-~g8XEC2JF`qs8^@)Mg7LHoF%g~e#31r^8-jS zF@=~gKcz+5+@dG3w}=%@SP)k@SV70umET|?mdLL^X;ae#DIdz3en1~&mM~g32PdjX zb3$o==;FRZw-WF=2FT`%#0M2{2z7Ij_gP0uKroomwya=!?#Lk1uoK4|Ovi1q9QFP0 zU!c$QrK&|DUoHT4rIcWf@(in4(aa5$hglS4ZNg_rk?tyk#^ZHTD z1Z|=Q+RtM1Jk1S&4_Gx>UAsa1yU38pFVPsAHSuP(oO!G=^y zGyJnut5JOf)R7wKpAewS%W>ymfs+Xzm?N65dJGb1e0QEVv^%D;fr_7)q2<5v?mo1d zqQ`bZ{wLSrkhRv4Alwe`C?jP4Cp6VMZ)PUg=zMIjmKU&JN65fyc=3TlrG2akvcz6C z(;V(Pl!&ZO<0L?59=uZaG6d0X9}rm1!Z`01MQ$;@atF5=sBn@C=uZZ(qs+oN??~kD z`8P1>+ai}Fx*)nFH=0X0ng*H1NH~CxfA1dDmC*Den&R5%jhlE`A>^%tb!kdV>f3PPH<9J+tjvdvuc~S0NFRjQg1eY7WEa& zU@gt4Vfluxg_zTOz{l#-?qObj$v+pCV3xlSEN(JS6UQA$px#mzmJ?B5gQf9|Eki6%$<2~A}z78ZYGYY|;_Ivp?e z%lOe^RL`jCm#PkbeQ2XUiji1LE5bgOHCWoH+_wF*@B>sO z;P6hXU`XUccya##p&IFoF)`7*nMzb7%!%~hg!j*#H^jG=t=L{6VflepomILcmYdmx zJ^`@Q&-_b%Ab4@XJPWJuDE>rKb$NG-5~X*eFGKr3{6f6|X!Ce(^8QW4`Xv2pOHtRIJ_*ngQHz9_$5oP3I5O;2*uBZ zyiEWekx!3)MrysL8eLc5E?TJ>mwq7lr2*Th-0J8@1Y8+LeZFBY5fG5Or-dfp2Z6{H@*+xc>mY7#fLEgtsYHsBdZCv^R*f z_rbD(m#^-1E4YY1K`H)KjIdPS^om%Cqk6;kuhebWt@e|C{B?uGGIaj{wvoSj%2{-J zHTM@BU7n`ioBLo`#_DFY*JDz7D|Klv;xiJHSv;}%ekJ{M+=KSU@cY}9n(paH8O7Fz z8~(A(Kb2zgsb1^zG+5Y^T7KACMX6&7>C>seVKt4!C-e>l4=R+qjbjm|2kncZ+#Su~ zYk4wxHu|2@e+eU6hm=eChOw}3V*QuxRij->RCps-T%H;UpqL-TKlH5SmDFEp6tQt; z-LJ=w2;ZWc%@iOI+-KS{q~}v(5k-3`QlA$;vWX;8T&7aY~OIl z$$c0gdgrZ6r&V+xG&`3qf3qB^ww+~A`?n?1o_>Ljf0ZZA*e;7;%OJ(Iwi}EeG@sBd zMyqk%HK9W4IaRUt3r5~~6I(F{@nx+Oy4{mxQ=h_q7}f|ko*L0Nf;Vo{VmLmZGV&_D ztypa*_leVlw?=lM@Ppy4;*`4ZCx`9{=P~J!IZ%X=L;e(B!OICY*l0gwZolZ7jnrrG^5m-e)pxu6hN(pt zwC@J^XH9aNey`#P(SewJ172fNJDa~Z{jUVEu;Sau%+#nRrnxrkl*-1wb;0a#G34E zKZSf%A^e1}zG!tL*?r&eMat0Q;g26h46#^v>sC?^-Jb5wUEarh3P}8D=cUyLEW4Cr zv-qV6Xxqknm~-VzpxelOxk=KW?q5&Dt4#_ukBOFej$KDfnU{~=_-^G#(=pD&@}a_; z{{V*- zf%R3vAhKCQH$6Y)oXv_ogYJq|ExB3#B=~p`llXgBh@PfR0(^abRW!b>FCnUljBkqH z4&xx*OkyB)n@G4!erZeU)9hEYUC8G6oAAEnjE}GBV?6||xAb5seO{vITB#ckvhkn8 z3&}rosOYi-{{T-Be~nAS)a)M9%(*DH&%wa|Xo%#7%oGm#=` zG5o^=Y3un>$>dkG^CNEzXwUMU8BRF_;OFzBlgK@z?lgEiLX?&M%Y+a!^Q2_|04fv{ z=pNEbs72u2E;)9^XBvWd+X^4#YNHf{>PxvW@Rg`h;H)xDJ5yHx-CVAD z++uN$&1v(HqQw5q)RYps@?dlO&fkvOeCg~r3u+{Gnvxtzu3IS!mGdw+A5NSed)0FZ zMYpiu_?!sKjauFQUK2yNHvESNw&_g6hkW)_FXG;~wJ z;;O604DY7>j67MS>4RGMiR0gg9vibKi8VhOT9)111sDY5uxi0(*f%RHzmpvBSm>*$ zKgjcM7~lTOUIDz4&3t{Wc*g1hx=4Hxqs8R79aK$n@u@#TbK1HVHiM1!^)ULTYd2*C zyWB&jY+`>4HU2n!V(e7@0TPx#?al6+w(F|S^OMOPN+{HhB zqWLfLJUik~jsE~??;LAGRJYKtd_AVf%5Aip8|WDol;;K9Z+=F8Z>42AlqW0m*!1Yp zl^9!=@4G5X@e}sI+Up#5XKpeATNWQ&R*JPB=0f%#-6~&r=l07@?7#4kMnZ-H2$Kgr z2*zstwi)#WLH__LlYj9S_QSP4W!9(S$eXAj9j6|^5mW7O`)FU){{XsUY9A8+0BQM0 z+I24wc)f%0T=~IpI{nqfS3MWCiS{;nBO_4wmGQ(rE<8=*u$dXn%)gJ}az9Z?Td7=xvHVK- zu?WxhMD54%X~h2k?6kemRCTpcBIwpOM_q2KB*UPxUw--=Om01 z`1bl&(Vq`%4q4pt>5vZ_#s~AH!u^T<(uku9o3c*Qe^c#3S7eJ7+)_4NpdjNU0zUys zu7v7`4NFdE{q@vC2j<#%9^6uCmX~tnweN))7j~i78?sJ6`t-fx+KM$a`|kz^3ofCw zdIlu_06Kp16Hu|KZax{zOC3}x>gro|e>#^cg5`rWZ729^YKI!=8R`w1w{C-uYFn)O z65$eA{{Z0)njN-&EoJ0wG1y1X)EcDfbw*NzOg&E5Pm%Gb>Q6S|fP9$KACRqMeyGos z#k|vIhv#@EAY|^`KcK3+DK?C2yPV{}olkY`=y<9Xz3om*#k1<+8LgcM89Sg~@T}zI zwmY!u4eEIxjy2C1>EyCa56p3sYMlO+%~EqmuTC_dLy>Q`Nk zr5X=&H(T+Si?8DmU)o#97oir&r}GP0%Drx@@GcantykuA*ShY!@&Yu~`UM~1SX9JT zlC_c12vS{3dJl`dRcCmTMP`a)U{sYHew8q-RXf=QNK$KawX^ukuC&Ux8cQ4jxCsY7 zzr$PoVp4W-Ii4N~Xw8eSiKY&IFXOvbSoLjVQMiq`C3O~4j{g8!nP6x= zqL;|VII4?tyzs~E2k^q|ZSh^#h@o;Y#dRXX^cBfh1&Ch-zTTs98PMHo27*-FT&5+Rw1>mS;*?YZaMx{ zUs=rYcmoXw~-YH2`;Nj;duh;2beM~+fKYAwWaCnLATW6VVq=01!Chg^+jDhgq7`Q7&9cON8K(ke>#5hVC-RdgW;#cpA#vUTkw5^ z<+x^O)St~q712)@ily+)nYvV)*y1(M*&E<4u&g7{X0>KH&7I?dKRk--j%|*P?&ePk zMf5rOe__vuQA_4&9xc}`xI0QqlUpq2y}jt7Rt^hhYWQ>ZV$}RJ!d(;NKZp=3Wn-21 z0gi(i=l=k&Sx+;B{wip=&~e$F*N6N$;=L_YUwFCi7l7t?M&f?8#a68u?Hd}#GF!81 zA2flwKmZvhA$k1ko!GD+X^0Ylt2f>t{{V+tdN39_E|4zyNX|a;oPRG`Gy+Arxm*Oe zBXe>xe?Hl%vH?fh8TYwjG06KcY>!HM4#TbCiXKI)5P9Gc%`IP1rD5+3Z6cJnY#t6y zf29}DVv9#rArZmOGyOWza3hl5;OA`M^U$+rKVE1}0K=wU7gaDu#DH?75I;U>=13mI zQo@LHa+06}pOYB+RVMlqZ3y$FK0nh~61_J2i#} zK6%=~VSdZu)k3h|SVz#4C948S<2gC&%`46CaL}VRi>5T2?XI-)7lIZKmmTrx(zQ~R zwYZuc9+9WT@*NH-%l`lx$mz%62tS4@T%_Li5=4ojXods7O}&NjfUzi)ekUM~)jaht zqfhW1ky7WvJ`j|A;jzwEOJ+hx*SGjqinU}X7@5;}AHrxPG1|bpGq*PlmK}$+YOB=~ zf<|S>fHaBaM72oON`TEB>azlR@XRCoP@h^$(QH%I}UkC3%7!LlK?@!s&liW_^v3UAS=KlamxQ7eS{Mr8i$7)?0 zY#hX}d{5D>$P!pgLboi#f_d~A%_l-kcPv5iKf{uO@!Eh?;}Vi_-yjvJ_A@Hwl=y+7 z+ye245wX#f9G}d4(sY^?(JVeLvT#xXVsbbs4haB%y;AAFGL?%FYj+pNa>r~G;3y2B z{->o&iiuhX(p|_m$rAPIj)(LI-kNJ*X)+kJ@3%@}K2j>=yt5+$2j@-8msCrQ$u4|1 zr`ac#*H+J-K@sEvc|2}El{HpRZ3*Owk*Ih>!xx0D_LE^co(Yo4NcQTy)~dBtvwwL$ z&Yxov{{Y~>!b|smwRjgsbJd&dNV)ulYaCuBFNu)oQ+*73zuAM}o}s(T@O7$Zv=hl0 z>+IEQFvUmh67aNNLl;o}kNy=%8LVveINLcMMf{yV;6T>U%`2y^jOBx*QM>(#{5DG) z4S!vWxDFA*{XqcsHKNU@)gm4W9Sl83_BgtNQEzYK=~6~gV~*;{H)Gf3Y?0Enj%uFh ziC~iIXJ7uu{{RteQ_j=%eKzMRNHU?1IQQotO4d202i%8(pGI>!zwGt#mc;pScs>iT zbBDLO7z6(LAEj>`b{+L2>XSw#{{X^&iyBj6@8ON`0|1!d-=D~w)htyBeW5xP5m)S9 zHqm9}AtRPH#vj*?YLq)RRHdcepUk%oyWj^Qbq|Ku04e#t z%XB#UWc8z#s@goNfy)gaqtG9o@R;rN9fa$_eK#|{{Z9kzP(v*Nr~ZU^pRu!7{|pk{`W}n)|Y)A zG9Eb(L+g`A_LVj9MWKCBx1%AK_Br^W0o`q?ScBC_loRjKsQ%N#_G4H%-*I65o_;#$ zOdiL?ZkquA0FQYtFb}872nL6a!cRs&tJhskOFs&J)OvAWv3x+gK%@R!%_iT;(xz3g z68j@m@e8T7ZE^cr*)qkbc$-DLjX-botB5%reTe*P7aYD?q|u^Pmh98D)&4AM0F7(I z9v8W60hpc^=RT(*vv9+&g}=nFdgi5vhp+Vs5BAT3w0J=oV{bHLzqZ^~Zb>h7viIEA zwD@7+$>b|<4a`rB?z7b0HvTcmSjxQD{4t`6zKphh7R0dxeREku&^&tO!N=4#;ZgO6 zeV5!mUotW9$(6Fd6E!<$Jq(h=CO*5O{&e0WPlDt2dhSUdgSm-qTcs}yJNwbqR+Kp*$KqA2zgdo)it*Z7U#Wp+RCoN4hOY?QjW zkx2TFECKpb_H$hdx(L1@{5`xrTwfEkhiv@ut;os$0KS-a^r!6VFS0wL%WFOyx^Qf~ zK(1Q{%z!3%{75vpXV@-_7UxNLjFZK4GL;!4fJfjdH6XefHHM0xzFP(=a7Ot+$n@ll zeJJ;UuXQGq3WSeLgq&k(xz0HDCYt8%7P$maNiZ?R;i%jJ^X~H)AIwnO{$bfI%G$<< zJoZv8kB8t#3zb;y12^GEHMfu@sSS^Y-dF(Dv^b36a6r-(3F-Hb_)}BAQM(h516iS2 zA3>4=I1H|_4E+O9?R>>+5KrMtR3xPCgq{NHGAnb&HiOMSXu{DcPvM(8muP>rCnq?= z-N@kM-G)C(uWKOXjqWmUg%M7h=hGF}`}0{tAp8khJ+r>yrL;4(Z-bs1O#Qn>(w8J3 zpGvpM{{X%~%{5j}VW*)&Z-hP$E56@L)7x`p zON`;IZf_L+lA6{tPj)8k?u?83uN7$lmfylYDpS!y-P|z$0LQbM(Lxe?qFqN6bGny~ z{wwK{x09y$z97KuX)Ia2yRB^+G#^xA>P*1C_|5U2B@sR5u@*n)y`f*`wX(xu+9B1e zsgZy2pW>^jS^QOUp2bvuPAZlfg4qk&)JA2`#NQs=u=_`hX36Lb;Bi_kJwC#9YBH>z zH1WF-M~rn2dii&f41eD>Uss1@B~n8F0K#SQIwnW7@%Fb6Mg@SqnS(BV?<8YBy=ZuP zPof{TX0)Tq9J^@*1u{iS{@z({>&#!i{v zV5dKpDZB*+KW{W&xBaO8DMU_Y(j*wb&69$EClx>0^tuPuX7?{a`&;}*jW#`oksu&( zwq?ln`OQSK`c@mn%dt27HP48oY~1)yN|2s1l1Y>K=A-HmT}H7I>WNqOt%^^U@8R{R zAo1l+JN;v)^#=aXdvy93_usT0rQ&~!9uu|j_J@6Ar)lkRsOy%xey1J0m!ds_D2%9{ zVkS%HXFQHZ0jw(EWZHw4j{6;SF-nCQ)QnS=(pOhrXWHHn{{VuP=~|bD&V%9)gn9y? zgrpbN7uQzzkj5|rB!SsPiU2-gM#;%5&3To0Qw362jY%u|F++)SdQaX-ueizaKDYk> z1pN5-b3Ui>FXAV~e-G+saktdp#Wvd7wt5wcYh>5~$=WfFKsc^t!gZ}_$j}qU-ckrk7*wb}|kx7Eb#oiZ^)?z@&Q6wxv=eaBH0mWlH zzc!~IevjPKG^fN_be)^G$(~*DXZAbs-@|tM1&51#6RuxM-etCvqIl}vE@oCd?Skvc zc3gS`k~qyM(~|h2*Q);jBhjOXSg5&EO|JH5m0x%p#i;VZt9&x?9ga5(gC>!4ByhiM z6-GwsoT($;l5x4z)Rb>y3gP?};TgAUt1YQj`G%sCLXYTh=m+P=wQI>Yv5S4G_?t|+FNq;|wYY{H@>3hIGw<#6r0Gp-W?HD9{4stj?+h$v&gx~`9^y*skxAsa z89#84Mm-O~XWo+Lw!>V#Sv{N= zNb1)2K6Kt@*xjaJ6?2jp?L74BQ}0}IaA?oHvqiaCr$&x-&Q>{4ZT|ptC>(e1T1G9I zxg@Mv)BFQ{;^y=8%S(w}-ww@%Lfr-kBNe=2@2QOID5G0g{g^&9*l11S1K^vv?ZOsW zY_B1m@$P~5=l%j}YC>1Cxim3!r=``;GSn>%jmfdrZLh4SQ?^@M#PXee$ZkOY06DB2 zWSx%W(^oV6ohc!icXlr{_&|KWy!?v$*3ZtHZ$J;`$PU&Va-fsOJxw7Dm8Dz~ zZ~^2u`RhVsvKq}0!FfPpNaUZ&w7Ls28-!evRYz{4`P91Aoy4*;IDu8Q3j zBDxzn3Al5Ddwz8JiE+5G+>oR!&79x?&*#lPWG+(myqDwWhGZae3jj0vR1s*BHU6;- zV;3&j94K6o-#rBl*$pJdKC|Lv1yc3SKnJ4Z+nQX%oI1Dwsr`OO^K z?q9N2AiMFE_agN^VmiBX_~8EljXrjPVehe(sCbgXa8}|(8-@ns*W22KD80>LN~B(g z6XU4#EmKOJVu}WsF6h1&0422w4>PaKZsZMi~Y|$Frc+Z?0 zJpji&{{RYn%*)xb#CoJmq9$@M+4*0S`qR2-hZc!OrwC#^*Esa4xYA;!^lI4-a50nH zG$w;oOq#Uu9q`QKo_0-+GuIR~bTv6&a>O1c*3rLlsLq9XAWx6}wGBbNhtD| z2mAWOgbaMe#%XfIT=NfP{e`+siYUN$!hSiKA-6_MrHmr!WhsDGazfpFKXJv6cf5Ezxns%^SAgwm-zUG8#;V7+|sR zdwvyz%CPLUjb_cC?X%-pS8V=Z4aW$-)Yfk&p!O^4vbN=x{kS|?vu~D!4yE7+>GY-j zjX-~0mvPa4+}Jd(26 zmG#PIwx9cA{29ELWSYFtu^^u@ai7GR%2`G&JquX6M?t23(Ek7kwK2Zi#W8>fT=e~G z8D*Ho_DlNJ9<1H5_>HXNht%kF8Doh7xI|xsv2DCjna@o^wKwHX~Up0#Zfb zauGlupEO*0FqYg#9LS>t<+23{iKK`gD-*+8M}eQZr$5%3ZsO2y+4RClef$IW9Q5y2 zoUBO`#ix(EB*UDB-JH|BfQ_xBB>7r{?d%HV{<)zw)d3u^>ZL#n6pB9ZbY4fd9Q`TY z9YVxKbqJ2uv`w5~hQ~jLy*tJA5dph~IdLK?w@totb^2%PS8JdcWYbuNS>#>7;HJ~* z?MJ+Tdc$Pkl+-54AM?x)u05%0z=n495PrV$C>@lsa zM<4Fi;y^(A%DLOmUY@kn7@M%utjejn-Ghq^Om?n3}zcm1Z}9P-SiMm>%P)|=Q#lcnUb z#zJZ(MmfkQuhSm%xmRM-B~4AE1J1vZhTMjDoC1FkX>zBs70|M3HvA*mMIj@GSfeMe zV8V`9+#5tDT@qj#Uk?CzWhoXh>N1396x?REVA?EN-q=|W+(mH^Z=cHZ-0lO=FmKD+ zqEM8#1tG0}VRX#vZyU(NcGgsKPBGJOr>z{4L*`AEplvEyGjZX|Il<0CTM&51KPkq4 z#-XX(Nj38xortb<{{RbJH%Z>o!)c5Ktqgt|Bp*TdRKf*r_PK?QYZ;it{)rL+w0Hde>0A8tLsx9I!RosET z1zBAv`z)4ovFIR~zGI%e(D9tV5@-|~*_3ZTXN_?jt*(oACnNqn;w|}hKhCN+`aNBW zRHjwD_$lI>CEpWYL@*B7QIHG|VtK1rx)SP%bmtYZoi~7db!|9?#zM-&B>9pS&Tufh zPJc04D)e6Ll^0?g%TFI@WJNWiC~RfiNH@16bw8)IH0e)fFNdLA-h4!gBMMq6Im+w- zv+2jBU8y&ywYcT+M~rP77hV~ZkU?$mkPqoi!joDsVK2p)EghEc!p|8T85REk#d`f} zJ(rnFU4vp{&z7Z+<)5t{#oKVSu3fhHyW#2MSc*)bE=owOxcYU?CqhEh zw`=hS!gE`QZ0?m9%FbP8P|c7A(lL%XImS+T=}FS4o!E1E7A!UGFHyNzKjA5c%}Sr0 zu%P3%;{{TEtqc->a0_(9({#`mr8DoKg z9a1SbfF!L&Me%U5Cvk zl?mhO2l>r4R}*xFrN#K>7nY6?1b`J_D7Yc;JIa)oGjjGs48>Zqx{XnZ!X|9Ail?UQrd;3&?V^1CAwm6Xo_Gu^`zElhRV`#|X`i+S#;aB{Yjzq{@FzLEvje|T zvB5l4ytak3O$+OCPkWn|{{Xk2i)~ab*MYQV3!EjqlA->!lgg>Tw8~hi_B5dVzf)7g z>;C``r);j$)>p_l9e8B)#by1JqwvVn>rbg_+xFz}0!E=c9jm~{0!bcJagO{37^(iv zsNU$mtVJ7oPwi{)VrE(7mROzn0!=)&)7P)fkId9dFRyLI^{RUtw%@dGz->?k9xt-C zC!O=!%l`ngCIR|ZPX~#QLe*+g>TFne`{4Gfp{%|k=(CbO@7vZb+<&$CR&JIiJH?iz z2KOeK%fLFsg)Jb_FA;|zN|Wc0RUCKgQ+msLm3ZGm7Wi4Qa~BXNIls z1Xf-t*DMqctE=5|JAAC<52rmU{<%A9kiDJDiST~%(1B<1H^fM&2*GraW7O}6kTLb6 z>nZOPK1&(XcrV8gAGB$|6J(w+erYDrt>wq!0_UYywWroUi9E9IS7?4L#G)$?9%+{< z21?y{cWEC|vwtsIFNbpYe-QWVLoS!`)ua-=-iLZf$bva$x6VKBtW_ytR+eaXs6=7- zwWmgBzW9HnZ42`}ULYqv*peK6v?oSSNk6!4$s((KK=HPktqAx@afCQ_w$-fL@=`&; z{3`vGIensUD-fTGULnrg&jEP45Pob&VH2qy+g$PfG%7IY(C*OF|aKMn6qW^N8w~qpSNmu>4E#jxzp|uf%>#yQ0P?-bj#LX6Mhs) zAXV{ZkgD7OZk0nE{{XeO2Nf=jYit)Zm&LvWzDVbT#hOmgxMhz1BafghQ0dfN7;_dKVZ~8&|SHBB0{A4a6hL?e6otzE}64!;k{+X(K*0VZ@a)nU%rQ*L#4^ilBq!)d#af+2w-+Q|LKN^O zhkqxL7sIVS=L|x%&7?(J*Z{m5POR737qfvw=otB=Dq-A-7tMNlacv%tQ5KG>(PE?;v(tc)O)|k_Q~~2R=6=VsgfH7mpzX> z5n4N3;Yp(kJEXa|k%(mZHntdGAubGqK&y1fG{3$BU;ope5 z-HQQ$Z8dq~AbJgsE6k2ziB9d`*HhU|N&EWxo{Qnn_$aUKec{_5>>FQ=`qkVBxDo1; zt?0+5E(3#F{d<{Sbl2oeD&hU7vrtW=ps@b{f|C4BnGz2hd^h-i;sBk0wR{a|8Haql zA~Tcg)`gFa^i6s;H%l$3tvFeoPLuxt1rYcls-s2YZ`jAerKD1_P2t@_TPMNlR65F_ z`fWDo(xdg}|DC4Xf8O&>2`G0G^^nK2v94_c9$cD( zy5rn2AdhPD7HePaB+pU8l)fmhxahR6+k@i`lz(8?Wzu!H+dn3;q1#Rf`s@ewtyXEz zyguebjs_CtaNND8e%Kxkm~HWI?AhR3!dovTt(5j|$LkcBAC)zku8p8{a@lXAJ5LLK z)xWX@+bZ~z_I1_t)&MI@q4=Q42>$?fWf>pvD%KeHJ*RI}bI&fp)PCg7v%~)Y5Px8= z5=PO(@q5L-9(G}}4Qs<~GATL8GFseZ4EiYiYekH$C#0hP00TK?5q}K76IbmT^xz{| zBxO`>EbE@V@n50cpOo^`T}dK~UyywN0B4O`?|k__)YEUEo1}*|zONu+`jw=7aM>iU z^r5SY@V<$S`#z%*?vqwYPjIndo@muA$9VQ5YnlFHw)5wn8FTpq(vxkm@~6~}X1tLJ zSb4zv#0>hp+@{C0pyJUoJT%`iyhx zIiOsz+*5gYxgTtG2a}c<`cklI*n(S~PjD#m=O+XpK++sgDHwL&KQoAlq6cK7pckko8i27*6xXG zjP%-SB~3jIqh8Xv=lZw6s0$1$giwXWN)DOkr(B$xF;C}R+EKfid87G z1=PH4WWGdtb@<7~L=BJ33XXh2($DTKLk%r%j>qBVmEr`PYPyVb85`uO?AEz`~F*cC@048)Bj4VL=p_mWP znr);l*zpd2U91%2jl&-O=+IZN^+x$wa7gMK{{XB#s#*e7Bn{yc1pK?W&-l^-@G8Db zDhw0I2aed__n>}7s32m)_pC=@fY_uKzQ(18hoicTm%DweLnsi80iUfV%~dp8kHGOw zfR{1?FbF6!>r$tvI%}ZG{0V&%vw7&i90J{c&(fbdCy^Cp@V2K2C9Ku4k(6P@K4dOQ zEsAZWfgwkU!)M#`_NQ>=kpz}9DDu+aayl~}KPq|>(?J%J@^!e68TJ1FKjcwy6AcFC zC3j}@XoD|zS+%l%PPXlp>f4jT}`Vm+q=eAxc<@6ZROwsK{-E= ztR72;dotECX2qxN>Td-0FR#zHAf9^uEukdv^IX3QNfAag_*1wh7PURGWJN zTJl{gG}$h;sLJ>#Zb>=y<29n^dm(6u7VZ%q+gpZ_hDlY0pNx8(W1RCWNzL@Vx!YD4-r^L}O%GYs+4T8Zp;Ago8 zk7gX!1l3DIC6?Mp4bTfE13!%p8imNewY0sz=@v1Zk;5PdBitWO)ZAY|TyOTanpv0= z5~&JRZX1kx4nXG=D6uxJsU^MqGcM)62-}DUa<+dk58*?DT?cYEm6_S3FqmF1l_iCV z2k_$`uQbvQg9f2u01H9%zU(5Bcyig=NObShKh*yKg%+0Lx=ctVRCz7sxbsYslB&!X z%jw5XbB+lnhKGBOd(e@yP3J@j#H@gB!QgYZB92>$HacBcgl2*67=jFr@IPVSBcFOX zLg=e^tZA2atrhuKUBR{zMo;82djA0R>H8@@fTv+sUptVbEa{({0{2CEd`)sl zR=8qDa*`nH)MIT@f&|$#8r|CMaS7bqf*I83pTecZFi)wWrTDj2jx!b3j*|ioL#mu{ z?8<*$D>=}n%2JXvi+3lE%xgtjvRc6t$qwLt4)|JZ2>eR~ zl4F&*wUGmmdgKHD0PCc&H4@f8ko}x`F_ZiO)2~A+YPvz*Gql~1Pod_Q*KNFC+&^Uc zGdouOnROCA)d010z*Lgj;W9_AI_LGOjy{u>ox_rAQyzcW{{Y0AG(cPGw{S+?7tdTD zd=tf6#n7JMl=~d^x$xV@cJldfYIl=5^a$T5KkyTPYid;~INdQy_thB>@cZKH?hAEx zBOk>i&BwP&*;S^QKJQ|s--o^@>3|E}MT<5j92cGXtAKh}i%~zCZD$WQWOPZ$sJ`fbrVVS zGw*yo;ja)tW54iqv#Wj4G)=Vn=kWgkCa<2Pc96Ma*oRN}E$}-1jD9KjU1KCNAN97m zL!RN6l1HHg8kyoTabD!XLYvW}KgD0NAME`M!Q$|Awy?}TMvG9F3VU<9oh-)|_w)=t^JGQ z+xgK)GRa^hO#M*gXB|kbqnSUngz(qdoc-tQTk#ex%cg7EZo)DQ!O-#R*B_N?vnp?) z4-G5oVQOEp7sopncZN+e=qbznn^49_ZW%$XRyvCZM%@fMuYq3~^uS~u5WH?TV%p^# zpTS!{rCP+{-%=eZbw*9khyE()5_z}22-Z*>U1}}b<4}?ra~8E`T1(F|C&4_sSIGb)hpLdE|y~9*zoik9ne>Pn<++!pNo02ow zan5@h(Mcg$mhDo>pKapJyJ;V~01?mm;**mRPhS%V&5oWV-z04)c?LiOu=OX?HE@!8 zuxQ|>O?G`=%v;AECPOG$Ay+D+&@uU#@-ljM6|%EMXpZYjzeqIGBI(;?7!r{q1HkHA zB=yg6_*QN=WRP5Ha3rs`*ju*m^_#fHI^>g)^%U#@Fq-i&(w51=WC-~B^r1_XO((e% z!=XVGmfEZ^NL(lh_H;Xl^$rO1=xMpl+QPEzbGn6xg0(GJS={(a!r=+aNcwzD6lxAR zVVq~z2i%S;RXU10ha%k6o8ec1uI$=PKfwAwmwx43S#MIP}aT9V;(uO8UVEEUmc94+40?*^S)46Ru@%<9ojkK_FA_<+2g=s+DSX zw=d!fGVWVCFT_TN$hGlLhv!m8@3d$WMY})lPHI%B?$ci|wAWLR@xSc*d*c|G>mCO1 zg~ZM>w{~}zR#UEf?h&^i?_^g^ENZ7MB>sAtN{2GlBg?!``x1Oafy}-hHo*xbMLx8W zWBvu@A^gR6)6FQg?|w!S!p&@sC&VAJ2ggko+}t;W-ugVAblbS6Vc+hl-H*W6L^BL5 z-^30TBCli4yh-rG#(FHT4z=N}LeZ4rh24y?ZV3_*pH=GP_4BsQ6b?5xQE+ z%YqL5yMg_9r)gh9NYqW7_MzcDTHV#&11Js)ry!6!em=Dh1zk36+@^=DSbt~PT`rnO z3u|)*)l=vge5dQw)8(=ROtxejaDh^bsJcGwPA8O))`kQJ?N7U%A53fcp zF4pLJbbqur!|xF){{UwAnigkpfJ-Nq~%WNixU3;z{bs8l1Z;40deyX8#o!y1xMHET1wof zEjUS4K1cnbuA+aAUMASfkL@-b9FMxS`L1-=_N`xE(I0=5R7(W}`y+~ZNpR6P1F)|( zGo=kaNF08xa(Df=2)0py8O-@bmz*f zeZ%mN#2zNneje#E>RN$@{!4E%@LEVwS;@l^1_3w&KEF!+T9oR0HO;yCrYfB|*Oiu+ zI$IwY`7QQ{=5XNk1k$M$Q*fotOJc^o;{ki1Y94LCGPRU}3moBy;`&~s9zr?EuV>}NITJgtoA?ez_FNjwzHb3ECn?BnkpFS4vyF8lb%mjID^~tXV zqa{0;&xK!7}GO8;8}V86IsH_Uht|;Qr0>jbF>Qy^Ie=A{G@@?kH_$@*lvDb zuEYimQ(UidS|4n)7V_>AHsIj2fM9k!jt|n8yM001p=tE_(*{98Yb;>6Qo&4<%0pc_(%qe70oMXU(@u18QTTYj2;Hu3Y%SrH*;RoO}_&u zBXW7%ty{RNcAOKTbPMvwSIb)8U9AJO2oNE^(2ered=8pV0^>V)1TIH(t%l*t)#L83oPWT4tDTABS>q^)U~`Uc1I(64g6#2gGG&0lX@Bh zP`Zq5%MjgP%m9P!gHdE%x{3b)2@}V-xCbNU-9B@UJ?V0=vKc3e86(TYxXuRoGuodb z7M%+7_?($HHs##;{n_u1c<)tUu}W=XImXE%&f~*u=iB_6VB>N&)U5euh0Zga06(1~ zd1SUBUlQBFD#iqhj-!8X!kC<&V$2>jV8sA9&Ipn4KbbwI} z?cKF0Q`D9G6RBIM`6D2nNRRH1e|kNsT%yI`_~m`~7BU}AsHcxkd8F$wK&6kHnok1+~?J;9wTF z$v>V)VcM{G95Z)l)ne-!cK-miXT>NJV)&x+H6(EazF7Q}1NzjwzYF}Jv2{&N5B8<; zI}`n{;(PaICwOV(Bk>Hx8p>IH8+)-vvBgWPJ1-CZ(H3`7nVZEn#f~UO#h#VIvNkrT%olpKP$agu!pEBSg?B=CH@MA|j3bXHo`nS=|?eWY>K zfkWc4PX?7jZLv};6TdwCTgXN@7ap|57 z4F$+dmoV}_EKz0`Ol-0{zVOJyZVJN0WAmn-mJU=zsWJ`f%!H4b zw_uNR>;8G7=uKH@Pj9YxgHO}$tgZDJS}TpBb&@#UvW<{YnM+68J4hsOayX-wo04oV zG^{iGe_oXmBP@I`%o-k_Ty?ADrEt4rMy;z9^8=OIz=zHc|YFZ2l*|S|t@>-?=CDx`|ZV+e9{;mX)*5u>Sz{)bd8#f|Dg} zQ&4ngHnykb1&&)6nw;+3Wp{XF|O^#L>SGT-} zuSJ)he;?^fQKq&eTg^t?03F|+3~pMBCKnO4xvm&TIOqO(lau}?j!?dXq1DnRVGYcY zf%kfY{KX9hqnlj1iZZe4Gi`jFd7j?Did?Dm8+s7Gh?FnyCv&@@$jbZns^z$@kS42c zcz1-1ag|~J0PCX6S4fTZ+dYCsNLiF*vO1Cnt{CJ~S>RuFD|c6l3aR7)mD z>sc%{8GVwSSx2dneeq+((@0uKZKc>g{I-b0kDwSn_|La`*8#g+MCmJHeJ!nYsJtDr6pR@N7|U5CQ|01d9A{{ThRwD9Zz2|ODB z_9r;{)H>LR?-o}o=*DW_1EarSunQI#1T;5{taF?Xx<@^SQ&aW$b-&zFr8TjWFYLpw zJfNK_++4LvH@~xVcE2&Y8Q>EmZXu7U+0w0Jsq`JEYn;ZV z@P^*f>Fp1Sk{!JV+0F_2;}z8!+{)Ut*)oS(gB0$1dFa@yF>;mMp$l z>^eV*o-0<}1Ke)_uny|Pd;5M=xnp8nb41^2K|63iFb+NY)O#v@ z5VcOs+VJ;?{7F5+HNCmIk&gcW_0i;yUK*xO5n7GKJ&k!hf8vcAPqSZHvPkEM(&<)D zPThW-(&eW$bS_;=w>~_$mR;8ta-^@(%!nKhb_W^uApJqAQMSUdO}tque(|p7o$>cX zssLQ_d-0z6=dh~i30&OJHQ4niRBM`aks}@HH`$O#PuCgz&1Wko?yzddL1`p*D;%~v z_ZG}zOI_zZ$s;($X5^*23q8?B>fcw2S2msi{vhdFk>5*}IS9hb6vO2QjB+qXP7k#| zV*7!gf8vb>`^xj>m^3e#WJFBo{gOFOGmtW;xT;W+dI@$eSa_qshTuMPuRqN;}IMwKbOYUk3{0B5fTTc|MV1iHjBgmfl865j0VNgcIhVv@K^U3H(uk@i;OIts< zIS6fh6Rh1xUODY&NZ5d}%L#TMpF#=z>HB(XaBz}lg^z`NVQ(H_(i(6E9X`%;=sxa8 zOm?H&(r;M{k@gv`L8?Z}9qx&J6T1VvqjE>CMhB(^TqjSXLbK{(%c9-f+&p5|RK^Pw zbMqYZ=b`uatyM^O6`7%9s9xJa9lJv&OJfslB(6y64H1PpOhNwu2@`E1JBwv(ec1`k{5n$Q z>?_=TuCZ&dNA{tYURF#KjPdyN;**2itLQy-6j;_l%Hu2Zd;8JK#3YxIY?Q}p6A$u~ zkCWkg3n%T`|n1Z+axUFQYiUOZE-; zmuh66!`GTz>;^W&cJMO}dV-h->T6YxqW4V;+0Hv0Uy46uAC8ugxAupDCcKGThJf48 zyW1$l{xzb-;pYA!^2#jpFBSX(O)5rD7JMeVibZdpNp0qYpZn=C>E5Pzd=?>l$w<;Q z@e%l0&rk5b!vgu3nSRFG$Cl4)9goFm z?pD@wBvEQnhGN(tWV(Vt2c~gOG%77Q-^?9aSJoT$IBy&L5cs35Yd5|rySuj3C%l=b zo_L!cV-v{%MhDPzubjv5-CR{!R*cs(Jxn%fMvWy1t0ZxkzYlzOri1ps4BU(!(UV>^ zP8`fB?WyR)GN&b@MpX9K*2JaVjIl84u7nX@bzHL@Pe%rC3|%>*HJ@u^cHDK(70D_! zX}@_iYaB&3_ptu}v^x*IoDW>mT+G+oU#YS1;HBThJqF%ln;TfR-Msv`^HiMsab1~w zB`kd;{{WdB_3N)=Ep|-$??>0<{{Vz?+F0}Dyc^JykOoNL_Z)Sv)GqCF;v5s5i+WDF zW{xGjm3Lz=u$<$!YNYOosS8|Rh$B_E(rqoYGa0zJn zJ(_2f>K+mCW}42I-XFL^r{=_DkIZpjKRlNk4dQz7$I_b7ue`~Y8CA@3KS+QLCm`ytlMx5?n#K zvC|}j^bJl_;@!$k+d><71RF)WI>xJws`y;}4|a2bN(fzLbuKmC6FXwj2pYmuyNGx>`n z?O$w<&mCzyAipkzCpEM*sqGM=&>GWwwuLXzmHg!8vYe z-%Wu(BRcBL$O`#fWA9_Bs<~-IruJ$Z3j=~U86V<)lo!f|3pv@r+!;B@VhI9}Ss@nP zfmLf5S3Ove3l7w1*waWF6+9Dcr>EcNHJt1XmLj*1KG<~#Nh3Q$Wc@HIb`xu=H0-32 zQ~`Xaj2y2x{At)yv*>6>AF^YWz(?TwrV(iSw zSh3-^WANZq*^iz=9Scl9JC;Iv?tTaO{b^l?w3yMOG;N6H8O}yy9MijKe$xAlYYVst zC8H`&O{4nIox_?etu5qnOf9BmNf;JX^2SQ=3HRiVed(gDeNd}z@%ZBKt^`UCLxITsDcO$9fBYt1VJ2cz zBLu8q(z6w$J}rJJlVo~{Q{1#bAICHj`N`wdE&$5iOVpCXXyEofw1G&lm$J&4L?wr3 zUCUsv-VwLuq+76%?wlA&(DK4|sXsNzq)K-`7c@!Oth#7mJ2W8GdkIIWF05>4+<4Q%H>`7{#JK=)3g)Ub z=N_cF!R}DI)O;%-1{-`9=p3FZ?Nhle(`6Zx!`A?fxj5^%53Mr|hj56dwmk@AP>^q^WT(HEQI3ns*K zzYUPWQYf&~k49Oy@t=)sux+)QxPpO#CT>4k93b~askPM8wfNcbCc;HO@R3gY2O<7! z{xuH|Nv(=iC()alf9*x_8p9rC(Q%9t4iEFJo(7D%6&lk{=Ru|Z+5R`MIFQZA{ud`7 zmMa-$v}9VuO6L8K?ZbFt5o$V2G7d6cJRX&dvZ!=rtXo@~Hea?!hA!KE*N3A{KjoRn zVe8(qmRTjUE9)?9*0cSo{v6(Ue`#Bo&q78RV10j;Wb*pT_9<4U+|;x9_3+~P%f+k6 z8z1t~0ORYLhk~xU7OKOcscZ2s!FSFQ*TgX?BPTQMJw5u?e^#p<(D~76JX2#XCbiU| zkPaBMnc(;7flJuSu=$n8N8<=tOk(CRI2a7P{iO8szXywGUN3$kYCS&JZj*~1URjMTR6uv^S*t#K9vHn7a3 z^6^{%K>q-A{{W6?R(q9l7P_4de#3JZ+;XcKa85l&Y1__vpRW|$ zMXO_muPiL8k|dbwvB;&H=nwU&?rw@vB*&%O^oo+_Hant-ez|X#~o;t zQW}<|SC`8iZ8gQJl~p{Z4u2y;k3wDBGA_J91;oZEZRd$xWm%U6hkR#%JdB^ zS`ygl+HL$(u+@|Z-2y`Lb1`h>ulu+e-GX-wqpmZRNyceg=30v7Zsw(qixs?J!*RDb zEZGM*`gf?5+uVe;x+K5V4U#l#IW3L?z7&0P*n0l}T1q!5v~%}*p0_N(oV#bB3V0{; z9CqvUu7wC%=$#(qu?E_$4wmfLB^EG80P~)Ge_ADO;w}lA60w+NPBX~LkMQ)YtO>Ep zIx>jS!O8CqIr{Yf018&rY?Fegc#m%0NMa8^r5cLpt$gT-3BOF5eUwE$$#VfmShqB1arCe(9DgN@N(T>9$ znyAYXmZ=H4eafRx@W}H8$BewKi}FWvY}v=S2b0fEyw;x5xAKb7dorc}0EeyT%vK&G z(XNAGBHa5+NJemSr+_-us<+-P4#{;hWcYJ?JilnS(X_kulkWYRNSL_?866E%uLZt? zT*T3Q71SI30iddbLcPHjg zmjk~Z^xbMwUl3k>Os#XkYkXAL_-5i4l}nRp8#WU-Q-&Pm_p4PQ6|92NlQAxS8F-pB zF$+CWNx~2Km%czhPs*uQr23$7l4KD4DDg{#@@AYQlaS(DIZyz+U}1WGl}@cU)Hdi? zxcF`H2F_x(@RwB_ZH(hM&-Z^yJ*_sbLS97^;XjHNj9xzs%P`1Ou|omIae>Zz;-57h ztkJ8XZM6@HdO8-D!upc8*-HZyEZNDyARgoJq5D39#^n+NkIUMNLGNI*=xca;;=jZ#0ZVA#Z)oy2 zLvd=-M(y}=r#a+vSyZEktMMiJjXAB3n(yMwJ~u`F(9kb5>*qUNnmJk*KU{lsVfdQD zoiAatx*Ve9X6iThgzdlZ+^oOE_VE%3?VJqf>s=9?ExA05&bos3;v@EJ9Yr$PM#PyO zpeqmSR;3Q)$}=h%JaMNnX)JFgjW{Oa(eOqOLymZ(njOI=mZ4+fdx*$4eiyljxcMZ3 zSneZ^GCKY|Q+64p7O`q)U$b1x8D+>@t7byIInVj&Mvri_G$HX_%y4YHvA4TaAyslW z1MQKY%BPh*g<-Z@&7<6gf-BgcISI56$f*a~i7Tx{)sBwORn$@t8&SUnmjiHY4_tqr z#<|=n-(*$VE@`)(4c65y{8{05c4AgbwYer(&PW;H=ceutLIyLOXDHW(uy*n(N;@*P zqwt4H)vcw~JRzwx=%kM%Rm|r%cdZ>7qtI^2z>2 zQR)X%pIYfv;WeWs(p#C6cpFHzyO7PJ&W>9l)yXaC&e2w;q_+#|HT)lL)=vS4 zzKY*AS3OHI>_4=Us(E^chP1{Q+WWNl*kjx&ALP_L1aG9D-Y;wA_!lhxH~cx&h&qRY ztOJZ-THH$>GyebrBR|rU!dH&fAI`()i|9)JHuzgO^IyZ)Kof)ZZD8@oU9P>m57v)o zieGJg!FWD{f8i|nZ+9NYeNrZKz>%YV-7$ex%ZXjT5^WL~b-x6*Uf*83k82RI$!{Bh zpKZX8!mIcFkeWoXYuXx3<;Se4Ir&S#!#Kdt1oQqhd+BO}l)qxOdZ98{c(YA8Y_v@| z46W=Lcr}}>M%L`zu{Et&|Aq1+0U_B z<3`pJR%x``fcvl#TV@1)I5`z+r6#m!Ib^yOCa`!MNcwz%m=Ux}w$`qNU3 zx{FlEX1)*u9Ho${0XG)s>NxY(k7g{mA3<8j7m1Hsi;@Qc;vd*6!Y-{Z zhJ0;(3#sGn7Rw@>b-`VYpGxSCVN&|Ue#!?it^UQI7qoKg;qM$+-X~EV%#Rtycn8c@ zUWeAVj$ujsO2$&6x*W!<`zm~XjfdL)9%;IYgNE`<3{PGGR#TeO>$rJt{{R7dDW{`2 z&l7&m8l{FN@jvYOsKB87(_7j|RP)YG)1S_t`xR{@lQdN^QQA!5^{<2f01jhfui@L< z2{}71V|4>PKI#6Ig-ow5tGzY-dKyC+iH83GkPm-`P1PONHDR%=sO5N$RIK=NQM* zyB$1lKf2Ysb^HGS;2A059In$t?YswamXOIN@`e$FM1dB zV{xH1Xvo{S`1hmgSFuH?X}XQNL1%>X?F#`bFyksu01i!4tee&?e1#k=#Pu<9pIL^`es_|LN z1B0ui;Fx`L684qOD_ZzB@Yu5*GgiBSzlJ$MUOW8TSXUihAIj=SNL$gd!yR5PQ=Gr} zEpY75qv}vejGd zCrwr{f%apT?5=n}pQS!zE>bx)GGB0vgV2$jlb=e5KEg<^HRb%7_u=Ar76nlHnE`t4Ho0i83zXjttmZjKXnp` zlGKEj{4)RmB<%y(XX{$4bz-r08;OVoXJ!mJILQ>qX%hXR+X~Pfp|T5L9QyER+*S}y zvW>8sEXiV$DaL%>00ia81pPgKodS9jAzTg2t&@i2{#dDTMA(tuG&pBm zD)i2O8jCxVX2GYo0LSOABXI*5G&smC`w@Mz+85j* zvT0d8(Jm}=`5shvuzam$G!hkO}gTY|AIQGsccP9QqNpA$P`6E-6 z8L_yCfh2kik_7>IUiKaKOLq!`Q@h7-jJ*ARQ%SDE=6#VUwX=*JjWn*q=JO^XeuLVj z=p^JmIP4VeYfR*021aaqb)*-Y>N#YxiEtuSQP6emPV5?!8!}qw0ATeXAV24dF2P)a zdl_A^6v%fTI3wsNzPBk!5k8xEj1gZxqMtEb(HJc6hIZtPc42`>GO<@(Mwo6@h-es$ zWRkS`kSj5U20RA9BaEr*MbKPT42La@ z=|FO~u=dog-2iDAj)V-K@un_TH|qfT=+(9Iy0KrJ_ zlaJ?Cn-ftZacd#WwxD440*mTDd2GhISs%FUm^=~r{V3`l@Xxb?tkK+_e(rE_?bdP<;lgNp&rM!rSqT97CzgoMV{@ z{{SYFqX(smRcF+*Y4QI6;sun8_I*W|DaZx+sd#Eq=vuDQHLSmCzlavki_j%e)Nb98 z@9kMj1xfTNVjky7rGD5q5~`-Lrbfd(WQ1e+))LF%(6wEiPLKOh_)h--2H_%)Cj_JI z1Gn`x&pZT{#)`aJI(;YOAA~hdEj5`D*zLq_qwwI?Qo~L=qN7qK?T3vt+prg0sDfYQs{-%@~6_LPAT)IgSdM8LOMq?Wv6GLPW!)Pn`T#+q;bOd(moa?z8c<|Hzcszy zR~+$!ilr3#lVtjYI=-0aWLIqgVZzH8z#hk^=Sil9)3IvWTWJ`{2DJv&QdASbAAuB` zVZP;`E^UVsAyA<3MhEBCruvCk&(sa=)WSI7-2mbw2XS(J$8YoAtyv7ICdG}nMt5*p zLii`12=9)#9@V0=&IyCDFkF9kU;DQH7*J67DdQ>QLC!+8z~2-2nL>Fc0sSUQE9jpA8JJp!;K1IKz?lDJ>Ev0v%!lC#XG zI6LATp8V#HN7O~Hw%EpoRb*lgcF7Y1`QX&JO67ADb&0L6(XHjSwV6tfm(2&iPS~v> z7PS-H=4a7tgpfrHGeY9#P2NlA3|Ed0bNG7JmcF2+&~}Tb&0rBDx|JR?o?^#2yC00hWv-ZFg-V>}Vl6n$AQhD@$|lf|!icJ-d${t=5<)=7Ni zHn;O4i2wnx3E($goSI(7s#;I*K;<5&o?DLyYSFCHXjgXrXA}LJ`*=nj4jF$QDX7&{57Mu%MIn|024Rv)Zx1yl#Jt(^sO&F+CsW3$D(Oa$+j(W+9yZKMRgpg z8$Wpo!5CrFoMwkPTj3hlscTR0j8`EoV$|$qNe}K_H88Ki`-B`2M@&+6VwS1>!)f;| z&G4^ZgXe|r7BWB^<_@DihbO_6HHS);ggn*4=O55TGiR>gW%XfC&2}gNA`eC>O=}(qDh;Y+F>|Yi&U%Nb$ zd1QU>F~2^)tu95_T$buuw)oMh*)jVsi0)x$10-I$5`8io=}_rYm&Fp2n%LTl_Kxv_ z;OZK^#lTKKeIO%mLyV8svHF%Dq*5hLZIRpjQMYwBb{-_Zv~u6PjvJT!`6M#_wWqR$ ztk5MP?eRZayisp2iymbkayycKZu!n}LZeRlBqwyWEZTfi)@>XCsK|h?`p9JkRCekG z5}{4$Vq)4f7vm1OGKgjI9`#k}DByO%sQRrXuPFK7awFrdQdU`QE)+4z5NipnMo5h# z1fN_LKj$>n3QJ@zX?H2bsWgq|TllI-nnwB3NWsUkU8H`MT#(ws=8<~eTJZ*(2um*% zH=6m|u*Qgg0tOG^Q7RN?tBASex|HvAEpFw^`qN6`&l7o3$}^7V0FFMjN|iY5gPKil zXHK^1DKM}g=06KRq{ZZDWBO>?xN&MhI3o}I$v^HS-kq4O|ZB35FH z;sB0L3eTs+q>-5d;q_6U?8uGQw6gi>O2yCIiF_=gxG z9d_DcctjTPIBwsQi)qzv`O-}CQHLYf+yWFu1e zfoA2EwHUBR&-QqnpZs^ypRuCJby|87CyYKQ!MFY=_Xr3$6KTk&9l6^{;jr(g;xB71 z#k)_5Ul(oMmDJ+7LQl&jqO$%N8RPu*=3Wki>G+4YXtsVWc)sX?tO?^F zsSr2D>upAJ{i&eoZlvQMWZB5$sK#;rO=}!4D$-1jcHQg=@ngYd2)WQ9aCppfx&m|V zPAR$-I!o{s*J0`7--mL<(OhZQDWALLUj`Za6yu+M^qnf*8vBEpb`W@-r;Gm2#xo_8 z@&5pPWL9#GRQ>_;N4XxM;lBv#uoE|nbUVOMpDOa)w|;aJu2QZy+7szqVzd^d-f3cD}4!$4+Y0*BaAJ^kE|Bm z{?^tkKTKAOGp!e^`_R3VUqgfO59|kJrZbNS{7Ka9aK9{fkcUz1N)SineQUBAoSOHd zM5rct{{V@9WY3MdL3Fo{$6B{l!xWY>{GL8p62ph(u^cQDc3r?g$v6$#iImCoKoepT+H%VX5C zu_2rgIm+Yz0N4F#*arr89J%1*aUFhwhJcW$3S$aM&PgL2RBFS0Nawdn6L#X=xMP|v zpa~g<-S&kbXN3o!{{US$y8~AtyVOFD^$j2m$PwoU{Asx^p~{FPzr6eZ0AafUmxCDj zx%M=32QB)RAk?*~6v=I)u)^Vt#diLuAC(-mV9=OFs$gOARY z=7Zf#vlWf-JEqjuGqVllwolimTzzP}?k8((E5^CQ>M|a9+xdD`tG=T0u;zzMWB&jj zHw-}em_9T0;-4z+FMJtvMT`W7R~hdoH1rzheMDFA`Vj4;s}bHtEJx={mMorG_ZRKD zIKhs>HCF5tnmxhVUBo)As2GV=dBFjH$)|N-u@sl~<&I8sp68G8qUd`No7l-aqyP+H zl)*pYMa9hTp(0)qr39G=p+uk;nf4T9YNR<*uA%Ag#-L9y#}=a$LNNDWXLu zEi8bZGoJp`n_^B^u_E|zkM&ZsdXtI)^D$RLxM3k4?Zp>4%XFYDGc3RA-Q97)#&JNvZOJl3=jOo&x930ri8m4f$icy0 zC$=WN=YT*1pYz||rS3O4y~&dIRET193Ii{`PCik^0cM10 ztjHhf5`sDcw69@W{Ro)C!+bMF`5c|NqUe_fwi<9x%*87)Z}0T&_P;LQHp0 zbWb1rA-80GqREwyq>4xDiap}}(#m*8!k4T~wdAqqf*XbXIHk=cxN;`<9G?p!oR_oK zV#ifeAj$mxwJx=~7U8DkGW;^s<6Y}2IL{k-0N6k$zdu@WteYXm#Yub&6~bIX*c_6l z1Kz8ge6m2k0@EY~P0PoQndEUxpHS3f-wr1rwVtUPW1u4#{HgPy*|Hb#e~c_!7MDy^ z51FHv8)$AVYzZ=JOOGFE*b!acL^_N}-91hZQ(5xC?u)$9wWoOZ;&p%qKM>w7-rj3e zx-`22sWsHz)4n)-SG0^7H3=?2IK+%jN2eyTmJ)+nBK@^Zjmr<(U&c15tEp%SC(Zt| zVfxoJuvFg0inO|$`fu$~V=Dgu#Mi^}#t9hm*Z%;oS-cBdGSyYo=ycE83&48Fjy+5~ zC>tBfZVUKU62erD%%xE?p|SXd@as`>4~b%sJB^vLImctv0a-dVmrul{B+KVg@KyH~ zTBI|4-zZp-Kp4gjL8#@Zw?!t3nx(vQ#T*v0L>0d8l>0)CPj0-`CuOkFN$qZ7l(4#) zf|W!GCO|Ec+x zr@BDXTtq^aRcxya4n55ZQ4)ISRr^$eK(?};c;Uj6-#m_K*k!v}HEAW?9L)Y>oS8m+ z4*Y{s^g?zt1;y|Rg3jH*A1EM$`UC#})~M#xO3bZuc_dPh_DX}x4U}`wJv(#T@v2VY zp`RuA17w0MrLb5 zk?l|soQBV*Bd5N7XttqY$*)+nq|4?jCmHh9vF>q2g3OsUy)*)%`yQd%%8BR@n%7EW%ge$gpBMhSh!vn=V%2pi(?bVAJRLjZ4 ziY^ENyW_7E0d_r7M2;8B0HmLI6R@M1A)4OttGg2l33WD%m6)j z@99I>IZHA4o=BunsRNvR;Kq3$hI!2v7b$i>7RMy<%ygA-(16bzz!1a#0M${;*@cE( zY7pwF5VZC?Z*1 zW9U4&3Vw^md;b6`9AfuFzhhp<#eO4%1%q9^Ay*MANMFA|3HtJVD>p`y=q_m^qtkva z_@(VzO}m!aq6>m9Z2=ke;ELv+28(xB`^xr{M7Q23&~;=IUidppX_Vz=w{Wa}fR1Z8 z;p#>Evvw=mE~w6n#J&-X?w`VukiU810d_a82*LENJ&kp=#mxuM)zbWV;E55TZ8qM( z7F>CnWHT!snLJ?rIIL$w5gl)TnQBmd4I8+;BjP(n8g=)FBv}tEEtcK0+dD}Ek=#^M zok~*ol)o{`39Sq}uYz}%v3;vRywl1MLbP{C6dz3ST?-uq?IixA4!9SH(H<&iYT>LB2yrSA(tXCiq>l+b|p`lDUp3NDT zKMrnf(`wyWToogmi$*7}etG;U-sLHzQ9c%#5QCy=Qn~x2Tl0^hAfKjaE1yxa=$eE{ zy*x3beE14}!s>C~klcThN6m*d#J024?UGR+gS5HH1cBwh%00Ipp46=t_h>nnR#&*c z)@)oW_)-|toQPl@J)5;sg6=iepTVg_Q(UL(zLWu4xDAVVlNiJ z?8$PI1{mkaBOLV}g#Bt#A12l&ZxbxJ->pd*RRvZ^$pn3Ram_mw#iq{6#;>|6#O<0MhZp!uE4?ePyrx`bN!Hi)Ab-3d7K$Ib_TO3Ui<-w!1+>65uB8NQqY5L8s5tuPBk>iiVAh06Nv#Bf#Cn`D6?tvtO}!a%KSum&xntPQ z?9sIG)xyM5O+MXEW<+kD+q?Vbr`g1$@3}wxCh?Tau}F$D^G3UY_TbX?L3gHal?b3(DCU>(`Y%7ESjdBac;3k_GfX_l?QO=o=77e)Rbh0qZpTV0fT`UE7xhr z_9QX?063>+8dz+R=(0Y>vw`y1Z$1Isbr=Kb_*F*jYA13f@aBT9WIALKk~ae$Q0G05 zKDAF&3A9*0*)m(IUTJpE9tK|G$W4#<5Nw*pR9kmV{pG328P~c;gI+QhK+@EcjmhSr z$>$^HBR=&}gxA_)l=@i9UkB*7a;sb8%p~ni%Zz>}pXZv`%bG)G_-if7xV5wn5lM7N zH>R7wL|0H6XNcLzS1WaD!zoRkJKwc+15|n`P4HW4Ndc3Fp&+ zQ0c&TUCI9d;W5^W4?9AfFipUSn~uKJlp?x{&$!m{g84;%vo6Do0;1W$&%bItnon`3 zaf4a6eeCuUV3JE1&ItoO@l|e@9hn^0_JtN^6DVQ91%N$|N@>_>Sjg7a%H}Ppa#6AJ zmIMrade)JXMB3&f>3W9U*5O@HmB#VF_6>~HsUcaFCw*?;Z=D43l^h;$06*hHX@a^u zK1+z>*ulwD$=X36d-{Gg?Pz)AYpmOXLd?8pB)|3TO6Yv7u$tzZm0-Z|Gr=SS#(%H1 z9LQX)igmjd42l@A$tnRjq1lC)t8kKM3US|#ht`c60esF6&JRB+E!LHg3lanJF9h^E zvr_j5sP$Io&Y4a*`;<9cHXS9J$N^bc=M9_+LQRPs-M*N-0##1~9Xl^={{Tl|!#r(q$JUZdavIlB#jbYmcF!F1#a^fdV=E9E zW4EqY(rvwl{D~6PCgbhx>`I=Mo0O9!-40zg23^KdTRegdJGMPp5wU2ph{|w(iFq|^ zxW<_8lx_PyaCtt|T!+jmJyDrGC|G_)o`JX{Cr2r5^aN>&|-S9je~tM8Gs;jBs|5pY#1_*i3)+)!t6%2@Czx{OAoyWD5c+V;b=78l_0jSI}OAb4Mib8Nh()5)il^Eb> zpUl(r4oydksU%VJ@z`TI{{RXJ-kZ83#k;w+bRZ8i*i_G5$FKMIqyb+sEs5F;KoZfd*ot}?2#~*#x^0>IppPtKb264 z3u&%*5sdW5f9FV7cOqyk-{pcv#yV#o&WoX|k;`t-vDod7_$RF}^C5eQA{@-w9Z4UT zG=$pO2il_q9AAZ=L0WWtcGSm&dn4D7fu%Mtdudl-q(ngMmn1^6E5NTFh}9tXT&iFciY_TaA}R znW75~$Y2|G!r1*qG};9DWC;#9fN<3qU~Fh^o3^D(KFX3{2BVghac@c_}x zQke^Bq$ih{usw1y-#(eDPUCYLx+TPf8+@L6qjdbKG$%FGKeBb0*g7nQa6sIoe>yIO zc(ONLR^5E5U^qF>20`PcJED?{cMxA(N1fKieF$PR`C^sOa`r6Sc!u$D{*^d9xi`rZb2msLO#CusN_StG;Q^3$)XY>K>Xn1MLGNp9I?4u?puoFp&o9PzXOb@0DeNV zEoxed?@cPLccUBva?0F)Du;XM$75E(JRvFDd1&jB2*^|E$sBQ0uSQgLG*`mD3%rqp zNW_8je&ljL;3xH{a*`Uce#gN20gVl;@u?XF1Z*?y-m`O%){N1$@L_}xvfRk52k^1L zthx0lxBZQ%+gwK)>TFj7q-O)C9DOS{XR)ky)Y;P4Q@6EQ+fhbiJMV#IA@h!;5CI*! zOq)2YBCMwUCFh`AymgYBICDnu*a=}f0?puyrGy0Yvi&~?Z8>q5BqD_-Bc zw-Q7e-PTBU6P02?QU)>8+|?x%gP~g5{{UJMtN#FJ+qT$BWg|Hx9FCt_ES{zEl3wZ; zlSIibohmc!U}Bh_eR=IdQMnc$rQ>MU@NjR z07&-hpX*ZPbQZca?Dg$P;Swc$b`O*J5t@dOxlv{HCYmspT6u7DxD^MF^Zcl{Q04P7 zbt&yuWR>iUd~{hhjF0iETj)D7qg-jvENU($K!lYU2O#4koZ!=OVX0*!jiE+OM{x%u z&5U~eDx#V~ySZ-KE7i-T@@@nIs^oii;)~td!qWPTjtxd%pX{XL7##`xGsvOJC@zSl zj`j%%%*qsGWi!XE3eRDy3fFK9!*$ePjqr5(W3@E93sTY%W$ItBoYebb)b zhZKOG&i?A!K`b{e!A43s2Oi@ce+p~NO&8Zvx{_ZyD}<97ExtAzyJL>@SS*OAyLlhX zYh=jgFq3sZPxID*NToAgxnN|NBQapBf-~HVbUpnKr5g-~?aa;PPT`LObdi#I^%SlE z;yBd#1|xxiw;=s~qw^GQF^#IpZz?m~zTklFNiql5{6#-N+`nn!lM*a5!x3}9J9D3L zfzNMR1{A1%Il%Peuleak&{>rv)g^(< zpvZX}nlXTWnEwDKi;lv#iS1p?v);0?Im0e?{s$TQ(1hdAzXrayQ7Ktse00o19Xf(L z{#2Aunk>aToU_h7?*szJ)7OvkX{aQ$2cdTB#ezFkhRaGzeWMMsFy*~S zEHnDjRQ0{ZYm}$)P0FX)?zG6}OmIADhT{Njk$tJVzziniu$$HTu5#Qs*N zt6Q!C1?_EGLOPuM*aUtxe$s7TF$KQl68I0m>WSs}g5>41hSMRz$30Bo(p78!059YJ z004SEre3Y!e-B$pvckf77C>_4RwmD|5;lIdv}#SQNzrUmm%!Q_iX;0?%miQ<+-?K# zBd6n6&d{E$uRp^}XypRZcw9CJFCGc}s?|gqmF~VD-K&NB31!a$8;+lzKQ6TWqOh+e zu||Il-`ImHUf)1LAH;E`X4dxE2|QU3tyr_B+rSFsJk_<|JNJUWhjQZU*2V9=aFNY39MdPA2GC{8|2`V zBAotat8wzD)SgcgUp$1#X)`GwG`5$47=1c_I!!)+qZD3)#o9DB(WS-ixTZMOb1s`3 zoGRm%50*S~$0VLfB-Tk)TU+lgQG}RXc)!E)sC!GR+=k`nwp75!peHq=jJlb+Z=qU0 z6j(`yZAE=IG+Rz7*^}(wV$?n(zD5zlszgC-fh+C&v&T=R77kL}-YL3(gB|oU=av9$ z$K#wD8e&lhJZ*Cef|hbdPa|a61pPny^jkpW^DV{W`(=&R>+LGX?*jmDr}0r{hN95* z@qV8c$`eKDr4`w^hv7CH6 zZ$4s8Sdu}&kOPliJJsJplyAISRmG?VfvRA{ep;A>@En?(#r z8AQlGudO@kKWN)4N#KyJh-J=4%r@hX!>v`&l=UE&!cvC8ojA@5ae?)!y0CMiyXjFv z2D`%ho?a7B9>vx&JHw)#$$ZTsZ38}W?1 ztVze?^{Eq+W9OC#Rbq-bln$dD53MxpODn#yaS3HEhmJk}09vH<&`Dg1Elw-5vTS5? zm6Hm7hcxybtSs7z|^u~FnlO5RE z6)q5@mb*btRak<5&%ITxqZRcjHko3wDYl1Ws*tiN!O8R^Is9ofhj#ZQkL_0Qf5<{m z%A@6!`JDF8{{XI&cG-(j@2RW`sc|qT_=r1qW3L91xLMo<{j{&P3%nQOZtijHX{7fR znnk!Jm@$kw`X2uP;Yq6vShF46#kV&-jwrpyVp!&pI9AB|bf<8!D3Ht1)lSfUWgpI$ zGPtc_7BWsE-exJ&=Rg*LJZ6gNbPL|e9s_oQ*Hr1&nB&>?fc+j6M$=rAw z9RC1Xt;fr88&N_sNNzf9=8L3e;U+-y+DrSu7j}CL{{Z@^x*sf&2b%(97Z^P|P*$S~ z!hS?7x#XRuiv`&m#;0ixOD{Ye;8AS{dyI-`(B*CvgVc1vq}7VBZn_M~9ms5tmo0<* zzO)0d`*@5~;Yojf%CKVDCD8u>SUU0><^*HXf*sQa zyb%IJ93IC!e}yqwwlS{Jc$8#+bPu~m!OB2qwELfFka5ShX%%PKiL-;{-7vt(&lO5N z0{%pDOFTn=oWu?rE--$yn&o9HGBJH4kb>vsJuxp|tu(GSkgKVH%^1`G1MdbIs$r4EQyOIjcYFOtar~rLw zTpSldRMp`lGDK9KFbF?|7ZaxMpvKi;53x%92nYF7-(cj^QO5crLkmX8>cg!jB^TUN zsU&Dx2A3doQP+>ki;t1L#+_c`SeiiK?HN^;KhL&k4n$KLypQv|XdAGN_5=BV4K=B5 zHVJ%DGzaXgsDOZZiBI(ByR%5dySiA+P4URUu zWDY>)rMVaHAtdlmhOSSUWvDR81OnU=DCUyfT+YQw{0A%znD3E>aI2A@&Z_J=ip}Ah z`(uT69ll2E`SC-O3#KK`lEFx6-AiKzM9ye(Y%IDBT@G|4M|Te?*|9=n74$7k0#-&p zL7e_oH%*IDSS__%Qmp6z$2(uHJ&hag7i(hezNxL+HVl(vBZ1TD?@7WeYEnjxpN_8< zGYsNDIQ#LR>MJ)zHfhfKn_6#<>>ZX<=}Jp&{K#-saAoeP+Zhw!I>rpko|%=uKwR>S&go&FwG5SJ0>KwJ2rJD$)*p z`-;j*Tpo&mQ$MchG80GPm|JKz!J40s!EnD?iG8J@eb^?NXCvIoXmdH^EXkuUS`kJ9lSk zJe5Aa)k-V4xs~=4X0nRT>AXhSUGagBZ)%;l8s!-b_vl;g7ICtU7jGw=arn?0B6x40 z&KkmS6m>vI$GH?(2is~^ioq5pLQf|I1MQ#l(tseEX1tBkDPbjgd6E!VXQ4jSXgg?U z&8A(rGX0ho!5DO4aC#AnzH}?u)n^tq5}a>c%#bieWUeQ^?= z+0Nsfbt4qHnCwn;lFH&g61Y$f)@XCb;fguDiMNo;tuI#O+jy4JUzl?+bSICy#&CMj zrD552D$gg1E!257b{BiIkrtr4kNxxkr_O@VBDnD`zo!8Ao)^^CFxXO%w1XW9WE?l6=UeK*QJOP&oFcxt^l-Z4QUVz7@S5d~+g!(+m!C{HfYa z+&LzPjbp;sQXFb*1CCC8dmnFlt!x&N6~&&LDJ^4mgpP>h6Zlm62D=d;XxW+z^hX1e zu#69I4@w4Fj_&P2f>I86+*A+;peLMD6_G0=w0JQ@0Xf_hWRFpT4k%zjac3moyOtd1 zr>;G^=k=g2iqga7g2>13V1{3y=Z-#~Q zNs5DmBv>Hy&lu+&$E7WT%b^Unt1u|g6=1vpl^;=0pb%UkakxfsJwRe8yBZ*l=j_4S zOI%}?{o7=HF~{dl!PK(`xE;KOy$g|ot}&m&jZj#+y8dnUws^qGu^9a5)SDt3pAf^a zk-4+~08GOZ_~wg-gf{x{C;dT)_aqVgse`{_-LAAi^IqT)oPnGZ??Ec})ViJ`w367F zSdelMqF?|A0DFBYUc=?oea^3KBzs^ifG->33=gdg6j?%4w3PXgM*@z8)8r+-pyG>^ zm5TEhNr1M$nG1ibLpL7%LH=~^AY1K9Hre*#R1cUFxAMkmXeA}sW8Pl^Ox7$|_1aak zew6uL%2sGp)GbwUHM=GT4)oeH-j%Efnme61km~#K{4UrY*xG0d5|FaKEoRynXB+Yd z;M4&Ghf|LsE>wm&EN}@QhrJqxfgR=aC`6(_py!Zro+!HuD~(&7AW50x$!wj^2n2qd zQMhVPZ*8RAT8D>Hj4&q$`Kr(3|%LTcc z2bK>Oc>05n(ts+;*ChaXRmmqHfr0veS^@c$n86E?ExSk`d6wBFzT}Loxapod)kRo_ zt*GUFCPT7)DOeGN+7xs2W&JAdK3Q7#A{u6ebtdGqAf7%pTLON zDW_lHp!@dZlaY~*4t;&aO02q;)RNGJyftkK7+8X?*kL8H1pYYbLz-`LRnyd|ci{~V z?%kwVu-GCecIfNxl* zJGtQwLHs_QYPq5-tC3F^h$0^}QZ_n>7~{Ge{)USR!_&o@x)GR4;~WPd{V1{*DjdE()gt0$V#~<{WPLdQ06f#>>L#L1 z7sPvzH@%Sb7-BGgDo#3z(Y48<_?(26k_nLi0Ch;m=TDW~Ef$Bb#A^vyvpeqTi4(8m zNyUPSu>Sz~POMmd@R8SInFs05`Nb|qJ0M>aSj-!2PCx^ZCV#CC4FRR4{6Uvah^>aJ zJVBd)c^LW}ipq2&H>wQPVF2j#lo`Go1ebv$X#JkyG_#w!hv|sQQ$y z{7ly_v%_s=0RsSATc`wnwX7k?t#Hw@6Ml$83y7D@IV|yGC-cYSiX1_fKehvn(wOo( zd0;910I6_&1z`rGBW}d4&)roaf%@jE!DVqGnh50kL&A*2ZTY@jen%BDk20}wlZo+D zc$-gAy)G1BW6f8Knfeb*v=84Z3X{Y>jyQMJpsl<$X%`8j5aWLV=zNKO}qP zaa21H9cBoCL2RrCUB|ii`cv858rO00YfADIHh^FOxH;tG*zw!etT{^&>l@97yDO`okm?q^pZRG5WD)D_MZv{%FIrsMI}{fnG4CKDvOS2Q$yhmMZH)_f z7DZCCDa&JkayY4EmxhCNJYiLr9XJGo@9k4`ff`zGhIJrO*5!RRf^$-;MKEij)M)x; z%8)mwCnqh6##2nF!@1XJvrA+^l0e{hRX@_X*lT#$*l0enn-=B+5!H8TY<6vbR=GvqHe~0F-sD6*pl%$2F~Z?%f=! zki_%1%+3hy{{Yvm;|6B=R*dAezZ?Cb^D8JlFdsSp02=pBd} z`Zs;$OL9*HgOl{CT-MMmIvrBo6p0M#q-1R%@%Yo$!fD(aR#Sk=SPoD56;D-QwTU9V zh1|4@xMZ9%@H^t6$FSNQF73!HhaC0>rrHT6DZ2$iuvXxF#PdqSu`Cn9<8L`5CoP}D z+L)Sbk{EWlF$EbtbD!3PGC^p}1H>C0N}&TkT+l0b8#bP@#zfIEkNA<7Jw1&9=t9=9 zAz0u$0351}XVd=x)kj+mU#R7g)ykO|bO(Bj9=*Zo_)&HZD_of+KvX+1UIrBO^rdoI z>^RKn%yZ>;{ni~vryYK^R~Ie!7CXzO02vQXNIX$=K2%R0v2?q#;HY7e4_|I+2P!N_ z;yb9<=3x0Bdl~fq06CysgrD$}xQArWuOlOA{HP96pw^+Me9)7Xw}NL#Qh11TKw#yx1c3Ir{yGC$0Oj?4#a`}CxlPM(8X zQs0C~V=L9Ol1cn(`CATK5y^EM0?e$e2k{Jy(@AbCG81-%wxR{(1=|@0uHuqjo=cw;tUn2Nd@}`lRGDNp@L*J6O3G{V6*%9I12~Z`;cV z6gkcq?9M+bT&S&vt>w7RW7xpsAanZAqL7*=hf=tTGGl&7J4qS*D!Em~%9$tjq>UJP zAyP=d81L;<$*5bf_0;24^B&n(rZC**lT8J@#9P>3l!<^H&ImM>!o#L^kpmlOq*XZ_ z;Pl6>BrOvv&jpjGmnNR$xC;6G4QQ;;?=IzM)AW=9B89=p<90}=WEzppro+2*S0Lk~ zKLj2@#}ur=a}lkZz!pT5^Z{Euiq$Ce9oEE=UR^?`bsjjTDd2q^`j|(AEK_l00MJAI4p=mXRm5UPl!NZgQvVLTK zzO@ZB$7N!{*6nw*P6-+Lgo%!O5ssLlM&#I3ytcae!Y%^f62tVNs|_LSmXfKCSe3}= z6oLBCOK+h<^2Q=~0}ap37+v375A%u^<4vAGc=!jqHc+m1&Z^!;gF#e(uPuC#v(F%v(AAdK!gTS;9*dv&Vjnkw?{M!IK)qLavr z`$iIQ$_$~u4n;f3iKlVLP0%hkE9y4{r~!P)#_!Lk^P>I2?1Wk<8==?6LF06I=iGut zHEWD|-D@_A1-1MV;DV_AKA_QbDpH0QKm)?iNJfZ@X3v zK9xEGaLqJlZhbO8uUdxe7EFfW^vN<<$c{-kDU6?|_)|@e#Ays6Hp!{PqmPx&Gta3U zeJYlsV9{8zC|RNF&Lk&4k7G*0u;sU%G4m2SfEZ)+{{TMJ40CD_Kz54)Mn>R+ac|C; zhR1%B#$s4fEU-VkI6ZxH*Ylx?NeO#tpvs$d2^p9SqNohNpg+&~P_7)yqbs=5=T(ja zETu;nhk^9}032qEG&Jr++I^co#j=?RJedoOfIrU^?$E5HBsw`q0zL7e7$6&83O@}Z`!sPTU^&%4NuLcF$92lS%W+&Pd9LfLWV*~=NvA}Kl_q3kJgmAfSV z)3S_z$JECIfWtJoSoIwiuMi~twT4bGt&yL`j#evbOqz&<1{Wi7AH=(}`u>!XVPZq5 z+Faax_g3VNpDK+10H3WEmr$`Zaigx~5V7hAbNY1#kcP=^aGyIxzvaLI!NB$79+d1) zGPu^bo)ARVj5x^+f;jES6s>Z$L^A5I71**moDr2wk6NxtSe|&0w9w3_bdgLp<+9sz z_4lIAC0^t*Y4)VIkpqH9{IZ(|`P1fhu`bDu7B>bjCSf}w{np-uk7LG3{Cm^p)LJKW zFlp_uM3Kw1ACQ>Xe=ZGEl0#CPdJ;C9antRxu~iDKxD${2-6<1U7p7vu3(y9U#yWNS)VM+P1d8{X<<IRqW0euVQ>;NMbi`XfRQ7;4zsbt$D# zG5f2gJo^pD&{X>h{3bFl2@7k(7{ZN}-3gbq(ln07v z++zTV_Wg65ded`Bl#^w9od;0BS+w2Bo=P}kNbU6Zrl%g@)we2K=#wIun@O8!`|ITc z#yk5}sV?HVR^w08-ZIiI0{;L2PCEM&?NxRP{YrOQW|GWEMBY~l7CaO9W14pvmvyIU zGOH((C^-J zIXr|D_)h06$s#c7Gr-0@#Wgg-%@7R-Q%o47ULl7uy#Vt>&CWh%Y>azx zPoT6Q4dNI+WtLoS<6|BV(=?@UO$arQ5kTREAH-7{U?j?V5XU&7Bs(^I)F;$qlPHl!pzSFf zNvNhZ61?(B5RLa7@SyOczABJgT?VVfs!PfgO}vF`y-OD8;edrAQruw|Bz-fCeQCWF!K6Ch%U#S|0M3)p4MkWY)2870D9WUKj6JcO{{Z!>WYaApV@uM8dz0)^*y}Xk z4%&G{N+gL?WRuXJz-JiGHJqw4y^>~~u9c-)qO`hzF&5yFkWbgQ{{UL2p8F5k+fwuc zK(|387e#V#Soa|N{{T8(^9_+#P}MYaki{j^t0}{F+lp!|6yl5<{{RuiX#W7{T8Usm zJGWqcGg_$Ysxy?l&U;w#+yL)syu-IAE;IT4Ygp4Wa%|>xZy0&(Ryi2~9XIFmts_k? zg1a$pHT$`N2X+tfXBZWtj8QjbX1tx7@3%aYyRZ1wa-h2rZ!S*^**%6oT1{97i^)QT zGB$I@ItnZr4RW$^=Hz$XR+2z9t;idU%&Izym$-pokb+gRK9sc?BuzTP&~m|uB}(@l z!TM2lD{FBJr~`TrQJ?2cyMX3+&&)%6@lpfUc2XKL$8h5y^ZC#_j~9bz!r+t183K-i zCb!f}0&$!-bvex;mu>YJ!sW@xBcadp@ARNdvmN{r0;?&&UN;j-qzMvnH>%W zKq8^u!&1Dq$b@-Ec>v_8?N6F4UZrUyRZ-=!I5^1Q5A&L$ zk^^-rF5LYGr59mjH|+p}3d+4m$ULvpC)R+nK+`r0d7D7)7J#s_UaS!bQ0^VsurcUp z++3`NOYt%)MFQ<$aKPk|K&;awYuP9A)cJV|Fi7O_>6&6uu@QFNxDlM4%omCPVVYJ> z7j_4!~kAc6r_>^sqPkaE~(+onN*87erz`cu8fU>7d`04cUP$5rP7i?Q0o zTik*i5_@AHV?O4Sb^=yMmNWi_V#T>|F5^48PWHJ+%|vh)ejOmDxvu8wZS9&DP4)OSgvLdv87|iHnQ+X@~R&~#CNldlM*q& zCz>`BNKdq6lJN$|IodjYbOnZsn2HBTK5tbAtq)MK5u6YTrq=#0J9O_tb`D)e8;4A( zk2{V=<|3(1?@YZ$>C_^v|sqW6%x!p+NoP zDCzfc`qI&k$&VU>%glr?9C3muN-5kdgU=YkT$S6@Z^txREG?+?xws6(%Euiy65RCd zQz)c_INi#set6iNagYAJN=dM}Ev}<=69s8q03a6!kH?xE65SN;U4z8Bgb%fEWMB^f z_Weymgk`WNp?=rLmlp08Si@)UWk@9c6%LYmf^5^b_>YhynQ%bQ-tF`?E{RuY)YHBy ztZIQTNM#?p1&#Rx-bW=2p&HXRqNQnoVCiMdw zyxyOOrDpK!pnF>vf8laz(~@16H~kN5kRuj2s;b6>K0njJ!s;jvF_!K<54B66*ea^!_p)vx43LWbRQ>_E(ky8iX@n5ESk|&#I43TC!NFjQsq|*5gk@7%s^eEl?E8HY}KeLo6mSq7IP7jQ?CQB?EyPhaq)gye}u-J@q@ zl7dG#=e05JG)f1_9qCipGLh3f41+)nc@lXFfH?;<^gSl1p--J1AMN9U-JhXb^NHaT?ew&6t4U;tX#@|!{bX^h1ts7TeM7l zIsz&COD%+>PU9`SIpdMTC7_K#z+FjBeZV8qhf!Z)xYD-e$nAV>Vqus%8W#yR%wPRiSjQ`14e@Ub-Mepx1s zvT#(44CmZu{{YuTwcI%+*kAZdZ0F3@ml3Z$RsH*7j!`(tJ&EJj)rQw>C>%15r|Hs@ zgSa4gR&)p?(Jp`EO!p0A-upCWALeB zv{KNJYRIfW+_*dw5C9L){3zuPR#<>Ve7kMga-%0?2cOG7&X&Y`%W^|$C{jex&4Y%> zA1~oXgSehc$faenDsV#pKVJEu6YNAZeWT3@A}g=XR1utgJ5h1mMzm+jE%eIj-!bz# z{&emdb|i{TQX}O-sR9QIk`vF+{&chx9NM0)GM83r*yIqP{v9Z?w&BYbK-#{3Y4p(8 z<(cxh$LT^#xIMHZeN#`Ems@6woN??r3a(a>4L0rze;cS|o>V-XhrmCb77I${kL~B; zC~u0kd08UQ@-+Dq9HS1=#bgT{*?H*6gGV@(xeXniVuI zc1LlmY7NKOVsoCW@`Lr`2A?8f&P4O9tYvEz+}P!E$2jjzB!t^+P4Nb8&=HZyVn%6_ z1{)bv?B5#`)8sto-xPcID)tr|ILv}*t{Fm{;g10QIimU!-*Lv);gQgUaNGdFSm)E` zJt^HFx*_uIVtmbJLUZ#(8FGKTeLl2bQR@1OH1?M0S9Qby9HWqM{QYtKs0DT~YV4s= zHFaVJK_HA$~3Qq!xpB`L1b_ymvJkd%@6tSS8-dhPVV1K zP#GfJqk1fyd+8lb3Ro zY*4$>w7?juDJ12>0zXdFT@K8o+CHBz5ZcH?90JIAp~()?K75zVXwViPH%+UIU;|#R z$1GVN%%zGI0FIk#mW4ga(_0IG2{`Vj9FJ;NxZ2Q)?$NE`KWCkglgR{+&=EsgXiriJ zuJs)%6LR-!GOT&p(ExLgQAsv}O($Z-p11v@5G`mEE4zm0rg74(O60e#i!VL`IY4vk zO-jfY!*Q!{?I-||^BnCyl&v3mJX@ROAa2k53g6chZX~W; zO+sSqa5Lqz5)L{XRJ{ta5j8n}(o@P@D9F#_MZ(u7`+dex7wX(`(t>QRGU|EanG!b` zRyoM)$Q*i8wZ+Y#%UxpnLRdPDtWyO6;2M_%JM3xcn$)i*({6yA0?J4y>&;A}qFjC} z8#em7jnaLFGSPrH6Uq1Xu78OXv^Fd?R!1lx1ZSf$J+t1jdJSrgOJ5P*M1n{ZC(K3^ zo}FlESQBZNpz+?bZ5uRYPUQuefGl!-anIvRk~@byrK2O0#raXR!J6}jiuv`I1=)a3PTPH6*7$}#=Xz|L!EbThS`j(<~@V$S>eH*WQ^ zcPC=A$GL&e-5lq?6z!nwBE<^gO`Puw)`hT#g+&3Ce}_Ew%{#E_B&`<5jKHTclboE6 zDLad(iy|16#3~Ls$9^fdpbhh})-}dY9MJR|&|6uWNZL$b2HTJ8Qr*XGOE$6$?AS1I zNE$3et28Y8LgDd&)23(<3oI%D^1q0Wyn0b^+$Xa{0fVzqg96~> z5J~hDFiaL`TX7cnz&#w&WhU5&=;c|W$YR3;^u|BNf$9#(4$Y^8+;G?jwGTliDUv@W zrj|0wt+muPHv#XCI{Hu~?j&~b5YjARcjtuwbkFBP)rq#o$r9u2^0PWP#?o<&Q|Ki1 z6UvcOB6G(W$65h9kxL`)+Snir@GyT$V_N{4NfqSWM%E(~fmmpsTy5R_T>I0ohPBL* z{HG1yk@cjVg4&K*OHQ%iDJ_7>!5`-}QbHHaG7_vwJBA5t(^?=2H+f;5f!*l1_ourH zh;CjvHkA#u;1;QE*a-~n5m#QjGI>1osX$q_)~{Mj62B_vJ9(fSRm;{|(7D3Bk^ssW z;Qo|!7cGlPsK)Z5J%mK#a6aH>l47=m)+b9~w(#jm60j|`T;LqlTR>^9qb{_|2+$F3 zK5XE29VrPnb3W%rv2l|b&fJ_g=}zqq=46_3!!F3?Y!v77p-SaF$R09762!d)P#w+M zHHw7bPH+zdhp=&XcL)~T-Q67$Ah-ti;O-VA!QI{6ePf%udF9;qo;rX1=dZf=yVS0l zhn}9Eo@b_et!H&l&%*teu6GvN*#4>Ch(#%kraC$E3V!OPR}PWk@|tCRej7#;r@p9d z*1R+ui!&~D_u->N@z(iG5%>+lXeU<3H^@({UzbBqk9!dM2bxZQ5;TE7#y9h8pX~?5 z7=^SELO?R-Qo3qs1M|-?Bx5m36$*cGKkz4hel}Lk7@MId90KHhic7(>=V*f8#}MQO zWoeI(GbnbUaVcX(UeldOS+YvNt0R;IxM9doTDTwv_71}X8XN0*v@ym7!)vVjl%1kz zTp)jxlu^hQoAe>~m7~m}eX>-d+<@ z!uT7H5!X#kqthRr8^o#fpZXS-CbHSP*7r(yXhDg;F$0eX3$Z!mV5^bBBN9vXTYuvF zHJt=c=}j&@2u0|W$w$4TohKI=q1+x2y72XlexRj?;(f+I*cUbpS6Ur*f~a=p5ynqE zUplB}5(gQ&Aja2In(LY(w)jjSV$JmBQ3rcn^Ec3x89oEAdeO6AAY>e~vl1FFuZy?8 zOjlGINuz$%eIL0~pw>qiF8|%UqHs3$LZ%lr<5*Ia3QFWib1*?#?vA6b^Xup9NH{|j zzrCEUvK?`n=#1r+24HL%3*1g1`@nXiUb*psXr=iS>oKpF_q|;WwbA%j1w1y!Na@{u z%Ozl@#rmV5e=#oZ6@Y83-i+1)zqC+_?Oe+xHX8{Z0;(_S+0sMVXxB>U_A2$gy5grM z!qWlV6RBSL&o#!GE(TaEEw-{d8h5N^AyoEphsRKB7KV`feXN`DUho~k&|1?7@9B?W zm02>k{iG{Yy`UwnfDtO;>Zr6$%Hnvitd62wDmWmFc5$u+TqtZlu=WCeaiCJ904q3G z&Sul9IX;9gT6|39l-2~UkcVwL5}34)%_3T3Bm2~Mz4^U}IMB^F#wxfUqLEhWx0*^H zXa0KNtk{vxXP++DpeFSA$VlIJDDbGM`5HD-M2JJ?WjH_~@QOAi1>(bmC*xHO4VO!0 z>zwx-HUP6oGs0&Yh7oS1~>ZeqE_pyvdCoaZaB03pq=zQ^1-^ zvlIpmoV{m!7uSQzwwm?WrssFrs?nwV$cELlC?6~S&mkGbd86$qw`$%R)ytcLjqLs`b^pi^p-xX;zN}Uf-I@3L?R4 z>SXG`+Pobx$d>;ywsE9C(mX^;>%*fMFerU%ER|=T%!5rJl}-QClrFw+U8rQ*`%l96w-L$12x9)u%E4QQJ!CxS~Z@ql(%v4jT!;XImDOyN9@;ij`3| zjWc%Rz+4I}rdhu!jER%2WLy4;9t$3ZiM=i|Ru-jmWZbk^g~8=oq`9d&G3H+!MBMBO zqCx2FmE^k3mYX+L6xn9|(h3I|APfCeEvTo3f>Zm8Dv7X44dQf)}*rCx})6F38 zxfH1jHSo))h8srS6OGKIy}#te=ThP=nZwwGn{SI3j}*H9B3Mv;C`M$>GvAE45U^Vw zvx0XIZ<~TgR0{j{;rs8rh8{+u-)LR1u1oVOQ~r;Fd&tx6|fd7LXB4 zY>l0q9Zd{uUM)LAO9WOn(vPIC1}`rHlQ=6WfQtj1pbWM-!8Ye#HW%3D`pahiNXqi@ z;~)R<^Z%kx^o_p2N8*zS#8QD^Fu;AbqT?clx;g4OSARS?*XaaOF*_5XkR`riGZCh)4QV^ODVoCd-5CB(# z?8+%`(%bl`6nHo+kD^kcyDZ^6nJs*ZvVj+Hv*vc*?-MSu{%pyG&E-Lw&uLN2Bv&UFP*G6Q^YS7wFd5+3LC3rJay;)+jeBE&~GmHGrlD1ixtKO~wM*ZRN zAZ_XO_9Qq-2m2sc@yBW7J|qD8MpN_pqJyA&#%ex1o%Woo#Ph#RpLBZb099{6i9TRi z`o+l#>1hp@M0_Ml9WvG_QPBgUo!>eS_O_lm@ArPfO}a9POv!{S8|!D+0w_a*dXaK^ z$6YNeF5e1@cKduTPkuF2U)+8wR!dj4!kXMzbbN;-DEb0Yo5MDwRLg+o?3}MAzO!SJ zW=ZJ)Yn}-Bwq5vgyjtPZTYz{L1fW2?KV}~ zO=UO(o`g6gv57^7Ykwi52=m;0_+bUm9I8ZqWVy^`E+kDn+}T5T$1(wt>=N&2joGcV zdp)bcY5V@2?~*yqLHb_)`;4#bm&{NxWvilCb#loG&UE#WHW$aHde|yJgQ=qI_G`Z8 z!pow7A=hnt`7oBqdmU6zu?M_LnDUd{h>S=X0o~~L3C9)^^D^M^1anL(Ps3AGMzHsT zLr3bmO0r4Cae?o0co?=84gZ^f_|_?DJlXPTf^k$3J5e3J>a_u1Vk*d8U}|L=o_iS4 zK(}hS!u_ZL+v31hzvMoa+D?PQ{TEfuO{(p~bC>$0Wi5Zmn&O5KJCza z^`=xZ=sZN(!Bh-M>WGl|Gx|+UqfGRdWlT=L(cgR_W(VACLhFI+z4aT?h;~IGDS$pF zl@u-*c!YPQid8j}ffQS4CFzXA;K6e-AuT*gjM6@y0VEnO<748ldec}a*+rqbUovs8 zHOac8_`VDZo&9zl6J|!tmn3394pHOLVhq)$6p`Vaz$nrBvI~n7A%|}vHz3q&IYpp@pL}%vRP9#e~EPDa$>b*i170IBUpBCPKJEV)w)4J?Hb==SY z#`cR1B7PB4E1#&JuMGc=G#SBnp!-f<=3WRmD3vAXrz4_K#6qHv=9>6fgp5eD?VJ+; zDXW4M-%a1X7*wi@6*Hdo;08In@gcaC)I@ozF2q~Nyk%~KOkoL=1V3b1Xa}pQ(y>P= z?*K;t3L&i%2w$ZU7NUF!Pud8-x$v>)8_&5uH7hW^z{>3ha%&BnwaIk3L8_d3!qsUK z-$rt3^%B`cNKGYYzwwvw&lv}pjB*;d&1j>kixN}15sc)n47%Cm(J>E#xUT7L4l45_ zXKeNfZx77_P`;es4=iyn@&19Gq{-*ul_>q@^l!#83htQfa!K7cuy>ambdvs`NX;6@T`zN-WiK>xb znMrxgvE)tM3PV+k>2>l|hcrblcYeD}0HP)ld#^V8!Krq6y4%32&Xh@NW1m#;aWYc2 zcBY<@B%et{d4h%tQ`YlN4rVk`#vHX2>;}x$GJ}XR4?{hG??X zw<78=L7U`3m4pfZcF(R;XnNkqI#WDU`tfG;ZHqZ{eXpIaYSMOwvWqBb*uq1@vg^_} zr&@w{>mDWX)cESS?j$))h8jz^3$~UhM$K>Te9D8A66~v*z0=;n^IA71!we#0undA) z*MxI|f-X&WY;{P@1RLFYmeXM&R^+3_#rWN&YjI-Y9XlMSlghMdCQW`p;@R2|^@k#J z@!Ss7$XVzWDNdWFe;NO^t#|ZEJW(2bzCrd|kz<#LZr7+zw!yIY)Dd?n5sdA(n%_aU z?de>ELQGtxR*zA&;W17!2Iuc=aoV+TPYthaBo-fZHdR{(i7}MLdK2&kv=euD`M*=P zA8`^&51OpM2|0+szyP^uwU7D>Ha<(mdsSiu@BvAJRkEg3*OOIblRBI?4oZ2!izOE7 zh`uX_wOopMySt%0yxK+E9juXRn;+RsPuvP9@zhGccRW>vIt{p?;g@tus4Vg+qdBIDsD0-<^shtFvsRm zL^uOWerT(xkngtiZH1_>$|KveB1_~wYEru42`twM*}0msbO{;kBYi)QE=zL0gH$yQ ziXLCe{7M%EHSxQGoZwj~lLfcxxjmliA3BxJTtyjnm6gpNp=d6T_vpp?9y>8H$ouJn z6)ji38mUU_;-~o~7ZlJxCx!qORrb&42$LM=kx}iQ6)J>jNc+|UThaCVBAjvo8BmjN zqKXI-qofWaIlsGipJ~U(h=WE9=LS$d$?kMMvj-bUKmJiiC1^+?jlJJ2I^EGPHbpu|wz3-2$ZjpUi}y(~Vp~HirCODd zQEMjg06iK9)Q{&;l3?8zMB3__Xj^Gz#eza>l9!)wlsQVZ@#DA_R=f3mUU+=Zs9SKH zjC&{-sR<7g=TVEXHda-(S3SRSaciOA|1{`Zi{bJ{t3Np&i%dCyWV& z<0mg+mbSOlsdnO%k?r5eE+pR*W#pY{7kn)CepIFO4^E_NKAfdTj-5=<@>|7OD-pS8ofo%5Bbwl-*FHAF|XN-W$ z{{HV|J%2SLGsPrFEu7!rF{7Jvis?2djqW?}dVX#DP(qo?dfN1UAmf;;jTc@%vWaRf z#z;G+94|TiVJ+Z#==Tu7Rp86RsqG!;e2aP5#ZT`nI?U3q#Fa$Y>7~i5)XFjP$hA*_ z1e%Ef;k!UU(3Hx}A>ECR&qJ+p6y9Yn`ryIcxU@|vc4Q=Jaj5A6JEmEtmb|Yy$kj1Q zXO1@YM*PU>s4Tl|CzmDqFI+Z+owBwqQoM)+g*P79OKeu+ zndv+nepA&`{Y#n$*sD?M<`xED_gyB?k);d2k%fQdZxi^0T68;RR0+MuiGVBpRE$pABtV8&H{#0oODQsXnWaxMA>2OHa-FtorO-$Upltf|i;F4<2VR z{Nuw0k`g4D<)OH!B~-5P{M$S?ZQ}h7^zYZQ``Kmf^dfx|$V6%g8@~!f*6#MF(jy7J zxi7iGq3hEiCto93AZrJm;Qr*3*y?g7nm#Y@4f!2(Vy;nGpWMw~EcaR8?xtzv6k>BLUv-J9iz;103h9Dw# z75P3N_7e*+UzGiTPOgqxG2&{D?=(tAzY7fukfj#*>gE&A6=JPlI?QM}bqz2Y2pl+Q zqVOgq{MIB;W)Vz6aZN*eCy>(m+P45=UD+5+)^2CdPTo0F?M(Cw4b}9lZc@_02~b9a zaU}2!6OWF2*jBgme!|gj8uzhvnE*d6G3uE8d~w%>!$eZ*=N3A#NQf4!kwsHX!~M0s zAj8?g?&}NETkK(&OSBqGd?-SNW@YKZJH*P%uyXo{7Q;ua_(6Xp=e@_&2nFZXZ_Y}p zJ2t~D{jlP;Nu7!o?oSot_E$FQwS^N{bcZO%jp5!=3D3I~?R2mkD1C$wf7;pW?GX89 zwusnMRL^Ki*n?z4io%-R=&!^+YXe7;l3mar+$VrI z34J!GOgg!hTlU-Li;KR((!5+;%S^zuI|Pzu1&PE)M!!5kEnuO3!hznwoGO=80NyO# zO9_JwE12G1)ki<|s4e6wTnb+s`198fQhr*3p}?AIjEZRF+r64n835?}o4mk0Z z&^Gt-jCsydvvl_y`PE^XXD<{H$}kYjIW=TrNu%l=eAx6zVb%wtx)CSAwTj#CP&;lzHhI4Q~4|)Mo7@qqq)<;dupUV$USu831F^` zURbi!3pUD=Z%&+~C%g|#TOIv+8TqoIw6EiU-tRc3?KD#bd+q&B^4+HZ{HEJv*uK70 z!%t}atiF^tWa<1i?gGrrHQMRsGn(%^iUP<|ovC3fMfC}=Qhyh)L~|t$2`u_6IT_=O zlwkg-V|6l7g_aLd&W-yfEId$YW$h*lqGTf1<&mXpaf7T>7sNFs$)_|u9>RF4QCbPD z*KVr3k7cGkY2OGDqUK_GlT)=A>#Dd{=LOx14dOu1TA@xrF zg`3!Kwd$7y6Con`o3-bgo(+L8P|Hrbn>5#y&)r>5mah{~olsp?(#g{kM8{9s0@_2> zi}LfnJJ~punelmiwjf3~ev0;59lILY@Of&!fO@*tX!8PYIX9l1bv)J{MZK)fL)?iw zGWE#~XT9MVKGzrSB>NrWK(wWtdhyb<>}kKczj7w(=I3`eGj$g2P!Se(dI5BH_vTvm zAqwk@c02Pn5M$kX!s%HF*E|Z&2=#Npp9$w8-sY_*u$>(iU2IMX_4C4yvfRp; zyNWYN$u~=Mo7_uwHpOo&+SseiL>Xf$(mP|3KL5~94O@_K^65#^*bnzw)RlysiWSj; z7*F8&>b&pRkQ}#ARxx9oKMHs2xLm!C-ceCw0sa8#N=<^X@gRlwD8--qgL@H-6M(j} zNfE$DyRa9uD!JQ!{ZPiyi5t3wU9fvt#vwo)`VMim@4^Bo5r3IFPB+c^G$mw5p~9|F zwDQrH#LdYYcduIbt!f8}{7cV<>u9i}{Q1=fKfpeT*<`E!4eQgD6a&$nP$tf^b;@$> zdP0^$|5&I&SD8wB7S(;5^w*3A2M0URqI8o*cbcXAryI?F3`9+5C3$H|sHA6<1htO% z2ApfYWQ8XKiUB9Hx|Dn}lA9j)j%Lj6q5JNs17QKoXjpIGO(|IgcU$X^G)xRmYM;?} zmv-#E_8Bx&=*2qy@fbxhF-WR>9Zbg2a#EshW#4ep z$n7?<0)i0`dPH+#x|veh=sR;DC%*I{i;JmLT)3CkZmUXNwi8q(OQb1aknAT-1i}5< z8IIZ7vKL}0>JB855XczPFL%Q+qsU~Xe9wao<*n8O&7Rq1K4YrM8yz=8&kdgJWq1;> zljBz9NfWUrB%rFVJDgeWCmfIC;rrcrW#I?BZ+wh1@{U$x8YB9RYc&;o3h{@KsMSeW zqnb1wz>1u)g!cMLoQh;c3>=Szr1l~N|HKYa{?dm>&XWNNOgev*?=TLoE!pL2zpXEz zRbs1p~%_eKehRnoXZ#y5f*$wkXDFx04sd!F8i)OIO! zl`jQ|DU_1My}MnKxPj?VtaOU#q|mi{xmA=uNZy6gKAs}|4B^E9flG^J*?0%f0udN8^YJ?ofhgqANK@<`)%s@LArwl}6HvN8-}rmr6KSbdh&NkPwf&Pd;+I%$c~aB$ z!0=fIa|1-6Ak3ejp(BkW;YtQ ze4TAs|GaMj>ACH_WT|Ko!hBXg;ft;s>`-CoP93?Y1lP{fQUfW0LtsxnaN5mG%kQk= z(_oEP;x%9W(8}+E5t_C*SAh(x60pXPpeB)2&Xai*@l9>+?m!Yb=ZG*0 zr*0LmGE%x|-r;iYJhv6~^&Lc7ZRKm=MMS2ctq4lTygw+!HU&z_9e)v@G4)=S64BmP z%~VRAT3yxxSpPvPix;QSkTh=AW|>%02AtI%BIFyi9TU=ZfEU|RNrQsy27B+ z@C&=ZLTRkIM5z2$5<x## z?UZjLDa*{m1O?s8PjW@+6?{fbQWKe47Zl7tjWY!&b5w^dp>-jL&hRRb9iY7f-AxIs z6@q|Ox1`+4)-@iSh}xBq$#GX-RYFp|PeF;HWvx1J*dK0aO*0lo%srvqaCqdU$c~%~ zbTsB_0kbX^mx-{7wx-fTE*rArQPdPPKeFNIp^~uNQ)Wbds3*StpoA{_i{~fJC9?=p zFFtaCXy1lKTn@f!pADnp4NUhk?uYW3PL7?7RJF2b?qqRR+4Tu`o9m<>;X-OMyQIwh zmWdc6KkeJ#&=0mgLVFMrQgR$)htq1VR5%75*|hJ(BNf~UG1X={mwl^t5;iJ~(V~le z8#a#Nw@&B6>@D0XRM$ftHj1Thu0_ux?k&t_owcke}vYlnXVn=MJ zkevArd5C``#KOYe5u9<<^$%{+FP71$vDjnV;KKd~^?%UHEKoxH=JT1ip`S01ToX zh~EIO&CPXkb*C-q>($<`Tt6dkwV@w7F$Ir)zsScpC?Z0zicCT*g)|cIG$~{(aF6G- zeGrbIhRPe&d#@aQYRSr_;BKHG1vxPrJcBDap;E{x6{W0-Y@Xn)HhE~`@)B%cnXZ7R z-qsmeRzSnFIJAuJjt^QroF{0N>{b0C-ximAZ_ezPNj_QCV zMZejjy^yjgpP(jbk;psv^H(o`S-YIqFv0>$WTODMb;0CN`RdXnG>YOq4M#L2Wad31 z3^y_r>Mo_lBuMDbLSa9Z)=89g(rg%hJJN7RM~REz4PhkWuH-kJ&87X7x(Fjns^jNM zk%9XaC&|A+9;<5-lT@*~J0^H~_}9Bn^V=bIRs?uqm&(C%UB7^>Uhn&k<})I_e2a73x?#rv$8_-kAuRf^ zsiSSLTR|N!q{hdM;!5EYd{Rv4{-nsM3YUq}Lkt(8w>oPjapwp-c8yve?~pl)Kf|nL zqghzWqcpzlf;xJBo>Mh7y8fi3$Ibz~z34by%U~ zoj2yRq3+2N=}OE%S(OZqW|q2T1G{nuz@Jdv8Y-rWbKbwI|5xp^Zft(hCj<{E>D=m02Z0(2hlgFJ#b`0Xz=UR}iK^u+5;nM1PNaN2vo|x?*Nf8Vf{)un6+TS(G z>G`1uhS3WdSm|SIL<}L*F(4%Tx4g+{4jl@O)U{2PFJ#zV88&x2e(XPQbe>pyl>RI^fTU7925x!$-iMvE)A-{!fwnZy}nKnf1Sj7-zIJ z?I^^McHMJhW8AmPh2S7D5?fHQ$`gz~AfnRQkYcn!w_=c!CcQ8zP4(qlHFnsxdeumf zQ?jV4oYV~6nzix@r%gZC0bYEmKG@|UkQXNyJ}&88**T@$DG$!3tS{pDv37bdJ!SNL zQ(SZ@J=5EPDdBqpUAwzqYAo-l<HCA0yZ?U@x$0MC^JmpI8+DCW0-&q#cu(5 zi6S>an!y_wWUC>Q;~gg--J^Gdm3YqW&J*R!e)^tkCwd8@^|5J998HKP^~Mz!)V3Ce z{+r4q`VpA>;*4GDy2|;MX;8g!52xYIVyx+%?uWh2Cl>w#iGp!PS~g$c^I7Z0b9||( z-_mnyG4+p8Sr|GSYn|OiX}hVmNnXCg$UyEqW2^T5P$gQ~4{`5ywGW4$^P<|R^I5r( zBe%bhLBxW4An%wOKhx)NNP zb+sz1H_zcdV@9(ibl+GoEp*74Z4;joxVMR=aVI3_RzwF&PBLPvJzGp$mI9qnaqF1z zyIm)mjhgc$PBwpB&~RH&;geWKe>boXjV?jc1F!2BTc!1bQk8vIQV=nqWc|0CCMHxB zO_sOz>WQ!7ICZ3hBYANkGG*+FyYaY1s$K6Y;|;1~w0yzY)Gjdub%$x8 zJwPtTaGa^^4h>mqJbm{3slBA8h_&m9rKU2g6U?miWOQ*>4L<`5^ZTyM-~LOVtW^h* z)?1dMy%NZ>Oh5C>Sx1CGahCqxnWFKRP~Ngx-1O zo^HuZ(cz?W;^Yv}rG7o5)MhagKQ>TePdtbg1^rft4lNl+d6-LLAxvE92jO>x0u&qK z4H*j#3;63F%1n`~(F%k4-^hbupWrYBEC<~aDmo0~&2|x=gPHFR?B5^;BT}I0SHxNf zF5*}Uru+!xDP(XuzNxFn>G^%ZFX06)G~&JVNR{(ExTN9g3_$WNEg^vC`TC9l6i`{QvCC21B*&3*6MZCF7?QpE`a3V&5dLuw=&^gU>o522P`!)y+Ns)Sl8 zRUxENsc@s*)L+&K&_@*z8$@{7)l=yMAya0A8lkA>Q{Qi+4xN93F=!AQW%%j9BCsZc zHrPkJKb>9BT{lzB4l~s<_vw3ZO-O4w`40VI_c~U9R&P`KWAv2sKgoVg^8|*|Jj$c2;Z!!A z=4)_X2%~+qoDtg~tMKyQMmD9WlN`4Wia03OmduWe7QQzp3UGJe*``X*i^>!>8Zz8M zSQar%KO*>^3^CP@`n*!9U5hr|hzG6Rddk*`aPM>G>Ag=qJU^`TI zPIr5hH2ocZsNY2Y3x?418xBG&%qY~+(l8@mW$_cu>R?YRJW{(BCLN`z5J36uU0HXv z+&6-JZ1Qv$be>Qe2jT%g6-rn_EZ&LiETm_A#T2i?)J6)iT!oP=c%6}SClIrk@#dIY`al+%jyB{WP6 zH(nK4(P+cft+<>3=Voo=t1hNW4HW=&TSH#HOwnT!)O8w82;gSzbB6^8mJd}z=|7R7 ze+~@4k|Drf67H*(4)|-37(ADa1@P~K#BBdzkobR0O9%W#)Bc?d0sckV{7RKPYqHG^I5WsIRTbP+Uld`?a=puI3 zc8)6c21X{}(FrLL5n%%-6JzkL`-35ZM-hZAoShU+97XJG?Coq#Y@JCt{|h2@(ykPJ z)StL_FNGwj;CmGzAS7Us-FND{FOOHO6M0AG#Er@48`Fmtse^f<25s6yJqq2bGm`W% zbL0*3+4s=n1)Uk!87MKJ!AKiStGitu;w}Ty@~|k5pf1+$MpnU|BbS|Guft`yI74X! z7?!J-AbT>Ut}mGAR3L{(Nxy&?h4tKT30&dzLQH)30VvY2-)&yMCpF{XDj zBd064K4Y1DTkm=kohZ?~$K%@J_#yNqwizM($xbuYhoGVQ)FGDLNP+7R%RF7M5dY!t zCpUO46^KeBt)&03^B+lq5;+1a(~8;jGGkW>0!1(o5O+i%Op6CSByZd@HM(}ag7v91QaGUE zz%O7GSK7!v0@d0zAiT0>{xFfc(O7fWgZTNv;oj`DZ|h=YzPplyV$!lMlcQCx z=2$3sej|OYRYT9i&p%odiOFeAg|iEnRVgX+BlGIYNleCLYU2rGNkvnagtEIed1+ z!v7KO4aq+q(|?$PupaP#KH2^>)?U~U*-rCGl==uunJ^IhgbgO}DcucbkPzHqHkwd{ zRVSJd{-Xw3N&i(=>@QoKNIgV!16Ru~E4kFS##j(U-3|1RDs|5OoKarwtEb!^?iCdk zldRwgW63fe)zk=cE?2yrDkB!(8IyfqcL;OvAIvk+*>ebvG>E@z9g@cC{efqWnz`PO7 zy4O7dfa?xN>^!lEi*Wvm;6C59T0;`m!Onnb@X8yIT6H<41AdTU!?>e2yDN^sF8gK5 zUOZXaEFW&BF+9cULKt>Nj#%6vtp* zrXZf%{vwt)9rA&s$&e5mO1vb6(ThI6H(>NDkN~cO$YBJcjFQ|Cs<@CUBG2DpbyY^5 zbNzJHQRj}XXu-hPyZ6?``ej&6nqxX-BH|KF;NB+`jEeQSA_0~Lm|ng^$PcSTMMVWr zp>+aE&tfgV->!7#WZ#XDkdVj^2gsWyD;ipeotwNFr7Yl4N(voCq-a1UeiurXxS{hE z5%n!JhBr4U^&Sd;iG9tN&)a=(p8WkuNJzt8ethig2lv8AOEqs~4VG#lAToMhpTYTC zdI-V2Dh8RKSPguL5aV3dLl_@JY{sA!hHhhMsRst8&h( z7#RYBJ8;kAS*vjBfG@78NFmEqvrt>RTHCqLAVpTdLq{aLvQ9F-U>u9g~Uctw7FJDVwv3tEZ59cn0}6M3chhQnxfU z&8thIB2_Dm-MKR^^?SD8^4j4L**35b)sVt9RPcu9w$lq%z{093O1y&kc?TQ_e0upJ zmz>XW6hdf`eMV8V@f4{erqf-daMbJ(xnIb~z+G~;Z>IopbUCak>R0+9)7sQ&LSolU zd|wq0G`PU^&CT4kGt@AV@0^(+}q;RIScs}`=aW7Z? z_Lw!q7E};O#m{`w2QkvqTuyNmb*#Ys3<~(Ws8i*rTS6?d_*%FA)`XSRAcgPJcoDj~ zy3&cawy|EYV;>}rCm6hCR;({~<4hJVE||Gcclabz4;Xh`Q?r!b=v|OUoxAkp)5STd z*@j5>{!(w!v5jrbM$ITQ(<^#=uAd#FpWJIY7qe&U=fIlsZVQjb51@&*obFvI7Gk z!er%HMV)J&CobI)Z`fgZgH9mVMgzwfl1w~&eJezPo_8Dbg5*6xUf1IdsT5M9qocH# zzZ_5ONvWKGsHSM#P<>a@t{KW-0NQ(T(w59{fm>Tflwp-{9c5|_xx*h29g|GV%*?j$ z0bvRy6>FnkJ^8{ay_9rNvPvw`yhnX56w@;@XhsJ5FrQ?|O!kdYkh#3i*SWS)1^g{; zsWrNIe6_!jG4(jMWkn(o@bKahoc@JiFtp$fBhc&*qQr zgg{62@324TeByJy|Xz9hxz>7yHJ`^~HVKXAz-v&iC*bJUy_p(h5>3G?BeGRmmW z;cZZtF`&7n1%FvMWQ(&f&T%1-u~wV0vZ8{pPiiUwMy+s5QtW{4GME!Q(KV5{z>CN$ zaFb<{xd~~dV0m&f3yf+~zaz!pABJ3;t$5w-jQs&jBPH-XiVyi*=J34^$B(`{jqwA) zD=D+|eUd{v0J*7i?9ZHFRHXo37g8g923(hKaf&I~dw|%ZjHIFL*-4{}Xr21e5RYLl z!&&8g*6gsK28=QK9A1H(I?9N#%qyeKr&=Q>#cA_P|0}AUp9&t9O8^O;Q_n`Op02MG z9)v-%?`T(Bnfw}FZ_LRY$}ec_AgyLX^9epbkT)y-jjj+6OxWqC6ztZ^l*Gk9qr;DBksc$R+d>oMGX#dT z`iV7bPum|a&0e3i3EvZEp>rP3{*X1^gOR{W z_Y4p;gU-2@IJnBqfNrxpE4&T6jXzvxxD~gNziHrGFa>dcJ~5$WG8$i@IG($GzL1sJ zEj=2KZPWvmV_kAUHK!k4wLTSm*`|`@_z^cfJ-rUy`_~cYV>yKsg>))+m))(|twL&# zncr-?n;yvemFyrfaYFoj{(l*|WH0peKz{BUAvn61Ca-5HYsJ=e-1rG<*Un_=P)>jE}FN!WLc})%2Ci}yj`>16M(5qOZoo6MAv)BXA7LBLmRNZ z1=9r^mfw#0nuPkc$8Ab4)xHWfTmf`-`7$YXBf!WAZj)z)oexnjZef~OU~AH*V``{v z{pIfN<*1X_9T-^M!eK>Jh|W2p4N)=m_1U}gS|%1D{|&@Qn*#U~;ktZ2{Yvd=G~7o+gtm=z-0|n=L%CnyLXPULLNqxUSw~2ywhT2SximMsrm9 zJe4g*^UKseZRYtsuiseuT};^N)@wCydHYt^?B3Z8&VkogTfFk1tAFdQ`;zu@@2AJ- z@u0W*?Dvv<=6$!<39>^Dd=c)6yOHiQVQsPxw7+3v(3M35g3BY%E+39dt_;D-~79yt5!xZVb`rAQ>8Eo_ z7WR^wThjWo{IhS#?Yr=jw;RgUda6K=!u_d;>y-5@e%h=$%%{QcdX3xl&-*h*U$~() z&i$&M7N-0jfQ@U2eoep)zx!P`E10aEj8%KQ)X95?r`0=Opo;V_l_roK=v?6k#0lI} z+@ic2Taoh*u9Yl074GdUfJL#_S;y1DD|xrZqI4DWbWq-j2^@>%5(7TfeR_LH0MqFc ztk)>$4!b;O6c_{tDu3IN`SvBmJ?^pCdeDvz=H<$)@CE?deXalKOqbozzvN0zU0)+G+vzq_o7r z7$AB?47(9Sli~O9~3*#p;@~%>03?=LBtqsgeQ1r`9*h}9b zYF}2tLMM1ytg<&~#_xrM9RZ~N^6Zx#qdT@SrQq+}mCWTmdix0hl=Zaa*T?0(k~P4< z6{bf8Y`Hrf%CZ5+HopR92$=3`uE*6B(pU?fIqzTY&xox`XOy|KW}h^Pcc=70H%lDT z!+Q~HZ7todwrEddJQ~%>E~h3ds5gJ(LG-=Lc$P^ViXUUu!_?%QZ^g^P*0e&W&kgTg zmVj?3SvSr--o>~Yg^ex$Y(jIh=|V(F(Qmmx1qEN8n@&_x;7|TP0Ad)iqab;wX>s39 z`tGIXH0)vM^{#5TmG?b){s??II9QMBOkX=f4D3Am#~zKqmwTrBvr9csxi(T@YsViE z+bgbAhEW3DZSMb{1qJ>IBfYP<^`Fq`|0~s_{9n}al8cBH-rwgBxnyy;ur$G z_rk&q2Dz!yQo83&$L3{syH{pp4oIDrsy=(P_`d7GpDKIFtKNZZXJKbX5I@{?HMzQ5 zPQX1p&5=DuFK0s7S8+re5|L{UHo9aBLXbnWMok~%wDkXwM20)OBFN^H;d<=(v%(Da zA3@lSSG1B-bv195zxrrc;^iIbIL_5Z=Ah3$KI#`L-@*i(nv@47dP z3eq4tl#Fz@faFlp-5?!;fOK~V0t!eEAtgwtq%=bbNSCy93pm8kL;9{k_ddV(oW0-u zyyw~HdHe(UEQXoInpyYty}ohXxv9#G5yK>H9&@leqAH`UW?vq11i6DFlJNpAqFRtq z!!`gOm3<$7w^QqLF0;{O!0{G&*C}Xbls4BXU}5*j*B(1;^qNfJ+)#d75VO*)p(z_G zOx*Q(_Nt9LDI!EL=0O)Z-fb7~!M3Yg;naHkDlbNgMrrq1eOvg$JhrpF7rXgotPbx# z=9Tu)QK;l+Y$R)a^iH`ZS>6^#XITX0$GalxA9rwARl9)Co7Lv~-1PKIOcI!svKM+R zT|GP=)rFnq_7^W3qdx+WW<@ zrwKu}Z@GqQ4C)%UaChxIh?-~nR<-w~YqJ$Q;IoE@O;Ai}Ml_1saU82SNBud`2!$6P zhv9HI>^U@HgpyJsYk?bY6QA(?A-*WDE$U6<3gpznZ!FkhMQSV8 z8*`cvoa^Jjk`<^iiop2B2ms_arFW_;a&|<%925QM53e6Ke(V-dSk6`6>>+g2RTg#mkCxS@c0+RS~crt3!`g zIo``HwAP?6Riq?$FM7Y6e~F7QH8tI(TpCS3_2*1UFTD#U`Qa1j>pRWT>O_W5aO$n~ zPU7u7YKT!qAN0tHXo-si_metH|I;TaVe_1AdIc4#2mw`wlN3K`en`-j5qT2~%ha5- zHHD}-gcAuR3d~%be2|NcLQ@(7D=o}s*`aT-#?O_ydieXkJYT~ z?YX*6HS0Cl`}2LPo0q%$>bclSNCHgpdw;!!)i=w=l3$$iEsvkYA;0MX^pVHYCnr*L zbE$7a%9O1#7X_5_myMfusUAGo!-BtOD(eOV1}X>iY)qAuJ=pW31fKI=+&oppQQKYA zxqL2}caMU3n+U;nn$7cVeSLim$Xz@l!iP6*J|J&@^UR&Y%S-+bPc%(fz!3AkxYzlE zox2u7geQD^Ab2q}BI3WpApNCz{Ra%ve;f*K`fO4rI>gqu&piOO+Vq+CZ4y&YfuHem5JMA0o)>3;8-pKmB7TS?xrFQ)IS7=J!KZBmXo0Y7pV77b=g zwi2R@EgbzgCo0-kvE;nrW3r~_(0HiIaD%!UkQXpmfeOU8H$wEFZ) ze%AHTYu-nNc7Zb>cs^r-0>e1_5|bV{r8 zkxUolRS_AhTU*6iESc0;HrsG>=v_ydT6MX>p&?sbn|n)Tlkh2f*@b8N{OJP|@JF@CsJ;WyGaqORgN!KMa>ip^ay-qz^9-b=MCN zT>%7AwW>gGnPmmh72dQIfJCB?il0&BF_!05f~r9N^^vC}>~S#?k68;tUsh=%gnlya zt|_d)(u=LtPtK1}4?82?WK~QmZJ?rPKUUYN;BsyGo;tGh_LN#m4y_pj^_;>(A*QDn zAJV^#NWA<-ZB8^w=b!ax=pcc9$vK57o~eoEq}ll8kYqzNjQFI;Pq-sz6Un&Iu@hSf6cfk=||3hTY zUwGVTEl?O7=99HsI}I5!p5%zMXc@ox4Fh!}cXWPKL$NrACQGm#Nr@= z5NQ;~Nr#8=!pSJ#+~*QLm7^L;!X1voz=mzEm=$ik6RUnR?l`ym;pPCPd%j(J(l8fM zn`is;{K|N@BwBP?P^j5FwTu^$}pq*u|J^l0ZUHe4|$ zOSmkU?0ahV`H3>)z58knA!W6LBd~>o2Le@ctqX$`Ktm`peI5*l0nfFf5G@!31@vE; zh$L=2pQgIfq70)Xwkmn1+KYDai(3KXYsR}~>?BbDr>x1|tJr;?vrI6Cmkf_Fv1fdI ze39h-gnd%~oy_dulF@#d z-&zb7=)4wsjOOMDcYX4|@qA=|Cym_aQxW*7XJfo*^se#=yL?g`w>^o!W-6*2ro3KB z9ShIboCoUa>LPEFcFtx&!?ZN=%=iq-r=q5&wsw{8o^~05ZW{U1wLa;%GL&U5XFrmT zWgUYB$tPBIPr+~2(3@}7L@KPTtcb!<&tmeR!Kp90^ zj3vcR1tR}_O#W03pQ{U@DXqx|9r5?kP05u5?j+%-I5AP=Egrbx`wlTp^hUy~F|i*XnAX`2~I~yW>;LmS~!YL?q@B~{GeH-`E z3u*iX^`QSv73Hr>!GHb!`xlgEQO2$`6aFFTce$%^z(PaYN(6L{T0ox|oo+BF0TFZb z?eFiq?&AAo34jSI*=Jzk*Yb(Un+n-G=zJjfk*{zjqr&4|Ye0suQb>^27_0asLOjt^ z!HyNe&+z8zr|kJDW37B(nQyT|f`6(dNZa=(-&xH0Xvy{oCb6>TdkD+?((mA7AKjgZVhGF5GR0fEZVe6D~E zw&>>2OD^fcl(5jd`RrtIAnIpM0o+wmQ3qlDO-1nM5A}s)hN=fZ-Idii+-cY~F)}K4 z(r6%CfwM3>t4`LV z;kZWjljT7cR};r$RpvR)j*MH+WDq^(@+X2{$LXARFgm{Pv*{OBXy`tx5>(V%W`vt>G2vqlELqnW_u%78CDvO6LAQ-Vr9ch!%?p^8fX4xx z=Th^+UPMG>MLIv>AP>u7<)%ij9!_R7p~IU{8s=Fji!X!0M3*Ev+u#!X(_?a{L8c8_ zDJy1_LNia2gWHT3s_)U`7ty{nHASB9ZmARLU?f!N&dPgnX6z9%6!8j>b7T-pL;v-L z`s)$nAAl{OG3Nijs{gMH0Q%IZ`sh_mKjb#)5taKrQ3K5#>zX%xcHGXrHMa~a^)a2{ z)zj0nealLk(w86jurWX2x8xu29SdkyfqERbQk_jYJ#YZYR%QeW_lSFDElO37*%5be zHumBsv-c_kgpxTn+v`=xKEv1bN-*XC0#vq!uFeSHN8EVp2d9@j6nQ8V-y69NbL=D6 zj&ZVmd)6E@InmA?y@D+Daci9M@7 ze?E7PqTOxY9a?v*(WiX%p?r%mmRMh@R^IRMeH`iyv#CGxEvqvPQDZCR1m}i*Q3|cR zQM?}2K|ACI%hYuNcXh9V(X4uHY6Gq=>Nzcpf}g4209A**%}63mtbVsroec`F{;U+2 zweF)@`dEdX1edkUk{}=7JurSMhfn1}R}QB#V`46I8+V?-nHJLtNsP{+@8N(3wsu`C z^bgxr)_R^gVjC{?h@ju{Ye(x{V^ek#R9|kI_6zeoKj39q*E%$0h_%F?p#n`QH)~|+ z7PWDqBGP#nek7k3u<)x%6gXeJ_S$)0JF)D(#CITnD~g1fNQmtSh3LbMrf=^-p9)>w z@;>JZr@t4x{`dsqce*sDtgFnuNbd9(D>D?4MitVFMNIK`#M|d$`$7frLjHuG-A`ll^CY?8bRLM`E3{7Xi|sP+86<+y=cHenR23u7mDmn zpeW-@CkmWHZk8wFX7uM}V|P2m;9Hhrk%oh|Qvz%4j$`LTum zJ~&I~C-2eP@^Z*oZY&!9yV-`*-qX`ld;S$1TeiZ%`PtbG(Y0Z9kg_eG!rh8&j`f@F zKo1SHmFA(~<7cf-SsU~UA=K383Vs7BRXi$Z<;*I~;d{tRwS8`1z$MAT+oAW}Y>>ef zuI)1i9`@c(b*HDp5e@_SyV8?fgj#uYx5FRv_|T`U>n4Bw-SN&0o~ zwHdIAUg7J9UG47&5QYzSgk>TuJjIDdLOmFpU!GU9qTo;hTYNx{qizfuAyH7D9^jV~ z7cYxKK(l%aiGgbGpEADz7%*&}=1#AQ$-EY9GA?aIF*fcA^nB6wp*gQ73T>ahvnk3mf$rTaQPb*6B1j*=L>HqQ!*3Sz@^#>A1O<-|#6vh#3$@lPZ=lg& zWNV#Z4lW5)K166u%F_HS-mPdf zH(cVyB|PFJYSwO>qq~5;o~LcoqlXQ;9ir??RtC|9QVV;;KRuPv$XJj(WN>+JuEY$* z=P6Ig0_I$}lEz9ebP`NbX_?=Ll!-IzeN|L@zZozrC-LJ&j~PKd6f8#i1Kd2KWyNRd zl_dL->uk3niQ7cgv~tlYVaa;V!^ zmItLJ?0o>}ntp3*y*UWGjmAekPK<{3r9D(?;MT7p0Q~;re|(6$XlN!~{{~3@pFB{} z_fWPszcT(m)!c6Y?aB4aXsddGyP8b6@Y=)K<}B-te$qBRVc&-=l(wN%|FZMv^+t|* z94j!#-Q;1Ls_J;@-``>z`p;I8Bzh-@&PG=XN*tieDlVJCu!FZ0XSWh=}*EJh=PX3#e4KcHg6yK9-L;7JOy{f ztbF5W{5ZUA^xXx_YJ}>Cr<9lnk2l^Tj%S=iV%}pBO?AHbuzMb}5-t1QdMN9SEFJ$x zNyKI_KN;SS10fX)V+NzTN%&si*Y`PCbg|eNx6bbD5%bKSTmqiAspMq?Uxk_%pOyy| zIr3jD58GsMu^`7_7I>y9%`}*D+4tuhR*`I8EGzXc#Xp}(K9nN=(Azru3RUPojOLy* zBb#><<$t=kYJk}Db~vi=m=a&JE90t=6wrlgLz^sJS>ZX1Ppp|cS7Lp#03LSDh}x<6 z-UVccDG}R_I_ilPgHdXqyscIIs^N#bl%D~&tX!63k|~R=Kz?2ZkuZ+2sVQ4X8DEo2 zvtYgy{$?jLkytG2WU;bJ{tR<_5g6e5p?eDLPpZ=}I)+aBKWOI@hFzn^4;edttVsOs z{I6_!r8Xv40CG7!SobxL>1CBF=J+6Tl=#v97KLmLu}o`3fasS}kpHR1l**yvVVh6Z zD3L@~Fjku92kki+AI5n9=MP!(dWyY@AJX~66kl>>^EqU2C8*3VxGvI^V1sp#x3Z2y`~PudKJnf0v)|X0FK%-i(l*1aqqjrv4Uc|xeX}= zHt3cm^yRK*-fPhqEnW@m2vaST<|155l^xw-%q#R`~usodKP%IXU*O(y3J@PkmCs z=H@0#nd4ecy-|z%CD40IBA|ydZVb>cp);L?FK4OR&jo)u%IQ%$8uyfJGI&trt-05| zQ^@-Snn|L8hNv-E1!g^0e{6S*Um@Mo$u_6qinI?}Gv?@ezQWEdv-)prL(#jWQwzf@BVd4;rsHMmNVYz5;C(UmwrfGQdmg zCsXVWRM-oGeX}MjN~p08Yj%J*LDBg0F2y9Ah<5Xq1%Q5b@NIf3wH?uSM+0oATE9q+2x-E) z3KUvxYZ)D8K|z&c$I$tOK}FLwTTX?9ZGW9s$1;2s&N@?d^bbg0W5CgIO%+UZWK?0g z%=S@T^95D+j?OPzuHY>N0=}Y+QSq0OcZ`gTfDpuzvwW}GZG@^`@|wGF{*PS4y5M@m z%mKv88=9rKmLnRqtXva0_S6@*DJ6j3yDpb``C9N|K4NR{4&&nFloz-!`+7HjYS@7; zG?Y5dT49YdS)UT8=0)j&Tn8pncs#?393PaT?W;%!Ngrt5hnD$o+nH)9LjjWzPx^q3 zE#f=ts3e_ifCgS-lP)BqtA6Cy6lF!CY%qZe#JAT5z;x(0Ja`rEHuWvK4MKTH|P z2{R)1X4@m?0K)=%=YuQoAe&}p9IlX-kxOj#CvCT;p*>x z=VoqhzH5VXY8|E5TrGb5OGqN$WtI{#4j;pauM;2w?w=dv1 zGlnhp0UOMg>K64%f!`P=TXl7H**6}Nmwr2d7lvoxPN1T0#l}(_}+s04CrKE{m)S9(;xW<;v(v2~gTdRR!*N(|~14E~_sXNz2ftXG6Zk7Ger~k>fqnC3-T47I>z1)IGBq$&+A+ z1vDfJvIrltP0l%E;xhGuYCxYN0=$BXd5doM)nnfh+`?o94Ry1B27%LbbZMPSmypO* zUG+QYz!mlo@+a4EwKvi?i|sz^xq@XSOabiv{%Ob5R2n5e+t32JRh=b?UP~LzVFXp+ z2Ryo3vGjo?aI=`=S?mpdoWM0>ZSk2eL{7%Bb$t+ZdL;16ih+hPdAa>O7x`D8Ve8iK-rF6X=W zHBajbTM^tj@--)G_CKxoZ37J}tuhBtjYZuxs_}Lr3vV(hbM%rQ9Xq*9en!TiGP>q! zI}_;$=my5dR=E2p?g7xhcf!*PHqE%5jcfOdl1&Uy!h^#^2hH^YeP%RSGR2LDiShsp zls?V@p0gD0$X-l$xo{HDbh{yBA#=MR^s9@#_Ij;d_pH9Mc-21ioEGWfIgM&eg$2m) zZo?L1W#98>Db!AeZB*qr>s$=GWbmnMu9$HnAZ4x#IXvzgi;Iy0EYGVdu%}CG0)|ma zww@8;1BbfdKit1|>P;nm-Z((45R6IE-G6CPwk`;S88l~~P;5#tbHBg>59yg@(_y&E0r*wz7a8Bu`R{8se=dFID$g&)_-Y!->%ogBrBBEK z7Mku`OSoN_FFu31tl?HgFDF1>wyqX+#HizxWKTxkuso7mzwOw;+Gm4c%4yJZ`Tmv_Dy=8&AOUCE0zdZmE7<#z zAE8Tro6S7(6-^(gU_v`HE*A zxrVHli@{?k*880x@f14}VJ#uwYJC!u`#~gR0k8h^@~ZE{d9LrjXpj%`*!%kW zl*oq;a-yXc0$Z}_71p-UCFAIO05l4c0men{02icVMmxbeS;{?f#46eF^kHyd8T*$A zMHz%GCXM8T$cQ~hwph}wkmd1_p{d&dY5WRw!5n!Oa_)N8(Abz)JxYxP*Y{v$lY%AMdF`z##)wJ85S5-enL6YUH9-*HR+ zlPqCFAaR!qS-7Xe_n6;WeOnC;+7=axGSv{8a{-_DiY8l3did4i-45kbsXfj``RI<< zTyLLn;QgQ_Bk;YJm%&uS@GIW z{pY9RnytQ>)JveXDyV2s)DneK$f1P&mlJdh zJ^cXzn3%9fc_ z9i?AuS~B5Rc09>@Vb3bmvUAs!&3t#+w=QsB_L$1{NvL?Cts-6f?b)8}s9Y={Cvwna zFH!ls$n`!d!WHu&;7aCrXJtt08rR(dINLryS@ogpaH}14g0!6N*W~A|AgP)Vg zNSdgWZ0u3$cPLd?xF(080)>IR5YjVwSMvLA`<(S92kd}o084R9dJzGK?QtAF96IQ* zpoz_e97(S=xw6HsJR$WzR#=NxpCbAc=WfV&X7lTl2!tQ$_O<}fr&p8dx4e$5Ps7h2 z|8O|Gt_T|SX8DT(rn96~oR;o-Q*lNspnkVI3@y1G3<9LC-ucA(uZ{M7*Ic*h@+*mS z%>wA556hHmkj+$GdlsLu+7TtS^KXZMjkZVJozeSpu+-ixi$hQLUyjHbBW%;(Wh(7r z>8aKN?1=Ewea|mH;vIV39{M<~NqkPJ*aOaFv&et;-Mz1}zY`}=+!~;N2lr9xvy)Vf z%wRQhf?$hqBBHrR*+V_;n|wK4-cTrAn-d{!vsglJsveFQgYX7X3mgXGhUb=uDEOhM zM3%T`PD{;orG5bc#wQ@^A-67%(6|6)Zr5I_BKY#eiydoj2Smd(0}>boid+p#4IxH<82a6gGa!{k68g6c^P7? zuX}F?O<)A!2K{&%=DPdmPxmw45Xo6JKFx(h8t~u;cZL1Y2f2j6(`&D}(ad819ryk} zTV8%2_cLoU@yi0*Y8ncT-=so7x9klxvt4?Hk=>K`%*$*jr9dI!>nGdn3PAtQzt;aX zS(52rultD9K&|xepnI5>=oY=HC5&jlV(ZQV7XSU^J#Xd7HT8P~3#{}C6`%V(ndcT9 zogB#8!xQiw=4_uGP55YbuIvS_pbO23lqOMQRj?=OdE?L9mQKQt?D@4m-3%VS>^*2~ z;(D|Fu1+|TcIbd$rG2~O6FG}1JF-e)vlobG?(Mmp6L@MN^ec`zk;)($3J;H`r1$&n zv|2_;I?y->gYi|^LYy2UZ@iNT14lm|*b$_d(yhm{(pDC^SyFH<(gOibXTen&>GS)> zOJAaK5kPA$3%xG=FpnpI>{17WV2{SPeX`~yg*_E+A#of+_9J;r*^MBKV*#a#F|t-C z*qVJnlHY{fzRyHj<7@JDc>fJ0xvoGeG=z&HQ?(G7x)9m30}m*JhwwCR@mjuy^spYW zN#)^D&!~kAb+T1qtzX z?}@p>1GZ*CY+g=H>C0&fSB+4#6(0EpxVW@dNZ2JNqm{kgAmJRcHep2oK7r=Ph1fE@ z0?%AQNrs?SE);(0m65}+#IL~fFg2lRP0`5L45dXXUi1vprO{))Y#4g_C{xwPEl07N zOtgrR&R@8^e83|VaO=!6+dd*)@l9$5ME^057YK;jj-&6O+(%RLTo_tbgH(*Wo7?;T zwrW0OatLx>Ee8*b}C2Nxizs&=|R+EaW-?;1IqUaF?n zOEhZKUTh~6Uj?KHcB$s%jpcW%h_(9A4@O(Xc-l*q)mFR0|Q zd{3}H^3HO7G8zipV0qBo;F8-U>HMx^W1N@NpBKkigX%ed4m#X->nol$s^wq z@%52xf{jX957))9Z&f?DAd`Ie{ZrQtuqfX5W9j58f13ac}P=v@Jrmqt#) zIhosO?X;HNSdbnp?)h|zRmDSZc?9uQCb7ki4uRnay}@i*06xid6Ocus$+rre6@_2Y zwl{9N_dayKW)*mL*3b(Q+9yX>d>*K? zT7z~RdelcVf*B{Ot`N(t%kugpyx=IJrnj6~wa8wjT`;nig^FOMb%{djY8@f&Jg zjO^WvSpkHA_``f#VKO}5GH2tH#d+(9Te3HL6yI|9`p3jz=Td9wnJ+jRO zJg0O2(@{W>HGG=iUGHG}kM7}VoKj`10nr4E4JR9VBzpnkD5PS-vgHvHR9=loAW^vp zkEl!Tg5AQs%5>ZdXc?He{>`6YTW&Ju$aUC`C65ocLUb-OFqmNOMHohQZOb2zM3adV z%9{}AoYt^k4!e0OnUtUf>A#)Upjn z*+3a+B3m!BQp?@0&wzQsWfMO>8o(VuM{K$uu1(zFU{pU>hRXE>#qJwv->?mHvt09^^E%3k7}+*hPFs~{YL(KhjIM2?fjEl<KBCxl{uEWuSN@?dj)*-B{Fo9|uD(0o@`fXCJ@@Tj}4HjI)}W_}%(? z^503dsy5i>>1#Qk+Xal~_WX9H3Md2m*2r?^eOQqXnmlBP4j}D;wI4$1m(}G2th^*R zZSR@)0s2a4iy66SQr@u0%Mt5=Npc}FcQYGP809~Zx_bd2>P%Gy-qYoP7xtw}i{%Fg zlyWmuD2E^yR>-wI!S;m~Ib~$17lu8+f2`iU3=9$kj~rcB)zurxF;&2f13(-Ai(!QT z8lFm_7VK(kiWldFWq6z&;3v;(_m?3|?9S}IZD7Fzm_)Bx_U^Q!@b1J)_5(<)W76<_ zFOEoB;1gaK+vQnq3UXLaA}Cr2puq~ESNNIBW5B2#3=Bj{0eEeUpJK*KJo?EGsHmh6 zyF>s7b4+*b4@ehLadcPGPafT@VprO{y~+w+8Z`!fJm3yE9FtTc?vIGOGMqu_6>N?+ z@fBK`)>k>Z8Ey2IspWRGx|PLT0SY*-Kd0FNetcV~#Xmfq9vefv7s%^7GdG*ce})Q? zXIW*bzqLtY%3*UrH=R&^9M*6?GCr>J zwxG9T&Gn<{m;%bf#+SNu9{9Gv1q`=}1kzfCDs0iSuWgilo91o!dJi(9^*K|v?d*c( zQnA|0?b6Nu#K6AKt$;AEgYn(zuzp0jh5@cd*K62#=!{~+k+590`T z*OrpqzJ{HbuVd`5d*ZRv?`GWZFjV6?aIa#P(6Mce8Nf25xj$k{;UkKLv6WNBJ6|Q0 z5+<-P#la8uYD?jYqSiiu2f)La;54tdI^}JN2KvIu<*?1y_mYXZCorFHk-3YMF2I2G zQMrW^z*ClpyTG|-%s=onKbF#XDK@l~T188&aSZ>F>C*ee`D)>rIP5X}|ocdUhmIL%`bbCtrY2#@%LM$XuoJmYOTe=&^8`-t3kPO&jD zBYbO&$afFAJ|{hpL7b#cev&5guXvfXes=a2Dy&vK%=s}1g=uk>%254$F4q4?cRVVIJ&z^OBc zS+@d?#<5&D%-uWhZ9Ux?p9?I(F{!k4hEYr6LdOqP17z0R*+PbJollZfd3iM0^&+*? zk3)t!>dN;yxYQ<;>&@W%WIqOvpezqYiq?m+wYpj94){ZLS&)rB!^X38G1x+4>$;%K z_}g&3yiV4KlJyPD+=tBR-(^~uW4%Hqcovvxv0(Plx8Byi&qE#1mh6@7xR@*Q=*n;s%MuWLyn zLv#VlhBGH{3Pjxo#)j=)kH>(9ltKFVB|{gr*yZ9sCBWweZNN{nGcpjBsU~GWW-Je@ znZ5XeS}rngnGj034BIi|_6Bke>jw%HM>&qp+;geNA!_5SLjGy;lekJ0(^!G|VZAnN zY9_!X6YEx|#W5bSdZNjM903MdSekmP(GY%|CAhBF1ZVDoKLcsoe&!TX*En{caS@)# zOa`vMN5qBu#%ha+d?zA5sJgztwua04%?%m^NraULe{utvF{)Md-5CFG_x}kS(7bR!kG#0tn>jM zd5w4!=s3rp=Nqx3ykr#v+ga;?2avswwM8WXAj|oWx)T%)*&k8hnUyc?!LP@vA{i!Kk!(i(YVL+jE!u}&>@b=25vGgFk|yZM~(8Vxh$ZAO&t{-~rX zKbowlwlNc?uXjrbTKp12|DonXh2uH*mcxWIK)JsW{L&~21eFTd&%I^oA%Cmq4V%LX z9O%ps-;m&Pyi6tvM4^PFWB`3N+OI{bqnl0<9Dmo>h3t|%=LEpm_Ven5=j5YVR{UeuXM(n;nY)ct<@Xi#r$o8~I855m~JA*0d z#mlVOoscj~yqV5T-H!)Q@yTH~WbbY~FoF#HXxppLj>Lb;lwp#C_Y03TTSp`gF!(55 zHvSR-Gm(n|hpLR2Al}t@$$}VQC?X)I%P(yJggZ;Ln9A9<;^g;KMe{tI9*E2i@HZYP zjd3z?c(j&PC11ZnolWcqe{ahVroIYR_NN*0qb|VYD~%g#hleWo!8@aI*-0!>n7cE^ z=b5oL#RY-+eI>28SaQ=t%6_f?lO)~$_nnXW>6iA!UzoKr=c208dcc-Q+oVi;7n zyMo2IwpXpcn%ye^4HVA&w1&D6qJ;~+s&Dut*7%_rE^J6|Thb-)NFp)Yi}bQ@PNf=V z=5|nY6#DuQm)25za@;V0QV6Z;8LYw2*6X~{@91IbSr_e1oEc_jd+u->y2!ql?C;Q@ zzIbxxgnx2kK_ToZ-7~8T%24T7K7$(`HLJ{8`#`DYhbfYrNoA112yxuzM86PZuN#w804f$zA)Tt zdNM@qn$gPE7#kyXxZP~fG`#krU+DSZSDy6C>WL<3ba>N|Mo*l;`OHr|8`6nqzp5YC z+>rmU{o`^ydTfSZn4Si080#y+ok!;DH16G%OlsNd9!{Z5vG?QxUcIw;C=9-#hxT@m z)^>H(^5-X;B}{T@d6q0o!)VRqB}}<#!_+uAIqh!kPzJNlUwmtKo)AgBd&O&^tku@- zDo@p*(J3o@%etddjT<)YUYsj)=gUJ+VW&wMrbz~K@%yt(qAxIaI za_K0VoS4n))z{VhI=>f+b4cxtC=919>TFISe;VSAP)}Fw^A!1T2d7flte1E_Lw#0a zNFgJ3u!n`*swQBN6hGxa_i;a|_I<}F1I7IFphVa5oXBlGF~8Ao3+UK)2Vq1wtTD*5 zh{Sgy>sZ>6{L>%p3YneFvmylsSBwrc-+Jxy3f6}dsfaqPEM-qneK|8H_y^;d`Tx2_ z9%>vj@1Okx02y({8~x^cs=$2_&9}1J8k~t2*LZ%LOdr$bib}qEj3fRzCI3{>aA{^{$5u46 zXS|0t7E^(kB_{^EXjl>Ec+r3S)=Ut66nO!?rdV^8E!#GLq5<9V3rWJr?e zVDrV-dp2Y(SI6Ur?PcQIl+7dUYQIFqB663Vc)It5#CMw4$^=NLV@Hv5g;X)So+}N& z%%q6+mRMYM(94Gt2P+wSw9>?5W+lTbMK7oXViE;t42=$7v=Gv~iA6Rj!<00=+NG{g}oRgTx!J8b=l7S1b-M znkRQ-Z~fq-4y%?{&Bi<~B=5y40{t>h+v^hd-z(g+(hSLSwH&Yt5mDi$t>E2QRp9En zVe!V)~d z=kS*Rg}X9YZuf+gL%eSV zt?-u0#FTg19*<%4gPD(U5W85}ES9;3XfxwV)3GGYv1P$K-y}4ch>4yspi6%tPb;;@ zdyTIK(@btM45PpAR%CZ`x>`ZPQtMC#zDF;LLtergIRW*HWFNpD#mJVnol<`PY821& zu5I4Q82mK{$*$i>n@5wabC#fCXe;CMnOye`yjTWnn>Pnv{k^Mgg3@HG3<|C^+~wPy z?hd3<3Cff*6v-S~ZT(R>=bs2 znd{gr5A(1lUhqiswf48ZPr6k}Dvb}pptOQp807_x2ch%N*K476u};Z zqDP;KkEck=ylApX)GafkASuz1gOv2)hHt23nYTHyUrw|utPG7>bza3?v|SVL@f~HF zi#G4)ufE#{aa%-DHYsR1p}Ebga$^?VY5Y9+>Ek1I)_O5xlHMclCjIc)tcg$lpMa@b z6A$~}6<5+odbP>A4UPtTM$ZLTXNphh-<;aev6!~#sKMx6+$m3#s12E2rVPX7qjHyK zrtsBCrd=^8(PAsS(=TDv+rMfwbS zGB0_L`T)ptwMP=SCmvPt-A?O=EYTS-do5Pi7Dw@~b`=NRoAcDsG4l%h;hqY7^2v_A zhj2px85ObT`S#w5+_FPTA$d%0!~!?K^AY26?TLn zhu9J5mhSrJ3&KWSW@o=;sM5TiR8@StO)|HtJ~w|u2JC-=R)ufGk&$C&WG2#{ z*_f24t?i0)Nu89u^5V>z@-*d8@$CU8DUqW?#CK{nhiM&LP_wVDObtW}ypB|W55{4Z z8}ofr65cWzYo#Tc+e_MM>#(TE-`nuMvCb5f_+0WHuGYI)vu*yVAx-vO>2OP?dwln4 zy5J9)&%JFUW5~41VB-^?U-c%o4Omi_to!u8lyRx8lG|~SWqR}lmm8}FbX+e--Ha1? zJA}4}mbH^N^X+3O$Ab*c)Cjn>L#}6yS=JX}Xq0PqrEwM5q9BQ;9_%vGG3%V1wk7|9 zbF90+$U-!IRf0uBt=!XvIrtn+iNRTzgg<7od$2dvy}wUGx##e?XGl`+y?suGnJ2>N zPct|_`o*6uwa;f|*-L(!(V*@QX{fz%s+?x;ZxLo@)X|7{kVY#sRmCaY&kbHaBGEd& zJSuHpzB}@S-ftz*c{=-sfOANpj9u*);_-|rKI@viAAM;ttoIT3+3qw-NGL+rScLqT zckZy!59u;iy%RP8h5KPG=zn$z-^C%4pumLBA@aTglgUk<5fC4Tjn62&neIzY`ex>< zIUgWn$o&|Np@hexD$%NzbxF1+g(5!7@bHFFhi8iTB%b5+IilYpD3o9mXKEEutM=Z}&~8T5^rXEl?{8 z9N*Dw{yx>xEoq;bsv{>M_wg|XKc9`+$}r-lMv93X?*o?#PHYF!c6h*4 zAH^pzjzL46g)!OIBgpd`?iG1VZ{K&Jmpo-ICTPm%Db`Q-|>wIm;ML*00V5w!L2#ptW7C~}!rL}#vzek8ECC(5E3ONmlsx0U6aw;M6JGI1+F%fSBaf^zw|)6c87l!*DfmFAvB&vDSckE-zF&=w4w z7K&nlPbIoCKIUX7$yB8c z)zdcXY^7wbJw6+r%j>+~`t@EVm$xnfi@Q@-MN4W!`)hCg*R^)f^;G8dE*(Ddy$jX- z)Unh1p=GkUwX{~7OL(^h*c|jt%ubtS`{^wbQx0YST?`EcJ&)HUE59BjTzJvVF@-#; z+Y*01?@Z)&HXEAImaxC}wDeaQg{ulv?7)CWe==`fjqi9Jh3CAdVUb1gp|H`ePH&B& z>YF#dbC=~LHW%G9eiQ~Kg5>Rvpuwaj4jBHMx`po_`E{3*i-HBVZAkDBEO2~IOuj1}H57hyI9ux;DBc(7Z3r6#6TprPjpJ1vsyqCg zyro|_@evFBdhG;R*$1MgQ_hgjl4s#xy(A-1GfuJN`4c=lgpL@-M+X-|zn5 z|0cNq2fNkq@jiOU|G&7`ijbhtf9$n_+UDk;?6tyo-SPZ)_gdM?d~JBodZzYQdO8Dp ztD*XrFsz%boEq_;KD??6#eGLhJO0tMF|BLlyzu0p zx+&JHxe@y-TaRVx@nvS08$=E}rAO$s>Y(zDvNGepW@`S`BZ3)i92~Z7FjN3$2=(t9 zBQWl3D`;hDDQ6N+M@#!-Al>Wy*dgll2tLW%sas~E((*bXA)&6Wjw@y$jW^<b{L1)vD!=kS$6ZDuZNSM~hU7v@uyjDEpFin0AC@n@P4J zsfg^msf?|$B!#RQhGZT4FwE~7y6@JCIp=jwujkeM#C(^}=W{LZ>wPVw;QXSf z<*ZMhQ}4mD!ootsVszgpKF4no>D683LA<7I1+F?jHrR~J4&$|=d1B z@Vct*N3s1AGhy_d^78H^g5T4pPj}Vj*tD3d*x8NFQOX4faZU!<#DoNte)tS(zO#fG zQqf&qB|I6q8l1gG(c}^zR*L}MzwTYFfBqVk@w_^Mehuq$@80uA5;o15mrL&Xoixh2 z7CvaDie@x1sETG*RzA)K{O#x?Ra_ zcJlSK_B+Sy;{E>z(ef$*!Z=YvkLz`a~^*m+&ncOibJ+yNRcT z>M332u&?>oXUF?OO&ftVQoR#9*ns67w>x>MQ>W}be#fK%&?G0K%nEb9^(|) z*+a0{$#3sgja}w-5ZU!vSStn%l^qWsZnm=yES?4)kYQOsh8Zk5&O_e=Yb}PGTpOhLrMeCIiJ6LNk~Xovu2IEyZgjo zi);CVZPnG)J)x`uDpeH~>sVQ*CMG5(Cs{Uaibi6*4Gf}{jOTfxRlFWcaB*;$Iyhaw zetl?Y=y0XkL1niQuCPKs4y3Ww0Cz5Dj1*-K(^+mzI{6lhZ{s zX`Vh^grOHtT%U)%QY5R#ZH^Am59m(_l`>7W#MF_QJ0{_`B)p>2M$BHEa4NX5c79 z^|H~l={m75(2il(^yc!%Cx@U(&!fm2{*PX^wZpWU0^`W7M@kX&`PpG!Q)oIRsrw_u z_wRRfb#3f(HZ2P{aq{H-fB>@qDDn5}k$38;3fp&%$F#V(7?e)~iwNcumy-HiU++}$ zaOe8<>$}PVt?X>_au3JXJqiok!p~pD(_f!h3qnBnOOSZ(>{)^W71Sx=*|XMMhmx6W z70f*1@tM>{tw#qggWj4No~||ShY!Dhp&j4a*2ZhvfgTG~a_K7D z1j8rGnn1=vLqd)PZ5Q?aYyEonsiEiz)6Y#!O<7ht{okPJR3iHdkt?+Fyq=zjIVeC# zSlAxB#?BI->b7nKhB|u1%}ve}v48*mefzF{exbd6`}TmeVLZLPEE;sT1+-(~^wQGO zNLrN}D`ah&!$LxK*(%7(%L@u76lI;AG^vqQJnN|ZS(7@$xQH1(4wPZD;sb8?11dc?!YS<16< z-8x1yqIIi$c81cVOpqE@s*DG#3t z8mz!BqM8AbdApvT9=Eumbqu9}`BJH1K-!v(T)rBYE?sISI+p3$+NR`ogMp9J>Mpq# zhOirJ$}JVtz=?5c&p@fBLnSCSp=C7@D=LYPC)^wYOX0uK$ItAR$0~aYg^Yf$i?>lZ zX3}59N}bP=4-O87>q$HXa%xrWMV{o27-dha1Q!=qL(lD8hpuB~O|BhY!nH6fs2>tY zhT_7pYhJ&84P$5}WbE3N+@I&?E9}_uE!7GHvry@T5rLhX8~2HeBo@Lk^)H1(0fkaQgnT9c5`1xxo*QB;0LHy}sY127p&Ygo(Z-03%@&5e{4wXKv0tBntfdT8d zAAx+bJfhkxsN1dTn2QhA+KKTFVlroS+!1Lg)1>y(Y1>1mTFkUW13^zb}-`9 za0gyXLnBhrHKp`40+mjn8E2K6IuExi*InXTNjklOYMe~46N z$+<1w=#az;MMKkhN|)V_+b{O?OM#g*awB5dI&!*W@Gc}0Njv^n1o!ia8T!*BJ_pOXS0zS7L8od$kKC zwyS_tsFk#o)HMCJ{(I0MsIsUd>2 z?6m;F4nKD>`7iF_9fY#79x~Zan$u?2Eg5m~+8G^E%EM4C3W8feE7x^6rnE^MPctb# z;}b##mF7r2vIeH*?%P*MEAS?Cj!*I+z0sa}W{qD>@BDz9S1;_)ylv)G&l-cQH*d}) z3v-Y6H`)z0XUT2a4cqf=18fhR5M9IpR8-vCdaT=%lamvEB5=U?#`hy-O&`KVN>jnI z_Ma2VjvzN^=vq`gddI`C;hreyJ-61u#>zR|l8~`!mg=|R&bdC?eS-QReZKuf3#!rKwVg};A(`tH7oCgHyq^!HspB;@)CMXN8X8)46 z-#QFwYB?L#ByLy;9d~mA1fRaBDo6LHcLQ{FceTIcj=dKt@ARCi>g82rfD*$h=j8dS z6|&jS&0P1%K)=1Qf=hrsj2G!$NM#n@hw>h5mQFLPFmZSvr{-^Mk;nLMnG$h>{5|a} z-#C~&3=%+sM5lun8*S!m5stO9wk~w;JFBb9V|ps&nT!QtrCq-o0!*N*tLxOr$U_`* zUkusgZqURot~3QJfC(h^w0m@%k+(!FoA@n6x_-}KOU~@%AV){*elEHmKI_m?3V2H2 z{7SRt42vK+dVuLG%>S z595`y-(h-+Uu$-5sw28`G&56bEP??QOG<7#iJ@zv5QV;dO&;Wo0E; zrZl;CS#CzEDg_VLklOp(3Ubu!{Kb*sElr##G4IT2|2=rkuWv5jp4N`Smy+6e9X1>d zCfl_aN^A}6agA1uT6w-OA>Fo3p{xmPm8ki}*O#tHZM8u^4JV;u9zXuT(~{?uNDXki z{nk>7{etU26B|4Gu2|u7_PsUR##|Q!=E;`9EACcS{Q!$WZ_Frp2gbUsY;A{{vyvhs zBX!U2Vn8T}P-!$8L3joD#u}ckD5B4i!4H6dU8xNnh3>nHMb5F*G&f&L%chnKV7B0B z)ZSQ=x?Ap8|GU*a7Th_xqQOt<>gq<%-iO%F;RU)bPOZl^%m7tv-+9)YzM#3asiEOwa4xumQDH&MbSJaJt)pXO%KKx;5X?Y9 zD1Z|saaMl0Z#_NF8~e%J+;OG=eY=BN!DL>js8A=C_MaZ}9EPY7uvfTIyM;MgG!>*km(#Lx}VGZ&`Moi7z>g;%B?Jp$N?R1nyW zlNSKvH^RCFMu)?&7S+$s4O4Nra1cKyaF?XpZs31Lua>Ogs&oa%k`|+n?h2x9lNjYa z576-_`k1=9zxf*xVyR9Gfk4|Y>q;J`=H>c$2o^z@mitmmMNJw}H!uYK7+CQ+K9UzoJ(niH57h|9S}{Nbw) ztC6o!=g#dme_v7p8^3GUF4#u%>c>}N$QLeLFsXKlRqmo)4L zfp9c!mokKxD(mrR70i8k#wl3uKqh_gjrY~o*51f1mZ`GNJQ}T&qJQG}@$a7!{1X!` z8dD5}HKQ!+G)hZLy=KPQI)2R0Ojs49(`F|6Q79Bd5TE*-J3BiWJ2|b1Wz6_D!W*Kk z(0~LX2&DjvLaCM>tzvxLU~Npb{1k=4X2F(eXd|YnY9qB3EDUIzly%b^fMAbfhwIuA z+*aqU5zX8J;ha;{+sv%K0@UQBBn>Ss7()SHs<(6JP6r2vyLazGuul5;;st3kT|a7r zBb--*5J{s6API!0UjZUNdi3blt(AOs_Ru`<{O;BoV0%b01Ge$=XJ7HC35dF)s{IG#lfz01jLuC`19};Fp@1Hvd6*@rO5(PH1X!2~$FAr+!vxorwVa?O5Xp>_blu zb@5aGxBWf8Dljgu=*&%1;;E@D+m$MKJZaNur2;6tx3cLegKC*ak`^qICH3`^a&mIg(i62v zy7h3-0&SL>BE<9-1;B)i>4QLQq42$@yIV?Dw%|J#n4l^iMYoYBm1Z7eJ=K7ML0)Ye zrO^(|U)m*u*Fd-#D0aGmZV%kYty{MM zNdr=b5G9MM4z?CpBaSbpS1@U^@$o5Ie%wJ3FN%v}L_c7;A@~Aw;aV5meed2qy&T&w zjg5->UPi5l*kTXyw|8s}EPM0j4LAZ2oW|zUT__cAnj1AmL|oh`$2K}LvIX|JB?<#T z35+y+CNX~>lj@4F=G}9$=}MxaqI>o{t2VldB)%S|100ns(~OdO zvxyHpilXZfoMyL?H?@?s=_KV?FL(?H#I|nT`h!gV0vkU!J4I}4ZEDJOB!3ucEAaI6 zgfPipIisQtfCC^B1xd+JCl$+&Po6)2J~J}|JOW_y@6HMs41M3Z=M|Uv`S>D(gVVtE z!7fs#r}ymH16{_nw>MV-IR_M0)gy_9^`e%w)wH6+{a>~b5UDR;`UM5Cu3I-UHWn%8 zKmw~nAUD)r>6!Wwgq)Z282_#rt+0L!Vp;crvOvDw>JP?&7oC~{79m^CSPjh&9PC@3 z&^<4!XB*IxjBg-!9cq31R<+0wX+l^>t-giDa-9fy|NcGjF>Y>dnwk&LWUvH}rLLY; zRlN}uR12ZWeSiO!EvuOJYDDHWfxU-w0rrT9+p=ZL_+X1pV*SLxSEsp|iPNV~lSUca zz$@7U3o_AGr_axkF@SUhYnSZLKq2Oh1}Q=ApYRNgNAr-QL!BF1mhGPUEL-;1_N}im_a_UP>+0^ zJy{>Fu`#E@LGqfCBHkMxfH>a_Oc3~9US3|VT4^NA1cBf{0X$fO298(KydvoyIM49l zU^X6}?_@IPwrvKNF6}pRkE|VKV!FQB^O=yyu?PHDqZxZRN}-@~?JtA<1=1YCh{H#Y z0Hy>N2S8Q4Jw7=#l|J5g?)>@l;IdqY+r6lxP zJ;EX{F|qfNgeipb{`c=+($n(+Y7ocM7 zvNAk-EepTy`SY0=x_6ObN6#f!K3nA6cxWMKLz3cAY-2;irB-b?qwuN9D_5Yr9cG}X z0MYv9jXn5&46lmY$XgdI-gAn<9fNM;LHNNLfy$K0V;~byX_oIjm#>+~Cu`dZu7*WG zg`b`M6KIPJcS0t$>g@UR1V(rlHsNJ8-wF=a2Mhqb+5ALY55$7-`p`LkSP^)!#QN7p z_~K{J%pimVGXnS9qSXOToLAWcrrS~=mIn{@t*?*TVuzQf$g(l1#udfqLf8#1J#Hx5 z`YWlYC)=_v4mfsT2H~V3w!5FU0O=ut-~?1Gj6996``*>HdzTaVQiu+jS@?5Z1}|N_ zi1qRDX;P~|%@4IH29sd#!LVY+dIEEDrXEXMnfW+?A>1ncp*b-9b_nyQ`g&z$Wyk?| zkw1jPqku@5o}O-KXn?fAv&2NnvgTH`4m_r#w$=_vY4{=Vt6Qb7g=r=hxC}nly~)AP zkHFs2O&xlowBDOOH?_bx>KCJdyln#_0jvynfe9bVP+J?2N*Ykh&|Ltk4Tz1XW7)ML z{Yf=~p~?^9)gsLiV9`VNdUMXVT=qvkv$oeQP$Ej3nT@Y6-i9Fe&GtrSS>Qg zy>SK8mS;r>qcoE>rUP&xB&7hfRaaGoVJ@6G^OlFhuHDbzkd4jj=`WBlBhZEvuoF`-S_q7fi&ZET6J!Cn>BKMvG-gvk=PIB4ok0CU`;{e zv!lr{b9%yqnh^n~$R}eBY0j)UCe#jWM}?~a{5f>!CYS^_bGB6gKON;Gk*aXi@7}?v zf$P_^fIWxk5KyJCfHk*p4zIjpH>413ki=C?=T*_{iDet$d)B~$2_PpYCx;qdw?LE% zLeTv2qp`QL<44U{m9|~Br4QnAb9D#MRa&f$-#_jgLjX=roB#Yt07KKhbm?(qq!n~d zZ+kM`8k(mH_Khsi(&E`-A8$s5eH9&g;Xc;m$2S8cK7^~KdP(Wwfe1(*c)=&<=H?_N zB>|R;$FArB+W>X|Xf!G04GvCDX+T<5MKZCdIAC0wvWxA=y$`@B-??}1l97eCw~Fb& z{M_v5YY9BAubCOw%)V|6|a1`usv(Rl?&Ixv4N`EY`+sLVS3Eo{td``woMC< zDOlEQ3WAmC%nHv&EG!oC85bD&S_RjkLXU}SlwEB!4`5kgld4lsC+}2(SPEi69@8HB zC&=kp$B?-WLYz1FHAC1G0s00G50I2>t>aj)kUz4ey}jigpCHjDSu`~%Y1S$zA~x1; zz6EUW{gT=2Ml5}lDE{*0ORzEX{nWa~M%mrFy8u{{HoWFNXy%(0Qz}UW>Ww_b)?A3G zidBU7xVMSV+$%a##^%~NRsIyXX(STkedf$&(^HA{5y;a_O#14csFWb-&WI+1Wn%~q{wTlhW@c|2i@ZVMLk^h7cuk3jQ^0GOs3i<$ks-o)5EKMC z!GN@H-@d`3KIk;HuQI#&&iIj>LtJi$H>e6T>vr8_)66ERG3E+L34VEXp`nqNo4fJ( z4LR~9Pln^?v>zxWZ`!m8cSr>Uc8nxGXFzG7+ah4NLB25eng z{si!FFSt1Cuj!BJrz3@vXe9T)tj*ldo(1Oa5jAzch{$kTfiPDvHar})4(4(mjpfFx;`Ky+d|TK=-Dp|aF;>f`wYiRh+YcqJ8$`R0zhR*xlC0H{{hU6eCIwB%Hfw#Xpxd41}Rr1rNXie zW8ZSTvCK>_ZWy3qKpzkAbep!p;a&*WSj*!A?E1z2MV-IOhYss^l?V0p^uo zV)LmOrMx0U?S~I00hLy3z@&gzui)WGZQVw6%E?dsLOvI?b6 zSXwJ+s+E9%KquzM=a&Eql{_a;71sc#C9a=)=2-!iSqCh*)aCc9`K*X7Qg(K#-b0X7 z#lij23LOyKfW!a{qSMA|1JYo;-v`W5eyaP(w?lxTjE#-K($bP3!>{@1z&q$2RApE+?2e-W4vj}&4t?V z1TCOpA*DMqGBO#}r?|I2i%j|$sA~b(v}`gR-JE%~$BGE=1py#=iVGN1(2lIUZ2f`z zr7!o96W3DaQ=78DQKBKAJ^JY#JkmEPx7qs!!d{37L_sqon5p|_0SB9Knn1b}Fb~-A zo%DStLY|+FY-nn->_Tm4da}~x3KdiYB89_;4+E)j;zT8oHARJmgs-7sV0s1z4fOSC zkm6yu4&Z|UEkb@>P*4z<8Y!g50XQrn4D8U=t5=U5yB8U$2U+GyGe~YzMn;ZnY67%nBtfUweuB`n zPC%V+)#yDywqghbd`}raxWZ8~kwaLsJIY_{PQvr&jx~@BWT3;?SV(=sG!WQiNN-vn z-~sLnLQic&!(uSG{i|%5m~@QiuODW}CA{pdH5;LJ;_SI|TfbL&qom| zjSu*mWd)O=4hp!*){h`5^z=! zp+eygM5yY4TLmAKb$53kD0?7)6vN~j^?*_EC^C%lBg0m}sQ@Vnr_YJME<_~H(cncO z!wxvG9+G#(UbFWvj6=fIEC6tW0o)ffe(h}r%Q$cek^_)tmGPXkcEG+4-mT8ilTvS) z?K?I`RgN-D0Fh_~wi%K-NJ!NH8&qd$ZD|RK_#;P;9(8k@2L2WbK43(kBBd;I(88VR z#)hT>U#N-bPD(8X1q)409j*x8P1c!$`VJ?!UNezHc<4oHDvUWD2I3lrYrL^yRaLEC z`^S%OAa;Qu6@cb?4k6zu-WEl+li&vA-nkt=UIFwgVSN_i^4~%t=Hj>eSilH{($|_d z26SQ-5@lpyu#JObceWsWd(iIPCFs&(xt2VTYFI8{J`wuMPoK^@+>IIoNE#W7E919F z*GFv8($t)snwlCL^Y`~J@S4reEqwX%DxiKK;-G8>JSMm~9QQ-|On<7MpWn@!H{qv7 zcyGwGwiZGKL|O}5q81MK zxbe%EO}qz>Ce~NSB0FYI+IAF2KYaM4v44(6D+}N?EzWU1NGv^h-2tey2gYXIXx`+|X4KU*m+Pm^s50tH7qN`7*4wYSb{P;1!{H)0+v%leUWqT91N<`t!E|aI@9qoZcFiAS+&%@s$D#=?H ze-#(+C1SI6{~DJrv6YNFFkd{12$Qn>zTpk>@2lf(BV4_IJ>vGo3dbux7gjBP+BwrM z;q;M&x3;ZnZ|}1te}8*_UAq3)%U^DAZqu#1$+>M%?`r*-eM?^D7DC76*Ue@xHcOq~ zFi>W&nsF&hvhNOJ__m9i7B1DTt1Awd*%ZFAz=3-OtOAy@>;HfB|LZnf$fey~eek&D zSn#c%GGUfCR&vnu+N9hy^}~^@o0ptCmiJ(PK)lPIOzQD>i_*lB-b%e35%r3H;T9`? z-h$06FTLboh2tO-LoR-baQbo)QXpVHL#=AKz!1sDcN>4*JsC? z+5{TcxQjqKe?N2l_;D!2DnyF!-3v9dIOcryr!_GaB<-E_wL`H?%lv-aYFxP{2X3K*SGgHH{k&z-sF^?YQnpK80rW#3> zdCyZVsE(w|T%|9Qlli5(bi2b!AZ5%J%6j4A#mDpyoH_8FP1$`f5Omq0G7%Ax#%R5q z@$OH8cQszUdUY`xB{-ZfLO(>&gGq(rpE^;+5Exce9H)*}RaJfdd>*RsqN1WABK9#3 zbDv5ZPf=fVU$~JqMr< zTg~nQm|le`bNgE^cL4Hsx&a!wjJJ1 z1*Of7)Wd7)=8bm#G`xpIY*Iua1q%h%5EO!fz|jE_5oYm#U!I+f4f+>AIWJwfASebY zUj01BD?lhQ64Q{q0&=0Lc;_$Mwr$Xiig%WMfbd!L5^Sfh|(j{I5DelLDh$#X2KR{;@?1aOZsjs<^))Wez!{{R4CA!b7)a9%i^d3u=XXuSst-P8@#o+v@~+2I!L{wW_z^b`ur37QEo% z`^x}#x8?WGOA#|{%|Pj#{DR~T9M*q;7}i~IyHb{S0Vp!web>T+D;$M=)UX(@AuBNl zF^X^NItTgmLQ?>kfD)f@G9c%&6X!yyklwBfCa*xPI4yd*Vw7bO9{-o^k;4mNtV$cc z*}U6D%p+jDCPdN;OaAA5Yf>wX^a~$pD7op`#}+~T+RX}cM=bxs zO=J1=9+I~$K;;K(Uo-H)ZsKLN)eCSMHPmhIecF5Aovs+=s&HaLlx8P;>~$Bee|e># zeZHOSTFRmM^ws?)-AxS^w!Ew+GBKAJ05@Bawsnk#fj1<&73Sqy=c?cCyj~MfWcLCo9#$6%bTT%{pk!~uYxN4zOfrQUOfSeqSNN}Nr^+T zhnLGz04O}$!n>N~g_eM=xfi`wj1sPMv8S<{6?q^^Ln&2(71f@$h}AxB0PJ=ko&Vy| z1u1z*)@12z>~?Kw57a;#e9Z?p=RS43E(m>Bv55gN>RlBNB^1JKzrz_ml$t=O-ybF2o`Hn4^5U(b31h?Ad1Y(eQ;joI@Ry!Zws(7cYiNi3M#pvQ4kO_ zAT;-2Sz_$t8bOsG-}cHA8?mp+>_JHOAjGih5@VBFjmVL6Oj*~Aezx#a_zU!Lq?;pD z?G6zYqZdsSoc}VP3WBwuOaD!IM{?u4atXrQV)s~3D?Nqt2+ZBAs((6@c-FukcCG!V zLNW?z4)Qp+rj!G}t!J5#(BS#GgmapS6)11~eDQR<)}KDDwDS3MCzKkd!L@47nquAtqavae8ogxAhcl2 z-z>yfO}mJ*dpKD%l>`4a`irraeVwh+9>qHvXtl}>@(k~`+i7>{PG>>FwzRVx3!@(7J#DH64#hdkHL6@8;wKV~OA(0#dn@$D9vg{4L8t9&v5gYPaED{bbdCR3P$l@MS)(fkZZxTZ`WeEgvbu_tucxV#!@~{8-44i<` zeMD_al}zpE`f?$AzaYhfnmb)*lh3bRj6$>8%l+uQ~Pd2nE)I z>HQ62V~AK6$E`Rwa0+)@2Q$v{{@Ma*1h*X6!Yw~-Va;EuqIyKZb{kJwe+0vA;M~TG zE&t;p*tc+lzhM*a{N#rmeNvIjWO~JDz!SVCGMwwcB0q#0 zsu~H=(8wk1cH9k?hmufAa{QM^)D%9f6l}-1V*C+C*RONp+>X2W{=RKn;b=aH{j-on z&IAWP)^~>dew2ybN zh=ea#lbf6nJfCHl+^=i?-sa2HqrP0Im~-K~(`nVcvK#tZE-yX$YmB2`gu-B;C6y)! z=fxp}B;vAcCHSd(bxJT*9ytKK^0xwu}22 z#M~mKm2eMGS^CDGPEfL>E9gNly8y4I5&VL|F)i+{(pJOL$4#b1dHg1E74?90 zf4PJ|g0E7r_}lxH{RkuN^jjKA);f<4&$#F=H8H>G%7Tp0pHK6_C3@Ld4W%6-PqMNu zJQe-;ebws!DP*AWBnC9|yNOjh?o*{B<|3IM?lx%uA+rIOzWrR-GRU)-U(6>46*IWPyBH(9US z?(O&pU(i$`@K(@!wEe_rgNSj0%FhMGeMQ(^y}F)-r5!q4H8hAobU-pr#6WL`Vulc&}jSP$2I7DH8dRR?bXrNu4`&~6dm0LrF@W~Y|eFD5+k3!Ld9FjwtxP# zC!IEH)sYiHJ~Fk5%q~8i_O>j%NzDhTYV)^~eq22YWdjGx(lat38yE|XVNeJJ=}zt~ zTcFa4CR!zM={5Sk$OUyV#z_OQZ)gey>& z0!2o)mX^>SW(b)*sDFckH;d}Wg0(;k-nlzBccB8xRcEJ$apGE#XwlNjaUh#W@@?Jv zc)gUA)R}v`IW`9FOH@aD)zC1bcWfs#Ry^i*~9&D;ZyA38sLIC;emvRB2&nTKlW z1_hM3^j%_<8_72kgmEcKMUHLM>pgTm567#m?Q&w26Kg`liVPsT708vYq^JmA9#nyZ zE?mg94Y%ZoA3S)r_y80yNlSk*J18hDY+-Kx0SA?Lk1_cjTlq!*rorRlU&fQ^DQ(jw zGd}vHLoK(O6)(j&D%{mjN;^=;$%xE*l#g6fXmJ43yq-r9Ow6A8rop@OFvRD70{?g<^%y z(!2Vkx;1s(uXWy@^!n+mjuKHr3QM@;Oe{I&2&K*Kx`8y#Ej7BRnK*g{hjZ|os)R3* zjC`{7f7v!AXu;tF(B|(3WGa5&OP)2<nEyG{jo8Rj{MxXX>r~ct!4a9KKdhWd}yp6IDFd zGx@~kkUj~Iry9(iKJ$}#WdLvKrABw#c9rY&Ex25V)VgC>pWZu8ejQ%kI)A>vV`?vM z`lHto8?!~=Au|8s42I)xwsQdyFLfY3KCCq78yZT_ca$B&2B}Cr)}WD6xxaL*{yWL| zAIPq=QyDqX$u8hvd?yeAAbkUFni3n7gkS&aR~~UW=qf3ZzaXzqif4I{9!z$+-(&AL zOuZa5^QSW`9PE)0zXX4bWKm;C0CLC1!=PrLMGai)K-zjFZ zypj@$H4>z*D4BHHlq}xKkJ)D9+27u3H*w9PHZnL-H@EM_PxVQCy`Mk?`?XT@2=uL1 z*0$%}mkQzizm{Lql-pP#7~`N)atte*CFKW0DJTgamI=u3F9ng5y`Ok)?%QJw8#Sbu z@8pN{m^)5hrcDO}5ZphF8RR-UJG~2L=jJxWltMeKJ1~s;B&71}i9cUb(F!gZKyq`< z==WQeViYU9(YZe^CD&EcPK?4SC}M3vZQ2cxz80yJI=WP@IC+m@H~zGGz=Dj}gLTU# z=)iX)D-wY&bMO-=@;v|Nw~G0yybzE>`>a!KHJQCOspj{$;>b{PiCH=9sqp3>%~Ysx z^zm5)jK%1pK?Kk=wSvXKjfF3>brlCBh@491Db?y57GbCJLoy31oI8oV!_6js5D{x{ zeM`4L?$3+DC5w>`OmjD2xrO}dBa;gMc?+mBP=lasZlo8nXYwKk6XY(N{ zvDf>?ouO24P>)}S4(qI5t_7!R9TQj{SuHIRFfC#IAz<$Zz#krZ;Lc8p2?^G{)tz7KWo%UR;fmT}t;$h0=41ALT1aVw->!gT(C(>;-KV{j)!WAR)5iw| zhma}iq&$MKKy31FZ3OIV>+q!<+i8kp1x(buG zG3>UaxS69Lgm6#({EU=W1`K!*7-vQW_KR?$=1c3JG`Za{58!H5r$pEy<&}Fm@z5V% z>GI3N?7})v&8YWAH!Z;J&wsrC{QS(6K54x=$6i#-h2T=bcGQp7=H^$;f0UT~(d+so zjt8foFl-D){Ae#b{p0kZtmTUM+fEIi#CNgBI-}VIiLN@sLx}71R>ctUU;BgOGc6HG zN&dzj>tV8AkU`(x&S3_}_X6|e&uiRk@#iz5;(9Q}asWXnL)>L~i8eqv+N zpO@i$(2v1HDM%1GHge<a)DV-?GLn#V}2+xm0gdW51#n*0@BpW9R0)#b00n;Zxo;RiW!3+y!zt`lzx1K zEQ1=33)Z~gwg9*M`JH?Oc*IoRpQsv@POyTgrh7u$X1ViOZcgR$cRbcW15ssy#b5?K z#VCNj{=BKytybL&hMj=uaBH42X@n~LQO@VaW+6S2pMU=mBh$BwXoT^2UGpau zWaNzXNmeHt;UMrrcw&Q?J}Ia}>7vE2wQQ+{E;>i@fc~0a#SQ=r(>mMbivUlBzm8u* zBrkc`-WW18XhHo2^dr)`f{sO81f`}9hf3FcN?wb+vz)rQa1uaHoUw>&* z<7?5>)Kn;N$*Hr1Mt-9=#_ysPAK>c~<$k--s+={Bes+0jcVoy981%3s=f@nb|B_CE z8fuJRn&5Z^-|v#^kmm|k`=OoV|>sf&kEE0#p#56KTU%`y^J78lIwGH6M2Mh@8o3Xbd?~U8pw@Yvz=4wY%30N`W&%v%~91e@78c{$=M?-#kNAETCko=TmOiJ z>Z6Xvv8WEGo+l*F9#l{ESh3;QOtEo|PhY-8j8km??0D6w;}tNqDb=8$hvEh`>1+Su z*$l)LFK-02rLn*u7Ww`AUtRBSfWjK+*r`Sy%xK+ddH0A2|E13FSaNNtO#82oi1akFz_H5N$$;sC)s0U$Szg;)t}*e%^5K%BpjWGM4r+g(WbLIED<>b{EcDeu zHGU3E;1UzFg<^T=1X#auBaET6fuTKhR48>TE5}0@CoU|EG2JmSF$X%q;ZKCRIaYBs z+?w$gZRxbUrZOvmhOMX=!^aOSsNZek)hbEx{&QZonQk|?`&^XEeE*cwcMxT$r{~%E z{w|Q5LFG5(^GQ5k9m{BbppyIH1nbqUBzT&8J!qCRnV9Lou~s8H+C3y85&wW z3v-L0W4Ed5wj^=et;L%@xQLoBwCE;9CzlI@c!J6$+QlA2Lpc=l!DOzmFlU$u1f71+YY@R;MWK_Iik}Cj%+B2W zxjRN*zZE(bBHiuH^NxJnu&}DS{lr+D4QFI$(VW*lUD{+Ygx?t|w z#Vy+0l2Hit_)rfeg<;ILgt=97Zc&^f7h!P8HE4!`QIkMKL0bqPRAa$pN1@X*wc8&> zM)GlTk|}P`ND79aY8Gg$#8VNUs&4ZUlV88~S_k6}XRA706NmgCi1?n^i+25?GORb| z$`X?=z&6tI!Rx1pxasjCXVYSh@*GR2lxNo~iMLEo{OAYbK~yi&ASU`!$Ybrt!3Hsd zUY@j?m$T3Bhj{nTd>u9ETebM^4~0&8+jR+@Zg2eB)Up?Tf{7k=iS0lU_ zx1n1nSQ%(bleK_aMcBfAikk;abqo)`(k{Tw4IL(h=G$AFY6s(B=2geE%{HH2mu&_6 z%-_2(UiTR0O+seo=VKg)*Im6OFiX`CFWLfK_OY=r#dVbty&nCM~fcg<`R?gmaz-!kiXipNBfiebqm|BJDb(hLdei0GOD8I4Hbm+8Z0-^kJev5 z74D@#NSNjrrj370jOz}Rwrl#e zeVbcqv34!lgW)=c&~Bg$jhxUL3|(j&H*N$G$j{G*J}yFeIm{*<2GVr6XsR8)aLNrn z@bKY7n0x{sfR03H+=52%v3hRk^a#uufswfF&>9ml>u#JXDiBpz`+-c}YPeZVBz8gH z2a2+3aFgkQjM{vc!L8f2MTdl#cz+YE7)uYNJI-=ze-g`Ts~6jiAw_HWVjo%&%7Ec9~B!5Gir05JbAKW)!MM|aA|r)m7~w1CAw>BifwFcgr+}N zD309)qjxyCxrKLu1)uCY6ytA0dtbdVZjX{^Ya+tP-6Ub}dIQeprl#-pPNWWY{o6n7 z2nQ+!x#W%-*jR<@*I-;M%m}^;J6-5L1{04=Tk%je`|;x$=H$6|Wi~YHFDUI#4%gLV z)0K*(+T7y5-}XSJzHOv${>02!vicDb(9!gCM`%i+PnRR_xm}J;RX*^`&WNJgUtLIo z{u^!>V)^BZdj}m_oV~~E)U#)1f&yEnry7g71=;%8RIa$YxMv5GFH9xr>)x_j6rq)A z%0!qx&;W-F4S3>H?^TREjei+Xy>uGIpA|nhsW;0%2rpYWa4mw;a~fVXaaW?jHAQX5 zzDYrD?6<89Gs^N>)w*^R=KLCUaCNIJ+Xq={RLhSaKb}0nJ(iqbjbGf1I5UNErFU{VD{p%$9sGXR~YV)cdHT+t1v@&L+=konC8hNkOZ}Qur zaHl~jX(_LwVwwY=c>ei4Cq2xk#-)iJ`t;{}ztZCE1h)1q5u8EPd`sw?+Q#jV$Sgla zz1##_`$(ds3%;mjeajY`_hmNdj#96c*%=_=Hs7&N=HM0_Y03!qscmgk!PI%QuavhNxX5W80E_nyiQJC)FF*)Gg`F@QBdak_8 zMu~o^crWjp%QsR{+jTYzpA4B2UM?}vkJ|25TTIzj4Fk@O#agZTwe+SCGIaAnXEw~{ z8)!`JfVMX-(M#j)p2PB8{YY2>AEs&V$+bN!a6lXzIF43M8*~{gQxT{KhN*R;U7mN9 zw%0;}68>%W+kvAP!&xDbX9Sb7K|rC|@l|RnW-zNUiZUU^Rn$o2XX zA0`oa$VI}K32Gi0#y3-8Uc=y67PDst|2}(jcP54!+mGjrw%EfUCdLTjy7+P^+=hvs zBp5tQBK=&AbYg>V$dnAe7oJ0RDc;)`-bP%un$~aNGytVR19nD9o%a&C#v<@8gU#v! zUQ*!dz>C04Y6;V_^A|4sJdBsZ=hP}ciXH)dQ&Z>i3(@TJHhl4tzVjI?WBm{AUCg$i zx@!HWp~?fhf+qWg$CMXk zrHrLQo?25wBZFLLeFrtP`PWIoFq1|jj4}+5sNA?{`)K|o@uQW1L}7uSLq31J04jKG z;=vzA9XAsO4!8 z7KL|j@B1ZIi450~emYXdMftJ8a;L$V64-pnVzo^P?AyDiYvQ^~wh7F@c*SJ*BVl3l z+CRpZ+LoAZHE2~ndXxb3(hycl4GU-&jLe;YSs*ZEye}YL8N{%5&Lw59UkC57I#%5R zni_87`JFv}nV336?7=H1VJI~0_kY|BCN!6EYq@nT3UsZ~fpcLrr$*#l#b~j-ms(|w zlVY^tKkmz6W*3+8C(wD+E6dBe%}GFq#D>XuznU2heKZ zy!hH2uEO_2Dm{f}gUKahKK>!%_wn{i_HGgZlK{}rkWIDn_MS)5salGs2A9hm*m*q6 zYiBeEL(7hVK^wG=-eVOQTHMi~4r#-%J%gu5cN050=8N}6%ns@=5k6SXw{OP7NX+!e zWoU-k_T1(DGVz1L6X+oCqPW2jrohzL1KuAufR^OmlG8qTz2iJG9o<^vaO{)fGL>WW zoag2?(I&vFfYPUxeAZmHBdn~fFr5p&2N%?2dr&Wo9)V#!HPa0ElIu|B**t&M+l>0G zE%fLK{XJ&*W41xX_n7RNh&fu!x%Oxs)hcS#h@7wqC`SUWl6Dk1v@l%aj z0j&yW!>Z&ClmsDS^X*>k<;}nHV%g2}z!f=mS1?Q!{0H@aXnX6hs<-BS_#9hQK*FFE z5s*zI9R?vFAfj|g=cYRkBGMo&EupBCgmkDV9Rdo%CPZ2~H@Wva8$Aj>&zIlx&+Fx- z#QwxuYu3!HduHy*H%Jh2>Aa{Quv^~1(gH*93Y-o;<>@zq!Gx-0sKnv_VOp*i9VeyB z_cvGz9mywXIz?w;?%1(of70jmUKz9S)!ik*aPS3w4xo`60EPxIp0;YKo!QYA4gti9B3 z5@-f0=U6pere8xjJOAjm9h@Dmpp_b>j)!f_DqN}@@gRN8X1W67^GJBxTO?EMP8`8K zV`I9AfRdkth{zhs$_Rv4?*WPD%39C<-#ZDsjox1Mll9Hb70|!{3gf_~l9iP;GBSb+ zvhYsKy&-Pld)0r*=Y9RSPb6Wy;vv@aomKpev`jU;D!(RoQKc)*JeWEYdbANZk%ZRBe4NOx-0hP(2N< zXp>y$%d9Nm!^qlg1Wx4(GB7-^tej98=;`SJL)DEmAq4^7cKyaAgweE(9kS2tl>4qm zsF&D$X#1^dQTeXGIS13j-5Qnt>{&2ST*(`Pxw%?7e)c`3x%dW-%Tr z7{wX2l;N_0N*mkX$`%Yhkd;9ZHxyq%gM~ti0Zk1JWKt$_hdKCw@Bo~nP|y$j-_Me! z93$3Qrfy-W-4+XB)H|gNF;4fM?T|WdgAz2o(OGKMZ01IS%O(=v; zb!{82sz#vgic1T7>a6oi-5M4G70zzEi5F&MZFkIEGJ>b_n}XU>z4g$jM2x8;qOE~` zTLl=DQ^cIhmiWMTaVB@@4Jym(%)hNBFn!y*{3BY85hCrZn&1G+bAmOs9L;hy4E@> z$!CIiT!nqUa{WH1;ihP{eOfvt&CSH6DqlU}R?XT9Ece)s18CF2*pb~2bH$80$uBtf zOv1xr6-)y&I!wQt#H;<97VRiCYJ;e_pO6af^<1BQ4`i4qE=?U!Nz_QBOt~gnzw82K zlzUyW-eW9J6iPMd5H)sZ_(8gNKvQ8=ZFVHTcbzT2_rVXOU|UcXl;r%vT1@%X z>KAxA%g;$QFg5P|jBjY-lr(9B(@ZK<38Y&d1lGe1CwGkf@kpmn%*e%`zUSkSO8nDU zRfJTjzFmIU$X4evF`f6=vAv%#zK|?2&{k4d7K!i>KqKYz=6!-%n15}0w#F<1&PJJ^ z@EuO@g)Jxk*>?V=qNAkG#oR%f}%R#VDoIS*u*XK;YoYAa#mD_3NI~iZm?p3*+G_H>PW(KP5{-r+}8T zGykOy|BEm`qvr7oE3z3V4EuR9L-Dng{MPFRCCl0dB}ack%D8<7jwFp#f4xgB#B%xB zq$7?uQjhNWO0P#u#p=HXd1XNrp^peB%PogJUkIdBwB99d0G6#Wg!wdGsOkAVmo46! zLoDKWAIB%DsPx2}q;x51mC60ddyRleE|Y`~yh}CEBT{GNt@B5pUEgaFq9N0NtNwXb zY9`cKiOIrtWhil+OxgPy64sM+x`iQN7ZN!61H!^R;%$xgScg~h=PprCt-jHTLO0CN zNv&YZ2lgDpB0F}L39{&Sfr5(5X8S`)AZk4LU^6P%wRSt)Zr+g=>%n_%TEhA?5rRPyuI zrMddH!Gq4*Kr|qVJq9@J{X8vgD>PAPtD18ZgcNmv!8vif2pdaIwxn9niVc#On>PSA z8Er{GZT=A+Qa2m&;>IVUTdYhlWN+kb7S}AazBlQZ=wniIkB02 zVbhJ~MlS;U@y%GS`griIgZ%v$90h@*3)qoHw}46ser1fA57GzzRN({9!M}B1?R&A& zpHRxmpG|Wy`QvJLxu?U5TyN0hRXtL|pL!e@hB<5^;-OhMU&LKbCne0cDhWujl{B+t zGea|*$HCbq-bi+ww{AVvz%HVRaQhj&YZqmFg(|N1CuPDBCT*I{i~%pSUkJ8U;vGaY zfVZq`XnqNb>7kcSxd?>u`pcb~MJjWXP}hJ`tZE*mbJ1*;SFmXEiwrw)q07J&A}j*lDJ7yv0KObk_sA#m1$1n}TieZ}1YOAPMNzu13j zYxe>Kb7mv^q$3dg<#iBcdhqUmeBR*Fp&i3b8SA#TXzD-!w1)=-eR6U@z{teH0z`vA zg~r`~TW`~>+*^c;YY9f)EOIf2`4_UJs-b3{vd9fqn^`J~LPKY(XQ5=Eg_MqwUg1r; zSkmb_@}DTRv!>ciP)U-DV4}ajKQP`wIy{`6odAa$y$Q?(@MK^Rhal`NMa7k-TD{+= zMksZxMhae{m5M+J6gD|Wd4S_CpEp-`ZO*uD?BK$~p8*Pt%FKZsJIXLhz*7U|n7$+n zT{?!eR9hD^7ZCCb^OYe9zv0jS^p7YKPq9c?YL0y1?=)G4 zNfmdT2c!4q;oq`|T|Ncs@knm{#_wmo122pVxWO5uL?t0~JgI_N%t{iI6m@<;yxU4~ z8}PaJsJANl|8lF+2TOhIAcV-GffQ<-#n^Q@7F2!5=DGdfhNr_)MkDBCdw>13LliJm zkVU`WoFAhu{C&3m53h%eyVb%lQeUMN6c=$Q)j6q4mzd17{%`M)%XJ8Ig0?ZgF&|mK zkZ9`SAGSXl|4Zesv&B0^k#G}&XZvVthUDG1#R(Vm!YSRk->rI8wS7wB5~zkLR|YS2rk z>EzGK!~N5Q!bR&JygT~GB&oGpr#88*m&yrgG5+%4k{-6+NjOQ@*JWRnIKoHD=QJ?Z zjKlPfcMHD%<9TX%z2(H4DSuqfbcsn+5-Ph3ajr)T9Klc1CA154@18z0izqMpre)Ws zzkO3OmaWt~5$`iYa+w;H5|tUHt|@r~b92w{6)-8{i0h1Wv*Wv_8KcCBfo3~x=(!p_&t8 z19K}$g#lrJ;*saOieiq)=dF(GxctT={`6dgPgwBfi$w$uT<)(yP%E*?;sC`whdmx( z*-zk2?WB}fG`-yae*`FZ;H$@D)|3|G8DD6N!mKRP!^MHr1Lsp0Y2bKSnIt|S=` z+{|Zhtm0kwW-yLxUy0FLdhrW2_z$nY!&22amLW!i3snQjk2;a_Vo8uK+g-eCPl8Yp z$o8L(DtuKc`eka%k#k>w>kfK+Rnqi@CkCQTBon=f1~m@ zVc!RYX{$Z#-g5@#p1n;Oo*Su#$oRLJ_lEAaC5fzrKeK}VJoCy`?_WGbX31F8#2c=LPZw~fVC))H62F}1>ZmY9&rB}3!++wi#b z^Yqp-X$*`xh$8)+OJ(&~W#+_=MH1&@6*0$lFU0%DL+)b`f!N+3&q=Rfky3Omdglkp zy;hGH>a*(#_q;z+p~pWgl3tNNbR@MX=oFo_fAp8UopR0Fgh2oF?(p*|sLjpHxP%dO zPcMA%LnJBl%15}C&+4k}6w*_G5%vE9yN0S^O2wnn6K>j^Z!~n}ydD8jk@l#a3g!c# zA3VQ6rPVpF^~2y_@x89`LuffVCNoTgchv56fu$W1NP5AV%Id9k4Y)B&^*k#;nwb^s zGT?s+=vl`(*|?k_>iCVtk4peS{%Ti>a_zX4kJ(=F$1vUXivNN7w+ zQ*fpq%X0+>Hs!*skKp8PnQF4O_~m`f4<6%T^$lw|n~>1B09(;7ET?j#Vb2HP@_>jE zNT=1KYEQop2s?Y&KzWz@Mqv=;vYlB8i>DGykW^`}8nM(cGol`~tuD)}w%qo7A;4cq z=(f7h4lIph)bXs_nA%noKZ$&d4l-}&P%l4jRzRgc3SN}FW5?-PPyQ2 zSe~jP?AUQneqow*KvjLG&i-STEH<@M86>|Xd^L)aL&UEZSdg?Y9{gdD4}$ymhuF2e zs5?ogup(o{)p(jhm1Y~9{IGj3IOGX(J5@#g`XPk@pK!eUC5>&f*@oc3FnaOew;&n| zcJIRZ6_Dv51G3a+-^A!A|S;A3KeWnGXGQz zaKV@n#qGm5SAkBH+8<+Q<Y$tNsVk`4{_w?;na*4Ni zuSS^h<$st!P)G3GhzJD0wqdWmTYaBEO!95XzVv+8rNXxD1QDja_HL+}gnwAYX*7Sr zNVvTm5#4_7M}d5-_YoWDfp7G7zpec5@sLj20^6fp{B^=zt0V?9@C6Kb8;^ zdkq~bFJ1)F@`5!9C_$3InaF>)vP1^L!JME-pPV|+$(JE!ahd{NQnrl(rwWk2O@k;3 z;Q=M$Kp_AvL`+Rhp%FMVhj|W(Gm!X84^4`pYwYs!GNkgJ062n`740YpP417u*AVsI z?xAM^AOig1BrsQsLf!q^WG(SCl!}*`oa$1{j9PtD?wO)z-lh&O07g*0UHEmy4rxK= zZ$gqgBq*`T0KS3lG0lNaEf63591oo~)`#oEVf>IGVr`x01ibM}5Eb8@k4)c4*;kG1 zuF>tR^$nB5cmHM^l^*?!oLa*@XC-mq_iFSQI1yiziRIF(d-OBm*#QS8O?1=(m^6*z z;pFVt29qGApjnXYcNlIwd_?Az18ydHgo`W(2fbwtaZvTfr6g8Qrq>YcI7^)up7g>~v;OefCd6|&`xFHT-OcdG} z58|{Lg>2k7tTD_6;EFKYkgJ`am)Eq7E;h$?HC2;sl!!q~tBs(6Q=HmmR+B%lwb7i; z*+9%a>F%m=9(T2+!)ox6ECJ$cn64vJ?lT{$%)vnu9%(x}brxlaL)kXCJ;pY@y^kSF zY}yjVAOT$(%{-mZtrp>0IcXE8dG}f!mJp(tz*i2iDnHP|4sC4!yaqYqZEaX5Kt3lr zAoWFvsuglv0C6?%r>3Nw-a3S>bz*6WBB!s9i|3Qb+;`-s6P48xB~avp$_w(z!Xu{B zqTFaG$sg$+=`KmP0ldV={OlzhVzzKIw!c+OG`^DtK8Zl_Wm|4Xc$u-@GmAOxN2jCEI}uf7xv=e9GYN^qUU8>TY{p> zpe~+IF?|qi6n#rSpaHv`fyPYLQA2v#v7q!Y2?W;5!U@-$3+Guk=n3v ze)%772OGXi$rF`c`n0kSvZ=Kwu??%(eN>-B<}7x)v-*!!`VahqYAk;^Igr;2R_^tM z*GMTf`2|4Uwsu86&l*JW{Dj)U;cR zoU<|RXV}0;1s@+*?z9~(RgJ2O+=ybRe^EET*LxK&g@8VSJO@)1Ve82o@(UA#a(liM z3+Aa|8vT=9T{BytEq~)`{_$eF#brrhB1Lbm=B>E_9MR}f^x8tj_I#fVB08yl)MjFwin%%;r+b&9 z$j(EC;=`B`nV*UExQU9URJ$nkaE!o#voQo~uO3leGAOg>1*a)hE=Y+ZDMt*Vuz<#< zq#>nHJ}1^IulzWOTzNdA_)wz-ci?OaVcChX9QGNbjHj2XF{hq1h!Qb#JX3h-X2hmF zng_YVcVViYF)VR zv(e^~wQ%n|#Oxp|Z}%%VE&N;dp&jK_O?^tRVF2mR^(ik6g!Zq1#X@{6u^Jk zav?q3QV}=11wM=*w5*rfc<}7%r&6Z>&8h)>>N(Rie*3-T}uzyIfXkg1PKlrg5>5Yh#Nu-J<0PSZ$V-ZC$8dbNoycU1%Eqt$jAtqxN%TCN6Z2;p`$1du86J6(!VVF>> ztwrvqa48S_BS(^`*6&1!rb)0h?wUuyv}OBh5r=mVe8| z`RO(|ll6EmHa7llT6nz7o}zbWhM`ZBMu=b=H-N&OpH}(LAv*rV!gc=2 zcm32UpQ3kf<;wqb-TDh#d5*<5O@A3UK@Na?yPJ%||8m_bF2|~VOhSa zgULT7;=j$zwklPO%*4AFWf<=x+FLJk4skasNZ&3?6LIb`gtO}ZaP^!EIW_~sDt}(;rD?|g z#F72^hyBA^@jXU2i65rySRk~EBkqvzM7&!NtBU3!@eh~BXEZa>`;Xz;h7;h%=i+>L zu@92Rcc_akD*LQAF(apT?6=MS8rHtb3sUFXX?qcK>H2G*vJ}K5eep`Hun!ko&pz0> zcV@L^05n;v*AkmA*q{{Kwc0R*oadQ@bU-r(Y}lZwPIPmLMwqQzbqw`PUh3qVYg(IA z|55O{y$^Bs+H96AtH^31v#_ob7~iEzp&WEO90yqy?H3vqlBRG(mF3WVt1K5l zG9i0JASTM5qZvpQf8-3}6zUdLCw*hZv3M2Cc0n;5EN~iP0QF<1YdhS(sDhartOkTx z_@WiW=9(7Lx68b6+XwCP7%tnbTj0u{d;O+cp6gU_Zi=4Hps2xG$1kvFL#PSiL9ts9 zXOXVmx%%6_+qzy!@&zgPatv+$rr$5Uzx|p)96bF0@uJ&^kKZNv_3ivF$TWwoQ>$#S zM*M55!d%^ratL7^r_y?Z@HoFi5yH#jw9z+fPZ7?>D$LB}tGn7MdNn+pk4Hj&DGA&t zgGH1)y>ZsMZQE|b+J`Xt64RkPdb020(k27H@L!84kVf)AYSVRaEPq*z|9&yHHp;^n z7fOdxb4EJG)WRSRVFbIeMLQ()F$)xC=H|AojV-)rjr=!z9k)&fQA4eF|IH%D8BUPo zf!?`i41Dt&NBeLvWd4fww1Cs>84E0zIfx}BEOxD>FV_FRZ&PMqPfBN)(PHv=1Tcix z7wiB_xtk)6BqxPqnD657R{dqW%Pk@=WOj)l`{rm`pUiC)6oTgtAVVe#GEeZu%64f} zki~x7AwiN+vJK!s5kI<1fo>8?*eJl6)A|iz zR`4S*MT@AXg~W7F4w03eWe{b$4~zvMuxMT7B!q{<_ez7j-i?!wM+&Yz!5zzSyXON^ zJqgju(rSLOu~`HcX|P&re$;$@24feklD!`%f8g?kXm0_b)71G3jTNlC4p=|C?Rw82 zj`cT-q>&mY>shFSsT8rXFs57XYv(#gW+e0bFQj2 zWpbCIR4lYYAM5Qxc#I}x5SzU3JXsTcf>|(cZl1?;-L1J~r}pmBM&_4$=p>_^tgE)C zdPr$8p3i+jeU~0z-Ow+w3c_0*gE$XFl&TAlb2bQC%M61P8luVPJkmmHcTGRq5U3F1 zInfhMe>@=}zq~%pL&dyOWXX7}ecD+^W4ogIhniSbGvLFFjlNhuJJ93^Ny)S=&1#T3 zuE9~(#1bo{KM*mA&fc&EZ2h;Dh79!q*2d+#$J~Y1FF6Db) zrGHpgtx4fqhHR#)YPs#GXN(q!N1GcGO-QQq-pNsQ6=)|iW|V~77kULg{c+<85FGx# z4fjPQ+A8W+>sc4*fUT^m`VuvtIwmiJOSfce3>~bpii%T8C$Ad4GprY>FVoNIbg%yk zZA-PH_p;W2N8f~v>1R67Q&gLmBB%q`|tkg505$2`U15t70{hJVb5b0ZG z9J*73JDUiYEeSq02BwWiRWeZnkV*+zoac#7o#F<7Zhd{-08oI@+QP@w{W|eyJanSS zbwdoD!Z!xu3pSvWBAjB}H~ri;{g>!9Q)kd)PkBNTB`)K9$VGL-5>wRb01fE6!VjB| zY=(Sl^LrU=hOijxjp*Y0#Zc5Y(BPIa^gS2?s#JxSrmEImx8nTNh~flu;l2B#E4jG2 zh3EI#Rf!<_x|D8h<6^jXtgWem8f3^Uh2rd|P=yb?!p(q9B{`*sPWC%EC#hO2Xrzqt z_y{vMQe*p5E+)PGqSw?fI#w0_VH+-VCgb+Py%}v|65rHTf~bsY-?-sW%hbZur|=h$ zFIpas4t6@XUYsz5ug*XB1mjsd^uppfc52QLl6*C9m+OHk$GvjOwVtO1lU0=-?`9rA z_SLJ!-j;7#0dg8bujl68E%LN#mDr5*RG30RM+1!<0q*4lfplIrsH~}*&EazX##AS5dgZ6S zmaA??ZhBm3j5A(Nce872m{r7YARpek8UT3~X5sCl#?h5DMJq3+2cSI!m{Uk3E5a6R zL8?G{cH*TnRYgq|_w}BMfFhRutx0oT-PARmzKjZoXWyGQV8%W zR7bk?2tv6;f=p#;T>(elreFHoxOh*VoD}x#2TtEyq=PoVP&)VMv&jj*FmDlYHx8O_ zHNh0PhP%X<6+EQ(fN?Hv8kEGLRt zc%7$X%v}K8QJuuXsJS3Ef4VW4S{oHOq5?4*Amx@G}KoTbiUe^pjm`jTJN2;S#+;Mtyb4GiM7XZkYV5xmK{1_klO@NuYH;B4Rkjo6u_Sv65B)2}PgI^FAJJ_g}R`-FkJj+K^Z z@4gyjtG7@Ma`r<-e^K9=$8EK)Dx%)by?kV5}Um+eU@K$U}Mq0+#-9x z>E3vO#%!y=$0ofenKi8ZOPKPM`2c)^xZHu&x0_Y1t~X}~;d>W?5G~s;#b*gjF|;P8 zrnT-1S@Yk|h?I-u)D;h`F2W}&IGudv@nW$E-FDXl;kDHH_5b*-9T_@JX@36Wu;Hvg zMMy?+hy7(6LgD$G&ByPlYhUp@EuuOSEdd)U2vh*s}R~M1WI@qp}x00vvsqt&&v5I5~?J=GJE3 zm{85IL?;f;MZM9|Ji9fKVUfkwuIMZt_b;1UqwxxSlMS6&>*k+(_uJ5u%916BINzFi z@;Lr+qKc4uj)0@yh*;Z!_&F*Rp$4ow>9{ffNPWw+5Oj zbDeUxY}TuC*N=LP-X7g~`kvh99}s@qkNd>%>{Vbga&>iu7LBMv zvwGAxm<4c$XvR{-6KYjzU-yinU2Yfq(&Ob4`}Tq=7^z(BGfmeoFa? z7^XRf)9@iaB^eo6576L9hF|O}cjEjg9>NQ)196dIFE5~M5`mcGVS*rM>hOH8hifZ?ZjCq z^ac_X(opDU&Sx_!=%6JsNYPtkRUEYOz#PSkwj>lnTbd6Y0dn)BM~?!jNzK^!v$V7W zJ>vrr5fRX2@3m3eweYP?sA`0gYoIL4%F3z$La*oYsgTo8Z1h3`8;)*Z$}#IHfabr0 zJ+DoH#YnZ(*7(U&O!H|i*S0);X}1-dklOrvZ|}p7x}wHK$IZP0JS62VXmeoV0BWl7 zw$%N|C9OM(iVuB!#>U1DE2btVpM$2}w6yTW;P=lNeWi9A3yrM%GtvkEGKF{d-+p(I zk9q`S+`)5=tW^a@Z7F$q?W?bWLIzqCe7qg<1^RtMyX>o1J%u;cpfFY<@Qk*5%N$HQ zuBQ2lv`|WEY0uC+I0BfZ4mltet8Zw)D+sOSUF(46lu)rhk&nx>hk*mT8TZFi*bfsO z=~_-Bq(fp{Eu}cNuaCE}$+@{!(C8idrJpG99fN9pX4Qfla&k}`KL~xqp(r;IIJ%4& znZI%eS0j7rxq53#d^Y@rU3iPE9{i_SJMsJzE%doI-*i!STUopaRUF1}bI-z6D5kcB z0e&c(t#pBk>MLb}>q_5&2f?rEL>#2{~Tw_)%be;cjTCKo{9Z2)W z<{M)Z{y`NFSdv>DI#FabGwA;0GgS+6GiG>f%;Ec|`psov{eaOHLr?ZAPcg?%pckP` z2<90mmY`WY_eU1&Aj}irK618zLfo%`9d zQS^XENKg>vWs^Hko(eK4W*U8d`56j$A;t~NBET;8thMSdB+#CKfQgHXKM@mr*aX=I z`T6;f>(H7Y&;>Q>(5K;ms?;%%j=ziMN84=3$EaqQRHp}fYfeH__Qh4>C^+bGKDmwc zHs2_*8c~M6=!$VAl295GaEf`K%RcQ7{-mQLvFlS~AqtwBn0Lom4{TCg`%M{Ukpcb3 z4|XUfcr)*v_LCNM(9yR34yncxJ}@;@{d zJIIc=;>M03xlDig?7X9FqF{HH8qZ=y6TNJ_Bz_VWUTYF^qqcAm}a7IzXlbiBW(@cw!>1 zRvx2z>lPt&t-nR9@s)dq7-nYaheRskB=XT!uR}7A*^*&jI3B|SSHV8mmE-wIz%oD& zdy0`!GDA8U3hldq$YyPEtgEvVvx2gKf-q5W!+eet3|3=J2}NP;a%HScXtMiucAJI{RLwmINX zBY1j^m9W{DS3pfxS62s8dU*4bCl4(3q1q5?YF^8GkP`q(f2=7+7h_uc23lC~xo@t5 z&V&nqLTqx*K*$T28-UO5irS_RtweD7a;MsPTz61ZGL>?1ke4MndVf|SY!l&R6l|0D z|H)kZcZ(wG0fkU!NlBNREaDjvh^g*;Lm*X4-KNs(&7%eTcDy)<_!~a#e{l5k=ItDD z2?qoOz)yKKJSQ8og&y#_f8QOug??ikHWmpbbI+eYH*`O#2T2d}L3VIx1C~Iz(i$2O z2gE)QtOfHH{0?5Z%QrBv7kJRtCgG7V8)dc=?f*!HRviVBGiU?Cz`!uq-x@-}w=f!K z;eR89N(c;%NiUy4(_@&>IFHp1Ig!3fH-Rgi4+IV2o-J?To;=2RI4ue+H;{_-{zn}l zw6I9vx8rwNF@ufgzO}3b<$XX$0Usz|=`jV$g#?f%Br>aZs012tfN+6<1Nl3}s%h3M zS+_jdH90vcL={q!1X)(2pOv)wK$8M_lN{`wXEJeKhY6eo6Cv>^3y3g3J(q{}DL^UG zUFKl%r0=Mc`B!e)crO(1IrDE7NnM{mQwrE4KzBkF9yfO(=uOa9Ae~#wU0Oj~<={nt z#RF9e9be0=hQuMQ<}|aaEofj6A~=cQKIXAGUkjES91@ao{gV}J=*6>~1~(tGy)DNA za}qVDL168W@#mL!9UUE^sLjo73vQ+5zBU5cA6LkT7dGD@*AtW$2)DhMXLTr0zftS1WYU!Lhi-#*!^!fcfD^0~}m6k^>dLEdwtvujR4x{5msZ zAeyeQeVT`ufu%w&Nf>}e28Ozg0e7IA_znwn;yK5;))T!oe#c;i-XEmG79|}51wH!I zZ`8dKJQoo8i{ZeL=nSTy8T+sj76e3P0SXz_+vr;lkGdzu#|t8RxE3)$bO|gbFx5N* zt~PJ)9~|9+H9%t`3EPkVx_xYSYc#W(0j~0oj*hNBT}3vYH#9M^64n@$T8xLXhQ<~c z@5hE3N9Oxm8ygzH0Rmh1>ElP7$^?GFrX-Ppp?S03;#}}KB!Vf7jf@x&2v<;yl|W!~ zMU8mD_16TxN#82Z&d!DuH%^15=PzDBOQi1uRakH*fzM)VeKIFKE$vfhCy=M0y$FPT z*F2_CxhK5XNW|JA35moxXs--WGN`}uDboIn2l0-L5g}$A{!TK@=Hjb3lxsyqDb_1# zg@3Rro9QW6@K7G&X~bCGlwd0o^-x>6>viY)XY@OfP%HjNR^wl@5{r&{wD3J3)I~fk z@LX{l*r;q>6qM<(qL@xRc;zq${$KygAJ@^pQwy#|oWRpJ*R!#;*4IYjzOv9U!Q)}0 zVWYu)At;E)D$dSE!^w3SesUZ44Lf|p{qHv%@D0!QH^RcdE@t0x@lAbmLt7&n4lYh^ zxY*dtR^OV2RoqP5R$o+K*FsMp53c+1>=Ss7@qOx&A>?8t;+F5?c`dKpcz%_F#y7U- zG^0O>OZ=O2M4q8vTZlZ5_|jlRa+Dmpx9qx1T>`_-GUjHyGj=ZAF#e*AN0~s}5@QgcU}jcmy*ONS8e6&k z)OmGow0kB_?Yqm;^Pc`0->Mg*vzYE+MuUbM$s}!>O58`O3tk(zAJfXvcKXa(Re|bt zm2TcLPh?ODRlb2z&nwfCbdK}t!m5}!maJ`Np(~%yxDObSjojgia-MO2HhNelU;dp6 zdCFv*h`9uPPl3N^PWGBtVK<(sK3ny8NRQdkF7^obJi>SUZThJUEY!OCb zzn~)EaN)%_~2$Sb(7FQR1fZ@(i$W>Rru%msS=2z8{Kt$m!ey*j+w z{5w)b%+w}Sd-M`w$tZMHzh1Mq7nz#vurDAE<;{86Hd{o_b-qnMmt(Zrw7!49ZXX6M z9w7Q=h}@uUnxgWgZIFAQ4gaG9AL)G0JLRwUf}E!t z$)C#Ro(m8hebVuQ_SAB(Ig08$i==<2Pq0SE)oF2}Z!eQ|XE#a;6!|~Umdu?ebo;FB zU1417Gg|niO*DJr#{1{@j^6OG4=VhWb@MR3BAuP%F!zekgF4ZTR|TlcV~)LnU19uT zfyObni{z9kE%lr54l=x!L;8?DnBibN;mhRqxS!;to-+qsg~oXocS2*Gqe=XHpRS$F z+Gjj4cvc{a+HL$xW7Ij#x-%onWcK41d^MR89R*)!Y!27N-dA`-y3fMfP4wLxwZR86 zF{^X1QEL`zqFpBUxp`GUiwX4i38f{f~htmo<@A9$mu?UQLSp{YS4q zOjcdrC#?PUT83Auf}F|Kn$QZJaLz_O9^au`j$hfIP-H){KT`h4r#F1y*uCO=U#7^3 z4}3o&EHD=-WW*3tR~1*@R4epoYHc}?PHLYYg|gnmH!&aXNq0W{)RU4LePv)ZG-mn~ z!dnqcUV=6j(KvwQpiODu0T# zSuC-xye{L}eWTEglbu1fPY#7?n(Sva4LMuNX|YhAd0kV6OxUJ~!t@i7{@9HHX1w=g z(h)f=hO7OuoombbnuUu}kKW;DFTAwLUyRe0rno#j8JrMzT~Ocr#1!%x*4Dc#K89Ub z)>9JT2*$90`xWIDt|-ls8=If%qhIa&z<6=1_3nyLL1$l#6pOA&%`v5Kh_5A2u7u<~ zRR~|OdKPo+Gx70zQ-|j486A~G#gEh+B>UczD1!Ik>kZYj{lP*!W}3YoQx9?|U&S@* zn4RH_%F-`RM$N`D;_NSoS)tH2yJcRNe-uUyq18$v*HZ7 z4S(?lE|bR_6Q!|zy*iywsYvtoR_+5Dv*m=;=M$j$KXxuf+FrU-VaATLCp`t5O}0(Oit(Q|rL;{>5x zJK5;7#_c32{GTh*5f2)N@{c<{IWGB}FVe>~QZw6kSeTFc*`pE1XDzOh2lj_Dj7Ays zn7ah?>gS(1)o&&qcIRD2^@sV}Oc~AXh4#-pXrvZ0I_fVQvZMc5>ER`R7Vl}Mm2Vg$ zuEVUpAQ{JP>b`1FS45oK5}D56?I8KV=?cdFjc#MLu8#K2_N2Hj-D|xch#uG!2b_p( zy2BuUh;Wgf@{;S6B#&PIMR7mb%qJW^T>m^*5`P|8Xw^OTPwWh0jUm5fHR_Zw`f(qg zacL96JDd2X;T6@Ou2(fI0n-KRN!r8_*xY;*H+8*3I!yhSE*$0wE&vU! z~%f+YBRsSp!1APw~to_yt(UK z+Q6!^NEX*wuu=>=#mK>XG1x(eKfL@*Y4doz^NNJc8Cx(7S6>kbS^&mU?ri#l*NecqLQz1GXA@J_x1cZfBa@(I!dqAJ2jojuizS4AGjk1=S( zmoeNfjbUtHH6&BwyKwfjL!1xg!%g!NYv$(<)k0I0Puh*4rZsq@4vyCxvmh@^P@FwS zDSqsU_fauV<07r+nrrXGSw&Lv-?>)$rslpwGQ3P~Qa>M0JsA5!{g%*4S)Qz~Qe&}q z@E1eo0zD^DkGg`>v~N_MAEq2@9e8DV>R8)dlGr2iw54ci-xfJ_%_XsDqG{o1rymn^ODLY=HUZ;iW{+NDu@u(oRembqM@bY%m=5l*7z$pLcF6;sL`knR6;4%z0#_;(VIgceYN`^j!P= zaq=5;ukls=LzzYOXWqBa&uLBk^Y)xFQG=_{5Jo17bT+qlB{RVP*30+*=$<}2h>Dc& zq`>Be@?7{d-;*YvouGW_xqhq_RX2^YR9N1H!y6$7G94#QRaw4uHPkmoYI4c8KfFB@ ze0Bos;gI?2w!tQk9!tb+&65f~ipS7*MdCNV-qmk55v?@7ZGb$TW>nI-(rtjO5mwf< zE1_5-SE-BptgbmDmi;37K%xa^|Eag182_6y$g#tpli&o8kN1cBC&3M0^Zn`laqjr^ zPw$V96OZ+dlchcltFoMqiN3Ba9;F3bx=;(r{kJ`K{ok{(Q{# z&6K&|=Qx-2HqO_CzpU4;SvbU^W_N+^1=n**VyGS>TK9?{txPxL?6#65Ic=(O4V8{Wxh1ZD1_$609=UB}L&^ z!ot@?ufyAM(TG~$iOF2YlgImS^UVbx{nz>aIfLB1yli~`_atu54IZnKu^#x^?A+|^ zc&s<{jSY=#X)bee;jvz~Fte~$u+-MohbaY+?3%WXz8(w}w^X-b=+}&GZEopXU$;P7 zTA1sb+tTp<55D?T!eM2Su@!6uws*|IgNMfiAs?!F`u$Thi~kYdgQW6*n@*9QRGW&u z=SN1I-S$N+HU)m_GTVNTl>J^Rtz9%X)$fRiuDhhDBXA%V}vel%jX za#n!Eo94*<|6l&rjkWdm-o!{8(%ZitwG>iRXxL3&R2&q)5xw|idcaV?c>dFPRKcpb zDS6T0_=1N%#kX+TREvu)BFv?+9#k8;M$^IO^BR0_bN;$Yc;Lt1(8JD$*XvJ=t2MkZ zukTl`!AE`kELBk5p1xA+(2(~*$SG4tbSP}>O7FFm5&HBRx@qO7T5RePE6bguab&;l za#in2*Wa;l0tes?0DSEAfQpx!v`lFd<^{!`@A2b=+YKarT+?2>kbHMfKj=`Xy|pQQ z|LVXECOaf~d#7x49^txEn~->=?OJPu`&%} z&Q}T7&Ls@xRAFAee0hlkFGyI&%*@Qhq$fwK3XtV0*EOO-V>7cfhD#SOiYqCh;gtI< z;6{6ycM+U#d7%9VfM;PL9iB=+=a>yG7na85{ZsJp@Ou0D033n}AN?tg#g@Vk0=;zn^NIUK&(@heLRx#CoKG+G8DWU(37hZWTE>f?juU{aNCwUD7*%A`9oQ5s8NFtMxW~Zho2nqjs8LW(ePQHJg^9>yN zXMdZIJr{JR?dqz2Oz59dXx5$b^r;=J!gxRupyNg#pTIMLg^4IGE;jap*|XUb_)-H8 zg{f}7^IVc=TACiTV`GG_w{30m3?vU9Jb-S;r%#^_*Es2k1ED=VJpsJ$hIRpfcXj4y ziDp&Tx8NmhzF`GD z^7RiNQ!>?eUo=`}^xgnGSg&>_TUL0k)cGTy_>LcGG=F%Hf)bGlMk0J93==vka`sux1sBV5& z<9s28zAqvzEsdQI@wge!n=9rysfEf^ef<*9Hkij=pg4xm8IOlvV-zzEHU^YTT1rav zd|R>A(1UA(5J~YRX{uXhoR56Hh9~-KlPDi_JD>#7Ti_n2<1Thx%L6JWFR$wc1{b-$ zF13b*s@jg*1OV2w4#*mijo0%XPkr*_&F9aTX=t8gW(H#TC&ZryrOy^-XX7v70XPRm ze}#^fAHNqG8w_8JulkI*$WkujQ z?JT#;M8Xjm-V(B>hFxJ@bh1}fdBO`7TF$;_=J%Pps-wFuGSMk@209twCKbTzM#5r{ z#H-vEp`g4VJf@(aaNhE@!PuB)lC7{)GwrXvqJH(-SAOf^BXy#BclL|P12R4fG^!Ap zAyBIXAa-?r2zDHu03!nf%=7{@)Cdm?gB|+y1Kby=wGJLS^z!-h&DEh0Nl8ha+~V@` zO^B2LtPf#JxEFNGMgY-QeLX|~4xh|~Wq_^r?!i$2qXD_)gAUWy*49_A{ylNm)Wn2E zv;1*<{PBf@w#5+EfW|Cd*8zNWX-|{f=Xr1b+XqB z!Vt$=1Z{9QZZNC2w--7;MMp;~-My<(Y&i(kh7c5Z8d73{MCQiF$1jex*4EZ)!N?#M zF_)r@s02|25<2LVA_Um~`1p810oVFrzc-&D+yRdWJ4a`EAKr8VBDBiNXSQ5_w26** z{Md0}xE_f8uS?@wy!C*W2lzhb(IZQEO^8aLAm@gHN9a@tfeO%((1-{+yMP_N$j%<> zs((Hd$6QP=vH&9~E&GZE!;&cI1Z>rgz(xi_uXy+F$&C*>^WMi!&-7PF%YT9)5fc%$ zBnnAiEE*jizHs3}yoiS|J-rW$AMABK5PUj1N)h+XhDau`6j2J=H2b1oyf9W#IeRwh zkk=CQ8cEH{Ix!}8As9&XARY_AJTTKko-Y_9fAaF7B_(Sx zbug^k3JQboWaZ@O`w0U+KwE5>FHK3wqw42iQqDaTa$O}5roJ)?3lr0z&~+QTH1?g4ua2wCOzDgXMVW>^5=>6DcRa`**;k+oCnb{H#dhk z!IP^{=sgRKRe&&%)^$#cxddX9!NI{0q=DV>`t>qU^)vWiLLiRg;oVkJ;^E+E@9HWl zD9Fstb_ekRT4hoalHtk8jO^@wm=pl9r$N6^V^<~g^ezP2THD!C3cETQ89l$n@TsF? z@^eNPP+G(O`)Uch3mE3Wl(6}n{1geg$Zq^2G{r@Bx@+fY@Of z$vF*D!9j(5pO`Qlo-WC*)(+-(?TQI)`hB^t>bZ6%eI9xX%*=JTWm59t$B+-zf#)5QGjcw&Ncms-U8*JU%f2Uu1b; zG0>#THy|Ltu<+E819J_K!SS`7DBuGGtSp_*oH+wQg%ebQs}Or7+J8{(!A*J4tIRAc zheFV!yu4rDymB*8WN;1 z&=TeN@#6>fc?Ji|LNpArK+w~u!_oR08VS%iVj0M195EY?1V$$5%AGSOW%M4QmFyW5Fj_CL>Mw3B;S{U-Bg2CVymlxR6?psN=2aH zLEAiIFaa)uYst5uGZqaY5KOuN6~mMLLoc;{nY!MT%bo$*{dbgdL5?EWJa9vyucIRpjlU@GCE)3dYC7K%st?+K792t|)~W}$#}AH3<3CZci2x5BnBrF_AEmA)mMoA;&KUszpj7J$hk5?3#WvpIG$Op z{$l9K74sYv)d8<>kb(Rd%)f3eJ}}4QB<=>df}2}gpiXJepXcDeifa^UoP~`#7g@^k4<5^f(Ff(T*xvw)`zPt=h1uP&20?hmN@7L}e z18ohxQ@S9)4Tl~Pr-cj5%t(+QNXh^@fyUO>!xJ^Ft#S+`rNzY;E?$J$CHeo@d-HIt z*R_3oWr&i@G!Pk55lS*-&J;x|geM{;MV=Cw$0Ssegi=DKk|Cle^NZJq8@r-f3ZF&K#AIY-v^)ycUV1u!JZ78q4-F+l z&oVgZfiYo-v4}~L2#M?0pR%?tF2|Uog9ZjbpJezyoFlvfnuOk$uuw(hYy3a`9p>a!y$_EHGe9eaq(&wWQUvAuBBrM>6(ci$y z$!Tb4NNH*26*D&bty=j@5P8d%H2L*2$eC?XITQedT;)<09W%dMG|58MF zfM|GG%z63p^(zT~nUqvGnc~LzbnABrW2D9fX_C>#7h^oI7my>vdhtbY9MgSYMELmr z5Szz@Hq^~01{&F-WA5F{f;No#rSfAGvFYjQ4;?vjA1zey=)gdx$BsFpyFZSKxN#cI z`6rl#ckJRVMFQJD0(2YAE*i19i5LvQM4Mk~&I@Rjx@-6DD;6g3AWIeIORA4IN0z>} zZQQl)$v*u$q#b*m2DG{)Pg_}C8vKUn8OwM752eM4u)I7)(Pg+O5u9LjMj2b9cI$E8 zY}b8S2F?OzadY!l=w%8|a;lKC9J+Ne_Jks3xG095lki@B+RfP5_+zvzn+6dAqxBm$ zJbm&cbP-({Ank zsNfi8yS6S(z2Ws*2z9pt3WkRUDoohAou41_sywaz`!^5cwLBn87zwiVVYq6K*d6Ve zafm$w%{_3Qgarj}jRqi^0W4VgA%ac!ezrzKW8(02ZrR$x!WHkOsgOAg*FFgzU?K1= z9*maR34Rlz8W|a9*eT}EKznk@hvEGhM41%q9BV^2difx2XdA+-EkXY%lw1u9$N(T9 zI>D;qHEztoQ!2;NP$q*h)0eRycUBvKV^K+0_hI<^JY3mVCQfu5{?0S!!A$a8nzas! ztNr}hUo{p%8|e-O)gKv=*mWiuUbX><2Zy)N6vlz$_HgIPl~MQ9^y>g#uN6?34%k?C zx8}-Rsi(Q^igEmT4J2+dQ2rT`ycCS(q#o&Ah# z2nT56p%H9r-qPH;o*u~e3Rmjs={Y!z!$I^)kzl6Jo;;yVr?;5hbw~oDRv_ZF)LNUA zJexDl88JT<+_YjpO)`!@66Q5X$9pt$a&v(^UT0*KUSCgrk4ar0A)0x$|GO^*5TsB7 zv#7DEhr8{QSFc8)9V%S+b@sN94h4rDVOLS*mN@Z;@d$;30t$y@IMoyw)eKSkIfR?n zO&OS&hQDQq^vLpu(mNrnx+y5+q769!ED~S5HS)D02?`)Z@IyBuSaxB}-cYT&=4SbG z^`hWABJaGxb|FH~&dvhCuM?zQ)$M+<&-z;Aq9L{yZf!Xo-M{M3PNQ86*B zkvlLT21coD@*rLOp)DXF5J@&PGNMy_`RrLuZSC0Pq<@0HC!{@(vRQczj~N<5Hh zujq~)LetsDM60T+kx0J=A-IjUXx-)PCZzOtZ;RJzzADIK*PY$(gydyNmUV=2+ z11KMbvDK%731%t|7qExF1|A2hlst>mX0i6I# z1Ly+i^HDWG+C;^B{pL+%4Dgv8tNk&8NawDokE6Y^?=hTqxQ#N_X6!2Doqn{z?<{xP z?&Bf>_;K^_0D-Pj5WR%lE&~VgqJx9m;+!M$<&cmN_y;F?hfRS6Qb?(BLNE>%h&VM> zBJfE*s53--Akxk2N+1eUI&xhZ-d-v|1-PneRwmWq7999Ha5MK zVO$;_822h7B9fb%J2*I4u4)a5I3h}BYU(5L>a|o{Go3hOkl3XX!+<#7yt%BVM$^L- zLs;>=M2dtlN^gs= zGRcWZ92p(;Nwfs&!nxwxRHP4xhy0hSp9WdTnoaUD{QRn_?==2FcFOn+sCUIOii(PI z@3Ojv-tv{ZY1D%iPd$J97_%4!(A)o2W@i28&usKGR)!|QR9rneNvjAT2e7A4l-N?? z@yN(9KE&o`XOTa`<@qlLKnV%qvF*ouQh@86!6kT*P)-uULIddjtOE7- zWj>J-L~;Qqtr!v^{dkQ+hgASIz=XGNvobM-SQK9kzjMcZW~30wD1eCu@e{3BS^+x? zsqC8KAsvJjEDRAn!$8&pZm%0vKkcXOypiu55tFV%1z5qDSz1}4Asn+zFw#zF#^E`< zP&5FQ4Js0$bntubUP1t1;n(!n1qO!?v#wj$)7h!E@?l^JWhUI~t;8r$ZqCk!*e9W$ zO?>uDi-7=K1tUo1T*Os}OOB30G-8a5H|lA`_{7ES0XZ-lb0=EO)z@dHrTG@#CEnrm zpchBxhuL^o#mkqc0l)3Pz3xSj03yIKkdWe_5d#2}U=kYuSEaX_fJ2T)at`9JOuKXI zwh224UgZgGGQ2@VjJWc^eyh%?FBPl`$kMjpJ>lILH<9wRv1NL;OK;Nbc$&eZ-a((maWbT*prY#|$xl@#&i7 zhjNbEdV19@Ej&+`_8-t+c>FWix3{xWQa$Sv)$nngoSYboDy4w-4n*h{>< z|G;kc)cjy4ISn;8HaD-SvPbQtiSmcoeRRybpQ1AyPN2CaedSiZLD>&Ji4+a#m9a)ux zQzBM7{q#pvJ2vy?d(3CPF5ptz=|W+_6`q=?;!3EA@_YwU>Znx_N)iX^iC3Jb%drEMibWPG|_)! zfoY%*3?GJ_w0cbQES4ZEbR7H^en9`u4kCgn_Pp@JNw{?4VLT(IzeVg+XQ2@zJ#Gu8 zSo7@sJPwi%qvfl0H!0L|>>(NJDsGY&ocEK2twkM2RAdwM?5$on9Nar%S#QN<5Ka^X%GoZqV+Rl9(Ws3mGyefu_tIQL zevu!K#VLCqWnx$5`Wa!-T}p70kqXjhYLKG~%zdcE>-w!^+$ACL$KrN5xw&+joaJya5@ZFL7^>cdqn+A`d z(|y`X1s4XDI*mFu-3EyQOd@qHN6ozg+KB17$$qKbyH8YZJY;5;93M{|qIJu;UAW~2 z--;dPc?5HF-bCs)c#lVp!6ohRU(Q;VXhZt-)k%Qnp16Jt5kV3pm|vhieGD-H zckqyJ2_{$LM1Y1UqBa#LkVcTGY7=4*^|l08>c~e^S&ic!o1Codr<4M`QEyL=w>-VD z&KvH(a}FAd9gi>goqFT7G}{fhcgo7j%G#R3E8x}?bm@pk8>P=*Y1{ee6>7`g_wL-k zFT%bWZWBHpN_@%?Lc1nh-H=Yp`h@g+8AbxSXIUx56IM~>zKT^sr z_*i@$@+G|83}sX~kTHCQ!$SR>d9T+S=O4)VhX-bZL@-`f=B%>D#xWmkPuVl$-|! z29#e02L|?j%jidE)bp)*i(oX7+TtpbzPkDkuxhCR*kQZxIh5;7tlzh|Ib6DQWmO2! z6Y7T_tEw;u8P^)_`1$$Wyt!7ilG6AF!3mWj0@89x$#Fa>K)60aJ%}Gvw+40q=<4Vo z-4R9lh1&|LsWnwq=YjK(E^p$Y53Y>3bBAK(nE1&@EL;g!iV8VGE{e7uK)EI+8%Sjp z6%6%yY=LSx+Z4VcLe!X2(0ut)G;$D3D2;jlfkpi$HE*0Bl-zV5$Z1m0kv zCYJj8!8q|6wbRB3H~nCbY7mjYx-MLU?Sf+n4b|7uqQ7Rurw#apr!d80;Ys+I&zwDb zlUtVcu3f;%T$l0FDAu|zTi^;4UTWw|BG>iV@{b=gK*u^b_-!Vt*&)a^qBIMTx;G(3uk_$bEfa!(tN?``g>8SnF|ZX>oB8B(Cj=6O`gO za4w!4^uG+33<`k+B-`Mzs2v)?cG6I-a2JJZPMwF8vqhWmkY#fbwzk8D2L`*r&*2r`M7@924mrg~mL1 zf29aHv}EyRQc^kFb`_1LEXQ+zSa?J@F4S1zoXg~#`9nb~J_GPTEUZ=K{)bMlXuH;M z6zcNGI1#9dmp9`kHt15T@Xc{oa-2u`w`^JY&52J*NeOLFfV6-S;06M8Z;5`2My3YY z8ynjZxFs{QJUAPmf!nmcC%#*v7QUwLd2;g2kPx&W_t6pr3G)r$2h66;aB~-e*8eN6~i-tua%JV z&zZ#G#rqUSi(ae;9zuxoFUb(x;51eZNPwz7U<63+GnM7{R3Wl}7y~!3V<)V3e&rJu z7T&e%_RuoiK{S943QQAh!mNdW%z%bYaCmTPw@>+(wLxnH0g~m(lX?&23~>J!*Nc%i z9HQPXB7y;a4oeFz$Mg?cw#7raR$5ZB-#z4AqUEa@z!5wQwj7t@Igd|4YybyzP)m!? zRUOxz@qwUDH7fmVT=Av?6<$(%_Mi|TBq+!&dr@%b&QWY~r(%qamE~^QzJ9D-MY2!?4X`wisO>Cojb{IPgdPneZEy}q72%A8nM??s- z2IA|SdTWKoWb|vMOabX z`~f(Z>-N~LTcc_FDFBa2iJKSN)gV9uVRho*3&>2aT%jTD6F1Az;-;mPAN*o^JMNj~ zI9~wiid3{l@}#BZ3F@q9otraAdT`2b=?Q6Qu#`}m*<*QW>3}}LK*AamT3JSxvF>n7 zWcR@S^sFp7+-QfDbaGzx0LVs-uoDObZQ2owt_I${w3kwuczoh*@%DclgE$(&2~L}9 ztU@h(pQUKzcAQ@>XS8~Kt0w95{l@wO;kmr2#;y`8WlK2+L!rob6X-bh*zTzgZ!K?x z;;n)4+ZX08tyj6~Wx~#8<=z)o`ov3oqD4EOe^4&)`Mr0l{1*!N#EzvVW_V<-Y?)2k z(Wd_9amJ#S>33aT?T!1AHF|Y)=16I8Hk%f`=evVK${LNr{Ytv8)Vp7IedWx5$H}9W z8R}#kTz%k9?u~(pJi7*AS=Zo(tFMjpTU7s!x)!pR3?7@UcHZ*f-N^w&JMyfb6;rA_ z*DQT5%hk(mJHArSiZ*VxRi3*nbLPkqwt@86Sf4d3l}imsU4c>W0pgqN)6aIio-5>^?2C-mTG#8CnrId~Jx=hUs(umaGGtUzr9v*j}I> zyD)dY*Ic26>5`717*qT15ssJqD8_RivN5@|VW-A>^`>w7g3){)g<6F2iHbaR-Vemk z2}l0HeZ3XeJx|siZ;4}iA}&ADrl+*X&dt3h*fpbPpA1*vxxnZL6H&K=qmp?(+5JJ? zvr#L=`HtfA`j>HTk%j%~87ceZv~TVIkVb3pm!$V+rXi>1URGT#?C^)a*$koJBtX~} zo%(ntmVf!3C9NK6o5yrjo5#Er|0x?}rqN%0Nor+y)E>WIf68CWAhfNCf5_*TAO9n* z`M=;_u4L?%mM-=xU*6ip|Mz>67;VH*R4iGJMY;WF;Mrf5N1f@T_sN{{#LjE3%t5TX zld+68X`7K+-C0{(LF1?R)mN`r9O!T?`2Ff{Q^czaS{@z>OXu;EF=0)O)wh&1m19)x z%_wH~eV=bWFbus*=#p61TKqt5&)D+VP4EN@t9-t90_dY9f|;2aPzN>LTJV!)D6))= zjR|hK%}h@3jQJ@XMm-e1=K-sI#?|X~oeR#v_bm?ZW2Tuc_SVma2m}s(a)Aks`ueqN zhzD2L1$drq9!C0t!W&QKEP4&#@;Oz0MFss>QZBy$&+8rcPi)5vT5Oi6mzI-rMdcRt z(3(tVH#e{!NDwKtFq8xl9g~Fot6h1n=%$7lGd~3Yp&ayLtC5ky}Y0cP*p90 zrUmTXzJ2>lxm#&dkV2EPvmx$TcXSu@&Ij-B`6M02()q+Z^!u?YH9i403voX_`l3B# zqi|qn2LB?6FHlew+Oh>q+;$8hl$O2>Iu-mQKI4p6zmLlb73M4P-UZ>16%7oy&rR5{ zW`Pm}iwf9AcORGrC3Rrt;1bKg-TD~*iNG5ahsqeVa{Kk~923RG=;V|X@$K7RU}1Ok z_w@w@2ctYyt}0@+$pbMR4%5zV$Ez1vSsS|Qz*3^ZQhXN$Nh}CRqf7Is#-fb=p`xNK zCej0Iuq2^O{+92RpPfCAXj|ToZI#@)6QSA1n}CnQ0vtZf&l-5b58+T&Mh01Eo!7gT zmPPOz5V|1x0`jLG#0(TWJ3Bxt{1Z>$=qQzAW?-PsG_SS~sT#f;!Tbcr8V>XT!6XOf zKsB`6ka%`I?im=MwDs;ez|+WlP=xlJE0xFI7O6f8oas%7fy%u%W#7B+X{Uk#cUMh9 zjoK+7IC-l87AnRvqR!89i5DL=;tHsRXGYaVt=|W>oVuQ$!sa0|h34SWxE*v^4jTB= zP89RN+tbknp!gRZ&HeQ$G6ihV)YKHnLF8N)ot%)lNvZ4Ob)}@G%|TT9`)NmYQfs;_r~z$UdD zRsZYjc3L9)0`m*3_jGF?>Or7@kw9E_bYx^=LK(~N>JI=a=xQ!4l%Ww3R!T*`4)#Dz zMb%XulW$qF8l@vQw|V>qH*#Jyvq1_C>H_t`fL3$l`Q7+>l*Yg(2QqCj+WsXQ?@{Kp z!mbEr4O;F5bX?dnJ|bkZl&lm+T$2OUQt=*`4|H|=AT$7%F0Y^fFt;*AQ%!B6zrnuz zwvcKp5vell7v2yB5bP7&9SZuT`}y$=(cbg~{0P5+t`6@(WkG5!i{c}eY37L=diN+Q zDpGhI6ra|txrA)XycTPMnvf^jR6th@Ujd06SXE|CEyAOW^beV=_AR&QBu<*7h(Ai+^6X@Pe$HvEzE+@vtwS($M za)+-%ZREy!$)}l_d%%lrWycD?Lf)jP_`R}Hbo1sFEALxO!2`}x^9hiE{n4KUN%kf1 z^6;f7DN>ZkanDF38NfsQgoBe4y`A75=jZ2-uuo3(9zppKA~WZSa0r_YZIwrv4t9b| z1;{lZNSaTfhD2Z6+}sQ36+9!~}&&fB-LmBA3tBCmajbcvFF%e%A> z4?`)ik~#|)EI?o}tgM7>6%?F6DhuC$rDR*}kHwGQdKUjgxPa7F1QJHH9tjI$({i}Q zONrojl{JWK;w&VDKtgQ=!ezbDk1?cX}5% zk_%QK^+Y8N#s@JZ37aA(SF~mtBr74?iE&Tz^XHAJ7W=?uK*kNnf1E%--G-*HwXo0v zoKtEeGV(3*H@-P7?A-N^vDA2@Pbjp@cvs2UnlYT3c&!Qj*bE85u1Iwdm!A^@Fe4 zesg@S8|kFbPQ#6=>LldDf*>Qz1K6!TIr0N5%Ev`{yRlm2Cq*0x(t6&_EZ8^8YCq z7Er;b(fZY1FKdY9>GL)X=!Qaew3p&$`JXuMTCV*A*5AQ z+;q3e*FOiU`P*S(Xmuos4m@8utk}?j3yBEWgEi|U$WV@Z*Aahw;J`B?YcE<0OarYR zlTtRK)GB{f$lj2oTc18{`6u*(vh4o-jUM{uS{ksTsj)F=Y0Pll0>tBHW97Vc3a*!q z9s7#bX$bM)XItv(Xq4iME8jss19r~D)U^1+advg+D=J!A@RxP1tzK{nxWiGJM^Yt{eVPG11t&d6SqGA=+OTv3Oo|t;EiqLMVw!RqDjV)Gd491 z+XA+h1^yLs{wq0@bult(0P}&l?^vL$f(&S6z;-Z`pj&N=h(OFm;dmz2JT5G5Yac2C z&;=p{Uct#jn%}0r;6kgy+{xrEMl2j)nt7F-m*gG2KeXjlL7P>}5yb<`5SF)ewrRUK*$K z#jEUDzx&J~XJ;9DLg(yt{0&Z9IZnM7m?dbZSFM5RQ8;K6fDmr&ZET{VqYqT!@n|eo zjWH0G`?QtGzV16Q0S*uX(iw<~o}z!%+qdg!l4HD<-r~IBIur;*pB2R*FKRUJ{DgW* z$6ggxRaHTHE+9ZHB?d1%1-;7&R=I7xAj~P6jWc>>w~j~NxD6k8?ARH5dyombTBwXO zLUM7*M?_khi}fA28U=azveM6=KhshbA~irQ%i_!#`uyQSM_vTcVmw zN7yZ7FR$`ROijHdMr2&Si^dFhf{MW*v>E3X;4|SF5PES}u6H3{vr(Id z)fP~$!2y1?>F1O72*4j!Y^I8Ui-3=Z;?XS6eHOAw3gv|;D#}AJ4F3f? zfwe(#?rR;2cZdgX2@=R1NCE0f)aWfjT~L1bQx5<(*cspr=>_%zuE+o^bxn-~$a1_l zI4mWPx!r<-?xJH5Za^>KCt+W2fa1Qc)Ff_3uvx+Eg9}^~ zO#{#~6m4L1j%C_L;kFH>d?{`|)Ys>VC<90aA>}LZK=?nPcz`t=0Yav&v5n1hc`B~m z;u3K)$OK$a2yl1L0Z$5^XIl`;@e~=goa0#(+u&Y-HBea=;|#8-sDK-!r!s;{5bPAP zo*pVAbh1;|rw9N)Csd=p3GCF-(Sd`G(rS4l9+pou7Bs6M0V0f5oKfOpVwo8kjBC~$ z*uNhXQ8~EH2hq`Fqe$cQ(?H{cpQilTF3^e4>+pj<&?f}NRrTv%DxrXKhfU{ z;v-n=5aQA;8DML@m^f(c_R%E6i9-CYd>dhXBS3~cmnWhGN==cjKeM#5BkXu-QBl#C zO2`5zYCDJT5D4zHsTBk?N60`l9d1l7r9`(f?-;H3A-v`W20w;|DCMlL!lKo*dJ@Kf z1jrp1HOIlsp;iIpwSs!(0=i~GUyyYl+XQiV(dWaEs#7Gt#WZZYd=qhP3?5W9_SOM? z0>S~(8Wh+{EH5}a;~ZxvB@Lo!8ZJ7t0OQuxUC9rpWM8YxXkmH|j*fQvf#;S%;%W<0k8*XTTEm^#Y^to&f!&})qa?+F~islTP&r=-fcer0T+ts%S)(CP8x zj48LcaRr@#wA9#mzxkk=C}*%5f11ki<2){JVq;YVSy?!A1X&Bu3%#T;a_o#(n&FiJ zO7Xc`yvRAMc4(H--%{kejt+^pU4$rK!>-29qVV<_KISf0l(1Hj8$SHhsV8c;sU*QK zBfZs{iX8^Rj(T{X?-R4fnu}4FhQN%de5DRe@3B)2P6-=0g2dR9KlF^5)(hVZ!xIK# zSwXZeE6n~3lN?r8`n#5E+BHoU_!dj*_rxcfCgpx<|8C;eAC|37c}kywHDkv18JwL@ zmNhLm_R0(GH7^T0DDiXMnb+Gn+>A#N%{%adt9wjpe9MZF_ZNVp*%yy)od{*GC!D8O~?mE3XKZo!Q;l z%c3|tC+rY(xEjtJKmF(b+X%#PbASTzp39gCP?b5AtQ39bkDL zMnyHYo637fA9r=lO0%DdTQ4W8ybws)Rw!j&QBLgL=ytE~yRPV9l!ju#eXk0y-}A zR?sgb=Y3nF)Sjc-cJNdp{m6$qg1P zO-&PRP1#jp5O5)2d~l-*Px=t{gol9(g=iUddsNod9UU{$7%et=wz>ir!dMUvb>KYm#@W>>oAd5I>KkAKuZFTC@wx-pzw<98^yFP9_ zWg5E`pbug4k*x^3I*O57zvNtLee)eb6GY)1J6d$E+k^bHraNCp+01KpOh`D6F`;AS zh7?g5J9%||v`<8g`;ZxT*s0BPi9_V%*ZSh8-W;;M-M=TrXi$u1)i)F4e%MOpRI7Qh`sg%fN-!xziZtDwDw6aG?!Q2N!-z9_&%^#7(i>6;-^_y^ z6_jlH$42>5MXYgV?&hEqP+&Pi)gav3F4svAY|lv>v|MvhE=F`aiC&f~@W5l+>`0&H za}zHPH)`x$nQxz4@B21w@T|ZfJL!%^ny3tqbdB?=LYod;CBM`9AyY@J##yLHYa73p z(}~9&XAY9*nioe{J&nuFqi)A)~O6)^sFb8GT*`K=dvy(alrY}4c*+2w(*7$|MffkW7c%+BzDI9#1yBW`*cm@5c&31 z$_Gn)VT&ygQpyP#C)mg~t<0BX5ik%s*EXG0dQ`%C)mGvwx<3zQazyKy99E0R?4e3~ z9~C?~^N;0FCHPQ9>?VYaul9fbke*g-w#_5DTf3rh&&-3sbx+g>L!O_gVm(B*WIB_RMt(g?5YPYg_ZBGo=zJQt2ZT8Lu2f127`Gtc;+2U~4vz?&)}uI=*V7u}!lb%Ay@q4u|F z{Wh)NruExv{q|bF1LE(1`2S5n9MvPAJ!#N<-mg_?T?uslCk(jdUBKbPpjaDM;LqIig{zF6zQ*$EVl%_T2xcP+ z-np<=^KWGEZI2A3Rws+CeW|#FfuU5Y{3D{SHJ|&JZ~AoC-SDj68R(M@4ok10LTqq9vpR{sKFmR1q0%6hjAlxOAOnC;D(9UhF2J2^Gn>NVP~{=UL!$~lh_`Rl*JWQkqA4DGm6 zW8&;QgVKb0={t|@x=U}D_~YZ^EiFN+r#m+7A+DVZaNe?OyWE~VV)F6}&_#DQBQ5*| zppPCV`?gx*7Ay2-CoP`|v-h~SS1UIa9sQaZvHEB)=w;yaw?KY`VHvC9Ux9K^I(jMi z#680$&JXv$Er}QQMsC~~xuI_rqhjupnnSI}who*VWZrP5BHjA4;!529MDh5lI1jCu z_pdCIJL_^_dLTcYXW{hSXL->$A$(Q0yUD)++p-Ro}u&01u1 z$ZzhKhizHhn{m*1GO$i#-XSvQgUZ8?Pm?ci+S^dvSmpRmE#Ub^?qv`9DBfA8r2fZ0 zGWQt926Gk`No^&r_&cZjD`B_}Ibd<&!(6wI2d}sIamnZ&7q=!XrZ0G8*V`1;u1MBB zuPDHckB(k=o-@)t>$h}4Ej7d6#>91H_mH9gFNx2!2r8~iD^z@ZAT8nCJYUIK8oA@< z`N3-Wfor{EY*mH92WYYy&Nr+11TRuDHrLY48-LA04o3^!`u3iV&a~<4F;O|uy%`=u zF)qjM^rkr{K5tumdEKt`YNVKw#U`gtwipxEa~Wi5h9hmhw42d&sqNR?<-{ShzHkc( zRBrHmza{cbKYq6uJx66a^h(3AF z{(o23idE3& zd+_5W%*zzVQw8e78Ya_+&T&aJ*j{+8US`(FyOT-5N@1Fd;RqW$N$}sYuM@|}yXqVx zvkI|#>Sc;s_KB1(SMFmnu3BpR`2E9$k#*^Kd^SA(#Psme&JQkiZ;({&``0}5+A>u` zj`_!ZOrEwhCbJBU_L(v(X~ouN{BIAu@TMT6o9+2v`tsEM0Ci)%*{#GIQP!C<@A<9r z2SOsn&HiYmiWrUzQF0$R zlC|GJ8f+lE_ruBJ_1_WPO7|3~Xs79#pDXp+zF z#G>-<-W9xTO7<1gdq1_6m_hZc$MjRBNiNY}7B-h)HIZFxNGtf_YBqCZ5otc#za`kQ z1?prC)K+G0Ffrn6JX%9#5H!Gk zK_$sx_0|)-Njs=ql+{>XJMPmu#iF)hERmql+VplhZ~S3}Y|ON5jC@Rpyt8uTfvRY? zVVC?W$(Y&4`zK`WgX(p!kX4DR^bM;#)mmk0pFP%ovt~LzL8|hBH#selrtrteS{tED zqn|pYOSsg8f;wZ?(u+9+_>r}D(-nTX@tUgei{MGOszU1egUfiL-@bHHoXteKwC`|S*Itm$K5Ap4vy052lCG* zQ2SOixABo!KdKNN1(KABQh|!y2S0raWG2vyZT|3~F{Eds=7#X2y?5I@CthED%f?J_ z3g;tnf8U&RMNH9k;pvR;Gquo#&npT~4H20Mfn9v0tWZNf(ml19@uz17)#$}&BA8G8 z7|@)!A#g+c#ia_OlB-E^^D26=Y;9)3+TmMc&%^?H+cU6!FwR&!t` zv}lPi6As2zyBvA##81QJt8*>w;*`ML`%n!bgRD~|UWFu!AsU*9<3jXe0hhHzVuM3A z`TS!J`s6L2x^uRf>}By~C=^mNmYrwu=+KJ4y}e~u zbI8MbiOW>J70IkL5yg8Shu4&7hP1MqGly@z?Ip)Ys^nSgEAj~+C0)Ck#we`E;X8ZM z1NuULGHcw+=*4S!7ar^H4?n+tNK@}z(rV91=OjQz_#KTSM--Bt7*-WB|3%F38?7$5=rAUJ5wTrzYoPo2MlDs`L-?WJP8F2${hBDk?=xz6l?%8&Bf-If#UxZjN zVH-_^mpp^m1vTpjj`gdAqYph`&+$EHyO)hH=Ca9c;8pxhxxVz6McYU1bo>7K+J155 zxk_3tG51EDgzsaapTbxO>D}_aiMjvEdGWLpacL!QajI!p#C%qJ*qKv@*y2#FAny7p zSaI%Ch+)1uOW|a&`GRG{aVOcOnGP1htG`LDP!WIfScpTR!Qd`BUiT45>0_MRSJ7a8 ztyQLEp@GuJY}OKog&jeyzbw!pv`8T=*3HJ4z3#6H(_Hx2Qy#Gy{a##XjNJZ})Z6>6 zt=Y9dsoL%PxLD3e(V!a94qX?8#9hjtCpwht?oNo`)i!Jk!t}7F59P>Qy z36M-y{dbGxp|GyB>V{Q5e-oX5o+p|J7J9Lyss=p=8Y7X||4K-|p$5sB_UM0ImN}c7 z^Bs29rem@?+(%* zrBAk)_aSRb|1AQwl5kMu-^WLK5##<;rQc@jvdAs+*+r`Cye!#_I5WMF>gI6iK3)lt zqn+-jmqQZn7`f|bD2vhfig1r*u(K1=AGUXo9b!66bY!f4cT9u$gmXQO(X@C}zlF(< zTgD|y(=v}IM+5ifFYRo)-WnSm)8BLdGu`DcF~%Wt?UJeOB7ORgOHXJL-_HE&Grc=s zrD;u1V(HMfUCmsQC6Q^KT`hjJFile33jP+8^ggRHil z&R3-6Z)GN1wk+?19^b^d^0SP~1J+7=F%$t!2hG#ag$|9I)2kKT z(Bn!^Ve)9db+YHub;+v8hYuBJ$bQy~t;Wm7i#JhQ_+}mBu~x3iOe||StWEq9)02QHs+5`0bc!QB+Dn(V4cU2S zuAonLZ5;L(c0(g|ua8mEnmo-?0|rrkMiuuT>ogi&^MI_2a_lgVI8Z z-_MUmP5vMd3u%QPTsk~?OlXPQL3e+O=c~M#67jrtj+B}C{N?%Y0rb8VB}_C%S+dKT z#1?}+n`RzwBPpM$a-rWr>RZ)$zjdLjYVR=mMo6Nc6`H7bhUsN)vKo^NC(nH?RWzi% zzTEpL$R%Jwg}CE>F!@{W)BE|yIa(*9CHK<NSWhtoNl zWBH~T{Fhm9>?wZ7iT3Epw!5b1(MAkIIC>-SiJnZ8CuodvU!ZyIK|Q^Y>({w4H_b*| zT8F5B`p%c?$ImtTk6&(?94TfpQrM>Mh$-l-gpJMg$)WzGN^X2x*8cE}bTZQ&XVcZn zU3fWH-bYr%8)|538YP)Xq46kQ-gxbtae&P!EwS8*+T%`*XykYr=f>4luI<1J@$s8` zhayqaLxcAh28m`%V-b||*gr?TWt$Ber(tO*Gddq!Uh0z0Z>&=rlQ`d!HMuZe9fOA0 zcnb`BaU@+{e0ywiRJzrD99{Ug#QbP>sJ6RzBP+>u;8iI;oy?YVHhQbzF5IL20oUZ^F65FKCq8XYeJgse@VNFR$9I zhpOIEMV?pbgD(;d3JGyX4tBT=y$$H9j0@s!U0#~zMX@iMFKh9T&@EH@T&ZaC?Z=}5 z)IW~Iz|1h@Xb@crg|}>ZVI(G`yMXOoEHPgw!NHFjf3i3l^45X2VHJZ@k!4c9(c=pH{ThUdCc`DVEXC^dY7V2-Dxy|&tIHM%rl6c%TK>KP$8c0{wYo!ecXr(c9oXpx57K1wI@cepdBS;*pbp$Xh>ZP$=%8^EN8xD*bLKG(W)8F!wH5j z{LndWDKy=(&F)Q$;qg#(6%|EKQ*?q&kJDFhc<9m?4iT6yXP586#hF?M&!9~N@A zdoFbFR`iHfSlGLFpk;MVj&J{9cZitD$jva_w0YM-Ir9fyUqnb*-zSvMr{mm9qYbV3 zWY9}20p&o1^SxL~;T!EL=3N@W8{d;UXNb)_`{hNSMEJ5unZ0WXhf!Huw)1Ga>&i2W zLX?1jr8h(~G0KpH(9rR!y(zP!V}B@4)a;u_i8bw11%_ZqDk?5LmCk*hmYu#StWODD z4#(!Pu~*o1*R5ZVh5v~Du@sNHJeRV3_Nu~cbz(~1+z%Kh%$(B6@qS*)Sts&yvbi2OsbxVwyYM-c7}_@+^C$iV7I{x zqjRdyc=y4qx?!^~j2=1WZcS9ARFI!7FP3fZF*LVrS3l$Ao0yhTie7I)93mKMk4tjwAc^ifQ<-|*^vOTyc$D&p4dY6SQBCKw z2d{2C-!oT9aSvSiGbI@7ENE6}pzgc8G`#G&*l&(jghiO$LphvqHSjsZxzow{Zwwao zgfD-!2te;4BM-#Hj~I&dLg{n#nV(cGf zYgSik@_Jk{AW9bORT<)^F_P)KPwQI|=iO(XOll9peo9sEf`jkX^Kz}H>-5T8;T~)$ zwMIO9Ak84r5N;fHhe_-|5F4j?E;s8hJ6ti&x5=o;S(;2i57J)gywMvQ?Q>q8`_{m8 z2h+c2Z|jJ?U7G8+&+2_@=b6LPI#>VZ{M#RQ8}gi51Ix>I@}`hCc=adTy%CZ-np&KP zqx`4a&y)LzX3H^49WVOS+!jVlac_7TZBnD6*3ZU25eSh_s}-G`-ta=P{B8HcY#ae2 z>p6;**~`B)bFJ$;u!Lz{9;G~&@5mfI<&6OU$ROPo&Yj{;%F3=;C1B-;NgX%MXFnL- z8+JIHJ2j95b4Sb7?M;ZFS(vEeF;mQYciA+-b+)mD%UpDl^4{n)=o;+j`u;8oU+HM zT81fno-Em-t^RiiFfPn!&(IX*IZhlEig54V+xki2@m24>=-h#{iu0JU{O)3|$3@tk znfqvoIR>aX`1VZUKr|B}SvU^(vlp?LmW#lwMKmaFN5f}C-w30;v2fOlFN99vh<%Jd zqF9dbo&nE=XIyBES!`r58}U^del%wu=B33a8DIJ!W-}@ISZ3?1a|yzizn}U(4qWlh z+H+|PV!y-LnD^{oN>y@{VrlQ8q~+|lD`KbfD)&w=jy$MW8BByvFW{> zj%`nYJL}&Oo_eXpkusa~JbJdxrNVasGQY{2Okz@;dGuOWunFCIImOLHy{^g2%EEr! z41*rcF2yvMdwEQ5Puu>q3XQwamhw(~WO*MKMfM_M`10A=XJ&DRxs2Cx+*>x%CzJR{ zD@U@GMhd8b>)j?dTs_-Q$T({t6x?;R8kk4Q|L5uNl1ec~=THPok-=2B0w#Adb<+Z8 ziF8gIBc;Fhr(m->slNMRUI9E#Wy{V2SRF3;VVCOp;)@EBl5{QxDHV7|E`02JG*7jiGF<;N>A*QAg5a_t08IIhYczgRBh=y15@`0^<4@=jS< z<5e+zen3na?z0yI8Phl2EyXJ_+B^HvuWySydGmRGL7Hc`{nu0##dJZR-0APxbMG}~ zXZohIM&ECoZg$XekK1g~(rzCEi_V{q{ zmtfLO*{;aG$&tyIG6`Rg@X9nCzkK|7jlm6$Y?;IvoZb_sZcx0J$?F~jpnlhq27BP7 zhTI{?aOT9*b!fehcv-Knyu#)lU+?vn^O$FSh7Gz;I&7D#_F5V@UufqV zPAy)$J0ToSZ`5Dh-J*B9yFP6T?Ay`GsuQ3wM1-VPchvVBx=XGqbi|3PzArtDyfSYn zt6vP>Q$&umFjkS0Gxh;bhbG$F=Q#-W=5o81<9YWEVu5n;x7mv0Uod#;lR6is=1Q;x zc5f#=bZ!r%v{t5VnEyVV=c*&*4g^jKDG!85Hx;J7nlJVlrPDNE7#T&_WxU@$L}7~5 z-#D#myE-|={fEfGLW9NLCegylO37+&hsvE_63Yaqj;08z5jj>Aa&QUz_G4Bzdg3ku zcTlZLhP;Y+mu&L-%qL0)_^yes!Mt#C7EAC!BxT^hNkaRnPP>GJ+T2*tOSfv0#J<4rfC>0n~k0VHpW0^djZ6o1fqkkIV zy>rPdg$6=5fY?3B)V$0wlKt!LS0~puuzcJ$RYzCFl{e!5l$^D^G;bQ5kAEiW8uAiW zC5yYaF&y{p$0JP(kTwCYdfPy7xG}U@iiY6$#enPhrBDA4dv6_;<<_;2D%~O79TI|cgCLS3 z0s@jEAR$P1H=+m%2uKPdC8^R4(jiKBBdv7vo6p|+{l2}w-}{d9`{Rr=&N#u; z^HI{NzW9Z!v3^kMhcCJieSbQmV%W%Qa9UL87k31#MwK~z;)79(v~Ih*HM5~qd3M(o z>$Q#R|IYV}L zB{nPOQ|HUswf$&J_WUdavpF8AO=ldg>eN@Ab4Ng@wWn}b+nt=8Y%xdN5s4+)@Gb(( z?$pbd9CP|^!_7he#)BR12*mDLgO8R(`EZ?aM;s{?9XldmBRpdjm<*C4chu<&@=sZK5jEqhptg(% zAz7!)&WH5v;tnbeOU;yyZ!h(U%s*c(@|ge|p5M@s)E$r1ND^Nfn15~noYGM^(~AV( z*FpGFBArRyTOdlk&AMZe>~QNmsaqN#C3NOqd9yFOCo>7$0lws}x}c8A-IWjkAL=@A zCvy<4)73Nhupcyk+Hri7ZQRIGJ_-gYUpO%>F)??_tgckf(2nl{On>pWFL51}5T$&# z8~eLD3EmV2%R^&O`nWJU?T zF-LNEqBmhIo(u-VN!=E$v{td+WEOjynEd zS!HuvhK_gI4kdf>1E|A@TGS}v+dv)yC$xCM9YIA}x1J^Jw@m7>;=(zY`G(YBuup4? z)dBWhPnxtJP+q_|KuAiph_AY)Vt#J}p1n@3W&JU7CrEk=>vSC#9WSs+Lu6A47#2~N zs~~;c|DpZvMYr_DQ6Ij<&xX~luEKM6?q61mMP<}fRA4u{-oU&rBf?{#O`V|A<$1h9 ze(-hdcf9|KBy#+%xx5i9#$P;8-EJ1}K=i0OdwmcJS^((+Q1!N*r{?D?Pj)0LI2u{D zj$+;)+k9NQMVQBM(N<4C(!p6VzgokyN&H7vVTd@|lVKF>9l{1Lq4z~t2v0g|vV;SZ*$YnR zJzB1KGy*$~m_`}yb0Mt$8r|rdOZlF!p<{|!$1Bq)$uiHo>T^36KNO_LV76h$8tuFp zW)|b;+y`z4bg#=>Q$0Nf>yv$tSD^7DsEx-J=S{Qi_3B7FLF616gkHt_nRhh%q{Qc(z|&FA1zGkYmPs zc{-B71sJ+D3FXV%$6X+3bOhn!eBQO`zMqu7hnK_f_E>0#?sNuyPrAuJVksG&q8(;O zU!;*`xCF}(;iI4Zj&FhapUYOGH@GXl**!15-6*(r=Sq~wTsSoE01D9$ z%AXDWRJDB;5S$;p2Vi?O&ZeMm;qg_Lif>cZZFRiljf18H z3>9T1?erC|>aCNczn>Z-Vurngv#e)nnrP}rhuu7`Fpq=6tsJB=bSh<6-&FZN#c1fB z<5w__5*;< zw(!Q#_mg;hRr{V}8&M{_#yCAQ0t1hFp$py=&0kJpLup-Y7QPF~b8bK8ZX=H*uWsp_ z8eHcv;*4nD3Yp>9`iFoC&ZAxhvjh~KM=u>vb?CR{13Bx3 zP;{)}RJMv%gOh{-rwj`@q=m17p7rjQtxO%HIdZejgb7k0PbN7sv0#@q2L~H3)Q_jG?7P(I(&O{!5FyV>obz(tpNUQrXd0 z=~rdIjK;dRZ^n1NECC7hDj{lY% z|E*O2TdDqcgM;4<4u1E=_}v%dcRQ8e?Noku;rZQ#=O1j>@8(Vak^1`Gyy{LcoDl)jC7Wp|>o%KfErasZ77{QH)XX0K<) zTKk2T>C&hqk4jm>q&X|_+`W1k`Hx?y5P)Fz-`g%W%Gmpu?Jjhct?ZZQ(`9Z|nEi6_ zyJEm*{9@+VPde|6uyHW-Z!IP%l^gHbUXGig9JlZPAN#r5V%n;DblO9gMB#T-8YIN!dGI-t%}44?<<^wP;wxOT z=iGY!GjHVo(F74r(=7C7N7k&p>5t*LM^jMZcRD**V|Ot=Nc1dz%j0W?+gYzNmL_t%YwI(zLe!R8d-^p74(s#PPV2v> zaqES_+Rn#Q@BAWB@O57~oO7$0r@<%``$wBebz%cDqg}Vm9XCUtk*h>)DJj>v%d_d) zyuG)>@e2(_KU+tg!L|0w;J%jH%;3h{Mh@GX#0d>9$o|#{QXn=ke++3K5;ky9!)jr1 zhjgQAr_6W#le=?29Nun19HWC1IA?IyjSeM#`QNwp%q1<+sXrbR-+-fQla4RSq)&A# z)_P%9Xhv>-doYNuH}t$F|baq?=V;8S+e~Oaj@9Z6obXh-10?<97H5pWZP3t#xRqhW)*w znX1FNXK=J`;A5}Ua`(q?(!EkU>u~V!U;^Lgha8-e=P8=muK)KPJ)I=RQY9yQ#ZKS@ zK3gYK7bTi^#MhFY(#{eG?jDBuA;d&1Quf;XribhthD4WrcQff~m)<rj4oKIR_x3&gM>kPR zTk5#^W5l^$IA^kdxHygsr|LXF^GI1|HWtyX0)#9Yo0fCGG!L@&|gDR=pCXu|-Tdf1iXCNbDfQN#H9wE<&8d#Pavl%lUo9 zri1=5rkonM{vhaooWaTKn&bEKIUnKNP#7FEhm)w@Fw3c)tGVA6MKZ)p5Yi3d(Es%B zqx%4fDCkW9)3NXvv&!M!ODb|WIrL{^Rx1{#tYgij`(O0^XYz=u4ln9!`6DA%l@HF( zzD`fwIgl%Ik)HT`{NBkg_?X0Me#bO?B#m{4IUr8hpKgI@2P9gQ1^|7Egv+7WUJki^h*19(N}yh zD(`g|*}8*4h*E`RkRH?1(*vSU$*as+?`8ZkCD*rVXXP-Kdo|m*jY`FOG8`e*264}v(4M_2#h*!mNL?!`Uo;QnjKD|rUl$%HmkIT_0 z4)^*|!m@;P8QY-ga^y00USzi9>8*K>;5hXb&n@_xLPED)!P}O@9%>AR0jSrU5U)%) z*_x2z_ri^qt&~KwLn|Z+IqzmYAUybLs?v>$L|PGyOxZ`KMRn)T+va>5zBdKeH(=WQ z@%YWx!kuKHk zJl&Z&N(Tkw@4>ErJv+WI#H%t#MlSpNQ9oQ#U&lIGhmRALT)Bru>VPj<)?z^aAV5VV z{g?NR&%Zu}O+a-J&UO_#!y>qV7HBhFIU#cbvry=6Hx#Hj6iPXG&@N*Ce>F zE)Nitvpr%&z_Z6KG(NY9##~Z0 z6?Gm2bWtN-jdVVRi%Mn;d+2HO<}y6F)1s_(RkuZQ_dluzd`_8tU$q|`9=_uqXjGK8&O*p5B7z~tqn#@0wZFZnQdck&5r$8PhljUqi>fm) zJiNB&3GZP!;Md0U7)yEWKeyu?xluH%Z#5jg@4s7DkihsSijwf!@9sn* z5HnNEQ7k$>t$=D^NW5isNy*)of}qF4 zBO~qQBnAw}L%(d1!eDVc&2`z^+l!);4yEw!LM`m=?X9X3o5fekb3y(y9GLV4l>2_G zi;{|JZFQAv>-foSzK4>Z4n(uVuS%KF)HreZyS+gD*;{gn)2&xOhLC86`t$}0$_)ZD zSw-cC4A&X-b?Gqz>BBLZ`-^83cqwiWpxj_>apdEhJ*wcO45Y{4qj*h&B}NFJXyN;z z06&es8Z^ia{|uI&stUwL{63ezFZ>%Nk#A_Y0{;2me{OoKiX=WX@l%YT-+xxbVd*%? zS`)Zi)?agXt|I(3m8{Em|7k&f6+0z-N{WhHuuxMJPq?b6VO=2J0vb$lak%m=25a zxO~IJR$>`c$ZoKa% zrPkb2qIQwOkG5@1MQ74x-Co4Kki!s;Dq-=g^|iFLG&2h(Q>pNuutN(n0S&+(xQNA? zmP$;|DjcPqFZkrWauy{mt&mjAHN~~|zE3xh-@1VCh&^FgSlHFt@RkRbT_Ypp9!dq; z__(-MpY^J)a1uSYlaEtI9d_{cHpm}@^xwgf_OtXvR+FTT6y*7M(oqv^>|bb8 zLacd6ucQ*2858mR_Uj%$$5vpKyyW&mskc{!tZ{g6e;;@>F>!Gf=2swLiq-vIxC<@( z7sy4PfzT!MOGRoL8gsr;*c|Br-c%y;iq)WQy0o@-GWP{L)TFAq8r1D@b?mpMYFRBb zf`1v7+m4qlcEvvypbRzH-<%Y;=%u!>u<-Kosx+9Im{6UR4|cT@cr!QmkcWo{6kRF} zjC6F`c)LM}=Irz|IXM}G1ywiitX`vIPteHi?&*nBWY)+P;OBP&A(t=D$j;Btcb5C& zm9t!3UFGHF2P%;@oNJv|G|bH2fxc~d`9Wh4y2%ev>r+O7RTG^`M@9AQ`SVktwr;<` zCaq`$^U|9lE;&U&MD+dJH(B{FNjT9%LqpG>wChAGL(uU@?x8ygFrKKfb< zZ(xNqO-&gwzI1nYuK|M0#Kc5BY<9e%{L;RgtLxIzQd2@tUmw{cmtN*gTRS_p{bm(& zbMwoW5rRe6uV0U%mCU#%m5fJPLpu?im6heR-0K3X(?jm|?Z`_!*U4n4Kmd=CiD`0j zvbLrs;@Pv?-^Mc)qK*#_xj^@hg=GGYp3X`vgfRoc{^y*; z5g=zJEFf_6=FNoU?zAk;0E0RhRhpPfgh|5d*Q6EJAnUGI<$QGm)`rYL-tZdCqlTvD z#g6pF4%D#I^Zc?+VQH`lHHnCb@b>mbLqkh%q9Z20DKD5XQtx%}B%Fmj6cYm@J)`?! z4H8@vA-0nS^6(&A)1L25Wr@jH1KR;~X@rdKbJ%xXzJl*}ezbh|?%fAYMn+T1X?|+* z@2$RdaC38SZf^3bu$+$54n>3F?E9>&#v5#G*>Yicm<7u{^G4z6ils-pE1FbPNnQt= z*Kt0ADkBKF-M!A!fc3hT7N_vG9j^!3o&7rTbc@#3R%&YM7qpU{ysA!4AEToBN=)0r z$A$+7LC5N1<$E?xv)Q9Z2u)npiN9>2+?&ziVKM@OuV24jdYW{T(aP4AWlZ<(T@yRI z>EU7YqpQxbKenjnqfJ4F6l6m~gRVS%_wF5v82W^=nVFfD)zv81rW6TYUQmq=H1<0q z!6PLm{-9few1kvXr|}Mrih#g=rXk?lw{LlQ9PZD;N2_mARaj~(nuU{KgI-)*w zuhLU^QU*eYMius#&!5=Z8dlhw`1<-je8@=cvA=#_OKTvGQzw|zq>g0%Dt-d0Dftp; z=st~z$jixzR%8YNR0)?=Vi62w1-iGNJ_)d~u|aczx;mq4@iExSTVILLzixn5XJ=1O z!G{kxn3zY~T|Bca0n>IZHDGi=0iNi*&g-BsC51-*&IADyEFLUu?4ZEF_T-}I4K~hj z^3Y0$`CE>Tj<;^zdh+BNw*yjcm%M^PeBImJ+>TQdEEA*@2?+_Vm<}*OIyyRT$GaaA*j|DSIQR@aM_FL-U&J{B~6SpR@|J(?lE?uU@q}JKnSJ zYf!m=|2{C!0Zt&&MNC73`!p&&Hb(rp<{0S1h6V@A3|#JF0--LrFR(+L92~IDy1Vio zkT-#pYGGlaa@G~R&FOl&_tNdO#IZ=N_&7MHAoSD;2(hyhW)C5?G&4hAEBw}heG073 zF?-Df_jv&up693f%XnTOh6MmR-Sez@(Z*+dgo$4FX?waF*vx_{*tNMZL6%j zoQIuVot^mY+qVQB-&~Fq88iDWoy816C|E{D1{@67WDr|}8=VpG3 zlFwJEJ>f@?c79xk8I|x8=Avzjv2ljh=JjSUQq9fH$jHdx5jnl*mAD4JejSJdZNAo9ilaq-MvJJTn}N(n~Bhp@N7*MQ&{%#v(%3-ygL47a9V z^KC3wluS*TR!SgyKtf8|BnrUWv64DgbJy)fh&!?!)iyy!;{*4jZF5=K!20?NSWb#> zTOaVYw6^;0^a$IZ1AK34YI-DV6+0mcGHV3u8zUu5TwGid5~px=vl#&)A!X)Q&~;*c z-KKri%_yt9!CYeca^TkD;yrcs2HtLPqwUQ7Lk0Tq5KS0Z z43VRCRnB3Jz_mb5oS8*D4;F%dJ~FC(1eO77b2b<;K0b}N>J84%8-`0REs>Ivkcf(l zQ%Nf^t160Sq^Dn^l{p790s_Kd?OPA0EUm5c3JXJn0K9+?Xxj3)5(44W$k^DEk>bmE zOUuh$W_)^c0_|=%XhF}Ob%EOI56WV+AO>ma3vk2s>hM*Xda~Hk&*zPHkcL4Td1rh3 z(W8L10;4;b{aQLYF<*9IJ%h;q8_c^A9nX*6%7sl#On}u@+(1h0oBU{jpDgW!W$-5^ zMovIE_3`n6eOf$9m~#dq$#`^9ILqBRNW;Mnca4lv>+7XEIsrE1=jC~Nd6~2^L_-OIOQBp0KN9p;;!rIEcSeD?vILVYkl_D zN6*gAHa0c@3DI{EBsZf~4qy^m(L5*AMZ2_(-PgY6Ts2)Y2)APrgg0-@KrCXGhQj^? zU}JW6cC*$>05Wm$N*8LtkZGNs$e9 z?w7jH_lAupCnmr=;+G!-%&Mua4H5FPymIggDPAob*|-J}$H;xu*DqpxXn$a3yl*u# zibDAY4$9ifih&J`!GlnncQT=Gjf(m@JGX!S^siJb(9R!Td+P+cgNm!G5SD`UDKBY@ z;rn6&J93;*3g7YQ>w{xsSa(ij_vl4MDe};Nau!lhP^kY3YTJdj7%2Diew>62NUJC- z1EGMX@MOB~3}jlP`QSl_uXEu0#3dzF`<(2%t!pdFa>RE*M;rV*MX(aSRrt41J3i}8 zlcsY;$}KE>t;pQ+3sV{?5vRB&Gt+dc#-o_*1{iEdN51vumDN?OFB+aymKrlvei!F3 zDYJ}5)vjP?a8ujfwWGf@?4*@#DukJ3Futb&ZUSz*t#A{ObRK zO+X+v1BonW6l_3kZEZ&&);5RV`}?RR(y(n)za87&1SAtU;1x1~qCS?InhMJZv4P{_ z;&O9y&Gc0m^q;KX2h=24gMn$o$ z)gAI4(U^!%U3#=`D>pVWG_()hQ!-0SuUxs4s|9kO_Z)j+odH@54Gkp^RZ>czJpPm=Dy7u=(*6Il*anX9vIq9W~)02}AuT4HeZ19jLtr1O$MYzw)$Yd_3uO zL2pOkPY?=M&eHJnyXfv#J&a_~d(K8oO8N?w0V#~xp`f6^%F0S3cc8hMiG?L3<6h}P zFDPy!L`bzbZmXzdw)?VkK_n85>BCV&)uFk%wq|N-nx&Bop%MT#)an3#hY9QxQ8E$| zz!^6#=%jrm=;<4Jdbq{JD1FslR?%C(At)+$+cL@-K}SJpK<0v9<4aWKh=Vu}TtOIV z8sF{oL|B)8$KTVy6cbQWuP-hNdhM@6^n#3zXERb9z)V&LO@W>=GcYu|XWG>DEJt_D zMf&^ugT-%XXh`%PC)d1t_i_pV6wmF2j%hJ&CMMI1^Rwt4@cdx#tE;PdjO(ar1BuR` zU*U`nYt;Fmd%2Nzoyi9f7BtogKL*eT3xN5GlD$2z^Q8DD^}I{H_2;Vm{QRP#s0eh% z55b=vK6sG+@gtFT)c5VLVW{oI&4BkR5m8H3RTX@Pm0ij&O2s&3dCG6o({{duRsjZl zams?cyk8-_g-~>GaBy@~$+uf8S4-AL$#CsCr+ZLP5O|YLVP{v@z#(803WcMym2)4{ zmw1?&-OSZ$vg^F`kkWJR(zO8PtiS~0L$VMFrRxANczG{%rfYFjS5>iB z?Bt~Fsh6s3S(F?i}7QCiJHc`dHLPMd`g*i1NxWbWR-GtjS#6(5e!)uXD zg>T<7WNBdj8o^niD-|3Cf)orV{leytAMl+aym8J=U}|EOS$OLATCqvzaBGdG0T9O^ zK)JKMy*k|2rWr4x-1#H&_vPioEhaq#&*fgErqU*i>f{f$JdIAKNmZQ7@?*teuzbqN z#ebi(Wk9U!BC9I0we{INqn;giWWmP=#Ya6#hR9DFV?KX5?RI;@w0&{o+GUdbt6bCk zP36-S`!m}))OINey5*KXTKQ%MeM7fT}shWc}7oL{gsy{Ab zx|KXV&d>j|?7H36`zy8#WCT7Js-%wOJV9jbJ*MmP7|xX|9lV&LFp`*jArq=xTFW7U z=)$4fBM}|xg)aPM0drJ9h#4%S`pR?R)6I_Cy~WfbzmxEF@2Bm6etPZl^ePt$o{P0y zI_G&g0ciyN&15Oo;ao{y}|8S==~eT z`FFbWZ?B`>E=5MkFaom*f7(@%Gn{LUiUzGC=UopC^QNg)~gZe)KiNkEN``nKY% zS1@#_VAtp-b*js=3<+$c9;?lw6u>T*%5jdNZB1z$$jC?IUzi zh)vdm%7nb-vCzwG06- z#F0SH+Zk?}H}+1SknW0O1cqbkR*=xqrM-N4gZT*<5PtrT85vF9uUq(LqPBN-@M$F! z@$}j$RTH?H*xrD@sJHCTu;@!A>;lXUv?P27Y)^>4)lwxeY1Z;W{(Ew)sb!d zCuAPg)}cwQ&NhcZoW#!l176@XHzc3Y>>R7;>EKYJ%9@{> zOF>12Ohq0#T5KW*F)&yY;~Mw=u`x4af9_xl!Et4yhVEeEg3mA8;YrV1G%;*}>rmdKqHe zM{DKf?o0C_SL+{B3kJ_xs9#wO}&-ZDfT@bcNqnRBd>rF}9E%H?ELZlgMQD zloqI35A!p`oTW;~RZS#0LGh%pAkG9f;9z5X892wy&2wnB!He?|RQf@SyrM!xM`swe ztbazHRvsiPDl03MvcADA-?;l2TGuf!FaSS5C1m42O8Rx=`1lxlFDYhefRzH<7?gbo zAt%h)XU{!rUMh+3u&_3Oxr$Ek+#alK!*2kf07@PZHc%k2Hl_v!1T1=!p>fiKo;QMI zJVv|Q+t7N<1t3voCX<;yJOyB9fS`1Ab$tT=+1S7?e65@Xs0}hOlHP{5Z{Jo`eV(8H zSVpD+8cTHXc28EjkzmQYx|YH7iHZ3ROHUdi4F!cZfB#GNDR4oco8d|~Zro7kXVwp3 zzzFOnpx1xdwFt~U1OyOb<21u=fgX69wqRv*x1-$hJOI9vcB%UK5{+O1Y%1dUf!y+gB^ucN{`!bDFEI9fbis`53I>z4L3lL z@bwVs0%ZaQQt+zG=dv~R=SRv5$kt{mg!^=xSUOp>3TN=C+m{$Pp z-@iKnqt&W{SUZpS=xdjyLZg)ADX{> zG5-Twjg5|S8`Y4@9*hD*f{P2h@@)P2T782LwWQ|&P-@xV@9F4NS60@7{ldFuRO4=M zU;N?2I`m}8D=K1pdZjy$nUxhV?Tg4rtIuOCEjR6nU{YWzAMmQahs6h+cX4qsY|KfB zWq{X$3C&hZ2}FvGk0(=onJnca#>Hjh?p~3XXAS*GVFBYba~anmT6C^#Y)CpSbwe{t z;r1>F$Zahw(D@G`n-9y&7xMF_rt>hDJc@z9@sM6KIE3vBw(cBy5nkowJmJpLgC;c4 zUFG1-8%o9aI_Q!FoB(u?B#`@_O$e2U)b^>Y!ywE2rO-sukc1QARYQ4~yQcqw1 zMh+NQ2BOPb$UF1A8%TmVUMG4zVp7o2P1pO?hlQcX7DF4p)r}3@B@cIZnW;}e&`C>6 zyYH2M!Y)k$izVv|EbQylR6Hl8g%YS7h^D}~39KBf(!|(U zGlQAHpp}&spcw)pBIDzSVUsWv*gH6QfMbRA+|=9*9O0}XM3t~Ef$aGRyf8FXh2)*j z>Od|eK({t0tHCsZ2VoYz9G0Px3uqx-tcAB5$aVS5Q+Sc+ig4K^?(it>A^vg8W{i)w{C^r%EZLR7WX|BY33~}D^s7Lq^4F?R_3^Rwcq+P z+#B>Rgp3np+#p*7h$yn@Il@HyixRS2RTwict0~k0DF&+5ZFpm3JT1= z0wA4+hlWx`ot7YdiD)SD{CRM$6MG{fXdWML?nWfbk&%!fXSz92IlsI-JTL&04(VaY zSkL5AJf6NdL*$>QtFNM z_Y+c59s>}7G(}S|#%aYxbHNj0Gta0~8i#{|I6f+A8I&oJV*SoE&q!2baP#_Sy zib@a@biBg~0XE;CxI(e;u9g-G`p42zndG*%Hprqs`1US8ziV`~vY=oC><273sQ8em z-QMYwwj2A@F*+&=&=(8@m<4E-1R)ZnX$)j!E+uM&Rh+?K;TicI?_Tv@IXgLkm_e;RrIlDJ}fdmGqBMJGT}(B|0h6k2Z`9UXz;L6Clcc-q@XAOz6VjQRBeOM(Mw zsB_UVr`UG7PEtyW*2aI`3Y5lYJjp=T|W?d!9bZ%AMzDC%3ijm9jL7QFH;jMn&OEYyjXz zG)B_ZO?dh8GHPK)1|z!||D3f1{CrGY9O|etEIx20@LlvOeEWhx*8`h7GdVLG z3#dIstsF3>?vS~`j5659{6I|TPiU&B7~c2*0|Uc9uC+b|sx)XwNcNyx9mEWDqK+tK zvk%E1L6X63Yl@ql-TzB1ua}0tezi$+C{TVgGY{Nth#nh2Bw~hNxV!5t@@;Z*V|CRU z=3&hdBI=nH9Nn7OH*b{Rv(2Oz71=?Wzovh3@(ip60M}%G3%r}_0LLKE*x1^V23B5C z5u-*vO9O&tJ9~SA{W3<1w!=da;x}e|6u zCs#9D=F{+p`(QiK(`szTg>pQz-o29{MLyAPMAL@YVdm=dm>2u|t`NwV24$3&3%?@) zOUS!tR}3M}o5Mpo6oWcU=o}8^T4N(4GR^lmAefx4^EruC&QfJ%;;eYE zLD3AQKP-?Sg&?-0rzd136`}~}YDun14v3gOx&T2&*9OA8*q(&GdUa)l0VVaG_ugt; zObij%T10sGC6=wVwU2PyKhL2TIFwb0r4#}V|MCTOXbzFuz4A2JBmwMI%%=>1J>=s6xZb>pqU8vn2wFa4rt$indlQU+Lq_!Ugq2gAe@|IC zLiQ~N4o+}S1(blnDLg3aD^zE%si|>vauTHMfiMa@Yvgj~Y}CoY7LVR1b}1=eSfvn5 z5qyL16y)H*O7&(&Ed&uvXgB2rXb95|t~c@dF_{Ej44`;Q$~<*;C>lb*w}WCZ*|M^- z0My|B5GVmt0PNW6;v#B@VC1cjkB6@%s=fw9PEDPhmR9tAW!F>E#ylBHl*q{|T-LOM z8rARL2PkRqqqeC@7HUF@r6DQc>S<8tU8%~dqN)l391jP_v0=UOb9xL})bs%GU!hMQ zMOQ%BDSbMN|MOEjm`|XnVqU$10YNp$!PazmCnipzjh9^359q$@p;Fyg#vFnL$+m z+!!KZy|)OtajC-@WcL#QZ6>%QU`J2S&cMV&2_a7P+PqK`guVg~XksB(`%5ebu>3i` z-y!mcm1F4g4i6qtz7`j^2oLg^7o=h9PBz680{t$|4sN7za&p2i6TwL*D>BC0l>Sq zmKKDFJg^t+9RY}FY7%K>CEPi6?7E4n<#;TBYOySNB`=t8Pj*VZ0_!NY2qntH-Z z4)o59TP9R70lG!LD(B`VY*RY|iyMdw_z~c$^3R`Nx;zAy7}8{mi;FX%IB0T@A9K1h zmTrl4h|@}WLu%M}v6IBz9Yx41%$S_w!Vh?+kr9l|Oo;Bmdoe_{M!k43RpF5N>C-L@ z4tCPd*hS!vftUfB9K1b%wi_c5Y(O}6k7E#cSnvcU^E`(?p@<2hdw}|bhlG1z)Zw85 z+t_5i0K`aWDB7Xdg9rX1Z7}DrBH6blt94*u-Mc5hQ}I>J&?=exMzrV)3mOy5LDPM!k= zF+4nB1v77lQ0`yxF8akKr=rq@STlf00|G8P23K4uJ?R9NFA~3L9M%flKqK-#R2Nk` zW&xK~hjAqu$X_TsiwTM@YGh(~u=+jwP9M}3!g`SN>KBIu%B7q5ZIQel9pv*m+-X*) zB};7NenlN&Ny(~1j}w!nN4fTcjV*dUl*eto=}y4ZH#;Rwc2yv_X_oLKwM0S>uZ&H? ziSL(y8&*v1u)(KD!??=o>n5@XCbJ8e_-c=WI&RFf;YR8Q0KH4l53n6+D-%RLLz zrzcqSWnA5(CSf(pxDL(bm@HY=t(33a8E!JLRXD6QKJ~Bd-Q>VU3p&SL5SZWD^OSt) zd6-l~b1taub#~Ew$h{=U8N(we^sS{J`n#%>M^h2Ml%f=FU00`DqVUi=;r3~wI@B|~ zK>CMB0zJBmstf%$9XsX&Vp5c}26Qi;swYtk4C$LjexA9Zilxp<+cNTnoQ~NyBANf~ zJii0WLNgn`O(|_ccU%GwEsQ7;lfc+C<7jCV>z5$WBlcFm82;NW)1@cHQ^N^noJ;7D zwV_ALy7TRkuNlE?JZwUSEH&o4^SU6kKU*{F(gI~9@aW;3P=ecEL;%t7? z+|K-Z;yA`WAPhW4Z)W=+Ak}A5(zdSi&q$R~Dcu{z!{A_&%3MP>J)jKI1 zPD(sZ-W`#qaXvMx>Tfor_RpxDk{F+um=btqp*(TAzWX5k5L@Dtr<7pPyvsx6uei_b z4umJi%Y3|k^*$Xu=)F8}OAp^HC7f5WxKZzIoZL#LT+Zi>Cun_TrBm72)xuZgEo)!i zcsyKX;F#g$;c#}eG`ykU;9BNh>0J_0y5r5CXp*&}9*VD7QeJ&IdPMOPyK)X0nTvzC>KhTXOiSFZb!V#~dt)ii0(pFbT=29zy2-g~;z zGQ1rY$!RotkZE-(V}&q(ZD$JQs{I1dy)NJ2*JgqI>F6DK@#zBZ=Gg_=^&LBP>#r&M zmIUmy8#$tNM(=zT!^;s6D!3wIBQ2}MsFl$|V5quIV z42QgkkMVLjpWbN4a+BMh#WD(6`!X!P*&p$VFa5>H z&GDlQoSsJama|FL3Y=fRInppXHmA&Vi;MW9Q~j;?`P-M$b-OQ!)zP`;tKP&c(udI- z|12e;wa03D$$QKlO0SH>dP0t`<#COVs5LiNl`1MQB!Z^2RR3v2b*NDHEzMjTPlp8t zN1`~3IG(%ls&~y(wyinB360mvBCSL?o-qeMc&kgY&+>&&^a_Ubd`rNWAr9$2PFL&9 z86;sArMCxF6(}D?UO%Z$r;fg1n_Wy95Nv$69j%>Tpzmh8+DWVLc%4DPS`{WLU(36Q zp2#n^RUGgoUbCFuR|_$#^1w9ysbbq@GL+~WWQUrk_?~;yQP6tni+8Cuw@LBox8C%R zj~v;k3YHa^7}=D!nKWX%bBQNEap%2bw-K&i+q%_+QH>d_c-ID1Avbr&bmnz=zZbol zsE&C_fvFbO`>KJnt85<<@0StfbcGBQj2gCgoFtEJM01c2DhA97TMIQ+4b;xR>-&(w zB%)>?{HmI3a88uTnCgYXW|+6mrQSPX?h-HbzvHhbCQK6)51O4@b#{-r=@Pk11p25F zk1{r}HMfc>Y2B2`+L@G~8dyJjA#8N>pu%?kvXNo89leAi#>Vi=;xpE}ZmKCXjoC*^ zjZO)}-c&P6+!y`nHs?jsD@DP@tMBN@=VER=7O~uN{c7xHb99k@q1HBrUM%+7dK+cQ zk}Z=-BFmt>Z=cc~DapoZNBoMbexbOHSv`}s{miJb3VE^GP?EO8(20oDMNsWZL$J{J z;(k4vFLJBe@$SE~PQrh)Jqr9_oe<_q1B*vN2wo!$6XLZ9yhi-uKdhF>-#+=5)e_~$ z;?eT3H>c;(z4Or8+|(J1N7Ln@^B?crvU9Y>;?Xd7vU71XHFu&%m_v0(J5x<_XL@}e zNR!d?Xqme^)AK0Vnpl|2{`I%qUwm zbOQ7@?Xcu;%VFKc`ge1W80^11!(TH9^UN>spC|E;xxwPmu`&Z6AtH1gi$~Gi%EHo_ zUQk3Bi$~7R#?DdG-o(@#W>iT|PS(W9+zjsYI%3Fh=dxDLPU_~4a(1@%c2CToIMa*# zAGnzH+9Q1;i}|{Ujf5`Ob+<8Yh%q#FQ;8E$v^;FUZS-04j(LAw{K(ofh z4MH6`u#8gEx7rGB`=K*mc^VQTude zSg+sPxaL9QAtYrgL}oHZi3X91$Pkfv$e4L(q9R3-smPp+nP;IwM3Px%sm#iQO#ka4 zolbS$_qW#j`>*%6*86Rp&gqEf`8@Z%?|tum?Q35fFiF7Yj2ny(g)e@-+81(&6g4~4 zD?7Wo64kO!AyQRP=L}j;TUD@GQ(CMzu38bZ^g(Not{+0`GdvKkNJ=daV?c@Zp zQ3fg6;5>T-qyVNF-Yc1TU_x8>k z5Y7w@i8#UzYZ79Jr7OY2DhUL<-$SjWOA4NG24O%<_=wYd-s!Ghv z^uHw+?uyFX)@WDleL!Bid#kIfSYX$nlb6oAMk4q)vV-ICAnG(wVX< zYy<{;13^VS6z~)NjD)b8JxwJKC1|WPEBV?mZlLfjNt##Db;i$+tm%TC-DE_M;|Wp( z=R_wc;n zZ6zf?Z|`c_&Iy z5EFP*r{(2qK#(+P&7A}$ANYas);9c<0t08Tu_iQK-i?Er6m-Y5rgK< zIxh`0rKDWZcYNap3-WFb4gh>9NlBpL1AHNxo=}+d20ls(3hJ#}v5cn`71i?{g}^?1 z{yYNAWqbDNj_b56?x=o>IFBTH08Ne#f(CmsH|`+9whX z|Kv%WCLLqrT<014WPg=-!0L@?QUOp39z9a>-rimTz61CmIO>U(A7l&+K4IqjuD{j@jawKS?_pq&;PC7H@S!!|$pLsw|18dA z@~T15f4FCY(be$s-8(BFgAwad-bnXEEm%78?LtHLT;4K(Vy&&MNXZ{g>;_hZ{Uh?2 z&SqPICX}W!(Ami&C|Jr>fs*+_35kYXfG9z^V9sug(9qY=08y(N6<=EGC7^tvH1a_B zq9Is68r_NsY6cfB1fwZOU40hYAWwb~=fX`BAduWi1ud;kRF>}02x*y^fLkf{>4hNL z0MMn-uQZG^asU4P?rv@OFz~Am-3N^sIXgH;y z`-2&gT;E{fJx*-g0t$5Ii`~q(v{Nx^Pqkh=k4XVeOY1ywdFBPWaOBCynoSF26J6m} zKnUUD=BBUF!AZiOVLl8)`SxSdtiEt5N#%znB^_^3z}ccD>SM?wDl)RJj*bJ)im|m= zaP4GN(vV)`^@ckRjuQ8fkMC<=VnJ|bhL5_17M8Ge237_e&u?+Ne!aP|5e*GkmQ&=B zE_Ri{`y5!@8KRp%*@(Rk#(_n#1C?4rJnCI3Cg9vmO-v-UDWLQ3=~Hu*PoK+;WL!HI z`4*V;XmUcraRzU%qeUn)TNYwB&Fl}u`zJsH*eg)r^5-;qhw)a zecQ%TEy2TVH{5=J5D%sd>iN3H#ue4o-ZFdd0@A?lq7-{nyeQN30E0K`t)N`r+yfzk zOxqEynMN$CsCyVZQR7yX^lsSSDe{Zx7IM=>We3z5Fnjm6g7+^bbyAX)hz*^*H!BR7 z5*G?SJM$nt(W&2{`{q7cuiJXlJ|v3SM4 zzQgEQ1Lg)Ww% zY46ChnFt4U1qI2I_Y`9vHoU~y$H4%PU`*Wg&K)_xZqL)p6oO`N#Ky7-5t`cCIDN_h z!ftg#W5f=n*~}{bk+3oI==Dia@rkZz@!LAS`v`nDi@UJnMAGbG@I)E_oJY{o)6re} zssXC}Jms)#w(XiT(Z9oi^fx?RK}vCgTuR%2#?)UjygKQNGYqp!=1jaI8GB2p}MCSGpq_I`7Ji|)7af^ocQwZ=Kz3#VeN!YFVJVdanQ{L3O)@zklm zrUqA~oe&3Lh8iQQuOSFv@CM{kpi10w8VA>mHpbP?&JLw2aw+U4n&D8}k<%b;OnK3; zwe)6yZBPH#UJ5)YfZvaIT5|1t!XBeyOeE)k@AKBB52zryl#ZUB+`FO}!Za|pP!@NZ zfn8v$Fq(Lo8fqfOdhAP@^w(HaN$)J@T9X~ObD>;9E$cqW8`ro~)rKcw_NLz!K0T>T1 z7%DP6%s?V14zN2;42McbX5$9S96_ntJq(=on}q3+654)MkmmZIVC#3gYi$h5xBKE& zD`9cJ3Af!Dxik5WlL{(Sw6sGV9VdC|$>b`6)Jd5uDS}1q?uI=^i}=kHS8X?Un(W#k z$H0Bel>Q&9Ql9!f_&Pq0MtyiGb6U-}4n@~oUD;JqkGM#J%c_#*J}q32OPvHj->(X!8Rv0_P-ZU3uEbYR-6EUY-96ss63ya1LyndP+}dl_ ztm#km8E`&93b3=}H3ew;cjr`aEp=Piy}m}g)1K@gMx@;ym6$`i{1{%R2l~z>TQrmto8Eyl8jo@i{ zHg|kV8=e{}ptZR`3;?5rGq~8;JRW+f5jVn;p73D@%S}ORJ%VDZ09d->9yk5kbQE?cCF< zs%+jzN?q7N(Pb`*o8!heMP+wxBc93pueYWsQ*v{`NET#Z=!BK~ahzSddbL-1PxlUf zP>aZ=5LtT5m%cMh%gLF-hem{5_JWdJY705JjOk_&%4ViQhEPS8k3Rk$Z-;sWA`9;$ zJG)i3xM`vl8Lb(peWN6vZqiKj;t5Z(vI4>$-?(uDMMhlU((#IH2svG~Jy6oZp+^mJ ze0<#R$WH8MoaF-wVv`!k8mL`F%Y`I7e%$c%{B?M{i0D*YjC``VtFmApY~Eyl{e@e~ zMgs&8Rg}`R{+fiVKpP?tH@D_E{l0zgD=OkrQ&Yhx{kBh|z&S4~%kIL3K|B|1;nuBN z_*n^uzB-U{yH3X{`l8<(8wk$pyLVsFQA;+?i>(2$k8bYW?Ckpx#DXXRMgW_{bNAiu z)B@p;L*#I0&F%InLp`s|g%!2RObx_gcvPVFuoowgQV|z|pMEq^E<}MeWS_&K!EL;v zqAhRVqU@DyJJJcez?1Fc;J}>;-*iV8$1ii?WS4dsju^E4F`q!7BVsd;wo zpr$s|)3X8L4uzBl4`_IKc?tcm;cNi>%ZLizCiWF*Twqe4CD!s#k+cNsj4c*LtG}3c zB8c=W??K%Xp#{na+SJI{5G;i}Xq5V}B|75@S{<;t!zqA+UyA z0O&e!sVTEhP&GYxVIPds1~f3ZrumQuf5n^S@(5BE_~>OlFSV^NJfOJSSc%~1?i2-> z2=FeqgP!f2Y>C=4+TU=b6HjgqWjk8Xq=sLq$M`VtRv~jt}s^&Lu+IxC-`AQ=e z6qpJ2S+xQEonY!C33>YxMS(`9G65X}gDkW%A5EmttYUA0g&@b12tAW#SerSSfLaHE zb@b?$n<|0`5kN2;-8wTp{k3-)IJ#v{q`uNUVBp+*A^UAJQy!zup+hUBPJ%qJu2?PG zs;s%W8R-_P;NXfQRD}A*TO-GpPVu;=gG6i+z^?=a)|>G#9(S*4t4u2b@B$e6p+VJ; zot?>eFU9DxfCO5*rR?*mVo0#d#WDBNQH0Z=F+9ykXQFt1e5Zv!b}#aj5HE8+%6MZJ z16vr5&RGj%`&M6}I-;9Qfu{fCF$%aNiH4h;Y=JBIRLs2=8MoL6AZ{`;7PqvB!s`^* zIv+scou8Mtys8Rv5rfEQchJxn8yR_|teThSA>s8&^HN)~dHZ%yv0qnIfH$*oyD;CU zgZpQz8q-aJva%+hoQ~D~pg=El*$mDarw$GoS1tHQ5RH%+BA@>l^G`-Jum9~oZo#eU zXXQ4M;McQ?$P6XsRPU{l_V!kM>xp0Dvi$VvG6l~Y3F7~d=+m!B-9-EYFU@a%Jo&bE z>`8byrQ?R|Z1pv>GfPP_SEw9W%D#NRwv|o61!G5b`7f&-#i+N1*w_?MOy{g5FCk3Jx#zMD4sx=u!*AbKFC1S^@@&l;iNEyeNwlu$(_5|Bw~S%>&E ztpa>}QosoF@e$@6+N6A||88t-kPH(jNlzYU%DwdPIF_5|)NLVk?%bOwS=A4(r`&FV z;-f|AN4slLNy$)=E8EHjUXo{YawPr76i*#o1FT)Q?tzSO!}ewVS@`jHW~w>24P z_CRtM9~pTpcHn%P*$em6v$IQ}FJodlBzxq@y49;A49;3v8J}q=a&tq*k?{O^t%l2X zzSr!JHqr>noP1Y!^>9ZdvF+9klgXU`3aU=f?@qN2`MzHcil{q!oy%e6;ey;|i~_shc% zG~1MwlTs%52L__+buT5QlJ(Xw*X`Rm(FD?%m8n-H{OT3!Hfj|Xcf@z}SE<*V7#pi8 z5=s<;M9kWg6j*hJmQQpal|ObYTCsV2So8ht%&NKc!oa|2Nm8Vq2kti(%suk)35>ef zoH4|}Al;B^z*~)ofiZvT!ZwlFfs7IKMF^zAKHNwaEZ4tXjkJtryKLX!``Azx*4+mD z4vzP05fzTk}2zkgp*`#u7>&!6qX zTv6lIb9qr+eKYD}S(%a6`L2dGuss4yd=Y1ncdAtrSr z`YO@2gx%!s{rxlDk1UlNX={u+Zf_TNnYp+r=gClh^C4>VDnm1`3_Not^S`1tm?cqb&e2c4q~&PqP-#1+NA*D$pyAA1)N z6x65MDfl%lDJ`uT(TsS3SEkyLBOe_OIPv*Xh&i_ava%j-_l6A!T)3yItnBkp)Ok8p zn!oSEYxnUB%IE|c?=R#2bpr%0v>2NXozu~I7?>RzAFs#CZfx)g5FKbr8L6o%$vdOc z30r0R0t1_T?kYCp*pa&@7Hj|`H%Qm=o63=z?1R^D11Boiw$RfX!)G=zIV~ln7xh+x zCjhIz%ctzhl@IKy>7smAOLA^SNBgNIm|0nU8z~8i%K9MnnCLBzo0__4v;}1uI$>2?66d4{- zP*74L1udWR10&Q;6PyJqa`K&i<+X+vPoCVIGYm)$>=j(!=nw%Hp{yN!xu7Z|d@Jt( z-)3NNkf{s75?HA?-_ns5=#mESj<#hh(Rmg*q(FF(5JAESBm*~1q(MMB5kI-OxPTv|pg^uH2Y(1~2>J7&@DT!`^7ZSP z_R4u@_GZi1bUjo~L^G`t`u`n`HgA;A9yZBFbczItfnk zb{i`z(J3)>we+6@i)B8k6Ll6`eqebeVplYflSX(5KY56c>|r4;s7Bj?_Oi#H_@C0B-8))G~xGGBQut zXf5aFT*|*zk#5?DfMMNrP8Cvgga8n@a`oz#wXVRP5J$HGTOjr$uHR~fmJ+B)|mzzO+1M& zo^6k4f=jU>85voOf^%d~kAN0q*WoL@>i8QczH6YLcFQqTHX`#`n>vBlKWN z|G@T!j2)tnBUwI=bRF6tFkbk}OLn~QP}1QMa%fUFG*q$rdWwM5-ZD3DPQ)qt1Pfx& zTEnTO%X+^}txC<98)t;bptpyjsA%rj`nW__xR#Xk9pb7DEpapA#)ES$yd?Ws9=X!2 zBw7>~AG^%aqqQN4&4`9_a;~@L7%IvVn%-Tp;N3sbK`}NBdOX--_^{(Uxn%q16&1lI~^3#*&H8lf#$2=69Z6-%A zW~rG^j*i{5xs~NOnGIB0v5vDQPFVvX1SL5i=ia>uk&$0IiiPFmI7cb22Th%;A|VOA z1lfT38|lpjJ$9l(T26%cDMiJtR8%|t*d9ErMGp_t)h7dlqp$0aOtfrP#4l7AkBLgX(zfEi>9$tb$EMM~7zQ5lAi?+9%m_KmU zEIz?}{@`!0pHyfa@*(c|ETMvLaRo0WJklf4rG6u^Vcvc0S0cKr^^42$i0$LnO93kv z-#F7W^dE10^Js_#&*;`*{L5TUXfqqp-K<*t*(iG^3+KicU)$DZF%mY%4L`LoPZGcAIy_BCFnmUT55I))2U5{!~Ja&v(wl6zJ zLrJmK#@rmZ%S>F*Rf?tO1Q$0>^MuM7rFxkS1<5Lz&ND9`Kc=$2jAQhnVkFeyVMaz3 zj(@+cf? z44IAWYk8noXedtJk3Tlf-F=X&+wwvBSov;u#0b5Hmb5khIO=BXE%S$bl}Pa25)h>wo8@j<-t4FTn?%ACMg#!^`b;qdJ z2S}H2{p~-@*o}?fA#BstnF+(yQGU5>0=}xOO2tG2ryN<2tgH#y5Y?BNaS>dWrY$VA z8MF8Ab2vC$N2}vStK7#i2E*eUj~qQZ<2b)tCw}bKrE&Im^+n?X%i_?#dAA(Bf}fF7 zrIgbMTOkEH%j7dTwJM2eZ)FYk9M{aL7+vJi+cIv7&)QN^XFn?{dRtv>P=5awfzbNv zrrEx_dEy@zf+(5tGq~IfUlFYaI6jkkK&B z0}UyOiF0Fp8D;I6*U9~SXEe{B&(V6p8lP_3l8z*)vx^K^AJTG0#&AQUpt6aDBU!xY z8FBM-J>?qed-zGs`;7ni0d`}3eUOQfVVfz{$2K+Tawax@`qUg0*aU^ll$3F!G$#Po zKIK~?BYXJbacZ;G5;E=6WMT)(D=HLOeW};)tE_SNIM!|PBHct>COfOW-D}q|t>Arq z`UanFxx3%Iab~)8i+KG9gdJ2H7M&{9ZHl+4xFmd{F1~-C$i_C5lbNZj*E>6(oovh5 zFa4^ir(Ef6Dgst1txiL02tzT77o2FT!TCiYxT;))?~~iBSF<=+4zp^<)c5kIomLck zWbpoX2PARj;lq7WCoOwdW~5s~4uqSP)y>Ihs1+)1j`}LS0|O~GrW-_dY}t}>;r*ey zn&f1{(VcgTuX{u_J=Q^>t!soKQ}p z)2e;aJu$JI5TBd7G_A=s>LPY+_MMvJv^!#lo6$nT!T^sDxS^1IT(sm)lG79iF!Ang ze#9=g>Hs2nT`dhUuq0j`f8WL@NY`Ko$fY8qqNEOU>Z}?cd_6*#)%$jVU_8{{uVyXE z%Bnl_ZSHs*YU%sz-YUp{d4~v!pWk!O3HdJygo2&SiIbnA_n{(VVzRIMeUJbf>ITP- zQ7Q#Z`Trv}>Co>;Gs-|m3!HNF|h7zuC4EMTrELIXGY7wK3O%D(ALRy_*bF)apJLDzPK$iV=~=C?#B-gmUXz} zzb+NL-f#rJxD*2wo32Ay@K-WSmKGM36A(;fZLQ!DEuU(KKF$Ht~v;e73j}G)CUK3AHLPlkT9Kf zKNnF_Y@Fk8U*ZZlq<)^=yNv+&9j(dE%-nMGW^ALmjm@3uX$dEGQOC?uR0=qU-T<@2 znq0lwRUOXEY}kPa1iiPxXD#XzDk36kakM3W1RQSRu2Y1b$%%=X=`ZSOP3X5oV-_4* z{DQAKtNRCE^(CYHsfxdEnjC{SjhGtW>klZAmwETxRI%+n?i&!GZ284yMJ>eiQd4OV z3F`j{Ma)vorU+-@1b|Yis0jDGtgpkiG1k7ccmQ?G26{Q#yFi2)O6nUEKH~QquCcIE~aMF^e&7^Ar!t#JeFdM|^1ydpxdV zrq)LvriN?)dADYs6nkyWTr0t|>{AavXl&M(B4-#0Cj2v`0t;M7*qpmklX9jm+DNU!nK)h^{W$;BHy>)Hp4qd?r6u%cGZS=nHqbKVRzhkM%;7`f5XS^8^ArABu>kENgF=BE>_$=huib*|Y8e;0 zGTL6Icnmc82HZ=vKgEvZBg?qag3uGZPY7#D#tt^C`>k6|xk3+}1a|H6jRQ*d>{h2o z9dX10tUyUAXveLX07fPL>Ygt$B*A-S_E7|dqMVG%jj32Eo3Plqp-9Y z2k9{6Gab({1j2S-@{b-lqMbI}UG{}Q*wAfjrK)=8R7|e*07b}epzo4YloYJ0!=xk$ zXV{Sx{U0H{*Q$OXy;t(IC&v0NS4Fr&h1aoLr<`00;sS)RJkVStS)L>gL3GVjy|pku zUjS7U!f0T8K}E!yujSXSNv>K|;^x+in#0<)w*`fTtG^xtN`K5xdUke<@vu8ufI+;J zcMsbk?)+-fx4!G+XZw+f5uXgxwzV^^jH^f6z;&cn!E}#pWMl`Ob<@ny(2ELnKM&R$ ztG=!noItR3Zfw8f;n57@E7~4e++pSCO3I8opgzM?N%7f=R#Bs39!WAx_tI%GrWc|? zgS=!-wlA9x4{u7Nj_9H!=Crl2r(>4mNY|mRF-hV4X=r(oGtj4Qtkb zE2;)Wb^(^oN^u2Q1r^d!r--5R1_pN16GZ%(2uY{TmrtNP26D;E+fX_5_P7VA7NTKg zbh0(%Qjn+;bD4b*_84Rr9tgDcfBZPXopa5SSX*6r@dAChBr)|p68RSR6PUl^PEV>e zbZG=k6(1`+!A;*yt-UnXb<37qHSW3)j-U9QZxlql`w z|Natj;quAZryZ1VLFVS_qEY*{>Y`$O|03lL6L@hA{Pdv!Gck9We%D$rT z&VQUVCB<^Ld$vOcHO_5?B#nwb-Msf5zDE}NkHEl|Dfu60+5a_|ZjESKYj67{$8Zk+c1#a4`6$@%N~;3{fky6BCbY zpY>o1>UBxe5A+`C$}9v}q6%FUe}9G3 zwMkcXba1yU#e)BMhcyU;o;(R$LCPR3qH)(RT5c}t1j`MI1l5d@X49_5T{Z)+WTaL0 z`BDfA3I^|UFmGu`vV+hL)q>J)dio!Z_vf(6{CNqpWo~} z$58X&K~gC&uuihpq9>vk!U-8^W5Co$yP@8;%0e_dKK^iw0(f4e|9DJ*^@D@;s_EK5 znG_XTm{G)q_C-ib%Q65A_GuM0H6BqH@#=PyA;{V>+a*6Q4|E_yAQSL2=hIHa4#=~b zaHwTU)MOVGb#3140gh;>E6LvwEkS!m<@~8yjFx~nPP8A0kBw~x8A2|^ zuyl3o&yl0i=wL*OYr&i|*w`VBe$Z4($*_4-UxeZUSUx>HE+AILr*Fh+tXsYa7-7?* zqO9Ss;k9QRs*_YE#uE-ny|A@=4YjLXoXoXF$;r~_A1EpcOGr@i_1%cu&Ur#JIv)s1 zWl2d@xe?)|XOMvkFvoK%mo64tI$AQ!#s~ArrBJmm{~DI)3R(tO-GeQ=MlGJOc|-P1 zMDO+;874$PRizW&N22m6fWLspJ$`{dbqQ)k)LIcG@!%Dor*3guXHUII)N}zK3Dkw($c#fObtZfPiLZ#vTj4;y&RrfIPX?LSy{eJ(;n?$xUs9l$7 z?p!eHLoK{M;r$hgrGJ-Fip)}z@@FS;cLTHMqt1@{U|?o;1j$Gk@p2*%%3kjSXDU{y zTy$TazKTE$MS9v;L`2*^5JON&8fapVe9HuMvsNNLT`ndS6vMT$eQQbY9G2XJtLyqN z?_@^2jF0TRTNBN>iM=I-nVF00M$|<_8#=nWDJo}9S@`5h_Mpq?+hlJZm`eT9>85Qc z5tkU!%l1L%BNZ`cV4dr=Yr%r%D3JW~41%sP_a!90yGS#z4nY=3u5*OuAxTo~B`Cp_ z4;=tC;J`-(5(7K{eVQ8BnxhF~x@k#ao%u+);jJJD9y@>v1=q66i?uGZ3n#uzn1{Q3K4bV} zwGRSqD1=f{)+2c)82s?;K+!cU}U@{{>g!nUPsF3i; ze8ZPNUuUzrm=_mg_pYUdgZKmJV+;&D+-+V#LZZpNiQU-51Y`sd^X`@Rp!E;O2vqCd zBXtv`C^vamH%vV6*93X+@L|sO`*^R;Yo4A}E9MeF^$K@I&mQ!^u%Qri)1vwS0Z9#~ zu`P#_UuqEZt6R8=p06wH4SzZ!G^Hj^aw&=G1_hA4!omY?ny8>}b%SCtQp@h|Z${)v zN)O-Ue|qJ72?-VX$}m?LDt0iA0x~OEnVDugjiyoB2g&jhC*`v0B1oR>rlV^IYXIaN zuxG$jz`Tm~@2`e$)8N2sAX-GkWs#-E;EiG*QFpT2f7EXa)(pS$)z(RpHs+%B2I8@? zX(J$S{`fL4vo@H|=v;)LD9!F|w1~U#ckSgb_NQ`*iD5q7@)axM)w0m@~+Z{aAc$a6s%PhBXO2=)}W}y{&F&qJuEaH*Jls-H8A2%P|Y90$D0Ryh)tU z;Dd;LF&Eq_Tv|xKk?2n!SRzej20c&&9q8TU<>5m644JK|UtVd4s4dj)A!_nvVx$Yv zHezY?{6Pg~cx>!_y2-Y~b%aJ31>X3XpT}i=`eH7$gkdm@HmTdN4|c=T(FU`G0&Sfy`>{H-t2ZYUif~c@1(Daf&$c5xDFo252Pj~ zeT2MqLIMDBsB=NO{469UnG<~G;D_-@33Tpv?_S))!f#1^D*3jo>F)M6YmQ8cyE)|f z&NEG~Uwdl$gXxX#EAt;_W47Yty+`k4K24|9Y`Pb?hP^x8vM`McCIoe#b;U?UAk~Hz zjc=sc9{k|B64wa4*id0gHB#K_^nT@lmWa}zU0q*ll{C;S{I^Adv3ufi<%)UbA5rIly+a>XR{EmteShp}x>0PY&?#Q}g&oga zs=}hsd&LNw4n7bpu@VI^9AH1&yao1h`zHO+6AwufT)~$Hf`~?2JbzkBihPU$n!$R0 zoGg%!7rqZOuyDA-!{YsP@4#G`ji}oePMX>hcJe3KATvnTLA4f)ZnV4tE{50|L>r4srnS&X1?g*v zP=Bz7ZQ7j12?MJC%^bg!b)!#6WhfXN?KTovd# zK6vmd+FYR1iw<=n+_VA=GQdr<>S!Y|$0GJ;!cO3awz`>v3gduaf!a<;^MJJnxT#0)Jcm_=l_bFXu#p`z4oH z*DFIwt0$CH1Z$=39mG$QLP`$dNV?Vwci0l-LxTbX@87%UIGtGFGzGFE8;DuxzCg)U zNGQN5_VMFVq8Fe-qc$1y@uV(DAR~E4D;K$x0UxzBSaBo$Qy7u>^eWO5a;b~f*3O+J zM7eZC z^ytwuV2+wp8X9ewMESJK+}vC>Qn`>;B)tGDCATiOjgkV-!HwMkg{3w&Og{m4r^~ zk?R%m4eZ?oME`?#Lyio8h~^;xWVlXgXO>pgyZ-vT66WaHAR%E`slsxkIxoB*tsx^`4>zdvL+M-( zl1>h_>`&d4LcEpNQ7nFmMy2%V?=O$`>RC=?A_4Xt3XK!1iTx>(>rzj66@?N_>=A{V ztT!5A&7K%L{_^f6PNYKf7sB7)jq5S7^sF|^2fC!OPI(4QSGI1c5S}xxBKW&8?DNZ@UtFIw0 zdYYPrt}!Fjzr7ARLmiLSk6D)^}XZ+MGg@Ve?n` z-z$qt8hXgDDk}#E2R|HnbM2S?!h;H9Sn$rj!si73_-sYuOr+lf^`EU0=B@=z*uqI+ zahqQ(sxU1HU7ctvM3&Iww9w=B$5(*34i`PWW=)hVItXz`KpG*=~gV6&;7@gJ=Q_q4dLv<_?x;}ej1LV^#GRJW*G>P+r(9wf znwG}D_!m_Rv35W(CY%(G%hUWgjWDVxbwH?FH*G>4?8WyrxFl!qFokmXL{80W>0s;xL`Z5=y35e0VJS$)m-k!y*$C}S3?CHXt#g5}{x!~f| zNMCG*!CsOpr5!HaCv>~7Ajlp6ouKq-hMy6o{O&}DD^fd3o5UREU+}w+?_F?2nG|T= zY(xAKc?v;s6+~SixPfyrgT6%$8s%oajqqI0n7==!+T!Iv9Kf;wrFZvm7EC8&c<|!M za$LILf2!vFB^*R*axw%-_K^zrmm{>YwYUHG z@58tcwBw^)xE|8C#F;9Qr-&1j7wz`9_t&P1g19e+R6v0PIWwk`tLZOyJD>!BV;raWQ%`yL)G6ol(~Pmqpvp zj{Z7~Q=IMPRMp-&^(+UHDUNWUEtAx8L`VDE(*PPjicA94ZrtZ@-e4RpG|Q2?<1K_v z?-l#gs+yj#L^}zv_0tLpUVd;>$d|iI-`TGJ-QdhcjOOpQUp7Xcp85BOS-ctlX$FgT zwAeqafAL=ZZ3lUyH$=aBdH4_K<=2b5oopctu;ZA&gavO@%*O)%d>>r97*TEx`{Nyw zS5QcW{_MY=7RXMdD6pQ+zXLl30E%X#MGy7Q*TfxD8OYy<7IWk{XleoubWBdJElG3P zzkWXin%p$?0|{eeI#f{w1#N|eml^+T!)jo$1ix=?F6X)hksvgO3=eZ{e!)p(egA6i zYNTK-fI)+MYXqbtrd_+x8P5UzkAHn>B-J;&Pz5jj1vgyX=xCZvd%+rV)l6f5Bg=tuY{~HNKJs3+VuXt>`Qdv0Ez+{fYKQ%H}DPOx(k=WKdcy*fJh#4*V3&e(11X>9&FIy zStY0}8R_YbZ=9TuA@KC;;DrJNEPQVR8Ggnq|D^Z$%aMVS>bzw!G~eP{v}(( z{vwy(btyuEN>V|8#XX7_taS_%pt`A9*w=6cyP<2zk}dA%ws?_9YznBFa?GoD zpeScuE|fQT)sc|xeCho2oSY@r$1B?z#F*etnV3GfG{Q{^O_Oq{q&|N12;#O54pS&* z&(U6FmyS#h4eh|K0?Yt&A51uR??$rD*ITeu8N&-$Rwi z6S;f~2rx1l^uofzbaWU_Y&Vg`iq1_Sq%m}>;cW5eP6D)XFe3zwVE`e}%yvO3Mxj?D z{8Y?yPZ-QvSFLw>ex(x7cor>{;3)ETeU9H>E3@<<(1Kw&Tf`x&wRMLsBQL;<`}g;v z6@UmaXJ$gmV1zhu5Q+7Q17_CNVs@hunfq8-F(4!1>C=;;Cop~OMl&3-i>)VW;+aoz zI`GB4dv9m|6+SYjaE^;=-RoPsNwX3O%lx0}(vPo@`?}SL!a`$s71#M!MK(^G!_9M* zGtrU;ITU++{Tn*1N!Cw&?28du_5z z9@gl@fSf&f(7T6#Ppu(w4i@TL=oL6LlLICULKDb3_tR(}*mV4X;8Xo-hLI&;aiE{> z3LS<;0}(Kvf+AqU(N{=Xp+aKZ1wn0?HjVG+z7Wo3;|miiNaEoy zAn*@(g^iOFWF_cTQ!c;!&{s`ey|R*+fnP8+rChFw=mC?>h)9HtHuUN8E1~1S$iN`O zL?%LJhlJ*XjG5vp(!Cgh^=vlLtFPC^fNF(3^TQ!(zwyBK7IPM zVOrCxSHyu^xX(Mgpz?Gb3Vi4=#e`jmCYSX+g8k5s?g7tDx}*1eYFtzq5W^Q!%2QWF0GRHmuu6nyc$ZQO;6cTDxrnn z_Pt~y_sF(h`O{NuD0t8=x$5`V84qf6qM{?ksL~!f(yY~oDgGiojCDFpA-yzt6NV3L zNXGJM(?7-UJWK7+o&OWQ)yMJHA$e8R`p4(_0y8Md2`zf@TzEF8aT`oLe znJ>R`<*Jizch~*?IehFIHu{{^bGcO^B3jfhJjLjI=~&r4kj|I|#)) zd4`7HrVcR5Xt!!kllavMEx4@(*Oh$YFE3aBGI$#G$^}oe;BCBJ?_S#TT;{_8icyQ( zdv;PR{Eo1>z2_eGPM2q6vX`Ib!rK14zCLzduDK5u>}0`K7)f_6QN9sS0n6(7;{$5b zbM`LSz=9ntE&?5?ozTLT{=BWc0r0#i?#z4M|9pi1?849wOaC8cNIiQGg~!Cl8@=PE zmTmF-wgjj64<|;49~{$jW^W$MnJ>F~m8E#(&j(9~zd!5Y#mRm`XYOXEzES0AQSTG; zp~r6rA(@)c(yIP|GVtNvB4f_V;wrK=^FI5xGszNrfWl()?LEXZ{mc0dja#`8-n9OH z(2}VaJeK|MhxV1>!X@$P;eXzY=qCTWmr?WG9zJSW6O*%ycdGR}XX7Tg{%xBMRZ4_c z^Pwg6Gv!tq8p*BF6D@~++>S(d`opCbl`5AiP|n#6PO+7=@xO2hF1A!{>fO5-+5Tc) z6=g+3i8OOhw1;v&;0H!p?h~>+=dI_zY(z9>H^30Q+GE? zahziP7&Zt1AjEO>CW>Up9~)jGzQcGoBnyx+Te)f#c=9O&hr+pc?$myHYb&cSWKv=< zGVPrX9jOlgLLBn-A9oqE6$NM|#f^>1p(m2|IF59>N=Jer&^I*1$;Jl4#FMx<^5q=> zk-%yN$M|DkU-_$7f&4~_HZ~b_t5NF#vWvKkH$Vn;Y&^A&hGKX%CR?G*D8R>;nVr2u z(Cpkh-+z7k3lzb^7hhFZKaGfxtSEw*2&6pbgH#l4=f;~^c`U#@?j&I37v%6(UpZ%L zs)3$>z3Hi`EWWSY+}t4Iiqs4TX`nMYw8N~w_E(AS)3Eg{JC}L$7`KQcE>2gT-%iJ;PN5&)MS zpA-b4k;Iw@dzSyDrAx6ihKrZ<^0nXcf)gKZD1#@bnD2`!0o?^X2hu834Xg58A3h9!$4Q`gWtfzK;IN+^cAJL;>qoRd=S83ZbxI4F zb0+}}j6e$yY(gv!^@~g=e6fG04zMlE9ZMg9P788Fq{NV?4Lt#BcG3Xy3m})_2}?@w z4ra!PZV|$_3f*RhgFTPnxvPN~=#Do?Y~}_vwn?}0K>(_Y_4P{X>KCBetggIQ+v7o+5OY*r+BsGzun(0QU1>zMGSF&3UmLw z{PQ96e{SD@CMo~jx9@+f@t0uW-<-jJtnt4b3<=Gr-~Tz($WVSl3;yHv|6lj|MHyOr z)ab+3t?)+!JLYa+jQe3{(SHeZXp|=ukr<(VWMg9k?j1U1E-zbk=zsP7a%c*SJHZ0I z`i5u(ZRkQ_oZIrR0nBj7192Di$Wu2%AWMz_72m#jR@%rYx_Y8g^NGuoT-%7a_OoB) zd!(Z5uO(jPw)7v)jqSCbwQ{^xmSex6au@mRK-S&Nt}Moij9zIvHI?4o(e8CRx_L&Y zj&C`TnOa0PdOWeo&g|OJQjzt&f30mxE}&~KzqMJne0J$-zq(1kHk$fF(FI2N(;p^E zi&Ry`pY0*e^8oYXxf}*I0?o!`&3Y+t8}Q2ziq#8|F6}vzWyG&s+Kj2~@+{=29`)BC zbVV(x)nh5~Z%Ak$;BF@=d96%a3yLj`Dc8r{=f6&}3i$C?`#e-Zo<0Su4FXo}c?=7G z^1ARwiV^AO%92)A)yT7I^{O}!H&W>f8pic(vH7WXX;x9U~>DcGb zpYLR5CcSd$nBB1>+S=Xt>~@J-MPGoCgK&H^BYOFHOf$yp$=$xMK(U%8G@CZ$aVbJ7 z8|>~@nXS+h9rGLIhYX|bj@x9V%jb6V$M1?)4D$9abYQ2YhVtY-m)Tsp)u_nl*7ICO zu$(R(X%7zHkgJSn1KAMx%BVCzrpllD{2`2*4)#3HAS$Ycwn4l3;Ff@K6(&(|@h;lf zxPY|hpwby&z$EhyT8WbqELxd4w{jmDGYuX?A zuh79}#h}KH5t$D}Y&f(&%v_Qg9(s!U1-_DtMcH(%N^EM+u3eGY+28OvFqpuYvGv4` zji?`iY>alxm%|M&6VHFivifui6I7?3RaM>5q30qau1U*1^ewtRi+E)e>Y<$m&4de9;kieitMQFqIw?MeWCkxjSk?;P%>g+3->M zq6`D#iVG+~Og^6=hAST>GufX~wQglGM6|*CLbU@u-EFnCFB}4Rbcj<(DfY0SDE8!u zmMX>^p#IqCaS!AJ*a&*>M%AMn4KU(m_7etrE5@C{nBiQ@-s4~|VPJpcyb_j~h4qdG(HiAqqo+ zv@l*7LZXe82V2=5o`a@hOs(O=<2D#%iUipaLl-bJ9Qeb1G}(*0m@$Q-t7E*P>gm&win09E7~E9> z8A}MNnjIP_MX|7?tn4TzV@ytdvVxXLCiMT;UhxVD_ym+^hfi>@y1aa`L!^Zsh_pah zgoHo~;>Pps+NFaz?eKhPa3&5j*sx*n<3~`ETSitK`T&YQJcieroy>fEn5Y~H=03cQ zXJX<|Mw>I+YKVDyL-`tf0uldBrZfes^dNAL@l$Lj;nh?$G?*CyL6OOq#jxKO2A9c} z<*7s5As*tIDgywyRvZwt=q|oqqf_dZf$u(=&j*gG((PH4#dT7qA zUynvEfRn-^B5jyj<7Ct2L}vM>ZwwoZQZe4PpFf#yHKatm)tC{&;Vw_7<>&xc@HvCZNy^}DTGRfh-9#JB8DC#XoI%5vkQ=6 zN-%oxj7S-toZRO)aiYZng25=6WAxiMm&Au5d2W46dv0fvvH@x4;u^+W8OjXewbRs; zos{I&x0HD$t_hCayA4cDVca!_X~pHkP<0U;nm7vzC;;2!lv|A%De>{_4wox#^MV_4 z!_%{e=)IMd0~BLtK#c!AA)IB^N> z0EofN&UP(t2PX&arvH3+^~6iDgIr6Qe98(7JDy!$)(`mGxn{Ah9b!9Wef;VkS(k{CT>=KR~$}VUG zi;9fAnfU%MGBVtCcAWBq>%=)*OGj!-_8Df={BrmQ#|wF7^^7}MpiY%Vu%Y$Cr?kG60m68R%3a9(s4~2 z1n+O|?lA|B-^ZQ-!0Ty8Nyb}_HA6RKPY%JDO;6i9JAbSd<(VR=dVl?j;dG{_w8)){ z{g)S95%Em9Ju*de&=kb~v;VgiAGq{iKy;05g8ZStl zpHZMoXoBE%h?Ma_GvW*f2Zx@sce+E+L_(eES-8zLGDM_?qHA1ZO?-7>2vJRY$PK<@ zbJ7X$VhAxoS4S*_gsZZ&^ikANcdvq0g8cQsgMp_{ZQ#8&2b|+7~AyTBzvtR=I`&TnR zLjO~9y)ztDKxsvVKhq+tU4u~x<2~Bv230=a^B3HtYCHl}RCf55((c>mU}nZ^^MbbK z%z-4RpM$n1)c^7#CVY{QAgm}TDmqCRP2cv^j$-tiPAaVB=HN$`d@HLzCJ_N**ik6< zJ{k(c=kI?oNFI6NNzH z$>}W#$;p+7m#1!XP1P)XaQ=K=NEl5v1qBW`%DVob)M3Avrc6CL@c0t0j*fQ1c(#D& zxv=LjY02S;yzZ2j?+Y+n|4pZR>ZGmZHA2S23PlmtMiBZ(ozk zomeZ^23k5gap(SHQxhtPbe?=U$`5UM{VKO?#ccgbM?ER2C*?M67%ZnpIhZG`BO4cC z5PN>!+QsE1GO3=P!+K?w7?xhaitd&L{hHrfuAICXi)C@DJvnGt9wCt}w%gw+*$b=Dkto zFr_#9gg+xON9O=GTzHP9ZA zrlc(NOlY_85Xj4Os?HHC1 zEgL_-Wze!Q6X0}zO;2}sxMq6m`C6Blh=@hZd_z=SNEnaA-&1TyOST;F>H880i)a@= z)4*RtCU^j;_dbkJEKl=-#C9ek0_?d#F)3P)*?{ofi#-tC!S+zeasS!G=sPvIshWHR zA)O1;*d^4Xp9r$g9LrPJR zla^LzJhKvbfKWBPrJTxlcA^idB0>pv^h(cvQ$1yLKUugN)4k#?kDom5BhWzxfwP1*%fTH<);lRE)~BA^Jaw-Sc?)nRcu_psjBzJXqbbkr znV7qdJ&(CM2SC}k@5)D}dgIR1dIUKzPH<*Qm2H^KcNXJm5txD?Ta&_K0wP~^yb~fx z;3_%=cpLA^ZDQ$(v8E_J%V5vKuTFg#GD39?L$Q#Le@HQr$J~Ula?CP7#TWCIt|GqN z4By-Q#FJyYzEof|AkyxBr37|VdeOQBgr^4yDF7Du z4k5>G9;aS{%9NpBBQ5YTlnyoWI=_5J$YWgPW~Has1BZ?=$2J(A3V5bWY9-9XcTY_c z%oU-!OGSlv*YA7RDRjzW!UHm6_-U>~hh}DHEuTLAU}v{uz;EUxu7aZg!ta^!?)9lB zBrnkU(jVA|qrkV!i=E?K6Skp|=tsZbkk_hn-J&%-i+Mn>y4iKGMJ;$}&|M0>t3!tl z#qK|POC!&PDd+Cv)3@B$R#yfG&7)Y#72AFr?AerjjWZJ!#^O7qMgec0xXY`Gz2rBF939b`L~1(dW75zgBEm z<@UKVZ?MbNn_FiB!UKm*>I}(4u%i&8V3@|wcM?wyA+or*hho%eaPN4}#b2&`+cr?n z5xF1Zj$!r?tRi2AG)T5a-t90m%YGl$7`#+ak4x&7?0fIn;iTeJ!R8IsYKXi-$V)@R z*53}Q0eHnem{*BKLNsQ|12;Dd<2hQZyciFsaCXwTQXF|~J=q(CVZ1&*ONcQcFLc}C4HqQ#FmQ}76JvNg#yq@SZFV4xg9oA%7fe;g zrdG_J2C5QA(ip2>^rEeeu8vt$6r}Y1AIoFIu*B#zo-3u{ho^ys#da6XPyw_3yN}^@ z7s7+>pynSRLc?ZpF<0N)35;p-054_RgH5e42th$X-G@yt%A$F7pR0E*MK=s6w7RUV zS>D=UM8gn>%_AcX#yOzOgE1YlpJSWswL5n@TUw(02|QxR=4oi4GX0Qi?b(humaK_W z#$!bE$B+Bt4UG?>*Z3fYcYa?2_Jj@pt25{s(d0?!5;{AVL`AiHd$$SkT0vOYmSX#( z2f8N*g^Ir;#wel3f zPKSU1#2s$s*V^#>s^NADd=3Ju{0|OuA? zZA%xq@e4Sp^F}lVS&yDeM&VNKx%v6}w@n|R8KI|z9FvCo`V8mf2nRhNKs}ia4R@R(IY5bV0j5V85kHHq%xa!t=mVMpM>trgVv${0`MR+YZ==(auXKPD z5u|;^-W1aHlX7@YNy#99B)~Z_WdJ?|_==Os5MY-s`yLVsuU*GCOAV4+6Y(&*+B3>A?w*&1U*L*+oB z0Q6wUI#O^pZf>%(mi$}#A}o$s+SmXBiE^$6fX2$qjED`A2Q_|+Ww&mP0+4Vv^d-I6 z{L+C)0zGla7aKdAkNt!rKZE+Rhu``d$x|sLHTWcWQ44^LapnNYvB#;uU>hofX03h zn&4^@vCvyH&d@N5H5-`}1)|MstEXgBsT@E?7Xw$;|I%J*LcZHG1eK2xfqO zg%597SBEd&CO*i<%iG@6lm{JpY%9Dch@D613Q5$K*C^7u)pvEQ5h*W z=`gi)VU3w`!L~sV2dM55^M=M|Y%v(>hWUXW?h(v4C18=qk02&Sm%&jLecD}w9f!GD_p7Q(%PY~O z0d37ROdZB`-h5F~RD^cGU8lE4<}UD|CZ(XFrIo0W2g~k)s-2hD0u)Sp&gTtM$T`=t z(eflcMkR9t}yWVXTK;m-d49iAvn z(IDhNiU@-`e_{K+?yn4lK~aRY6*ZNkjhK&JXU#aV4we-7A6nJ5K=E4uAh9$CmeoSh z>Br}ey2``<+(J7PL>JuM`H#j`U{)qT-g_~mxcmj30_}pX@i{Yu7mh=KwZ8k*BJpZ= zaH((ijl-s;rncsx3BaW7h%k`x>Ir8iG*z<1H&yP%7KZViZ;0-1s;;===k$GG<~A4moe zkd_vunsQbz01Nhh{{B4;j*!fO_)e})0pxPp`pJwiEEJ9d>`2$VMRmZ10bjhQ?omGV z`ZP9%#P~CC2y72M%o6hz!G(uIy?VM3W*vo`$G++z{ldxTc#1nKL+3G>PKECL$tBYwO52 zEB6A|>X1mixJZ+Pf?9>XKUAU6_J!6nh_w8=4!vw&#jgGPS0H?VT9p?e27mmRk)L0a zoCp~)E{3SG%t5F8?Ngkx+Z%U0susp9Ukvj7;e{F&av=~q_eNX8VBDkJg2y^RGWW2C zt}quPlO?63K&iuR(i5Z32HoXvGc)BC6_7=5b8>QWZT^@G&t!udRS^9+Mm*k#6;nhf zCyGvY>^c~km@sC{)%X}Lxo%kXpB|kl*$hz)I_NP)HeluZsWXgZG^tn`l*UMdT)y@S zp2^&QW)CwrcL{W1Ya9uc;&aPmpFi&``HCjg`eyQ+eGlm1w8uA|VU2+kMzTW7NB9(v zy6N^O@wcE=^7yei0>tpt`E#}G+{RinNcklsBnEQ`H?xj1DC-RncwJpvC#UG@=XG?b zHKWN1A3%$@Ln7^oDh~HRHO*oXWhC#=*%+C0b5sZskpd$o4N@~PDd`x4mN%w8 z>Fe)(E1WJ=rnY>S5D;(opPL+*934Gk(RdNM)qA&HKnm2c%NH*Q4frF3Th+awLl3qh}K1_uETFi+C zF9R}Vti+NE3K2MOMn><}R^Q=BCMgo^Tp6Ue2Z5STPELv=!9xiYy`QToxAcqV%G<;o zfMSBfUh5-hkS5ad^G4S>H#9ZbA?@K`6-Oq8bk9O)=(Vi?pnY>P%JOe;4G4_YVXN=e z*415=$?)1b2^)`r<+W2}rJR;)&4hk47&#&$qHq~|zEs4Undw`L1h?q+&Qp>mfypwM_tBWjU;j%X<$oQzrzX6X#A=>#E zinZ>@Da;KJf~;VV9oZZGgpS|O`2*l5fxXcHnNyV=l@PWoD-)Weku5=Q3UMz|y(eWZ z*b{@h)!C@f`1b<^F$g9vY<5NY_#e-2HOy)0bmZ7p=e~Qqe$Hm_0jPnis}n}MHaxK9 zOGWXNbE3kcW{Rb($`&bQ|wl7f^j)^2{CZ%6~PuvZQkF8#t#= zt(d6jm5l8x#prs7Mu3A*4$%;#qoMgcZbIw%``M%jTg~RwZL>G}>3mkCTv6Kz&&)%D zffcGsN+9_|RUb1pcem;MGAap?z@7r&>Sw}MuD`_hWXG<%>@BR9Q?WA7mT?S6hw1VWagKt+NSBT|Z zk6oQgqtaI7vil&#Y|QxRtnDH4P3rY)PkrzD+LRo3@a4{8X3b8S>6sbyzPcy&u4I<@ z@;1JjV(HnOjfakTOU?$}^bP;kxG=j9Z=VWBf52IFx(ehsX29RHPeU z?A@lx*3Bq*kveht?66H4<&NH z+!}N`Pf;p-dab>%S7p$QI&l78_39D7V-7PrEpN-e{I+mJy7kegDY}shPv@)m<;~4C zd|Pb~%t=vE|7*3hMpqUU^^ONSk-@2;beWxJhfb{{x$Y zx37C=(B4Q$6;km2QgI`)vSurP$;Q`jI3~SrrO0S{Q19)cABwkCI{58^yY;~zS?RU) z+Uh*=lh+QMepxoc`o{XI#>fd}E4oL#8n2#M9Fn5p=OrRDIl|d}t>*YPHs)vY9)}H{ zG_x&!rJ`mbCKhQvLSC;}bNk_uat+x%FZ(NH9VCimFXu;&422l5=vF5UKDkQiG(;lp zS>8iDWG10Xn zn}xsi9~febJDa;N!m(1QUqs7B_g$5@gQT9UZJq@Cfg9P%Pg?5k__W7`^|Ni@Qq*J5 zkTH8;by%#+qjZv^m~u~uXXY{2EElR1+c#*K=5Bsv-Y({<#(FC_UQW3r(cf{LcbBDe zo{?wnRyphKVnI*VE}YY)6pn7bHFZ^lHT{Je^y#ENiB)_?xrX+Ih4mMPspRyp@xHGp z+NzpYoA>0UcHp$m>{BB;SI&biO0Pa?j<6WB)}6m&tWBlEA!*aFkM_Fm1@=rU~bQ|gUEM^&jnM@%%LBVIA z1cJ`bT75i!@Y9=1SMBa>5}SX@e&a`?V6out-F=TL#x?Hd7tT$Fq~)kyvo20H&ytrE zc%6Q{Ry-o^b(VFt*kRjl$qjuH0a2>mOulRHx&v4&H2Aa@KU#d(GK}6B{wXC-XlC-l zmjhxdOIIeA^$&d(+v;oh>ZI-Ws#DvG1@~Qx&dpD9?a6})UZAu;IJ2p96Vf1?QQkwhr;<#eBo=VG< zgImhYrlmic2fXd(|8(JkQDBm;(@4>Wha}ZR8$z28``0UNJ?Yc>I#pHb{#?_^2FuI4 z_^6g%R|h5c``+o%7AHPF<+QmCGX({Rrx9VT%$X&ybC8dphN7`-&`<0Luj1HUDvb$x6pCL-24 z+51kmP#fKTtuG|jSY0TbbFN5JhAGmh-?>S>@0R273GcHmhV_*4Odo9@_`NpEI~?q# z^DdyAa#^}^QDpa{Zfb7BkXy?Sw{jIekWh-@i9grgDw*8TZ^(`bOi=I8-ZYgw|*Rx(w()qiKyQuR=7Ps_@M|u$q*HX;7 z6t?IuHYBv~kGRM!n)8-~s+Ud1@X_^sUe_-svk^(^?oBmG^++m_`QX5}aIE=yzm+%?8)wr?+v(v*0GUPf96B<9~^XNlHtRa^sGqok?X*N|CCQ{#R>H zSl)kIK|y{Vq5okKf36KF_bEF|1XDsnh^6GM>}+g3=miDvvy`)=vzw-inS~WrR6$Bg z(#+k;5>F~ZxMe)Kq@9Pmnw6WBvy+SSX{*y7^uqs(SZv&%L|60UeL?-BnOA)$Mdrn4 zjytKo)YWM_=|F`Ms>$xXRoq~iq29|yW-p4%y!5SV^v=~fu07{LG<@w2HsevD1 zQuOUS#s2*#v(z^GeFg!9igW~jK5#hC&3;=PM3W_yG76>|KLmf?QdCmnY-Lpuu;Ozh zt*G&OCx3!rNN8xDsHwgE=MNuT!M{rJF45w6ciT(~1-Pk~Uqmic8Gk(&9eonz#I*-P zf`aO7iKsP+1%RXo%S2O~|f29jbNvDpexC3xEr7Z2XB^w%?NVVXLowuw<5F@12N+Ynb{6 zQWbhI!QJfX>iX`xJM`Iy@v{s_TU2r=p|UfBrbv`AfJ}CDbcFdi)782tYe^Oazl0)g z(u&KM*N2e~awO@itMk4$u)k_ie`wRXbx&f}pB=*&0*M1OB2{NpOE2K}av@SykNmTy zhK>$(s3bv&x;9F3*k!Kz<=PDpMN3Od0gOM7n+&C&WwiAq2T-T6VgcID)vNvBSTq%E zUAHdo9Ik6*WP~zXzQiXGEs&R@GWtsmIRHwUQ)jz^TTs}561I@TYfg?NT;)D^RMXRL zR>BM?Xv4K*pKUmggX!0t$c|}W$ih)xS1(SK%mOPAOJavvN&Y^|GDgRsg#&OnW-fqnfn<8iY#8|h zcwVX*qFs=w0&Iz5O|y*%?F*#(pdvXtIuLqQAMwW;pgC0iChdQlFVXz z_hn*2EMR#7X?>nnKIE{G`f8c@fkO&*6ZFo}fo)XfCSzxfudl0H1$}+YV`;bvWVV74 zH*d56M@4OomMyQW1oOzL419|@e^m1e` zHYX4sQ;5&n*@1e|I^q`b0PZWY+6wdnVUKVRY@Sg= zO&VqwcA$QPzn>qB9V~D}7?5Xo7nit}5tyf+rT5~yV10Pc+=4(?hRSZzP`9dONSmP} zAFBY#cVz_y0)ZV6JKxsYXW6UQ)Y$O;4~l()9RTM5)nI~xfVaIPgbK7c1W|s172x0i zG(8DgQN1SmKMsdVGWeK+DFwkoLE;tKueVe)uc98ZZ{ORFjv4Uk@RCpoz};LG59|jt z540B5*m@eOBt^^+(*?r%1`_^t?=Q0e7drwPqQfH!)^-%8G(JJR*YO z;J|}GsMkFLJp1tBxhEe`?ZlZOKc65hGKiN1z;j|E02c(*s{-TH+k0i<4Eg^3PNt^s z$H&vJUWIVo_e`=YKqkREfI>W$K-_gO1l%xi#ds%|zyqctCG?oUB!bd}!-KcSA~p+E z)#Jx&0Z|&(c<~Af5{RdrogUbfIP*ZYjBlH+hu&Z1Edu`orWOz^UXB>93_H}aO{R`; z@Gunm?%lf&K-v9SNsTHk<)yG%^sB=@!JfeaVrmks6g3bkzh|Ha1s{Vk@bbFnc0SlK-k-;md}maHkB<)kzMgYNMSDYDmzco(`i*y&A_4$k z0F7ge7gtc8r6R@5)?sisQTcs`nHJb@rZLCYofBSCPG%WZg5_VqsL1-QmVBuZ5l!GB zB|2Au1c!Z5_v}!x+No11SfZ)zR~`ZhXQzrhLH{YRQL!qDX-8hZ6dhi&hiGkeb(&XC z(59`4s-a~$E5A6pnk>Y^6TDCcx+ zIVL07dK-mi`U3z$L3gI)W#QmxMs-M}=N@Ww!26m*b0->6m<*o+2aF5-GcYeBom1HR z@Y<6$yMXZncWu73Jwh6Te(S)EsWM!BLME=pmWT$M!8{b|;3Hr*RjaPAH~LJbC{D9? zFNehmRIQ4OCvc*YO2l2>pF;&mmlHgY(y}s*?*uNVf6z-flZYIB0|OYsROMUK4R~od zxFCeMRrMjxLPgIX^5j#AS{&f-8&;nwn%>w8(%=*o1q%#dM3{N$Wr)=UOJZZf7%*Rv z=1MVvv4tz!s5r5vJ||&mdDBewSw>9fp}7V_emYOwTY7hPfI{`%J=fr8rS(rh z(b z7r`R-Blm_6!*OYAQ9*Hla$mgyPX=|Ak@1jnp)_iYCvJ)fsvO_A?%bsi)M~N+r`!*+u)s3)_VnZh zge@%=Y%d+q3CN)&4Q-avSnJr1@CLUCHUgwPQ30w~8IzH~T!Nyu2odu&DZfel9RXVw z^ZfQ+0-+QmN$b_)DA)*tZ3d7XGBYMph4Lb_aE%Cf!A|WHCnk`6uSyU|OBEHKfr04O zfYjx!r4+nta3Y#V+<=&)=-%aAjnkD{Rpm_=T~Bca`>;Nyy}o`JwgPXvygcEV9k>$M z2fe*MupIeHTZxIG-?%EGUubYQ1}q^l!faB~P)R?9z)MOi5?N}DjEv!Jgi1b02$*%C zn7xx#tnSCe(Z}8+`Y2?E-}nj#!A{i-reRVPBg^i*%?ws5Oe%BVQ;85fgCN)0-kya4 zZ#FfI&_W)pk7y>7_jU^rj&H25pLI?{RWq|=3^Yqn5n511Oj&L`shrHUx(nt6^*ltc zU=ZYUCp1|i6d~}oktN{UP!-+0O|qFj|5!i8n?#EJxyO!rgBv5pM249qP&pZ>^%eSH zpP3+sct-jxMKK5K#Li7@s_J=Hy+i|+g()uJW5?frdP+~@;-DSCNTkb|JZ*qU8r89} zv7dKhX^+U0g9^?y5e?1(TL$e&fsYr(%xJL^m15<{MK|IVF6nmDlcL04gBX@nN2)%sx7#4V0-bOglv)S^pR}l$d!64kxpM zIP@{%tSfb92Klf0at_@@b&&43s7`Vj*lo=uYP%O%MW>K3nTYt|7@rg_I3y z(Jg&_e%}ljx7Ahb*ck%8TWxKv_HLBtI4go*!cL=sK2a4k^MXJN^a-K~E(kSI)|;CL z4r)(bZ+aD6b7C=z(m1bw-A%L$3JIkMTb)6MAm(uD$~KzQ!$>V)J)X7fgu0fkfIj>S zRu?_NXer=bBtLg}bB+DQ1t0m@cwJ7UsrmDp3v+Y7O-(VV5V6gt*7uNh8MvU7%T^L5 zidIOh2j~O-EF_%Jm42qM0R+I?aI8-6KxAF`@nfx+{^pX^GJF|g*^Luz5P!m6j7aTv zt4ePf0e2Z)59V!%541~8^@5o`-D`lLziSY$1I}+mQ$(<3F4@D&F6}TXC-6bL^&bkLZ$%BVxTDD}tuc0rFV+~Do zaFmH}oN9?TZq6dyvvfGkEzJxEkI$X#=J!i9g7!+};_##Ya`$rz^HN=K2WTAp7wLz= z!vU)bX=S>I6t2K@pWu}};N*uUkw@P0i!#LH90C@^fp| zR6ZGz2z9QM68(zEdxNImPHOBb*%=bVakRN?F-1v;NTJqK~! z!@GF=?qP-wNGaj{I;YtYr6W_oJV@XUIx2_II7C19fe1Xw#F>?KUgi(!wG0fDvNgap zjTqu9oj;0RCIq1fS8)LhbwR}VS*#qz--iz$zIh{r*MsId5bEns9Os?+20*92M$cb3T_q|0SG=~uAEF~svaC7ZXcV4g@D4t zVf{O(>a%ymaKK9ghky;ufZ>dbgW8&EPDjLzZJBM5>~-_>#JuUY)>d@$sHtQi#Xu&B zD?rPbp)n)8;|zF4uE*68Q6ro(HNA$A(sf`6?2n^Ik7D8l7z#)` zz79Mv!R8m4dVh8k!^rks=(s>#{o~}M>b7|bZfGuJ)l33cJOTc=J_o&LD}_F&j1UyN ztZc2X--{j%jAAyX3P}`1e;~k@ub>2g*_?jd_lTyHyb2s}b?=Z6olg{8)W`K34o$Yx&I3V^~fsH>`*Q)BP=tBQ_EBv@?( z(QOYOz6YaiesbUekN_YcNfl^q+~&2i@ZR7Hy@Wg`H7Mp7%7(8&l!3q-TPJUS$mW4% zaI6s)HkMOWPs7lKB)1OK}bQnMv;7}C+yladd!Q35cL(? zU4&@uEAlFJRaIwXzUV~6d?c_SX~hF->|br%Mt3DGEuyxd>=Ak@@#@hI@*N~AbVZU- zvXFnAM{hc49kqUoZa9>{Wd^TrT=&AOz34;udD{^&1eF)=#l|7PgL1N)hooobB4Tw= z8-UTAydpr@rjVaQFG;=dy3Dq-o}QreBmVb~c?XOP2K3iJRM--3Z>CEy$Oy>{^z@*% zhebfAN8Osk66ejeb`C^xFwFJ!mOwPQ?`Jpy4nQ{t@GmedN=sc&oH+OS#92s9tErK@ zcI?D$cDX-C?#LodVT^qh&EcN38;eA4lU7 z9wj5=-5Zm@qMFxZ*pbZP0~)E~fpwqBUxKO~QGG)#uM=4+Iu!E*)FWeK(YgtSVY-m> z0auESs33CQtVCNH(TqAUp}T$%zk3iE_~CIVZXAyZ6^u{rbXh6K1TpJG#QgCw*Y?zD zNru75oZbG3`8&wx6??&Q_w_wG6@)H{!5{|!S7^i8S#BHNo{xM0J{_Ty`S6Fcn+PEe z+Flb~lJ2#|eoo8^2_ZtJ#*swW6wr8Z{@aPFs(rj&WMGqZV_mGI`Ope3DXTg`7chJYYk#^g-?%R1jVubzJ z>Q~lC(XekArgWoSOEsF%Q1bn;0XTIh$oCdO%$rW9*ihlju3UN!4$|Uxo8ND?BFE%C zwG0Lpa^mnYCm7!P!@b1dcjk)`t>alwl+_*y{B`w>qD2%s|3_whaVfT7H8V5xI@+Nb z8qtEk{|eeaz|E3q?H1tW#he#3E~v=M15BykF7UfjaA$vh!b_;M7#SJ@3BWP}w@kX5 z1iOzgk11Lf2-7`?2j+eMB_;Ep^@V@^n}=H&z6LDsEZMNUgE+J-nVJ?EgG(}5z;)Hz zRGc#DmwzZcW8L&tG(PofguT0g9G_m&jfiAwJ$L>XN4rZOIO&$9GfmlbBZYbA6XH}! zFMo}=I7d{`$_f)8uLN|XNa{Uj2$o$F=}H0p>gM2J1oxJ~71KEX(W-nW!P4N1$^R2H)8*~9Yb56{y1w!gTwE3Dflz`oeY zk-0Wsg4l>Oz}`@d{T#gjv7(X^W}4cbKCP0|0Z{fevJzAT5v9ZsJ-eqWCm zciVZ-Ph*|LCmC$rTODJt7+*1fYsw2j0HNJ=+UWPv38Wr!yfWb3R4~JL<2b_|CI*eG zw7r+!cepmJw3F?*zWG&)W_(-9>0?cveSI{37oP~fV5ad1v1qg0zove|$D5ncgMA^- zb@Apo_Ntb+KD?Nw-0hM-(HP8(7eYESH01>Vn9%$B_jh_<7d$&RbUAJ=Q!AMK#_>lV z)LYH$sK-XwQ?)tItfW^Ak{hH35p(r+4Ohn+J(cuO`}=`x$pO8g>p~UHypmakhE-+N z)xOW}5{E{rQc97A@}*-R+fJ8P-t>;;3ORF-{9urptz6L48+4D~Iwu%kjh{-DeEPib zK4t|=ZLvPAT}))8C=^r>nRi?19W4BrcQapl1cc6L>1AE&=w^}3*!QIJ})u(kEVyTHyW)#a3v zdy4FS`y$tGYfx5bOCeqP&eL}`cxZ^`)Z%<`Y@JOdbMl>U^4x`F-hN}LY0vws(`XrW zW770g40KnwbWf$)W><)XaBUJ7+$jG1{#M^s*8VPll2YOeS z?U%DEge8m<7>ea)PDc_Q`l3HHLBf5ovfhUDOWMn#1p2?WrlNKDMDEF3Y^jCK?L_~7 z7^L(K=kFBjv3(8byZDWWp@`}CH=Upe2|3%zLX;);+j=r8oj>6dWl|lQHu}8w18ZHw zaCYO2!@`Desl9*h?w=MVVZ-@Z1LKH8A3xKcPUoJ_Ink6+)hE1rqD!+z5(2WPSbl%c zzx+oaE`%dY?P`6v5B zKnR!BT>o7}R*{zE&nhX`ow&kmxj1+ZXfwF`+ZL1NWuo|nd2Ae6`c6e zCTo}PFZiKI1-Y)zE~Jcm{@p#f5=$a`LvM^Si~HqGm$v;EuJh6H&EmM$rbznETR{k3 z)}MkBi;a~PTC|T0?v$hY_e)kBCr-U`MI%545&c?)$Jw(GPQH5FH+fqG6Y1ZVpSq(( zAJ^5@azHF`YH@fsKj|{<>BXC-ma-uzH`@v5%gJro^Dh@Sx3!zDt#qpHtz8k_efY~Z zt22hR{f$GHOp@l7L^ez-oRkHDahGx|sAb9dLA1mBPG=VGi1 zL=CAuUQCT&6zh#~q?YV!yL1U=cG-8EaeS}kvkUAh2t_xjpWPjgqY1y4Z!%8pj zoE+6H79GyBTgNXSeZW6;dLOn%MkW(WCe=k{^6Txk?CiRIJ`{h4C54=|E~Wl+H80+O zGnNQ1&3n>xV734bd>Ky& zqDd2_=K88zS{Xb$edk3RMFQ@(Mr$x9wTmfXi$w13zoVsw=2t^Gz57SElZW)xQazFW z>uc6Y$d~`wItbtnDQRlF#WEBdzCE<5i0sSd<0Ui8^Dg$=Wd1GEI;2!(*z$tM|)9+)%igk$;C~> zyKiL Smi^({VO!c&L-eTEQxncL=_pl^AeVsz2z$Et>bqW!)Ur2qx}uOEpKYyRVq z{uMah+?*w_nN`M#ugcC+JBH=&h4}BoMg?o~!JE9@?D+D39N_;;Z13kBNgen2-^Pju`H2Oy`E}jJ4e+Ymwh;S;qG)pZ4Vc>IqxvJ1;-7mDf&dl_i#}{r713 zzq~VIN#a3ts|oB<%d~iQ*6crm?hxU>ELdDg{lDb^c$xOkOgnS(Pg+0uMD~|0o3S#! z_-~OqWe|CDcvKVsPIQs@rtaSQ&-m=GJY(my0ur)E?eE?>;Zu-_E5o2(!avu%dA{)P z@wBr~(92Y)4EjLmd5@O;^68UT(;JHeqyLhaD2#@a6J<$2+ziR$(saqw8BE%Q08F_D62O)^4(xP8a<5xa8ZoO~Rdn~?iZ|gl+ZbE-FAbENEPP>NF z!O?*DJs}6IdF@|yvCJ?KWf}i8p0P=poLB4DR92TW%aYi`-{)78jW*h3ce*H)sD0sl z-h8QwE1`&Z?*F2&G`Wr*f=o^ddWp!nHV9yl0?CH z+ zsgE73J#x50U^L$Gg?R(BMZMoxg>pk-*5dlIn*!7S`2sHlu;{q!^!vZ}W9pdlx%K3` za*2V6$?jvr*L<32mXfEv%J_F%_MhhqlZjlERO#niBiHj|Tnx1<$<~+q=eAN6-{&2l z$&U+-{KREkl!w)8b0EpF-#E~ScaAR5->`BiPX&1z|_d;hoQ z3n%Ny4Gv8wK8LcV|Itd~WEt9>^mkw~Q1oFA)})VnEhwMubo}}A+?0Ho&Sb7GYQPt% z61k#j>Zy50QoE$KFhoeBH65*xc4lU!ZX=54Pw?z~EdL9?*tSw=QPJ3EPjYdTv$yAt zCE1UcR;$5oBxBm&@iuEcOFUcFN1P4scGleI{@|ckUQ%0_@Xhtt2Ywzp+IJGr9y-Ls zqsEa0asmYZdItsqr4ujxf==!&>OHlO7H-IR?l{~1diZYU*V=-nt4;cqu^D;?S!$1H zlM=mhE|E7p74eZM-2X}ad4sp3#pKn6RGCW>jN~V%eY6?-f4&9U28mouK!I>jQBkxP z+a>w@f&w||JtDu(Qd;IfpJU}fz5f2^W_}IK$mNIbr0zmSKf*x8=1pX+Wc|gA z_?H>+&!qNe9c32VS3luUzo&}0D=%BR=I4pe`zn!pauZO${1)-RRS^DKz@o&Q4uzZ! zfP~CDN%YL+*8L1oOQ#bWl9%XA+t#itAeS!|txw(8q}U|)iS>wzVO*;*%Z{G*L&Usi z6ls_1!`iNUF{)OFyQSDO0l#Xc*GhVx`%EjXl|zP{Pf##>ITEtCT_beIeL5dLGzG~D z98oZ=PVsPL_v@-v$<6&5Jo{Sj#|OR4*md_n{Jlbro7co7 zp7}=$JCYG)onme_`hCFFcHCf8a^fp++e}9xig}Rd&p!hBEFugIhJdWWw>a3e|IANM z{It34^O8*cGlGZvyR@{!UbaOyuvUov zh04IjCing7=+@IrD*BkgT9LcIYxqv8=k$ehv%OkP_VE`cFLiTMZjlb( zbF}_an5fQa>bHliw<~ZsS*%|YKjBFxSKlSDL?PM(DY-XE5>9rf=s&wp2A zfudZ^+1)IY%5qU=YCw{1yza$M$M*NjD`_rl~ zC`g-~35}a2xbwrzx_>a!-$2CE=WUm@CgfTl2VU59+4&HQwPN5-^#v@1PP(_ekCVQA z-jSWZmz+n*eNRIV-WBQJ@9Ja9-5!?AU27Ikf**u(;C^4OrCr&4;PuZH) z(^}(?{gtnjelM@l@jG5CQY|h0+mB62zhYIrl9qjQH^1n!AtkyacPh`GxdB%r>D2Q% zOq+l$|5>M(ZNtmS5$B_wRqgf)ou9eC>&KJD=pS6u@+JA=n>LIU>Az0ivZ+6HEP$*m zm5g+d?#T2e@~}>z-YcsyE?>=x-|QYg7ySH3-R?ea>ICC1Hu@!l6+&*niep~<8o)^xG3Hu!`?wPNcN*DTca)_nu>1FqUn?j)( z(qFZdJ=xKYmx6N~J zTS$bv$8VQ5`EL1fddKG*L7yn6iUKT$6E+Y_20#2y|N89iFT?#@wPPgOqV*ouz{k0f z+waXSyNjDXk{v1h>_b98oLdIl+T>@Nm2HMcLPtkrl2bxPM;0xu@8#rJ3%Dq7tM2n= zSNL=<&u(Nr*ANZ&EDiT`VYqAJm$E858LGQkBxNIqDE_(+ZbHXDW@Q@~?3+?!yrgyN z6xnY?RCh7;6pN38Mu$VPqZKLR!rbt!QtI@FpIBZU(wdgm8yWX)VyLPD9qUrcM;Goz z7X=Xj9s3vk#+JCfi!V7g@?Pa54m~imY5%AwZ`x_=hu2;nq8KR(sK?`5s~@;QFXzM; zCF?{EsQN#ha#P&oPSRbOEEhn%6>fnibKbd7qUY9srL&WjxK`+fU7^Suu5=lnP{jZp zHDT_r#-C=WsIIIXBOW=lI(g~p-m96aKHmCImss-VRVpVBs1W}5Qr8UqY|`MGO6#r5 zA=I!W_Sb8=VgaxaN)Ez4v$=4kpj`uuLP;%|%V>!&r*Yjm^;lo#uO+I(HD=FOOHykW z!p0&gvKEheS?*rg7xP-X+QvpYIb}A>=1gPVXVS8Q4zXhspY?XVt2w4f?yYmP`LIn0 zmw`7))qcy}#Orc55=(MF28{=VUiAMfALHcUfc&$QvoqbY(d962#}QbTSk}b?%^@21 z7u82dTX>m#B$w}?h83u1_io;SHFpRCi@#Dn%edr}(IvoDQC zt}35NvSrSN+RuxBZ%c!cBe0?J#i6$8Y3(aBN8%A@^mL|bS zKQbwOdeSm>f19_>-l)s$MP9Zqc;}oDkZYGM#DA;t`{CQPetweQ&7G-5NymEN?y1(j z%>_e`b`5;yd7wO49X3SUeuqW>QfOs5#nQxRYk#-LxA=8j^}aHUbzQLpIES;<=GZf2 z{g3_1IOtA;k8gWTbtsH1}&J7)|C>-OAykqe{H3z80aIm^ycYmg>1@jOkInG{eei>eDuK z_YazuGHj~lXdn12cj8wOYr$_7qD!d4qht(4p_>|Gan6qjut982W)CxC+gDB>wHrpl zUmQ1N&iWWj14iw7wvu)K$oaPCw!@F#QJG|%q_s1z{3L1KlCdR&xr_K6k3>P|gYpY&5{w(6mfcDp@Wl^0% zXL0wsqRQmu{5!qyA-^);W2VQ}ruKh-=J(g_J4EI!4rZHtvkr5kb{;AgVVmu4btN8g zJkEaN@YbZxD95>^6;G?NA72!=A4v+J)n7{4Wwm*q5_g|Xg7Mp^aIdJ*(U#>mm2ay( zy$(-)GwAqGb>~Tc5tE~m?{lgD%>U|SpN+}~Utf6fp)bzX_!C9Iu$=<_d@puYitXdF zDxoqo@_B1lpq{$@{fbU|xjm0a-nOjP<$FAybBJo9uO6_BaYlb_3DOKhi`KrW$vXaoQI~wV6+aTTg9fXf&&PYOV5K>_Avl^EEX= zB}W?dB?*@ZzD*PY5u7U@Kfmf2BVJjm;ZQ%_Ug(%waQ12B_XpYZL0C_}jYmI!ZX)0T zU9$g-2={&1Xl&O`Wp+xx+jX66*YBv3m-VX8-PO*{ ze3#2q`*?kXTU5Wit^4e!v>+Oa{RNVuebi@Ow z{y%JebzGF)_Pqs;ASodT(%s!Pl!A1(fFPiBC@ozQ(%oGn(ybsV&Cn&?-8sL5@B7|+ zf8Trk%la^9p68si_g;IiwZ4ec((u;p21fKd?JV@yI)>(dhAgXByZxjcLEU}k%UDh4 zJ+R~JGQ>a>L0i4HU2iF$O1#-}iA>haMSSQkAk*FXKh|$(?pQSTcDikku-Hwpu8cRIh09*C#MXKfWkM%7qQP1S6qHid^9$6RRTm>p^ zAS@m4KP>s4EAvw)x+5wj$o%kR*Jf|c=4j34U~A7{>bWQC432NppUM|xTg$ktb_XNW z92oy(TVsr}h1xL6AS+YH**@&@@%&e48~ue+`(6TQhGiHc^-6KtVFO+DcMEWtw6&;0 z>Svwim36L4sxFWZHVKeoEwI>5|0lNhzvdUZ9z$!9K5w~!jqxv(?thIpjPY`WNSNmk zbD`17N2!}Qr<}P|k=7Fp%C4vtFfnyoM2^B`25Y~Z(SH2{{sBlBDs^%n{8T2&f4UV0 zK3C-amp7RgV{hT%Nwa%>dB>xhgdD*V*%~8hU6Q>|c;F3|Iy_c(i<`rQ!n*3^yM&n{ zrDB-Zcue$B&-rNf(SYU^UdcGQu)UVDPPhXRbneeB^e?~+Mu+U)`Gj5ub31{u|J*P^owxW@XD$S4{4?A*!kDaS3^6W1Q`(0nY+5XDx!be=s zQ7E$-8|;0MEwwiqNqZ{op<@}x#lIflmc-+~AgtPxuosP`-LUs)m)hmsW5%NlKzPib|?f| z7;tJZ@kWY6LIQ)q6fSWeBOCtT{O+ZQl1C&Hnl@W9D zlqX=2iK}ga{>!X#+voJMDBMH8c6p^&Q70nbsT;rE9P#O%juu~(JxOfW{MMoUtwYX= zQ&&$#KcM^b&W%Kaq_g09!Y^!V|IQx`VBF!T{X>$e>H>uK-33F!oupI|l@2K(+w1Tp(%9N5s%_ zn~1@*QX9y=qP?q__^w~!6QkijO6;qepf|fv+Z@)kpE0wF(NCShWjd0kJ(wB8HB_Th zg75J@RKcReTH@$)ypvX;Bv^nE}Z!!zY}q$tfv-JqySfU{pC4$eJ0I zfvIl(zd!Ro=EnGfeH4Lb2O!3Q!SBETK=J@%p4Y2bXguxVBrI{i09PD5+Mwq6#6ZZoTn7n%@ z@ZU=SKy#hJ&rVtZG+&CR5dt>k$<$h3C%@Pm`eC?dFcHu7OM6l5;+`sse<6F+MTK}0FoMzSx%dlvS zae}BoVzPJMXfhMr-$qhW8Ix~jS*VK+=1}oM+LrB>?Eq~Rm~s>3R=%!R_@tMa`xKk% zZ20lXQ`A0CsMI`q@6NL`!-%t}XlHmRVY)nZ_^YEfws}YW#_)Ap(>unYq78-T3WV5n zm*aKELhfB8Xxbvl<8>}s(Y@_Qnps*c>M*)kjh6~;H2YJuT2*Deol8#dPfqQ*^|309K)OTsiysbxZLxtPC{!CyhWY(Xl)`y@ zEiSB=!Lzl|Em`M0o)6dBB|0EQ8dUEe1q%+1)~9f~bkbhjBu!q3_?K9_lRGDommNnR zd>kh> zXF9lgHLiK}7S%DBUl4%+ zWjE>1aWXCJ!l$Gy7K#w>0h`vz$y9zTQh4ZF(43eCce*jkAKW%SE`zTL2WHZwz8 z5yd5PMody$Y0=M95-{KOh?OIRz}(LwDxrW_Yz@fF0?zQjX6U>oR@LQ$ajGVMjGq;> z)Gu_ts`(7mJR%}i>GPBmUt4Xj(cL$=#^Lau)f;Dkgxag<3j4!h{jk~mPC-w$bw`UW zSj8xhNbFfDRkNTa&HH1RJhyZmzw!d!I1i*(hfcp)uBB~V*#!b^4F%ncovCUTVCA5L z)LQn}6utE^TJK*a@0){=uvCfO1)2hS8He^=}b(|Q5VyYKzr>wdl6Q;)T@Bw zrlWB%|8sPlgbd02)7O!AzF^cWV6#M4oGQ%Y7M9OS8|QgtcWzoF`bi@WG-KIio)$=g zSCc_}D}KEN0?R+!4^DcTX3l-OK*)mWR+pIeB|x`Ak-fgS?eMqwMJ#(>x3JJfXvgXSg&3kNHqiY zBoMc~)Og$x{O6!yT}dSWJ=F|yaht_G(Wl^M_^+7-P9sbdKQQl3+_Y@`fBq3v203x8 zJGcdMrgcsaGJxcO+kP89utNpYyIv*wDnH#=P{hn?YymMAD33=+ zM*{&xYAPx~d)Nj+@1LLTbM$zzS$=WTjS+tSB46D6e2%VRTmp;=Z_UJdPTIF$xj0Ud zP?u@!O73rPqvstDo3vD;`5E6(5FV23C&6RQXEXh!0>w9?Mkp_D?4~Bsi1j^E?!HUg z5`cS%)Q27wO5J6f3jv)B8G_SbPzNB~&RTzf5(KK9%R$m2dtY z_9>kPy)H0%`53E|E4`O_xU8`Or9e@ev%*uVa!YaELVej(av#4jX9`#Ar*RzbF@TCzwxS`QkBY9|3nVdXiLu z4_1KK!E#s%NK*e=bH=(`Dmju84&7QcY4)j`Zs3qzGiJ=EFVPf~eSvf;11wsdufF&R zqe0CS*9@YP9B-Hi@@Q1ipuvns*87O0aVS7pr2&c}+|cT%MB{U=gNb6|^uQ9-yK4>3 zsK|c$LGiniWDqnSV2=jKk<&9XfD{B2V*rKF!{g?+^*WgJ9y9|^b|7(05_GnckdOe% zAQ24z0sf9b5d0}cymYx^Lp%`o>CD3~Hme1uLkyHP+tI(z*IAv?NRI?jZD~tEb4c}o zI14WY!-D{Q1HcTJ&E{bCUa-X2-KWRZId4}+@_{nzf-`2Y;?-PN7RSn^(=7-LUM>}Y zq+fYQ=rY4fN`PPCtgTd}5+&-UfJj#IhI&lgHd+ZF^V_ zMjo@L1f`lKV}ePK%JyXJ1SXJfymzgCd7PhPpqA1HnL}4X&TpaOn+|CHVbhY_eI=5O z1{RMoi5E_elK~y!uIfl4dQBHEm+%$TYE3Sm#Q7;;W7l^vW8P7G*aKIVvMZZ>lWQS| z37p}W>FEJ|ryocQ?A**edk-urOG~W)EA2N+t6&ef3Md{6&?@TEo!IVTk?FM&W!Sd6 z-A=-{Vm0!4#gq2#a1do1xAWOOiuqC$iw z+U5H(`Sx6WfF!FsGHOn0X-arFYs>YVX1)o7%wze2ZM@o>B%PxS(spn#LCe`$aQ3%# zL4N*t{ReBHg1gTOoZkS6t+O7((8C2^=R9#?3Qw>teV~KsXH5h-(zW#dfU}TxRL-ie zooA!w=aOW)665ysLkI5L%7{YaAlHlh^<=xX@#tQJjz@N(X1TZ`%m@y;%IRW;*dk`ofv;*;n?d{+wRQ3c$;7~$KYqnRt z_fe2A6bQ)#0j8B5FA;Fs10-~`+P{u)q7gX4V7n{pa=`*cNrD|{nPTZWgWf^57BG5N$14jHB4V14S zA5`2Nxw*QqcdPVj;2t!!_1V!^E>aI~FIocMofx)A894Q!K7m#Yf*GhSW3`Gs0MsHN z=M!Ko`G4nh$sh$#N^Ent1i+66COv@b398A)Mj>F02}BJD4N#B%FD2$$w+pbOfHfze z7XkMyO~z4RCi~!?S1w-PybX}vDo~{dV(`iZfaX1a7_dxk@IOY^qS@PLuq(S>4QgTn z;e&&{y%)e4`RiBU%BERqF%of@VDOv~Zxbkv0O*hb*f31hRR?g_CDr6xk8=1_$+5()0cEd;>;xJ(^w?b4#=6Nd2w|-;(El z$S0rVF@bjynUr~;c@N+j1NnFrRKOv%c(#EjO8D2rB-#*1GNO(Ph*RL^5)p^wB2q?h zT%Wa_4+$9Y!g>n^Yzqf$i{ZA#1GbE5H9KTr+6HuV9`TJF*@_;!9x@Vxee;5ULYqLjG%ga<<(EtIgvkudb}{bpqN4+2+GiKI!63 zVzoLy_XvcjW-RXgLWmrckb&0D!AI=XZAWWY)rMvL{W(+y#9O5iogG~87n4$>2OrH$ zGKxO5`Oj`O_n2RGMwxugU%$^YYOum7kMesZESQHeAs-S8h{pqfTvNCC88xLk1w+s@@WgB-rH|`oOdn1BCJ?-a60^O<@ ze);9#rA5VzMb&du&tB+DzS|q@;7o3oM37-tNAVnHqK42`KfXCg^kgc!SoH4xAV`0r zzY+mRGP

    -6%VAE8Oy$?N!=+WM)kgUqY^`GC<%Q-}q~Wzh}v=Jw+L8tx-)(K)3!& z$p^?I0>7^`b`u#OE}o0`To{wH(njr1A9f5Phi~inswQ~pQ1IS0wl8Cl{hO^zr2HOy ze*37?U!oE0NCj^)JU;?d8I(#qV@>n=`{6kNO=^x+Yh2eith}4?#98Eu@w(LU` z=nPzS`s6f!Ey%_m6eIg*RcjB(fGEzy1dwd+1?<-gpqEC$kt4nMXX*xqb#tszMGm=6 z^z=Z5_OGID^A5gp@q4f;#eGDKt~^wBAQvYC;$GypZx@!QDCAf9$Qd658E&>UBmu~^ zBSdjEHQg>u*J;7m@iXAsT0{LxsG@Iy?vakr9|qK&6jJ!e2vBKgGb#g64B)1s6Y-|E zD`Yi6fGP@*jsX4u0>$^_m~?UfI$SLX`!~(6C0^{y>d*bGi~vBL+QVm_3B;V=0~Ol@ ztRP5_qbj+q(Q$ld?O^G}5@t&qok)XotK4CyCSZ~gIV4fo;Vso%0I4t1EmRF6?i}dE z0XjGz5&AxA9@x~k(q-@#3UYG5=*-K@8-wkgoPfVj`wLW~n6^pRvc>BuJ`EiBcpKu> zA-!0IuvG-RN?m{Yz#-{Ub@P`alo(z2_wTNU_`sB=6;6Q<$}rPlT;snv2i^!P=? zP&l`r|8ZFFN3{^W@DVIbPJBn15mch4;lGXhbDR6jZ?{u(za{69(XK#k?$!v$;`Kj(ox-*ZYw-!>#lzfFR zvBks(bxoj`+-4-xqK@&0pZI#V-aupxOr(2}VD1i$tHOo&I$-{eNuF2e)jLloVnTlC-om#L>D+DC1#wNXD1t)Bl>9 z@A1J5@1XD?Z4%)mQ<9&~tLrzoJwgS3MSl(7{s-}NMXVDJS7nad1bA`5r;lgBvUouf zeEo(-Mv+NLNrwzOvyFf+tlxNW1CBmc+}r?dlY{J;ad2QOR+N6v?`+qy8@`nC?WZ9} zGRUjJCB=w@pNTbhW*$Kw{QBirj#tHd@q(T{BGsd~W~d~Si%M2mC18!}un-*26ZOFZPM{( z5ZFF}|G!f=KB;mvC$(^TM1^=qpW3J!pBl2$V0Bb|v0^&WwX402FDsl%ePdQQ?vncE zl8i1X)Cx3%`mq3gSP=q!0E8#}ci(aWT}prRE_X2Imqpi{p>&0jm&+FHiVN%k-i8w( zuEy$nc>Pf)vd2aP_;H%ZudZYd1R+9*{$@&kl0d~@&|nmm~}}DEOcv#%8iCo&DBO}eneU$hgV3QHUgpa=HXpQNqaFRbsiigMOFG^@0!KP z^q~4$HS~f|bB#vRq!?M(s&ToZcax?jnz%~RcMzhk|MYM@IYespL zw+9u5T`M*M4CcRKE-AP>a#b!m%dN#v?ohm=*eMN7RGi`v8!?WiH!dM$M735_K7K}I-u@miQgS~m>ntgW!0{rjGpky#>FXc(!Ek=VNtw*HYMT+{+U%Wc2 z>>TipzeAfgFwQfY-%N44pnRz1TIAhgGv~~L8b#jJC&iXmj;BhMQTTU_epg}lt3MOQ z^0^O9KwtT}`Q5ZP@%Xn7hA@!V0`gCMANPI(%{`!fvsO$~&Hbg{FuwJJ0;6Q>uPsps zjh}zahlXd^kYm`7p5czWzAp2eO5b15K655skYPpYt$Bk1RVn?Qtw^5UVy;WL1gp+V zC$;h^ej+<9RIYB_u}&(0vXP)TWujT4P_xn-PKsB47Xj}#C_*PF_?DIKo3P=rXz?)b z#lA1?BVS!hVB9#mc?|j-K$Nr)1_M%-Tb~IyboZg;X|1dQyKQ>fgLfcp>JF(86yHKN z2%o8MP0RXSb47M2u{1s^($ER%&+RZO(R&$vobork-Vtff9W#UK->RRe(8F#LclJ+6 zall?>QFcF)HJ`sptK`%n#KMI05Zgpy>i+lPRRb9ux7}bViVY1kI@pHOLL!hxn${XC&2FX5gzG zj*gdqY}Wj8)1u7mHPNUN+LvK& zMBO(jT3;5`pgG`p{hIs4&n6`ODJx_F+j2uW$FpLR*D98!svjyRxH(H@$7{MR}Ac9mGRW=k1^OlDHMZ0N%?|<&;}SGvY=7`1}Ad zyD&slZP(%P=9u*7r}ID_vgb7`xI=tI#7=;HPyL!2xbny_M0lFHjo+E{xSRN}cdLu! ze43E^64#M#r^|w)?t`qVp!EoysfW2y`pCMy=m(n~Z$yCxZAC}(fR(dMxp~~mZ$r74bh;=OPxjyY z%|9tqzn=j-UxnG(zlmWIa=(v1FWVFitOjaJEKO%Ebf=R%X5b)Z5;x%}oJB(E{cvg| zo-4GFIxNVPJ0_7H0YmX@;Kr&`4Q3`5b_o}I*GVOYj{u+sG+Du!ic3oqaXZ@!3=9ND zKdJnV-L)(~!7lu27QoW>q$xW>h75`MOGkN$52mGwRMy}Q6)=~zvpWFVf82H}Ypv;G zK4A&(fum1Haq;r~=&mRV^S4*~Z!fBx-N_5jRU=)CYWwlk>9szASXv z$}hZRm-gRplHvd?*XkP(?ba4S0QFv=KRD~WngWhSyC`ifR{iBpy^ipApa^rr9SU+I z;JWT_2<&`ArHp|J-LJIi+koVS(VVV$JxbF}VL< zyt?zdaP3J7DR*8D(*xpxd-X+cc)^fz4HC4$4yEEPvsrMkm`3@Y#gnuPZptqmQIrsO zN4b;p7*pAs5hivhc+v~OxD00>IfQ!UwOpr|@nP26I~zU5qcuG;ZZt3Av5!>@(eh88-rM{v z0*k~p8LwcE*8JR#V-(7~5u+X(g^Cp*e^adgwU(N_lKMTg_qRFMyAO1Ty2o|;glBn8 zy)XYfI=C;u!0CVx7VlfOWHb`thDv0OIf=WG$8#ySdxABTX9*nsc5ct7wvSG$Zd%-r-Fu6!5@s!v3uYr4eXS7mW3 zDw(u>sxw_3WirCvAlIz~RbAzKA%0<=DgrhZa$^rn#(yTRb#Y~UV5q02?O@F3v%kxX zDs}^}mJAY1l@OzqJ~U^fQ!Evxg_aF^4CVL%zbZE_<51V^gYfNgqQ`Q^bFH?y~d5fu&^lLVEPNmqKZM!BFTGQ z!ss`-qzsrc^rAtE3tD<|Lhg#Vk@*!MqMvh#=Z+mchh1GgOz#yT^W2!q1ee4k-;coO z{pOR}|NZ%)|*s9pwD*8FYff`C@GmgK=0e$LQH>2`m zT3r8{Mh)U97DkZKM2~Y9;yX!&H~%?;0ust35%h^2dWk665Z2~13KN1z=8YURN}pd_ zV-{U_{p-`gF$M}~yS1ySK*j^qooA$ks7j_aHZ-S{U?BtqVEhC{>DIHs{z)q8TZhjRQGbReV*OjL>jJ#U1f4Z_acOfxhb>rLvP4Ij)B8J+Rx!hde z+jur*@Rgf*;7oA7Gd==;f!53jo$xLdG36OS+jdxj7VRrKRW!6a(ddPxxx(jF{=X17 z5a5G_dAhlY@KW<_m@i0tZoKz}tx2EX%1I7p%S(JT8SphXzmoLtXBJ6%BpJ3fTm)hm zYMz%O&_kK?2^3lK0DiN1L=^}i9+f;lvz-Vw^7y>6M18aOy~HueFsaat~+!r zEId9yKix*=t+{YBCy?=ad-n0&6Og0{UKR0ebWNBva-cvtP}!fuZsRC^Fhl!DgYlt~ zk>LVVG>6eC@luhhJtL4FM+-Ok4v4GWU20)^%2+lE=6R1yvhdWtZ{>Dwj+G}8vlMaf zCKWIK)|b+z_o)7*&iG3k7rv1f%Cbr+Zho42f7eIm3Jam#1aZ^0n%1L z#`J_Qo};0P2OPISbc0|Tx0hrwP!wJAaGIBx{9hO@m$b{NMCLg$0qbxIgr|WFaezD_ zV?1wgzjW%j)JZY~vV5K0-9VzYuc8tO6_2;|oh$f?c-wn9A6w#Zl zAF~0vMt$ymM@J5;!iL8G9S8qxxm3e=AYE1t1W9>#fGVOp*nud1Em{hFA_(w3Zh+c7 znC#Il8sXnhD3JrZ@N5qlb9On=RSV@YGCt7r(bkhY$6yj2q>73YXN;;Etys<>&g>TN zh`~P1Hpj&)T7-$|{AjD`XD2xHZ4ezExxc3!%;(G2e4O|@VdX8*;RH}TP z#lDDTaxz@FXi&t!K;|Efzh^x-N+66C<(bNGc?RA#V%nTEIyt#my@-oY4oJg7Gk`Ac zl^09iI0*huyR+`#oZY;>0iz^9MBgn5u|4OBNJ&U=PO8rSb6EikiD{V`ozRgE@>3g| zBC_Cly3WT?wJX?wCPYOMVF9nlD>pF+^K-GsXfY&CV_{UST(lNlr0XQNdD<|~R-(fi z;;jh}vK&ir#r)~w`!yiEMZ4xOn6n@p->W32-E z5arvFUts-PrewsrUdYABZ}s4Yi;>r~8yZo^kaWv$8FbVrDCKG*CUb0`MDz1sY)%kI zDFl=jO9zI<>EK_*J!gAtds=)vo)kmIz>ML{$}|7v>ZkNUM^}iH$?8ny!NKo`_OPY9 z{JWm(iB9v>%hPBw6DsuOvBJ5@P3q^z{hzKX@RqCxZ|i38&S)-q^CluaQ&$-kfXF!j z)>wfmCQa%`@7#4_;1#W1(W#{%>~drV40vxUb92Gy09*AT$<4tp7GQ}Ax>iwtf6+xZ zKVl@m!~^K{ot&du2SqgsWy zm|p;0O~B#?yqrFl1AwA}uSP2(GH1pKd?tX<=~`LG^ZI4a994Rda>Iat*q8DtXR;jZ z<|OiH<(FQ>!ulz$0-rF`a8T5+KJ+iFe(&}l5~G%k#X42o_etB9F)$BxkJ-Z@qO~srU_QRn3-%bob`G}jtuO%?6xZ_{uH zM0UUzY-Ndiayn4l7+{fCT-xQKZIbs{I=blQ(OOCMKd%fx9n4&n+Tg$tU}0f(O@K3H zaJ9G(&ykPJ`Q4yA#*HphcPHghx!+Z7<-ByIAz%b63`}}foYJOV0fo3$NH(JJ*Mzn;AiOWgW zGD@BSgc+=*Z}?UH$nWMLT^XyQeZ`EUJ_vqrH0pVgQ{~Re991R%&~YvJoo|EdS6o~G zlyGsWuBcGW#2OIBq`XbR3f6Wl+1)5IxIv+9zL--KRfsxfk@52=klOWpZpR9xm?jfH(%=D76t!G%Xee=?*5kL;Dh5mk+j{Y> zaogYcc}XnXZHiCE!YxgsVzX*H#n5=!w5HB(3rbl9p_2|VGjT*cz`8hbvuDm?^U#_yHQOU>j zH><9O-0NjUxi$*&;lduGF?HWe*NwZ;6c%JM9#%07tB(}VmNq1!b}GCRyTP-poPWZ0 zp6C3{m=EMNDjJrd#3CMUpy9>ra)21I5}}~{Q)WHE)8xTg$Z>g%nr^41pX+06dIN&9 zk>_(9t)Rhs)&h1YY8f_d70aK(KJRyH=2dWFu~%Xz+KDitTp&DFRxB>jjVB$4_8+b) zVQ%8}gry;eczH0j+#s})k$Mc1;e?I>ipRyRmNym={4R+FW9?l-9i%U==HjjH=b zZK>A#xw7WXT931hMDY`ztm>F8LeIVsz*z3b6+Lv@l7AC>HL|Yx7t5EQQFQJ9g_`Yv?(Z9+fAN!+2&# z+UI^r(6BD%4H~$ka@zj*@Pyx{*kbV=uEMqS@%FCGqLx~Ykh}chk4MK}`r#s1xdopl z#RBoKz@_+97;90KwtB*j7?Q&8c%Q8POPs$@w4H@eh4DnC^eI-9?8 zq?DXpZY^MXqpAuAlU*stOB7O{^NWh?N6Wbk{~J>P$>+<|t*mKK%modLu2C=ufGGu_ z=$d@o113EHNe_4})jUc2%Jx5#AnqJx=bh!u18td*q_9o5tE_$swre%ae zsO^nqwn7!{L?GAXovSCs!JPSbaZigx*h!}7Kowko^IZD7QO1=U7s_BF=8KTFGR%$K z-u{3#XorH?!?3Kn_5nkR^)*U<&afRq@$dwhlyg)()RoGqO@@F)riE$x$**}C}BO!;U) z+G`Z;V+fUNa`z2Q<+i!cmaRoQxrGV0n(C`rpeyrtmPC!9$n5K)( zH$MOqv<)j6=cC4D)D$WzVp!&wGPUCXp5B(H^5zme8VMc*>vA2>{U>Dri8(OUN_E*N z07fyRz;gqP)Bwa;7dX3=1Fi?3R)!+T^Y%x)v`a$jxPt#w)c4m(IZ%hYnN!TGeu<>C|fn{**0 zs#m!Il*5eygK25L_n=6UAMqLAH3~txp63nWDFz6W?iwcj6ZE4<`s1!?z#}F3KnS_@ z%Mcd!0Ew9WY9BF&=__#e=%)^!%t(b1b)8}bhlCWtU_6AO^3xy6|LS?HT4Yb%gM>1+ z*T0S;Vu#k)T%e!?3>i(jzb4QiozawnU_%_s>7$U7u_h7zRhOhLKPg=?gXJ?X!_u1( zkAjPGOya%SNxnYJK%2^kKh_nKn{NHr+Xgu?Kp;jejsr+M&bk?3ZlEX4DJQU>0D?VG z0ex;SwFVl~20&K(N!r}|KL;(`dtJ)H*THJ$?#!}prtAQmq2|?OqBpf(n|bEGGr&kT z>vy~NoY^|E6<<*WE7i2!Da1P1ni&{x5%-`;J7va!i{DQ#H>N%X=dhttEgNsWtT*aL)oW7|H`f@z)C_e| z$x?6;<}@D3^G zA~|&?L7d`-8jcQhnoWA%$9Rwk6^%0`D_pThABmRuCxc~1f*#+%B&SJPTYO4_57ZjZh(*@kr`7r;hG? zjGe3@rWnX6!lVn-Fef-Z#(>X<=UaO;c+6uvd+t2`fxxo_P(Ryw*}aK?bC3mTdOb;* zNByX42;kD&R4yop094lC7qIS9Q;T8Hf3ak*S<1;8QWZsAN!>(cufRI;(} zr>f*&V}~D{Z;c#*V14OFvj2r~T;z+MhV z@INR?Rt$il0kwSc8fdw#5-~Hho+@r05A0^3hck(Lq2MScBs?n39h0Zcf8eM_x~sd8 zI^CksYy>Ysar7P9Dr3{D&y_JK?AFce?NY+}kZXQDN7p-VykU?3BgTHJ;G1%iMz)~? z&!^kSO^IpOmgy#deAoBy2E+SaErllF2?o3$NcbJr07@tT+(Lc^JxK$%U#v)NR*)t7 z>WY%}^UOHdTlUy*MJA3c%|E^uC;x=tWQsLfC>h|YD{!GGwf-c7iwC)kWeQUtmr9C} zDug;NFi!?DNw@wQ_{z@t_1-b4s$;TB^;9Z%bwV!alsx6Hqqm`I&DY3S0ZziO9e#=7 zrs`ZhmQWoMxw!|&(ln$CiZ2sRI$thdtl}n2F{le>xvk8NG^hCJc+UD$dPOkcEl;sQ zNTa6%`IgTbWN&*GTmi6U#cxcnEcgYi+3Fpb>K)|tWcceh$X5EBJ1-H8Mz1I$n_x6v@!pbrGNEgi1%7~*8>>rb*sLANCorrQgkCiWV zhwLgH`B+K69y!F1`~6tW@o2if1zdKxl;F`X;DwF;fNOI^sD9s2uwgKg~vzR8=*5e=AR{k&75Q^4y)PVH!G; zA6M7Gs#$Y0&r?_--K`;{LN^8LoP~`$DKbrI@GTAo$0%sv#k2_R&QVi(VHWu5cvL8! zc!&Y$PWwgoAz}o0J-A<;*{<%?^Cf;&smf$~bs6tjD_h1sCLuQpA{-M=Bg zG~>BN!-JAC8PGMtp~I z(c)l2m^>wXT+Am=s}wO=cES^%7>FB^`9UuSP=mE}x=k)|Z$Ag7dFr+t9lA{8;qSL; zDUS`QHBxFKe)0%n2~0lt`CUM=J~SF%?y$kh#Sx_!1;~ldmflYio&184&CHL~%#Lwj2d$Td6`|sK?65Z=2vn`eWUP=@qPthqmeIgQ(XZcA{ zS2tPqnM{(Lp#9kvpG6;eGNSB$hU2q|g2QoZ&rc7ajTZZps}SgQO#VYrObbd1cx`e` zfOi_18q}+T7-_%Wcs@cj-+Jm!2K?1y=;)7lK%h zYa}G<&Xk=1_7tY=g)awZog?x2INgkRw# z;0e(f%rmjVr~JM7e-o00eu&R)AR1ttITdr1aXR;Rj~OMcI137Po}%y5_rLevQWYCg z*+Mvz9`wLh`0V%ngjY_>-7$6y_Mo|Kfu431n_3>2(ioxF{K#h@me`R%cEbF$Y?lNn z8olKcRz4=Z_XQkfL@Z+()@bpCrTEDa_ruj*9Dsq&AZ^Y~=38?G2vOq^c9Re>h!28V z`*L-d-ta?lvttgYR8||t-FswiRctSNNeC7Xp>8=2^|OguzwRnwHo4zKy6l&B7bMY- z3Tq@Z8k8M}PPWz4E0_OD6H(Svqr#P~e(~?EMa=I&3;gkh-T<%#IFx`Opwv5GNWT%) zzi#p_fzIAmZ=krR?o#7hK-d5ZlJne_ulGm`aza7EV=F2gNPe-#-Z0BptRL^OcjX(@ z(i0eVu=j#Yt^HBFcLYf~g>i#acHt{IUyBFi8+o6J9x`Xw*4Ef63MAt%1ijcE)!`5( z{u6;eyUf@JgB61v*FUbzh1d_qpM^2gMbYNxM2dFeh8%3iU$sIf=Dk5xX$W=y zb%kYTXZLj9j+i93BKg7J8Vm&>#1VVLp~<=jH=NYrJ0|%_gvSHFQ@)iF#?Rn5&kKE< z)n#Z)rN@bvo=%gx-qQTsQlu1pZ%)h;KOI1J*C$EcEXsbDG`@um5ASS)=0WHwd_Rh7 zaFOkv`|*7Vlm&1fUSEt&wi?hipNoH(C)5?0iv2qTfh}n_*lYAZy4RE_P|0ttejr}A zk}Ibo6slZLcdF++>T&-^cz%iPD@+^Ns4@P&OT_FMDW~Vn6==E}w)*cA`+mILS8nJb zPG`!3^Rg%fILg1Vodu~d?JC{j5w#0`KluWhFJTv5?i*2o-W~e_(!LgstuGv?N!CRF6J#aI-G|6{0725#zikwZ7(k`fl~Um zLVn)H`d5Yg_m><+`D;`lFAvxS1J7Ekxh6f>ST(TIj2~aw+i|ym>Eoc7e&y%b5n780 z7u7Xmy?4H@n2wHQivlMT!2_Uvgf`p{n(`DLB$;B4QRV1xrqLsV2$;Ol?Ph-o)9 z0l+CLQ4cN)B?wo?=9L6qj3Pb>TC%TG$baDAyoRQe#y&ayZXi9)wxPkXb_E+>LsxnwtztlZId_LRsG#n)^oroY>oW+lMy1PO?gyO zcpK&OfI4<6s!!?!OTV=D!@025BQTs#89goxe$bKL^?0@5iAJ`Y8d~&&=zQG7ch6uA z-TjVblw_!yy%uRn1UhykRP%#a-H2XBI=8jSu<82q+3YAGdb5$R;bgHy?j8m`@?t>Z9Xwc)$gDetsT!Exy&N8j&`) z2AvVz8k-D;R4qaKkEg<@w=vB{aolm#D3^K2_eoJ&^d%WiW>p@jLLGCzutd9% z;i$I!2**Xza_XRk<6^$n#1<1G)`CQ&HQz|}C&CPBXQ5&Z?0B1aFgPwwXZ_g%FYB*T@ zr>T3JrjpVi@a3RZNZkT?Hdt7>?l3I`iDS@s>H%c^x0fOX0U0A}b^nJFi>JQ6Gi)!c z-Jjjfh?*Nv8FIuBHo}0)YHY5|!0K&+8Uh+*WDAO8>UyY7NGlA>nH_U)Is-s(`zKID zkVU@-j>B_(1^kc_IL#vy!a&wU{N%|nKmHG$XP&k3=b2?-)C-t_)q%^1Bf#Dc ze(z-53sZyrdR98Z!uP7=q-CqB{fg8}QG=@Q%E1ma^6~x*MILX;`pTHQ;w^akMb?6@ zw_6M0B;n%C!t6s#2riCdh{pPk&Kq&DXWW~)eWOAr3RQ){AQRhm4SJbSF!yx=*%uGi z^4;l#UwgGE-x${^?RUVYs|e>GW{xQ=$1IpC`6Z}ycGYw)-bahXAO+IX+0UFXs6KDPRHU7z=RbaW)Bi)HVTDWmcr zXNXJoj&A=y&b~UT%57^O5M)bkq@*_>(jYA$vA5C^64D^ur6AoPA|fay(%s#ybax|- zbf@%h;kn;A=iYO_F~0G0@W&Zv?7iRhu9$1iXU_RNUQqRtdZnhx?Wz?@P#ptV+1=R5 zc5PLpI3J?+jkfCZ($wun==lF4uWP{Rit?V2eQsNpb9W5W-*%-P1!-28O4+B{l%s0? z1N2cg_r`^@LxNMV=1tUO6{401E^X~Paf)+4{tM)T(nE07R_}db9f9An-CDv$9E0_tM(Z0?0EO9SUgvQKANlbOK}ycL>0*Hd)>B>x~z> z!M%YfVR(4usGeQ#{E2YCVctOPxi`+Q-REtuwvSKO+a(!hrtDk zOF0Og{>zK2bB$}AGGupdkqe}ai?|dvt&xk}AOSuq1;O;&Dlfz@og=fe>ya;%3KUG) zwFcvbGV(H!s0Lqw;vsb%xtTCc|M1SPwrQR?S2+a~>ZnNotnk{-eFHhq(nfEdx!F5% zs-x!E7={WkM+oM%VVm6T;rJGo52D_=Jy}IaH~DuMD@JS78#_?t=VsnbMq>;skj~%K z3UR|$^AK3V-Fr85GCP)xR4=L1Cl!D)eu)lS=yy#Re!!NE^^A32o)IfvE4I3NePx!~ zvY7MTBl}aP zqxGr7!K1^^N3B0`2MZdW=+=qPFiS*4DN(sU>sor&s`zI9)v>NTm&ny-X@w37_1I0G zkcO7_M)9!5cY43!5|BB76A!fU@bU30Y-aPvHf&B4-eLF|vk!iOwx=R>BRB#J>&+jc zp-oKJbe`bp2c8@6n43t8CbGT2xZMT<=!?Vlws&q=jr55^xVgN zM1FSVs>X8IiRZ8~tRE8o_Y8Nw?%i8%=*<65(Q*@SDgGvZN zOqhYYRLv{qI5+1kV!Y){1Up^vnkYS{99RFIAU4zx_<|I&}p&>c%rRU>6H`JoF`rk@SOkhsrs%(~#(?4!NMLY~nUjvn)0PEHP1=T<_IRJ;E z`llxiC3Jzeh4dD+_PFgn|?j(0adx@@Ih^^Nfb$@pFV3~vFXQ&x1X7S|% zAy#H;f4L{e(6TziyRj!R;~i_80d29nqxfh^iW5_GAatlxRE)3q3N%ao0|IX3FpVZO zuM#4pFRb6g-QOw(KZjx%*17aI3vuTRkg4($fiy@<-^&15j*{xZOaqXTM-ve==h#)t z@MU2!e0n9YK&hccc-%tXy!8oW`*TMGEgmcFgIx7W=^$HJkh>zri~z>Zyap!#nJQC} z1mH0YV1RdPfgSDw;mZKy9#7FJcSt^FvC=rhR;X*~4W@mbkjZ!u9RNxrj(KtX$~oK= zOR4l9e35wT2-<6=K^%;?A%Ul_(%`{{ev*Qw966+G zw?*HTIuf~Fh)pt=C9WJ63v+eljqv9+i0+l+5IoDN!{Zu+a%hRLwV39mN}W;8 zzm1dErr%0z8SQkKHpsH$A`v{IkP42zy*jnFUq*Jq%Jq1^(r#*7z@mea%Q*Mp(()_} ze7d+otHIM~x?Fo~i`$@nZ?(-c>^NWS!L?)7X5MFT>UIRF{G4w3Nt~Q2#Z%1At{=pI z=&yQxF{$vvI<>);-;EvzUB41 z8-kM8KgYa`*S@wZOzR;_L1tH%>A-+ z7!%^{eF^*oz6%KWxuWwZJZQdbxixy{Ogt#f7fFT3wv6wCt$Dl&HC3G`+`|jQCOao9 zY0;e32;uR9V5tC;5@}<2{Lo=Uhw=0(%O7MBBsBu%rM-2f=SS-b+3e0YQ7OR7;N??A z`oS5@?#?i7jOu#o66Gj_g01@b?pAZvq_wY|_hDv7rGROB-DD{BWYUSbrx5nWko_i? z%QC`vMzI!NZsj=rIaEYUX;JxlN+v~u3C6Me zqhYytpG7nA4DK0&ntnh5$4MG&WMl+HV}W!msG6Z;f_Cpc$z1fNY{fuRcW1!juwkIqfp20=R36$xblrG1e{1a?~cfF6B@qsbkOa5 ziMy&!l-11K;zC(eXotqaq+^pWH<>|MCKb8s^}V>Vw{kTh(PizSZ>UO~ST7So%vQ>o z?caM``?~ykZhYo$IccdyE98h*twlUU1*WlpeaecV_l@sH`STaKP@g4*_ZuYwEo|jQ7to=z{*<=h?!p!KdWI@v zD|PIvfuxUfqr@f0RGBR+tAgu=C}uZ!i~FhW(E=;a8tz!`g!*gJ84-r=&aMocT4@`% z56+ZY;k?=Iq9=-Q%q?E!mLjkl>o`f2ib`bnStGvpU)rqdfw(t@}-WX)kobgsb-?! zyJe`i0L4i36MS~cEPF{!*|MM@`(4GJE0e41GW9vEx#B8BBs|lR^?laUCYd6Arsq^6 z5^caK>)6ReV~%eB^lbd$o85cBr#LG(SgLz9>@PD}#mqzfgy(90@*9KI=KUVbg70}7 z)=xf*z8h|2^$vY4tNi+rb?t35I|xBHg&jt^Gx<6J#%d?Ew+|{R(0cOxp$S@vTvY`* zwNenY`@DB%*Yg8f5#(qbnfM{1A9gG8eSQ8&Q(R^byt|t_&dG97NpMtfwTKHc5f`t` z=SZJL9qf994Xe&eXOF8-krLN-NWk1e~dEmuuSWF;TFDpqdaP$S6gelbG$( zNvJCDz|J2A%YPAtKZYEA7n6IF67;yc$Rq5D^qLjq%gug<3nLsbz z=#cALD8v;*`b#s8l)fvjzQ{F*!)xU(y&b=!q<{p2N$hAzf$=)c9Y2lx|1%dxHsL&A zE;^;aDFdK@?>P@L!roPKESM)24+Rr3g9B^M2&_#qe7MU|Bo2S)jfTL(V540^LhR8o zkU}9_o)O!W9Um*(DE*QpirfQ=XRjpzWD=FXux@${$)kWA-AmuYY9SnM7P1`rYvY2P z#7aV0rQ)O=BUbuzdgD_U(Ge7cc;+Mf}G}Cm@vb` z%VNm?C|!cGP_ADSr`I*+HC*e|9?5yu@&YTl@)az=UV&b84d#}1PD4kk99U#x8m+*{ zT}n<2HpD#vWZ)sIDv_1<3nlOU?gLgC+X0Z zB7eFUyg+Zk#7qbM`;HhPuYVDJ8F!LPY5Re_;* z`~(_NWWJB|hTrjUqS4=b&WS53(dy*zArp_ue?g{DeC`Dz-d*oGR5jpPp1a?+NbDBT z_qR_Ar)ej=1G~A-^}Oi{=#R~-u?L)vnjGLd?qweHlb_7KVn%&)U!RKoYkSU<$48~L zWKnOwIH}yT4MMH7MzF|XgDm8&l9=QS;$AmJ^r(L z9yOten{@lxk)wH=(qU`cn#u7{RDS4528VWa_H?CESiM%sCf@PoBKS@@-5>k1qSL4# z0_@9*n=|^4w08z7!tujDq4q!@1^>;mecxHPuT%5SozrvGHQDCvIn%y%r*a&BK7D$EtX_Pn)j`c35Wu$^oHFGJ*d_*ER! zQF{(f*O=GEguJl#yC*BX1LwN>#Oy;REZn(TDV`e?ydnv;svnsc(>}UA&GQWJ)siY0 zf9Yf_ayhkgQ@Hj=+7*R*<*U;2?o8B|LhrZM?%4BB4hNbJ>l(4A&q>mI2H*zNOG$Xp zb`9a%OK2OFd=hZ+80Kj-l6N3B&kpImD^BH0SNjc=$%i&1A)g{uYltPnbSd_8pXi8_ zovvS9;1glSUHR%S=9Kc*oZ(5IWIzi=poeos7jjQ$6!sX}eN>leKhrEf@0 zpM0JLIT_wh^x%ASx@cuSU>W%h;r01md)+q#eDvj=O(tlPx}z^_$wrg{pz38C&9;HC zsS3&x1quwLLo-E&%$`@;llDzb6D||t@D0jFt;0@>!twp4Mde91mxvFMR%s;_15@$b zo#lgEKxBfiU#w+m+TvfW6rkVRq%ZHe7f{NT zxPvI#yqYGNjNW$4rs zFKX4_th(=0mII{ssrh^)Rc?5l;(%ob?u*a+9YXeDBqz zJErAl1R3Rke4Lq+Wla9RfbIyn=zxwkQh;-(t+1x_#nXans>nYK09izF6f-A_F31JpZH z4R}$)YYHpZGfLozAGMgNC2y{v^_;Tb#oPPa@EHz4l^2RObxmyTgYxmlk}=j_IGYOH zBCZbDUm`y&NbpD+wMxz~o~uqIIoViY&(L-9XJe$>QPYh2J%@MvVl8^VHesM0jf@={ zOhwCTMn~zSBsoBfiC(SPzO%_$MLwZ4&yNZHIQ4)FWC+$-^`(NQ_4eQGXX`xc<95rtc*_UuUm9sZS~`7@bA4kct4Siu z=IZ>!UuNmDit8`i_>U_E^cdIaFuG!Ss0#&l--WWu_yeCryLa-7z#0|>8Bbd?SRMB3()=iM#6Rvmwf&ZGWpsEY^A3O{{+DXIQ?o01A^0*4FRh5#-Z$u5wR6jKjl zpN~2ehBM_=q+p#-ich)|%;S= zkR^AEXEeH%X-?JpfLH+BeHvXWyL_|HouqKB>|1sNzg(#J zZ;IY*&ZAM7J*bWW9QVQZIA}n=MNm*PO|cA=4gjlVYnhxM*C2#;>ew`8xa}?esN!^P zYK4L?rrXooKE()JBI`Kpp4y8r!>7Uu<*yVH)Ag$7kZB=zZ}CAa-4r2%R<^3or zIkLqmxtwGx%&?BVwTt!JDv6=rYagsx;aOCO^R2U$H&e*e?n)%o4~e5}+nPyHsD)_> zP)(W9XK(q0iS)x6T$vXMlQ$^Ma1roJdk-N82@&cYJ>R>hjjSz0gg4|fsyT+}1OUYy z$xcrY5fSn1_)O<{eaUyd0XjKv%H3Z86<;ufnJd)AQM@rpKsRGUtR+Z6g1MR_$gjf4 z(vQ9U(HW7AXa11>8|L6;;g25DR&h~Czh;A(5}};V#0caxI{VWl^7Py?Q8z?~|JMYL z;_~{KlClEB#@NtXAD5>akDu7PSuKkZpR=iT-@WV zY(k-&)LFLgn-ul+3<3avs51ly8(CA;n4_9DtbYz~nE(pfll~_qp9BE??THe4Hn#2c zk(@l?&QY$6?)mHUh;{s|oo{hpZC3i?U>o}5m1zARZxsZSMSSt!48d6oQvxBE6Se$g zyua-vhQc;t7oUoJXllj(LT|u-&KzoG*4xDFCFZSgywgo8B5Sn+D7n=*E2q4Jg0hDB zKX}^2qU~>{A7BhPthePmqyEU4(fIRB=Q?mAxMd5}OCIp^pZ2E1=zHhiW32n%I-Jg` zPQ6o|`xC1abo4Y@r8$%D575f1U3Zr6mAEqsOZ1uCu2lmV8Jenll?$~e1)Cl6D7?K@ zK7olqa!dy2 z^Rf=>`2OI@6#5+mF^AUNtx`=n#`s;8gd^=1q3LRCwDM+uwYlyn-WJo(NxN2(PBwX4 z%79&)W~ZBi7HkMPRdxQf(H|`A^gDO(q+s@KUrOrn2Upf=QPxBGUI@-s7cwl`WVFjG zOU#S)pJDOT+Yv69>3$H^5npQY9}Wu3Kz@KjEl=b;O5L{+yB?Z>=iv43N&6Gp*smu% z6bUD9ovODM#PS8+YoBr`V%I1Dkmw)xeGD;q#9=;O2JKZHxePT@rLh*{7X!l zbeKH;^)BZ;D6QSpJ{rc{C__Sw`RjTYK|MCy$-h#Zep_c?QwZfFR%E9YmzGZn3^*cY z|Lj;rjzAXJd6vecshCKD>>>UZ= zRMcO4Sr$9Y?{q6u-XfX%T2@sjCrz!?yg@5f1t!b*sz_hvVu(T^foND~O%xtk3$;73 z)HcfKjuf zLLNR_OWeTD!U3tbeRBp1L!#8w&`_M>Th!eMheT^tvlM{I{}k~2RBc02Vn{(dWsVH| zf8znt2L@=g*{M)Hs7q4zM71xxz1RBS74)W;mGybWjCi~=IUM3Vc6sqyCSg_`F(W%8 zypuz}oz$YzW)E_Ek2gTRWiPBtnHvQ$_9-K>G9cY)P*xjf!vJ>knR@Q_8aR~m?#;Ak zrN-{3(Hpy86~fx?&p0gk0IM<=y4TM8<6+FLjaHCj-Rzzo*Td94)U0t zcd2|_OhNE2Ro#Yi_D0@Z)7ChvXuE{OBs_=*12J>YPtw(-NYg76J=`O;U3=<2WKBxY zwCDl6U35~g<9<$q+g7W47goq)>mTJcy+AwV0|_%$)oJo-gT#*|_K|j-OlxpeR?z95aov55>Kb5ml93!+f1qN((t9RdB_&17M;CxKJ{DZN(u98c5EH z!P`ObPOZy>1X=4~XVDI=`Ovd9e^Rq^Qfk`FR3oy8a6I#>&i|Gy(v*G5g}4jhG4H7a zPo4T{WEAe0XjXJwqyW4$S3~^7PM!H|`x;eQ)Hc2n^tLwc zv)^2vt&65v%k3(5vwzW4f(d!%(s&M7=ihs;|vnh0u9cL+LIA zxpY|@XCZgTub6Xv-tqxU=eVmE#~P*3jnzk3KOo;9x%Ctllu#KHx<+0Xfb%q)-QcJZ&Zz~HPyQx}c1>fOEM*3(y6fYbW)=koIeH+bByvmN<{ z)P2nM^P#iPqQIRW@SvB}4OD#W{bwDhluy4m>BQ?1;AMc?Yu^7Q4EP7sMgJVC*cqQ= zR=$KDp87bztT(PnZPUy zrI|(&K3X=hH@?7hEBW7$Abb}oy0;{86BaBfSjVXkKMz3RcNi|i)d!RdH|F~bTmB^E*Jt-HtkL@#c6Zf6h|rt@tP zprANB4D`fWOXdJUU!1=Ws@=4W7ob3bS)i^rV<-&c5#3%{QpltYI;Hm#Ll%(xQ9v;f zOAboW9RBh>Zz4?Agr-?H3Fq5-`+HmZhdU42gU)5v?bY)9Y_HmMZOn4owK*P$ej-aG z5_)vnbPy5{;Y98e-hkN3;m6>d>_-cI}?1wqgbSsDr?BrrS+Vh3Cb`IjUgeaHzi z4{9)p@&T99pWg1jo(M|)zWDgC5;W)3B@`LFD@yjcu>a}L*YfaUl_Gz9ZnYf~T5@L% zhKmkuG(}}#G?YT;*TLDa@&oM*wZJ&by;-<|FftlSqw^pkGE-0ytP%gVq#%|ck4dyy zF_DK~P4DtXyL#ij7EK_fJyP({V@m&`Ltu*38=)VtrN2w!T1*B-) zD_qI4By$0Nb&mfbMkN0eV04;gt9&EyiXjn!xAejyJG{KcEB>4|my|k1fnrOIcIl3p zMR!nf6}0E8Pc8CkmA-$KVs%n#C~hKY(lI>PS0VA=pY%t-rS%+sv}t3y62RB^t2Wfp zb=j!yu+eggP7 zdjzN)j@~Hua_|q+^EhlkMnWeLpFswnT8TLcPOEnrll-@}`W`Z$z?l#>NTws?Wx4se~R7Q3H~!`PDznBhhS#-aj@ zEmXW7VD+<}87MAAkI_z#L#r7DWdC%!ZvyH61$+OmXM7`7g{nz?TH> zDp%k04Jx4JMI#~>L-cBB&b93a_cxJ7h)U8i({TOmB&Of+NLjmV@T4#EO8HQ!`Xr9` zWdA*e9!fGLb&{iAA^O>ihTYuCHYNI+8ekU)k^YZFZ}_e#D}| z{v&eRnZkM0*`AwHP|hP+pwoVbNp+$tA@KyZqjJk5nMsRr%b>J<2njzx0bR&3f6GSh z2Qr^i#x5wP_*PT;>x1TI_B-g1Hgs)&-m&A$ngSP?$N{Mcc*Q>f(yaw?}#4}H4^y6Ku9c? zOhk1GzjnODC>Dp6z#JI4{f8M8LSv*J;~*PQKZD1a4M!+Fq`&eOVIg8-PN@!f6%2VS zi_Ij&f#a~P$HGjz6JPexQyQ0CZ*{Wm9+AO2N@GZHb4c5d9FYTh=ULLQzYGcBwi6n0 z>qxk<%mC4@*h)p+FM=sh$UmKd7ZO>=UUM{s*f!k0&Y^Tbvj0L#?+Nf^D%w}*!*O?P z0`4#-Hpr4tW8UD)ts^jIRE%=Hq+BDf@{Y*-;l04bV_`Mx`d{?dQPHoF9Za$_6I}g5Vqol9 zz(76m&@eU0v2yQ#UC-*#SGs+F&G#A1Hw-d;S%&hwy8A02`BfCzH;>~Xo+QwY=l6JH zE*ADg=NW)o)?U2hy^X*&@wM#=N!G`{Otxe&9e(uW#G|!F z=@9fI;gW^_Z6B#JyB42*7EzS}I4HQ9wA3W$eGlSa0JIomKexv9ZlWxDjJ}!fhP0X5 zx&9B?^lWi>CdEzTl|*az2wd$OV)B!9;lT3{$Ew3TR49r7Bj{}z z0frQ{Zk&oXa5AB(_Mvmxf>TInWvcj&-81s@b6*@3R|Q_7huUY=V_v#MdSQv((B9Blxa}vG2hGlKw>p_C@V}v!)Z(s>s`R9W1 zFZrzX5}dv3?4$n;mbls6|BKcAZ(z5OCbMfYSVQLjignXLs|~uVUjG^-+=^}}H8Qfz zVRr%u!{rHmcJaQ=9MwFi4hsyMw5cC^p)87<)!uM7Ewua&U~F4hJG^O}zP8xW`WBP9 z&r8XW23tT|V#*m@=qIxpB1?l$Nmr>Asj<*#Fo`A7WI`ATo&+g;tEORsz2_@s-bQDu zoFlp<&~ErSv7QVO(+-uXl9pk#;tVr>AUo(L&$-2YCoP=YR*rLL$C-+XYgy`grKcly zjBBO4RwKis!`)0Lk5+|0&M6!B+ClKVAAfVYsVeain+J>LE~loQPixV6jc3s!CFkK4 z{%lD>(HLy8&fu4oa{h*}yT*wEuj}i=a+#OfQQxYk8XfpwtAAY#?UoNL9A-w9na^m8 zkw-tsHk_gwri-_Sc50Lq7>Le4Fg`F1vy|fWJ5ti%S%X9odW=If;&oaEMGDqL9GD zrS|k`e{Q}~!7JUbBM^j~eJw84g)H$KTs{ULnaTu;PpyHZkHVqn*BZ@#8@Add%@q679VhK)$}d^K3`z9i6o2l~3Yq#)cN_es zhp&}tTO>=$YLRKhTT?;w>R!mrSP9fzRmoXBswI~*o~o@A`lRg+E%wm+EJp|&NuQ)S zqruw)!HE0btZge#j!FuqC(bX9dr<#4bY42oPAxH+5cD~r7t6)WD>?+pz8MSHJvJ*Xjm=vcqDVbd}8nqNhEHD0@W<^UGO?ak~IxL(7!@b@E8 zDg0ZQg zWg|_fB2&aOE}$D%_hS|Tt=3>9$W7*QRkGRFK9qJaCyXn@@Q>V2C`3HZST&4F{^-P^ z%1{>eVm?F3e(-KVs+DY9*4BUo*(XugIFr70UYim3E2AbVPlY<(?km&B$E(keLqytD zUx{_N&Am++OFn(ND+x7s6_-STXI?7)I>7K$3aaL15D44J%p0Ci&w)H-swN}k8^50D z$=pq`*l|;edoSSMFkoz;8m5h19;Mt$eXcs22r10T(N=Cv@`h_njcu8lIg&P}9n{pYCq zYjc%|tJr(Gs*kT(*|8C-WwSlB?&G}Tg6S}+a3g9l6Ky5bSIUkl$(ZuBycq(74n2zw zPhJ-iuv)=%Vl1-sH85=>MI6-IBYp03Q7pRf-P)TZcR0?q7Ja8PAoC2)x-RrozE5^i z?D7{r--g-Ml|8k^*N2OY9@LUW@?7+JYWlKr4 zf**~V19RF5T`Z*O{0e=0UIGj`mEivRo>}7|P}sh+Pgu?rjr(KwK!ZC0@>T!E?`a5B z@u09ZXwZ}m-kREcr$MD(U9Ls3F}LC>jo~?8%(!|xh31=NZQ~pD$ue&zXE}%R&pu!2 z{V&>8$CX!tEoDB}Do-<I~2{C)dj>5y|= z+h%4<6&{{k2{{+&ML1Xp)TCoup_Ss;(ITz8erH&j4Z=oRcw)r$d9dN5VvFShktl4$ zvC5Ow9E+r~4gHVsRVHKI0!E=Ttp|{aC~d}S%v4Ovr1P!g?xBhqvG+4B*H@(%;khq1 zLPU6sXCso&*uLO$h3qw>y7&_eVRIwStyG{m)7_9cj^W z8@z4OH}lLONL@t?bm~lfjr8i$A*R)d0gL|CF_{01(V8a365YM4^)&s_aBbjBLb5;K zvBUn`NNp!p?NaaZql?)qnU%2&=aO+N7dy80_@Kk7H~nQ6n~U;?_>|>VB=}=8A{Abq zzn;$zWHnaIJ}=Fj664ezLJ=ttI|%fG4O8ZuKwnKi8l|az+n9dNaQl%whC@XfEW7*z zPsF;3ZMEow?W1(#Q#+ZsxYAyA$!Bo;w4ijwn!V#m(yz3kR;r7`(ZlLz>jK&bvVLEe z##9^Z2~Qifl+`;t)D%T{0zBua_1xa>&OOx|9dcVECdgZ@SN{8UZ*ssv$Q~fHv1Ct% z4v0-_d_z+#0RVXU;ytpsm`U{&`&5?PUi|y3g>lw?Ug9NXb7J=)Re2+gFoI8sD)z*d zy6$`_3*!4nT5^Ph)e`Bi9mPk`#mFdKVp9&R-zVc-_j;5+xgKLZ8)QGEm-}3hVfB|S z%GDoXuV(LIQU`mF_CT0rYPm`N3{6Il@#p8Ngr~mH437bKvln*YYQ>K}(VO6<`pdFE zh3=CW&IA}ux&4xAc*)3;rp0*@W((C=uZQ|+?OIaFRfk~fkK+p8pB0;Wp(EVoS5);H zwbQfF^`tmjX`DXZFoc|1_t}(y+ZQ3{!B@*zr_yfXoK!|H885-3!DZvy7B4*8vRc}b z6=ZgW*rzyB^$2;n}pK6?lK7|82CQyvIyJiQliqtKXdM zOm{JXpNw&ivF04V-p!sQY?$;>W;q3m zB~6#}1RvgRvg$ozgEM&`H-pIfqd)mQ=vj%gy<7^{jaUq*x4AFLumguli8z zK$Vct@>%jj+jpU%_wT1eqzp*!Dxn(ruwrH%FlGcL#9XZGzeJ;fb$y*xs-!9Yp8$p|3Hj18u$%S9>RS8nn~qz+y)$3@~XzN#mDD{k}k^J}3D$ zgckJY{5hbT7w*r&{1Ii0<`arfvC|ZX;>YU)-K%FZ8_O>rg`^2Rtw%`pM73f?X^}2o zx+oI()lUHejVaC$1JI~eoQK!x6rR7b<&t73-1$xMjPA7vo}b%W;1yn;vzMq%&Jy&8 zV!O_1%BYwUQQ&=KKO_5mSmZiHvpm^jLi(T@ z`;1niV{DP^uZ1D;dw;l2w=JXO2V3&%J}Rfxe?5u z=P~`J-G8{}ECs3-U_JT4dd9Ce85#ZPD!5nt+OMs|e}#BA;Y!x?nC0}NOV;t0!Adt_ zBdsjlF{X)@WhjB*>Xd@l#Z{D3gsxGs0LtQ@KxuR196SyJ(|+xd=J{CD>7~zJ;96r? z$*%x<%tb0rq6W)ER?N#4k?eGfZj9-E9%HZ|ORJpT{3$&(y!98V(lzq(^ORr} zm8Gr&^Z$I^9My)odhRZ$Uo5Z)GpAJ^7pRN1XsnEq%HrvTwng(7&im6U!}abg_?Fc% zMQJcb2;E0+e~B;Kyt0prxBw8!?@3Y3;g|$u$79rYO`KSHho^b7H*ctj@@W-*1r$W3c zU!uE)N_;ni*pD1>cmpJ=Zzp|m8uFUzA)C#k*GW>9`A6up243u(_N1LaPdr}<<7+}& zh7dz--KS)GyKQp8{h7DkzFNNh+TP_k1_3x>zmK;P4a*V6cg0_8d&~In13*?b4q%0+ z&{xSINWO4Bj!?xm!zIn=TWWDms_NUrHNI!EwEy#`{nj(x>-72F@5_SQoNd?@Xw)M@ zk%=|3x6q@B8@}Ne^i0tm{QZ}a;q4_(skjM`Tk@T!cTFRAMXT*DQ1u$0&R3nfsgr0k zW>$aA%huOr;`PHW(Z<{m>32JaVd7i5cp!Ujlb=r3YXAGR-E6juv)$8!P48PjGCYT_ z`y$V#XBAxd#GW@?bk-M77BVDwUIw?;x&CqF81W)q{9iI&96B8YCaRk&tkkggC<4Fg zKX1vK>mt;dD$?rUZ^2YD{GICWFT{g2qWRCO_~t(R&%^r}3*n#7w_U?zhJoi7`;Q+4 z#svP~4)6cz9yf$C&5dAAN2Mcyi|7CJ4O8gd;hQgr!oUU4UW?mRe!3gx@m*0(y2@~y zz5`bJRAB`~J$L`F^YMQjJ_sPnmVig_VkQ#HyQ%MiN+68 zOiTzU3ex}Izi)z%fbLJJ*$^mHx{Hs0u)oiyQ!80bL-pN~*Tl#O@RYx^r>+;(*4Eb1 z(Q$Kgv$Wg<4BMdLS-zTPXL(H5(|xn3Ox|l6sxfS#t^_OsNLWpw3b{Ok>GL0 z$iow%caH-CxFG=T380S{H{=8#VvOkA-+wj8gMu`<0E(;Rg-=r_EQxf1G^3z^z*qa{ z^`d~tTtj2Bq)#{qHf-l{`ZEgfJK2%b*XQQs0J1^|`1voBlNxXJc&#Q4d1IKFnRkE+ z)yb@9g8g%y4xq*a=sjg*WYPe8$i^rjxsbGBU||7lI@ANC$VjRZIyy6e30_Kd{s>G8 zV8|jDus8igG5FI-2-MH@wzoS0a$o?1s4%Gj&2(*T3h=lXm7Eu7=;#4{eh;y@T#qe- zS`gJV1*z55lZKq?c`q0td0JJk0Q<}!8DJL$tO|jn5F}If;NW13(cHk`U?I0(57#tm z$%0w{^C;jP)h`2brjHu|V-DiU6Tk%d=wprTJVH(mhb`CvHK?T+h}iYS@R0?#0!c8S z5w~16rbDY8?nsN41gM#)+1cd<>cN`gUg&PXcg8HjYv^_FvRr>~{f`7-@FL&2c;`D)~~H0tvvrB_`JQ_~3(m zZEC6^U;}t6a|=l;S}8*=7|?S7?#prZWjsKWnxo8Qu<17u7#K(m26Hg&I18pk#=`G- zXI8|1Rbh>;QUfeV_~*|wbu6r`Dp|@;nfF~%VWmc0k#>u%Qf-)+m?P#q1A|CNs-ig~ z59sMvR#pr?eJexaLQp0pCFud_iA!h%42XgyiGQ|`3%PJVeteNvF~b?t z0~E!9c!!&v9S2wyGDgVA=xA$etMz1QR#MXZ`A&l>Qv?u`5L#PDLbBTXj!yLu3m;UD z{zL+M86A~c{<(?@kIl^E2x&qxvYRQ7lashPHnU*&q)LT>V*}P_ELYw49O3|FgsA6@ z0?|IX_{Zv5${$I2%t5PjDwvx8kAHJ{VBY{i?$%cEwf1tWDe?sVpOlP@jAMt#RRHw5 zbLY;$z`(4>d7k|);Pf7(7yz{1Z*i&WUw-$=sh;MxKEnnNZO3Ts72K(%rPzB9;|2 zA|mMO^*X~DL2I*}ogI*nVrOKWC^nLL_39NMMuo$@e=P&k@Utt*#L%$0rA0PD_!6*# zF6@E*0D7WZ+u8($dv2xz%qu@X|4p5;d?87bjq#ENX=?4vyz(ii89Nl6_gTb*_#Y8XAU%ODux= zPz}IKAt%=h9=y1)aJ)S|Wlr)U=V*7niOabAT~JWXO1x_%n|5chrQqc$P@)(b90Y8> zZNX$G%P}@OzU)LdYosdf#s)6;2L26$lmM6PQ`%x?tg)zrp;4D_=HL%`xv+`UVKmNYjvS6s|lr(?qzt-+d7 zUd}5l3?A@hwzdW=FRnfcK#HX@cNN$^tfq_ODVqh?&!0aFpKo$;K->Z3y8!q74kab6wwbL5 zn(PtMba@hht~*3Ai$LTd3rn|tQRVQPvqQ7DdVnjAsh&Hg2N-^;>t7O6aLFv?*5>A? zVqzRvVd3HSo8ufgBO2f>NlCNEHd-8CC@Vk2Qqt6{v7W95+Uhb1yN5&aGH_FH-mRkc z0GDyLGE>O}3#Ew5Aw$zcFkz~P0V}6qF3U8uU%Yq#X-vaL2QT#P2#$qV2&JH)xCGX% zj2;3S^MlZ}XJ}cmrKO}M>Rc-hRl$u3#PW{7F#!aK&D{9l!<3XdN=l2rygy!C9Q0u| zL405o9o^l4#K1t%#P88Z&8k;MVB4#xsF<0p0c|1!atJOiJ3G5Bp#FZub6-(Qiv=yI zjmooji*v@~d<%#jOQAc*o7^+LzPjAnTNy7h0Gw@99Qw_LdQHRTWiN6ZHl}V&glIsh zPiQ3}GYd;@VxlM(Vx>3E;9h!iGUB43E0Q(LC$#iybujD@kc_`W=l_U#=MK<%ng#kw z;0M!0dhC9HiK19Z)OzH3^|BgS(gQF;+r?f=VF8ZKhoX;s*YuA z7flEW8r(fN!CAPwdkF6C?(XjH?(Ps=f?II+;O-8$v(Mh=Klk4A#(3ks9*n{2Ue&c` z&8nI`>zmc{6GiX`_&`Oso11@7eEs?rU?~6|psl3@3hL^duGjku3k!>NMoQnmhgh*X z9xnh7Sisccp`!zCjrxT%HeYdNrF7n8vBK8^`INXgyZdvUKUYQDqJRmcU~hk|7sW+7 z)~=waIG)Br3)nv(%_A9^i0aihMa9I-Ogtd3mcekmqLKd+`SxH85s(=qs;Lfmq9x7l zTHFH+aqFD-8-8+fa)8kvNuot}n)owY|9>A{l=oh+?t~Mcp$#nc?d)w0bS(aSveGq$ zW@RFvBlz=ylM|X&n4XRR#6kyLk%#8y{&x}P|0p79U})0Cz8t7T+8~nNNU%&7f+ByA1UBwEQ2}OA8$(RwlQ*vsd%Iyu;bs=>Q_%l-J4?>-a>F z)xlm2*@g#;DVO`c+VaBV7Q{U6n>xwH$1%!s*$$!$jLjbk?fLyt-S z%9s=ysmlXDFehG>E9(_QlYfkq;Y3*a=Y_7ruV>|>?jiM`{}Mw7M^0THcO4@<=z-b= zq2+52tC4+TnvT0|u`;3FW^6gluT?OO=S8`zMXe?3Uc&_=B0Y$U()+>77<#YbbOv`l z!Z7qC#K?H1aV$KtPrw+LOIs~gc8}oJzdmhTRM>`H=_F}+-^D#x&o~o~lVxv}S0q0e>lS6~^MPC;?v4p#igb*^9sd!9 zc&W!5i`(gdXhDX;-M4gd*X9&s9Xhu1kE+n{^Q>PLy1_{^nlkq4JHo@mehyFzVkvc*`6lL-MpfIjw z{FDCV%TZlzwn^2;6be<j0&-{@ zbRO)`5>}n`kdkgLf4GABDjrQo&Q?tEJmGL8+x+UQr0D0<@D35dipC~X@BVU;bgV)t6xU-URmf%Z&~p4X`$vu$v(J$ zwB65+SNhE`&P5!%$jLgbKy87Z4!2T=4*Q`Ma579l>z~h z^k@`I(&N&`Gn#5jY+9FC8)`i!<9r;ix%@pT7OX2 zlm9k=m179F@RJiGZ||(6yFcesNZf+7+Not{__g|ZZj*);j^h_ds>AwR0&JpDg{wp) zXcT9~+j(LuRkE@4Cqt0VG?wkEKa?6ms@Eu?%JCl!&C{t|qXb9zdfg?6`LbF&zRX@eNP}*3{lGH21qsqkm zP!{drpJPk{jRthY{HI!o3E*D62wr90*%XAeQnozreQD=jP(`Ex{|f860Hi;w{JGyi zlfqPID@Mu|oa5tt)V`(7@e|K}%k06;k&3yNhdA_ryg-Cb_`r{$HTmNmtCf6O+9He{ zwxgE=hT8r)$`Tt+uK;Dt4+Kqf#Fcn;zm0Dpx}Vvw%?Iylzfw|=78h?*>W550m!d&P!%HjS^EM6V-4cAaD6S%(qgfE zVoLKgP$F4A+(XlJtJ@Z^w6|HIdiZm$7@69GUjRq}s+fbAA8}{D)!fmZdu@$J8X& z#RY!{HuzkM^FiO=+cAb=dQG*Gh{MObk<`7jmO~LeW5+D?@TxpG{4)?!346Iu1>tBu z)(Ju8I{DSB(cH!MkJv~Stx}`@JWsAY zy8fQitw-F?xg=XEb#x!s}{6?m5SDEWln#aotE@%5z7uk^UDS}Y%1SMj`H$(mO9zYDnKkkxoU-0u{&_`5$V zhOS}UUnrmvX~C#6<%?vp?N_z2CwIDQGuMFkC=0BCe{b8;izoKI(flw$^GzhhQobB)$*TAPFD zO^^af$RAF{p1KKMv~0c2EAftFNk&?&!#t*$GqnJhnnBNG2nU4 zpAB1DJSViB%&I>8;;MqEJeNztT00{t{6rdx)PI$6d2^ogO3EYIsAxD3vxcL>#b`6g z#c?Ie)yYWb**Dc`^u#v%-&{VH|M2HTK!C?b|Ch%{E5ZzXX81q7Ki2;!{kQkW27;zl zaIrQZpjDR9H8s$)ho=4Jplkov6=5q|3usz-13N1RTRj6if;|2+)^88Rz?sD&7bRZ1k`^@ z6HwDL(6iD2AO1Sivw;5d6>yu#U;pR`Y>j~WKm>pQM9%wwjiM^eyfvtd*g|(HXfu%hG z>;DUH{Wt?cS$#g`ZYW7=aV$~aDK26g#Yv5(2Dhm^qgiOx)O)}Ejx?GV5&@DpM>Co? zm@pK$u=aGl=4SK=3v1m8tAvF-Bs2w=TI2pY@s_f;W(N=IMfJT(yYrZU;p6@PaI8C3 zR8(|FX_dS^*`-Q%o=$N=z&{0c>iovu^}0%W_x_*5Bg;VbOI2m1C62$$+gZN#+vQVc zz>Ctj%Q@NGFxf+((sPT6H=_5y5AD^r$ree{Z(kGcwA$ac@2pV4`9_W&hsk^hAW35i z3P=L@ZQej$J7yN{O#p(dT5+4%UEtucO1T!r1DxCba5pg6Q4>J=pC+y2rzHOL^Ya5F z05VQg%Sw(Z=vsHjM@ zDo6xCm;Uge0gL3PP6Xd+cXzU^ zq^xYLiZ`-z383h}QXSIw^73+JWhFg59e~WB`Jx30pK0VPnj?bP@Y*V){<~=xY^n= z009YKf&}q|n3&Dl%9a*(NMBj<_^K)^Y3WFydy6NjJRyJ1Z8Cr!1(}30HBdq zS5vdIw%$KJR@cxNo0wSd@ZbRF1E5x5#36tKIoSaS=qo@rl$VvOTdYTkBn@0I8#zwOn$!z z#Fm-?kP%>u2RP5CjO&3tm_YvP>P7Pq!OK5YHCyw2P1w4)2LeU5Kh)8}Zh&HNu&~Xo zty({9cQUP^5dJxS-HDttD3hajUJj9wqYTGqSq(qiI67LIoBKzpsjA}O;N;660HK)} zQDSgDVAkM!J=1^k^C2j1YjXz(8`No%dN;$PqB+0q< zk;(ORF@P_Cpdcr=d3FZRC+pQw!2vKqcf~<``UEJzpMMj8c!LEA)!$mp=4mjHp`oDxRvf>s zE?y@mCoiwJ!NEZwSOY|)fVt7x`4bp30L}|=G6QL5>nxTV0mvBWD=jT8*3=CEh&QYQ zs33c_>9qNW0QU5#s3KYNR;RPTJ3dnr6B}FGrC=zaGCE^m3XP4A14AHZa=)#OlQn>X zg~bT~FM+w{;^G3}_-U!BJ=+%mU7K9lEI>7Xce;As)TLV^ne5F=0C3R%0K!c7neXKP z$Mkp(qp%K+j@sMVfg)I#nL93rDFN6Y7(+lX?|cIQE(HVxfQ;GzIlLG#5;&i3jWf`F z&YXB_PLSh3pNbM70I|gGJ}>|!Cn6%U27gZ@|0m@31@bEe1r#i-KS6O*(|ljwN8fB< zECPFed#5=$If0}b6ezmTZnzUCGdRhsR8!0yx2Q@7!)|FCCD zzVv)~lm3B$EzQm9ZO#|_lX-xe{E~(t!F7S53QSVK@Gm!6ks&~e7hIk+tp`r>0t5fN z8$y{1jWiO7**QBqt9Q6Bj*p)L(F8B8+@Qd~!u)(u;#fcsQet9#ef{IrRwn=lW=JtN zHU_wz*G#Rftjx@ofx+BnHwgrYfL;gq-+@76&%O$TYen!qh?7P(HNpYB@_nb8^Ls78 z*cur@@F8GDygp2LdA>Y4BpYyYaeaZjyuQA^y5jJ9ZHtPU05ZA!0%DvBUwMFF41h#V z8`np1KSD}d16J4T^(u=EN7~(;6IPs>ni@cFY2t>!Nk;#}yjiSh*;`mx0EQ5lKy7U} zYkLrDo$-CTe<&B?;4~PYh_&0Rs^LanDI5_;ae;+i}PJbm=e( zP0opc>4#ik&#oaM0h2Wm#3F))hZjg7`ZWQFDE!{r13I>*hQ68C4ag;(pD##-=H%$u zWA!IzPE!*t4Glo!*=wv#hXDkYAi=@9zzP07vd@Y-auP5`;R;m^m9ej^nKhRd5{_So z;FH_!Cd@22+xHqyt*oslE|fa9Ui|LbwpiN8|5&+SarqHmg3QeCmtz0wEZG4Cqha8b4P;-|&7NPIs3 z{vT@txu4c>F@19u%`6N)sBi1)+M-y-^f9AP*9PD;}_GCA>lQtiCJYf>Q`vN*{5Glnu@QB4NRR)RdEOX zw|94~EiFJ4AG;si`6Vkh)^@x9Go&xj5@8V$L`eUrs3`FQQ*(1z7#KJ6F_wz+e$`d% zzug(IN4yc}q%hJ|vG*FPnv(|=b7hYt1^nHb=urb|nwo*@&p?z7a7h4nA}AfQ3;do$GpA0L)#(NAcTQ>2*t&EFg3Wx9{7Vc0pRdPoTxl7AS` zOlvDoQKH|N251`Cj3hCZHju1_#y8cHtE-?W&-9>DSbZ;3{XP=GBhAnq8g8W{;ZkN> z)2;ohG=V)rwMhLG}RYWd>i`AUg5cztzb5bl`#xmK6j`D`>9>r61PdTL}^F~c4Wk~ zFZM!Y3A#KU)85pKG+@?1&u8Jfqbm`=?bn0Wnf>!Kb=ei|+UaZ3eA$G?1w8!C%`G>u zd7+IOPdyg)%xQ0bzj)Gk<4lwo35fmo4haG7ND{5q`0#Lx%M~d&pLhWSF){cWy!$uo zqhz|A?e+EYnuj~rG_Bd?=P6&y>Ia8{F`fv|!}m~hhoyB(x9S#VkpZjjQuAuM+1V(V z+`}-N!*)4nw*ioSP*DaeupHxQo41&~Mr6HiK_ADim!&xFJ7d!&`*MT1I0gk|E@a~p znb6rt2?${c3rkyNxs-G8$m{YUC>1guBpCDYK&7UgC8w0%?-G^gN-OzSo&DrHM1?1& zFO0G940N_-6~KgvHqQC)?0oNR1#VRqHXEsuI>|Xq;|-GhW8C^eEVuG16YX=;_M=a9 z=jcDc6qT?QS+wR@3^mr<*^jA6$a8;)($z-CV1-Ew5s;0UhAvSS=DXbe^l?z`z3$Ig z;mAwFM}5xJ#!fzzb|u#pwbD8K&)3j8XHr*R1V&%@}X>H?`9PcOn77=9FA0(*|~O@?cTM@d-60 zAl?ahqMI*Wt1Bylgp+zw|rng4qtcp~sxt4a>)4@vLOwTiUj`6Lk;NCd*a!3r(wHDZ5%;lQRCfvu~S38Kz~n+|K{1oMr`YO02UQ6CNWl|U9v zASXnY+1VgZWKNOFhp89;2+z?=Mx{JJojUgwh$gf_GLZ_)1W#@QJu>zWh%3 zl%^$h`q{_dSxO+$CdcxCCwOVxeO0!=C-S={q>=_tZj0kW&v>L#CX5Q{xZSrNWxl7y zO*k~id}LsP9nTpQsP|}KG%yljj15RaQDFEbSKyI@Xl6vrs1It`zk3}ZeaIV-DRm2F z5|~ZR`8uMys#Ta}3DO0FGqB;MOARiFyHG`xLD(A)bJ!X9p|T*t$@aeWd%INW63&I3 zl8JCMBiFB7xL9JB;VWq@`W%XpX2G+s_2m)xnfAXi>3#eSkY&*Zz?l)py2dFDkk~#` z@HXkbl8&Gp$QgL9GquVq#G&(sdWZau^qu6p)$JX%M9 z)a7Ftoz4|IZ!gk5J^w26f9Y%U!q}mGvg_J2D-r*-@+hgw>2=e65^9TI@LnO{DTKC^UzUqSviz4?=YBfk!b$3?by zLd8b@&rkeY2k#`E%YEr}`p1h-$U2W)4kJ#r+6^6EZ?I3^F2j*5P?O)$zRoibGCEH% z{#OYyVI}uH4(;zC!-)LfrT>IXm8Gk{DkegQGCDS<(e8>Gz@IZ|?2I7zf6os<87|3mM;ptpRh?%K ztN5*6SE&s@_ME(q@9&J_F-G*jMj^Miw}Dl}`1m-mF9_HqXwUxgn*1NS_>T^e0V8F7 zY}9;t^>xkv^r!fv!}eWxGCJ~%U&3Lx_;h#wbQMn9Kw-*m z5BMj<5dvK)2yB@%%r>t=lhj4}%}kTRX{(n@2-jDU9`K4W)*b&#&GGE7gAhD^puwUrtO6BBZY(U?#`i871i|ALfl3 zpEq3YX9V8^27-lq0+-kM$Kvh};k5OJ=Z%0l{Pt&p{By`;ZC7<{a*YGZ$!8+g^4lcd z4+ZBXg=Mnq-@q}8P|fg?QSja)qo~*{9f`oQATiEI3=~SF9*HDc{lvB;rrP=0JAKV| zF~Wj0gMHs~ocylpRz(LQ#pg-68zOwbssBX9=PBIJ=Sc-viGOiCh7?gOZnq)+nTUJZ zES9XT`YbU7iTTll|J{4b#Gn*J#9g!!azvdqK?nwDd2!)$x@mZ6=qPWf(oL)v=a)nK zILC5n2d5o){BlVqY8mD(^=zz4mDKwn6H-k&B2wePQU$++rJT~)kjH{atXUp@ADwbX zgSK&2qikK5az}?;PvC@3v6WHviXi+?%T*t)_Vu|l%=zDuLWz)RFQE8(iy6dST(|nc z5++K0;Up*GWFWCd)ULKC~WMrGbIJ_VnV}gMMo0i)H6PyL@Z>K34{3 zk8b?0T!;ixSFJ&a`3FaSCLL4P-W)_^&jn=9_@O9xXvpCs3diNq!O@d+{Di(?8LOfQ z^3baMe7yteE9uGM@so65Jw3ZRJ^g(=DI|oTfWn(jlk}e`^2&tMtRY{rtNTzIlSTKu zKt!BWq{$spG>(e=!eS-K5$jCoEMx>!gT@$$h&qH|6sXkgZUcDdXk1{VkTH4k$N90W zlzq~W^PR(j@6QWb2lT@3DM)M-eNzw!JHdkh%gZ}8`2kY%0YDE53km?pZESL~rn%X9 zd%PIih?|NOL+Odf6ByQuXlZ*KuiImZZ+E^XZNPa4I?tKg>9k>*(R|Ei%J`eB(RqZ1 z#oMK7-IyIbKQw#*RH4JGyi82T6WZqON5h-%0$TK(#b*?%C$t4h8r>*a-<(jWZqO>O z6UdjYs!8@18dNA>NZ^sgoyjHX=zY1#G_C2eQqZV6Q1V8&b)k{ZX@&Eq{SZy~ety## zE@$nH05>&cWuR7eBvDNA5WD~eTy(N^5F-Ea!Y14^vfN7EtCQ%LV*-xhfGo5jnJDH+ ze3;)qU21&cFd(M$*n-;Ui?}c-IOQ4n`1uKf*!Lcn{O{Smc*5Z&A)sTx=pkoBTtCRs z+u(ID&doyNu@V)sJt_V{yz)5+^4n;zaVa{i zqNNh2m@a%)4%=1^Rb@YvO5B5{s6v)WR_E3jpqZS=K`IjdL>2_GfC3g49;D+VL4+7> zC%~0K%;+mX(&J|i?c<$ZRLS#TD2Tkl)e4lxnVfmAOgCgw-4si^&K}#JPL1eQu6Ap4#j?)`#LG zBNB~0G}8AUJ(mh4?UL~DP};PWLHuz{*swKaJ3;-jdc!lL)l)LWzs^o%)&66}&a9zI zc{VeOf_$n%$06HV8{t*j?3FXqzIM9kUJN7N7s+`7WZ|x{i1;0( z`{!QW;K)S5L*$P=KLwRQ4xW;d!l{YPgh;lQ*?Ky~5`qkH;)CR)&Tqh%$V?w)+@fW+ z@!3*&^RJ#nj6Mw*N`-kLqrl2gU4NF@EK%o72qUQzDT>i}$pik7?J%5wh9|#M;}^~m zb}M=UUIKC1)F4NQiI$w1aaIBuSSkqe_gphh&oi_9q9FW&7mbJqjeN?`lZ?YNmVTOM zS*0@pN3~VR+z%K3Q)Nz)XA};)2i7LvuBAN?#G;>i`%@5kH~od(>ousuX#M!*0$P~6{5KTH$4>1QOskWb{$mP+Z5A7B!WEd?-syza#goF z>&mRt&?z{rQa$r6-j0~{ej`(lTRMb0GIkd`yp(dX5(3T*54Qd-ck_C)!AD-oD90ra zDzv=0Al-Q;WFuN5OYr!C>Nrg1z^I35J_52j9T~s&C@wn#e*kyEbyBa2fs%%&i(7kO z0IG3$%c6;XT(B$u{N#NAL_aX=5KJc`Z56MX%nXH@iZSKppjaKdxUjNu%#|YUO8TFa z>P_WtDIDYLOm%s=xXOj3VHn^+A8xU>Vb;Z=;Z@SKVG*KZJ}ON-wY1*5G^a~QAR+I% zB%44%)zB>Ft4wZlG5bkgg~9!!e2Ymwz={N3t!Uh%CO6SR>CgC+8e3* z#DO1d&x3Jt&~@~6GIG{r!1O_*0P58;s4c@c9S$YGkH3!kg$3l70sr%<^%EN|!Q8rf zrn#&IKO-NDJoNz$7up8ers1AZrxD}Z@uhNwZ8krTd|Vm|=9W9b(zdp)cbZ}GR~{15 z(ODYmnWt@@PV}RbdPY?}aV`d{Da0u0;THR~f$83n-jl6GNty`3-aHrkOKUA9?02pvyQ9rd+jW5z8qw_-9CQ~8-H?$iv$#EQ&kS0!W66xvd2qZ zjqs#M=i*PQjMIMXGxfPO{#hFpDOd_J*JgzfN)A{iuWXvX`8?BGG3hsHi0+5Rg^zXv z9rlMv!1z5uy`s>V-M|z1`!qF|qi_($EOofpgs@oTljyYHb+OoqY#8y-b~i&R9?8Mr zFE#sZQQ6?$%y+G;eM5+49({+A&k1W=rO1=-9b04FGvI$LGL%)(l~oF|o`l_TV(ip* z9tw`CdW96`ZK&yN=Hx;hg?kG~!UcgpLOeaWx;01KIGj_keuAUON32YrxW2l*zOd%- z`l``wblt$@d3!)M5c%`r$+=D{~ zE8@x$S?&CA&X88Bg)y5)_FXDq3i&m)qlKi$7Y~$oS`t$TVJSR?`26LeM^>r&0=+h> zGwJDByC~S-e{s{@RouHNsHt`2=BjAcTvty;N7>uT+*wq=n#Z7tTV~&vBsG-l7R3__4doAk7v#+H}@&cc7_xZ z!=a?Ayn;2aviI3TILc-qf*)oc6#wtybULnO74+XbSi47<$0vcNtXcSkC< z7CPM^ymXZLl1o}#`XS*1M z^ol_-qIgupJoSoWNuYRAHHO0vwaT0wjR1YPt0BS}!;?ZlMz`K>e{wv_ABzYMxw4do za66(zVFco&lH53PE}V!{Arl2826!^&RaB04^?=)=91OMG-ns{|MDp`vod|M#@9Zyg ziRdez7MLLfmks^+^__cJ;~Wc@+8mBOeOG^Y|5M#2bhfj_NPr3TP?sgy2`$ykq9r}F zw8c_fm_d(`k4^Ud7~{G)m;K-fV$a?6Uiu|Rvl54TJELl^`FPZwgJA;-Z*ryf-pltC zD1_P%{0`QtFn$@gpw!F60n_gv0K2(0DH_-N!R^kSk4&3fIX|wqJ0}zFecW(Cj4mM& zP3D-tqP+=)*gzaopE)~JL@+Fj%UQeA0EFwqQSu+lA0)-jemow=S=>vM&jMQHR+}Zt z2<=C*-1pRs_dC928XKjf9p+2M`$GAnhv#_w^V-PmVvBN29+vSY7N!oecrwVhPeg;s zIOWdy61HjUkEn)N{N8ivhZBff1oYF#U(5N=$PAtg}QS zEx$=3fCj;z-rHAn3NA#S-1aGoFZMOOB55e;yzS`QE(&QF`D~9*2v-%@n%1?@;`s#* z+iv?2rQZqk8XQKtUkM{)u=@KBh;q9UGaZoUYqYtX*g9Kh`-|<$S?hUZKv=-b(qBn( zPED>^0y~+`mUim(ps)}{#`7dpP`NHiaCteIjvA?@<HMA>UbS`Wb~}?`8pW+om*%bxlsr+BQXqS-4!jE$IMUXcE&THOqzGCn#-O z+mO+GDyH}x26Ny`!}(!KcyCOOIH{&2KU~us+Y&wk5@P%hdNMb)QRhy;xb?-AAVDv6 zJ9_n=fT4zUb&n>)AWL3=5obmgU8u4@ogCwyE1Yr$nxAdV@GwZ}Lk8Qw{=_ltta$l# z&nb~zUFWpFk4r&S5*{X#Z%b^R6H6l76@LC17z7cdkdQDl4>d1Z$NUkuUoo7mSoR8Q z)c{Gv`_j2Hlii6wO^I2lv%6i(&K&a&+;)0I;v5{5R8=oG1^K0*B8;Zn6Z1zvArQG@ z5%#Qe+_`@u&dZVz6Ag(_*Uff@=?!Zxp~M_IjdX5e0_Z%A6@I>>6)H59xC5lI&ZQx z`9<>OY1d7G;LkEor=ryr4-B`6u~Jx?`RlJszr7Tf@1Wb9ww7_9dB?fM=lO6A$SXw) zVBKUW!#-sXJZe?dyBW%TIPE`Iw;8Jpc z8w^&(U<7=mEtfX1QedEz_Bg3N7B8Qli;5=m&3@K4MpQ7%%Kmq>f{)M1sAH9 z3vCd(k*SA2823#-JTiQn^b^Ahw~`Ee$khbM!|^g!pnhM)vhB<@#+MBkIVp+XgkOFu^H+LrPcM?~)nzBMhW~ySUyV9(pwA7GoJtIepOXY^;*Wh}jUg5l*;cLY7@V7>kqnDWa8=oCoF|>jvFoagZv^m!%_GVh9fW zuGwApi-!Rt_>Z4hPdQL`XisS8BW6>Y{4paxmP;`cL%6Msv%-!wT`pO%ovihnbs9(t z99GHRD)D}c7%g-kSXDEUpg9aIYv`T*G7j-ohKv^^H7q5{o{LP!k5-ZUTT#|K%fAvB${n!d0ow0CM~Opj&a2=VTM3=&}SoT zQ?cUZljVM-;9L3i64q45_|0$S*M}8rjvMPBM;(5yr2>HoQOk5+N)$n(?ZkaSKH#;Z zrJ-PqG`Y0stqL`a?{mAM$m;q@aI~P{scD@pK^B9Z27^y>9CI~-%Cb&M5>wClDTq^b za);y4C)P)#LdcA`AAfC}99}0oPx$>3eGu2OX`b#_lMws$%fdl~n^AqdxMk~yQ|mIi znn^-ZPPcq69naBubUERI~ zFY8Qc;evIu%90iYsob*YLjotdLIn~%yj`B! zUaOtX0VdGa_MQiqx*K*`z51oLL`7L%dvvfY1605~4K5c7MNW2rf54#jTj8ZzMFNS} z(>1cl@{4ArG+@OFzr%h#Ab}^y(Kz^KJ+Di|n8$ftJxc!VP`=Z_MCz52SwVrAK=n;%` zWm{I-(VUar&0>_SKFlYA(F1GS4N@UsVYvfdf<+4P7bFDUo*W+=ds&xAJ}bZSdKQlu z>(t$r?oIynYGuW^@Qk&Y#M^3Hwz!*;h~F{TtU~Wb7e4=ssoFrKeXPpR+%F}7iJE!B z3Yru)L4)hJ7sV1hR@sa_n)AuB5BVtLHC9;s=k|W~kH*c%&fX(C7(B-Hx+O*X;^A3G zrxn+wlz}(=hF5c>#Z~x;>fFEEPiTvgyJa=EczqF(6K%IpRcwy!V)8;dO3i|Xih9(! zpVk9rx*F0%fG+@-tYx}Va-LSv7MU3axdmIFsVRAlBRrW`@G4dyJVg{SQu2-Ka=fLl zkfHF*vha-N=DM2o3}@O2ot8u)EPa>s9@B*Ic^M2EJ_2fgx3-7ZDoO}ioKIjtBxp~Q zGf!9h$9@R`e$@D({AZZ;Z%SzUC(>E?QrtMWzqeBy87(KqPpEeSY!6Abdz>?}pBjr! zEXBWZGp;Y$a1r&q5HL4B8-w*zx3`=o|ifeIL}XCl0``stY8%~6QRrk24`EtPs;e6Gy$ z?xPwiE*1uIgsljaVpm#(gz>YBvHCK4`#D99b@Vxe)Q`nYM2zZ#wAcyOv=}s8ys!Dlqnc^& z^m-ab>$ijQZeZ&%KnEv>3u@nLMblBU`$?K9m{2j%v6RytG$(#yjHHLyDM=SDoIUAw z6v;Je4w|1X`8!AsN@x-4&Cz$OO)FL5n#AQh4@n0M*2STIEFz}R94wA9$0iZBr^=}7Z|Qa>)QYBkgP){rWtI^gfexsvYdL)+~7g`QblQuyNHie88B zdjQLLK@n{I%zktH{eCdWL=2jAEnG~bf0iSHC5*7ZK)?Sd-o^PPTWY#^_Qkn^rLmyB zryOPkCCSvo=Ze+JQ%&cuNhAsYLm9ghy_vpkPK8@^x7uh+%-Qay(B3c|ap8~LKXQbJ z9+(tg+d81dL_>d~p}sf|2v;D9BOsvihj^Sz+AUlB8FL#b>ydMknnX6|$6EkPtCzupv2TeeumO$@ z1OkG~(<38gH8qp!C$p-a_qxk6S`~E$B0=AzEgL2(-ZKp_OR|KcZVI!*13oFE?i z@youVnx1TEB1O^RBR^AC*fnz?cHoFipmRF(jd$Qk&cRXyc0nrb0l6j9opINARGRKe z_VD%dyQf}=M*e~lGnOc6;s++-Rz9I2U=_G-;f2Yun{?QW>_G@#D%p7q&C3Un2wWdAZiJH~Ck7JA`C9AQaOMrKl?yM1b!{0^}j||zf&X5GRMA`qGxAVDd zFNZ|M<~D%sOWjn`(N4`WoB$+lsoElV7pN07}Jg??1JY?44&V z3ofj7r!8URC9N5g){5?d`xz%gU5)+mhc1&^F%DMNvR9WSoDdS_=kdzZrZRvB@M{Z1 ze}aVUcaJi^JWvLu0PBhIMOz-Rc?AMm5S<5r#y9$-6u~fyEX)9u0H5 zd-r5V&tc{(w^@N?`|VJLNs9my0Wa0V;HSy1;4~OkuenYk#4&vZ#IV zIEot6>S>$#Mr_uOxu=tbwU2e!+;r@WQu3_36O!EEGgZFeO*hcKN7&|vdpoFVJ0a}c zdA=1k4-b(Ub^XJEN^&i+=#2g1e>6VIN`3(78-dM~)i)m3?NIiF8b z9Gd15q)XgH1A4hT2j$){f`xx5M^Ib4pc{Mk&#fC*K1jDqJ?IR=-K@tX8I?!cvLBut zBv@|_j{YeS^ZOtt9j2&xza*wn)k>)dIV6ZH9rsgOsj(dqA2(jnw@Bfjd%&4(5#_TG zhN`n|cC{${LCMj(uCsoy|Bff9{W{S%)lMwF@VRyxYJ&T2WpN>UUL*DbAm6j%E6^sq{FV}}=`t9P*Ew%TXF%rpa3c9ws{DR7&g2tlax?rY`3`bKR z(JjFDp_H;@c1{oBj;W8s)84$bCr z3j+rH&`0V5igG^=`KbQRFYOcp@f02xGY6v5;7%h(`{r? z@!6Dv&?&< zzep44!uEdxp)^{j`Rx#>({btciqBHBJHUF5MABBiXS29EdjCAye*pt3%>Ce)0$yqF zI$rOTMp|RcA$N>I2TiZYIe4*plcwc38B&xpD@V8!Gt&yq zemQlVe8iWH=HOq08{RYitR%=@q|`$Lt0Y8h-2dyG+{YlHelpVOAGNiIfm5NXiM%n1F_;)AScs_DSa?#pkX3tVc=qwdxNn2K!wc$~do~vcJ6*or$o0U~iq%n#0UvR@|Wwm=?QTWW;W2(YY{` zfsaHe@^;yYf4toA(!YpY5|qb2a%BLICVL;L(<5PZ!}At6`%uu-;stDMB8UF;E4Mr-5$k{Qde$ z1YgkG9e>;y{wK{<;jpL2Q4yNnvWWr^eB zZ7}rZYAJ`v_zA5(L!8a}IxvpdRgpRPi0rdyaF!^@T(KJwO^-NN$E>jJ60Hx~THkLE zEu{EBb?@je+QCQhwrVyTcl$gsnIEXwaCzZbw7=S)&Jc~M%>C$nU>kZ8XxqKTt~YHw znTjswSFTFok(a&b(6^3&VfOlEj8#6p5oNO>F7@-wq7Qdmb!*gAg@wb?Zrk)Apu=3gXkmYgIr~qud!%JBT+r-OC#$~QvIvnpB0e~v8&~!?vLMRT+dgD zF^j)fHTs-0ct8u0y&>Hqpi&yO`XIUVo+&#`bW)axuoPGF+Uv|BC+ba@^+8)yd&^i} zsywmPis*-ribF`GO_eh%-?!ya|IAh1q}f=r?3L^@IOKk+_hsp7C&h{;FYg|E{DX?&~POCMDD^wrYh(W>53WY z>iP>Gq)tu|gBQg2Ze|``8~{MY**4`IfynC>x91diUTV4NMuUmua_7c}4>%T&C-l}To93}`NoQoJpYi_4d4{Sd8|r`=NIpXy$#(1*$5GW*hzOgo+@cZCxk|& zBj2^wewz>)o_+!jGm7>VJ8{d+q_Tb24UDNG6^GuIF%wlW8X#Iu`e(|cy69$RpD1m> zwBuesAu!90TQ-jllOySXNj`bzYEP%pc8`+cB+lIIwbd;21~qQ~b?Bs^1qyq0ANIR1 zO<^i{oKlhYjLjk_w}g~0O+>p{A{m?I?%PX|rbXI|@dZDe%he{jcb93CF#bgx9lXr< zcw@34;GO>$|6YU}dh!odOtR_I7=t9UOgdDw6=#B%CzV)HK#boMZ7#SBZER!mqtqCd z{Zk>h&>qL&qA`VQoL#@)`xE)6+U(;@UhLfWC$y-9gSYYhPt9JBwePH;7Mktkb=eP! zvp{4Bpmw?X!c)7}Dsj2U5FPw)8ykzyD{O4)byz;RlEl!&+BmBB8xLMb%;y;8v*c6B zcyS}{l68@^{=UvQ&A#J4SDi(vvysAB_QY}=m)bS-Xj2}vTkcI?Z3yEP5YZ!rQt;Yq zo~(2s=zp9Pt9Ul5Lc^g^>#PZ%S(kZ#rZ4$mJ5X6)**27Ep|L%`c{#|i{S|PCVqKW> z7s>o~ATzTI$d-*~ch?6-YS3X1({uPf}7G2zSoBYxhCovJHZKApJ}yI-d%>jG;2H)TOSC@ z68$QCx?|w;ytVwWr}uGw{ZQ=z|fH!qkEvTi4Fv#D}m8}UzUR7=qC!2j-7JS|x zbfhy*Xm2}~y*%jX#B#x=k#WN$b4_}o;UOJ|n(jBo-kdUJ^$j|<3q6wRT<2+#j?h7^ zV40?SPPedq8b47q-iip2_T^@ac$OJR5}P%t+ChEKDac;rp_Tk?BL$d{sHnM#7=U44 z#|_Gcr(3l@pN+pIczrYULt2X6t>SmDdU|Cs2_&3~Yf+kg<^%v(Q*P@0%rPbC&WP!p zR#x*_@zW_@TQ=_?+rfLcxvFYneZ2>5#N_GygJZ(`KFZS*rT>K&m}GzhLo<4CJ!2-U zag{e+Kqq=e)GFUU#Rl&7;7wgXiVX`jz8|B1*^{P-2X^m*KrDw5r@(+KlF=yeEpF72 zdf5XPAWoYa|5z#C+m{khAu*K~Wx)eBV$Ji(`viUERhLbIYH`R~ z9@$IW-PsJUQMSI2GwBLA?-;ncg34l-nn|#5?(5*gjta5atB<%zbCkJ1SG|iBt9Lrl z3EDD&>zE}ZZ7|3>;(wxw?P{oMLTeT(f2!K&Y#icp9y+&Zud8I#L^rsKi|d$G?~B=7 zpZ!ex!MYd0%na*Hd(uPSxoG0}*t~->}pdk1pw^SFF}V&geUh-w${GeKw&G1lzhfL-wtsfy=Yg$RZB7kK64fcDf%&RnI7m>_L0bgLu?lZE7ak&wvr2KQ zpd9KcVLXLfAfPIQE_O=tcw>G;45HI2*nZ(J8Ydn6W>ae-^}tM<=?Jrm*gcx4)`djC z-A2TT8g}%&J`vkMqY3m?v?dt;nsZE^Z-oGbE1iN!C5Q{~C6Cx7ZM1R=c^SDAx!J#| zWQh~=@_N(|=m{l55k*x&>_6E~=%75peP=|(YR#dm-)$&hMzY~kFlpoLrho38HAY1K zpi4A3&d5sS_9CvZkh5Rv5`~+_nu@^6GqBl>&y}`pv?nR&?ktj9VK0$y z4nuVj#w}G}kodKub8ToNYI}zZ6$l`gV(q8egN1s0C~!Xh)!Z7hb|-z{c%aPH^RR&w zrc!byEecAks~pyOp3jS!nVIS6+(GqYQ}69bKh|ZPVLf`!GV|=0JgfvIv>xOy z#%;W8^lh02LFiFCK|ZKO9ytnxs}D25u6V@bF3gF~BQrInWm;5>XY{EcE|l+vAOh6l z135l~%!eEm{HT+JZ^bR$&~|s7UI5A%4Bt`*Xgq_{0yEZ4c?E?sP>1Vzc>(%PmdAJl ztnOzf|9=wEReV6gc=>dgkgcsPXcG!5^g-9gr%!PMo7gnj>i?gl@S9M+^YJ@kJSQUc zUOu2bad?}7Q)*JuUwI1Uv`PQD{mVE_`Uq&d+NLs0_%*U2#mmOU+Q~Vz=aOT z&yQw_j*cehb7G;UZk(E$>h5L+?KRulOhH+&KE;n}hJUBs|6LeTOAEL0%-R{!MEG}w z$&33#(LSf2=;Oaq*zo-WU)sMQvL0U7yQ^7t26;bQR~uTAIj<&o zEol{!!BkF({#g65m8$FQIsK^!yvFg|n9@?&B%#v<4PN~Yd~5oTqxt(uu86-1VSWzt znoh%;7br^a?Dnb^sY&_Ee|`S1**lWfZy4o)CS6BBPIP^?C$kw+eOy}NytnRnL)(e) zk7Wcv&K8w{C_+Bn#H_k|xq_+*mwOx2fy~+0{xm0l!MDoyH0u$ur2bVs@Jr)nKB7>Q zTKfNSY)&{V6f7oNP0`Jh?$%&LIi32O)!chK_wFqJxtgN|N&sOIs(-{>!*?)w3chS^ z@3DD4qgF!CIV4BU0POt)W1mnss5$%jh)?Xh{)w$NQv{>#No^TjaJ9> zx1yHXm+%)T7-XP@_V(cvx$B{(`R>u_CZ_dBG8EzeDf3}PX-2d#X>E;ChF+Z2H=b?+ zVV>20GtdA3F8H{N0refP_uW36EaCd!^Xq4W{#jc1pw#92o01j%1-0;p!M`4!8FzAZ zmz?hnlqOnyOag^OYAKxx3djw2D6}S=q=po7)@u!Q9r3^Uf4F5AzoVB*&s#5s8fD)l zw{TowIE%o{>5Zq?9%82_s?y)XbZbhpFgaVo&o__&GQE`Z7bN|O2y8kNxt&vgKemTQ z(j`Z0!qfHDs~$*te@$BKOsu_pLHx_?|CJX~L8s+lY?C|ihYhSj@K3i%w&%$mmdFnZ z3Lw=Fgj}Egs4sL}Zo{IYQ~65!h?;J4=S)EaX7a!4!imD1l8G|Agkurd9eqZOn<8&m zL|`g!TbEU?J%{so68;cNhcT>k1oY(R2iKy?kPnY)n_- zpBfc%Z$g}g2?ccPiL9`1v*#+d8ZuXG21}z!Zg00xfz|jLf z%Q19GUge>P8frY2nB4*0HrI;_J9Il)R{GJkpBtAg&|&F4ldXsE&p(1`CexS1CKi zub*I;dA|g~NY)9;Tn)-5DYV-+o&;cH>kWg7-J6Ric(Bm(1mlZ_b6NnMnxSUz?nGchxpF32Z5@7YmeSn2;VK$9!f z!7Ao_gARxFIQm`Bg=`eC-0`4B2a7oSm_~DNa|+-O9Qry!bjy*OXluF=&9MMv1QM?9wr1LCvqD zAXU5fu085eSy)H1R)1TXB+vSXr{#~~+UZHrZFkMLUTbA2w%JRxt7ofd3})F&`aeli zdf%%${yb9p{a`*pRLPeoxe|GbYNPaXjB2V{TJmlCs99PR>Yl|(hCCGps@dK{!BJY3 z9wi%k!Z(9ZAmr7?mKW0c-n#EQS>z1iA4-Z>qi#svA;gC`=1neguU~FEjMY`^s+L{M z4}@G^6k&uuof4B>AXi>UQyEqdqkndxyh$>u7?eJZWMOHZT4u?& zeM%X5iW4YYoD*Zf_flM23%6~l60cPVN$*pH2*wxVswgJ|FN1K{`yK)q{X|4MD;$?7 zp>rYoEh^EgPpNY7r-e;Y84>%aBl6lGYcpDRHtzM580E9DR@TznYel5*y-lA_ec~>m z8J28*Ph&=|c*3u8hJHfFZ-HOdDhy>l6Z^q)u@I8d9K6i%riw`#*0`3XzShS#!2GH8 zbD#!4o(@dQPF2-hM{-xstEFiv94whPR ztBEk3$Bl%TT7GuNMR((ky*-%qGWDB{u3B0sE2|l7{K=DRpye>`Q(VV!n`qKQO)eqX zYj|Pq_mU10Mi1S!lP2lNa?>f6#f3wc-k*31)XBu+Mq=Qn-`DPb(47KEUmE4MkUNNw z;9H{Yh}}N-^2VGuVw1OCbJcI)@=ApG86CK3x62(gz zyd4?@vhBxi?^^Wsl-@m8j;GdMFdZt%c~LN=VB6(k5lrP-M8%z8;2cLvD?gr=fgn*^ zwNjk%?gnk?N|(z99x}{~eeQk5VQt0XwHX4;U{c3wo*0QN+-D<=o`NquC2iqm2?DKF z_6bunwK40p&jM_QFrBSQc4GJC1zsMh@7+mcT)YM6WP8=_y%m?Q@!N&j>g& z^y9N%ipR?ker>gQlG6*X`*6{h7+$l}yMDQA0H%!DEoM+cquxP=( zt|onkK(u(C9Yh#7j@Kj-C)J>bC3uTi0JB}6E|oG-)qK6&ay6@Hzds_UtgBaRL1Bl( zCFMm6B=B(~1QijrVqCZAb-6`Wn9R#YgxVIfoyjhA@}Ar;6yxiBhrvGAus_=#de0fW zE@JttS`cYM7^0B1Q5eqx`C!X`$n3Jx{iajXb5g;POQ#opO2klu$q@9?ch#K5esX_h zo<35dV-D-`oaBPB(=cn_|4v4yy=hs-9z0|I=EyjAQ4Nh~1MFs(4SO`)D2rke6cs-v{L#3kS<;8AZnbxw)9L?zd z;Jx)amu4F3Zr^;h`$xSQzsB=p=nbjH4QejzGe~MIUMJ8SK0;YfiBSCjrVjd4J$f%| zAf>y(WUg!LlC5?I9IM)^8k%{%Cz2VZdMO&#~CkwLi~aN zx}|~$A7%f9129K>~bY$!%>T>)?te#8>LtmVPC3vY#k(H zxCu<@uz=Q6a~A)Z^~R|*AfFjb0q8Zzq(|=Dkex09=jiAt@CZReG3)ViQ0Z*L^H$}V258RFGWMuKEgb%0C=1TUSvxkq!g^nX&mW_@Um%m#t3@Znhg*W7oG%MFOH zue-au1Bvj1hx(!22KCUms7Olxn&uyao(YXY=}%7qR2Q9~<=Us#B&I;r-?aV(id-9_ zkW*hz(Xid#DRRlO322H18d>el4cj69_T9%c5MSaUySg)yIUjC<%{q}P0jHGHfu#w` z9axf8h^)Lk8{iTGNyF^MUGwwvI(^vx7Q{c|7Ga%HZAP}-O*sP%uFP-t(>_77l7C%-b49ik&Y1HOfpOk z>6ejW3HOo`oidS?2R;3iLBli0&B<@bqL}}W)}-dHI-gISX4Fm`&Jf#Wd#Gc&V|On3$+kJ3Rx-*ve`H@V{^pp>M?f zZo7eIHZIfESXZ-bweg-SOr@${C$H;t3dGMw2{pbT>jrJK00%{(^^^eUK}dMb_@Bx9 zVHkby8Z<28HmlbW!4JAVwOIG$nQpR7UZ9i0A6oK^)_K+`Ws{yC9a;Ze+5fR&b7e3m z_722Zb7bwp*sZp)#+Zlhr~$(xv*J8T}?9V1V?XSlYZtuLlqtj3JrUQ(wPg0rCwoYNI06 z_p+G-W(m?u+fFvOf4`7o6pnR^U8s;IZF60lHKVTmY@Ts+f0@^PvsbS#d}vilObpIx zK6o#`8V8VPSWi|1a;o=rb>xRq|K2~o&r@;)N^kD!>C`!=d2>~c%v8E2`{cUk<&#if zrnnF$?OL~`F4C3yxt7qfl9JzFSx4B8-Rr@+Wo1+Bh1I1ibFVI^S7mQc6r(yY0$DA9 z?#2G}z;av*{Xe@Fcxg3g^&{39#_!i*JcG*m@MHiE8$Eq}z!ijpg99da)}iXzRbwp; zH3-UqcBC$+r(7el;7PtggY>2iw4Ll39u@_G1L7+P4i1@s8?aU!X9hve&|k*qr@2RmsPs*xtFOguV!+-5D}Vi_ zaaVjBQ2Ex@%n7m0JK|bw zK8U+0n(stSISUK0nFbb1AsrUOZj9kmPf#~^^M`OSeobS;<7NVAfpM*5+5MtP+AhQu zkeZ`wV`H-qE>+5X9T>>#ady9C;-=_N+x%;{pD|^hc?1qCJaGkJ?*gQ8E8C3frTv40 zvp3m)6Cu_F>`q-%Kweyk|I3$Iem;PehntgA4ig_2x45|YzvnjaKjEirLZ$jtt0~bH zMS{~EE}>S>>fjA0M~b0u&&<5Lmn6l-V}MErGS`+ntd9Z)GycPI+w0e_|0aE~A56fe zJuU>+lhGldtKsO_7~rrwIXwj}PkDHFDl01)@X@;dv^7ycJT4t=&N6w z##*A47H&PYwYBxN9Q(K*zI1is!C|f|cr8?Wrt>)LwCU6?kbCL+0c}3Ew$zabfZ@Iy ztpDx=Laaj4thyU7t49<}hT<_F^!*a_KSvfP7kxICnd=AhhQfX5hZA}-6Av0-nSgc7 zo+oup*K$}Jf7d5g@UjW`c_=frr_7v}yGWREGxuw|!rv_3uX$xtv3&6P-Z_FlCwE^l z?__*QgblJ1aamKPbpq>%1&%`^td-{Cx=C2KyjT+zEVFb!!bsSr zt+X{F&Z-C1y7lz{@th+$F3=sWYcwb>J;*0VMK3+1T`wowols}Jl*QgHGq@LeEM(Xb zI&rR9TJvnsCp!l@qSc7Ecr>D-wR@S3T%0qto6{$QbyS$QQH5CCi`JL7tf|L1S zxA^bhwkXGSa|*W!j`k^e@<=Ufwaaj6|4mnfhOszCo5U_jbm$S!iUm`&2(%{)S1mGL zhbK}a`|WZ`?2En?+`|XRs$D|R9u*AM&(?$R9IiC^EG6@RjHg+9H+)(a`sq_$N;L8* z6P0LotJbcGTeX&3^SH25a+25Boz&4=B&}?>G=H-; zR8F*Zay04lTG%cr8`JSTU)V}BlGw1 zx6drg&M>k?(!OH52a-8QD`hVDI26_E?C#DxgpblaeGov~Q$9|XFP|oF&Ou)iYhe~F z^8RVXgjJEqdu1{7FG91+^LlaOf++9;SBUXw_SrG{_L9fLszvw41Od|+mai+Tm7A;1 zV&#)Jv_&l+Hjr_(`gHhHXpLc&MOp|s*ouwL;k1{>&>|tDBB>(z^2#<&IE;5;kB|?< z-m`{hOSTzh(XmHrKV#)_6DU*2up=yCO7XXl_8B$gL|5Ib?cxzk>6sdP$R?7KpW+}! zu~)8%;nQr|%M0U4UM3YuXfd;M_L1-r)!+Fbp26y@XjC_}-~ebn#xsO4t;fu*j&AsE zcrlGl$e*6mpPox3D~@bN^70bBj903AODMZ__MGV$x0>Q*)6njVGnwFbFE7AroK8^W zb}T#}4OXif(c#AKv?w4hVJf?q`PM1cygC7sk95Cr*P$O-6C>jlSoH0g_TL7CqE$bj z@#~>GZoM3H_BEfwa6}c>%AYdhQf0)?Zi4XyHd*YPx@o;>&Q-2Nr!Nx{=ZKWd*cyT9 zG&I7uX66mOsc0ukxw{-}{MH{*wqekyvM*IxCvJ006j~%$@)k72;>mEe=cR3&NsX#I z<~O@#Ff8Uv>R-@~e9^lYT7VNYRp1;~R*chi?`G6>T<+0$qZrkGaX!r${XAx=x`#$^z%NPKGB_Ga4e0<$@s@`;Q=f5swAhEo=#BSVRVNIH*Eai6 zVt4|}-pfoivy~RyGB7tJiXFz!7ReBg{}7b;0d^;zepz8;4OG-v5lC;4#Geg(oT3# z4%iwd&S*V)(s8N2d&#G8o*_szmQZ(O=-e^&!Rl$YLkMZEt&R`d=6PU&2ui?JMZW;f$W%)uPp#h}?6xqKb_?4#@ST7qpy z*HNt!<-V}1xLaE2V@{2CQoYOau`XH-uG~}EPgjv5nkkNp{-6Z2706*r;Qye)stFQ+ zOLVWb$={||?(Q|VMmM9$b2T0h9-2T`ZX0sqPm1!LO5QEw*(t-yvx!^(M&zmeMmi(P zmH_pdWW8|&>{G-?*Zms_`RjSkLu{)(Pt6@rmj_1*72I4R{l~Hw>>wV|iwAd+dE9vF z&%M5GWY?$QJsL6e<<%hKlOrq~)xe?9roc~K(`K0QjO_ejpx1zr4o>hu z-m0rX^zL#uV$%l4Mn?Yjk_=6q1552O`7`5cR@E3AtI+ddo*m^=zM3|NyKM@tO=BKI z4tFT{=nMnck^nAUryoK^65%Lb-S>9)~|l{_zv(^x%oD;?BJEd6Y{s%D$WAy&&A z^~U+jwiv_fP`ni9d1R~^jt-23x5QXQB%(t+yX^7K>S9V^x`KtxQyO?i2t|Pf*dp>a z1RyG+vtLpeG{I+kd%HZ{;oU$w`!}vGWovl8xaPxhsgGZdLP-wqNi~hUJ_=Q&+kLva z7{Orpj?%PpL&xPImBS<*s!R{L7De1@y`kghffs6en3p5cJjXj_!-dMngy?FyYRwxo z7QW#IIb=0LOO_S-T^cy=(#X{wakbYQtk%zCL-$NZGyx(JdA_d2SeGYQJoo%gmBlw% zx*3e|TVyqOg~J+p*Fwv&Gkx9OeYWD>t=vEFykT^2+b&2X&Vr3aSBA&2dDYvG9Bt9_ zaTUH>N8E9`qwK9;r@o&j%Z5I}I>UxN7Rb@AK&rYolEUAJ#lNw`?}yo390vH8G-OC- z%;nY_Rt^r_2QdPR0X)AQivNN>z79D^-!-XPHkoOu?*7)~+rvaabR2QzOU z)a~-9_y|;&WEI~#(63*z?(ssw#wgdwlf6qFE_Un2qsOTF?`~Wf^P6`lr@hCCeld46 zj<6?^F(G#`ic3q$?%TX*()-RVDlRVWQsYsLd*!LuU`{8nfR4|gr?U^0{vN9rXxDuc zF|$q{;Yzhz1z{%6~Z9%$MMTG zBJLEWY@ahhD2J%PtppO885!3BJqF<7pp}kK@_3?^e|WOL3Rs(wkdOd{EME!TH$W!B z?|E?susx8@Q_Bevk@RZP+Xw&l_R1%$u0R5RL0Va6w$oE|=HDT`m;E;L`Q`TZc0XzZ zpb=hpe*8^a4G_tK4*@Fd>FKGbH#ph$pp9Q0FE&eNy>9K{zG z9u_=5(5ioY|Ku1HNoaj~N)N0YFfA)7;qRk~!(f2XAgE)Q2B!_&APX&OaA2S_QScHl z2Y{aXphxkP3+H!l5Aa2omX=OAqqm%E|MDb%Oiu%~v9ObTu0X+)`=^%T;~BFwiC-Ce zB20INLqT8JCZ^C(&0-UPA`=DspUg6A*H#;Mlda4FLRioly!FXT=|ll{Kv8SfYz5q1 z5&gTk&+n4}yi@Tm?$pK|cBC-CCk@cMjqskqL8B72kIO$?+J9Um0OwlZbvla{T2vY= zbBy90W|>U7I$Ud6JW%N{itEI$IHU8ahjUwN9WnKyHdQa)f4=YIrb zFiA;wa8b9Ns=;K*%bX6v0O6>|ddZMdzE(m+1i(^S^gb3`eJo(YUGDI$*gRS2ojNW| z?D*Ur{{YbK;*yh34G-UqZqM@RFe-Y$#MEU}BqyVkJ&=`^1)OFn7|adOua?z9=>bx^ zyVyyBVcc<>{Xp?YP~o5H`s8b((||t{UqRa@o zB;)k4ry+L7cH-k4qa_xVCKs;y8*x}ME24`_kLpgdddM+@tHv72s?gY*d_fcBj(7a7 zyR87tV=XB`i3|D7fcSpX_g?&}v|a6(w#}Z}E|8|#o)LJvdg+aLGmCC9u1IJPX2`Xs zqsRbjp1X!leD46Y2UxSg9$SuDidR-d03|d`o0mWtj=t#gi*Yc z8Ils+W^Y8BJZz%@@So=2C^`V3`vH9f37EQTR{+OM1MdSHe}j5gpI7Y2a~XYkzJw7^ zioXXFG6DC^#o007(*PpVD6=B99~oe6`TYinEEF#AFcyW%Glfb#qXuC$7K(;zuO7<- zQd@cX?^u{G;lClY+09;H7PpYeL%9JAsl8M}6mxufegUw0fHwlHer3h%HOl>l-*>Rb z)(R9wkPt_YvM{#GBByE&po`{sfmz^t}0&*+;=NiSFqNKYO-KY+e1)q$in1 zGO7d4nv$Q7c?FOLaVZeH(RQKb{Qs6;>WJOrJqrZRrHr6Y3(o;1IN*rBO-#&dIm!W; zc&-SBf<7imFp5t7BwTO*Hh6(=QQ&uBd6t0R+cmR>tt}S&DPKU)63^?{Wx>&9ca3v7%zP>U@SzzU^TiOj2H`Ep6!A&M|pWU zK+APF|Ixee)BcZI$-p1xLciZ3-l69ON=i2!JHf5&ftABkKmZTIz%O3hyBZ8=^=*j@ zS!`8ymo5W9bI+mFSF;juMlc`D5to(*mXj;4v-zs|;fZ;;BqeIT*g9)kkGN8c0<7W$ z$iD@oGXRTK&QZDcpYz?rGfg637A~fJ^t@;0rJc`OzS!GFnj7`ymDtXs^a0cQnuUUj z3h+ zlkDoU?q}0|0N>iz`ZzPQI+Qfof4M%LZYQEj_~@dwl2=Bp4Ilcd4>(h8iE`#TcV?gPShH%m*#{b|5sJ~ldf z#Wq}n9Z?y8HF$XJ2GH+V5cm9!G3zzG2J9wF?_Bdh{N&1eCBH%W9%|K2qcw&AiXm{u zc=Z@y(H2~BEpsF54)K4Aw=~C3d`XoVAjZ#>U+iVv_dos;$$kc4p}3IRi=UwLufb8o z!jrTFL%*wDf4ryDH~|sSYd5ow-7DDuU?#1gZhimNk?*m!p1-kC;Ang!Mn7St=p-|0 zP_#bfAM<*w#xgT}6SC3kkK)PG;Jbi$G3ys4R zxN%u2@P{XN$4#K)jL*3>sJalj*Wm?`wXk6!Vkn8)b*LK+MBo+Xf1Wb zNa2tZ(^~(~ICJoE{rcubIsIZ{o5Shl#ZUzN@_nUR)_8Ti;HuP&H>U4y1{SRN8`WfS zv>k2H8du7P!|WE2Zm+d{{fo?!Kt%gkPruWiUYk>dh1 z(L%)n52}Xl%n;;E;-|k4G+vpH$hS1$6sqzFF`FRa+~#7CZIpV}uS|f3@g>>=tJZ#T zrCU7e%#ZIv-*T||g~)skosD4mTBT>W8zvL-Q@zuy;Df$-+xhe{jNGk5fqpYZpB%CW z)-RlVI;;|aR7v8`0Kl7(4RXayb*XyYXX^&~o4JUVDzeen)j1 zL)62+Y(C)qh1`PU#rnpj%XXLc#cK;k&!gU4IC+-j<}!vg3G77UUE#x8D}lB_=7?q) zcFp?>1?n6f(g{i0Et^zobx~vHVQAOoLjd6B>>zXGh+W^c{w!X4w`__tE?5HN5tTu< zA4Bp-MYnWuD9flDsRsKalXX0mfFYXVF?8tX5WLY2Jf7KgwKP@1q2q6P3ubvd_Fi1J zeh#h(ZEO%u)4<>duHGj?L!a9>22mX)36IsysRm_sL8nB1nGL}RPw2vw+CKTOU7+M z1OJ1mo9}Xncsv4aTIjtW3{YfG@ZZJ9kf8CwVVz0E`6%|y?mk0<$Mveut?O*h1De+d z*~iu-dZ=}Tt$a~-O@|DOyrYLU3BT>JRH3x2I2@K7&(9{wtZ#pPUH=PFUJHeG3~{ zMt7>to8&UaL|?IVEapBbp{IRmY3in9>1<$WN;yg;+4sm*d$XV&|Lt}|UDjJ+9*(tV zH#l)zsL}8GeU{E{nR6Inw0arr#1z-Gx_itiVLU{otep|qBUI^dJ4L^BeMcSLBk-M# zQcZUb@pIMAyst?fV!9;IcjNbSIQ-7MUi9fYJ|LO5<%xH2y)%ueg6>fi<%XXym5RcX zTX*?9)}Vy|iZ!LT7a11oB3PjeQie@}jDYc+)o6Qh6s!Q+Y{brTuV4r8Kiz&4I}rN1NUymxd_K5Kk$Oups|+%mnlo@p`g%ox+wx)#}InVTd3H0_PGQu zxEx>0HZ4m)EWwcA$e6(SxJuuu%97Ls^@HyQG4gnsbmhH}H*169Aph{MqPFBHGZ*p| zcsOnz7Ga-FA(vhUL2EsUbZH_~@ zSQ}R1*=H)Uz4>xqQah{&%Ve4!O zRc)y7e#lKQ$Yw1WM}5s(Y50B@-HX_=-aMDOYLcjW6o+B?)`*2PtK-9lB{3(9hV2K! z2QNMw**i>q_I$Ym#W3DP-GfzG>0%+Vj9llJVt7=W`MW5L~Ysq=1i*&}j387+X#-dKjm9k-tbG`?nsd{Ly zG7MgqVB{(l9zo>RXp@_KAuXNL?k9z5mA;AZ1`pQ0C+X$x?nk2x?k{G8EW0SeGCQ%+ zP5Q~j3Xfsi{lAtmT=Ld1%~Ic;?7kZ*=B)>UQJT(b7~?5vE#cjm?>5`~5h1WnJTPkhcdcxbN?EdhK+*@5P9Sw7(Tu zifp~_yXKJbwwnxh2icFWu)vVxagyXvn|7SG&Q z=DUkcKaNVFnJSM`?vIMM`v&3dG%mj$(8jXrjIXC5C+H^G<*T$D=j*QajC9t<8G%*J z<+gBFxQrocSL1nP(0CZWFPA}L*DfmK>ObGD0;#;@$M=}sFEb2T1;53V33T`_st>+% z>4jw$*-eyuRP#0quUZSp;OVyIjW!rK&g)(KtE%ZkxalcbIG6B!#-ahr6*P9Qd$j1j z;fNCHV){d7O@ZmCw>_xUI3jH%(?Ms(;DrOJi}c{!?lWpWWzYR55j6+$W4m<(!1)*J z-J~Ctkm`B0R9noP8Sb>wRk4{s7>>}h(pB|A8aWM?E5W4S=Y`TCWK>qKSNv9cQO5HL z!1lMvNs@=NW`{#-P(S9Db&a}*mg9D;4+xoZKO(CHJ#VH3)*D^ZGOr74k=)iBeZGXETd`%#4#P5{D+<2Lbc`%JRSu;+blP(dwN`HsvQF}8yQ1uG> zCCtI{UMJCL-MF$du*4K?SqYA^3UJ-`a#Z)(MEXDx+jqa;%k7tY!}5{UAEmO`uQ-qk zcEo>JM{qL1eCz5N(+kBbMmrw>mbz5fb;T0B&w{nn z@%&E=VE*5Ub-}E#uT~*x>U+8fC9$#~hc7A$iggpDWkfTo4^B?jf;vOsp|t+QMq2-! zc0mjd+2~r?;W3^p1Rd?|l44@tlifr`UkbkmIe{H;^JMRz&-^J}VO*AadAEmE9;E_Q zA$+LKY27Lxq!J)W*C3S29ED@+;FONw^`gyyha`km`O(ijUh-d#D$F8C*V|(iXY>g% zRF?Mb_o_h4(c*>nXj*FO4nVvN3Nv@;u8JGvHWEWJAzwfyC}@U}LQd|&(P@{xrOn3bq7yd`ZG`;Qy?KcCwR#Ta8neu-=2nX8Mc zHkO5t54O$#Qi>K=^XqDX->sOf#HdoBvj?zUnHxVv`O}&3ZRTpzm~Ztc`rClj({pL1xT zoC{fSabeNrK%Reo3;_K^=S4z|tH7@s)R&vIlYK+QYMe~8%A_dvq3ZO-`6&SG0TnGs zQnIViD6b*~B7kPx%!hVxZ=^1yrzC9qccLK>J=iWn>6dRfKRqNSB5HOsJ9~4* zzXR!;GiSQzi%89yuXO3Y=4zt&GX}P@dByGm-##`r7J%dHfV7uNAK>e50_0avDBnyY zVPU5!>Ul#y=t&G`H z^idPY%*o-iUA%QA``XvU@OvGI-Gm*7ixfrSwO7wUf*z|6|gmvw9C;_`(r|TP7 z6=YfID0{T@eo|UfI#pt~=tRiK=HaQEzzR<$h(8@4AO9gKn-mff!lIkz+>QDjVZG|#*sYY_lS!5-4{`hOA|+>y2ypmOzAWw-J1y8uQ7()9r%%Hy;(4dAkBE#{4@ zh%zmNiImey+oDU&bh66ZVO`zyODYls&;n~|X*oMrH0cpus$P8-7gQr1{?Oy#h{iCN z!;lHx1g|k>+M(+EfE&=5-L{) z(`5WE9QW^oz~ivR!Phs;rY8MESHqzI3hA4~vs*=hv`%q*RfhEdf^U2KeX#6SS5}CK zh&IM6Z0DMTK@76zPtdPUL!^Fs2Mws?`HY5YXMRcF7jmB`2Pz9I2Q1GZ*)}3Fvc$A6 z-Eqp@adj{kgbF4mCd%*7|E4Ec{4fI4ZVOW7kT}OiRSatNgZyMoWTiMqMl>7%cZ2-W zk&zKiP0fBPkQxu5(NJx14J^FhmR5i;lmT6)^;JG;(7iLobs+W3I0g`f-JER-oVndO zBPJu00dPyI>8t6OhAVN-XbPCnK}80fRP@J{|K0LiVC4=Ch2}B)Ux`-h2Z~o^3k|z> zl0x{tLwEr71B>!IC?_OTU+;qq2<}A5wbFl9g!~fPV>HNY17zoV_P6irNeb3Chh)AOQ`$i1HugGsqhh|Em_&M~1=TS4U(H;vBoWp*N z`$yOzfC%cF|4O3h+h^Z=!7G;e`!S*U5AO`f_N?OzH>3(kRgL+p{jL1!KDfUUN{HxU zo`Y|zLk;pG^5fG~cx65sF|`eLMl;5l@i{j1X;_X|es!~vQbDCww;Zi%aABKhGP&L5 zE>q|xa)h2}5^)sMz&vSJ%sF{EM5j1)EVrL{QGIeMNTt&0>6y;Axao4+@)rC1v@fHs zo{v%IS8~hjriwnQ`&M!5HRmov#Q9-s zxkIC#=OnhO<6(B6+>NT1PG$;lTOHPumcDo;iL7MRO=t0n)}Ekkj8)VNMJeTm*`DAc z;Ojzfs<0`A_UIKp)xhg;(ZsnV1kT88+Dx^?t6(|n)hsFvKo2!14f=!1U{{WkWPT%} zU!~SC6)h;FH7Kh}Md(TjkQu+phOI5k`hK%Ex8}>Fs#GPBy1AeFu;kM5x^+wea|fdO zf!e6OK?0|FA)C-gt6IBBb)UeDTg|mHg*4=^1y6$oj1y0VvY4DdJX6nkwu(?l*t-ZX ziil5;0vTthMm1fD+o&UmMU&IjyX@-vmYv#Xr=4)Yd%?%6pyH5HMYRJnzq!%QEq=NT zW5qllu0}7_S$1>isnJFSx$Ksv@w5ExOlvVTO=WiCv%UD1YK8 z|5a-9YSX-`Zw6%ms4hFVFYqb5>Obsom=f5` zV&3kbxHDd3KG`ghsQ1<8Aaz;d{kFWo2uv9jy{V-}p2B*`ba5pi$Np4h^#CWRMj%^I z;E_iupPRa19OZQHjd-HoEFZ18f=&Vw6N1^|8zY^FXr9-uW4p4-4lyTu|(0pHPyjInO9o>`->y%h^yWfd-iWS!*WmUR~L>gWXn8VuLwh;0+ zWIRcgZVwFPk;bxpY7Tw)_c=1HhOJOhE4|O8cTg(5(o4)D znL^w7zoszrSXHYTRBJq}l|;H0H)5=G3`6auyk#1&d2ev(nB>M?WS{$ zK%kH@D-nYT{|xL#kahv~m^Y-nI)NX<%-=i(Fh8fOcb2e+9 zLUnYdqCvAk>~6i@@&u)fu@ugjTlj&KdeHb0ivqQCkNkn0BGr8^wB;O^Y}M66XK#$i zDXwp2ZLRnPZEjGxyYqOYJbgROXI;zUq>0p6j33Wa7Wj*XDmARq+LED(in=Ug<79CI zALO#_)fl&niGtfq?5ZZrN<=cKE*5*?UG*h=XMB zy=V6Ji6eUxhmfo!dxem_$;u`>duQ{zsXmL(uRl7yUU8o1x$pbA@Avz9U)S{($m!Sa z8fqt);BSdU^e^_A^g0vIb3MvZ$hlD^&pab-z7%EzvP$8RfP1qG2DBb zaiD@Tit$RQQaR`L54$IWN7(kH6H0+XB(3Hgv@Qgq8i@w^;Ad`+VptT64XGQN-Q(g= z#Li9?*L3N#472yhn^kFZpwl_7{VmbV>1@!nLy&i`VjvriQSLxUBa-Qg>i{Vy^G8->l zt3fj1W11`QdELMA_EP1iMA44|*@0AYJVclRJ`B^F2v^2=M}Ed(i@aXfRcb00k0*!e zCV)a(NwP^z+ygp>e%p*lD0ANfys+>dP*^c*{5l+*_9a_)G3y$P4!Tuy38P%1bsk1k zBHC_NLR*iUEL4LZ3Mpm1Pd~=^XlAm+{_b z_*OIruPhit_TqrL;_>#5yKw&MN#R1dVD`a8&ay$k14`_Gdh)k^RM)txiwc6io7nGKrC-e9U-6R1on?Xm3&(y5K z4#9MzN7Zn?Y-+Yh)tr+ogzk0#B{>{LC6EMc7JeDP}Pm+~`&Jyy=Z`n-$#1{Ej}`nuK%^6MYja)u9r7 z#9jQfI@$y%D8)WU`!=0W!*2UMx?EXnl66uZoq0T5CFgOHuIG{a^>B}=MfW({@VJZ_ zdbnj!(@qV@zJPW5q#Z@5>Sf;(cg(hV1&l)FTKE?U?xVV(2P{I2vo1@x90l>a0S{A2 zi~y>**VJtnz1t_6b$>f;R`rrkcpi5a`|P#8@e|s0(?W%YLz`vI3N0?xU2-gCil^(l zhgh(8kJUJzQ}Anh_8OGfI9;B6;Mj)pVqhkhaDbTCfY1q+%gc`L52<(+Y%&=gT)5q< z!fUEF!kO6)`}W*VTI*e%aFQtkVohR9@f7c_{!TEn5Y@L$KSCj*gvoU|f-F($9*6$8 zebO+)%gNdZh}!&Qh#s9l1XTy6ayNZ*%}x-tgK;f9^cL6UdX$7m%eLH)fpx*j$9D*z zh&hSTUAzAfY;0)Y?W`tO(<-^(XV{=~|;wCcz zxplR(7S&&Y?Vre`wE3eLExu4a!OCiPv-``umDTpQ{t7UE2Y!fjt_Ef@SN<0U=kg)I z28wJP=tCsa7T&n%7x_rol57zW>SxWCEc@Y-q8Y_rnZLjG&rBasK24@rpe-9_KEM;g z0$t*TMf`{n-zVO8iWgnbwgC#87BHw;$M}zHHZWJ)yIvVR2hjjzmiDF@?>=fyUsIch zk&*Ad)>dPfDEV)d`mf*@e4GMS4o)ByEt=YbHD&}AE^fgN!lvJVnXA={xs~_e?yWZh z*HOKC8>fPP<>C)~{(3HLa$R&Ns4CCn62~wPU3RVz*m%=!z(x?HbiOSA8j{Z04NwCB zr^LYl5io6ccekdd2H+|_H%YTqiWWNJ`2epqKmV4Kz_}TGgaIX@mOTSStxJQ6cv$sY zPI*{f*KV#1XwA|Pe1uBHocu&-!w{JQQx^s2h_P^t7TMgnH-t(m|r=c9c6)@RS2;WBA_0?N3i zq*<2#fIA*wh@)J?B>HH#h`Zeco(*{S0!AtG9il(ekbjsaG*AxM+Qx#sji<_EI_@KI zYg<{dSXhTrON~^z5uRIefEG~#9;=_%nv2i6+emT6;9%Vj026koNfi}tW1pO;r4zs} z9ss_uBn*0;q$M~-OglA_7dq*kRPU{U}81x^MNTJ5%q-@?Ry ziu81mp%GH$MnK`2mMohtrEh2mAPtRAj_W{j45kxsG%iM~-oAwVc+FnMQG>{f3nt%O zo0ynL3S-&t+@!b}?EZS+v5oY=V^q<2dhf-9Hy=N8Gchr7adA;oQ-iKGfXO7D+C8@^ z;~@R{yfR%L{*JzoRCBIr7+WCWLCHq(fb@r(1iiX3Yw{j{2qye5`6lL5QqhD%42^d= z?#BRJ2FhFheT}wXyUITW>eO%=Ya;3AvzB(V=1J;%s>IZsk7Ae;0GzF5Wwo}>G}pXx z7dXU|;B&?W#eTLaRVz}tuYxxIP2PFK5*_98u?%1YA%v6s{r$mMHl>FCdSU*lyARYB z-gUg({x;^;7do$r!OBElCL-iCDWARB@=y`rdI4|~(5pet4p1c|fIWay1g6g>sdPtM z8(dN{C?w>hdzi>|w0{ADOMYT+viBxGf1?e_cEOt$1?d=RFQoIxJlfq4t>xcuO;bSO z<>SL+P{Bd-hQoRQ@7a!*czY1AFV#L;k!?(OcXwkDaz0(e1l5WZnsrGo;-E_Ug*z}g zdHHkulrRo!()*_8Iu&e!USJP?&a+YMXx$wnxs8{jQSLY)tgMV*6hZ^4AZ5130MG7i z1jtiZd4l;sE*T>uBOrb9@HhdQ+CZKzfIO0(HqBU5QBqz<@mzP{-IdlzrCz))kQky8 zxE6%IaFX)j1HGUi>3J@!k#5bh4p8`Y)Sw$yE0oR93@kKDuYOXr+nUZu77fP1!;_5$ zZ@VxalSW%h%Uc1BJe|jiig+9+Aw&#YW2I@l^98kCbTzO+-nC^&$m$SpVZb`1Q~1CQ07w7ZbYSuUh3ez;sciLfU}PdLE?!xWWw4-WSTf9{_VE@W zp#;M-u*U)?5Lv>Y2DST;pPSG>b+s)15JFHiqX~?b%@CSux+>E+O3rWx-QLy~xTTm7 zjQ9789+eH4+3V^i*Kast)XZ2H6&8X`hN)t%#^d;25WjL}9|@oRhm;hAO7We|K^D-2 z{$D43jh>-r`hMW%mWblIy1nWPx$hZsLdrgY{Rfwyd6aE-WEVLtGUV1lxK! z{pEmkYnb3<&=80(@rqs<>`GhnJuc49Zm@m-s>nh{eiiLDaCBs>LCV>47 zG~HJJ_%7LHl95fsM2CJ~(O=vsCORYOXGb)x@xMU9`2L|BgyD??uhd%>k9V z8z6~-V{*6Kh4+`t`_|u~KUM(!b?_K!#4av%CzWe9u}Xl;i2@k0+O#_Pag0NDF5YHHJ> zp~=ZfuxtC?CBINa&hiRU*N@pC3d)rdsKms?fWQc(EGzT#PsGJp@1X0hWc>of{}m(k zrcso!PAo|o3NXan;_-UZXL96THEO{{5cD5W6$lbn5=fOL2OhfzUeqPRFEq7g(|%A3NZHQ4ZT5gh zj|wq-0GsZ90YS_AtXpEFM64opbG|=awRKtMW}y%Avq`b-D1|wK*VM8iqm;D`K{XFp zAs>zl6334tJSc{w?^SIw6$$P}jhbP734-urKBovYxE#WS}>Dzg9Um=8@BZ|%s@Ckbu-un0TCuqyoZaG_!)t`>)eK-LaBw3k52)AdgE%LmS=`G;`Hzi(Z(FsP=$LjDFsRBDMMv#`lze#XNrOQ%&gPw#e zI>fA%Fv&L@e*XdT>L1rkw-b*(0UX0+HY*MeTqEpn$!9`%Epp1LnZN*8BG5u)#AH5@Xb%njGvd_ABNsW3ZBXtyLEzi_CmmIcRo4 z!|s~FXV_vw`HFMfj%EF!F3_7oKakIo0=aM6tczd~z9bQDT<63FH<9N$kJ^vVe`uul z8_T(J%C^n$!XQxJ9O6g)CZ5V1Mv)Ln>##5*SZNb;lf#`N`*KMt z(q15hkMgtP>kSCQZRcL#0vD!_ky?10Pd{bfWHv(_Zw8;e;jMk2O)t zl25zJn>Tuze|#^M9@0!){Nc>u9?~)Q6n{{zYG6}|e|oeY>gbn3Lo$gGM(+5>{~(j(&u`tmK8Z^3U|dmte8=r;AD2lF z4cf~mcg#gmH81T~b*?^?Xjdqcl{V{DT$Q)`jJM`efKN8>K>4W{(W!78r6u6fCV2zS zN@$;N&oS3)BSk!@R1SmYZtxRs@RDDWru_Em;h-4|2dyc|iu=y>UB`rg$H@XYT;Fz} zopaj_lYVOV!V68hrF4h1@2a+BOS>@eB+?Zg^{pk?O^jNGn{}3bdlfZbW|H=FYtOA3 zdjT@98!oa(vaalD*#^5f26;``c@)t!~YbPsmR z5y6Vsr+3{Jcy~UwA`(=NM>vyyxJ`6h49Xt}XckmNDn-I+P>8RR%CD)S3B>BTOH}LL zYq;{55qV?4T3eCv5x=3pEM4l%@y2F({C#9^UYFUeD7pX*oFCx0m)u9Hliz6J@ut=yMi2C4anX z^OqAT^cL^%rMG@mPsD^%baZw3?w;+#t24_PzR|Z?n;(%=d4<6#l{9EllbxcIzNPv` zGo6?)PTN2P;-=Z^0&I|GWOKp3$&uW~Q0foUvP1P|*`aW%)*jI^xqDG!Fq=Jo#U_?L z^oY*zAcm7zEHtP2Pco4+yZA6Qcg=UB6y=OeIzbeQZC#aJ$ zT{np8HsDlwB1*XJPQC0Ox$rWdVX72%bt3lmV5V-pBW2W);}r*!D-O;S4*q(Fjg|%1 z6sP;#T&MhcU8K`@a^S0~Qu#-8;pG}liNgi~eu_Tcgb{;_(7IN3x`27DN8B6t4!Tr+ zBy%-25W55n9_R=;4d3>U#c+;&>ubnK!2iOkI@=(dbjqSHS3U7o$m;PUv4$YnkQppd z%Fy4ZLfvG2d9(gLMyk5v^^)Yu!Wneg^P3} zL3Qo(;#H`CYCsI6=Fv5-fzLO&)@y?(35_TB7px1(p}EwJL){Ar8{1xbaZ5Vr53k;A zCsA*7`xKNpCj60Yc#y*M2B*6HxA#^@j%i2i6TI*DW+@)GFI$Bt84s;k-Kx?X5bqh2 zBOh?iEM3^)^H}U0s#?2M%?th!``*2CcfUiAMVIZn8mLD|#4y;$qB#*)I%e4M_op^H zyoWf*#+N7EgXzMv?YTU{w%%GfsXH=hR%B=qVexjbUF*-K9ygFSBOh!o=@A{HSL696 z?rRQ3lBj2^N_=`o`dZ?Y6#=~q}pkD8FV-!HP+Us0cUYK6t}qN-5Ug24h7SYmTU zaW}~{#dLb5*B~R06)KXG9#yx>(j6cB9lm(&hK2wA{8xNOm<}dv6Yl{P^()SYAv16v z8!~CjloLbJ>p|B77F3h;V$*0Q6SFzXM}@l*!Fn_Db!m?k-LiB<=@=8|$Rn&kE~naz8ZAL^iiae_+3j$%qD1!!;?s5xw(@ zNjg+DdIxQ8{4bi~pJ3?3i=d2Wdv$yc2l-DoEz&GBXE!tkZ*F94oOiw`-|ev&kgDzB7@+KwW< zT|OhOv9IXXXbfIG<1o#KDEzwVpU<}TM`&U_|6r~pG0bcs>yBzT^)FsricK?2vFhyk z3tRq`EojdJpQ@>1=XckKWPCCcY;jWTDPS(_6uG4K}^G=Yd@fgt_-gI$c&P(iJiZ!5;#GM>6y{ zXa$LopCkN$_pgW9h3n!%$2!?bTGaSxsxTpTE;FA|nlF>OZFPafQz1)bX5FzESi|=B za}|7HX8ZLRVt=F9CK~?%soD*-$K7+S?8{UHZhska@7)f5Okn@pdrtLDh=j^@I3KN2|p!Z_oSI>i|nrd=e4^W&4ii-<02fth9ADxDmgw zdq5XaT(Djp$~^Y0qK1<`z^OWc%Uti5jobnDe+shHf~o_NMvD@S{%Pem+?TF8GQ`GeJCcrHcAD z=?r-9{$3^%Y(a_I!kePVwAy?LPI%13AEOq6w%@;`N<_0F(HYOtlwNT|bLWkYbvf?) z0f=R;Gf}g^pxrd5;_L7*-QcAQW;zt|uwA(J1$;3N-YTIN1VIEr4FK(#RQ+8Y_&o-Q)J~KQ)j++nd864j58%cDAm7u8 zy}|V9%h*`(1^3j7m@t?a@(J_*puRtdS$kNN7EjHl1@S-UGQ9x&etY@AZb`f5?) zBTN=NwZ`xpu>W(au?>Y6S@x*#V7c@MyHg>8hikR1z#kI~WM)ofnb{!gKNaC;y9A<> z4f?k0JHS9SKz9(Zm0+NwZ*6Va+S`jH+k9gAHJ$(30&5Y#+hLzabiOAO8@O+t%vv7L zrbcTF8P8EM}Cnl*Q{%O=@q08hDJ;C{q5){EA3{rH5_jMfy~wA^1m^4{4ee zO7tC1yj&7~ZDfCA(Mlj7tfRKJ&oBYkFyl84^pAZGoH!z?-m|sHV%Zct%-Q$LDPLSs z&efm5>Bi~)60)4$lt|p(MVmAuMtkA8M6i<$yCwMB&G&41{Rtok==8|kI4>;Ls__D+ z*#zLqQTDjU9u9V?%}EHiie7laa;~syFNy5+zDq8nzd9(-P)Nd%s%tF}xbvH}cWx4Y zENsZPlbLiD#6;KX3JHxw&c}t>n_;f_dM2f7LxtE&c;? z(`-cF^R47ZcY2#mc-p4!o}I|Y=S2TCcJYQSH_)tqR+GC)f5T}%D^U}dZZd0=HAo|w zyQ(obLB@1wMbQ=ev9gRPi-t}614GsV^3~;1xsvV(^+4@+-;xHC7e9uSJnvJz?qI;@ zqGw*6){3ddaH1Sqt-)8hXC-69_gc>=wwRBoPEb9IeOZ#qGpi&v(>-TO^F;XokAz&Q zvFf-W?fp1gWhI+(+WsW78j2OMmEb&T& z!=7~UrlFrgf!F;X3PN1p0~*ZPACFxBXDHv7kK^00-GAd~8)@6EV>2X1SZ&}CORLI? zyTseWv$Etk?E&?ZQ3} z1AI;;`s?r4>tsce!-|zolR9<3n4HS2?Dy|W z7XpIhs~+agzGu?Ne%~!nBB0UslprdIbC?F&Yy>rDMIBLaD3lY7G$rojpu67Bnqc}A zXDUo?rA=gI3s&h2^@uex9Gk$*YBAm4O^cW(?qt2Dz;d7%zT_p}Jjyg{T0E?)Q|tRB ztxY45awNzP9*`f2DZ)xx(LmxB!B_Ums*ry)25!^ z6WrSDx6zFI^oUK>8zh@@_+$4P|+JxN6go+ywVQ(_6F*_*1PbDokdHLINN#Uo;EGNw`LOO;FcRx&3E zbqe5>&h$-VJPC6^eti8s;I@~a&I8oF2-!V&u~83>8ED;Y=cJ-6F0u=M^(0*xI705p z(nK&kZ+88xaXd&6E~KrsS@Qhth9Sf{W{srn21VA@MLo|6 zBB|)%MH?sIx$WJ{_%CjLG$+ep`)(J?Fm1Q5UX0!eyZ`E)I;qVaKfFAX(szRRA?3>o ziNo_YJWaE9LtZ2$p{@I}U0S>%WgnRca30AV^s2^J?P*$^tZJ_8?RY%Q7uLp(Ml=kbN7(#QePSzD%n=IstozADNV$kqD#kA!bdZ7%R6Sa zkGdZDv*Md81hflt(@F9z*}r(=v^6D=++rw)-I20kbQ|1GaunI}Qzb58?jxh8eVzMe zU1D`Qy?peM@thIuBFGU;!Z;~qTb1%=BQ63l1J-9P&2k!dJa+3%<*VF|`j2Hz`%Z*% z7v(*A)wU1rd+buZ)Hh15)<|I5P^N`;rg^0`|DpZbwE>c25EFztX%VN$x4;G8$ACVH z+cIf7y6k=1q_;Wi+UbA+U}>LnitC=3S?mE z?f00UBx+!VR+Hxa@npU)2$J!!(YQbsl?RS&Pq}%`6}+bE=yAav^ct}1y8U4I_KxWg zgdbaesI?JZ(`_z%Ov3dcS2+vR3$(g5l3S#W^+P*!pQ6p{jl72}ic*MNop10OBKx}P z`vwB%%oa zj(o-h_t9GOSdlsNneW>#w<2ilKBu6^%BRR4Y@u=D2D%Un)IR$B0hZ9ojBlsB`=~Bm z5rvjxeu^#rNpk_c{^l1>JaZdpr`RBr7B*YlGVL{FD%bEyiV-)wIr1vJIao5He28NhkM)ZOAO|1j2g2iiBG=`9p?`VU&}& zNM<3Hb`%#m0r;Dl1{8Df)Q;2OshNsTc#UC)bbb(zPU{cyB%4&Cu7C*?nDh&{3KLf!RjMuwZ7MX3M zPurAjBYa?d7L7KY78Vm3n3KABs6lq?3i@?3Cq2`uVd67jna~5dVn61rk|ej!nUT?1 zMa;GMGeUgsH3(eR@H=^`5#lc(RZAZoI9_n0{R-CIUwlURpQZV^xw5FRHo};vPA#~^ z&?ZZkSeqWKConOld+~eGX^l%&37hIafAGr-$n7&MM_W4`9UjBQoU{?iKn^QRY_aVR z#jRGeON8=DMaOVg*K&6*ia+~!@>8!!Z=@w$e|A}=0op6jSq%6)e*FMHNO~*$y8v~S z2_o3U6U4;qiJbv&xp{e=7r!#dfYz4el0CrHozA1rI?3t;G}SysIy_Nfa%T!&gm*k} zmK^(xXaP4*4}pp002aq!j@z=S=Fx&8P|%fwq=@wByC_iJorQ0=An{E`dn+SSHqe6tI^S75fJU?gWXLbE-1mIdrl-qdXwIF)#SVJZ9~Uv@go> z^E`>A@)YIH9XH}hq2spfHW;2F$vnV~5F~v-+tt_KPi_97?1c18KCLZu1$ytSMqE=P zg&)IgsUO&&L9^WGDv>N{US6fpU7~tU=17%NGxT-KM%BVi<347;jo(Pu(saB;ok9faf$? zYLlLk@uaK=tMaVNf$v2R;TvOB0BWmqo=atJLLed5;EiZD8~J!@el%QSsab4>Y}We; zD%{16dHOTI!?kbujBo32dGR_MJ>iFD*zb| z$z+sp|L6JzvZM1a4F)ugi+EduUi13h5@-Fqc`+SfQPIX1SFWXqqF%cO2J>ekcHz8X zKrPls6R%ek39nM^$+tQr(y>60X1pp@?ngsKrof--V5>)ZaohQ49!q}l3ur6JHu2-} zV4uqq0l2RSAj;(f@h@;(7!nWabY&uPg{K6NNj;@hcAZpMJ724;7x&{)>R<>0ku-5EGrBYf?GRi+g4 zrm}tfJ=RJu#DTGu`S|M|wuB>x5YFSyEzsb>)WX8T$mpZv`ea=lO7~^4UE3=;Qr|}2f#gK3`Pv*JuGb*fh(nW8X89ZjpfwBOsb7NH*pi)z; z+V8V;ogxHIRL*-d(H>jLr163t?xmKV9Uu!v3EB2VW|-zIqa>`LD3xy$ROP=gg)KwC*2tn%hNvp2hNbr3>7 zR`Qlo(ZP(^V^8lENJja9#1}Ajot>Sn(og*rFI>|)x|aprR2WNq*|ZJ%J}+)32)LDH zXRiRNA5feU+`02J6BoN^TMj-&9-FOu!q_P>0Y?lplQ3l`C?5^BJj1V^U9Q~D5Ml=+|^2jF7O*4`8x$8(9u; zJ(2G=EU-zOv@T)7GW4|V?*Z&P0P~`HRRgYR9)0=qDG?c*&Ar3>KNa{F&$lc5U9_fR z6RVK3jB&FT=!*jsy7BSxz~^xO`*&{J@3$(sPQjoHHx#g5_ae^#*ot}IH4{(UA*SbV z($Z$TL`jdnmQ?ro7vnGPP%)v+?L}lOqSS*7w~uppfIL!a;Pyg2c8ra1tXVX0)|AqWDNfCZyY` zyjgDukhWJw%dfon+~(boA-4daU(hrLz?0z#9!mpxC1cK}U^hGMAd|8t(caW%9t`kh zsn^^rtgP1HKLAS^IDVe(q8C0@OpH~jtFXYp-4akGRMS)slY~b}uLgAESK9K|POP2U z6Z7(d;GzVyQ$hA@1A7G`9_zZ*9nh1iEF*(9y7g$yM-Uy=tIJ5PyG~HICk!PtJ3D)S z-#JUc1^Cx0(HCpiqN<&V!!JBP&EPbveBr7+@LM(`OC<~pRKS5+oOy+=eu@riu3Wz$0t;gnVn)wBvKz62@{Q1x#3Y%PcBQFu#cFtLW^s)<9)T;|@Tu*N z1K9S+C#Qm~em1ZgfZebLusLNXxc#_mbw?uL##OvYDJm6am|K(q-m=^z`G3$e*E--YbAA}Yqt@5aY;#zS}AM1 z6m`T5UHmvGGy%l`sQxI?b8>L>ef?St0#q@|XJB2J^u14Xc$gx7?fv1QE$@AH_TDdF za={UI8on+sFaLM=n#VlR(}!a5QRZddmF=rQ|0j9d!0oXorFV04GkDFbHamc(qG@XV zHNR81{ve=|W`hP>;ONY$_@Sbz8b{*~7}2g%L0sUGZ=<80;7dT*aGz$#X&z4ERUL2V zNSqk{^nez-df};lceM|txT)>?|q^^M-td9ta-eub3t*d>UgmVM4{Cf zr%cuV+Vo!v*?&Xh>gKO_bGJYwcJM{!W5(^xO7BwU`zfNJ#R6j+L3fQ%p3-ZlA;Udf zgW##M@^YY!ud-YGS~Bil4ooA@2;mohyB|ccH0;&s2FmBi1SL5Pr3dUwO^>5(VAVX& zYxFayy6{ZngymASTT8&;yIWRATNshzRL$3Ss_6bRmddZML(~_}`+mtQE7#6ozdt)z zb=DE^zakp=t8}oHnd5z^cqKIE;k&b7toxkQ#lvmK|=E z`=Y{)){@Adst4EKdSJN@sa2v9FO~i|%?(zR_!aA9ek$EgBUxOGdP>23fEkx17}~*3 z(v4AYNtB+TNJa#}$cL|cw39wbU29~uA9{3n^wA7AQ>Zc0IwB;;EMwm*_++N4@TB1( zRBr!wx8v#)l&M zZRRsjnJRaFu`t28$PSmQ!Kuq6lMmjQTLg^iz9sg0}GWWD<)%}yiY-mH!FdaiU% zXk%oCaHNVBemZ*0x8g4QmOB_%!}H$7vwj4M?ULzxY}K!{pIw?tp`Q(Sc7QP@%sXMj zqsOX`>AcRY{hff%K0bbInj)tmn`ul^bmYO6;cbY^BL9RlBQtTI)AF(yzcK4~26jnV zoI#p`L6f5O`4oxFwL6g(wUmSWsHw7S4XKkdn|crK-|EG@%JHZN^MKj~KZlA4Q^q+c zh*h~=BwrcsoZeoO(i16U$N}{bghhx)(Hn@KtTfumpS;aja3IWd_c1#8VbW(gc9GcXQu3~Z#t<%=F1pg!G+?oUJ8vPgeaF3bB=pW7Cy#s zyBhtp495O8TB1duEn1aDq;9u!i!n1FI?hC3q^xdk1NOYHm$j6~QBwEGgxwx*Nryz|-BYtt`L3gXS*luux7(PA-rC=harin3O-x1n?7>vFX`3)O71 z>LJ$`u1;lAqQ1d-dwpZek=AGmVaAT_*Eq$3ALvLP)@cxv>l3s)eG9rV&E^VQnDUYm zm?kH|%bn|CNtl`pdwSaA!%xBe%7h$wLZ`vAt_Qp%17r#YK+0F-0m_-rTP!r(o#pD)n6w4Va4hj;yCz*tuvi1;|`(qb1bIyfl$7P>vJdq zw>MY-#)=*Ka8HdB=}Qe|!N&<{Bp);r5fkYlV}h)w32WEnY2UL)r53}ONCextAK}$ojcd}0W!9;*5 z@(>Y#xI80BjP$H$8t}qb{ln^q*2^D|4^Pn>l%#2vF(Nu|!>MA>Yja;{apMGIGu`p8 z)5)Xc;;_K$%chNr&@<_etl^vq@>6EPW6}$MyispMMD5>|Fp-x-FDsDeypeZXPuAVC zZ?`{DLRQN3S&Az@Zzxq9RVasZ!SmwpA$agHqUBDRN6AM#1zd}PQU3FH412CKQmnFv zcEmiNcVry4#J#5X+9S6Om3$LGjG3+@b`Rl*N?6E@AzG-LEI3TJbnsq(o4>BWX2&o zmgT?+M)jP~Gr?jJI_-mpx0pr|Qm@BlLIh(Nd<~12Ob^^0SvNv-o0>;98*qlVn{bwW zn0>^{_AVfpKsWg%&0s@d-X(L&*p_bls)p&WvG?_QWJpr0=P_V46Ta0(X-1hya{R}t zk_G`i+B=N_iarHdQ-io~)f1aE@LRs$mt{%p`JkY@UB|We{ay1D5B?=yw>|5=oFcg+ zAwWM2&jS3p9EBqhqo+KRE!(DVuk3RVzC`yUv1@~31v0J_^9sC?_yIM45dA4RSaOK1 zG?b0E7d!F0KOJu~uIvarsDx^Asj*^`x}sj%Swb(fRF?Ova<9vy5~g?TAMJ4Vq#s9h z&1{JXvsl3AHT3{RKA;5>pCS=qkh0V zypI(vPSD25X3izcS<_`-(G@OLVDHnTmzM64t8yI_hm!p^4!i({92N69PNe%`P~apg zo4vaGsM4oQh=5PuW5Q8f=)?yDA7#=T``GI-?eqbQbi}wri@C7Dr5IX)C)6;S8p&=y z8D08>jzKlDih9Gs{bqywy`o6!TTdP*%dnXj4aO_Pd6^aVtvoOHY}Q$H1XafI4Dvxq zyGnh2(+z2=8UZ?e`<8E-#^qhNbf9Cg4QcN^6f0Bq`%e&7C!2}I3P;*{aJ~tKKmus; zEY4uVyWT$pCPMUSm;~QQ2gUYKz`}!KyC1$xX^3hU<$wOz@R=KRMww(W;yqVZS(LbS zG-`dTS8A)5tX?K*0`IUY>)s>HyB|{Z)-sH?7in^+Zv{{~rqaGEcv*zIG5-PU74!pV zT)PEzf_K`Lb-6C?Ixdp7!o-fkc+hcf>QVNlu0VX+2dT_}mosV>A@wHI z$Fh9}4$lf1?x3~q9sXd1wk6L`7>INwC=@n>_UErijA^a&H6lw5+jKnZALBQ%RqI&C z*y_XT-m;deCf5o(Exn?QAm(WBBTQ;TxyPbI!&be3HgCKkcq>Su>g&?FPdf5}vad&M z6jCd%e6&OB?Eq`SqTCFh@7IhLF1mc!I6Jg0|D#Z5`@5TYkj_%mAo-KDqZ>D|00FV; zuxiNt=)@vpzoO}#!AKk_OISxQ}a0VG~O2(JouSH>652@QoC!eu9(49aLG)B91&GRev*DqvQk99nw zK4O{K^GV9SaLhNlGo3@+R2bhf!Y#x(v7e_V$`LIU#~?K+5_*sA#e^E;P4hgglMIt0 z9-1KnbVgKI3?-~E>ZGS))ku=lKxUv+w!c@O~13090ClgF`-+!+_+|1thrK@5l$V-5{FtlQQ`9&|cCutSAl;eN5zRLRcC~<)7NGGc7Z_kXmU&C_N<8&K(uX%B z-gu9S6fo(p%HW(*WI%2J3@tZ7F986Q-|!Yb%P`J@!(R`dTZja}a9AKP-(#+x+iZ6~ zB>8R4^w*EofG!!LLFo+^Db$wOntUBxVc zzVQkM{ay|iYi8Q}MeFP9+n(?t1!}-0&=Ln^h50JKNfCeD9=NZ&oq9C@f&&;cK!f^v zdvodeHoq-hF#G;zK$c@qSfL&>E9=G->B%mDL_w9nX~G+iJnZ^81_*+x1>qO@mLY42 zywZwUv?V+8tvV*WX>RjmOAr9bz{{(fqA`Tj(%2YTYNl=Q*FgMY9M(M3^3*5i7)wwX z6Q?WJS2FpO+{A`*GkL2l{3<39Hy9S``^O!8t6SUKqgAValV$y?$h^7?ZOMcz&peVm$b<9MCv*;p(D~@LTVQ%=g*Fr5Lo}jpaEtW6M)A1Nd8Fr$jVm z+u_%va~7V{w_?^>gQbyg!~@481=3E75t6pe+8ksAL0@}&)k>{r;>HhWLp%;vmf%o}O*t7*PNENq{P3$mu96+(Jp1;|Y$)7C*0F&y7UhZ3WBPRR93X z`yjK;(yThpDj7Si0)SS*sg}~8i~c0!{yFCczcv{#_NmWGfxRo>WpIZMyRpTNiNq0z5P#BA<;qVWeWopq^Nx7R5n(AfBA*8YoE z`;#~a=$_50`miR}Nw8`Z^BbTN@hZ6?!{;eyT(EwdsNq8 zuFfA;5)L&hobAB$#c^43BH=r$+~*uD5LC4&fNfWgskn#nadZU$Z~zSgo}yOVf#-U) zXg^_nk!La)QGy*S0J@6Xq|67F(Z$Uv)KH-f{#G|D4*>U;M_uJ`ky& zQQ}}}OSFlhtzaV(DnmE{`XDxjLBoBCe-HTSxVyT?+*Pkpla;jrT43N>2aJDkZ**?% zI&=Iw7=C|fXRwlG*QF(+JseU#9h|k=n^ixCOi%f=`}65QZ-1Wn28g^vF&p-3!_uzH zTG{)$?}tG#YHI-rhYMs7g<63O^TBx{b}sPw=-+B(Tz&xWqq_zZ>xU5uxbA{N!CRVH>r!A$ z`D1%qyXW7XL%>K_An%UO8-WL6bKvE*Tac5GXbrq;aNb>z{wi#M3Wna04vyih7=FNJ zmOusl+nFkNb-?loqY%|_SuPTz^vqHGw@Tm@4b)aZhyp6*JUVGnc=Ssx4pJv#{Vh*zeu)n?Rl6d z9M2L0PF4K|loFrfA-@wjbvWEAR(L4MSDT)`iu`3>sJ&wtYqc&554uUZ%p$vqm_hfD zZHsRwafk@LbC4J7AOM91+fYmTUW*yNWY_j4V@1Xpxl@Iu_{q9KOnCEpBMwuD3Oj-|JS+6P5PBJIAaeJ)?#8ofJ#=go@mO`!a+<%IPA!6bA%Etj!(;{|2)RHMh4fXT2GSgL+u2sEbgSBym3IE z-rK_$Z%#2KZQ(lRdsVnBP;x&h{?jKJ>_b4z}&DV}f}vKj^%CJWOd;XD- z4lbhRwcj1Pt6nbiDGkeA1*sm5vd5cbBj^^P%BqvYte*N>JFgx|lp#NN;r?CFm(F%`4p3}bLB;2Bh*Hfq@95%S$-U4L_n zLS+vFg*9UU2TC`8O?);l+&EGX{O$e#ou}Y(XT7H@xiCK?Nk^KFunhWj9d3%3zSO=+ zuVb`P`m5PGybR-g#2ltyoA-Csz2i-mP08+OQE#7*lSI+A;7lFPv3_{Jo<0#$nlGct zIZ372tB5^7yZMg(EspHVODrpMC}i=zEEy>C;q#7xpx9;aKM&|{V_GgMGf%@L3@5AM z^bhz2CYheISPH+k@+Am)XCEQGc)Orfm^BJG4q4NL!9iP4HU1dC-4>4p$Xw?mekT~? z+~%+{{7&$l+dY89ErHdIfyWvU4yg|6bn@7+8{b&n)!5@~R^Xp>TCmim-oY`t>fm1f z#WB=!_Yb3MyL2vW#ObVM&pX*P*RxzB*Vdh8hAX4Sx9Ja9bG{c;9U}G!J)Yd(AI}gK z6A}EOKQ(^x0%p7s&VSI}&&--I2W96~MO;a7{HGlO1Z|Av@oM0a(Y9uoiffLw0!3+bq;%o_K@s zvg$QQ2itrftCr!3ypBS3F1Ily@>5CnZX{$j)FKv=PoF}loC5b)zZ&%3yT`)h)gB9BxY- zB=4Y(=whs8m?_Wdi&i}`=`T`HmKTS`DQX> zn$s2}P4>~S60MA-_d@QhGp^2cn$Z%79!>aqvGSTDR^2A@m6u=-X`&2kfV^p2PcsZIZXe0_CXl-c|Cs)%Bt44q00h|(!3NHcVIhqTg2 z2n-+~(lCH@m$WoUw{%GfNS8x5@4QYYxq) zXDp`cB||jEyJ9DmaW}*SJOJj{lS3Le#U5paTc4?3%flda_>q4O)~0h4#~Ow6bdF?d zAIA-LjGDWq<**2zUqTz~_i|n1T~|AH7f1?t_sm1M&xlq6PkWC(FEc`#zsy;sC#Mur zCa%*6RMmUM9yd)~Mw(15WKGfH3ms3tnJ~NW%2ZHUN+g+z_~_J9=tdQvns-b*I{t`w zFUNsv#a{4Ma^J~V8@BxIZzs){iX0LQmIow|0+iG5Y+(xa{%ytD1+6o#E{ZV?Ff}}H ziKu4X<(e|P*EXIqbLK+^ssgY#xGmrQ7M?DYivbQme#4Yf zGzt&Bu`JZk>>G4^gMiYbqTr7ZmdSVn+{%%U&*B1V0Jxz~TdHC7Z#!sz9L_`teinN_ zbuV0Bfk*dEhM(xfuRnCq=pU>D2)iKYc?kQB`BrAUo=3m_@Ba!$pk5`0qRjn$iH-mB z5B%G8hWPtme?-n?b0(u|AGQU4;CTSI;Zq0XE!|R{#_%F#!IDR)jAE{d9FLzAc(=T_QZ}l zyh7{7g_AcZz$6jURDkY34qW^}fFiI98#LKz3#GIiFMHsp3;N}M(Bvvp0~VZ(z@f+7 z6M#)@9vt&l`XJF%XhpT>RRNz|D{g-xw8-jpd-~d z0Pn7v?LP59p2PD9?rM-W>#g%Q`RCuWK{*8W#%c8jx7=m3L+W`o6bm^BAEoQsat3@` z5U#yly7!pk4`7;(hlFnZHh@u*iZ#h}0F)Zjy#TnB2a~Th)>%Yka%6cmb?nFs6kwSdU>hhk13>a~P$IC_{3+7{r|0pHf`uOOXTRaN!h zSMg(l0jS}@Ou;Ld2}$l&I~{mI3_iijfr_vRoB-`1aO_*PV#mDEbgsaRmHao>{P!Fb zkNH8=7D0s}TyntR0}dCElh&9FQZG>({>|_C_kDi+0@|Z`E^X|ry7X>#+o>8@M&aIa zfBN;5?PBnPxbF|N(;CqBQWQKvx{#&oR?O7FXM19|V`S}dM{Og;1?^;?fk%URpTl$R z7nq&lljcJJdIqvkfXXORhXcJareG|Oi<7SI&y=G7t!q$gvO>5v#VuffN9EI``^0%a zzfKzvInRyPItRO${^a-6jRr~Cke16H1n@2{35gaf_o^M|-<;lm4>M3OewXDK6Y1+;8VDGDtNh6OuyVSy53z z=XTIR;<`WWeVd?WC)cuiXGjgeG(zMUQ8X8Gj6k_=^`y(Gv`N6(zgIo#eV8T>j2&>n zM@A6at-!NTfm#7@Sr4`rjHa-EPp|;@=`RR>JYyY2?Y9Pa)P{tyxp_G8DB!{^E*h(; zjRADy-$Va%3*9GVTBNe}F4cAmex1zZN1uz(!~IC?DQ8AUhx2 zC{ONPt^M?aF7)q_gr_#b6T0=%-_kys3)2EG2@;Gt^|!A1HR)!`M<3dJT^aoCQsAjA z@SyHlgyD}J1n@eju0fAyF3!vdOh}I5!9@fFfEPp~HpO@U@D5anSy^})inbvhYG+cj7->2jMIKlm+Ee(7Xr5*ma zL&U|$qn+}BLF4Ee0?fOnf2Viu%u;s?(DzAk>R_$qhSg)7eAkNR2)W8(7$Cx%W< z;k$wi7{2eHSkD7HS>Sr${Y*-#8w6QPKts1n@A%AqYYPR&p?whI5fgs>ZUT2UH^T9K zb*qLV^0Dozv%w7tT0)vHgXcndVOy0O0+0_R-IFy4mh2PLxa$^9ao>@n-_5?S;T&g^ z;0z>x*vV6lKlENZ5C&nB{Pags#L2a1d()xU%50cZmIHBH$WX72)>i~0CZw%m4wyEs zmux_I-KTjc)e(!50-mnbq#~J~hDkCewK7pw_+**m2@etzWc3VZD1>v=JMmVJ>*LP} zPHS5C)xnWp1swTPe?RhvRPQ6!GV_i;et5{l*Bdo3{!rZAENe0)E$=Q8Epj*P?2QKL z#N5eo6pi3)1~1_YX`%Ekegqn;|AhYa)IQje0w}V!YEEYhF>DinqHe{3<`8Bte$A`1|qQ5>-?GW)Ud#)P^)*d!0H0*I7NW?53D7+=%+y%j%Ce( zp{eN#Q#aS_%W|Nr7pJSX*;yX6pLASE4&=cQEKq*TgBXN=Owm$KOtQzbg?<_y7{bjn_Y8Q!$EBY}kZcsy zZeH19JM%kTpOOwdwfE=^Jj+EsLcfY`W)%9MHiyFS!n>+wx2h=K zYF~X4OGETL+PCU~KF7p^2~+exh)lijnscJ1Nr#i)q2ps*aq3%|aWQ1o-Cldj2I$q!#g~#TK%TqYGjqYZ0Fgc}4e1y?fvuCh8U29W&YIa^5vo^I@He^W0i~5|jBb&1LAmGsX|>TbMP*D{aGZ4C5Mj-e|h)C@cjV#k&9( z1^=Yhtz)pLZliiq`GHpExj(Io%LzF42*~K;8iHp7(&6~@ws`GkGBwf2TZ{K38#vHw zXz7GAElx$Oa=yMe>fT9#v`%PB-x2Z-aI?l3 ze;_M|KmXIw74Sn+&74Kfmc^6Rm^GDp9d%m&_d6yD*oLJ}w_tRxEKa*bRfARuNMEx1^}wlN+Dh38NG0N@D(&;OhdUzal&CQ0 zIxf{uV?9zVo3N0<1O_wcBs|W5+YGqmGMFk68U?yuqh=Ab8$taEx0x(2PB+DOA3b*QIpx&^TMg&GjUzH)3JgwP2CGXu8|$tyky{ z=L;(`nNb*nMDo1R8WGQLOhwmCpZdI6NtXCpjcf;hP&3)j%%YmnZ1`HzlQ<|fYokC4 zgh2PQ9^*24MQNT@RZ+cY6;a;kq%$i+FNJzl$w{}{_*Smt#MJ(iI;ZtR!4{?USVSp# z$fFFHMQm4I(ZQSal573b+G#ubhlW@OUrc3((Q)3&2J&h%Ew5oikU6Niyx9IbA62Iu z>X4sJ-{n4{GBy}87jL~bTX?Cy?OJjYaWgHJDq`!z>yTl7nQD4j2%0BBU*OPg$oeH0 z8@~|o*4Ke6m(b6@0wW|2jxY|HEKA@vkLc%((Y9x2mV@>5Mt2#8ilu@IEK@$M|M{-o z@X%1r$?n+dSrCPI1R(Hv>m0kD^`(mEDn4qU2gc0c{A^`lFb4`aJa5tTet&ElM*M)< zl2Q2A$zc})?ETWJuT#fdZ69kEU1oz9!;|qejkZrB^}<*5gop2%o3HjP3v_WlT!Qa- z#gA&a418RT)Gw+%B#AKE5Qp8mPIBDTT6$)?CU6edGDe?|Z^~t7n_i@ub8roo-2ur@Op&uDHr8H+eQ;CBD{LOIxLi^pU`F z8&yUcc(5oqr`F8W?zyZ@YI9IV5MXj-tBbRHHIw#p%DPG&u8y^BafU3ELe^(KG`8(H zHofVZ>wTn;8sO)^QQnAk!zVAczw3;$-+$|E_X)x6)ZD{X0df6R)ahn556@v}fZhqd zp{3rmGN*M)fR&G>WZa^DeK1@ydBC*9Dc9Q!HC8cMwmB&nrIv-!hK1uL4F{|^cqRC> zLsSA8SVrjW&fvEmQt*+`3zk^xkeI z=t6P=NlF8KUe%@;*aX0V96Sl}yqDJ3HOs7~bM2oUN*v3Ny16ZW;y4@fawnp@_OVu= zFjgGgPyqr-LzIbLbfrcqbKm$8fsZ2vJHA^RY2Td3I?$ge@~%0oiPl#mi_MXA7#=#k zZd{DJfo^QbSrW)qj4I;AsYKqRgPNB3;0`3x%DH z%j$Rh5F!nd(W1vpJ-FMiR{LJ0iwSU5^53PW=1MfHWoFLudrReuLoDCaK%2MZ<>*wn zhpDT^thMzOoosDK@2qB9wJH9i^HL1kX~(eWZmOkv-hTX*sRKu<(9n!d>S_&9u2=~R ztJKSr+o>9DU$`^BOu#D(*<^|+^6;(8s!_u|_RZh<*>lLYk57xFEQOr_Wl2^JRx zhHsPZXsIPh13hbuIUtGvEAS^)U!StZ7~rO5Wto6_4_KjVD-oUurDM2yp&bn$l-7uh zTp!cAv8ud0_FcZXrV-wSNv|`(41IjR8$KwdhI2+*M}on9_LN!UOc`gih?&XC#ScxdF@Qc6&84r0%8^V!2vZOW_k-^o9q~-KK<6b;p+LFTlK7C3Jmw=r&1CsM!x5ymhdH5S=l4e z@#`g(a* zSzs9{(P+c1z%=FwhXYIMTyHl@WkY7~^5T1mo~7IPx$8se^pQ2R8e2uB{M1B7?$Y?> z>K2D98)mFJhsk(i*kwCf7mK60PbiggxxFjfLb>lMY@CvXvg3DKnkXK zuk%ps52cf92kidQ?DEpmC?K$bLe|aA?fGZj=8oU$KNR}J#|Zk8#WywJ_eI}<<_D@S zE-oqqJ`Gr>c^Z`;b(?Oa$~vyd;a+^>ErhmpnF4;YqUBIeq@tywX~2>Va2y}u?gauG zP=o+meugL@PL=?hcT^2;G|`26Mp_cqvn;VKcoU+0Q(jR~Q9%L7$g+X!daV8AG|~a_ zL*)9Oi-XfWhKS*uf$)se(QemWKo_~v=miLZ{|STpJ_cDd4p9M{9B?6zMIaEa zgxwcDvONS%(MK(l;rTZ93>AXLU(8fY<`asYL2p+K8_0gx{$iRpQRNuQeUTwH*M-93 z(%S%ELVwY3QUV0Bho^hBbdeneKNOSy9j}^vnD!KRtR(uaTdN@36I>>UK;3cRVv4(T z(GUu>!TVPHGc;`)CzsA69{@NE1|HONE{~l!z;0sheInnj-+}IL~hebTeaS zKfym#++GHkk1*$nIPGrTx|J`yyFM}2*XMD;ZH(WM$$k5fGz$zp41A`MkrCyqZ$M{e zYH4{P^A=vH@6j|JY}(mKd57nr*AV{|$Vj*#P`&}--8jHtz$ttp z_jVTS@X53ky6{P8x+faNLy#x}xN@hbr%SvIOBZ1YU?O27^d4>XsL%~eQE(Gn3{3I~ zAUC`&8(whjD>S@(Kp|ABPgb+|#$~F{8Uji+BH*`xc>_d+Los~wFWhJFbcoL_~pZuNT`vtsJxhXlIRN!otZ=Lm^b!y*typ$e?o zz{&-QIQCyZxdTz05^dy9=l@?AFn<(dT?ZpyW|0hz1Z;$jMKX@d@mp)~EGSuka?+$^ z25Iu!nDIw}TZ5523K)=hmTOk*HXO0N#_!LSnd-m&%gYGqI9R@0)uM>7h9J~9C(|Zk z-|TW_VFp;93%q9sVD%MU14P5hsgn=gSJkeT& zg%uz1iO0*a!Ta_NuNe@+g6cU9UiI|!D4=0H#J@1dpBESgfdGO>CpO61@~rOf1*{~H zfeiv$z4)iWL+r!c8hUm${aq@6yI= zuCJ|ezuL_K^RVWSD!#kBO#C0y$X`D)>=NYG?rV`Xa-J98MSWQ$@eyCQ4uD`j3UE2k zMf=Ig$v`#>IH0tV*#fA)O~p$vDmo}iI^t_YPo(?;HrU>Gb7Nv+HfoO6f&GXDDCdC% z$0MZ=14}kc>mfHTFtq0CQS4ajXa*}X{4YcEExRP~-Zae!kjiiXi_4L<&Wn$!_6W3; zVVth>nY+=!bAH1Q+^-QU16nM2s*=1~Edb7@yjz`2Aa*3L@poH6JLSulFKK7w;#wCslu>&3{qZ_8M>u9DG;9dd*2dU2v@!)w20z(1S9C5X+( zyHa!5&#U{whwYCzIwyPfCMNaNmc}>pyl8O!^alygZcOmm_>r$HTkASew7?@+$2-e_~J! zet#|J><$UT^jFlgG5;%^kyq_#DMmji9mmA^YH-G4?Fyjh_{C4+^Oi@M70ePqaO~1C zFONM!=bUsNDmZ*zpX>N}cheKCE`J}{((Ja6UiE4{Zhwgv^45MsN~p#@a(c~tG>C?| z5A&X#gs8iE{b%|-nk@WBj5<@<1$qQ}!b8EUBh9Uob5V6^520^42X*^kcgL{mUyDwo z866oUGAQWFi&lLP;vlv==)6h7T(y4}`Bt2G=y-EoM7Ux9SPA@6#}yLi%DGzCQ2pAo z+-ASLJEv<^(ojl;CsZ^Z-_=Xom)ld1>)!8#e1ge=AB3 zN>itFL_$CAZKoL_dc19p07E}CqTb%-5eKFv3jv=MIgV3c8ih^d5x80Ax-=a%lhy1<9S(8x72dwd^~m*JxdT0u9aG`f!ARY3@{tmT#nk40o5Vw8 z#zAKMmx#_HTBp}$A0tmEj`ss+^s1}QT&8-oTpag5)DoZ04_{~9jJ4c88zp%@sT_-j zIH`_&HcOLOV3;&PC27)nScI>$xVBLLO6&H9icn#7p7%%Y(Dj;`Jq{WVz8EtP2W%ul zit@!(rdW?pubD^a9%v>AW8dZ&KNLPy+3KidL5D~lk?c{qZthrZdDX>pX{aGNZ)3U1 zY9Xh5cUvMKxz--hxnhbK?(>((>x8x5ZiGCf5siPOa-x`I_~_ts4TN`BNRw6HwxXD^ zKr^-Ho3wi9}h& z^4D@QJpaj;$MES1`+$vFsj})Wtya*LI+ zi@6jkQ{m39ZYN`rV<7YUF_7$}#GIq`7OzOZ`jJzze0X0M+AkM0#2NLb@mS$nwSv!^ zh3qFYJlhsx59rr;$y`ms&Dw-UlXl3}3i&oy2`U0!$=#Z5W2(7~<%kE36r-Q*3awJy zL|RI|Q`b}XwtBq2S9aw*=9VJ5d%;eye<{VG{*`mynRDvds!SgdGM+p7<^iLkU^6LY zEU7^lqig6;hfRCbC6@kl(y4?9(X>L>_+c$Vp2Dlg;6Gv{)2$T^nyEe`Qt(3I+A5*U zdUxlmuxI?2Ety8p(+a#>(h;AOP-DKxtZ>1pw zK4ICY*3*s+ob_Hey!oWFAb~FadTMNRaSLJ>_xb{>K9{!{#~kvoiYIql$ zwl|zcq2J!Ozn9}<_aWU-G?Ejo?I8Zne#N5C@jXvEcdQud71z9$wJj%+g&n8yUJ(ac z2KO32nDjl+j4frw4*=aHV2Xj^3xir8(R60Mi*77AX=`o(=BgnXuXxE8TTP%CJ4Ye8 zEul0m*N2_SM`dEIV`jR9XU)@R*`$JLdKIxux!zkZhL*gV4PU`XXQhzDSlgZ-NgTGW zj-05=SB3VP%5$(xGgGGyX1qXsxkKiQt(oNLp-)pKaAF0sc+|Lx?{7TvASS<~xy>;2 zt;6GbJGdE{e~sT?Myu#zUxiKQPL++H&0hBX27F_T*&kJba_eW`oP#6SETAUSu|hh zOX_`|P$zu1vFx%Hula%}J!yTFRNF z9brOh)J9*lCZv%qxo-Ot5p*u0R<(P%1Xx--;Cj58^X`j~Sez^DCB_(=Dv5C1@ z@G~0Q3<~mo5%U}F-8yY$x2A)esp5}6OkdwHd^;84=N-_vXJ4dNHFzViCDaDbr9SSp z8T)-A@-IPJjJUFIp?dd1RV{imAFEP~=5U0IQuqs#-3gt{k-2-u6_MFJYyD-($fFq_ zPw5Z}MW*V$8UsO!7!IYzq%W zguX%cs3U=vTpTG2Q&7Jko5AJtXFSzJ035)OUX=a z$?>EH+_HzmHgG7-kM1Z%HSP(E^p?JVMvY7Xgv5WDxrT-;YQ$CtPNhZ$NFoVH_Q;!lMweHU2?qJI8jfJqn)Xf#qa~Y ziJ(LjByAZXhwncEb4rHPz&y0?i~f0NZ?lgZafrfqACho6NYh42@oJVCxN-bEgZ|Cn z`%#O#cL3}88G;BSUq+~Uh0PKr??GD(XhZ`pO)jXPa}}oyZ!-P+=nBrNPoDwJFA>vu zt=VgK^$i_|?lsd( z5F5iND&drp%`ml?r@KY z0PI>;8r9;A#6%qsILa8c%4*N?y9&!*4DPv@y4GoRlDAZBWQ);P(FSditgG zEwe8GPb9JfG)Nhv8fPzXb2fo;@peZMNOcB~7&kXJXq>tMO|GUhvI)2z0Xx6P7Y3vK zJz7d6ZWlHUOuLjm4+x&MwY3kCYP?u~oEznfB7z#*^zN~Yi_6PEoE8RyhKi71cE69| ztKIv%mhBu4YV@8I6Lfs}Gm6yLpZt$NjfdaEw6H6I)L5L0e5q2FhyxrkSOdg2mtUy;RoF4E|z4bjZjn0^9D zzP@Pxz1+VwX{IElk2#VUvJlc*TD-td6i~6MP7hb;s=j;3Q#btyl}Z3t@eNcS4q-LT z^3xAE5YmT#0pia6yZg>Hps063)W41V9Ze2X2NCP`^kOjFFdrd>>3fIx3SQTiv@aj6 z(?*&C|4el5?H+(cuv$(M`ZrmG|3jnuZ6(5GC|qQiVuCv6aJ|8?$==QF447Z;JD&pM zQs6W7hq2HCum$!3eDM)iN`eR4YV14k4Q3^(Qt><>ZxqDO_Kc5TEI;SkP^_JwV&f}# z3on|=i*_WD*%<^&Q>g>xon9dKNBy=C00p3W^8I%>&*v+^!Z%4F^`5qNQVZoPF z5U9{FcF@Dm&dvsKa)H->Xk0VrmZ|Wm#`8S}pwC!%DV}Jnm1AZffgu>v;0AnP`c)7}DrN#Kq(|CdhqLuGjUrKNKe}oxv`G&Gqfk4EwT6-A8n-D_quD~nUN^HIF$L%-nbb# z_v?Z_nQOC77oCME-vQYo=eCXKk?bHW=uuwP%#PDj#v&iA$aS2+3OyRGn;5KoV5go*?% zou5eNUTWs;eV=XsjMKy}!+v9C@caNxfmGi=V2M&tX*>$xsl#~QL*44;J^OS8{TwA5 zHHxnWnBqv3SIAAVyx%(=ROQfXkag`&bsO?@S|x**8c*k+Yx9do478)M)kMu=W79{47=W5u$fE6a$M|x0vxR1;UL8WE>o+R3UZ`! z;nTKBc*xa}S0oI#`X?t{Pmdjcef!Ve0hJt-+-WIWD(?Pgc;JTvxlC!QVz4ZFdu2+; zhysLwqutcRL>E1b9=GuV8VxT5#t9XRIv!IS=Mh1BHG9=Q#7>LgzPJEe2rXx%U~(_} z2}^3;?}rz$4{ddDPFyC0wCch$xnlYUgm>)i?X@aw+AKyuwHz9F4x3Duu#g8r6mR=?E^!Na_0Was`-AiopL8i~wi^S&Zag`fmsDpGCSo z3V#SCHwJh52Rz-XUkGfvqxpcxv1=`FtfU_6zwY3V&5KG2+JpDvCp-;0I$-ZrE6{E7 zr>kKH4^iM7!F{sb|8ICYsP^%{X0*jDFAk9}=ul#&YO}h#JmyzW7zE8A?b5N^s10Bz z0_Zx?9btCDX0zX~74#kN;`gm32?R2a(j4a%`meCsII=>!gqiwI1EZ{H zM{T{Whz2uHzdVEvkiVj%aH0(g;DN4+%3HPtGJ_~^f@66f_6b^274X_Ap7lPI0?O_? zFN;RxM+)h4O?NvslpcU!+J%0g{Iv0yk&n3vWd`llWxZUy^tzclZ3Bj>lW7C@B-7}X zLse#d6n3!O1~#uv)gZM_y{)tk4XvA${9yDH&2y(O3|^aYDOiatTVL&SCxr;yDQT1h z;gy)Rz>Y<+P^KLvy|-awSKP-rgs4Z8j zYa2mmH7bhT&Q9Ik-9Zba23Ri0X4)Li8`y;*g4U}MCYi7auJ8)S5PkD>xd5NSkjeL& zh^iMU`wIuLgK$&c*yUoGQ>*q z06v`2en>QpB)BJIBrw9qbJ}G#LJ+cj&5K*G{4Ndo`j%9&fx1vACH3GJETPEpr_9OX zNrlRcq0QWs%habU0e)wL@<@Y17A5D@f|)=U44SD1814)tjeOK${#!oJx*sM#c8SIV zt1LlDtlk0L%J&PUF^rPW9KJb)O%YE|kZZo3Vr@bRkP&8&K(i?2TwxGOnP3={hCO-u zF(ZjL5l^(a-mqjKOF_BhW#2;>wI~<_p{aw+AUC zN_<0@=@X0DfIkqhE13jQfNX4l>&AGiVcmi@00UB};|5*)jKclxX4y-m$OF8tgSGO6 zM>zN6m~b{>X&6r`c@~&ugEf>ynr~>TO+Ig}ggHhA8>dx0S>4td*x(daKI z*CxOk`>w27CXaU+8Qi%NSXQ;9%oQq$r`c?)+0|jK4r=u(F?beXl-ij1;AAn=*X=fEqhMUsiNxxU>{JmU}2fWpP-* z5k*=RZPT?>W8M0;Vm5qu-M?Kc`SJ&=u zePg8HOQfhbNhL+39>r1e&{p?Ko20oIv9b*A^J1S6u@XML{Hz_goH31ErN)M#qz%)8 z52DBu&dJvLe%;79PI>*9)0b&1)JW9cRVnGEh9XB8QI3>?rKFY%*2wm@;H?3qLCJP?QrKi6ib;AnVmCeP?J%Y#_uI0cE`q=XS_T;!XG!z za`q_EZ;x;-X*wnadK}LA-gz+&`FwEeWsEG$Iq!DmJKC@GklLE+E<_v3^N<>29Z<)# z>2Cr%DZs`|?`L6V9(RgKUJ`zf8m>T5keLeaZ+(0tamqmI$+o-i$Dj;0^3?}w(mhy; zZ?U8D-4t?O>aC7A)e}wO9()}ng$RA1P?Jg#v7{8W9UzYmoHsbRR6ESogpwVt--Mok z$@#eXz34s8W1%V&wc`Q95CwC8V%1oJY8`ZF7wCP42(BU;M@OkbJGS0k^3NNsrLix) zte;_Q!2P}pz1Dqs27j=wgd6jy#%b2Rmd`m)pku@B$fSt`Z%0#mWTz;c2c55F(#RwhR}}J^>`-A7=acl(@`VVQ0m%uN>{sjhOFHSS*@!f z=~_9N3Y28v!`_H&IW&M11hsH9F-WmCnhlr#PAXK35mub}rqpRpe%KSaOmY>5!;>acrv~>8h?4+{n*hVoH z?7odjR@5KpM8yjO6)d+>9UX-F;%%@(&Wap4xs1bc+_s~%S&q4 zv7>_GKnD|WcV2Z`4F`_7anzozyKRt-p}Y0IIwPZi23bBOjt4bg7Z&vUPL!ffmRtxF za3RE|Fw;OwUye;xCGI-y9j!WQq!;V8hU5)+tzD^PwS1r|E|ejgWg z04Q_u-IA~brXNSfe;{?3w{ zsdfEX#{KAG87Kt*ZFB< zKq*u%<&+U6o2j0!4GK6wZR_URf^iWW1*$!c04bz^G74mGz;8`5Q~u+}kL%;*TfA=9 zN$5lmQy5%iAUFN`hF5w0(=P}=iYfSkIEY!gDgm={p`Y{rKYAPEG!I! zc7S*Y&VAxIXMoy`;VZB@3`!&X0LELhJ5KRV%MXi2t3b_88Rwu2Jh4EPd=uqzyaDU9 zVhn8R+KUzc-_P{)Iv<#H_#@5di;B<&Y~{i%A~7qDTK3i^iWW}xfTZKI<_OcRWW{Vy z{DP!}W>CXy0ID7MXix$^ILZZ9a?fpS!gLUQtH5yH8AO``Dpm`9XX}7At|7=sIJe&$ zs76~Y9nrXDZf;H-=)-+ZlUdlZ{2%)BujBnCNVDxIRP!*6s-HR~-zJ-i_kpZNZl&|V zW;g+xMZVmX(o;NFOUn)564vf|(g=|PYU{pIl*@I10oSO@a8wF#kzf({i7=o>G!Y-m z0|`qFKq}7`g?Uv0j~XOv4&`Z`0XAgOxVF6z%#HikcmKnixB}T1g!ZUF=wc5PAo;xA zfE^Hv4;t6fR05>I;1LVxmmtO^HkRz}b(D%sWS6C@HK>7OV`G878dUG#)_|FHZo39N zuPQ4lcx-#`9pyUnSkmL}f|{(i_d&Q=OG}G6>sSucy^9N16DA_3%v4+E6&2OF@bbW! zhgUD=sqd{@4Je*<;B(nnSPU5PymgwJn?aVwghgInUhT^{F$syT(IO+z1Z$uN@F%ET zWiz*n#&3t8SkOkUtgnB_%LD#vAg5w+b=Az+So_TUk7$XphK-F}80fK(`D&FvSk9^R zHB!&+R=&Rd=qx+E`sHEhFwfEs1r$WKo-3ixb*&)E*AC2U5TNlVeX>CtoWcCV3(|h- z&X3nKvK0{KGX|u-qm~}+@A?cJfsy>&=~i0ifpc87(Q}J0+FG5iE-T}WlqW}{po^EO z!x}>**I-hTCi`&w?(ZAMIe##o6Ok)rRB!2&zp=7+)E&;v}a$q6)3&0#|A;&=b zcyVogM!_fh3|~?@1*k9>!G`IP0c|!u?Td9Ez_he(Ry||zyd6P9yvva3RX)f@ z0n~d6zCW@Z(IC)5wzSj5xcWCt?k-bitYZME+#R!|Qz=XV^fnMn11Pa!ZTkHh(oTO^ z-Fz~Km>%>C^sVulcay8*?ks|jYB z5HwT=cOKknKtMH0C%6cLeS(*F!^bf}c$#t?%M5HkrB0FrltW4i3OX03DjPIoOR44M zHZ2E!M=#*)O^8d0QcWEF-Y@{Lbp%>+xsc}RA&M=_rXM`f9j!k;@Du-Q+e_F#B7=UL zmr%{PpM9dC>s-X$8+%38*H$Otz&$Y{0^3_>^MLESm7#>ZuE$zuJ6dc2(*;{6czOz^%1TV-f4cL}$o~(R zp}GRSm9-fu{Bjt&d3$!i)|}MMAdD1B$n9hU>?S|}#p=dJt>ac&#~gL8aQ&Zfl`_VV zN*D3xzX+9=YZZtKW9b40SW948ns=o3^H*2dG_C**mv<sa8N=SIs+uH-8o4;g5d?|ieKkT4dF8FY>lIUUj zgHJ2heUF~a@YJKds&7ZW7ld$^aoEk|jvxczoaIj{+!Pe)L<3nt{hiLyefI-kOw2iG z^5A|y0%c|FKHY398eeH@m4@(P9&2|9<^mn`4TxY@ea*gr;s=C9MY!vj1oR% zW{(*qJt&t!6j#MAQ1&IUKI&5QLVy9?n%H|cHqk2oR~VFR26JRl(<^P(8z~=FB{W>) z^_6y^w5#ojrJ%#BpuSur!h~t(r3B zUYgq7btUq{IRQCxCvus@fGFl0kggWlSR;Q>uoWhAOsIsS9S~9%ggTfMsMN>2Rpn*3 z*k7-;ncQ3a#JzPSy4!IY&o!`T8HoO+dTEBDBFQ0K@*|&Ml^VvDcM(r={Ra%r0oi(3 zkBGULPLEFF!C`~}e_oQ6E4>z*Y8e;5hLX@t9MlDBh?#1+C@uXX0Yk4KeX(E}MvxCH z#~NT+_7IFXtQcaE!$L*Wi9Z*taWk3Z!<$t#$&ZUZj~d3}yR!}eVA;5HrENYLUisp& zW-T4%@}}biDzZ#P^e{4rUq1wy1JzKZ^IcQH;5`;P{<=cWxhZ6`H>2)W&2l%gomnhE zCK38x{&~JK4gSKn#2BxvxcW?s`q*_^!Zm%a4(N!&j?rU-jg6So%3qx>P)fY(%f_1Y%b96zgI{ReJ4FSFvXKN+pJ!Q zqw=lMS9B>Mn5A37NoZwst+mtw+s69+v0=A?)4e@g74=LznPNG@HOzY-#0kx(1=Z_v zgdeerJ1RbjH)Hks^cZhX?KZR4)MxF>$Z}7WN_rzB2u80J7hy`GGF6ZmbkkSli)lB? zdpuqwI0vNPy=gR;tb#?C{r>)YzsT?aOj7r%miMKZTXyD?A09-r8YxJkYAnf9V{byv zcH|yoiZmvB8PliZc05OU!V<5K&nL;ix>V4}R4&bq|E{?q7`JyOQRH!)h(O5O<~rQ* zw{gy)syLxyhBuvLBq`e=Qgoj)p*Q&K>&)9tuR40d9iGG*_oYedLnrEr>E0tT=)!iJ zH#4ONoMu9Hwy{<+JM@bbhNJGp`uc^tU!J`_r_n1q^MvfGo1YG8&3i%7I=567$FTt| zrc8lWshWIV?C%Vt2m!oYQ#)q+vgj{p!z1%1OExWXSC#ZbLI|hZ^z9h2Vh@REU^Nb{ z@sf?kH8nIefM{UBG_n`_{{7=|MzN`Aq|>g*NXjjfCcbLsjL;w$-ECtyTI3T#U*%3{ zCE)j{pc$2LtnSJ)F6FDKOU88Yain+YFj0o0<@K-UA#S9GAp`rF)Z9T5z-?|ts+c4&IxE6uUt zI_DvbDb-0C^RkYt@7gH^7vrLz01cE0`RD-%Mfj+E?8z_F^G+$jJR zrO#A0d0H&dk8<_hOV8)kmAQ7zlgn>1kZ}v2VtU|4k!H*r?=Hp~g@=Vy*NqhXBxE(Y z2yK?bvAue-FxA3ILo)s1DHn^Ks(DIeGlxxVQ~FJqp~(!`0VZKLs)dsKGtkn8jR$U& zPc7W!=)`{5orZa@n-s_4cDpwF18HS_{7QKVjsT6ELP0&WBBAHf4{w>&&A@w2A3e!vtW^_A2qR>NH<)d-{-XT->F zimJ0b$@wr7NC0rR>X}C-mx)grWV^>v`T0HUf2P;dhiAUfFX z(lL!=2J9P5n%$>lt^qw{M9B6Q5w>+~bV2hk+V>Nb9>Tznd#hT~lp)nfiXD#Fo*xhV zxELLtBtZU+(Ilh%NjTNFk4Mg~xvJ(pE57N&OOFk$&6e2&W=NV7hD`@d-0t6fsd`Rh ztW?0XR8GV^fGtatKaf!g=kW3H(8quEIIeiHL?}0U|7;G7x@7A0YgdTVpXDiHoY6yL zn-gR>%!eF$jKa5w@cUx$1~DpCXXO2pdiC?TMkxa!wYk!@q`kCnzJzwRPMsZ<_|cU* zFA+2y(FJGEiBDB&B5}xgUAdw=j4{P#&d_wvvW=N>XOLx@>13xmx16dKbL|{Y@Up47 zUUIiv`fpl<&@kGOB@*9}di(BlqI7@n1YzGD*xFpX(Ly$LB9xHcF~7I6xF4X9-CL&d z;R(Pb0oTLMHRuKuAX%U@NegVVfx5-v>|_sEdpUP=@3qdoJU>Psza0iBCkq7(*V_MD zvZDF@yFHoT8r|$q-=KLvgi<}!;YSv}7lZCI+Z+$W(g!`z;_Fe8{R}R@xDV6guZKY( z{PGNZ+yQ8f8;z@e#=<`O?%lJd${6cz-% z8VM7h=xsbe!jlHTr;MnqNS%;!I9+GwgEs%9N zVFP`5IIuAd;Z_DdQInH*pyPbt`19%982amZ8nV@Sm~vTMVfhbfhoP2@Ks3-0f_=_g z2l%X2lL^0r^FOGZr~%eqiHShra_9UE_3r$5)dCKJ?t14RwiDKM4{Fmv*}aXE*GAW? zv}QHE`qX{jjDKmug=Y%*Tq))#BWL{SfP+3vxNaL9N=wg=iR|YtW`yTu^N-IPmSa^y z+}DeGdfJv)YWLh>(~K7jMrE!bNsa+ju1?i)u>yz!H$2$>e+lY*E*bp8h1bIav5BzGKzT}~V$*1$GYJSxfMgH! zcn8j>;1$4l1#JJrGx2#Om(8Z3OLhMPJr(>r^lt$tOD); z*Z;49e^L+s0GhEnK^3%jB;uAHq3C_vuxVW93u@CBkEC_k?iI$NRaaKE+4c(4+(i=PPVY)zk>Ei6;I$TfmQ|UDCI;oF>gJLSy;CeGO>R z1K+Xo|j?bjT=o?b^B zQZ6Csw6DgyM)uhi%9?dmNXa4l$L z-+#Rp$52FKI(`_zp7z99la4jzFTGw94*W>$xItnq)BFt^p(J=it7Z!-VR6~`&o`qM z6K0H5a8yjDJ3P`QEo7SV0h=)o$e%!M2MIDv_AX_m{~quYX#Gs=Qm19T#+4r~d_FWk zRE@IEl97?k%*;HjyX%Ld*R%LSZk-&NYSG@k|ssC81 zdH)b{ucpy$&}XXTfQeT%gv3H)!W;rW1~LC}Vba)-D1%UEE?!Tx<5kC=H7-V>9DQ-K z^Wq{@v905p`M~FUH)<=QJO3ZQ^a84%h%<(=@yyC|s+s2tY=n=2&?9w;lG1Z`x#`dP z1$4DC&s122UO)Qv6!t?j_F{B1U;DkDijxNtu=Tf+9Dwiv=1=cbXMJa-UTaxDd1y3v zbX+I@z)pNF)`6@T9I-N~Yu3kLSN`>^U*Jf6neHO5;1STt$R@NRO)85$>_1WOe#Zq$ z-0q)p3b@YVUtgy$LVQBq-PZTRwAIY>8RkE3m9cZ$As&s&SIbq&;USafA!|%a7e2)M zj$W%XR!I0q4*9LT@pe+EKFrJmao5?TN(g^~j(A52UTOn*MyO0o| z*TBI2T%gkjTLGlI0?q8dM;3#~SA`|*#njZRLp?gcoItpQ{=~eKyQ-?Hj*iYP0uY=2 z*Z%nyll}k0`LxqiHtaUjIgVk~|J(8Z zRYAbKga*NVJ|8kvH2c1VxjFGw-71K;25RP(3pt-!fi~-<4o=Oqw$YErC#5Cu?z7ydRwxEw}7_3C$)^aLcr-s9IwKHqyqg z=SK*Fae9^rXdsFPW@Rg5WAwQvsKUMs3|!lLmHl6P#|dPMKcXyI`t!+i=gvVv_e?kw z<}br9FI3y`_%fI~NS#N@{)m=)G>{KmYVA9Bc=x6e|MlY&SkT|O{WRmEG9)>E3}QNH z?@iqkpWevQKOXyE_s}GKh+6i)z7^+KcSw^=6!3xV`Y;~%$k2f}M+&Xae|6SDXakj9 zq0JuE%yG7BU_j^YT|Zbz4;lP_RH1*r3s9X{ar(4WBY?txrxvsbpkH1aZ8qYHkoo>N z``5qaum(bg34T?9mPm`!jL={mh50>?ZjRyZ9MwaIVwi^bltODz)RKlsZB)8ceVfGl zj~CG9`ziaXB*D*8Ix+K-^;@)O8PL$@sRc%?HxTl`^8ylbzUp%TP5A#)TJ_hlLVp%^ z&V<_08hSH!=E2TP|4f@A#haoWt>`d}BOK0Am7qhgma0l(W zkdV+sZBnSEBxcj%6vPcIHluN4#RRzOp|n9!*`|A*Oi2L91ibS zZM>JHJ+k>|ivOVo?7Yu!c~ixRXN3!~X1aW|h)_W95fVl!j49#Kc1o1-4AKQ`$QT&S z#=Nsy5#PY!UQ6=ME!^tL1PY(}ax9L;^R3*SKryQQENR-fXcgAZoNl3KftH%jWD8ZA z3^|jexYzY0>&>ENvziiKF+F;8ZaCoclKPqEcUt0f@|@%PE|x}HTHe=|N4?1oIyam7 zmZPZ8dXDDq7vSf908?Q96j0;kD(7e`Oi}=^1CT&tBvcjdgpcan$sm$Y@KN$RiqCgPH0@<=#w!n5hV1o0xj@$i@R>2LC=8sgZm#5mSUQV-FUA%xFO@7q-)4XG7er-5Ilh`JDve|SjUau8%W+0dLu~EYNPYav2o%Rd`r6Zk zID*0N<7Cdh&xsILGjZq;^b_JY&+Iuaz)kVFKsR;WJ!J@&`swTUbx*0E&$MoOFRuIH zoS+fyJbmhs;kDsg8g2Ijm{4g^BU2gvmbB*gZnK0`P||pL%kU5puAG+UA&Q?05_~W? zEb6>zsJN(FKW*XcTyl!(9{t#P_4ONmf~Nctp`2qc-yI+Hzd^;BLo1cWnN#oP+V!G0aarErtbiS;iVf?Q;m{FUPa|`+c1WV_fTyO=#>(~{YwbaE( zpW-AhNDuDgTYC$4I=Hw|{b+J6dMaj=e70}xUT)}_fRlU5)gtvi66aR@p9H#7hBqrbx|B-C3$ZMg{1{8Omx#WzG(qeOMZMJ}pNJAl z-t|1Wv}~HUY$Fiq@}s;{oBgf;1->wvCRfymJ3Q$Ar|) zh}4`ev5uI$hSA`*8yUO1mbIIfRXBQ9-g&R_g;8zhT??t#4!g(ZCB*8cP^WkdtBI$v zJ=2Q`AMu0E-V`6{Jn!Gm{z$oc%B00tOqJb@VL3wkwwzv6`(ASKM!|5muKB{y`^g&C zgDFP()#cVt&bps0wTNGuQz$N0x>+P$>oFRg$#L5FEWxVjJ%7@h5?95$`K}Y!6>_y% zd4ts7wHxO#)h}sx6=a!y=8nHA= z`&{rmJFigh7Rj~1{^>x^Z?^=>gwi(MO|$wKBmEgvaxiJ9rLSD{Z$Pk}E$elgo%1|r zG&*Hn;&{h3r-4ggIr_ehK#!=QxLA^&oSvJEp6Qr2`!zJdV^*ZG-DSR>%<0SPyB{Wm z^}bpNCz^@98BCVuVdVR^VdC<Iu#}Ut)cf|7w}NPo1$j*jZCL zO*jAx(m~zVpe)5|3?j z%z|kXZCeCri(ktd&+nW^eevX|NVeh8Sd9tNwJp6Jca`!ktJ|H@3D2IHO&Q~Mk#WYF z?nx^|pJTvw^3C=D=9IB6ilXTgZ2ZUB7*wePGS{EfEEwDtOa)}3U%mWy!qaTSzpp9X z8&5pgT^ibRe7oqK;4{rZxKhux)$S@YO%k;&o;#K}s_3YIx=7wsr={9GM$Ek^Q!@=&+fXv(?h6dLk_ zM^SYEwjX??N^O9vwA` zB56@NPuHCf(iWWes}}V3Dx_&`!%78R+Y3^OUlwihO2kwR-`eR4m2vgX%L}uiT9e8> zg+xEiAhM<7h){}d8r=vk6F!xYbTdDr%Xraxt+}Zd)7ya=%f4YJ#v39<7a^mfm*gZ0 zW$wRO2W?KM+xF#CQ?w>n(3b!oO0mlUK-%5y)k8FDrkgqVr!V}Dm~O#57u|7?ABn4a z>SJH=Q6?p490wUJW$5I@C*K85Pe7yLkzf2)ItxJ{Il?IV5C71%Ky7~5o9}JIY!M+x zvMfeO$VPqpTYcYc#eFMpyvW#r6V&+9vX?8iwbc8-%Q&|be%|dncb+ZOB#KZUe)V5m z8DnlF;gF6UPinaPEmHZ*ukz+h5-wxJAu2$(%xd7!M6IKv1By_P5M$AqV-geHt4EoP zeB8rdq>y-I0=Cv zzX5mBAdQTq;2;YDE?^wvzvm46O`MD?Rn)5>)SfvT7~D}FoflTethwSa;={lf+}bLK zw3*iNX8X*f^M8*Q95#MK5#Rz_*x(1CcQxo`e;Nmx zb6BNLq?j_PupWt+R%=CKVNgmQy|zO`iH!idYYnh=YB8@iisttAdGPXl@Bm~HKU3p= zLuHU6TPjCgFBaLCF7J|cjB7vGl{m?WtwrCXf+P{3i2_6d7hMKoGDzD2R+zljFTyZB zJwi0G7)%NX#)s=4=a)i861?b}hvPJ8j-Qzc5u657H#4oH!wqAmRgW{#JY-%DnXYJ9VVHjoRS}Qpq$x~Hmy|ZKKw^fEBQKp9o18p^stO7U($Yru_kNsu zL3+Pzx!h+X1zpDmIK#_}y(%1}z@4B&VN4iePkb zkt;2RCKZD5wZ~8#A9mYJ>jBq3H1mS@R~uZ*z~s!l)a_ftU(aUc*x!%ViLDfb>RXXd zJXRJL7sVWBx*_@o90=_u+DKz$k18L{nsL}kD969hpI#kD%ZNS!?d;TT!#C(_Q~?r^ zR~tu{rzRhKi_=@%fUGtCE5 zGY2K*1f)D4(eAk26c*En)@#Fb2fY1YzZLNh z1}fXk^w@prkzig2Ea+0m!3Ka@iRmcy)a(P!2!qszD?)*kEMd84Mg0aWxe^}mX}zom zdUo?T?DsTL&8)<&K<2cwv%|)6adF`sKek%YH-9LG*45RuvRZim{q_hRN?u;xqUWMJ5{YCwV!`k!5^-K=)KAVZE4MlQJ84dE^7B-= z1zvW&S4PvHf`O@QEX^IC+4Sz+6X^Z`at8_7hxAOaPTbz!Zj%Ea*_nj}W6`o+OXz4_ zA|;)ko6{~ajZg;;kJsK;^%2kMnVD}@uH36j2Qg@Us(t7kg5l?RN}&?_$qvY;0suAd zh-f^6AE}^b$DWltA}wo3{N?ZwunGb9uCK@tcXb;)_ps9l9(gTRV&h(w_)O>dZ-1s& zbaW`hXM#xbmGw~au5is5ZVao?6?XQHmKL|2HD=Wso?q`f-wL^DoL)xS3+h}H)+FN= z8sVV~Qjos|XWKSb^A_|?a5sXk-2)4YL+U;B9!=u`8duA`lhxIpB36^1pI=bGPDl54 z+TlrTto7FyhwTi_(&s>dWtl{AT!jZ%t*fZqy|nZK@DM!Ty}dn!EaaKApILm2)Td>$$oCV@o7Jhk|eMU<@EpQP57!yRjdL`)I#Vq$Af z;Mcoc!`_Z^D)mNOq+-^nD6re_l zJjzpH5eMsD9(iu^*M~SfECS*GSkhitq=cYKn(P)O71bI-W9``)Sq%JSxM>`RFx~I+ zUck`b)z(IL@vJiZxq58>egFQPx zzuIf>FEgCKRv*{^SdjiA+@K}Y$>z`NmkDrfSA~!zH4-<_&8)OK! zqerv4GZ>LA&0w?AX4?^r;^2-B3JQ9r!pt3dSSi5WcCFd;9paq=dD0Agkzv zb6Qg?i1r0zNADx*ZF~^KLHFV1KMWz8=t!#6uX`9Kw(l}n<$B!b`)Z02>$=BJ#lkVP z3^{5nMzVr9@Y%K=D$!w$@#6h(4pZh>5_{` z&Co$EwLT9So-arI&vkzWCo)v@yLNdk&O}^_#=xQPFgVSC7xyaIyvDL>yac2;I5-&M z?#KQj8~?lZ#V#eXQH62$(e^`|9-7yqqodW;)w5p;ud=aGl9GZq`K2Rn;J~8gL(y-_ ze=Rl%(`GjbB_bi==jZ26F|_(w$R2KtF5eS)y{I-e^=K;MM`CLy?jKJREw2nanz6Al z$W?CLYKFxPI$0|WM-M4x&6u~F0_QAi)#qlH8VI6{8vmZZxz(_>K#7HW4m$3a+SN^+f)=+Y2AVtwnqNdh&5)&zk z)U|bV_8{lpTkw6GmBKHk3NA_{aG{!1&@N^7Yh4>fMapG(XKK~ILr)gE$#86;lvIYN z50WJA*`NK$aX6rqU7DUm3pm8u3)+RTp!Jh?p+RP4W##T(sl>#3<%+E2jhVQkYlsxu z--fOKUVX_O#hS72g;=HXCMVNpdtZfq6qV9Pl?}eO4#-;3l<1%Q!NafQ+M(z5*mPy@ zS=RCOyM$17eVSW(a^QIq-;i(T$GqZZ!Z%_<`FA1bFOOfgzvKEz#qQE~jH_@00*9lZfX zgl0dg*l9pyJ>E6S;+Dx<>6VjME8|(@Ny3^*s?s#~lFfUB>7%v_45rCnKT62NDveL@ zR-U4c3=v)~Vy?qX7>MB#nzAkT=zb?g;;5npT;3RTQ1k6mA6W0z?8~ie57eMJ?v?Zi zew`bOkPoUZqj@gFG3+FrktU}3Sz6#(3ipi`NfeKuD;s{AEq>{@A7sWPNdMSNwt%L( zu7r6GVn4(^(i4aeujzSZ9dOOrcmBKG!y;-;vw`J^tT{W0ucI|ZSC!nZEPWRk?iVJ` zV?Ha_MDZh5X!WyDSOF@r%5kGQNPPF$_~XXzDr&jOnk#!-lQ?u*Td!RfhR8oquUDd< zr1Fv1^zn5{@_jDC7v?46%<*jh;-R>(MddBarMTciO)QyF)nHohQg}lkgJi|uSf+`( zq?ysOp!Vr?G1)jNdJOj!PJCsxvd#<*&by_S1#W`Vd2U+EgJQ4AWJ4zH?yq`f?~cU= zKC>nW<{FJ%3G;eBP|Ro9B_!NBa3W-3-))7|)L-4v=Ur~1OqZi~PX*S%@{@jM18v-G zSrJ0fAqsq%jYKbwN%B(reXaGxgBG9N0BPFgz~t9WR25AD#v?`c<$?vI!#PutS)HE- zzwS}hSA3ylSOXd4lTN(|14S{rqQ;Dcz*v_&gIKU!cgt8STv@6$G?kMN$!y*!!iy} z;8QOyGQ3ms6HniYi#n+`ES@`g!mEt?yX}Rrp;5dYkztwc@#V_uV`X1H_~6i{Dk(7| zY-pqPuJ{W)xR;K)JdQh__FE_Y8~FJd$`WtuB%JMfAF-2@5T5a?=c8jZ;D4O|TD^Am zJWe%LSnQehd4v@0v81{|;VB9-`xU9?cXi~B_#u-0R$($@7XlE{thTEsZ-l%a0g`{=q9ZA7^4#qRfy$Qrw)?K-bKG&lQdzLREfk)7u;qU;-O zrChz=g75jkVQu_@bBh(E6UULsH4Jh3DuL_W{&>YiF?Dlsc!;ATm-U`xw2eo6>$sDfqQtya-rirH9EF&qY|23tm4bpu?V{o)O(j z#KlZ9vgx)KX-kQlmWASZNK-hF);0Z%C}yf#f+dv5t|B^e>TIU}o%v+b)j*-@H2jy# zODU&NxRj6R?%3}az8=~R`X=Zt#o<`Ge%E*M6!p=y?CT8C{G%={NBw z?WU}Zh`D{pzO3Q~+?BY5x%q8bG)ryxMf}Bw%DfD><#3GB30E2KkNn=3O1;R7ck0~3 zV=p=JPOTeWJC@bMJ-9$&>VVI80l%=f^A05sa~{LVKnNx(bk&R5X0OZU9=cPoWime@ zNtLC_8o}^5?3o0es(%AvZjTk`%oyz(*(+))v=5b)X?-Q0-eu9YDpRM8XcpwGQn+4sB!bC1_&kv6sm@5z=e4BcwgS=Q-d2xau!` zCC=dCjfJUP`*UTHZ)D2^aH-rRlT^`LqdVU6@ratuy9m^-U7X+sDbn90@zWVnlv3i9 z7&tr%SWGYzcMzgVB%KFNQ@qCBpPA?$)hjt-clkeHMIP87MUUbDiNc!f ztFun5yT#ER_jy`Y7Q1}>7Z9Iu{k~S>8RtVl8l0~ryBr)H*P%RuA`_gCfF{a$w3_8V zJbl=>^3<8~7@L@M@l->ealYD*t5@fSYT(4nwrm(Im30J+{2fu8gy4^->kAV9VeM;g zWycO5&e~_D1#59~dv-t(`qlCkU^BSKkHu%6IdcXGL8kGc60}_%M-goxA-rNn&9Mw? zZw!s$A?t^i0A>U1YkM{2psKid6|itPC#vPf#J%E}|HYx>1j_Ot7(r9udj>6&7b%lyj|ubkkor*aIf-=*ZRmiS=8PD*cu@Xv$T@;{z-!aI)Ca^|XebB;;W zHjI9A1?e|kqV7HeZ6={B@DCFcWcaG<>JCEY8`Q>d7!CZn-o!ZEum21;RefPh(@ypw zgqW;;tpR`&3jeCjfq?<~1fNWK{+@S#PO|U?^mlDL+4o_n4Ds)v{ih0>jJwKk zNLW0)#(!Pt$a#G!{>nAjnQUfk67zvFdz%~eTxfmHe(`H}wdVdj4m4 zx;5bP0AN{LN5>%0c;N)(B62h?C4&uFK#zTqCGfsk}m8fs=!VhK7{XV~B)#nElg`i@R~9a+Yix=quXVd@23y%gaf( z%Rf|pXGLO(@%_x=2jR>Gfq^h|-qby#Ti?+*n-Ym|OKAc&g>A6{+W`<+2fmu z>xeddSXI17pdgb7EY;X_s|4ui48aKwBGs^jJzMzHzA(Qd#4=sDJ}wAuI}mR1YOLhR|DhKD9*IjR?fml(Sl1S>;LVk{ zRLrsBSzcM2l?g+k-yXNe*xq>XfbGx6^!Eo~BzU{RLC51%PikzTul1or@jtsUGFd~j&`+6Z;Fn$Uc}$?Dn$Jv10l zG7|-M&!j_!md;;C^1qsbm=fdTll7D+@b{1mB7V?cz6^!{kkSkm#pC1SrykMVI%+s6 zBZnfm%IRj@sSJfjP$;%(AIQ1X`%8X+Pj@so0|WH~SnfSjnJ&4b^5RS`hAklqUEEx2H(piyF~45-q|UwibwXB{N; zjg4x)(nEcKR#6Hm7ZWox#CpC!qY|*#uYl6rxf65yN@=gnl0YP!69QW*}~BfWsl^AKU=F0vJBM z6YGIEQk94caSp4<>pytoJj*cj9xKqwgk0my{+#^{|7h1*l3|y2L*f!% zn0%lDw;TAgLR(i$%l%+~@84j}$UjJEH$uE&si*c48*2oBa-4WZ#Q=aO!eNbt*~TY%M+dd9G`_HpwouB;?Et_$K~%S>mv_Epn9Bs{e-yU zXIK6&M>G3i8z^trKR(IT8dv+}jGsSw-DRrIW!yxeXK&4wPdD|bTp+h$Qs_<57Z|+Xm@@-u}dMstMKyi1J}&_3S% z=((u_#5dlZhR>=dix!s?_oXb{D~6cLv;`SFe=szD;wK8yWr%AmY@R%@hXDN?$At05X|ltEaeUi)S0?2V-EZyIKc-ZH!54`y@hms7sFSqh`8*hx|hzC zr^g3m8*n@yi|A0o%mlaxCx6y#4WN8=#xMV51;&2i_q~>Y@F5Ez{ir>nTaM5_%U8_z z-M%sjKT6k-b0(n4@}nRtN{=I>=<7OP*5Jfts{Eb{c&BLHZpbj6MuzELil+#1%PWZp zY;_-LIkpn9`AO)_2WpO~byO6PX9&YOO@lGVOSC8_B~YUZCn@bT=Gd#7EjhFTq^)_h zbacPvgtfS(Kd1S0*G%`e=p}yi7X8cpSdx`N?YbZ1T#>F8l0%B3Pv!;3Q>UBtwW(7b zDg0@qaK-OcM@)+me=3>@Caw|t&Lm`Zt#U{$Tuy)lUrS+OMT9klOx|C#sf)qqNef2) zWOB%)K&(bPPS9J6k_ym;cTS)#MYX4wz1GpK86b}#7r$b!ejhI)q@L)L=1n#J0UmKN zsx0b=j#0$UFvkOjj|OztL~ezdpEg0?TqOWjdVRtJhF8OOf&1r5LYA4_)eweFr9lU2jEr-|?Ej8%|_V zp%9f@4|{DIEA*5I!<$CXiQyf2s(D>2+KvC(Q?xdtGzwwjGLwE)T+5(DP*&?bN{alZ z?Nxbl>h7?sLp0y))Uh#g0_5lYUr_}KSkmM(Wn72~QzKMaO&5(7lp(KDPQNN8;%41; z!DAynj>3!^`+Y*wm=`I*HJ>db$gUO^bVnkcYJ`Qyt+<}RlJsS1m~e9Fg^p2W_nP-N zrVWIxCF~ca@cU^JZ*Hdb6-c9Q7d;-HYR`(OOo|YeurFj$*%j!&*@=pZ;|IWzxe0^! zkd)+#)D~WxIK!ugjecmw2T^)m=W1#(sI-w_)u!LAc!DK1Sx95w5ZSL#)JOQo4PJHmPRcY}R{UZN8_^T(if_ zRb^r>$H@r^L5KO(BD8KonW;hF>Yat?Qk=p+%y(cLNy*}s@D;Ox2#76Qpw2)&T2p`b z>X7f*v2DDaC`O-jP;B1ey`DQ3I(S9eIzPSavCWS8JmoW*peI+k@fDe*ab_;~1nNuq znh%zX=M=Tk9u{!2#c6aoEtkX1CAjj#O(pE+F-9uZFQ2!kZrDnvyzgP5Pqgx}P@hn_ zWFSq|&~dv_;Vz+qm*d>W>TDULb%KA)x)ckpfsraNLFE_9ac0w?c0TqvqGm^<%5bI3 zaaGM2DaM|r)t1qdj?4C?^r}kKVrsOPa@iGRb-&* zo@I{=saa6T78)|-(J@WE%JYt0G^2UK4(a(akSem1&2Vk|)a&e+H?l$`RPSVeOuvvf zq;lg~e>!-J?@5tD*o&LbUhMCYD|)X@L{Y!lj<)n#ar&XR7dD|auBq8&GW(q2&F}f{ zOR4E)?6T`ij%!(z5i9%Z8q~wl8&a)1gy>6I4h?Y}G`wdOvmGvIzVPyfIcy0iX*2sr z&4WsB<;|MC&3E2Es(+UnAK`uNB2OU$tRX(5uAuJEwg^|$(z6}qA}2dFj@14#+7B^~ z9n~~Ljip9Oj)g+Q(BeIEj00Hj7Aj8!x^VA`6XiY&7I4sPFQx1zZgZ_~m2m%j+Qr8~ zZ+!!t5YRCZLmnSFvSvGBnXCR_ncWcf80ksq6j-h1m`T3cFHR#s?L$tUme{DT4UM&jR&^!N>%LV@GPv~0M$KEL{R1^VYtgC?lW zo3={UtIOBl?4Lb6@L}HG`-4|A?jU46@cLPgd24Gc3kwVBjf^*qNADFM{oSVXf-@)` zNJYGMU4R|{CZD~0Jv?OX-TcJv6Wzvt0~LQ@7d|Hd0(FvO7P7N^&!}gx7MzyuF}Wh* z_wLYK9oIA-cuc@90v9pJIL&GL`5AD~G%^=b#TXom8k#7B)U%VVz?=fTM*%0NUS7O=;BxXI&^*eAR)W-S6SyYpAc;5uA zZvW7J7$1q%!9x0ho~|zBCTs&^I59C1Gcx4EWEYQ)hDPt#uQFXF3R$XGVt#Rr(kL4s zb#uT>sS3!Uj#E=rg;aFjxud`;DYB#A{;H^{mVJG4TvJ7!sFhy4MFNjh`CANdx5Ao$ zIL<_rX7>8ks|~RwFX+y8v2SiGW)rLp=)}p)oB|RE^fjmR7dJn6cpn+E!}W9Jm3^J)YD@a(aX&WgR`~Q4G-l_Z5j6j9S3xD_ zrLC$uy6j^7YvR&yHxW{eva~>;z5>nZb2A+QTq>ZWspUEX`YI?W7)+Fz|BIk!KnD;= zYz5*l?09WT*~@Dm=+by+&VcZe<4D#!z;aKgrd-L2KPdyd1+tvL!3BUzW#tRSpMK8H z0%({9DeBlUWTENW@NzCZ&O*bs;iZ1ct#;rd$4I_?`_{U8{WBnWt|Ei+ycQJrxJNr3 zYmf$Z*rI|rY%zVn>b$SGLKfhh&j8TpIr6xFLjrYwTb(MbDP5Iq`~FPbm|TuD*5~)Q zupMr4ZvNEl?5QN@K@Et613O=_-KCr0E_@^`i>5m6dR4zyRBF!H89_$UqWE z%~DdQ!kXMWIx%D3WjQ%!;B*X}_nkDcGe>R+UfhI@FekDnlkuX0wRM+bsb1(+C?`~K z8JfLg1a$lUV+8gVE+E$O^78N}7$3miD{4D}v-$~Ez&H~ZUuS!z+3z?B2Z9=A|Y`RYYrfXt}}A_V-i zXFu}jsHnUI+wjT6`nF(M$bFH{xy>alD=Q1AEXTjo%-|i8u}4vG*s-L5pMVgtMB6K)dRS59{IA863cHT%-h*R-@Y9Zxj{}~4YiKzgm-cp z-Miz5Vi~77Y@ z+azB?`>@T&!zLnFrO%wGY8_W$B5K>Jw^z7lysv+mK)_>b31$`iG95Lw$N#on{i8dy zt7zTai8=3lNmS5O`*n)__So;s=}9#P_1p(nRmzn0Lo-BQf54G^ekR$3Wa4%JQ2VQ@ zs(^tiz|C#n`h=~Gz3msxPHNVOhIRL&QbU%rMPX4QOI4mRp+^3%V$oQG4Wmr4e4^iU-+j?9D z0{XTFd_YnBMNzs@E8^*JYPuK z02d{{x6QthMXomPk^=2)Lk_8H)L|* zGh#|M$^8&PS>X0t0R(b}kk_zoJ2^l`T zPK;D~z;oX>xJ`SdB)hyPjYe}T2=YYc`7WJ_pL)2Xe&c4MB|Fc%)hi<+8da|J$$BI; z{e(5$Xs+0V(Ua$jepEYrea?CAm1dJrUi!R|A*q@3nQwRSW`}lno5glVmgTGoI?fMy z?3i5TjfpllyHmDq=9^pA(W@%QQ7|avZgO9un=>`tS~LVs+|+9X9ec@Bj|Qk<F%K28tJ*SS!PyIi!tSq z?Q#G{H?+V(@B?B7kQNH@@I-qs_eP?XOxXxyB2*Imr877#aq7HHpOrqHbq`ZO@l?9IqPtNab_V%yj%} z&$L!%Du=+G=65u6o2@&%=09es9cxNo%(kDztad~uQ+If3Yv!gW8I)x=T_wLvRhSXW zhu3iGb)J}QQXVBLiRQHx*2#s|;MuLb5`xf{dXiZ*r)Jft#K7Y2o!OLK)m47)>s;Pz zk0uV*&gXmYbcJhBcP||`$2YQjUpN=!_JAw@W*&!Zv~j(1oUdJa$6WkHG#1!jBZj!# zZz)k6eYp>Y-drO%4cv0Md^L!Sjd}8fE9mmGmUxmsqz{X zd&41R^1_#H{s!N2?FAcwxmCAo>?GTZ@4!i4yYBksOJ_mIub39$)zoj5@`W5JJFN76)M2Ziy|C|=h-eu%MJUxG6!({vVE#qOpYL?MDYR%K0cJMjWN5h4NPz1^NM9`=>m`}!O+wx>d7!ZqYXZbYHx zI8KHb&sS@D-j8~-OEY|%&up=Ki`UKDzoLk6@kW4_=jHFXNRSe?h1VT+TqoM%z-2|d z#>*30lt4vkGm!2wX5r8yYor6VBBl3r{u?~IKFyt0O&Q$=r3j3;tn4kO`U`UOTowJJ zwyLx~!Gv-Qv@au+4FbX!ohnh|(P)8Gg4J<}bb>QX``L}z+zDudV|u6ya<}{l&&1fp z_01CpNHkOuFgye9MX$NNsZmt=fcDnKuHbdej8Xhp6LF@C%6O?58wo<+>#VCTRnfOm zPm~M-qAls8qpuQZJaBrXz;XdE^EFSWo@;_eJjMqxO@9_)o&ndb?>UQ$tK11EwzW30~uC+I<`dS3tC8DM6hC*@G z2ql%ArqKxh#%Kv~5n7+?COm$qlN$wglh><@YeFq42JVQOW#tTa?g`dt@lGZHTa>Q% z&}pF3e!^5V|C0b~WB_8s`A(b!D>2?#AxdmG6a{|BaYV_gC#8oX?vNZ`(sAqA7jm$|s(h7iO+U&pByQ!$-f9rae>eZ4+1D_`C)_`fP(j5b zmT@V1(IRE3WVPC;t8Vkv*-9QN&6k!p7Kc2oml(w^?JkQ&wkaM+FK*Vb=vLR0o(+(s z9f`d>A%z+}izEz7G$^XGM3_m04w8LQ;$DvNrSM!A)hMheO}FddCx5fdHgcwf51iCl zCU#Q`N^ZpJKMdbuFrBHpY01@wkE-Hs#GI@w(FVq3E&6&n(5@gZ`Y_fL^rLt6Jb9ti zgq#AXcpX!CIfh*e3ZT%cMIHX}O78GLG)qnjtbi8?Y`7O1bj;%J?!xwCz_$cN&;9%N zfvu*H^!_YL;({{w-hUMU=fp ziQJEciCZzDB1mjJZIOCnL_`tjiy(uCQo!c=Wde|^-nX+Ol$6%noWXL~*&dopE5P$@n1Wq(!a54tyM3Pq74q(4w3!VQQrnfk&eHt^q zmG5IOT}z)b&6=RJ0(BhvD;ULcT&i-KkMEneGBwRED0pXDAN1cprXF+iZu>!%a+3hx*Zk!{dD)`#E@IdDcdM%){a^L%B4mwKhk*=~->Sd%4dVa*fI0V8PxU-Z0`x0c*`dU6C5bgA61+AC8(c(^6JNBI zKh4ZM)t6gc`=7HG+`=q9EUFFaoYtka?r68}&d-$bGYK|g#u$Uom|IvB>eb+*JO*-E z{`Ydg^qT*4c*Q$XhiIH7SMLAg>r23?+`G3+DpaOTBtxc6hL9l{BSkVLWvI+DWS%o- z3Y95|k||_}gs5bQD1{_bWG+I9%o)GidH?78-v9fZ-s8H|bz<-RJkR>Ab+3EfYpsOT z^N%mA{*rhfa#~F#PVpu=uasBepMIQVV}L*c>iS}FPw#T@T!Q1&O_QGnb#Km{VY5BuEXZberlLe6 zt?j1ehF;a$AWbU|^ahseU@w&aWW~bqs-XfSmsaW z^TO5j!h^4D|59ApT*Cl69WAX?Q1A!uC~^Gy?Q??DxIehS&22;6D6yfPD!ssjU)1Zb z-#G2+8(r`uqJ)jLu!?EIbDp`BH&f7UfBDZpKWkP4S+4(VIvZ#hW+_)I)JEuzsXvrN zlgrE>4H1W4Y{fZZCEa#fl;+~dE8F43OT&NJHEtf-+QEEb0aj7b!3skvV)>^(-giMY z$!O!iAL+Kk%Zct# z3`O#jC$5mifr?2d7jpm8gRsCK==s7x<&iY&3`xM}{*vtYjMc|&KQ;q#oG}oijFy&c($4%L| zX6F2#yp8^=V8vCTgPCmhXB!)Cx(Kq_o^8CKo62~woKsp&$AO*`1AlP6E!xt4zC zg=o-!f1bvQ&SKSLu3j>%5ywSkWCWub;9qpK=NjnKi&_F$- zxiP2}5E6KGj)Y&7JL-apSoG2mweecN{Z=>>`UXSWxMzgFpSpRt0hU6MJnsHo`j%m|J% z7TbMCH4J4$YfP|JRsJsznLs$JA!3q#(0%bm~^q#VrKGAAdY49K`a< zKri|07%p3kqCu73F((tTfIC?|?d@~bI?Gse=RXz1Mn+1aX5#lphXz;kc(Q!HWO(TE z-pt9oEZiFjRU@PQ=tN6cx(^L0mNPBlDao)3$;wWpW z{OPHs*Q(^d?x%ARfFs~)P$d|4zI^Q1F@60#4}`1!cz8Dx(8b@Fn}zOK+)eM5#b4Lx z`7sFsYam7LPMQ7}Qwf+kri_a04DoK$#q<`HR#$(2`KUK$i&yqH3OW843w>{GxT-YU z=QTc2Li=dAcdqSH19`K$G1F;%SJai!L5*2NQp}Vii%%-rafZwPc!nd%C-c6XfA$Kc z^czYXuuJghpo0Nb#MLUQK85`LFSfAJUbE!@IxU>9yxG8P6)V#X95G}r|IG-bh}3M- z1JhQB`*4mJPHKhZ5#?ZPBfR5q;J?KKoGXX5ug&ok{TFyHd++)-{odg1!;~<(yPKSd z!biy=jWsR&WK&Xh{*ew%#((vc0%kP^Z{-Viy9l0EqjnAef?&K}=RVmdi^ZBA{k{t* z;5I|r`sdgLbwf%msRn=$KMVct-Po)Z@W49iO)*X-M)o$U{}+>MNVsx8UC0g$EGz}0 zyT%w4-8NRGF^n+0_~TOwA@`oMpyE+D*VZ^Qo!9S9szWd=Dxf ziyPF^TZ|Rj{>!V~Aiq@WU~%o)?Wdh#{>kjoE?3CkE)=4EfYoA`FJDII&&4_#G}`~k zZb{Wtc;MkpF#ubIiwXt5>8~ezeJczL-uyQVsQ;Rjj>WgGnNP$9ii_VPi4H$|eyxX?-n{R5p&(x#f z-N#Noe5Ht5m6ww}?TQv9S+FzZnVWpuL$oQ;G@svMR&{!d*!)iSUK`KKZ-;#c;(jbR z_b*f|`2F;)5%>4^x3shrD3~{5y+A{tCiK-(Z+xGPJFa#_&GSq6PLa(bgX%xLgUC-5 z8|kSfd2slY6zv5Qy-!|vFnE98#mTBz6Gx+Uh8 z@#~jUh~ls5nPX~;M~~~)lGX+v68Y=9Z{}Yg(v#!p#>XQpCz}KkzUQU)b-AcLZsSyY z=D)s%7B5*DnNioW=g$wr4`-#XcaL66xRNkMyt?uIL4nxDN877u{?|t{?dMcmWEL4* z2+yr4uc~S`7RHj$TdKqSYzIth*bbI){Pn^A`uJn~5gRY?ny}}uYx}f7Mu<#IYi*gN zk*S4)7#J8pTLs2?C?7j!=irdu+Tw5LdhD-{`PYYS)n(eamk~S%|GJXG$sI(}+UxS7 z7RfFNa%P7z9o#!imRv+1$QhH|GSE;{v$e5NRZ(GNWK_Z5?d(=%HIxNbUk2x}cLn;H zlEg21sQTt#Avdk44vvV+oNGVBn#esgbIgZT-#e1rG{(=QX5@j7g1{Xn1JfwNdhHqu z;hCbG^^rvuV%QnJ5-oXQ1;=3W#Ke#EtJS2e#x)PZ>h28}hnv;>a8XNG6C|qb4?oxW zWV|Ke{QWk^iN)vc(TM7O?M3%6ROO{mjP{0wggqL5)fBV$T zGZQ|Y*}SbvP+Sx7rw0jD%j<}CS;yJCgi^|@Tp%wM?z4g zbF0AaU;1Zizs(%}5tmsvxtYktY!dio_RzeSX8XBrjmC_O7Jd^_T}NW!kUZ=bDCr54xO{c$n}lb|cRToJ_;(5MKlke5s zclV;aytJEo(&zSztjPr$a3D4((b2#i- zVsl4me&5r6C9zt%pu8@*xTd+y|Ca;TL{Q57+7#O-iII=J7j|E7VxYK8GDIBM5yDq; zSBQ>W$+S{M=>sW;NPM%=`Tm}y#M|>{8$uJm9^GZG-l6-VZc^X+XSU3IyxW_#g3vc> zk$LSb%T@f5t4FjAo<8GdAoHxXJkyewAViy&mye^#lCUXU)7#to0!GrPt0Qn1pn6$W zwsd#eMq2fEq^XNCJGcGk>81+7cI>28&Cz;z%ge;3y?QO#fW2RvZ??LPqN{qXFH*Hq zFy5ZO{_|~HGk*{7OKun5F}zhO{;DpSo^YqXzh5`^7N2Z1`q%IdpZmJC>r3ODhe|V} zC$i(bmzS@7>rFpUWmDN%gns+`I0DZG;bFqjSD)UtM+1pYK6aR!T}reEieO%C)63^2DB& zlDCy}IRPa(eu1TOvX9@5o_#;_^*g^yUg6e0E~i+>JJ%KGBYj*VS}Nq)3${xC zJa<|&nRnaxt)mec`6oK`FY~7Cc{=Ow_@m&i-_)zC^2iY|tf@7Wxm{i{~y{ZP*h#k8+-3vX$6%)ay_X}PV8{Uw zbqC`MYm@fbH^{uMnGN%DadYxLDk(2ysJG9)=K1qF^{$^cRir-gviS?Jc`JQ7-c5J< zg0x~sUVEpD##NU{29>+9X`fcU9yj>(@%F_)!8^Mjsl}9@s6KeI{6Tl$ZlU+h2ZS0A z#FP$i{dH3*Q(Jb4ZL*VP*`H}`Z;Sq1^IFcY=Jm{xPexHpttkauQ7dO=wXTqN4joG| zyd(Kt_;UB{9EbUc)vr#iVjS9C{k#_1b^Ze_j zrS9p#Xj$=B-@-2277>Tkgx+8K>by1a)t4PgGL_MJzkVx1ZGDzc;!f{(LQ<_=P)mi> zib}=7s-`{B9=iLtjnl1`aM`75^qsDd{jGB#mLe-9R9JpN`s0?*+I(ELSA%60dUi|R z=z2@jK9URBomuf#8CIt+h59?LH@rA`KVofLm(>f`jEKj(p1vbWKiw)&*gm$0=hdD! zJ4o$1#_oSu`MQ)p#XUE;*w#qrZ*o()`x)(RNBta~=`I2GDE_a`WP76;%!=u>$I`2Q zr_O)sKNOvOX7Bn?C{^TYQ}){ha>DyhV@YFsiFEYzNpim3H8nNZH1pv@bhU9gQDTsc z;MGA~4*UGhLBzzu-Akv&g7)d<_qBmnN;v!Vl14fD4l8$5O*0cZbO=$yt0mW}w|(s3 zoygv#=7}Iw>!Q@gvK(4kB~?ROX{eO6PD$9knGlv3*5DOMey!g$P>xY|2SI}ILPox~ z-Pe{57d6IP3p)F^kB23eFI3N)XPqa~k10P$=hQK=+fToPd0XDc6MJ3k#}5+)1O%p@ zpC7XJ2`1T`(x9(r&~<^)REBEyD$k==u+))+vAJ@8ZZ&YFUaYm!VG}k1-iKhiwDfG6meu;~*5gNj`!>ElY~R3se}8!rHWL?LPx<>g zEnfQmD|WZp(#5R2*YcGz90}}EK3_p_vgBPfi!ySpPnhgJ!L2OmCsn69z=NqWNH_djg!|GgC( z7=82@K(q9+0hRD(Qsr%doK4Nm7-{<`FHcQVlZuiOtLML1|BoU6`|q6#BWDP$D*b4g z#VPKT#fjzS)6*%dKP;ioDJd>qMuAR7R@Tne*2~+wWQOGr_SfPd!hUyQ@afSkf!CE{ zd)p5!zcc-je*KlX$lz1olB$9htAnDVsPYf08W?m#F$Yz6U&~Bg>)#gq|NabqN=*=W zqjC3p(ijzS(~jWa;7v?cVt2E%vmrxMDB`@K{`c+we}8)J6)|BH8Jr8O&BBn(+S=OB zpFh8SyPtzYahZAZKU$rX+L5gEexZF^Gqt;5DxW?*D=rRl`zQN6t2Pz>b!~j*rS1qP z&!e5+6O+XD{+@dpgbe4(7B%7wMm9hPc>DHkpd9Dt%nybC@zEA1Y+`Rbb?Ov=5;-|J z_Pn4{0cBBJ)Q5le6&GHSk{u1ZapTAL@9C{$c=C|O{e8Uu{Z9v3qK|d1$9!C$F^T7H zbv3nn^8RwNvcBf#wOGSKjIGubX{GtMr~R+zUvus%xh|(4St%Fp} zR8w_dMFLC%^7FrOr(s*1c21j>7)TSy<@5~y-KYG^wGGoo%Wtzb}-KnlwkZ zw&U9l)Tc0#Q{lC3`O(L1dAQeN&qW`?Kf{LQAudjl_X8N?h9Z@RPMpF0p z*A#JyRgz_F57BDJvs8@N6cVEPH^=t3e;u@Y73?^_-Ez6I{NQZJuhhz}c-^ah79W&% z6S9v6zgp*=I+&ZEkBn|3dHc^V&j#UY>3eh4U423YJN@j%QXSlD%%{i*I_8>$Cxkr} zD0n=$d6V}4dfI=tQw9Q#>1Kj)Q&m+}N>Wl%a5AreyG`DTr1|(Ls)Lww*e|Hn{@qcvveN1YS ze$S2if9yyPpn88(UOhE8Ybz-!3Z*?SJRFefL8zUTwf&zS9b%j?#l~&iP8bklmy+@_ zH|G);FUiW{5fUmWD$)G&@<>7uFcZFAHT4jwG$MRcGMafCBC~P80 zY>K>g%~Y5XpISmfqPvj1`;VT#dGBfY^|J3X4ZbN%^W%vuRc#B`TQB&;R0a#fZ=SZ? zzH^(Iy*=eWe(Kl3%?HMleEo7JS4Dd_T->F#hzMv9PiJXt-L{R$%{@FaayKF2Nl8iC zKb$`JYU%6bs+rT6>Ve`323v!LhnL61YWOXoPOA;BX5(w0{r@`Z9IjGJTQYZ%D5gEe zdp&q?JpXLfy^+7~j{@5UxAXVcpgL*70L{U3^Xe5QHx7ECc;f3T`}&`3 zDlM_LR;x#=LYc!PC_y2vC{sTs~ zRGHO~%hm;J{tYqy_a}1YryxY$i>!aaSn+Xe)Y3npwT0g|!0_4Pw2{%6`0Q21KNzlH zR{EQiWFAnBaCJfNQ<6Mayfq2g?Q(I6w+wz?+P?2qO36%oO^OjAW5tO2?{MMtzp>WD zq`VQ=i|raK{%_cPO{Zo%`&~y9eSLn8X;xWf2@ej7uQyn3taRvQbd3%{v z`FAoxa{cmmx}b<)5tHl_OHZbc$cfq$v|N5T++CY~vrB%FA+TdHh^=G2OTKhOInOe&!RPrFM@d*^FeJj6n46cq^*dxvkjJ zF2nbdn_r@I_Gr#o$_~Qo;A*d94o%2^h7J>jzb)Dh-Pp7(A(i2^#e4OLT!~Jo!+*=j zR+Ij$IcThyZu>*zvKpgxtfsr&jxJG&{>HNNciqZVKAt~tT|m<=Ls{S<70(09tgTA{ zPBwry=1^JlI4Csy@je3voBPBD()O{x;+7rkgEPS(PJWcE65*u~ulP7Hm z`}LWul3G*y>?kmO-B`=Onj{FV&&XC#lS9 zXgHgf->j9-e_GEwJpWW_Vlp>s)va}Xew|N3;@SDqD{tr>4|7Gl8Gihrv$NxDJlBf# zgRll#rw1pPJPckY-wNA$@VV*Ty1{8u<^v{Qrb%rnjq;-%Zg}KH$m#FpwEg~t{_{ml->diOj6HHNWOo~Ss;yre6-78C#`AYC(+Qp*zduNHswli75$5XE5 zSMENS%wgS;wUxoYBH7dTl$+!`I??Alc18y0sXLBjk)FhM=QkH)Qp6*Plm|jHqg4~v z7yR?(=H+c7S6RBkOK=Cu{eK8u-N~F%py)A2Pl(hYFqbQ@4+h;{sPtKhZT>vh)F=IG zkQx{pN@*eMusJQlK* z=;%!eQ(2Pg(ap{oBoEZYxan_--LbNXl}|IgbNa1Bd|gk;;Xyv9MEblF7v0Y|?@v)E z_s>4iedb;1@ATX;R`G{Xj|-RMzOaPma{H;dcY1GI;66B5d88}E94`EAWmdGO;C zT-RM@c1WMI35nj%pjN+iXARN(og}C9$M)XCx9|RTz25#XnP`2kwPO73qYEv;2ASvY z(Fim*kA_d!=5$`%>Sf|mLr-IQlKsNDb15l_=b}}@KCkrjbiW?ydwt)uO!MvDQ_i8} zdo7_I{BfXBpl(r+XPXcYY0Q(1fx7yK)8qFeCXQBm>I>*IG!dSb+^K8A9K5$HJwqg8 z`d_Suq8pp-a&$Nu?s>_Jk1f~S`%&BN|FP&h!?))q*3G(U%gg?G+@ox|+qXCC7Uy^@ zmL_xl3?Mw}d_C9HL-N{Mju4fi(bg`PotK9$qQF=Zz4dRy!zjV+rlZ5Ii5;XQK$EoL z%*@PRoqyAi%1+KBC4%r|*BTG>d{nG5&#>zN6z1{tv5ASf>FK4@N+Rp~*QicmduE7Y znwCRs^6DuTgSAnq6}h~Np`qI_v&_uY)V{y6qOfo?L!GG;qI-AD&Dhw>GOUlc47-x1 zZO35y&H|&*^%Ht}dTwqd=!sZdlr#=}`g9@XfW+XQ@#UG8YZojAEtj{4E;p|~ z^l*2avUONL_C9d?>O23Io}POZ6|#~n0l=N8`>fnKo(@#o`^@PJ1OWpXbhNb7%FV9O z$!h)U($+Ep+n1q8S({YK|3*bcweW;AhD=mc6z~d58`4{3e3zaS6lkWm)YjDjp>5l` zH6$d&TI?>C9WzDTzIX4(z<{v0_?&W-`jNk1Qp;a^b#QCTz`OVFDdQV@rBwy%E*Agx zkz2up^@4{FFHL&v&%#th3{Pa(y?brcI`V%$iWcuJ!xM=t*>&qX=u(5GZFq07s`~di zuCDaVK0cAHt6GqJYyN$E3h&<6{-v@7E20#0zVWP;&0e3l+Ad{W2)pBa=05L{7o{XC z@2jgf&n0@z<(2Fu7v%c==bA#cbb*KDef4rhepQ_7ZtzuC<$HEUB58V z5*iS*$iF(xb9^Nxtxx^bjdb5%QOS{G@}H9#?A0BQF3uTRnxC61a$O%VbP)#*&x5K zw-+@%i2iwc`^yP;4-auBbzlVO5Y96*GNQgHm$TO5=N5na z_6Qp3MndM8<{dRcz z_wUQQuhXNX7dO}DSSva?IiclJK|$fK-adO& zM)d@U2jfq%$;q&k7|4o?Zw+q^Pl>FKgSjUNk=a+Din@piov41&hMW8PCjIE%VvltO z&`5fFc@cSdOlFCS6pp7=vZ(GRCqp>yRT327#Xvgwd3N>*Y%(A~L0|vQ!-wC8hB$I` zY3$Kzd_1cat4WgX-TT+t`s`(L8YSO+WFMI223Z8!?ld(uc_d%fQ1Eebe)$q5uc4wc z1t&7yAk-WAq^vBrVY~9&5qJ0bZ~{-|()dG+a`W=^WZb)#fq@~`VB0HiTCD6jfBs&4 z{5PD$;o)QE)ti!vks9B;Io)NM;ycrHh?SKU92k0}uor`P{S*XQ*Q25iiHJDCvlJCw z3k%yPxqKuRX~6aC4d`mZyaC8%$^A?}P@(yIgO4gLJ#gT_{LIYvi3#o^fza1jVwH5* zWhB08g*!X=YzY{mDbQ_y`j_VFvURTYXHc#yIr8jIG68Wo2Yy!XUPQt9KF;KX-T6 zyr#@)yFSH19->G^6@}~u%nx?pjC)deKbNHl;o#-1Z)+115fS0z%PlXzSFgKm_SU_7 zE5E;`EH5r99Y6lMu5J$_<4#J-n+7}5`t+;MPGLn;t*O(gQ!OxF=o8MIq3;qm#Pwnl ze|^0QQYb9jdiwNGyAI3s?yq1MbRM>&sgEh*Di(;`p;nkW52uY~>*uj)35g2Uyp(%P zCP%U{&u#!TydbztJpoo0mJ51%`#f*&TK7R}4d=Rj`}QMv3h z&Yb|dcNraD9gXBt94=krk5i40QnC}IwWjr%1I4v-8z<_w?(R6U461sxW8923w6wHf zNig6qS>`gXcy-?Vjf#AIZ4GJGE&S4rwpF!S;CwK%8`uFT!N^mw|pl@%E!CGjKcGqW>i+M$5z z?C3x;W^r)O^*U#F_p7;@O36&K+UDjUP0TS?5da216kZ?;&Ugm}1y}&>)2G{Q#A8af zmyBoUI$ST0zyJr4<6Xa?+ZLlH5-Hnbv&J%ipqcf2UcB*ov}E+FcBa$iovI# z-0-NOQUdEFE-qfi7GkL9y|DyHSXfvLhRex$H2-X@ zl=_u#H60g*q>fP&fJ@+i5%=K32g_iV zH1Z2L4XkY%}-(B>B8@ne*^Fbojw91_cHV+&KD1L)lSUB5`71-~&#hq~s_T z5}iAD(tS_kpkq;SF&zDIW#tn|`A64}@L=x79wsIt7Z>UW$CZ>`z6&s3=cT(QRJAhQ zct_M#3iSsWG^Pz$@0fiBA^wkv38C}P28M=cnV3|CWdfGQ;Wadpq};GG?$#|jy>{wf z+E>4E?7kjx;|4ZBEkM46E^Wf$ed$caWo37Pt5Z^p0Hz!>P;{G^uqz^js%Bmb4|j5L z!KE}bHMMI{rk|`{K5uCF^T!Wtth&s2XX3|?D`IZzaSGmyJFkKmEGe1GJQ)3Jecl8Kx#Z9{5b=IMW3~f zj@>!BVFr$PhZq%zQFPCqMFHc)Z;MmUGPHO-Wejz7JK-PU;M`uT&SPjx5#DrRb~bwT zL-q}3?VMY6rZ~koBSEKcM*j?czs^sLxY?}IO^<-PvtyN;ysDOfhi?} zgC;gM6p=k;JX>v^LbKH0-cC=f{qW%fM2Vc+dqP&os`=&1 zE7z}|1T_zthnX2?bufL~RpIM(fzjh|v)Y9cItIlM%=K0JN~78Seay$!R`|>=<&NH7 z?0T8_{{3@Lk6OUt?dYGBLYHa)gn*j_!XUevPoxO+1f7Tld!-p0Z6+ztr`Jr#5 zlCUX>K}mTzGacRRT&EE*)6(*Ckn*maf*A_l(4#`r3L&dE)SmS%^OP-6NQE5Naw&Z?*)5!Fhp;Vp&$<~UL@ww z8D@K&e!Na#W|onV*rtnv%O>M_#66<(!-q|qgM`j^R%HLUTUuILuoClgYcn^5Mc^NJ z=`_&luA!k#5R17NF%|mpBLcwbf03OND*PPjzG!Rr@$rEp0U86dcaMdzM|ZFt1E))# zJV9WFaii)6utsFH|AM_`Jw4@U`d^;6E7DMg>%rnTbV1*uK!tSx5D1rU^_j7V`VpI}4ds<%JjYTF;To^|T%GY@aBYAn$vmsZ`^_RIlL~@0x z7HBeu+8IN?m00)4+=AC#S@BW%a5p~Q<9mmoq$bxfcK{*WQ}}hLN%@6@s<4Uk*s-m@ zl%Z_{s>5P+sA{am3_!ICJJ5lrE@5v+}jj4(*s$cXKinjA1C98-5E`F!)ok2h7g3=9o-Q-t`) z`8zq$xKEzQw74QoNkxUY2DqkZ&g~>$hGT`3aQ80L#C!I3Mv25-ktX{9D~AF$p_JPu z%CWabZBPQ8=WpNsLe4NZ$1N>>dKES#EF+`lyPP3+z^ZxfduLN)qm@`Uy0hE{Yqka| z*gfv2$1Wr}Il~JVWW~hVFx!WMFu;8o0_Nq(DmEsj4QC9O&BC&)ki5)4Bs+ViS#BB5 zMTUceLsC)__9P>7Pv^p>2{q-%haR<9VFm+M{o!=OqTD8nRV}36)z@F)-#C=^Js`-i z7PZXZajI`4inJ6TPltP@s)u!T50pA$(KQpsq=gudkrB^LjV|u-9E_HWx z{f0rH)c|vG09I>{Cg6ylR8@skay$ONm$1*gJgeHK47Hs+P(^k3_eTM* zBT-&h&^&oENKH9|br1dE{j(2o)-gf(%g|6*Mtl3~jg1-m|+iCyBuF=9TuTM&v{VD_eVaR2E&kMuA^IYvS$OyU`W`oQbP_S$IA2HzjM+ zyLZeT238r?C-Pfkn>5}+VW>Ui>MGqTt=8*$ID>dn;p4vh#D zaIc;bC?Rh4I}xEcRS%ekO>fOEKyugLADYfq zWF*^DR#XJ%-rCvefjq>`joy7LxxENtJuViND69+%>)~=%+xGOFzW%T2>7v3yCs)_t z-?xnG5076Ulw0E_0XD+7VA7hav-ABHEBqx`a%-T5GDl2(N5?#R&IVM->0QXA+GV`w z1#mEAWh-#LD=Lz7-cvkFQX>YHb0Bh@QRWjANZ>)YQmG z%7h$@vXPRNRo_k6nEI5GLZypUjweh=hPmLtUtcUf%nal$nbQ2tQPTWr)<6q5$(PzD z7cXA*l=-o=gr_A1bER1wsPml4dVQWPzO-XHUUmvE+#m2@0wEW=2o>7h)M|uliyhvO+ zWoDNC^Ye`JXSk!+Z{EO1vC4XpR@a!%oJLI*0UL}GkiVFi7`3L~qq7ge{V?s_OHQeP zNYy4c1%14-@|(7{HmLuBV~~6+Fr4Q5d?hMM6A1>qsfI~uSA^zpa zkxkX)PG)9b5C~9h3Rf<>Jaf^?idTVWx1Evw1fxy35()nv4$C)q%5XlLH*dxRPngLP!_{jX~od$_fP`Lz^*A#Fq zkH)=yjMbYLZzm?=4(-(4w>!?5Omy}rQYefh@rEB_ir988$vjHGv$GRt8$o37Nyxyd znx8-IeSB7s&$|!5qu*c*c(Sfs*%Yp%XrmLHsLFLyQ+^emHbEoHA6gvLVS(%%wI4K$ zOE?z5*P!Wib*Zz861C35HxWOo`5JY~Zekp~-}1!Mcp;;;#V=8Ks}qOYU#cHwj>Hwj z#nDF`mv$Sc^Ax8hpS?OSnRiHTv113T=(t3FSNH?5`O}K=v_UNT08X88%(Z6c(TMb*4<}c(_TiV-eywD^o`*{|Fp2g=FGj;Z(e~xzIWJ# zC?m6isZy>|7ZOL^1QifOPnVHT*&2PAoz=8mDk0*|^ z9AoE9btS%g%OfVXu|*m%0X@j-VlrhrMf+RS~w+nsnII=i{0JQY<^p6`k zrTJjW;Lkr=J^AoK3&YQVRzbXA#wH7-ekUxjCCKW@__&PC&KB?sBfO@K-DOJtn2qEuIuTbGqJ#oUx z(J}1$bx=wi?X1}~SbqWtjnfpTIt;T;SB}~j#QgP1o71?wrzW%%*&pYTmH+{f5~ANX zHIawZ0CvHJ!{0;vqs`uaYkM1#MIe)@sVN*+-22f{UZ<)OOtVbWdWM{>r)TGTw>yPco+uG`(+b@}<+qZym?%dmGg;y9SHqS8|0GkP__ofH%lknY&`mE&`tc+9)0g#BJhia$~j zzI5qo@hSLfzzs~2Hu7B>%YsiuNCKmKpV`(mrFF};W;B%|vjbBL@bSE??55PdblMuw z0zcFh|O*1j!^+x2OtMkh1+RrW(J$a8Ai>UhH6*t z{Vvd}z*2a~_mYyp>XH2vQlJtO7l)gJ!!WAyV|h>Gnlhrh{IavR7e;m-_3IEtZ9miQ z{J_o=-d}UDn%8%^^yljK?3R&`xMqN=#qhDUDF&~Rfq^T0AIOi50??d{_CGawcc7^t zJ3H*!HKfgO4aig=3_N$?0(YG2T_zFyPZ(gPc8(nBcT}DLaZzZkf3GT>6{?+sIF64E z-VAXOb-aBE)N#{pK&e;V=(uep+GO`%xto~C$-#khY4Y@%ah|%9(=UYJi^j$Sa3wG& zbMuW(CB8G9ja2{yj-IfVRBx$wFt&IEKG&^ETU1vj<9 zP@g^ffW=&yFES5RLCjkarl`J1*=3v3X4pD7$nN6->;aV{>CCZ9hfbjTGgCWEYhNIF z_e4N-){06PId2kq-xGjpYy$uM=@S;y4`Z$)Vm5}^qQ_JuX7Ti*6h0=d5Ax5H6t-xR zoU|M7^am#=HM3eVX@dQ&Ob+!3@?xZ2sDu7qS~||QA6_<0S6JM!Wy}>o3@8Ax49fPQ zAyc~oV-{%^FllWa9q@TzH1QXF*ExHZRzQAxk`@3O2D&;rK1Ow^uuy@obZfFMQYX|Q zG?Qh1x9b|gtbMUD2FyTh>=XkX-6G0A-rne!0}rftOs3b2*z*X)I*~Yn7E5IGPnx+-)6_TCVw&qWFkMx+5($1YbM_CC2&r!?>xq4M`%ad~t zy{qN@0TucAPcBPUw`LBs~HGTAksG3KiwF51e-?gg6Z)Z1Rs&&4e>9 z^KlnCw1t!oY<`F5m-nbeI*m@ z1`x;n`!x*>*Hit+@a*Cnh8-n2Hipz*Q{s?IDX6&k!Q$Znw@Gmq+zHM*A|>^G9H!jf zix(uWz8VCy7=c_6$P|pzjqq^tUAwsT60UZW1fF*ndUE#7{gF!O4v^Aasha)pf!gzN zbdxLHo;|sIPzsAYHv{J-Cgs;(Lu|Y$?E2M&W6WAYjcHLcpmf8pJG`@WK z5@|oM2C{SsiL(VOu{pKkQjd0Q3d}-(69Bf?>XMthd=<#HxjDBXHv+Vn_tVoc9}h7k zr`Mb1>2|}L2xzcg;M+%64=CU7Ss^=EQyl|FqB`e6Wu=^`Xl!b03qHWwn%oM5a5Z$a zZ~D9W*|tB)`nqAZ7sf+MhWXPkx)N>VH{WmG$A2Bh*`=n8hl?b%?HHU72dloLG-3@7 z=7RKLNy&r+Y?~fPW$l`tKFF1G<;@eo{L<0~U%F*=Y{-B@fLWeAc>)e;Wn~3xezdJ! zvbV&8hXMzE5Dy#FkbuC>9xAd&hf$cnx9`Y2o~QRvAvsKnx~t;pQwACukwb@+?bKtX ze(L7vz|Wvk0Ia5ye_+C_C?aB4jEWdejI{Jg2|`=L-WGEag=KCO#87ct{1xTDGCOv< zX!{Z8=Q5zJU}9i=xw$h73uBBa+2T~iWo4U&ox2RMj}HH=M0u{njPL|OMz!?T;11mk z?fqOj?2+Ujbfcm&bkC7yKRws)R-VZspWQJ3GW7AYXQKlHS_TFn$4}!zRYVmfJcak| z8$jZ0DnEi8tA{`5nQ1F=4PEOoiK8wUW!jnMNT zBVz;S;1kNqCJo%ZW^fy7SsfjnTeofjha9=c&XFUUJ&9F(@4CCCWMp~}?KGt7lZlej z(#=gx)!>8T;g$gNzDqjleg18Nh7BCn6yz!(Yu0|Jtp9FFSFU|1jB+&c<=#r)7kPO* zb3aGd1T&}%LgDwAo|%2zHwt`jEWLp3u)X9P?*n=jeS)C5XJ5~ zs#hlfXf-5$89-yHq*RNLXPaDaevspp_*^bVsDfXTfxEyAXsuUteReF~&AB>!;G7rw z-~M&QhWn_k)+s6GD6ie6US3)PYgt}Vu|WnFhUj?Lniis0EjE@goU6bmF=%l&DD$L~ zlSrFy>#*uogVVbxDN#`>>aq=2a{k_tj~i51ckI&@?xAy(;yy-;G4JpG3QWBYAqkk} z2U%Gr**wn}l=8O&+#xZ~Y2Tr*{1X!?8Taf#5&-0nssoau%buRuI()rVijPH-Z{0$k zrw2^b*|{)Ky(Mr?GslJj;TrrcN?|ynN;Q1@5o^W7UJ83UI&MnByzDI{zTw6-z+ZTe z>dvqM{#_9Wu%KRdk(2*Ieay$yQAvZZfY@l!9oX)G9QZ36ak?IL{FT*J7$zuHyzXW_ zGOvT^Y1q4GPw#UVXr{TOrT0?wjCwxGqE!blnq62Bz0-(%W?N88XD3hWTa{zg=~`YK zd<87`_Gxi=mtr#=yIi2Bw_(u6)EKQA?KgXq+j`mQcj|;)Wm?Gi$gB|i@;RLn-|;A> zkI>DaxB*!zD)v=X@}B!+rS=8+A)~|bL{~3>n)=C;t)V`qriIVIlLf{j!bc``@K!I! z#>KV6cbq=m`d0~xtR%v)#_wU83IDM^nkim)y&1l0>0xA!!sUdVH#|MK$d z!{0MTijZc3d_d4gF}Su?X|aczpf#D7oj(SXJ$bSLW&sorodQP?V>=gP2?8IK6$q3d zJa9(I4@es^PUR@X(Gj&uQh=I3lE8n$u+*4(^{evZ+Djv{IF2F#hHxdo9waEZcgT>G4hmWKpUTw6 z#Ut*4?NU}!+7uVNi^s{`UC!g@J=9f5PgwH|@)W(kWNSM+HI;x}@T{!v&d!0#$Aw9( zz}bOY1XquE(YEKw&%HD6^n;|tQMshMp{t{Vavs7v1V1r+dB<00>P$tRHFUJKL6aV3 zEF(9oiNk~&m7Z>P;|grnO{-PS3nSCf?(*7 zXC`UzB#ec1A8M6Tx_YfpDff}qgf)gbsi}cJ3pBVunxr?Y)SZsjhEM)m@5t$OmL z+a&9};=@HBIk%xL9NxE5lP(53d-z|rOK%`ni*V#IC#Vr?)#m2sX$5RbD=S$U7@$Yl zZlOnhljRJJkg)LM=g;pn45PGRt=s>>>6LNaUdUQBDVXo8#FcrnOM0L^2xDX`7W%G7 zMiLXu?k#Om+tViEs-i+hqju$WcKbNO=0qjUn2 zRQan;k_|207$n-16ckvVT3=tkiA}yIgT%M9Q&v*a^ULd9963yBA}~RllDpN$5Ky4X zM&n_+hm|$*`t==@lPu_ zyo^Ka=HWqDe`m~3e(TPi9PJ!Dj4qD3e-Xv-E~K&H)=$4pO+Chwe*Bo)c_GFi_H-6G zP&qOoI0|?*(o66pOZyfN&=Lr{cJ9e8j<>g{Yt#@sm)728Omv+x9c2I2Y1 z_yY+3)H3Q?IXb3=k_dZX_?RidtD^M(k{I;!i)_v}Z8SvTw03u+x|o0VAsV%hzsot^ zPkMA|Xz0Eg@$+9&@|&ue(ZMOHY)JLRs z*?Jy8?BA$RrJ}eK-l?8y-()O|%u8-*loOEWu!>t1yP9kcw)$l^bba`61PqZBIP%v3 z!_S^E`W#ac*-g090^)yRn#X$O+nm`QRhOEDOm77jgQ^{g)SVTk!O&$zy z+J<)a1MUu{d!UMP@Q$sE%V}aPO>HpJ5umt~^_2|@5l0-AA^-p#Q#S2%Uyz$1Z-RnA zff#{U$@$_}K}-M18MQGCY|t|>07l^A;XwwLi5$3=H(_pmVF62qQ9wwo6n-yv%h28Z zeqdO&LogW;?i*8vt~U(BC)$WH!TSxdHv(!$uM4uXo0ys^^3rXLKhfdc(*xZXq+3N@ zKQQAxu%y$((im1@Yz)^o?O6^cvwm~tvi=sYtIgk@g3x~bT9HzUZ=U(u!<*9tcuxXF z2p9&S91Ii*roPBQ*zTi>wBm%CS};E(HNwKt1G~91T+$9eL53$h=tnuu!r+sOXRU>) z;7gz;-oEy>x3fdqY8^#Sx|)f4HV6txBnEz5q0MPY9=|ru2}K&17>;jDOGKN{;ukMI zH#G@zaNK|X{5KRL=u9B~bajPdYxnMviHQq3I_4G@XMh2VoB5k*j_7oea1?&iQPgp8 zaDeIJ0$?FlqtyW?{y1>!d1F6dg0;T0Vr%;Qp zolrq+K^E8TX71W0FYE&D>NkW>%F0*(Od0xW*jXQ)L}p>eicpduq!t&?G&ZWCfR7v? zN0i~2HRi9I)237KQj_xp(Du1Xts1S*83|n|L%6YYaPS{*+rKR+KtmZWsm)aYo7i2; z;9ekEz(oRG#RSPOGWv`Ddj9O$`AVPPn2v^k<0^##BKHQYYfy}giD|*4d$0s)K6={P zv|TdR1?69)-;>?S_S4hXAN=JBQGux`i7F4ZtJKiU?*Ybbp%zG+!^l%R%Nr572FBBu zKau9Duu1YD`qg|48PI*;`yJ&QzIc+Dv(*IfWdXd2$O5fstAA->E*!+7tcVVF78W5o zAHCmMH#IbT50zg@gDIf;ixe?E{R*~zPd?8ib`m8e zKUG%`0waQJ(aOFX*4l!fN260@Br78$H5sYE?j1hcgb$HXY)$!!e=$FGwI+|0K}S0W z;-xHbuGPk{a%7FjFrroG$UV?fDD6FO3+WN;8A>u!Q;w1}Wt%5i9}iTs&2sJ8uU{?C zW*GNZlGKV5g?PCBl}A3HZl{8L8B$(6b;;R1Y-|hD(~4@I?1#_5xyO-~9w)2Gl;%}2SLoR>+kL&O`P&NeJ6*E$Z=KKeSOWBPkdKS>zP~;g#HaLf+%ZS z2#2HdizQI{u$J12cvY(CsTYPwVVb{bs;i^Sqn)X3=$W}OJ;J~sRfDa%WP3K|S)ewD zVyBiTi?Vf_^nnRaerWPwy1BW0^^)o~>XnFDXet9t0IeaBC`d}qzyNl(}5eHC1|LUB@&=%}YJp~e8f#Li(JqlbEp1+1lE_FhZ z#6u)Hl6-VOi1c**t)`#zP%SygJ_3ON>`(Tdd(^G!@#BqDW@tz;s}=YErC@AcYfHo7 zeie&=AkCb#w82+Y@?xT*LD~!%H>X}zp<7cB-gZ?3?gCL0sB=I!y*a3)5^PoVtv?)9H-QI2jt`zGqfG&8C}s6mu@&DkJ1 z!mgC~c!r&AWe!wst++RUHrV)p;&=blNKFk1Wm~q#d7Z~`NL)&44J?i zgfO@PByiD&iST5q8x*{F$f;u+vNt9sCir+%NZ~cfMjnTBRYQDo`SPAe8ChA7)O^v6 z@_KVj!52ix`2)?3jc9yDyiw}VX?y(q#fu$#wzb)8s2}I&C33#l<`UmSB8X}^vL}Q% zAOL0MP{p);Zm$EpB6z2fC(&Q8gKGXSid&JCe;YswI+9+#s5KTwzpv6(0bmaBMySvN zKhMq1K6(0-uyZ{i5kCi@0)xNo<%JTNf+YC?#v^S97oj5qUPj`I^U~d?C1u~pzhyA( z_!X!V_j@eB+u%%&o1%`$e1sqq1m!V^N1yKS&P0nqx*a9-1D@;0IATzn1f!y&qJpDLXUXL}m36`NQ%A>b zjjY7GcL5Wv)*~agKKqIy3+GkLvIpP(<45fPah0z8DFPN^IvBH!cy}Yly!Y5k56VZ- zEW8}rY{@n;xe9%8rR&&DxJMK!;reb7*>8p#dGBg8KZp~4z^JmPuP-v{25nvrVjR2( zs0UmWJTU6jZ;x-XrmCkSzMNGU7h{J^ktY2(zCiiXD3SoM3urzW2b#4T(2^3=n^0PCG%-m7=`*)O%AQs{7@9M1VL%;9N=m^YA=MA4 za~fH*JHxt9p4Zdk<>$xJl5W&g@iVH9o3}WqC@KabpENhm08zGh^2=R<(iw*qjX81? zVr^_VluL-7ioSY2hPSf0R&eNG+-gMVsM$s+dmXk`t%(Id_`lO-eBbtQDJ4`$jmjPpG1+A;A^Vn)FtTOe zcQYh}CP|Vc$riFDdl*||NyxqvLYA@b>;D>`@ArMb?|b~-r^khvzD;FU=DdW8i1&dDbMj_ZNE{@p@AWixC zIX(U3XX(+MqwzNhIK6+hTP+Yvfvy;x4b#Y8Vn?$QHkA+hd zviMMZQk1;*H#(smP=B!0Ximt?%&IFXS=-qGrm7UZX?B+Iu&_Mv01FDr0bo;Y zabv>C3*cEWJ;3@yXhD0GKtYIXnt)e@LNAfUt49F5go+BbJI=Sj4Q)T6b=D1Fdl3<> zpnar}e3g&ysh7r+NA(xO>mYCiz#8P+AiJcHd}|;So&8H5W-(yK!4(_6Q#1D5hsVni zUgiEw?*6l9$}BD9$ntMu3z|ta{;*d5x@|)U1Lg1BTt{{F(}C5G;}sbFt(?lhX$)yFKhOr+$z<9C-pX_AdjZ_4)q6fjs(wICqhQGS^7$A=z8jm|klavFM zFQ?{@2}y5G0mKNRFUX0*Hed{BGLVSq74J|-Mx3Q4m(BywHTTIGNa#S-=yz+1fFS77 z18Tijo#E0Yh(w?2ktbYSyJ`W|^@o(o{f=c02C}6aAUcCtZoINkd4Pko5+pGL0*<7l zv;8fA>J~FKwG*)DA3uH!t_FmsPwK}Oqsai~l&wTw5%3iucUhKe&9TJ0{6DLBxeEEXf9YcV_F8A~_0h0(dD#(65 z4GIF#meVq8VOCPR8mx_-tu27dzytRt)^r?`qAO*&!UYv!lvWcO+{~ z&CLah3Jw5G;8;UF;LDAVJN@-K*`fe5B;tmlkO2e6j9$D2@%NfUiQQvkZs0AfuY<2K z4=AtIzcl8rI`?j#T7V3q1_WCGHt5v+_y#Rk^B`UQ@9Zod4B%ow?40*sd4f0o(q$cWQyoq5}!FkB`gtx0e-tw0r8Cq}pQ%;9SA(g|DjvuM@1Tn}>&uhWWAN-?uu^%8Sj3FN}yW zCR9aHD2+vnPoH+clZNF1ZJOZ3TeN|my8tgKRST(No*8JIr8<0VeS8dO(9)*s9%c<}H~pL1s@fij?=N>cIl#9LKMXa)5` zG$=!#7SiufgaUdyEGA9&8%h(Mshct4Z7hX%)d*3ykvAkH%1TNA!wKC1sUl z>p=xI<>NCd2l9AMpq5WeO#zq=EI#1Y&t6+juc+!^Iydbmj#EdnXSS*9t$|`VltyRv ztE-1VKnIeSkR-cYD8KkaDErt0+4$1eF)>h443iUpPTJ-R{+6ui~K&A4)8ivInTBrh9{=vQ;n8kgAf)D zcH@AT3%N`9a`X5XDcaVsyFyM6d@^v_b)|rzoZDurF6v~XkT`5wvE0Gw@-c(ZptfbM z%?pV8+C1_U#weACvS4XsWl685CBs8P%Cv+nTA7%MDb$P!ZxhwZ1>ay13Rh8$43gRq zq(KolV?WXKEchh=05i7YJ)~E1bvBKXeD^&5`x9;0F>U@@r8`hVrPI8r`mx)~kPo5V z0X&eS2w11P2ZW&!mAj4%RZB89UY7zqX%tg}Qp`p8jX2d~nj;0-r?hX2%I{uKN$lfF zq%jUU_M}oU+H}+BQP;r61)4X^9>O>gng!{8>M@SwQ`F&6l zvK6^S8Vv--xH#K9eQ1KJrK1BgnxlANueR%hg^h0^Y=v{h&30^DQBu;9m+ zAY<+R=F8pGlTf+`>Gnkc<>&THxX34K<*!%k1kVE|5n7YtaKko*KXh%szxR1HB>>sw z>(^QCNc-*nbrMsZc05i(vZz9v1hK7vHdvy4T?m_fqd(rw0TTEONg}8DCQJi`o&KKxZ(`1LT%^nzuO#$xRLJ->RwF@PL5a zhm`vV=u22?2vzZRLdWZ6-|U8wgWWAxF$Rw^=&{n}SLyHL^9}YbNJM@@*Y>2O@%cri z#7?_yLqQJAvu@@Zs7w1*CY)p;A^FIA(gb{4h;yEXgrs`E7;;E}J?Py#HZ{$FLGZI6 zsa-qz1%2$z(>##%-(R5&(U{9n@l=a%yd(fXD>w1fDJRaT#Pl;HB!5+FniScWp-kis z<#l5}>e}?Uk6(|5ZR^;4oQd4u<;c4_br4+63+4jql4edl7Lu=j1q5Sh{|2wj9uiT3QYVBLRDz<2h);^K&EYG!9ii*11+D6^PVPL_pNgWIgfEBa4x?*g^{h9Ug z5%plz3m^gj3ukVeiXUFN;Q9>d{@quc^iLzBqV8&HniLu!Ar>1LXri@*r~Uo&)$<(y zK!G2~6af(k{nNaP3N?Y#@T2z@S3Vv6Lk^#+V%<%Rm{T$E@qhi=q(mP*QrX6Qio(Ld z+||v+;-Nk9lcT8(#f|GM*I9@kBqb@33O87Q=K}wsO(8A)Uq|r&#}TR)4v*ZdSop6C z^TXlRc5W6fEJy{rhi(>f7G{p-7R2-Z`GQjvUhjwW2OQYtspQA(aY;-^!j$`R;!?TV z&G{(L@bFr(dxZ>!b|~89f{gD0r>p6 z*N(c1$Y2Kd@@%`4U0bMAO+Jh)_-)#3#0_4dq&JuyxWZ4;VK`DbEh8yIm>+)Wy`4XF zf_@^VDW`9$c3z@%-{M4$a8z2^8A3;%_x60f`HRZpBjyEkmjmREoHtS*{&>v%*WIrc za)hBb$UjxOHS(^)oPX?YxL7@T?>cbY+jDR;Fm#Chkcf~rurd70%kw8 zbhlr@=bK%=z13XS0wdGlZL^4B<-dwt5r%#a=haJ%tbQN`u9WaGv=U?s=4eTOHM6;& zZ($RUxG|`D`rS!S&gxGjeWf+uJ$YW?=d>r|l<3PhmOV&g5U3 zZcX?$nQB+jnv;Iw+U1F)zprSgLn&MRC`Y+xgx((0a^wtN%8VgHrNzGuagA z_1VCvAlxK3&h2w>%hwa3`oU*X8m3ePw@+;v`s_@d+C%ClL<~LVpzRS-Zx@I-VxRZaHS2_19)>e!6@Av!F zX-Ao(votPUyLq<^bJ9tyZPldI?ED{+rN(o-rD@fH8|1;Na}qs`mOq|vb)$Cn9zPLa zsawn5{3tf%x)7-U>PU(5ma%P^Pr%@(nj?B^<9D^20_9zFe(PR6xbu_K|0w@_%5v67 zyAsRoar2LvJ#>q`*k>OKH8J!VYI--kcM;z6^;*=3YONo$VIMXUlf_a3PE#}Euco)$ zOBInf=84_Dp(Jym>!{{k{LIT$)(pR&?`5J9lP~O#&PqPhT9{dR{4B{up*@7R5Tg3Y z*O{j8$~n9KhS{~Bx%y6=Yo)6D)qQ4Toy7YWQJ+!IIx`g3D)L^aJhquUuRap}-eF$H zD7f>a660*Kysy;O>;w0cUWA5~i(#Mb9oEP+{Nvh;g><@$j|tNj@-ja7$w;|q%p0-x zEKvIN+2=*Y(&_1hwMKK(DE)|GnNCF3eY)INYWEnsTDmzmwiXzTJ027+?u#xLFk_gn z1C?2Hpz*r)|H}{w{D+yjBM62_?9dP)?})(X8~^$Y21<-*vHpjF68w)d|7D?HWp@X6v(^orf!G-qu}UbPl437aCLNdF|%-GAzD677e}+Z7H%vLkeYG| zEJz&-FEwLg=c}AK&stVl7k;fOUugLhPxAD zk#nSwSG!H2Me+X{dm%XV-6LxI$@Hizv%SU`*dsc2#S$jS{K z5O#*!j&_bNcby)ZS-^-Y-M%gR(AB~mo|O1K+VJGE)^4tv7B06P?VTJQEF9ce;QasJ z-DIv}OYhSC55IRp%26Y+q6_YoHv~Hbr_}TwxvS~vd0Oi7MMv*^m{uK#_4pLtqgvK3 zfo-A2&l$|6BZfg_kJzfe7`7-x{f<%#D`+Ay$~)^DdY6=?8MUMhQzr@ zW~R1s)l`F_*sz3^+maQ36W%wExEGjbcDcViOGc8*Qf=~U+O419Q9NLu-&by&+ibbA zv)9`mxFee(q?~GyVK+N=5-0YXjF+tn5#sApjUb^8245MFt%U~huU>&0=ncMAv@&#> ze9G%yTCR{xxZhj*saQ5GpNsBzaLq^ExW$@6;SEaqXXh-|aM9$6`y2~Q+|*s&B6VI^Vqq3pBqL$x-WiUtvFcsMw~F3fs#)C8DnWkf zLttcVnh>d-`nl{}8_9sZVwUnL`1%!i;kjKl;B5mntcWWKqtzvG)mZ1Wy7HO5C+BH? z;lu_zC~+i@OOBvezIGreO>bNGstRQ+6rAl??niSnzBpSc<+~`BDDZ=9rTP z5-u<{NsVa};jS2xzH8hQHgPc3Q>l*poSB{#K5bg)sP2aP6Qg71i@f5(mct%0i?uzq zE6S|h-}mZ&T|^VTgqi4-+3i+})0wILfZCk~amqhbMh!L%O~}S3BovioOZ5qHE6+B^ z(hT-9uKf92jsKt5I6j2%-&`8q@xIMGaV9=Uf;2S!tK_o~}=8S6vu(>)18s z4g7;g4*Oe6zqaNq?baQfd4Aw+M&9dvM@)V8o^m~DadeD$+3!4mv14OnkYPB41^BZD_%o9}M7~r|De9|2R5g;eAw&&0 z59-g{Z;Xo>6KTIWkiNRo`LvQ<%ID=h7pXGKo`pLV?vs;x7Vlk8&R{#v%_S^n&+5l0^#B;sJo#Ly>R`?FVFxn=BxO0i^d{Z8_8~Yy8r72I`9n zf4nqcGUqMnO!E;dW$Vj$ywCoF;?K10h!MRn{w=fIGZJCAF9z8VN?Hl|R2TZ)w)$?HAO^ zLE>9q9<170EX=F$%zhcVcehkOtYaF_Ip{EQOMSd$9Uokt^V6a2ep%F+VBI~^Y z=v7wcYh&|Fl@rOwXNuMANBI9Rg_gDZD;t${{WwKV^8EzLb0_<7Rp=#^j?F~WFE&!N zb4eNkeT2k0a11LW!=%niKDLOjGq}GxK0$dgyc-ZZ9UaL%vw)X`oRlsu6R92@&anNT zhEQ~8J1MN@n`Zr)4Lm;X>U|5fgk2{_ND97jc@cvITot_gLA9f|em)O{Ub`dDjB{n?rI`MlB?BuUXMsZP>Nl4SNi)u4 znFTLtht+H#KYiRBb0gd7o}8)2BmPOVKyH~WGPKbg*pOM0NtmU3{IjygJ(n(ELi}!F z$*oWf^V4Kt9tP)Tu_H!T@i|pXTVrKchDLOsGd)AD9v^VD??^zLs-$Q|;v7H%~OWe?7G_Y-9kHaS1iR3j^199cUX{okW!)ByqodH{||2Sn*Snvz!9XQeB=n=ENoOExI#;q5=>C5#A6H>Rv z0_!n|fHLIcOrt)wV7_jePsZ-&67zdxUTEQ;3kmr0!G)qm zdYWUH=l^5Ud_k(G-A(I&mSYk1plh}3caXn4g)_2T&M*N(3N$vIYt3vCXHiF}bOJiVQ;J3|3kC+a`#_F{(8)TC+dAsI=KVeW~|* zY1XHZp?qfcRMUJVvY_S!qu#lU6BfPS2Oc@XX)+T9##zjj?Ly9#DW^u-hDQhQdld#P zt8M*V7~cC9QcZa1#4LO!Ei!0fl0WA4WPGE%MPcu7!mB%Zv~kVhYGUyxX4Kq5kPYz4 z{P%ic8L61_KsL3|05*b+#AwmroV-RdzW@o+|CHvbW5&ql&*? z{Byi{(MwP}qt2?}oTM#E=cO2p85e`;j%->nE+KCeOBwu!v_A~UE4H?f0x~jU45`h? z$*~lOg~BO7ZXR3=L4H|663q-d0N6?mnW*MR@@{YLaSbARH=TP|CIWX%lXGk8Z=Wb- zUbAfZB~ww{jOh8{BiMKeQ~M^$Ti@Hk*g0z>8OrY9A1SADrMc;$46m_IZL}Oti5G(i z0Fpq8R(fP*7y|`&0Mr0(qSSC6c+#<|Ao&I5m0s;i8S09VhiM&WwZ2}vmz!hYY1v-t z8d`CFyn=e+l85h~;c<13($k&e{3PXU)M4M(*FDe;`CM}oSfp}sPVtEi{9a3}zn>5_ zjNOkbdpb=KtMXUZTx!2pV*onP2E~48hO!Vwu@S8M2qWWKi%^pPGx(wO`#KpG51?Uy zY*wj2R;s<7HliLNAMmE~2M7$O>nHlRA6=TibEIl130yBwf97!2L!}p-XLFpjl{v8? zPjPFpzjhO|G+8k@+Z-i}KCl6bXC}zzG-hg~iLZlk7~KZxwB?t%WcftL_g; zpkTc?%3OFcfH;`ah;BSqt&aNHq{~B(EkR0`z4I%2wlTH(p^Q=R???osG=P9p*F zR_cGS56~7s`OM7DE(ORI?bJNk8PjImZ~_bH{0Chd-lH92Inp+Xacz^!#ZfLgRd^3pnC0JPo!HT)1->+|6>|!B0=YVF3i!BH1RXq7Jaeplqlq;JH1PAR`%Q z0-P?I;u|^ZV@dy}cj|xL-Sf@K;~BK{SU9-aAP}Me6{-*`$=%Aw3)x(2Ill zdN?e(m45!&&SOrPrMtWbF@v11vG?Q}qdt^ox+nW?)tG$2JP_F3xwALgTIQcVxv$@R zdsQCvM8*O?IH4N4S}{ut)IOX-vc-*Fp zu}t8pmu{iBl5U};doJ#qBkznI?{SAKr)nj852HrZQRVSX-?xwUH6bJ_nca)cwzIF) zhPEPsUk3%i!`Ws&Q+Os}YfR(n$$3h?7$ER5QUp`W_=2x3W_&F0mUKeItI`g{!4~J$ zQWYoghr2}9y0h(ZZ{r_Sw@Yttt}J5DNoRMz?Yg*9u|BPjiIk--j};91i#53pQWfDY zNkv<-Yl8@XRZd2t>4$X=IbZP2aLk2*RfwCWzeYv?IrjMQJ0t=Fi~`QIAvVMx4SN?5 z4i+(($XjpAhb5g0t;e)kuj-=E20s)yF&Q*HR@LPHZL6|WtjR=zXtIQ_bmvedqJ z?g|G3`p)SPPx;R^KV)`xdCGrHqdzRZW!vnTt9JV_*rlxuXKwgQ1y77vo5D9aNTxot z7RE&Bdn+jg*N*aLe%46)Ib@emYN%dMJLteHGP*Xud@7-@?>+#CT$F1u{1xV#T((V! z5yX1$aVw3j#r_BLbpyd0;+8FXEQLrgy=0_E zeq24ZL3Sr)>rX7Q1))74#uMUoxCVk1*)K9PdzNYW+8#Sx1C8c3g$A#GhVEz`OgJno z$VjfRp_i17v+g?DkL+mWrmhbzyuY=9N41Qov64&U-UT%K>G7X;=IC473fAGqcU_2g zLal1>$g~bG<72M`k@oK!on}IzfVUYY_vD`$#9w1m2%HKKNlIeBvpMF^-f^&n-yGYM z(3sNwfI6E*+&ujZB%g46pTZ(lHvESPPGW$!1Io}3*h0u6uN(+GYC_0N(75>0_939s z!%lm0g67O|2p?b2KyS^ZCM}qT>hp_~%lPS#Lj3B~ZF#v3e5?EJ0Pk+#=2-r2Kqyb6 zI*Lo=mZa7w&g$a*{cUH_No>N($%u>{Pc2_GX0(re%YVVP10r!!J}!yC0aSyC8-9ZRjn_%X5NHAET8P7YhyM3#WvP}NgQO~#Yk~RHI6z# z+bWO|{P~j#c6LSf(Q#BS;RDyGi}z(^U2~hL#&3dAE%8{~Rmt})4fgZrPM^@esQh){ z)HsUd3f2i_n0}$6gMaS{+PUn@M7*J82@=Q4T+uJIRCi}&pTmE=&&_4;ci?t)f_Bqz zi^b={H%GU}e7sQ;zsD#qR!S6m?(Yopq6~jtfdEI{1T`m@+q1H@3%tfy)$V}-o|vW# zozL1C-`~^;;+P7+#}cES$DVOHvEbfP&Vm}`b*N|;3s_KLd9~kB>o@1uIrw8H4L?U$ zQ`bQlkz%1_SD4$w!kcjBSy5=xVZedbH|$WLGX*kifavbo|Je~*lm8I6xpZ}k8aB!$ zifuM=Cm9OJFF2ugYo&e!<{`5|;Nm29)%jLdb~N&Wj&3KV zU@~2kad3`vUNU7qPBnf3RdhP59R-vh63lsnBi4 zG&mpC(Tx-158B3;@WrMqkNe%Xat?!zlN`iF64rlVw4@i4K6oZ%jB%bL+VC{3PJ^b0M#NAwfR;FY z<-q#`MFjZs0@d-Drs$>#{nDlh;ftaCbARVx z8>4G|7k;};2~ARFN$+eXJ%5%;n7~rdrUex4GV@-<;=?SMJ|n$iYS2r5$72go2<_jL z5O^_A8uIA@g6MQf3a$B&!+Ha;@Mc}>lYv@7PzNIBpw z7h;NXvv26>*=t-nDW|Przo)x3Qn@ZJ5~)lFm-AQ5#m_{^zpML!M0ln}TB3Xx9@wqx zO7VmX`DQF=g*@L)~0-|Q~ES=A33C+^W4=PjMTaLWk9O;c)WTi4TA^A zAmUN+4urNTU;X$u$NH{NKx|(hcay~=PhXCWD3HDIjJlFp_%i?Cf>$1aGO)U+Jgd&q zvHP^yS^tgx*H_G#kk+x{fP&4ey|=J!9Bu z4N^VZnT>mLhIJUESZvPozrCugm$xP!S*PiCzn$G5Wz)c6s2=*h)I%sqYTRNcVx}^_h;R7g;x&SYnd&7BDN5RTtYgzt*ACDq4QYzv<}Fl5z}_ezKMQ4CK`Mf!rz3}v?}-d zw=ng_s#;Jc+i^>FcfSt>kC|oKd5D zv1NwFan1Jmr38o7&N;AK-K+ObW8~BVwL4R0=`ee_h@U@>2)CX~jWBDznc8h|c$A6L)vv z%a?1R7dirArYB2`_1~#_9LD;z!Ty_n?YOnxD$@sC<$3>QgH8$W#jT{S;{GKN3 z47t(xPg;=sVvMhK{#e#LirW+`_D@4fqubBmLTeE|6@&wv{OGgSK6^!~*)7|*hJUy4 zQn`3~s~>~stgV?^F{pp*k+J35YouwW(G3Y9^Inwy|3 z?B1R?d#d`-@O4~G6S!0Uo^jvulQ%u;=!jm(u|+brQJj}dnP(c(Sc8>I*!RVgBe>os z1V#9S596Ir*IzVG*EF^2E)6%NsL)x$Ixc5}bbB=hDm2nR=KH3x$gfJLvMd(mvv4mz zcXRuEGN-ugZOCN2uh8-u7t5c6wSB0Q~8yYKI8W?PV=X)=+zuPxbB z*!Ad{?-onF-P}t)GWNy9y#A&RaRcBseus2G6s7BAQc|{$&r=q*EcZnjq4SpVUr^#g zyAVwjD-C~M$(C;4>$CFO!f!isKj_6r2Y?YdHwrm1H-mc=x12H~T?a9Vzw~hpLqmuK z^VKIv(={^xTcTxsBftH(?H?qBcimReDf(hwUln}#rBGe?jnmhCC)2{VFoP{-ikwi+ z*DX7a3mv13_lrYvU%=`g6dX*Y^R7uHIij8H>mrh{D1jD?BQh56@KeP&Ot z2J4oIG{l`5*(9t_M~2DA`w^P!YxNtywi|XM>*{-E<26ku4&Dfdu8F318~9#{-aPM6 zpkBDHF=QA2BHhE)zo4ZI0xW9gfSVtoJ037r1_7=aTg;4Yc2~Q>=V-vA=I^tZNr! ze#c7fbmOGKKy3k61l5uy!*>KgJAt#(8&-p`h> z<*_yAMK-8b7OG_m>4GbzGMiu|QWUOyL6E!LzyAz{0^CMYbU1R5;!QZ=dB*W>=!IV3 z%=CwI|H-^V{m+9KRo`D6zp-m7%i)6gEP^Lv!jsw7g7lFFBFc21nq3QNc$7Qplzc_X zcqj!&AO$|jmP@h~t|){cul$m$KMCAfO+>Xx02Gs=hN zVR0RV#Z6w3`tGczz=OdC&yu2Ldk;x(vzpPm;_1arLMx~0WMTG@efGSc$lf(q*Cwy* zFXsrY9*;bI^G;?-zj;(xSXSOUzj*X}jwQeI{_Yke%UQkPH;>O|;*tIZUpO zX#i9Lddw)tir}2B%R^0mU1~I0agI#)NN$gWm>9j(U3OZKGynhlchbFyN`$7dTvDBc!M5C#-|eM`=pRu?1U<9;7iSC@Cw9 z9f1P5s!}{as5^cVM9LVLnIm3>we0O|K<01P&p(TYkCzwnCEvg4a?ySBAQ&)gNI|X$ z7$Bxbvoh~=Ko%Oh1B98$%l&cj_Vbfgo&*gSV25c5L@Qf>s6VI@;$jb+ITwa227dke z;`j+V5f~bF+7tpsJM}b)ldMyzA>iCW)C1DFprYA^B=T$^Q34vh;NI92iYr@!#HFq6 z?CPpeL_P3`wFIP?G(0_vbu;a)tuxZotLpa$&XETEYHP~_H6tUVid-@|wzmF$1L*qc z=ehS7#IAryfOkFuJ=OYwn~`M;K2s{Nl|(mlK*<|uT6N#Lfzt!rFwpUZ_wee?o9>Q| zz*kqP$sLBi1q+B}bxdbvWZb$@A)SB(RyL>;q>_SC8Su`w?;!qx_=%nLl4RO#d)jAr z`gow7$WA)X+6?XBu{frS7iG6%m`F%i_yG$K^+I59fl@|lss%)g?(U#D#pGULthI^8 zbxecQMBxCzO`H)&dz_@IvD!`~Uq1^#jUXHi2_?{h)ipw7SrawsQKA>GQ0M7C-?()vtpmC{h@2W(=!Zrd&~BR_eSX0W zB1|TuR1%WVBjWMuY>~h?S7ZkX&4pk!z}rLHx4>%9n&6-&Ckn)o-pcI(nQ-9T6c!gl zPSnHQozZ;=B|=0OUge~X10(j!2N1ocbNERB2+oS3@|lKn5EqYE83Oi4(}DInK!Jg^#2!NrAzAV&kj zJQI*e1FXjmWS0{5@ezmJRaC6YBIy_aPrlD&kXBSbbZRa#nfxug9m zM+hF5!WHb=GVZ3q5uiI4P1IKI>?9IgqJ5^@Q#HBdSg2oo8@ru>&K%mrLg3QRS4!1SlOT=dOQ%$gz1Zxt^_p^E1~0o zw*Utc8+#uLH>lh@_3wc12_S38O@km;<;cRy))&8vw-Ysia0)s@am@m;S(%x@#s>yG z1PSm9id4xtn~`n9!$9vDgla@&B)_;gG++Qaghw5Sx`KvYygF#c{=$oskc2&JnyB#+ zc-?4zDsE0(HLQLdT5UY8_5t&?6e3|KQU=0^%Bf85;Up}PCxb6i4U zFK`eZ<3dTnjiZf*Dwe5k%X@=c_jy<`i9HVnPLN4#VD+W`91Ro_3;=ye+@B`#UmWe*DxY#k{i33BOvW64`UybWvtMC8W-WGkMDu z=*S_dm5HeEDTGq+P=*}qe_omz1+p&CIO}xCT_dCL4bg_F6=Fy|VpZ@kFGU}pHcnnV z;Q6vEyzUf=!Q7oVn=_h^!vr`FUk03Wh|XZUcX9b@kPWKV-+$PP#59^0_YHDJNl7{s zs_hwe?wIMWq?#^guUlvRvh$EjAzZYzRkV(~B&U3Pq;P~e^sCiKzL2;$v|fR97Oo=kXgS(0hwmM+Su@IiJ?VAi~wPx7_GzSEtiWRJ~GY_gGp zOp_)TY{N|x?KXu>5hr*?GBHcGO@C5f4TrDG(`*?WJ@X&$+V@5)^0yxy2|Hxs;7#I@ zYONUO+~|k}M4nH>3EEoLt`})ZdioyTp)9p_j0J;tUfI+a(xYEHAsnH7l@C zgZ+?AtfGZM>3=8K{bgWibM?7?Bh3%Z?yvf$!!%4HaS|^IYc~G6`J8s)^jr%bHu2?& zzc`OYQl6+r5U={FWXPe^uw{H{&SU5M_aMN(`^>XDm$22_OrF<4%#9Qhk zQl4)54e1jTXwh(3ipc3%w>K60+Es`L^|zl%nTozt zBSzu_*q2itwvn@)%;Bgcgz&_5+ zVA1`%g#JW(T!R%_Dp`ZChgJ8?)=g6}^VbD|J5TVYQkd=6)g~s%wLq{pn~+9T*|^`& z=ELHzYGs>tECu(>$~4S?w(RI4%=CzQghfWvgjB;73X&I$hmVgBf0H3`Z`BF)zS(NG z=S~5`khwrZwI2ai~U9S2N_kg3|&jAchQ-F9g#J(G# zSJtM{nL`9AnWQ24=w3zHl>XNy$g7J2bu|EYpxyepf_6+DE=-pm7!wCS<|d#@!SxUs zf?h75)d78B`ubv{qaiB@y&8U6=I5otRN8zJJc(V*^vqh49UyX#!QpJvm{v#qb?XKs z5ftN1S-0xb?EcGWpU*@BQwcbQTJug0E5XNz7FrzWOE6)23%YCwGc(ZH8uS$2fB1lN zoqD003CeS|Z?@5XWkdObU&ZT*Xu#2$X9hX^eFUbMrVvDna%cICiJVJeew>N=H8o`V*#$ox@SZ_sWA*O04#XJ8 zT3N(5&ow+M-}--yDq!7wR>}P@aZrrn-Ws)k|JQzm3;>2Pu;yN?F3NM!U1VVRUY6gB zjmPQhYgfkM%8*)c`FHxTmL2pPu~l=Qm^8 z%^k>IB6PUjeSEfmjV!1uq9FVQ;4>&G++;D3p_jn4)f(-K*?OW3xl@g@nD1o#+edLO z&rQ?eCV1@N61a$q1PPI`xxfWw&P`GYqfNp_Mej7$rmjZsMwx%Yy317p`V@2Oe-9-k zsNqqQYaZGSF=M*(=Rq;{pZBMo*#)97u)Ne!<{p$9Q}feUjg=Expa13F8D!z!CM1CC zuAb&Pq5&YEAneS)jXwv-S%cOb+yWaNMdO4^avS}g9AOo|_9<*-%XfP$TZrvH$KRzC z4P57muwD;T`q+-U8F7gs!n;*q5DZ_}@j0o}+u?6gZglF7t$tyvKCu+i7Qsd^mMFyRs`8_)`44&p5a z*WQ4pEm!o9Z{NhT7-mU1$}hieQj5}4ZqRG;$+@>0??32M_}nKuX~9r^C0cu?kYYPw zK{SpxlJWERp<6!^9~~#Ht~gKF7Cu=#5Wf7CiI{*!z}~*gIEn^2Du^bPQ)?{4 z70f^wD_j9~2BC{;xjkkR5(7}fPAWu7D>}^3N6$Y1hy0duZJmm2E@Hx002+>|a+>YMf)vOgKw2}qKoP}6 zMT#k*Z?5-3M88;OW>Ki@dgpSMoUI51W5s=QR)6EJ$1!$LQWV`RnpI#kwQml4Rb&fz zda-Vbk>rlj1AQ4Sn0$9rv#fAlItTJg4N%A3h&DTPa)7~pmF^jcL}cqqh>AYCPA|t6 z*=2)&Q`d(3HGPeA!N z&-!tKuO5`rrV1y$tV4~47VM4l*hPBC+xz!RBzN}L1u561sAd!rE^)^jr4Gp0_xz%d zcg{-fmKjNI8}rz@?Htllpmij^G1zgpg6c&V2ngKnVZZIV$#xQ5}#>kC9{R!Lnw)3pD)SkbE)gyP6V_={U&U zK`M+p8ba)=(aPnSuHc{)rXPH^qw9w!r$0PN#~vetVMZBVC2VE9xpFU?<1^BOYy;o> zejTfQniw=5U6dchy-d&YS0eQHAP_tuQ!zqUIuNy_Yg5Ewr>jCZ@0e;?dyA&Jf`VW4 zh>Q@2Of2qioQ|I^v2JzjNE?DS)!n0y97nzp?1bNq>Dmx7x(BO63d-!gsa;9zf}urgXp zz;Us@Z<-T}uV_Z-@z9S*Pb8?K+`=2B`AET+e6pyGPBheYROb<4Nfl z&l#u|UWlanWHC|K{k8E)tKhmL$}k&rLM5C8Fm3$Yd*sA>sTsz78Omj*MRLDkR}Rzh z7sLH}$4>dY_aFgYAiNb+}JA2vo+i};}Aui}@em}fNqhPx8gtr}SeE850ktoHK zZQpxBdHO{KDf$N5Kf~@pL*@IWoNr>2jMk&y1#<+FmiYidJ3CJ2;505ez&#t$)2B|6;zYl2p+QOt(mFT z(KgU@nHr9N_pbZHEnP&ZC)&qDaD-)Out5;@w&fhZdTQ4PwOom~Hm95~jva_08ONar zwuARwTNocg#B`yIdC|Ub>MXza_OWeX@}Tcg5RK$hP*|m>GS1aY>)6`!D>MiX56h21 zzG462gbI~w(n14d?Q;lnB1{J}&QrEEwiSKQw=!=}+gIN2*f6$b;orJWW?WKw|0knz zv*5HHowA7I`9_N$-a@E3D`zjx(!n=5#u>_SAL4n8wcMz$#+~%bRxbRS)cLmjsc`Yb z=4~^Yy@A#4*>jj4m2WLmZqPKvFgL~U=k)fdQqLNw>5LaSYR}}p?#R*8tSmR$H(J}A zG>CjyFsJQRrTYDg?~~1f<|1AXM&!wO0a&1NSSKyMsh6ozZ6v2=f6#>z4 z9i5;pS;w$uM6&AuI`LO8j(41{9pUZjyJfoKQn8d!sqkWm(Py~CtNTf>A@`8GJmHOQ zQ9q&;L*o%gIf73z#$nd>Fr#0kY)$NVXY8i`ru@27a@H~qEBr(Betc^sb85E=$1^pK z*p@$n>Qg2QsF(gNb7CuAcXrrZXZ<>-|J0nJs8=`Hk>z{*H4eBz`Hx9a4 zM@0$3P3r1C-7@W(*NYpZNo;?2cjm7^tU=;0Zn}PpQU@!A9FfwHPZMWpkKRrHgPiH& z^dvmiOeq+&O;DZw5O=@*6eXR+encU+UcpRPxOKd4=C2!~6nf3e=aNMv?H?)iKI_%4 z=(5#!O+TmquvZ)H({)Ynt^0tUsDYi=9X}zV+tGz^-z=4zqy`>q47m%d$E* zaetC##OlKQxqacd4_-KEHT&>7J$OEl#x5@Qge{y0s1gYLHDdgD{DlATP~+Y6>*TFH zi|c@mT=Cwh3r{9^CL|37RQ#~Ek_)y58lFO19=hcr(G|X^D)mpkTn!Cp|U9y-y;wyRl@i@M^Qe!7n za-{ab{-@XBzbWHna}4$S%Pr{qRA#m=+wFQ6pYpBSvzvaZCNh7A*M=Rdg$|Hv3iTSc z*UKoPNWD1zVn@p_^FkTI;sLfB*XuQ0v9=#f8})8F)6QUZ9iQ=MIX|woOhd}16lkxr z59sUr5s(A}Q1i=#!eSi`h5r;dr!o~>!BnyA&7`F0{0G^@=hb!shqd&`C$<0)a zVbywDo2x<*elEe!d%;u2mt}cucwzt3d(3{L@!lPKU%w?Y-KOaF4;|5i$5!yhK|5m| zH4hKp0?cVG>mApY-+!O**C2G}U4oGFZsherKU_8X3Y@P_V(a!V?8>qmwiliXGsYoB z`Z?oTaj5se7O}+t!J9J=EXFO14eA6ldSE0pX&>BC0OB1oZ%Ne(s<;2B_GR!bR>;JrAjoajkAi8+p zO^~SFZob{r7p|GN>E|h*Y9`!zD~^%~*cmez(no0A;M5VJ3R@`B2--V>tfg$lcHnwtWw1bG!Js&CJ78U@hm3q7Gp~<|~rV@Z7 z+MoJBGTfo$q< zIU-17Ewdmpxr#_T5&Ig09Oj`{arpn}dJ}Lc-@b2LDrE^3MzV!$$sh??N(k8#l8i0c z_pF1E&?GUIWXm2x$exi9vSr_QvhVx;en-#!KF{<2A8$v;{p+q7bIo;K=XssyXPrFc z$8xFl+M?KQHtV;PUVP^{P4r@FmWG)}jl zyPDU7R#{u>5ra{){#SmEh*U(!JXd{(PoMtR&USV(qW(SXu1L>s8V60tO&X=6KhEl^0wbqaG`+jImccsy#~Z3+`(*AVbHNwfdj@i*a^{0x{~vHEt>t z-><81HUlNNbcJZ%yNnwS_Iz0-w%fO)&cX6q@%7a4c(&E*(?7$ zRrJ^YTRBkUk1?wgT=PD)$AA|`e#=~ct87Sc0ESAAC`nbvVT zF5CVYxkV1N6+$Yp>GXR~Zd7=ebTnbx(%{jacg6c7mqz|8xD(O1Cmp#VU z5RUt&4>SYf&uHelhCkE&60a?&&wq(A+TXWUk10?jifez3Ie?$0Ga{CWJF6KMNXlm` z_4&lb55OJKV+ndgqFX-~NWb)z)1-AzfvNh0f5Z6JnR(u#VW#E11IC<|B?_1C67ZkF z{h6&Zx{NvS_q+SrA`!mShLRo<75({Y)1I2sD?3)a@x8gZteFiKPA*ytNCA4i`Dvd@ zN~fEcKzx?aqelkU3^@Sp0V#QOyOl#}7CA!5z`-p}iB)ODLOi-h)6~iGRsEuC?sJp- zBOKhvq60YytjSmD5XEtoHCQ;icE=z$?&vwX9Q^+@1U;(0O->yJ!bHISmJND#6hK5w zxDjNs0kis!8tBm;ODFnkdD>7Rnjx$S1TVnuc3+CGfs784DsxgiD=J{WSx^AlEfT+< z0PDeijwPh{1{NCIX4WCL5nB(vMpJ7$&=KQ22+>Et?E!nOlU10QD8-Hq4-1pte=_GN z`Y&)+gkBkfX@YArzkGp@f@xe(CbNv>xJ$f`jId5%Fylu z$-hzw5Ed3-^inH9RU3ND!FXhDj%O%86M)7*6cX1Vj$Z!)7$BfBseJ}S zv;g75N&`Ohxe0j5AX*QCX`zr7c=f}PN?$-YftQVq+FBZhDi@ZJX(($1uo6nTfnL?g z5)!L5FOcxqg>dKRXmm`&q|mKf4^rAto;x)r`4EE3@!ie5pbwPlk&!CO$`DPC?_->C z^xR*my%0F@W6I<*ICm3N0lgqOMOdN>t+s}PKWi|En{+`{qxho)F+&o$qv)VXKE6)3 zpbtnSZLKXAF~E{Q(g87gU@W!MARu@NWHq7p*SU(OR$?OG3xUQE@cvHRzC@SA??UYx zKz^XX1b?Zaffag7a#FxO4@`Jk8U*EnrGPs;LzQz`ZR%%&jn7qpSo3=a+S|w1cAQL< zRaA1avLJ0eN)f`_stqBLacF0F6;ic;k%!hVKPd=60(>euLLp_;jNIQyUmtRcwRmVK z$UxHK0}Y%)(H;Q`HD`%@0S&XXRLs(R$VpW(%rr+M&2m0O4$>2i`DlSax9hme5@ISy z_l0m}&;#yExH4o!Mi4dnt`kC+{{2d%Bm)64hmg3aXsHF3691P_RS02maI3-VA3nrN zB?!;b;a{J_3Fij-u7GX@K`{>v(~B4Xe#Za)UzbsEL$G6AVbCy2qvuS(HS(NElQ)v| z$dCiyJe8LRATJe34Fqtib)P19c@lD%u+h;VvjO+_IiizMigAz=kev1p;w8lK2L;Xx4ekxBiUbrS6hm?=;NLJvpwI^# zWN^+PRTsE$7#Ei>m)VZ~gm6h1@zB|+oOXNm4bur21VYhZPI{Q$0r}9o2hbt#6Ph*6sF~AEdWw)8 z`}oNd_l|dX4+cTR50K4(geXJ~x*8W}W&jp~=uKFCgM$S=tgI}$Wy+xh>QQ99?~H7LjchNt z^!LBZ&VgwPlYPh-R(i^qRV?e5s(Kb3OhLJy%~F}b0$H-!wl^kxn5(KxFjM;@XHJhhpX4|PYReH)%eRoAE(?W5390}H(vlHDkCm-3T-oidlybeJ z*$kr>odyCTJTx3aL5%F}vel&#owIL@?mLy;?kdpKif8ILaV#_=Krs{Ien5W^7ZT~U zI#K`Q2SJc5>xDpFUQn`x*Nz(y|Kp4y)MR-E0Tgeua93XcQ@byIOkqt#3#22)=NCyw zzw7cLyJvVtFtH;z=G6(qsF~_rL)5zo&oEnSzuWvwb2@nGv?0p?fr0pi2Kd<$m-0_|boKxiPOfj33p8nkwnmnV)Gw|9kx zTAB~Y343w9JT1#1-XV@Nr2bWy4`v0WlsCG&=mVmnaXoLUR{ic6nvTm+9Q2Xne&7k; z`!X;rVCX?{28;#>l7;kB@R4qByMVzl;_D11>x^p)I-!3nB)-OH*QIr4o!P{Cm!VoXe)|nl1XuqpX6jTIB!tXXfz0896_Iu;0*GJG*VDf?wa`6G1@j(WXOpKjQqq za{^z?ZL*MS)R zLE}8=SMb4|wsac?1T`QE=30N8QrTe8hmziF^Id{s6?hQ_Sc~{TL7Q)Zf(Mwyf z5SdTwo~ya=vmYVSAyQ4krnhH^`p*R*-jX45rO726!Dw&cIVLR{IJ02+xax!4#G^R) zlNVx(5}UrjtVw`AKR1NmhWrLSG1~ybS=8iz+>lbRMulKoFk6E?ocNR!$P9n{xC1`b zLP6Z2S*w3VBX72+`n~DYbq>X&Z<(2!(OD1uJ+025^zqwf)?^^OKs^TXJ#q2!oE#+h zF(IP^iKKWkyRzMA!a>9JwB0QEad=-qiE5!uDkM@2q;}5g zJh}J#n|6##YWs{xof+8{kTdo7Dhhp(U-9SWykV|3ctqgbxQM~ZZfXsrmEfJVoWbCj zUd$G8aGkoVY+ZjvZ{Xd&XUF6(VmMcENFYwZ$UC{oA=8odrB{VTlKsE=jGh&V)K}2%WXDc`gtI4^()(X%i0N ze#8mZlseBFJp5wusCEd)N0$H+s$9I@X#gP^12#KSd;$u7_{bF_o4e!w?5S}cJI`Q< z;U(e!eSKpxz4z4q?_l#-s5ONor8a%OVrZp4d+KYvdV0swmXS!m$B6}u_;GX(As&@y zqNUy5Uu${9{Rq%9oydu<*bR_c4_YQyQ#2ftQArHVhf4c85}ouU~&m+QUjC!YEgGMMBo| z%jgv+xv`aPn8~`kDLkU5pMH6D=9u0mPJo3MZ{&E6%~AsZ^YCO{Sb!vhX%46UJp{+h z&S~FDZC%~<9o5Zw0@a$8VP1BHr@ zijrrhgsyi`iol=({yx(AMdv#i`zZ}>wa==w%c12z4eb`9eQTU6#O1G&FinLoMw{iA zoG&uV6+VAMiQT{c+sy@AOAAzTO3EWm&BXYgi*p!waDc#a`F0FFd0KHX#D~8HVpv&O zoihwp)u6kyOdn9wXkq?a<%Ez z+J=W!SV9;jJwfNO4-vJXr`USVIJ}M6t{V0*%Jc})T2%=08r|B1D05i2w5nLbtr*9K z0s%0{75w%fvPhoof>5-TP;`_cWR*hcrhQ4_Vejib5Qgj4H8w(7&HWb1sI4TQN`2t) z@7_JJ8`$?3lW}nZ1LF)jR!5f-=1Bp3dPfQiU6+UVehdnOj{`CzoY zPc8pnd;a}sAXbjAJKi!p1s7eviX4h965>CDCPqXaH)3A`TcB+O+vaH)A+>&Yn176~ z{8>}^0{bcgVB{s$z+Km&L#lB4!jFG8c~PL*f#S#iROK{Gjp6zckxDAkr;<5V83h!r zB-nzt)88SrvJy0yPoVh$uNM`4b4bK_eAFP|h1K-3=PeqwI1~i0e(kkfzev4^u~52r z!S7NEA@K+)go>$h#wc@)1s)%|fs+%|X&fIqoE=iXpRkKOe#?`EcG9*-VI*uXk>7N( zCkn+(xTuS@%zdk>-}B>+l;2s*c}UXPgI$;^j~so*mt&?_I%OF0=x`%7E4=LIkuec z2P`22*03bMb=W7ch)KB8{KV|(RKulP7XDy*oa%OzO}|69oe29iIW{7~7E&m&1I0Gj z+v8i}KYmP9_@$aBJvbT|H_Ua`!3- zpTOX}>h~rO?7JUt4Y}T!Y8G)Ain-;`-01j${DzgY%9i5PK(kYDS^vUID@&gf7nS%# zNZ(WbhG(MGB}#<=GD3MdIp#Yem?C{x>`}JSu&*6_(fOjZurySr5jvaHm!N>X*WRIj ziTD>C$tfw$`&aw&Xfx#2_XY;H<@mPVF`~8SZ~bOaNi4P8N-CC2bHCv31EQCVRCGBheMfQ#y0D?DFCA z>W}n46O-8L?jl;BdmHW|USA(^Enh&AG~Yjw7Suk2c}lr}34Y+7^NlQ)4JDoSP@p2N zwfN&uTlcFafP)2;k;z5IJiA(b{-Hjj`(ks}#9vlnf0{wEhCy1NHCS+%sD0wf#}tNe}i zZ_U*{$XgShqDvXU6ytS&+ZV`)LfSV*ZE1Hh+hRcEl@c=ZyvlF}cL)0}1PP!K%$hK|p-bvQAU!!C9n$PY z;w~tSEv2U}eIAo$=GP_R^VP5ZLL7y3migmcq}7h5O6Jd;nj~JUX`(rNUNH7>jufU- zP%KWZ`2kYGmZ+XC5JeVT%W83OII>$xDi3LCc`*w1X;ks@nvq!P`0zgu`^;T?opO}^ z^mN9Wugq^gNB*9ax;@2A5JP5&UO_rXtr4Hmm02Pk4_$~Rn(3Vjmi$Z=CyY9)oR54T z@*MI9K|wz;kz6|-_2EN+VvpPM0p>CT>p92zG!<0lb>*}um)^=fBKbIxo_hLC&+u~ixdZ}U$nhqu8>QzLMtrdJ)O8IMj?6U2Qw zcilD&6FX6(@lroP$8mGnwu{A&-GxpHa3*lf#N2#+8w5Qi)jam z%Ie$6<`kEU#PPGK1}7B&9H90!{RY_NvHAE8OUT%}=bmTqmv|mCbJ{|tMf&8^RlQ3# zWP{1Ga`^e*2^v_Qk;b<`UOv^?Q&2d<>M&->)Dm;`iQI1Z-Ej<4-+fAyuGyvEnXHQj z`|xJq}5C7NgC zID+J~J`^~skWl@W8qp*uvS6G*C$YUjd)5{L^A;NNs?#y}Az|VT7k!S96q+wYk zyK8EhnVDz_Nm?>km&4v{eC4~|66_s}%}b^aW$0wL@1{`h!qC@8b=aj!8>PaB8lEe9 z@I|KL3f#Db?Zd;v;0&rAZ}|PY6l$?ZNv~dz2Vf+xYl>9bQ`-a^CL-9B_UNR%mrrx^ zbwwo$EltbYr%ja#$yPrPF7B*a%M(5Jz`2@Ic#(m1IxK{|RwaZn_(&#${}*EE5h$hc zpDdPYCg^Yt?xO=uJz@uXxFz;#H`mlE8uZx?extSSHnXL>x$WFOz1)Ghe)2}h%AKLc zrQWJv3x9H)(+plcf3O2H3H?{3_4tJ7xX#I^>H(LFhf}1FzkvF)GNh+#WS(*1)x+Ox z8!`<)8n?S@?pGr!%5?JlgZkB$Yo4gMq;(-+Mh1)vj0*4-0fkCy2OkBL`Fs)Ahgk+I z^D7NP^M2s+Kr!@)f`=#j_@~ui7oR^TqJ+fC0bg;;fpt0HN!bm)1e~ME<0nLgp27LGJqoh5)R#8itL$C ztkp0H4_Vmh)%BfRgkjbZa#&NYv5U|-`0b~|xQ-+s5byW6qH217DwK>kv;(1~^E%{o zH9~6-aQZJ3WHg zrcXw$|Jqnx3=BZVef^d87wZ@l^6hK!=H|sk3Z?Ivom_84Q(7C7oyjwQ{blXkW1+@- zaEfsO-!^ZjRO2XvqB8c_L!JSZR}=pHf%E*^=pMh@P7Lx&%tn2W0TX-6-Q6*E&36M0{@aH2mSuzKck)N0)Fs9+ zwdcYrS0*mLxE zprKK`I$4lH{X(8~s}n(SR$;lui5!wTizLf9UvGmtcesXQt7hW+hGrW5ip=9{2m4(= zZkk@$CKR5m-tgN1Uk!iQm+e^$gh!QJPrY+^f=sOOl=(M2)tai zrE6-8eRrjV2)>c}*e)DQg)VoHF!@3ZIIiO zUpFgmh95S(H!0$5=ue?6r+%RMg>yT0_t_T$kh8+=Rakj;Dp^sg^C%emYxRueQtG#D z#;Ujz2zL=b%${+e-Y2h(t;7eBAKVS+T%~6kBNf2zz3>&(xt71%=~Z}O$=PR$;(X3i zWOqA`_fC891~-`(*QMfCp8coF!%FT3)0Ywth173r$h#~J^2JZYYE$B4>IQ7R}(x`1om6NkF5sn|P#%3=?Z|4k1w1--CAMj4@Jv;DfHkwlFJXMdbFjxEJS~$8^^dclp zXZ|6r_2`7s_o%vBo-tBm!`d>BUJ!{#r`z1N`+VFB%#WzXj!@hRe2PgOXNr#9xFx zLX2PR(#Js{>*~(FvWhvdlDnAWcAO8tryQ@Zp=hX=aY$>S_2>+^4DCqk5@ndzxNAQUCFLap~2-EZC zI`Ywy`B&xkFThsB(<`y$4ZOtM!UEd9q1O&}m_Blt8c4kzvlWIIK;t_d#l?e*K$9f3 z3WJX|Mg5|5V(rovG+qkRlM6);LY=kn2Za1}28py-sQi72VfO6pawzsu`xO)u$_-h%p1$#3ztgxB(SB)-1 z#`r34t+1%`*Ad-D#noUTTJj<|$GvtceY`Hab7>tEH5LnrntDT6V& zFd!B6`9Sv#8`UU9Wy(uX&uecFYkerEg(6KoJ!Q)MTFFB@uw<2x0G@F{TCc)$P@m65 zEDosc>MWXA<)U6oll&5}wHFoLvQq;T4NfY=Du%>K`HX}CZwE__bn8i{vOsCWj3?KT z$h5w<76p9(j%iR-PufEr=7=Jd?Z?rz9l-nGaSn&S;%oq04TxtlF?p?=#$oydoa!<% z5D6zh7X;kxj3ax`bMV{({-&n~k)`ZduDcU`eRSCRFohIY+XP164X&-y=L4?>8PUBq zrXJ1}7cqcqTc#R}^OE=Q7lw`w`Uk-w0*v!rHWub`J;)?{zdf1RX%6e#Tl`pbSqw37TlBTK|H?P%q6rB?m zQV|fiztze5HEIhNr*<5S8vwGgV}UU=%VJ8wd%?23zTCG0XlvJb}&kmO`TB*ot869n&Hfzij$ z?=*=YMEbz?x%-J}feuh^>{z(M6lE{{Wr0^B^5x>@ZkusTP_0|qy5Cm?_XF^uqyjrD$0j;Iwsaeoe2^Xh1*Py25bz6XiM%&eqoAU2c6Nqa z5G?gTErTnNo*a*mK74pDt=(0O(YF%ZGvGCH6fK8aJ2`nm6?Kk)pdP4pK!*XqA7AO{ z>H;tgz&rS2?qZB^-h`s@hf3sq$JEktetOzvcijxHYw=|X;ruS+;o$*QfO2dwh2(4V zfKwaKIiE;T7ZDTF)zXS|(a6T$1(gZV`mkb!NFS=h5pFx z^8SsfGp@rAGqgK4mb`b$yxWPkS$+b_y1Z=b?tVM6VPSgu1JpiGPeWkyoh~0Rm%_de zOR~*E2e5#8I#}AFjf#)9abRFzd6_To_xMW5pagJ^0y;3LX(3fgHTJO2OW`Vo zpWbvBKHW%}dvBI>!N>2G;10|1*2&EpxDB8P6++PRd##JgAT~zeu6f&`Oz@qkVxbFZ z*zO8Gx~%mRSAYBBamDHU9NdSPr!3^AdJ}t|Z?jSQrT!PXWyc&>(Fxti?i?;LgUD^F>MiZFiV+^dVwN(vj^`Hip9eYDS0H%6~ z@Vzf9`@X=vr{ZfrMZT9o0i(`QVpziN6Y`Z5#osOc7x7WQ1jB};&kw0CH?hOwq|M%i#qPBa-M{4`AK!{27*mKPxOcB=WQ3W> zHwqRTHa6Wej&&Kay9kr~g%qCIlnXz12rWfN(?&N6Q3on9>IgB+8yA{70!>FhzurdI}O5|$*s5d-k?d{u)1+JXHf93R-NYy+nl7^;R zuZ5izC;ada_7jX2qfwyzD~$ze4DDd<^YW5}DOEk)F!#e9W@&4(Ww(zR7>2Hwc`2l)H> z)xUo$K0k?BGS~LHJ`JSk9)48k8rj;aGE+jn9d9J?5!+}9u()wj)#)tDkU5nxxEBAI zS_A6JwY+7~8;(u#TLTMjJ0apAjZ9#huosWzzGDDE5WGZ}_ZEylM@K;ze}=izfAN{8 zU}?W=FDw>#lBIrOvu46{qd{;*TJi60sk_HupnbeDM_&@h^|bzldk>#ZwZtFo&gDS( z0r&%_{{Drc-4JwI`<$&ySC=mT%>DVgaQoG8^|2I|f#8ku9LYppo)7Rmv>6{@jA4c{ znPjT?w!`rVbQ%@ePZwXfm|+4CQ!;7`3v7iH7HmCW?U0hL&&O;*f%8hZp}i(w#ku7Q zKr8gfLMS2-z!1zHBF9E~_B}efiF%7a_kmK|^kI!fZ&>f+s;)KN#jv=eJ~}1wl&Ko^ z9xnxo;=4z90g0Um6^g1g41U&n4tT*?0l$AzV!T*K4_i_=zx5|!){I53+xTFD#-zArXp}wkJX&*4 zM>a6@fSFr?Ei^lu*Vw8W5j}pN;TB9Bkkcm2&qwMHWPg%Qri%kk5U!9eMovZ&-EfslIepaILF@<&5M z7sd0@@;T{aeq8Y&J5Z9am;rH1>j9=3f9txm0)Y#;v+S#ad-yd6sCR(`GUevZ#zR-m zg*z-|YtkD?TVY*r0Dp9dK8v3r^u#=N9Ssc$l_tzKffWam2a=1FWNJ2Qz8fsq$PDJ< zemsb5EW9|5fvfH(1^I%SM{v))dLJJ@+|lt0|5@OB1)`6dh9)unb209{(nm>NqoV;t za?6{~JW-3)+leJ5A{-nX_GOk3jsV_gPEJl*Mn>6-uD?B60ij)$Qqe{Id5y^KbTC4% zd`h2kO53mAhCl-Vi|d4S z2XYK?@#~QdA^XL+I_8YupR3^fYRDem6I!drn|fh0RV-=#>Z)}oi; zd()Fcw0w~4MGyY1g`(lbr6tspCk^%WFdc_H*Z!_oQ9JHjf^MBL^j+qE=e)qRp(C*qV_#qX*Bx;$sa2bYMv$7i8!_dyDr3^UE58E!Q+xt6SiOOH!$?n%SArX)gHaV<96@kJ@&0 zclTQgL3mq!?^{spf&BcU7g9Hy3U`-ZL^LT}M3@>|V)-KMMW$L2nQ8E%6Gz~{;R3mT z6>LL*@=yv-b(EO3=bE`Mro+K#hk|<1TC)1-zMoJsi-r}d_x{FS{5jkipp_u0#8L?M zA;ZJL`aB_hF`(DS;g1?pIYh;|j5OQ2mX+|~TsBV`9FIf6Fla?VP8aKOd z5Z~SzlYP3il>Y$&fzIGBf9n~TnHO+;yuCwp3KJN2S_sXYyo;ZK*YPuO8Td^%Ze83R zV+xkvnD2?Kc=$gTX=D%-d%QQ2OKAgte^k^ZHm@@Lg5&}eRB-LI)8*>B5Gw6dBBmdl zg%$a|6X^3*5J?9my>LkZcz}3~+qZ9rpo`occqF2m802rfF31)q4DDv9pCk^6S*FInUcAgGJUEZl|Hdh%nVGuImwD;#sZJ3xH2~jKgby~!KE%Ez- z;Xfw7lmHZ>CuehTKl0%h-m+HK8atHnd@>x*nENN}$YlfBVg3SwBOo3)gk8cjfz0VEG5tIz!T^Bz(g`DkHwhfjGtw{<4O z^9{I2t0U4n%%q}Xl##po!L=1k&+hC-BUkZTw==M&?}y?9RnJY@$Q}d*oi?>gGsn#_ z>;$BQs6m?(R5`Vpf(!%p4u>oj30@}%IKq?0F+Y`Yy_Wr5e;A&k(3p_eYd_dGYf{vI z`}w?cW^7OW7EvQ(;WNg-iedwx``i^^JK&;fjCp9#wU+@yUyP_P2 zq;ZTuT3}JdcLBvGctw%qae{jWrgad{UW(=V>Qua^P+;+wNnTxFWOr0Qhtd7BJn!!U46Zymh?4uy# z4m8}g!A!?Whp{~(&})9|C%t(CBNZ;h?lAOK>Y_@uG4J($g{avD_hSD`+Nj}!Sgd@* z%*yvagTWAYov!9H1O-KGmxR+>i`_ENE3W782Y%5o*F|5Sz;#_QT?0m7LPA2FqnY~) z2?dGN%c_kv#&Pp&YTZw&xpr7`g4%~F#@Q4&+7L{S$Upr%ObHl5)!RQU3(I34DAXe& z73yth?3}rW0@rIKe+&QD9<&9wYl!~UQLR~P{BH_UQBpE1(1~nFX`c~`d;X+m`{%cB zhbEd@8My5y@V%CUL32D8VC~I{A({VX?SI^b~mo!Ss47r z`1QbVckP);f#02J>o-)2+1K2RB}0Ia&K19L7bfj#-=qg|f~N`Pe_a-gZequp+1a(4 zoW6<7j(9j1cu?UX7a#ldE!PnLEHn~qLO5owwit;11O$HS^Zlx=&DG|? zGr8JXrEVzD4a^ZPy4na08Yh?T!Itd&~mr~S2v#PZp=l7v|OqUf`K{P2`QUD;+$_tmhn>ynwTF3w<{G@aZyXg4K4#xdYH3|-pxzdr1$ zY2P28X<_U$A8*k$59PIbShWJ>c&P~%lVw{qSvtQeQg0+;oLM|pXpy+~^g9l!cv+Xn zW(#7X()FX`YvE5NU83}{M`i`fdQ-MnZ#!wu!6ebpgq*-&ROE)kR3(BwBF3e66C`Tjwi9*Huh3`Z_P$yLvh z>r(Ih5JxAT{%xhFf|=}o{J~m{^8#xC(rv=6^#gJJ1m`)d&V%zxy>&t5WNz6ROU2ti zP4f=Q174)FO-_O0K<$rRHo?}?B`^&wB=3&#G6M1PgV-Pk-71-AHMZ|KRIjgF(IfV1 z+tATT#5Y-LHGWf(d8?gVnddssA)61&-=0n#q=G?MF#HpeNO9h1dcDNDA~13g}IYl5gY#E_XQBDsnK*bpJkUGtss*7H)Fm_vWn2wvSLU_MPP1 z(^}f0we*{TJs~Fh1Eit9B@ACy&Q>w(mRbJqeccYMgN`Q~W{yWmu(d~Df>2&-oWuy9Q8n=mE#*(lzJeV|zk%9s3 z#2I3Ul}AnN!G#uUTw;Q2hH->M@*sN7|L-MVoe0J5 z8;MH~XM0zhI^Yix*S}8gE}myFlEWDPV)ygr7e;t>Y8sL^u}-N~0+r4TyH5zcn3!Nb zdR;ZDYI?(U|88b`q+nJlnm2fOVI!v`Zn8)GP@iuaA4GkJk9K{VFjE<&@4!DzaY_u= zQ~)yV$#X76gm_AHkEeZcGp7_?mshnQL!(*bG`C_!R3;W(wz_jNgwW;SM3M6ihrxyW z5A`QH;o*>c^Fbg6ffN!HWWM~m=&avQ@2teWr*T;mviaXPa*(sAmd$6iT@}i~$h`Ws z$tEu=<)Ws^rw(pjZmdF)<)-EY&)#Ts@JeVvltXZ>MZ(U|D0P1j^>EtPy~v&}Q`TVY~N%#`MBMN~>w05oprDW(&D?<$6eRf7mwx zmupRYFM*N<1E@Bv3!x|w@G+K<&-wW`7OgkjJRBVI71@(iIl+bsg79<=*;IkR%DIgU z4Q?_bV647se`%Sj8nq2^%`=>yo`y{*P)MS&kobw;Y^J7~faFug1E%-dQQJ@Je%d@h zqM5Sz`}^1a`o(fFfCEk$gp$oVmL`Wdl|eKiSX4o4Citx9^evmA4pTue0oe5b8LOwK z$4RxjH+%$CQjT6Z9T^cdiOhh$e-;1Dn_yl=oIN$-e}DAYgW;=?$VL~$ zZU?ffxAn$APk|0AfbyjGOTC<7#!DoA&}C*~lB$rBk)8e5Rv0vb_(-|zVt3gAZfyNm z?RhX`!O~ANGpMW|7&x%z+6pTswSwS0vSGtT3^pNl&bI{w)HO7qwNFD+v#_-EV@SxT zQ<;Sg3h0S(=yAPvrN~UlhA>BR@B{(j*@Y zij_1M30{WrM>n~ZWPt4njI%i^Sgi!Pc-OxYdRaH;bxx zXYRrl6}P|IFuecwRtP=Zd^tzEIpA=HUtrl*NCDsUty{MMX+nK>328FH$|ZxF7`n^f zzJ2?o$QrO^IFEE_H6VQ1EGgp*U$*UTL1t8nZci1|mrtI#J%3o(ZxE=cK@jWbg15jvLAM1u0 zPXhkKS_eApTNIf$H?Bl1FEGz#vXdEfNEValtiAImiwb7 zDf+xTe*2OKGynw2ft)}u2a+824wTbw2oRm#1`NH*x(Keu9vWxSo!x6$2r?u1fe^q6 zEsJ7i5F9bOvK^}oZ=%MWInt|aNeRA^PE&hl^&&^)HP^;C%gGHQC%aET;y;#kh&Bbm z!G28L+8(U4TZ=_2^t+JR_+_kZRBY^ZE-q+VfT0f2P9^SJ*_HZr&CRl1rGpa5GeZjR zK2L6&z37Y*H1QaW6(nlPjflME5hD0&beR{~Us2z)UbEDKUY!XJ9$)0}MgqzLEwG@^ zVWtFwl3orXxVCK28i-*hNsEh#yNI9NjQJ`KN1${B3+g#CGC&~#5S?0sDG*ZiyWGmX ztCu2c$Afunb`u>`6Fw%cpBt(r|9D-9ZFp`Y2|bKukG{T>);hY(7L?m>WMo;05UnC6 zxQ~UI3qrlp+IxqF!1mu_m!t7l<2X4Aug2Eh7wVAY`+NocJwo9=|T(^e2x342I4L z`)5;Tsmd5YN;xz3DmGXOeSXQ-eFk&1bYdrLkL5&}Fw<2nW%WXMbN_p^FcY3Z2MQK! z7V#9E;Lnx=6{?+Y1^UlH=AI&c18fJRKe#K}61;L*(|5<5q9=mfn<6cC@kn1a;Mm1G z#fxoK_MJWSzma>OjxB;8BHxMVj;=wFteh%bMh1q;FVsDCVIRxEL#dkwG2Q*5xf%^A$IDEh4{a&-t?uqR&`|Deo zZd~AW;o31&EVCzF!y+Xz!)YTe1>*)L6&4BMGR}(tEC`Z7I7WC*1lNw+3KRL_DW)&t z{J3q&NQE168K|dO5(Fspu<)`>>?t_GVd&PM(YXFYEONH)r`>`Ajc47W+~IlrPCf48 zv3yRLzB%cBaG1g~9i5N$#=jdIrMq^~C&~tWB}C|llKFWfktrU(lw=$?STjt_D`N!h z9mH5N*XFU__cfZ14mP*8azl#^^m6ddfj-2ok2~?*KFBd_D6;vcT%w0v*4zCL!uZao zd&c(m>QDefMwFsn^6eYc+Q38L{UeSfuU6J>FWtUqdG&+ZG-nC!g&^nR@_Ez%h>k5` zK?G!GkZe8mW!wAmnftoj>MBV7;d>_g>5&D z7rHZqW~!X^a;g6PgW~qnq3YYYy#x3s!`r66P6>VCNVB*744234caB9XwePT_m~YB5 z6P|sNCas&$(x-DezAMHF1q>_*FhK3b80=rE541{XFwQF%K%=Bj$W$*i`3plo=8fOsY1=+wN7Vj}>l`@+Q+5WfiUe->no{?tzXOm%=*B$l`Fw|8OY!Oz z9zI^4#nSk+KB!5Ar#%p9AO}rR2Ls}b8{i1B5rXDEa99zc=E>YpZ{IdotiQC)d_=iG zDiyq*PsfiZUs>xC_QvM5hM$LOL{=Q|vlEmf9ZlTLwp^+aOA+=(=-dzT>Q+jXM)!BV z$F-V*hz80)AQ;fj4su{1&Zch7O*zfkW3T|XIJQ=^)hENGg#oyrH>@?oNi;NGxYx4Y zXw&#wQGXHUB*>%c?D<^ov^YDY788F=tQz5=m#?KwSmZIRBv$tk==4sneGS_f#j z;^;I�myZ;n#&|g?9#5cWUu%jb|E9Y$t{{Hn63yevIP3KB~7fMy_{W+*5<+rXXXXQnU$06)lj z;ZotTV!}^x{J!l}z3*5gfG^mHOUECWyIC`dZd8i-E+dS%A+ewogN9d6N%6vDFzvAt z8R`wP0a>-9L^JUfPnfa4s=%`!f@Xj(Io7qX6a_M}qKq{z@=97y255xDH0*q!;FfuH zm_Uo7YO94i6FIf@?>kpC%=FhIVna({CK$u(LGM+Ma~i}fzkkE36C@mRxb8XB z(-$meR!x^44{>GXlwp4f)5lGF^_!jSrP>(R)MTsG|N6NT>!4FLo3XZ#Q_+(8IY+nR zQa+aOMBy;KEqHxczE>VGz6>j{Ed^Gj#NA|GRw)Z)uS?JDl=e{;6~ zKa{<9Jk@{rKHf5-P~?b=A|g4ImF%o!M3E5(*?WaJ#|cR}N|cdZc6PGDu{YT>JA3av ze)sA9`F+QKzu)_D9_M{J&Uu~JdOn}`ecji6U4|8(mDMC>uDBm{KzG-+EEjJNg3yf; zw_Sr=$^}Bu&{z`1Ekg1C1XP)Tkl9WRVze$GVg+ddFrK+-aX>gbxIc^Px=<9`?SJf8 z%mYNuPFulOWbC7SF}O59u|C(tMpzHw!Jy>0@u{V z4Im*<;c7rH>i&@)FePJSft&zSE!_1lUW7ClLz)QWqulAM zH^`Su&fd(og3Ic0;)@bH73mW$0gH)~`_cu4p(>9&b(C6J zQayJ^uykE1b%uOFvzkN1c?rqJb@By zOkI4ao&2tjddP;lRK2|AS{gKWGz#i;Q1nW%CwCU(GQ2Au8Q-OPyIunM1~9Cozu)A$ zf#DN3+r2Mh$bmY@joL}uKUZ2o0OAjcf$;i8i9d*BmOR67(T6LjqHtJtQzB;&VgqT<$xA-|=v0egEd@<Tojf1PV~Nw|ISRt+BDO?WsioQeVUb z56D-2L&Lj(q`aIQ$h<*J2D%`sjU4p!qMvZduC;F<18TdSR6UR(Y`;8LOk+8v{qTbDFx4Au_H(OQQ}oSK03%5+$sOt4#(aq$?~2T1KKdu?OK`(KV+aPKAgJ19nmIpqJkbZ>7wvaavgT{5Oi$HjI67y{WOpw(V~An@+) z3DnPzFOPRqw$b{!>L{5^S5PVc-bei|wimelpmi{l#$SuT-nv}q^C^}I1;Tfb0|TC$ zaLKm=rswS7z42mqo~L<#PanZr)<+FcL|YqGME&WNnoks4@*3Bw5wSyA2L~$c{p+sk zYc+`NM)9)88}|jsOObDbckTG9&Z2=p1JTtU*N}M3E+r#taveZ*3K^Qq-G^#&f9LEv zQXgO(axF$FY>lV?XNLMm_QByril|9OaRHevE|(xVEy{p_(R=q6=kB=e{!}iV1>FUA zR6TnOG=*M#RyH#`dl_u`GOroG+(*5pL!ot8hfB~{OXv<0h6K>3Vj|EpexoL9Nxco+ zWQrDKJAd_C<9h31Wi+6K7+x{)VoSfz;g;`k;Zf|Dbf4{-=E}8s*}*ftNPsbb7Njl< zGAdsm0e=SAhtVp@?dH%#0dP%ovy!oADIF@x?z6r%lc*RTc*fwyHtBf%Q0D7K&2h>5 zMucqj)!mkZ5jb@ zw4M$cCh;}ruzE;YwATcO%FUbq!XLk?T-<3Q9|(V*p~72CL4kWJ*RK{K;b7fcG>rsX6KnVMdDIDE`Af_{)HC5|}nw_0OE$-p8qneG%#)o&sZeUg&_3f@&(7~FweqF47TkXD-Ffhl_Yu)JP8G<&vD?Tg z+SbrD>StxJh(TBMzrnIyOatNcHLz&;)!(npf62ENX80!N&ra<-*6b8l$Bgvyw%tuQwV{p9*U0|IJJxw-4IF=YzN>M>j>mR1y?$}s3^5o;Dr ziSAbwQ9p09F+V*^7|YBcK=|3mYoP%7gLAIljfG?x`r@na?Mf$i&Tj5~wiKv^-p)qV z@2WvaQ6|a=zs*N`P?ScOp3Ok=o@-zrD*fa{*d31rmty@aP}P9lX+@CZtPqiY6zzy< z1`=fVdTiOx*xgES|2y|4{IScscbi0NyQ>y!HRH4%ni@=oecS>he-BPChmtpDW8k3p1F}!c+nUcoEA~z&YY%K^8vh96{0lSY zECMkLAlvJ^;0Sm7=o~$2u&!y@Kqhtfn;b9Saqi_(0xPN?m{+rkh z3t?;1x;I^ZxT@US?KV2?5P@B3(`UH{ZzWd&TsTY!xjKYfdYI{gik?U)Ki>J&3W zE($sg$n@S+K#)0D&{cGEyvEh&x#|$JPv43T-kmvgD?O?vkq-W|_>kVm^eL07b-IOZIc_wL+Xi|lG#dftt-zLcn=>+g+gjNNKnyPkenVwhv2Q@VK1xW#D0aBE}+Xv0f3pw9r zQBj;@NdsjHY0vQ}zHH+o3kd?P;nfd{ld{=rS0zL>vJIlI76}@ zdR@08n0_I}Q%1$G79QwBSZ3XG!(Go{95%9C|3nX?lGK1mmoSG5AeK`eF@C~IfFdwb zY28p2g7AQk5ArS>L5AQmE7Z9rxml&(C$RP&%_R+6jjVgnk8dXM4cG`)zR#e)Ie4$~ z=iJ_7_7@0z;iK2s>jh>m!-O>duxip#486mPM7A!v^mcVY4-mM0rbE+*l@$*g;dC&b>(Ao5{9P<NC#md*WOPC6QhYNdfv?0|7;Fao|@IIIWzZilX(QhE11VkAQ9d8{nfg029wSo zdD}fpFG~4x=^ysyqyW#5p>Ws;cPUro?Y)MfAMhEEk!jdqtA2|@6{%oVzIUg?{h+WZ zmwo*Nih}*|Zg0D?4F{6N6J9`*Sm3q@x)9Xt9T&N^Vc;vMyGj(dTJ*S+g`o{OfptX%Ph z?d30Th2706AYAy-eqW@p=xo3G5%!>O?|!j$F_OO6eZ+%H^gQ0}68b`50^T4s;ES>t z5NxI=F)|HTASk9_`i!URZXTsOa8X}|EDqgL{{BPIw&xAEyRjb03AfmPMDZM7;E?!$ z&(`AR3W2hVb6_!R|V+zq5J)9Ar30EEp*U zMH4~6H|g)^ap%T^)@$0aN8_FJ?a_03`pa_YRZsDdTfP4>><7R#Yn<&j7Vx_%g${b4 zUiw%t+c;mg5||be33-f2Ym$S^Sb}qfVFL8%PlH}{Fr4X zvB!;N@{crK+ky_N8*EjXayfL1hK}^EKpZ0*>Lc~D)wS+=DpLRV@-bJzqAYr~Rk7Ar zI}XupoOpKHka<(o$-@uyMH`n;`?bAaaiNLzp?}M><4Op>jFQd zAur~ZVpk1AX51qeQZ|tvc6M*%_8-|%7Ngn_2%Jdk)JOdHiIiFd0gg3bTOsnQ9*lZ? z54%oAR2q5g=y@FWa?!EIjUkj~wWhRVi#cblo;}baLeprObG2r-wt`&QXB08n9#7lF`1294-z)caLFJ&y!ldl!RX5i7+}C$qw)p<4Bp=Mnw?OPrlo86j zTI12{G+ciT6QWtNJDAzOb-zx5Bg9D&y^1Mb$kka*-GrutjLb}1OUv<9H)x@TQksIN z5$fCrhU3tOgVd;!r;@Dxrk^wk?L=Gt|7bB~C7Ro7yM94OM2?3>#YpjzL$>I+11r3Vmh)-dO2lPlK1L-UhEy)56yKpUDS_JVKqnP(ki088R(bC&qk zXP(j}-OZ(cc<^fp^OkpaRmiu|K5nLl7N(wOYwwV}D*cbHE*`7;^-;R!O<(DEgY5LZ zh*`bHNX9DW z-rC!T?I4ex1##&|n`z7NUfIj_c=)c=^vYC>gAe?*l;Q!cHl{#1N>&r}Sm2E??ep-Q zynPcu07Bvw)V+)e3xnSPNG4e$`*II^Fi~Y9Ik!O0G6`(`8`HC(5Ou0(>m~a=Ezq%Uc>xn*{_Ef z$w$MsWAV$V!JBomE{^Vdh{%vfSI?lTKlUM(MaP!DA~QoCGrQWaE3BQ7Cj`a%7Z!1T zdaSM@lhX`>kuz_R;t#X-_9{As$_~b=_oaElpmP>h%+yp)5D&`F2W@I-q6x|azIc)| zU~~74pypESL5Xq5$zFHl+P;gohXy==Xpbi!#{(Sp<}e!2^=*qHzZFI}kd!o^mrO)hRlfM_h@RLaGv5 z+Mi>?N(48Btg-)BckrtUGTB(qslD!noZ3jk-dY%P0;9L&AwZQO${dl|AE$8HLC0_C z`x(39%@^lDL7Lp}REcK2?~&}ev*@c# zcQ9)SX04c2jEyR>=0TiZ-_0k4^y(Noj*b=MCD^!J0hs;5HHJ;VQko9ae`)FwgUtOIKmCySY7kun` zyP5M;`;7USR@az29dA2Vo)0`;tuYe{N6AilUb%H15iD`j7voi7P1A<>_4Qp-l=}j% zJ9{3tZ4~mAQ+k1%h6L}no__%4E#s&OY-J(GOm~fj^7;3AeF(bdT4|Ay_m~`d7mULP z4d#y@{V-lXB9L=`!&L$ri}{ z`!;J#GPzhDy!rP%t;QwhzcsDp2$VdzYVBl>ao+I@*(>3CUjKHl4?&YNk7J41+f4gr z1Gc8x4dizC{RrWUM=$j)|}2lD6Yjsf}hJW4mn$@r~!s`uEz>3jGW; z0$fX#Vv9&ta~;&+wIhD#EY6Utc|JIiyR@5KdGpz(#@D1W?85BsxQ^{}$IP|A+0ABC zxWBy_c;U-8#hHGKx^OIa&vzgy$)tDar8J&e1>)l$!x2}czpF8N2P&Wb{-<19ruuXE zSj{U2-RZv;Ri`Ihh*-bukJT%A$jZ;G_b&NDgsQZ<`Rl2j?v1v=+SaPe{L<@7fkGCq zrw-TE;PqId7X8<|v{5pw{IPEmeb4?x4gLOlAp&Xl1HOb~=;xPqs@zIx%`)*`Y$I*4 z8{T^>XYRQ>jqM<9!Qu~|(tq8pv08?|Wa%Hjk~8PYwK9Lr{!zn(QQd{;ecQ8UF4zI` zFD5;!ZR+ro<_1xlTk8Dp+YbKv&BKpx2~|wrq3OxyPJF?d&b899u~)ZR12O>DgA{;+ z1P!hx;l!~AdW^?H75Cr;jYsy7*T*NujOU-llk zg_7*OtRJ{k^Hv_4)9=0VgGp|sB`j*{uao~QakZQDdU~P$(YbR0UWgq!d`dy)hA3q-V z=LJw^u|=zJ3403sHGkAddA0+|`s0Idf+usV>w#r$-B*jApICvzPuT&V_$oW!b*NT# z1fp8^#8oydv?B68yuBuVR{7qAioGd{V`}UKSz2~>c3WFp3sb$|=z6P! zs-og43#z}bfGH#xS=t|8ZotbB*l+!&_fDNKOrB7qXkn@mGyrKd5bVyC_o^_6;Q`4H zd;5>TqB=(mh&n<0bgJ?Au&e7yIv^_&9^MCSDdFJ?{tdr>^W41o zP)P|$MPR_Nw73ZDyX!R|`VUb;a;NMyH6^70NtU<%{vdPU=FOP@IWm$Q$(6^B!{K@} z^*%LC0<#6!T@A+SFS~?B&>-6gf*sI`3`{fFm$9r18MR$qG=X&wRa8Kkl#`Q_%=enO z`0(mYD49Va1>ksS+kj`-WvJPL)Qf6r4A+etZL`jx*$S=Q=ZND0D!zO73k`sTK&R8u z832l#y1F{>@s*UCfh|V=DJ+bGh73C6!Eqk6L^DDw41nAg#|Kg@EL3b99H55B#?B7v zb8KvE0q@^`f2w*Nrf92)mgfR~tdmSG^_u;{V2Vl7XbwjZHhSFSP8Y zr^1>Nv`0Wf?u(Ks8hrpb8*mFjq%W=89QJ_VjRDtBQu0;1`GjN9KZcVI=QgJIH>hW9IRCJ^=Uz6>Q^*~i4+zVf_erB$_x#) z{9Oe&@EtWrjBy}v-%y42UPddhmnJ5Y4WBrmP(VUVtl;rnz;m|=6?4z^L(?QMXJ7mJ zf>1`RutTK-z0emWa3cnDSWx|it99#EMtnRg8(Ve7eOg*tE-tR6!J<22V&}ISnvi8B z+1V@nma3q&16tO9SE0excDUrOh=}{z#Dk6VMEu}ODKD?f9SW2(T+Ld)S*$iUt$GYf zN5?-P02FGGoSY}aXnLUF91Fd=(9-AZ>8$P-I95hn_SquaiLv{Gj!ru6`=?sr~{#E9-sG zXYc9)LhnC1-m~{|_x)$*=IF0np~2OFXbB9%oE$ZX#EBoKJ8f9Ni< zdK*aT1-3)qQ&Lz+zvbktKG@O%6bGaSYeu11?Ib{QhChesC`7KXFD zg&xZst!Dt;YiSiu#V4qzYH<@cJdSS%O`oJBc9K;P#^K|;P@)X-d_YwOUjml5$xl#& zWmv3%fh7AUkg5j7U8woJlacm^dwX_a0c0RyJi>>Ii@|m@>Mt-&4ypzJua zZJ;3vd652LidGQti-GfI_6H2_;6jae+4b&kq3zv!JeXj`%bg+!|mi^G+r> zCT4hGpmBN~e7glbc2vXua}t40bAI}}S3ZEy?K>IRQS_!R5c~ zu_&s-pq!irF1&c`NMB$5KPOfpF?o|4ihS}qyRTPJuVOW(g=aVZeE zwg2`zmkZt}ArNOie5=Em+hx^+( z?7ZO|X3)ZBr0rIcpPh}b%arhB_4}E0Tn#TcH9n5a5Ob zwECt=@4qi;aT;1$Ac4d4sX_BdR;>13;nn5MPS3zm;@Al!nNPoql5$JsNES1L?q81O z2R24VbE&l>V4}3st`^_GpS$<{#j&T5|KAE#mCU^o^Y|YGQ~6YDzs98IsiHc%V4sm? z3R2P=+}xmuwYs_rkp@UcvAkVdTZ@VUR{_#LpB8tFnKzQAZ+p$mL|W*U#@n+dmaVD z5)vfKo1aSL>)n(-oIXdq{^>y0koOM-g!%@kM({UHOxG9s!q5H;Qak-DsRQ=&@p}kxbe1G8}4f^f{lm{cgCzAW@5W9 ztA?$L&%@b$DV>dc1mt!DgVD-LX%CNL#Y9l2nqOWfNn4=3hrz^4iEhf8ZsuX*5k zyM#)&W|+iXY?0J?Q0Kn3{-(6og#k|7`fIpY)k~uu%$r2MG(Wc<_VKN&g|t+;CT4Vv z+#{S1oDW9o0$fx{6#vgaeQL|pGFL)6NK3NseGTpzFTD9u4{9PM<^On_VFs7J3y`}ZGAJ2_jsa1+;qsO0WKIo+waX`pTa0x!b30ukeOh(0 z*4}vwhNI^O_7H1y3^+h~%qRzXU!|mAk_XQ&Xl6-CA+2uy z{d<0sy-i#t^EC_&b`G-`OAr=M__+QhwdrEUiPr-21o;jStkKp6xEJIKVBQ5wE+9yk z4|Jm)zN8&Bo!4ejU7xyj*O$h4Py@dc^#QiJaAgHe10X&>KfjWyYOI(CcvP90m_Voj zIYM@ic@!RIi!Nf4&AP|mKh%W0IUA{8#G`xJpdfE6z?UjQ*C=Bs4|0Vkf{w>WT@jF< ztkd|t7Q~s1JvjRI2o)9Ao6aF&*XLnVU`WX5NwjC^oI-C?WON~<2Zi8Jvm-S0d``$Hsg=B>s0fKp!p?fjiRuMVZ(Xy?=nl#m+rt ze(n3mISFJlxSOirh&q+n>+Lp&I6e^ceUdMRUR9o=KlMWN{~9M1wRkPYVtiq_X0(}* zBU%#N{*aK@LIH`48LXU$^1~iI5Ljnf2nX@`fzL*5I=Y5-7k5(M)S;ZC#$5^Y{0sXJj31ma>RR~Uvp)bm?`ZeeZnLI=`x#-@B>9IJ z$x51DpLO@amNpj0NS_%|ark(#AP?DdX0wJ#&yFk?dX&|lmq!Yn5E8U(I{uYmC4l`9Zf z)6>!t@4+BD|Hh(iM?=j1iy|zTn8wvR^Zr6~>4;0t+5U|mK;#e_0pjA~fZvv#Z4b@= z8(AB&1xrUZU;QU=kywJhpl}tRjL~2<;9Nod!y2FkQq6daDV@uW>{<4q45a)0gPtogJ#_c}PSt!YCB@KjK|5fByOUzanCtsj(vA`zJ)lxuS9Vv{ z`$H;>b%@aj1gnFR(zy`Eybgq!*7+3Vss6lM z8Kpt4pM2crjzzzS-ZrA@+3=*lsoF46v3p~v+$}okp?){nZ`Wh-5>jg?bGLEP;<1rZ zEJO9)t#|DN=fF88s zL0Fg~vt)__{yh7qRL!*1g_KM96#R8tIgGkd+curczz(L)Z-l z$2O;9w(#{$P1NsX0M{}I`~u)`e?K53Aq6ZoVWj4 zh+^u(jbP+a$RnPol%hpQ$C-$8Tims*eS zgirr9kc9zbDXyTvoo_#F3P4XK=h1H0sv_#(>a$@9VW}ZRU6v`@ZEK1{YIT0icfU2} zcx9ml<5>orP-Sze)L+Y&_u)IR+P`WgNQVKK1`y0`UM}KWu^r zqb=xNw6nJUsnvr&McjZu>W6rZJWrg#sb-lDIC>8KLOYBmx00-O`FU=Vt<)r5(a?Ob ze`iY;s!i&t2|sWrX3$;A5AMJk(JF7q8|e+uU0U}eGN8g>(> zW+&KM`8RQ)BmV{CD`h36jGMy-TBrl}g5@2$j-}~%xZ%NX_*cB9&jb!3y%tl7g!Q^0 zo(8f8#l#kjriVV zlhB`;^URh;l_kG-Ui2d7TdvNRirYXJbYCCczshehYNYaTu|0bn@>RyIFBSWr@qVeWbxn(-G2iIz`4&A0gYJe^wuusZPq zA3#E)tgw*OR_d5_U2T4=W-BHTI<+DHfQC5pXU&q;5z?8d{^z`O z&?IeWcr|2H9<5gLp?`{T6xY!3fEIV1h73ky7s5%O+jI9(yq||o-zS7I6el-pD%Qte9NxEaMWvH> z!Em`*Qk^~^gSw*1L)pxAGkw;+L`d*(TPwGzc%Ovh#`OPMYYBN+j*w(FAwpds->q3_ zy!rK+=AT73JL_M_@JmCbr?)x(?{ALLvc!41I125Ls|w+e#u{f< zyAX6CFfvyAFS6^}`)IEv>(=OwAkzJpZ2#ry_n}87nW(A{kp?Nxkk+K>?zOfp?l3I@ zENR$uuc#FYvIrovxH>xnX%P~VXcb`j3i9%{4GfT}p8kqAc)I1hH4-27zb^sDnN?py z)GPb&wPbCV4CF8Ox)1D{u)iv8X~D+IAGT}X?0*AuNPwwRQf|PQ1uIC9Z`v4bLkP$(L!|1#6B+#s%Kmuh#tvz1wn6!>ohf?uH@}GL+?% z-Q;wWBGI?Xxro{pF)U%f&TiI3TJ0O@?Oq{Fr>Z{C(+o}3Abt>{xWBhYMn(oHYdMz| z>gUD`mNs0daDE;~j^K$Bc>#WI&mg)rFnHBq?CtrhAeP90m+uDcyAw9a9 zFG$NAVDEPpkpl3%4i-qSNDZQoHTZ=w3O>VxCED)TpIbOK)I&TC(lc}`U@?DEH; zSi_g{jf~Z{7gIj>+s#LsAIm@<|V<;hmJ1& z$$d51YfJNNG-Ykxy}aDu9=*K){7nf5V~!)^TL(AocZqHrL@?6Rm{35zcV>oMqizP7 zsX+WD#Z$*Kc@Llj0+jRpyCoW30tV;Unv)_AdXtAz_Qn-ed<3E$H3HR82OrgT^`q3E zb<4UZG9OWyGHTfGB=sW7B;NhYm*bG%b>3hZx!Vm<>6Nq_HP8n5``HVmWBaE@*cQ ze`R14h-tk+KAsw>>#o_<0VtNlAr(e6@#6n%kBv6J)JcB${;uV>K7?*HV*Gn1`ISp_ ze~=O-D{8{~+sl~KAhlia0a9JF&L({8_e0*yg`~pWmdGCvF7!Lv=wa5|+76QesyO{k zLMi1RK0w@tNPO>e9KcnH*Lt6^fHS}+73oR{Tkq&)Z-Q}-_>OHN5)_S7ki+k&U^jsd zp%VtyvQ8>06tS(-{T~$*xoOj2p}%!YnJdH_R!+N^qJ7)+fBP)Q&BMbE!MvXzq{cwS zg~H@co=NVm7ZRKjm}^2G9p`yx%#xGb_4u!j~cIM*c)SYWAvYy`h*Hg0B?~Q(#C-()fUbPF%%wSb{gNl^Y`$TUt==KqvTwezx z4R?oLFR!5EBC73eI+GMh2ClZF$*g5>PZEIaSWnmh($nQ*v+4wy^%v7CBuc8SVyk8B z#JQKCXa~?aboW5K3(BV8BfHVs(h{jOdfauO{msa}`OK2Kh3Pu?=BOE!-ED2B`nj|l zhpzAu0DA#JK6B;_tQ?@o(q_jWQCG(S508C0@7)Mofa3hET(0n}qU!Gy)Ph7mtbBGO z3d+dOPgxyZpt{i9TY??47Es4 zSOUGG$BR0RUOgTbp>6JsYI<_C?Dp#yNo^em(pWnTt8|NO%F5II&7}*mM9dTe2PN_I z@=(Mm$j=9*7C{ihfM)>#sBD0!DikECUiBcbWmNkk1rO~B$ptIKoxm7SVyDK{K)3{4 z=uGc*HCEO))bA3zutTO+JqT5C<`)M$4uX-<5fLCK)na@bs=ZRjnwiK^tAm;5^K+ZB z5Z)g|Oy)@)?CP70k9th_BHm4c_b74R@!wWtS7E7vQg~ zfa*k;btppO%KR8ulth|C3_*#i4G3oa2X5l&RR4xv9G+C+ai|cbA*#=$X>a^ur#k~< z*p?e!I9B5*GTXZ;DtR0i=zS5(ph-xx7R~{1m=yM4ZsFPOQ~O5q`{P?f6Q0pWGhbHf zRtRxp#vfVu0pzoqO~PygM})DoaJjrY-q(kCb!!RNtNQGRKEuRcX67ow(v2mWmbi{O zSfc+oH?izqQ;|F3GhZMt|Gic7SOmMO_Glc}3;d37##0T5tLT<`((c%mT6{TP>udv} zjIu5^u+qSV^evJduX+n3r1=hGhyZNsBYL%tVP~HZyLnCESiOSB48Kc!d5!VHSITq4vSu0H+5&YqNlVC_Q`cOsT+L-oc8OVpo>xSEULW`F4t(NaW9 z?(^rPs2AgP{IVxX7c5maBMT<%M%1F7_w(3ScecH)HMg)r8|q3+={l-;1eb`Z4acz9 z;ezvGerGd z?uEIoeXqm+x*TJ?|DuQn27xV263(D`$S>cyQ%?TZ#LI2YmHVqU={p z??L6rhfdNKU+(Mg+oD<@0ZpoCLmlW=50Ob1BA6eOAx)lYkyKf|x;Mv%R)dDsFJI2O zbU|^UPvvQE`M#MQmR@(q)VM+ZY~!?qXyi4!V)iz?OYROVy9nX$*@Ly^S2kxC_5%MZ ziofL~Ud(+x&a8d@WdCNEV;96IH`?hc?aobnZ*_VC@Qj)E`LLp%BM46-Qto~>FS%~} zAtL#Mn=q-zqV$frpg&iqiF4TX4Q0e?awLSjL_*JWe2 z;{Pv;2()O27SyayLxV5$-x6LyQI`O!dC<_Eo4O1&`5(EtjD*SZ^XJdd%msq9A&Ss$ z4!S@M#(>H~_65&S4o&cTqM-qRK6v@sXY~I5tpXM_?d?G!Ay8hHN$z~GdPb_crUo2D zfO!GtD5d&fRRmxmAPrD;0SIx{*&Hn^OBAgF4u0?-WVRsij6`N7Bmns)IXjyweV|b6 zCl|ma@MCAso;6+nPE7+;gQiI!Kvbca2q2sw-8pF2CMQqRfAWkgB=qxVV>7d~?zwIw z2t7e^1!8${r2*2-Pt--)z=>chDvyNIB;vArpC2O*KErQ_SCm;cT@~EZEW!SRDiGa zguO7F8(4LJ{Q|WI%_mRni=KT^3JnYMtEHr*bSfGIMhKiGU+MPl?&~3nU2mK*oiDV2v+RT zL%J>vwp-@W_`nSV{FPg@55eg?q5{qtkcoi(0}eDR-s==8&}o*D0gDvJ;bFQQ040!; zD6my_<^xm+SLO=yd$7=gONF4Ng-RY=D6ri6?{Zl({D&Tym-Jg_rlx{aS4&e9105Z3 zCPbpaCud`83m89;00LLV9mrce7vC97fOoOXwf6Z|`* zWPpD<06qUW0KnQJksoEKfh%ckoetav(lZp6e!!FRX8Gs$^wuW>+8Dt;)k|`e#p|Zc z+nR9@nCdoyyAGHhz~BI61jeinwrGe&?Y{Z|A6C0JrH+0 z%jEVK=y-tr0KNmzW+GPQ;z3>lLN2IYa{W!s$^rp6_0*r=zxykKJlg*!K8)a*u=__m zeh1Md=xEBl#nlyu9|C5os9v8V1H-`Lg52aRTo|*~T64NPvpg|7KQT)l8eN*6Ro~x)Je>Ku z5$|{BgS$k@VZA%~k|}!Pya@AP-e#PYl<2b)X$nm)&m}1f84jnM-YqXYM4O>HiuYlk zim!Y5RkSN9^ZckE4@~y()^6(2W=QGYau6fC^ zpZt&mQDTRZK21FOJ=tPQ;@M__#eul6GWf&H;NPXwz272F9cEM8lG&1+CuVrvsz4v| z;vN(JHxr&G#uFYYOX8XONAQTNYZxNoH={&7MPfNz?aU}+#YiabdF&Lr?THk5+$-`Z zcH8^qwj;bKu`oV%I%55#9m19QDSVs~m3@wW;FubT6{1AJ<0-uD%A9>-`PZ-gh0P78 zVJzLS?@0s0EWc${(ZfM&a@(es$yY)F&coO~sHSHnGoyF(RVAqI`=hg^blK=)B9ob~ z+@;Ha|ItZ2BR(`ZDI>zT; zvKfVt*utLKR|PNbk)Wd}`<9jphV#T5hY;MaG=9T7TOK|{2v=0$Ifj`thdfJocyCbj zP*3cjT(9s%{%LP1ju|N-ihaF7%$S~#>M@DW#>(kGSH1UQey=!A@ntf3s_d6UZ|^VcHW*GHit~`5qqi9I1(B$>XB67h z-1V(2ckf%pMXNB0+xmSdPhavDt=^22h?st$E_p}dS#jME1Mz~xHgPLauXk}dxk?ic zYr`q7s+YU8{2vdWQ66?RbZ&bQeQ>|8eL~*&iii2fpOlnhT6xwV{Z{2m4X04Eq#He% zoRYb_MiSSq-f*f=mqe$plEwmdSIB`!Xo~g3GOV<@(Tw2{Z(*pc`Qp| z4alCV!r2(a43-?g!$4h@n!Alesh8zb{7WXbm(z!SQtp0MhWV~e+YVx*i|*wN#OY5? ze5a$z?(JOW&_6Qg_)J7srCM?@Mw&tFynS-%M8V9%6VY+ZC0Axh!zaAx4F*W`?L|h< zo1EM{dFk}E_F|Ui@04t--^k19c^Qh`_ZItI>BxwblY0URqE5hdHgqSkX~kE~2)1vr z=<+0+Z_rL@sMo$xeZBSHLI0APA>T+{w57)Atz3`$`?^DWmb5F`V~f#ceWTzez4N)A z--ndxV~*v$zZRCJOGf@oek_|GWBpBXm~M0T%YFIsjSpm}XfK$YKx+rkankW zN1T5pduD@1;%Ft8GrMl` zlUt|`WXKrs8MRCY_8@qxikU>cxlS%B+otO z72+DA2Uy#l_`@oX(gQu4yUc9ZQ6epKNuN0HSKVgCyBw_K72)elWm|Aj>fvd1%t;SPoj0j;VgUt_t?l7r`xNn&r_u-q^@!)B zNqV}iraRRoTEa2?B>j<@7jh|c33P5oGuNdgcrTmiY4KbeJ)j&Y|9P=_j-@-^VsObi z7?ui_#H!}N-;ck(cs)dahViV0!pdbsN1p=T8m~~#4XU|QU8I3Z_Zc@m*`}HEB!+%E z&YjJ>PmkvLb2}i=(@7N;fr`&G+&oM?ZabB8uZ+oND0r!THLuxEk)3&^;US7Pl(=zC zGUo(G#4}39lXsc9B~funCxS+MCgUUqV;|j|F^#=9dS3R#C()VLa+1?=3tOj);y$S) zyyHY5vCfeRyEnQ7vcKl)wlb~|<6o_-nM+wQwQtWIXSQzY-`#ismTyiO~nueN!~-ql2P+CrrP! z4U#5(Z!@Mavy-$Wl06flCKchkOS?(L`Kc=7ZbVMbt#WmuXyH@QGf4{Ltec-c>^_h^ zPgscm9m@>PI|v39yK;JvKjY6IZd4Xda3mz?A<=X*o-MaMt;j_zbM#|rGrzWH=ebUq z(|%kT+ocGf8@t~|%^XNW^fp`}(7TbP#i2hs*b%H*qNy;FJ|Cy!Ke&HtB(eJHrAb}) z(Y+#n%ZuWJ*lj+Og3nriWH9AY<}mkob#MIr`IsirzdeFmZxawc&6^Zy_XceQn&Ru$SqiH5PDLwATak6l z5>q|jrm1awd@XOeMX((GtNSnotLM0KKljqk)t$j1R8g8_eqiM2x4`Uj8Jd;r}^TB1kiS*m;nKWs_R_+{YxtUMMPIXO3e5`CxaICp7aJ-a#QI+ieq zERC{Wh}1J!o>I~9Y8)R+)9pDU`cg{7$?LaF1ySL|53woMwBK?-}le^c$>TYR`b}s4(4){F2sPOK!=7X8ESIL`0A0Pi=WBe%dN=3E8 z;zq|Vg|OLXwt@EVs?l<~-yNdCqGE?_r(bkbHr}aBD0v@aC6^rRqFNy>V&k=BEToFH z$207l(!6}k-0=9D{dqDITVp3@M-xLE!Yex?OR~EHEW9j)7owtMNI7AaJHmuF)ZsNB zAN)h`-#^5~|JTO}Z~VU>S2D3Rb2ewW%`0#RK5t>|Y~sj*l(RN;Hjy!TZf9&l2H*Sd z*Upoz2}0skp&7KqezavwD2@O9PwB zxLs|GF}ZVMsT=#W=kD(>sckg-*yxEYj%&MjZXmz;^EpeDq7I7&^jy^&Kh*zOs*3Cm zL}htSJ6%-#bJSTkvUB?T9}MOgeca^dnzrdQH+#??2r)kKB!ke;m_| zh#ho{EV{U6q4sUp8 z<}8WTsG9>;IfaP%s$)z(-gEaWyUSe@ZVrTJ>Qe8Zg_zM`Fw^Ep+Kf669+*w@k#uI@ zNi&zt$`6xzg;z25*frxmCesBIZt58)o7Gh}4!6A98Y&5@^w~A_z+XN34&Bw^oP<7G z7x_rdQ|B|R*LalEHo?71~C-{l)eZ*zkGSEB*1$-DVZ(N zr?=gH;A7$EYqS^Ry7=^%X>1Jw@jJ1c(}n^mPBkV(hiLeoP&<#(N&#r13~SlDhxb)pBCgTL&MJ= zzZBzMe>L^lp)-{VZ44+i4VTZHk9egSy)K&i(9n_N%V~bQEfb(wnTmNtQfV}+=ANIe z?0J_&PX!T1LYfHTMmG#M!HZgM;xyJ&M&d_kD6kdoU2{A1yz@};OK~Pm1!i>lFV}AG zO5c~m{BV@8c=%9bwZ2ZmN3|E7&RznO=k30xd@v@tr03B8m- zR6R^4mpJKOte}V7#V5z#p7-oN==SWWvF=4{!bj*aJ){y_NpU01f~i+LvF_)xgz?a$ zc;yZ!T%L*5=6)ZX&RDrzaX`v_-pQ!_9?^}Dy!PK5UMA9(Egn|wC7v8na;XiH9pm;2 z^s2@5*lsQ7{@N$yioT9}QjMb0C4Va9(eYNb%5$nZnG~hWEMkNYbn{MBO<2E>9G|NA zsy1S8H+o(81y{W0H8aI18+NDmqdax4iahrO?N0G}r5V2bknlM6^Jn|CBNtefx{^pb z<)V_egjo)^pE2;Ze4F%Gs9>9`>ILJW?oX(TOJ)XH8Dz?O2ZM=|iNE>_^)G)B?viIi z=TZBd&P;m7%pupv*S-+DvEtT*dBB-dXLrzbiRM0bTya=J9bHuPP`cPr9eQ@LaE(Cw zZFJ20(w8l!UTp>Gx>M~P$!OVXV#m*(CCs2Z_9sN$B60rm%LqtuHYNBB88 zDJ`reYA<7_x8+FpaLFipUm{5G|M*#6tM_ZzHBp5R$udzEaZ9;pVkiUKd6~*@7oT5T zi?W_gu3Dtik**?n|9I0UKw4p#vuE^F+&!hUBVt-d-7&qAODd9b>?tS77Pp3ZTu!-hU?LAqd<1TkcbZ=Kg zud&@a%J}3~`Hl=$1y#xMrnn|aHQ7f@TWAU^fK{n#Z1ZQ?*y@aqL7JicHXHJ);8 zXN3ZCo)0AJb4F#F%#A;7F2oA!=)Q(tar0nDbl4?(?Y5FSNX8 zAD%C3+Rfx_HM%H9SadL^!l2|TM-83fJmd2kjw6_Ok7b2LeRfN2-tKj$Nei>|gE z(nY9p?uwJTZFEPdhtGz$lwH1Y=aJSAM_tE0-G2~Fr-8xpsEE%@uljR^=~b%p!)@<~ zH|D19`s+SPzs6l8L?A2Se$?Zfw(vzxHjx9z?%*zz z&XFEc&beuJiVvM*uv+GRXJR$u{F_*ejqRW$^75~!wB)#_-WgKR)`yE;7O3yu!-Cgcw~cJSavJudt{mr8m_O)mY)%c{>RMY;4JZpfy5kZh%0nR;!`yPJ7xyq(N#DoJRA zqWW~n%B+ClPCl164@If0o>6Aumf2#afWG6+$VnkOJI9TUxTQzk5sur-q2oA(Tgf&X zqDD?@4K}32G8>U-16LYWLz&0h&oYzO`^FggI&nI6g%@luh4+ydJdYcVO%IPb=fPjPD+TtaLt?_0{Ctm%Pq```2)kuD~#HOby zx@4xC8xAjK>{;Ua{Cf*_vTO(^zVREV?xsK2rEhb)L!GqC={EM!b2mP6YOu{#(I||m-J7V% zbgQeGT+d`ak$F>8pd%5_GP$k#sL0OCJo(fq`BceJf>C4X`>B>Msb)oU{Y{Kji0yh7 zJwshgIx+P=9v;-CXB9I@uZlPwknn=?;%MW}Wn*Wl4u!J&wx?nW_)UZ9`A+8NVXw6* zeNreZemE?V(UlcBt?=xfR{?jgWW%lKX47`xicbqqpY>+z$A%Z$_t`S0Qm-sNk}1Zt zP~P-QG8kNbHkjs$Uw+*v(D@Y>6Bhrw)9SH;&+hf!Yt}s=VL{TMSfz<}SxkhJPk={8 z9Ir#{s3ddN(WuW)f^Jy{qi0bQhg#h-3-G*!kH)IIBB(Ydsg$|-_7Ms5%l-`^4B}Mk zRQ#6UlzcCrgr0BtckU$0ip_5MM6ym+VQmZ>3vo~g`!lv~bRRTTl~#ymu%}h4Y7L5I zTo;NyQ5HKqL@$_6I!Kc)uHbx&f`h3(?enqFjY$SP)H0ROU2PFg9-Z4RPf>bB?|leQ zybgYZ_j*?2D4{lfBIFFygz=7P$cLf&HXOCs)&&I*U%QGKsC9TfLbep!TJRdp>Mgq` z(g~bsLDbw{_7@nrMksODYOLQ8+*ZQ2$POpG?S^~e31#`$>%+7$L?bk}&=OByPGl{b zc!Qgv`=RV484a6KuL1Gg-DhG&Dx8l}UgKWXW=|LC4>(Is>Z&t!Afn_h4+cRnnt7n| zt?TEW-O+bRIr)^N*6@xP!^ERoJ1zk^qi?YZu(_EBGZb)mEN1VNp( zEGlcE!n*H-_)pZ-l6=vT6(2m+5kOnZtut&&aokluOPPkkt3U}oxay0Br}Yy#0y`J; z3XFwA6kJE~Oy$C9R2fe)VT#ZtH8v3hj6S$x5`>--wcPs#ixHdUaq#?jdh6&jqwl zx-oYlR^`Im#vgUBu?5ebaxHLm9N|)E(8X2DkA;rTbE}g_=ZfWZ*`Cg0XvU=5p2D~a zQ3k6Tp75#h%N`P3{*s$bf;}PUC<8qQvE@%yPSAuOYEdkD^X(4b{3!_!9_GV<{ll7* zT>I=xM&6s~UU%Ar;&Z}lt#y_*eVXtOuNq!5V-f|l)Vy}a#_$yC|BUH3f_K$H;?4Ce z)560wiVJ8Ff>Q*%PxMr2)y<8o^!cCP_HYgeF6exIB4wT4@a|lWm7L!F$IC+X@;G|b zXiUlaQLSbK?`HiA?5{pFj6eM4)y&AMu_v~N;>QZPCEsjxw6+IkpC%WC@{~`e_#IcU z^n4*!H>A=K+ck}4tzzA!@72>jyc;mSyQ{Hb#9iCn{jp@}uwE{Hwu9(Hfz-nfM#~IL z+h1`J4^{Nz2jyL6q@k7Ln8){f>IN-=vFs(V^4ipA-ipYtS*I;u&mj=)V8o*eIC5AC z3TWbbhH|3Mw3sn|n7N+bR`V#32cs~iiZPAUCfsoyTTy}Dn5)*U$5u~{R<+6@Wi_i; zEYB$7E?G>>jUvD2ALRu+=23l}bc{+&s*_5K>S&i8D+A1oMx4e*nlKooMsgyGMwOXn zsj&POR83aB9MaEy=JHKeNjWr>GCMQOxN?X)_u3b)VoX=n&U4SS{HgC#?@r@a%S=jR z$XEnr8ICrc96X!*af+5R552XdMpjym)}yp}v8D|}vpUnL*01KACyumGpK$4t zR`C#up)p|Pt7X$_N|(-Xv{9NQ=xk0=ZjUfazGrrWNLg7bQf2Z)>#YIr^tfiPr;YVu za_8!aWz+DTgD(oCh_sw%*ViZcf`^qQPaH{{hDN)daChwH_@bWhIB))Qi(YmNngz$o z=)#L}v#ue`5i@74Q^Z|ZUK^L_l(9#@-KfA{q%i;v-k zC%S1$$3h6CV*M}{Z;z5jdB38gct~=Lx1$L&^+PhPDk{@1E90vAT;hq%I+C#E*H09@ zWR&~#jp8Y7^YV&Oniz5fidiEE>CkdDF9hIg&ZwT&sTT_7!n@sjaq4~1sC{Z1O*OvG zd~o;&DgjBoO6T5?2UA)~9H%I+oOzenJUIXA?Stc2mHWKN41~z>83`XBY-ASV5gszO zsW@_w`Iy_IV9R;hNp;FoNwX~l)_024jpv@ZMZxIizhon0mGG?U)+rey z<{A!h!p}6Nr7MC)=)$-2@fw~gIg_E$hR{*kX0IvVosXIm$B%ZV{3zBIu~sQ)Z)GiEhRBKgLi+PBLD>$IU*YrwtK z9ManZSPJ8B4g11}1JCbPiCkN&U&y#@9~xqp$jaAuKmSwD@!0b=mWif5@nZOzj=>8~ zfl*(Y^gcA*7*DriJA7M0|Km8MYM-5-J*^;oA%9sHVw1RaFN$D@g&-tHBLfR zexcK6%Ic)d-eKO6=NCTt%1ymRM=~mvHYVPM+kw0!8O@y!|J$eGtykMwZ!r&{x2aJa zA5&%^vgAAUwi;tJ4L83mj9bhhN3AW@nd5ED?1ig_oahhGyF1q&-{>D4nhZYF*^KFb zNZWc#I*6IGG2C?S@!?nL*IxJw-DkOL`0WYDef?V<&FF=uGz$*5#0*oKXJp^Tv)ZNz zUsJk#Rqmq3mVNVK^GpF1{j|Xtf#0bmH9>Z!Rmvfh000}uh)nP z=02t+=6NoSn2&BdB-oqW>=dQ9GTHe2;VBt4DVttRZqIGk3Tgv-a)J8YiO(S)bdD|+ zUwJH{`Kj4ClP-Mvg_#pyz#>l?{k);4p82sJqt{Cx)!gr!c>07=nlqWReR5v)ts{$z z7S+{6Z_b>({0WO_gDf(=Ec-yJQl|s;(V7IFS)N9wM<-kCP@}@fZ+eEbG|||$`v;0P zzO7e0^Cr+2C#hGdH~rD=Ltjyj^B6TN3vC-~Nqi1pw}@1{bK8I6aa>|SoSq*p2jb#! zvF^DXdoCW=mHnR)SLA!>`QKd;#5wu#)qPjw|22P)>wEC~hg7!;-;7H1Anc@p~tNlK+S-i|^6G^1L&vE&(r-9t$*}jY~ zP2y9p17gJKFb)((1-I&?^A)8GC4DYh_s67#gjqIxM%MG5eXi?oXQIr`z@J z?nVH7pO%cwhAJ^58#@}*u~&`(tbmn!>jMoB-X|m^Bqkc@>So(4Y6HJjlrKLWKj6;T z{MtjdJBNX#%dpbJz|e4I-9D*cW1{joWf{MWjLdVTZ-qdgv!rUeycsWh5^mhOWtOc(dEF;Wz-b4{44pQ{<5Za6w3jr& zDtTy>1A)`G>D{#ofj~w@cH5;fpx5!OFx%Z;o$bk8RiWN~myiI!Hpv?|OtO_=xu8j{ zXzmT^DQyb;I`?WXh8N?hOHjl(A6R|?Z- zr>CDRdVE-5ck5HS?-;)DNqb7lu>SGpxUxV%uES_zqoYeJDo~o5dCP5zZF0(mj`{E2 z=~VmE0tuC2rd_!gF)TY2drsLP6``mny(O8`}WkaZo+AI)d>)H zJi1Llr*R>uhE2Qn70^49@!4J(8fB`tylmLb*?a{siE@eesT>mkst7fvLCmTJ?fPU+ zTP8{E^aXV=oQ(AJYby0qUq4;RMMv{)j77noQZvd35UUP`-JmihtE_y^ z-Y&za&k?wpj$#tR!voRnHBZ9y%*<7j`ryUU2B<)W`G7ZY&azJdE0xo7tDK0V`}ya) zva)h=0`sN#DoO3brYFv_>u)TLH^AKb3hbO-Ke8_`N(+d^xbV@Aup4%FOuoO~+|E=UDfnElKTM&51`r{`}GCj z>Z9qkM2$DaJWo3glgwi|h1(t)9`3L*^%ZtEG>8NaDI7BXZWb?vPufQ#`PPPmR0(;Y zj(wv$+YG8YU}ML_k*uvH=-S;H74YPPm7DF({`8>u$+yK^(MuxnVR)Hy&=NSya=H@^ zBFFq!*b?$2*bQM^i$hf}fkU`0Q4y-K-=f5B-pnx__OR$jI!|M1)V{h@;d5?r-5zMC zBb|2En__O2xfE`%bg7}zb(=4yEPjIitgUjY&tev4a%Uw&*(LOyfMYB%{2C(=N<+zi ztYr8`lGAq0?CS2?pf4g_1T?p{vYCyDm#}mjt^z?};qJ~Rd#+#^2=3c#giEkgxpz`3nPX;LnBR_hNWO-07 zcvA1szAnZDsa(c_4#)D$`CJwg{%f6x=Aht-gNfpG|X4slAU%PQ>bv!K$N+UVmXt{W~QeacpdWQGz|27;zKUIMyiSGy z|Cy~JdJ4N*PQ`|5NcVv(9X)+nL@_fVeoCM!)Ig@Ej7rUoHAbmtI&Dv?QUn=)D>^t& zJNb;s;etNbB3$E{!;^+!jqQz~fB=`NzE5GGfMcycv_i{kkqD(U(8i5d*X;{-c4Psg z?qNwkRDlXF&KlL+mu{MVR1>D6TeGG?HLa6X*UC`P#Af-c<0;I6R+>+!25j9^XU?2~ zA%SGqH$e1*9e==Q59^&ON?+ddTG*;i+v(}Mp!Tpz#KgtZBHB)p%%?r3y&LQ9l#!OE z-&f#J7s3X#<1^WxtV2i8@h>jr@kv()!&&zWPrTXR^8PL#GgQ`!UwHr=jT?pNz^LyL zu4*$J;Kv8L1&$k~E0?E&A|BpGN}6)7T6$PDx1SbCl^n0e6En1V;~`u1$W=Esf& zsOWcRq+l*PneT0#F6lh%r5n=cu-cO^D{O1K(YL#^>ZfH1$EPlo19nKxD6t%f)>0y< zaF9Q1w{rxzpXehNn-|N$hO^1%fhs09eJhE16Qv$o|QYpJIEvVC?z}gD)3bNcm;dl*jzCvqJJm%>8$qyc<_k1{N zyTSJ>30VP+QG?k6FnEeC(1k)}G89}$ z*;o0T<4KsN5GZbIlbyd1538+0^g@R#Rw|No3|Z31q(VLKN{5E4 zns_)j+m!csyAg16rf0oP(WoeZp4+O9>smvj^B2Ec)PBX!-!*ViO1__;`qZ$JQ@Cu7 zIT^#ZO-BeUdRI5qv_J+z$qSg3#kFI1QG^9&dZ22#d=WsdOZ>r&UkGjjv12VntHhb%b%-4G4?s}wOIFKJuX3w`Z%rr|0oMPrb2{s#uxNo3-7*tA5 z+Q95WrGkg2C$NOs!1j8^iuUY?(_LA{FN?wKp#D!q+75biloH-i1zix;uEzisA#cM{ z&QCk|Z~-40f=gczaPKd1 zbIX6fy3q-glQ13pKr;&xerEjwhlw3*bJ(FoKEtr@|w8mhQOlIGBP?WHC~50pHf4npj#y8I6w(7 zu1>h0mvX8J24no1>1#UR*rkoIcyPM>Fb?lr(=BF%3V3t2kf`BMbzR*#Yp!N9R|kJq zdf5aPEFj&a`fSv86Wk84(?QAdTg@mEw76YnylS+JUIAny1OiEeg7#x{h zu<}-Gb87RXq62QE8DZ-a@kyop*L_IFHwj(qjBeM%hNOh&#Tv>?ee_C{gOj{uoVCLRT6oH(XjOrvK{hX(s!fvzzZ}R6_(P}+v^BQs1bc= zbTl;fYflg3nNXQ{+2swY=aG4D3x{i$#+y%+tZmOakyS0@R zO&S#9!I@wOKhD!10;gag@T}{66?NoNO5E~J4dO=GI?Cn^-)$N8;&hS}78b7DJpN3- zJL}R5({k>BI@O(pAb!hDuzN}k+k!pHj=18G^)AM?wYIu2qCi=d@E$z&szrrD zAS{~s3_8;gr^gzYc0(cEf!=z#veG*l znch2J!JQh)X`7ZKjW&l#2^B)tMsL@ za70Cu9vA*P)+Q4QeErfm_{UbIWqz=t$8Z&-HFbT(ChUybP>zPddGH&Yr=Y*;AgrN7 z?al5fFr_0RKLA6pfugoHbRJY476+Qv4)y$wI^bc(owX#$2m{LGlhk+%w)qrBVT!x*IO3DZ&X&#mG_y*cy#Cibn@=5FYf4lDV>|)^ zs`k}`^GBR+h7oFm`B8j!ldXimIv7Ns4>7B#ec=Ebrz~s~pcpHg#+yCq*#G&c2^YMJ zogD_frB^l_Tr`KP0|p#gMd~HZR%etavw^`sdK#n_R2kOaHv_5flIQ!v+IIx4fol;g zOpkCf5E&|cq}#B&9OsIUU*po=E-iZ)#_wQTnN;L`mLq{^1bX@@cG(3|3?y*o^T$_j z+-s;>t%XzBoo93R3Jdrb)?xt{RAitg@uO096Ic)uq3qAvU0k-Zzzr^|^BmfK^FxZY zffP&GDa^1oX$Fx3jffri`}Xux3ybMcC2)7k^B^G#byQOOX0P4s`u0vu5HnaXjO^^P zdDawJ@-)oMM2dtA@^k%eWW8Hd;8PcF_RN+}nlLHnTv(Z!nNfjd>ac-X0FyvhUw;eS zW~=E=s@~(Umg^vfQb%w}=7)$)&ICK{ZuWt*1C}x(i~1yit;6CF{-hEWR94RBul9m- zVc4BzGEj;>e{A?XVn7iwNyY&C{YH;fpThQyLhX+0T=-i<#4y&8P$Lg?g!$a|SiN3S zKH=psC=i8uQt)NV0O}p%X>Z=R0Tr8EPCHvLOxP0O z*;|8XyK@i>^KgEL&JDVGl{*7dB8cgfH33DNM+<}Hj5#_!Vd)wf5uu#fu?9hKZNU~W z1XC9rQY0q98%F~~-!J4Mw~s+M%_SXddkD}Wj%}XxJn*icqF!L6p~1~vp3Gc;N5VBy z99g!7E^K-aAHop8d}QuD*2Cfj9U{_I`v~^KQ5{T&X;IufJY`&bw%P-w&k)0?(uH@q zzV0eH4G?bQ$nH@RREt!xZ~DOV3!dUmll}gA(8NWN4|`R{MLOodc?Xf1tMsuk z>N>N0@@tTk?L@Bb)cU+jUqmQHy~M=CvcOrmdGn?t91tXIcsRum{}8Z~LB%#OcjPEB zWp?q|EDY@(K8dATAjT%Mn@R!u%OiZWHu$czbW=;q1uJZb!Q`tLL4N{a;m;6j0ejFc z!W}5OA-uF}2ejHy=M0sw6@yi^wLr3K1q56M28q@K#g7jkPuM>ESP+%~T6ES7!w$rY zbHaOO?5b7+n-=0dYHIx;??)|jm6?LtCy~14B#Sn%!P2Z|dm&_jM=1*3!hnEXV6Nye z5TW4M^nA?+m0SRCgLOm=)z0PRK4;j#XN!lY2ekts2mDMVY@t3%Qysj!iLO#$zYg0r z3{)FD060N#O9(kr+Goc4)!2;31VL3bbj0kM_VM*ywau>yWP}>-$z?1$Fz7(k!@-6E zb|6K9cqP5uM}oc@P{~B|nrA2T#8>G=psX9Bt##K)Z8RZ(4N;sDSHO(aZcVE0Za^cB z>(-x~LQO@7fE#^%kZhO6v0c>b^t@C2e7IHb`0@hfZsHb13V@TH6IQ|5`3Qs_9k=kyqe(w{H zXl~b6Vhm&L{o;OT*el_mH~umuSEcLMwiCU*t#By{3uV@s(e`GmkiD8%0bLP!OZl;3 zD@U{BIEHz1!`^$x_`bh)g}wKZ#Nq?3#lXxncx}bi+Razao}H!HJ-4?O-{h`wQPSfD zvMTmItXeaW(PY_1+4?2mM+7S@(Xs`q)%dmIg(G+WT#P z)%Mp7_h_y^E2uKq-w?4N+-0Dl0lI;i-4Qs_xg9DhDp0Zx9WOaSC4xME<_&cCpeDd# zu*~fNOFzqEGO%N2brW0&F8eiO20e zAc6j!`Y=8_c0Rry7OeO%@cku0c2^q003>hTgfN>vxDDVL0egN|XQy~Gc$2}GG{9)) z0Ji}`@9E$wrZ|BU4*3!tBmK}Vt-7` zYbUO|@KAw)vUl#N1+aqu&lEJ-WmI?qX$@for?yQXPCVFjY3xq(6_8&L=4N6Cx_2HD zU_-K6o{%YF0Zs$j47q#vqGMu$V-;j&1D`)vQx+2vD#n-M#jBc*4to=}w_4;F8$qlf zJO++lm*oN`!f9hpAjCj?)#uMsPz@1+HEc5Xf z={*n(-=ZS*t?0CdC}9Z;(By++feR!~yJ4RTfgU9nGMi_28(204x$u>_npf}b-87k} zP<7R`+(V|`9^5&^g{O|RZ-RE?%F29}Q}Xj3(a>fUxNKw7)xMi)UAtB+db{gIR-$ymqGBF+U6+q~yJYXfn)tvON1Q{B|#)Y*o*5a?= z-a+7Ayg3XO3H;uMGwlc*%Z590*;2RzgzJCw=?N8xe2^ zJ%&c$UDc?t{@}gc`ben32SQ*V2SGI_OoQu(gl2R@AR`4Gmyr4_WLqLQs}P0ms1Bgt zb}Z~rf%Zu+Uk=V&i+Z1tQBvv#<2(ae>`(x8CHVbdBN^q*i#l`on!1`E+j~fwj(1^= zyno#OZ)E{Up*Mf*Uw_tA;Xe*74NBAHkE?!H1N(~L&i`2W{By&9rWDzx2mU)6>;Gq) zCcK8YurNJk9{c?0Y9`(8G09{6-lF6b+ri zCPQArCH#KVE*uscmy+YiOU{T%;m_K+a#&oY|DQ|!Up`k_L8h^9-ca!IZ9_P7Aab-J zGLpk6qHB7^HXr(jwHX4v78r_vs(?fcm(@&IM@MTbXdzzPC7sN!eDyL9h!`(*?Sz$-&PhuBM`0j*qJ7N%)ZsPtLGi6Ab16xQQMf z81Z4yDXXTkGTD-bhQ@l}8MSybbQtSNR(qQ60QeEG*4QLiffNy9j_Mjb_DDnS2e&gc}@ca0m9J^ zO4c2>>vjHJlxbC%#zOPSQg=KE5zLN_aav5=gU|)wi2jGB96uAUJ`E~u`uMB7&;5J8 z%jZ-L1UUskAOK!Lw&bE@7=k^M-vnfqK4jtmZPc4*1Lub5EO2~f81`^O91zkci4fhK zUG90mjvNqtcOa05RIyeS7&>%KQ(jTvMQ7BJlQ>{7HE(P6KVKfUJpT_ODYP~Pr& zdrh9;SH8LD)BZ4_X)eg_6jzTh8nK;Ecp6a0 zUC47_X6QK3nO6FVcN~Q0-$jahOYPW;?HOEOofF0PMt7!zxe{(w|i~(ulfkCI8 z#Yk+o!7?IMf?XvDZ3o*7uxT2;XpG3?Jn$l|2S5VqTOwsiREYMy?H~DqwC^8aW>*RK+0Dph4Gi(pP$-Qv` z)8x;a=vvFLxUzEiY$4#Yz?@uJu0(M2b0s*?8L*N`*c|H@yTv^RF@nuRaotK%9uyz? zdd=PESAzgR4Rkw+mrbnRppuM(j)B_SyEc&agUtfFc(9q{V;u z@Z!Y_XizE9%L)i5!Qot-%kTR(uu;89Zr zkgdH&ynxJYj+FqAuV+eR4ub2bS@i-OGLyk_gO21kVBJG26&{|h&QXXF!`fVtFauCF#Jy89 zz&!-4R(4EG8H*PHvJ|@bNE@nD2j;C4yn~pOFJmDP#VLt}&0W@7e&g2!J&&dP?s^~j zSsrXTq7T;smbt==;`$!t^FhVE%kRk)saF1dhicB zn27}(^U_nGLm-P6w5U?Z3_Bd-c#h@<7IN#iEQsvi%iGAHBInFV*G4+fx02A+O?eaYsu++JUq}$^xgaSRV-dc1?%OV zOc7jW5blj=2zwT7H2~gQ`QwufVJVyct_BuriQP*2&AH2*?COe=&R>9|+MQ#eXJwVS zHVRo6KwkTha9xHNxn3lKH6xUSAUnEaYb)Y{o#py3U9jif7Z4Bc9Lp9Vw9W&h43j>{U2)_SK&n z8|wg+C}bI+av{TX_-0`rb4Gi6`{>XRV43bjiJl@Nf*z~aOra#`FGAR5$#ev^7lI?z z4Z*WK^Yr4c)U7O6GbFGzDt!F?3F4ZG@$td0gef9oynpZRUCQ5U_O#4QNb(o;8)HFQ z00usQRiv1q5Aq&VbuPf5y%t1Pe=Qknp-O@TyJBS;kpEp!S4CSLJTo%`{Z6?_e1OE7 zc-U>`H$n0<+sg2*slfl7EgRYDG*t95cffaqZgRa03(EsXdEP{f3-UoB0PA|J>az2jk({EJh38IyCh^f>*--lhZ7o669{>GF z_(5+6)dT?aCbMwc0O0D9af?VT1ta4*z=%Li5J*!kf3lq4JcxKRFQmlO)!!}#agt!q zt3va5=;;2t)sd;+YLaZ3?aG{mvZBGa*E}I%2M{8Q=}tBUqL05)*e<1}+U~!)H=xKs zDU6J0PYxDPrXOv*@{7qkKVe!vZVp&(ci*xb+A{&KUY&l==pOs4sRQi|Vhkil?6OJU z^UfzaXMUj)i@A^-&o7J`22{Z&lx`I6_HK+u@Yw-kh-UKh?@Z4lhaLkerE}bTrZfGP z{vKv1)CMX7jytYrp#4g{{HtMZ8jMfVK+TMbS*#5n;_UAx3>-^7tZg$0DSvg;q?I8A>+4S1BDCe^K9dOVaNlv zPg-z?lR2)v`Ta45>>-#I08_C#R@QF}xR{x~Le=WwNwQz8C`Ei2017(O^`Le|A>VfS z`<8?j?2t0mRL=V4DLYvcOz|s&3C{wl2zw$h!?Qq#>+mZ(?=2H5Omg%VbH1iS_jS-N z(HZ0+Nc8p3Ml$Se>-^rQ$8qkHt)Bav9SfkTdBCV?a*(hi(c?e6IbgUFvpsCVWX=Pg z?1ly>K;A{mo?F5E^+%yaL0^_h)LO@$B`TK4Jw^1334@1Z1uHA4CLN;LK(6mratWqx z%WeqN2#MgRTIerCtLM9#U`Vx-Q&1Go-wKnA8|*dV4*#7k40E)HQ`p#AY>{F%ksU6)3_d%?4O$e~t1tch$R&9IJa@jDI6h4wRkP|Z zPVFfsJ4g-Ee@WbMtoi{5dh|y8CKs4}uc#xeh3!d{plT{OGBWbTi_3qJYA!V@SiAp* z7K+FyZ4Nwe;Pe1^yZ}0dWXvftH-A%-uY zL(vcbxi27!o7DQ-WAIK+?29qq*5L2aje^fw4RZlFk#UUgZ97jMINLV?AkCl{X_tAGCIPtT$BT=n*i?vbk7ced_gRT3{dUK&)?lh5mvzlilsI- zHUQm}O%(t4*9SSN;BZP4}$9!DU;(bbwiW1|NUWoEu=H7o*mbh5qKTZgQDHUdCiYHL?L^kO#ml z9eowM>GU5OuK)bL7lf=ke@Q0h&bPw{UZcaF2k;J(#{it7oBrCuoFpqcS)c$0CG-n)eX;1u3%cm^`0NI=GIPpF%!Zf$% z$A10GY&Fdq{CiG3pYcG^`Is=koFX|Gz-(2nfU66I(_r=Q8xA8lM8SD4kjUKL-X$(j zHa6nnbj3Mv`Usp9@GZ<<)?v-p|Drls8rTebo-thfs>`q4LDmaadBA_w{(`}enB#E9nYiLH>I1s&efE-$n5dh~jjs<^#B3AYX(ca(4EWfih2rsk<^V z!+ZKRijjAU0Fg~82oM4Z&Hj*0y_UvUKei`>{{HsVfpXD{jEqPbx|)?@mhqeRN$(lD zDZpF)@(L^`ehB4f5IN>;Irush)NfGDa-6_6?UW(J<$OSWeZN2*G6brhhY;A0BY}MD z4cHX`spH*VYF4wNXJCK|v3urnYDtI*5?A%-1yFPqxH5nH_#;=aFd#VzC^90;Ojz{# zU{>m!_+&X)w*2Nl9p&PD#uBm+>vx9*MZiHoYHh68ONTio1NBe3AyBni2te@W@!IO@PKeTiZw^tgUO zd7>4Jl=`|l2XJX1_@_lcYKa^ur_6s>k9#7fX3p)RD`e_%ur5ni6T=iP_8I*0>HBfu zFh7OZETE}%HmyQ`^(^XZPc_zx$iE|hI(K@s|16G>l{~!zGKr;fKauhGL;8*mn*M(} zBnu11eQi)VYZP$Va_i=PVzsdAPjWviQ)^8Gzl4mWWOY+9_fXFV-$T>>9|bwKz3MLn zvO>Qx@SDCu#AVP|z%XP4+;V}Yt1qP~XZgf@Uzumf5FfWyE; z1J#32Bc<|5+nWZ(4@4XghUW~gN0JP>?K<4O-xeOIHM5+%1tq`(`zzgh;g=S`xgO-NFO*tI6}Oi+avu= zwE;*|xVt@DR#7}GZe_I!@sc>G6ZwyCjRc**DTI(qM^BGI04wBcz#f&1`xG60RdoFg z5cOvp+20aecT+1tlK7+xx?$VY62lZS>JCA=F6wVMChUM zA6^Tl4^ZV0?MAl9n$byoe8?ztbavA12X&nI{-R0u4syes8#!tJq!d_>(CLjywO|X% znv`?Q-{+#gH-u12Ghoc3S?Ggsz+zYNJ~%WLM)K=QhX^0!8}$iGYSKKBIra8!LrB(NSUQU zEtkvo$^UHGL4AXi1dRuUf8pu#lSzg3RaM~ECgm+aMsFaq7OGQDlw?7`aSiny1=W%C zJ?!pYND48C#a!vyjw5itQvK3nnKO&z!lB4y}gLRu@fmkPVbOqv-AQ+^=xh=lQ%`1*TeGfq7H%5OT zq)6AOjvw0f&EMShq;=Zb-R-+l8Khs8d0T<8I_PD*;SLv_?dX~xjp4kRX)?JVLuXovn$t=M^&bKUD7KlL(+?<@0rOc&!riA zR9R1q8>~dZ+5q%?j)ICNghpTk&*3&8r|N*1X{e9icB!(gY#5%-X}55rf)&N-BFLCn zPxdXsY9O51@vU0={n_SCt@Qg`2Jds7I?YDSMy;6b(}(NZsb}nG?9Vl=#51Dm-!0N2OUPh zO*wC?*if+f+TpN)>zHqbfXSf3PeWaue{1(D3hcka?5wPomKOIuLPA2|X4)d#mGfeK zbaK$E^YmVE$+;%YFvxGng3$;NtjOSC8!#h5T}JRbaI>;Dmz0#Wwx(}y>RAN|i->@a zp(-aw-J3|u!?Q`YOZ}HCJy*rJ(95r=$#S~8rw5Gk#44x4m+|l4LnLQ)X^G^D&TXhU z)6<)@+mZ^~%|th6^J0Cdu~&RyE*5Vh`XU;7{d|s07(b$N>$j?mC2gBv-ytPAvG$MAX0wDN}faZDAcY z-WXK@^HrAArTS1*0S*kCvQUoB&yO)N$Em>{3LG#OcQs~T4pM^Q3Dkn~d55OPp=qgTpT-;>HJunjb7?KQPy)Na9VlPL)41#V~h*2=JFN1^M zmwj&ZhKKe)jcO_9M3!;P@8V!BaHnW!Xr#+?=9v6E9%O+asSy{4f+7d74y$WwZ0HRR z9QtVqP0Y+D!DBUwnO-WCcpb0y$3%sAvE~J^4`R*5{d7Mp7_*bdACq&bUgy-$1LoHZ zd!Lx7oT2{}gxu!RIP1d}AP7rvbv-6=+;@iH=MQu9*0;0)-{KmiRZHe}Ct#kzE&xiM z^a#G3>pwpbOfX~(&O9wnHtzonaZzYt4YjY=u3ujrYt#UZf4_mWhw?8=ht!8c$;YN5 zR1|G*Z9y_Fp|P{EPW`8eyzN#&%)yb#45v2ytXzWpr3Xa^7-M~Ai2gF#rKzuGQ0+9^ z{R*1m#>+AP`ctQ|jtz4n1yWEhuXD-5yzu7*hvk*|`PtON8tHx>xu(WjExqmPgh$6fi=8B2<=&xM4%KIDTs$ z+?9g|4??ZvS%_{xPI4H+i+%i%@Pn{MaNWpp98&kQXV090KIn0Aqfl;{3XFPSd8~3> z_*tAhJxAwDn-4_E?|n89v-%ULc<#`5K20JhYhHX&44@wwC#pB z!4rLP;T)f>IiwgNj0TJe)s>ZVtE*O=Brh%~Fa*xc%|S&%Yg=1L-3air6*f@(EN$O~ z`mkaWF@e!(KUxl$87PtXI&C@M1@4lapbwiyIo5i~c}hwISa(BOOw8ThQUdyN z12!WGkn0^CV-pj$5Lh>{g9;5W34wiMci!)35#CZ(5eyR}OZQMm=QQLmAd-*xsMd4e zK;r>#lK6{gh~Av_7F~BzymxPCW`^koum$Lgin`j{0m*{6xYvanq@<+aODs%_MqPpi z?!Z=9Ru%&mTerNN+~~l7DFoo1cw0IR1w_E9~Ro@N?E3dxWnV}`;?q0G@h5t1pCIb>MP<`iWJ zDJqpDNt9tJQ|1&Qu~?=uMyAEG);@22zwht+zWaTD$8YcBxA$@EeZ2m79+kDM`@TP) z>vLY`bzbM?b2_VK&6+jnp=|p0?QT@mRtrA>LpXyVkv$yw5cdvQWMz(X^UE#D%4U%d zQBHJ|k6brLb>@cLXd*A|Imn|KVKerEtwI)USw#PNNB0EHX(@I(+Qd zWJKWmI3Q^t_;A@jP`aN6m!>o5g+bBo)>IV4kpSQ5wD|!l6VToH%o)y{zTV#J*RO{- z)~ai2R@QrnfUb@j+jy)(?>HkJozRR7XFzRm>&K7B#l$qBGgnCK*^?(f zpvi%AqIb??tXXBh=|hnZ(e(qzQ6M|reA6#a3{%jzEUcxiuP+~8^M)i7Ujy^23rQ*e z9v~d@+GHoB1@DG&h3yX?UE=*{DH$Q%yhm*4tExAt3QuOECT9NR4l7booj4qkX zf@7y^3K+__?x`6W8S(M0g!`w}R`bf+ckk}D{&;i2LUt4JXxyIvY$HBi4zT<$aOuBM z%fDnp|BdPXN22xLi1&Y%)&2L~`R}{Kw)=l2asBV~WY*G@W zj)7`<`BDlL20Bd7wY@u9Sb(Mu0fGA#lmMveAj8e~Lyv50;7VTfkCL)l7#;5yx}M&@ z|4OOV==eATHEr0X9kQ@sO|eEP|A8MnNltj{HFB@s-ow@PR(TwRiX;*x+p+1}5K(^j z_3;5ms~!1}5W#}F1A2i?zL+@S_Ua6&vyc{AYd6Ez0_sz={z6R3n43ejMo5b*R9IP= z0dg7j65A{v5YXh`{H*f-Gu8x#Tg|7eNFq^NTTS`wVB*$|50TSa>I~oq-Nbe+qhrUu zLKff6I%{p+4YNHVtz}D>-ZHp&=G-|*=2&-j7~^K4sQ{AXo#!Os^N-JV`gE7YTsbTA zzXX}WW&eh9z3F2%07^nys;a7Eidnu>=Thpov7F)40=`mMD zsG_(y<;jzSg>Ck7y*)i3sR%N)u`!r;puZoMR73-aG0Ro3-z7|TB#GNDX#Q(AWggPP z6z4f(!BBY|Tt%TL`AGJ_jR98Gj$FsbSLoWMNuLDryBZj%6WM@*DeevC<6Xaw&RvL^ za&vQ090=xxT>7M$8D!SXeiAdnwHJ(HoUB7v^&d*{9c-&vCbO<0l9D5dQKrhu%0gOq zReaCGTX7zs!`VwnE6Hz6Yc_NtZ+IE7JQ9J{(o&7Wzh5f4KYspvFoW5};%@o}g$9xt zUz_`BO$oOgNwsGA-kD?;Q$j+5mV*QYrsx2tw{G1UV+qN~xWRWPQYcRM@%Qg$t|_^_ z)ktGXciEx;p>zmo(2Ex@fK2DoSkt6`kJ=s#E7qcIV0vZ-==2Zq2mBpO`o9fLXX5|U z-*GVV$p0oRN?}E?{Qo`4*T1t%_doK{|6f61C5os2S(f0Lf8GVB{!o@r-@JK|Ueh^9 zPHcPrM*hIrvx#3=!^DE{*!YJZWF9$twyi2=!ka8UpMkVX%~Qt2kFfn<`|~sNf7o0! zPm9ife}Ca0z%l;^54JzNBJqcdt1Rb#@BBY}TJY!g&HrKd#Xnpl@rS)j{{Q<+o~6%G z_pF`2PAIH7#y$!rh|KCO~%bno@_&%4toAlXS&yDrsLVOcgUlYL#B58 zwG>hMjYsF2kPO3|Y}cs|i>|zP!O_4MB=_{uqncC z6f%e;9CL~O;xl^8eja!z3=iMKRE&xOeU!M)p>6_;&ynx7Rm)V3XwsDQbO|LTq85iQ z+Kb-fJxfFiSD$rstg5LwiLon)R3C>Da~rURGq*TRJ>*?~4t8uFZUoojV)ax!~uZ-~+r zNQa~(Dx_bi7=3157Hv2aJfgdK)d5q}RvZon35uNS*1blj8$3Mdr@i;JpJ^GIgg66Y zfWr)8-~-MWi1Ilj_9+Ll4q{P+^OIEJ;tC%Rv=BxL75MzVzK2ol=;#QqV;b7AdQpr- z+YR-R@$AA} zh46}`Qpm8xfQ{PCE&Go>H>qceam<|_yHWW|y?jJ;=Nj~ICH>C++l z@*cq48CcFjR6EI|haSq-Jg*EP!W1wmVCHFy6Blb4+9*j78KOws*wBDcN9`?vPeV)W zauw|?;ou9sfo94mMBy<)KQX>ZGsX4uLoGNW;vH&Ljr={K>w!W~95N7mK3X)OEEq*B z^k0k2i@znUcOUE4imG^xtIujthD$L*#FE8}#Vn3%jzsw-#=!*}-A?)W`N_$GnO?#o zA{Tso@KzNq%Vx+GNOFd$9Q3_tP8Iyh@}R^A)D_m%fI zV`H~5!{JajiH1qg*TevzZzHv5G5H7%a#56>n7=WB8fAU5#<8@Au( zP=Eb$ag}MtBE`f4T2~h$4`Ib`$1hT!glB+mfiyhU4I4Iuy4r$(Uc7j*NEBj=R^&r0 zt3`_z0l_NG9-J_NS8{EF5-Qe~SuKR$@YUeZP+9I3`NO(V%a$)kQ)9_yQ z;%Ah)PoqywE3zbNQpvp+?&$ST%cnE63&m4wY#r_GQBc;MP9aQeC6~aO8|`r}lc&y8 zx<&gnQ!>${iwQXFS5D!cU_a4Lk+yH|hs#l|s_slwi5(Nm?6Gd#E6i{KWr}V=`s^$e zs8f+bM?qHi^c)xGvR!mEn=EtK!h#>|-=MXhJ=^Z815Pv`fC(E%#l+`PzI|E%qPF|? zUG{s*lh(N1+@s83f4eApNU*|)HNWvQ_)%i^4eA4s7Jyz3<0qLH+OIb>9zc}Dhej$v z8>0})uqCVH;%jII5G5*GVM3P^;W z9++`{f?WcFAI{1{-?A(Hd(rDb_{ck>kWd!E&(F<0-QT!_ zxokH+C(%CaJxW90i)-TA(J(Z^4&Zni3oI=w3z4<^Q5;pr6E9<?c{Zy8x2mZ4;}E9h;23_{;$-Ff9kl@j#&2Y+!!ggGNP?Ue z&WU3Zs7$Pz4Qu|YUYWBgnWPsW14N0*Ia~DkZiIwv#PauRoWr20_UHLgYYk>0xRk^W zfe7>2vuEg?MUR$*>6<~c4A741qc&kCFrczSQZfl^6A>IkmDcm~j|>grnEipB22W-f zF}d<6B)^FE_G1p^P>;d4)ccnuiVX+|KLI3=ekv+@qkE&izCKDskM?RPF)23(ZQol3 z1#!2MVq!$wAKXVeyPQiLLwe%yi|ms8MGC`DzP7)W6_LX$I_xmI$QgASWVY?EY(n$v zFv;RI$^D{&<(zjm`EjOo#TsPfcy7=>xQ5o){+^r!Ij+p%X^Scod?vx8zhsEFb-Ex* zI(>Wn6KfQqn#pAP?SH5>CVF01R~Jo>fJ~5OE5LZm)kiqAR0jPb2%qTgt!g>&?d00! zx-eRv#tA=w=L55AULKyGi0_+QcdfP9fL^{mqxbxWs4wfRGFNPr`+*KheU+l&7(cG# z-rl)bAISVMlj#D&C^my8&Tc-HyD`;@!t`w4!oorncckKU0cY@!O!Nz+Bqv{A!Lw%5 zrcK=3AHA%}7PG#+7^MXj35;1!96Iy~5^z447a+!BNL(tPKs^b=Iy!&;q+=))R;eSL zBLEt(J#ilI5EE-bk1|nKpw)aCsnu0}Lv&#N>UdA|W21!)iwIN6;5UZhRi`sepx?tD zEWLLVlYZjjeh%&j=s?^+n5NATR;dt=1m@TILB5;6EqiSw|EccK-LSm|67>Ow8bb?0 zi}&Z|Guc>@3JM1J!2c8m*J0oWqFd{!sHu{y@sbkt z(E=m1k0ahfyT|WIhkd9x!RE)0_VOewaWw;YePufNr^>U*Fz!wK=+jJ{EtvlnPf^+*i(Gz5NuL1{+&1xfnAuNWw+dc`+ zLDdpn2BVHB$Y4&Av$He3agku*q-Ow75&;j-W(jHS#(n{L1YzVhbDEHOj|bK>(9mjb zsSfz^>Z>%LqoR8crv+FX|KGiOnRSE$21gBze{m9ve-FJN&gk%AyPCW3>Jn~WZx8zc zH8nMy9cI5P#g3;Rb9NrVIYZ24#1*O#3x4J?hDza+C>t`0N>=NFs?ZaOiin7KZ+Wxn z3O1RLu<%MAnQlOWTGi@d<5|&uT%#XsQbE{Y>eH3Wm%ok3HY{Fiu?}@4Ol|;B$0HWg z`V5SK0vt4K?Qb_KTcl8B=}WByELm6A$SIsy|yN9V*;I^Itp5m}2eo5gnkSu6n6`Gg0b>XQ18zhs_ zVytI2ZS3cn2SpqzslF5a6I2$nsU`4n9ulCeSFeB>PUo~@S&yI^THC^5&_-d-IP&wO z7wRhnP_S;nVXP=5B&4VqTOM~~qV~&MfB;kR==te1vV_`+dj%fB+?UlNHETEY1HLec z2DZ33C1Nzp${YkVNY5ra-e1YjfA=MF1PjZ-b;v?1lIV)gtjl*_{}KT=H%o=>lo1rlfxRTlEhIT!KdQZPn@Go=VEJm!9GpX=_@xW{z7>ZFo+oU5~mC4 zw(F$yXX;UO%wVrVoQs4<@1C-fxH#&*$aGNFy>|WjnCcyecpTk8yQLW!C-Xo6zCDQ0;*$YRf< zwzh7}qFK@5H0T^guZX%nqT*ho-`I#5i-25{L`v#YPBcR@>EYqAcW=>swJRlg#YB@u zaq(8fD8Iclex+HdJU#qY;O?=wgRs9J|NT44;!BCbn}%I$lj5dEs0Mm^n6F592|!Q> zBaYpe*aoN*bNjY9yb7#kD*CP~&3bzpBf$Il`JtV@#ugnNm;-=hfyk~%dsP>-KMkZy z5-1xW4e@5|Z6V&MACMV)r^h&C)U2ngky!{$#sKzg4;8a-!ZBJ;89j13$}j&dOV(qy zyk;oeLHvbrOKo&L5lmsgHvz3&-bmrv9GDVGpi$RJ9s#?h%oFEBcRX5_e%UW030 zwRGtjN5`~zuMOA91)nV@v7c|=gWODr!;j z$x;d+5H2^Ec#`+_Eyk@$l1L;`(emQrD^bgKD~-mCVHYCyu7qqB2Hbaqej;qaKM@=^ zE(v!QovIug&UaM}Q-y{TfJQ);R}*U4l#*vh)09racHvV;5mi~7TLYb)nKJ?GxCQLVVYM}aUaFWLwa1(a1J9_*$9SI-~|LZusPQDu_lIDBLNXd4^>5hdi_YPtf zwYOvw-s4i-m~|l*eID*VfPQ#_GGtGE+RCkk(5B-Nf<+E#x*d#$G!G03QSIC#F&ayt zNDTJk=C+sOMqa2$emtkTmAQLbhhEg~a}_ghR;^e;NLU!p$8eDZ!pqom|Ar?HiYxC0 zhK)v-=95{>$*oeJPuqRI@o;k^J?zKi#nFJK4u&I_-aEnuIb+ufaE``PP zMNq;&qOoaUU;yL+#;U1ehu{Q`j?>p?I#KYBXcGc+un>lmjL`$5ni8mOm}WaPVq19| zL{ml*=g&oeY9vTFm&U@e0T)N`Hrz=|Pv5mMoMw}Xs0a3gN5(p6`uah$es$%ZUe_Wq z=n;sUP*rvH+O>*VUCesPWwM_!!n|K>B=~$7o15=^(Q{6U8!Jw{Py#tNSE{K0U;vYD zH@cEZgp1Hse53&7Qy;DZ<0m2fAx78L)$v2XY-95%E8>WS3R=z)T5v!fOUr)!x}m)M zK!BLqESXbWmOs{S@gSr+#8?Z{oOWol@hG8>!PdODtw(m|hst49`|^?!gh9N^5yp93 zHC7XNm>&1sG-2j2RLrd8eWt+e|@OX*Y|sa85DD{GZ?$D318KPj;&N+c$q!IB3$6x4m- z;srZ~J%WNX#P?d&y~z|EX6o7O6R1bQ*dF^3?jD|SEcx++=n>n5--8>mfxkG4%T8Fo zVlDM1sxl;HWsHvL`9sesZ^42p^!LTB0azX#vcudFY{G(qf>KkN%}Q?8_y^6DdTSY1 z_MhdoPVyNTT1lit9$03~WhFiQI9pU48n$7Z07Aa-XrmLE^k6aVHw&XuaKx;Q*jKCi znrsToSU@#QbJa00PylHe1p}gwwpnmcJA?KYcskJx51t)cI}sKZhDmnn8XAZ%!>u`z zyLVrJ`2->(pwI8|abhg&=@C+C5yhguni^tAkQ zM+v&ci}5|nE~3ThMo^Fm#uh8`yh61GYa2WYXUs|3gU7N_21c8)Qt*X?7_ThZYND=Q zg3S#f5v(H;{bNt6jB4#53x`KUC~OP|KF7lw8<9(_^?b7Q?^s$t|4=46)Kcf0d~Q}SP?BF zKzMKesOhl_FoFW><<=vd3Q{!%$|o#R%Clzn;-f&Jt=aP)Mko(Xyt{&xHL%i$DTHOqrl8i9;li+$AR$ zlve<1K|r8`z%b=LI0W(3BMlrSw{N$Ks(*$mWxTEkIEc)$pwFK_hiRUkt@9iH6#*wR z@0sy4NVjl=SKDUgHk2VV<=VKha`uLj@aUXA?2Ek@%M`m2dXOdvV&5LAi0nLP=A<}tfCudlQ#v0h7$9#x?_6VC}c8> zevzSY7&s+dh*bw+#^H?<2780BuUg9;Sd96)k07-NGPedbg$$a;d9hC-u?3}I!l?j` zhT!V}RW&p<2_q`>fdh(!0&_{`Mt3c(SRz8b1n&SuxK;eW7>VxH}AM{(jvz=`33fjm^0 zkv-4Z&<@XmlLI%2Yhu5$1#BGSR@*t8*CQ+07iPIEfj-p5({ud@6NkZBkPXQ9T#r`Z z5W(OyUvKZACVit+Vb#{ss5+1$(CQ)eN~zBUI6*1`^UqGOw)HgHJg@fK5p}BT|9s;6ngR#ncOJuk#L?m?iAnr;894yaaB}TWM z%fJl02r2L>V21#EaD0_V@ULF6VqKpCMmA}iuRa*nJragFpnMp*yVD1CdxUw6k4g0R zU@=SPFoaVXnK7gVTpKnlS+WE)xo-Y`bx+R;taEUd({EmXiKHI)#98n^We5yXuv^;c zobpe#160M#RpA=}Yo=XD34mNfmL$Ug4V!B8(WQ0@e3Y)d=RoQ@8HZ0xOqHWWl%x)W ziJ{U@E%CfnlHw1O#ZoI6iZHh_*JFySCpv@2jyfQkRMHndiyV1@j1c!T*dV~w3TvZe zM`>GBRkr+_W*n1de0%?i^`n2=NAKAi06l^OED%4B8ARnMTs~4sE;2$6cQB; zwZN2Ve6R|ncpS!;yqOH85zpod2#p`7riSj&43XtP3+24{K<_e81_%Nid@7&;k)-aK zu*`F%-8zu(nBU@rv1#%f!{Ina?+oP6FDO9Hgz6*`foZij-w1~J;>C-VmD)J9-AXPZ@8ULL`#FpR>6)f0?_iG_h3Mk9V>mE7!m zG7`tojKVx>1Qf9JKs6ZMWtHUWty{NZlj0#W-`BK&GprJ@9L+A|SZ&YbC_Qj>CdAN!1@+Ug^gMh#|{>fiFV$jaaz5 z{{}*-v317@h3qFO$pWX<{{6+oWW%DOy=e5sd!n@QOT8d8CNU8L^=x!mjTR4sxrX`} zP~>itmj|$lBHgqJc`Nvz!-KN;wBuuAwDElX;lvFh>(;IFMzmSp2=x2iQYu#W@x_a5 z?ZJa8;Ob+gPha=8++cSZh|Cs{6&MOnp35$Ijb{yL+g%tO?z-|4umj4#-sqJ^keLG= zfuF3Z8cn$4ef!0eC)^mu1MiX&)hxH3%1@s@fimAV#nW#xR*;&{+mqps7`mR)yUU+H zV{(cG-Loo;6o5S;*#D@&2d@yUv4kt%&Lk@PjG-=wY8CQ~yhev?6LEkj6u4qYzzhP= zZZp2Xc=3$AeTQiJX8i!Cw+Lhq8+Y%RV9hKBK(2}f6*fPlh!`|64cA133iA{pCN*6-x72`#&r<{(Qu zr3^DAQ2c|kW(%4@n0*B(ImX0+;DncXpZ7qq3_xS_@P{evhqrloBX9s?t{{O(YjNt0 z7wMllYHSRUK#$Xcya|Oj98)N7V?<%Gv5Ke&pKg1L-Ldo&J$-%UI$gW8n1x0G!&CZx zOfUU0*_Ct~8HDdd9BzJMmY5rr7`5t9D(KO&@^aV!e{*^R<{g%WQ57D;-<9YKyWP7I zFT}Q~(i?S=wC91XL=Y@79Sd&7Vjv7l?f6em4Z{)$WCrpQh?5H8bcVbqBVz;?O>Y=_ z6>PvH`nxfx7jb^_bp+mdAcl&b5<#0q5gAZwdPb1afq+w7L|db!^nsE(U$m{ z^1*1fyH6BnwOL>HR$-$oC8%+ z2m*`*m4oN!k3*#7(f$(fGSynlUf`kbUryG zYxNsnz`fI$+A$%1X2WtQ`@cI5zFXazuu= zdzLNl_}Km$eAZH4Eo{)-ckfWYH8&I9gFz9vMG5!5RRpK*9V?y%r;Tn9xig<1c64;W z0uQ?~cxrd*D!5Z-p+Ja|35vC7yk5npJPj;ctGX?D3fyazy<8EU`Xh?fR|v{ z+PU1M_J3B3cv4r1>hCSVbq;Bb?@)O^+xlj%ru<;!Yrq>2!&rQt!_xiR0*jGs zD&o+%x{%nazy&AZ2ufz79NnMk*6vy^u3d;wXd-@vzu3S%jg zOe+mV z)r*s{L8cff1TRumoKG={=RxM{?pLKKV6b}V#WRg~H~;{SQrzIV?-(0L#l!)=;Ki7b zTB;RD&q$wZcf+(g`uCHr=dL$8tluC+IzPzWbk<#)G&g=20e^bf6SNxEA*6yiEl%K> zI}8uD!WCf!`xOd>k~^6){n|iFYw3y=y4u=SarN?PjT_gjk-_9r*EejQE$Cc=Q=@KP zn<|n;*S2raD&n-GFKkBB>1Ys4?O+s&wj1<)J7j{-WI)xz3pC6aEpHn4oJd_>L^4M;tDgPq9O$N;kVsgOYFF3`en&ol#oBBdjG6bXafO ztTK^wf>6Pp3i=}dBq}N}27MyXQ@j9yz?ekkgNPJV?rZ+N3w`_OlOPLLvKJ%2{3gkc zV?tSi#jO&+h*c=)zZ~4B1ZfiOOW~6z_Bc;a6hmQM5rJ0O{0UJfkDKL8*f^ihDdeveS06amN**1;{y*@ zMMXu4lIad9Bri@ZA0IjvWKTx?h!A`8t; zj$8;;;AYK$)gZ?Afc65}h~Pq72>SmwkZsPJH)BHiYtgVp@FPGINa;WUV-j6S%f^4? zoz$$1Cr^Tw@UMj8sSOs==gz(Gj!6Rq;9YSY&ts?Y!QHw6{^fXvfOJHk?Gb);Ya2hb2A6;iVnki{$6_oD!xw6l9`Lk*M^VAn7t zW>1%8oraDDhy3=k}<^NJxuTnk+^`!EUh{#q=l5A21r&<1e?+X)S|bv z_-eJ0mOWk#2+@FN_}keX&VKM3%5PB`t;4GiOQNoWMTsg+%$++hXc(-X8MxLzCumYDP5`{xo3qvV6a$pSsD}xAb>3slXkdiwet_tCXyeW!nQqP4R0 zqzdjH#+H|rX^v_{{eDC;rxoIJgx|P<6X1f8QRH-I8@O-a<^trKSaq9K{hA@P%0RJx zM=ej*iS&8JNSn0`NT-asM;$$VbbXc2=crgm06-<4#V|Kr#AvN0G(r_snH7R)djSe7xL2U;K zC+e$ky+@`?FX(*YzGn5He7uCTw4qsvB~DgE8{*7HmV`BdgPndw(zReQfQX7$le~R>SM$hR9jNxO9b2!6&#?!eIkWD$*;|mF=fXsKltd!$R4v0j;oA2wsieyQAq?tV=#i$+AI<-i z0XaiqVY^i(rghv(ihc5It_?QkqA%LFzBomo0g&>LyzO_|rLUr!2wenrCID#9S}}qr z!IH!rx5?E^#E5Aw}R?~ z%HGE_dy8M>R+=@)vX=`JHqHWNIbEvE%N}&HYWUAuT927K1yn+K$ye8w0rX8cx z=>_haEoX|*k*kE&iZ`kpxr-)VS)gdhew2MDt6L5nXm}c&@djafA^VDh1_p%m2MD`V zM;WptD7t7PBP2N7zhHa5oqnwtjnV}u{2n@VbNccQ=mGH<#_~oC?L;W|K^at7N`bfe zNWL8t)7RBie5P1kU0+MN9D`wTx@SS2dG$gWI z85AY8u4{Ly1fK-O$VFbHNtjzL{uc7LxZIQbav#^3aNY`8u;|Nx`{4RqHZS1+R1ROHx;tzq)%5Q__<9d$f;ELB-ZuK@f_D)huOt^ zn>L9v_jfGJY#l;2(vDGe(>I-QAOZ7ZNOK&H1At}L?OE? z%d77Yuvu8tF>XvHSCdvQTXrJf+tt$2^2CX6uWYI?PeuI-AYZuV*5RdA4M7o^Zr8~G zxJQoMhIegO-931R-^+kCt-rS0i+X!NL%EIN?=4@Nh+CDMIe-3*_M>-hJt3d(-3m|H zis=hLQsNO~YDj#E5iHouNUoAQB4S(Yz{+DkBHgZ-Py#Xu!*&!Ra1X@8v zSnR%SJ9kcwjxPQC@4uHV>mM5OJa2Hxkf!LBo0TQId-n|DI!3l2mPK)sUIKANRg@g< z=O<>EtXU(thTF9XDk^u>9kJIC;jP%EHCuqpp`%3}jQK9wfy(NbMDr>GdL}^s@67pVO-#n!L$RlnmyhI(9+BnmK4=|dWZ&w^DK z=#-M+gXN;Qd`^qz@B;%L!O~gjfU__$X$IE~-};g^qZhGK`p|-d3<+6$1&VZMDQ*$H zyXfY}DnV8+g(4GB;ei7Oa5>v$7bLdzMBFL0!lR!aE$1&S#uWk@PhrGho<&#abc^J< zYXopaXnZA(SAbB&xrtf~G4~?7jO}9m16{690~5H{^73ymaRox79XoW)1ceJD4~$mr15?3)yReL2RJf8 zf%V=J6Hi=_A)^uTSXy{ckiD}r$>YZ%UEONzRg?Iib%bOC8c5(3Yzz$J0saX9nz!?E z@Z%IE+7E%}naqHw3TwHIG2+J~VZ^<05j%T(u4{2i+oFr3X&4_p|9%`WIdDKJM=90L@Fyg(A8zQA0)5{HmUKuqi>3Qe`c9p3e*!T{p|D}xtC#*~wj zGvM(K{OA_QP&c5cbZBwUYN8fvw7?rZ4m}VF73HlBZ#mm3xavR@X z?1;_u`0I-Wa|+ap&&c@AC5Yzv;DA_PJG@!y1Ck^NRN`Y}2}j9*Zj8<) zIt?;24H=Z8zopq+1mkNEg))&p8y`6m1gI~jqSDqf_m^re0xX(;Y=NY<-`OrK+=Kl5 zJMZSrv<>%VI{i_h!RO>MXl!a4@YtPwVlxMaz}?M?E=6r^iPpUaGgB0n3X*3a6A0@q z-by2|Y`-pX62ddYtJ>kM9h+!JzI^(Gu{oE)<^j4!RXl7Oc&lA%lKee@@Jm4(Ph?`E z#IdwZuU4`Z1!F&=!vwE|a1u7EjfbT5$Kg2R;qma%qh0dyyYnQwu1yb3;nqMaZrEO8 zm8sY(i)D(la6^m+m|voK_@J#Oq!QPFiK8VEOtM?!G=0`NTy<`=;nC*ouCl?**$cTr&j?8x<=Q!q~zTT_61h zOM@gB{4K_<7$mreb5(&G#9p19je$$bM;?{U@wFJ=$TV+D6a6CFIE9>a?Mzj#$o(#)ia)9_)l6_)mWCSC*1_2$P2!*W$?L%89q_4PN zF#LV&1KlsoIlr?#c@wy2e!UAiSW1=W*rxYl`NG;A1hXjfq=^YP7guzA{Eo6Zh+}SB zd#^($#2xKy6q&wu6i=U$kDr^H!|K8)-Ucd_WX;=?oSmK??!wJ4X*1(;;6VA!l^?Cq z0$3(0Jm!zGf`01ZV)q(I~ME<4*3rRnW= z&^K%U@pqWpUBn?sT?U7T&uiLUBIzuW#I=ChLR(MQ&9k=+e8CeT3HfoJ1HY|yOTac& zv?t?01L+Fe9F(Jd-n@Ecl-7vD6dlMxqq5&$vP&5`$(usNf+NA$I0nkzoSZ2Xze*0@ zpoh7opD;5U?CqVblB6g;r4%Izs#ZY3!WF8q!pQ$H@9}6T3`wBuGat(nmnVPgHM&lI zPF%p*%*zWip>=E4MBce0Y|AC|FDF-Y$U>>hu%E%a;#;`A$HF0XhJh?j|NZg^7+7?N zu1_xDN7UnkraJA&GcZpKW4^i5IqzQU5h$BN&;fsiwF-W2R{+pv_)h5LbP(0b&%PxX~h0Wo2gmes@uB*#< z^hm==G!C;3x%-|UO9Sg&Z{P6K1LrxQDuNxdeC;cjE-mQCvRA8g*abug_Ac6{DPN+aPp%89h^Pr6_n^5t>BDDs|0Z zE_ZC-Ucwbsar@rA;lY3f-0>ye`9S4pnL%CB7Zh)DEbvSm;0d-hnH7mgqm+_b^wAqM z19T}ERwfwo7HNN|}grNxu--v&Zz2(aE=N8fWTWs)Q}T!b9#0!Vc#UfH4Tz zjp4Qg{mcxK@i);OcXu$rJ?yZSk3WlT1o@ehe5iGq>t<6nZZX_RWV&ky{`T_n+JI{A zwQD`Sy&tc~OIjhe0}?Rdc-`H6c?Y;-MDGf>sF##3hmJLJN@8CYKJ-TdM3;0#RE1= z^`J`&a4%3`wRdz}zH+6Wwzko|^ykkT9I~-L3HZQRkrgK;B4&|+(-m)n3IMLqukSCs z2b-$gf3dT+JN@gUF@hlzjjhYvsu z@Op(PQzHwxHSj5r!=5}!(Gt*MyFk(5#II@Dj62H47PcJ6wr$q&=pG!ih8#!JkKt#K z1EP>5)_BO**H_C{if_fLRT$p(;LV$_|9sU3v_qlBYA@IC@eTweGBA{-al}1(UsS~A zX-m8_E{)^AIC$s(mHWVdIPe}Fn*T&>ny|qldIsz5p&J#9gB``AtUZh8Un6xxkt=!& zv7hke!iC{+gFENH|G)H~ino6jNBIkHvr>=!XQmNH(zyh@BKp#XH(g9pp2x@%>W4bx#JB4f! z`4BVLwwVT?)2B{#wz|CB4&)?|td_Pmx968A zui>{@S?*Yo5CMC5dLB({1pNyji>@$^x{cwQ`4FV^c1a&QBUglK3}wNNat2+3JBpkpQV2N}9K;Oda^3rG#KgpC zKSIMIgrE^&VemEqq(A56vkvYS$BAq>AGxj2=l`rFJ~xlTPG1 z@K9F#$D?OwXG=dOAX7db4QwK;^$l9Eu}DbDvQMPf+qaKn*blxgM%?(gvR%KM7t&1B zR@&MMC={yeYSv5>MMw(_QmFTI?L$EsnX&ArMi>VPeaWlVp;zL_fpj9rF}ZIjI{;N& zd?1JnwnWe*bk6K3K65>*4>>i?xfd^Xma_xwx()u~Uu6f_eEGptoQFJCi{?LF*~Lx+$2AL;5UDI2!R=uEV^Ug4v6skt^jiQe zSlthW!ynoq2M3QprMf{U5>37RP3%QMojWq_SR1aeJMrb$)ORY?;^awxXoo!k&u4?u&;I$JBH-df}hX z#h=m{D2sxcF}tTCECwTm#N5wbKg=-=eiij69Jy95p(oPOW=Jeo@hZe~XP)B2M~=u@ zlLFV)uCS}aA%*<~H%qIOygc872S1{8qbZc&bM{gyDCEMYvdEH>^?;1@^=mILUVb}O zZexw(`q=rPR&?O(bZ1zsO;>E@-_Y>7inj`CMFO~;Ci<~f(D$L01!F#H6sYiDfr})P z?5Z&mi*BG53F4@IVB7WiPXJmqc~v#B zLqAHUufz?5xaXfp*n;BKcIGIDfo4JJ&C|m}@r@Et=94wze9sykh}@Vxc`W_lc91*2 zfB&`!6=Tj)S=&!Lqp&5U6%rQamoAE!$`#t9_n^e(LtN)zOIw>i#B3SsJvntmARbp& zUbpM~rq!K8fsDs4y(rVqS;T|WYibX{rbHA1-XmD;)*P5fe#ulrZEn8vD4^=rKlbBC zUx`O&xBge$Y?3-C}$F;POSirFKwp8bm2BO?H3F|vmG zj^w*F9Ub?v2cI566gs@oj1q7%{TLcYAkJOgQrCG^wzwq=1s)U!aCh#oBM%1Y5Ge${ zK2!pkV6+hO#*=4$*Y4+&N#LBtXuoVDvbUw>-bHFS9X-w~axaYh1x84V-gJ2l?z)5fRPwV|a@7(nox1=I^(XtnA@x zLs&oR>*%a)w1wK_ZVyWj)Q@n}fnP$YVNBK<`ABy6it?S>tL zg>NI|-4hoIPNZ{*9l+({>vT;V$W&+*058)T9UwN5q%g)%vAyAIf94EQyjTn&JCTmb zy0+@-SJ$+yI1}4hy=RI6l!YSCc}SNJKi0*8fUY~FlN^oysF6RD)6vtzQ%iz-tWglw zHdYfVFwiTa{+?U7hJyo1k3b~P1K=L0$pi$7Fq0V(0z@vdEI+iq?pgiEw`Kn6{BQja zw?Au1pVB4QmCJ0-S-X3<*_=8{eCKTCuuNJ?PC!b4_)b}QnWUz)lz^O+6#m9&nX2ml z_?cb*@-w_W^@bhP!JZ#(qBsHB*dDy7ioOZUhAzt_ASFBv-osb<#bzCRS zQLaHf#^J}YPAxg;$)~sUTX8~%Ws;KT6npf}U46FBu0S=uY2 zvZMa}s9)95M#11+y?1B68@;-8Uu;R0WyQ8Ro}R^e+;UcfQ*DEHsEu;h_h@Tdakd~2F+=*}I|8)B7GUA``vIFz~lM-;V!~4k!*tz3c@F67i z_G_u*pHx-%sqe?9lM_&PUZ$b9f0^O3|Mc!F;%EQ4oBweOWfkQVr2p%?IDd1NNgAKA z#;#V7l3yly(B_Pty@!CDoWe56{mxF#Ziih?owmU()!M&*-zj$+Yg{VvsElyw`_6c{ zAF^@V?|jz9`JBx;4*|vhg{UxCFyuVY9M?fl5_h2t^IKYy#!E~8x;Jx(XWUASilqB5KMHw&Y-D>FFW8KfcP3Y)dms0NEA)qFCFt2GwU`|`xZ=WR z1&@uZ?iBHIomjfZ^-?o;J#ACr??aN&!t@?h()1OH&~8p2bJ$9&P~Nk#wJW08*R4ro zKFD^c{bl$EWqn!jAHVsJQTQcWzWbF=*(&7ov-wg(0po!qC+vnFnx4PYqut8GwD7y# za>rND)$vj4oyn3VY`uYBUWo5#qw{Tj`l9K#%BPatp%ANf&n*|Fy>Fc1E{nbKajI6Y z_+>%Ej^U@LPKv0cc%6F8TEu24#T~m+UsZlZO3IO&pA+>Kj;?(B+U^>Ky!}D(16Q?s zj!lKXt}|nT1-Cu^%dljwDDP#P((2(;o{gr;sV9D`G+f=g&UIu|;*sEhO4II+(f2nC ze^eg%dhJ;G!2_Jkr-B0OCYA0zda>2aT&({xTSs`AQ^%z6TsoCge)q#`<11}Wa-?xL zd5rbhn6^8o4Fs7cDpvnm>9gxcw|@%PAoc54&J$g^yB>IIdbzcfwMq;r?b{^!src2} z<&z5{DmUenEtM1}1qt?t9MODq^uZS$RkhtAzv_0KIk`?DMeoPC6KOihs>+HB%03_M zEf4xOj-5@=3Gp+2#hbEf?t> zi9!1U<;X10<&=|~{7&eZ=Y6C+K6Yf_s9zt=r@ct!1BV9N-Wx(8+_9BwOE*oI-DrN$ zmNEC2SnBHo>Grj|g8vp$X1MNWr#6c{wUbL|{;0oh{9CTtp0+A^^P|-}+{~1gE?g$c zl_39kv#0U#r@RmMptsk5Xm3md3|DL@>U7S*v3rJwfoJEzm27rUPwC|Xs+hCI*Lzx4{Isb z@=NRFzt=ozO>bP&zUHcg+7p4}QwJk9dZa7Fa9W=uqOo?9b$*ef$#;bxUF#1A@1u4amNZu$Z`jtaaBf{u zVh3Mms`Hk(hKN%es?HjBcX(!O4H9kd*ta!G|6bou8P$Vd!_?L-U=ts8>EMwO4CVP= zd;N*Uqjt`zC&uq$!`kloG-PHh^U~UKN?phCSEq^lGZ#sxF&%^AC{51jS6`D`6*tyu za`s7le;uNr_FjZ1zv;1T@{=MHBRjrb)$fH2OX5yE<9Ryk_Sjrc!`qB{GgJP;iE5=1 zMyAg8x)V}+6^FFtLvm$$a(+s7?GQaY?QOoZeW`!r&u_oF2ixn9=K5do&+u@~T6^-o z$LeTZlf{Ntn;IJ)YX>~Dx7q*oU8g1%6kBME$%)>N#f}fou;0KJSi%e{-_fV4Qhm!?nAL;vx4H?mSA>srtULY4;;N z-@L1iuX4qL)pE$sqHhW)2tP>v++urv?U*><9gVk7wN2Bv)p~Oe2&%GJOy$`mQq7Ol z*&539hb3d?{sTLb7|mNV7}F!|WO{r9?@sb~=LV{;-Gqe%tH*c5Z|H!^STd`tK$4Pm zoMpo7DCYN@q$e>MzB;YbAB;)gXVsYXfvqL z5BOd1E9OU_SU$CF)~&~JB7Jq??{rI1^33nPIsUV(sUM~+@3h1IO^v?{X+P>XEuyZy zl6t*l!1L-WfhG;JA?xHXiUH?6gI_R?UkL5GXFz$mgsojYM0Djv9{0MGph_=Nd`tWA z4^e*l_o}447uONNv)Ge^uCW=GE1*X|3(u1)Kn9N^0W3!=X=S3Niw_duZ(;}u1bG}-(yQm)2NKmt9f%>b|7j`Bx#>Q+gVRsP?u<+r?fDtN=oxZmbq^X-7@4D0RQ=5weoVP5YWY!4V<8nS%h(9P!MV?$CkqTF zJ)BL(&D2@_5$^}A$4FBbI}FT80l#itSVg;KIzjS|BVB1@Hhrbc_Om7(n><%fqy!24^)ukN zq$<;AbefsQUlDH+&=)#VFq=bKw(mZbMcc#AY>c7O)24P6pg>>}n+s#XU}5?b~pj%j2f-7WMP5B@%WX3|uf=L46)|WW~5z z1xxR<%rs?d#;vzOB<6#W&t6RC25P&v@6ep{+{fV!2RN_!)<(>J6}{uks+?`~YR|B* z?dz`dnhMZVjcF6PwRh}cZzEO6@G9?h-C`~sMz8N3N&j_^^B6}**Qt%6`YA?F56`BWug2|w%8pFVjO=jTS(cvo%_DTN0kp_J7(wk(!Ui?=FF%G=cL&wR>Q-Z8rPp@J3dzSC@%bKuQZs;F%4oMD5R_SA(8*cXv>74sN7<=oeIJ#$Rm=H*CGPnl@AKaY; zcf#Oq!F_NI2^JXKodkEcL4$kH0Kwf|5+H%(ZJy_M@A}qy*L}a+f3To|In}4D>s0N% z>vYrK(co$a%0E3~f5(3VWAQVly$KgkkOK{?{#hqvV|n;`0}1?{zxLU)41eONmgjK$rx@>@LXN|2 z^)?}y3}Udor2a-$nP950zjIw5BPmlvyyF9XjlH-_$h{Jm%#S^GP4 zw%qyqum4*QX@ZNTPo4K4P5$Jl))UBqt|P)8KCS*epNYq0eK2|Hzf(S#8u;fv_SM~a zwe8TxgXSNBbf%s^zi$pWK2bUcTn8Ld+-uoJM4 z+OMR7a&Z1n@(1*FcDQ_IV;M1y% zyo}JX=@0S%30USHfn~+`NbaO*jn(2sDbfD?KH7r#-UQ=93OP!P#RD$3o&Ri_e7Wks znOnVUF0B4bJn{Fgxl{LDVB4RUp*O1!i?I&eCvn(>VW&b@f?F%jp1nHnu2wiM7yDls zybQE`c%?1S>09E68x3C8IC*v79H{U%v&Xrp?+D!f$^UkKtu}J=<0<2rbKpZ_Y(y=K zd$h+*=l$tVIfIw}8h?(Grj`Df{@!vP;?4RzUhV9!`>@}OD-MYP|G7Ro3p^P;!}HP& zIC?L>c>5I>g-%{eLQIWbmzay^F_3m`S=T~QjH=?I7LV%&l=UNAR%q{>8_w(ga(rP) z<6`m_1yxp!iPxY13H8b2@|`$%1FbPG_&z^eUw#92ulh4+#6OTW_@4!DmMPa7KW*!gbz z{42KlCYI6_@-{QZ)BDwlcXvxmfHOQ?9@kF=r&@cJG9JA=`wr&%xp(vB?hdz9=;-6X zgkNBmd->X*w~Ncr>#c`hti_v`fn^n)e_iDvO24+2{-(`FN3Wseg^P51wT79I?8@AB zxScJ_3%+S5B_*G4v`(y4e%@JugG8G?G?0u*P7P0cDr1IZ^f&Mb=tVQiaQ4|B`mt~^ zmzo@S+wxHU>2F-E%WCtdRj;)*VT3IKSNA+qTEpzN?w8viL*HqO$ulkR!@;L06Q_$+ z_Fi`M>Fyq-Oq*)@=&rYWj)pnLI|kNO^D~87``t*U1gQK~ow*g5=7fn9H4?I=v&D4t zBV>aoGeq-RE=KVqB@GaFWO5zjbv~d7DpfXS7K>c^yrOS}M}s|!ZE9X~Tu8Hb{k}Ml zSJm5WY5}~qNW9OY>!;$jBg$Cnnp2fC)3GUxFtdGbpb=WfRJEo_&_#7kOArhhhvH$gT0u2U^dKa00c5V~BHBz^Vn~2KBA;wk-Th1WJYBb!y zv=dw@yT)pMyI@##UR){om8^NL4nu%c&=)&VWkfxz5KX;yg~rVD2xaYi_lJfBN;K-DmroqGWq=Hd7@Qg_Kwh5o^TrA{zOHOI#s5e6D2!p#Z~Zxbq8_L zbDV?4e8l#1HX;Tbhq60@l(st5`>`dyZ?@Qs5Be2i*k?`dOHX()wgeV)<>XSU*4{rk zGI^Viwu?YDzHP5N8F8BD)Bza`T;ByNEV#$w{XF6Q?aMv!nn68=u05;8`Tr^K;b`=*6V zqjPC(r96z;{;ZS6tZeVG5J|*Y_Hz_&5qp|HgdKQXSUWV<`(CxnDtR!6CKYV!hesII zEnsJ{{`SHCf-sg9dJMagI(%WdWa@HaL)gjVNWrBiEv@7ke&+(ACZ%PPVPwp|YRVw=gCiGidC zm~PFMvsG9G(K$%mQ5y;kX=SC7J_6Ty75RLa?`qCKdzBheHn$k&0n*rNV(EVRpoY|E zNcLupeItX_Nzwd;GorPDxl~1KkwE`K`PfoUw_jaD9b;Z5?)fj>ic$0Qt(yZQ9ha8! zAOy=tH&B3)VWDi3ksgCimJqw&TjS3Tz2@2X%-@PqNuy)Iss;#1xr#c!*gL8zkRqW% zCG&Nc!$vxpYKoXkp|#SeAwoT`svk%!u`yER;-e|EODY!0Og ze2^PGD&VPjsCOvl1Nio7LS*@z_qC|6r>EnH(qu3YMU|EBr5|6X3J@l;K(zbkyZ`&k zxga8ET?{u!?n(j)32_s`ywlbsuxW5CL{9ATR#e1N_-ee8X0iS~dEwz@iS3Z9#?y~p zX8Kaqsn+BhQ~01I0>d_E zrSC%he;qIh2+9O3Q6(yOc^U6jwF4+q>@e%E#qn&8J$hrR+QZrAB)GYxdCJrz3&rmi zxT!voM(-1(&jGBAFUiBEpb+^3oC8kh&uhpSFk8=y7xi4i@@b;*^Gc%(voqzbTG`Io zQ@umso}J{4`BBYPc4o~lMV${8i=&4}*ewB8OM~jnLo~{=?0RP{b5CM%_veoQfM=~{ zLZvYXPpaEet}DE)|3r&ziPL_3s0k_)s|>gI_vS2 zQ=uf#dNxrjXVQ$xrcjMiW9S*8^3|0x;3LZr7C)1no&)xCr1uHewGS~hQ@Ny}+g)0` z-v;{ODMQ+u({^!qFHF$~kv}a>_V4t%cfeSs@I&er@2(Um!!Y=_p(zkb>n8s$$6 z>34z2b&|}7987(5BzM$p>vWFt1(n2!wjzFlQ}rF!k4 zcQT1>?DD00nRfx*Ha1!Zlk%D9dj}n%3NeC$tV`9t9lI%8GyS=6G8`ml!BP=E4W9(k z_A%e<>SIF`7JcwF+r#XT&o2S8H`VGU!%LFIXHDgH@joim%=qzyzu)aS+8U`J4M(4s zF!h|AW6#(rZZ-iMrQfZ%dyy=Z{-UHoSjIFON}Zd8nj@1zUVK3PYnaT_g2?_EMq=^$ zhpKdf!L6qdQ_taHTQ)@Q3U80ibesm~jGcp5`fTv)0NlY_lW-7w6y=oaD&22-lwTI? z@viij%mss0a3mhBoCqm5aePC5UQ76xHhx*(^xmYvc6)-yi!4X+9ptB&x@78+zBw(U zSHH`K4C5uBqh!XtPu5i!@nt4SmR>oJX7=TW=tSm+BTwOR;?#FHztL=AkCd~@B>7I- zI7fg{Kg$2EDeAD*FPk(IjfMuRPx2O7w^N5xvtA4BN*!&AMtbPa6+ArBM79n?wo^9F;;0gOLx=I=`2(6sj zxb3hD+`zdW3agSmT$Bny2D{BEL&7P0GSlUlDp5~+Mqk5pEsFE(IYM)@3kzAr(C3g` z>E`HZ^oh+*l1sD|x>Vfu z1sBiI4sy->X^b9PsQDtcn01x8O)IQXPna0b;p{|0i4(nz_*>)*0rHW@4GU@QOHJgc7v#7|)Wl73)>8(;2$DCNw=5-gTW}7o zPEl0SM(`^HbAn^^ZX+p_ALUoXb=l_ zxm2-a`MdltRq%hW0FP%7pxjj^YJORd_ zIXLsm1tHqspoFJ1KSngKPY$rnVN>jEMM!!qb12N2-<7`w+iUn>4sypRu$hLow+Q89 z9J~7b@?3@YmoVlMrGVn+YA8fwR)I{&W4bedf3Q z8RtyO`sg>J5q&@ojr{wy9cj~w77PlhlmJh=Rz9T}qe#}V_nD)Lh1k$1%J(&UDmZ4} z!a4cb6Fw@QKCX`a7Ot(WjCfPeWE>~O68gy|XbKxYDsG^len(JozFT{n%^Xa9rEbnp zXHc#LPAnR-8yIF`ZOqfJo(?whOf-wg^p~QF$8%%7+n81(Y^*I=3fU5v9?puTX#7UeK+i7a-eOuxF!UhC1V%E%}241wMrb1 zI#^IKH0o(rlaQ41Qm>yGr%7?%s<7&F$t}7Yi3@6*XEJEJ!Xw_c#f5A0636?*Q}j3e zyk&BxDOb(sj92&l^Fg=EhOB&YAUWhsCzMu0*kR)>%wqR#=Lfd(`CUw{%xl(^!>}Wt zQ$5VV90Kjip;xcb|!wn7Kzva#v4{F5jSkgsY+N+4l8vn)CSHo5OjiR1Q@4c`t z(9wvaG)~OC`B3N-(tNcUZ%MWrj+&MDRYq_eG{F~SkrE}$wk`_|N!86l)`J+_em6R8 zSHAnUT9QH-@?s(O=#$rC^`&)}5RiKkls6_Y_3+@%er|=^gsx2~JImvyv}E+>w5>Dk z6M;#PybAytB?GDDI;kv4zZmr&Q+YRj1Y9-{z#9w$-e_kg)PxmEH>MkHyDS#XagI4Q zRa~1cQg*U$YT_T28OrRpP@R4g*q)7dqfDIC3b$dkd~)Of^H(8anVJroubhT3+@#qD zUD{qWJg*h~2;qV>m{;mf?YSCbAP0!|l+2K@%-KfL9)U}iVpM&%^TS_fHnI@dFeBZIGAJw>p~Kl=ibyy-7PK#q8TLd7QV* zL*!ON({-?}9cicDsZi@@gmgN(XP32v8aJP>7q-EE-XAZxSwH!H~$oTx5n8gDen&hktqzlc9&=}5$|mXrWQB1x0nFNhY*KZIUf;KOlhj7+?(5;eKqKsX;U}wQ7FZ1Y|BEGfBb8=!NW%xpuokjtBI}?2W;8Ga& zY$HP)%5h9StuQLGzD!v7IjJUIKW^;#$BHjuT2o@wK z>%Hwmb?3}pTi|WZWwy#jtE^OMW0mj&7B@Cry5U$WVf! zYb9}bgJipE!4p)#^f8=ic@E?@iAiM&Y^7%^k?lKPixQMPv5{T) zrpeFJ2a9!KmKVHNEDDaFU%+w_Vk5M4qY85-;ifAb(Xg@CFD;Hu82Oyp^M&^Z4;t82 z@B|wgTmNLQAtKm;U}|0lFN}-W24Q0h9@li0&{!zIyi~nOt6Y7ZJNveKQO-MYkPs?D zsckRnmg?84578>~$`o@@w-Gpk%(1V~;>V&YnqLSB$db z0qyH_@qvjYnC9@=F@@84t`s4rV zVbVxcp>MiDqmYrBX_Fuc`WpMKXan(m7_n(gJ&S|p*#uH0^oLZs#PI`SyPwoV$nR)6 zA+p{C=#}A$2R@7M2?i7U^9nOzMbB;$fxij=7Z$N5_1@Hg*&3_L_&!t=W8`>#0Em+R&GG)XG*jEbqVccaGk_>F z(O(DWB|(5#)k|+%^P9O4!IKg0-$vsKZU)#r)%Ynn(Zk`GW5JnA2uVMvRigbo_vO!q zOhQ_B9=(kZ-2*?qr-w$fcqiKT&sx>d1_Kr_&?Kz5Ct<*O@LLD(OP1%2Ld(6d9z`$$ zBl!D9-%-T}hx5a0x?aezW-$XTqxRWC#vH2_>+W<7F;j^Kwu}E1$8z}3-bWwR@?etd zn9k$9$Y?)8dJHUz+)OtjJ+gz8w{&05pC}k8GdZwNA&bo&Jrm$!iu z)NUMZ#Zy7_RWT_e@;vGppugBm3GV2pj|i;A^@dDuh7fBT#wim#0ay0B(vs`Ewoxa? zy6=>0-CU9dLFr2wBV>VV3r~-ZK2q-Y)3(!j^yl<=JH3XFH_DZzBjhY4ikDdSD|u6h z@(PC`I}JSkU|y$A5PfNr3H1)|ceZ)o>^1i6Z0=zd%6>Wr0?6YD2Bv2hYVjlX2>l=Lw8#r@mI{_N<30?j z3c_`0F30!~hiK=m?R=c^2JS>g2jyG_7!lIo+n>`+EZ#a-&EnfMOQ8mqREA zqMp{L7N~>C82T@Xz*S@9vdi{v(*Y`Q7 zB|=Hjzgob(>zK?r5tE$QqYw2&6Bp_l$>rSH7oI=%g1*r`%W_eWvat7UC0oc~7eU4= zDEmxRg13@c99ambbA&4z6$J+sJEyv+5DCz8aSCTQAu4>)rS&7t$jIkyGv}UKPisxYUlmTbhywW6|LVAj0Ni%fCrP2xIaY03 zZQ0XO{vDE<# z8FJ)b&b&H=iVJ+uvVoJ+76x)KwJO@XH$rZ~+uu_i4Fxou8Kzf@?M0{794-)f{q@-A z(p#{^2yjYHN)zvrlBF6@S|U*i0yY$;3K!5~v?j*L_xW|wZ1DRuz${0cpJQO5b})IX z$H#)ZGOiKwG9afmyfWNlVv>eT;6Gy@!w!XG8>NENvZo9fDy1V~39Uk(YDHVK1K%6s zmFe4ypb1et2uW(`IV$#GlEFCb*nntRf>wQoziE;`pUSi}5@fhFRfUdQ34GrF>Y&~L zvMlLg%dfnIaaVX803I*mqDutKJnNu}%Sgg7Ut)~i!q-UNmh#%bZ|3rdc7CZXG|(wRw?9WUYQsi`?B z@|0-R9Dw=flQcpleh0)PjoM#mQKYWY$%=*s%o2jfLiL9h00ShiP-f;sPfnS2L z-;q;ZO;iYfb<_zGUT=VL>X<^5{C^Sdz4%yki-|pp^~otOUf@>T=Tkmh zyegXbWc~BkK(ODv(xF&VR9*BvOT_aYB@<5KjU_oeKWEA8)A3x){uy!(Pevbyjfn;K3`$u{7tx-gxPiJw0s;*7uM@A1za;3?;j4|) z?DjG7KdWnRjT!3WbN;6iZEau3dH+OqgNoo2}w&;dMzo#o5I0@IvKT|bsLd9$GH zFB3K2lKSB!RTzjm{iAIrJENpGJzip`9-x-1F~hYBD2iT?fvmX^UY-Z&mp1ymW(&N3 z>vN25f$BHu+|uyw9YIGkut{S7SBr;;rGHt88urIN5k%^(m6)--kcHzj;3wc6v^aM8 zM7Ss05vczNkN!FLzx*O9-2R5}Ln~xxLMao%5qg{a^Qe2>L&T@IYD1-NxXWqK`MY}5 z9|uoYok2^_%Oc9um0=@FV#r=cC7qhkppGh%ch;?OkJca5zrLJ^@pjHBh8CS?Jd3~| zr7jF-dM5=K#^@fl$qW|lS{o^d2p zWJY4`blHRI(+xL1=Lps?Cy_NH%%%9S3IZmkx zqXMI`-_*T%p#p;NeaNlNhS-B8xpN~{@BT5^X&wXlY4wCO!5veNW*YRMDlhz6!R^0S zxdE-I-vLUcL%tJ@INtv2aXRDwAxQAF{cg}OIZmnJBqq0`F*T)nRrZud?=#pmtC-t zjXDJzty_JGWoV?omGT(S7U+D}KLl1OSoT%I3axwd&?dg`gqDS~B&f=<)PI_b5)0|3v9GAHbW1apJ=&~w#-8AaJdLd^~<7WI! zthki*!V!;B$nhSDk@wV&Jt*wCv5txf?VkMl4Qs5ALEl4GBz2+ducEr~<_zmke~8{xgwE{!mFyLfeZh~* z{2$w`WDLtb;rbG`HR|_#IIB*m2uka9dHu`rk^k+*&d+dYa9J4es9*m<@bg`1h%Hor zYmvs%a^$Y7ZKMqj&Phh7D2PRIsJt(pkGn2SZ9kEa1}VK!G9XJIdFjf%LVJJBMwfV3 z?XGe)_AG+k_3XrfeSOM!?6zkn6rZxP)I)Wtv?bgE41O4J*m&tZ11!_3=k6fe19Cij z+*0f7=67;*0vt}(Qs2@UYp%#~vZTgdKF>~Hsu~)u*(S$xO3X7(zg+5vhWL#|`WAf( z41xBI%B&9d1@Zzp!9iplqMg>E z=SScw<-(}GRyu$*zW=Wj*p)L|Bz0rGA+)@1F{%Hni^9_mJ-mMiT|n06%m;eMj;>YN zD7J0ZmprS#cbic*CzI}(8_NbiXCtJ^WsiLBRmTq2itH@{tjSSvM!P3A5KH3Y;L0RZkBQYC>m@ z^dClqI$i&1I{Y6#@qaiiiq}5h@s8>WF>gwAEu|Z(ZQL$oslCT})kAaJ_L($`1?%SB3 zI(V_(?TY@cvh35{us&US46>LL*xN#HV@EX;meW7kFlunMLT?*L!hApvUz|S{U$=S( zoA1xcdvgCl%y2{Lxhig1jr}}R9k<>x*-X8S!9;rf9tiKdM#ScdRmzq|HXczR%2YSj za}h_eL+s_Z5`s0$IqYr;Fv8BkS6V0`=TimQKHaLmltA~y$8@04fYpO?<8ma;+|Uyx z3K2%?R6m%HpuK>hn=-xG_&th9de}vD5Aed>qs44}1^%J* z8xFSeJs~4PTE}VEkjG?G@IWK5ZcDWnp~zkHGtPa}yK1%!XtB6+_f2-rZZUq7s?B(^ z@SRBPCjtrB??#obeE?=jugvh-9p;D4;ZhxLgMXV8p0&N;Z&KWU{ z-?P25%N&-Q>Mul{0rh=6G^E%$@|PaD+|%0mn`fzxS<;{_jI)DHtB?N2EN!7W-+0Jm zmZ{NNuor+C!j3Fm_v9=QdM+=d@~|h_>u&H*OlNtF=|tLr9r)1C)>DrZdbxJDL7HMu z)*ZShH})2}%ssPk%Onf?RoAQe0uSi&Hh@O>M~}&JD&q##W@=MiGN+WcdL?eHzQ0KB z6Yx|!;=7YslWjnX36oa;{9#4XEXjR~NbCF43g)RPyX*S#Gj zN1YB^j$(er=PrBTWlz)%2m?&B@r0o1uBuL*$Qx(|sUR`tG#3ug(AzUm;UcN76jT1y z>qH=9Xyc#wlL_c0z*0V_?>p_&T$Sy4CTmaOMAF;>BBzw`W&|H>vL`Z`zc8E;#3C{9 zZmkSlO_`%_j7eq}dQ!(opiGvo<*R$*91# z`ihI#gqZyXYQJRgIybY?ns~zPURe}oCa#7;8qce4)gtD_TUjm=ZzGjTOv6IUkFlH- z9i@uN2?Rf}W12uwz)S7F4$d-B%EYbt{mZG#kKaoVc5rR644bZ}W85?}=;Lh#{aox> z8ZB(DA?w4^XxLW(9-!Fw-s_kOE1J*#wko6IZXl$5+5XWa`9AygIUh|ZYhhwdOU9k> zo*R*k?IfUVd0=a+M5|HN&D=WaqT(esF=Od(>i4H>zQ5SMy@np>0;#g`q&tnUa?nQ= zQCQ(K_K)}tj=ZS&nsDT{wg)ic%} zhz)M<3z>V|qVlzmh9+-ZxQQj$_0&~wD)RXn$8G)M-9Z1L^tV@Pc6&APcE{e-B-+CH zJE0-B0LZ$ilzq!$u=HY>U?&+UX1vuSQK;UYc$5@D#0>OzdlZ!FYp>n4CXM}|%{+H7 z=N^>gKJh+arSOs4zQqa1GyArmm|q1K?9Zr@d801$WF6#Elwub;^W$kXZ9+>sfVuVo zogc9MtH{j1QoS?flEtrvJPiN%6hA-?`^Gg1mcv3A2Z3^JVf@2Gkg`NvX5D{xdaSN% zN^m&r>K?ok|B`r}{>g)2BVCSC1dW9Kx~4?r9s_SSaUb2&m)+cdL&dUEW^LnWX=4FX z$T@dl8G`&cDQ4o%W67nOn*z53IDFSi!Vg_s(JtZAv~CD}{1vx8sCWHq^HX=eicB?qvNlmC`0 zxK2hWdNaC2+pXc{+1^@ddM5gcIg7Wu?3?yw4G~(c+h0XlfvKJ%1NX#D! z8rKxM4VmRY#IGyu`{!-=uDb`J0G&Uwbl0VFKQ|2|l{ccT1RebEB>j4L6_n-A$`Ct+ zg*!HSqqjXGjClH~+iY|cBHgc&fwkS+sl#$7?93-FgJ{%V+BP|=Ex(Q7kQhRn}wdX*RZ zLMP9PZKq@g0f_5=bC?cWXG1neYG-`b85g!`wr;{#hW2AF&goQ3B)ex&#-tCDS^QSx zlOUPdipMVbJ&6K?bYv9{(7l}yvO$t~?L2g)@z?P-ws@fn$1Pv@*>{=r?ngBN$yjRM zl_)wYKl?xvKfb)!%LV>wBbF4eu^O3JF?J+TcLsEH*E64EXo!~+-o#`rF9iGTB6>eY z4udI!B1hA)kQ|;uWzFo!&4~c3Kb{PQB1@aL1axmZglyD1UYons7U2I+6=fTEb9)?i zm*0}722eL*Em2j?DdwRW_0w%I`sFabZ-j9*HIi-^v=uZBpjW&8qb#_lQ>5XmClcEQ z!ZXP}1W_e#si}`$Kj+;VHDYMG+Ad@1DN4gOL%Kk_U7Gkp^P)On%Tm@SnB8=~Ly z0r1hu5g(;-&35ZT-0a@78P?@DX}Er)L}I7^8qeZU25$k{_KL96f0SJExPe%@5q}kN zjJ;xAO5=U$4;1|KWhs2NL)T>wM&kBYq8DB-hR#%>Wp^$)#VwC22rr8a@-!B)x*$Bn zxBrGpmS0ngL`O$LeN}XRX3-AM(vM*h(($_Q`PTK|(h^#2!-Zcme)DD^wzYiLmSq!B zcgwU%wS)lsI=-`^R#E83dQy5N8X9e{yVFk3yZM!>6%A-dvy99+2aN4f7^s-+-TBnK zqp~^KT`rX$em*fqov>(Kh990SF-6|vY0Xc-b1xPJe)eB{*J=M2-WTVgoxIF8Gs*I# zbz3qo-2CfSm4&MqI^h*KPPPKZD~C@9RD3$$?gVog%)#;6RyCuMDLoI%G6XOaM?-=M zO$gNdkVf#MAg~F)$b`msM3~n2(gua;LCD-30H{+<)ub_Pdb0U$ZXtI)WyC?3q={Kt zc;T`5E;?J2;9{EjyM->n2E93T`LI3la63!Hgg{UWAT>Zkcs4}5lpZH7jxMyZ_;I2t zLcm3USy>lUoZ04wk!0Nb0Y-Nx-0>=-;Jjsm+$DEozp3GKi5pCE<$Z-bi}RK%j>e2( z#eYv=-V1PBTRWiUv|z`#vL3%8;IA?(Lm0eEkmCDZ`H04|{Zgx_VOLzW+!iJtI9l}B`cLvqq8?9Zr0dJuvd?oQ6+OHR{^oJ417@)%PowSulU#l@w|ew zeXS53C>VRw0!SED7Z56q`x(En@2NGSF zzmXBk|00oD=@OEbWF*(DunL9)u>2FAcX^-$pE|YA4lH5;k_<%p-P4l`jW*tSk6`%! z|IwxVpQKX{*A?yhWU7bq@+-5G5A&4=Td|SecmNIW8y&r>2I3Mkl9;`;V&+iQRnl$Z zh=#NP3)DBczSOl0Ts`^rzG*O`nslByaczgK)}Pt+U42PYT4VFJv&~Wx>Wg@M`reud zh23A=81wy|O6isuv6-bCSp7L7Ya#;Cw*W0Z z0JJ3csn@Af@k>ZQ8B6W#!1Pnzb2(Y`TH6%0kCh{Az_ZruoKE{@O*$psA`9k^PC zx4b75%`Pn|63MaeK&vO`>Y+7p9y;Oii$Zn4iE4}`{Em365uA=-FYO`ruGW8`A%V7f zViUu`#%X)0+)qmVJ8Ua=+^SCk_`)FiyHI+C1i^hXwcDZw>XRCM|NukjC&F`Byy zdikmq>xetD@h;!fe=3xCtJi=soZv|pZ9f1rC#73+CV4!zCTld#X~iAr){9Nh+8Wv( z&NrvzR9SIP6U0S;D~ME%@%ffCiSpmceO@qH#*d(Tr|`@3zme<6$eB{}S_T&-K*MbR zZiKP=4bNS@aTw=tLaFpHZuV1NX_GW!(YvrHn-~cbVg-gn6n+>i4emb`RTqoer%=tBD+LAnwD7gF7oCbD(>mL?(^5FP&~C09#c>at6&t@!}cs^1mC z5%JXk_C!^9qo+1l@O;csa@csSy~lw@6p36X1{w{9oQE?7F+faw${V7zBCX0S91Z)4 z?Zqwf!@MMr9r^oNz;fKOO|kFpefBO^ zUigRnc-4t1Zu1R80?@Vm6h{aD>SRSup<`72n^mf!UUy@R9w@83>wnVP^SG99330gK zJZF0QKOzB&H-$Vs`Njs{+cT4Cq)y&W{nePBC`i!#>VWH0#<~d`ORjVb_YHKNQm<2x zpL#z88QUERXol5BIS~ZIpweq``@O_&xUe=lu6L^ggkN~PYImi&4W(U|H~6w>u9xGl zIG%qJ3$X6X0wZ}h2!2e9af)doYC!#{jEWTt-qzXrDaZi-jJNTiy}v|R^L#`O)JNuT zksc=GYqsYwXqk_;_afA~LXIKuUUCEaLX!2|Q*iXfZ{61; z1Ialq<2SW?Y`o8(B1h`&HAD`}C|xj2y$nsfit2IbT(&0Hp#f?=ak#tyMxF%bn)68c zw#K%j;Q?hK$DBWtZyxAnb4?geG}xQ(e7VpHw#Af(SVMX*H(-m2-ya1u1qerzF2|^q zg>M#>IRJfELvcA#I4wnv=-9RS<&Mlv1~w2JQ@-WW@#AVgR^MRsK3(Emorm&>tNVhbrvP$2$d6Z zbo#Bm0lVVMawMqOtC|M^6df_FaSIDW6@=7oyDUJM-5A;P{ANDPpYaIypTM0Kg`SW0 zYXyV-2TyfLW`$K*ICqO>*GL@UoBwxAukQk+l69PT_MQ?9hlAtZPt;WTlJC<&7g3%! z1ki%(%axg>5+;m3^(a(UwFpw}U&yg6{xyl;oJbipsrB{W<3k2-x4324yy>e|4PM;L z4`{i-FKg^7Yx&tzz$SzjO<5DZch>|XO_>4%K}2G|fJ8*lMZ{lxVVts*;xq^y<+aeP zCf=i#v}ZZ_?TQ#yluZQDt|pCD=|TM|k2y1-^gW4pKJu%Yh1bKQS=s~3)+tvmC;}LV z0{R4VB`Xu`DOojTxQ1bRM|z#-6~c~OKqgA;Hcdj(IOk1HjQMs8!=x`f6Lwmc30Zok z!8?%mZ{CS^F7|KviD_x@X215Q!!&dy<2e&Pf{j#e>S*hkYXvK*~U zs68-qe+?7=8hP03_gN*fT=ip;qNrt&?FP>9zpAzgxU z&qtW}uEjE)l%-3oo25Ljnimetd&?!4MmPef_0)r{y#45(M~^$W!2WdjP3S&RtF?n$ zoa4xu46L~2hNgE^yK|AQOb6i5>VvZ(9W!6DpTvQbxQI9>G!eyxvk4@foW`Qt6kvb( ztg7*dhG|Yc#w6#V!qyGn9KSip5UZGglgsjV-vI(~(+ghoiXD(*v61Mp!)S4I@>i=wDCee1}ni0bBiRxov zWP>Pb`w;ffMP-{prliQ)uiJGjrMzo2Ap#zpiO5&zlgfG9VDQ^fO6Q`gUpRLkeyw%TaqY5om82vm%+a{e8pQ z%S4kwXTf{C z3vyDqKAdCTGkdeUNvgDQLhOK*o+AtCwL}P!!?le^S$_r`;?X%(S)a z=%pT@g+~??Q$3L+W;#~-j4>4XbCy0!b;c#ImCF@Y2JGgA9A26F=xpR|bk!eG1>A9X ziloz(bTFaP4x8!IJzXX(x<>ZT`&-J?RN$XrO`>l$FNQ^OO9HU|DZlr3*hQUWZTj^m z;FzDF#cbhz_FE7^+qbj&715CdjjSU8wW?Uw(a1qxoK_199lMQ?9a2eh1S!1D>Xhll z$Nql@wEz08Raf%cH#CsL1NG3Yxj0eY-z&QQdq3L6_@%z-3teu~3~0HZEEs85@`Yu! zeUuMJcFMapCuK}AcQBkG=p34BV7gEnpX0r}A~IeBIv)wFFgJ4+5e)VOs5;BQ#yeZG zl2sMaEWCqLz2iU3IpM-#_WE_F(PZwY<~ywKkj|g+XgzysPu#DNRb=@@y$0N^>pe)eS zew05@EY|n5E9(`eF1#@KhzChk%%o%-b0=Wedq2Z?*btV1{U8;^Xc(sNhF7Y#tft-kO?Zhcc}CBk@;(qJvsCwG$^+ z_yFY(Sq7?C5huJA)F;3VJURkHQCRK6`&#`J-n$>1aF>6|G8i=K#V-1JviAsB)Z*_} z(uc{-4ao2;Ot)9lJ*jvHB6;F{80xI=2pO4|e`a7(8QKfA11 z6WZyQXnTwNAtP9`kpu#MK{lwh6!WSudQ>d_Jna2wP~OCtt1(J`33M^6+$%Op9$>IfdfVY>5vujSic zUGq0XB>$`hqhE?tC*JzozNnjyOqRLI&Zz>9mm_m|bB5kau`=#QGXck7lNaUfo8twN zC6hH8{wg4WqFMGLpC6L#HU!K>e_-868VBmuZ!HH7tABjbI=zXcVkE6C(JUTJ0e&%w`cZi?(*jG`QPH6xFD{n9IqJKQ zY(7VdjjOt}P;nc=Yh%1<7hX&#RDqVk&7^*^C8v2=Tu`UY)axHnm}tzlGR>%(!kL1! zdl90<}tx3m5#H#oyMk+_>c7;VFd8P zI^e+{;8WQEvKRMNB3df=CmZE+pM|4QAdq6zqr#jW4e@#5xBa*98(~SkIDm5W%tDk1 zG{E$pKWf=sZEiD&qw?6%%0AJ#sw?UFUb^!+Y<);NA7IO9y#3!*&`4uh?ykvIb%qLi zo~APTs%>@c@2{I?UXO`LUHvS^lBnG9ps&?0tl+aX+`v~! zli<@W4IpDCoe{+RzKn3KfR-VDSr;|=J+3#P<0=sPrI??6WJs3F)ShgKiGk)z;uCv= z%qKE(!`x%lsXx9(i{Ti|5EYg@eg9lR7>@8fQKn^+7dbHcE?}1s*?k~yLz&Mgg)c@A z4XHBExc4NIEJr3M7Md%Syq6X5`V?w-pxEJCY_+70=Kb_=i}03DXM=dkPKp`ZbZT=qoAAg0YKj6k5I-y%mfm`Ri6dJ+|F zA6H-b6{QKv$@xyKxt`g^y2`HzT^Sx_M$ot~!+Z$P(=b)Kgohjp-`ozHH>vYb03zJy zq!Zw?1Y}(D2hSWQdB{W|Zs7(v!p1k!;N1#A2c{RcdTbe#Onk&#;{%OM_u?vDB6+=0 z;SI?3FZ2l)5RwAj<+fO5KAT7!d0QhyDyU=;q7@-NBpe zr_w)?jEggVr+I1I{&v{PXopJkMLQAz(S&4aQJM6NAx3}Sl6*cG`Bs)K?!EGC9&rIM zyCOT1Qkk~&(fJ#kah^CYS|kt-TkB964u?h9V6tO!%kambmT-6Y=&*w!=G!0~o=QSQ z$7I>$K%*S~p6ZU-MDlEf9QuIKf0}}d5B&A)@icDD=(wcZW$PsRDWyS1mW8b6Brtnj zE(~WdMJOYlt(g+0%SJ9DxK!B9mJ`=dBDnxcqE`e?IVLJuMr9Oi*ba z4(-pQ_;1;D8@|KeMl|`W`k8=fjv0>CE1h~pgoMf_{42C6z;h{629&sfAR4&E;X(Ja z0ymhih!K-PYw^FtN8uhXkyK`-2Dv1C8V3ZL5DBXa1?7#8YP_KMM%85n0uZz6rijF| z39cCZN?NJ4UUznIdUj35Fz|vhXkSMYOl6u$osVsesi+2qU0eAzq(?TMW^0~SiCOq# z*<9_SJG(iYsDoOD5@}h;+K!orh_0h{9yC10fiEKnC~NBgWi1qn@_$Hs>!3KguU(WR zkOT;jL6Z<54DLyAPk_PQh8Z-t4DKF?0fU5r!6gt}gS!UT;O_1o98UAT-&glmedl-T z+`5}TsOswJ-o5wk)oVTLSl&)U9;;&kl}#x}<4~YavalpV=+#EzRBpxCX+Gk}j3gi8H{MnlaO|NZW% z-MxDuAuPt_N?hZT;Q+HxKTMH35~Od{{&qTBn@ecmzx}BH^M8ZTo>$$A*9O6E9hn(P zdA$r3ovhQsfdz}lq<<+Tg_d<=U{ZuunTF~TPyFO*Cw91n<#}hN2AJX=Fmb-%KZm52 zzKMVGb)vnEv2OMEQjxv8OV_yRsT6|8kO4wwB^g|lf3l;@7HxAsxY(L?0*OwDs3{u0 z*Lc0A0%VL4ckQ{GG_lx|O3$x^Y%X~7k zo0O}N)Eu@0)wzebP4dLwBK07l7gcIp4AV5MKp74gtTH*SfU{$?6sdQ#pfXX30;ze{ zrzYS}u>vuqA^Rw6Ok??~K3uckk&vA1Cn6qW)iAazZrYFWzS|XFA~UJg{R%)nJ^TqX zZOSyR0y9l0k-3MNwziZ+Jlfp+kf-4Nobo7EQIHJ&TFs3RuZhEfa^%~%31i9KB$#RD zhx@gR_KZfEhL}pMGJQw5csm(K@@q#4?V09^X+y~wff5!Gi01M3HkP{8=A~l$R&Dy~ zSOCoh0E3;F>GG%qJIM(i2$KC5!2Y74eG8Isw~}#W;WpnbgF0l);FZ~*w}n2V)hO5h zA!94POJ*b>k4ma$w?jvH>y~yRriC9^Q7tG?LM3*NqaM6rp>&uePo3o`R(s>mK)UvH zK|CJe2+mJK;an6Nmzv>;LQ2~I+Y!p#try-_#kV;tySNJ?A=#pPrnFc)2#Is%d+o^$|qiZu)@5-hVwIF$g3? zvcNA{Q#MCWfWKH306=Fw*{Tki=025)3dFfhgQ=z1JRi1=B7jxaNK;~u=ddshxJt%S zv0H*f^l`|_;rp&3vbc=E6vqGhTV$9%cI6HX%loH&=}BfY(`{%0bq8-VOd<%eCdv=C zW`5kvIAt@G+OKW?H`NiNlK20GS#1(a+=*PYs_GJ3F1{uw8~9^aJFLEvlc!WKbm?;! zuK%0MBn$ivydI0Y|6L!WMxbZ=n1<3J?3`g3CFzr88B}&R(QR$clK_JR2-fVL76BNS zxF?AJK@U?L(WoCIuSrpGn)F!=Q97O$In;*;!0pqH;h14vZII+G6T@G?O58q4y!WNN zOoz@Lkm!Kr*){uAex@lz#HT`P{)NOK9&a(+BDHF=oE3d*c#O4h{~!29%-3z7`@jMbFh#HlsfXuJB4Ij=<=PRGv3tJ~6)KC24L;v)mH= z(GmLNFGx)VPr<=!==3Cw3?+(opLI#Yo@m=xMBZqrdR^Ki=~;Jb(sw4I@yd_9m{NcM zrfE`>a)1x+(%Uk7UH7ESZY>&0tbPJc*19rcS_+h6kZ{mWP}cTA01ITo0r1`z?A2ro zyUTUZZum?b>ZL(b?{^n<^|FF0!5gLD-jEw^DgUELvGln!Tvq8ftz7;D1NBRG$`>`* zER@A@UhM6AtU%?$Z&j9@6U)k!leg+w60gN_$sdQAc8~uEFA8ft78Eo7h~rR%Dvc6v z`EfKaGF3^>_!M>`5b{MFms)Za{7CI78tu zPY-VSPcNTX{zIHS=HcMgD0?p8Kp%r_gmc*GNDhX4l-_848Li@>TYet5;EG0PaIZ7V zMn9P}Wax<|kD=>ryPcaouPNWT^1ZU%5DhPKVxka0zbllRZ>zqtFuxpByxt1e;742`hb7_IcN zu(^?-xir?@Xf5kzs@tVsg~jMiYLUJXv?zOg`7W&EQEA1RcBQdea*)Yl%0r~xVv5}$ zH|l{(g~e@Ah?TGnLf||?p3gfTA~%KSn{{aM>M5Mg*V~U3Y!tYkWlGf@u&4VoVz%}h zRL#>^iGv|N0qJ(aQy^LMJ^5gQDTP44ATusao=hp54cf}B)9F|=-c}aiKw4zC^kM0~ z?Wg%jMo}@3y-~#io2IlHR-`n8U+eM%`0A6zNIjjJgh6CCxS2|Jk-Z;e1~NWe4*LcT z{I<%X3rTRxiaE+Q1NoXR!O1L-GfL#6MxrZDpIm|`2vb6kad;aW^ItTBqkF*2%{1ZW z*}uY8Fo{y5ADzx4O7mzED3kcmt)a@712-Fvzf~rcj$l`$3 zyYW1$sCr416Z582@1poUpN6)s!WL|Gt(Eu8Rn7U^I?asEzTW4OIq-w-bs{$VhX=A8 z1vAxmeU7P-QhgZ3J^X}c5?LHDPNg!28mLI#es2HZ;EyE~#6X!^XzQ$Qloc-GnY|=~ z(D4;J50so~GqDoyUhg*X)_|DP5mQ=Yr0i$W!*izE#nxi@(UY_qB1Iw5fRdXo1fZMM&pRf7`b`KcL|nERlNgsq~9Xv6<@} z5w`9lY+@`4?+DAEP4-js-}cv#+$#m*u+0 ziR3RlVb&psMmfMKW%veEnLL`!-8=BhCwis*rHOZFf*&+aN4|m03FNksqV)((=;9N7k_-f&ipFol4yBvG; zZfkeoAjUW=R1@i(Wu8O-hAJt1l$vGi@6c0%KC;!n-=ACBAS~9|vZy;nVzk-$3O0s*=1ltQnbcIGm*3T(fo#2Cf3?^I)l4h90^1Tt zX5w$wU?ksIXOgTy&W3splEccisgs$?4F1q7OLpd9`_vyT^q_F6t<^aw&UdGIdN&Iv zJe}vwhQX`iBy1*U-~mWof<)7NeB5gi`0fV$C(2YEf3iCW=>01{g+hie*sdq7b#AHQ zv%S|EFwFRe3%N!lV9JNi>KeQ6yGTxcgD5LQ0ek=-QA?(^sh77>{L(o3mZYp`#(y8=%EI??~A zP&bB_+t8TkF>an2cUPi6G8Ze+P*=;^(gvkw=fhbu?f+`w;XQnnxNwTnXp;1Mzhu@W z=8DpdpP#&dNiausMSLr6%vB*RQr{@EcneZ`%O_2O?bZq&mKKsI99Df3602lu3d7`p zcd=Xd`wI5twp6l;nJ)#^iL0KFYqoqKFSTz~q;_AJV#CdsV6YmnuTRXYwiIIW{S?Bo zLtN{-(}j}CF334#{ADSuJ(Y^PXl|?dh3t{dafArLW z7fdqn<<5-DtiGlhC|XlaGbFsgC0~M-gdYxUt0~<3@&y86R>3pao=?D*onK-spVp0n8~_o%#k!@WRaRjJ6BUO)S#LpS6qC{va_2u!MroGcRTG%OS@b$ z>n+F`t>sdjMJA)vA0jP8>#ELD2ew=Mr7%%>WgGYAZE2_usl~`tK2CmRL@UMGpQ5i( z+{)<%y9ibDlOSsyoy_?wt8Lz{#zD^(Lp|F*4<7v)rcHag@i~T%qQL4-$dVd+c&}dV z57$o(Mb64kf5lR{FnIcR4kr-*n7n((BBfTD)*K`)fUQ`3(@J?_JRRJ=cr)ADy$x;!hJ8oXm z84mv|)rDi*dW4G3VGqVY&XYKo0TSw~!x;NLLd|W?ywrm9x$uqW#~x%gk0v7(hWqR3 zA4p5feV8kb8pJ}wX|Pm#D=HMK{1P1um52C*Oi$whI(;8 zwQL@H)Z|mZtd+6j0T@oGBXubbgKq3GwuPLkFCjvts3wuo0%FyFm7KQ=s$vTlx0l}! zs*Ypc9Z7hBkraPot>gT@4N*G;zRamE%+a0rQTJMDV~DCtaerIMPr*}j@FD>{o%~F= zny{Fr4{XYiPx>MMIKZp%v!=WCZLcW^&swJzLmJS@Dfws(0DE7Vza_j50=K`KGYvOb z51qO9TpyysRT8)$@n-L{Y*tVd&-?w5^)i@#vyL0BX+R6LwnUd?)2wivdIB^iblR4q?(8l;Ga(cd%4Q{X`gQat5a zOSua4AXTZ%TCFdO_Vf$1f2*mQsZ>OG3iz+z7f~;6lpRhqitpDX2J>s+jvpy^f#W7B z33Kkh8XyWmVIkCjadzr6HXiWxcK7W6#evdgM1EUOz`hJlxl$UHRBRMXAq|R3a-FIh zGXBk~Fsq4=;PA}Mr!AFzY67Z~MTBc@R-Kb0bgW8R+USJ(NK!Q3)KqS;f@P?K9wOOT zO+a`g&auq9Wr@ImhdEp8B;-X1IMG6=V3KnN6(c9C{#9ADCI;rZ+$X$r{W29nr#M$c zIhO;TakFE^k+1$r9Y;&fWe8t1QSHfgH5Px3Ym$ty%jpu<-Gcp<_HASJR};xEw+AQ; z>O#X8jY7%{^&K-MOypzWE+wwb#T2K)Lv7|h?AEDv9$AyOIe;)vRMx2Hs+y4$S}oB2 z&U|dhVI;v6GyKamc$vD;_dGH_`h=5+tBV za%y=u1NeY?JJ7VK00D&m)F|KE6%6@1P|)OuIf=%zc~Lti`RvF6KFPV5`RffIodb$N z+#@5`-Z(i02|3>&t$fH-wcf>yq~gAMk-fca;o8L6NK1wK^U}flq;vgQv`lk1ak&B4 zCs-}wy_0OotTw(sVJ`C@mf)X$ZKpDarfB06CgljQRUgRe{y30L`sNW9df(PUN&e)` z3XMKRD4?70>NoF-tjW>{H=TqDU1~h6vNmmS&(5Vpve%D3H9hmAn$g!EKFDb6&xXp>N{pD7y zwNdps>tbQKy)fUZ-JbEMfvZZ71J}rOGWj-QY%iY5Mrr zrRZTP_}|ukS<FP=x z4kA{48o~<9^R42}f9+OhC!JP|_G$&z<7NVP=B_=w52Z zsG)y%z#OnM*=lacK6MWJUcY0z-*`*JQ!q~66_Q?n9JXjm%R{+ibLLe_arA=C zpHax{xx({(_`TV_{)`sk#y~uIv6iM#N)#<@^OU(@lh;b=JH(EMy@0wP`0vi=?TMRw z+r4mb8kp0t~Rb~ z8a0UZ6n4Ue>k<$S?1s)YNTnzPUyk0^ey5})-^Ml)FX%|gU_#R%|7Wbt(hk8i=oGLd zNJ+6e4_Ox{>5nZY5f?C3pXKBnW6&>qKVFEPtd>5|K}?v02MpF6#F}clv`9|KSXat9 z=UBIC1(kyU1(>O$)%L31BYwqfR+@0m20ynf6eIwx*I#*%i%l=l&z?$hpiHeM2Yg|2 z1M(LUOU#n*Yv@u&{3Fn;>XZ6yCt7+}sog_I(NmS?I0tnOWdw>cJKNC$Uz8KuR0DE; zhw68hlrTzf!X(nwFf$zl9?lMKOtXf{{stj*=0oiG>AgQ$rg&8UcKB+SQ(hf6TGG>x zTk`mVeh_~^s+!4%!@o|D+I#xq4{B0Cu1yWFH}U@1`Kv&BuY}&(yGKWTTBoJZ-s+n& zo0~TGEpA+3RMLIDd^F`}*|<_Mp_YkCzVxvpgjd9jAWvR+L3v6vbf~WnBKPSpxPM=)SJRF_WEdqW<)^r}{ zzub$(fbsEt;@Hn&)Nd}XFI?>}V0{WQ8l1&>YB_&kbsa)>hXlbfE^ADhhpIacEbdl2 zhb->dE}(=$9_d*fyZ@^S&c<${i-IkWu`RDh7Zqkc;E1VX-&yL|Y2l$ZKZaMe4rZq- z`Yi)xYt<#oky2weT_!QaE7S-06$livcZ1Nd;LXK^ z1Ty(})I&h{7%}>=!P)V;{fuwLhct+K9XH)$dSg&w^uK;^Uu}oa(R^&prrYK!?6WK5 zbI~rC1XoSWmj#4?`Ezy_IX4T`1BQV6Yag|sshYbK*0$TNOdZR!O&4_#A9$n5z@E;YU@=uMY54I4bcV5+Y;3rBQaoc>V6}o|92`>q%)# z2%E3Vx>RBN;k|C50@fAv7}m2WM4;vXX8*QgGh)ho(36+C^Sj>7!qNB*xEqx=IFL-x zSLF-rI@_Lq1#gsc3vpU`lOOd`k)(WnJHB}lrrL0EAmmgpJ(!t)DtOF$!9Ufe-9C;^ zFQ=vA+rZl$(c1Ylm&M>yo2Ba%l*teTj$2~u0}DmSqsAZCcdnXjaPacTEXIZbDzG#) zU29OU{>Ytq7cq~absNK^BERbH>TzoxWzMc>%00U&1OK@Bc;hQ#Q&7?bW&ftyMEIT? zuIaZXHPtR~vka8pTWk_FoQ%0Wf64H6gDEX{B6{PPkPRfHo^IpObq6l=r3TCfSaVc@ zaQlXLl=8z`4kw7;yGbq=NCwcBm31mOgj#5PsGAy0lv2VbgSA{Wd%3O$mINdk$2D_~ zf2*2LfQlqvu?Fq?cMRayoukWo1-`iGDEj+j%XlhVvx9|bWbmU1YaYtbe=u}?H6)=p z%`VVd@{0@k7!f-@#?_eE9f=47ySh;C?)$I)(D!OI#>gY|AzUNqR^YXMc^HtFJPO+$~;Q7Zq15j8U0aY-1oA zD+;heE!^wAeE9&)YIr$LW(FFO|A^b? zer@D$GBGWtjhZwPwQ#jv41QvirNFM0X>gFYlf79F_I_#xI{G$Y{4TA4$K^L1xxqkY z%jxC-Kp(7){cTH}WBl~3IxQgz4`JWt!7nks&xaLH3{M4$Wp3XvB4fN2lH$!ee}6K& z>SqlL3%4o_>Q;WK^D1*3Go2OeaIqPw+p+~~@#2YMVL;B(5OhUU6uD~El7aM<7(|C! zji3y35lkQY$DgZ>9ad#1PUu?!C-35=Ptu@QFT+hh;ewGHQO0kc-*S~hO+YZazAY+k zZ|>8cf((l419bWh6HeW;b0-_?J{u!BM^LMdRNr2sB4wUb=%`$%^j~F}e`cl;xQ;7N z;)p2;rBF${s10)FL3RMZ3%iHGM3BT(5m`^~>a@n=>5gzGwdapo_XKHE(a8v;c=w6g zbY6btR_^SOV;8syWZm0>_rDb_dBfv$oMaQiT9+AGxc}JgQyRk-g|~6P;^>u2j>{d4 z>vKVfbj;GG(G8D09{wE4U7F{|>>Tl38VYt*-!ilJKKiPyom_JKQ8GLapUoRO+CRk5 zGvp1UcmapT7o*SSoUM$_XSVY{w$I0EQ{`$ehMB-9%r`rRNsaI8*cH1!+*lg@7BxJY z_)7+eqpJ6gZw)V0+iy``tPUa-9gTlHs-r}SYU6VRC8##&Jvo|1sVDyc@rQsNDi^vh zj&^bWsdRV>#@tC&6XM?%X5SbZ9c7TYKqcYEQ8%!Ja(ZiIuytQXMfam-#vP(gdRqbe z`=48X&k_mt?I;h%p9E(bQs7iK;j~a%TbH@BE!UMzVLE?K4L13gAWnhvEscem*P<>A z6JuG;s=B>x(+VTAnEEXq9?cp&1&lumQgiJ(!6XXImYI7tq54q2I zy=#?XD@{&Vdf5+g(;$fsAqVmvf^oWbgcaW!U1z2XNM_u&iP8zKLO2wU2s^Q{1n2quC&5>W##+x*tM$i(KlmR`1^thBxH$F zCZHqtt7OIcYq_7>EFbl%5TZ{K9t5Hl<^#MVH2xknFl{ugkz)I1ZSsoNIzN$drP3DX z>jnEfQ`Kv6ph;_f+dfLWbAVNg)w27pbEa~l)ylGTNEX)Ya+~;gP2K)qdmSm^{321>orvFGVoOnlv_fO)E?eIA&W{;%dxbQOv+1acu4w0muO2D7wLC_s z7Ay;q?;(VD{@jl4hpnUq=sOj7Z{y;d=w-jX;ikX+IdWSGalnQyd)=I6F4>Xh9-a5h zqE}p)`1r}ku4cJ6%pPyh9fcml*-xjMm@>2g+2W{aKR;;RPzxv(9{9S6OUgf-H z5h5$mXVzP_*cEERki{tfqUK_j_y~kSoCaOyyGoH^C`sci$Dh!+%zWP`#tf3R@uJib z21rz|E57yEIvL4XP@VP`?^X%Hntbs4iLV>R1*gjkR%fZnsn%tKG>hrvQZad=CM!BI zniEhuq$*^TCTH#Ws2C1>Ux6E%Ry>0weqkCQlc30|z=hrTaNo@(gGHb9lg8&&(iAhE z%F`ZQ6QRMV=Xi0-#-QgF=>p$L$e}6+f;C`ASW8HLu$KSPyg4rW)7gb`2ZQI{Fp*=e zMy$VjDB@ON>npu7n|mx#6hY{0gpVYscPFwW0A9m%tNIzYIAAIeMVnh>wf)TI86-ti zF|_kb)r<-WSkBt8dPSU2UR4xncB7|GO^MA=2l3vp)&7%vr!H^SHmKQ&%8(4JP4j zm{JdHkt|t_cLnBN2semtBATbLshd;T(O0>aF#Bw_e9bUnhXW$72r#p$v)!5E>L9I! zmOO-zg4}5oCZHq28+DaI&eYy|k&u?qzxDZ9m+JYDY92M(VT8^^vHkj!7}wRN0TJoa z8E*}0d6#~T{?I}O$uOUf+pK-y7Qe1u$ns8s)_!4H5=7z{0^;ypCAk<<>rT3eFlJwD z?(rfuY4uvBKy9B9n@v*{VZS*5(^2Xq246D<`AjS~1|DW~^RQpsv<*{E40Qui_83`> zcpGK+a{e&)dRuWMBBjZyC?l5X3r2;3Z>T^=`>ZnMZQL!46eO5Dv19zVbKX-UF9J90 z?Uj-0Utvf?Eymk9(H}8KOnq*xZIB~Lo^S|9VUI{7n^>|EUBoU4%ji-E_lM|=V|1CP z6^GpiOcz1>n1>VTv1+Zlaff3h9_d$|V*3h)mn-oO8lCF4ya~G&_(*|MgAb(Pv-iia z>1nxl9Ck9UxC~ZZ=aa{n5TtOH=>lel+9IaZBrXYVv4o?9&;QJrX{SzN_+^9! za!Vf5w^-DfRi_`&)lf~_hWnWu2mbwZvgIi?MSbyZB=pIWJgbmwdAdjY!I%iQkFe0$ zk}iy5Q#P|wCU3lQ)$a(R`S9yxryhENG_bHuR*L(f>_t@f&wVA@!7&_rEkZ&rj8ceX z{#`uzg6MZTbh(;2)Vg+>7YG1-NZk7;hH;$xosCWA(~656b$89%ItEWCys&KV{mg&n zp)_AAxNgW<{q^fxSE0doPJ|5Vd5 z?CxIA76>5uIYL7!r%jwgIAYw;a9d|wldrt;QWG5m%vph@b^})5fpiE82x$Ac2l9lhV{kY)7=#79ZpL;p>u9 z?Zcb#PWsdJciubNH84ddsn6{1*1VtzX2N2>QM3HDcs5gwct4YEf|Sa=B!xH?-&Tb&=) z^JBdG;^}(`la-X-Q`S7CV`I4igtx9}OdM9$ZzJ+q`lmn5?)L5rCM7b<(cVYjK}Jr4 zZafN$mf`#63R)2JRJ`^f{Z7;29fR~WvW?`Rxn<5LxNo1^u!HgYovU;fH~NJQ=ShAI zvP;n{|CVxJ|J4w- zQ6kQviJ%x-an%|sLoktU5SXxKG+9Aw( zkSo>8t(xf;DlauN*OZn?@7U@L9r$uyVEyQLpsnUA$L|z;W5UjG5nwrxHaku>Ss9Zn zeNhV0knIWJYDm0uU7uSraGKExbrOXPa%`TWj=d>ixtWEJQDL|GkLd609zkgpb=e+*X`RE9+i2e10atWWmh zyq74EQ#bb3Xpu*iu@Wz7lfHs5l9rbhv)PbvlaDQF-ftv-#r7)#`psNIwci?$exInO z5p|N)M1dm4!b`#aX5BR^G^pAfma=svE!GJ=U_dKB279#mJHHAf1p z4m<0bE#lM}AOQw~+c#}(!9bP|@2$o64JAsDuxEW4pQ7G(5$=9) z0Jm(HI*|P)TbMTq%-BR3ZaZq$sw)_wm9S_|rByCpY-}o060UfdCxqah(_-LOy{>SD zFPA=hfd!M$aBJy>VDb#;YTjo*qh~nHnf(Bk%Tb1HhLTDagxy#6sKfEfmD_7!3I8>% z*V4s-@U`@&jncO_#*7eV>m{V=kDRS=flnR}d@3?S$qsxS=T=oX`jp$fopjJVt=J`V z%{5M|y?i{>Vw70*_-&Ovo(EB!jvyuoUoU9Ax%_L+FhxJ90zxuL_^oEn$l5psLOF=^rVz_>8xe$?#)1F4G!LX3A^Uu5bPgH`FY-jg=z^5wuJHXc-coS!Z6 zKn-(d(p5=1GckA2Sf?gdy7e67Jgx^_3k9ck@W1+7$Y^88QSEwCurU2~wuqJD+&yLE z@a5QcWY*l(zDJHs*KxQKmrx0_2|Gl6Rl1Aj^>vE0&}cV!H;Z!EPPe=v_3LBmr06MZrsLgz0)I$R)8}>c*7b>& zX$c>!M8g+V@87 zQMn9Z(9xeaj{rtQn$W(vkla5R$M6Onkidn^8)uaY`vaE$VATGn1M}~ZkG$f?$ue7= z47c_DF*}OAzMSXW$+vODRD2FU>5)BV5myf`Gdyp(?(pR*bZwc-Il5N8=5ZgCoYt0| z4}eze)%TTeAy=Lvx4P$$pAgH2SkVDly&PQ|I@|milK+CGnf`^PpQ)D!%I?UKvI**U z#N>sqO!utuDjxW$aab1ri)m-|ZOHupz_kCu=ZyE=kgzYpX_~?x6%1D z{vKHDJOeY2E;8ridy0`4IuhG2CL>KA0d^x`m1N=hK;PE6nAaLVR2mH2{G%^v9Avr| z5S*=K?*_~Eb003J#6fx#;cTfnmpPL(8_U0cBi_DJg_75}?cXhpS`rkiAwYNV)<{49 zWZS8EF>RRh+=hqjK)8bp+m|tp#$)2p)xZ^Pkt8+UUwq1Q_nUnJlqu+_N_5hv-IRI} zR}Jvu-zm%@f3(!ob#MOpQ(tto`2VE8DUHt)NoV?mVR2O zPp_=6n+8MfJ+jsIU0U<~CIz)ESjx|e^wDo+k8&C2|4oM+mY*+CqKUuTmMoLu(d>Xe zv0(@;JZBkS4ZJGgIb?Nl?lroV9<8q`nTmxjQ_6`n_%rl^g-WdD=hR76Sd2*d>PU^V0Sn`fiF>G;e8*P+5s zjy=-OF1|Pav+TR^s6YC@&@E7-GVv8dAXVbJ``<3T(O>d#?>wA}hNDJ)<#k(uuMyKl zqfk`X-wlF=*c3cs8J_lb2bL|wIMAPjQJ*`b-^u*n*&$X;Q-{T7cuYDYENM#H%6md1= z?VzfdtyrIs4?X&+NJ?g*K6TowE`S;?8ixa{!&*2+g*1?%+5Q2#jINy6*U22v+AMMZ zzU(?7)KsNt-j9l)X{f#pl0sSb=R6FQmgOtd`C>FS-kEcgWCf!gt0?7p?Dp-ewna2M&tF@%$=@Udw6^FxwWt-fKk2}3d=aplGTH?;U(OXQ z_E?NOT*69jNc>J)&e5}zA|-y4+4S}bpd}5JnvL8SjCorA#+9hp$YYpz^|{lE94V7^ z+byw?F^s0W-hdpck3Dle`oThOu|=V+?aOUffVpSnOW)17gFT>X9J#%`}FpRH_H^{qSDw+;|sbw$-M& zr`ke}IcopsG1(2@oYDv-xmO|Ud1YLmF}c1d%-=efW0As!VeA^=YjpZUgWn^Ucb3yc zurl%cELU}W4ElEr#XTF&&+)Rqe{l7`Ovv7J9h;TAb_HC^+yk4JR>l^GIDV~4zob2dw1utI110yAUvNnCtJ)x{pp(dl*U{vd zXV)wKX-ztxMJrEJ@X4f{U6#Rbd3(^LV{Foer@at$DzZ`6hGV~NrD<8ssrJh2#P$--#5(E!~|4wporY&B!Igva2|Y7;wq+E+zK4{$wDpYi-M^0aJ!VAT7R(_uNSK> z-_I!W3B_#ZcOi)E)ZM21?$mbkfrsDVQV#A;+Qje#t?z(b-Z2#&HajCn)S6LxY&0*inx%ocXE(!r0dCbQgWOXKou6efAOv$m;((HzwcO@{Q#tFS z!h-Yvaz7j5u)HE}x|6?L+yqfR$oERMH;Q<`Tc2$CXxE=9>Ee|#Yf|3T9ju2lMfl~{ zb8?$n!cvwe<%9kSqD7r|%UDQ*G~9T2A}8owx=!36lt*V~QX&Cx=B5mMAFt;V#ph+X zvL7vn%Ev(Vk^6bc5Q)&yZu(IvSq~1H>C-sxyeAC}=aR{U>0WYrd9>t}ltN3s&8%Pm zO$$BCD3j1gY@=8+q}zSZgnY#^3rGV$u7S$lLTg_4awwc{HDj+~-d1Y3JF)QfZHpWl zBaVmW$Yy!R%`8ooXd>()E*RxraYmL->)QMWAqc<$m=;~obYtyjM+5a5Lk zlxD)(gNhgfJ31cudD#m*a%g%e?5@Ml8~(GCXO4HQ3(V)6>b4wQm>H2=co;&wznKkr z<()BVQ|Bv1l^=@aucHI7C!TzK);fkx{X-6qmK*7)Q@o$HL-oFU=7JKL)$G>qN#77; z=1dQjC7FaBJC)u}gCB@*ZNQ=bjHH|CMT@9sT-9475b;vwl;)Cqs|rE$cWeHLX!^~~ zb-&pl9}UuX|l>KtYf+l0wMqE$YqTFW9$jSXyGT+}Spw6{TVH z!&0A10ia!&wQS&G>yN{$AeF3!B0%Ji%EQC6=5^;VTxmN3;=F_t@s@THPgk+KXaika z^i)5t(-XA)$exq|n21W>Cz*FH^@Aa72rwZLty2F^$O%MDYHwq-W6%?Ku3h>O)u`FT zJduFDy0dnOrK$9qp@HC(3@_br8|$23q=1E1;dAi# z&2~oAv}As4b57;82JkIr?>D&)&aPvbH1Kd__Ybpwhy|Ty_xeSoHlL_?nxJZJC9TB~oW6IY?HRYHzI8STH+>YId`1kJ=DI7aQP4}TNXh# zcWnIWmOy-xs^KeZYC#GJ?=5$9FTGn%(XL8CDw!LJ5dL-UtLl@yT`^~Mr=8wryT9VL z>18)K&hQ~t@Za9Mu=IxaiBJX#NSzq{3BO8LG_TuAA?+FyJrGi_f`#-eO> zFzjty>m7`fG@emDXgHJ5983h~RxZ!q9Jm4xgFnD)ic4ve80{KlhJO{n@Vk~`a zBd?OSm>Z??F+cM9^C2q}8Lu5EN}Njq%zklm6T6KR(6Hpp9g$MoEb;R-4atUU79VWa zEc2Fg9mipZea_op&e^lwi2hxhWmGm(gZ;d??%bkO(G(o7L<7`t-?Q+B>EMM0eFn0s<<-1$mSLO#-KrWvpUpueG;2IG(zp zKSc=krMi&!LLzHklO?!YZ+7J{*VWUPGVis4O|(Bzvc({!-)?HN4{2NZLeEzDQb^2} z;0#Ge@8^{O$VxQy6*54mp!~KP*1|a+_u_GFB^xXjvQJ7~Z@AyAu!5l*`%) zt`sR&ofu7%;_ylhzirGOx>*lw1E-Mix^M@Y^_BmPL1XMo&O52Ie#trw672#fwT+g- z=UZ(%WxwIuf-XL>8m36+mL7~5iP4JZ^(O7Nv+?p~)5or_sXbctorI$%o)edA^EZ%XL{7Jg5)Ytkl75nmy|Aw#8SMiT zl2V>OgkicSkQsy8s7ydbxeT2yqzPAG=M)X1yD`_*|J)6BbB6!C)?J8S`m8w}NYt)@ zHCz5S0O+`8R;*5j=iXp@s5O(jbk|u4>!J)oAs0(8;cJGU__vbB!eFEp+hCkNoDIe; zSv^^Xl1X~l{8J#zp2YsLd#ZACN3wG!L5!p=6H%7X%YYs4Dkrw+(CiW-U00M$C)eb9 zXv09YAifsUDjvVS*6HWk<7a|LY{9E7G0g65YLEK%G=#;(AS-d(IzmpH94@KP9=Kq+ z69h|wZ@09dsA5Eg8f5` zk5GWe{Nu^>-}mve=3Bxtmz0k)`BHH`y;heVZY!BPB>V@wqn7f;McZLDVPjwz+;p+Cj1a2&a{y{x zi9wf?TMkx(M%nO2y-mKcNpFQr?G~D03nd#WqQd>6K7cTB_U(=ZoB^iPyp(>`vcSzX z0oI-Qz#Dk~-k&cJkLp?P+gWZ59 za<4=7=fgY+)jZPsUfoKVXeI`6n!A&#H1yWSKcks4CZ#^|&;Lwhk?(Rkyc>SL)T8sz zBEN45>tSv+AEK-=*QXeBt-?TC*q$ThfJ|bW*Q~;NA?9-o{L|zAJ~5(N`S%+Ag*;O2)_68&j$TiY9Xf1DG^_jUL)rtXUiDwNrD)ur0TM$8IG3)l#pX;@EE* zA>PdSh>qav4E%mPw;4LaGFFE}rm?J@0AW?L`eK$=Nkoj$TRx5z7orgu8{TH}D?5GU z2tv!zaty+Ec0py`K%E2YXJ_fI8s$qXjhCbE>Y5T+3uYc}mWpFB&w#B|vZpPH=*|+XBJeVfk;q_uk+CzIXobocG?Gvok$C zHQiO+J6)ftuIYjrOLL@of6y0qv7MM3E_vE04414gAN`i5eIgObPf4u8*{ZK8@?O-O zAD@TLHQF0^gy@K7E4MGB{el{F2wjBeHOr+sc$6WH;W5~e3zOcTWalG(>iOClj8RjU zz8WoS5Kt#~o&b@vpuTHEQ+kGmXEuA2AIs){{>$TNuXQq+7y1E_mi&A~L{m1@)$79@ z9rQbiwd2;-Ze{4FmlY?j8FI=+bKPsd8d>nM9tKy=DjY|+a|FNl*nM6d-d=Y23jK=d zjmuv^OHsC*Y#LP`g*ZCAkQMDL}qQ%Rc+>1Dq~w;qHCeNpE-h z2$vQI(qU?$EN}brnV(&G^JayosfpLR7zXh5gP@kURo*v^){sLq+DQh9gO%vbR_~Jy zdFWhiv+{>7#&7DQ^~^U6=jeQ)Ywzt!c}T0QpkwoY12a+3E0UzG`Zo+zOGgVgcUMbO zhrcN&Gh0+HP9aK8%D*X5QB)2YE>22bPC;mnI;yz%|Ik2l|2NGCOGhhrYf3IbK0)XW zHumn8u9O@y_NMNZ?=8)pEG+-t_^&!JP`z_b^p6rr_^@S}^DlLd2SeS(6F1V88FoPi zTT*o73_V`fEZ7KYeXkS8zuG+K>+PIeRj~;V*vImg zw!O%^whb?~HRo{>rYcAA_N9Qkhf|$r18(e}`eGfw5GEUHoQyD>#M@WaIzeM?z@Gu# zXwUs*PIo?SPsGL(zk|I-&sScup@COkZcpx-gdk0f-58e$aMOI&3qWTYAn9siR@}g)01>?@ z!4i)nNhWtEu8>h(TMaAtBPE|14T8r98R!1gon=1BFcZ+-_{7^9o|}^$l{3imc}Z(q zTR_15WmLn{)83Z%yUNG;iqeHhg?)waP+jv6g=AN_IUkcZ(TG~5HX-K?Z7--m%wADg z$B8dHh8Dn%{-gt5r&qZt(TJB$J^x9e}s z2R~zL%k(}*2GR_RmbA~N?D?d$`(M~J<2fVBcr!8ZJ%=pY1|2h&U?|0gw9(J@Ag&O@ zt%hdL`cZz!Y?K|5Sb`d3QhAJsg_h1}ZHXG-gD8%v5Ez4T6`Yt>3O;*Pzx!?-zNJdN zfN~j=V;{u?lY>_KiD{bB=j6?Yy!Z4v2+S7Jh6c&Bad@8!u6f^!^rN$EP7Z3s_LY`0TfEOXO?Kf3V^w#F8)hmum9w?{Za=ytcWxR! z;J=U(e(Sk90{b4#H^q0a;gY@=<5lp-=DHqDy=RmQ%`k3f9-7Y&gT<(E72IC5f`Sk8 z0c1aB;+T+?G?VN?IHLYMtWhzFs4L&-e#cGJjKGwh zfyOOa;jShUP-5pP&!Er9gQXhQuq>z`EhW1R&{)3FLyp#GIyPUhPzX@dp#lYrNZzh4 zlT2d#DE_l`0uFl#=gZ)?#J5e-S8G-7{UDKD{}#I@ny%56{;4dKmqG8KfrW5>??bKT zK2vv^E*a=g6;drm0Ois{UyO*;f|_r!m7u^@uX51`+BYdp)Gi=a=D8RBrQztB$EPx; zARS3xQ%~uaErjmKw(D-M4x?!IuJ1-JV(WxCfw*A5>PrCF$i-fRN~TmEM;zbMgU<+* zDSazGD@yC)h4QGi?}%Y7Dz(S{X5cfNhdtdy!p)%lG*D_^u=~Rk19?kye@J$B2}c;P z7wOrDD3qKi@BY2}A2igjBOiJF-wR^8`i7MgRS|8M<^F6coG@Ve1tvgs&HH82FI760 zIUFWE5@V2Z)X+FBQ;l}Tb39AeryibMAidy1SZjo>gTqgy1sq`EP0WnD2iFor|Ac5> zJgj~i@XI+AqKn&Px5B0=8A8_(`yM+_axhU(SNLAJC^aN;g=s{=l8O(mq%j!xVu&7v z5vjGErIw}2kXXf0yuc{B^!@VaHj}PPuD9N~ZMW@2t$k0cr=k)zjHG(jBz!W?6%iM7 z;XPUDad%$vpW3GRqSXGeqi^Sw)FDncdqec zZgJi@v`xIfrLpQ`z?sOqHDy4`8eM8IYbnLXc)B&GWQ?xPMIN@K5XqPSEwdvPKL5d* z$zwQW{ijR72}TA+V#H3S$M8-TxK-m=<5E{`NhAHLZ{-|)iqT_!m|g5ro-5WjN5xE+ zO*~0_yv}H`R90Lyu2AqJq7JPB^YTLqP~jwTD^UNSKkTthbs}(Uo1$&&mi5l`k76@I znQ9PK6S>^w=fsPp-3?!jc|nq_t5;tUIR(WnFJ8s=5$4iSo#G!U2lp}k zXIg-kq0TULcI4IOim;`e0ptIqvbnhaOC8JdKsEMX9j=bbAt zLDkjCT*K0xQlCThy$mIXrlq$#C5OC&sg`ZYApiCn`IfhaPK(7PfaS(8+xFitq)J&16UGTX>lD{F-NY?fcs85~K@|d}XqM*JZ zBzj9sN6)~>#LUabFCZu+EcISmMpjN}c& z5s^{RF`$&xwDgS3FIfeJMa3nhW#tuh^$m?p%`L4zdw=!y4-5_sk4(?Z&do0@E-i0u z?|^sr_Wv9lUR+*X-`w8aKRo`G3kCr9FR`Hef8p}~n_SRFfPwwn2S|VAf`Rpd{@`%n z5vaHjaV6A{OkMD(xkHfgC6m9^_Mp)4sGk#@;G=&bnM}}2P_e)T9Bq7U+@->EWuEU&QV{byVZ6)d-#lyC zKcEX@Wa*H)TVyw#SGD8>!yL=FL3~c6BU`Y;ku3mtR|u34fX7#Y?}8~mklqeH8Dbd_ zBd!m_Jsy;n`_(E^m$Aiv z%^iF@(bWtbNjnw~<+s%Kq{K{29!BaEnZf9pyTg9>)GBmn1KU#3pQgKG*$oFU-+cuT z3uDyDTA6_{{6^^@8C{P8E8RBHJwaHrXlceaE3Wx#1Cid*JW)h^Qq6xV+ML#hATABI@OoP2mF(X{s)))k0Q0z;qv?`mgd14TM9Lhioc$6Ji|NKj zm=IU~Q_8D`eL?XJz2X95`wyL(sl$|Mf(-cvz8>2-S&o})YeTvuE?9&Y=B{S3e*oB9 zx8))_G-Wiv@$_!qfjUO4Bxf06(#Kao{%DofY3L*7`@RB`u>|LCt1gxD;s5}F%%+y$ zIH%D5%*DaIx*rVtFw({+M?~bk+-rndTJ>;@Mu}ritjobe#+FA^&e1M!N|@vXo`m%< z0*n*~S!PSg2ud)ButsRVYd*ez(%)VIVJ(s+Nx#eZ4^u(X4JOu5PVxd-(8RrJ1V`q1 z%Sx(qtNJ^^gTVzp9a>e`fpNe=D9@^|CNDSt$8k(q22j<|a~ICp7=w%T0PnkGPBR}c zxGBH|;->~?DBIK81t$Wm_TsK`pyKQ+r47}Kj^os&`DlcqoS#^M(}RXj_P#KU8;4`fH7-JuPN5Yf_? z;1ci;DI$s5^|~1s<7AfH2}2T9;4GgROQM+IdTQx1Vrh2ylK^ zR6cx4K{VjIsoq(5$RdM(;)*Yzj=Ym!L)InCF7RV}9lF3Kis&g^@_aIlF6_YD4fsoW zN8uelk=kpj5471|?Z(@X-KFC3=w_GVz0&; zN30R_zkaU|K&pkCIAUl{MHvefVp|HC{mVaU4etnxo;mH=0ttcUbzB9W$AzE z>X*P17MHwnBsmp*teZeI1n6@a&nypNcy@mHZj7&*_Ip{3=69mLVA=Jfzl*7z1&zs;a{^#FuP zwfHt&b9hYU^)BP96RAa9V$Gxqc~WdKUytWPzJiLkHHty}ycF1LyDyFK81RG~(n+yH8zrMexOn+4aujcI)b~eB8=l ziT_?v(MPdO>Or1)Q=?a8QR6nE=hu;#1ax{qun%OZ{!V~uY{M!1yEM}BQyc`ySR>1x zm4~W&_+>CQAv&MmXkbTe33J;3GxtE@H+Z-HJ=Rle6zwSzQe24IBrCgQ^OuGuOl9de zL|~_k(Pg=P3S(c#oezHKn@KQYLSXen`crY3D-((gFL=z^i0D*!ksmwo*sVQZ9S)UA z!(sBn?y`mYS*TJFG~c2sE5pE%=3hM@2%)Eu!B9ENQsghpr_7}*M2Nplz5FG10B13L zRee8vbjQSqA;9u3B1KDIDA39A`ZJEe7jr1x>s z$?;v(y|mo|jYhb4V{cM3en09qlu>@+Eop38BAst?YhIQh3MW3a@p%O}p$6uMyDIqC zd9W4ifo6&Vh62tsdWw~rNkwa%)@J+}0A74j#bf;i6Bwbie@_%d`a1M-1%&Q9HNB2Uf1y`dJb&Y0N_91ZT6`R!`Q@3sPn zIK4%XG{D1tV*7Ci50ZAf99K*}o!0lr-V1tQnm!uH_Bc2p6smG6<~uGA0*@so{8E|O zd!sRdC*kCQ&=5zpDPf7HLLYQej;hj9Pz2tcAh`iOJpJG;M4oA6jyYuK^bN>TT-I87 z+K47Au3TM;7eCyS;#pY@m@4XnCS z45G2oDLvDPSy@)HnF@r?(BzffBrdt_WCRCUT=r{pj$N^?)23io>}7@>ijeT}>+|1s;Vwv`H= zj|UY->$$wI0MFgZt`4RrLC+1H)yRRa=EM`-9VOvcz%K~zeWc?uTTh4nsGT7>a=M*d z;R^K|RDFaYgD?ZFBj;RE27dC-9i_~+mwwHbrQ73)HtOj#n+C~g`hRZX8QHx2#+Jyn z9E!%Ab!6M)QPNq&*zH%JNB0C)ID%+VQOFxFy+@KOjkNIXvz>McEbn8Hloe8~<)2m? zHaG4{*5td|WW3K#ic5^_@=&KlKi(b@{IV6$smrmbJQRw7$$#7dQ0jE_*2jw~eGpNY zR?~k4ui|O>%~!s)iNaku%A| z$61c5ijOhu1)lnWWJr&`iMn5V%p4-$sN^LtaIYbzVy;%RNXxWV`# z@YZ5=uYfP#HA@*P=1L&0K?TAV2hjTOHJpYA;-Kug2Jt)HyN;hMlZh{%+nW-!{k$>x zl4Tz@^MjATQfX`sG{yf4IH&Lg`Z1^Bw>qD!Y=s3X-lYM_-u~&tpStP7_D?>Pa=-W@ zT9mXYS~Gh~g8eCvIDwvhwqQkD$Jp=Loj>ky%rDDO;3~WBsUT5ms*~h!!z$+9HmNsS zeD_Iu@tyK?MP>4^m`at`e6I^8mFtsmqU_WwK#ycxNl#H<;T1spz4K-C7Kl-*M$o=a z*|_?>tnKRg1l%*9QwTGrTq>Le=4cEZ}VyK^2rijWZ~~tW6)D$P(q|4 z*75!Ys-euFT#91O#u46lmSM!%#+qXAI8A&iZ>B^}wKsV4Q+>L0Oe!4%<7E%KjT?)! zaivnR*QyY6xk%|ksjkx<&7}LpJwwn5iFn2fv_-LMCf|N8A&~2fZ6JUfHGu{>+cjw9 zTvFi)8|Zz!@tpHg=pP98yJCEJS*GslPF&R4jvV;I{^`6k+J!vQs!Y+8zRHgmyKwl8 zSGZ*V2CjcqVk&7I2${_LxS46_!Df%(72rKiVyD4Gl*4sC;rGM>;Wr`io_R%lCCPIESeUCB$4zsA!XZD_B95+B}Doa=PZNS!wi)W9)Yr!Sk` z=MAms9VQ=0PjA0Cs*Ba(55CXhXQ*Dy3+*_=bd4dE|J5?IO$$Ch%Uifh71H}CuG;cjT*_Qp`pJOdHRqPrh{7#6J-x01po6fN|a z2^PW-+Y;Fm8@Z;W%{{T}!#m@5&WKyQ)Br7B@U~P=P>TIg&-?Ct#|vw$>khLF(?hnF z_S>HrQ>A#Pe>oFI%V|SbliHlC!kc}Bupfwh(cd699Pf%sQ-F80q#?mXmO4`m$B|Snm=`_SJ zhRO_agGY#HEPw)Yw)gz0CT8>kzhZ~x&4DD__~oT`Lyoy8$airABfK0nBX0xzz3caj z(0$K&%5A`fQ?GYB@S;+7nxZ$5B7vnbMZ4oktTCqNtyWs`>Nf(_BzY6A`7WAKH`2od zOC}S2j|wAxwLRB8FT3>dlg{+k4aNbryF})fxIk=3|2oXQ&G*1rAfl*jv0W$0d^HCj z2?vR>@Q3uD0kt53kDojcD5dcGempI%DmvT!xv!+?=er{I;pdJm)Xs_{W31NRX94=M z_=r@Iuh51oaH`!AKGaW%zTHY(%D+vYZO3~ug~qU9F-%{c-rn!+WS!A8+g{(M55HVQ zSa{p*sF}buB+ky=h2wn8CG>_RD|cCoX|ynQ&nVAx%|FJV?k;(wE2drO6@a38&SG1O zp>@62sZZ{e?LrwhJVS)p6GVI=UKRD&JTDY5dbu&a(7Z}Inw?SpV0mGFo1$`0zwu1) zYn$<&=KM_cKAxek3QZY05{HYworXQEU8id^=wXYCA>#G6D*g;<;;5@EwKNqn&gx(JlUBd5&gCxTM`iVlDdV37ko|0~cxvoQzML<2 zxJVoX5<)1SZSQZk*vxzN&JsoS`G1OH)qHH{{-X_cikZ3#ci2+ERjA%c3CWu1J6yuV z3$OcL!<=I`{Yzu__Tt`F;q=l-$8qFzR570oWu`K7{GuTzJ8edJYDISDYE@LsfhV(J z)FV&8Ihj)y&OO0vxCe}`b5+fp)us*k31L{WG@9p$rz<|r?P@=L1;E|Z+@jxe2jW0R zRQ)B-DI!liRNmazD=NJk4REbxead(tXGmgNA}*PJhs5AQn)Upm^_xMmll`+$g@U?j z{Iop%+|APZN%c<(t1mk?W>>`C1|M=5dyXu<_D<#+3y$L{mMD6RNdl3*yZXi7z7(`e zm)d3oiZ1LgxK}|20c7<~g zq&ZO2V9lT>T-H(GjAT7?3ZQLhTha1zuy>yxH0S=VEPxaqzPgey){vSt#opv8MARt+ z8TD;G!K?9?zmV+6p&3!mG)wi90h zR^2P^5XM!xEB>)+X=-k|)blHP%R$g(w^V`(-G>7>v`qTkSV zKEAoshM`nzayn1zi$%-PmPM&j@q{O+Uay?xdW{caMez!N|9GC!-4zG?F;G+NUAoyB z;}IaT&EHXSzkCZtUFSi4^N_cTvVI+@k<`=r?&#uMG7`biP4D|IYq7<$)qkk0G|5<^oHu zW%ik-@)cmM8)UntyF7}KpGML{_B-si!KD;+`GHYJtPtFgn_l2_K5a!Wp3Cv7hTWOf z_^yzHE&fXedzQ3ubKk}o!D-cJHIXqYn=ck_QQhPgMa-8zn`T`!x6^(>IMPBFO#>?_OvP*#MI;FE+K`JQl>heX|HkGtv*zvg2b>2ASO9hch5dT{< zE$iJ@<276zU|YP;{JnB!V#!pTd%7T8tWG z^VC#EFEXCt1Z+w-Zn9snlMRRQ_x6X(l7?xgzIJ1fD%RpZh7Qt*_1metXsG|`QX<^e z_XoMkH)IDfK2=^2&cna8U93Oq$IaM``sQ_6RgR)_)B2V@*kou)c0bG!l+l3Ddi zY6Bdd*cg3@S(9O(Sav+;6bNw*9_A*p(!u#71yh@Eh*Uh>p zXuKxL>9Tr#SD7;N#rI{Isv_q3Xx!MVjo>k%d72^Aw3L^1q=u~a(>QF!1Lziv_c(=S zM>s!vIv1lB2lV`@>z~oV(Vm4yroN4sMTZKJ_|o1p@UUWw?nhZx&PNbfCD5$>3K&&4 zRaZ}3hq$erzgdy`i6_=OfQz5m{5zjT+OZTqz^F10b-gR}6~NWT;VWYF9#8&#A%#kN*ESM0GFK$2j z0gI~%v-=)V#0x)HbM0jR&N^ho(P(Dw6>w7dJbAU18H0wD8eB!t#*-6 zcY&?J)0l0sV{f{1IcSsl?2N55!wD?&sR?Kc!aY5^l%Z{LsDL?@bT2-k`!sWQe{zp{ zX*Y3`@eJ#2HhpqxnY2{bZ$~57zyIK0MrgZ<**_lG$Q}Oz9O|@o<8Nr(7`E=hwyt7J zT4t`v<#o~D)kv}ww}{U#MLJN@?O{239EAXi;TxRlt~=|VBKcmDKIP4W9o6V2r4yZL z#0}n=ZxkCG$_!U&-(63kvNLt~wfX*uSe2YsU`2?Fie;A6rv|1WeW7<59`z{OjsO0f zaR}MYieGhDIiGt0tJBx|phdBLekXY>NxCh+V!Ig?d-^(_2F;6?C(20dFTf0nElA4wXM*$ ziV^ezVV%*5f(#>@ueAY02R!XJJ97IUpj)>L8iuxVo{U2VMKS7Z_~0+e0RX<>cF`JGkc8 z=&XKT*r0!W^&rTu)8p{C8n$Q4rBbRZLhf7QMF zGh-Z!A4_vp*QHHI;Ge|ztLk+>6Ng#41|@a*^dsU7q6!{9XNdH@3l0RElS9pfs8J33 z<4yD0c12o+_hBBSd?)wAkf^uS3wP=xT}%lm!6FixB&%+N;$0&-3_ebTVl^G18#{_jtpM?>Xbz=NoQr+5@;I*m4da+UrX56_$=>bv#6OKeYv zuK*Z`at40*@*Z_G(=ggES!76+%34>Q@?+U^;hD+>oiyz}ox{cf#XUmM@d~|+RGWV? zqeYyu;nAntCk;g_HxL{FhfpxD&1b+9hj!; z^%|X?d>zkD^|LR_X6u$AU8paz?~c_KKi8^nwm->npa}EVHBo zqeU|kbJJf|7Eb9E?RuP>rk}rMzCYH){uAc*f*7P%DyhIsW>|O?c)cXxzkK2c9Rc-5 zUgCnye*9RkA9Q%h9l9^ znpix#y5-H`+K9iuh6Xy7dzyY$oJoJWdBKh*>zFPm+C6;>o0J1Pos-wmdvVRnz@U6` z^abQLLW-bXS?U1S_QudLQ*B!T|AYa{P#{FV1}d82i#F!?g5LKp*BXF4S#`kfN8sqau z2g4l!(nxjt##+I%G_KJw$$AB4QlT=A&Rb6rnu*d;dCi$+jx)tqfJ1Z*jY?YQ=uMC_ zEukA0y<)^=Tr3(_51lzlZbE!r$4wDD_ z7kXXHx#xE~Sq5|XhVo+e;Hq__<3KQ-6}!GoL08H5^mSUr+)&v?TC`smb$q8>FPC;& z$mOo*7(S&%A%TUkm~Kyzc4A_i5u9S6|E}f= zG4VfPYRYGiYIIlEKZZ=M^w^Fc)~2Y508fsO`@D)vHlj8_||a11JtKYg4LF%>f6xhoRy5PVjm zdn@QCmYW*r>OcJqzw6^B*7%ejdqE+#cE!|TGbf3ZZDz7_uNh=Kkevr@$B}i#wa9Jy z?D&koB|hNvR&>iOCs>#zrNdtW*7s|^5^%?Dc7OuD-960&?dkAZJ`MYHO;Zs+#NI}g z*a#4&(o4K`N(=fB$QL-1eODRe3sum=CSB^56t#c4bl({AF5>HV$Gs7KkBOR8c?I0F zHK5F=UOogeLW}cJP*!ux$mx8+`DpZulufXajSA7ATKp=vJkHgdKzs_guCFiTFt3u% z0{*j1+7V(*-K^81k< z;yM*boI*HDPQgz?DqMYxPAbxb@3MeuN2u=Ke�twF#?8-_c0p7mqY`bgJnDMQa?_ zSB(PGh<|liFW*zqkX;H}(OguKloUG@taYmD1o?5joUuJZpynaEa!cY1Dp}B-dHCtq zq-pnqKbV3=t1npr4zGX|mFHwVCJ~3AUXhn$V`>^o;}hD&Y5!sh>m{NdqB}vP0|jN2 zKi6FlMTEyXO-rkQllxH!46{TBtda|rE9_~vz1&G2){mWonBf7Jgqrnch!XHpX1IUU z$?F=5*;s-;Ny3M&hJO4(>(V5i6V$P>-jG^&AyyOgumbjW+Qn?t+8>t)wWlp3L z+ng=>4aJRrE;fMFnwpx&^}4#%$hIrrcT+7B=w=9d0tHkgdWw;S*gsY|j9#VJoU@IL z$)9u$TZe3RaX$=c!h*s4fm%d>gw;ol&qc+*7kvB+zIWjXN9(7FkM6TsKu+L6B$;>) z{j2XjUk=-suWms74wy6hSJID){Oq8;43}3OSOacI+!lTlzu3Nj1RgC}7}7LOg?Vtl zsk}`$Sg(6vqvlgFGM0N@uOq|PGpif8qg!#xxPry}2z8pc-#`B*LA$;FQ?}`GD9@?k zcHY=CnKhtdoDerE=XpRDSqheL7j7Y6#mRq)IN9hGpk%q>K&?@dy=$cQV*J2m(ca+w z*+o}m^RpJSX6ObNWq^pLywsMF+Q~lEfO@mQ_b$1FC;jei?-N>g%XMRtV7Oq!0J#ZA z#@pt*s&(TcRX^T*wkO$}6r9dQ)5Ua`%32(9{;ka2V6pq>N^zxttjokB>Rj33@#l>L zT&n;BJTCR*-CUPQ1f6j54&@-!m8?R8GY89!5n4vOk-VQA^D5UA{JE7PtQY~rZ7@V0 z^rELdfq`i`)f;RJa<^B>YIiyUP%|pE5?%4pS5xmHLif)ISmA2n&pcxS>c)Le?Ok$T zRkd&JMu3$Tz@xRz-(%Ff${)Kn8!(V4iqWc(!@V`bEt*V|fxKTKYsH>{( zB^Cwg5;9%s83U*AWKHc!etUC~e+V&@0#tTWBpNYxt=K`iiGBZ|Q#$I&jfPwRitC4xT3HILqf$^XcximWesHMz1XIFJ;3fV+7oM@(cp}TuHL+_!H!zu0 z9khFGT*<{?Fi*~{59?ZBaExy?D`d!A)IXJfmhRkE6fyK4|hPA$~qL3Bnl>yD#% zHb^%pxwJvat+=YSOD;*CJ=M}7{qw-!*isyzHjZ)VXaX3o;FZDazxybS>eX=nS~dS^t1y-WZJPc&OqOdmVK%%evqK8HVxvg6Zqy5-{~} z{cPh_N^TeA2X2URZFs=Dgg))O2lgOVwT7r~-p>6NDP@l#6Wi92+}fw9fiIT#_{%O` zcB9vlDxM#Dqr6}&}hs;^5EH_&BxyHC;uC+Y0=b4BMeVIx|BBU$>a-~kFtVWtjUtA}@L zBXpQ)o$+Y=Bdx){9ONZwMQK@WGiT5t27`{yp)rWAd0YAMvzY{0g)A{^C@$)WNiujy zb{p`_eD>yLt>#`9f`S{{QPlWi)Rl~$RXl6W!4R(a;3QH}N|zI^Ty!;GuLeqAUb)D4 zpwWIP^m};Dc&N=F<|f9s^wspvYBlBf@Z3 zCXm=?R+)L2L7c4Id&A1Vm4GP|z^q5G)?HUKF^m);I8h^Bl5`qT4?|Bo4%3Y`AUL=+ zri*b1D;Qflt|cSE@a+I1I>}yC{4q% zA8&Y}2Pqg93Rr>Dl_nPHho>>-0qtAPzT{oOr_AI#`p6$~b%%%P5=C?N8S?TPdcmfi zL#5Ws9}#FhZUmpZQ0?DUXbr)W;s$CDPbd(HTr=pbifhBvrYt4}jWdO|(iYMRQKGxL zt<>I?dr_znz#(BiGkmx~N}NwG^EAH|Gy=RGT1FWxyPbGAQ<2nb**AEO+ZW@Bd)lGU zBdg}1bcc~wMMHmC=%FFwS$PG_sgL+!qQ^%K!q>vrQu=un4b>xZC3%L*4L@YS_`1Ca z7OE}xruz`0U3!p63%85;|Bb+#EXx=iUB$U1aYSyz? z`B3mH9^(3d>qFveFE$<+a%&6wXiQG|%%nH)P_MYWG&@(LFf=fM{U%Pc%hAf^(M<{M zFb(TR3NBZ1^~Ix`R{;5S>}=A|+h&U`S0u53R;YL1brVrHSpKKXujUK#{Z@uoK$X%l ze72m!3hdTLi^Nj%m1n=n=%&JfQ`h!5a+GdS4`9^Ja*8>DBn#r|F`AXNAloc?5N4Vf z!mRT<%?1$DK7bqxxPRU+#6r~|riiPRQA@#bfj4}2UHp?+N>7(tabP!kq*m}~g+{FY z(Jc4-=edXgh-khO%Of@7t!r{ zzvkiWojZ;cdeU<9w%NzrufZ@vCkqQT`>KnS%lzr@mV`+66MQGL zVTND{EF6BzXvSd&q1vP1Qx9K0XVQes`uR;c<5$3{eqH{R$0@rrb6)O;tW72JjGh8= zNpPD1D)3XhLm{!~)JQ@ZENybzC>C(0kM>?_4lWghP?pk0PRwua>B?uRb3(8K+QwIiMOL8aA`=yqB$qEGw;zK!QGYMX*UR(SZV* zA$sMj4PITfLfny14(8g-6yLTtY2?(WVv9 z0i5t9mY8&7iuZglaBEaVFMsxfs_R8UazI4PYZvTawZl7~YaZnr5k(coI)lvL6GGD$WDC9%sMz zvB*?B!G9q#b`GfBc$k_*KwEGj#e^e=dRl7y(JrHlI$iBX4@>9{2oO(Ydp~r?Ww^L9 zp-JY<1@)VBgjar2{4cP$?gaQk>K+);KZQwzD@(h zr`mt~KfpR_fRN#ve2yNc;g$KzmN(<5XzMmT`q>7=hAs;ce&Gxowss#t@E^n8TM+g# zIxOvD4eeKpr!LdQ2!vhX_2#ES0lYBmB%xE5SFIpYmk|O(0nz;xaZb}ot}w;u;@-C( zEej?~FhANlZ{5!NRnfY9x1=~#QAFJafsuM9HKujU$?cB*h>l@GkLJk=y}ncx8$!&V z6J$glVU8efQjMRhgV|wPwy-{DXN8eJG zFUkTFub_^A)1X;1YD6oC&%ua*fp=m)6Muq)J+&FiDdQE&VhaP``RzB-XECC(O95KN zE*5@3|I10&>}agjxVpUgyLJ-I`{y%Xwt z0SU@QMwu2X{kapYiQRp(19e}d^D3K;v0$?w*NP-QIv7zSoY@;GIV}H@8T@V_DuQZ2d7~Wy$>qBFhWQIC^PU~W^qD5^ zDZuRpJQr)4kc~CkOauVQAWx`Fy!{5(3Rh;|{^dasiGgM#QDq^<8jexkunz(5j6;=c zrkd#*Gb~yIw@h$oU{Z(->bj~Y2QMA*fu$1H6%z~i5_sM1_Ko?ST5HhK(A}fwH(gLf zwO1OQOEAjPM9ZVyt&19VGr$$+n};c)@jwN=tC@FQC4g*WVAZbWKYT9>&RmnY0 z@ei8;+k?R>LKVFF=3fG56Yft zcTjzuR6@;!pY)r1gNbQe*yB-qHcLZNJoDa)t-A1>Mz)Q)lCHYY$H7_Q1^fw*0eDV- z)bE#ea&optGnkNK{m=$MKIhZ>P**II7@AB6K^VEbBKhJ6WjD;mJgaYr~_%438s0 zHSxpb3cL#T3e{3uUK|#@c`4nr^HhNYx|l0BR~BMbE2|537i%yq z@?cFPY>ai@#=a4OvWyQA^kFI&i>Gd6KL8hlU3s8u>cHfnKg~ph*KE_AP2AJIX?5@` z_CD)gQ2m}4SXj7*$D6Ir;-SBgxwG1X&G0g1tdvki7|}DQ_)*5ovtxOh<$~|G&67WY zxQ)0D9U?SxG|-0OPFCZ%v{CVe5$;V^2BEgJ1XoIv-9csx(J9s2+cAqmVmENg6mNbp z-x$a9mwYBBtt$CWoe9R~f4t)ybIYqlqoB)sTYv&SP3!ahGBVa5M7@ONSYqQuK9#4` zfeY8w%gJu53#|8_hMIVkA2dG;RrXlt>@^-J`7s;&*F2;YH&*Am;NvP$EK#?`tjp@# zZ=)gW*`QFme93`Zx%f7#e5Jpve$obx+!RzRl_|0w^Q%oYd3uR`D|xYeHG+oy)L%tpu&`d zskOJY*JpgJZTV81E>igvbnWuHKEF=4hP*t-YpB`^$%9~*u&Nnq5W~o|;$xM)KV<(I zgqXh8XsyD&JaGKEwaw3trTq+^{m4NW7g6E}lH`)2A*5VHdQz2bRPSGT&KqYMQ8NS~ z8kWAkb3We#J&dh379S8U$gmObpGe9m>a&D@i9j1a@$%;eE)HNdG4(Thx#-capINhT z^x5WA%J7!lfIgGdtykWr1l_~d^S@y^iZu^#>Y7MjK7B+KfH&JdRdaG$NT5P@SxzZc zSCWA`Mxh1-bx>QXF^)9w{>+u$J)x*Cy^5J5cJVfKKgvHz3wwbj`9)VR*DB9;%y!%T zHIL{^owIPTl18CX!LI7u+Kt}u%DGIn`vK6VT|;Gf;In<#Ia7z|=rXW(0_U)kf>5gW zPC(dOQ4#IwNKuzuuqUWty=j-!E#&!}MSilJINi>wabZbY@r)WLV{VpwK8|F0A#lF% z6|iFb<%`?xIW34$c7@#}&pY)hwo1~}37Mvh8sWg;@@u)cysq9<5Qp!(!=IBL)Vbhd zzNUolt<)XnWID;cka<1je3x@4^^Q7hA5Y>Dqm`tO6t#<~b&-iG+&U98jlS(->T16W zy7D+Cbh|EPvvUV>Z2VNf`P>K3M3;lROd|R8&^6|8?6+f33^E<|%*mw~$=!cl4elCy z7muoqJlZadt|hMfkNhf`CoUNUWkdbh8Uyz&Mm?ukmIt|MW#qqFJy7>>ueJaJk(u!| zcZb$vMt3QEAk=YC=iiBK(EsA-tmB&c-Z&15f`B3j3eqJdAl*!n8c25tD&5^FpdigC zX{1JX*QC2kax~JtG1%tset&=R+Kan$@1A?kc|Onk`JBY#(}m>JRXl4MM0`zKJzfF- z5P!WhNedxC9`G7_C+dr68U{d7V~01iJns82y9XzI<6xAQas1tmpHI4>L*cJ zg!LxQgNNrYQ8NG{IAF-K!uQqCwvw&=brU1tq_eWLJfLYBVTlky)oeP9V zp&_T1DVb*U68K8b5HrvgmanS)QM=yN##fF#|5`-;=F!>vp0#(Aog_D3rYg)xmpeK` z9V=eO{yrM4>gTdbn`ac#d#0)9HSg++*;9f(sO4{GJY!xD|IO{y52BQ$TGy{Xe&0*b z}??vZFD7>_rK zaAdRL2Su%GDCY#o$YNh`yWqcdSN#FVRlt+P6W7?ZnC~+M+a} zl~{(i7h;M!X&Ud0YbZx>*E&>Rt^?)pD5$QO1y7J=V)AyrT^qNN5>`I)c#$iMJL^an zPGsNU6x{kS*~7t$wqriQp8g0iy}Y7S+n!sz{&U+0pI*S@&_sK4CrybeX*+#a({D($ z2y!=VqC7da`hG=W9Db%36a%LKS*m>lk-)6!ztdBFK8v)5Q`GzMKC8e)G}q4wMhy{* zJfC?St!@UKrAVdZJd(Na*W{Ubn%*6oh{8nw|GASov=Kg%x z))PMo)n}S26)$)EDm46OHza10^O1*cTR}?#Sial77~h%Km2?`tQ$w^pCH z$JqC(61B3ivb7AE96^os0ZLCvCw6BNqRf{VJ*M?4d^BjRda-Am^UI+|k_DwaVWv;p zFnWBX*6!ojFQfb6y_d7;na@1I5^V;D?vRhjqX0dC-x<6KJq!9Toei;ge@78GWr*pR zh-jC{2d_`idAr+os+@<+g)FV)viX3y=U01!DPB|gk(y@S6atPz_?!04QLIt=zP0-4 z6k<*!0d7j-ew|0aQL_y>MzJmk9Vh&veUzzM&xtQx;>PKc7WR?X9ns-SQ}i?O!_DyT zl3Wh>-=WQM^5?HAS*rCNUj+#-?e1=j+DH~DBn~DgwTf}RaWNH&*vKIlJ&7^lk9}F_ zdBCzq&>3i+s2TmGa*LXEjQnW6a(gz*W^6v|dTyi;;};K<=N?;8JQ&(4WI~ zwpf4Ol8N%0kddBS{IE{iH90@0ye_HV^35&Y2KkLYUaIs;JfeXS`YzkBl{*gLLQa&ZUsLCeK> zCTTmLKpwH17}&9Q|} z{y31*Ht_M;>)Vg9KQ=l9dY$uZMbvP)g;vh{M{DZtjRcQ{$x=x!{B}`za)!KjV*~i5 zY%%^Aa2qaP6&WMoV6~Q4;X2Bg(Oum9QmmQHuan*&KP%{k)NFI85Snq!h`%w&s?yT8 z3nPTx+zy{ooSY!(# zXvv4|oJ%8mr?O(mhQbk|?3R8$aBKziGi>VqDgrJ`DlKr}`)xj^Siz-0knL!5`p{em~`;_o; zZgr;IHz?ICRP~Lg)2goH$&l%lMBEPmd{-~yrNs`eQDQO}&Yt8u6yJC+y?3jmE_kCx zQEngprD`nY!8?3PhC5yD3#A>f_bTAJ%-ny{z3$KB?Hw zZ0Kx7(M$Y&j+HpiE}CDXJKMovMvNR%)`lloDI&f+#HZ9)rkIPYQh1<{?zW@XaJu4c zJo0ArK!mz+9=_=nOvR>8S*5~we3C($K@40JfCfNF+rkLduN!Hr|rE`vROTDnt zDibNgg}TP9YYEOBZ?rb6UE{K6Yv;V73Dyd{UbX0lC49eS8lKI3LvbgCmOBT1!_s@# z-tL-G{5Aae?WfP^V2Ep~D|`CnSoK4K^=j^55gIHKas%I(t_UBnTr}!8JFAJd84?pr zavI)Kkv4FJt6CucTY3rMYA1jtHCdS(NN?a&kV zA;G~>4V!6_jNSYBSApWyES^=P%_DuKYm9py0yOXIbL2CPooZctD@c?YW%lHSY#P|> zkGAYgK6X4$dF}1D?i7Q5SIh$~@_u-Wn0`*COmkij=44+gHocMexvomi4hjt;Lqy)9 zj%$YWnEJqLq_wJd?n*-ew=tpXL6MTCJO!A5)G9l zdL|1p*V657>e8Vko19J08>SpC6MlG|#eIC)F`sH)EpAjVZ!7d#q*O0BIgCbD zm2CX%WKOQ0R^9J-S$i1(Q5fC(`Ev2YN2P?ix$D)xuzPAz^mVBbozHrlcq6a4O%>am zA+!>DGhzHvt-M38K&=z#ma4L{r17j5ni(-lHp}V!Dz8$;^4Ie-y7ggZy8KawWqoD+ zQdQF!HO|!cb!M;90z6*3{?w&mXWL6|YQFky>U&}JsKLCA7pCj=?y?fhZP+xfdV0ox zn%@)^ux;1Asr-#ME;Wu*Xuu@sgLaE+S)W%>o}h<4YWfr?Tdc;Rai{htPa_vi7Q zseZ3-$XWTYr0P~(0&JI%rUu*tDF(Y>?yPN|sqqo6iD2|fmSv`Ijj$*Bwx2k7YADvP zbl8E_m%{06N$kI?v*4URxqrx*E7?(Ch_vEY?-dwDIsM(tv2fZvaG%+nuMlwqTB>e|F&LyyA zg;L8tcVg7qjgOW*Zi!oP+L8%L^8beetlKyvaOISxCAe4{mcU=UUSsH0QHtHy*G;4w zX+KD-lAr$G!n=^#SCWLN0DL1uj2!DRw*!30uk3t|Y|uRPxqW$|f0>NZ8O}q43F#XO zzEB5Vx!c+uD%Rm!Ly#8$H?p*ecz!u~$Txgmze7oqTqwazxwX4I&bc+#1~(lr6LTA; znd(@BiCM#NS=wWX`tIcRQ|4HRLhjTO?OV{U7(exVx}3RiO8G1!_^R4jIGVJ2ZLQ4;X01asRLdE32JGo~* zmmB?>>t4k1&T{g&WSIvQdgXSuFyQ&fg%Ot74^@R}`W&tfvk?CK4+mxqp*_#VEzCl; z?Bza+)GZmoII&@6G~1f;?yiHjS(cIp$J}VE32VU~6VxFjoQ%gQ6XYwFaQ@SvB;6c8 zP668MRSMn!RQ75A}M_O8-%ZJb3}#QsRd`7_CI6?mq(sYApB#@&jZ=2@^Q4 zJ!J93B7y0rLYwnIs$<*F%jF;no;OaZMm8@l=1qT?Yz7*kAsAocWotyY*z2EdvNga_ zqpugZoA+jj`fbF=x>TGjkN3D=tP?_Rq$tp9RcEhWoM(i(Ia$lvPB6*mx{<&C5+GKQ z#L?vdv@Zft3pp?`UaPu#Pd9$ThX6B(IdLvtfEj8o%^f9hug7G`QDVA?rg2}`?-uz9 zD~A_Dz@kfw*V^2n5THgxP0BjVAN`05=J9l3(rQ^SOBUucW8k0HVs;aAX~5HnHov+H z*-~wRyd%D3BG`$gQ0Ghj;RV}WyMCj>s=6=59AxS%XW(|&aD5dE_oIH8<;6)=*uKh} z3L{t#zJ%Zm08ET{$*ikt;kEJf9p(?Fw}I`6!u-(T+`&Jbdo~r^?c=<`(I1HLH3i7; zFV8hgUTSVUkXGLJpig=s*on|dR5hu(GCd>UVXU|A9KU=z-Cs;tMZ^MiYnpt*x39#X z7#d_d0bMFS>iqkoJAL|YF<@!r6g|S%08vBy;QkOF26>A=bWyxWMTx|4IR=71I{2MB zd8W^tnzKFPu_}ZA_nd_#-YCvY_dcayO!)9?K-7o&a__v@HgF`l%6C}8BcmOLdsmYM znOQ*Tp(1CD`wyMJJV=s+JMX#CMu1+EUO_pdZW0WoZT$03y8MA`uuSU8R7?Wa^4vcE z@te4#(9iA>$_e3$UwM4?Q;r9i3uQ}YBh`;b0QIm?4V_kQnc=z*VD-P<<2GNi%9HYwY}LkS9{?XCIC1$z28G5HqM3ziJ0) z419ddB?3r%+MZ}q%|g7>)+xJ1+Yz%Pm)4JrUiXoGimTn|AJKQ0np^S$PKBqyrn}4N z+)Pz7((cw3VD-g~Bn&M1^2ARre(@_L4>9|>G7+ zd{{)DF=2jP?TV3oxDR8fS*BdKf-;qq-R)af@j{SaI?dUfS^~vu|JrCF=`Ev6#Tm`0 zM741<(6_TQVc5rwQRr>0cx$H_d}OfQ{iQIksEsgMAmaU_X}7f@3*Kw_uN_#y^U0dlB0N+ zK&+=9SXNS2;eWr8!6m;~w5Tj{hlviwe|vYmoN!G6tM(RgjjV>;HOPv)L^b81 zxXqc~lZQW+sAU-r0|7_JX6GD}2`DFvxw^N;VcG!X?!4%9A}|KM7KI+18cq0tow@Y! zL;Aoxc0}o+bjgGT+nG7NGeL-})zpCB|+Q>&D*VnWv`7f zo&CP$JWl|zv;q2!(+YXJ|KW)3qnbk1BfSsJs>G`m2 z!+P3wV2)(!`4F+Ictnz7ZZ-1c$5UK|TvW}%TA{d$S7WLZb~R+?)G~d@XZajh8NW(C zL|E`;7(2bAbIUf}6`g>ZPM5f~+6p7f0UA@vbX_LN=X4r~YR|hrlTBP~nPzgD7mCig zv=M|%d-Q972%Vl7-LhG)G6Gz8ClXa7DxBoI$eWq9d>5u)NvGS8{xSNVEUmA3P> zfX}O%C?8soWOnQa-fvZDYFGx~wP&kINh?GZEpUM{=eHUS_;l!5F}Yc{zg3{N)ksvW zJ<7*#2^3g`jxyr*ud_wcSyMZ#e1Gj0b3qSP8;35w!X#z4zCT44{KJu1Rgud3xN|F8 z>1Zztw|AF7)DM#?PMq-s_|f;53Pd`3VQqkpg=*R1N1bYl|M80wXC@A;k~{w zzFJwtZ#q=c-mFkTMhBkyI$b^B;_+A)eWt9B4K5n%fMy6Za=_A*)XrTU;Wc>Yi4aflcR{NqK-8iF&&M(hdBh<3Rc%+W~ zjo;_Kew6n@qd$s2lwn19yJV9>@0tg zF2RTqCW6{?^I~JNwcai0bgBDFp~Wh1k`8=RPK2cj2)doTyZHWTh+^7|#w!`3VDqI% zW?u(ppv~o&{YtxoIjk!{jtlzNc>1w9C3&G`q(s!TwpVN|X2R4}-|Fnt2231qc4XSL ziR1xOdl~uzrb?u;YLB~f`;ES}%g%OM(E~3uG;88FMgXPj05>|cLvLT9iE5YNXH)R= zSM@3nRpMg=2Y(^(mnUDjE}kattH@{gnk=B1VVh5MUcx?N|C>bB@DNX{Tc0a8mw@=F zyxhJfEJvofEvKE{j-cb^deTSiu%!QRgvB?naqw);*$v2XV?AH#U;f#xsH#s%MKc0w zl30C{(SLi7V1-vTrJri^@}E-X?WF|bHz`qA22u_; zBj^N^LqjjvFle_wD#HBp&U1Uwb^lEE!+$sdnz|jgrZbAi$m+HxUSK%z6WMCGq_r@! zz-zw?%&l{*yXji1p%Xxq`LV4vWbFT+as9ECqoLC66A5Vx z+0b`1``WdK6PT=5oLe=c;x`iX+bOx}06ye^4B0;~fC(2zv=9ahPiu&Y9!F1>Z(r8} z0|#CdW!*^NeA!!oX(NzTe(H40_Byvtz#lFF!B?C4GwXNm-}L{%z3^@rbD)EHua6?3{F>v^92<(YtTN9rhb5*ZPM z+zNfJ#G7V&jj;ey5Z3anMhr9diyS7Iwnu>mub7d%(z!Gf5=3{Uqz&w4OuIq5I#9e@ z;5NVc^(&5b0W+0PDBJ3T_hQ{wfa2BBNe!DfJ-f%Frh5ca{D;%U;{2Z6JCA^{S5Gox z(ju;TBFIHWLJ0x_X_No&SG`dYIH|+r6Vv1OJs;5*TAQi9KP}T7%u;?F1Hw z^)VV~vcc&0e2E<+T;Uikp+cQ`vXA7bwiL4Z*Z{)Jg+A~-vo?a|*Foj5bs}mx;&+7! zQSA-_5C4Ab)TZ(HjjjW8h;~~2*QNrx;JEPr|G>z53KcjaU#yht;*qxeCKLhRM!%fq zgZjAxc=Th_O=ZWS>!vN<8(fOM0&ArFVwTR!?Qm5v8$mnCWn}p9R$wCx)4_Jj*eBf< zm;n4*QhfylHX4i1Eje(U-IDR$GU)?FOVVS9Y?_88u#7JxOe_9NVDE_$Jj2wK6JgUqwcx zxI_HEnc^L|7!K@vMDiY_fGzHn1(l!yWuqne)Km7LM*O=vQ>*jM3X?uVOEMrGCRm1*#zsnUxIK8Acnt50t6 z5rnzu^D#|dw+`gp)er8zA%!A1YZ-H6Qw?cAx`<`M)3;Q5EJJK#Y$o|My2drm4cCT& z}a){>2_(hL+pEGedMy!T=JZmBAKW=;x+Sy zp1;vR7RPq>KOC>BLrn;zp&h0x?U^bvarNH(yrDAt__K}8eK}md{@=ocRXA9gjLOpj z4ci!&@-^r-!;Uh?pjML$O(1Bm!{1|~9cL(Otp37T^!GIqfKIdz{*=oXm%DYuzR30? zJ)SAlX~6B0RgTxb3{k}gVM}GKbsS>76y{tKW?%lQcqBqGWWffN+l$+quQM}?f2CZ^ z@IkNcof@)wZ@_`E# zvPN;4Ci5P@mqz2JlSZdLGsHE&)t&b8bm8!A#pl5;BMvH@PdoAgH<6UaZ@tPmE2jxq zAPPa)4(e*(TBCqy=ZBQ^slXH^j!TyJJpM$ppwT7ac%tIr4_lDW@L+t0vrnHWpvZwb;hzm1 zJd0ZAHv$8f6NV4JiwrTslSL=)Qw`W>W3PG#PSy%2DY*G0t6c;944O>tsLicXeqE zh2j@k0``vLlL*GU;OT} zPwi2lsX0-nF~pUXGVGYXTxDyow@YGW8eriS`Jy+bkp~oBe>X_M1bwIYacR z#sK}E;P04x9fqt>8Zs6s0jwNN?;mFaR*7)#35hr2UdS!bH@Sw%U;l8}HClSi(S_j~ z1E^!LBQfsF!Gy!wtZx$y&S@-5@_$&K}qOEpcs{%oD5}0f!D;1WY@I*)T-BN+0)(pdMw#*6h&#C{2VCaG{R%1qKHxq4uSDaIH}rL zKfec++-YMW8CB}Nr;z!?)k*NPV@K1zmw9c3UUlc0OcwxBgrj2ZgUTh-eO*c z?W?JV$TX#fMDH~5;t>bZxEIf_&waCuvW^?=-`%3YlBYWFe`Zuf;K{Eyz9UKmTo>WHIjK@0PNhK}Fiqs3RUj!mn1F@Y_tRw`>v^+HIpJhj|D2#} z{NgQ+xkW_R-sKi*y5SFDjiS=J86|V|UbK$>(@Iz?KfBodl+|p$Ti-kN$y;XWiTwD8mI&{j zM#9&j$Jl`8!=>+i3K2c4!!ELHO6OO)~yHN*tnql6fkzzQ}u`UDivER7#D_mXM$=Prq zd`MUo?f&0-*0$tM>x*AcaPEHorpM+ClRmGqDjWywK zp%)oR2oZ?hIxF-2B`lPsTsg-O>~${0hY9*b54hN0 z29IP$2R2w3Ct1L}q1!7YV<9B8qWuzA1y@8KbooBRvB0S^kJ!){PGK^N{0J_BZgeg# z#Cr>X#8q!&ei`z!>N!4~6km_KyqT6=)>NE&dJhNngIdYqKAb*vJ|=R0DF(BNKKO}a zzHT)$dtu|)Weiq5+Lgz5#9f`q!FCveAODKfA2k2sDlc4&WA+bcRvcp^!DysT9H{=r zRaJHJO+d-Vhl8&7>qd-=Eq5|Xt^oM{L(~Dw)V(K^=M(DhB+rir3td-_bmRGDaZ~SC zf)AuHwh`v8JuTJdVr)AsS6gTdm$d{R-PWD>VHt1Fs`*M4k$aDutw zGF}~y&jfVgq9}Pvmra)Dd|dQ*zpei9mtG~nllal`H%Z@FDMF)X>`#dJmINj`1S^>o zb$%?#zrE{&WeLYKnSWJ!+`=a5HqOE7ru>ntyNt#D6w+A`0BCf&w(od7w-XqN-)?Ww z+<9QEbzjO3mp_5?N_l-+_b4**e7&5k`CVk3@`42FYqR(RFjojf|BbUg;rpS)1~4;?`PH@!=*~RKo_kh z_8(3wc02GJ+?J0;>+q%hJb{ZxfOVd57efGK%KNCtjl?%|3N`NyM$g}&2eQI$GvM1|3n+|`>Ma|T>mbL*b?$xd6$vcLt^mxfF1nmqcJ8^$IP zy^Ly;^RAg3vs2bNfk_L8O!+buhDsStg83A4e%Ct_K$}Cz+)tHaTW$-UiYLE3XTXnl zu1k}&?v}&vgnoe(n_SSv2vtYH<7vJiP@tR|DI1lZ>D5JEL-w&oA<}k=i?uVy7x@&- z*HGW$!;dmv+MhhWA9w5R*fC}?!6A>BD?%QMSYrkk<+EOPUg(BZEU)%-UjPE>Dn`C5 zSIxQRZxj3IG?6k@8g$%5X2C0s{^Zk3R(3W&`(@NSgMcILeN|^|b1W-?NMHl&vE}tK zdEy07TMZNE4fj{u4B)4KX-8($8gNx>3|||-^yJ0an_n<`! zEVjg_gaKT>#FPKw?3@fMxf$AK8E~qbl!{p2CL&-rpYNn^v^Erg@Q$UgYYM3^I=i~P zR4Y~eI%})(j_63?QWebmj7{_)z;1c?jYnZjuX>+fgSG?tEf^p>^G@8poDwE@wKI-! z7@Qt$qV(W-Qfj}YU!R5dS1qRY-^TS;eZ|t9#eKaxW;go#!+w*){4;KfR(Bj1nK&LN z_zQTbQoLDzU4U4;XC9Gkw4n05QF;6@aKK(Fg(*Luy;Jex(tVKw>?_yU@d5q^wAIu< z5lKfLrF9ci@Yj&7Cx_TuyT{LYK1T@Czf0&vMq#Fi0}p=Z_-K2Dg&OXQ)9VcFoRQFDGXsKUBLK*^Xi=#B#L3S_qT&`yCtihu!7^(lxe2W(o>c zW9hd{5?q4LoO(Mcvw^;&tE8El!)MT=X zg(}}kyQfcck~(6T@0Q}WudI44PfiYcRS;1Lf{2kOd$ZG3aM!xW#o<+J($>op5u{er zFyRFtKgUJH82*fwLIwG-!%g>k$Kl_Ef|xLX9~S&gTg%0Ba3v#~6G0?XnA^c(rNs;L z)(*NX^Ao^)s?)pGC9#5Xl}$Wh;iy}BI5yk01?u!*EU_YbL64OQLhbpAZ&)V8z%4cq zbuX!uL)rtgA9P&JsDV%tH0^moAp8#}B{QH<4^T}dUc5fx<#8~ieAPlWM0kS73vUkS z4e<-3m3pkaQ!s5OJB@m;cauyo-oT@M%E60HZwCY$?%22wvuu%S^-BkO#7qX2pOUq3 z9C|g}k0C)XBOQj7(`=7}4BBA7rwjE|>86a1$86BBHfU4YNl@)SoPJu8b^POrJ887l zIV^5GX5*)alyVOpb7xDuf^CjtjfZ^JN|+*cvf9z|wgnM?ZtEUsu-g z#{9#vSHms1#fJ!SgVYu_+uI&943|5<{kUuID*G9Tl;>RM{?P6?GJz7!+ajHhrKvlK zQ1$_pQx2BYv9c>puCzr*H(wF-^AYSLw<>=%`bS3~dnZDo-Fkx=t!$ew)632iDZHx> zs^gz1y})lW{(3Nf_P)=SN)Hisk=~x_vI7=R_dtLzFHjfD+tT1>x5ed-`a7VW42U%N zPlCEcrKzobS3ty_uMR+@{_hH(rY!M>NlN%|nhdpbkgkErmidFhJS<%URFZnr=JX0A zThHU9OxR_t^2)QpCnLyjZ2)>cNk-xUX^W9?#u^9^d#x zpFvss7RFu33k~Z_?nI|cCaee2T9oBF=29J0ZI3mIR_YV|OFTMeV5`WST+kVqgxu6S z6!GjV=6l__B|W97H3V)WqE{nRj9^+jkd5qD?=TOc=OB72f>SXW67=xg>aoJ(0dJ`C z<0D3CgF?R&H#reec)^aBgF{WeL#LgARBGz`KG^y?ePqs~24GH7#l&9oM(g^rMN2at zA~bDoja`0JK8`8xbiZtU@;Pc-hm7yzsB;U$)`@gnny$_JNUL5`UAOKHMrj`h>Tw=U zk%QHf>5i1j1-Yr>;(48ytufmRkSVOE^hbaj^8hMFzG~shXMRfOpzai96=^QkoA_JW z(e#GdFSJE&jx&_Rdo+z>X<|gCUz!2_l-R!R<#mnt(8vKYGGt+6Ph)q-q^U^@KccI} zjibIE>Eno=LqSkj{1ESO1x#@#Cw45I?WpB^0MWhRFLwsmehoRiO4w+=0*<{AB$mCW zocDcGJ5E&2lfl3Ft}M=1`qhnDybG=I9m_B|pWCjgW@e@XtK}^3aAxbGU6rTor9U_R zF}qerO6vUT^Q`~TXM|So)O^;*IoOW3x_MLn?bbBx+cX_S$~I2Q*4w#EaN|S zbvU$k021@1+K^Mjz>U*7Nly@=fys@U>J1z8y){zFsXTj;O|RS4c%&t#m?kl@hyOe$ zhVN&w-gl0!J_*;m5?@w_@tk8xyTGG#J!KUN$WhF(#D-J2B=3e8ns1#x9K2x{)javA zKH#N<55JMKMFKhPNbv8y(9oq8_M56c{iA7$I;HUr!RzR(85M&vUu!kQcaG(3m7|7b zJ*2&d2@@c*+5*_0vf+%R%AG9w%lSl{gX9ams>0*5!it8hB*+Gl;=D5hM2|4kzx_e<aYY4rOl6DeiYR7V6XFZxyLyNw)1S+Fw!gjTY*{L^z9Dpsx_h%CMYG zpR?QpF2~i>)iQCCsGPc{2rSJ3$%g4u8^g-1QUzRyk-|(^>~lwouQG#rG>*i+H0z-z z9)_X-GZ^UTEk#~6{}0C(6}LG27@GfIUd}Jb8#W_d>rSL7`ChuEr8I{r<-t7OeDRWf@w!Ua>HqCFbfIpR*UeYus5^#epO@Bibo{ z%JsqO z&Chk0pMQGDP!4op!4`;1JEYd}aHb-T`dP%lbiR1~`VPUtv4gfR%PJB@C$z<0bf>MW zmM@g+9G^!eIwFiB8Nm)7nu`705sj{U#!2Dek&kk8U+1gtmk~a+xC96ep!M!g{w5lR z8^~u9MBc8qQF8tGCI5w~94&T%0Nw`H75K{hV2Hq*4Nh?`cJd@!IQmQZig}?`T^)=o zfTu&_mPdi`XQU1@ho6v!(!_$|s*{z2Z~k@YhF)YKlfTBaheTXt5dLelMB(s0=Et+c zkszt#I-XNu>v>iq&n|ifE9PwPs+^K<`nUYh=zM&+J}Duu)kUMC{W6Iw(etD;l!rG) zvn^?J70%14;_214FgbSPRII{m|G5c(9k5HaPWwD2Kugy9pVk2T~I z9ax9@&Fj=a_m?AF5Aa=+DFP(7QY;+5YLS2FLpaFvs= zN2k!u=XKDJ7oH;7oRbx&<}+-TP08UC&qxRHTqRsg=3U~~>yG3&A(^Rl4$2VYiZXwG zJ0rG=`kE~ZROjd9ewSZd97cr;l^y=$%ErJBSmLIC^KzYa(-2%bP*Aagh#w#EA|}2g z3mEp67%;&cj(49yNoJteO17%y%ud$JZk@LyR@_>)%Z`40u1W;;D< z&nEQa4-?;WNP?{5BCNx^*B;Nj7Ba;_ok~y{L{YHd^}LhD+hmn#DCOO_OQ=tHYjj?#83S(w!hnjgE9v zDUt-xdSwn-Lk^z5`dLs6mfrgG1)3`cIDvrob;YOWQ0>_HU9KMv(NJ5IW5N-B{3EF{ zB=3C_z39!O5uWm7(M{`#$M_=_kDBYD7MML~Lf6j?8gG-#gH9WjmQz3WqxKA&RXR0b zK_dt9qy)4irfKWOVZACi8)yEw9_;9Nt)kXv!ZW!yGg`wG@vZQur15u4UY1BD-egL= zlr5w*#n}RBSBt8hkz@tF5J9(K$+!TrD$r+nqjs9(;N&z9#57(<{6xB*T>)GoR9a`_ z5B4#z+cVn@aFu#CW|v>8^vc^rhjiJDm*ZlKQt}F2cJBYaf(qoN67~1rUPBr8TV#i>w!i{Y;jk^$#J0trh&JF(I zv4~%kQlfiH(Da4WG7PC>!L(+a6>kQBsFT}4;64*tr5o+U5SYLhcjLD=J4>P)Ld)4e@kV8wmoa1wDJ2H zT%TX{nCrt^CM#CEit8XT!0ggz)>Abljy&*fmKjUu@ziqB-d3ma)=Z>vJ3RG28jf_; z&AJ}L0MlzOqn(|9EXXQ*it{n{CkE4Fjs-7}CzXnOHdbPM0sBN0-Ju`rWeO~0vN3gm z547}IZMAI3ot#~Vv|F+{iP+0YwSn*C7St8=6SYShU;#~uI{6|gl1Nf5HAtw-WyLQ- ztafU_HbcvATfu2N1l&z+3oF~mJ{^25zGldSg~W?xyDhv$G4!Ftj6$3h3g_jFQ+Y9D$A(O_ zE-`33TrLP2i(n$_uI4infsn@Dw^UBOqE#LB!*Ge!pYpWAGV4u)w?>bjRF3RkqoZ^a zW$uGt<3;TH#J^Z>q|`IFJ0UX11lXwZ6$-H*Ww%~ME^IG4+iE(lE}?8l^%PnKUD>7){D_n=WY>a;z|NtXsI?x5Y)Sxm&^F&9S21YoBXLzuh>iSIH8H@YPdg^tUkz;iVb93q#%k4aB69 znSE(K-hCH!k_;}F9Ah5P?W~fAm`_ESs;QW?J{G6sQX#bgpu=9vzPilzktzS2uK(u^ z(T==u<-2RA9TlNtAEW=IhX33qSGTAuR^bk-sT-wK&oigKhp4ivdc{S z1b=6~76F0O-J}DuL@8*R`5SwekeA)~+aXhZJ-;)IOLgY4_NNVq4wV!#@wI;q zYGf^SU4-EBa1SYGbMsfe?WImzquk2!4r@l4;<83yp-<87@v$M+253ES{H^rdIAIzA z%!92pJqd)1(JbB4dX$Pu0%o&TaTPrJ67SJ`0fHvL=8E=Vq2H{iVZnNtB1OP)mHe)EdLW<>&xEQ^M0zvpB)c?bEuTz^F4e4*xUOrse7}vVKa@-#*lCG=9W>ZU)%vqN*~} zXgKP53s3s#ex6~1q46@?t+FwhNPWSlXeR#%De=o?A)9_7Y9|$}`c&X6M^$yO6JY0x z`^CoreOXBL;!@qamq6^}q@Ncq7Rn4#C`EQ_Lrv zmpFPJiSuXZJlLpGH^JKkAL}bTAGigqCo&KYr004n(4ZBXagS3 z|3%jWS3~10LA@pi;D8R&HXA%XJPw-SpQ4|4WCe2WPNf2Dw^ZaVM(m1#=HcpjQ$PBK zMB`PDATjII)#5U`T*O^L3+dq0H|PD3+7Ix)h1}u}1r@O49008y#EzUq$n$C0TzR78 z?2wR;2I3-FEPEr5cZKz7Sd4Lk*5AHt>3>mglKOu@bErC`IKT4P>yR6EFFM_}TY7?f zUBR66q@Qqz+3|~lD!x!gbVpVOvI4OF%x^>EExENV2PG*J+Z#YOs)%IGA)ejeMc*~x z?}8~D3qjUJjcuuzwg=W&#u3&Nbf+sIf#s7MEvn)Fael|hkdTzTqVMQ$B~^1f?=bd$ zailhGTrFMggmcm<%NGsIdZcy6e-!gBxMU1Q69*|TTrT8csm!-pI#Q>04pkrs^7BnN z_r`F0{-y7rZflB|S)H;hE-j;k!Wx!?a;^|s=eJLfX${&|Za}5XJ6%O|I{fDKpeV~c zO;{M2;J$!v%9H%VDJ_{x?9hd!2i@7fKs}aQPL`g+m@9qh^y%x|z8ER6M=cQ+zXoc} zSu&y1IVy}7|HVJ4+ea~Ed*^?Mkx)^I=rgMB1S-gz-}GyW&K**n4bs!DapJyK((WbE$_I5HQ^x-+@D9a1R6G2tP#bME6u^@YQ{);sf8u2~G6vvy zXd#(C=%VBu#OED*U*Lz}3*sjVxlj&iRnO}=^j_Xw0#~wf%9`o_AwRX+eNqtQS7d(R zDcRRBxvSF&@`YNhh7+LHJM^jQrrImXbKx5JgGt%B8k+VXwqEzx2)mYDbw*HMxC3yi0Y_ip^K>*US_m+Zaa+8M-?uk6y$EAD0)`K;~K#`=7Vj*@q_KSs9TRQQ%SA8 z&Qw>Ff+FT9R>4uOGvPlwHEYq|>*f6NbShDF(^RU)JFx-H=wfFTKcO-p;!Lh`R#;|V zfK)6l3>D5_@%4{dC|XkgNIDinX>TarX4}4aZCXFSG}0NRh*{4cO?vU4bsY9Ro>9^B zHT|{0ns71A(E%QB%5f>FeUJ}lppsP6{0G`R)bZMXmWlRl1TzZus=HPo_D?vJ#zEqh zo*C)7Yo@FPvKwCJfWx7gVK;)IvF7J<&F*K6nuL41UkLv4#U>MS@LK&Bz3*MKTBc8V zr&+&;9L%kzyMqK2%fEh9eMnBS%f6R$&i$XEV5EA?e_(QX&R^Z;;6a&;=BDI}#$fGj z^f=t~ym%+GV_=7VUPe>He*|#zlOb}aY_pqR+9^=4`M$-#PS=^2$;N`JS~Hc(i4D09^$QW^HIUc>W-hN2Uz2xSDNL zby<{$r3XHtSVndRiR9ruYyW~U2<9;Wdjl8P#ZEPzHCaa~S zmU8?5lvx+n0oA&Nd9X(`ChRA z1&BxIEup{+-c^ZP@qS6rGF+rUNhv*tcVxT4yi-}3^5I5J!n6CKAp>qrJ6(k@U7b>k z67Cv4b0{P$SJnbgVn{w)-(-M^Oxak({u{L()n8xr1Gdv!SjIG~{BvZ$iy_-V1BW~< zf|w}UYMi&9s5-syvz;YoFXa3>f$OBA@aw&HuT$X#3h%s%`eC-hG4%o;-Y5k>+mYLA z*=*1Z=M`!jx%$D$^FNl(GAyd^ZQCdy(t>nLcXtX(OLrqF4MRx|DBX?ZkOC4T4H84w z&?(*BT?4;o`+wih9I)B7*4pbn@AE>mNm94yvi6I0SvnX?!AaPWUwMi6Q(s0YWVs4xqa|q@7N>g)ToQGAd4f88k@MAT4_R188NV#*FW= zC19=ed#-t`i)76V+y>rOYoE#xmaRb#O*LjY-WH?LtTd)6E}VFH z4zd?wP*+O}-w~Wk_`Qn^kESch7x&eH*{t&4c!L=V9(xMuC(YLH+w}iVzW$7-5YpVp zgpZX>KMWE*d;h9-atRvH?xJ^xl3kxZb~1r)tm1(DX7-b%H~M44K7pm1utYpv)WoRh zAcqhz4uUAi{hF##&oiM1}%%uGZSfb=Q^|&h1Du|!I z9hC`cN>fW?_d6bIBuKFb3BpQfPtlbwuJ7d$a1Dn)PB9MF{3oV_ueZ9h6FZOfjxBM$ ztCM~%v`A4PrkUttavuQ~JkViL)lO|hop17bt@hWi+*dC*PadP_n((TDlhkSC!h%DJ z^-mN+hgG(nkkOc6O~u7M4XAHU=-8#jv#;`3x~N)Yo-e8W!!W>OZJfm(D306~OH@BL z=lJPE-6qODG|9Qj(|by(J-6X%6e*z%xn`^p%`e^D0&=72lt%i*(dB%kp{qWgDS+*( z|2u~TZxp`Kn1jp#VoDZ4#&Eu&_h?Ao%Zt$KqHi0x8H1aNxgs48&pIYZiF`4sM~cSC z_ujxfns7uq9ON`6>ui8z}Oi5r9rf-j~;KJWtKdu|FzyKKWf?p?f&j;`thm#5+%& zR}@CG)D0ToCAskP8n{L5S^Xv6a`p1;MAa`tNR91kvf+3A?a)Lw(^&Ev_1)a>MItYV zSu14{M*2Q?|1d@7MNWs3!tCmG_S!NA2eze-UDVIkJYXyKee3&^@XsT*C1Zs=bYgej zoT9h!-3W>OYL0&PAZFLQdssN7g!>d?r>IVn(Eviq{vKKK?)aHniK?5>K=4@HlGGdx zEl9YRpA9=gIB_U0yNoV*6)2KQ*753Y9SE_|YzJ>q1gQpq$21hGx9Xf4ZP1ZRP_o^| zt{$dOg2d}Mz274AU(|p{Ulg2lTFA*`l+Dou3F1NQIY1SBAQ2r83yKTkT!lkOCDsQk z?5#eHSL3RI#%a5B_nT)$xfP#c_4BE0>4n$g3MGTwRktvMq|Nnc)?PWrJi7JYKa6*~ z0&)(8>P0MW_kU(cMMwVda<^(_9*vw%x48e1c8hu1P+#wgX{T8R2g$hyfd>zmcWO|S zUZ#^rTKBy_kv>)0d~?eCvLlAV4`7)*^XpJ5AZ@IA?D~i!c{(W7@;;LX?t2iR`S6o@#K-UEeP|-o9)RwPY}{+y zf{;FViYfoGL}a7b45UcvKhR+@uXC@c(TDaS{;aUnBq%oiQ&6Dw{P^X*&Nv#Yg=VoU z+R7jkg`cLw`vYdq7Yj(8dnF_^&&@lj34^a$je}J6N~xa$r7CGGKEKB7>=b{aikrWC zA)sK0i=CleleSsSgt$6V6p{gf-+tx28v-}t<){P*m|al%yD zxYL`^O16WSMCRGGJe^_+l;G~R*CwyhJ}1asEUGcJyDE~bdE_H)bM9K^8J|7AN5NV1 zo7&@87^ z{xwg#nE8$P?n-XgCn6m=x?ys3q|ae|bd+mh!Nfd#5joV|W-0o!kO z87KN(A4)0QlG#|Kugm1jSZJRY_oT)uQQ7_yf{J9{tt>Hf^`n&)bdkRUr=~`9ywi`9 z8U;fHSO-3RHOsF3hD5r6re^8~ayR4%N+kSip;<$SoQ51c1ptsKREpNfHVQ~A*ngh_ zbIP2W-ZZ^y#wxndhPmut-TaJXYY<#d58brSb@j;;eKSzoywXGy6WmXS{O<{QlQS@2 zLnHnX#0}zAQ|r+ALf?m^lhI|KCc-LWHb*s$)Ah@dgeQU58|yO0^GQ}h9|vzq@f}79 z<$WJ+V5;cLrtN5CEF@G_*JcEd>gLB^7e3Z6r2O8giO_fzO(^b3l6IKKH1~ZSqxar~ z7?M@99H=H`6UeHgqf|e*_q!=Ar1bk_$VglEV>CaxPh~%99jNr0zrUFH$}zegBzz$8 zAJW50DqYh}LQY;OmN3(AsktbUzUOPVAEP)plWzCw6`z8Yhqea$#n(2^se!0z2aOKk zGg2MIE9XNub-{m{#~)5HMA{W64YC0~ zC+d4D+l(qmYHVL#+EH+4t7_6}p#m5slLCDGu1oxIwuMq#`}Am>jjiJY1N^QIb&3ZM zWFAwII{WzQ1l{^w49QH8H7bfbu%O%pWVubR8ee85yq5P>r= zXG<5im75J_MQeg7TtlMtU7MN(3;kP`gRR~AD`r;8)=Ef4gS z>2P0ZL#>&`Mw@lN(N;QpEphc4@i6{(5Q97Bm9ELwZrpcarpse3PtZ!KyH5;?bfD#c zqnG6BF2PhSG}?@l*L`VkU^ZZg{cPJtr%*?025q$+};VLoxEAQZ@}Gy;4}WPu=Uz)k5xNSg zVq5N>N%_*JJbuYmd>p-6zZ3N*{Roh_yh%GxcG_BE8kus0XPdhN-~IRf zJq#37Z8Gt@?`OBF*SJv|c2BLY3mymq9978D#3*ZCY@(QBWF3et<%&DK_=EgCW_)sq zQyG$FRUL{J+c8~YgOZn9-A7)tn+?uQIq9e-G1u`brS4I4oaAs+_@+ZIx2U!btOg>> z0xcOZcv0eS)kd}5zt1Llk@?2OspOp}2Dh}^LqSDH`VE(#eqiJ|575ORFXmody%TcZ zSG!{piYYmhI<{VWQe6^J!5uWy zv47khbA^OblGj#r641M7db%+-Jz!HELKCeMd+b!AzdH0?tkUrvuOe{ee(qB3)Os?A z`k$*FD=E*qB$4}2a~-WKmC!Y^8=GH063`v90tHkxGQKLB=9WePp5i*CtSSf_=WalL zYuvJI@;0szPU&Y+pepPORe5_lneB8pm{K}jDXmp@t|-R=+ktY~36(sFDf;3m`bliZ zEELCHpWFjA*4lSr;_&oGfwImMJfkzl->HlXKWE#I%z&^K0iEgnp*A7tDP#S!?U5aq zcKydGj-2AbX2Cfw2M6B^PPzAWQ)^bpt9;dxcLI1R3p+-2D^K=fT+Ngeb!B5F`JAh^ z*qCj9lw3~V#ml%+7=An-)oCBJlzMo->vh=D<$l18;}^$f(4yGFLGCb#nI`4OU83^G zEuX1edmm;PJ6rm!G#KN<$;DywCl2lHm=nja^$ztRboU~Ekn(k?+MTv$37J<&<~~&$ zuuTC29gKR~{rRnW5wnxpkZR{A%$1_$FtBpA)zGjokcRq=1obK%WAf8qWd{MG34EzP zj5flj-=hF|&uC53a#d!#T^sC-z(Hi9TX#q4JS4mEQTQvU^Fhh+(Y7ZL>nXhoW}$+1 zqkRrJ4qfjRbsD?*W}o@dj=!eJU81||_X#`t%8=ShznGuitU5GDXM@G2jvF+mELH?1 zBv`EfV^-fK;u}k*y-V$8lzHs8)P7aJAJ`Vl6$PmiIzl^lU#|*1gZEIAU$>~x_Kjld zOz=}mZty3ru*+F3qpt>`8z<#mfE?Iiv>Vwqb?5wN`*1z4jbmGH7r($~x!R;&B_$nv zPqMg&$49PA5jE7n1xO7}{3E~J>ML=*H8bK>J72CJL<^%cZ%q5KyJ?4yYO0j+NmI^@ z#K{gIIJE@&t6@}fUc8rOj6>&c>EeZUv4z^(f|6~rN<1j zRr*}%#4I$B0wQy^^blGJaG(KVd>>rCgdJ=pCttLn-YW`UL(@kKHDf-rUK1P`YC1VU zyD2?5LrLV{YNkHTFl!xu(K4MZycaXu0eN!-RD5xdpbwrN!xz4b*xh;b( zW`tFZw;vCi5$pqcgh-veP}0`awVSuQ_|}3@43#%zC05c>^t?M995TD72nMzw#to^3+v)w=_3y8@1w9pFkK! zs!RK^iOQq~ogT6DoKh~BKU(j6@lU7GtL3q$mWbfC=R)vXj&QX*9(6C?!Me`BV)l}; z6VD1UGBq_cYtRnzkL*x<-^&XWfm(*$#S5$(j~&hj=&5S7I_K0y&7In+QooHXRz(+6 zyjVr(kSD9b(?PHhDO;@uLr zzy546w5x1wg}t44Ug)3xnav8?XRn~@jMcM^fFH&;S10SBrNcvQjZcd(`Xl=em zuLb5iRVr`bhCm2fKc5|H!{W(u%YcCIWqpa&w5$)qzX$MTkdWz}`vcjoPbklYc)KRT zkVWAvmX_Ew<$yZVB-su&ezk9DEtgqBUzB?6H5*;4A~CEM4k)qWzxm^qoBDs8smEN! zbC^4iZ@4SzC4;Y+D7l3XPrmIF9`)N?XlrLZM~)MYN5z6-hv*v%%$=0U$~rvFxEyNb z*85KV+$+84o#%%_^}H5cc8=mJfaGGxJY5Hj0QPwm?|F7%rx^Mr{o&0V{gfkTzW&ip zZB62g4GX=gWu#?n28rNmhFjv?MfM|RDEw=Cm^4XWLD|vtF7XJbZ={Kd7^m*h479LW zv*Yyy%g7a{lfj zCkGqYAn2Z=Be(kJN@Nw=O>J!^C->P}d~QY7!^*|>3u*w<33x3x_+0rJ{XeAhVRxedv~D1IS^wbd49`r1m+er>|o2&c~W)a%M4u z?e;|0m_h%8nHtQ!pIw}oU5L+~8;#-P<;(J%VQGcn-ErK}KX=}o<>EUr4qEg| z&^1fd%bdwYvkB@vvon>`a9yc7DFnXO`pJ*X^C{0twGRmrf(|bM59b887X{iK!IYjjD!QL;FR(m7X;gIms@K`pVm?Vq9Wy zCr3No{=!L)H_(d}3t3<(UG)(?9+{2AdNuS4HTUbZ2#z9>6U9~>aKpOKaWQ5+nIbxy zgnzCR3NbK&LtEH58;=7UgmY1Qi*g||V@l!A=!It&i(R!}ej|*|qfJ#F`&u%0kV&(U zoG)f+yv}bw#I-q$L5O9Ft+u}v=HBQqZ?>m4nc`4i2+P1 zX==R&&*s0IInZZQ43lGYHqw1OltGG0<<=-aI4vw*bVkmI=jEgxmJI)U7lT} zH5GKjp-IvY-cn{6YMUU3%S9hOwXLy-D)PCuN_fLyqDyn9oYPsKqmYD&QztNz3sTO? zbK|O^Z25QdBFBFq;$4_G%j3%P^@S7v5gbkDuQW1cCuQkh+3pZsXAQ5 z+szx{rwopE+WD_<`!lZ$se4{~TBwC=PCGL;E6~?{`C*UWXPxvh(n|Nfp(d3Cdc?jN zg5Vz`QttKtkkQIsO<*UQBEof?L!Y-zTE=Bd3MyvdpRAv15ns~rmJzQjSn%Gd*>O8q zPP^T!3)B^7>;6L==});XCWU)wO2bw5cQMN^gAA8bt?uNans#$L;SGSZQN-x&w6kt- z&xhmBKxH5tLe55xQ}ZP=0=1If962nL&Y9cw%dK0-v zun8}&vAT$4h9=_y-`v!@Dw{N-ki$MvIZm|+x~nQGsEUQRQe7029wLwDfkxGDW^-1{Z-PET$9qaXFw7zG?#&oT7qV@)EZuPK@4K2E3ox@Od zV#z482&_9@b<%adIg{Mj|%MYz8(%KeV8p|R# zuyNOjJIx{uPmggo{zD>I*nj9N`6=(@&heZVL4<;I6p4e*u1qAECceJXo|Xi65%|F>FQX?I^)q+NW5lty5>TqIog-EI$T2)8ks0x>0`u>hu=W zc*_W>c=eX^VKM@kZNu|eCMo+S5bYjkCm3pNoJ)|TNOItC14acoYMpy?^k^3zJzbLy zHZ|2(Rzh1h+4vW9Tbj4Z;LOG10>0HAy8)SANqVrai_ilACjHwO}mFC z9!qesLigJJR6`FUB~VAzJN2|3Cg?6@N9Jr|2pe^VpL{GAh%%{%^C?njW?=AAU+WGK z=WTu4sVUP~p5F&|g0lpjA!4;&YK;mUQg{jb6Ds)o=SIz$3Y!fUK}m*YD?@HaFGiS0 zK&5a%<(WK4d~)oOeBS~;V>34G{a#AT$2sq;(cp?s%N%~cuX>jG2Z%z|F2}qqMvR?K zvYkx-e%A=3OD`McVbgovUxK$&*mi~#j?;wmr7uB?PLjv^8-RtWg)7Aq?6;IPJe@nh zQg0@*wp84w^Rw9>CqPD9aAgrT0xVmoPpukepnWcg@ReQ^Z$=}~2nsKM{sv%!_|>Q$ zA+m?L6SA`%n0~k*wIgy-ddZm%X5NG03tz#TdCV_=`=IDXx$-rSWeL&!L?ht8Pr7Iv zIlL!rQVcx4=X&}hyUqF={_6t>^Z8+)c2v#?Plo4ekYGx0Zsa+lOxw8ic5Vfz3L^xV za=TR&dPAp&@NAVqBiVK8{X0^Pt0!y(5Fyq@z$bYimvgkT;9mf}t6`?eDe!p*R~nBk zMZ*?=n_EgPe}dSTT?&kBt&Z%)tfM(FmDk(@z(cX~1MT}7I3QX4X@~qhlzTC@8UgD~ z6CRt)FD-*{4KZByab>Q6y`s(Tjy1gMqkEI&*qEP#B)3t zIoJ3;ql(Eg`?njxdK?peTTQ3Uf3>ShFpt6aFV&O$vC|N8lAR76WCM5v=K{t0UoF50 ziQvAgYjG1bYJQp=O7JhC@1>$o*`4yH*3w|mf!eedKEO{nxkGGEouJFqceFoTPC1Bn zIQ%zHufUem% zEw{F(!$3apmQ0D7LgPGO-3lA=e$7=Xjil6bKPSYZef%-c>i@K)bjtxyw{?>K&{US}d3VXJ``7&^Ji8+~#VAaD0E< zAEUYMBZf|E?W8JPF6w3jl9KrKvbWLETW#0MYV98{s61OHmZG~t2<^ly6HpzXN)?o;jn)Z+5L>{?A2S5Av3 zK=g2R)ZZvGn^c@s&UY*#v$|ifJ|;EH09v?a^#e&42j>g3hff%ape7Et^1hl-TX6^{ z;h+d*q|~RWnwYk%2^0BkY9KY(R23osZEd-ytuu3??>fSlk6=9(hAVZ(Yt74kIZ)}& zaQ^?Qx|kWEv7rb47N?46RHiU3k8Vc`xparV*B6^FG~}VftXV0h@yh@-&+ronx-F!K zIy7XRmV226bJSN%gw_WrF{E2axASsWY_;YD2$POgT0YK~3snNdk_&Lrg5=XgIiPp4 zffe-(3qIeDOVCi3M6Cqnmtt%s#2y|slhsz$RLq9R zK+ErK+08G#(zLmBr>DPY95AoNJ&1{S`jTjn1BdUs=K=iE3mF(2SAz+w71@Kw(M{V<^qK;0ASl35m zq?hp=#1P$G{-SB7VaT5>FhIz^39%I(WT=ApL#`rbheWKtF#I9aRtEL9+W<1<+QV_p z7{lli7O(hcl>6d4XYH-4OjCepKq$l�o9a*wTbS$oX2N=)qyQ`$i==W_IA6oHmKS zbX-1uIUezwUPe)qqoB0khCDKd&Ygv9smT6K{ZOd!ECwsbq~AVndas~kX439{1?(eh z+u!FGWcFN%fJoN>PclPP1Q3YYY{xd9 zVQIuvqdlESRT`@As5>Z^{uAhpBrIiuOtS9Vi0|X;!_1>bJGeuBFFxHXV9qV19Efx; z2mm6=kp(Hx>&M!yeLw#+=sA0Fo?;t^N548pE)^|e&EI5bLSSx zUagHY|BIy#-AG->ur=9!-xagIB{C`zRFQ3!^E?Asx?qzGmvW|%BE5q_p?+JY?8a!4 zC945pNn=Z7;5I&c{z;+Zw0W8a)L(}7@KYPFoo^-p*wR71osr$eS)^z6Cb-4RP%YyQ zxpecgLfgm~>IH0#H~u_XT{5&goV@*?68fx;Xm3ig$-y5hukdhJ#G$m1l+;_X~EOd-C$sb%4(JjQ#wkdGvHE~#?3su`v3 znNJ%gySIzt#wNxfm8&uOU|IZmH>>G(=&SVvSvQA-uB5U_Fud!xhe zzUt$DBXfVquHs6@tzbJSES9yc?(0cCRO?AGmGcPSdHNfo17W=YoQh$~3_lWNNC;NS zddv}#aF6RJ9-TqduRwejnE8;ahe5<&Ex`H`Xgi?GbdaBCsPh3|XN8k`cg5kF@^tP; zMJg&~1vqYBCf5aS3HP!vUoCD^0zjK{Bss~1-si60%-lmczP^yz2s!lmO3w5lK$c3L z^32)bvdd(BOWOlPvH693aFyu@AGNX!o`b?iaNIRPhYk-SEnLm$%y1{D3$Tug*lA9^ z=qb~D^uGW2`Hd~4+%34*4o=9yVRd}*ZSK@cL{)vx&uo|J`C|mvr+1p}J4eeQ=Ae_W zeF3N+Jn>;h0C5kr+}nLoy#J?e6BHLiCllfPT^Wk?YKax6?N6pd(qlQ$hHh5QmtqUw z{f9xnNwU#RSmF)b!%gkRzQCKBLq2=fA%K@ zOcZ#h{cQ}wmA2gFqWy+fKYhdwXoi+vP!N9i_G}-ph~+e@7#<@E3m*R--S{o0?{b)}(eN7a z-rs^C2~`^2NGHAz**Gi)r5A0-E&#C_)SNCP`Y(z%BI}uHQ7^bw$$>g8vbuMzY~2O7-ruBhPHQKZeOd)@Xc%OQv|aQP80MubM3Pq*qmp3lqE z=K0;w4ZqN^enuGuN$_c)R1QNR|B{Uvz@ZQRD-~f9obR)Sk0$A@pFP)Fvdt6c;`lV+ zVi&7GY&meCVrC;?k<3s)B&H%^ZPTb}@u9A-3U}apHuC98*v9|MREObLmaF}1AcCGz z65z=@58jwh5v)T>GTvQNzNXwuNs4DOGWvI8v~^pbgzh=sB=%qr^%K@vNOYQjUgP!g zDn2CMO*!)#58AzSx!V}g!PGhDOM_HEv11Pwo-cHgv9X2EuNDD71~tgF4WWwC1nrD)S8Q}Yx|uWm|Psf4!Q1-|D@zJ04O{#bJsN7 z5Y_m68B97Pz>1xqz5kJ%D`{WaB;{o`8IQnI&S2{Y&l)|yJn)YHrR13-^Lo4W^KRqm zdxoqn>3-5aRsv&BWiuc=JC*|4zFGucOEB&u?c&J%y@6y*-2@SX^k4TH)#jE1I?>g0 zVxi`rHwZJtONFAWArXl0Dd3BtIXyr7c_O zecGx+@FkXW!Z$JV>+%$9Cis+-?>|HxulM=nNpGjG%O*^&>5|wgtBRy>m!zw&Nuv6D z?*~o$C-3_<{Ks%lKVZ!R{5fy)#Pa>Rq z&O5j5$=&dgUECvWuig0L6W|Tm{0thx>!i3sW0Kk>JiC#+xux7r*X)EK$50hb)_z#} zaOsxRafKZ7{rK+L;Mbe!$Q=KXEU!1D;q=sIE{7TcA46s3%}Hziz6%IdBr| zV=0jlC9MOcA@E!n*l}}L@TQ_yFQ*#KMh^1ERc!C>KWg>^AIG-G2`yv1~Mjgw8&)*Y!zR7SI^mTLf z9C24{k=nzt<6lMaeVS0L7SYC{@7+v;MRK3ywHEg@MpDFMMT10)^>-*a5n{;Bh}rcr z&@r)I{}NKkhJGZGG5^VaUSyMF`q3A+@}=+hzAB1P3M!G)XFn~fO>dvzU>&D!daKzx`KG)Qqm4dLe;alZ5)Ic3aPHLt`v=Zo4CjPjZISH#82J)47+%nHIf9@>NMoYd) zRP477K(+_nz5ZE8M&+Gg%-l&b3UUKdF}HZ$y{_T=Hvb3>JshOoZNvZjv5)Bz#o)en zMjmbTWom~5pQx2$(@Wm&MpHjG)nTfh!fnzeVl?)SGkL1!vF(Af_d;$92E|y-!uPI< z`~3i4blt|9$et!=eXjvh6{bT&TiDeceuvL@ zs&#-Y4dVUPDfbe~mcl$Pb>vv~gD{B{d6|(qHQN=Ha0OVp5Pwj$nLQ{5%7pbP>w)T*-)Bs4K-n+9|#nGyR)l5BX)Frh5w#4$t=|pW%-wq+9El#norM&1VL}OB>!F^_A4X(B1P+b;4hj3Ee8>SxiHmwA-23# z4%qC=r39pY(*CKa)KVUdGz?>_Ah*POS3h4JjyK1y8T72`3V&U-&*%17ic53)9be36 zD4k!vV4{C`PRW^&uB&>zLSPOO8T%=^xp-*Mz(}H1_Y23p5BwpnX*UYFv_GQGDir1C zD|ztw{=*DM$PEc^%mgFm?E(@_0`N;R&f9WeAbiXw>zZJ&|5O z{zEcRR@yX-m5sIPAkoD6$JaeIKd5sSjfAM=eQWu;AbL4tJICYSz}lE6{_vot9^Vl{n#6=8pBz9&MKtxF&u<+)J=)$jW+!NJX8Cggac8)*5r97mRqjWz)uw3-W_}_ z$G>Bwlza;r9E>stbha4CJWOch0sQ~~8q9`Qkn&QR6#3h0<5zuZ;QiUMpmQquOf)o7 zWQyG>@dV~iB;{|gItRUwMVKfyr>t*qa7rQtt@6=aRda zLbe_!jnFidQd5N#h>=f)ND!sI`2{+u1<6Q+WB%?}4*_$2hByIi{Wz1UsJuly)Cr0)dBf6-w*NI`ul+b2Z7p~FOq;y%5Jh_7T53oA_3d67`% zjoa$?QkVh|-W+OL8pWb|V`s4C7h8kd(arS0aVxpJiSLdL)ewSp!FXXdWqzST^W`3Zi6cwbUBLDC*408(h}D_DMIn8gN6qUfUTeD z&Tq;Z3isHhzw!9ImUF}s(ijEG$5NwpzoRt-cN7D)n$Cke`VZ&gW`xGSxG}gAGhw_y zzH=Kxo}$*$q-9~$frrxLD5B*9tg1wrnGx#1qI-YRJyV`zlA7BI5FV@2_DVZRjmM37 z>E+tPwMgffi~kH;M1(LqTE->v=qtBXNd!35bdQ~t$AG)TG9k|s8CESm!BNFo6xrmT zuk7ECl1&Z1Jk_F9(zO^Qt7ez(S056Ee7OE)ZSZD*q^VDl9;%8441@8TO6#;t1MgzY z%bame!sk{?z)Cijl1`60!6L%!?umarI`=;*Yx4X^Ng29u9TM{%D^c<#uE9$nvJ$yP z0g0^Hp6_J+O_TZ((ETDvink;mEmw*xOQPG&?Sj9>J?@oTHUNWakv0AN($TF5$4&Tk zy_u=obRYRyQ-P8oJ4kBG)Xu4Cv*{w5mdADJOrvG@o=l-~oL6oggrkZPX6Ed3_3MDB zsUwaua>3Q-MQxIt+tli0@u~SV8G+u4d)x0fgna?w#prvqJQPar)kU`>#Q#o^*NA|FX474%@J%Dxki1n2?>y_8s7{s$aft&0RS-)nB@ ztt}*4i9=}mD3D`s6+nNm5o!fPMLrL*14vceAN|4)VB>mfd?lLrCS=0f4CIh3!wTN9 zo8(4hyHPZMTk74(wru;r#SbG{Ge2e@#Y0Ee{`N^%Y4PWT7&EV(w|v7@Ldl>Fnsn;s z`kXe9SKQ2^l^|yf1V$BIqczjhIR-a?#K=OMm@InCS_9@gNDoBMCm}Kq$pvM`1Gvkl zfL&8zl3ugC8@Y2Wm#>%SZ8^!@t>aSTu$oyhZPIj-#0bsnlKkadKhF{6@v5Tn>V=+n zRF%nh(~-ESX4^UgG)|hlQmo!y)s-ia8!1SHS>jJefj^^{6K3M|p3?m_+tKe1*QChC zxE1PLi1z2S_^_N}Ip6w7e4THao7j3=rb!Zox1zn3URftmQAJ{3Pr!!27Q31^yOcjd z5e+P6jU{`yxl-X*H&_xiLVkPjQEJjF6x=zXblt^5qS3`hrduZ+ryzs#ftHT;gqBe~*} zl!sNiU%E4~aoS{=2>grk$}h`ByyD zFqiIg!&XPVuYDj>bYJMexEesyY0B*dqJb%HGYAnAknJy?y=+hc6 z8!C#XL1>Ka-;(6fwd*oS<;bP0JK4c0|H!YTZ)lZ?tFY+C_cDl7wO{`a93&inJdE}e zYZhQrCU>b_7;*O@a7w@u)X4hs1_z+aEV@@x@AHy;2YnAU4sT`29~Cr8cPioNO3EcI z;onpuy79*+(=k{c5E_s1D@nNw;R3EwXk`{ukqxj)^|PzTnv{V9~PQ<*Pe;oxX& z#_Pr@wkI@&wEVnokG`ET8=RM-9TrNzy^%3@Dr{@7jXA|LuN*Dpc`YYO5b8sC+#gXZ zs;xt)b5TNg@ofiu&(n8yibpEgw%@1r>-PL@jTx)`VYSD>;2#sCPp%V-Pc7v5Kr8dRVoNqs2m`Gu}y!qlK+76i+37La>vXewk{)VKMU~kldYhe_+^HPh=P| zS=>TP!c|$ZoqQA$xYI}H4(g};Fwp4`rH?SqD*YuPQhXV>1zsb@;v`Gfwn~cH`re+q zO@A=`Sn@eRy7Zs{{$)<@<;JaAW5WWSDbw`sr8PZO=x3AmJhI)a?b7C~8sBA)Z?GMc z65X7N=AHCsG*i9wRTbkpPdg$zfjg@vJUnpOVmupK5IcJzd4MFqu^j5!^QDLwdE0Rz z&@YwGI4c!a7kb%D-PMMq{uJIV-Fa_#hgG(cpIi0>61f6=)FeVtBDtpma#a0zoDDAtCINTd{>?{Hzy>Rr*7V0WsoST>$BaPo z1m);Ze=nI@C_*e?GuA}iVE=}gEGD9mD^62@s;IQ%R^a3ehOM&^a}lP8W;g8?dOG{B zso0mF;@opnn8C+gh0WnqQV9(D^hElU30_MsKX+fd4Qc0Be3b2UvE2Y;FW5JD`O1eT z$tqOQ7?^9ZC;LAl#~=#nDJ+`YN8b(dvajN$v$tew+bdy@7OvpCr6tCu9xpErUo)h4 z<;Z0Lazj9>$X9>&9oQ%cnLQHcD=|Q@-E|8*7c-W*5LF6ARM03`)Y?*i$z%xq;1iXX zDx+ZWp5C*H9hda%$@o)AY=<0=Msie0u{T#u(bh_Q`7-8#_DK#fb#TIbj@roqsgYG6 z+?OcAqkNgkXoiXV$D;bQK(qK!a?YB3HDMcf({a@Kq1&^!Zt*&qdh98j%&qZf8LV&j zL%w3U{?HvZ@PCazWw-LJRf@Vq!*GwpwKk%S;Nfkv(4Fkc&bLF=&%47HT@ek~S*{9$ zD3>M~{ShL^pMbJW?SUT#2Yo&&p|#aY!_LadZBxEnh{-xRxMTbfq4J0tIFieB7rP!$ z-Ffz?^tc!QnO#0=w5Nwdr) zP^Gy$(3(_2PcZVZzz}=#=kig!Onv>G#^y4v$(>t?{yte~YznmaFjLd8@Wb0y`(v!g zSeTcrg+#ya8PikAw{m4dA?6|FT>O?6#d?q1Wq!>RTaQ0f%8#_qGY}l9wS36SR;R+h zcYGS-OylCxzwW4e7jS;PsUub|Nqr|%6c#!8UOS<3nveuqu`x<8A}%@Vnrc6-rBgQ5 zqnYheVRZrxD9W^}3{at9%*#%NHbNlzm$(S>mW>=OwQ)%i1o}B!+Kf2IInlz+?nty_ zmUBfK1^00zdojsz)RWpiad@#2dGbzO<)9h1wQay>!PRwv1CNdUsh|5z5)@kZ%O!UZ z^}EeY+Yp!o?!5bEd+^x`whY_qYqbp*v=wxxE;v=WwY|Rh`z`LJb5UwHh!Ub4Gug69 zKC&kBZ@FPjzNw(Es3${hfS?^>6y3B~L=K2h>wHp6ZbuFT+!JRmr(x|lU)}pe$9h~) z4eh<#sp^|%9R0NW(FPT5Zlph4{gBoMumm;kt0W0Ckn%=HcA+X zRpj^=+T(bQ%hP7<8XF$cN*@`MW3y_3jiR>)uscRrKlMD*ruWe)Sn5b1KUS)PisIa+ zu*lBKQYCW;k9*#oO%|&|+^uCP9Vz%W9yt%u(vwTQ@l3tJthEug!dWS-oea`SXKS_e zVf#55n+tVnGa;sL>Xv|Z_r&@8-k|_R~;6*dF zr=qLXxb)v&1*O8>zmS!5_sKi>0g9&jitz)alZC2M6I^%;$u243!PFS<>b0oB$Fs7z zo1r3yfMP0nVl}6%+NE|KzeTN%XY4>g8-;_5AQIZdJ@TpW{}@C*hIQwEXTRd~!GqU< zXk2yfCK34}I-b$Nh8bt)g8I)JDVb4!i4nTB6{DW%Ju%kQRCy;I5hckX7bq8RrkazU zrze?bvL{7A-=yZgpM9HC82~Y!=}Fx&aUIn@^81tB#RDZo+{sq!GDCmG#`CuLXmJU~ zaN?BqywNz=RRX#V)Hv~v*a1jD2IP8Gks}%CmU+O$-!zHTq?FJO{ zE)Z?T>bvndmRJ8ryZm{6z4Hu>%Auz@MOWUS3(;p=dE^a9X!EsyBf4rm#x>acL>l%b z`H#nfT83nt&>tJt)>0)!#oqFgN=PR7m+)Aa*_nab9RqH^Sp1v7Q7WFhto0|p4-=k( zll*1ko-U0a&#{Yt^=WRboOlXe&{%ii3xh0iUSL%Ow9a*M5nYgJ^Z5!JCgtc~4rg?ml48e^i%?O(M~@N zo2Oe9&vv`P3!;w1NVuHyHk{vV{MQtz_JTV&Mf!EMu0ZF+yhDYtJ-_tz1e-rclpP%i zUuVTaSWUDm8S53Vl?bzq3(>5t1MpiW43EvW3l4nJffDuF<|8TB6}efs*_oPD)I*5( zp!lENo26M_zeSn6h|E=N)+IhkWHcTp(oXvaLu$Fqy8R7?xG~qdB@t~AJApFk*z~i6;S#Y@dcsGAuzQGj*vk;2~%ir~HmicQq z6z=7+gfflSqeYuX$$uTlWQ?W7Wg4t6WY9k8czPS%%DraFHE@v)!-i;;7;zPp4rzVg zF2iwl=$pJXbk;Ro7Vv5mrdU@h^sprr5ndL8+sxEC8I&^wHqP@6`U{-nZVJVM8=u+z zzcw_~pQA+~v`W8*9V$+4_7JhLhbFCXD~jo?A}4(v6cMYF`2d!m(WB=)5;z$pMm?{XJ#q@liI&-?y-gh2TsXQBq0eS~Y7 z?fy3k!9@*S;C486(LX#q4^P^1U83+P|N2@x zygG%r#z?;Sk5ToW?#75M;EE0)n@Yo2baJ>7ZDYI1y-TF-;llK{KOc)cMQChL;~q35 z8#R=B&spBb<0G14cu!D*SKF*=nxyQ)yBQRfE3>>;j!%vdBX+xW>%kAL1xcA2b_Q&N zCUq^vmRdK>Pk%hA7ofd@rb6)@M9&nDuR_eDRv$kca}G~ZR+(9Bo>Cx*;`)AdOsc{u zR+?dDQFSs)<*(Blhsu%z3G!CzK$ z8bK}k2@mCxoq#Q}H7ZKSgUU9DREtOBKC1WKo^H5dP4h&_lmMFs^PdJIyZi;2+EGRS zhjl(P*@PXP8u6|)-sHOfBk8QentJ~R41!V$f=EcikOm0}iHS5wcX#(FsSN??PK6QD zjWnZ?2I(Fp-QBhCd;Gos@7e`tXXl(f&;7aY>`9{r#5vin0)?E^98L%s%gB$8NI+K z=;fsBcliQWl1WzYT6a}-E!7j5wQY4sx1$`@Wu6x()fQY=)5yuEXwwv+a!Q?#Zn+l# zOya}c#X@!Oj)7K+6=PEl0gqGW15G|mZ2i=Odk!&EbeTA7glz9-84D&VbOe5baoPd{ zGR&i{zOE*-S~I4GhfB*mkY&fN10&%><%vd7cxJ{w9N-On6W^v!>;DM_h8C?)*Y8TP zwWQ-%qtJ=*s$c@5AEtYLb2QZNqn5O!2J$&ATBp6v3d-8g%&^@TTI1&i*q+5R)OoN4 zl8>gdJT%>D7R~1YyMO#vMT5)311n3hsHexuCzRuhy&&M#Xw`-mPw)+HRbqtyLTlYB zwAuD6GMl&>5n|eh&i<5F`&^zhU!CyuF@LBZ;-2;}NBzK8PIhWuXrK|5i1JSNbp!y= zCw z3ZZA~+mC-vk9F$&)sC+AE*^qbT(*ENA>b?PNRg!%uzK5ohv^oT&=Ix-HxZc-U0FK01)Rt) zCX*GUJmu~NmW^E*r=sa!d|Y&-cDN?Y1q-WRyTpF>;6nhNKtL9b=*`Dc3P)4WF(&$lCIQa)b z<~cG$^tCOwE2{6KS)8I&`OD&%pIS7_4q9i@2V0*%us-I@D&JV+O_Xj9dOg}-`#K-jua1&H_) zTuONF_d~JUKQjY;1=)hx^uxBW;F2MI;5Z4vI+$=ACLGVhVuaz}Q;)uz7y-2aKaUdE z%?A5?;QRw#^Gb>tv0_no%V>EM&lqSRSuY^KXqX$r%a$>`^?4x=bkFrVDs3aB>G&KV z>1ef@6t4^)R&MdL2>6-^3!rkQ&l|!hSj|N`^SgfgaJYXg;Dw- zaW9_kaJ41D(0xsao%+;BYc9Y7^68?ywOVeNZ7@*a6>(_dfL#_YbuX@=ngnR0ATa@+Q~|GIG`qS*dNLLOGCR zJ1^hnc6dhW-_PctiAkXPZEl%}wp>1@^J@4zYXy45`vo%KUT&8>ElM;lmXTd|KVP0V z%e$8jB=YdDqv@-Ce`$K^TUu;F{07pgm%v26YF8d_>)Ls>j*k_WP?%DnB=vEieO=Kp zOzixa*J#pnWX?t{t;7&Txt_h9DSY))32wE~vbi8zp@X8GDpUmDeCQ8xt{MCf%_IX` zGer=B!(?I7yiFx8+UlzwO_Ew|qdcZ|#kU7sEwA+-wn;z}(?kIWfj2qiYAp zU1qXdp%VYM+9thNh^=a7Y>%yZ!i0ICzrV8tv{I*;bWW z(R#rZ5JXhny=E}Be#)thqH2;deB8)#Zb@;jU-mR~ZSk|_| z)});52flZJ4ev-%5{OvYI2#7=D3$0?eft&0eIQh@CnMLI4l#;1sCxK3WuVP*31BU= z$Mr#ft7{wB&{}Ni@i|V&zv7VL-(J71aZgGsgl&cZf67JHjvk!;wyXgHP_0nyb7;Uve+Jq0>3&>z35Y z*EWf2vE^iWJGs&F{QtN84lTxV<-xQJ>~)j7?S{x@6jwlO@WfteWuv6W48B_< zBtXfht{K-hH=VltHG?cy#gV-bu{;$fSuILNzw2q83j0nzhd(4 zRlUWOdmbXX^(os*4xjWCBO=RIO?7ME3hkK+KSa|2IW3>p*3cmLS%W6KMB-(cGbell}f z3@ivOGMk|CJm*wxyKegbyGoRn%xC2n#zJ-gyA>QK{MCup_+3fv5rxwB?T^qgT-7MJ zx8t}BaIb@6%F8LFPyZw52D;PDZ8Q0z#ck2iXp&4dT=%EEN}JWU>;ETaMA1iFduv@O z03Nu%!Uqj_X4qkm8x0Qc zjFgixT*Ne~{FS~GZ}}}x&H%<=Lfx}7ADPS4+vi{CLo{m?KbvoU3nv3TZa>&IGNX>} zc4=ll7OVg?)dcA0LB4Ta?#Sx3;$Tn%4fB6!FIlbMu8*vEL*uc#j5IfCfCtieIz#R! zbB`%opV9F@w`8rEq2Fl~72Y>r#qQG~6xNN`9$(%{rD1%qIndww@zp$|Z&S4+pG8W~ z(H;yIaRz|au?I{bPo|$M z!YNiUls&{WPEHM~u?^l(^Pn)8nbq~2-lgdfO;=9MpSb0)yh-p+S7mmblZs8oGok#p z8BSv`&6lvbn+FA)=|6f#(;gjwQI&{^$hnMdE;I@~$;EURoq!(efY5Gz^*C4Kcp=m%{a?se3b(3cesQ=qf$;NJeZkGP zAG>nX@`N`z*8X`7LIN5aWl5w z?r3^_eE#2`EjRDxq5Z$N!z0e7DBgZ?RvU1{7Q$fn+@IAOZg_{h^GaEPut?Gc2Ve@BbZTmcv_z)GvKljyz%M5jM_k7=U%YK6v}xn_HI$ zu|WD=yOIKadZ^AwrZnJb%-FuB4#^PphdSvn^HOAK{Fp1T3744^vR>;*qG3S#Ko@UY5!q#~&QDsZOIn2sz(>e%gk` zz^y43>zKbU^EVlWMqoP;CM~7>$PkW6!%d390V| zyagwr^3nyM{-ljr*2S^w{t(Z#*(UKUy10^Z>Os$GG z<5J>6sz>9UkhT;{z`U}m1%98u)WEjci$8w5epyaGl{<_)M5%uKi$Fk)OX*`j#~wHp z&`)A(u|H#QpP;PA|A78bN_PH!Fw63KZ^((o4J>eN^DS_BP!4n1jkT1VKe+#$G(Oha zbpG1o@x3p=;OgngOn{+frh#&Cx?&mOBy+{00tzex7>l^6WgN3o=RQ@-2FrTw&5}C) zJ6imcf%;W*c}2oMBikoEgft?&8XkD&pd-!-SH=RRAZ5(`)P63D>iQS&mOFZvl*Q_@ zsv*-ykK$9Rp4wG6i%$lzaW$%`qv4qw5M_tizPl{{TE)7J1+X|%byjpmL?WEif>=U_3kBACi1EbsD5I+=hy<8O%bEwJ zkdcWc>2NX=yyZcsrN-Iwm(7-pxDQ!eo!TH0WT_!i&y#JqF8GY2QXcp+fgu~|QqY(R~(zvF*DS)YcnqB7rto}eU)Ar=JQ-j_$> zWmhzNo5mHgRv^TJ9wLawK0|njcyPb@Rmb$5VnX8!8*lfk(Hmi!NQSXr1&kgYVrhcO~$GKbL(tySt3*`zVBFX zEzVo}Z)TR{xNcQV+ie6swmOcBuI#E`pN8#mPr10t&zir6YS4xlT#nMxnBJ)(KA8Yf ziXct`4Ym>gvk#|oM@$9X4u=UH#mAG$l&2S?<-#^n7c@@#f!P-LE*l374>I|0%lI(k zn!~_6+cx{VLA#?2%L#bgdxc))7-YgS+ezFwPeiYl{k=ita|RpbOZ!#(dO%Ap zKkoI@YKXGZ2lXW#W${766+1K;NrOxwhRWN0g>1T=;>H6L8Mj$rv?gm?g?r*QP=L3B z$3@>6}E;P%xm+VnE4azi$JJJNxd(iU;yOF_>kUI=8y*p|RaG%BVVpY5co{ zr|O&?9UEDxSX&(z;H>RWG^%7yj%8nywb9UL!Tn~Tzwn>RhpGl*ee$6x+?J|)MO>CH z+xem$%^Z$mYQM-Cc+rY6G%BWJr5^t)Rz1@<>hGjOMvuYs&2TfHb4| zhxR+uC*Utn7QZKYiV1&~-~H7CbA9ei=hjP&?}5JFd1lKZ6NV)0Ag?Zd8&$;4WoE6(dA z_-TT)Ti=c}n6>R29p$RTMlp*1!}ZiUVA1O1ubL=WONC6(XwTewU3ZaTRqu<&g6n?=2i%ewW&50uX}*Y; z`yHU9#2+8DP(>rpRZNTNw4f@jEMydX2g|Hu$6~?%NH(yMf(DE|`fzfeR;au-38w8h zglFQ5wr6MsEhe(R`wr$ZdTjD>Q*G?g99VgC{QF_sHg90XOp=_|0c#7(i%MuKONB9t zXoZJZv^5s6MH;09NkU9JZN{i_X+51QoxA3=!siz$Xp?{B{V_qqS(F{XpiXKqqfZKW zBZn?xk^nYhUiymJcpn6M?ul82((rg9WM;~hqVw{0&jf>m(B#Z=p<+(YK3t6|C6l7>pwnqkwL}rFwCgFT#q~YM*l>;eVj@m?+6PY7OeAV7 zd$u$b==JuR0w%9^eD6>inZfmG zjEkO-uQ~+Hv*0Xo6koi4AkMga!?IP!QsVAtd%jVO07>zjrfDs&+-!W~8Mu$S4x=r% zZ!qiK??WN>xrbOm5wHC0XNN7#8y;xpF``e^7Re@=m#Zq)luyxTXJaPZg!i$@q*K3-t4Mf|m@jMp?-`N3zwtPv*7A zxA8jm!1-*Et~czT9RdPd(P)4R_?nvDl&EAX2}iVNT4oyDy*j*rP3^p}G4!;Z zQ3wNp<;mkV5l7EWJ%!A+bPK={xxSm!k67cvvYPB)$I3FFjG6ZQsGMZMTDf3LMX)B%1=Q7Gc7Z?IN_p_1U}oH{-%TJt%ut2oG6>mg=fS zL+w(Io_>Qg29wZQCqNWvMkDO~6+Ua?>M*Mj7;HSJ`Rp&FSFB_IiKXjdXo&xS#eBp! z%2RN3cUR?WHOm^$vp59fg6Dd#zgX5xW;b`brbQPKx_GT4&Cq*8%y&OkKol<8Xz_uq zO3z?GQ)M=;YpINc{Xvju4vgPx*k2sg>E4N-nj&Hg3UJ{qSL(3G1bL*>I zU5>nD{2A*Qyc&S(RZK~Fw_a$+$;M40wtEIQm47J?EKd#XeyWm;@8%C>NfuO%??v0+ z6MPV!ObLkF56e-}aRj8G;UgnZH6oHE>^)dKznQKOSdrv=Ki+-A5>rMN;Ng0{^Wtjc z@$$zPY+QWkKXv-SnOweN`)odbH6yvhNTb+N=%I9_N6#fHRU`KOl7=lj>SHNcL~IhA zz{o!Cj{#N7bAbw>yD`jg1UmY!j|VnyKvFNx;Ak>RwcoETvyv*YaD5VonWGQH-lL%n z%2LTvX4z4dQOS+V7srM$(3&>ALgv45XT*aGu$`O4gz_yl;VHZ-?Nuji5Fe2izME<` z;M-w)vKdLjj*pE|e4Sh5Bqo|e^wV_!*|mQ=QJ-BaIW}kB}NJ0LW=u7pfN+U!1v^2O~!JzAowds2eo{;U1llNXh~A*Z~*t;Uly7n<(J7rtIO zwU~>h%iW2NE(p`SH29J(t4zc(eUZ5T#;>VN4P>eAagJTq5563YKh#;ZZS0$uW3jWW|DW0IeSPs z`grT!w^LT!-Ll}tFenCbJ}%!O-tJM)?gU$!am+XQa=qFNok|~703JTvJG*i*D#6|1 zOvBTyc&~GDuNi{Z+&q^X_qWzF{xM|<8ltA-c~S92fZ0#4?q4vHG3{jmU4Cw7k9tD4)SQT_1(lfBcHW!4Q&sG$6XHa z;T&!ZHA|Vu(!`bfLi>F5zUF{XQSSUa)Y^ZVN^w? zDr~SSiIK)!abRerU5ccvmG8(j6mGG{#)RwltGT)VC7yAH3EC% zVT|$Mate!hKO{Y7-h8qdlbGK+JiMB*VV|EO$Y8~($3x8AX|NHuX4L&AZ)+2vdSvYl#vNdc2XbeEFSDx=D_zcIw%0xh zJIJ^{Ck8w+#2i6`-(Il>ixg8Sx{Y;+7?CvaUgu0XWu`ctJ&3a`A z)NbEi7!o|IstJ{yG7BfsWj}DvjS$ahKD=ml=9dWS)NXX}O}o9ThEL^H`s)F^09ouX zjB(Y%Pj(y?Is;Pwp@jr{7XmxNHS5mEpss6v7^R23{r)rC%EOD>0$U5D-$K8d_mFv0 zfOzEuL{8$K8lHY*kUE$dd2HRe{xiHhx>Vk)r4|0cZhr_lyo<#Bvu4`d5GQ(B7sv+A za3cy2r`w<>3&8=J=h_;(daOkIL!>aUkFn1?oh-Y2qvWHDoHlE&&WIVY4?g{N)~wY9TMf2#`vOBW2r7}&e8b8r@|A(U7cU%9EbT2>N`WI5 zh8&xr-Z~r>OhBf@?>5Fi^+~dkokHdU|Nn#^yx(v%6rOJ$>k%(3EEg^5W!-W{O-&wc zCPNoqOzHoyL@<|*7nl;m5}wZp>k*+2pw26)x4cqnZlSe7UJ3At2EBwUcht^atoTV~ z=mXa}2cFJJdsyCzIe)qfqk>zgukV*%AF+Ni30~8;&2}9O)*JTBeO45(Juj%Nc1zB^ zhRW0=-LrGr%N6DT;jIqldAnx*`Fmb~P4qrpPCtEx!ufV0VKgxY0#;}V%G~?JdHU59 z-t))c(DXE6#Lu1hX!m~U2`Emv$%m_^P0to{l;^E{xYg66P8io4*3Vs{kxNxw0n0y3 zS--bESx~OKsqsDaXb~@w^YG5r-v!UddZY`QN7yo+6S2E8kiQ$wjL2!l*?P^G+=nqh ztuvy&)zGpar`tA&q$egS+Me2giu!5a*cUvI-Q*U6yIbE5Zg*vpw>vrli@$PwHH<-j zqPd2@hil>U21;XBs)L4jKOlOasCEs?m#y|A^wn!8Y;7w_MmqD;z^v_m189g_G*3#e zvQ8?0mvgC|DmAPcN7CRfAIUl&F(G1Q+b8>fI8pqudMSB2#4h86?iK9y`qB0xbdcxI zXb3mirBVi^Gyzfet%lj&r!vQ(93{2Lh?EAumOdwXK5wF64FmV;z0Bg~egES#u+>G@ ziyK(i*@~f!9%DJYDPy&HiW>P;!p%ifWrz-A3sMx>c>WEe4n{IvY19-^{B}w+dFi0e z(=d5Kh*)jzA>t9p*A*Do2t2$xN8#e#YkyH#uRxUAwqc%f_23*|7!%s2G4|$KI~V^x z%irL-(pmoa$0F(px{4|7;oqzSPS%s$h!*LS{Sa4gDdy4F3Iqd!@~*)d0@g|jnW|b^ zUejRTN@bZ>;*UxhHcLo;Tedo@%j)L3viiF5e18Dy*?UZBp}BY8YbOB%#>m;;WsVb> z2oZ9}{4WjNdIX_jecrGVO?639a=QkgL<}Y>M}>nvNHbC;_sC8ktYJAxN3sbl7^uW zF?@>H{I%E@BEloTen?ZddB5@aMQkcvsshnuz!CDTINh`zl;>EHZYH0~#3gkq*{X5W ztu4zXuCy0kXuIQhFOvEGgp>lUlv@7?8)jvfC{%)|DiO*b8V#O#J~)nD9)DY@O+8e& zC$w+lIAuCeT^q$*v2Ej@;;4I}-kHfaUXU_F(Hclo*U8Z`&gXR6Te2sog)BrnbLrYz zroKr`S!H&ODpl(?UHef5dUaEi zy&~UzjQ&;J%_gv^+9`G63&Vmgf=NV#SC290Wu0XL#i(q1v7L^7_Uk$^{@6%R3_j9e zSK-H2=^(tASAwl#1y7`KecPGpF+*-%)gk?=QlbGSI$~?S*$8Qb#F{<%Vv$~_tEV)= zAF;V_Uw^q^@14peCIah}aaZKz3SJ=q|IKR?s5%K|p^AEE_r@c7r2IL($f^ehS|dj< zFx;LSb!wzY&35vs#ybQY`u9}n%#H_cE8q|F8XmBmhRnAGw^-qp-FjQ)yO-sa*DY6Y zDjYlfEf>S^!~G8}n6L%BMnFL2rGen^FZz&nW;8pcbghHO~|*Imr1?{{Li{J*UoK^PN4tLu>8Q~ zH$zINS-s%!WsaL5{^0Y1uuRd@&v$S=cjj!za7HFH!dTat+Mb*Jh}`7qE{pGP$OKf4 zAi0X-Lxu}-PCe|u<-LL#NZ@taj?Cqbo`;q8U>@+R2aLxo5yQ1GKdA~o`jdmEul)U| zeORfK(L<~8E;M+f3~)CiBg6H|FtX>Azs7q6s60F!y}Xw6e+Iiz`V448t?*-Qqe$&S8l)Mh46yUF*^>u9S*8DNP8mOoZ2M#cI(2ZviVR_u&#hZR zt`sg6r~l!e@jz^(Zzmrwot0;)O;;2b>;N4$qYQg{=c_EZK7Dt-$>*Bq=53@@Y`uTJ z42AKsW=_5eOG;DrTuz-lwiv7}(Rf^U8g{x9H$2|bYCe6I?}ipT==?!8SL)AV>7Rv# zGZk>g7s#K}y24|{`IJm#iH%}_$q4K4Y~?P{~k+!h(Kz8&$ydXa=mVDP?41Q11tRFqFg7DzU8L34{KKL zZk*6kNf}B3Gv7}<$R{ih^D%8DeIAecd%k4=-mP=H(UONJZe9T4-a~8VB~id8m)o#P zw3%6Gmp4qISWgj}@zFR*3isBI_o$CyCZdV0VkL5%qGV9)d}qNBVOybjT~*aTR;^1u zfNmaQlx-@WVBEcdt6GqJ+g|E?6O^1+ymD){^lxty78kd7zKE=i6e(wuoOtT7At!to zOa0v_IU{9v|E?8KOkbVBg>rr8+uK4eyiwcV=Hb17Uxy;Mt4L zd;g*J*M;Rvd)Z6=v)=$rM#5Aj=R#QblckhTbPd9(aTCxhqYN=4)}M-bsh3Oe8mF9% zltbo2V6LM5Of7#VpKn}rPegvxqVZ!P9C4O|H)`Uh*Wlp```m||nknh>K zTzFqA&hWz=#OX$fgGfJxuoUZh!xA3FJBuN<78AGX+Rnhf=3?2eJyMdjXF3VGW;$79 z{VAIbLey*Aa-5DNcmBufScj|<$;f|IyQ0hcxEjU@xvM!#RZ3^kKc=$J&7&pX1^UYg zl_(o6!6fyQ5t(os6c3oD6ieVDU^Lk#ttmi6Amm(CwnuL@izv03#KJ(Z17a==1+YRlSojoto? z)6fa0l(VzbzI(;822V{%&WTyQVd=mnRLbF2D5G8vK>NNNEAg~TuAnfUS_03Lm??2# zBohjsg+W^Ce0fAhpRAJLUU)rLmDoj01(CHXR(|OGnN$_zdL*mPB)k^j z?009`p8WoWD94TSO^is(Vk`f&JCHtJ4tkMSAn;}D`LNT+?f^oL$@9Ky_ltb8(URE* z0F)yi;dQM~t9Z0JzTrX;WPbTvT7*5sI>f$8{6wTtdng#n4*O8)`{m-1PioM%!s;Gq z9}m&=X^1*rcT#80J|)+}lYzJ;W_>V!6sw)0h-JHY)M-tdAVul4KeC#0z8WPc>Hh;- zVC+!*z5wbQ40D}2EIUdm^*3Jm$(vdmS?q7PGNLs8fM;w{qaQ~|I;a~+`uv$${pSXw zKaYF$sh8DyF&BvqlCw)s?^>UU7u3u@CXX=MyGze!480#pG0lWCcizp|8C{j4fNjDK zy2(~fqk4e;^13E5R-PSNQ>$=b#MvqThXhp>BVaqrcSdXviM*(zq1gc7AY) z;=!S94SQ{>VocA_?jtYAGeOMrZ^N;b^U#x;WR}LW@`Kb7pY{&Qyu74(p!Zq&AiZd) zf4i-vpUf_>c*}Hj}ra!r&uS&8;E5`6F8-j86u*Je5?geAEf$8<}JgP;zcXIKgJ8{aT- ztR0vy`#(wv2+L{g+bRGTwQIBBpPWYeb_akc2#S%5h@jX?=IEk@Bciit`*7nLFK%~- z)webkBq#jcLx38yd|vUuuwz+y17JBdM(@coCSgz^|-FQ3}f5vAi3S{?cr zSIUXfr>TRB#DDu*H8Wv>P zxLPAP8jX;3Hvl9T4_ThM5`_Kmgm zHXCsBz!oSg@nZN>TH~}0OAuRp{(Qm%w6P~{TZTIJq}Q%1%pG@JTB@QLAbrA8@ydpU znndZ1V5%EGZwJS$=&9zxy3*9JE3tOJY*WCHwEiC;c_LF!DezaCWeDG%!`!ORoijaUK=#SyRh9-GrBRROgWQh7?0 zD$sfk`1t zuo4NKxU&91{g?IZCp|jwrJ>%%t`;M?UzoDeTkRifq?oo-A zef{%g=nT@HO>Af>oB*lYH*P!)JpaV)@TKpNJ5C>trOL_?)UHb3Vqc6ZJ=zIr^As%4 z#G;n?#T4#Ql}8f{X7@75RP$39Rk}gi$PJ{rS6MkQ&1g%=1XnxYF z>k(5`2EtE^^|GkB%4gCm6J7Ad7^FL^IWc-^X%sr>O$r?MxH5f#N zIJ_NaDL9@uGG?}=X-&wPH46Wq`0ai{II;-U!;tixgv7rk1kCrn6J>OfWbrss4_FIz zp=ijuJ3EwuEDGe1&_}P#zWCZ(PV;yCZ`LT3cS&T8`ii&z@_}q!?$AG9;cqr!l~ZKK zwylnWV+Vuqh7fh@s1nNuTTZQe8Nk?_$jYm{Yy^3vmz9KI_*QEf7B~@j3Tv3plF_Pb znvxY?&cFnYIx&LUnG_lB`e_s!A~y7To=I!5H!`rc3lqj5u8QOs4_2a5h6K5 zS^IjIsHgHOxQyc9xWFi}r6(T(B$qC@rJX9H8^qwP z?}h!B71T&#ti6+>1OfwRF5b;aWL ze!G1{j|)MhyFgIGCVM9QO)Qu+QBY9iqDOM7Y-70|fT0EMXk*zteStXiZ8fZBUWSKQ zebWhpj8$G*w3(#PMo90@cycKaNC-HrQ~bjjVH-+23EeOAngdVBLMY%D2Vck^SlnlQ z0bL<1hiaxCl>{4(BQ`A%np)3X`cj(o(;o_q8E^brIJRIE+@D#AYIwl= z^!D9P!9|7+CyM9WpzS#=g3KAf;HQszmU;Nla4UntzP9=P13DJ=wSU0Rujn0bmJh

    pp8Z^%dmIg_3Bn7 zm3Onj5`g48DATT6Ezk6Tn~P18HE$p0R|TiDPAp+*tjVlRJ;gRB%Po|Gq@-2~RN;6! zzW4f@B>u?ZSzk*)At$6S=4P#0HNg*9Yo1OWY2(tqwuy8bsPXT16EreF>xg3Rc(hww z>4P30jpK+54D0|?;XLKeOsbLs(uOc3}Yb4S>0)S)O{EJSxjwL+;Wa|)3MMEBC{$7sT)jb;+hWf zITu)ZL`urM;uv|;De1^y%^*TcM)S!{QQ63<1$Fo`AM2!W9$HOl)*iwAIyukuwAS?M z;Sbb#@>bOg1+;mJn!7e*fs>>tLs>4`~^K5dKKy0j>k zdoNI5c{ENCA=g2KMC-Q{9K6u!BkQ|2{>I3RFj`t!%8`)kB{{Ub-WxDSOsjTAs|Xhj zalQjVm3Vhp(~}Wuv(A7ea>j3V`S@tA-n{L{^8|xFqTIhvTFqlu9*^AALHXW3fNm1g zJ5lwpaQH|CL$hl!z32S3xJKAfcLL20xSWxk8F>fb#?Cjyo22}Q`NwC#GZp<4e+j?4 zK#)U^_?dh>r33)W^u=z_qfNKeI5OG8NB*)iK-XpwsXBKi& znEg=9YzC@a{GrwLNr``9>H%U}*F}r`;HXInH58uh)p!3t zn|CVQg9GIF#)2pSgPY0t8pJI%fYhJ_z`jh|d3|vn3s1B5cS0lDPTCGBg7c}OS8M;0#lk?b-L)HsXwvOr~}a8r6CK8f1ydCV~G~Q6^n#1 zkvsmUH!5FaJ0qWcCTyS!dLHyqUwlV5{QSuo_bjCsDzG%0$Q!C>sqNz2M0#gksFyLg z!|V101m>4R`n7?<=QF`d#j#PvCivvyOcZXT7;t8*an%L z0{mCDgefHd8RSVEnka#vI;raG`dG#Q<~42;L)r`7`MI&*?TF_^{>4iP2m;DP8*}iNBA(ot0V~ z2z`zYGLLngND1g$$Os!fw-ywnLSv{T4i@?y$_nT~V$(tA505*Id?NG}=Wo#*LbXL7 z6-mcDe>FaCy*xVW5JVj-fiqbyUSDFz9X{BtwHBa)N^E?S-Xy_0Ix`yW&^L?x8bm1x6c0qeT-R@wCYRTPmEZ?Kv z%7C7rQN+j?1B%Mu>A#YXm{KI4W`(dFgk;pB2Yzu=L4|KFqJ*^*fJUmE2x04&t0s>&g&uQt`OI2gg+g{$-v zu6Hs{J%>}R7hMfA=HTZ!ZNz_CZ*DWBwr(P43 zMyo@Jcky+d$?VWf`X#3Eef=l_0df&Kl;g~n+6+WU3!-IYp8z1G$VI_Yk3D@$ z7?AsfI{f|G3mXMT;{=Y`Z!SO&0(q~!7xqWjj}tY@zPYXvx8paej*9XgA1V%g9FH}9 z>oQ@o9p9V)QC{sUXL~Lk-BRx^Z3KZD8*e}C>Noa(&!$s{KI4W%X*I(>mgGJWIeUh- z*$lfY(MRY1_KZiG;^>Hc)J_}EhFw_iokT##^QfTsNw|8-#!>jXWIXypzhfgq8~E;$ z)KV8;M^fL5?J1S(sDt?#O4DmhpZhr%LgF`RVu(nTFUG=3o&2w!v+r@8l!;TGBJN`C zfFb=ehwGoSGQ?*%(D|CzBC(3;|g| zcX*PZV^tt`psaak-+qt0sp)t%@S95O1H9fRem`jTyx?kzU70A5KN(3%y%^NTw5!%h zM2ABr?jlavAh_r@Ioob0e@({gEeV*Y1G&enF|tPDt|(YAu7i)LzPpba_yQ4a(Y=ZT zzWzB!m2}}y23xGj%8To*)OWWPe2#b-L4xgrhm-)USIXNtvZex`c(%dN6sGg$^ z$5bMBiC-T4CGIsDs!migCFjF0X)SV~1noJ^(OK@m9Z_Y=gH0L#b#_pu&gPB_duJ_@=USVt7IL zt7t-TV5G2?%9mE;8IyzHWG%lgK57YnHkbM5+D z{nrw@vyXz|4%g3f5Q;=8jlo?Tspq%I>cn!J}NWMo+hL4+$U^THHSZUo&BVvbw06W-?^VB*^KKr(UCWjFTwu?(TiZHr+YG zHeC8&e+AS1K6*g(?LEa)dDAuM(w`qDsv7`)G+}v1rYXLO@8XZxxDZR0+j;WZ+MGiE z!`I&%7rVpn9S3(!EcSkOv8``1VWKY*bn)FL{ot?@`b0F^%wW@bgnrUX@5>2CX=xc#U?0A5$hZ!^DrTFdjIyu}+W7$c;JEi<(G$SKBU zx}2FbjR})zd*8_ei$MWjFNQZyb?o<)Q3o&J?eC^P#=q%oRfRK9dvVj6Y{&K%i()xq zNs$flMCW2`nfbz$;Hq@5ym<+$G`1fQ}hR{jo=y`sL{HPO2Yea1ujv-pDJ!SQv!g@smp_{c+G*PV%3^HwE^ z_i3c{w(%i%&cG^A+7M%yRQGv0y-n-Xi9T{dP`O+Q;m>>mZ;AOZUI%R9v;K#cKUmW2 zaw~M4wkedk9{1BqGO_6I8*$UYG6ci1*EV@U{SzHA>8G-4_ym;qDwyN1l9?)n5dg;d zJ0+|%g;3X<-8JhwVZ;w7Q78GIn)O(!=g+rASxCais5%>%ndrWb%2P~Hcde?{*b}4* zl8LzI+lPZh;sia&HP_+hm3-+{ITCTDL;~MfdAmGBT@{;OhEr@Id8137Nw~_hSA2`~ z#AIdVUwocr;JM$2!ROHDkDu73(j!77#qE}YE+2z^+yPt*XQAqv*V>_<>+}^fT>nF(!R_`f_xUo-n6_qfu$b?x zS1|+(WD2>ZHTsYzl}=1hE*`=>qqv;!eIV_{OVRiimXlon$I@BHMe)6VdqEIT6lsv| z25FEIq>+xLQ3>f-N?K7w8kSO8x{+KuRJuDBSZe9+g=Ig#;rl#)1N&O$%$zyr+}C}* z>o&cYT&%gAaDXi#}5+Y|?P5q${>2D@pBg`nBDS&Qpp;&GZ4>IHzt{k}}S zDxg;51Gib4Cjd&l?J>23v>O+5mB%WNEiJq7|9;c>I9v|;P`M=)-gr^zaApu02X^Cg zlKHjdLSEEmt*(Z6GO3}c_7=`=3F6OYv)&DR) zj6GwEOI!kRpcb-2{79#WKskCj3Yxx?Pg({B)C{l<@E5J-wmJ)Lr^{F;xGL0Qoa=*G0D`5Y#n*B#`Yg*ASJ8}-oFNQv72#MbO|U? zA=637%rPVuzB|KQW+S~HZn=VcEg6qT4>;DUzB7=t;&J{yZkyg{ zC)bF2`viRj79QOCH@`4Y?ed27ufzz?*vMI{OkhK%w2ZcYZfM#L)gLalGyfY}33XA< zkrxh-;zmSk5eHX`4~+Y$DH8xozF9SNeE$#Rcqg^y?n3kT`S50H@B$Vv!dXDWTy;gp zXL;UL^FHGTgAD3UGzohBS#%r{Mf5I{Exr&ds1(Zq`x-Q`L=EOt`5~VaWl`&SIX2ZQ zPr0ABdUC76K$Oj}uqSAqG{(lxu4=K=Zikg@LhkEP*ZzaYb>E=+-&%F4}*6C;P{71jN zdNOR8z0K0e817L`W;jaU$O0#1SBs3!NY(a<_Ot#E^jR}A^>2&<9fyH&CA$X}EONxWnDLuFZ|^bA z1H;$k`VYRx7|U35u$#|O11u%p zKN>neSuTM4k>vu8>i@i%(5~3I5zC($Tf{eJJ|I4L#y**AFXNNb9k5U*XWvZn6A*E*cjwZ`BGbTZ}&i%kDM{GXwJ|dF47Z#CcR&@ zw#)O$C@8Fe1$g^@Xb+S<3F#*K6wGl9>lvL->|PK{UL(R+6M5#~f6*GQJ>_*NPnIIg z>r6B7mb|95tS7pN$LevyiH}CN*NGpPf~(m$rRadk)!$pdTLPi6usf=p{$~4EO#ZHx zVHVWQvUDMEGGNy?1gOKTz&ef%kD_Gh+OGYM;g^2bLC2>7eH<{i=M5zuL2M0J`g}D& z%r{38KNKrES;lD(@*jwx^>lZ_wk&VU5qw}0Sv`a4Rm5ctOl$7)7g~?7Y$B^K8 z&HmG}7WUlsE8ERLz&^Is31)bTp)|dw1W%F1=&8=3`Bxt|M$QBF!fQ=n<7s;Af<+`bajYau+@fww^NC;?T=Ar4PH%= zC&)13)(Ph~H}N@`%^3X?S+fPn%jh$WQl>REBz2}(VM<1oEVlEDMy0D{s#AP;-++A_5VOA zT>V`#J{_yLu;HJ|&!8I<0P736%Ezq9`-z_0tZ!IXD%VA{?pE&!FkjuTZT?Inf_gmGiGx^+TS-ZP2ClJM~B#9Xq+B+HnG6ozUyR# z{_*`c^g$8#>rEjgH*RuP9`(R^Ke_$S`lV$Kd}8-~%HPk_vssNQI6F+*9YQwpNf06@ zq8A1AtxamKc@l1|*OBBvThfQLnGxNyJKK(xNBJ8|s#W(ImkGwt6B>T4>Bi#uX1eHK zjra$h*0XoDktunu9~$;fl^c-R{3k}hQs@+@lSMMvHi_-w?lM!m%!uf75l)y3`Vm|{ zl6yq65tsmXYXSQBP4g$VCN%FUqeB3S(*12__Qn(=;zymEvZHI$$NeLc2@^0ipm*u( zWQEbdVAYmT4Q9%1LidgIe<0aQ6OqpzTmL3oiPa|pOY;QH7(pLskvsgh zM*x##|9KGV)1D9lC^dlV?5O0-R~W&&6xjRXwF`5oFN^w{iL=GeGvDPUAvXfkiDXD} z`U+0;CaM5n&LRak8p8@}Cwx`M`+Z()99jR!c`$acMP~VO;Bx8iu)AphoDsOu7EBe4 zQ`j@3B6h0ef}=b7TvbmbPKG*^S zd&7?7bf&VtJ%*)h6U36bc}94Ga{(17RW8 zgycYjYWamT86y1G)@L-5bmd8xB7w0+o=o?FfBg`E~j3BB?`?*EGjBvE1Y z7)XmYnow;@+2^E*B|2oZDunnI<`-3!-90N1NtLO*+X*?S1~OYUWJKxskS+<|R4q>B ziC;QYhJxpMrMED=!UbYJB@@_%HbQLND{k*4upofb4{-cEL>K=h}eZU%7P zWTQcaMIyKL*FYR>z^>1p+`?-8vu>OTt(KR5V%scQs$2Zpv-Ol7(+3zc%3&>mpUyz$ zVL%zMav`P>6yD2OLYnV%Y08@3Y#AWF8)4R3fn2&NrWIkQ0+J*0OdjjcltjaP_Z*ltI zA{cXC5#(Fh>pieZ2E0o+?pnG;IOI%4rn^Q75}#R#+>HTY7)V&s@CT9@bsD$FqQu$F<{}4BVd*SH!N&()hD}gx@=OgtE3SZ2Jq7~zG?FJpjX6|Yg z5qCVvKlv;}@mn&B*};GW=ovKTVnQyYjm0!ps0~AdAqFfC@rnl83_p2mlx?JFFs6&L zQ_?pa4BC!*#hIHk&4Wi1><*S(a@v4~=u^sxso9cW%H_U+lgVYhLfc;hdDuCuZ0cKMCFyo0(3!AbF%!b(D(6+p`ay=C^Wi1S z-6oowmNb)DGfCi>X-7oK9IOE3;^#h-t3-Z z9CjF*oYjk{Md|9)5Q8R^_>*gm!u_l@W(4#~#5oeNxC>wC)9?H@e{s9J-ju;HO8`!~ zVF<5{TsYd|Be@OJP>d9)7OicB{4R+n{1%Uj8}Ue3j&Rbroq+)&H-MK?7t}|Z*>@b1 z`(D-9O?`;ma7-{!&e91;QbzT4%@fhRME}XvqI63IvSJ^N-_ETcaF9)Ix1%~vsr}vZ zTawIQQ*0%?{h3Ggq|Og|0?)$K>lSgbY4pFoN9^)32ah}hNBkY(C>5pa_%5;1Nq}MC zR`O9!VznnaVw2J@x|P1;8mJ3Ohgtwl;SF8Xe=@S3fc)~(hF>Wo`vLx487qoE7$ff1b=nYnP1}Fs=k!}qVcow z%)2(IKE38PK0so=tAp>Tp*%}qzkqww_gQ`nBM;O^K`b}>nw*1*%k6L(ak($Ik~);t z<_#!sII+F#VBn+l1VVAhPxn5jojobo(>DY{-+Hy3iP0So+E=7F6-m{6 zk56yY>(>PWeaBnxLpx?n1nxNa3M6^Ot?{U9{4X-oYDLkjM=dP3^Cx!-YLu!6g@1Hy zC@~A%@DhONFox9`u_LE-e@K_-mDr(lh^~o5rKcH=1eUFUKA9Dw4+H4b z-R>Zn1l;n}*zqu9tye6A@+qT*s=p?XaV)2?2uT71&HI%0{NPpkC108dez}hiRNZ|t zPw7e@2H`!ZXGe*;0YWuoehAjQnpt7gM!n7DWdfIdbgVT=m~%AJnwl{i=uvwQ?yeM)8@e5(}zQNNIQflkAaSY9*fh!|1Kt+xYz^-aA>q zJjASs)88i2dpaE_^!70Jg-=$HmXnzR|K-Fb@JfE$VWhMOJ)Fh>o61kD4uREv?hC)% zc(GDgoKzudqaG8r>c^Oi`#9clvU6Zm{sZ9y?PsRh=9>Ybk;QGY%Kc#f_ca&ZTr2EYUipRin2LnLouJNJ>HpN0N9 z_FsPVCQVlQRH??4z8O+=P9FWfu!&|?6}@r9ab>Tc7T4a;28^DVJkEFiqBI38KY2Q_ zxMcr;v+J?KJbv5profa08ui6?bveM|^KIgRu%hl&V6~0h136)D2894ab)Lk;(z@XP zK>lw$(l)n_e6Jjc+5SZxpq%T2l`gW)xG79eoL1 zuvMSxJ#=4^i+nx0YB1Z<*DwLV$KSVVH}}drR8wLjysjHxM1v-=KXz@m$;tI3*`S)B zM{H*kjH~viumw53xxP9By=qMf?$!6!ZCW7Yh<25KV2w}sJ>>R8GtjbX^E_@*^5Fb} z&s+NUVT`H%+4`n+7}brz!ol!SdAplx>`8sff&dgyPQ{z;2r0T)ZZbcd`}y@#Xr#F0 z*3^l*j`ot9UFyKg!4q5=KR{LHrgTkAF;?R`_s3-Phd~KW3IIudM3*2GZ|*f_!8jKl zJFo%3MV3WF$EAT^0k_7*A)#TkfpN@6PkKb#4o)iFvOv!N=S{p2z`gKnla$H?aNMq}uT9*V1q*-Lrs|gd08eOABC6 z3BFE3RSW~1WdjzU{~u{<7v#l!Bk;D5-N?{u4C~9Q)T4Tu6TIxf;Ua+ z^%saOfot6EivNFGcRkDH@pI!`pc%xSgi=BwGC?~F|1*>U?UeEG;0Ck}s}nY-tI4T3 zHxe@3xpJ$^uY!xXNSr*THAt$1p98$iaX$NNnm;xQJ~je0;3I~@S7-+=d5wMy@G1=z zD_jSz58#R<{pTmtjm2BmitQ2F3y3g|OCZhl^>;QRY5oT{%mKz5Dm_y=_)5HZOv>6@ z>X*}e|08HztbD70xp3u)MuiH}I{^%-75h7tMOh(n3$C37$RAt|P2f;qrDFveMa|$$ zBms&K`|%&>QFOJ$)t+8uLEhwfgppD0G9tQTh4?T2GrqYdKK{qq%MS+KTYdKwuHAxw z=v55Jg3EH@p8O$^d|&&u35-&n>euhI)O0%J3h@R0K~nboyAYG7;(~rke;VzEBA*fc zOb@%0%lsf#UeOM~l>j|FLkU={O;s=iH08uYysNcOXx{UtNQdZMEfL<7g2Rls%w7frrEBGI3eBim<^fU*P<}T3;4CE zTqVwpj}ueUNuShY#UTpZCVU;(s8rF4qU}%#uij`gg4kf=2YK#>T3dT#KB8RmBTN6g zabr()J1j7eF=wZue`m|zf20ucPY5?=CsU$yho`ILG8%5BwuHI_p$5Nw_ti)gC>s5;QM%Oi#k(M)2VB zz}e<+z_xI~E@50zz4&#^1T9S4d9##Tx*-@izlvfTFrPiB=)h6(SnEI7`pEJ-)lt&$ zKadK?Cy$w$jJB(Rx^1WD22F;ey?oXCs8=i2(RWIL(8b&QYYXw^UAM2)=Apry^$$B=z;8ZgJX{rl^^U}9FXI^(zeypIdz_$wtS7H~RGnY~Oh4AWzq?3?yWiq=H4cm>eZUKI6wS#Xpqj z3A&T9=aa%$-XMGhAp#NoyAKll+F#$3Q2m{iHue<@^(f$p`fU@##MRjJE`vnnVP1*p zoBSm!nsXsL9nalGCBo_DiVTX@ky z{|WwqKBS@5^CvWZrKt3Fk+9NC#uGzb(l!UJVV8WWEYCv4x7Xh-Cgu33jH+i$>#_4X zW5QJSNWs$Y-={c^TFaheH`YZJA~Iom@-$B;TVnDMh%RQT%AginTht+M6iJ8vSN#~wYZUvQ;h z3_3xLTgCaI>&c0rvTXO(^KESz?nom#?1mv1V4`tN@{yxP4vtZ8O~ zqB;A5MvI`gohw}MFTIlJ;*`z^Y?t?1D-V4+M=k%#48IO~`0@o=U@z8>r(o&ej;)z* zojwyeC48SV1R6)zQHG3UpUPhcHtENds}xX-@p6Zq#cEi0xXn(aF&(OsgRjEJ-u>2k zbpV$$b*}CXcKOHs$)oAx=;{&1Q%mv6V>GwXnzb*k(Fd2_PedVF*_h^{ z;?I+WU6gn%)Ryge@S;^kbtdl^ef-uBDWe@*2F#LV1P`!i0vlPa)gkuQ)jxiyntMl^>HiqEIrU}(F(0PvLa_+ACF{_60+ zOtkeZoNO*ahtrM2-T8AJtqntw2YN>^SIH2fN@JFZ&ZweqDlWQ?!uxl&%tM*pM^%ZB@O)_)pJ)n-~`hzD+z-S+*3u z<6L^e{HhW!Eytsm`=NG+vyPyyi9zr_7wf@$VN~4NL{Xo8nyA#(!=O2w&r|DF!AcaQ zuK%hF!K@oL2^lv*etM7t?3A2*YtB_qS`KugW9M=(o#XKap|K;fKtw^fo*f4p9y+O$+Q6Ti`D>=rCz24V5 z7x@>&O!2>;{FRWB=O?4R8Z}Mzd9w5kiBqKC*|&wd@kn!c!D_^WuiwG*NyBEt->&%W zA^iKI=i*`KyI8H4#}503l`j%fo)Qgrb&aBS^m?6K!OlH%eyR#!Y3z`t2RB4k{zgp{ z%wD+vT#1&cESk39?Li%no`o3?#S*0^#{3ia_pNynfBW${`y+C#{bMPHvpbnEe%N!x zo#$%xu}5#X*Xe5a9pMw}W4alk252ZhVqyZ%32eDlGPo%lhYI8PE;e(g>oDT@_4xnz5FoQ9$?6x#+Iw4 zydlJ8v_;cND23JA_Nov0iDKbPr5`|2`Ro~Fj`KN6!zsNVfj4{gC&vIK;V&avCc8Ic zVhNv`MjkqvP4TMHwSFxzcmmBAl=%-d;NNOR{e>YWL|CJ&S(QMqnP}0o8@<5~r>A^Kqg09P&j~MvzZd<9d~8x+8l%)o$b~ ztG+W7k)_n_bj84H91YkISL~-xtyw}sa{Uz~V|a=}S_as267Z>$*(u_qEGOBVH>F~w z(X}VxtWQ+}z0uqme!8kQzrRp(zhZkTYyKeX<2`s;M8U3SXYWd495=*@Qrp6b#f0C0 ze}y{1%QCJDhQpyMW4{NVT*ld!g#Juh;8N>R1{ONN6s>--kt(bbMKK{uf7e#QfM*Q)HPgqTd1KT; zV&7%H#G&;5;|$UskW4XwtE>b@iS=z53+ov31S5<4n}97z2KAppP`3BOS3f>~=|dMA z1$>PnX5@$$OgK%PD43_HSNyE?XUII>J>OHQD_8M>tdDWvUr^e^l)Ncsm_j3qq+}n% zOhWM2gq|=Bm}D@)L2NyVbHYj8r>};#I1I`DX?z8LHZUgkz^1tAFV>eST7Y+`xYjq? zA>R3F=#ct@%cAU!Uu)rlX^DaTFtL6Vh%BOccRe{@eU^ISPzL;nIuOvx@C zUdx^rel>ZRLrLIJxny5jC87IB#aHZ?0N%BaCP~)f?3mr;rQg3jO*e9V*KuUz?a-O( zQk+N3+C)kFa`f6#a)1HZ z3pq`|79x@UL8j>#q;@mOmal!<526&9Q`!3c(EG8IBuD$?`&wPXS@3udH1v_#FIYHW zY7DCRQxjfS!Vu!e+OVe!5D^nHF zGwlU0>zi=ev(K|LkPE)?NzoC$n*)>U$8e4;)Kj`ND~JPmtAd8RtLGE?k$Zr8tOcN~ z>}T3faKORARph^TSz4xa_$tN4a5Hn`-V4oLTvUEk$c_Bc+?MhmXc*{b70+TanT;Ix zoHF%_J1hwrxddIBy4>KT`PA38#F7kL-}PkU{ZPa4{0Vp1S1r-X&qaRl^$S_iPLcbp zt6QL-fEM(KvXHdz%>tT95%!0&q=A9glgHWWAx{EjPA-db`G2v&;Dj%Fc4s{)(v1F= z{ACSNJ+ONHrQ6mkErmbsWy}QFaXb{Z&cgkel$(NvnQydqXSibgaiX z!+E>;_vBIr)Mzp*cqCgBD9Cirv|6n3X`5Jt{LA8+zIZrUS(HU{yQE-}AIl^0`;>*E zk53S^PF?wYQD;f&-S!`@qFgnL{sozrER|NqAB(sXeWKwZt9e8LZky@c7GhOvkADCd zGVv~C$wK3jPi$>>ZO=0&@s1y$p;E` za95EMSa5Cd46x(HQWL^&pY?WNub}%)Nht;fkM%M=i8unXv*zH4K5Fu_z>JwMr?Gc! zC_3TNEj%MZ|B_MHdba(Qx;?VW);O`df?(RkYj}4s@nkFYJGP6Ff;EEkB~tAgSU|*K z$_(dv1c@l_kHc8-N(g~8mQ}&Ecaq^S1-IezFp1Y$dWq_Sn?5Z8d?K;}Q640J)`|xr zHyyRc!L4nP$e7d*;=$bl-~R*sMs&-4O|uctCJ82YG8Oyb@+`#7aUmr688^l`(ic)t zok72hChGVFwVltfrLCpZs#p5ZPhe?gV&ZKX-la{G_V#Ux@DqvGs}QICqEYsn+leK5 zo~mvC%)-Jon)5{$qVz|nYfeRT`2k;XPOSK>uzy$08O4+z1bD@@3G{j{=f##p=9el3 zOhoxujamXumz=6?eL=GYx3mRh-nRum_Bi~fM!2VIBmSZLPQz(Q(=(@5F)CFU^*B4x zU&?vK4POh`HcM2X41w9p#*_OlYjL+P`cHHJIv=W7@dcu4ch25EAIM9xJ&@kO=w4Z0 zrFZEkmq?jF^bz?X0s1H7sa_`m(&~rN6XvfDSFJlq7W+R50j#}I-Ai{54{gPDh9s~^ zHU>w-n}>Cg1Ok-T;nM{+bq6>m4M}sOe8|M!CjP8L#MLKTYk4xK=quMCu5QC(Xx2fn zu>ak-XhsPK_is}UEV3e*{mNq)7dGjejAe{-g2KJw`&ZpJ7VRXqGZ6pAx zAgYyE_k40GYBpa6B@@`IS!QVor>Zy~EM5q3R=3J-lCr`&!gm&L8a|2yPbdE z62%)yNgE6X0(@@gjh1^xSnjfmgX)x}e^6f?>oM9UonXeWBh*UHdRq%lBY|(GnMc`o z2t~$W9vrFN-8@OK%j#MS?b#HEVxx>es99df!;m@ZU-F(1gwo*uszWSV1?s*nE!s!L zK%YG8m6*^QZ!z%%vJ|K9XPgYIYDh)FZ7uCpgOaHvx_Xyj;gEc_#K_=@k^UyWmnutf z%RLpbF@>GeNrR_Y!%PtBfSq#o;XR1HMTh85ZM0rs3=moqY(mahchVU^0T#F`fWfB^smdc-poPM2-OBoOxTO zZ_D~cgRB*_-)P*2AoA2{=9o_ya_MpHpZh?;zD%I)=fdcGKcJev+zIJoX`OP;8ZM+1 zDvu)-+ir3bLSAz2bQyM)PrpPDkeJO|0p~a&8`||-aU#AB9T`h`SIk7$s(dboZw8%2 zsueAj&U8*w29du&KKu}FH?G%NJ2F-n++5|vOo{#rH3ae=sfy((Df;p1bvSUuQW5s48 zSg>=2qOMZYXAhMpJPKqD&O1~t9ja#D#PVo5?!2M&-LAonTs+h)*hnN9cp*2xr_ZHZ zbg0tSt_CPxdec0RDF;fx=NDYt8>qS|W-sW#|K5(i+#pK+DGo~n&X7gb{&+aFxxmX1 z$81yXtrLhejsHMupS?v2OmKJy=~}^$$Z`)J@^~~=$Mz`T+LW?YmEG1UHCDPBl_vrw zhtSrJ({~M*zG_7CCb?&JG0aKWYD7{fC_@*nRbzS9f&g%W-))#gYkeXL0O@(ayT4yq zTbL#N`;dD1#G+Xa6=O)rcaI+Y%_MV})%0Mpw(o+PFLV;tMAR1Xj$z)7{@-9VOA6<6 z#Y9jqHVR6bZ6sGrx#Hb?_s}i2n)3hDG!^aVZZs zEM0`;-p0_bQgfLtO>bZ67@7Lj@Z5UWWte2@N%wA;zN5tYEj@o11Y)oInuAyc8b8@B z2PO=FmVaOopm99r{IXnlK~1KWkUhcD=8rpD2FfGx2v%U`xRj1Yps{JIo_^e3fLPZ0 z#4Ub%qOiu(hdyqNkL;<>&G;}`Q{vfeot0lp3DtCMY(!A6(P z+{0|C_j=W)wUkm{26{})==*!?KaeeF^R+wobH_kr7IcGa0s(fgUxAvPM6D!`bGg=1 z(L@Xx_$_jvb$Q@3RD2Hs;c?0l;-(6E+Iw|aVZ4^~WKJxvJ>5s%kFpaik z_!PSyAc~NrhEzS=PiI=Ki|idSS9#QY(beJl*nYWua8j}GGoG#%9X&B3Ksh$x8=6k~gqtedKZ5clYCcX7i zW-+6gnr>^+zqBZdXt)Fiz1Q&dd1=uHdb4&!8M6*pCsoTBP>)So=S{zFeTex(AUz8U zNLFTvU=QJD#JkOz8ZZI}+<1o^6X9#GnZE@IRa3d-Y(hiu?e8rBJ5<8+r#QMiF zJbx0Y|5Tr>!Iax)7#s+M$u2Q=43*BLeJyR!rr7$)0y}&C)-Msrl=8%Ml1&Z%5HmnMkDL_?ZThd5@u5vd-TKAXX#VH^7 zea3CmjV^2Y?9Fe_Vp)3`Qn&W_@nDvmYFL(BjYu);$6s|217wzw@EgxbCROUIf@Y-E z^acK;x_Qmg0)Vp!Gy*1*d__dJ-4NY}HsV^(sn?IzCrcOx3XR$(fX7SGL9+XACZ7co z;X6ov<*3>aZ)P5)&Em`@Vl-K^!N84sW+Oot6)&tMXyy-ab)0`l>+3W*cJ3()RX2WD zK6Ib6y15A9Ar)|puG*4lzg|TgeQTg*W>k+j8fVUvl-RC!L`ce=(n+}`S;#;7{%=CH zk}P`>&i-$-a4T2HQPZ{RTFL3Ex;YXJgwEvUhY%;gcOk6)UNBs`yvP}4Musf?&7oep z%j2M(fHPBjpuz!^Zggrl68Ag6S3>qSDdI2dGyibeWgW7TB==}1f<`x;)Fg`hWcU$5 zEcwA;X6ZxP{&Tm@bBznu05b_ff2GB$ul5IoHC_bRsG5wc!Dqq;CIJ#9BFkwiN7HxR zV$f)t^Nv-9YgYA>I!pI@9#6g&b%l(?`%&9|ktx$&pDmQU%b%KxIP69Dmc{WbmHAA! zbo_;YpL^+-7qFh{ArZJ(|BQ+i5@LI_|I|T?s87%Tcg3z_AO#1qP9GW)=o);!+{*9? zawOBTMgLgh?Hx+WxO$A}tsMeQXI8_M+w0skf29Ipjnv@z~v*Y)PNSA4Lg}t{jiTLfB>BQ_p#nSz8ve&d1 z-3CmOD#`7Ua*|Sm$739vMTZpvt_wivi?yLS30cW+0~c19eI#9-$U0mj2>ku6QEa}S zZa6HSiE<106f3i`2#Gnxsk0$h63&{kj0%iA*irUVKTZrgT( z*_uuVf4cZ!4k*#sl6ALwg;bMQS*E{ui)3vFZ8C1YQVq-c%!=M^`JUYqE$ZTv<1T0M zzb$rVkgn@G*nN}xz%G_|4U3e8VR_$iA<{)IEZAUnw|gXgD-M_|C|ejhV>itlOzL)0 zUUjNC{vGUj90+KCI(TP%T(kLGXEe5ex4OD1@WycXUoBWwlqTRu%w2s;Xs*VOdHFsL z;vU%yn@2OEB(8aI6PM<=7KVQV8jHFbfYOAwK6y~%(y&%Zp4EfmJtaiB1u5;HHe42b zG{FaK7DOUzH&X!!08q4y6;?2+rS1F0Mt3Uz3hkHVZp4cvohbE8f|oEzR%N#kH9GPO zs_g_Q?M=7T48VISsH>h%AXN*9=Hz0T2jVmCtML{Y%ebL6->EeHu0x zDQiree2)XC_@NBYRSF;uT(X9FyUpj}XyV*;jf8X^Sp6bAZEFx;o>x1S9&6ttA#!p- zFL~FiCAl@X$@)6dd>k5{+_1+N!o06Dxb>qV@hSjHf%+1B@Nh@USMDcydePyj949cR zPdtZiZbcqm9pti|9d3Nm#NkS0$S~l4Ed39c;c8TNYO%6ut!41&>b*h9$YNDN>TZA5 zz=d={%%?D$p^rLS|Hr>)<)M*UpJ{w_-1v40`!$G*H;~NqV+xEhqDF@q+`}WFY{!gWoTYxTyp00$c5w zNr&A%p)T?Mb|fhJUBjmYphodvIjKNX7BEzyR8*^4t0K%QDu6B~phQf&gZb`{>9EF#40(IisA);k<&n&61^;t5B zc4hd?FtE)8RwJw$?whr6?WT|}Iw#y#p|GrtgR{R}D%%NhNuHB@7$tp}Y&x()X9I4_ z7b$6N_lehh0`t(7)ltn|6HElJK-_aV{OWK#xpm?Y(aW1jM3liFV& z5}~p>+1$sTh&10QXd2w8jU^YYye^}^WD>GsbxgnvGj^F+kfIuNF;?Yx0Kj^F=X-lv z1dXQ!&AO=mB@A|PV&Jk1I^}!F!XYaVZ3rUYWTacC<&GOEHLTyV5DvLOR&4fF%M+%j+T) zFTM$h9vl2^78cGge!b2lD(bXco~3Six*hj7{Q&Dw+i#C9+4x6QsL7{#fd8Y!}P72GQPbCa>i$0a2zvJKMW5b+K8u3>X^6MNY$p zixk?!_`_AzLDp_tMj}_O!`lZoV%pKkjPmxc06@E7Hv3AEK7eQOv=eiCzmIpE^XE9I zM~<83OR6v&d>@VZKHA)RaGDjcI$>~9Q^kzFDmb$~sn)@wWNaEFj(z%)p@KEB?&be( zj0dhGR&vmB5~V6Q-9HD-@eMst7d}WANZ>Ke0Jph_ruI89w9+#C1%BB`n{-oR*?#=_ zt5QFfch)HzH;-INI%>^!7yw=vf?UJoFt|=-jCA3WOtc&@XNU2J$8O4iz@LOrVfW#6Y-zm z_jd9%uON5>ZEb#A9pq7o!Ds#eP|fW4%MCz0%fA;wmxU5sm7Q5_RzD9u8--JM?I=2Q z-@^7gjJmn35If}^ii&AarnBy{z^;NWi#gptx3?!o1&`0*EqBZsQ62n1jyKdyD-ZI_ zw}FMVP}X{op_o27n=PC9)T%rRqIZQzzhhQ+tzxIQZ7VPMAu`w`-vX5GLLM!K9Rx5^VG5-!=|98mPX!xyCcjpi_=Kbv~-u1^UDtPvTwAH=8G2YzI8?9>Y zYz8)OExc2Ah^qG5nHy$oqV}OJ%5UV2dpTF8!%EB;iz;L^mDlXEB zK;*ItS;9-8o3`+jL?NzDgH`1q;bDam_NoxM@#g^&9BxWCHDyXK<$hi^Sl7A{weTK5 z{m#imKMV#BUf6JP9Qk*QGn2YKR@;i8mQN^*Z;p5W;utISAx%p+_zGyyn6hc>-RLk< zjyF?&BO5?1_Pul2Jlxe7LvCK}0XV12$QJ@s&wPQnh9&&is0M*f3`aBz>^h^ z9O*AwI>xbM?naevemiOORdiR)``Rj+)1rqU+Okv1iw!W_o0{~%eniXNv(0Z9>KSk- z-}fG+U9p}opHVjx`q@&@i@RqT)_tkKRnxw!ej!Y4XrtPBrYrxq52B3(5Aw|41l`n- z&BXWtIxis_3*}vTch@yl^y!?5$5;8!y-ny{$+knc?0)+gTEmQBAn}lU(P81M#{u-5 zi}ApDi-^TDHh^d#Ge4DM5O8WW@w?hJBR1+(efgoyEXrs zvPHVs8BgK$396h4QeVi{`>KO??k!eHW?w9PP=g_zDUz;?Uk)1L1v0wwZ2*cWB`!=W zeDb*a!?2V^h}LVQ=HASIATJFM#G+|WLxp|0wN6;{R)$Aba&46Y|6=*~u@cTgWXbgu z>Cgj^4ZXYsUgUM&Ic{-u*mqof>UB4nfU(c}oH3zT&sVb3VP`q2*p&p26SADZ7if5UJb9+&!y7sF9TJeo~FDpBo{Kw4$)-azJx63i{eixTTbpMzY;IKvz zaj5);p_OhSmqPg0{_Xjd7nu5&qVHm*=D#Fy`@r;jVRVi8f?YOmwN}6O@=D0O46c_i zV|d12>ibFfODyK=O{7sR$?NG@pX$Y?KD@)b0RKlRQV|V;Daxzv9<%6+oY!fLLN)X` z=pyt*XYM);NRLb%`AwT8UasdG+gzH&z^BzI!qB;Ong2k=`A3lCD>h}+8?8p27c_Ko z&mUg?{;WOx>7~0h>k42?n8_i)sg4fJR2i)Hi1xj?84L4@&kn>hkV=mI2qb{{k{{w9 zzNlv8HN*K5JGXJQo(&Lwd{kDyTM2n>4(U!Xa^YkHEp6c>#eLlwtF>9#T5UIvQX=O` zNqa#cHIO*f76xN>tf>UL82ATFg`dgy%1@oePdW(tg>7$G>r%HqrV!F|-V@c>=?oL*?x#FzpQ zjvhslN4@?Ap|W;GB%RBm*VBHI@~Mp@hHk%Rbuz4uwlOl$Mn`w0^XBmZX)hpbVa=jVw#<=)lM$avpd(D}tWUNMntj7Ebp_aC$9(eMcmE1AQ*&0riH+^T^5? zx`8|%YEUAEuA`@9`*T#ZM$FKV6`p;Miteb}SvN_POVRXD+Db&%kMWmVV$u`Ruj?;FwQa@wa34dqg0#1e!p3RQ!rs~tTBE%r3uk?I>gWS@KFM=i6f zb~HTfpCZ!_qe-KmBC=6?+V7yk!hl$_hw6|?IF?9TyF%n&FR$z0A^SN_Nd^J=MUaD) z85XarF^O?T0$K*OGUff;mzDAD_emdrkVNO+>^4_YSnreiuK#1{tmB$`-#-i@0@6sQ zbc2*IrMr=qoD$MqlA{DcYNM2tmKKT86O|T_?hpou#3bin?DISL{r%6_UT0^|{ha51 z-`B-Y7D3 z^+1JtzLBHq?_`sms`6J?!*C~dyi16#0eSYMzqZ&@Z-vgQAH)R0Vj=zvJ3~wp`i}F- zBFtoYn*Qd*tdTpOr_=Sfn0p-yUlDKJCS)4K9O7sT>)5m!2Dy}%gX0R=;{cqP>JNQi zh!B{k4QY?R2J}46UnF!UFC{xt)clsLdQAKr+hx|nc#x=QEibpC`{d>Vvx=)95M~o;10nAg^-Y zTk`j5#YU%NigCi``y`#^spGl!dbmR;t(J?l+q5C$rDpdZ^0co!oi zeIompc!R|91iSAPdej+2jOR+}(xPg9Lr)`cE<9BJE7bd#EAyvB+EiNT^xM&s=L3;3 zJE_VE{x!r_l#E}BD)a6PJw&{XXk}XMyPrO|Z^k3{n9M7Ke5`8)XGQpj_Zy0wtpyrdt;khKM8Dv*2T|u3uZL`5y&uy ztvGr2>QRcMARDxiDW}taF7{0$2`l;qv+g%Lz9$U3jL|$GydSFq&Z3?HGAw8P{DBfp zwIn*`B7P^G8w3lK6%W4|&=3emZ$WIKuQ-Z*>K|xl4J_Xw76R?Y#O$vCLq|!jBTl7E zx8g1N3o?8kpI@*k>=6zQrZ@@@QqYA?AmBzLiGHL_cT{Yfyg_mYpov}z$X&)CbqO+k z89|`io0%+(lNyPpgZkT=D#+7c66vS?dS5)wV%*l|KTye zN$rifc){)IuDCa_a`u~usKO*HiPN4fh1q$9gvs_C{9EZuwR^H!Hr>oehxPR>HYIUm zlQTYKlK1h*XZ-2+hJ)|>F3pC2$^BaR_{dV*vXVL;DE zFrGKlu2MQihEV#EoTE8Et1MbeA7J?d>;Iqwh&oB|ZVs8^X7RW1nRqB;JOSJlkF11% z11Nu~=4Vu;k~+pk9To$A>*wPNAH2UXD{BqQ$A8}PVK3T3Z0TN7{K~2wW;c&v`V}UK zzUXHVlwfDNfJI`{aJo7nC3z!>1^(*vqW$c_&lTOR?bYDtEpmdTEscnDS zlsJ|Bv&GGX3la?>^03X|%ziC)7iPFAk#bgYz|+c?tfMm?;w7JAYQwC-9L7^mUxFS0 zibEf;wku|#Mn?BbE`d3P+wW$Nf)KGdi9eekUrfuiJZPDU{%~1fta5_>>BR#&=jw$^ zy~*}ubI;i>poz*_&b%fnJT)7wuJMbQOexK?8L7)sJj-{z+}turSQ3;8e_mC_0}uIl z%ZB1U;8-2hmjKj@r@Myc+#}0fI)Py`|9VSCcg%n4`q$GQRDeXiDj2VXApHCg$#UPt zg%!~hbZ~-znAag6*K+VeJ-6EqR(^o=@0^Ug`)^eMFr-(BLy~i<7CuS_rfv*r*TKPg z7p;(!7xBSeGl%3b@Rv_^OM^c5({5F`%!xJpkX%*GD-8tJb?rhnONMLyVz-zIkl{J`KM3|S5=lyio_M5%B zVtE8P`L_M=eA?)enVweZ^%zITYTB*2xntGphixJ5%|Dar+opetjZHW{_EJ2TtV0&S z+(zFuAnt9aZ@B;Zl9dJiN}?$qbo3)#9%oqA@nUJsPW6i@*AB^IMeN*gpXa7cHTmpr zuZ0Zla^P<}(R%>+!Wlg@P{3=SSH_RhQKf9`v9_NA(lmG$&Z8Q=vpmcR&`SOJT#40n zmAl(IupOgM%g+J|zA6aS$k4>Pb@u#_E0$H zzg-%Dt?}n5B9R%(=aChzpy**~wcFYfUrtCJ{o*?k&dSO>#b}*fB9t_!z8o^C>%AV9 zOk|OIcZA+ckbixpgj7_vW#{blu{cB200(0)(_cvi#{me%QOVTO$kH6{uOZ72xj@lI zXRWhZ*X?oQ+pL$TKf_keZ{DCtL$YMhuHxr}zpTd7FFM|G7 zY$4*7CI%w8zvg?2Xds*AcgbFKETxJ7JP6{FrSiC$qAl9r&&pIgzs|NE(p6>dgq%B% z1k`F+BuC6Dl*0~w_W}<<(S3Gd1-vV5%m!zG9Wn*q%wmD?#)9v41$jzcNHczm3*()Cb*6`C>FKTaZq}kT&c#a%e(GfI^OnRivrnO8kj(gx;~*J3O+{1~ zt?={TLNMDJv&t<&S&v_tSaCHpzYSzbCjL_MDfyO!$z-b|kS-F;_Kzk242 zrT>#cLBYNb+3~ELydXQui4W%031jZnwE`gX*7{LK4b>FSt92Ad)<4`{M7Q;Q`JGt#Fjn31tlo?kxXDZ1l(fYF=1PC~qtq#+kZzPdxADaZSmh!XKkp|=R)Z=&88@3ES~uxRwD6kTIJmx-lwTyv(Aw2Dl8-tiSedE@Ynh0H!+?B)c1*pz z%p(~(!SXEzMxXG3yo*f4HKIhO#ZUhY>s&Zb4poZ&Hx9|YI9bKX7@b8u=x?CCU|8@X#yV+g;(2NgQ{(}0zmLE49_%@5`VLBg8ILC9;Q{0KKaa%p_=|7H( zsoMy3^&vy3fybn{i_x*@-m%*ptiGj5J&6|jO+w2(>ct1_EZ7$AlVJJuDDRUBIWS z9-+QQdgBCr7X8&w^gBySUm{_@YMRQS-vS=uCsR3PWa2RWmMsNr(~-{T@Q+u6j2gpz z{7zGAOaFUMmUlk&Ids!+4S19px0Yi>N4K+@j;QYGK~jGl`iwzPv2 z{pl=t^13zf@0mwqbJBA-Q$ zz}I5aV{v1ry!zR&9euo)I9iVAnkR{^EqR|>Ai#!8l{MQsVlwJ16Y?l+^vF7Ou2uV4 zHeXEDn~^-784Y>@5z_7V6Z-TZ4(l;lV~<5d&tl}zoMEBhspgzP?~;mDFhdh$QKhbD14rZAi~b{!#p;>c*X_LQZ4aiZ{^ z0dun>jo}qH7T8e;O}sl5u(4zKr%|ZxP+RKbS<342xY5&k>NrhC*0U3R_XvFIQUY&N zt}TAzq%@LW&>DP%yQcOQ)J2(9>>o{8V+)dgehf{q4w^lPZ*lWn@9ZP{53lE4Liiz` zneM|>L@kgixF=_tud5K4iv5?QvXtd`(SNxbd(dqA<%|AyITsJ(;mPhvZS&3iB|t8^ zSIyHgdkOR{If2x~{G$kpwowuPFQ2l>7V-MMyYlaci0c~EM?p%3W_~JKDFr=_sIEm| z-_~;dW_So*e6hsqqWyfNGI;oLXgcOTHq|5$<%I1$v?}Q60NKozBMyJ30oxv47M@%q z-^(-EcpdJEz#1o|2mj%j65}2Jj{Kdy*4T>kRHz5ZnnS|C{>T`ahHQ5@Df!M`Y)f#z z9w1aR8|Diyew!u`91w!5Lzo(>=T)}q0d~O#HzkCo*0#f{Q=EZ$kw@eQt0A9<+i5xz zCREI?RZHKbz^`pOvbF`ohu!BZTkR0HMPiSpUUVi)Q=wo%cb5}$Z@u2y!!3^K!ZLSk zY7vtRpppC?-MxobwJHEB4afV&Kn6&%Cq=HP`AOJ-__vi#<{XCyWA?x#hTsgGL``tL-eZ?85z??(qlpHlik(g=!=&l0qO?o=?7(sWwMOFG*>zPJX^aM6F!pSq~kT z-QcMAU{Y~A!EjaRoPJnV-|T&2nR#{Q>_#|k*U^2LKIu2hX5&o+G*9LCbo4@^;yW|9dsYwD$E~&g@T6ELP;IX9RKKRtMOOg(RRCmir+yfL+( zoU!*F9bHYnRvT`MZ^)pi@8N^X>4z= zs9sL-=@hN${9(b_*gYJIzPvvs9(uI~d{b0428}@;mlHl;RnCf;*0 z=)Ih|yuAF~)ZpsH51xb(qhj71iJcW{041|gGz+U5WgtNTk`#!qJxz7lr%s!*wEytJ z>At;K0IQR<=g1b+41O-!j@1Mm-Q#;LJF=6LjDo;O!W&S*KnkaK)12PdUgT$VEYkv2 zS@5$~Th`Mx!$`pol?Su4Q#Vk8oC-!A9k1H;@<4DXKU87yN?|4xraiTqpME}1-UEzb z7rMy;+>3dD3`W3LuoR!`3@Kd4P_~KRZmc1tAHX!mB6}TE7~ek$ckZCOm)pDT>~XP2 z=ZtQCI&NVoY{mXE1JaiPVc(g6TwFXG4r&AI<@0BySuhQ9KN??F}SN6jwRvAAq9=F zB)H0NG`$@hacDEK;hyQ$LeSMY*2JBpucGvhNp#xQ4ZvR9rB{H6D5ZIYWKZrrLr$&6z$|a^A(DI~L zO4@n-K~UI!zW4e*!osyiLsoY8Z9bAe{I}~>Pb)SD z@+;3(^;pX1cEcjy^SE)z;9ZQx%DIqr>AF?KdKcZv%81VNo8%MlU;0mCTDWAL@Emnj zoyTefw4^c9O;JMP?gfQnWhb%Sy%#oUHxNd4eMF#PbECaEynEya4-t7YI+N|lsB(6T z{Y=(EcOTG!xgkz8gOgjFE-Ox~KZWO~%D$Y5_`|IcUicxT$?TTgM|@=5L=~H$j%s1y zbg~!ref{50TLLo?qaint3rCx}IuYJZX!_Biwj}|8XepHMa z+1!wCfSND*tyIQi($mHlwrBZFE=185@)xCIU=iyb_35f-fp$yGMysJ1)LZB@ zuc%uZs;ZF~d>uVVHOkT7ewo~AxDQ+XS3YnF##uh!ySJA$N>#5D{O(TB#n`;#BF|C| z5IMk`nA8e;Wn!_bSC;GLgmC~j=h@bKl%jUI953D<3K)q|`#O&_t|qe*%3mVr%52xR zTROo4fIKa8LSW6qVEq>Y-{SG2xtB|hOh_shW?ngSGhN-uIF|fLfT>8{s z(Is5dEkw=B^wrn#^)2GTTGsH{TK-|Ny@;|}tWFnPb^Cx7A$B!G$D5xVHmsC70dc^Uk`ob74 zZpVEZHu{G{$;K`C>Q@UmiQD#7OrBh_j*$HK<GAXRjZ*l^5lU zBP>K7PL9woE(fzYIE*f8?t%t&{ZmZM4wqz?$H7SIPH#Og@UM8uRrTILy{pwUtl}Ls z#!~4I>vVw6x}M$51-0#N%>IsGC`Jpg!Ep5OVS-d((%I__^Y&uWq_ zBjjOc0*(OUJY&NTJENc?oXwfC5;oWx(r1+qn*QK{_A)KQByzI>Tn!}uPL=pS-QNn& z9~~Fs45@ETtQnf%9Z!mm&!~Qvk>BAxp1F}uKq}zYOc_y7EAX0wJI}eLYZ;d_IfuA~ zfP6tw_oYe7W_bl$rawl*S}Do45!#P(x(V74Iw$Y4&~q^g4Yo%NiiF7FT9(}93xTx) zQ2h}K@(Z7JK?L@w;Zn9a9$872yp_*eQb!ccv0cICH9AVJ-8a)mM0e(auNA$|ry%NG zZjqt`-=>zZFrD5Bn6RID2pc_`;`-X!U}43hFXuKRfp>m4?($SM zf2yhuh;o<6RUCm^AXfAZ^@rY!-1?GTj=a8~w{{|Sm#Ux|{+C+kxfr_d6+lGrEQuxG zBP29VV&DZ)_ON3s5rVxXV8Cd}rW;@xrRS`7ou#kVy?L;(EVRL`NSqSu{{SIXJW!Tv zZ={XQ`Gi$L1nD&ZOeFP>Ic~CVzlA5}>1wO+ru_h246;>M%eeR`-P9~GK`|SEUk11{ z!x^m#vRCTNrBYIBBnK7GFizW}(>^z4r$sLxfSrYL@k}4tOLe{+WgJby8({iNQ0)E+ zR5dm?22jmbQkhfh+Int?F+9ux(!%b!k2B+goS*16g7y#1rRz$I(gAfK_WNFk2R~w8 zv==GbZTwM+sh|_~y^H{z<}1hjBT~o>J{o-9iu0fTqY0Zb5N*3L@oBI%W#IOfJ@ZMN z34}TL-y`o`PUlxKIIpb(;kbN0!R2v)+cQkDnjg>{E~mUe8EZGe>Nt%tG2MQ1!|lOB z-6ec>{{qQl5j`@K13OS#myq*Y%GLM7O8U5#{8vXgKmZKqsiQj=zI>dE;Zj|CP0qvY z0KGng^p5*VQo>KGLIr-e!ngP@Ijv>a0m&p#PgFvAxAT2$G>E6-pU0A<5><87rsO{I z@c)Uj=XPB&@^?z)z7Xk|d zrjFgoRU$|^3SoT2#tDG&UD)UhbM6OH}j2aJ}Ij^hc8Ra;7GyNv9#uR z2nGvOzS}uVuR8yE4XK{~W??osV2oA!v`Yx6o^h@IU8zM^5zF&`ZqFXIts~p0>k{)E z(^N~eHO;-+i9x{JS548CpS90PTD&fKKY#DKY&CCB>M*6~xAD6r4h@f*1NRR51p_Kv z5WmsPy4Z<%WZTtH(ZHM~g}64^XR2mLq*_tp%EpYM1?t+$Q)a>=qSwa{wy2ii=Q|ed zbVq|HAs}Yx0Ka_NTDB3;B@jL=?#?MLhit$?A2~&Had*-!DMPwHfaK8fCTQ_(;9i;b zu)DyF`ag^veZiG-wxZWR`nZ7Xnvg!b4wz5|7BZ6dwf#%&Fsr&W$Ao#tYzFpV-x|=? zdR`BUx6l%fI4Qu2fB85Z$|6wuPHb(J`3Whqf!GD3d^_y!Z~zcqwD3fBG)5|^Tj#Ad zdVTkKy}9y%$)@zf@cv3(2Y-0rH3ODfr55~;SVi^bB_~{*XT={|5OMhVn%w$L8-OD} zkt%5I!ewc(C_H-hgY^Ag2bF`WvN@B_e7){!EpR9-{+AmT(F*~FtGK&cUdh8hbv{vc zW3#1(t%y;6th+w)I={B^8kqMmnxwRe1UX0yMRR>jEtE*ly$zq1ckJ;Hf3cjrdqnFVBo<^qGY8k<-u>MCOId z4X1m8%XG`gp-=sk%(S@ z*n@g*9p63*#UpCkOBV$t=JJ)uT_9a9TS}s356&HSA0w_mLnfJQhMeAt{tvHxLIHy^ z9@TvW;sObc+IUBaaS=J#gsia!GM(-8f{NeUhD>CPrUc<@8WMqVh^c6YL&60vigF}- zM};4;vT;rZdXVw*Sowmr##BiX8V5~r#O6K!#EwUe64QK1)WQBA-fqkjIQv(Q@evVC$|ih0rO9fuI~2T!RV3qV#M4EkqW2EussXEhWhCn2JtayGHbMJv+vzC-wbRsKwFZqG&(Qx%MU8l(9n4xp-;%~|M zt^^t0EJ=@jea+4R_0zOZ zT2SE|dD>xtuOdQiuI2#0?5ESSF=$J}Blb{SOXG*4%?~WZAbu!Zj=SIrC;j7x)X`Oq zKZs0=|M={z#8pxmNzu-P!Rd>$SGDqgc>8NL`IUJ0gX<0ZjmStL`{*R&CUFAazCP1w zIKg`QNM;Cm|5xmyKLyF%um=*@-%((c!iY%m?U5Vj z85@6rnPi61D(Knco~dxf^wU;sVS5O?uc?B!H%iAS25I$=Q3a#m63`GE%L zmIbr%g+vNFr8-Xh6qBs?q!r3q8}B?Iskt+;I<$9)c{2DTrR9C>d-3~Qtd4(nr!qhB zHc4!2eyR<$-Jmk^j*7dSvd%ilC~_4&5s;JjMjo$YH>(%&R{}k!QgT)p|KxX4ZtwL~ zo;l1!c)XJQI6}h`Aa3sqF}}R04o`WfM#oCsRp7lh!L}E~%!{x1WGbVbz`fvb{0x4+R;nP0ps*>gG;(P0xKg-(EgVNSJ3Jeo~m_Tcl9q;3kw zws~OEFKX^DeM|{>{BEr5QpFW`uejYbP4CMM4?wOVxK8?QPXR~ftQWTlCbhs(idhPp zI>cF3OwUv}!ZQaTL#U@i>ibOc?7DCh71l_l30+HpK;63ff{h>^cF5(~kHmJCcMqH7 zVH|KaqaTnWp*ngN!9L258Qq5mco+{?@9bgug?Vq+%6ZKiW}K>0s3O4z@{<$7dx; z?wSiG#-`p_Y%MhXOH5_r`)B(88;ZWcu@Vy;BhW}fb-WDCmkMb{JX=*5>@S``=iG+L z7-&&cu`Y9a5T7~pCS0qDo4r{jM%{*ktDzgTS<2*>$2O!DU@EJU+?MSYY9qEIg3 zak^Wo_XhKV<30~7si5?1V0>%xJ%2F)!xJ349CHbLaswwyxo{>%f|v;q$90&;vl(_t z?k7s|lvy-HTZeg~zKr;m#QQ(C69WzluFQo~(kwX5De+{#Yu`-$)F(C7(Ad>2-hY-M zH=q?TPsgpw6$%c&Pu-!y_7Y`s(Ep=}Vw%z5?=DN^ghE%inKWVSYwlCJt{`x?QKjFY z`;Vs*~`kD~WAo43DdTc7dnGnzYp0!Q3zIRB;o>{yu&$Fhq(OB|LS^gwvJZNw9 z({Sq-DV6fAru(}};;b=oXJ9^c+4(7YnKq&Wn^hHHDr~iVnPxq}UszpNCO1VKpAUXr8h}3a?mKrNwpwf5MrE}l$ z!(j>&Y+e(_m9Jx=}(;(3}_mFU-K}Lko(ti^nm8ZO2Gz>?kw4M1^~m|v#90? zCBo8zHDFhtFYmzP-h>Ztgk%Jq4%89hLVZ3z)flLaM1CTN>S60R6lNlxa8r&UCw+1?GO9&*VOH99x?nJf_VwprWHhCGIFmioJmcS^4mW{KBRa^t)ALf@3o+~ z;>oiulOA3}-RS}o1R7wehC`-X(KKzfl4ZXw7&4iRmc`$zzj<7qk*{ailkCmSCR{j` zbx0y=odT}w!FX+V)YX2dvS$%@GxnJND-B_3F(Tc&$n9e%E%WdQh_$97Zk_(=2uw1~ zf5r0^osE2<&k40zX z5Cg$u;6$u@ANSe1+PYw+t}Y)Uf@uPN(pE+Rl{V zZxiwivc4^!Hs1O0UWvB(tqoekWuHHV>W z^Pf>kOO$=6*G&;xnSH@|-yTse@wR;I=y%RZVMY|@@!hF z5eCJSYd0jjq`U(9&zbx71A5U>(`?asCa)g1U7f(`&}&G`(qE3;hE-jl_Wt#Qei@J# zvTn>Mor4PN^GEoCakd5ZMv1DG96Si2+7R~e;T9=gtPb2`r+&FiE74|iU3bQsJpAXW z{&bRC_+4FTL95ZLaY1;@V3>027x8_xW*1)Eh$aDV5{c2D1mxS`O z5BcwhFl+0VHV1-%-<(&=gj}45xdYgc$dmB-VMhsb39INadgi`LU<%yVNR4JCAEPa6h%!`0T@6l!><2ZAyt!xn zaOd+^`v%<#L#NBVAapi#CjQs3#@b3PvJ{4;2IjR`E)xI3uY7Qe5L$>EB)OM4QTb_5 zJ66=~=Nl`=d{P6!l~39>D4j0Cg$;&aJUqO{X*m@CPz2~tmB`QosUT;$ZnX~w9Tir> z)=M^KuzB@XmwcfogF0r7PP@XxHtvC~9=p7aRqt{`%U0~5_pEfA4XAWvS5J65as!}e z%0xesanJLsn2Sy)r4ffq?kH5IP#SZE{-cy$P`@Z{HPjx+>QIkWj9xTF>gpBP&^7zdR?~_I<-BA%8vM-{wLd_QB=#C#42Dc0uiLU{u=fR>UPra>FH>Ek0+FY zXeVJ!f}4iYXf3K`TgJ`Is5^J;M0r>>n@KZ2dD}n>(yS|gx_-6o=o}E>L1wz#cactK*Avgh5tN=8V%7=8etty}#XomOY=7Sm>lN%yvpw9BW=NCXR*DiySq)eOUIK zu;f&JGJOWl9yI{FlCvGGyIk_b!3xSHR$&O z#oO)MC0&&y#xj-#(9j6ZKg7kGnA-mi1{&^eqQG+La#zNw!^YB03&1d)0(l)CdL0)i zqJ=xTAF;K0#2uFcKN20+Li<7<1#St7>0OO!irY8;i-qdt>!CX%I~uQLjm%t^RWr05 zirAEfVv#(>AeNH0biex?RuoFtW}wp!vozdUZf!&cRt(H56axD{;z?jETmCsdh-VH+L9jxl^A7t>3n?_gAhkqWY zRJUi{>)|dwt_^FEs~tdi7PZoM_`|G1hK{Jq_{}+R9dWuKIh~Ofx?aKhFyIutXnQo= zeENv?YgOO2hNLjcUr)>P)k55Vcy`2F3+6N5K>edw6R?s$M~rd2pqaJU)0RSDEbHI9 zzuhZE6w#%rH=h>L^WJg@9`ha0iHdth2h+WW^iZFI{H$yMHpA2fk>zC`JWIeak$c(A z+shkO*VnFSxRBTygtG4p5}=<%hM(eO?y^s79xUnY%7#WxN@wfVod18uDslb8LOoxy z!ITDNHcOrJW-iWZnKKml=+kP+RThGvMik&aeZcC-ID>@Tb$@(T`41B4%70-|^NapM zV5!@2>9=)4TwRsn^bn z$I)rLr_RqOZ2v^H==!Bxmv_N|aA_^?sgU$qRwK443X0zSdt}*_Ec}{=g|T66M^9C+ z#_REs6UXIU%8^PjkJY{M5Woa;r)FG!thVKbXC;o!{lha|(wVk*&iMS@B7e?LPXCIC z_6!XwrX!mI3v<5R-dqFhGJL}=++YN)(^ilDXpuhLw5v9QT=wwmq`gI|di$9Z<+{FB zo3GIIl9whLIM8hb5cU3O8}JLoVsD=_8V{S=T88{XOVz#7&=9GJ<=x06=tBIpkY~M* z2Hdh1OX3eaGljUDtl#MP+{kjKMwV>f<8!yWFr_PXz?EyHrr(jv4X?lRs=a1dvEGh9 zx-bNGv3}Q1iffDU+=ij^0k6HvNf>|xRnJ?T8b`%FV;}RXUvR8WdBNs;c#Gp{=1%5S zeCmrXrKKmMr%;)hXN_Ds+R2=QzET*oVP0o1@D6bLdQWg~f&-<8LO(~-TReWr`o%G( zBq5N+FXPxo%xGH7y`f;Brf8 z1lt|!LEcS#)--EZ{F5I}<@4eTaI|Bofw1QM9z?c7xTsvLs2&VyHO9Sel^G~}fr6Zh zNEnHZP<0_fZiV_?;P^pxEV}XKD5>sqPqUbwxR>z0>G>OQY*}r`MFOI#19?o`7slYFSlg~DO#4ak(8{?&m!q#o8m~>HyB9@_DT*7`viN=aMz9(4&3 z>#u2$ky(`PHJb<4YN5TQ`qfWQS2}qb@7i>z3&}4hp7Mf}&L#+sE6aj>G|<1-e`)Oe z92Q+_1MH&}f2rIp=O*j&l1IDT@=j!K)8O4Ajqsa*H(I|E%{#xQu7$bHSaf#RBLLoD z?1QAa83V@GM&#u%?*U{?#9mlf2f=S)8%c&(+6zQ{{ewaFR=EEIW6r z9dvhLc&R~B2MnC=^ETC{%1yijvJU`htOauNoU6&{=~+)R6O-rxlJMoq?%_Sz88L<5 zqJgNr%Xb2zg1^_^pwN{%4=YbpWdt|5BLdddL)CV)zYyQUVRlLcBlO0uFS)i&bQLG- zr(wWUfC%K)0m(&pe9Oy>KDH$l&eaUjL(}h>rx`f8+7t$binet>y=*HDHwZT8E(#SU z2@-9k}r}UM=G99Z}b^@Wk>!Ic47~4#oTjbh-<$4W0o0!d4_FU0DO;f@* z9U1t==V*>0rull?PqpF%QXctL}BtCFF>w3rK> zd3sH?B?L=dYZyb%S&M(p(ervZ=d8ZIt>RCeModmv0r-MKgF$eLku z#*1)b`F)GaEB$%bn)OhwTLPL&>qv_3S&$XPM$6}$dlXvI+CzMjSkxJ2HkCIg175Kz z#2yWz8Yr|n2=azO{);|05vLein8~)s>N2tw@;cS;gFvQPjB<94&4+jo81Gw*F&<@U za@VlN=o~m0dKJHtcM3H2e1@7GS)12*duG48Q7)NDjeb56jea5TH#+mk!nS^|^r{u= zSB=8hU5~0ufAteZcs;D|%k2cgS`XtF*dfE8?6mMunB-Cn% z;Q7;z(@Lcb4qX!?*qHl4*FFFzxy{WUF6&eeN1Ly2DsGo(gH7z@k>zl|+WxPPald)x zE|3;!b&3Lq!8aVwzwyg%Rfv85OD-GNxR3EXQPvZ5?J0^{xwlZz_5&jh>vx*Q5rCKH zx>JRLNq8B@tn?>{NoH(XxgojNW4TSfsipiBF+veANysadW*BMhvn$Gt=F0n|(=dvf zJ+Nx;jVO_L6N+*)S+sPnF}|RZP`a2H zHXtr;0@x<-6m;^fj{w*yhvbV4livD}-)qIu3xWCS0Uk1o!>;uUr>9<~JYy58Mi@YL zv|=Wo6|yfL22M!GL|6SaJY>|336^BCp0oRk=V3Thj9#MMYn_#(BkA+5xQ?pW4C?=JQ>OwGg^eh$NjI7^ zsvXQAqSCMvyrez6gvf80#r1vAo%CM=Z$$?dC z?2B{k?dhHQ%0hOiB_vcnfY7D8=;a0OV*74~Ed`Cl8OrQ;?P(y8VF1XQ&TMgjJM0%E;Mx7yUfjXSFBgKE$10k>s(K`K9 z|I^1lK_@X&v1u9@Ae7ZPhmGE(cHD1*9l9$>*(b)VgIUmINxM z|D5~P?SpDogsfHuDzovKP$Wi0t#M!W64FNucKN!EImTD0LRBSjK2rMFAFgYwv&ZG=5jo;R~zAV5f@il*FSga?ahoboU}Hxy7D90P29n zmm$FbhrGe-uZO*#tHX9|K7Kc^6dFsB;t(a`I6z)a8|a20LL-;d-?`~ruSeCHH8-iV zY)gJ{j>(8v&>leVPxDpfNaXUO07Qt~;`Acs0v8LPMcH%%HBdNUNXf+gp zP=BcBW#Bb*#p)rDUR!NDEVzdW;!6va3Cz9;*@}1E8}{M|zX^9xzn_75maCYKtyK9V zYskbS&aZ`EYMfdxMP&fmNrMxdk}Oa|VcJ1d3G0VZb|YNh2K_#VfV|@h?v9t`C!;(f zfRW508rwB+DU+WYDB$7G?F7k>>%~yb8Mer9vtJbxQ|KF2VZ8Uecy_OU7>@8>#nR(9 zmIWVHIDN#7HkG6@kL0jp0{x3$3=VP%w}DGLERn7(g_26k;$?OQQRH_z zn>6N;Tp3xOSgX@yq7}hWbscOlwzgw^V!1cLCspZ%2xdQn28~|mwbQp1(;ay6YANrP z{HD?)*QjHcQS7>uZ&~^?a?`?!L(v{UL6(zg+xzC+af&~|0-o~ifjOhZ60vbd(>ed; z3{M{N&=p9^Nc)EXbQJU+^_a}pL6MVe%I)S9Jbx50)wR{qQ8Ds6s5y7sTHRf66nY4h zIIQlbY*H*wf0%V@akqtXPO#aHu9o+;2IPQ$wNs3?V9Z}%idKhNZ@-G9t`(pOy+g3jE+XaZH z8ACNG6m&0*F*q4-ovUjZz`CY&%n9LI*EkJBeAb?|d7#Is$>|7U@zoin3f(E`Uxq3K z0stb;p2&SS02Zs-FQlpQz2v+8A-|F=>B)z40{N*O10ZvEG$r6B!w%NIzHEEM=N?>Yq2^SrN2NI7kMy;_-5z$JFcLju+9@b;U7k{^buMZewdiCjs7&$FV&|{{Vx!r4RKD(bd`5JNq0kv-~#i_9HkYtGi zUdYiZgxMt4ABiyM=&~@$&Xu%dxjIv$?moK*NW-NJRZ{{+8X$M`3dRJLWYK#xTcdv( zjk+wf>yo@hHuFK8RAQ7}P8=n*-CP|EFyJvFII9P}gS)00exc_DPiIEqS1f)6hE;AM z)7(QFQ8rze9%@}7;halXAikl9e*r#wS&siS{%RxLa^q}Jm(}YC0sMDfeixZuAZ!MX zabQZ;6pMR18igt+(9=WbDdk)ma~3`M+eGIGL{ft$Xn|54ti#g9g{|Smn+CSd)DNTm>3= zf&fUCAw_?GqW7OcAuHQsm>veqP_qMib%tP2DXZR)k$8g7Q z`E`K!8^x zt*0LgT`_oL`a(&^=uX?|(^O>1U&4X(7U)U4@7Kg8XFm&w|6uUbdutduomX* zStg%uu7KQ3IqUMP|3jm55h&$Y0lx06wYT$QY1kdSg_lF`mWp2tmD%~rrFfrnnno|C zW{b4X0(vMS7xsb&f%a%3`uKfTA2DUm1Gkx+aF@qJQFQwS^ZxzYruE5y*7i1?NP|)~ zNQo_1_yt|1>5+?*^}Wpd^zC-w9Yz8O-;|WTevxe|PJs2|lcCXS=z8k(=v965D6RhqUwQrwgMBhA(1r zm9(GyNJpOJwwrcPEjY86Ql6Gi9E}1Ly=gtL9i+`-9`aFaulIgWT8?GhLNPPdDzVOF z){i)f83+#wpI-Sj*?yiq+cxSXwYJk1=1|AHiVfB&W(T4#UpA6Qv>5u)CQMgHu9Tnc zW8#PPvF8^UB+}?py!q#cKJ_0Ouno^k)S9E=E5BUTD|_lIIvD&qu~Q zgHdC+NzbUcXWQN#sg4u{)_FI*!#+D@z9`y}jr8i@56umq1ge7hKU3EV55fGFk@-Qe7nX40DDhtOBj#p_~G}1989@+eG4+ z#GOQpF$7)gWv;?<(|3l4RpS#dW7Gj0#Axd@{@)g79YJHPkx7sEtt+s29;PR8SbxO-l;;iB89$exjUEVh>>RnIo-HObbqN?$`yp2Tm|?V-NcXb+Eyrd~Z=e z%Bsv77)@c=WGuyPN@OQr-S36;@caMJde)O^afgl%^Dpf@-w->J>#P)mcf@w?kt}?n z7#ueQ;UG0NY`6HpV4)KHTTG94>?tIAsbG0AB(TQk_aRIoShxyrqINbxSKu@-^bPB3 zl=l|6dMy~ZlO`{;A~2oNtWLMErZ76G@jYf|avH!p?P%mR0W510yIz331CXT*fWCV> zzp2LzBcSF^l^AIwWz|mc{>S5cTiHQaRR0~q@#JFUJP{QY^;?xPV5>n8EueEp;AYCj zrIzVgfTPt~;dJzIa(w7)=`#mc-30QN1$hO#F!AW)Q#~(>76#q^_fUOKw98<^&5lY2 z|KWq!evcml@6pA-simcKlYCDcm^aCFrdB-d@Y-*mNpF3%=0~Jmc7mRKf*k;|e?{HG z5P#mULoumjQx4yqIlw4Fw^}2S5c&5Z*DuIyG(nO8at_IR|#@u%$bp>sSgKhtCqk2Vrj_V1;3S;-7rYYI=rU55Fl< z2!VX};iF8Qh0yMk80tUEWdL1TGN5M+)6bSmFJ4tTHgSOsPvr*PKpLXr_nS%_-%l;X zyQ->T@&bYa;$~M9!h~LKDb>WAjYgPTR78@eU?hNsD7z_3NGJ@y*@c=pONa^ugIo28 zIu2r@UEV}dr4V$&3Xfh$dEpbYVmW>`7ghh8Kd$RDAD_u;s6j*Y;Ef z8cw#_>F&-QrtX+sa?MyP8^)l*RwoaO!Oryn3q2rN+MXqA@E|sQM6m;Gr~}1oU#AzW zM^lb5Q%X=USh*?i$;6Nge@}XWM$RR25l=fd^;e^iggTWMlStK)>)L+~bOek_W8 z|8z0+pQ88T7!I%EQx{ihL081nq6+`EoJK4Z(JV1{zygO0b-yEW44rDePU<;)#s#4o z5EYmBC6XY?_(p)~5f#$%2WiVgKU6=Bz5<6+-(PLy{myjjN7ulAI=z@*76?ZQYaNM& z6%~GJc=HA-F{w@+Ni8QzxITuasXpqRI#qtRm+iz9IhP#uDTIp~ro9C+R3-T%p!I!sS4rRd2@eD`*%VmvZ0#6(gBTo_8CE$IR1ZV#?$6r3;^St>1LL* zw_i@>b*RhR$Y3-z?$Q5Hy?A&!v`~76@#h4tlas_lASHaU2@J1)Dj*dpu(sOl-$mr2 z=S$xVe5{L8mQ;c}C4FeWIhrZgO_0zMldW7Lnu9i(Stj5 zwfhLq7;M~FU!}sLJO)LBX@5qY;T$POq&-d16(mRFQ*gPu&sH?R>yG_hb;|0N^o&`= zZ|A^IYb_^w_w)D36RRh3!T6$;Ep=S6TnGA3M?PbG#?5}+psyUMI|U92`1Ka_TyW6V z5dGEgS|s*!eDCZ1+y@^-g?Z&G1rljsqswIx^}9ZuE#-g9M_26`Pa~%vArhQB({=P> zI0ai{AXVI7Br!Z6)yw`=(fLQiczglJmJ%q<&*rjlO}51q!nE<^Qg4xV|FXin(+;F< zM++#0&NSl#)_KGYedbEe1Q(<>jBPN{!>~V1`uWY9Zd=Kr4a9x0%C&LE*@qAd8)sJ2 zV?D#Ld;XPzV#*n!g7RX~uPcbI%`48`lX4YA`2G1#RN{ub{16_#C@OD0>05&T4$P(Y z$}bsQf}iyt8ttK)aG0|BHpv^7!O17}6;qa*h`o9fr6z`0(Vch>GLbsL;gKO=)9HzE zk=zn4R1p{!V5Y#BUDM%pHH=LXI+JD|C*H+aOcXe>cXHF`lcoZjB6}qT9&DO2}S0oB~o#Y}}OF?+<_TxCw$3NS_J>n&Z z`}>oEeFl8;{aHx)%(rShEcl#tCb{67`%8a!HEh2eG)H+=zzh}d_G40T( z3O%0Pvts@ajfR3`In;Zc=qy{%esx&@CN6$6;6m>z?9Jx^?rWXbbe|}m=zJ3K1;0x1 z=!fV1!e=ED3C;MILiHpp8Hk~x3I-~wL<~RwPku#)i&9Pzc%7{N7YoG}wN~oSxwQ2E zhHSwAW7^aDx$l+hNeZTjtv|0*Bx=y`C3kZ#KfpD3JF4pBw67Lv)@?a;Rrm!jVRwU@AET4MSv>%5jWutBwDZmfv}&+}?;d%Yt^D zCzCC2^J^|T(41c^nX%Pc8Cs(Kr{pB%Bz#*nTkFE8P;+BKcS+fv9Q{;)o~+}?aYpkC zkcXKh&Xwzca)9tp>fC60awA^k#kkKrO{=Xh@Og82UPB~ z8M^`3?7~k3`|m|3CkI#gi7>3%2<^U|&PLCsq-*K5a9hBHp*JD44BjtRm~`y6y{%_v(z3QnL-2HUnAebYQ(I zcAvb=sYJ5X>|eU*oa>}k1H+qJEKKZkun)_Ml><*{_7?m*n*QFZ`!X+|UY#{^h^6Pg zlVrqp*x>fB?S+e9@mEHte--*;ILgb^b*yVTnhlrb>xtV|W}}47kXp7n(aST?z7=3ocPzD~_z5pp7DOY448u#tK(*Ip+(&!A~f4Sm5hp zn?-HfVP^ORRXX5q^L6Op`T7-xjPA4Yd-EPZ(<^5Ns&Yr!O%<09$AG4U4ZEScXFB_J zx$4H0yx%}e8Kiw8;wv75K(94eo$_`5Xms7tYDa%b z2RhX=W6OO~5>no-X8*yI?&qF9XSJ^CAcsesF62@&;67bdEkk^xIW~=MwlDUjM-@u7 z#GO#yzs4XimOXjRY`MfkXI;ekh+PMF~~{-?kW;KNc&$im15#1`*{9(&w~RzUTnvoy7mSmj3`P+uUkR z2N8aCxh1}^hWxIj{q=9v;k9mf$w5K$vcG3y`) zBuvjlJvIpItNeCUrPFqBv>A!c`4D!o)wez~pQ*}mC59r6p0v+*cX zoM1Rs)u0eGu`V)+b(9qUWQc%bCl=+bQ9D|+)1_R$;*$xdRgK+>--slO(azROYrEVn z>r>Wh1%>EoEY`NDGD~#z_4V|`t}Lp|vRid@cG;#f(kF6_4|yvB3DV4HukTMl-`sp# z1uaT>)zW-RStcq5`C*pc*Q?I3Ch>Pub~RN&W6KYtnz4$)t?Ig&{u679caR760NFd^ zY_Im;pl1%Iubm9=%D{beGYoD1ov$UXh&j+)($FOKA%3SB(vcZ7W%TH}V7iZR<6gi` zqNSdJ^zzGRrt)T4h$4H1BRe5b{_cE&!#+V=m4Lesq-OmfTk|iUOV!7@Utwj25EISM z73WExl;_dVTFT;j_%YyU14?rg$2Hp3aynZJJy&M8SGS%i*D`JgBQ9QVqK(KcI<&UU zx*83KCdHblt_IAtdUqz8?X>^^so^1cRxMA+i!!aAyrp(pF5c^5Z}{}oCI3sl8+(iU zck?iLZm$$Qpjii-#Ns_E)Ox6ZATm;rR>PWk3anb`C36;=uqrWM2m)K`=Nh(eT|sa2 zm^AMnYs~oZpX5S*?<%yB18OF|7D%K09C$7I+$Xgf>uRlRppTZ{Tn?i{c6A$Pwtz8Q zFqarDExXwCN0Wk@s2;W(0exFnTvb}1$Kw*KJr7419hjY~*Gs8C-Q;vSZ%Tj_CiDG$ zU$n#!6LE)^B&swu3{`y&;w{b-^5|*>Y$cb54uI#1N5kV=b82^s#q}}&6j1&TIUsGj zQe@kR>xi}je+~B5NgEER7@_{xx!-4RO+LZuXF45sle(Y!5a;E)b4sN6Fk`}-y8CS{ z!KM*(O1QQ<=9nzA`!UWYx8Ly_lzhv2Ntd-I|Kq~hrD+q;>!(*3}h^G-VL z8WycG2^sf$&v%#`3e*(@hk7lEq5O=+&5ubOyJ;l3MzMAQmDRvfnF!hIa!ImZX#2iR zB>6BZw_I+?@ckTyR%l3&S>%0Q0`!O9N$C*j&X=?UePiG*gL?FOJNb2+R;ufB{K(ws znP2vY!+}Oao^FEuJRmjlxg(oAJCYUVu;YNNh1&1Sw@PLETC-tR5@wb5U)IhEr=CJ+ z4b|M^_CSDapD=ds*4>XO_4->c=WpxUQs~YL%DbfVh{4^Ck&M4EVJpv{_~59 z6ga!twgZ-6wQ$=aN>%e1SW9BJE$N=B(#BK0(9#b5`N>6%K5Y{MwX)Jq-s<%r9^esl zhSJ7TuXWpz0LhC9i3>A>=O>3Hqb6TsajXq+C@sx+Cka#<2h=;x8QUOmj<|Cw*U2NI zWnLhNQY3$~&`()8hTYP(mck}wldaFGl%XR?PE<$M`jprtKLu&Pnp=)XQZgIZd)OUB zxWvI{^yLyOD{~^nYYC%LKXo+v)qzoVo%NT6ydb1FnmzIUc>2tvb%M4x30LZ{v_(ri z!@M=UM8rvQUu9hw%u+VH=yD0DYFNoyh1nh&{Z=0?g9|lj?)7Eoyqg$ie$K?p5uDdi zI$ENhgo`I=+c49Z0S(j-*|~+|UFDp)z;S7p!9&(kup?3HPstR=lmF1hggsZXuE(;M z=PKC&lhcRn1QyeK<~uF3n&|NlLQGj~={}c^tFA+wS*4bDpLN~5y5{;Lo`mXfg>xjR{)|4u-56q59lSaVgvclvME|Vgjq~TFy}0lt zYRPvadnrLMcfH*lU)Q>+2RrE7u~XyDY>oGXmGqgOh~290O1ro^G1`)n*q)ksu3JW` zG`or#g&S%o##I4RvqXjDKLbG4w&ydC$(iwyrM;cAF?_!#L_0r|Tlp@kht75tOnfO8 zsAj)5f-PPWν!EgYc|i)YWwLO_){zToY547LHwbrQPIF?C0vzX={D-C0*3ywCna zlf6r;8hy2QkmDEpo{SZM6Ix|-|7|#e6te%$+J=qF4O1{soSD%h!8ji~)AZPa%)FZr zik`1w)TnXqb0AKbJoAf!6~sU418+~e+gk?I<=>thFZyNlp~gxbqlATrQ^e-K=dH8Z z)5{}%BbUGak;=>z zt*p*Pzh?To)Gb0q(j`Q+|Bc^FfDc=wi)=DY+9{rRdY*GpY z1Y!ME7YeYM?+{1Yx08^3X<0p+kAR<5-a-?R^ykV!NTt8LEcAB8ZDuV~&a*7syKq>F zlVtK-jpZdTtD5rcRq(%O&NVv|F24Uu-~7|<;=rT0FH%0**5Uhy20Ph4=M}}t4Anz+ z+o^DQIh-KxU}N+=C}|pSHAehd(a4s8mC1iKZ|ZO=2)Jy|6TA-{kQcdCH|e_)x4C6p zl)r+NkbPS1;;R`NH&zcQG!tngy*&n%3m~fb1>H^VQPEC=T6?`PVA>dgWkk&}Xw{g@ z62`LK>Rxbx)%3sYwH>h*XjOX=QeTcc9F8K?LwJ*a&fcaoTu~P@vWOp-6L}aqK29bV z0oiAIwg%4vI}*;7V{2=lyFVh?nZk3LejP5R;%40YQ%1Y`BVQF=g2z&(Ac9SC#6X}{ zTmeYw3%Jm7zjE0Hj327+&zOTxVm=4{mi`PEG#2)~>I-!1uUUbyFN_3iBGA-|^Vxyl zFYNmvM|rwhwVea53*E%m2u|7_7pBd6hMipRa*DCcoYu{Q=(N_Zb)X5v`6FA{4g;B? z`6WZ1gMi2C*}K`m+CDG>gn?bNP5Bfd8zyEpbF4sV8G>e--mzrk5fov0KB ze12Kc!$5J)cl>oPWoL}p`@kvH>a#!D)Z)LIl?bc) zD!@>1-z>{EusQ*|1Z_*=MQEkZ(g&HotLfSBVN=-f`sHyNDjg1O2D-Kxz`>e3Ov|JN zpm{DB$sBguiWW}XnR`tM#(zgU^@~OU+P+sMrBlx5P-^lpC*%G-AK z{k4$@pt$hqx&|s}w8FSy((1?AX&-K2Dh{|*P}_50i?w)#%IA}ptQA|*PBin!$BZvw z*3Q|F1cg7lc3Lg_s|Ay`X%a19bV&ai)~&x@khmaKEZ&Be90E{SzV@Ox3Wvt{Hm}`Nsmo?N`-0-n&f^Yl>l3nRMnbsui0i1 z;m3zr!nUjRAelCk>h(mp;#7cD5N~b)T+pR9a}zjCP|Ef>`3bvBb6!y~bcW*Hj2|Q( zGtNYAg#`PM(^l@)&b8!bR2u{o)snzcN|~_&0TTlvnP=5#xcZ9=SI*2+946)W_B3k3 zL|-dh^U?)9TU_>#hrvmlHsgSZYs3~p#FmlxZeq2k$dU|9IEW8lwZH(v#80)L)<7#A z_Rz>u{ZQ)yB<(n@{8VoK@S%szmCPy`QA^B{Kiml5qV5m%BMvJT;##yw-+IRLE@I9y8EXTbi^?CyCtLUBg+J%c|s&c31` zM&8KFW%7Mw{jWN1LniR584!P`pOR5q>lAoDCVPjmyz#e2#;Dy_ccO!~2S{5?J>iBg z1hm?ako7(~y&xTBTjkK;pKLc4L!@Peb-(Ey6W(t*VWLSWM9HgI(u-W$w`B?`tv~<> zBZf4ey=!F?u-pBT8audz+gW;f_LCIH#CBlgTy-K21(aAmxwHf!t#pBtX=bo@+yyOT z)|-bu^Kg(Ctb^8nbM(cV!L!_~o%%&c#j z2)1;I59f#KStiOw-H)hIf^4l&ci=e+{lk*UQyur0>H0?IXglYEJBP{{S|GNKk${c* ze=Mz}*=L(0j-PT)n@07`681gMx|>6SWN0%*G$7eXD9nz?iJ8)C8c6#wieppwwmfm? zRPz?MGU{i-+1DE+YcXZL&4g3&>cb4S75sD`V9fa3e!_~*d>DK~=>_2>Z*cJuK@=Zz zG+XkG#?EKnj&64KWF8HJmT*CYvGRK6q1*;SC5@A$HU|zoLQi7jp#K8^zV60N*lCJ%{Gv_E#Y?^x zpl&`q{sdI1R!leFx!k4O@lMQF1GEDIr?|VDu*R-Y?a9B+Rfcc*BYtz0s^!eZNT76t zR{8Fv)eLZ=q^?c|%!<@?^Pg$!&_gw(P_6BvrT+fykkQwiz27g}Db0XbO5juP6|zPV zs_f7GTlqQPkKe)p16^04L-yZ2RNdR_R_dDPk;9#(U8^J4iTQDF)3?p8GdgW_zT{vv zc-M~>(_|q8%R1@KN@{&LAD>^UT6rfYmmD9Lv$wVuthXR~Oh)rbjHbr14wR1AB-`4t zHEnKd=9XbP@+=cFVjG*%TekCcVcEP(`}u0{vU+_jVMR^p-lKtumQnkwI0*tMo(1u8x9Pzt`DS1%3p~O5b1df_GTLl6D?6AL=gl&k*Fno>{!fxr^qSL}klSI18F$Bl#$Xb?|5m(|EFgD76#*>?+I^9l zlUe#dpk-zx``{iSZDsAXkP#Xl<%Wr-6+K^1SY!mna(5u6<5VRw(EjBk*WV{W0yCooV z-Y)p(3$xzjb0a6fl7vEMAdCO;ipE&JQ^-bCu*ySkPg(Ub-H+i?*!>1L5CTfE zWMrk=>&BMP4}4MLTpU2DS{TV{n9`!PXmboW^~`uOY7eV{oeI`i#|dV9^OJ1C_}%a* zhi^Zuteo9&b^CD>OWA@u!T_IM{lC|TKJ@Rg?HIk;#BkR3vHv|Ohk@k#fENmsCvqas zXU@zRix7&ZDlaHU_Q78z@X;0Sc4>N98O4Kh9%mYgs6NAe{Z=;ltH~{8EMD))4ZiFE zm88(Pfh0Hb+0>K&$Fsgl3yyI<-))ge>Mf*GD6~;zJRm?cOZd}%l1>-h^hPPm-i5{Y zk@Usw-6W~v70Zm>YRxE=d@dswz7g@)NG~39j(J?_(^=rp$0IJKGQ&6X#-C3|0bC3- zkVkm;w(O|R*})EY7e`bo$}KJe!y!KfTO+LrSE>}qpcXxFkk;HxlPQ4KvIw;M?4gup z3{p>Lx$T@SF58oWK5urb5Qg3m&pfCvo=xMdKg7-M-B@Xs&e=GqbR&8~^U4Fht^Uz= zM}oUJbLO)>46Z!qfq+e`3q!d7f{hiy<=xwRtZ+%Pp z7mW3!IK{6NxZf^!uUTqoACEeb@oR-ol+zUk=UkF#*WU;?o@Nv0sagZ0fA4C=2@Qs1 zduy-!QJC*9#~UYS%)_$Gtd`)pr^W>4`F?`Tl-0+8_ipnarK^*$o&O_vDW~YSeG`=?S4nb|9k(zUne;%xuhUlh@EM|MY^ z$U@UYGLEF6`G=EiY_$OR16-}2e!aZ1B&0ENsgFuqlmYozMl^2(s&lTk-t^^+c-4a`8-#j z#I5XhM^8qm$TRr)&-*?9IY`dM%q++(+I5AfGTojhAaaz$beCWa#IAi?8>3zLhAuV4 z=M}(|3h~bsDJW{T?oRp%8eio9E3Q~5jh^G#!R6t9^6Slgu;g_?x2^cNmXEXX>Bw%F zC}>}6z!m?mHq$(2!tdaGdm)^}$k7IzX<{2!AV_HUHD>!O&zz9Uel4MP%gt59l}fGi zJKG=cYgIyUoKVGAe|$N#6S}{@bT1AGrpZFJ;P24cI4T?w zUur)crbvsF?_5B3}QR7sVZU#GsW!0s-SMThwl+3_O8??UxN%bPh?q2HoY>#3Lq z_o}!W5IkBWMK<=6JXKgixFI+E_+D$iKngR4X9kz37?TFPgs5txPFhGH9HUQ?M95R2 ziI?)QSKPcoU09(%**&8eP*#E#aux4=G5L`jc@EOxPTb2-szzpDoGN!M!USjSUmz;pkxED`PfLXn*(}68(|MaF@R{f9$Sx8a zepBjJ_Km|h?@U63Ej0;yAw)VSwf*sY{t| zf0~JmK3lFb_p*nit7&>~?V|b6h?_xGPcUFxC(L%J_qPW^pkE++_0N4J;rp5|<#vR> z(@37!Eu(Gaq=iU`4}=Kpm$9JzN-E5|lj0!|xS!k9Ojb$MPLv$Nm4G*|mWd;E$|d^3 z-n)_CHb0U4m9UJo=O86f5T(Nm5xBk&f}|7Zq8-EzBw3>ihZC5lIhfz$G_?5?(DLcK z?E23vNf#SPoecx8eh6E9pE!xYfN>4Y=C6Y2u&6KM1AO-2nWy_dpHUva25O*` zL!^);slyQVR04w@ES6R@P&$BR+%RetP^EZy_n^baU8C~d;*MdToL=-wYE4~p()9$Y z#^t(YgAFk(`?2?_TcIV!j`4~3Tx#5#0+k(nVggryvaH0q zA-kHNAyU@ya5*UqS}g%)@j30@L54q1FszrT_?`_TSj;pD zKQ#J0|4KeYe>`P5#4K3eF|7D$jVFF9$qhd1kB&J*->@O=bmTFYUmmbsc!v8#2>p%s zhyXp>zJPeTShyr~pUB4TG&x}{-c5?&ZNFQJF_ufus4sK=So@BO3{Mk>j#=`O_f{ej zQvcVGfw^Fa#-efSrBWrunH#XBfYb2s@Ks8NrX?|Hopb#>5mlZYI4Kgl4Va%VKMZNA zJpK1-oSqV2O=ACFSw>M;12j^@xgWdmjKF1R@n4}cuem-+(vyA6&(zBzHo3F9=uxT# zLKop-2FQwrIyz&* z31tPGx0%Ty5?W|@KL8!h{zgJ5K|;=#rKqn*3cJDI?q(ec>5P91hJOi62rsZgxtQrQ_z35iKSaas68jRQdH~9&n9r(xpLk zm~ZXWo0M`9klEEj&fBvO9KUzD@L)~P=yPGHJQmx*X~Oq%+q+3PtBK)|%a2{pzS0>8 zIPKK=5Do!-mFK1ZmTaGHz7x;v@J8D?2C233H@|M0bLZw^Wli!)8kZoa4i!r`9_A24 zOZgCg%9cwc`GZ;%Y5&RRg|VyD=H=pZaw=DkS@Eg+PwE;{t8nwMtN8r1+@1Qnc|~If zH=7v!CqK4s;7`|fHhbBgRl4COD*Wvp)CU98qAa2AO z&hBM_4MXC8Xp!8tF)tgjaSmu1*i7{ctmuBNE1($amdP!AMUBbJ88_WJy7I zq67mtuiK)u?3??z!3bge&T};SMZx`5@jPX}#P=#pfAn1F8FBt1C28^}t4`f!?EYyw!v_~Wwpwn0)0XSvO4P)Ywza_-isy{Tp52Ax) zDW1E!_E5RItpX{mEX)-KJQ{@x_~)Th81*9fcI~c4$=~Hv(8*bt=`p!QN2q%%YX=TK zN}%-7a8qIGXt^-pV=#fah`I$Uk^!2m|7OIR>gML?*)@=u7PjO*K%qfqzl*$7L{`z;;B&2LDF$#lR!H1^g799Co-llf5Rr$@5uIoS#y@ z{!TaA=S|0w8!XJ~RmP;>HB+rEw)sE4>rxGfJJCS4wV(X&`Fbg~ zcT#lHyHbLtR}|;Pu)mfo#S%{Dev$4LSOU_hZaKZdMxZ-%yF*o`3X!4=0r#RUrA89ZNARHrslzJMQdYvR)c0i(R+Zdae^6dl{nOj zrj(+vWIN|B=6J)D(pkE6gH^mjmipuKy7<&}Wna<3^TKZ!XP44$C=XqxYg%$0;RPu! z?qgK&V8S<2{bx7?Os6F`L(G5v@ToegxTjRMJbA(OqvRSd>pJ*^rQXmkzoq@xHKd!6 z{Xev5^9GKgJC1N8aqPZjBeeU)?hGlN%QY3fWso=uqjL3Iu@NDKR7ww&j5c-ipZu|Q zc3O5k+3TWpmFBKB(;uYNH6VIQ2hG!T?8_Rii=2|m)~DZV zv{CK0)7r?MmgYu?a=Pzc*o!Epmwx@$ggb}(Z9zq4HF^5NYQaTk+$8m=O zXgxdsiG)Jr`96_m$|TU7O%GbMHRXZEx)iC_O=x;&Y13Jh^5B_r8^|}EdK*8%G#>GG z;w^<_MB16!6eVX{~f!(tjTMBA@zv)|xL1$vFFHl-_iIjyBHYbfZkPykT1QmNg}76z)lWKA{j@;MrLd7EC*hyX zS(&PHdvakb+mkbTDO4=6%VN{w^bePL5JQMvv`?kl{T1Le;eJT^RIY}nRqd?*ARt`d zOt7I1TyTZH?VoddrG5@Y9RnE|-}~mGHeC13NgCb#LIrJ>+mG`&qeYr=Zfa~!b0q(v zQBbsN)nfacj|i{Ak4G;bD(jPNj2b&>>Eh#;d+D~N#c2!qqv=AxV}gIUKzcvl2NFzMHQJE0qsK<0ba)o9 z9J;<-=IEbnpj4|UIpNilk!J;edq+)dJEKFww8&~tfcRKEC636;!#>G+zzU$dn|+{0 z$j*7@M?xI$(hKhDE;p5WV=uN-zC6L%i3ooaA4Z+|o(sc^2?r!In z`+_#SPatSP9JeGGU3S~HE*@-rWBN4HnE$RGxM;$6fqfTfSbMU|MZRV@5JarW7-_ULf7H= zPOvu6=k51|*ttYQfPH1FkcJGIe0t3;_Ujh}uZJJV5fqr4-cU}EJJ*OXI+t&JC&3!1Wmt;UHDsqTnRilwOm2pi654%|8>z?s#TrlV+WDvAMM-qy`C3f zLw+9tmh@5Yn4WJ)%_va9?#eWV)H7_=JYvUV&sWWV>$Bd6TuYiSZBB^F>cC0EJl33B z`%K+JJpYjgMM$@tt^Uz#_PM*nZE3avhHfG**Q@qSnh$dkm`GN@en*x6HvuRLxQw9U z)q1Kn{EkZ5g*^Hc0%l}{TKx2)m=d>%i3V#fu~O!CM%&^mq(OS-vC)gQh8#{uXDBa5 zV3D@a*Ipbb^6t}HJGqg7-7)a%x$9%6HwJ2#ay~{Y>fb+PI?ayCQ-|)=)n9N@Ydx-# zvo{v!p{48uxg<6L*-%8TrYdgZ>~(q&lQBe_{v~7&a#|#4;w&S!IW+j0J`?VL`SU+C zIPifztX5Lexic^5^uP3{#Xs#8_6c7={)E}ui8fAA_$uDhTlhlG?s(Gfxq@v@e7*K! z`pDts(T`>8*Q&_5c?bo`^%zod--KVg&szTFYVnw(Hnd%pW$OymrQYhmuSC=%#D~(J z&)lTvRdOz;_cP?4_XuBcSk-sQym$$viRIRA|(3lSxz>>XJ3-vrkCmRbb>}3l13L_ zxXXpzYfY1bnt;jBQ=G9LP3(@qcK4F@7pR1(tPj4fsUTUB=h@l2KsEkc84-J%qT!)v zI%(vU3jMYg$FF(Vc8xOl-}F9{@WUHi(1&N+Vm&|wlC{exKE=B)?lI7Wg>UPKqjJPy{c;HL^Yp!EB}0Z; zvoE)jj$$09tbHyLJ;R`}YzwRi4xRmuMRf>oBWdXu-?c+lG6>*=I% zIwzZN6EFu}Krk3nF|b_Ac_(XvVoIx2a??1r9SZvYk}@Hc3|Q>d%3(tosnLLIZJ2)a zHukEM$7FTv{I&8vyD9h^a02#8BfC-*N2EN3LL$zs^CxBJ(C}sQPR9Vr3j5!0Z$A|Fv4?f4*Y;=GWxy8GKgqwKyh^k>MOHG3jvW2!*B;tB&ZbCLV6$&sVu#^vAl5nicgW(6J4b4N82LC&|!T&{|DU0W1X9dtIcw_ZQm7RNG`j2 z5fn5kcAdZ3X&8*RIfdhcsrdf0Gf_yu@wZ8dTS<_8y_4z$+pSsU_`i8()s|K}U{led zuDy(*+MwwXuHVs>iB;qR3aLn^v7Rt5iuVs^J|k!zaJzqU5^D`N^zW02b&~ELS<>@Xehiz$J~KqP*7Z-}-01 zlK+@-N>@O^#y%SX%D2LNcpl@ST2XtA@Cpva+u$hHg?s?cX+vi+IKFtTtH!?WA2n4j zao??2v`SPD1#~i1P1}u%xm?S|4CZbis??idcJ&KtyXJ;}EoTEp$V2f;N@t6Q0}f+O zVPC}~pHD}voIVZ_+vk=)lta2{bAdGAOU>H4ji!;xfhUE@Ox6NBlu0`26pHu)yeyAuyX!at>=qAUBZ|J|#P(^)pM1(1_kt z;4m;SZ~^X0@DHZ7KV2J}3G%kc;hc%asNmCQC%gV% z_cC@E7x!YPMLIGUarZwe8lJH^K)MyOK5g9MccTL*zlqGhTMd1cX}w@J;99llkY@UoP3d zIeYJJmrjo5^g;Lwv#T{r-<_ZHE*khZ2D|yOzus85DawEbeBYO~i9a3Zi^)6?%EA|A zD|{zV9t26w$w^Rkaw2o_2J9p8E%dLAGf6E-83pJ)QRUrqEU9 z`q@ALOp<}Hy6&6n)JvlN@?oft^D`0n$a$D6p7ofMs5qXo=3?rM=&fGnhQ#7VU`3}S zXFg;1n)%mt-Z`+b^b){aRqr{O)CQ0D8?coFbcitLk9Oj0PqG)TNjU5??voVa(3MFM z^dSvv@lqDUTeJBDOIBmVrge~}u2~F`+$`7Z&R1Q%C`vu7e=;y!>+h&%Xb4+H_vQc4 zR8yU_{g#=p7R+4l>TPn{N|O0Ez;{eM>NF}Zu8(B#rvt`-1`RQkh4EuI5J;&9FZylh z$NidaIFi5L=KYboifetIAj5qdmP~Ky&81oO>p0VW)m~q(U|%hT`nuYQpKHTS6Bs-n zc4E%f=-iH8QTcu9a()0bI7De{{PQUH)ql9FD{Js`IuSw>k#%_3jA*prP10WFWw}i~ zTt2wRc$8<~2x#yqpy=|1_}Wc)wznw2&m7ldX#mGlGp#!rXs}te+yQt;2#Q~FF3&oo z!#UNOfHb{1{ipMqQej_u^e-j_qR_tHCmU|C227Q8dm6s=FcC_Aq!Q!U?VPB7sVVES z){+z_c_$s~dNgs}U~4l%XU( zcQKPn_KLozs|p#qliSMH4O}uQzT6VfRROTg6(fT`hdAq}bnU#2TJOhvlTsTXmS-MC zXUuy<)|dEK3f{C%7e?G*wl0Rz$*;%eefsQ)oLO7pGc=vtR2d@T4!%Ert(hv|!G>bHs3@uNSuY}p6D-f{#hWepN} zx7#9szuw&u9N4PrSQ>8B2l*{byQCPyLRWQ8F22!e9SGYg*J`)F@FKW5Usof>YA$$JSf3 z@V;2JMK!%udbtQR9e-r_c*yU`#WQe|n$N2=_s!GvyrC_%VJq83JVHojmG&HNO(y{E zYq|WfqSU}D2PS24AeAB|(SZRT0A@k85`^r2!t|7()MndMu%6oW!}1i;m1#l=Ha5XX zOY~XFlB{s?-QEZ7hnd8c)ma0`G^RD?JW}|y8X@~&)H-JWqKq_t_=<^XYBaw)+RtlO zx50B3B6AK@9{LRe0dY)Xt^LhuP1{4V#S6;tCagFt9rmS{!udRw{bIj(zcH-rKDNAl zf?vRv*QPPco0u$NOFW5M_sCx8zQ@y(To!EcVOd z0^=|x*lD@8!0T{i3I~yhd2_BimAM6-10crge@yJD=fM5$Ie;jrj{cJfy7J|^Kj-_s zmYtInFA5YuD%cQcb^tP#>7CFABCkPjDXA+;NVGSU0E#*l1e`x+di!W`-c(oRJ5p}ra0EjU% zH~l12-CWNGc5WTAKWfq?-;n5xP@aMJJUaeS>$Af%9<5LEtkO(Fzo75vRKyBCZabp6 z9p#M`j_vPV06Z2kGDMmwr3Db+S@iH{>*cz9i+d(PT6XfsH69&64yiPl@fMu?{D0P? zl&>p;^2XFg{*kV9|5{H;^CYt31~Z6eospONkL4~t)CT<|TPv;t22D{!$tH4)f?taV z2dRsI(2?@9Vs)(vo&FDPi-w}8pLNIu&XIIAcq|O{gzAMk(YFz&*tg*6yo@C{sL*ai zr>m;csJ(XP0V5Wgo5dUiT{^L-Tr7~Z&t(Y{xNS&kxlaL^UM5Jg?_54EM&euJ)aI7| zXpLNBqs4`)?kYKzZSdfOAab?7;L}jM;x;JjxH9ctTz2Ltdr_G!zK{0$}~}mhuSHvYJe% zHj*p30UU!pF{!^s6z}~q9{jNoe%UOWrAxX6*}|(=klPWZ=>ADS8e~^a#s7n$#R7Kg z?cb+O_LQ8ay(qdr6B_OXz&Qupy>C{32LM@VbTk3V4xWwBKG^%L{?GVhZe28Cl{N@L z8tb;|^W3k;3Z;x(diDP)quxj^x&X_{g^PB@8$*D$^I#t$X$Z**M^&W{Q{Eqfl~qiR zg0g`OZhHMoua8uNA@fcQuKq)WW>u?f#zpH@|KFu2C+WTDP#Y8;G@7PK8H#@rK;;&> z`okIvTMg*8*{=w+!EelgBc+m2=?&ZDzQJ7df&pO%CIZ#QqN|4evfD)cKiIfh7Sh1ea=5<Kyh`K1-8gvlLpQbQ?tuHg z0k|vm?15&b=;Nl}`~h*)2&OV&gq#ZlCG#m?Nt@M7z?hT7W>@8j;OZSN9>MLK%Z76C>F@HXBMlb=|^UWGHQQJ`QZ;lzO& z1NDN!24I(pcF5mA%q=rQ)mM+N&%|X+Bo&F$CYRIH>DtxbdJrz=_FiuPkCl#Q9X35% z1ycTgA``Dk%5RgF6(lsbQv31zzayGTS~LHPzs*Tsv-?!+ob{O4DF-E|!kyAiJi7mD zO<%;faCxzj^D~d#_tPT{#{gqD1JVT3z8=fch)YQQeh-p6CEt)F=!AZRtd0fW9sTn#EYZo(xOII zhpTR>V``*9^tf8pC{1-+qmc#Er&!Jk(82$pe5K zaCLa$9pDK^0I7s}3QZ|rze4D3; z%IO6B8^CQ`^ni9lN0Cle`IQ&?_;CJ3#Z(Y6{L=6BUZ7sXBjgv?81_DH5w}thBb1S& z5fjJ#wO0avD=-_}v7x$^AH)u1G_EOf>?c0msNq_$3)aPg!r2H5^+fFt0?bB_Zl24q zF8v1!MmxiBLx~*AWNvAHEslgVWu~6wKYmaYSXuWR$YxynM>RPrX7ph7F+;^lU^$kV z%=nTX+rX55tbCJcfPn+8Am#!pLb&*{IAlWRmE+MWZz<=k!Ci)o#s|4Xn; zRL3uK>cx7?*DEy)9oPwS771X{h>2@^yO2RDCld_>|rI!1RxRSrGc00|mH18iqvp}*!!w_JvEOOy@syNZ+lMrFc$-96za ze=%2#eUg^hOA_4Q@As4`UgK=21u6SaCbTx(bjZC+Z3>_V1Y;>N24plR?n)RK;e@Ng z%Qq6=wUGk%(_l{rPes8};w=`{=uwHzbdEyjt>8qm1sXhRW zds7w;dJ92W`OWngTb}sF6CI;Bm=mBG=OI)+EJOUutmFp=sBA&;tjBcmo54+vH0UP- zH&cuuI#177wPLNj07XxCw)bnaG7^hlSOjPkAoYpY8R!gtDNh*#r5T993<(37uP1w` zzSpqyns0I_h@Jy2*NdXmPAtWbAM%-@Djt}38diMt>G*5d&tu&t?k0V)qju1Z%dM;c zqk{VFD0`R;-;or-Qz~4W4BP@)TDb~UiIN}}SdrBrUg0%i+Z&5A4Se-`=nICY)4@# z;wCDOaUf``k(gej`d_eu5`D-Z(B-atPUvQ}_-AwuEv~$)>mCgVd$U)duo4Zuboq8P z#@mTFkgcV@!2Xm%T$>!KXeup+fFJ0JKY2qBO8R=)Pw;s&;e1r~#qNr$oJ*oQ7E!F{ zfTS`yF}pdEW`BN=8Q^~;heNBx!ntHhmv8&029IJVcbSB;sjAdoiGj?j?G2$<%rFe@ zCOWi$qwhd*7HT(dm6T?+^5!49@PPUNY~r<`1ywCWiE^*tOLW&8EGzd1H&q645vYLK z4rV@4(u1FNO;Uzj(lKAL>9hDv@&_H-iYL43 zA5?(Ew;y!k7(bdxX%=4BZjr4^Z6OhtD7zmRLrvbSjOT+o z!gnASU(M1iHFO4IJV)5jo6BX zh(qkNm`fs3^#~Nash6~tK)JXy%i3{K3`@)|Db#I&#@_cq%Br}!&z`ClQ&4$ew|#!_ zl#&pzHXokf%%Dt|LR}WT6K29nHRlsrS3(1s2BorN59G5jgmxCWH+puVkQ-QLTGd+lQF9@$BKIuJB6n*ziBWuDX& z#q5UV1mfN6L=M*y>|ibyd6i${DEbFy$D>o66l4j66z-?RlDtNK zv$P1S17#hke6WIG=&wi7GusIv=I)RWq*c9xD=Ea}zZjBRU~}(sj#b(s-zs^vPmOt{ zf!6h?!^IiU$Q*;!)TvzkfGEvFag&$UTx#ln)X*uefgnF>ujuLB`c94!sONp0%<)Y%a`LY)Angr@h8#r zo=9m1h;*0mm?)vI`iFg0yjR_94Frl}Yhk(enZJfOSBBH|!>qEYEOAgi52pX~v zKH_N1_Y@qR%1!oH;gVu#IBYmR=b@==mq|ATD$rYoN0KPgAQDLa;F*@rY;Jq&-fHD_ zaAP}Ls$U@T67TF=NWZ`x4gAa0p6tA@K9rSj*C3i5+5+AK+)Zz`TVqE?Sh|+KTP7!H zP2Wq3sFvf`qhoRu4sK#ryT#*7PxJOVP!H_T+c7{E4vua&L4~|=j!*^C7r3-EU+CjM zqwFe!b<}yi&{MHKChXz@-olRAxSU}OjRJ;Wn36mn=imv|2w896h(6UKvEM8V*N8l~ z%Lk99Olx$t#n1n79Gx8M)_KwCYxaYlh70D~q zT=pYLzr_e1z!a^?17?Mo<_SzH`UK*7J;aE8V`rGH_*i1-qhIqf5eSRruI9Gw8%c${ z$Ff`V?hr-SF0iE$FY&G6R4})- zEH!>1p%EJhl2+G@qT)eMil+M=;r#T_*Ef)#6S_pc@$M^z_!d>z^aJ(agLYMK7Q50~ zQcGMult8-cXiq!F$ew4|z;(Wpf>Gb?H~>f4+e**|`(NRFwk@SEgpfYh%}{<<)0eX2 znJ4p9D^NqBd&+fFu$+Md0jagd*B`H$>-fCS=g2{>RC8ejtE9B4l~eE zNMV+HbZrHaGEhcA5eS`KLZPBM8K87tXCArCCp;w17D7TDo))l@V0<;^^N#L#gy#r1 zxxb0AiT(o3?_6`qxv#F${cj-Y%`o><2Sc-1LFUDG4!x}~zPu&|XDS|=d^8~Y&zOJk z)IFcsT4+d8h5E);EB9G^^6YA*(WRurQME@4%EfVdd4~@n~BU)eHIrY_V*8N=U*G&v- zP~`OVP!rd-Xeb>5H|-raNv6Ew2)w#rdRL|${%PpAv}-TGUQjpxR#AaxpKoPJe7o&C z_;@YN`iWVFRcm4&Is#dPIaO1!DZ`gp%v{_8YH}YrouGN6mRwG~m_0e?TYKed#!~+C zx|{zL)bCTppAagEhf>)X;S|(La%TQpM`07m)BwZ7$3Gco`g@( zn&w|08kf`a^}K<+kX4b1R`gR)XIjJLP3G8EPs!pzqHz`&ks;S^(J%N!+X`2RiiJS1P> zSP+`O8B%&5E}(p@nDGLe|m2mosD!&6oPieuiu`k&X@2nyu~9R@{IA|;FJH%9izTEP`#+Va@h zhm*g5xk}Gx1xh_}4}nWOctd-h?W^i;7vlBfRb>0xtz7c<=wx!{R%FUxZtR??*NqLd%bBzCuT6XGX*>DzI$cd> zJKYRk@VJ#qD7yzRtYd%CS9w)?mx(Qr3 z>HKvgHG0387%6DJ`|9nrs;VCt(6*0b|^js=F<%!@Xae;SXewz-TjSIwzP4BdhXZBTD}+R1O)lBP!r z_9jwRMB+7F^hYO41y+ZZ!F6rZCl2&g_n{s32{&xE(GP;3f`EdtJ$&IcT>0PPC&m*o z)3iw9nhN1~8#i{Du|Jjy5mFx;bMhVZM%`?{>-S<+4WexQ;8{d%*l)Fy)mj*TTBX3z z&ars6ipocWB;X;oRf zP{gf6H`_c1xzaZNO>(Wl48KwW;QYFDJV4P6B8PuENZP3j`%rqH*}$EI2T)e$9qtCv}P!shZb7Bm9S zyQOx9l;ZGvY!z}V>Hwree1FO+NU4f(mf(jgUA(NAxf~@smc=_Xg1*|o`jlc_4dZg% zJh;ZvKeLb-W;GIbZ#zM*JIw?Ry)m_i!UYeOdJ6i#&bF-|%JI2{J_hGs*S;K|U@a&- zg!6fWf!=p8m;U`BsrAU=%EKQ}@qpx+wcfwO>on`d<4cOltu!60AwmdJkNlW^%kNo? zM_a1AGT^u&Y=P%(=9A{UmuFQQI}!{y+!y6;7Ny3{P5x+2+}5_dO_y3|Ky|c2^|Y49 zeLipYr&f-<_vyQpR^W9_FWa)McCu>!kMBwvvcr0dhc?IfY6u1o88jZ@9k1!+_f@zg z`77}7!MFywkiF@{X4nx4z;#1g|3gy%t~Hu4Z&kL-?X*`(;12>LkQ?K>k2rf^%}nSQ z!Lzq%ahKU@ppCb zG3SwEdEtIyfM*c6YEOJ*HZFkP(LOQyN5Nd2W2Yi>G;F=MN+iK*z=Bl^+!9aDzax>(6eF#Y1&uy+MWk0*Jeg`&kyW-Hj%*EK9A z5b;3rHc=$d$$JAw(P!4*XRXN9C~QzLDkOb5F37oJruiW~P;c#E$k`sf2VV`^dIkCF zYf|(8@iK$3?LSaXbD&1bv(jHq3{F+2JI%7tKZ^4Mbc_7&O=1AF(W8%=$vsNYqyS0>93&rTh4aHeH$TTSj|y}f(E5#uM|noz(!lYL>& z7N@l{Q~0X-T*6MWMOJ|KwUSF~9bY>#g;*|7H>b6+=J>_yt?Yu0e4vd1462I1*4#-K zF>JTvHjq%dAF;KdCP@IC$x6^R>`~F$Fg2)CMasudvU+{vyn9vF2T! zJnCS{I#;YtNV#$@uo}a4b?&q{3>Qdf>(c5n=c%f9^4yNqGgUD?v1-aejl13e9}uf^ z)}M4y^oG9gYOW#OH(bEG+AGiIWswg?-8b|R);%at@4}}_NbKMI?O!`in$Mz=#-`z9 zsF_>~^{&&+y?jtC4ej05?_(*0da5**h1D`GN{YM(xYP2n@S~27 zL(hXPNClIs2uWGFy8`R^yPOl|^4}_xNNSvL$u%I4@6wEN^+r;6sxFJ-;)eLN+Qk~G z#HjbjEh>YAyZe_ok8eCs#jSUn;jJcoroJc-u3L<07+M_%i&wO)&f1Fm`Y=+xb7M0e zR$Uy?o~%_BsI;!$f|&i*JJb<8!a+*;tK6vNz2NXLB8-^3GW05Svn|eowKru70z0}K z9Sa>}D5N)$hetK=iMZ;9|)JDzTC<1y2r3!QRnbqTt=<|&IvjGp@b=csB^zV zwZtG9$8WsMiLf{hIbmqPE1kenaqj7xMHMoIihq|NLGI>4r)`aejuefZ=7?^NGm|cx z_pYP-i(!J=QMlhhU#;ePOC?NgVD}zoZu`Prs$-%|+wJ>!X_9_#Y5MmkWi2^`V#ztI z0y_c8QRKiJ=G}B(p+-q%>z#a1M!_fLzr|dwHQxV2>)g3OX5f2g=4@xF6OT7L*d}5R z+$|N)7w^-LPiDn#-SPtllQy$8buomhc6=N#;;T3U0>peURkF&VoIkm8Z-8~XUr*XO?e>{m)eO`Q4)7h4g?`T5vsJJYB z#pPt$Asp06S@rX_V(GdNrgtpWLXbmjhR4!r^x2sV&kAkAu-{ZR!AJkYHs$K|989U4 zvnBOd#`x=cv)R=l8T>)@yX+5DHIkP!r2Vqoq+1cLWtRmTecTD(^7xL$RWBGdC5Wrr< zww(ZYwdW~d1IG%a8crXjxgJfgV zUZw|q%F?h7r7X_b%!o-~8^W@?_6?&OJjtviX{%fDuai@UUK^R*Pw1jXyl3Owa=6DF z#RO(Kd7SZ-R|7^Y@0V?gcz@Sl0t`a5^g_?yfCnHRtW{6r9c154%21JHwYOahU##-V z&lUHi&Pr!Y&)YO8J}PQ#F3-do_{s@)L$8q2)yx|EfUs;pN>RMul@nIl_mGdKG& zf9=i{zUK2dI>V+GW_+II9|>|NPfcWY+pFoC=9Poq#B5&xUXS)u-08)YYTBgm>z9+J zRoZU+J+~iXErrjzuKRShom~J1EVijoJh%G4p4M(lLv5XifEh?opzP2(YNKyzeQ)Cxxc@Yv1964OT*#;Ry4{*sz%+qb(5zSr?aLrh0y zW{l-1)qwmJ_Cg>LZ#Sy)LU={Bpq4fDyOEc$BnRyIj#3a7`JGP5=sq0viupl7x4HJf z`g;Fi}7O0<7cyN(>e~14> z=_0+Et>&FBBqEU*kq_G!Cx=B~t5{lpBIH5w^1^2Jo3P9=NE#9t-~w9CuN71K zidVRS<2pyHGSC{+mwpXZ-!4D4i9z4)6+Sp8mMV);1J`?WuyD^Li^P>z(jc$@+HG;v z3U4WO%vISnT<=;m zhfjE_{xa64ycf)1cS#n$I?!Tf?Orhh&LVVdHG)wy>udWV8VB~zV?Sqm3sgDw$j96g zxEL`d>T6Ssv!TsEiY;0C>X4V=Z6Kd-z@TT=SZx8w=DeX!pf4!|5bE#>(KL>?S(C9E zQhNZv$H>2lS+L=O%cN+)VH2WR%Ef@lIa}<9au8LqqdDk9y_&n-sL#mpwS`Q0MgE+6 zyV@Z*D*Ybh`+^BCRdp#p0)oQ#bR?`)uXQRBbkYt~F$iQ778TroI3l8MY*hImwybP^ zo5euplO<00o~6uqpK9Ds@I1K|$gghkbE>^J@TvZhNylzn+q07)5m=E}@=WA{GjBE} zg{0O`)c-rsXeLo=6NH;({Uux6RF7X37hq2zKGAPo>HYmKPb}LH-+bDnM6?Y^Y6LKB zhWtM*+>gEP5qJBK0cu7*$`&fAOBCi9NmOQ~;-&6du~oAGT_eKX7N?*Uqv8ALwLk|# zbBRZbWs8~xc8{`svXp3D5`pPa<_c}mg8#g>nsrRex&S<|2K-vgq;i=vG37`03Ml%U z^Y-^|@UJ>|zK-YRaPk9MN1_!LK+^;lI3DP}w)wmk>3No)E0nRJb^V6IKWu+FP{$wI zLBC)q=~YYcd3egy1qMZdHzMy-TpGL+<-E6!o->U0t0UW6r$v6l>ZZzprEyJnW;$^j zusCRCq2drtB{D$j0yTxe8D!Cr#LFKxT|C>kT~a(zgRxahrY<`da>VZ-9qDf6a)qfD zx3t29bjt$_mjl}d{A1~UkJ;KLw=Wy&0j&q1CQ8u!yArX`k|~e9gRYOy5yW6w{Qi8k z>Mvx<+WRa9u&a8sT~7h09F{lC(0QhgO&_SMa49#ak0F-e?QGxkSxP+ZxU+#pCK6{d z@^fyR`qc(6zo-spX+Uso=y^gO125&9gQ+5WN)2Z>AU_s5De1>*2$nzjPuo(1y`-Rv z)u6q?)@_D``O7(}@tSl-7)6tWyi8xiOZA&Q1|%|y?xhEUy7OSKj|}M+=E0LxESG!Z zljXU}rc<+KNJk|%udP6p%b+cJF+*7P_tlV>Udf>nN^_h?L)5Ip#3?hP<#vyZ88$!p z`CUhcQqq$C=sR=qi#Q<}AKD`yBg_jj&LPDd7hCS^w)qEag;)O7POnxfBJ0}<>o#6? zSp1az_12Q8S3GF-!BarFu==N+|4-m-B(fXwbFg{bbp;PrI;LtEt~D-_h(crsAxf8> z#jHd92LTW6L0c@{Y`SSnk4z5u5b@g_bjUd6rz}8R>=?v$xpuDGmg%hm)c>}AnUxdz z^p8ItoS)1d@kCoa7RX3?Ee5F)TVeO4qpmmc27c`Pwhs2~(?GDTiW_1|=T7nADSz9{ zGzar*e^%(EGdz^kzXbQt9kq+NZh|g6KI!!t1k!Ii3;ds42`iFQwZ`SyPh#CSqc7J( zy@koeu_X-7&X!E*&(i@;1%0K-tf+dMn#gWTVRCeBy0uv5jIAv8g~BvBJSFqxRP1>822l`j=M2zqOJ6yz_B;#?DVULJblasr6HyD&wg6Z0i zK|qqd!G$E@;Snj|Bu&?8v&cugZQcF-ec1G^qDr#A_(t<~iS-T6*wl&p^i zINgl9bn1m$JI6g5cLbDdzBPGu;79x-XVoOqn`>A1{VF{@17u0EqXtgS;J{Qt$Jxu3 z6@|TO8mSMFxNF(4V(JKXcNw@nJT`APGE=K#;hqlI{L;sfp$4s=5HBoRu_>1b^^3&b zvlfF@bO0qLK#v-#`T)wVpia(D0(TtEz3i1=qmC%qMLU-=3~o7NJ;_h*G_%|iIO~Do zG_&PUHZDCQQ$TXGcbn>BS*NPA@jI0?JuC&(#L#Yv<1fcvZ9yBHLVsHW!C&KI}1UINC!mcue7U#XfsUT^_}k*{JhLnB`Q zs~Zhp%uM%E?>|>p$TZZ}CdicJ8(;X?GJ<+yHaZ?h~O>4SP<(Dqy(G z`sVq_>P|yu2lOx2^DQM!hjiYzROV0}bToV#-^)@}v#g>=IaU;;BjThW(8VASW8BV; zoay;i%L|kILG053P{N+v&$*VsX#dsP*Xc`_=|gtJpBa?q{>16`b!_7?1?o@{_}Ny^ zR*{6Ji*^_UEXosaGJp0}1f*O8q4Pf?Dg=Ig2>t~WePAx#$?>gm4uIjxs%r=pSc|NS zW`I&u`44iUv8iA%F7xEzh)cg)QGoxq3?hcE#ObdOnCR-KgOMDGeR&*Q8}rBk=8J>N zA6mIJrW(l0#N|uPKnUXfAaSwv8u31>mF6n zVKbUf91in&!Jw`q>Lx}piH$4ny~6h)k0@8;0gVIXqXBcd4d(~Dss|%5y^)zJ=_<)C+g%ngs~ zI^=#%KbWbJ>>2t;HbNNz0Y>`o^VLQf? zzQ0eKFrN&uw@l;XUscCCBDXT=^yqE)Fs!WGzwisP^%Nl@or`yvg=jy(7!P?O8Bo0# z#dIz1cXuD(ZC1u2?vr4G@vX*bOvl#jLFK=faQH_r+7^&PX zA$k6`!h_@X+*S-qkc3F5)rI}H@)vBIj1k{n=wVU8I&Kk}s=-slI5f%^RG^18B}uy2 zm||Bw?HC1 z1ZI`{P0V@BHE4{5`J1MJwCmF~x4j47Ne;;GOEz-IXXg&Y-0Ii(LkuXG!kYg1I28>% z0&8FCPs^Yt6)~SSW{iBzU$#<{%8-2pG(_Wf4pI6~aY@=ROv!X<)qTpJtn_TSXvx!V z&>$`mjeIM}S4vAf%FW!hxYh@=hvp}ljNy@sPx!>qBoQz&alGAU>%w4(-K8PgI|Ox{ zxYB$kkN0=A?<4~ZLAiOUJn|7|3py#u$*~OtZy$V0_CLfCMJr5qGH;_@O0J`J)itYl zzn~p)MhfE>hmDHvQe%0U2Rn%iFH6`fB^k_l`54nYC10CD|M1JvWxR3k60@G5$0}(( z%g>7FoPsw|c<{uM+F}Z>7 zW6?0#K95WE6ax49GB1o;CqVQ#Pch!%?{$(%9+^l1I}@>G%|)Fmlvtd^2w*}|7rjc+ zLdBm-CTt(5Kuk9{ve2TnF#@kg=is+mN(Cy-OfI}poS}Mn13yYBKj~ZBsP>`;agWB$ zO#PmHN|9ih8!}6wx_TZeDd|5U`bo8!j|bVgpD%o{1VU8u5|b+_kHM7Q|dZ-~`&DMOwYp`ApHPJ_ao zW0De*rmU5b^WkNA3<%051}maWjI~w!kaHM4cE5rvm;$urCZ8Ji1M5&O3(pGF9C$+Q z>#HdT`}ooOY&fmoJ&hemwVS!!(uDk)nvhzT4j2|8Bb0p#7~G>hl%aB&xk08X)R6TQv8i*G6fI@n3InUjXm4?~EtoJe2wTML7=|J~#Q8 zFvzq&S#9&{LKK3btaqZ$3b$Vh zM`$HJU_f0>e2=d}xR5}WRW$nH$}PTQ7}^+Fa=(}0Lr<i>aR~YPJ6vE!#4_{`IfPE)e^fz~&qd8kOJw(7qIE>XB8U8)P{!p`*R% zNea0OiqIs;-;R;~!lJ}QxPlgR*|taa`vtA>(bfxf_{9m&{#TeXKWQOvxaYF-4H)*AM*1F zcBimdEIt8Y@no@=ikz~v(-?tIr}Y3$UZH6Tn1I;2Aq}l;?FFCjgSeYQelv(Ngq5yc zQ>vd&dMBJooWZ8+!>}ln&!?#Wi}P)Wt5GgQ1fWdKhJU1}Qk|BUv6IvVtOK_G>YG`J zYJ&9su5wAzF9`Zxf`5DtHeGW6ZsVfsQ|!il@q0g{4z1i@8eE&6mjK}{0{GB^3I#;< zf0LxsIdz(R_aB%7AsWQ@<);H0gEq$aWK#EbgQ^i~hTq@2i6(r5^NOJvl>z{N#cZtA z=MOOvjr27K16p~NxWx3|g7NXuKHy5jV3Kq1j7mDoU*4u;Wm^%f0AgpuOfMO%58;u> zo)Tf^DVn;h#=cJ7kE99LxXeO(lV88ed|ttDwqg+yBP=GT-cP(Eu8nJ?`_;P^jh-T8We5HbCR6m5eU=$5fBKCicl1h5wWFkJpn@UylFlYYmFzUXbg z@A;h;NXEfw9L5HzFqqLR_Dye0U9eve7>W?my2hormmHS{x1>6OXU?JMXjbMlZSCLx z0aWi-ag834-5t48YeEC4RxPK(xXHYeBTRB_`ZGPgtaZ|xKH>&5+L2mGE}7h zoW^5WXZY-mPaX6zykdeSg}Lf6#J8!#)L0Wr86fo4<7r}+2x{N8o!kv4lHMJeKpV7b zI^bbVxOCdho9f3ezJgH5+bPN5YtsH;xq=se_@vjWgb$J*KJTgB;TsThLD_Q^W|!3| z1Mb{bi#6=~>+EG+G+QXcVAuh^r#J5JX?k5KlEQd8#rcBNM{Xx{3-ATO^_#ay_7dj! z6`>0hixt0@o~K)cSh}bycu;sRY{IKgH4$p<^FBsw(u^{CEjBrx_jZc?$4e%2YK9)n z;Y~PglA@;m+#scnz&|iEc_#vAO8h)?QV{R81YwHdO^;gY|IoH`4*jxXvwu+qdLEiH zv)8#=Zu;8(US>sV$5$@xJmZl;x()aqmSvX;`2727yHngx{T$$Jn05aa#FjQpGkwJu zXK)NmJy8psdj8Z~X|0;T@Xy*B-g$S^a+M-zwrMfoy>qoie}A%=WpN;{(o@<&S{~!e ze#tR=EB;cpT5K%L*e#5~kT?_RVrICrr_KV2I&k)5&;WKh<>dNcp;Pma)hf^*4pl6pOJ{()kkfn1YR~i4#A064y|ZN9u#I8!Wo3o+ z5L4XOw_9_Jbd*Bai)gLr?$SGiY2+ z1sX%_RKoKe_P6>X(VTF>h3)vW4(qw!T-D4B%nHiN#oU}7tyRe;)b)0Gd4ZxgKQ`de zrV=v`{5Sje$Mr2I_3#2binH&bv`$ByKgCj|#{Qr)Y-c6MTs3|n3F%&+H3+@Yj5RW9 z0-vk4{145O>a&5$e0S^h*K!>@R7Z2+^=LzkK(cJ1NmVlY@`#g@cw0fO6=-?B*O}2W z&%g-ln*VekTx`e*UxiNH<}nb;ytDh8{Rxb$aRVyf&&iR79k=2M)g5b@zGA+j_IV^I zy-gRwg+0T_1jfRnh}DuBlgg1{CR-1oXIV;U$;YB|6PpLhMP~S<^sH*c##M8=8r!u8 ze*4zSslL-2TUo6>nJP!q&XA7#=8g9Aiu=6H`|J)IO3Bx|ugvNY5hP}F)vY4|AGzi7 ztm;43F7o4Vy=8hE-0M6rab=_ZJNsaMObC1?ZBQ=hbHa457PVeTel}nLJ{Mi`KJH&U zvZ`oPr<)eTMq(vIUti^N+}xHQq!~V>O;)wJkVMwChUf9d4vIj#ZZ!q*_3CO`^`5z= zzJ5kCdVu4=&q@3nS;th(VOH;6mveXY+SEan($~`_{mAkWvFZeB zVwcFZg`2xq(e!Sg54rnH$FXT4!b?kBWN#+isK=c9YK^-7PI0{yE-lnbJ1)>Je4X~yiA#Uztg-H*E#sgDSYrUR z^8@rR3WVDSl)B%gPZaP5b<4kuV_r1!LAN?HXsx^*C+~maW-8X`(k&l#*OTfX`f!o~ z*{iH}c3^BT9+~UA5mgQ{)PH@Ryd5~ItDN4xsElf#U2z)q^OUffX$?4)mAV;P?^qJ; z@lx5S27Ol9AT_0L7L2tF&?ToD5TmR)t0<@cx#s_!6>SseGM;cFmvY>-v7NMUeE&vF z4YVL%`GeJ;*rA$T+0=I#RUX?o2_v@A&D1XGt5;){P*RB54%fZXY%yMJfWK`oo(5{A z>L@BsB;CVQP_1dlzxhm@I%UdLjD5Q5tb7=tJu5z29 z$s+A+r!CV|&*jJIN$66a$au&_slNvGpVt+4y2$yp4=v7IX5X)IMZCtzZq1@SYokvC z*>a6f@u z9l*GCdPxr7ie*D%Yh7LL4znDSZlcO-QcQ16_4hmNUtaYzwZE)p*U)O4_SqT=)g9JNh{qJuM;epfkH2AW)N0^ATR%CN(B&(RseDe- zqKewNL?*duPgmm|!yhmJky5$`JaW-Oq3oTB+Rh4=(khtaHTe)!wiAI^yJv5XG>Pl8 z)TW~pR#Dk2Gp;c!DOApR_x;3r7}oxE)#YU30`%%(K#~kay9jq#XZ|EC@mbz_qNJyDHr#)U)PLKl2=plyFY^; zD`wnOcQxmxmo&CC7`fvOL4LCSu4DW56Q@Hf^VEl#VJ7Eju64Bo!k%H4%dTpDrjjNZ zUtp*g`MoCE$umyD!RV9!H@xc62u+jrV=yDIjnu18+16h^ATM425nu!_@Gy;bwq+Wet@>R@2AQA4h_pvGUsiW_Pz}?t0zSVS_8|u4rz_-1GkG_z0tg)PQ9C`Z z;a_Lkw(Hg8Z4{*&)1fysbSBiZAcc^b0z1Khy( z{nXXuG`@c#KCiJ#|HfW+;@w(CmnNwfemPTMVNZg2BZWdd&~L+f4DOZj(Epx658Wi z&iEU5PKNLu_YCjklD*2Vw>p^KYHnQ(Hxh2HMA5HG1sn)i>2 zgI2Fm;IF4=nfDaEA38ZUL$>{kQq4S5R%9&fW~^D0=QkQWA?`bT+`KzF&lhUjd97Cg z-Pmva2Q<(qxSpcd1M}v~uLqIY8qr#cn;aiYZtb}{Mc%v2Z2kVjYe9D?22a1~{1!e_ zT$OMj(+@I#~NPd$JbCGKI-D+Maj+>dx0Cm zjkA)!NA)kPzWio$W5pe{*7^%fy&oi<%SArvDy~N&-B$P~X`&0`9i!OFn%$9+jB<#v zKQ&foIIzZrTyW_hO(l}8`(GT@(W-)Gx-$-Kd`8^zlg+V#zon6$y(-J) z<(duqsVyd(c%7bLqktHsUmPW!Mo+E`8DRTTf$?{Son~&qgNpUk9P1Bw8HHhvca_?8j zhmQ@1%w3F^uJ&%M+6(74|q2_8*H`cU9;8Fy5&}~8T8)Iooq9? zJ%`@>pv9cf@T}Fu`&`W<2VrSn(p8t_wcjg5eTfq4AZ^TMqmq3qp+JFf*jPH>A2|IF zt$!k_=jHuZoWb}PH{K|s!8+5v^1ZY-zZCld_%N2jXbWHFm>Lc)Kb({wShPX)2kb8n zj8bP@ln2c}AjaI|O>Si3EC?B%L~Nvo7a_}foH{#ET^%bm(ZSX6E|d1B4z+9e5?!z7 zZmlCdM0~{6@mAC3RbE1z*tcQngK#}5{+{AjmuBBZ2t(OT7XR(+E3!?ESXoCrmBM&wNFbdp4%SjL@?yFI zv7uvO9>PTQlAKMlpwI+{a1>SKi2Nn)F9|PzDV3JM0X+N{@Q& z6xZx29U<40>T&6|o%RH0q!i6F>RMtV(#dm&;N9thGSRz;K2~{s*usJ(_ocQ=(PgNw z9B02S#h0P8c>ws=tXzPi>dh`YQ4>;apQq;FRSeEiRGTd}fAFP^N4GV=RL?*xaIE9v z%R3R(>Zf`TmLAeg`gk=yAR-xGk;GN^6>QY^>jY~@xrbl_duK8)EL(Mcv6$r|-dy$a z9gd_ySM{Iiqwf7$>yDRRSEtHs6-NEsBJ*|yr|^F1AA*;*30zH4-j-RY3(YN)SMgoV z>LZpHpW*SVmu&SX*Gatt8^1|@J93f`x4)s<{&1TdrlUisF4J?*4B1eYC>Paj<*`;R zg|OcWI;d^eCn2g!04MO7F6oCpZqemji%|66ZwHk*&KH2DH9+NumufoBr@@Di#n(8ucb_ zjOTKQT{>)bjg1tASPihsI2AB+(k|ywj~(yZk+ENxiB0VFr>?{YTti zJn?nC$BG9DF7Ly;X+9mCO%qNIXj{d~kj)t(+q4MDz5QgYU9>mOZXI~L-!p?@%yYYPEq-OK58 zer~hfyvpn18=_=`j%2@jg59q}o?u!R&!nNls|xfhXqgxI#W8r2nkzXKPV)f{ERbt| zF-_XEwo}_3I>g}>G$%l$Y?|eHO5?^}{+4a4rjA8`_uTEudxhYK00{{cxyAEI#k`w4 zCg|2(%iW?ncoy#Ox4M5Hv03G@b zGkr@uU{fo~?EoA9TNsbJ&YU)BwYR@XP%Wkcu8L-WWa7+LuW=!0uh*$OQPB8Aj~L%xf{l8e)w9cc;>zTf#r+2l@%*}O>UVMRI^>DcnS1+kLHjA96;ypqho+Q60ytAZCSRF2LRC^ZHurQfJ+#5vcz!LiPj@;xiSq-*uo zRzF8AffLn7Q=u}x-~vh?h4-5Hqi6j^Vl3n=*b{kDv>=RPS6QRI>-`~WuM~Zc(WBYK zUYocX*!T2tZr;VaffjY{z&G(_7MV4Upuj-L)XP8F=DNl}0?{v4%}}o1Lo*HN)(}^J zSilNdhllq~`@J$ZE1%NEB)~Pf{YH%;kgTPv@-Ie3>zD&G)zJRE5kIcUgP`hT9BYH1 zZvK!1UWzr*K&R$C*jU=)gAB|g?iUX?Pr5|n)x-93pr?)Z?{@>PK`v&z6mYWJIxiqb z0>}$wjdLAN`dy75{uaTqM1P#|A6ls3e`wTY3WYjC(|{YP_Jp*mnkFzLt*X+y%#wA= z#g+N<9_w^}MTP2*kTO;J1?D{sQGT|0&Cw%(cWCC*@z@8%RxGBiN+>HRi!+)1+owPE zvEE>uc}c?Sk?$)Elde7fmsg0dS=pU+e&a(1Y4Vr?qMx+9pzZ_Kpr>OWe-ZUF-f_te z#+!=+&XYcUv!ppI>$utzmbiJ{&+zT;B*2s#VLYz!qdFO_jy4g3+$hmVajW^i*i=5@ zka4Tpmbo4v{UB7p6=ySFl;P$q&o@z{W7?+Eg$v4IPUG>IUXyc{kBbg?ftnKrwY*`za%J; zBvzeUv<9F!9=5c`q*f_xsbXodS-=d$!;))f%UVCY0#wgwl>=I(N^%ys=*5?_pV|K_o1UrD!PsYE_*%iVCB`vc)N(g zKkXjVr)iMSJnyIGh)bJucl-A+y87Mi<$Dx7kF>?HYDtfqz@`{Jo6~L}K)k0+Fikno zXFfz)Rkc?KH{E8nr4!Cc=?4DO&QbS=LwV)q(cPYVQy0lztw=uAq=v}e9mk`5G+Gq- z=JKo;JA*^ZWJqBZ+V?_aEE!g2_6NG&=2cZ_m3)`HUM&<*7Mwe`i+dN%DiX!?b2%%_OQhvB<&=2%UXo$Vl)rco(Xx zmK#+e9Nym@CFsBlK%~gX^1-7u>kccwv=OAa)eQdrUPkt!E*Tp0^Ie-7dcPh&)orsy zQ#!x0{n=*#zKwF1Ua^FY?S7IklmEaNsw3hjPje_;IqWaK@kB94rFIU66oKtV=|!b> zSf51AAKS61<=YDH6Yf&M{}~i{##RuOEqm*5W#-muK0G%IJsdl4TLluylC zH#bQ#A*{rn33;+|-hR2}c{9slMH}0>z@L2y_QJ0LxdTip!}jpkxi^FCn!Z%eK4R8P zRS*sjSr=nV)CdZYN};HcCiKPr5Gv z?HUB*z9_Ig?SB!rkqYM{TICyW7D^k)1ijb8-0s?Lfv3%Py^7^_GEawpyhvn9rh~B zR-HYEMGMK@Mz+MTg0m#8$1$~g(cSaLx{}bDbqDfjQ)CY|$IG!58*#|MC>MJ7W!MX> z!_Bf7o(Ak2L4l-3C8t?&e*P)^yTNEpAG87IvwTO6z$XTuWCEFL2$RaejgRbI|EAvH z9B^9$I?e9{Rc)%@Sza?Q#djV3&Z;$tH`CvS>uH*s@38ydJTq1A+zSR2jCYzJyJwPs zt%iEa;VMI~!f;yu+ZpdxzW>Dq?m~#mWUc;x1m^L}pV&k#bv9%S9_Z#$dAGr{#rlF< z;C1AvDF_Wt(_Y;SW~u7A;z?2#4y<1mepX^b>6jZOag9kPJDqrbJG#{riL^-PMFA0v z3Ak%2t^unmjJW2u?&BawMm=g5&7}Ln>w}lxXFaY!>w1w|aWJ`@bJA>d$n?8}GtcHA z|Kq)Q4R_BkJKe{R58D&$`?*fQk}1&M`n})tZ4h&K@=xoG$O+_jdZT)WUk~t@r6Y+J z#oFhyA!^>0eX0J{~JZxgR*>R#& zyz)^_`tr>3>|!zmFc+%ZxUMs#UB6Vl?aHRh_j(&|Yr?^O_87zpxE|FzEj<7RcQUkJ zUy67;tAy`Yk2(j{_g_1w4@T)CIV+cqU`ZzkdNUTnjW7KX;mjIs;aYY7xh}tu!dPxq zr4u-GV*rn#v3#Vb!I8*f)<>V68UL?$-30jE^W)E31PtMA*3*~yXNw1b>Xf~7jiviQ zruOmO-3*Z$^2z{orAPaG(P&#-0cf2up0+N^-g{!a_+x zItsbLZdI^XCguP{4jAajvjeMvF3+z(C@|~v2$mzR?EVufq@g!*^P>8Nm$M8+4VY|K zRL5a45Gek$<=A%GwT5)-RWc|`*w8d-%6>7Z<<9;=&2?dQh5ttJZb2}LEmmJDEQ~RJ z`-mbLnFrV4^!BiajmVv-vH{7-K+3nVgWgNNBMVON27})$=yL_Ex2!`2TwmPkrzTNTh|Vkqm(`o*1=c#AzaJvFuK| z17*CCGYh+Ei2p?wi*p=ZLDm^=m_!nKtyo)lgfIp5i^7pVvi+fz+n>`rnt&J2?G|;! zJb*ci zrobyG_}nlj=N1IaET5GM4yRWikBL|qrj~10RXmbzN6GBzR`F4W%Mrm_^B-CjWQ~l$ zF&GAf#{%y+Zfib^G28E2-U-VITHu=k#AjBTDi zPDe7SD!u}0la8wjooJ(N-o2YJhHzrPPS*#zIE|~8`Mbw&e7mStj4dUyXrZ9yeQjtT ziCu2#*18+%)!7KU1eRiZfj($$t&RB28UMO$Ha&Z5+v$O%p_FWo`AhH#zMp>c{~dP_ ze#>{a6sDmrl|Qji%(RIzgpNSE*exhBL)+^Ba==7o>=RqmnxRH`t}YJ`lon!{dcer@;-;gsSEB>(UD^!$Ow-_)$KU^t`Hj#WGYkMCxN@%Pj*eS#?%@8a4 zWWoVBRLBOO!#W58G#`h(fIe&L^{D4Ys}@keWlxGMJiq5GU*J@J#Oarg2$k}<7xx~C zdHJ6m&54Y0D;i04o?m|VsfFqyp{4lN089z6-FTAbSv7!QlbG33_v7b1rf@HWQ29uF z`b){%X|E)Uxrghq-LFZ>aNW^I#j^|#^P=n|Jn+Z;w!LmQtlFtG{4?CcR_i&^TT`|)|%Q)c39Le#4Vk?Fc`B0AWJg`H1C>pFYne=E_T zmN0)R>GMH3-97yUv6%$b=MG52bEr%k;&|vl`QKo~YaP`PM~O8*h8@WI>l)(zk*FJe z!CX21hi=R|C^M^8VjbEgPtfT@U}-4NGdv1te9G1*6V}9Kaxp}#f=DtmJazT6N0xggylMGA2%lzzZzz4$5O^xcx){#mwd?7z!`hzY_pI40~rtSU{L#Pe9{4-AF)#=THk5Iw)DXmZVggSne zVThz)AB4VuPwIK%Sve(Z8*{1d`CKdsbvxBW8UdJ*`IunqIv;I;lJO}iErA#X``#Dj zs%OviZCQFpV*rS)BIr{R zBMe^uEcb`xv-#v*)lxJ58B4X^kG})a6=Dm|f6H*jIK|qbzfBUp_RikSg-pyPzptxV z7aLZ<-Uq$GnF+pkt|aABsp>SK&Fg}U%7tq#D-MxtXbDm>NIh> z>6y?eja}Ke8r8&&@AXe@B6W+q1zG~zR=vHu^0)r<4JtQFNkW8kLl%Gq8}03H8*~Yr zupxcPiT0h^zkbC&}TkFSUE zZB>GwUa;p+^x*6nH{pME4911xuyZF)!&W0`;#CzOFP|ue{MJFIMUznpbrHjs;HsmH zjY43u#Mqo8jo$M9{QKt{QONlEKIoK_9>XEB%oTrl5A zR8+t)lzy4b9P2^SzInVMZB4!*+h?&B^cmP&83r66en(V`h6I%2~WVV~$FSqU>$J~^S%O~49 zyCHwvhNKZ&^gTIp={q`b0jFyQ5e#wfI`pM7QI`5naSVJrUzRwcy^EsX&qtp&Ah=5L zViI)Z&<(R}_l???Z{B|tJHn*HK~6m4s>Cb?B1(CAm^e;2@x5u)VbmD4&6MRVv};?> z12?-xE=Y`R?Kt6U=-2ThL9=`B%;l5Rf@wds(GAUgmBGRL@p%WQBve3d0?w)#1L($x6ZGjiuPeH z!R#%cAuZ~$pVX^wahzmu{;1%|oC2B939}JuQL>g*clO^AL%QQx|7fTw9OU1WCVV|@ z4I85C=2Ct)N8MkUG}IIQSmCLs}qF zPp4TP({i^XK^I?&JT_ij_WD;Y+Vq8lU?(nA)x#5*<;oJXl<41#zuCmR$zm?`I3IWB z4SPz;NB4_2ECv+>&c5fc7g9C~=$f@sN5(VDLSkR;n#R;nVA+Uy6`|)1ewxYU=bZ=1 zQ$lx2r5VmA*vh+c+VbNDRuU!-R&?`mF00@lNmB?c#I4lu7~r}-FWyF|?!$c8Q( zyO2Kizt{hv5%p%iEB@+e`gz145GPe{#&cq4VvTd3CW^8~px==;+b-|4XfSn%IgdXV zr)`M#jZ|DhPUmMbO6F3pR~Og$AK1PX<+OTVNA4|^UQ9I8skE~5o_!*<|2~LKX>%HX zdR_WXv|NNg!C%%8vn?!aZ%`NH@`0twR97@&fym%X;%`Yh$qKF&sK8$inn5+`xXoI* z98A)J;UN&s&$aBtnDd(;!*29lX4YP%F{bluci#CJ$Gl<+gUG^C-p|M2!sJ*s&n5SXbXEa(C;877uJJfKo(cgXR#op^ zmme~bMs^NV!+K{)IGDMrbdbTgf_?E2zPwP}1m6h=c;tsu@8UXw-=_QfRiuTWJ!ZD| z-9S)=y&4K+>MQA~cfaJ=W4WR!5&!0`;rI6>TnQ=^Wt%mD*xk;`UTwKr<{CRY$B6jC zp7_&aYuu^=^GN{$Rr>eX4|em_5nU(GLz_@>(gqY}+Vyq$3|XPOuR6IvVDRmAN~X!n%o%M30#BQ0O+p7moN#O)Ll7BU6s`eGrS+FUjYJkB*JpR7yK^zYuBVN(*(cXo|$p_4}{rhukZFa@hMNzGmuW7Xp!2TMy@aOt(WVzBFCgtgOZN`&~^1 z-L^E13m&WEtIncWQ-|bI=F!n#BbOO6rQXJNsZTg0MiT|CYj~GTCwHa0qGs*=ua)T? zTf(X1ia?Ya`c^*zycFS_4Ot7%#1KB;t3MbiwWN8uNBfUrh|c`^7(~vYc@;-a%QN1^`>8wOy|mKswfCm7geaLdulQH z^!*I=3(&-q=ELV2>ybpyQrH452)w8ro`xQLThb}sU(`lT?Ovw06SY(K=1@P=_k%}& zrG_jNGB}$YXDQk0%v{p2Hg^PCnWLQCsJ^=RX@UjY@?_2uIdFP7LHnX^qzDTC>ZTHi zDV4f$HEyr&YPKyo0u1Ux0_La_vql~ZDa$2jb!Y;WeQQ^@k{tgnRJpn!UMsAPs5;ox z!T*O1XNBR`L%)Ad>rUQ!zUX$gy;)lJNY&hd`eH2ES@Wo|A9;se4D|x_+!QjJq++3Y zdW~lbC31+fuKA)L+4Hg^F-u27o4dJM-D~LRyGuB=C^*nBUjn%*;R3pbiHYk@^6#jL z1n)FQZ74NN!x<6WEQcO^<8liz=obeTsf{5P6&-QfMa!){DVw7VJu0Lp>Qk|J?wdMU zd&fq})xfXMHLgE-pz4afB$u>P)g4VYU;n2K5%-9T-l^GuA+<0@)I33@VY!Qu<$OCu zu6RZTBq6mu)G%K$JxAP6=}A+*ylprrR(voOw%W^@B_@PM1k>> zm**ELhJH^AAt3bHzAE{AuB!S*X+KB9$Mrn)hkB=5!1}sfH>)_xz>Q^=HZwDW#IR*oid!?i7X7QfalBkT9mpAc`go4oxk_0lMc{{xARZ1V)w zNEO{?rEzPHsq3{e%}oDb%6*Zjo>yj14}uc)3e3(9)(ZZ?E&DO9&9A*PsZ~teTE34+U znE@-?mcz2IRizong83tbf9SvUaN~C*Pdj!}%>*#4ZO~lvGZ1H=$FXrPjD!1@dJ%sw z!9upgc>nDzy!{hR)$@9;-?&2_Sj7@scMKob=RrP ztB**rP&^b3XiN;;G>@QK2l8Ny<%o_i<%pcC-F!EfIy+%pi%Xi3=>Zw(+kUz4nGCId z4y&W9*G@IWSOlnk5u}ypiXy9&R3xkpl-#4YpX5+o?Oa%#Z$E(llX$o8+a+n!fjE`{ z_g~7r2MOp_gmB;I`R+Zu2;r%p=M!Nd&=S$bDc*Q%Zprf|A*}+Xp^$|=dA5dzL#Miq z)N*!^M3BYS>;8BgJ~&uVS6H zXAj$R%ROAJO>C*w>yGZCMo%BAg68|;Z`f7Cx`a19$gOUAuBHu69)7xQp0s4R*(9i! z{;E%8%%}_56HjiDZ*r6K|2P(sD;%?Y(nL-YRjMz374OR)%9Gby-7#;~@^>VcFjmr% zx#kphD0+fFuu9f>G8bR8a`RyY$>|&Vb5+D!L@=>~Kf58^=gHe}90E1QwRthXzQ9`|N?oxrf06ch|Vw&whSYu6{xJ z={pB!R;f2!U@95m3DHgaf7!<<-TMfGt4o^Le2}xGj8R(6aeh%D4vo4K$U21fq_hum z!vR5LoqGJ1tM`u#;dVWl|Mk&%lCQZ^+f%ZuGjH4>X^?V3D=nIbFMpvoG4^K!+5NKt zNi7M6FK1QOr0*Pg{Md6X>YI3Ro02LH5qjn9b~POf88f4Gd!_okR*P;0i;Mm;;Hz)< zv9h$F{?(@^5QOIGx6PvroNsr;o3T%i`voilJdguSnEKX8c!KpA*@ zO_y)t=^~**TJ078GDU5%E5xSXq;#^nvURxp$qz490ZqCdY+uSLh*)~7o|=3^gs84t zT1`ESJS^~upit_@PL8qjUTQI=gkPV_<0J&lZ-|!7_8I$BDi7-UIai9z#fn@xnz?A~ z-re6v$-W8!-={*>3Nt6}Uifd;M*4($D4mwihgh$zXy6t_xtg~-P@FF+;XilFaL84P zZJ4CY@E5><{FIpf77+ZsOSEv%)R6sY3LO_2unnjoJ1*>@Iunj-SE-ZWwPG_;NMrN?i2C$fza}>~|2L3uU2BZlQ0P{Z$pKGX+*f5+ zceW&Ps(@dMc!RRv`glgeD{dUEs3v&LC>=SCic<4b#4N`*5W&ON{_{ z%poY@P9c6%F1!cbB@Ome_V{IW>DqQ)i{C8w#7LsFkL+iI|c z4ZXql3C=FJy?4bTK-OJ}E=yFb)^4SXRaZ8u-|d*z-DoVqVgF_6pWFAi)3 zRI#5kQh)9**c`R}JZwi`nCq9AIUyN`?$EsYq*Z=IC(C6bv31mUatSODm#B8r_&~_l z($RDu@!`&s_cC$1iHKa4_aW6M!%exgsl7Rh45)`KMKbPq)K35_1(l(vJ&gCJmO90f z9MI5QQx$DU(%-VFT&5zYp}-z%QSU8lQt)q%2Q1JS_(UfU5Byv8P7|ecQ`k?v8n#v~ zWo0SXPf@?@tR_m-DE{xz_Cs@gLvk8r6R$pg#WSCzL>GQ8Efd=Jzdtyhd`ibplVtf{aoyi zO{CD+9dT(MH|=fOlJy^2`S6GFKl@W@`}#0c2Y=Tnjy6lV_{k#C`0B+t9#%`kr~Fah7(m-)hv+sB-zmw*lQn?+3iB4L4oAQ;+YwBJsor`U~D* zh6snYHb%Y~Jmx{MgpU+hwu@cMAgz6avO*P$S^mmkjYS!IU&jTX#i8o3{C){Fh1pG9 zgSq9?#amRxHDtpa2zK~f2KqC-H`j80qu8G=Tw^HjU8GbISAo|j{o|JS*5rc#89Y3y z5?7KXxhu6<9r!@$>Mc*6xHr}8mu1RgbJ^F^minsdCscTtCYTQOgpU)l2uydL1c z;qV`_rn^)B+w*ew0ib1?8Hl!5Cv>OWMwf)O!nV(ijo-1^qS;(v#?ZU2^sNhwxXpEC zO=l@>dca#ZyKi$X8hKjrzopT~cu>9a*IsFvT`lKkX=xb}UYA=kz6Czsr1yA<;wt*4 z(z9rn+T^Qm_ltfLF*CymW>=rGtB=qpUGA&uZSjFNc!c#yud(Kj?pRa$q)sM8hZ}C` zm&o+1pEgY=>FbCacy>lXnBlF4tLd_G6nXmnGsW_X3%$HhR{v8gE>vqU`SO~e6Vv3)BRt13xM!!HTz2D9qhxW%yd zQO+N0?-Z@^Dr~%+6%X3VQR)UAUPVcIUsW7oT6Mo)mELpK>3q7f5tPboG^RJDth_T zQf$IL!$QN`Uv9RYQ7fk3Eho)~wnqYhVDT@;DZGW|fOF>4ZqJ!{HtXhT5R(U`L0^0F)g;%)=;S+;s-C;M zMcN#1)xtnm^2*@E-yz(ym$ZKTdE?dPgJ0#CvCymf@zx_|0>gN~Z`b}qF(F#vx~VmeTURPkaqdPOXQNjNRaM*h{{e2E|!>{)jZQV4_X{jj9 z7i-iG0d_q3ZB6xYxVpD}=jnm#^WOnG*eD(T2y41DLZ+VXkTa#%%p=7c_AHJSW zk1-W%nE3DAf`4q6Pdm%hq~7HN&>*zQ!MDF-wUFjF0STT%L!6jeoZqt5X#4rDlA`3n zm|?ZVlI8+%EpA9s5H(kK4o4608}g@WUk@~jnN8jK3ynjbC2)L3zvLYrBEwsdwYGdv z<5FEUaMiY7QZ7JUEBuFMuVyKd>@OL|>`^K;yvfRpy|LaM@e#LT(&;XJ1(@1c`G7Du zXz;}GOViS%e=B`rOWzU29lC;%7{O31PxQQ_K|IW6hnXzcL{IGlx_R%tKcdplI%0Ef zbw(LPLpw6EiS)!2X-Z~_|7WDrnhCjZF6r`{jIHaj4Hj4L$1E9|`>rEiL?CNVH~p zyYkz$2>(o$XH8AUk;FuQp?T#4?Cj)_YRFn@u-MhXwG)JRNHx*mkYx2af>targv82r zM`vgkjX^`lU>kmXdqiB68$bE*A@!*1pInPu2GLO|#Lyr5zEFU}&7`b#A=bmD^mD6<0s8U; z-s+w&oo>!}P2Lj<4nBnLrX(d>fz$6ul5|%!C*TdtaTFb~K6A~I_7P((XPO!zdlUEP zF;m-qE{l+H>l3WP;=Iz8O5QPV=CE>kho~dRZe_yWU+3CYPgI^p4GJb(#6v+q86KI3t;6Gelv@Gw*`;Z@@AX&EOlt=u^&~LgBuvC2c-IiEmtC zZ9?P!EY^G%kOoF}^FaFK_Wi$#1lGI!rVL01|kEkGwVQi^Sw<$bxUaC%X`4andgrs~fV2G2ntPAr%Lpc@x&&hO)lr}mg049?g0+y*?TSzD^j&)yj26NUTZHTzT3I!^-pdEl&-KAEh3ByL7eaU_aM z&4Da#T&rz~PnNG3x1W5sghG>ySuT&r)0--0=Z=nd#O<${QkYgUC!NpCApMQB>1g*q z3#ybew*=84e$mZ1t?UpjqcPT=d0-;5ff#Fxa|77V^&<`}58v1OIla2h%opw2#<{-G z1*MVgyPbmPFi8%+tUc%Lo;ivSWL+n~)Tyvz;FDDwsykN7mTbSZga8C= zFiET`p-Fc&Fz=&%=9Tsi4IJin#~9WzwBM4;eWDTNns&PY_`lNE^g}w3ur0tYW~EF0 zCAg^*=^;Vvo#q`mG>>yI@E*>v!MbW)qzO;|bq7FLO!%&y&Rb_#1Z(PWspQG`G}*V$ zb;+ujdI*8w((b+IJN^^yXZK9J-IsH-$%mN!X&-SXCOCoe6CEis`F_LffIqt_evOrC z;LK-A<^piw(Vva;3782|CD5vbt3~liU5$xVANh1xUI6A$<$~+ED~}y^rw4R`pqS?= z%Zfizyj1yL;*|Y|<`CJDo&G=UsFS}PbIYJrx%82SdRs`M$ur90S;nR&F!WIgY4YV^ z4*W{bqS0hZ{O%?2RCYUJPXjrQz|@uC9zZKEdb9eQ3As7U)1M~yX`|%)P4o2~@I)%H z{oJY59pS!wKNMIx#?d8g6BsXOs5dE4CKI6ytUi~m(mmjG5Mq{P{oqB|)de7n)a5e$ z9m!X~l9c#qBv3B!M47f`Ip;&+BaSW7Ww5zXkrB^#Hc%*9$+A(b3d}{Zz#j6ASp9> z`h~|!My=d%rs!v$(_LBvccw)R2=Jl3vhURNODzFQvB@{j_BgKDQX(Emi{S2Vx&KR= z#nQj=@GS!Lr^JzVMhh$>ifW{S4sUGbljF6TpAv7w9}``TU>of0qkpbv@8CsX^nF%& z#&?{F>(3e`nN+0-2-_G^xt#-nL1gO?f?kwTm6ra$i29`0b*kJnZawDe2|^}caismB zavJQ^u5JK~=8yWPJORLuW+0^knlBzb+@U2}bfwAZ%qHd-cZg4ky*F$3#XHP2)K*C4S&ZMl;LR+j z6=3A(xLliEw*H!7UB{OeNEL!#2iKF7%y&FK^la*I%d)c=#srKbF2m1(EQyGF7nv;G z7e(0o%(-H+Gtkmhq?mU6_&&(6$#mbkBJ=Yw z9gy*pIQ3x!((r6_9dZpeHrfP%fsdg6+ZQ|59yL7v25ldWk`4es4*nwT+V8FRNc3CV zA8+OAqDZX+cp5&XcKw!J_K}>GvMA+J`r|>sJpjMGIdz7tSvGJkX{3j*AJLvh=NVw3+0Vj_P(t4jho+_eqxsmpl=0sR`1Rqfr@up*Uy zUt!dIYj1?}>%~_@DFhFaMR2(|*edEm9!ldS(-gl_$=XVtDfsZtx zIfq^8P?zDXxZ}sLWqIN$>sOjTPQ3h%f;=%-jFho+DEi7o1AhT5M8DMj12Gp#|6u0^saZPq_x>wwMNO4_rI z`6n@=tage(2vho9a^*&0Ne9dPR!5%Y`kk{|eZ4Q~OlQ`9)v+Va-VmS_Ln*O1^#^4O zmZVKFt^wo`38@-I@tzJa{nXT<;5v^64mJg#B%ufye5xAJEyNO`15KYxg`U zX4TIA?cLByHQV1zYV;HtwQUI;HDJU}6Xl(TH=2Wy4T=Ms-7^RFnjgkJw z`{iQe8)flms1LBhy?d(f0YsJGzHA(N@q(jkL$TB0=&6dt-8iRu3Gz4;2%PUZf%|Q> zbOKICOFDKv>DGiJ&-O+#wKbC=>IBTF8U9RqE^m&?$adRXzV`;>n?O)2)s1nh5lux z1g|6xNi2s-Zs~upO=o6O=IDR-O&SHh>`8gr3q6n1c@eY8-dYRpjZTpR9sZVQJ5v2*i;me8T0; zmEWx2DMhlS^{OQr8Ouj3iXFYDNs^I7++G*#R+>gt0LaNN;=d1+gB-Sh)k$;3v(qLp z&-WIKw7j^|mT5n&piQi4i`NmcUZr6Yps#m;=ob*G3LS)e6(!oGH3E0%51#tDEiXDK z?d=sP3JJ2G3lV|Or!yPOZN)d?3crpd(0m33oTF}Wt5B^rYq_OAi~7GOq`YgEFxsi# zDL+6=FD5D`Q|cuxSi}(a;Yz1VxEL!xesqOaJJD2-Su*=MpAq z8+!ffj4`Ru2<$fh1>J(pFg6fuum5NyL!p}tJG4`;TbccR*=H^`sdkbdLY-r@lJZZl zJD%$hSwD0O`eM^~>5e9T!ngqF$+^^j1CgCrf@L^pXsSWEMNJwFMBJ_t9_ci7QlZW% zISI!Cl~3FS+SeN=tU~wR;sESbhG*&rL94zN)u6OyYL*X?eMu^RLB>=|$p?$6&Fp1U zwAtkc6B5HRA0>8fr`nC52j&`MZ0%(88yxR)mU^OVmy)F6;P?e17QVSSXCibnitfw}e|{(P}uo`$-z+ejffL166Q-lY{?v$CBB z7cJX!sr5iB4O_mIpK(w)w+s0D-0U|mBXo>~Rw8hvfvt@Lb*3MK0bj8BJhN>GyDpjU zF01w1zQu-RzRr)=JNHD!LE_}h#;R581{K5YbRYtZt|9#X>e6li3 z#j+#g9j~`qSaypcjQjg3;LxMo3PRc5U6!o$vkiFB=8t;~)m=!E&VAzBLnka{^o6c% zmUzxX;OgHjag;u(RmPQ~l^x^)&8#JG5~X7v7s>=|wce|Xoo)eh@`7~2B?`0{H}+&$ z=?B7D{`ZN}{CF&ZSwjjKYY&*+)c>54v^d#hao^w`3EzNoUCjSdx?$@IuGp=Wq1WGa z8eaUx#!_-y)!&r1J8qa}ITmvYj^~#(PNKsw+zwc#i$uhnlT{dO*19bBRDgKUyi))E`_u8B*i^ zGA`r}BKLrqdK`AMt4T?+_3G2R;OJ`Bxs!Xg@6{F=nbdy-az6Znp4W4vlpqhGBoJvE zpnN8H0SrF+w2{XV8O$yi#M$W1GEFb+TEYiYwBTtH;lhtH+<>cz~ z2#-K*IDz6LmMrm8VargpM6^FxDI;j9k#rUtZ2S;oTw~f}Bhu@4(TE0qUuJFhACY?r zu3oJVGQ$RnKQopJgARYLOltpauT5gM$d_~XT~ z=SB(ccaa>e^Wq>3zab4xB&|%Gw3BRYs-DY z*pYCLJ{+%>h~3Z(%wvj3`qF5jI4&9M06g|?_-5CM7(Xfyu{F80Gq>z7u6%=sR`3mQ z_IEF-%Ht47Cfxc_-KxJdPKJN%l5U{_w%6F0`$)ya#y2HcIBkK~r!7ZE-KC8KE!$d2 z4qxWSO`k2~Wy2cXCx_@SQZ3OwVua=PcKJ_L`qtBGh zEkf|6*j_7O%CoSFL=sZW#L4|$j6iYU6R0WanNRDO)H<_gi~kW1Bi{h5>JFB!<)oWt zNr|_X&Eg1F4iQQ*bmE`Ro0By<*s)X@SraNja(^Y5# zBNLoc`0^n!L8mHCi1BLNzKOn&>pIp)|}H*WVZay zBs3mODf%K^*QVd>SlxuW63SjwQoDgnw<3t=-z-wknX2?n^MyWEbhi;_W9?J8>0dMO zpwo9@_(J;cPfSeSA$((J{FD;I3mKX58om*P)a3bW6zvcG`J*tOF+}-!Sx5E`3KT)leFoZ7#K=# zRDsgc{xrVrP`pANF-BQJOVa+lzpZVWlcTpzU<)g|a2Qsoyr_=!b;OUL1e@I*6j4fV zG8t_><5+r;(B|=9jHq|)t%iEmD=*>iPvi$EzbuB)-&fi1xs_?%UNBRO6|z+8F@HiU zQVSKBQWD6M2zVT6pI>s@vEB|V+(O2dF}HT7jC*RW8|wTaPkOmKe~t0(4S-PPK^_bR zdzahsQ_Y8KwHtC#s)9cJlb7yWWxle0cGa5)X&HQzCZ)Q`3`Qer92r9&Kg^vG4T#1j zzZ<-i2$5OOJ!CpaHw1J12kY?)3eTq^%9UK4O~e3N&lyDuT{AMdV{M(YNLTCyJGM7L z$dw{7!gGpg}Z8cN#kYLsGVQR#m%(p&}k z$`vhYTLfrS8h#rp3xzWuI=lvLiXG!syqFa|YtJN}QBpRo`|=%ypF|~wGn}{_muSf$ zKKkTN3HD`W^m}3F{SxdwpQ!C)jxrgif_P>(VFbo~-H%L1RxjDL;m9lQSymQ@LlfdjQ!1){}Nh`YcIdq1tQX=i{CHq#nsl3av*BTIi%5i-=(q;PKH~z0FJB_Yt zhJ%kmb81nW@wzyk%y3Ey`gjZqrZ!gdBs<XjUYI$#)>?Z zs191Ql)k?G9@3$;wgTZdtA|0}IpV6NXinv0L{j_pK>dQ7n5HqJ zG}LRloUASVdiG^oO5AG0hdX3_cWo(Pd@(*(*MxFS<o(ov zw1(cLhm9Ln7LD^>rly0*(SOzk-N>y~QU@`z=L=I-Su9*|aZPE)5$#U5asnAJ`-@N4 zD~_rxS<%u8s1%(~Yd|Y^M#^<(jdS)XFIMOM(7t?$;#e zU+5XBtUvGuAmalPQ$%x$d8d!h=7ehtb>wE4N1a*M8HZDb(;aE~aCbFz+az6eOcmEz zU(s7B)$|1(E>!2LC+U}TZvH!9(oWih9Y6A!DeqR*$#>Fk9kmC0Ci-V_K~+*-g)-_l z>~6T$q<-`S`3^iMR+(yX2yjOjunJGW7SnIIY}AgZgvOL7X7)=D|<4B05rCw?vWq3YjW^ zM=!R8VJ$tO)iJ`tpg3Gd@QZ8XIy(toA#Qb5vkdyQe20K2On5mb2uN@VZ`RGUek0>( zKV~oApjTITy)-u|TUj|b@8r1A%QNu6DwTS|NRA=#6ugs5`$2mQguYBigYN%gv=?9F zWU@+C*CkbCnghVVWUQDPDl5Brbp`I#53cQKBSUH(*Y{n`&WY1Z^WA}|KpB{Dd$|A1 zFDZKi%l-g`w1Sv{Uy#SbndrW?ZOjJ)3myT4zgUY8$Fv!8I#u0Q5mN_S)(q$Nzi;2v zHS<5y-l6r8&rsV=*gm@x$pPNUh!#$mm~{u3Z@pBliUyhedCF9xMU64pgzct#3G zNP5*=FzM>H^?$kk98|>wqGu#gaBm@Rw*j4FpINd+zo**4KhCvOIph=<{u~yh@74}z zX4oeyjf&}|@1ELpnC!zjAcfAkCU%#*{ys0_4d9}Cj9He8opHP=xUF8#p9$b?&_PN0 z*i{qD`ni(%RTgFa;78VeB4&QJI+LE_oIo|%AH9IP9=phUS$&_4X8mH^)av}?iZ_vtz^qJT31ue(I{o8Skku=SNN67OIAP5T&OWNGXFk#oq3Hf!+Dp!fGWB&h9k4jn?E*#767Z zJ3$@h)@zFy1mr6yjuY*@S;1u9M*?2#^yPzH!=uDR^2y{O3@`5~gWYI&e|ghWWV-Z| zSkw&LxhFHxl1%NmPbn5OG$bWA=_yR=w+;zU1x$|07F}FbEqC&_u0lDkK_|`qK`ZNK zkN^qq{q_FhA9lLF7sX*H=k(iW#yuqmO?D|B+py?`Zx*tHW(Av zc;FQ7>{8lUhUyxb{so3G9>rbgZ97%!m;UJUOORXN-JD}N%;U(qX-|Zp_#mh`LywVD|*P4(<7s)9por(e77bMfHS8A#o9^?0-llM=2G9_5wHvlyB(tg?*!X5&JUX`snTpFwKv3 z%tBW1kqwN;!K_8zTwOHW9k}lG+pg%j>buKL}-b#72zmFlm1$y1ShkBfk8LX$5j&1 zxj}0hl535han+*xBHksl!MWrUVayzGJC#kVo7A@+B&qAg)wb#g;N=M9;3!;l7diqCoV>*xO+3%pb$|s`vT`MnPt3OP!t~1sN zVqZ!iH@=A4tluk5nmzwBb?pk@c%K!IAAw`2ob!r7sq7__JX@>9K>F^eAgt>^l_*q2 zw6uetTIp>`nbNz)6uyk~>#9Z1c#!E39gPIOMoB-B*|V}aFT-}exgr?9s|0z6+nqwd z)bi_^lN@B)o!XN3?38@qk-IbYuCSG%XDrCoAP-{hOm@2~Zb7OjAUM>$T~oZ?97aWw zJd@kq>Qz@M!m3-!EDRCT<6RK1jY;^uR%u3|!6?O}Qfkj`dsGDX|71lo8DSM8mdpBjm`;?}3URUwr(sgW*xBH_7jwt4A3& z@<*Ch^BGYu3!|>$Uktu@J!ciuHgeaw%kPmz37S#RPWm>zEmPkB=3I~|*$G$p2f|%L z3J|9wks$6M2G5e94?rmrZ9ryF6KUHs^;FvXGrq$sJ2zS6#>DxmqT^;h%{!bhmjydC z)pf#}h#7L!OtP)MDRkW@aimz09H%yXHJY@`LJ`&HjhaZzQ1e5JWFy{KE4iw2>DXMc z)AQhC_Hnql*t@(NSjfwUKjjqdQXY7I_Q}~Hp6t9Vaj9|to`Ergfw)&;!>0|YNrRpfg*#k@%**zGunz6F?`mVjR3BG#( z!;#?RMN034nxiSo`)G$MU(7AZ$F>ui`^e$E+| zS21kF){z{dpw+QSR zaJMrhL$c|D#RfU7;E_k|AhQv-9k(}=$waQj?MVB5F;YZw0hF#;_*o@Cg3UiUK?SnJ95MMzj7QqzcMEh|ptEF@hQ+vutu+_x^`S|at zjxCzz|BMNJt^0h9USJ^+`Qvw_3WPUJ2oTAXLU(?@qk|>9BuD;HFgbEBHcc;&_^ zPEHcX*X^N;pIsH3>tjb#flZsQ)Ptg(7l@{FB-(N_C_ZY2DfynLeQHk1NCk)e&O`Hv zaWi?Hd53nF?9|B|=$WJPD%oypzVHI95dG?Ey6vdUoIfC3WnAU{8AlF-e8nPYByZ3o z{@u;@&*U|4UTN(ZH`|Y+qMTQ*bTjUUM^JtB6WNm*c_u7zfz49|gEtz9{zbd7tM7-_ zi*(*?#ircUTzbaj#NV4O6B(P1gYI)Je@)7AOj~zZ?wCj90u`RcbezveURof_?~TO5~C4=8N=!|v#=^X}e&sR=xd(m;TPgmgn)#z2@3oWB?i z5kFzjOmfnNgD2-(y2rkZf{no4^kK?VGW&(2?x!s2xXd(8(hQ21QOS>Pn;wYImuhKV znWfy+-f?OdG@9l8#o!StI&;KYR?Nz?FYJ|yjttpDv6cpjh`dUOdD1y0U{IOfQ`7`C+5_g8!30;05CIz5N&1uec)*f*f5HLG#|LJf4-G1aVG0!d7P{ z&$Aj+a+VroR64Cva#r$QCl6@CGC>YyFGNYJo&|VBd|61nSED&!dQ$^GI+rzcbgqN}%Q}X~KpgIiw%NFNk@&qb z&uvN_3>x8p)AUkRwWLZw{W#=d;Szt9uz0%ge9`t~X|Ya8G12G^50FVyH}+-7C|0)X zF9yyS+~+@Y7QLy=9J{Y=JF=X;aiog|B{S49;#p|?kdSORn83mZ#kMqUGCTLrMRuJ) zKH%Pgb~c}|#rJ0i>G3Ldno{_Re0vREjlf?& z06qQ?+qPDy(QuQ3zxA_3_&AMEsjAHLh-;GNHMWyZ`&8AD*A?k{`yJ<^AEggdBV@DR zYv44)&zd0)(yz+99NveJJxGroW;;bmfvSC+KOv#;*Yqz@;mnR4^q|*IS>qz;?30(~ zsV|GoB$bzw!~`0F+|cGFZHt?$1DLL|PeAf6Q`ub2&vJ%l`%|r zuht|?XPa&V&Zn4x)4|&fTB@8H|3OPqE)#M}ck*UNu&!*x&*YZK*R@W{{pwae{3DHS z7YT)GZ?v|OhYC+2)hFz5<&7qqOG#E@+iGpP{cLllA~JuD^n^g!yWsF3tN-)q_M#;=w#3etF8dJr-MB)OIp_q&ZQpa-%o?&0AWryb-z* z2~lK7Hy}1Vd7gOQ&bT19qm2a~B)hiCt&JmPs_10qrW_~@&nDYU{( zCQC?7=Mce_NV2j#`eIt_Pu0=(xk9p^K_RWp6q1mJPhZpc+{eg0OuS`GMJYkURoN(j z7o3O7e7GW8Jj4#`jj7`L)GDy|oYQnm6uK6mFmQh{-sn(B;{>SZ?%T1fuj*Na#>BEZ z-=&})`kC;YY>-a%O5#%23rV6;o#LtJ#^79*Y8wwf#($)iu%_eLyTZl)(400!&!{&k zgh@{sd+iuRd9&i8y>28WLbOex6Asl}@mH2tX@bfrNu3TUj@IRKfzbuj;>k!6DIY@wkUVEomRJXa(j-Az)dC(ezp=d36DCdf@QZ zqi0~fW&>LoM(82Qdya~1MariQP-)Q>-hiACrh?Ti0CXD#gy98wh&IQ6Ba<;!okzim zgYP(kD%4s|>TNA5T;ixoR?xL9`Az^>#LUqSDdPu+&A?;^unB%pqg0Gt99CK@`AnH7n3F?I6W~kj+G~D5Fq6PaghV%<5$#h0h(d=3ND4l747a0Mh|K zOniAIMt=*tX50l6K8@F^{BY=0t>%pKt02(DjKw%9h_1NEgr(Gt_Q zO;>NIf6M7u4SoUx+PmWFM&%f}N`HVJ1u(Oc7N!;D=6|V{xXLyUY~ty&t+Db2f1*kg zZZ`IHShX~_jZC0$dD-g-IaSeWe<+ZH`zYk)9%IOtF3<4Ox2lJg^7WsM+m?sEY*oN8 zcA}F2+7yK?dmUtwoHCk>QBa%0*{(1!+z~sLxyPv^!m(7j*${gZ6a{0>gJsOhOu-T5 zH@b(ay@b%YM|fYx=Z@cH6(CirCho1Yl5&Low{B(VjZ&{v=iYN`G3iA+t;rYpckX4$ z%>fA6<$Q#e;;9*+B_&{Gi1*=eVU0Z`dLoE>#!Z{Umq~d=mIyX@yA7s1OW7rS9_@iO$aH0W#aJm{$sx#PW7fbCWxW_Mv6qZ2(^;dTRMU3+Ln9YPSEGy_9uN zo^R>?LM}gDmZRb_`vv%i6bI60|6L8(L93;)UjS$%pzTaR);6cUQvX$Ki)cXgdW<)U z+YDDi0qYlZlRqK3-Gu8O!QS-Uj+i^v;;UJx_u0?0ahGg~m-Y&$jdQ?blSs>1`=WV+ z>l!mAYbT?(6@&D~s^4UhcI33E@Ezp}us8xUS42J?5a`LH7R+CzfIvsjLpHWGm9ci3 z?Fw1i#ZyqPV82o*3=x3O4;>zRknrS+V}T<`3470|i2w-k9vW6Ly+zjnjZcOeP`KH@ z&s6A3kL4&}lt#gr#C0e(?{bdIm2kYEDJXihL&kVAaHVlH#`P8U6I63;(FHxlmD1L5jMXegen5d*4iN@Fy*LBMIz80hF4LbmLpSk)MB5A*=MZ-uw9y z-^>UZ8V`Z~`;ctqf#h4{zsD3^TVt!Y_F~tgY$K}huOmVS0g0{5&HqK(z9_`M1=i50 zBg;wUhVWAE3iBDljfBH8OZx2#QLXk);D<&54EFZ_CF#1-h$7GaT}1=g{mRNSKQtD9wP(W&DnAdUK%b7~O2WWh&K81b zA<-B&(_}sC6C=$)C9gzKK@7z%Z$|X436vAnmYFiP`G0otOD>}ba(97)B_PRr{fgC| z(oQRS8EiWaByVF|yq zV$&jY?j_jzPhmNGK*PmLs9EyAfpqD4+WV_MX50aPuz~Y6K{o43@h&xth*k6LKGoFoR+*t_ zBB_|sXwN>}c(t8tuItxF{owb zzIS`H2Kj0TWbXA55fu{qRkH+_n(uXcj;}JNx!mTUgtrX@+6irV@H*l1av_QSu^++N zz7$IUrX`~h^;4>Qd~WWF)%ec@w0@#H)lOIsCn6txO*ZwRcw~uv^24%YUH=htvKsuW8e>&3C!UyP~* zlB^I~){i_&nGeHmz}X;U(#=5aSdOn~8=94|sHKT$>p`4etXD`=urPftm-(OotJC8N zi15WmB@=t3`a^21>}Lm?-xg7K>X&S*?_Y5*1WDD$ITVl%DR&%CF|g}rqFs( z`~Ahp=?`Ql6<~GdYi5A_z_Yn^U%e=;@gQ_z51&z3wR%=8^n-MBB6vtgQ_Yx$H+ENc zpk|XYDG?&kfw2k6LD$QD{T}iwa?$e9;W*+B3Y$&9c!QhCIvo9&YkUVS`-F4@cM$iD zo#G$z>|i(59&<{$VIMe;f?(G`?mY{Zd9R>@sLiXLM;_xh=LOu6y+t#ol4HMJn#FUH z1gxr<#7vqV3f;I0?fk{4)N*;H}>Z9XQU@0hg(BQ%S(s8U0CG|;r0Aga!Ukrp& zCaN}^3Ij1XK;1UUP!l{n{D8vA)!!v<{6`;Y&HU-w=e-RqS07QoyU1Ghc-o6%Z*m7T zZH{T9$cwATI_mOi(K`~H?{9r)mNE$A;$Mg#K*(#6%Sruu9;RKs3 zR(-#~-eCwlcp|9M>UC_Si$&r6vgS3yvF;-dVvZ~k#`69ph z#lPP&X}i63Wt*%C1}Rw^gdw`dncwjf)5p~nK6rJU&lP>qg=*K5so|j@b8rlDb%A7+ zC2E>~R>U3Z?6I-|Esk$p2PFAIZX*XV@X|2iz3`|Aeil675r411;7+hYg&__r#Q&oV z?X9eh6$u+{;i-C<`79Ofk@1q6N)k~B63E=lr0F0S&XJ60D0w5uLhw3_VI$Up<&V;m zRMlGr!~p&Dv)O_PN|v&4-Wa=^Kt zyBGPv81MUhmvPOZJnTAFNwV#U&ecuoz{s?KkeI|X!E*ow99WACg;TkUq(pD7>UiK1 z$a=(e7;8{~S z9VEMiHY}&2A;YG)xCiY$yCN@}_~Ai;L3oOXiKgk$w2-R!#DgoLEJ>AG4)tIQXJKNQ+N$R8PQ(cL-=;MC*4W-p) zCT|7WPGkHY5MnwIQ2lKeDkhl=xmFCm$FLMTxz;g`x56W@aaw)83`MVOXd?QD=-4Ub zWEj579if{IlNs|ldXeN~!kcUxTRXegcN(6E)jQ~bB(;w%WmcZL_+Nc}1E=QZZYEXNYU%2rywMk9 zBAyb(zSI>DqpjE#=dNKi^MG>{+g*%ar5p95tOxJw#>2b=;aI7%JjRiS7)wICbH~NM ztu$>s6)D812*(9c-nsDJ&i({C{wd0jwNAXZelD?F%0CDk+c6vbPFvXI)g+N}fqu`< zw1X;X)_aneOUG~aRbD6UY$(k{EX5k`W+<8 z9-`?2A^Xa^ayxy_ktal_gLv94M9WHz&bpga({!v1NAL&MDt4o<@WlLM`0=0Y(h@Pb z)NeT{Vz^BPdN6zo(C$d3FEzdIWBwF13s2GUB5WZZnrMS@Ez4H=E@jA6oyfy};st9VyHgKZo;I9ZeNyhRWPwYpj>CK5oGlPdO* zXJ>oa2v6LxHzCs%+Y+Ezi6>F>uTqmC#KNCOQ5MSAeEH5W< z)k$I7Z+3ct$GxAhxB`Q+vf6PLj7yB42~s$x*88u@7tdB6Xz7s(Jy3lLU&<<-j&{2y zvU?LW+-0J)Lyr5k*am}m|KbYm-WD(WO5Ml@Pbc&(H$;p@0YtK;kHEm4io3^dMSD1Z z1aa5NQq?+Z-*l5(?+I?ubXZ1a?D15@4eB4f&-Z+wE_ekzxf>3#4ERae2_1s;-M)`x zTAribp9D_Jw+ePqKVh!fKwXhEl7Wg??THuAl*Tu(X9xI$4vQV((#@}&Kbds6zLoWV zcX;Ui@~j?c(7R??{^mdsCMx@as}svNf5Gb*lB0rs7w9 z-xd}I>mT7M5F-0ay0esJy&cvg8UQsanYRDl=y!T`6l^iYBHxheFt-wPVumiQ<}_o!{%fkBP2z#s{9M~FjHyY( ze%7sk_}4*)AAox&C#>I^{2cDqfoghf0=SXJloPM~A25nAr`J`OSWE+1v9F8OHRZU1C?cCMpA-ONwK4d-oT%2d0jo4W7fk{Vp4 z8ilQel*u}3*shPieX0YU-tp7T>njdOq{=^NemGwu|w{%8Pfa=6H;j?Vgi$!GgrP&Z#f5G}m=7d%+_^o2Fi|Wx0L343h{yl1|7H zIW2Ek0sB@|K>y@xmzvj_s^|D`gcO$n$5MMDw;5&x0k6KOTr0nwMN@j`p8MO0*qgjN zv~cFVim&bH(0uIb5*SV6Vy4$a)V*Hoj2m81sH&>D43`r9ez(Y-ugd4*PIUpAC}!X5 zyxiAKDTBmr`kUYRd=Wkw?^la};Wox%fdpJ7*9i#3axN2fHA5P+*A*TrvSamnLkyna ze>;scSrReA4jysQsAMRl=xfaHu=Jcf@?mHYs%3MkRGRisB2u42s+6p3J%$T|;c7iJ z@2+K6$1%U~UQ-|Us5?Kt#x|;*`=U|WW8bfY#5Qb+c! zyCjh{RX>%&`HNxaYrnvlC&s3kk6aTjJ5e%ZKabKd_44#Q6)V~|yAD~8jYt<;4k@?> zYh3GZJ_9>xuiaRfM?UptM&+l~1L;=Ml#Q2C1$P-Ma<5%KIoW0YE ztt~9h%o>mR*enw-CcZZ&N2o&50qY>=?#ctz$6lUXRJT;zXKv}zE~nq14|Dds`Tl4Y zvivS586kTj4n?xu{Y#sUQkUfzZO||QU8md9YvK=KkG6g1M&)6?qZ#Ad8nN%^T)9Lt z0_vNCoo~r>=?mKN%IK9|r6cgIXVmAV_hYw7jhS!w$Ne5QWCa@8VpDU+%YG`=j@RDG zx8wE&d|$w3A-?>j8p$&o!|d{_B+@LBl8L+QlHWCxyy@sX_61~417Lp_0D+u!lU?5=(N;@zkJEwXd$>UVO`3Ke5jkB+Nj z0w}LzyP-_2&HC>~gg)tngj;d0Q@TQfpBK>NbsiF|i-Mn?kP>qjmKP5fvc?u)jM)q=tHD-c~%0Q&4%%xG<}MV^Nv51pA5 zg2f#-;{tcuPk0VYH{| zH0}?kWn|ym@;g^Ym^fFZOj&~0ien{ga~2>sYxm(2AQQ{3rrW9_PLEi8Gq_}l?V0fi zB{7}hlH3ShSj;Gex+ng^E4?^0?6Vq~`Q(Oit6r%pCwKW%L7lB{dL4PdvczeBh_nE0 z3)&^9_nHhf`Y=^3>dh$fA=>`jEp2}BIi6cDMv|NmEp8MeCGM2HVSP}p#;G&&GRcyR z7n3sue=&4ylka5fNU?(#GatJ8ROj|wclNYCd$760o-kP)mKdLCL*pgjNVQb8IeFyg z5L}PLb5$~>hFCTn(X+NUkl#9Env<{u2QD+D+O@?7IW#_xA920H7g2r#d(FiF(XX!; zVs>*?wI8hB&3NUDf8iQdVuOp?n?2y!ehIEY7>fV}2&`X%b; zepZJIn}mG>;Cch71aYYLc_H)E_^4d#$$SFI#!Jn zH-93EQ#Y#ew%l)=3Xj-3O=HC3xO!k;a|obB3k~3B9n7F&zU0#utC(~}+**ZZUaEMW zUVr4kmRF{FVM)6kZ{N`nyA=JJQ{IutERnQ)hc3B%O~rPp%r4oe z%2e=`Px|k$CAD-UvRdIPP4;qW$`GXq z)V(|B34-JWG}}#OhU`TWs6Zo(b$Ef(Nbe z=5eB9Q{c-`xqEMX$zuL7uc~nlfJ2t99NE!NrH?lN*7K#P$SP9WsC}AmB#X#V&#=A4 zi{RZfu{32Lx$zsjA>k0AH@W(!pY3s{-DVEm`=8;cz8;V~tPDfQw*B z7cG1H4%;`KGBH};@sOS7{6c&!qa+_-&Yaa$kvs8f%9%^u!RL%kmaqZO3#@~YtjDV; ztqDGAnkmUyhiEt+yz)jDO3X`vNFs@R_}=*Y)9wKhM>Q*@X!!42TJ+PCJ3%|zr{ZtC zdwN#LP}t^=I}4<3#G~BoDdMNQxl${RMKH*}#ucspsHTrzErF|!=c-3;&$&&*R&!}+ zk9AfKrYf%M`vNE(<#wcOIU8CkfAb+F(j)2LyR?hM4y|CeyeN|dal(G+M7jtbeFGp$ z6|+z{IEbU@I<0h%%&>E-Y^bEinoa(ZtHiIt9|Or$A&hOS$GnkBnT3?gKeZDK>)Y;A zJFwSi1KWU>jsOf>c(8KWQ_HzY1*9kMf^ldN8U1&q&W4EHq}^{iii-RN+Qc#Iz4!HB zuqFD;@UMB-X!30;#ABu}yzg?_R~h>iC9*+_ z35*+Y@M_62{Rwt&d6qo-`Muju0Yll!{tOTYe3v+*+vWoQMDD9qJEjERXjy2+``e?c%lH|!3?`p3K&<>~j$sIUj z-xV(-Rzat6t7%S~@Ko`@TcXt$lY%Ax_iQ|x z6*u4i*r|I6oZ~Of-roMx)X^PzjK4rnC%2m+z7D}zImK;VY@FTu(l+2Uv;7j1`>ZJ2 zB>nE@fJz{KE{0xJbk}f*uN|af0)YE{ek$Te!zS+v%^8mSK(A%6d5vqcozz^&DJ~0H zwVacUY?~IGR+c|?7VNT=pBb4hO##b|nv07g9kl+T403a{WFV^t3pP>t{&LUO!;%Hz z?A))q5~r#e+}g1O-5MeKMS9EDd?_>Wo@2cwaw3w`pz>g9EUT3YeI9+eUGJvR<_Yj9 zo3L%$UAw&O>;u0)ojccm2D7L1+G`Z7>mlsr?KGaGy(xbvvvZewKMRecgy-A*umM8R~&xPaM|`^6_)r$&YE zTgnP6f092w6R{54Flf8u1HB|m_&v%0n6j|81;Q_zjH}4VEEqJ#EjoG*dbU!jT$0{= zk*gH7jEHRVOiwPfZhLFln%=uw@;YSnJWb56Ksr6vVY0S(#wcmXN=H$(nxr@8kr&Z& zNepirr2;Bd3(_y0<7+xq>(bM{=LLHRsPD|eVYFO_qU>uX!iNV7^OBAM148e|cT^SW zX?c^3cN)!gVRX|In#D9J)+>;eT3EkCAUv@BL>w~stA5FF83`w>I$u9}mQJvaqX=-k3{#yEhJ7~h|<0hD@sL?|tsPM^N!#kunu6O$I zkfVpPbb%dv4LoUPDsJz?c{djuOv2h)#6#RdZ0^yYjq_SW}_m~XUaZ%SmnWCqjE;R zm{;KWi#$2}Th?EU4m|x$8&Qk;#NuJN|5$jRAOfr_Zgkw-&Gr0xd>z0FpNW!Dnwg39 zP4$t4pW#wHI(xGDHT)TH2<&evn>anN#%8he4o7`i(^JonOKaQhi?xET_UB{Q9JUGP zax_$yHfH5vhvRXIsR>sixTsBEgv+q&gmiwOxozm$T1>0(} z1(Ry6!Q52s+n%1;Z^5%o_U=vgBfri#q!zW(X9aEAo-6XP67X78%yAkFB7frPK^j$o zN}2Eo`T??MZQ{rpHv0Yj8yxcbF_w8J(O>%11K^Mtfykq$eE7g1x5*3R4|H1+C#=@QObho7AMA zfxwk)Kt+jSA@uhCma9uSjWeXc7r$@4YK@u_IsTk z33JDcLHH6#HRt*-8iU`TlZSA>Z{HNX7@-}DwI)0K=bT|n&H&kF_%}q>-SsLI+jFyZ z4T;tWh)6$habLx|3%@CG0=fA%?ww1LP}4&r{BL1hiBCATjQ(&8#*W3ySkwAaTEoB1 zQ#>7TmDPpVmn}j8_Q#L&-J8~mWTg9wLa?r0%IrvyG7eu=t&t%22Cvdj17G*oYD`6( zPMnMAdhjOmlQR}r=&skKFxqN_Z*R1OqgJEMsO6_6`&YU^m+74Z-G-!FJG6$bnIHAm za6tp$Oc??;5i-j6Iec~wheaF>eV_8_x1Z!0WK>sv__(;~Y{YoxTa)1E_zwUA-W152 zWBBNF+qF~sr@oG!J+%RIii@QP7VY^hp#i;=&A|$N%*BNB3{ZJ}Xf*F$-B3~b*(!vS zgo%MFwK9dd7?8s3%CT14Oep|TDzHzzeU{42$Zp%oxrY4t%)B~Av_^_*1@aK#%U3uDf~UDA;exwoZjn<69X>eV zfg*+ZF{!1CA{@b)KwKM1ZZHIO0oMw^j5>y>oSWI(UDh4a%SzOtu#ARg#h3inGYOX zR-t0zpr(ON4%Ba*I(izbf^YNLY$igAew=Oc+xNTRI2E{(Kj+FnXuu23nPzy;+423P zp(I0CksBv6AZm>Dr*o3>tl6EzhcYR{YT17xCz|gI9m^k5x^p4wk?Gu|1x#?3hoCGoQrlN z&OU@mRg-X)a;Qe?DV__9Ha3hyRW*~k%?voW3z|E!jLzKn)#wZR_eH55`SL7`IDMmI z_guQeRep`nDb_X6`BX@1e7zBd+=Wfx=xPE*>gOv*Rx02}2hFO*A3>Zt+#Sz(;yA&T zLZ^KQ_VVUML}=8JMJ(S&S-t&9#yz2Vu*#FE$;DjAOkKf)z|Px?^V?ZF;zaG2a|$S6 zBH}o*y1D;H3&{9zGSRr}o}}UM&9gi+7@MY`K0(XcZEtYdHqDxOwG(M3ZVX=4nF-ke z1IwHAlvM_gUSs>s`#zU=(pLuIw~cDGGg6vJ+LXT6WhqXIUSQ8S88_oWLhF`J4fe;@ zHYUA8ydVFMrLzu;>UsO{A|)Y6gQSFXHv$VtBi$h=A)QM|?E+%Zu#|LncXxw;ba!_* ztncyrd;f%s3l6h$&YXGXe(n#B$eN8-$-~frC1=u&Y3q72!3}i`?0OF~s=!-X|FHaR&m2N{n%(bd8B^cR8qu8#zE5Z3>38~?CtGuhY>&BgP|tb zB>O|tb%OCcL5SZ$q)Q@5UnARCJWdu`m>&k33=RK+7Rq%@en!K7Ae6;`VX|JG41P}K zlzmtm`t*Be8?sWvfZ1Hg`Tv8s5D@zhJO(HlsflF~{==D4(uyQFjxbYN9=}7T@x_9^ zPgb_>ve^JLht}0NSg<&4QCNJG@L9*P)-#_>O*$H%(ct*!dsx@uPghYY_Tt{w#s5r~ z5mD@~W*3XcEuw#)PqV>?J4?k=_C}**R34UrnJ%L|uuObJ{nRMUt*_U?d0ax~=M+*; z)Gk@SafZ-JVan@IO_V#HeiypbFh2vB!rmxw&`P={nrB2Qgg}rl-Z}|UB_sG65^wGg zIFrT!jbF(zpy?X0rL{_U6RWlGW{l>2fV_4DoO|>P??jHXWoXO*%mh4(@Gc%oKez#T zy^o;3AZv+beSc*8yH*JaOR;{jA8T@Aa)rx)C~yvn)E~X&ZM?!%)Yi=r=b5`04Z>~! z3%D2J@TO@n*(mCy&eRQ3pGue5mK?5(7($V0dGSNU7QH+1E;yGhg&k5u^c7E(4jg+; zHpA!!Q;u?;Tmhs?gI#>wToBfTPyDpla7Xw_lCq&hyR2voseV$6aKq9km?9_UUuOq68(HDrOVLZkQU28IG^|bk;_Pf4y*}BMRx%72bbaq zLOxMiyMa&W`^1Hu5tTOhk_;cbHkj7W5x47*r&4=CwXDiMx_6*D zHxv&@-k_D_aMiSF6Za^*b=10$0$9*M|2$|F2gv>^a~nP2Y?2S^$pd6rZTc^Z1uB?o zF6Q*h!+IAjX+f$zp8#+(0nuNPl#m_O**zN89!u6vO4VXz%@4Q@ z@1+gBBL>06LEt}HZ+(;DtIQG)vR-g-AAgcM;6;P!XhcJSh}71nm$RIBIo6*hvRNbe zDo{`J{3q&Q?SB@Wx9dE8@1?U#{@I(CibKFQ+E43q-Ayqx&%5!$_58IqSY1k5she~d z_*(vg^no8$a6DFSRHm%9;yD@I++1bam?+y&9?@yj_4HYedPI&DbV%fcPlbLv*3q;V z%}+-hVcUl%SBNi8)(?p5)^(j5lxym28@B=T44tfkDN!k-`f-!=4n2Ku<*GpWQQ-iH z2PRn+Xzf!b8L%1BxuEy{^dP%~Nk=ba=f+3|oG(w!r-2#%7l$tFasdPY3ue+b$4$n@ zlJKycxD0ApX8K25jAzsgK^xnW#-OOx4JH4B7>QrorFTd53t@C2kGOmhpESVm8NXvU zSytuCF56rILV+7_^zjA5ou3t_LMl)(uU~sPk9cWlzw#Nd{qLG|X>Yy$2PE3JGP!R1 z5q*5=&}B){(C0W^Iu1Rm1_Dy`1r3(KJ)!9~4N!Vpc(Z_-re5G<;eF{{3xyR3J%9*56F!c_@BcwcJshR^^xnNme)K;;IpF8 zhdQu-7kdKW>-Z1VCJaRwQZu#p|1Hp_!@Wm?dpoxutuaM@~1GUYS7T}+gwu*5a zngE71mR7*>Ms|Ze#V@>A&!>y3J!0?&>4m;Mp#L+~^r`dSM?8_N3J#YKJ|=V}5QR9j zg9=l!!1hnFGjw~I2x7k6scW6pCs&7!!a`a&gxLY7JbK6xF_z%UsW-@ zzk53hMM7UFM^p#z3RhyhR++Y7JXk<^vUX5<^=%Tq8fO+D2Xfm0mk7`+k-4d4(O-ew zC~fr9EBvws&B+$Ucl&Byv!gPNaD{#$qkqOd%%@UEcoHrpZ%m$+bU`-}Eb`(5S5%Va zNHy>-iBa95g@FVC|Lm=(nr7GM4gn$B4?Uzdz5{u(K7=M`~rrxw}!L!yLK z$IK7JBD7uDFTnPWw-J8QWtoiQO`vhfOu+gv2A?2&b_A?Q)j8{c30Ifwc_Ig=1#_eMD5)ps@tFA9MSmT3sGfFKAg$SgU){mY}&1Ur22I!9uwF>nvNNq{WT)? zwqvL5?j{>^V~R+D<(Gz&1EDv+6G6AA4p<(FhISG&rmJ*2CZoKAi|ot*Jjhi>(1*yt z7olx-vAbwu`(^1z>7i7z&q!7h%JF{0{y6F?V{ilHB`R=t3Y;(<22U#r~yu&>sg)5nbQ@gi8KfqhXR zjXlbQ2Va=6Y!x=TCAF9u0JNVKRKc4nQh%W!z&kA(Sixqd268$s9SytkyU^y1h|YMP zSrNEgqm&j5%V(itbP^Dhbw<0BUj6iBA|h%KW(@a4m;kxYzk+;<^Ch4=rWoxT{<5J& ze|DsHl|DYJr!i0UGKZyB^V9)*SP#Fi=qDB84Sna?#N@P!TfJ-T^jyaEVlYw7S$;ab z>*USoP)<=?heuen+5{QB{DS^0GmBH+N-E^)>N?*rfLLtqLpQb`Bsn$B_y_fOo9Ial zQ&A-UQ86C*gQ&ENMCGQ?@NJO6{rTR0e?eRoQVLiz9_Z!$tG+C7GI~Y* z&eHW~p#lnh>HV9yy*cSr!M!}Cck?(9IGPGC0%j0f9~4j!iAqK~-^Qul-pf*~PLIdj zf!)H@B_=G!1slj7X!*e+t>SJT9!`Sd2kT92`RN7c&BvMThn@3&d z0aD54z)A9cTxU(Mr#UVk6LNsa>gu?A{jW@(;rdd;3HqI@VG>ecbA;k1jGjmD=i79Z zGrsYTzP7I)a&w;Z9sHyf#o2FW$n}nR1P6?#RjgD#6Lv#vtS|z+PJ@k^{#aRm3;ZT! zPO#9nCp#ZzypH8m!7NOJx3V(*gCnrIhj?q#Tq^6SOx1a1PjQP@OX^#=@FLG_uL#0q zr{o2j|Eu5kk?+2xb6xWB1JjyVf88R#)9&9UT-c92%T zB)yxMDk*s9Zp_$Ti(X=FKbWh6G7$1r32!f=FSZN64_C zEw)!>*mxXhHJJj^N9m=kv8=RUU23wJ_C zzjs#1ej_nR&R|B)d!D}${^jQ2-K;+z=o2kIh%O3zgiyzHH+_cksL4xXKU!vR8Mn1GUJ=%aN!fwt_j1Nhae&eb3IL zdMCyp6J>3VHe;{YzlF6@bXcTf;SO(gH+>(~4l`_w27 zsU{f9vv6KVA8g5r4p)@b)Z_>s?3qc)JVnm_GuCB(1JS-~#5n3rC%Kpmp2?wCrl-T( zAi9ro<%5XKCYL$>VCUnsRmhaWnD6K}ehXK_w)3>n`BuZ5!Te6;prjTct($o*DHP`{&;PG{* zrdy7;7P`@ilVma0unekB#5VcN%jIdJYLdWbHXYOCWjx%d>05UfpD3m{$>D7VYDEKkv&Y&ukMdXix%wz%Obfj@7 z0IDrWYbrVB8PW4Be^5ZJ=~h=9lO?|)=H@Gw^(I?DUv9AEv{{m&G>D0P7(Rb@tXnar z5-TdYp{TSJn1NpMH2>0#<>|tzkZ+-=T8VtYJDPo}nHc_^93$~qr=d}Elr$7~I;O#T zaL<}}`DQ%EuJw-RwXEBoY;ti9Qzx$5$@-gp<;Q{|9>b)frXpcC^5?mNs*Y~HXbxZP z6Su-j^62Vf$N|7#&zn4lOvd*YP-MS=WeLVHOobM8xfg0Fz@WyR!FTlY3<+#L!uhpD zIBB5js%B60#6v;Dy>dcTJKv1aO;(}h8rG&a6W%KZm6Z>fVR@KBUN;Y1@wUc72CxTT zxf^(Q-K)Z$wIgNrL0G2sge=@b^0V#2L@3OaCCyHI@>(lR)ZToHqe;?5(r1n<{lMi< z{*6|_ko}I=mBqPE$fL5!59*gb3V?g0`H6a=<+% zI44?(o9g?3B_111tP?4Wg(O>? zxg6LyHLny!FK#(f8+-$fhdad_Pp0$dO;~KU?OUE|id_zBHLBP+eGBF-NQLFq^k$i8 zJY2eQyMZK6=U>UaCe04#>LFJJ9G)$(#;`37t`gDrc2E1Ux;gxZ`A^5&ay>u>c@ogC zV@!8yydq9|Sv&FA(jLL8QYEO15L=>to!tjpH*)FAzH-1?#tZ0$ruD)`qV#mubnt*6P;2d|9%~;YY+JnZeU116ZcC z0efZ|b7bGgxrRrZ1EKtw#XAZkVp=&D`FG4uL&wZa8pV4{a*Lf1C}^hjNBy_0v83BUS*(MT5V?Qvwh4oUS!OjCG349 zh5M+TR-JSwsh>FQ)o$xHc~tZEGfy9Xr{OO{)Es9N*2PeeD#e99IN<^ zW1{L##iHQh*%{BmdTQFK3hp;?hKQcVz9f%NnIHB#F&H8osGRA4g_(v)qDd{dNIk71 zbw*&WB637KOGTnPJD3`J>WX6TJat=!Ii?prgqgh~5V)*82I@06bggIchuUYB*S6KC zCw*n}N*%A90Eto>!R*SH^N|tBf(^MabA9Ow>E`ss(nq2@VIls5(0>tjkbvsV4-@YBX9ZW^$fyCr!&S?d1 zE?4@Lxlc_@BV?y`CkiBsVDh&Q*EmlRkIE09=a(MkQ?FdX=#m`$ZlASNy&tM-mW490 z38gCj&6J7aZia^_p9=b&TvlP$J~MB?k={vZzjfEr>f$@F;yt0D3fM@ zH*P<#lfJZDhLfO2taR(fx=t`zX@1-Mb)?NOEc>LPt`2SyvAg}ecC%E$O3(~7X^u^a=M9clI(~m~ zCTxsWJz2z>JAdAEd0gfw>vQv7NWdju_$(lRzPu{o17AkI^i?>JwNtKJ($9?&Ad{qI|;nWlQ zHZ`Q$(7udG#$Z|3%Zm>pPFb6#HOYR7QT9H_8HE_Gc)nAsX)YNc=7Y%RH5fF9E^ii3H(tpv|=n|)^p70UNGg5_= z9lb3r8;u#DOxMxKq#dERM0euKr@*&i$o_M1|a#43?0A*ZCIG&bj*C1p;scc2sl zp1oQF{j73}PTo{ZeHgLWE6Q_pEHcBqwIU*M$BF>q8N+PEddxYd{Rlj}{e&Qz@-Ao7*&-f^p#ftJjUTCc@Grj4}!HU z@XC?E`e0od@?P-O=hU;n2KdOV->pMw5q(ZYRM-ykcYdzWyCiQb4l8E;78BKXf*W$Z zqv(i{6&wy9`!ifa-d_o=JyyXX&faehi@9IZ@Pg#TK;*ytwK3gT#Pxs@F5nx|F2NQP z6mALS#70bms~jUPZ8?7$c=U;h^v<(7P3+Yr7V8}6stFXI*8QeX1Vd^aP<4a`c7vXK5({e38lV`?x-|5NToU>Zt=FX77Ev=GrSyQ zpn}eco8c>9bm94#IISX^)Hvm8>wi&59buPpcC{?3a=MNJZi*z2Izz*Pi_5|_ZvBH2 zwCv){7VU+)EL$z$RHnnCS#s48%LjHU=vPh2vhZNrlS(+{z|T~?zCc^-AuuK*`b}0G zCgQf}=}7+<0%140AZ*o%z0qW7;JT^}Q)LOHEv z_S_L_IuXnL?0nvOjELcekJ27odIN8qa)n5a1lc3K9NWQVii7;t4fdHAdqnq1A}?}? zZ??jhR`^PV2H^($hwd7{ORL6~=vkC=zEX|+PGM)my{|0;hugsNN_cS{miK|&3Akm> zw|%}RH;t`s`WnBc8Q*BB5S5y}CB~Fg0_19K7||P~tFCMKwgsVdEJ7zK5@)l=e%j@>|1(p+5QGzfSv^;GO?Si<7KJ$#Vz!30>tIQD4Vbvg9NrmA4lri2&IBIly=6o&4e3Ipf>;X^?$+c~~4+UdnFxPz0Svm>oU}77RHwx=mW- z!AGV$6*LwftBk?(9Q3R15zi{GD^zA$hpu2jndyuCCchDm2+%|Sj-hvnlVKyDwP#^| zD(^QayZuXZm@B@Rw}#ts>t9ey#QsU@N!x1Nw;|l`H@Hr5&eq}AIx{+PmGW`FkqzfF z;@(B|4RZrslJWW`+Ie@+(qrs>?eD++=)xuW622&dTEyNnoqQ%j_^H-=piXf`@P-y- zwp{6kFWVd$(rB6OL-Uj%YIp`&pNjXdW`B|B{ZQZ-N< zVVe)Pwhu&zKWzj)3bruo)dJJ%7Nw-k7P$JWEF)?rL8C2GBW!GnQya^$K!@n255#4) z-NtD$kb>%`pUn=b!c>?Ot{-IA*I9qP2y1p0FvfDi(<}N$O9V;d%~jP@H6KYN=olRIc=7(&Ny%~^PGBuRUih9AJzjh{;R zhZlh`KUAKYG4oqI>(YJs;@ZT*Ms5mJ?g}>fU9>+oxf9M-ZqvWxuQi@h#R+^^Z`pGm z)z3g!UMUvK~d+m~~2>)=hL=hmx<=^h4E6TkQ?vO&(Aket*7;2%do_9ilepvSKZm+E> zzV9tKq!l>TuU?pJshcvZmbsv0U@A0Qx`{~i`!+fZ7g=vJSu+Y2eb+^roEsBkb0M2; zxUkgdahT|6{G)G_=Q{zPUQo||5>y>9w2ILIM&`4(-EE|gzGkR>oh`QS#_ZVW0+_E# z*fUc%2c=7Yi|?l!gBDdF$*!-~c9b^hs6}wZ_LR1rR zcxs}pb2p&Y&>sVh(^*ax0vXr*mUu(%sivTJip$FN8=_{3kJp-8(Y64OalL1dO;87v z{Z`31k(W$IAOwbni*hgZWF@~(2{z$MjP^0sNJqD^H*q%UxONmV+PBeb;qO<>ex6^p zsE`;%^jeJ|Sm@$XgJEcjH zwhVDOxRCa-(*#8mg^fNWwYCMqR)fd4G=Bg+g3=Ovcgdwup00O}w1Yah$xYGx1IS_> zgzG5{UH}zfduOFA0|ZbiZPu7;$U71|$mqvu6Bu_F(L9VSzsEY3Iv1~wSuYW+t$e7C zShxOCJ!1%@i{>qg6}vu=LHk^_*j)PTMs$mvI1`xrub^PeB*{{f{~|X9;9g5EO1MaIy<{Df*y)tkp`k(AC}WBU8Uqf^@SdHu^nS?BGURH z{QScL06g4OS{!Mp4jeZQskWEf(_2QUl1QWB=~u{LKa<9;O0%m)-%)4Lh*mcSc*Cb9 zrHF=^wk0BjITpjDb5PQg&-5shj?nKJ&Ps4M(|S^2D}U}euz^&Ms45%}@$hz^27F7Y zR!7EP)>~SDI+6ft$HI%k9rPIlXX2ueNcQV==#kzk%=)Yr>^4`%$mo$Gf_2dZuL+0Mu zYNT|vG9K-kV#0cFje1`hyZE7b#n&R!#3}CjIO~u=pI78(@vPvWpx}um%@u`dmC?v6 zhpAS`6av|(dgs4PQO*lIeuXN50!v%`>JawvG7~_l;f9IO7oW*k??y3)m{a&NHp$y}ZRKIo%d zz|uju!cy&rN7T4+HZ-2XKziNX1_y$3BrE!5BWjPo_MT`+a74pJNh+1?4oxUO%eVSW*%L~36PITO^=xI^evpX z?;dC6oKC2(gBDBoZ&)k*HWA1Cea6WXKBajzN=gm3^CEI5<^p$~0?{U+09}ltOz8AB z1ed)QP0s^+mG;FsLHOKyPEUci;1+e;a^(0{1YiMT$ZX(qF%qjBV5rrP&DEeo31WDw z1sK7^3KSu*X2S!{wxu9-mF3Yf-}`~k)X_tP&eTt7i&?A}4Z%dhd;3%Bx`}z->~#Me zRv5x8(216nJ-k-)sBZQipdcxUO!uQZx>kW&CPz>s+vudM=OU@{A(E+=`0Il76LICE z{Kt5e?^n6r6_qCj>V9Fv6@4tjPe|C z2{^NScL*_Nz_Uzv_ePoMXL!z+bGLE8%9mg~VeD;PbjJ>)G1HScwSPE?srcDg?C8I( z(D^mZOj)^X*=^bcptQ`;TDl+PuA za&F;;ZyKH~Zuao?TKiwykN1ufF@iQvV(vHc)e+A6OM{}rOZxyw0!2OV<=r$^+M?8( zdS&yQA!S*5QQ`NOJ6a0!ov2jbVa-j0e_#qgoP}G98UKfR_+zeRHy(^X-@LgTOT*$Y!XKWF83nw2hOkiao zCLK>wwl8;b&&3;d?ld6E5KcirFm;9>I33~ppJ+*mFjX&r^#>`H;WrCA>gFBv#|!nt z?HRVZaj>v0Xv7#Xl*PxvDdYWUi+NH#;W}5s)Vuk$-SI9ujtUvJ6mT)NCaK zd(=r&@aRuu+$9ylSOh>e5$WO*uIPq%>tzGo>B>L#Tgsy`z!dYm9kM1RJ<8J1&Rz?5 zSz)=lCKQ%YN}abkI>?qTsId~9k^^AMs840N`q(b>(oN<5*A9y$aXaPx$ftROt;Ds} z&?9pWPaoTot&4g3>G|699tNw<+NDjT>Jt|U^nGy7`_g#+y5`m=S}lhaPG!0qn}O8* za}7EUBIIwM=xva+5B}VUe*W32wSMjXA3=nt(BQocc-%-gZ+ZWZs+xJe`^s>R9K!iqR*=Q}Yq;upkxCkWSID4+Bo=1Hr2y%XKMjWU%(vKl+0PztXu4VIVPjh&^nCYF#MB z+uH*Ib7jQOS3d+}0i+w&L9~sR`xjJ2^I_1Ph-Q@_+&2s_S@;?dqXAUCM&P2)(LZ$WC1Z-pS28do^kJAy@OhnNQQ^#|bH!tsVS86Nvz4mjXygK%WvF}znN76Z*Yp{s~Y zXv`$#oB#&GpCufIZvPLSHivnWq3)>t4vUH$ik>M`%}dXH%42T?+^@j$zg%(Tt+T4?#g?lL4!? zm!TF8+N~kmS1^B?D0K<0w_M24R3`}$;K=nHnKF;93$M2JJaEl~?zzG13!7)>1iv~< zPhuQ8kiH;ap=V%4RE~T+gpiJ7$@d~$X#0DNF6+4ov{=z2UJ#&lUk+r|es^}Ww;OkaI<3W< zMqKpZ!P~&LZB5cRFE~u(pYHq1n%I2mF(Rd8gc-En$oqO5_b}ChwoBe(ZsqjKhzZX>JnNsy^ z@_jP^kM3P?=X+n#z_hG$j5xxh*O1jvtsZ@?9a%&}h8g@^_&ySMLkkcDF5N%P)6!}#XstNU5%Jhw0UbV{`s0nnd-~+Q)8+;7kw@CFIc!67rtX~a< z|7-vo)o5(C%wOEG2j0aurdeEgRnocf_F@Y(`1lN#TwqZ6|9OD1c(u8RrwJAjhpYfH zQ-jwZLM!={ux&az{p1GmL?V4%m?3runEOwk(qT7XUKF!4G(7KBjnk5X>I#0Woy?rh>cPu#U6CB*nT}RDk#_qqXVq+K`yHYlQGr-EJ`p;4L z6SIm{`SlBOh4XSD4^ihs?qQA4*r}_99d>~J6_#wZ{T~usTW7%E7~(8yLbEVxEOeFs zCD_?r9rb%m?7~!9cm+2k1_kbd;n1wxy9@ObGvFF3H(w1k+lP%RB4sPUOOkP*r`jXO zPxljOxKwfp6X*rTsY|~1W9~{dKZvz8$sv9s;c}F_OF`VhhtIygLBlZwYSds=uUtMw z(rTG&C&|0F5TI6E@ad0B?RAIxd8nT(^t*pIoUx1Y7A1KT*J0;8OUl1jc3kQ)J7p*p zq7f8LG$(Clvw^$~x)P=aWCb(tiGs}VFhn~QjCNjxPl?NZjpqqPqua7O{Q_8iy)>kM z>Vf(^=r5^N^QM0>F=PZz+?LUR2cNk8wyiY{lxt{yWw@ifEY}3@38=spf=}}m%NG;-lpp4m3@V^NN)FA z{^KB;JPktl>VD!yUnYk<>VU(l7nSgd2J*<3UHK>rGS|rj5vYy|>WV!wI%9=Gko*@E z&Q!mgPU!dHyWB^NjnlsA*ki`}g1UGMVN4QCFY1e)x3dcPDW`q)#GtcKL|YmmyWa9o zo8Jp{=5eOHHFER_itCK@R=>(;0vvxZ?l;iOE_$R$SI2}gburPxmF`_>kgzxOT&;(xmkaMbV| zvhPK|LzreBO7pM=iYrk#jHowVp^NQLkj@GE$$FhC;fSQRcow#1x8PCJ$IE{1L!k;p z@CoLZr4PI#UNmcWNK!QxLYNGeG-a4b@k_G_CI@gw&6Kq=W2ImIr0nxUx~l~L5dRC> zDS2~6`NPv&ivyh|nV@4-^g{jjTm0vAZ2jb+PW4Y>_pTWN#Eg1VAPb4C&~ma-%F*+} z>9urOf0f-CA^I|7;PhP%NP!OSuE=nqleRDPq<4GVXL$2HGF_%TmedrTJ}TLbTGfU# z|4*+JQLtGoKqhYNf@9zM!KFic{K)<8JV63-WowG}&&~6{m~KtNxmq5e&*I{lv=>K^ z=pSdSkb0aTNpXDT#`_A}})X7Wm1vh2ENpMHcMi+;aL zXb`%*E_^2)w@Q4zL|7(;t_u5|n!03V<^Bgq`_u>)>igV#GMcw>pufwGAsKcN^>x7E z3k_sqq2xoKi{9WsO{~{x`v&98<4yJeg&q@|399OFT{-oWjY35zjD0FnuKtf z`4^O5pemV7Q|F;3E$yGu49vT;-0N5My+JA1`Q+u>@%f33cpKVOpN5{PtjhQ0{RJ7r zTRUr_KoK7w8al)b@7D8e+RIsMr=;YMs?tVl1dHWzevlH)0vgh<0U$EcVMcP4;zQXn z2O+ExVH#Ju@&bH%E)GlqjE)h>9bkU^I8Z=7e>FX_IncaX2MULcyw#K{=Q9_69b7B) z7BRamHxj}w z=*E+Wti-fbYNkMj?Mu%mk%{qD(Z^LHEI1FB3uJ<{@Q;*iA!aM-*G{}iXU)P_e{f6( z`j1A|A|Mg4(en%k@`xApu~K~=s2=A22ygGH70DGTy%8hD^dt1=zF^$n*ma~ zzkMQP76Q86z&k4knx8^w`?JFkDPNGqL^KRyj%7OnqUr@l|4>{~zR;MBuP3CHYzq*= zRC7`_!c>02ZYPFqBWuL;=^HKBF0Jc6II`x~)__EhK-&9{X{EmT9Gj;{SfiA^o-}9C zGvUfFDvWm-aallSTb^q_a)FyxtL&4579{R1HHQjsvNxP}f;!ixhVmyNcN)PnG&Cn6 z>K~f#T7u^GX&bb47m=uvKi+$9M;knc3kwFk+hn5VaN*tyz0R;2GKiiNwSU#qWJU8* z73GFsc}0EU16EW~J`b;R9}3c}^O1&j2zP(>H_{<0Nh2z;s!`ZT2p7=$*RI_mbmBkJ zc6XwXtynM0^!y_Ry$9*23Zg#yhGkQex!)SwI~nc~dWvfV@Kx2XUn&rgsL_A)st`ID zU7Kj3L^o|}H?bZ;6F)}t>~l1bvJQ?^tgMPt2Qu*T#eRtX>43+~D)Dj%nE63QouF+7 zY{YC*?U7Io$c-lo)#G~38{q50L98aHzS}P&03JAMkj?k)qr8~b_tm%of-H&1=AG@enn^1+{QDV6@ z3Tscks<_)I>n+0G)%whggRx4GcxfX$VRc@}YE)W@rhSsCL@=of=Ex?HrlUtk3E%V| z$a!5d5EFnbw6BU<5ru##9&dk*iD)j)T9^Q$hr3hyzG1s4`j3(w$y@vkF8Ww6Ou-D^ zna^47k`UzhFv0_(SiO*9b7|->iiCvvD?5-!6Ki0d+yU{N8yYv|_#L!dZ0P8qWVf7h zT#4Xzd*`OxMwhoRMcdE(4IwAxT6C zn;=1F5E#=a!3Jw?SQ1Tw#Bh6oEn02krqJ(P;+d^UoY5tnw~PFBPG0UBH))IBLe?Ft z2g2a*9O^)W%Pou;TE-?2hmvLEp-PnUTfLtSNlDTI>uprj$eWL>@u}Jc1=+`w*)9J( zZggAPEP6J{aHTl>P~$e!K;InYhsn=&_ePC@@7^~C+zyDmvuAcEwRXt1O-fz`CKNvr z4tJJrBC`Q|%e_We+|yK=01&__tF;XoL2pqeU|D7& zJI7H}hQD3$iQ!>k*Fc@7o2!Zl>!8%mq-kTa%}83!w<`$zs*WCvRrS0xj3ugTN^wBr ztK;1#uNt?%Ao7ZqwZ9;L7%7zQ*1+DZ6N)`uMi>7+RiTW{^=4svdALzlO>RU7W$t{Z zl+`le+pFYQ23sN7kriy9j7SEQ-VZ*dXvOZ3fghmFEk|!zbnbQ?Zn3VNZkNtPgni^z zVLuX6whE>kw!d4mZv^vyStG7JgC92cT;QYAJp4J&S2rHT)0Q;~zOO6J8D`A6F`&!j z-_gjc$&GEuVOmlBEaY6?iq|sT*MbQj>_X-p!aVb5 zU!du7diYv8=JlT&7MX5n#4IjW2=8q&p=>PVI4i1Wh+D11@c@Uqp95j~m4qxa*{esR zO!+P1%d{#ke?f!R)PQA-l4n~+>ze^_L%g*M&e6Z0HLD7oFx^|Mjx^Awk^JI&;>8^6?dy*r)v*8d7DQcsxrs3I2mb~;h z6>N@_PsKS;edw^Kw)%n3Y%qRA<=}TOVV*{ewXm_h6z+7^bqzHFIg9UOOHj#3W;6y$ zq!Jh2?9L0`Vs6~Re8#=R5x9qz<6|T&OrdQoUZ;77B)F<6bUU_j5;~ZMKqjx*w6oR~ zF<4QcnKY-xigTMI7L>Dosg3-HH_~@l#wOa;H>bwBrExl*4Qj)xN?TBW6(K1<@IT46~qUP5#NVfG+P72)w%6il+GIV;ENAhV`Ifn|` zWRSR}a3|otny*+(OX?{I6gJ)B+c?K~uj!O-ivTwDni@DtHl6qJKIQD%YgWj)bzIxZ zZM=8<5nSBZ9Q}?EKH40>bM!iD^Yu?PRiPfA*!M+T8xaIKvFitg{4CS4;x_SHxta6o zwn{EJgK>#-R^AZ_oNgcL?y8Ux7}mhC?#nZhM?ziIv$`-J{Re@%t~(!2n59K7#uZvK z{C<2LS@72zu5Qc|Bm4Jdpy*WAu`|Q2WX>O?$s7c@zt}X2NSK96waI!G;ugoJM{eA` z4($zMc6D8MY)eNDPQ)hGZo-;%&y>1NULq(S)oz9EjT15s(&oI}dJfoo%6?Ywm6%13 zs>xzT(Mj(@0*YVw;D9l{4KaN@(-Tz{-J$v%2hS54C~}0xt8PO&HC^EF*$b0dNEZ}u z`Y*`*gYC8Fcnv$xjr?ie&t~=2KxL*V3W2zp8-X*!Na#TyvTPs@PqUNl?w65TR@@$~ zDv>C7ik@28iNj(Bnc#ME>BO7l6#2I&?rp?6z$kxsQKKeZDZiWy8M7i?nt0jtGAbgZLx%v$x9AoP4B?C;Y1T+0Ulw%*Y2=MEzD@%S&J{ z@np{oY_lRKTRMMNmr@Ipd)`Y;uw(ru-h0Sm8*e*MY}*HTOrl2LK5aNYM|7nU-R7KP zZ5U^*8HU07S}B#m-Bgqf5hD$Cjmu}*b{(-}17SZqP?1JtZ7<8vD%sF@!w*)gjA+YV zx!N{JSz{};cf#N3dh4W(IJK=f>z;6Z(?a{CHy6p0=tOHc8iO`D{iUKe;1y%Qt?4E6hySl zJRH1&R2&2yRJa|o%Y4h&3B;kL9Hk=7rrB#apXYUIN(Rfkug0H5^sZJGLav>jqQM`* z^K@M+m9WDj%HdGs*Qbs98dm2voNoMn4_ZBQzY{DJh-qbyp_&UscUz(>A);!)-9eJJ zi<_l>4&rIExT zAq_|g@@8s)dP&k`MEDz-)M+?SYlji0Eqm1q&lN_GRd3Z@SQFh)LlFbuQw?xn8Zyjc ziJ*O%U-|Qf?$}9gkX?E?N0#b?J`!9?Dy5>L6CX#{Y6GqLf#z61h%}u84Jg5v#rT!L4WN@Os)Un{H=)GtEsZ z=B;zlP}#7(!^gTw1K?1O-X)tas)`qtVwGtrQfMOno6T|e!2t!a08P}Z9I)@R>9yaB8_e)SBg z(%}8+i}Q!y(7Ld$+y#xMxO;;oF|r-0@M>a-9Do z>8t~q`2PnCf|P`GhlF&4G>9}vcMhaMx^qZK*C-{GZUjchK)R(nM|U@Te#iIsH*D<2 z-R*Yo=k+`>V~)}*F3An)EpHIeNZ8Oek#t2r5J75HRE<6BTELwQU(T+!7hIxLJ{YbX z0E>uXm^jgZt4<5FAO}YcsuX<_P&~Jn>ia!`ZN?n!>NLko6fGDi#z$c}j+5%YN0<2RpYv zR%mWh;5qmQX9waeXCLx>O1@Xu5~nrbDRBOLZr5y!lSSbU>AWmB`Ku8t!c>2pI=UFC z9&^W_-k>qA>sNTCb7}a~g!{G$&PkTLYTwQj2LEI%4@V)c9wd z+XvYhcPBh!8!GP8wnqu`DUD(I>l?SbY+qsdMi%oy;Xk|b8|?=njeSU|;}yXp%zj__ zy^BW$?4^&>?X@Or&^U~q`PE9f#E>=8B z-8Q}uyun3~Ad4@TOLNRA$&KOkyK*}Dw_6EZ>PQgTkj2(r+#(rfvkok3H#8dy-m%a{ zAD+^29|B9xrs?q&?{9Q*mY+f2`?zz zYI|Qn$g;0q*;2T*K51@JuhO!5n;J#p3pfI}b>lDRu?9PAshiHLZ<*rwm9!H#s#M>p z&(M#t!Cj5mH&M!;$M0>2n~`z|ER+%dhhS=KzLuR*R!s z%ca6YPUA7;ex!L+%4n7I$W<_cWgrYf0(a6r3)=~+h4fJ|pI+ihQMgE9rtvD!pYh(+ zp3GC>X8qw#UDFm&?>z$*?b_N7kb`S)9`WOQ0~ya`TgtsxdwiwUY)xpJCM(%e(X$oM z=F>VXwYu3_gpaXC5%X3u`TnJlDtL++_Q6h-B|<)lQFVQ8X$&3=P+7oIB-VJyHSR(7 zVYDJgLZz`5YZ@s{*qXVSd`9yVAh&a$0Ukmg9kR+`A8+|F-3Y4!Cd(St&Z?jV_NU%FOyA#-XZ=~VS;axq$hfH(A`%i3WH`i* zkl$(>BU7U_uBV;&k^P@Iy}rLUKdw_+{-EbBViECF=oe%5N)WjiQwl%Rl&XzcD~7s+ z(1+c+sbC!(Z-RQ7c9@gz??3xHU5skBizrQi+3c&O2e}4MarBV?4$@+J<6o}t5yb;6 zUIOC8{!+L6XVE%Stv;uH-7{pv*Gfbw0e)7Ut>rkPGMN_OO60ho@X|~zgXF3&xo}2z z_h&lj1V1Hvd0mE+Fi|S|cqzooCrazFHRc1huc=$Fo!xokL9xR7@?kK(M0fpd;(CNA zSN-04M?;Nwy1uslQbh1#?@uA4{+=Pk2~ny#jqPonk9SQe(O|qsv69<{_2Z`X0HQrJ zz?fQcbX4HUf+rVK3i(Knncc{zEF{}c-;_JPO%3Jz+org4O+VdE<{e@Xpm?ErTCU*c zdsbo}{!Od)tz1A+cH05J3f~@61)KDwR@*HG1 zcYlpR{rXE#ETRZ!<_ycPEe~fz6)##3rjfO^FkV*_R1LLn+?rjq6tp#a!b=|Q|NXW(aFRF| zEtk#&E=VWE1b{P4R#n$(Og7RP)@=C1F_uJcvvE}S2{b2*))tW_K4p9PN_|WURP5~V zI(E>FLO_5m3mw?}FgN~-y7*UaVVJ#{6<{CEWG}E74)Bd`t&*C+pL|UsIGggcy{uUB zsc8d*_Y^J-^`bJ5r`1XSh$Eu*ddU5CvIlMJ31-b#6^Gbfaoxj`@#MmLMvuWZ!?}}< zeeSAnp=OUJ7QY?@@*Z(URPpWVPwm)6KDQgW4!9;B3UV0~c9V+5#AZI|j(oxU&fMbw ze!*ePEJ?ZyS&a|xZD9D!?K9U0zXn_hL%HVr`=tWUtuBhh*JyzKdJB@ARaN=I>QSmS zM}_#>@md&Z0m^mI zGLnqLq?KA3av7_glMN;UC0?Z2)V1t79;Nk5P#J}W@`>feIJlFwkG-|}4K!OW@#t|{ zl3F}qF(Kz>*!`)hX~f}0kR-$6tTHy~SfzVQL<%h~xbSbV2`!X1Zd`nw`!-8>TT`o~ zD@VIvcA3!YHc}_bp`s3)OOndI#gRocm36dM_eC$5A@i;_Pz0PMmEm5V+TssjS_s85 zP5DRT9(#aojaDfmxrHL?Mh*6{`NTBQ?$~j&jWi>SswEcE@)oA{yI;;Dl z<2-o*QU4fZVF4dU9O1BKx?mSb+YP-6D`<~?Ss;C79gOBE?jS4h&C&T|pmJNOFSS0- z&Zh3fa_??Y=`P;+PbGb1&(gE z9&{hoG-3%ApT}YkjWkhRAI`KEJR_EcvB@1quNzt=pUsP~QfVE2_sC^*r{xX-Zt#|Xz^nQe1V z{S8>!0-G@XfUTdF_VWuad`^hT11aJ8Tv(+%!jJO=pF}JE9^~Fh>E0$WYe4|q1PGHN z#EqUV(i8LM*3y33uW=CB63M)$;5^S?R*W_V?ppxjJwlSn=vAeH7tW8&$R}rk${RP* zq6uT9ks$uYrI>EIsW4e9<+=sT#LC&0aJ&J8ApyEh%)FkPoV+ZyCB?yu&1Z;uMc!v` zPd|UbUTN*TeR$~R^R+WVWr(+?<@vxk@4o-N*LQ7&WFK)W(YmieiP()| zh>mqCX|REDe(GfHt=nBi2M)_^AbKyw-!|nLRk(TLU2mE8nm(mA@seb$j>Bj1r;{~j z=5pGaF3YX2Ej46D%EF%Hn$HVkJpcQr{GH7h2Mvie&|uX()08@pu%rPlM)CPI(>as^ zK!6gfLm`!!*P6YH_efra2PTp=8Xz3V57DrD`k!#GVW<|sxI!gH;u^C18=Jft=C?%$ z^FtCs>@YpXd<*wVF5F?yN&tMTky0_Ud_VS>$Rbt-{vG|rrG`|GvMta{bTY~{Sjq1N zB7I26Un>}yxLM5S1Nl*$`FUGub_UaC zN-TFGzR;IfzeuikW-Bb2TZHb10CG0|F75DY3ug0NLm-d)n9_!Ugbd;^azJZ|lfb_! z>c11q$qzj7{a8fabU$=*^F_8s-oZ=Rn>1T&v&9_r4*wH|#f!BlT}ONCnZPayjzHZvV?G@E@yoj$y1Dx@m_RgGIb%OP= z@6%*|g&ScLI%F*fOw%g|*+Cg<@zprXCaZ~Q8I8WbZfDMh$9 zgbNfgJ-7U$0h?af$OyIV0p|og_GD!0{w~Y$P)*9fQlR?eVy0HpfZwu5+G@VyW_;(Q z{L?}|#G8umEyDs$zmXhcQK7Gf0?gwmKTt^@Dd{%#erWqL5_zWd?aF|wm$-3qm0O?F zN6E67tjy*z;79RmjIU4IUhIsV-5#*{@o}mnSX0X|YLQ9X!!uu&pmA5h#GRaeAWh+F z+YFG{1x|%2hl->YY{O+O79|baNBx)7S@g4<_#S3lz#zg{I$4DAQ=s)ODO0F1A^SVfl zK9+HP+3Sc0g<;)((OYzbVS^B)x1H6?jr+D`pp*(efbx94=JcI41bnJckSj&Q1zWEi zdMn2k=Q%|-0hKVkp`^g}+}QUe^NV_XF@MzXzo#-B?k@g;HXq#Y?I@h%cI*E8lWyH5 zV9o<`3vn1;t-b)GG>b^&KOMWXHBL~Ih3LZ&sL=Y(i)(!=0R12s!tPq7Iw5f?ZApDh`TvTar;C*D;+ zUg-!cuYbgtxCR=$&uH5=@^6)Fc5+c&5(ZoUj9ryNo$7&(FKngXQAOl`lFDxuP1^YE ze|jetQB}N6+PjLrP8pvsvxD`)9jwb5b(c?c0Lt#xI@-IyG;53TbN<5A)fZ6JGc`$Y z0U~Nl+o=1Uuloea)d=zY0i}W16v*NRAT; zUMnD?GRU#tdlVG$0|>-x;MvoL;eqv!me2B4M8Cos(6Pzszxr?DhmpYJo~P~tR)K8= z2CGFX9mL6>ae>cueD=IwCPu+@$eGreFx9SwqU9asqx*N2j!FQ{KlF@HW7K`?DHjlR z)Qc^`M4hE*zo7)0PFMU7;mym*9K05rd{@KYR+k<-r`)w=DysyRn5kG;04tD`!GMoV z;7=(~+(7W1Q{`N%GV1;~N7lf-^(o7kV6#^c#adm3kwqBIY=p z29rtR39P8JH1mQO3pA_|X-pOz{VzMs)DX7qZMr1I6sB)TbJ5g%fB9G@FN;;y_TpO% zalJbM`qoW&(0}~{zHFy(9@cu#dhBi!5pb*k>jNM>1cZy|GORL34FkZiDxUW9unfBJ z`%|vltCNMI>}0W(&cieOn>1t9KJU43%$k5hI9(hJbdi3WcS+KwK*zxi4T;OgM9Qh) z`LSLnx!{&G#k59!F2RCk9)h-kk!MR8u@j=?>Wle~ip}Sn%5jufL%=8Ea}&K2@YwbZH6D7S7ST!_UhyPuhx|?uSlqeX1?{zfw;~Z9T8nSzU4gE zAyIWXFU2iYend(5@msC36f*kC0jXQ6sx;v)67i-gvXNa!Q9R&GxI?oyC|^1_fvS6gy^`Xp_&jBk+ZSO z-^b|tQnVo#ujDDrV{&@aEe$p$YdpDjKhje*?p^-=ne^TBHTuJ^)4bwG2^L%%KUR6? zeXRs8nT5Q^6YY%uYC1-u2}2!ohnA(Y7xq}Dq0x^mu-1x9@L@9gZQ0~Go5T8E_WRY zXP4|tBXbo03BvDE&fIa}3LLYfALk#AHnD{%9yU_DzO03b7zVo{0Y$+j!2H1Vxz@vxMB?(0dnNQ~9mndOCt*Jl&A03&Afd_L z+y4!8)vmw($57N4oHLP8&7_;;hgrPXdo>Eo2TujC(3VGk9Cb_N6k3Z5^__J3=-9Px zvxphEe=fN{KPpFQ=k%*NiLIa!kEND^$UIICTxDQRRoU|i6MwRp9tY(1ZE_*{52OBy zf{@VhFWl_b0Ol4w`2>+r3muaVX3EzXUFL5>KX(2gAfew3qn`QpRk~A>#w9^^cGu^o z*sdR?Nrw$vVHd?YFr2zTa5v;P)d%i?O~k~uaP|1f--OEbtXL364RdS+^&mg&Cm5Nc zF20VmEgA)JC&k*9-}DmEZ#H@%Tk%~Q4i#UjyrKf_&Rpq8i`R0Dr1$REH~hp?gptVf znF?fPL5Kn_2Z^J8T88RSM03PJ`=PrPO!9ywsw})m-rlDX9Aawidmw1gA275b(8HZp4XAJ(ivMG7&`9`w94wf zA?bHE6x}H*x_gHH_#V;8hQj>hhelJc4{1xV3EWaU)cCaK|y2B?x%_^)JDv4CcT3iuV^*etnc?Eaeq1SM=YG}v*w9AgEzH`cxxaOWm8kylI92%mC_G>UgW$)w^(Ox$%eQj zfN7nhT4blZ&;MtwTq{_f-cmLoKx|ji?67;wbIqJ8)07%`?~;gitI2qKJwrufwwjQw zN??wOvqW-t3{*iN*D$#7z{}2qR zC(?bf@6%|R%BlUZ@>VaN!EsD{Y~`E5zfwD|Y20S%&I)lfw4M09UUll7&9a`vUo0fy zOQjHg!-EY5Gy>j-nK2a>L;O#QEfMT*U&qrlP=idCZC|}}*YIx-It$JX{d*tD&~mK1 zq?Z(*7OYDtkvLW-Vocl^khJ|;J9_5?Rzw-A^lnb34x{IW0>KcrGo}KRor&pjkJaYQ zf_da5I8+%aVPka$Dm|=_WKSXIkBd{UKBDf;76z0Qm|bEU5qIoLaYc(iNnrX;SbcSQ zJsqLqgN&Q4Aoc{SYLm@t&n1vE&DKB2Zlb%|PJi_tX>dW6#@&%i#HCN7LT8ITqMD%b zShvb)C-Z)yK7@==KavSuEvQmBKnRG`{^aP7>A-#SdhYF8k^~-K;AGSs%R?liCJ^@_ zINwVQJ3!c@kUJt8k{I)fhsQa9d(3G|PMuP<^PmWN7FmOVf231`ke@yG6~`axXr?`! z(|^uu)5m+-HqQyp5#zD?J&2_V`!-#h4lM}yvPg3_>owL z&lN6I=!2QK2PQMj24&SdS~^W>j$Ma?50M?c=shlN!#drAXwH>5l2F7+z*wSi$Ya{b zpd^27$GJRLGmj9=k>T-nvY`=M88lansA4wE25U75 z1&Z}5-i*KQ{}E56ykYKKK%``%YGBZ){^QUQNm9jr;6%tef+C}g3Y^n_Iu8= zhCw5u)920*qDouj+;*ssV4B~wU#2}HDC-5gIXWos#`#~(oubnTtL;787$2GO zqi1RP%tF9`>AdEJ$#O%H1k?M%{I&cY6sRlYAfK3C{HC~gvQ6+`$wHPu^NjLr>9Yaj zZCsOZa;ob-(S%|7Z2g3yVj=uGR@RL|5NlNDHQlaVg|Y$G(GX?(2>%!(K&QRQu74j> znARpZs^E08!8ky8URW8ObDC&dt;$hQG(xnfa9p(!vzU|qMsTE}852CI!^W+rKUJ8V z(V_reoCfg$^-){WNnje%+{t6q{*jOFu*5%e@qKlT$CT{%*>hz~-bLH7pvG4dM9lz8 zYfgulW5Vh${yy2NwB@PfXy5y<5<%D2wG9X~VcBbM+AwMAJbf+f}?e^h;#QO#S zGrLw%mv(2<49z!-S2%zg^%j5t1rEEYYBQ}mWr@>LO?}M7;kE1c9f27CD#8G14a*&n!9Zt2`C2IXDssuuMqc((NWK<5@U(!OZc9MEcz*zj3+xDvxL8IKdm*V^vYQ4a%Og0vNhZ71u3FeWjeK*hkb1BN? zhDKJ(wpzgk7Abj|?xNKo#Ih8d@r=}ibY(+hW;qD!4!b(vX-$cO+2(?SX5mR;ZQw%Q zL)(lEmSknh6=8EDo-%T6iu^ZmhskpFcz+st9mSYj_$O6Id4au$0T@i~HhQ5Mx@=K! z!aTxxqLWq|zD($DqqmQ{Km>V{(Gx}N6@$iw={X)TxtAvKqrCLN?jWN)34DEJYj_&< zZ`Z9zwunC~IRmu*8(R-pt<$vXO|*5ba4JyZzusL~nbGCmp#kTsfD}kOlfIQJHZX4M7S8libh^A7@)-!OF@k*4{TGT5 z6JS3v$bD5KIuS>k0jo)-I~Y0{fMwJQJA0?MPY_N|)fGb@v>9xwAi#Us@)QJHD+hcs zUsi(`oDMS{>~^VW|4fL|mKAz)ZV>&d&7@wm6z*|{V`JayGDh>MVmx=`pk3iac{T^E<@5@No+{+&brrp~Ja?dPlCf^&kR+9S zizdk^!AYci={d@5y1yY1_Qh4sSNu{X?XtHn&{K`^sS@Q?oW;oeFr~d3<49@$ zxncK&;sf1*(2Cpl?|7^~n_b;X80KY)&l{E-9RFq!qcjx|RHob|ErX;poQ}n~TV(8hhaA)E{vIPAx6b^<{N5q^;=LYK~IE!JPO<$q=*@H)A(3J=N z!0v^cqbA@ZMD(`gY@d1|TQw$KuImY;IJrIHUWH&IY-qAOOZ4lf;tKuw_WJzj=O$g{ zydh=?4%?q+q|<99wr`UqF<}bKLvI(tEVkEnj9(bq}0ee27-onA*6c7Q!B;8zAxdEa}qsBIq$h$IQ! zdw$bO)R9IPRhAJ^+%-%iUeRzIopufZ=M*1i7FT1fFS%8Y6(5=@#(T~7dXKNDTP!wm zDO%ZX?eSo3+`d>S8iHHJIlR%GiKrz7;P-ijG_ zprd2Wy<@}~{^-y(^E;~S+fea%&lgCn;-BD{&7$$aS+C`r12+m;CzJdFrcTz9!)A8E zl*6QR;bp`1>$EdEX(z{*3Yi(dKX!>Q*YPaN+J`I?19ox8%V4vgffP> zI#gHEcgG`k*z$8C=Qm8F~F!K@NFHKv4Fn~0P>fPCMAtmf8R`Hgc;sd@?Dg7lzoge&)Wzq^+!EEV>O` z70fG&4%%B*4PuOgK7hj4WhRXJ@;_v_aFDIwWzmO+-tKhrMKeu# z8K|iQqFp(Kg8l%LpY1IEq%(nnHZ#|$GX{VRw8s+6N}ds7gQ>Dh=!s0OS82!|>1MnBnoMG206co-6 zBC-qQiuyYwJ3R`ycG35l>_6)v=&rWHi1J_mhv)38lPM|1zRswGB`Q*);jHN}IIeg^ zUtYPAzF%%aj&xMA;^ZKqd;4>>uIkWXeKjQT!=KX+ktHVk_y^8HlcHsK6N=~lu_>R= zxjGOR33tp~o2=*1&7J?Ksd=V5$yc0sjo&32Vrj%QX#!}w-{h(2;KjA&SzH#}UKQKO zTTZ8@J^Su;UF_6*feZ|~P!_I%*Ku-{EV~wj2fdm*@w6I_3Pps=^)0lN!lk+DaSbXf zfU;@(iob4k&TAw4+nI#atpMZqX@2nA&ic^>TQ$DK_jiTK_3{{slzpOKT56Wk*sFrd z;>scv!&prePmGftS{(1a1YNYaT}sH*!ZxStjsk5(?hakS(7wZ}vp3fP)A)*K^LocS zwW%9O*6&YGM39$?1Q|ZE_LytZb(-_snY->aO~P24YmGfjY|h2&eynqwjFG-3wlB<@ zboDRcJk92(OeQj@T^1X@kRmu@ik&j=uTzfT5w;u+tULFhc?rz`<&*fp%-k*OQeg2< z+5V>Xg!+~aC*GfZ9YlB=y>^^y8m&EbxoCT2?bGj9vW}t@5uClxq29O|X1>s>m;muV z+N(ZVFa7kGWuW{xTGT;}3bR^WIJlm=O%|1L=GYvse4czATf1iTO1XBJ0;idhf`Y2X z>W}-r!NYqkBS!TeCG&k_>TAPW!rz7!l{sr~WTazp1uPN>JuAhySS8A29+hD^cVrJF zgih_G&tqT|QCg=~kW-QV-rqC-p%ERUcZqXhI%3=dYcU@0Gi^Re5dA*f>#?)H1+Rhr zj$z%lgGqPW32Wl)7qz2@-ZIB>xiuk@7{xVS7M1{jr@7Wff$Me>z$7Ai4|M}1r>?D4 z&62kdyRKFpWDYHOiB8l^RhF6=*^{=^eQy+--A1>C9sP1FBAa5ml{5fOiANrJ#5da# zr)S>4`p(bVJ&{m_$BPbe?ko=KR-m$n%CprhnsjaTl>bO~W)DY=c3DxrXyX{GPu%XBxGs3|)ucqD%DY`_ovPs zwG*C&g-19-Zyo47rt+c5N)#%Gt`TVT@JbY4ZEcMd0dobq2``T2E?^e5&AwVzCCMj` zF^b>e{lxUUwx^!y6;dyi%4`G0k3xONQNW~P)k1A_4zH6L`}`?tGI>T0M(IT>p_+&{)! z1FIPsk1Dq#r>R4KpE+)I;nV+G6FuYkY^qoXR}6y8oz*9|DR4U}w3RmGX9}iL;tiiN z#2IhtuH&C_F0-T_eE1ubat`0F8t1iobasrL#Tsv8`!IHrfsbh7TQQQ=<_}QsOtQy^{I565cEv z=uG%XGoUc0zIF_`2AvUi4DhkbqSQ1^UBWQ-68FB2E0~c(Q)_DRBc|Wx)-+*~x`gOn zeFg3m*Bw+3Q8*H*Z^l%C-+NabhCh7W2iH=^pLlGYVy4}{Z*j2WHx?cb)d)|wwxLv_ z{4Vop9u?vHJ{L1nTjDg>sxsi+nbR`{aNTHi`nevA_J~wL`Q<@1Gy2H*_jfE2+w%pt z>Z}5^J{l&(h<)ZkysfEt$NYsTFY)G6)rdz4ueAV94d_`n*+{MJY3NM0H$b3q1(7Nk zactAkW12#^Sj_1+oTx+Z%&)tE|5>cesoX}sFX%7z+qv7wa=z(ky$KciI;BX9r|}E( zyN0#3FnX6@Ud4&z$_Td`s4q2}|I1WF#PdWBL5}VOKP=KkZ&#qg<@IPb9{gD&1TjoRdpwc4&50y7S8Z>@WTE22#*wvIMu44~s;n`W)W z!x?(KX|6tEk!4}zEwwCjp&L_P)u|05Z1B&`jY)6#$oyc){vk)i4%rIGrq-twDIB`i zPhQ+vCSJQIs}`1H8>|(IJx)PA0}bhW=9j7Gsw@bC`?REeZMMkURZpI>_;wjC@o6iA z=c}UlIE<>g^-*_PLdsqJ)$!l@%JX%qLo`7%-HJNl0$0Ba3ieIj)is33w{cP&ZNBp^ z>S7o^_c`teMw>$rqWlnb&lWD&ZQ*w`?diQWa7Xk&>D=S$_}Qu&|tJ zb%5vG8s*@N)81zEENlw9|A+9U`AoctVZAPNppG_3s2lAV@vkW$T8eslL%m_APhZno z^hW88qLtO6b70v|8%5Fx-@9j`2J8QPp6X#CS_2_K!?K(QSY zi|nWxD7zTbcY5}%tqf(JyfIk}7y@;VDa&qb6Sl-!5Mv=Nm6BBdJO&L#?@D{5@oa6s zRL7+431*vb799Z)A6@4`Iqq;|i#d{kJuyCgWdxj<0>fj;-zaYp@y{!JRJ`HXOv_o$ zT|FUuA1C`foVs*(-bq*{@(N?jeZ``wk5r2?0LyAIwdDhhRN|a-UPgo=FsIBsAC}2$ zcWV1=fSP`#!(+G=j$oFM{qhTOQG^!c{RxXCo4OoQeH5@n2_}CUtfWhofZL&NmJk ziuk8iosmNgQqq9xZ`vJ!&QwKEkP=N(I>{P?Asb_Jz;R${)~<$s=Ge$Ju$cTN*(mSu z_?{zvB$9r{uJ>8c`PZ0tG~}1et2=c}3v2fN3ZXqW%lAXPze3P2042tB5L^!R-fcQ9ip2i-~V}q$jF$wQskbo6IahDZfLa}6j#PuXB!|# zsI1NU@^SC>Zg`D3TvSd02B$^-nNif7Lur8ZX<_IwVb_6dM$(+J)t;nLUP>;t`@_ER z9i=3ArY4ha6tXA}8wEu|Ehm;24o=HByM4RLlq}3HA~OF5`iGi}O=XEY?&lmL%xIO=e=>@o%K_d#@4|+#CU=hI1fFJg@AR-u@&!@E<}#iGwX>?_VE%)eOSI zwfQ?WpV|ho_)h`0i|H&mkob`U#`8J+qTzi{uRFP+k$3@SKG{3qv>>fvoG1MHm41BM z+rFBZsls-qqjK2wT*_dwfo~h}NDHjPp{@L_(s@TN$#F0TJv~%s_l0S@zcJ-$W=?-gDv$1H33=7zdLo?;rFS8*u$F+sp~aM*o`L8Wd$ZsnF>hACT-wV zIBf9VufF!X)1D$MbxzmlTw-#DM`1u!zDh7o~~oJ4yT7$k}vVB}0J= zU%69;5arahC&=|Bs=J}uSjyefPkKR+di-;p^#HT%?CezrfTB(sUHgGfqy9tSe&;8+ znR>4iDFoR<_S^ztB%SzG{>KOXK z*h?uGJWN_?0X<)<0gEz-^vf%6j04rhS@wV48+y*^0s6! zg)%ey^S(6@lttW$Z(D5pkZI|drnH3x+F)R07*4HsdSOyT_3bc&kvtQ{r=vYPI;lWE z@2>jx^c(onJYnay0Dd@_S$+*LT>ugzxYX&mtutj|iPzTEi@k(Q{?@#4Od{4G*;3;K zh$5r0i(gB%zO#IJpT^&27@~JTo7-&Nwib^Pc8XUy>9SKqYm`zA6bJk_j{y>QG9-=H z*W^D0rd=2wuXuV*Kqc*~^-4njUJ@%2It`o#{@i5E>n#4XLGi=DYpE!E$o~yGP^pcRwlwS05>18H|vz4KL~hc-1kkXuAt zDy5~j!@tpELtgs?S_$qu3sd`Qq{xvMc}@f2m%Y7P+GMjppc{N1)$%a^W=X${ugaAR zNfE}4{Q6Go-dsrhlGFT%_`K+al>`42zhO0Y06cH1&j@i}4K&K$2`-}3ppZ)NQpEj- z0M~T#N~-|wr8_AvKlQUU-8F+wgMotpPf6d%M3U?%iT5?8ma}K^y<7HF6(NUZ-HSf; zHf~gX>%ihg(uQEBx6Sp2c<$GyQ7&hgPk-N6xadYHcdL)iwffzVen3Bih*Cyj&7F*X zAW*ZUk1>&Q3S+V85Zw2yLj8@DQ-F~dy`!XTdE-|t{lL#ZcrzhZ=R0&tED#idGJb=P z8S+kd`-@m{GCP&YO#EtjRLt>Ro8^ryuC>7H$1b;qFGMUg9@e51UkY85(|8YnBS}h4 zq465<1#)pQbTK{XE$9KT#5*;MoU}qWEjWo^?A{Bo7O;6C{ z-@*L_aiq&{CaQc-6s7jzBZMa$L#$2pyl9A^ZsGb)#{L$v#r{8UAOQ1ww15sJuRV2` zUKIy)r0!4$<+9}ewuBu>+`d*y<(YMwpxzz=2AJ&3c81))uy|o^`MT3Q`)kBbm0v%- z127~qM=EeRYyh3IZs?6S<5@W8xr_<(D!@WUJ?WclX&^Q4 zAHF5PhnhPIV~gPI+f`vZv94}W!tg~D`mWHI z8n*}#C^mL;W3K`yyMrQjvj+(sB-vModKDW6hhpGWzn`!`{9B_l=`B9M9+YU$0s0@M z9c%7MPBfkT!{^ls&$@hDc`Oxe-06z8>__(>xfSC3OZ<2bbXdM0(N?AZ$Wl<1! zstOEBN^_I}Op>!(EITvH9VAd5E-HX8I}Wu)Q?HXZG8auuymdR#NPZ>-ho4N>WPtE4 z(w1|{s*ULxT2BMNbpJ%`Md$+!Mvgw;ygZFG0ohFe-G%Q!s&p?CY=Yzb*>p(0P49|= zx@)1M!qzOa+rMNc8VG663QnfXRRGa1nSS{Od9^JW22yawM^nJAj~ZNX^>Ry zoA00t^!0iOe&ddq_amzSY9J_We{e@<=Rbr7n0&OT4(_12^ROXf=-6P$@5N)`CtG8E zz?(V%_jycHauCdpOi5xhZi{b_$ii2)NlV-B zLrLFuYK6(CRDNlDmn{!h-*y^^`Bv?X6bEH2Sh#q4D|j%N1Mtpd%9ky_edLp|N{8O7 zYy(S&_id$j)C^TmtJ9F36F2bUYG6cQr)Z2tGZGsKLSu*Ix5=rCsBl)lRf%zeJh0dE z@{Gd|MDEj&!6<}?%Fm1-c}lH{U=J3G;v&tC%g31FMu%5 z)GCn?w*+qNNeiGnjXii>B}}IZ=AzIi5PqahLVz5rxQe-~KwB-Eh#^nI znna7G0f!%{UyN9BL)CkE=W;*>p_8-I&k++Ne(lj$i5wiS9F!zs_UK5M=g#!IVTc76H`c)@7>{O6ogaCfqNk= z8{y=#Ym$eCL2|c~D9hh|X57T^$bPzh6mRqX75pKfZ+J5Z+h-I(;<=I~0i#kclJMh@ z^}narMDhwreY6Q$e|ixYV@{P>iGd|$IzC6V9UD57@W$K@1Y(=d%%rA)&}{fb*Y(=B zn1`K8@f?GX!VGgNa%b))a@3;<&GEDnyzesTFPTpc zX93Y~aTDGY*eY%ZTJv^r3QV7OXc#=NV!-0i_c&&ep_VLtaiNL*d%esxD2GnmiIJiK z_c5m=TKbw zx{f$Rot!<0EyLe9PcALFG%DKr6~YaK6Q7E|rbfbJUtu*O{*j*_1I%5q$_~e=wDQX- z9axM>$^+-mfras51?4W-=wuB^wC~jGOf~18Q zyVTD9H4a}y&b0r1>Y*M*P+4{xpk7z{)%S;d04Z$W7ZYbsqq}E_z$$i*gG=@HLCv~2 zV}%|WFW=gcxcVUGst{xIZ0JwKyj$(bD_5Mr)ybKHeVx2%a+0ss6x@y>7du4+4P+$! z#R5#o+0LpvK|-Y}ht+3CqVSlDUGc*2*c}WAaMLC3MhfbSCl~cE$fBeO3mrR7^cRzvJC8TN0#M&>Qj`WuE@y5@Am06Zr)Sn~ z)>5h1fb9F=mQ%oLBj7H->XCGkVv4APMAGL}ZPu?suE?>_{V;$!g;1}0Z8&cO~8#>`Fd{oWFUNAC~jW0~nrLj%kp!$t!|Jy@1! z1h9Zfj1{1N_#iSYqEs!Sy28@6P&o669??L#M~g}UDKiFsub~{SA>%xXXo^UmAhaYz zPYqHmA7K2qzjO@~o5OBAr0X6%=Q}FjYsRjb6s9PMM-)uL8{IyXk ztv0f7=0ZVR3&5%Sq+@#Zab}KGP1g4qDQWepR0BC&4z~*{!^^_-PakaRUb9J(48NX+ z$IE|F6*c=Y>T^bv*(=@{Jm)vqaM4VvRk+lfD6j7v#K>?&75S6ZGr9v!2NVtgA!OVO ztgcGctr^I8P-$h+RxkIBFZ>Z8mS#%L{(WfFQB6bMNxEsGe)82NJY>T55+aX7TmY@s zVTG$tpwRII$qFOo?A<@8W&O(z#!XwMeN6+W*+C+3N9If=^&?!(3}=*3zaMu=%y7m& z;S7>DMG27T4Sfau+%0cGq8^5TEf&U&1VME8sn&6}Wc~P@!mejV&cn&UC5aK8^En$l zrg9l2J-EeF6^Ag!C=tK+5wC}q^;^slg4saF^_bb!PWtysB)GL+#FDGRjwtmn3QZK1 zSdw=^qc|9nJCj9MC)yR?BRd#x%#Rb~*<3C+txN z#%V8PQoNFNo@31Jn+PTPSHe@mU>q*AJU~xj0T_jxBB@_Se0sjn@_9ma^%j!N9#l7~$dkyLF=06BqL04j8 z0FYc6_uX-`AGxYdZWy%Px!!_w34q*M4W{xY*wS`rLX6)4pJt*INxLFT$eZ;Dco5pv z|Iu{TVNrZb&ed)lnJlO`tiks&%T8_syxn_p}+$ zJc=RM@WsAtL4H7mB3y?hq3Nx_Xk<7BN1;|2@Jw>K^4e0F#5~iKI7kl4jGD>tzbTcr zb@~%3higdsx`&iY6kA`{XxrRD_B_RKCT>H7+N(oZ7f1ZIAj5M3%xmB~^!9heZbTc( z3+HCvNywBbAlpuW(%@OcCpN&Q>hpEXT}X&_E76Fz51;NSI^e1(@u|X-fyo!GTu%yQ zZcvV|>iw9hN13n^qLu;%g6@Klsx7AWF?sb0;yqtxE$u-35O-yW z1khX`RE15~u>X^m`cFFpWDZh61zMo#E_IxGb}J{ZB0w9r=_fh0jAi^QTOr)do;6u7 z5>_YvRn?g*$|OAW>+=Wc438x7H|t)-bu3HDP$0#SdWfE3SM=uEIE4kG4DycRk7T zNQb;i$+KO+EggBy8{hT89C<%pezJG)DhPY<#_c<1!B@N1wF2+tk<3F8TSI2D?@SCI zt9Cu88D@@j%+1uEjpRw$;Uf$63c9#fum?oyxkqUzRx&qR$1%o3D_Us^9<|0z4A8g@ zti7@b)Wuk!vggSQ6G7N}hor^s?2vToC#%f3ZKN)pt*#x%x%e9yQ87Me3Rwl1+l&>X zHK=V8f$8p!a{Qs)RP$(; zC2f)sxs>9fs}RoL?5K`Xtj{LXK^BX-}-)HfjM8d5tC) zlMhuba>V20OGtX;4KKQ^%ovd6tJxf3;rRSKV8R20ZWaqBi^uflM|{~Wk_(>H&L5+l z%$eD}N^!?RMvcEj1;v?BT}Xi*ANXGyo($T1M{_afcagWG60I$x$ua0nLu8zyglAqlw3q0X3e}pOAbU9Y_mXA~CRkMbnFsCFlwE?XNZ}{CA0eimFdUBg+LO75gyU*eOzZ#R*hl1UjDi^3lt3vVua7r&3TtX~zHmwE(%_nHEzw2)l=xKob|UT>rg^iv z#)(LKM-OEhl7G?&W9x`RHsg|b^u@1DB889U5>Bo#RirxH|7grUrbstKm5Xygt6&M9 zi5?-EUQwkr6+l$qiK1k#LEa~zUg$%SHk62m$f()k%D$j$w$0L6;Kw!_F<-ro1k8R9 zBep@CdKYRlYHXdej_MWf;HrVtI;A{#*XYo z_N&8`?C1647hWCKEAPIvoGQ7e9#il#b}&6UUNSJXGEKeIZ$2igO{C&KY^p9{LSl(Z z#t)^ieo%!>A$~G#`K0=z27_*{xaK1L=5##Jt6+Wuq_(p6`x3EtH`W~G0qaGz_iSPy zy$$#h{O5cS;~-d1btYl-@_<0VyUBXA^K;ESPV&*0%K{Y5JuP=%-C>Ra)BVCoiDmlz zkU(w_BXvxV4O?)QeSa-zrbqr zs(52lv5S(I7NR2HBzE;@=rXC(LceQ|OLP9tVEb^b8G-G4P4jTWt~C%$aGms|G?Qaq-?l2TcZtX;#;%nv}o}n9pd0duNt|m(NI->uf+bvs%-XWGfmz#&MN-J{nl6 z(o`LLyr3|5nfCEBCwI7(Ah2@ag7Molq%o73M}6G+{%cphTvtclb&zR|h-!%Jc&*_LdkInwrXW^Q?D4hYYu}5a58pve8vxbZS#$rtnARC$=nv`7N0gpg03lchV{Y9 zORP6#6hNVK|E#%N+ei|O`$y3WQm^RwG1aWvmr~A`SqC4J{>%%+y`5)X^sZ|MupRUp z8i9Otrpg|x&X{p<@dfFbf4*D%({A+1Zk}zbQ$_}HcxANI1&+?P#d4FL&!U>h!W9rw zG5^ryH#}6=w2mv$9CX36UVgZzsOFs|lK!?S-lKR5?K%}#Ew|EZ#9#nY43z6yxUKG! zJ9#6Q$bfep2-?)p>osMID#$I@@D3&K?m(x0#^&QUU|#6sOZfe zHZ0wmicb%n=h?e#%UI2&)$iFT$7^$W*LksgLNC|TE(@uy%_!bC6dGl6sdg;5e>Kdo zQZE$YC6ASt4EEk=VBjv-G(X?jsLgF`hRq+D(IK=pwihASrfgkA>$WR!3&+$~7&$%Q z&9mY!9ZfE&nv(hB?*(Vh$GoQ3Q5#J&n;NCd`Kxi44YQY~4NkwEyjl_VAhv3h#xWHN z_p~mmQ#=Pe5!uYv*6B$Qx4M_sds+D|;}!PE))vF_7xQuFUSZ_Moi^o$H8Od+UY>dO z_IO>ccNrH!6Dz?Tzz_sO<3ND`z>_y{iV%^LsDiRJFe?Qu8TnHjh5xLROKFIa<9Gc z(^h?cXIbj%ftN~sf9BiK8Pct=jBhOb1J>0dqoG?lvtlkv6U|BFnk3Go?n?scp}W`l zVn6E^8wa7}s8=Co~M zG5}Nm{36qKcBSo|bZTD?DvR-p4KgI;)VK|)>5hO-5BsRw7t73~8>E~j|0rD0>w`8y zV?-E}3#mesi9Vfo6jJP`{t2U-`;f`-0Wt^r<^`Gweg&G{^bZSyE~&--L| zmS_nPRx9yizHD43-sgUZHJfg}(^?q?=X_ipuiy&H)hzdwBi$bDH|NICcM~7pmsS+w zpZD(Kt5}NKfJnWFTI-&jQuzNWgaieFQi^-E&0a6Z|6m|#I1w4_?ZQ-S{ytUKm@|Kv z>G@I7ge-c^Un-WPl0&4Qx0h0nu0G@4w(v~tMUdMKO+~+Q24fzy@l%XQUAR?C)~D6p zLCJ#nB9{V|P{zI`7B$)aDh;`8?8c!_;u-8`5#l`$VkB_L?=kxX%lbkD;)-+=91Igh z4AZBsHp!jzt=6|YT-^9Q*Gs28&+lL|VrV?<)7(M1Mxs8C56~u1Gzr@jN@Qa+7G>mm zS=4ziX!CHLJla@wYm_Si!)u?X?*zos<7sG=XE$qRz&)MZ0JODb<*g!a&9d1zeltW# zdRFRAt&XpD$s!Nj9u2M&4FaV>BUyh>IWm`voO{7#d962U0flatU-L({b9 zQPgh_m$2&HB~$lFztGIH?BJjBxH6H}$YY!lAuK6RjxeRxe)Zyg5yLgu0*hSAr0(n@ z?BHFYzqj6f$+otqsW);_++T%zZpuMCVnD9Pag0xWCgS9p7=N6u5fQ;0tsJJL<=nvF zQzXf%VWw)IBaO0yA}1L(Nm6N=#f>}VN3R0h{tGNR;qx3d&-u%=iGxw3P)uSs} zEAhd(TLkx)IDT9)=i6#<#$C%_49uOq8V5)xdOW|Bgt2k4gXit~g90zDkUUJQ___Ef zCB!TgsQL%)S+C#Ky+brv!|srvul;i(ADbvM1()$Et^Hq7->m4+*~Vj8$K1P_ev5D(GQWLUz@yZn zk3m?tzXKYKL+%@-MMO1qP3T5F?j_#mJ1j;aX6|{?`hw`2Yam&YO(gvU!x1L$zHpc3 zMj%*E2vw-AY909X{Z{Bc^>s$pT^6j$}AnUG8~=ZsV1(@UU+74bDh@?;_@#HWy$`4sco*6fsI zwv$WPkMl2vbyI$yl9)!%z?I%}OwZBpn9?-miUXo588Kx9mSgz>v7ogYD5j5GOuX+p zV^k3MzIwsD$G=7*V#-kc-KuCc=^Od{!Eya)_k3qd8tt00mdxh!)s1NW^o?!u@)C){ zB{4MaU`fE>52J4EYwC4AwNahf1e%bX+NR$Fb09|r<3Tdl{!;zno45~oNYi%j#q@gO zN}qN*oL;$W9_RoRGeDD`wl7EY(?)6Y^t)67g+HTiUPFzK!KeWRLxmL~a&=qTE$u%a z4}!)0(a={3b8>568Jp7K)XiG4w_3?xr`?-@#Ev7r!}DvJMLyoXd3q;mgrN@y|sni@OAQc!C_DDYiU)sF5+4P`#-lOYtf6cIq-?!BZ^srlK zUHbJ|h zg(d1Gmm1jC4U+Z#Fz@=7sHjGtw#j4rw$ZHRXdWoqR42-EiV+CJg4ryJ)w?vMJYFQH z2i%^Bh1!^|t9ba1o2L@&_wKPWroV$#Uohpm86naW|#(=e#%?mmoUIV3t zD0^PN(Hq;`}xX1;@WnGx_ZThuz zJbeaFn47+(r`>hmn+Qc1#s|Yj$I_FEuXI|<+$2(dJzedCNou_RNkx`)t){7?p6dqx z6L+jZ8Z3^Ot?GMZgv|pOaW!6N)b=ryZbyqf2x076Y5=8ghX@@^3$vn-WD;t~Gzq@(H zA@J_9<0eE474LUf+PC39`m&v>+>egkZcY>D)9b9e{JFT^?ccK;F~mgs?nL- z0B9MghwARAA>3-ZkNsHOb=9+j=bUawryFRNe4E7Z?D({McFWq>Adi65;2{v@CJtD* z?#L_{@b|En1oGz`PjQc)(y~$-J&!3^9`u>}@s?k7!eSx?%6ecJ++CGb3)bD42u8ypy#-9 zUmUWH)PqZC)8j_0!!c5=;BQpvB5*Eh;7#eiD`>Czv&TP4@>^8@2}xr8`kWvFzO@$4 z2eis`w^3DrZX8Q?RMD$K-e;*#n6COIgv-X8%}^z!AYwHQldiCPd%#CmC7j4lsX?D3 zPcurMmX~tZ`ZCjd(CW)tj$dSx-k;3-3y*VBZC&W=S8mvDMz;sxCG75Z!Jgs`dTq1lo-TUyBzo3+Ab@Ge^P-$e zbt2_|1{31+;w&MHZP+k@sF8n)jorgnuJvmfZu67`ZD+y65oIGz-!cK~Ofl-omZo&F zLGf`*-Rb13ie;1W`Fbqknq>cGGGI)MdAwoO-^Qp0%l9?|8br>F>t-X|^meB%J$BBm zyx60sE;ngBF(_0JN#|I|yTu8H6-D;adA^J0Ztoy8_Rrx(H{ab-gTENh+dR_lRBOK~ z!T8`=bY+@mSK1%0b$2>%>WVvVlvU8I?Oytb+3Jw33)CafJCoPC0z&KQ(%KY8RDykC zLvVp=Ph}nrJ*fTF9RMORg(M=ISN`Rq`Z9lTaKv7|iBtMe`bg<7M&>+Gv$)JppWEMv zItKe)AU-yES-`==_t>6Z3Z=`JK3)3d)BTpG#`HVoH1`q-mRTtN^v<^|ZkXa(Qp4SX z>I%}NYum$uIAW9dKF_2rQ{}bEi?^}wq;e(xDEOCdbKsSM>;4OoUDvRj7?A^ju=^;Q zV$-Y{zNX0(md^czyu$=nMb@B#`vcX1=YCr1Xkx1!jph3TpMTMoC)6Gl`y4dhrJN)6 zFxC1;KsGV^JqCHa0e5g6klzYCPQvEjgIw#b0CQ1jt&_E6I)pQ|F59aT;{M=%IbaYX zJ(aM`HuhWA1DJHiN;jlScz{!HMvbm<8j#s1@b;Oqr@3EzCZW@=lL>a;JgH7+2IEZqzU$hPn^bc?a`FfS_TlNLR@Y$_ z#MnkCTtYdz$Jk*)Y11CP^#m{izfPE96qQD$ z5X2U0<%)kRr<(o$pwOG#PcqH3|I}y?_3JyIi==Bas}xz&+VP}uj6IXMtTJ%m-0Lbt zV~gD~r`wd-x4{2#c|_P3O^E@&SQ1!<_QFw|Fe=6g#xi~v{WIt~5z?*|$Q%p$ryhDn z`uijEfcmVm6tfdq#suy1+SM3cv)jmOi~6pZ{}t2DM~hp5dv=}+yAjg>(v6LGREgVZ zxPaQx>NCu zve9*{oOjMW(8{HJLVKy6?vc4KJo0#Z=otjUE51pE_DQcA;kWR=nNYkYE5btj{*TdC zj8Uh(iS=e5>;LqN$~wSOt8$~sGr^*+3<1=#dR(rvk(%=dfYt8&E`{v!a`f4&_f(C% zCQHCnTa^X*s9yEV@)q_NgB=KRHHynzvigg`22giGj&hBb68vQ9tbqbUD^XS%N|I?Q z7iAo@@NzT^NIDh&w&~u2azLvji}J%A%=`$+Z9TqJ4sSQeIC=u2IsnM?2YGR|BCY=A ztj3?RrrP?lNbUiW<-BJW*HlX-ALhGsD>Z`W_TeMItK`{FFY_+f{~)YPfhJS_x#rlH z_L{BZkIa&XZf9y8XoHk@E>etCkv>2eWeS~uz~`G}nun^P316dFH>JJ*D00X;jL!## zF0s;q`2k=lcka#i`thURcwc_-lc(4*5p=fho>yz<#znd>0q?N3tQR?Oldu$p)=YBB zr{;7Yg~S(BcN6SGam3F>_-ZYKul{}c9cM6r-osoPwcr->VNBhhc_02MO!!_E7o6te*0pn2v&<*@Rdb zi~qU8mZ(>C0^pHS&y*u7zTvalpgV(zRo`^6ToW^oa&fy2r}Czj63e^i-%Dy&sSaEo zp}nT$KA6YK8npbUGgUcV&BlNH7%S?5@ms{!#l^9f!O{8ef3W^*SlHPiaPJ8GcpHZn zal-#Y_wd(OH)5jw?$D;3&6P`|P zLd@-^I@C1~*Q2NuRVB0$>Yvxmx1%5L*f?oD3itFxNk(~dek#xYn0>Ag@U^8*s|_FA z0=3?hFfKcrd5X(Tjy(6{>GG)}r0Na20YIm-nEn4b=AJO@zOaAx=Cfe>k7w^S!+*;2Ie2ISTRP z>E<1^q1?<{AE|fu9h3Q{JpdElPTx$}g(rqD@H7!>ZKBD%U*+sML5JP0<8(q=f)U7n2f7O+ zCnm1d%4Ga%-Ik2yP=Il4c&QHlr-LNl^!rC{!($p=IUX?gKQLg$(9e(xYSG#?5hFWa zy1L!V@z0{Z;r3DBaoj}dt9bL>3*o!8C$(S zQn@3eSm`h-BeZ1yVvK`_ku5FIb^6%tE7z;$ZZG%=&Cfs;d7nq8*_d8JN|XhinDcvj z@6NlSH4xN;rmmx`fA&e{@ytX#mLVOZC*dnuX?Yh_S$sz=|C#xm5hj3^)fD=pMA~rZ zIG{oG>P@)Nx%7iP-@$DYHkWcJ@auDpVw>_EusLKynXbifpNU(GvoyOssXX%bvY+2^ z&|~je#n@sOaA$yiWV7ohD77p~*`)XD2e)0>Sps{SkMr z1IQlZHOqzxbo19Z<=9Ui&I#&K#=YxVuU4?%eFG;x)zpq6<7DYSIiYLeZol$7u{ z7}?fZ!J=ab1fnylf+#*oJ+jZpZk+gavzaPK<7cy=*A>w&pvc5&&sw>}y_2x124T#55;%8hs?4XlUDZDnuQrf=>!L?IXGwXRIs8$rC*ec#Yjg;f z)3V8LwJK_-S;H6)7l%3MNI`1pQlt;sMWtTq4dH7_`T?K$zH-^ltMc93_d@T5lsxBC zL1mQBmTf6XAIH}|_~HHuCAssF<_}Az{wlaRoLU-rBuBKZIUJQArN4ahBodBcSBSjT zrBmej{41%K1qU+{Ad0lKGic<}Fc1TjRC^O;d_$=-i5Uvtao=l6wTl165U-jQbZ2VO zXKlB}81S6GFH)^PEB4*u!XSJkniL(ML)u40`r|H7MC|+X&ytUxd3lZp#~FT)S@Dyb zpx%vQsRUvw(9QH1NiY9A_sswL;iX{0^)no;bu8bV9O5qH&oEVYDkz4|Th^EK82nTf zBdI~4yeZ1hRk--ie^CFJSlzPuoJyQ}Jj^73{Rw)5xcEll&-U6exnN)3{7f*ZtBRpS zC6oT^)^17xZNlB@eEGJe@wGc3maxLSWkz#F`L*b`mw%otE5Er14VT6$jKuXZllt35F>O*GqeJ)3 zxeZBl=mR-Y23gVuKtxvK(T5!M(j=}P3J=zN0Q+DTT!qy3_+2$g%CxW3J5rmx&%lW1mr(#^$d0lDV97=y(D*#!6xp=-3tGw7r zY+DHY^8hipr)N#tl>Fi0)3$EI2`#-bJw@{zO2Qjl&FSeo=vXY#m~Zdd09g?~x-G;q@FtFR8p9 zRb?0x`r6FyMrl&kJQYV1o+V__&xL%qql=aD>4xA;KlpRVEWS8+xUsISon3`C6M z(Sz1Sq7keyPg7N>WLI#2jfmL!RTyh{-oC9aQYpH&V2j06q@CCN>g zx+-9EZap}w96vmlMqca77)QnS;-}x}N%U|(n9$^$QBA^d<6Zj}_ze2dud3cG=`)7X z>|$HDUP0&i0BGE4`DI*~KPz&Q$4|C!y`MJ0DW2CHc`(5OgUz3mXj2%|ap6O`EH&YE z?BP%Gsj%c;cs&@FkqMO`lZjKIk>iQjmbZDliyzhoNPoq?|5$zh&-V8mV^A+e<4}Dj zE$oTPXjMUpY++r<)F0tDN%|jIaHPT~ivD<_Ln{flTBgXnAv?GM68k|Hmt*2l7aVc# z50G9&BQQ;nrKje)=lK3w=ZClgl>sjqDC3#4vDnx3W@3U(Pw|@u@51eiuaCd!hHZS8 zi6&xz=Ie6p57CegDSUe%=M5CGkW-1VLHJVf`G?}-=HAKk1+!vC%$wlL*KPRz4hewsm2G{g?{hZ9-Zbs8S#M?j2lDMrYYbAI1zlz6suBLenen zYGi~yQi+P*F|tKZJ1pY|F`izPLda6cQux)SlG>#0Hg5^jkJL2)#bCJhg9I^YhZEEv z66Of1&PYEMeyRfRiCz5<1ev0SXYrAdSG1TwA#3<{a$(R_|7KHhmkzU_JH6?xNcxw@ z$pQtB7!z)Nig~mbJ}fXTv*FMs&~1K`D-$KCuWoETEI68aAt?>7Cs=Q(O6 zPyv@E?*vDA9*SXO+3sLUFrd$K9fL_(GCn_jwswJ+hm3OqN0?=jzA3V1qO+x2WAq4e zdYm<)ge|_nSWoo_W8xdpuIiyE`|Ds;ozzE^)8}$qx-PoL>n-~FHa{B9R}uxizsNgP4HlLGfUMC{z{i2*t z&>cfMpSEewj!+{VVt8m}CK+^aUgoBhA5ChsrT@%0WWm)I<$a*R3ZY>nQF>XCSMVN1 zG>y7NBFzW80CwlYjt%lJMSX(>#uApE~$#rm_;MG+O*g3A$0f*ZE{<`?KGOXW28G9!hh8BMUKmUf(a8m z8~I@26;8iG6s9bfg%lp0ggDS-va5{ZNMjCYg5=av4Mtt?%e>^VTlw;k6YfyUE-pOX z{!)*T42%L#81P>Kuic_!A^)1B>OhzR5l5}$d#Nz}$e|png;ax9tkjq1h=Ml2OlhGu z>5ZYZXz^(*b5|TyS+wBAS8J_FEU z_0sqisY>qr7Kc>0?K~Ag@yP7Cs~a(=IpZf_<1p3JC2Z#T+)lqTeIjf|6|Q+0(zXw} zMW5f2J;M_8Qf8uWT|1K)4+2KWg7gP;F+{@&pC5+ftgrxs=xU090-i}!#yO?3=M!%d z?l7IJ4;U$^gV|B~s)enA{!zliU_N;MWuMbiDb0}bL78@-;mhiz&PG)&dsq2&m{-_T z5Z<-_rX{poop3Uz6XrSj$ZeDQ()n_mO`41?^mk8uRn5*D2wC&D_>b zms!vLkn#DmwYT2$WCcI%;^1eK8K?3SlOyJ;F1o+Eup<~ zXx1d_65bEVTXR4n{+af4&u!wak_vy$zvm})-6nh`Fa~HcFREvTT_h#)C2mTBRJ~tZ zx?HNAI$sxFzCEE#tOLLKt-3yB6|4#wkAKs0$4TeIzOKqBZy7Bcr6$qML0D5-in;&` zOtA-!_F6aM7}ChA=PaRwxmMwq=i68L%ZA>(!`6W=?xW9|r+4)vzYoFveHLWI2)^EZ z$Qc0}%S-ehZi|#G@htWpJEUk4B524tpp9jG`E7NU)i;jWBpog=vEe9&v;M8b3=3ne ziZ=#S4_26UWux250!D`aMp&q&BSwd)`#i+RTR=zztvO=Z_{=lHGHoN8_Tb0 zbj#H8W@(aDTJ~ON%z)RuV~9qji)b-VNeD+m0oV z#|dyTFrw%HE4}RR^!MiKG!&s>I&q*2{kcJ}j@-inDa!1!- zW@a}x*q=74J`(tXboIe4f z6DnUBX$uw(9_@=%>TclTois7gVrf}c^?%mU&iWUlktSTLyv(dx+`yNjUQ;XhuBl{{ zv0LkvxVEp;KtkOZnv~3sQ$#FT z_}&F^ZJH<7$ZZXqdYWK4vGOr+=MH7c$df0D9OP9d0n)3}oM*UI?X z8XU89S{&!(5T#zX3{i~3yl#`r2oj11Yw*ZADZv3FT=3{Nwl{Z%(@*zOqh2lzU-Ks0 zVfEu&kPsp%=}X)QdTDorRNmv6)5)s28b|KQsv>uzvu2G5M0(y$&R^?Ts7z7ToX-O4 zuK{l|YNSry! zy_>ZklWTum<*UznAkS|$0$kDg#!|HVuHL!~!z#TRkHq=4A*Us+cl&|=5qSDn7EnH+ zo2oVh(iVf-v>;XvZy;)dVPkcE(%)Cn2$2af_(o8n7w~Yipm76uHW(3X9-AK2*GWrw ze=$A<1v__Boh+G$o$c?SCEjM@4XFpLq{9US20`p zn_ELf^PV=d_O7hlEI2TfjfUHA&J=>?(`tpT6-nZ+3g4$m>zxd~xdysEa5uG2L$n=f ztYW69?7ck$h0MTJ%A7a9R;}Z=dc(KVBVJhLpV0e8Zsf@d8Ee%H#QU-l=r%n~OLMWO z^>+D|=>QTgs`2MXaolIf*%K`~^q3lcSciUMpqQ2}Z32eo7LW5gPyY&YY-3xY@lBu9 zHjD=aD9;{r+;b-RLQ+2O)%`emc!HHEx}aXiywX&hu-o82d$eolOneUNjz z+0%_b-84T_J2rN(1mn)O7vCya5y!;vqnrPfFy_tMFK^>K;>Wk!eKM9JF?Q{QqnMHDcz3-|Dj9nP)qbfwuxUVO!pEy?PqxfwGR2Z zqh;b#>DwdAD|23=2P#rq(2R7 zxeZIUEmFm$Vu6S;Xa`1O?i}^V@nB=*pkq&Qc*nd@)x4ttvI0*(m1(8=a>;9!R&&X^ zyBn~V)U~2Kc(dcr+N;E5$IX1O7M@rxGM4B zH_XgWbk@7neQ!Y&fM4;Dau}1YKqEvso7G4%G3u*T^9rkiDwd<&+m5_*or2O!dgqcS z6YEATQ2w<*qF%;i=wrsqyzAJLhl3jy2?b0IE(A6f6fQGxs)A*ujpv$XE-!2Lg|vrW zB+g!B7s%%+M}IddtxyHhqsR^qZ|r?RmM;94LJ`hh2+-us3pB3826XXieHZay9Vi_< z$d@vjJ4YDK_sMcio{#qDs1(fYbFtu8sU(?ro>ki(?Usds*T*rXe|f1P`&RSVo@kd# z1Vi-V4Lh1={5%@#KO)rXgnhI?Mn!v!EkM+*6_7E#@fTz9*ii0i7}vF2KQd9$#3%Vt z@B7pPAuA#BI8N|5TZGpZ`_2+&9)M@b{Ip~UD2tq^9L0{VR^$qvb)6L&B!j8l$>wWW-iL=_1-Dfl&atkw!nRrRb8uCZ(^OMOs!_yzUPJeWmh8FG*>c zY>nw8=7e=U#Q@1YWXKd`j8P)nrVK%v53^S})#ayO(XDNg}PH zYy#O#b>gnvvsS7Fi>n6WfJ%Qn;4n3^zf#tH%zrd@xS#3t7^2GFk&rze(whG2@x)zU zVGwecFu>9b1~rlUP2W97lA9;0F=}w>RQpeKsw>Gz5RioYX}Xe+&aE;x)w1UUm-!5ml_AUZW;2u8;Ph}PKudt(DpE}2Z^?oq80C;bk~KJQvz~LB6tUx zGl>4NEpNCgN1?yJXL?GnAmK>ibDJl_7d3PANK+oOx@+b{1M#ramYl9Gi{h@JL<`r& z{Yb0tkZcO6-1yc~lgox)EX&s_k9(-S%<4>aijU7=XTsIOB@NB1l?TO*Ah9B{RE>aB zr!?tYZGd@FdtQC^7o*f%jG^nv@l=cc&BpO>v{^QH*tkwyTt`Fq(Xo;LR-B%dg)`w& zL~eR(&eYBk`#z~z8*uf2rQae=I@E~_P%(!@JwJ$3y*!+1* za|ge^^5?hTK5(9MSn-@yY`TNqYlxrOeWlCw>pFo1>}B2SNG(4<$667p!Hn^}JGu*fU(@C*iEgw?s>yoNyLrAMg_Kdxif70`W|2F#3b|Nmv_W2T$duX< zP-A}hJM7VsVOl!VOPG_n+j2DJ`m$5L};~qveuf$tE z>03qOVgQs;-#t}FKWf$ zTq-s{Q`3^AJIE04>D4o0y5}{d!s7FBWhG@V^0-KV>E1Wrw{JxJjboHK^KZms7tk_alCCWNpK;hNEGJrjI0WuY0!Z&|qBTB2m z4A&QJx%`Xqr`ju}z4K+&(%z{DtAFns5UI2MW5t#3V|Q36U_xl47(PQ~g74SeM|_43 z%dF1Z5H`(kqrz2z@Jluh8NUI+bCE(GXSl#@dVW*zEexQZ7VE+>EB$D=jz5RoSJnmEuX7=Qe?S!Z&%cQ}t%a z&E{(i5+3Q(`J&Apw`M6%#79#E1ORW#=TCQKik62HL_nmjJePk-@0NUM6_f%hzi5<9-FCHXh*g zA`Ie0&z?IjmJ`iu@8t}+W)XHmF4QqYx|_N& zPmH&}+!xH_hBi12=%mwifO?%?O$)+2?olgb^rn zt6LqkHJAJX2ZzN}@+?mf?q&CH&1Jhq2HqK*N8)hQGSj!?lGWy-Ylm7!jQ(_Ap%p7H zq#WHftLC_wlQzsUOrBzc5yXn5dA5=48jk6tv!H)Vow{!NdS=cSX5h?z>ugj$evR2G z6)#?&*U%YblezC98HRHp8=FgD$Z8pII`B|ggb99o2GV`jrup$8f+j|fmS9RHY{IqE z=SE(3Chr@VKc`D}`#MT|QLOB0zGJ#P#pabr?*_KrKQwXK!rgI|iOcghSWoAdsK5=bjN)rP6_a9iVwt z@+{LiS{*$Og8s;MXlUp*JJ7Ah7b9JvAN~B@v^;|p(6cLO{l%#IrlSq4&L00eMe*6_ z(@^-Ic+ng?f6>#uwC_T$pR_zv$Z_zHKvNoS$4rZwCUD>Da zT}AW;`3DFv_qZ8C&jCVV4X@0=X!b99Vfm~K|u`DV92J-S^ay* zowN=hcCr}tkl#E`60Qgj9gMY4+E736>u<17m3B0uhBRr%Jdtf+oY+(FO9t?vf1#*P zD#fJgb`V>UcVarJfb(~M_iCyKJ5BWWuSSWSP4T^`9~G&E{K;qrs}tM=qh0|vIN%~v zR#BjsV@p@BuN9b;UdHg;f`!XOtK8~_#MKG=ncgo6^i_DDS#A;)1opw?Xq$M)uaO9Oyf>E4={x0*FYTOE*n_j+EW|<9;Tf@@DjvMs}|4&g}z6fPD7lX#s*VvL$<3yo*Dv9zW)|SpYd(aREQYl2=Whm zkgFk<&kDIo1}$+8rgAGEE$2=l03d@SwJZbDTv*c#`asgu^6pM#u6{>(hm|OL$k=UC z>S8x*Bkf~1z$g91fMu)cT-SZ8T~&YGeXn-n9sxsGx`2Co)0fM)3-(UL>1R0;747+3 z0Fo_vnJ^pr;svu!dAGW~WQhvgO&coXH&)N#0X+N!aumY5Y+=xv)j}`Ehsy)M7bJf^ zv1?>Kogn=sFVmsxTyn+tKirEzgg(e+yVM8ubH`2ZaOdn#?T%3^+YfOktt?{k-ET7J z^n6fofy{FEwqw#P8-qz8#{r+!a$J#3oV6R=j%7 zVyHZL_K0nqH5(#0QDHSwsb&r_YX;@5K(XGf-(do&s z)|#c%WFFHcpiX%K`Vg$T;spAMr`47AVl@isSG#8uoLH~=1CXuJ0sN+V_MJfsAnh`h z3&tKV8G-Qwd^`+UK7qxe}wfjhFj%*r#FpEIaXa;D?DsUfSt!amGK+*CdDz698Z7tcawwlq$+ zgVtlLV<(AiT>K!dKvBE`>1CzCa%Oq{MNMt_?pR=ondSAAP));&u2x#yXv07=PuY@( z$&TP(neBk9i{*;RXDS4I2?R_s+jmT*{qluq7bPs0IZ3v9LgLFZ$~Be@3egu z`@5?6IW>w)G+p1{?=BCzMlqvbH+}wpES+^g6y5u`S3yBU5G18x>5^^{kQR{ckdTgD zVChznZcspw?rw<%rBjv?7FcTO?pS!<@%wxKo@I7+X3lWt+}HiN08OkikJF#)nztiQ z>mS9e;kEPbs;J}$tpF$^-4)|yE7v9RpHKWj*FY3^hKSmVW=M?i4Y%vC}13|S2%q5f6-}?!tJeQ7pj}UlPZ!2 zsd+L_E>G8{ix%jEYMhnSH*=o@-(_w7x_#W)d`O(PM-DttGS20&()?I~jz?7UD#)l% zFNj5UA{V}Ws?vj0VO3EGqaM=-FNNjA?a z0ZCk5Klhb{ZLxy&DJA2p&Fou5hm(Pvu&|8XoEh^1RlSYlRp(&mB)N{11B@aXvpu90 zczOy1qiO1|n`z!Q+W6?Md`mU$r(r9EQ1Nv%#l*<9Jq;^0b87(kphGW@^+EH$-K3bxQ$6+*rmla*Ia#!n-BG&OIO^sw`_%QwrO`F4vpz(uq7n>hn!g=E^v@~QK@v>=DiEjMBc3MYf$Z-vgAB1hbi zZw88Sk?~BmyQ-Hb(~Onjaj`q`eQ-YOWCya{U|kF%@*Mog@?E%=%yNL;LS-We z*@~~e)~y|KGpYZ=g5vXO`yZ8M3!tOE`krLI1>`{>qjw!FC5naFNd6-?O>S?x9ssZ;7{fQWlDWZ{@;gINXjB?7+Q}%SLwQSU|ViM^Uqg)^7-{=#Ub0-?pN>iWm)4( z?Jk`plTq+S?7?SD1aFw=iGz<+?(9C)92KDD4$k$lU+f6%%jD6~o)0kBHb2YW^y*;g z-cyRwm5N#cFakgKoS6)Q(2)3ayJuMs;vjNFh7;IPWg54yQFl%g5Ztc4r@ZPvQt8%# z5`4qYFe}`y2MQ!~8mrXWMo+MV+O)(hm4KIV(PBuFtdasYdzaXw`efCTgym2Z#rnjo zhp#}pVc98}P5DZ?v0sI;s6(0o{IklgqyK~cqv2|*y0+TE+%T{L_lUu5NBRxI?;-fz z*DjCc7pEZHQY+)9wK}1dW9qU%IQRJ(5T8X<^3j4BgiTFoK8`t-AGA#4YHJEr4)`cpIrl3ih zs1JByHOqew*3}#V^c5|_e1Bp9&t@KrJRbB_!Q=f&M55^<{9{s4N*sEuJ3eI~OKpzi z`4*P{g0Sz+dLUz{HII#RIRnMKob@KF*mxuN*N8Gsn$fg*zvD51I5C!xupX;;G)4Dz z$n4Eay1=;8J4 zRKM(7Ebg&CeBJ9O><1EGz{=3OF$MA#Iz;s2o4A2%efkF{apHvPYAlT2Lu6pI3>}Y8 z*LGav_c^OUaL}Hp-gsP@C z*Mb}-19~t%Nmso4{y;;f63+Z|je7aP_?5fX+0(i=6QAgFZKQ>l37HbZu01YuNiu2$ z`V5DZ+P<t|H@R$tPitbD9Us)d+ zB{$&*lh0zZE?;+)34f>~$xmHiq0Tm_HVe$zB;jMQiW%B@3KDjQ7Z;zF{^2h95_w;5 zxz8#}0~)h0cw*qoZut1Ah3yZV-Lu>_dRmK*BO!wy#{BqpcgKsbCf_-%8PQU7uARCW zSQGedUel@AQ3!IhGU4E06BFic)|`zyY5P6FU$fKG%(8(1t($213L(c>xffN-QNe5j ztXSuVnw$#(*a3;v-zb=*aIxJ(&enjZj(oU6OYA8d9(-v*hWflrPnHzWc7Q{bZ+kYI zymx!wW-5o=}R-`$$J_-}`C)u?o>iN!sog>*{xKv{YXES{KaE&ljr1>_@F7 z10AZROdLc}hgCEnEU4$yb}(<=p_R$r>y9^dYnr7*oZ$dQ2H0W!n!SVOcpT7t)`#lkKMC76JxY}?(T7FN}G8N>S64tjY zZUK-)cY)JJ_!WcndivV;OQ_?sQcIcV3eF{um!Mh4lVSIM?{ym)vzjgfcKRvk-MTzR z$yiIK)A+laj|9d<`)6m8ryQYnSO>o_?aR*zG~hFduvY#tg{4>S<2Z@gzZ%pSDcMrJ z8s1uo4XsgZ=bWD9898AiBfGI*bdC93l==mq5KVt&jEMw5GB&fRS>DEBG@yPDVzTQ+HsKPRq^Cs);B;9A4H(H0d3k9KN8rrjPx$Ll7Av;~)Lnao_&~89CzyZVWPeW3TAOS5smlHnmhqH3kgQ!N(1R zyJs{~Wf`R3`(y=LYN!bak51ji?L%D$KRcARx(zW#51s&yaL~?jXeQD z2F8mKr6!gIZAYeKPsFap3C)45Fiud}is@Gs-=uc@n79I1QJ24qf%q$}Hz54un47?y z&n)3gWd89&Ep(i|7wfPB7RF!Q*UZf?J`Zl@QjD*?`Q&KBY!d9foV7-A3%@V3j|o+x zaFKVi26Yj%-v+7tAU0@k;-%b1Ut{kb#dTQ+a}HY|Uh@rV$K0`TTC2x~l4d?q!f73ovKJH_#>EnNxR7{ieS#x6 z0ehR6^k!Z-;R%?aUFR>Pl~LvCbL%y#@QKSWGy>O?olP_omSj&Nt(T?w)>7qi_G@EI{XBt}CgVca@T9`XPwk`Zs--soFM-`NUDd93%VY=BPcZ(v z=h-&O$j+K`(8q(GViDczG%4xK(x0%cFO3-6H0`h@)poqgR;q5F6pZCkEo#z=6?Zku z8Y@)1lsCDoJaHg$)u`*2+OKa*CfLyL{8~m=*4IMY*MfL|N!<_~<7cntt_m!H*oN+? zcZjK>vQ@N<0@~jKtdzFCnSADVJp|&wR2H#MCTg^Ef}3aZ*x2Ki>*=X)Ef-Fu`z=RO z1ZT&*@>X-nHPEGzlsVQR?nz_dOfFU#I7)HLVeXG)N(+!y@kDI=Odby3SVF97gXrb$ zV%^0CwqDAXY50zrAu7HbdCg|17TvEuE7dGk&@2=xFtIqqH019)I>6g!M{FwSkb0aS z#7)4LO+<1`OvHN53a~V@{IZ@O0ngt3*lKH==b67KXuMq?$teF)ka~ArQtZ0fGyLs8 z5L)QtYg75Em!?LX65(9D=kyg} z01jOv=l?)FZ2NPId5#)&_TmLYU;HyAdP7&9^rI6 z)3oY_Mu$zSG|GRUnW}k01ba$9Nqt5N>!RjLewj)-8j8S}}fYCd&x{sPwgP0+5wq$5_1$;RvM?=6bCc*CE@P3V~# z?S_P{h<=(Y(?iI8YN-kCFH8q+^SgK%GZ)Th8c(AN zBe>x9Y{4v?t^cr`W%KgQi2!QRid{dpm2pSvQYU{<8M86|jUkHW^|oM#s`9t|)7)lv zt^)sBwhXg~+jad(b**$E2MrgW%Af-pX}I=ap=>OBKcOzOEv~eRDPYx4cbSCYum2TaLbC&zD@)U#SYcKmI~`Tuwtsgh2$nrI<#T3s)WiQ7>3-}Ck> zuj1C1VqXt}POFKGoD%Y#J39ILO@L+MJ{?xA2|PiBvqv@SCZ>{r+2Ip@vz;DjuX5es}E0)!($hr`sL4`@pQ zl#X!B_motX6l$8*f_(B~WH}EIzWC)rI^3LU^~z?={4;R7I%PCwCoK_Ng%zv$aaR-u zt;)N@xLnc{q;!4@@QveGuu?gm^E~+M1gzYRT)_fwOJ%j994;#IcB;%J3Q`+q7B%vR zIpv7d`qYQ?Q?&NU?d~pYf#U0t8*QUIOCw-MqVW#xGbaUx@I4!#zdm>h*4&;nUf@PB zt{>PU$?mrf9(e@NvHuCD623Vzu~VlV(o($-?0XM!zR<{6M2Oq##B#}|G}W8sOujC^ z%Lc>?ymNH-c#22b^2gw2Bh%icoRWEmjOs8?M>IfNznR`ER1O^_LqpK-a?{>9CBkZ$ zjo{!_9E}vdI_uYa~Ww1ql3ms-}ft_%f1+Y`XPH#VZ}!3&>1~Nu_nA@+SSVs?J&& zy+SR|(XbB#1n#Ki zydZKHA>Jn#;u(+l2li$!Z>hkRjU%2wHFT_a(13H1dVK@@e*;= zr8>m6G=D@+$co>M95nm~n(x0T&RK4Xzh%1$TYVe>Sq@#$h7~)fI?ZvV5I?|-Ay+-GPfcB2sMJuIIeRL&H|>MGoGMX5KH;({c6XEe1IygV9NY`zX)qH>jM`IfYo4r1*9T%(C$|1T^OL-qF$)c=Ym=dtl zK20@SiFRzB<9^1m;q4IgNCKJTBVE@x-=DQ(jwi{wn%>-W926^QSf%8t%DJuIL(4tI z(~M$F6CeUtV0l^&J=ivVahzoE+O^EWZW7_vZr^RhS(Iqxp%1KEHF6FqYk$)Ak9N7~ zynA$P8`4SQ-3$oTW+hpj-Ki5)*}N7v`I1Z+__5#+rX&K0nHnKQOGX@1cBabf9W=zG z&1?qw78>A3jw|;2?Ha4|%ge%H8p+{otO@@IN43n8owRnsKXr(g2ANUmFUUM2`S&#R zuCE3+I&C8*l~>i-&}l5iZKMY!1xYg#6Hcc7HontA-e+1!XZF4m_E}nzRtkc{1r{G`4)!rb+$6?{Raqk^TyKCDVSL*cXpAl@~foOM8Ku zCZ`yWmzjq@kc{+cN+h)IkuEu`M?~?z>MrcJi{&pJ`bV`iz2E{G<4a}xSBhFA8B<2i znGVhu7HLZX%RQfnYuQ2xOBUR@S|Pd+baJ*piLeSi;S z!ECS@4k6y8T`WDhZSQbNN0l>AW?nY6n{;~8ap?~RVo#d-BnLSufQ1uBr4YF(_==8{ z;Y1;WkH#R#rK}9q%COG`>yfBPa_ZPP6(H9Qs<}j(oGrp95uOf85{Vhko?vuc~X7ZZ1C4rdO3rB0Fzt%t* zx)eIKZohP~Kcj((EuFdSD9}QjntOpgtO~vf?rt=;WRNyCw>>|6<&Uzdi}wGN9fYpk zy>izcCuId+%%VwcE^BYa+!e?WJKWdu?h=?Y%+QOD^SjXPV-vcjQO9R(^b+n;dr0(v zl<+TUyhidPTrh`eOj@Pi^6cpH>uN#m@AD8twT|2i5o+qh}xg6PI0$x&)(4|&)hX{ zrJ`2ZZfFl7(}u~1L!HyoUK9|kaTXYb8V@Yv1~=Er9(L^^mI37t#5YI}u#YM5sUVsz{zbDS zyqPVxuI(iMeAahX;6*_Jrf(V4ZE z@BNhcu4pUy8jtR0t9kJ-OtyHOlXKe!P4XVKbGX>Ebg z_fK^G1KBMp{Ph1L%Y5>ofe>6kn!SzL9uwUP=A|i{`q*gN;YDBvhYsiMcUIK%XVbE&t?xMUY?qXDDQfq27|hon-I3f<9pj1-ucST zdo=1K;P7^$0UzCo&1ulp)f(c z9vH8B>wm&w!&V)>X#THc_)7>}&2q8VIg5Fy_0zfXPn+{wp~{X)B@!j|TR-sMZ`5l7 z)RT}Xy?^G!I|FyN@o%pWtA^!)w68cS8nJve7MPFCNnU+o7Z;f!a{POp6gi!YwhQvU z62Ku}n=)e3cLrB7hD4lQ5Cg)84LfX6%RJuAO(t}%UjqfJXtiaoKWe|~(@wM~2i>8BS zeq+IWzY`uFl!H~=M0}SX_mJ`+_rd)g`LbQnJU*8jr?cQG2EBbt% zWs3T2-)cxP%<&f~z|7Omn|4`%L64kV1Kr=}ryzPb`mxM@q#d;tf`Gtwn-TPqvRKUy?2a}(^c>_@@gMx@%NyjY zul2ce8gOPxpS=8}^MB6F|3EZPpZH^TU>6o;T(hCfIrylPK76bx+PuP(K9fOvziK7G zE}BxT1=%lN69Jwls#e^MQ+jo8{OiHOAtQ!EZ#$j#l=d{Rr%H5^*8R5WvN|@e?6e`p zJkCk3#Y&uk)={&U+%)q;L>t=d(LoFcRMu9sAvn7_o4T(Zz0&WI!~vN}XbnHbO;#WL z)XKnV2FGQF7ueC9u@@I>FsQgq9H+dRtl4PCK3x*v%}gEzBmK%d+Wcx6RrSfxHd8jI z8O*Z&%V?Vxr`oO8J2xJqAJJkwLHegatRfww*_zjt{{13vd&M~BD86{P3m=7tDR=SVE^K=j43voIUl~=8`^eeS*~o=^dF?SC5CLPYbHBn8qNLt`O+;VgS-LG@P7b} zht>{pPkld$sz}PDlMQ=%%HErRi^)_yxOcjbe|j4+)8koAz#Qxf$ShmgZ0!)M@8xQ~ zkh;nC;;o+|x%jT|Xe0vnef|+q>6qtQKQFTD%%YY41AYCA?mV&baWS+`Vlf%`dv`V( zCv#AW*|F8qju$bt`3DX{ia+LI@`L)`{#u$F{OK3Q-Qa@w&EtR`C++UW+0@asH#DGV5*=TJ4vHoymv9 z;XU5QPf`|;GCZV9o_aAJ8i}BOrxP~!VoKB=>R;N}odI}$68NK>Yeqk%A?Ml?D<^T8 zo=?y~9}Q`9M4{rm;@DsiauNs>6GZS1{RjG_e;w1Bq|JnimGa6OZ_NC>X-Oc>hlmiN zbVmX{VIXddp?65wc#b!#F(}wrKG5QRoY_4!IE9i*n~-7il!Q%P6CJ2|d!D|m1-nc- zxYtC0)1U7!k8Ic>d+O=u2Jij?-_jY?)9{(zeEbKbks!9wzXsbX?7R!(G3cxm#9 zxm3ElsjN(DH&IcfqHvgNL(s)GR#tj@JNo8rWU-Q!q7MU%4-}He@h&M_AYLX>bKKPj z&?~zt-9Lgd+X1O^^8=@!Oss`dftoYsai3cI*8p2L zbOLYNsp+s&grD^7dv$_KF|o6?cqcu5b@pDzkM~fRIh0*tY}~Q%B(D0HzJ;MmMBWME zatDa_w`?wP}cG7b_~9(*MqPam-Qbt19saWhqxlC*iAzF45YL-68Cis^Ef zVZbWd=?U%C2-uy8jk!bye} z%~?7#4r2X!q${w69*L>~5CJM+~}oA>tbHTq(Gf9+Vr^ zvHSy)47H$jU@U`;LpS~*qjXpF2zut1BZCxU2pu;PH*dhQJYNYl|G$A2(cvl) z$RD)Mp$4Tlua|x7hHt4Z<7(Bf&dzH$oiuw6+yX{VfxUeS8vSCCZEIt?*!7HJo!38Z z;odXf%VkFOEF2Zdu?r-5joyDT*gqt;xQBT^AY=C)pOl0cLZ_PIjsFG11>1Z7UsNFK zi%{KbJ=Fw|drN}cBg(UKlgLt$;%!o!tHfcJR=rz)G<;c{qO$0^XFTzgHwE}Vo}Kmb zQx22bZu6Lic`Ld1DJu|j=3(wf3D!GW|Iy8b^{~*J@(`JPb^6xF)$3p2W9J3CyU{R^ z?P&yW#U?Is<+gy1h}uwvYhZ&^8SqubOSE^TL3LH%o4=FY{}O zWv^_=_U@<(WV#U8#+-*yn5uMX1Auu9NTx*o^by`VkTS#x^$p6AQ%!SRG~Pc2nluW* zsDGk!KoRT6-LqBAHNo~C^uAE#vt)L_o&Bky`R0ic15`}H$9UsBDAG&Da+ zjn0H{?Bg%!u}gYh&~aC ztRTTl2bzSI{vkQBeku6Nw913#Isc`KLh#*s8$4+Ozooe$fnOPlc*Fopz@5)$-A-0r z3_LjvVyHNc||oIWPwbPMM21$Msrp|Zc%e}miUWDqIl z%xlihu9*uo1t~wx{&!a>zZ7=r)0Cs;u{Mc~4%MJNyH(vhF+Y+s7VWsW1{REJ;7%t~ z6;YcH2C=Q{zyF|nhgW5kgaAb1X)B|TDjNXJF%d(sf`3z|m>JIxcifMYLjxq_YQ z>!EJH7D={-uNS)u9+>Sp$k)HWgl_Y^)Gsz(w!$z`2}|<1H%5(UAsY4J_plk$uf%ay zc(L?YM2QDD@|!+e&-YeHbG%DK_Uhl1s>7dS5-go#;K&GmgR?-Zh`J@fD%GbICBiQu`;D{W{bmqysXC^y8em__e=1#o!nh28!+_%yK<*< zD36zJij~N-(AzDBri0^NiP8Y%MO7FzjmcqZ$cIqv$&57a!RKjaZteKZR{;7q{oqeR ziwA{M>ek}%ZjP@Eq(apSr*noj8wle0-thb?b6AdcFUbuDp!>`?lDO>@Pn6~u0zx;N zSFRvB7tBe&f?Xot(=5cNHy8V+*Ro}Cq%%;1KtplGG=%1}XC+fyO1V*?GzQe3V(U3( zXHqI}qm*o1j5nm&#lTom8ZxnZP$RKrUwf>z6FF+}+ug_f=&DH^UOsP#0a=99DZsLy zNGYO6^}>iEu`9lHVTT>&RIezd$*#GRMxY^CsoFXHG#VsMJ(v(!2;7B0!j@uB>gP)k z=A`zKC#q z(@f69u0G|Pdyhsn{EWG#wj^cUl{ccBE%yNd4uw@AG*4^a>8xi{RZqb#cHbvD`40T$ zI3;M4>3b}&l(CTcg5@-nDs?3_7({f~|3Uuz@%IQ8SvOEOLo~tn{!O`s>`>h3WVk4{ znRUewXHV`f;59K$WPOuLM!k zGR$wfne17Mt;T21Nwb=nU6d~@pA2n^&f|7tq#V+EjkQE#s0Y!P^KZ_9N)$xH!V3I8 z$+`)Z4k|l4yt8jo`?4Meh+8L?k`Y@j&; z!TMk;EM&1cpo`Of+%q5Lh0iY6M+KBaL^ld#Md$HKJr85f#-&ZH1S>)>i6zUztzxpA zkX>t4_S+xwyvM(NRtHhRKzl%1crq(QZb3Y$hk`%& z2Or&QiL5*6oJtmnPbHaQ$6>Lp7C@vOkgdRB|JPCLu?`IMnA*RX23TL%&AVI>swMgI zL4r#1AwMBtpbg?MeQ-gc4jy2Aa80qC5co~oW;gvR$f%XJcLz=_k! z)IC~Gy!1VtEt0)clJUhEGz)?Lou)5MOS^YtDNq~NBbPDK7)_)G<5IRL}ss+LR-GXuj|_D4pKkw zIzR9kzb47~P$@(tIS{u%)+e!c1Q17kg<)#^x@jLy3cQ`?x}-Fk;pSsst0cyMJsVT- z6QQJmzigRHX(I;rA|+Ju*QkR<^HgQp3^K>xS%(A%YH6JBk4bZk=Q3ry>2ig>T8Hxc z9mjnSV6T*k!w1@pWVru47s%-^_H`y5;v5K<9cx+O-&5hCy%{u zIQ;P{Noo$i>jM+eiNH7>qgj1e&UCU7JCuV;em19ouiHyxPRC52`GDhHiagJfn zHUBZ*@T1GB&%0|&+%{)d_fL79=TA0&xB&j#_EcgVYO|2@^MnLx3(u!uDbTnmfVYPf z^fKzEqfZ8|b%?24Kx24Y z1Q5~Ycx|;qm>%mKbd<|7uC!kan|V8k<}RRQ4wNe^-?$h&=4S!8x9!a}O%m~AWcXsk zLNO~X`@8o6b{}Az#K&0&3~~I=k9Wt!ZnP}=zZ_wavBreX4crBdu|2T1dCT=<)8(|Ge{_A_)ceo$BV+PyZT7KatpJ4=UrogJ|XrKGt;xrJK=r*$W z`dnx-BAr{Om$RiFA^F0WNAjr^@#Aivz%`hmx*Uecn56?I6cKXs~e~;n~n#lMy%{M*sQgGt+&<745j|G_*B{-XC+>C ztIjHN-yqppXI&0Eq*p}9;Ci`m3>4>$4H9S|f~FHNS1N$gX6mgWA&Y#@RE z?BgIM1#75)j6MP#FGh}*>B7Mq{(FfzRq16n_=eZ>slfV>j??dqwfMT1rK%sQ`$mV| zLgy8hi}(I`v5G3xrnY=#?k%|;vsRhRAUF#$i@DJ)K4dYac`2<5UyjdaX_@MLdNtb( zJ1LXN-#G&Fvg7Xy7vjm{Y6+YaR(zLo+^rvS^Q;lg{0~G%7O0X84a%L)>eJvX+)LhQ zSgmx8Do7zdM?2@3neXc9)u~k)k3JrFG>y>&Z$5??MusL<1!igTLh~nX4}$}hcN7A047%G3)#FWBELPE1m#*J(-s83kpnpzjgBQH84ZfL1~?3- zaiU2t$q7`1=94b%2NfIFK1T?q7nDh7vV=|_elpVDu6^QS(J*xh><^ zJU`22(@ajP*Mz1IWuW6xEEc7@mADhxCpx9gosGtonwTFIW4p`b;gSKz8|9jK(CxQd^PA(ukIMM@krS#IGeR8E=_rL>b@DFP;j=`D@2Me zhnFb|+}e7(${&A(e>mpsMN#_md9EB1Iy7nZFXuEoQA1Z~7t~|QP=X`xEv)Qx`{aG8 zMWV|?3%R5?Ug)wE-i}txH+UI4?s(|_o~~5T$@y96*z8$gE^xiospz??F;BPrchXHh~yqz^={I6|Iyd8~T2}AyT-Xd!~>gb%?lWi<|4N#@edC8dxDt zjHyM$m?Bkpt2^{eCU5iNOr#v_11ve^*{9+)V1S&p^V;MDg|zyeR*!jpQgHHX>t-q4 z$<2$1w9ci?!W@f=hz#_CjKIMpUcVIBjV)weoJBuN{8kzR7;; zaOII{hJcvqWiy)myVuJJ4gZEuJxa|ek91jP=pH)8rhDgZSjJyUs@6C%WdWE;HBW)h zF;8TS6MZ~>eq}B>gXGlAzgog`Hc+*%#D9^e80;N4^XkN!PM>L4Qw!?mY1!zY zZB`#RmcEc!m#>m?m+UZ+6o1#IAbEPbac`Xl9fj6x4@xDe57N{o$Y%{oTq8u92R{qt z$8xCc4`rhk^JzNWy%hLjePb2WPa7H zbi`%AitD25n&NQ3aQL)1zaF+*0r$}ae)L#{4Qu4*)TvFRp^!@YB49eCpAp>s&T=U; zb =YsLQ?$-FDw$Hth)T})Sn7Cvjqraoi=F#~)@Bd?$hvx2v#Q|VmfL!1W^_OmyI z`a}Ced*7?=CSuW-qtQpmU#|(SysDy6gpZ@P=I0H5xq#C&@ksgG?b{Q+ly~d?+LYAa z@>gCR^X#Dvnzo_nBhM-vCTVRIbe`jE=FXhjs*LVg&C3vvd<8CF+&Ec$< zcI4SiA~mW|A*yzk-`0Iw($r>;n^T3~Fc_B3FHZ5j91@Zc13^x`Vy_=_)>bb3g zq*bbzc8UxWwv>BS4m*3eaJy73kz^?2MMLh(=I|2x%M$|OpP{R@f7?9*3JsfCGWA`3 z1v7ncICexPd z&Gzst6vu61-S?NeJhN@&09uZSgZoE6^@44sd6B0}z}+30BM3H%m*0u zX1I#O@S&v+T1&F>AfJ4fbzJ(lY(>Vf`e;eFAJlX?$s0HpnP(C{kU)+f8UCp{y6izP z-f1An;7P1J^Ztiv71jGC{{+ladp`nRZ7|o-z z!}~uJH;K+mc2E4~_v_z+v99=qk+?zANcuIJ?u5-Q z5Ay$#cA`3ED!!^LIU7gi`U-huopPN_y_S=Lf1{oBiL|=#9u@_(AQh@jnIv6h#JJw= z#Aj##>ydiw!$BT9vo$9B%q*>1+N>Ti44>Tha|%`T_58M)fH;k1)zoU;pg>1+Y1?;D zjXIk}4vLl5C#Q11Yr$mI z)U<&U4ZV&ONpj=wtp(AdqPOxJ7yAYBD#_70$O+Nk=ttus|A9gbxSY69D#jAu5(XhJ z`+utAe21a4Vtf_&ly^COdE4|@cGT10FVt@W%Eonz?J~%J_UQcyva@%SN9VS*MWS6u ztu$SoZ~_fBYU`4r_NIUUrWjpX-T3};vRz-W^Sw!p(WSNiJr=ZjxN zR_92#LB3;jg=lTSRmrY_iF)RK98VO?##~VNo+p4FJ72(sw{o+dQB-m`I{G6Q*&5w8 z`55UN90ZS}lD7JUJ$G7X;91V~S9g^H>b!FY^}+M9eVSWESH|DFdKp@s^)x9Daal8V z7MYw}o9i{PK^Dt4gVLIsqx*CXQCmy@fkyV}T4opX*7x&VfeT-dgt56yU`AXY**S@w za#zqS{s!fX=yT78<)oZnmZ7InZ@+iGH@e$%E7q0QbkrZF1!m%K-rvxs{L-C_!c5fs zuU)|=0n=Wv53R{%vd^oK{-gdRsaVmz%2q1phV%gI10V>6Rdm4sasus3cQ&eL^pUr<7**B8xt+Y38DA~^pld#(rFr}P zNtNvN3WS_N}XO>6>4*#+XHJ*5-^5J8~EZ#>?2HjQIJP#HSb}XNTr`%=y@jb$VXpZdXPggB|{15b&eN_>$(u@14@m-|N&s?co@$e(07<*cb*?Nt(TnTuJ1T813 zlA_Pckb_jrQy0*voQ?*E=u})Gs9uCtl+>DwO&?kp*Dc1`kr)6T+Av_ne6Ik|7fW5 zvQ$vdm8Qq&|FLw|0Zn}k10Dh*DWG&pcT0yL-QA%A0wP_~2-4lsN)1Fna`ZrHq&tT) zn8ZMGjF{i$_kRDoJG^;z&vTwfwzaA%({guGIPTH*_sX4LjS4H0h;CzJ))kn4y4?=J zBOm?jqjC=@svN+io_mGYzM)i77Z6|5dVQ)ymXKY1WhWq-IcUhNx269}z_eo*)or)w z^m8q+=)yziX+d+?FT_}szU%e4l2mPJN8mruJFImNd&=R(KaRI9Cl!p&=x!uD!JYeh zV(-@E447t~c68fLrrbFXITBda%Oxi}oq)M?xOHQ+u?@Jq0Rw5ks+Wbt=!%uV%9t7W zv*5*7(%41vdyM9XPpL0dZoDDONVC)nRkcd)YDn1iEnH)8uL9C}eY=zs(#&&7)>T3WGC^{3{@5$x<#M!pmZiT?Si>V{oRITtxH%n}iudsJvFL=n_EtyCjNVU(}DmpOeEljjBAd;fwsFcr<5Wm7>l*q2iBc5Pj_u@cwh_qMX3KyLe+v{4ya$@PnJ=a@Tn*<7wQtpj}(#3!<(*;LV7 z;9696G_o|)o7_1wLsPy;)NSd&1sk~$|IwF7BW_6wlp1>d@psd43AnYp!KyQ>=wLfPs$pwuYiJ34 zI_3=b74!Lo3QN%B)f&ys$kk8_NB7z# z`Nk&o4J&IqHZ`JqYM4|IQz}d49xV)ba9}OfS!P#}D)1Y5>cj0!JomD(PKdO)6+qIa_hu7rcV}#0+G?=pwskMeE`+D#Q zFuh5>Q$4Dwxd01xtK6`67rRVSTKPR5f@sz9{^^Z_(&^FbockL3$2&6`v$zhViyj@E zH|g+GcAy*kJ8E0HCcg%18#opt#f$Gfll@4AcUz~nrGe5?{s(&S4^+Ufvv<7@(7&4x z+1}(o0p9UXEvZlB@kdKg;VDeSi7(y}S3%GpN{%`lnX4XIe&O+C3+H*Saxfc?8k8GW zy$QXqELMjh*7lXXfSIjoJGc&#yI#s5A)ptmn=juO+I=4xgYOmSnM~TIuFf=oTbdJA zloXq8cJLeiIc)53!7h$l(pJa0AQ^i=x!%GFo^$7zo+1W=ju$ePRgQo<+D)<@PZ$#E+l&N8 z51M{5E}PO{#Xakkb4RJOUYMhWK+n$Z*W~9uy|RI3ndEMaWLEt?s0G`ehL^HnaJLm-#9!% za5`Q-;sOg;0j8_qnQ-}vJb|}v=h#6fGAvr`o0C6f+p^TiGo&NeHcf1W3R)K-qf9#^ zJ02#`{%*(eFu2awpR;#%=o}|QwZbuhix!S+`8}0OA zSauGb;Tjc9AH)Us+bR6=^eCVUda)E4eG3ERM8hwO(e9CfUVJPz111;);*QN1j3r&1 zf2)%O*(ooY!?ZSXe{)K4PUHrLrQ22QG|Wvs0C(}S_BV*rl|zWzQyIP^{t(LtN=m7P z+TJ=G^uQ%_XAClDRZy;iU9GjQjJp+3x{#qZWet%E7Bs67Fd{)L)M-kb+%iK=bvBO1 z|BG*8yS^4MoiIaZIyN~HY=1n;#qsUE_j#Yt53&V_?VJb0EJLUMfyAv-PFAcGkc97w zpD}7>GdjELjZhD@?d0+p?p#Yl0X`yL^N@1?Y8;cOWKO$)C+)o)7{{Kn92L^@stPcY ze%ndZs37z;KzBP}Hg^&-O8^xf1Nrr^>9xLk@=waq`i4sV=|~B6f98Lno^V>g$ThRR zjdCGv&N9BEZUoyh6yzlms1M4FEo8q9U;7V{uB`=UYN)z-L%D7@&Z6?{@&rz9S?p41 zX7wakoCLWDNK1Ph3NoWsvFXE_*EQNs*`2=jc!xCH5PI5Shn8Ipr#QxllUE$Pv{cR9 zc572ty;tJ4c0GNtW)u}_e1}WLlNequ7NEOXdVZCz{*3qxLvZ1roRp88iuxf44FN2u zrxjXO(1*>w=eU&R zEr8u@l)R@~UD04sY*c+hNz^uoPgjmO`?^gfqpJKy#)*aA;U{TgE66&pVzE0^l8l>vlH}ZyOyb- z+b;)PYB)J#1VfHupEY~F4|r-0N(f&)x|&Jm9`T0VVQIv327u`9x;Y-dsoi`<@k_>_ z&@)4PK~BY^2uTX^g6y4}Z9vlAUqKk0djPcvPq!Ne+{+nb`XZhp?N@7LB>~W~ z4+Kv|bH#7n?m(k-`_7T~0ZJt1Wv(r4S`>&^n-7`wLgxkrpWGpkAqPru7*ZM%# zmnBig8}gs_5yeuF5U?A3mpxX)KbSGJ=et+5rjaJYjX={H6Q2Csi_Edr0ihEsNSf&4Levt8U5i)jZkQ2?5-7zFO?57A<4 z+3m;;JO4OM+7pSobl{5ABJK#}Yh>1MBfxRAh{58N&qM5M>USF0Y9YE}X_loFB(9Ww z_^*fpLr7GAKAO}{Y0(9XA~ITm3ywZzE&d{PpXI>^ASCIxjmL^}&xo}y{L$nuBZ>4v^8K5kSQG4trDz>O;+$yh~ zgq87bxA>euBDYER7BJ&_Py4I_RxGmD0gyH2&&wC-8AYK%VS%3~FxN1%(;&fKO`e-> zF+29JP;$27pXv??a_G0D$&m`!i$LwXd*Cn#faGp}>$FTR{`arFwS~Ku53n@&rr~Zw z*eTtL<>l}KFQAD!9fm7b#%rhZA7JWP{9CAjhdFLDgGnyMQwDWq`b9jXTOb#JPrLI* zb?V&zr&&CLt*!mwOZZ~&yxI?2)~hf~p~zud41LudcDFg8_WQq%s!IG$0KsV^sO`S^ zgs%5HxdtW8o7xM&7Yf+TBzS%Nn(o@>SOaBTDs#(gA-(*hLJ06o}+dN+RCA`-$iLsqwvYMd{%vB+8(th{GsL*`r)msuJCEVa@*1u z=yn2QIS-EdyRW`Z*W0n6b@-M_a?t0g_~#zxDR(uPT{(<8Dj86yWGUQ^kLqNsC?)%x5molO6C3dY^{3^@mp+%x_me zo)6ZM;crE&h4+863?%!I8}U9a!hyOEr}e@9uBGk7__Etc>dhm5%Z`mjG|+UlmS(ot z*na}i=zi#x))lUq;^Yd9P49-=s=T^)LDzWthGu!2{V^y=#oq$i61>EEq^j|dhIzcJN=lNRYv?k_$W6zt9yl1AkKEOq{%*jy>Q8BLzI-LF zwA)VnNua6$KiyBl7#C@{Z{e6eRG4)j+qJzNh6g?11gD)=ew|zFNT=`S~eJu z7oM6U-D1~e(BC|k>&dMc>oCh~)fM3pI7WV>xjnGLts^97%iGHg1|XH2;*Z&)ECqLb=y))i~L)*t}Q6 z-kz@cSIm*|5RW>nsp?{}f)#3cb2=mW?BT=A4k_}-S7DFEwF}zP8)e+=o3YZEKFb9M zd=`(>4$mMZ{vu@rVP)Pzn+S@0C99kv-28GzgWT2VR(Yi_)Jrb(K*9HT(tacDD&rXl zd#Px(09s2_u1=GuVMarkhDU#ne0D|9*_tAamArh1dH_soxrkxG{a+ljFt0x{r~BvC z{uHsyJd!rQR5c?d@c_>)0Rg85wZLWkwzr<`(h&NhVopHvymvv{Z9JvjK>+P zx>DBfky=`y?X1mvSk#*_^miVZkJb{Dyiu6cWI3Z{ zKzNR^+Jo$g7whq+d_PAy_zdM5Jn`sGdq^K}l@!k7l5y~Zr~dm3M3rsP>1sX}J{@0S zXUH<&5Onua|BP{y9ZPtEz`n#zZz9u-hDA5IklsFal3L-HMe{UwrA}8yg=(1g-}OLv z0-tcm@cMUL#3%X;JUKP=u5nHjg+cb;K2J~YAqX?kUCr%`VSqpjM{*6lo;k^+$ylZB z%gX8V1wx;tn>Wtc!2S{Pt@mLYH;+8@_D${!r5w{&qS5Dr3fL-%OTm$ymO9HI`a>xN z3^c4oPLUv~M&S2mChFZEz3{m(V?P}Er^&jevJ|%Ep1{eVP^2|SQK#|P-9)@@25)Ur zDO65PQ`>3_l4IXIgyinF!J_moJXV{F0R?F8?> zpYNaHOs#w)c64AxS-&Xs7(uGS4^)k#S*dA8Gv3jMhE^{*le%RI8|BD41Pq}8eN5&O z`J9D4amJ@_MkyqUH_|}qdg>#xYLfdz!`9npe=60|Y)a2lu|?5V1mv)r@$e5f@muXu zcKdETP|TVn+u4@X1P_g+bq45}sdJnC$>y0P8&j=Jl)v(rl=cHf0rkxkJCrNF-84FXOzx2;=h61IWK1R}$ z%{eK+QNUktU)!EUBb(YjDMMtVq`vzB!70zC8(Y$&@4(0lb%n93HCoCbpUIg}71E&s#uHcYD#_ZIqfe`Z{bC()Wx=;-EsLS zHmvu3`cx6RGhU0;S96wI_KD4JwTQ^^*?@NvOqMRrIO!tdRzJ~ENl8g5uoAuR`8?85 z>Ph1FSy^{vhDIePnG|)%mwx|zECYIg=f%*mg*Fx=Qaw4&c!!f&NTRD|n^)ON#^Mel z{@NQrkL0WaO0ee@Z6ivbtlNGxI)H{w8GE3~Vu|#6vRr%*dGuZu2VNNliD*!mS3SAJ z=6QUMD25_xIqtom$}uD@s_T6b^w8sbnsvgnC7LySK(7Twv{kkUex^}T*vra985iTr zgms5k$l%75tF~#d=qM6AG`pp_fx=>OR_Pw5n@w7 zNG|jpBEcncnxZH`^_VY~jYyP;G_2?kdqbVZi$Il^KX@VmsI!vT*s@*FRC)NjHaELZ z1pfKifsXM3uemHFbi5Bl)^?1ZtMIk#q%a{sxIB}=iUb$>p%`4X-Z(3IW^|Abv=;Y= zm3`VBcbbb0j@xZGF%Kz=lw{KW2TFdw168pdQ($UzyONd-Gh zi)0q7c4x|vEQGD~p5DD+sF|YM4U)VP zbe8dD61|`Jm%xivsQmiP&+Jo2f zq^8u>0`y`aD-!CbCnq@st)JcfaPdv#wrMEi6DVZ~Pww5&FRdz|Qt;`CdLk<;lc3jr zW&+lpR4!I5EoY!YQKc(ZA7(58@9QZ`@viiLQ>R0Ceu$xwK zx0m>4I{G*4?`Ejvt&a{Z#|UzVq#blfJpxN2>&3jQs47Zy#+WPph+&Sv6!!oz&;)J9 z@`kqb5eJfI-?2(;5tZCS#)eb*QqwjGSJ-XzTlL}Y^KQ-}+7G5gL0yjVoF#Ur=T-L^ ztzS@v=en#cGeCcU(PHbp3^?hVMg3f(HD{@@tVNu&V$dYWKQU$L}p#M8FvslilLeov3DfS`#N z9`XZEL6b$#uz67R)u77oXd#3lD9ALLEF*!S#&g2wB;whX|GrUeZ;Ioo{o1h5&*%P= z*IlXgTPAoeAPZxz7AvxiZ;_gz(?#ZBRkeYR4C)FP3wuA{VCvMxIT8rG!jwT`QSo*0KDu^JqZGJ?e z(*J-s=TCE9C|)irpYi=abdMjT`=4ZB=g5g(O@AAC6c_oak9bjvH391pT-_M!{WrKn zm@&mvu0xY*opn@-m2AmdgKs0Hi7$8tV$?Q3PN{ElUE?yAq!{uN5VF{rsgvE@M6W^btXzV+G+g$DZxFv1J1APB32{)7WgB&0o=$ zR@>ZqVJ4y~R8R3$PqzNl@8?&nD>M3S-fNZ6!1DUrBX6enrwNf|MoTTF7rq9n(nPJlr|)&u(r4*+QGgu3+WyG@n@{ z3Et^WW8u0v#4(TqwQq1z-@%bk#3NY}yZ#|#_2Ad9@w<6nom)7iCCJs}??we2ON?^i zQC9a3N72g3^-*|JbC{iG=U|bZb4Ih3>*R8sIfg@QSJ$^JreMJ!TKs6?Yj=xUz4Nk& zRUcwipq!k&tv%9pm|?DP&2I7{*xPFs#RJQB(y7wW@314XD-T6`AlmkHYn^44&AQp8 z>W@ux8xu^C#AfM1a(-gtI_C_u$8IwVd%vB_n?IJ_=8QgUQo@qGnH7ecnPM}U;R`sv zhIiD|y=esG4rLmakGxZ+vx-ySO~taw8x~L=YSpY(d^=_=3kXsfs4ZHZ80RJ?vU6$6 zWGgm)sRyArf3&4-scS4{?+)C8ZGO+`pl0+#AmNnT zH)Hw10BG{3YFD+swKBUDA$igA^q|^p!;GT|(mE?JtL@{yZ~-B;T-zRVkNhs!ymo$` zm%HaWS`$}fyl>Nru58}tJlMt1=Fe7WCK}Uf3d5ro4`y_0?QV(+bCI~^Ht$j|0*?hs z{P-cOY*Q?+Ibb*&>puk@q?pdWGvgy|Q#358-ySA`zZxT<%VmTLJ#SBZwB_EuwvwzY zlj7QU3*6Vsw*+qSO}}d7ENK|6YRKHEecL)zHuOdZ+M`$q4qt5>#SIFOB4(Lt` zE;7UYlhEKq1NUy33UFWYI}_wtZdi8pWV zBHbqnm7jHI^#hjoV5!fmKHmG{ZF|6$1AF};u;RogTwKFZdW;sR^;#U}Q1e%&yPb%N zMF#3&(+fQQT?b*8vb|E(S%JMyx?7^D>N{`wZQBEu0i;I1005-NUtSRpWHlj!60s%! zB0k?fb;ICdQO<*y&@6gW(lTxpeGfGA&C&HrNlem)-!DT2^HdY5TIum?o^Y|2GqKth z6O9qbT+z(Nt6fY2{t43ld+Oz*!mT;uQ4=1;d8-jkE5BL+^V?~~cS=o(3uNJF{s;R2 zU z6u0t}rDzW;-wCKnYTW!OEOgkZby%z2#vP+Lef5DZp>!iPhxq6pNRI;`25f9pfA8H7 zi^IB- zZgU}{d%wM^%4#>Eq+{gnGG1%xfdC{7thzzIUo4(F3hMbMz3oAZj2C?-t9Y-mgc~`d zvm_G`hB3YJA5i}FV8iqXrD%2hDq2c|M`z!;?`q@}fbq!IZSCA>lfr`9Q?#O3l88?w zvYCEA%8%ArO+P9k1FDrS@ zsY&OtF>iB6COIc(l~!yBhxH&S>R~LTGY@8_i_H_M-5lj@XKbG%wEB)B@V0bRxSiK~ zZtt8LBZfulg9Xz)=Kc$1h)m#&_I))H7|7q1pWJdVJ^V6%kB#)+>ds3d?7#Xtj=ali zHI2xcc?@o_i)6>Nhs$^ftO<-Fu$>t^BdpcbU}L7Utj}CeX4bo$-P9AFI*~XMt~Cffh~5N;@IXR29}y65JsEmCQHhl z>8|)EblzxGaL>gy6`}JJj*d)2X0AVfYIKF@(09zNE9Ys{^T+0vF}W zh$k1)!j7q0;>vK#-B}F<;%00g?`1r&ibAb(wxs5Yg^cr+qARK~w7?Y1yIwWW=?DC= ze%qhf2i6+R0Wand9bx-s&e7=m_p5U79%H%SQleXFW7W)+i7UavBG@KLXJOz%awWz) zBew-k_ZRLysH+#NO5!vOnwKb^1*-zZbTCG^VnSjQ|)pC>V%gCLgr^Es? zdUh=ar*hZI8iz+^$t_D9_tmJRKbR-t+L~TJ{fG`#Hc?L1#ZXjPF_Z#oc0g49kT(x$(6n zFjf=n=BzJ{cF{gwzAgCa+mSQK<4aKV^l;o1nGcT>rdxY9W*HV(T{71rVEdy{(uybyaYQf>Ivw(i31?RjQ1 zKn{3#xiEgd*i7#(H`8IWCyF{)5I)ex+84gj5u3~2?Cd@&ohIL=HSwF~T&`tlx$%48 z=3zQ6=F$r|#0Y5|(v6Wh0oN*H0aB|eF5V+5x3C>KYh%lWg`=8~$-f-5+3Vw-d)Kcl zguSZyUZiILZO?@-qC@K=LjV?t(yK@3bF)*4ErxBVXPJK&Bq`vVMQivFm&v3V|8Suy z;FkZ1z}u*1+rZfQ|AxD&o=peLNJEE|ut|eODlZfR6SAc_6rXw8n&;V z0vwWfyWcc)96C*2zT&FA$W2uHIDmXTyoyuEvOb&Op7d*7wOSYIKEPFKYDGNyD7f>@ zM(#APV0TXGx4@ApX0Bd3H+iRR)gAfJUgm4Rr`e^Dvs-htucsa)w}3Pc9x+B;vTRq-KLXTV&yc+)&?;}E>jTF1G8wb47%R-?V?upyFIe9zlQ zE%-mB16RfP=~ZwZ1kUu(hr|(>j_@9^|$_wboP~*%>M{ zx6H^_T2T?xFIM$6%C5!$w-dbL$FH;C8`Y@rQVz1jrhWJ|a7W=#o+)iJKT+wDFz7!J z>D+A4L1r$Ab&;)2mAQEP&mPVL#AV3jBD|F~!Jx|W%YcWcJ8{PoB}HDJV2%sUHePB4 zMa|JgSHPaa4+Xi6oYb6Ih90!_Fel&_V|aBM%4gU6ttkwMut%c3rM5?|!m`U9X-1JQ zS1REj5#lYDen4vWNsi1B8rxb8Km05h-@&Vma;U^7)fRMRn8eOLb~gtM?M+C2?znvd zz-y5~ds zCJ^IGV~h@)bnbB|f3!5LUY_*|ZD+-ccK?xIwsK*1fMKBet#q*{YEd3@bj!bqHWnUT zvxRDhH<8{{>*WPcTCLw+J)#@og1F_nod;l5JCE_csb}e6?}rdD03xza3Cvz|Gzvxo zPY-5n>MzwW54d&4$I;Lk){K?;3uh9AV3xjDL3NBqh&9Hb;{pD&U_fZ*ihf*%lL7JI zXNCS&b+<9PR(J7kL8X zx?c0ZMUR&IYULqQJKLOw>o8dP^9*;{-1+5@Z6NXcC+|b#@B8oFKDWED8B6`7Onkq% zpt~+TuMn&@GX~%Vzwz5ThsJAzT^O#j1(1h_rRD;4^RMxVt8m`OA6os)l?m@CquGx# zqGBu9cS4P+ToMmCpG~_>y9%C=bH8#?Xf6i8^}v}8zE^siNr6HFbd?&zU);%Ht{5`A z8cqutaE%Ut@$|sOU1hlXgLL50^IbLATzHb$<0Y$^5jrYQIlh+U-c?w?Bv3Z3T%(_3 z@a0;NT@C1Ct4__Sv3J#U?msh`cyOjVXVQ9mnbnozhDJmeLiwVFi(7EG0<&w-7ajav_wBcuEs6T@@L$4 z(yfUOuavfJ`&&`X^75^_mLZ_O`5D!bs!!gqb|jCR5Fi!63$ONUC^;4V6ELKe&p`xQMrJlW&$biG>;7+vrEY_Df@ zIDd27QZS2nrTncmu7Gg0+93|eOxLKig_QmL2=~J&WSl1uPppX-nvgnk>HqI z$jmzWUIMyll{)xYm1io<;MTz^!=vcT-40N`C?{A9wDA%Zzl&=hfsf0)5O`R6u{&Vs z=`yhn?+H6F;Fmd30Nxfs)Qc(A4{2`VibVzf+6oZ)Z(&mdp1jmIm8B&-%a#gU`-1%+ zM=dAo8dqy(6e7+ri#d3WNm#u7-xxBT5P6VJhIOIR0zX>s;1ysBwNtR2Sj_~tWd^Ng z5qeOpv9TDsw&*lUSEt$CBNQjj5-BNr^W*q;iutK)3ljL@(&vh5XxCg@2MDI3+)dM9 ze>L%a&obu}N}eBYKir&rJA6PPe+qVQg-m$Z_3BPnhvnV?oEhIrbez{aErv*~Zxku2 zVan7DUVTHF6^=)C{}D+?!KCL2rhtMEhIY4Waiy{GJ?-vl{MJ+`i zKC&>PVD>e6b1TfT<*=I-aOCLtTVNIzsv3Q`*R%Lp3ppX{fE&Z)+FWo$0FvD;xAYH` zCqQshKdKP+)x0wPHRU*cBIVzLcr(Js&)Eu3BYiX!2TAx{%K?~4=pw#_9RY+SKi35M zUtoN5rkmmAC~+rdAWHF zp{^M5@V22%y%UqAxICTc01Fn(F!LYDPka%i`{@fR6|!#bN>ewT4#t@b78Zs*Gg z_IerE9%)sa0KXJe^0llil*heJnnZK_a3~a`;eLpP!Yt#KX|E)&752$Agc{ z+EAz0PBMlZCvX{v#81S|8Dn!sZqq3Qqa$(k#K$PBtNs$W!fDqn^+eZxHa13_WW7U! zK-I%XYbIcg&Q&cKW<9d;dYN0N4)Wh;Sl&H}d_u3Z{IUKpfh?n!_)s?(kr2=Mm%X+Y zX7L6Ce^XxYKV=b=ENxA`prfox3T5ef*pIghJYzN?Zldeb;qzzT%^ep z54(zfHmk0%^m^N&# zbGk0FPWajW;|Oy+h?OvVvR>*cLFz@t=mp>$oxeTM^l>ft?=z?;Zbv|kbe*4-PJdB~ilRjDb6e^V<-=%gLKGB;nB=r3TQ^!Y%{9aaEvXxB@%VzvLlX5QqSEvEM#6g4hsj}$VJ z=mwov?zXlA`atjb+u=9m9^@W4WY#eLOFLhA#8Wv!(qX8Ds#0?{)POtq^~G6vex|oa=XJA+WHV5-gw?RwyWU?eqK;@IGA?vT zx<1w!6b{Kf=(%;EAFm6y2whQrJJYL*qe}uJ$~f*F*`Iq|P#7j?5tjZBBqBwJ3fg6Y zT98)c;elrR+Bp#4i;M?veXyD~h z{BXUIf5^OE0 zq4n?912*s^g=^AE6X8a9%oAMYr>JRuMVv! z@-pe~?~ByY8r$)RKb|rs{Pv^W3Z`2AsFF+Ia`nqsQ%etJa9B=nQGLh?1205#bnkQl z4{uJoYY2dfQc@B&XTsB!W2I80ge0JB_N`dMpZn?q>R>grRXxD|jwjQ*H`@5fFR75> z2lgAp?A+8DmWjt zxS`c~OM1~Y!>}S$cbxOX&HBCxcG9g5+a?^Q18jnw%8{`{a6UuB>+PzeYak&D`F)?f zhmwq2S4K^6$X(J>H{d+?&j+n|*(v*mWD|OKC!^#qQcQU_E~@_Xz{(OTF5VNU9@JFI zt)<;q)6J*NN#4)BT502CZs0c$Y<=nGT^z#YH5(3ds{$(~wC4B2DYK80!v0Aa>Nq5U zXSZA=5xw;Gd}SGQtT5_b?cxs=MWkyoo)7grPH%Q8z9?1mc$fR`7QQboNd{~ZUwoe} zGl-VxE|+Vrk^FscqW)tGqDk>=k7#U-vLzW_=c(d?t8z-Outu<A6nyxyr`d?`>fNEB&!0EUQ=X!+_=kHZywzkcE-E?+ zAIzvn=cVkdrY-#eo)GuU7(d1E_v*g`*@Lcw(lxivITShOpP3VR;{k$5J-zQ~1&;*| zZpz)IM&Pssdk-?0Z4zie^axqM-3Ywd(`pZ;bdDVY#Rw3dO*?PjBydY!}0pOhjsDd%%j)rkcrdSC;_yPW}^ zPjcKcOI8QUp9zmAM7)hMF+oP!1)%siE;0}^a!r8|7`jac)vQNO`S)7WP_f5?oFd=- z13erpXyTSrPABAv-AZ}4wHtL)BSXCQcHuHyKou0BN{4oW8mOFcC_aA3lKjUf!<#y? zC$>aWC-u`-ONl3)Y9Jo8H7sH-mx26P>wKm# zCRzq9pLyc1aA-((*l6V3x%cGEZ?cgzPh#v(R~Iv)tYbl-~A&v0IOU zTTZP3h{&ZNQvbTqemnMFjW@_vg(` zxtrO|(Saj_=Jce1jBX|q&w+zc+{wO~n}FoUkfB`YZQIuoS{9vO)WVaaW^;^1!Qq-N z#AKSC?};Y+m=T4fQoozEYf{lKQ(bh*B70Lm-Ly%`SH>{h*KX5qWcX^Hg#)jXI)XuG zA{q!eM~c2+$z~&9QUf?CuUGo=tcppt@i-Y_nx>{qiuBvEy?s8DOyAe>ejS~c{&-%- zhc5?`v{o1|_GwL|Y<`~qY*U8FNlqrEa5Ibs{ED#@@AXF^Q_eK-l|AHgCK!u3MI5Ua z^r%HMX-iHXis^VJB@2-$paxKn6iiwAs#xYX^LA2PjSXFsxcwpd+a@)`t9$)6gnZ9w zhHxU(n7~H)G;9gFo{x&921V6z^%KUoTYE*D;HdG>bBKP&jQmAAB+!_$X zapXC>_9ID??(^IiQWd>Sc(cgxfr}kWPnC0fm@Uj6xUpzC5JQw~04dmJqy{!b5#y!W ziX+LF9P5HjMC3q9b$W(r9#jm#ju)!x$12v9@STv7HL+OI5mPq83y>vx!HM3#<>v3_ zYoK_gYK$B?R1F+bK-@2QOWSU7kq+f~_V%9FtkmuqMyb%|<9s|TKC8G?DvqezBqJ2~ z0a4sRxsjBj<$#k`PMSwUUn~=5J!hvRLEX^0Al$E%qG6C0`VW+?#T~+`c@Oh?Mv`<(q(9WP*11cpd>w$ku(&@$zCU9`_8!a)EAO%h8 z2F;yOe5~QE>wPz=^lVZdQLm}Omd2MvS~uhQi~;&YyB3cxLpIhsRtoTXoF89?I?w$0 zBTsqq4gZg3J#!H1yu3xJJAN}8Cl*(O&Cy#(B-tWODEuV{)jLgi#Q%mzyA!*CNIbcn{+`qjJ>&e_X%Y+c zLq;lw;1d$OdVLpW^1!9EVev2LTL30noK>e?G|cE()57$AE*;_#-XEUKn^6>J`x}S3 zp5~7iax(nwR=1oxp}vMcIi3xewF&{n7GskUvrO>rFCA6K<{9WnQPAabiPCO*BrEya z`@W|Y4Ko?qFk{M!s#O26FvuRSQVuE#Fai~iN0l4Wl9tl_3z4f!0a8ag?GIo6GD9xJ0)Pdpmg>IhmSI)@E^^7(=f~hH6kPiyBL*rnOJXL$Ks6cYL?H zW1bO@d6l77$l5~#Yr8684JGv;te!sL)90Ee zzN4**ii1+O&N`KPMpc(aemol0<^yTiYRraf-VbDhw`xO8DcXOrvJUivX@72oyWKMH z!J3fk1Kk}B-{z2DPIrPB_J@l{1czh!DK854@)2`y5^%RE;bwNKCMRvNsD z!P%U?EYfeejAQmAU2(oLkz=2>O}=cqzsH?9mmczCeq;o(GswmB<2Q3eg@|aM{Y>Wb z#s)T`;m&6~beFhVYxckS?h_&nV>3jD&`0Xh8IeWwNyka{CDr@S$eB;3SP{h~v8RtI zN|k>tX=La={Mm)N;o?evox_b?O*1JaC#O(*FX)ll&SUEJ2z<^lOn5YZObdG)vfryd z=W)o87iT8sU1_gvqkw}cs8B%BT@N}_p}9({W`s<=WbpxQN;f;aJvYk9Qr; zko8E~Uwi4wG&Ex~^vRmdj+T|+8@mSiB${rVbcGvD8=46DfVnmVv&XC~g+eAz6tpW- zO?x6`GzNC|$HXEH8Z^J=Ha5>9+F67Y2)6Xgvyr6%XhXnY9a8aSq4G1o!*5{urU#k4 z6UxZW>;7k-fIuK zo>%q6CJc9sX&_xSD$A77!{S=n!}lL3P|(#7SdAx=oqfB#-97l3t~bMGWzrM;q;)J@ zGIGv$q+c@>eO8@CAzt0u>=m=l(!PVarSapLq@c2t=$hAzcfQ@5x$v~(;w`g8SV#bTXTM~_ICFiALykC7;~HnaPs68?^BR8|oqC7}C^K}`aX1n@kv^ik zeq+P7(lNW9$}Sg@(^CP9hJ6c#-8m)FXcXK`sw<3f?em-%7n>e0Gyq1wv+wRcD zJiQ7Ng?U%i`d6^eS~kLCG1yGKmj`0@_*|n%RgD1a<|lz66%wbfv-8VyymlAO=xj2B$kMnJklN@*BMx&)*fq@^1q zhaONG0qG850EwY%m;vwMf7iXAfwj(J&Ya&qdq4Ym4f)!+im^ld1@i9)G$pF1cVnAN zNq~<1!Ss&B>z7V&x2wxr-MkL}=2y1=F;fq=vDn8Uu^MfVo>%HE)eW(Xgc9(t$*WXs zCkE_i5lY(PEWpjJZJJ~uDxM{mRwer`H#@j9-2Viz1hix_IiYP3EG+>C8k;1EHZpzw z)!~-}fem$m5pT-sDpbH9u!VPsVayLVc5ia4`t-t^9JE^@#6}>6fTBA4!Cx-sinFgV z;!H>Q#~7fT@8}YwNK^1W91d8m9_S=?o~ZHw+sm~))2xRPB7>bSrNzINT^+R(*;n8t z>KIipGofAaig5)kjVl72iEaYBrtM^h%e-s~tSUOL^4nPZfG+3eFPm<XaVoiDtl2Y3m?ZMnzl%TRxsv6%6oj#}wonN+2HLWB2)XIAHW8T|M z!;egkcyeLeF|2aeb@k4`U!NlNTk@{LO$v5h*9{Je(`^3f>(rxIK$raqN9Q_8fD2fd4P>ww zE!EDYWvneNx@S01J6oN2ZRQs=Ej}XD;Xh}=zERKqyWus0H^pC#6z65iYMtG%XM{YT z=aq}nwvof!j$_N?cJN=XR}{G;{*_?xQc1ft*q6{`%q^3vY>Z?e(vZtW>Jz!{6MKt- z(Olo)XlL%_%fwFV&W6F%&Tq>z8Bc-KX4S-;tu9ODx2F|Z;p(mlA72JmqY|UP zFq}(AXtp>Q?93QIl&ga{zr3GOjrDd-A((qOcRij;`FUL(%iN_SlCMnTP9egm3Hn3m zu}?N!D9htj2UO`UnQ**(ov4-sn5zF(1)L7(i4(jpVOm*#;loJu>%z_b3ydE7>(Dz} z>AW}TDnr>E{@r&YOM%0GcM9doIu(KL+e$NoD>B>lD!$e9bxD1k$8UjR`(qV^Cwo z0CwkJ(gnWA_0xZM-6A=^c9|GxTLVE;O{dVP(XUl4y2`osTo`eBHOn%+XJkBLjNU%1 zoJ7cVR7~}(!0%1I|8%CnZbe8LX^P;4e) zrwps5{IsZVR4|#>MxDCD96?Hcu6nJ`vX9|&n|ySj%Kmg&JI;FPLNDMPa^EJkr}ZK9 z>W_bqUBdReIHFF1S0sS^XoMY=PTzsw{atsCS;sig5P=p|ele}{K87jTIQch4c%?6xtQtm zl%8x^(3>%X2KqI!t0W`bmKMi~D6s zc1dfO)wRDr5Ls!97Yvis{vB;_Pk%7{W$RhrJdpW^;r0psp8RmVeyNtO*40Z2vYrVi zYu8N^&A!QY_H3$xTi+-hbG9J84R~rzmVJ|cN)Bu($~D6E-S6{Jq}M^pH&>->qKd~0 z^Ty)hBj*DF$<=ArEUabI&ahzb>_%`+l(ET?#StI(zy;?eI8|h{LfFS>@j+vf+Zd4}*Yo2yi4)N0fR_2wSm;;s!>jO~$~p;xG|8iwU3;k}sV zz7p9UL5I0I{w)iL2J}j~dJcO=*qnd!+{VLOSDUb)hs16RsZTtbqwN^<_VndDqECo;Pk*xd#o^g6@;K+_k!9{`rRRQzP4)b~RH9&eKr>xCyPGhrypEdL*&QhkRQ!iInTL~(ArLOc7Uqfnz zk;+;-F|jTSTERKq!S33-YSjadx5tF4zq@DsxBEy*LB8+Gl;j%1?AKacx$lkmW9=u7 z5!Lm(-X`7_p$-e`QxB_eRcYpzVKKfo-_JSUq4;iw^U)V+m*s6-SrrwNw@d|TU0slH z;V!OlCkINnjSCVjkupYJxY%4Ai&FnUz10t>{R^p%XEkDR*$}Qq;t2@l;7K)53LXSa zRSeRly^oX{cj~%G*j~sMJv!DlxGCJd3}$NUZ%V+snl5QzbH)E|{M?S?D{NL>;JMh& zDM7ccMet!eJ5|#TK)AG6QNql(MqGr&CM6rJ-qOMH@6;>vw}}$+s;E*SK6lx|+75TX z9!@H%_w@qiE=%IklqS$Sf&CHmFrZw9=dwXT2MfqRIX8ih{Z+C6$myD;F2k!T& zueUfxUXpM!1f{&)_}D%n_TGK6TWO&Ds;=mrJ>!P$-FL{WHM~CG=0c|6oqU2E>IW%> z@9+GO#dI`R?#_%GIrl_deU5X7D+WdEV)m`Vc%>c984c>xt()y@PiyRq3=!nd_|{7~ z)G}KOn5u<#V&>L2f`;ocRu{a3)PC}2o0wC)Mz6V8 zS(jb`77(D)^K~r@`@692PT1G2K)}0t++5x`SYdce?nHd>q|B( zspmQGIe7dg)T&%}FD*hlwY=lNGhQ18-+2~`a}cuJKI$5J5h zN}5zp%(y;Mdcy(f*Qr_(5bAWr?=)O>z^>X%0oW*mg139rP1-R3>&L0*jDyzH$=`k#T{@t0Q=++U#aWw z_L{B?MjF)`zoilgtU6Y2xPm%=0g059O2+`op1+Y-Gd?9jAON&(5YF^$GUcS-fMII? z5(+Lhs+%L1upD~>d}q%e<4PH!g77q-B06u>l@Qi%_Y4@vN_@s`Je`4da zRp|wY@uuYgV0c3uvO#Vp97@oZ;Dj)tB0TQzE-w{pB@ezp+4ZdN`|&~t`8^UH=1cAec)B+0NeUR?z8D5K3r~|5Qzs9NK#FRCp1|u2 zq!-NkW}GWX%lLuOnG^e2wbR$E&5VQBE8lAt&=s)huHd4?LDM81#~W)!0&Xs2wY4io z;*fR+BZN@y0`n`E@h7J2FX$7Tk7l?EYCaS6>T+vFO-pty)eCi9pKvEC0HLgu_87=B z=Y&+@1mm!<=Yc z*s01{mrm{;_fu4J;?n$BfIkA77Ube%0WjvqL~?w)Zau?OC1gX0`)|t^F>NQs2OFd8 zV`ndO^MvkJz(xQuN3uJ*Fs?>^Vu8BV%w#v*&$c_-ORF;oj0eiQTp!b;GB*XcN;=IS z^Q<7xmI&&>}IH*cu2iU>`Om74_V zxeyJ}<<8^1n=lQ@ioNu-6oB){_>!+IJd7;9@t;NvbU@N=)N&l{&a+jxDI~Yv4qz|Q zwgG+EJo}H8pq3*0fNww;G}{Eo^vsMBKBoMDp7h426Cqg~VM8x&H@LHW954cT>oK2x z01|cvv_Fsky#mPCRP%pS84poKtC!s?!_L)+RWf1aKUi(UBX_^M7x!CE&Ld+_Y(@n( zYJphCDZ(5dPR|kUbeU{%1FIE{*?VaG)t#TN;`7Xo^;)Kj)J`Pk4%wJ`eQ=t7!Ix^z zlNXv22QzS25pks2{K{b&3Z8{p=7OEggv3Bjbp@$3~&S1bPuLM&;T@yQzR2a#gMOQp>(`cz6eJ zAb_~nZ+Yda0EvQN3M*2O*j3aw#A{3wF%^uW^P03M#l>9(12AkxBO=)#;^e<1w`l%J z2hPZEQ_9m~5+Mv>KJ7nFgO_#-n&WZ;UuTZk6JM-q5Tq;B|9t$Tq%vjaJm-|(U$ZwE z!a98z9WxjfTYax;?h6FdNYjFXUuFf2_#aMKcqcO;K=1{pG@F;s^U1dPdhJX+}uEt%%EQM_D{ky2I}A!skhn@;@q0b$joj!kD0vx0v%I) zZx(o~Ol>3@(Dgs|!PgptH8qX3()CWtYwI85NZD0*d>%De^zMv4Tp(^eVcRY2{($5- z)Py`o#nb@slwjxMyGPcjrcv$D2B5*}wb8G4D4IUF@MvcJ`aX#~VHYLQ<*Bs~Yp1K@ z^-bx6a*yE;RY{?f5bIB^8B?hr{PmBWcgG5kV_NtF!bE_oNp59$h4Cg~@@ z*$wF}XJzy7e9Wmss!Z=bXxmuys00+F&Hhm&0A7yF9ZH3RToQmIMV{Nh#k@ml5AZhQ zQJsb2k7Dkfe-SlJ?AoYv&`!Ib1PHVm2h*N^D36?G_z>sU0$3Z%P1UIET0Y7hzFh=M zO+hY1o~ja2Jt|%ES+T`l&nBtC$oqMnK?F)}h~J0YK>IdOkJ`0GO?dvpedpL^G-t3? zM?CXS0sf3-1JTKYPvpdz{PX7ZC(}%2%~GU5!+_PW!^y%U{mIyPYE0 z-9Fi^R>{E<=<|rPJyl?NJU{?FCQot%D)&pw5qdWMUVOjnYWJIV{guZcNEMB<-9yNu zJdH@x>FaaTUpU+{_$3~{FAuc~_(6d5ZbD=1lrly$we&wm_ob{|gW#?bdwp2Iuf3Oh zWTm4m^Bb%uw_&Nb9gm=+^9`M_&=_Lm6+B(#XPIQ=$*jKWhtb~=hR$=vBfLP9=01m|gTu9!i9s-=(3m~SC?-r^K{yn8nJ z^;icTyAeu|tOSVQJHw%#@1XSjIq<+?F51}%{vmxTOULZGZfeJWAS}WXnj#itbX96Q zz5~c2u{qA+j}h3Y=dw6ou|6=aiOt*7(R+()FnENJcO z>@b5mEbiVrsA>MG^tjy_D8_#|90(oW0VXSKPybxWlEPN#v7}*Y9H4l*cgQKHG_e3; zmDxB{?;p|XKJj?Uep-CbMD$f7p3ej8^D8s>`_vGk zr(IeEO{=SDDGb`>NiU%V8nr9%6IO_3WtD>lLyN@VJ7GQZVDoodI?CQxV78Td2(`s z%H`&nnzQRY{j@jufAd3uO}&x|CQ|PMGPLHn~}U~ZtwX-ccnRrOi0Fx5{Wod z7JE)#JzS@V%@D;u^`{d!TT%Gq!RK+8Ql$=VbSih zRM@NKm2{jTx`KK%T4PK}iQk=Ln-{5lSoL7RW(v+o{^!4R^ZDKTwv$h^N9B_%;xnYY zBe#7{X-&fyTGR}zmA_I~$OZ^0!{YqhFH6AaM?!C+h9%AtGn0HD%-7Rvdr?;M#S?Ve z562a*m=aS($LP?LJoc9}weTfg4H`&dk)e3f-uu0vuxhMH&LZ#8J6ioPgM3IgAp3>y zD!TbRcnBiBEn_I}9S`}8Z_Rkl>W`mgibVh^9LDYP*Ikk6`8F+Be-r)AhkA88RmHeJ z0f+qEIaOFciKGfJOXdPOvG*osc#)%9S^}YGbBe$09f(51)1HlmfF%9AU;`wbWWN_t zb)l9izI!uwbEss)X0bz54FTKxZ{>&yBG-}(2`N)Bo*G5|q>ZaYOTr!n0unPVf5#VD zt$gKu#n+NbvpAs5#N{F$_A82g3`;5v7h2f=l`b^y z982mefYJoA@pg|4YkU7PD8sg1xU5wD({^QN`7YmZuU_PCZ@ya1v`CSzs4JX`>cvFx z&jRSj!*3zOIDmtPjIy2KaB=#*Ki&(V$aq4To7kBkTG{47@^V=A9Y2BG;?*$qrxWEj z;iQ(tJ!Z%X7c8uNzu^4l8uaL{Q`55>CF-a1MdpK&Nru3Uhb9>1sXPoyy0N5sPF^19_IZV4h*%tRRMse?OFWq)IJkFQ_eQcs48%7ypfB2?fF*tR3oZ^- z8cCojm?)lfxtqc)iyTF@syZ$jvXp5_xs+>1>&sBT(0 z_u)QQ^xmd5^#b0u95SHCBX*yzpCC8mp70d}U);@5eoWR@dDm~SH!Q)|dw3E)D1A34 z+{6s6q#);Iu*B{gBHLRzMBWyfgT*nm?9#Y+gkHS}=A=N(4;?9pl&zNOu6Ph2z0_*@vOsfduJYB}r7hDI-Yk3uz9*Pg;ok||!~CT0heuc{M7PhsscD@LGMJKxj_h=v3TzoQDWtn%pu9t46C(SQ z=E3RQ#d4cra;PaP>{vYj>=~*5!@aE|lA{mqrb4#8KY3AHD2X}HT}l~#HWqNpQUSez zEvL_gnvoFsxa7XiA=?g55MfS7#HW1wxc#Gv^%z*|%*Ws^;*_gl;;g+<9>mg|++SD^ zSBFafQZaoN!cFiic!E9j7<&gL-SoZg)v##q-eQm!7m-`RuQW?JoL;Q_e<*v2ejm~C zZAa)l9_D%7Vah&4>Cc9=!dBzqR0I_h9^(XZ%?#`)3?F|aflL<4u~r}s@|`9!G**?b zu9KGFO*1Uik{$rL_?IGO(3|jywJ4MYT<)%L#YVI$zmg)K$gU#ZzPGYbep&nCx2sid z!(e@LeAGuqw3&q9$v;L%zt*?-DD|RQLYu=x0GnhCk2_J9|GDynq$tb9zB+&Hw-pbn z1kCyEGQxtP{e^@U<1b&Gyx`k(mWf|4$@eFX^RiS31z(x&(S+=^V}XN>6-+HI^q;xhzM_iOD_h&-YW4~>%soAiMqW0+xDnUw_mDRCV89g6foF7a0 zBNBS@n>*5fe*nBk>2O{(e1t#1O&rd#yuW0hjG$tJo`udJH{I`ka}f0hlxfSL;J`_pwUn4Gb)17G0 zw$Tzb0QLA4UUKG+oHIZPt}4@7%s$Xuc826Te1F#HnyULfX=;CQ|{of~l;T-q{x)+QQEBj|yKJUtjLBd6rL70KTlMd9MkIh=Wapk|# z@eWFV@tTk%*f9cEQf63X$>0`OP;DP?#}%kL3>4XBr8@F=z{J0-0eQ50Z@#aGFMqJX zCQd*VF@Lzd>XS(HBc!u#2$k>%%~v^@Y3qH^6;B)FFMKy(l!%ff?(cs5=~|Fk15ARC zuQY*zp$cY9yqM3KB^SX)QIBFITr%fZf+MTsMW~=KbJ2G=jQ4?`N?!ZNr|v!*NMxYp z<_)g@hfnlD`ukOI$zPA$hHHnJQ_nP?9*Q1AK zEs=vNrK$kLvn;G0=&|`BhVwmGaj7g?7cKG1sYbJh&paLP4Y_*H9)o%513J z^EbQQ0miD;N?DAlA1htkH;t_0EX&Yn!Y}IBjQI6`jurh$<_)Z5?jKT=k5fq$_n6L7 zbJsi}1&$N)$(Q(FY2Ix5?NLo@Y${XByuya&|2!?FqoNTKKmC>*es~+4Kga54m@Ryv zY`}^tLYb)QZENQ8miTKTU!;2+TAVgHuXX_&gG0in{r!I^2Pd-p%pu=@U_8+C^J7W= zL!muXe(^hH#XZU=GeqOr5nz4=`@Lv8Hf^?3;x@sLpV*TqsBfW6C$-)uSj01In~`>? zNAWdCQF8XL?Rzgcj3=l9qF8DG%Id7Ba?$$oQEQ4N8g70B-!8CO?4{(4ZBRLmYcjzt z%>vmB>NGdAa3BR8WW;(hC7D?a?f%gfcwz4#A~_pGRxeJVE=Clq5VKKGv2GBhmNg|fR&8TsldwF!$EvZA)Uvj~FeQUzXEIZ` zs5TOM&@yd6td}Jf9aQ{w)i1<^0hv)P)X4Ny*7Z-3+XiaUq(@DqTMFTUqFq}z8SuWRMP0)49|mt-C9`KSC8DJ>lpp1-2yag}V8Jj~}$_p!U*5Avc0CSK0^p5N1Vv>Yj%NBrJJF-dlg z+;2-rmi=gWQ)uRZL$C0fObwbKUWPF)i*&*8+%%GmN)PgV(TPO z_$w{V_+6^Z*Fx+CW9NmJ%L`m3yMGlpreLoL%e0$xBH~AfsOMi&c~e&hP*uKntaEJ6 z)hl1~Y#U3G+M*mmU{OGyGE$+fDbnWwfZV&T8kJOasM&t&?Ka>v}L=Nk(PJ_Sn z%wSxSn0#x_x3ky%H8Dz@Y)c2_rF(+uZk9Djkx$ZfMn?74TBF9-*i}D8Wr^|9*}kDD zuGTMMdivhW;Vu9yGI`5ZSL^J07Op{I_KWso+Sa+ z2g{$$>L9!rh%cmw{sdvXxu zcRMN5cKQz`;dLTTPFAsyag(7yV8JeBx&3O2c*HWnJjB58>u9=!;(ocfuTI!!g9+oi z0+jEk;JMB9+_aUzJsw9bWJVmx!NK{WxygoEOMinzA4BYM%g--UzQ-?Zf?khPu=DGh zuR|%p=Kv*f862(Muc2$^<=-M&8q{KYv{}2RWHH=C{VPls#5jwuA}|sDk=(?SXwc6G z6ij5;qFu{89dNGcl2XeNL}(x;+5Fx}D%nMCI?mS`e4%o`^``7~f8~3@~94AWS|&^>}2`7!P#MInn9jWT#g-CqTQ#92zv@JgvlFJ)qJJ<-o(e}o=ojGIAu zavK_5$<|rN^je+}cDXPz<;iNh_8s=7`0Se!$hpIGC*oVrwi5fhO4ti$W@ycwb|Ryg zSLPN|egSrtC)^Vr(3a2POJ3)v^c+5YaoCA=URQ2mpwCgW+XH;zZjNpK(AX-fl(fGJ zRse`FO+`bkJ^F&97PZ(fyuIsCUof{CV3Q1MyjIO^XS|=?rbT#X?`1x`Jz}j&fA3iU zxcjcFAk*y7)U`hHK#iyD1j(fx(dvK3oS$GTnSxY?fKs9Jzs5d*Qe5 zN?Av=ee6L42d!a%T8*Wc z*qEq$=77xG4yKNY=U!HMsc8!)74;u9PpnFe#jG{`{Ur-Cn1h>>TSeZDut}dvxNCSZ zv59@(ALnolZg{H|Q?8|xHygMZP+8{-LENj3bmskBqJtkB4r*$_Ak2ocqWhfgdTdWW9rJ0Rb^D~zN*%N{Ic$PQEBX!l zfcu&J0>5jJm^;}+xS6o_rB81dM#JayEo>0M~$&7CXV#<{A)5j zE{ZR1c;l|fMehS07+@dpgilnA{?4~N9uA(m*>QP>Yo+6_TW1#l;nQ%IyjEKi;QCVD z@@!4+hY~B3j%RgGT*NRj)ygAA0=gFix60LZQi@rc;%G}qn=2mfals@vekqh$`b(wR z7`i&r^p2IN3<;1<+9<(4*mAQo`s!S@B?f{JYW(0}eF<2PJ%DjC*8^x9cD|@{p?435 z1LAF_7HjUd&70v6qK(~}-5qKDmaCkFQz1S39~$<5bIUsHRVC6M;H31^PMq^xqP2yu zC@771;mZv?dG3>C+YjzWRa0rX&5d21_QYe)GbqwU6ccah*6(=M^&pdqOkK>M0{+4* zO|qO#T*kV;je8@*fjA<$a$nHpRN(prQdxb1RBa>0IXI@d-CzyF(>!K(&c{N@DN=G8 z7`1hV4Y`s<5+xrDy(Z0xTz>4@b_QYZ2c+#xq;CP&R%gryjocXL>5exV~auzJ$2rXo*O+(8=vGX;gG1Q%_ za~Lbv&9*CvJ~ZKL+z09^&h3v!%?bBGEDvu7M!hT#Ox7K=0m(sCk70e9-a^v6KSr1T zms*^d<^4L8lx=&y8bpE=bU7J$Ma+dwERo_+P~*6IYZR7lB_nu-`K z`}&PL&kNta-TCsya%GZnb&ap@h*#i5%T}Yv>_yK#T^9nN@6rO}zyWC|d%`ew=}yJh zG`m~F>jM&lDuo#bf=17@P0G(-X^T)P3J1M@DrIiO;?KG7l zKpCPnQPf#aT(p-x^YCY8E?{WHZ~kUmQyDVlbbLL01}gZ_@TDs}zdbAT2ByPy4srBx zwgoF3|8(Vtjm{C*=*0OT1Q!JJA?vF(PFEaXF$+NZ*Oi-*b2kHzqL&;V%{!~&{MDHq zaNBy!6kKUN}LY*jD#*>7`6~^+_XX_g-iFSwUd$ky<&!RyIC%Y^t^%D`BFyQPYAn0;R)Wr zSLWh?Ep=yv!(uI=8q&>j$2Xy!&QW$e<0p=oqt3Wb0{i8se*oPz6K#=kA9Me~@D3%e z3H}fo6u0MgQ(fCdaK_UgNfn4y% zFE!+L-I*hyiqf5glhe7btQE)WKpL4(aA>^B=&^}C8%MPxk2fX7xEIzk&8JNxF4*z1 zf;L*vwnnT~qN(8OtWXb!R6RINEw0^eI_SV2sHp3J58hf*@DSRh&hJ|o$wj@+L=P2w04E*m0a-z+?r5Z&;eN{~lc$NBa ze<^f-rwz5jc;TUGa2H^4iZM>kqRr8jY1X}%8QgSqIZ`xT{~iZd?P+DsIKvHzJG`;L zc{7n#0ca zF~`vsqEK(a7u;M|GP8X3MOeqUrBDA$`~qoWBb_FK?^)XHR>|_A&&}Tmd)=_z+uD`t zAhV>D4g0AL%CFe|hIKZn8Dt2qI2&%%L&UaxIoZB55By0?955+Q(LYeaZN9cvLWudE z|HSy5l}VPd6L$gL{0hAYf8#U76|8R@nOnC;(%}m^XAV?_6SX)>3b?14IXJ~^MnO$h zShjB>-sY5Zlj2GLIH)P1i6g?XPj~Am}(Ucc}s)(mmYW;VvfZhXe0h9u4WqK^YPa2 zJm>%141>%9MgG-MW=G|8=6uN`}?nUx*aL=90JT5`X*%;cAJ;|cB#AWV6*?2Dhqbd z&dSG!`ZKO^fgujZQ}uMrZ7m%75ZpnjNvAHqBz0Z8w64q@;_@w}o?z+>gZ~_9Yn3%XU&cUFDG1Mf}Fz3y%H?GvvKa+ZQ z=O-k`bMHp|Zc4U^r8MR(ylbXZO!9oY@3=_U72I6(f35U=96V67iO*2zGs#&JmZk$~ zOHW5|Z~)xH_+JRB2qb)3JYWO<0&k}4faH`dn%lNBjxk0l-KB^%N>YGDv(#y;yL9;` zSh+Un`oqKy&8L&Iz&oX&pCqG41V>|Ew^iJqK*3Ox z*f_W!kT#|Vy#K2_s}6!5@C}D%F+-kpnmpSZ23uHz3x1Su-efGe?f{}RYa-^pcwd zojAD^?+GxNoE%hq=?Qy%Go^iNf}lWOZ0QJg_%gP0%n8Jm23>6GoPeoA@$^i3(~!}QqK z-YItV7rsbsMB-`9am^tqc z7T5W-Gdg?cv=|Ff!CJ{CveCWsm`<1NX3*qshp7h|UAUmj7|7Y#fiYi`A-asrG7NU@I&LP)8iE3MJ za(zQs-jeQ-E(TPxQQ+2%z2J4b-x2`J*xtUpbZj}G!0$GqM?K%bb6b-=kHNchu$VR%yQoslmO?Q zp9S=7Nzr{d0NJc1Zda0}EIr$6ADalNiAdZ?i^HeA7LmU9(=ffsz5uwW0W9|TZyO&U zJ#vh+)<#At3ql8d>8O9KVnZhpLu6GBxfVR?4CgUj5Nh;tHg15WT8BMX%=n~Ni_sj- zz^+ih`yn8{y^#QXUZI^H}Y(n}>DSq@K}sGCneDP5UqCMk%{(b-w>f0V51W-KWT zEoQ@GsyR9J&B+L|PM>lcfyBF=GVi+qHym9ir-QFK08awe%@l^E0VkJT_Yex(3sej| z>I#v&5Bpl<=)jY7RE%dxYmjRwwYK&mqyCgh>%*>d0-HDUtbr3Dk*E{Gt~!~={aOo> zb5runaofa^CuLgNpQHIHZuiF0k{ZWo)hG5Nx8i(+oBN3tj2;T@+PRZAO;~*tqcz%` za{8!U$Q`#4i7t{6%VtRUW!LFWhnoT6m<}#T0BS2yBOLLJi$?#b@$38h=FC*7p73ra zZFkcV$N$JAv}^kwlSjxYnvB0=j13;}L!b%0=vfv`+y0?;O+A)N?4$pX)Y+q6_%Wu> z=(!Hbitm?{H(?~2+d*A4N@EMFTIA#FDu>nop-FwrMb{nwskWXIJKEEzq$iy4fpG{E zlNDEO{H__=?&ef^RmZQuqwFUqHf$Pd|7Y8J&)1F+TYElHRZ2YJBh2VAq`@J$L+te* zV#NKsy902jx!y*9u}%?BrX4 zN{*2Z?(!!5LU_ClKR8!c5L$P0|5yjqzL)`i-C|c2{Nl~%a>VE{6`}j@XJR+VGYwFz z%ZkNm!p4_kaw7`>V)1);GI9+Uk(Y-nX=Bs0QTso%;HdpM{10X;+a4dEzIjY>{Hz8# zGAqIDB}K2K77Nm=3TW)U{Eu>bdjze0gcj>h375N6a$*PG5jHiL^`ef@d2OBs#(!X4 z7IFnZc_Vwof{DX}79hG5TdZ=40ZCcpI6BkWSW-RY&#vh2T>%a)zy)h$0koE*cCV6O zsC;-HSCUW@oFK7@76uXnYSX{oV2<;|jhdLAuCYgo5$GJvrHwqTIA2PTNj;83=F(n_ zi;M&~I@{jZKX!pH3NCO-+Dl1A= z@Ya9YO)HZL!88A6&)LHdP>9+(zwUjySK}CV5F(@m4pL{Fad92LzoTHKI(Z zXQ6*^7u5!pq$UKv+L$gHMOFhfS#_t!9guoWa>0h%u);^_L)djH79@G5A_bA2dO8pw z6$@>#P3Gz+imiAusQe>0oi259S9F}BTMDR5sG9f80mNTUsJ5Dp?|Y1LI(SR|X$p$D z^knTbp3F1E<(s&L*FC^5W{B^T_e}b_I$?|R5n}s6r$$cB0diQMMR;r?qXUvNMQjI- zH!4xlB2G9hxgQ`K(%8GxPI0s-*eIg%HQCt*uT>+Jp&vgxqc^3<#Se&z2C1MRKGZwS zi42OF->n?arIfSOb^u>FIwQ`k{-e4ekMQQu2r}BqxSR2}r9R`X(h#c@wY8pXo=$zy zGG$AKBPSV3f!xgk*HQxcg(3tPyLCD9kxI;Hs!35|bT2BD*(o@|cN18lR%e7;`vVh> zq#YW2(8k#D+?TV74W_BTPZ}n+`mbCs4)tsn*jHRT_0^XHCcS`{4hTxKf%XbFgJqWG zlRw{!Q7&eKBZ!>qT&gXm(2G)``$cdrBd+_kL&Msh7oLWC1(r@k>?y+Rr{Z3l54v1jfVnKf5m7yJW##Mb@#8#-vFccE zq}T31;EyJtn9_Rcie7VO|!B_jd^V?~4yJ*4en49fG)b{wE1f9F++A4-Hd=YnbAAgE4T>O z%>IMaCAMo8#j)JWb3QP*T<~b|m=i?0`giFtgMmzH_VxSfRMt@x-EFMU1@cRzJ(jHL zXSgo03(yS@R4N=`7XPb4Sz*g^yv?K;To1mTU5n?}Wt3N|9Q3u~yVZ88UV5hgtPo_7 zoFrD~zg_sPIwgy@#K!rsxfO)EeK#HR;+-kNi!PL5T}v^k%puKOEPd z#pt8L5c<7|`mzxu%Bri%@cC|WPg0BS+EzdD|(g=o47()mo zHC>_hc$H{FgPYKZs{_q9Fx{_4Ul_Fe6fxI@ZL$q$euOu9+PEqDJ$QODU;j4z?HdxN z_)K*8a0pJjtre&ko6MFRyU9F1icdR+RVZzmU1|k{$S8`J;Eg!tD_`$lm4EYm&X2!a0@@i}qpPV?b}{yO~_Ln~e+7-2^;uNr51d?ZwNolR$K$JQ%og zWy*v$N?K<+^*3rV+A&?yGhwuuB)&I((Ftr9&n?=?(WIlk!w%)AXkkh~TY`bGXMzxtx zu(zC^9?`b7q+!f&@Z0i%`OA0Nq(%}u+5nfnlS^1WBtrQ6DYKWY%_Qw&~;cq{kwmM1v0@h5*hF)~ktCNIuPR=aLYG)?P z5r$oq=N>WcWP-^ZO}x0W;vm$$_Im{a_d*=5v{lo~jn(af!@C%JL$&WidS(%BLFO7_ z_!kSS56!|AS$Ks{TdXY0Tes7<=RXfN(Ci@6vKK*c?8Sf)YE7P3S&AnUQ-Ar=u>feTV=db3WAGDDB^WnBK^rso~-h{XInKkccg zlRCQ>9_G70LlvB=5UHFvjNT?ct=$?e%6lM~g3yg@`irOBK;aji7*e?;l2(Zui z*1wM8hXq{+-@$34UNg2-#K}dz8&y3$Y(86|y$`xFppYZx&Fv6)5yy8jLpxs@UCme9 z#=WDDvYC5!k{^^ytM!IrF)p`t`cLF8I?*73<`D8i*(8>-BK4+9c5qXc@gK@v+qY`^ zekXpT9_@Apo(W84a@vAzHA{xCe4JW}Zm7M04e-IsKK@8A&*lY5K)$BrK0gykNFQy_ zjjSLu*JCv}_jkmB5}nG6om57l|Doxu!@hmC?XA`Q}AlG3TtARyh0R0aal(u#s~ zjFOymH)HfbBt}ZdNGXYd(xX1_!SC<=dvIOnI_Ek0+|PYu$@v}r=KVxR{b&_(j}~Lm z6#TwiXDv_4H`XR02X7e9;DA@O#(`^Es4?muW8?t0+{x`1n5IKpLNt}*CfyoLzd25d0=GR{bNUZp4ZcI;35K zy*CLUu6k8Nnm=e>#kIZoAj7lt^Ksr&nKO=uY)f*8Nh)F7&9(M~v6x-@<-It*A%5v2Vig4?+cV5Pa(Ss!e>vfw)_=gjg6=k&oIH z4;Ki>KRqz|;Zp|&a~oJAgT;bb2>;_U~piO>my zF?Ed@&I=BNkA(T=Mt{i!tiyrX*DO96HuZxXqZiC63fMw+cnqtNO^9Yl%M-qnua$qF-(%NCGrAtZ z_!PlC2xZJ}5kBXvyZubSiJ5RTZ^lf6w+{RNAlfxOX zAs!b#dxob<&YP)mML|z=2qkbyLq6v!K({l~v|$`!;;M_5iTFcr;_(c2_SEehf8jZc zmLrDmA+0X}D)Zs`t}2|HlaB5zAuImgwX+Wi!HjD)Zg+Fdpr`Cfm8249+>1^P*?3Qa zF*tx;nHTTBOu@b_rGUk&kIHyl7&K=wSQUUo#jxzRxRd+v)=*V!s#%TLA(PG7tDb7x z3lI|ls^wF4V%%p}!zH<$h?y*<$Mre+++Fvgq**)`Nk@y^ShdP95;=K5P_`7^?_B*s z?wPR)@wYN;xm@|N8gaRq!1$itT3J8rSc>DCpuacHKa<|{)X1mDJn>^Jlemb^_Xx`% z)SV(7>=-WBdzS)I8Xh+Aj7^%lD0!*v)f3Q{Oui)>C;0yC>BGOmV+g6O4sHMZS=D&1 z5GR*$G0F5t^)`<@e;iLPbPQWfRr`Bc!srt0HrH?<>iZ(m>uDRxxvImqnycHfUi#8F zUM$J6wR^F50QXB1&U;N|SUh8(& zE4g!Z7U)R?_;o|0LjP1>D-~aK6MdPeVau@=X({08J|}(W-yh^%Q@$2JS?9BByRlzH zzTOj6^jXjh-rh_*F-6W> z4*HAC&hv({yJhu|id-f(U7~0=-_6*n>A>dqURoPlw@2kYf@R=`SzgSS$_U4L=x{dK zmima7Hz`o2nzhnQ?3qeAsrL-@4%}dqCyg z43wdd^kfOQ{^biDt*Z4eUpN&z-4EHV%-A}u@Qhl>e{eNSx+OpcMed8EQE!UrGM-<}- z1y$6`ZUR2ZyneuPiLIx{XVem)f^rFLOub{W?D?ikSI~wghd}2MF#b%BzqzuWMSHsZ zZ4iz-^ucGxBvyiBWMARUK2f|pt>Tne$IZE!yWYZV1BW5n$exA|Ss@sZv;<~e1dQCs z>cEvxfIsV-;-ip<7c!GwOcWOuYew+N&ogkEJ>uxenD@{9b0|OT6LfPN={jFV)4t7O zriuJ9o9W6`P#mql8Qpf+yfZ2ls9&1(Zac*N+|kU#i8EK{pyvy%WyYgL{UX`qrnJ zt><>}PXq%$<+4__1Yap6l`xqHcyFaH!FiDO&^byda)8kUxw6*S*1>b9uL@=5A^Y-h*xdyaYI6k|)K zUcgOxO>U^SwzFX@eZ_6FsTkij$&TfvDmz^Jh$8pffZDnV zA6nJOem2)->n2CB%OejT;V|2pZI77$pA9GY7kA2dRch~O@|HTepauu>UGHMHFR=cP zJ$k{TMAJBw5FCnXwD&t7xgO5bY@FrS&D0RO3TUjp{VkNZUa_DYaXGrDp?h)B^6Yni z*h^ub-N0M%Sf0`HGp}V$kvn=t0r)<$QQ8WlbT=kL<>t>?Df;Q^S~RF|*ERV?XowZy z82F2p#@w1&na*H3@Ii5)@^Cu0eN)vv;3;BJG0OE(L8ZC6__N{nIR+I>e5tx%Y`<-|(k zBaDw!c8==&$?#U-50Zx=uetCk$$sN$4vM66vxl6d*xWcP0OJYAtuWKap0Q<@9}}{h zzGv6dQB<_}jzDaMi|&QQT)bR`;gi*E_}5So{l661j%MzMx^DG%TMB9je_Wnr673N) zyFVV24P5kn6$l(5;*Bmt)S2qPnw|&@-kz<+CR4;;2`hXp|IDrvgm6^6PJ;m3YA<6{ zp|9r=G!dO}(_w8n0nmi%88D~>-n47YTPle~OLl)VUg+ZUp1=?v!4yX-9T5Gd?uK`p0%m4Ss9hQK)rg=^&`z$&UPtl{Z23mPD_|YtkdySW z#fV##E1vHq4bZM^n;Tw1|2E99scn;RQA&CuZ1|@tL?}I0``y)|r}WJnb1FB_&d8sV zAwZ>ABXs?BRJe>UsH_vrIg6eJOldfpm#|WUvT(Sf9K2jE8U3Jn;CfG1TF~$m%)R#y zqR7;2x0M8?tBi=3sMoyF`pZbU;7!BU1uL0f&6VPi4Y@W(ZfW{6N+v0nbKMjyEo36RD`z%eTU4e32&*vNrY~Nuj(%yxh|MR396Dcoe1g@+|6Az`f;;hie(@TR?t?Iz) z`m2t)n>C#jTh15e9BbM;t}Go@z$Sil;s?fow_?! zCtwA$PSs#Vgpxu)L-_P!5&hxWU-J5^vb_!7Sy%MXE_K~P0w4I0orK->Xzf0JfUlso za;QIj$HMjNGmLX|LJWoM!kPQFk#a7 z0mI3fpbJ0OCQ6-O?Jyvok~}&u6mza~jtGE(R-EcZ#OfDris=ot+Oj0Q`HH+eg1LIH z^DU#P#CglL0T|v7aaW8}b(9`8WYn?H=+ocrxSZIC#;90P=TDL3Alq5w^cJ<=Qx3HS zNtCjF2oa^QJY|;g1X~qfR!DamoeSv9=?FtbFATGmWcxn*n+zKGosx;oRRwjhfmwUx zt3Ll2Gz8@4Bi-vIHX*P{y%z@U#xYih2a}-6Sa#Jy@}4$HCj)e4jebE$jH>ZeQQ8(w z>m)?OA$LM6MXk%RrNe^~91AR-!5%A?cgf6=fh2HD7or)_l~6J0QeKs%a&eB6iw|#g z>lAQC=0^XA#d*8W(z^4W*Xh2X(*;uLoh1RCF z)y>hi;Rc7?+r=Ix~ z-w*ABlu7rUPXiCYAGLv&Y+*Jlx1K;&dN5lHJKV3Fj-*gzQO%Zv({<+8a{m}o)~3-w zZr^KGG*JO2P$cNGWYy979Ox&#Dgp;`7q!?2o}F(tcjxUb#1-_22~Z86xmlUBCV7R5 zEH(az)j+;MS|y1C`6BweW)Cp>WyCI-1&+uzu8g`38O=YYUU0oODKLgFBv~wL`{t|S zy*2(DDKMMc+xga5KgBY@#Sb3L4n$i6wKA-c=Q|Hv+n4j9B&Of(#)W)7bP>5KynyaQ z8!c=1va_*I3JVw?!#V;~fNE2#C!FJOLe?j}gFEzDV4UDz$gS*`v|n0a!5JDI;#p6B zVeIVe$eU&=XOb5)`#{a*7FV$3>9%e`YDe(g;Zy^|nZy%YqWg1m%d$M`bIc89YH=+% zeKK<||gW>J&vZuTNr{me_!YfAXSUO_wqli2$@V{X;^!VrVHE8UU67K+bHu}<0Q;vE#B4Wv+bXgr8SJ8wK>C`1x<-@ zGxxx|7M4SUv!_xd@WG<#8L#q!^7-UD-QqcfX7`|nap&d{vaN9vewz+V>_HflnPmP;} zcV?rxHka6$8palPWAl0leeN0&po$GKT;Yxb_r+bdl3#C2TafyS`Pj4s8rssx4)s;I3Fj;x0!^o_^CdMV zFD#wU9x=?qiDaE)oVwW|>#t0WBJWEX?9c4pJAGSA<)I7BK(}ICFA{f4_n6WHQAi@D zD5-dPQPrq|Xf0Ri;xu+hBm&&__U4`9jgR0FVDLJ9ousFyv7#+*GVX#opcwNKsGAPo zw>#Kc(3%?uUYSAff6>yoN&WE7(cn2&118;Ar($2vG`U;PcpjaIO~}g(hVr?DyEwUF z{5e)FOjX~#KX@&bXORWk;Se-cu?jT?qz}S#uJsl|jk3A|jlOxS>D*%-$)jJh&rQ27 z33bkH;px{{h6kAl#{x{fG>k~kg9}dVnQGjOFkKM!V$eDZ^pWZlUHrHr&L?bsdDjZ! ziubta2ml3B_r?SU+PA4v-#WIxMrnU_Ag30Wq*3FZT4jD|FdYano)4)sfnj{$8y$gl z3UhtfWieI_LoNafK+(F;3Xw|6;t|pejy|xKvEtuG6AI`bh>1 z#&8#UMb+`@Qr6}9_Ot5mEFXyW&Ja-G^dU;6#R`3@v2UThM81f`F+OTwCFX7q6*b63 z*)tb$j!rhrf;vHe?(66|iynbOYHkU{W)H%&T}>lrEV3@T37^MP9SQWw94*Fg6F5w)T!G3@`?LbL2-POr%qS}2ON9?ipx6Kfvk>2t1?N9po+m63GZ_IS(Cod{b zkIgx2ewny5_~D)XAXm(JBDxaJC(79p%C^W5z@nIAXla<;0dnWC<>tgmF9`N%sQ%#uAK z{w=aGng9T@lv>uMP&5H15I?OpU{yq;Y8m$f+$%N2-HEX}UD^55N2)SWIT`6)I{N&P z1xv)e1V3r2at%eH3B|49>_aM!bQ2VC#Up75+tN@?5YN3P3KnZqeMomKKlG*<3(G|) z7(D$CWOJb{UNo;aze}V3fY4tx;A9S_8k-&nO*!C_upS9?fwWts${`xZL07*UK~cil zo6NESE|QmQTEXHf{b#|$AIy8@d?5`ye5_5n62|Lwo_JG}nT`GiXeQJiOTB)Zxm8C^ zp;7wssnWftW{qg63;q3Tt0~+WtXMl`B-A#Lfe(`cZWscK#$U++so?>%D?JJI2+Ixb}GuM7J zNZ{|(8V4-gy#0p-fjKb73qsd;Cbuf7xeFE%Gc?+AjqqLK_kyKzUn%VuA$T25IkG$O z9jcOLWP6q;7!=$(rgE$v^jPj_*!%rD4qim>hRH)ip5qd^%MI+4ykn^&AK2Yx{((84 zi3RA-mus>Ht6dFu!Qwdb7C2;=gU3X4c-c}eL1hf|Jv%D^fD$0}*Xo*@5_>=a-Y?XX zD28q!wB9k6SLVe_2Psp5$-pMvmk7%2$LGwD8xV$a1GTNI4MOq@^&7rOqe=de(c;*m z<(_iDr+h91&0Bz`3V}HfOMt7NWd2p+4Rk(43!dHiC$v_e$I8;`X;<}8lb$JU)vR6U z`f2{Ft&OxU^6Je0&&`AVHC))x2fpaLDqyDs zMy3zZk!zyZSQ5_ELccd|yIMJQ0>?`ImMf?MmU|~W^SxF7876J)USEFiu@(LYv(6LY zxP5hn>X72RG6cZxT%9I?`+x2D-fzW)W3S3&6N z!1MI6wJ1U8ynEvvW~EF)QO!i0Z03cBW7IvuRzY8vR%iOY$LLzhs)U=+0IfY0H7lfN~SXS%HaQ~9j81C-v;X5LXhCf`#~lR z|KKkzdpd#|;EpOl(XM-)sFft^jkwh!J+?Wg|7uO7ao@3IK0J7(oBZ;8fbu54V|k?z zpr&{=_5eH*c($Xkqe@0bOKBG1(*lAImKD}99UVSbqn;#pN9Jr;=*ODoqLB&ob$%s+ z3@*BB@=DE*s9OM3sT zS@5OuTd><8i;E{{aF37lG?`(07tcA~k22eD`g$|}n&?#=#(Dwp8M+^Gz_V32;@sa> zFwyQCwDD6@@{H+t4O9tG3GUnt;#&@GN$Lr}=De|wxCgPYD!^}w@O@5E`5_@=jGMh0 z?|7@hEf8f=Ga48?;H!ZuUg6ojJ+q)bw$Y5~zFAGEp0Yp6p+ozo58}5+W&BF06tquK+loie7NxI&lH~Qge4D#Ns-v49^0txT)R6Y9 zNTMaDlksk-a=s9SL3{rZO*q1+!L%ALTD#q>D3*lvAR8vH9kap~*BNBca?OEC3&$Ok z3EYU;xw78wy^EYkd~6@foY73%9~8S@B{i60o}Lxz8}pY&$p6ev(8)qtye^eBU&D`Lxy8Qec;wZzCrB>d8FXC z4n$Qir>_R(ZUL-{Ou__E>H%0=&TBF;Eq1Dx2L!_XOc|$gQ=`x)7>Z7Sdr2u?*lKD; zAk?Ecl-y7iTW$oz>$Kc8>=Ol9TBj?3=<@?c-xs*d1D4Ae;+gM4LZi#yTk~A6b5+y7-!iVP{&~5`wZW7UJM<9)_AQyB5530L;yV%HT$5jN?+jWORA*HaXTaZ| z*VVbJ&wUlfe=_Gf-(M;Qv7FJ;odA?oEuKsNTv+$k7yW*eS2YJ;hY?^SI%NX&Mhx!q zk607oXu$r2siSfvY_PePGxkAx@8hM-E#+e6DeA678Ku&^gV+OdlX>J{sJGUhGf3ls zWk0gBpPUs=D_6~)0@kZ))kEOr>vQO8@{j0=vdnkB$>H2m*dIa_L|(uSLob}r7g5LN zE7O~ZRcSZxE|hXn{CI=?BO>y^kQ6T~&S2LIN`O6{ae#y%cK-LE>vcDITR34l1XV?bs7T|(hHI>u##|u_<~U_Rm0F5rga3Pvw6Be z?iDa3|M2Z)?z!F#VwN%vr`M_MuMmNrt}Hz0gwX!XaoLLNyPvpx1AS0;Dme|7=EScf z^D5loY9z>;;84PFI&rtQpyf(9&q`MD|MZs}@jTOc{#`6K5+j8lJOcx6Q+W#ymb0$Y zdNx}(Ezox)A6tus)cDJfM_nl_5iD?wVh*7|MNp@^$pv<%&TY*`BPepuvFZ8M##@e$ z8hyeQQ^CO*x#~6Xn1+t!55vF5sJLbIA{m5LXBUastG0p6Z36}udZ9Lm+5=Kz5ba|cDwJsFy z4jnP5;Q7y9}r~OO!s_MB^vtfqVB_2&I<> zb|!ZWAuGV{;;hYC&hfpo{N5w~wLqljPdSX+Be7J-*#F^Sz;VC$Q_J#YP|RYp+0~LH zM&QwlL{&{C*Rp|j`q-6CvX@5bz2iW8L$^1oyu_p1dkJY z6R=^-FPIlrr3)VVIU3WLh9*}mr zg?+t@e{gF+fj9O5L3SCc$=E;n+s>U(|EtLy&600#Zq-dFX~ zEZKkjSFv;PG^syih~~FvWqkGOd*3~_H(3M2{^{+gfuFs)8O0ckxSZCqVHn}@B}<;A zJ?jtcD^P28(`>kp(M!l;Xa6fMQR_qhj?QkCq^Hdz!L4)J#n^cLCA1e}k~F64225Yu z$W_KxwyCZzdW@_6hgDIeE+5Gq$Mp)kR%*+rWhW=x?2cgQCw( zqz+^*v!m^qD&?k4JQCK3u1(Pz`}$m)FA_JS^ggvg`|=Lh2&hG_DkYW>fqu-lt%dua z<;^ti*?*6PhTG;rIQGWq9ZrACf~p)s3uU3-%y<|VcL zk)Q4lR||XI-#7*oJS~N?WJ7NEaEjI0pR_1~G_z`(J_CabgvWv<+5;W?Q=DbzNA*jz zjCfNA*9+pMWoOP%ijDQHI#@?Xo#A0<4tAZGNL}Jn2<|&vne0HH{LOsB1d;1zJU1O& zH4Iw&fcWjl49a+ob=LPgqoKN^IY@`3!e+jQx}GN4mp6RYYc|hfXbp)m)`gw{q2a7z zrgQem=Q`>Fac#{z{fq>~u%GsS#+&|N9pLZe_Mha%&oF)d^c5Q4jK>YkuDSo<>82M3GPc6LY0xa&O~4(q}@ zPyAIT60yoI({!OW=Ll&QA+hC13fw;I`j3!j(t8JZx_#L`5A##Z97TGmi5@<^8=s8} zwXB>`g#Mo(p7+dz7Ab1Obgl=u|Zg9w4%R;OaA=Y0_To0O=I9Ak`-Sx3y|TTq7g;YqP8bSQi?3|oY7 zB|e&9vZ@=CZw=LSAD{?K!)~mk*88v+))BRbVhran8W$Zb>Lx+T(PB74p_=tfn;$kl z(n(<*5%e?thgE{1l5Bg-Kr7l0`=fJ@^9yME;y^xikcoR^2&5CBaZ_4Anz60&(D5k*}VA8{<+Rlko2z~fF5oqn43&Fc=2>&HPLf~ zdHmK14*1z0OjzGPkP2e>2=@!M23Q^WvMPDHf#ZN{an{+;V@TR5s zE2%_(J(DNye(<4^MzW`9PthV(o`=1mE#~6K_Q+iqrO4nFn zyLVW(PeQWw{U|F{#F7eCvTHdK)h($Nb#-#&owzRX%e63?wAU?j>Z78#!GHIjjdRf6 zvlh&_+HB30-tOe7Q%@tWYI<>xFCb$3`UGG+3~M=)^hA){QVY*6KcN%;md6+H%Ftl6 z9tGeAt*)=YBtB0Me2gvbSJ7*u_vkO;h;qqTil(FeLw+|aS3B2F7W#<1?ME%#b0{JOSx!Faq+oF|0z>E1K{z?(eX zQFl?+b(Uy$#G;Z*>^jc&U{%XG~rzAif8VIm=&dr1#FtzJEWJ__<|x_o*1m z(*w$aG@EifMG4&TsqN*gxvbq+t#oB+f0RWd=nz z-J)3!gCw_`NWa&fQSg1izSwuSJDLz3omCwVv_Y^og-Un=H|{f01v{Fu6X0`eF5lPO z0>>uS0i#z~eKd56lYc7bOykJvgJAaY{#|Db0l_@?n4N|3aZM@CBc3q=#Mb469qn%0 zS>sDdn^YXK!~mnJFF#WwMah4gwI=);QyeOy;R%RC$Ue2PPm_`cv~tR#(!B#XwamQz zYm>|w&a2CroH$^{g!F*(#s54 zC*NPL!eIMVn9=m)oUzqI+q%o3MIR#Ouu6qd)4}ZA@XD)9eN0-c(9~tIsohK{fiXUV zEd6j##CI4a#df#9-ifUvt|XG_YhJ+SM;Oe~US0x9s`=N;tc?u!%bSgD`!|6jZ1OCz zzCABS{RfUBKNhL|tr&ihSbgw506t+i0r}y+$PB3B(^!Y>isN{%XLEJJi%LzTeg{7I&?I|?8eKz<=CPt)fh2BsE zxz1j5apN*q4y}LlwMkL(mjCyESaS*r(_&_J^sAk@5(Bq;*&(SXR3&I01ITVtx6yM$ zFoS$4{)Dm&9(zrP$5Yz;IsCzL^}Sgc%`%e zC%=$+AY0${N@C;mB(FpD>%}__R?p}AG7~&$(xy^|L1EePIXpzWTBM_T@SGoxQBp`G z_Rg)iXh*cR88xdv7X7PO(q#68;}L?2N24)4vBgu}9tmpCO7PgPGtZk}=f`_#SqJC9yYS_h4B{@@P`1fIg|YhKQX zuRjq~Xw~3+oD7+`R9gD7Jl~&VTSPoqOx+aMJP9z)WAm-kOda1KZTpZ328 zMmn@L+S755bYyqqu{VDvJK0KI*U?P&)k+hZAj;JR9WrUv@HG}$%M3af0>PddAxCZS z0^#03lS-_lsI%_`s;Hy!T#|Z+mih0YBi{V4=eas>Tzmdj>w+V_r!1zcmz)O=-Nw}n zEqSJWSPp45_04ax<@|XMmkXTi=VDy-841tzF>F_ysl%OWh99*z=Q(^|+mswt#A)!z z)CM~O58lN)x5XX>v`0X)@XUJ|`kG+2rX0=BWeDM%&C_y`Y(0k2KQLaXN|Gpf*DvL^ zbD#JU`$cq~P{?&T@NFLsRs~=SWuM{u6$WgmLE$DN!+0vdp z*t}_X$HFGK4R^|5y80RtG@~h+Vo&1k)Vnw1o*M|PlJA?YnAFdCA0%0(FBAOLJdUJI z^NiXdL9H$RXJs7N-JhhR%S_~}*ah(f1b;*9hsR>{7v8CMSeriNG;1RaqYQmRNUn!y zqf-Si3$|^8koW>+<4dcvf)X|RQW=7SDs&Y$#2^l0J#<#_W#A1NR?AGK0M zJ0E-`949@UpJ!}+l46Il&}{E0T!t=cJT-VeE{>pD%#eFpBA0&t3badRVF4N0()m8a zoKAsE>g)3N#E#~ksc93gD{u6H{fe}UDUq6} zqO2*<1pqi($D{0}8?DZ#7X*Ka*4n89NPjRB?#TrCC7R9kdx?f?Bo4S8WQ)*pP%ZSx z5kD@oHMFeI2bW3;UEh~$oE>RPEYr}W4S@JL3%7!ok9_!sCik<;XpW!F)|)N{=U+~M zC!Qp#j21|Ro5cU3T;v}K$1m$kY0`NVa8eBH3&e80qfw4#W0C&ok$xtSpagrWfEV~~ zzli^7J6pM622P&Mn>JWzbSR?&6=*M){vv&CgyQ9doK`UkwWzgLQ){_sE_cAiXH4)p zk;dWe?cPBXu43tXt*~QVsvy3C56C)^lF05+m}W{5uZr5Nm6x^e*c+RjEjGtd!R)id`!e4S9!wYRLq?^QO>$5D}lsu$@)hO$nSG zeuFWr&mJ}8Qyte9@IL3|2A=PenQ$$vn}i6wZ?0T6WhP9FkHSP8(nckNpL?TT>rYy- z20{w?(D0A%cfBBrG8ljT3Uj$EO-+%|UzPu0MW$;JG2SU3yXp>1b>{Ox8BkD-+q(J8 z@{CHoi>tgHJe6%Lc%>B%5`8{qw-F*${{9QcUN3-jX*=Ac3Qg@8+S5E1y)cMnf}ewh zzy<()veI1J?ej!Wi5(pC&NiOO3o5#KJu7`e_7^=-_C1d7=q8*43iAEzF4XD1r6S`~ zr+4NySP-qf+p#;b6^hXgim6@dhaK9x3Xpw1*YkNxt}J|SCq5M0luxISN;*gvLV9fk zBme=-^1uN4B*)nWvjsyt8zPvG9TJ;zz}~Ko%@f1E4dtXu(kqOuZXR6+8~WLsJgq;M zjz|2Z5pT2(Oy~FNxe#PVO(Ak|;>$(z<>n(hmVI4x-1d z*ztfjD02<{Jd1X=tKdws*~2VGzK7+TF3Zj$0V~Uum?B^Sd!)%MW#4(Nv$1S@OEo)@ zlVKcs>-%wHU4}xc-r^~dx8%hBntySh*iO!>n!Sw@`qK=yd z5zqA82FEys9X*wt)k8}r?HjrSK(JIc$t^9of)Phso6S$WqwiB&rBP zUKe9pehwcbx)3#+M*5}_+6Z0Cds;!5J)NI=bD3n)RC8|Fx#_n-ZrzWQYZ#DHL)Tb)M!q#_e?g-W= zGBXnpmP3BkW@Yew$$Q>QGP&)Z+T4p#^o86w41*_f)K#-C3JXZkfC^7;WstBp%l*+n z^kpFpT=eDlz&v`>FiG|A_;{X#9{+oxW^QGl$?G&?s(sS8)9hXcQeg= ztQ=F$nL6}DGTbKqU7Pvb2YXoT(?^O6iMQU;qaNF{7DFWqL5bHynv{j#&_i@Q9j*tj z669_%_2Ox=G2V@mPceN`uFMkl8C)JuHlS9`bmbnY(w-#;C2q@TabO72@`?W?Gh8^| zC}6${Y1;-C_o91CYpPY)I`gZFx(z z=va0g&6E}3eo0!jt}1sb@q4Qeg%m%{?@x7!T8+mWeuAHS@a%~BJBvbUP)hQvtZ}iX zD`AsRjL68gqKeI~@n)nEch zfVLjB6b#XtbIsvwgQfizN{_fwx$ZPnQr!R1LW?%z(KIfEPspAoZzW$fa-*!7<^{}C z(sEv7SQ__ZL>E!u*_XzPNOzL`hO&nbe?PIC`|wcsu~OG{;B=X_U=^$(eHmjz{+ZoO z?R|;cEt+TV$dgq|B3J4}E8~YJa|5_?U*vc|dwP-ycyrQF)ErUeJ?fR^UMZvkpnoMJ zjux()trTAXb{r8vwCXBUc*vI_;0Y8O?jFIEnol>|4>v6Qb{{c+D>vL-7?ExJKWsBu z=K8z>Z`q~hoE702dXXkKoG!wh7D0p}(k9XpwQiSZwmmnwS|F3kgXEVRyH2c|7G zrpoYq4#k(`@2a+toB)5CtC0C=0*i_ZTVuW-q5ZH@mgG?lsnRX|aFm}5+zjxZmBHwi zIL|VtD@vs`?kd_#v0 ztzh$H?HXVCvwxJMu}xA}9pj#dmm9fyK?0X-){g&PH~*vSxHp{KPLi+5~QeN&$p9=D>Yv>AW4_+Np&qAdKI<~2!JEW~St8^L_rQln5&4SA4tt5CDY zmch({Btor_3UcxmGB*UM9Vt&2OKES?b#fA^h@V|)&$E}jE1dDL(l-XB_+4vwq_`5e z?L)Oe?f+qs&^?&mXpMuP6*UTfN#m`t)v)Jya_+u?icL`OW|>S7SFfsRI-3Ug5x#epv+{XlC5Xb%M`3N_ zn0>K%EA2N-&~gtS4|ftEo@P(Jq_J)JNX;jKA-AvIb!Z83+D5J)mz{nsm$R~}OI`L> zIhXZg&UKzw*|VmjZO?=g3w6vMv|aJB&WOO_jp@8Bw-l!13e4DRx<(_i+Sn9!n?&@?Oc;Cr_pzdzsEM{ddk;mne!E7~{lm*l)2vWuQM9W1N} zO~<&(%UHMqx;RBxHOZH=LUWe}q^m+6Vf_JB+Y&z(mcc{l?(XUjVf6-kwk zd#9nvRCN|DuJ%!*qQ<+I+QXiTZM54z^#onOZPzQ;_qe6qLzd2`lNnWizjU|d-MGpB zbtc|_UDpI+Tfz-?kY?&A)wtHZZ0bfo!6Y}uogKYkWZL}xn?{n5GR9Rxtq*_C!~4D5 z!w)}yrC0;HBS2AR&b_>Jr|1haAVQ5)^?0P}XzN;8u)@vWp!qJim#bjJ?aucArh;8BcR=dr zDt``~@jIl|i}x&iw$Bz_Tv0bo$ZGwehy~{5syW6WE^wrDgkPP2Di(7ND_x6jC$*fG z@ef{i=#Qg^jq5PNy#4m9984KydO8}_P>7h1p+WEgKyF7;&up2_sxMTcSSAZu>xqyt zF=;G+vw>GkF9p;8uuK4SulQSX6G}cn%>?oFH;fJkP z9c_ZPT54L^XiWH}#!+;58qgs#6x#CE5*XlobM$AAIDRfXEx0dNp>kZrEg!RL929p| ze*~%!_uLGS7hDNut3)vWh>$v{27m+W^yz@$Q>ceMAG^aERD0ITRJ09W#-h^x44&k=fI4+Q!!-R34k{ch!@k-OWzWA z&3$6j^ED1rXuGj^fYWZhNk{$q_f}W~XtQbMJ*v#_KP=L}@(P=!<`$KnYDI;bSeYb> z?-IWmMFs7Bkv^3(2s%pO25c@}Fk2cNOsmUgq2g+kz{p80(N{DwWdZ3!6nTVjYEiJ% zO7v8>g#M{wG`_j=3*|ic5%nB4bc8`JgFecMWLc~;JWX~M)O&$l8!15HWy5fq2)K~K zRaTPD;d^XFMk><%qt;F1!N2Hb=bvO!h-hWxV@do}gZlPn9RS~5L{9I=1FBji0RME5 z@ks!^ zHO+S5N0wBR)th#`EcI!sv2pu9wBPBh*xXahD4Tf&JH2rLPUvw}h6S|u9s9!GxkOoU zQ-VXvR-1W3naE^uE{sJAcQ-Gh<^G>V=e(Yiw|S=x6uS)d#4a)K6x(bBvyk_^9+T>0 z`%K5>CQChV%`b125C2EJJ*GO~+L(!2*(9M^zjzoCtZJ&Gv9EAEp^oYHa zLT=JWy5q{n{Upi~0vAe!@1CYF#)#}pm@TKrD%(+fAc!nxX|mR3ssXw}N=Exv3yPId zS(|Pp6{x19|FFcg!Nt21T>@AsLuW?D3r2s%huqvl9=-X^do0#cvka2V=bncj1gM=R zYJfME1W z{dvt5a*k{i>(&S2XVO^}A{x2@cJ+77cR7egY=8Sr64ob_-`L!L=%&W;Xk~YeR?ZvQ zzizmd(ip&fq2~VMYquu`b^#1gR2<)r0`P>{=wIpRIW3v8#Ym!ou6U216q6-ICgKHe zI;!qsl?0k{vszj!n-5BUz4*SCyDJZ!;q@!|{;w=m#PaYUBr=>U+rk8Ay!pr#t6R#P(|-Hh*NU_Ls=M z%(7H~dOr5ai#Ashj($Sv-@a$%DGNbE!H$>8?6|XlqiBznNvew5ZUTi-CMV)jP*=rT zzbQB=O)-bWpwzF^YW_ZSn3c4U2C%D|n40=Vc7v3c4^A)uP-bdmM}8kdcr zj}EAvGUoZbc7}@0Sp3f;5xjm@me{UAw-HEAwghn($&q5sGl;45Htv-+^pXv>=WtfDNE5` z>>^29a+kAIIR>qqrr)B-Ip1%hHa&06z?34$q)`zJ>9<~x?B^L4_Y zqHjI7@LZJH%uo18DhZQ(f)T)aTvu~o+*Qv>*h$*8PZzX&rTLel@6Bh zp-!S_4;_%m=g2CbyMMvr4;W3V!18@S+dc4>dT;Jy{F0082uIrg1fLV*TStJ8@Ul+l zk6h0akIzrmJcklx?6KjtUA_A4jF)#sKXT^I{}~)(=#51fyg&`E^N$A~dLcPN-sJLG za?JdP_2+2zNI;VSV+|ldJD8*qF@gw3Vs$X>aUvd}Jm!WkWxaI)(0;l97)#SO`&YfZ zevpbTU}kyi_$Z1-%4p+O8Tvi1kJkbzlm(!<$5zMQZFfl1qv$~U$4JI9t8%m2i^C7n z*Zf9Opv;ATL>-5etfvp^uEndxSDvc;<)Lu2LxP81&m)gTZ-uFB&LQ9^WdVnY0|V4_ z&6R^wjwLS#!qV({`EDrxV2yQfZKNw!Ts6L^zhH)7Ivf;~+juuEC4R2(3eY?wm6!3k zaoPx49;*g`I)+Oxgmg#}1AC@8c%ywjxdkFIK({Wnw-B+F1-ezW;xOf}}`GN=SE(lrHIR5$PT!IVpo?Bb1cx z?i@&ifH1m|ZXFGS_wV@m{{DdNadvi}`&{>ZJ@4mB)0+?Y>@yN-Loc9_;hNktJg7TZ z1QpU=eA(J*J+>F7khY9)yk8uusZ*jDHp6+l%M#Xr5wEftpFN$-Q3?qJN*9@cma|(# z#uQVN3>jcE4@@lnx-EpRW#5B;wqk*$ zWwS&m3oijP)|bx3HRH3u7cgoPD#eTu(cciFUm?{|x?tg)R5YRSz4RtKWmQkFVa%49 zU!R6YIO!~ffp<~VV-yy{KKB&AHBtYLqX4ua5iB5D>X1eCv&Ki=nl}V*?*7VqdqIw? z$IU_&yb{FtLS%H;09KQA-jH%*X8wguct65uXx8wH|S|wylGly(pqz+ zhQVqY>V_$Ar{Z|`430ce1esUVVPHwROA;N~8OQ$zs@^c=5(#ZWn^vwIyYXG~{0AcW z)$#Jt7dPb{Ns~HHH85lLOquiL{w?#%EMSpo>UK?-zGDFJ^V82hr09e`h-2kgTOVrY zH~<;aK{!mEZU2h32c}nT<%xI|?%f!uvk8_hpV9@>+mOZNnTvmksG$nHFWb*%vXAOS zO_F<7BBC}A1UbYwf+prp@s)Yk_+T@sQr~EHVB~(X0Y9PdZ)Z4@-&Ra!9E!po6PP&?{!JUCS7YSW~q#k5b*jkSGh%;q0i1f2@ic#oN0f9fT1JQOO zLGL-?Pc#WEVIN>?KIHC>DHkQzM9Dt+1FoSP~gq%W6UbB+Rhoj27xjtNr%#Znkxx^PXEH zSM3~3j@PWkf=}CoURB?mMw{gxd?Cx>Zk5{FP`~JT@XhEP5L7Zq<70HaBZ>8;DmTZH zFR&Mx_l~~-4%!2wOW#ek<~;V8CsjK14dm4rog6-k=2a8<@ZIRI?A|#5deYi+RC@8z z@B zn_!3|Bz33}Oa>)V)lk!TB~8T;^==NXh7^#*ei{UN-_lMm9~BCcpW*p{+5Dy7@83@0 z*H+Sy6aNZV;0Nqk=}z;{DEME0^2TUv=^21dSUl&&%9k%@*{1yPgoSvtxs$EtOSny4 zFSjJd0FDh{MPm($BmP{@o&fTd74n+6*>jxT+*AEYc@;tQYCk8?y=>CDjiVS-M`k~(_q8Ge&!uH%<_i77Wh@_>YKKIci4Tw-Jmz| z1-r7lQ}KD^Z#gmDsd2zP!}rkVL7()DX;kAPB)t%f4$a!LpF1&<-hg#JYlHE#cVmOj z(50=Iw4aZEaEXsYi1onTr)v?WY`L#(yG)KH+K+{!$0)B{4pCA zTdV`~LEtpjvL`Pd2k-oeD)u=o{q$0c58LNj515|!z{VQtR@aB}rC>n*mMa9T5X*2D z&moz6@;deyXM_g4tr84~r+~Xs71eU|wd|ChGE@*G`%(ajBQ2So#kp+E>Hl&oZl?}C z29uzm!rpQ~{0bGp@aoTgM*THhnap=F$Wx{x)WC#l4_zEvByL&o5lj4h|NQcIdK;^& z2DYo87&T)J)wt?`@!VoYn*4Dt%bOG@8aAozo1sD3Y3S{N9IX1Q8Uu%ZEL7${koJEd zOC}Neldp@{`rSA2psQTs@1e)mV8&-+B)2)C9F^GJ$_gY1Q1&J~M_WO`|LG4VQ}G0r z>~^*8i8BDiFiX&T62|S784>cw?oowvmBs1Cv^eb-!nrxESoPxeR%rc zH@$FhYIbk*0>e+l2PbKB+QR_A>iE1sm@&pXAderxk3k;Bm7P<)t6I(feg;0e2$9*F zpbH5CV7(BIm)ocs?&$p*rhfEKa00ub?S)t&BtwC@ciR%o3y4cBAemi21r@_(W(e=f|g-nPGWq!$_BLp}A@; z#Me?YLcu4KDZ@6+SbncI4*_M?oS6^lawRuA>6^u+Fm7ci-!DDZBu&&aEnIO%l4-A3 zpPR9V^t7*Pyy3%TF|BH;zYS5S5!LSTfX!;}iC}}_m2iKSc*b~KKtfAw@yzR-EQ1{; z6{XvZRBdXVZ+?Fg^G;8p9Jf-Q!xKIels7X>0UX(U3* z)MQl(~US^XkY%B6s&%oI82Sd#y7gvL9%rVq=sddcvw)4>2GK{Ax zj^Fw5Ji8q{z?+Cdv6@Atg8Fa7sly*6NnlPqa!eN;++Ug)``;g)j%(i>s)ccTw!HnB zA90mHwOcx&Yv?m#WFyS0wIi2F586ujk)2A2%Nj;KI`I7&P?H|t=xfN$$0~5xZEKll zo{bB{%Z?K&D4Hg5bC&ODWD+F1tpq_6x&-txUVR#*qVaq7{`V^hhlJ4xtt+K-mUjZB zmc?|J|Cr!i6+Np>0_sHW_ng|RAWW5NZ7XP@c^yYX^aM>nxaOzr_2AxWeRSFD)vZU$ z3S1@Fb{gl*z&h!naE0`t3U)pJRD^X{S=4$E`{@)6;E zc5M#KosxUP4V+^HS=xU#OYXYnFCX%Xy`+aW8-UEmaAjo`>wUF7k&=ZMAdD7rx~~Kn zIYav9PvT9~lzBzBAm%y6*AFk#&G1wMpFZAb5Zp?|YIeU5G!*fQ%hpp%YN1}HVMCNm zcx>yJkT0O361`!9;u8#M8xLfXVPw#Ye~f=!zX{8gno**2i9rJ|-U z7QV&gHIr~N;`*qg`l3EIFhRSLPJ~*bgkz^k3wh-o7Q2ZmqNI?FVj)1cuHT2;0n9XSUhEckvO(r<)@JrBkbc-zVqFSFj?IkPibtSvdFXe@w{(4*s)8JTV3OBv=Yml zBAmireiT{l72iMsC$NKzi!-OtX%~V_4DWx@7$l+2dVs-0O6T6EyuHNLV&k=jj=$i& z?#gWQ_&Z?n)wT^NcEa;jWoWE{EN%W%l)*v{I+zN_PA-) z3S7@{Lg%YE;ibBerjwcM3A3tG;9!SJl2!wM{f@b^W>s1|J^gsj@EGEo6a^*+QoVgz z&ZM}pKEqYLy8?I4nDFq7mIGa$U1_vbN^@Vzo3k8NC}E@?xzv2J-_@paHG@F8kh6t{ zm}|<|TF}I_%h7%sWmjB`>v zOEqLtK005%nQcBI(&`ovfE)xDik&%{yV39JM>UKV`nwGARAiZ69jBsfy&=$bfhgvwfFxr_6`sLc^2*;bm9|O_%M&{Q+(ARejT{R)0odq$gFmrwYfYo!_E$rm za+T@t<2-Zu#t!7Hx$4HZ=z)Hdr&OOm5DxXAU6xH~U!(fDB`g|#C$C&UnuQV4^2w<$ z#tV{h?KO?B{MSGX$GD?`cMkfsWu!Q;6&-J>LsT)wK=BVf9W03DrikvuC{~LKO*b0 zm_kqF`)cDAtkFq5+H?zC96z{}C32?Fa~A!z@qDX7FgSvxEU`Xic>S5sa5W}5U+P;9 z1*I`+(^EGiL}2TTI@yML!Pc=f<;ax_O6Wo2y@v5$=+W5kgvammjq9g7R367kkB)j^ zo-`*dD#tjZ^l?QWAIQVa-ei;5pO=ZZOhU{r)aNed^ur4{=L*&vl2aP?LxgV_GHyG6 zm^pitEzWzGu(nR;6UvP3yWp8E^06@p$G*Qfua*@0F`mlnlX?uSK$m8Uf$%;26EVZ7 zw8mH;EpPS94#&X-ByisfCcZ+~i)Dzj4>vwf@l;&3U5AEnyw+zPTC#n2{3KSY5Wl~$n7OmNz{w`3t3Cyi6#7A z1Qv8Xv5V@yPDY}aFW!y2i+C@+s-sQhYvQ4hwu|d0XLU~sH9MM^Ki}&~!lJJ^Gs&YT zI^Okp&Kk_p>-EnT6Zy^6>taI%XQ8s51&>o+>n$$?abj1GEBg%4{nF3aVl(Md^I2fb>`^gmXpfF5*h~ty;Or>b;T(M}#)P74rjY#Hsq~ zYmOY9$KHEEv-CX$C8JOXu3Y$X{OF2{Vs$-PCgGl|I554Pfs_ zNF*$38&>~-g$&c^ccg-Ok@_=Y9YSNzLvkL>v<6s?<4KEWlO07zqtjHv-iQC%VZ=hL4K!hr<5JMI996huv*S* zazCkDmG#^kf=m@WzI0SUdB1DYvHH=aI@9>!q{ckp2T4*#!&H;ZR|R9Ryof>N$$*ws zZ9cupJ<9%RJ}ZMQ2iLGX1Grf)|MbtE=;f7e_Da?9)=Wxayh{|rJA)Uy-ek_iZ^^LG zWlkGY+xapb$-qjWC52&ckh7|Q)#wRuwPxn4|AX{6VCK$6lBr#$7yi*SACoH_aTi>u z4XxiyJq<0MEl%|g&ort8^O;qr%KGSRa|-VqrE%Ko^@;vg`C>6%$Tg=4Pb~!B5vJG}ZIvDc4KAn$6!%SdMd3Pw{E+itUtMmV&a0 zU8UOmV#~6rYi*x~y!|+!WSec-vEO#SKErVb9&XI@ztK0c{z8%~k({rrZK_PR+I&?u zx@Z8sCW?(da1&R#{Oy6>&r3bV1Hu{YpZ;i}j~S}izYAd1Iz8$?M6aToQFInc9BiMX zXOSfhP4%Gz>Bzd7Q0&WkbDqJJN0on@o7&bsS}uH?Vin(twO6>A$`Ru#tz3jyX=$f2 zgn3;G9|TEnJ~2nMeu~=ur)Ij}UXdZ;X*0Fx7koYXD6=)e-R>Lu2EpEqgN**6Yfxrp z+<5O(gt&Pj&)X=XeJn!NIoD}=Ht`>bWfHDg(V$Cbv`7=4n8W%pdTOgXtB){d$x`xy6Z;xvO)EB;`8uxQmn#{I>|*|&dvVB6?@ zZQ3nHhA4%Y*h;r_>&v5mtP(3;3P(w6(3CnK+ILMDfzljJqnxd(J5c@&p_&N%oEoKS z-{095uB}zzFk9zdk;b(;dkXZkAJpSI3k>W&$4sG0+MF0x^nm$L*nB_Ta($|>qs5V@ z$lTBW-QwFuIqt|~>Yl`~*#_SLIAAYmU;doJ=~H|J2t90oX?V&4SlSN{F7&#TC=fQ( zCwX}}zhIr5rpcHi+JbrYDbUppN=?f8qO27+=@V4%rqHiB5U$B~f3;*>)~b1+Cyo9757K#jO z1~1sHN53==AY&0lnlFwC#D1`8q7R;*kn2E&{M9OE6H2zc@Nn6GG|JEkD`kCzlV?%W zwa7XlcC|Mk-y9fK&Qj_*_spzR@kboedNj=<{*Veg$cTudfi872M7HxKd#gI(!b&mk z?X;i9HbZxW;jA7_ewm399*dB62qv{gePvrn_8NQupY%b=3|^|8;fD%D538Xa(Sy zc2}c+iS590`YET5Kkg3hZxHSBBwqgBj&q{z*k?=9JyGu#*BrYtMwLKUCOyoZ@&(HQ z^bbd&kYE&=VAlu|QA)R%Jhik5aA!%r#SI^KG|f;x0%n$Ko>V1xZWVc`d_5KWw?^2Z+OgZ(+YB(su+hStT`uk+n1W5I8{ zNA2y|Zf2S;va%Y}Dm&+&ZQyF^YeI_h^8pGJ$OV0Bx;ADny!182Asx4}(9b(L{V#f9 zXi$3v1AeNQ%Pyl71SF}2?1!?*dG}Z?k3qL)=og_rL2IjYx5tGAvAFHiZtyW|uZI}N z0(x!Q&A%19#}1Eg8*Y7p7bTA-X{5ER;xeGW8Kq;je9Pu_5o6y@Ww=`OS)R z1Y}whKZLeaf*0Y&|C5JwUA`$PK2dW6{+OVtrP}8!%PR}DV#fGViMA)DHohgA3246; z*LY*d=mr|&Nw+im=t>nF){yGXi;Oz6OS3#RU))rW<3~C7^!Q&+2Idn)FOzQg!wv{O zdET?TXgg65Lnl0>TsmI!&t3|^b1bN}WND{j^{x<=gy1f?1W5C=8*%tGu52rE%)e)EOw9=8V%A z>?KwjV+-|P_udBNX-gr7v;=;9M`jYxSH#VQ50SL;bO{jZZr*? z3}$Uij`X@K_YtGS$v*HrA@okA1EBO&e9Q~=i~voig5;_=Phorm5|a0xm( zhHig>g;UnQ)c6_>Ylk8kgkUblA-;1)=q{A$no_ue7hykQ;YAC~P&e`UY7Zux6*xKP zZ}B+n<^h+7YUJ;|ac}eL1$$MB%ca4TL!$81lH8l)OgET6B_#{VGOsL_CRep|^JzJ$ z^Ei*ST_buyV7hWdwDD2W>W@RcFy>6Rx6sK-(jA%1b-i>C>zuvl*o~2+=ChOY$yDwN zp336*5e=u;0+zkD0v=y+d6>_NY!99*G~CTPyUQH61MNxY+^TkH;w;>-y*XOr9fuds zm-mA>ZY$^lB4V&ABFl1(XRT_*8jb0}!E18ro`5Lz6AOC@*Nwa}8ub#H;%HiWhHe)@AA1}3;%9%RHSLf-(k`PrrODkE>xWK}lXAf0 zbZ@=!eL5s>JIJvCDu(!Gf2i-IaOmRw*i14@UD$}ze`w9V!2(LMbmlNyIFquRR=pSb zySn3kyD*~L~hE5$Q__CBGiw&VQH#6XaZm$!i%L|zR!=^ceEQ05>H+Y@`jE%;+_bk zl5;LMn*)t^zy7glviB9`nKc+S@rFixc4rdF$Zib*H{hj(p@wufjlP_Gi!5Zs8e4oP4I1`PJE$3 zjEe#FX69~oaz?l@U`8Vdc}^(3s`W}$B}c~VU|#>C zxU%)1fx~*8OG(-&W)uL#4mekwljP?TockPqL1mfrb+WJ6A79_}gE4Qxi=TPxYEjosgCs5v}et30ZA z!Z*qZo-E($psiPJWLJ7%ys;j$k>2`Fn)5x)%yw9Ay(`L;#_$TUa^IwBP?1Bs+V z0`+{K#T^%(0veM(XBfn()6FBZ5gjhgG^5@_9$B;se$lMg$N$tkK~zs|m)@b;jOS!& zGUT>aT_Yo7=AT)LPPx5;;^(kaOmXwi1cW_Xdq^3vJ8A3jVtOgdP4mjbXL50bw_Dm; zMbx9;iPDu_^NfkL#Pml!&S5I+?__i2G}R|kDuu0C%h7VJvd~%U0_aZ|kEBssq|+$o zi}!gAg35Pz6JB@2UkLZU4nR3+cY~HJtsfrcp|Rjc0N1io(S>>s+fHe;<$|!Ze4)m8 zq<_UX>ALH}WSH2jmHcQjbKlYeOJGwyRY&B5xrZ3qh zad&)clK3#Y#-D9}mm3yp|2XJe`yWV+O3D?#&+O)?u{tw9^HCraah%I51r-9D-e+vFuOO10n2}u+Gza z=|@MoBl#YDbAMUVlxEMbD9OzorsZ(AW~R zbN`ymy+d$P?mpFlot31oe@a$S0HhusHRK*9Y#V4wqH-@(T&i@C(Nou4`TmZEP6ET}MX=Mfc#rvkE z<`DzIveTs2i}MSzVg|pZc2>apbE3pXHF5|n4hwn#f~$COO4+=i(VpnJJtVB=1UJ_A zFf3_bMcAOVvIsB$C9HCRc>$ar@SH*Dn10l8Har$!=60d=08GWdK}{G`J_s{Ed_VXp7Px{y%?EmL8l!usc5uT zZGXc_1HB=)O$$%r(;=2?x%V;?VVUM@%tx6a`e?IS?*Y_K$x`jOqm_;1=UZAeY7CZ? z799E*&2f*lLkGUhhUmK}s)8G7W|Z0R{kn#E=(RH^g;e`nt)v0bDxB7PaH(h1aR{FW z5Q+PncFOtx%L_Hcc@%Yfcm^yKOBQH7yi;#)87ei`SZ^2q16`iy?0p&~2P&X#a{udi zZ#$uwlF0E&w#-}|x?DK}DwzvTgPTggTZMk=l@WFOPzNk^Sakc6X!zK<$_iVdZHD!2 zul+7B@~x~T&4ISaa>R-j5a{@H>C`SIDHFfCPTYt`lpmMvl?P`W$cSn%%~iF>C!{H{PhtLS5HC;N81(>#s={ zOlkE_5bK7}`*-@K)nfm=WpaYORL?XZ&*kw!`mwEhxO;&H!g)8Rz@$=8)ylIFT1WY_ z=}!6bTQYaW6XOFiU(h8W>~qei8nMU*!Uy53!v)2Md#0ARr~x7aBzVsJ|D7n+Obg z`U;O9w0polYXI#4!BAWH{xHLbi`=$aZA&+3 zCSsi|AAfO?&Ewzk59avaoA|81VUI&y>3XSjdoFu!^{&ik_HUJ-Upo&2mj0&QF!}^J zbs)ssqZW@aKv%L~H>=IG-7cCp*=}DH(|d3MIh^G$Q^!X_>PM?3HL}N@4Fib7Jk4&)D65HNJHIJL$4{7qc+co}A zJjTM?T`%VneTf%?7}qEp*# zRtMWv1TOGpX00uUAAZv)T>3Y{U@UMcdJS>;LzKGh04{SnO&u_v{>jPMn@<3}9^e!c zA7&!1ZyZ=Jqe_7@CZSExh!lm$tr_79VC30>m8{&H%5Qi`EP0F;!m_uDe=30G^QSiv zKmwNf$bTT&c11CocGiCf1*o@w=+a^5Ub$mKim3*0tgSc$EYgipcNcaX>|HJa=+w{I zPuwEu)pMCsJWC_OVA>aDS^~yEm@lB3M77FT1Gc@P=!>c4Clr&PUCB3D2-dyk5)RcY ztBg9j?oF1|&iKF~i!aJOZI>sziv?{*ZDMWdaGJ4@>FWN$qrk}vMHwY`V8%iiseXBH zqjS>7_(tQU7aSSi0&oM6*wdj~r`wvHgn^E=l>#MOrXRo5{KRm(vHZM0c=ynEgs`{6 zclQx1c`s)Z*en4{ErE@pfymTuEQNjxY0gjLL&g1;QJ7UuIjys$cQrWlbN0c=d<|;5 zyT_E-XvhwS#kSabU;q6{PRLa@?%ou$-vc*5@7a#Qk5WCN-$8G@)JHe0G|)dz ze_ufJc={RAr5ftrsw|IUMd>25GcU{Znwrk;pJsaG0p;M+c~x=P4CQ-__#Z?&2RL1_ zoIIn29S9??v!K=LbHy04I`Jr7Ka4q0yu@Y~kz}BOw<%yE+p=c%NWD)x7%}D_nQHhv zVo^);`s=_6KYLTERn89Wigm{Q)26ylgnXHpq(g>7KhDB{fJ*_x`_r7gFGe0|4=eX3 zqo3)ik}G>wZy-xe_a`{?jd(omvf5{yhSIB!w-2AA$r@owpn8&|kFSsMLR3n3s#gH7 zF^Vl!5111!?3A04mN8>Cl3=i(F%?@Y?UZ^-<8m|S)udynYJ}iM4TxJA)C06tjYo1k zPrXJHItQNIb%KB{_NN-QX(tdmH>Cy|14y;t+TY#Pa3L9FkbF+Bgdx3}nIp*^9Wf5^ zZR6TgJp#;^_oFZ6BZh(Dw=3L32$r5OjzNS&_Puv`_b1-$|IK6?8Ic&@N+)nZK(!5Rlo{hVe z^XqCHnkCHhgdC4w-kkG>K*IaRpr$FmhSHhCqm5q!A}y4l{U>jHvsSPl4op^A3K1ZioP=gM;LFe}&2VbkW zIrp@7z{58|wpD8ALs2g0*J`g{m1%>A88O+3nwSRGG3m7^v05i`0ZzpE*RLYMSPYME ztptz3Tl5XtKi;ZQPV6X#>Ue^f8DlR1eUMBFy9Dl}yA2Jd+<`f*Ptg|&@posTc3k5I zZiCvdWFifDV$@7h#N0^W5%GPbH`DE_>%eYNqs1S74D0Rv>%V&a5H(8gfH1EGTxo6Z ze&HiiGWPGas-L9LooyFofwiRh*wzAGuuxZqq22F=Z{|%yb?^EH9%INQ^v>UNIBNCb z4u~#~m(SN)dm(RT%#OOKTKT-jWrn4H2jrTR(m ztlo%h;NlP|+PaLArdObjXPyE3(+`F`CfqVorDt}s?6x15l45=LHS>~0L3kS&SaBnL zSaXaH->(X{bZSAkN$Oiku)**Dfuuso#C(`k&0W%-q_X#+i`S|V!qQ<039yCW=Bp1q z-G@0=vYZ+all50N0CJXVi;BO8rkI&wG7!Y?Ckh(3xO&C)d`D#ky<_%E*Mj-w5xy-cLP`Riuulb{z3Jhj2BUJmLQ@M%RQ&DH*Gbmgr z37K^K09BtF@7AXGOYD!=re5D%t?w%2iCSt69yf@(d;}dRJ>m`jM&ZEy)1L@LzY-Lh zf;UHg(#QU#p=_fELmQCQjtf169Ki8m%K2l)v~D<1s$KD+i*ZSV3rt74NiBwA$;_USZq!@WPf8bbF^(@^@Eb6%YhQV&VnZxRBAuy zQCz(_o37q1Z`$Z@5s+U6 zzJ<@z_r;J+lJXnh)MvL2zWxW5>=&23(3)kEF~-`qna>%dL)@N!oWI{_5kh6FA)4k`o&u@vhtFZiC5C=Ed}2R5if6vS2p1|}O} z#yxqp81H9g0z*%F4$);5M^ENiZCZ_M*s_Xc5LPo{oSXJUQ(-ilY*d6j%zw_uw0eV5 zc8H$D(w5qUC29v7-h64#9r^9;r%J|G6&~Pw)F~e@L zv!%K!BrhDrQief`kz+k^LAKPg#Poh}MQ{D_fPV;dTnXE3gEGB!gf^TAmsvV6RCWqJ zO%dB5cpyjE5E1^KxkIG95xm){(IWQ!9#+MS>ow25{l3^Ml`)p7L~ouOPz?b@Ai!k8Rdz61?3CrVc*So+ zQzSrhdfnV_$gvZ>9=wK%zP>aLGWybN6UGv@7y605LClj&y4-asB7Q6O4H3V@J3UQO zo0`6!SFb>{FQkZzX)o^`so#nVFf3DZLmmhEkzEjenOYn1WFEQ+;MA7#yPSX)vXxk5 zfv`EiKeqq=f~el+j8;C6a~BoSQ5fLQzlNV|rW;R7M5YFPt3zf{ zwwj#i%t7VsH&BAzFr}U(p8Qx&lBBB-ETPF2njb~J51pxe-^G%dZsLfiC`bh4!z4Xa z!-F@&#nW1SAAe!nSsWV@yvNQ)hbGT|(>s_a$Yo1Nru~B}jo=$Ella1v@{{1FoQ_t| zUzpOf<)Y|kN-gl0zs81%e?d6?SYAYJCIye1Q-j&Sr||<}Ovjn8s>M*u<=8o7vLYD)>_ehZIPs0FR*KlGsyIoLNt|ym5cUaHW*Cg{ z<>_|{#warpJ?~+j7Wf3!#V$Fs{IFdE=7GTnp&^#Df91rC(=_jqVfL7J=T}VPvFuk= z3~7J>G@W!>NwnESRSA{miTzY|@DG}hgCKf6Krno?^^-V`IB>w=UP#{W)%*tmY)sP{ zh{|@vt^N)P&2j8T^me?4#BOs5x^}fv@;m2H_p^ZYlyUEbvz)1L^IFnx40v~8wwdL$ zVn}ID*6)*8+iH4I3&!vX96ErtYa;C&$fZ%`R3q#aqx-~sqc=MgNXcw3CG0@3uuKU6 zzcP)l?LMH~2)YS-S%@Uhl#U{snX)ZJ*R_asHs@{(Uy9|@p0I`Ga(l6@F3jP~Av~tq zJnOcrDeO$W^&HQ6FdmQ_hfiL&hc)U@{ls|t7S-30y}f?!6!weD5wtTX#Vg*-X#+;xWz65Xg3I^;6Bs5%|3gGW@ZM_iFOT z*W{iG7!gRWUx5yd#B%W?S-8dEAp`nZS|3Gy=;)XYT32c>AyB|Ud@AS%NvmT@zxP>?=q3%(R zw?P_pEzQ}|FMl7uQf{ixN)b&JJ-8C;B7VC}iatyr(VOz+U9E#5r=HILwb2rdqqbhT z^b92c2xfZ*$mKdW$3C_ zpV&+X+Mea3qYqhmrWf^&SI@@^yjv2En|}>_WALQW@a>_KIl~*9N?y-Hwr?klYiC=B zc~|0sjbbLf#{yLV56!;C7oU5k+3Q}fB6T-c-p%H>dmw(N%VVM8ljlav%VFt1tY$UR zWl6O(tQr|uLbu#IQ-DN8mz9`Us~r1C@NRYH+E~g)bWqfDxkk^cr;GDrcMq_YA$ND0 z>_aNhJru7gUtLT4-O`P|MfoZG*9d>PE~l~6usq*vJSFBfQNoy~1l-D>%G zf&vYxJzE*!;YnkD_!h20maBXgCp!BlVy^l0<;C6CG9!4tl%oEOmWx&+>rrW?L}3|9 zTJq8oajk9pR|eTPPdQ<^ywrr4SDcBc01V$V(6~6f$4kaKB92{NKsOY*>SBJ^ZZ(V0 z+Q}Y|BsByFl|w8gvJPF)le~8aVniETH7bq0zbN%4 z4vimCXQeEkV<<}tnCo;KRK}H?OQeUF6jHi44OIv6a92b<`N5x=ceBlFDS>c2UmH0N zAPEK@itw2CdSvAFqApR6Yu)-Kbyt3SMt z^fak>ZKp*fRcn6ta5cPO3FmAH76H#j>^KX-_WdbG8WERS`O!v|@^ui5X1gN2_&B^0J2S;JcY|6{YI@iTf=OWBYO< zW0Z(8)A-~8vtm3|Rxlq18Ra)H>*Zi&+5WWU#>(fPeiGb_OrMkS5G|be+&f)SX*a>; zUToSb9e9_DoW4B0<|Iaw>pwh+T4%U^iSt?Zt@Q%_Z$J3&r7@45+H2#UY^p!8aLfLp zC6edd@Ci1O3P(XKA=RH`wx@y*aT{WhR@}B|quhQel}}l?dgaH5hLxi@V&%>P=B?64 z$$ITw!z-@J&x>ddzAEmr<*DELwFfa|L5V4>iQm)6|MLCDZ41|K2*;1g(pqmy{Fp=} z0e^wk42H%AbkPWGa@#XMo`!qFTyDx_9UgazIAoUE&6} z8qFVE+HEy|T(yt?S^L<5RCQ4H=mYV2_0NEP-SQw_6Sa1zU!>dh*h)akbG>pk{hf}2 ze2S~9a*b^5|3Dxk8|i~ljOqLtri5|RDn;G-%`YYjPpRl$QKPlZb|c@d)xf)w_nW)w z+$)W*9LMa;@aR`zW~F03vqps)?u$#c+{Ssc=PDxSm9#?JehXNU4KdqT3k9;TcdEQo z%(NP0I5;$&W;F{r9RVQ=BSxXKymq z)svx%JSrDWUHBwKuJeKX*jW~#>>#C7Gq%EO$5AP=Q+A(8Il|rokKzmPcwEKw(TU}Q zaCGlzb6k=vX5YnWPNj`AEN-r!Wz8e7p`vS#uVqR<|8en{FU9KIm80_L7SLcU(kwQw zbFFcaHWFWOJKjw?!A$9PDwNH6-0U4|UU8u|qTz6Yv`D<$a-b4lOb~2t)!dt{x^R|l zSC&vhAU>LY%mB9Gngfi$ydNnvzTh!I*RYsxjnv_>DPR%1VH~7twG)7^43(NSI&0;H zp6S7m$3|%^ltCqjd)#UM6tH0^1w8auKX?7HOQImpra=FHpb&8J$f17QbwN%}r6t!?e!dI&*v4Xo837~z;!~& zF)$mGoTlxUzV&I18PCAsXNlT*lvv@+%E1g;*lr*}r=#&1jmFpQRLUf#I}@Do_B2PS ze}ab_0|}YiLY_2k^EK6~00iRIZbs2T5j@$Bb@J@rWsf{h@ueDSr!=ZrQ^6)xlTtXA zOD=2+@QNpv-@Una*1sP+$}Gq+51O$|8&f=h7Zv}^X@8<_ZYlmNf!nyC=;7~Wx_fuJ zTYu#u>~c0E{ftTn8`&hQp!)U#aFX zrJF%571j8o?xzjvRMhSkOc*Dm=}}r7oNiEVk059$bZf-dQnl^icv#EH?BT*GNSrU( zaMH1S|0msxcGP-{ldjQ*@s&|YNfw}F>9;TQ?ip6``4_!+qI@F!0(c+T3qp|E-o*Gk zx9T3JjGweSlJX{Z>sv+(J2M9-?(Ps!@X($o=w-uh9Jp1{}BRo}!tD$%&q2l_E|CckXYXi4qrf zPmH7MoqeTFjnq>_Q0j+6jh6=DyFVRYqTaM|w@<%OaG;+VtW7GHbu%2yrZXr+n0A@m z4;^^stC#Ct+pr>!Hu9^7$JVBK&I9lia)-G;G#Jh532Mol$MUjGtb-;B+5R>mx3&Ki zA&lhnjSM!G^{&#RB-f4&L#F@?sN2VedyHGNOv6JQW*%^w&Or}chLJf|9CNHSKIiLrbI}#E zR`PI9t^G6Tj<{}lIjXIt0T(we&20u9l^H~Wce|PH%y$j!(sNr|cHSU>iIZ(iBgY;Y zV%%wDWGzC*d?>2BoaO$rBguTstHivR;JKvFopi}~N~3@uDG*H*X^S>K_>%i08kMCT5*PTQe2Y5h$;FfZ15#-^5*UjI{hg`72?T87Lk5fx1 zFm&saJ93!K)zOUTyLsECDFYh87Kt%(2cd=Z_I*ikfXb(FU~!s zb^@y$ZS2prgbl+$FYipg!tG8(J4wT~I5N9bgl0jSv9+-5jABWnDTuWu`#9=n&7hMI zOP}Df6*wCr7N`u8$()LSJE`wGwn;OWqhBvG?JtV%gu1!t9wM&P7Ei>VYX$g>I}f zzpX_)d_n5w%Y@E5ahaA%+9hKR&C7j;vlsGG%Q+kIcdVxxp%Y$3F6EWrVpP?$9dr3^ zDTctEhu3^sQMR~gYf4_6hwG6XA z&YW|f`{_~0RFI&O8a!9U_}dv_!3z!DO*FS*Bf!F+Rz&l)?7`GzA0< z@TSWJ?|oo?$CMOe&A4~6fS?j%9?p8B)@~XiURQmMWc}&otbRC)ud;s~~;oC&=9#w2#gV>{7EI3mx;{R?oj>G%LU6)-sh$@&Vp-VLmc)&jiB zy^gVU&GAKHPQ>K^du67@jw`%`6Wb1kt7d+CrhdU&ko_mE>S2O<{B^&j=8 zxH577`_fcjS+~6JaA7EMLCLbF+|~tz*rUS>ULK#Ga^TxeM2R#@M?&3xCJ9S%VE%L(s9eHneMY$30vl)%@~ja z##|}&d;tdSQ{$WQt?$h6GT}j{DM=c;$69SFP0noqs8O+8E!TeO{X98y3wM!co<&C} zTL8<@(wWBup5L92kg}lAtge-$(wqz|RFocs#@b!dtw!ZwGMC|Ia7>1~WkC#5mY~@W zGRv!8cbCu;49Nmd4UCRuPKPd6%yh~`QY;oU4nza>V>yR<{#GMF!QNmRDUCZUWv4}; zet1&b$V zm=kB1S0Fy{TmraiN>=BNRuaHCWFTyN?+C^bOhaSSx+)2BPd%x1@ z^b|Q;Xgf6Z-E*JmZKdG0+v8WT8%si)hGu&fgrN%~!Fh3nJEiN7V2iG2pGxwr2%f#; zVB%rVRUak_ZOl0B7)S$(PNCP_20Yh5Q9}B~+;pSavKi{>B2F1^ZE;#xEKPID z{z14o&=bGpEW=%x8bO?CX$K!?jg?z0Ki*p2`B8SUQ?_l(aVQ}kkyYur{xd)ot5%Pn zem@PJw!$jIQwO>m70a{mFDgy8h(n5YlAQUh4=*VUSKDq5d;qwFK%H)W`D-%G__lzk}YBbEoI4VZB>}$J+^dxtystIh;{U>J^zBD=QzEK$ZQQ1 zC@d4nnk$`P1hz>64l?4)qZ7{R6L$xqfpN#xj|NK?bC&WySUL9%7Hfw%m2yz>=~TN= z41qE~jACDUQey$OqWn#J8Gd=jw4)C?#R}!(JZX(FsnI7fwkGyuZc;M>H#)+2hehKq zIrFp@jvt^aI7JeSM+R=W8FVL!u+`MC<}zzp?4ef`t{WJ-wVlrll`<7NqF>XgDeD_- zsOa{eol=a`rDg zBsEXoQD}9QxV(?ZU$3f;kM{QEpWl1+g2>=42o7* z<>Uk1Uff_XKbu|uIMpjj;?r|8u{6x>>8h*B*lR5-X~E&E^(*$9_WT=V1zdnH#&Y$x zR{Q$Yvvf`iEvm7Pa99CE>ZtkKl(T#({mQ_D$FyqELlXIX;S@N+#a%sDX{)uKC1jkb zMp<^_MH^6lRHL~mv! z6Fn9^f{4j@Ms!h%*i`l#(c`&?mjy5=C*+1L*G4_yo_DHPyDu@^h-Yid8I^76ST0)% zTcAfX`ojaBAS5B}g)LU>KK-Z1k5;tA(RK@D!r!1PKatoIoE{pTetZqy-61}!=0>4E z+9mMt&6x16*M$O_RB7q%hX?cI<*WvlpF>yDmoYDzy-T8g)a>!_obIVG37a)zchEHW zbUQo|{s0j;al-hVR@jt4+E`mt2RF$4sJd{IoPKYO>|aLrVLLHK;zF@@DCQ(3r))Oh ziAx&H%q5?z20ut|FeVZn)$MPv1u@;fCOL-;iNC*SNtM-4($27RmAKW@*RW>&v(xuj z)ryB4P={AXWd3L+-t}VO@56YYCXP(mJJ&nzuUw8DM`;eTqeXKLVBFmuAK_r?!B(Ik zf{3y^DXVW-TIQ8DGuqV)K_PjGD<9%ZR&kW$*J_ufTkMzR46G?KQ#$e0%hf2&gTOC9 zM&C`FP7u&~>up^;0)``i9~JC(O_#ctzXoJsxI(xtRZQeM9B(zRt1x}$B6ZHRi)7>l zrl*GuAb>K+no!(39arhTE{3uRhSPF*S;}gcSN=vK|2-q|L3kX{DdFVh^5|)4Rn&m~ zh%axP-`PA*3_GE#<@xm+mkoz4bheKqn8a-HQB#*|@w)c|h0KKXaoBE=3B`&ncR=O8@&RZIip4kj9Nr88+bdv8yoxLD2r2gR z1^51K|MR}y!(m27d8JM779qg3_Ov8H=J7wMEHufV;Lt(Fss9|C;FRE&icsiVnu(D(cRWm4uUf)^$ zOCO{ztq2?}uWysyOroJ6^2Ee@BdJ$_2Z88Yx&ycHjgrRZ1z^w%Lx&(nqupIxhj+5| zF5AKkT(ruU5z!CD^`&46i8qIcxf{^P{{d`X79ZlC8r$V*zOy6*pM z*5|7vA>-k=Kz@OGEourn{aoy20pHik;i((m2al#D_t9yIH9Ei_N!`HvS^3K+4l}vD zdS_@!31};?ut$~N=iV---ZE1?mqCR2;$C_UoV@fm3NlLEK|gosH|{1NO^bqVYc(|V z#6AK9aoCo!&(+>?pXHliel&#)NjDR)-$@!j1=NtY$f;Sy3vh0J;zCQJIx{E@N<8W( zl8(i2en+B}(+%2lzVS;aD?1Vf@@P4>?yZLna;1?7d*h|?c*jTH9)Z=_L>*4DfPe&c>>rkISJ5<1PG$f>Bxzj4Eg*$wGnKZQfrqNf_K7-Sd z$sAMS8Nw@LSxGFum1pZ8)BRkW3y4&f)wqe~ZINK!{`EQYQZ7IO(snsQRk7%Icrh;g zFLqYeNj7C3$P@<9!ktyIceqP9D6iYs(MX-=vtZz@#ijqA7}QTW1Oxvin%=~UzIm10 zL6#e&!2kt8g@*%k{M0X6{!?+mn+IXb+sp(j(s+qjXP%pF0#840V0uM5N^<46wxr$; z*tbDkVX^>(h`eHyMehglB22-tx`t`%x5_e%fb2fd{eIS2`X6ZuvAw2}@B}A}tuU0j zGve(>qBFus@+$Ue3s$uMsp9~@ANCjG$ZioEyp2OTC+TZ4U|Gm>Dseei<2J@qQXgIl z?|Ypwep2=GxAf@OzHtAEm|JzFE!hzu7!_5T2Kq0ryg!>hL-bvy-?%DD+iJ}SS$h}c z4_lLhED{?yQAFe1?7jcX+?58i1u|WCe640#|LPTP42QQeLKr0;ZExT=Ph)OM>*1>u zH`IVNOBQ^{LUdBBh=bUOi?m8&9k?(!k&XqhV<3vv6#o}%jFsjJcSrkiq_9lL`uJjKf_b7$j$&E3BI{6yxayf~*yLeahiFZvXB+bS3ODX$wDmIWflJCuM-= zex``x#r`AJxYPJNKzKf&U|aa)dun(Wp`AweWJf9aFDxY{PTbje6?yuFA)hm7X@#K0 z9QC{ye2SpkCVx2n3)(B$(r8||_(V56t@9rZOf7($FV}k95^U!@gK@c*#5J{iF(<>9 z``=xpoL-}>DvK=+C@v%+B$J0y3xk3o8`Xg-+hLg{b?PBMRo+wrLdXgzJ)&pZ!>tmFn!0qWa#s? z&8Jzx#>ry5EqY7RriN|f@!;yZh^+iW%sX^yO7pL6r~dmQBrQ+=f;_)Ufeqh~6jT6U zQwqsj6+(5Rk3EA}1_}if!~UKx-&hJMcVb3_-;H+4y{JO34+3nQ_69vmNy=-oXyICp z*I4?VM7x=%ze<89#l9=V-(kuNCxAvT(Oz}CV^2PrbiNzQYq#Qej(-K`mUoaOW1Cot zz$m;ViF|wFD|x#WSB*0Hxp_7&R)o@+R?t}mj6$9M7xaM?>e+}|1ol#XvliaQcAE+X zpDsrMpRhQE{uLPatlX1G(F?0Uf4M*5YkaLK>~-$9uX#79-;m;9mYk`VI0E%O{5qbb zcbS8JYC2e|ovz9Y#t_1Nn7^#D9anF-u?6Vz6PNkoJZ>E*f$yiFF266O&tU}4Wcb;6*1 z@OJQ;L@*b9erPa$uca{9NDU_}dAY+-^79&n&(NGU6RKawgP;9I6JH%IE-Li`SxZ|; zMHi63L{QYGPS%u?KifvHhF!Gx5*Jo6>E(MVdc?-l|Zp0GR?Dryp)kd5nt``+z;Z^Mz z;U<@l7Ko&VEB+it>f$3bxXZ~Xukc6*Ooe>@(+Bw7q$^!CpM)2^0DkYI zF9UftdH84lnXeurXCwRFR<^&Gd$2MI-8MiXL@Rf`bSxbSx|IMX=EO1Z>JnKi7*tHF zO#1xCZJ5(+-{tmr-cD#E*t!ubvDD!?kuJy=`XtIK40Y5&83rnesareO0Nf>_f!>p47{W+{@XL;0;N2 zTvxka+i8AKWO3^I?&+MG^VgjqRgkRjSS0c`C(H76;zwx-<>X@^&T%v`*v5dL*J&R% zg$X*|KZ5pV?J!Fl&+gVuqDDU77WDRWWo#JT=^1R`e@P3*Tv}fJcxWOJ@Poh^MKx9t z04|8NsXld7Vkgk171G{$T^2uC)$oYHd?rvyhJ?%H*D}l)1%$+hzsdconP%L|fIFGa z!ocY-+KRWGg=TxXeWxpD4kk;+WkLyGN7bCY9#R$&#qW%)c zKaFXm04hjEgFtCa>J0~vPvxte1t79ef=`vHfQjUV43d`c3Yn(lVEmci4M}=$g#=)=?Dk%p_FVe}Ni;$}3<_ zB$WB+S0}fK9$bmtI*e*s*)Bo~Rq)CPsKQ%r_Q4=Uc?LQY{0pKu`DJ%ayrcOF$K3>k z2@;B@#5Hv7)hqTE21h={&}L!A@W~Q(IgD-qXE;w9U#tZLE>dsS7p)w<-~~c*XIbW$ zY-#%g4NW33K<+)aUC;80z|w@w*fuy%7$bkqyA5M$=ZUYp50!?C&x0IHV|xMd7UR-Y)UaBAE6^MXk2S1 z?;4pT5dPt$ccZYkf!t%C2`l90C`|%dcrn@M&z#ZEHvMm~86Yc5K?1*#x~&C#g#}w4e;kZ^gq{ zdp)9;b961dnsJj;sQH93n9`5vL9(EXOhP8QmAzjKw?`$)<{}H%G2@eAtvN5nAHf!Y z6(3Hxr2F&(ok7E%XuV;C6bToRzuV!*^bj?jxd|caL5<8zc&U!oXPErwajlU$i{cS_ zdY$z=%XGp7^fb&-P(qO3{G@o)Qn$p}Y)SpX?>qQPXnA|0>~%y9h2nP$#!Vr~3h-&K zfO2zVTtfKnDm(uX=&8zi2Bc?KwlId2B;GT_0CU+>gO}3r5h~+8Y0+%8&O%`Y!yxg3 zUfxeITUcp!CA1M4%1ioe69W6BK%PLB8`mMu=iu2v2Pw4ED6t8F7Xv?WstT+b2xmFX zi;%68x$XEXi02=5jyA(yh2KH%T6Rk!Fii$+enFo@%m^_?-Hw+hV4SIwI&Vf$A+{T^ zeurN;&_}Iorq~1oTgC9{MkP&J#(FD;ytj&tMUFG-o5Reewg61w40I{>R%(gi%kGIt zNZ;XzAiOVsLw-Y(njR#uyg` zH2~a@{NYYgV)e%0xNa=to&rExnH6-v2P8%Kz>qky^dmzTmse%fmE0n9XIeVY{(>|I z!KTY&o$)voIb3EVcjU9QkyR32#1mqIh+wv6>klJjjQdnaM;>oEQ-y%8c|e54-tlU> zC-V=DnudCtxU&R@HeWv@>+ych2rK)^{@UDK@KxiPdg&lcvEO-EQd{{ZO2}%^P{I`> z&90r&C?S`B_az_%}cS?An`6t&@1#V{H{fMrSk3W(pdQP!hl6ZkJv=_>NGW40qs#EU5j7;;|84i zNGsn~Orc+zZ^+jS^w=L;y@$&NhBo75{<^5(`%oLNcSx|C$GZs3Ob2iMyry>b>Cfdn zg`wEONcGmW_mernvgtO%<%{1A68m|32Aw)~HRThuoF)=3Hx=}&0T%^k zl=ZXonb5gmN9{7|`xJv)u6aU^JbmWo(kN?7M^csMej@FqKe!w)!SEgm{kpXIbRI4; zZCh(wvs>e9YPGi#+25u=IEL*Xjeh^{xCxqc+~ujS>Tz^MuS+<(mFi4#A}Imd zz0HLCJHGVNg*?1vR14b6GS&&cXY4`rQ-Smf5|fnI`j>8deGk84jq6^ETBp+2$?`t& zTx*1fvWsDHA1PF87ak*vq{$lzOV?#sWN@o*jIQUr&!K)n1K143YDERbMM^f8g;NaH zQ_LDMuNS*A(jDdlsR#n*Z@1g@;5&CNNFmG40pPcOXTXnK?x`aTT07^Q3o=~K6pKyTP zv07LsVM*5$n>xL82;Q3lrth-@jMDZlI|nQqb@yshzwyt0hZ3fiNf-#3fxQ;Wv9d~a zB1k2W2d2A6qmjUD>M5HjZpHV_Slx4Jp;jc75Af0GbACLQQ;z?Zz3010IRGM_UR9KE z760iOgb^q%Xrr)2C8$MJjD$XZ`#P@DP> zsW2{gZ7!Nz*4|T2ejlpiPguP-!QO$hJ!=v*!8IZit`kXakMy0epS~=HH}$2;ls?9F zw)^Ow%Pg8rF?ihq)6>pqD|&0*STfPewcy>nC$=7EhsIANM|-_byFTZs*YPNm^s{^W z7N2cI4T%_xj6EcCtsTPOhl09j5JVgLr}?Y zO48NjYl~TfS(K%r%!FqmUNUlUWqfj#Knof5q@!J!U5(##&Mh;=n!GEs%n@25>!G^k z*cPEfvq_U9@uMU0hOYuu0u$KSila3x+AmsvI_Lf%nWIy+2t%KJT1G{`&h%iV?vSKz zxwq~^Q(Ysjh;4}gn>1%tu;Vpl)W8q(O4g;SFxQ>>36)s5z1QzDSp3@|vvrx8l*Aa@ z2R^5~+v&+)L>)F0kqwZHV<01=W^i)A`J|h4ZpK`E+`33#+)a>2&&@ zITb*M;5Zh@QhAn`vB|TH^qcg$TIh{&xnJ0Kq#wVe;FBUtq;?T{>_`AP_w;fc-%J$9 zM=*q82_}I_;8LvrX}8orZx?9;Laij9@$fu51AsP(IlnfpctG(^77ls^>A|S4SZg^tB&HB}FS_a9#1rv*@L@d{fvqA|E$8$tgVS zai+J$Qu|e2mmb;QFnk?ig{;4xoE~^nSK2&mtskvFoVj$x9!acJSXh5}q~acBJyi@K zd79tlCXe0$Q;f>?6e(F-z6{Asm&3Dl$lANi={(VJD+c8`-uC4>t`Vi($8BQ*CUI@~ z5iRk$g82#|&D&jcZ`=W!QU1L*9)9eV(p-b4b-2-0?}9O%dzqjzfh|DO^nN^49blvM zj_02>P9;G4E2J7n>}wCXZ_bsQX(QaniNp8&hj@)9UXvL!5f-Mm5B5%9#@-;jjtHm!uPV zbUKKyF|2XV?(k_TB20F<>#WYy&$o(?kUKdV`U%|oBF*B%)<6`c&~PRaoffK8lt0hh zHgQyI?W+2r{r!DwOn1IzBL;;x>QcU|+U=?>X>QZ*+dhS3<6ts9#Z)hEK6_aUxVKib z=N#MU0zzM>gp7RgeaicHayz_9iHiRihpbXP6F=To|07YQUiD|6`Q7DZExgf9z6h+ZWaXJ4m0SP8;Ua6PAj zh#D(`*`2hxjz*)vKzb(9q-w`W+z~&+#?S;uXRd}Mz3qV9=OOc|xPZ^m&XSpxWgdVv zj!h@yFFHnl$`aV*rl^$bnSIQ_#~?~|n^8U^oP9N&z* zURaKMB$Rh5lAfG*QckG%x!mk~dlp>SxLK<4{_0H-j%B&Al9MhIch!%qk*U6i<{5#; zJ^tJ}xvS}%YFIX(P7o0c>c;M*rxHmnPz4-lxyUnKCfl*>al0Itu5ZS;B{({wgTkU= zgu19luq00+MPmsuB02tI;Mklmi?I~w?+mBf?cR?ps6lCRu+1A9zAi23Jk9W+NidQY zdzx|BsT8I3qn#_TXyV!u_E2^BxGOvsmEmf%2RKzBWtlDNy3v3jO>K;4{!8eIfRI)w zNm4piTJLAKm}1HO_UIJ*6jj8eYfa+ge}#vi6`mtAYXG}F4A8{E&n)4o?`tQnb>4?? zrTt{IHD=1Y_8DBZXoQTAzRu4ocCm8iY*cAI^sb%RXAZ#IQ_C-uc^DE+^%69D%##F0 zpgY~Q=YnwtTJt@4$M(#7rOs~w=m+hM|H8Yc9*3Wd>B}Y37jwq;S-lMWamtjsrXwTH zC->?K0bAUetk|c8h1~J}cLp^g-rH;|neV%qi-jVn%_s7Vwk8FOwdeY*?L*GQw%oc? za#RuxP?F*R0QJxd(j5O~g5r6$w2+B~Z7G<_Dfjo`RoJ)4ZvYA~H=#74W6*bBo3On6 z-bq|W@rrfL>VvP~-bjW$(1ESgUDB1aeP64Yl)%E8rMGgJxEfSfxjrU_y@T%D&!M=f zv1Lg+v6R{j`~#P3DUSF3?V|rEK7&l30ApLuyBoZYvua9#1_9V4N;3jidCY{L>^jhTlm@Z7nI-=(-7NS z9%mgUFw-2>wo;r=W@sCq+Yo0w+-)i2KySw0OULubB#T~IMRv)uh32Zbf52}{8!JV2 z!EWkBv)_l?)Vz2^lTcn046sDH~1qY`1VPg`=@J zdWEEU{>1|3roOXw%Q;-8EA^xbcjBHaYwNypJUT?#>sU{=a4*gR;r`%t+7W9#2l}aX;j)a?vE-5{O-qeLli)<-r^m%(~aO~WS*E#VTH9Hor8_SUX`1W41>}xUH!*{skp@6aMbu6?B(!fZk2L zZs01oh{z&#vUSn-g*`}=ULAh~m;7@|+#}#4H+<-l573tJ^{~s6M1D z-`Trf<8bHkA?hn|`zfW5T;GOhIGmM@>gc@3GJeM-c&@nZ`WJ+nJv%Qjvjtzj#<LOw>jS5b_k~HaSHU$Yk3v4h zLvCv?T`4265;6HhY1P@?FO8H6CjgRh8~LezIz^SwKa>zvM`w`%#e>4MGK?nb7Y8XZ zB-Raf;orS)pcnG1y6GNNl{mcy$*l{X7p3WyJ~ll!6>!%);ZJiZ9+zf;Zv#iCB^SZ9 z&jJu`$My2w#e6z;fh`BI7eoDyP*daJsvjf&0Jff@KUU^#eQn_{X7K)aq3^kMUcVi| zpBkO_?KI`d;7*iRN)_|=B#rkE8e9ujtanE)T@v(je?d~QW>aR>$O*~%$kRib-yw-q zxrn8{jkXWoKZ30`A%cET&rAk4gA+m7zo5A=^ig)*=gdZpuh^(ov}VP>I%WhrNBPl1 z%FRh`eY<$2^B93uTgLgFb6xGOd?{kaBAfN9#Y9~_eRw+Cb{6(43I&-yc_nSA2Dd}t zcEzm)d?hup6?@XYEUAlITdt$iZmTtfoXgcT!f(VXnKaz@F4H0o1Kn1?3Hjcp6~AhN z%!lvcb>;4szKV|$Z$rz^rw5w;H(qMa66(m7PrqggZn0bKsrllG4LJ~9G<%*g8>wNi zGs6v6s&@@)GLH2b@C~~5`4L~h-C?&Z9{e)N+QQJAE?wkPDot6b;)<=HyF8Rs6>`C) zxOWe%aAA|7s%D_WVu&rn>FpWoGYo8IDz@aE3Ibv_*&!e#Ub?jKeuFn}-Ze2n3U?X) zLW!*O7pbizC4a5@r`Q#7=Gd4*xtBdp!$2FQ9Q zFG{DpoZLP`vgf9OYga9Ik}N+fZ^7s=zy{l!gKIvgylxlUely;eC=y<{UCuTiR~~(| zRL}Ppgn|46n9{|~?Tal9Fe?7&u5A&(6JO$l<`|i9CX*U|m2e!UKbNkv`vqXZ;$fMy z9P3kYnedpj@bot0809@K79A_bAtCiTK}i*$ z>1K7aAaWAXT{(Xg=36+&l=NnP_sWSrx&8uumIE0MydHA6L&D;9O1Lq-Al^6--#3H}o=(@(_(HpF*A2($8iav%DzbSHV^!IfB zf?np%*K+K0OB067*ogJ(4Qlzv=~mwkUS#1tMHBj$NG z#7GL?1rsSi-Y!jQ*Kk1$!ZUHd+(@out=)3gHya!>%Bm1IC}vxZvv1siI`5;=zv#oN z@>BMa8V@nJNeuK4sy7v^9Z

    4#@^tgDQ_yU0ZffJJJ%#cRy;ypRL3Wz%a^J<#URN zV>TBmR)MEjIW9aYIp(y}ZxYv|L^NzA>gvT#w#CLN>Yh1nf>wO3W7=txK=?XLDP;hg zcsw!UZ2n4b2HGK_Fb`q0@v>^&Sjyz~a-MH$tRU%8Q6|h-(H|ns#8>oth}O9-Y`uIQkcl%Ls0=O9|p zBjdzssemI>L^Npvct=+xzMe*T>gN}Vn@k*zP^a%T}aIk{|Vi(lK8@Gl#P z^%g}NI%*lfzMtA`#sG*cgDI=SDtsF9qIct z*;D_BAo)%FmF%T@*=<2Uu(@s+BhM_K-&+QD$YDw*S7mJJ!zkA-NLWa?6~AjSu^f!s z`o{!~3x~YAO01?TEhSzxMhNtVX0n^DU}bMFrCI&qPy;Sx5!ZXL0vi|ht0psl9nPN2 zyk;H&ro>CoCCu86UL0_{^HO7QgfT7vuuk8%^p?wQR-j6tky`z9HYUp7SrnpzZW_Ij z7Rd|xb{P6y8F{9?hqRY^>`)!QCZ7kCUt((!VnKo3M(UQ?roPKfVVjD+LN;5)ieV}0 z6aR_Xu;Vst?MrU^=KMfc?oNDvs?e57Fb1(O|AIJR4LuaAvdiNO{|9E?&GXdEU)_r9 zAt_I)ds#Qr4xsEF&TnjrzfcpA2Zzn)r_$btA)m!2(JUSQN4D^_e~BUfvvm^1#DuxC z`OHrLvpGyeM#+x3<>G$h2)UuEtFrum8iwgC|1XGdZOw!ZociiXyM2OCn#*w)JuerO z`ycy8wVAjGI2(Z=cHx1s45t{rctV&{xVxdxk-YD-r?G+Yy7uK^TbD8Nid$Q|CI5t5 zktwn~Q6p09J~gcLW3#JL*Qf=PQw$+P!;8y(7I17nzrC=F+ZKZr4T*YXX6@00a~bU4 z>qf5!JxBN(A9i^gSGWqAw-Dk2`4lSG&DJ)*`V~9U2}>aEZpsNFu@rM(XP9U2={aybPW9OyTbsb8 z?;Vd+-gEbj3-Zhe7R!Z{yW?{&);5T-pL~ksMjiA=fXJ&K=lVE#VQ)zBo;ALVnThox zcNPs)uJN@!i>x@sO|?(${|}o2h4RuU8G+Fb=AY3>n{Q;6^FGi!??N?z;75O%H1%{& z1G?jzh;*jahI`GRVO8W|^jkHxcM{&_6XlND`dIQw57bDTp>rBPI8a18J%bISbf7w= zqHJS$Zlsa3MGDo%*>Ts`Km3DxEG09p|1mtmL$Q5~vh^$7v8A7)wS0S(VlE)pc%^Y; zIuF1C8Cr#B?()SZQVK0eNTN5Eo%G;w;u5m)u&gb^?&y1vG;DB!K0GO%v9YBsAk{baW;&C+I)*w3Lf*`&6%J}vtMi%w$n z?JBe0cgXi88Kj6l%YUJ$s+)EitzpO0pOgw>9L8>O;=v5ZB>wH-%+owu2=PJdqY3{a z5J}oBm1xAg&9n~+td9FCk5NEArBs-fc3Ah1lXtt;h=*$7f1Y_s5yyg!YKv+VvoGB( zcLqN}mX@1T&>&gIsU9;V)lv^B+!N^T9lJ3owyUz_9u$CJcioh;JJ#t>QN+DJQ#NZF zZiC|dCwQsP^7_pCpsZ5?0NdX@a1lZxZDxkqb;g!(&W~lRGT6#^4b7(S(O27~mUieD;HyN&?~*>hQh33QWaqV^h-sEV?;uJ=k~OVZAEp1dM>(@R z5^babOCE2ZkhMEhFs2NnJu@`rPpw-k#?%iJh%~ZmeUofUQ zUesfri&DQj{BhZVqp6fa#^vE{5zBk@9geqhvfVsPNMjtsAY4bKk%~>}wc3{7$j3L0 z*kw7$PKs9-E7e1VRvMyo4yd}(QpN}n$K}5Cn#p|Bz@@QbXtUJ6Tp5!n|9Kbxzo1pz zNcAOS^Yl3wI_V|v`mWXhwz}-U@4H`zlC&1t)8rF{RsD3knz0#-y7^$t;nZOHQ*KF{#jb?blc^aPuV8wu#G{58_|w!^9#O0 z=@>2VQJ)@v2b) zry4Sw$T@p2dPYJSv%ln@HM+9exZB=Coq3XH_+GIu=-G?NVocBd+v_51Txs$LB24$k zgL?-LQZ-F$Crxhq_Y$uporF#b>$9bG#zu zH=^vJ!?A80RB5$P4k>9S;jp+HWP+?x_+pb`Dd`)}bwa>}ry4GsUIc7NB~WZiOC0|b%9A-M;Z*v`P)B{&$ct|J033bVJN?U z=p5tlkbArA-%JPLzL$Ry6Ps(t2%sP3&=IN{-+;T9n>CG0LGmB@bua|a54)a+SoN*8 z0dhwa1Q6G~eXGV+Jt$rudkZ%AetXeAWH$O9;|L$Lk;VZHA$38j>JpLW;w)T+QzR!i zXWFQU?tvp3J0SOiPVOc#Nbga~ut$c~DeQ4KlqNH=vbN{+=m1QnH&v#YXx zkdzIK>0BECy1oXUw{b5@og^bv6veN>$C*tcBQtpt2fv=>$?$^K;a`xB5;=&Bw~7(` zh2TiU2Jqv+bf4C&lwBO%or4#I<2VC@IX;R@{t^sg+T%!jm0(juxgB-Jq4u`$`#0k1 z-+>P~47n(;Ut0(T)P5m#j+w-c35TXlmV|_2y%2dpq_8OHghlC>8KL?7cM+zjIWI}| z2R`LWSJI%!*>IB;9JUeC^p$~sDs=5yS_4ty2l2vjNN@}U^4>Pn-GqnuL$jG|62FYu!4 z-wuFfL^l17DF#j`f|Q^1|50d~8e9%pt7x|J%TeOabgy+c` zel&H7V#p;u`FIQ@A!cqKD>Z0-ap|wei*{_MjF~A@wD=r(AfdP-BzgsmmkW&|Sl9<~ zKG^io5edW__>i6+-rcLr>fkVx;H(SN(V{l&_OwE^KeO|13H#U*>{ibbUI5z!g5^tt*bp)2X;%DUegLKH;~o0I&-@kL0!Gj8XVE4ojM* zhdoPI!rOJ==j_}+)}6~W(=PWgNViWOx;WKJ*)>IM8^F%po*4T#DqinUVxsXyhM)H^ zFE3~O1!cB?IolL!(t^P2*Orm#e3^MXg-2QuJpNQ)pRXME0>?=-MTG2u(6^B!+7q@H z(yX;6*!#etgLzw2nM^M5>m~Z|fyt|H{v#qtk79(Fu@Q(o-D91swE-y_UEbI4Px3nb zrwMKk(XjIb9x*lh*++*4^3t3%b2xcxLy3)Y6^gAQPpiCR@A1OJy=rolp^sHVUFx#jbNM!_gQzU}Ea?dJ~?U8PnXjLqonXc-6>>bpBtZe{YsZBH}Q zxZsbN9FG=okuq$fMaS#voB&x&3_D>`VAn=cB$S#h+HLz8cWlOEQ~?J0q#YxFq!~4O z{8!bB6{P3I_Q`e8o=~8^=F4j@ca^X5f;|dW3Qmcgc201H=thhei_p8}RXGe%RTzqp zv2CXdb=5$2r>9?@7q?K9B+*R+hV!eJILGOMx8H98p<3=ze=C8vqd#Wvt^zZ8d8R& zB`ZG3*x^OZXsu11G|A8e9r&PNO6g*?y#T>bU-@qapt_(^pY+&oi(jHxzKh7A#9He> z2cO=Yc&l-j(zvKK)&Gc%`9)h}cp9aj7Rn;GVS><1BYQlJpm~y}ZYz5&2>Gl?e=Ln)F{D1apynXG8a#=badDz}T4+3!@?zaMD zPnxsT5&cqoBI{}4-j1rAG6hba{NaAx@Iewe{O6nqQ@CW#5yUJ-Qt_ zBh!TqtnjbMf?Hsq4bq1;cT!*8Y$^37G(CS93&P>!agQLz(|FA;S<$5~NkW@&s6oYf znbB;iYbF*(a-QBC!C#P)hfI2l7(+%2N7`Cz4Hhi}n|;;F^f$HKD5ghvZBomPTAtN+ zXYS16x2!c$OIc{f6{-|vUdg&~-NO_^fVUNx>$^@?O%jUkA$6Lspe1)O1O;|XQiz6~k&!_5v@bz{|BO3ot%r6xAja~ueZQ3S!bs!w zKVBN`K$=LUkuB|w6X92&5BW~YBIzY#mB?2NnnqgAZlO2hEQ*5d{N?ZH z_P?O#tlze(YfUznRNSotcw9Qoj1=;%5BBNQS6^^de6=V?cx`RVbaXC`sOz?zpjHqp=X*}*mn$01|w zOWf4RG8vh_po`NpNxRaY0(J zyDd`|FXLl1t(ut9lghqbgK;({fN$&CL^K?G-yo_4b?*#2c zxORk6e%(G{{@DA9*AanzE;S#iDu2hiNdAaE***EW)~Ek#__3(3KbJ)PcVcUu>76*< z?T5=atJA==7USTc9GJ8!FjpwBbjNOKP4aYUMw#2a{vw5zu;}gOXYc##?uoeesB*%m zE9cmWT;&2e%X5>lj#jDB!Y1YX%cDiF5&hx5TVidNgklf4Qb7OE=ak?gf+GnORM#T8 zdbWn>CvPgyPB`>5NtqapjKziBm}!y3vKa=qYzdzIE_zyXGLB9&xu>|BI?#za7vIjFDSX}J8zt^GpgUc~g~R87gaaQH2Q2;F32DtCILealqh%!{8EN_lUU856m~ zG^R&=ru}r6u8aEoh7D>c+6=-CfEdEE);i3B^~PHM)P+LjJ8|TIr@yI2IN-5vV46c< z)mx7bo`lg3e-R(Ad)Cm!?<0dhcgy3;ZOX?|_rfKwfbVx+j(hQK-mdHaSUT&6D8B#U zqJSU@2#6rv9nuXV4bt663QMQtA}I|^Nq2V(ONexLcT2;P3(LO0WE0ZRy>-%jWswWgh{ur*!vmh**!r z+!Z}dIAb0Cty^)^ruXyj?&^(BLk*t_<^5}-RTCOW=zI0xE>?A=wjQZ;kV$NTIQH}= zw5>U8+TS#ds<|a?egNITnqXw`tfJqa^}15#n|dFAD)hag&N&I*ZY1DJC_X>(dlIGB zpVrEO3J?Pe97zAof|)8LXf;Ge(x@FYus^}%(%%=!?=)>HiTtpjXs4p{|5hzHwXfcz zuoQ5H4QHJzMLsg#$F@HeJoMc_GN+A?6f}#Wf16Cd^R;y(@9Q@a#R_HX-F`$_0ujex zUcZn%Sk-Y&{w%{`72qw?_2`SoN`I8wxt&=yS^dzh`1m!2;+=`f^~O3MZ>!PDp<9-& zJ=mrZqP!E23vApmP+_~*RZopy81?Nl_dA&7mNZR;>}^!B_LS9x%`4v7B1%;- zo=8_)I&YF#vXkvgfwy}cN3#|~xCkuO^TpZ+)WA0B2ec6~u099Wj@y}f(J=wdS+0RS zg9-cs#vifeSLr6|Cc~-gH{1ovu9c!SC3K{AD*&!`JGCUf;;2bNew#;`!x2=hZ`M;_ zCzV!hd3*SyUvA&FNj7AT=%R$!^s%vELi0SMfvCR907rQwt*;}s&qT-6op52>SeZp| z&tJhkN>q++L6HI;xI_Z~fYY%uQ--L>NcSjvlxSiqeE3&dm?bM)MODoIta@LsFw5P&KdMN&9ff}CTr>BrnoS#2(kjHg5#PySO=i{rwg6z@TdH#RjD5e;oXB0< ztH!FpynB@@24-PVEqi0j-Z`fWeA^7uy|OucUl}bA_^OXG z{gdf|IP~#1d+MKtsyONMJ0stR51x#$tm4hU%`%#mHx=({yp?Soy1YKC=b_Wf+QLe( zoNS7CkLG;9zOqVG>HA9-(la5DKXr}XX3BlD89%y@(9C?bid1;^QvU!`=;XonPR2!Q5rOsw#|Lpx z^vTVAIpx&Qv55i-c3+w+!RlNmDLhaI-2z4D>8ZO6FxN#Cn2UGl^fViDKL{vvCMJc7 z!Y44G6d?Y?GDac?E1*TVc)k{+zGoMmk{ZgtdYf(u6c%2gBP2F;( z5FPpa`QLt0tGLnT1{(!#zsBd=e>1P{YMI9;GcuZ*Qr4(i%{%QQ)!ZU`Bp$q!q1Q-u zUD#5Th#gV$e<+|VGal8imY*50RDG#pd@mp4mCf^f)n`ry0@e{5f5$A3b&8Lcry)sI zPE968@dlnjUAcGd-yLJ~uzNW{Xy+an=dNh{F7OYpUAp6u#AOb{%#BIuNu3^)YyrFW zB_!J3+vk`=P1Toq6xv-1%1^tXVs8qaWEU4K+-t*E1$zlIPYiqY!r6gwfKuIoQAVj< z(+SAn8eS#@^=K#2%5*qjIdtu3+$NJRq=b~Yh^=QXK=GBz9O!>hXr9q*-%7qVqL5wu zPJ6su>%8A2!88EGS`Y5Oj%c$8i%&l^303GH3!EIDFM<9F%2||{Wc13%6m_f&e{Z00 zXuS7pyoK-49n5OA4y(H;}JSz|a}&aq4qv%juIpRR!$H zl;7>Ov^3^S7+Qh!oG|H8zT7$pQ^<*>yJh-n+}1mcv9}htfn8tJmymGR-#ZcCO+)q* zulFabUSxRC0jq#H>-6*_ZNy&PXKYi9o30#Bqd zpnKB=yDKn0T24(=8H|VftlFuUB`b!RJJ=7@^&bsgiM=~DZ0S&6dz#|gzw7u8SUHHNBFpeL|-a;YAg}Q9=(ae%8 z%7v+H6jfh4;7ED}c2356C3WoK)iLt~dFQIAjKj|myx8qGxXr4BT04Y~&DVDpEAo%i z;D9hUN2TobE9JYpa^94+d{zE39)e1}h(*~u;b@ks7Q0VD%TrhhlkxK8$BaTM?03qi z{?;d*yI)r=G_zRgR@Rp_bz+|uk3kA~X}n4`VtEm#C;EjyKD-2=yYLBTL#jj-4Xr)* zhn5w2R?ZG2gG-43rSCEKQjW&=kiS?9P!dtkOh-tq zs{3@%oV9iNnC?o0#BG?GtBW`hFJS|6du3mCnn5`&@)mCl$M}}xfUW9C69Cf!+d22*ni(i1P8bZJ?pCLQbXHW7T3J(E9jjw;AE{8K zTeZ>;!B6y{`!srStwg9T`@`7UUqmC_ii;=24o~$fWBU4zdUR&Bb*oduGE5`{gR;o- zyy0}CV&j6}U|`wM*r4t7Y{0QUxjCco@a`3Qrb~vQZ&J9cYR(Dku?Q`*PscRBcTQi5bi!kR zAr?>jS!FbqZ+Mbfhu2V5rwfJiZ4D@x_QR*)f@nsbQK7%@t17jfMbourYHDx}pp zbFn#!_j21~va{0oU#;63xyBcm1hY@?hFv=p2VgFXk2)&(2CH*0VAPUxO9wzfi&Jm! zd;fr&43~Mf0wY8#JPyih*eB?wJ>0u)a%7|Wl{aM=Vh zKCFfZsWQ}SYh?$PRK-sGmZ-n$%OSeALE>|wBbYAvVC#izL*+)4B!?1K(}bZkZv-*z}a2v#>9)7wqdd>+K*zD0Y5ohMLdp; z)qRr1Xx*-Dw!jGdf~|MSd55~49GCPrHv@~g0?s|K{;}TZz!V|l-rM)bMu#ePr+@o% zcWYed!Vv^gf8ON)_L*jhEv9**9)*`s82f%Kqc3C;ro=S(F_(XnTe9D6jI4gYjwNFs zCQ?Hd&hTR`E-k1lm~ZkH6&u%sEr;XQs-Oj5!(+XxL`QY{x}* zHT;Ltt8jgeW`|^(;jl^UJGQ_{aA_Q2ziEtqe62kGEY9=9EKqnqJxe&9?+M)fQc!VZ z^m-~Lmteky??V9nw^YLmuRuOk{CmwmSH}jSSp|Ht$#x+fqiN67o=s>@)bb@OxN6=h zB-#ncMu1+@*Uj?D(}W!+6+Sm|((zawELnIpNbdQlEyBz&P&8vTy}HRP>QV0M|7H}I z>|WR4(&&L{x?Nd311GDh$2XvPH>@p^&teyXyT+kQwfhG1y7EYJR>_cnZbe5hE;fKF z>bL2;0E%z(S9-JTm5zK0*HJe?C-elins;?nn>QH8`Z~^`-=Mx5`5RX>#feeW zPx%s75@-nbY$v??V8dDVYP0EdV%peUHqr$*+O}HSAa7A;;kj|3oSY@%m%2|-TnMiY z_+rw{kWgV%DS){kVeLFEixzbomB!CZc~(m2i>Ffqf@E!{-3%ZI?rvxAy*4RPRWFow zBz|Zrw$ybb_z9J+_sUc(hZ;}5JFwNg!W>-Iy4gwDO!P4pLvHokaZFF%NJMot4xFT2 z(0){XfFPa#$QEZzW zF#y*zC^ukOdBr=G2CA9N)#wSXqs*v;^U2@ zo1u{9QGy`M+2OhOROY_hnh$GB^NbWzBw#6}az(1M;ozG7#PQKgW`XELSGCB1k9Rq3 z>6#uVgf0Y5&mUFqDV5`-Cj)3D-M-Qi(03LU$%sh922}{hDQ(R^qQw^wZGM>UlK)C`$>T>D@>ZZvX)m@ZSSm?@ZX}3O42_26daGk{c_w*n~aU- zWNtkY2w?B4R2uAe$=%z+v)yc~O^uW(D$0yIdK08)n6ov`_doAx`K_ibk1B{gE))fq z)+QI2ux|N{?BxsAX&vd7u;|VeQD(zzCMigP%kbm=d~4(60Qcl^(=>G1Av493K)+}E zdwF^Or}4*}lWuM+>Nt_wmtz4XY>Zg@`Zc%fJjA;z`|hnCu8{_Ard!IM9gU)c=3H8} zu73)XJQNMq*RviN{I;r(Bpeus&s{%b2I+i+r#SK~Fk%Yp9;Bsk6OVd)Rx}uf!H0mN zc#Jc#M8y^%5j$bQo$oX^-gU9do^kcyo^7fbGfW0XO|b%#+c5z}F4zh6GD#*8`9vA<|sga1Wfh0moK5rfyUsPT(PLfR>a@Fb^KCAndl6 zbqtsPkwR$G9oY;2kS2Y`UrV<=Y+t%TkUB2v5x*ZoC+~6^U32&vH}(jv?xP@6dyhIT z;|5*7<%_7N-$K>j?Zry+>W#XTc?prZe#`6rRcZ>7+rLTOBbNC-o7RRl)gFlh- z0Ur1X-rK-G`2oCieVsS_A4>a8>RO?~p6Bj$+}JSk7#JZWMx1b`@X( z#R-ochnP-{2e31?Dp%3|c(P<_b7Is>#;YOANv6!jOeJ(uq?E!)3ESI9Jgd@zW{kz^zE_kFuaPfxXYa%q2K^B1w?MZH5cedZs!5GOXME0>R%lT6Z#Sio=`c8K=txX+`P%zW!T`l*==I(raX6hnRN*e)d`O`@o<~gpYo|X zP@055)L|w}^>Iw`Ux$54QA#QQp{zYw>he83dZixX6Fe10qJ2?V#9({5-g_%P5PYi4 zpDMheACN#_<^7KXbobPW z`?|fq3ytp2T43`=CCeU&g_rF+TydIaOa-9p`{52t&{u{R@+9zsygI-d+`}BrwK^b(=IeGY;VRwCe9K9VfJ>}3cWQV*}sWE~6Yqq{L5RwY})wJkZ zZXo%aj_mba{EsNvViW4HR$uQ@Tm*%1^>4^OJXe#5zk}-yS?@_3L^bJ^*4) zjVSf~wSOWmI>XvYQKizp<_Q^Simc4Cd2K>0u4a58rIf~gev{A2C3rV1ceQ!?_$&_I zU^lW^(>JD^qGXDCG?7`32MT;4ZgfT)ZD!u!!OZBzd2eYDDn|}|ItRCs@>ABQ_CG1l ze?`2fv&v^A5&%))I?Kx6-c_zMq#xHDjc92G=$g7N{%tf}Y}p~7`y)1dm~y;d#x>+V z@yp`-pUZ!G;p0a08X*14c~AHFvZYJzu48Fx8QCq)VvCj@9&@szQI#A!7eTSZ9xJS) zMBJ=2at<8Ge?61~tM*uUsXTq>{eveb~h)d`>!z?k*45n zrzK=h4wgOpywaG)gZf?r<#koyvxPtuVD?n6d;<&UAS9Lbq(Q+-7MjXWaRHdNR|Je9 zqcH4p@fnd{LkEv@xCH#w&2xxU1b(ab*qQ+Fyem*F>bi1|s!Z+Gz++fOiyGH1GTWA% z-gGnNxBefBD_X*o{x`}$@2GklwvL%F7XzcTiRpH)uL(IS9Fags+SHdks?5s5Q5!P! z+*j2mbUwlxH7kB$Fj;mJB$^|gDR32J>N+Ot$&lh02DF2KjC4l?}k=isE+;vyC&?=t9pBalq`a0N~D&5 zuJ@$KTJ^|5=};8LUDo3vsMPAM3Z!y(6Q+{dR?ZeXPMl#MG05U2IKjw{*DjVZRFuLA zVSB$O$ggs$pb$?~0?Ob(w@bRkCD-D2?W-KJ|Io3o?Em z---vnelVNLG8Kl!T!Mv zA`-fWe}|qpA`befK!z5KOD=B+; zKqh0qVf&$And~;1d9cv6YnSo^GeqPSFfaJtN%dm8tOLss2ZdkiD%)i>^AZ@j&z<#i zfd_^ekx{6+{fBZ~hEFe}v0M1fC}-p)~MC_#{$4`{!M0Ajsw8uzMED{nQ%%U|Vyuc9P=6wvGZq8qI{x(;u%b3S{ zoO5-qGoSn6&Ce?>6yh6Nl-Z6xFPF=5!B@nO;iZQOE42Ymf%MEKw;}FFupB=f|zq~Q80 zXb{6KcCC8=jBKJ)DUAIkMyO!Xk{v8wxa(s!JA&`~;;w6W zgLT8WA%^P*rk27J7{pXAefIfF!vf{V#-Up89mxjI32XP~WJ?TM0Dt1_FGCMg%vQs< z#4d<+%NB7z2Usn}GUF?%-{vmejNkQd0H-WoR2XgU0NLZgMolMEZDm*(Jop2>t8gH$ zsCw-+opd*jxEg6<+!ZpQ(fxU^)yKul&DYO=F$O*B{s(}3sdJ`IK(kV?h!!xl$P6%U z!_u842G(F5wT7PAvki%Z!|DKv@8VARLQRQzgJ-v#k9{q3%Fbhb?lgc z4-`>-B2>dv_`nrd7tPfF?Vy?2ok=c2>%=LQ(Q_)>|7rvN^wluRoRf~X=sPi~0$MOs z?8jR!5nlNVUdH{MS3{`5_nDqRt^Z5b@nli#*6W={g>6lIegJdzDWHjHC%I&D4Pi%9_DmN=;8F>$?c>M^ zqKaKD005|paOz|lR)wRQ6hSD;Yn$p9l4H2eU6PMOx*tzI<&nAEZ{7g+?T6ph1FUFb zFK}>xp7@P;2Q$}-dR+3SaTJWlk@EpXVSF(QHMB@qFJ{^TGp`91#N>c^(fO;!Y!rTZ$>5C;rBR>-GKq#C&;lOc<5QXLiv0I9 zy6@3~WCgrvBQ=`3S@WLLrmmv~gk)aDb^+0D{60(!SLSC8D}fS}e=@Cid_9QoCr?Hl z7Ji-H5FZp#;Uy8Iy?wr3XzAJg`>*P;6q?-L+wQNIu?55;s$DzkE?i|K@#Mpyny^@B zAmn)rjPMkqZDR-D>;E*%kDG{_&Kmy9nG#(N^BYK6f}X|p#5RgW`22`}D{dYWD>u9X zHeuGYTcGbVy;d(z>;P4q zpY>07d}&#SvEYf3l~&&QZ62q*XU(nln+Lw`l%`kn;Vwo+^exM@SesU1>jjq&no?`g zASy{S=&#?`65%x_?SL3g2TCwvwlze?;RcaBAO@(=&hO?R9XKAI8rQ*|8p_SYE(-~i za769THOo|_}cnvgCf`d~GAhIW77*;{qFWXA=;*l5$-#$v`t?x#Mb$FIMaiLREQGU2~sL% z<)!(Eg7vKbyj}PPHJvb#l>SW?R1hV$hstdQ0LR}o^R=T=IT)(dk){ZQ33(DElWT1P zgJWB!%7KaB^frnn7~erEUH?OAI*a6US~}Ko4SssJy>8aJ)#=PF_S+G(G_qgtQ^u=J zh@MDLFehhuR_;Wl0AwG~`u^Bhd&e$Cw8FO#ujN7bdqWWJ=PRQ%xwcP^?w(fa-S5$E zil^;*mli!0G`yM42<6Kn}B7z;uLr8T9OJRh(#UuRxs`hP6*jp0|U_WUtv z5%2xrHbyh#uv)D$O*AtzImxT1yz2ZeY8`dh#T%0`MmMb2M|eMa~tln=I@7K0UV|A@_6W5&|M?R7FJ&9 zy_C4<*R?4L&rBv+t=S5O{D<;3fCy&)VW@Y$fT@Uh#m_*0z=I5!< zv5B+|^A>!1P0?_}APyqoD(d4lPFehl)SvcV%-FQW@Rn5?`p-Hq zeXds_W=nO=h^mGU#(;z)d3SdqcZOgVP%>xcPt6jIDn3Q0_4E*miS-&r9j86CL>SMx zBYiUCtizY4Sbg(0XfQ_)P%gOzIi>+`qZPr5!*8$E9Q=QFLOHwxgt-p{1Xw1I%C(fV zt7J=OOv;%Xh4-$HNh3J79tE2kenIp+zw|8IUU<74OnRSrBhX#fb#&_;#Q#Gf1a{DJ z7FvJj99b?yG7LoquwTjTF?Y3B2I*ObOSY#G(m)12L!DT^L^BDrlw@;FDV!#(H^+GH zutaR^q#p-ppBz4&?1d6eyym?|5(;yEvQ5~SqI<`heCd))0v38A)1V}B! zyDrbN#Bl61LP=I*4&NnCub(nqss4w;XwhM$LOyY-73JCSg!l~C08Y;p|E90#2F<90 z-{>b(+WcyrW&drX4LePCU`M%r+A^0AJ|D3%UI?Mu;7zi)s^IVj#Ctym@N{B0e1hl0)YNFo6jv03)v?B%7;J04PBJ!`J zU(CPmmZS|7JTz6g`rL)x3+vNJ(xQJ!Kb)@a$iXTzr*ArcV9m^O!}Q5%Q){-Sh9}5q z!&lDsk^bK6_Rob?Sop=&_IW6Re;qTfXS`v}zr^9Rz48?%3E!ZZz*~z6pD!gE)u4iUGmAy2!lEv}WbG!K3(w=m(a>RNSg+8Q~E00db4uVizl zo9#oI3EAYi2QfQB!n?wbo$X@ruztANg2pgRz>E8!6#k*`cEAU&_%k%L^hkz7uT=r$ zopi7Wn2|yJ3uy z==+7D+))!rNSfx&+7%Y4sH(2@bura|fTZK-@gCof(u#selhEmW#jT4e(@}d!%AbAK zU>3;=1vFh;x-WsNXknn{P_=GqdtS*w8o#x%!U|TbtTv zYt{%V;-5Ad#|9=1a+<^sEQd>!T7NYXh)4NYrVv@{wgErd7M!=S5{EwrOGunc_&%ww zsk{MzSEXfTU|~9r4r_sC!$qPFk}OaE(I3q-jf6vn@=M;gD-MiU(K7}7g+wp$f0zvv z8(#6HXW7lRn)cD9K6RMrrmmrV&dt-%&do|pO8E!e&HR%^ZB+2`)?m}&7iYQTt`O&a ztJ>FhQW$kXJ{WD@`ssLFrndnWppry`Ti^q1w2_n1Dyu;}jp7#?bsI~sk+;#)s<_R$ za&Wt})dGe-~2jm*FzdDdToESD`G6yoN*pcOBg^2}Jzbmn!x7hI-fZ z>!96|J7~JZMPPAKPSnzug4@3J!xlEg-y;2x69J|gb)P*RoV|m zE|g^1tco)wVHG0`9Si873Rt%>tM`OPiqen1FSLvWkW@o)J4iclu{ffnk}es;*bz7! zH&wRw?74NZN3fmIkZr!t19%6M&p~TjnFXZ1dV^Ni7CwoM5~oLT>ENKc&3)cAtZ`eB zbq&R*)P}+?o|R7EnWS5!%g*UXHYzyEK<;-b?S=gVdUZwq5m9!fB#^O0ILY5IKkL;C#eSWv|eYw+Rri>+E ztjk9y3cOwlKll#?l3gQe!)U@ayl&lR8JQa@#+ehpjPf6y5g5V%Kam%JpFc&0z zhtFgs9jCmDuZX@x-!}<3y1vEA(pLQj{F5|%Y}6G~MPw}{^p&iw8PG@TdV*Lh)f|;X zafSB~L%3VS1LAAU`~YcwKJqU0394ZHbVa+QU8S_tWILq)A4+U{Ytfyi4qIns5CQl_ z114!T$F^(>da5T?c<`(j>T<1G($3(@J_Ja8+c^Pr9dk>w`hE>%sN1YT$p!K#1?dHF zF%~Yi9u+H?`K_^3+oP9+ZQc;PxN~_qzN!t0rkEQQ1)s;HzLUI{<(l^vOaM+FmgHZg zipbQovuxCJ^w3@tYgeOY0!zhYlitYj_dx?WRGT>$y=#?g4%-(@i>akAXpUB5lF+5n(kh+4jjG{I$+_LdrdHu9 zEmhr$iV;{?E9@vTMP#oRuv_@vn>Pk&6LCwDkWbdKimm1iA!tziSw$X&1UoeB#3L= zgdcL$aTI%g7ExG-gYS`7uHr#t>Y4tJKs17gXti_*D?e>lsw<#ZK>z4+E$6212;IcT z4aa@$io$`V44t%^;pM4t>-oeAQMI zbI&{2M~Yc`r5uQ=%m{h9PSAcT@-y}}%T#A3EXtp}x1KRfzyM`@72ng<#3f<<7(ce zf}-K_bQOo*--ps8D1q3B9P1H(^|TE6=z#Bl8L zUF^Ek$RajG`jtkAwscub4V3(}t4rVk;BJ%1wVLcS4NQR>0CkJi{X3-Q z8ZXG%lzE%qUpeRF&j!B{0U`-bhlud=Ryf4dx6Y zjrBDaCf6}-l*2NR@;m9y?Purxd*O|7Uo1qi)1=g^xIWF=p3?C&=(K2ur!7R^v_sye zX*50O1&%QKx?l>OI*|5_uxOsy@B6)SVAR^$Mn|bviwiC?NFr->u&e~KS1B9o)cub9 zYrw}#)Jg&Le(u^(g`JGvcWp-E-y#pxWAxMX3*(~<`F7%<*;(i^<-ZIobT+Ewynr8i zNckro51QoUy#`aP-LQ4bsl(#sGmD6T5xWnnF}Hn zV_xi}%BS=W;c9!*BH1 zX&+}6MiYLYL$Gm5&Nr!7^j3}$rcM#-rk*|QWAgZkZBC;uYh)6=VXeazC z!7)~+gjKt#JD%>s+`7p*%l*<4}>b}K3j&25~qv<{VL=XsTpt((y5qJGNDt_FpkJURlm z7ktLsn6=&X>Qq~Mt2DiC=t8m zb`QnyDwirXejv1W6CPJ6-jTg{E0V4JFAzrnv92!|8`{V8pYyA(F@$v@BQez5cs4oM5*I=MopeCxb&NLXy@s?E- z0FP=xrU7Fll#w11Z|+C7ow`K~$4JJfU#a3AwG|brl8?=ZLQIlB0p>Wo_UhFN6j#hD zj@^YXeQqKhahy*j;;%R|9@Xr+aN1FGhd>@4)x!_gIgYt|2ffbdpL`r#b+b_>h=2c_ z&`JHImF__K@tzj>QpPs_K43+89${MKpGPYLQSuj-m7p4qPJKUO*@EKpdd|RA*Rju6 zNW6ICPtHAqQ^@wD%t3F5^$Cy`>#jUi{5khJ#BoAHA9&&FB{pWIsM6^D;Erp6lB_rO?(h6IX(4|#*TgLy0uU@El3psvRN*zI;{42_LA-4q%K`2*z zi<7-@2=O9mpPUflFa5-8+lbjsNp-YHO!_l>zadCHBV6fukaCQ70AOqqe=~;=R6k>5 z_wa69+57q_L99Jc(D?UdLiA3&YL&)r#j9&v&wRQ$Q7}XBrD_i_3&f1BiPxyEyXZ#=iLP4_Wdpt9>HW9!-s zxsI8A*#0xcbE>+=U0*KG69M6(gk{^YKZgb#Pw(o7w$hMTS zJM&v~f7zvk|GkUqr2TfT4lF+>Thq4)o+>3LAjEg={|WT7Qp#dhF*znY-n5zn!{ z!oU*L{pnfDNwxp;b?T}7uwm~e%qhP2gluUm6rlQ4?e|BDK_71`ZX@)?I6&^M*_ijB zEz=-@0G`Vd1f7PQ)i$}Evg;GaZ6Uw%9?PKC19?V-*ce`9kmGJY3z1Dv4gq+xB&SiV zCgL0zSPCbJO`w2O!t_Vn3Mv;~k|o-QnzB6;q`mjSt&$-L7*CH`mbKHSt8tUMef?B- z!kZJ@^~TTeQOQqMuex34EuNvBmrj_V(h_TGG#VP!3gd9D*@@_WHE%2XVB_DhwgxSwD{H8U- z(ShGR0o<*RG@{sEmxEaFlk>zZNQT6Ng!=%wf>TV~T+g}(?4R~{u#jPW(B9~SNE4i@XkXnSwYIbXJ z?%d^T!lIaiM zWq~Em3?C$#n_cQ*MODor?qa|qzR)`=Eh+oL%&VDi-Q@S>p^U7YsZRX(6@%vheISFh zbml|+y{OEf<3c--ICj*72%VLp+~z^6od7wP1yO+RZkPV+_O7-Bze7%aHTfAQu2`BD zQZ-9Y&d4T0q7fi=sH2pWeh}c)Sp(oSnr~r)&AMI{2f0cXEUK^}wvhIAil0W7$fQ~C zXk7-y39Vt;3y^F!wEmNE84jlwe&ZDWCTwLBEEXiKh;(UeL3 z9A-y+dgrZ(NW6~4;G>Ny&FIu$clAIMvp5WWJqH}Gh5xBDfNFK|#HiPbAQ8d$F)Y5(*#J|MqH;aGyhDPsz|e?Gi0 z;M7v5H5sq3r%eH0emZpR*N^Q#R68|eh_c}iQF~ol|I0h>C*Do}-558Zzk5a4*EDK9 zX3lg{LBK79#+$>F?Yl#6>!#3;?D7LlWv?W~O)~uQtC6=RN{`>D9^L2b>uUuh+M@(f zxpFNQYNX&;g_}i=sR*hr9imivz^?{063fUm#%`r!)B}{fU<@o=F))F#21DG{D>PML&c_(72U$4(!Luq%j{SR5) zN(Ghz>R%m>9dl08eG){D57CudS;B+Lj6|!ldHxC&E_XE=0zU-#2su@2M8U%#WSzKf zkJR&9H=9H>@s82!xVwfMzI?#x0z9Z%-9?_QBI_ToBk3Y170a9&(^B5ba)i8@#$RGQ z9N5xiW;{1EHXZxh^{mujsxxu~(9uQEDpRR}8-C`CCh|xKX&L8c-!sw_tB3PtRpkS) z=UuI4X7Xuu4bbJ>DjjsFUi15v--6xrhR~tJ%?4Vm1S=`zcCH{qIS*U3CXt-THdGTP=)?ee;{wSeOMY~~6*+^^ZGBN@4sC_3XDF5-sIx^bJq|0+as_36F%wd<(VeZB|XH*q#PfHp{dsd@5@Lf^wVa&~^ z3o1=7OWsxNc(_q7_xl*Xg?+26WQnxv+%XH5``~!MSR`Gsune?hD|oebd>7Xm?ols- zl}Xt}F-p9PzwXfJ@jzr%c(Q|Q_S8?yN7naebi0Ny*wkA~?ghG=-()~>UmHk&H=fg& z;{Leht-cXAo>$i8sapS}FOx@+K@jDuXNJ8$@J5UDgG=j#*hiC}h(m>^F5L$zd7lwv zG#{!%w*tKu6OMN;XrRWxWQcL(kP@o%=WlIX+o6Mb5{IRp8iv?MPU?r9ndwBk)l)A3 zhLrNhT;8@`;hl1%HnCdm5FoGn9%rA4Y=rCf98yB&rRX#xns@80VX`>i)H`A&vamEj z8S|zB`S0=@6tzBAR>0ta78owSQRD3FShueK*}$dLS1gi#pg|+3N$K7U7qG*p&iz#V z|E+73CA^9siQ}9pB88%xXO1X{QkSSZon_7>5AY8=HgQ8EUe#ZJs%cQFWoM1*5UQ{| zs9Z+%|C22ejq0w@a2OM~Xfvj`1*$p*!{@}68gGHztm!sMFl}RoHG5++N{gjr;>>!U za?@za|A859LLXN#OdWs!*XO)>gX#RPb~S8!nZfLP*qjH>N7`K#mz+B+&!{zfBq%JdC-!ub{t=nrUU}U&1&CZG{3~c1)sRF)*?#KQJ?HRLD$UOdmI>H6h} ze`D0tfCDe7(3IqE#7FmD>{|Mtz&5f4%N4kcBy+ZoWIy0GGmE?pwZ{BA zs2AKV()LKHX#4kbN}i)6wT2k9A^LTI*77eoSKatQu0+U7GPjMQj{+`}!*9-CHr`^C z?tjm>#@j9XDC|H!_%=cD539U22l2_oSaA14oPp|~aBOJHus*>7iz|SQJ;2MnYL`U6 zC~yW=MQ??v__`Md?d-5<57K3=qOKf&2DyALGJNlskhS7_bNq2IJc(QCwM8gd@DODv z|InnL2Zv`B|E64D_^r+{=xcS!fpT_T}$BRNQScOx-`)KD^{3?bbO^L_8{{r9c~ zYZjb2=iI$N`+1Bb@j7$|`uFHE)$`MpqP23n8m)C~-fV7qPPcr@FEU+#xZ)}9(FBK% zJ;1CRd#cYB#caSzyzJ~Vk)5} zO=XFpf-t=zb)xy=&%#2e8j#1K1<@MJ5Vxwm<_}miy1XI`Gz{}h8O4wDXYOw zfXC<2fq=Os4-X8?vJScutpHTj^8S1q(|bTInBwJrdT*nQXN?qxe;r|E32X+X1hs?#nO)X4r=j(HkIKdswlWqR50he&SM; zi?RV^ag@nVOTHKSYG$Eel9Q85Mc1hPs8%#VIOV2}O_$vdvlQUci!b7l+r`oPJe=#b z((d@{T2T|G6wnlSD3sv4{i$QzwvK}HX8ey(n4eV=_!6;@a86k!J3Tojyp`(v;<)qG zsT@%B*uLEppI;w!c%Ag#CFukHbW-v8TwmReddh8bYE#uFtD2O^bL^g3dJ|0eDsyOJ+KMYK%y~PR%j4{THw_2b#ku>^c z4Ns!p#Y{{#;k802xkS(e1+cn34iS@~g%XP%V7$%hfvZBP7 ze1HBaO-W6^NFicQP*hhBIB%x4?@&5WjBjuwshh~S-aoy%uIi9!d`}vJxAFIqH_<}$ zB~JwxL1a8=y`Nx+Iw5$PMxjl>=udJ(goFHS$_Ms-JDLwr8aFmYO!*@Bcog#wq9{ug zPf`#8p3hgLI(4Un7#?n(xn5JjQV$C}pWeb5SHEq$u;gn{U-&;DF?-nrb#%v2kI8=> zttH2W`9U=oGqwV-8L6M=zD%!eLqZ4JE-GW@lZUg4F_4$eOJRy&XdYFuct`hNI)I+GUC zs*jusWqJ~-Q7R#2l%WH5H^vP+jDquhI2_&oW1CIfr^$@NyuU!jDJ>0{7@@%TVWmba z)e_V8mCXeADs}lZVrgH=RqI5Wy7Q-LbeKSlO`3#ced1oNt^DW4Sd8-Qj`-GV?VP~(~2f7P3-ZBf_M0;ur z;xEb2I-rw#I71Ep{)UJZeE|!R4n+V@B+3aAo7vp>WUX*g$btRJNz1ssA>B*T3=bPk zUKo7FUrm)Dk4F9Z%jhcBpl3c}?tylGac4uC8%I((MFN92&W<`@uf;e3lULn9TDC*U ztO%5w(0+UPY1B$Q1^*3!Ivzj=Gb>6!2)amye!`R46QSs*gItno%3V>HEMTqrq>fVT zBc%|s^d}<4a!K+Ak^gjZ0pMc(e;}hI<3#zPFfuI^#+QDGa^TNgcU5f2uNl_$>BMPB^x-T{Lj(jNoRBFH%4Xu7O9=)-C1oZ`Pf|KGCgL6Sc?v4TRf=t*u z33UZnEP?v>-Etobbq`6C)af07g?97v0Igv}GsSWlWR1E)F)&@$W+Z3InT{0atn)2KfeDC3?9&yvk3^wRNh*n2x@7kkjPFZW)|RKRpV)9=;0Vmt{E;I2{H`a(X^Mo(+SxZu8C$BHp|ZvO*L zv;XHmtt1}r@V8id`khe1!fM?>Z#?fpOxZiJ-+c=c^ypv$WypV`vbJqP?@A zJAJizsf5B%^!n9Me9Zv#?>&L1T4Di$9F#P5{|ReE;-B#sqX%Z2d)>@gori3fHDb%I zeqY}4ZQ>Mle<+OTTaNzu+9k zXfhSOf(-sRM#$G(s}eqE#S&jahLK>XSm^YgN`b2i*lV+~{Qd%mICZW^G4{rj)9>=N z4^?gh0(0Z(T&wmErBW8TT+a{cR~J6#)1<~^lKiifEkNqhOqc!CiI?!`NW_XcNki;m7Kl)Lmj%8tPIoQLOv8-S z@`-!!mMX#WWgQJ8Nqn{XqO1Vq16=E`%Yr}3*D!WSS`mrpq4^H%A1aFCeRI*0W|2_T z_;GnGoASXJ1>0&TIXUhGNeCIds3G>DsvksIB@*98?Q+|nmXY8PYUfD!Xur$*RP>xY zcQ|)lc>ME-$S96&^jH0Kh2)Q)N~@~h;DVFm5#_G<-ZXvBy2@%2GE1C(0q>m9Qf)7eWlxp z4@brIi?A#GD!u6x?*DmsH{AEsRyM5`Qb&!^^c=2^1hyFN&MRNYn`S9lej-W1!2ZV( zU6JcU_lB(lL)vO4-vbx4Wcg7qDNWUi&I>qbRmqA7lWnxNQ4`g#yop!yG=3=ag}tA^ z>z)6@p!3HdrKqBR+Pp?)wef>N*gq_mDvWKf-K04dL*-iWMs?3HP=V_r%W~)Yj-}LF z&y>I!Y@#^mWj$lS8D_22XhoL|5qr6+n78yL-PSdm2ZJ;w5fX;dJElhLed!a9xX` z;)$M{e;zcOBmFYGx&NeH#@~CGKcz-VdXB9da-8=BQ(HMzI3|s387j|q8Oi^5>yvTQ zq`)=HEYz7?*8U3Loia?}stywm!Ojce{@zyS=-y~9@_v^^-V;*qVx~;c8S2=br_>WD z%`|eL#yBWggd4%enPh6Zl7->PH3YF~*$xI_l?V_ zLepWf=!SnWuQ10P&ZiiPdyOE6fGV+P?G(tfDy&9(xU zH+sAsgOl?ppR;2^C|Ts*$|vhJ z+?kuu|FAGDlRIx5)Zm`5#sBRj#jQNC|K!EvwU_`$p@-G-jwRiY(hrZ9>Y`ab4Rem z#zFv>B{($`QUP$$xyO%4m{CH!)8D1L%PlM`CpF1MvCw0Y*Ap2# zzyFL|B-6A*S$cx?UW<>_C;JWzH}9?lJT`BowH>lG>YOjQorR}prxe#sG#^Y(dp|X2 z9{m1+e0O&pB;@_s>YP}QOvvXpb8CR7G?{8D*VveQQT#IVwi-ep#9HwwJmtpCbs{iO zsYgtH_5$;JEkdiPDsk{64V>^GBsjSTrgMl;HS|nKNbf9!4Y>3v+ zKc~)2xK5Hb?H$zL@> z7ni@VvixJ6;m=k=8L?3g#l|@q`vWTxk`bQ!Ch1MDSg54<@c0BQ|MSYnvVSR zIUlYK{+9UMf7U>*=N)QHJIUSC{S455A|Bk7g!p(<w*=^g>A>YGSn+Qp{2=8qr4jzxq~$ zpc^<(;;xged38O{5w<3cGF+C~{9?Ulmn;_8hhO&1>-H$#vgeY9PdW^+XyM_l*@(0& zJzR_+6;AzDqbSNiJ6UU@N}|p8rA39iMU&_@zyW4j>3`9I1nl6mGdB5wDaw~v6@L?y#>-hmBJ7*Cv zV}YIZoL2wM3_aYS&_xrahPi}a^bqHmlai>^T>Ek%l6|P%*__GgY1V{sc$2fyUL+fv zGM~@JdKHIMC(gF+JU^9+LguIDSuQj5j*MM~C2-uwSlr%s?zah2goaa5+@C&G6>oQh z9v{r@Le|jy{QGbb9@(%wWi_LV#eF#8cFAp%!oUV@@zS-hxIpQh5&U>^Ua$)6Jjt1Y z)t{oHYm)jnLjEFJtHwdJ8UE-^dexdgmA6soeE&dU>CGq&Rry7A6|)DK&N~Q%4xZkz zOhcteq+MP=v2mG+fEiN+d}d4I#rMgZ>w5Y@&gdbQBBOPJEo|CNaftCAh|cpLulot@ z8Gn98jayip^?cna*X}7x-^DV`?N^}foNG=haQYn<#HWGvwzSOU^-aXS`%4rjDxP%e zxZ#E{Y>;(|hB}^bhn-$*g`Q7*E_kiY-*`y|`SWY|&1Lqd-Oj*+OimXUxW4FrAga&- zwqE)miSD!AEb2vK+(5%N7|bt?q}5rhEL(xSB&~H5UzkR*cD1oOq)qf9Z=N{4tBZC2 zU$bwXGvv>BYWnWN3)*#Hol>wu~o|@ zsXRtryO|7kHP?G=Uo%-gU3FhKzaf#oW*xqA&Bz6&im6dj>h-z@AGBP+cFUfKJ#Qv} z4u*Z-OR0g_I*_S@{`$+aMF>fzhkB#&fo9Md1p(-#Cz*2Y^Le<_>=t$OfuDh`*FnXv z=I!c?h5+U1?XfAhd4%rP{`l$zIAa6fNwO-?Im8lZHfaUX)R{UW1@4qK&0m_E96Tgc zdre|~oI842$&<0)=FT{S(i+CLeZW-R3v+rv9dKr*LLKJ!q`YQSk8|jlD$XlHXT7Kp zJW5Z@+Oi+mvU*EZcKZN`*nr)WoJKpI$F<1yLc)3C--Y(aTn9 zU=Ezc^R@}=_C-{NXrqbDRE0;DA}{)c&y1rk@aWG4$(>`&d3EZe}%-2Gm*XhksfFRM$Y4ulsz=I%;4?Qh`;cIETmd?D}u z&uR6XiiUdWJ9}|WwZncX5_l8Golg8EsZ0waR37&xy37IMktR`qU3Mdtwt*)Zt;^=c z=<|yGAILzlMc@U;Wk6%P`TC(x2~+p(J^k&+tNpnsN@e!NxHPjq%Q*j%+sWh)+$Xx6 zZx>FwM+o6vIQZR{yxDe`%O5a%u_|*N<|@htUk4*6S&@zG{5zt`aW(#|13k|V)A@m+ z?gm|GQ#X@=PQhNVG3q5=cH<-!Wuz*{f1sf4gdfwS>5A&^ItMH_7VC+Ifd1Pj&J4zp zLr7&>v7jUdeymj4sgnEVT>bgQnq5brL9GhzO^na5eUAHFlC>+qQCHr(X-ZqOUq2SH zKdy#wN^ZLxy_?C7NJn5~Y*kLG_wpPe zx=n2iz2_3R7a?c&F4IU3Qs<4jxjmf72b-VRPq5L=HMDg2G!EYPV^YQg_zn3Jf>t!8J zcR(LAUooeJi&cUoBeWx}E8o_!heit2Ayw^;92X1!O1xz)mylfW_f!Jb;me_nn_De8 z?mD}-iwg-`*I3l?!!E~jnC%pA^wi&{b1S(X<>z$tI=E~*TqhVRw{Sdn#+t>Y4enriZ^Svmgkxkxnw%wja$XoteDGaJEHN;LT`0E=eihI4^0w(nm zb+>p0qx|(}xv~o$JB9O}SiN2vvP^U96l^$FY0S!wg>=+{__Dgh&YQrS8eMQ;zSMg5 zT;c5-;n_Izrkq==G0Zw;C%6u99qGMbEIcHxTvm%H2cuy<=H~Fho<2=Wv4vr!uL$^O)-HhRk_?$_JsV)8SkcN(<`e~*EUN-9PRJ#j=olFYwID?p8EL7MB09*kX4lo zNXt<`smDKz9V+XVs0WQb_Fi@Eqfg)uP0l9rG=Qtwu8kCK(*-Ym@EZ<9tGPP$UK6jN zytBl5EgI4F!>aZp&RpBR0qclh3CmMMNb>DA@=`q@oqj5#M#T5FvKQ#b>9YjJe)JEL zc1q+HYM-~#iWFkPxl#GxImhjJy>B4el;&Th0O>BZdl4NWhPL6aqu6GOjW zsv+ZMfh2fjOCs4yCd|U7uM<|9$6#mR?q06ZB6D(}^>*#cN{{<|&1i?vEXV2M=~Kct zZBO;u$qvbtDxMB!M?Xk^2;-T}qxqpI={(uFiCQR$Cp?v*9^m*w)0_o27Hv8fvnf#*YqG`!sC*BfTPJwFT%YTd^g7VYw+U)^^ z>!PmJT&bGs;RP3$6A+FKJHG9aA?a8sS>9MwKi!*IeJ%>M;fa$1?HWU<{-yqD{fWM_ zklRLSmPG%z6Ivvk(@*d|`9+X`z@ zvU&W7V`t}g@szsc!fUmwgp9ZDGVTB&4xGY^4?IeodV3oekeJpIX*qc?{l0O@ zgN-K1g*#wM0Bz$8ed)-T2g*a~=zDgM;=txv=^~bWf~zR*%FE`66@TLREkKiZth3YEC6rVgAX}UM01p zMQ-Aa7bC)}!b&exF% zW(ya+8+fDZvf{Hdz=)RQuD2r=So!yK%#`N#d*5cpe;~rA_kZoz;c%++&h-KQL#iSU zCI*X@m4Nt_+?^>uR0(#I(iCSkU4_DbQfEqZczFOXkthCmcssfGzWT@@&0jcqfU|?% zt<8@U=sk){Cs*@dqcOgaA5LC=Eq-yg zTS}Z(SldEk3{Hm>Jdq7kbze;HpD;9PxOK^m zjKbsIR6~Ol?%K|vH(qxGe~;-*&%)XOt_$*FMP<&LMilmj>`aWA`JYVEemGyi`Fe>w zN$GLPH7=tB+1`}YnI0~_Z0os1ZBdzD02{b;W^!$l4DtN7h);ol=?qG*P!0;zm9*F0 zRUNN1o70{T;zENEOKoO!@>9mww`B8x;7sK+_c=_>@c2lR6zqsiybt_3egBgwqjm7C z8MpoOYdgYzlzCD=lY*M!-#B&77qp+X)=6BiFmdHi|f#1Yk;z0RaLOWv1(;{2-P z&0dUFP>Y0g8D-`_FR9ks0UmhQ*4&@Eqto+P&9mpGKRLz|D!3*FM@db@ZZLG)5W#ZY z0rFdcBK2E2_4i=ew!4nAuOm{gL+#3YsRp-%o8tqIT5V1#4d2FdGr-L`BMk@M@CC9O~)&3Pq7yrZNB9u}Z?CYD9I< zb=Muw*2;)mE`~XucO~Aj3Jpkz-6St`zpnDTfz#pbcfOP(t8Qp+y`@aJNimp3;C4A1 zD|BI?mT@1C@i#N(v8^5XC-#HySQYv;B85T;`&tBWZBLd=&TH0t{w~F8_&loW%L~I8 zM1QH2hPYwispFGkD+9A{_b>T&I&K!K8V-XmJ-bEfaYL3b;@U=dQZ`>PIAVZnj15&oKw*Q*|nUf zQR$7IpgYrqtQhx02ny@(z-N6!ZjMIsc_a_D6_rLN_{=*9RrzG$$IbWD$pb9mZjSdR zCBF5_b16qbrs(sBVCF9&nOaI7t({JJ<$rgw;)e&OF+mo@bEG~t_UTi<=-?29T;?wk zBpEzNem?aVmxHG_ZI~daoeD7PGvsds(*%H8isl?=Ci`6|wE0x2p9l5pw!n<1F9u+A}-^jv`@3Y5`HzyEh z@-nA*Qd(?rva)O(E;V=JVRCpo-}PCRidt~~zSq+IURNf9At%lS_~uOH*aRN+X=n8; z#^;v{pj3@**Bm9pZey;w*btg&{7gI3I1hI0Nj=>`T6w2=w*u7D;9b+ap(VFiY*&`Y zPfcyjoGfpVvmWc#LwG|9cL6g+taXRwt3S0v4$l^zr#<|yAIZ_+5V!~Gnj;S7h`i-T zvKxd%qd(nWoiwhxYb%az0>8=&D{f z_x9FZ$&{S5Fi^>75Q=Bmza<>eerC8(mlq{!@Mf-%Kku8ql1Xh|1uutGchUarREbyi z;<0VhGOY%`8AyNJV`pwjQ(U01s4&E5mLyP=5f=R@Dnkk~UmTmMDd*`0;KiP&KA z_E#NzbfTNNdw1_798H2J?n8J0&`nG_03{>pdi*iwP0xJn@i!}K`I=OlR)6<-xE*S; zNrYKmrBzz?d*S+OmS-XLt#-b)5+zn~mqZ2ZHkrh3dT8HkGq zZKW~cm5JT!&@Vh0M0zWsX+BT#k_~Sf9=$SBfY`yY;7x?pRA;KSEaOk?)WevH@|A2c zN2JO}Rh?r8F6YcC_0u!X*irfpUYW0BLjI3;}nlP+Ahy1HsNGans7YlhGT1aWz9J9k&+^wUzvl6r&K1K2&tKmvrnAA$uv#a(b~ew+rG&Ds}lsBYWGOqwEEI?ua}(0$PL!Nbs(b5No3fN z+c0$EY0u(5-fUkX{bs{Oym2-Z$Si6+SXbQ9_+Z3tiZKmf8eP#n2%tH#r z;n~KlF@(GP(yuMQlc^9T3ahz>8G_WK-7UpJq>&9iq;qJ z$JUVO#i@N7FsZYTMEkM$H*p*s$-Rf;F&|doCQKHnGcHit1>bO2Q=U*DXc$O8++MN- z&IR6=i0&ypQEgqU;ZyaP_BZtgQG46&;em5r@LR3LaVeqdK9mYMr@8c%L+dB%d_ql*`6WBz?G*6a>9j+&FCb9@YeQQW{4V=5@0eyqj42-I_}q2dWu19GBB z=N4t(o|XlGtahRxZTH9?$(8?a+}n-UBNND#OmLmp^9nf8Jj(1 z4F3QYz}0O2wr*?ctJ-rEl54G<&*8zlKq*7#vPFEyy+s;DLw03mQG+Ua-=_~)76Tjy z7Xdxjp+f(GP_2A{2jRhfFxKJHGK47~?m0i0$!F?LWP)&X4^W^`4kI=*V$B!jV_)_0 z3_f&;;?Vt}oi&*bKBtuvgMCy9BqisHd?~~`#xd9Pu?ch1n?~SL4?uCy7){3fiI>%;$`^XQy$5q$3rLLI-0~{9E!^KpEB-ET)|n>;#Z?5j=2l>@KYd1*{mplg<#RNBoz|>!>PYB zHQGN-(v$Z*t%z)-{hlK3A{rd2lm3?8V^i`Zo*vMg<)?LI-!A0>z`bY{f>3*LkDNkA zEu1M$^6=_CYet8g(T9Zmw5`*zIk^j?iF2Hi@}?#=M#H8Ty&k`G5p?gQJ7uALq-+yg z#>@YMF^1jDCI~e#w2bBQewr#!n!2?pf9IH@wo-EZKd7VSCGAg^q`_`9!y$hgDN%VL z5k%P}R6z2U>j4gQhh6UQ#=1~d(LRqn-8&E2xo^;KT0Gz_sEzP7tz0EO5dkBmjO#I# z`Q}-duIM2jO^{`ask@GAE_V}15Qj;)K@5;)V0NJR00QlKO#&NJBCIM~XbB9H+U@^g zBIhFF$$)0dji>yD#DFg2bWhu%rM0zf%J_LSSjN*=wAsc$tRU_^NXZ}ncW`|lveH+7 zcR%oda_o;xLYk*UWS_9@`dy0U@W(r7a}sIFw^L)|uUq~f*4WOj`U%R$)L1N+&l%-_ z#WPn=vNIO=^#6WmRV|kVTxf105pVvxgpln}H;e20j;oUKjn3N@;G7FH@e({Fu@nbw zGbwn4Qqf!xUy-a9oqH`jWqiZF9i|fBdOu=&F_Azhk1}xkBvPE&HTJI;tbd153?}K- zUv3l%ukUK~P@$RfJ3$$ivGW+r$7;dTmns1y?<$dEQh9A|ZK;KC`+EcDB zo<2RX!pObv;$p6GuGdvM@Gt^b9XC9K>qC8#mEATy;3Q<8O)P&hy|er5o^wjE|Ly_N`el2dnCUjsk9>G)oS zT<*i>R7w$x&50%os!Vd3xG~8`=|^@H3M(hB-G@|v*A3Tq-mUEe^I*vls!0vLo}-tM z6(Q%?0Q_o;Ee5vR+dZKlg@onc&(8Ybl~!iU!C#Jio>4!-CA$}b<-BdB3=?fb#g0fs zMBu)5y9l6ethzMSbR5ks_|$``k=b`oirV}2FMU%_l;S~AA9yNh=5Nx6l?+CZZQgJf zlZ<)XHl1eN#y4P$xu>;fP{~3k8xqR zWjiDO57t(PY9*E#5tZYAE}8Vk_gHeR8Y&u;f9t@17dckp)j&}tk@N42W5SM6>9`ey zr|FE6R+}i$+=lQxfPMIIhF5*TBwWX356v?dndXfm^wFS+Z0t>fl$2vBDicoE?T19u z!Nj1gu=1oAjX+k2Oa7&d1DaD37feVB@mROrY*M7 zvGH8>RQ|;rcX}@`3L<%hI4kJNAPIk0%sRSWY;iqIM$FWz7RPKWBA&d2NsXXwAxim& z?Px%+C4ep)USP4kY3=ze#Xfc1q=s2GE|X>W#VkfN(5{3p{m0q?h7f8O3+T-6x>Dw! zPKE&7N=t>>DmOSJy^vuLd7r#Q{*pK1-fz<*;HrX>f_G{cbSv(D2xZQdv(`&%56*e{ zq6f5T)$uG*d0enQ_+^_!{A;?|6Xd-58zJd}Z#fGcdj*m^0C864&R|gTr^D7cKfvq2 zpZ~~+Q{JcY*S1ZRLH(xZ-Mkb%lXxQ}y{+~g=H!g+57KS=A`vZlJe-i`kz^xvEVNhb zNjN;A=E#PE3{K4v^AjNv3U$wi2iOd!X^TB_pM6*d73g{(J7s%je*)f9{LDLPXM8Bc z1O}F=^XTXEY|*c$*Jnyp^{LLLqGBYIG?okdLv@~;sOp&unJW7%P`+R};MY&Vw0RCN z%q&`I*t_U57ox@(t>w_({0Fk5{_?+2R>d`X!6`TOF=AJkns}+; z*?m2tR*YF?M}u8(HVbq0tz=OuQcZ7Q{D?l*!{t>GIC$0TS-8AsnadDEeydbVLrdu( zbV|5nUeTNbCmOVQ)&BsLM6v0UBVX-Uv(z5BuuvoYfFr*(;+9JmC;cKVcQf3LH{Tzr zo4rapws~<&q2lTsyb1K^@&os3Sc=#ri^B+pi?nk$QJ)kZbh+eLWHsft7%<(@cs_;X z1$c{;o_Ykt=nh6*@_xOIW?91A2cTqX%LW*V1-#hoc|$gy_nt`q;*(__56vE%K}l>( zPZ2akAIo9lRH;!~i*?}Z-)wC!i8&R=rUH;fPcbsg@dS~k1y9SSML+iw(z1%ZWRsH# z6BL7o2(S+mk!>0!Ow2>>1XOw7xi|cXx;haIwM&Zj{Li4Q9~HP^ zgB3I$k`N78(*ae3+W5c)8}-Ep;ccJMz4?%kW*CsHo2kE;p+?tnM$mDKhR`^ybeLjq zb*!YOWWD*?c7cE;Eu4r=-RG9Cu7n^xG|Z=$NB|o=@4&B)DQpQvYLo*7cloUY{%tmo zcJg~)K}oZSN6o?)Lf?v_FGk5x5A&mGTR17n8(w@prM3b>(KRpT_2Y{?TbicVa7NxA z_e0ALl}Or{QF1u{pt{2qZ)o$_;@48-NlBVxIv7PThdHIz|U`DgfK@Z&XP4hZBil$^5kn(?5DXl(WvS zXfz(hfq_Ep>%Buwj>vDniFl^`+53qwHK%uUk~))>C{M@9n5a_*f%w`?pspADk;S(R z)*}?ADH$6CHQMe1kGDaEJ_cz}tzC zVYJatWdU)V&wZVrp^T-hVq@>^V-<#$u(U4@iN+VFZvUi!zBSJ8^V_ZD9;NKa<5%F^ z{4$>8a|6}9+O5)w%a6F3sbE4)+_F%Yj83rcjiiTFz@;^l=U+WuLZx6~TyV7p4?iZ5 zPyW|@?EM%m$_{&v4Gs&dQ=U1RL!qC(%&h}h6*5@Dp5QMQyHH%*g{;r1%IBXo zSbP`lV*VgEcPMS2d4Q^{5Bk8R5Lj5mRY5{(%Hb!z!5FptfcupH^mXYw-nf((xw$SP zphqCG##~ka=xA^s+jx1BzpSF_@bh9NI!C)}LUQc)sL#Jbeq~f+*UayreS1F}7Q!cm zC-pE7n-^etAz97mISMt~__4O4t)WcuK0WVCgncg>xYS9%*En|z1m4UcJ6aiGSrlz*k%sTv@v5LS z{?HyGE4>aaKU6`3uTh7&Yy+h&7$3(4%i)Ssej>CGjgc}P?(mQ2oL@aKO#8zSUyuRX zgdsC%>`bdDH1Ag)LLc^_?%DOLydUbgcdgC6K}T%+39 zO;&gaM@_=jQN7m^L!Rb*6rCq>94+c;+;2NC_op0bx04x0m~e=#LHcgTU#DjPl|8SP zIKeRQKP(`$TAlqJQ)?W}?jjfWw^*qM2r3CNT99~YpYd^3>0?BQ=@u2E zHCghP@mr=QtEGzvccnK0Xn~aPG+yBeSwT!ZuS(N@cu_MX=;0|%yy3*6pfjrPAdfKe z%Tbyq4a4sLu#xtJmsbkfDr zYD3L0Cj**N;)@?>J?FG9rG_a39RM#-({XTQQXC!@lm4t#@QLw_0*$>qu}@&`Wa1C2 ziUfN_diirwON*t76DJiw-m=QD7-7_Qv?<_RG!e1 z7j%TdU0C#iDN!7An#u!Ubv~?NZsb4Vw_-h*H<*kJs z;wW^k_nBh#SmcNQ?0uy>1PVW9k%xYerpCMHUpr!>x&6XJM8&W;OUN4cqj)2wR`Sq` zM!2qY^L{?TofOk{&OE^WpkFS~psdiv90o+rPjHcdadtp)!SmePvXg@J*aC`YoPqB-vwA# z0gjj2^A6M8cI-H8FPrS%h5zwaIo3v0cMpy5)Cb8t(It)w@-|5)CpIoh7)J_SNC~Vk z*GfM0>Lll|C$$w)z&5|ilXppOxLSEZS5TZM>P_Ohs;z=t zEA0Tgp{SUaKsa;vHX5d8Lq2_(-P-mk8Y%(2aox1s1!DJAACa9A;*a>*u zw6Fg8sJeYV>R^C+ASaqqA*@{315eAWhA>HP>k7{mY4KMYXK)h)KJn|fQ~{r=*;dx7 z!cmaWe(7iTV;7K}qe18o-Ck0C|MRd#0=j)-r)w(G+IJvZzk$X1+)pNxniHdAJl~fO z|AX{>%gKcxarA=Yfhu;8#QEMZPF3u5R0#Qe3rFhB%5}7Avkz}pgNv*Bj7(&_3M%BY z>8Jkr8?q|vln7&R*G=lKTH`Af!;jwKe_%WLUxu(>zQ?dF)_M9Qf_Vl^06O3l> zAy67!v9dDZ?nC-{GL2r3Knc@R(UxpGVV6@q86m4(QCExd6<5L z4O(3dLSC?~xKivX_JQR{_dNV|tKyET`fYw*KsFPfil<~@fj~w3Wl6g7o9ud?1e<}pWo6f@+*{TZGwH8i=UWLSIOq8aOuaYlDa>W-c=`-4NF(Lu|`@B6;H?;)&K2wGL=c}FSR4jp=0 zJD1m-T3QQ%aQ^(gUyw5cz*$9f=Z*kJ(MsNF{*4z>IXfMa!1ov~Tdrv-9wStVOtu1{ z`6ehnzB)F0Z|*s0sO|vSZh!FR;glycGB-5SkL*6?nY@zRV6V%veZu|m`7*2XM;sXg zp({As5mzHye92ccPeQ`9S$qPCU4jV3@$``B}E>oD&Z(_TAgMS2%ctRlj?Zud6TMj zt_~?Pc1)npcJPYTklb45z2r-?L-BA^dKpS+o}@iERb0@z=cBP_HDuu5tMD{6aoRxl z%|?_bS^)goFYu#ryuu^zZUR#*kH`7QB#9k$8w&{EjJ;f5z@6mZLVD5f)C;wPiNUw# zgv#+sM$}^g%nKXIm(kyupDVim*W~>TCV8@bw@*jPI2YPt7tFj+69N_2FI7~g7m3dR zWufhfOlzClVOf)#346JjA&H(UPj1x(1FpO4tp1&y4}QMOn*HU3>390OC86?J_ar8? ziRF7Qd&r-SGgTHzuEiDO^N=#TN<)d~aVVr=e%DkpeM>d~! z#C@&}1)E%FV!Dxvg8hx8Ir>rgmWge8>aMR|GaC!I*XTeyRn@B=#CRAZ!IW@E}m2EOrsppejQ7xv^diALp{+$A;J=RBznlRms; z2HRt)=2yJqDn$LrgXNdClC`1Qnp#Cwcp;|qB`ZdW8B$(qpI>@aZTO9-Ot1Z<8`rjp zr}~wtMGD((>)~^WS^m-5PcxRU#}r5%Lh4yrq@Bk_45W5!vl}0m^F&paEBV&SrF(RD zG#`}{7vX#>_VE61COmM}Ia#h>Hqj5uf8+?BUNbjs$0jy8-CM1MhG?A3R4i6$iq0Be zPI@nbm*>piR`C6EDpTvVca8Y8N~XDcyhd8>hf4D$2?A@-&Xb43_In>DFQ6wz*}}il zHZDd~Cf0sZ0aRL;B}?@GIKYp8T*U`S^qh}bKWAy=xj$G*E)>tRPOGK%xv*97^c)_1 zbWpF$KG_Q9J=g)D zJAJ<9sg!*SZ%r-lbYcPY$|(!4-<%yc8%3`$hU+J+Zxd9@&!MLU5lOs?E~}A~?{IBv z$~2{h0LEAcQgu?Jw$9>Ag_D{19Uy7>_w!$|oV(%F<*8FncSCjYtsg12m%EH@FEJdZ zmuDS}KmG^0Fmk$1eP5znV>7zZJ#V?ber@Op6tg!4Rhz6z%zmhsxqPPgP1rg{t1Ql9 z{)~o`(9OyM)G`f3J+d{81XI>(tnW+iXz+=D=h@foLDc)YN^ZR_1Zu>wgPH#@HLT(G z{C2FY)qTp*8T*wm$#PNqqcg)(>AAw!=&|83DZ5PBk>_u$N?Vs4z=O1nj2`UqPv&u58nM7H_hTOySs*b%2jyZ)^F=d^~9!(3ndAjQ=LqH z2om+@0TSyu8p#m!@s1<-{PtJ2m;B(duZQu-ZF@58oyB{0kY|&_3I6!1KFrD^w+%He zO4qDQ7rvxMQg&+Cd$R9hRWVcZmQ$6s%|m5s73c`{Tlzu2Nz$x1wBe#}uN-?l#`+Z# zB`Ku8aK%oZ?=BNQ@PR1rMC01EFdxXIWp|g9+^S?qd5CA2Rw;~)zdn@$9U&7WqVE-AzdKj= zXZXjAHKSc-$t%G<@cio}wmNqFZu?fN<3C5=>QFthg$RWPN~rv;10vyw=|sGevXy=J z6%zv!ll{)FwW*BV^}xo))prA8H$$IZ6m0hf=!?~{1y&WRocHZISFE*WwDkeYsek5% zCmMotop{IGv)FNdi(nbVkqDITYlvEQZH_Ikt@Fw%ddr|o%#NO*cnfx0B`Ao~R@N#{ z4UE{WpI_Z>Rw*q5kdo-eXSH7tp%F-ubFPH6ug94$MCy!)BAr{g2IN2ADopf?TW4o+ z8!|g+!TF}2i1i27QSXEv84u`MFghHVGD8>wkM#nx3NZX?7}H_Gj3P`Je*m{#<6b0r zYfZ-|_nln@D5N#|xC}uD*EfdMJ$)`Rbb#A_;V$vFDK(a6eoh8`tD|S?$`ZT)QK*Az zXeixpi#WQ1Cwuy|6X6TFJ$EbmV7VHk-4`=^;^xBwGZSToOU~x8+z}=^@7fb{Ovn$w zq_UKKtX)`}+S{9{X732X8Lvm;hVYI%)T;t(0rgI2yilk5dX}eWt#3w|C|#vwQR}hiPhG}dWyn-0CIkT1HXM9ZM! z(P;U($PU`CYf8cKj=d}24eaRUR124Q>ugK#?MJV zyT7%`XE|HoAqbp!c*%VbTp@=8 zMoJ{cgtqVuIUP%nulkiKMH|OctV9@RCh&h6%4e{qSCH1p%WnS};?#6#d>Ye>+F*>6 zGflDYbH3(y>2RJ^hj?K))5-7XYvpFM?M;J+U42aMv3B$yh;OxJW_U5=Epm!htTo4E z9-yIlJn*0&l%5<|FIq9GcSLGTGB0kHheR_n=`Cv2=X_o0NzCZmEDUX48mJ?8pv3^V zZ}{H?MHhemJ=XR1J36wmP1b1+(TV(q!Doo|QeH`-L0jvkk-)ayG)42~sVh|DQ3mLM zfA|mddE+|-R{(;uW@hG;3I6QS%AWn|+w3$EwxnUnr*hOt^e+Q%5(4y6e`@JGmvQHq z%d%~`!77gGPJP4&Z@7S)R_YzgX4}9aPei`xnPe5`jZnT#&vDB(lOj*;+dM`a%adWnN? zUCuet^;H*$Nzs^&=l@7L>$oWT?{9-3EhXIuNT+m)NSCy`}h10L%e3seCC|%TyGWJmVF`R^kZikg<(~9rq+4HB<;CYEg52x2DRf} zTBui*^z+P(eHo`GdV9Jdgx-RbFr4WN{ih0<%|zEYifQc!-FjFdqWN8}L7Ina{fpFQ zY6mt@Gt6F!#mP6L8tt>=-}Z6hX2m;~+cm2!Fpddj*v0P-WiQsa>ASfmD~_8e++mu=15p1hPaN<|yg_DNuG%Z?Zy3ti?at$$?@9DSY2q&8$JLq-|(Q5)q*UBF~a zsNz{6C+|o%$o}*RjJ+j4Xc`Nma2~I`5bM)xn};xUmLv}c95d>kc?`&F$Gb$=^RzCb zxlY(Y-Z&&~uIlmcx^-^!{||}WUJ^?k&pwZD)~QjIm7AMCkmgRq!r3Vn5s$k#u5FpV zEc)%7EigBCn#zi#2~+^50ea1$Vb34$2|h>*o4-B#g>eYxbIN!ZXiQbRd((a%C$aj1HR^+Dt{V=bhi>k{5v6O?3F~Xj;`^nqB|kUCpl)roJ{AEHx*rno zjAaS5(-%~}+j<8iaW6YfNLIP1H?z&X-~EnT<Km$KE-x&!MS z-AgHubkBxy7!@H)5{O#j!+r|CPfz~(ufvePJ>_I_RSw2LZ(4tNn5SN(6ey-!52;R> zd2F4)f(8tGKl959uDRO2Ph)z*j&`&NNyzJ-KfP7wvq-RMd&El3)Ffjxe1kB%X;6@vG4qWSvQd}hy6s_f|A&bF7_^g!}Y5v;@#ij@9sTw zf=gFaQ~RC-kz~hKQvOKhXs!z)n&vX>Y@gN^(vvnW=sM=Pc7Kb`;wwr_EY)yNBcVTz zLM|OcB!?$vHJJScjvwhcwVv9KnGv7U%ZB+3mp}Jl)G`F;7CS-f6a3?7LP{8pY`$a& zu^&Q?`r(A$CeFLmr0ZV=AJ@jptsBCP#=a9rats{ZT*7a@2JcTtWCu)bJa@~sEGySP z-B>lvzGHHhoUU{v{+m(P|JLG;q>MiJ8yMOBc#JSKu6pKLnqs<~#_ISEP$|uv>7eB` zz-f#`{l&i3`5I2N94>P41-`~!H*kK0-6J!N7A@HVSjGj}a(~Uh0?9?(LCO&;nMDF` z!V-M8b}~n+9`@nt3CQZRcwc050KXqbMCp)_EGQNay8qlxXJ=?~Z6m{ zU`*?L`*1X{Tm1+a*+84gOxMt6gm1*I6Ak*$@Jx)iCc{l=Vg$5Kv;5iaCeGI%(=r${ z{)3*LG3PI*N4%VW58hg}t^YmJBe}J0l9u4HD&&9J=_FmNwDMP$9p<`xYD`%FRC?({ zIC%2U+TOCs3$Oj|j&o0Sz`Y0Og;iwOenAgtQaawhkrgaBXomy+Iy%JUSYO+3FuyFH z9VX3IE0})gkK~W~k7xJu(1wlwfG-8j)a^0HAnt6hgiV2hE^Sed^tN02MMu(?xGLw&VzO=wTvzQTBG*W$!Q_(=XdGyguLX=Z5Ja zrzc3nCS%y{Q+z(ND#M*U^A(4(7ej9C?jmxs zeK(CSCjMoiMgr(3ZqBr;Ms6GTh!}#2S%}8ozVe}ybW`27z+_!?5xAMw*dBD_Z*BDN zo!8ZRQ9>q6mX7ryT*fA_D(Ew|tI=wu<-!{AW5cf*Ns?!Sh3e&PwR^`ZCFN0Z;hEyN zhWuorhv13Pl*2gfCqLe_RUp%ry6cu^pc0(Da^Vkam+@DBNkd53sW+=fW_;&tK2P#G z4>k|~Zc?3R2=z1lT0lIqyL;s~dOqnCw<}fxtXSXUj-JgfPl3!$!G57tSwGT#6cHu< zyFsG-o3r`0kt#8)$%11bQi$Kvl(>`M)K#OW30t|T_UIIN-=b^-J-^)_aPP|?Met0U zH|ofV;iQSHT376b(>kBlD6z|m`DMC?bb&i&7o z9j{<{wER%ZR431e#eKV=yr$GE!L1{=4SDW?Q3Udr9$5qS;UHM->f(&lH&6u05R@Vz zs_8f}F*Z();p6CAN9jv0HFe=rk%H|bca~zP#skxTjU{Mg{6l{B3pYYu(fWxz0IjJV zzboF=m%dGK+IKkz@}_Z^n;dBqIscNK6x=tSyAB?E-htnzozT9#Y)^5t`X|9g zPql79<~V6)ft>s3I?NEWn_8)qR}B<~!#f69vh{&*9%&16#?W>C#NJjj!4>svj-PP> zooVhlfwoUIr7zAfh1$88kp)CYEUjG=UK9B;w{S3V$X}isqpL+2F)pdDKah4THAPef ztLfbhoFqefCl_Z~pC)NJmbV@|*d*LoGTsaX=^nrcB=l}(-H!0X4ToGN>1|Vs&}mep z*lzYSfZ*a!>&F`k|J9XOcZha^&h{z`)z2^gWJ4A!_hAN*^dsx|H>? zReNabdPqh{R70j0!`)sL23+Psz!0c&iAuJ8_J58+hWl4jUnLj6ueh8COv}wAj!qSe zeX;cShS)$xr*9u*Kz)uk)D)$<%RIWgY(4E(=y$GhF!WM&V$9JDV|ZZO*x?=B)c=r- zql~S*6_*7*R3u{$NE52KATh-KK&#=xQis+ma9{n`vY9WgSLV<(10Uc-zBb}}_)_cQ zX9Y94W@4uH26#4aP%y~UWzH*kV^}6T;l|p-;Rj>{$eVmg zJ^qnqV>HFUT~>%`4*<878)z~PqHh!4e`@g!!6G9vO_K*4OWQNm$`HuAOF;1%*;Q0s zBzW5VIfS0|6<;f5X2b(o5E8=Jwk^Zxc-+)03ES|KZqok$kkm;|G@wQ-HtonwNc~Kx zo&N!k=w9M7ZWYZJsee|`)>iS=4yBZg9^F?uy8J&2bcXCoD#Calz$G;nsy`j_lhCOE zYY0VgN(S?PQcn{9bnzBV8OQzS>^>!w)7SEU2dP^T+U}AjPHnL4DU52=7!6B($?tfA z^O}^*Kd4-1j%8xh*7*O=(Wgv!8uo^&eNH}uq5)qz-d7?}@r6Y#0D26R%dQ>VenoNF z!X>J;BSDvu{?)T~3<|kT9P1qJ%gUYhdIOs-<>$rb4_pYgXWp5qqPC0Xth)E>Z+co- za*_tiOUt#J;59IRAc$D(r#Gk(+6@=|&O9KvyWpSVRD8L8=Ks%U0!VeKHrriMmD~l& zg_^B|en#Mv#WPKP>`9WkuiL8%R6~_>NJ!ph-pfm+dWB9Wy!M#;o|3%nchlJmL+UquZ<)#90Ua8~EQG%?U4$hysbt=NO)rCEo1puvSnv%W%1U#-(E$tR<0@ zWq0p8y0ZzSbt|94xnkz|$C#us4GcJ0FlzD)Rn{wqq>Un3G46sfx(A`trHU)+N4q^5 z?aq(?NwqZ<&Pa@Zq`nymW5N7}DQ?lMekfx*ayN7RnWf9n^Ti4XYau-CIr%xtyV#zI zZOxbua^973JbN)JPWE&BFLC<2ZsQ-TMXYnTmem3|_p|GY-7x>9pr}0Cl4e*HY!kov zSAR4Xgn6z~f~Gp#UHG6dNStM{Tj#e6+N6a2u0!B2hTu5q*U~-K&o8#T;clY57`xHq zUYnNrL4}E}xx)pVFpJPlBs4kO&R7+{Q;Rxz=0z&^yxfB$#$`tAjt8`NWKgF}0S-TY zthfWDwH7ds3kb`cK=%tK@^7r2*GE7sqSTLfO|*3SA>CpM$8i>y$2Z3+pWToxz)uEl?_U-;man244!un`IX5?D8fc6&Mj*(@vxVe zQYWtYp}+yB5{X9?*AI8Litoza5Piqs9$1C|7dFVEEj;)G~=N@R^n*CIZDTx~ha zc{`IZUC|r+{=xOCju{0tX<-F`j`F7y@zqA2I{MMwcH1o=kY)gjt3dwwrMq}&oDTw) zN)-QIP{++fS?s*Z%7KP|dKNY#0WdOK@Rn2U?>Zl4a9Eh>FOi;ua_t_me}xotUd3G` zfAti3vFCfOO^zlEXqiA0*9A@}lf$j}JKtUvQC-YPsb8`^64j{0gd-Ky{du57x*H5? z%A3$gj_?+{C73~{Mt+=bV_M%5eLqe9GbDE`Z1F!7>#&lj+PrayuUnD6g;q$)q;c_Q z5(iuR?>{@+RNEKDs!4WBJwhXx!j$s6hX~(tFN!w)U&$Q7@rn69EyFj{^` zs7(PEUv^%ltpCEeAj`DW80SMf2&@Ib3ze#0J$_AMbQw9yL?L6mIehq%c=lb9^mH*b5r=9U>307d zq3wZsO*6Lpyu`rFB!3OSxQsR32kgi{v=-=Iqk7&VOydcab`l1}= zypCU;fCvYA9Z)Q6J0^YjNZBsD;%80`k5bAX;P;YBV``Z)=R88gSe75b#_>GPSF^>_ z{G_A*F%8^<&K!4xPDH=HV-w{z6imG)lPI^W2cMH?l`2GOVD>=<{Bi{oyRYLp3T zk&k;RT#u+4A@5g1a-7XEHZSrgI@$R@&8jz440P$E>>*wcY#$zo28wF65UfRDwsvbw zAX(7lc<+@v5H7~`x4YwSh$eQ6;ap6p&HYRvz?~)y@)dIvo`786mGZMB87A(qk)Hn8Ibd`0B*^AgB0UPa-BqS!!oktL6gBa@0)_RoEm(5g4jr(wiADO z+`agLL{TS;6F7Qm)0xGj$-bypzapNCNj~Cj-=&mar$%J{lG* z=VT5DoD%ahU|7HhTr%u%Jt@28PL`Z*vj!_?FL4l`nu0!5h{{32j|$HzXPZj%by@Rf zIW{ARizsX%$5MysG@eu1T#-x(ojvDtocBNigxmPm@iPOxKJI!S?|`2*?560~Byy*B zMcr`sNJB;m=c zfbMNmK3z2@*B2&3ZrZPGknBRoaJexEVee;6SX3b-D=y&03hTusXS zgmK<#F$heC7Qk#(wvMRsn1oiy$l$eY%7%OQhiMyQ%qabL>q+@v$nd|qf)R)`(beMX z4_UAItbN3(LRMC8&K78HzB|5C*g~y`jBNB?Suim3x1~(V#dov46&6QX0q0LVXW{pZ zja%v@>16scGgCkMdEOm=j)?s&H_U#9WaaCE&VT}YxUSkYpE6%8tUt99`%PrI6PFMq z`X!sfi;K|?BXRRoKm}Y^3`%141qlyekACi$4tWDpq#b5`g2`w zFHIo+nP)9? zs6UF(z4*J2(f!^=&F-=qIufFyvd)Kqs`Yqo*^PQzGi9ja60-A6AhoWF?Z2C*(nNo| zk?Ywypd?BWoFVwdI2EmUekr{BNsOJ8+yb0oO@XndVkc6X@BWT?AHMYVO33|er@lfR zVH*0dS?G%Txad9%3P?GtsxiegyA#S$`$??6IP>U_syhTN_`*bO@v+I&Us%Z|0ycp^l<;?3av4E?2HBe# zyrJ8IR6qjiC@J-tAhb61e1TkFGq^0`@Fh$joyL$P!zjd&b5@$BhytUn!%t zVh$VYUmZmpzB)?z0eTak-(nUf$=jx8VP-nq{gx8O8f>?(-pOB+W~hD8^Oe*XWV5YD zNv`mu{KZoS)y-a5n|?WYm{4>k3mag|xjZK#p+jcMq)PmAM4}={g-b*n|H3{P@pm3G z+z#FfT?BM7yrd#1?=NqciM7vH(WLp(eXFlW&Fnii_YsmIo7-eGdu{GEDgQ&7esdqnU$&=Ni5Hfgdw6Rz(`I^mz0;|GNMDq^B|*4ngW{X+r4{bE8*JbH zH&gpqI25=)Fa;A zuWU`Iw~;~auw;?Q*TtmCDmMAw0+Afr56;CLUD^x$P{f7mTy>-;X+PuohBJYrLbcT4 zGOVETNysMt!tge9wuAP9duuOuGapag<;q7!OI7HvkTXui(z~Qmmn5FgNvTlO-za%_ z0p(`@GG@xvaw?SO%Y%~hJ8tLao5rh{>Ts)4J9mZH?6?*ns{X>GCgp2}-mSNIkwC{O z*%a5&8L?6G9CR_ZV`i=Zua?WVC;QCQ{G8q&#o_IFd{c>7hL9PM`EWt+@|v4&0vn0a zDbu92mRL@2)eb$LOzz6B5}t{eZ*A}K&Np-#?^VxZ2iN&i`u!q`9Jv}7g4le`8XGc) zlW?qU&~)^^=?Pzs5RD` z%wpRV?HQOVh zLVpw0`z7vJP0DV3DrQ$#UDc%In?Y#m+j}Dm%4$mQa-j$29lr%&LZ-a2oY1#{-9`6I zbx{oYeDOZb)yk?;zoFpLiP(7W+sE&wOqQEqNZuP?UtlJ9R zn3B&L!8}0ONkkTS6vE#9`S*WFy(gpS5k^-fnz=f}uwJJ3F!w5M(P}cL&m$42dDXH z3H8QNA5t(WmTn17TScurxsq$#uek-rZ82v1GDVp@<+T`FsH6IL?LEr^{KFI1vkA}- z@DCba=G>1a?bAcNns0oPB0KOiP-L1lP+_8LA7&G5Ok8<|ymLm){z%&+9wzz6Co;P@ zO~@oy-HMezrIK-1ZTUJCDj634+vhpGmRK)LiEMa4+sGPiUq~y@HBLMG&P+7A-MJJ_ z0Xx^sUnv42+W)H%03Dzgnm6+SGXL_UNV3LGv(KNDz%$=tU!{>i%@|~es@Vs3 z`{~xPTIsl%p}n=Z&zjYt6E?1Hl}bO92t(6+MNBH^l-@wch*I`ajjN{T;Lp3gH#`l0 zXAcb1r4K?%y%B@+N1m3~^ML={Sr$^)G?fFy868{77FV{HZsO&+42; zU1zS@f|z|>^0=wCBE8K}Rp)<5gvYzB%6ma;<%(qcagPhXNr!N7{7tH;#_p|GQ^Bf&EPQk|RO7V1;CfeUq z*|u$@X@~Tv(b&fjOT*{H)-rg~%2*Gzn8sHuVx0c14&%Q2sr#C|F^XIYZp+6ye`h*x zl?`tgF7n}0Pjb)3GZs?_&S!@U(`d(ZZeISUhopCeLw}=I-eDDougXbpb+%mK%7j;w z2LJgKp1PHjUMoAnY3Qt)xw*G0qet+=rGTvGT(xX4{dr~=VBW>3@lIrc>A&nt31~BG z1Ka8)*Zd{(*FEI?PPGfxb{@YTT?4YV6SZ44Zmf0W8%mbv_@v0lHbR`?`qWGIq9yfD z3h&vbzgH4$e?#S{(5?I9t9y@8-L7V=8mD4EC-uywc!h6TPG^=X`6IETvxt@e~+p2O+-p=I7?zj?8c#NBx8 zN48cg8HaqtP!e};@;IkbkCbY;Ijord<#^lc)g2A3sr|6J-d9ew3YQB6zN=bpZ+gBq z<#Y56i8E%kX0&NNtb9ed4>`0j|sO{FQ+yc zivGu3D$j#(x!&w#=%(|HFtqpv{M=_|$MI({@!Pq&sd6@G;T`z4qgq?&g}d@2jAObO76$B%v8g(A=r&8CP}&p>wnV(H_L~w z<0zrt6GD%qz-v|nf_~0Zg7)+IUS52ez2CBJR)9A}=s>lvzYASF8Ptf~a`SC)ARuXw zB>S3XP$MF&2~p2ePlJxWo?yQ6qbBpz?8s1$hcQce22Pnq!(olyCy~r2qqPTF^07^Z zl=*ObpW?>6X;xHcein_w*R8@{T0`VG>|y9>T3aei4str=CU4d`D@&xBAjv_IvPzOY z73s(FfVS&>VFGvky*^1p?chJ-_XGCF?b)&s>*Hh8r7bK7t3L{VMhO>Dy{c`_BkcK) zbz>kH!$Pe5$%+O-py+-q%~Xl}WN==`3`nS8!5&ucoN&!fNv*7X{=VG)rPh_hD;89$ zj4koEMK#lt>>I`xTp^mwDqEKu@y~0bI{zdUYV1|TWW}Hdk6jVdMaIKj#)c^mV{QOh zTDN!>AOKX*wU>e$4A~c0PiZ5|&=?7%YNbCt>Ldz@JlYs0GS1_(Gw+m-q1jd&zvl#e zHRE*K8Khtehx)5yNse)wf6Uagr}?u4@DOkdaJ+b#Zzxzi$oih{fjvJ{(zbvzCFA}c zwVo_0KCZGgl~e;-hPoMZREdCC5tYwY>v|e1l(Y0KGZpT&Po2VH9z?%c`(--`T?20d zCeHjHsNaIR1%o~eUeL_^+ug~MZPd%NI>~z%r7BQ3*raKt(MT({_oZyb`;~$?#l8<1 z+lPExPrUl{Nyv&F>ao&p)Mht#GrgSE!O@zfHg+ZUFs%PF>eNpgLR(i2=~rLI+sglQ zcvd{kbZ@upK)9iZk!m#I>NLGVgyQt>@{gOZNC2+(0wi;0=#nEAIkO^Y$vkJL$lt9@ zfSkDtI^{7L1pZw#o-j}Zhz^j@9Qj9x;dZYh`LEvP)P)E_CwdD~Ivrnh6RT~b_%h@+g9q8SU@ zny6blZZ8SDr{mSEUOp^4NK*L7_vXJ@`R5&W{guC(-s8{#?r<_=_X%8uD{gSXWZ!VVsz{5o~Gl`iYh2+&N40OVdaVVIq2mF%-VTre}MLll;g(RdpSH(8ycp$ ze2tWT-d?8LPTa|ndA7}tJ~V$1F!#?!UzGh}M8tMZB=|lu>b&KY3ZgSvi51W_k@+dx zzr3l~>1A)XB(I&us35o$qE@BVb!T`8`g4CJe-VHXKTmjOo_}P#{q*8=#^G>AMQ)*Q zdU6{w>+$WUgV!+eRTrm~w%a(pkAbQP%K)M4l>4ZD`|VUdXL73<-7YimP`dWoyR&6F zXrqaL5i%IU<=Ph0!z8LI+!$TrFNa*Y=#i8pVyl`qseTQPy}Z%Bj`} zLBP;37`G{0?YVOCKO}ataZS68g=di)=XeD5J@od^OPDxqsm&sE&NBh;FhjGegf*_* z-Z(j(j%r7YMs$ZFQ}!}_7NRQ9s(wpUHyfb$L}&Luqz3CakHzaT|L!}#jEEa$MP_|3 ztF_I1q`-MaQgW(Phwl-&pHJ^FST5a)Hl>!OZuRfe&ee4t#Rk@C+Zr0L%%P#@f{WHo zAv-O3F7ENw^yElkjhCWY5FOT~oEr;P*-CrpsB*p?v@)A)Ae?i0ff($ zK)cwaGbpy=R;m-8Jl2lnCpU z9laIp?*#qvPF61PZq@E}p3I-W&R)X^eYB*3c&DNj+aPkQCVW!XE@MTyq}FWvD)uHJ z64s=w9)fb(m{a(QddvEU!r~Wr$3z0)rv_x6U+-@&6146seL)-=tA?XovEQ!H?6q4g z9IZ&rS}k4=4Y=*s@cC6trU{L5Uc)A|u)hA(Q_@%}T_`!}x>}P0l+?hPDI5e$$imwq zdlHCz1RbRv1Pl+aS1QF?zG*pQ$x=RqL`Yu|ZN@L*h*}VR$}X?vJ8Y>iPbY7A61?-{ z8aYWZ1a8OL043;LhkDVo=)F~;p-lCC#E3DQqBCQ%GI?BtGvkeixF z=Cp>Rps-%9YLVs1-C1+^Iw^34j)3nA0iGpx>+I7W612Uft}D&8)DhVnm;Fw6p?H$y z)ZObkv5suLJDb)uN~yr+N+0|_s4ZJGEx8@aeN%p0G67F`;<9}-v~z#R@zKg3Y_-CQZToE&mve$N^a~euJ&)&fS(;4@a6u@dn-S@>($&? zWT>YihhtT>RUQ7?YBV+G8x|2AdWuhx=oV%T(+%3xBK&7wXD^^6$t7*0si4EFiD%}l zG;jfPtcSuG=Q<|WnPYJ%C`-)W2Qm5zO|$xGfT?bVrm6Vb{Lw#6jU4`rF<+1_o1s{2 z%d-fGL!DyGzEnj;jyK%2$+)h2P#9^ye9*5;UkD+myfhuqd^`u64Za5-Z4Dho2f=Kz z#tnZaE1(dybo`XH`vrEZ3w4E0YAGp~ztyhbj)bT}5kFP8^6QSiUvB8rS}Px7(~5*C zTASgUykxm&<>_%QwdJtZdV0fDVbwTgCCR7V{Pu-3){UV(wivJDpnQRaC;P3KVEeDr zca8<&`)5~-h#jCe8LS{+Q<$adtkUoevu%zZ+cl@|)%+~6Q@=0DeEEzrBr_knua}^H z7{t^+vndZ=_8DB-vJVumAI@LZhva{t^5UaA7vK4R z(oJ>h?>2;Y!nj<|LfI@xU^V@-u>KicAx;j(g7wvhL94C|78emdq2-zt=CT2)YCZO8 zDaiWwJQzQeK3iAFtGX67#0f`FwAl5b7*EjaNuXlW6OBiq+;&9ue@G@WZc1tE;pvw) zQ|i_ms7;W6aVWHc%d_t(qKBhDpGS6D8$gzk!)yO@cl`<*_L$d zhnaiXXy@=i(1{FnT~_w{Y128N+l1LP?7g7g(f+>4p<#53j38@WEV}7+!Z-FEgTWm` z<~lw%^g}fz_Qwrt2v_azBbb@O8StSESb)%bP*}|XCTs7P&QaoQdQ-+~H9+1$L z(p19DqFajJE$o3l{n0oy|0MgVNGhxO(f&*YCE3X-n=MdSa!!Kt#m-1`f8nwD3B%Ku zIYQNr9lwEJ>j>juGen>lgHs!2O$*guOF7Nm!}NS8&k5uu_J7+Hv}{Y=YzBkQ%>ucc zbGffVoGl9#6&dDb?&rsOH5)EXE9slhnCeg4Ts-eK~KD+tachKdSj2 z)!_iCpZ+GgS5Mb$Y;H!-jkTv6=W7m`Eo_hcC*AdRsfO6-QyuX_%!nye4cuqa7rTrP z0kFBm68;R)nVJnoc{^?=&VgiSyk#;&+c6%i-5pw+HU}CXBNUA>!DJXPiQc5RWEolG zH}Eom^#O)7#Fkd&sg9)az^{_r)X)=7xE}a^n7XwhT<2~E)Gm9Usphm`H@*=I+AX(j zd=e8InE88p9{aP(a#aTTb$v9%;s7TcW%&o$M!Jde-i_6Wrpe`;=>mXv#UUmmPvSkv z-tC^O%g1BlI@K00(V~|wc0XEb&TJ{GnjS|w&cIQZ@P5_v)VD~XmU{}6 z%_<_|zGSLbadd6!#8VWsfx7fdV z4`jmv9O+#HWD538id31dBfIbMvuh|9Qv`AHH}i0ZI1h5l2Wqfzxz7Py}o06MC-9B_a(^Sua8rkm8GUw=)pV2M=5Org8l`_>;dJ{5OO^}^1aB_cii>Ctqb z*?H7V9@BdC0A>ivgjzol1#l>nH5qOY9xe2q9D`^R-+k#$NI@Q0jk}>$nHBe#eb8)f z2DXiK#w2T6ee=H~Ufxu5-wM9uUq8*wobel0{_xG4*XQz7{DQHi&i8#YuIA)bpgIs8 z>%^X-deZeE(FNDHe}n6szXOvoRDa3p!dNt@o&{lY=>DrN%rrUu;3C`K3y)Xi@YU&N zjzbwFDv7Th-(|J+m0XqunmRt)k&#@nkiBcu@|l$Y$$Q6tD{;16xRZ|6$-c4Ty6gl` z0`+j_q}dVIJTzQ@4lya*-Se0Ao@Ols9aVBQEe|I3_bRj zpSLa}xmeA}gc6aiwWmDuR5?4v7VUrRXmw|cuhE8pTJF8XjrwC?#qJsL@DV@37-i6B zr-tA|&qW*KAB$6F7ETupEA`sK4;Q{NMpYZ{#-6$FskupjO0ZNVLHYsfNzcduf`BPb zf&06*eTpc%aPncCCJl|uZqF;Ic}K{RsE)vy+qEi?qnokC+=KvlZbNQX#3*|{2gWAT zCdy8Hz_18S^?0D4*1nU_!+(*rs%@x3Lh+8bnZ=S0iR322r4wiG#k45f@H?&^G?*w? zN`P%CP&f7Zmh!DT*s9Kx>LFx2t}OLVrfo$aBQ5wRB}$LdG_sHXViJsDYdV>9T|SfjofaW8P@*&2B5 z9$Ws0bGp&wFC>z2Q>+?}V2k`PV~#{q1n)7@%5EPnS7yDrs%{EwG~n(tsFtdhXS{f` zP-JPRU-N3S)FO80qx+!N#zG11n=biXT9`iWBkqdphipYlGkQ$4+bE&&4Y3q(j%$i$ z$>`bRDD=+!N981aSDGGteqx#A;C!Qo6T3{5US8^%)lmVx0*T?>wEd05~F@`jO z6@84vXW$T5-o&SP1^A%-e{HEBPK@3U11qoBS^6Vk9Q=dc0vf&>J^SQ(u^62BduV&}X@=Y1v6Sj;k&8d$a) z-cy*aT_HaID?CIyl2s&lJEPtvwb%W(drrz$J;cxbr_{d>4PLSeLm^~|F?^&6LGlYF zcIQpIGsZy=pk#(+Y0kgwXDecxV-2g6b_sq&m(D$BKY{)K zLj^-ezPF`K7X8z?GM}v{20zb9x&4w`f)&x4|y;9hnUIQ#;B!$D75K` zJMW}Gu(Ik%L3XdimEJjR-geaEZ20)>P;VsF(cYoUzgZ^R=`PUfa*2S3G zJ>?FV0yuU!I=(N(ah*^523_(+>d$OjbB4st93u94puEz}V=AcrJuu%gSG@JbWFg%_ zXT%$<1s$)awg!>zz;v~pgPipq-_Z(AE2=14x0?xz1@D&)_-#_CX_#CZZybckLWd7v zx}ri3{I)jOqM<8;Yv{F?#f8hjq4(Qf${wIdhJBXc;`)No6Y+UR6iS7I`-a<=6DSju zrCpS_01ix%z!+nZ{ILqH=PUB5Tu=^ei9xJ-#_nUiCRv#CM75;Y2k1JWgU{n$qig3wYD1Q z!+e(0C0i|zP$buhMY%!=1ER#aJsIbp5K)eT4+fV{O;(m)#}*e)zEJ;q_(`{&94IS* zy4Gd7$E>MnI`{HO|N1YXVpGv_@@DHwQbKR7%Ixr(={`bMnh|~gJb^iT_`&VkRzXIm z;`_A=3m27s2c42|eat0yPvD#1O|0ynIf~rr7|}wAshUbE1T+g?kE{=Fr$&hvZhb^k zlSWUufghW)1U3a1t9fsq;r{Ro3be7P|6LWK!!e>q?ajMaoNbhZO@nL}mdJxglN$5N zLMxM$DMHQnPsOL{onMI$N7AU);t5yJk6o*yaU4FPqlS!t0Ws2zCZ#bt^+?b+^-p57(-|7Y z!-~tjqgwZO61*=gt2EoOq3w^MzWYgV`18Rcehc=MV-NhF^dIyYejL@ZgC2qJf6y6& zh>XZm>K5J5*LF}QJtjJ_dJY6s#=|*Ob1d_U$_jhtQsh54;h>#dq$A;MCF#x9p;nA& zTjMNYgB1rmk$&=L*EN6SQ`^LYLXPjXj&LIMzGO0Z88W}rPLxn9I#}w<>taa{^@Ih> z1p+6QP85~8w|uX5-9X_fIdN`Mxz@80Bf3lekEUppR$34PPVH}5>xWuUL4k+Wecfov(i2gJ1q ziM^?~h;ne zSgUxgfV=*n++XPU^Oh9g-0piR*Pzf^EHLJqDsiD&;r2E?Xyu_H!&Nv7B+6Hq$8x-G z(aC6D?8wr0%YJg$Q7bIFe5CcBNiYSuY6YTYdMRSd?(rBA)2HU))ge43lt_baai6Ka z0R%a>lHMfsDKkCLEFfbJt^`LyAatO3)KIc{socR4VaLuvvwIL*v1BN5A_1ik0DoR@ z=lKv}n``i~zBXlMJau}YKKQs^oRlu?I)qM+WC4*XFE|L(?EB72F8xXFvp|>FMZ6q@{dC0?E!Fun3lDW-gHNG&_&W%(^ndR?$PWZL2l^S2}71gab-R5z(%h<$1^O+~iarrNlh91m#Xs<>*{9L<-EF0I?N zqwie!_QdsbquH#s)^E1AIXF}v2Z|Hw)r^{?ge>S|9Asg~c`q=ELcf^8j}>E=X+8hs zTM?%7@#xg@WZO1gJ2b`UVv&b8C9{sNN>2*tUJEmOxvha9$MdC|wZH#S@~-kMp-a@k zZ;A))?YO8j-Xx^)wd~}8dk+Vz8Pzq(&2R--OtSUKa)d+%T<>-0C3K>wEfZ6~e&s_$ zK&~hvbun@3E%clQc`f~JXB&XSGM~qU}js-%KWGX+|F##qEXeAFFVi z%kXkAeCI&H??bt=7Dq&esM2*_a}>#u^3kp2NpXohm*W}|R;DATb^RN4()^GV)=!Oj zpp@jK(HNKP`U9Q%(W@XTQ$e41_cx6%_3+M_y_$91QUnwn~@(BHO8gXV7dHsZln(5 zEp*m3yyGAD&uKHJi)pq;92wYWIFOt$B%&UJKtD()?WOf!jhqyv{duj8K$mC_w7sSd z^C$@u+_gv(rh$zlFB`UsmOhrLRTG!ND%-BSi^U6VPLY)YIVrD27lOBM*kqwq)eWdT7-6STE}jDIbCy zPxyg^FvQFF^z#f~qU1555FSrlG9UWB>?BmCFjb}GLrbZi@PNF?HKMUCI(oOb5C56F zOY!#ZFl(BHL!tSISof1oD*hj&ZuKpRL*eB4FefwAZ8N$uRQCzU{q!Q5{9BF)ewBu1 zk;k3r@u=9uy1Yp0f*s>UDG5*WPJ25)ymw&(- z2TExLui^(?hCILEHCeMG)21@~NkD=dy%x{^<8jtcu!=_9=WrrFD>Q-!gt|XYLdhv} z|I|_{py3fPEf6JxNAvY;Ltp?=+ zIn_eHiEG|HpbY7uFxM_jUR+mV+i0|dSuqpk05t)=n;Y_AE$~Q7VajYE^!?gvx!LaV z=laB!zlz@6!<&Q08!sc_3Rtg|<>5l*a;HaU1fX;Eh4UA7Wy4Q3UllTcYj1+%is<~@ zmrLSkh`q>AUptPJNbl3MZl!!2Fe?;m6a1H43~v1&l5qK?A-(xGDuoI+HFWa*8p*C3 z#R7u+WMtQWu{~eD3#-IbVD2h7Jf457Rpu-ojg5}?Dc7{k6^IS2VR6#b!8)%@XDFj1 zR5;Gx&3g1*>d!;l@6Ct4kMh`9M)}H0py6?0#KL^$9PI{Dx^+o*ANe;nBSU4-rgEN{ z`D^aI{O0)xkse1r-{j{1=WyDP5zxCMZZFEj1b> zM>kBmyJVwNY9j}O!S_AC_YXJ+4(vR8p8LM;>tm$i=@!&vmgk`)Lq8MW&o7zJjQ{kj zJ}dG-dExgn)|?DW7AbMOi_6Qx->ZF21BSnzy?sAuep1lq%^t1C#JhkAeHou|pOVQV zFhcf36vx6vv$yqTt{{fsv>ZiFWl1tW$k>7gCOi1@o*Vzl32OQfV8PgxJ9|=O0CE>d+B6HAkG~(_53_pCmR{de6#Y?r#%06c8Sf^30`B?RYB?R$-I$@Y z)vy&WhWg+>w=c=yp`&v?7TqfP=Vh1-P%?~db?mSH*QVN|eCUdO2J6#tlBrXQD_t3N zW~n=Uw43m-?j6+|*Vl6{o{&|OTApBb@`(n&Fz@1yE!rH$j%aeMX6(*v|L2lMlhaa- z)mzgEkPI6|@N=nIv!#xj)o=)Mdiyb#oAG$puOd4JS%Z{&`o&*c6m!-q$?8rH8lLLF z+bv1A*r($WU!R$hZVo2r1+?lrLS7%|8WjRFgpB3gBa1rbEXezYgpCJ4JX2tV9yk8) zaZk|+_0;C_Pl2wV&VhTdDa%)A#@;pf#AGjO`9z~XgU@^hq~fzY9e|?2eXE1ec-ZKp z@PEGwxdt7cwq~DCjva|1gE>#GN3O-YR>S9#Qqu1_Ft4^R1mkGk%4oeAf2LR*Pk)N3 z(4RDXhq%WFcgso(29cc*t&w=g320ILft&DOyC84$M8t!4dZ?o5ey|Eom7{EfGN^Ef z;vuueX|}q-^&!Khyf(#|VJ0&Pwrg4~6GG*iEVSPGDC3gWD(e+92i8SppzPCS_kFVJ zP?|MC@3gwsm+ij3tQc7p40bC}&fMJSFK!VXlpR_Ro>JC!a$z3-5(OnG%m5nrEd|DHiy6h76>3TqRw;O!M=SGQ{fu+tqY{VykK-X>GbFt_Jph zeM6zl*?skrlNz_PPcxKJ+qy6Y@hD-Dno{47$ose2>VX` z()(dVNUVCfp)zq-mS1N4B0yAAWo|zjn0bp$dTL@7yEwg$ai>e$y9;68V#gyWv7^ubBI~`rf-F+L^Zz#d5JI>pzhaD-5F4oSr!simAVXME} z+EH79>tDQ;=J=l^CPV=EWu+NT?Y?5AzHDSM5i}KgmMqCW7$rJ=azB>e{SstnS@E@H zLeXO?NakCqcB)}pU3po>(OfAnNODehWu!uzycAio*;$lxQyy~U6TqRmL?NkvYk5DL zOU=V8&4_(}s+S^Yd@RRhsy(tWK>d!${b_ZmYer3}qnonPxqHh5eeaaF+s9n-*zK&; z#r|Op#P~trlJ(oew_z#I8a5$NO#{!lHH>NEr7QONWPhe!`mK}@EGkIZ=3(ujuRclr zYTnt*md&4SNJe7CSpNid^l3OXmOs|ZxTRYEy72E7C-w3qe|}V{YO{6MWfOua82zM8yQ@=Vs|_aIA=j3(bem|7$Gw z?SN;0FC;ClBsnQ*)|{Q?0*vqe3rSv_WywERtVR;%?imy9%_20EdhCl5$;Tvm7CX!u z4FYnqcQD8TjnB9pZ<*Uv*qe=*|<{=oEH18E3!ZBc{%i;LDIV50F#>iH9dz+ zzwv&uGSS}WHa=OZoBrtO<#OyXXD= zn_|s6*?we4$ zJ&gXmyXf!;FRdaBbIWVMXE1QIRhFUaxm~7rs^c1b7t4)WJqs{dZRqT3(XAB`uK_hJ zOuqX1z!Wi&c)o^Xk&KXTJQ3n|5u#tNF60;uNhus=!V+lSmylH%jbxWrS;A zD|wmW=H5Rer84XvPA(n|v* zxho&iCSN`%SznY3e-)}?b+&=`w^;}%9W8FA1V9^&jP9oBD+Yv2HrD{!u+))%CmJ() zD(*^Ps4ARKk}RALWY^j_Q(xX(z0u@ zUyb6eiP+CkeD+aJUEbN%B5P>#=gh^)xf|L~rI#w2GA_qAO&7P70atxm*KDxxo!Lf^ z@&+ol)Hs9IDNaVMqgmm{7;By4E<0zTgghmCzR=mntq+Xi#iF|g2AwITFECa0J^{j4 zPV(`7qA~#znYlPJ>zTR4KzOOKsqrS(mo@?>iCfLX164CNNc(hK#5I~KWiHAtit~9l z+x3l}mq(_1IQ74*Xphvk_J2?~oVR$kN4xY9!#H8?HBjK|L0@;5UY87@k!!taJ_D*= zzmb1cdHy(a`hO#0<{I^E`T5vQLy=b;s>NN#WJOx3x}=rrz*vp&Gzal4^cbkQSB$0Q zmQ`#5n-yUF6_I`tBsU#Ixn=%5=f;aLI&o*a_kItdG{@!)KLE%*#Zf!|(}2)3ZB_WbL=m>yG}+etdk5*s z*!7m)b=5}a3(5sP7FwG-)Xz^nh@tfXTs$Uz*2JrtR#x2jSTl)tH>r}84$Yd?9=al&@#nA$_!s4OS0p@)_db>Fo0ySS=)`u5|M&U-Ds_po4!3 zNs5Uv_k3=0I(2T2P)8%L*>3Uu0I@39^%4lG0oqI;1N4sugB!;*s1ntO&nC_q9L_0J zHZ6U2Iw=-`eiZIrc5qx(_y|U9Uq0u2T-G>4k*kvzVZ7v@rBkfefZ?d5GU7X? zvID?e4VebmQLzKc@+3@A+^` z@ea)>nm0$0pvq|kYP;wS(m814Pfll>SsX)2Qk5OT7r$LpS@j1{q4mmqOS*-NOK865 zTDSPk7yWSCXyWHeT%_FG+@C6pDbtL_tQXDMIC-*O`0RU^eFF6hdq@*s<2$Uw;Curx zrXxum32+anVE=_aoPFu1BK-oBy>9EOw5@Nvw;U;sf|S!-|DH$xwx~(d=S3vjr!s)l z%7&&P3`Ls{mNn3b4?MpgH|p@ce=-%M?*90PzjNin?4Zpvqyd}E zq2+T4=HcX)5?Pky(^Y00u>t(oe>Tq}MJ*4scgv`XT1$&e(p5#58jGQ|XQDxZZLXC?Bm7I>%S~f9_^nRs^@dPs{s=9&2@O?^r0>~Au`{H zORr;0Z(l?Bq}LecJIj~fB&o8DR75@eQbTa{5K@p6#1*^Pk*TrPl_S|P951Y!x5%QU zxp37qhvE8kIvG9Ndt#r9xCx&~E|$(Oa}amF^5A}P#&;uB6VL23V45>I^4LS=z++4A z=FRQ6(VZ#qSOk9FG-boLwZ3XMTs$(*S(j9amuVI6F6Yt~(uEg5?^NQuObdj@kRf%g zCg(E^B^XPL8GuMO#h`4xEy`6nFnmgP`@zE$ysT})F_OuqY)9z#oX%WLoA=H?J^xro z+Wlp8>Pi<82wzhh1YEJkSIg z0heKZawgNU$FfkH)#1N-EOMS)cbisfVqyhIrP#Oc;7*t6o6MC0kEUraj-%D3guy9g zuVh{Db=&h{nP)@BN5$ljdMOR-}@u|0|#TrZ>ou1<5CSiZYF0&dLxGW z|Ac=N|9QOrZQpPr+q|O_JhUKW^VCDV6Lv!BbBQFZc0xI~fp#l8CK)=vS8i{sOWYOw z`-XVBhSAp$)BOZEi0DAA!+JS18e%=iOU}7{$VM|oi3GB7fBKvG8vXM}6J_-3-d_!e z8tdufJ&F?dlMU3e((2Z*6RAf08odhD_r^TffhRmwE>!BNVF+38M};Fy4`pqbayYiC zZ9uK4YrT{dUbtCcbP-z->qVQE=ITYGnKkE?ug?P(ww@IYhgyi3JX6Dg05ass{gWT- z#4;9hAeTP1hGGZyDj1FQ>bKIlstdIEmQb(Jpu5zO#Kr(~Q>?5@UVKI}H;1UI(mw1^ zw#U6)gUb=!6r-8*Hw~R^idVR-hNJ{F?3->q^5MJDn6>IczPl**nlTD7_gB--+IH1= zkpT4m)>BbJuHsMmjCjJx!2?elf`y6X>J2@Vcpv*Jf|HSx2gy zCEI4=X-QclF(0BU#w~m6m>Z65non_o^4iv)$DRwG8wo~5;`WbUv|BN}OO5m@YArsz zsiSS1Hpc>A*v#GYfca?!%0o3vU$9&=$`9gK~Z?^#gV)HkSp>$-P%e2Whvg3p}L|ReBS1j2c1E zOm02AG#~lLr&tWY4!xM^TBX(iQt9i`s|LfFzCjkFeqZ8W;M95mo6eG8{0~R46kqcB z$7Jn#^F^KfqJm0vNSiWti3n6NX?ylMJI34Hp(UM7rL`-0>dFAdIcs>3elcMzdfR5M z#RKrf#4$DF+*BIDgvNKd$69XrJsTEv38RsuAFcNi> z>r8b#s#;cMF>xe+G+W&5WBz*1Lmc$zYgvxk$AouIuwnb?Sk7_d&zHArSUhc}rFUCG z$Z=_zi1gEL>aeMC&nD&t^mUqte9Pghi`_!_mnQ8+#kF7q43{}b`nWBmWFYsJAY|Go zMG@*1CqA<2o!GqW_=(@RV&Ih;=1UZUY#lvrefn30tF$WXPUbM5K9drLmnM@$fCmV z16Z`~O;HVj|KS9fZ|iJ#F2G?)(;;jQ4XxYZf>95V#Z_Jyo0OvbumtIyNzInCVX4!8 zBL~ys>bm2~2J=w*HbY?DNX>7}*b=YwRHUDgcQ1QQsC+w`c2-42y!fQ$a_j3GcTJO~ zwl?!O0Ix@0R?!M-zr9fW9@b~dR`~kRCR4(nO&A-TIsBoz|A*EZ`Q$?V_V45-G&pGO zU$lm*G2qmMqAU^}>x`u5`?ugs0uq4`y@UG?$v^N@Vjna3v066j#X@JUFtUartj%2J z0K*{${=>a8Z2y|}`{|odUdFAf8t`am=CP*!!iTr0*v(=kt>vyZzU;=dyPt65|5vMJ zag18Ia}x6x$Bgm!S|72mL{(F3c=iS;$9l`C1x+QOq->g9eO}qlm;;w#!|&(ne)x3! zjKJ*8Sy_I!#zhC}iXvB(_vA}obmrUwvvn>%Qwoa5f#r%^wBcdgGsT=O<>ndz!3yR? z>T@Kk*j|zkBi5&Q?0Bqs!CcIN=?}f$N&7$b(=Ro(xI84d^ z?^`YQQniwTDw1^d9R~AF*2}%-+_i$&k15-X$q9oq*j4aQ&-jw<+qbPQ!6{d-OIN)v zuB-Md*Z%z&NofrLT{#YAZeGCS(iL4;zd45f8fs~G!{3aQE=Xt&Nr!=b2u4ws+E*^k zcjnj!K5g;#X-HdUIAO9d9FT!0F z%FIQ>;2VW!8ioNOmF{gmD;30&?;??WGg3vai9-=M1i460xle837c&wU@pV`)%6ot+ zoqjIsSc1Bh7`2O3rz}Vid`tem%eqn?>|ay5Mv)CbMXQU5%AEA&9~2Ns%%zPF@Ij{1 z47Kq(|Kn#!J??>Ep<(EWbss8k@b7@G6;WZLMvSrdcQNjb?MxSL(rG&nM$d3vQnhW}c{B00mKfExb#z5Atw~1Lk5l7*@)>xSYo2x5 zPZHZjxx_bcX0gL`c*1Xc{o@3s8p>TQ=~UEX*%VK_|C?9I*y}q6{0z7 zhHE>@Biej%Y-mo#0UV|myGXSvJ-ZY$>L#Z&*?`;lRtXyFl#2xwG}qm+03)8-{fe05>!UADGR>C- zeLNRyKdke0cw(CcY0nb8bYnv+0$E*j`-aj@n$+3mh7pQjV=UFV>CRdgNCd>}0V#d_E24wbxud zi*ABm$T`4#ZUAgAwI~|Kj**iui zHutgqONyRW|P*VxuMzjJV5#6b)zZI%2ulNvpoKdHFi&rm4MUPskv1Rv7mcb1!;o;HNIKo z{5|XJ6LK9#=jGO|9nAX+hHLD6$yJJTeA@<{zQLsk1rph>o_^UYN=GkALKlmb=V zhB{AM3*|IhE_jvtEBR-8iU_@3v$@)@2^ZA=ESrzcl!Q%XR8ZH6`8mIu;T{m%UAWIr zDd`{7E%}7Iy=SAYo=ytL zb(w#+q=<6u{|_gLSGe8je?L$8X#p=IoiE!@^49v{3Gs`Iau>q}5Df3KY8*mTo z1D#j#%rQ9nM7TqUNeghQor81pogt{_D$w;TvdcE_W9!GFJf>GetjP%{f|t!(XT~AS z!CmHJuGd7-sj8=Sr=&=VKuH&=%XYp%Mf^I+Rot(0eLG@`~ zlOBOqe+l$7R-{BQJQ3Mdc3m-hJbiu*3t#1UyS>sSLRs9U=PEO&F~PSfnJdS@b`tiC zE>26UY0dV_!~*;wFl-Dd#LOgr%M~yRiLp>qqX%HyP6MNfvwnu7H|iG8+i#c22X{0- zX-+3xtZvYt*c%ZT9HnhEDM>QQA9GN| z#I?R`Qen@X72B;?bvnV+@zJe-{Hc2LSk z7mUAa%fBw^(qsE96Xn0E3?=rs42WM&%I5~)shd3aXn*lp^!~d0Mmqoq8uu%-nRwT} zSau|x^IK!tN8uBP{>y6j3I1%dfcdxTva*~C?lphGBq1q@(%#&*YHSN%KRM0>7W)8?#O?#2Eeubb6|xaZP>YGj|i;eLogIR_K6>#kdiFikKohhU}l>sX7Vibi$D zZ;5}7L@62xpFPq(DwkPV?UYi+T$cR}d``r%qgF;w3Pb{fS*her@@3v&zT(y%4(?n? zrx?6XCm6qNiG1Q7VFG|T<@Ubvkw1~Eq#qdmoTD!KY4Of!(ukH~h?Gxm>=4jTvkdmj z>0Ldwn5OWDd@KwJnB7E`xRJNZpSQR8Ab;<{cP=TtvZcF2`1yE%ChlT4bD5jlW=7^R zG~P|@E?5HMz>j!uFr$c}I5uJI48{N?@j*ajL*$5CHJ;Zif%lB12{SRVIaanG_&MJX zxW}zH*h}jTR$9Gck_bB+Y~Fw;2ZT3pjeRdqYIQX?Kfk9`Nr}wJPWbgTFS)@DA9LR@ zLWj>AT068&bPn7b!pVB^qM3&^mWr(PA&I8UcdxxJaFt?rI*YC1gq-z*{;%}Gq~_;< zsjl`Qs?g1&SQck%*Te$oxy?Bw1ov4K)t{(ZYRZIr{=xo}Yx>4&S@)bJrz66xWw47> zNEJ`dszrvI+XH7+g@%3hyr9R2_~3{kJAS9WTk1cYp9K=hwVWEM65A|xIB&M^WZvZ# z+s`z8)7%O7b1Sx_o)Gb6lE>bs=44t7M@zg)khFS+Umm~m(=Pmm%AJhPc!}GpoEfX6vP_j7dl$F`$R|_1`lpiKz7SH<%1RP0 z8xUJZU){{QuJSmO`8)r8X+iWB=jUJQ!+y3ryx&SB)~vY0AN>wzv6scK1XY-oFiTIC z-SCL^LicBX26(E!moHY1mwPDBcm5^o+mR>sAeoL*<=^L|RyfW-{-LY#df-VnSKrf$*<6;ZHICL;>W-z`wl-aJ8k= z;Ab-`DQju%$O`+?Drdg8=*|5VA2;c_cr*J~^|gSy$Dj3}UUp8^$q?A=p~j;ImPDF# zPc9Cg#Zr8xyAV!8Ed^Px2Q?1357(1^N#02}gjR2Zc&`U~9{is0prUt^x)z)kW^9+I zx1)I(lt;<5rEC3*xzB~cBUYdFrzn$bZs}Q>jk%n)sO}Pz&L0axCKpJ{_{+LlP8^D~ zht^>-K2O*$QHQE^+HX&McAM}e)7@dVEm0}vl8bZ{;!0rHW6znjAHuKnk=y+ep zy-1zpQ%BwtB{LN<_C=tF{EuVVwbl~;?C)72arV~{&w+Odnz%)z+JKro?LAApitC2x z)}`R%D7>B?0f?-20G}wU&u*A8^;8kG&Qf+|1S&>veW%1>y3FIH-`*s^FL4_FD2oPl z_*pPnfz+j3jj6r+?^^Gq)~Cy&)v%^QM$#3ALMQ&6UnElJv5Xfy%C(w%Zmt}{`a@%uvF6q%GG`vJMy5R2~Aau*7e+@3)-X-Pi6>Jl5yUBs>uRlWh)*{h&FXyl7Pow zCarDKL!C+#tnybLNZh zh*2^*pj>h|Hz}{6S?ZPbIeCzU<=adulAloov6I5d;4kTQIcUVoOe0+QYvTPN4aN<> zO8V=I)AFvBILPX<*Wt&hL|Y+i&aLY5`pYjU%(SkZFXI-<0?Y*kKa#t?Xd}r@thzmh1by z|F|c4I_MS*Hfjzuz{fH~*y6@=bXt@ei?g0!aj@1ojYlyPYitv3v0LjMb~e z!m|<18kTUqk8bXZQsZ_YxgGVtR$|)UnRE_gLrmW~E|m8g|GG*{8BR0^b3ePfVk*T@ zRCyS2y>=r|lC^kGGmK9&CvsZ%(eKDIB%k?u0fSPI z3&^^_gRGGw8Q(m7NkGS3foIkq8x#IA$=@RU^mjon7vA6^8 zv3`P4inI27Ahzb-BflI2NZwl(#+<`aVrjMM;7m$IKY_KdJ#{F-ep2BNPe+IqA2rL) z9e?z#aL&^C1cwC6j`{VQg|E(C%=-a@=`Cje4vZA<1>#31yPiO;xU(SU+N6b3qc33I zRJ%dlS1MzC%$^|d(sjL@%P-1aH+s~?%X-fy&*p6Fn4 zK_+{(R*=-o4y9xW-m}$Ij-@5Dk!06PWgn+Ei=z%oIhf5-N+`U7jRJP^;wTtgaUdsF zJkP^h%=NI@cPbQ=o3tW5PJr#i^-#GyG*d7srKB-CQ~m!~?^)~{%>I11_)HaX!GVSY z+P+`AxcLgfsYuq?Mr+e|#rx9)VK{-2Fm&E@D$Cj(Bz}d1e%)GrHX*q$(d7VM*Ghu) z>wLGL|7?8`^PTD1eh|K}*0Cgek#R|_J+irA-P+Xk2lv773_ylc2EQnVWTT!QKqJdOjU$=ty>r+IMTZlZRC6a}DlGuCu(|9 zJpoxkIPVrJ&d0vdymHJDa{{#GbWq*HB}184(Tn;`lfLv+PrZYkBu|lYuzm5^Rc-pc zSmQF5*(wvultQ%|#U4_u;9^4-Fxj2?fh{1VSU-I=GkfO#p4n`IP;+k9X{eJ^)yWIq z8D5sioOy7z%HD#1C0r9@Ecy6=s3;fQQ~R-BuOtsO&YC=Xtd}m>^^e6@JBPNeiukih zDMQHklUs4)t1PgEq%xeDg2YW7&HVulbtkGLIY(RzRFyG2*^fUCOzW!x^1Y+BVW2$I_F zF0t$bPf`;2SCytsWFKwWclR6LHWY#fT;+`fpq!2c37xE$FhmvCFt)6~sWSv_&)%6) zDc7M-<2TwviI8=H7+0EBC$8Ek0^IBF$H+_g4q1BqUwCHegsCA2Af;T5AV z$~6odkrlv)HDfQg(OMjo&~1$Ix*clT&s@m|Gb5N)j{c~Ad!CRy_N#d#`bIK0>Yb#m z`1$X<>(5TX45}Wpw@J?HgL?*DUWfA@ACt_Vr_R4I^M(1>?{Eb>I{hjL3;y)X@C9{7 z(iC7AdRB|20&>i2wbfGn)xD|M4}K3UV8&ONc+4rq7fN44*`A<%D|r27QoL;1Wysge z;Oc(fbW^OVb|2Gny?4Ch+4gc%J)CI1++Ay@{fE>34UEw%yrbzhXF4uC-r$+rO+)X6 zOb~Wu-Mk1{o;GQ}gMMUQ-IS+ydZOsv9E&@9JDEEWe#|+w7l$dO;yqUDz*t?$n)*{~ zg7wQgFYUV)Od43A_m9{;I#h$Es$wTAGG39v0nzNsTxt1BCf}1o*A-JH*zb2~Dr zZ*E2TZUc-8IlT@(M;CHP-2QY~yv}XRx^1x93d}e*y5W)0KHpaMmUkmVwgyMz;OG9d z4wgD_n2O2F=SgR!I}7u6lz}Pf8l9nC3ferhQ!B43cvYY&-pZ;Q#2Q{q)DD?gVXA$~ zv{H0KDw}F#^cuO6F4K;OLH6VIY=Z5|^2P2sjlh|hS=W#T=vf2Rve#@Gf#1-0(@b)p zsmF8zH~54@rsGGyH0=-7)A;<2(PL(V7jV>(7DNAf+`Of4ruN8F+;0|SqWjUSlqLU^ zpFdjAmDr~)_qx9->wl`mZ{RQ7MGXQ$wOud1Fl3pf{`&W3X4u*12W*FNrzQYggU_VK z^5jz^ht%^}^J|A{U|+gDscm^+$tN`KlidW@EgtFm$5r5?t{|{dl3`WHC$Rq9PnkR- zo_w-wxNxmZLlGLF3j6^ptMC7@*nQGTE_-oI#la_};UT}hJ-GCDiD#%bUA_LSFjF*_ zimpo~wKzHSenGm?qlzNOz7bv02D)u?+O_ztCS1&G4Sgadt{AA6fSS$t%_d9Nw z%dTr>^v54>{fQi$7OS**Gn4r}w=FZ~5IJiCkP*Wf#WJqi-y9FLHQ?x=`QjT{lUwNh zQ~6Ua)A5Isk$>Q>{; zMu((kpOTLb2Qz>!_ZjL`I+}z@Kdz}GY0;YwoVy#6Y|LBGtWO#!sX?d$vr(A}t7x!u zmr`{GU<#~~W-jNB5pcE$J$p3n>+X_ICHIcuuzzQy`ojll3z_eGwI~If(O_O;lYvuI zzj*{8r%P5#-;{~>${~^R)Q?e{v7U!+g}R`MANGT2Jn&R*fk=5x(dsc0!(Y3a1wGoS z%9^|$I~r&GuI!+sE@+AY4;GNzu~= zLUsKkYl}U+*Cy3ugV8pd-Yd|F>-CyK&YCP6M-T^05j=Fs_g#j*ix3+y_4-u5n>5-8 zKlcpNC5 zu0e2s76cMh5wh2ybz;{|s%XB=##t{O=Dm+|ymrB56mR=xB>0bTbWAWIBwbbs#o+}| z@uXO7ME23ikDzt%=An3tjL#rm#wZe4yI{r@m+4%xA zlr_B5<(iK=Zv(Ec&`(c@uf9nVpH!1F`H63ysoyd6`WW>XnC^pE%Ew;$Qx?9hNB%6d zBANJnrs&s_jZf@X6Og7;%idfQ57&_Z2X=RCBgY|H9X>*q{Um(>Go z*(Kd6@C@y@p!?~N*VES5pNeurA@tMUOifzEV+-)6(#@x@=whG0Wz^_|UM2dfU~N)@ z8u!0k^YuWU^vwG=@z@I4(eY|Jx|I~8)8Q$Aa=dyxQ=KlfWX_J)&fkHmw5@Sr?Z+nQ zI_sVQFgQJWvIytF@9ko^cF2>fhqGpG>-p-Zi@X}xT_Q?~EMO(sIh`ZY4^{sm`J%fQ zvCzNxdrbs+H&nbN#=3pHs9<$h_~Y}XHt4K^4U2GG`{zFy1$Hur2M*qo&v(e2@}YAU zgkl&hX{u32irFuw#4(}ISkDsG6x#{N7*+P9c7u#JRy88Soh!K2ypBiNIaCklSC&Sr zR!6NMe&zF4NTuPjPV=*NmW+gfRY86SBdI;$eW)t=5%f6O%5^iQIBZ1aB{6Fvv*_RF zzEg}VWipf=;8m?#;h1bpYtcHCEu_txH^=!iz2$n9A2gk3ZFvHJbF%kPD*?XgSGaZ6 zmkYS%|Lvov42=Bh`>u3)o!QephhZAPy?JhS3#*$R9yApXE<+um<{;FqMy>1Tc(H78S}`H}sgqz~QGQ1SDuEYO5j zS7HJu*5FR22k!F2mGrw{6*GhM0L`)2d^{bPN0%km)Px=fAK&rrQBW?qI|S7CcYl+A zJ{yso*0xVsx_Ze>6F8e?=pjdZ7>of_ArI5Wc`u~|mtzcP(81!y;g9ehx6ZvjOR5#n2NZ{u#b_*wy-1>ceP zE$ej*I_Ww_q}NowKh4PUub&|+401L&5g0bZo&F}@&|{o6vU+KqV^HW_g@&qf1!6nq z`|H&N#d~o6>isgTrWkcJx?!xvXmCAytI743m!-vzhlsZ=wziT#Mf>OhXU)@z_Y=YP za6J@;^3AZIA2c+C+;4C|JZ>KL9ZTt74tMZHpDwdS#IUY++ZR8y7^oCjBr*uV(Qqyw zc1*hpNk<_6d5UvX1*KOtVgr6&m#+Uv2okA)e)WbCt|*q7Mtc2rPFq#kZG{|c6t|ph zy3sTXL9QE%18Wb0ShOPHg7w$C zXeWiP7rZk@Kdgk7XA}sKyoq(CFKyfc7uVdR=$o#`Y^Bp1;|NT!QHYH5H$^KA`VKIb zzKJ)Q&2{-S9<5E)Fsdt4N|?*q-$BK@l-E<24EO{3Ml*+8zV6QOgj9;!m2NUc>e!&+ zsE;JlCRQ!bynG^9%vr47>j;`pRdR6ojQ#;%jl+69RP|n5LVnb+J6Q#7{O1*f=Hjm2 zN3-Z#CT_F8Mg}Hv%$rX`CK<*%E7YhHmf>X((BP_8${v(~Yh!mO5Yz0mrgB?*J1LiK zna&Msr-QGp{h<{K5rw$MEQb%(wEVnH)ZO zRyPMo9DZ5~p)L3VrADUhzH@sOcCdL#xy}^{(i!@W_m^sv)J(KYJ4d}aSoao4+f^JM z$htDBa~)N497P2Xl)N73 zR=RDE=`mwIwNb?uq_#iTZ|6PE8f{=XXikFFt?AbVcT}Bxeb!_LzAsjtz7$sO_+dZqU=qN z)WX^To1v*v-pYJizYL^m|B5)+#-)mN&Y4*$&DbAR)g2f4Zn-(xg(MJTF{gx-l1A>x z_-Lw1LzP#SxTJf^W~v$=hOJWT!Rh+rXhKYk{`P0z5RIt_sc~M-tag$&wvW~)b@wK!FIOad ze5$QhTOo|0{ zGV5d+3!ZJ^aZQ&<1?C#1ZO}Ne!M2@-?W}WPqpp2xQ!>_2IGuKb24xrR8YZcyNkcNJ zNHo*#9BF`ZCQY%rI5h0gq*QDc3gqiQ;H&uTz?Z&O0cbS6#a)lAPEk5px7L1+JqrS7 z2WoZ;EFQT3;V3uZ*#?kiVKuZC-Q3a=DzGoYJERO9??UdVE|>oa!mil|<9c6bR9sKW z)+@T(-V#;o(aG*jq$H%qSsb8*;Gw1TLcDq#$x@gzYDX}7`fdnwHrbzmDCB4>T; z0zIYu!X341yQun5X#DmO4u8;379d75bHFgJ*l!R6!&BKXDTH2*-vuR38Q%9YJr&Gn z>tBrZ=K4#ym*FG%adUOZIiVav)M5AXxz1gop5}7ebx%St}nizuT&pGlb|5jWF|36WB+qyIf%2BU{8LU~ZzdF8#v|c+O z1ceaQP(7*Prpd`O!j56de@&Wv0L&Rws85q(3r(!p6kW z>Vc}`ZZ6FIXZK+QU9^54s3RZ9ld1J6Z|Y+jghH%y*aDOA&XrYmE6($QU@f7Pa=py! zHmTfmDe2?!;BZk`PS=j_y%HpYh|4l!M3lMRi3p=-?8e>+Uitcjy3bsg6h@(?>@UR! zPSHOY2E4tX>*mts7;VQ)&0Jr$;~pBGyq3&ue7(4?Q7gv2hq2p|rIMGE4+@u>89(0` z@9~(g8+py4K+mzvu(60I)ogKIkJL*tKiAJ}C+4u}Wggx!?@ah(tS}`0=%Sq`U9N^c z2$h7yMwd3etoi$guGO3ZhYNbA1GO=odaN0Y%z3$WO9}ErGWie61~blJY*&tbE1j1B z6Rmh}6Va$%YDzuEi0cme!o|r|F7GILTL>xS#gRJyh-kbyxcBfe_nwL8v(RpWx%4^z2~j?XamIAWNzS1lxk4CQSH7g~$J+n7ZMs=(fROou#bDN3SC z72wLE=(HppsN-m;Nnp^=g=kZIi#<;2NQG8aAq*v8e`t3u{-4#ciO&kE1I)MJQJ(>;rpILuBqy6J2t?0{+RD zaf$vevna&>xH{ou6au)c;6EIJJ`H*i8H;8vw0-r9M{%!-V~kl>UUu(2wnCg&&iKIe zG2{1<+$h)d5%D@2?&^{z^M-P^xu#J0Cu7bod_|9H<8jGjZ>_2v#-L+O^Vq_I+rO=L zi{J%w0C!TJ+|XAX*6_-N4(+e?On_Lca`)Ys`GMDym%+>~nkb_PpOw+mCm zC@Wso)zsRjNijS9iXBQr^B%=!L3GeD$%8aYvFM>g{V_N?>Iz(>e_;0pv2vj`e=y2? z;U8C7G~n@QpeRp){`@vZcPraUN=kh0x2zFk;&F2)b5{HACAffW$*^C*K`%>xG>s77 z>u28C#$$&BNsHzYtwWtLjDKUhrn#6s4ELoR9uz7?qHOAX0D<9C9>f0$3}M8oFO#*JJ8pUE6w#mD8|Bo7o8ZGr9!~~u zkR+nJ#REl!E=^b)*m9_Z1X#~F_67WV5#6ul5p=<0!&gL-x5Fa*Yyroz@xAo3d(pne zju*i!1z5QmC-eQ$dz=mFrHOn(asn-$eS_^GKc1BSXUDGkn6K-03(4P_xdQf?vKGw0 z-e6qMjGyq#rwUe-F~8$WwfIm=v3!;wz8}ia5>NN z?p}Dl@%{c1!!Uc#oyT>YD5b(75b-RZ?kkfO@TN+u3s33P zQvJ80mBFT-AwgQ+(G9BfY(MhS?cB$IsqUSdQvRuPhj6|3f@O`fBfg$sg6zd54blac zc&icCd4gdAg=qn^u}nQx)v6qZCzsrSg{SIEc?m@X4PLt#D`_Y9(44k0x@-$$Q0 z{s}?id9-{yGUni7fMzJF7M~j_o-xf9JDZz=0FyJyVEg0GPBh1~;I+9b#u(EAMXH7Z z6o#hwml-TSTyi~UD{Y%IxQzYdM-I4u$x<_C`*vnZr6EOPOF&CfIJ6Dt75unXSDTGI zFA_h>#foPwLbZ|QN^4F+W5Gsam)}%6>Q{a5>#((fap#kv(ZH0W6uwYt+NeU>$9{Bc z3t=iToS@m-q5Q%@mZBPXQT5r<@IjPfhM&e+t;mSR^~G7=(8h;Ty)^gcm#>xLddV^U zwD;nQSE_`uusAQAZJylaZ|KBzvKm?&Zk&D_k1c{XTz@kMo2m@WvT(DKTn}fXeK{Dg z3b@yo^AMKjyac8{YdpZMSaZnx)tkP$YqGs17XsH;_a8YzCNKWtF5%KC!C1+(Njydo zXg|g@oXmQn)z4;!Pk?kZ`i=(GlbOriRCv^wGx&Aq+YF|7&9kD)clv?!hTNEj1V0Tf zKChlwmzKvk{94hRJVK@+iEP;*ChZIJ+`zIf%u=<~+5fleNy8wF=?fE6%Ba#EOoZ_v zy1B1#c(`0SWb@>fL2xnUuF(~lUwK;-&$(I4|5xGFkz+UdJEB*$JhwP!Mx$OIb*V>M zLJE$nd!cr#%}urDB0y&gPI-;mJ9h?S+;A|l)pYY7vzmc&OkVpR(ZKZ_3STU%XZ{c6 z_RG*BnjA1(;63M!{asCmjHK~&^XedD7kFA%E&PjCuD4{YAv%UEV~n2QNyPkL*T! zEKnx`L(4q#+YdFeLlNKQYDQ+P*A?)+9Fc6Z=XaduD?P_%H)H?GEg*ewv#j$GY*sWY zzmRIf*>Sf=_mggF|3kMO;3&1*O{yixf^wuXQSfrP7&=dLAV?7?Je%HV^uArwHmN-C z+zTnF{>!}Y1z4^B=_eEQJ~I5p+*;_Kq{kS9C>T6kqu)=Z@#kmzUjfUM_a;A+v=*-K zHV|{UrTrVy88hc$S{9D#*pNMlQ0SxtE@^nqQSojgQr=N` zv1%27@rc9^a6XJ1l{ZJ}sx-btIS;&lvP!u(1|T;*Bh}#DoPT~+`o%GhstVT|$`h?! zJbY=?lY?mPp}Vx|<$RWuL9fo%kd^9VxgN(b=}rSOcF3Qe_>Q?%jJ@|-8Yw}c0NE); zQ~ppd$2TTkRybc^C3zp?YUPb65{-9K@%p}P2G6IVcTSrCRm8n`muoNf{_97GAKMM` zjz(L3?#B51(LjVLaIx)?Ufs>Q=?iT$7H|^wLPmR)x)c6h76Q5{ezwV4Q~y>mpnJajR%1F$Ps;PM z3ni!h-QcBEjzb~y($O+<<(oPym+?QZBX-I0CR+^&Hnd$k>GKrBT>MZ3P3@zksvZl= z8Mk@X1ku3UWGcHyS)s_n?Vz|dRTRxooo5;%)D;Yui{&P{qh1VMsG01Kk@GSw!4YBk z1ns)wZ=o-COKVy#f0dlsx(d#kKvi{=p|`W#^7=l&fClg-C&~@M_i(uUEqREMC52U)WHc$o!zxl72K|$oe#UI0}BC-lEHidCOQdRF zt6*HyCBYgzSnR%csNXzOU9|dkf50u%CRZ?g+ICWBerBgNKUIWpcr4+XTcloDj*qO819Ws-`SeyBb@y(YIq5EbNSESU~ z?TnbW(Y@=raiXKwYE|_PC+V7`bBT=&#CRzNB8`TlXdU+-N{+ohll`Nh<4_)_grurh zosnU0Vd_>!HUY@3{UR(#bAx7TGn_Z2dJCMjcuLzO=yyE+j+qzEx)`P)ZIXMpHgOH6 z$@;^ujRYRO$XdgSH>UU%M)iUIn5?J)B8gZk=mDCjqV2Yg=D_$2PX-XI=?~I`e3AKv zg_G?&*d?W59%MN#?|BoQc)s=woOY`t$b2Z`hm-v(Dg3qd{Z*b5iCjr7PnYY`C*WR< ziuf}uBM*^ZJe0`#rLaD$hZTFJ(4uzPvUG42SSJELwzD|~oZwFf2Qos>3N_SG_6Z&X z3Vt+NkN3VC#b-E9kdmr=PD>YwVqsh|xEnOy|4tNtSwZ6iir7{0c&uU(FD8XY3y>!) zwIjfk*Xyb!{jdtgpahF+FHwJv`I58#i_-G|sxCIp%`>S6cP_U{f?y6HRQz7_Nt2&9 zi~Wh{K2j1*Vs|s0fS~!{j!KDQ_^|QY1Qt@nx61BF?LZ4r^Kf9qORry`hjqet?lluo zXx9><8OknklJ!6!I|@7P5^*!);*rhg+0qB_Z0aD|=Ow&m#MFV-l7KAh+XmP~&~^LO~1UiVz-yA6&xfUv>UfQCL#sp?%AcZH?Sn33pRii$Nb_ zNz4V`KSrRiwbh{};0dN80R5m-(Cb{-9`&i8CFKc4zV0aeruv(>I)|umArEequZih9j9j`sudJox0 zI_`+4)c9Olx@V0?f^RnE{u7%VDhKSRi4AHvezgGZJ_#dW(Hrng`-M8~gB)uheIuU( zvnUzdUsT6uDc(`JCw9g=&rp3g_8Z|wN-lo=y4sKZlAK53aUrZ(q-%qL3<+v*{8r8w ztg$+Xf?NdZn?${guuFQaR5GklO2w4LalE8=kQabqIf?Pp&mJ?O9g$7XT}x+ zVbp@s^%v_%pr(-K30}!u@#ar07RgH0aB9ypi8g=az5r+5lSwgFO?J2lC2;Ah3x#ji zl*D4zDB&+&S}2KZu-wg5Dg(?ex$+=L)K%Q(Ka@nJugw#0lrK{Bgu7VxM!mV34*v3HDuN2zn)rnl zr{FnPT&Rreq)M4#T2@gAZZG!N*x3y&aZrNr+b8t5#d{g7l?+gVbEkdYEQKTtb|fo) z8CBR4q3#g%L6$UcruW5Ky06rrv(nHBBLD;8>!_cFeDnzhD10$M`qPy}gw`LT>DYX1 zR^^w2mXQFI=^djb`-hr^h^oS`(UZ*Ofd=q@(??#?ED&4%p}6^xg0jXfAvIQQl$ADY zsq@^0Fnk!&<+IbW2NbXD7v&7vmI$Wn-Vli_NR!`Oi-UY{I^4G^LLjK?A_JFWch@lX ze685+kP2l@v_>UHunGm!x0*=pn!0fUj~6mWCxiEs#<4uruhqhOH@#ki6mwS}gKT}+ z#R*S02|NJaH67sw9ZiSOwyOK(vtrM=pW%3k94LOQ6Wx=gOD6FA{ADu~LvjfupwDL~ zzof-LRnlEIUmLjVU{P%u{f1dDRVGaNE)E6xKob;KNa{kS+(1c?fgrowxw_X?keBOl zX`#0Yd}s$z?lcvv%-)bo^vYN;vf5&|rwWr_VIa?-MmfE+5h5QO6LVH+(PFZpJC~(4 zmEXQZuyF9cBx4b|4_6O`b63)_l=_jF3y@=1eENn$poDA%Cw_EQZRK3xB|9yAhloJA zK3GLw<+~a**N%UHL=uLf>RQeLWL&JhGwqufnTE0H$|RRg*S38Kg{pP``016`@H`7sRZ*Urgn_2fPKD(#n`Ft`rI$ zi=Ca#8#G3*^vKx5yI)__Ct!$>-(Or(u8m)#?lGh>WkW!x9|t$KH=k%yP*ggdxV9I( zyUxdHo*F&1dL`-0Fwr;s-jlGzL8s2j;?|5-TgV3bYNZ*VA)ykiD}P%|qtLMWx?F5q z(BM1DDJAn5>0YnPjs|vCOOg9-^!57&G#TI4>Ub~qo)nEdmtc0L#_UABpK~!K_;LYT z#%xYb?+xEhFNaR!GA#Q!jeisHWajecWSPE#x+1<7$tLA$08#hU$*pm7@&|slvHF|c zCOotd4e@M${_SY4g;6utGfE=K52u*-8*r7r@)w5_;aVlIPDz(4eDZ_%k{=u&l3so? zIDJ7@deyyi55C$v=8QBItp)9CVPfDcDZdrah#AQSc7od+;GNRzt_$Lnh0+a}?R<#Z^YAT&OB>ynU8&wSy<7x|1M zw8G(eRo?mrBdlMho8l`K-$6IB%+^kdUMT*z8D-K<0Hy!Ge{iKp*2WQ&OdP1PkWjq6 z*ZE;gdbpnOuBQ|Y(sF%u`M16pRwYzJ8vas^@bYnuvv9MffLf*MTtRU>`XOC1$TQ6+ zJ~uniZc?1(2}`~Jvt9%D;H>{cn2GV|PN@_FesR#%xjo5&%=L$zs%quJR!M<5kyK2> zS_Ns^%j=3_*!*_lFyxs#`{kC3Kw%8({LL~Zj`uYz`Gc3 zOhfL+xWlCXuq@F6>q-^Wd>F;vsA4tSEjd)rOScfDkP1dVy-qMaG?1rzee`kZt<>~W zK+%FjNhS7MeJBf-a@WT$hWn4MxG7Zz?kOP%X{GKD)ORO$)3N3GN_9huVSbxuV;lFH zvtQ~zMED)P>=NYb@X)xuP+9mc8z4E>0Fv)U^OO*lV59JV6U6(J*I3^cFDHp z5vK;JSK2Au$(1a(%)!LP>X8~pI>tWR+xPoFrh&?#SBkqzjZI(P7ms*)P4r1LB%im| zx~u90XZ+cyQ<8;hoAGTY2R6Vvn5qqflb^P{xASCk-ju~$e~%EFS}r6tYFZWSw3BOW zGO8z>SAPD-c{rf59g)CeD1iC9?p1Cfy@`F*bGDj7nTzJ#tl-N+3gaC*tq2!2VoaeC z;XZT4lfU+(t3!}FU>j4lI`hJ)K2o^Qwtbp2ZIr!b6I`=^gC`w75U^rsJFox53E?-Y+qfuq4lO*H6>)@wL24~gspS)RA%Sca?ezo8Gt=rYJb*{%_vM zht*m+a?Pd~vK}_ZKH#A3zC6(tE#vcjHOZSi(=eGGnj_V*e4jqmBO3kMi8(ukO=}OS za4-wL-mkSG6$0d5lgc<+0yE37x?f}#|Do)OCjTW1Lx_+ZbRFWUv3Y7jVhWFo$&TFp zvO{63Pw2Y(qL({*JU7MUBTi8GH)vh>Nuhx6rY|rh;pcvSJN7sAd){rEfv8|?aJBf& zo6N|*%A5+T+2yb?zYCs|F{jJ(R_$_iZ{?wosJAD9vuXTkPbi7mTk2#bD?^0YMGZ|Y zvXVndNA`ka0QTc-{uy4^)E&#P4()?RNIw6pd-}Nj6w%*kJ?F$xE5=qHW9 zZ|L6n07Yp}f7$8>|0aJ`jQl8}(;c6;?aKy-m*TPOLpr=|g^1VTSL8W|? zFKb_$?{>AMPN$~6nY@Z-!8eV}Gc9-bI$1$uFh6v4+bA0I7{^F%+(~iRpfaa(8ucYc z4$n0rs7a5%Or>2wdC0k;RB?XlVe{!i)aUN+&lyG_jtKW^4%i&v%-}6NI;3~xAMWO_ zAu;FOA#+Z{J^;q;eo+11#23br;dPV5pvz)Xt>UK-hrjoA%C*uOzK2X|rBq&*E6e_K z8yXYBv{n5{5?;*PWS}`QY$;h2z7Gr9f{P+jffwC*B^i7kbkW{;^!!{%H`#dzW?XOV zJeeFw2Uk``uJmQ8i3(u4+}mc;V=_eQrCufwF7^?XYv* z0U%*Kv@?;B2ze9a&Ht0b7MUv5(d_j*;6D^=vSL=5;6^_+?gu|e+r#GIwJ#IK@0?Be zxzps_ak#+INb7$n#fxLM=gR!!^gz@0xg(^h2G-&&flg{(s(uh4n50b75xiLx?Zi17 zJ|Uv)Jjp&kh15_ymFoQug(QURHueY7@0RDUDp`o(y0KW6m~p708t;O+alQSKV4X$z z%jHHMTZ{F4EqrvE31L;?L7qSfm(OA`sc-6&r}H28y);sZ^e5`8DlQ${a{h#T@EG^W zY}d(zxrI{JycmZUFQ`w}Z>DTT1{UVL{l5!&C zYwPS*ZSM!naldATh}_OUID^K(SXt{Bher?gw@EUmNKp`{i*F^@oPO#sAF;Koz>+&7 z`LL_>@3KG?pYr}QjfiaJtVgi$(Ce}m_6L!nY}Q9?K9adThPPO-AKgXx% z&oy!bkS8z-d-sUAm6`M!YsvQkA=XGoc?fB`}O)#l>kC-w;1FrLMTziy-( zAxxAkaN%Np5iMOGvkXE?zC38USMh)%rt8Z-!Rz13$p`Bw=R7clj(*#pMg2F0jgEV)C{7@R-XJe=i?yuPx7z<%FP`C^4d zO#PaMZopA{Ql~oj^Hb~4Ur>tOO#E&@3Q4$IUgG#!BknCH5Hef7xcDVXmXDIpMUP9t z!*3^h)^l4s=%ji{q=eNF*bNxp6{iER#^~GW`$@Hm+j6L=oE0@(aiZWR_*lJro zSi#hJ;c3O}CqwgFGSF6U6to*#x5zibe0cM+e{@!Y`x@vH!%ZA=DQ>MxZ|l~<-`$Hk zfBwwbY|3RC#v~-|YmhcbB~ z6t^wwyUbtZjVt*KCmRTqzAY{f$f~wcR=vLHe;1@Xoy@M*K*1i5t*-g2MBQYp{4N`M zq7KFm+eR46XkO>wA?0o;#7?k_7#)QIPEBBD2ZfTf-m5mpf(;0?3?&#_wxa7FZ zo|^@8fWDM+cq>T;nl##pw2s$|n-P%0d91+a#dJFyTnM1Z_z0!?G)Uzv2<3I&c??Rf zIAR!uJDo(+G~Pr?GMWTMiF^N1RBW&P$Bw*ko(-$M=K) ze9?2&TfzsKWu!{YZRy(BE7G_->-y8Hds7PVp{ueDwq4%W`=3UNV7@v3pHi>@)AWyB zXF_$oeJZg^$~xcmx4-D~r?l?oqT=RefV&z+G7Mh z;(1VinwwjFEuh9ci|wj1xgpb7Q#Y|;6?e9v=vG2S?GwXai^}laCF1X(f_{ zcA$3Vi*8^c#u)2Rf&SKxS4U>-5!plAJzPq%+q!hU;9IGFCXeHwG0g4q%I~P=?6?y4 zJ8o91ztd-2-f^3Ac5=#0$+pFXa)S`h`Kjbv1Osg@@rUem_%ZnLddK!wkzWz4-JiV4A) znal94$Q2vU`Gxu4nNFCo6+|-jj5SM}FI@{Rwi%%(N*+MMVKPz3@uSh5Ln9Z@jFvIG z{NkYZ80dF(R#rKY8&JpMSdsEwH2!L?4h4g1k_VbsNUo8gAhg?bSIgM4*V3`z?z$yp z+jQeA|EW|Xv1GCEm+^aVi6sZY3*rip9Q#-~r0XMBpkl7_@1W7iwGT>awjm8_Q`8 zS?1EIMYsjj)x@J9TgWcrrP$Y`WxO1#uLqaHo)Sh$)setJW3?|-;+w(@A) z>$i$|Vim)&kcmAsQxv`@Fd!~QaZG%hq)T9W293bg$XMQNIG2-=ED&(tsV=*#+G`_14+EGnr#ftBaF@=rLtO27>wOM672vd)rB$&rjhYl9ba()6$_qiJ~+)Cc+=Y1^CR47AtLsxWdO{d6 zbvDGY-H&dh0hleRsRS5#nM@ij{D%VicEBNJXFd;?gOhk7xhGk|DVB46d(V}>n@Vz? z)2!4y|9~Jn$#qUUARE<)TQJ^Ui9EoUQ2{;^LZg#yhdmlB@#pIYboREV4@ynVZM6;c z=l`M9S|?g%Zg%VEX1;iw#uzopb-J5(Q<2ZQjA|Kuhhn?-#(%JB%92}C9l-p+pItPhr2g2d%nud|UOvZsPy4`} zf#-#F_BH+U82OPlmtFnJY7F%5b#`dc0{0L*vL7Z|RABj-S!CM`nVr)}K=6t_mOZ`q z^yn25F$mKJB1gqahJa&9$OL}M5XnLQ-Qe;QdhPz1A-O=C3ma?O%*F+MKqh}YNviW+ z>^vgG>p7PqCk^D$khK|+5jcGLK21GlsFN&ny*+)qe)2eD-qxIcS#4&6<^z!Bab2K$ z64bfSLAu0W&Gh1dyG`#sSCP>~gF%dPummhEy3<>3IIvWOK7wcLHyt_RAEm=C-v zarF$>yuGR6A58ekvbdoE?)Z6xGarE8h)Lvw)g<4Q4{W-pCoOG$bguMwT5bS3yD(S* zZX-B0pEg_gd9eWSPYQKFQ5YO3K;LJn#)QSHmURf9oIWFiCIJr&w7D zbdzGWOF_}_oWDBK!`E3IM#QOf^koY9vx73~UFSSwESZswpU+L(=iQVafM1)yc83*) zBl0SCztzeV4(xg86G|6tA6+-0yZ1oE-gMeC0XjZ+Is1XRHXvJ)Xry$xN5InYd(=^3 zTPzL(P&4I;WAR$#&XRm1n{qpi!>T=P3%F<2(VP9_fBYl*wz0Ew6cytZ zx4J2-#fdiYmNowq&FSnwv+KrXo2$ivNo8-xTI3J-ZyPPWpt(1FwsSYj9*6s2P;ZdxN0$Ze$X?4l6zU ztuAKcTk4bCF}Df7-e!8+cfl?6&nWh?K8r#u{qlvFwqTH+EU)07sFqgRIG*OU>qBq3 z?3Tc^th)|+{({qnc~C85s_dK0An3k~F?d{(}gxaJ#v{yM`SAg(O-0(7=aFWaHlu zw>>$S-7E9Xm>bIOMwv6^IYt$*9YNlF!MWhR!`Zp1wgzQCH}|VPA@>Z?nmX#=T~wc~ zQ==7PLuqbHK>c+Si$Q+1r;``BuwWWGv3O#!&q8rEgIs|os$cxY|24wAJ5q8BmyevK zxExXqC9rL3jHgrYXWTYvlKP;l5TTFFR0$_}JZT|3VlCb(UV@KgZx=tvguH615p04J zT`rGVSth^tnEWg-UAX0mU~xbRvTL|6q8rP354MsZ7_J+bR3w|J$YIQ8!ip0Q8Uaz)I(_1jX@&atgpk%Q{R zv~}NxtUZz-^_G&p>wt<3d!;m{D2U1NAY+{IAH8AjvQ<7uv47@VFTVRN!HVh`P(}9) zd@VmHSoyIyFNA-%qISitbvpVdQ%L$KftQjn^)isKV<#)BqFkvzB(?o?7V4#CGNFDi zxwsqWulLv);$f@ChUga6L2vi7QwX#}krN-pXG!1R#KhFJC>5|8<*qmHqzc z8g%D=OMV}Jq6x@(-0dCgNf&k(c&DQ;e*@$sL!y)1 zW|M&M-NZik(y=!SLncbPv_w%aKGfz+QU?x|A|}(smvr(E4_8Okhfg`R^f!YYX~mqsCZl9XIt`VKohKF!Fg{p`Dc^FBO!}uEwnHHoWYg+;UefJP)5cv4JiKW^KZqLjvWG zb-jkX5HwlUgbqn8xr@;_mq1UaI)aTpBeZ1zUy)d`s4MYF0Tk!`jN@bg!i4+HPo>ZaL*C6 zNDi&K19s6c+Lt4gsVCQ#JUF$qt`j{XBGgE4Wd+q`vyTr~w!v~~0`&k;4FePPsDe3+ zwUlBeyGU8sHs7QJqQA@M^}po-|j68qq)D@ z*F}5EMx1*fb70gffowYi4DhrfBjG?P!L&DnLQR!+to%WpNI z=UUl_^8OeXnyHTO;-Ak8FE@{=M-o)zA58*4B2b~^?DVew$fI%h{lFAkyX|{xY_hR+ zHDOj`pbGJ2^~H;wVGw{x1H^9TTl(++drWI=4DadX5o7*RjD;|5dJ<)U$BjthlO6ITL+DiaLh#8$JmL&l_vL41*W?*Wf;0Z7qZKF6ocso zi$LdXH2m-t2#S<3Y+D7&8@_pd+}ga1KcK5wLTr6ws?%Q?`CV#9xp?Fa| zZ*h~Rw6IG~Ya6+^8&I{kVa82A`fn|(84|9y0I0sowak61X#U#<*mSj(wWIKN z?@79_j}Vrqd9SH;{%=-9uay)JJ>Wi(Kc=yt+yiq1 zlW{LoI8cqz&9Si5P}?w48<=bN_Xl;x8tSd*U66Leqtw4|GBrYT;N;*g>bhYrEp{t< zTis0ywvFtku$%lzBTnj7z=}-u_xK*LOrBWeAKR@!s1|F(2tV~dgKouJ>J?Mlhc?}D zlKz#;W1*r33bc&iT@LdCe|zke{s@v;qq*lHKs+aXvRZLa?(8PkhTyyZH7hg6&hc$B zX1gRmKWhJ1;~?1xzhkKXIgoBo9X%FG`tK@`fLZd?enpu@HqZDEAQ7ZIb}F*N$6Tnz z?a13_2ASH+oBmfv@L{kUx5ayq1zLTpz5P{6NX>lEA!;irp8Fpw`{M5a!P#Qk!XFE~ z6^svfJ1kNWL^EDogCQ#wuaqw?fs1_m$(6sfc$D$tU17n^HE@=)58I)*Fm3}nmT6;? zPN2Ek2)#+}#$N2Hd1uFlW&;tkxF^C@`BG`W*$F_f2(bQ*Lu8bD@n^oFycoDxU?7#` zF@`wUs8oIbVD5N==*J20gYJ6#;-?}P#}w?;LKveSQt#gC-)f&fTv@k*F0LNxqeyOx zEE!3K6|AtRIc0O=Le;->^f#-zC5i`z-97}LpPAaGp!yK@R)+fLw*C@_%h z-7VuuBd6WOgMXNES_pyb$)>FGUV!uEk}^KV5YWHC9o<1A>pGdDoJ_82=>+Gq5yT5I z9J$XV3^R_f^ZaDs2sq!>NolZY|8N5Hxr0Ke4fMKQV-S?wvYrDpvz=-N4|&vT5Oj+& zj1?SI@~fMIA3R@wyuG^%MBhQjN~Kp?rD1hx3=NcuuheRYR?1wqPB@llaQ0!y?GS;j zG`>+vv{@aX^+Lf~Li>cc5a4_bm3iG98qw9YgC_ad8J=MNacjJWE^M!!+a2tLCez2j z!7I!WsCTpXf$Ga@3bP1SwwL!fI2+{irGnK(a31fSf(#(EqV9`kq`N*59%N6NIz_(i zm=K&c{jFeQBFG032ADBee>(!!V!GItl+&Ia{KP;0j%&Y}_ETIef@U(DYc_ntv!}#O z*u?LW`Vui6A}hBox9}wdMhLB*O!@=M8OAz@U=Z`S_!NduOdH{zw)GZc7}6UI*qB&X zKh_fUuwDmR8fpyhLAUnqrY5_m-QHg&)KSu8NJ%01)1&fr!Px-59k>(-d!9~Sfa=c` zl+cda?72Oym@x;?iI9 zlbLbEGe0rmPHc9^X3v55f6 zw`HY1K1sQgw=2;$n`m*xwj{S-flaO4%{sV)eDW=DPKLCG7gNUmN{Yj$3%evA9}b=+bEYO$i4Y`yq;DZdlAd0nj0Js$@HIhpU+pH$lroimC*t@F(%MVj?uSaI=*um7l4rAWsjP?5HgQ5r zkzmoBF4LptQm@`Cj68{V5@H~qnJ_P+PvHYzKWwUm0Rk;Y=;ukE6_E#NIW-0Cv(8?; zoX2uOgcTpV8n4H@UTe;9zWx`Y_fPyYy(gYTTBFK1YZs}S3JQ2&8NJkS8j1?eCO;Gk zWlis^`;W9l$|%F~u|HhJq#xS-kHvI~(ABLHhg;+DBu|zZX?};kb-_ABNz@HPXO=Cy zTmvPWKJSg)L}Q8~A9~@2C;DVQFsZ)LMtMl^so7G;J~!t-6t+-|pSyn(4RB%Ex#=5A zfaUJKRPYmtHI8gVj=Ib*BBilvnph>e>)kVmW;m9`u^FDs2IZp^9;@od^7uu%gdJ~` zcfA+)_Hjj-HjRVUmRlvts0*ks@k9pqpicRXa^uQvC+}=Hr?W3^uYpkEK{|(g_e@QE z#=}EzfZn*@%QtjdQ9G(xbW>z2ptNR)LtgYT^G6MdxyC7=CyuHIi~#^PU9Hd;Nu4Hz z(V&e6d`|&S1AGow3#oSO(BnYK$C74)kK`U?{**Q98XJ2myPPF6KyvtRO*Dqh5@A4Y z4DHFHN^SvU$7p36bm_S{0sR3lQo=|?43)7^DbW(})qw

    pfmhu+JW%W*eAAu!)gsy)(>Z8KzmY9=6!X^_~LkvN;p- z5NzBC5A2HTC7$FQ`f(M4cS=!detv24jjqf$9YO4`X5Yn8D-ve;EiYON6 z?f}GIG?qT%61QW^dteyn9qVX(s==Vuq3lQ?^`ie!Fz8$aeFwQwX?JCh*4;`!0Tp@gBwY!f>Ma=}R9RT7pSSNf0i_D^ zxNBnjK!);OVi*6*OpJgorRcM8*bbE_%~>VG4}t(KZM?in!+{7-zgjNs5?_pBH^sX> zbLTIRTq68|vl_OUjBR*RYWjUz*T9vsG_GSgofatz5jz?(BFIoR?fP@{JmOr0sSr8# z*|$WdL0OpE1p1Dpx}42CE_guSXK_$^D%IUj;YC< z%?AbIU&4$(P>vX~w@be78qh1e6-*&V!)pJ$dY_qmOftEdFq$|T=dp_jQ(WT(t59mA zn>HoRhv{+&xzZ+mir)_`bf&jykQ@NcVH9sOe89kggWNdoz0u&cZ)Bw5=n=9o z=a#YxRY*$ma zyE;-Av^7=PcfM(!&6^y6fSb%0%Omcn&a9oXsd+OPmOM?Kex**^y4R3a>pu(v@w={~ z`-LKZEuhGbQYuj~&HR)$XQoX(+bMoE#Sr=DRZyP-Y~RU6wNKI6)ct;l8tR5veYVRx zh(5%9N6)0(txW1uJDn=#H|5pTY{+WBy5sW6q%X~iJzyky>(e%c=k~lXVug-{+S2*p zH_f`3>?5Df0h8_!Clg?sQ*nmS1TzaOs}tl2RHTS{!5_tws&(PQ#pFI%Ts&aF^{#Es)5;+$Oagu6RleKCXDWnL$NZwa>d^<&EAgJ+19D?uyF zpdoDYd!MTB{zA`~L$y{`Lj;qSR*dVOJ^STM(AcmQ^qCcTS6W~89-=-8QT`7ly1oSl zKSej$(ZCndVioSu&UQyO2Ly{6`vaQE{@9|3Sr?@6krVOpVSVWv=bt6z&+cwGelMe> zbhG@KD@fJb>I=2PE%%-_0xyXMgI<982|e@J4MlwltLKYyoEHB>2`xD0CJLcCWrjbz z`FFP6>%O4fP0~6WbHo@lQuG7THFQFU_07~UDq5`tA-?Wu{$Ar|CoklxbC{^)S7kJWzPX+3sMl+?^AZhr!O0)-J9WQFlJW#1~v~Ef@m`SxE{ISSk?H5Q(!XTNl zYey{nm8fjpB2QG8(@{(?$uF*2XZfocjB#IhfiRvoxcout`w(zGBp9&Te-bqw;(Xgu zdHYM1)Q`Ypzrc!xTmWrx(d)aRMxE#?BufM4g|Ol^Zrg zP&bub={^xXwr3a|DWjUREeJ#@jt@Smfl|JERSPj@dVL3l{E0d`4~OSn_&7}!+LQWZ zUEDax4xeN_42y!&OTHHlT6>@~lhKT}_7h9zx=*7T>XfbP8GNgJl|7eP)RDrSCX6N}queTxM$nR_Sm4zwSCm!|TSEtcHd&`V~y7^eTfyWym`dm}2)X1d7Q z@>SuYI7&Aq9m3S?g@}Xh-yt1!B18o`a!$w^sGp9=E&%$1#YTbHlMLifQp|YS0Tpm` z-hz=1T<)%nW`~r=MSC})QL);J=m}9_M25F-*%oC^ zhX7SqgD!Dpb+I8Djd2TuroheA6*v7pY?nC&Y&Up5YC@)GW8u}8|Qfzta(oxs?wJmcQgf3<+xc5xG9>ga5VrKQ6 zp74gATzDgA^cPTi8sSR)X4F|Xjfs`zL`q?%;D+8>ebxlvW`HQOr@J>S>+Uh)Qh#IF zRpyYKr80%)`;D_gM!l`#;bhj$ZE~sJbedo22eWrD{*R=y4ruE8`#36ypnxdd(v5V7 zC@l<-?pC^E)D-D%q@|@LM~_BY8b*xn(LLDrx&EHNcmKHCx#!%o&v|`b?>XX2Bgt-$ zpJh6|)6rRUn?H*)onAWe)_S)UHcY+uB?F5xaW&jFiw_?g(EgNS0^WIs_XLv?#APct z_J(siv#$m>Ytz(WF?r|OO5}1eGB2b)jmvVZuJxz5HvQ1-UE3>DUHH{k%6MJZ>TP(N zecr9vuwH@6efkCRLgL*i_IjHs9-3m8)S$oGT}01g5$81<6|S&&U5ZwWahiM0lN>%p z;wx<*u~>XTUZ4GyVS?u!UfGLj-TA3iItvV;WKQ5FIm0y*qncTS&`|(3P>sf{eE7Lm z3sqGT5H0?J%=|Nb@;g+#kSm28^FIu4#ut~>8L9l=ZgZKGOF5jeDjOSH{10s}aSTQg zkiHdD$fhfV6lOsiVfrGF&Bt)9{j%`29S!e{4&JNneuc#4O*+oj*crO_gtpJn>q#b! zpVCgotb=+jH*`#ff(^5*5_78d;q|wO*1$~=md1?QgY$Vq+EOEzzaj9$1xklV+erhg zZ*6;Azoc0A&H!A#yi~4KDB8+rb&7-}gLU0j*PXUrUMqEDn~}OnDn~A6?bhW=T-t|C z)x1cJs>;`0dt1Xv$z#jcaOm!b#o3mqY@)C9kXZGA>8D|cQ}x0*=piLgNbba9pkH&p z#-4_vv7@FnnI6>WSDK$JVHv&sR6Gom)>2L2EfuJHYHZj1A^O*7zpJjR9j|6g=H)_; zpb;|*R+OHTH|r>CU;CUy`_=tn+>7Sfp&(;gr zHW<|TAI5hG-aREiby?3!QQTyz)z8*%*j7;U&1wHWuK~LZ|00Q3EEMPb@Qp>Xg<@!5 zE6ZROxCzkZ?^|{W&6J1fjPq7|(`G%C+gu;*(@TN~v9QBF>owMpnY55O_4bA+CB4JR zG4Mwdbu)~mUMF^JS$ucR0!o7cwX`h}>G^|BxOX=w!juS2^hMQ0V3^By@~oR9LKti- zK*rv@^W|B=$>pf^^C5{^geKcATuQe7CT8P!{{2<$9KpA6SnXWH=492OU}jjVc#`1x zh!b&28Ue*CVX9Tv$SM5NF`cA_q`3*lbJ6|TY}OUR))rIdNr=}D3@D-N2GZWtX`c*) z1akX8dZ1$UH2CeQ7Yq9D7-O&XL3Pg0@ab0qEnF~4Q<~dV4~+HaFQwtb>pQ*Dp;FII z6acrCD{)S?bj(Hgy}s8^(b#T%ViUnn)8e(I4nd?Mn~~)WlxZy19=;W66j))=46*BX zBA3+iUBNHKSBHrRQrX3k{J^PZ8*6*9t|mdakQC$WJwer%9FkNxLZfA}~Ny=q*&EiIWe0i(B3wndUkn?+@h>MKiD$B(QmP6+~VOYTGAFqji&NhM3aO? z2+TJ)8un@~?Thg(DZGMrd0OKT_7@F1bUNuJWzP`P=V_|L#?MhPCznh*iODIMbPpvR zZ_(q38t=oHfD^;DqXt{BFI;6|*Y}B?G|(X4le_Zq9cO8p1HX&f494V^CujV=ayGl8 z$t*9#CJugmrQYxmFTs1#x&evhtl|;CBNP}lRhsq~{LDR@OSk$)=T;lv9g#&fJB+7U z(nT_-`oe^VKrOpmi8-~rG0ldwOZtYj`fz-$el`&E=4wtov&*X`^4(g1f^H2;J#lP< zud=9@kwk;^!y2$k)xA+Z%L}XK=#xK&{tWQOBdWUas=Hh~-gN_r!+WA}<h7qLusREMcHU4##}ogPQS&yvqoA z5zm6wZF?1-8y4fW;~UPBu>PRg9OfJ40fW%h#pd6$q=(UiPK>Ft#@;^(66&80cvW;% zvXD%tG^{*G#E?jy|5CG-ME+DNc9hcCT(V-g>_nTQt*Io ziS6~ndY4`mVlr)7Ud)v7%I5^C+FNd_#)0g>es%j}4Ov*Iqx@uDz-4>oT~_V@1m1J? z^P!>x?|>FhLYuq9yLbo+W%V#6c*sy9nIlx7A0l?^-oP)R!|wNaLi^JP96QL@!O>$; zHZ=I<7T&ORbWoxVN!Zv<7})_`PpG|2%5BMpN45alhB!N5{>R>X-^86BUugiL=!a00 z_>HjfoFItA#P%vj8PGOE2wil zg@x_QQdT=pq4WvuNc(3L)=eXqhNEX3>5bFmiueM9Wy@BLbIH4HAt^c91H~PY^|pu| zBGb0KfQ;Kc+NPtDRQ*DDV^rBB1?(PY|9&(^`09~x>Y#1Kz5G`Ym^h?iNPpg$P3q^0 zL;1Ogg#4pHYSF&WoGVEoDdPHqb6<{clF#6^E8Zw*PW6tXL_!1Uq4r5GNJ-G|m~_8t z(Alq?@5sYBQr{Qu4y&+?4r?Ed&GoOs?>E&5ga)oVVBqL;Cg%t2AUrQ9s>B#U~+Qc}O)42JcN1=T3=S>hl}-ZUzCn!L(F={mjkS>=~0!O@ay3q445&pyCs!ElX zgzYiK`M=wO4&rKT)t@F@HEmgCH=;H~3v??R8m7H!?hLDI<@+hHLB`V8@^ z?j?r$$~MqVqy1O6=c0-H*NMdQ%c1X>D@95I(~c*_xbAzCZVYD1{kMQ1ItIf(H0)D5 zT5%7;I*Q2S_m5r?)aVUFV5=hD?wxxJG;23g9CkdI^oiP!r2#DujlI#kjTzP#23Wls z74&C|%1t))yzE`J?q&_l zdYb#+r1oh z2F|?c!Q1{pMsDUN=Nf%xQF1NJI49TlN*yK{+$g)DZBCds|(NLBYdD-o-)A#vjZF8c8F`NAG9M zDAmMVM~yzy*jG0AUBu=_@wp8sRf$8W9rU56)UQwsiG)Wk(rUXkB8u@*;K!H1I*sL_Ob?^xfwHm>@xk?3o zm2~do<4Gocp`Z6@2XsJltY%JM+dE8L=8V}5&1gB+r0Z)yzdIPZ^PF}>ng&mMBhcjk z2hE^iq#ek@?pRl>bmZiTN$)l^L|EGOfATEOCb^=!V4tGF#+W!(_5TMpyo!u!xPYxu zLwFlc4s=PLo4W=uEQ73xThqN1rDh;3>HJjQFV{d0UWK=o92W*xlVUvWVeR(90CJN9 zbEC!2E2u=-dG#}cq&76Z=}G8?E{Qlh(El1VOmaNY@Q!{;Pin{Kv=i?jq4UN z$Lr-{DM7#HTSKXPT(z9Gj;PHBh#zfzr0yj|GHvx!(z@||529qy<6SLX9HE16CXJ|nzgOTk-8wtLq+=c1zuSK&8Y)+M#3_n^sj;5LDM zzfBXcWGJ;Iao^yA7yh0bbKsb0wpj+~f|>*Fehk0HY&JCZy#yj{V?bAbZ=RIcX_}Tq z6m>*!_YFlkGW~hGsIc{+S=SC_Iy}Buu;!HZ z+7@n-ur5A`S1-gxNSJ?|aDN*&Hh@|E!gnKbR@CMVYP6^f;#-SK$n2kTPB6Kv>~QFv zfvgr7=*dslSBJi;b52Eza$gb~C85F}J!>9Y3Xw_yu?Ks2zSe;PG~k~*R5Ey)V&UPA z>F!5b?uj}ri6G)iDt%S*4gE6pH@;C0q~5pm6Q$d)EFGeiB>L}ER#KtHV#APT%o=SX zht!P9J1(F>KW7Hw1dD-cNUo%M42v>03M&zbInBLVYE~Q=0gY(AvP*saEYI7!0F|0> zub4^?Xj(^IiX<}6`bVPvdAp%6A*DC6X$$4g~q{VCUBN;#(L zXQOk+(eM#AGPh}~+}7*d`RMOp$Ej4am%$wxeWvHXa1;r08+)N1xc?>*5~(I{|CywC zGIC;Zi`dI%b4m1aq5ZgZE0S&R3ZAbhaImnUJKCN!!l>RaPvh8gCeDq;qSKkjSB$r#?O4^Orp9-3`b*`eQ|4@ah_k|FPNg}ko%1d3Q! z;6QCxv|ajTJ*EoO&d{cS1xUHgps`SqN*-vXv8i52xv8%wqa9l}17Mi%EKKS!UBS4H+zM`^bJ%a+`KtS#YeF3-lXsOwa zmBlDW6?1A>rDAr)HT`!ri|e1=RPG#TO8`(zF`nLX=Hfl_Xa@3+xRy3i+xk_MlDbWx z0V4JoDL?Nt^x`XHp*fbqKNka&jhB5X7wH}LvNnOBo>vJN9|7mrprd+pUk;4Dp*3*?W{;-;1 zmolI=8_J18%RBtXO=N=#@WJ}0fsE1ae!hhUSN^kUB}44TTW%iBk$iU{%hTV2nKus| z_f@EC;!M60?#a5U4E=`@3|UQL5rVZl_d`yw0a#F=5;KW|)gwqYub{hR{0(rDH^?ed$3ls zrXLc3S5XNjR*kP3+7ehz1^V~(esNF$p@yfo>Ogz`{^7rvV!Rn$U=RRAnDDoXyUTup zZ2B|*$%6Q^gt#hf=@3#c_sg{15UYokt2jhCr&!@zIV#OtTcT)Vjp@fVkG_qU=E*B9 zAPXV-&od6vodL`-sOV6UKEsMnET)&6m*K3J5dDWLP#_r&v_%|G5F{NU0C#hO&B9?w zRz_$Zn1j_OmG{NZb6VVIl26?Y&U)6I%i@5IP;J@1H{j;-pqJV~78ziRIbOj_QG8=6@K3jmMZ3b2;zdVr^p?@j_PL4V+0OBkH#6 z7M%h0b$>I^1zidfp|i0UH}u3+?k(EnXu5PRmVb9irzJO}GJctM|ENQ+p*ZcH z0jLnxaGn#}#-w8zjXdeckuV1z$4e_uaDY%SAOs-(XcbUP|GQqFvAe?l)#kJL(gBRe zOTunyQu%fMr`Nu4gs2_RsXrBSn>q&@5(~5dr};s}OGYvmB7;<3hYTJ>yQ(Uc1ZMt^ zRGqQ|0zzuye#`H$$5kqEPiKLHIXuuMW`KKmBm_|0!fGG7W4~;;L2fbWd7yn;e ze6L-XWE{$}3#23NW2AH*R$v7C^U3h*cI&$j(MEPUV;Wp$!E2*M?JoJ~AlN zKHV8Mx*Hr)-|Bi*$f=*qhSfYKI=;5|L6_YPuuwY7-Qa6#+Oc^;2Y~^3HCk0^^M+K3 z27j{4YxVpqpF%aLyG}_CVo0CqWZ(rGMPAddfwMx+7M8MH0#EvVj-w&$CEV7Hu=2$d zEJ|_7##;qQuSNS3p;Gu$HA8L}9I3D=Dl}2$1ka6?U{&P-kii~)ygtLiC7F~G9sf1t zk5r*$6-2qPxM1fW2rG4vnrVVyJ-$hjpL_9DmA=@wN4tFw6;LCYnHi))S&+!~cP|468XqB2V{}*Fnjl4Bpee6i!-8 zZLkl@F>=)24*;+G$K7awzl_)n1Gj{nY*)++*kEYZ>mJ;}Zm?RL|3_y7^+Ix=1jj_b zw=Ni(!me4XIRSN(SsB|Cws-Unx1I>#`F>osZ1PJnu>X-L_o5zBllsPr(|#RHpLA#xI^#?bNy!v1|zhZU5JPO)O)Xc6eTXq_ck6jEd zW>)z7QtOh%mAvbMm@)Cm@2}dm;LS5XO@T;8-C)*d1;y_Uk|OP0#h*7Myd^fo46%&; zu>%;akaB-1lh=}#f*KVNLb%R^`Zk70SO6xDrs=#wptImE4cN(90}u@Fv>T8M>S z-9)!dS~E*|`<&M26kvGW2Yiv4CmMWW>kLFtzMDHQBMyrj4zUq4QkNVOi-GY)0VXQ~V)v?iFi9audc&vK-*-M}sR^ zQ^fIG(;&e80O{eX*oLI*8e2iMEZE=1*p+uxsq%EqG^SljswE%fSZeGo%+DLw+oG>J z$#WCVi7bM{4SOj~TVH^g4ir(0}4pGvWEzJ*% zMhDU$LMW5z`=7pVlp%BMk!+H1ahG`|mcU9c5u|vK3jzRTL%bv0PU=c#eR&b8cs`k{ zjnh)%3&xl%dE6%PcjHdH2Z#m(UFzioYodhXnB}tt@*N)u~}i zbxfHK5_3`f`2Apxit6-cy4k4d$Ta4Z2B&|j>xn3!(5OVaYZQ%A>M&`)xb-&^QcgXH zZMwHDrnk3_S#lCJ^U)#elsIAEu;=9(q(Qh*ZxYLII1kDD0NaPpvvo}sAKs9`A7P#N zJsO~v7HjN=<0r&U3R?x?KijAjI2`nioDj}%1C#Ft9x2?emt@&Ke`H3i!zRqOfxSq6 zB|+i1#A9*zj)cC~jE6E@QnXVlH>{FlU$BgcQ-vs@^965{kj(f;FKLi3^(5to1dPR$ zP?1~NokZU6>cO*xeL^xix|ok;y1$Q!`_9CC387RG6A&kg{wn@xOqypXrmH+AS@a|O z!<-0yljy*wV+}{y-dFizPFUJ9%ja2-&@^pR22WEd=|`a<97$)tCGOA?z-I4*enQz> zhqo9!Chq+TkApki`5*KB;JhJI2h*x$(bWI2i@&j?Gk>ZD_-cHwMD~FvPbuw{k`W!| zV32NEZnD?Tt$Mt`Q{k8^aHblVx?NIQxuFJ6@A>aD1l{W~e&m#N+=1o`tDi#t{n+IA z?+HxgC7(jr-+i`EaH7;F{t9>Ts(Q9_Z~In7mQ+)(?6KOJa{1?6b%M*|jCbY+Z^$|7 zNtgm1tagF`-G%|lmY{`t(|qLPyLkRFFs*WtA5P7wEQ74jDJf3Jv0?D zHt`VNxwBzz8+j7$`5&Iee8c$sM1GmrfzTzOAAAshnXo=(L zKS|t2(CvH+(xr9-=fQW?j?FE-$+}DF9&0I0e~tq%PCLx2FjfO8Y*EZr!lj&5?UFo7 zQZp}+Y<+Lmp%+<}(>6b@t#-?)qTBqVz6O4ugPJsOa;mlnjJb4yC_&idXw$j#sQJog zOcwmLZ(XP2`J=CZ2O~@SRpgwqp}X&|IbV;Xvu5-{(ZMTy7;tVN^8kxhG}LvKrZ7s~Qq@a+N0yQ9HJm zd;O3k&ejh)n2Kdf;)-63P-M!APIZXI2UANz9z3GG$ern{ zXk@+5e=*uDsiKIhxr*Ps8|yu*<7dFm4Ro{QgU)(0-A&5+V5dgp$iPr)2T$6oRS zhp9El_b%%cSTReX8sTRcKWQjM7o$(Vp#vLKG%3kh5C|Igzp+0U?)*M2iN%C;MFb@R zt$Q!bywJH1c49;gjKhydRxz3f-LKp2OgfcFWXYcmA!%7fSe{6m`uk~GGI~p3x`vRO zh!Ir#tH-}kdOLEs)%ca{a9nz>L7>yzGd_5!M}l>X;Nye)O6Xt0p{@-|-l5N2W8$AB zCU-G;2;<{>3Fn>mat7umi#MJ=O0#_wF7b7ZMWG& zrvl@J^lYYY>=pa+`xfctMm6^_e5E_IPf5$;!oT9oWHs2o29~L@_YN{L7sAJyL$;P1 zGO07YCB^TiG-)=4CTeS}Wo2mDM8+ktiB*fkY>XN`OtV9kI!&HQwTtJ7%{r^g2g~Wb zAi1%Amo@I6WOol+O>pF;P6C^)%u1|VaWTH%X8iViJTS0P^dt!$L({D zr#rFF=r(@dP2NveQ^>Nmr8`cB+O9`_k>f%E;8SH_=$}X3<%9b5w~k zjZ|0r3hA%ku5RN0hp{u6QvX^h{!gqmleGkt-0rpP*5NCG=n%4;ohO1S8cI>k-Ht|X zk3LQB5WQhOGz@iI^opjky26O9&ptFhQpJUmb($z0N{dC|k>tmCJ=$i&yf3i@p0*gi z{3t~nqk<5;y#Yzy2U~qg$%wU>NDKg!-+7Xhd*1gE%Ku>m=gr^EZ(sRj=ysqxN+g%z zH(DIY>_XoX;@u>%Z^sRw?ox$+YLNIf3G?MZf5#s3PMv?3XWmq|x#po5O=GB!7`1|; znV?f!8L!V3sMiIvg5BpFkoN}%Zi)l16D>wCGQM}Vz4CjWf?1cc{4^VI+|wQ`V%}}E+iW3A8L}w)%BS=Hq4G5U$217RCd}TV>U&JE(rec)1bI|kvtO@WN z<@p>3YemCSMOM}HhDOWA24yX8eKFT!})`Y3z*3$t5)@5^epIKt1G`M<}UwbckrYTK1y_t^66bO&i|(E`f^O!h)!vL8Xe1|RFWJmi z+8Y?fn_eAy314~a>S!calPOE`c!rjMfh?I%5TOW8fr&nq=D)0y}4J6l*;Mj z@FT`e7g>z3oM2tfI@}AZ?V>`X!j@%?I7Zzur-PC1Y|$a!pIgT&3tdMI6vQ!WXieQGCS7~4V2-=Ec;ct@W*pVs zY{xd!gDPLiGDTxW!OmJ68YR0as}^^Paqy)UJ3POn2qduRzS$FYZt zTDW3cu51Xwt;2Hhqx3KTu&;27~QZBev*7BnM{3Q(Yk^%cg&68=&HWN&xhW{26Myx4@u?Qt)_?1Go_tV^~v%g6Zm3V@sP@uy-n@ zM6**+l&nkhS^mJ^&vD9GQZ!ZU6)soTMZ?%=_Bc4`KMbZ?K{r6_Sw#Ih`Ff9bdFlZK zfE23$m-{;;4C%TS16pT^14`5HPePM`d{0p95L2w9Ba(`|P?s(QdhV7vP2xuNxM?(C z=jC=21TX9DykdVbUxj305eGc+SNn9D{@KDozN(XNz02Fe0?%4g4oFw?9T$LSxZP-= zKKOiAIf3?3b1OM`I66&f)soCHKh^&k&-ccBJary-a3bs}jP6fUl+fCts`5O!f%Y3# z6_sTr`x4KI3vr6(O~i?IF1A!Fihb#(g<~h8ji;>V*R5Uit0MyE`smN%#hRkj9Q*g2 z)dZK>X4_RYFOwyu=Fp24pJ_ZTXm6OW4*}q|1Wo?F3qsiT{sbjEE%AOGkC?}kT7Cl* z>#cd%XRhPPB+E?{D~c^Ka}$xht>sffoVK<PoqFSGo zbJX{%PrTrBuLdCKQ3)WZ0#aM+vjXYY#0P4h@h-mTv)Dp0ny_EH_9evcNz=4b zaMNNYTRLL7*m$%qzPyf}86V=g;lhK(1xi7>R01jP1s}4}Zo+~ zGzb)r)=Y7#jV<|;m-(}p+^u@`ZiMxlx|eZ5DSTrzCp~-vpUFH;ag2ww+3Is8SPLtv z9l=`#Ep@sbJ3_ooQ)+W<$$s`7F^&_$^BdBRJOJ&N_weH$Yz{oo1rMc$>)S=^Dg=ka z&V(xqQKG9&S~97&j{}cH9;NEaWUI8kB%8w&=?QIG{9dCkOt5wEghEv-MUaJw6`|h@ z0}lg^?>Iy-1|N@eWnqzhkZDsiS!MIjP~YQJ<0ZnZgvdw{gCj@5^42+( zHxG6}PD%*FFD*HMn-c5ULmL_=a5{%z%0Y_U2N%upz}YYw+x%;Q$`Kv^fi?V>(pKYO zQ$if4>tI#Og7rtvdPwxReFfZr#uh1AtvalP| zq9sIE$r7A$uit>Q1FWi43Bz@76PzkQ8elE5`=9&O1l>7**t9>A#r9@I-mcRI9!{Y zT@ugccfGlW-wJXQc0&B{roV%)l2}b+E3J8QAJ||rHADJfjd93;(+&v1O~?MRQP6cy zs;1Fy-L9C5VT-Ce9W-PK36MW+JM7*uVzS@4(iI7Qa)FNV-L_`d>sT%YR*yk_`Ne%Gi|+mIWI2 zFXC22&Cf-ZxyB|mTPNot4bWmVYz62M+IoU0M(E^`$AO3wlZrT-!GV7Gwmsq^Vj(Ee z&77)=&u63E{1f%pBGS>uIH&j<*qKGCnX6{KPNHq)@v(|&w>ULZ$>H#+DDv|u79zY& z+@528#f~rptP*qnT;&5^9hu0+S;gMQp1d8e+O$Nd?7qgz`c*>%-FQdbdn{OMIVYfXl( zt<)~;B<2x8E|J%t?69Vm=aF%s=xJTjCsFZ728=gmvJf$DdoC%nr?N866LBd@Um9$^RzRT6T|sJlwMm-*yKz->M{Cc3vck6mTclxX zQHQgCp7MsJ*GjrhwVNOAi1}BkA(;^R0EjoEM(C|m>*lwpSkBWP-}Ctw`OlNSt>q2& zj_f=TSKqH>E4FD*Ha-GRcyMluLSTLKUVllwF;#JkztpDpQUA})X2yE|ngB>US1a*h z!{URkYLZ4nTPpcceR<{|Qc7~>nW~Q@cEb3$vK2B1-}mPJ=5P>e;-)AyrW91Q`b|QF z^CC+?>4O}S*5|n`u*dh61^UYse`QNP{+`aU0XryA1V-WinI=M$w3sQFth)EP8V{OW zIR^6kIxkS}5ziDN)Dld~8Dc3Hcayp`$1!#J7w2tB=_x~p#(n?8aE38JjB6~H9xG6@ zZ*EYI9%lM^MAj~jDC42B0sPK%RRLUSG(_9~k{(=*Ur^OWsedvx)&rVKa`S|zyDmLh ztYqyf%!6zJO(9noP|DoaQKz%Tj)eKt{;^@z={Y(3cz9rTsi7@$%OpsuufXv3ny2Be ze5tXY`i5~bxo|2?*Bh!Yu5iLWv2$hsKnB<6WSl&glEjWj455@r(8tgP>zw5c`fJ_X zvGk~Z-=da7XEi?CDs9Hp!RtLNv{m6|#cVYwD;u%;ML3)*bsO}$>kW#NZ=YiG?K`)` zXUJ9U-@j$52ST=%l-L5GAB>W3wybci>TJXzdPjJ@jlqZIAiLK(5bpv(1i?KTQqg(7%&xW+{CI1 zYtC?`bwO2pIxP0?n0g1dmY$7_UOl|a6p^M6ksbJD{*}Ex%I(~_5l$BkZlArJfFMW0 z4@h-^;#Id=JiSqSCAyAE$|JQG1m>Bq$cMY}Zw7VJWWB_~6K2kVbEE9vh%z@%&FL=c zAZa`Qa!`kir?~RB7m5{nO_I~cdZrGmeD`nr-ULp{av$5;<^M#^1`{_en*}BocWJp~ z^^F1=M`xC#tyY!(K${~#GMa>7Yvfd8>C)i`0caV&%80@=IsMxGmEkqo-5V#m9<9zo;VHGSOIC@;P44fPP zIzz<`2EbuwZ}{!f8rSa^0cAa?MAZXxHWN10pw#wDe)rB1iv4p}L16Z357N#4A4b&E z%rIe{YN&oIPv_s*yD{;Lw2$$U4UGkygIgv}%hpBR7STjbWm8!%MaKASxos6ji>4~t zC7?_Vq@E2x$HCt1zHX*m2kJ#2Rdd?wrA321{#HY>Q^Cz#yS9M6CHYpe6Ktw;)%sk% zMZmHHBjmW}Y3O*cQgSa}Q4;82tc}&Sjz#H4vO3LN9n+8X^HmOZ4*%NaT`5WM=L<+X z;EK|8Y>65Lc%K?ZdqYb7f(ffoerIRzr@0JZdCA#X-hlkAZ`fD{mID^@qU9!Mu=3;6 zFEBhs`!s;gyTPwMr86%#-DCe%CwMuQVM>RS;4H`nW~BOT^(1S9nw=urdNX&8_S}5b zrzpVjW)L0TG$-bi6u?|%1|>#!Zm=h#?DabM}vH)-V{S?PCr21Re=~d1G}!z87f*onXp5v*|(aMr>QDN~A>&9b_FZYA<=I${!rj=SQ^8)ZKBrLF~?6Rtwi_#Cm zZg9MO=ynI~&y9x9=8RVO?3iTi8(KlQ8g$8;+LE5fi`-gZqHw1ka(FV{ssyxM$OD<# zk-OZU>Yl%Lh!&Mdge4&A{93aXl=rX554VpuC(-F3HiOMO^vp}6p(fcxZr4B zaVzr-i9MV#iWMz3&02(ii>j2p4ZFO& zpABLk&T8yL$A%gOxP8emN`+cq11oN~pi{0cPohx`>YCGFz@4jQv7xMCd|~5jc`*pi zV|C6XN4+dIbCf}zSjy+;H#vpYzm2n912_1CM%ZNMc&319AU2{KAD715ky#< zKD7sK1mH>>un^y^b7GFLv5%{*(ZOp@T}Ph$^mUX849ZM40{^3cN^ry#s-kvSz=4=i zzxG^LZaZX1BHYfOP&l$V+kMk|J@wS+MAEJR8?@|ONeZYsiv&eW;j?X(|6wE!9Fwdu ztKe|G&;+BkbYdyq%A|Uo+n6aBmm*e@{D%(a8fzy4F@ENupp{74)|L42hPtQI`4NwA z>k!~~SJ~m1I{S|{Fz*pDpWK%#1yFggl_6D;a|MNp4!23^Z@dlh#8Xc4$V$BLiWV>4 znXW8RRhufS?<8wOp&QaSSjrrkDTmoWKn}!jBDSfi*6BZcM5R+~)i2Hz4P)$<@< z%)vf3@u3Id#X>Z?a!j`vix2!16-%n(aDL7zau0Pgl?iEJ8y-`zvbHaKY&X&qpn|1$(B8MO+<1MhTmt zsf59Sa8YmjK8lfGov-~>X z`mhOfWU2XGR9KHQHRJ-J)bbH>f~1Xz8{AgZd=EJAH0sZ)V&Mo>Su2Hg=i2p!H`%V_ zxZRAqz+pY2Bi?k|Ci51!382%8fWrS=Wy{F8ygSFZ?nut*&0{67sSdT6j;+W*Qn}7Q z4vs=PDzoTcC*bw(*Gqo}Ir-|A_{b+nR6`208-I3PfVQ;Rgh}q~c>pCZm`k|ef7VSm zrt|t9k1M1QgYL7fWZ|PcQ)f-JfIWRT_}xF=)N~VHLv!2E4y`dM9YJMkZRoQWE1#$n z&P;qa>awuIP;2!XsX@+o+itq|(skl}Rl;q%_4R9pg#yZy8t-7~A54K#ih){Vl6pFk z85&!F$unh>W|He1CJI5;Fh_2GIVW9^vM49q@Y=H)G>%hTkVTxfdlT%@~if#Oh9hCY0lKc`&8nzmRn&> zJJ7ad0+2IY`5A6|Yc#$-e~gdFk*9q>u%Rtd+`e7y-15o$ z{$;_@@X&u4x16N=!;jDUh4|}Q{!B;|(r<*mdCho-zYsGR;ykF$kL^K3LOZvoOpw|Ju}X z1vH!VGYX@l2RweKgNDfpZZJ_-4`?>GA-9^gEY9$r04^&ZU3wH{a@wcOW zt?VkEDe8Knk~+NKr%EK^eC?#JIZc6;oGv-LIpdgTlAbMQau~EM!x{~KVbv1^=G!f!`mv3jJFkZ=z=vm2OKVGV+2Z}pBpCsrNXm` z7LBB~07_20ZyJ`GK_5>FYabWpro)uO?4?lmD^VxxgGx-mrN9^`M*Uz;aY{w7F{FLj zaKj~xX`=Z7v{XT*GI@r?(e%njP`_4KR^vSmu~UjL*i`i4Z+wY5SOT4*G!DI&fUV+B z+y(-mQ4syoijhpMoP%PN`=48?%V+Wsh8wLaPvM0?4d7Fj&v?QQK$ANLS6+MUhSl*| z8hfbB23S0%wa(6YN#YYd24>E@a%;9S9 z3m#^%G5^ExA)K4r`;cLu@qpM3622i#e6W(8GEm_AGY4vWYFX0+L<{?#k548S40{5x z^czz4(z;xgEchD{sp=s}2X|8kK|i%mARUGVCiXCIR=ao`;~TuoxMTJEma z&$3iN{&}K)GGW8lTkuB7do&S3y8CMJ($XmR)jxz*w-sCv5tc*#!_0pvCpZ>nqWUVS zHq98=08Z4;~t@~P=mkN9=+QYj<@7Y>hoCdE<%Sr3)SD?9we7cu={W1Wy z18@)C?$Pc8EPJC&Wv!PFgpT@W_Z>(*WaAV`JO{p>TPvu&?Cd+7TG$}JG+j_2%@mwi%E*^;9J+@lKIdXMyd*oQ^GJM=y{sT@AWPOu z#V{Cz{|LJX2PY06g`N7W-S>jKc=F&ti>?Fw0I($}h${{`49ES5DMtN~7@(8Cz{pycJVWcHrewOZ(q4jGU>- zFhOh}y3ZJ=4E@9JB&R~CrJ4SO=CHO%NKg|YRontNY4b?N0Li;C*c#>6-@#vlJ!g^K zMyU#tdt=Y*G;iUsnK^W&yOiQEl0pH>f)kCU$Wr~#s2L6}ROVKZ>e^WNqe_oVF;r!VPy5z8jI8Ca#~OU^aiIZVv_81} z;6oJ9kP{6GnLbfiM>bbHrC}pUQB_r~Q&hG$mExp2#bJ1CSoBEkgCD2-VI>k8`|d z7!K~OVKdXqcrD|0P1fn|d$Is)!5@VwKFM@ut7uAP>EL7FV7y-ounnOlMv8+ z34zxZ{@gp1Bd_p>V~`q4(vcg#U)1-8ObAd$W+8o+WBY*r`s>v7$U2H*k^#cn;TtPz zQn!Qkr)Ro z3dw=8%!gWZ?8XCWL2cF~F7AimG=8)2PZK0GVXi{A(5J(16>LoVR9m@c)XZNcx9{Pv znT_nJ(8s>v;!Vj@qLJr9;R#F%mhrf+-*TC5k^gwnO0U&e!O(h4`7{h$878$z9H7|K zLQfoUr05(SuAt5ryodg+T+gxPNJkKH+io~8@+7@nUTXz0zxySh+;P@#HZojJ59EF& z1K1xsOBl%{Qk)AC8K$^_GAbRVGMq<`W}8AKj}hZn?qdY`kNuADxVT`XvICiKHN)xp zZ*BGvg0_P=xPKsZ|jUZxCuOua%XFgLvp-=9+4eV`q{iZl_hJKg?qjj(A{eyecKc%(}ad(oH_nl3%t@{Jt^yriK`((V8A>RF0i0)jRE2#yl2b)z&-(6iR zdUPaYWe=RzFM-h})|~${dV9|nF?wSK!Cn06@#I9xem8*N%mVt_J70mmT+~;ro!4kI zn%P-j#!Kdn?7F;_gdftpxKT{TE%7xuM-FMi1FQ=T=|vnQKT;BHrQ^F`_Qq8&NmQIP zcQKl(`TIx&mKxI4Id$l;_)AYZ7YTB#SS{**2s%O-8?R}=xZU5HIi0Nc5U%uc5yO|o zzg9JxAJ+F;h;YSk@$n@9b8`OXHxSLR!?8y1SFUtOC5GUXklQjaSOQxvc#OZhFOm8WFbXTbA1JdK1;X6zoJ!oo$=TkG|9uMe5!&* z7=9NgXWDK2g{l4`EwnwxeW!i<3BA*|H^mic$;cjN6Apxr9zzPlz1Jn92E^E(Eg46L zPLWcVOHq1z!EZ9G!JvH;wGsA=J%n73r^BY~2A_r?(lh`hDDF!L6ALG~TBx?g+Nuu@%JO=CT8jkb^S)%}c^v{CkkVwb zNXf^)kI;vuKpjO*{*s24V0|s7t+t9x9+LEd-VEJJJ(Kf{K1E_rd>X_Yk0Ft@GPdRi zr4G$S3pQ2sK{U78YOCdU$4gzv-w2_wR|utkZFcX``E@K@5E^%1RnNK0I_HGY(E!1C zDafq52D;?&BVMTxP=2v&fQsy;E&wYWRVm*(3#Eis8VU=d@i2XOE``doz-|p^svMyu z0uJ|jZBTbeL5J^I$=6U`tA%a*~bac3_1 zbyYG%Gs|*4ahd(Gf%|Wv}>~c#;3n8rvxcOZaXOql+)~_!=nVmI}uX4 z5afVluJqsI^>lw@R8dNC1)ngl;T4|9df6Lns5JQWOdPJ5d&?iF;>L5_W&gf|mI?=x zr(IY}EvA>XKnTL#r%nle2vhtu(C`C~{@|7fDe?MoHUO1)DbhF%%io7Ixa_t{<-nN0 zsV`W23KKnHc=<%31`(f1svUB^p#TM@u~ZFws{EPS{YWJ-e~zKkAkj(TqH3Kyw2unr z9NZ&&Wx+jpjIEx0)p5JZt+6cUQjrAsbH66$zJzgXeeZ)aZ;h7b2}(~vQ-8>8C=iHv z74?AsF8?Mb$e4!OX1;slN^);Qbo+-H61)Ffv%rozjL~ZaKECwRd>I?ZBg`WqWZK~A zv&Zx8G+o)y9JlAet4&_YH%F=KAx|gc6_*&onCY+b21AGGRCZ z!m+8ptV9owxpLkdT}X1pwn@i#uAT2=b}nz`_-EbF5>kI8aqu>qzL_NGSSZnty!%NR zrZ6NbjyaTU^&|Yvuhi6j>bN~o?)4e_yeubeeZJ9;`(bZMlO;cA(|W(sh~T@(aTZFQ zf7Eeb&*A!wg8f75Y{+%Z_aqlsgB97`Q@Ru+X{AR98=&O}O&0)mP$M({WzSN?S%))y z?2M+aHRSqiE-U}rPdM)-PyV~5n>s>$V`a1snSI@4Wn6RlY({(uEok{#@`LW`U*R&5 zAVoYe;-p;D;#kr3jLu)X>GD27b?yHa~Iwcn$&p}BN0K+Rod33b&2L@P1(Gf zPnnzsE6OcKj@*KsT_X3`2mk zqf3>yCxj&hyE>iSUA_U^VWnW##4o@Z?1HHo|ld&OG)G&C?6$#2?g-tegH|sRm*Z+ZJ zN6OPR*JsG8Ny|A#onO%UM|mUMi!w55#S3ahZVmEYKW~TvA1-0ZKM`4XxV z9n%0^2FRMRkqF;dU{%$L?VN^d~4#1c7ix2L^+2I#^Q;36uFKI zQR?)29r*8U$7^C@-0RTAqt)$ZgLe})@*twU+aag=mma&zQC<{ezILb8H$hZ~uR||l zi;iCnQMqBLoy+F9vB(<_)JoRrc)A{cIH12+(DV-~usg4MEU)S6A5`nmn9GUKFt}!7 z-0)-6T6`j*X!>^g?eEF%@W2l*)$d#6p3@lX88T)-+KDOTp;>&*Ti0=OkTp7necJ8#CaE)z$9EWl$@S)>(31Z-hNBI!Qg8mx18 z_CoIfNEttWT1$m^gzQ$F)BcCxJOnQZX)!%L*{NG?-6hW{c`&(pdYN+Ku>YRvgJ`7S zK#=?nCsYD(Qt#FIA7tS8WteI-TUh6Wwd(5EI>BVbleub$H6!-!g6_J?f6bUAC7`wDP9x(y{gPMrj* z=)Oa7kG%&QeCI8?HR>m;tK7R=kbr?!z7R6rRW=@&fHN;U-MRelK`B-LWX@sw%2%5O zyur~K3`&eY%l^(cQ#>%x1H9z^`NTuDviGHzV~wEkU31ka4WM&%yX(<%&-op$3Mn%D zzBava1>`)YzFdl^znucpDwlw0iZ0-bplNYN9K%PX#=-OoQElI`C&5&jig=G?sR_Dw_~UQ->qA5DrA$wvSC#zIi6@Q(E5e(%)Q_2e^qUgk%VjBh z)M$_l#v^a&n*OL1g{SVi*G~BmuV}0S%|gH?Px@i+UwV(*`IonuyG}@h1%H(>5fagh z4VA3enk>qPu252hS8ff#Svea&9)F1DYWpsS*MwbilM#1R1PIEm35?~EI{j&WB!BjN zZtmR3uY&nK=myzj42LZA2#0UaFb;)B*>6wReC|7RzZq)XziLS+xL2ApP-=s|^5e}Qfa8}~U+d&A0*WZ-VL zpDq}G;IH_d=VCC{2Heku7==qR|(8B zmxjE47dX-!2?Q%rHB9bN@q)wY2CBslI~{-0&&O-T?bN3;mXDr&!~nuZF;P<)Us>^W zR|d9ZUxKR1B+{M;mdPVI8I4A`|f%X$Wt=m#2J3S53& zXx<=p81YErd$}U2O3Z+`txD{yw(4rWNVH%O_>D}a!|;3YtJ%eEw!ZezTxN!s z>Qh~YME{(BljB2E?2@#UwBhIEiRD+=HO+p(ASEyO03m+`^}NcG6BwEsFz4~C7_(P| zTr(>2t962FLO4Z)!n*d0HmdW18gu5v$V2ph2q;7k=FIaBe^u`&AHr)4L5-tg#k=D$ zWjrd{yD(}UptPhBtO@Dlx+w0p)9kUz-Km)D{-``wm7)l%)hhS|{-}{ww8ev;xnzG~ zXqygD%Vz~B1AlGq%pbUG0_7IrUQP}_w~RM@GmV#BT+;fkjSBd5V@aK8cCg)5$KD(Y zibwC!=DM-DD4`N7FUG_(NV5CS&e9+D%m+9$a;dAeKlpJ68a@~H&^(Oa70!qV?silE z-sE`56OVyYSM*yj8UHzF(;;KGAHjInkNk;oWB_kyKIWxv7lU&|;7tb7H|9#Oa`l0s zNZ)IEqHDSA+N!RcMTY> zE%@qHF^XJy3fH5IPH#JzX=^%qTK!{MOoiqnWpmpFK{YA&o;s~Qov`?L+&kfi&g!WS z$83zO_tnX(_^H6w=NW$5FS(aa0SXZ^=kB6!^~zs9e3Wq?41($q&{v%nf3rI-Myc~T zqkl2^R{7xYf_ir8^LwkQ2YflNeiJeubTAg;M?ORN+qV#SR z?f(!gs+DNZ{zLdpkJT@FFu`hPU0cM=AR#MUGDR*WE9z#NW9>J@6-A}RB&}WA;Q;i- zjB7cd6`;OLsZ!Fb5cE-22cU=1{O47%bQr+{hZ275t_zj}?qLwOYKkA4TBAtx-FQ<{ z&9AWH?8}3k<<1IZ0L)8x(!93-f0#5+f5PI!o2mCf&Y?fr3Dx}a*t zy^2z8QznhrL8Y7mN}p+HF!AO4V>dWYWB$^-c4x1+oy}v7=ZSW-+{ACEjP1(@m}ZS8 zPla^0Q|WHkZEg)khfo9PYoRtwpjMkPXrb6;NL5;CK>Q6H7c^|QljDMVbV9>nm(33m zZ~Bs+qOZ`~l^kul^I0x+WY9*aF@7If1P#(j(oup^?R|^27wLc{_dN9my8z42Y>u2} zj4+XxG1~^KO;=;r!j8OC+~>w)?pR?p4$ibV{9z*xy&trkmmb6H%VTdy(6us8>ZqAb@KvRPeIxq{PpoUFM}DHKG}6hD{uF1L(Jt7o z8**RSqkT`U&8C>WIl9%`sR$4S%%Hrdn*$9tE%lO@V94l_i< z`U^vTSzM^%rE<^98N+JO)yfc7Zc)YP@q)$LW)3uS11JTrT^m8BcjLtlX)^*GCe3G* z%t>%f6z<3b6-?ZdqlN>?cZ+z;&lJ{9C6AY0p5^XswJNpTyo$R)v;YZ~LJ?JRM3-E8 zEUDpuS+8#|{4Nr>i;>i>wwbP1_sZS`kgi89H-dd0%Hl<~B@KMfF0# zfz?q5+y1StEsvhi} zNpCOm?Z%8|?vgjI6#(v;za5<-qgY+xYFsPZ&@-$HY`oIa;Rwn2;aHNe!S3u>)M9J4 zfNI?hKxIauonJK&Fh#a6r4J%abedIx+oh7O&e4=qH+5B=UgCuN<#EaRWBiOc)!hwt z8MUQ(QwP2isMBb)SbrJi+5(>f(t-_es8ASAKA%gtUvkMd5F4S@NMD~@%QiHWhc&EC zYv?!k+qe-#(X_TZ*s`;Fw$mBzGdVe$@n?FVT}S<>b~^UmEz7>Iayd+ye_4+j%B{rF zg6|R3$=BMs9NKjGw^S5=NL1(ydx3p^43}3M_Ny^Ai>8jBm1rOS5_G)x8r5C+sxmv?CWwJcC6`k_)8jye{UgHkJ)8^Z*LG0I_KlgWU3xm6f@*~y;G8Y+`UQ{L zzj{6ewT+m5zT37LDHPM)kgJ?y&NdBTRn-1C(P>(|1mthhhh0m~@>+Mmv^b9-LGUI+ zWcIg0!I93?@eL^@B(2mlu-&}%y~E|yC6^o1P#yKWCpvg@4B&pkl?zf;{Wd@xxv;C0 z<3RRCpDvn~%3)P(t6Y#WjK~~OVK31ce9mYhWN^`vtYaF@(cNxp$o4e82`JO*x=iYU z0aeB9)HvxBQa9j0T8G4wiBp?bCI^n1QGC@$9`WimElH2=0RiYggl@`IokL@1m`jQB z+nZ;xDJYEX1=q{WuA<+{!_Cb$6_usg!A<0M8uUIB1vx3$>nNMFwmrSh`l-h9v=?z` zcD9DC=MRu=U+7?0d90%Z0v!*RZysgbxhpsc%MNHR)dtV`s0(y3=e>CFoU% zGHG<|pA>EN)VY}`2G1`(L*y<<97^n3H2Swcv_-R?T{zwdzD$>&v7%>(*xJiEW}Q%@ z?FphFU&d7NwV&12-53%xoQ&Mfy37VlU*a4aKAvXZ9htq%b=GGDE%QxauH8n%%Lyjp z{>oG)xlM7nzZPf#jkPGVKFK)rdfU)E`sJUQLix+qMMV6F)oXb(sYP_^>9f#u^^cxzaDtUemecvMGMzqp+A+ z{=~IzX_*?Ck#E2nXTp}2s&Mi@Y+Zz^I9S@9aX9lQ!`pS8r+9o0|FhwW9GJ@}H=I*kb1uzQk3sgV zwKpR#_&MGx`nOPS1uaRhC{;6D#Tj6vRmQXg{%Nw~-&Z!JFrha0X&8Ch1c>#gqw+{K7{ryX= zVKH&?ft_cf({1KNqnDB_mqY#Ifx5GofI6;^5d^|O>W}kUtBjxyj^6S?>oIrkg4Jtl zBL)VhiDv;ewgX9rt85?ZU3Lb$8~yHSU_=7tI@zW^k2wZB`^ye&kbeMAg2Q1IgAQ6kUDyX*|aCt(a$aR>o-0MVD-HX#U??uwdGtYjmrz+Zok8y@&O~9`V zT^EPH;Xo8^2VI=E0wBTza{1WH_(DHK zcfGl2w^+0`6ENXj04LTAo^R@53d)0nahVMfj)%vW@E=;Rk}tX5A3XTkLI6~vB-hTp z8*;G}aItT@2Km#nETL4;IOrShlOg-1J~j!UWckI7G+blsSphcT?Nr|SS&VNw_JF}C?hgBBS`Jf!eX?0}YJSKU zD9KURLX*pKd5dLOE4p^L+oBOO%hnqaGMS~-X)^0K-lThP-Xo2(k?nHI+hoPC^yJX> zML_&&^I$5#9kI~E-2n2^7_u*Jy`lZOvGJmWH*;4SeW(?e%$n$f{Oq)EwWKVLkzm-W z9IPDm$wLiFcQNnv2T%$>(mLF>)HzuL{DrNYgUelMeR~&h+>EgdZKbrrzjNq*+|HY` zIr(G;>o&Do3({N96y02Q=}7{Lqbn6$M#cur(%h&J#P*%ED8txgK@{?W%r=1 zY0FQ0=k7H(iB2YsaDF!WJFo8P9Mqs_o>Z&>?>~U&aMwiCk|t5}wrEy06Z8*V+BHat z^|(!e|Ln0~y;(W``7*Abt2ond!$@D9TA#hW(|Ov*tJxX<1OWt-P7g$yF&g{5TD^bC ztX`y4tE%nT>K)bhybIK|g5Od;^6e%3ekC^_1C1{f)|ViFkdgW!EN+42-p=!czivHr)SR|tTDt!yB*QWXN zK8z^H-k5RlimyY?eO&+x{d-Dh$`D!WD$8#jyvS>yyB zH4{PBAey@1i;xu3icZ72j)JOtU@L+=lXbS2wr*nLmpte}yI_@NdXIl{@VjSwbhDO; zKs_VoD6kk9X+{M@VE^%pIR^V9p`bmw0-hp4kbHG?T>9_E;JZE1HX{r>#bWT&YHx0{ zsrv^zsWaeU#c;x&x}spCc2U_Ksx0XB zkXe1Bbj~_p-{W&54Y$dL z62;obR_2e*DMztV9?+>@0u71sQ$dx5f{fQ|0I7v%^^n!PAc%WkKCfR0+~zbg<_vNvkkj>44X^N_Y}?we09xld&d#>0_~xxwQmj zj8MkyBP07?32D=_+Uy_vGk~k0%Sc|71iSlWu1A;g)u(3&`uu9*>C4#o?liP;G9@y7 zbfiCqDrR_Q`_hQQ9I)949JzpFGD3}gJig}+1MYVVaH>02;E`!y%`yek<;|dC`j+s< zMx8F8PL+`rn{=!JP~cSBt_6!M5}l^_JLiBT*Rp-dgWniIhF50>Lmb*4OqTzr)Yiz^ zzsvIq5d;$CnH>bQUq)E8RL1d|gvh>9+@=<&v>m3pA1J%n+)uuI_b%OHS0)%E?(I(L zy6@{=cjY=~_r;zOcs-p-ju9kgCZ(>bT=yUiU(xc&+iwMSFoJ)2_VpVHB!>!E8XnCe zJ4O7AO1^YOARUJo&8HNwb^r><7T zx#dC`KpZ>7o@HD6kFD%Z5INHa)SQnFkLYxB1V+bGJ9K(4awG4t&^&VgD$^>oj=(ej zhvUKILDR=CN`TW_{w~pp9zrTIh?YfJp_|naz8)zWRGC{;Hr2J!&GWsThlIuFb;ACotA~zh!&-Rt*OsTTK zh}6{i(BT@?p_lp5-kdoGvN^3Y2tV9%Fzm84IrnJ)BbWR`s;jnYy6+z8T}k0Mn@%Tt zn%9@IiS};ODT9wlMz2~XfIvNo&#_?!Dn>B!b?pk3^^O1i9tdt>f!#d+Q+MJ>L#3(L ztCMc*!o&p;98KUU_C_r5I+wJN?bxhl*uU9FI9N(BUz!G00L5SW(64Nnb-C7UQt{Ar z@x*1w^zWNTtsCG|k1XQb3D>OIoHPKh&pg@|{~O2q=g5Ux8Z|B5)64r8)MEEE*2TIZ z)BOlNoVZ0B%?R+fth4O(c*n&Y->GPQu~9I1hSwBCgeTmiZUk zow<&obDs}5x#z@v{YpMr8#3%U#dgaJYW)5W;o}oAHG2SrcHqBrgP^&*P7sBDeZM$j-CAqMJ(ruoeH5RoF?X(rRCo%Oet{W0sn*70;>x z?e%&3$XmzS3Ba#M$iTC$tI`cj&Ggq-41azq82g3{iM@e=zf>xinA8C?RjA37uC~Kh z2_tTI?zS8Fn-F3Z1Jl~NL*US-5U_Mq^lx=gOqCj&BeA3Ku;eu9`{Ir%0(@a<^*OQF z^L2$uHkW^Nb6*Cl^f-=TgpNyl7x_0L`pZ{^9-sg}pu%iOaNar|0=x|&(PZF>E5Up+ zQB-kGl$K2t>h`H%u=0sj(K9tL!~Q5;+=KyQ)@>1BzMYIt+mA5UBfY0DP=}YRc)S0T zNFqEhTLE`3fG#)rb=Hr`4;9z7w>rY^zC)rRPm9JrjsJ|svX|%g0M&}fEk7@mnfvH8 z$sR+F<7i0Fm=E{3mas85UF zKwlhuHB~d^x^)i-w8ti8`kcv?l;eG_CIL*f!Q_wCCet|~i@meNg8}22E_33CqdPG1 z?7;6xNlNZ(^7Q{9)b&r=g7EXRP5wh*0In41)5{$G_XJ13W1_U0bOe79n7k@~7TRrU zzEN;!osxlNx&WZqHh6; zEe#rnZjDmGOKmKFNnrX@`R1*)tk{ZXgpPcLGP;SbaEc7J5 zCk-`0&b&|oiOdxcyvh3~T%)?z{@#X{1l;l}nY&bQ1P-nBLE87odh(mW?Yc7w5?m58 zC<5az;s9`p&LVYHAf;Fbu$G0Dl%L)ijxu2gxUS4JgNrbM!cW=a}yXiLfVHh4RY|)e}5&uOYP`mo*$TsExNRD-hk=pMsbyySG<3ez}DStgEPc z4DV>oL>GSSr)@>(BUQ`)sY+78G8jq|G=pMlYBqmWSfivW+4MRUtNdfE4Rx#7!d#ON zN^JxS5yiyE#y7as!m1TF^knE{$gRW^c&l0=1PG}qo5grJ2FDopuc}FFr?zp%?>lec zf50n->Z9pQD`H{BwR`CG@u4Odq2z&lL#tP3~4x9+wuo*CB(GGRqo zA;NYpE`%TEpgvA%yBwnY`^_!%Xvi)eAD<7_WaCDOKa2#w0|hj6zp0i$1WSzeuWeE6 zliR0fL=+KW>*c;i@R@QCYPuC!wAG&fXvLW~@iWQ&tq8^d90t>I!lvXXU0;*wBh$@C zF)53Yx3hEAyke@f%;)Z$pWloU3m^XR!?>LV$av>Y9G|NYPPrjf6*ONZ#EdvfebRJu zK1FsNjO}C>+>3KN0ctd5{`ryUdP`ncVb^)9WO8I7PwN`a{gz2l>*?l$ZG^!d&G$s0 zfbb8ict2|SZOZ$PZf*ogpLR>1-g}D_;iHB21X2XIAFDo23jZO-SS67+!YQNVCQT`u zxw$Pt#})WA7RQFN(ccdjp9a73N2QW?b4@M*%Q+mp$+ zv7DEVTF7}rB6+{JDXviJ%NFqC8WY>ITKFg2eWy|CZb0T8aar%Cs3C|b#UA0yVuz)_ zZz;3FGjtLUwJEouz0~3JB8djlZRL_l(jU(yZ@(yck? zPsVObL~^w~Oa+denC_2u9n;x~L-HD{m-yu;?IWMz$+a6^w2I}CLM1?6w`<{j?BCsw5G6q5L#=zV|>RqIEJ zg_U4rk(yg#<{@$libPM@2rx-zl;vt>y5_9Ae@@C6DHhqzJB@ zXNiE+JRmKLi($l#PunfNQgT`%7;tNFq|5RR>A|-?lYRmCLe-z>I(F2;h}#wyZjUc` zNC+gMDIN=9r~()8whN^N39Uu~qG3VGy}#2cAqL)ryL@K%IPUdJo(it)mj;e?+nU$6t7(UeuG|vxAE=_hI15vq&1!8@m~PEpLxL1_ zJk|5$Ak^xCT1z6J0lhaQY%*i_ximH zn?C~kce|Nt?5m$i(f4!X;>#jYfZl|85PiE)woXl3;6(e7M;z?toY9k!YF#fav>rzu z5ol7losX6YSeaG8D9#WK>K%nwmMB+GJkF|a#*v11iuRNNwo)YK1KkVUY2g zH}MhQ+*Tw{-KOOCD4;QIqAYKkX;ZY~prvAtt|5g_w}brPF@wgrMj;GIT0ex_{g=RN z4Yj!;pcqT8;|k2C>QUx1H3 zgag}mE8n625R@|CnYCr`AqkM^#Vya9@A<1|rU-Cynn0eXRFxDcg4z-5S4N$04^;zx z3_6(q?!?L)Q6bz92{=(R{=ObbtA(QoMYcJTa2#-!Lm&+S&&<%b)%FTF|3tG4{(wvK z z@a%C$-JV~axLIFVmTRDHN9|&Q4~8>z!Sqwjj}kE8VHRONio=$%hJJ{lyP= z&eMnfghGu2i}6}L_*pQQzlLfpmoEJ-$oBW-62^x85dPeIw7>z@byKIVO*xb}i?t)8 zbjE4aAG>zUY>Mf`hDYy*!~<;D0wO~oyc~+0mSe>tG-xOe?~=lSv!Hx(cYZc7+D9jB6}t%?6#D#LW-gll3P z{&Jm84y7upzJQIihWI;_UaZbPD}ofH6eE=k#HMmPj*w4u0gj^DW;)MUU5O$8YDpj$ z2RMo>&~tISa;ArJs1^>|SB#})Hyy;D7qrXrhXk(T9M-9@tJn?F7OO(c%R-)c$&_U8 zn85``q1bN?Cl#@<#N1^fe**o<{jUWz&}GQZP#!gXdfho2`_vK#aPjH_rz$ zMgHvT>aaWri@_k~H{Myd*E4)~nT32qIsAjAYhfGT2PU=(y0t2&zyt!r`iu%*O;v32 zbue$Hmqm+{XUG@bGl8s~AYTBq9^yvGXU8=d>d* z=^~Qdl366qkb-^ev`thc$l|uCb;gyYnUKh z4g9ctX}+a4577A^9`sow)YrfZ8OeQP)8y16rrFxBdyW{F^8-I)APG$U6<7ZS(K?#! zesn%4+6p45nDux4HN}}?u+ejAz$#1!@C?+U&%IuCVLbv5ygTefqTtEF^WG1vg~!6b z@ETvU(c)T$A*x{ro!=ZbjFU6JX8{88GO|-0yr!!yTyg{(2(8fM8mmv+YnVkBf}pia zvqldc)AE_>w*~*pEXUpVi1Q{+aAHbs?C?+!-v=1wn}-$=*CTI#GkhPeRpbPT zgd((;^S6s7L`a><@Ty`0y7ekeo#310>a8ZwJ$u_!TrmMLuF0`m;#fAc0$5{%X|OUf z1kPv{zUY5)qlsi46->YHMVUoFInf8JL_m}_{*e%cWIY}}a>~3Kp6zVy5QUSw%JHnV zmvxyH=hAiyKlGFM6W%_(>PCg6@8;@5z6b@w-4?_eZd$ax?I$nRc649Uc1!Z`7`YO$$jm}qbpg+ew^6&-i zXN>P1zW!bDRdgA77P9>5UAddz6t;7^U6dBgu%)X$A2;;Vv0S#bSf%A6O}%}ScKj<( z#dnmJh!1?EDAE9Ap?4E%m!!kpsDkXv-yjEh3}G|+j^}w{O?VkuJHD^AVIJqX(WANVZzs}v#XpsV#XEf(V~U5p1_PHU-$cwZH3!@>MI3f^3yBv> z($+N&57Ou3(p*4`OD+ES=L7^w*a}Py4h}rEryD7DYX=JrmmYgAaD0-x>RDb@Gn2#nd0W@@e9UZ=Wi}$10K%t-&!0p-gp4#5f3^;H{|Wz?l}4n&lC@ACCvLj1a~>r zT=%OCoFJ-p49rr`x}Bif_zbE9;#)>p4LgNe%e0`)mc>r*o0Gg#}R+f&4 z2K`9e3f1%~8OYWoGfhq1Ud4Gq(^miV_pK&^-vOqHz3)Z5%8#>OvS`;0x}o3MoV~Cs zR&py^^A)VP{2aGGAVv+T$$chgu^|`Z8>h`Y{PA{fK!r0+G|d79)l@--*80(BUJFRW z`*gr)OqW{lt9f1tzB$+nq28%2gV_YnB*9&te=cnrPI7;4p5qDPS9oOgEXT{=-ANno z?iw=Z7Zlk>LwmO!X!U(N0XIW?pdr^nLo-h?<)LJ`6R${tZG1tom-kPFdxaw7W0i@) zooUumAlGyF{H{yHIb30<7ir71-^qnNhX#_r&#mag@IFaDg|#HKpi3oVw|v^#64{Fi6@Zb4Vha#w!h0iFjRY}<68_q{#WR>-fe2FtMHhbEtx z%ERTSY&AXo%uBLWbd07m#9%H#H|uH?Yk+LmkCSi)PRByF%-ze3~KbM>!0=40Rm+(SCQ0~Bvfc@D^0oVCg3bWbb;9`q!4 z*#l%0#$d4KOr{V)?juZ+;NN0MfA4>J<7c{yp5;Zjt;-MWXNU_ZQSFH{Sfr@(9_%q% zaJW6~Lp^g1Bhyn`nU-s6yE^g&-mL_hP!Xya%793=4CyB><~Mtgbc3GxL`Xh8hk|+jCa#KT?ykL`lsuh7EsmObWGQkH?6Vlz z+;A7h5U3@mtBaoGj%iz`(TGh+iFJOG9W`|l3Z}1;!%NqUu)R{sOqc0qzw}U2nZ)?45LqPy+$t2d(KTa;(H*U=dZ?Sj+cNBwx5-;g0Mt`wE7Ba>*oKxq6*K!3a8-IV%Hj%+2qW22Y zqPDu{>#;64v-z8|?K04d^xz~y_RgU9JFl&yR=@vzP~|MvdRMpymbwmU3P-QFs7#QG zt|3XD93H77Zag9218^S|ma)y$EecA^^A&Qg5%N43pO|z055b&0U&$l^@>C%DdATFL z>bT_&m-hA`a&XRB^J>F>nfX<%oM)@@Kmuajl#MJ_d3h^n5B*6pK%qPEH0wwfthf+V ztqmkE0u4p&=FMkhLFk0ww`aV9UIA8}8FR~O9X-(>+tG-Zm0JIGAwl$i)RV1{gD2I; z9As=5?qJ#==e(Z@3AVqAvlr<$6HjLonYOxq{JE(xlHM5~>QGKJD_)7A5tx7w76&>&%dI#+p{llMuY-c97jWX7!g}`L^`zBMv6?;|R z7oXJ{7iYF)^o+hc$Y(J{Hr+Upvo`-^$oDBP#)`5Ff!3|f8fH0Fh8N`V6t+p*oU3~~ z_N7lc9bOBUk~{j~icML3Vw(9;=aeWv?vM~_nN(m{-KxZJ z`{%{AQC?qS-(jQIhfJYHCq*UC$I2ePpjp0I)hc!GKhF@Q+hmh@Rhv)|VL!3_WzDtK zBh7H<+4GJri-4dt!Yc_1^(p3H-wI=PZ`S{3Zm$J*RA$vP;>(9yngC!msa2?Y8UOkr zYD8awyFaK}vICp$=-l*F$aXIo%pXi9>L6|tpy}ORj8bJVzE!Yodn`z=PJdV0tQz9} z{`S-C>O+WPrxJ}aD-X=@;cPX-4;P>K6P-RPO5y|Ti|AXC!)T$D#O9bIM%MiQBk8Qe zntb0rJOo4pDMcDox}~I38tHD4?(PohP9>!!27-((gBU3d8zloqcMZmTpYQMef7`KR zd!FmL@9RFV^YcCA+g%3jw+a;R{7Oqyckh)V%zV4Fy6R)-lQww6#f{)DT_w(tZ|yrb zcMsVKh0Yo%)ev@KN3fVL7ue@6$NplqKOk4l(qY@Bou*X3CfItA=-t-yymz(}%y{%RTr%OX zWt6~GRUJ<&+P5<2vN%U@dbG>8wFJMXD|940(eII_jv<6qTjhM{ZW?lT_ib%dr(9jp zta-^;ydlGE20kfQ@D{wh(?7sfQ)B7qRDEy_%9(|96}MacNL&gIohktfKdT;{66`x% z%6k6cSAENdr zw%pq>H0;&tK;}P?Znmr&ev*WOQ#ZKn(0cn;b8K_%YUoD5)|TPpKwdmgMKI-sBT|j+0A|=(a0rX}5;tu9 zQOkoLYr73IIB*`K;tM%$ZoX@~9~>(PZiPyM|@1 z#-6!v&}zD3^%y+x=Xvg;R?J7EAGTTnAC$+P2~*!}6&ZnZC+9Bq-kG(*8w)r{;1u( zx3YI(4jj2en7?yXp4-|~Wrz5!&d$N_F8F*k;g*QjzG{}d7t^lDV7=Ci^=U-L*upgG zJBbaKA|vHLkbks3?RTDv<1x&gOW)gKqXS!2N3SIqr+Vma7vwCpO6dA9@Dzr!oj*kT zO5k&~QD=V`e6&vVLBAD3Nzjkv5F_*)cf6D!WCE-Ah;<$R(H_(;Mc~ ztSBr;d8Mn3Vh-#iu5@HdCIo|9NL6hL)l)oOVeI)Py)*9_kHASCXJ@6qBh4O7MYKCkPh6OI9TeU?H1NIx^p0C1omo>%S@!sx^p8-rDl( zb;(nZb0Rfxo0_`J+Rnw8W`=fd_=cKJwz5LIW)X6~1yn?zU)4U^Kif>3Zc_I?D*6X9 zPvH<|3$`md*z65EaQ_f+vBFQKGog}gs^pb>Cg??qNwa1sVE=KMy^eu!=195%*@-5} zA7Pv1uG+ZBzusbuQQ{vc|k2<9fE;8DVql>MJyEm98HE?xnXwHVhE$#|2(1|Cb zeqE-A zoBo-0kRTjg5GuM7X;w?zvch+`uq9OC?(94jl3PDM6P20NrhIAnAHhAaf{MHhDD@Wj z#ar|?E=bidK>YPkT zgcKwd^*uST1(=@c@N%t_gsJs5&)pAaToT~ro7=5=7yxa$Z5v$FVQo)3jZ|7jnd{$J z}sPtm)J$m!R(VxHGv-n|WQpyJe2m*Q%}SvZrrRNYsu@eSqjhYVs!oflO!HqKYU z3W&L8PbDs$KFu>=J$CFn5BzF1j@M;lFqZA-0(;W0?(@|BiKL7+0N$>Pb)i`Lacrh} zXXsz(vDfNV^I0?CHRMzenO;)+`Z=N_bJe-UD3W1UIF&Intd4S7WLK}iZGSxBoK2WF zVILTNX}0uqwyvX|9aH$U?pOF&1~1n) zCl&a9%TO~{b0n|v(<#}dNVUnvka}oVsueU(A7Wf41UKL*cRVX@Ydfm2pY>;Z-*zh$ zvowPeWjHtcr6ygvy+>^jtB^!(|6M?;yB@P$c`SsUKJM!xzfCUD=q#2#&}2goF1*XT z9taArFz;)V>D_M1ENt1o{cbeKq2iL&=K87uh;*Gb>>T)wXWAxD)kIjH(!tyc6&K9DX&^B zbkt*!a64-3yj#u>r*#Q-1-k}vBcJ_<2U)L+P7bbn(U*|M< z)Fvz?%R6ukw)Ykt+FWo3xDTiml4~4o#uoUW!ngXXs-|80ZUTMo5`5;ety?n|?mD6O zxA-iLkKeL%RKt`fTanuO$x&4B=U4syNT32*R4Nu>{((Ap&+$anR`>fR+@K-p1Z)e2 z4vaq{ZKDPhRk6uCQ8RsX_+d{-Vv5A2HTw*2$l2e*EMS)Z3-34h=+`lZo1kzz>ai3s=@w$Y#^~7d|MpCyE;#wd2ZR zHpa!$v}~%`gqYQPzzp-29@!hm%n&$AX(es-l5J(@`p_kJ%|R;Igdjw5?QHc(mMJCU zPrWs2UR51{f3J7?#<45?5B?*9+SD-kuJ$wB6nEB#ibgq=T>&w11hg*(9!CT+wK1*< z9@^Sn^z>>koHK~~IR^`$2PvJ9;zlEsv(rmDz7_Zwqf%K4bLoE*hs?NtHo5jg+XG;s z=!c?CbKY$7HN+P)v)|TvhBF@5WK0V`2y9w18D5cN&$#g=QddA$%b#0R*ZHPvMuh7(Wgjey_=Ip@j1srCBqmu9}#+1-SHjEZ2n`M(%lUWF2oZ zesFy^PLNY($>kG$DB~#!C#8IGo*vz%TB*-GmS@P_UJFuyfw9 z=YRc{+T6yDzddToLzK>6`bJkf+g)>7`p&0sn3ZXv#cySFi@{GiwSrk_J877Lv)dHh z+3kc+LGh$lx41(Ov8#m?4Td{xUH2O0D<*?Sd#6x+L9$mn`G9tWhcT7;shO2g)T@M$ zc9}_>V^OqItt^^iO7OpQc@|ZJdxSYNZ=W&-M|;<=^|zydMOQnYF&`xppOg=hF#|YT z5K9e&nv08DB3UsC93IhIL3LlzWesac385Xes+7LN6B~>;c3#L$O%*G%KML%%s3Vr z0rpOXD*#2NI33&RzyeG!Pqu2l;ms*+eb+RMAY9|EQc&WmK#?8N-S!1ya8(rP?|_K( z*rd~!iJ^)%@A2|HUh0g2GmvKVXwUfm>WPJ8;Z@5D6_q}3`--r88`V66v!<@pbr(b4 z2Tg;F5w5anI%^}DiJqJ8N)G7UX6rt5_hsHL!ws&p>GPE5OgeT=1 z`xWw{zG5>!arM6+|C-TerYjhD$Gs7>Kre%ETD68X-Im^XUA*Wk-+rpo=3GZ6Ff~+K zz5Pxv|9cSR1|aiVC!O8OR*nCXa@MP!J*X^Cw(X!B)oWKDTv$*z&uu)CDbzc56-Fr- zhaMOjrY?_Ui4R*5j?#9;=j!$Y6E*ggLY!?(SKYmbuUM(rzV@vAk8OP*+V|bIt^G_CclA8TWeD5sR#Roec`ftui}y{&6Uk_Z{9^4Ag{vm8kYbNx3{Lp#1Aldcc_ z>+UY%y^PO-lrA$w^C@`@jJSvLXyHqSFF3xSJ4B>Y9H~9R5NBynXO_3wWvF}G>$@ho z<~36ox!QYE_q?KlSmdabI1)FU(dgX5Y;^oTeWy^iO&%`*L>m2lvc&1>PQsBT*oA#a z90~C(7Trh9tys(hW?ld`3gkd{F96Qh+@vGNSg4SJ#qDP>;9| z{ecLC!JUm^mvlTH@3qbnu;Pj@Kq%heN?CNV{-^Tiw*U?m{Yl;(l(G0F(MBoGu49aZ zYOjKO8gCRFubU;2Wxz-EL5W*Cr|DPZ4c2)KxY&kPppud|LRp3?+=uQ3bNTE_26t;f zdcg*huXQ!8nqqs% z@l<0^x0vS?xjMnm| z!kQVx+r)sEsz{77qfDmGBBE5&MMWjSHgF}%T2~Plx#BCInY5BWNB5^ z!twK4Kph(fT8D4`KXog9V5&RWJDV8jnEY{KU8Wy_@;%m@6U^V9-VMoZJSFq;%Yn?H zSL0pg^VOb1C{oW}i;U8e;W6U%*i_p3_5yRcK&f?<_C0Ka0+2cx3udwj&OMhEvEDj_ z&B{pEBO{$drsXSYFshlk{M0i}V83yECt?1Pt@(UzKXyc|sR$w}RC=(6B~N$~pn)Tb z3c=G?|8v)JXf|8&FIcC8ej+6Ag3m9>^_fb#rX0^q?+-rJgqZuIdMK6?Pnc&WAsZsZ z+1e9Z(rHxN-!%++`u?sCv=2G&w*BY08u6|LD$ z{1Y}&aesu|{7z2kP5HuxM3Xj6bD~#$Z?a?R(G7_^vXQCed|#bO`ny*b(nH|~u%EC7 zBCYo4NRIIEXx`dqK(F@S;t0_sD--=$V)fsbfs#hbjey`0q6|pM8uJJ5GM`4srF*@8 z#tXVcvnS_`$)4Lpg-QZB9TC=NpC@TFu%80yymF65sqn4ZvvNj3(m86XzYJOJQYZp) zGz5MiBvPe0irfgTb3B`XB)%UL;uyh0n@6$)>{uY$bwnF#qiP`Y{wK9k|FZaLp$>ga z=1UtcCDy3GU5p@i%zSz2D7z?@CLSf?e1|RQnWTL1GRpyJYG6MwyEPG`n8z&lRW1{2 z?_nVJ>@7VpLi4N1SfY;pH*nVscC>nFPvSXSO1w*29a%WTNG9{nKs;HkzbL3!V0U+a z{!`{`m&4cJHrCs)u7WTBK$3gLjdBhNdaw##X*Q`F0DURo`I7tbqs$xmt>zBOYXDgZ z7f{^^B9o`;-0CcByBJc~4Mbk#du^@VzIxZ^E&O{K)8m-|K#}OhqgPOyAag z-Ivwh+RA#D`=e4v-M8UsmG5$(@@2}AQ0*4_j=>;%sbUD-V}&|LquvuD*_Vc*2(%-` zY_8024t6GMalcDxWTH7Jn*ZtfP?YkP47v}@nHk@(>HAB*f2-Xhn)YsPaF^&W?nraQ zKs*#WDGlf^8zG{6t6Mo7FU8~c`&r@DXEiSBPm)`Oc^)be;=S|VD4_qnx5=nVKx>mL zBC;C|$hr$N+lgYzm90gYGWmP%QP&t>Ni3rRXKNhV!;3+$aKd$)U@frKqhD4;iblkr z$bzmJEG;XUzuYU^Fe`zCsZfTE02+V0*Ffl*UGe!`Oyw7%W=Aa4A-*%$nrlQalj(1~ z_RK8CR|A^5ZkB022f}_Kr4dxjX3$Qo{5vk@SsU6sAxNAeN_lvzwzQIC=I?KOLkLTp+(Xd?lpkl{WkuGDX~c-0s58YIB;FaT`$ zQ}s^=DbeqTloPTmGcV|+#WE`{SQB+y@^sG$YbL}2N!mnKn_Li?;!%Z^sN`$@p;VE{ zM$|^8A^QVC4LL;-0A}^X1YmsCpX@15#B5qKt>a4A_q8KVYFcC5gb2P17cNKnWu#ez z0lkfwaa!!A}Q`5r%k7gd}(iIP}04rUmS!+wp;?cAs)^)gvga-}+?#?G*W+ z;wPm<>)llki3D~t?#1po^r1ne@=*_P-i_gp93xpJh$|f{e_qLx9l~rBfvBM7hk?+^ z|8_)0(05=F7W0vMBOj4rWFzXT#<~XxV$T(2bT>^8?3^j!FR^l%fS47fsWUfD1H2bzr9}_&&p=`7?7O1ZkNX6K3dwTQd zf+&xH*0Wu=si_T=i;cd(KnN>Zs58pV@I>GD5MZP1f#%#}IqOn6BgGw(Z&10O9)bOR zogYtaD6>UHShuX8tczhqUv0T%8fM9`AI{;bB%ds zFwWQ}js}(pll21aAB_r%$99^`9-=>(K$5+EnohyQYR~MF;|Dhgp3X=H>|U%>%l%2w z!*y7R-dwkhoV+-^4W0^>U9{xO7|nBQH;Yhe;ApXSjT_SosQ_sZ2^6p3N|nt*Xsh_C z?XWrCAYX)qPnXtZC!H*_W}S25ic-3TPi{JLW3?DVT>C{Izh$RU*&RZmclSNTE#-zj z1Lb_PRb=?Me@FTk%O~_uUStFp#S7Z^){G~I(<%5J&RuQiMkqdnVuMi7z(KdS-_X$6WVQ9)#!6B-E8H zr{jNk>Hj8R^NL`hxO#03mcLxU*EB#fl1X`ogmfgOqy*;>HcavLz(cA7({l90$m_2j(-%Moy(f0LyQ}L-q>}fT){XThZY;>} zHY`U?TinPP$JU=jlU00}kv1q?N?a%CwL#Of*YhY%%ftH%a@4* z(7FZ$B%?U-9yGL8iUEx1i(5VLfSvH@D}6S#kP26--DL(7b9r?d3iBTcFz>8%vG;RW zF3+-G{q}$IqtjY)KyBH!zz*xG6ibs?h9PZXLDCU6CieW5CfjFnjRCVLQxIVZQk{?g zr{dQKts7G9(DlNgi_+IPdREtw*wM+>Qq{{()$6`+{VccB@{o>eLgSg_(a8i250l37wa+Iv%+dDXOqatvsQ4@>%0(@@4G2Xn()!a+oDDpGJe-NSL3e{+jpG z4@J$lKSY2>vq{4KhYWp$jn|!qh6P}?v*@c-{)q*M5erdmF6#9w(-?tPUNy9o)!ACs7V(Js783m<7&A>T9sW=Y1B-H23?X}bIBWeuV-jyP_H+fZgp z$veP+Z8GMV{tn7zTCwbbk5fnzfP^>hC*pOAPExr)=k#cor5n>B6Ss<>3unOe1bw!d z^?ZaF{CPn&zbG#B$DK>y%|mQ^%H1LF@lY;Eb^dxmMl9r58xX&tJ{K7&||{~g_dtC#|1N)_+duN zADJjf6c_T;W7lIpVC`lN^?1+LFWWMQLzt`YJBa)B92A8Z6)Wp|ii8`Lt4-Q4>L0r2 zuVIj+rS{LZ-7QAf?;;ploG5UYntLAq1WER<>v((=gZ9Pp_AOP?K!8;_fB9k4vp{#p z*+kROZux&8RW)64oq0y(0?Xz_aKWL*noHc)a@c@##OmE*kasGiWNv$bDF?n8-4`hB zD2>jA=5d)ZZ6#E4vfY^^u8s70${Jt!J9Louey&_5e@y5{!RUX4xiE2UvXiin%>mq6 z`J=GTnpsom8_2$aS%xKB9g14@*-3745dvSqwcF!lJ9mXy_}u2!hs4qZwku4L)mDI8 zRFOi;_|Q>m$zwV7@z=-Uma22(ItBTvQ0Q%~_GTIsx+Bkir>vMiNnGbszAZLSO~c*!NNCoX6};-djTCV`Cq4F8$MEbI(~=Ld{ZIY7w5u1 zHhrk|I7coixM+am8Mkm0$Lw_5eJ+OJ%_sMdRn=a$t;O3c8B~3N5@oB4>3k!p$~#I@ zbEo9qT!WRinx7R`3mL|PO-j6`if3Pc64A~^*yR`Ig$Le=g?mo#gnwW7!AoGC`|U(4 zms4FeaLTU5j+d?wi_YtJWakIU;M6&&q0rc=PsfU8kXCQe-efL=5BWr8><_C`3Kg$G z^O9eR6nSgHrGFet2qefIzU}(0lBTPUTE9Q5`b_lP!VQ`CQg-*F6oP&($4p(-J4Zoy zluEMB_s@w^xr1UNu{c zZ++>f)23jA<$tM|6CJtzN!<9er&8&9XXr5S%N|R^>~>E6d_~8LUNt@6Vw#h*c(mqM zDDTH^@p`8RlUnEWoJO#49=2BwWvuT-3_{0C+%EUui+EF|{^Wo#Q?d`LiwZFWRX|kl zAXu|tN<*^(cAkP-&t{;*&pU^^n#>Mk-ae$4}N)wEbody`kvUxT$}j?@9+Bzc_}G z%nA{w`~wlY96`*Lv;#l1&C>BaX%PVdT6LpL@92z3{ZB|vTxt=s+B&`60hal~>6IRT zi}IZ9Eq13(c)0Z5Py}%l^(3&}a^O7vSp007G1l4D>u*f6hTIQVmyl1Jo-4Ah%Qjil zJs}4Ad9@^Cr^MG9k9XbKXXjNyvMye#YCE!mXHW_zoR?BRZMCqv06Dz25UNy;c^%U%sW@QnB>dTfRobmm$krEYlqJTWC_%>cg8 zW$QfKh-h3I`fHft0qcbrQoXf+@bvQ?5GvQA<)v@J0ZW^H$>bw zlFVcE^kY_>v^PV>(pi_lIoan$$L;A|AAKRRZjMQi&aNTSlakJQE+WMa67!%Im%zmlp3dixvfP;=e`&CbFtkg zJt(HX+r}DjH+|Q$7$#QoHahNGZH*AR1vml8Vby6^4H7tFh@xjcmHyqgbakwCn$usR z-4(UoRf~vIALd((kQs6@Ag@%d!h5P*64aR-T5c{>PtfK6o)7gC((Pv!} zZSdR>Ry`1Es_C$*E~k94xE*bkDrm`V>V6l^c#mFqV@$PC`FJ|70|&lWxYf80J{R{s zcw5TxDd1St9N;me4h$#8(UWo~n(@6n&Ls@pa{0(Ocb5ZwPP#!|;zzA#ZAkC$ zXA<(OubrziDBh{z8qG@c@>v(AE@F9vjt7!e>lo$mB!r}fg>dwH!LJJ!`fS~2M^3gb zV4*_^654fp&h+W-NicUx(hARyx$kZ%p8NxaEbuTaY3n;H{dMiV4mG)is~`9w*f}zO zS?vy8cX!^l1vF-&CmHWsq@J1tWc?5>Ar}nH3@{iJsKqPUa+Y_0-Rz4e0!n*pu|TNn z(_T(&QV2`lF1hbr;0m)ar`(ylYBzpgJ2>t;CuP)Y*W=b3Oq<$vM-aj_)%&pVcS&4+ zYfYW=w}3F`VfPY!N7qa8c9}ERl;(_@cQ{MQ9H|{ln9TN3hP3g@T!b~Hc40R4mda30 z3&fxi1*L`u&%Y*Jm!rnzpfoQ{%^=9>?!Hvmh$+h7I${=LYGRgNaz`B z%gMoqLkYf6oD^rmd1}F#1OwSkSR=gAsJQ$oN!;Z?U{-xuPj`5aVC%GWS5>de&PTz@ z1KZ}!IHj`tEucmZ%IC+{RM$7Ua*2IBj4om4O}4Szr+7jB1H*Qh{`!LIcJ^m7`?zja zNX;Ox{6$p<66hj56&9P?Hc_cMtOdT==uv8AjT>gtm!;3q(O%JJkr zb?ia+VaDj|{j6e0zHZGE%O18y-msPi%+9N21XXA5wQhE&Bs-7tA$l4<=9g0nt~0$+ zhij#9uc=SvZ-_T{#8OU_2C^@Up#FjUhT26CB49d)L5(su=tQvPx>@$s(WT6{T_IIX z)Qii1p!TdF)XvCccxcU{(ALjAzia<|mpnEw^-&_ipq)=XB1+2PuX(?ph2!9}^&FN9 zv-GeGv-63NFVg$jPp)=`RoDx-PPu-Rf9R;@z7DCwtF#z5F;3tS=%9|2&FWi3zmo zE3OvTo0C!*ZIKG6Q#Z^l`8=^N-5UOr_+aVsiTKdMaiF(tsIMEhPoT|GVEBvJwc3B6 zQOal66ExGUu?nA6YP}NgUi%xs*Gg8e(eJiCSve^csTm$~N3$^}*BRJF$PYhCOcg&zxRUD_pZsfWVARjxL+N-Jg(aR$)mjSY9zO zB8!wO3W8W6%(iW6_Xl|?F?$?*>V1C17T+zVO|MKp1vR3d5tw%6x&|wp_(fZbLw#%I z+^qBEzORIrnVfYgK}n?Jg!qQp2ZDul^U+N+cdO_&bQpqtdpc9!>REwC(2CO<)AN#P zQ_9Y`!(XRlFvV~20YNkbYT27qu!u2nBNq60-AdeKM@gRQf-&f{8j{J-b9+Muk@ zTQTz8zn)U37HqZH%+2>6vaOn4XElrNH^RyhS7mXk;k0j`W%KNS0e@#iR&D{`Vrd3e|At<=cyr$1FFhskPgN&SDI-7Tf+;wZ)QWg`IK6~_1W z#qQARc(rk>6)(dW^$Kr?ow=H;V5bY!Y_?psC%51@vf#Y>74-pfNTFgLV-7TQx zPX0U3)TXWf`Mh>~*&yDjs^&bPW1zCM0Eb+d1X6#U{-{*lS%OhhacooK&4F?OV@DKm z)d9aJT46r>aG$tCVNtxuv%?98q-4WxAV;xpJ&#huQP&j4w+0Zx7hxuR=S~`b03L1e z7q;@0nPmfcdV;-`y9<^DTpHMDs+-(l`c9tM>JQxM^%bkl-KE2uo&gJ)J=26&rbaBJ zc?q%9u)!B+wDcXHB9Ap;Y+d5wVfimSS_*}l9mS=x=eGI+pIOfwHMsT;ze!2}m$i6N z);wK>ZjUYd8^u{bcqDEeuhC2F<3A@ioM3g%+H2L7%h?(3AJy!j=5KH}MIH>**|-~$jD-FC-en*pE1DnWhN)RTBkfS z|2)sWv5WjeaInMtr4Q;sWsCQKgY4!fuJUtR2|s=k$-h)54Tcy?`)myA>8v(`(z&mzOCkX+TsOzD9p3N-EYu5@?sad=WMCdF z{tm4b{=7+$l(aKQWI`Z#Cqaj|;>ho*uGb8RkxtsAQNI1R8?OB|bFzLy#MLbZK~$B?LWl z9r{bJ%rNpj6wy@O;_3wH0>+4e(FPUU>fN*ZqKEs+Zj1@CFaCkbjTCw&@a#UN{nlG6 zVs`C&t4}%OT6GxSA?tjTK7_jh$uwH|l6hogfR|3z-rk$um63KdpieoWF@0%VU0&q;r)zH zp#o{d79v=cturPzE`+#u`ZKh*wAgZKJtF||*;NU65Ay^gA?60be0AM%W5LczJ9Dw& zp*|RecFGG4nXd&4>e68RG{Ks4NmF&8plJ5z&Mw|Jfo%&VA&`xPXg8`re3wO;#g-dIRic%sFh`mKhxRQ${Ne7_9XrXvLt8! zsj11QNG>W$kJ$rsh5#|jMhJ7Q{|ACqvAo&!7P?Sv00p?Fo5HGDyUvHgE17A;!QoKq ziApIq`_{$_%hZYtq(7X)2G=> zelPid(6tCV68(LSx8zbz%szZskUR%f*$wBN`@Bn0yM!UNtV62;SCflS{!-7p+h)t) zI=Y~4m;cvnP7;+6`%k_ulf8c+1&s9;nAhuSiWf~_c;f(NnrlJ%J`HpiQAph|oz+e6 zvujCK0Nqj%$s9S(RF%@GT%sXXI-TCSiLkT7`$f!4+`==!)MmY6KFM@Q-dn;|fQ>o( zz}gvdIXD%qKB8mN6K)*dPh{e0))sE-4>t~D!ZvF&jhov{7feI$y;jst|LT3^Y!UWZ zvc~(DLCyg%^ZgH0@DLehztndZL7!idApPw zKgGgz9i+b>R;Nuk2XLD`guT1gU@AOcRv2oP+?RG_J(gTqU9m_){|ROew<~ctUR%vW z@qL&@4{yykerD7QE|OuVJxIEK4jua7wPxa{9hM4{2F!|Y)C$4lbJfh}Ax&s})>ep0 zTx>;8`oU|*8Ff+|T4JeP)NV1B^v5T&*=7}&|4RUN)JaC*o~*910Y2<%q6)?tK+kBK z-O|O>^LR)1I*)kMG&xNkCv8hZ|HZ{_-w4O(u@&XS@|x3H^4d-kX#wu1MK~O~`4+&z z5zcn7Dd7(59UFvnB{QBag&W|uvl@TY>kokge4kbI#;_~vEDso6-E7cKVna3{J>5tP z^cMP`rj?eebci+z-^$0){J$4+-ZIjCTzON)L_#J{XS{`F%ZS_1#(Lr5JL~y^?$AL1 zA%{Bi{+`m)3E7_jHk4h@3{wYh9a8f+BhD0XqdQP4x&G%3M8v*kgwuIK9i9L0)tqHy zK>3GF-SzB--tjB1>aWzcYzYV6#;=k`K9WfCMPP2R7a*(}lOtDC7m0J|C8=o*VN-Yk zlGOq8;7uMKc-e2Vo@H@$bwn3Qq>oqNKQ0vpCh;Be9= zpf||Y5hDO)BD1J%E)@Kp@r)63^Mky((6LgIx(A~TK&1StzBH*5Ysss(ehLZTi`fj< zf$mtGOcC=j6!DX03co?|_M!PCl?MIZBqX=(4KUj|+mSgFdiz%4CcUbXt4VNUm7#?| zMy}h2p~b9i#Cthr__C^+=KKN}iOi6%Z?w4Da zR&W%i@LZd6)WmNNChb>Wqi6Yhx4u_x#WJ;AA-DWWKQhKsg-aXGr=|ZptLWSpv8A2% zPDiy)!&16n`jw}l*0IAC<|2XY)|jtml#P@V>Z5naQA2rFip_B7ov$6GnQ3aV#s(Av zvPx~p;q$9)R1f0~Sx-*uKhVM8>|E+%Jyp3^L30Q^`EJS)5(bcmK&|C|h%(&+u+7m^ zAeEbL=yL#=Bk!qM{0cv1q0*!EpeJ)>SE>fN3uwUQXSWRNTwVB&8Esn^asj&FrcEuQ0)CSE-z;3e6yHSp6T)BX|=f!O!x9ta~B+KvhtwQsm*EJG`)_y%(~Y(+75WYP}D^79EE7WYC8A7>?96*mLT zm<$nCdW}w{<9YefHw|AVX+OR{|6H!6|05O$CL#sCne$@nRdKHfzuLv0aHF5%77AxR z8VE&@GJg)6^!AHf!r>XKqzQ=&CcUAhM<>!2giVX@15oZ4t&PV?Y(pK zU7arDJfhKZNw)E0y{u&WiO!o*Mwi!@tbNJyL+;o20xHDeM7Tx@H*S|Z8M!hgiPG4R zPaG>eZ6q`6rV(5KENt@DrIbyx0R1lzN1nC30v92E^_;NE7I0+saXDvP9`7oYlh^J8 zRNbehUx$2+Q^1cgk~hu+k57ls_(KmluN+M8R;lQdM5ZBIuk zsTfJK74mGm?FSK(6iL^=4b~tjI<))def28UR-65n;;FUcoX+M|pGN4}} zmzs90JGul=x^=_vDne7n{~>=g0vgQ{XTzpmpS!y+L9SYSigF5KhQ9Zs)c2RAu2JCl%sNEcPjmvDizdVc?c9LmptdKyA1~{o0i+08VmoEv*M4B zssL1~NPNzd7r#8ZvkoT#ipjIUptUOmc%*?U)+-y+O?(~I>U9(>>H05up2CviKXUb~(@W}RJH5+>%!u~s;yp2a58HOi@l1Hv`xdZUSIBDP z3AsYg57L8Q0v-=?ptQuZ8z1TI%5ni&^0J%X|8%cY#QgGqP_N-{*7>VnelO-5LgY92 zQuxye-?hkjbZ%*y_qrS2Jjp!BEOQpZxlm#vdiW3v%|VuFU{Ml=a1-vjylZ(o)~5c5 z5J~Hyd((jq4HuhIXAUn}DPzr4hfjsxHsdpQ`0x=-J!R*D+d>&+FUbXxR2SfybEyK` zz!$tw2>e6oS8y`jydD_V4wdkq;Lx=sM*~Y5-Dov{i>*)Q&Ev?+v>U~4efbATg$Xax z*@84~-F|GIbO!;n_eG?`3Dr*^t=w(wK zQ&0ADNhS+K7CWnxJ$&m)4S-txf5~G|7_pc)}JUXAf)#IyDdFqBmBoHOb$bj6{ zIrdzW^QB1~G%8jUSX}>5^k=pF7p{(RlFf-SHk}f=N?k-bY3qRv$m2`!W!VM;)gA$@ zFP@tcz#QdmX|sNrYcR4=;*cFA9s{AJ!7A!zsMKd1zpDz# zga^118IeU57&DCYL}aCx9!&4}Me_SxiLBkpu=X#NRv9sNqD<_lPmv3-SQZW1XEfQF z0v+GNDrmLTAOmSz=_Fcoi!Z8O5E8}WfA9%2B6a?D78CJHl@(As=9txlqJ~7w%hMKi z(O(5JXG8dEWI&W$0d#l`l8zMQrGCp{2dX264o99@Z{JNlk6aXHAN4%T+0FW+Cr)6c z)&9ZCgMyVX=)Ld$q4t9IE7MRgTE^{%c9iJV zHSdK*CjcB6#VwGlr1|J(nA`o0)qC;)4`-cElc%5^W^1(l4oLElkL7S zsWnVrdD%17KUhzNyi}snV{EDl#NeHJ@1*~uxlACAP0E6pBS>GUlv9o(W$D}LC2Q#p z5DBmE`=0CpX*SqVPj5&Q#jYiM{3G1-?O|7g<wJpm$U^ye`9zoq4QMbj71U%@!!+{+awk_| z8p_vn(zh3gCV5xhvFFU(smduq-X)WbTN)ET{eqry9>*kal3+(qhlS2C|40ntfMni#MfCI84}D|+<8l@371L~0GT=pb~R2HDx} z>mX~1uG&Ype^qyXt(xK9&%heggwa=!;Y_VCqNxMG{M@ zLJpR^%bDzcnx=&#{j#h3F1hWH;f-*Ue)J3d2r;t(lIg!Kf^@xJiq z9JXHSQO$vgxFFz+eVWtY9+g*_LQ7|9d930k8SutdvDqWRdd1W4Uma=rPhM;8&Y<&S zV+RN6Y-r{ZQ;j39FR0e7FTWI5tT$|YZI>#JJK3)OP%pwJSCjb&PXz4|D%EjWfnA}9 zoA8bg8CiJVKe?+U+Y`rSYfJF_aIt?GjeQ_~>wB!Y9viv+`hn(O5z*bOWQ>^>(Pka> z`e5BzI`MeqOvljKvw9}A$NbUfzKmF5JCoJ>lYdpRKQ%sIRl&pC8Xl&#F4=$gE|C&J zMy4WR;~|EjYYx}^SqPC+_WkYp3X3VMbm|uC_(tcg(@sOba zX6z^YSdns`mVLUI8gQ(!WlZLpVd%(o0gnhP&$<)>qId8MCYYd^ixx_|#mja{PTWh? zj(qQ55xyp_^3Zfi6_9x~341M%8U*#@5E3nG*QoEPxfz`#dm)Zc_G>*-Wy%l-X+NT8 zWcd9ShNu7KC39rfYkX@g%6+N!h9I>f)e{pm3s+YO&Si`VwC5|G<~h^p)<0_7p)N3-~m=K9R^jbFzV z7G7`0uZi(d`_fu?&IlRuT2^WF1TZCNi!;kyystC+gqP}2Pk6!suw`Cc^qWqKXO9e@ z$?bUN(1;Q(3`Wa?er_z9qVxLo1ST)5*$^1hZR z@P6;hdow@`lXD>>8YS%By#93gfGR}%uMI8RdwaOpdaaX!q4mN+3^mI-W5#MQ0HT)rNGeaslG6z@+keYM{#bJ1r=yx!MHuP`2 z7jG~}20kptUxMXd2>PpxdI)-tik%-Fy_<8Rt54R02VJw*0Y_7r@f&5AaHZD3P!;^x z6hN4X5iYbzmg8U{u=;U_O!y6DJ!$H`NuE#@vS3PSf!DV(!@wd{D z6$C&_DSda#xy5(~>y${lMU{Uu&4Krw!JSTS$@sCu?Vmog2uPjn?_LzN|7eOG-uEH) z`xhyO+xBGzFtw|@NT#C51}VKpy00j(_j)Od+lUufltD=Mj*4}7LqiB#T3-1At=60lUR0Y5I}AMFNAptX-twe9{lWA zW-pcU);{N?He-$`nRK&=(`znr;mPFwl0Sv1>3E*}r!Uira;MQJi}$Z+v;K@zi+vP> zwaA-4qyu3Iqg|bqiUT9uWue6OB z1Czc*;(i$H(>s6tH<+1NK2Zr$)X7BL{!T{oujIx(EfQFNcn6#D;`2_HqXp}oQ$~#| z_p%e_wn~qc-Rp5yzDS3CU-+xZZJpS%G>9O?a+YMOJE#+f#3DJDy2S_qv|ctsZIRJ5 zYF#}~nIv8I^Tj$Gd86+Ic>FQnt=Fot7t+D`aU9Vz@_+WJXNNotlVXp()lJ(o zJB93O;@%h#dpt#^G}5(T7}E4OhbWQ4uwta_C)w2`;~SIUVJg2Zw9G`|=iyInE#V=f zn29+h7IB?%Na31%X)C@jL03bxcDlQK;e>9{!{+K%v34NFr0o1`@Rmo0;rZdD288!E z_1a+6OKJLrK9b@^X4#TN#fZDDP$Yo~57&$+OVZtX2;?*6)>Jw5$W)lykhWPjK4~gU zUO=lrYo{|;+~>-mx%z50`fUKj3H59H?9c@zHa90@` zZz}=rc&B#4TrJ-~*(*5^2=)W;god0qbY|SCM2-96ek}f6S^1r3Y4*LL$vmUWs~1V< zOpWyNgt2zB`0uliiSD}66rXsOa_X1DkJuW)3gDOK-t8a!_4WPco66d4oSjL^)>tV% zpZe@b^`62nOQ0nI8z`OBipiXH$^cFkvwh?Gjf5q-cIMB&g^GVHI0;7kHJG$~_8!~h z>;%`7n7($7G<|x2AYKH`&8o3@qG#P$MBzX~4cGL?HeBfXpVG?2X{!qFIgAo$>8@(~ zo7vp*JEd`&o$9VG&rhdR0(9#_ohnb33SUjNZF{6-dRrT)GKv1KcdYZf+;i&^S+Dl5 zwPtA^rRu6eAbpd>uH^%ra;>`?L3`~c<A?z-zR-c`cz#!v#Kf`|6!g3@M3JfqsDPC4rP~+qAr(5XHGXKH=-|o-p^; zUIEcp8fhlah)3L6?8UaP+6@M6K3{JdpQttfDP3 zt&7{;#NoHdN_`=xw#NJC+rqH(A_jZ)pp6B^M#ilog|T2|(QQ$*-Nord#FT#qCfS57 zp&SriH7v4SHw#LicNv!`$(M-|SLm*mzSIunQAcQ-vwdVYL(7o6HQrexV{c zX%g`sDUCLOXHZe9Zlx&YcC18pHQRskGjz>8Mv4$Z{Cm{Ic+@mdDW57T1N`U@a{i$F?rn#;fw`vzp-?HYtd2N z=sJ;J(8Bpl$-tMZ8dCiEs~N3{AVN=}n-}>tck$c>PmeJuxzbddyG=)tntwBtXSALX zwVJbQ&fNOtPXkydwN(Yq{dUYuH9k3KF7v5!+dKInbGk0A7>J1a(5aXH&j!)>BpwmO z8F}}ss_Qb94ouzTkm66n)7sdlsYKe zQPj=Nw0cEzaJcKPowv$&4t;)vyG4~}n2PY}ISi#cg_FenAZs1dir$9lcXCQZBZR4J za??B7T>b7u6wik1|Fp6jtCzC+Qeq6=E}bt-Eni9Anyv&XUB#7Ly)`}#bWGe!f3483WvF=*53uNSEpU1dI9njHx) z@!{K8yUCb_#@hDIX0-~T9_`-A-q9u}e?K?T&URjjWn;+p2$gJ8T6%6tZD><|yneld z)hUN@pF4iRk5DF7#I>NZqZr=)k=e`N)2Su}>ZOjtl`5vEz3T9psSBsI#md&xN6*8E_ z5#W~-dKtdlvo`*$JI4Aw`<(GNTw&uw35%hQhlOeS8$)abbqLY!Z8O!EV~YOaZvsYf zG~#Nx+B4Z%W|y6?M)f&2bagsVvFQhW4;ZsaoAJwOwJxpM&T?XC!X#LGWbw#8;jfWb zadc#Cnm1}}R3 zE9t)-6`fpzp{#_vc2%j#!1FC=z~CA2_lUzjPJ|M4>yMgVsRQ>7jd3ly?&POwb8XR1 zoAeLC;qpG#&U!?XRjkn*`iy#=hB45tB3&i4{CRf9TP<_Ug^{-zd#SGyC(YFm$E(8$B^?rwvn=a1anzWW2$>vuvZ z!NQzMrBZ2)c{#9zIhajMf!;*w$QGgLbDnVIB-@3E580z4tA@qr2Vg2I1?gTVGTrK( z7n9+xzos0-j2XMncP~w+Y-+rL_=IB8815eyy>UGCW|>+vX$Mbl4*_Y<$s>U%1NExk z?%43WtwUi}8-vj4C!Njj4vz99vj(zY#-;%qwF@iN+@MW-r|pBSebduYPG|c=tppzE zF=suuGpnM6np0pXQ`U@TTH2cro&+teL3wXm!r4oOtFrW@Yic-$)a$c_`{!>VG>_dpPd8coVVN`kmw=+0Z77UvTglduM7P6EkgVggT(cO}KG9!f~E0=cLs51kPi-dpI7KGNUHmt@(Wr?e=u(8ThIfTDV)U z!k68vyiikP1FWOjJLPzAJ4}@laY9o6H>G#%AJ!Ci@|MusQ<{?$nPP&^=K#wTzH<&e zCMp$1GL_EWF6?hK!4w^YT$kz_?;c5`-gvH1e(i*bTyDl7D=&-h(GSNsy$zxbf-WfY z&w>xL8V;IFW5`rW<`x?&L9DP2^l8jT(gs6?uyK2Wp#0wDLfYefD8G1{>Fx zKD)cD#Wop0IU)-7@rDMkb>*^dW;xFAmqrywzvBEA++fn0x4kLdQFkw_AymYcTh-Af z=M2vz(km-^cp^+$bgO4Bl-F5QM16_LOwo&$6oqm@x$XnH|N-v{RxNQRXQIQR^4a|myizTVe z&Q7TNBtD_LoHTYYTj7P~Qs{PhcL32#&9b>L)`T=ER1}HTYX5KWZrI@Le>iqb*H$o{ zIFV!n_4&)4Ch&F27}wNdR$~qrv|Is*MIgUNph5~4YR-;BJjfL;qUi=&M$iJsO|$Zi z?x|#Z|BNZRQrNdJUjoJ1%GW06)q9k&tm*8|@>Z!xb@CDN03)czmx9g?zYe>*MQ+@S$oYJoV<5rwk&rGE$g3uQ%55iF?NhhV=gTtmSW*REpD-MIizl$YoSc%} z=3Y4$$b?X&1hv(>4=)vWp>6a`C5WEyWTlM@BHZ0A`48(NQ}0T4ztFu2!TYobYQi?7 zD|si&xq@o{2hXhtXFx*cSpmKC$4+02D4dEHAT?LU+M&Ua|DQa-#QJS~vdx-J=>gIh{rdZ_Ct-u1Vn@8$^SyfW3J8!lld4C)cW&=vO~hG!mQr@Bn$o)>epM{g zLA>TE(kb>l2a;CqUd|*{+Ph;VPs;2% zR?WGCsSyCwPmFK8)|m^Ij&^$EBnU}IP0E~MRWXRlWyAW;ssvBo8dah8I&Ub`D*dfh znTE+T&K=CQf?dU^T{I2=&B=y{70tYlM3rC!hEbh$4jtiGOg^qVY6^7cz` zru^gg<2r!I)h1Hq%dZ_9W>jf9Z*c@0?8Fu9d^cT*Y#&b+Q!^x?Y9ZJI$^RHYI9Kj^ zX-fZje@ywT`G9lCjkbJmy35NS>NW0;x%^t~u0GVqk|gITy-RQQd||FOg*a4#AVcgz zxKI^JdSOMUJn4#XXoUe`p#xeO0tH3?cvOM0t$2&Y@7bl}$Tif5Z@LDv)fM>K_{LWJv5j`=DSj(%qM{7~ z4WM$jwOC3{jI-Dut;c{&bqrORk;V$;Po9p_&`HTq2Nt_RZtKhgq;BkzUY3M`%k7Mk zpNPm;=cowWDh%7#&5LB^foi&sH@(bMb8mU208Z;So!ZA|qTgO8>s#>&E9=VLHw4@Y zSDYd7ScrikD9HWNf4Q z%PDs>g~BRmShjwwE#bVdSgJ`VF;@&&kGTvXeiM6HHD&qAbQk(tc1w3peOXI?VtDI3 z%5X-?YFx%*Gee2yhS zx#N>z4OATXj3ec8MswqLxbI*rt^f0DAT8UV6G+?rW~}a2jlL8=x^hxZZ<8|UwpEio zH$2p*&Qy7i0Shgw44C{?RJuadZ+5>vjlphwu&1*@W&AHrzU#6qU0V}k<-*t48ayXl z_HHQJZ*fH>+p~^ob%dvNV+4^|q@}tc(ZwMlwi8|IR6nE{_=N{&QUt$<3 zR5Z6OJl~;qIw@d?4+NMC0a}~_G;1WaGDoo|@bFo$&FJ%Tfu0iQ&`0aZ9*~}q52=%z zfjj>TU4D_uEKQ#Q)Yz8YYs|}%M!8npQIAtV2*FT)hDK9FJtKs;U*Osf)#{I%`z7Ly-U50F+ z>{?T~xP7GN{L)8h`1V7F=fj6kPuJV;8T8qsiV|U;rt^7f|7XbV{)5bgKI87_#>~dO zuLvkoN+!+KewpdUsT#2 z*+!wW?8DN>(Qji(FW%HhUM$MqOc!o;U%LO#<~X+EvAu_citlveMp^yK(CqjgQu{F5 z=1G@{%GT(dxwdDP6D57r-gGy5cmJ9+8F0UuZw^0%_I-mtLXG*&hsUCyXW+ix;7RGu zp#Bty%`L~i)y{5f53T@YjwvVo!+senvZv->nE7H{$cZB(InzblnG@KSyaGKV-QMnT z)9bluwDI0_f^HkRG{}R7ZT(N9>#@pKQ!IHaJ`$FWHs2n>-&onUx;>R7%K__ox7;q* zo2PzaI zHBp2jocu!cRPGK+OWg=3le1I#(qPWmEx_*hl=#`E+esTBCFt%KPjiqv}bGYQTYuH$M8uZW-k z0w!19J$(!uEEsq<7-$BlN`aVTns%k;w?+fZ3|vOW!s2%a12z`+d1Usd)jFkU+I;Z; zb_sx8fw2^Iv@v=h@&m9QR+;-9yXF~ahk{w zoWK0P_!VY8ZiqjVvf(Y|AkiBOmdv_X1_g#(cImB-6@(+%CpbV_c}?HHq|g*9_=);e zaOTanGjzYl6ym)Dx}eqhloC8vlLWN;i;0WfN1IXRtcL?9j6U7ujUHW?*~(uV2+qYN z$n!f#@hR7-i;R`x_er3+^GVsNFrNY}!gjt;Kgn2J`JuIGh4=vo_B7gSQ{zqsZKIvN zx$O)drAI;fynbVAU8(NzDzQqv($RF| z{h5z#C2hF`Ld)K)#EGnKyJbNpR*r0zRYgI203LZL|NNBEke)OCwV}UqCSJR}yPI;k zNk_#n2zcI*L8RI~e3$M&9J0s&e6}?)vT_1Fgg8F7?2$C|POms8pq3H_K*hDwnM#>T z%K&PeeMiRey*s(8{r#i$0Nfs8!8uuzuurL3o6hDa^J9_@-J0hAo11NV>B^LgC)p@@ z#yGe*;ADScOkbG^&;=6wf1GXsr6T~jc~QBnio@MqBm(PzS)a+KLS*-vDAy;pzS&A)GEP9Uec+FAA%;`N4V9g2ty9 zy4&cx<}{NfE6Yz-KXy%zrq4wQQ<^ z?Hjs3Fo?N(KM3+C*mmOkz+;;)5mwZXV{P)lw3zdf#Ys(j;3LNM>VZ~g-a=4O_u4b4 zgNlf2lAtvU0b#Ntfxt}sa$`Q%{>-uY)^DWKK5!HO6_7eD6?=A^67lvU+%f9yQj=Ab zf64_kTUbjyfFA+<#hgb%&UM{}knFN}$K4u*IaG3j9n7p;G08fhvKLNlC`1w`(jK2m zRBVub7od|VOfi+M{23pA1O%fWE3bATW4~B5U0*%`&@;Y6iO07{ee;LgQnVxw8M&#_5i!hzc(A9H%^Q#32?G{;XtEu-5k%X;{kRX6mNRM`N7 z>a|ak3_7hOL-0Ycg_4D|;{{V)?7?j(czfn%e1Y zl6WV5o^2kMh|>*z-H^zgUKlUB0B5EfC^gP*Pvt6EO!g;h!3&$YL4I^dN&}KXb8Il! z`&4NH9*&B43Z}DzdPgfwoKC-9Fq16lWr+7ncq$k8D{b9P63Dn^mhe7Qj4NU_3cV#0 zP%Cr)$&*8gD{=B=B}<{CN}M>ii3x%3;)KGF|N6A!8VSyjY%b58ESx}qNXJnsbn$;Fq1wcW9+lgaeh z${mo(3tfTwyB@*b2G0e!>|`OznscmK6kqhjwxM4lFj%+(5b6LElXn2-pY zKP77dyW2a&AUZD)I46lN7@Q_;o?YW=4gn^Q&tp)S)nv=?CwN8^Mqs{k3=fV+o9~qV z<(Z&}jQxB74y}EX0o^AwY%ovoG%{&`=Ha9DyycZUr)-eL&)H>tUU~M6eFW$s z`HvYbMGh&Ou072fD&qg)yquJH+Sdp3wvHiLcvCnX*myY(hURt?Q)NEP2 z!9I3b$P3Gv>>yJpIx7PBq51;<5}1D|8M|OPD0JYp_w7TWl&`Rip0O2 z>g=`L_nJW5wib^a$IWeA0v-H)9d)MV%`%&(`Ja;wB)bQI^`&X`Cd+CfwFi&lg@Z*> z;0YR;H=bFk+ztvYi6AiU9z=3GzEhUpTQ@g}(ctVgZMVXOkNY~5=h%NQm~k| zW-(E0R3mUb9$+d`$Qt5m^px4_2y3r*^Q&b--L+{92e(^(t+T}X?gS?7qZJw{mk>tnFd3Cj;9@iaRChFNN4Wa0PD_3Ep8afb>$7LDvuzf*7VN zet_$eG-hlnSHDPM6G1#jm=y2bGj`g?RCv)iA#rWty;q9YU8;rMHS7J@{wkoJQ@cH6 zkI>}ua{F3`f>mzob^3=vLdp2mVBnqEUl$_#SXZ~1LUNQe2CqFUIgr-k{W+@mH)H^Z zOpSbo5bNYxpw@D&YwuM$RGE`9lka`UWwuWEO~!z0z`sCjcV;q0-?}UO0dMl50Sz;* zuICI86s)Ax{swIKSaH8z60QKTcM0>K(DilH2*E&(qf@*B295 zgM$)-cVz$+PI6)jf*(u7{MQTj*ZpfHDPMHY{#c-hmGKWp8>U_gWH~c^PD1ZlrMy3r zL(uQ%KhWVM{nCW{*SgKoYVt&`4{U1IBWVT30EAdd7mtpveo-k3XQ1?BJOP31sKOgO zdj{@Cx<8S>Htyb@GgNDL9xITgIbN4K`D!qnbPZvfSmg z=ammjJT>r=`5s%g#vJj9`wq@u|-{tT_Gtv=YNHM+t9_e|g`TCj6 z>Z_>VXJHpNfwx+ovr(5HDo9oz=j5ODQH|SZGvZhM3d6@gVleORRA_8@^6A-X+7PgG zaJgRE?E;NpWC?vY*}NOFyy7n%c!tLAkZRv0`tjI!J?f{9^<&;&^gS>B1Lx(@Aes-O z?xkDD3B1K@1Of-9H9d&hVJe3r@<}_Mv@AVT!qU=a@lRaWAJ^TPa=b4$Tj2-?kWok3 zF9RMDk4G#Fz1^zndyiUDGK+8rh7-Q8ANgWNJ>#9GatFLVe3yLAXyNgWPL4jrcRiXf zi|$b5n2M0`0+2w<%5G{;&kp&=moO5CdWVq2=KoHtu`}&C)eMa_-1Z}o8)%~1VbKkp zUU%nJ#)%~pW6;rJiw31AI6Qbx=N-C=9*_$glT|gS=L~qkOU4xvOZ#Rhca~5VDUNNQ zW)dwgb$?L*FkMhkoX0zC0pFKlGUL;SV|nuL2tWuF%izAP(Ua1$WHup-!Y7Gsa1~=1 z-rqg1hy@XS7|G*ElY3`KJ~lkFf^3rXXD?9I2^}54Pr^bIwpC`69as%#%j`@8Yf{IXZ(Cw(xznkNXdfRfbBP-}s2B%@;tO*Mu75koKUg*m zvZ(EeEI*^9(4!m6>|QO-!h``MTP)8(}#btQKCOkgS{)t($ZvM1W@95U&h(Jz^ z%*QGDUls3qH~DEE6GBzfvs!4WUf=WxT&amaBR@rSleHt;#*Q4A2q!*xf8p zo@vw7G|ZLUl79cMZl>*b3x<$#+n6jZcRohVY-$}C=cc?}2QUeF~m{LsFBf@V&d^YDd%UjOWr5lCsE%PDSBPray5uBZK4G5_H_c_cmt-O9eM7voW5(a%V<9tj;C+Kr{*a4QzgV3(HD z)nm|5x2EaO$yR5jV(a7_Nax;WdtRX3Xsv3{F~xW^F`dzvjcnA`9JF>eFz#!FHv{D! z{i~SoFYtQDAY2RYT9^}=w3X@*tNMw(zbWFl;@lr~%KSBG%)UMNzWmykQ|beMfTFkY zMJ2zrdQf4u0xF4Tsp+lFshqRajAKh~mtN}Y`2~FXGXa`I2u_u`uyQlZp4C0q(W(0w z-;v*56)s#;z|I<6S3qwldmHF}B$+Tb_J@J=o(lU38Kizf`g_s|^-{2y!8-mN2iZ&1 zk~T|EO$18(%tCxAIIGuxrVV4IQE6qHnN!yZ)jzb>h%M040mEK`F&foMwWo;6e69N> zD7h~w-u{0$Bv8lv$fSiiO>YaUx~$J(j8p_{^Ftj1hOu9ddusiehj&nhRo&#l4(&r@ zp!Zpr>p3bac0HBu=m~=(ao*sKIlxKZ-FlUA%l5f#xc5ICDxYo!=fqiQGz^_v^(MyN zv|bV40rW~FnP_7*p_Je$S?{(ktAs|JxKQqbzot^ZqSI*S>N=8i^>?*B;|HOZ_ z79Du}nO**>d=0{FlJa3mCd19PF)mYJi>|6A!}-nVtE4YkpR3v#Qsnhasa5kuk|&Pf zru@ivshugCZGKQ`Q7n`Kcn?Bd0bxpz6aZHlV8ByJrH}{e5~t3m>(A6h=gCv~t(%3c zyn_G3X@ao7Dzo-_+#nDi?c||W|CN7l-t24CmxQ`X3Erh@(BXpnh0=@{qwo9@sg`-> zL7=8?u=Ev`QtNSZ?V9<+&g#L0-}K_sjkCEiP?sA1})nZ&QDRM=K(&cvdhPsx_ z!w;4^yuNP%p9SYlG!|g^`n{?dBKf>cePEOt$-v;g_^@NlI6`>%rA`Wv`VH%1+f%=r z7yK)76JKOAqqB1vBQ&nYY0&kgS#4M9XAablDd|87^)o`kr=$$AOZ7-vLdR^f2)JA4 zW>!_|R}umyid$p05LQr8%%x^JX82IY^n_Or>P0{KOv9yEn4uBK1x>Tk`*jte>@mn^E`*HXisMSE4$j89xFlB6fLj%lFj-w)&S>8bmK~9&c>dC zq|@EyzQ{rM@pJIk=P-pQE-;(;9&jd5& z{$^)$Q8}TPsgux_Sb_erhZ5goO}X^MlVeS4imMiahIW0LFHx8}F5ZExy_Kzl1c{$_ z)xyK(^Vy)glJnXJZuL_^;x9t79xlyBZ&p`-Oo<|?*)YOKiXGy(fM<%LhEFAeq}3R! zW1@5H_Re6R&s4|Ziqpy0l_`=+pbO_i1E}Xj&-Ir!2uAVnQa{g0yP{j+h zC^-EG^mDf0e)|OWMAyN?%sT=2x+)byk zZY#@{LCSZ{L6#>ZfAj-uqoIzjwy)G~W#_7~Z*6&Fxw%_;{wT$*uo3=Mu6<7!jS#%i zE(#geyTw|B3R8Ki^8d{1*Vm8tm+*2(%jTjdnyC4wU{%pq4*l2b-Gl0cUiybp56A+?PH}p zC8+6Oa^)V{3m~xkX#}$@E*=){h&#=08GGW4Jt<5i+ ztz*+%^z<)+jde`({mum=Ir{}dBb$Ni;$D}d>pa)rEqB1YVjdr9By9R(esrlg9lV2$ zk>5}q#yHe%3H;LC@Em}7%Fy&qg{rF^^mU7aPq8GC0Y-Auap@^#Y1q3o)_ripYt4Dh z^{~YlyOY>D(8BenfeqtcGQ;ZUh(tXVoIwbJJuhuo2R9@_##UviTn)Vczt~?oAI~OJ zGXq{`R;tpuBKp8=s8Ig0=@qmlc%qxecUFq#-`KOOY`tk=^{ zu$P?}@vGmYJ~nM3Xkx~vrVI3Tm!pb}bH-473C3>M=s3qxi|ulh=@&iVyd_Y&RS43V z**eiL2;i-o>f4TL%8p5pSo?QLCFV!yt-{2cEO44L(=Z^zwiRS~@sXFhKh>IQn7WeV z7Z_fTu0ONYg(>m;)~z%$<8peF;Q!G7bj#mmU*;|Jmo&eRX6(y^-wBZz_{;n`p%p=c zriP?tjuHr(IgR?UmMR7xPI;}!Ao14&>9b$ssOTtZTJoc|B%`^!Yrwh3_Udm}9#>A9 zur{B}S#y0xcdb6!U8x+H3}7kR*Zjg(cV$?YuH^3@X%%OqwUTrdyDX;7_DxHR2T3VkS{2oU+y5!z5ytm!iFKf|vwltJ}9n-doAlVBnRteJDyUGm&<>O zYi*rjRa^*Kth?--fe0^Rk0{irQmkZt!bV=Hn$~K~Kfl-78oxgK6uF|&uIJ!t_Q+iy z$MC^R66)~e8mhX?42J4pYw^=jJ;v(dtu|-&gI&nb0p?keh9^wYt6Wjie6axdfAP=e zkjeC|Fod=DI%6`?Kbl*8T0EZg9Yi{6kXk+>_Czb}PSg%N{}xocUo3bv4D5bnUuX6| zt5%WMkeTRH*qiD8mbO`hRu76?H2F|)QAxt>)sp||OUGCn(TnB)?ioUV`0Iu^iL~-t z@m;nes_M?Yu{`j9INpk;sy}0wUvnCXPnr5eV|4ZN0;7f0Wr&gyYfUeXO_Uxd4U{ot zEe}!fpvSBQX#IuV$+ihi`M1j&k8Uf}G&|HtiS;PCYjoG2uwoqf9kurF)`|=l5iZT5 ze&bDj)Ac>C&`KM5H<}`Li?X}l@Q(Wo>R}qHoQ_n~o&IsuXPUuhcC<}Sz3FPpslh-( zVq49)xu=DcyozuxUk?sT>l7o|%9qn0BB&sGFvW<~?o^tvMrj`hFza$hWe7E+@s#wu zRXc^QbyBDE_OdWO_m_UAaO8QVQ924Dq432n5@lu2_=uOX^gCYu^?nFAXIix~#h0nx zD{H10>aVHU;aQ}blg3%gyzVv-2kzb^Gb(DTQXMa}+a89RHUGTi0_rV04t+ zn3Ee>gr>dpv&}Hz!XP{*-Q8h7VqDEVcZLw{p0DNRy(uHu{ZL!YnmcF+gbWJ_lChF8 zg)Srlt1V>C+|#K(?J1^5M|y!r^BmJ^=|vT}si1V!rNcn-EB_Q^%MN;@S-?S37$>CH z?yNluC!TDE>M^7@sPv>V*YLMng)!Uaf-;{nBjq%UgYj0^i78i~-<|7Pz5sM1A8H+6`idig z$zfZKDmgHH=_$GY4@Yol_uu0{<~@xEu%_@rLm4-3Pmf;u9~L*BsCZ|!>_XRryhK1_ z^jZkgr>O2NV?`gMBf|VS<1S{48Uq$JA1rU#0QS&ZQ}1rA!_Oc7LVjLe8yus&mSH=Cg?Fa>O`)L~{1&X# z#DUbxYu=q{u00XVZ_Jfu=$N@z*Sp4iT~rI2WbNI5BgYYEyoMpG_ZWU;$lG%usPPZj zoBeluH&%IZ;LO=ifyw3DgwK_+$l`)RrPyAT+mc&7JA zT~rxs!P_pean=fAr>4de3HK|~H|NlA;_+)k>T(6`$!nkhwm7LO$}Eg}(%CpU8MZ+l zlT>ejUV#j{z17Z1?#xNwH%>^G{UWLP+zT*^%h&KSwkLb_OC`J>VoWNf78A_b?j&{t z=5hvb#LIGdVd40wOHEa0?BBBzNbx|Cy5MyQH<$=C#4PxC#j({oubXk8iJj9tt(&*q z>2Hy$w(5%+u)jqjS_7I8-MfOz51adsT|q<9j78^O$M?Wz8D?X z(!QcMe=~CJXYO&HHNq}&(aOdw-G^0Vr-ijavKGRAy^3P=FFjN}b-dVzvWTk+WTm0v zx+<_0!%*2PoGhoo$^t2G$uQT_x2ZI^xUFrTSN}9o*+DgkcGpW{p>>h+#;(7>016I+ zdo^ajGxQT6j(B&4An{sD?VRGv;pR3(Sm+9kf0rZuMj>} z<;u5!Hh8hd(#|JZK;3{`Tea~Ih$Al2b}!wDGo=PsrlXqf7;BMZ_m5WUS4@7lIWP5R zQ1rUnspT$|ws{Nv*=~uo*sA7e8n#7Z|E4-2IQAj%u6qBB#fS_Ye%hOhdPd1ZVIg8a z^g@iY!i_(W@s$c$&f4!rJQb$PnLe!LHE{Rk&s(3IoSZ-L$;ch4(lOpW{h3PJ>sGS1 zy1uL-y)UlgS683Rk*zriT>%Y~5Y1~Rj+6=#Q zGQnCB$9x8M=?TYC0{RWzSV^Je*gJ&dadn%!sE^F@6~X;-{KkXd+dACfgx&Z5 z>ha`OqgMV$9c3mTc)34mEID;H;=^bCGBSO3?O8+U`wg1sG`-fEe0E1Jpq+fy)a4Bz zt7^SQljs`JUYBxL%3;ZXAF*?e6F7v}r*?w_Cc22xXDH0V;dB}mQSoFw%Cs>)39Izv zm2T^t_1jFomyfDhlRn8T#0;F(kTNXAoc57t$BFVv+{+$69Nd((@0z$>5$ZyBKH&8_ zlq{-#|0coNWba!+rrK-%Ikb|LMV^PlE(93L$!-w?1kc3Yta$+`1X5&Q1yHh=@`=g*yHWNFs_A?d8cqI%vw zOiBt0Qj!XYbjOkc($d`^-3^jUh;*lPtu#n2&4P4GcXu~SuJ8H&-v7DgI?T*D49|R? z`!4vFxGlkLkM&3&xpOHks?JUo285(DcCL*p(wCfb#T1Q)m3N1`!2 zE7pcPY>j^*5el=P7@BLPhh|>uBi@~m8$6$}KSPlnGjgUUEmLZTUu2y^WZCvkNWOsA zY4FW5!bWS2fm_o+0cpf>yKwu8@mABI$KcOQjmU4C39P%*G+{&LOp}(YGj51e*>cxf zz?K52>sJTi9jw{aOS-M>P2k&)jVbn3Hx%83z2;MnxG<{*ah_s^$4LseaXoqr(xnN{ zSv>@f_yOaGTUb@R@m^_;(V_Ls59r@z-qJM7OR-5O>er1Tvz*cDdZN~qylG(iyPx$d zqPk)}gPyZWXXmWrY~LI4CYc*5v|qln{Qmk@pKdYlkqj(6fmuoGPg%I6xNWe9*~n~Y zINW{$Xqo$@aG4z)w&v?b9aH;vX`TxXo(5ydgF=zqJ}=syd3nKGrTiL+c&dlm3a{>d zDY{hFu$IYK(MnMHi))&pVQ!(2lI&2gZu`b2XPLbuJaS6*NL%eY1o_VH?_32Oiy^bJ zpbAWi8kYP$7#n9K-5PIk^!M?%F7==!hMwF42UsK(IZ>ks$mNgfGaqbTIm-qI6aDVp zB7(K&Kjb6X(HwaAPgi7A&t*2#eh=;Z_mURy6#7#`R1I+o(ZK zQikXByC)w_zTA#nZ@<)p#|7dvcIMSVK&pb+DdotNx67>;7mmTz)(;88{Y5U`z$Jon zaZ|B_uDlYU`fP!aRMddadC~9J8^@M>muxp$(VbN#&}TF#2in&ghqLxll*A}9T$1GB zz^0Ua?)q4K`XB>D9Mke2jSLt~z{NqO>ZqFhZO7RjYsa>FG`Yqz?SBM2 zpI6I@o~D_4u`ev01n)ktQ&_Z>sF>{iBE@Ud6zH2Z1jq(DtY89zVk>6boBP3q0JJFN zdhMy49W9WhzO+U_LSKPyCdM!QdyPI#f*s$bi=?@8CY8vXOk-nN_A7GwljVfWux9pm zjoiPH_D0i>qg|%3vb18o;7Lc|WOr%Rs0oo1;ATT{<$1urb^f`jn||0E#c3tkVT1;1 zIELp-(m$I~G`ZtsNPCr93wDt&B3IKl9R80d*+)O}qMt?k#C0k3ACgulR+YX`SpMsa zjKNXl4H0|!lQE(1-xX6d|C6?NSGbn@0^TkNfgpCDj@`?^hOi5vP$@cnM03Qe-)(c1Zq!mw4^W`GU8n zzy<87*q#Rul1~eiJvBvOCoM3K^i?_}JZ@EX>6N(`YA!_m*49Ua9h^**wmR|*M?*{* z-}9{9<24#`h>iyJxPCV=7NfIk9>ae$6e*)6-rRC9OdC@=dG4!ARQpddEd?-wuZ$Gm z=h`)fu44Ca=1C z11@+QrTm{(`tAEBE;7a86t24CZ<5FqW;o-I%TwBo?25peD7IdC%o-O->vz#{)Ougk zyt02sx7a5GG96bE>&wgn0L|=~6EDSOR<7e#Dk9{2E@XInr&>PiS@h||=e@raA{-a# z#p7^OfJ_ENX(3EU?m;>KvqYoDC3h|grn-gah{uwj)$Gm3ibydkRBKlQDMF-zoHT$J zSy=ugTWn`;z59xpr^Mi*ev4dvDPer}mlF1c-VrQu?SjI4QQe0xca0T>B9-br!%93F z@kMgC_62Skf1ODrJ3VE?|H#3fQNXeR6i``sjr3fUjlJRA2-7lU&xU`C=7+Rmz;g$(Aa5ya#1N{0Pb2UqLgqPV6y*^y6Avq&~tiuu6^0< zKo^p_!F`R;^cxjgJ-Uuvi@-8;0ETh8!zbpeCDyI_@n;()4?3gd>OX7_M4YRMs%{m4 zSr3w*OiMYtjE%Y=x8or$F>>PkndUk1L_hYzzh6QG&$hX6baV=wI1%t(HI239&%>ErY{=s1<_RN`>%d54$OTG6im47)-e@uk1VOo-RSOV9# z!oHT}i&c)+mF&P!@0gs@QXl>ss+Vo+Ya|Mi9Lsv}8@Ks~3pr_He8Y}so#jM$2iP;* zP3~hLma$O3z?1BZ zeDifr{xZPnI^yMWnyBZ87NPV|TOsT0w7|+M6p=1C=;3XL?x-vK`SW6}_ZG?6 zKcrqDb-S&rskdQ7|1Kpmr2h4?*~MmUTjEo|^Xo!Y$6<$#6XSc_X|}Bv`qR@W0uDLE zKIL;DY2gB7t`asvsmtrxVth97ig?1+Z>a=swL46)cUf`9UpY!pNMuKyr2cgLcus0! zmjAxPuJkret*E-q#GDZXGS7YBsNG_39($< z63gf+a+ZT*KCh5Yxo;2}oCN(dKb^VS*01^-?~f#x&1(eH=iIhXDM90~>J3@Q?|Up< z@0CFeN}+&`=?|QPObN|>r<~Eg;D^%F{=d=k7w6_YTuN!Hy~|U;&g)Ash#~KqB7kSAhDF0h$DVSDylL?1VTKP2D!1n#@%B9jXF_Z) zKrgIgJl0I{3JCh$-VT0SC-fR*Pr{^h={AmWa3H<&fk||b2=B!%4f6F~bpS9-OXBxH zVg^(JB>bJ#M7`vnOkc>|(1&6dj$+sLRx=gR2VcOQ6F(YIc|w(UmLg?scfvs-@+ZQ20KsxxQ zRb7s&O5C*wpWD+d5$`l)Dz{qoNYfw7-b{whTSYz|Pn?2K{;>NE(kFCj&OwpD2eqaL zEQ(Blfg3fXJ<;ZqQNGX`ORS!lzx=eGzUM;Ew(@Fp0@$t#!hv|4(E;sZddSC^a%7h4 zxF@W!^F#y^`o!;q1iS|6C_DG&jv~{VJ{SbWjHSaSwm^F70PA9dtRsP z1swpnGx!@>svfq)Q*8A+ZvbF~kfaH?mKG@^ZDg*ip*ck@ z#>v632WP>re@*@->@&A^JxeuGx*hXgpY{15Vn6J;w@V+3_ib?Ss2|A2&1g;&vVDe_ znPnj@tP%=rUEbu^=KN{lrX0l1;-HstQbx2ZE)ptje$Jyvzr-*Ri3Q7-Km~sNe8r7o zTtn$LNIjw!Z|9p>+0CXUS%0#;q?3bTn)46o*=ICTn?;hDm@5^@r9P=oVDBOyec>yg z2~mo)Ht1CL=BC_YIje=o#DUH)&t>dW5rZ%OCk1p9wS z)6C$9dr!ZR?C&KQB@ak$YGwNI5iiptpOV+r3DCWJk`*<&Fg%Mn`1>6CbK) z>lUg;GU1Oz$$QrQNVj52pixXOvkx(Ci6a~sv^Z1eHwbWyK%^vH^f9fas6!EPrz8SA z{$^!lfx>g-ieMwS`p)br@~6Ks2`;mJD=rS6e2K3?S+6H@U%4S;%|z>JolUf!E6rP!&Tguf zs>L?n-n?v;rPv}ndAi83*;l+_)d#rEey^v4`sc3m4Qq`;H`fyrP0SLaw~+x;t`vb3 zkHxHUE(keWX%zuezO=c1Yumjlh36R({nTV{Zq*FDkF!oLad^j`b?9o6NFdU^U*Lf} z(%$d=AK&pM^*!%}B#eD*NH;J;7r+WsQZ}Ie#gy}hHUZh>y~^4bzcn=sABfyj2tA-@fQ8+kDk*pla$$;-%?ofF$)pqK+X>gztGOo+ucqw23KPIO0 zHH$^=lJLUI1B)RVuoeg=&{w_-+^cG=6S#g8P6CcXE;gq^bkWTFdLNj~zM31SkOD@m6J!FJidg#&n8$IIq{G6E+jA$RI8*>q~?tribD?Ss2%qA$TlE{BYj!_v@|c~83F zLJGH#sp%Wil0>#S<`ky;PWtcxy6b+hk{CqZOg~Bdl_#<`aBGidnM8TR+G}5>^L;(8 zHBjJKxf(d0RSBUVbJ=OSG-x1oV+6V#W1cDJIjUxizE7?#%kBwYlE%LmzEGuOww1Zn zcDpS2J;vEstUOe^W39+FTEs-iRE!k;w1u=cb#+@F+pSMx8qSPV+WDC0(qDXoXw&5S zd&bWEgCVCVR(9OTme0&iqP<6vlv)7E-QeWrOwl$lcpc48rU}V)$tPs3nzm8&8uI&9 zNy6BA2x<3sMGit!2SZ0-_L`}_58avZ@D)LrD7>7<~OJ2i|N z>>tsmm*-7=vRlA$A_$%*75>XS4xE|Bn)<85F-{oa|)ks5MKNEwq%RG>Oo6h3K;VVM zyl_BMb<3Y2P3MV3!`D~oO-lrm!oCP>{=89-bwyO&A0lg3O&RIq#CWo^xJ;o)fn2)7PA!mSnvKlJq0-)ZwFqwej>}2y6pbuebJ7FpcbX> zOk7u$=O-i(wY*e&H~bSCjdM2?{~uCWurbqDVk?YY5CeLg_;pd3Z@#kx(ZU)=5c`=c>jT{O=}V@+euMb z81-sbpO~>cj{JVkn7i&qKxCfPZog!tPr>^WR{RFodi?5pfBvmg*oNIvE@PX_`u+8Z zNTGV$O2Z74qxhsfNR1iu;b!jtjU<_8Jn_qcwPR*{&XG)Id!O z_86adJQ~i_A8d#b9rGptRXcqRA0YLMx>fK%x`NksiwLFF5vI=+ih8#?@GFfjju851|QCr&pV^_0uI zBnCpJwDfDX-HJ`;d0>?zRB$5d&h%sNecyM`A$VQgZddC^-;oM{;p|wnXbzqoGKp!m zTOM+(3KNkpD|zCw%TY=J4Hd`_LfaXube=CiysFengz()L<&%^J+}H>v`9IIog|nYF z2pxeu1hmcP0R1B0MYyM9Q(LmWc(C%*Ia<)M;+uRW?ifZnT>+_^iGWLROcGOrUP_7J zZ@nSj4~<4QS|wA)AB|+8=O40ZjStGsh#=dI*m}-g>$PD6ffv(cSqVpX8uDrt)%<7j zB9&*FspUIpHp5Dx`dz-s+l#aCSSpI&|J|Jqu1{6uKZ?ebbe5SW&i0+lo;F1iJsR#R zxgdTA`aW1Dl~-2$MkhRKWFH`3GiI?G&KIeyiXJfzVfM1;BIO z`-0c&{p~J{Z%dwogtgCGCC({NQ#K79m%45f6gF;RF@lo&(6C32KYjI~D8;~teDI^v z?_p|}KXi_&IALzMZ9i%8;wv@AD-*0LayJ;7n=nq`-M=<6_whQZd1QX#Iq$2%=u{3- zKkyl=L4!U-aeb84ea|8%lrCVn=J5$5W2gh4vqyrUZ&Up{fs1xWVj2^4X{lPGP*8)3 zk^lUPl|)be6p@?BEeeENx<0c$k*~AzD?slU3c5D+?GzkDcm*2K-c7l%UWOqBwZ+U2 zK4|H*5x=N?RF|KCt51YMNS0dpQi@?D3A?vFcJk5l(G_qZ;rRXHWOE zW2$80{6Hm#KJ7aLixepV^zNY2HLzJ9yccCyJgsu`s=I@Seq9nL^>r!c@x zs>G4ZingA8ay|v$14@zeN3lZqYA;JgZ5V~vZm5}z?_TtYRzJG>5l!5<@#cnATgjg4 zoh}5MaCMU`R1VTVI3D7wiBmG$`mtwdmrd>hCy7RqWe0W6KYal+jJ(7< z(5(77I?;Qvwt<%CmNr_Oor4VH?)A-gFAFkb+{L1I(`1|<~PbVMAAz}_NHaHd1C#uv?{pUr-svqijVR2?R7AML49SQ%`Q zyxb~45^2?Bqx_?m#!}XyvtYBB*t+&OGNxN`$SfFeor3T%PJ^rLi`k2X&&}2zIRo?y z8#Mhh-K`q7*Ak>(1zf>l5MNyqOqL}|TvjrE(4rWq!`tqlS*35bT2-Lmb8)W7f4~Nw zQ*$AE%T8-20>3vt2>eXp&B?(G+G}yWePB#fHy6+Yk!qrU_Za-v`p~W1?Tlu9o=b&bEp%@~XG2PDl8y+T z6o0@6t_;&o9v|{C^R~A`dC&f?Q!!|oDt)seqDz`GG~8ZXF*cpiEIwkfa*y!cNvolLHaHzPBhw}ItfH|*5Q9#bn&S7h_Ha$>e0JW1a)kf+=mlh0L zDWYEN@Js1`o(gdFn*@7?O~UX1m?*5F19Cy#<&zuTfhKOTF(|BCy!@?WO=Hg9N^AiF zoBYZt!%W;`W`&jo{Y0bv^ZQs6N!Yngv<mY51*r48!quV)k{);zVOri@OyBm-XX} zTgiQ+=YeNMha9zRzzppC%Zhq`$Gb@nv4x;EvJD(emIV*R_osh!))U?Bd+F>Po5;{Z z_Q;rulQQnVq{X-nnjETZVta5BI9_BV?#fkr^Rqs+8^_CsG7eoD!d}J--AV#US=GDp z?p!iI$t~)|E&21@aA6ULU;P#v4%iE;hoGu2eYzebY$awwE^qtXqU)$Ps?9{Uo(i$z z|8|{^*F#hXhbmT*c4}3BRr*58os@DcR3S>ypsyWHXJB6tY{?6O)wP}*X#7Ih_+qI$ z2jn%yBjCu3Hd$@j-5Kjy;WAKkM$=Ldj7$UP6&A}fxmyzMwwSLFW7SKI6E;e;({Gr( zb*LYskS34=P5K;NI_M!v?Y)&dmFF98y)VX}2(~nyTiKq>0)+L8zbWg_nA>GLs4Gux z*Cd+W@<&LMU^%`y6$+78CPV4C5*oc|_KI-cpbrV|R)R2jZo{|BK0Y4mAB}oAuvB;x zT}CQkF+~>c75fT3HpWINEgBnD?G1>&X{o&k`|b{YBU9LK*#b@ZTBke8DHE&^O2W-Z zy(-lyTFiSM@P3}ts~34M83@5Z5eS$5fKp=!hNZlNN>KJ<8ef;tlXy1^-S?OcgG zH?rd$^tI8l%`n*40f|hKXl#q%q92J(cD$PR^6s!!N2APlQuB@aR8`iZL!oFcTjvJX zs=zlr9JpWA9C*3o%wPQ(4}ME|$4}A)TUe8XN<|tf=r+cw%`ixIw+)d;2Y$ko8SJczf*3gd*vq+7t77*o*G~Lt(t!Zrt5KH);`ri)em{np6;OQ z_W6FeDAk@di!j1YH(b!+^B!=;>^B{?z(qT-QYIQ{wji#Y;kSbcEp5AMjfz0!6i~LF zKtu9IYI6EJj?YS78{@sk1OV5xbnEQL18}SRp=RPqjJ~}i*WV2XeVRaaURIpej!k_3 z8>Owa86>7!Em1p+1$Hu<%bJ^c*Osuq>n%;r1Ypn?d8^eROLEnov$iXm)mHwCp4?!w zO5;sR_@AY6WvXEcXp2#+x9P^?+*kUhnjdNjb=!E~-(Zw#pxulr$>=IzZ{{}R& zUc&4e9OoJ(3uBz`1VMk?NniqfZVDER^sJ&vCtjlBz0E)w}Jgy*q7JqN#CXWR!I_y-bdSXjJ~n@^sFz3(SWA!k-vmXdZ(+|>|B&p& zFZ4AhDje+3HjVMSix>B!LRco2q+V%ov|aS*No#t23=LezpW$K?+A!E-?R6f%LliaSv-CJ^=5?t;ZZtjvs_tnwWL_k>|H?UZ;R!fAi-Qb`h4YyeXa)X(`hq<_0;xYI zW@lYC>Jt+Dap4}!huI0|Le?}E3+UrAwE5zF<r4ip4C-6cWj=e*vt`YHuMf9DhFF5^TdIZe`xm zm@H*LUgSj2%Dy6;@ak+aIYmHWp*n0O_L-&`0)vM)*mP%T@47fSHRu@`<{3=0YhfDe z*VSenKPq0^QLZU7ijLdkf!loi?bx&yL)&*@m$m?b<1|CQQoyKQzt%NvC}X=A=KX3v zL$i$#Kvpi#udt}dIaxGslbT}k6J~`>1!&CHWz4E}oNB>jt8~tm)BkF0mnvHfDzp-Ud%TF0<%+hqlt}AMX5%_Q z5&Bb@*pQr+*wDVnS-aF0zWw)1;zJr$G3UKQ1(kF(2d3DhW4h1wxqm=|w)^3#+>$o% z^($v@PiIns@XGPlo7}*9o*{~ltkj#5Zj{r4W`}D|jC84!D<*nx7+IIXO;D*4VzWc( zGV9sS3ihAY?y<(4;PGWM8rUXS&k@{*ec8Av-afM6;BR;Te7+|sHQ^q9^09OFpK<(=#4dw?oRUi})I9&>eQ z@t_d8SW~K*^~SuK&1eo@F2**&nmHV9c=K_iw;mt>2N>KvFJrQvY%Z=uQ3R<9@Z2Z+ z!8;z_wyZhu6l5kI6p^raogyyO#-v#b4U`4*035HZs8b^6ZB!bXPa<+L$;WcK?ID1T5O3ZZvkLT|_X%9T(Nm3zYJV1l z-J$!+Xfe4cSkYC_1{`}`0+V5QdA)ywF>Tnt@HKl6d85z4-VBR$V0<-sRxOu7d+sTQ zQqbU3E$%<-x}vvN+7m(jqTWi`ex0noAK#)IvC)?#u|-Ga=c}#K{)?B8GBOH7TbJt8A>2elJIi7y67Hu_D+_w}8TjKhk4HxR zv|-BH0Z~408?jcB%r9?_=R}w%`tM#toBunb&8%lvZ|u&Ao!dg*pBMxj9C?@K3nr=LQLXB`Pz#t~oc zJkHGDekd$yL*cZ8$UZ{-*RC`By7r|dl15);Z4fuqUHjVpasRql47rZ-1^Y-foi<=q ziq%`T`aNgZ&4{$=(@Df*e{-+2UAx z5LAuzf0$AXb3u(ZEjDpGI+7dLxPELU!BqX8(F!1bq&)rSGt3NawG_=f%m`M7Eu8G= z@oxlDAj0x2{CaosmM5cyKlrP9UGs_!eE5vduyjXO;+r z9EE%zG~7h(beE=QRibH!Eg*pJqZtBEaVVa3JTW>O-}fnMYP)C8J%M-*6sr_& z4XJ7!)gGf7wQC~qBUpC=rA4Pod&z|G2VjRnY5MWhpp;p-~Zu zgEuZC9p7AQt+wM4tEjNa!;iG90>%%iE24&qS&8tRvi}V8FamVwg~({>WFdAVw| zlC}=T{$lh6@7$z?pY_Zi*_ZmZeaXG+c|8f)cu;s>6dTg-~_ zG0rpD33__@m>ODg^HOvrw%EbeJQ61=M*J1g*9kqDZT*rP^s!IyQHuKI+o`9NwN<=A z)xEf^j(Po;)p3f#QxCymr~-7}U>AzoP|NIQ$CD{p z_L*Y|b+y=)?dFuNro{1pIkNYM4+a23H5~t!qGblajVpg9*|gqbAkO)JqbfY@3$&SE zj;W2&{W3e+%RjZ3k7nQHaZ>gu>u*6;7FCo(htmaydV(9P;d0|~C9sV`^8_h&6lbPY z7KAVnro7!`Rd~KcU%U=9M>2MOkKpYj8>Ou5!E3|h55AM&yx|zz1v3ZB$=ZnUA2_2w13|Zfr%+hyJ zxsHLaX$>Vt>nHi^pA_*ZoJ|LIRVZ6dNS3x34BJNz(`YTY`M#rj$WDk3;DM-TsAWuf z2PDugD2hwy@3$T?jIwvy&k4GFomBWk)X$8> zy;0Sz*|V+V%u@_3eqjThLN?yrQgp;0ZU=*0fq;&d&ksyY@^dhq>?v({vts^wy~J4eGkoA7ayZo$uJyl-76h3#yw!sx^B70SvXwb}f!U09 zL5kA$#@{;2{2-y_J%A5l>%V}EuZ^bsQ z2Kjuq-S%d2x?(AezSRrGiy}`u2&q*(zq8h~K^y9R4b7Zsdk4W?ZQXep>+zT+NOs$x zpj$lBcpk6g=+#YKTJ}=CY7`Lr^n3z3>l?qMGOw^=AF{%!yx9qOTmxlZUFKs5`y*^x zYn+ONcLh!W!Sg!jgpXyTM|;~Gr;*;1>{eC=3C zmZRW?g{E3_3Iw}J{s1#3&5i@sr^9?RA-SAIQG*z3=3aq^3Yvx$eWb5iyz;wrxj zpyt$vFh0inx9+I9Eu|7NPQA2iR1yF*CgKZXAJh??4l&v(eld zcf4x?i5q?_A)yNv(Z4BG_1rnKpw7zPfzx>I!W7na(5;`3V`kk@XjgcW>SXAWDd{ zBCzgD-T*K^d#h~Hu$_Z2%7hosPy}`YDJWHXbwRZC6L8cmb5nHtA0G01-r2yKHKLaM zHr+IVm)w^n#Vfs^Jie6{{nh$I;y0oqTCxr)Xu>_KxuRTsJEUROn7>F)ZFOfu!Lkv1 zNe#u~J9Rd~>fof8Ud_gh^#%;G?%39k*5C29?oa?irUjRXgXj}nKiZLeV@grkALRGb zy6t@0|ARnkrycBmD03jOP@$~~X z3)<_i%&a|WBjZdz!$2U@oxGh7mYKOWWVz1#5m6Cq7&RYWMS~J@$&Ho9Eg!l*>CR>_Vou34U3EC z9_^XQ;|v1>l?;M&DDdi>^+pR#=iSz#1%qA@8WT=5j*w?A`hBdlJ*|~3gYw+&gJtrPazcA0)q~Uff{vxDv;zW8Q!D%Ql(`Y7 z< zQx8wWZWkn`jArRGW#z=_P~O%xa8|u>;B4Y~(}=ZzPAwsAP^we@L7bjyigZ09E2!^v zYHL8k4C39MZ6%HGFDZL694dZ7xR3h)b$Xeei09G{_1*hj2V(#sn)ZY;Q(spf%Es1- zt%|H3?=l>KA^aFA2g`<$ffE@k{i^SP>}`MWLV`teGkxstP}~_6236r@!9_=_@p;_S zYo5ic{|Mm7I|r&Y*I|J1>px~eA_+mhryk6f*H%q zJU@8jH?UN+gZh;Nm_T$h)m2e@tcY#HIo=1S%h;KfZ{%H8&bplHWFe6zT#*>Xj? zT(AGqy+oOCqua(YeFQ2RmarK=^JN0e)0u>{&*!Gk4%9cReGFLB;Y3*F{0_We`T{!Q zROiysorLNbtwil-vXYcYQ=(T5dBN6%F|b#J>ql8(L!33r{%#hA5Dbfvba zX<3`@^|%pC*#}bdzQ~npZ)Yi?)kEqArMFEn%W+`*oi`A(vzceni@=P-E<$P=SHkMQ z`@0%iBzv&KL1UJ$0y^uzEY-I5`6b(VuWL!OmynfkH=TS-YZ{lq87LSMjhuUR`tftU zi1bYtot2P2S>Lx&T**SR=($QVw_ z#XLkUge*mUN~;0(@jkx(*2Il(M|y|ftnB-@mmpsVU^owUj$!S!f56P3Sbsy4V!w{U zJ>Gb~nM4_u-i3rDXvGY~Fmvj|%xNWbKE{frujiWn-J2>tQpx3|d^Uo7&@_)WLA!6H!rTY2Cv#8S z>a0D-vWe~qNCSs%u|Jz;TJ+DDW2wye2bdVN$*hpJKW1yf_F)H;? ze*Sz7xjhqz`Z!QvD=F9bPa2nga^~kB1VbIidX>-Q>tvvN9*_;LC(P$GytHLiz}695 zr^s^eSNa8M#cg%$lMU&?qRk@A^4*JFM|_R_Q8tQ?mW-lFhwF&!s!TTePDJJJi$2pI zbnCc26ktisSBG3W!%58=oEV;SUHwOr(=5^)MYQaoF$`*cAPQ|0QPA6ZFXi=d+rJZQ zObGu1UM6`MB}K;sS#we;wjS)ah1dl*3$r=D*v#YDsunl^3L9^~kZukR+oM@UQ_o>g zOhN;5ik8Nf6PDK#PI}+fw7wyh4oChA?LZpYkH8Bzwpve0Ng zS&EPae|$j1>p@5>n@h(OD83zb)PILaUi!^B=GAfa4mGALj8X*u`gS+vhP$D!7v-n? z2_2jE4jCQpO%aZ`p{(C~HkU;5gqx%5;=e$@>YpNR{EdE$J83}_A^d|?$f@3ElKesx ztvLEm_ceo}9h+IcsGr|upqP{OdFBWLxc9l@ChV&en(uTD0<;W`>QC(-8wRIgX08MI zGY=eSL1UapYX?uI`l`Len=SZ>70L{O-s6A0_FXhmemXK{P}`#8pbU@{`QZrx67~{% zr4^i4M)zYCc*{9l%@%vr#SIE{DQu!9XzgA7#nf>`EY_)uCZs>4(Og$zl~wzVeubHb zlnU94wTblyPEw`c-W*$hVV#b`jHW0@S^JjPe@_8UQfD-rC;BlIezE)6tls>Uvv)sC zec)y{CX#8JEV3mSpOh~43BiL^w7`(md`nD5`GzVm_bTC;F>&kb2p`Z`FWzK^fsMJ( ztmL6eIzHul^|?gL|F=#=FV{mTASkGV?LybFx#eC z9Q{kxj4@Zqe5f{``YqFPS3E1^`5VHWQ|>j-R|QwiZz2kKV(h=H^<4uz~i-LJSq8AQI3LOA1#ut7|+s6ini z*YMq1rA@lV&=%Q}Zea>%<$#>En3pl{N1VB!8c@sufqtrgNL!ljn!&O|zn3`!@hQU` zVS8EAt;j|?mfrjnubb=_Iq!YmX4}6_fi%8`r3H)AWdoG(Yth_iAN{yeC1c(q`XHu$ zO0kEvJt7u1U8rnjl zsK_GW< zJpIkMC-0%~ul`|X$6|VFKEcbyZV{w})Tq(8m)`3+z=NaM$1@4w@&$X-1SOmx{F%D& z8l@u;0iDsYPd;j93{nG_O<(g&tkAzbfU~AU`-?)gk^J&J)aPRFo@yj)cis)V5>T@Y z#tRJj{}s*iLZq-RMAU*HtYq4*N-_c4dyN~4FMfFzQ;j}Kq|$7CqlvyTJ?iZHbS72x zQiu$_ZS!@Sz&3$09kr@BjvCWRMk2*`14MG)g|nmsRCkFDou)BK07p@I_FT(KkI% zWFc@Sc;h0*Hx*^LRt_dAX8&$sw|1e&m6G;D75#syYdNtg*pZsw)uV zUUSUY&GpkX@km91I9#dYj+j(8$2&&5rbPZzGJmK|i?J#d&C!9FhsrQxTa?~( zXjWV@y0Fz9Z2aKUS*hjw%+Ei^eBzWlCzaI-CYV~Ke}Y?zHt_u(5V_eeUo0i*hZmUO z@W~C|toxW16J^pnD)7WKM7_Xnn&%RQ8KuZGzUAv*$ZhHNDjx2ANmguQ@DPQ-8r<3s zphC=1VPEj15y~{J=`|+vbN_UIOpbAh{bkHdx^H*jtn@ARO`mCDt8>~Am-Z96$TInE z*PPeg*IigIr5T(rpz2<0R+`y2)BB5$AM{*-rB?^D;+;))t>BNJfuc>jZK2*Ody(3< zigr(Dsba38rW2to@(@-HdeV;BLVO$b9Y$E&aLbgzDkYo6=ZqVNO3U5}^tYFi9v;yT z4Am-bdeQ~oH7Y8JcUBRjxsqSu`3vqzBQ?9q5#l=p|=N{9)g2FIrnGkfOcH;x`x@ohw~;W)vFBtb-S|`j^$tod&aA z?<+2Cd|%Rg&JqThAUw$FYa?;=OL$@=KxFT7R>!uvD9}Si=e&mC%iUt(yOAkoLx(_y zfhTPk?hYXKafQ`2%IuqI5OTAXa2s$>1l=@m_!ZA<8IKZu8a2y*NNL#;t}f%x90pX~ zL9=0)YNbPG!z5OSx175K;6=Zbi`t8{cTcu*Mn7P!oPw1xPxo8c6ny<+uWmNBAzQ(BE;mu0NjP^Kd%Vjy&ZoxxpDSoEoVx92$sv(_o{HN5N*;QT;r5cBUFV(c^ zc?#sQ*~5MPnb5;lEGNN2fe192BFpbtCP%;OpdL2Hbn;e(((F^h_Jl{alYDDks?3x} z6iy-fXoY7Di+G{OBjjgzzhsUpR(0jZ7=2~3avG78X0f{NRBGu^#kCgVSj~UTUg|AV zTb5Bmi=O@p1jij=!xdXv8Ze*x+KImQBJE`D!lpj6{L$Ap^Cg3R!&G>*_|K$KXb`>1 z8KBe^k$I)5GHTAY}7!?&!K#)#pY3XK) z(gM;kLb@Et=vGifx{+488%9s*kzxlA8vvZ#3+~;|&`})#2sr8#U zRyA$uv(h02N!oe?wJW4^G8|j4a&v>3FV*sKRFT*&8AY))7D%?BYjw3K|LhaZ^?d=f za37i0ru0aVcElo&ePB>T!ET>$F|&TMXJm}j$>bg{j(?HL!6B~lHU0=cpkVD2$!aKGXQd-t&}cm#9&)PVn%a&a)_n_-41FSt6hFAb28kY~qCs6wEVwnY_gcZEhR=q4;X5#C`GtIP17wmxSruSwX1;GQ6jzxcc z2c)dFEfcJTuc}GhCD@9HD@vw|WfI!WGcK}B;Y(i1+uT!2aw@<=UGYuK*+B%oN{m1! zgG#aSc7?@m*L8rOzkS}X@K<8;M1;^V;?-N9n1a8Ot>n@!AMZ3fSZ3&s>!&t8&B4{7 zEIW7e`O;5LyyQdrS?Ujf?coSG$$l_}@9eT+Sjci_c?cJTT2n+EHn&yw<9)w%GkarT z@I(1g=$?PSRqc})+k@ePgNw7PFG%Tw&|K!uTR8V=T*%>*>Y*tD9O|LEuOD zv8weGuN2B9RnVMkJ`#SrQj2my-!^-~4bhp)W9cO z6Fze20+As{MIkGW;=<=?fg;)vO5Hr6Qd?0*e`ReOGhee#sc0Dax6XzvvEw8s*w$6> zk+is2+rpJ4p7=iYaqv96F|HSusd|&|2>~sgXBL{G<^w@shuDA{-Fr@SRUF26Pk!<= zL4B$_@7UdMz}@?jOI1$>&79xa@pnO!gE|gq^%7xi3bX-UO~;0`j&WeeZ!8LA zRei}(k4J?(P+&))@H3r4hd!a3M-528ZqZ%+$f9n$HMNlNar-QN^xZCX4K@0^1QfNm zd$OBv>SJ(5rOS9onsSke26?2ujd(-}+>ag#)rsNZ^qo&>Yuh=MBYMX-^Hrz;CeUhu zaXH}5UtG-P^A(tm$+&?lO}hTDA9t(Xn@%+g`yfa^ZtP!bJQTY|J_F}FGP)&0*DGgs z-op#AETBJ6gcl7j|2F8+)YlDZ*U5q{7TTBgZw`6KY22h+U3&N&MZM5w)F7m1>Z^85 z^CABkqg26Q^$46rve%Q->vCweVz8Mul_C^7YKS_~PaT@zdv)qc6C?f|>bSpPGakG` z9fmp3yk@Cnrn-#5Qu?wi+XRaJ31)Ys@by>vj&Kxbm+9ODLZRa>lXQm9Wa%CY06G6qpuWk2yX1bQr|Hg?)SGM=s+2VRYKouq z(w1=J5Yyr1VLfjZMo<1ZcKK5pu0g|S&o%yGT?35H*#@ZuJ&~hZs<~8Ps#eZcolY(& z$T01FdE8+EgY2YcxQ=$8ciyy%{UZR@CykpgeXM@oDSK0vV4>muC0dQ#o$C+T3kF~% zBw!-NOpDE+q>GnVa<*Ed&8MxFPFXGG#xz!v35?404h0`CZnteUYz3B918o;tom{?g zO91{dDJShvIDmYw$fVnwi=l8!Cc<0XZiB8}?8dsh7gQPe8J?{%sXJ|olFmjOFt;+a z&vO>XcA?iFM$CUy>jcOg_8!U}LA4>hv(D{#>4Dpap8T}Cu%!)yx;{iq> zutzF`x;=-zE9^-z1q0mdx3qBto6Un z;>--B$%U9FKHlpwsZn;rsI(<7(4k)3CEwU@K&q>K?)(R2n>(j%**=TYJ9?s1(|Cj$ z+?pltU+$3MiVav#RI^cX2|q?YXI~(oV2n!xRb4`sC7inG@a*4wV|l|F?$ZsXtW)o5 z7SjioN?dtu_`sAPnB!?X4Hk7u+YSWC|H4#dG4aH8W>Q;po#~ZP;x&88UzAq8*>ADh zIR1}ZZ3$K}-azs_#r_@nu^Bk^iuzQoU!z8#pw8E!%Oqg-^z&7bS~f6-jXWDIzUeSD zi#H4zVls-KJL7w(QJle-_WY$6$IgVw?MH@hlcU$XogUzn0#~wjy0Zf{CE&e=X0?{j z*k?Bim39tj5gnZ)MELp;zc(+%+>5>=qvEZbYO}j+q`5YrP?=L*sXO;tlS}(tU6!LW zO@lIo*DblZpje5Cp8-uj@9#=tc;!Rd^63Qgu46JSR z7$!2pR2dC0Ghv$=t$u$2QzPX@wzP7#A-bFHzpDR_AsDEq(Tm(KN2fTZ*YfXS&dWOe zI%Hp(B)sBCdIgG5F16=Oa22u|zR$YPuy?++zq$5i70yvjM5vWz&2A?RA*xX_FPKB8yZiQ& zg;5MlT4E;bPBTNR-WM8<9~htrnlH8KI16aVO$U`WmTLa~OngHsby9odyemi^6iMlvQ^_Z3_DW6q7iBs2 z=agR|{f-CALyjD(M3KeL5a+CVBEF5+e@rcyn93>DxX(BK?kM&iPv+LXYFuByZS$ z>W(<&Eg}UhS9n@ecsxLnI!Q?UnbBYqhD3+*8)>$`kaf-82$=N&mR{+caH$I1$J1b0E|MwoVvfPT@6Ys+-?FRz1&R z6hgYvCQN<`4cc}rgm}U&*XIxDKl>T*s8~W7ywVQ1PWKu@A`US9E(SB0&rxFM$C~th zLH2FQuZWLjD!dr$FYR+7tsTZ4WrZ<-+l3~2>^5?=i>E#3#6_Q@77Ky?Zf)b|yqE+_^M%DPgq=&>pC z+sO*HpTYBFzii_s>RNSB=GDCblp+qj=qT_un=}Pu;xjp<3wNLDwJ1@8mw zpSkcsR{nmv-HmwRNik)e&ZdKDNFJB|lrxqCEieThuQC>N^4k}YmkeY!PABPUDt-7f z1;#mY+J>%nf85{1qhQ1UG$G*73#1gz7Z({AhY=k>p~OA)-j<}yDgMoG`V~BnSdz?@{o30@B+dNTYNU!ErRz-Wq-*ScOS}#l`#8o+c;}(Qu%`mY} zx@&&!XGU;9nBe_YgT0i-`m1x%=+y_%)7DrN`+sc5y~h4D}wt(#p9x2MQG62H=c zSC5!8tq$hJvz!q9E&x{`G_S1Vl4&&Gj)LC>P9*VMHE^}8VB#j0FRFat?d@BkqrxQ3 zw0je_|JjyXq;{)=;}FCazo$0pblQR%BI{;Hc3#;OYsJTrEk1ZyX6jU@DKYa~y0tC- zqmAZG6pZnADj{NR0Vj+UC9u$SNc^qbQ*#CRiIXk+cTRme(Pyyr zJmQ)RH9q9FWe{s6-c4nJc}N$|=XU;yX(6@z{kq*>!_~L(2zK(n5#b6c5=kBC)8WST z`te3rG(#IUhKKthRDA1pPzq=Bl>WU(gxCbp9gd#~h@x`P>t5vZCIQ zJ0+3aGzDu1z+Hb8-qjtqIH*?jzuJ;u72k6yZfp+d3+1yC?NPbb#9k%V^dAwu!13zO zkB1nsjzeQ|ZJTzvz44X_-jKHiUyZ|QXP((NPp!UvdBO^_tVarxSp&>TlAZu_?sN?0 z!NC>mTBtcpV|=52zQ9eN72{dT@nG=oy&cT4@9uGicj_R(6R&e5x0tu8G(|0@tA zo2!*y2-gK8RK4rISf*~^&@3#GO>F)v`y#>z5Jc{qiiBX8_{K7IWB&qHDeY3Lg89ye zO2-0|c*4!6{?oERkrr;bLGEr^E$uzI9JhdgVDeLGankM(_ePSc?;D<^R0}sn+s)@) zn@uiKEp5nayc_*WHiyc7&9?nb*HjxfWWeEh&n!M5w=32%B=s6{;oPMcsa0Ij zwAJx9Lf}VpQ82Ztt%}s_4;fE?4 z8qDr4wqLnpe~k169BpgyG#}&I{A!YK_FbIdgS^Iy=o%*D~v%0g9rJy8`_*BYu|uMWDTt3kIlVJqC`gA%!;&sMKqelokRbMDZkys zW3Ig;Z;ag-Ixv?*N*7*~-Nk<4gMB0T0T@u{y@_1iJ0G;m9^L<7wwh7m(df`o(P0a) zVl4F?Gqb>fJ)!}EdX@N3g0d_tn`u123=!?UyoLe&bC0E0*@Om5$I?Aaca4tYTHzFa zoOdDFl_!~P*aYvHeO0&H{njK6G_T`-J;w?phX@AUN?s|_asG1}2k{A6Bd+kv)`~p- z4{F^}hIoA{uFR@z-1ubml%l|FQLXdU7z^*CAfA&(Z11KZUWadPq}m?s2s}hBfM@pY zg^RawqK1ivj^ssc$Ln#@;RLLo^sBLfQyf>x7E!9W)HYD0O}~YR)HaCx)Jmf#)eNe&1%W`}pKxrbFb zi;q#rFx$B;`P#^(rlOeH46uSK%L7`WDra>w*d%a?st;@%Wj##LCV`6y*mzS~Yqmk@ zhiUo^W|Am-VEWrXU9&IGL;>3az>jMQrL-Zu@^@kZRJkk9ow<}{K7LEC8}g3)lThUEn!lgd6?D!^A#W*jK`JbruZn<4cq>lB`52Zxe4=ZoNjr-I2-eFf~ z#gjIYnKR~L$jlpZ=keT>{~KO|&w1LX3}R;Eb#3Ufs*_@>*&#}}`)t+eJRY2RxSz!v z9EF@!m|#(0xXReD57o(j`O886c#Q@1T4Z%zV1!e>%oW%}JV~v#I5p~srX9_TRs#C+05_ZG*S3X1#a=>hK0bhqb zjkruzOBIV8l?W=Q5ei4M4jlnTC{n2ZJn)*J)W;Lh8MQx+=NQb$vcb6L)m#<4eQe_# zQy#YOhZELsR156XnGWmNhc)8eUUU3$7KSHr_ATA+A-!eDz476`1ptmE?}!iMfSEk_ z)w)_qabDejGgb`t<#W!#A;^ZX!|=N*4J(}w^0jdvT*UG&LJkL@8{iPFmm-Spj@QXO zynZ70dOqos4Et{$UgV7~hWyu>X4Km7pBnUmfkRCqNQ5V<2`#KfNHO~2MQ~^(^5Xx0 zN*V`O?*ikkAe=SjiyfXevzbje>2i|~w=3>qirnf1p1=977u$eq8mL5lr;47Jbvt)I zyl^0VJgRDTBNNQl5S=)Kw75A12Xi1~-Kx;i&i~?a_GP51)7j z88%FO&HDG?BzeJ@8O%R-`itP?G(TNz4Ts(eopFAM2(C~q`Z`1ttj2KX&F-J256xqD zvdA%Nazzu4&*GINKH ze-3JT1On#q%LmGQsH?!#>LYf?mu~1CT78b}3bH#t&Nju=_>R#-YmIj1jl-#JxWx#M zSFXoI>&<;#`tjeF9>HMJlvynX*E|1x$bH@ymty*KL2RA$BEZZ&)Lz7|XKy zUW_dT!Q;zr)@VRr%Z+m!VGDSD8(^->ajzi^y`#Moy+qtk+if@kPG(9CKN|^V_)%;b zWNyq_iXJOVn&`AzvF(W4S{aam+vfkzV^2Y~l#q5!} zCkzf4D-WvB5u6syglf%`@s=%x;{~PqKr*+Y7(PF}H_#{P0C&IAb?#!+h_8$$X=ZnO zwfo}Yg{>09OS{$er#6&cOb80Q55KjU9^N|WGFZZc|_PkdPAN8R@B}`F{3Yv4bnwNyOucqq07QCh+eeqV|2;}?j>_GK( ztumEKe$wm*w<6J*!k;N_?6M*Z)wCRk@DSGS-zk{_Z}X|H!*mMM6eI&-B})!S1oH}yB<9+O{MViLxm{WYSS+IrE`$G- zDQV2OaCCM)XZ*?h>`_5@g%&3HYKmDn{ugjY|HW<7JCVc@4J*7*&w8ww)0u0UR`M;6 z+0j4{0QkNn{6$1 zg72L$#C^t9_J0J`Z{zpo@rNX+gaA$atRvu4?ZFwkYLOUoU${38Gjh9A_3ymqi9?sk0nvHw03JZ*RP z)n6(^e!`lT?HYmdJypg{m<3LEi)4qb)6)Hv=~9l_eE_3Lm(=x3n7oFA!oW{fOLW2O zdZMFihTnA5=8L_`0)dW0~4QfWXT*>Fv~?q}tt8!GX>b~*N*#~2`HtoPRCdhrAZruSN6 zYGJ&SYjIODvljQ++KlbdW-9mWB%lYD4^J2An}@YNv+7z(O3GbVc>zvYqt*S9lqmi5 z5n1=b_|~1}SOfE&N?3lPFOXVKCGgqx&CGEXgS~N9DL;s;RPMCExblw7I=f9+_F{*! zeCgxyhd&t1BcCJ&?|Vd_VRBD)wPeHCjN_{`o}}H?Rzw$@0b_S3lYu$H=W1cq+wbeq zj*Nbd4g;gcW>NzMsiGI^61XpS-_F-?mdYJ|qUZY{=}IUFMYZhas;i|8CNR3!M#L)j zGSv9HUypxaZD}B-;r-pT$s2Tw2^*mIm$^`^De7qo0ZW>54INOnk~Yj!g= zM=#lZ)!yJuEzxu~jva)DPf|0wK z&{l%mYq6B%cqk81;=@o8j^LNrLBA!RP3FbZ2V0gVPgqk8`#vZ#+T1BpXm{Av6X>Tj z{c^bSrgZ7?efM9RlevHNQ>-^Ez|h*&u#q>xvUboIBxfq9ePd}?+r7w zSkO~!9QUV|`iqH4Bg?s1^+z*!Z ze*`l{pDC2lyJ&W7h4zlNTh~|UBz@IrAq%(rs4SjE4}j+%MRN$=mmVMv;q5G>6bDnL z5dH2GDO4uf?LXOQ@XxcYivDza|E~h1hrsuae1E45Fu=+r?Ab9-vikdn+va0IjP3xC zn_udbkzxJF?;TW%H4Rn-8mo40YT$9z8iyoDC-g~g$uh%7>rgRy#>)%JzuYgry%ol5 z(l5v)b(OIbQrw#m9YgJT0PgIAl1Y}QDVFX}@5w7`TTT}HtE;c_Ax>E1tAyv>4mXku zKkxw(YzLCKwgG^UkS~AE0b5o?tTE1ePWdMPmtwI{fVVWCt5KjyCi{+z4d7M5L1R0lDMb!bpy{I{N|k-B?YnkBQRk5 zgP=3Gh0Y3EMib_cZNDP@V)IaWZsC_8SU&DeFl8gbYb0T0x9jo=Y5Mtj(Rbns@}d1v zqm6|*IZwF&ddNZmiFBe+auO`=du-0v*^E>+HVt93PjT%p*BDQ>bJt&dUyD~Qs5PIv zQ{=r_i}#%F8X<~VhwYCByCb+a_U;4cnn`X?_Pkb2y8F&&mT-Rn*HzC}-{GVF_RXMc zO;~5L_#XlIxYTvHDr~6D)iG8-^tp&iwQD1VHCv+O(>}`|S8AJtp9XMJ|4lz-{0$ZQ zoupefCi;TP51Bi^GyNkND|Bq6j4qBoK>o;z{cL-&i!1TwURR&Wo=Fvu;qG2ejHh_mKb-Not#yZh;0{5+=0u*3YQtQuoKx?qfU9wa;=OaTwfG;Bvy7e!DFS9yUl;O#K z{=3Pz=_5knhXLOio<2&pS^%o0b76$a<1rDP#z`I%tr6>JGg~2kKh(B`ZEDe<8Tu#j z28Wo7W^Ola|HPct!DfPwRg_DK9=Vq5*SZVdtR9I`bnK2-{qI65%~V}#%GzE=0L??L zfpI6N#UK1xsnXdwc)0J&;eEw89Nf2-;s=PXly5PTxxdN$TT5_PYXut8F7roPUPDK< z{P77@eb)XRCU_y|5ux#Ae1%KShq?PzA-s^}DB%>#MOGyEC+Js@%Bs#|#ru8ieh(pp zJWMnhHE=~=1>Xx>_ZUDLE5Ah_C%pHMpe`*|41PP%<4`jC446e7CfYTN$9N*;hYbX6 z_zAYu-o6;C43Z>W-i+>EeLjWfnaHqcdVeAEMXN|aH?3chjbEhai>msnrf`Gx96&o1((Uo zY#Z+f`BrP;^s*sL7LcHA0Zw4FJhAYyq|xKw;5k&-|>%}d6LR? z5;>!;`yUy*)TyDDBV4SgPT`VDDjXz_6yD55OT<+LQv`Q)(jEOH*y~!9nZbGS?fSHG zz*5IeWGG>zcy|+JNl}Rf@`TuQscMVjnl780#G;JoybeDaUf7uKkB%Z{g$ewr*MIUq z*ivo+XislBcg}6aHOz)-tm_{Eg^L0^9D0qynySxu^IsA5{xKpR%J0dyGPc#|{{ORnbg$F>Hhq$TXI+=AOzhj%hvrXAhyX=0|2GNKo( zWlH^G1%3Hg%p1Y=%Xn2fL7#f-o=e*EvgI$`N(x3|>)fb8P0Rg=r9v%YZ7qlVvv`nY(E3%?t*Ikqcz!E3L{g|h8vB;+$o?d?6y z=leYxm@>9%L6J{Pp}*N+W_=By1plFw7_)E6jlR+)olaa6ldF}2`VE-7UTcARSVhe| zM@vRIZHez0eqXT`EBiEtvagjMzjz*$8y7f>TDFPoU6%@Wi+uYz1hZ3}0o)1-RulTd zNgqskv`iI}XF26hFVlyeE}9;!*o0`eFH=<1a=2-xites~q+u%SWe#G~QyiDQ(hAG8`t#`(!m>v+NVI?~017-NKh~@! ze2jhQ3#tBX>7iql#y6AY+Vd(vBE4mY8uZnEq zD5cZvMLZMeoI?L6Hzpfr`3qmIg0HY#N+Ngr#xLWrvOUbCmr5&|G??(i^0`GPcNFqh zZ!EC_+oxZc7WW*IAQiepJOjyTXe`Cs&3wxziiL?2Z>yH2`2?df)UHLRdi6>zDph-3 zxcLI-VP}8OEW<&E`a*MUz=$~1jtfUOUi8I9(VJ1rEQaO1tk!UlL~=Au6~#(b*$At& zzUh@rZ@1ws={c=V9>xi;yw{GP#f1rWAx5)yrMN16l@PtCxq$J;Hkj>eCnFu5byq{v zz(znf0%|DU1KzNR7y{pd7;#VKB%0t(5WjW}XZ{}0$)Ax8$isQ*^Ic2gW{(JF$sLym zM)MX6IiqH?m?4*i)F~g3ILL|&*?q2mlMHv$Mm|~5x%}daAQa?*qJA2`147WkT+B$*R0mz{ zQC0wOO4JuK*DiCxMAy0JsyDT8s{%QJO#vu}MTbDjFgn0&7? ze_E{+fA8cZwTpiQ?7J>)^BN3JLPCQ1k+g5y>jst$9zROuI3yrQ)GiFxBlgHjepj{l zO|T+64gs2fg(o&&&7DvB;Nj&WR)>a0QoGpVn}CoN?6|9k zSvBLY{vnxOtlD%wr;M;!lYx~}pKb>#59!YbQtT*{lUpfs zMm1P2wi=x@73bpr+}FZ0O?ORN~^jyXSNa%JDf$hi7sXE3UmtI+Xyez8?k!^?I$))K?dDW!Id zGSxQcPl7Gx4*hgkA;VD);fWEemJcPnWve6Mq+(#c%*-fFl^#6PVMTdaN3B*QXZlj4 zW?|jH$0{hPd-R8NhjFY>>CKP)h|*_;&nB`~_pXw5ru4JiAPlpRs8sGp8HpWL(-o~M z>5E3&c&0WMkmGY4^wP?Gg-QF|`=+EFe0aUu*VMGVvKvCSP}WLzve<*?szvx%~fJvy>Wwn^N6AilVOPJk86n;FyosE0p%#~qGXi}=Wx zC*C_0imH=|y~lUL+lVaLF~vvZu4sDWe+v}0 zc(>*JA@5}TB)--hTfjjVPEaLJBfn| z8N*Pj<`p25K<7ouF?I`wQDgy!9Ty2LcQ4NNg3_Z-uvkggWFI{PL8=up_ zltspP3nDAS*jD99Wy8j%H{?X)2AqPtNkyY=*L}q~vTTO51bREXI^wueCBoUty7XIH zKMO4KoJ^&{7bpL0(ogK*d&Q+ro0?j4#>1pybW&Z4k(4%7taQv-*jZ-wh?9&de11fa zy8h&63)sZN95;*6fn846^$?Gu>$K&V3bzhr1zblu9O}>9xb6Q%cG1vWfYTQB$t?kW+oDK;} zC|I|s^I{ztUgZI+92ll?C~TEivz_7dsWXnv5FA))KUa3IueT<~<-U9LD+jJlO%&`- z7pzqePh;R67KR$@R8VIb%CZxSLCK(`7^1nLV;ikpcOQzam>^$OiEBvD$m0(`Lnf*i zgGedy;>AtHim(Q(u&YbqG$(?rQ!z$jBA-XzkEdxO0DoM(oG(g@)^?I#lk^WY8*`BF z(cx?&$~f1f_(y;y5AFV&<6D02?cS}{7LdF+=C(K$5|kvGtzw#7UhLE;6Q$g-Q+Mt; zJ1B!!njg`rEYiqyDNmv*I5GQ)A10-KNGbe`dwgA*cE=@0G{s3P#90j?0Q|>#9EvH3 zG$Seh!HLH5=j@xQ$uC6UV*lK4Kdl^1X+7Jb(xoF8M;#Jxe{@B;D|qZYFJ8=AC-wpx zt?NRZLc9~#Ed!&i9zc0D%K_T7>Wrl!bGEK7Bw{{WHz0}(6Hy#1>C4#`1J+(r^Wsjr zN3_Y?A}@*xS!~j244HdEqm?x={##ZSRQok%F|HlGDEWpu zzQEL?G{lN?h(khYB;9OGmLV$qJ*i6C$B^sOUG4{iycRnlR|1?9H|v+*Ckkb<8aC2I zb)rHRE3P(9ckJxrvy6zNk3~sl&V>&G6Z+n)1$+MFNE311 zmb~aRcIEyWZU0jsIoaYL0SV`reA_@iW$li4zedL5l(s;-#6(}(E3TEJ=(^YzLgo9N zJnEFIl62zvO*0e32S-#O7a6`_C(arCje`%|ktQdEHP@)FF75)lU{QP!xmH4bK9t*& zdsM+l<#^hrQF#XBdx~%Bm&w$ca`OlX?Dsy?1NL`h*mm<8M3PM^D>>rLLgmWsPKp$| z{RlFe_O2>gJCO6Q$qNUkxll>b%www9GZ1qD^|eJIRh~433dbRA@%vXvqZ3kKrTLM@ zrF~-YfvJK*U&ow{D`FeXhKdi6Hu3FV@e-FXP50tDkbxqNn2LKLUV#W%wYB zDv+iuDjQ@(xa6unSKL67^>r{|G+k3`#v-=yfl>yXcX| zHZ$UPz80K(la~`a3p41r-qOofwJ3{fT)-bdGwONXq|RK2&K0)vK^`5>o8Kk^Ffo>F zL87zotCL6N>e>6r0S6O&_4}?ZEc@$+#k6fz31*W%mWz|e0;Wi3A43->`6z+4)RKY< zY^_fTqV>&_QNza~LA%^^oc5`mL1!Ym$!k|WFubM?J^|aBT2)op)RJb>Sm!3VxUzCh zbn)&xW(qtn81!&0cDmg!S#Waa)MZ@Y^*W7F&JLpG{Y?CYUhCFkPr~-B%d^9qzEV~O zjAuT()H}j=C=`4pST}?i(Zy?Mgt-t1AwNbSlQXuNZ`K6>kz&OV#KVQFggbLA1L;z- zqHjGUkIT^~YR2!qNMZUyo^7H&($N7BgCBX+6~^WTQ0r}`h~xf4PB7%YR-0s^;I6R{ z4q>YLQpc&N`!m7W@AR)LQdG$>Z*MRL(j>#GmvTJU*c2n~2&{J|d1Cu$A*Kk=Z#fdJ ziA4NdcDjHY7d_S@cm0|`A$h?y10q?hohjlf+@R~cEd*Sv^*laj|Gg^(j>(Gr^zY_7 zfBL=_<67rPWqd$7ug&ZZk=Gr_>8+^b1p#@}>AjrAz2F-JZrJm1s*r}MaItY$aVd=oL!@V2#66(L zv8DZetSHPmX7`WnKlgx;aPMvs|{iPJ^woLDC(G;E4Kk?m`=#wE2fl zi>#AR^%!6vOa%r$MB67fwVIYYQHAtw{WirrMpKVl?|`5GC`h08Dj9h2)N9~l(2ELG zaT&0p@O^c7m6q4!Z=DbeCx5=|^$}os)EA3VN`KAsrn!1jki{qW=SUoHv zq(RUEX>L7w6kX}&QK~51P*D$?tGur@lz5*}Uls+*>Do-TMxu@20E|lVjiiEnw8=DP zAmG_P#dvl^x2dtp#v5PxM+@|Z(Jzptz+!VSKa2P6|KTsQo zfB`#3joctJU3Vu-z^zfNlCe9283#OjhZN>Kt_gus7KS1ZA-pTv&#iJ41*_2aI~RDy z3VEQ%S65dV(1t4+$Lw4;{}6Xd|HM>?@9W16lJt2=cLL)?AA(u?JCQ##3|H!dGS^ zyTh9c{po)M)CR_lQS;B~sQJF_!E(RvgGZFj$bPfYF;5lpm?Ql05v=!Roa9eYUa8fG ze`;Wlkz>+DOj+cec_uP9>boMvG|9a?Y{E^PK9=#Xa?jt!jZf z$29teZ+zX5qJtCSC*s4oj%}`@qr;DKvh)WjV&KfJ9q>C!c7led7dG?Q32g2nSW{cm zHmS#!Vrz2eCuhXF+{^O@ZM}FA*|m)bDMgF8Nw*U&2tpbRmPDI4cCMH5XV`yFs*0k7 ztpDb$%7*T&*)w=yHHWBNpPOO0XTI_E4TVhaOC9qB%m>Gt;@NF8T$0U|`K$$tVydVL zqBzVfL1~W}0t#&6ULrrQ0>J z6H?_!bS+ni8w|aeF-6>TV-70U+C&=2qikFKJ{t0625>&4?UV8A%xRQpTT9JUIZMb- z#B*!f9Y?N5;#*@~c$i@CWb zZjHzhF25(lLxJvX46|2@OS*r*7%@f#)laUTI4D*v59S{f$^4p$+c?F>6E&1;9PAw@ zW;*UuOlvK;g^$Z2z>|*_f?On7Jk0k}<0=|MK2?iRY4hP9PXgOBY>_M5KjtY^1#RO3 zjb%Rpn0*>ZwNJiQrQtL8aMOR0-C7i-G|X)PFn)~v_Olfhc|<=Wrb=-zsvpOjw+N&d z%!@oZD~q<{Q@qK)M&Ls?Ljy;IHZTRAk=Qd98?M543S({*H$S>km)Dd6HJ}@6#x_MX zr)3-N7uZFMv*jWc~mFiNMT85^XHM%I$a+knli%CFi{i z-2>Na6%&dzB-H##+6WMoeTNlX$2L)2M4Mn!moOaolY68&u=>Zrw%Uo3v?bWGsct-I zz&olz#$08c$}ecW&M<&#+HgaW&aQpft=ZN7_=j1*tt`D5)!yBr^8L^o<14#oXz(07 zs{wqjGb+NN4v@NBtz$eu3lPKW`Jj89d=HpxmoC2H7)~?x!NU; z%I59T?1z1}4-7p53mR|M*pI=e6#9JDnp%ajfQuA39_`o42T%62jEE5|_i`+$w zE1%*GahL#Ae8q@wSU@p(6M%!GX&T8D>M|`-VZGoMEwRmYg=$_4Y`7_EKLXHIJZ%z! z+gI&8ZkJ2qc!P&%iVe;s+PX~5LmJrJ*F!50)pnll5<-CisMu^GB>3~m4cr7gi;BY$ zU>RkD2krQmIBP@|wdmr~c?Nde`zPu)F8mJ4HF0YgmS0t>FvP?T=-IAN50pgWzzb)U z{XdS*!Yzufjl&=yDIg^c(%s!5u^`>8ba$tKgmfb<-5{MyHv-C%OG+)>wbc8K-ybk@ z?KN|D&N0qxSn#qOt*?&dk#y zSditzX2YlA@;!DV$ZCUzfiJ6j76;wt%T@6tZtAb zZIAo84uufCJG-|`lYfJi_imDmC?uFwz|GwxSkdSscw%ldW;x0CzyA`R`ZNc?$LyUR z*BhT{B#b=OX&=!zE~={WpWL~upR_HX-)N>;*ck!l&61E`x=!ul&51|vivkLTJ7Ojj zFh;c6Bh}ySO7R{n6zliMcLNH~ySv5Qo@W|^w-fLP3zb769`7_^mu%VmuuOh=_)Caj z5%UPUd#_r`d`inm;rn;!WPHvaYswvPPRmZ8D>Pc;SIWoj$K72_TYIPWdlAR+GX!Q$ z>Ryi}JjE}O<>sFAKC_rf>cOruHbOyiqU^2zr(}J%S=!n;5crvGgB; zuV+P*a(d53LQPj0JO!e6X-LzY;jK@v)8$zcW2xC)=;+z z7`Fg@TW8bst?`_2=V>K)9~DVrd8=&0ievKT(+2b=#5?wk(I{?24jc;YL+Eex5%5T| z&oQb1T%ERIQ~T>(0GfNwkYyQQl`U#%p#L;Vyh+X^bob2SXPw?-R?V9IZZEi(zKEug zG$%6sFEoZb%w0ME1)z0B>g@QvUO4~YkJocPcRe&}5cYrPRjuj}OVRtWALPfMqp7EN z3B)e9Qf}oHOOx07R5ViSKP|Y$t{v}Ir zUDE5PB(@zBL|H?4-ucMlk`EmT=IpAby7UyV_)FW$W2^p=!uq^ z>gwrW*j8YqMt=#3{B4Fre%f02=jmlEp?(s&&p8EVhKj`U7V)<<*k3OL0x;A*vkxMM zTA2#kFfK~|m8IMdbbtNP5s7jG79)ilm9&Y1RQNuG!i ztw$MRHf8?Xz(QK_>#;s!cQ*m!Z!NxkiM2G&4S+A2oa4Sz$1(dAy>l&x_4W5Rlp=G^Ac(kr1DP4H#OCVm^!$CC4UM&rGIZTyK}REu>1D|9aELx|a?UqbBS0 z`bX8h!5bUVzikfB_sG3~2eB+f7?<;H3UR)t_is#C+i%aI(-d$T{FLwRG0nSPTC23L zhR(85uuEq_9q^ct$12!1TRs6@!VU+eUE$G5T&ktWKka` z_SD>qxM#@>@oIr%{)#(=phj$-b_^rxi^S2&(%U+Q?{n{|L=~Om)GW>tXU=OoQDyX( z+CQn|x2O2qtgM%UQGd6Qo*qu1x+{=eSF}eV>?%x6uYN8-EuT$`G;H&2O-DmOLPAY_ zAx63(OwSupBmcr3ujivO{i7~qC`4lJmSW7ByMmSOvmagSI!=qWY04|?g%=_g{KM@*Qx+YGi@6!k-8&2oR$m_ofCP(G`}FS36N0?$WC?^^ z-8SbhI_$U1rJwVIcZHD<(#3JeuM(b8hu>g+|JlYsP35}QhZvj}1s_Hi5Xbax1! z9}}7iN!=(=YOWFLDx6|Ol+b7nP0jZ``)F6hn8w7j>;Ke_RPb5JexHMH8aezEi>neW zJUd^8RFw~m66DRXa$<70;-en;*QDeAditclR6*ZP8od=|hg>r8V{fkaqQQhm~ z)O-*?GntmAj3^<;@6jTKCp~-g-2i9W3qNYvu;2QE^z1fwutFCPmhOH;IYcXc{p*7t zzl}ttHQMW6SooMQE33FX&ghLcK4YdN^RxA;=2IPjw~g?i37sg~4@K&s;qkkCPf;|L zD99>zrG#{_jd5p;J6d`jB+MbnMVDUjv~O2mB>8U_Os80mv*O3slD6(rC!TrJioIwv zR-Cx68g)0s?f8dDju)moyx*`}FG&ttX5^ec4uuqyTAzLc4`HLRq@YZO;5fr5SLfwc zIY3zyaRa=4RKAwaQj*5=DUZ>=36T{`oMxt;*Edu1^X%!{>rO?4b`z|SPoM%R1n#K4 zAy@a*ijIFuJU-+8)qlsB0(uB8KG1C?HH?Y}Zsaz5-Vn%U+*EUdi1xL=6VlYRO_Z7AyRM{1xkxcqcsZ;!Jj)K=?Cmq1A|9 zY8r{Nh}-?M8_1Cq7q>KW2zk50`Q7!w3xR+r5pfd-%;kH0RSB$Mpu{nbklX9AIDz;6 zVm)#x!Z)i}7kOKfC*u(u@Ztq}EObZ@{Gy%qUS7hfm{{!M{&&mk8t&Rsx^!!fi?5sH zxB)hh6|m@%Zu>pE(wAf*9aD00x1;MFuWJJC5_G)8c67K9V4j2#3R=kSaMX>}_`Ycu z@BoI%nF{{<-^TI;otrFiky=Thvz79DE$0EwEV}{SyN%B|i)8f5q6IDa8jdD`hT(1>JoXRR=zT?JMGUBZ(Mb5BlQEEr9k zNR^(e3YNEan|m6|9_;6mbZxhi;RQ6DiIz%q3}OulPPcrE%uQd`** zW-U8F{U#Ct#@@fLU;!;N%Hsb)W^EedLvv#6eT}sEl>L#mqxjQ1UrUP(EVZ`6qkCYG zwx1gMYPpY5Es8dU;YdbZAL+Nw#n@(J>SS=$E%gIpGvQ~C1ML>6jIV|7+&)ucyCeA= zjKcZ8v&)X@Ay1&0-6@ZEB5*H<;Z*rX$#fK;9gVo z)pS_wk&{F>taHhUi!^TEdGSmx=~U{FZ~#FHi+3Cbzqt3Q zQnXa9K~!1N740!DxS9d8#ti))I&9Z0&b5570G1CJ8DC@F6bC3CJ;rHSe}|}zLPM|F zjnY4Dh!ScNqzIo%&dg>MDF&p)`+U{pjqkJM9_F&Z+HD|@u5m@64uA0f{bpZ5U{Un5 zNrxm$0$2ed0ND9rNc|b5Ui#w1p0~6ajMT!e`DU!ZV<%~e{9MH5w@qR#<|h=kZJaNw zFrNzx;5b6ER1^`P5K$Scl2+`7coZ&<&Gasd&W$GN?eEWi+hkGoreIV)M^T*1VnzpC zcVA6E0MouucBkC=Imn1CC>!36=bzsTYbzycFhRHc^7XP9IYJXOMz3%+^)d4k9@`FQ zMzPS&EA(w>QPJU}r;7#fV#(H`d@t{>ST~#9g5MVz{O{XWQ$Y-$ zsn%DwhoHO;9TBC9!4tG%o7;O7k~93fN>3x&1?@(GBg)$>{tr0zGv4}jzmmTU;i!wG z=0X&!W2VN@{(7g5o62eGzLuGy+-2K{6n^Sy{*(Iiyzk2n(m0HSVg_j;r-2Eh3^}e? z($_Lq)AE`w#$zw8f;u-zo~bp|9on(cDNN?tCw{dMT05Q|>i)GU5RO%zB)-q|eTr@< z1rwWlbR8J)K~=h;0SPWycVd0mu4pHVlIiNs%4B%h>V%AEyx2GpzRpa{W6x}&N)HEn zh`|`1rKS#~D%Vw^edce>Ljqnksb5v>Bd8v%e|ns-`8`2IA!L*FK|{wX3U;=JcH|uWDAK zT|$q%agE9v7c^znwggh5SO~mI)Ia^i>6gcFu^KB<=k&m_Bbt=dV&>@H!4s``C&q-1 zv5O}A!3=%*Wxb8s8AIN?aZ-LKmo-R6t&9K7%gMVv1qXqq%BrI3mbJC~`?Yg!iDJo# zq0o7!#e&mk+jtSKOpfjbH?^{~;wjFj+~y;_aDR_!_WFx0M%(AP^vT7CsI*1Wld_=% zVNRD5^)YGfI80WJ$kQ5wsInjjGRY|m=nDHR%CMMvm3Bs~W4=8`9#kDH( zRlQttol0rnIgce5$b`U4HMNiP)7ua%oFVmM`K|7Lw^NAfvRBWjskVz^v-GIf4i1)d64w48dPgCKt?9A$827_e`Ld^7(5X+>XS5O_J^?PTu=QUQ@M&!=!V~ z1Jt&WBkRSl$EhODC_FR805{K6rYC#)4R9+|O{gcK=QhT3PTeRMW`j@ym6`$P<~5~f z=i-b3rWBzK^E#cS*VEqHNT}Ioqt>gE@zpbiY2{vwUZ*{NqEE8|rKIZNdyAIoIkPO2 zEp<2E;zqj9r9Jrfg11@oFT{u0&!rLd(R@N;Q~nFP$e@a{8}6=GGGi8=JFs+w+joTNAMkUJ*STuzn)+D57@OajABa`S(a1X}fuxvc>%N>R^F- zlmIb3c!~sXMDnD_<}j%GQiePw8i{jQ^m8mtxB!fuXZYrQ(9%u zmTUHj{~;hYT0?4o<@uIQp3U^yYd>ADuC;s}^dO+Jn=`RUdMBayG1e2dk|~+zq1s~j zGhP3To|)5db|-O-@Q%cNwopUfxVynFWTn~S*9*KW+t8$G`rBKPLT}r@*3{VgSyqz9 zUJtsBX-sN)K!6mB#%|2DyG58sOsPOxcARORy@Vg&MUr>+)zhEz3{vr$RAwDbwU~T; z5VBkHOC84*Ve0eo@jN}Nq`TlTV0n6Z#?UV%5rH}}*HT{nJ3+6kmK=P8I@~mavTB&- zud+JBQCO@{CFZR+g}XxDhRce!OMPD2e{x{fXkmPIFMs?;|nMN8$UBK}xEZ`SZ-d9RU?K5ApeyY7h}E z+&BYGkCx1D=RptrZ7cC@!;P?mjz)f^DM;Bw_w?ax2a_n72t9;Bw!Qo3!hjCb?mpU z-(B)$@bcXnch8v7d-<#{{)Z6Wz#jFLa)O!9L4|{veX>c8v<;&oN8L%H{a~>+nDhGu zBf$)>*P%{IRonVqTFYZHY_67Ri##{Kw)tV1m9s~FIGWZ)idi3r+MWn2W=PS zcbd61H-8u}^;~uvsxMIcde7C*ppsJU5J_9J721&pSeR8q^r~IM+R_1OaPh0%Y+=eN znnzQQiC3ULENs>@_a5d=wq%xNB5AZO=M!O%IX4#@LV-D_jh<1X5jolHJaI$AHqWl+ znwFc6eY2*5X7%B%tEB&0B(G@G)HcWNo&Q%D=!;_tW;j9op}qb zp-SI>yFePuTz`LFK8QnTyzi>ufqP+aetdBdx!D-C;;K#Sg!L|b@>Ow?To7RhHszav zh(IfPlZsxe={!}P`oYew#c^lf?{U_Q%K?hgT~`iH1ZBr-k4*b+cT<%z)^o?ZJ{VUf za-{O;%%stU#F8ht3Jbl$zb+rzKYsYxa-E;-A5_^jc^V^HY3_IM=xdgl?Vu{#_#S1&h+OM!Vx~6heM}S&uWAFd;kQ zjZvz9GkA>_*vZh&4$kYN@<$uWbH_mJ=wMndg7-kVr(aJ3^Imqi7lBXh+Xi-^Wcjjj zZ>Eh+5MlOECCZr0*9s)$3M*6+vIbM_qQ6?}MlP2&rL5XvX_Q9_hl$+4V+U59{UVM% zB2PSR_jlX1o>04o*2b&-1v~@vkGDyJsrUuCetu|=YU^jCKAQN-877(GSAgdobRHZ+@5nbpXD_FvQybW1r3yMGk?Z*;ALD1 zhJ$qlX_MYqVB3m{2foPX=HdM85$ms#9GEhMDc<)ohL*Ip*li3|TA++I$4l6-llN7> zDvTojoEx62qvOQkye68RJJaV97J|k%v+N>suT^qi@PY^I9Wbdx-Wcv}QneOO*x)(G zeJN(|Bkm)&Y5ObgLH`}iT=Pf4sCnJ2u-K_p*-m&oX&oaH@T;%QV15<%p+~M>>v_w~EZ)3Q2{d}b zZ}Y-3+ueKl!N1-AqMBZp$o?{0udPcZKqMqE%W!t7binSN|HmGc=HJkX(yM4d5H2+K zFM{{b!+5q51=SEoVMfEBa}DyiKB_QZs#@OY@ZqmoPqOK3HC$;tt%WQ|S?dd*E=Q)8 z5ev&;MFhJ~2oqbmL=uqcqQk;f$}b;+k!B9)dF29>3IdOfbV@O+uO`Iln=kNMT254q zWA^wOI-NXJA*X@SB^}^4hHcTWw8yPqae;o$C&V)YEuCsDje=3S^!nSQiL>C}@;C5L zyV3D*{Iq8aC5h>bYIw=@6Y5Mkyfb>1bYzz{%ppj^j%H4QYo)TiBajM&rgb!0t5r!F z(hF+NJ>*n;In7*O=KFc>q@FjwN`3qw7hqVgvp$}lv8WAhaDOnZyq%oXCBE`AINN>y zMWTps6~}qa!Np36-$MH29h$hmmg#Kq;vP~h}Y(}-6UM8DvUSU1V!c46z zh=VM4xB;9^pTG5juxKvzXGQ)~D+1-OHSsIs`8=g_O(jUmVlTg+pLduDEkF6kYS#AQ z3FWHYVoJr3O)ZARfkrmFQl*D5S*qol(zN!EEY@2VqZ;5afgo0^Z(r>@|11luID~j- z-+I2>Ri>RcDGB)rq^Or&x7^&enCAO)Ifxr>t%K-;q@C#-{n8QiR@jfb2q@wD{Sw9e z64NYm0GdRlLesJL@=TK1Tx-ZtVg$3-R2l~ioa2NpOtr{!B{?6{>n*x_Qh;EC*qWdM zN_&IKNG=>PzOM!DqPli-Rk_<<4BdHoHdc2ETF$nADyN~lak;GyYlUQh|Fiz{-^aBJ zyJGcu%Qv?s!cZd=S4DO&Pxw>Xb5Ipbm#^Hb(b=TAti$4NY(n2h;}P3wj=87RJ$Rw| zv8G^)=Ve8+C(=Zk1D3Go06L|KHVoaJ^xY#)oVP$l62~dk7EaS)7Q8iosD~B6d9#c6 zqFO*6hF(MmSK7~O{Fe!(ektov?@qxI1L@#dCQ ztd}VVNF4#bdKnZ1_Kby8-<8~4{>c_;Ax*bshaWQb+?FakLsuI7{}g`pz2$i|lTWj?J{ZdW_+37>oYO*M&6LaE2tY$A7V|S7qe{VR zQ_<>8m|4fICkBH!EoPt;Y(G(Ris1CvQsRkKFmS#mU<(sTtII2a_=oW8S+<-|7Wnb` zN9Lid*k}Bn*%@^cUsdAzG3*$Nj8r+snF>^tigFFhi+mPq@4U_2>YK|kau-w>c30L) zfH5_BL6Rvj`J-F#J&gd=v2@)pg|UJa@O!tRZl z<yXIzsvwQ#F;9ulRW1qNGnYeq-0JXn|~DRJqOZ)k%~eXqRIOtQ_99LK&R+=H*_4 z$6A64x?dd1fwOR+wL690$#BE5b2lxym}S-8HKCk`su8+#GlsBzT?jR5@u}CThMdcK z`B5Lqb^S}c2QLLZM&|SF!$>uU@u7omggKpK(gF+IephYcaV3d^+2nTRHV$UHz`V`1 z8zIsiV`$3l4N;h#Y<#J>&I;51|>q2x^z}y;{8QEm(jqy^7G-3Rzh8@Yj$_`7B@Eh z$Jaf{i(Pl+Rj0k1aft?o_6XI6rnS z9_KI$Xj6V!3+sJJ2aHPfbb=aChO|X>_Ft_Tx0;|YXr17s8DXIvb85tA2VwV~>hjDS zave46t(7j_0CB78$7Izbad4b)au8*$CwC@EI%Zh{;=P$Ld@s>ne!eam_=pr|oC$@BntiBe zyjqGhfaR|nRs8Tht*fYQ%4Si)je(HIWOsID4c9h{d{YV2Rq^Y+d<{bvTr_anSTpi5Ol632%nVm<2jdwHdN`ENG`bQx z9T#7n>ch&csHuX*tC{`mok)~err?1^b$6!|i$K}K?x4V-tKF+Bf4t-kK5p=Qr4j*x zg4b7PioWtr-KSr-@zD8|asx2`rBUW)jvVB49gdu`Jm^P18$rDX9e7W`!aK(oC48u+ zR8dM;fAgtgtK9b_-~cMZ*^v%i5T5140ohkw4Lg-KDO3L0`vnAxb-DB-yiTiU>H>^` z{S0}n%XKUijH2 zWM>xu6AGelGz!?A?Y>_ihJ~vo?TnOR@?F&#CoHFJJ`0!II0?MuAg5WmhX=IuwCvGW5nGWQ21ReREU4FQlcKeq%oYNI@j~$WQmziQB z?fuP#;wh7d$PuSW|HE4Xq~+cIhj8T#mF52sOs0en2CiaH7gcCaM=z)gROa&V6~S|* zb|oisG`s9{1M!>4t?9v-~lPSeJ+ln z1n_wE;-*U{52bhlcgH z&blvm6Cw&{L{JJn%~ll-Q7=JWLj^n94}W_@0vK~#{Z1ROfIv>|UE3@EwcCvkLNaQ1 zJ|~n9y+E-(l`%>^pHXC$%t9x7TQi1hCBzHkIeXsk<;pTaWFc1ns5Q1H82}mR%e$Ms z-A&k5cB6|whH!hLJAcy=fEtYvnn)q6uBC3|erf~Ta5yWs0nK2HFLIX^Q*ut8T?d4I z!E}P}M)uHJ4ESj{vY}2ge46ThZ7Ms4mBhzcLI+cV{8OISYAT#XhQSPhjcH!@***)< z@t0_ANON^STB8(7jUEWuy%F|I+K-h0qHJsj{Pc{^Y$*4fl(^-f?cz`+_= zS8C$X=tw~=$6@A-Ky*?yoHxOrATGGMRH&>ZQ};gv#pjjO<6Wk9@NsIJU%<>c1;q}x zah^OT?+*Q3o1g8=NlOuNk*31O2@p~YfssASbI*w-wmtJ)+Z`bBjJ_pJgWAo~wSKeC zM)N!{up0Nyiy!{ezb}I*x01-a5t8#K7~#j+I7IPz{pvpiYNIKsvCMNrYCGL+&3Iaw zA55>-mn^+z3`FhYbair`^P|fOhr?M-9t!8^Ekyn)h zG7+sc`!^J7;MVviJNU z&|-t>9)4F}x^h6H$#;#zbd7x}iaNG>8Iv2{dHgZ_SWd6m>8i92V6Z;g z4a;c-bp*StXKosX8#JeQR4Q0cA$ur$M7EJUidRJ!QpM#yLY(B>4ObLS7tEq_b5gTU zckkVYgP^HAt9&X&Xh;*ftgq9?^w?Sb78y~?ev3kKcNQh}eA@n@$5ki<+2#Kp=5^0= zG^{`)U+n}aOmS(!4q0Nrm(*>>38QBi--or*+dwP-GLoqewKLD~npzfX@`~?Km+C)v zlagmPG`^1<2oyv#m*pQHf4S&?X1c3^=hvF}1KH!p^~CI{pa*G(yGG#_)_OX7qoS+5 zwtyb@5@pu`CRD0p55p0lV<+$bndR?0_`SdY{Mh>k!>NWyt*Lfp64^rmeemoTQDvsY zV+oxNw2Vb}=cwqPxRVt753Cb<2lOy}1{M_K5xDOmbJAZNj{fjXNmXQA7~@awXj z68N3rBtUWpUkV#WG0gr6+^y-^p$9Ky*}3h>IZrufzIOeZ@d{ICg)(5XM`4i=zZ}zD zl4--qClgMHk(nv7Vqo+yR$fC6{HviX&xJe(%2aExL|$`;+?@qPG6icg#leWL9wvKU zj^(!s+PjN3UQ}oTV$TGfOW49`(K!)(-32~~RVa{OE=!~n%+8AAEAO;~M8g;_YLC~~ zOp~AZnWst*d06a5&Yf8aV-@3%9+z|8j8d=`=R5P{wl#&^Uaw`YM!Tt0m?>90Wr8`u z$&IVS)V*DublvV|fk(|@3Yi!etGJ4#l-k$9hu&~mz568iDj;WvPs-ink0RrKWLv*k zB1%|>3a-8y5gY%8+6t5m%u21{xlZiB+fG$^iJtwVby|N9yrc%|j&C$U(l}?oG*t)f zu&lnHBwng2ER-539qi{_2hqMbQh~|DPh4_)H}TjOoW~s({{8?3772t$JB`4eRw(D4 z_{sSHrAC{rhN>{LI{mZ%o>@4b(r3J7PyhLjOi-jI!h`K(#AB5K+qa~OVfDnzhco3* zut-E+2j~B<+tlY#BR}G9rLr+!1>w4^Nuh@L!1z`1)o+756F1Hj$+xGbTNli{lb;k% z%zN{Bk;If;CkneeFt$KB?2CU;k3Lk*-9KCXhtN8tlzxV?OVw*YWa*G;;U>PUKNL?B z|0SGU);>YFU+h^_YMCcB$j5&V8y$>O6eeGrfN6^$__=TF+rK*_Aj>r z(7Thhr}fx#{Gbx6+G4!s&kO5%nB5$&4~Rnw3?p~8rxs?;00wb3CLR24LiB}3PQ17z z)7$$G$!+(eG67w~3NdZlq@gKqYK);7Ai<1zHV|-2 zZX^8UruA#K*KEP;9HTkdtR!SJ!Jx%jCr*y?iX;v3^6$=j4L3+=lKtw6N^Sl9KhG`k zOV+$HuHDg zlJjjxbXZ^HP>NvTQRpay;CgpYO~ovTDESFwyt)tops0FxH2RTwHt##L&v8van(Y$` zkYvc-_C?LAg*6Z-zIS7tyAU`z^^_4E)Vaa~mm!P)ONcttNUWeeWbQP2bwc$3oSba8_}%f#XZ=!Eju5>E8pSui5Guo4c8&2#Ro62vNa-oj=AY1Y)+C*0kd#?{HgCKS!~4hev>(L-L?gvG@kx?> z3H~yBys`fc*X-+~=tS|JzE1Qg`xPk8A3Gr1_$m>+xCPicYYIAm#D`~SgLZQx|B#Q| ztLm|d`YvZkb1-9^R*cFe=+=zB8g=S|{{L_MJ+Q$|ro?B)Y5y^?y|>cQ>F+hgX;+ng z)&&Q@+my7<-UV73fK&)>4#(tgZP+?IM_102v7sAvc0dDI`bqg}+v8HN-{jOHFxdqS zS8TT`m@IVN{iU@rDY;06Jlqtjt*sadUZq0L$v~o>kW-@<8hE@bHs1@0@;CA@#1RBq zl2KD}`(i>y=YkTS$E6(at7ogWRjCC%`<%dvv=o9}S49|2s=I&fe+UL4eJBLr#nug` zv-Jj9~ zplsJCC^ur2rT#uF&BZ?CMQgxs}nm3nM4z;z@7kx~c#Ey}v{0k{QOG-0Trv z5Ij=$fT}6yKE#B%NQ`-~aaHo=)v0j=;09L^zk*y;A(M^hL<(Xbjkd6ICouV-PHdA* z`+EbGW0ThzB^A;-QnjIRXNMuAh=Vrlk`pdYswm7&|Tr<*|14|y_87z`FTy9t}i5`ibQT9 z&gFM|Q+den;m;Y_B!{c-Xn6~dV??OI5|-Q8!Eb-J#oG4@?!KEQg#?tUXoZc-A|IxR z$2RdJKgZ?z2ZiJ*{=Sa&mNIvDA0(L(^HBV#l53Tdnu{Rf{UkY~^hw1DtTd*ci|f8L zGq)Fs>7znlHYlhDRysEob0Qdd7(3x>&L z5dZa9IoNo5&;&P=%5r%}a>jka!w$i2;dCps#u!a0XFJ< zEjAysT`b*R^d4w3^YkcCieliI<49z93PT%1{uFXEYBrnlR)iLMG4HdZ|m&{@8{zJ6u~$M!@ld7}%K zz24iYpbNIC3wY4gwKxQk5g`^Mr(U68E^cf9Ag@v%|Csi`&$YPpv7-cqUeo3!!g{g$ zmA4&aJ(`Fkt|D)tUsGSNHM7)|&SYpOnWeMX+U7Lc)&&kD)VcGZKTQWQmwwu_TCuSd z)?*C&5nA95cwn{s)4mm1`(C<=APhnhmTr$g`$IXjS?5GrB()LY{2rX^N(d?0m`)j1j|@AKUMq0N^RIxuafY zRjw%2JTMWGI(o2?9c!Fi_w@tG+^$Hj#|9N_J@Vb}0Oz;6>iK;*o$kUvlzzo)`+b)Z z8c~&|%kGJI^ZhlJHlDyKTpmq$)C>ZR>R_{1GB?=_o!j;?6$k8fU|HFZq(Q$(1s`ib z)IK*iMblg0WgZpU!ZEhd>l;bfRh40yVYr?CR$ztPe+ash{dW@c6d|EyJNobJDcE5L{uyv8>C)IHJD0?)?Czk;TWzGSJ!r-8>&p_?e)T>8WAF%R*Xl4 zr|XjfKntKuwFx+TF?SME$2P3nW8_U?xm(kWNGdbYwX2~Ih^FylliO0*oa%-ZDA;DKXDXGL^xAF?FF@YC^&K@l0!p*?8_(7T>SBU zi8Oshy*T0pnabovpKI8`i-+n0tMoVYtJj0!30;1pv{yj1Ja*x&s}iBy;}0T6Wc-5j zt*ElfxLevb?5M$q5H zPlc>k(ik}|7!c~C*pN_hu|f*UiJw`%{G^qq(RKb#*YL!fKlmTQyyjYz(<^1C!->9J zJmC=`;TZrye_|$xxr8=X{Cel`6RwOaj$@zkz0CsIU5?>eYX(c^hO%dM0Wh>#W;|X} zm?gz{*HZ(UL*TRhY4VnK2Ra6F{w`Jt3uA%&R?HjxrYz5$+K2f?O)GKnK*m2CbEl+Z zjT_#mh>V{)L-U>BR1eF{8n+;aI@olzV79Q{_jQe?jf*hdNq_$>tTm*T;|q`68i@?1 z6Ezq6;?j28{rqrOIIrn)#>b+#NLp%Gxx1))h@rb3k0)g^0%0sUOsr1iTpm?=L-+(_ zuTrDmq!6F+F>fVuFhQ>@g#4~5A>u>lW(G)B;Mj&uLeoD)@+xLp>9}^1sGrV-u65U0 zN{^!JS#ls7&xbxwr|cr2nR@&m%j{1i1lcx)D|jF+>;C3pYXoM z*?6m|=1Gdk7$qs~;$%yG@(6Et53(g8P7@PVXTX+6{XDk45K2_5_X}x*@@tZsWa;~& z9ikP2_$4}o?ps&_Fn20hxvw_tT9>pUsAX zNBm43D5lzxnw`a&V}?AWY9o`Ss43A#JbpiJrT8ZdIdmv~>c)?=N%0t`szpOxcTy`r zJ-rkrhxLSDl<;(|HS%)pcJjXBKD#Lo{t|8T9TlU|B8&$O*)49np#(YRq<5EYGvVu| zf3Uc{XW=((hQt$7T+*qo8w3G&{K6J#*Y`_6Dj3&4*L;kD;yVwS1NiprEYJz$O9o@GVdCLf2&|gfhwCD^QWc+-wjorC3 zkP5DznHeBty!E?kTzNm@i$9yA9plVdHzy8Q(di`$a}b6idrG3r!`9Jr3WSBe*s=o+gFUunQg8QGS5CJwc&N#OAsN!m+^b zB*;AOSa}>W1Lv30ym*_iT;qZWFPbZ&WliYNS^($f{fE%ZzvH_1)^zCLdi>Qo-M&XR zuGBbO@fMI)vTaYj_T|cC?Udw|5cKukr^0Um(^=r!dyKYGCWLT^>dkH$W)S7pb_#QQ zb~u=bPh+aZl|cG7BSDE1IOY7i$_B)c&Q7+d_knBhqk;T%hHqfRU-s_xV-lP&U1uG zO_v)u2v=uN+Thl8R-nd38*KwK&^XxT5iTXT%5%@TZPcQtefu-VICGE>7Jq(pQ~M!` zH~M~bd_Ga4;|R1;fd>nC+s*1PEbLNvkWdgohLy$0{W{GfeZ-&qdImm4d)IH7L0()_cN{Xkj zXN~LxM%FCFeA>sKQ5>>n^&RitDG8W9WkYHWd`yZQ^5#m(7j&4b`$1}6EyNz2JtYa3 zZ-oDP&bG)SD6`i_K!UQ;a0N|GkrHxINbW`rM_OslvU6MaQrhnH=%}VvFSzc#=rIWS zdYj75p7)M)L)hOUhTUnkWElA|2)=9mIvSLlY{p-&mCPY}M3Q)^jFEHt3k{4Y^@ zk+1jC`kP0+X>4vVbER@`Z*&2h4?w;v?R;6OHg@n{7`$^gS?`N5306!qfL3jXMor?( z$=k}A-_#fZ+Z4covV66hppd=)x2flD|HA+ zb{P-8bUFKz$);RSq8o8@n`+t=Jdq8TKk*ji>m~CY98h0{9#GOOu(Q$n4NBWof}B%^ zT}b7>Mtnj~zM82G@C)|S%%f*i<;hL)v6J*Kxi({}{-#<+RJ@bAqX%+2osGzRL1CPY27mD!>j*$2(+r-tnKIk#~1Yqek*xp7S+NQ5Fc8RT-PIQpxyS+N4GIP|+(i0wj zv@VtOW|v!mGb`kW1g^!=ql$^<6^Nzf)yOI>S;=liJbeA{K>`;je1N|{EA{dNiT^v@ZM%!T^pI3oti%{G|-V?u$lIOeKqt5id&gs4{4VZmit^D%uQ9!;x-(Xx1w;z7&! zM)J}+aOKhW0H4Ba01DZ7dD&JHfHW>wXo)pphPjKRBzTP4Kb%rlV|Z3U%&-_k9=+q( z?*Yj-tOSO}-#G`Ff-u|UtSU=7n*U@U&E7M9oX@3C`Qa7kg^X^|gEw>R$; zv``a8o>gf($)k<;mgfr6-|IN6)K+%3?!B~cTm-l=Ld5}z?asLTi~}VBqq|gzgy%@$ z>{{~Pbc6Cq_} z%H}Gii{kmKKyEvUabZ9G4a~?&v{J_NlDzqr;H$?RNlTZS>s};Z$}OBX_u>q#kQ$0w zPZJTQZM?5CADGI~&_`aoiaT5=PPYmI^m(-%sCq)B%j9&uUUpWj>6Y*LXE4Fbh8c1T z4ymugpnqh_tzqeO#8x84(Kr>fd9u9^2dhZH%F5Ep>yzumVBr{*+6Xyq&N;RpmH>mj z$_PL6Tm;u7Xcj`ge@?u{fiiBPCN6G0m!#U7qAyzh zE@^4(_U&1&c+X(P@%>XYmoN41s2J(9QR3C1n6NVDx5;g)8uK4jS3>2JuQSsCg55IjV{=CZ5*T?~X>xqh$Sueo_%d1f@|aW{{TYwpk6ce|&v`xM2f+xl&65sC zV?TyZYeVqB!_VVt>*H58wic-ku2tO@U|-=oeCuxM@7hDts@y$E@pBer`^_h7hfCXN z(gw6Ovw_U#z5OrT`H%8{_<{tD7i*KPZD|si&px+JzkZEb6YS#r`acB!%Omq9G3&ST zCA%V?>zPg!9l+B+I#& zoh!ZtokAOJTP{J>pmD_&ag?gTmwhl0lx5R=Wy|oB*w3(LwU&%N#5z-twVJLOd>VDE zqd#%cX#}TY@zr|42;ZtF0*X(ZPdbn9o+O{YcbjcVMngHnImCoNSNgh-JA39hSid1` zE%y=j3b4_^I_@&!kxPp?Y=BfgaVz%d+o_}DiQ`#06VCVB-%(jJ zkF&5VLby$gX7RVJRh2+7atlV`(zYSE-Sa5ND}6uJ^WMhJ#1MBtF1~&o+w;arX1^vo zVt!zfItEYwI%QAg)YW%O0{!k)FVnDm2F^QldcX`5yO0R2@CgE*vl$v2lMS zu=oP946g7k?ti#D0pJtliSyV%cAN_PlVbflo-iZ9gvcp1qS{9^e>haY%%;M;GN zwwJw0=3Q<1A3yw(#_TXabHtTJnzAx%b|a+tQ1ku#x;Sc3K39Y_@ZtGPD+gdK>v4z_ z9@&h1+Y~Qr>YEGj?V4(Se*AdOJ3%X99ByaUEsHC!M_W!fg<`0q$6ur4@F-f?d#=ez zW@}h*Y+!MLa%1EZd8w?NgHGE4Wz4W8n_QAiWZT}oo3W2zH58)$=ft-MA$hlG? z)T7VeXRual^W6{*p&eA#&S!ufy}piU)s!B=hXj^bQXS1eg7XvMG+}M>6C5+=@gZg(K$k;V~j>>Lqt%TQPK(wBqs<= zT9i&{VRTB49)mG|_w)Vz0e6o*?mhRMd(Qj$e!f&$!dS9*mMI%dUeB`YaJ7t!$&`Fg z*~^*&zmdv#5moLWKpNxK+73GKP1`=)XAzoJ{suV5oITo)OB|jGFb|587k=rw>e!h^L~ekghuOv%};YB+nu| z&xYkup+6Ow7s6MIXGRn_%7hydc zPE8#iXqRzq=HJR>wimw@x8LeYe_3Ye zo{qh(D?NqA32F=%P2)@C4C>q3qb&QVQuX~H_aAA0`wFdJ7}!wQ>p?JL=#P&51O1qn*g=S>@Nh!wWVB5a(1us9}Fi@{jGTm zs(bw)pHY z0P3_FgR1{r)lxJVOSP`{yK*xc{T!$8KTJ%bbEZsvMi5<`EX3(HN_BOSpxBO85YyKc*SB<5GLxRd!GB)U~ zj|Gqw-nfp|;>m8Xh>OdV3fmWhLSc24xb06_y5kyYwsDu?ih&~1xCZQ5>w^2^1gNLx zZC0I;1`i!`P1KQN`!edwQ_Q8c&Wx^!wZQ&Z5}!=zv7X74GV>)J!Sayi z9nX}1dyFbq^BDKH`nWwH^f&*R_*nnt`(JcD$&E`e`jwUMF*FAB0u)9^y(1s~Z5EMei+S*^jAxdBao|t5bbiOsD z_J~P?WI>6?RNvxRd4jUyCNx8M7#APDr4&5yw0H1m4nz(zGef!!K+)zlWp0G87C@VD zu=L7BMhYaDyRz1fr?}C8|8}Q0B`5Zg7c(&(yCT&Bqn&M)V;G+gFKdPUEqKIc$2r?5 z@VaEJicnYNYELk}9JW1aJ`@d6PF;MMvgdyp<@%7()uU`KIb7T1+?*E0BqvzvIG54< zMcfiQpDIkRU`8cly474#6}0Exs=9feHBGfbF%i5cFu|Y~XXQnW(Rkp}n%2efXr9L~ z_^;5>k;z(6dovJuiA2vm+nK6jHZ^aK-xhB>wb)&%ywozajp{133ok=)=y`-TIv*h$ zgqmjiC0SAu-yreLxzoy}#>n+x{_*hB)Y{9GQc)q$tZ&yDy7`G(CDB48*cc=1I&J;+ zXIv=xV!!#Hv3ow=;NN>p3TIWkOJ~r)J+EYQg4O-MjYtr<{ za`athmuT>x-ZyELsl8nFMkh9hQ%E^4Q_Kt`+zxeczm(jrZQ3MzvTE@g5=UFdP~mqb zAw@2>=XF=9IPA9QE6UCnepz5r;|y*&zj1JD)mmbGOev`FtpP$@vMuot$>E0IkrLc1 zeU%~pyT|*i##*TxLo+L0e2i4yEViM=TJ{@ltdI3o=heePKbn}8>c}oir#FXA+5+cE zKg?R<$V}h(RH-{r791Xa`Pn-|vIGXdNQ_ZXOS-Qawl%vL3luS_)8%a^LPN)`?X|0Q zLxWQ-XFEt2XY!wm-O-0Sap}c7Q<&YG;|O=`LF@X)<$;_t;mv^YL|0hMsBP{mOqU`* z6pzI{NW2)DFVlwf&&^p0!9|bHD)7-DtzsU6FujPIh|<zS-?UBjM z{-TOjX+}Yod)KLgXLpqgWj8oZFRmA%jehGBERjmmu_?mDOZ_XmzbN&s{y@%901Wm{ zy&F2K;e}M;1WdEo8Tb#0xOSR9iys07W?r=+o(;14xs^Uevr#8WavIB5+PW=fW80=N z&)irHOO1y`GPXiAvs+t(+n3ULBSxH?*bcjSLqkI;V$$WD!DXuBK3HNUNodGqmjJ6y zHAZG*aIAuFfOWn&zhVUlrOhNvQ^{0!%23$XdUn3~qG4g@b zWlUe5*uSYV0XQuKQjwMQcFW4gv&2U!q zcG7`#b)gngRbbGycg|`hUA$UdYp)il6nsbQzWXxnb z3wdnYddJ(aR%ce$S~X=6uF}ny_*td#tB31qb7QoKthe^{ZK8o9ObgBnPf(C22+y}& zS!MF+i1cq^&{iseyYH*(b$H-=mwK|-SawX`!HlnWwma3@IG%bQnjKU-w)B~?t;41> z=NcVKS7NFYLR=KZhEHdJ;WF6&=enT9o}58}?WRk6h;RHh*r5B;y)WL>{u@NeTCt=7 zFmI_ftsyi*gI_`44TM+gDR@1Ozs0?O)hS6Cu<{_gtI^}i%Z9tM812@It*okI3t!Z7OYq!9)(P8Tn)nAeE&|2oo%cXxkK;*=h2%se3B=fq5oOdx8E>k&{$_G-{ zD2N{%Z-pF@->+gssW;^&K>`9Xm%tIJl#poE%VxlC8=f+uCDV|_<3O~;NX%CMai~cp zxfm@3!}$1^t1U*6Xzd+|7LDd59`yL|%1=qPTQv}q2u0~0h5g4}v>Tx5BYudW5JsP9 zIHnYwF7CfGkmFPndU#eQwmgpXf1%UZ0p}bM~S})<`5ej2(}f!(6F-)6`Hfr6J}kj^-(@EUJ&6- zL(UW0OnFcT&&YdT>MZCF*zY{?kN4bzH(LP{wCH1Lu-*($OUr7ug3mCCX4cl;~38*om`?Ggx|JOYT07XB2j(m9!}?!KD)JQ8Ysmqv0O@* zy41RUbA+9-@)N5)`b z9@PyU=xq!rJckXRz90f~(GOeRXX>)g0~=@=!~1{nJW83KD$Pu{!WLpGCa<~?x!l-r z33!@WM!x4z=g}X&nh)6EqEF71My;(t;lJ$N`QS#jAdPm7Q5r2 zo$3qT+BcVt$JZ9r+5QJ>@sovsHLoD>T;MG;hu>`aj{_6H{pDLI^0&D3Ws^)7nB;md z41}jT*W09|97Sq{=pdE0icZEvPWk$MlVs2qfL1kp0Ln$|$`}i%Lpxn6&TEvmRBQ8# zI34fPJP#W=N*$3N&n+Zk2^8=jzOhjVsKFQo;fJjUBa3VEBXsr@R@w2BGoxJX{SUAA zdB|d`UB@l#SMXZeL|zFGnTn}CIA%QLs@K@_Rr4dU**M-tN?J~)x*GGpG!C+`dZ~C@ zzMxs9fRKUxKMfP^4Goi+ev$NWtf?88Mse{{)|D6W_ZL-8Ch0$t;su=z-Pg+Z6JXyf z=hE@5fR~)t)UDc1Cs=Fq5NMRs$=>ds#~7PuNJs0Ovd3`&vbO8*xt?=$B_8Tm$lb3S z1@dsAl71T10d4=KG=sq!tf&}d1DRh($)j5O`P8$x2GURm?lL*~MyQA!kT#=dFkmFF zDfYA^Zk>JzxT$@m6B6XMn(Qjfu_I*>i0G@esx|8`fDtpJr@=Kc%H7tpT~Ojb5OSy+ z8-xwp*yC)ZdkXdO@R#24V|ga=pf+%({#hW94gZ02!S~uuFS4R_A7hRMyqFQTVmyVQ z`MQ{YB%WII!{7Y8!Upgx!D7#2?cJbt3p(|TJWSl8hZ7;ck#_<;irR@cil5?A22@~Qo6nOz2J*B2(9NK7c3SCn?4U9fgCVon#WyX_KS{^S|wUojj|jRf4rM`qjJeT z@I9gP*Y!8k6G>j_rBc4@h*9u9aNZb7zt(!bj}^NZ(cW5nQ$^||I_SgeCTdQX%5bYU zB714G&ETlZd0k;^k_epF@yh>{MC|6Z8Cnpm*n%#yG$*)ITKdHD|CZO*xK*=h(M1Gb z<{rpb)QQ0|q3GtD(5_uQvtZ>}`}6yYcnU$Z+>{kSbFgf6Qcy35f-+^s8f@ z21=&L>+DB0o9wU4%-D6^RQBMPA%Ko_eZ6emzkTmd73_?*Tl^E^2;4^@4N>SN^F+|4 zBq}UX5@mEPG7;13RPD6BZF&J7hna+HTP`Ic6fXWE1$>mg^!$RF;BjUL!$!ong}$)0 zed3x$(-kly2VTx__osA2Z{~Gl1<{$@WE_s2*Tyf4veCw=U)CY)z|KgbGoAcs2J6`7 z8w8Iy%@$mzMW(@?^vW)O#)Ym2N`^{U3BtUM`lmaLjr-bSYfMD{f|=o&zm5&JAF$tx6(~SCxVQ&CqnU* zwOyBu&&&QY=rmaX>lZL(U#vU!3oiUVVa>bw%{@BVyuq2|gYeq~`Ol3q|AmvEJgqfI z57s($`Y47E=56sdiyw}myUw_7#%VG{CD>-s07$6`>UMhBv%o+Yh25~8{h@m%5m;Qp zCEtJKJ$CO+58K9P5a?*9;y=bvj!7b54`2)}@q7*MG{&r@D|m8pBU$BH@4L*=!S9rO zhVzy7D_!mC)Zd!I+5@YKuP9#iSxOK67pEYGy`Gy|Lp-4u;eJp2*4Opyr@*iqwVUk& z>+JtXXuCuEnCxaT54@ud!JkC~1xkF2Qn!T^o;>XEXel6F1Nx|QfEN6W(rD_%z08&$@NxuztHk2guNIbB-d(Y-ZYaTJ4&VawHE9)GI88d=7#iYAOI^v1eSFXi9JeO{6IUt z`oV4kT=M8$ulbWAzXGqN5HmZmWB_mN4}I0Y<{nk{`@vF=v@MnwG(8HN^?b|_sKjK9lsgf%KYGtVycFU!F3K-!`0)OI zhXY302XC^OnyEH&^3+gQxgxyX{PBQy^;q1;QL7K~J9Q+I_=%(M&Gvv%b3Gt5nD{>I z@NLtLvaltm&ezb7#G=J2>x|q5)X6j7t%1Mo=2Bq27u~_dl=EbyY}ck23)Vqy8sPPd zuWvVSZSZ2vU+l#Njjp_Dq`wLY9Y^Y_#M8W0!7D5w#Z7t-xVkT|Dgr}Qf=%7rB_S(4 zEw44m9EDZdjCtft65nf6;2UG7xhQ)d4-cO9aO6&^Sje;xuV{rr=g_-=)V0SA>9hIx z9+_7c4-phgQHJEu<{XDB}K? zkf>!SyL*G=O$s3)tiqP2p3&#W+%4IJ8GBG#jPLGigt8LXZ19cbP!83)${~{`E>~N< zOl6L|?$F=*StNLy&z_N*!R$)o+uBw6@BAWQ^`V`z4~BbYZ^`#SK_WudtL*pRS6WJ_ zC;V6qD@@ck8xecXH zLGA&ypvWgpawccqg67EJPjpQjF`mVOMs=&}oXFdBUq7R35_0Ko-BLJJ5z-bH(T>Lu zemt5U=SCde>Rm<03mIyw1l=n25s?DFKBIJc%QQ7z4hc|H zrw+f`vUEHsm+$4J{*+F9OE}cl^LYj(@Y3BfrF7x6AI`|6uthLg)+lM?8&`Q(7Z1zX zKRkJ6BRTij)9Xh3HQnWHmCsDBGu}#cb1COAdbtU@eT!TMfiQQS%NftjL>LgV-TWb4 z{5DfEz5FJLivqFbH|YWYnz4NcEO+2b}nlnM~sV9P2+fb+X236w6CDU3N0V^|mrEb#z ziayo<+-^J1Yau_DWJB2`l<$b@PUttY0)Uz0T@u{M{g0>jllwu-Z*a*RmJWwlqP_^1 zqp{Y5ryOj_WE36UuZi$?lHe!u(H4R}8S?g}c(pu+2@2U-4W4h>!6Q!;X@HFf(x;?C(dwEx7ZqOlg!zm~px{VI zg-J^2vq1|6G(N&S;!So;*p71PuRupgHm7`JH)vlrcw(8N*Sx+IM4GGv#J)cPZ6p*I zcZ1fIK%o8hr+XuC_Z(G-KEwMuV<>Om`qDoV4pYi-c)IICajl%q-5=s}hv`cPj|~4j zdov$f!2ggM=2rlGfmN%qK*WnelIrt1`{REJ|G_uG;Q7KKq+vr~7jnk=WrJ%uBryBU z?9^xbala9FNlLG^*<1lG=s%FTR4-GB%r|)h_`@Nt+ON$v@Cshp+as?4ad&l9|C-q@ykD{y3Os>N7a$o#dc?dS5HHyBEmOtSxSg8S^=*AN}0Uda29 z$tdzp?zM4&*;G#B*99*fdE5k)-jJ!lJAa?C_gueJwe0Dq4t$%g((!}6)<<`mR939= zGF@{n>0=Pvctdp1^i$ByKH)^#IG-M_#9t?6;Ed`Sg&$GUyV??Y-+|yeVmcIZho{Nn zvij57K?vY91J$SA?MkrKah%hXe>uV)gWt%0!CldFRQ$|w{loJDDAb_84AH2wxqQZfZ?;sI%n#+JoBbSBh&% zx~!zS`9=>?4&NMAD+VoH;0Rk)r{cf*g)pr_f;X7|lA%$kshCFb&H-8t%FeQG9iIGf z{D^xp?cSMMf2^ij#HnigaJI$WxeU$sUxBHHr@$m>{iI}6ckgc63%OmcTa+|5@rOkH z8`?bF&yJ>fuj|+Z^{KY}KB4l|x$nT&qd@lV6@0`?Wn1n zZ;uYZywtE3zp>n#TiDe3qGQ)Lb~5Zj#h9gEc;Fk0w5Ag3oG zE!-4He0#XFxMOuHL}%Te{=l#_dU(EZrHt~M>M6caNxP4%Of?PjmA<8qqJ~tGZ2Zd& z!jUjrMB=MYYa$NvJ-iNR`y+RbbxS88)1ByB)@Rf!pn4Tz%sTObN6_*`N@JqI)4m-d zJe?F{9BRCFQLH6YZiI`Y}%^yBWXrJdyb!`Cn!@$}5=udB#4k$vy5j{N9?Nhgzi*V-Ah5zSws^ zBiJ}|*&I(+lEsF=vhhWv@eo4=^S{(;7ZU-(7Yx~ARX^}aXSj_#s=eqr(y zvMW+;ycpY7jfQL~2q$L!*j6yY;LSYs9+fsZGdYtA6MCQmM>~M^5*bP^Ys|Q}c@X@A zX;>aNvWz#GaLbmR_QDJMhTlCQYyVX2hKviGc6;!Eq~m4U4YdMb5ZGmtIak|0iimai zb+h~Swzt+a;c~1ohyPn{OF;`67iByf?amO@Uvi~P9Xi;-Jv3rF#4%tMQ>8z!?XnS*0XgY$vik1B zM;F9&qbxDz9Z!d3YyfG>z>ylym55#z#t1D=ueT)hW55frJ=SdXRfKfbf6d4gO-W2Coa#M8nCpHrC=X$cF#Qi1WOl#ZS&grvJ4nB4t- zGS^zNy<6L?3LZDNP$+Y^>dbkp{I)+sElDQF>rAtHRg+%ZSIEpb`6~NX*4Ow3 zZ)`4QDmua^mMKp18{}x}!La-*9pz9%Q!6RPn@I7%R0N6qmFr(42Vw3zzCTiqAO3|? z|05auHXre%H{Ld4HT5en?X=72yWUI~L9Zn-bN>1hq~e1&6YI_BM#XsLFF3#IT#Ckn z^OY<#$TjH;2Y%_y&t2I96@Kt}8z&>NpG7q%P`M(MDg>uVN5U%}y{-Rb>4mQ(+j}*8 z_p|TOQXQLP*&!2A?pLEmNvnP+nO{Ha+=RpgSiE70pa9N34Vw%8BfXqUNzq3u9?cHY z&uP=@aO0lwOD7`Ni6ptxIZWg6jqJOX1!*rDkwEVy$34FaGGp0|G$+0$+|B?(4X^L2 z7!Hzc%rrvB8ooqqAJIKQ_uTHH^4%91L+NUv(k3w>~JZWc4!U&7UeY)zXRoFR2A7bKhBdS>d{ zHvlrlEFuMGByzK)Cl15Xig(wF*qf#@r3?D+jP#;P+;NOw2g;tZ|El{vw*W4FoU~xm zcjlV5_F`H6W#VFRn}J41;d-0#It%IQ zsksV7!K$wrxvnrxVH8IzkRz@_)IQNCJ5xSyL=nv3Z?j{f_rzq%q(5N2U^9XA4&V|!vE8C;-x2Me&Mpr}p!NG&e zWR%aWEjAIOyR)SR`;!HaFmpM+v`Z6wmK%I*T)#vGNxH)=Q|)$9MhaEHiNI8*@MU2l z_3QGfCU=SY{W47~HdTyDV(;wNa}V}svM-~xLKEItTzUK>dFleOg?{g<-%j+99(=;`34S@^-HP#o4$n6`L= zy^6!qzMo=N|7w3wct!XXRwlH~O+>t&uaEvncVjJZ!4@Dw)ZfQx=U`z63CiDl$k=bl+t9;`|M(Mw7h#-Qq=$a-;P)d|yUg^CKs@83%o3iT%Q~oZKaT$J8We zVu5bsL}EPzEe+)BD8gTF8P=Ee8|(sSY;;g;tt#RwMa=_F3+uC!7$x$%W+zm*F=nTy zmnM0ZJTc!`*xnFCYb6@3P&z#wU+0SFP}5u!!0hQVZ$Nl-OWR_m4+gTxJsWN83e{ zacO(%tp&P?fcbEOdf>q}I`ZN*3MKc{*_<>X3fw;VnKp)}WThuQ8{hx^!%Ep0vKMu; zzp_3Z<9@Z!U}sJj8wdS&Pvp zNxP#gPuZEF_+Tt9J|7XMufo1NJ`H>0+CO;iLcC)SfOnKv1??_svnES4T~s1n4GY4l zzZQ5WR}W!%%M`t*6s>B{n!md8eMbmdB~E6&^roh`Z6mJT1zTM%jV3(pQdY@*F)yH( zpC_j?0iw;bG|1A>)p1`PtQ$8Ar;b;pe%-jhFshcb+d@dpJj=MMRa^R?Ds|v}RjMi# zW_oV6O0g4u?POj!RPL?ObW7G`9?<`v8ZhW9`RcJCk_plEQ2Y4YC9=iqmxEf3@2)t1 zybXRWJ56vwOh8CyHb+M+AP8(Tq-*$POTbNqWe261l-9nK&3Ryo`ZIDyah2WTba1?C zA4xDNcHgOe)wFf@ck>dsH2?Rl=-EX~B#A>qb!CwoO zspjRZU2z%AbhEyyRm0Ug?7sDCA8&x^kA+=jdetH;&hn5&)3y39Nwk*)W?a0 zvA*wUYDxC64^%u&YsJG@^HWj%n^q9?_d0CBZn?Z5p{V4_i)H6*UsEv;Lg&!c1wfxjF0-$a-#^s$JKujnDCkue{jOl*_^Q_h0pU z+qz4NDmvm)kORo{;&O21c&`_)%ELeEkp{0sv=vQ7?34uL)(3Qj)ChMBo^pN}q1Q0U z!2ue-j-|ypHU^t@t5~f zHt$OsdgP1K?p3s`T`Bmx6nyCaJBi$TRfpSXY7f4YhgFtcYKPfe6|1@D(RA385mgBA zB+~SBL5*xguE6_{E#mjh2^e> zh>$MGZe+Hv>qw$@?eqxj3Votx(K&vW(C#9fvjufxU4#VG=iyXR&s?uQgt=Vmo!jAv zcX#CTsnq&w+q3o>xbjya6H$`Nh>~5;HRm)tEB3A(X0lVTfF3`#HZ$k3@_j`#+L+F=?>EZdB^L?kK1& zjPez2=bgRoKlpBP`L3|+6_(g|bK&?^hDIACyG-8Ne1jjRVSc3ObLRT@coR$Oax>O6 z#5cR+BvA-_4a_0KxVyJ9kf*&hD-l)Y^0y$H3aQWYrG zRh{V{wj0w~1i6U=#!1Qh^7i+J3qR$WMAo+rNn`8*!O3W--c=fmUoDE!aN=a(iMVI> zf_KBF=+Pi=V;BeKVJUuM;6v?n{94JlkvIC>tw-ZHzr^F+BZZ|2cdZ2;WaM6bvOX_sFFe>OrH$QmAJ)R1V>j}z zHuho7umR3*nZKYBi)8-#e9Dquv-w4LbiUZA@*_Mx`0)_dZqzY2{8i`*b3Dj`ai@u_ z7VWWX4UnGds8lw&RfJXr$aOnN`gMXbIBdSY!!%?DO}6c||2~j77joGxTOOg=;yh?- z;dG-^=dcp5;`gku#fzrsWGM6uYL1S7E!|bC_4)d1jK~h|7O@X<;e!o9W~Wpt(M;ds z={4-FCo+}okF9*Wi9Qgk({{hr5nvjlBB)dmY)6&(%G{=+$98OLe=k{9XDjoHwLQ=O zc>FOwXvC`?yK;CGeZ7QR1!>ZjX}XLP13hmSea8llOlqdksxHqB-UN0e?OB)P4)oX< zWv!CeoIha<_4U8S>KYvzzdxpb>Ex*WS%ZDp_Jd01#I&@UUtGc+StFf(Yji2cgBoFi-AOusd?b0K(i7}*j{;y)5HBG37Z=$`U}%Jco% zf$nh|jrT1vR4jFss@u$bQIC8gba<({0ph#)hB4C|W?T0>CdRKYW7`L@>0@ipH*0&Q zBy9Sc$eJtczNM=OXnht9G|E=(56qHiVS|9SesrneUHfhEx{N~xREac^cg$ZvQ_ohG zUxL0fhy1qAhu@TurY=l7xE8teO+1>^nK>Flu4u~Qzo}HRt+J9cxu3J=cU&2GJrV^n zr7v7;8ynA1#Sv(-4mZBJ_$acz8{a2A!a!J|vKuQGo{b$NB22?tx`f8%3EsbL2>{3A zr*}wZTxIQ3R_-O&uyEyO<+hk=qPR`mAWt}L3CcI_Q<>0fwR&zSkV*!6Q#?#o?e2-d zfc*ofpeG;3Sw`b?QH5#6b?wcX%3m=p1%v+9?mxGX1Abu^gLSoe2sqw}E+?m?W0iLq z6z)S?l+|W&I(|W#g>uF) z$phZA%RBGIg6YB;uIf`N*Izfy+Uc5L_RKPQ8S;wC`4uDTChX4UdBNH)2($Q}6kcUc(V%ehrRzTZL@50Wy;XZ0sDPJO|2Dm@|EqmG?Cif_T<83s zJ2RSRAjwu#v4!&DV(F5)pGtR`+lF;%s>)=^pWimCS3HJ3%>aQz_p>$hj!LfM-avI+ z==P~|81B>Lo&dvC2CiIpz(8=f&GQ>SQkuGHs6MYJo$YwB^D~+ZT^A3YeVc@Bl*chw zhHt4labUHk9sSWPetws7zWa@C)n;g1)9GK?0lgMK#+WIcut~7KtT%$P_KRGQXOK_# z^;}rpqMS^D6xcr$dY*bm%E&Y?Z{pQyD0)atMQtg?W_z}NugG3Wk8K*jzPV&S71Y`F ztzk;EaNM@Pj%6eRR5@JAfrFs9G^E;srVx5aBDb{{0+6zzdJb;Tvd@>=h^blp`v*7%o^)cF}4nvXKe@mWuujdbMtJyV)})o%X!tK;t*xyS*^kacgff*&+CLjBfBXm+-&^fa7!&%n^hxS8^lZ~C%TfG%+|IN&lSA#ehy&5)}U z*U$?El>eYVqV+q|yEekRsg~6xI83E93kapw`X)@yzP8V%*THF;=~1x7V6Xmh-I{_+ z@v~V;4`=|Sv}O@~#W4&tP5=gWHqPO?wWtOQyH-YgjbFL3QOp@K!shw{rZqI35q;PD62g>(dtEP zXsa<>eprsvrOc-vD$GY(?J_>==mON-^L3`SP&cfKh4$Zc!b0)at-zY5*RM6Zlrgr# z7B0i5>SxVp-pgeJ&%(i-8&_NJ zxpUoJQFzj_fgJtT5Oufnzk`?aQpEiUw`sI9YgyHU+PR2sjUhs$)gOoNQP)n2v3#gg zKfa;+MfE3phaM8mM`Ai*92<}jkzxdI2Ec9Kh-~IEsGSklvOz;ljEerun}!YRF9t1Y z6xy%pbHqX0BxvT`MU(Hj72}t)EGr++EwmY2KI7p;veiNWn|k7?dFiGX#)G@2-R$k9 ztGaR~6;$QmNtTFDI9K$%in?X=>%T&Nn!xI5_XM|wYDTY0oZoB?8WlxduWEz5YQJ-y zO0<KsizM=8qYu!fii{gD-DD4Wd%bMT6%51FQ&Lh|K8mqYLk^%4Mz|^M| ztM@O*J-O~YFv)RRJmmLB-Y*0!%&;or+tTS*4c`^FE1fx|c8tmIM-aDXG+GNuLZW>Q zCd^E~jG5a4Qc!D1|3$+(AcO1j_>2-H~{u@z!`^BkCL>qv|>JZCjFOP;zs=eP-`&Je)FEz8KdO>QTOj zUXgF)8=AL=eFJ<>V*$M1BfE$FUiy?j_I%K!%|yy`bv^D$mqDw0b@@o_aYEzZ2_|*<2pZ*as{$ z_jE2*oq){p@)^NSgzR^;cAZdF9KGzULyaMD7L<9#zxNHZ{^Lrp1)&2)ElQk|%9qTB zx^bojWUhYdt#?Ug51hT7xExg88L62>-LpI8er@&L)=q(^nNr_;D`TcMY9f=5Ggw5f z3I%cAZCkTV(rb#|P+_sM1jogBaLPVr4XDp`4qjAws~yORbZ$&t2iG;>0B*+>FVohy z0|RtoZ*j?eSEyjeRIv`dzFlj0`d5bi3;mjSxqx_wuU$4ah4=!!cA&o_MK!o5UBxzY z*bA68_(WMlZ#La?XY8F?bazWH2GLD*T$kXfDNq|jy3R?=z-q;HrRt_;fr{DB{9GMo`=Xckty2kO-l#k|3P@kmNf&Y&&U0ehdl8^Xq3V!z(`yZGm>sBfD zbjSR+_Grxa$*_+dHa(mdD&=KcefS>FjWp|a34?Zx3btH}c8<(UXqiz^UK7d!(5dW-FQ; zU!wlk3(qz4-0i(8;~>0-RrqdBGsFc&ylI3vcv4?3v-t;L?Om(s{`B5{aTaKVbv}K7 z2aCj za!r4%*Ac#NR%E^LVUe3}DXN*~s>#!{DIq-`QvK1%b*6NpNP=1E@pTGEreSLJ7mB9+ zlJE5VTk{IEcf<(&CL1wwUz61(ms|p<=#ggH9(o8Oa4T1?p z#c=lbZ9^=TQwiZ*jSrtfxIZ-Bo0H2D;=-9N#fBY^1!5)I=ij&Hg1y_Cv_J*!PpkRI zR~jLDK7aTSR}L9$#BIK#s%|X^UNznQZn_!iiFp!)2dj5@FO%11{b~!cI3IbXspsaz zE8_V1S9_}SZff|LkIb*-Rz>*5_Wjf;J@cIZp4?jG?{o86E#MWJGT6}aD+dPy68{nc zcGF%l*wVA+=o3ik^kw$ECbhmq3^a{?abeKO1mxjSfghSxi#XGXw}0Vr_pq|eMMAUF zh(;=KvqoO6)OrAyz$aoqUJ2NjZ&(a4OzQ*iEFoSzbjHox0&Zv^`- z#towXIHYa1Jxy&XLDyhG4=f?({Ewu!^}ca&)y>JV+ve)`djA#&GYm9Fhf{D4e-!dw^FUngR%5ICq+ky&h-i65JelE`&I;9NsKrYJ zs=XgSdwIugX~R4MaPrY-dp4i`BXN9HGuL%d@7^aQ>Q%4FfEM~zbsal}vhz&`cwqf8iGB12-f6n^f$~Gea zP6xI^fc7{eZeJs>`j9`89j;`16bre{k*1yq13!x9kM-zsef{}1cbkV&sp``*;*NBerkLUWGP zCt`3elu$aGYwY7ug}?*6rcSlTN&7NA(Loj*?1ZcNSbbv7gkO`lqxpJ&?$i8g{Xdf1 z6%w7?d6l?&fXF4pbbckLH~&pfmuUI2q32{<&M{olWWd!IGthvtz=_>y@@t;O{g-LJ ztxY8tB#?T4NUg76G7Sab#cR^T`@F87;zcB94N-lZ z{YAtJwJO0fa5`QK8wB^(sW?W-;ap?DT@}60?x`}mCgFTVIHjKG(f-viE?=5!uxI@H z!O&P&Zd$v2SRFkXv~h=36PAF z=H5afOUL!Rw|y6Wx**w&Q#i1qNPg+F=7>8@6^LHddpr(&KJlw#6J%ahUxzxKv`Un6e5BUkl_GU?X|}A_Y;*g6z^_hw;H6dgY|W9q z0n3IG-ON*QbK4n*BNW-6)N>a0{5VLPo;L`5y0`&!;?ZDj&!n~AXeY##ksj!AuE(N+ zJs@x^$T{7FUFJA6Edc)ErFgwZ6ykM?91~%Vfhw0!(XrFTpNoWU4-m2fTe7Z~ zp<8OW=TW9b%Ma&BijUNKwm{?S<8Yuw^Tyo9G;~buKqpI#V-c6R@X}0_Tqzp7ZgL(U z>XPkixEXj3v?vk&q!ll30t|1;b-pNaw!2@`{pvx-2z9nA$)2f_zV49=C?R$>2nU1yL0{!{$eLK-<+(*kCx1K*WZQE7HcOhFqRICVlv0@IDpYM$45q~}VxVK|xq_j$IaDIFo zju^e8Mg?>|DF6%Yb&(+%jn!dvEz?JcAoUX$X8E(zoj#<8TX^6lPI#-$!>zp!a-NP< z^iGdCOMAPae0zkmO0SA{w}IuSrtZ-k;bT@9LhfFKU&kuvRhY#R3G{ykig& zBh_&9?TPpQv8Vrs{Ce^=-n-tuoAEdBXJyx2--?h^hTkTs>9E6>SQwk~vN5n#OWlIg z9RD9lXBpSz`@e4#6hWj@QYmTa25APulx~n7-5m;wbcZxZ=Ojmm(%m&ijqV(b`uy+j z@Bf$w(nWeLg+u$MDD8W%rI3CEH}q#aa)^+Qes{$kgRfrB-6-qLNgJD-KqX<%BC5 zNba5QlwmwU-)g~1-%iO+o_?jV3@KL+j3``~Lq>*Z%jRSYg^nXH@An)caSCGQL*RAM zf9PYLT7GDYiN2^`+q8*vkXLfW5|HQHEcP8=-;3LmU6u$?`8z^W}^tx$v-v2$7Dn?{=-O646P9ZoqwfZ zcqi_kQ*e6wc}C}H(LXF}aAtlV$<>|)BGh%2&AdS3YVD#=THTi8!(y`#yW>7c;^NU? z(=f@cP6Y48%iC!8Rbca-bEPB8`FG6MnzJgJX02Mm%29=TDV~romHz#%(oP&y0Eb-X zJuMR&US~~~7(OS{2lwUm zTQ9>~3p^tV@R}%hzD?D>iV^p9`Jrno`O+q*1F^4D0G3l^`1IVp&!w;$#Mrr&;XP45 zXt+sd95KpPDLYSs)e{@ zz?h4b6WET=<|Gh-lsBtEJ1i%@V8ytNlZ$S65<29n(P=kXxGd7l5|UE=jze ziD16z@i#}Y0e?#VJZZIzo63p6za{y#Ev_wtoisqnde57nX>JUsea*fZ5C4G4 z^yH);wyr+z(otB;C}E}RwDBG{bed*o7gF)$^Fn-2mQ6WIvYk!XZR!uux;r@he9$Qi zNhST$+3v%VoHkx{7oqRci$fpakvL5<^Gl3!;DZcyzR2G6uIs12OW}ul*mz(ncK5H)Ax)t{J?&M6&rdp)&A>O9~Y-ptXmZ(1m- zY|ob*Um~OFfNnCn;1o$JvE{Ipch{E1xN#|ZHo)~-imDUpwJw(dh<)o9caYK7|1e_3 z{3mxcE_mQ8lw0`GAftqD(RXnMqAf&B)6FF%tMS{Q^%Q?Wv~27B3TzaI-d`<(b* z9UHiWhCcdMHb*SfIlw{jf3T^T!2qv_*-yF#H-m8{5Pld@#=sLc@dJ=cy?@{Eso<=@ zo>io%=!ZWMnNezt95Eo??K(MvU*;QZ?2<GiLx6RXF63M zK8UqeW-5}MtsJC$`v4hy^0LmcKP_P^H$`a&D26|X99%&?iJ6UXqNMGv6~Qh+A1Ll` zu_&&5(I{I!r##KW&jCg<-~Z+97JhVM#A~DRq(SBe)km_*g~lLoC|MK6JEb?L>ps4W zRGe&g!N6q50UOOUk~1b4e@lG-f^tAq{Ods%sl6GSi9%CSJfDlQc+*iYM?@3qkSM@B z^Yy*^A7QDS9s04T)}(qB@Vi)<=H!?jH*D#&i~PuIq54H~Eh?k<_OYPOkvX@CxmTG6 z{4L7yZ85QKCE1;ut|y=1irH%774NRp_%=qkPxzi|zf2kvq0u$LulV6JJTg?Tl{ZQ8 z^SGpG(&Mf*<=-y~7}c6h{=OeF@~(_|+G5+Xii4gmxLXkz%s#%CsaB1L-G1c5=aW*K zT=PRZaV!s8jV6zA6o{TVsV6$1b58jV%(!`(0%g{6X1lrjnP}6+2dH4=tS;ye(p5^D zj+^-FxL@k%1$7>O8lS`*L%4Rlne#Mm zIMPCXkL`TcifS{ZYcqPLs^3*Z5o=2&X2AlMuxl4;NPyvt!Pe)O;}R(8{wNU9SR5OI z=WR#Sac!awhBX+Oc0?6ceR|*l_U6*|vPj@ZIVym?!=S1diiMi&DH)*YKHEu2kDKPI0Euxsm@=}wAgDsOJ z>rL%iW9i?!q#mGb-_vI~J9c?*&Zi8E&0J}0d+9cwm!9z4r_eFk%SIQ8-1BZ{%pXog zmVp1mV6`x-Z;bT!*G~|V^K{0_F^{L^To)!GR=O@U6Wv!-voLV%(~LGEBveGL7Yl@ zp8(VL?`HE8sJ4nYWJRt7H)X11^aK!J4QUsRthDD<4qc~t*L6$f4ID5{uB^cO-Ym$c z@dd^{qZ~ht`FCDK**hjMZ79nFeUQjRJM@|o4Q(0VAX<`C=3x9Nt@%N_n0I+X)59(> z3R9cXyl6@)!tX@55f1ak~=Z3$ar_ZV1nvE5H`|H;?3F zznCh`2->7qs_?W6T%wD+lL&yE1$X5V|3f>y~os4H1qB!icfxB6YXUW|@ik z&V+TBo7-`012v`@P2;leA?NWGbCtq!S+~~hwv5iD3UQ@z<%(SS;BJ}h0O7Og_0_nw zKW!P}?LwY2>(ksh;!y*ie?MJfG0GmP9ZXWR2Y4v$nPrJe_+vJH{C z@PXX-grM_cYMwR(HUne5ix@FE~iWdB<;-9$`6z zTAo4JEhsr|%kUF96@??HF}#$m_!D`LPVAe5^lVfuY0oI5-$Yvl)tvGa38q zXq_Hw-ehOLnoIz?tr(g#eW&>NGc!{{;$87pktl~@!@GlXcbh&GYD^1Kr*BL`753aF zGoh8Q`CttHS)i3~xn6`CSJq}b8`Op%IkOo#`2(W(-f?9jY8u_?D|~Licll`qw&~FyNas5*(9y~K4o>;B7o;1zeD&Q=j>xJVaF4nW)DXs;lUGkt6=KH z{iF}d2v`UuU+qO`hzvTqKx)0R|Ct0dymZKek(J$vC)H)kR{?|{^R;@mUZk}dymIC`$xkjjgubp zk2JX(1U)BkMkIcm^w$pVAUK`qeA^p0XA&*oG&y<1*a};GEQfIYj?}k6KGXl>i)A6Y z@%L;z3@upGYzHh7>VvRUN0Xw@&7Gmp+b3Q6|YH zt@ox@Y{ZEFo41}4UwyUU6SmJK#rEQS z#$)}6ETujLT0QV<`&W9ySRQ;+$5p4T8U$0 zK}QzPiiY|6+goaAlCsWBC3AdA`j)LCesC&4gh#Owr^dbQJsN+$`e+6Eq^YLQHppyQ zy~^pKv+CX%e8XA{U3YxDiaZIIdLEcK2O;0)a#9n;&cL(u{m~L~Pm|NMHeUp^!p9t} zm854s~N!7A#4w_1vhc~3rPKOPl}_8m~nGn!Lp;y>r0vW^zf z`m{$(l2p+!;%r?U!C?yO)k@o5K=Fo|p8YJGg5JzO$|KRx$6=9#A^T`&Y=|Ha7jV(9 zo3ff@vbJc>o`8%Ek@IL&O zdbiwthS|g6NS2z;UESi1d%>9)PLy)dg3zmj1$kwn%bkYMpDB|IBC<;QT@Ha3%MwVGo`<@x_UPrT=9^EK@X>+Vv2X? zAHEHdjPb%mOuk=2)2h-Wa$==C(>tVZe$DG1~_#ADA4X#fyUN}YbN)%ZpQDNFOe^ST6CR=>SO=)@nFO>Bfw=StjjE@}| zADK%+i7d`fcm8kXFvo!cKwZOd>#{QhK{tYzU_!%y35$OFlfA-S(NZiu?!6*O2q#hU1har-wK>BAPL(K)lCnQ@{J# zdBftVz>Gv4NYKX%=NmTXaH~`7?kdb~1C!L@BIl(k39Fex!o(WCr?RnrSJxH2>nWUS zuZh&yT>|3Ta+{}B3*kYq1$dY!ha5$8>2&Imukm1KJ5xJ&v~^|5Y!1PP!^jxn{@gn0kf66O%ea$o43?~uxp%DfWIHiM9m_Fs{}+FBNw{;V91X z(K`g7F7nU5V$&e=s*U7%MWRXbu?jxlRo@zRu9sg)d6DjJiPi`GXiCaG{n0 zBt0p@c90XcEg_}BJEHdfL<)y|Q ze$Kn@9B3d#`{k?eZ-JiO+4&!${@S%ps)_(Fnn)keffC~IZCfu;eRaX4=3GLhJ^NMp zTh3M|xd_+N_w*xkpy&Wq|gt`_biqh?NzwjySvkl_O?nV z)_y_eoPP*cR}_h2GCK=ZP09(V1^@P29gW{toATstF3d{ZTPfI#X=f~dtNQJW_zGeb zA(}8Buw6w|6%xKCugr@de5J;d%h95v!a&vv!Cs> z0U!T|5yll-u!KNE1l;uDD`pHIIpBJ-!uWm_Dt-@;zQVNjpdDZEs_dUY%-QS5Qk?6D&SpVz=xTt5iv5(K1A zQqYCKKhdj=*zateFOi*JLZ&WW9oSaQ1Q*(+t|{aG!7$M0fl@hF`;cYW=bWS-dD-jJ z;?^g5PWicmxPTWAi|cf5^Q_Kwc8VxA8OC1Z+6n2?S=O{9cST>*e@mm1`X^YG@9ktP zE|qX~!CwR_d#7$}L0eTAh_*i{2zLFr4`ljUv6xIot=CcGOfgT0FrNbL=;-BJz91imjXTK>Y+0&7 z5lOHhM6E#}6LFlIEWiJ`K)ga<2xYI#!P8-S`ndi(TKD!QZ99qQ*|#*JAc8vpd<%Svs^qD{Zt(ts5yzlO zuB!G>zNFknQ)MS^>MSH-DfU(6@$v7YNyiJbGSJ`UMn}V-I&XiJY1rS6njLCANRFpF3j_dZaL!?Ra?%k!zcYA}QLo$;(#yee3;2Q|L0GPO3O*DvZLDLi zKxO#!)ST|Z3`TYrSOgG4h)agtM7LtdkyKE)aO?s{BOShWa3Wnz}Zan)K7IvT& z@lo{6j&toI&=dCLx?hl6HN|k=-flQ4Q(biwFsn`8&22ReEg=WW)}Lwn6($0nLMHU3>g0A z$>t~CXt*nzR+g_tM~>h4ecGA?$R$llmzcf#)o5QnVaP|!XIUl+q33lXNsR!I0b44_5~y7bTXo??MaLh7(z)mI{Ydxrf@Z# zxNH#}h6CSkTKYDY4;t$d`1QxjK170gU>bp`ql)XZx}4bg6`fK*d=5Cye<*F*VP?1^*ok-r*(oOv3`vd%F2|q>{XMi@L`T2Pv)hG;JfT$BXM-^!mu z!{CMOG}-XGdaLx~OSpd-;0)z6_~$8k8fR->jN5i3yUR>}qVj+chd zII~suHx}=e9IajtGr8}_7tZatgV^r4;?aKhS+{3X^*d_D-uD#u#DUkW!NM0wF!f<` zL_?dJPm6XvyQ6s9!DMmS?cdA}nOC$2FxJ9qxcjTw*;Wtq2`8X`i|aY|*eF{Fl46*R$ND~Xb+qChyD_iv(9`t|`Gl&gPt8+;TfyIG!vEQ~b4pxj zZzqzrH-q9P?Rv+OX%(u^SAp*CdLhL*8LU$!^HNY$TZH?CZdv+8mb-nY zFX(i9TiHpN%OBISgt*F_KbB8DhxfXWac#sdQKyLb;)d1#k&A5$nA)_NE7r|W9aP#z z0LKNe%)eAVFC9~|&ems^9S_R)+1989eb8NNDoiz4NblcKb6e6#fa7sOw9Ukl5U9{lkvN!@Jc$B__Fn3xY*$ zJ2s^)3v7pnq?u1Z_qS0ju$M&T3KFqGM*AGZLW-bst_jTXCOUM*R(-=9`|#E))0M%U zVB%HXi`0bGfv}yAQ+dB2^UosD@q6d!C|H0?X~t$W9pA!z`QaA5Q0FY@eU>hSFJHt*@ z!JE^5fddWB5*$IP>lvz^O?ndl;y(g;s90a*wwqG1g3aN+o7>Wf!s`F2UA4uWybS?~ zB=AaU8!FcGmQh58eNL~(zYe_T=7wJkL`ACGJx;5kTLZ-8E5K<9DAkVI*@pqg%AF&q z58mf)8YrjjXviFDu#tb<+SNcrH7P-A;_hKDI05&Q+fMBPPjcYGBV%ygl|r=PcwnOp zsaMewgUYDO3a~K#sI#e*yJ{M?jsqgyZ*)WU*TL&RxxHF6*B8QR2UULVV(l6XKg#5>f!PJhtZR_pqOu|s=)XTZt<{LG7U8# zT~0JMxCfA2dF|izjZxra>Cx~DJMJid+A^lTYhEfsUSbvaTN?K+s;lir2zxaM;{P88 z{10$yb%zOq9UTFb8UXkbm>SbU)*bN@UUW?SX)Pe*z{9A^2{fodY1`PE8X9)g0q^-D z$lVn1e1=S)SpHF{By6=wu(8E)8G1oH;%|mB@jH`+3=XT>J${~&j^I*FQL2vG;WAw_ zQVo3n-n|@?(lrH-Ecz4vs;=lg#7$Khwj_ByXX+X-VRC+TS1-?}C{gF^Qncms=dc8# z&n(Ki@NLXiGx9nKIETp7RI37B%vvr3Rm(N7U~5AQ@2?s(ipjp=!)*@aU2g-$W~Yv@ zG|cJbQtnlDAp`|-d_$0ck9KR#9z*lS**O&*F*VHIuY`*d8v&#za|NXV(%%jOdHXY1 z;)mH9``1$JJV`sWc@=s6Wbm5U@EK!#H9v}LCYe_Jo8BLPXVtN|8*}Uir z#LfQq5sCFbh0_D_-C3+-luj7#;v@<&&UItLoLl;I$}cXB)=AN~1Ef zVr?d}Vd0^YXiuX^8c3O8$sYZM<%$l_BmbzJ$ZMH|wyT`v3-35}(~$yWHv&$<3K2B? zEcg_6Qsv?QD&y&XKf7y0TPZr!%YRw@HoX*voOYgcz)`jNABlPW=F6{vP@x5l1!`rp zw{a4WtdXC+jjDVD?@|Pko0Bf?>Qzs;qS{qdU1{5b+n#8>Eyll=S`H|PzSS;|IRO4F z547Rl@&L5&Q*-OFYdxgSRyf}9Yc}{5I%2#*H99Akr&C8)z^U*aFusI4YSm?43zdWUlgXD1?I9EO(|rq1 z=p^t#TjMnXnW-o9CktLNhwV~FdOfLYgG_xcnBpYqFS@9@2QQCqrncrr(SiSVI?8(cCBJF4b{vdZBWRzex)0`@Rv-HhV=kX*v)Rv>CviC<9|lY4Nlg9J6_b7IF>V2j zgrroV2hJCy+DiT>fL^#`Q;F$4#{+cGSqPkxqV+>WbQuTHOnGPSFn2ojAMQr_>G{>iHD#el`X~L zO{3*t07_+iS?40UFG7pYwt{R7{Y#GFEUAkBAI4|U&v(Tl{R3T2(jJ(7Y=UmdpDr2t z`@}<}zZ3MI7kz=NlIJp2STL3?_I{syN=}<3!D$?r>;h#ZCTqEzdqh4ga zI%-0CfzPydBbnp8{)MQVlji)Qt+|<6mJk1$Nb^G)aUnX6#w2C_Qph2@evP(|2hw)A z1{NKK;bem#J+`BydD_lwh89AJ_wk45erIq1{ZMJb)KH~Y@n2l0JG`q$()mRJIj@6u^KRkWXZzkq_ zGMB%!(Jb*sTPuahQRIbRT#55zhpoNLC0+Wf9~{|Dd>*A=W}cpQJ!y3vV3jU$x}4xr zsr$p1t}2S>J8pWBQSxW1nI=&{e?d_@=u16~|6_gXM#HaO8%#Tx`3Gc} zDr#oUZPdVCf6y$*_U(IZW!wb}5*XF4v`RXImqLXN6M3XsYiuB&SfBz}rr1cEGo7PP ziSmJD&B&~6%wdo~8J?BBz9HxW$M5*iCY;TBS3 zpf`4D#z%>v=iWcPXTXwS)*JRY`t$=fBkQ-lxW@+TiMO*Q4A0%8kzPI+52CdDuU~Va z^C@;V@pdqqkoR|!ZqR%Io@PEN&vCgKA~-$t;L}QBqwsT$o|v9SY7CqCl6DQ^$&_Ox z25sDYs>6=RZLI5pzqXMhDYIF%8{c!c{1%!|ToI1eOR6W7OcvN>{Y4_^=i4!D;ZLwE zI{33Lros@B%86PUn0Pz1<5=|It_zKZ=duIBjxXa!zeQUdJo-;u%1#pZK6fC0O`klOc+3h`5yrY=4rTClW^^>FR_>N+ z9t$jg4kF?TMEgI8O~2M* z(jqz@UL%$fVHClY-^s+hA6}L0Tbt+BPs)@lnut?4!r&c{Ub#d{8#w-HvD<25Vq;{)iv>F1cREX)t|$mk*ybF* zHZfjjirK*TViAxZgZZ!v3wp*i8=B3ee&?}_hU~%R8i)L+gPq&DA}_~j`5*nP!%y5& zd)J9UKV6{lz79K`VD;Q0O$%}+OY^(IBpUKQf_eInuRmPMF~QXHY-qj`fcqjOao(oB ziTTYZgpXll!wQ4J42I;?NLinHiPI1&jYgmP`{RNZU)9<&;+K0}QAen|PR~c`KJ`g< zK-6f*6%z#Inq)uNRlXsXA%%Y>NV2e`}@;9Ut=ZbAR;npLjDyWySvT-CF7A8Jn!L{u1PeOm8~X zKhNexs9v^G(#OrWvs4QM(bU(^9@P%i0`ZwTzU}V~~Se`lV>HE&dwos9f zDlP^**#Ji@7CXr7AdycM!!_W4+-QOkXXFU>r{{j&dm1cP0-R1N zgjA6^c{|WXX(Bb%&w5MKC)pql@|D7`h?d;Gs{KgCWX(EgdTwi09icGYrUm?}j9$Z9 z?rkVzY%{JuiV0YhY#ezM7}e^Ai2xxRdQmw;`@O%1N!PgFZl?^H=sH)?i42wczv7UrlK)|h+07)fjBQXDrN3CC!BC=Z54^?w$sCAF zX7%)=Vq4fCL)P8S<#lmUDbYaWkly<)6B*6RgQMFSp=UZ~EQ}+4idy*C#T;y}2)O8< z3sZ_R{5ZKmjXM`wo+o`0;XElBE3Um`H8%UzQZ-LooE!3_rcA~(BIc1 zz5g(~0g~zd(Nsl8hf=~Qp-baA;vYN*A-ElBc|XAKj!+4 zZ7pj97@(CtFJ*-1gayt<30Qr1Y$E2RJ;pQqoUfI;^bm`#A7~$ta(U%4J)(r)zOI75DG@Gu#rs%e`BSd~J z?M=W)j#zH{NmlUf9`6++ljCzy_Z%hc`RYK3-Pf-J1H3ibD(9}_(k5Bg*F`Q&QTC;q zA%zZ958wm!b^lk*(@RKB9Oq=OgB<^hL2S|!bEtV2m0%c&X`TDO~Jjgs5>WEF6 zp6OYTBK7GfmL-z*7P&V+6C{{rRkV-+if}Fgy~KjUIDTNqg6GTVu73MHi#j#T!diRo z{OfpJ`sXxsU1k17UJ4708g}L2%w!h2>j(UPij>v;xsrLc!2eX(c?X7&usplpUEpy$ z6ejwJSsR)Z;^N|Zv~YP}2R4UsE71>c4_;WhwToh1Ory2-%q<(38)1CPA6^a)?nwAu zq8`{xOPTZxN!e=tEIPM5q5nA@>E?LIFZ^jLec{P>nx}=AtZ{OYO{U4jHj-s~qpxd- zLi;%hBrZ3KR99+9bokVB*;2H4&A|A}biM!^d6qwl%f34`^<_+}_4`_U5B_Qqo1lf> zuE*;D?#LHRxp}5#Ymb5yEj;obuZ=#xh}~x0+8@md@k8C0@4`ktR!+vP?|n3|N!G_S z1T)EhyZ$8Zh($6^i3~lM>XZ%L4zaJfAWPD=jLVc>E6NaYT@Uo->L>RmKbPWD<#4*pF;s2Z#{4m>x*`REOkMF*Bpt5JjoEP`=WBM-)^$9Ikg$buVx$O`-Syd!M ziiAc>dqnI87OjN?KA)CF6)%Zm9w9t4w2NZ~7>rwz{4M2e=yMPGu!au^eDUO03#gVjN}h{;xvZ$7czK3W(3c_#YPM!QSFGZirjaO z`w1{RL2NJn(VR7#yCJ2JK;$^(SeGxV`P%!QXt?J#Cl~o22952JSDDiaZIn(tAslhI zqP(Gv2_5&rLH?1f*mK7^I7Q)CIA<=YWWXScoqt)&bV(GcG#u^K)tzhY2!K017TX6* zV>T|!pK3FqZ93D2dgC0m9h(g?)i&4vl)G%24@^9Ymwoqo4@Q~29aov?w*w9#<<1K; zyL*2P1!hI=3_4j^!Zn047T-3fiX8Lg!5Z+a9Da7B7suynBrssp%3M}1Y3&=P?sK)@ zYQ}a3q^F3q%p^HYWkepG=%fj+KeGmLUKklJ+c%D!t9)r|`$`%5bXueyW_0T~NG}tu z6Y!_rw$*-+;^KN6fbl$rDxCDfO-&&J_4^Mgg6F!nxp%U(LVLv^_~9JC@3)k{B(y)8 z^}aC$llBmlZv086+1RXiQ(rPQfTo>BfTsV=YntLQ?|I4sHk-lX0f7f{dA-XA*%kK} zQncC0?-K0b6KO~7`+E6P z!(~<5lSW=|uODGfe&ArC$(bC9gd6-T+)t5O4O?;S!RsaeTNax=pqU;-(aCUzfpmj` zQCaZXi`5%`j@nWcNp4Y2!GL-gI8@^)5{3HN)Ws&g*G6-aCF8e5LlhG}##Q5$6KfwkKY zP{B2D9K6E+t2@a+e$X;M!ZJsQzg(k*bq>bk7_0gL6BCNC94L4Gp+?7{vH>-`g`MgIa($$W~&qyM2|T;ritM^(ok+EPcc z>iV0Bj^9fRW<6Pb^o_o=?m&`(G5mfRu8Auf!Wu&jdj5NzE&xE+8Z(mnXA}} z1o#tAh0Tl?I`-*|wL}GjoIK2f5)4H7T?d2r_8CNF21F&!ejuK^{|~qxCjDU9=e8kZ z1NmvhaY~`3+otMOwTXIpr^&P`)uOYbC<)$(o;1acm1}O6vHyXuWB^tX^}WYp*MFr; z(bKhCp>yz{^I-So)>l2X@?5$)HL)PzTLHs<#eeMF)1UQVS8!OMGi7pU+~FFW@uKzp3%yXTgl;OX3(MO zO)+}sKa9jQ?NXCUoiTS~fw*SynHcm%#WF$xt0hWkF_E^@8m%H*l$oos8PqWQy=$Y+ zZtu$)+)e`&?0f$2Sef`!M#;O~EQ|KbknP;ZkK=kbzNg+jri7Owo?u)RajEW+0cHBOi0c`90-aBO`VCAg zWh?4O4@Rho}D*=PNKAD^|H9oMYS>RleN zwB+=O_ofDOGjn|n2U%k{E%AZY@aA*XC0HZ+`U$|K=pqg_kp}8vU;z2Doyb%x%RIXg zhM?^n&0GOy03n9=nr9{71)zimN?#o5p!TFwO64o{U{c~zH)ArY(Dm9+YbYifq|z@J zC&P#`^@?mIY-djnVOjylqn!)-87q;c;911#iuhmCQx)gPf{lZF$+Mo_7V*9DKmb8? zO4Ne~SL)5J?r^*v(_}S!CL5x9Id;WgjZ=`u=|q=RBz}I!w)B9mu6ON7n_SH=?_P3T z^>1%!aPD^S!|oZsVZyuEo%52$eH5l9xJmDQ$bYCP#PQNk*BUTqM_z|#Haa-HJx7&Bpa)}fjru0&sOR-0@V#~0MymV@r#_jH&?mgJDAU~EIG3|zIPojQ^>QR z{Eal?oqL>q?epcDzG%pFaY{Y~PY_XNlAA_7lm$9zFlU{VPa_GEQ>`c-|MJio4AhVc z(bpZfpBb*R{@|+Tvgm%KX>M+;na+C&@u&G*_dS*21zw>O@srlj>_z0}&C6)so1C}# zUq@Mw%5=&|mm87|{re0L8XAu*lE@UZRlMzO+&7zn0lf1Ki}QEDi5zq5{qN41)W^-4 zR<6*{7M4TMd_Eqo6p`UUq1k5X+lzI=xs7}eZD0PA;tkQLXw=5WQ2zp7Y&E=;bC1zWt`;Fb-*O))ojRbctvXP+G9Z@!Kz z>x@4+KhAU4^oefL^T13v&W=U9%>J~g8orV#!uKRl?qAJBOH%cJO|enLXFqq%y7a!@ z@3eUa7<7yaW~6PP&w)TXRnYrgQ@j95S1D-4OOcp7{{RT;th_Z#avl{hiy<+$sXKHWYa5_9{x>kSRIyUtyx+Y8!88 z?>LqNUfuAo8!nbKPpqmphN?s?>E&6%Ih&1g-{(63=W0{Nn9+Az>Z!yU>TYvtM?2S- zhjFSuzerq2`xc8q6kkai%tFK1?}|#6^=^zeoFlzgYp}mT9|>>l{M8)m)x?IxC7qW0 zxsqK|e%$v+Z0Sh&t!=je_?t0JEx*Q&<6@J2fz#YQQ4Z^?#A?A_PX7k#F&$$=qe0W+ z|1g3wX`#J=Ha$zuF;etf8XJGoiL9*N}UYlgXu+8=1CL_dcJID zpvvs4s_Q$;4;puplKQbZ@x`<^5Q5K!5o$vdu$=1?>V%+aQ#?)7*BjNU0D+0COT$9T zi=%?vCkq%GRPWtdldq8p-DJg5f*ebF5EGAVw4bme$>CMY1>?^emm$~Fs>o2SeU|2` za<#=F$s>Dlj}~bRC{JmE{Yg{!z88@Cu??dn3juq(F(_Z`*RUu}OCC(G zqc!?8VuVkHU)YzlV(rfc2SsB_2T)uhGVzlROZQxG+({0y)mEJURBa=?AR>ml-*ms z6Km%bchZ<-ZY@!nm<;x9eEfLTdBc|0`^r(;E*K~7h0pm5>DmS^!7mw@?OcV12@<^v zmNvr?pJF@PuA#YI(?t?qEIz+3lvYya&--u`g4e(&N=v6(V!s^1QeQ9ELRm8G58J6P zYiqBhCT_}C>pDXv-17t6Z|cex^z2^;W}%i|J=`A(G5uO$RR1yHU_Cc3iTC8t1z1j`n)>jSZy}?cQ!l#)*Cnf4k9zt1by^aI!)(PMjD6`X@ULN{; zoiomipZ81@KO8QzGc;QUi{adi^6^if@2QIKP;%xXN`98aMQ`!gcnek8Lp)1_$`FOE zD@*ipaRUeAI6u4k+Q`HpL*8ji&MOd46;w>yUDgP|YigN>b&^Pt9pn-O@!Ye|GS5+t zIyy2J@~S%AO$fL-F_C({3VQ;6=i*!5v*lC1z_bNv@TQV{U03JTIJoC|#wcROclg}@ z=>4x)71u;H@y3T02=}NUVmBxdasROmOwwPTKT~Dh8s=Z2D$3RMrrMh5?cFaV_0K%k zYWv;wqz0Mw>6SQVp_4_i2KwFclpOm2`5LX2`zZs@DsE*SyU;$XK-mvjRN?ScV z4W#wp-FWq6tHtMVsGjSop`)TF@D`loKcQDSN2Zx`%y~jOK;sFm6(!@WLzRtQ2k`u3 zi#mxkfr7^w#9nzMU!3xEtvA?nv~g+I=5gNi^s_Ww&~%3Dsn(M1Xix4n>y(0n}|Cl0tk<%flyecr192o8|IJwoWt+yy4QKeH9mbW z;W}a-XZn96o%KUg@BjWmP!vHCNlEEOLb{Qb?(SwxxW4MAP5`j*`q0Oq+#8F0lg z2RN%e3*&7ctar3tNuNj?|K)QID++PG-{7{)KV_mp2v`^n_S)WwlL<}7k3G+__mc`5 zR2gZ5mbl|E%`8aw7U!_YPc>J`1q?g}iR?Og<=IlRs)_s@-N2-Mvxn!Zq~DgQOSbkZ zXw5XqJ7BCkazu17p;l?dudAtKT$2BWck{j>jE0`Xbf<@YTS9ZzkME?%G_bO<znRh5Bqo5npFtK`{=Kr z=fdGD&6K%R|KXYBIOm$QzKC4Qei6gB*cJp-t+({itkdoeSxh`Lh;K5T3PjkPt_-6B z7^G+7J=ZJhk@6j7u%Mu;RK*8{&Viykk$(^kBMj9V3`e7OO}b)%8)v7w`#=K7O#8+< zLQ5AH$g2>`t2@tuby(L1P|$jJ{e4s@!TeaIIe%#@;x1seD-exC4Ch?yVbatLfys~r z+MLIK<{$??76~y8!=`SVv^O0)8Krbf9c&&GY> zsh^_MpU0S)8)N0KKO1tydCh8S@~Uc&w>hsA=w8WYm(M7xq#XYouUKMZuKhv@fe;qa zZQ>@rEe3AyiW9+=3FN{<15;jyO6y5b>Gd^c%WllpQJ1ccnjTHwZ<@N`<-5#oeR%Ra z7Pk>N{3Loqf(u?O1<2)CJoqZShFK|(3bZ= z$Uk4D--a>g!Z}gRvs_0e#><;!Zx}W9@u3CZmd^TT-uma_$L|xU458A;!ISXP$cBC^!)HF>izs?cQ@R5!KpgL$3=JSCEl{_ zJpYK3Fl9a2TSwI*d1Vr(vX-W^UVEJ??hF3dMvWF)^cF~m0gkD8T#|}a(#_

    JxH|a#T>QY= z0IRu0c!VVLrrAGGV9s*&i4MPQEY_UCCq?2+3kfvT7qkiTQC$@aF#B%UvJ^ek*~Ubb zI+-FOU39=RSL1hTKuXxQq#{w`tlI&NkF$c0ypa`Lr}=HNHR?m+Yro4zHxEnGAMPVG zBB^zME_Z#Bh%_-H4JB-8eg7tji^7BT8N?T0pw?TNTeNu6rVylwIp`tS?!w6D79<*z z!~~t7#moq8v2L#!qzu-kqf|b-sCutOD(sz;nh=}GDfo>m*b3;>0HZ5_(xAunp=r8Y z=yhACBn%S@TOO(&R8lX-!K|3YqhkYC4MTs`VtrF-=4%A19fYS-Bm^rPglh7l zO!%0k)l4P6hq*yFphYTo+d#YUMq43{m{`QY|raqa8-pI6LkvMarWm$cqA1JLvDoC!Vb&~mE zRay$K4&EIzaU7cZ?c7~Amu-dX`9`D=%! z`j}zdIdBRNUA1s}eCeA!H(K@$<|V}e8HfQfy*K$?y=hk^C}k>p8(q+7UZ40^EB zk|{_!9~%E^%9$>h-fYr!CeZ2U`L**5%6=U8qLzw^*}CE6YUNM%i45&U*X&rZ1W|Yh z=Qwrp|42IPuqNO4{bM36(m5581`&~FHX;Jj&7`|)z+g&B3kXO~r9@)V&7@UglA~dC zvk_ykcz>VI@Ao&yv4ib+?(4bk^E$8B`8tJlxNdh6eZG65(Q_(zjZy_1xh&=O{x~Y9 zwH2VWycj#1$xH}HSI>(&G~>E^7f4r={kgKCr!~ENPiJQ#Wf|~h)$;3@A)bquPfs3< z00ZUV6BLkpqes3>sUeHNgO`$COrA-nfpj+>6Q2DA} z-Z7YakXcUZNBg%%#}syADR9MH0^&GidK-Z}p505!2}449&lmlcbniV-fIl=>1V+fL zh`EknQt20dd6(hDvoaM(cz=1!keHo|IQQnff0khoyaqvLr|kss$^WLZ!?eZ#GXeuK zy0qfw{AS4ed%XcNzpuUPpl^6g8S~pTH9q!{t(51i-=PF(2!e%??@PAFVB-rz{wKSJ zltR>7Ef7028IlaCmHBW72kP-q#(M4@_)pKw@Rh~*zI+`l?Kg0t4!EvuyGdHpa|o=o zQac>89fR~gg=GpY#I9|^4)8)f2qu&p%ZGbpF-jdw$qtu5cvl_JFh&*qFjSRYaSt+A ze|VQ&$tF5KT>qsAcP})<`G@yv+A)NjKv7@W_MX@twZjl)f-brvxESV#{J7}^|(@OxD;mJ%t^K@{7UEs64k1w0Cv(RaK^)Byo?tW^Fk?T3VY2IBot@%+c|6`XkYLYWLwV3j?o0v-h zisL&V^=ITzBT8MC3Pe(AOL>A~P<6!_m?U-1>?m`Qgx$x%?sihqk1RfF@VrO2Je2Tq zGXeHBp!-}SHDch^cVcV9-+5Mx0f+Ehv`sDr?t4Agj+S2UBIrP?^~i_c?+Tj~s@R(t)Y z76Ux5?v~p+zuWHW@MC-8Z$F-i@P)6E31OiKyNF)>3Q7mvj1@2$;tQfyPMyGGQ4IiA ze46*@5hWkx#aBj#;AYN8K-m7ib_R<4G07<~nS1r~TgXf_e{ZU!6&v^APG-{U7xcBr z$LGD92;|`aX+UFgZTY97j2vtvbq9uwIWwIe!Crvd}=_*q(oK)=-!aoQzP-XjX=Hn z^=zr4$E_L31E#;{JMQ0)KV)VxU8UY+k*{|L%Mm{1BTkx!-VeR~dSdCiUP?qh`HyCI zjpRfWA>{F<>~@okh_}bO7gWzG1K^B1#@h`o&8n$4s=G9YVc-1b>2_@-o_G^{%}*ec zn*$F9B;Njz)Dg7&7xMo+HQ5^wF0ef^4uI@@9}hTqug;GEkO1`ZF6Iz!veNj*Ji&B= zPp)T|F5bxaZ5G{;G>vyRGC#TVh14rPxCK0Q&tbYk?($cwL%=tRN`C+tkYr{;mt%LI zhPeSk^3*;PWI5}Xl)-?y6z=L*Z;&Bwe!DlD=hHA!*uU8!VfdLc{WaJc7u4oRZV( z!}??CQ%g7)2fz9jXDI7UAj#xcZz`N zmhtZcP|trfw5o&lMy6TR>%D9FAB^;dHE-%&QyQ;X%<;l&7)jjSKbILi^V6xrCCAa` zih5nQdhX@K*6qH>^y#%_v}5kU5ZW2o(_fU|(X&J`w`hzVY>SQOE#yeOnn5QY$T-y~ zpY(WnIF)G$IfuX`u6$F_T+4sxx;kFDCotpX(fF8KbQ`?P)t|yTw__dw zRe7HBq#=j;wx(-#1Cp2j?a9?&7cQ+b^!r(6RC6?+2?;i!N|rJUN)f8H)`OU!Mka|? zPN&oaF7=`UZB~=X*F{w+uPOP!%ozLupcJn+V5m2mhYwr{Yf%po!cA^^zsT1j@3z!#Na^uAOyAK%%C++VQ zF*Nn`q|AMMbW@bxoB3MR=RcaxP{mji7L$yvGkB*MOcLi6ug>Ix;f4Q-JMm(j(^5>E z0g}S$t?Jwj^R#_b7((AN``(}PRl95}p+7c5z3Z7!wSRmPNam~nunttrA}ieK;DR|( zmw+JJI4&}&>Mgg2PXcq|2+ZD9j6vur$Ks}oM(FxlEaKpXd62PjWA+?z1B(KhxPk%+K!D4mWB?i(R+y-b6t{%NcKsZ7jGvir z*lUV^qa(!c{`sQ8E&IQ|D(0V@0ve6Zk%!yfUG{c_@^Z80xyh3E}m)WwibvH8`{fFp3lBk|X{whCp8j$b$yac!!vG8xX>`esR^ev3&6eW>O1^G_Kj{pqzJr`Yn-QyVd_9ZR zo-IL^Sw-eO(>4HJf3W~ zn*bl}5}a}3qZ$AEN0VTHsS_+SFkZfby5tOEuiKNL((?eNe{+J0UKV}xXGMlStHG8!sH7YPMynzH*U>iOqFzWw5S5XfcW)#W5aN9ygJuEtZi&pyJTt;(vTlry5|D~ zjlKt*jtN~AkRDz`jnnjdFAUh@r`Ybi3wGUo_`5mz^>x_-5ti8AH$FLsm_s<=Rq`gr zpXmrqO-`~H{zqd(fp;!-T!VK$ai?A-+fS;>0EIC6{uYQyRZG=}c<_txFB^sBnB-N< zQcgR~A`1{`s^i6-G9y9=`v7fS@=CIeU$GuJ-btx5uWak4^Yet<)QB+Rri}9Pgt8uU zyFZtFrnGfB5ukg1CjUd-wVlq^_Pa@7IVc7)*b3g>{EffSPrAFqiE7Z;jikeaJ5d}@ z3j4x&BAyI5bAQy$oIZT*5TBSbpVxQx;&OnSK#1BNkP-zkV4wsdCU&-r!3<$A#0gNZ z07t4jXxi!5z?bQ845(H}_d8i-vMOzx@}SvN_se`14LN&Ilsj68YNkNDCf*&(6J?a8 zsxCzdV=)mMa(x0Z>>+Du!$l~rp)#F_xDGm?Du0JbG*U9*&J;%`i4|~crF}CoV8!uG z4Ke=C(hZXsAmUQ}A{wFqdg~(9P&8di0Z_+W9FX zyn?3sLPl>e%xq8Od7uTM{n%~wWN&jgFCvLo$KcxmkN@60_#a7TS)g>PEvUjg<;$=iBk?Vsi)6^zEzLa8~ zTSLR_YjXJDouyyKx24OMIv=>p`e4{0k8gQ{m7g*)2bcbHmL0l9BN*{+TjibNgDaoy z66t9jY3z?q*55~z4YTY#GPP=t`*P)yDm@L22nyhxyzhf&(7c7c!q20+QH)xZ!IS0w zozWlL)7?dlwEjFOt&@Ghs{x+346xCA_$h!4zT7rD5=LPtrB%AqNNqd@i~W!6fk6pU zMTVB0rKQ2u6$_@SU?%jUbM}Cy-_8GM3dTC@?WWvyK8Qxy7doLJkVCEKYujNQ^ghLc zhRLM_N8&xego*%L6sSnCy#BD@7BnUhcctaxP^Q}b3+FW24%UUG3>wDAkM(_8U!O%1 zPAL`jh#B-sNj_F4y2bqn3fF4U2K_P@XyHd^(L0GNs}^0N{=FiQr2Jsz1%Km7*dm!Z z_G{F)?~jMg)hJwcCzpB=IN&Ln;d(?IasYMu$E>_+e;A^j73C#)yV*)dFZy!Xs*1#Lw^Vsm$SUI60MHV=-`eem~ z7}KItF{7R6YyH%Z9hxMt8n=AsVbJ^Z`j|Nm0g0KO3BpIqRyAD^8`l%-A;jbGdAL9w z%R3a4IKE7axDHv1&hT)O_nVpm;wI7Gd} zx`bXr>tGC++5RTqr_=#YgjcL|PU5KLHZNc{5z`Ad&7JhX?8a`d!qCSQ)3yakR(i<1L1Vh?@+bHjk_B77@)t8K4!WI0Jp-`$0ey_ zB|8mAX9$<3%xma;FNV6&Xg-Tm3oX_hoX=;=(4J7!x`pI<6Ne4ECj=>Uu z6gVZb`@Ni~5ZC+Tawy}Iv#Ynb_5^8%Zu{J@JN3@El;s|B1`~>@ z1NBfv&O>B+ccwUR6e0C0;WEI>H@p~jeFSE*A~TI7*r#-c9CP|@q8O#516(+a&E9HC z*_d`(+A#b64M}@v=ec6ZTE=VSBknV*Pi~~542FAq4KvhDexUwt{1X(!?Pp_?c$wHV zqbl2*6o<`4M|O5Ij$8&1D(eMNL&FEo-0E2v8&_H@iv9; zPw;VpH^PT*88cq%k)GOmDb<80T*=ZX`eK{|I6_dm*cM8ODp5@pB7PyOr zsr7c|LD_ctPdT@#jUy8X`D&j}N>nzXRV< zT{-O%NHAE?3M$(cx@Ug-A!D-K(FMxL0RM%_7QCKbe9T6enHcr>AK{3-}7L$Z#f4PKtz%2kguSu z`hjrG)O)atO(d?ql#5ndfv=_jHgoI?a{-hOu`%<_>8miKbQNO*UVzBs$9x*^A)M7x35;6?gahq`EX- zqx%~9t-Q*O$&jcNev`B(CC^At27f#&Z{~QhROBy7j~S%EId)6R4A+9f5kBj-vZl$Q z&u6I@R+VMCAXlKL-Q9h9gA4qVSL-AXJp88$uVI6K87i64FLBR$KjDeIce|aR*~f^w zU((_^bkFoh4dN~(Kn-I}oW?!HqPxC(kkv~6+!;~sbg{WiJ2=PjIm=gFuTw-MFVWj= zEQz=NN6A9s$xQC}8OCx_oet(TUWyki7%JTn^pV}3c^a0pW?B%19JooiiK*2zF5X|* zsZMMgfUv;bL9=WG+40qJb#}7l1XIS8n4fg&&7@M@^Wa)Q+vtIBR`t!)5#Qgv^O~kx(XCw;U4G-Wh-#jc z+lkB5muf0%9lE81hvILy$1+xs8&qAKBJc)B?2fIZaKbx*1L#2#cWd~MhI^MRj5jgH z1mwH@dYER#C&7^WruvVcyWaywZjS(o!veo#H`f4bP|khJ%EK9oN9g(Ik@T|U^$-a) zDr7a>b_ia&eO~^=dPfH}T6O2cTxUS!I}??Vd$yWHI1aK&v_F_OLmsD~@R+jYfC@)GW%gTGf406(?F8M1du{%I9IkEnpbH6U7`H zxX0(>LOXT0u}dX zA{`1}Hky+xD=U9EM*YeB_&*x89TY>(iyxNT3t`|T9-U8)C+bne0Fs}pa$|HBma8wH z>m@M-`#_IB1e9p&B2r_WUE2miHF#+!nv9zi?tQlfNd&<$3&9ij*La#ovhK7sgny?n zQL^A3@M%;ZmFZuH0Ms!w|6pti%zYlCP-vdqt>T-+25eKl>NV1(%#%K~}=J*Q-6`%MBdy zd>nzjR3>P_@1Yv78v4!+C6g$=Qq~o!bce!szs$Ij-V?~GodB_sAK{$<6Z7A`?qAj{ z|Ln%)CHh#m3a*V-YPwj(^(`S3=Ti%UKzb0b#G#+TYQoXKI+c#KO3RL#!=I<1ceDhu zja;+Lw2-AIwx2+?B7hFWvkmZsfQD0(im9xsylf7S?vWrciDT?E{|O{DI{yZVzugeY zIl`TV1avfJw+{Fh0PwM`6}iu&U6iN7DUyM{+W=sjXh*xUxM#tHj$bF5kYuMy+L!MN z-^J5QldM#o(wSe-fsQ7cxX&IhVGy4;J}25Qa9wOztT};y-LxmmKE1+H3dvDpwn4Ik3X=K_NIyt4AR=tm@OQ&Ia@JfZu6~($4hxIoGNphi^c6Z-t#E4^ zq?^=(#YPf{lVu|o8s)n=6y}3p5W2bpdTpQO#T(n*ZzhGWYU@JAK@8XT*}&VF#?usC zR}$>1ZshN+He+$vgz}%`Lyh&bR^R` z-4c_@DkB#7ui?J1e+W>zw4Vq99`HZqNrO$XY~qUGz$`O3B=rDWLoST+uI{nR$q!Fm zz+lcDJKkdvSIKvAyE6@i_sxGT;!nQMeV4Pkx7UB?{N_@4{l1O!8cZSD@B74g2lC(9 zps|qhGC3qkw4p^9*FTiEOTCFd?Jozg-2x6c0N>d$dT?i(77;#Wxpcb3j1ooTdGUNh z(2`mo&wK_l;P$oKf)K!0uq)rnQ?Elsp^-g}BT#tv?~T7<#rpwb zCO^7L*9&w_6rZE-_#+*wB*d|8BDF}KFd>NOXyuS7o|EnrK1u1Z?QXIyOCZlKjrx8gTq&;SWNBI{?745&qDU)Pt#6%Yk$u@lC#QoDKOG3nkran? z`=~NRWDqze{D#G!QWv^g$)`OgS}{KJc9%ZFr>( zp%kxWwRcDfu7Z_XS2R!I$!@GL{E; zgyO>>W;urn1?SHO7!@TA`FAbtGgVj8+)5czmkxhOw>zN?DiEQ&S;xb#y{@m+#uxO( zua-JFS53~Nwm3U(!-8-M-P(F>GPv`LE;J5?r$~RaQfO$4*RWkft7jf+ys$} zx6Icqf4jUUGU9c#M{y5Wox9VX(_;sbG=Yzi7yk&lEzfdSoIJ*Z2ub+oeW+!v29wyw znvo6Q_k8@fncvgU)6(#sZN2HnI#%4ClH)AlL&Sr zi7Kw)5w>zRtNHI=?KCkQy{fnn{vXY0@b8WFUD?U@HfG%vw3Moa|JL2TE5&4lUH72h z;MM0L&}To4U5CBSF^4KdcbM>!0IRgL_3W!LDdHu*#{?SRT{v4oJ>f=hpjNC&-OUEb zMd9bNlJR`TIM42$M37se{$Ei$#UjRxP#% zdQCJ#xAw0pJ_qPd;dd~N>3~b7-p~B#|GQ-53T_R`<;1HzEiySN`wc~|T+J`GE{%cF zy$zW6HJ)aFxZYS&R_zGt zP!#I7w2xd4UctxqN$J(|_0NsCJVyD@Fuvg9SGY+ok3PrTy%g)VVqdM4cZPU*Y+b73 z*6V*yFOx+g_O`i_1zh*YsrYH3a{(`IgM3#|VR8?q_NA-%c3Vs0d$CItt2Vcz*NeMf ze(jr7hC+A8u4L$kx{TSU_{Y`ku~z2Z~Q5WmdU;ReECV&SeEj|D*15ERAJvuxc zp8a^ zvL}p=G`B_>ys|fJp^=v|^r5gH4F7waFm|JLx3G&0MYWK*>8+NqsuXXIqT8Y$*Cj7( zhsECQC<`-@TJ!uDWpHT4l3anGuE>e^D-+WgI#J98!~j7VJfTn|y5p*I+ROW#8`do; z_C9{6G5c)WzWqNrj+zSY^sNV2^NE)%2DhgkPkC|=9Oh_o1S(_2zj;pX%Xv z!(tgXj{RVUnx_8+(6TIBkKw1)6VKI5laLRScR$XvKeqpCg$8Zo;IgmuQlu)! zyX4X`MiyYo_33>b*BWpZb6l;sj%MbT{ zqW@~ToK~v8Bsjwx-bxY5{-fEFA*YOcO)sdaJZorjoBgo7=$?>m$w;18LZXkZh?Rs{ zn`2+?)gHo^Od?=%crC(rVmB7e<&x@Z{;<+z*%T>tXILceHH@?+D4RZL z#^7663ouqf2pqgk7EP|La0|J?7>9R5Uw5m^GsEtnAlnPERn!3xP7fZ5s<-OP#`0jO ztZ?304c{y(-}u^$L;5Lf_T?|HKTL=Giv3R~TfI-pCUP;>^Zx@44En;1uOh&`EbEZT zXv9nqmF@s%M@Ve<;x>Oo<-*6mOzU3u;CL;^^JbsvrlmuTI`J&FT}Osir_Qr3tT)q1 zv4Y`E`g*KsdkR9;f}~4K@8bLz{uel6rtk<5E^G6rY)a=M$DS=q&_xLvhT%xcZMDMn z)t7QdSCO10JpVFsYC^XPfu+{=XU2wP|%=mX?Z zy_y0b81^r_y$|v!w)pGmA*q#@7EPDdZfUij>IIAB(%ZG$iri>1%Tk3JSw#OH_oV( zCd}R1NSjjk>{|bM&(q#eQ~nc$T_2a{dqV^Wut6aLH1!1@-A1^S8Em@G-b6?cB*h=r zPXd~iPDM6jd^yYq*l>8(aS=cHd1US}(|eLy1}S497;+-rbI$!6`zZja57mVi6eMh?|jmx?aoNA zVHBi!Ak-g@qo6;ivXRWG{}!u7KI~B$sIwgc%@eBkgiRml3Qm<}M?t!?c9btnSllQj zSxIc#nHSR)n*bxm4XP7|Wh-6wSb(?As6{^+RUQI*0y86ukW{I&5L(+Tb1Sg*m`r?c zAu&tKKX^}}z??@m!)Bg4B;rbdaj_QLS7_~adX?o))odUGD(l`oG1?L0B}{yR$)QvNV=r1 zb>EF|XX1qR^kZtf-UwNdn1t^pu;TzNmltJ^ykScArewo3V4kW^vDs_(%0e4KS(0Y= zw=k(+E;#9MCtlxvf{-@Mb@e~s={NGA>Q;pIQZVDk6PD`ti7@lJ28`3r^cgZ8U<0wl zgB=fM5lib|mw^^tIZ99zM>2=^nk>z`UiQ#^Hs5K{q^xyaRcg@AG33nS5L5ns*v{$) zciksopL+lZf!aBH2y1ZoXzM#uFv~a_kI}}QA?1%WelMs{QaaSAz3S5A9rDzk^VOW# zXoti(Xabg6CZWvzFZLFIVZuk-kR}vYlimISSJ>Eh*ZC%kxLu6>Wfu7h!vfxalAq*k7n>K{<^_h& zsEHI1U)IX~_-!rEGz+;NSO5@a^A8S)(Oi~fPfE&(X8qztt^0GtgkLRDNU=8+e77|2 zUm)MVd&im-qiv&XuT^YILKn`)|62jH~p+kzOE0m@RUY@AJ!7~Zzb`UZfv^$IUT88gBVF!@$@S3a-Kp1oQa8Bjlfn~&HHB(L5(KW;HeS&1aD7Q!VDpI^stk0)R^Ki(+gFM=?(*_~4O_hl&Hnpige3(u` zAkud+W~&xT1_5n1(W=z_+_y%Y%luXu>y;6d`k{Z<=fA;=HfI43Gj?7e!w{{e?}|Kq8`2CY`ixL z0m9W%`ViCI1YnvI5ldE%U2g0~uv>Iil&fs2-y1VvdwkP&nW2c={ZeAN&A-D^OyP7_ zyS%6~sUSeoQ%0;u*~kuhlAr{C2h21PJ&V)mUe@qI2#~hxbt~@ezwnzV^p$a#c;&## zja!={+sZFhFp}l3a#zbxK-0boXrV0)R!=!tDwYDQ?EY6#M^)fJp1MMksyyDDWyX$h z8=r)Xt)G^v{_Y&gaXfE3-lzE}QtXZ|qoZ7gS6dP9MlaT7I6VV}968I#T8|fd(^G=c zm;fn}uM-h?5EkCY&h|0CR2OQ}J3$>SZdr%*F0S*{k*Me}{g*bg>tX>HPTj zCEw0(WUT&Tz@f`2N@JsTnxOto-k_w+R!S5cV+BfA#}Q?h;ZsN|{R*z+P>HN^WiZEI z9Ud1hu${%&lKK7~wj|z2{BV{nbweZK!t71j%iFc$sS$-%Kvtm|BHc=usGgs~z?NZq ze@+7kZ;~E3vcjxknh&i@aowGGK(Ox8ja^`!h%(oG4>Kv=$$40cs(Z4y8B9x&o-*wLiUm#%msCmH7qeTC$4ZBz;45IXrl}{*YP)+XBel;x(E5ScQ~t zByUt*!ZIXEyXarnlQVCkwU(n)|LGXdoy61Swuu_lx&{q85qEG6R% z!3KBV&f@f$HqZYs8R&`)#SYJ%AG-Z3HV%+XYe?nK(K?Xm=4f%L-1w_?reJR;vVP;P zdcK6R_iBWf$pL)prOe%dkX5N5)!kc%g$grq^h=(XpCv`kj%EY}|B*QekJfNFyjS&L zCrOc~fioqfWQDT){x>|sO2F05eoV2M-6jp_;m0}o8J7- zgFw(VbtwSe!WH**vW~ALZBo-txghmUl*M9S5jhQsXV&D|^f4dJl1$rlNa*fr=L(xd zSCcqMf>c10y!Zeyy+rJzlC=IEPlNvQdN#LNT52|4m2iWy<}4-h-}hE4Pk+#=iTqpdB?7u92;5cx0|!JYeP7pbs2g?Giu-;5aa!(}IE8O~rn zFWb;m&ulrsc|qmHGW$Eht5&6AAKCO1n+qGgCW5I&MxKN_pPLwMCI#Ku6fUHSu?wZ0{hjN zC1Vyg1L^XU*XDr-v$fV52x>P_7ao?A?mC~hDQC2=m*S$fW&2mam*%wBw>wzcvI`!f zYD_M{lwK?6Nk*=E*U(I0C!%l@8LvV#;l|-st)4A~TM{FspY;g=3ZVerCNSJe*OIu0 z16fcqV460hP~gV{!wlS(5f_OFUEbI@f4-|uwW#_#*}@-Kvh{Q&KOadUR6XYEx0iep zxac$`G{GU@EOhO3;jf+%6H`kq%r3ey{qS(p*3FtdcIEagyz?n=EzDoIX`#zDQ-{E1 zL!aXoozFBgd29?KRxdPb42Um3yVb9jcAE77at5|W<24?Lw=gZ?%XL!f&yhk3%PbLO z!1Z+HDh@@KXW5;z`_~}`buk8WKwmAzssA&g-Jdt5!Ty}RBXol$6}K&$S0;{kbJ_s> zRYQFLdM5sslXz#wLgfMb3zelHyc^uGOdT2u#aXPVXNQ)-Zclg>NA@TS%%k%CmRh$y zSEO~bF`-?jdVV6>2tTV#B{adw^IC%%k7xjy01rI2Qj+^%& z*Ef9{^92#>Y45}p&TB4+Dg<=KyoM!NaeabhEgo50QBTT-E0beu5Uu7a3dMUPX9QIP z0*aEp8_sU&40sG=cE^^rW>K*-#d9Vtg6+kY3i;UCnqNO;LHBQZU#vb${Zwf4P9%jV zl2AYfmR{v%{`v)h3GN!b4ejtHL=g)20yHy=E!}e?J%iqrN$Fr75h9LZAAUA-^SJ0f zSy5D%Z%r6K*8DSN{~_q=vp!3fq+v>(cQ_g<)9uyW=+RKU_trbL+txv!MH3EzuZQj6 z3#Ke!Zzfk}-+5^ij%)A7)) z4;r+M#k@ahuJMmv@Rm*fk7oG&wQ1UvuJ@6lyfm_DN+lQGr=x$eTVCSkA45H2g{F0lB9R{SX{a3-Z5X; z*?Kxfljy6#UUen8^ityJrmpCPgGZHLz6O(Bm?v4h2I(*UHu!V$CGZL1580XKlE~LT zr(cY1lA-{Z;V@^@w*DX_j~|%UIXZeBl&O zI_bSM=P}ea~k&co@7B7{a(Rpt*PaU^2M* z!PH7h9en0rdQ9Dz7M)G45YZtox+!<$GOJ*s*b8y}^-!s{g<N zTNpvLO1X%GL`tg~eDAa=HP7DnEHVB1PCJ=G1hTd@E(qe`(Ypt467%p`sbipe^e>0lr<5<@yqe2aoWth~pHI}(vg6zCOQts4^Y!sO?v}XpFK61O zhHTGUDs4R3mGoMNSM$Jg0|}j_(qF;x5q?v0$yT_CfgZ7MZUwhSifS8^53#o)^4U6< zlMcm}D9b9|66j!cAv$w8V%oyuYEZ?@r>%P70qLyS1J#5j!@$LA-Cqz+Xz6keSFozK za38|6VVSO8Oz>K!=*Nh^tGh}cW#4?s!^a;GJS$doa<@)pcE0v1FD$&$H{OJ)te|;e zMwC)@1?z?F^CAtC3D6L#buqz1dDZ|OGh6m66QWwu7!>TJ`C_wn#b;9vHALaM|~ktuNJw;29AI28XPXfM7rJFVHZ&k zjU@dE*Ljk+i3$U|NOk<(ZAB@J)f_q28{%~aywK;=1{HJ^sx~v71PSk4+**hOFcjxurfr}Tg;2C|aJ;hO^=i+*SZ5b35*l?Q^xO}Ml z$2Kf!naK-FiS2CX(j0-Qa1dI#V(PZ!=U-cX{Q2x$yXLu<;Mm}owIcq@`faf`$sgWs z8|Imho+BmTh^Ljd^I}7b&t@9K;6kSxgc~Cj$MC5|?AwNTSqZYz$g|Pgc7d~^85*is zLmD|W$J)xBwYan}J~Ep1xkSerWY!HB5OO?7iT(*S!L|i)vO=?wyD~6c*Up^oftoa* z8;on#R;@5JmaqEAPQdIruY5JUjr1_^tQekUmwT^FKbbE_A{5zuqGF}hAJih9h)4D55peE?4VNy?T4lHuRf+b$5u-(Kg*#cV2-zhQlaoj&xHRf%jxG7Tn{Lr6sb%#F9CL4R``hll{&m%m z@y)+11zwBrh+UM)M6S)|!btMKc`LO}EW8(7LqEsxhe2;T-Eoif19|~>$`_M`-aqmPXg$q%G+^t=r$N*U* zrCQ5VWF;@bB&^D#g~$Hf7Ul249qJQls=u!5ze9M^VjeJ5NLQ>8WVAS#V+duUon@0Z@MOBY+x6NUa}q^a1w zV#lHtO4q}>NetnA<|bVfHJH}2Fe$K7eOl(Aakb5)VR}ObVUKH>$=gD|Y9Kzjp>aD0=F{*SFPRVez5+ z#mZUAc&M>~eh0#Pc{eyH8EyxO>9{#wjE8rZ4=i5Z8DkoPV=;8>LzvTsjZ^&;%XeYh z!p}7U>5&blW&fOtz9dw+=;te0 zGcRVHY`Yf&xZ!aeVg~dGc%8Y!JD=U^s39(XoBp$W2U2YXMRlISZ6_-Pu3ipeU6C|= z>z-k8>D?6%Emrd+BQYs|44{p^vlKAbs}s!6?j!@nC_*0^*~{w{xevBGh__~I!y(^& zOO{g6{25^?lOuK~V}JEy-?Z7(-(JltzV{3-^%?oj3Ca)aSk`6$DRc)vP>@5_mI)x7 z3?=BiMHSu}q0&Z?4Jc7mA+jtH313=_qu%;Q7XAiJ(Mbcy$yABj`PG4Sh5fyQ)RCNp zV0#fCaU*ZTJk}KE2Hpma&ck^rQt&L54#N=}b6X}iJhS%Lt$Gz)585@shZ0=d8xegu z&w_khTWxV0AM9P!|CG($bTL(uJJv`0;}SXeh~XmX^}kL1W&5k`vQSSfsa$)xz9(oTwS>O4EQ+wNGP3d%C?G$%)-}D0TV) zC^W=8o#fk5$g4R(_0!#14=L>dPd^2&QXEufS8Fv&I`yU*S-*CyPLpdGm-LR8koPd< zWX8UK7}BEPzEGMcm@&qvAKPl?+d)F610u_i4FF==~?-`>z0^N=2Vy&qNKkovQxh3l=)-n*Jl{B#WS ztHS1ssC|Oc)kMHy%R>~=J6hDoP2{f<8qNGuSEDUIh9ql;`eTJT9HHrh&RVSEzMC`h z;s4va5d@U?^0j}eCQ?0_dbV^%K|3WmtiwRTq->G~4Pg+rJ$(AonVtV>>=+Oh@ zltL-E2Ra7D7tZTu%>`$(BwCoaj%-+HTJ~5BPQ5(Lf1mt%gfHnhJB6~CO z+i~9q5}-ksxyr6qujywP+ISA)Nf`7i5bv!}h z1t>&Nxo2AM7FJk26vRnuO3!)T@lO;eeCO-7hHu)n4p2}z)VB&f6WYI@mrM7t_qmLV z)sE*P#xE5IiS|;pC_+W6vzVc=i?oO=1N`fe|7c2fE_=f&jv{wXHMXpHJWU`ED3hGh z`GPf}1LVQlic{LuMiVY!W7JC^YzC6666W=aXoI8e`lzkkTVf_jqj7_Ls&MFar$JY` ze;lV0Vlp|2{DkY{N@G~qn?T87e@?ldCdpb)meTAoeCt-0_NI5_*|B29iYV4xhAvZBx!tKn_vCn* zx8okZF{0zfOjWd7Y4LE;ZmLU%;Fv+`;k!#$NNog=?1p;%=DJb?%iWZTpVjLHanHj` z(?8*;Ha${yJ`?;du5-n$n6I&4V3K%~o_1fB>txfQwx;`6#$ZY`cSSW7jovEyA(r@^ z%G4whuB00E8J+LDNz5AYZMMUIANvX3>3%CJi4soA9M%fjqQZSf$r{AQB}60_6L!k~ zH(7gmS{T@=BqW+MXo$vtTX8bxgO4N0*O0Hw8gJ-#p~{yEgZ;J6N7&MF#qO@A6|joR zN{YqV`QCQ0Q~b=jb_nmRo~p>O$^h9Rc!WsqI4)7 zjl&tabcrI<*o{3g663|yqQ=}EfTicJY|_ob342-qW`kLYUCHya?e3b4b=P|+tARd|iW>@Wl*CxT#V1sinFr5Pql@R=zDT zC+AMqXQP@C$xpOGAn^=6QvFun{ZRVTBmR|30Q%Q(Vyz}#Jyi6!pWv;Eok`Do3kF#b zo&RXQ4x2$4`oZkTln>$eEj8U7JU89j&R^ZAn2)3F?7lj0m?TzAGV!| zeJQ1WG~b73w&-qxmpOr{B^>Eqj||8ThOg1W8Ng(q@q-2#~{^uH66+qQ zd6Tj5evsupt;qVyyZWO~I3DEnWjhnT5dWM}iNKVy0+)2}jvJ=1hOzR{SGuT^5%&-Q zz?mU}JLpV>B6`m=kTGrY%*K<(34ZfGcLeH$0DqOizkooF1LMB6?5lifoSJa+GhioW zw99esal%IaEIey93%ebRN(>hxF0NQ5p3`cYxRuhH6RUCG*M>!R_j+Ve2fHGVSRM@=MM3IDj|-swO|M^@sd2wwBwuSlbs% z$oma_em>16&-_2cHVqgiD8H>W!$%)c1*>>^S0w#eMsC#~^DH`RHy` z#5p7uxjZSepbaqvf^%F=lpL9;zraB|ryUt5)4D8gei<5-cZB5I0|A8nJsXy~ANo5- zzBP*-$M5Xe9;AfdgL-vEpu4D?wH~28lETlc>jsK^dAO5S!(J;2^`kd%$n&;o1FCo#`3M@7|Iz@J{?5Hc?jWXNuU1W%gW#8?QTj`v*GM_^w zgGkIilHXU`E($wmtzJ6m=VG=0rNJ7tnp92JjU4#-AC2LkuYWU-8jwTq+%uug#TkWO zI79e#XlU1=>uDxn*U0vhnB5AL{qcJw>d|GNMDLeEK@0^ao3=hvlHU@1N8HmWEO`UI zb7LR=kE1gWhwA;`xROLNQP~-#l3iuXHl-qj5V8)*))2C9GqUd!Le^2pZn9^c>?He^ zeHr^YV;M7M`TWlJcU|-MTyvfC%=4V{zF+r!!%&4YI0!nzFZs?5SKy3iO zq8=0R-k(z5l)tB?Irp=;RhtD*(U~y=zaj#E0&aJ7DXkT|H~vxgMr6zTU&uB@O6!ry zvQK*{KUcg|TgKB5qE;*3O8K8z%Y|~zBil4;gLFYs{U5dDwT4Oqs#mM|rXCK#KK3nE znM>`oV&OMw!zfnxwJw)s5QDinakgtj>=}M0`ED9a#2)exE$=KJG~Q{QVA^Q%XFbbc zZjzUYQ$$6)9@sNUXJDNaw=CO0@0QCLWv6&RP&Ly$~7H*w;lWLs5pC&m1yy~QdJxYSIJS^4`b?Q&>Z zRc=dxMwQ05RJT?sUa(6Pd@%Jip!UqaDlH6t#TT>E+S-We)-g7!kC`<8T4Vl5E~@3`B1tHaL9@(Ec`F-e&JIiCb8Cx zIjU<&6^p&@ytB5JArxe^4e#`=CR7kPae8J`%Dh-i6x-HW&;Dvc@7Ae7-JLj>z^-eO z_mijMOxAoYuJ{id#u%SyA36M6!C&7RcWTiK118?zQS219A3H!j1uoAJGw}_-H;_|Z zY&E^bsl#L1^&#@k031u^R+F2&^-?g$DGKu$aYLLime%#?O%ps!MoHYl9!HdzgA<*Xbo)ku0zhCj@4Y>wXW>#g(uES z`v!%-(2WMgS`pkI_A$q)AC10+ca9h9mNmRRBkTr%cTs>uz(nLFn>G@y2EB1Zal>yn z+Wni`-X#XF&c1NF3*N#>L@u}nv(4z2-YzyW0uh$dez2y3j;?$Ww zYA=M&t1f87`d$Wxd_OQY=<8;bThvx%3BPip+l!yT@cn8{?Gei1x%gbrx1daRbl~Wl zm@hJ=rvN~(XfE1jA3gb7NwpFIFvdICl8_KY%~Z#~4-~?a+kO0c{%Z^VZ0sQqt&rbNJgeh46s?9h_xtlPLucd!pSIR3 zL{72;EOn6^vXr$To4k~^cP{tksSlX7;$Y^ll|}K}_4cJ3ee+Fg-5P4S?@*#OkCNk! zeoO%pblOhku3_g}X%W#Js(dxokgB>KAP;mfi@@Wtu3W;up~QQqpCa4AF`0iwu%^yo zJjOM>FKy6!Sny^Q`z7*gp?=q9{HN5?_La(Xiw2>CvE4=5=S5l)O~={8{*fd|?#Irs zlXfHY%z$d#GNu|wtS2*2l&OV*(u*u`8DB+?r1gP!qsq@69>^rBQOXGQZ2P9)KU|v8 zlAmm0CZ%3u)0khh6s;B z7Z?;o6;csUA?!BLZuK=&sayMOtl@|;8e!);lT2WkJaLVKRBlA0I^h?N40cS3h~n!0 zo6LSjMu24U+rc?HnvQRk8C$CR<3@!J(4V7nrjW(z4swXGsIL8zwnGi-sRyz+>Y%^T zvxe=4PG<7S7b_;aWHA?EPpqt4_(T(f`%w?k_g^43N|0ZJmO3)d-gHMuW}wxyEi-5s`i-BYRAGAgux^bE zUYS!X)YLZ=84O=I^@egBqozXvIp7?FPXroF?ZF#wX7LX)WL@?DUBQY)Z#z33|12;!$nbXt1`F#)=VVbm7bQ!B_$Kq}Lkjujv5;&o9I_|kOGG$R^faswH7d*bBa8pRqK z3;kJ}jcNOjE}<3d1d5?uvuL{P%BE%ul@))RxtjX0CbjZ2`_t^EU@jbN`I}M+@?dLy zkErP~*)!g8O;Kjga5108Ed_W^(kS-{V4zA&Kah{wSSCrku}xzRZ3kbot#=I6#G#EX z+Daww3vGS3ddHaLy!b#$>GG#fQ=tPT%XfAwKj6%@fguv77j^Au-`5WXDh+aA*s%kI zcmf>iW4pc>3nXOqfd3(S8YB0vkXh0tkFUv~a9;xD6V0Bi34NXw8nkzOp7jsAOr4hKU0{ug#Y6!B@>!CcufBTijTTTSntv3sng%G4*sC z_wNt9Cr5xPW%>3$x~I*f7-zs@0rW1#Hw;6nZtNv$w8ZD zg!xm6My=VNtcEzTOX~(-y`oo%WsM<(E8~TwZb7I+%*esWq9^{#eJ`F`6ym6U{Rx0H zrA5Y4CcGzYH>3EWz!o%AItzDQblrOQ>%Wm`Ll?c}dCJ3%UiY z+F4RV?<^=SO04fKZx^_nU}##frrT9SlOiV`1DLAVc=<8E++nwH$cE9}?X2vwXVSS3 zH0K-~p~g4L72$))8{Rr%@PH3?2DP$x`pTOSUq2JkZ412gw5uqV*qvbCNs1=>F9XJf zgyCyEWNwzif5zjvGwTVlz&0gybidTVOD4G<7=l9%f6jxjoN>os4h?Knv!$0uiN>Md z)B{fSSmloDTmaklq+@(PVHCzss-XPMzBI^JSEbrHrmT%c#4J|djm4V)2xtWR!Lkbh z6L2G^A=e52qhMJ=zW_Oq=}TITo^@pF?c#qOE^_zb?1|q*ZpodzNg8T(NNDG}G_gl5 z3*(zKvUkU `Sq?sJ47uug88ppHW2W~igf;p^iFYACsfy3lQKdR3%fk~UY4+WH z5p>!Sol*T&7B^TQZBCY^y&ij`f}I_NluYl}E~5C;40|+YZKyMeTeDNgh;Jz?2u6wp zpe?-eT{jsywuE&qUaS?%qhfx{{Yu(-mY%iNebD$%&|zPr@)&nDI}zyZ5N2=f0rTB>)owKQ&2`?+Lk9|>V)hloZntMbt1 zfUd^_#C!C#fI_))kn0D*sX&P5E8eo=Bj^3^W(3%><-C*x)>*Oti9yUyabV9PgQk zipIPNh`mjw{&^+9wL zdfmTpbfE=ol&8!y-f~a^tdqSy8nPdt(SwcfR>_P#N|&XG_kdc;MI#_?aVub~D~I*) zI`40_=DMTyub`W&Iip3aVbV98{!n&kU8XxcTeU`sDF~w_ve-IyE_uL?8R}R3B;G?`=mT%7r z&wz3)(%whk%( zj^uWoUzF%>2UZNZ0yYIeUJHo>Q|`T|&frNN=9u(pphmX}UhDTu!73sVD3*+jp zzgtaCe%vW2kcEGIj&F%}oz7Mwfz}P+H`rRbyR80RxpdYiGIR|5_kc{8&pkPzGIUl1MyWbSrQ=l|WcWy4HrPwlwiAS zH_|Sbo&-o`Zu;1`4c637BcM2FpBF@~9A$>TTkEj`Vgs6Bx8+YiS}ZQ;ejL-?HJv+q zN27BeyU|j<8E{2i?CCD%ADH0(OHXPA6;&1`$-E`qi*jdLw+g5i3~-oiZuSbG?FIg| zs2BpK9k9jev1hR~W=$-T3AX3Iz&LzRE^BGOa=7DJZ#b`(T#(c|*N~(hnEXdQe`Bp8 zPQrAuz1`ItBLRA1^t#9l!cmM!-?gG2ULuyR@W#VlMgAR@K}np*)U+3LMxI~Pjlyxl zZ#>>CYCSFq)Vl0L@0zKE;Pu&;6^f&&M3{4+G^>#iKEq{5t7VsVl z6d&4^zR_mrs_JWeKzENf%e@VI^!-+5qpBtVmr)(s+B@0udQd>U zyyRrU{vpTP_GnIfnA^^|Da(eFS(;I`#&-8W1mkx=^|rhsef%Yx5JPJvcrHj&Q<}AL zFyMhOqKviR@&XZU{)PC%N7Y ze6+c>ZKby~wm!AlcsORqB?#%K z9!YQk1I)tfFh`A>+sU9Y)+gc+wm1G(g&Km%e>Y3ZkRb1 z65v1w*21}$On;x+(>Q#T`yXB4Pzq!z1N_r97~yn-O_ef}-bYmL0d2aZEtL2<0qjL+-9eil#0=-?Bz- zPln=wfIsI{6l?Q+px1AY!|MLn-kp)})%AyO$Bxs&TZi1XKCR_l>U96{Krh!&$42yz ztb;HPE_p_sYI5Lz`Ao>*>WS4WvA5$Tur>QWpJEi7d_IOje51WEg= z%$$D5ujq`d{?PG@nf;6W4#oATh(qLCq=+8H=KZhU)rD-GtDD^jUi$ikH(01rFy!2> zhef;`Rky!H#olJUg+5Md>bf`g;b;B;*=o+z( zy;F3RDrZG2|1xArnnKG<0`)MTmarC;T*M~F2E^qo0G7eNqE<*MgTawBE{a4;6OLKE z8kUg|E!f!5lJ4fMa~_TtM24J?U|D?VdA>n9slB^kO$t$PCM6~3FSE3ExrK9m=rceE zpg#fL3-01YiX}ehE3^a7^RULu(V2JW>(wT)3|$q{Z$eV(!|zmB854y=CrPG z41v?d0F|jL(9Uw76-*r4@!mrtqWd?CEgtPh9E~4q(mN};qFEUTxFl{?XNtr9~!uk z`8`h0hKpS77R~i|AC91C0E?v)oB(D2fvB5<<%mq} z%lF+}WyyN?snb1|q!vd<-beRDiNxMKKcOb4%!0a&i z?FnVqye$FgN$fqH()qu?&AWLOUfuev6s(4QzZNap@TgepV@r}tU?XODwcPAYOpMs` z5pXdNICAeeTT$uKExKEj9)7*@!0{hzV%fNmFlYa?-+Px|k9ui0W$rM&joHwP&P^Fx zb2AqV9mZQ2ZE(;0J?I$wVl=(EF}9ck1LF8Y1#LodS7M>=%yjynhTZNBTX%>)S;^P4 z#Q~X(g-ZcYqJLy(%hQgtmdQ_EDr;q!nHeF!hZ<6ZpyIn~Ul&+CjxMfF8Obe2)=Ny; zPUK=mna{G*eq(09D^ndso>V1c{H$tIVP~RV$+VWsYSQC|IcDsm-rlXLnB`)1iK8cG z>mTmB_MSDhBkBp+*m6Ol32=w(3VoY&a_BEi;nhAbhADq^W7iKI-aX5RnkZ&6-SseO zGbrarpbsBGXR2vT8#rLb0>f+SD(dQM+y{l~UoiVzrdGW@= z{Rn#HB+a4AVZYVO*HMdeQ-!~q#v;#V8EGG})LZ=yoUTpRKla&g$ivbg z%;me{vQb^KLoV%Kqh(7Ph0SoeV0?1(GJM2rr7Sc=gW$_Y69R`js7uZEQ|?oyyF@Gf z;whM3qM;h+%xyrn8e8=|V&xNAuH0KJ_iWPwJ#8scjr<;{OdP^W(d|sO-op(=d0i1Q zta2k{q^5Y|^scdftO%1nqes5q)RDFKFe+e<88y)uF$+XC1Tp8%-Obx2u80Y4!H=^-7NUYg*d{yJyFM`E#&S z`87~?{N}LsG-zW$u|C2EH?UCu-S_la(`ap}5>n7~;f?n7;eHg!vEp1DF6d}4!^yCC zz!Uj=+%6OALj2m{6XM(Tu+pzSi0;L=10%;m9E>Z z{bcIdGArsfd$4Kielt#^Md!ASi)ZXB<;+(tEMG}RCgkRG39#|M z)kFgrLuyY(fK!$7%gnGfV^V^nSIOXuHdq$Lh$h zTN_LJk{**+tr4t>lcsPD7FpK{dxQ0CbVcv1+=`R!CiUsP*m$MG&Du1Q5HFNiS?(KY zgldCcSTXNkb!m)@x&z*ve4L|I2@V)O)Wap53?&TWAC)_V_TM1)e^)vjd`wNJPAG*>H_QsOCTta_aKVT58 zU6j>5K%|kfd?~XsD}_8sQKK8I%J9KID=WO#?oIZ)!9ET-nmybVd<>!`H9tw7e%tcp8e@Q= zJN*6q+)D1O29bgS*$G;q7w%wLAZ3Y^kH1)4gm8pCSUd1)Iwgm;&i9?J)cy5CgkKQ+q7b=1U>Kz7`*D$U;j5qL#wPwxMQhcue8q@F@8g};N=?0l@4g*l&ZV2A)< zCr29H_}l6^s|Wc%)8F|OOj@#S+EK)U`+tsfZ#-PncJ%U@I(rJ|4rJz75VADa2Xu}= z9WUX2&&{FA-v8)QwfuT%coJs5Vz)XH*AQ^FAZKwR-!$zngj86GvvP30dtUiVou=c= zQ4r^GKZK2@0Q`>qd>Yq?%s*vYEF<)exJ3SuvvdBPH_=uP(^nb%;#r418iwZ4Qc5dd zOa4T#J<@|o%>S<_>r5a=v;AWVBb000re)DC2s1!QT(^?d&WyKIy$c^#mB=)iba?En zEKiS2goLQX9(Hl<#?T3n(CNjIg=#=frPd)?+B|4pue{K>;61|R54NAR8d2zNHAcCD z1+p^q7^V`8YNS9rxclh@ z(~kXD?KDD@UWTiYXC|%uG$-0ShlOaf+$C>dwxwv-`s_t?e9wqUX?^j|Hf;BfGWurQ zoqWMYNzD3CWC7o7wEL7v*22MeXwr*iDT)K07yDA^IqphX1}IYCDc?+f9{XI}@=py3 z072>hR~wjL>4#<;cWa05re3b9lR+;C(3BaInsMT+#{xSw<0!Fwgok(4)7{#O6ht4<+#)|g~a zUS4s)x^y<~s&WujY^b&6>A~8$xosb&xs;dq_yT*@&Zg3lE2fj>Cl+;lN84vYv%lR6 z#AQL{>(#H9XU+fuSOf8$)^}DO8RH3xLJ24XLklL2C@-Dov@w|cfs4z8nlv|Lhl^c9 zC-i59vcR)7qm_qD9)nYspQ~9VTfy56uT`>TMjPkRV^ba@7$+!Opfu58Ipr4+1r>Gt zZ$3#|;_d*4_D+{o$i0u}(XRLZe>aKr|3PV7;4-4AmBrC9`KzC>vD%AFuSU{F4S;G@N(_Ch#kcZ`XjVOxLl8U5+ zM^|HpdG}rQh{Z>#)@7`00XRjR%FbfX`d7XZq^#+kX|PJFonL~7nf~{RatFx_QjUjQ zC0-b-`~$+;CLGxe5xeSo7x1;aHSEQ4oUuq1%N~NR<+zKv=e7VBApoPd-7_t&`m{qV zqm)oPrMvi@wCyc$9=Hui`lt2Jt0dfZqFwEketbs3JN{V*!L}ZhB{QUGoW4H{=-a0S zfl>#KDBds#+!*2nnr2PBXZvGm7`u&z*1#;o1NraZyXqyQymhuxzkijw!p^g(OW@D4lz72c0*a$)>X8K`Lyddf7Ky z{;Q?e3z8LZXS5O0N~+j6&E(*7LqaNITQUtt__&PWo0F-qkgdzohc7Nv(EY*U&&D$j zH9vTR&r5v=b5LX|)z+U@%wAdZ?Z&wu6Uy-M%6wGr>xM?yZFml?PXGx12>0?sQv~Zr zHX3!5B}Ce?(59;b3jp@r4^EYZD` zePEsm2Xsd!NH-$d-O0OZsA%4a)5P8E37eAB`Nk37k8z-OXu%dEPF8>hJ_(8}( z-UB#BIaw7c6Z_-sW5ov=8uMUC+JAkG!Zj2w>_33LprOBTV`Zu3{6gC+)es`CscjGE5^$$_odvC>rQYEj*~^Hzrw zZ8X#bvQk_Y8H%WJ=m?vrDIMVLTHu_xb@94)sNE#D%W%@+o?!JK+Ix?gA`}0KJN6cK|+3LEW{#&eJSlJ$f z_?O}q-%9oX&tYCc`jW?+?gUvg%ez3pPEQ%_4+QthHEgkluMaoYsSj8wz}Q)O0&M8= z_R*&etxzYjOyPOm^nY#?d`|5|c-L4duh-uA;nB;?YoC&f!T#XC7^_Z1Z9U~$&+^os zupk~CR;$^}i=7odssTDYokXfV`+JW@q|Fmg$0PauwzS#83e1i2gd_&>TvGD`9#5;O zAe7foocGM@RDfw)q;S|SUr6ioPy%13ydOT7dNv;ZuSz-Q*DoZ!JM<)&uS#Bj*{Hyb z-94qOQ3XYMxP$wX@@;4_OkQ;xU9CV7X}e!uvaO1n?4(J&V(MuYQqr z!soL`Qk>s@c=`EdQ%1M7DvmooiZp`M6K!QOPLq|x-Z`b5X?jyxw|&dxWXYoasnAeF z9wkU`cxW0)2%%F7D!I~(tk}cn9cH=a7VayU&QI-f$7)}q|$xZ!+pGUF_uif3u zip#E%RM*S%n?$j-rP?(uFgrZ6y3N&B^0sig)Tv|6f zd>H&wD#i{+Xu3=~gciLj!lENAw)EF4owV%8)V;j?rl(g%QW zL2BJ_b-G=UX9+$jp=frmd9**7$R%yHmKLH)aU4Nft- z&41R@Y9u=A2z#mhjvc|(3@yMsHfAd zoU|zv5FBGu0h8r(`8 zcMx@3nh5QI^Cwz7Gv_`muxaGx1gkU$OSkW=2=M&N^Klj1{oLD-lKYe?meB)H1~uf3kxZaO7Y00sa+s< zg5eTTzHld1aiWD{qJ$l#nB)MUtenoe%#Fxhpx2jZ5wkD2#i#GQ|$v)*o_U+V6 zls5+HT_!q^U%-cf->i$_c|+l*{yZ)nx*iD09>7EfA__alRBD1!s{4Z<0S}GA{Na%| zfOy!X)g0hSdAIwuxMIUQnMA_VE}V&VW-xmmA4#?hm1V+*Cg{tg0;`naXKBHhxmfb@Gu+8yDL)#7~REX zf7MjgYR0J8g1w*U3@P81sguPcm4l`FJ@N|VitqL!!2$R;Bq|Gl@mg&liV%W(DLPYU zD)+;!peK13w0Lt{V}*rIzja$Ugmk@qFi8s9M)c28R8Xf@$bz_se1%L|hJp>pq%|=aoP-xJ+>Xf zu6EhI;C;-^%E{RaASq$Cziuy(O3<=*$LNRPsLt-l#=1pJeLB+~tHVKEu7h#eNLXoN{o zxPyv(%?OVs#AW+(-#Br1`>`l;KvFbr}VG{+{x4MK268?NGe*H1Kw&57D3nQBl z4M3k}dfHJlKP`6P3^g#ZD`3Ownj=|Pmb}5gKc?G25;Y&;N4wJutn1;4Rp_Pl28$FU z=oQDIk}WByYBcp!BQLaDv6A5BJ!J(fRMmMs!v>jGE(*C z^pg!I0f{P|HJ;6i3GL4NDe{719~dOrEcVd?*-nPvgc)FguXZ@+{ZwaV%K`-A-@n(l z7#g9WaPk@(CVMJ4E85~pWGssnU%(Xueur0N^;m+pp2UoivwHTgK8tq`00b=uX~TSM zYmkKovhJK>8-<#Xs%03N*d2B zJ0QN3pW_v--FXxU^?4dX3||9juD@!Lej?Oz~?-I%|Z{hU9V4sPiU0In(fWVC>J zhY65nv!*UN=`R#KE<@hpkdI<#k-pk6s9mfKS8x7|_Orrj<@)_uI*Bx3kFx1!cTMQc#1&&yw`nS4rP>L45V z`VbIA2?z3h_$Z38aEt;fBZit)L$7UD`hBkL$zg}Vih}RiBAKgh-1+>|*@YXd7hDP{ zRcALg9$R0Whi8LghomLzBz&3+m@M_6-O_pJDetGkuWf^A( zya!y%*a`keUb$PG`!7&oyn@0R04!oo;bj>uo%K&2V{2IitHJ4lNYfbOSS+ARN+*yBQdpr7;(BDsOcBGG>(y*=$PMtsh17Z-b0sLgj-uFh) zANDsd&1+k^y$=xp#TfZemdcEXEp-LH_!{uVKF~XuXy?bsZW_bA0`$dU`-C^i5uXpW z67JF|zf;(#5>+Z+#ICIZR@u#uTJV7&Je-uT_$aU(Ffcg}v23%&xju_TIqg?c&M*_E*_&BN3hB{qKPi?Y8X< z%E)hcH?&STqVzKE+)3Qxu&<3l`^WUv zh(q4eQ1lQ;y-{|W^dFrV`B;Tw%+4Kt=MKKy&@ymp8~JL=^NItFsR1iOxryx;QT8Is z1wPBTe|wW**Wa|^mGLvXmDipfj9k}5S8t>|A~+gF+(O9+pkjgyt(pjnwi`PmIX6qi zjFI!V8_|%Rv0p?G+BccTw1|gxoE3&PKNpTwJ?}f#sTj1MSSH?WH*6%^5>tn)Oyow;UFPe4nD;!<(-@o;tuVJ31{Ket_j=S zO!`07pBRP?0TH!46>w^h5<13>{d|ZPbRIyoyFcJEO|LArM&ON?h%|k~g7^FjQ z6GAt%weacEH+N)z%tZ!|skm2ybfKT`(TVk-{ppMtxqt7Bev0b&365~Q`js*G-Z`x$ zPe@d*O+7yd*j|ILvicJ?_&0s7N|UtDp|li(!`Ss?=xkLqfVz?3i`aAOK}C<{TQvm( z#x@zU)4Aya-hO7jco9@+F?=407!0P9cF%D-i(dfXj;!GHMXW0fP~@Og9-yoSy_ z`Rvts{BSuPeI+Bhh5l`@N5aF$7ILf~6>=H6KZ33YTb5=87}BGNc~~+cQuTWB8_)+= z2MN}+8)JL%KQ0YgJ*7x@#*FsPCq0~tiIz!Om=8FUlCP4y`ejBRcpQU%gov~%2SQtj zC-?_?S9^*q=A1Z~2{XKNak9Pk^Rm0KGn%U;pqH1e@L3^OpYTA_A|)-!Oo}MnqL!4W zm%=}^TZv=eSlNhMuFjdqRJ$d?pqjwx&%V8b2z?f>_*G0vrKhOl)(Q(}y*EuPNt`$@-7a{G@TtOb1Zr$Jk? z|IwX8pitj3+?_NrG=Ff)7_TBD5Nfj=Z>uCS&DczTkl_5rcNjiPr_n3#Bfy`t;X zh(QimDdL?x-zFeun4fP=UnalUNE8~AS+g?~UogA~mKr2N9`fhaeq3>@5wU)^j)paz z!Zma+dI_6oyc=q2y-hKt7Pit6)nTYOC`)EnhUI6$owJ){y|jNyem3?O%vJh8EbzA&S~+XU7JWI&*XhU%=>F}E7DLJZ zf4r_9h>dcAm{#PQwnA$FFwlHx)A0WBx_7vX9zHDbsm4v~CydJHB5t)X|NA-_vSz$* zYfzT4s?~d}Hw#^H1zMg1?~efi8#)||CQ}l%^d10e1DaDftT-@u@ZD*OTMn1XIxjE% zj9a4njjwKj@%P<~8dRFyI&e2%+HfBpdHO)7PKt@{WbZ&2J}3f%SV8l`>iyGVl+BBj ztG6HW56F~t41DyzXQaTapkH(DlNC~QUEfS1Nj36HZ*i#rFK%V08+;8e=!m+kdc*fY zkn8K_mYC~5>*K0*yCVKQw$k)yJ7ye@+5NGsH}ZZ_O-ycOb(#tSJpHUh-f~2n(in}Y z6n~kJj{A|0zldOb59h+ezotPQI7S!y#dL0bsXBL~qqF)eF7Ee>Fg`3QwP&iVnlYLH z-y4H^r|r$X@$D+Or*uXFivV+l=MX1Q#NLuOH5l`*L2yKsl_LK$?d9a1(L$0JdDaNB z87)XA4F72=NQPig-XBYcystFsyw0h;Lli!1ZAs1kn=N9LnN_|crOz@UH;ekw8D4TEUseWq{9uy~0%bq;2VPUD~QDCYN z@c>S+_(dNMkUO=<=@C54<#%|UI9j(fEh(658$W-QB62yxwou}St~8+3)kY$-r%uLZKOF;+Ol^rrn0`nR8^4@ z*hK!&QnrcTf&*qtmm(#z=Qb>vD`6YS&dA8rw-05qKxyZjD!)eAI_x@baW(z1G!K{^ zI(%-88~yR65cB*DBPFzU5DjLBi_wOmH-3ztXs4fGuEWMCMR{w{9^udRJKb`ZU%S!u z2xp{RGK`7yd_l0$y&s!Zw;zNev%z~6K^-U%==ysT{r6@q%Xi8827C`i1iQo7&zGK; zRtmL9DN%*-$yTy99d0^0LN6Sf>&*_CH&hSbYHXYg)LR}fc*NoL!kN8$(sK0gpo`|Esv5uW1N8hx?-) zu*hZc>_Sp6{nG*=1YanzKxn^b_GV@rJ$CtL>x9RU>k#eS?w`DmYsdj$;;pAdjX*5r z=ctUyDq-k-lZ_`UB#ysMx)>h@_<8YOw%&j2WMQ{=D(7$QwP&Sk7hb9sh=W;W2KCg2 ztrcqxIK#s!kEq`R`LP4H_>Gk^Jy>#GTE_ODcU6N=(^AgZtlqh6QL2p{o)u}nuT`4W z?$_SrSnu9`l;_%rmlmYmYJ8n1p&wB^opf%{>5PSUA60O-Od^p8oUIJ<)a+&`7Be%o zQr~4M*@dZ=q5A0lgq3<*0yUwTdf`bAn0iS<5-95jqTiy{G74QGLaj*gdv_O3RbLW| zizr$|ZG3=XtR-%Dz`@;}Z&FIONiYX;S6TUG2P~mEA!S}GMX~1A*kl`bN2$^f18ppa zp-;~}$Uw=jqPfUr#SoG~1V#tgh%EMNG%WhI*g=Gv^hg0i2yYvaY9FfxBnDhm;) zP*F7OA)O`I90hUQgjgeIXVrh<_1e+VGp_Bf(VU9@|MZ+zl)UP+Cmx8gC+A(V`~0~S zb4#aTP;8{%0eVjC-hxU3pBDrs;M6pWhdh9|E>3R{kkpX9ns^wtF!ESw9%MYpsS9Oy zn#pVUWvrff_qF41!33r`_&zJs1*!^*CEqjWlyVr!V&i-9U}2MFS~aw|4L*A31Va?W zwC`!b);-e*Y4~#wdztRVzw1HS=%u$eCj|+Ss;&zjT?Cve)EZJq&$3Rlzi8$<<|SQ! z(G!OawcsM*zwvq*j6s`xbbeMRi(K9M)iT*m>hL`b`ghN`Di}K3DdlRPu{|In z=bWp$`zbFqjX9{O_<7IDzY^cC+RyWwRKRm~Ry!R2UPJ$C8ak6idiEC!>jK8L@{JSc zCZ%0XIc@Mg(aO9lvI#5u8+zk4q=@Oge8(A)3#@9PfbqrO* zfjQe!E_>kXQI|kYvNc71OjUHt`%kfJ*a)y_iHI|isuRobRJi3)C`Npm<8Y!``^M*=Qb=U#_)?<2a#Y5y=%D!wd zCR~H5#KALNf}Gq1rX|+3-%N~*AC_@leX!?BtaRER%$vDEstC}xo3@i@cGZ?xL?@<6#j4&4gnlKu zE`8Lr&8uCinrQa&ILCb3+T%KS;Vr!zguQnC?GYd1stG|swolVlN@)7`DoNwga<+3| z!%l6!?wBc22Ukk4!C9nDH5S!J|2&}A9f;v%wTF_kXcnT#P4$R#hx6Nssn)#IFT%pY$jAOusNILU z_sR;58aVz>PHqc5Hs zI#bt-S4D)w0daIU(zOv|u<$v*=YL*sHqJTseSfa&dS50TlSrHJXTafc3nzFk zVU1!G=^JgCnQc;#WtH-EHA|HMi9*P1_AX;${Cg;OtS?r51E($pJkqx)lSetMX-Pad z(4%F3`C+w;Y14KErMAiMNf-WRtV?&dhWSQg!Z!NYjCYdvAO9^} ztjdz<)XdAzuW_|4>gE*`2y{smCfxKO1+<^CvZT_#StbN1#LF{~wP@#Cwg>V<2Yize zBiH8C`8kc_yvtNXmLyz~*(AP2!9^>P6Hg8`&I4mVAP3YYb7k7G@nhYHQ>oW=;#r`u z--z?1-k_egYMVDCCSWpJ)1c#<-hZW2Qd0+$fh>Mq-vD6=Ve9;sXpY_LoX)T7!Oh6< zq(lfH8GO&df?5*&Zfsr6x_sgMsbF`DR25DfzLHFUpx67ots#93l>YNzX>Qn2NJoc+iYV=yoI*#nQ z9NuCJa9Npr>ydJ@i8DUfUO$=9g9SFgHvW+iKY!Scy&xsnZq0T(!Gs`nlrHUhhyTC$ zxW;Ls@Hc9de||NRNq-G{cg%a>$TaRWa^({K#Enz;#gM~; zo!AUdjLx>&fZkKs97=EkZSS@S2~JjLDWW!^E&EI1v0VkDE@8Vdvp+I`kdW`;5eD6_ z>K}U@Y1*YTZL~+U4)0!@HGpv?G2J10)@r*@k-t*9Av{NMR~CAfkQb+7kT8c)E%t^v zCTTAB-(bR@OXqsfMs|TZdY{I583Y}Sjx1zeu7X5O*f=A9-`y$9pYX;$vAM59dRXEc zt}mcK8bc%Du!=d3z_woWO)VWxL_yfbcPP!3};xW-SAq`5J9x+RE2k)QUF#5QZA2JOqBT73qhfY|L z(1PLGA=qEvQ-pTvdJSJrl|L|dH_z}KqUe$~9UKF7Jw(GPay)`no4^gYU1lgJTBsb&i_atgbX?J*_EADma)uRql*du=u%1AI+pAqnC4TtyPped-?F*<95LF zos!&7d4Bf0Dzw~Bk9S)wan!^GI}txha7O-zUkItu26+(`zp*87TCU5Yj+L3EV4v3^qZj zKGfiBpJyAU++BhP=t^`;^4<+yjn`~1Qz@U_^Uq+(TaP^Z&A}?uSKeGb{K*)QwxDr6 zHXeK{ybjjxjg{6>wv(&P4+%jvyeIhVwoJz3C_HwPC!>fK$G}(q=Muw7I{hHeX)}~< zS|8ofgh?Q}NRbv4O4;O{n;x&Tqf zpCeP;eqG(DX}ubDXZ<)Du=42a4k1$qz5%>KSLWn4{k((&m)@C?Lv_}hz9}8nS1N%c z3Y#O_%$;~4&D8~l55;O4;H2FZITBxGijsp^SKus6&3AATojCmhGI7UnHA_E^Wio zVM*Hqsx=CZpIAHzp|Ej?e8H*Us@5v z3)9&i@`f1ylAo;-MejIht78H@VG}{naZDVnCOZmZzdtQxibqYBgvFsY)%6Nf3^pd} zd@klYyk=^@ocT85?Thb!Zw9)M`=D#8&o!L>bH03dzorG?XzT?E$d~egG)nT{2BOG% z6nzpiSv$}$d)cQ`@UwbN4W+ic)43XZVN3j)>1gOJrCh$Oy!A`1x#y&B{d__6Ebp7Z zb^;CFr-AlF7Uen(^XZwhEx#Om%1%-tj`np0%KPlJuS9^Y`D*qnr&G*B8{g2sogXl*B8ZVVRIPT<756 zJ*3?}qi-y((_E@2E`Irsn<7gf_z(L;&g~Baj`KdoEX-OkMf+m}d&pXhu?wKI)Vg-^ z(=X0f5jYo>E0#^0wU;m~jyI+q%`qXbW9KE!-dvky5P4wwI#=S;HCt1ll2P4E*W4qr zGrwOXId+eX*{+xiDNQj<4-?4s_j4XSts}kyPB;rI&^8#m1!4fKobZs8-~i8uPlFry z$rhHplhU1WwMMH}W0?<@-oJm}fPu?L-*nKlP^Kzx|JCGVyTVn}=eX$r5IRJcI4SJL zs)4S8JKMm?>jhpCXwmt|#%2+yGon~os~+XKP&lnw|M$4Dmhbr8OmbnzvYgo)>dadB zK^=uKr94c48i668WVL0DhbkSc2`Q)qx~`=dWcETp^o1(jveC+g<6_U^ z!SUodY-yZctbOqB#Uh&(2Ty=NPGPm8#sbem9`+L8z%8|)vEyQ-kV_1N<9gpRib6^6 zYLA`Hn;z**v z4##!6PCLA_ZrpVV%Q-XM?G$K|*L{6a^uNUo?{vWN!_3<{F%1`8U)lzeo_7KH>Ny=KR=NnzJ)I3aY zfC-&Vw1O9DvKwNG4*N_?S}V=FpPnYK5M8Oo*u_kqaWsLGC{JL@k|+83=To%sRh@D{ zWoob54$plisPzAgmldWje5H2aW_qaxc7;5VyLl>T_Gtj$5Nt>Q?-2E^f{+*;zJ+$! zr9fe7ezOxo4cR6^F)5-5kQVaWWn5?ibMP1kzIdUEEJ==^W=Xva@b~AF-oAkMV>H>t z>r9+$$qgx6agJFsY{7`W#`TbC9b^Jk(pU1w13_&`2VZOLn0 zmxGa=G?o^zHx2a5)l%@|vXJ%5MMu%2F>S;#ufAwfRD|?}Cc@!Al#sMr+d#xa0+2U!+t})>$LYr-L zr{Oc+a5XXHpd906)Nc2}AaAd!bmVX=`|F{vljiGqG>4T6k2_>YB)j+u9(3zprZEUb)<}#h78UQ)kZV5Bt10V} z*^KWDYb%0+Aej2IsBQr^Y8u4F_2YJ-UZY8r=hb`$=;&_x2~l3{$}?q^Hn9t=~PQ?zjy{@L7v@u=cGn`A%xZn)NyUfFq0ODF4QK(<$23ZeN$3`W}0kWW6 zplT@O&tsM+zDDok*f_a02b?C5qC+Q9L#J6gZqMWmK~{(gc#{?S$0@1Byy zkZpQMJKQyrN87ma_Oj97Tjzi!)Mqx)hUnteypLvXK9_G%`sgtPv8}*H#qC!Fyq92; zX9HmTaP7^Q+~La!&#p3`-Y%O1dRlR=(b$TAblv+?yj|{yAxOD#uF^na*)SZ-BCP;2 zd3w%X7Ok?+>GB@C&G|!a6XvmldgPN|XGC?vW#@ha@Fdn9{JERpc~l`{09LaP%$mtQ zq(}Qdr^~)xENdYG4nI7&?sxH{B=7L|m!248X$tEtdX>e&uZ#jex`f5lAG&ez8Cw|X zIyP!M;W$Vscm=>$Pq~5Y90@e0CUl)dAp~aaR=NZ(G}%a+Kh8cbiu<;*M%`lWlWQ=w zEB_?CvP|Z=eGgJ|Q;jMSGn(#Aw?laS?5Q82i+L!DIkNW9XO*_!46HAKeY)YwT4AHp{IE7$3w=*PpsFsMKILXjAvN%%^38uPR?6$0?k2ZMj*W~b|UV=~)Wv&3&^r*X@^p!|B;!JnTxoPqS? z)v4RcHd;T)!(CB*?rmg|EKQiP0y?4o(dB#k%7g+Lw(Mzoq7tbWvNHv|$hhE5>5t_f zE@2`sLBVQ6h8HYS1QiQ!ygR&nc!LzeqJ;`6y*#WZ?%vWULt@3-gI_22aB~}VK>Pw< zZnfOUZ2#Jz2_xF9MaIFx4*%!?wVQ#!(%(i?mL&clsz@l78jGt*dxz;_GAfsHzufr3 zn>NDD1B!(@*HR{qZL(#4+x8zj8T$QbJ>J0K;QKq!8w*x5f%*;cKqgFWaZLKiM}~Mm z)J}hk&vyA2IroCtN&#y@uG!r=p~}&gb!MC4RZ)Be9@>t*{!TsUH>X^T=4ce!!AA@9 zw(4Fwu260L>wslGr@aPKE>3(JZ0|w7h?q7JyaJLiNm{-MX_P=GlJ#2TzqeO}`CqKMnsVKlzj2Pd4)w#s?wFO430 z@t*7F&wn`Uf6P8!USlP)Us`Sb7AmM~_^clM8%0ZNQ{FbpgAfB7a-+T3COy8S?W3KIIX}VpQJ=$~Ov=Hzz^&{wIPM{P?e|my) zXPP;waKveC%nNr7F1P93^sR!fza}pU&v1n`-}{YtyW((53+LBE(;EF&q2%4IojM?L zuMtJ$A?=gzB8C^P)a*}^SDe$^{FX5S@W$@M6UR4o@|ISJRcDuUrj%Ra63+@<8{M@H zc5Q3Kb*^%W1|TH%_d(BBuEw>$q1EWVi^t9;qbtUI4Z2`FK+s*C0=d)*2`3=iob|VK zpe&^DzU$BeM)h`l#;W)F?+}!6l$y9z;A}#5?LG}*mHn9UWqz7Iv06~d2yI0L{obGU zAwGwOA-Ee!E985d>d4Qn9KPX?4g+5=W~%ReE0Z!~adpaI==>ljv85uSTrQr(=Y=0i zbM~1z13s9&w^gdzGevZ(S!o_%Gx=-rzs;TVRl$!)<|7PUpcf&^w`nn~=>BFFCt;S@ zZLxo`{}$KCv6!Zgd3+~V_inEIBQr*WznVtxy=IHN=2QTBh`2XW+(*O7`bx4514`=Y z|F*Cb~^8p>eAbH8E6%E?P7U?m||*X_=04@Y%`sBqt-p1LcRnceL_= zek#af>b#WkxLw6{Urc*ph|7h$@`TtHbtUw$~cJs&ywC zU*)LYAD5wEA2rk1Nw0xx<-}8v0zlO$8na zb{@F53ivPchAGt8^zN9f3o-JZ?f?6FzqK(dPj0BnvAqN?^AAsXt$& zUcy6w-8`X8+M8g_P&=<>0&M*KPvCyqKQeQz8;z>hH<0^4YSh zVv(LevDXU<#|~6{Xu!JSiLgpvU&c87W3*SqL;v zuVs6|9>=Q2r_cZCHWG;EpS(w^(>-TeM~#2rbYXx3{FvNA&@jVm<=}d*&C`)B4*LD= z(HG~7F1(6GB!1Aej%HEY+BhUqZMS&!xSRp4S#SxLGFmh<*YR$~k)dQ6j?^L_t(+`|J1K87rmdZ!+<%pq>xC z=X6!=J$w0{xnc1b=SW}J;c?8l=+UCG_2Ll5tDW_>spA8<~) z>9+X}g$C>yf@wo10_tO{B%dX6?+>2PANieT)8lD6*EYHN^P6vrB-DR=6-UZ=Q7Yvx z)3vkkgJhDqU^ChFay1;(NQ2>h$Z>RdnGasBY}?9dA~80AINw)c@tyBF6!}1%{3b&C zp;e|w>QQ(PD;o*E$nbOF8ln%$s-%YNWcFCfDlHlCvJumE`tgtt;gMBrD=+_j<#O~K zU0EQ9K$*e~o;a7cDcKa2HMfZ(9?#kQ%2`su;SxEJhh!ug0)qGnZTUAdibj;N;eYU> zE9dC`ivJY$dC|gnr=_`rjZ16t;YQsda$?ISX*gNtCc(%!{fRehE%0PH^SSjl{iB+? z`mEiu%X!diN8jS-xt!>ND@<^;*~eTUEp%ZkPj(`fpp#8T z%`q57$)*8lx6W&kRcF1uJ)MuJOMFkInumCkmQc*G*KTw!Z;yLT*Bn{vV9}IViE?5B z0Ip20AOh$yR-#=CUJM#70I3qhe}x-7Y_PQ7`LciUwZY`an4SjF;bzP6#x$ba6u;^d za{tjrP!Ay)fH%nML|km4@QQv`n_ksZe!`TX7)T0|hFRCc3h(|MFU( z-|SR5%QPNrso7z06@Hq%eJS9r&3sD3e*`i_aN#e3HdphUiDuxbCb5 zNjH$yDK<^Fas3Qqjo)TyXVCn22eTTs{x?n`TgyhpQotziQh;Z6EyK^aYk{|# zskzm0*K|B`HrIE;=ow>|;lEuh{xja%ZP3#+l(ta4)L_liB9YaF@!MW?S&2bOyM(XR zb^W7@1T3JyUKA4(Z#Dl^cw9+SZrc2IS8c*uR46yO;+AkSsOmaYH13&PC{JL;<_Q*J zPwK0L#{B;!==9;-q!8>3VTA3+VYHLPNEln+inA&;Hhq^>UvA!K@a^^D-Hrt=FE$E#Zd*{rkyf84Gc8B8%Fr4%^U zO$&xm*zgM$V>`$E8k%J4v+=3b*n6^SQDSYl`Ssw-1Mh7l)s1c?AHesvykF(=$XD0c z2XEBM_u_lnX&3P5DV!hYhZ0xm>eJDWj+JJT=|y7|t)RcfamSd0BPK1)^O+!HNv(-v zQNbuvM}q__bLeJ79gpU@ zZ)7@EE{u$Pe5^#C5akceKZ6V5_|-`Cz$yka4I_RU0#w(9@QHb8Y)#N(eGZS-xF79{ zxzdLCZ z+y$Vi*zO^|<5~PaI?JZ`L(9=J-T7P))}4_@G5XW0u6Njucn2kt~5n+HNZZZK|0{))D@ z_J>al38W{1K#)?X7^w&DRkE32{We8R8_2CTO6h03T-R0ql3<@~6&OT9lI3UvLY>*y zos-YVhS-+4hxnOVL8JRL0#4Ee+an5H;udK{Kk|)!@_i@XB&fONNod}fk{7x)dwumZ z`vTBCzCyT93?s#!)VYJJmYv;Se0g~O&HZ;hS9!#M4Z;-`I)Thykw!xY{orWDr^mN- zzN+C|)(aLWToc&0mOEJxp8sZGehM+p^b5hNe0>AjXh2nlX5&>8M3Vt-3zt@wilO+=~RgkAX2)ZeQ=t ziKA3Eh@pGeqcg;e%I-1pTAy$!>|xYOOhF2!%QusZ?w%*^57^YuL_Gr$)81Z%-$-ijxA|f)+E~ z^>rMrxl($yEof;!J@|4p+$Db}36I5+#^Ps}_ND%pMEc-fvsbh9iBOOrI6oeE3zQC2 zXz5R@&4{*kkW3VEBz)d`Q%wH9LaQu#7km>j38p87+#b0zb|;xAEq%|7xn+l;K7RhW zEO;fdaM|%ODN1i6_4UM*hJ_YEI%4^9zk|xAIQ?3js@GZ3T4Sy;J4f_-qCICZL=pJw z$Pjb;ZkZWQAPL?;Q0PMNkAf}=&#MnMYg`QG6=dUezCH)S$^Clug7$ZpDPK78d};he zHBEE#KSQo-ejdM%dF7K}-2!*jmGf;cTRrNYJ`nL; zNrsDuacTeUO^J4WQGC@tZ9mss-!ZzT+5k#p{rYQT6h6D)zTSZ$i9%v&DyG?yNQOXu zI~T=5XD=Per_H_2nB6sFxdHzC-Ww8>=HgzNd8}Z!PvZ1^i!Ef@CT4I4j!d*0YP%qtC>d=-UwTiPo>ANb zh3G$V&VE*T01Yq1aMu@?>W222=FXdM8yeEP7LrH`=H@oROiDW`tf z;)ucQa@=kxS>Wly^}Qp`37R0xQ3Q_U_vLvzUd{Mw`osNRLFJwIzHYos699>SFiFqE zt84&H_2(W-!?4Z;8c%H&`r0fZG6{8U3;2pa-s>AC|4Hb0*aiwWyy~y_`zYJwA5(cr zU~Ec1-TFviUFx1r0W~wooI;7cNV{aVVIEo+0diZ~mL$9G);r~eYl&a{-FNf%-Yxfv zDz24VPH+3`xz-w19`>r#V5k<9*fi7PKU>nY7Ijyey%gC@<|FtPC6EA(0P`+r**o|Y zY2U5=>Ss4z)yDO+vruaVp2`$zUuPeRiynBsMyfy9b*BO3s0FZJ^L#bv_~VxEu3h&O%G71{I+r$0obd-yo>& zHdV*!c(n3T+p3gy*wMYpERqg`uJ18-zaGt>k7wj0%P(UmQ69U4gEiXmw)v)e;^!m)k5U$j*Za91op z4kk=|SMB{-x?%Vp&C#gn)}7%=umtS_?TD)RaiNnqH6 zeQY|J-t({f_kVN?TGTYMxu47H^!{xwa(CJ^WX+E&`cP~M2=*H}j0fN*>W*!OAdZme z>`SzBn`zLtxG)4~-6+U_`LDji{0;mOegDTHZgyM7c0So(+i}eg*J``hJS(S)xt<+DcS^D4NwyCm>53FYfe!7shqxqe!$)uQlyjlf_G8~`i758eXZv+eX!geTof4UXg>Q#eV_Ic^;9}Xj6hVa;fS5__@x4c7*}Mi#HIa##8G%kzs{A5>vjl>> z?er@b{+DKtL`JzF_Rkdp1`72o~kG5mN(z169wB(MHB`z;M>jrw7S# zPx0z8KKsMHKiFk%O&(RmJE=Hyon{Z>QS9F%bPwS|3uernc+pK>!fiwG&EH($6%9Ysmp`Zpu!gig+8dE~(O&g6hJPByj9; zDH>3XFI8m{nT{{pY%7SKrMAusIu7MolB9}@Va1@^_^l2yvh%vVTvu4|%vfesNbKot zt)fk%Zv?@8Fgm3tt62S3ud7kBEc|_d&HAZeBEqV_icNC;0GnUKMo@-=EIyf&tQ`Y=X zcE!myf$Aic`y}4>G*7@j8Xy(JO(h$MX^2v`FH9SDpF#?7RyY3Ajsr z7u8!2Ws6D~my3%}8><^V_2{|2)j0mYJC2uFPSEY5{-f)gwhxucrV~2k)48&_Se`EYk_FcE(M<6lpP#cOH`p zj3msV;NuLAO1vfd-S#G~@ zgV(b1CVrDG7b0x?wN4DJ4+3ib1_i!*3%Y$#0yFdGz9($;^pqdCQTTlome#%vZQ^_2 zbnznC(Xu?=smDc9LRqu#bLj_7h8HU{nuI%4*vnE9<|w%Mo^>_UHJh8l^L5oWwK&^} z(Z9`5LOLK|Vq`)QjGNuGMLDzM^w1e5devWZKlx=X5~ko?-EJH*f<{a3g&sO3jWVf6 zrYxL4Z9Rn||JcQEvS23AM=*KU^Aw)ysxh01W*rZahEg3_?}iKxL#Kaq{Ys#OjRD+u z_Mv3_E|b!eh_3!=!@0W3qXt~Mo2C#aLs(nS)X0?B9@V+7f6YhmI_NdNY7vq879p~g zV6_c*Sp^9esFJOTUsDl->yl1+*WUX)^=N0Q!KD$vyz~Ok%xjMhj~@5=ny|-Z*A(w^ z!ihsZ+XrNv0>Nm#3mV(#4wyVRluSYVi&5gBekkiCZJAwgUP4>`sV3M@<*CQd^Q|tX z_YiOA0{dK&M2BgI$GaOrRv>G7DWq}#?On%RMAQ+v^-$UE($pOWqLfRHZ?KVvc2iv%HM8#NF1TAnlxu`PM!t= zn6K1NR${chc(NqWZgR2)Y{<%8z z9-4-FnzIU0`DPcZWY-{eoG`rIi+tJ^)xN;is!-aRPkW_hOcuWp+3?-aDKH zHM)EWW}~A|_I5$d#lp9Nro&4{;nmlpO<;#$LH3y69?iOcXV-`@!09JK+Vm>4j=MtP z9%4ZUia=HL<7H+a`OxLrN4xa=o)q{nF|gtr-ztIbSpBk=a_Ffwwo17h{&VPT+zo6x zv$Re1yMqk}GnRIj%!`w9iZgu-eP;EIMdpPjKDc28NH81CtD!6EXtr;-X~SKj$!V$` z$m}jdc)!ig<_Qdt&}DufH8C@3eIHmZ4bZO|s+P373T`OwUA4GPPqp;Dn4d7L+M!a; zzQ26PCt#s7?_hyCt~ew;ui{TLwv4C+fKJ=kWj6!b*jb}v0?CJHh7YLC35#iVLq7nI z@VzaxxgaVx!?eQUqZ2G^NPsa$;HvocuoZ2O2-D;z$n4{s6JI@kpz;e+*P~-pT8ErK z&AUxx@!=sKju}BVgo!Q>Qh2A2%(_Nid}@IY=x?~F@IN~L$48eMIV=+2dSkwg5^EZ@ zst)2#zuxOt!_DL*j}Q(0`<+4A8?A>&H)zb`<6t3Q6zz)blHj#%0lv7$gIeKU)gwoT zv{pN~NM~G@cPIn@CFuEP7KJXmZ#%JG09!KO_n-`8g)<2+PgS;vK5My>HC%g;vN=iB z0fu@Xpr{ROwRaL`3wRqlVDX=MVK;&bXk4j^y;)C^UzBwq6Z`pA_!luac^@axZtj}y zyAuoN1=rL)yTQz7_!taF8WM5J>f8Err2> z>vfOjrPlWArPdja4>yjdve_)IY>Xw|)t%$Q5jdCb<>W+lC9{1=>|xyzqR72+%Uz&3yeg_m`s^+(LqoCeZ;ZX}Ub~ zN+R#f5Fmc{9~`L{7LKRX{e)UqY&ADe9J{+R0(U522Mu<32murf+;U7@kKhOYNeeQL zK~cBRy!RdB;a%Ucstbk6nCx@fn)~ToUGAgp#W9AVD|c&a8p^$V zX5~_iKx0>jvP}^E*)=9R17ySoAm=VEs|+_=ttJ!#C8Ep#<==sUUW&*VJ2raF<5T+| z216&iruPj4&oy#lW=?@&%P?R#K?MkK*mlTAd9+g(C{f!R$H$;;A|P7?2T)k4Ma?q{ z+#4es2+7I|PnMnKWkiS^kNcjZ&Rg1WAyWg`tdIQ--ER8j9>9<6qf*ws{jRJN8uN;x zRfB!-`v8>56xjw+vXD7P8wU$u2|XR!ky<}|*Ltp7nrn8fYJK^@{Xs}hrH1)*om z-dsmP4*K3@*r^CapJT|`x7sq??k3Nk_9YU0uMm?~?jC@R3D}(*gmvOGLg_*`j3jCw zxp%R$vK510H>_89;{C}*@|s7j5&cKr*FE?Or7j8fcLRM1BNa!ARhH7PpS^8Y{_+{J=4M2@|t}``CKhTzl2p*T&TK9#nQIw5gTF;~(9<8K(Oj+vdYv znz=8N*E8dK(Tgj)4y}%^c3439s?nm{*j_?)$9RE7d|3<@F`v^ZGmx8`VuN+r*JfiR zG#@fSFFonNE2KpmUuQ4v&wa8wHRg2FPl7xcB)H+H(g}&-K}O#51RzSZtK#^suC};e z__!Vz>jR!OI<8Q7*u#jC58B;3L93$oKs@zkg9+M_-Wya%5{+SWX}i57sP#MojiInp zMLb*iNEKvjWSbmC4fW0%6uUtDNKKWAoA#9Qc{UoNllQp8uh!&2mAUGQY%R$WZ=xoY zEL+4F;K-T`N6_M7j^F^|yKVP2yKe#%0U2%s)#FSmJ7g(5*tZMUIgAnWCU=) z5cIvXH7kNe&6&&0D1KR?>gC&M%Q4~aS`Aikn=pLbTl9!j&7OP1d2fM6FN1HTL1Bi0 zF1BB7DyLh=qg*5{j;(7c<5>VW>IUSEU>u}UCTbrHLbibeb!3QvKpd0gf!MvLBF3dW znFyR_EI)849AfYlWz&hG;U}ALK$0tE$xwFq^!rVr&3KD&oi(Zo0X&O<2Hh?*T?6}R zP6OKUF4x7riOCsl<}V?vmoIf*{CUV(X7jq4B_~{Q(>V0$)c#B{tto>$%;57+olH1G zb@Bq9Rh9Z3xtL`wgoj1%VI828Cf)8NNY^#Ab|J|YveIMNhD-eH`{*~FT&s=RuW1LP zjz0p&8iH%yi&c(Fn9*=XkVxx$_T@f7V3tgtwiMB!FvIPIpeY&x%k&$iRG_3SQ zc4oeR@H23&Xm5Z!rQ2b@dQY`f{Egv)aCHzCcu*A*WP4Fz*3%*D1!rYh*oj#k!aq79 z!ve5)R#*ei)Mdb)tbSZ}!5jM5VoSg7ya@AwR>G*Pn7jKW56k)zVMkHm>tNmT zwr%MD#Lj2F7QWm(^mqC#aL&g%WJg{rt4=`tfmM%3siZplz3tH*Zhq|FAok1sVrEAz z>xCZC`xY6jEH!GHgfv$IaFH`9$=korp0V48qj1{fXEJy|11I?lknsVuD+(g06%y8V zp9G9S!*48wcfm#7Y*r-Ekg84aEl@Yl@eAkLucSMBa;tJ`UY7g$p`CB!H+xbR3eI4z zc;HLO!zNg8*>Qt8<-cz)&E-!3N;0hYbirL_Mu^5(x`c~F$ipJCt~I3p#NN2~Qo01B zo!47=pHjAwpV;XpQFqZrNVt4&xiwP0!=^C6{5o(EI}=bvTzba}(5E-g$ozmU`onT8P639@+m&Z~-?lFSJu z#^#udjjT!BJ?>2I_G|Q|4hF3I>WOpN#|>Qf#wD`HD!u~$jTUB^sRSZ^2rRiZ0uh2&Z5AT1Amg&}I)c|kk_w{&1D{f} zKql^%Pb;dpt#3_|E$L#=61!P9VkX-hPiL(K6hhGsWpU0(t$%d!*q>*%pB*H8V+^Ks ztUzQMGWB>r7_5%y!{Uwp(b17U_b%0ojy``DXpiqVbE6jJ^z-b%(}5^Vj=p>y8)Ya< z_~q#FDyeWN`h87x&2WmAPZhBEGK^TU(ku15nX2R1A6qvf;Ej~V6A+^oivZs+-ORojsN!&`0jPa<^hqGWyOaZHZJs`y@t1zF^8bEP+v|Kw z`&#gOLo`1s^AY;*CuhYPXn@ZlU?ED~UX+jMmKyVSsQ67$CO|(oKg64Kc9@PNA42O} zYNGT<@?(sJ1hiSX_=@<`<5?MQrL7fKaP@n*cq@gqnKS|)!WfSX2HjuMwVu%*tYIv3 z{;o6PdavTtCA4H=^_A)`QJ05p-SEn+^RmH7TE(hcYwpFfuS(Kkshy;+uFdyt9D?9p z{PkJf`o>-tMJ+MEwh*Mf`ys#D%K8$;pGoa_^sregTWnMPITfiIpeI3v@Ybs%&!fLG z7L>OlkMAdMNV21YRSBJs!wUKaK;jwhm z1HD1w@ur4B7W3!%!}hxOlq>Kju}X9}8+7}#&!0vJAwLiH7V=kkfxGIT^AH;W#?ELXw4o6^lnx;qh>w*PqKIF2ijWi-#M=IL*=)c8k9@bhBr zbBs)C|L9C)w`)!n@}*jNsS9{eBae(tI;uFvwLyo*nkopWom2K5Y5(W|M(t8D_Vt{k z4ng|s@^$Gz=wj0CYO4F(Q@fd~ZZ|8+h0Ex>S0hi1dpI8{<^8RrVe@E*fmpesM>?#L z&PqRmY-sP+v2S2AZ`O(S__^+oWt~i|E*RZm^7-1!3gplKw<3`tmKT` zLAuCHa#~jrw1NYns2Huzd5#e~1=B6%w|np?tLATQy*~w?dL{>qK zfMGn&&i7lSti$UHS6G$I&?!RGu3}M_m6%^!MQujDV&z7@CY?M_!hKd$nKoY~+U~mC zVQ@|BJO7W)-K*`_tIIpy@Kj_6pmuL88Ql#{Xj>jz86qB9YdX^+@H4b44oiOE+Z3=Z z9?}E7Sg338JV9)CHKss?MM3z&o{{@it@@r@5)OJ9j#^fNtJ_rgmZjuGU-1ESK3}Ry z32-tc(E78h!#n@cO~x(jwYd5%>a^u)y9<+Y@x_*%J@9K@LBh5F>1)b;VWdxV9!e7G z?tFoMh5;$Y&zx;@jv-LPeX4;SK=5)75(di!`c|^Y1o|aJ1s-cM^1l!Puw3cJ=#Rhv zRxx9GXDeT|rfJPLdY5{w57*yhf&Z%|vEE>n2L(U&eoc7M-Tl&Wcw4X+bqYz?@*OJ- z5am-A-^AQ&@`H@=O~iPTA<@^79UYLx%#viVL^?7Vi=d|8sFd}2%Fyw=cs5=w72ycP; zgcg73Uq)+5+c+x~NDml$|E1e~00O)NtE?uruqbj8fqO@qa&eL0M5nQ`zBap!*!uj; zsgSt$Lk$1s?Wq}yuVlBnNyt~_En{89)5iT#97MZ2I>q%s?IM>dKYW8VgA-**eL~Nk z@?%}?=7&e9kvN+t?aPbreY|$W1lkvma4omxxS@~SjtY3fML%xOe|UA%#v7cNPS=A% znwwlbXDsBC&&d+Z_c1uYv*1>T?5_gZpWN$p`O+U>)6tjtd+2VRKZk?iYNS7i!~A{D zHR-ATSmfeo0VlfLR)}?b&h21m^99M19(}&>ufXg`z0<|_K+F0AI&RgUzxFlT$`^C9 zk>(8F*|Kt5q=VVr8J1>;ZQ-x|gy^o&u|mHw4N69;cKhdr(D#PZJZeNq#0rGVAR9ceC|Ut|(+9IdJnI zUDJiPUWvvo`p#l|XG9B??P0M0(S6xTTXW;&e&hiamQr+DVOz94FHX3)9|)G=@_1*l zq`s~WOZ?T(C;s*1d8PdMh4zdI=Klz)p^s$7Xh@$m_h)*dJrGvfeNq#2jDjS;q1X&B zjUMmwY@VbkhZ9pT$57UEXM}+LwA{U?49<~giXY~CkzO+ARRJsEGgFJVk zL|tb`x3E;(Z*L#vt)*v*4QKz?(7bR!t2~un(#i6?d7CQKOigJPFQ%B|^Y?e}=5J!( zjVPv%R}2~(%?bdAPK>)rN$_>XtE081M=1R~wNc@dg|kDo3Te+ z{3Ww%TNkfn8!unN@6Mw2-hbl1d$InJWP#T!`=0>src|I((U!H;NU7o+&+rtgC2P%n z(4zbMUZC8mrrg2D-dl9KE+~^!cgHh6LSD&eEkvCL34{&SZ1+RY2lC>5%Ll(VeFcdw z^{XaXFZ)@nHzvw3gX%9vkUyViIftvetnTKX-ki06bOf+-izK%zVH5MNzS%?=;iL`w zsg;jouX5X3d0e=LaI^fphM7b}?jxB*6xAq@<%Xb;C$Bg&C z^^c>l!-2(ne~&>)fU(iVEJ`<`L?E}A&vc`5`2^cq;=k` zHX$*ls_Wr1$7l1~3xDP~7cjG4uQqY1g~u@W|1mJrm-o9g0$z@~)M&u0>qnJZ%-3|H zn)-Vwz4pnP{R2XR&7JX3Y&pjGYP!M5s^Qqzvjre$=04J~fPVD{V7qoNECR(5+j8P-iTgrAYvDkG8X>~tCt(JQku9-EYTSxVQz(G>> zi`l{ROn_l2Mo>R;y#0@45NC(+gi1huy=+H~kTK}jvTEwLGszo~2h&BLGm4dbnht>D zr?N%j?LExbbx2)ZFwi+oIX_&pspyMQfzYus#8aaXQo z>76^0w|riH8fC?2GM|^dkRJ>B6I}YyYM*2}hVPD9X65Y7TkwtiJ=0ZS+QE^OuZElY z9PzSD7-#m4iFNOG&%B-Ds+hh$96fe2;rfKM=Yi6%j^71liWET{A%y+RzzGgB#g^gw!V_w{YYaY);pH6b-H31+Vn;*jSbhX0BUJ+S&hS z)g!!X^g@kczHf!$Lt=cDqYu`?eEd{E(_T%B^Rj4=!BNYf5Mn%O0zU&lEuH4?kwWgw z>U!>SMC52mPt}Z z0>ge%1cAJqI(mGGHbxLAGv>dqSN*7b`cbp+%Ui%kkLlG11_VlYqLk--u7K$d7X6Pd zbwX2IRP7ybOn~J8i99?M8wOzlNfF}rm%PT>9p@FoA2?fBjUrbwu82N;(roF@{w?g* zB3s@6adZ}bO}1|vM^RBxQ0bfs2$BNQu&D?L2osQwsfctpj7_D>NlQ*jBqyCR8j+H2 z#sEQjBgTMj&wKyge_)?`cU;$bo#%0UkECYKH%b$dZfW%tr9O+AEy(U6086b!+$1;m z(&!0(>4YiGh!AfmaiM%INv`X+KvnvkWQoq+dZ&GZ8F z>C9uNo3^6f-xIBe6jnHTcce({WXmGT1%gy;5#XTWv7~noDPR0mjeISb?k^Dk4WAx; z_0kR7_iQG)Jpr4aS|;*G`~ei_Np`YBPsZveD!e5vo%k-a2(C@dRrLa1Lc58H?yfP8 zNxA6kf_(+v=4#N-JL?$lBx^Uf!Rji5{D`7~sXWLth%IP_u>*1uF6&mO?BQs8uBb8D zEio{-nx9s?vLel7vk|T!Iz~za_ffN!Z){n_1tb4<16A~gsrV?1{PB(>H3zhQ?LaeM zxMeeoL|fCxO|t^JOAfe?3?(_tf6+lh2F*==+R zioP&UHkQ0j@~2=izc%6nE6NuFs3IEuryz6oa7RO8(_yY4hd z&vz7#F8+g86(lI{7l~gU63xA47%A77wv06_)bKjcdP-YKpq4@2NzI&*@YGLB)D#H7 z1PJo~h$*L7G?B9N$jj#3D$%lDgDz=0+E)iX_v`nrhSNI^X_BAobWZvzxVp3}-7gY4 z2HDQQACUvk#3&$wR0KlN`A2|f?nuoJTkZW!y8;$L>F(MJ{hK!$R)iCV9xzFV-P^F4 zM4~7x+=*)?C&m-QfE8lt8(?=k2J+}-XU%Af76na1KMUsrMu(VLr#BQz0R`&rLiC&` z&z(dW)3xaRtMv?pL5jS_7UK(?+7b#oRDWrowzU!2+-4tDPE!@-t+>1fw1;3S;5RyhH^f?SGE65iCPl>lIpC&PDPu;UuHi zXc8>86{NOga!*NOsXF56lY*6VvHa5U6Au?`90f_*)MF(+dsDt`oHOw826oW;v4j_U zDCD`?VmU|z_C_t}`hw1*pY^p32jcEiO~bCYrFEE}@Im>uDsF~5DE7gz{gtT#SFR?m zB~D?DHjoiOueoijqUr|@uSu* z6Go6bN!@SfI%fO%<@hR2OOdbyqI>k1 z1#qfn9ZOw%cEl6V@sQ>jU&Z46_DGXAF8I~>oBP2Q8xq``D4mR$Z>M?to2HYc{zc?S ztyr_s-_^hO_H{nIbvQl`hRHT4@~=gAcqhfbEClsJ+iCPca=!-dAI374n{4hqtIJS% zS#J_;k8);WUMG7vv5B0SOipV4E?q#E0d9GF>=nurYMSb~d--|2x6$p&&hDa2+VxgR z*3#7$Xo09+ph?wkoS;xmSO>}uDkG`M!oeTH?J3Al7muvA7Q0|EE#WDu#rsf zy7y@-Jpd)4X{{%FxfDgbJ{lM)hHj6+ivKks+c588)sY=U;&~XarB$C~UK;m$+|h9A zri<8KG{@exy35gzg;kR#OQ&B|F$cLF=$ah4uTQV$Kprm7lsrty9Tj_;hR(&qIFL@D zC~VE>CO;7me%vLx`1|XX12pxN+;Q6g5r)qV}EwOI=Q_c`0FHq?^kKR zhhmn`&rg>8I>9>mTZ;?R2QK}LDTc7$fezleJf1mSE-!dc$%Ug5sjr`_*iyWXIc9%IhX&hIyZrAeA zRJ&nME^RX!49F;biO~-~-W)DQPG|8wk@PE#u3O+ZLD)Ml4M*fK0R_Byt>e9#KR%51 z3VK{9VS_Yr3#E>aA_8FcRHNOWZ zryc}LX-rM+gV!07?6TA}rEcy`Y_OHO51&@{kyRaOyg!pV(ABi4rqzy?Ysnaqs=9R(XLG7~y-Cgv>R*lN zUTMeo#<>i?+p;1{@|N3Fb**`=qn{nZ)=&79&>Sy1@pfT-%efcr2CIX2Xzwsx?oo?u zWOt5)Qhj0U=X0(FGfM+qhYTPOpB1h{wvDww8vT7#^`iA%6i5g^Fsy=@wb=nzrNQ*q z?*ge|;l!9zU}&)Hy5(qLWZg@GG0jw(-1&0t*W(j?m8|-++NG9yxnT>;7lo^)ql}u= zV32|Mlo0;AD%g@gsLnrg%F_RTQAcVV8U*=xy!*A*QeR0l9&_ESSxde!`0V@5UgH-s zV>-yD+$>t{AxoECAU{W9hPGtv5poS)tE^Okj9Jh0N(RbEplS}xG6Cp;U9HNAD{bhi z;Yhc#ZJdt$-!iWp6tD|MYC$?OvRN;&s_aQj_q1h8K`m~~Xyo^g} z3AG)F3J2~*uU;PJ0Sh92uz^WjQ$BN8x|8`ln9TR>m8 z7UF{g+(13=d{f|)rmf>+BSEdLk>OFx;{2wOr*%e*LZsP=Q`iC0^B>20CxT%le_U>> zUr(k(#nDhugv~p=ru)(;E7KH_wvZ*! z8`pY=@=~jY>{tXw<=ryW^CR38T+CDTLd24PV3JES?0Fw8s9p%k23G^@geA~xsMs&E zmuSUnA(OgIMu5L#{)eJMhT?}W>nCmyoY&Lec1y0@s;_x<$`qoFv6RG9n5=&0 zTODi(16w=(9Yy=gyTljJM83OqC&!dnuqwH52^HDo`ze8K%qgfh?Jl2a+pg!GlwVAp zD*DU|T<%W&d|d%9P2eFgWwDRX9C>9$_I}d@Oh`=tb&WBOsh8WH##^zcY6_ow^f!Bm!5gOQQh%@WOxaPx53FqLt-9Hq zZLTDr(L7`A1B9b^BOv5;LMDDPUpNwe-3fi8<;A}1M;>|a0t?95^M>F_{^&X>QkLoO zcf6*Cg|O14<-ZCe?gt@|a#Y!GvLhy4C~E&N)V`&;rg z|7$#+Mfsp_kgIzY3<83ev?4Es7Ia=nsB84fWW4u6$%;Po7_n=aqvxZ=5i{u2%bYw$ z@<|;H3YxiTbp7LR5milh)7f#Poij#*>fncE1~ZbO?P-oBAz7QV&9@GmGCt4$CadP{ zvut`T9vz;zGcI|^k|x{@F$cP^MvzdJ=Q{|W-dF)O1stO?H~1f2!s$i8EWvMJ3%IoS z2rg;IPJ+!NM+xUu@T=#4Kk1S(1n#lQvenlHKZC77(7+)aTx4NhRw8m%hofCN(^}d4 zh&>M$h8u8TIa?(1HeH$0u9*~m3cItlvoX)QHQRpGYZWzM-d5r)mzJt3v@DCV^)i)Eo> z?1AciPxf<=B}`j}`s{I zOz3;O0y_7atz0N)AfpkNgk7Rc73ZQPjX(C{yW>)Goao2_`|N-#JZuE|vY&@wJz zp9ynz7cl`M=;L^>J!rD9)+e{4kh@2JU5)TLEgg8t+g1;wGNV|Km+4%SZ6g#hVmH(J ziuy~e)q?%NnCsa~#1T@!L_atQR-Bgai2Q-1u#R;XBk?@ZfEx@p%f0wlV=`L2XLiiE z*`#kj`s#(kNG?VZwSpe!fnqK#i=1Ox^3UL$a?yr?R`5=d_Rb`P01+5%0nW}B?~qT< zgacZoX0~XI41{{K#%R;+4CWp^_L;ZXo3>6hgB?x@=O*5Yd3^O)4==lORCdevL6ttU zFA3Jajg>oiKHJJDHI%acO;k^)hp?=8UR9f-&RK`gGTpx13=Whz%v*zxQ z!m+6m1oj>v7r2jXS3*c4hFWDB$UxWk!e8P*6Z_Y&zK|u|=IqI|68+~dY9bvOYGhXZ zOxZ?MWeZNeQ>HZiUko|eI+iGfxna}YKAru)f+I6PU>Ozjm#lH7MfQUN2R0zbGgD_W z-$BCdukn?$`Xs86tdFTmkgM%zimHZ^cK5$C$QX9*b$nmRXweQ~F9+>=nllWDH)vPd z32CIUPtT6Bg?vz~S~o12Ii@vlZ7xLKZy~PV7FJX}y=m33nS8%92lhefoh-)__-Fsv z1vON*FLNxi&Y!|!)I+4)q1MBtJXfIS%)<2qmid$MePMZyiCzyr6HkV}ij0RkyKkU+kQy~O47UflOCK2x-_Nm-pN;{M@T zmeM?@MH3o1$)EoOfSa6B?|47np2V!4p1N;_@DK!OSLq4$E9hu@@|CmaWN#>0nwTh- z;5K=@I!pHNk}U`Yt7Ex+hO{nswRKU-`8_R02BZTnY!?@>xB zkqjQZr8m2Si2+u=Y$nMSIfF>phl6D4>G^M^xfTj2v!AV6F=PSKJbCAgFCY=}9!Ge= z%xq=js387>?7wUm26pkzt6Ca(i6GM{sp|afG$b88IDL5r#2NC9_Iu1^D_EYVZaFhx ze;qT=@{lyB*$_7z-E0707`JcEm>M9ge`-;?`|wxeFP>f&t(;1%{+yn>$pZ|_?{?eD zKs%GPA#oyxfr6wKBVX}sLBeshYbl;905r+vlLYfJ(-&^bSdocV<7ED~R-TnZN81Ar z#L{M=%!1zzLy*Iiku6<@u))0b&|~}N*qKuxcJ2_=Efor?#_Y5cI_8YWZO4x0xXPpd zz>NwN71-S#pP|NGg}=aZdEWO_S*NiSFmv+aY-R=cOgk&ueI7fl&1q82Xr0 zVZNkgE5Y&wHT2Q^zWX`aIF=v#3Ugx?&PZ)^b(6zfo_|nB81Bjxa*T73uF=5-y`(Rx z-?Q!InarQnM-k=sXdyol2d#DVSJJyD+BPJA0GjW83hEts@Qej6NiCF%2ayt~Xz(3m zhs289jDKFhddIO@!~w_`*Dv7h{c&Y&lb2t^J~m&!T%{HWmUCF^uU6H+BO%a%uVj*{FLi;inru<3zt-GRT|tA}C$ z2??KrL6XJtDWHTU_4W*C4~z@0;r_mrtG0d|zFrSR`pN~6hBRm+sk7P_jwg4*{9iS{ z{j^J$W>Wa+$YF>Svp4hmR@q5@a7S4X3~N7jVpm=L=g?#5rQ?3L`J6GpS+}tyfgQ=^ zXY!6fv&MKC#sfcxoxmKb$?tLjF-X}qw`Y$-t30cY1kSlhcs)YBhziudeCskgbQkZ< zy4e#Sd|wT%jZDTi(e$!7vskK2wT$OZ7Z7U0LWJ^#?xPruK)1SWoZ~aW+qXJ@xwo8a zQ$0l&2D2rP!%^U*Se$nPaXm6Vi~ZK+=iL%QcePvxF5!P2f}WcsRQa))4|zJecu$_r zr_O$-b!PZAefZod5!d`&FZ5SZUXDl5dM-mD*us}BqcPFgvAG_Q8iEo=EXn$yD6jc@ z805v&Qo*Q^*}3;WY@}_TV0nawpsDhqNx->xZM<{8p34bklPabmf)M5aS~=g=wu~G9 zs4C<^gIqqRPiVf4pOlfkqj>oebfAm5Ffb{Xv#yE1#*;Z!#%(s`_8(O?d@_{$46b?l zvkUP;**)T|`S~VGnVm%9hiE1R&_Z;RU&XVL7ilt+3)s$yO#PM;$(Lo#SerR2NiLU6 zB(h5}%u~RGZ&-y0RaKJ7kWc*iO^w9uhtD~7SXkD6KWY;Y&7%If?#k~}e6aDhEcMJE zx36RuS;!sZx8}cacxcJLbH*Kj>I_ool%n56UTrZbh0BvW3%6zq*Fz~Gfqn^&+#?6J z^g8Lor**6G`|s|_gnho~I^K%m{xRZkY8e9XJ@ih?pVS5=Z`O+Ga9jI+%0zz!dIq@! zTiVr>C0*=HH7TC#3dla~yR)y`g}AqSb+~>@^yPHb(z>1~T^pB*m1j+CUWQ0ExOjE; z&%Ci-J~Z6Z4$5#*$vOJYZ74{ zJMY-)fxYD2*ubCJCuR|~4MxrIJD!a^68v7xNk!EIcnLoMA(($QEc1<>^N^?r^UIs) zJ%X*86PY{RL4Yj$NE_k+nsHbl*W=$c%gmD_+x?C&;U&uFucyg>Y80f?HjhBOVB3Gt zmW`KS&qgjGzKe|KW@s381=q62SW^mwyRkF9?VuWTge2CLd0O;zbj50-e3tnZS;y?9 zh4cHRK}Ua=E>ZnQJfD}8&i#q#{8Fxy?O=@rps*umRv|9DwDK6NXb`ya09v^Qt6bkf zExXT%y%=}hX^}171d@$~$AR`s1KDQ)W=!BayH#alzPrWrnCmR@;{M;6+ol+HANz>! zC8K_6c(>vH{RKa8>`l#2VE!S%nDP!bxYi8#5t^6R0YTz2Dv~BtO~nF|H?Y{)QMQBb4DxrHftQ9#ry9C~wT;Tb7>%qucG;f4Li7kB+!^y;QHw7C&HZ+eu@kHXhEw<`hT*L|wA!@_K||oO6)CK%P0L}&^(b-C!PMFPAvJpeMDhG9+2rxTnbQaEFb!p zZKGNWFOwnt-M{+T;#Rl*ivyN0r+WYuW@=^AkvpZTDb~ix@C<$OFc7-keWpcmqK47b zobOKI&vdx$kugX{J8xFyGSAPN#f5G>Z_0H~>BKjx^KhNZ_aM`KbaKY?x%_BiGS!M$6N+XvqQY?!AxmV9wxU{1ZIEqTIA zM(PK-hUl+JztshHuFb1Nd}ddP@@%;D3&fV9<2m4YBWY`@FNYMuN~rmkeLNAE@%?9f z2tC-$;5{?_+`||)^;=9AuTRUrejmt79F|jH?^vmGod4RUR%~VB@~Not{rwLQWd!S`R5mTAOFY`E zL1XNBA96$(t-oMzP+VP?m>Kmj${IrbEKJ$14>L`IKbHOG!bZql9aZr$8yR*=e^@_< zIa=6m>5mf<{)Pegx&6$u&=ocS8?grrZ$e+DZfTBLm>s4I=|vD1KIELFRS&eW@fiw6 zLn3OztXNw2kRw47t;ge}e`7C;=T2$qAVvedsPSzTZ#g{2< zD*0b@FKqsPw4$mHyBIO}(&K@Fi|5!^&fPkfLbL)$ECnvCPD zOO@rc#{0U-;(n#Jj_S(wi75JT&fT6jd`=bK!8xC-pX9(IUz|~9m?3F9ZFAy? zz1%L+Yez+P=7fuS7U}$=0yXnTLkAf1A(||(9zg+&vt6g%@daRsNjHFg*mMI5tmKAE zjO?G`{j9Og1EStPZvL5KmmW8(z3ON)TZgg3O;!GV)5w3<5Up$O?VX5UV zKI9{nFNF=`3l>B>_szYqiItSO?sPpo(}N9nWG5%?r0##&1~2K$e^jF-5uW!=3!|4Iolm zMs1}QI{N>PP?4Zo_cp1xO3fSwGU~O^cxlRyrnEjZ!L(01AQipKsGaIFJ#qmV5U4D>cT+7^ zjERt_-Tum+VY#LY8XLUQ6>Kj(O6d5DMq=U&<9u|V29pEY4XaeO@IJGVy|9>5;m)5B zt1(w!$c@b(mVCNq&FqtYmrO4w>WO)BpZ9{=nW&XI4$rjLWMxeDBeyCsRVH3;zi1yI zZ!t5%D;N}ZDRL579bWilR8<4OVNcd@?yC0O{cV}P`&34Ur0el_gpZ(L=w?Xx;u^4Q`qFfAugQ*gBN6j(yGy>cx`a%zHxp6ngR(hHJR zTnSK;3sEbs#oLi1wnCLHUp~{W)am!z{Wnz^y0KpjK0SW*QdgLG@dcFkK)+6C*}3EX ze!bY~g8OMu))8JSRn|{W?${~VIDEI9cxyq9@ysvwQGGLqvSjwdV2j;X4VI0MSDA=C zL3Et)T^9#?Sl6k$m_t~p%zBC$(m#(1`{%gXgpQ=~2e_Se=LnDI*Hrze3(nR&b-~|! zEFQ3WN~fH4)rJ}rb8{KYj^+aeT_BGM$|=l%$X(_JOz7x zX|JwMp|xbPMQMG4D^y=VKsOaGti`+oGV1t`?hSI98x#(kO?dS@K ziqvu%Gh&%KnvuG1@k79~CBW&?qvM=W;u=E4Gw95dJ6 zl={UdpEX{&p!H6Uv$3Cm6UTdj?~wgLUBV?O0xYT++*+=30tonWa*D*obZTL~jzu_U z**Su23{~ z{$KM6R%*-kPocifrpggAj|z=|i{Xd)X`?h{z%k0V<|CUrS=*iNoUw{sC>;|!#rR9-CtD0(Zeq;uD10bMi?&%9z0tb!Jd&z`241k(@ZP-U^7_j5MTo1=C*2ph<57+C~o%p?4CH6AR zHam1177Z<=QP_h5loM0rSmE7YX=7kN(n}|08YRoj@?zkgH9{j$GA^2$Vr& zZhx?YRj=^O{LcFaA(%?r`I1ItGB-XZ`|A8;b!{sw-RkIW3U#&hAa?}$dJswqBtSaR z9RFa<4>8fw8x|9P!vIoMh&_+x^uMVq;?KbVl!H^%N;mc1ye`d*#`yWMfBzZ-THfu z9P%z}PKrKO8bqXrId9y#}EarBsWd4mw7tKzqa<5z{QW!X!RG5-d=5H`P$fv>)qiwV;c2rFJ7@$( zbX9xly43AM$iFS~PTQ4g_DOJ2sT6s=jku*Ov72>UZ_J{PyLA7G-Rt46YfX5O`~ISt-rwtt$zW}{^UN!SJmXR5nnn((~#B) zxJSkttU(mYya6%2dd$?@J_+%;UFu1gicWr+}!Z$pbYG0~^_ z%L92ZPrXu2?V%}sG|x1=wXhU*<@0jogo)V06x_2zn<5iP48h!$x%jQeUzGWr=?2Yx z_hE}a5emo$K9h}}jNz<^5?#OQPUT`g{s@2m=E+Yw+P@wKLousfaDHeRVOr#1a7M6B zGtiWAV&DO>XU*GZqqOdCzCR*lAe$b~-@K9?1Y&{PG%DBSuZhk${J1_@*OhZalz4~X z#|d(A%ly^;)h{tv%R!+*p|L!FJ0b*nK>0Mb?B5Lu2b#_`{|+UB z=$Aokwf(i2u!qG5e{X#+CKU?|r-ETe+GoSo*-o7 z32>jhNi9Fct)K9#6L}0KTdaLui7cctBIhTO{Gks^dUq~3vc4rm-^zMg#EWiO(3Qq~ z!93P((RY^8arWO@K)Xhu1;OP>?OsRUNhki4*e2nRs`kV;e-vVt+!@IxT#*U*Yz66l zh2I5%>1UyiHjUu-z8Kpp$t%_6&a}0Uvy7T&u*&5%tHYA))jj6dBt`rR6O1D>q##OhVp8+_jg-x%Z$nHH(ipI|dLT_6?%k{?i z{8pmI<_?cnbLwp^Q0JJ`Fd^n-_GHL5+r&qvVOB*6m;p__4nW?+&r3~uJKl$Ceys&W z36ywPB#3_7$5l@=-PX5!%m3CZobJuQ0^7c6rD^5EzFtG;(YCh%yyd}g^)<9PWbCx@ z@4GDRFZNy}Rt_O>0t|EXX0J;s76&L2VC{Jpms@OCE+${Dxh@$(O7*5sVHxCyPhOuC zK~*asVuY2JziUy^*Rl#uC2%M3VM_tLXcEk1^{!?%yde*Dj$>R>mZAqxpwitND$NIVwS4suKW7e;EBh3}`ZgAhGUujF zPwq%$_Tt#e?vB7E3NfKA_c)va9b+>a4yLd1-aG{2*+x5GA6Tu4a{6vN_-{@ns#4yG ziT=XXbV1ysC@fTnEC%p`=`pr7Iem*R62G&YP$4Dsch%UB%U_Lw{?FCZIJ8Kc-Ajls zTZp@G^HeEVL1BoPUW;6``8^pkXB=`9RR(`mr(6{P#cL+2s+awmGam7Fzan@o(Sv96 z8O+;CaZxa?L{;9J!?4J=N-d6=5%RXu91vzm;v7!`gWP;m(N)l>PsO?9trbj^k=2Bp z*fM(Na(B6_t?@P1gn07s0-f+=>0R8`F)0Hsn(Hd@`~6Tp*;Zo}^|fs;=GbYCQ@kR4vz8M$g9*ad zm_-MwTP#W1eMjy^rK~n;P`~kS+CR-FXC13QCrCU`$%?Q@Qp`q6x=^tXD_0IxRP7$CoT;qwnRQ zP8xIno@#$LKuVhcXfL3hJ^_OJ$I+)iFo$*Z!#B@n#@*91*S>sW+R$GF8?){2ci3|c zASz?s;yLz{p!-@AW8JGWPg~2wY$mIAN}&5Nsr2*$a%smRYoO|#GYDDz%-u-zVh=`{ zg%wU+w&aNjt{W!-0iMKZRi4uvZLORTyRnJt(3@$?mAYH$J8nA84pRLz?(JD%L1;Ib zl+z$Wx_`PJQ8m)UoXlb!)HrzE=>NP9i4SU!S)c{+PUv6Lw9)oZu>unhxnVC$Y% zdNBi{XV*$HlK>(1D2o)O<-3O9o&6Ho9`2(thi`S8x5{=YNs2_?^)DDQPCvIsac z&l$`0hOFX$BO0!UcL8km!A*lJV5; zSUX3*($7J*xW&k~yAfr<|IuxS*xD~ObJ6ZORaOK4xQcAwsiS4ir#d(HAqVlyPYZ26 z2%q#9j{5#x%b~&%p&hb5^7n?Bi)tlvAlQsnc6Pi(D=cudIX}LP{rU0yFS53fv0$L} z2RVY-7ab!%Q*h@M!<$8WvH)C0i)_2Z9Nz@$W{yDLQiZUW=HdQ5V9YenPFCVhtWr*C zH!=EHrhG%}=%S{aePkSfi-ZeGf;?_He?$-P0 zp4Ll=nrLHkNNJMb$Zal_8=ytc(PwqPREjZ=N4o$EWaSP`>u%5Az?PSu&WT0Z60OLo z`Cvd14k&PL0y%YN3yui3%BG}_R@wUCuyIu(jH34Q!WVBCT&`$7J_+!g=dT^px_PAz ziysyPCB69}ZB)B5s%xuDs-T8}=@An*%lG0bYWL8~Dle`VMf>F4X?gPVLL^E_E8k1y zrm5+5{TBD?T}=l0?!Wsr)+-Zg21^;oy|CFWk~#s<_R%5TK;a&6AF|Tjs2UV&pPQt+ z&sXUmX&#nhs3Wg~-aes#qX$Wy(Cl*M+9|-*JT_ANabPsSJXrZ>3k7}j&xImR79;xO zZ&}l3fJUnZYW5y8XTZDNd4+f|hfPV}y=M|aH6+9M>N`U3KWSV*_RA|?YH|7!WbBiQ zDsmSC#~r1D4G{f2e12f1dbR<3qD!H zhJPkKYj7S%Mh}S!CfN?10JeXxtF7K$JX6*2Mg<4=PlOb%)$ZG)z7Q68pN7=kEJRW+ z{ztbjML3k8P2he&JD{_M>&67rUeI}K$5T?qh?ZTc2J_63gj`G6`?Aip=ULk>`F_0? zq!YsQrjAEqVu-;3*+m~BT(MFTVl;Pp0Eia_$zx}p$o9KOtCeKz*9ADB)MhO3*h&RT z6$b|*%a}wGKLg>Jg*=Vj;y}6~a6G(VZ|3Nv0-L^Tm;}h>p%>e3f1cy zz|FSg)MqJ*FCHj6d5HC$ql^#~y7#7;m(#X4mbJ+1z;I@Z_%K6b<$jtm;rid+bZ12N zbI-s?XQqbuQzRojOntj#B-4ksw{;+0^aWq}=cVT+wQzz@Yr7YCF}ca!#8N|8C_n-9 z351^`^3NH5R6#R4o#jQWX$bo#2&_0G#}wLW8%`TVQO5U@Q_${PJ|4^aLDLp)<-)^y zM=;Er;~gk)5kxYQh_QjiAg}w1q0Ygzsy;)D$VE>Vt|a31jVo@c-a>BV;i>*Ug;DK> z7=DL;{r%nmlxVx8A}9m^`4ORUFwR3HC(aR9?M`7^!TZ*Jt4XRY3PY$l`aQa0EBZp) zCt>M1>*u*hC6LUK+!FNKzwRDg{n$bZ7GNn&ym0gDvKzx5XkqgAPEK-SmoT%sq&%Qo z>$|}%+=-cE&_~8Y&Q-iIYvCZOcT6$L?WVZ&9wXm13WfGux>EZkc{?sLV>Qf^RaCjb z)PBNJizafkpExzJSgwjyEZW}GN=5uHuLra+ehRTB__yI^W0&~W<5h1~IACvq`J6_| zZaK-1fDW~JKddfvKr?MU&Izpb1m*u&`#FElS)DsYv_CNf4I{Lc5_eGv-FAxG8TEAq zbGjuPn@tFJu2aGhx?p*3}zN`aUR5stir_>6LNi6M7^_ z2mig2vF+o8pV-*q$E~_vd&j64Qxs#B5~S?{sI@Y{+0;}p1Tlam81S9P;i=dJkEyBx z8)1Ux&s%ciSB3~LmUQ_wFGP!}@K*O%nj=J|UFY&GA)4MuUgXjj zNKFxig?9QM-OAoJ{W1^wMu4)$0Y#m#XKbq)d!z5pW2NjzZ6=)QA!eqrVS`E~!D?tX z)L1oz8Brr*D>BDg2fMWpbPSt}*xT+qGl$btt7|S1gw~QSwzk;j@FCkWD9!>^+jb!z z+E{wCK7E)Xzh9cF-@%&$14r1@JbX=9s_XCAnniCx>cBoT7or=<0~A$IR%aXs_BEf4 zgk=YJNF}?Qu z>3_}jHupY}^^Rcj;lZ2@8XuDJ=aln}lOd|AThc+TpmuDyX&)I4NcRBrn=$1Uwc&Lm z*(HYq)d9OD5MJJ*K}dpG_kHJm1KnQB%nVmeaunWs8PX}j>xZwl_<~$`bA&qZg)P@Z z_asyb8<*DL5D`q-tDNjK+U$RH(B{e|7zg&vUL3j#)1|vN%S^kn6GGxJpHY2G74nr}C)(rN?P)(U64Rk^mHq3rf4{Pl(-qs@7ipA%3v= zCKCqV+|lNx)a!}PP@}axa7@m{H2lSi6oM4(>SMgM z`Z9AzvtOn=Dr!eYBByC&g* z-%nXD4K0BUJ-dU(9|YJx9t$%SuSNLd_GG%=Y>kyH=n1Bigtu1!^D-kTJL$y~?Kb&0 zC<4vpE>K%Ff)JQdm2a}C^oY|bAFz9Bk~C15m*jCK@khn_jqL$^5h78ZCU@0yJ%3WA zcD1Q?a;_p9rNtQgNoLeSJ7jp6#*CW>q_Ll1)dB(aJr+fsAsqOHq7SWNW)Hs|v=O9c z4l%b{5-M37@I$WluNe81)oX|JsuQA0G1t?F;#t=vgRF&`QAwMldrey*-KyfE+P}fu zm=aoz>0UMXF}V_-9n_-&#QxlUEs@M|nPk}WO1i;CSvl*0-7C$hRjCiZvuCGeo7k{sx0U~zHrU+cPYQs*=^flomsP(hq-|&yau^Z z7=wa}zLlvKwRaY{M}PhjuXnw_*w7lky?SQ3M4+{RZmHYZ@Q~0qT1N zy(f^Svtwjn`@(#{r~5e_*V%O$!|uGRd{!rumutNV6}&m+rl|VX$SXPDq4e&{*Id@k zC)vUs?lVQpkv)tLCn&OovvV6G)0XPK#W-BIvr{4$m+3&FiLp`JI>cgyB$>39^bbq# zXe$B)@g0FFz&_&yux~BM3upY0ZFM5LTUl=^x`_C$+P83a#`;pud2Yo?XWf)bvUjGp zZS=u=k3t|BuiI8u~Q4)-ZJtx>MR@-N^cc39S*5cZF8gv9p z%Uv1D^0sWKu;}-t;8q7g9B?+G*7ja0W(UxUT-cs;t=+rgEWhEu3_Uk3o!DGOP@%i8EDe>nLc-6V?Ay8LgslFQXT zvP+Y&LG!dv_+N!ugX{s#a4gp~Ei#is)Oy0j@icKbGt)@F?OhbwbTpQw#&&I9#z;l* zI+qE*+;i0py_caiX*P>CjwDL@;Xwf0kI$%N42n-f3eP?}2E`&TK=6`iJ>acD0b9Ow zi=%6ZuRjon>Q~o(XYvN!*zB-t!e8qOXr>!(>jA&~(4@Q3mDo@BB-HNJTTl5e_yw1z zFPY>KhBv3nUy;&Y0+7W_SssIW0*t~c(AjtP7>L4I2BO^}KYo;3%W;$cm3Z&*r{^mJ z(Z58J9<1C`(kiml-mIt90I_cQ8IpnU>}yZf3Z*u;25;mNKonO0Cz)+F;F|yF!hO%4 zkZ(LRP>j#DcW8X~cw(uqU-OECuAB9*z(~E9&`cT+Wr`xpo$XRwtc5Ft^itASkqk5l zC5ReMQ+6^{_>b=TfP(C85DS<$`nezN-UsW-(v4L++XfA;>zqs1-v1gZU0D`+S!k4z zS#5!lI)Ih{9;D&C*bZAl%q{=e5#R?3uz;)sx_}U*NF^>W57Vw%1FuHcc>ctW`|IJ@ z7J+M)97az&tt^M#B9BcySJUr;g3mi>)1=g|#2Swoj)s_Ot)W*>U52?^xeQ^(T@*2V zn!7MH5F@_DDUMJTO4~UGevgW^7VfnW&w+I@pKB^sDE&P8SX}r0?zEshT{2yNokq7i z*flVS2DX9jA1dWhL(QJscQ%D!CIbDnwivdXiE>~$;5jPMSm0Vvro|0IU1xCxi;$z5 zgqm9giTQcyY|o>(JgUw`&`;fl-@7GKlw%T?Qx4m=AA9#hSM*zI9dgaFB_ z`f~@qd+Oumy{@-cQKO&3+QkDmppU1mynn5$8j3uT9xgvWbB>Xgj4=>1L&P!{C8`b@h06;L5nwG!c96 zib`E4g*<~l-T7O20)d97qLJPzv;`0 ze4SM`RbAh@4oGMSdCCn3E8kw;mZ@Lr8$%BP6dO3+c6k9HtK6=}ZUj5oHZ=Xvps`su zAgylwdY5T!HmDaVai(FYerQt$yh&dW?;w<5{_V`aaxM4yk!<*)k$1R&HEL!x$9qF@ zP;65RyW2rq9a%B0lGcF7(hw;r=1PWb^o!`HbGw#6g99bYyYN9P2SBkkv)Kx(=!$Su zuCd~be(wBY4v`X)>!H;1kMde!{M&+M-YMO?2{iIQ2N}+5P@2e>X*?wnUkVLP4@roa zY(UfyGgHl*__I)g>pm`X4Nhss?(j8L3NYJq$q{GH4Jj#stLq7U|#6B{k{;|q+0 zy0*`}_mJar>JjHZkH_vEPd-DU+f;t1iFUhH1v(rD zqt$QaJQw=#t4~Dk-lBQ5nm0d{8`|%|Itzsv+;0_46Ak9yP#b_NZ?aJ(K0+n zSE}al(|xyg%YUbCr~-@^DMf4KPf{xGJ%A+yYVN?dpA z5!^F?=XH{H(u)}PL;{A1PcRskK7`JD@hUg0rBqp+XJ+Dcq0)jCDe0&Cm-r3W&DJGu zvJ}yhR1B7u9iNQyD0Ygp9+fHJO_rH^68M@w_Lop4zh#(6L1}Uut95S;xmqcUvx~tK zV6XwBH>}Ch49{~s7uJ6{m$<*VqZk_QBQ$ZCPAjwL@;km(uj^_|TUA?+VZoG|+xQ=0 zr}$!#(K!y}TelfOO#WWNGCh!-fCpj-`)G&Q;GbxRLNjho2$(V@n6FPr+9>mQdmO35 zGt_9LxgR+f>nV-q{=S5sSOqMp(<215vGWZ2Opy|ae`+p$p|(4@uesNct!1*LNu!KS&k1{HGpnfLT5IzJ>&Tc>`t=bP0g?D;IeUAcI- zhj7O6bb#+RVPB?fc0f6u6qCL+A%C~7&?7tKR0kSSDF?FY3GQC?IiA`1&)|mgTW#vO z2rcdBsP*C9GEo_aT9@=VGV1u;;0%Np#z43O` zEu9vz!O;+L7Rtkf9{FXQ&E2iHMO~79=jOGkBxvSntqu!P<>Q6mHXqD!7g{ zg#KFEWMWcfyl{wgByWbaoIbHr6*Q*KAA9Od=wn zp#7})BG1|*@Vm*J851`z5AtDaJW-Q>Lf+Q}ZJaz2RFK=KebDH(=}c|}iHBzE^NxHJ zBN2oGlrW4pXB=wWHTZHoH0YiJpti{CQBPVZ7}AV~jQ(uQYScap52;XqL@lxTG=k{+ zFcH_jO-BTIG>Htpqy2kK8ddT)9Byl$yWi*eh_kRa^{cOZ+2@Y~gJsK!Q~Omljp;sO zpZSU&8vRVbva+=FtU{vvZ0>h4uQw;ewg_G|E|I8oG)2;Yp zOnW7Usq<0Vwxk$4T;I4)+uQR>Y}mc4CwB}TMeDkXCh$gm=+vVSVEqc+h=y5L{L92e7Do;7Xy#eGCnA%^mKan9!?!A&11fPX#j$T z)R1p8zk=vbAVITo-;}T9RyY!ZYcm~%aKVXc^Xlh2e!TY7v1z=#;VY%<+|iO*>w`Hv zeJQ$oshXq=pE=~*x!KfS71#cLwbDML{-mUOVS*L{(aF*e!+S2-s02HvKlVKNpo z9p~a^h~2t0Y(|~WD);$`__M@m*@oPdUE7#eds_58Ar-Lh^`BuA(_DlCgAf9wvLIJD^I3v z359FMFGbs&)ot$eD*ZlZ^R1VBr9yxAk2H>!Ow;`b-i|pZvQc-ySevAOFVd#7|3{&P zs%-jfWHPfdhEcMDG)GIPxh!v1`>4z8zIqi1EPMe@RnAWg1Z(WiXS0HAFAL@t+1tl@ z`VScE;{CICz@jl44(Mv3s5r+Q0|$zRlm%c!vAV(*_wZI!ODWX{+k4i#fPs74ZvlMi zJHJa9s_{IlIImAVs?;Xb{_Mv4EpxOZV-`iLaL_%q(x)H%Plur1)T6$ykOx;i9J`XGkfj#ZXp8>9@}<`r(%&zAqoQ@OoIbos^-64=aC*o$l-=o z(R+t~YHEQvgsH!5Z(b6FyMK%xK_=%klk-5I|D*8zo0nzaLbuKd5RCTuF15(rOSQ(K z0)U#`1xRK2viKiGM@cIjS;GvR$-w@jBEm*dWAT%9!0@n*-%AR)oeh4D2VAPxs_~nvI$%qC^3C!~t*s@ND)vT>+1gL+h9gZ{!B>MB z9Tl!FU$+3=Z*hH?hl;t>o}C%DC@x+IAc5^;pX#-1P1uyFej(LX4TYiUfb%j6Nd<&B z1u~9%OWv9V*kl@KrJ*I;LoUjUXK#F)Tqz}azsTSIa+9sfF2S^yUe@71iv70yQk#5x z0_dSy*0v%!{QTn&KLU5V$C*hrPowyxbR5;>qWV}I93p9*a>8m+xMV$88Kv#EKEC-5 z@39J`UT12IBR~bs3sr&drfL$^%|8eTmrG3W48LJ`=$|n$!~j>)L=gCx((GARPKdgU z#(!~C&84$j$BVP7Z0o(PZugRJu=TXeFVycqwYn+_6@(UJ2(YHQZ6_2l@Sy$=Gd@yPZ>Fdxo#J-_V&jgiM?_nI5xLJ9{GfAAE}dnKJ+D+gEa zym609@YB8ma@0GNt1?cq8SeKO-?FwujA|taW5>+YWG{s4dD8Een??3&PB&Yxbd7kW-kAWEG$3CE7pMV9N- zG)5KS3m1*NXVp08j{hi_+(fWTEd|_4_oh1w;l0~5-CPHM>1* zR%2XWgy-!@l|0-sy3U)?jArK(>&;M-UQtkl%l2seX(aHk(=`e$<3*>pMUx{OuNT3l z{En2|LXp=IkATf}+Z6eB^btJ-TKlM`e8tk~mGqCErMps^DgsY5Raj5U)Pw1YL+|$z z`Wo?>7lK_~tI~rKCD#(NO5$dm@s-~v1C`)qE3CC(D$vzD8yvzrUoTQcb{~3L9`7PWY=iEfE>p$Crt` zE(r0WB{*~$90^3rd~0fxW#ob}&d&x#b!sjn=IYln=87Yzb!B!NxZVfkx>f7#q3rXc z{-8=uBNr|ewVeR1kqd0i55$O~o!&}mgvWPq#5o7v{(hMBx{-^iMi=ob5IB?^j!(+| z_ToQAGZ%NfU8*W34%u!Y*nK*Ea8-#s)F69pSHs5B+O;S?zg3A$7o^B1F#Q$?`vV^5 zA2+JQ&ObT6_qy*<%X_Br@4wDn6Z)c8xSF2-ok4uq44C|P&{wDX!`&NK-_)GO+?;V} zv`=#K179OWNg}HRahu&brU;#to3FLmvag;ch8DcaCpq#}JPsN*GI{V*w-!JRWdt+` zNb8ENXP>?-5e9 zwaxnPg##N09hwZ(FXqKRipKPGF;at~MHhckVqQp&pWrOC6V^=pf_r||XZ#P!cHw=h zBD&Mpl1WdL;|L=Q;6ujR%~*}f*uHwS&`t4{^|-j!NwEYSy9Ys}X->;$YAj<%UIoX+ z=td9#lFgMLc1=$W$BX;tQ~dm!FZTf1lHh>PVFa3mEa!M`#en15_C8i;NVckGGZmA_mI^VKC6kJQO_%pMrr8 zr`Dn&&&QSJFsVVy=$XxSdy7faSP7zr_oq%;H_qFCTX@R1Py>_Yxd!yXD4zTI`=X>m zR3^lrsLF#4JzMFNF&NkUtATK?h^8en*Mo=-c0^`t@KUsP6(yZ}63ZIXHtCe8!LVb`?-|AkW#1adja8E?ptE~dqPce+)&!oNyN`jcY z)vw{ju;*)MW=J#1rhR1|Oc@=V`-aO&qqaYfe6B`@Bk#T24~5r!ci=nFQB*DMCm^6r z`t@j}(IL8c2Vp12le{S(vnZ#~%nXaOgcPSPu|b>x&+<32Ksny;QV#E`Fd3rT~Agw5R7WF$MW;!l8>b!<_sTv0+tH@5%LD2a0+8AYdqzx5063(xJ99TTIZ z!Q$Qy0p?;~@}bUUK>i5qLvDfNtXvS{fwD7>+AK(QgsociiExQjdq*-EV>*uV5R z;A1jFHjjT}t9>sop=!e)t>WYFa~Y#Q;%zDTViZ~FUCiSzrereM=j_AO&Bro zF@V`>(1x_?ujjLImc?ESim^rZ7azX{E~KB3O}?RtL$+iH00X$+c1$dwQjua{M6d9($oiBY<~4KY5WQtrQ2$@H3^5k|*AsF6 znbja3uq=WHZ-8T;20~3E9J8IMwL<*GO!qf^Qyx8ts7KUI+q(;L4e^QLnuNJeU9)(~ zV$bU?o~1_SoE_Q!gJ2DSlnqRNCu1Z5_*$~!2X*wtpp2?)ot@D!aDbUSB)EUOjp2#y zW{p~aud3Q`+jy|U>|tN|(a(M8pSOjB5fhTSC||G(Dck2>lR@b=nu~Zpf2q1G{CQMC zo6Lvt*`3KX;T5T5AP_s+ozt_HBJ#7}XR@`a4WqEr?m`@$O zzr&pl2ly{a5IR`sSClAR1GAsT-8mVCoz$pkY^uQSj~99syi4u-aj(vO3_!(r7Sxrc zW$RWu$vQROH=MY8X337y7+z%)HON&L_Z%a_U>$^rc1Vre-fA8~Y4U#~FiGAefjO{E zHQupc{t-;9W;zs-|u_vQ9PB7YuVbpRlXytzJfQ-iZeKkb5L z=Q3mc@Z$5O&f_GZO(8kT zjb$S?_wOb8+cTxzx|V4x?o8`w8JI?qvWPY*5Ar{6Q%1JSGIUO)%@1}f5OfjdmPdR# z;w9YKz|X3bVFEO14>sD7J_9eEC)&659G8eAOAn|l(?%@|CXCQOn za3EJi7mP;P+ImG?;MKL2J4v4j7hY{kGA`skI*-_tokB$)?7@QGGL$~7W#xycT3*c0 zKv8llux~f+u(^Z=wj$YFo35;8{XD2DcQ@9Z;3W2!qzF%<3m|Foto z;mkGw7Ny-j1>+99F=s)Fe}X%UmDpWimO}a_o)6URPa6g|U1lk?vF%#KFq(ZO)o>fR z8E*nQnbW2I9jN%gwxX9&-1a7Eir}&qfV+Hzk2wQ^YnqsWB0i9c_+(7k52I;AThR7* zuYRmA=9D`)K5n>HzGneAxM{f!D;;}jSS;d+plp(yGEF_7g|L0!p$5*X_|y#aFmMzY zZ@%C&Z~b4M&tVhxRI?naikT{Fc~n&g3Rm z(Q$mP2w&AvgQ8%BXW;``hvR3WWap6#4=f-!cr|Mu{u|G7>5hK{u-8VJ1!DA@Li@(5 zS%$&t&lUDslA}MC_^HQ=Je#*TCtaAbU{GC=$;>dDyDw?;Sm7a8v>+wKW5EY%hrrn28qa|C z=8Ge27O#4iJ1T(^Mu;+(ppsS>?rSe>kHiO?YBSF>UfACUN}Wq1j}l|XoKs-;HAEcJ zHQ}Xlum4*XS7y?jnRQC*1OWnllCaM#Z8Yjfi1wI>oGYn)^OF^iXj*?nosC_8tHd-X zP)nK=1}w$`CiBHCe(+uhAg{s5wZUey$u}3k*@ff*4KjO78_&5EJQSnxZEXMUy_ltU z`i!@|HaaNjY)2ZV(!={ipo`Hp``K2RYePA0o170uhdXB3AgS4>06}we4}?v^EOi~u z(yHPC&Dyn8Qf_Fwi@))tU?py|O_IB7>Q*~zYGip2g?w|BkPQW2{ZOwu_0UFzHnoU6 zQE|ZmSmM<54S=486kBBo$UM^islu9caccGQvJr;&0q3sRV2>@Z)>y`lglfQn#yH6}qE=P}Xr&S<2G9`(}T8gy0+a z@&bAm3EXziY5ZzeVkR5-x)Vnx16k4pMpZr`v*G_#_yB(S>|SrVGCO4&u{FebS4@M^ zDz#WApU1UYC-5cKT_IYKid-BP5jQ*Jvpszf$bxLO0^df+{B0(E2VTj1B*O+48nxK7 zUp2&&b4O;uJW?p`E04_s4Z_wj*G?PQdDC(Eem56Q)nd{GB6DlVp6R*)HKh2mcP=1z z=YRk2D$)r(ZG%DY-*m`iBJ*3#;mucQFTA!gX?B-Pm$c(_+MKw@_$cXy`sRW$WUhPs29}8Zk7Q_RP~_c$b6V3--h3uDC!}pkY(Xp+r`HZD*3hUC%E_`&%PD?fm%iSz)t7H{qQnYKGtLWgzYyZ{*+Va<2E8 z<>y%eHZ>??JS?e=SS!_KoBZG)vpV-+2zOChjI;9R3*85dJl75Zw2*ltD9nuNud?i_ zY>hUs*oGgr8y5}lcmRA+F5*_0`M1i*m!ThzRE(OZr`qjU14^iiF2?|xT@L}IqK;A$ zDcX7~IG}UlFS`arT1cy&2?9@HBs}yi0H5V{`2g9f>#gm^fd2xY z{<+$#`*3Q#r{goD?COSh@p$gR$@bFNP~U-yD5r%G8W}RFVr)VHBz8IIT4N$h;%fU6 zpAU3a@{DeLzv<5EJsPVX8+)%>=;YftSzkl0M|nq@Jyaq?N?r}MeYW~=6J7FI;l<1z zfHO><>>e?+4e2O#`e@#8{4)MbkW_`@4jf*5SWij=*rjEZW^jWQ`UctD&0vJ4)9*3k z*cbm%yoy_MlNWl{vE~^Zs+(r%6rCitbV4#dxlHrw3oOwy%DE_P&UCZtCywJo^XA}l z-5CO-2+iWw?3V=6s2NQ2{cpAzp>J7<53gQjrJug-$G1BTjV)+(@R2VZ(NApT&8x=f zsJ3LVxv;#7?DK3$HkNuAkL-OhtI_+ETF~tp_kyUGpOm49E_id}mX_HBA?Rm`kBk}1(wdJo9iNf3b;A}fn2E;P7$iOLk-24Tc!s*QV>0Uu93=AP1x zsgtR9uY|tG(yz{aANiRRxzO3BbyF|;Ws#HBNTK}PO8(5bcJ5`F&q0g^hb{xtm=Pd2 z2txNvUkr8m@zabDb-X?l!M_}KB!O*6;oGHjsmt@v-)YTU(fZtW6`Zhz!6x7oo9R3_ z=fTXPOlB9nM3mB`>}1l*s$iLac$&mtU)s6aA&b^{GTScZA?qD6S-%Z<-F#Qm?_7?9 z3x3O$9Cp;*@$820poC}aDuIVroBr4fE8Ci1@ONG5Ev1RKLKf!cz%LHGtFf8kewuHR z&BZn%s|bDy{fI9;J6~5Dma*^!Q`o<~vq#kgvi-=?b)wSpCB3vZ^xL`DZkU&MRL+Hq z@W9uRka-U`&bdaRqjrVmPhN(GIwgL}+k=kPI_79(6Jhhrm=ptMB2S_#LEj+drzXmB ztCk`w_TMC$q)VrNg&*`vDl&@Oeb%b4W&9*>z(bcseVc$ckt|kiu03ufLeu*_Ca~~J zO)Cb`?fvqtOa`<=acW-=#2SXb-~F}Z&V-~(R87)~i|WSMDZcM|Sc(sY#v`#GX>5Hq zzTMP{md8guZg?PVZXTfc3WG}C*#2Jdi6K%BAss=}yC$R*nXo3=6*pQZD+Rn%;<=QW zlNim=ANW<%Ckr23JCoLp?(~};t~F5d@ZC*v=b0~f7CMrDT>;fXVUz`O|Ogr)`Q4)&caqai~(oGPm^r*P=5HtxXnzfW&%IEofeds4|t6urdUEhxm}oKTt|2 zU_+3qGp-E9x}I&@;b1}U(wZl~b(5{`#0$B!Ubo{i;xv__>9N{Z{82P&cweb=e|>SO zNLev91Z>sSu=c0M-|GWpBsBw!XUxHOYyngQDE=-odSAV;$fUXZTayaKf?F}BztUo~LQTMzN~)k89wP<%^6 z*z;AlFFBC+pDnum9JV^%C*9`S59|F?CoHAcdabZj%g1pSP@RALkHY9((R5^9{)6Tn z&&!m9M#w)LqlUGri+i7i7E#{i!6sld`?N04`p;%+%lr?Zm{THVOZZ-zLojMiOXOU~Mq!z==iB z7;rvkfv`GAo>Cy9j^n1Eo#7q-h)62nZf0E;dum*XIVk10#=pB1)Ol&&qa>OcWI2`O z(`35x_Th1hq>ZIj{6{|^b_vhfpdR)=^G<294`2jj*2Zq0Md1B{Jl@(m2uHt&2EWIo zT%Do8OWt%TsseJ=4?Wd(3Z{ZG6h<+HWc z9H+_A1!jU@mEFeVRW{b>UtM6()a%G*?(k~eYqwFUbdRf=+|5byAz4Xk<`^mfm$Yg=&TF$zHny66B$3Z`Qlzwt4O7E1cg+f-|} z96!<5Z{h^L`|z~1u(r?;yV0zaQD5bE?y*pwf4gQs8gl1RwAYCY!-{oz^pAxv|Eg=p zQojFX`gD(z!XwiA{MYqqMgIGrvYr5xISa3}x1T5!dQN^_(Xf6(qk*G%L@WSuKL7o? z-r7wKGNYo9vw8A!1yl>zR|Tt??R?xL!o2>bLSKQ=y?5^0`t4}@ z-P(s2sTQS6lV$5;gNydM+!4hFNrz;>rX+YYfzVzl1vXV-m=cm7f8qW=hJj1nGl_8hNG-3<$?iMU(4B6jH_-OjCD zXL>iz{#5~_;c;T3I+^u}Vys1}ROjTG-bb+-piF65Db%aY?;{R6pPgZ2LcqL%Q>eT6 z5)TKVNw=yf@MN1&mvyv~H`ObZD+WXQ9Sq;Rc5J7UM|)Q}5xVCms3mazPXk66N7P#U zxnNnb0_aob6=j!I^fhNtRcrMvjkm>&!HIzk!U@)iC(I8)3~f?yPP+qokMR~}Vh8hl@I8@Y7%EhRE7$0x~d8D{GzTCE!y$NRYroSbNwCmp2382xFgCK57) zFO7)M5im8v2A}jBE-rJtg64)7`Nw?wIGK7s@!sul*oh_cO{GrG=PB!5*J`hcEPS$6 zw-|{q7j_`cqK)yA2BpFLAN36I#vA@}du-UV%ay}D>k{(Vi#;HYsaQMr*^2U?j|j6b zW`o(hMRgMW?bI|%biA8-?JS&qQ=87&@q9cwW6`}!VFbzCz!_v^ek%wBY+@cE*Q@qvN z@lf!40AusVA8RSf;jxZsXNC5B9d4}uXr#XP?P zeKSI0DByA!T$>kE;_<)5I4>sOn2+dK(GgO4K2Z$?Yk-L_4L16b;| zC4QnOwmTFILO_OdaEy_sFh-ND6!C<}=QqS{45Qv&)X}vfdh&&?>s48+Gmb5%KaiDl zl(PklvX{IczOE}CWCHCDOpriLN(J*eA*s;zWt51!xa+6Q1BW5Xck&&Rrr6&l=Oog4 zN6paEB|ON#7OjRT75H6ZWuWc5wD>L|wli=M&3Nj@j<`MMa})8hW>#eOR678sl~$zY zj;tsZ`eOe*wzfCc&(k+3Xq@J-M|3PiwonZ1lMndi#EN|yQ1Lw(P?g4d(K@lT=&hx80BE{vbXlZqFBz?3{8Y zQ%wD8jn`)aHj{?P7N(R54?_r-ko|4 znlIIt6zK?ijkt2Ya4z0z1Zf2hFI5bbwFCP_L2Q0dPTbs!q?PL>dBwRBWAw9Cu9!9I z!@B#QG+X9%r9-%^^LEAy8r3%w%xXowGD;Rcg4D?Eik^65fCuW2J#RD51( zTLAF)tD095HE%8ddLPYTQAn}O&S~eV%_3KU?l&m2$`dKrsgr zfK#`D!N8F5Eka~jHe*RG+C3$tG>BxUOY_`6(`f&+w5KmtK|1T6bt0PMc_46rwmt?^ zzzxp)uoFW;O=5Z76x{Fac3yN#X`-rs4z z8?jP(=8vBmRr-fIuT4frc|qxU7H0t_J&^@I6=Al;4cgE4T6VF5&>-A~eIPe>uGa{o z!}rfrfuUcX@i#hM6{)9ZIl15RYn#xZW8Q+Xlm?ajb~FcqZ-ocGe(5=P(Mtyv3kiRD zZpyI^$#tgFQP?_pn7|!jSa<=+De~(ymG2#C2DWb&JAQwt=v+ zkSq?W3m;=k$pAidZ^!Fw?jI>pXImeWzM>f5UYNu7WH38iyPI$x`d(l{LQ*$s)p`A< z@O&v(&C-)%THX`WM0(Uuz*&+}Tq2XRZkJ?zgd z37ovaT(~vzqTbXP)R7z7Y|kx|cgUiqC*6(`#dq~~k;NQmJ{?KLT1rdb=^325Y(Fj~ z$iO5%ZIr?#qmWLPZtWSuwT;+}%4@IY(*IgmHN|RG7F#zJ7yL&t5qlJq%zzAUrg3bw zj8}YA$RoXIK&Ek7b>ku48zWL)`Vsj?P-1v?=VKS=Jfixih&oqxVWAnP@0pK;ndI+; z*;I$huQWK0=Bm8CFyAMX{9K!8RgcmJEb5DfqiFlX>DtwRg@ma+w@VGpW&iWBoUwd7 z6j%F7VAf>qP3wDEZ=>L}TWo4=Yo%9Y=jg0NgMUmZyST_*ZSc~azhVJ2d&F5rv|3UkBy3(ZvV8vU&sWNssGnQk3+xY@ywiRV+HmafWzL7fO9Fu)CMy6Dmdr3lrsfq6R zfI>KAMK`3uaxgbf$JM(2sgI54-dE93+63Y9PrFkfSszSux>zO^(A&Pm4CaGuMVSb!ik>cHEpk(Clq(C z3Ok5ftP?B%+gES~z*{OpwyEJz`qp9kI*>M_mxyGk%O|OBi*9F6fyG%V;;}|}|Lz}M z7jd~)Tg^~aP{*`#HXT-h)u%b_+-(e9rdopAi~{qJhiXRV5YM6xt7{_fCM>J)?$s$H zG95&3RLA81yAm6!25Yud$Y-{eA~-V!8T*S#_V}F6jW74qL3vV#cIBrW4(2n;CNd0g zl&^81m_-n8;DnW+qHdJK)8VG;IYHdP*58?B6?!jz3N%c)R3#F0amAAdqW`e2JXo}sWil= z%gE!FL#sjB`~A`(3ATF<-r*zF1bznF4h6gC>wBP@4i(;vKEht~k^zVwd=m}}%)>g& zI@LRy^H?{S{tHtu95jiam_A>d8lC7^S5^vfAHDxR@lbW`A^zoY1WvE$P+ZpSdG%#9 z=v5Ow9yfUXa|enQTa4&?pG}e=G2-~sKnB5lLB^rFTxjN=-h%|jE^WdE$WUQTSx{4* z$*`QZ>;-!4_(X-WErt3sFfx#Fy1%x~ZK3#GdPphpgI12c5NR8x^cP%rwYf>((MEs$7QG4&YED+Wi?s$LOiLA$dtiEO7Vt;CK+?X zf@HSc+`g!vH%uJgOZZWI=;zzk4&qV{=Ia4Yt`^(+2bP+R110ZH{f@v$nZZg|fvVdj zwA*aIkI+ECe#|~CMv~g8WO?Z`K^d%ov%Wx9T~j+LQEArG1&{Y4!)n?X9k0VbWU@|n zPQWd$eaKxWpdxw#Hb-rF1yyM^c1`0e%y!W|$PCnr;}{M=>>1kh5(OsZDjRsM9I`Ea z+5O%A_)LAZPo1*`)^v6GUQ1i76}`n{4#|!#l)a>j-v0H90Jg-_1@kMSv0aNr7#`-ieFo;I>f0(waf_XF}r} z|9F_TsHv+?l6>dAr^w8ep@d+IK1l!mpN*-7{Q1~ECqOf2i<3CB6kB$UoHT>~$n6e0 zm1*H!Jy)f6JmX0v&0?MGE=oU$Xo!bCP#oAl0!J`@e@9ff{%s&H-ym0(@$2 zSgfNAY+|gJZh=Mcsx5D))IyebX50T{;zY+#e#|m|o_Jnq-Tc+(Pt(rUVPbJDAVGFW z|6s%_U){0|PV_pP$gIqDK-td-S16EJFx^pPQK!VIB@S7Rim_SDOEBM9&h(21kV*N$ zMQ{mu-+ip-7;#`VCzT{5_sX1j8EBtn4(`DRM&u?u)eUgcJ~;&X`<=_O5UU$la7@;A z2K}%MiA8&J4Qsr&jd_g=DXrjj_Ny5nrN4iAiR)PA!jUd~yUFc7WeJ`3 z_&+WhA$`l6lHy6lB#y;^F3OO<7XgfaHl$x^oBNQ_Ak}VVb4;VQ3$X1C-8aB7TY8z) zTaGy9>F@PL775Tj3Hac5|-~DY`(&=r{)RV-iG7Zd{rzygP$U*`8;F zEhDM$u-3$$Y`C0i_@IcOms)=%$k^)`a&*FWDo>YxB~gDZ>sk{5u(9acrrU8gWX9VT?BhOfZ$ z9vfY{iT>e^vW{s}n5b5C$(wKV@m1)+JL8g84I*M92srFPRC|8N$)K>$5Wl@efJHfg zsx?lmARenA@H2|9GpEgoGrQWd7&31}ep2h}BGlX*;RNy&y&S|(gZ2A_T>ceEIjqe0 zyVHhJwJ?k(vPU}NX1$+s{q7W&ZPjDY{A(Zn?dz>)y|~klr}oA-?Kz24@?IUf1QkWe z=YfYZ4Tk8b^^jxDxb2)V!E2q48*KWA7seP5tJ9$|r@;Y13suGTjB*{{0j@1_Xxi)ON#ygO|++;L*Hhi(IOej@hg8NM_yi+1RZ^T3k; zV`z#9>F24Y_r24h7{WlRFgmEJT2VgrV5rz4i0}6ma`&MKcsRyP+HLX3`u1r7a3<4C zkS-ZT^G^d2@BX6z)+a0e0dtY06rbW6{OYg5aeLcLBPk0;1vK2ZzK5%IqZp+7s1>Rc z+Y?-P|Lw}$LS`O>Q5jaW4W^uYSBo7uT@#}#lSwQ^-#dzV`_yLXD*ACp7lW^h;0f=8 z9Z}bj`U@an0-zZ_Fn%D&*qXT!1Fxa>_E8$YK!wO!=BJ=tDg?Sejn zjbH3_rE6lG>Lhp8-DYdaH>0q|XWu5~R^)=*gt3eK%BhGpEWHz1V3T>_ zkZR#SRcuUq69rd-2zIw@nxs8YNq`1s+Lz6LcpQ4^NS*?fQ`P1X6@l*W8vG|7GdKXH@$0CG!BKOfrFRr&eRyO) z%YOw|)+QMP%(#cb$sm0E3!HIi_4A|L#HIJcb#Jajn@rpCOz>V+5z9{3xd1@`om9ey zcWGu|U3@Wc7f@4VKKLb>0|=fuU-4dIM7)gSXc)emp8B%Mg4kOx(nnnw)qZEcro1G? zBf`7t=)gZ2u_GVMEx+Ye8dG$i2#ATk{BR^_L~<<4?Po7<;{8`|TzqIetV-C!P=YyVcUuE!;f650C|RaL=cdVA_)f% zS&Y5YlgRXE{iNfT5obPsr+1SS_xhZwv1ly!TWC`$JXzUJQle}~OIMPxh1kq-MAp<2 zS*XOJ8hC?uXr4f7%SO!=P-p|`cb|v#wV+sTOfp6C#V}CFjhvTdcC4SizF3~qwyTA0 zH2pl|d_N@KKP7Ctx8rvy3FK~hnPWuSVL`|${yKEE9FZw$HQ~G+5}qPkJXAmwM>VmZ z)6E4bzj-94ERxVY#5Kq%sf8;Zi!!O3G6NSn0s}OOnEo@tZ=K67G<_*5AXxnFcKwO* zUOF%x$ijlrIBk8rIPfr2abs{pN;Qi&SzC+WFOC>;( z0}mO=UM(OpUb-S%rGM2=AQ*v#AsdQrdLg%emVP|ghfm@may^OeRm_>3`t-Wm>wE*c z$yzi3`nq=N2;?=5A{&dB_G$vuF6GD*u*#(U%4O4PPzd*F&2QoAxl*{fVHkMg{hx<@ zGSmXk0soa}=rqn;y-I|or(?NXo~9LR~^t|MR`m(P%`Dovhbw#i%@ ziSp&fLT$&{-|?9evR+lTbxi19>7$BCiG&w&qR@3^Ed=zW&fjiGXzY6yU;aBpTM$xm;u$NIN|(om(7&RcJ9a& zL{bhrr1|Ktr><0Ah;^$Fi zmu3S?-5GPUwP?FSKJnJx$bh5#W#wG|S4}smv)CKfW3k_n!tOdtWv3)_o0Edq>2g^| z_Fd=@Bn#5^G8M`~G##yu2?O{Oritc~{0?Wop-gyB)>9y*-a+v!-JMo_F7Sk51^Ta-g z=y7=$*{Xq}wcM_`JJg}5(^;sat=V{0T;oM-m(-JsEH}+pKimvPt330q_(nFgGNkWy zu{2ctaI(mldQ~>y&YS2 zcIM&O`yAsqoN<4j@9z(A9v+|f>-~Da#&e{pibI76-Nai2bt8g3j;2FSfDh&HNFsZ2 zn`0tvM)|Inx{c* zhI$d#o-MiR;ob#Eo4JB-@9?mTL%P#jOb$P4t{XRA&sFZ06cjv+TlQ3#FiQD=9+jLN z8`y0fV2|myVP9d5AFWGJ`JVW=4eP(ZnU9Y7BfW`d0 zkuRVA5>I52cyTcB6%Kwp+Yny9YZ$NRGFSwv)a2RRK|%c##>qX*Xu;O*etcmvfEQfK zJ|A(fs?9TaT5yqUsTwst(K*%YDm0jrgBsvPkc2baYgPtimJF5(Cf$)eB1EZS@8`4&FRsEca4lf;1|53ZP+eJx}A?Yjuj8~c$2l$*>S&? zzE#V)ugkqtST{>K-mQ3KGSM?66D1ulo?VD=)DE+N!vo`@tH|&q|H*=Lf_9=I;4xtBb6VyO4Jnf zRkbZAvs_ULd;58nvi|;;{CYw7Pnv=k?r{jwS*%RXGfP^NU?2u6bj@v9r&QfuSpDve zEBwcJ{?TGZg5kFl-tguXftR0YcM79T7t9-gae7Q8-`fLwm|VkRATs*#2jia1)Y5){V!Cxf8CCwo_nBC?eC}y$3O`MC$)MomO&3{l>#-ps)Y`c^3Sif@d}20K5`~ zjp|tvDkK_2NghfFHfvBHm|efjE&Q%jT}+sYcsFc$7T7L)K#wBD;78y4a zS^$nDM0E^l3@bD2SDWeDk*S042^=e+=8gY{UW`y#jXjD+*NlC^5W=u6J=MTRh*9Oy z@!aa=)le6w?PHPX}l^hyk`zX!#PwKoNEJCdm;FR=z3^IYjW&e|r$i zmARNLQ@;^ushl32GpM~j`#^{u*yA9($B>36n5QMBDdbDQ>n(YI>^4>;_CG2YfxnaZ z$gJ1ntt!Pk0?a~TlRc`8nQS&Z826k_si&H^BRH&C@?IpNm94Cw3JBbZtgRid@Y&gH zQQccVg#XC1j1;2}J~0k*ZG|Fy=Mcs&KnK__EM2Q5I{Rh^V?Ghc66whgse7LcD?)}-L3BAb^xc*Gk^_Mcg#O4MRjA211 z;IqA5&*sAONZ`>Z6h7+CRjPwUKx&J-FZ6m09{{d#e7*S;;c$N;HODVGyB18U75uN& z9s*1YR|?l|;8{rhRVbQ|iwyYXNehK=;FrQsKtr~`q33axe^H;Vehr$at%0TB)x$3$PV%3U)5<$qKi+d=ZBbdiRlItLzqwm-@Les(%c z!2KP2p|Y#XLEU)i`JBFiS~=8&u|tarPwfv3f2oXu zFR_n4>x9{Q#yp??#wM6;HxZlnL3liuQQ<&iDg39~J+I))aj$Z|Cz`6?cAhuWh9@Zc zY{q_{4ztx=3B8|s%5;y@F6^&&m_BX%wigF~tMMHw>8Ur4)G=yJ@0l>H46jtKQ*p}g zJf{y!XnS}?yR+}1=u)p}i2PyDcyRI?&QT}Pu9dK)(3Hy09W)b>#OwcFr|;b2pSr3Z zgBQ%6G`kT8Ff+R*J3_g#dN|BbPKg%ps;W<3@U*1=PPp42aqY7OoGxZRz*tw`*YA)h zx#yw8#wj~tiAVy~A^YRC@X>^l2Wg6PZGTS7O7wH)i>9V3(ex@5B|*2>dB*2=N%YD5E)VO4@qY+uk!8DrLm z7DF?oulMWf7oU7A<9>9w0e#PzZ?h!Hvpl-_e%BG5HkLcemM~RGQ5Gk_yz{_iV+> zW)QVea{$qKujEg+R+5eJzSAg)@L^+b0wj)J)Z|j=^#&dh$rII=xT5cuy(c@e zNmZ}54vf+Vyuf0~17k)(*%NU*=8i?1`8>OBlCi1`@cL^j#(YmC)E=7szbj#NB@L}%WzbR7jLm{WjUKgtgS}$j1oef`g>x%i6 zx2B&}Ro>FfF(t#yL0awNlwrixeP5+EP}kGFTxx(CzF;+WOTT$6_^O&LviaE-{NH=$ zY{!Oi1(QJPoLvq&uHf80RaM1B#ei16gQ%aCl_*PN_yqfB*pJ#>X|3r~jmI7dvUAb= z{K!-o!q2Y|@>)m+1GIEq6{6V(#Xu(L zGg}sEeRW5(Jz;$1SR8IDRrADxo;s;qjkA+aEa)5D^}7A8==282S4?mkz7N;Xi}=b7?*qrp$EbUI{aASM$8B9$Ty@s-_~5Sb6vLr^pG~a7 zK8>&Zi#QXzY7%UvW*a+Y$GOu2ID2k-LU1X~cRYLg^= z597sztQ;MUqD#R`Msi#`e?a{n2D zF;$I*>nJSqV%X<<)sD_i0QyjimABAzpz=Q|Kz|-{F5s=)Mk*ZdW8^ zb(gp?CVM<_JEzNV67(FL|EGs*tK)>z&6@P1rDU+u*;LKhKm}IW)*_h9I#s5i-Zit-Y`WDsUP&1$ z{buDqw>4k+CwcOtnRQrBQ$Nk!H#<}Dl?~HDJSClI8~Am?Bqm)Ag$JY1=1jXL!eoR2~d(O#2~4qR2z>$nd# z^?F#;MJ_Nry?&Qm1@*;JcZ~zao4Jg$GPu&`u-aB%*_`{9ojiaCZ^7Sr;k%>>7CP#P z^&}Dc$YM*R^1Ryzl=-D#dyG3f1a=`nM*^6~81#HukFf;Y+23*1O-6cmb_U0uwngo& ze$&<>nosLNHe*xe;K{3?94M~48~pWPJwyRGmLpsNpmjAt;m1ZrP3mLq8$LTW{@MTY zHtlttWVQBWHgxh1&w6+Sjnmk0pQlOF$MgDzI*R$9<6Q%T8ZUpx2}rGD=aA&Qh*mX0 z%MC+&U^My43VmDoijn+2w3vx^68k6W+WUKq1C1=Dy=9*h?yZU{rY%_nUBGNJ(|(px z_I656q7L+lHU#5Ne!675Cplf1+doqL4Na>hRnYBcv7-(BI|dN%fFzwWoh zzW8Cx$ODMt$I608ffowp8`qYA4iI%y)e1mNs*_WFOz({Of*l zOw#l%o!%vWK@9q@dRH@a(iKv3o^S@avOJLHO0PvUOP3B(DJUp~``n!|%42TFs3qj9n zqE#qg&y}q*ym+D8)6r`@Is%;*Q{A(lH9k$a=%nJ^8VPWTskIk3Ye%VWdi^{QYw(}U z!=SOY^eWPwh^iZTxb6-`_GFsaQ}i8YW-FIFJGhMZF@dC}ybSFd8a}`8HF5sF8*_>k zeI_LenvTn(5gEigt{-(E7W53KTX`@%@%{$<>@|Pdd**wjm>QhYVa|=mtaWj}R~c7_ z9zMRZ+8ccKq|r%3u5|m7yl0$dve)UItH_zm_I%b!S7%2WHE-TdU1Na^nd3y_q5Vx%@F*e|FN@ z>C47$ZRRs%$LXjwXXv@bHmZb>yoxUf_Tg3+XsrnVgkUisF$%V2`%f}F`HsZ=I zUUp~;*?*u(EqEnOEx(V7BpVZBl2WQmv+WIQQ4MiSww^AfZth&m6%+g)6+!suAmoiW)O6Lxc!lHZ(){~r(!;Sb zf^BdbwWLruLUB@_OG=7*B0JTue8YDOP`O_AI>ul}ap$v(qa6L{D)d1j_C~iMp#j^c zFM&Z7t#i(sbU&|1*|&n&fGb-?(=;T(4w~d z)CxkO#qdkj0aT%UK+z2P(Kp1SSFx|+!C0`&reivNyJN08u|N57aiGe@W}T1y*UhBj zVNx0@=-|)1bbk0oQNj205V`F(1A1HiVBKjGS3hHo$9ThL@h&&JJHm#|44)hCp6}TT zIZx-u=-L>eL))YBG+)I)(-z6y1di3;k|;+H>g$?spiG5sOVg-vU}ms4TgBe=0m?7y zy61fc%NQoTCFtbshH_3x6i&Pid{djGJ!5!WWh!#*l10kuVbOk9q-gp3)KgWdN!43( zB>g`~<-nCAMjL_`prMnf-=k@o#zH_hJyCljmHian*R*4lYFVPWvm~Hn#licSyTrLn zx(VCR5i1a3d4LAM*M!e*{t&lGV9#d#%IvoHztKI>QACT!fFjjyBSXH#U`eaNedy#a z8mx|69E+BQQmQ-OlpGt+X{v<0gs_lcgjk%v9t^N)b^prNp4mJYZ`a@O@mKw4ufi8y zQbPv}AD{Lkhip|PrTVtyQI4O?5=K2-1Njd*M26%YZOs+-$$8Ob8_+@X8z@PQ zH0CyU8(Y^N6#y1bO&gi0gL@bc4#*Nzg`DVf4tX3H)X<}%AscA;*~=|8>W~JKy=lB) zA0S`8#+N(mgKbs=1hon;Yj&$Cyh8!O45jbLmvE;Fs}NKLlPY#yQR|EEKrJG?-m#bR zH1X>+)Z%CTo|T-4P48cWcc?G*ofRDVmO#Le)e%z8ZXtqiP>Iv*G3~{jNK7C@!FUTbk z6k9eIB)H<8E86FfVi!4t*_re=vqH5TixRTd7<5X9RuEqlWkMg|s2GHrG=YY?dfz4+ zyL2HUaO6{7Mba>8^C+`V+(Lv#?+wYz=JGJ&G8UWe)@`&SXD^$qy3p4hxL0xTo)Dc@ zJq$bItD_MfzxD3d@pzPy{~MMkQXOmojC^&DF~b72WvHZ!K(5VJ%Z(TE%9X04sTDuY zb5T*7pnep4Er=0VFm)-cDw*R%z6w7Oicj{4Vds09po&-e^ie6%9FEa`yGw@92sj&8 z&(VvnayQ0-W=^epybAOTL@$8P|UBnP;U9hNy>>0{Vk#ChnJ|vOS?5hKk_rI z#y|3H9j^C~x-&ORO8yS4O3t-(i{k zCNpKo$}33^s00C1n-&{RAuIN_NPWGu%<(DL@>WGI=J>U z?$5^-avmEs>q;F|!cptSI9Q(wwHiv54eOV?EI9k^Ku_jukA*Wx7k3(I2CnbxGaf&tH}Spa8NvIP11M8Q-pVqoWInbHUetanBZU2DUc zwXA}pGM}{It{>EA+0(Jsg_&GkfiZX@Asu#8vy<;U=iI@OlaqPjNsZm$$~6dtaO(!Zy)wjJGEvqdv;vi=V+}ZVJ(U` zfn@;QAyTrHXd1RkVYQuPC%5_5nhjl^5EF)0i#tOEI?ZIC5RA3bjtr-mrw?0eghsk) zE&Sq`QrPdl|bX^!X<=u)!)b0?4t&L5_QWAT%FG^poxfl!YKZ7q*aJ0Pk5?C z&-$@}Uj!B9bc?+48zk4XxIAQ&BIWC8cv-KZqe-tN*FX~J*+NF-MbrzbR*cEja$HCf zZlbYro%&1~Q(Do=>Yfr!6-rSd>aQ-Qt;i`K;s67HIgsupZ%xFnMwfOpn}``Q(Ct`j zWOLCXre^}rX%EPcB`z}TPc5pUR z&{6LufwwYscW^1)W(-7=xEVMjRIcnZaU3kp{F{jd3L$iU5N{Q9T4uqnUA;wWU9yo> zZ{QT6P}haLo*hxVn7wV{`MoVwWcqOY%$2@7TkN{BI(|Cc;A@U!H!wD7zlDX&rE5*z z>fKMr?+F+B5(gG92D161Rnl?7ZP^lPpN1Zt2n8n79V9Oj;v8$cJ7je zTc~i5?!?#C5*BcM>a13+T&qI~2Wt`sjL~ z6=3H%e6hb4EzOI`PT6o;vJ`Vi!G?FC9%TfvRpAVB8_uz}%IS%|JNMwA$y4+a@*1aG zBqv-e`JMN9sW<=K4*RKv?DR9TkBG!-dB0RnNx%9$XeAQFd&UGDG1deT8RYS$ooyhW zAWK`PMVXvhKS4?sbG!Y1F>$N(lcV47bgHm4yKqPv&fPU(<-UR(;q&T%0AoQrZ>&ZWHlpHG5fv>VVP>9jD58Ef zI@y(~Dss`vUtX|@G)og65aU*`fYKANiAi~r(v)QDI0A&;QA{Xf=p^iRItG*gaynvg z@+wT4@3epG=z0GkgO#5R?StfntL@2GtYn6q6@5OAn)^@ZZ=CS5Tg6u#h?(nL@OwC~ zfakKhGkfb%KSJm5d*v2O8s0@<=T%~fjeEYY(=YbFTU(|)TGlIP6;)ihfkr9$$^tEJ zA%~Hi)(ygWwofAkt#+#B1K?eVD@Z6+E(cBoK=-V2RW$?`BJEJS$jL4Ci*R$U7{0{kS!Du}Q?l34Y5|W~sS!jk71>~!N1k;7}_yThf zh*}n|!6keps_n8^zt-7Q<89|?@xAt0f!;3ZNeH0U-poJpa3e zSxMR4$uT-fR>n)?apJ{egDv?PA)Sj#2hR>ysv2JgXNFG;`JB2=!?X$enoN9Y!4qct zGh^fbQN1KIV1TO&#`JecvRae=H*<9+=_0zCGk>{hb!0{iB!f}b>je%kOyJrZ*O*p) zfB5h{3OzzL z+bUC>Eq(3GhxO|C3JFfP+`lQD!GW`z>S$5F+?823OOrj}+@H7|J1Ke5Lz6-WXo*}W zcp;oZ+wCvhLR8+J1+h`swZ!xSSC+sz>iV$?!cP=dU_;ul6~nVi18Yr=)$??B)NJBm zKXdAqP1C<N{~ z3wAcicr3xn_!4$cWGn6zDO>n(5UD~duOC9mDQHFfKFy2ivirWhCg^Y)l10Lh#)^O; z&QZdDR5gJ7R_bc{49G!}V{vKMPwv$i5~@6F`VMy^?kBoc{3hm@ZA)4$o2mV)O-fC! zg=hfE_h7i4V~>QK1xt4f%X`&x8w9|DRGLYM`3u+e0LcRl;I33*qu@{j6hF)!&NhG@ z!l;xNVZ_0j!)E@~;mKQC0+;pf5r5tQQ1`lE7Q?JfOI7kHuduUGib}#g@5%jh+qiWo zHE{6+2ym=x&nwC(5Lre7SLGt=W)lS`T7zAI;)Z3!RK4;+@*B}6s^kYS$@4@PJM+Ig zk_3U-WLadYIvbPgr}U?L0<|dQ?p6zB98&GLe?oL5uuKt-^y*s!#YrRdy_qsY_@AuD zNY=f?$03Y;i^cPRlTcOfmwwFgZthxx4<07i-OjTJ>r{umB@)q*+?4d6BttA07GIvr zg{w?dh<$~{TG2;ZY`pXT(cKfFBTq{#8f9-C-pb`N)sQPpL#YDhh9~GjR5k9RP&8%s z!9^WhC&C@& z1boPRb0S_e37QG&rqFC`hbG1jl^ULx>Fb}(~* zr12+I1j)$ih&~ob)o_Ic#OXI0<8)007ZcZ+t`YhAiG^kW7P_;2dMZ=0@A>LuB{CGX z*$lXp#2R7GkTE1Rx$ZL14KzWlf8I;^a;)o!d9=a{Tb(Mslg`^;GM{|z$3j^7tVVtM z5)t!rrqTwqC`=m{1P=wWbhL)&T0c1prn`HN3KGfO> zaNn%|3B2Fr&=9)>%iN!VW0kEndDsk$vY-Qix3}_G5BruO7Lilzd`x>KLw%7YuRqPe zG!%DwV3VAZldewpD%P!H6w<@ZT_68eB42D2vus?I(A&?cL~}MmM`v_i$5SHTDPQJ# z@?iW7PSEg}aFacKJ#x)SeEG45g7wocoy!FuO+FX5z09NS)krq*j$3TzlZ)CvLvq;K zSO<7bpkGdJbmoo{JsYOXJr=bU`4#hJ&jubPPLBGx7-ylDgHRTQqR!&xXHzGV(IBSC zLJU3GTRlmy?z1$W=-~U*LOV>&oQ~?z*x-sCH4VefO2rb>3gL4VZt;mi&IQfEGVE** z`Y*x*M{TjK2<=FjdN$A+kr+fdxcO8cFyGM|H4LPxW@(A>&g zSZHB?_t^D*jJ~bRdwsi}nU)WEgDc+-zDlf>FzmOUS6w$Zhpo|IoJE!EUZ(|=ZD!;caVRuL#MEqSv`*)10jwluiBklPqPRc$5YVq)pNeeH@(tR6lj@?-4*0L|r{31ItHz&$h5kLOxZoh5h9X{TF z$T<+dVuP_3_#Q{;i6uhC>Q>AE(AV$i0XQDc1{n+~#vAX0{e|Qx^#a9t{m~9ao=e)If#A;7}bydt0|$1cAmSVh$HcQ$){e7row(RoE;qxeSGDqF7CLwrEuZ ztqzRLOGZAw9{9X0+#8#*o<5L51XR_NIlHlGyzA9xR#j222wcFf1 z*$U2sf{RGfK-d-&Y#|A#YrcB$NHo7P_5BEkd#wwNeWheZM!=l;#M^m7 z$8B%M-4b{mppu_tE4=V8yIRbk z?$ZhMtS`kzh2A9qgfACs<=<;a0lq$&8TbM1069z)07{dL0WpR?3GmlQw)jJGz9Ycy z?98H%?7`PhJeZ}6;R*UFpp<0gxvH%|c-fcoaqf&g_dlx5@v~oL47Pd-Y8F=RGdnwf z&w3Z-dxOg_?(N?2PFN~ocvY+%o_k7FyoXSKe)Rp@7%Qz<%=g5wupM3g zknd5$cNYnCy2n;#YUBQ0PP;KkkbmQcYj5oQ_cYFKRNgb)sbr_3Rw(@`kyJ72TvUFgPHy!;Tf%@0ic#jz@hF z=N}aYr-`7Nn*tsFwL7|=1bHmy`x1N0J)cc@)`p_p+4XF5x2-uyAP-VC+f@O>`{QQn zu)BKp%`s!$nNUEPl;+h`rFCodZ?IBz0nGQl8d~9`tnuALkzgBC6ATi#HJI;fbqeH| z5StZA27(w+-q`tK_)PlUJluF2(kCDM(>l>KFyC6!QgdBnJ^SabYai06NTT^m2nea( z!eqc1B;lnXuprp8%-%!*blBz*-9)mERY&GhU%q$Ia+XzwxatU(E3@cTTx~>sndIFx z!A!J7p@m7SqwCq+0ggJN-!m|qQKDuq!(;%C~n!8hY<=`~dK_oT{{*8Jp^>&h3 z-!zSrX?j&`%y~iW@kyv2E{MCYZo9ZerF!#_xCV+T{5*0{t52^pnJ*Vxq+UI%KCx=^ zYi{B0QEi~-_lIM(adWJ@tov6KB4AZwtqOTK-M}#K8>v{ z_kSnolW`1Bpxh)`H4?TwaB|%OcWRa3jC#ro2oB?k0nJT{o$! z`bGn&8ZI~7194WWp0}W^Bmn!s*@*gO`@uW3vu)-Tl;5~ge-g|A;tp$ zR1U-H9UT(e`#1VG`mS8$45gXAOzH_k7+6~s8db##y3LrsZBlt~yf z$Q2ZuRv)DLRX%Fi6>^jCPHqYBG;mSyZ&Z21tJ&NyjGrrc290MSFBEvM$tyZ&gXN<~0-*X39g zfOUK%lcVXzc=~tu<9Bfn#g6?r>BAdf!(4@O@(*C7q`SMjH@LZ&P;SrJ;xv{WO0#Pz z*$KJnn#(>J>0^e$L}x$q4c^#3RXjH*kR^M01L z^?hbmBtg;2w*uC;LLu$}kPd+_C?=9n;UcgIzP_q=OLk(Z|L_m9aNfT31Sk}6^II;MVlSMoU=Ur8tR}&Y z!#mnlrckbY(yQV*r8~|3pF%|lmh{&r);+0r&YxH>j?!I0JSmW(@!LxJULLqqD1Y)+ z$n?Xi2-4U7avLt}o6kLNv4|3y|2a`DvQW_eD=1m~7;;a{*Jj82`o z`4!EI9Ek(m?PVLfjAr&wuG36A()~<(cz@}pvkdW-9AdR!1fjdv-6xvmyc-l?K`fE( z11PZ&f-vg9n|RfkTe44_$#&ulaVsFbhdt8)UO))ie%2!?^G5R@{kjaHlqav6h)YVQ zZ>1Sjd^vSM#y?V-%1aYKZ*4C5eODzHv@qwLU@ogULIZdf2!47l+h^%M_30m5y;!}< zWgD-ggfGB#Per~I$}fvNc*|uwx=l=96(O$G46#Y38G4_+8-0;a>lr^n|19Q$9mOhc1R(J2Kqm7God~7E{jcSGFA4X+ z!g_6=#u~&0sAGnd=Rc;+tS^c#EJunk7>wF#Zolv=?RqE0>5`VTX}L3d^dHqzm!Sn+ z>7*IC>Cm4SEj=(S7(NdMkk{n|B=B)+1v+^~z?##_A|7l-ZH4lU6YlQ+bY?zljehr7 zG=pQ*#KHRK^+wehCO~G_U`XFD7&T7H=*`e9bosd9Uo(xraED6cyfp}Lx5wsb?Hp|( z0){wUTeOayydp2Tt5d~`u_|H(6W!x#I3X-b6dn0h^c_%|ZGB*~WkG>wo4= zfVl{o%RGFV|9D0cHL4)h%Z@-Y?k7$!MO7FxUX7Fv)c@yqkro!ZMijHHu}%_X_h+jAm>;(Od+C$qiRY=5d<J%^t^Gi%cF`}%lW zIpe|VUw6YtUE3wLFL+H0zh>E>H=PJkYW2BGm^3!0Io;;!&vc2O8G~?rVn4F$6wY4a z#`vHQvHjh!8v$@LEKT^g)_N9QpDfo-R->o+u(A`{*Nw_y{hU;0rySz{tTj#SDIRDR zl(!%r&yy4hsl=Crq~#-g!W2BpM|<-|e@CW$-+;X}dGG6$oqbxn-8y_qHMILFykXep zd;Mp!#YtTaDPItLE4k7I83aECQ#cP)6#+imb)t9xUH>XR-#K1$nIcvp(AmuJMqhYZ z^oRQIu-6Sn^bPhZPW@Z2Uls-{vbQxEL4Ig*nKNy2o#qO%&c`2aNEDBt*;{Sa0L~u+ zf*Iw?bcczN;KKDXlj&1!ov4Gz_rHubV=oTU71oiu7tN<)CUww3>yiVo9~t(WXx;w$ zg9`S-M4Pl%s#1FscznCv9X4?&pgR4&zjyTNlbym)2K|(u! zHV#Dy2;8ND-IUQ@{vWw@7^CjZRxMkjpG%60&eI4z z$dliVAbQTX6J<6wkOBy#f76HA0x)${U$xKG5%*EK&;EGW%XT#~B-FX!Tty`!v}uH|KKo$-ESq@#%RF;4&va{|pszuz^K>DaZ+Tk@gOR%2vKeU|hU@ zYRz8(QQdRo)i*3PFH}3ctl0}mQ|qkFKLCXQ0>wXo8R+nSC@=Irb}PKrDyu?N$xTwP z_W5Nys?>nl1QukG#f8@(vCh_MMjCees4NlB97ixx8E7_4$d+#i3&H%y?y%U=yt*w; zXfl8v{}NlXy!@bNDPYT_jxMeIxzP-+@t(ZlS6(hqa~VV^cFbG(xV6L{cOHbQZi7Jn z2}xjzsxA+|#XT37oHXa_0oz5(eoV9=NUk2m*#092Vy4`;QPS}gOiOzxtYWd4obCG{ zn^@sFSr{?2S9tvZ$F!M#!C$)zXf(+^Ge3hqz0k?GMX%CClbn$PEToUqv&OknJlzGB zvJ3KZ?p-;JOYv=uTP4U~nr^^CO}#8jFLTC)me_oL2%Q0a{gvU)Y&bBT-0baY?vCE1 ztd-&*vB1!BOfP1yXV!D>pZg20b{?E352)T;i?gFfM<9RnI|TaaN1c~f)S7R@zYTfC zEr5D#Gu`CMmxs2d)(#I<#Ys-!{fjRE#-zJz)NM^*$3OA&_ruYfG-9*#{hG+M9ObRA zVx5DhPAC#>B`WX?o2${~BgE}y-Xn~hQ$_frw|)7!u;yPV{7%PKPG+y>tiIgX-F4*2 zW<1soN+3slM^dcm|b0ZJIpSkMh18rXns9A`8)ccEDkYU-Ka1Ki0aO1O{@f%MP3zS z%bt1_-+qm}Rea&2fntQR*M^w3zQyU8C-(%c$2S$U3^at*WQz*4!Hqlifo-j_6qD;& zc3!BczZ!95LqonUYlt4mbl+x@3Wsdd3btqs+E(5-L%U#X{~KXVULQp)&u*H zxTrOeesPu7XIQun>}r7c51%Zfq&FT%n8&@X1AUXflDrc4<9y!z9f6vH4l3`t83 zJ34?ptjlGMS*@sjlbe>hMDanH$_8qAs6y-MaNfa*4v|~T))b(}6u4PI*=L}pFjovJ zE>zI%-Tv2?LDnGg!bVdD)+_OgxzDMBGw}~UjtcVFvYl9FADMlxjX68I;J+af`{bLh zbho|91xrKwx&P#4)53^rJ^`k~oq+UrE!;`_eRbe2bI&IqQ^P5Mqx>D=av5{>#KNA@ z+443-=vdX53H)TFN`f`HL=FXM%l?33gIcT&p#LGTt>U$*_nUC4CH#MZ4D6|WSAe+F z76EOuCQ6NpDk|8hD2{9=;#mnE4+kD;F=tP=Hmil&+M}*OIsTkl72v?Jl@D+?>ZG*~ zf`77X$5jrcXpVxphPL=VRhHL8{yHr_z*jfy0tAw-$Xq$7qrc zu-?D1qi&5$Xkg2h0Qqkw*5G_6dD51-Isk~BsP_w{v6#4UEkH;9!1!0*)jH^y5TtqlG4(8~zb zFZqY~K^FWkc0I6aTBXnxlKKIKl+MFybu!Tg2!jt|v;3!hi~r523juF^TpE1zKx8)U z9MGa$jbpqTI$wMw3X`cL!oQ8mcMD{QXu=P7d<@6yHpes<3Ide6#n#3I_V7WB3BC0$ znI(4@pHMgjsRlkS|1Mx$H@nF72=C}^8uE~idIZ=2#%m040P-EOfwEOZi-7)~pv7j9 z{kB!}I)|nIF5mync>a9TPYIE8mV3b|6wlx9N?G9Kov*H1M2#M+h78pW`ijs z#`b#`!U3ZVh?QU!WBgsJf+Kand#Z_fq zX1LRA3^__CT(p}B7 zUr~!BtD2xKp`kpZV1=rocBESBZ3}yar%2L`Y)v!n&gro!(j(uTa3FLDtcSArBIYPB zhUnY7`hHBCdme&D`QoN45vqDrtI+cx+Z;irZT(Rf9bfYC`s1J;Ex6|xAwPSRc;E2a4d(%Q?Q1d|3Jn&%Qd^2L zy~-}GMK;Mz^Gon71&C3hPB>D1ZZd1?uz8tsLplPnk`1PDF26ZSRQ@necvqe1<@ome zqiwd5*ZWZqE!Zk_eMBHrI>=GAdJVO3WhJ~L{$_x{OvOX|RFNr*Gsk{XkN%(L4gMc+ z&A{i-@0Jc)<3)}Hi7iL#$!*=}5a+^{QATnSoP+cd;HxZmFLB@{u=f!+@#)~3v%9kQ zQ81q3U`PKU`xj!Q1y*$)FBYe-O5T>aFPijsm(gi^wQjWQyN$0TyPOFb3FUr)N?pqr=dA3%My z_`mL~|EP?=gYMy(|3?jy5$4Apk?wA-d7*ljL(+#|Q?^#8NLSw1wbauE^v$x{B`{Nr z+AT9}fAk16_{`Mg9u7E{=jWV5VWzAz5b-Vp@`%WDm^aMpKdMOXHRh+(hc?hZnQ*%e5HS_+SQkH zNS??}K6<)Z*#NhboS4gzQ*JX)wkSigdO=9>aRqp7;wMCh9N?pE_n(6c1w5VQZ^U?E zKTS%0kNDU5FmdGx82+d$K21;n#uyp}@T2ceXE_zUNYb0BDqai_{h!;3NPG%kL|sBS z%30TAXd-WgwMA#3Ztf00Le-m}*U?kAbM1_Bl*|OmD+yrF&5EL92i?*9dL(s87O!^wboDwXGIgip zO|{2@M=E{Z?5Hn?5JgYrw_cOW5P*kZHi|OTj;OB>vB82v*DdKYuyS3MgqV`+R}QGC zIM!%x)xDz3!0pfu=37HLddsAd-836o$?%#E^%N*@7E}aw92%dHRsMs!7|OCPX0!Mw z9uTBj?)Jzg8%OY7)e#$vkzkKG{m8vkWq+H-L5D?E8j}s&R09zti z%t$7{a_t`QJ_%Ca2$MF%TcZtcjimkhF(CHC1JInhDtzEmYirNM+$Qu0-0C4C#c0cY zY_wUTF=1kp(nd`1%`ie-pepY?0F7UIv`enpnJus zrcQ+9Q7njSqNU%ZouIgTA4^p)xaUScr=o8l^^J>%=4f>uP>5450C54c3G0I}`GV~A$YK@Vy$BUSTTA!ornsG8m!w}#K{>0%)#MH&Hvg)Ni^ zB}EAqFjD*mMRDMGUyC8abx>{Rk3$_o;)K5!T$K|_;n~6ZAXhgFu7y`9G^v$xll)Ad z|9$n)H!_kUwKnOE+!$uKZ_qyJxkvold}ah#YwVBlz4F1L~>3?Ph zsUKBbKjFw*ZZfGNv63&tyMYI!jhI`&9bhyoS~2zAjPrXE#=bLL9L-Gz86Sz`FZV(l zBe>BT;{Q>xJw!J3u1M;F7F#caIxHa z)tL*+JIp-!xYVa79S_cQ!nQlYnc`d0zj-2NmRf?D_^79M4x6|i0uCq|_yf{yRX%c_ zbt6_Zbj>sc%vNJ6#QsN0me-G*2@RxbCpsx|F4!)DRg$px`9)HBron?0ZlV`Cb)$04 zrUm@vkAZ@eJq1jz0?N4lqjE&fCauOF+**}`-XcN&nol~}{#I=fT;sgFEqj7GpH3A# zZs=Vc`z`-bJnj}eI=E-W!)oK!MNty~S5$}(`BkkET;2rEgr1$}Z7g!5AqW1zZN0N0 zyK2oQCzIVotMvDF49Apb+ zYwJA6R;|PXMhgbEa^@MOdXG~4|4fjy_#q-4=<^B+|KwIbJ{ps!6YJbULww_-E?vd< zy|<@{C*#*QI+pcEn?ko~FV$5h%TBU;nkFBjac9S{rm-^t9}O;tjHr!YOz0&OIT|E5;O(N?}n2x@XP17t^Ef(#%I0HrF0Z7`-b6n8`&~UOm=l^#6 z&X!?y*j8W8r51gp$F*O7%fbu~@=Xh^-|6Kw*E22|-`0pS5LpIChtHFI|vK! z&7BiPF>>|>dbxh0Ky_tmDngUUEe`*SsJ>M&8eEHFri|#PPo0`^s8$3RuLNo;?zJ&R z6kY7FQklN)=DK=%<#W8OOys|%9*()1Vzgu+UyT(Jya6``FuqAc6Y%lqiFz1hcWZb_ z)*1S4tfoEG99A`G4G^3jWi@L7kD}^xf?4@ycE!w#0=9sZ+C?B{oZ!*Hbvx02N2o@I zx1sTPtgi2dH~8s*3=c%ZTJtq+S83Dq%GYMh#Jqh4 zWx#v3ADN^-ULNaZ@!~yp?2i{(2R=piM1jn>Hv9~br;bi+zx$*ttwARTnkJAmks8*A zxsyfS{&g&y;_Ge4;-BsY(+q08EKOGPT$~I%+PnCzeAf|O6M#Z?ZsR<)W+72dwrk?@i?iZa$7^C%XTrbq2WQwd)nS>ywsQY^f>(0B;7=nrwW#<0&{F?;1I<> z$du`!t+O(o7Jq~>Qg{aK8{f4Yzs!RAxTwF3^Cs6@b3MYlA=-vIx$k^YHm5U|2|jo$ zH1;`2FVg2Ccv}Xyp2^(;WVgUzP%A`4_o)r-g1KH{tsB{r0(Eoj0bgkofp=yLr{Xfm zk@^2oeJNe7sES6QQQwk`14bl;zim(PhL~pD{Dd>g5g5Cg`xLvtjGh~wQ}^F$YYu&%eV$XiP(SD$|F!vA zoZeo;#|keXB%w2NL1{bt>*?kbQ-_?w3SbaZ=uu{J8t^S(PEMupIT}E(gE*vOj~V%U zkaKh&X3`<=uUi7DM*VX;^zmL!8Uqx9f z7-|`eb)xf3kJT4{r4Cf=H67MNBhdy0@~CsEwLePaJyOofh)b6t92fv<_($EyTyvi|In#1%cv4|mn~QM@02#KRb-Ft4^(LIMT0P&C%uN>ij{Kz{Fu z>H9?R4z2B4s{}dAVb4g?kKZsnmdhZ171>kF zLu+5QU_~?T71SQa=bBL<94ZGD`?|Ab;p&!rv3x-!N)fVgH0We?gNu+1w9~7ks6>?l2BtY~6T{n&Qf zmc%&mj+}qcMjv2~S0HNGDR1dxwkIe(=sowsTMi5R<0|*Qq|l!@hinFZ)}rF~aUwnT z=A%Q$AZN}fHK2M?oRoN)tiYK4&fLQBzCWW$o!fNl+WPFq6$QWdewR7xSuajr?sL%R zko`miXD_d;ob0?`>=hY{IsNmfOhjyk@cz~py(__D>3+eta~IEk0%jv-h0)`DvFlq` z{r$B6nkvSSmnP4sI!0N3P<@WGr@Ow!DoORdPe#H1^wKlgl_+YCVqS&{yT3y0kRQ3T zLL6s2t&)dynHBC&nr=6{&0NVb5)r(9FNVtR?-{ks6Rx7TnsD<^Nqc8M*Q)P5b+Nxp zN9E5(WnvXme4eKr9plHX_L7A&Vr@D|f@Jzr6)j5ZU_?#->%8uLXDm-s#pZh|_b<<0 zyRyUhRQn!hnr3xRjScH0b#rAHn&n5k_xM33dZ1HDpQfO+j17O>?@D%faV z>5*<@Y)+ZS9t@=P&ONf{dLT~cE-U!d{N$neqT>+K2y7fHXUdO1Cve^?V3iWd$tCm< zSxC<^6#s@F2&2iO`xkKqc3qvnhx?vCkGY<5H22T?HqP{5vfNvJQNcumT-KU6=MtEP z8O6~|g7`^NzwuM(&%)V1=MVDdO}}Xw^w-Ae!ZI1w;5TS~v{$^a#3UTlM19 zA0{hcz+J*(B=11%wZjn!4#8?KUw=rPUAv^>fGtIH*b6w$96bu-l#O#{ z_bZBR;ar1;m_5PjN9Gl_I>PKdt|dFI>cK?N*)nTB(HNDCL79=)DJC%n%vI&;OxIgE zC*bO%8;#o@p-$!rjObk?+gRmb#Bt#g|*RGxFn+E;~8uof{VoR zxHci>&Vvl#SOS z=Zv{JOslA+Z7z;UWlNsmGDBPFy?k+; z`xeddbXZ9<0Ahw(Z%Ku;?00F$%7|D6`U10c6JEVMKoeMMEKGb*s+cdbqmgH*`_KW$ zTb)_)l59W1mj9S1K8krDglOO{bfnW*4eu7QwT6uyY%L6*R3;>ASjPAn1D@n5@JjJB zAObPK5bU`eb^(p5xt?EJnWQt(vVACeCiKO->dnCIG|-2?dH37p>1;cZsk$E!_RO|Z zpy)s6hkh&$m@JiR$jw0W0?I7+6^gi>INtBv6vQ>n6rx(>7%|pD&mgc8wDZsUt3fzh z;+NJ9vR`(nk#uZ@2cR_=iPR)&{@k5Tt>j6zcRIYUOUt;BrFuezxzd^_l z9=WE<)ckE;+aNF@BRT`bKt=*^#W}d>u0G`!MmTE*$7`?<0M1jso~qsCgq*k1COLt2 zvw0xyy{!V03c)RH{HWB#V`$`rTB6^6!Y$PP8W!M>cg2c!yLIPalJFyk#?I>cUp7sj z^L{?OKfefhXriq5@AgubyHwYpRH@{J;|A)?GL=0-6UhAgg_G`I!ND-z-J`T5KKy5_ zakpx|55P5&0Z7<-LVTJBcp{5&plmPCaH>TA^QXjwC-xkx&wPGY+Yd70vs&+;!;T31 zUgqpy{w21hfUe;Wi0VG2=%UDnla><)o(k-0wM2$cl339T;^RmwdVQ9Yp+>M|VotUJ zU&e3F$>JX6feS+0(ZxjWzaM#JwYJNs-{&39v|RvP1r^E7X#48*dRB(fTkuv2#BzM#7tJ!O^PYf=lNaGYTA#mZ&5G|fcR$~o8vWubZVKdLTh z<$32Kv%&aQbz2=iFki*j+3PNE<)ARnU{k$7S1wJF8llBYNr&~l>LMVTh(G0H;Q{0R z;tR0MtKpqtu&|4O-==$v&<^g17<2T55$#ivw+oq(oH`DTtE&8oR24C$4C;5Iv~$$$ zmkvaCyk1D$Jn1rToH5=zZrn}?PzLI{R-I)jXD)|cw-nzzzi`e9dD4*WEBqB=qIkp7hM2CsDUy!7%~vn;z#_dj*`&cTZ5?Plyz25u@4M&!bL?x$GEV zMJSyUtV_u{<+-8RWYAg<*y^jm&W_M1S<3)9%FzN&Jv> zB4m}xomSNsou@MAf9##Kcfm7VpgN-Jc|fsE3=qfb(M0f90&k$6X4a&)ElnRtFIMwi z>y0J}E4LwoX}zkQF){03ivq2I>u(sH)>G|xK81_6zU}aRux|kgNHnwvW92l*Eox2u zHKiGi6&dxyz*1w{ig$c&%C2PR)2(<|tnHVoF%%KFtaQGWH_J*8C45qdxXwv=O)u|T z$Z)44$wkPAXtgOQywv+@!||O>rM^^-7yWf+ruC9VHcXAEnuQ@I-r6a_@+7~78I)$i z1l{GLI4`~uz&Ua8NhW6jg2Pb$OdJ6gN(SsBV-Yq5;~uwXgJ-vxiWTq=3%6zY!Ow;m zLTd}O9RUO-fz!d{xaJdSM2>PJ4I6^%#%>l>>~ddgc_@NfU1sQEUtF5sMVMzF%ncqy z8jJnAeTnxs$@h=XTpL&D)8bdP{0lluoz0!&paYEP0e006wuY(i$uQ2LcUTQp2#+kI zbcn%}lD=D!SZrE+rps^5h#$tKy@PzH{wEK{-t7eOhP`l-@|hgG^yd4)KZW>3So`$v z?)MqB!+ct926l_oj0qF9&hFF-w=NaqM}fK49|#*QM?qN-cB4@`ghbz_e3 zVy0gQ;k9ulyBN3B zrDnqX0hi1PiH7_gWsM9^+D%EfsbAw}$G_%;8jj0L^Ez>%ee>^cew4sHb58&FeVtI< z@cD#FEX!d^On7J!I=x8NlIdh}kahK!bG*nlMKeTjv&*v-6QVqKk80 zjZd-pye|GIzPSOwn~Ehwow|;&WTh->#pqwsF7OhpF2@5J;?*Gh7$#LKr^DNacZuqL71s=#2zZ+Dl4m2V4q9?!~kczp;QUGRuz}!B{T`f$g}% z*|s`M$?xATA=m=gTE*>;#4RmH^M~K+QQO{@t`IX#xag5_?=>(5QV0AL+mv5=U6VS6 z6%;i0`~;2$=%q#Cd6A)%tCXHL`3aD`Dc~gA%tJd8T5dmIsz{Sch^4EO0B2Y8+$swa z+g4Ul(@TD#I%!g`DtKn!n%xVUQ|BDzbLQR-xQdB7Tw3m7JMUVKZIfuh$YV{^?|quD z58KGBY44-Nda)h&=oJ6c4qFjdP>6EhYKEv&uA({et~d0h5#$2Kc9vxDG?uI6r_fH> zDifnO#R5vsx3dS=o!^^UCON+8E1vE5n7lb%z|U+oVggba)K9MlAdsZd%m+eaa@d7(Rv()Q%K-db_zc@Xn59NB(Z7$^J3d-af-%pJR zD`Z*?Y!r@f?{pheD|RC^KU{M{O0u#gQ~IJf%`k}P7mH3mrFP5TL`kNxgIElF^&96Y zXTogcUgOiy&Ri6^+O)KvAF&4(aWS$?=KY|v8OXElr-pqOXU~#lAfACk7#hmWD@4rz z-oG`aNG?-Incca5!YH*F58ctmv%xRT&@3N$ntuwVv!O~)O7psVH&~3S;6saW=z5?v z21U8ah!I79d1vUD8s2q2!ALCEQab(sgtcW!;W5zyslQpIz&j5!KrI*^)cuv)>FVYDBEDc6%lH zM~%B5-|oOr1ME_wl7)n*AIwhJn82k7^p2@wkWp6Qt5K?JqZ}>6^Yu|@{EvHkm1*2W z<_31%68ktW4DMeGiF-KFt};JO)Z-dEJs@PanMV|HNY@Q-0A{M<^5ydS)7hgIc8m@6 zbUxNL#>)oF5XtGysZaRS;~-b|L~HgN!oNa6aPPM~SdnT;5MWPbEe-v}({)9QrIn>H zh{jhJRYmHlk4U!oIyb$-E=O9*>dLgB+w=d?I3{6cv+{lngr zzDXlvv+i}t(TRa!yle7eMBL;|x_OSn7kM8o_N}cTRdH@&j<1>69E*kZaX#wYU2D&| zS)-4IL~JB$^fLcP^`?40)Eg+z{_VTV99L9e8H*N3>S+O)a@#AkBovxq$ea6t-wo^#1&mDt-v7^)wF~D1lCOpswX0(!sMli@TED@j76Xrd zV(%^f=vQN!`$KNgi`vD;cD zNM@e(Q)V^@wuaQX5;E-Z-Csx+p!NW7bt#wVGux!JO<%KDPo}$3Wfo3ni^A{?mxT+i z)Ky5B**(1N>P(>Q_{7@@o=ZsBp*10&io9bD_91$nGM(a`?i(bIx!e$RS^AIad4QQH zcNSLIi?v?xfT@0fgFBKU=>QU+JOntgv@eOu({CEFB6(c17V|9Dm-Z&t9@KM)`eBNI zQm_fisKjFi8>QMWb0bBJ&Vz8EjK%|-bU#R|B_*+rdxIV%_c7*aJnnHW6ZJkdbzdz@-r3eSvDTM;#vpl#}@m1f25j3gv`i z30W`nk;D=M%|X-TBg=F!gSJV#d5ktqtIbk(V139a>(a~pCeptJq$p7bL zfT%I(a_{059C=||tD`XBeqHv3{Jj!mqr{oR{}tm+$W>8J}X#yXJpwIBct6oi@Ah!uMMc??Ig&w z2BqyQB??ZRof`S&KtooCOCS8KWR2M;1{R$=9}}uaYZs+EvT0^`0f<=qy(Ro|pY+US zl`4B9w0=_E!Carh0`Et2!Nd;$8mFYhlJ8*eG-`Tuz*9jKmbN9yDSr=+R3v1_Ezgkd z+s*p0qoF++Zwr9Rk+zW4nRMlP%w~Fr^;h4Rx5<_5bZ-e&f%m+SkQ?7N30ti(Nd?Nl zqV5ex=5APewB$TIch$z#mSbB}38c1@F?pU9)4N@t6#rM?>R34YC?)Nr@+Au)|I;4j zgnO`Uh~e|laT!?n$*&&3v+z6s#4k2novCtUwZ&hxbNsgNf1ie7w8WUCfam-^-m@zP$dNCbm$ zke@UC5QV-?FFtjF!uhspf1bk~*CoAg9TpN%Q8@izzh(p!qY7-Hf{@e?P)3r<)H?R@ z?|oW@J?Xi>$8cS+KlgzfrN1JRnXW@0hbIsX2?ysKhB>Ty#VWgVP72@T>k;dI(`l=^ zapT;K4i~X;sriPQ_fq{TN@b0WU$M#Fxgt#+^YPI&%Q-E_$v&G8^0&D34_tDl`yxLN ziOuek4iC>yT((b8Z15>KONc>g7or**lG8I^Rk?_EcIhtvQ7$AfJu zjNNG|&eGvSAJ;ExF-Sv10#3&4{@`(hkd~zs(*p8r+ZFx*W0f9yP7;RBSEHRS3ikWy z#7zH5T+X8y_J(X)b6)L`MnT9^d+l%n0mIXQCa!(`=+^O+z+)KLi~pvb5|HbuvdT+u2s zB7k{+Ryl}A;S9(rr>2)3n@49CUYagHQkBgkZH2D9;NLNw#7b=l3dEc^ju%|_@Mpp^ zd2-LOuK;wuzEB{AYMpg8H!E>9&-lY-Ve~bK)Mv1SKw=Q?YS4Om+M2^)y|f&V*Rto3 zi({WVhAXH+Z-H%*A=2p@e|-=*3&45$csxI8U-sYg--=RYx&PjHGd5rO=H#mT)g!&6 zcDEj3cfi9Tk=ilvsbyqH1%Cy@U^sSHyOJDFVr^Wp+fpnv5=|8#RXx6GR-6ZwkB%&OBl_l-NMwd1vA%EF?yJpJ+6Ya_&>ZP=e&23V&(Ju6zp7H9BIxF>Y}cfae4D?DGf13Qr1w3&JZ#Io00@!8u^b0+M#SwnaArn#I9kRb4P zfS`<{ejD`o9|6Jn-}OCdp68$3yaDcmhDZ%@F`qe>@9UZ)o%09>W6;?lQN|*dRoftX zdJ(StY}kIF=>wh!FgGqLiXN`*A!Y?BH$~Aev}Ai|obnfe(MIAQ%RgVH z2Rj4O1<4j*P^ssk-7vj9-t)OXctw@g^L67NTQ>18izXZdC=`rU zL6%g@W(;{azz1u5t;fLRI#UJkl^xL_3JCuY$e@70w-MH&kzG9(@EoV|;+y#TgO?ayFwMH4IDc?O+^PRS$Fwl3c42@i7eauou8?M zz^4!xP1tAdnw0zi#1D0FFv;WY4QF}t)#T&F4Nf+n$zQ2CYgeJh1&xtV?9h97ze}P!yGY3TV`GLnu{j|J7 z>GqNorY(;-*_VDy2rB)dD3lOeNfNol+3GktjMa(d6L31gG#E7ms0iy$r~rBeJ7VQ) z4kLvs05JmxTG2%1{ry)LjW{oPsgGWANR7C#-Z$j3db+uO+oux@&_ZOGI@Is4g@)S8 znQ4IxwwGbLfo$Cq-IFQIO!S_K4p4j1$$|fewLQfkB3g6+CxQX41mmA77VN?H%q~@BMg;4lW<> zFPz$qy46F@WeJr;G0y!m9uht{Zh4Qmz4d?tDX*;`Dp0M;^0Asj>uTexorOG*T@rfv zz?66oZvzg2*7JAik#pf!U~ioR)KZpQN`I<+y;uE0q(DXKYqCsdzpMeh;3Zk%5mAHb z<@CK>|5+0=8ZrAZ_(+iru;pLCuWfaW-VAt!Xa4z*0ywiVDh%;#us904gNJXnG+qw< zVCMSpz4`>HXwrc6;Oi!*uN+S9FOZKv*iF}qZzRqY!7{BUCXN*B)&hZpWvuazKVnDS zre!oA1@y8Za4>R{Mf5AYxvyvlh3C!lUFc1DZI7yhLg-n}+(d)+rypV6!gZ^D78+Kk z+QXGBDg)65&|wsAPDXF@WXg7iT!}n*GZ1C<}V67c3S3 zlENHTunzf-rXrQ&ls1hMF+$lrUlXsBZ9PnC7x#i9?)L2f8@y@0Pw;|9byJ*wXbS)R z^{4+)nKoV*dn@<$%d;~D!Bd!Rxa+6Hrky}IbffYFI7u;!sOFsk)T#`?%*Yw=4By9; z+6A6(+Bt1Cyr)8L+GW#Qxi!(p7O$XS6GOvk211%VtJ#3<{703#vF$tC(pJcI9QTW? zF(!4y;M3JLz4Q>XgtRTOH%hM0utr$R{(*VXGPK0ymlktywS`6Y&cq~a6*+64zMI;ITyCZcrhg(V93l#bw>vif_8PHd@sF#*9nV1QSc9-ySTsli%h&gX zbQQLmLGUuP0kJhVYGVI1L7rd7t-S51x*X#wvtw4rmcP>}p#Gy$J2Y$K&t{CX+&e6^ zEB4xu$wciR709$_4kKZ@{!_J74NjV|_jQZ)b-P6^*H`^y!K&JuA0i5*hU1K+Ho}s= zNrDRSD#VWgvgDsqi*nuI8fY9)2;P$b!$EG6j3+9Tk_*V)4!sh72|;z{>Yj&i)X<90gF{YVw|%(e;xgsKReGD? z*5^L8vs%^jhd6Vra!ph+J#+_|whsJmdK6le5vp3YC(Uee=M9%t+J|G~*| z1DRGc_=U76DDU{qVn&!0&sOetW4nTMs=k5R_E!Obh>u7vn6~IO(Kx{Q#@rLAjNkz3 zD}davYQbLm_r{R!CO=8>>+2S;<;zTxnm4{C1jk%LT3*t6*ZCS?jUIR|{zql7$Yo|7 z+oj)K!t%YsSXh5&p(r)sz>hl~Yy+@e8G;J%JlN(AZ!T8+=UhTBa0g6f&zfsal#z@QXjn`98q1*56}(XVVnSaNGdFlunQJ2PTl! znT@~4Tl>|j?zIDk0pCyq6k8>%4h~j7<#L*{aQ?sZ)BXNkzp2uHdw%yAP+C|j>NIn) zMET-lSIqO}jO1CoaOe$P7t;yi%vtq~>8PkKOXj>iW{R1T^D{UwYGM924iy$Tz}mP- zmKc*xgX5uBrFIj_-K4VDwLOKD|EPQ=LSnuysJ<>UojKbg8z!+@R7GX+X+dRBcyN?F zb7$K_az4TaI$vjPi7+Cz?T6$I0GjmLE3M_ zPheJf>eA8-JoKH(0nBvcDr`Xkiem(Jjn6(7+;k+Js(9~ksb2|}Y}Hg9E@k;F+Jeqk zb4Lb(2rt0`xXHvX#z44hO-Vx@6!S|9=Y*y zuTi?)qJ0V-KHhb!zxD0N?6@!JRO0bV!^oxZ@WHIDw^KUHNZ?>jgMsIdM8CV3zA@M5 zgF8J$@$`W0p+ShdU<+gvgp-=)}uh@b}wcKN(v^&jE-9rHKl zxx~lf=#=kB-L0Cq82gVZXUSiNZZPFh)!+RvzgQd$PnX>&}zC3ie9|$~0Y8`wA@%1hZ8n#a+YWf&$B5wQmcj8nTVuZ>T%g#!z z6HiqnlRoli4n3w~6=IBb{`iVe!Benb`88{%yM~DBKd*`}o$QcSS@j+}4McIW9tz}# zK8$mlZ=D`H)|Bik`P|VfVBBET{w^u~E@v70_5Bx;(rzEjGClL9tXTL_T&HwYBYqT5 zs*hgxs6KxF>xmA!%fiYZMJ1L_b^Rc|H|TCX=P#;WpZzCPJhfC*S7s{Y-d(oLWEckO z6#w^QUo7LbYTB>!XHq;LUyZrcuN6}8@EMiuUOzhfC$oLO9OB{>`C~fhE`P#lZfN+` zEo$!{R8M5uHdC!zGiZ?}#Z(Fz#G)aBaw_HMQ#^F!!o_SX#=92oCp< z>&&6=-x85h||-CkF~(Wae4UB|*$ zkR#_w@u8WV#Azxn06&BtonxllAg>u#$;$H^YoF9$jcGV*!&jnml zZ_(yyNPO?QK05q?LAHh`qNfREZO;t`9}`EOKGlLHRqUSw>H_!vXbJuZ{V9W}Oj7;r zb08%8FsZZ2YAj(RafLR_Y*_hITo+9-5-f#upwILx*Zf_jU6QyBkA;s>I55)DhlQBF z9){2h{)kh;LABF4?uW^%udl?0L7orJsk!|K>AD+myJm^;QsX4$c;Fj95>=^HzY1kj z7~Lmg{d*|)Cv`)dw^aG2zJ;?cY+hT+{_ajw=(vrUZGKPQ*G(P#kII|C#bm&$U$uO( zN3oUgBB}$>W0b8o5!}NNexFNz++y{}a|5uz2*_<*{=GJ3*0iP~(k(aPB6>lo7k6GZ zI0riQh63!!l_;Ch1>+7^k^pwOC!U4G-x|CRQOK;bmnsH1L^``AdTi`gHyMV`j$G@eR$4uPDkY>}H}CtCZ1G70 zqMg#-CqHRWEa*O0G`)t5#FeH9^j}=TW&V}F;fOgNGQo$VQ^#t!>7lU@!)T}&7g)5Coc+KSv<<)uWlp&ukWk$2YG&NGL3)<18%i`nZpbb9#diU*()8M-~~@b3E=BXBaM{OzfT?wLPexSHcu zRAd;U%@M-)t(ko;8oKVkGX8I%YJ5uEaI}I(>5M<>^ieJ?)YUC>u{@U;LVU1vONDal zqIuGV<>wIQN)N2LP$e1uij|WA=0J$)kV-cu4xMswtL4mi^rBXBP*tK`M{~n?95)d}eCeQG z$%DXd)LNyy&HJeMyib6$?d{Mtrxihu6{}*)*1S2Zd>l|t4s686;H?T`~+YzAk<9%YV3>2tPDysPg8wu z-Gp!oyXQK`lTjhZu=gIxbKA-S0{sLSE(3EOErnWO=&D@yDVI`^Q=BA8{Ib7aH)3fj zEOPbuU*CgUwR71|2w(~Gmpf4xLO&&^O=T1Hoi+UyQkFC1HOBMTVnSt_NnpWcQoJU< zw9H2om>21fT8y!@-S6yWmA-R3v}W2;$1&dX;EnOo7>r4~bX0YNU$|_cNcNFK1!G#yt&w%cX zd2+H3O?fHkD$%953(cg_9l5qhS$SpDo@_2ynHDV0S$*LB1Q9L{+f(B zFUSkxfU81q2;M_yOa#P4qHm`B!DRgw^e+_@S1*pq>b`p-#CxntSl@k1bL|;kOXWad zPh=6bLQ%;bl8t>W2pPseKBF#C9>8bKo(B6mR|o|>O1hMI^Lg&*EAlLsFr%cFP{90@ zUCphl_PQgupBzFC2HnM5t}I1*tc>2YA2T*K-Wdz76uI)8q8U&j{=QgSO~r+&O+W1r zB#HN3fka#w+hxmRQgTY?`y1?#2l^Te7QWn}u7jDjO>%iJIu<25TU3Zwx0je(6NxxC zd{>zd*AB&NtT6Q;-KywshsaCr!;=pqj7b~GITgSp-6GiR5K{v%a-fvafen%_UR$KO z;0@f_zx@dJ9gtA`)K%$Efh)q@(=roV_0{CoPsAbelp+cU1ltEZ#usEL2%6TX?}9{x zKk|u~D|9UkL^5-=PmyhO7fVEQUh{<|;th`(4#>cuh9T#p>`{?9w_7}jAd=JHGlm-^ z#c_-9?xkB^3qEY~WAa~%MF+P=gCEmzJ-*u5&r~b>jWCI>n4TwZDY5=7Oe{&S#IF%; zDML_hU|XBFm;m-O##3kij)CGG#$^ZnA-NCB16CpXsbcNzoa0Zv)ET%gR5sGxz}ZIR zMGWcQ-&A8 z;cS|q05Z-sXiTWQ1jqT3cjWt}sq(fz_q21Q?(>}RhJU=|mjXK5nLwVU)z#bFP+_3C z?l8XB7~)&vc=0B(e8(>(kM)sqJ>Ou?)3*;Yu`$o~(s#aP$rSrhuAV46_mn4`8ico~ zV)It|_ET5E3$_|q;eGL4Gx=uBS?yA)E6$*9{FPHG?SmBY8zXP~sL&Nsi-i9p>Ad6F z`rr3YRn@MltqIM8Tt48gXqGnoZkJR2$yLRo`#NG))kfgu! z`TqX!m&YSKPR@Cq`@XO1eqJ`7IY{K^4bwQ$WcB1m8-fHog<&ukF%rZtz(#J=xC*mh zk<4I_U2Nj7FwLGro;Smmxki1)NRK=B}I#2ETUvR8q$G$>F|4s7G&utrQnTyb`hX~e=W0`N z{q4)wdt8zz%qHILrdL4cu?Cx^ZJ=^u9`v4UdwjpXOrUmiD4M%)+^i8pm|KPFT-Xi{ zk~r^Nj-L17t+;JXck8tiARibrFwQ7j%}9;!7_Fr?BN|~eONwF5wiha}I}1nu#f4=v zjIr?eOis!mZKiy$ztuspM|GR##T7YCP@E!2P;$h|pC1{PIJ57<*$R0I7joH_p| zA9IEYmtF<5N9m^nTAdn_j`&dlqxs)sErF~c3^Rc{fTbXMu+Orsx*6Za62x*| zd;il)zDx+6)kP_bUc!(dmu;{psIS^{|1W7p9@yr&Wx#D24A;AWm;ePi8V^i@+mY`V zXsaU4-1M*a%{)0_zCJ23X452g-vQbpc>UqrTqXhS!g35NTNi(W&h?$;hK?B&Jm-b?#lyp z66;Q)n83fMj)Wb%RuP`$w|m@U(R%vV=d(HKB!`t+ON&k2OLjymfg&QIwV9ZTuXz>_ z<+IGn&^K+ZG|L-KLhdC|${_Xs18l8ovu5D=&r0l)xyDMg|LE~`kZwbg7?R&SorhxP@=@tz3Zzan^0)JCg@R#aY+py$2l z%drhTx7M_t9@LeY*>_slFb5iTpj`}SdV|=%;8J8|I-an_rdH-8x%UT@9V^OVrj4-$ zUA=eko_kWIatakMOPg=z>s8*n@tIQdWhwZbp1_`+kXjv2y6H(n*zp!^-M~3-=A)F= z@mBN~V*mg{KuT?QA!9fZw8RH@ZSCCD1=^J)y7GP)hQFfvbnSDzH5xiF)g-)8 zMK6@I4JWH%RI&Fp+m8a0XQw3;ol>%#u#sKEXE(~$aCMQHAYvL2;Eh-+z3DeKsZ~j4z9D1^Rt_a?cnz+9-n>4sY{-$`aXqv z_KGO~j)D4&^#q{|q6t&tl^Z@NtCI%}9_F8)WWjA;6FdQm0Fo!mNljBkALGA0Vx=j8 z0LDRcCiul}WZ3`E^X$uImq0`a$;|t+^NiZ+)?^}bEI4f4TlL3XDLR?>-*(a4KVAGI;uQ$Lc#y5#Ye_2e*ow|HPD3I(9v-Kmcn4+ z9=$*-F3bPCCmbZ{Qjeetdz#Wu9vltIS|R!+3w9q|_{cj> zC6Xb09Q>$zMSE4EC=0-xBykKGrm)WWLzy)gh@Ne;j<}QbqlKrsgGIJkM*|QW(DF?j zCQAO8$3XLaU%^1jR?8~EseeOF=j%FtmH2X0dX{qafRFSNN7r%T24%4vmTW4IOg7dW zjaWB#v3W1}?lEEWd&XZg?jgbU7k9UeYzTb*(c?S6a0u`N*Oow0lT!43m%K*7%t~P4 z853)joCAkWLZ6LVt-;aEThFd7eF6tf-x3JQ8l>#KHSVj*JhYpVPOXZ3Dm6|J%6grt zs59Dkdr#D_NNS8i`}uhOphGHRk+E6%oAbi8KjOYwD#J#JZqun$FaDD`?CTK^`8!qi zgfYAyn=F@;=+tL6;3K}!oMoxpTT?LnIzfmyabZHVwwQpnVJ^w>z)gz;5$BW#W_>IW zp?Jjvc=1I#e#hx3lY)MiP>o9IUk|Zk3{Mt?S`Oyz7M)x`*2uC$z}qp57ab>W@xM}{ zGofV8gPA4y&ARGS)>DHyk8?@7BKcar2rurf;0zpe|Z9r5yq&L0NU{X{=bafs^b z`TP2d2_OWknkDo%v_U1?U*r*DPcZ5RpR6!D``RJ6x)W92_#bM<_$%uhw&SlmGFqN- zYJzvai{R!_-_TF!KfQDwKl$4m?AkQH+rox*gxf|HLH@qT-E}$hJUu=WD8eQ%5*3$C z8Wk$A`UbQ5KY@vhbw>a6r91ELtf*fsYeBxD9b1Ltt`sOF>Kx=~c+y68uCry{>*~`- zD~_+LXc!dJbwdol&>G9DBo`y^Xz zl@BaYqSdOqTd^urMyr!~@DDt?PX)I|xA~qM z_rgt7xng~t9&(k)(((wmSgu-TG3fMhdiz_IS*t|{PC{eK_H_>1eAId5z&KOSzYy)p z_yyLepz7bBFEew6OVPhl$$st~M3H~K44*IYmTI|NpDRKMIF*eDT8PkeL=S=oKY{sJ zjpW_A-UW+2{ezAue`Ml+SHR?wSHv%M?G|^v2p`uknKot#jY`FM0dqYz-cLzWAuKU% zi#X$iX+0A>ILbp!y43B|%DpvSKBf!8s$2OZ=FSu4c!gW_Gb2wsLq_V)C*|usr8^3X zGfUE@-KGZ5j#Z1iSfC$`lNA<4o5rjKB=D${5u$ks9E=y*2h7eK{cgyd`Pnuf;g8qV zhw6ERhytz2JI{aPuYEDj^hgK#sb3n1a-YY!NwLu8bf_#AGOhOu#i*ey6@}m-y~YvN z3zkCy+NRu!Tqf&~PFbPD9-D@^$Bhrnczz4Lg~=aJ;11Zh+pI`^^TAotT@Y&h$@s0C zkdAqvxzGoi(H2WJy$d?hV`Kv8%ARGpyl1$Epc!Rid5w4eji$o_k^+IP}=ww`s}E&)M!*|1T*~fCa)Mn*1vB zZrwaMZ4+9{O1ciHY@j{HdL&que1akVDLU7AeTW=_5 zFhyODy63#*cW}4L6q;9UvV?1pW5V<3;7HaF2isEd1N#`B60ONB+8vlm^lsIK?GBFg z7Wh<0xc4}Mf#f%`xW^kAhL#knOhbP{oUWS9{it^zrhnlb@NKi46WE|?IA5iYitry4Q)8NWK57#3PTg=IgrwO@@oPyM;PGZ@-5VVezX%&eyoI^Oc zLJa6`y_VD+B(xB|0;VQLb7QOUoS$W&TfEV`w{z?hKA)}gnA#$n7Fq^4?IXG`5_AYL zBcw+8^>TQ;s#uRh<$5h@0N4tXBSX^VK}2D?&c!eRFf;*BB%gtz>NKeEZ(LtD;xfm$ zM*W0_R@f}*O^yF(-+H|fS`)8u<5haf=e@D>BkjC*gAN~cvn6~^kS@qHzztG`B5~e4 zW}UfnvFu5@VZU5Vx`W?=xl}iJpzkEhWj(5=7x#D)sQU4Dznu2Bm!r*nUtN9Ly5mHu z8&XMN=)hh!L#gX9yXH|>Px7o*i{S(uPR>NoQ^o}tV>%W&;DQci7QJpw&n9j=9PLd+ zTuwPEf2+K!i_$%(H!84nYdBJ}aTK97PR}eI{z4eOjF<(W?h;pmQIY9@`G~8PWk#QW z%IfA3YR~p2=R=dn2*(~sQv<7?UCmIIE(d37-6HU`oU-@(IM+x4WEMm}A|&B0ISuTF zez#bIj_5AHC3G3u+G(@MgPC1Li$Yw%A9d*eQCXx>oz36&%>1|@n;ctZA8|!C z@hL|al!k`{3V@{TF8NH3=Ed6JH_y>pZ|&{_;-56-Z>vn?GArqZ+j1#zxqEs_EbTc# zY}NIx!}&YxVpNGwJJ$4ja`*2i9sX{XfQ{t>N8OZSswstQ>d&dOZVh+vo4eynr_l9A zuw3x|2YkuN7LhIhpjBS@!o{W#5-<^STo*YtvQ-f#JmOK~F4L}e|8u#d&WrRg>Bob@ z(`gRv%!zE_8p0~k5m2i<-sTFIBaupib=O(XzWOtcXDlLoTDft>ngtvo&>xLxVZ=*G z6mD^Op~^3xsA{BdwLrhXC*i(lr(AROMzYR{PHLD+I8uD6e6Ju6sl1M~>6-i^wJ%cJ zPocl?R{LB0KksM{KE5d9bd`dQ26i^;pTo%RtKH+!rhYM9&<|9N3U!z^?Pa zV^408bJu&0dvpG^7N^~lCHwg4{%eQ?FpZY@PM)8B+{J5gq8~QL(Ke%Tdb?|-@I|f> zZ%I>Ei{iY;3NoEEoG~O5TPIySq39X~|3`J69w6tDX@d!g=VSVLykc(Bc@V)Z1e)i$yj|cgE5UZ>;dZyE`P4ie`n(=lW(;y$izNj3T4PN*RbRs zW(8abL5oCom68>_lDN(2q=eSio`(qx4MgXfuLSIZ@C+Tx=D=~NpYa?w*w5!qvvMWD zW3;{RYR{~x*2+8OH-W{WtQ7ywd9mBbAnn0Nk8-&pU}C*MpBuR5_lYf>`b){Br%O{s=IpvzKWZA)nIu`+ zj8Njq=?~D9yLNCr-0ldm@$f(={pk5q_ZsK+xxUJeLw8eYm`blON?Q2!``Gyl-i-QU zl=pq>dH;jzyuh7;-$w^G;F5Sq=yFZtRQbgI?QBc4jlDZaX(sFBa%XY%gCh zsH@)NLRC7(OPqsyzr4Yr`n&C9=tLQCD=eL7!({>BTNNq6;gh_bMZuz ztvlrqfHQBU44C`e`F@shIkS7^GJh^hjmgID-Mv$W;`2TX))AO-lO`I*-mE0fI1FZy z(q?bb&@m{R(G^!*7RYJZGLLhBl>`Bk?Dfg-Dx#zA=K?Nh7i&1A&`JX<=s1_B_S3@t z?!8S}sA_bWLv(s;lV93gseDCHYKFKB4592N?Z%?GW7%K?yZ7Lh)V%z;j-h!w6 zqe4E}8jcVUB3A>k6KTzXc-ddix4_q0L7Si(gbXQOBKXOOQQy<)|5#2Z3!Ad#O>aNG z@-|dW=2HL*sj|%K>r+TxYjA4|A~=&LoT-k()F^2+Bf2U$2z;cD>;W+&oj}C7_*1K6WJ-mA2>7LQMsePEy{pXib>PCu~V-smY4U~=glhKd5bO+%WDDi%_z9=!a z+#?*ezzS<=G2i^H!G{qS}aajce zes?pGxVXc~AYGfv3rs%=BkQtkd$$56JZIMGg+Q(cg7&}{60VDt=nj9JQ+#!t8&>L< z>7?4`n-`9}8}A%m(Kps)BKyUctz^{dw&8Uh0?)LrOBSdFBcYQ!ICYykIaon(;W$ZX zb;@S~L-LRmCYLTmLcz{_s!sK_hf0rLmX*-l`peKgEPD1Q zoB!$8muq81*3?q-I|3DC`)Le`_DmMdk@{zl@2yR;{n+_DLhR27aq;3F=`HzVGaxE6 zKe@Ozc%^9>%w`>@*9~RT?CW<4q&Hf0`{~?kZdC8!eAuVrY4eTn)1vUzt9kXLV`Thr z<8~m&3jHi=?5KZb>e(suv)0isBrTA68^oNtXMJ%O{$FYv<_1Ys>FD6qi&X#7_rU5` zdf1Z)x@5}+Gn=A0nUcR}R*jTq%wR~*^`ejc+iD8JYJWn&CV&&K8J$b)2Pl!tF9RmdDDbTp^Ltgg%=0yWd`JD<1{K z6SAIHrye&6h~f3xF(6>Q1`~$>HQ{@@!f>aZw$i|s8?igrF$=4TY$B(XUEvFmd6(^* z@t*F@ucGS-BJ5#dnP@UHiISXl%q{L9dMrh|Pe?G`07-71%Rc(B1SWBy+5Q2% zXaw|T^R0aI(LZwLLGY2d?u%z{*4GE)r-I$Pa=0CY{C~^j#i#JhR5fl%QS^qZ8+Qqd z>E$f>901$296rd%gX^*H$w*Gk~!dD!{%!OL;V@b6H@vyo5A$+{aEtb)qWdcM!d(+GCn- zC@o1h&VCuiyJ%I7nyyF+t7_r@bmK+r%@KRw*M;qKH&M;|n6iIV!w36{y4+oRxR{ij zi5^12c7hTh@x69IIx^1lb!GET$j3cdp0EBq4^!w&;75&AD;Yo%Uq)d(;Z?A!KLnAI~pQ zCnW(6t~si2Gy>$7dsMeR4{td(R@C5 zNXPT-a(74+@Jk3NnTkoNi|RIw9JO=8v!jP$O26*ByKzrM1SkAHy0~G1I`xzwhWMk`UyWU9eG~ zw3vx9dr^~9!0@1Qir`ccX;`2)13@enoS}5Ah)%yiKi!iH67JR|K9y+Z^(AY}m}4)D z5|>&>gVx?1-4z6jzFyiJ{<^Kl!KLFFd@hDGQJMbnUji|9En~H3TzoB)o8^Bz-es zSZaE9*=ctJnEuh4;tJXz@5i>ShT@hzFS}}Y2G!;jXEfRBLF=9Z+(o9`H_k&H%C}mv z_0Q>#MT=wTMH3GSa%U(ZLp^2%6J;Vz(5dem8qzpq`{D;+7L^bSc7t+lemuQSY$cLJ z0H>NWjcl8Agg#=Ob9nzwx-#deETz#@=5wv2s~=x3ulZE^gU@q%FYnYiS z(bbjdCWHL-hqY8viR#$f8a3psZ`N+It^uj( zv0W+iOol}~YN$pkJDt1KiLQ8ysHx01<$G>|x~|6VRao?_^~oS0<0!9WAeo6yn#~Cv zCsU46j4*fY1CKTEy@oXHD`p_W>zOP8>@5t^xy%P5O=Par^&q*eyA65&mm*jI+yL6- zm;(wINtURyBE>yl;Z|+$E&lodwDrl z+!!1LMHJ3LcOkEDBY7yo#0W7k{nm-F3t`YqL1FS_uJG%3o@C3PKieNnv8W2`jMh9g zEE!5(J=Qxuw4FA^vn&j{ECOxgc_0oLdre(PQhG2~_9$225OOx*9$w_*LOK2OV?FloJ0V+ z_Yz>j1cBRMyn>s`ZY!joJAK$K6KuhWgwEr|KS4aIGy}a`m^(kK$V&Hh7raX9_4J{B z%FW_B6^bdF8jrHb;}l7nai)D-dwVR)JOAo?3Q5vcauwIAZ{kC&&mDNJ#BskIA7 z%T-5(qP-XF@7<02*!1`bPT#%XsPKg}n#I$t5-Heoj^FK8!pldTEC7eJR z7N29c*p;(ou6X!&t0FQRwjA4ZnXc%UhP1OvhKUY%QY&5@kp>W4LJ0ow}+k{kY@ zONs$j)wKXtsF+iXdZo`fG{AN<>r1*{*?`xjxx^fJ6{vYyjfr~8{=xH(p-lU#xW%#= zG7E!6osxcCu|L#nz!gJ(jEMzT`={Z1{i2*kn!)z2jsG#bme6*Q^zPL3on}fNUN>L% zUa&ZenKBXUXAMhcbe+W{?or$hcD?$pl~|hEK~<5~ndrTX3wqKka;}=Z{mQ{rfM=*8 zp$JzA2$y%`cfmgY)|~Sc;g|d#q*}7X#Kf?g8=tFNlD`~G*bb`RQZh6ZPDlYeuo6Yk z@lJUCjVKLOiTX+L{k+=I7nVlbGcrn+5p#5xGmj!x=-mCy(cD^i4jb#jWECsP0^r-c ze1fBk-PgE34{V}E`rSJsNflWw4yp~^PJAj~WFP;mmhDp8CHOb0Vl65jiLv;wmk~Mv zX14DA$nm3>ALDe(*=D9Nn;{Uu#7Dcr%9sEm8E~pNg{pzQrM^x2J;lopH1R&bz4nN+ zv`zM>9NI2QPOK8=#=;G(0yctN>W0rNRqu~&#I077kmvy-`ed2ha)1zXS;U3Gbh&UF z@2XEMcB_@%>3H^K3eJgoP4T@1i4s&Z3QU>A-%^gVR)Gz))H8xQ!}DZIF$opHJ`E-k zb4(9KU?D? zx1wi00rXGjXkbN*GYWUw@m#ZD>+`S6FK<2lLlqTYzlU106A&#e9_medxilV_y?ah~ z67c@}RLwQ&nK$e-TS9?fGwvop7(*bIzYlEc{_H(~KLW*lpA)=z$JV>LJQ z2g2?|yW(D&$mCNIDxhSa$>geKTW%5<)Wr8&p|Iy=^k`>xFy8aTjL3*DmQ{?W+?>`4 zYVIhp_~0JMhzxX$VPbaN>dBAzTw@yu=w;E!YmM#BY+ScLj&5?UhsiO|^4U${ttu|@Q9LfOJ2>O9BLw< z_Jdi~6ZcUy_hnmMWBwpWTS6#hN{P;2Ta=**WS7&bFQw?FU%j4o(bu<%{zOL zZV_F8TPU8`RwUd2lwchU&8liJ%n*rwY| zyJ3gJ`28*uox1zByBTJ63xQD(=HGdI9`MBr1CrD@MG*dWlEBJry&b^IkyVBv2{K}B zb^H{qbsjO4c(2;HpV1%A&*i@r+pOfBa0q+eS#!UPPj_)@`=wc_OP7gt%O1rVBnN*r zF6oji(gUj=1xwv6TQ;0%Fl^hW!->ze_#PFsX%TK z_wXRh=j%8Ruz7kjfRC!Dzu^6E5T$V;HZXt6l$-JfYg7w-8y=WH#8LG-dd{Qk>c3|{ zszUNvCmWTm%(Zg|GAc@(uzT8im+t2)GW2|%_J%B*?}-z}hfI>Ro8e5rRS!k{L0$IM z#`%Y@^h%NxVXd|sA4uk|>DiyX!(NnF&0R75y|OwJvZEtvJnu#%Z)8Dfbn}ZWPqmAP zJ}araZg|n{6{AT&t$_1P)rgp5T5wwOp3IB7>@NbVXFsgZF7Z3kE$eVRPj)rHCr>$1 zoM>%sI&t_7dwyyCM|C9KDvucWM|F*4jN358)3x(8fw?x@h27#jm*vlz-NNl2wv2HL zb*j@1a72GTt*{Ub>b*JX%ey;VwEDq#a$P)#4EZWdM7Dom$jI$eFF6v{%c`tUoqdb*iJA za>q#<+%sK+ffWmKI5=-s@?_?pxYTRSPTs3jedhQb+vipB5&Wb$Ie6PLa@uHYY52W- znMh|U=V9k{9pmThH)<^=HCXQ6`Y*trtgohaTi2zRpj{N*Gt610@8+2`#D@j&v%w)$ly@JpGIjX^DT48+Ot!h1f*%dJ@UX;yYtU-X`N_v z_r~=)=a760AVPd(87OdU;I?@G8ZRuEQya_Z&@e?X@ASvr@TTZ0vVB|G04vbB&cy3K zkt#37t_`c&){UI;TkH#UJIUFBs9AIaDq{njyNGQUk7i&^om_To-9Efx4tEkGjjTDQ@O zAN+|l>$l%6Dsa=*no2Xq(gE@<4P0#k60XMeTFq}orc*LCuOYE}knEJjdcZAE7)e9S z^eulg7HzW~0;T4LD-E~a}1DkW#9PJfNMUP;TT$D7jXMiYzm z^i_LE(=A-@5O+wn3M*JQ&loROs+;p&I>Ppm_>FS58$$_IjO_7z9d)zvFddlR)CG{wxC6QD09R`hOcqE z8@vYGSFMl}y2~^~sU~0aP17M*JhH*AFCn1mSR>hJxs^5YV6m>#+5v~&8HNhh62Z8| zHYB4xZ~W&Q{-5&;xX0y#rz5|<@ z*}CBKvy27xDGd;u?Y$>L)~(WNUhi74CzH$f*AtSmzs19_^Q?}kbo|9NYE#h(qHo z(oAN+F<>98LbhXQ_J%*2L-CUZic#|U^BwDtaQ~$ zjW4j=w3%=n&7oUq@#eC6vZ^}gg=`J+{R)@{E){hE_bSWLsXya|OSEENuu>Zr3T#|z zA$6z#NrjkTF^wqCL+ybzeB6#wR{5U7)CsY&?J;T43l}y=c^dWI9F#wNFO&)iu84g#>W38S$ z>z6pr4e4xiaNx`M`HNqYt|mmlH1UPZ*E$2mR7-Wr(W+1RodKWpEz{)hc{#NcP>+27 z20ReP$UG%++`>EKd2J{3t;BJb_`zA*Zyt1%ouk{{MbyLdQ*#F9?3r>eY>HsCH;w> z|GFNy@fc0*kQU)-s>i2cffPrY1$z(6*hIuGr##8dkI9A>94F{vh!Q!@**9a_K#Xt@ zbESB+ep#k<4DD)j+{8~h$qkwYj$( zGRDL58!s#QJv1a+Jdg?s_pzq-70!3lKsi^H>G9(^e{Q*sIPoWy4S2=9Rc^t7v# zK`_hYF`C`Y{3k~(fX@k*7>Fbv4WGKz#=kVk5()3U=Q8PENx+zSoA!&U#BiZriJw1G z4^eB?)_1#*+);_ckVG(C@;m5ji$DInQvMs`{H5>1tMA*&g8ZzmI~}-PFIm$g`o^lp zk^eo!U&|%quJ$vg8k>A~acvdeC1^wv&6ilO!hC*J5c@j=%=|f@=T@hhCzd|2{^khm zs*A>7p+Y0stWs`zi)m`F0ug8Y1}b$j&1+I-LtNd9wG>p5t2d19!~{p%6DuEPgf8x< z5elybC(zN3BLn+HCR<m$1-(_A{;p-??4&V zUgAZ%e!|cv5yVe$^FnR@#NJ$sq4vHJa~HNq8!6*ZK`Lamn-#xoboZ;<=5j@YO{-9b z!y^TB7q=RQUQ}6A%CXvJ&-Gw(7>e0fb(nChA4~0MbjYjC%A5Uf(P`B8_hkh>5hykq(Pp|P&C-gmr3`a}gsNSTZBV9Np;P|K*!!IY~7E5kHs5(n2ZDy$lL zy`yM5$#%XP@3JxwJt|-Q6(s{{v{rgvk`1|QzP@mKLy6%`!ba%+eLbzcVyjaPpth^D z>CRSBn)&lKqCZ3H00{p?EW(Y54Y-6~m}`VG)vi`q++KtQ?J_K2=cDm2yHj-Dumc0M(NKZ%5l6I^`B z1|m^%7tSZ`g?*he5TEs-xBjU6UZbrmk;RkU{WGuZzLY0lv{2T*Fwtu%{Be|n2%au1$1e)Xc%JT(D2tQyUY)MC2Rxnc09zQiyJWe<@Ks%a5VV3nw&Kjn1#*5$|o{!9vf`VL;8O!-_%6-#9C%)6&o3BZ_PIPJI%g)`&SJtFB)Z? zH>HI@kR*sT%fs(e1;9k~avbkQXOM9Cx9us;$r+26^7HSSKGKCL^}gg`p`mU+ia!7Q zO5_Ra<2=o>6~9SfI=RYxp8DOh0SLJ9E~bQ$SlD+A^v(Gt^cb`kRLCPA)e zxEr*!*zq6OAOmGu3CFmSC+r3@a;MhhjV^l`lE1at1Un@6AC<87g&v{@Rn@ciYJ`}8 zUC;2!f#n}+D^N6Wd9l*2{-@`cE=P?~-#6S7&89Jn^g@iE`Qk<`}JGHc;?^1(&g~l2r)W4lWphpGk%`VJ6m1# zGdcuHja_64Vsa7p6nqK(dh8A24$)h+MYglHw!+2|R?tE1UUTp6;rRY%bH=yS2OaU< zwYgtkiVY{`tR{|6(KB4YxKx-Z4U7Rrh=T6;f@Qb9 zI|)4syl>Ob2b>r@UU?-h1%#BV>duQ*jFdb&YMUXO75xt^AsPD&e_xC0SofpzS?j>^!t*C53cv$hiWq7I<2%6&U>D342#ybH zw#+mG{&?E+9jeR1`dO{BB~7BcH>PX&dVF$kRJKN@dgg&)zy+Ytq_lolL(!WC!)475 zXZIJtso#&Gd$%t{No?d|jXR4ZCGt0fz>HhE3FUHd$(2vbD-KkpCu84#?{wT2^;xL? z9%a~fqo^e$4>g=?%PP^`!qjKpcq*BGNE#l}w?2W9tC346A4?qMW~M2{0qzaEN2y zSHGONquEYOjj}X`kChVWC_vp^&AOY1*2JY!7$k7mrRhGbx)`<~(*4eEt|i{wWi zx*27{y|SMZ%8{iLKN1Tu{S>;@0KNMi_L#tTDJ`!~?XrdoNrAY?6Blv~h25$PTPFJ- z9utAiJ(3$V>vQuizl2!M}Sr?~qz zJrdZ-9m8rC#A`6y5`9b*Dctz|LbH`eh6Of(l{0-@-piJ0_6ci_)Vi@LAjNFMoWsVk zqUr6rntxOv)bI0w4A2vv^gru1RqGJ_j3Zlh!?UOYp^9jZ7>SGITXjYcR94=T#m*Y@ z#@DtH|ENl|4^Sk&hTJk#8&T@gi@_gOwO+I9=!Q1S<)Yd1KSc2fO!)x$7Lg!bM`T^m zXrwa1xSZxWv_~!=cbM(R$i5!m+C6ON778gMns_ z4Uo@R5xP&T{-s-=Vcc4Ii^d9pRz%(-0${cRpUL@d1{5PVUT^Yb&GSXotiYAkm%le~ z>Ro{_HOH4JQzu{YJbTY`T|ebnaVDyLf(5K3?B-(oJ)^)^)a;Aoc>Vh3X0~~K(aaMu zp;x^HZ-0&?9X}!T=#r&`u|XD?`SDYc+1z8y>M$cus+M7Ostni$@M)xjalQ%}YE}X5 zti*e73`*_UX5mjNY6afX#4h}LNB@vNEr%K>Gg2o3h3Fe~7l>NPj}`Qv*L^?yI?(7V zA5nsr1m23z)B-Q`6nnrN@YgtSq@2_Y%?Sek=7EhXl-a}GKA^5r0WY(#H7a`W>Q{B> zqxz%Yzb=Q=YKE8ax9B+q>@X~|+8pY$Nb_#As2S7oNIwEBj%5jT$fdlg8LcKW?IbREpMxqEWO%<;VyRR`ZY z$$F*h_E|0Qnn7t|XnrAiV}$uXsyq`M0@%W3TTmyVQnO08G-?SjtNK*Ll^wr80uW%unVbj&) zh1^8xLBFYzdt)O(r*@c)igi62b2>v41N@dy9SIEJF92hPAn+27!Sfjr9VypFTCWo? zbeh1^>0)zyP$pO+k1b_zwO3I^em5FC@eI)~`#QJdQ$gG-2j0|xERK-UHGvDb4suCv z;JjF3ykkLQPb>KVftuVHq=*ykvB(c8iYQh!pQYJBF0+bBwHAoM_#W>9cA}mCiuvkm zZ&t0#Y@Z&XbH3q{?|0{2$%L8&`eaL`KQC+OBeq%ttm6*`{!Mo*oA+YEoj?SnJ`FaoREtMXth;6&TWCELS z1`F*c$Y{#WYNbj%VCEnBoS5XXJdQGwe)s4yjpj3TWmUqyJ(HvMY-{9vX z@@`K+?<_J+<6~fT=DpS2TE&$_1_~kY;+JFdS+_|(umc}i!o~YZ*BT*qevu%AHxKhe zv+Zy#-1+nT%;1Qx|K8tTuh%Ar1!ul)D!#XFzSt7wHE1xBT5yGCL6Mq(}XbpJ>a zcy5nW4@zS9PhMR1vYc(M1e0hViR@U7#TT(z85+8yo>GP|+#1}7K@~AnEJbOmY(F>i zD_mrmSsyVabqj0$k+P!^zpZ_$&z;J7W;|895&v_dg44??AV_cBb_+o&g9EPp1czUn< z{;cnAdHF%@(1q{juAP{0hy9u#I7HLA_7H(^K9x#X{Fxf1riyJs&KywaPqAg-NBD3u zdX_dnDUi=u;6e3WS&rF@e5sxGq)z~5Dd;N@xns5QgKWGwQl5?R8^JaVvr-1XYW>ge zsyz{S4exb~PmtQ@Xb{8+HLI`dkBPk!&Me(Le>z>m!G zj!vFxx86CW5&f%Ay34`Gv=A`5IMyQc5wYteRea=%Cy9MD7#Rkw**ngbB3cHhx=?tD zaX0kkyQ1Zs-f&f9rhb&_Gp+0=2~EA%MGPTMp*zr{i>}@K>(YJ?N>bd+fp%~CAJrZ3 zM@%J487}w9WUC^jqeCCB7}{)`A4riP>d57 z9ThNppstNw+^qm5$Y-gZ0Gpkmz9h5JJ$bUeowKKJK4@A%q;BYSU43MN=u*h^oli7P zg>-Ks|8`(qUcET;O`iwvn9k@?sE-I7&jinFrG1{{ZnuC<1}x-3?~nl6h-Da1Be7xK*Vc>QLi2bE=Rx<&~hCq|B}4GsP$Gu^2>YR7V-7l^U2!I$Qa! z9mPP`C1dc>`);`xfOE3#IY~7i;#c~x0_NF0)PKSp^gvhZK$32HKafiAaFtX}4VDx0 z0dQBW=X<9dDw1M5u=~z+w)Paa;R7|}lTefme$Sko+>+3))H0o}kmb^)zd<-9~cArW_Q8R!gy@|o$!?_5Lk`KYgq+PPJ! zZ~Ve=xAFo1*5l(Ver9%9mo^_Tx|pW}0e zTjF{;=})BS;ZK^vXOu<^1Z!GE*27npN}L8h#)kfuY3*~_X+$Ov7M->O2=HELYrc>Xs`b0IvR|vCUv^lH z_G{WZ3pxW#Z7JW=@eO^~G6AZK{?4Fb*i)KNBpk$mIEMjoTgjVxXur zf^dn4guGkH3njfYE|B(}CTE?#Fi;{Xft`bc|JhUq>9>hf^!Tsm4J&d~k?J9v)TWO% z7Ne;cn7qN~<5aQDF9g)R9$r}hP*7A^${PaJ%=uxzww1m;UZLXm1*}Fa+B*+-Z`rY` zGhbrA*+s=I{Epq@iq~Qb6*X zU(c!eqp4)Gb8$IKlG1u_skrt(A-)!bP}w!F$R+)xo8M3`Qhdv`Msw*?2L@E88eS^8 z@x8zcB?a6Jdd>GQY={@_yq@6*D!9DLKdQ(G5BL+#tfJ1;qrQSuFL4%=<`?kA`**XY zyL?|xNSX&)?x8&mM^6xw1O?lgDGK#Es48Liz2_3@9q(`_DyFvA3B4`dhAirZQ=lg{ z*PbN?-bFQ4n8w6{6fCYU?Mzzlk=+v<*sIU5` zhuyDAUcMQ7*CyTfS|pX<=~IKmpN&5!zVjBZZk2KWn98Ul_y=y+JRQs8aTA_F=$-%F zl!DVQS-`0k+xf_D7o3YWBjv}lP8AIghCb}>g1sL~B=;pgRH73pv$tw-8J@{Qn4wn2 zXOdOqR(d5Q6MCfH$NfOGV`_kmKybfr_AOiwV0ksewWjyh(oVo1`QE-?@Ff1Vvk_Qk zTl4I;ezAtXDLSun{G?vfVA8t^p+{Q$&q?cgXP21Y#op8(;@AnAT%_iPm&HmJVgFIF z@2nW(ksl>vlNt-zW{Q>{f5R%}+T8Uzp$bkKHc0mm{d+EIvivwDLy$m6xw?o$bx?r2 zBow@LvT%R0tTY9BZM)8A(QaRK_)5)s$}4Jqan1OHFaM9Cv+!%`ZNoSQBB6+iG*c;+ z?q(JsARr(hF{UC?QX(*5Fckr5MY<-^ImywJ2I-vS7+r&n7z4Kb-t+zg=kwXw^PK0o z@B4dQ7om0VzKXr8F>6%#?MC!!nuf-6A?P(_v3z9qc07>PS}j_0s_&%5LQAQ+D|v7_ zMW~KpYWH&rQ|~cP493FrWo+5g)q}MefW#MnSZND#f`1e252?k7Ec@cc^~Njhw&*SU z1jO~=5hPbIi1OAAOiraRmUKGuhIpeW*6g)5Y@ox`sNfOY8jxbca$KiY>@103r!W<% zj3w|aXYtT#!49~u=so9YrcPH@|Bg^o0aNWyaT;v#W?C~Os_QMi8W zU)3$q39qmW=%ou99PWHD%^6t!-h=!MzS?q@qWpvsUg)f^VZ3-+P#b$}gCI+YpR*0h z64`3ejtMcKYKA=#vcAmes?vgt$P(h<>FUEn<5IVgMBtu2C2m6dso)V(;c|A!kZAdZ z>J?Z_eLxZ|Nvs%ENZJ1A`|Z%rcjmfhxt%lr9sYP#&zdFu_cp!LeI>XPkL(wUclPzv zogKEaflaD@>gn9Dl8638zqaunfRk}yz4Xp8(Od3{JYLnCT-mU|@N>-E$FH8=_O8qN zYUW~OIB)ECA}vDM8PbovD*JgAiakaeB3i)+hdJ;PJN4SqB9vgZM37a~Gyw4Hi&U$E z^&6HI;<|2JQ{}fH#j{M#LS~JHn(Uk_tBS8n#tKICl-wSuytaM4-4M*w3BHPPY*t=O zj;h8*xA0Gp|52cL!Xs(v@z7+Rfs~8!DXlFEae$7SPHp=`4X@d<1JG)M6`VSF}{&ka2|});_$A zxQg|ZJC)=qj|m75z+B_c|%3pDNd6jUE<6|2gII}Zwy}C8W#&p z58vR`p`te^2dGCpMkdL^KEn&`L)v%!G%yb-j=;5x>_wc+BkhuZkZgNjc`1B%q6^e~ zZ6^b!APT;}t>yX8cIa<*RH@26{l^joD|NHAl;jn6!{L4ZV_8F{Y|;5C zz@uttwSY;^u-)A-H*;&O(dXA$e8kwam7EZb3*i09*IEZ(yhc13)fBSBZGX@0oB~SK zJDBPOvl$aB3W7{*iX{2SW_F}@`WN@Ta)qCWk z*e7zFL7Oky$DwGI=B!ig)an{&02ILOpxlaS39qnMp{!Yndu~}PaoRNG(n!snJQ6sp z$vkg!(oe}H%uw#|t?Uz!2>)I67az0^+f6GAx8oiriWvrEC1SG+1JZtK#Jae>4!scW zdscZ4tbadP6j7S_FlhzJ&NLa^MbP1kFweN$6A#aStqyrO=~;qU7w8Suyg-!n(V zt+A5O5}xNjOk8FVkc&QI5n+|p#ur9vwgi|u)Vjm9ZaN9x9QEP8`PR+vejTo!e^p51 z7GHmy^IIk-&%X~dGAx4}OpWB*2Nb91O53*PcTAU~Z~&QZEHwEa1EBD@<45p2y*0bp zB1uEi)hPL6Pe=aLWp%l7Dfvxqo{_)E?Qhu1jlhq6$QprQvom6Y!1bha+M*G#|#ZI^dG-1|g z)f!?XmO<8_JvhKMWZ#HF34MLhecj}53IAIEbf?wr^GWT3;v0LV-mQ81)xM{8c8)PI zc}6e%ZRR|7>W?9(9#lr!uNG$beR?157o8Or(yEr%vG=z&U@(QKGgJFxxhGhU>t;rY zV&Gwc?$v~%YT9ME@b%layO#ND2I=c2D-zlcH z!zEIXar@&cRvUR|G9r6lF{}tLVAKAs!G+g;wv|Kqx3T&Ip)17(IvuaV(Hhu*gttjp z<%H?XQo?Xa!9Q5wvs(Jp$j-z$hu2)iXDb9A_AuMho@lBRtr$OdTAi*^MO~S5NjB@f zF}~Mf^@K2}6QrjZoH(RvoYp^`7E>NOV@i=+Z01|22JtkhFZQ@^#}-OVPpXJ8_Hj?V zG5y2l@&1eB&FsyKWzSu7kQz{%pjA%U>n#=AX_Hu0)LHlklH(_z9=P65SopJ%LvB79 z7i-8&`@L_0a#sTAoS7PM5iGTurOw4C$5}jQR+Ls9%un^7`bqx>x>yYs7+Col9=Xjh z3fI0$zP%$db?1qergya?E} z`xKvrApyNtQa^HMoF}ajkxDaj8lGJh*^(Wmwb$R|ybomAswHb#@_p%S%PoE$8?#fR zi*lJXnZJ-U6(T76gRo)AtdixCy@tE4z^A^;>@ukqnxK58uV7I4^Wv@B%007kzgx?v zWkU5U4BbbheC~FqT^;}_Q6H1oTZg7F?ZeLE3IXsRcOdF*X_Cd&$r9}h!UjFU$R_`_ z<{%mzcP`O1hWD8fL`YzFPfM5i``e}mUz2V(O@~|cZg>cVOltANU(FKw~xJr?;i+bwP_xdthcOp24HdAo8xXcUozlC7neb`0xqD)ZX279&*l^;abp4J zB^+0IWQx8NttWcs9dhA}Sr+FBcE}>jJ_F+sfvo)1NHz4A3ZGse9{cKYhPSrQSng5G z_7P(TavJ>ZQrqmIfB=-8HHJ@rC^>K`)9%`uZN@^%gO#{~f>Xtov!U;7$g0m(?;aK& z1!wl}Keb?&4o45V1nOtr?RMA#&_|LcD;~%MVS}*}=5OoeHjeXr!@;7=zbW+du&Q&p z3z>TT0h_vR$!(`g_2zDl!^di?lKx|m>TY{`O!w$`7Q@To6}p`bSkM4c29Om6tCU@A zjFu?_H?+P>O@LG8su;hE@)l4X7zGZvD($_?IAUTmU z3&TF^?FhGrZW7xayvWbf0^JX(te`7^?Ah#3LpWJ)|FA6J?b%CQPqp5ppE6$@oS$Vw zzJeShuPp45i%jfB3!Ze-&$Rv^hS{e*+TyMcyk}Ey;CGa&B?z#5|1rdhy4YV_O` zLW;V6Qw;PHy18es&=1FHgxqtVZG;L@f=Om6Yl&hua!3h_Vpd}P&TCl69sI0<%#_CU z+==F#JzwAB{}`U0pgK6HJQQXk!5y_z4VWCfAE|BYPrs^jUZA3oaqZjEuQ0I|waFUU z7yQ2x6XPKqOCxQosbtYT_xC|o`=AKGMhXmI2)sV&nPPw^ssHf1sO>sZS9uO0kjwMJ zoWG4n0(x#v?9_F%CD=dA1KHbtu^!+cEIxgxy3WENC7-?C;e9JD3(zs7c~!-9n{n!p>MBPLO0@rF zoY!7bH^1MfT>05B$iaHb*CgC_@(V!5EqNYzKRvoWp?L2{AR0A)!f%M}0`bF+`E)5l z*_tsKKZ=bPV{{~Bk3Z5z_n3qQm6cCx_PCpHGJ`0#^OBdV5ZOmC{_uPF_2Se-?R(8P zV}=;1*NJPPsATAPUb;0_^jr0GZ6O?soBfqRILScQq5P!qO`=!rrW?sMh%{?jcmLbj zSFzpN!`Y|B22S0^&1o%al+*=inAf#MLx;6-{zb`q1CNvCW$DDB-V9PB@j`<<+mZC& z+=RK6QE>}z2V42nwWv%$o10K=alGTT*GEDuK@y&AVnM{OFgJK-WEVDlCQ+*6INJ06 z+&Aw}^j_43>+(A{{Yq(}Tw?@vu0T>a;jZh^^rkw50 z6SpMdA&)EjcvGds)VutYC2%{jKxB|-s@?ws7&AX% z0UiX-(`Rr_im|urFBs; z`CV7BN`1nK(0nh&m@7IY)5l5OHa8^Zy10!Ejw=K~S^E?zM9R;x=|A$b+y14dn| zy6Sl4u5J~pB8x^a57uakU{%`bH>C_8*o;pRUo|EtOf zHy}@y83hG%<{}odEYu@CDJmLD#*C~Y{)%N~blow*3lvT~;=EIgU!k_+D`#hStL1OP zGWXL1GVsp=)5x^N;tkFvTMnJfyD`Ua{tfAb5ejGYWRDC#4T9dro5 zK=q3drGeV#ky~l-2>6PJ;+Ic-FDUBTDeVr<4X$CEiCkZ0I|DBR1W=FowQ_U<{j`KLsK16$(vsz zJYN3a%RtLdT~-#XQuyMEY*v?=&BM*X*lR<8Z`N0{4x`P%zF)_nay4vtuz)MB`fzS2 zmdcm!B5UP*W0#(qo7bH}*SlA0Wz6sf2u!9BMDZVO%LmZov>Od;{RGK)-8C$gQ-}2u z7rDCrH?eWXW*X5ZpXcvobuafGn;6R{9nSlI7(5v^pg)NjTx83Z^5ayZt+`3lASvK| z&KmbJMygA_H*q3d&`Uhdc8%(~Ve3qWdhKhCRs|>-7vi=UuWpp@=x?(O?xCN0wQ7p1 zdF9tWnK!C#s00eAQ-Y2$*9Nm9wY;pbz3%u+$bKwt$=ZB{Y&^U+@s#$67EkraUAN<( z&^YIh2cs1;i|02$Z>#k9t<;s%uZC^j%1mcb6X}4z#>foHkjwM)-W(ln9HDw>Vs|?0 z7q*xDKrJ{TXccZrl+si-r?qG}3Y4X5JNOh)zT1E4T;YuCe|-juU$7TEJQ%MpdI{wD z)<5;KDB_uUi~OE`>JHRlf^=p|V^(qCY9?GEj(oqDl$g zBsOREbvu&G+MWpSD@);UKN)1XdwXL3W0>E?@|(4r+fBev5P$e9OD{X?^+{*u(%W&% zL&Ys@)F7f?M;v=M>DmIcBi+!nZBbfkamgq{`Mfu0$5T1^;oPW@4ZEmVK0c#SeS?!J zq@qQbyi}R97!Lv(ppmmw05otGP@Nteh&DWhNprUq74hswmZsmIJz(%Y6Z@jqC70W( zekh^U*asz7Yo+Gg;N7r~+udyT(cA`I8DD;0am6g|5N$t2=R&mF045x9|9-jg;W1Rs zM|h!4LB8hLJ0HL?S&UUzr)Nb+e$PGP`8R;(i*~SmNsWPWLGQ*`(4wl7HUJ^jo>paI zfcavc_MER9bY+C@IMr~ed%O1(;^YhE0CaN6_es7XCC+}#w2JK6+~SUEs6@&N|C`V8 zcZ7sFY^%LqY@g@nb2ZPI+C8GiKGnH)DWWtzwl>)41ay%KWPW`%bK$j&I0VHZf5%0- zYw=Lf2F*V4hRi9}&?<*1cgfbS_CIYgIb!#8Id}D&*`2bL9fgtKyA8O$lKE@w3AZyb zP0c*32+m+BxEckOKTTx;p4kyRP(iV=NIU2H3vNdoXn8jkF;h3dE%~lv|5M`OgK^zv z9YgIotvHV#^k$>td&Wm~s#*k}-3gw*M#r zZ(SSv#FbRy4fJl!PIgGi3$r~VwFvbTmW1Seg^xE+1%p?lkv%&(DR@~#Lq{GLiUQqC zJpgY{oSM=5acGMlWZYDGx14mu>xUr74zgYq@F2 zlVP22T1KtmlO$@>5W5V%sQoAfV(E?%!|toZO}EpTH;BsQ^xw%4(v44I;Z$cfl5PQ| z@9_oJ8E1o!yw5IPO$5)kvs)kBJ5@`{R9?rf`&0OXrO$~OxsbNF(Af)QXf+cd8>p}M zn*iw+p=_aK=qvJa(?p0Nr2t>@{zz#f}yj`f` zB*?_YBmR<)DD$2bJZ*Cg#j zY+r<+Lwph%h^UB}-bm8S)4FrpRa)|O2QkFikF1u+Of&D^l1^6`brKWTv-S7)wVVw6 z=7ar5seyeSNc%mr`YIWT$$p2S^U&pD+0R$M7hr**eWMIY(m~eA=ODxrz{OQJyrcA?YF#O+38^8J12g zSL;eOw-g$y4$^!yXHuTQewKbJTXXoJA;-@#@V<{JKR>cGwZ@s`_2JYHapi1JNkWoV zX^`w}R@PxJE#1OfAE>A%^VA|FjbXHi7AC4R8Dea zET5#wBFN(1>WReBfHGyLJt*Z4dixQv+dOiJoJjE(p1(q>4(MRjs>hFhkI`2>$3Gy* z^2BJOBW2l9y=1sZC(-E?Gg+WznL62y)%|0y;x$vU4n5~PTpAJlla#5U+YO*qP7T0{_lF)Z~AEnm8Yi9U^E zb*Em#ix(c8g2OP}5D_eBy4@|MjX=Cd zWH4)EOkTXqgIFiWh+2s5;DfouF1e;iGQByh!^As`R_lsIFArt>syH_H)Bn{3)h&f) z6D`|tGcM4xn*mrL*T;6<4{?nOax8{86_syBT+g~$fsS1?zi=12QvXH9@sywNo6F-a zUMxAHrx-eo&+Ai%_MV_7T<1>(Cp7+sy6Bl(KqSXTvI>BsYAC!#jH*x_#@S5iCi+g@ z2DW#fc3m_jq>V8otm4a1xEBYDQDRWnPqe8PEh{abWs8%P{_~ z`_yhTcxE9%PKuj$gHJvuk~W(xsZE9gu~pTW{O|2%XDp&;b4mk&Xp#lGd?SYUa>`^a z_^ti<7Vo}&QfSw8udR$92jz7QWv7iV*5ZGSuFfw9bBzeKBoovU|1>5%jy7yRo7#O} zYh7`Iy9*nT;r@QrGqQ4zUhW4X#?4PZY(Rf~6RsO_=Vil$*r|*#TL>4m`aSz2-U{yW zfJ3JT!KBRVuk1|q<2_D*rpEd9$r=<8`aT;h8aBVW^-NB!wo2uPam{O-&+_yBfqnMW z?u3h~;#jSFA686G!5v2#UV?2C5@jPU|1tFKtKxWJsLp`UFVi@lXHfHl5$4(ejYNGPp#x`}IB-F`)ZnBHCXjI8i9-szq zVrMHwF+($rSGu>X8c4YWBPCty?7Ln2i9^F46ftl+X!?f@ElQd$PQ5y@L`sTciag|F zzX9hU-Sa=OYj$0k=^54Lxyf33l#b6~}Phj9Qo7EVHJA2c9=zJbFX#UWm}M5VVM=^8nZB+(Cluuw1;QT|R?C}n)< z=x^Pt&@369&4se?BAs7FhI<3fh>`Mn<4K9_l6xxCF0qo5zVTDXxSajdp?ocA>IGUd zW+4y5^bX+!{WK5$?gNorGGy;cvr?Kyg`?iHSZ~S*c|0uDJEv~L`0Kr#col10jQ^=> zxiu1*0bNByOctMKNA~9L)Ng2x(GWWRyPtuZk1-ca$qMr(4)8TGcqEk8AH=2;MO>o0VZ=q)u zEn=P0N_HmJPrzbpt3JVZDT>5C@}J6TTJ3)fFL9Ad)1X**fz4KmJygh&QHIQ$SLN`i zl3L2o=@q@h?G?RlR;E960+^~f8wf=7Z8mA$lkBdV^Dm%@!V0!YOMpK9td{iVB(7@h zGXXHbt(S+J(b9aT(geVEp=Ue@0vvr;g{PTW3I^lA(&;zu@41eAKx#nJrVV_61B^CQ zmU>`R#%9RKOFs}CrHM?TDE2dOH)07Hkgk7Dh26lBQ)tP-H|GHwk16y`jL^iAmQe-1 zq;tW_<-2ZQXPu1R*vhNSf?aL9Sav?%p(!A}{sTeUcv6~Voh2&9{`GI}nC*ex)*(R1 zM@zHA&57LvRW{sjEcH4PPr!u35yJWnQpGIVZe?9OhM~=?wWDt#(CFnPO6YUjZ0c!8SKLS5D90 z{8k(A`L}w)<&5O}^`?Jiish|wyMW2Z{^{RD7Fb6KzIm$576JUR-&X+75XWt22jaEX zwT^kV$_Wh!(Pa}scp>${^-H=1QDL-p88ep8-}}ypXFN0RQ=|Q&^(rc?u?d040B>rn zZ(k8o_;;kJwo%VFIM}fSSi&Vu*GQ*rN{C7%frNq~I+C&^(5K2DgYW6d7=k-1v};Vo z*Ir+W{q^NzmDZ#b!w;sb%IS|d%+851i?^d)59561!G88RJjtbxPP%yZ#$&gN5BIj| zdo%OYN5DVwdKMG{;#X+a?FLuTYlL2O7rUgv>Y9id@fDZcJVR0?Ng>rA*LfewJ zc+6Va?FcsjdPf;#uY#eUhjULAJ_We`bBak9Z2zfw^a=)R+VGk9SE*W_Z5TALwcXzv zHvjfX7h#vc()K-??cnG6n@4L~28F_G^7k)Z2#8dkz44j%^<^9M#siD{N{5|iUUsW0 zTzu3+xL?Y>l*Yh9WM2Gu!2Wusz&cA;* z2L8VO@q>#&acFN(_jRTCafunQCT1ZQQS;8awn}UpPaN0tb9D;g=N3folO@6v(o4N#e0ogtM+$y6~&cKagDd!V7tX^YpeADRv zf}D5HM`oZi3$rL`_M9lz<$>-kD?1#_!xst*QsMaB!82Eb!Ia=q4gTedqZFXZN?4bLB*^3oPg|J?07zV5jo2yWq3RHEoYnX~xTa_|$}hFU>4 zC{mDTXPU`QU8X-8 z12N#O#|=VdhNiijodlZDf(JAFETv{~cUos@p*x%^jVPvs9d%y)_b^PuKqE^2cEN8x ze=(MySD)}tCX73a-PKg98cBrx{hYQLHx9l?>4VVHFmFMu071mwq~AbG3N3^f7vnZe zz5)4HJ|Fh0WsU-2R@7?u^Py}h=iJ^8YK=CQiIj{$fBnaxjNQ?gQnaeq55WM&bz|=zc1q6Btn~ca3YgXYgrQRsZZ!x) zLRgTLL#dCkYFcF)GV?an5%<4W8-Q_VjyP3KiCoTrM?0Ru%SZXoKk{^A-F`Svjd;^ zwac*Y&CoEIowBwt^qDHX0L+f$t;T@Vr!ANSoZTV6g;MS|d37YE0y$f%m$?>gAO8e( z`x(mAEFr1H3fS4JAG{wjOP%r~2sk{F$&kqUloa>%!&=?=JF2dqV?p|zkol)l2lWdw zZMh$(9Cg&cK4yV@Wij+|P+Tzv{cV&s6h>~GaKHT!l+S1rNWa7-i8?fnn0}jCkRs&< zS7uCLNqX<_b^>CebLL}p9I>O=th2MT)K2G)ArHaI?oKIu ziJP4{lH>R>@<4IK49RIX93U=Aw~^Z26TA`id}6X;gZ2RorYi@Jf^Q(4aS>6XKSy2d zZnlU@N#D-CHusKke|NlId7)Y8o%ih?Tiz3)iWm3CeW8=xukzqbz;1m* zOhOf{gQn*dNk?C=>HNk@Np{qxNyLWk-5!M0mT=PfizM{g;^krtw$Mv}^mVx`g4|p7 z>&ICA5!W_z0VUajmY~5}23zu+^bt4@*^IZXA4=JKvXY5JHarlipnTx3TiLF-X84X^ zpCmX~-8}T=;0#gvPYmhr5;phN7*0gmzT;%TDRI?nu`o*I#8r3qQ&n^)J3xG>CCV4f!%OJx(3M! z7o+zZp3|v`DdmDD*%-uVN2mL?E4;Y#la0C%^4(6<>k(UiY1$9$qknBfi3)Q=_1oZg zU>>-5UEE_@b_>Y0h5w~*I?bYI)(ZTtY^ClVQ&XgPnhXc18znC9%wfAKMb@QeeBUd`u!5Y z0b$WAW2@QJI8gXV2_a*FKFZjVa+l^KBa-9ivYqmm;}$yOr8{=4Q84-dSN|X~aP0+= zTMnL+&ADcjr|+}8xE-JXDHK{{pT?3kh|M$bCqL-dEyKZRg`U-V;v{MzBHeI&w=B!X zX`w3Vj>U`eJZBV+}LL!VWVk zb+$cu7gU(m*6~}Wk4RV0bL zob%^18xXDA0mCtii?jjF<*eHMomlB5_RsV?@G~U4xMJ9QT6ManjvI;MyGh`Am)qkp z*RnWr%R+}~WxD(222?xVv5&*Z;wVAw&@t1Pnc$*k8gN{OJ^fAdbHMM zxKC1d7yU-!*;xvBu`8uv5_#L6JJwlV*!F{Z-2tk&&Ak0}^LikvVT8^LPHm6vT?x-j zit9NX`ikHHPCh_~=(znOo8G%;SWF*Gnih-NY0~>?>qIUqhXshArbNFl5tt8ZZhZ6m zDMPr5%3|ZV?DgCgPyl%^0J<_x%#h^{*vzq=99tB@UDr8sq@ z0bVR<16_o%oCar>Y(ATw(^W`{tu5$fi7d5Yn@PR+Dh!0;?3K_|EF)mDH_bXB1n);s zz&*xm5y|X?WNLck?~y|>>Jm5e^T?i(Ksv`?Lh<+Wt(ofIddXhYty1Rm%n>T5?0@_6dv@#r%H>M(?Fzhke__+(Y>_Ja zCV5~{kPB(4YY@53)#HP8n<%{y$n+KUFZM0c6lTs}B`Q1Rj+Ts{yWncz`YbeXEo{|+ zvy;Tytiwa8&W!YsLOUyi>uUKiH&ab5Os{|ZYb|GUZqQ`<@=1Z zt{(3AW8*OIX8PL2T0v7{_d_}ZzGJRIV3qW9 zG^B&fL#BApS=&n;8X@Q768S=);J6`K|CYOBefU79`Q8A`2*@zev;3N9TcGV|u!}l+ zPa}A<{mBU2N2+8=()4Jtpkt;6ce`mo;)Wz`gP#~#zdQEZdf$1Z9bdB7eFU@!_JEok zGL-F8vMBS{td@_h!R;=hJ<~UWsNA8Yjz!?_P*#e%%ONuz@l)$cUt-jT^?_F<;Hy-TwJgSj0z?%iGsK`-p4b_%U4?hKl?KP7SnSm(J-@A$GUJcnPd@7 z%}(t2kyk3+uwBLc(VfqkhGyxLa|GIp&D|RIaOg$qUAF0Ea)4m+S!9*<13^Kv+1rMrGcPnLExpd{BN#gZwC+931-%vui@ zoUP_Q?%ryC{@(I+M&JFta&`;UndgI)Ft-uf0M`USdV#Fe;L2^Xk!7dUht|@S%?Q-@ zF}O5EGJjp-1o5f*f-}5IG`kq0BBx-lp5>p;${#c|XJWU?CH?n3i!BY2x+O;Q2T8{c z%D0G>Y~$KT#h;+I`imAp(|&Ei*T(r;k!PuDSzyu=WItCFAHuSG!z`1Twnr^8$NgguNfco=j?|B&!*`xuzV$t<_LZXs?-_r6_d^PCC zxloy@U>5VL)IIH~LSUqoot_WpYnVLzLIQWOU(s9C)Me;?*HM;<`Blv3F8I%!tT^@s zpNcIb?5m#Y`JUcc>+ghH+qa)A&WghaPbIC;A)=2^p#)$b2V1hfW7#9tW|>@JqLCQtAT(wzkWD z>~9>=y1G9FU!_3*?B~tJ##W7mvK9`Wo_g=N{_A_scEOsK+q`j@P^0m5 zCK5E`|1m%AxH zmtQLDFZEM$&Lx{wL*_9^?M8Zya-WJBD0Pw?ZxM_9Y=GEnR1qJFL<+XZZR|UNSPo2x zxHkDBE-n*&qoTq`vjd*KEu(6`{7t-j+-vp*95Wth`J?rbe$7qE#{DNiq%B?0_M6=# z%AtmON(T!?jiIz|z$GT}!@<{`7K=XHA*NNnvV>tKu;Y+VRvmDF2y(Er; zkNI1cle>QVLF#FfIcaYx{^R{Ffh@dMZZtT3sfoC|y+(SpBtW%9^1$z}j(Ix4HFGh^ z&RlSLX|^D*AM^=;KKVBl<{)CDP*gxYjT#B4T0?R;q&|hP{fcc=i=R93q1S3fP&|P2 zQpeWmhZjrTO1I0xQ*VErRLL>veJd6nP!;S$cm{jNDZ(OaVoeADS=?A#0 zPwMaMK8gcAwA0qb{NR+g9@B3XRqd(YX;xDb|1sSAYrnl0X_-u=reT-S)bFTY8%eb{ zl>4*EOW&jl+Lt2)mv zCnGJ1CY9Cau%~ML6~PUJl{f1^SSEcZYK&FmHNgfQxwXb@?Kgui7}xl#hF^F1$9&JE zSwGIH+ah4fk@aoLv`g9ZA~QWZ(=lTay05MpT%HuT=-(Z6D2pGsZDf>KpuD>b)qQsa zd@=ypgKO_eGKb^I;@b9Ia0Ms=r96B{$FxsfPEiRAC?WLW?T|#R{gL1saA{)r=N-YB z$0N7U9^0vX#$p2ssmy(z|2-Tk2|#ZSB@M`L_bEh?s~T4I`yQjG zq$y%&H}zgcUK29q#wAJ^!$yZkZYjx{i>&w7c@ZB5iHcVH+$Qs zz#qs&2+zLE59F{-{w5w7{{$HRI81eU&Z!BaRUZH_Y+6B=Q6ErD>wcD8D3ptP@Jyir zWAvipnTxU42VeZ!6?0-FwNf!r^8I$sKgJWB>qbWhN+7^UZ>R}h&foebWgM^>sIrlY zIynHpl?+x#g|>iQr$xHkn@wq@h8d=tvWbz?_?W_kOaJVfA3S^hQB~MemHLbG_C~qu z#*|V}r?rusca-&!uht7%1>y~qgFXrsI0QwdT`0?4S2~(ZA^~Cx=QsC8@<%&1n{G7{vQ-h4U~ znr?RNg6W~~Pxf+Ygd>bow>8bsUb9vL^;M^aoaJ4-hK1w!Sqy@;lBZAse49}_t;O4`G-Q@ ztn_bnoZRcSnP|BPGlkx8Rzru?l<7YHj&l21LAvxaX_Mnx?qo5>StPpfKKJ^1Oh~ll z;9>=k!7iX zorm{#qD=RhF>{k~;&cpZd^G>jBMy*T^7vYuM|BItxXxXJ)6Ic+?kOoLvkd0f8GMZ- zeC2^iT&iGEzRQ#0-V<*8b-4&k(T^3&^K2dfr`OsK^9m$G26#$9{D=glwUaS?!<=$;q zM~1bCOh}uT!Y$8hxrY~i%Vu?d*v0?N2wyLQ_+lBAf_Hgdm|H+1@~YL8sig9sAKu$t>+WE2D~*JDrE@5%D=tc8!!X10IeDBMFw$G zf`Mx49WC2U_yQk_vWISLG~0Vp36Hup*CU*BqCUK-a+=5`2c=vEGU|LslEj$>10;=* zIMDvn0~PQ)6yUpjb>aYX2GRPgg&jhDMtox`ZVi7$gkVyOrn@;LFm7`-($DVg+;)o( z<=6KblFL@n?qgJ!n$sd+i-$Ko`}TF3e^sAqf_e`R9M_Sp$gki^3;{*d!gb&-HbH;F zX4<74R_qL%KGsxmf*R`4p2BDZ`Hih$XSm|NX~z;#C0Q9(OE+E{KM?ucZk}6Yq>S#( zS%{mFreADC5YKg)&_@7Ad*ev1;4>uAY)@aO8_Su>rs=mjfBkm8r03jqRfY;!YgHZ6r$Z99Y3<-H$gM!z0w{$CVK*~qb`<%;4GtVo~ z_Ntfn*^k}i-QlMoJXO}jG{$PZ8j|$Y#ToPg(JJI)i3kBz8wi)up&{>NN@0BEm%WcI zhnE$Ee>DVd9Z=&kh8$0O5Mj{oCwEC}3(Bp?Y4txOxE!S$FDc!jB=)G{`_H7uuIZP^ zn??8JKyp)qVoV`=B1yW(iJ|PxxeBfTsM?7Rpd~acOvaDbWn#V{Yx$q)5kHD-L~n*#)Pz zT%5R5i;!CT2PQrzg=JzQ)hdQK|9-29f*Ji_q1)=KKbl$^B^qhIhYVE-Jj zM@+FAYwH?3>HCjCKfoU)8YEniVx5@4NA`}4G+jTiAs?O&sncSquSnqu!Owz=KcTLk3QYu#LSc4a@+?Io`!U1D8Z;gZQv=4+3hREgxsNN8b}DmnO%VcB6% zQ|xQ#oAsrfxAf7eoOQ6E5%R1-Ds=f$jrsQwW<)esGS8S(e7$*ZpQzynY~pP=V|$b zskw-wG}}h@BTK=s+MFb8QEBzzMCxmKwd?UQD!3ZpB+^J;WbdH4b|-V)FqyHL`uC9a z(WPn;gHRR5sff3`tt#a5yLY_@WdkHrahGm!N#goT@NuBL*l%#2#VFD7183$pA;DAc zG8=l&eS7$0?&3Ylvg5ZLQ`sZIqU^zBh5E^uV6B2FOhs~Q9251~2)8rl{2C?C^?IM{ z<*Jg+yLmItRx>qrR%enugs(sU_C`i$fw!HFyevf^AuB2S zHQ9fct7`UwaR2$4bx$4NKRM*E<7s!}e+l|q|5>X?Dn*p>7-7VXC zSN1Kf#3k;L4AS5qnH0$mH!pq;L=dD;}$0k1G_P(F%d!XiLZZ9K`jqos7 zey@I~LhkRBe`LUc6K%UbEW?y+*j5$Q(onpIMz!wl`16M=z9T#b3h~5$VQac zXp&Wt8aU@7OPj3KB%ii+#URs%Y0kZRl>dc%+nx6fi(S6lU7kLy+mtu()EY{uGcF1M zOU+(zB0E5{#%80gUWfBFBx)39P)ztA8H3qX)*I}AzRM^~-!;AC1}lSBm-IW$8lBiy z%;#mrgj2-y`e0L&(AQ>EjG0~L|MXr*0-Z8@TflHEF{X-)tW;8OK{FG11#8Vzgv}gH zZ||O42fwZ=5e@m+5@&Ea7jQ5kH0D^cjQvM8`8^iruj+L;s0)?tza)&V8vCNz;5SI4 zcTmwp6I<*t=3Aei{+bYwJ~!OqC=HV;$@@eh=>9;~#*I-;c=P5m9c<5%KBp3}KrV08 zZ_k`#zttPsH$wt44Nkuz1`*nqkCu(EGJw-DmvnCePELG>_w-#sMk}+a2WhoV(~R!0 zIhDChU%njk^aLbJzj*4!Ep{kAwp*pKXEPo0ku#KQ9>Y>sHAH-1ZK10bG8`9tZG4L+wrcuv z{IcRyzSKWS)6<}gKG}U#>mW>>|B6mE9` zMv2>!wE5YNr5oRW8?IWf=dowmstRT3#cI=9+IcTJW#-z$g90-$gl}=QS}O0W&ZAO; zjMtC_=#|Xnio-6@O!wIuRy4eY))HwDmNd6BHXZN~iSTX()o)XR8XF(9(D=tbIgrf?@*frgsxAHkB`C6mHAZG{r-^|t7PIy zp5tX(m(yZz##_c~tTLY(bq`N;JkMwh5^h|1^|~9}_Xkt+_SXDUbGw_T-BV#FjCXFI zbh5Bc_4Ja|qC-Plha|K`fsLLZ_xtSG1M&>JTa@F-_8f^f(#K)=7~{n5BOmW-3}BSn2hEVvd`{mXZz1SlVvOrMy`#28eV;NubTeQ^L3EO;})vK z3!3+L1<2!5RZ6YmARFqh=`eD0R3&!8&u9Y3Uj@=UmWZ z)_p^^^(TEgdgV8|+9#191e2}->|&cC9nAt7@5WtHrK#VMt!X8DNQZAZ2+E0g#t0S* zj->kr1{NZY06yN~&Q>}qAE(|93MR=l<5dbt6X$Z3emT|A?ZS#qL)FLT-FK(cuFubM zR!dWp^WS%h_I@a0U=LOxChhqeCgeimodTi6yWD3VM=Oig4W4 zuDRavJJuOL9rU!AcH*CKvH4_ers3>jqQ`0yeqDOumY579L~6roSH}wDEK+=)5i19! z+%G#B`|G}dPergeXxs)~k~U@v_AeirvK!b~Bb78n20G4rFi{(Nufv7reRr%ChJ1sb zT85{?Oz=R0s6F(W6cSM3-T*SIBTfw_lv`J8rEVJc5cC$h*_N5#-%^YHen)(WU~t=| zXD284toGYjp_pOANp%-vXIB!7p3oHw$|LPe;`xdz6U+j?`b#;F>3PPk#aNNZ;Lxre z#-67t>;c%1jV0>253olJQ0Fp2}fHaB0+aV8z1JqacEY;*+xk5<6I;5-aHLZ{aT|}Zf_Jv&1LmV z-%}`Yx<{W>nj}cjH52A_6gzCVQYLllveOGqjA!&B+B47uMn7Rw{4avY4ybCepkSwl zt*Bl)A`FZ_{^V*jWb&J|mtApZ>mYA`D#7`^6}9*D!Nl6YhkVO4X(J+JhW=v)Q<9?G z>eZv(mE_HF?Xu*xMO%o%m8najjqj5Ks!g((>0XR*=R{`uus-$kqfQhzknU%%6|~xO zdPmvOg!CR!zkpCQroHb0U_k1rRFMwVJ-v~4IXGg@P?};}iBeWyamq-#EPJJ|EjN;- z)nuuHCB~avX{F>g>ynU9oAFw!SJHEi0#5@~?KY^4(?_o8#D_X&G8(AW1JGRCnqFGuLFHFDoE^)ZnB1_LF zh)n_eEk{01VwM|u6^wWbihy#$xerP!>*~`@Upcc0-cyQ+@-5Kpc2c01GzTR!Q(QME zHWz^g@)~u3T%b#{wrOU%Ar^-pF?JFnvG`thdf?i4IBD;!z@P8n~e^T~)!T1&eN7m_5JOkfxBBktop^{?Xpky%9xz~r#DZK+;9Y=@C2|2+&ht$DqXlk~;h zsT@P@ItbSPOjw*%$ui1SOy9adv>tDdwE6ijr&^pq3;&UcHxiJmswr((z=?O21Q&FW znX0$mU;bFR>y_c5{@vA;LO-@ujpaQH@6cWHnDvjEdTE94^K-mWON&S_r>fv+e$@|j z&)H_}WV66_e0reHV?WEK6ASx#bL@WRe<^l`sjws9OZtGaz_PD zI`d8a0*#zy^ct%#emf?`awf?9U7`B#jhpT>{`KfHdM(GsoMpy5!gw|Cyl+YBbA^Sr%k@n?yO*$Nbq0c0k9D5#ZKt`MtGf?oM~ z%Cc*NvkAs3wFC2DZaxKD*GHNK^bV+Y*V$-YF7okv@?aa-Zaqf3V!ye$6 z^Ect5lM$AU*j5OGvTwFAW}Ad?|NGz6JyTNn<^g&Q9fhv)?bOO1kyt^o0^`kdz$q+S#w;`iJBCM>ognw! zR}Y!Cm6@>_IatDKS^%lcYVB*HR_e(ot3M0=j6x8P=L<|XuzA!rZ9pGdDP!*bp90O^ z?k%*+V8?jAta?foDP`agMp19OH%*Y;w&c6YCpuI3q>2WsKat9dJynQFe!VW(FTqdk zQa48?<|lhx=4~C***|lN@I75dsf@L~o1_tx`in;O0F|J?NfjK6kH+N8oA@)@Te1c_ z*~2+v&wJf43OqktFME~l!1Cw$H%s=U?%CnAbcf`qrzNJ&`kU;ufhYn{n=K@0e#Mm2+C@sq$!b^*cE?y_=s@x4@q&1(&Jr z7?{dcB>dWLYM~#pZO$ckCEZ55=4?5n#B$=^Ke9jZB~}PL<63E|nNpJ&dWBsrJH8*> zPCu`*QW%74U3xGEf3&?lH0_?_U=1()#w&YDE|pTY;TxBcimDx-)6YmCY6Vd3V}9Go zNBOy8)WfC3sdp5rtI$y*w8@y|517Xqrwett`@+w6>Y8K-pZ~UL;>7To?NBm6nemJ0 zm`zjzG_`p@k99iRB1+so-Obu^Wo4b~;M#FyVUx;UPtW}BU}#@rRMLoKz)uq%!t}7Z zXmFfYCcTB@y%Z|F+UEMPk7>==W)%umMzR0ieKcYZQ#aiY-OzcRJSWZ_SLA*6Ww}Pb zM_Ca*#C08?h@I*~un+~RrYZ?46HKKj;fq+6;{n=z=r&h2mo^l8 zU=6T$Jy6Mj61aAGo{)sac)`xdRvfb6O0&%nKAuof@pmZYED#U*iKlvnJpr@ASsgFc znw(u}>;p)dls^i#i=X!M_#i#sxmS3VeNUE|BYb1Tx0#f`JaQ38qPgX5y9(g<)AjYcOSf^%n^k~w$#$2)PhHnh)_HDm z4c71MrPXF}lb1$}m6#wa$MR*vqiyueT~`91w0HuCtNAsKYBuKbHm5p!&s-d0*!--z zmbkD(71@iM8jPFsubY)%#+MwmX?h)+(!S*i z!_k27^JF*-fz=!i&#a^htpVr>V|;&+y{~cgfbn2;T(8N0F)JVYbm=`Dr^74t-J`3A z4_!T53*`(4IF%z2DHj>SSjV$o{2`XV!yTX1qAWYv2+rrGv@mY38FuEz5O#8%LS{d4 zO^&n0P35zrcC+|O*qDqG>P}Na&?}|NH24Xt@qc8_sM(sfWrh-M+H1H!u{3soi%gpJ z-C2Zz2oZ5Bl#1Eloi5X6`*70PV$i^G!HR=aKehdA432*(Gh5&x54r8gM99SsHrM#QB7PD ze-6n}%faz;$(HJ|hIB&^!Q~w+2!DU|@EQy}s;Fw6W!X1v#BSRZ#qqmOv)0B{oAGB* zkg$jjjkB0_agD;`(?t_4v#bHHD|X$Qk&>#+Dwmq5n-e`N$n;Mu^u;d)$9}2yHZhu| z)1ev@z;$iBcU`;oo)J7 z2H&yEhRzy>Q-tyu;bKfHBy*$EWeSxgv8c9mCJa@W7@Wsp`SzdEOifpb)zPY_G0RW# zgCdSl2cKFfs`tpdAk4AMf)l#J`6pF{Me=7ZzB=A!tO&No*Eq=90u&ohnuH70V2wjW z4`jBRuZ;lGZe%XV7d~d{t0cqNJ^mI2uVOn*sU86OgTCnQpIs>TToAe2-==0Ij%}rw z#@a;zOEnzX{BYaH5`@hSN45`BG=5gU%@8^%b@NQpKOO8*bT_tpQvn^-1mh!@82HV;p4?L6qPxmnvH;{L^bXR)x|FJ?Ky;b_&kJeN4^(-?o!f2*Cyub#;| z=`fAI*Lwln>j|-73fLoTczd8pm5xBXaF?0E^r>8Hs!Equ&&*BmtT}yg;0#Bua4(Aj zzP=B*TDK^hNep{7^JSI?JJ4?51U$DCTZeEN2TQ)@25ib6VRdp!Ea3wSoEOb5BGOkP zE28Y#%dHeBh!ScJiW(5^3p1v(tw_YbK9SXB?JsxYahF?snY?pr4gL~nE2rU~w!(?W z93C_pt_d!Hsw_L}1KlovTOfwu$jSeq56sFv!m9O#A&}4%>c|J)_j|=F4Gu;>j zszcb|-L!`qd&y`IQv7JLn+rD!v)SE?_cgA%H6*m;AS@7pQ&^h{xhlpjciw|v#|mlk zgtWKqPgg+6|s>BvXU*_1JF0otF4`XWG{n^K+GYnh>8zi zn~EWu2pST)@cR-q8mAtyXA5XU_E%>bg;y(Nj~g}ey1%b?I8aAPCfjgtF7{s37yG{D zj_GP0>D?|cK%|qR^Si$r_8)a~sCnzpO&dEf%pwy0`XK0lEIdRTi*x?=S)v15(H?xX z#6jD-E*{B~zplQVtDHSOwm}33_uKAUA5QEFx&k_J{J?ayB*&Ckj8b0^H>kHc3+4;- zhH)`XvA1Qg)MR#AK8k<;a_l6riD4QJ>!p0wwfd#5+e4TG!MKV&ZHi+PEB;@1n2T}i zOpy_TaktLv>>tkkYKOCuNwru|2YsaPf6Fi@+)Xosuiq3!bE-Q6;(b4Q zaxfTkS$2-fP8Vt5&$(B86By1dZF^p4xMse$zPq94j8gtb#uLW{iE0+XhX`*&DTq?_ zi_~UFCWqego5R{&MaowHE2sHjJZw1Z$uWg0@3Y?~9*x3~1;5(;bu~1Mhjx}M1iOuo zYlt%6J=-&{Km8_U*9gdVG!YEDPll-j_n*NcV4Z~cglFWF6(`Ki>|uGMh&Nr3xrrs9 zlQ9lveE+?K@Xj{@A%iLn(X(CG-GLL--R{-Q@cJkCnzh_$(WjhB{j54mrfXQrZHimR z{ikFPFe1Vu1D-^*X!b=;&FK}7pFfm#^Lw$`y!tfibaPmy3BLhkz`aXUz4`%T;t#9* z{;iuo+B>3sS+|KkflQeG{y#FK`#@I*Gp?e0t5H?V{K=UY0C{Tmuh(b#LPUD}Y%-O3 zkB2Xe(1?>JI&s~QRhG8F*BfZZWp=+MvtG&DZ-==xIbsKvAHVS9As+Uw8yVQI*YP?! zMs%PF{>vxw?u#v|;5wO&52QoFEK4M z-|7VAA}8$)a0MW+EhL*8ebxAntOsYC@!>mm@-zuW+7n%=Au}awDF9h{9&9QP&8tUE6d#>tud}`Z=kyPxK3e_hr3WCpqDV6VPfP$4dwvYWVor>!Bl77;TaG%r52h%A;w1f1jRxlNPcXtAXG$wu! zB&HAd0`J?>SV=rS!zbtKlkDwt6UK367?OMwewpy>6%_DKAVE5#Q~!en~RcD#j z`n&RwkdvI!sz%1j(s@ShpRZP^JdZU#l3hfi^7@YUxGdBYKHoK5KAAo8PqvO8D5LZH zUMJ<~V{CD+XA3AMb!>&-t|tvhR_EkP%%$3Vqd+$Nnc{v3Ps?;z9jN^w-l8@8{CHxU zb!XU2WED32B&tvf5J!HkyvS*IoIOH%0yFk2CTivVBWsh)hIn!yW_?6|L?)%tr#H9( zP~@`I+C(dkE0D{{pea;TX@&@yJRwyoMPTrb;fZf#2@d%RgZsaMmlye=0+N#W2%GzH zRr-=HowhNwt>0t$X^D*0rYA9sN=bOzViV%mjVM@mc-QsULGj2#vy0 zb_?YfZJ%LN+FdF7*D|9>q7~QyW8?d!Y;l_nb&;L}(ml5mf|ol(EyI0;Qy#C0)QIZz zX;gY!&r;g|n23&XW``qE29947bp5uBr)X35hF1`K<3g2g`00)>A~g;lX}c&CeuaFL zyRJcHOW7>Wl)6P!RW|34vj;>2l~CU4%Mn71vep;uK9`gEMRrZpG<0{QV*++<1x&f4 z2YY$-8y4t}ax{*!PPQ<$$*^B0v_0xv|3~IOw4CFk*ZYJcL6|Ak@GL376aG3%cE{FS zB|~fHLRH)r;$r0oXqYBA7A4a z)AEwZ6`r>eir4AXrH%plk@3J$GyvcV7s_NI#3Ih{X1r}1vfYEwIb#HKHM9_(yM5T{ zddseUYafc5cd)!xGvRc~Tphf&gVEMtWdCbLIj8nMH<^})B4aF1k%qW?LqM-3U(i&8 zM2|SW0I49og{`bL2fLO%%@`fgRL!i84vDDND`tx@EwRw+R=b}pzT%j|=SFY^?^gAH zMZhWWWOAx_lRuQ)pRQu5S&4${>8(6iEg9U1NSTS{h(f9@Z0=w(Ih4dA^5 z6uDP95ohV>^4DaD z;o}L1_c=k#Dfr9_Q3x>YTZQ7f!y7#Yu?~K~8;(JAsF)>;r(X4FtVTL^J8^eYE87mSdG5~TgfVt~5Cf+T}U zjKFDAb`vPm*2@RbXuT`DyQpZu=<4g3yMz7{fZSUpc)+_s)y_wFm3Fp;Wg2CktP2@5 zE&SoqO>X~gN(F`O7s4FahqVmgx5JhhAo;G9rhyOs7-FwOlhyPT*nQ0kZy9U2|2S^R zxDgJ?%_0n2PLZhWZVl#(G$D(FjESBw_Z{B#<`XEjIlq$qBgPSS5 zD^PGO;j5V=L_G^|_ro@5-VD?iO^nARKvQRMnRDVKYBL<>OlP)Sm5xA%NQ(*)4$unEhrr7=}~?hvg{i+-omu190W_js^p6tg7-JU(I3?N3%8; zJ3X+2f`YGK7uOgyWcc3!#qZL@cOuGPiIA4VWOD(FMWU% z*W~N-3$K{XC8!)~Db7SYts>hdvp%oK&g+uw9=_1)3=HC6tC}j@n%@kl+5ZIm=Hqy3 z!fQVlXN8Vt+A7D;h^wS@AEgG+TG;F3Hu!h_ZIgG$CgPrV>Qdl^#6Ca4)vf)<2^&H6 zk}HRi;M-_d5T1X)Cxg*hdJE&*Cj1tvhxLuPTp{kI|$LcRA2L=p8s;>nS0=4WWdRx2tx<0*7bopf`9pams9#K+sn zI4skiQfrf!e28f22t&%U|BuBSszfy`K1%{SkGX$#P1{suD26J zj_n5=S64}xLs}Raupa)vlwCi=B}S`ew#JF}_U{jWI;xu4+cS7fg@zAqs&A_H^mPgM zWI&Ct=@zyV`m&uJ&v!Eao+@!^%H>w%>l&}8$Yf?g3zWyNvd~r#Al>8){}vDh-D%|g z?T6Hu+$W9Z>>7zBstW*+h0q!@|ldu^|uu;A2V^A)2O8ek>`$7+Tvt8w_@Lt#PDAIIvRt4KT_9g1+> zPn^V%334=E;t8_=?@{U9xp~qbQ4`+sJb^U{w9CpRd@&p)DaM^^`ufb_?$V&+FW)if&>Bnmoa|JAVNj19|pP!ZK45XxW&j8&0Ncz$)u zaO3Nu&gBBub0S&ZJa-ygDSrsGmwVLht~42Z0DKW?RVS02`5G6JJpd8hs4@w+#m!;} zc`J>McBN7A1qA{vgsib zwBYzNSP8Or!>+U^BM8z6UWu(~!>riu^RT9&LMkUQX*L_^;VsJpD4pi(YSJkD)dg`w z#)zI!u8h7yA>JV(>X*9!M%m$TmSt_@@RKs1a(M1lk@+h#o$0l>xu>rV?gmr!eR^W} z1@qPPeblS8tdPx?~qBjx;T#I>=Jw42AKmU zMIca(du9HR;!UM|0A9E|MF3Dj1$2n#&ef+Rf@;4=pDrfklBFkwnV4usq5Totkjt`d z8AM?yQ_Jy-D#E!y z@QJT_IsnQ7J*BbALr@kiSk1lq_^+zo4rdgCUsVoIhq$^vzHtLjQ-W=2|E(SQM_z zFU?lJ|AO%6c|d+3AJR&Ovy7FW_|r5#lmTM6CAfd(WlB;9_}>qUB^7xlgR-|X?0(=Q z+dYR*QAuC<_jmXRz7fb!N#BiHd?Bhe5U>c-;Q6&>>SK2WwCE4jEh0MME=Rd3UZ3DhgUaS5%(2Asc zTpT9#*Lo5al1rJOVF!rVT8<^1s-_EaG#&I_TOOMET3pd<;d2NqjwDJzgI(oIWU}o{ zW>c#v=sasUq-pm^uv6x(k+osSQ@GpgM;5x+_f=|Apg%Je3TDb*>_wfD{jk&sX0Yo>|K`RHl$!M(50UV zDRUtJnH5e%{%WQr&D9tU+G43lGz?;q5;)$lVQQjdxj`*~88wvOyXdtwRkhaz7I;(O9d>HKK z_XiP+D02>RBvDQB$N-FmxVJKQgcTnK@-B_@+goFPDw3%n254pzSbMagWq>YL@Xy6_ zS=j5BOme*6$kc!*95nV_B7^_e|B4s97iv#XCk;XGh{M=%!tDuyI;PX-^2tA*l-!#l zJv>j8yY--ln|qU@*sH+JF;xM`^f%5EQFn<|*9F%2ECoxy&;O2o z&l4be9|A(HaJ8DXeqOHoxSaF}C^im%`S@|l9oAxi@jeJX_}lKZP?d} zr5opZ17a*M=5oA2%9LBl7{sswoe8Xfw2TVz&S5;SctlAv7g5vMc#Xb=JsKECU+nY` zPAEPq@rmG%*&6(~9-MtcaeuDc{#?M|>}!@(g)#cH{&>+pL)GDF*(6(dor%}1)_BFy z&J(~$j*J6;u&3Gw9uLKlAJH0%Hjfl1nqZf@PI@UykL!IJLJCv_YWCVqo@n`m%#mbw2ni>2S ztPtNxW>4E>!hdXTj0f6H+is6uP0w5wFxyQO-X9cmiFFp&9j*tzBZ(G*B22%AQ6gax zB=e9Po@{BLfOY}j{?%jRu(+&IcmKu(#|nqnW)pkG;ES|8D#|bIRGgA=l`drJZ)tB* z%z1wF%$Trjx#lMK^Z{+IoZPk!S@?s^=%052*1m-*J+W)*lA+?h9vwYlq>mrDtu5{M zd$sm`bZFHbtlv)!2P))n@ngErU*ty~N-TKqzhX_NKmEOGW5%jKmVKweePS~>_5DYd z7`Rv1H9(Kh`IejW#)EPe3Odzm?+hsAu4u_=zuzb3El>%O-p95WlC9wM-8io8AcTy4 zu8Tr6#=Q6Cb(k#2ie2|gluhEQiS;VRX zp1*DMP5T-7)V%r{~bffWK4;Z~+SY znssI8mEV=)Hv*MB$!&#FTj3S3{N`AA=5O;i+oKMhl{1_72PltTe0wWh(`SHvwQk(s z&mf}9Cz;q#otyo)fYrWB0Sak^BQcB0fO~<9CQ$Azn_*JZ)!8q1Lal+~$50B)g9l>6 z=jz()9A3IH8SHbu&ODxN+3<>_l}WMFLHHg^+#Gvg(3l#xc?zGjjq=Q`1i!x68_}D_jR!?dmYb(S!?!X0oSf4{ za$I)@=@HJiot|qKU4;zWJ80xxLv#L>F|xcfB8qwC0?2^+e}CR#X)um`vCXZ27v?V^ zecY>k#c^S+^SWumH)w8u9lhc!*`^OApGV+bxiQNT8A_v1BRNnN)bN59+WnW67S<6?I4C?r{8=!?47rrP!?nhEaJ^_bPC}}EGi*Xmfyt&%}laI z2}Nlv^1-Tr3x2DX3!HNok_#U}S8PSVq!_+n{woh3s`(F6qWMM1_hcUmQNIRspx6EJ zlQK82R6t*c&wwjzJO3I%C}Cz}85(4rIqS=|KV-M7aG5QsykQ+<_^ivc@sYnUmB2qH z+cj)mx%toStsR}tS$wCTd=9&5V4ZEFc!M0hA}5z zMU_=qvB_c)7Bgv-7=Io9hXQoLZ0M00JJ0y}f`yL6#oH*^$@HA}*RN&N zmMAK{Y8~v)K||3!(>KISG%mm+SV$DO$`_DVS<=>CWuR@|05sVu=uN_W$C7Y$?C+o; z?rnP)`a!z1*bz|1YWO$eovQknTwb|@YKunV#^T8=XJu(Z;^vR#OF~@XO84F`{{80! zTB60(A7yU5f60jjc-1vx3!99jomV0KaCH8?BU%aT2Aka(UUn^r=Zu{ZBU<^m^1CY?E zL$_GVAjW2Gu?kHjH-~f2_HO6wBX&K{{})r!@sA9!XIaySupP#PeoeJOVz;z{xOJ;4 z8M3r^8zDU9O#K4hT;?#LP>SH0N5Y5-qkLAPP6K)ro*S#|^um0ZW}ZZSAfsEj7*ocFIXl9*FK9?-d-E{&0wfid^yOppT|85z!|rJtQD zEzrh`>6Q6?9tY5?EI1vE5eMw3yJI8)yzq-@Znm#wtlo~VHoR!rO0D^~kYD`ul&iL0 z7ejYzLL61b3fa6$?TZg!TLc++ABc){-+p?|_ajl5v-w9LLgMj)?l`vl_K$VmD65az zY2asWBz!)uJuKZ!)aQ9l26U)df;@Ic-+#p zt8ZR!lphcsCVo#Ss(Uhl!-(APWK?3TJu)DTsTjsFUq{X(4nG2{TDt^m%_{*S4Jp9VUdTgmL;tcN9bRq z3wb^4rN<-mM{;giW-q3kmSthXSGNGN2q@uf6a{sDU!88WD8c9Ijwbg#7`Ff2>;I6U zYwstC80x`<>eFH-BmW)!)tYxy261#GCn5WN3Ms;zg>L{ALFwV38N8O}tE_6n0rGHBNO7n^twwOXjV$%Ceoer_LFT9+cOZd%b)k zW8yOwA3Hell?Z*LT-Fr*=`HAoZ0F*@!ISvH*NQ2J^((%<*D@nmr%HnkN+12|)bjY6 zW*NR3PGsg@MRp=)F=v;!Y;d`4XFrnaucz7eIT#z^`oun8(xk&$@OEfCdCkC!&{qDb z5;5tG{97eg5PjNSdBLUu@JA@tSbT14#pY+meVlkCF;;D$06IIf5V>zMLkaqO?D9HE z2>yaz$q`zhpP--1*BF_vs+^)cg$ItM8_9SG4yEBr0a!<<-`B=r#pe!*G7@3$jahxF zzlQaI7r$Hy)6|*>5c){r;0m{tr%>SWWl&yy13N&%eSzXoYFzT%mW9fe-Bdtw7H`sG zc0-82D}$ju_mJmNhOV!%lDtFAA*ds2;gos3coP|qutU%4uPwLeyz)yl$E(0oT~bgc zIyStw0_{DNr#ON)qBxG=9ui&dQG2+eLQw4L@jL0<4c_%gISGeS`T z=PcGNjOVlaIVEa|ptrO%ZA$a#++@^tkB_8ejag5^P_d$N`ZHKqROZK#1xwwE>6%Zx z>Z*X)vFT1!Sp6gknZ@^Ot$+8T*t$0EUZb#J?6c_mZ)LdJ6BZ@Ln&eA^bGX!hzIA7e zHR*b-v0b(Utvn2O0p5+loG{+8d#oXe15HLXn#;me6(B z{Q^HpXjz#?&UjAL;s=DZ{d+!U%mc}{A9d*@E%b8546VuxKL7DNo+-ve4A#cB^t@ew zHzHf66@T6TJLqp!!6#px`}-P2z|V9w>flusB#v3rTY&fkoha!RtzJhO2F4(L>EUFVsm*=m8{(LY+t45~g(`zm1+H<1U z&4V-l9xDH>wo}yvK&e`eq}wpt`YB?MaB##X{5xrg#DyM3*rKj&2NY+QTA1R6wSsr% zHXkLZ2$?-9e-fYcwk4SEW~a}X^K<@@3vJj}ToQ+6EP7yW`f1)-O&=vh8}2<$&F7(1 zrP#0rY2O9mUskoRCWUJ?)Q)f2)YVj|UF&c@W*uUVll@0_YBYiI&*2m^?eM7FaY#9> zJEji@TZ`}MXyY+ma|26aIQHPd5{I8Rs&sxL`5tL@P@UH)e>Prv`^1Th4j-f4lzrYX z8z72I81(z`WWcm-1+$m$Y`>=APGHGc?1n_#XgAlhUXVBZSy0TX_9!e%+3p8PQrd8ch-;|YY@el__A^>4-lg~ z*NFcxL!8U48nm@L_*s3Ckp$=NJK|7iU-v?ZrmI!K!++^mVW(H7KO#~LoH4P3u!Y^ti_5LV zGXwN@R4=^flBj%(XLZ;^cy5Yh2*3qU?hveDcW9$RBTDQu-7J~=x#RZZG>Q8YZ(_ROQ-96~!lNM0Sd5q{ zJ#~`)+0!!}7=##C)1?f?2VwtocE_HYF9W%e_E|Fm2|I2NV+~(g9b8wt=0qn;*&tE3 z3H@64937~o>RQ&Df*o?q=t^6ha5@xJk~ugRL;=C??3k&{Eqv4xG<=EiyGm!y3ttDB zva@5!;Gf9Dw^n!^7{EnW9oLag2|_{1htp*z20PfT+s})hTy|QYWwvF;drYs=eHnFCui9|idK;LEb6-%^YjQ2zDD~!D-a~yq znRTUp-S!S%m1c0}z74AEvO|+sf$rkNlmapQ5%du#quKSiR_eH}nJ{gkye`}^R}0t5 zsCu}=S{Xxes=-+T30jUG=x6Hu>h?`zq&GiMmM=wS&UYu^Wd^8n@P2ncIK%U%Up*|(F+cGrV^)|`+ZKGR-}Ni z4ddx-XYw;Mtct~jSlKYfmEnze3i~~v;j+QS;9p&vgh8?`_SO}p4-Wh>$I>MD zV5*6P2iqo!Xn{Vy+}OO`=|EmouX^slQu4dBt;g=I`fp(J1c;8pGO_vCbhCZ!yweUo zymqT~6fSIgFcaiKbS`j(Io5Ny>T9*I)!{%-tal^Clra&_ej zsLBx2M7b%LGTwF-O}-s(>IYSMb^B1h|1taKH)@k-wmUOq?&EXKKlu6{-#6sTQ|0&d zoxH4AuUI$+rB3QrR#uv7S$h|!Tzv5hSsM<9aTciOv{NiSm|S{RYG*2c5p&qZ{Ovl+ zUve2G;moINBKIgQ`?#)jM}cIYuWo;AzqQXBS@xwIYeDL6<5I%F_ViIcK6A#MLC^5| z?an+2{GU&ZZwXL}b`QCyF*e>=kH2cQyj?2S>}v`#ODX?D8t`=-%piIygI4DxNyEtM zLUv1!x&0GM=(xBYAj>}tsa)Q3z2OHJl@>Ihh7Z=|WRmJNJ&uATYerRrT*w9ckLqEy zegfw~&_ZP}C~fn8l?%*JU9A82iJAEDKr0T~=}O`E@E=(PZ>_VszRmo-#6L)By~R&m zFRtX2C$~1uHBvT~)}cze@o`0`M??1pCBaL>=U(VkQ~Qm{Z)0;rdpyeaHkZHzc=hf` z5}WMFBAD{Pda3g>lBl@Ofw`K)*}tvWBhgN$lxEML8d2k)x>hP^lbPrc3J(@(E|&~kf*#Jqj$Io2F~BhmW1s=`<> z+C<6hB2zqdtFFXV!65yx+?4l!Zn;4H@OIFx-&HvJE->q?pH25b)TXdwrM;`zBrAuC zQ)Z)69J%zwRx)#MDo)HIWz07LkwOH;PbOohtiJ2+NSmV2Sm^hz9Z+QrlIZC+1+6e{ z_Z}6!U0l(n%ooeocoFA$+fU*}khDmgf-EZ0Kl~2v)<#=X8}x`>A^$-ZSiH zZcM`0=~+|s?tz@BRST4^@m7Hr20BO8JuSb~>iG&V2uKk%7&>~$3?zL~u5|FVr$8~G?#zILv831v_X$%R^wFn_Qz zEz6XCde~iG>9JkY_U5h0sx-|FbYq0aT|!z-Q{Z>sTN`+}f=O4S++!_hof9%;(69YT z_w&*0Ng-%I=hI`v2B2jl(Gs!5^UP|cvl_RtS7#);i5~-rlQDwCjArppo2;Z!R2{Sw95=dqsGb>c(8+G1nSMp( z>k0`m`0Py1UZ$H$=AKpe|{4U6Q(*`;k9*DbI3509QR zTCHoZd>-y&r8#wjns%xz#CRRv^}G0t{U)E1e!926*A%e2xWRE+&#&aTa?(GPmUu7j!^V6DY zJ}qhXRSJA{6-vB;6IZLkd*<)fSGwC*j}Jc8b4*E~%)r=vsqp`mdF?eI z-Z5U+jv1gI@=So&qVijhggn-G2ip^!CPWptH~iuE@offmV z-hL_PUN(J^g&y>lguNp?1EzBDKQdSGJL*_R5{)622D1X~V$C`dZPa;Ec}M$-yfYA4 z3sFsz574lLZBOSM5G^6ze*u-nfs(vLvC8?3$+1dt6;w98Lk5jC04N^5KM~EKvWk$i z?|2$)X!*E{IOnO3*x)y2!qXj7yJst5k=Y-=NOF28DhW=WRhq>@x;HZtE_S@TSw3~E z%)WmFNPDu0893!kJU_vg)B~=m2@xgU$MRcbYT~1FmmWEQ=oCHus^{8RC*v`pX%Q$l z^;Z#|F&FQ%#Ji^2-kX=vFH}qkza&oW9v#biIt3$)A#^2&lLw6%!&rsTt7zCYf+2K=e5jA>=nz$@H(*Yi3HE9rCSzS!u zb{Ki@9C3^E=m~I}vW-Q!@xwoxnadh{V`?$F*VwYv7?@`T;q0uGiUsps79`foE( zxzO+`AbcO7n<%dE*9hjs7p~WcFR?nQtS3HoRn1`w>h7*$lr);PUial%6g-D$0}TEj zN9P^Q_W%8Ht*WAEwQAEARkcd1cG6buqP2IbY6hv=gmf9TRnc0hnW_Xe#vavFk!*t_)dcMnKNMsmLmWDK`y}pzv zO;SD=w)SWJ^R;|VL2X8MYt)!FrtG56fkx5IbalVevE#2u0ESMzj9b9=&>TUxs7g8e z9S-s}NrtWjp|guy*yP_FkLK?J$ANcL-1c)F#Rx-rHpmL(M=LtIL+Tm)?nH%bibpy^1{we_{dMH zGXRd-8^@I&?x7X?zSw+(O)WCz@P8ebQ`R!zS8?p7}Y z*k;Hdihq5tb37g^s)wEkFVW_1uv$ z!jXu_Mr(>hm3?ya)cILH3<3S2{qw9mAxM??vX_t=&l3DQxTZ+D~tSFHE zz~bztaqyWrmfyl|=U&gXZy5T9ndlq!j{WWJ@tC;p+SeGrQl61Aqxb=xzSmcEHo__Z zxcAZ)8>z~jmM#Gf-VPg$++I67Ebgn0^uE^@P7X_jbi3W+&Ae;Cj}Z$oX=#9{kqLNO z{Zi98Gg3%qE9tse*h(yX@YbaBKen@{mJF*a!^(=d_r(DFb`xS$UUheMwVG@=rzS2$<}o!(xTp2~Vo|89yJ`168QSwO$e z9PFM(kT<)VoUMTtcdfEK9oxqaisTS}{j0lMy1s8ymY!}XGjhU*sgsDJv(iT)zc^A! zfJ1y;lsaNzovI0>BLodaiMk-Deh|WMfIT0mnoLz&`a_i z+=%Y@dxH7g;Tank2OKzg4It6&!yJhLCvDo=bD>Ypn7z*R8h4s4w0O>Ez+yZK0bt+= zV!mk$cF7;YihRi)Ixo#o;i80Mee!e~^BWW)yy=puGKVI;sH$R{p z-gqg82@>ue?zu4_EX5LQE*dnaJ=_{iL~_D!(kj3U84ePOU5H;^hqxZjh&zMgs~y|k zK#cQnznpcCjfH67#LIeynUaLeD6dhn$TS@rKA|G#y^JqM^yq~e2ZU|s9|Gby78(k8 z{|uc7;;Yf12UJln9h;Gb@s&w+Yy4@p&=#;Kur}}P^cP!IN>`MqJP*G7`C8k*5&2pB ztCiLAilPQwEt%75>vB3H#~Pt_hj`Zdr)qvSImn5o92NIGcM`?=B6+=j{=>yj`+}a1 zSx3OZTpimYD8n!FCjWQNJ#HK7PB$!CwZM4c6jo=~AFR+E{o$77!%9IpIK#bnZM}u= zs>yMlaiT^AsB)~%jWXOuF7#viPx#FQF;|D zIrnbZll5lG=cmQEC>YX+xj}F_1k9V{R%T8u3G3nv+k-=%UiN*Go z`J<8nfsn~eJ47@BkSWY)(pj=g9fJ1BHi^$j*p9Ja>Bij-L&G_=pZ}(Gt;r?ZWyT`5 z0Dn(!w4}?40U_qYMe?^YlIl(F`3)M)I_BQDzo( zNyw-UgbO9Idj@AkJe=2_D$lcEN>b9y5`@Q(o9G$NsRaW?oRoX!J}PFkRI7P8KQi=W zBMupbsX-*RUV@5}U4THI7G!Mv4*jQUr1j?4YxbO7(8N^lH%%{-7M!CQ!SEZ$@xJ=x z^h3IF|Bld8@jI1d%C)T;pVQ|6PiaM>8#2uXcx@R+z>Q1j!>Sh@lqiM-0p@yAdb@^+ zi~r0<;ZAk&TbIZepx2fvGiSIiI`wrs=Bg=?=;`fn zY|dR;b~B^fi3Yua2Q;a! zx@7eX7ffD#m}uAJVp?ru^t)xl2?v#{cO_Pzy*}J@l=rKY_i_gn18)~ofZOp&W$}9` zdu-x;RnUAk($AM4oDj|o#M8(3`*G8OZU1!r1NG#6CDMd7@Yf*TpT@5&UJ(l#~S&xl(5-BG#IhY5c3=jMWHk`jmN zlu>YP8V-BVx;WbA^6N+5&;GQ$5rcgDLOLS2>Qp{_J_PZuSpY>u)*paC4es;Amg~S zPQ!txA`Q26h7#1?=XZy5zPfA!E$i%u2A+Qyxv8R&Iy?X<*XDK(aU^=vPGi!~P{l(# zj{sXx<-tyK?N$KfY#~Mb)CcZL9PWj2K0p&!7v(x}SKWU>PvB=vP2MY`Z|I5orw06+ zO|BQ~)-!JG6tv`cQ8CtTXf`tlwp9z;nK#azOQ*qPdwQ~ui-%oDj>`xAbv7Zrp%77m z#u!In=M`7%a_<59%O7z#d((pum49CGn9s@!1^$W~EyiN68D5-uc;V{1y5rF^#-hCI z57`-BTnxY3_TcDH18{#c^JkTx;(x%P+-uzN_HsQ{J1EzK0fDj!JcHsJzVH5mCnxjA z#jGyPE0Sy)${3$7`v#(azJpLVADMf_!{cqVw>Q6*uIJck8fnLV zYKviG02*qF@_-s|T5g1x-|6SnIh{OBEC;*G#i=T7A@TvZ>VLu#zdA!nG8A?1Pyt*z52K=@L<)7@r7d5qW82-g3`Zugyr6u@SRP zUhdw#W!rbcO!S&&HMcPW?pLUqly~Q#0r`){s+G4Cp@^y^Z2DRJ%ASFsiz1VfQ{>P; z+Qv$*#N*h;i6(R-7QjuUHAZ;+oE3Lno$Nw#d8xxVJLdxS@ujs%9<`GWZ~o0+ENc!O zd6jC(>-yy7ZxpL8-~D2v^xBw`s#oK2w75Bq(S{|Qz<1Jaw{7U0624_CaMT^dGw%6) zwC1)`TE~A3ra8P_H=q5x8~^1S^IYe)iaMtyr%?i*gsDOG?u2+Kjm9ZkrvLTRjOr{Z z6RdKGp6=C$Q6%T%PoK4w|c?qBQyRhDn|L;5OKQAQnV=5T>s;pKMp1~vb&f(VCL6C@zakr?JT9~ zs(H(2&7{e)BB~5UE6+9v(m@vZ`k4_*rw{S0y9sRSx4| zy_Q+rAfV0+(3-zg^wStM4>+2kHk7uQPn9VK3$PFOky{roe#RNV)a&+8yRrrfmB~%Z zji(IE9z1@xBVn@>$<_Kpj(CQWcd(ag;Ja|F;4glNV zoP@D#C3abe8J6~d*X%RTYYlDx)c5YZqda%kpg#da!`C9kJZEqNxNr^dGIIX`?YID#LOBB?k|t`d>4x_(CgUw$9Rd! z7hfsgG4W-lWg@-oU|)Gv3mcP&Tz~`3OeQ5D-N>|uze!jnhg0}U0VObD213c$;FZUG zy5*qohEeAG%!Aza^fOsb9;3NYKI!UoxqdpQ@7n9H&KK;FNYH)CJ4cxJ(!adC-qGV07Aoie)ht7UHPPP9r;8+7b-~4J+SM=W-98BxC(3@_Zzt|6P zh1O&Q@DI2fzzX>Qnu&z7MT^YcH+H3Oz8lKYyL}w`EJ%XuOk{E-tgswHq z;Ab@?Ve@A$XFX!=UAcO0`=55e(xNh&wMNILy6B{KV4>l9a(no^2z#^p;_f^0$lA_7KSs0WOL%bb zNHmBY6686z)v975h5oEp&O!Ns!yiwP)-BYJcDEEe9hldu{?%c%lwab*^8xK02|*Iy z6+17Cqcwo*75$rDmHU*0Nx*ndY~LCm$H%?mQoBg3Su?4TEJ&0sNwxY@B}ev*vIes* zHdaMS!c0w?PF4S{_PcOpH`VUfVTDTa`M+;iZ#y6JIhu`MvCXkPeMARD;VfXsZLZZe zz@8#r!kToDT!%bo(eCNzwFNo)5yi0cvfmRWmOZLe?i23`HTi*)BLIv4KL($*(R^Nw zYZ&aI(|+HPJ!Rz7lxp7cK(%`XgT@W6K=}_(SJZqq20MQK7#g>`^X~5%`^x9O962~vw6`HkLEUaD z*x4E1eiF~ne^0*cnOaIWJZD#P!o6&$m+VA|B_euCXNKRlO03Uh{+lj+W0lpZs_dC1 zwa`fFyxqQl&335rT}oR!y!~t`N?{`uT=&$!w9FTpE5EMU=p;0svv#(ys{%>X|y&=&z5Yk^2y|v<9vbaFXA2^y+gQasXzSgwi7lI@}@^WP~UC^B-fTN9}3`EY?(*=6<``YNQTrW`Dqv)*i3yIMf0OlW$0pcr3 zv)u+20e^&ohfO{?F{<<=WABPo%9}=Ra6ao#($TaXTh6ww*HCf#dH8As`QXL&1o$rn z@`w^eP(xoHhP`61)K2x{rA50~)36Zi8CWISC=?MJ>MiqEy;_#PTsP8SAia z;C+Gyr0Yr~xyb4gDdpYjSWNZPQO7O0?VOpHzH412aZ5r8#uepv{w|>gFU*mF0h0FP zd!vyzH_i9wSo{|fIW`_l8bgZ*3vmvjoE09gzhVbW&Rkep6pZt}zHi;f8@yNaPh2+M z-!^4i2&XXid$q=pt*ezgb10}Fp3PArdf9eO#|B?sX{Fbo36nA8F03qB7>=bsAX-#$ zH05oiU#m;HHtRznm?GmIMSH+`Qh)tfPJ{~8e zv}N>Eezy@aLpU3YU7M`CoSPNw)$w~t!pJx0pQXKuvXP9(m=5v}kF2$tY^zSMQU-Gm zZsyK1p3+pR^sZSUMp*8GyCq+9E35M9lg{gmw7+@>=9>_RVBP&elN|XyQ@S~JB1d|^ zIWekWeYw&c>Yr5$!8_>q6AXY7P*q@irU7)ZD9F{|gU$O5Hs!y;M_QtsGQZKCq z;2b3Ri;DSnV%y^{?6w_w?1|Efv#m9c%#fBO#S;-7&)7&yMV)ODTOI{al9?bPaA&Fa zi1VE$&12Hi2eZ7=BQ=Hy^Hwtxc!$BTj|5}uRVR(JDGqb0)?m)Zq*05BmRG|_bj&d2 zXW`EcbRLBD*k47%mz?~;swt%%{44MS1}{1O?AQ`?chV~^#4Gb;wu3sLnR+k_p& z4&M{p$Va938ljzm7UmJs`~!Zg?&kLr7cOi;AOd^nJFw#k7r|qM4T|BKm~oIK^+}_% zyw#&`Cd@s$j(t6sTXYyH7WI;NqDr{bQC$~7Rs5&%AI}!+jdAo>7hbJ9u#I}>(7J*Q zATbI66N~6K;pUC+|6^F}X{?<3q-0A`)BIXk4a)I*yP~~z;T)12rGHes6rA9yXsVE! zKYDp)9#*_>PDz*U!`}&hs)Cv-++IqMuH} z$>!&L{>l0z=%VHLvPN=Er$>wmPUR*JG^FbyNI^d#R^5u)>A~K#%LE4riZ3aUuv34s zyUkq|E#oVgM!zyru(zFSieVE)o80w%Z;NbJHFJFPGyo8S54gHnD_&>{+uH8&k+n{C z49hWQ>)TfSY(vGA2q7a{1!vYnL=7F?9rM;~0{B-p@S`(BQ-KP)U9!8yvY}_8Yf@(Y zZ$j)U^(FlvSi*36zJb#4rtf%4N|*!Y4UiHgO<>%2*=IeJKs>Z;Dlc7m^6`CG`9{F@ zwNy`zxuMEhZ05O(e5`V(>=_iQG1p?1opEKqWP=9!*Kt3fZ`mf=$)zt*z+T@5wd~b2 z=mwC9EJ*wTyN04w_;orK!F`LwQ8Dt)Dffwi^h4pBG3REuH5e|VChIqrtpv|acoNXn zIU8)yV_8(b&ix*j``OZI>EfWO5I8{3O##4I*XZIlT7a-vOZXgd_G_}!6bR?b=l?u{ zcP~n%ja7LA`qytiYd(D^|1gAOPJ`T>t~pFTmNhUr{2AtY35}gInuAbPCW55!JRhkn zf)x~3ZCK6kfzKN}%ma;IkHmj3f?^oZW&O$s*}fYg&ztA>LjF*vNx^8Y6_x7I5-H6B zi)4r_M!}c|u0>?-TxX9g_K~5N4%f0@(SxW4CLORRTwSdM0(duIQ))qMm%q5$R8O!f?-w2i&mObE4k21RgV;5+`PdT^xui=6fPJj_a4xN`er>U`> zKG#C2!J(|ic@!ktX$%#I_ZA80(Ang+oJsFMrc;^rRS{7*)@Dh3sE-%EjQeJ4<%)yK zoEnl`p#E;_u13kfwq+G>W21vb*GXeU^YOs2`e0QCwMN{3R0`Ha9YS?q6TU!!;G66L zWpct6Rq6aRzmzq>9ai3+8hv*Ly~}%f1osL~+t~MkKY!a_+|&xh`*59bwus8(cyBkd znwIeb|*B-XD6Q0x}2`Gnsj%5};`DlvD1d8v*7YU1;T zUk0R3AIoFn9-j{G2IUh506azNM{ea*M1~wQS%ERCzvWQr&~^B4rOO%C2{s) zl0kg>k|! z5Vd+gd5>?Wn>EF?qh_-XrKhCT_Dn&MtsdyB6WxDC`_@$xk8_eC_tuF2xOJGBAS$KB zy~m~#K>Og{0hZ4G1AsaT$jv}|ffG1#(W)lQ$oMSpXSUm9n<;JB^#PxRGk=z{I2%>5 zD-PGk2G$+d4FpUxOagyRyH}p@u)O>gLp|8ruuDpG_!Tw{^sk7q`lE^v9_VCac~+6T zYz8zmjyqXpNs2>KR5vnC5d+MD6rIMuyyh9m#6i8 zzdv%_YA0V9)o+#}T$yoV*Aiy^{AVkl6xbng7X-Ttu}uw;BgC#aq)mkNzIzm&XUA7j z$l2G6sg+vK2mqOE-<*pqD6IX=AwT=hgz$UijVp{e?RP5l5{SHm=uCHfzYjuMreoNr zUZ(oo(VXPD#GQOgWZWCSiQ6r%sJspO;zYlDhoVpj05CvUj)bkwAgeIhw+gW7CfCvk zf2%4tx{~y0&?SVx4sO_G3;GHk1Y#Wg+Y>&{<~~#GVbTUebThH6pP-UlHSIt-Btzod5R^ew-eQl zS z`R7ZpZ5`K*cs7V2kRJnt+x%AX#5R#?o_DfzM(XQYc^wII2^)(`{ll}>mS1&?B={hA zMNh6RU?Y?#Q9?ZT!+{e#GIz)HWS$e3FY5-H={_lss;1bIf$M#b{=a|u5(tyqTywiK+|44blv<- zKWdLg1BHlKA==e2Fv!#xd9-5Ec#B4gVcUk9v_kuFjL=EKuyti01F8C={=eHQv?cL& zp~na1((Qzs_-#>db7&c65I(TJjAkDgYfQmVm3&SApHS=`J_N3*jhW23PYi2T{iq+_ z{bRN`0qU~(buQd(==E!b)}K&MS$C6+<)01t6x!<5iq8fAei$Sl+Kc=IJs2~lUPaSc z%t?>0{c28MM0Xk(YUJ57S~NSAt=DE6=m;*H!5gL#`shlQ~#Xg&B=>4nV_@hFSnBzAAO)pJh+>{Xs0vk&sgk@SVuk5ueH~_ z!ejCQBGU>*9p;t^nyaReVRPww{RiogZwH<@VZcTJF^j;jL=i;ZgD>C5akJ+M^kkl$&9YkpZ*k{%*uXx5k2RB+>8FHVT=#l2Bcj~K$ZQy*_3rJ!M2E& z7tUCEXC}NTz16$8Xy(dZHIHbpGuwOaqn?nnEjs5Vq&f+^s-UgLa!ep34OJL5c-sP= zYAJ@uT{<*)rY$8$TbBUzqs?=}G9MHsmPP&~WG_w~`x1IP|6>q@D{>aw+hmprErDGp z{0`;>$_Zy)Dm=^bQ+JKSs=ukz@6+Ep5cbmR*woyGP;R0+cZJ+B=K+O|A-KmzW->t$ zeRl2020r#!{4+GLF@@_K`)@T~4jtc_mYP(;UB%nlrJlVPJ5qkE7Dg?#+w!Vi(IF3EQ#;l`8Ue4EocX3Dl8we5G<}3UzNjjHBe@f`Au`La@%#Ogy%+V*&!(NKh%HHaUg+mx@XbN} z?Soz9=F>3GpoaX%@NMtwsewX?^F+8dV%r{A#ALvFi8GoE7N(!45RUM@-EMICf`2nX zxJSvAA%vc}vva*oT=@)V9ETWwzmT{428Ts8?u!4%kaF*D*9u2G%-Kf$0GMeryf&Ph zNz?%-B8#}`RYFlF(UQ&zT?hi~mkeuXH7Uq~8!*mI_*-F}XIdpWt2-Z#-dm&+R<(X? zmgBHX^nJy5g(`QZ+6<36)#XtL8JgEh!0=Py*! zmjvmRC%V#~E?_+5rV*X<*GUoBPF%c=(Kq60?^$J-SF>%dRWpc(#AOG&Y>eNyjrM#G z(F^(D0HWnQ3z8zZMuVK#j5!6-WUn_NXX7bVbjOxSoO7hLdjOB@W%=cZc1|X7EXa)xVR4 z;#-Gd0h$MfXZN24Lrhy(doD!R)eX35&u3QE(_c1;Uc)uh7YB;Pg|0X590I$vH_$C= zLRxxBbn;(ZSpmy*@xw1VYx8w_8-LSX*!g`jTFh&Ws;rUhTdyn5Bt(qfXLmtx0aT*y z2Q#wOpZf*oDB)(!^;ybo!HdzyKA?x3jSoe#zN-umnma1Q=K z(Be(%1+~HbkZrp5`1)|#U%Qfi#6GBx7LV(&N#8n0q>qSHjn7~@I!UZV2e=;b;|^RC zFZ867A!hmI>1Ugt+tMh3Pp5s4S0x{pS^Sj!bmD!uyASc{w<&OY+2C$8_G@Gd3;RZf zwZmq83F%wQ_-#f#8k!mgBPrp}qwdU5n8^vm254-oSq~S^;%)dL`8Gq;e+;^@u=D0^ zPSuI4xR{Bs>kXWhe9&V-MGE5?GFtj91=&Z#DX zY&Kp_p#P=!K^UTQUq?2IFdN`C>wH_if%_|U;88o_$wdVXPteUYSy{iF7Sp+4#ba4;yUb zL2rV5#tAEic5O?DTQub{V5diN&(1#&t> zPfiX~xhs5~Xt|XF#B0Ez%%6Zc2k~$aAz?lW%8XWCqNKMg`P7d7ikKy5Lhd@cKvL)p zVD9OUy**y0=z>O2BEZ7g99<(-TB%!@OWbidRBD{F9d6uTA174H&8T%_*c7#CiHHSM zjz~q*FYL=xiKy0_zcUZemmYoQmi^86CzF@9drqX8XBYWgtyPDHXy2Qyb9!II&mnc? zecDX@Vd8OKZ6RJR4nuqzg}6$UrDG}Yh!%QJPU<4Rb=A@NKK;2#7=4sYe5(g;YkU9N z=p^;DF`?hM8_~8m=O?M305ux(P;3N!KHQ@AAul0Z5f`YAf91eX2t^_-A5U|TuAa*9@Sk`R<+4< zf?gL)-%3BVr6iK=M`2gmfxBiL9e%~_=py|AMX&s+Ko{=f98k%aO7FC@N*~fbE1YmM zDGJ6_s5<2_Qx>( zi{_%tEwZ8i)5hM&QnPr8ZqiwPtAdZoWN5e8PDHIjL*KT9+#0^puTm+l`tuyP9d)c1 z0_y!_lkz=HgeTmb_{SSSo|q4S3Uj#ER!r8v(Bk&EN_NI5f_uh9c1z5igey zJ+IaGj}vA*ZI@@`m#&>#czthu7jh$6k7iyze4ta6BS((L$c^LwGWI@lm{or?r7{HO ze|QV`{9xtnS(e|7``;ZuU_T@pjbAYO_w4NDwdPaP`U{;Z=a6MQXYLw3+MbDjkG=FE z>jm9R<}ELm-u2VxuX((+?=oC1XY{G}7CbfebZ0on-mnn(-ToY-Mq|iWJ*z1n1N}=w z`8EFOZHfs)`({Fzg}^De^suB`ztYMe4?BAGd%PCplM^p)T_Lycb~Dsw|80Z z_^p@NtMJD;>1Q4E#+9)q$;qe4KwtBbu=oiCHotFo7b~E4C)+J4(L{gVF1$EJGZm0QEY1 zqFnp#G$$F_JO*AJRu+474fEa> zGPbX_{sfp( z@h;g`ZeulH@=kyOAryf;7C|AZP;a-wh3Nwsn2%fP*5{kJYf+c@BXWkXBf%>%Lde@O z4+h-M2N@MCVf!XaHwmK8d(-==)YI(IqGHG8t2-e=h0VSY9aInACN#o9TbJpr%#I35 z(nd)k&a5bTg{LtUN4+U5M!8QH4}+Rd?9{M>?Z@%;y;CpU+mhZk%-|#wlzrQlvLuId z`PKI$pw?3No7QReS+Y%qETi7rwHT3&-!s1`e)kijc;>l?fu9zMWz-Y#!P?l8k9y!L z)E=ZSNjgi7xm{%=STRk4YgtiJ);SD*IF4nB`pBIVk4!{Xz#@9LfH2JTe0-->HfUED zinvHsC!H@Ng!%pZO_&p$twZ|leok1Ga2KDd=n0e!&*Tx?qrYmEvg$`}UOKWgr`R1w zktb>ORJF1o)~J6||yXS9}{0;1azV)-l~oytWJiBA*Vn?h31x9BiPS;=<4}f6;T(#xaEU}~~M5hfcM15X2 z0yI09kDD<*XdmVN?ChJZq?o=GbC$= z#nXz&otBI*V|zYPBlTN)Tc*gpyu4hTMNsz#+dX;wLxz2uKAW3PZ2g)G!?UYoS{-FF z9l}Z%wjcId2y$WbzZ0qFe|%;!WI^P*(!V&`ex!Gw>e^p2EC;~@JXYq0^^xzpxkOIt zRXK79rEp>RqXP>iwz&OPvO6HCxT5DMoW>!PZv|g+=X_?wDLnBj&eb&aUK3|*T+u?K z%rLT*JAB9iM8PatUnf1QPth4u$H>bpDm1E>)!wZrX1^ad#m1}lHF+dhIHRjKz4T3o~TAHn4J3MlwfLC*>L=7BwjpnkT>NYzNyX!wH}H?V*@n^Ie-!KdDgN^1fK83*@Wz1Tzuu!?p zx_P|?xyTu#2#>#0z1QFVY1Kn{joE`36m;jN-ZFn@0DdgBJT+(0%S%3^xq~HBTPa?R zY(ZCQxy=^Bpr7WAwsswMqK{+A(L{^fpLDG1wT7~wc`xr_gVw*^a4^a?h2Jd)9vJ&t z$n5Rx{QZIWwCi_1yo)(``tz>!t7YheqU@8|w8`Up9fKamn-wS?|D6_9hf`WFDk!t_ zh@TuGQ&@fGTYAY|^JnJ`xPr_XKN~Y##3tM5E1IfFJ{ro@r69<8z+;J?g>w^~d)tse zrd4U@pdPN;&q(aI(Uq2GA)piSse9yLozbX<1D^9ca*IE8D4lRC&3( zO4s>=U;dtVF|HQtX)RUe9wf`NV}Ab z^K9h-tQWw^?m?zE+YlF<*@=Yv)uRCM^VFWFD?l3rBYc(=>#sllw*q)*j@pVnU?_}o zm@mLImIwPw)fSrMH&xXYAK<80#`Kzra$B0jJ}lt^=EE~%_Q!Rv=bsD*i*4;GrB?t< zrQx{^wFSlmyKZgXh93U^7&@p*2c`#yI*+L!Bu^kWgf57EL1cWAH(4}At)=Tb~c zYE3OMmd(W17j-8_ZadE(C4d%(%)$>(KZ@Kuxw3ERFL>Wg)6jO4u3Ztg(YFdDUF|Yp zXT%I-QM|lrF>^P17cZnL;8yroUE_z9%$5@8%A0-WVj0zMk$L2Nw0#78 zYav|2&j18F*bDM89Nffz7yBaixu71Zzj1z@Gq)~F8ky$NT6G%@3=S46bQ)|`P52?X z)@-JLbN^dl}v)TWhC^;c??oFQ5!>jcmCY#14#rmZnkAm>F383 zw_SVg1)a9jWl8Lbku}IWE5imz-HHiMvG?bIYpOv32w%9YS*~+eQA6!AM3q)SeHEFU@m$= zOKhgKA7Vk?Q%j`Wfo&r*B&^4~-#Se=J{!|rbnfUAwz0euq8>A22HrsWd3P%*@gjb(t+~(4K_2#8-^Q%|C zStQqV_!eUhD*)%Hi1q$&mj_uwOH5;`fm3yNJhQ_uY%>$VnWwfQzi{-M%&N7*8xyxI z^`N#xKD51&zUo)~2)?z+sF4{zP%HyZAbY5hbXX5#+x38puUTdKaz= z83S`sXjbx|UndUiB{840&HMlIq5p>HZ=q~?^t_8&SLshzvenHMf385V!~06DQi%5Z zpnHIk;b;x)Bb^bz1{pK1?}@I{MJbLYvc>LRpHTy8Vz&r4dRC4_>cy~y1|pF^k0o|m zN5@E0B+KeT6}?&<0UmW~A7n;x>YSVr^htYQYNz?*!iTSmU%5RmbxQqv+a}y>G4=CV z+BFMH3)R=$bNcK32HRo7oRjMIiV@3s6!)F7?NWZF+Uk~i9s|K#hCmYlIq@rC@!h+W zIPB1(IKM)iyVRSO9E@5^xK0hLNtN&1p^clLFf%CuDfbRV>`Li|`f?NO)YBoY3A*OI zs>hxTf5b!XiXEKG*lhb_*=b-_&gK{bOiIKH zr2N)dHWp0iDeTDB->+&(#oV)MPzJdkak21UPfzh+w8u;OSiZQq@VdQ@hr_WJl| zPRjV6&=ot%Ch_yse2{Ukr0@5C@pYCDcs9s`SAI;|6wM&c5;?RXdeFt~H z{?=DWY;oQ6#lj({MjN=x{%T03@V@ZNA0TeLg{!eO=OhcK4w;fFgrQDJU~$D0wn3lZ zShBTWaMK^E6m_`Yv9n&V2y8VZ(LeDBpv=T#IKa*#?2$E;^u>6Wqu$mBsuE#Afr`r(9j1j~uPn2sP}5l4pF`KtXJrVk?wI6D&~!kH+>c{qbY>)G`O21^=;hs!-|@gJ)Ur1su~zT$k8aUv*uMdpvF zlA-uq3*GZLu9q*?saghKehY>6{)gi@i&9e}j>o(%^*53+jX7_#D ze+3R)mP!iGlpls|31{+{mlH~U6QFE|=rUJYU0$k${_Gd`7P%O!yewK$KfWN4j7HV=Q&P^%c%4*^3@t3 zdzgPtvtA(}sua3a8&Zv7mO8(4J^}a0A*u<^MvH2e!$WJZhirO>G7e6S_O_<52h0DC zgz{HUn@=+iE52DU%N1{fRI^=WApMp5)`^!^RI3i>W34F6}z^%^k3-8!+8+|V@^V<%R3GvF9nX2@j4=#yE|FYAquODA^QluU;-zXG4 zdI1<4-_75&S5`mIC`T8B$?jSN9p?mRxU&Bot45@{B@cT1$50IhlIC8UNolz0k3S`w z5+;q;goXZ&4b=y@XT9y+>7CtmZn-*XRl3UdF-kQ2a6Z=ZNGJ%zKj16b^D|Lex@FxB zvye4}CctI|$mKGxeo1tKFFcKNsTeC7JotOGU#RT-d+Gf%Ckp%Po=C56n6Ojcusy_5 z$mg!tlMh?E4`cd)rk3#-U9g+tN)%~#;2gzIsEg)li-(rf8=)lS)Tg2^r)!)U)?)De zi^W9#+1o0r7E(T)sgo#i9bWYPhf^>7A4})qmel{Zahq1I%uLNenG;%SYDt%Hzfv&QuLOgMobAwk(fmP71z!WLR@zON0Z)LSrt3qORRW*F*kb*ta8oc@oY zSYa2#-ma!$Fp4YBJ?Yug2hNyHn=kXTH?x;4sX9^F-c-WDs(Y0gV+%U8y4(*%T#49L zdqOmIeMjJ%o0%E7^1vhgI2AH z!7`i+E{M>LQ^9qj!e1V%u%!BNY1mZv*(^KBiNTt4wQ>hK>+N5G`{Nf;r8$HxWV5o^ zlQ0h+h%>~^3=e?IYv-gtgPBQFZT>b{mCHYlzRKfEe$idp9;Bz-%H$&P94V~N`*}+D ztOc5T8V>I!VZ4t7EB8uxR>0B(z;xyh}e&(T<4m<346%qSmY!ov9P_Sx6^7sB75od*b$WMxpki=mbCQM$TMIKvKTd5{|nKF zLr9Y~Ld(g8oxWg^n)}nw4w3T4UpEbJ>uX*H$@HHMUfW3bbIlbgD^4-=7M^mz#5GWI zLwPTYD_aWdh~p2CxZZ;x-WO$m%27`Sy}rA+%twb87ZWc{&aXAWuat;+X9$~L-LrkArJy^9*Bgh0ZIzw1li~i&)PHh3 zM^7v#RE7(~EC|;C49nj1Lf8DlldH#I9%qmi-JG*x$|0+>JIA`hW9TZw5wYr9kw4kM zL&Yte%aa0a4S;>L8Cjvez;_inODFyb#|FTDQ7ezp@8Oq+Sg~$-U7j``Hi4WT1+lfqXBK0fmt>$x1_$7*GcTY? zr>J1aT+ZxuHwHR^&K*BtvDrY{4)*3VF(|(-LwF&;<*SOY%B<{#pVHY5q`>H)*{EGA~)^IMMA?GssYRHrecg2BZ*bK})pWjJG32jx|Q;X-0Jf-;E*W%R+#VfKD-n7}sC@If=OQqKf z+@9YF1CjJm6wz!1auZD!Zjz-bS4j=SrOBg|rm|q=-OW5k-*dMv2rBVJ<1%2<(Ff*7 z8>a!MD_AYXmba()jd;uP0YH?&SCs**Sy}+$C~)=UsP{*`-6j_nGSd(PIgYsB@@XA) zqW5mRDDCo^wY#(=yzt4wNYI$2AS%UtWy6i)72uT<(>&4$oKib604E9#yv+q>px=!H z-claJ(Tc4`wV4mZKv*OvwAk9QY(FfWp~w@4FW*X9CQPMd5TclvQ~-AvzIASbt0aH+No zIjgBMKPqp}r{HN=s3yfRF{&rK+;{>lge&Bzo+GDwoVWFUub}FVJQ9F$gx!^ zaH-&H82T8Nq|ZhX)vN!7-O8KW*olU)s;T=fKZvQ|eWTC^o`Bb{SZvk2l<9c~5G5nG zPKs}i<{cm_>JWu_J=<42@*;{a^-QM*YOkIO)9t4S<#}7Lfb41lfdv|cI7fRntY&V# zbS@}2VTs_lh^kjFfBOtdeJvg+gSnyK@g~nV5B;R1>832AzsP&@KL#j;@gKU%jdsnv z`9v#re*k~(P@mk7A>q2v_=l5DVBRbF?hvDEU9I;eqto9Vu~>~WUN8NS?j-Eh^uj-D zAm5|R5Ck7FAr!y+FeFDfgzi!;~Ktddj3JE6j8v!B`N(A(M|YAL~|Zkn>v zMfjt&l?Yt3y-_K+KJ^-9loH$mmH7LccAsq6xc~)3uf+{9y{ua2gth5=UL|K$b7CyW; zw_f03|BjA*A-`0Y4b)yL3HixJ#4!G2i?ey8JWcb!{7jb}X>XzfuxnOU$%O6zUr9-le z^otF`+NxdABo=F~gIy_T0_MR?6d7%JdvLrmLqDu^omB`nB@9Uf^ z`~1MXbUXgcfTq(4Up@chCJ}bTX2lRaqnE6|()PE_5>(PvifA){tC1S9UB#X)vJ-^< zOy+W~!y8;$n*|%5Qe&23>{S*^h6`#(3ft})2)Gr`h_90_4HY|&R|=oAzp|EN@4O1Y zm;M4r#bt^H5Iz%Eb&76!;23}lc5$Vt=72*M8g)i|5(-rDou+CXpt=dYnUz~tJuBX1 zmVio{eq{+)&6c9g ze4`s6h_|&hRmr}lzm!q}u1?1RII-6SFN@OavQVO3#QUCJX-8%O>Q(9hQcgd+#hs-2 zbPR>pSJR%a>GeHdb#(vky)Fuh5tFabm(#Fx8lXo>sI|PN^^H z6Od9=hb5HA7(wH5B%|i;B?Z{0yDIKtQ) zINTXt1U?zN#pIj&Y~rlylqT4={>@h*0~@!wuQ=T~Dv|6wNkn7ysaTSYU? zk?qLj^0x$;a0&BT>d-Y`wg(E`VnpFBu_m1i91QSF=4pCcd%o6VC$pVa>~)<%r_37--e3C^O2!?%lHQ9<)f>nEGZxZ8H-lZB zs#x7my0!~8bF1RFg3uIOjQ!|QzM;3^HrA1?BcP-yuM1hR(##fuU@jd|fB_Pj8@SDT z2iHttFA?$GaNhJqtWJk zxls%1CeNeSPU4wP6^(4u^lCj`u|!wc7eSja-iRnH=EW{QH#RC?3 zwp}G*tD@xvP7ES!nm~H)hL@gW+eFPtvm^Ql>_5ngY4bBsqHB&zjvuze>ZbDxmB)h* zBOLuobj|;*GhO$_Uyqq!MCo3zlKb*%XleBlq6$YG4B%pR?Hk-fcHcOpv28g8VuAG} zP;;=ZF1IYlB`Ppm?&B>@jxp_fkjV|=PIMEyQ$T1Q_429-=xue%Hux^Ro37sQ)pD}? zM~c+GK(^DKXwTg(;bVmpi1&UuIAS!*D!IJFOh0LO1_Fbq z<5Knoa()20vOpN=r`=f!BCw}(Fg#8FPew>ygc`5cndPT^-`n0@PVkbP)|_U0!iI`5 zE$|EJ0i&`I(5&5n!`gY1<^>O@*kZ;$My#b86$9y>rwIeQ$bi!j1tkOzVw%Z)fi3jt zj7tSuRF!e3sigi#qw3LLJa*i-ZYaO^{pz&^BnmWQ4~`I)o7Q}aAbtV(gL7aK?0s64Ovdjs|n?iOketKr^I z@qmFlP)A^(1~U$N@u6a{U&%&v=fB_f`H_dOfLbnN)utJJU5zJb9vWfA)jRBv9ABAR z{nJ9)bW4QS%n8`x1GpD{&yK+k%OWrnjRayxhmQ zom-EDCC#MT*9Lcv6r^Pp%(QGb5CItwT9YCOh}<#w(P?@op_;9=Pq3B1uAqCr3U63; zYmjEceqMMR<-uJfSEKqxhiVR~vq4Mcu|?;HqJ#tg@tn4XzcFzG;^rtnLw5=Ti_y$ zsz;-WI*>tw%iQP_2nbXF32_Mf66gazo^#tXxjjRzY*Kr&)a)GE>B;Qiams$`>$nXAw& z_)XwS#F}-H+vXrq7&+5}FA%p)DW991WeLztGe}KJylc#ow_dewG7vr=C&jVk z-qLmVj$ij^TR&$~)mlX(q$f{rh3_t|r&K1aLkGHzH3Zy84X1XL7LlLcF7u60!30_SzB?U_gg(DepU2Yyryc`I6iRR z;;T&R*;ZH4k#&c+42`nluBulUL9d?Jm|Xq+YA`)e-=`(}HcLkHo4{9fZ_lPL2B)7y zn(%)zWX}ZG{w&=T>Gf6*d{tBYJ57dW2@#k6QFQ)lefWmf%LzU0W`@95=Px{44LrXk?`e4sKJRr0)*sis283STywMG5)759_R+rn)8N2{` zuK$K>YAW5JoQbJgJ-|NaRymieQrAK%!-tJ(2&(wpADg9tgCFo8XXfIbFv&|Zyc3xH zb_q65uLw29Rc>*$rV0}x8np8}Z1dI*x7-7LRjqHwXqra+$Dq8X{jaCjJt|?4mUCK+ zbU@uej1z8hJtoai9h>+^8U{93ml<8r4zDjui<~POzQ$mM^=5oxHvD51xU3umS|j_W zfm5QC{m8o@RUj<}-3FRiK83$384yx&jhi!J9qzQW@|XIs>Di_$@#g(vE&oTQJu;_# zM9$_yJpfP{>`zF1uBBFw5Va%$P=W*!21XLdn-fFYp|3j(PR*FMdH(h@xfz@Bc5enG zIKa!X`B}?e^^xs){)Q{NR_5WMx23#}2%4LL!--<^=Gs|=hL?w#XDEYpou7gf^N5me zZ8x@TaxF^l<1dw@y9zN2seb!6dHkKkCVno5N|XCi5t&eb07F0hVARO0^UZR~Od7qY zaRWVv`4Vs=f5GjlrP-vZInM!$!STX`P|8HZ$W>WgIT-+P@+*40VN85?IJ6P+m#3za zBT+jb-G0loCGB$W7M5$Pc--1-$z|U+%|+2>jdF713>>V1FeKlgsWL(4HiU%vYTlTCG~iW z4Cd#qW}mP&{g?A5h&1!v%zHwOnck_nGQSB zdB!nSeNp4=+D`s+vXx%6>|p5?Ak0Q5f9Z_y!rgm%vIILZ%i}5AlS8mmIbzl`46lHE zyYtx$FlJakNP_G zbmLe8yyKHFm}DBqeiYGuvyf!d>RTP)+lm$NtDf)796SZ#ZUvITAQ9g&~3lA4xrzLeopM1U{~1UPUmn! zNK;;s068pIb&X1FCHXTy`0u?U+A;jE*YU&2tBips%r**r!N0SN^~{A&{xt81p5pc< z_BKE_;9S5D}$rnkARN;wkVrZ{d47 zO@mwGR&G6I8>4GEk8_X+bAYSGLU};4Ck|}!l2(X}T?3zHA!Be3uHXi?l8tdI<&kW! zhPu)BTedZ?huRq1)ZVG3h$;(;H1xI_zFpX|39QUp4|uI5Zsae$yQ?PA3Y06ZVCL0; zs^Y*8_YPneMGA|oRLiHWW~T8xLUwO`U&xnro1*Sb+NoXfS`e?v#uWG0josEuFRHAi zN>f!Rc6&tZCYGwc+QeOtlUIc?($q)tGS{RMIeOEe5ytXU^tz{yo9nFwZNBC-i|5h{ zttxU8mVK(THl|=e&R@TA@_4!p6ScY?FzC<7LoTl(t`7^6`orG*F>SxZo-gX&uPwCO z3l)wK%FM>`73gFi&n`XwCe{`wdC{+Fuj9lw_#gv1e-wIqTp^8LV0{BRoL6^W%Tq|7 zi@p4#&kEy@znx0`P5}GPFeAY+XwxSVEj}hPz<-(yhmi%4=P77&O3s4jSY^f&tJwJ* zzwx_8w}ZgrPtH5APW+0l|0p-I{8n3ts?^IbZe-0ZDS6anhvoR&wvc0$J~exIY$})7 zM0u4*b3M(HN1^O3YS9l#V;O&jTx_deZ*9B%GQB#ZRn4OEaZ&3YTAVg(kkP5LnrG(s zUg)>EG2t&bvvK(N@Ve%~p?__X^$g-4E32g0RQ#Y0 zfcZ$ebtO@G*of~z;Pi>xVLnB&5FRwtpi1g$ZW5vQj{|Cc_O9Opo{kOz%bio*@q+TN zKuP^>Xs3Th=@;Kd)m#)n+{BI*sKlGZ6jKPU*s+%3!y)|*fa1AsPDZ!ye1wqnprI#j z!9WxwrK(5QJc#Wfm+O`bn~;3$68=)uwT|x7U$ZY*%qRAFymPwg4ylraY=gvER&v0?qZE8h5+2gfK{>jh3@OWj0 zG|$latcy1a06nC4!bs4-sVxM7DBY=i@n>Ppwe#-Z-zQUl=V7s)7L@d-4sA2jE8a`t z$wKlGC&5&)RbwlDY}4>Q)i#p5Vs%^z_v6gQGWo%`Z<(71_p9{XwJJZ$wX_^6^u6<5 zcZYC-FTq7AC1^W<8kP5ad_iJ&hWndE`)om*Gvapnmc?F7PBvnzPpn_tVc@~&e+)Jd zZi+I1jQ|Xvm6nP^%aTkTVyAiU)HyA~Q)TEI#-42&8*W4Y3l#Eu8=%dT0Jl9Y0AGnA zaDiE2R%?SLye6b*G`^~xjp$(ho*eCSp+M3M-AezDVGksEr716kra`F&{sv>GW!}6q zg2bH4FR7>LzxbcL9K_5L4F4oPo`YVUl$HJ1@C@}Sc1*urTYlw6!_gDNf>%}>)BzUC zDe&TZrzv1C1!+p@qw>SuYsSE$_yK{e`SCG@?skx)X_gPiJ*Tp#9WO(^UJ!qMaDJg6 zNrK(YE;j?RR0czRt^HMz{+?i|ODKmnOHZZES8tiPkT46?n>+I_psjRahl3zwJ3cmy zzn9%|YHe`J^it+b5{HnagNVDO%qo&#(b*N0zCxty4Bk<3*g-M%AVT+d zwheFR?FJ6X_75?`{@tQ@A0R5ev$|L~JTg^h3Ig5R^r-r=IgZ8wL*-s{1u_&KNQB@6 z>DSaBG@HdFHk^2z)@xSaObjDscpN5w5Gs2geJklJ{`1CF-FdP*|CQmjyt3V$lh1`( z-g%jX5h0R7Y+|9duV;=*4>Je5tcp?`_eaeqXIgl=_+x_3MaGwLq(NVeAYHJR*2;hf z8802=ba=QboObweZ1j)S!<&K3_ShLv;`N_>%F@EepGttN~YXf}|_!KtY(8#3mI{U3WD%ek#nELb*3KsY% zdt)&4aY)ko%;RpKc(B)sy7S17VT;js3y2KxvVY<(=J=4l7fjaL^rSM;hg8DHAnyqH z64*JXWGIlrE8Xb_?vGqV#j_YQ40g*jUlT_gm%ufzHJYVwolMcHX+5!kX{fB2sf3Ip zsU0ok(Kx~mGfva*EsUz!kP40KhV5%ba2=U^G2ZIRa}v=h#Zh-o=EK(|;EDn<@>w^w z2`&cvn+m8bQ)-Ok%mf+5=jemr8xP4$_}%Ay9q%P&SMvgsWbsF0iZR+)sVP7y`QMRN zkXSW~ao!esb0yawT@Go>PhKAQ(R=y1bmpjp?4|H4>)ML~0dalY z0artwX5zF8Bl?_7BENY#A_T#*egnYt=(A8E*xtiE7GqHwRX2?=T!Q9g# z=*eG2R==6yrvDf?(QnG?#53eELsI`SNDtEX&a~B*1coP?#o$l=!IlTkl5ri1KG}icw;(MrL#%9hW7Iy9OqPkrWQA42awY zNnSQRzmCTn;%4bh6+13xY_2+T$;O6ZZL#M>VzNpn{TCX2&c3T%WNzVwkANN{^j9lK zLh@d*LnoKK{KXFPC8xGAg>s!HZEx187DQ}C{&2dFRn@89-aHnVs{HVSSR}W5^nfc% zw4H=%$rnqWCM55DFqMnDI)$$9SH%t49t$u^l@tsRGAh4S`U2b6zjic@lx2#&PV)AA z;N7kllI7b*WVbF1lfy}&pVmAgLOQxZQ}!ml6kTXE_%Y6;&O>al>03AE1r`%wpUimaxy)#I#*;XOrBO#QQw>2O%7Zm@;_Y? z9f!K5*PfxunbmyT1fO(qP6)sH?oF`nd5<;*H<^fU}p@IBq4u!?V z6?X#aTR_M;g1Yle%My>VE|)PbVb%c9>io0gdz3-ugxUsbWea8-h>(4|+&&X7Z3DR| z)~PF<2(brr@9I#v^nEX_OOZE-OHahDzs1LeA=-2Nlu=x-jFz5Us$JgKmcUX3ijK-= zFXbCVJKNa)y|g`>;kHL(1re*t$yp0}>9coEe>dI11H1Qp5vtpzwQI-s?LVKJD}PQq z5Yaj^BijRM3+#u-l`wm@B`7TI^hVgQb!p8#-jgO>E&M3mrvirSS+=3vJZe8#-1GB1 zv?twD5%@~#jQ2ymu4?&u_CJP(NV%jqRNrUcAj16C$d^n(c4~TNWF8aTV`MpLXW4Us zp7%L#tNdSo_D+t{hMTl>^T9v}tTZH}Dz{0B>~&;DuM~3@)ZQy3kBc` zwM1I2oeIVl*T?9Nh^Tk)L+MBvN}XPkfOw*C8EU;Ba7o7?nCSyPsTNk!WM(A(N?FZN zv5dlIeM1?xp6|EnvkN4NEZ(%aKQ4hLn5Wf9L6lgxC-Wqrsq`(%jM@oIU#=!UIjla- z7E}aZA0f=UeJT0&B_Ty2Z50LG{{BfIjj{g9?mSenkAHz$5JYIl#jgfd3bxg9oUTwc zjE3NskB{gTpgFclR4a^y_MosSV%`vK7`n?@gY&+)wxNXHu;+uqp=PR z_RaWWRFWDAY=hR2FMm#833HN7TpE&uO-Gl-^7P8&_upR%-8LAKM#JJ-{j!K!TfS8N zr(UC`05U_-7C(MdYaoB-so&`$T8trf^3lMI!jeJT@?@GGbfSd@z#F@d3dZNRK@?yU ziJ_f=;K(YlN$8;-i7{kT`k*K1GJI7*Y-^Z)5Nx4arNwQ(=^lHXAxHvy`BRH+1XYQO z^Gz7rnI@N8?8)?{8reEbnn`Gs5@-O(l*Do9KysN)Ad7YwpLow~RTQ!&IAtP!N*zcf zR-c!R_Hw);U0Y(|;~&z}!WX;zJG>#MolED!Kdzzf;}VSXu9BG-?siR%1nTJSqK?rQw$C1BW-W4;hvXwwxqXdGlfo~`#JqBsW>kHUPXq=mny$7|~R6s^BDs>Krb&ZxE! z;sUgiXA=;*KPxs?j+dm&m?rdhNQDTyqGa?<`d!S#VBV(+QB^ahSIg^ix9NNC<)|Y> zXrs879BpP7cx5s{5i8{HO;%Hl>ql?>CqxeX*-txP>a!yrQfTlw_ZDK*HNtQzG z`t+WDmIiTlmht3>ID5iszrVT)FkdL z-IkqAHnPO`7q0vZ;T_G#tDNrqJmk^3w5;%FJ6E{irH^k?>}-fMT!>vT2 z7gjx3y#5i{}E*m zdQU?ETACC1s-NyW>Qj@bXs~=|Re5}nq>!VitlBUTy(OnwyZ(%6kU^%I^Vlu?^*t~w zGAry?g*H}krqX`)Ly~=D-ye^5T;v}=>Wny-3>=BL}Y7fPYO~J@>y!$ zXd9V^PBSm?OAzyk60MdH5;q{Y-X6`<%vPXH9+xiwDWMk{$(e=1?IsDG3QRE=_u^SO zmE+>iz4ko<=|^ff!h8YDWkgk=eqgsG#RnK~GG9pchXURvw^rFm3Ufx_b0gKdN2tdLtpyOxlEQ9+wOh zDE?R<@ZP>9IFM7#B%9*fNtYaLupvU3@fI+rWDiTrzk=OUrl>1mI78MI25yEc<4FP; z;yO&Zp+=<>kq0@7N8l<72UP*l2bdD{@=GZERnWI638_j%mgg%wlPzn*sMgr{r8Sb(*nF>SWhjC_kY16E%y+dlpbPdF&TaMf!tI~LJ`l5iPl&K zwsAlvU03YynFW4myYM}}kB3JnKDQ}~QTH@9Efkd~z+$mnA;Xasu9GdbABfTPZyeYv zraA%(qPL_Y+I8N!-(Nj6%mTFy3jL)wPLA2A zs%O5BEVuLz(@ouWgP^$xR>UCa62t+;goy!8v!^3!TGkcvWsZA9XZT@~V8m_6&fP-pL4XWk4VL9tWS#AyM+(`YsSLc{=!&m~EF zWkgpy*J{e@_TTV_{DR-*_&6@JbWN8yl`dzWmM!n;=9y!p*D|9e7RnBj5^|~an1t0J zu{kJ3{K3{F^^%h@fekX32lU>qaQAuJ?~mNbfz3%R+hdvt=ik@Qr-$$;v;W22>uj*l zG||&VGw<(BZO87WPN5<``PLq{4+eipYf z^_=qe=;oF``yxD6|JK}2^~2N1Gc7H5Fn2qO>WVUK?GB;#BU+`)c9V8@8h&0XR=_3~ zfW;_)EAIS1(kT{YLs=pTwx?FNN{1_!9UnF+lFo5kXY8T(qu$+q=IVQWDs#ThWJLH= z@2%6c^1!^&x!4EtJuXlVkTaBQh4RwP0!H8eF#ySB!0orwhM|Zhx7d{UAx6wXikcMQ zYUOfmDi`@?@R~Jj74Np#s~HzvD_7JC*Ihj#D@Uwg%UHq61}TTEd-4Z*G>mqDXgNfq z0&oXT1|BX_p8Suw{zZYn>IeLfvQ=4@zD0Zp_61uMXs%BC#%i1oFzIitlD?oSfdMo= zDI+FqI^{=6g^NQZ+}8g%UVW5Os(@cH7=VVfsDowy&huoFpx$%EkIaI2U-^+{&6~Ba zm^0Y#N?6Tat5ge8emw3omD7NJl2mD{(eXA}K0q6;OB>KXO$QE}Qef||WQbSu2MwiD6tGo9vm>h7eOs;mN{An+3>4%+S7)TQH2xprye5l2KoU{0Z6Zb#pl!k=&8r}J1@Zj#U zQnXOwJsl6Iqc`=?ff{%Spvpc|XfkBqsQFVg#0|v&C7BbS>iy9c`5jxQKx=%UCAW8R zJInvwN(6xMss)QOAOGBumfnCRPX~T07{;&$c+}CWE!nWH_h`z*QxRR&sX$2+ow0jo z|6c!{d;|9t?00KPNRx4z-AYHhQOBhi^$l?s*&^D+% zu|F@eWqCW>?M6Iq5zb3}O7BARL#%f$w**p^;LzlDBomk)huryjQxOzG@azZciog;sL{?DhqD=7!vPjw+Qc{}jKR*v& zG=c2?jWFq-R`k>l|8;EPEagoBZoGr(gAbI{uXzD44D%>J9HZ7Jnipjxhk{%Hg&$x* ze!49;aFQM;Ceg8|TwOQY!r3l)qVvR-l{QOy`GbA~K226rL)SZvG(ItF5-GZ%s@i16 z-#=$1e~D;g&Lch3I?%Hh#3q1K0Pat}-R*hc<_fyF?ziQdRTJ4}^zET%@Ujr#lbHgR zXO{)jSrc3LFY6}txaMWkhai=)iB#h? zIxiWAf?oilyags6376y(w{9Q4UXQzT`?K+%n8y>-XJ4y*eeiAWv-Oh%vw4qy$DZHb z?7S$tYEHX&Oc()0?y|69=vXk7%pW?FDiMZM@Gb-vgh7W_T^7 zHa1gdh)Q~ee|k^dq|wLv_sEa!g+90Dg-(-vE5%@Ur5XFjmV){=1w8_5MrN1qB>1L= zQ4(BzQF$Yk0s95|@r?sFvt`^XT#y^RyUr8B!LPBOnT%(eG{g~>S?XOQmGH)=3s%1( zw}WC7bHZ{Lspn6iiPn5LhOBEJpm3kVlhHZ^aarCd=*VV^KoL&Q6elGWa)rY$%<&6I zOt@B8hgYU0SHJFFMC>X^F&v3w&5CTr1v)y-q#6g(JB{*H>i#y3gL_ZI!GiRDP(|)1 zGIWlus~FjgU#=$ZM5ZQENEIf_uQ6HX&JKMYS=B<@#(4eU&&AcB%$L?b|Ge^H6}|Ga zBelrqW|4D?Lbmr*Zf9sQiEx+v35~&C=j2}fZHp!W;-)&+$&86|%$ACKCU;X4#*d}oP#T~Lx znj-M1G5Z4V>g;%P%%9reQhkg}I0k6BuUCzNz0_9^f@cDdsmEDs&@af!l`y){`W97~ zPJpp`ALjh^%l_#TMJ0)WxE59L6tXQ~lNRgNg$DAQ9|4cgwHjau9zqp}LUF*A8*1ZM+R^7L zBWB)>n1dS9^z3>BU3lgh{z;Y_V7U!k>4gSYUBmFP;n}@DiFN^=0tvjg! z^t^+~^n%w7Re5Da7{;OX)NO1ZHy*kLQAiFKK8^Vwbc%7m2;iGx1C~U{QoB=xLW|VtY<@sUa|?e@&I26Ut_Se*edix}u!t=Tw5S~=(0 z3^y;2lCSAN;{oK3v{eM1F$>WPs|KFT%={`@qS=Ic$>M7F3T5ll!`mDkn*r9^9YB?$6jyqG&)s-pIKV*m8kCC^D;1{;hU zQ~2vhK9cWtmE(yQGFVN8mIxXnM-BsNSoPqI0WWKU-;+6@Pm!9H#z!4$QX)J7MZp4B z$dJLdu|DTC2lMjCtB-86ozL*144;+We0b@l(Xo!jh+v_q_g@u$f|;~yrKaKN%&>!H z(-HbDn(S%$S9%wy8r}Ak1nG#8XB@IKxMQBrz}++~Rd@02&xRk*-otAepSm5x$qZ1M|TM8K%HP6OW zas3`_^qgu`RIp~awaBWq@vts**l*?2!)6RzfAleX=H>qw4qmZDy<<=U=|qKFFihNu znhuPrj`r;;=DJz^&`6D}(e|kAJP^@pz`|Xl)B?&m>vR3H=H=_}`OhF(6iY4vpv zT>qs0gprTcF~&dg(z#m*`7fDa!H8LOxz^ShD%9_0R||m=EWMg~A^loPr6lO}pYOTF zcLo2kxwDJN>(#@nE`$q_F1S55yt5;}L#XZ^PlVY^;8#flU(ls5@>-=onWZBntIJ2# zUU;iLFzeWuE^_Cw&UhUXM|oyr0MfXiZb!nG2$5+f=@V% zAVao1$xrksCZtqtSFf6qe-2f1_jMz{8-#xEAz?d+i8bkBse7?i@5poycL+b3`u%$R9}M4J;k3~t@K~6ve%aK4 zTt$v5phbQXGp=SmhlzxgA4S36(fQI|j%@93R1X)gggluZa8rAG`4`KP?z1z`X%j77 zPOFDTe`@gVuKnxu7-wYCvW{V?k`Bt-{s==66)W_Ev{{Kz9Es9g^r22wX;y6L_OEeC zS1E1{+dO%t8e`kV@>{Bt{;N?VnRSVciO)L2I*^S39O~0iy4PJD3|4Mew}Vij^%3Z` z09tNRX&?zRpP4u}z)Ufp7pZlgcYYz*HYnLU*!=ZNO--!QK#H6+)7M#@xp!X=)-^){ zP+3b_6EAb;hCRZju^(MU!!ko~mh^@5Wa(^SOCdm~pl}D2PECm4a z{~an@$n^*F%1^+SQ#BZL<{qaA|JyVCG9T`w;v0mWYs#p$FTD43eLhQ*$=oSOEO%y| zP{~?ZL~|e`>ec%{Im^a4zp8wRcKXKfb#45I_1l+&NM+N9*$`doUi&IYcFAoBWt3w4ff(=qR?+Chclq?(G)A%#-`UEc=}pS`Ja zHvO4o6oyg?Nnp5PWYF?`?y6_oc*xCuPdp)pn%>Xqu5USzhMda2Wen@G0X< ziuQu3wCyF6-nVs;*N_)F;M?}SrFE|9E)?z-Oo<#I0Vc2kz#~X-<_*$L*gmz<*R+Xb zo0~CT4CXEyVyr%MJA(1?vkOyXp)*#Q0@v5Z4lx>mlF+p~7Ej*Cb)RG9c4dqkZzwX-FlSdTPJ2(xPJa{kiE2T! zqlAzWnh!Tf1FcA>afQx?>XC!M8c&c*C3QouH}@gbeh&c+eYE;{nq*1^?FI56iCkV)ICfAYW5H~_!PZAH4p+RSMMvyD#=n= zZxV-KtILzWE-Su2Em=_R4ZEB7sV16@^JRv==lBo+JOKA}AFU34&`sWorA(d zHhBuD3UO_+PN{p84UHkVeIe{Fm%GAB$}LqPPoZHB?@feYvHOiqJ8ez312dEc3f6pMc-^gCf6ly0+)84&ru?@g`d-1SU|pk$ zgWsd4y+*MT^HV_o{ix}J!^nCnP|7Q~aj)KF8H{WrGJdLbIB*xPdD$bsJQh73duGZ0 zbsD$&YVv47eU4r0%jnEh&}&2=gk*|Dnel(~!H1!4llik>ly0i&GiKcC;^ydl8ob_7 zy7pS{+mBP+&o8T5x>;+|K!}76*2XQo&L}yUE=f}#RpVslk`$j>bLTAxJM z+OvHA=Pj9;^gWBQ`-7=tLGAxI&9MrnzH0S{Ux9D@n)2kZ6DUU8(NVB-O)3tcYu+*D z56c9YhKsgcekfKOA0d1bJeRrjd8K>MGY?*B^`+v24_}6eG>%RM&9rC#TFg#e-Z=rK zgZTbqu-*xWl_upllOcyFQc`}_>|a}1$5e2hXwsdU*yT&JhH<`6#QX?L_^tM!I^5Wj zG>g7fDlUIvA?O$4pDMUXs~0cbF~x7+i4O}AivKsPT_SQrjM-xP|2VqtK&b!!&!?dz zN{Oti5SdA`UCUnC+lB1C*Kyght_Tq>A(@wPHkZBP?8|m%?>qCjbN$}m-+%r(H(syT z`}KUx2bb;zMXk&*HGSKQKP(YIeXo|i&ChjYqeIpd<=1@X#IqhUBupT{3Odf zTbsb8gh%q95RE#z7QBGQH2aDgApfDH>WY$F-O;@7{e$d)T(6t09$bo)Azs?__*IgdIze^9TpmN%g>{Hpv0) znE2_nnDM&3GLhYcX^rjUy~c-h=hH{U_9nr_K2-235a5GmGMxs}ED-a-VMwxNSU;qu zYozwP6m0LtL$>jJo%@VrCon3>tlE7llI*soa7vRk|5yHXRx287Im8;-jZ0fMXxtHj zu@nO^^>!Eeb=aR)A(9(zA!gyaqF|ff!w>o9PLq?tqv!EwuVW;Y>_7ZwSQfyfn>a{U z9A^DJ)pX~$OP`XXYPNgk3|F6Y<4HRaz(51;9&cIR#weU+^LJ@nMf`5WOf{?c6{t44 z?r;}6$b0pQ@=Njiq}ia^qol@Ls6O#In&BHix5Uq<5BBvCn>}&sQvz( zR-#d*_q*B}d(P%Mk^N=nK**P+;ti`w`ZRVw&L?N?DC6Ums?(hlj-@T*v`hL=OMV@~ zQoy&-`pv^I2d8GW@(rpGX$1cQKd9>!xAP({?Da`ueoXpGCkk1IXa?))!8r4C@ne9kOQoxM-G+dGQIU4^h;?y z(-Yc5-ezI|{6@364Wzn)uFCVT7RUy~`kH(=uygp!=b@)p%<=9E&G7RXu=!@tM`QAjUjauNRFeKw`OPFqq;RL?WF3v%$OJLk&xl|Edivd7>?3)% zd&w}?E#2GUkMr-{;V6_DxU_+pEg2}0b@%l)dsMomXCAs|JexS0$bZEM<5Dv*UC52* zJEa1qCHeFC!b!e6HAqd7udRU88SIXUH7Nal#$zc~NUYQBVg6X?1Mg_YA& zLFXCrVuXb^zleN=(ewGGR%$}CTaACZT^bO+rqDnY+Zk`5WJ7tlSkU?t)Q3QlK5#Q0o(@PjS}G=m_uUK(Q2{x&d?M4);Dyf` z=!V%>dR9rU&yu!AM9fdwS28c#X7&@KztyFV3aw#ReA=6hm*CT|6uus1v04VuoA@Zp54v2q>cZ zk};ltP3HBm#8Z)}R^tw73UoK$@gxK!vk9)r*x?|4H+7|6AO%oab|Za){SGHCFTD#Gv9gw;9Xqb|5Sal{-MczI%3QFfp@duy|Q%AiA&=T zkm3;kmC5risVc~wImj!3lEKZ!B&k^gcWS{>OLQ!3?99P#Q7p>p4&eoa^ok<=OU_H= zFlkkL@gGgFe(z8)0~3%#faV>jsteXVX=*V)MTlg2-EqrSG)w(o+*K0fHYpN^Zf~+J z4m{|rG^@_(b4EV}z|JPN)8tTXx)v)5>9&;-?^0fb+sxsM49{J#RF;9w^j;N2;zJ#& zoCv`iBK}fulbo5DoD_W#LlU`PLN3 zJYhiE=YC2#JOfp1=cwYwYNUljhErLqCUibP&3%IKmUabt*t3C5)*oReLn?GX@Dm$2 zX-Nd|QRPX3r(zXpl|P)T?aCN?3zhB4T!+5rGfC}%KPB+D0~iYP$3bF3 zkBHmbAtnls6^C2p+v5}+Josc`+*r2nAbYNORWity^6}hs@_-WiAhx=H{XpY%^ZNs}nwR zcrO_sHj=9IF(NoM<+0H2<9Z6OQ=x3ao+9h5v?V(+|F2xYyKILs%Y&9UEFC(**HOj3 zgDGZPH+qU1p8OqZwQNt8jaCG5-JB&$yKKGB>iyFU{YtPU6R?bLzhvBPUon3zIJJV0 ztpB6=vmwb8n=3LVPwRuzxoA>b{j9vKzcD?pNWH4N)+pt6xYPysyhfv*?E6ov^-il_ z*z2Q>3PyF!#H7%(HF84lNZX3+22L;Pq)MrqGkd{bCL#ZYiKu^S!A2G)tdJ|#qhL!5 z)W*$puXO&x*FjtN2Vp=}>@U(?{B@z<(?)Pm{Ofd#o&5)&FV~``zsOg-pa`v28m>=# z&VGkFP)xlL+4W{cKXR;>6idAZBEN(_1^hn9HZ$07^et0ovx;b32uWT^!o2tUZ;rU! zd#^4XSga7fEy8YcF`+wrg+_s-R3{;GqL_Hv-NHXvPRDhtj_aU0%y#4wJc%8rp-8wSb3JHCl8Wpoq~tus3g zK}w!*``dNsB7+b4%TNI`dm8}Bpihd$ap^p-89ns4?U;0fpQ@}v zd}Ieun-7JqCw?x}Rx8K=evUbi(1$jgUvE&VHGBJ~3h%%blA6aSnn65#IUTt=Ij&b|xT&TWCbWFzWl7(*hY}V2;-W&+`2;_1pIE_t(gEWG za{A<0WZZfby!Z`tsgOt)%>xqz#n02e*ZitOyZhFHCe#~{CKact|4RCSMvf6>Tk|rO z7M?Ns19fJw)Xh){0{?L==>>7CZIUWN5+O2aVaxF07uU2K&UdQcGHBfF{D?Stf0i}> zq{z@xqPr94#ipK(dNA@kY!pV&@t8s!e?xN%Ov;OS;Sj9KR69fx^!~jXw3^C&ggdh< z_qG(QM$qmhm{q^%>Q@^==_k3a!{GcsV|XA2KJxemf+`vlw@?G>*fJT`!gD>8V2yh^ zW8Gw(rf4h5Dl^Los};&R_;Ko1lyT~JYH}pw-Q1n!88#G(=r}o4j6MgZUpJ;H^f79z z6PTo__mrL$vhOw%=D(xu$9GgYW5Sb7nD&%S1GmiDox0aD5(bFUGGY5*g|X921S(_O zmaIq}h1-@;Gzkn2R($w6qWxzePHVy~;{H1!&wLTo`+L&XGx0Fv> zbbNuxub|uyL>($UhS<XyUHJ!AOFv zUGS+f0~E;=_&RJzv{Eqz=}NUVq?Sbm@Q$n@IXB7A2}B<_pwK`!$zyTr_vE*hAMD1K zi1iZ)xOun8{3<*tA8l|5Tc)ZsTW&xYzI|%=xmSm zeb+FNqNN9NY@i~?w_o8 z-I`HN+3((4s)RD6l4h1I?w(8raIPk z#13!W|DFlHmU=uQ6?rxrPhZ#F57%SxppK@!4aQy+m!7?tCOgs`0v<`-E}lp&eyM$H ze}pnZbcjdW>&#%OS2OW*{1)eF&HnRX60FE7G%t)Ta7<6M@&_@kGMh4zqMmrYNV*rA zYK7v9?ZK^Wp9D){sZ4*m3j+m3!q@h4EkuikJ% zvq8m*KsBbR?Jb>-7ha$Dap*u5=o#q=PF<8SzzSQEnz-p>{SK#J?GIZX2{;ZUWs;o$ z;&TU!7u)6{0@So4`h8q$SmB}*a?(6Ukd-&m_4yN(2b3u#-LbXABP5tLeYgk84Un-Q zlF(VhmUXq`fovdZfNyddihXsMaSW`m2qd)^_|$K%3z4O8utalJVraAJ1e6Z{Tm+?I z1PXC=_%IGyf-B;J0R-DKFp;y|NH&04s}N>+JH51*bU>vK0k-04B`Jq&O3FA+1%jmn zofjBeg@lJc6B!Y5l0WjR=J`~2^VWn=FPAU$7&?`iH0Pz)z#ErI8s=Aa)ykMfgw$V6F4Vj{@80{(YVwCDUl!MEW@4>b(l7LRffY8^GZ$QI#^sM4LjM2L%&)q{O^ zT#pr8f{*Oi>s%xTzE_%t2`S?-y^tA=V+$hq_gYwBTIKEg2y!`gd{$Ap<$&1E$FRUxat?8dw?VgWq`8DkJu*P*X7?yL)Pwv?EA9`Ff zahleAvhi5s`XAYpfoqwBnTTA2EoZm^DPWr6KG z-1s-^b&Mrtp!;4xGKN^@gex|@a zx=&~F$WuS3naVgOqzNdC^c`&!m*TEFbQ&2gX*G{u``hfezoFVKV9t|L@q}2pBph{t zqTc?iIOZ#q=x;w>X<*zWSrkwTY=)56gw>1(RtWk*mt~oQ)e%1$=I41~4#u3z0lvJp z=`Uu|#f#Mz?ETffkQWO}Hxu)s=r984K5?uZ3rmt1M8(IV`@bzITGo-@} z5KjSj%W_*h=Z5(H)34bWJKDAD%e@;Oh_j8R4IM7E#$b(A%;j?D{;-|z&1j5KXcAc< ztasru+65D_z)~Z|P5N)C!^fQBjBX;FQxhxAHrcOoP1g|RE7I=ux}9umB>?v1$~`{z*uE_6!70({Df9iAl> zk$D3{@cwyDWb?2N@a-}v|B~9yB!0|fcv)qHqIOqizv7d3l!UF1n>0A+#j?zcB0z=( z!BQl|^O8JcCy2VMaC{3$2RMv?!^9a)3k_(fKTn0ZBO+_9ZV^inf(ISB_annn%X84e z={`~e>1~2vtIxaL!!_pJB*)HC*c30Q^ENaSuJ3e9E?lnW8uZGycw6;-?cuG@_dWX+k37fQx=_4FxFmyqGGYfonoH%Lt;q%pFBlDz*kB+=CXgU7^1Rb0v~ za$S)BbPwd!%XT*gvWOHF&t-4Q1u38C07veD*@;R~T*sR~`P*BfYRD}WRCDWUFl(2` zUm%DGII#vbG|o}L=1%$;7}BNRjVT~)wM$&}o%6q^=n~SaeVGtutfKp1Irdc>(kMnW z{lRr5GfVviD*ZOLFPC?cU$ho<3uyL}Zvm++duKsg>bL5icRmt3?T@13&`JEDUB_Ss^z~b>Ud&~d?dEP zmVSo*|C`cKL#ztX;%uRFAwqmd)eq>pkVMjTrJ{IgR$V+LdT4ATidLR|jovHSJNMW^ z7e9#siL12_m(JLUX=4cX=npXaIic?KL9zjG1D9zw#$|#!jW*}`2%&#$AdG?i|8+J? zJ?6ewZ*fCfS($f*i9e;4o5cgRHE4c7-u1DxibiC+H+DLQ*5)Jt9&8x z(q|iiJ^Kq{MJ`4~4TtgGhw9Pe>zV?6Y|8_H|z#^B|=$=$+$`x{9 zW!gq5Z~mXjg^9hh!%d%VmR}-<9Rpd}t$S*sh>0W-A-qZ)m2R_kp$bB|?V(vmghWu3 z0=N*dih`ErsV>kbEN-Zq|7e8mt;7{yU5HTYKI<-2*)C{C9GyE-;)`O6tV)oP{wYrN z3x*qjHvZg&kP*|&kAqD~;EbXd9c|#MV-yKDx1uZjPl`VOx~ErRnh=?|+c)HsMdGZ` zTG}kaQZOZhNMRNkU>wi;nuu5#3~2&Mr*+-szv$^G+DpR~BXB)ZkvdNE<>cFq8#=nv z5hhVIUde~o?+HpE)GuFrdq@$WmGyk0Aix-5i$xUDdQPi&INMBJq2YQgp}a&RhtM$- z)%tpQ(N;ljt^C>>Th(5+l2;?^oJ{zq*9;eiW}?x*Y;mEe<$3g7o_XC6g_yVOeL`AJL3?x?=KcS6s>~;u zpIdWETyMF(ocH2@Y)WZv28jL2EnIP-mSTdBKK1GvS!NT&p!m#0X(?3ja(ydd#)W-? zptW;@^~$FimGcRU$48$K3h&Fjj(Cn_o*uPi%o@s;-i%Ll+bs`MS>UFrB><@mcsr8M zk{HwGakYzBAYonhGjqc8lZw@c@e+*>!hyk(_ePN9e(SV8l0{*(wrM-WP{7-IrN1UP z)d?^RxrPbpcJ6$($ z;Bed78y{qbN(qorU~11=_;9q9qYu$=tck*kdDNK8y?$HBmpLu75MV42ru+Uj^WRJL zn}!CDM60TFmc7+ebBr=N{HgnET}W;xD#OUiu%yS;^2v;!q!4}9lYlm(_AAV@WgmE? zE~b6VY56ayC%!+2)oNdFLUOC2TpdsrItk2goPlB?mAu>xBnjeD50F0`*9PgU(xAp<+E7+tau! z!ru6c@fn0CqXyzTg}I+Fqp+0ALDJKDT}D5VZs=EA3My23O9IEDO6LG1YC0qGh$}>6 zbO}|3=nPiq@8)Sv1QO)l;3zA-G`Mx}e1fq$&L9uM9#@y7gLtdn>MT4B5VoBvW zFrGLd;jOn*wFwKI9CGHP{dlagM|Ja)3;nI$H;y>*&C=t?J||-ktj}nv(h$3|CwBku zYz@MuH3FyGUz5IH7N@$j_vjwB{OZGsK*_gb4l<=P#RIl*UGuhepFYkobkXZ;(n&Ae z3mA1K8^4`#j%ijC7Sy8McGtXrmOfhxa4U(w#rHv;=CT@pxLLotc+O&f!^bziG{ikQ^?SB&U_gKp@a2A_mNVz&Ty# zQQEG^NkVp*F_s21+;BGb4sD!O=S&oo-&O?@^h<(&~d=K0+a5qZI=TQik`+qtEZ%L{;0gM?Q-GdfgC+mYeOG4xunAQU#F|?=Ah0_ z!3k*$m!iSWMF8P9KINQ{*~EVSUPl2VJ5K=hMh&P769;(e#46@U%%k(zo?PZ?EI@V& zN0}F=KVcsld14;;G2+iT&jpSIX1bW7K{L!^qs9?za_y2?RiU64%n7I?$-(T{iMH@> zFWkvoJQr+T z2vR-XT_N}gwhRnYU>7qr#T;2N5_nXBPHDKjre411jooe!%5$Pr5U!Qn|I|=&HE^vP zGmT$shq3#Lg>zpd49r=~x}1d~;{D7~j$=A8I}Zb+1U>BoZe;f=zP=cGEX_sYY&6_Z zuc=i-t+`nJqY3MICc(wdY;e{j)*R4Pev1t0c%oL9_A2$Lps3H3b5nlYw3i|>LAkI9 zn%dv8Bq7SD{yKiNnol4nY&`3!=?~MEv6=fXvD$%#eWO!byHR(3V4t5!CHL7nG=Xdj zEDQ~#yw5iaiVR8XX)YVVBkedShbI2SAd%t9g2!20FfF~e$~?H8J}|KBU~nE1akxvt z*d$%G>H{ePI(1M5OG$39(-IHEC*B>$A+e^_l$kzrqd)VE<(h*su30Y2D8*so!xkL+ zlA|&ABVr87t;lKeO{P0i%nl$s7+2sIW*X#aTvnFusvE^ODXiHwjD-CG)zEF9E`8BP z0enzgzo^)~n|)5jGm^Dz&%6_V3q9JF$mR|e8bX>)$Ot-)Y>ehP`luA|u8*ikm@FF` z-8Itx7#3x)J{euk6-&F&!pi2irH&oH;&3POXNf}&G=?BmGe;v5F z7bLMdjk&$Q*Gl8oN!$Cd>2X!jC8U1U^+qQS1VMj+a}FwS9wpCL41L^^E5@O8Il zKYI9(P}#=w60|J_4&#zUB*teUfbogV>BQ_#lSjd{#U|^S)?{oU=2)(@cgb|^g~;rF zX=Tbw|A+-qq0FAY+Bf5yQf6u!*8}F-s~`^gZ8|;hsiwuA4rxQGpfi;h&B<5Fqv0cT z^53(6G`eg@wx_v5CO9ucXP4Wbm@_0sIFZr+Xx!n~XSQwzCUnTIP-BZI}2Ua_HpZ63vD?DPwJu zCGMr<$hSNy{(;SlcJ|6ZhBQg5pTX_!khBU zG^t)6W!k{g2RSL7ECgED^7X8O!OaJJI;>jrK-dd5a~SFYyo48N0S~k)O0_Rkqqo(F z)$I%H70qHq8*-PJ-<{%1X@AZ_yGoVs2Nr&W*9hI9uNKAiF58s&;Y-wpM5WY%9LZmB zmD~edI{@csN(C*4y$KsdRG)N%!l_cR?T9;6CQ@qK0q>X!FZ(>4?|VV?{ttecSDx0sBl?pAbX-heJS}^VET2wxw1Ok7PLD_Lq2sEd6LMae>bTS@_zI_U+gThE7~H<3-eC7|+4;fK z7<+zj)2FL1X?fp$>XuurjJa@AJ2gqgVU!Hc{b`b|#Hp1nrNZ&>6CbLr?qjLj^Ul1B zpgb;@;h3BJ9zxmuQVw(6Ea%aCdtp~eknS*+$%pYvZwNbu%OmK$o4KkTsWs%>i9NkS zzAH18c*8#%Wv`0|UAN_4k^0EC)FFmiwGu05_IGsujV?*O3E$z2s)GGCF=`zxlq^pC z73BY9cM|5c9t@(~&i@Vgl$#Yo7CjOWOwbP=+Xb~=9yjV^lAdV8f%KPEku2&XoU~zO zKR?5iSbndq_UGc@HuGA(Zz!MbM-|+kvsjW12HR>O$w5fbo+fPsljkU!+yy-M-z!mT z<-VXDbfOn7Ko$Iaa9eCUmaNo=X2->z?0EMer-x8m1^)`xzu3Hp4!bEksi!HS?@q{5 zE4Dri3*d_4zPf4gsbJn9qaxz&QWrZAS`Kr7(=*+$61Fm&M2CLyozYap&m=QsA0MqV zx+GTweE1_SpXn--WwaWs1k2pECOOc4UYv8q7YVkE->HHv>yNhnH&E*Gi-f>0#Mu$; zOA2K9#+6*%v~kh#w>lVM3GibVxK3@~`X>hWv+N7&E|W!{ zORA6S&vGX%YvWJ-6y4FxJxprD{Tn53s2(*`hwp(%T@siq9T@NS3J;1CKD2yx@$%&O zk9V-cz~3f$FH(oR-qW=N*C+ZjU5IXSmYNFomlx(X&9WyUywp9+(N;Uz$>rpiVZ$)4 zyk}sVX5RS=gw9#91n8?9QYUI-e$CQyA#dOJoL5@W)&4n<3B${O1R{Fk&KwuLIg=n< z`ao)s>Neseldc`0ri?pU8A))~II$lsSk%lFzi;73$h0{=$7_e>+M#SQM(?le5L zlsbP%_1|frJ*Abm>nC3rMS`-d3Das@QywRrnMSX^*z0;1aj2B#et`a?>0e8tXpo}G zn$VE+(ML7)NGW5s!4m?D!QV(Nym)BOFgV_&%)eAQX zLz;{;OchLVt9N%jax~Iw${9bIDK8Xj;Ne|j5nvkEBNwp`XPa$5=Qj8FVm=hT78RT3 zd-v|)jgJ27)ik}v70)FHvxv_)F4+wRxHZ;oG|4^DzTIuhH?-t0G zO8O}}GlrIT23CU#{1^UfWpaMfu7ypMH<#GG=B_l?_Bl0Wum80Vc2ClYZCQp(+oZ@G zfM3EjDETBV?y)$DM(BZaG?M}gTI!TN*gcw|x5cr-8F9Ll5l9F2sWA zC}7;z-ZFVs94cz?-iKW#jBvqH%%=wMiyl-6i6LLK9~{Y{SiXC11!QPtQXPP9ps~jF z^bb(!qJ}jnkz#rKteClYq-N!orFFg_*q>=2#p@ugLUTZ|-I|X@sw9}N z6vk7>hszGL({|4qDcn=wLHneP`@yDf;d83ga2`x5i`OqiRO!=(RKp3K zuR@%DG%2N+FrAi=yD-K@Pd|l1oiNy-h|Vo3JY@`|^LO}s7Mw221)Y>tiG?cq!CAJ9 zrbDYNEHe2UvmYEt*fQuqtWzz0iPBKMyXtOy0j)XO^nW?S?Bb#xb@df;rJZpK1B4dH zq#;#}#I;zO6g0k*YKl(!Ruy${@NTgVZ%jneBX1aYW2RQdXBQ3>cmO2u%tDIZ`pIEbefA8>5@|`LtrfaYVA0X&G5W_60+kJ=W8kT`0tBGrHgOh*3sRi)oI8h>7B~F@? z(K1&o-DwRm>8iPW8L}0{4Re*Hd9@z1|1#Ox;vRRZ&cM@^xe$^EEaFqtAYJ7sE@_2Ak*E7Wa^e8a*v@jn>$8 zQw3pV^Hh|X+PGTn33hyru+}NYp#}2;Q-pVP?;h`pxLDtHWeg$! z_Qqh0W-oowr?4AIBvZi+?59Y*7a43yIsz%*+tP$un zIZ*zaZ6)e!v4P1*+j7Tv)aL;zVL0Tn4m?a?_Udm%{?86$9A1_lbm9MK5I{yk9sG|7 z#oumIHWn^wxRbF2Np$DvJsyl_)V-jF4*Dt%t;nTw_ zYRijf7o49-RW4wP=e2}WSRViCOM^?h=U2!KhB8`e-`)^tGv(0lGV1KlFBNKGdQDm* zo=~sm6FW>tVRp!w16(A@#R%S>^#b_Tuj_T?qtNj#Y@BM0dCW2IWBBeuy#I?8nXdPo z9~D%WEqo*dHm*DJnamM3d{(NPUTa)U!BS+t7K9B#2ydAFzMLGRa-EZ(n?oH)c0XTZ z)6w+u&ch34S~LTylRm6hIW7sZl+R1KuU42i8}1n@stLJNlmF2Snt1+MH?SIDxel`P zJAf<)pfAG~3(!?X-3p$7z-jQuCZMoZd~oOSAPy2o>}@m{yAWd{dHMNp;v%hQ6QFc3 zbNP{O{l!{@z4ADraTMZ@Sq`di`_iKZ{WMCg%Y-{Tt#eU4kiFP2!4jd9`uCIr-$P;E z!tuxZ^@cqT8vJ8G)15?|{=KDf?sLuMngYv4&SGRt>4=FA+@ts)Q#=MLPu)29{ z^0`E%dSQ7;Z|u1L{1@6*E@~9)0g8z2vbvLO`H5mc3S!DC$^0GC3~{zK-H`qOGRbCD>_#m=c zW0C?V3L5G*p{@L4or^AJURCRq7VUuJ_vbNTG-1Quuy&6!$6M>%qQ5$vS|tcA9j4BA zMyubdT0Qx$cNH^;;c|hq#v~Kxa$_t3Wzt~x3EZIsDA)yqYovCT$b9R_MbHcr&JMkE zpYW-Yv-Q!a@SCm4$Ba^z=8qqQ=99kM`bVRs>=Jo1LmiH$bC`2Gfo04Fk9#$Q$rRG{ zDPmksHH!WW5yaXsQLSPUVdH4R>xCI+k4u3cXD{GEvDLkrtRao&R!#?NHW}@y57chl z?eNON1qRyaM+cVYAaqDfqnO?!bd8q@w+a5i3dhVK^enfCfThysIN^|NW|XJE_nro2 zodDwPUc>+mah-ri(-f-k6Rjhj7?L%|cF@338FFu9kUenwwv5wsq13UR!wLAH`dM+* z0AO=|q&{Y8lwws{e7M(r4t`CVBE$?~@M5veB1@sSjJ?hgNE1L(go@+x6c@J3w_n@4 z&(QjQ@-$Ra#8gYqUDkzlT?pkH&zCc>B}h~B4z zy`Rm@1gc=F>oIR0>>mn~h`bx#rC#tbtN2RGXD>7;&}>=RgPwZKbqZCStDTiwJk2JIqE5`a5W;~0 zcz()lTk6$HqRq5UyqRJiaS1n+V?Rk8!V2c{jqb!}yYWg*ry1NDB0S&x(iLn-7_T&W z_EUkQH36CRFb(>Y_-Mi+jTwb#KL_dblJ$Z0&PQekkV$3vOY-RJ&4#vRe`;4GAxzFU z;v}`e@=vr}Pu=oAsxI6;Leh(IWatd+>70>=Hvc-CL^Vvd$N_tQnF;hi$eR*Gh{R(* zC_V->L9O?#NK95$UuuiLcduG<7;?;96)Cz;OS9%&6%nXA9x_@UU96t{W84B&r-RO0 z>$qigP-vz&Dh`NaoM4DQr%Ovp$nA50zcHHUI!DQ0g8`8}9ub~rOkExfGH~^AcLSWA zL|*$c9Pg0<4wW@Z8pueg3Cbr?5D;ZQT!~>m$SEB0G`Ndexv`nNKXcrCUW0yDE;diqJfc|0~!$I;PkUP<=V$H_i z1DU$!>4;D#;Z&$5Nk=m0Z>5$Uf0o=peVGHSW?JZdSyocyCv4crK8XLOo{4j%-}pCd zhvW>_gY2&|I<|6Fx4R>Kq~jY%*A4n>-TZ>L(RiCWjr!5Rfb{YrbXcZKl%%~0c$Vp( zXESNd`LQx?_dRDjNyKWBLpDpzhRU644x1SWJOkt=^4A4F`E;~|NURP*l-Q+Wc18S3 zg`%=JGE*E2XRF#blQ|!|8-{nUxcl_5?1iMnf41Bk-=8kN+vsx^=%d4tOS3olnxvT~2H#Tp&Iwqy?mC5vOm&$Gl11J0MD+%6>I zUx*UQ(2 zFgJK2rDrm9US7YYIYzzb93We`3x5a*?K2*NSw4!?oFXok!G&&{6bQ>W_Fd23p_4f+ z`Jh}@{v8V;@lO=*kH9T!woX{&mGUX_jWxh?+2wjbY0ditIK$uV7;j_gbiC)U2pu(B zBkqPR^_wXpQAG~EWz8q#baW6Wx<;xS6vZAuxesG3gW;}6X9Q*zN*RylQN^D|zNM>v z9j|a*cBE7v?*x=N19~V~U(bE$piJ1cvm*!KxFcwyZzll4ppT?IK#;QIR7_%BI$BE* z6FI!D(XAyH2qfhPmudQb?fY?gZeERTCt2sSL*;|!W-adEcp;Ocy^t1T%608bgERq@ z0RJ`Da=-JS_0SVS$1#Q=)~&-V1;{EbDMGP0<1QJ)@;&HXyf58LqTu5xAd1~ae{J(# zTAW+Qz^8h%^*nfKOkFLMK(%W;(ttff?E)@@#6D}YujSz(zSLSulf+Q7ADNxvf1XG& z{0Y@P4=?IYJC2l!r_yhYsvT=|(+Rr{a1HDH6{GucjVZn5igi!9?k~)n$=BoXCtz6fl${8nWCf8hcCLoqXE^wh>tbi^6tQ97}MmJX%|_Mc6gR5 zD8`o#{3H<;N?Z6y@M}2`PegbpVEd%Fcq|}cs$3s}RrcN>>K~^8izINNtB?{x9U*-p zc-a|_h21lGJ-SKdj65dl2VYWA)N))}dBFBy(qK`0Ro=;X@%uG#K$Ez!?p@Q^-( zvOW`r%XKhk)QX50Yx8Tm!(9*YH3wFR!k@rmO$+9lWD2MW<@R(f_5vik4P6&!Eu^K zy7w>_^CmQiBGfeHQ~=eku6C+8{Hgu&RdMHqpieu!b19zEqKdj(bMqMYe>7`Um$li& zbP!Xr1qtR~WCF03OsApU>4ju*U_Bd^Ay9M_X0qAno~vYF*D;!~AqE}f==_+Xlj-x_x1O({}cbUA~g^Kcms{0TI=pW_l z2QHz{YPSac&`X;&im^-yg>fCGA%|y0L>0=&VNNroI)ifiK((19Lu&kx_`m}~I$7YKhvI|rSzD&8fxDfk~rV`YFybM)TGgcbGrHpBs zqUahQu%y`0sBd>=z%#OG-#?~dA(%+!lpSTCPz5`~2Og5|bma(-vP4Ulr zoG(9=cuu$M^ZaUb-+$pI^by{2Z^WhPPT$Z3?x@PrE~RQ3hr|WSP}Z*<-Z<<9od;id z+v8nxIqtCnAV!j2stp;|{^=yMDZTBZS^hEhZch=4eV0Z?-X@00fFF8OdEJbLE;aek z^}*^ar!8FlB?}GRo?ZYuR}H7v^KH>?%!LhA;Z7mUy@Ro*mtrsJFBF+^T%*xVq5bA` zt%i1QHd5*LvxE0A`rw-XqJLxd3+pcrGvQA4T6)}ca?p$U5H^@2Eao2#{pE17B88P` z)udQ``$H)S-qGmPK<%yLd~A@IsW~Lga3k8H)+gM2_=dk#tL-P$J@MfwRsl$KPuQjY`Y9+sQkC_K{1qCmqVXYFoTA$k*&*GNqny3j z>I8i>C%Q+;SoO2s5cL2LPn;)!-+C|tnJqq8sx-woc^A`JUb2D29gU*y-gA3!rRWsz zmsH!-7v5sQ)%2WgP2OboT^>A2Pe&!Bd^cG9b6ByW@pp$AE1uz1;z@$rk(;(l^vGe0 zxbTd&-_o;ur@9wU>w?dmJes?|8!jVWmv8-VT<1|+QX(*- zenJ&AAUhfww}ibdmkS;>7_Lk!k{{GAW?u&E<@wv^HMR<0AJo+t@C&$q!h=!srJ+PQ zoK&15Cky~XRuh<__P%3%Etw_BcFWisoe7tk;rj*qOcD`{!~Lo>2U~B~1(}Z%)Si{i zPeWilL&&%^W3~k);Qv#mNC<+*5+WY#vUio*i?}6!3x~PZ2g7BGQsnXiJ&a@aXFARp zF5U^h$+$k7E|>e9-RWAdh67LQlZfw|B7Sp6Fzj6Ae96nFIVSU){qsctZ_FM>OFC!= zpSQUdNBlL1g@Hb~nAS9Vj744AZ7se!f@8qL5bMU#92FBjb)4 z1IM6Qn_rRXs9o$#+i$a4GAMlMtY%3INhnLf(5)i10PlU6L&t;VyCa+`LV5SKmyLK+ z({xLW>BO0hj9(Uk zKCd!8?|D7=vicE*c`?p}TWaxK^_z9<&)UrVaYxNiH)bGUfl7P!f~-p7$1x=yB_z?| zd)h>~jY>=L zB_gAaI9COzBYYG2%MKhLgy}rKghO7vVhz@qZj&VCikN*EcR?PFFCFP5!U+1{_rm)B z$I-RNGyVO4MTtm~$ZeHdxhA=@bwh}Skn2Kj&Ha9vt#ZvZgb*v&5F_{Na?ky4xz610 zHrKJ)=lA~p{@dfR$7Afhb6)3lp0DSnJ&R`ud1t-sZ2e0B*NdF9*#gM%xX+Um7>wX5 zqUT;+qXCdbvE;i0sicN38H6}Vp#{W2_Ofsk%39tjX`7sC;n_(H$ba+k(o4^QHu^Zv zM^gD0Us?C%rc+@Bz7AV6)lL|Z0JrU8ir@O2(2z8k6CpmnV?%5l;Xb@fe))@bE9pJE z$*yqCu`Olf(3wTjNh2i05Z&=VKb4RZ{#W<6*Qx=isWc*X4bLP83l{*5&=e7`h%ctX zbBc6s5mO_C4J1pZ6l3}&+phe+l#ph-V?q~mqqNA~r^pkqwBC`>lf0|!9_RyTO6K_; zsC?(<%?U*GynPbE=;P%KOeD_OL)YVmK0`W6;t%^Dx^MP%Wr-Gh276~urF_2}G{+yP z#?LcubrXA!Oh?TZAlpy|<&wDu2L~U*Zdm$Hux~C=$zRSA#t@u{ll;2(z+1hI>x;kO}+ylYyxKBZ5;yOAtlr9Az<)(y9zZ+@uy`JkrUf@v z$J5yS)EqeMO--sn&HX0w-kq-&5)R3+p*fDO&v_$n{+TMhR>Gw5V78bh$+2D7Bc<~; z0M-@H*}LF2HQmN@p(`9YsZ=v81^!p$lKnesP9^)-z+=jb+`7v=!9%$XxBh?!EZMA6 zbPFbQns(h9Txg3OU0Mq=WiHA>L`fF11wd}s+`ria9a1!uT0&Y{736N z=sIrIhb3V!uMbwXc?M0W*@M{w7|wR=hu*=V=5p8eJ&NxCR=@{RM`^l5d!{gk zjUxFT(td9F+kbR?yZZtjA36eG<`;_OU`=qRdn#-CVSsJZ^PCaXTlBxw$K%bnr)xTO z&8GE9&*W{+RFy+3&76fl7C%>J6pFdnCh*-h-5@DO8u%*-y-}S5May})s2jn;6cZ{x z5YCBV^=Ioe+cW<+>5uAk^7y%7Q1cX!09_)-HvG`s-Nedev5Wzy_T>qW*c<={&&8Z z3R66n0rVOE&~2k*{$B57SFsw~qG%U70#z|%06+-~$5G)G3%#4}DJj*Y?^#B4cjLIb zdRcDKvBY-qRS1axEl{60zE`YyN=3xm8#?Xl&S|bjY+F)X{A(7`pYDuO)dlC+Aj+bl z-kp*xFZ{1)QY%rWumY7Q2N=D~OC!b~fwN=DiP@#pNd=^hY7v9H0T>fBrG^RQ9fS@! zp_FXkbTA&w_F_otQ8>rSdn?DK3nG6{+%-$ZTL%I}78#OuX_^HgrHQVhQ~C&nvoa)W z?A-OShcF%|(*ExW!#q4YjWA1(Zh@}`ht8i(;PSB_)`H#{frYdRXfwV799UhBMOf$| zjM?sKd`6Al{D<7$t9y%>>1)A0-T>b@tN3bMv8iUQ-`7S7( zFTRl0#V*WQOhF&+Dfu;S9-ZsQU87F`H_gn_6a) zS^;YVVqeN-{NNe;s;mERhNX}2B!>`p^~O+dVNqZ%a@TjKBwYyRtu z)6s9<61uxP#d$_n+J1`XHyobCvqj}G?olszTaUiuxuHWg5}P1`?d zl2%jZRsNs6r+I6HW0`uat^>_0%^~j zKawv`KPW8t`wMYVS!Xj@ayE^oLWbwPGxodiYv^|lpYx!iVrgj7?9Ji!fon4-g4*QU z9;6@w093}R>Joa@z(+l+y-`80Zwl>ms`f8~ZhLg`4_aG{-R-FynKoRL;a(%~C)HPN z1p<~eH2q?gh51Jpu%z#g4k$Z0AL&V8SLWm+)ZbqQ%K3WuN8* z2aFEI`hYNo2NA#9%#zjW1oHs5gm#j{wpOl_?>4c5fQ;~4#BjzM-@As_d*i%qssDvH z`rEvx-Xqm{>UfH*N~|`m_X3-fin(rT@jv{zHo4moM<-v##ez0T5cN9r0(5e7A)>t- z&{xTv6;Kg!O13UX&Fn)n9eGo44{Yw+t5y5~^sf`wJ)IU-3gZ8loz~hElxb8O&z9OT z+`Ybc{H-eKV9UwB2uFx$v1A1%t~bd!dc@MmYNXLOJ+KpV56G^mo^_88<^9HC#d@Mi z)zvFy`8tpjsw~*qvXoZsr{ANeTjL9`AO~QJ=uWn%jVaXDBHynU&W+zJ@d{15yH{vuAGB^d{efUU$V*7ET2#?7mv+ zpxs(rpJAT|*~n0)sBBF6u`3R65F9#0F#<08S80+k^G#4C^b^m~jn9o>-ci#ZTkH_FgvcWQqG65Z!WwR(Bp|R5XaZ}0o zxT;y{wsgs;g2~%o!dN=z_#(3(>6G6hen-R14#gMBUh|1nWj8Oj{`lBe@k`tH%Q7C- zv=ygddiIMZhj2}(l%CWiOt0~%R1cDM5jxJQxSO4uLC8l(q8|Uz`8N8%?)UMRk(T54 zd)*Q@f>}HpQ$@8+!}Nf`?O-ixdypCf81$ij=cQzl9>A_5o;B5y{Gx*gGlZA=?{NwixQfj*-ZcTae)Tp z3ZFzo?&B_e`6;?u>`E#DpjE##mVVoo&)QMP_*4ang&=|I1STwIEVk_uvM zEe#mHXl1VtpB2AMMqAT$Ub>_=_xtza&_Ss)ik(pQz{Jn30G4QmO&CsguNJ?bI~|*n z-o(D#eCO;3nV&A_m|+jWgV` zpO=bKch#iJF&oLPLplu0;$6&oe%C}ftN2s0x8-dF<#VUQ?br07ih{d*6yw)%cY628 zLGmXBBQoPny6eO&mvr1wq34sHy_8R;ND(j)7{X7J+^jacjAx@;SMU?RdLv?BEbaB8 z#A5-|7Cu(&Q!857)-B-xJAi;Kz9r+^V7nlvVr4m3vgTo{nDns!?f~mvi`j78 zC-F?^HY0}2LFkIW8t@p1 zz3O|K!zk;efIF-G;suf?w~J4HSAQTrz`br3xI@NbX304(Wp$U&s(Pk6s{UOoztSGF z_+e1{!47YMX?^X9@^9TW8mKk~AHDf9s%^RaRrbil+|iUkLXN)x#mLdyjdeX%iF;4N zS@P4LE@C#@m!NsureKL8Yj^jmF9s(d9ztB7$kKF@4LKD+I_Qv0y4N9`&4QPkj2uh= zC*u3+h3{B4dY*aKy50GgC=>1nlpEDS?GsgejQauRDVuMk#V#;lb zV!-ZRT<@ya)G3~2iQT<`GI?Z{7mblRo4=5i9KJ&_#UzF+72(eQ{u`4q2G zef|l@#;THb2Arl z&!0={ZEfP^re~ipQ)nQ3-OK{r=E2r&y%xrCWf7ynrGRjJk2~)9_vZ_*3$|K{Wp(ZlPg5S zVpnppOwPBf?UGA#Mtq(KuI8-F+XXprE{${;78q=1QgJ6-FuDRAt5>N&36=fp^B>(M z|6X-e`D2nSLFJR3`0bE3<d$wcm`PVxRq3CN(r-g|^||Y2O!JLYqR&-Jyjc~@sw^-l`SNyT-~4Pg zu2H$odd*5#RJ!}djk#c{*N6S^qfp|FA1>G3ShrKs=5_w%r88+vv}t+w$jf(^X@d10 z)cuX%dph!P>M)hcmXIs{hQq1fG|?aZCq&cf0I<|>1Q5m`mwQ^b;t6?wR3ct7H3*`6 zYI2O5baW;gAiJnP_uCCy3>pKftTap_XslFY+|Ju(pttO>>g@V)Uj4drOlB&dgz({(MDMDqy7 zWnTnZh=_z~AM81ICI`kPnoX@fBXZu~Fya}W#;p0AGPYqNu)F}~vU|bbd;$C60K>k{ zK{lAX=j;=tp2nFIa7S2cnRjU;m*L<#de)c!#L#7+zs^rSDMl71HY=ONr zDnSzjKWeY$zPZdC_^cXh?-oOvq+SF*Wq{TtO4zBpzvqqN(t!)lMa!-V*i{`UrQ<}u zx%zY&h=24)s56}K;~dV+_Z)s`q$=#XdtvkASFnI=kB#;hTaDdvAjp$}!5c&QS&291 z6XbGfcY|9vSh+FciV|UUgUgaPi8)Pfk zGHnEPCQY<+RUpIZ5N4EH{Itpu^Z1?eGi)SJ^P88 zN2BPP6%mh{$RR&Wt;oEc>>IMWwu_((*nc}AC$W{iJOtrwbp4F2Pw>P0>x9L->*CUX zNk8rXMafwz1&!?-1OjSFfp=(LpsfGf=nPgliYI%6rTnik7$+^Th1fC`{cDZ8vRQ2V z;og*z(0Nqztaw)ChQadcBxDl`SQ2QY@JjV5HDjc-9-d9Q?4eeIy8cK{+0Fxa1fh~7 z`e*Rdjlhxiu+m?{eSRqse4kvVuW1AmO=bZ9{GmeLtSh4QpIXKMdL6bjB9k@*BSP6e zg1F>5$k_SKOijXSeC3LQvDHK3v+NPV@>;&Pg+y_Klj77&@D7~k-|I25xASg`gJR5s zSF5{iMS(y$vTcV|v2AM-d0R&jqQIueM-G^|bz;M<8ww?6B*N#vh&_pBb2hep@11ufH8GCM)%0$lo8s`G)Fb< z=s$I;{RPd-8;P1R3!?&fLm;T@U&;hY%7~lu z!}PluPo!nTTgVLOpmB}EMH@W!4?d3K`ADv79r$K zsy<1SDh2vDHJ39FiM-(%Pz}CE>|2>23G*v_HnQK&B)d*ij90tIUaRU!GZ{a8C+*XOUI&`5U&aC%F~x?B z_Q^YysD}tYCki_ahc9=F;O&Hzv&Dki1+ZI?@mtF6pe2GL-+r_|DVZ$`W_*#d zWKwMWIsoS$)3m&Y60y~}R(}0e`OD$6pR}JRISWSEmdkE8P_3(HiHB$|WFL@a@yqpl zgatWpSj-H50|-`Y{Nl4GeP>lfp4SvAbNp*1*=K8`7>_x@jK2%44g4DOFaWcC?;yAt z2qO&!1i%-#Ng{;>i1VNQd-??vU7ofXH2-j6)^s-Sj_j_xez)f2Q|pHcZf5_Ez_e%9 zd@MYHQg#?}iQ9yJT>zQn8#fF+dX8E~RFLoTfuqq!Q-*G!~>8AgPMRiC=> zn$MX(ul{^DWp18s(jbt(cSAgy-r&l&M0lDW3<$6GvGL&U@2;<6-{J_V&R#XWt=j@$CN6gq7$;5UYR2 z6OzeCj7Z(b-i|5VQ+3DRVx4p9V}2Ke%W5xo*JK(|3KNj;PFbYfo^nXP#Yv2eLx#6- z>8b!##VmQLDs~(VtKEx*K#A2KWL?L1ec<7ru1~I2w@WyGKhN6NVglO9In#x!j7(#<`cl@8$z;$jc(%}HO+eDHqaeCCK@hx+IS`1Tvg;|tbM4%snji0DZ24x0TT?h zBj2WoQGuo7;Y5rZfp9o^wVEAuF08w_mMmIiuKnik`K#lZv8bdppPoKmNElx^kjV`6 z2wVerH2}W$1T~)m5Mod*=&Q(X8ssdR2I=^|nd*z?a7#OoAG76(UY?qcuWbKGvw7(J ze6Eh};{$ac>rCd22WG{PzLTxFW`)b2j0is7SVF9H9O!(r1Q1-#293b-Q+W%KLs&ZJ z1-tT@d2&q)d)%|?y$=~*bNIG}N|i$kfhaeh0^BK%dVKis&x&{XHC>2<;eT|(sV9NX z-VkOi90WpKBnMkBn6q)dLsg1y?Uesw_s8on(_Dgf(dFSMzu_SuPb?ZD&>^_v%&s%t^s$xEkWGGAokdS}zuj!*oo;Cibc zlohwq^*FiY6z~o-C`l0t_=upcqwMil&8b&`13HF`* zqa;wL=x`?n$dY+#E;QiJaXN-9E8P?O4Ry`R*QED(upUot@8g4iL!ReW>F#+hSWd0sp6> zHX|@N09nS`&VqT7)4nh9|EOGNO|FRh933h7Y)ptZBUbki;)~{9f6V(sdMj$*Xsq1Q zfS$I0`rX9`7Gw`OcJY@&I|ce#!MuVl|IgI0#)Rd>9$>ev9%u8LA6b(rlyl^s-39EH zY_3+Rzm=c)ASd<480PX*Rac$h9PKZwy-99j=ibbd8sC@%6+Y#Jrhmh5ogtb)^8s_C zQ-hNWI0@X;e{@R?7`Z~t&Me+DATB5`m6g;rFCF6piU5YIRM}gd1$+?u32%7vUkdn# z>lOP5L08ge%_jlcQ=xosQZ2Fbs6X~{Vz?IF(PDvjo)fd6bky?xgM-0XK(d%5fi7F6 za?-q8wL!ZwNl$k589UnmIqg>`V7 zCNCa`4cV5hNp zb4%6uyxh{Jbwz~tLU75*qRx%Use?N}%3|x(KtnK_3$Ef}0@X2b`9ji!<&g+ZBq3l=aqPpo)kOr4MzqN?Z~8zf_Z)rh;3GyWF@x zqpJpT`HE_L?sXpPQ*Re%UC)aw-TggFL$59ca+`rShE8BdtYnY}MS~hJO0^{!A8l;S zX-}o3IR)k|HG)0Eo4(Z)%iLv~YjJ&Vq9>MHMmE(}dq}-fr>mWv!&Qtwr4EjwLQpKf zkesvu+Fjy}WQmdKNpiU3d|f?vq7P4Kk&tzwAD`c9-6l-N{3?n2=c}OU1I>52>(&nZ zhbp{U+oe@-6l?UqkpLs!?iq#1m=CJ`O`VG|2SPR($2P0h>RwvU_A(V-HvcC3EkHvm z{PR~W#t-3VCc5K?{yWuGmG<)ziJ4gU%&==$HO_4nTkfP6n{g&C>m*MPOrtUs)hcrI zyz`3vVA7j!brwKuaL^U-)y;H(wj!zeZVDD5?dJWnDk5oXTh(2qFf&PNQanXa=%A?3 zQcouXUJ|orU8jF?4!GY}jnRY=Ks)rY0ox9WF`GFZsQX3Mu}WWkm8gHWJ~(AYP_&2r zRZ)?Yd<@-1@!9sLN#{h8bAGJZG{ukQTvBtZv8qo;^C1G}q5pP|K9Hjqr7x4SK%7)d zlJqAx08K@_h-C|v5YT+RC6V^XxcUCJmIM7&mTdbcyB4$wqrxXlW=xVQCs^^V`kk(@ z)*g4gz}G`(396TWQsLx#kZtGsS0={QW|irv2=C$#^)kv9(e@4Qs0o*Z53fY|uIZW~ z#%*um&P=!{MIDF{ z1{-lqLLB+8TC7i`_cB2VVy;2wFnY!r(Lf>^|Y6-Ha zZVZi2X4z3>0aBWxAQ9G{Ms*_bc1ABG+1`oe3jPuHW--OF_x`?Gi=aUAuZ{J$-s4@` zl}gu^EfIs?0n7{^s*H&osR|@=^!<`iHmNDms`PszjxB6bV+mzHHTz5? zij$!9R+-GBUuILK7rg_>QJy8b8ft@AfW=S(9L*J&_fiNT7vnk6I2B+Nd_rEp;mt-c zhir3`{#J)2=@$aBDX9v~B`ZR#$(omThwc%6=#@Ct)i|n2;;Bv0>=wd|(=_Rftrs1M z=Wf(ogk8gLX5AtQ&lMJLr0RMUzB4(#Xj+gQ-?!7XD?@$H%}vLAbk9&%__yVix}PI) z5t~>lM-ag;OaeHHh+%kX z&AxpiMq|%V59e32hCHFQA#YX;qu%a@*SO_JRx!~)YrVk|pPiGVOglNv1#jJ*ryl|Z z?t6^$l^a@epwbpcLSMPfYyi-UH`$4zLWMMv6G)n{8@}>?JMY>&74De%pmXU>Bw|E~ zj;Kg?!={L-H1Od&8?m2;Ce9sK~jyV?R;?8U>5nd2hh0CmH@8 z-?i>bd=dGVXHK4*DO|MQnis~~_-e_e%u z+8X~pLlrzrcX@aQH48!bO%=095D}2GBpdd zzu5|C2Z7Fs#v+wzW7w;uKZsR_J5`1FK2(+JV}wpo;GUx5+Er^4zANMFPng9ferp`6 zh4Uz6oz=stEbJ9)w|+AW9AOf!XCaKuBtS!~tZG!IwPX)()5#Jdq=DP}vO zlwmL4Gv=|L7#Njb*EX_{Bc+-AnDQ1ODzZs9jyr(yn%x#M-+1TUu&2h5Kz|v1oRq%m zAMo_``Z^6p)Ey5r9C19^2c}X)Gt@`e71~`mssgs{L!8qUHyL)lG5vakYLYM5Liv|G zp12?*BoWW|{$o!XtC>cYbg}}cFgg8~gdL}tYo`e?{I-XY1yS1t7n2r%8uqbtUJC|o z8WoN-?c2kqHAVj#(h8^KRnNQMmx;Y=lPM~c5uIcLwX8frUUXHA@@$UR@da0pB3Y(q zsPZ*L=?E99N})egJL{&Zd=^N3FTupa_TlZuY(Evn*HNYJ@ zpfvI^#hEq;sS<5*3rETU=-H-z6OJkliJx!MiPd>r>*)4X)AJ3sCIN;#nlnl;c$E7= z3aopok5Lu5^B^xTrG669glbFgiLb0IoZNR?LiiDndKd6*D%r_s8c0d+sLS7k#B(~Dt!OyuOb>#>H|+1qZ;9hgP&;f zq;NEb{Bdf%Q6W3;z$EoZDN*aj^ToG_FxIN2TYqbX-d|F}I56YKm2y+2UhfxaJS^6D zIoSZ>M2-mXP8B8!sVKx2lue ze7p8bPWfHoHb+S=3)WtIJcz#`O1@v+A&~VaUow8ny7(wJ33e%C+Rm)_p)W{kotZ_N z;X0XO+w6<39x(uTVW-9!A$z?)CwOoP=3{#ZfR-A-7UXji7xzHZiTC+dPv@Dt9k{83l) z*TW`sr3{{~{?|i7YTk6Mnt2&(&&93h9v6#Pi|J7AuYxSU*p#+YCO%&+zb+Kw27kz_eb*;1g zL0{f5gZ+_aSexnyoxr7JT^YUAP+cFB`?;I{*E`bhtf%)FIMvuV*9?=h<3D$5>2S$c znb1Y3B@ao_&nSPP0tGf?U=@vKL(#-F05yIea8pvE>I@dxsux_Tm>uzShz zMt!3Rt7^?V0}y8iw6yysqcCVI1{GRkRaZ zjf$h)pVj?=?8aX)Q_)@RBjKX9FSZOQm`zo`$|9fvnu{I0!+!>+Xi@uouk9o&nu_mz zx^e$RN;gp_gC882@l(=tab!J<32jC?t6;@Q+!&Eo|66&vYE$*yZ`;ec+Dx zw2L~kk}Li79PUP4RFmk5U~`kjASkqPsqCxw880ktgNJdegA}qD5{-$a3G)08OH=lT zwvBKT+#ajq17Y9)E|vsACdqwXD_vuis6=UK#s*^9f+E$6@=G3BNu^S=FiZ6U4S<;N z0zv>NsB^3BTSO4YW z<+M~zrl|>k{o{|i$VntqbQ|P1sBNXXLc&%+fh76k`Jj@d+c`#Gl^e68J5i(*Y5p|5 zf3M9T{gTa=gE`?kDRx&^`!))MFk1wGWq@vtpS+1sU!>qUsg5{Iqr<{;JB?HW9H`Go zMDZU(WMW}#*Uf>8_b>Pkb-P!JY%K5=f_L2#{}DPpz+ymdM2ot9flE#UuJ}L=wgBs7 zo1`4U%Ab)|KV@4!D>#)3%kLD$e$9ISOzDw-OK{GpT&e8CoX2MW;{)w!W~RJN3%8SB z@7x63l>)2%!*<(YQ;?$slFwK(rzY8iKuOfkZ^zdytpqS40Dl?5S)qvME}uia-XX+Yc`#Ek``>0w%!>gXCUP@w~~_{-Ow$3gODh~MDGxxS#W6=_NkTUKN8K=|Zd-5oLC-Tp3`kr9;K!rmf zx~^cB3iAah5NkPS9}>kM2L(2p3)p?1LEIt37k*Y^!{+$vNcbpu-J`UUx3VCaYQh}h zgArXwVn{4L=-c>EihhdC_50Un1J7XXyQ`wv4>2sO58L!iW7Q*ml#j{--@flNjuMEm$nALM&+%N%KLX6c$-02SP zD~(s3$QnUq14398)J5w3Au6OmC(qyf@yFKDzR(Be`Skqjy&Ng1LXoEA)a4Un&e0zi zI13K&UaLTqsO*bXE}rC-Wo-8FRt)S05Vr=OkJYeb)R848neAVS*BQbMyqP&$z4?ru z#-N$!VOtwdAA#&i-grfOy?K13##a+6%l9I<`Oa9Obd@A{$$DlT%S)5Aki*7MpEYxg zh$segJ^m~=6BVSR;QB4*m{Qfkaxoa-**8M}jc$XYS56V}R;5lr79MKy_Vxy*N;;gT zb9$%@JC6_}V%lcUPd45okmu9A6w~)FtR`_hct0ZGPv?H0EiWj|SU1(~^SduT4dWZM z{S~j~Tm7={8mr!pIj2VryG&EN57{EoSDLSFOa$WM8lOn6L@f)&>(#*IS6=WDY#484 zO;^VUe(P2Iv%FrEWU^I-@{|@MP)FtBYK zGETHxxSW0IJX>D75eYieB09R# zyxW+WxK9*s794&H5qD!tH8@I!)YqX0EWyOrdP056hcN?1dD_zoE|MdV6>qL7NEbRv zs&^54ql2I(W#G4l&_N;c6ie6cFasLkr{i<$>9doN1<4rb2>nP5|iG?NsKgZXdR zv<-Z*Ly!G8qi^iE{sl%=eQKQmn{URg>a zS=OK02pdlf6SZKz#wH)y7uH`D=v~pBe(U8<8`dY+yaa>DOhk%4$!Fuf=9rnROTi|xUhs{aO{k#_aA>vDy_K$N#hfO4)*|_n6Tqk``hmPSq33ZD6xL)p?AS`XI^>~N9>0Ql2WS>D5J|gc^i-0cW4N{}li){fByLV>oFdPejC?igc`e%_g zB}h3XQ3o@?;ZoSxyCT2x>{iNe2=7b=33; z!TndkweBh|rSEDTu>sy{Jxcg0t3j?ScC$`^MYgQ0#aTUAz>;j=dlUpby-r%E$J)es zhRRW}(3%+{^^|iYjQMwjMZe>}o5I|S=mdCgGK=LsFZEquMD-tCW)svnOqo--|6^g% zdS&wtRxpnU+DZT-{Vos_siwdOsv>deu;|7M$bPxwHq?!cgpH{i*-SI+m+AQcPD7ty zD!TbnsrKg|W_d+YT7G~bgh&;2c$THr!{Tf0zO?X3K^=y;OJfco+M{k3v|^{-2v=$- z%Kk^1SDEDg<<}ECD7OT?P3XNRzNgTnmG47h;r=#We7wN_763|2#aB>ocEj%cu_X+K zBtmPT>9a`DDLfNZhWDvU(Q{`XU0&l5`M`X%2j>d<=d(7N>EKPrd;{f}vqwKW?5}$~ z+|`{djn`<_On^$Z&u^Oj^4_gi6<>6tUgMp|$3fn4l0Q&H{jmmQUeZO$%akXh?Q;yi z;d7>Kdm>fFmyF^RTsk#h!a*h2t!0Cv6^jWJ4rp-o+krPWdInT$a0NNDAUSgUQQBE0 z#1?zi(h*&aZM{gUiMZXIc!Qir+?XB^WO*Fa@bcp5XD!9}e^tT!EYEVZ6|A8KAyR>5p0D7WQY&( zZk2mby2OXPwLQm{YW!GUL zuu9E8K!SpK8+|910W7%Qe5>3C;uJSx0i|;-RAr5b9tyVr8Jf4|it-PF*hAari)sfX zWqX?C0pL~zP}tOT8c+ks_ZDX11c&&omRcCQzmzqLpDSaJl;q&w&ChjzZr=PW*LC>( zRa~aG+6#HFPx<4@)!$UWS@GUL3FE{%v2m@Lv7i7(-+Tq=w;pF)JZPCu(UBfToDA#BEK_ zXP}}XL>=Hu#RH52J|s)OuLvwGOS%p|443zdEU|Py0$kuP+;2t_t*v|zoP1AR2RKy< zPQX}|tUSJc!}Pq^*v4&uCIWg)>jwcMWFU$$y*Y^>9sNCt;MTtXZlVUuh7|6UjM=|W zNim7Lro?2umz%Ay9(xAok>*OB(9T=tEScDt#hq|`oxitOw&U-MUO*4#9Et;GCXq-M z+HhjqJU$-9QlR{cA(tnw5oSN}aN*}b$@O-|Kezb!3b*dV*Gc{{V9_f@qfW)UqqK8- zlW)r>k+PE;mE(RVY6GYi5Et;g^07qS2K5@9hWIJ?{7zPb*&Kn2xv^%vNH&TTAs7YS z_vkt&{-^!TU6W*7gD9C6PjnbJz=U;3f&~Ag>qZSg5)PnSI)DRo7n-QgYTFS{JZ|@} zfb~S;vePx!o_7`6EC! z1^M?SeuUY_(dfgx>s2{kgL9AZE?)LGgH276wF8^+OaDt_ZRuqdV}59fbH)0>UcrH- zYKXGOPL3`fZ|!Fzo>vT4TDpqI297zIjfWOLbh#dN;%Fa3$^viN#;MzV#F!cJi$%Yk zYba(|B6=D*Ho!DpninwC>$?QN8MIS?$NY76%I#o6t&K3)|CxtItsKd6J?ShLd{`v3@QiwK46RXoK zOL;Xa$#K7Z>3YHfdszaryjFYN2^`I;9R?)iOj(RnOm8b-p_)Io2D!Km!}yF;S~^U3 zM{8gy1*OPt7|{Up9=Mx<;!BX%sanH3Kv6QTx-+-`M?fC^*SzpCh(rjuWt5?olk_$s z=BDz*C?>M4rS*6H4%XhANO1L;Xu8VAcfK&hi@_Y$+Q4fqOwf z!$JufMY$i$ZpaY zHwMh}(DW!*{FLaCe{7@rywcX4va#KE@GWBJkAjSC1=E^Ww!e3nuJFYbi#eyr_9){% zeKj;qw;)wOH7en&bqCzq*YC$^^=!;qp*^N)V=&%kdfKo;Gaq@7Skrbq$42t5hS}g6 zWqv-WMpJ6Xy5y?%lZ0Ef67%QQ8KNs~Of^{DKD64DJ#a5diX){A4i_WEa9dtumW(#;Ix+T1kaDW#g?Zf^!oyN``tA7+Bia1^j1zK##+G2xYGp#){;J zd!xEud7n6z7$|PP8|*kv-9xo%1^KN$y{c535NV_uL*F?%%_lH^z#aJ7v3T_P$uAA@ z>$63cC#W_7xdow`hz_%utJkI{$1WK5@_|-i3Q^t@53{&nu& z>3kYecBp#zAKj)2PeH%p!Pw@P?Tg3Yp0kjLm5s=|+M_p3h> z9<%Z1<9w_eZcjV$Ybch;jJa`@HamnFvKuRpYKiXxdyW<{g{mmn@*?sc15e%oidM*dhSTJvuLs^r={o-IA)*-Df z2|92QKCnr#ze@`RoK7E30tLLwUdfcNwloEH>@^a_sq$n z9mn!n{>?+i;+bq6GBwZtkE642YqEd)Fp7vMh?F!_Nl6iD*eptfDcuthDFNx;FbJs$ zNXL*4VbYS5Zjcs`*y!GfF<{&C-oN(`*l}==-QT#b&vl;rw?K_aTwl3=`in|rYjPB8 zI@Q!tF%^_F|9AZbbUU)LYfUd+=$xhb!3$kD|cD++I(t=3~n-Vh(M^(^VVJ@`Nqt+U)dMAEo7k*PvznWsGWgxLqwbU_h{faUG*lV zRf%N%01Zat-OU>jb&f?S*_s)Uq-rAfN_OeImJj1oaU(aLIdn=Q1-#9dG%xvvwevi2 ze;zm#z{}PQ!2Far%uzY`;}7ytB)!I(F{9Z}JUBW+s8+f8f7WGMKcx)g%9BDHB0-L;p6} zkaY8GfO;SVpB=l5ipUneR_u>i3daPjI|Vj22w6KBzR9o*y&y*TIsA|}V!-OKy#$z= zJ)2j0Y;^G zBP~b;=ip#gN?rLoK#~mko3boqK_ByKHr+4oh)(vj`od5++T|pkaFFED#D|o38EeDk z8H+)DLr}mI+Gxc_7DW!M?risDCz91wA#It3DTEB{$u6_d;?EN@dl{BLBD~qjizilG zXKrBJr<>cjXO09BDI|}&H4v*!!HnQIpJa?T_3+S$Js58OaC_aGiPi{MCp8g zLhf>%UYGy*r=)c8jM^lZ$DF35XV7J><0@U&cLIw7>^4hZ8>gaiG9*#D2>}oxBDP}p z0fKkl>`@MhFo{-EiNAm0)fEk4HpHdm-ZoyZnqXn=AU=YG#Ws1QysKWVq~0NS^4;-2 zA_}PEfsM_K1tubLTxmRpI4@l3xplay@!Ll3YfA%H&SgAQw4COW;RV^_9NKGtL;Q0t z{T`V($)Sm1q}I?xBqFyT(vTf*MykYwYK?`~)!+CK!|{MocF&RKH((KorMbloIOWV9 zUsfR&W;}$^tN9JRxfm+<`)nYoY24$2oLY8M*`iTntr5sL(JA7HvPg zEIW6QLqq%U>Sg5|U$s196QzvIa4r(8=zh~bZjYfh`e2I6H)`<;9q^u0S+MvE_^{r# z$3Q%f!8k?yv~>}$ch}HI`1@&C9tnoy+%?4k%A0V)T9#MErtjG|&84PydIp;XW|NSa z+Gs)XmK4W57xamT$HzZM&cM-17)=SC2xI^ZOmQ6cAEHFpZ zm1a&H3ZN*&p#W)X!s9dh*|Z9U4{mm^>osp&$1SVhH%qjV$8%Y5{VGsE`!?=U9U1}g zFzh~HB-?`C?66x}jCCp_u{}(7XW3rhs7-KbN_txt-QVD&^;UE>_VJ!<1+DDy+dE>^ zv(I^odqszna0fc~d6Sr&mbF&Pgjmsb%=HIB`|R6|pKlTg+~``p$3AA0D{o~a_vmS= z`Dj!a#da;ajm2j()j2m}3b?xU^IM=Il$K^F^JnVyEx7EMjQcUa0pyCyosssNesFV) zj9V$c(Zw;{h*=t@`deXreH(3>`mXYO^DbwBT(2`NKN?IfQu)X^c+{s__rDo!2V0!8 z{xIHj$gm$g%tgVnubWJ{JHy-?RD$ifcsB{)7aC@XF}>BKe{x?*W4B7Pkr}W zdn~Lb<)_c67{L`(6pZDFO{zPEX<7V{gb<$Zi}iSm zU~cR#fQx+sOw!vY>QyyP9v7XzPgh#5GMWUyxTfxnQN^03YySr7v$ayvj7p%KoX{XC z)p^S&eE=}T;#j>X1?x&iz63l_(S&F2vocyFmvbeu!f0(d=w(y=xVIjyagE3tDg3H* z%#Yu*IsEtiU#1Ah(I-X?WZv7$Uw4v%xjz|in}{iJ0|2KxAa3~IGh`T95u9`m1yZ`Q z_>UK;@nthkh14!?eLu;cdsZIg=St{{s5(!RYBJ<~soe+BYCNMa1NntlrcD1(O2@X8Uwb4aD>9bv zU0IrJo740h;wy@j{K@OcJ*-dXW0;^^_#+y{SYzkKz7@~u+teN^hx%rcB+AvjGXCk? z4`c?!4Mq|J#^FGZipkOx6#0oe1;Yn*E%zUrD3eYNCF5t6djmZ0jZr29SO0a08{}@C zADcFf`W+%x0=>mNbu~&(na^MUC7a@5;WZ$B$7Cs|GYc(uV=nMgimFMxNRkBx`R=-8! zVr1!7e2t7(XEY_8CylRo4QQ7ytku}+7tRh;o|l}{`FnLO;<0^dGWLASR`sMu%h$~E zYA**^V0m8{8_f(<+S9z-)BH!U5qVqE+&|#bbD+h~+jC=X-1Ict5@3P-hFr(Ik@+lf z{sz&eDdRoQx;Fi&uBBm2evS9R)RiJd>)^R?+pelT;h$IDE_s{w4A&$vLJELMfT}~e zGH7;wc|{}0$3KXOCOrcDlZeY-%B2{>s&Bm+w8noN%Mt`HH2;Ap%{O4)4 z`$Ag@ch;gia^3`_I+TTlufa+p&I9}*SR>Sh8uXV|aGZSWnEZJezrxDXu@SN6@q*8D zJ**cG<&^a*i$&GW(s%mG^t095-i;x=psU}9(qDQFRMhy@_hnrIaWp?F`8(?fxhidP zVE&ZtxX&OeR%-Vx z@Kl3MOP~mqx5!tLN9RxI8ou_)HKim6@FvI4w>o%DR4SA2iI?Fd?X|9NsrGKxTEjY8 zZ&Za_8yeJC>#XYr*{b!22W0GZrkxMJf1fA%G4LubD$9Jv*{}84JuK>ZupjGKMXLyVswY=t+8V4w-d934oRT%USl`$~gxXMM_WhMJoGC z<^NUaf5E{r_q2(Yao1OM)3nF9j85~~3WjraZ8%EFticNb!LDTV6NVkdy6J(Kwm?MM?pV752Hkle^8rz{ z-wD)5OkYO4AgGrQM`Lpy>H6qZTNSm+)+IIIc|FL=SgQAysd{qwpi)h ziQAFhInImgZg_W=^@-<7foeL~Bc`N{yx|djQDa#AA@5!~4cYF00X~1jwzKu!)#Z$# zppH64Pc|n$jyE^IsIvl&_qAZ@WngH#~+>3d=&x?LUy^W6`vlbEKN8KM_SVOC<(0wXxI^TV|8*y(2TrOQ!Qc4O*IEuLpI zf29#hP2KA$ST}$un=D_Vt)T_0gU`@l1v+7&P;OtSt3_e)`t&Nr8-4Nej1lhO=iq02L=c`3~!2 z_oNTwqVpEWQzuc42Vfw{2Njc}d4&lr(E{ASq?RDbu=C~i0^3xDWQE|XQK-G#Tt5b{ z)Cq9{0OmG841N?`y;k3aTKr5TA&m+fL_H?NC zu)K#-6Z6LJytj7xS-JcKL6%$Le&UIbjg~tO&FfEVN8gA;^%4C#WTe+us zl_eQi1hbFlpZ&NkFIwf0s0O}060dQnE@ij+KaS5gILg_V=5k5k8 zN>1CdrMe$6j8K02+j>rBTr8d>&o}Z;5-{Lkt{W#HnRJpp>Y&_~9tllHVIxx1uZ-ShqU0 zn0_u@sK0up=V!&BDD!xUqDd36`fyYxekc|J&*Qnl4U^2_9n(F8B}AcR$9uNnW^9cm6ugiC&%Vv z2MPRn526;@tyED1ig1O59=SB6E;vt1thsPLGiK;UOsx7I9%Kim6T}DPhqfA{z}<=a z1o_QBXI!J$VSxfJqm(J}vQ47Q+F5oP{u3~x3JR6xv`&NqjegU#6D#N0Z{fH-KXv`X z{>=5ywCab}sqb#m%eZ-%rW~rn7Dfa?*>7h`jrIqwe~pVLUj+yrs=;)WtY#07ARLlS zcrEAQ%~tL|M%K=3%3*9y8mhNWza8FX+K9FKMHTLNQLvMHntvu`c?4*T41=pb6Mjwa z+V6Gw1WNd*VR{e(2p1^Q_x|kWHBdX6p^xP-Ec5)>G7_^{+cs-^$rpAvioy-v{{;Z}*P^mm3JJm^wL+63wo> zaKom6=iF86;JR3Z&~yW4)Y(=+tDe2e#E#s8c5qKb_-s%GPl~!dtUbuQmC1m;@e~jCrb7 ztXAYfW^E8(MO-Nrn3U5#0{AA(Px0N^brzSyTnf!QY(3|0MQTPt{0>z?E#t{{r0Fr+ zpQ(I}H)6$#yCE{oB(krf+|a*ybLD3yRTNewKzHPaca1Bi@{>Xe=KVX&_;_7!d$}`= zn2QQJ(ww~siaM;!)O%!1R1#~fRn@ZJB5IYTytldg@~qq8<%=T9{+BaBu=|BzOH##v zE5WoIklm%bKv@7#nL~$xYfN~&=1k$R85Vicn%ms0X`1!cJL|cRzIGW{o2r*R1yaEd zrhDWi8>}Z{Ff#g)JI%`Y?GBr(^&y9#aY` z8L6ybMBG^Y%h`)k`;R7BrFypim#)H~-L3=30Sb58zzlXbO@q~g4XeYirQOC0L>0dH zI?JqRkoG*rOfK`vsStws&vfi#)C~vSG>om@;;=gziC}|;k>I{D@Je%G%_?pyMi>5d0!tAPku?-i=(zjf;o??G3FE7PcX?}GDWYFFXl2#u zJaN^M($}RXUjJSp{c9(D4)Q)!)51mUjsV#_?tcSV_nCEU!Fr7FdF+p^En@mR*X{Z{ zIyBpd4+4(VCDxLCQkPe-DF&WY;wX%GIKJ0FH1hY7?q4ch^D#m+HJu~Xr^xgKTAV_1 z>n%z#T;|k5xY|A9am_DFeraZVjjKNbLni-)=s}J{Ad73qN89YXpp5y9irWU1ZrzAx zOj=nr1lT)RyhFfK>wqq{zP+-nxbZ8(dAM*I`gCDVSI&0zch99yJ%O78Uh-Ux++bdm z>Aow+;g)U2s`u6bPOcexr|QJ8IpaVxjU-R>G zRLRnf76@df1U3UjQm)5hLoP0K zkMGtk?-1XAHUYmw1U2zFBnwS9FkYsYZddWXm78J*kVR70{8tTGUJhts@}$U52@W0Z zVXRO^WU!%AQF7AYd(L@P@?r<;>IjbJq$qmi9v7FFNxF@-&hPi#PHDpvPIXN!tf!f; z0nbJs;qJ3wE|N_nIJ4&(4$4_Eh=x2cSypY)VpQ=)UpDXdNq72?*GErWFZx&SFg}i@ z^7e)7bl2CUpWm3?N8me6VAaBP7+jfD5RiL2mf?h@zV+pa*xP-PTSlk-4c~m!E71O{ zpkvtomr?hGk9`Fadn)+H%HaE_EHygeXA&;%hYmF)ON~!@;nUB@cI@iwV?HpoVc*_zw)k7sW&zvl%qt$#GUUkMIH zed$QoO{9~NTMjvJw7J?k%_8ejsyzPAER#im)(W6MhJK5t&MFp!&{B4N=&L5F5rc-v zN&HyZl+D)B)_*ilvf`KHCi*XIT%NdPP4 zda|SpEUm_LcyO?L!v~s z%i;`<{R;GNvmQL`+tI?;XUhD_cCehWZ^pjODOUF_ zI1b*mB}~bn-kl@6;??UR_>bg=sZV}bbWjE?o5>{p%UJ5FW1dngpmjdREO@J&zE!s< zC3^1Fonv};;B<(#7Z3-?7qA5A8ddU9X|Nb!;yLSbJL-ljwWm=(H5~h~=ay*U?q}kV zVexGJF(r`i7yvS-)I_vg--cl-w+I^+?qAfn(%)hVX192Jj-#$cOU!v^Gc4PZwSSj= z%Kjz40pAOhg5Ep?=uSZRW0)!o9EZKN@Y`KuWDCkixV#IDF4(NIPdz(f7yP9}R(a0D zu`@LP>@p3g!OG`7d#OnBJdn?zZwMdR>Jocxx68Uc31CzQ!?%fTgouycyIR;D^37{R z*{Uf(gJmU?Mv!S!@!Sf0`bH*MIGsjqz@S4^%(xLN(bxH+bF{{(C3&uh55exuoguM>)9Vu8TMc;|FB7v}BlrvsuxQa^juE~kS7=Ayb=_(B+EgcXV|@0X)b zc28#FxP7hTN_LBNidJ^00GQ;-Y_pafrPk>`8iutGWiu`|peg$VJ;lyIsTDt8&fY=j zfSShF1ZFX9+iWA#KTEQIpX&+hsp<&(xA2^Tc##7hsp7+)7BHX6gY_OLNyNPk!R0&+ z;)Gw>N>6FW2xy6ipgL`?rR)%NBzkFFqK(_N?|VMp9rAt_MT}0GqjGJwuO->(j90Y$ zk0F%FLMer~0;rvrdDMRpx{Pi(%jZ)MvN6g1o&Db|+64=mt9+jNH;z}!94C_?(fd@) zQUczLF{t%sa23@Y9&^TvHSNKCLexMyHpvcn7*0A3Cqe%~qwVLf!JiigzNHIBL=taL zFqgaYd|NwGYb3qXzg{GzT{9v@0=|k%eI(K45iUp<`a|Gw0Y0N=KthN4OY?Q=Q_sHa z>e&*re{2&K?VeugeWTH)7IO7WnWjY?`c=laXJL8seDIQUL-=1vm1q_gF-MQ(qpIMe zwN}~)mRM@GHI6TMddlTQyKR6btxeF!UcW5&TYe4nj9RN|bL~QG625vhbhi#^54Ms|5D06Z}_|^5@p>uA3#A5fcqgfLk?m*P`pA_?pJ}zAfFKOMM4G_Vb2q1$|hYuueNZVX@%cJ@1sV zUc}hJH2gg(%3$9WGW5T2&0;-zr{LUS9vu-(hm#m#AW=Ca0sthKr8mX-F6V8)=_lCw z!c&%;HLzPE>9t2g@UFRy`dRQa)bO3A^%FK|cE;jc)b^QNC?y}UlnuKIR`jRBxaKUK zTbT%Ju{=W#%NTk#+fs{v;TLQSe%)WDv28fvII5`Q<?KL63st{D6QqBTG=ynbXy?)yKIDsh<Q7=Wws>Fl zVZM8uI_Hg+uF&N$Hp(UXQB$DF*;=KQTxvddH8UIDOn1nPS%+{F6?eLpQGZW}|ItuV zch~TcFU`u!u{@3idYV(}NcHSZu2VmS{lnjYlShO0Pj>ApZX5TW)Td`HdZNy_vDA`v zWxR}6CuHOF8WE_+eDn%_NQou$EV5wiWTH7OpkaH#Pn>-q;b+ZNRvY7kU3Jgm9q#>V zTV;MSVXDu|qRWwIk^qaa)=e}@sstYeQOb@mnjvgJ1(7SAxJ=~5$4=F<>v*3;27X~eCYXaD zs*mqZlSjsqWj&{+f3(li#prxw^`Wt2`lxw%htbrSXF|;OPN~$Y6x`iIoHX)7=~0P> zCU|?!zTR$aWY$pk*PmTiFejqzHN@c;*%Vu*TN|xM0)kwkaeISa;Vt2}grZ{-Hk0;i zf60&KDe{gv>()a_m;VNqWi_j1icZO(i?mKr*^4!AFhF9+mveIh7|o+ z;|ejww^qJSxdH3nRD=EueYCV(5paob#fM{(ukKTDt^B>RRGbK^nhhs4C~yn!G3oZe zk_qga)x7xAGE&gj%#721XJ~>r@=&7U!Cl+$j;2pFR zE4Swl6@ke<8)xGJ(Y(qH+uY^HvKD2TwH==%Z{s{fv;@NtBk8N>j(fhucjv1An{<_l zDzLtfJ72zxT+)+c{UYz8Y9`bg9RG{kt(q0|m?g4H&D+7?`qqBs;jx2eN(ZM@;O>dc zA-If^0&zgaWQ#=OM!MW*=!rk3Ogmdaq=taYnXQ6Tt&6#&gugShy|`UtUv9pHOZ|B? z7Y@RDe{d*2{>E$Ks;=rn;`_T}!r%X3`;pSGa+3s0s&(29@OTI}=*8e?Q~8u+h$|+{ zBUqI%Kd9#p_ypKBs~l&~?k}llb)uS*xQ;ZHsoS#XXA}T`aY(H|-l@1;Al687@_OWB zi8gK|Hv^v{LP*=^x3>K-ESOgiRxJIjxt3@KYm9E|D&mtOyJ}nP{ zLg~^BI`#3+S^A6i|Iwu6jn~GFFTr**2&PMZ9j@XhIER>8P~0NTT7r@{D0+bpz}S7HhLU2j)ZqO?OaSWBfe&b5Qk; zey)f55&M@e_0@O^!_sTM$7Kn9kMy$!4&r^ja2I`|8d(!&$RzXQmAyZa0$GwvAEyeD zfiw2U5dBtKO3_*?DGC2}NvZ(Zsq`b}Ebh~_;Ar=fj*+aJN{gRve8{6n zCy^Kw2VbWbbYuQkV&M)1V7$m0yS9;(DH$Cp_VUt$6dzLF5sb=^bpFI&l$cD3ZFT{I z46|D*Aw#GbwHC{cvq1sly(CYmcjR7s{Y8}qrr&OQ!P4N-k-I0`Cj&>7$4AA_lJ&$C zLmt%4E2v)zWqx*y%+R*-_!^i^2LzxX1vHEo)ah>Bh_Z4=lH%pS^=^w z1i*(j+x9VFSY0W{T4PyFHiw4sJ^k{->ojn7=H6wh6nq495e_!jC=7NYX#f=;ww|k8 zOCgr}=E5JiRzG{j=mXJI7P2Tln)seXS7QF)$s_z; z`hdHWK=$v!9Nk8xSInsUhSiQEg2G>Tbt+5^eh_rJtf{j13j3%D|@*kCV(Q7R$UdQsnvSSYT-HKSkq0R>l~N8YE7%+?(1~x{8*Lo@qJpny*8}- zf}j=FDiq8@fJOVbGg#@_+1mQ4#}*tt5{lm~ME0Rv>;@!B_DsE(-n_xpz03x2>fLpl zS_sM$*_>{l^qo;B$1&TGoJz@F_~X3-oSw@Id^Nwgc1^i1H0gHBsBzLYYX-C6MEI^Y z{p!O!wH2ghxrM(^e~SDGumdf@9kQNrNEkJZ^{hcUU<}lL5Eo{tjK{PcHWNN#(?SZ$ z_4hJpZfTmXO=*cRo0Mv<60K(y^Pq7Ml1o11mA-dn#Ph7Ztzm+M897#e{&Zf23FeCw z0hE)^dT@)o4uoi82n7WPIXcgxVx(bR|Ix7eD0{i)IZo|zCkcLCbrod2Y+eA(>b;Tk z)=kxEIEzox8LBxpUIvFvWu)F6Dh`^H;{0DhW!4=oVMUU|{_mRbT4ttu-Jlg87xth- z&$2jKBFp!{Jl)A%L<7e~+r))cKKOd~^~m_}%e5cdIzc0Qx>f(tfQuem5!Q>3wB}KO zVD#_oIF^Zm?t=2DI17kQh(-*y`t*M0G_Z?4FIEXUmS0&*npnc}H>TS<_m>+Hb?x>L zF|9%b_pson%Q}-Qy1H{Vt}7b;hy6d>K+xe3C$O zgP2T!gy+?pB<`3h4yjj_u3$ev{I=7NY-5Tn`t#Z3ysF%Ec-;^eaiyh<$>3er1ntgfZo-@X%TDmlCqMhl+&QM~jmAj6~nI9IM#e8^MrGzHl1 zP;*388M=SuyCgl_OLzPC;Sd%QQqOnz`|S%h3qz5nH&6RdQ(2#@&>4Qp5@*iH&YjNP zT_Xc6y)x!U3!~@%Q;H2|vy;@l>Pm z+iaPJt#_x0+35jL!I2@|j_m5rw7T0;k67`A;H^i(1Hnmn=+b0i+N)Py%a+mpPj7Zn zO@1}}`G$&L!c>dyIAJ4eWJs2f8qp|e@BK^f66R~U z>}LFMcN?=5pVxmy%Fhs?Y5= zRQ_eFHcq-eDA(=qYYfRpR;h~)ho8FLdfA>7Kc*l`m%3zM`Qb>}^v=NAI` zsk(PaWI^P{r^ZpriMm!#paqO%< zH%qH)eBR1x&i^e#doxS#d4g{8`p%Z-6~n`y8!bI=CMu0(I2~tPsMbUGQq6zO{yT|wH0Q0b=rtcCUm$s+G^f@_RlKtDpJ^0Q~ zyUJ?tArj7_dm&S7?SYNSG9uuvP)f!Ybz8_6N~eTNQA`BalaK(D9=Ikjj4T5gYmwTq zAGelV>jV0U+H zxoKCrg|me^>PtD#m@4VQf!beTgQY^!4BY2AOI)gGUFMe3>~!7d$N4!whMBuym7p&V znlfPAGyZTUmuK}!_I@=DoC;oI>n_lDgB;Kao=H=Eg_c-BYX$FYHA*>El*Ie{tH0K7 z7@fE49sfU~b8M`Zov5RJd0H=!si;7VOE%XP{k(4lo|D@3cD*=Car3j2%TRXGJ1vjI zR^lMLZQ`_;F@`pM&tIvW?RJ;?XHX3>&%Kzpg}2Mg!bwI62Ycd3(MEg0hVa&iq4{IXQ36qt#h%nm3(wDG7Z<3>Qv5MboX z7BhFP4Z;3y|E3m#8D?FGDt*lTb$2dVQ%OIr(x+m}A7G|zwE;`y1CQwvMLokzSGy?y zty9#wcwI!ruX8^lz3^j|m`2Krnz;+74{tl@jS7SaG=-F3-A~U@xI7Z!2&8sp z@f9fgSb5mhP2VZg7tMY*lg|R|<8%7+yUag{*}q$b3LM7?Ue5%%HCl}`MaSxRTGy`y z(A7oBt43#;OMQ=%|8h0|Lfru~jpChLcHUs(2ButpFU02`#fo$r@Ar_vywkD7Q1Ro= z*MX&h%Yv^|zkEiZ+FP#bC<%>3cj2~1yC%%p)vU9_)u@oI>IGCH&_Ne@UptILUOwXOzua~(*9Y@q9_U~d3 z`Fw`K8>(`ljO`lzMdMdceHakf^eHZk>$|-!SGJ z24dsH*YA`pT_y+-K5+Cz$!l9MiA<6}ca@xmgBY3ZY=RH@OcdOdl)Plt0s;Ng?h7ng z#HOXt#WWFpXUhFZQzQ)VY$I{*oh_<1lzg(S-!lJWONI1>;mzlPKJlh6>m=SkUUDEs zfRk#~lGV0a@7s)4pzI++nxbC{t}-(v8xmi%RJ4jT&+MRB)L?jKqTQd@8931|k~KXy zSKoOT-_Y?>%)UCu1ivR05Rl6b zySzB%ieM%zie#G2XX$uHPs{L;beSJd8T*?@A8xKn9Z?BC@HL0cBl894>4-t92+ID? z@pc6tw)gI9#H@sO6v@zf5w`tA0=xb@mcAoB7q&6$+FevO2(UIL_EZ1aJYQK}RZ@KP;EbZxdea8#=$qy;!2Fm_pL~2 zK|Ba)_XAk8`mgC;&j3%`yxr{(;7nh#4yT=H<@XmfXd1;hj6`^nddzibP}Y7D?kr-8 z+;0DvaeeKsOxcC?17)x7`4ni0f8TZXNt_H`=^NaztNfN{snl7@j)`|%bP>#NB&p*T zL09AayrBEhTk4*DC3mn6Bmf#2=TCZEv!DDwuDIM)cx^yUgEO zavS!G%@hy@%pv+cMNT%?@F$;})n(#~{yNUO{!pmsVtEyQi?KmchX&-UEWcw|^m%|c zhBd~(M*Fn!V6Zy1+ef)bVbS-@TkXV(lCP#BUG%4w$=_nRYkK3{zB%@}?+wL=7OyWO z7-|1bfBAyrh$`9fB&k&G)kGaTOxXVu!9QrNOgA$6J~PvYesV`9d_kRrF3ta+OYPlB zUFDqaJ^WO7_cbx%w^Q?!G%#TV4n7tSxDL5jT#z<-Vhx1!THSq31iu{o%VSnrISN^I zhdb}v)NS~t%Y@a0&_a0>BOX|~NN9&IyE|Rc=sC&Y_n@qeOtqGVv(cx#Tq)qVf{w?h z#=z||OxMd5mDL+5y`2Qk9yE==go%o1c=;N^_gA&1epU|i{Rg+d;dDa9^4`-dDX5pN zRl5nb7e5QC^V!&_I{ z4g>gUo6v6Z()vFZz=>65?iQ3Gf!jJ4Lr5yt11V9#Lh~M`Hx{qN&Ye*s>HxLrKN^d4 zfC}t^m7$}n$Jd2%l-Sj-gC2|_T5g{r$8QChHih=z->HH$e1w(-Vp>qD=?d7J(Yc~qEITgzZY}@F7Ce!#UK1&Recn=T2W|{)_-bJ%!rPUdscdQ5-Pv4?4NQW zrQI|k5VK9?I{IlPk^0uls-&EQy8mklg3TerD*mI%r4ECx@+`}!uw zCqBj8JVcJQhOAjVLg}VlgC>B6q&VlB$jrszh8@8w4V6jC>*O+1pl^d$M)CUtLORHo zcg-Q^FM^Gm2-0PqabsGg!(*UEUm@QuT{@;v`fEFM4u&Fq2g4Q(S?(^7)u7#!Uygkze`Wc*L4&C*doZbJrVA#}P_8bxI?hy(LoMSIu^Lur%lr}u}NOd)Wn_mi= zu4Z)eNi|#A&Rk0#xD(c5&}uC44tuV;VjxI$;+BqCY*KboKiWXL(hF)+MVposu7 zZY9K(VWMO0|DzdQUXSOa*`@uPpk7wQ)P5xV(xgXkGMP$T6x#_PEhuyzsDZ8ZUPhe2 zWt#VnFm&amcf&_-Ygb4!C&$wny_8!DX4>o9Qj|d^39aNI_K7NNd=$<6*@+qjdFE2#A4?6U*gI$ZFb(fI?{sWzM9P9SP z!*f6L=D>Rl{swac+ES+XKAF8G4+&TS(k(EZr~js-ysWxBHLbo<%{DN!Xzkou^NM|8 z#wbNy$uZZb+*_S^`UzZ1+A#ZaMda!1gVL$21kZPe$eZvuvs z)pjPcD@U-is6=pWPYE!NW_v^a^4xsW)My3V{gU5%h90R}Dhat(s9B6uDmfWfOo|D^ zjmzNZqTapV6WGk_((La?eM%MGoE%fqwT?QR3dtH((H-C$0GsD)jLK-7a^eX#t* z@x&NeZh20A{K(SiXRS9Lr!v@!2=Pe%1=@alUy0`Z)tJn;EzQF6Ji+4@1J=~l6M^dx z7M)3=ll2n~^aAzprYmpH$J>mk8{c93H8#9qI^gDh4~t)UUySon9i+JNqeWiJwiQh0 zqu6EPV0HIQuf>2NX^jT>Y*H(zvoV{KP=i;3eo1&d2=P;c3)C`3kgVRI(x8Gxw~T|z z3aI#4{~|c7lL(7QSL|YDBjrN5{oQfe6NK$4XmYVlI7pNsMRMry@R3sD&%Uk zt&O_dGnbiu#nnJ(Vj%k9RN&v6!b!)nyHX)0Nb(SD4%3d|dqoK&!{kSHg~9c-8+p4t zbePbiUcEt<-YVTzdsl*Zu3U;0D1}xiYT$yn`@O;j)=3xNK-Yn-@EbY9{Zg|1cK?fofOHc?3|&%D|64?Qywn zeWHN4%f*yN!CjlFehEVGEjN zbP)grTPe1qz8G--_^p<@D_x!1a@kiP%}$?P+#t%sj|!BY29HG3UdayquvXPQ%_~}{ zQ-MXG@P>;Kz5P^$wac|C0J16yP!I<624i;D8ynE<` zVGm-exp@4+d|=)dl*wviLAbW@*Em{AUj6>rEK~KvP4(J|cj&KI`n8J)?5q99YF*sp zCeDKdW&uQ-BK)StGK^#es|Icqiys%{kzNQF(q(t?;f)0Sx#;`B^#*~vzuPuk;_7b7 z-x=MpJ^Z037NpWj4nDC#dc_k^fav@YS$QIt6a-ZMbSTL`z#?Ro@P4yZ5^{~E4EadQhflzR+^S;>oXIr&YWZ6B&zFf+uKmfCK4_DKOq5^!Ne8)ind zBi?+3ut>dMi~^W81431C0(Qw$HT3V|#k;*X>X zl8}*Vw_TR^ulRq`C2)oxvv(CmlGWiUjUm4U_X0)}*w1=IrgltPGNm0pceNVr%B%)L zNDv8>L`*-B$H+(@Z=9pj51s}s?~~aCmqudb`{4J2nWl~*pIepdMBWhSKP>i!uO5!! zCSEIAEhRKTD_km!68)m9sjY`r3a%EJAz5#Vu8$lA<;8s>qA9fyyOKn0N<%9Xh}YkM z`>|*jBH||1$!M5%!94V;zzSCNU_yDauw0k|M}2Xp4ef4yCwXd5uA+bpH&9^^fmSB! zAL_*xf%J5E5X54ay>ZcC6xFA_At}R;v-Aje!ZJlue?Fd?hw5LC1l;0 zarTGc&NkZV|Nr`gXktC30%OmKY{%65wLQUsm`+FYK{w%ivuR6zD~du^b3LA*jo zb0V&(L51clJ2r2iIvS&Q?7oy+-Fw(ypz|VdJ;p@-XH==PI#fUW{bb%3qzX{#Z4H4t za1i{KnSV3Knc{TffAhSh`+nnq+zn zc73O1b%u(hasinkqm-I9BaF}Vx&THHgNJpYNn%<%O0H;tGRr($zqDoXbP9ZXbkz`N zEvGMf@-F2WY*!odi|QGJ7y$n>uG$y|k28yM&g>%O>xayxZ1l7I4+bz$jL+ep zGfOONm;PLqItKP&*cmWxK%m^9TH;h}IX#qkXnPG?t@e)KBhl+kjs03JB z?Ma|q(Q;xvUYzs-9nPj_y>Aoh_3D{2{=-`urIDQzoV1aYl6o3L@$^z5u3~mijZ;*P zcYoZP=(IJW1#ph7U}ta$f;O7~$lb4T5bpDyBJu0#Z%CHd7wO#QaEZvvNBt(!FWbml zSO&#sR+g%~qDGI(*u6gjqq7?_YI*dL5$~0mTf3eN*BSj7L<{_s`-Hp|6eF}JfQL)C z20dYjJ;9YGA2KD-=*#dFHK?uMiTJI`DEcWz!rRQqY^=z8Hz>9Hhhc$|TGXQH{9uar z!tpZ8E+G7R&G5Hmwd^0&{xza1P^t0?tJZ+tzZ+zOHm*kceBy?mQw!4aBJugyo z@Lu*lLr_5{z}3lc%weqZOfXawB9ze8*AGK4^Ao5aN701kjt_E4tcO&YJL>h=+?bfF zF}ZnTdE>#|7ID6J);All$Biu+fsBHSDFXSvWJ_s z)?yFB@?rK`Zfog2x{~T6|EQ7}s6H|LF~C>Ev_89NG1c=iuTCDneP-0+P-Ffe5^vwf zuDgD)N>HQaIi596T$e9TSs@xHB<7dYw<^gKA1-gObU5 z#D>g*;q=dv7e%N)#T;-OtQ5++^L^en)~aZ=|L)i_5#05DwjycroL!%#2LwU?Kx;DE zxO9c&d_E?8eaex-TB7B-T`}dTOV3%G69_m;*L9gmJX85~lxdt%CgO|8bMjii;`n^0 z*p*{{k4l-M&4XfPTsvneyL_A(@57?2Wefr2+W+OU@Wo=)@v#ILQE1-OFIt1(xTH9J zxz9z8c2~wNzs}=K@P|x)JufSBnXxdd7_qXYY0n=?zb`c^#5(U2lm`ejC&+-(&KbCz zhG!{}D^#hm0-ae8u(pSAR~TA};D!!Om@$a^7(yMS+4Iy~Jbq7CyyOm5Y;eL*E(cC|(rsB-K6d95{iE_NhUrXtMVGWQWDO^5DcwP2wm?7PHfJCz@LCaT=Svwywbbks_RoY-XQGF6b%1p&z9xgzQq@12C zJ(_U??P68UTvYG?xEkX3*k&AIM3})kF4&fBdV_?p!;Rl&)kMgWtXDXcR*6YlD!mso z6o$;cpNnk*sE4)+Wo>SHt}PtLDSgCwwP%QiEz zT4B~n!rOO~wyShg;E88NY5K|V10c61ccLhIP;h%P4(@fT4YSk{=|t54Z!|TLd&fBI zCb`keZkqJpUZp)yl}!TMk8<5X8yJLLw+YI<^52z)&eO7n1=;Tul4D{gTOYp01}Y`1&c2-8Tlg zQ4?Ct7OCBf^YnMenu&si7#qK`CZz6>T?~YOnxwU29jl;h(&i5wyumPTsdWhqJOnB( zL}JBVe$@SCc3`;nqpMGB$KyB79#+O;v;*g9wRKM3XHbM}5WV=*6155Fc>3;?zZ?Z7 z9K^J87!9kg-`{;#3>`%9wK9OiA^uDPrUb23zrM`87#F8l(e;q@+Lffgb>6(szet$B z?j_3RL{51n%u|*uANic94(XU!g(eGJkx-G^#Rgnt`Fi9*CxFAg;ciN&OF6`Xpuo%w zO1c{dpvWli>3#W=Jfr+7L3yTxU3fmw7Z{$@$ES*d6%BFt0+WMiSPtnH+z<#G zMc}8ZD#*nEA`gr4X=TI>f0JO3@=|$QcH)tSvj1X+YiVCwS|Bt7;Kb|7YClJ1QPc+NdcoW&G@FSfX@qjdtbz5 zIIJD~JMrME@Lq^JH^E8MGgcFdnmL^u@pGK@Cqe|vQQ(!a8I{`m< z1~NaMzAn57N`(Q@Gz>2YB1Hd1f=XwA51eR8=+z-aUIG>gx3OjFvb#IiX)E=Vw-dIfvE+A@DvYAcIRHXHo=rvuMqmXy*fo2IU0b zH+78G+bQpdZ@=7thv?Y!rpCxWdU6FL^QtO(vYRvST2OQ;c{3|W zY-WsKQL&tXKTFh=N>LS)wQ|Yt1oQo^Y|$eRxW&Zp8|q2|Kzr0p1v@J5)7-twEF&IY zbXNZ3+zGt+vlvY0f7n~bP9^>A2{m;YJL?~pz8>X^F^|X^=DsbkvK&?KBc;PMlRs8Z z8FTICV%0dW1pA*A6xK3-?mf^Ps(#`sn8?3(wDw-ze#AKXz4_k-ZiJ=OYk1tZ7MiV5^6` zPI?X(#;KRm4t5OM^!{9$`jJ7Elkk!y^U$`5=l$9qyzg)hfsetB?#JR1%q75jF5I15 zrgn89YC{1=)va_#t7O~B2C94gTRFiRJ9!a?HD>*XWS@Uj5szLf>gD-+&0dV+?FsxV zu)i>jPHM?u$<+y2_;n4@xrGrHEl+%ygPo76q)(AQ|4$vot0st;;@x+)S8H9D#W?>I zDZNiD0OmE8AqX3>-%jKpG_{%4Mf`&PF=H*SFI_JCJ1$rFapFKI^B}shce9XrJ-4I6 zxuWOs7RZ0ByOW7ygh3baY$@YE?6`-MrS5a((XY*qaFRBdK_?Z4TV@X5tj(62|N849 zB0qSJv0hH1?H9>fF;N$Ee21j=w=99wDEjAVF*}r~&7ejNVkVlw7zD3Vy>fk2L8wEO zQ;J!5s;!$VPAd7RGF-!G#I$3jxK28=>-v9EAMA9J1j`OhrJ4eHWI}hQU<30oe@{$n z0k+LA;1D3Xo57w%^M1%qvkVh9#;5aw^^7c^j@(%eyxT@F>aMjTNdd^Y_FXoVOp#6; zpM1j7=9(0VnXf$#m2>DJ3O=Y;Cah;P*{0o5P*apQv~I z5df^ph+0XX0oPuy4H80rZPp0%U|l?izMWW|1daR&7q}PxK#M5^mbJUk^^{=-+pzYL z6)>ByR#j;YBdTE6o5AGFY(Lkfxxb;WO&zvgK0Eprf4Umt9xyZTzF2tOcVWMC!cnhk zFW|5@lhKinC))72N}0$VI8mba`0{W2fe96l2OD9dH>S&2j|3lUX3_96)CNeaMwZCH zaiDlsat2@D<0lAb0NJJ~Qc=*m zgzaWim-ho+UpK2CluBfoPIz7>KX}rka&yk;wuyPBoX13o?%y6!v9d;l8sr`J+G27n z`dn2SeeaZeR&I8>hrOfsO3lOGO%TYvxOCZF=Jw;2+Z`22@3^Wqe2mF@>zH?|l$~khWq=k!$<^i`397*S?^#9$ z53Rx(jGKxSbYIpwoi7*o5(Ks?6iox=8(YW>{XoQr4ZanqRWR>iz$|n6h2KBD7HsY? zE${JF{G{XsxT&@-3~KJj7&K|6t8W_Vcvx^X$CezB)ve5!M=J>Z4rq7epiF*to%~pJ zU0%xAMK04I66g=qjWHt{{C+xAQOf>JlzGPf2F;b2OIGrB3Zl6DI_;oMK_RK~dYB;8 zfdqUZ1t--}-^yA?fIIwJ+@9l!BqK}b{M{{n#`@+u(-?|hy0cCfd_uJngOw9|-TgH0 zjTQaLRKZ450IwgyN%WIO06&Vqk|7lMUrLe_p|||fyUj{drtA1`)%g68ExO_4BrIQO z_7=RJ8|S~Y9u>#Vvsuk)EQ>R;lq*ed0#w9Q=f8`S?k4G^3oKgQ%jtZ8ej+lz^qbjv zt`AvmzjP0$5PF)a(iX4~04sckjp)a&otR8%ZXT-DL&ckuSq zboXquOkJ_AvQR+LQF#37HoF_iT`6hFD87QCowQoCO{(m?jO?g*gdqEJxX6{CZBz__ zoSHI4x=BIl4iu3;xO?wEqE*gF;xSE#P~hK{Yhf zSozP;YwvzP=$f!?qaHM(d$X<6TrumQS69^nXw=6bL!10gdK%89p3C)az2Lddm6;F- zJQzXM{KVH*8Bt5vneLYY^*oL3zse-j_?tR4_c1%+3HSk~K#SfCb@-tLJW7h+1r+_7 zMEl80jy>g1V51=A=kMG=7!-yq|5KBkDtjM@NwxK#Hqb@MJXwq~kj z8x%1CI37poNIb2C5`|z8uix|0cMj;}$(b&NXyW2i-CA;LoXipZuE@Z$bk9qjP$cJ5 zxPsRF#j$FJw!>7?#_3+52#JOEi7ta5Kl(7n1)>5g)cQqw8i!fd9^a>JnU7ZL=xm03 z6Z`ZEc~q$Hu6zB{bl%qt?%LI+(}ndC5^WZe$V6brutw~ip&72t5=T=_QCY@iT%#!zPFb=f;E3-@tmH%q zBt#6&nS*1GUUObnoB8;J=Qr^zg(tI<;vZsN-zOFx$5k#m4&8&5#qTKW;inJ?FbB#J z2>Pmlb-7iVYJ(%aw|R1zeqknb)D-8wg5J!`LV8P>r&|>DL+|uovn9LQ7xmC)l~hsc zK)_H6c>`;gg(!K*SFa-Hu5Vl%cPU)Faw`}tu-0&#dwcBpBgXlGF0W_X88TzIShUIz za{`dNJVL$$bH<>CW*}@!nQ)2n7Ykc$o4O5pKLN3`ZK(iX z56TVw`;Y26=iXF2Nb8wWF-?<0j*INgX- zixAF*K zSX8^zDv==dGu)cN@z*_Meu&!KA?qH8-W;pRkLwyoBnn)~7*vK}5TUn&}Iat}gv<+k;W?D!nrQvGl5 z{O*6zqDxO`!m>a9{#vBnO7V|(9#JuYVb9V?WSO&{+HLSZQ1NS~1(TeJ%|uB|J0_7g zuVEDry^=QCr66E1`r|7LjrzSyE1u(x>sMEzV(o@=0MyP6`6cZ-FuboGVb!~Ng*z1G z0!INiT*ld-*aVL6I-$h}yYLh_FNcP@@3jfA)M2ir3GRDZKu=TZ(P+CTuJvg8xQoIz z{UJ;HE=D$XJ%0Rycml}S5Fn_*W*0n2sjl~EkwBnl_Twx`{<24`r2#0J09^vA}^}y&R&IpIf)h9@LP+jJrvO8-~3o{QP(h zrF6+eu47jImZcF1Pn${*JqGCWzW^-+^`k`TJ!SgDjLFzq)tSV1u_)Q5P_qo@He1L#he zUwG5D3u#d^7_uw~xjqflVk>c!J67Xa$;oB1nWLX#7X6MNaXFJC$te=Xt9S!~bK7O= z&tBuy$b(Deztzq8x#LoZmb%8yyK_S2Iaj9>dgH~NOVxQ818nlV)KhsZrl34M|NS`6xj-=uH zk*rHOfCuVtAbORsYWyi$xK@lq)=8K)WK_jwxYyRgj)&R$o%zEoWzDQxlF+~xkkM~& zhOxG1^B%a5bz;DvF)WN`+iN3Is<>vK^E8AAhE=gTJS9_36F5()UE~ zSY9UXNtt_t1Xq$$W%XuI>i|%pl{y-YF+~?Dn`#Sbs(8979B&^zqVBO0B5(sG1MjC{ zU#;#`j6XFmnDzR4m)_&QRa$!B6bO23bXFc?Y#Y|zo4oC#b)wEjeSfGrAY)8N`%t8Q zxO&KYIU0b?VZ8{pzjF|7YzBh9#^&v=3(`qCQqKH`RJ1Oz7gF!x4~Ef@ z%;moq5ejz#GQM@*2I^k=>V1zii`(O|kl#x01{275u3qMD*$Px+Zo|%_geKUhnUiDX zBg*YA8wa8$WsTh=dp!*mgR<9+Ofzba+L%FuL(LvaPUtpK8~l#WW>{7fEE@eBjYQN%viF6i-P|&={!xj=r*<+KCyH$< z!fk0`^sYqvxGL+<6hYib_BEirMvAk)T=B<`6JAAbmxq_7+g@~PoGOa6IxQA-&c--T z9xFHhqgpU~Mp_;^FV$sx=PsM6nhzH_TQ5bN^JQlf%sX0XurcF1x8K;CS(g8j79>jS zXY*+?oOzz~ueJonC)0{;)@IX62|`*lm9hf1kB@coTirZw?qU|8a-Kh-LspkiIF}*q zDqSYW8`Eizs%;3I!Tuhj`VGC$tgb=tbYV94u(Ic{m4Li6@$4mvMe)`v=R z5;@xXWF<;q23icdX#H{jsCp*+;y#4XWRFX5{+uWql>PEH*4^55q}fh&qlEsO;gD!! zYOD$PpiJP*o6e0*f6#p(PEW%?hjKg(gFX9Mk3IOFx9vjbW|y};{gorWisO#nxhO?- zW^8~%wK4Wr;@#Gl=b|!0GBMioi5p~dr2@j~&rBeLsjb{a>5%c4BLa*HZ5V( zjkgN-+D0BI@ykIr1S0taZWpfH*|$X|LXUUdn|XO8nWl$Di(mVU?MnU5_QuxtS~IH8 zfn@#GmuA0pc0zftFAW81h%BY-p36D#M9U5#*TCQ_yQ-^8gnm#A9U|Z9z+_O!Ow64e3y?mcd%=% z|F^Z<9ED7Ft=(|`B{{SRkl5G+_=mCp3gXt_#%SR>I*u!%bKlY5_f#pCU6;U)ov{c! zWL#eI8|@xn98mp{qa3z3!W%3inEN64mWG60cwT3ND*0p=BS{>v7OIl%){U(8qimOg z_y$c5%8cuQ&E-noOQ;g$iNpKYG7@b*ic|?e-WrqZ2A^wCv}|h1E&}5%173<>WPMGgg^A*C5f{buRfh~7nGdN{9HDzRp3F}%}uv5pyladxn@dT9>zI1i9(!J9s zG#~s)=IHZylY0Z3$>)-rk)FDxc_k#DbH0xgkXSl%0gjgB(F z`Jdhpm$15aDsN*+xhl-XLxhgs6F zl1*_fH_As@3gwC7?o#@wZErit{9S7~q3NhKvOMI1dd z4e;kY#0qp-Gg>%W^MV8&xelfmWCQ8u9B_fxEM!(^ZfZa6t9&yv{A1davKKV_k1Aal zq8-}S`(5;B5sJgt~8`23?TK9o+^cq*XFC z^_Rq;7#5TGRihzKI*8DI{@Tg%M!;eFFlRm?3C$_Bzoa6e+cg)IRQ=KjG$UKj)KmGC z1FjV58ks@&J(vawJTG)|boo^q77OLe9$W59=22zo`f1TszIG?H#rF7s@S3H&Mn8a3 zNpqD%HCuYlPlCq1PhUf?8KY9Sh6`ok3zbad9k*YqXZYX8s`s(GYEx!=wL|p=qxoG= z?BXzQVzlmw6uykE5FymfbPh2&Aq_!3zAlV2JeXPAc#J_Fvz6 z)I=8BJ|DwX6=Vy}@x(u64jSm|6kYV})%7qXKL0D3m>@JEtC7e3T>Ocm#2@A?l2PDu zvpg|pd)S8^8D_4>Hvg?&YZ3Kd`SRCrFF<6E?CX)gtZ%vv6hn2WF4oK;B( z+1iX&ki`0O^mC;>(gNkqv&f=`t>rmF4d<1>2%067tvs@OI-|-TxXLS{k@7lS$3^nk zViHqTJ1L1D3ZJIQ7lq%a7R?PNzSMu&9kg#@t12lh12iK~r{R6;Hy{)-u`bNkfb5wL z9)!Rhd@k|x2~v29yPo7}>waeNoqkeH-j=BHN#<2w#|ZG4%+G&m{}W<%cD z_sWql4zH1Mw!HC4XClJE(PNsQ3A|DOu1sa;zYXEHBR=)x`$IXl!0wQvyXq?7nB;{J zk+z-3p8_jNMFU^HC?G>n=(r>vB(LlWIiu;3%~24@&X*_!NR_JX_L-gd!&TXF*SV#b z=KqU2>#(}3Te0K*viYI^L;fY6%>y=2N7H@GeIt`s#~y#J6t15a@T!!VECm$6TR9kZWSidJy#ZU80+JJ72A5j1aG0w>pyvgF#xlL(ZnT8$m?3 z8~JzBvIVdqFsI`~Td@w7-z^{@oHMe}o_)Ta_X~96Oa7%hU;EF)+(!`NNdDbFXW3~0 zD*T<37PVofMM`Z!TNCb!e5J5B886?0tz^Tf~A`>3@QZKK+4JBTuyLNRx|H6A4}d1jQZ(*^Wfdf43hLQ$Oj{@uyil(i5$}1e>7}qA*Vcc=3{5fuF(CCJdi~)QJ~l_N+iL+;pEJm-Rv)l1 z6IVUpZbc5FL{zH*JciJoZNJ>u_8ItCnsSvg0=^2pyKD&oK7$Zp%7O{smFe{-!j)L^ zrh{|tY1E-M;-Tp2)rW)pJWLjEzUrsd33HuU7uapvjOE4lpb^!j4LO^r#hlMx)Tr@#LT_A<#%@Ke9(Rp^I*FpzPlC(1Qw{ zjFwz>wNop=!M~O=G*V}jxS?}mEl6}Bz~T?n=;qktAiQokFd7l|9dP`e=%U=nFptj3N?}_)`}C#9qb7bv?$6dDbpLPF*2mf+ zq@C&g&T2B>)~Y!`DAj>&N_r~E)gUJRuT~6^70`PS`PxN~%XXIzo!xI{e9{c#-Rm+V^@G<_033ek0)e+BoMQR$i0TQ|7g*2U3*E??ez$j8yMYdu5?Cc= zc)OdZa2JfbUv``jtRQFcNKD z`Sr1ZNfStdxJ^UNNUz$~V~&4RA7%zRA0TQBcgjBmS@>si4;nUt#}44%Yhm-W_%L#c zlnVq*^d|l1G|JHK6^CGL<^NmT{UtUgwW;ok7k$dr`1)4HnHl{O<$!(%oA%@@^s&)? zre@XyXF#pi0hfAYD;-ejN&m4G+f$qEH_?$+>iE6XHO08<%aqWwGxI5n>l|AE{B5M) zS`gnK*>32o^UzwL>kc`BB1suo68?^1ATgV-8n)70R^w@d$qs-8<4sMj3b&_@ZX%( z_Z(`GICZsDK;j`O$xgPYaFqU5{1CL(8|<-R@Hqu-(`^CNilsNYG2w+^lQ76*^r;wE_Z@_gAhTRUzlay>jI zy^?+nIXO>mMis2s0d8fip;W|jm38k4kW*#?k(hzVpj`|)<^=h;2oVxR=`SbaPlygT z``Te%yLaMmC~>^@EAbM2kHtq<8)UYgO{RpsM%3n?A95^-Va$AX0(|%Ni0sfF>w5Mt zvTpou`d!>z%WrFobZ4=k-W*DN)$bQ%XIlTv`&cNEuOo}CPBKnO|-t~G-F5VJ!mSYKX3{Q{Z54r7d_uhveC=6CVPR{X`=Zgi3yV_KaZA*EcJQyvCjNE+NtxNw_29? zqv=r7`0zKQj*9=N^qb>IlD5$WT3M871m#t0pceLnDu}NJzm`rKO=*><48d3^jOxD# zPTl{g7~D!XTWb?6B{w>xJ>80)vr0cI8*cDB$N?XZi+G>*YMwoqUAQH5te?bGW5K}el*|=Sn;U48412hHM|~-T@h}VJC*&sH%b=xpxaIjw zyz9NuDmT7mLa-`XuRHhI6<~84SdK2jmvc4LYLJ-fi?;OowmX)l zVZP@X%iW`ZFTEq}*+P5y{FceX(ATo}*rrXHzZv$)sKof%b$b+#lr9u&9sD`52`kV{ zGhBsP!d9Tv$$-iL(V72*H4z{>r5X>G4Rxh$!Am2)B`4=opI1?uMHqX%0!NSE;&NtH zE$VK%yC=#Bx^|52*MYi!RJ0O8lbcCXwbnPtN$|8w3!0*^GAqzg{C~V^N~I!S6ITI% z(P|)5Dlz~JSVqV)5D9}hfWyZc?afX|H>OWtU#qv~>FSXj8Ak7T(9p*vj0EaSvkpqez*fy3pD*o^r{{?KLqdkY$=4*Sy<$LMD_bKBM6kiF^32G3zoW(Ta?YkcC{p!ZOY}5%W?++AeA6Ffb|f_#@=`Zp?UVdAit?zq-1_fs_64 z);YE6TeWZ0vw9IutEB3TwErcxj869W-9RnB6B=d(mI^7Oi(fObfa>Ki23$214*{^R zkRU?Gk_x?}bgn zS2CvIc6@-kjf`j&2Iv9o>$1DVm6V>*@B&R-a?+jTvo@$iMBh|RL&)dNzx`nj>|*hP zL65mpSf@t063?wRWeZmy4h)ptw~{LUdk#LbOCkjTarL@i8d>YZV2ijC4>i9?8smn~=STMsQ>2`ytm9j5cRpBV)=^|v}QS&Vu&FW^Z(52nI!Nd8n z?Y~){fxzk|9HN8&mP2FxzR>D#AU#5~HGQv@kDRT_Z6ndWlnFoenIl)lVjj~Bh0^p) zAY|W~T)RKh-cNjF@&;N7TQA5Si)urA@?|8MtWsczqIp6uUbJOKu1R;UfI_p0d-ehw z5rr&!v0#=Teb)kLGJ9Qpdu&kHu*lX%Hxa_P&nL_CS0;DVOoXGoHze-}09sDJ-I%Wd`uYLO6jABx9u zoLDPdEH}~T|3&&6Wm?Q%61rX|tuA^UC2XI|uvs%gC#tg?mhk9=q_Y5<-caCY%ZL_9QWesGJKjKDkQU*biQ}DSx0VM}H zetIhn1W0Dk-;t*6e5`j!wYaAEbZX>e)9Hx;oUvvs_VJX>VubJ5eUPd!S2~Z2l z5W9Q{q)Gx2qLC!QnSB7IEiaQ$|LVo7HYI+VPFtAsTU~43`S4bDj$!Te>P-pY{nW?}mAmZ?lcazWlLX~am&2ITv~rM8j#R6O3pRP=D{&#QCN z-*j74g1vGtQ$6klYN>c*FTE9;U3nkOtjI~0c^v#Uis}_>|L)^1=Ucy5=h9e1NAn*l z|52d{R+9C)#BfD0$RYTF$oHq09ykU+rFJy?oV}ivgpk&#gfxFr^ZSJ^Y?7WT{B3bL z&i7W(%RC=YNEn?*-2J8YitNXn)M*y&Wx;nIssHa!e#mic#P8SE75iQR{;&ruS7Ka9 z+f?^JEe@YC)^+ebBmVsq^u9vp8H`s|7cDy>=-{$nQxfRExA}wo*Dm}q=idNHo=c;g z8+AEmEauH_gooKm21#Sb%K#t$UWyjNN?u2XZ}&uo_z%=?z)rM2vRCmro*0VOds66O^vEp zH8{;*_AUNi9eUUD`$mqkqThsTZaoRLLNVtn<0$rM#)DGGAut?HAoebN8=9vd5h1YsKQG6JdtMkja3>PM>{PSl@}J$8>@sAE!FH%^R0R>gr(S zP0ajSCi*S=e!FF!XD`fY*vXI(wvzb_z1Z4f_b#s&aK%}sn@rQBk4y;tu8C9Jn7^E2 z>$ddmX9UQ4fJTWg{AN_Ph+h7@hlX!8EWXpMsYJ2;5$p1@%VBZ7g2BW{9M;z74@3f=uK@5c+KyzPfG@I?~CgPp~Lcb~bIoqarJ`qY_d zB$%{o_0fiNs`sA3qR@8nG(|mLrKdC(55vkccLGV9@cne+W6IRD8T;Ng4mj(d|88yx zpWVj0Z8$W#wWjmJ~s|GQc#lKfxToLCBT%E~s{9HG+$PC4iOp*aylrnG>OLu9(? zW>er+dYJ$#u-F1g5#FsJqKv=wQWBQ9X28|RwbwG=-4tJQ$Dl2UA6qT&EiY!anCzhX zPKEZ?>OjUg1`_Ktv_hEo-x_$#@{MM<6~r=Q)sFHri>EoNR|KIzPVotgJ8OZqV*g8Q zak+yWb2-*z--9Rvd20kfqE}XRBMxn0P0lmBEDQL*!qcN@V=N)cn#HtV_Rz+}{AI4? z*sB|^dJ$^C(lLFzNhv=XMehZ#>HK7Td&u?i>+2fl>Q|1-LLh zsVSpK{}riFYMm)a5PefSs7$nU8p^i-db^nan}d3QU-X-52XvjKaFh`#afg5+@Q**@ z;_%8%Um)26z`-4e!Nku9OnIIVzTRV%{^J`&S7UR`zV9b0yHCBTw{B3y-0PvHy1Bc) zR;8s4hlXy~_hpr2uK+viUM=`*t7=@Yi3Hxsc^JY}G48S^prGk3 z6D}uY`rErh)^}xTZ;K^BI&1yf1y|C>bw0TaLJOkG8dY;BH+caKc4Qi&Em|Gx8zm|3 zm8nVjN2NXEEPly69Ysji^>8h@n>qg~-o?K6)(vU_(I7g+>?mK3Tx}Xm7O`@sbWCHI z^9BEHXP>~=V2cxbOn8UpRSpW+LAyyoK+}ybVPO?%JN|Q{Z<)Gg=~%yt4}YCx`0?2) z$XOL9llZRoY}@G{m6e^g=m{35k1)F6;{`4^pCUSw)!f(}Q|4-i@!8}Y58I#sSElm1 z;>h(C@$%xr;>%xu-Mnfq{hR1r$+x4WB?hyeS~lnoQ@DTjXyzrh%cpanEBMyp(_8*X z(L7&?y8(vSZ6|>Y0vZQX`=d$&Y^J4VkSqv$nPQXrrKhs*G;f^`e91~uga~Q8XPF;^ zGsomtkRlyZSAp1-7O5U-?bRC+x~aZJ{oL}S8HsP3&xBhn%)C;>_Wa)jYA>9-QE0lR z0l{1>%sbD|&3JNYv{S)M*4Hekf+)1!KDE&(JzsrIT;MiFBi&i^b?}?CQ;!{jZLvlT zX*&5~*rG|$XidR5 z)oZyeo50n+&3fXIGK&SGrSb^29}m3uZvoX~!J?ncisb@@1G_Q7GB=NqdfjRjszxo} z7vPb~!B;X~9)9`3SuwD3Fc84;I|ebupf_at|)whs)Fd`!aM0i&4LMSdg`01qthu7?B zuROmm*df=gTxD2R`QBuF^OiQ)EDWkA%FY1_%38)Kc8buzE%5G7BrRidL}i$7!(PLv zd^P!09F<%ZHXcRWxz(ibh7ZVNu3DS{r+gVMLm-5iEh z=(UueK3a$Q=ItW!ra!XUv}>gQQF+f*>xJ^xohogr)!|XuTOidjxgdj%tvWWa>pv>Z za3lFR?tmf@_YnmjRpvLC`y+-ei`MZON`|L@NE^WQC~M`wtrMQX*2qkcYBsr ztmc~qk@$>P#R|dPsKw!c27#perf2hO9;=6fxyf}P1%fW|KYNe}Au_PolAu40nSv;- zH#@iM&aG$MFf|a^oaaG2So1oxezh~8cP8t)`2+VUh8_5)bU?HS(#0ehTrED#)1mMV zTjd~YUG9-eH{Tn`XUf}9xJSkm$h2K0)2l?@-5RSWUr`VIhFT=WOs+ZNw9YTj%rl&zU=&><`MfuPScNj>9#E$ zJg#kh4lLfI!{e=;ce-D9_PowWa9QM+?%@!(67^cwk?0oAY;=qx;(r4V1q`dzrMwgq zKPpr^XL-G{?sjGDhct`N@nHwUeK%>^ktPawZ}+N173&RndY?2$l;ZEFj&t)TsME>w z!FFrfW-yN78D*;Fx4AhG|C{VLrk9FgQWS7l!Kf*=@!vl|vSr;$mP~iURL>wich*yl zJErT^W>x_igKu23M!_&|hh-|?T`naWmDMvkCF(7w_3St#f25^9zs|V**$Ob#wXUdk6M3GYH;9}4Ktby7 zR)c298I(uRK`vBhEG-(@frw(%z8;(Rq+okGt#nCyJ5F$}X>5uX^nm8|lkzPU6@g9Z zAI{E>n%*|8jm`nri>@_SMoQQjOK0_p@S+%S<%#LWs*B1zx?MpaTI9{02a9cSvF{#u z#b3ET&B1@b?BeM&*|0~&e)Fi6C2vRHB=vAPuMcmPBBHX0IX1TUL8t^1dS)*<|HZX zV}c7>EBadnA)?DYQZBv1sLxL#;A!5IPHV%J}!Vnu2H4ZE~%eXDiQx43BR@`eckMbw8}CNQj;2bxR^;?yJW)FxcTqQWQk zO+IOkaNqtt@M0n(8HN`d?y)<`G5D*eV-P4*LQElD+X&#e#oqn?9#M0-si0*&dkw|} z6^Bm2_)dsLBu~tsb(j?$ZFHuTMl-FiIE1%e!TAX%b<$Oa3p)$M-@kFv%0Di$dbsC+ z5f8K`ZUnMa`m32usWu|&i!V;jVb(Gut^AIytbgRVhpF*q1Z%zqP?r{*1@OsN$5ymw z=0P+h{Zvfs6~Xt*Dp`6nr$k2*QgVq7X%W({k+Rb$q4^H?N|Xr zTz)oREv}?{hEF*4l3z{V=lY4Vbk(bo9;lt!Q4gz9zkqzkaO?zELlQv z9M_ke#Bsybdif)m%%8PttaYap{lX4Nc=BYC`BmJBv%}3!4!-9$j{oswDc=)r>5Xbz zuSl8;HR(IA{XFcMI#HFR@ptiXrbH27uHZ|8xaL6{BA9Sx^lRmnZjgXl$RD1!H4bNa z6x1S;X;YEZVbS2Ng4{@sKlcS?@u(!N%aZe5Ohr(F-YLT;QV>V`%9Gq6aEMaKnzaC!a0dZJkh6`Zb$b5%e>!S@be__76k)R&d(5_r15<#NiiG z@f+{9Y-B_iYA~B3$998YW|aLrJX(1dxp#`aaM8RLrHJTi{V%r6S&i!{CkyE)PB-5j zY9$sP?(yUO&Onx>ZaQ&%Tx@jc%*mZ%l#E_AQ7jvDBF0ba4)(2mU&$Pe61KEn<&Qp8 zRsR$r?J)L_DrXx{8N7Y8YykJL)QS+DLDUYFD8sA9#nvZRA+}nyFa8WX*hz$?`-2hB zrXaK{zJB5HIa~eowRxdy=1*>Rv)p_Ili_2N{+v1V_*8CtrYvQ>oTuo8*q)!)y^nu8 z3U@U1UFYg|KJh&uY-0`D=05+a$<*BKh2AkZ+RD1s^-bW`_!6Vdm6-uk@Dl5ajbFD; zPWG2C8AKr%fp%l;q`~)cpdu0CHTho?@Zqkj8k9f*7b}Y_%^^es`4&Ddzs6_d#x`oZu*C7B#p>E+yPCymDN~9 z`;r~s*#nW~V5)_>NUT5`J4k#w=W(@_*_E}Nvxk;1m0`axUvT+3o`bII#F?ni8}3Xu zo)1UW((Q8V&TmXj-GmM72l~H&HYQI1a#vQ6&|x&jF7{StfzqHKtdn{$_PposM^zN% z(SFp))`!1!4q~gtN9yNy3i=0OjlJI^M~^JBXlzefa`$ng)@jz*-W-S$!2rE{b&IWz z!tm!;Wt_jr!+~gGzx>e7m6uT8)hh`BCV$rcLa#{V-5U$h*4UldIJ4`wYbdu(pNs)Q zh%hzVFhT2Sh#eM*ez9f(D3DCuoau^ty46!ZtqO#NLEr1PQny%vmD*PBPHE&4T`6ng z$nfJ=BYH_3@+l_2tmQ3mK;wKIj7@M%0!l+-a--f#N!j4$XCd^^X{gk=9IHF$P`UJ9 zJzVofeot1A?;RFbRk9(CliAM^4q6g@RmJ+r%E+4Jti4A8RhBTk(zr7d$pu&46M%rr z{rK*lV(P;dFR#wjR&dFG%MZ^w5!$z9Tv`zGy^w?_#;LloU>=-S1qvM=?Ush>b{v4f<<*-qNR21dWf{^%(pDIlwhIE_UQUFS+K z(LY8UYZ-(<>{4wUi)Hom=)I!qpG{VJfJ(hwq+TU&cz^44adNxl`<4c+_vz(o1*RoZ zC-#PwzJ|aiT9-Md=$8v%;Rdp-K^!Cze-jKG?p!K$sbfpopMCDT!r7|_b+hn-w5_0$ zO&m!txFfLA*X?57_l#d7#Xa068Zu!~NomYrDI;CQBo-~SLQJceAJG`68zqEushOTJTgSa;duZ!P_ex`~Fe2j{ z^(zww)(?u1lshF>d3O5M#!WuJV*dha>)w0&y=U|2?AXtuKbFblay-}xU?9F;WJTim zTy8G6Th9$8v+XqC?$j=gJ!8`hMOH#%ch^dRdr)(JY z0{9xKlPNC$=e~wk(vH3^z^Pc;0a&_z1=w#_35=K(E7*ZkVD;pH4F0)qZWa#(VH||K zHuL4M0O29>ws&MY|JiWyvHFw{ZwYvJ!vvqn-pWhYf-7%<{Gx?NK>3r{e`yt4zVpX_ zeV_4Q>et~ur_AuZM~^~aGe6_~$|>x3t;4g}2FT;yTBNwupB!bze5ENkPAQpA)VVtf z8UKFNd|FlAeF+wJVhNg_yDuf><}9cESnFm_Xn0KZrRIj`7H0ubHMZIi?fMCA9RNxW z-B_;D5b_zhg0HTcp@>7S0QihCEw_r?wCs-`OZi2RkEZc-22VFfU$=kwKZ?%6ugSLy zy%|=eoX^@hcyT{8%@OCUc?pcF=`d}{G3lx0aIY0TrJZ2r$he^PQ)>7dFbP`lS`Ty z$K%OtK|AZ2xZN7yw#9K7!C(IeVs$X53KoUk{qB?v!Kn8d#vcCdXl<%(^&X;hxteAv zHM?W(UZ7dqggxilu02H@{y0JlH+(kBk* z*;{WWHb5he?MVDS-7l;0p`m-R1>cu$pDLY31n{oM{8FX!c~qkom`*uKb8K&`prYv( zRokKpT7Yi|iuAo(+*V)QuY=B%tU!4Fqj-m&Z8^=sO=WNPB165a9r1H&&MF4^iZxSW z^Y-0hL+~ozPnhsJA9wxC1_Mzrgga!MX`*H-U^1l%9A~x|9Pvqk;^%)9?omcXHO(XhYJ1bEEZG*+7gZ#VpWg@WNNtxnz>fk* z0%qdiALP47qi#E*X-KwR4-0S&J<8TL!@@V|s>~lT{*qFY{+V@F>}4(CgIc}xIA28GeBDksP)Y_s-+7 zyZ&X?Y4oD!L+a6t`C!KMx$DjuNS#hwJ^GX$y4dXMb@U&Fa*i_Ab>8|k@iHC$!WRG} zbUuaHz0I3gMJEV>1xd1Bm$&r6r#Cjg1Udz}Bf>$8DEH70G;Uf>BG4-AbcbHAVPf~_ zQcJU+^0}v7JxP(!hRa)x>z-9{!&zh160xd}2Ci|p-NU{7v+*4J9D{YWqnI%*;T#dl zvH5v|8!nBnIa0}69VIbOoWclGSbMU--!1ti8hkCohAC{dBUN2zl0Q+Aj%>*UCEOl3 zDKcQt$@f-z)Kn=!m*hIkHwuhHDOOvx@DgMi2^?*gKJ40QC=Q%SRD&zr325n2(ysMh zy4O%=a6}trce%K^f0P)c3xUXPii&oQ?+~6vER~zSn zjM>D@Q1iqj8PhoED;i$H$fKWY#v2+g%X!pavj{(fDqp0V3?62ULtEg9d-d&^kmNW7 zPCf#N8Sv<^#-ch$`Rtb-;U@F4{kzW4_L02H-AbSD*M9^xN!`7esrbKkDMHx!a1hu< zH$&o&6iA7@UtIKK#<$Uy{gH58;0%2ru@e$k7v-@Hofc4if&rdxxlaskx1!koYgpt_ z_oz$0`lEq?J0g5*GdhCF23Zx=e3Vi>`fde~K(XBmKh?20$etw8pWJ0i-|e7%81Jk2Yjo*aQ9j%g3redyP;HucXa4n_ z_jnGuDIkK4jgb0(NjFX{9Sd~zh-y&mi9|423SO1kZKw2tm~cz{W31k{GukhsixmP- zFZ!PqhB?XW&RSWOs{cQ}OcEd>xQxc2YuL&h0K)6TqE3n3OuB%S32f?@T&H2K1Bv+i zcyY_g;}J^eO8I4hriUYR=4A6Mn?bDGYU>Cih}drvINT4Q6l(zJXDH0KDuhvNRM;0hS}EWn8a*tCG7VS6z(AEVntFauO@5Np-(QoR3qQ^Dh)hi2N8W;kIbZd z5cY^jXia#u7Xj{pz!Cc()uVgT1s3z%)V0n}$}41(9fF3OQC2&twqy^V@1`H_O{Y6NJbuEk`B=lAH$FKPW*$V7F(cMH7V<$&cS%2W z)TCzn(?;4yBSm#aZJ8|V(qnQR_)`>_`W!!cYJ?AlZIY=o@gM)~ctO$waL7J`x|#3; zHFsk{cgv|bibsmPnLH*%`i4c?M-G>Ppw#$5I;)=AD&d3kl(^01BQP~y@Kn7=A`X17 znJ|=L7j&XNU1Xs~FQ?WtfoXrcaTKie*_(ajK0jaG?pV@4{iu}Yz$>O=oqaLOn}3et z;`~sd?Of#-A9C7L54(N2hc4a_&Gq~K&2uP`Ld|%ApRiQxj`9!J;$pFayaaf zac=Iy72}|k_F;EzSsPh8OAfS~dcOtMdG&0gS`Og|Wg|TT=zhme$l176St3kCpGi9a zSGw_bZ|&zK8^wbhC#w0~^7~IEJ?sfqx7MTaW-E^-a=$t;>P*xpm=?DCm3bq4lO2D< z5bgz2r`vJV)3V4Li?Ezym~>ZJVfoSdw6Rif$W3{Q(r|sl2BK(37Cy1pYYa#Q^+T!u z{oU?BWl$$OG@X%VT8UbHTe()%)RfWF^*K!+@~{ZnDw+7l3-vuO<=twj$qCq%F$=q% zcLq;A--n$=g%}VT^rRQk&DEZlZ-%|Q>1GKQma&e`Zh_Z=qizVJu4&h`oRfx}YLBc# z0ki#vSjqHBM(P{&{VX@ zGZ@O(rD1C-P_PaTx%}Bq9XMVyNR$j52hjsQa(aAEE@nEA8+N!zC%;m7&Gh$*x@S1S zE&O=Y^u!Q5{|Z-%k>oHe8%tgt*E-owAJ{=xhxa3Az57lX{*w1c`ylj{*=u-)4hcSs zn!mro@6Kp9!s}{&-oJkTmao`&QyIpn2?G>_w_E>wFg2zMVR;ebS`HFZfn^4nm+2(S zc6MzC#7cJHgSH7-WlpYDpfE`Ep1%^~{`?$O_y zI_U-KpGN(fjE>mDt+@Yc)BPx|?B5vb3aP&I545z4`8u$(vcC5-q1Dd}L4Y9RHt-Z;X}8j?SJQo?%g4HwES~m1TZrZ*hlo;YywdiK5n=hp~Q_%h<|oulGvT>&xiW zog?CiCeoqyFov)OfEJ^nW_?O*xuSs&aHRR~le@Ek3xbj0=tXh; z+f`npH=fFQs$U;8&lf!u2aweRaBm}%1g%AcLfyGE&BW=q%Upz&g(ZYGaIW5j?-5QV zhDQ#>0aq@n(XcIAe?C?52cD05Yk~?mURkHAJq0L9OQBk{Vg3Gp?HvAZ^`3`9wTI(a z0|zxcywSBNVAF_o3B|N&S=KQ-UcAy1TMmUgTuW>g8FWj!zIsp^l%ExX5v=rdIEZd@ZH62o!fkzFS!m{9=Hz&bDa6W~| ze(a5yl1x+F?)7g~+mdvbg|~01{L$z~tf1ao08+0d-^vsa*Ma&1^6(ge2~Y+7LVFP9 zu4f~hkOYCvo<#;NO*0U zUu`nFdlE;Mx@+JGGr|?1v!`o?0+JCjZAa+ zDTitE4+>8ME!7*p)JC7O?tw%E9AvJ=kM2AUrsP=RqR;^-3tSYhcrIRF2~v=uux_ZJ z;Mw?m%L8dj;UX1K^_WtD5=aEQ%dO5rVV$G>=yoMQ=%MP!xg{MbM{&nyGtNL~<$>hf zXXbwhoOP; z*^XA`blsF|dF;lNoj79b4uAO_+yTjk@$AXShOb^89lCQU7+x8^iUOvon-m`RA1pb=Jdy zUZW6$ww8myq8cO1=w*LyHl_L~1oi}{>G(7Ah{a>rG2xo%Yn308cP%^WACKxYyf+)r z);~@8vk|FZ`W;3_7BBoIiQ#=ZIY`z%l}>*9Mdg1joEVoVPUB_&m^8(wf-PyJ?rR0< zJl!)ARRu$xz7|gnlu9~3TcjDVbXA5Insde1{+cNfM36T#Q!{Mn<&S5zKST&_A7a|)M9p<*)$-s zgXgBVnOA~Y3ZF&wAW6qa_qm&946BaP$l#cT<-xJVtF1vs;}H8^V%Z6~+^eBoYzC}s z{^C2~mY760m>$=g_rjG8nKa%iZ}X-_{kEdC&aRd;@3=NU+s6co_16wdXRba|=$*Cr zyieU_lcvY&TR^2)J+;6IcIw`6Q0fo=$hkfl)7C$~&vHHyA=i+$cGOg@uzORad#Frt ziMLXRail=kL2P*?4u~nRVAv(!X_$GhU$}9#e5Z3EoL9Yy75iG_->4STI=d&l8_$eM z-axO)W$HIHH;;>Jiq^YS4Z8%srWWo)lf1zKYLP-d=ApYl%^fgq>}M5k{%%|9{=ff8r-5?A@z5Yod| z7dAI7nfjpLdx{6)v(@VX2u<^sQ@3^W5ak-n#&JSGbgDHF`9o+{KA_|+TE709sXW~85Cp zb6Jl9QuSuO&wq|r`z~8i^FXez(OX}h1tj1{P?5QlY&thU25pdrQf_|APH00{=#ELu zCU%ry8G<0ykY3qI*Jv%=M)&WD2bpJbhZT*{LnT?%Ttae^Yu_k%cj8CHus^0t4tDHZ zCs%saJa@($jQ9OE_XMo-;Ru3<;O-G-(O=K0CBRP^eOoSBBKi6wDjM0=Gm)dd;l$>L zZ$AjXw2d(nOr$Cb?-6}wYC70*3@w|OY<=<4Fn2e#7tvU^auCK=uN3Sk6adciz3;?2 zUFRPs_5AVGzVB{4nhI}HX()JgG`6z6sGMB|E?qZ1sU?-_qSKcgGQ?uja%>!FQEz$Z zh?h4$>6CA~_>33OIR3-C#z5=Zi!hMb4EYX*8!%zteHU3(umt1wMUaf%oY`V|7{5yv zXB1VY6fWYgBC(CYa}A|tlsP8onsP=Q`DiOF0}?cG?a__O;CEbNNl_cPOGP>_+g$76 zk9@T8V>Xy5W8a*N?ow|UKe<`c%+aLKK@G5nNMiL|l){j}h6)Tprh+vaX z;}D0?l7C~}eHVF02dmIMZT!(`KH&>*dsW%O&P7m@1w{R)u6Vz;!Gx8#F<7Z;u)$k) zN-asKh|39BAZMxqP&Ez@!!f==qBx=xQZ(a=!Eg4?P8hXWTGtE8o%X8~^ZxZzJrq%w zy|Ll@CacS!O-XZ%q^k>^t$`v>k!<8Uc!Bk$?C%8NA_v07zMWGW3y58M?rW!Cm7Vie z`H8~yubtj^u+7C!lYWZVEcUr>^0Jd8*QR<6-xOn3DoVA_UR_d7)DlGBX_?t~iL1Al4&HZVjIMeD&qKE<;NH0u?ylcIrRZf3BUF!JUa8IzLh`h zcZ?7AglJNb{=XjhHjM4LYyjWeR#G|ZywlY1LbpaSwEwS|NBxV1Ygd=Of;Ow}&qx>O zxVtQRshYAXI;hD*APC2P94Z9<3{Q(?-78NG*J`d3t$I;2*qAV<@!+vqcLU>15 zbnYUP-5&l5y%|rMWZHCsF@hZcNj^}f2DiT4wfD@x3Cii{zU4>fZ6bH3=JacKud={g z^ouo3s@|8D`#x%;(P_{ll!pD&7*GOoys>!0@9<9~h}<<(g~w=3d45&*pp zrH;eJQabw=v}0W85;NW?`n$k_X~;9(#=!JNma5uY0j+g>C&zIT#V65;VABFFjV(`q zxlH0mpj_~gmFE{>WtjgcdfK2X$ghGyHxrh2UKvkRzS0>fmODS~VA_>Z`Qff)Ro`vY zhk1~c>vah*j@{BdojS?kqiCF-F5$swKXg8>ClCaj1R@ta5T_o+{|65K$fgWp8E|$} zkd|rEFj^0l&e6+%l>;00ufis zaq5V0Fa=?Ar42~NevpapHg29~*Lxz7%DlCvuB>(ISh9UVG`&;BPPUEOpv)8=rzJ6* zE#ug^aZAg|fdEP|EvT|j*f+8WUH*PUcX4wZ#i*^BJv*;RyvQJf@I|qnF?>7Sa}3e4 z%4S+=Lmpe$y=bYst4S)Jf`v*m+Co#OF1It|lK0y;+y)ucyjTiYcbv75RP7Jcab?iS zf@zY9*A4W0up8PN+mVMqhqoC!pDD;!v{x1HM;H&btO( zoI^9!DgmfO@}v;)3(a>7%VWTV`==x8c+~1cgsKew#W-nIi@1v*$R_&^m#Uu zM{#mCunobC_`JqVKI*2iSSUzJc*@1-!Tp(FOL_lV?7}e$#2OYHseRaHJ_pg#6_(wA@eN5X+2CZa!EYxKg}ok%^ab~XV67|7q)13dx+gJ37PzR6hv)@$7< zK8Yf?e;?e}Tuc5KdvZMauTDqK?=ODa*3D>L$AUMc1|PTg1$R}?HGgNuXZm$~{o?X) z9Ovjoi4SnoxFTXIoV>;PJIpNF^3a5c<}U%_NrU1Y=awS8R!|X3tgRE3t`&2@e~wR& z?q>~sZnCYh<>fQaksF?4y&l7Arpo)VG_!OLMfzElDfIz?tFwXE0|(kEfws+6<%#^9 z7jS(oHUY%fA(xc|8-|mQ9pwS%k8df@EE^2s6j(~pe!6=ai^$Z~n$}UN)Sppnh4mq< zsU#-U9*Ag09)VJ?MRgdP4v$8)zG(wS`f3xgm4qCgT6Rs-BoVF3|wx8cFkeBXk5gr z-lo)|=BwzO=a zjAy$nNLGaG)#6u>nXdjLNz; z@$E{rgMJB>*s`|e11OJMKyr^DE_IjqW3*Iz6%?VAJQL-W)I8TPH+#ecS>z{uTl+zm zBb`Md@{xhzJtiUvkD41cd+U5?#xtABX0?rZuS=24p}eRba8Xl)M@7JyaoZze2L0p* zwc{A$A;y>I$sIhRZqYS}4mFXPKHE2R_3|YGAPE9x=$C;S^9|S8-oeqLC66UOLLJ@= zYjN2gj+5_{w3kcR{xwD@>W#+)SN|wecOKcNcxU!$Gs`6OvM6&SA*0h^J^V;ZTP6PZ zKoGMVneAGtKx|O{+5%J-9)Tim}iA}pEFc{QdA~Dc$(Hz zDfDE>d-`W-dUftX=m^JqcCk^4jW)#ID?T$t#oFY0l{agDcd=Q9%q|BOqfChZg-`u)tWl<>sw0Xv&`72TMj^<5mxLhFSD(Rb_2{9=KD zaz(1x-@L2T(jss*2R|B4a>jmj_JYh6t;(<|(FJK3bo&`1-%Y&!u3ySXAuWI3&cP$D z)o(`NRkGStO_px+StPt{;|vi$tE-$eS!|PLH&mXKUwP>-kq%YI*JtxK|3la4c5w`+ zb0Zq+{(}2$miI~#t06t;~usT*=qiU~;0 z2k)b${wV1!I#9Je-uDAXt?XFH>u?#TThkYmD~dQ@w^I0XRn0s4O1}rx zKr@V;@`YNKp;gOU5IvMRc1ZG;*Zpd|7%0TdSY1OKLfM(~eTly}? zpXGz@#VV~=Z2=sldtL8$6!hCPj-$Ou-s&@$MhJIgS6|`1$=qp!3EV=3!15k7UP8An z%3}IE4xC8*yIMW=I8`qmK267G-D9T+l2|u~sXRbr3Mr2MebV4rm%3c7ESW~;{H185 zgm_b&P~-Q)%vmWL(y<%@zJ{}l{U~vaqVM(aoD1@8PRU=kZ~BJQvAD3~{fzRU@1Avm z>KH`(7LmrME_ctfT-i1i^H-_0Qb2>ejK|^q^ghr2RH(>eU3qrAm5f4TD{cMTo~~O* zOC+owNN#fOC60*1!Xi2Bn{+fJq|0c7d#s@X59^P|oF)%JQRw;yad^s?Edc2X6_$aH zO1!C9cb?}YCJsuoIj@F~GkiD2muwmd8?SdvcnO@TA0Tp%q1(N}ECGcMrZRbRXUT1B z{V|I$ZmeC8VSg|5>tR8n978xJ>JxYEa!m z%v$u%p*S<&eR4d^kRGfy@8%Y9hcvF#Ezjj)0<---l38H7Z}3xVbjU3>$+p;RmM=3d zTWbdVmAiJd9IBaFGXvO0By(Iy$vX$lKnMFan`5X5(k>Xo!*^A$EV}qRQT23JA5a&D zAql$4JkQPV_B)pW3>q^gPo3Ov@7peN=%X2U?Ue3uUfv& z4HW*3bu z#-Ev(xLyvigAKXV8NY^5eX2WQZ`seP<>xf?xJzHYx%yabHPLjW;O!Itu?av@^7(@< zt!5UGIAML@DJC~DTo1WP7D!}?E?@1gFTKgIbOY6=o_nBSTzb)u|BvFHK+yNv7IOOs zyFW605xniR@RwJ@eB@%@L5{_qzs9o~5b}V|Io|0?*m?_MW=WYS*ezNR-YN0*@n*1C zY*HiXM0D&V@{Ev5)+Rr{d`69yjK@;qPLj6lir{zfHNSqn4XJX_q~zp@c^tV_pkHI+ z4vjnKIr;SW0*96Rx4exV*AX90xx}u* zPp}GyBjd7RAqgL6U`_q0^l37WyfA_decuWQ9wr2r!8xZY5>H+6Jcn=lS;_J5n!|FA zEVY`LupFmDPZMuz{OqwCfZJpll}`S%vIcw29vqSoQf%xy9B=jaO8rQqkq{eXIGK)+ zi`PF`DeBV=|Fi7iHx--rz6|E^=1P*3$jd5lAMqdVT9Yo__h6_I#{^1S0}$fOEZKc6 zF`?BM$*fISI4Oa=|BoUTR2{I6j)uIGnDc*w+f~zGo5yU%Mob-3OSNRkO4(|Cxa*cY zz*lGVi9G%z$V8#oc2c-czqfmn7qnP&A0H0r$2uC6?jtDw4}e~-VrgfoZG3+l@0F8% z*@kf{T%o>R%B5wV<5$DrxC#5H10uKv#$7ZlTNknvV?kiHg5`<=;H}0Uig+giqOwng z*4mL6i%!oPammSZfRKS(`;C(&cdKQg;&-b)6+k{?gm^{M=lRd-e#uNI5&^K_K98hr zyeS7K&q(czLvexjnL0qj91AxfTuo_aC$ZF=%1yTNTT9)kC7^H_zn1J9Xw(NqPhWfu z=cjw_%E^fZPnL8`b}tzgjIxfk?9CpWEl-xFy-JlvG{dVA65V!(;0S^<_8=65v0ijL0Z$&Q+y%R-ZL_uw`0gG0^W9Vq$EW%K zmfWzIId^dfaYF2LgAlbY*&Y~B42WJPj@hA)Dg-j;P0Vk&4;f}DeI760{0OC+Aw9M2 z>sf~V8GF2j^)>0%{R_~)FOyxN#=uu|51eFfkKtxRgd&*p<>x$NTbwI(N3ZOH0fL50 zE6MdIwCDfEcZ1n(>k@2s+0${d{Vb%#)(_F;N)T=cRiP$6-&$rsuK>Cn>Q)0Bch9QE zBlU8}>Or4e%U3Ur61b1`nWRUqh3PGpjiNN&I~xDgCLc`fpAggMwQg`)O}!bYb4lIM zZ84iaP%nTI;=0?VbIy7KIq+g(H3g3B(j0ZFO54g&PK~pf-~MSTydP1#Flh?cOW~ug zjC!^qDeQ@tZa=ddMsPw_(wA?jXq8yPEeW*c+h{71+pWH+9=@w-^UqXJcL3Vr)q6=c zYhP+qw+w>~G*#dJd+%Y|TFE+|WukteI@a4yd>Ob5s%D~Pm|IucI zFiDb+pYOGX`^9?Xu?n6dO4P|Ed>CAjx?0ygm;fD=0B*-$Q+ z3D=+Ss$tEQ=Ys35FVALKGn;|$KUHE5YCkSAmWpYENXNod)R>A6tgVrk-_h^>qnJgX zMxmjsudy-!i8vV_*U0(9@Do3Ul4%ilv4=Q<*d=|L*_#;=r!W+H_eZ#Hhcw;~o z3ZzrA&u=eNY{5y{MfJt-9UnkD9qS&nZwbmZxn2G(~97IL*e(2DGEZ-vi5P zpg9PNCl98wUkIe+a-;g7!E>;Ln^Ya=sTV%KzrF-X#to=`sxV+E?@D~*d-S5P=>uxD zne~cRqxk&js=YLtM&22>QSg3X^hKF<;2cw>&D7xLOw}v{BJ=mFz#Oe@|cQHP`H*7U0apr@&-I6--Yuz{`MG z$$Z;fsoe+=XZ@2^$hFZ^2QA-^orR$aV&>(~}@W80*;`Z!tO<)0n)Xa5~7Qx2_yy(i&vF!iulSaQlBJa85m|=;oS1!VE z5Pxu)VV;1n)zwV|2suk&1~{BROVo#%JEE!JzIlWqO{5O2PD{3X;5L9l8milDg zg)t-d?W~|!T+|mn~oLq$+X#qAlzj;y|Dol_)tgCZY2Px{gR}_epZpXQj zSj<*+cZ;x5t~7{F!@#Qx1eb>&-iVPUNvc1cDrksq9SMhHH+O7T1#+)(Zt$Iy=S37~ z5Cup17ESV&4~Qcg@7#C0%qIbUmnvihlDZJ+Kwbb-v?5n^O8oO-dC#V6U0HS-l=i=r z|I4`pEWUKnHBC+FKjLj7VyAblz0_lp!d@I4vn9{rqLV^7%2p>ds`>O3C|GAVV@s zO_}*?_5xB@yyzMhwkz7onqNDf>nq?LE1EFN*dIi3{$*#pR4;!css3dtc-Fu@b}zvJ z&GN1>M$C)h7Q#{O!qZK5==aZ8G?i1=zroiz`Zzs;yJuudbk2U%?hfafG8&gpO>Ci- z0o&=JSg%w0Hh$EtXt}%C!Hu;ypHrjaTgi&X9S5-y-NpCoS#IAv0HBzVyxriMPw`lV z-NO<<8Zo^Y1Iz2c)i;!EHwzp=JHl*p6xGBl(tYneANa)qY1KEph)v#9a`P&J82mLz z$fGK7j&(ddM-FJ1DN6?VO}msvnb?j6PZFKT)Tz1VJ92Z;ew4fC9;^NhHArj6Gr7}@ zfQEfCK4H^`A2qV-&yl@-#*JOBCCkE5R0u&KjfC+6`WIF2oan z*`(m%sGxMR$_jq#UM63&?C(s-`$zwjczPeGo!{XCLGyCpds>QFy3Pu604%^BUl=Yt%@CM} zxRd5A(l)F;g2ihjV4^@sDZcK6j7C8W?E9~!!R3k!8fFpe=e)fK;SlRMf>2y{rYk4G z2^wXX^4lh(yC;Kwpk_vfJDJik1#9MG9$$4B0%(Lr%7rGgNfCJlyvYMynlp>420*WkGx}1C4Ijv(spTzl$|qH}sZzvH(dEQ}9=A!)EQXj%jN% zf%-+svyEm%2dO3R-y_aYrG|@^_0%_Q$h@7SnHptOIJ*A-xBB3mn`0*ub5Z85QAo-I zO;i}f-t~%E#o}Ty|5a7T5mDY%0+RMopKcng(oeE1I5U~vzxNa%IGR|7T77DKHGGI( zoU|a4(dlDw>&rMWb>KubKt8II=!lEZ%7x`Tm%uDXqHmqt@I=4PJ2SZw_;!+yPsr$l z<+EE;yYH)H+$7-{TBZId0_e-i)WwGBWen`dAb@XKyd(=61^~~|JfxfW>(CpBmArPk zsVmVa>;;91o7(k8;%*v`I`r>HK(cP zsHgoA5F6bH&^1|WJfJ4*#;S^Uaj!I7jCNb-pXUSOysu2JvQLK_E6TGqn{OAXKE~z> z4xL*fXBIE*?W;ViWF{pe8pgG}c9u7k`uic(K&55ZNjwd>`~l{)AUO3a8Tz_X5x!hAttI_>_LJg3xR*`YGek&-pcd`e8cCfZlJlY+pc@5*F<%8C6+92xEXb7yf`dyDa#|b zpfXgm*sL|{YnSgY;SqFg%6hz`x*!V{oSxdK+3-`oOVv>N@GI zhTJ|jdhaP_ulzM0<*Trej@1-)5L_^AweYx>9+B6L!5U922101{2 z$#J~h?pr*=N=l939taS~VDQHAh2mv2mX3i}Q}DJpbkx1T=k4ZIqz3X9s5HFi@L7tSX8)nAsOXB^U#mh*4hLue&Q_(B=-{QiM%y5xXz#7<(QJ1Ed z+c&Vo(%-V7p#E3{q(r!W)8*t)DZSio@SF!C1gB1=>-ohsKmA{=6Lsi>#>O=vR$?at zCzsgqsK`L3z&}S@OLu=xkRHVV*^YmI#}AjQiKj_fm~Fc2w74HjzK=6IpC6UouF!; z5SjUZb+=c0QgyK}cTuf5)2BNRX@Dokd_W0$$djP-X**nAR>Q15b}279A+@y@EJpAE z7I3Hz2+(UqBAE|vrD6xJ-~Jl^nf$9ko+_auy6ODyhqs9dFoW3U=D{7wpcyj9zp}4h zLPR7DFso5bJgvI?0knN8zf?5xEM!L`B|Q19-xq2o z<{$ZwLh5$5?F7L9olTUOIzCZ;G@0pRVH8g84+LI2L2+7)36zy>$b2>yB+h%+*W8^-lXJpr&sU4HBPH9s7@ zodiz)hAqi!uq0+@a!%fvPkrC?bwx#h1N&gBamUMU!VN2|6K%C};sXJA3AV0Zf&Q>V zH_imWsOh630%>a}MC$^Wjeg=lU$9wGZSVK#9BU}A-J81?KGOV-HSKFI-4p(Q_1c~LL`Q4yB|aaf+y!b{2@#dOVhb%PbHC@V&=(@9 zy%G18?jH7X*xK&DO>1GZ(tfW_|GPT=zG`P!+ z2pmx#n5%p4SuX3;+I#x9xlq|<$k2rTP=9Ch+Aun{t!&-Rs4gjI5-dl88 zRR2|T*ZA#gK5tOcH)_gjypx-QVDC!OkkIfS0s}SSE>QQnajC)N2l7!QqgAs5wodye z<5p82ry@!Zho*j(k=O-M(m&mX zFy1pQ9J((x;H=`fPXNEU5_d-u;(7ID9;MMUmh!W<5k1yis`;L!);00Up8b4uB1G@7eOoSa@P>2SD|Q< zbg#1FQ0Edc=p6t=)QpF#n6w_BgL2T^Kt!l6BcVa79w!)d?Bq%XP z{$?4lz%-CS+}$%B$To4pF@Qs@eecxzur00!(?K|x2oBYP0=V|7whTMM?Ot?Cm zo!aEoXGf^jgWdBYdn8vagmv~GD%y&4)%kO9 zIaY@tv)jafp&|`e752(zHYb{hc|>87Vl$zI_>eqW8VTzjS zUL?QMVWVJ{Jn#2R^QJPmkCeVW&CYIScBIt(<(yYa;o&gn>U0Am^Pq}jyk$&w#g^*!}g=NU>!>vC@=-HanxMl(o zBXJwHYJ~edR=z9SQ$MyB^Cv|s%A_s`D`fNGT8GBZi{XE}5UwHTBi!O8{XmH702XYc1p*({7@w+kZx8`@cP*O}!^a8qXUWS1>2O z)26PMc3)2%B4<5oBHI61WT;H&(n?r(cRyEqBnqMo2n<1lhnJ@jn8CO(L``3f|98SC zT@iCw;clb$NK(oXV;>*8xxKEnDaL8aFnOQ1u zoGZltUE^3Swaws?7ANzd@}?4z9&s_OxpBqN8b{%!>V%Zj%Z)C%zMp!| zkEB(^=5f}Qsd62yR3PL2AH3tr2Q%w6fD%l!n}4=vXsf6uv7dc=p2zfCYUYPL#l6D6 zk15^U-7Ia~ri4E1N9Q>x7X*AnewY|J3y9NLvA^^+ifSGwe>?`o09o=ZfulK`u1xS( zcopL>$?XGnT%0a0e-U(g62o^-R37ekwQhTE8+k{ng6<-0TmjzrZWEqwTUCjzb*yfn zqQ}6@e6ja#($!mdj(01^zl`2VN9WXSSQQwD%oS(1#X&ov!-6|HUM*&_AJzk z2k;W?@@!EDgcoQw%vO>R^mPjGC-`StNF%Q7oXYy!zf-)6m^4`bqsVsh9I2489>|z? zgJ#IyctfmvsGpl!Zs=H4s%>VtoRiXUJYvqq&uHvrt#DZC4>c=1({S`V*i9uWL&+WF zJL6>Dz%jq@uz4VXvAzL&K=q`UVb}T9;(|a?JmY(rl#g^NAFg+;TVFY?e{!!i<1qP^ zX36+~&jF%+6Lqp}RDJ$B2tK^nHieenL=%MBP?eUjLKukw6UVmI&OTWo1|BR9_}pKl zI?tYBpYkq9aqK1n#+mR`{#xYuMdKTcTXoL>%5M&M;f1RX$;p}w3Sp+JL-&b=2Obz` z6uKG`UYGf#oWR}N{A{+fILi5%e$KI2UAM;l+&533eRRhEqPe9R`iaU#)m+?PNh(Q1 zjNK(_XayC%-kLuV1vba`MXXAMUPL2sv5tN*p*;=EH)k5$DrcO(Q$$* z=(aMxYneE{2>FG_%b4qX4#$Oo>LvQop=UTkW*7NEV@*rs(;KJh9s=1Tm{|C)w>rMO z?y6;DMf!O~zW2v|mGtEYtOcy%;>fg#L_hdF0)IZ~Jpn1hCx#0|RhZky_ha`|#iMJw zxis!OtANdWoZSWwMstgVVRmKas9%_hpl;2)AaDOv7l;c3;a>P&Ha~h#i^$4weTQ9~ z&y|s+;{Mg2!=_QsSw8Gr1+1^aOarCR|1%?ER@^ zAq2tjz4VpKr}*bF65%TPd#t$731rOZZL8($e}^i|1iJ%bI;EBAc?+FZ@!?W{DiHFlEin0}g6wtO$cq z%gaL~C7chzN-~}hlXbqk>#40i6zU?t{d$xOf z4X*0Mjp9oNL39SSEj^9RSD@myP$^KVFl<_WP`~xTd3>g5C3Y=vlstMN);79(uyXw{ zxn?C>BteSuLdLGmzc%C3E7BRy@{FU?6xjvJq=-( zfrH67tVtxq9vPVtuvCQa#)7kPEuC*?-G0CjdbFx@U$PSy8-@izT}_mbPbL$C43Rzk za~no&N$k&05MZR3ZeoGKl`qKZ-#-DX_J-37VCfTfq6od-lhPc}9s`(a??g`bIVAv* z0?cNuw{@OM3NY5lj&e6Cn6G}ZfGJERgI^Wh%Ht-vlTOZ%Ywp&LV|nr_2h77Fh+Ck< z`mfub2eYfXQ(hb@x_I>-_IBwhYhkNY)7SMWOMm7{{^niol3Dj&V=j2eGu-mVfe4yo zGmvZqc1XSEl+#Q0DKfR^@K*hD{s9(-$#8wG-uj(5%tTh~tfac%l`9{IHYDt*tp zTc0I#oQgQp-$|W|`#6gxEU(3yHwX^bz_ez2>-?KknU0+QeM+@dB5dLn)8MMO{6N}q zUJVP^o=?=W)OqA%@Pp|Bps4>`wzHj4dD?{y*sav*2sB)yd&i{eR3q^Vr{K6>VK!Mp z8lTxW;~yST$dl}Qx2n$IXt+2d>Nzplw7Sekk|EeXh0XV9@L~X&)$Zh|k2K#P6R8`r z=gfC9n`W0rcQYY*eb$k@=6kM7yOEx;5hBLgniF+kCodS=u0+z6XKQC2%f+!poJMEv zJ!J%!J+OY|9Jk-2xtbUxJ>4p7Fk0hR?U`B?ynT|~n)+-@1W`(YXbQJn^uDN${dV4- z-_Aq0i(z2c-m2hsih&yYJP7cxNLyHt+{|kDoqcgj)oHeKjnjoDaJmQ$*+@Z=;*ZY5 z0Vzg-e0UzQIe`DhhqH>e{~G*eg2>DcDNBzC$W;-st5dSFjR5xbo`2f(eNa=xlN1-V zn^XL;FDqXK`lfz3Dqct_!z;P(a}9e4d+xCpdF0^L_fU8dtW>thsU1N>lr4d&1be{M z9rAwX#*a1mVsRV3QjrZlh{AAwUTD!E;#u$9c)qh;k%jcDXNvIt8(DT#QtUL|5~>e#-X^Zs`PL{^mY?ZuAs&j6 z?Ou7%ZAx|@elRrR^6^RBTTUm3{hDf*gq03_4E!HSXBpPy`?qnhP!tdWX;3L?X%HAH z(!!8bY9b=tU7OO4^iOIcB{}J4k`qBDIl4o7BgSCibN`R$6};l$KDPV1zHy%Chb!>z z_>UY3?P#J!)VnUx;P;AqV>1$Mp;L25@l zOE*-UaEum*YaV?!6Dk7)=6YwZ%V#|VD_h5)B|*r17cd{{y)gJu%`8RxZirF3wq* z%8;%>(EIj>@_Sj;q}0DgE1_ul3~ogWVbQ_AO$R<*+=K`m64gd7$i+7IWOXsbyENRr zz{F(_w_Q2$Z8CgzLHa>R+^jDDJo3Ykg1KM3Pjod#?LM6?iN-?{s1p<9Ss8OQ>Q zAqw>(fp=vqx`VGc*Mm0Dd0hYFhxshSE8@VF$P~7vcF1J2$SM9~`Cj?T_BRB7AY0;` z)bIv6_S@3Nk!EzOWK4%twbMm&tY3&KXu=6ocz_UmRb&LL4ss(-SPEpA)EUh3c69g= zt)(}wCiL6x7#Gn932|o<;a;%r_Qi)--hSR$kN)814+ka4X6#wiJG~@*w;AzSowD$I zsr7HVn5Fn{c`M1CYsH=qa7z6!PP*YE;fK&KKy8y4QthPU3|{?rG+2!QvX0-@{|QyE z{+nI!;I(bMT$;`up~S=4I;kr>ljjedWcDit^i{#xYEEztE8w`6jD4#hjdFF*l5w8D z`hfp6&FT+I5aR2Pmx-Q(jg=q|UJIXoU9|qK1@%6+YC?c6#vP%)uu>&=Z}_rmA8kuE z_fXI1Pp>6diHTE%p8%&*+X-yFmr=+l&zS_T_(vsc9=>zeZA_7`Rdix1c}l6Z=J5>{ z`c+o1-A^+8y4HQUl8#yGeH`l?CYY`l^!*1l%>SsqePr%PgI=$KwtOvaz3=19Os+QN z+{TQT!<_)C2SFQjA5h9Rcv&soiyt5U)qnjyUkdNumzSsP6?hvo!_Wp0lc1qX!7%bs#L08DD{;=p}=Sht-))+B^`jjw26tx{(79J)F2(fNNr$3*aNwW`AgZaijx{&)t; zI*wJ8@(Qe|kr?cho2%VdyP@U*pMl_uvi1Hzxk%daXq#xKq^&3wt;mvw!rG zP%5EOtq7Y$Ok+F9fie5-_X)Uk8&HG=?L2OZ^MKjQe=dKe<>jVgDN!wPpMk50Sd)0& zc26VtMmdja361X_I+x@HRNmbLRmr#wLMl-zu(wa`N{5~2jWD~F(_IZGPt>=9{{J){ z6s-7PMqg{)Sy`SO-Ca3OeC|d&XaEW!6EjINLCDj1}tm!YX2A7fYY_sC?q9P)&^8QC<$&(?v5r}g3-Uut9goJGd zM8F&Xmj&J6#beLcD&(~s8_%WwASPm$K z91n9tPaos|o4gv+&6|{kuD%RB#uY*hb%{&U0q6wgklAFQMV1Os+l$}qU)^o7=n!|W zG^My~`gFv-UIG-E9-cM3*!p|D0BH8AQ_8{Q0TK zwdOCgt*h|b;b1d;vvXYWyyVtzrKfY*O`M59Qh+f!3BODF;Xa+ zbnOPGA(p&M?^$Q@LMM?i+2lKSR_6t6S#3gBla|=AqDgMFAgxzdijyS#Ja3$`sMY}9 zn{*HYmTVp=Gc^Yo{eVQFzNP5et`Y!KaO+)5B!l$aJ+2efnM>h>*M|4s+e6st;*E%M z#8D^jxy;{`NH`btHYpUF7KmO(^yQ28S%e5$Z0U5;kA`UHsc01>-)&8A7;2U-r8rG6Gyv0HABD1(T_5c2w?a%pHbt@8Y;oQ)Cz z2o8@!TyKr}p;rAQmskNHR|wC7qK1117C9Tpg&hp8+K&ff?+*3Le@Z@j;+_4RzSv!8 z!ic=i=dpW1Oq!P-4(-J3ZOo9=pu3yF4&9JB7rYC(_)8~t=>y3R&v2)g-ExVBkj1b^ zwwdW>H}(*|`tvlg(Mk8~hPh(xYp4*Ngi|%IX$5g49iKo>QFDOLLg#yNl`ByNh2Jc3 z_J}8RO=WMN{&cJ<>WhE6btSc6(x}X!_=P87-i9`yOf<-snDU_Qe=-Pjym51Q?@CHv zAP7WyT-%zgqr!r_w&8ZV`^qFy-7VzTd^wGyjtu<3oEaOR>l2-{U3N+iP<6D!D(*h3 zThBa$F#PsC=PHX1Wdy!(L~=1j6cGn=KyU`O;|&2!Td}xc%>Bn)NAm^RjPi3KCE|+@ z5_>B+j$M>mj;6wMNKh9F?*#taME{CiASf_wcl}Ju2f)MU;s?m7l3zywstj-acp#>y z>5O_Az?oG{DI%WCnt%#Ry|_B0#0;OI*cay~Y)j$_d0fTLi%4~tgB>Kxy2x~BkxXbk zd46e#a+$=ww{!z46e>V24&_<84XiSd@i}VAvauODz8B2HlCCsfe(#s9Eba2rN>sTp z)zKr5PWcO8d+XKDZHU8{(fI>dit@F*)z+c~k2Ci`3<^#VlI-S<2T3HXB6=+sv{tfH zp6jcC*e-BrMNr{_Ea|vr;J^gO2gHjFnkPncXL#5ltWi zjJ4J)YKd zLI*blDz3I`w}F@o!82na-3-96loe2P!`XHgsY9xrf4bP*9*2+ok<)aNuG4wHMY}T} zUWTN0DX6}dEz6zaK%Jx8Fv;~I2m`G&*!ly*zI1WZgv~sdGn|NTpg^KD=0EkBs`S!z zt?Q?HdkwTv%RNnW)1D98d!U8-4es-ok2D%q{ng!TJn~YKM#WlA!=mFaq z{=Ajg8Mc$L##&k`_i%z};exqneJfgRgEDj&pLaU$xpadx_C7`FFB98^yIPWlh1x5N zVx)|fs^f}VB`kZ5q9s%6!o!WDZx6YPL@YR7kc55Hcg*bE@&^o)_8w5L@M8(Ls?)T& zB97`3GhaWmtlSC9fE*M(tn8mNKqgZ(sv#>A!5Mcy1;+GlPEp=oEht+VGHr?94(yeE zM5;@~Z9aQ?YUJ$HFUo4V2^1% z*Ya(aH@T-^%wlxIE$y%j6(c=7AW)u(J%!%Jcd?j}B13p=!T zThjPPMd$7H`FZWQfsC$>fCr#3vv3XL10wXg)oyet?Q%GvBx4pIz`LPJttsd~UBZNG zxSKWuOy2b>`s+*20?`7s-L_+$v@Cz$re`WSxA~oyT@>(@Ck`R~Y`Fda(h?zxR^BuP zqXq~|?KugdG(=dSfc==jr>7;M@33wOL!|}*bV!en*LIbzvx^mZKr&8iVqT(FDafIt zW5HLnY{(EAaaiWz(cyVMZ=c%q(u&YPzU~q}k(@>0EBg@Y5R7!L#hrb$Q4()7-7(u? z2ANK{k)9+iwr(50v@uW4VN~Zdiwui?pfU<}04SXAA(1e5Uan9&%s%K2tos>=r*}oG z&DNucq&vFo6sl0I2{k?b?=oJP&CXli zh&sT4nOFmX4)Hc@^)wK|)^_`es)xNWZntcGjDKkR$x!PDy+*rVD8U&mtZYoq-`-6* z;eqLVJ0K|uQgL1!#MY7JJc*TVvwn=&ttXDKnvp*v9S^5NUWPf~xsOTuE86zbgotHS zf}h|umiGe4y3J1>&8bk21*z_}XoPNFM$Phg3eb|$T%2*;;Xat!UpXms=Gyd)aA&H7w#8H!aU7 zO_XMlNBztE=~I$hzkV4ni^=vI|NIf;-tYXV?u?JyAEgG&50yQa4w&v#~Q z*7QX07I&%r?nuB1z%BJD`~5%e6~Bg+1TSkfgTKojlH5p1tXz|vQPAydhU0-scaXfZlo76;7!=D~#Pf{Dxh%TO48H(_j6-7oZkj%{ zNEVg{RQt#pG*)FC?+-+|TP~xMJyaNo@_{yB8bbK%-%D|7_6)IY?R09!TW8H(>=RsT zUiUIJlxq{?v{=?m3q@Fh=IX7@ciN#mF`fGlSHD>_BWdtiyO?@X7&sVA4;}a)8xlsV zL(Xf%M1%MPCCt+t1)i1?+Iv_ZKA}nEOz`|c+Wimh#l&TU2lES)r!B?@*CWtM)HMHO(jiOlX4GzGg7d7tjk-oe|e zmI94V3dcc7fG#K&Tgzddb`1M`oeF=g2CwO2D|JFDU!Y>S{4wXv*(KG$;^|1yajvnJ zSG39W!lie==YqYa5~3pBgK!rwJ-`3gy$qG@8J3SYH@r)g8ysxZ+0*0Jv&D0AHFEZ8 zw~Bwi@`p$np6g%4*e)YL9ftR-Zcs^|9zLPwdjH{e;+m6UnWy9juh$D4R9wp!0kV&{ zs7cUS{ND)!G;cHoR1Ji(c_( zDGh3=nRWl^GJK}K=j`!gxqJZJ?kAY$CZpBz#x`E+{)5fGF!Vi5GnEKY3D94=*P3~? za@Gxc0T+_H>d2ca#H?v{s;=(T%a_q*5}CXzKZ#H@p;5w-hdiq^1lN@MB@Ir%@AUr=9+368&59=if2|6Ks8CGx$`M6+F7WuL?)iD?rw?E9yirutCsalma~3BuhUWe|-q{w2@Gc1w9nK-P!+J&ZAJty2 zs`Sw&Cuh62(5KnqXyF&Hm+K$i=l!Dgh-=Mk$JWbaLZBM6)_TLZ&vr+l4vbY<1F*c4 zYL22V)fV9E+eZizU-m3C#tzXdob1;Yueh!tlE`j*pCz=hx9&h7dRcVBJNk}%XQTey zFJcgdCYvWzUvGA6Q>||)Vw?mFGs825_R=NyMax3fJ@%AymzZ51gW_Gs^@tC?SxY>s z!9CQlxBm3$J7Vy|49b+fISQYbS9yWy>I$x(&Y)C39TBxGMh+7K@H2$_s|?XgjVTEr z#%+#b-1cKo<3_)0jppBumO1{s{ijI8M!HS(-Q4P{qBGF<*!}@olbo}ZN#1G5T2#v3 zWuO;W!3Oj)#4hskt%{EnRXF2qxF$x6DCowPjx;^J%D$2H1@=4q;xTT&`W{kO{v0s6 zn39?y#{b$ygh2K4#-@tWChOJkP6TV50{((rDBj_*nq+K9=?=3I?s&SY!=1ME(lqsH z^fk7lao&6OKMb`Y7QNhi-&U-QnsWHc=pK$%Wgbd&*^~k9mN?k^Zxj}5bRmh6Tt%{7 z9*TV+?qOH0DW@!XDF2D8d${C`#5PVsY|B$JtQc>5Vbr8@iU``Hi{>C%RGU5Gj zu*gjs1|K&!{E!#gDyfV&uBP!rSHt?}k+l)T-OrdnE&Lui11c`9zM_^m`=}-TVAh$H z*FG1N`~D{SPY$BeysS;h**Gsi3*fd>&=@gyM8nXx13m?+8xK5xK@9`>5G%%Nexm8XTKq8D^xi5(a=wsZ-Hs&{ta%qkHJs*O#B!bkgWwZH3kP(xp> zJ?V9IltT08#VUsgr?-b=TiuJ-$na1w@s%@FU`*}((#-_iYPIgch4MLd`0PXX8VilK zwoefoNlEQA5`m^ya1gzS%3FdwOqC^R@)ZY+Krm2)@%W8G%WvEQAYo}IJq2jyN4 za$d=r(x6g0uUqNmweqt1FEn%|ZvCa1%hp*zTg>;K@*wzK5>Uv7znPgPECNzQ9B>(= z_shICFxJV@^N(k~M^}t$ZACA3EA6>p%FS-aC|Gi(p(d+3^H@c8H~$xmqOwQfBlNDl z#zFeXPCPE~o6d1=MKj+ll?7tVEWI`)O@DnE@iqv0zs5a1FEr_y)QpfO+4%;g4UAXE znrtKd=Q3(zVGWhcY^z}G?*#~YTC3KX&~#&znh zt#Zzl9Bo_{8(Y*nswxvw?CJYL#r%OTsAWD>1mj)83Aq@*X#H#Z$f!g|xE?qmoZtiz zSTB&+VPO@hhKHpM85UfX8d~Md{73b)8O7Ubb8Fo$dR2W#xhf0pB!Y7H~5 zL?{a^_c1neM^}6=%=8 zKeI4E(rXXvWdp(r7S(6Nl)sqPCeg-6iDL{jbs$Alvt zJtDi*YJn%BBlL`{3i9sWYtbI8lK-j4gzi*4({<2A?#UGxJKKYcv)W0cu?Z#-PRLimD@o_)@i3AIaoReTmCd@;U zAfUEyiwg%{KlT)>N#AX^4oE-=%yEeSB7=uBTze}}BFDuwNPd^g414XW<$Z5zex6|o z`7EA0kt;>bXg3hC?m>2=-`msXrScP+Jp_><5b!V=5OSB1u?3F^nLOoQg`v{9>KORT zsgjO}mzt>?X`KEUlBrjqRtAjSG~$2OF}X>773DLcO4dQX6N{1AqDd*q$mJ5seK+Mb zpzhn0nz&eeBVR6-+!_JO5Sv#6Jwz+@F6R)cPwu}gaF`EKm>MFSTV=6nn3 zGTFSeHtT@e>Fq&l@s58~!{^U6?%4*J=3nUXH~77L`arq~JGqt_yyL`nH(=!zRPZ?rq4+m>;@PEX??wRQMFH z=-4g>f+C@F9sU$zOY-RC3yYmSt>>*|?`-FU8&vnW{p6K>2Ve0l>k=LB=^n_;?LxSP za7k3;Ypzy>!EgaR!LD%Z^Q9>BQH%FM6jh+NbF}Vcm}aKN6fhgDcRkR-LvodbCtH5Zm>+lHKvJuK9GC58~Xf-bV3L)VMxPED1Y4PgM zPrPRiEHnC*Hg{_KjfE@qZKAaP4jqwz+A{n-06`9$kt# zruPPf{F9%xDxu)_mOWkS@-23R9m(`cV*cEVCCcZB|GAw5wfcem62HQJ02aSQ^ys$G zOj+xEIA9@qNaLI!^Rweq=;uq?;5wR%oaO51a^bS8erGU9&?H!{2fUEJ0d?3m|G_}N z^BA^wzAQ>-3@(`3nd{DZr(o7B#kLV|(xl<*_lEZSo2N9X@n?LcF+W$AK!V=ZGqn}l z#Ekr+L>$UuN@953ff}dP8^Bt?I%(V38KPrp@cC_fJhOl7p3sNoa*~FxCVh1g&HJGe z^BHiC?zXRrq$WA}q*KkDM+P_5>a(Wr2eO|C)m#M&ZCnX@1gl8leHOUJf91o9%X13|;cf2b_ z-R@ZNW=T;0w0Wv3IugzK__wIeWcK%nri9mWyMIn9?E*dcdi(#xOgRglW~GA1%geBb z%N~)W`@$YK2tilZi_d2>4#pSer4HV?)+%k$(u{Rl$(v@{+nm@1sWqH>OxE}IZM7bR z9Q-niCrXWpjy^a`h6)0qzn~PiH8e+G_V|2I>fgt@H-Bq-zkN=7KXFwoQ*HM(!xy=& z_gv=T-RLZy6SxLqxe?~IV^3mF92iTi2&vUGJ0U?xOrNq>5&JZ2oAH@co;>JL{s*gloFgo&-xQCuC`>d*L03N zQcMz@TW*dZc?1b8;gNl4cGVtfox6TF!{;tZFGuZ_j6y7@C)+4lafUP5r|n~e}E&K8OU z4W66VU_UQ9cz6hCau-!~dDtHj(U;f`xPKX6bXW(&e~a_M1TdR^JeLV{fatO`6QS=IPA3vn<% zB(O4%k!~;3pQ{YkI&@$vCqW3vwXEjv1Rv}L@2yt`Y3CM8aoJ(L5|i_Tu1McCwuQV4 zOsbfFz-QU-4V`(A*@Aymz-9mWB%_YPIaqG+s;z7G<>I4Ra_+;KQ2H@Rzw4)mu{pp= z6n}cpyMEW`Zj?;Qsi*LCk!teFzV(Ts9i4DR%S_ui1wS+$9wO`M$V$kc`-pr`yq>01w-J7f;V$8#ovv3mI8rjz^g z=0oC8+@;}P3cB-&x9Fu#5Mc4aqrLjvnO@6-Q&#P zm9jsF;-rvO(K$C6&4xB}_^XM7wAl&jLGoTPjoMz#s|$`f&fGWO8)h>yM_ljfe6|zO z(4_AN$3mLHy$fLDW-Q?1IlSy#pwu~DCan?TZh_XoqAk$`o zM-O{rQ@pgdnNG^^kAn6YRHqv_>X>7x17&6i4(x^H!MESCGTXD6@72xH7iW#7k-jD? z^v;&;ZD7Ma_EIiy-w8~x={9S^?$@?wGux4*TOL8;HrKqkq|$d*cPGq_l9%GDSCBJHKP+s%Tug4}dR6ZvnhaJ2 zhTHjh{vH9Nj}Xh!sxD)_o>SIQmHW<;PHLO!K!YT3r1HX?{e9pp^jG%5%B%>=lftH1 z*K+NC8um?U{uh0A)OdtVmQY$g%@GN$Oe2z6t9wACyx8in#`P|reURkTLE=P~cB0>F zpXA@+3-aAhKUxJbleKGZncvUlO7^GD4IwL|&^myy8Xe^gSimeOyij>c@tC8Sv}?uX~1 z5fb(i13yA(lh=QvXgwtE~^T$erjya3?5!$X}d@7@BI8`!vAF7lwE}@#kogC zO=GoC#cJWT3r-cJXXl)!XZ=R#78eU!rNB^Em%}cGbeo~uY?c|qr~+|uVt&+JvW+(^ zW{i9ekzO^bxJLDl%B=Am9cNT_%ar!EnU2D{Fpnz+C9W*Glbqfj0p%9~%ipT(vCqBu z6PonIZim<_?Lu<2GR1)q5wOp)2amHE5TDajSu+dK@NBk-tWy`!W`C`B`#N9550=wc zeuElXKhL?Ix7OZ)I$XxVR!SRjGAjek%e=Q1=Vx{UvR2P}va{;h)|;o?)Q4PZF_|*= z3nqYplFT2oy6pP2@;Ml`^B)y@-S3S6yNU1n2Kd$=K>qO-ISVl)3@(qZEXA^_;S66r zW0&B%@;LH-Q$v&{O)mRv9hKCv=$rS={k9XTe_egdOZF;cLuU2Z^uOi)N2Oa!4r|A7 zNOwg??IEY3jA5}?&reFCtmB9P#w;z1wE6-P~z znx<8YaL!=fBl2zhwZpvv*&A5aRzGjnJv*HT@Ryd z1PMZ`Is!ACgo@uKqX(8#+|L9anycQtWmjq17FVrZU@9Ck9VC)41Z(%1?c#RM5sD9G zEhVJ%SddE#?d2-iBu{o5bL7`5enuj8b54YeB-~LEk4=R~#>^aYNg?EDud#4bu!9ZS3 zpcK!h3|MrIhjI|A%R)o2b?0E8m6SN+uoSEK+iaRm7vWsGKQ28Y@qjFjaEe#?8^^8N zpfRm6!*x42=on}OTrsJZwYzSPgY=^b0uK8ttM*tLpfC?VTSoS)A8Cdv=9) z?s$Eq`>_yS`r;iBb6`@IP~_2oJel(AAJtuwgV0BixK4HGZ9;@^7?f?TzPFAV`e6RNZJNuBUf)3e z82DF0f8zisQ4*G+A1a)^3h!1`HzVk*CH0T@0pSu7pq~OzB(m{}`a_|bOX)i+6nhqUe|qU5hkkj8uOi+33T4vl%3!_u56-jn=o&jJ`Bc9y`|Pl4N#mk#Fcb5vS?cx{O&(|krTd?usaTV2@1|mv=$Sy#-&2T> zO3%{D8Hw2k|3sjRG4KMjhWWUkv5!S2mEA3P&=BjZ=hA&Ne_N4ya0Ikml;sJ$Xk>S{ zeeXS=GfaK9Ulr8F??@RE@xQp>8Pu9)9RRLRJ~SePtksI?c`c{Jn!#rm-HJX|O5%dQ^loyPqQ#-LzxD7?m`<#Tcql&%+--6LOH$(x`?D@Mu> zo|;Kvg1lPR@MgHu#gfc$XyELm&J;u5qz_iB7dOjiH9aE6m2(xzorxeEjFBX6_%I$w z>beWP1s%7L!e#Fb;mq}MnT>UaUE@`Hmb)B|s0X{?bfy8Cdv!D^5yv?v4;^HS$p!bl z_0SG~@x;BrSBu;OE5?~}XkKy3AutAqaUz%VVV3~CeiJMn%8+hM@L8L4$(Aorz_OsG zYnl`7Mv}akcMHCJKoKYZJ{-^4j6N(!fu;Lx*Y+xE9RE>?0nWN;m7DlxT)_Sk7Q8%1 zQX`ji0L({*?mCydf|%8qNO4jw;kCeg>f-dfYhu)#YnKZ)OO49)l`8?A1ajy=l}nrp z$@*G1Vm%Yyc53Mh+YAFTk*+eeH&3X&c|PIV(akd4btg+rS~{in>&K68f@rS1^OxJ& z7#zBTScF{|%k-CVsoUuNqtcN9iBbAsx8=Bl=kRglG~liXGyegVoeX7I89ZH(H2ky_ z2!o``PCw9SZE%hKsXY-CdxP6+@q2eu@zU9r2k8dI!Hkbn*JM%zYZRZTlGAobc`w-m z#Ex7;V);=1P#_2(JeI@@Uuhgh?M*E{9*bBaSQ@_nL5GjLS}n6J`0Py7n$Y|>gF}0{ z-}Uy- z`=q(h1pQ}^%0%xSy|-8Swb|hB3|;3s%Z%8;F8gq-I1vcs`L%5#}(n}S}~DbOk{W?@oehNr(q~Bq4s{mR55+h zM?25!4U-cqP3PB?M#hPWm`*)q_=AhFI*Q{iZ_WZ#ba*AmjU&ywS9x((W)mG-z&NEM zUgC7YkSIGxq7H!mKGF$D4Pf)zGmVN1PMjXuC`_DhZb=uez+eL({Hf=my%@nWJ? zXs#Z{HXx}JX7Xen;aG^$uKwLT8qHbPWCph0xbzv})6zcQG z;3;e9#FI+Ran{$-OE0oLvo%KF+`Zdx00bduPS3Rvhx;zpy)2+Rd12c&~h2{e8=u~CP8apPvjYk{#wLoOTbr}U}cS7OfpAv@K3=x!xDF&EPS(^8$YvmdGMVT0nCAZ-B129s>TMZ-fTp`thm2#C{65 zfA%r-C7S|Bl$_orRjFm`^+?IbVN?F)PoZ~H!`1Vj6cM0m;U258F};0p&_624PVVHk za=rB1nc8X%jTCtG=M&bR!`Yz~g@OHNYs=>SU>ZoMEFmF`$B!z zYK&pxaqOIHu_wy~Mqg#b*NscJjbh*Y+xOJmCMG@hXYuOpa*1!79|ZGxt4oj^LAehd zp$K;10D#J2|KM`xvyiOZR|KGsNCVUD=#%s|@nIXfuHdqJU#mGH!&3)0%VJKQe&A9fCTcEkXUA-| zJ%355P7WLxooW?X-uSh_>Vdf+lF)iLK9820%9Hbmh^PxZDFFiXPR_jXybK+pLh(=* zLXicao1}Mg6>n4y_-G64(>~ni^}ez4>98|e?LW6qx1}OeeQaFsThbYwSm$ozA?IqX z7X?`&S*#qbUN1MYb;RLlkMTcvy~7zI9=OQEQyuTZSV7DrgDg6Sr+yqleGJ!irz{R* zB)wriK{wyNvU+p*R7qPEmQS(2F2Ee4kcu58F9JPDZb3#WWm?=j|+slp>rfpd-WAZ!NpJdsh!4j2RSl z)4a?en1%CTF4OOy`kKX*&$4hKBsc^;F^uB{GPfn8AE%IH6-Z3Hs5bemwqa4&H^Q~m z;}L9g++^H&p-8`*fa1#9{imwNCB7PRfU*;24%piK?DlHo_Z>^{*$BUNl+&UbIS0^@ z%kfeJtGC0*?1Ec_q>`vChMR$jx%vhpfycS|f;dkH{rTv`^)utCuU7T?YP%N)JZP3| zIkUvpFBjGDbZb@iEeJ=~9g;Rda+O;dC^;LVw&EHW)Sk8QVq+*{1;A;UKob5(rLr=0 zKPCU!q$YLt)emT)15AEww}O6)^Z&lMeiL|4r6iH$3G$5UDus1><~(eed<*y#lqsVS zE){#6|4=uKxr4=ijr%dN*F1oSi!if%Ez+@Vza=DWKY-fPO(H_%TC&uTl%VW7rr+Uq zhFg%TZ2bZ(he-N-(n9+xu=`iehKDZ^{&H8_Zc1X@U4B7Z3Mkj)_6!3GS=W(#n_fCq zCgj&9_eMmGZ(gQOp0JMkl>3DFgOUm@71&2V!BF&q{vq2(pAoG_g`z(SPk?}pd-IR9 z)HTBwVzokF`YYetQk3)(m>_5{ElKm^`?O4_{&w4tKp@! z#J3;liVzl5h74ufPk3$;!=Q5(tb0z_5mh5`X-o8N7wWZ9yAUOgv3Yuq)zv5MEUbLj zU$H83OKSptGDOo7=F~^m&^W&)5noDYSN^iZF1pKm&9LSolff(k`T$gt02gqsxF zYN9lu_lHGuB)og+c9on^YaMHIo#W_^e1Zywe_$N!?B#0j@69qn{gb^vi1%e*FC$x* zO;dgIG8$TJCnn=`IDbLExod^>=xdcjuc1MuY8Ek5lq?CuNpkYB`*8)+Y&Dj1+;jVai7wh!Wgq$VCye) zBuTl^j&(+@c#v4e)ULqXa$ChZ?$?Onm+Wb6&F}8DiXNps-9Bqu_d$=X@)B>t3zKvY z8Dq?>VZ*(I!EYoHa=Mz6Bxfju5am@Ch+5q&TbiytY`__DV#K1LCfwpK230V`~Z+4N9|Bz%2u{#CUw=W4U zMFhTX9-b8aQQJBNvn=DzhU=I5*k6V-*rr2N|18M z2G&RI9OuFN4r78Pnv1QA+n&oPHGk^kp;`+xPRT|pu66pp%of!&o^u0d{V$y0uos;4 z$)HP+;8mhtp6#)?jgOv8HT53T)?1ZhA9RhPy5lmQB|aJeR;OjDl^%O669Jj!`vJoO zYmA6l%n!s&%&Oc#iC6i~VL%081j`t2k4D-m#}osYkd0NMhos2e09JvI83^Z1@|&Us9nS8j`B4$HQ`K8G&wE3 zhxv%KU5|>y`o67ovb|QCNP|Mke}Bx^+!8#PC4+M)Oq8ESp|5b#&JimM{flKVcdR3b ztv0T#wZ)%?$J3@bkLeC6f#f>9Rz8u)D_fQJSY#>(@L3~HYl#{_kwqbBEPn)kV#k50 zACTb?`X1{NSlGc^NpR`AppRM;mG2t2!RuuP{$Xk?e*Parw)er6OJ0!sIjbwiJe!%B z<+c4rD6-7Fk{z7X`{a2l_R_PG8G-pPS?n*r(`)HQZp9vQ1F~h3RJUoH zbfjA`g20nNbeMO(3#*&8{#(G&Fd>{A$hg4!%aM~_Rb!4YV-`lAZ&fBn8DF^Hj%*P(>#84!4a*J0@zWK{OU+t5iT`eC z*~e(Ar9u0MIfOR8C9)u=cC4q>h0nzt#~RhaZhzUuqOm$Lz+A`0Q7F@J-e6{qIcQ`4 z_$V>&*2xu&n4M9>$z*spup;lmTf?L4nM^FrOs z$9_h;^T#4nm1cR3{s3>qXh{j1QkM1?haaHsRjAkqd<*A@@o?LcMKXd8~ z=L_4}L)rZ`D`IgO(raF?_Q+m!i0S#o!nsW-hy$?e>Et}5ov1LZ`IP!wV9tt4|ESm| z(+;b*f7XsBI-@K4nH1?^uz8H6OTw6>0U4y#7}G0zFje*g)`$k2TB}?8LKO;8?uYz$ zjk;Vr*uT`X$-pzW?1qQc04c{q3Jc4q7K1?w_B8AtRW*Q*(`C-Fn&eJJg{qJX=K2iDRwsEo$WO?5 zfEpKll_Wd1oDKf760T@Y=8@vPrNx=@jiw~%zm6C1mShp;d>x{04&0nF?7!`?ny>z5 zx0GIs>}P@VQe|+s(XLumAah~P`C`A-W)~d3YU_O~?jG9`b5+@2uWpit!$V=^O#e8C zrsmFOdCaHc(Z?%mnd+ipPgl$PbzaBGH>vcZkhKAO3v0yE$-^#AOQ)RF4L=COFFdQr zV*9daIskU_Epn0EU3cM_Hj$81~!k#CosNr7w zws*eAoLSUlLI>4SAMSj0Y^r6u7m>BQ*qGtmyBN^{@hJ#&1_K_GNVVls2o+SIq>|)7 z5Ef|oE8X1YXj%MBli?QMr%N|}a@H{f_fM1whv3eOBr8XFuXG*9l1tQVVbiP>S{kgR zHW}WU3>yigJmjF(~oHFVPrf-Kj6v-yvo{ zo`#Xu&!;tfHmd6W zkEFBkYx;ZNKUgTK(o!lQNQyK96BQ5;kZw?r29d6@sif4Tn@NsFT5{6eCC%t&BgSCy z{=Gim-ygu^0f*N)=RVhc-Oo#w5<%Tn^5{n9YCfg!1e8*2wISw92YD8@Em@aY=yH(MFMq>z3rT$|=&SOiZOe zH`Bhp`Ehq_)>%|n@EV714CHyB#S)au-^K>)|*p|HPDKKm(Z1cym0lMIGSH(~B zroyl0V9J+WE@?&v@<*(zGX@SL9!*i&qi46L3Ka5V&F2)RurpUd`6)&`^|-^Z(9l>IJ0JG_Q&@&9O+Qt^@{bnnHJKmM zWwtAkl?}$uRXkl29813PPk1VEHq8MA7JS}w9p1iw-h^|;P#BJP{C4BhZu=C|Ry-iR zR#=Znwf3)z86P#Hdre>P_DN6@8cCvb$G`V;Q<^-7N4DLmpLIEQ)pe*O^|)?1{QD&4 z_w7~CkoSH^^QLC6XGhm3Kec}RQ5Gbk ziqshdU*pD1zgS|@x?SwC1ukxNg%wAoKhr`{X0q=hF_$jrtocf;<Wzao^O<78u`HP{sA;KSj=;I#TOVCE9$fR&7dlR)QZDY1---Nrxxx{ zFTab|%oYTJpQW`aK(LSzx_pZb5_AK+wNJPnphq~4d>RaPhBPf z&Uk;TOKyF`r{r)^3=~_0b965m1^RsyKT{_wv~EJnfbSNZjIS8i^C^jmw;Tjj`(ORhoEGe;*Vk&n2rQ zaEB4xcmx|F28gJ(I-Lv+ilrw@A$Xw4TxAXTD3ckDL|ykmhtuJpCb;(mAr^r;?toF^ zM1YY`Es2VC043Een3G}pv%GlD(u&`pWx^oUFPt1B+*yV7ZTf03gGNHX)iaoqX>zv zM+X%M2-)?U`s>6b6&_k21zI5ISICD>vvTV&ZQksFQ%)osP))l#y z2`|uF1x1ekk<~yu(!eHuDOAl}(r-E)nFpjGjDu+vfK`9nXC5aqkec$IMhr-VENzgBjORs^Lx+oigpXTz0ht0>j_>?wv) zFZv1l|NNOg#(d9KtdAkwod8KU6JVJzMq3%mYD6;XTn&FZqdo2d)5V#f13TN8vVox3 zbdHJyM;`3{SKodO6oFm7l*~-^>_h6`&C>kys?S+wJ6GyfSjiR>uINnt#g}6D+x0Am? z^@*$c)@#Y3kXQ}%OL<_`Be7pDpID?g-(J@CS1`M**%mX`$g~?SNfPFai~RwPD_D<# z{Vh|IMgMz(x*{Px#lq;{g={P#&q)U%=D5r&6L zhn3n$n@G1Gpu6%8xuPKem4b75yocEe^Fay&$L2Mdw*(_)Ij6UwE?bu{d?=Ob<#z6+ z@Z3%XCyJ1RNL%wSAS9kcVh%#MuGwO2gpa$C51bUAWbuY{I&%kQ_plFqJ^Uske_s|9 zs)5?IHY-jw@V0Wzy8v)T7K%azVNPKtO1iM1%?6)_bZ}IUyQl3rP6r(`h&%1^d2bch69wqE z&TVm39hdjE2YD{y5_YW=U~6SelzBQyD{t!DHtOuBH#4~+d-S49R0f;JS>WgA=_H;>cXo*)sx8C zW9P983tHxW(@;meTB##PkSKRH2HJUi^PdG@3=k|5bzw>>$-5A9zBqhju)Y~K{ruGx znG|MBU*k#tZ%Ro|%C-rM{Ig3XXuGi8<<`dlSz9`L+Fgi;?GD&x?eNn-V*))+4r{1h z9UQY{F((8O%nNLAW?tIVF zGD(Pu>dsBdXF8T|PX)Hp!aiJ<4)J|HyQIgfW|A zZn?Mw5(W?#@pOZ`mbUMXnPb3z9tc-%r8IM$+Ba&4KVuEp8p2SDUfLXMkjQ_maRFa4 zz2f7Y=SyHCT&us3@_J7w3fI zMYjLE8ZHoJ$W;#HR|tn67it>N!&N(_0vrv+YO!Mw>^pYb4VNkc#`1_t;O_@+Cx(gB z{R_Bs?1(t~fa`40N{aTM`Q+2L6J_~Rq7^yyq2gPMqx^4lVvqh^Kdop=C{U4~NJ>fT zR*x}%GxhYz!oimZqlX5oFq}qN?Mm2{@PA~{-nW1K2|t+UdGoq;n(T=k+edt_~TO^*PF#XC}5!JVy+CrDS@XG0RfjM%~+D2Jz8}-ev{9L~|l@ z_-{XRP7@dT#@yv&4Y)JkA?upO^}j|&Fgy>~{7ud8xVZ)8Nk)C4Psu!c3b&qX|B^hR zOytbm2V`vSc`XZAH&?h-gIl*~NI(~aeYyq2)bLB;Z-@Ef8=l&j%#;(Jm(irgi7hbDEZ+97g!Wf0d9JHy8do#ry zo@=~h90=1$^mbSfu#Ok$mH0^iC5d$pg(%q}t^e!MK^Umy*SbOV1KbYacz3^s-v7wh z5;_z?^3-ouoCY43{= zW#(*+?+ZFEXuEFPHRo*krg}69R~KBR z|JW!ys(z)&iB%7M+ha8Cb;8Fr%E!#>I${G%iQDW3z^4z}&&8 zC5{nq0U6<{ok=6+p~cs>;wsgPsGGpdoCXJqxf+hw2J(F`-(FOz3#)N5ao>sP)BtEN zFF1VLv+v`6gdd(DX16h zS!`hbr$`{Gd7QWd2Hx<8rFik1b;K%=-J><)HBMf@nHyxf^B6j+k)`k(a~0qG@}kT} zAhB`?S-C$|@O=h|Rz36 zl=->;E4DMZPcK>h+oJJZ(kjpc|7gD6&!I<@AGHf}Q+Fm7J^wi-Wpu88 zT@+-<@*z&VMCviDhr}Fa;oITsn(4-?q3v*IJ1mi!IBq&wnfj5$Do}+_zXZ(mmI&c@ zc>+VCLh_Ba3#98r)+56dIj%0QFi)^D07WMKvR(4^^%-75hFH}!ot{e;$ zbxyQWE82&YE2=4)_$0$N#|g0O%n3H=l&zRqZ{P^?XFlY`laq#!wF(ymUXmF4+U_!6 zHdCl{4?v7e%!2+<*J_2c$QkExJ-J?3# zW!^aHCbS(;MeQnMEFXbr>y`jz_pha740g$ndyNKxwLR%yvT+n+UssU&&4;g@2HJs@ z0J;&wYWFyD+wv^1+~|BSkgIES4!X*9D2Z@vqrqX&mFgJA{FL!-dM88VF4Nwo%8ngN zJa=%rA>-hWq+)fATxv$ADS_U2O^X;9_CB%k|8^PmBItky|CTR?z)CF&4@R=`N=sps zgHsRcZg%}<|8o6qTVrLK-vCQw|4d8)VeksLiTC~eizRsxW}=gBO+)CV7bHp!^wDH@ zveljcby3NkkQ4+9Vqv~1u0Yz+$mUa2)9ibtO}V3oGz;1ann9WZ=a7{Y?)!2^Yn>SzgMB zlbxBaj{=q%?)D)&K;^A{=#6LGe_9N%K{!G61Q5@Qe4GZx5>rujLP zjeyv23^$2V3@`JVwh9ycx8AB2-ifu2^SkJ<;{bKX^~4NSKmHv2o{X-gJuRG2d#hT% zAUNTwPRr`3)o5vQ)9sbLp3tz3%Ntp~x+_3s+zKc7;D*tGSPU__&Wak+zbp!+_lq1f zscxQ@r|`FSX;HOh&`pp!lzY9U`P*Ljv#nljwqONonIj0BdeZE0p}jr1yWh&Up zX{RfYtb7-JxzM`h5~ifik?v2i8i6ZR%9~;W^moV}7VoIO^JXdch)i)F%>bgkg0x>S zQ(42Mc14Li-M9k0GGrQF1BwuC(Of&8Tf{A(BzwQhD+p&duPRJBn=B>Q~Q@CtC4*&!ER zy!wf|-eW2n?UnY?d)mt^HCUeG)?kLL%GnX^d2f#7TvX|xI%e$TQE1o4Qqx@Ey=w;j z3*sY*gZa?O2)qWa5|}rp5EeQc)S$a>sX+@D=ybTwI~9rUD0wMBw`8#WS*FtMjv@aFto z@e_7Wv(5K~rESiW#jZBh&TZ)+gHt}H4fL*wniUjBF$@vmqVd*dS{8w?0Vc7#uRkmO zmVS3K^iklMzGefx01j*- zV&3PuARzVati94SSwFibWzp}vrh(bv^|3s(TTv2|5-lmXB;6Ho)^PVF@5!&f#z6R3 z$a{))OM4z0Q}>-px41)H1*%%j#?V94t;P6ax1zvVEMx@*<0AP3FO+ss$JOOP6pZTmtZ2RfQ860#N{~L1IZ8 zfc8Hd%zDu^Pcv6PeP)uRA;N2}?Xm~`)-$2{+A=sqU}uyw%iPXLsvfCYLuB0q=(K=> z<%16Y#*K5s8xf@3=FL#HrD9RtOjw=XbvLS)&u`>qS{|^6>#{T6Ncda%yn_k3m$VZE;tm^n?L&q?+8@x5%; zKg1~LYJnB?F%ZWplC`c0dKVK`iYmA3E<0bkWy>PWTgoLjmlS@rW3t|dCzejc+G{}$ z9Zu9P=B_}eHS(r&h9KeML;hxfkP9u0<<`eJ284`eJM{ea`wD(`As$(^UXtre#I54a|;E->^C_eYY^@! zGSsfc*|vGMRyJ6rhGG(|fhwMUxpD1DgkUgn=Lh51A-|bTvX$kalgR2(rOwUoy z*ALnZ1gTDr6StKr!S`_#cxzPzWC~Or-jjlcM+^T{D+Iqq--t-LX2|E=mUD|Dla|b( zko@ZWIC^)oY~BVD)oqI{FqDS<&%-mh;ddO%i=pcPMfpHvh`HXOIC_lSnw}f#c%B|r zjv(kk_&mRD>?dcu{o41kFYcYa@ZU<2wtF6bB!`;4Enx)GyNlncb%xBj0Cca?dl!%q zwqWi+(dQcFEXt&cRwYrAqiE>c0cPxB*8}NTVT;f5_tuSB{rt9hXNET@QuBrH@P)w& zgcKjwbEa#`DnVB@2>*+d%b-sh>z3A|5>#{J+CMc7V4sZ!S&v4qRHsB#KpsKc6}|C+ zf-f>H_d&N>G`xm$_ME!1u+Nj9jHp}}80e82rHK{%mt&gb=Q-(XX*C18s@j+-y+hh( zW7D`SFF7aK;x3cQT5RzAz`%hrJ&BR7*DAazB?Q9bAW+U6N_eFi)|#)C_QX|j(|xm`W?7h0CDK3Yc`@E4E$$h7bAhcg?e;u~{`!kjI3l z&uaJ*C*Nqw@SmXoYi4Kkswl>wVb5`{(!_ANFcSoc=Yd$Kl z(1x%5iQ`!-CqdD@)1M5g3?9jOU&JIgUva(1l}JT(HGThZP1N>3vaw;e5Z{i@aZVpu zGiH$9i=8g(2HDre8`-TpWb$aaG4gM_^Iz{4kL;1XqJwHp-F|iJivtTHR_y%OjfcKD zU+;~AfQ+#_h2+r_cSDtReaOYK{Ut1Z?XmQ2pCAIMUp@zMDpSM7@&hKR$XWK^YBGO4 z3Y=o1A}N!J%Jevpzxp=+mHGNg0U7yASyCd|2M+}rW^z@*4y_xA5zDH=JkLEA)8aU%@$p(A{)+a6&|YiunFUXU<&=!`30z1 z>Eg=A%-yIc`7bxDbM8x$#Rq)7Q=H@kH`bDCTM=nfsdc~`d%$mijd7zGBP<42MbQZj zlQWnOi?a2w9GN#dz2DA)syH%s7hViTlO3A#%PuqIsL<+8pF?wjrbD>>@7C=5=^p#l zN29I(=Qh6uW?gmrm(o>#r5##Wo$`JbMH&x0ZCX43)hv+k4%(ukwft)P`b^6^FdQ4A zAaR+Yl3#-2dve}*l-?VhgMr8V!aySrAG;TrsXFGH=E>^*;C@^4js=zZqU!xEX0nsT z=;HqI;Al&Lrx5?VIAB6c!)Pl zUoOlUZ3*PlIu(0p)jrahleYep`SEE%b>oIrJpd;121q`$%M>`H91wxm(~r$OMQv81 z{}J;S%M6D%?kYSA4|FLLPM*F}>#HCzvP@)Tt~7glPgWpj5S)*jiuv_4oJrvug;`~e z&}!N!|BvYKH6F{yxQ6mh1$ZRs;ch^lR+Imq4}8BT@>!+z8p-XD4>!L5T)qD2ykx{L zVy^Uc162A-wB@)!{dv-6H69jA5`%WkOk2{t=!B5Z2bmVM0&>e z@#qdgTYI#exbMiCaQ`zXQnDDdokWAok*iT~N)dt^uv2m;!LkK=$#G7iYr@tX&o!cC z?KMghryKYwL)cvnp{XT=Ki1?GF5dQGUF`*d!a+jgDC?b0`X3p|DH_LVR<#7%oS|-+5n}SKaix{RaEpp#ABP#H4Z5RB&{?z;V?6RQTaH$etDl+i)}|xF(b@A(Ps7Jn_R+Sq7m^FNV@ZpP5#EmU)`YANexKBK zRS4Gn>O0gurSh|6O;s23w0L2yp zL<=F?Nr3}CN!yqQS3NyfPa3Ac+E9Eew5vZMvE!4mDLpXb@c!rn)b9Xdx(k=sC@?Y_ z_p;1d$++Z9<`TMadjbT$rr^2!O0kQ?C@>T-s=k@rm;h8$fYjKG4*QWm)DG9JZb(AK z!5u_Od5rmQ&5X!a2zeV%BytN%%_HNb^LSMmb~~;D=1=^!&aLzfiz>t7~|S$+Y1#x8quIM`p@=GhuXo^lSQ2YcXUH zRKphzq1SXRvhWK;5wm9M3YJVc2HBJ2qTJ=T1)UJYkMo>{w;5mFsI%Ucv392|{L#!u z(x}{kU1v08WRSJks2FvefIMiC3xPbtROAtx*KUtRsTIInTVsz(U76ng2r^4?TeC3^ zG$uSVui9U_s^L_dKkLaGYclB~}kIrqppsarO z-O>+|!o$4xU+j7XwmX&tCA&YY{WH(rv8i?AoALctKw|PMPLk~yQJ?)crzV|qy4^b( z-gbW)8}vF9o|N6u7Ns~o$3|+@i~R`gnk>g_^7XeqUuHd*_;l$gm2mLM*Zal0p>;*a-yh! zUisGc1Z@AO38P8Moxc^jmF6vacV91#rvN52`UpR~=h1bx)dV2!{auMJUWQ%cog&8g zi33<2)LQi41?mPT#bg_gpC#{9`8luShpEpGAFFjVKLNP>TkQhwnVbYKgrQbqqi)rj zwY%j0$YdZ#TL$_%sy77Wtm&+WtZE3^ay5Dv{66UjI>BUeP+or%#`UaMmyVU4)4khJOwTntiS$@JTfSHhL_jQV_r3q1RPZ-G(5OA zQpeN~Q($Q-b?%L$MM1IN-xB(rWARNtY6X?DQ6-QGC>enqeI$+H>)x+qaw-3%+6(YDy6aT}_T7jRD~CVL_}aF$LrV z4d;9er3SyB0_)^1jaG=W?Q4|kuzY_LDbCwc)ESRC3tdqBY^|^G_qDRH(zSZ1={f4gZXU{AW*`w$$E;B^q9{n}ZljpC zNj_RpF-&AKF6Kd1m5iuoh5k23 ze=D%eDo`Bk6(e$;wrec&o%Fo6IZS=_$F6FOh{eY(&c&Mfq{08qz7jr=cg>&g)g{MV zx4Ds)c`F6+=DI@ZnZwq!SZT_2Z8(1PEs+ROT|Y$~D3asf%~T_1lL9B9BJk&2I6DB* zri)Ih`~f^NpiwF5(=FK#-y%_W#*)gsjC(qUOy2+ClP7PCIGzblGUzgbS^@Rbrl~4n zWk^G@^TUp0lJ5K65#sJ;+u%k3A_7dmY89?Xojmwz(hEl8=QAKb{5+zpto$ztpH#M`Bd#@68{O>#6 z{aiiqs1ue}!9%`5{uO0F-b*v=FXst76p1V# zHMqlZQH6e^=9AD`sIyhfOu&=iho^e&S2w~22K0y%rTG1tqt~2}bN8viryY=4nJ(x; z@mzo}R8W+AqI1h5(?A|ZRe7rBx;+Q}2Ucvt2p`W&Am>t6mr}yd{F!bja${VJztIf< z%AsLt+LJz>Fb~zi;Q$%A)TWq;foFSJFGK@0k^+j3NIvoemuFs2dkTGjc-v)Md^kRF zvvuPx1n`A1;$}1DU}fM!GYyY9XLyLfjxdc}AH8Ra=*vUUWM>IZB0B&0YwGt5&!jkl z1t$cx+YT@ocB3EqOYCjwIdn$^?U{E6lFp*H33Bzod*%LK03-oHtbPphe5}MmQSFkZDHmCkSzlqa<>^?}~T*M%O8# za%zY<@=)KB-CmtAS$Ty#t(kPl1If>?K5qV9kEi2sru2Wp#|T`#Q=eDt{WL8 zy}QYxH?YgUa;RYfZsOk8@hvE-`RQ6vb#R9GPXi`}<<>JLD&Z6))a(=OQ`!ZtqTa=Zjcd0IY zMg6!|t-iO&R;X5(IaaSYLGAv;TbLPTE}6e=*P}MUS$f9&;&g7HinC3Dm$VBb&UOh(6&4GQ^I)6jd!|VPN)%&*kEpWcu4&i# zTGyD<-WMKmG(LIe&-pQ?DDmOB3Ll7fbHn!;lx`R#PvJrS>F=Dpsr-yH5L zjhD8OQKqQzt&Ht*m*Qq$e8#Xym>HbW)*iwi&{2Lo!Ih+5_HZ^M-zXLN1!ALdS+1V$ z82U9yWQdm`Yx6kaA!MX1t)G6WadF9i@Y$7qS(Ic?@4TH%EHDKiWVOwA1vKOc8P`F! z$*3hYSAWrd?nHDU0!@b+DZ0|`aJ#eQS7~O#`f^;Da5@Wnex#kGT5LY`VgJ*mg~{vd zYSYEU=^*gN89@_+b2$~yMZ}gB>Fp04p6HlmF~NQj0x@-fEn~rwFSxy)etFSt5-juG zY_{|FmkZ5~4;wUT!vRxYT9h)L>`&=GnwJC4#A^Yf@$&M9ps*8J<&V2^=R&Q!j$DG= z2%H=Gdiw*$iKU%vHj{JKf>+)eSZQh9svfnZ(*_a%Q+k$0Ym@?V$nifxQWoGTV z9C2!egM{Q%8EdPy^Mf2eoXd#2&rp*=gJ~tpKCFq zE<>&Cg<{xPaUFd=3sC@z)wcv)N0lcRuLl`&*LI?s6=wRN3xB@cQ~k4aUddT`U&rH1 zr_xl)g%2L97*5w-H>FVV+$kE`a(*d1B%4FbZ2`XtfJYq2)7v~8os%HPW~{YNBR&J2 z%jQcX!MyA(%JV11stf`(;dU@x_ z#NPZ+;T|gOiNI~qB)xA_UE(W-I=pqhI{G{6- zKtm+vHbv6IBNh&sZPj=f8gk?p?pTicGW`Uv0s7yn#Q61nM2C5xZ7FNt?%^07*agwy#u4HhlF`&di)o@h+V{jSZ7ftbfLLR0X| zU8mnm3+5)hyJ`Y zYcyt4wPwD{{3ESzX>?LEyx-<`R6-(+y8iu!w(?=Tp(pK^eF87rZWBr?>k_ zoKq!w#kVEu0J*wq{K2K2h*b*=V1Jb08>}AFg#uFzy2x+XrYuA!*F2~*`!P;wt?=a! z1Tg)s{mf*sp^UkNTKDOJ)>x3UpSAx)lkEPdx+(J=HGP=hKJIf6Z||Cj4uH8irbp zp&lZPF6-5tI^29Qf{}Q5hxR3?g(lNTez$W?LvOlc%dhF)|NY5EYqox7t8fCtDb|CJ z#2DVCz>WQmj;T<^(#57aE>w{JkR0scHV2LE+vm?b$5%4ONDVK(Rp7I<#jyBSUU87!DV=5+~sN^ zr^RfPBF8*$+wUrSwu;(DsIP1<-(ZjbR?B=Ec(-}dReS>RW3b9;z`XiU6zIdGb>UQ3 zf$98<_3a;axM4stogkL9yhdxRg*-1tj>${=%xkXq_1=2X`edKe`Uu~lFrX4J%bp`p z^`%Qmas}{Hd<}q_^{if+UF23n+;tsn)yZ($WsDijO#g% z&VOXWpU)82o|>^|eSfS4vC+{q%B>75_9j$M1M|r%Ia#K%DxVG|54Km_dfnQ33ke(m z##n(gEq8Ns_MjKztAR0?@)^cf(l9u41dM$f7%Uw9@q>M%d#ke5XJUAY>&avJ$~FxC z3Vh(t(#F=U3!WnGkU(gNvUV(24c%Wrs}NOA=s7Zm7hxb<7(k@an3h;T{!73{C_Y0UJP5H{ zKta3vP1jgrQS~o0mE3vESIHJ$9%+93@g1w%Jh2jfz8B!-{^#Ah_45c*BV69f$P0+- z1d8)rzH%|s%A78QR zw{x!tey?&2c#dsLp5H@gl_%^}fb#{7I;IkH=N&HFPO;RuEc7+3_C3g7P%Ts5Do*+` zo*;vaRZ?I^^4cJYZ7=@}OSGPmc z(=DXpFQIYArrY6)G^BA5oo05a4eIy-PR}sndFiFmj5MXH!3Pti?UJ9J|E5jF1F{3W z(RHFsYqNcrVLGfBkj5ltIa~^DR{(OiS8nZM%p0=Mqdku`tvZc@?)atL_L8$(Xj83d?Gf}?m}@kTR3~qRUB{K8Q`WeG4-bLHq}v?R1&XVC z38Y&Kr3I^?&pQY6mXlKb!#H#oOBdoZQiWEY{q5XpnGMU5E#UKO1DY^a)387aozg+7 z7o|=}ywPRe9>AK}`nIkHwSEz#!r`RgsWk-)EtEb4WxdecTtF>b&$&MuWcs4El+`O! ze)3~dO<7QK7?HHR93BpfGM;^Ua0s>3n^a^XIN=P|ElfvO3%_BEUPC!|Ebok2PZMY_ z+O&$#EMktDYXSG(DQvZj|G%mY<@*vO>GrJXyh}i%ZKl!+l@2iyYB! z${MOtW_PU_O!O#glmUX?X&r@1JR;2(EBg#Q)!h@`E3LbQA*su2Rp5VnuGYr-o(PuS zG_gq-`1u?h?(DiwEq6tmw4i!j>n?FkbMK4(uo!*uQL`v_`dwtWJTGEzKB&F!kMq|X z*vd`0;%^?(6?Z7)qgO8~R%~ABs%vOK<2ny9Vj%^rQj4vDG2`BqG)`4iuFk4>4TVhg zSyPL~xL|=*X4ugN)ZauK&oj%D)7Luc5A-6w`xZCWZyzB+dt2XkAy1kcvWexw$7QSr zhFgKK=YF#s*PlG^%!xG|{VX>_=@H^a;r7H!J&{jP+e&-?L_V(@MB{BNxuju$CQdB> zD}84h$Py_}&FrZvWL|4QSAzc1(=u1#G?6^mcfNY*&>?D6xXtU%^ZpzAT>`4HWBa_q zn}20VRU@iq%YFfg)&gel{Omh6xq3nD74l-APrlX%*q-!yKYK_VD>@ZByH_qhi= zAU}e_K=;5JK-|mRWX~*!nh@w$sA0wK_h@WkPov=rv*F&d@`meDIFGO7(x4AM+m$`Y z^gY%fZISC>ASz*?ojyu5m%QS+Fe|8e5?N^b*kD^ zVD1q~`+0o{oQh8&r%Up`H#$@~%AP%)Wh$0gM=b@q7YeH?sbo923hgF56iXAfiYfxzythF{X*PzTXa>{DO%h+gt@ zGb)dlJn(emXG>~E@`e(!XirG*@-Z`zE{onD^G5%ZpVUT89RTN#C2VRASBd9^jB?d= zm!}*)La+2V+Ej|Wp+~!sVe{2L7H*5t52W7z>hXZ}dtb|UrdBzY5}8nk7iymYF&J%B z7!K31sqPPy8{Z1I2ZkcP0`BmrdSV&KLG<6&6^I71#CbQ!tz#jcO*DG>&gAl2Zi*1n zRE<*8+^GLuM#ZqE>BD1}59ma(&p3NWs34JZbkbA1`#-X3zRs11*`K6||Hyu)bT5d8 zlLV$*yB95a(2>1B5+Tgpr5EY~Z%)&?^_F}pA?Zm{V*We{S-A__PblEBiG)43xUhsF zHaC>=NwZOf7QJ{7v|UA!-Z7hM%Dbqo)2(#0{k;8M@um%8x81{yLx8!tXq-X}s012`DO4P<$(R0)GnICKaFwOfhgx=Ui-OX0jj zj9amsIq))JB`Dzq!B$hDl@SvBkz1;0;(GL=3hi5Ep=hZs@%~D=0=YziM&*;irn#%i z{r>D>gV)R||5BF}3X$cYa=Op;Krv=*g%e=@ek` zqARz{RFAnusi1fD{_Y}R#0?um`Rbqm!0NM&%eHuTOH^2^fYnopFnMkUnw4mv@ zegOutIIZwz(M>m1z@Vyn0oMg~pAhL9fqES35X6U#Atn^}F9`mB~aVr^c?`>s2Qc+kbhd_Uy*k zHAYr~1DS0y^!=-M0w$$!p)pRyS-4$Q~Xzkdbk=^3!y2vmm}qIoopx zB(P*&jXk18&3vtbQnV`fh(c}(ekC9A9A+lh-`JLae=U0Z;rnZ6dvXC&g)hEx&m!t1 z{#v$N6#gS;Wydm9x<|#zC|*jK-`qG=9urT;HDCh&g09O`1Y!i&44XOO1^+}$7E;ni zmm($iPQ+IE_s{xEHWOEb3>F0LdB$DR;PoJrAV!cY{71sv&PCp9basr`r>|}JAYu0P z;Y8T^Mf~-zc`{rAU!QBcvdcRvo&+K%$IjN}`~o!60z|f_K~>uayC}E0i**&)uLURD z17U*D?1hxPWH)iHN!d{ymTqKyPqpyNGjVg4`4${2f4N!1Ko5h{Nc~fFgeJ6~`|yzK z?*l{_gbJ5_^|n%kd%DiEIO>N5?|hA=e1^3034e@v>T&A4P2SL(%|tzV>VSVljs%Zy>O zBpdoR!i7qTIK6ZHnmYmLoco$~Xf`!w_&D-h!P?by%vrGLvzMsHeY3Q!>-UOmy$rO} zEULaTRG;AmQqzBztPdn*FE#NJ{ZqASpN(Zn9WBigWJd|FCLru!V4QfJF4F3O#30f0 zO%3|&LXl7Tw{u38`i#uTP75$rk^IpkS3Z<1UR$WQqT;bfNuIXqb--ml1ka7Ub2Ue zR6PP6p9;|@B)Ix2$h+{qrd?e=w5r+y)uu#~cnMy_YHzxKNUYCT%ye?bI^8{|2evaX z>v8kNjD#CT5hnvLBU$DtZn->uTpHhdY!oD*o+RpQXxL(es%traUbt4IJb$cwS+hqM zimc-Vf=Kq{ z7}+(8t)t(y-CZHHofbSb1P{KRf_{MiOX)_kK_2c}(UasI!#F5=uBb|_Xohk^4tS`; z)@$PZ`8^ao)3=67Pu?dQ9+XL%LgrMm2YpGZI~TpMxhSkohE?-qo!i&sd6&udtjwsXacNT^4Fd|nP-$0+)R(9t zrK5nSz1wC)Rc#-mH+WiTm>OJ@)CXmQu#hIX=qezO!2;8tT7O3w#E;mg&*l0Rz8z1a z{5`6ww>xZWnprH7@1Yg*R%^nL>wh~HdJ}1zrATAbgMqr>ewo&$Q-qfDUGwG3pRgBn z<8qVyX8ruGv}6dwetk~v9w3K+v|ILb!V&`DQBbrVP#TCH(qVeLo;i~gXHeeEF|?sM zb77?6@mcl=y}SWt*7#QzHB;2WUOkEYDr05L>28>ch~yLyB&Q-EjF7IeDJeMx>6l2jbThhP(%sz~F$Np+J^%MJ zUv@a>+~gF!9FZKpwK(s zW?C6;=$@!PwGS@e3sC2>c)tI{l9M)iP6D=dbVEtaL`Sp?I17FSxAmVD@|ye!QsXN? z{+iQT`T*ohjike!#&)Fz6~XkA?MW)=LTyutT;y?P<&r~6!Ph38;V)uWeWO04I_3XO zWwu^DfgNI?acLQO*9;4-$GclDD!>kOOay(L{}!-&6;`IY>NV>8oin$Uy|YQ!03D7W zd@_D}i|MXI3PWwY^ahFgTM+`rdxUh}UEDmXS$CeQ|bgI9DS&YV0Ewx zmsgVL9b#PPK#8c(FMZz1Fu{BWUfnrTGTSAdcl+GwW35tKM+fWPlZBlX@j}X@l%p-= zv=hMvClj)S2}!E|ln}0gKlv5=Me!bAXn({aJl%j_Ug_4yq#5Bn)`YMyWcT#RrdLAV zSk6;9S#L$K>NxU4vcr{DbXj!(_n34tZ;%itPg3vu&*friuNXn1Dz>}KmsUAvCuE#o zH~8tknd$p2)vO9n zbR|Xd+U)Arqle24RuM(2G(xh{XVq0`LBPB$sz2?<|E9gO4Ar)9#CP!v3B&q>%N_En z@KH6Vbv-CIPSEgAEe}diJl8YK-b(|YE5m=XLW+#d9cJhFYmFHYJ!qT}{ZxFX&u=f^ zc9Z+K`Feu1R{Epd93RJ}Nlk{QgYtAJ%|mB5{C#f=O?*=%=Qw8sAIQ^n7flPdAiA%x z@gE$6m}dI!1_-SE$)Q~91?C%%vy@c^5)srJ`Sw_W|6{Nl(^G*uhPH=SLG6aKJsHA@ zkEmb2ysAt;{1tr_F*|M|UDCQR9WBh)p6^b30c|Tco9X(TZTcb4t{`ym3D*@gqOv=4 zoY&m;??D#gB^)~lpk36<0C{+08-1xk5*MJaVS^6}#$41o<=H;=5ly1=+q3kL;J}}K z7P;Q_~s-yGd6<3>iqvx1U#X1O=;NWX>9bB7f)kr&#AVc61~XU0F*M+<$K z4yrQLzgWb_w4AdWrRp|*D#%WfH+xqxCb_&YV??3J%Ya|UmBXJAe^0*%NKbvHC|+z1 z6H|BCc|Ag^-=3Knbp1_!flK`vh>th|Fm0?(gpI(HWOG$WOhWOm z*hkgQQQ`vkBK}b=yxAUZAI{6W-Kgnu`eQXsn0Rdkd!vg7|5WMIZPoTJM{ulL-ZNi` zm2VNJHb1@4OIZsM?x)Eeh6}dQwC-UKpaR{$N}JyYjE?szunFWVJOF_xOkVMe>br^Q zlwk@j-Z9I;&lj(-^W5~It+FUa@f?*XP5HKA$PW>OeQ3o zZXjC#KEMeR&?+qA6nUz!j^>n^^eUc{=D&$r>Tm82xR|;o;FY2nTOb0JP7gA>cdrUx zeyF_AhQt{|rY4rxvv?QwR7v+gjhI7?*@RWwRj!Su&3kimMI=}&ohZ?$XZc9&@z4L< zZ~8~oy_9BT2x>_K^r+@HRX8pZkc$x@(8lFRr{}82DP2l$ zS^v!ai@A)!=Cc~E2=%dO&o#{2DU)H7trqde`h@!hBA9v)1bjmbh+ltssX#dqgR%@> zbv!>Vt7gJ}%yu|4T)h|Z=PJXG!%%ihKCYWNx-qr|Ia7P5`#QI#RYs!AtNSRRW2N$? zmT|-l^26vE;GFVBI^4D*Vf}s9Hi5B)qg_woYh@PdJ-09_VIxg&DCiA@?x09-2EdFZ zGp5uT!Yu~vu=(Q)p+~13d#c)FMJ!h05u zgqetLneFCi42MVVBRUb-xYiYdEACoo`msgwAf-D7byWDv{HYd4yWPLu~1f9M>s%>u>t~ z0g=eGSZ%kRXNPm#zlk}^*g)hpH>N^BVe1jURG@#)A*i2XDmN(?cJHa@D%mUz{8MVBc^EcIBZ4T}>uhM?MFPB$*)CFm0pfn#M93(Zf{|B}(HBKQ4SZ zVfYVyEr-M?I#og@aiV~%j@Mh9B3jRB_g#5M{yy0ZuTg(`6nme-x)Dds-!i7f@_Hhl z5M~4=-aOjg_k52}?39T)kK|w4EU7sDN7aMgY_iTOfV<%xF0x~mQm_`aMr)4#{!i6ZC-#;+0s(h`z#Ej|U;lhTG?rZ0Gv} zC>lV3XA`3I46epoIbKp&c0I-de`|ezZ(&q2GH5?61AdV^DnD*BD&_`K^@>AbqAql=ui7*f|Yi9U#4`aOuzA?hrx@Nx>+sWVgd@8j1`voU`9kBY}{3oO$0 z+baMl%dNy)%(G#qkt=@lB~F5?MD^BQd#Rd`Q&UGyr-FB+2_cC(Vjh&`HDL-Ih`jqX7V_a~*5PKDPgg7bEiXQR%?X4qbp;ev?0EW5ahHuaL~YHSPVrEgydc#M z>iAv18Fxh}$BXwaeDFO~dQdN7b)!T-5x)@LbQjJYzq`P!!u9s;{MSl1HfEAXW;?2$ z@CmYyz3}kb8R+*azY=`Pb(S^dcyaGw6{XL&n1bM5$S=guH>SjpO^H1#iuJzq0mz$+ zxUryB7v5sbicYnWJ&`YLD1j%u+4^n*XS=p^$+8* zUKgcGz|!7Wc>Wmi-IO9!XWZ$Vq#7fbzMDQLI;j1V7}Es|=aAJQ%55^c4vW_1JJKj- zt}iP-UxrNh_)7aezB6*^u$Ie5U`5k+mvS1xp8H{Ad3s3r4JqN7|aHo-6!aNKeOaW|ey zW)Kz#&11bj{uf~shgFLG9-L#5PWBm!B&sp=p`wy8hPkrvAxrLNzWm;Fqc$gqKA^$2 zgQuR;+A_3#{U%e+R#(`VS+FEWIcmn~UF- z*f6XFnbtYwVq?f|p@*Z!f^|TW`ax^z@95M272qWnlKF^n!zyVQ6*cd}&JE*0)3%}2kRu54r_nZ6eVbkOr-slQ8$)Ct1a{VwdK!ha z{3Pw5^%M{4LWQ#~v@7fSLHeTUUXxQ*t{u)*bvQh@^y0}j^5#-bOl!kIcubyy{V{5` zf;5OeiT1M73%(wmiGEYq7KZ*t~B{K|EPk> z@p_cQ`Da%?C9z)kcTwjmBD|^V8O-TD{=3mkprSW zP#oO_+Y&MW&I^ERHeQgnD#M#cGa0mRsjM#!T?SnSy7EeNql~^Z53glh#mF8h*`1Bs zCQPiCyly<+tk`vW6qIXM7ugXP0&{n>OpNfKqZP8FS(}8HqCB{a)U+Mh=;;v}>~~#u zt$A~ZL`*nLjhQ`y?8tK(#1EbJ`!g@zW)HSShRuowW5uU4~f zEm5ziK*1{yp`fJkRbAZ!+~135F&Plr+cv$0k*TVbn_aj@AxwECY8t!rU+Ut1lwffe z*E?<>pK)myGd~|k#>`#v#98buog0uONiuzGljIh_%RnOmzp^y_HwxcHsSoL#)A zv%ABuqJEhJ$y*I!MfM~u_R^LXo-|2|&g=43)by-kzo$_inEtimKe5~Ly}oDcR2P61 zdofwow->Qs;@16invo{q3fe(w!gE5>s^kx)>4@Gk0BJu9gqDE`97G#DcN_8!5E424 z*tf_SCR38mHB#K~>6&=;*<9<^M-BGg!)H4`YONgAEJHiiCEI#*qvAX%#pbMDZw!Z0 zr!aWe#jah&Tw4pqzi=pio{m;`Sjsm6E}#AB@3ySRyjlDyoil$7N%~ZC;wHX!PB5e@RE(%SSz*~MbmmUf=Kvdv>PZ^P4Cuh$H4^bz2|3VC1X-9DQ z53X-7ysX5nji>UsHt=ZF84LZgi3p_X{Aj=a2N~FugoBjk9BJCIOdf;ko+B z1F$t9c3e!Kc4`6NCaw@Pi5W|vdqndh>u+#oVo-+QG~pt|CeMKI%3ML{JYgMYSb zLVC=Ij#}>xn{(`V-i&+p40+!f%MyqwEuk$UU2IVRh7%}K5hhA6IrxCDQf9!{lmOeb zSLjTiX^|%+-WWH~N535Y>Z{V^NR#nLDtGAy@x(aR#})bNO;|E|@$*=>%dU${>mat8 zOr1}L{BGdo3}3;}ssj*G@I22D+;r(otZx}aW9MvV_{EaA8W=-E`2LVk+$&$jS-HNYvj}j}6e)>+D zn~PukCaC8dniMr)T#R`fa(c=;-Tk(M8d8yBM4w58lIhN_ zLO6s7!zmKJ660+b52C=ggy2R?JLub5x26%*nckc7d|tO?f#@Z(JFvmm1zMu;NWOvD zz2N^uIn%1vjsQKl)9$6^lCKsI$E4{eB?&(#$h0ty)ol7J#L%enrJiPw)*IQ6-df7EoQ^rEPaQK$vA&)~a)aAmq*bgBBb~rguKIrgg^COp zf}5)UuD+Ki?HMIMHFJDf_K2@!30=Ym+@U7pNcq%x zMj&o3o_sfkpvTaKgRaD(@#U?CM4ClxxQid!$X^UOHe*-nN0Ga1p3c zt$Pj){BfTvQ2%jiQc_P&Yyp1v|Lo6QfI>;%A)PV`x_*NGf@ZzW*l{>p!jVeD zA%A9>_6yA{?Vfa-X5`y>rqhg)l9SW43fPBSbu_KWCxS^y5>Q6h!54`9pIELqnYj~H zw27=VYMcB8de6yKYYy&kHYJc`vS=QAc0t6t>9br$fYWair(^Qo$a)nyu}E8&mScbA z@y;C52pT#8r@3fCemnpeL8%g|ZBDUKl?TLWx)+aXiAcQ9lv{YGm3!~>T$QksJp20$ z%g%e%abRXvy&x}(?TILi&m6qi84|L*n!jW-a2F`5`A3zCs#M`3dM+(=ph7&Gt`JLb zKj2S)n@?d%tlpDf+q7~ly{WlY&>$s4hogY;vW5zWAB z17Sr&iH+@U_CE>JYw-gYH)kiX zlW7vB@%Fp9lT4%HwBN`}fvoxt1}z^1f2?tN)0CcS~-o}V1TiiRdJ|Yz>>vN6d z-q8`5nMZc^17q!==5{ax_;wv@C~Z+k z4%qgEUAv@(@E>)TLq}DLiBD);Q|L!Rg)H zLTR@VTY|MG`R)s2H|UhVpyFdzxmdD5*4^)!LLQ4BjXWSX8Wb?z|ERXKSGr`5s5ddk zF#~}7c+ZmX43CVELf)XvW6DvXO1v2+M0Hij4Y(ifq+ZEcciON1iu71nqW!$AP{MbG zJNc6j2D~b4M_M@FeI zc#WuD{6R3kWRR*)l>YP%uajEa$;k0cVrb6c{@J5>K-NX?cNv zhl-hjyww~G`1m0BiHd|NB6sm81lJfvk;tSq;RKf~vWtP*o$8yK_JM=lX>1bLhfl89 zNNrsml606|7bD+kgl(43z?WU zs<^VvlJv8`Ry>@EH`CPm)6Q?|M+ZiaK%b?h z#7#S7`j-5962~B+CiV6HMw!10@{;L`KGh`Wl-23cu(l3`Y_z9Pl91>3e#E2hl5R{;~H0oEO0alYftbtE>R0p|2lBuYzN$%Hy zX@#=Rzk9O7{x))gTX9+bEXsh;IZb$|>o_u$BFFkr$QTgy*q}g3XPxb$0ZZW{6%jDFDmnEUde( z{Hf{UH^@w`Fw7@q|DzI&lSWO3FJpIyJm8kVKqe5&q+m3ntQt*>UcF2EWckk?(ZI>$ zdyI5=+Lt^5dOd39EuMpYhYO^6LzHY}&Ns7~nmHi+jo9P|!a^mrnxWOmwgblPVe*ZO z{3g&G04`OfJ31t{AtWZJt;-}X-Sf=!X5n{jm7$kA%a57R6IirsMOUVad^$BPc~d7@ ziJ7!%2VHAW^IpMD(k?TS6~{!f|JT~!FU=FZ(Z*V;^qr6yS82T%`rp>%C4D)mi=pBE zhbBr1l>-}ucx*|3?IQgQwvCYXIAl?D4~^T02C0ZOqPi>1t=gMF6ESR_CeR;iW!2=P z_^UQoV>%R%+TL6sp|}>ItH0;Wq-rzP>Q2;BVFU#{vc>5Rl&o_RfZ)mb;#9J3>yD(d zySKj6szBrc()KI$Z0aW!L%VOvG+WhyA4gE_ig~pCtK3MkGUu02`lATJt;1H#2 z_}r&UjV?}8k}JA3D|=}VMxzxMLedo3LT?r>)Odb?+|qmcBOrzK$XSZrsF7{Px+0o{ z(Sf6o^r5MmwvX~hj^=z$Nc#;~?;&8m6w$V(DL}qLtFT{|h&s!2kP8;w#>SLcFRga1 zh$}F^M~HqXcw3|idT#44@aHVZ?v=&J0?NJa#2jIA#xBdMP^DJ58!k-MIZ%g%9q@6Qu@d<>;2E$bwqHle_tX6ApWfQQr!5sw~PuGhz9Zar6 zPMnM$34E~X&0XP|s{^hTHj2S*5VDE#`1m)-DJX$L6t`LgGs3?6{q%C})Qs6oI=kgU zU@0QiDy+Q;>y~R{di~9vwZfeOG@CvNW;KYfOc(5`oAW6~$0w$iAb>$yk+b`{5bH-` z*^wX~H2(!jY%Cr`NUN?-J@@8**#xg}82x6Y2%)mh|Cz=A7^qr0`L+F~^#hvMs!wzs zN^-d{Y|3=r0sSu~sSBdQJaOEp`T~C%^yft)f=vVO6y*3b+T!|smtRMF=<0*Ej|4AJIN6&@AX zvUEKQ#?Wzm{|Y>pmeVyYc4NHdup^h(5qmyzc&Hq4Pay?B*3LejhEJU%jgFLEmss{r zmk)w17%Ces@-m0XFdX(xV)_vH6Dnl}JD=CzHQFzGF|F7pe+x!e7z%S-aZ?T$q@ zKxkP>|M|i4RVyV}{$+@4$(t{pt*U>Q`(sPX0ZW~G3YQucA2|3E)#4%j))Q)#pHvKc zPiP`uU3SrRooM2xTK{tA>--mnko%Xv+zB`spnCX#yh*k3>lc;3LKv0ytwY~eSKj86 zfwpnmuSVwM$0*vZfkI-2VdaR>U#tBSMZmsuX#t*PbW#xET{Zfm>C%8@`TbvEvQpG0NZ%Un(E4_+Lb@QZnu7YONE7+T>oCP{X+6d$HBm*+zgKE$eUD$ z2h*kmDIyKY{H^UdvU7meuvWq1AJuMOq+q*|A;kV;v-M@Z!>Q6v^ZQ?$7sp2n1|!cL zO1>|z(U?na+`w3tT!B9(sv>dqOW44;e4<0)K9PVt<63Q6y}a5v>TQVD$A9THg{TZMxusWjfIf8G(U-oXJ0InF(n; z32r?3meKOIuiUM$;E>;b@P*B$qsg{cpG^(`rWcx6O1eYoNRz{>@18D0BRNHgCCkv; zc6~**TUna`b$9o>Npq+x0(YKtTSS3wn#!G3h5QawXLjn!Iel0GBNrp-j$m_;aYf?RL)T7y0PC!3ApgVJTQ9F|~Sc8tt1DB$u!A zrm@7Werx0e>5;?hjj?5c`1(x)8i$8TpfAVtw`fW-1xl%X!}|*S^GCW7wtTTQS88{G z;%}-CRqkuu8K9jW_NErijFd`BwM`ObR)JD$iSso76L0ues6o(k(a+k!cL##MU+o`P{S3{Cm2AJz0Dd? z;qZdBod4do5E$M27%3bW>d0lBoTAkK;KMh1aeTAV*Mkpv`EnYj9%J!9#idX~MVlf&s) z6>9>D0v~&GlzL69uFnDcK5F@Sr{y38ZBcdQBy~)MN0>lysSGn zgx#k7!soSnRW-z;Bz9e~W+x@dod)^^vLpI%p1XIA()SiBbi+4{jbWh-7qgMK0)0S< z$XBrbw%)-mgn(@1&|=+SfGweO^y+i%r?<}bB0e9?BW#*uHsnJHxw`N zK6#=vtn>%53AZkG+xQlpYR7`?=P`UAu{yV;;GwQxQG#Tir@qM+saDF-F|j1TU6=%2)!LSOAGE zO@rv7`ECBRl}=e&sR*%`FpiGYTC8>qRx{|0OBKOTqStP$AS^ki9(JOXyolT#OZU?E zn>J2(WxH{D)KxjHO+Ei*rBAqJcFLjg@`m*4cuaxbPVF)3PR4CRL<4|~D63GxHOG;Q z-#w7D`whb0nHI#H<}`s3sk0M5g^!UY7Y7;sw%3Q3=u=8kKIUP4HoC?#@yVMhPKT9P z;J(=CO{gaudm#yciP4{rOpjY6wyZqDquPZ9+e)W4U#WjWPqSpp;dElNHK*F&a!g2Y zOs;s7VrN)uB79y&eWz6KlcQLFrrJNxy1zXKSR7ao<8kOa@P|0GK@IL+#`P>bxNY1A z6JswsZ7YUllKGh0dRF6p*!oLI<7(jjekE>;p@o-zyX$$6&#o)|7yRL6vvie?;j4iR&Pa#N5lUi|jpiGP z1y5f}h{DRGdJD!`LF5Q2f|fMu5wp9+dSZz*DX5q4{nv+6!XLk{ zP2cZPG_LRM$Z}eCk>kwfW)?uRZ8_}#$!_`?-o6DMKI<_{ioQ?E=YMc7-bpR!&->;w z#2G6j5LGtYLR`Uzw*luRXIcN%@;Hs4Bkg{%_u>gvWejP$PvklU#E1&9;sOq_p&cW^ z4@R^Mut_R3WIm$Ja$Y5f`BNI>pGqBwe)Rmhpq5l9+kGQNgG7J;AXu-#&B zH(r6_Lwh^`qR_XcG2p^(cSG)KY%yiTnIzna4VTUZ8fx@(z)!Kpv^5ZX68)Xk3Ee_#crHu^$@9rZIhvUbef7;e#jflt=MaySJYLjO(&7j-JPfpXW z1}qA1Qs-l`Ep+P4pKZp~*9rNouC8w6@sK8d4OdH5yl^cFYV$2U%_4#dz&K6Fq~sE~ zxsT3M2M-Doa!*=nU!_sW_HL4e9mup(HAW_krc1M%yCvo?h9{!9hu^YDemxfBJ$F=Xf1F8dD>lJ z$1wUkd~K7w)x*Y)k1B#z(q1Gjt$x+w=|2*Wk6Rji+Ql6BXQ?4L6h3Y zQ#rfwl2DC-xr}8bQO>eO#zFzOXiq!VeKhNWRu(ZvBbvG@qK{wz^Di4TmaOzh4Xo~! zweeT;k$2PY?9`limc6@sjt)bX^R>}Guv?&`h;L(VE{@tu5AZ!3alhJt+Z}G5UaAv}+$+Uc^zDfIV^bH;%0MMl<){8u1nr}#mrx;@7)8;_CUMs=Os#Mg!Sf*omZ zNOlX`oB(FzZ$W;H4-Uz)$O%~^_AK*f*2nR@if1%7S(d+pl9GEl>3_Rb_DVN1){w1o z3SkdD5{veoBmx?H?JC&EPa> zQc=Ljc$k;ZXyKZ$inXJRbvUdpHidRgMBmX>CJNd?aHi^N*WD`+t~xl4eMv_Q(0mXbU2X&@K^|Gky)OD+K@{^MgeZjC<9+|( zoTVcfN=GC?lI{hsgYItTmJhIfHo#tQ1$>lMtaTZYt(De$$oP%)4G4crui5BKz@dVo z(=>!aa%=U{43FDFTBs|VJ#yBB zkM6jh1J7F?0ol9|31ng;3Kn%(nvpjt!nWr{O{i?sErK}KgK@Xx?t3PrI69(vP<5&zFud1v%{EQA7K2j>Ehc}!mnOTN z_n%ttJw#*-G@?(%QSMhs6P1A(v40CFJsK1Fb^Gxb4HsjF5}jiM0>e!*6`x0a?H4i) zOV-^La@w3C!3@#k8_PDRjK39A2kj0^m}_gdn~U4Ed=?a=uZsmZ(v(SkacQd$opPpqSRa2!UI`eIt??OW*0poGy7?^lj5)bJQ%kWvDblE zu@Ec^&M=39B-7xspq_xNy>+1H9`qC0zx%(OHXOKZXQm!=)5}FKgT-I&H@W%?K2<}JGaQO)ruP9qooE8s|7{A{tBH6XecRkE+zS7Rg9)iurU(pH$Y zU(!ekVFROptI>RXuerLDjDxW)T| zzOXWWuIwyr%nLWD^XzuLS6Jw$j7)@+hiVr58ZM|fgXLT03UXQ5%Yn_)$U+mMD-%39eOrxnl|ftSj9;ct*PH7#aHn%@Q9!y8*wDxlXZ zI@Xj4oe>B38>@Ar2gR1vRYCWd+4~;SOp^1pd~UiQv2$K`w|o@0@FSAF9F(Z{d)US2 z)X7i}AF{WB+u8@I5jmE0oR&G$8D?&NS|)lFbHOM|vJq`*(eM2{KWx5MGN8sDoVZLs zMQYYiiN&!k%`JqBW~ghFNQGOj3i|ZBZ@&Byp%FXHpcY@z=o=ByEt*y+sangofi)KWdO z%rxrZVEML&a|&?Ns6=xR)A}^aJ;PaKCoYS5)S=@&MLyHdT^&Mo{%w8bn#U8pKXBN9 zVGeKS9}bVtNpIc;S3JOLAGYE6ma_AfpC5r(J2pwzQ+~x9c}GVMQ-SNQdDDVR!p&-K z-p<&+m@G+NSWVo;28-1^c3pp)Faqsu+`8zqyz8aDjBQVx2ZuqKM1+Krp0Pc{`Cr7b zT*>vGk&x>$J2!MIix?44_NtpLD14to(ZQ^`EtiwyA7?RtNgoijeY{QCi)vdsZG}?9 z6^FSY*NJw6-Hmg@eJ*)*-pqVf=EGHH5%eYm7jl6}^P@a{jng^u%;?$fjQoJ4y!!O0 zgRyNHDK13k*ETC(z=R|dT- zz8pb0gf^xP)>=p0+4eFKr#W-3`~0|-bgg8Np;TOwlPLMxT?DTeH6ahb5L_(n6!wpb zSqLtibE6C{y9fjF+=Qq!L_hX1?Nt94CTBJQdi|mjYQr+jc5!h0RA0Q?rTgeTzd||G zE_;D^^FsGZ3-WrywI$PCzlQ(s9j;d>{#whn%E}6fr-XDMN(p@h`wXv=ur$gE?Nq08wz)^ zH7>t7DWv;f(Xf-+8T$eX@rW!;G?gnQhU2e5sv0c7WkMfG4x9F$v+vVP`hIw!iFdvI zxDQtnCvs42v>8{jue^&16hE1eRO`rpxZR z8@N||i;8%9mh^OI%R(Cu*GNKMj_0u$P6qB<$%f@@*4L%k;_XT``I%4Kl+$#PYFtbg z@{ZJx0>oeB18HF`-50mc%^0&2Gur^qU7YitYJ~flMsdRDA{8U0t~(p6jlir;wkTXO zGnVhs>-*d*T5kr3GI*?rmYqPNGKa@Bbt~xR95I;qB7eMzd8C@_{k&Fi>(_(0g4UI? zh${qnKk%msO+fVouOdyBCR)2k@=`ft{y{{h+ z?Ap%-7{+Qcs7)jCo0-Gw>T51KR*4_VdxqZ#@DKazjd)8tk_5?v{TZ}vqk@{Lk9Kq_ z3x;Kz;&#$WsU#oDpb9UsJ_{~E6a^+EWJIWf_OXcQdgJKBAOitar~8**T&vNLry@-( z5^w3H3&hTvI+dNFGglrT<&LQL&r1ONouk*t3p}H(iF&)k?e%+=jE%!PGP;uWmk{UQ zePX(@e0~h9@Xx=pJ(mn!%3=8!a~6wST1XnHA=$J;Y4iAkl8wt>P;(#wAEYK`FR&_{ zl+aXU^jl2Hm&7pbWuql~j_xSA(Q51gr*QpQT*+ayVJ;GynAYqS-T$Z=`BJa~M(IPA zPXxmimuC*XO+fE7NUm)f&Kt(Kt5kpdAyS|qhJqz}90W575vdgeZGet}6?EyV@`;{Z zO#cYIW@ZdpIB`b?U4GEEaEE9J30_%71!cwP#5p*r$1SwWFeW^7e?H3XP?lO6a>vY3 zj;f(O4K@(`p1)c@mH;#N1^*p?t683z!J98Gg`PZGiYr=X(-Ei0c?qXSzY=+l5FYXL zwv6vOa6NTB7=Q_lXXyS#x{7(R=KO&>5uI^A;UYD-N6Gk&79XFv*0?x|Q^fIR`>W!G z_(X3u0}70Nt75a<^2=MW*a+fdvq zEQl!j3=RAdr$;}jr9V<35iE#(K)lI|2Z!XSe)$+Td&Su?r{>+{abZqif!h4-dCbJ- z`=?8#CPPV1<&{1EUoD-G0LG^7a|3#=ln*TH(1OjpjQp~_d;XcjO59}2v2NokdB z*I#u2a<#9)PBXHI@+4P8C#K?FMbmAZO(&N4oNQX(7vBuJXOCIp7}JBCZLr6n%guoE zuZJ2R>34me_1g%Qge1qg6(DDbjFn|-)BEX-8_~1CBV1PB3QOjYOgL4NG z2YbsoJNta-tbl|~lG)W!A)v4|A1U}FKzX#o1|Y}6HofR6W8cBP+|8*Bj@a^m6# z(oPvhVZ^e-#Zek~O)(gR)$4`Fa3#!hciBtkfa~ZexR~9__VqYldff6(*C~Adz$Tv* zRwvpDCJL17y5j300Ov1`$7o#quAtSqG(FO~z%)Zrw1^sIO87mx(yO^hA3rdt!S3Td zlE&I}=}1Ivpy+=mW!y$J&ENBFU13PPmR->%;Y>0BLVOHqy^G(&enr}1uM@);YfF&ydYrv9ikp>6?1skXgZf#v1&wt+MZn2>#%fGz z&$HRcr#Rl1c`kN%=Kg+Bmd3j@NeMT1UJgjZndi@4KZvH+u@jR?N5sC@+cVjZw|9;h6(UAE^@Az^ z{!2AoRj{MJQ}<`X32LEEVIcsFdj*=ZS&3@|wpj_UUL=iIo$QSB;sU2J2j6RT%68$T z26FM1>z28AVHRlTaQ4Xgf#W0pjcO^N7iu2$iue_WZ9y_9v3V|mzES8$+~-7I_Bbe- z{Lxt68WsAor?L}pp!qjN*fK5FpF{37cZ%t-VZ zS(+d-qY1Yw!!=1}&h(-4xBfV|K07Qw>edYK&Msv?k?Z0RjFK}+a2xhCM=2!Yh_p`C7A14JvyB6<$flS;~6)Vs={P58I6r413$U6$Six#dBS=t$hY=l{&;4{f`%jubthapgH<0hS$)s{pp1}-o2EU_VCQ^;DZu#n1_svuB8A8}a4aUk{95IHu zvOhN*Z2t%2kjFb+B;2K zASob5K$pRG!mL0529X{wtAoF##oag;S(qj2@G9sk1d#D{4L+T%_uFpFlJA15q8I`@ z-sc>2WNa+VoDv=rd4G8sBB!q`UIZO{0kDb^*tPMJ#d>sU*5ONRjhQLcyM&GUN8a)S zmI^c-xtl(6w|euFa!eOcHYKyC>P0{jgyrjt{DG zsjR-*Q&DGG{xk@DEC4e)_@Cq_!rlzOuVHMA+~O;+MR4KhBZZ3^n0|RxtB<*JfLiL5 zRQPbmp5g<_f0A{ptTYzoc{Q2sW2aSb+ew_4e*S4Su21IaFBf3m8jaL>v%-Rmp2QP@ zx`}g-pp{ynL5~TpKZc<3Dn3pW1uwA!WXWs$Ly_ZJnxK}0a;M>{&ey+k=e1O|Ibq*i zUKJgbC{r!~Jh@rv;fiP=rzCMD&)jQ)@I9m%%IrqmccU}at1bty0tD7*^uNaM5BB!S zJ;L*knbu^gTkdW=c;9>^{?^`t)892~KxZmDb=q(bGXQ!TQgAc;BF-b;=3J6*1-l!& zG@#mnT?B=qZ#q`&+3pS&fWlQ+H#M9#o9magd;DIUxiFnJ%^4`JZMr>FX?no4qaxhY;J>`AzxpXjU;M@eed=dR=+oBf6)0Hm zRi1@@q`BKZuVfwE=nkqUOk+2czvOA5)SMnhQ~dljBX?FxKE$P>3{$W7|jD?w7h# zhFE}RJ!Mmn>M7fgPBx$Oz5Mu6*V9U7{!!6hJju@Q(4^#l z7CSo_Kd}Bjgcc4IR8npe_1Zd;;%eWM49Gl5lESEVB-Ox8uX0G>XPth*gi7IWFBVCU z7T3BoSAXxkU%d!eqwH3ld7Sz6ueT33TcU-%ND8UvNDGYjW|H6OE(%ylE)z9!r$3E& zA(z1+@3psq6p5He=@}X+Os-ZUBK992{G)n{5%FeZJ;+KJ$`iFQcF{NnYLd#ypdYK_ zy+`a-7Q-=h`Z|?|E%e6HB&OG>EW{oOeP{+G`f$yH?JZb2O7y-aRSSGtC zO#*$AK?q!gQXb}n!CAPOz%8h6EQ31^5v#U7;Y_@xTT9)Ub8(iadmekG7_pE&)=sa%M^h2md~72Q=v$`xRi)qAzX2qTaHAeMGRBlbnUqjHWc$3s;LVm%g+3 zZA{<3yyz6Bi&F?Uuyzm(UPMzwN8Q8yIIZKM7e6U-=9SqcS$XSEf6vJsao>E}*%|$4 zu`G?^mNyu9cF;>ILg!N&5_b*q)EP9?ft0ewYzz=4icoKWOW{v<0fp7It0>??RRoEk z9{k-`_Tz}VaP>c?=8m0eJc$l3n`>#wlG9cD60cz<3FoDe`GVdhz?L14g-8y1o7?j= z7PA6lq8bPhVpplhp$YXD!P1G#7wAgge^im+TZKRAiBFW&bNTVNQBLUk9E)le&6H&t z@0BZQu#t?{quE(7C~!9={Tu$&N+6CT;hszLHd1wBMo?sE5VQ?J*Aa8F28HUjmq=YKBZ*jS2K`hYN> zLu3YNO1f)zV+qWx;ZA}8^c+QUONAYS=XqZV6TE8*tZT$ZP5&XgdrH4+S6QBvJ>ITe zFH2)heY=BM+cc9D7zLHKcW%Km|Bs`y@N2St`!I@%k}6Vypn}pM-Rw~xNdf6*O2g=m zu_@B2q#!V9$wGm2gJ2 zHYf;3;oP@e(~I>VG2g_Cce7)3v^!V$A1@eq__^43Exy+1ruz4zuK=L%9C8YB(oL31 z+@CE!JyIPO=^@*S3i?(j?~8+Xw_pg8mH|qB>OIHEs4i%kMZp(!m;ZBCh24`QQi8}^ zJNJORpf4xis8fP?(y7=F+m60beTbvF$;U-Y^(@Spiki2W>X8*AI+se)ZnI?b!Oa1Z zGfj+e3Oij;*{Os>0k*@D11R#+w~gyZIY=K&nUhC}k>7#k856hkmDD+J(LC znx``Rg`)bZwGYIw)o7;pj8L>%g4ohF;>C|Z8|4`+vEn3_Rcz0QI}$b?ph`P=U?xyU zfaj~b3sEnQElhkku;14qo5Xcwj)4h0@29O~_HQ=tmTveqA#ghJo}7dZs3!3_$r2x! zSpAwK<$Y6rh!fy%h)yXCSmiJy^&g?&E;;7^SA=4WT_OY4wj1t*YUb{JOu577ONonkS zM@ZFkU8gSNuPIti?|izP{A+a)OQGf8ay?(Y0&=W~J#?7zC~83CZ=`8voaV+rEF~3g zeT>fW=b-&(_(9pb;LS0^4YVmmy)5cmKDXm^YyB5;_jVnUmF)7>i%{gkmBS5Y1%kIfQ{_(d1MpO?xM&CI*U za4oalkbD33doqpi6@98m+0!fa2?;qV_c^d*xBS;9L0J@!UMr0~Z1-Oy>(1)L>$Ye4 z4HM#)G(;T@lKC`zqZfaPlK2@FKNKy$mVHXgV6$tJ4J3ZXNhG>Twa$Zn;tvz@INQiY z?L1X;mM$Sn*)n4hjVh{4dleDdxklDMKY#YTHy7hZccd+`U|x4){KqA(iQ#E>#|%*z z9C*pwYmo7{+>JCuE~K!MAo1AbX!Keh9x61U{Mb+jVT?mYNb}t5{BCJ(8QGJaxL4am zjGw3C$ndJ1r(@T^2^Z^_e5?pv4Is6OKOwt@o;*=!(3uWX3_;u^(5-VLzXxG^*wE}U zPs2r7#7qt_q_m{@!nA7I|EL%>78@M0YHnbAP3}gN>spbSUUDWG0g@4Nb^ks;=}t0` zQPb`Y6ryNW*uzE*5~w`rW6ztx(BR-FpK2Se|E;%@Fer`GX=DF>F^cUIj+Uwtu*G~k zHMuxbPZshpb`Y$ZxNvS%$=e1jO*ruSSg$rHnwx_lSQhm4U#UfxOV#{BSMFESBR}89 zKBz)wthlLf8ZQ~;{bWR`@l(ed1s@=%LB|InW-?lyMq%ohWP$+G-ex7i2hIdFgWrKF zcR*RA`?>G8)ZZQ`ZIg7D|NBWN=##&~Ng`Q>l>DNY(b*$72|?7Lj8YWQsXz_YH%7OU zLL*cGsZ`J04$qI_<0%f+FSg7$5I<0+9p6lS{ngCOF=FuEx4!OZu8$`w!p<5S*;Dw{ z1^%@Y5SKEwKW~>x6tTYg4*2XDcW}XGUMgyDXQ^2wHA5{X3f#A8mN<|1--Qn$(qxx5E4x?YHv3I1Q zHeh#El0M1!3a`kOkznJBS8_ahzs`L;EPQh|=Ln0K^Zma>epv5i^cjD+zqK3&oV?FB zvK{m8y_K^f!%t4V`8z+R4vhYz8g}Ga7!tSUwf68S3MU0HbC*0dg^ zvhnxbJm7{t&a<&9 z)F_|@)zXsJqf^7PPKBCIq@tClW|>qoFt*ciYf=&_H>x?xZ2}6VGhm#=f5we;op=j2 zxKJ7=UC|gm*(n=-Mz&*Yim>bnXt~yqG#XIp9TniX_Lf;!$fwWNrFZ8tkkVGaQQPEQ ztiShF#mPujhS0x0Jwehbf_JH`Yak={0#duG%B@>VevgvkU-7bQ9P?Kom#c$bjIK5_CzYNHRC5={FYV49yT^72v8%RPXWGiP34(s z39b&0QP-eA{goMYV~2NkB|lBB(NbM}t%gMTrmd8^33lbUCEo_L%4R?)ES&2E@t$&* z5GawNqpg)}HFGLE_t_FGQpLQeR(jrYN7df;DmKD*;G{+YKI7av@+S>NSU4x1DR}>A zjC4gT1duc+&zw_SS2(h*?911jkSaUm(kIS2amrI!L$F^N*-4SOCdi05z-k>Z!0=U7 z{9pP~e)tPj6O@e3<&^_u#uFMXGCT&09HQF|VD<<)v;$K({EBpyUOzWq^MuHZWsAS4 z!Oq_vS=L_@(h;dr%nwc61k-Zfx*PvBpZz7lVt3y|XYt=w%7e??d$@5QpSbBfC8Eav zC?#bE9A)OP8&U6&7E-)2$+aRr^T@s-zR7+4?S0R4glotRmR~iLair^Bn>YYDecpSA zOK0uxzKrf+T3|ct#4jz3BK*rBna8=!Hjihx>i$J9CvaVVK5rzHtaTW{94%t}d0gQg zPV1DrqctxT=XvHv2wppknNfV&;S>g(l$llQA$H|Dl4(toHjXMjatgH7|LE7aZxSDr zO(qyZ>ZkK`#U+pivNk(miilG9O;y@IFxpAmc57MrqB~dI+5b^)><5>Tg}Zxgt<{I} zK6V3tmCcqD@LvDbPE3_L(6##F+)pN1;PKja3!SGb%>gRAG5ZhO>cep`$~7+~#gC*N zhnvIRC6nW+--KwsQ)hpZY&Tx>yg|U~g^Bm&-JA4>1X@WeCZ@bDg8%$b=9SR=(ja9X z5d+5=0H9iF_X;z)2?~ttjKMjTU*dZ64rcU=|M)oRn(L&|_q^-~I8d;aRP%i=6}MHE zm@Y_EFf@oGjs?;U8Zx#tt7>IZ==6yulujPDMsRo@KOr6?>e4P3%+i2*G=9qTL~K~C z&LhZa8t)Lq~{aR0OYDGYM|3zv>eP+I{jD~mA(bx7c!TLG5N@CH~vq5;{x*ujHk>TGKq zC%t^@E+Z&CCT`Hs+H6brDCo6M`oI{~Nwp^bEerj6DL3*7-$vzM;1NH1b$k1OqpV^Gk1>BYdRLD&U5(=UoqUNVZUx z?*zvyLZ}Mwsy~v0*Ovrzc@wAULt~bQTGklDU?1~xwS+&HjMBGQ6y+Ok1oiKKt(*%g zrQDoc6Tce-Hc1I}K|6;*&I2~~pnqMCxg+ZK&xpSmT^(*LT2GMX$8Tyn-qrI%4-l?+ zcosxf7TOzKQ^X#!KJ?M#I=fKk@~d<)$dpnqyPp%YG9xpuY`X3YRS7Fq_mKV(_|FE_ z&%2Tz!lUR?bGVX1ZQH`ak(!ek8EXC(XvrN_z@NE>6Uz!&2+DvATmIOBxX2BpTuB%E zcJ&)Qcf{>mRW5Ie>G{$wd#mKyC~fSz#o9;J8N}8c$#(rt#W9XN^=6~k>AKtD3M!ZM zOjSX@UGwf2q->`ZvX?YAHizss#blK!^p+MZm2q>NY4y;<^+JwahF3Ssm(kT*OPlrum*)lf3Qb?EN&)87M#vwi}{7bq`waW`HAsCr*z+u}cg=2CrN{}`8H z1osBhMe13R@;h$x@Xi+$q4--+PCR^FB`=?Wq~jtIe;1?tZpq()i$$rlc=G^hvv=<7MWGgnD9)PEtO|a2s6AQ7 z@xRJHx=&R|Z(kg6iY3m*S}H{YvGB0Yq8DM;^huL;Ji()3aQE&oyZyYRFH z9@`sXS4^ca4_GyLJI!v|8-sjMjr&y$0u&QEy^^}J_}P6;lZ}1 zU4IC#W14CIyM55U^h|o$bQM?}*Yr+Qw4j1|w{%Q??eryts@PLB9MItuY3OUqMb9`8 z^Qy)~#HTE%(psM^UbDsO!;@i0b1JHE8X9F&#UWp1e|r$+}AEuYP}i)Q&+&5qm`iSIBT|DUgdtKFJZPey3--pUR0M> zH4I#_gsU}=3e7Qs%@k&bDT-(GphO6%IQTkLhbM^yw{wT9blQ*mZ4v_tY#n%6&6kXSggrFPGG*?`%KMyL_i^X^KdPT5=un&J7WM00 z7lzQ|v&P4b`inr1n)ef)Cz^8auZ`f3DYy$dK9C|dE4mqBX0}tW=`TLQ?x^9G|HQ~+ zfNEV`Ys(z=GSe8PSXg0L5VE^@y>#8T7<)|W3ODy>QDZz0bphg@I46P%F^(;z>JGU2 zbrxjgN#kb|2EE>*TkjWVlmt+R-&ZuYIx^!%B|g3B`fc>B$(Q^PZIaAw=9YX*PQ>HM zG{Tt1A0Ue8nn3jdnaJH_Ome)$~x*ERZ{v zBlj#kBfrV%wS*^U>zzV=Z*R$;Aa9^=zk6qK@6Sq6;{-s!{!}ex>S~G9k`Xd(6o58*bdnzjWrX{>!n4L zSkA9Li$^Mt!7a z!(q2t@u;trK|6Hldn=85ww7beR$r^-=p*CF7Rhe+|3)*cz0I|H>F=}xIPiVu!}`C* zVwL-f!jkR^B`7^NCle9+gfy3?85HN_L>H%0sI^%G>$t!hnl!?#`$_F5SJO3r=NC_? zt8%mF7^F_4sxGt9jblBCdBb&dr#quN1Zxd2Y&s@_x-H*abuBE7G(iEo_gp6((!!QY zXCI?1GVkcoB$b^;q{}a+ubM9N80tl#I-*MVJT?wTO5&SJ2kp)x6(=~EK7eodC*PK! z=beS>@t-;7MNl7$XuPgxsz4GOe;>P@%La7nyNd5?FN2fNK8o1X4F$g7+Vs?vzdXT| z`}c})nf>5+3&<-x7<1Yil~ngDlluWKjjqH6zwc97J#Z!M?ycdC#_$?iCXgpJ~$P)cjS-um7m%#C0RrM5Tyu6RRsu>z34EUj2OU zN{JP-h@6wZ)>E}sa_PhKYh`76#Q1E}#5r$k$VPgV=BV$Sf&T^QuQf?Rn>Rf@3v`H%6l7{NeZhv6b`=)>zWK zycLMv;q+^+x=lc6Xzh5|wi>$bJhHk(M;oJCRzW};XzKoLBw}!C^AGnv+bbf@ zFZN;^Ig}JMMm0O+JtJl$X|5%1sf{;LE&YI_Og_sbw_VhqY4@$tp%|dXgvqDPSYU7A z!6%L;mv-CNxn4@M>DcNz2`HaFym2=Q`*BR+8q+q|#Uhu5eWX`47X9)pxT$=ZcLPBX zI*TQ$Ld9BedtfFMbr8R1dwV^C_}s8l_EDPf_t#9qw80)9KgXTb3Hd{`bbZ`~{hb(P z8!igjRYDNgUBN6*jgq&z^M-*Zw3t%Jv|l8n)K&_~^PqB6mD zOrt@SV_7bCLx+31FwEx<@A5kf$(9e-ShJ{jmO$0QNr^XS4XU1m?*BoL`Gzz;(Gs*K z?|uCVFgH+l92nz{OgyzV=(m_Sfz&LFX1RY`Q0J~HZT*52{UY)YX=Xw*Qo&#+;;f*A zHeE|cO*VjnW>z$76ja+MZzG+bPOeAq-(md7{k3qpDx>zAiRoFZN`wB6tegP%3iKxK z-%o>FS=>MN4ZcrSMR?3if}gf>2Rt?YGrhUx9`Y63tlpz=qQd{;x8FWUH!d{(!s(Ip zu#Z+j`{ox z93fOl^&rY1Embdzyho%tt08Ao7@)7nsoO2^k27qF3qh_&)>r)E`Qp}go*U;o2sc2B zIg+r=&Tg|Kz^&h3JLH&yf9RP?xpzcazm5e+8RUqJ$$N_9??%KZW_~#R8tVS?Rog_n z-n(nZp--q)c&6y`k6Ps>`=SoVyt-7MKD2!{*{PhQ z3-0<2@6t|^7@?lH^S)$yOUv)^T_6@)R>gJ+@vHJOmR_tcsD2)2?q*}k-bYl= zP}GrJV>J3lQ^~vsK-kuQRK9{FHF7N+pqUz!pOKyb)fNIal#S?Gc7-qZ^Y`S^j82-9 z-5b9e3$cyI>iJr&jIpV&1CYgq3geL9Ch4{GA%zV&;z?jtzD{I^{RZ8t^z;YrA-4C& z{KY?3EeN`kn6SiCylEtI=9LKRQ(K_x%l_tDiDh0PORlTD`Jh&Tcj`_9F}tg`0Xzb{xQ4@sf`R>>sGs5~gD9ab=}XC>SO zYWZMwTpZ_p&OgRI2Je7<|FL%T>oxM#k#_wgE(DaSnoG`ufuN6p0iLj8;M0CZJ2Np6 z7Ioq^v&5=NpkU@D3)z_-!+F(t3hn-mf_N<;qQ%(1Ay+czaTz($4IU^U`J4=0CANX6A3%kRGPmN&O3vY@o3LLp=X z>N;$^m4?KNxKCmKL*Z+-is3PAWKd~&fX(t2`4?W-)sTMuNkEd7suXin?qAKqp0T|! zqBdo$>1Y|&2WnKAAAk75642>Lr1z2~$$0+QE!z}Jz$A(7>U|%xRHIhO1k(Cy&pW13<^F}3 z`^NRz@BuC0glLIpadlCW8ci2UD|W0LdrF8WUWc+ylT7)0c_MF>L&flI5`OsTZl&Ym zC8g6FLCj?C4X5%}`^#AsD;dSwNxhzfZpXQD)eSP?3|_d*u6W*ySgc=<@cIL8aO&Kr zJB!0H6#i(NQkJv3o`e>0E7tfi`DCOKd*v8*c)fPlipLOe#U5&t#!T|~sS~qZb?;iA z5&xqafsSggm3A@BRbZJCkWgT3+`B>OA5>N}f5V#X0%$Af*<$=@3Psy=k(zWW1r9=CsRvlc%a-bh`% zQ=@V3PS(4hnGd`lH_vo1nrZs-mjOzs-gN};j7r}3i}SNmfYS6>oj+fvNAVD1u?)Oe z(0jEihmBps$`Ekup8Z|s`)E>4yWxO{SO1h_iASS~33~Q)?&R6({Ewjw(^3!$w1sB= z3nB=tl)6_?x_;Zl6gNWvr10iwMk@AKqJ=!;OeZg|y!^lb=11KRc_U5tLyFrNn|!6V z4Ui+MDXl6G>jKv&_XCYW#GS@4Mq+oKVl$2{x(|U}r2(sct@wA?>28#ide6>10Xl(q zA3jVJUM(IG1~n^@x4tBVK~?hc>KTeM{>`Vgy+Pm}fK`37I`p!?$@ge~8Cq^V4|dUG*^C-3?lp z7;$s+td>#O-?PAHeF?t*OAC2Zh&I@?_Djt_E(<8dx~j;Mzehx~z$P?-j;xB^`}4L4 zAtN_Hl=HWH4{TcR33@g-+1zg~h`XrkL7s1BWbQmIX6s=P>zNa)qI+>;J88&h(x1k3 zP^z=031-_fYoo2$=n!HYHkFIH46fMe;Qo-5$Yf70QrWH2qrnHnhpi{y0iM1_LhSAO zx-O=@o7e_(4DAnF(f_D|x^o=j{dTQ|ns{&TS8u*ZVq4vh^fm{d2R!+TaNR4-z&MTbW>kAdlolWU3HI#KOR#885Ibn#RCzqpb@Tc4b&=7< zkd0=lFe;hRd;!}h*C^bju4())q#ziwu4(spSeXn@!*c!Sk~Vs=z1wfL^AM4=k}k(u zm@?<1qiXb4SRju2%$E>|5A5{bh2Mi3vqqO#EG!N_>D@nhCh}1@N4o!kq}LT0_Lf%N zzc$;S?;jg%mQ;^5qSvwzEdNp2i_e$#tlkAVi7H`}a<5kxVL!@tVakVOzExLMb(kNZl*rM3z${SE9?6}Y zjC!;R<-+$414G5Q)AGT>9juFOb1TG_Bfa+gx3F&>MC*rZP)u9S7q^8ffg=+uJYdKH z{pD82m-bK?5xo|U9mHVhV-!IUe|3Q*9*uSp|0tJIk|`Zcw{0yAMm3BLStz~#lDPkT~5L5jE$e zd-a{oiaOI72n>)9>VD)B5+VK$!^AjRUZ|vL8E<036Rer=d1}^rG1)Fdn={jB4>2Nh zA??d-4md1pm*?FXAE;wjyJOy2pZSh(*@%t1_XWh{tjkCn(?s>;ecAn2{5rtE%<4~F zW=PJG0Sx`f^b$ERZ3eeJBnUc&XD$R3oG*+;v)ItZo0m+q>#SQA^D!r9ga%xr|JW+^ zVJ7;%zf5SXHc$G{GS3KTJcp@YFLIT+LFF-^wEIa2t^@*db#v~z^I+f~d0Am9IOiAt z`qsoC7pJ{b@awpiw~*0_2=9RK$!0wQkNA(XXTgbr#Hr0exmGwGut$R1|4`UrQ$Q4z zGWGf(6z+*J2f4sMW<<$5;Q@4VKb$bxHGUk^Xvw23fOkAMHTDz9jT3! z?)ghqg!qrYJ^Gzk9#MxuRWi@%_IYk{B884Ju!?&FVlsz@67;ZtHUV~su8{Nw$FN>M zBMtfF^Qd)AlR4>1bE_54I-jpiBE7rf@kYuf!U;VLSQC?ls_0?HL4&@AaC!96DM{CZ zXF=&Kjhy79D7TMXKgKd$`);;Rkqi>ov~@51gI>4{x%xXr^<>y}IbwInbQ^32j?+0z%r=eiw|0E4GLjo5-u?uWoF-xU)r=5lpm{?h zyft;`D6sjk&HWE^Qs z<~=~i?k02XJPb_ZA$ddMftAuPdF+@UIHEw|;se`1ui;(=$_D?XeZ$xx@cMp@JJ(ij z59h51E>-~y(GRhzXG|YqzpK zP=N$YOZQE;hZP4g_1y1|$i_?+5+FZkGgs#WyejCjOe{aRHhT*1KT0=$WW4rl*f8gA zUEDM{5YpTn`h@UxysNC4Hbt||zoU&r)(ttQ(2c|K%%(~3`OLFNcyR1V@O?u_`EJNm z04xOS=3d9{V8mJ9CdvKf8h84Ok7t6@0jbNPsADTN+DM_QP++Vq{Q%^KCJ1f!6$9BZ zJnLg!yP7luwv(Jj?Qh@<7QKr7tdi1_0KDdeG zMQ%ntg49Tm_al?OyNSZ`bXtu2*DVZt4dc%Z)cl1ew3kXyAz3!Sni3uip43e6LoPZ`gk9_0`7W^&tu8>3-xPlfc9?&8kA|avqW;;^RVE-1<%(7U4lZ;< z+zsYO#d6{OcjZ09kB#3~BOm;^a&!CQ&DBVGN*dLb50kiW*QrjZivdmbKAH%kjDs6I zy9X#dBzgk2fbe1_tlOe->LhkUu^^9?*PH%BemrsLPJE#Jfa335cD-zuHn=6cQ|zvO zNCko(a5T~YnZn)fo&Yt1*BZop5b?5cJ?l*242m4$eaWb{nHU9-TJ}y8t<%nATM3{7 z!Szn}jy8h)&BYK~Va#|_46++Jf5}G}!yMjSo?p-@)Gl_hkg4uz!_#s68@;!Yi2wJ; z!eoxvL_oL(|6oeGai;D+l7N)L{$=S;TsWm3jz5l2%pgwd&$Yy2~kZi~s z`t2{~J=(9_$O!vH!Tilc8AtT zYmgp+pSqED$RNam68#{UElHIR0uV0kiI9R-*GxH+ORb;3ReJ8ewvh^Ii|vz$xz)+* z_a2cRTBeqGU$Zd)6>#z&73jx$mEtr+>)E(0KfgBhab26qnS6%IHviO^<-kG26&IJBw?o z&}(1wN6$0$!r4_-gNVJ{inDvlk8oq%dGgcl2P8eX$JUH6qH#E;>e~{J!IZUc%oIi< zv5#+hg>nJj`+$Y0rN-GhGd5_@H*?N1yL}8cgbYysgTK3ke z7HTRY)moD;%Dj<5*E`~RPW^>;Od*$m{8Es$s_Q`|N^Z8`2s}MMH)W@nT`^gER!U;F zJG(Ury^gU~!oqvvduB-gOmv+EdbGsd{Z;xb;Zyk)b`@RU?4x6?;rUkmi+F~Z+>qE} z=h6bQ-nd>;9xvV`x^l3zxQ9*AB;VzDZih8iSu~;IYBf{yHdsz8hkqx;xI#A-1fl@T zdM5~IA&kZ5@wZqWe!Qf=(=rTpnNZ37p3A2S0H%m`5xSGo~SIDfp0)Kx*KT6uo&5sD)p#nPaef5YWwy|3C=Y40#7Z| z!0{i7B)s!Ai7HVw6$`#adQ}sBCGjBdG2($&@6{TKUntj-Aj*HwnN9MQtD)(IbW%y4_{&?`D!0PQpEiEusV>{ z=CMnsS0c*Ac6b1+ECV(TLvjUh;A{(q-6t@sAv!5nQJ=a{T$2aK-sM-q8TP(E|Kg`= z@PRgu@kq)%%#JRyYA|#}ylwKb<%C^XRA6-26xBa~pi$)vVm6*V8FA|8w%+{P+?r~9 zzcSg=trGG0=I@t}KCA6zIhsABTfU|bCM?<& z;d0LeZ~xLTzQu0$RCv#4PtqV^zaw{y_gN3hiEan6JxA^$zlUDW2kph<;JqQawJoTR z>m{iysjq*H&%Zjezj*f|p#O7X??0kRdRoV|r(E8~b_{G%XhhjYAJ>deU>K91v#l*P z!yGSFQppd6Y?%P(QcSL%^#oM3Vux}Mw+M_;d@WkC=`1e(8L{-m)`kAvP}42iQ07Gr z=}d7+g8-ey!}~g=4t40IVD-H=d^|?4NADKlYcGNo^;66ae@(E^91yPw>{k`lH09b} ziFJHCQRC#u_eqbMR^_$hRrZii3EVq}hmaHH9d^P@sluX@!@1QFJaI)FKhsEbBZPL- zt!cLnyHxpc#sVZCNMJ~z+=Ng>4pNy~$1PAPUbqjM2tO{{m4PNS@ zj+B>QHVpSzXz(%_;hHq^(?%K|pn*6-?o^ttePJs^7wdw3=9?^&zMD0l%J`i(Qu;k4 z^%PWSp63S38+p0m6{bC5=V)JG8~kUy0llzFywR`K(mvG)D60dbX0_|&7(c&qW!cO@ z-d4-6ZyD7vY`EXWa<6V{a$XZsa)@`(N<(#Uo+qLWcjxxy-zqWf+T1#{G#rOJ66jS0 zr=C+&o_8aN&cdn8PIk>VE9du=omd7&_oMx=3T4+G_IX{WW@)`oMOr4;q8MCY@`OqJ zF82CiTn|lW;H5NtzHY9tS8~kGgK>MnL4o&ynpA(tF`j$l;4CCBord_mxaC5f=nWM| z&rphSrQ|IL19-v`Z!lZrWdVv0&S>ev$k{CzBG}iZZ?&%f*4ij|qaBvW+GZAV+X4{4U7ha9+I|=wfBA zv8KCV=$uOwGmy$%&v_e0cMfXdRc|ZVGJnzvRlH4i9kN<5cTQs0RW27@=~aM3knya# zracQ!bD?y1&D~$v&0U#j45AJAJ+X8CdIt)e^RG)1R@dAm8W1#4D?B_})GG1JBzt4T zwTCOAXEPPqX!Oh|UwA&O&)>GZKf`q!QULGlTx~#f5$8^L*#2BPCG9VIzs)8mn);q#X;$8-8 zdAcwIs!r~fUR{2Mn|=G{E+s%2{dtz7vrEGIb!Y>J2)kO)JB+zax;);{T}V z?VdQ{wBpg>a+mXyJ|MG&;cR=5DWLc*q@X7J-Gmi-XBEkK(|!+<$_~ z&ka8s#-jb2T}v#zZrAuZsx2Qgw!G`LQ)k>3mYS_ddJ`CDLIM&M{~@Q6n7-|fVD&g; zRukG^Ot4Z`@c!d%xlH<-g-k*q0xd=6l9fr|=Y(sO_Gs9~;kjt$AWsICkSvX4Q%fu} zq?n0;I}Szw>>9*IVS$PeLLqi|y8b2;HoG1{Z_gq&X0T4o(1!=@p+&r(6t5f_C;fW% zMfrvQld1-7_>X?kAt{l*oQ^b3y?_&N=x;2^8V^2;BQ(0f*NsW{RhcIo!Kpon+syVy z;^*r%dS6Q)4tS4vy=2L@dr&iV!AqK0-Q+p0-O;}CY15T3gqi{JmOOLN0~ngU&e9!< zU~~_djbvIDgt-*H@fFtePeW{bkN&1b>B00rcJFyZbIxvfcyt8RAW-@bd0S!C8* zNgzAom00wLm%<}bS~){Uo~Tj;0LC1C6g#XwfrsZYO|`?zr23KrOVr$@=ge8&GxyguQ`QB(lDt|gvoWZ#4xdnxHNfZn0q{+xf1c`bBD6G;p+XGHe5`eN`E)gG$ykn2GkxF7{}lsAF;di`ASIAURWU z+Tpau%v8Xh-~_<45C^!zu<22YLL|N8;~a-v+jJSy*Jgl6TJg(9bn_&jlmXCm-4Uv5 zEjwh{s|he@0~QNh%%j8%@?H*%Wm&mi20(juj(W*oT+W9Bk7~CkMvkmH8pHEP_)rSF z|52sv0oESRpG?<-IIXArfEHnp1)Xf@uvuZ2ow&rWhpAfhvP`M~- zatGGyx5E{$%8c60Ii~2T>2Vj+6fZmuHT>r7vbutPecScH%d z?RZTHkG==>v9%If@SJ9N>GI0)xhNtxg42oMj#&emj>)R&l}EJc*s-K4q2%Uno)*vJ zmSOF;W` z-S4acM&U`==S__Fk0m$Z)=3|a#pWd>HaQ+n54*oq)f`WD!{D+KDJw}({()nNqZR1)gQ$+~KzFv}qC&v|>Wf>sx=^BH6Ose>UAO|QC% z{&if-WrAx?GJheRc?=2xhboHG1zEnrHRu5W8LTt1uy;4;od5O4PEvD_A=6#soolvO zT_NFtBk!PuVX21lAw$oW4veJ=TNjG0ZbsQ1!ywn)q@%JFz71}-ly-2*N)rMdKEZz8 zEOh)Kp>RfX{nw6Ge<34#KX#LarOw9bI@|uEwPB^X$+gV)r>mSR{f{s1e`r>;N#j&` zT~94ts2a~U(@vYC{$)!z^ZKhn)uuY)GWy!sxBRXa6N{GGX(KRXnLLnegC1ZVCvXgt-Nzp1n(mbaqcq5i^*)PzXilgh&*wFuM21K1Yhd;9%B!wzi^=Ux zQrm}9w)*kW$cwfa_|mCA6y~NAHAN_YSJ^4?s66tzqR`3)%xK)UfI%xwG8js z8-k8|0@+QlSXuhwmR9tuEo0^JJtqzYK3_eC?%&8myPctGq}o0Y>AE>6ceo#~^IGaG zI80!|#G*JjZ10qbfk317Ta>pBM~U~ebNl8NK6E`!IpLJsRZH^%A=}!dRN@GK%(`3aeL>SqL>tesDhfD$vBE~O zUr?4>O?#9^EKO!*tmU*&d0}9y4!OJEZr|%-YP-EGL@%yvCyxxrF0m*#i_ZAuY)yFl zKL7|#u3IC`R6{JZo+SwOJNH^19>4|(Lf7Ezu6d&1Q-d8n7q3wE=_a*R9P7ZP0zO@^=uCy^6B{$1S+6HZ-n&e4{Rst(xe-{IXtNQdnzVfopxXv@y(y$q+&}vRwa> znbA!zJvm&Am9}v7i8jX;^|^|k9H(?RKWtLhfltcEXZE(f%hV)5iW5B` znm>;`4&!4^h`J#cKvA6luLw6>Xz|whA*8<&5+a5?kS^8!tRR;k569cRnL@7iEc_br z4(1zqvb3UAmZxUBx4&Z^FQGChGx4n;&8~J(z_+O_vr1LfWv2Wt4?`B$SW7YFbNH9vB1(fh7ff0a*($P z{=}wnJUlK@xG_**~^+#|JX!=nPtWDLEwNo&bPqQ^1^dY`?3)%+_4RXeqSV?|T zgVU1vnbeH2aQmO8-v; zn>)P8?@%;qQv=Dyc3W&hqLX)~wNzI>1R=#0z|2ev3Gl4+BgvBD&%ii+@p$mn;<(|n z9deSg@j4x!R~=#d=XdDKZ_jx8Ms6POckV{fs~3w}gaIK8yKgCDg%+mWQwB#Npq~G4 zN74L50DiRJJD}?T!=U;^V_zM?_!(BGcWcy}kN>Wky4R3|g<*C`VKQ?h@`XtSYt{?| zc7L3tU97Wyc>6DFb_T+md$CHDGS46WM(+{k6N_h$$ykcEkx!ptv6!=x%pC3km~v|b zxA+q#*@7?Kiv)6Y;neLf`2>|SK}?NL@4FAz!uThhL_Hsq3OB8D$&hR_3;$G7vPFh> zOoBmW+AP3cz_x%(bWNZZQb$pLpM)tv8Gv+3aV9m{L5z6RQFUsy8|9?cq5r_q&Hghp z{cNt~m4QRn|9#yjWwu8og9$5SLlbd!Cs}0%DhPDrz5=%b5-y(zyaqoA&+$6(?R$?i zyHuanrN60r$2ZT_;yo>Q@HY=4Y_#D~u+_YIky}%i)Hy#H_z}Qx3IQV$PQ}sy2MBrs z&m5oA5i+}Z8qkqz`kV7XGj|FIB?44q2dC`vxiwVW&SCw{GDBtSn2Yb4ofq!s?icrm znIn3ut&Ej|t4uGDJ*D~Z&Q~A@B(rrg(4l5KXn%xfU&Y>jUUMUM=j<(Rk z@126Zx3iOf0#mNwy{T|`I3N}9Lnfd&o7bV@c!gI<_4nY*(T33*Y1qySliJefEP7v|LqKq5Ay49>c`3x0{8Dk3mZDqC-Vp4dgy9bz`Th8Y$ z^z*r@T2Qf^qP)E?I9#tDONa*)W;m0>-a7yrm(^~L0fkdU+uD+06*$WIP+d!a_sD48 zMRS&q&p$VHyiGmsc-HRz{v|ZkApAuB;_xUmugnEIMi5Be%UsVo`Cn3p`EQtFkSaTe z1AeuO)2Lx4KbdFO!!HYEev>Pejxoe^Y^YIa+9+SY^DMA-znd<~FI!&=FyD-b1Blbh zb*6oHqCD((Ysw!U2H0cE>K4!Mg6+7xdQLOfvuH?eorPZ0>x2*K^eVf5%Zyr0oq!)r zK1XJ$uoQ*}4#m#yA#hA*DUC_1Sf{RikZD`f89$M{HRYVmImr$vN=%ZRe1plA$`?KAui$JA$;B3{s(*!Q?`#_me} z@mrDI=Be!C-8Exl=aapV6JM?eU~G3fs=_lHxHJsMtH;6Da=<*WCl-T1^SM7BZI4V` z@wyL>gB}+&WOA%mHCkF(SPQCL%crA0vtchg4RlSuDHY3dGR#SC*lk6&Kst2qM^De49tCxS=@s2?4MWpiz!OcIATA~)JB3T zhNgskE>utl2;n=5EdjRZ1(&1Y|KsSa`usg#0%#H0pTv@iwf5^0cb z7)R+`STfII)p_>`XPqYg5LXb2saU?7A~?ffi64S=b%>qv|5j?9exoczeUNbEJlmost~ zk2Sw8yHU*o3BA_C$j4F-HOwwz+ei8R@4{CFURTK3l~`2=kLZeflDoe^Bp9v^PVdZ{(uPEfYiGJ3S4rD7$E@!0%1 zd~BaNC(1J?+qsN&O*c$~`^n(;3$x?Qte}dJlSbtSa94BZUSKFMv7!yd9mM!tvv=d! zu0+dA(~R}WX5AkAHn1YTU+st&wL&HlvU+}FA!<#Zyh~o_G-^0Dbdf#`cXks-%3v;| zs|`tSn$#=zkIx>&?#hS4C>P#hd7k$iya^}=XxddekgAEvMdKV+F}$C8(K4V^XC8yd ztoj@Fs2SHf7dB|&8(rVfYYM5@bJG+tSNLJ#77KCt z4SO&Skzk8)D;WPUr9EjPx;o@#Q`7R-Fn#whEy1j$-S$oIbW>3}PQXO!?P-Pc33(W_ z2eEO~)>!azIg)rRi07Ff6pHR8+P2q3_saLdQr|zhHb?GDf-K3N{#R9^HLIoX?W|MQ zWubXWL#a5H7Y3D7@{RLPEitev%-I~y5|RAcU7ol7SMLS~O}=PRr`%ev>3mZ{QE_`Y z-~+w9jft!as_>U&KT!y9MF^Z8+Ln_X^xby4U z(_`d`S6a=a4;ORxd(S*06FF-ONyaxG$1LFjh7A)BpVu5HlY}0pI2*Xn`Rldi@XF)r zp~9zK=N`!+2Cr*P^}kb}oA@spb?gKG#|;U{a3IopA3H0KvkwmuCVeG_lc3~R{)U|) zg3bpqX$Qp)=%-D~-zvY-9ejvYmHa)b_V3oaQFcW#875O1M13+hMP4X^}gE3lSxy4ySPQI(cN_w*Wm317d z7F#1H&4OZ2yL!fH4zx1+!y0)|L@QDVU{FTW?zx4wa#6&KVN!&adBMe%Htg-a@rNh8 z&qSO(J9kgVvhWu#hn;G3Q-Mz`C2APmbcmt;`H7_j7%`I%B)pys{_g?@tsTxR7Q*aw zdRW_76u}>{PZ2GX;Ep*a@|%7I%CmbIH7m1Je65ql(|Uy`v*l-sIrqK9sD>km;f*A$ zGZ0>38Jh;!f%|b4aH0}v#JfX8Io5)%@d(DV-0`d}^EH?6UH8|9nv6q{p3Wm(R!+s3 zf`Ig86deDL_~-9$^uEvtXf0@N0^YbuoP*EFtk}1;-gInK+uOm{F?H0W27^|jI;e^V z5Jm5TRAcdvd<&w9Dndp9Uyg568=<|wXrhysk+4QGlqo=4q|NevO9W%9GW{`U`vj4gsrZ;Pn?PJ zPNS4)2qa_@RBcA0mP76fCBb+uKW77m{CoFlXsg>^_2z~;&%bSZNpo=DHAq+HTa!LV zv9UM&IY_e{0I;7lyLu#$fO(htOT41hDR-7>MbBTR$MDX69Vr!$A@C|p_fv;|xpWyi zk4k$9_sMavC=Dn0INn#|h-+)L)wdAIr-EK~qwdY@fUbuK!aI7Y1-rjVT!jDZjJyvp zdP{3z8o1#1DQf8m$C(Eg?~@ll)WWj34Rd2U6pSlvfNS8_!z1#D*QJC6P2arz9DMo~ zPy+5NPPDZmWuj4xil_*(r$6ZVcx|=`OOh&SVM);CWxL6^JWjhWUcs@jy`K&SIeu<7 z;Qw93d{`uZT#Evv@ENl_k%j2FG479?S^od;d+Y@IQ;%2*8XUne(ykK-b`v-vqTHpq zar6Uy@Di3)bujzjvQ2?)wTH(?|B>hB_--8GrsvLC(bmNI{88yZh4RA6eeZg>^XmDz za@%q4%vWFu!L-O~{z6OeJt)3_B1cLFMehlYm)EhGwul&gVY?}o9-L4)r}5AJ<0p@_ zEeo~VkEjOZvYk`7MTQ=3;AEmK5rM)obrrSkMj@#?jq- zkhMzqB;u!e-CW?vg?6L+@QrRwHkIux%RVue_=mKCTX+GAX}u#&6&#?xkWF*0aNV`% z`w(0*jS=3?;QW z{K^tz1j2&SHDNNl*{1FP+|@GZ%kBTLLH8I=DltY3N*r>Nej!23rQQ8rTTI(YvrQd= zz2T^fBpG#5#BX+piZgD4Ohbc@jt4J;_G`I=9?s!13FvnUjmz zk0yO*&^7qs2wNeHt0)HdEtH{?U6BOwJ229$&~V63Sb33Uj%ip?#skW&iC)WUXve`# z5*D}d**iGk1OTNgMO#m~6~>4@oh$En!v|7&K8NJHY!61!->L#H$SF9&dwSnFmgsr4 zq(F*@*QiJ(2*7e4BS>|^*~M#1$|;I0jiiuXm2uW7KEZW|g+fo``P5h2?s9GGO@sg+ zc@MLeVUw9yZyX&D1~@0NArG82Do7&cybn__TGzdUe)%~2=J$IantfT?a9{G-zhbYM zDz9r%e6(gzXP7@psU>+4LKM|h&~)vHPdS3qh34`Y5eHEUWO~rM$49i@n7Q~`sZq@Z ziFx!Cq?eIP-eU?@>51;E@`Ue!Q<@HfU`d-Kk8YU8mXX=}qi5Yb63=ePADzA7q(@## zKG&Um%zZ-p)_(P>!^J?4XGZeAKQF}-p53_q^Rb+gG4lo~Lg){On>L$Ud)kpS`=b+m zhg9&q)cG_;Ln$5S<@4wDrTW>*s#DR<_e)3j-!OCEWxlUlixrFU0U~0R`*u2Tg$hq= zmDovu4k7`Be+x<&TxN`=i6p!DT*2Ph7)(1{uz7dKq&KV6seHSE$E!y})ZFFe%_!ID zSQ_9Jsk4qsiBPlwcD>^`A}1-Jl0;7wo~GPiKDc4*fJu#tT^!!fuKD!9G#Y&U!K-`r z{KB_1_%~9VJ9>4b{@s7r^!qD$%w5~cKKP)5oP#JKSwU2miy?-~MX}r35|`yg|9;jN z<+~DX4IJG9gUI2KP1!ecLb71ZTTgacb195l8QSvII>AqAO{pP#q^K^`bv$p~a_eOh zuQpt_s*XvmNOYi$ORQvFgD-ey!re}o-i6Kq{C4fz3dcZyti>*ON=qHYi?~mKM|$Um zo&)e%hT0~AX!rI1RLffCqzF_R9eA79K#g50sM!qaT z-(gt70BsHhPNP`^vJo{3V$ZmTB-D>DZ**}YBN5B^jZcDxVQ;3ao7B7f(3;JT^>?EC zpLGtU%Oza+m%3-|tlA=O4RuB2AypP=*S0#XvJI91#WMQenHI5)iV6{?jfMyZ`PJWA?xpuGzujN z2(@YR^#Uq7tr>`Mtos#VG z$Rab?3$gE*L&i+{*51|DLYYXdEZ2l1f0%{~G4g|FKd zNi~-6#X(?SbOGUi%RhK{sZs&$B5a^}$G|-Ogj6$DViCz=EavD72uad`W-yXA(umx} z;`4FnC<>EI`mL%`b=#)KACijy+$Gk2d?`fZQ@L(=|Eod8M znz_c2_@MHEwt}(u(O51!>>)uvsdI!ox)QuITNr8-YB6IJBgXqe^+9~!9IND_ns5mOKvgjBDw6V7F00|NTw8btvqG~26k^%&_ zXeCZk->jpF!`sKFUcEtppw#?VfqfhM{xbj<{q4T$y9qyy-hEk8(w#l2vj!2_g4`b( zf+J$oudPcdi?>M1WF<#lpu`W2+Q~FXw#|3EGrx0wxv{!HLZeQL+DLlBzH*g4X5K4< zOTl?lAY%xV#^a2oq;HQTcD3tw=>#uEVL^-#KRleq(i-N&7=`Icx5o{^b?TDZpH6R! zj&CpIVJ{nueyR9;clDlGX?)g=BcU6paZS^Te>4{Bcq$SQCnhA|bwt&0hH-0S6$j#O zkHIC6-P1K&XOE!t{0r84{8rre7+$(}w(1z+$9oR-4adNz1^+y%%hc%itQN7Kci@Zw zB0&!4AYK|{0 zfn5Ociov9c+ZF3$iW0Q+m|m8>w7nlXy>Ks)S)DJP(NA!uUFL3h{MW<$i?QcfuZuOh z>*uuGvT0i8X{e}w<6#lw255BO3HB1~an<<#>Xhh%zb%ul??l(DivQXE{T|4s>?1XH zTlm(1$Vi#F=&@EFt#v6|dP_5Zbg9)9K5Ix!Ce`6T%~Kvyi$r1K`QY~2Nr>z@Uk~zN zEsA=wD#>B2qkc%dyz*tL`z4#!j_)_Ib0sVvCgPzLz7%Q>9ZF(^w?9RJNyuIq6Y;J+ zr*SQMju&dqxHFB!RcpTW_fbN>$FE9_R0O$9yxsUJ6;S@5!J$`g0sf&i4C7DmHo&-b z4!Ur?&}P-Ba9KA;>&nlwzto%o&3m$hnB5sX;nMdkf^JNVZzP%CEt^_va%%u+9ko{z z@_^_XC61}0@ydN|M0~|iOHTIti4g^ACQOC%UeEdlS8U}){!b!_sT=0A2W)3~PQ9nX z3&WjDu1#Qc=47in5s0$GzU)XFC{-mqEo|E5hdiqMN1ZTQ1Y%ua2`vTvc zQ1`O&X2C7pqFr3+Huj{b?-U{bbt9$b5K=>o0+x9Uphf|^c@+4|xW)PuKR1Z%z!^+m z1szSVr1sIa>0Ff~Ym3556m0=I-11bxZnQGsuOU4yfZuWZjsIPRH%8cx?LMEZOJdlP z`uF8|^TQ*Xq<^#rbRzxh&G8|iJCV7PHBi@hBL28!I1?35=E5E9RpBo!Gtmbt^wfWu z-(YkG55zE^GrLqWQm+10s{VR9VHs1_F{!oSrzoOD@Qd{MbSt~URNeFo%I-Sl)=kG7 z$3-=&l0~`-`C7o(3T<-7-8E|K*~p0a99^%8HX;u2`d}k=eoLbpD-z>^xWC|I?LW8_x^D>p~R3I&Pw-c8zvr$LzLlO0hjSxx1p=~r3-@(EaXfhA97?q)9L&w-2uhFci8m|ks0>fhrB{IJl8sJ2bYZ(8e|(SIN1@v zj|L_TAaQ^K7f_z9k)IcvrhYI^tzTkcKftzl4?Im6j`ca4od_8PU59{!fW5nT6y_>j zAag_;Wt*<>SqtqE7&oME8ohHirE4}7U@;9P*h>`y|1?h87GXWtv6SRwhcxZS+@(wB zjyGmbdN$kbHy$POalAaOw}K)-t!Z^^4NG8Y?G#T?5*=T@{9$ z07XmR|8IKnKjq zu8dUPbYumx{fJNF8;-wL@4L%KMJPKd$6455?=}Yj5CgSK4r368$e=AY9)U>#_N1_B zFr{pJ%Sy`Z19eYDN4&rXPGX|oIjoa7yJd!*DsBWKqVj6p)>zK7g*t(X6uorNIdT=_ zw0IrQQ|)}$KT)O;U1?rfcRe)!YonjQutq=q=RH%kE1`oTi}b%Mwy|Y_S>U7BBQkj_ za!uZ`<0Ab6KM#^}>*(6xkrPT8D~!=ki{9CFnFyx+CcjA@_P?!?a{VOv>y8=tXrA}3 zSnrdr?(aLJ~<#i2=LW7 zXvU^qkNtOwGFbrpA{P$q@q&TWp0#YiDkXl`(#(X!*f!03aa?Vd&$Pn#a?|96!_{kJ zm|k*mjQPBh$LFEIZ#f=urBj?v;XHLI&8W8~;y=!K!SG#f0cnE1#e?6CDs^0E{o6E^ zJ!PU7ermXZEt&%ND<*a7<51Y;ps(`3glNW{v{H$jFglh^D-!$)hw%3d`3ZBIebif$ zVLz_{U#!G}G9-DQlDUY~rQXf6&gR2u9TV*{GLN^*;HTMH?Q2>Uaj*$nc#^;b;~J1cYl zosi2d_@w(KG0fAqlIj96`tr_{vX}GC;$%t6HIikKH0m0jr@*jU);YoAxNc~*7m}9q z!j%80=Zag@ApX0dzlvqk6cFb|AY@G2Cyp1YxeltFir&&&$*Ed`MzI|^(ZmQA*#)XZ z-+@-Q2BQUHb3v-!k@DNN%jmosZq}>ZQ|tNL9uxh9vy`{Lv?t{&xZ7!{aLi z4_Cf%qWD45sJGl1L=gMaYd&CknnGn3H(5etf2jK7eC36%<&e0qaw1|i$^Lq$?CZwH zH0zjn0SXZQOH(fb_HVx)@o3J7aQNL2;rVteuPdE{dH%XjtHK{X^R4Zb>|=zTT#D_G zQ?-qE_aB&!BR`oSEYRp+HO)W7^m*wR1H|hT1BtUdBjF(&Fa?r_Lp|*lK07UE|8qfO zsOW_3J?fcR`Ui~>!IpV3!}KM#eaFHL^g&>*c*3xk*$}4AP+-pXRFwWa%fLjth&Wy2 z<6>n~UB zVUH(bjR;d@GX*X;`dQ}Mn>m-$({C^{>L&j=b~ zK=dHzgyNsb)0|e%sfrKkbL`~&5dEs_+fUitpuL(7{`%wXZMrSJL;e@mi0$*ufpA>mTDR;7QuWnVbf zOsT45SU=iwL2Rkulf;)+lTCjymH}atd}1nWE{mpR8pxk$SwRSKVczVW)kVJg#c~w% z!;^$w&W&cpFh*kOtVj1eS#Rp~=w5kWkZ3Uc!02M{;>RGvpk6yt@k5+DZCFu2d0fO2 z)yqiq)eg@pO6Y1#*Z&_F>U65B2C>t6pQPftZZQG92 z6_9gWmZRz*kZZEn19*UG6FCr{SfMcpqs7qZ5KJSA@=vl3=hIm zB*LbD!<0i;y}D!!w92#5{U1?FX8MUsH=!ACsJ z4_T!ztXx#P#D0t@%-3OdEbe&3x9kBf``{!u`PJ=TSt)iihbMmfe6h;K%9%5SxP9&u zD?w_wbeLE9Ad(j{#h=%Nw8H)QUT)Li@ODzPoG3=Drljoi?K5jA=-5Y%;~$7n9DX zvACkP0|p9LR!<`$dR&~%zrnUKfmcdeRZ(*4aF*9RUwRd^f+ALGis~bTTi6;~4NtcY zg^T24)enO;I~;0#B`u75%CV0>9MaiQ=#O`Xyc@b*1y~omgZ!$hax`2P$5rFS*4f^i zaL4~gb?}N+A#)6B@nXq0DIudY?vT-Qi}V%q4;XYO>Pfi2pJkfX-`Ho!TdlT@_ny9+ zTPVM4U;I+2r1G&7amE)%P}4tLfQ_cH8n_2Z@ewzh(SVo233SJit)~5QrbA?p|IjXf z@8gGe-;w97PA~0?eB@tw46&)V7hnLZ>#e0s@1_%FYbGHoWEGO0R_%1fdnWUS$;uyZ zqihrM+77&Y1lgBm^9++?mM)icPldZ59-I@o|9mZOFqr^?1-Qtf|L3IT$>PkO>fHk^ zX9~?zo5}M2;mFsZb21x!uZNAr8UnDry6bMR%bBocqupwB~ zQ_D!y!>VZtxSSMaR$DuHd|hQyPbI+qDJ(DQuGK2}=b_=HOfsyoU~}zT>ASI>AxiEU z_xDD?Hm)IRa;$`;ert8c&gQR(hk8TlfCR|1{GG<(AB83utRoUZy!omxxwOhzu0y?u z@8?Yms^%C%20WE}-B7IO{kT5g(bj3snN9B2SQl=^Ubr%9jXx*}>NH?^=}8={cNoOn z3Q(=8kv%)b&9=+Rk;$7h0d-0r#C(a290#ix%!k00=3I|x=XGX|J*SCLW>OGak=`Gf ziaBKjxj1+@766{lo_r>Wl3#7+vU$r&tdZ=O*O0S5($6V(oYLmyPE((q{9ci*1a6)u zqf;LwceSXy+#vsL)W*5waO(fLV(`kL&2Lbg)Ea;pi(L9$0(slXauBmio6Q@!C;rbQ zp|mzg$6t)Dp;$lV)biw<^{`{<$kFNVDx zLs&O{KAPBw|DqIiwbI8L6n(Vz!XsV8Btsc^MRtrADGp6_ctkfMOx`}0^_}PaX>Si{ z)U%lWhomFxH*L4yMqV58)cMVsr|V)uJqI{G=%|Xsj{1_P*{u}{yvEk#$AI0r=6gV^ zH6v!uV)S@ZOWKkVB~a!c_Z%S7rFlTY%}o&R^>f`&j||$!OA)P0w4=&I4-N&xsA2gK zu8^xT-3N2@`sp2b511^uV-wd z_p74TD1Y!JD8dL`j`N%`y9G@lB>t^Lkm+JVz;SivkLYh7Xm1nw4_s6gU56R;F zX=P?Wg=|pW(h}|D6fxbK5sRC*6?MdD5ojp8+%EWkB(JU<)=3K23Q$(fIB-bf*4d*2MReE;=rYy9$FKFXCm@ELB+V8eaK--f4hXNkcL`Vj%VYUqCT=AvR_W%p zXG4lMmu4>cWheS|Kv$znzwMh~Yug@w<`p&;+bT3QZ`&~@Hj|vY*lL=748@>{Gt?h8 zwNU^vFBKZ^P467NfVvN37xgWUT}p2lU+W^cOTwzveu75~Ao!F(ATtLEE{f_fNbwf3 zr&Lc6W@&VD@EUPINA!~T7hii`w0lI@>1aIZx-HR+r)cqWX8-Da1TOCuiivum`JVUW zhy{<&R}NvEKIg4Yl)ODvxaNkYBz~BgQx{WC?Ope@}mT+2D1(`Nzkq@a&qqq zF!XRqy>`!fT~@Jd=f0|#Nczi-%@u-CfL4l$@75`=BV!w4u8ipZR%jPXelZ7ojbG)H z@Ml`#0@bUqZ}HS4uHCw}30doXojKLx5$I%sNMEikyQQ|M07IWiP6L{VD?B9IeE)nM zJlmceyfq(j|F_<21NLNy&W%UWxXo1hqY+v=fWTeGuUZA0!&6H80`)}PLMEo_N zMGYb=I|oLVkgtS{W{z~S=eK--F_z>zE3r16>Hi`6F<4;vb2Hg4`*ItKzGk^m1tbOW zO+|X~pE-AH{a+m75@iHTZBYU{q2x%yi#PwTSr^j9>GC`OYQ={}!)~|B2qG$0JzFbs zfLh(v_cI|}{%fz(VMv)g_%13tDd>txs@+CJPW|jA&^XLN15bcy9HEShKR#;~SYd7) zw{g2JZ#2C2=`G9Ogmm}2f`)V)?frdMn>-^^rO!U1WfuO8F!6w?KdJefh($_~v-sW| zSqdgh;7!I$0ZTXQ1|+|&J4p)aN}v91a1t`BwH|Jn$J+zfbE zWfZG#D?{Iz6Xe!p3b%+VGZZX}|Hbhpb#0JG$sB4ng}Oz$DbkXrNTJ>euQnM$#g)6rhp=z|PzlGG^AyG$8)I$FlHM78j!5hfs5ay6cB`$n! zCu5?L0v?!g#fi#jj8m+FZS4#5b`z&BH+)m!{LeF%`GTUVJbDVJFFO{d{V}n$PGrh3 zr|7@Nv}_-MktI0LVKjzlSF=&@bCK)+$Pjd7+E6F5|H`qwXYRJy?+Wp-Yl7qRg%j=q zlBgRpvRtZCJ)SC-kl(eVy|cydP~?w(N~|PHTu{;#hbYsa77gylNzCc0{PWg2V;7VA zx3%@69@ON{zHaMI({`-zvAnfE z{?m(FMndW;VCa%lT`boakt=QM*1E~1d0-y2oyaf(iYYW;n-&u$1QwM6?f6@PJ^9PZ zb92PE5<*=(*Iukp2*A@ri^{rV3{iyb%7&xD2caT-;z)= z++Ca9VLMuY(T>XT*aWz>IO$<-=gtU&pVtt=kmp-axR%Erd) z_s7;6e_!{%3WuD0)HBG7lZgBD=oq}&oF#d5y#z>tar z!cy>L7V~LImZg;aI}diqI~Nm3^#RKn;;^a-KS=DM<|rvZg?3K}UY#{0h3=zg4qk|*#KLYjY4sPR<(j#^61bcmI0!`A{ko~K6OQOR6E<{;KuUcJK-mFd=A)M(Z zEcCIgE&r+3maDX>ch(TXzMSv;;G~(IH)Z4-R0v?Ico*!+wmZsnlozNQ)Fv8BQ76|~ z_WcRe0|zOUVAaYZe3vD2zZT~m`QHVXU?o*}sPacdtYvj&VL79z$*Rj zA&qeaufy4X3ka&+9KXOv97EIYV8uHCgK}=ip!ij|LsFHgKUqt)1s~Fol~Ap|ZPNV% z((T?9WOHLmyTqt}X-eJ8s&HuGBYF@qxDSGpd7R+%R;`5AT{;528h$^c@|74kHxe_? z_YMz@(S7~(`z4uKjwlTmnnlQ-wMm39ia3HA;u`&Dmo6wMgS4z|9oax+06YAx5I!^7 zFqTOi!h|>NqQ^`1rhCO8fC>r=dX0(tOnJBKwZ3Io{JbXP4D+sQg-w%mESY5jKDK@7h5vK3>|ivD*#NMxn9psv7NNjMxd3dBMIh_5#`deh{osWW(Z z;#$PFzM6#bEp+*1!wU~TGA<0oCsa%~Q!teej4U)Nf+{kR`oPa>x%q^{%zY-;<%QWO zJaCeFjnwaFTS%&TGv%Yz=TdRUIzVi{&}jMX8bV+u;u4`;vZ?ujR+C(fK5d$M=cuR~ z&`yDN#qkEJ^@P(sMVv~5MZLT^VNy)_a-FfVuE+@b*P3>!rtZxc)3EMg0@ZXAaRRCan*&Ofo$ zL2xnUEd61R(3n_n#RLWS5#2KcAle+-@1}$bfh@saYq?x-drJoYO$R?q)}pCq^OENX z<3SIZn3J8BXHVX|j^5(0;8Io7zvTLCxrLLX&SdDXiSY2W0R$bM#v{G3*!$8Jf6!Jx z&hBl=xJA59eD|C;*P%*~&6oK-@6}-0^63ZFCQaWP-y}Dck(4(3Zm4th>kidL`krk3 z+`(=;J(_+luk|aDCNgd{Dz=+9zTVUn`O0C>>W0?I2>;U20i~?aYFpEBH_ZO&{{Q#C8}eStFg6}BVi%JFl_=f9CdH5cNr9O|2P257JHzMPb-sc znDj^(g^Xnn-4|sS?xp|oUt(%+bP4+)He`=zTC@9PvZPTawzi@PXPsR`_oFqn%Y(+g8qsU*M|(m)}tGM2`P@GlPz>GmC7YO+ej~+Cn+a)2Uoxc)K0M zenmVgw^pqUPDgs#d)|`_)RbydmR%;cIeCQVfdunr2b(v~KHjHKa@rZ#)-2fea<;2D zg=Z8x-7fs(^PmNgC`;7=tZ4uHX-7onX|Pt)mWdn52v~^S{rr753xCa$u=;<)d(6Cki=v&HEB?Dq(diP<^HxRqip3nj34X2GQXdWCQbnormsF*>sEbvlAj}?DfN{r zDR=~Rq3yVm>5s(MB-hZ?HZyKQvgVSQ1e$sO(>0p+4?`};Dz!Sc=RbY7bT(Pz-?lG* z-o4BVNJY7B8p(T0U#Wa};doDH$v>Q$6DU+L%{DS8|Vm$6-9d5u>XSh*^nxklq|(q=i>lq3il_(~y`$+QaR=IM)C> zyb65Uz*jMJd}zjR;WH!qzSt;a)%t?AI`wYEWm_!b}u>-i?|< z37KMr-)>gKNjpemqr^Y*izS=P4W$2?DuS&`Un>M8=#>}c*bhB?^j~wAAe&LX$QSOF znt8r0b&BNnT&`BT1iz*I8s{Z93>%JE6aX()3-+)t+;MLgF;kovl-U;$xv#LgMCty! z)`RK~{sx6TEuh^bx2SAU&8&wiS*+#;h-%9ZISW994@^qbEbE{z6m`GI6KSn z1>Jl!m;uCvN398kL*(#GM4*@q{ekR6LqMqJW9wNbklrl@a zDuNBr35x)&uiR0XJwc|2KHrgvl-_mQ%+$1R(e7tlu^g*MSo$}K3#oc3%r>7h@inpo zl`^v(GS!yiQrX=l1AbV-As7aX?XG;J76O+*^;wuAHIs4)x3d$hL!>u_-r7EY|Mzed zg{?K4FBw8z?7!Z2DgRF9Qn&3SF3Rg$_B4@F?q~IT;&cj8b&8FqfobS-#>oBJ);MgH z_xTC(o66KiXA+C4`3CpCx+|o?tLGU;8@3y8hO|sS%SU+>^23srl}W;ey9YR`tBcSw zTV%5%?umdc;Sxnl>s{UXrF}wUyX^JA*F=PYGfJF3QcF;p{D=iu9w$02)epRyJO=8)R~vZ>0p`Sp#!S}PjF z;@xw@AfYyO}9PaMVXY>(9>7{i%a5)iXu+e)uEJ zZa)EnIqp(pi?ki5TE~1SEl>+7gnZVqJOHujBO{1_j5M^1HiZ%IY;k@;O$Q1p@yJD4 zy!~gGM2XW5ZpZw>7BSEu*Pd%$n?c4|aNYLJs_U)YuGJI|i>p$XG_){Yb-wBU_9NDm zOn`j5o#0?&g5Ta}vOR4aTW=U$0Wl#6t zwb}Q*l`oGqC^{?!!(-VEbe~@d554PF*=snG-83l_Vj*TKni4bq#x0+A%!XW~C=z~G zU2UN@vGkPYa2R#Y%>`%Y+obKan?6;jI$Sp|zy%C>S(Oau2pFcEx-?PQEc<*)b#pkz zO$JVpXW#ZH7t2Yp>qC^F(#q;{&%7DON>xTAsps1ms};dEYlYxyqc@I9xrT=npVE+%8Uz6UQwW7${P4uw``k9w#oPC_cK_Ttfc8p zk$tPs3!C1hOPjw7TXNH|amP}H8l^*Z*dxWkPWUw-N0^5dyX;z??3m+_Y02n#S8{Ik zKe}w0yE-%cF6J@)xUzp0(S=%zvFQ9D>H?!?!XtfHi+l#0yVVsCN+c2Aj^%c6UTQCM zBECKI00?I7|Fs2OFT6DPDF`s)?HY3C$8;$zUqCaeSeYB{ zV6N(RZSzo@Xq;8*@7DQo@cPDQNNb=a=}s^Czov({t#)$kK@+W3KJ{7$WXe3*bg5|f zIbn|YdFuUNQbw>qYWOgug?IGZo7TM?(!pqu;j5J!j|M)j3Ot0Yl^RHyDK(sS(*eB*?G%ruiQyGj zV^HkU** zWBPM^bWcz+c;H>o_4c3&>i;gR>mgM0PxF8+9}sFmar5>xpx)oDTfW5b^0YB3@}Eh8 z>agjYAt@Ia7_>X@qxdLBz^e>)%4C3FgxT8{&yogT<^<_a zq@4~vvrx<69V?iRRyX*1K_uus`d7NP+U|GN;;S+)gu9h{%n$wL!ey~88Vw=o=-H5hs()wutv+DSrmcAt%C z9!tU=_^UTm*v=ixN(t}KKO8EnD2JV_w1_VY?e5tEUHipU9J!T+ZMp<)qg&bht(JQ?v$J_GxppYpuAOo(e)-fR<-Z zU4yyk7pG>H>m|CKcn{+V1Hc{H(fU-#=X>26P3>PGC_aP(yThi$LQu@^F#C1i*u@xq z|xouY&_&geU1ZwuCsTloqF2q7N+zRKeVtOLr{C3 z0;=wF75Y1Aoixa$KIkT_$L*=&+fm4WhWNDsy%HC;=I$pa4$#ARub_o;J1uKQKGh+j z{bnTU_EM-}nlYblXf3{OcrP`^Y+vJt@XYax>Bg{g>bUsS<)1c*H`1aaXcc1}7Qd|x zq|wfc(AA_Tq%^<@U-Ytm^8aL8i3UJ$Ocz?fv@?h4uYB+y-AZ_n-y_L+?$WS?1$Fiz zZCGQACD!h5jy^^VD`t)0EqI^NwCtGT2}0bfagcQb#*lOJ+JsYMsUPc zqMD3n5s|#x$EX9mY+<(TSqQ7;Y^^9ix|mT6X#njy*MNFGlCCv{s*seZdp znShlMrl`Gg%CT?yEw%yyVVoxJdK|^_J)(Qo8(qd=80u;#8r-&b%y z_I}wje`Y*j1~mLe5S_}buSNrzet+W)nXC&V6COW!_x}7Pv}NBfu={sH!4?P;*s@m` zkx(1E?wp~^ZvDpVlTo;Z0^>l7)6uUNnJ&eJhib{;g)!YzPLBq3&uU`FlpRK{&Xazd zgO;!nU^iYT`?sG5Hj|@w2l=g@1(p1Xm72ebxNE#7JZ1Oiiw`Ib8#H<@)NxXRD;ea` zmHyEBBluj!DNqNo#5f09)=tMj+z50kB){JSZE$OUF;Kme0@P95_UsKXu$C~3O|u8M zK$%6nV^h=vXd7QlpX9;PxKBajh&phBh*-8{31D}-@q@UH*tMy>+L#k79!ab z%OA(*_ueL9#Ty)Q%j{p|(yxik>(o+eEkicwSFr!V#PCPZWl+-pF0k4Ycv1gRb9mtI zoXbAV^%yAF2sx~LQkCoWni`bkM&0s1&lwMv%RV^_oxm#;+sW-)gSlD6?V)9wgByZA z^~!f3)+H}olo%a#yAJ2K<%5%Xo+g8aJGZ^` z)C9Vhx8X=b7vKNK(pmU5*}rceZvz1Z>1HAV(n?4(6=?wh>6m~>NjHp5QMztgTBIZ= z(m5I_X-327W&;_6#r?a!&+GXIh$}wVc^>C+zK_TjBwYxWnyB%)6OG7t4J^k~(SYX>)5@Sw2J+#JWomW%XljfS@VPBO+enrx)<+n$xiw-%i(MCs@DCRAx4HnJHEQR8&-A1~Fx+UGwe3nLRnnUl~PuIn|%^5t5M z4$Z~ux*k0%l=W^JeF|H7nJ#Uig$7NUOy_$|aim)=6&s#&fi{)Xq2^=Z!%yZ07rt=i zCo4_$f$QnQ&s_zkU@U=_7FeKD{1C3zpZ|V*o|2)2X-S)6>mxfwf{)EDktnB`&j}1U z4ZQ?Xc{NrtR{lbKNcg>j*m8Ws z!haOK!5Kia%1g(*T)(%Z|2pzE^5X_`u{d{E*%_+cJRlpn)Bt&?<}Ny*%`--u#)b=P z+-SZc07423AL_6+HisO@6NuG|S4a4}-A`caj(k&pn_1(PdlMhG2o|PPLFI@o=4N79 zt_K^SqfLSY>$BYr52ml^(1t<sD+)_@V93I1P?!R^x_vX7%OS z6}9o#6as&Y;!+^C>e+z1L$JjFUP$Nwd>Iv4bKX7>Yj@ZHQBt%e@H`K+Oz(eJymoW5G-LzvRX(j9c@)QSugFQNsL;h zKlg}UAVR8?q4_S<$loe#KI#z~ppXmF zi*GA-NI4wR-2D3x#*7e_+;(;!HiX+n+cvu~412N-mzVMF-l8j}etJ{Z)e7lGn-Aky zfY5dh@`^mDb5XI1`_%uuYc0X)7ylmv%e-^KGl)w*NQq`Gap51LW&7VNMSMW-@owSJ z?1vYZDIFRD`}0-RKGU_@;4i3KoayoA6P7jyK%`cRu$Fh(#ZnDHe!&9DjW_kdT9CUQ z&M0~OcpCjZ%I;>0c9_|sVU8o0j%dZiKNT)L`X!%?hN^3#ErmQI8k(y-oXSfTtm!IC@{@|>0(XG!fYW-L zZllS;BEIIpY&tGk!9Kp*4xFex)&?NSo*W|GP7?BOR`Gqtb(0d>v)09mN3|nq~B)Ou7K z*=eiTOnU&4eFRBl^1(S_5xuP^H;J!8?a|CAZiev2>jKZ=QM`D4Ub zambwd-gulxh7k~uUwMa9WF`r zs0hlrBx@zCk4E;;q~m9z842*OI?_e2hyuW7GKkVDP^Yhau>f28QDSq#Pji*fZ}~yA zbV2RIMMWC5&$7FRhD`tXg~uq**qe9DU?S7-TEkc06B?p1W@i9$=b4H6BjOka8r=8U zsx}!y5bRG&X&0DF=MhVAeu8gpNj?}HjIydFjYKN5=Z1ROK+Ej*oZ3$$4*n_!b73wp zQ*F?C2vFq%@&fV`vN5p}N!hpVF`tjC9q*8YD$U(3{Y;iFbousT;2%XX_i57iC%-99 z?!SBA{Aj9F$cFU`v5o+M&UUL33I);yvRqqG7(Jl(90s%~@yB{(n`jI$`^bAL` zK4j!dq;nx6c3q541OI6aNx!GUhas$XP5^-;S2-5p2}*sNW7j21Cvf>Liv$h2s4w4g zbMq24@F%BAS($pWl!i*!3FX;UjEbWU;TgGS^=IRe7Ax@~oDs%l{(L=(@BI|f6&;!J zYUT)%qhPb>X6G|D))b6N)C=4FMfmYpd0J(YW^{G@N4R`vb4 zf>*jtoj1~!3I$`nl%L8C>pvN$39FJ3Rn~>4Tfh`KKn)T{yo5*O>HJ^JJF!Sda8!#; zjS`H15;k8tXSE*UKv3r#{Z#Ytog<}pwMag74by(T!HSr&ZZ62dSeBIvZtX7%UMs|g zCgRM)9{#3>cZ+}9xM3^S=exP5bGJ0;KZ?CqoBgg|UFYF@{Hw9ZdqB<`6~s(!13Yiq z1L9DjU%`VkVuYrL1HB!>&2T(F>rp)dN{3BNai3M84J=<#uW^=2*ZO<+ z<<6q-ot|-^%``NeYyqbLZGyLpC8o8b8%vBqU{0 z2YV)6Wj)GP#fy%YA z`)2Cp{g2`-6VaWUs0sAh5Jn4CI)cmsR|Y^t@_dFdGaH2Hc^rH@P_Q3>ORhPUPc}O z={__rwk=KiN14UxT4MCIp+XeN*E%VV_%IcvY)2BkF|~PZ=@x&<)gJ<(GRqr#!PY;T zRv98AXhH|d4h#8Cs}|#)j&G+r8n~A2HGeC02lPnTQ&{#rbTM_&XG8De|koMc%` zKr?`JgBCycn1C4Fp*mZOc*X$}llW461L`n|^{leX96Bvr6C0)F$9C=K6Px$qIZjRe zcZ=#<_AY3Pc8k(1g!*UCE~O4bJQlMCI$^xEcn^XXk$0MWJMiD7!^T-Z`8-0mLh2W$ zTdT%u0@KOQ>6a1|*oDjNYnWv6kvs?Rta)P9Zcv){tEa-^X7UF_1pMGc76vBw0*4RM zNhcNz3QSRJo`k+k&v(M?^y=T-w;MCK@i(1w(c5tE$>#`3AspgG9v@v?{2oB|$U3(y z95Nb_+&SEr2&kO_AN)RRQnDxbl7|8SP!ID>9}r71;q;H~BYLwu%cxrWtNc<+Q>`Ibky z1z-RU?IDU03}7Rx_3Z7WJhEt@0a1C~vS|R9(T$7=*0x+8KK<0fl*(3(x_^|+^6;F( z6e8{B*xX}86Vt6_Tynyb96Lp(9O>7ekKD*V+;a?dCU8TaO`Q<={Lc1)28S#ZE%BE# z?X9YYv*&!az8o9P*}&L+T9M>xS{eJ1+i{qHr-NyASLFtF zX@#AX(`NaDJVI8O5q~vFq{sh)Ew3S%mOw}xm3dp5s5*;|W6W#1WrTPG_f)d?a_Em; zvg?&b`yJIPt@88=eWWodh_urj$ca0{n0`^YzeHpr{ZwHd#vuA7KhzKeqdX=dcU+4; z{ztJJTp3#vP*HZzI$Z9pQqN@WE0YJ(DA{(6o=Y6YuQ%hRuLfK~TXTSOT6)f);G_@m|Yu@qNoC&R#m4 zPVtME-V2%*n#cA_bi&4@pTf%Z3KL#s$Si;bsGw39*Q2qBF1HbB0JN4+W&jc>fU?71 zuHB{VwgF=xyt>Zx}$=a2xJtlm4j-=BFKv5xh!(c`jL_K^oPx< zx(Sw#GR`L5+zmrTQE$H7j2cuP^?KJ7u5r_?-ZtB$iUS)j-LSH7e3ch~86#7jV~o14 ziHi~GN)``4q&C)D?JWNuB!U%=D>8MQ`2NImoOAfSAA65k{n)064uSl1ntlBI-gWx! zuS7yVxjtyBLO9`6fmcr&$A_gm>hr)bu2X)5zZ>;Izi+IvBx+B)JJjcEPep7nsVV){ ziRRa|_j8EL-3a##`D~*ud+kM=V^mJ%TH-f=K>6mS>Lkw9LuEICo6y}M zKmJydok41YB=E->ROfP|*-np%c89qqyl>rFjYF)l0i{^+R!Cjkr#_=>9m1p{NxX^S z0%mWR^wJ;vX(LVxF8fzsbR^Y2GQaccP5k%y++(=K)zVWMP8pZkar~hgRHRB3prs(+B*{!D7+2+7iN=1%hW z*uX*F+pot4pgUaW)n8vcl`qOx3c!V7C1UH~lq;iXw-?gWCf)lE&3Q~7=T9d`Se-A` zacWk$!2y|h-H@v4@Yi4X&4sg_@wJ=aIgbq_@aV=Pxg@^fo2wRdJ)8@Ja3)VtF3{*Z z6V>bGM|E!RK~Ha47Ar_qiJVoq6$5-I^Zoa7P-W^TIFW$%ws`PIFh>7`1BL=|%h2dv z@52PDfN1cIMkvwxP!08v;%5E2#me`O(lTJ|vMhGxbC&_{o4n3v*wl;b_4N-ngQv^8 z={K`lQVrn&@JxalW~_5yEwK|s4ShQ8XLi0gO8Go&DD?f-&7W;a*KR>XrRbY-j&5v} zxNci(+0_{49tDJOopU{!oZtxplISBp!X)uX-T$?7Z;)-{Yw5~Vd6PHYROBHeNp>m2 zXX-ngiDNlerp3A~LZ^PKo1QxKhMt=qs>PV}#BX?zYGMx$>*US$xK}oEe3=aukJ*({ z20Mx2LTZ1k#=MQq`5ntlt>dgU!+*xG`rLul*DKQxnlFD<5yWPEA~M?vU`?Y%EA8B6 zZLFfY|+k|HFYSf*rwusjV8bo${!FoHS3j}1qdsM6jhEmM()yBunH+zQ(irxYV zuZl}P&6*f5W3#aykQ?Hvs(`$4hpJ(L2ot)yBnVFMmfC)=u@fV{}CJEuf zRNjwnUpMkx_?SmhsGYT)RZ4eu22K{v$kaDMhh%^NEeeysEB4UaI0f4jJC^L)fD*@8 zP&IlR7mePE$$1uGFTAaIB&80fh6^9Vli2GsuxmGPAej5Gn=VRfNSPLmZcCm5h4<3&^gSou)bwBlM*>qCMeP5tx zIuxSqYFx~+Yxw>aC*5#YjoatSsN-8bZPR_fB1ML0PlO+{@kY>XsLn7|LlHnAZ0!VB8XR^$1)|_c6cLJsj>@F#41b>*(F6Q1%~1e(no{iwDO)|8m`7cr0BUxdlC& zg@geB6y-4&rag3-kG>kdkrX;G0s096yuVVt@LwKL9YTTsQE1m;{oCQy&IcY<`@w;C zOS5%mIo)KT;{~4H>NFo)TTCDWIZy7mWSJDxmX*1f4s*A?eZkcGIzjbeacm9s zKNppSx+aEU{>k-qvVJz)WfptOprrpOYTmbF0xW@6vlO4OiZjEIVzuno^yzyF54N94 zS81cwD)_`_mL8Z>8LlyZaL~C9F*1>ixEo^Jj=0J(R;dw{DLU_n-Mmn8?E&3TVkAgI zwL0)U1b-JAzYQvxG8qxj=PTVSEoqe7lZ>NtJ1-nRrKG=?m)7+Y5VQO99zDz$Y5ely zPnTBz7MCL`uYT`!?~JZUW=p+uMPKdqDn4K*R+`3tR^=X13tJlY?(SE&BdE6Hr=}ez z%5Q7XAt{?M1iPY+kwo>G#!5`a@2f;I)zn&Id@$ulCAAW$7d{poeZq_V2kx+H)m`zx z@{%Uiu5kPE)H`UqrcayIszfqPA-P?~ehwz#0;Yk1@W$l(L?^6uM;e->OzdZ!Jc@80 zSiZ)@n)i%~hGR!D;mtW$Od(Q~c?W{G%|F;Rmn&X^ za#>h`8N*S_fuSL?qNfVNoy2Z_kCL<5x?@3&uj!#>NZnc_MbY#1hb~dlOKp^e0+h+ z$r{0oD71#EkL+I1oZ3S9{k}E-E{6UCG}dq1Aaz~K{B_vv_=;VCxAP|T{nf!$&fG}X z#CAAYhj<102`m=(ga)i54{I+?FnuIlEPOFpUwYo;=RUwW*_2*uJ7! zw>X{Ar|G=SQ{A9Hbvve6dfViodxgW?l!=FM+BvNdKbiKbI{Ml%FQp0&^}^&ohtCX- zHJQCrOAcT1vNWUvwajdjLRbG42I&B&B~*7afYly(sxoaO$~e1r5i4QAgEo?y*h_!D8Em;q;a5fi0Pfp z4IBQc_+8C)u;VI~*hLTLsDMVgT*)lLAaBKtA1 zO1C0Um1E50x>@sLF>+&HR%=!VK#2@J@Qv7v3EyTFk3)i0WRlOHb$Rf&E0lh1Lp}Q# zM6zexs?K=+u;V)34tcvnz=9}@hhr9IM*(sS+a8BX8QhO8eSO!){a+=GoAl5+<;+2^ zp|>b&Vfr*ygI4uPxYzo+S8|1lxnkqgcd!=mI%ek;CNyEXQPul^FhJ8CN18Y~IDkB{ zsjZUWn4k^BwF>Vpr-bu{kO9_4S&J2O$leCD&pi39tJ!T z3-8S5IG12NP=Hmf(aZ}>6-;f#9$q-}@hKTq6xh*rg;f^$prk9U-lJKWr~lU9eD(@= zU3%nD;+dwL+|jeK{#CpvWhcPASOqqv-RRg>pjvqI5|<1yo}7p)O^WP)hPb%*RdcS# zYo6e2zCKQ;I1KNPlnNErW+I zV$x9SjPNc)4mkw8H^2n6G1Lc3iSs5^9;>j~ ztj^tNpIpN#s@+|v@VNb8`kLHtcC+o*o+7UV1UWyuh-bTwf=4;l1$8*}*Y#FW=LKgT zM>l~VqXAshe-_UAKsRAZc)+3)T zdg{o+QuH{{jqWZ9(4*f%7O$g`Lb(GnoZDfFwljfT9FvR5*$D3ianXxYNE+ z&y1&MYFk6)_Rrw{_z#I*3+)aL5|#gspI5P|+Pc2c|8qD=q=| zh8iyJJa}6pa_whsM`^L=`^Ob8a`##l$&pnVc7-w7`oHApD4^>2#4@5o4c_2~bMX5j zcQ@WN_xE4=?k_vlCi_E6%Rv5F#@sMnF$aWo{pr$yQJj-P)?TQJ|0CEm_-;LzZh$q> zNIOK+qe>(DEe>nddphuuONHs9aUy2ZzU(MZk;Z7gCHDB&`#Dixm%b@|`@W;f;`U^n z&YH0C2oY-LHyb5%s%D0TLgLOAI7^=7EWJaL4qg`H^Be_t^!R5CNK>@&pmaXmOf+Lc z)lwU5YT}{lPd)plO@U5WDh8iKcz~y~(BiH$Q@uB!V)A4f3nc9*>~8xpEM4070ICL2 z2+OI~fz|I33H1gYmfTvO+~$APC{}Nt?fOn=CuX~lSvC-&9wLKfD7qA0G}_yhhAfy4 zNZmfHyDNfDPag1=kC(AFy&)ldOYGajw>#UmkV1n5zqpdh4RtV{scH{{=p}~GL+*FJ z3GnXK|AP&KUl~dN1sO>*4&rF8Ok?v<^|Fj|}S{S)#*!5ia0Q{Xh)=n_)o(YB(}_5p2#2 z3O@~)0;UobK0I2Ni+Bfr#;og)0undPR*EL&JcDd(zv@jpH-me&aZ1MoTog7kMkcTd zMg`?+c3K(y!t(%|PM`q-Ppw*BT+1?EZcNOO*{ST|jw?@R0C zd5HGhYsA|+gLMw$xE;~RUWurHVijqk(X^kdiQ8zwu8Z%eA|*)Vq2owuNbCDLb8$gN zV8|N@oa0g=6 zc%pKjJpLcWy&DYxzpy%Gjgz^BxBjlJdO?}|lUs(ouT*>t;S{jK^_(mdV<>SUnB$5cYE^**^BJN;ndp$(SX6afjewcsyX*Ad z32$dt_i-Hifn_bf$Y)cV4a7Sc%o{=0N?d&E+~4c}hjN2=k5P3Mx+V{n&h;ntRayMh zaZ)jxdHX7v$(G_=?w{8EH{G_p{G4iLXT=)a@o`)T!HSdVJ(vi25mLL_)13dT10UDY zP#)Li3%~o)kMnyEUNh>_3BKa>7m#j0cPdYK;B)82BL9`rNEI{u8@KfFBZUh|&X6+A2k+-asO)P1A^~ z&L!X?+YtktL)U+&ho-I-4}a9lPy z|Kf-DJ7^8@;Cs4J#@Zg(;YRjBE39hYQS?G;!0y5R8+VbCVaExlV3tP5VyEQg{g%;9 zmf56{zT@g0v%=R@`^PU5|FoOi2^mC6XX%Vw&e@8rmwR`M>knF;T>|T`5rrlM){k|g z`u(iv-;eRZBW;SU?s>X3k1jZCY`D%2r7OJADL}vQ|507eo()2_L0Ip2X3_;>sh*pq zhMY%JOe-9C#l{gYpRk2+?Yv5JQ3x6)1ro!8g3`vg(ZQl#M;>TwQ6D2Z= zhuKXt$k#z<5`nC^KnzRahUHz=b>{Yq*lOK{h-R$y+4816SQM&WI49;xM!ZeNrETu( zwB`OsaW`YhTR&EcT~MEnZ6eZ11dQ}qRq{huDR6>loU=^AZx$DK{IY&q|H(d{>G>lz zV+vY*Th&s%ob~Tj6~qKN(<&2Y{-=ws6=yGz97Jc#8G7ZD*iItUzIgWs#*Vkl=Ak>0 z=O0jR^k0fu!+!M7ymRxSwo%V{cUhiGCnN8_7NI+TegaS_SQVohrUL!Gd0mT&$9iLc zly9f#Bf239UbYwp;x^(Rr#gVa;h~2(@JzYfo8pAt7x@`|63y(ME940qnYwttG0u6s zkv^*|eN{$y<(Eb|hI{iZ*>amX%%E^#Ii(BEDwp!CBjy00+5?}m2tGlNG(eia?+@#~ zI|4Pc`hq_~?)olUfbY3jylYwcX5~Ij)bd45)ldLQAgM55+XI7xXqVPy`D6qsB74ug zluR>cBWsIhr3K2Ea ztO!<#R9z2=wX_eau+d`9%gSJ2nXZ?g{4)m~$X9s(l5bak@@HA*+n+V0O`O7`%_gGd z1#k0q0H_Ys4LV|-B1%=dtUQ@kz1;YQwx5qX=vqxUw7p79Xs&PjshPp5`rC zSt<5^{Jop}iRsDKuhKG#xNCUFd+R%if6D*335J9Y9DL>C^2FaZEG*Xu!W!YKrl9s~ zG$aW$s%wnHdOv_eY`M5))ZURPWHUM`;7O|-yHXCQIEd-dWcbS+1Af0%V*LIj;*p|8 zsSi4o24_e@D2c2S=%VsC@ZivpfMV<7Lz7ya4-Z-$AS;Wt?9n2kuP~4K*pgaJr)EYa zhf;H8jet9$5OJMVyW9=NPsaoAQUW{aN_6u`WAr=6!W$QgVEkCV`&q8xQHxF{1jmMY zyIw}o3~{B-W~(`IJ+^nHnP^87$ugPmd#lLvr2}7n&UuTS#6}`Lpj2E;i?64HK2ARC zN|ip{_hL3UzU8Utc;n1^by1FPn}0mn1i5{keEUDZu62`wA=7BhcbEFneHR1lAANUc zrGx8B+Mj`8Nai>mPNotgxSB77x8pheJdb`mOiyTUZf-Jz9xK_Ga_d!B*H)tZE-l60K-G&sKj0?+QApZw6kox>n|?6h zmxsBMQNiHPZ3dWwemG5dUfQ~{ief9xphuRGZMB6?wmfxIbZ?E0&-Jvi;Rjx)pUg}~ zAGcx4IG2N6@<=eJ6(&JPmWg(30GTSEV0*A4-uM$E*nRX=p9b%$*Ep&4z`Z`GFm--0 z5sy#1Swr*iOzDF5+C%AH#?G>WY_u(1sMg^A--C<47HqSf(-mS5D?_abU}s=;iM7iz zSMsD6P9bsJG3@qh*Ze?R>(W2RPWrzKhttyPh1ReEZFw`2De*}S4JxfLlTj{=z4Q$x>>J6+i^))%T9kC#O_t9EWPNFpO;gyyXeyI zQ;%nVuHRbtc2DGcf}nIswn>hW%d&B9l^@=k$3{?S=!p!Mtx+;81hR7_wG0gXAq$+i zP*TwXCt`kVWA#g$yZ4<1|M>FT=WM0`Wc?HOP}0&3+hf<_ZM=W8OJCRJ(M1)QZxGRw z838g|&>1Gi=RTEkbr(H;o42xk!y${^pfFvk2{Yt5{P#h-u-_iaYTUUbaK`CPfw)Cd z?U_=>M&uzcK@bX5c3>Be;oHHiJz%_0Nfkz6Us(jVLds}!#(Zo01nQej*XUK@ z0w0C``pp_0LdME*>jvRlXv>cYAN#1idAoliBwgpWri{Yd0Ud+Rr-bQ1saxd?DYAz* zJ3Cq6>+GPx7grsS@8N6KmO;H1(3UTQUZn>dz5)J+I`=fquPvUl@y)i6@XP5?(YU<} z^gEa>h|fu>ZJoQ!FbDpOz&;F8e;TS!V1bR>h~xD|-^;@9bou*v&{{D*SW^z4_YiwN za8=6XdDB?idneAM@z{TI#NI;8?tXCz0o)ENF(Z9Px_f;5^%d-NGH*x+avD$B4jf*q z>dJHbNV@dRP8Kjq(2S4zJL)kiR{=h_y8Ieyc|9ti&?pU;o}aLqv`S3jZ2oLM{E~0j4x!q$ z;cv+9feDU(I2Tj#?B3Cx5lwb_$G$tENuA$om>ieh9>*&*mF4B{ba~PX!svV44irK_ zT?za|Gi*Rtu0dL9-f&kV**!XN?U)Ca=GAhG9n|&fSD=MYOe|5~kiFee#55+02s z%ceZCP#!lsPGvm1anmedyO|WXuhw5@qyrR4lumS z4EfG7NE#HsdQ(Y;po-Vy7ZQvj-Y|NGmG-i~xmAq@}bb{d?7i7XKI3+I0FvNzp)1fx%GUnB;cJJ(fVEDLqJ+3glb| zf8ouW-50gmT_Asb7~`uvVkBg0sQB^u*sb;$X3X4Io4Z;;AbAC|Hhvu~IdIeE86b*; z`Rv+ULxItPq*(Hkz>KxyQZFtbWcB-y2T|EaV2dq7r`evP>|{$agqr^*<#B6}FS(s| zAt-K#$LbXmDzx|lF&&R|LM}?-{L^enWyts8SXiVxvK@QUmF$lD#wTgzEJd$m| z<=x=6njR7o+j*`|P=2Q5SA@;f@CL)ff#iYaV?Ec5M`c5)Zh(0=Te`1@)R>8bTxm@< z9)%K~IOj=W04YA79jg7g$40CcV-x0f2-SDTJ$8w3r3tv}?DhEG5(RY_bI&akw)J0~ z)6PTSmHc578}Rk0+(#(wy?#a4DTGJnB#;4{0;3>L2l%US;}0;iJy!A0lc!!M-7#&L zV>fMVjjEim|M3oLY9ee^XSLD1v*yLTJFPA047aBHjg0kQks+mlT@cLrm{oJ^t!SSj zeEF92k)D`4y8hNLtu3?RrO2~)LkT)hmRDsC(Vk|a)@a^34PXu* z0dVfwEz8rvsd!ewCR2apr5)% zYXG~>clX#BA-h9Uur%1{qtSZN@~*>4SkrcO+vQCJ59H{HR~DSh26!A8NXCg3J!q_# zmRi~Kzd&I0WdN=Zua9x<^xCuG^!Q@KkAXzfaAq$v3|OC~<3`G>rq|L*!TuA#K%q_iT3@@p0FI0V7+XH*ohYRzB4kdp<;pTkpC#GwK>xM7rw5%G;tgA z;qdr|fdoOtxQQy!{-ux|R^mNLJNE+%YXI{lP=jrQncD)^B5PYP0iWBHOy$nZq=^oE+|iADh1Ukv@|InabQtC_a!@+ zUQ~s{Bkf@N1nzh;Kd>Hf#JlcP2f41nB=zC8hljiNOEcV>6yxVPFDv7U{uo?}J5Ji2 z={v!Sqzb(4hOkcZt#-UT)&mzzDkXC|tME2sP`x3~aa$&5AGSgzlQ`t)=!63 zw&7%^!YfqSU&t`55UvWh&*Jn1X<}lFMFg3MjiFCfzMx?D0MEm#!$IqqdKP{uhaK(ZjywnFD(V#~FBak~YY zxr3y2#2Xa^egh1FBKWa&iFxEe2I~F_d2E%fZVDVJ6P|apYy3x{HeAisGvIyJ9Y6VnHzK=BR4wcdj6wWuJTp#a%ley@8>=PJ#eeX4B`wDb%NK1+X0T~)v#lzm=90< z`k?eW$IkQF4=Ynv<6Ez<39vu4wopjANZIBeOmDr=q`w=LGe37gOV zg}YR_8Q4l@r3_n-zL9qmyZwU~C2G(6vw@?4(~(+^-YQK0eVG;36plJ4NtwUtvO}Hl z4T>K)?jwhRa(O`q2PT#JR=J|{2SBvNakI0J<1NuAy;V0Bf$Kn};T!(x%vk3i!G`yI ziV?!e@mi;gD@+*t2otlm$MWt*IT6ga4d;ex0z&Kd|J}zQ@82*)zGk8bL8@Yu4R9T(9I8$yD5N0-&aXK9g{c(N{ z*>nKdpflCZ774YORvdJ;arfsiqZUD)Xga-gw~rP#;X(g-u_fiSy)Ii1`}Oy41dng= zi|?tH@p=dP$QD?Da;bt@jLyLm!$d7H*r{TxM+B0G4|s5{cP=y_95w=vUj{&K!K9QP z+gLv$OqkmY{#rER0}GSay&o%;oa`Bm=9t#@4d`!MAhPyOTjU&5wIvqN#ii-Hr`D!x z9(@wm@reY=&Mfz0^ze`LZRfU|>kdsZB4WumozOwB5P^r-{FJu5CkNigl0>#72?W9YfNcdmmHY}7K2jsnO#(z7%6kNSAipRn zV^F%Y`cY8k$^%^Eg+)q#8IEE9tuIYZ>;0avXOtzb%Uy5x)>9WfmR+$*S8da1c3Ia} zo*2JuZ-Q}o z;cxkMvVLW?)Oi34SMDKSZ35BqDcX|x+ z>bCQy8K@%nLFDDay%A$OJFSQ1KR}U6D6XwB6H}ALQ>82H>#9f9@jyf^0wDL7=~8C! zJz%U499-wYai>koz^o&)yeM`n-7ZqEiIRPw8cw|%b^$4< z<|dzmWiA1m51#)d^8Gkj!lki+#o`yKu%}zPxxI#rh49||)nAne46sT>XH3e036IJ4=>Ma;!8usT(XDCWd_RISG6`n3#Jg1f=1$To zf_We=oMSlYLSgr9sY#-u3pgQiPoopbb%12*xP>=ecZ?IWZ=62QrKTA^U=zPnvp95+ z{?bnCZRy9*ijf>X^};Yq9$n)g#n!n$_#SM;0Xl6aw>lR+Y}qU!numVa((%ri`tYl8 zxz?8c3%TkM0s8eqF*o~I`j`mrii)LCJUzCjH=ptEsG|XvKOv)I%vdMHValyI{vS4j z-va9V3EN7TCkqvYe*Cn`#R2cQNZ}|6T#x0TSx;dwd=9YCOa^Y>?THn5XbUZ-8ane;+asmi*t=9~h zcElZBOMJi>Jy0ZB0s}c>#I_pEDoM`H=J8@h8x?e?jWixuy==_5i+ob+cJtkf>u>)J zHr0Eu(kHvJEw}LVN7K!SG0XR-<c6bl+L*4pY0evzOZD=! z$VA0T@#nM6BP++87{H7-+IR`K(Wnw#DU98W(QhVc4%<2kOS{oui@0t204cp0pNQCY z(22TR7a`cV>>l$}@t&qi{__L#db^Zn9fNVGVx@HzxwKeArq_#YGKlHqji6$H-(sHE zWHqyk5&qo-V<}aImK9(iyA6(9crNqncd4>c_jB$pX7659GCs;Im>y1*8?q*5C#GU~ z7i?OWF3*3*zWK8wck{C#o~E4+7uzU=UU^nGJiH!0Xcg z)Q4a98uod{V^7d0qd>R*qj-m;L`0JX0>dO4tTvsl?l6`v%1}`{jpu}OFA>YZ!Y#f# z#tUHhi$YdG`%_EYCsI*|9BhS0CX2Z5wQEB?dE#H*8;7%iCiHoJW^Zf#aI~DDKv5WT z0$>V6PWM-BkQn-1;nbf$t%hx)t_pEdq-1HtCoucbp+MdO`0fJU&%-aIHMzw3m^}Vz zGjnWY!>M~?i!e+*- z>b4h+4gd0IHfkD%TspjY^YGtq^l{;GO67kM`M5L}JKiH%?Xk_u;2B;$xghTktNU)! zq8Bu7Zd77?hc69gqSxqr@@MPa9xdn0UQ{M3PP_Yp5<#{3@qTpNcpu}54`P2ws{Z+2 zBC%l&wf7-1_lNCX*%oj%xs?huZl{Bo^^;2d+hxd&xBHBX75Dx(7#V~+3;BT-6xS}I zp)_d4&*JeCVKTZZI;}fqbq8fT^$Cxr75^Fe@!Nd!d7Y!XRapH2dbfwlSkHB(<-8ui z5z_GlMx&eszY`LNLk0U*s7Xo3AoRc?0s+~FGoBolPRW3y0xYa>DA=3Um$O+isWBxh zjP5_ zE5sUV%9d%k)sG$|kl#!fKDY;oc=-1<4YZUZDQ0JcpTp;ik;{SKlsfcSIJ+XTOwd)t z;}rY`D5D(>%_|*K25mBZoIbkl$KKF%+E#K6xO(OSg3ne(x6cV z4VVDex3QrnKH3azYUShfhu~j{6=A7WQnmCvE*~y;EbDq6?~Mlk8=#~eGqO(9aH{5n zzKyu?c;JSq!&9GE=z0k4Fx63O%C6;-2D*belb=)S3^u^b zNZ_j&0se)El<~NW7r)TKYDB+lURCoTma36aFOsoo;7PC7TvJu9&}?l+3zGG8 z?~IVJBtWb0gGO=^HAuj8^#hW5cw?14uzzzeeKQfS=~t=hV9yCU_y5;3s{Nxu`o;;z zLhg+WQRWoF{Jvf_DF6#QJCZ?26glT#HG;ITwc$7;Om}XVAih$;W-xr$@P+jBFbe!92mJ z%!J;uq2YI-{A^8yI9A-_mW~PJS}MvSf5X!1%3z4V^#KPnTCh>J%U`&Bb7<7Pzq_IVcF<1ZzaZuw(V z;4dq5$JszaRI50y;uW%~r5d*!?owd>b}5AM&-cC}uC9;2VkF$3$V0*{OG}KB)LZ-> zGw5k}%jwQXo&vLRs2lDcJ2|_XY|xW(w&EE1s=7v)wr1p7%Uk(j_j86%?8zN8BVTHL zc;9lB;`rE?pU{Bu!M% zDj6_cvTcskstx)1Eo7v7LxMi3mAmH%svDIrKP}X58MB-*vN8-W9M#V#R&x)AZrM9R zsmmxJQs7^>(ylTmvMQ|m)EB?)+kCQ6bCdT7j9|*CAGUk9%Ipcfq5M3-bh6|GCRHrx zCvduV0j(H5xLM&KEjZ5mi$El5!pD#`0BDLY62sGzu5f#}cE#@3ocy9A#PPaB@{VUo zHYUN5-t2Hwr_6D8uB>@47IIt7Am?C;bU^+;TZgjLG`5gnhhtub-m-6C98fJ!^*AlF z#5J9#X?^N>&^Xj{k1jphhj{Hzruqn|dky*L{AYo#pFf2Q%{%OaHK* z%59mnvfjot^x{Ai+K@hRDM?Aix4&qCmfgqhQLot$r7$wQf4Z2?5y?NX380Ot?7}L1 zKy$NQ&C4zBXOOdIC+z?)Udh&Kwhx2+;ewTGr`UMYbwg@rlnv8xKNJzWKMjA;e;Ll>E-*47|TIe63xAbe{n zk273aU}Fuc8$M%~%-Ft~L)xYYW9=-1O)(7g41w_a3 z7!Xuz3y22lcxp!4+BW+tK5?@W!V89r0xl)I(kMr(M%CQ39q0O7>GIp}Wq@Kt=~IUU zYrDtZ`K5k-lTZuL)~I}{7(0{(3k`-@`V za$q*It@j#az`}Dd2+r?cfqqbMG3EnxR*uz4nS=V1ZeS~}y9VT05~vft4X&+7YeE&^ zB?d?Rlv^jn+wc)24Mob|s|Q>qT{cn};$Oj z!nD+=&Au`-#u>fEPA?nS%*02HtKjcLexK={kF7b;?A|=#eDT$VZ~A1B=t?(|!e|p; zVU{hDP=noR$$kwJ1$t2672K%}zY8BVQ^#_kSC|(7h=Jd-aCY}!u_imFKLs1CjJAJ1 zsz17Bf*5{{w`8g59!7^`#~tfl2`kp?v`{)$C<30|D$iWuY4jv7?f{!fybZ*=Y)5JN zaJ90CrS2Gka%~MLd+72crZ%BE*G;9@<)zYJ|D#f={fls*C-64(8S1Sfqn0HJ8o_*e zs$7}Vy>x>SZ|J}w9!kLx;T2a6nbTnixI0o;^Ff= zblxpIbC}Z}oJ{zN1~Pe{O|YIJd>nJ*UR`2Bh@u_;z2L{Y){l*%tRI=J#IAXvxD>BB zXnHu36}WlwfWKZA>6{$`t}BSdv^lL7o`!yMu(`)#HXC;G3Y06#oViwYBdWS+@rfks z7m_HzWQu(qWZ8+)VhNu04B@;gn6#O=ea7 zJTY8e6*bizHK*pnnxus3zzl-MRH5E<*yzyaAc6(PwwfIp2y{}Rwe$?Qwp7s<7<)tvLpys(;fIHi@QPl=@5ExQ2wn2 z1 zmyNZ5vxNrPEWJ$ZXhP;Nf^7QFgff7_qT}v$( zz8pwuyfFSJa{boV^F)x?0pzSEfh%Lf|KH(ge(r?$ne`cH3Pq71oS_h1yIbWj9}KO6 zZpK`-%DWFBKXHj%+RC2}9Q#?3meH^=>d(J39rAtZ0fkitD=b#xPbKzE!F)Rrlpe^9 z@WDgSkO+apc4iWLV{Q2C+N`2;->8ISH-ELQ9ajgx*Y;b`lRtQ%5Pry+_#e&+&{wS- zDg~N8)lNno#P$?RpE>|{qd3v1-Rv)x;`o^oZ@2_W7dh*4DNO$94|AQ#nAH`bh=*() zeag0jW73Hdj{kli>`rH3U047hk=v2&v}`Qxr!Lj?#CzN&X_m+BXI1n55Y%Z1>ecEv z>;WoW>&6dQa$4|Dl?VN2hOUUIjkbBIYEpBGsB97cg39{t>`0Ac#&n?&UVE8;a&KEZ)iNeCAFRdt zUFq^CeYlt5+=3;v(diR0DX}CK4w+6sNyEa>MPP73-YHie%?!*BX>oJYYggmWX+7WI zRQZ9p99t8)s|2QxJXlwXFmfT($Qm=~!Q zvn>@Yuf4@tRQH8eoa@rsce(PwCS}G5AIaBRDM{znXQI$t=e_)l_d9*JA9u|u*KZ); z17)ja(C)N%HC5zn%JmgT@z&S8(_+}Z1S`SU$n-}?wpXsmT6$T?Iv!iym>hmmR(`q` zyL^J+8&x!Buibo{S}v+iEI!f*Ftv}~MTTaxlT6V+%38hf50%(w%x}D$_xtqI$-1^S zT9;lN`HU=NoJeY#R{L+M`b-WUw$gAGcO6pf4zv#Z?6Qs)F;7Z= z>HEeWma#0x6zp_s{4H}nu|OEt*EH1BH#>+`xB`)hKY4-&xHETQs*Z*ha)Ws(!SbAc zyU-q*r4LvH=I5Zrn->+>o45`1hPEVXCi6F;@9?S5AxZ9o*^*>JN>hTfrrgeL2+a{m zaUq6X;(sDEK*--wPtsM3y@ht@)n$_%kNsZ?=v2?Nq6YDme~D%zWrWg$3od&3E{-0{ zvFG-dcI`&4;wkl2h_p@C`|T!WGdOk7N1IWP|D$?tna}QRubX_6f6ae-2VEs~pw|@8 zrqwQjpY7HSO?xSdL2x<*dTH=aWvTZ5J8F0EqzdA0kz%zYgB&$E(m^ZvmP zDfcD7eXEJfVPMo)Z2SEgl7_7^9qi$BU6@l6QHj!w(X5KA>b8A7gxSiCIC8XO%`g=G z+C8K}2I4_UJ|ucw;*~3(W_co_*ooq2>jZnBWksAIRu^;hYZ0bHn6>-$Z+Qo;a$xwcAdt9ylxiGhqb&k}lY`2GsNw>;7l3Di@$imo6vwK$K zycl3}5K%l`UGdEhH}=U}A!v-<|I6!fY|oiagFJTLjG9*boe^g^A0|7FL#{%SA$y(h zs!2x!HfEbbYhC4~`S?NLQHUIGET%q%P8{iO805xy6>3+olpu4D|+_j~Z#i%x2Gk_(p#X4PE_g9hL z?cPv?_kvf^N=CELNN=B!iR*xPNGB&m={543$6v1=Bfvp^phRp@$JtqkbcaNRh&r$f+0!>S5y1!!z}D3AP!x;VRVWoeR1^`tA`(aDlF zEC{ZeoX#jU>v!eui3x9lTS*d^wu4zdtAUG}%y!O7A^P5j^Vv49%1JmM%$xl4n1_3L zu*CoO@S93JO%@-nEV?kV9KDcRKWv_Usrq^2vq(GnFA2SaJN=5|Av8)a_ezfgMbC6M zD^|UAbl%ij7NLEz=_r#azB(818uaN0-al>xZMQzKoE%9Q;qtXXw~4LKMale;Llz6U zMC^DY`UK3x+py$?xxFDPheJppxT;#c=;0WgEUc zw-o8|Io&8wr1HZhCrhDh$W$W1yjxRI)$c(=fT2ba^uFzVMPtg_M}(oax%;1!hAs2y zomdr29Z%1BeV(q?HO&C}Y$zUy{wfdYTVkiR(NZ4bLrHjTbmVP zauxctuQrqX&CV1pEjTQ3V^~3tLMN{g&^&gHVNuKdpb-nXvcc!0FMC{JoLF9Jt*>_q z8z4i-v0yhSJLwTHGSQ+A7$}3v()hwJ-a*2d5}Uotm*Qz(Yz)0}&Hp3A?j$ifP^I{q z?_1@As;DRk^>m@g%SDUkbEi$f$Z#YM?=sLd&}fg;|TWuHi3sL`O6o(g-RugaQ*GsADw?l8D~l){VEwJ_nCy73033S-KGOPoLst z_7?DAUD*t!A*D`_aK7~^EN@)IUL_BnTD){ur)9xdJQ=YE`Tll?JLw_~0~({kxKvEa zZPqETPZ3}5m_PUOaQf{W4OwrlZ?b5_Bze27se0PpHF}@HMZVF|W#}laXFhd^jN-xR zWdDmrhhg~({V~sRi%5FK=K=|mv79imsrOEQ(}xk&Ujb~S{n>Od&k0eGg-$wNV!-}l zYJeW+==-i)n8!5EYu9q0QQzNxP;Ia*MK?h)N^AHxB+<^lWxq~$bb%u95Yefj%<8W^ zvD=BPi|wjlgRxE@z=}}mee8OT69QHblO zulhrBA*TQY(|H9odx{K<=PyY`wDt8&a|rf_`LHK7Ez?wx?F;!RWu=lV!_~RzkiPd% zMvvEK*Uz~9oQMzLlRTHB+<=e&I$9zLmA#RCf8F$Nn8_Rwa5jIQ!rj86bnm<0*+^Z>h@P-9v*P@nS~jEM^cH< zOIzCBk@=htNDgbJ^pWbhByVEs9{2`ajzmY!QIu_e00^seU*L^$RtLPDPSRcl=S7CU z=N+E{Tn;^$vXHVDzQxShsppgZaO4RCpUnT3{Wsm@!HS|ma?E(B29r#%NuHarA(aecq>-78(&OpN#&MLw=eXqv4~qH=DZu4!H8{MTr>s@M259R{ zIeIPGY($!pUl~U3-WyduOS>KjaTdlDoA&;W3qD35&MQ*;4a9~#5S=M}EnosTSIHU` z)&sgk^1-c;1QC}g_qUW4$E`WmrdrvGBPU$|Y0>H>SJ7|#{Ndue7Kt??3b2}1s9hnZ zhB(HVJ%WZ@r#?ek-ez4X;B3w$l_Qg(wXNIqOO0BjFULtTB#L*-i6UJm%QgtCwy__ zo!J{pqk$V2UPjwoeHV@y6(7-6vL9ZW^+M8$Tz_0`5X;xn@79Dpv;)K}ozG7+>c9lS zF3Y9u><`Hs^f$&t8-K`t1$uhdj-@Ys&$xh_Qk%F$N4}+{_467<$m8BQCt%w;p=*g3 z>;_Z8pac$7HsHJ>1myZBs5cUVe+irJ)-x=2{ah%#|B7x#xk!cPN?P}goK1f6IR)`c z_IKTuh9=!uGJD~gKQatqH5P%meA4Kn`;X-`YPyw!y+xit-PffZ)Xhkj&miDdJNH@k zj|8VL)2ylbTzfDCtu5j#to^uB`^*e{i10YKAnK7`6Y#h~Ohr^(aUCriNyP^vOoZMs zb(rCCs#@6``Vhm^XmCFgj?P1M^vhMKwK@*p)==G<)jm~y;bvlmjp=5ZtO8vk%jC%Ufb77_4|W;^%hPoXX0)1)M$_syp7>ZH!_R zkYiO6zi&wm5ND+xZ9fWFqLbZ8YG*qK4jE`%=5PNX-AU=7Xc=h4wRomymVHJVd{^z< zzs6T|QZE0TNyH}!IiJTdJ-JhHZwU?D`VGPK05wR@EH~fO$qMa)a*gf5L&avFlJoCX zvA%N;U>a<?aX^xP(KUITHAg}R1>XN95^BL8HnNF5Day}%kY!pKSfRY(-m3$ zk=RAcIP;U)3u5g5b|gR`i}^D`9Uh7a`=-c($&SdTQPlbgdtSxOGo8?Dpj|Yd*Zh)h zH-P4Fgm$Newnx(hd;j{ICsG}H5uFC{4h_Ne$ z^D8xu3+hBQ*n=tQjgJmU$AnMFg~7v#TJi3=wSKz|BVf(f*_x!$UpDlZ?EjEHN}6ozn{x zy3!NL^hm3Jd^sll9&a0?xOnV;tD2sv!#Siv>>DA`={vQgr^M2L*w50?&+yxXZx`TB zaJaGnIhOLsaq>K6nF`+uFd_we6Fi!JF=kheavrh^gz9D8V?WxpD*UjcM$YiIKNUj% zmTfHf-93glf+}P!BV2SjVGsXefw{mRcCQu3U-*MA8xQK-^(ggMK9jqYH_v|XdQg!3 ze&|b$OJ`2fYaQ+ic`|ypI^`VPu~w3@>Vd20hE-D_4Z{@bMRmY!c$u7t04xNmgc7v2 zfriuYcO+0a-T=TmOhXIJ?l-_@DP`r1&E$ZpR(8r(zpXQm}b>x=+iFK-t z=X%;1RJ{~>a+YOR0aGIbiwB#Mpcd#|`!W1jr{1#?uX2ZRRV%d1Q_&`<{F9gLAG+gc!ubEZk z_dwNn`Pr0;96F@6)h0J5rGLx4BEAn|Gp4!H^GbH9<@+_EzrDgzMvqNOg$>%1mmHB5 z2E1y7BXocin4sP+O)!DI#PyO#=cEo8-fkLKo4hC@DiJ|{p51r(?#m++h$;J6%=5{@ zSAN?#U(ml@!_ORS7?jTbj`*Bed&evN>U*ZL$y)seZXS>w8bd)AE=t2g@J?`jZ^!E0KZPd?|jwYt8Qt8(_d+3i?WgJX5xk_ zXTx_l3scvOhw=UaK`@aD9^Ojen6R=(Ft;;P{!y4}2{0D3P{cznr)8x(HwMr(quX_#e3Q`g4Hkj0XwQo&CkS~>&bIk~A~@ZdgM~u9iQ|gs z28kV(TcsB^#U@j()`yj=bU~0IoA1T4T1h^@VA~*7d_z;r0%?HenTMRZXrYjk4q0e6=CppIl>6@MueIq~@$r^r--|SeitP zx)poB|HZ+bjY}}WoqobccBO5!70;Why9GT+K0HJ}isu(^2m7zN=&QeunoWstu-XWe zl^yj#Cl`eEXNU7#+E;$)IAaVXr^0xJHMd2=|D(Doop8rOg>%C|?^C9_s^^NSR zSa(t6rYDB_-!?}KzaD?bFr>$dQct{B$#%ty`(zVRXq<0eF!rmnlwX9Cv$h!m0Etea zr_8whVpQzEF;smtdg?hu~?OQJA%XVV6kfHE$_5noPWf$$*LliTC6p%d%*442poMf5!3 zmfc7B;eElj9>ENmA|m$Bdlk|_1xx0AMaF8pax|Oe!PF;3`jG-}5?|}y^{0M;*U2YW zmHAu0ZflE~>UHr6wypj#E7z5>B{_Dv_Uoci!e5YrDN9+cf9cF^1zF%P=6&x{cIV*- zOva^{C5I(f?eqszC(**sYqEeYfjzS=Kk80x3X6>2&3k%9_f!1dGdlLJbqCd4!R}rQa{ByYYd71T_ zAUE;CG^*}DeHyoJbR2V43fIR-)IBOHi_vV6tkw3!9bCW-V@g2}Pf$R`-pdh8;W?#* zU7PIty7s%J*qeJu)roz&xNkh+<$`&(kkd-dY>47D+zE*Zhv}GM=w~juGb!c&P?*i8 z@tTo)S@iGQmp#s|oA{I$8|ySkWu_qFJ{u(ZwLC#MLKkFEvwPu8y`_EK=J?~}?aYTl zekS&h^5^A1oYte6T2&?&pZhs34F}-!@DdyIN*73-fz!&yfcYf^JppvcOa6g$%q9rU zVp(vKQ2bgoK}`47zm;v@aYPpc#c&<)5sUV*n{fZ_E8^ArJ|WD!av~T}e)pyd2kTPF z(m_Log|2bkD@Bpy=rSzXgh<_UmjD6sPQ!W-jD(!sy;(Dhs8F_jwuwKt!?<7H`FWoA zqZ~)&z*>A|ot5?ZbOnp1Fmh}J32MZo6~55StEV6(zfF~r0`MRsWc{>t`m4V_=DX>s zwX!UO*>7S@wPNeKgbJxvAbW4*cm?r90$+$r!_nQq|PBsp4Je;iUL>s8+GSY6}J-d!8<)6Zqn&@mnt1m^R`_nRmF6UdVdcq+UP!9(H#zSc_) z^@e`sVN(>K?um5qGX?YlsJrneT(ynmVwu?Wwj{0Fe&TmvrKulfA7}`)BUsq1#l`fJ ze%VwY0JK@$_}-F+g)owEU3ZU&PdVKqH-a5*^V}mT697-+jco(VUfRuXwUL9O_Zw=C z)YfY2sjX@5hJJr)^4Sj}rf@qXl%Yx8rJ}{olKXe}%&E&#+pL?x@lmfb4Y^dAO~nH> zcAGL!;lf|7QX#fUqGLbnr5W};3rd%X^^ooJ^}#|#S@SMP$koN;eB*>AUJRI%G7D{} z_$ZxTi`U&lqIej4Ig;bSHwc+OQ|}%1NQU0GE!iYrKQEQELdjS3C0{H_@qF_U1f3-j1)>3+z#NB+-f>+QPdL zbu6F7+BxXw%XhnHE<&#@)n(O*MS93$?-iKz9iK#z@=mVTh1{B29~nmUjLo4RDHKsy z6lZ~z9OTl((fAcWgK9>q$Ew@uU+X(=Xm{Yo#(+azIz8(Zv{lHQlN*4ZjQq-;UBkIDB)K)TF zrdKle9~DG7J?s}{TwoUXoVTAs3uFB93YQ3GY?tycU+Gk4`XT>sWyg5^z{k4VWpb~R z(Zc)6ABBh1B^i*bTRK1{8yvXzMwDcc-}=ZauLW-eYY=6D4Tcrs{n%VLDwQBp0Uuqt zlhS>`Ri5i3R{U$H(urkqZs1Vc%ge`>fmymIp2f&kRY&rp6Q>$I)2)=KgoWXWmFZDO z_vm1oyx0ivY7PSD-p~h*GTZnC_)r2SPh!KeIGQ7w_kU29r?6R1@HKy0&3O9^zkXf2 z^5wy{WjPD2T6}EnjPAuaA~kIoGvd1s&xiM9(^L2ev#0;Ntrd{z3u+VWPDavrx0D%l zSIzf9P1+7$i1@M4r?Lw$KDg1y-=|^Kf$Du<+|8z+ExO=lIk1|=ktPPIT87Ve8$jpS zv4G%V$;m7B-i--Xv0n|ZNK4B8e#44AB9E@-?O%#zT^M7xnOqyOE~_O2pdt_S_U}~Z zig94RPt|=+7{O?jF?VYcj8Ki(oY+@dTG@B}LkH8YUtbyeZf^c`Hp8<+Lu_E|4JYI^ z?oElnPJ2W33cR8)r{!3VH|A6*h`+3?I0ZMkDj3pwe>*70epm^oUsk-R*8cvp=ZkBX z-s>YmrS*2xwo4)sVnwnd3r~=LP$6tO+P&PVc?7l5@s}yttuQ<4pB3^24|QK(9*oKitL?f%bq4O;L1-1i6($+B|3qw{Rd zW0Din6p@I-9cgZ+(pd5`CfW%)CH+TbH5L{a#ly6QS3?GQ1O@y2baY=@UcBytr7Qhg zV6sX5;hi(9rL3L>VP2|eb-$q%!Mb>a3NMD<9X zqruvhF~H9@e4y}zHL$Xvf(g;R7Fatk_z}*U-`|t{Elbo?4D*eD_FJn4oDK8(-NV+e zB3hq5hSyqu6du_00sCn?%yBnIC2VArk7WP~iCBU#s2hA~;jP2U_2VCPC5czL?2MDj zya{8!@f#zAs|I9@xeB#l=~8Pmz?$5!|0SeEJNA!*a_b1+fU&`@eBDFZ1;w%ogcORT z#nhm*dAJQZx~SkjVxB=)CXr_NDnbD2Lq40Zax9{ad-{<AE56`pgg9Rh3p3#^J@nxdLg6@aL=S@4*t_ z)nDz`X3CJxpnLwqCIkzmnIs=_3SVIKOv00fCXaX|R4v@zt8?7Xl0G;@}nG}Q+uvK@;l=@X;p4Gb=JIB%6E}6V?S~Uw(U)7E3 ze_K~w)nZ}L{hGNyuxC1qG0oVv`ib0mMN!lKTY8yv;7t?{8 zz4&bHCP~-GM=BdAKi90&BAR-cyEdD0{&=m-LhX-Q{h3v-IdCy)@^{Y_xf-&3Bjd3o zFvJ@fDbRV46J?d#u6Z_s${a`~M>cN&En=+=d}R$*{2L}X<7Q=^NjC;xJWqEI#BhPx z=en!5H63bhZFX6Tjps>dxOuTs1K<%|k%Z>kz56n{`0PkUQFwDqtcRbS7l)0jOTIn7 z!4B6Ax0x`rQu(*x6ZuN)N-3xc(mj9+^Os=7={v99Z{fK=18T7;uXYr_v`zV5+Ksa^ z!v3T@%3$)0;)2$k*#{v)k*iG>g+jS7%OAr~SP+fY_W0g?1 zHzrZ8LgzG5Y)1}c0y@EN%1s{PYYUE*Z!0%_5Z88QuQ;d7n-4PfZ^zb1#aZv(U>b)# zePE`K)E@N-8O2qR7ZX$52*HTEI|rZtqhbQvrH@^<|DTTw@APWA%sW_Oxoboxm$k`1 zC+eY_N?pS{n(w)Sb%E{?j)U295x*jgICq|xwCwqqWxN?=`O&!MexrkTL3*5H&wVGg z+aII-b<6Ls#vR^0&o7)2H{{eXSvd`1ZBnVV0+`RjJ z(WO)Vma!w201@1J!$@+g2kziB4^J)`#`|F`kYS~H&N89xoaS|nj{|yAj%@9Y&tH5| z72yT}PZ0r0@{P$BZiBByP$q_O>?nJ$!QkI9|514xX9wAVSKU4$=#<(0!|P(H{go9= zW3mM^e=i;+qfN~|bULhy?De=F>;mn>rIdG%y$mAs_fOoW+jNDwGHjbNS#H(1%9x3= zEQa|Ldo8aKJlv(nfSpX$_?^$)MB_bmkuMd4ED{6$lzU*aF|Mq4PaF@^xGlPyVw9El z*g8Sj`vA?!)frAh;+!U_2#dIo^DDro${CTNHwEPyGj;rLuXDFKb(+?@{4hf3=S(0R zEq6#pl&zX=L{)WE`Dg!~;(5wm@FslTzTF1QL9wbqoqSgS6yO6!KA z50&O1g64KtPYxou#2zgCHtjz(x9Fr&w!!{geD2&ZL>G8g(m6Z4Wt8YyDx-w`ZEWtk zDM~gP?zcLkQDxP7+Vk7EZF--g7n5a{DNy{2^4Ic7q-zVN4BR#2@_@F0p!Tn=@3!?u zYqn_I*rT72Ttxw&i0IvE!&!S_BS5=3M-_8ziJ^?of*egE7`pzXczj64Ndk~is5N9qw}lf;*Z`mn!MKo%AP3SJFw;S zf?`*cwC^kY*7`}waJMttF@JWP!v07r#;O?30d#9|2raIie`cMU7r%Rk3smvVyIUUb5wthdM{tNm0TtA=AgfCuM zt)vJ2_-M+dVS48e4+Bh-pn_W#sKL)hm##KivuDcBt0+xo?zlgU^*Y_Z=06we_NiOX zBU5!`!S75|7a@!yjomfXk;(@7y}&{W0UqiC;2WNmNa<=SwgP489W-4IG2g(75I-TIqiRX&%S0HvKPtvmIKNK zvuKT2{G+ce)8&q^>*#Kj$QT+59w@~mZpaROx#4U0c;w7S-y8v(#%f?TdX`ewF3D>6}Mp14HgwCf^kpexmQ1DGdkY#cjGQ zPsWZi0yXm?PR_MZPX*{D2hWBWpjQx0b6`f9r=9(%0QE8ZZ2_Vry zHTm5Fd}24EnB!7JV{Rp2p>kovctYtQrZO?#Z^m*BqSJl^yn%EJiVpYauFJl)@t-(M!}rzW$u5p)o@q_OBq| zy-FZWu)2qrASDqMxuW^U|$d(GR_r~-p4ao9&qntV>OxUNqw*H!2Y-(nd1yt{@4V18x2T6# zlWcLuv3NmDTx&XTr2zf9UmN_8!^#1*AbivMPt>F&a^6MYU4LK%5hGSEK@0Mm;y=6%P^FOhZ zhn+G0tI=UfPBVi=T}Y|IYlRi(sm5O&6-3(+8?d@yq9!o@c@X6X@q#9VPbFdvn9P^| z?BmMnzIvKF7`v7Q$?w(PdO0f~46FYB@~$q%^E>$<6|JC1w4xsjbqSBb*emXRrj+~szxtF7=vwGhtiSw6#oY#GcY54i*sw|mx`5(z z;5-Y|r?zz|3L-a-!=9v78is<^u{v2-B!L`Z^3k;poAD=FI$r%+Mt9PmfF|zjCijM z$B4%WN89{x9L~y_-rfGU72y$~r5jg4ltFYpQ&xtVPqg2MJ#8e!qEn@p)Vs46+PT5F zxZ#cEw+=-kUbd`{L^u9PjaD7ro~tlRwP`fdl&BAS-PE z@mtCqU|I^tn360|6*LIv;7G_6Bl>p8x4R<#MlTv)5ENrm;w)`%%k`-9u#1X8gt?}+ zUlg#UYeTGo0r&GuLY$9VNY)daR0`iNt)3=yPGkLFQCBOUCgDQ zk2EOA6=*os{XRF$ds{=>l7d*fx3x~lcu{=QOv7wUx04c`xgUq8Mpa-%E@FE?a|vij zXlqc8w!#n}&b5N;xPB|3r+x@VxUtVI9&z%-G@9KoSEmibzv70p?&@D_{AZkq;^^Hi zJV(T(2Ni5zAVW?vS&VBV{P{ze(W5(023A_%hN-QRS%V;j`tHR;=!0U6nzVhBYi1ig z6&^^}2s-s>#9yT-5J1drxa^)9Ip0|dvlA#kAUb2i{CV@dRo2fw$zAhD=62ROas|98 z$z=tt(|`~aXb(hJD7Or75Bm&Uiu`3TeP8Z<&|q4$27-M}@Kf>!wTFxZuaNvKT=#AkZp+U4Htsl|Db5fw7&G$Nj|lBp3Z~2nwrrZ=$NPrZwYXoOt(*M zx6%!tvHZ7!e@g!+J=suouDO#U4G#8;LE;csmiF9^$zEM4?8~u5Dn51|*1YCW)3-OR z67MPTy)X*049((L!_H=K> zq4p6VtDJp?E{s>A8#39`<{uvMKMkzt*+3D5fcD`AK`a@-onuZz@P6HWJHSE~#Y!mo z;CvF?63QECT=Vvo?(JrO;@Xs)W?J)B_6eD{fU)EKheY)1iVI}%gqXUo%t3BO+KpZ6 zA2vt%+;PE&zf8!vfEN6sQyqwNTps1;gEf1bYQw^cE^Ve%Pi0=ccgldP*U+1#ux z>NqQN)DKa8UwNJ^_IcecO(_eBgAC--ha*<=R%(oEo9j{{VB*B*TV7_YF`4LZxwwPy zt2a8Z<^#`bo8gG{-vWCOPTVc0WOnn0lXH{(P=zb{8dEy7|4}UrlV;KG+`Kb@A2Jyz z1r)voM;;~sWji((gyCppHk&?6MVTMTxbYg)gWtEXZ8wD;XrfEB?$Yul0*oggrMF6E z$Ed)&8?nhH`%7@@Li=`3;Pgu%@zx^l+H*g~#bUWod|9u`fM+9gcnrEb%x=9IX;^LG z=HLI3X6t<4DJAJmQn7Y_Sp(FIECQ|Xz~oXUb;g`30HaxI7knI1d)7%GvvSL={VHKo ze+D>`PbnKSPT<=l=PC<otR>6MmAzIahUQPw5$+bWe$rC#furo6a1^fWO^>G{KE z&s3t>Z;!bnit{1<`>9E}hHE_Z{88HMo>ehne)1Jz8pm;(jL+_dvh9HBTjei4&#j34 z%Gs&zci_|%^IoV}Qs#Zh7M1(XPHse1NHbG?+H33xIc(tg?*~y@C+}W-lwvkOFQ>Ef zN1T2o*MepCvK5-Ylc-lCbSDSv8!dP8f zrO7m2HO+asP!Tc#G;p_lRi|S40t71xNmoWz3@64y1sWy_oRYLoe2I#x7r8Va{C0bN z#jjx#jP&cKO*;B9ZM1pCeTnlH#*~Vx&uL5}1E2Vi zjja!R*+P0d-$?#@bRV8L1)2Ag@cEGWGyYh$3}n)dOIjQ(5S+Ud{_=aC(7HGqDlxh+ zhQt$?in1THaM*I7vGFg_T0W8c2eZJ<@1kv{nn%koxKIIFjx?6$ejx7WkXVWCBNtYV zj8^y&!EV4_QuQWPkJtk z@m~Ajs=T+Qv9IQ3qGo)gz|Y05vl5G}m{ciO23~5?$uk!5}CE=czTR0!5;09)~AL7N@-BFc-eA_8%9^GnBt0C3MLW2a! zvM-KlCI643uW)Pfec#3pA|fTyIhB$Yq#2+hQUa2rCsG2^HEI(Tkd_k3iF8i78I5#< zbT@;I95D8MpWpijY{#+Z*?ryDbzWzXm-^`%mF%1%LJqml&+72biUnc7ZT`h|5TjHl69b!C#~9P;U#gE*vfJSakx3?Q)xze|f*e8Dv@p#H8N z>QZK0tGi}u6anARuPJ|$LR2_u>O9@`|LD6Qb}iv%u%Kr<{kb5r%etkv_+V;g0Vp0E z8D>b#`n8N@@xF8|5(E};?R1%ne!HtAQWrOs!++2iLdr?yI>pG4likck`r!0}_o5dl zJ#H}O^^}9uYlj_Xo()hbAU!Qa+ zDFTtTE$bt6(B`Y~@H0xSKs3dk-T=Uc@nA9jQ?E~REBWz9n%=ZykDmdP8=2}>i^j3Q zbiSH;TJJQG3Gylaj+tIYZuw*><5%5Q#Tfa+&>t4>K}nZhZBe>?LsD(DOoAU36{&iP zo}Sv*Ph1EUiQUQ)=6XzG{4dB=BANkt^!S>fwLPsU2;HslxLS; z;%Ga}bt9IZRaH+5qrflZut!~P|LyGuyJoNHF*p~R9U~<&I%SPnZ{^%+(PYWslP~*) z;i(PK0_I(zoWvB)6d4LJzuFy~GN~2eJ>G83cgp*SN+w2f-h8!oZJds&fQ?YrvSy*? z6|2@)QMGSA1j%hV3Q&$nh8C^eOkVPC1GO_v2tGkn#5?1n^l%Qb(_6!9Ud6eof&MOH z)fXm@-h%6H&MFpI{Vz4hZ%3vHQR*kexi!y)f?e74be+AY6p1Gtc{rJG6CEC) z4hd0Sb=rY2MFqMP){Iu-l#;pScvl)OjW-iNyyM9I0+x18Yc(}hOG|IW+`z-7!2NLw zn<-T(M9rH(xY{HdtNTBaSOinE%JuV|6t4UAfAF15$&%8`_PDH^o8)!HJ7WdkB(!}V zZ|zClQZi3U*(A5k`LERtq&=E9K;c<}87F2c8J{Tjizb^2Oorx-m8D*#U%To=;F3{3 zl%!;xJH~eL7IL(yvVS=~!G`=z-Ja!-A6;>$NK|H+W3G_G1hbn;_^lv{nUr=V=@}`W zskvdwzXvYWskUObj|VtJIYQ&8u>I)3hdo}A=U9K=XCUb!9!zUNL~O6M#2j78w-jMJ z@8-E3fMiHY6mdkdx3W6|ZmB_Xd6sjtd!B=jYbO8m@8?ckQ>c9=#!JD%|5+%VJ?sZl zQ=Z~jIWwIuqlRHYu>%EgmonnT0Z|cfiw;q~#Oa26M`gMWbPy#c$IWw79j?K~=TFUD z#2YE@Em^+WWv^Qz=hO-MD|cg~R?yfA=oJzifbH(VpR!A$I>8bvhB3zluJpFU2nMT1 zvlDGc`88)l#E>;w#t%n@!xQw>4YA^llBz-tqw=7JM}1qZe%Mb`w;n}hBRA8y&q$vY7BJhn9tB( zB(_v1=KV2_I-|bE(4zItWPzTHjGSO}nQlJ9L5yk{?{@AB2n?Wm*gajF)e>jD!msXC zfBHmke|owfegE#m4G+zQ#H4^-ME&u;p^>wuv;FdxpRd6X(=Xh&I`!+258<-A(Kf%< z5;eN|%4nr-eu=vL#tsc%C+jy_m2p=nOp#0!?Dv9+EJv0M)lqO{s-e+7z$zR90UjgL zO2YWClXceyze0SJR+Bi)sLR;QB|e6m5BA#cqh)V~4gWqw$D_;AQn6MsX#A_SjTImo zU8O$ud2bZWmPmR5$+62=^Oaq5ROB)vSZ=i*%R^nZ|J|%g?9Ep{s?ON9({iMPes1uT z*FBG+(BiJw zmH`_cuBiYm)T{xtEbb5Q`<2^-z>(DBsVJ|{GA zhoOdsClW00FynKthQebXF0&m?dh^&yJQx-BP#~F4BB7)zr&-^jwqLuvjG?~}u^~N= z#0RdSxlDJpS1py;^D7gK)8u%JWZ%`#*MHKzQxn}_)gx8Z7-6~>m(|J`^yDU+NaqAu z?`DG+Jh0gNywGG}ZuQ|`QcgN(43J`8HPG_%mDB#*m4vck-Ek|*!GOz-DU@e?Qt*eJ^jXQ5R^e$-; ze$6FkjuB54aZrVg{3x&3$e`jZ$%FNSizyeOz{^`ga+^$kE$Wj(sT}B1)dnfrc5%6+ zpvDWdSe_yA$Rd2AX2V3msO{twYyU#cSMy1#xYk@y+sgRjIiIUzVE)V(AIcU;r|-o@ z9knp3$vZ)%B9!T%~(aMj?**QJpzxLz%E%cN-8o%|o;MG3=`&Fu_-54^w| zDerqjsee2=AFTcoi|x{I-uT z$32#Mfb#N|&+_mR38xzQomSr(yNI5bWo15fe|Mt+P(@ZL?o2)m8|1enz$J+j%~Q(p zxot1P#~yJjN;@36*zt=bcjJdwid@eDiQwdHL|sxhLR8tXM#vTGsR-&PnPtR$KP-)YE~x_wrP zAVuHwj5k~Y&MJl?Gnuu15RU;zKMJ0QJBV2w$es3CbiF!0TGRc8NpcdbqgUUemZpK|#L<2c7xBa^OFqYxv+A^X=NQbJ5r+72*@0+w{Zy6nR=x8~>Rv-KL8`1ZT1 zY8?+g(R|{-K^5arn2otvtM<=%2OH^&hk-{Jk!<@wPPpXi*srAZdWDozzUB<6^opJL z6O|6bfZ`%}6{BTFTxuCFvu}7!O;tIU1Gc65uPpkr(A3wBqT^Gr)At%3n-F{=c3FM8 zx~bm$P3UHz|83qJeU)SdclOwNU`Eu-Oq1KoJsdkx13-9dbQoM@!d{mP|9+V0M@p@f zNF~}#gDVcZTCWKZq7!wIej59@nkntsgz`J(*~E4b37CJ)g|cn#U2W~85B@OsEB&XA zMT0mUawk|?-KN#6{<1eJ%{8^*b+Ca>F8aE0P#5w(Sc@zD*DiE7;OmSZ1r=Q~`2!7s zPQF{#p>~V)U$TfyfD#6GUnPC(Z!o+y$qZAgHZblB#PzGmdv{i|oc= z$g;^&Syg_-ge(wfFCCh0d%SntGAVjlBi|g~G98OSboz5;3dVoUkn;{)Zko|mIb%Q9 z0z|FIZ@>hFKImSH;W~7bLXqH=*qa9YA3+b?vKG`FSu-t~F;sR@{wiB8O{v;}xXs++ zVkA`=QRr+Uk1+DRM^mB;?a=5p;k7438%ix14>%_2G$}`%eMtAo^%H#1KlQimSR`d5 z?&hRXWpT($a7=$QzX1YA0dS?(-;THGp<73rqYD+-pC_S9%&@Hxr-7p9-p7)$UtmK|jZeCKcEHZq0H=FL|z4fQ+jH`lm0Gh!Q()W%&30 z|Crtt@SJU@O(18d)mLL=yEmr|(%Eli1CUINc3gxcrN~Pr z7ICNf4`}~ z-I36D%Q@gFYALaO`e=g{i^Jp?AO-idcWS)}d*etpou>1x|GX<7_UQwX=yx9v z5Tih*Th-D3JIT%-0G0={f{bKm%V-qV-3SkuSN*!hK8;+<>>wBkdNwP&H45fGg{92b zi!$Y(P#BidV`>|lXa zG*bbf zeNVX+?o7nJfy~;m{9Ai`ShE-ROuUGBfE|T&OU06Rh2mcSx{$w!I`APy6geeWSXk`Q zsaNV8ak!dPed=!L11C1|mj!ybdW%{2-!Cv8b(&U+2XF=?Fqht@!CH7~8Wv#0iw_<} z^b#~1wsGaAs)9!Zq5qL+I!LiX#Zw9{K|o3G_=nG43EZlisQGa#?-9oJvBr06!`QnI z-2>kzJ04MD~~h7FP9KrW5v4IQM4}{tif8&PHVHJ$vOI1?#!lGT!Jn; zTF|6G(5K=3HK$x~1&fhPD?0V>$Qt_g(r%7E?jkf@YuR@+`1c$I+vAt6|{1C>u>B1wfL9?_dfpf zByqr=JV8PzEc0%G{b1RV$+b!csDe7S4vXwm5*s@bbt(6uzB9h%pn;B6?{w|W*A7+$ zE5tmx;`&&{d~ZDetcp9XL%F7)<5pc8lF>)Gs$j7;VYUChf{Pqzo8i^=Ht3$x*GssLHA_{x)jga( zZ?33!#usxfK;Xy5R?tQTncDfRE&8vSD%TMlJg+iv8x9*Mv?*K^vU6WRq3|zX`mvJZ z>2ctuzC{A+_a!L7rs`n0#Ji|Q2Q)y|kEVtWWyW>UGUH|1KvXV(eZ)GojCxI+MeG*; zB#LQH+E8BtyqFt{06MNu&Tp)2zH}IQ7V#vgiINNS+DsL7x48QI#UNZ!l&}WdDm*uK zq6;qN$WFI+AD{}@?|%LACA}nhVIAEE8l4HHnrDnKZrArDo{wEGrYw5xApZRM`D#h2 zGW^1zxpl*z*y06PmgVRn@FvSlr_14uRMWIzEM8xa@+-t>?kZ+hEJK_ppWNbJ!{%&g zK%{@D&)xYCa2?%K^|>F`$*a4voBtg2A!dEhZCejGOUk(?cDRD`q67IKuw1zx^xR&= ztJq||rp+-hWl|IyHJ`MoMR^kwUKT{nY#e;?Ka#%9f`x%@;S+k*8+h{vl^Vd|)&{lY zEe}t;eg&K9t&3mWn{x0s)@-1O;5JNs~XtzvU zp^kY4m-Rm+mXUE@?eW0wq>&)MzU9^>vj0jfL5!V6DSC*;II&;OSr zob`+0j8uAwGo^|jy~xzyKGk!cClm`^PukbZ{08V=Ci*#=Z}>}OM|6AkQ1rD%Vh-Kq zw=ulf!3D*XPK>evE_qEm9GFxC25TBySKMbLT)qXra5{F{{^^u;$SNOqU7|~%w3+X4 zAC^ct68DUG@;?&)eZVNJOdA?XslOYFvb4e@)K zIfVwFb%fHM4p$@#%FQKtPply}(Daqn^=3k&?$OS06^y1#NCNms2%cn@0523dF2+{-^`DT?E_j6dFe$+0R zTQ8z(2%n8T?$pL5d49OEa5wMHoA2Z>9wVcS-~-M9DM<6&y>(csJh>X&Un6AP>DgE3 z>yL~h$_BAw-;94qyNGe&Z{-Qe+kLmVaCmyWy71zEB(TV6SD#P68aR$b2Ot;RB_gW_ zBMdjc3kJB3FCgnz9E&r(Vv$#ilg3DDBDH8L752@eDX@drCL@dfVC^6JhnI-vPPuYc zn`a-*BRfYoEw>AZn&rf6F65-AFclw8HrBTcHZg+>V6erzts~e=K#?FOpC~+~^bPkb z(l?d87wSbNRf^WV4T5U{NYdZ!Rp*w+J?l@Gfh$Q8^f=sX6(XCD3kAysB}cRjG|`utXYt zT@|);()57{9-cxYZY#4Wal_DWfc0q*<tDb#i@f;DoRcDaoIml29b`GgAPtO&<-;CZJ!`!Dvw;=YM6s^WuB25_3mR52nIkPi ztkVeeCY4CPcV&fKadx)UA+kq+=Mne*rSFFiie{Txx68@3!=LIpjmySz4sh6f{hV}! zdc5VPgF=^prs~rrLp5x8`?OKDm-;hx1kwWCZwQu}(e-v^%4#%C*X+QTH&U;gg6Xr`^&MNs|ILFFaaGv$Bv(K_{muktop{u0@44hp({T8K=OQ?sDA z;HPL#3L+B$gslt39D-h8H(Q!&b3CJj-3iymZ*DbjR>TGD3>-Jpkk#o>INvyVIk5KF z#8x}VIExMZJrr)1|2}vyM!*Q-`uIsXg{HO5{$6e~^ZO3EeM8)bvjr)Qrzx|*iaYvM zRu^n@vV7koHRGw_&Kie)I^HH&WU+;~5j=9o+S4^4+1(>~I#$27HR40u z3^e@8B^fhaP_EcW?}vCKYG{|N(|yALSwFFun7sbmG6Jwd@q)y3Kb+tBVIqKQezE~V zk!t^pd(R_;Z^xRN)Sm2+xE}^SkveO5Y3OQb7j03W}nbeG;_&W@~?^Ud*P9aUiJNM69{6T=+M6SEd*39-~o*PyQ~NY%@l0co${ zd3@(J|2xp+Y5BJjp?}kTS>0=8n#=3D2PN4-F9bV{@Xi5Q%rhM^!&gS_3Bi26BfK^q ze)hW79HjN7Peu|MpS0u^pY30XYf6}NsXnS!Ax1rQhp_k!dmJnZHU1qMF3?M`1o1M8 z#Jfw}deOV7kvqohH#(RbzX&2j zkm_iwAnfsqbkXXf6}4uU>q4BcNYen~oKxj>+Zn`q=}(bXmZ+G$!I&vBTe)&6ZUuFR zI2I5Z*E#zaTM$_)Owe9gf4HA-mHp#M-{EM5GvG7ev{*7yxbO$y*mhMTX0o=Ue!f_g zgrf)|N=!J^!B{YMpsO)2Nvm)d&}+1NxPP;Bh?yi|Ik~`JK?aP!=0LNAs-!!N3eJ33 z6+khFKRzklmv8}RAcISZD(GD;*5O-uwebfjg~dCHI@25fEdDz`d47RE61-Da`1 z4<{V0EI3S3BiApE#N%SiV&U+*znBaTV{CDLx;W~``@+3-AHcMPbUrlK;IU5q@#d}H z-#yC}?g!8v3SK6HFSISTl|+L`fSkK&<}vs)g2*V?=%dIwB@H^Cw>@qPZsW_ouC&*N zGc}XQD%{I~(uG5t($%s)AS%!?#JhLWfq=78rH4TZAs}&>jX^6H&nRs$+GbJ0%VX4FTX1& zf$r#h5=VGHVp4GHZMXjghtn=aRJc>Jb7dC~FKMY*FIy|$9wU@LHP`LlIu z`MyH9FW`7$;eIm$>qWdLf~9@)6;FB|Jql=KeX?X9V$r>vjIsGE^~dAXuDt{G93dxK z&3p=|D+p81z-Gin8kbt}#g_OQZnl+Ny%84-~qeuw}X8mb^gQtg{cv^@#{n#f#p zF8O9a07&sQr&GA==BRFWf4ePw+QgjX*tzwG5a@-oQ`CUkh07(E&l{vj4|MNL4(b4G z^+#|H#dz{AD++w?$^ekfPK8?v!I7$(t37k#BAr^B{L1aPrkhDV@^Xz$R3*j zLm@%cw^bu2>{+H@igtdh+81XKRtNEQ>A{cdZgeF&j$nuNGlFGqhquW$5C<9*bc`(} zwg>Cn14AkFcl*>9eHCm{b#$iI3ifKQr*jN?l(G7>Ax~-n3vWk2Q#i)}JdsDrcNS=A z@gW9HQpxSkrvGTh8n?>iczs)s_Rk&xfz1&3L8i=h@%1!1KmqXufz=nAg>+j9Oa$Fp z7o%S$DC0h~Msd;Nv-A40mlRw{gx!=6`L?q)Xad$6Dww@DT}uis*;Gisq_!L(tb(|1GrW~<6dciIHCL4=t zCLG}bKh@i(csh@D1vF<63vmvwv8Fanzx*Oy>YGYB;lLY~&h=vyt1GAP&%8fQW zGb&qQ+hCiN_gpdUmwW#waF93(2ZWQzDrj_&X#o&DK+Gu(lET?@Nn?AvFuc`)VV(w* z43&tS1=}y56F9DnUgqVF{oohr>Oq1bl7VFiRO)W4Fjnnr>%$$)DvAY$(3!4|`Ztnp zT{PS4a6e)^6w_1yHtArSq=fKJzpG^6^3tPsd0w}pZ}CS%sKH%F%{rt+SfDLO97j0GEk2#g=rc?BJZc&9C;1T>2y8PlkjNpT?Yus>p9TVIAk=e2xS;2hZt% z?vjuThlz3{Q5)-JCxD^(VMg1+MNTaNuoevr-q&qDaY$HyIIV;0st~75ZSGIYoZ6r);&s9Qw!o;R5Cdd|C)pO=59)B)(eXkNx#T(3?{VMN@aD`F zxd99AsX2$<(eQG)J;QtS&0F2vQ81QPBqaXt87oRZs4_Cibl}Bs#sXj2o}KetC}yN% zNFq>CBpw_!zUXqxnF47dUBce;OuvXK!Dn`=jmN zj+wVrJmsLvY){XZyHi^*B*HUnR#89(>qS8j$CB0aE_~)QY{{Rs8yJq7MFjRjr zBnX;0@mpDq)a8e#?JF@)HtXWVENZYf)fWk0B-$DCax{DIN`Io$oyZHifkD~zH7?X9 zS2wah7tFt$4#zI9D}UwJ*3?+Rj-#)7W_$tzrF>3dcERKSDSyrJn5$n9vby%KvniM# zbsB)aTHXj2xqb|vN8dr)$)xM!X2K+w8TX>=L%@&n0k^mpx8dij`ckZedg0L54qp??eXT6g;rDcoLt9L<=opGYO~f2$N<)4*hs%XsOCqSYj6!V z>OA=-UD+9V&%z{#9-o>6>%JsTW2@TUPl>G0_3!)SEfl7I*iqNu2701$)?`*~!GU-n z?;dk8n`O-XxOZhDNpW*5XJGRtB8c_ZG8Dgm&Vz3c#HJXfcrBXZ9e^!d_z}{bnsYi? zhy{|d(Y@K2v7UCy;hz~lTv3Jh5I3+wFfXH*J=g(R-5K`Irp-;25-B)M6$N1M58zC_ zqDA=<(eU%Vwz!&EkI(849v*mTx|)kmbgY*2pYo%QftwEiP)Um>l^BS<%XQnIPDdCm zI#);7=gc~Cv~fCL5VhA@@erb^W!r#aNfF2+awXQdIw`v^dk7<5&$dv$-?&56eeK>j z9RpOKUaQ+&B3R`Z?~$l1>Q;0t_v#U+*17J3=YHVlD#blbqG3}#qV$S&kW8Iic%8g^ zE7DIVyi9flXJ{=as-aZmcmmzL0R6YOOy`ZDCj@GXy`8WdPdophzulQ75?XfX&i@{F zY0I+x9B%n{kcDPZXg(&uXg>NhIMuV$xMOuPyR5MnihnYuB!EKz(0PRPoN_yeQ7wDU zYDrshIkd*y%m24}TgaD>8!R-kd`v3C?#>D2rWA|qvuVBJMn!-!S}kqS7lDALE(NjU zzhL(}t-#Y@|5E3G?SpI7-pSA9ZmtI)S3uJA#)EiBSZ? zuo!J=T!tFmaL;zW&s0C2NXQ6Oj=DN+STcoGb+pppI-Qi+l&E|2f5g~BBbM)oHLEdkC(gJ^pH*U6@4BHhG0+o2dZ2Y#Sa+)S&;OhY8|;4pU4jk8yhBidNIxNa1!qj47ZI0vj(vpOb3dP^Z#|L%nh zw)Vj$IXE+JSgtt6LY3St0?wcQE&EfKp(F7SaVY}yPrG7xKHxaO+2Ld8n!~6vCpXEN zfZ$wa^Rn{1iplEhZ#*HB6)zKC%RY>&Upaf+Y;l#x_LKh!Dqvq_e84)o!ze~BNR;S! z1*$;SeKj5pvX0gN;y&hb!cG0})@D!OIVyg@ZGd>3WuBQoz~?FA4ZzPx1v@*`IbECGvgOBic1% zAo_08V2cy7u$-5gSWnlZoQgBr1D91!n^m>8A~bw0oV`n7=CdZ5Aa3o4#MgWYCM7EElw+ZcHm_#S8(l#!0F64Z4%|1G%~#aR+4$ zA8p3!@_gH5_Ni9YBztGbIZMjL3p1yd&Yc(|OkpmOs$aTgwGBM9WhO7t=b6CbC;)Az zrRb)Q)k(xruI0`tB4?GWPWyti=*@c`MSp`hhEs2rRz9&A8P@3I$vU91i73;NC=;p% zyYjB?_30NdWHtF+BB>GWZwLx&P_jKD>v-boDVJczURq6Fa#Oo7isI9Jk-bSfmH8$| zNKA|KL7`#NS)6Uq`5nnio_vf0(P3h_vc&nS_n-{BY%*0%S)%GYz9rvDyxn&{A|FIKzsEd=!G|~aW>~(VrHEa8s(IU40a8`@4mOwkthj-R$3~Z z3=>6zG_V6f=FMYAr$cUCX)(1`=O6d|^vvgq=x^1iv+IMgIt+e_`$)Pcf~>yplOck3 z5&@}V?d!Zm@k5?$Q-1v z05DCK#7whY-tvG)AwK${}~x98v{-7-5M zz8h{2kMzG2u`*9he%>+z_VN0y#e4Csx?V)Y=kCg*N42#zF+UYPZd6Any-0KU{?W<9bkw z1vK2%kg!yG@xPf~j-!|neX>nHWgIlQD95YGivzU?Z(HWLw*x+yi z{ZTvmHh~mn<&<`wU9=DSXmSL8)o+uf&b0gXcd^5On$%9}K`g_3yMxzxMW7ZqeHgh_;zF~98$BGD75m?pw3l8kY}Ci zwV)=Vp=Lf%Os5517MsCI;Z$xh>#QSIbM?iXcDath-`P6t)?m1{%~tRx|JK- za*@t6;`PZ2Hf?gDd8qDS+c!e`>v;WZkMJ9aXymn7Z;NrlRf*#gu!q5%%LK%1cZFen zmctHR4%Wiv+%T*>&+Du{=J~$*_2VI#LdH7vaY&Y9zn-B*;!H(1i;Ssi8I7nLN02by z1+Y~M62q!EK_Gtoh7)BjlGpk5tywl+wdM`^4P@`B+N&hf6CZwjVB_Mb6D!0zps(%i z7sxwi>bBGB%czOB5K01>mjJgS>RCbqUaXLyk1a2=#(@lE1d1JHq@Q)vd8#-%yGgjj z8*Vp<`p(STwx|K$wXQ;so@PP3tDEh~;o&f-QEb2{&x7#1445t59E`aH6Y37(!!@CgeOmL2UGr(~4+4J#(f+-g%ts!%hFK=4@nEcQ(?fI>x z{pjcYZ}*?_2tBp8_)m>PE_b{%Coef&_v+B!$a*L$1BKEG;64SZ;-HrB(h|Dz&Oo>~qIV-a2v_cSa2v>Pnk zcb+Z~bXO}sPZ*W<{B;en`ClDz z$j9vri)ytb;Er!5(h&OtXv%(@FU;YQT|L`@yK}*NQCg4bT}55P44-oUTwhp>u$t3+ zR^|XVxd`uoBq=Zch?dIYEF=kcEa z;b5$31W|O#`vVV#>|}4m7;4;(LO^ESfIt##9A5C^0P2TTTXFbA2rS#101oF!1Yd1S zL+WR>s)G*IdpV)39Knv$1v+}C6|x*1`GVCs&ZlxOoPB6O+S7Qu zx=-f)>~EnzU8BW}sB+1L3x}Khd>Er`^nZKgoo5WnkVInh2ylww(;0va`KD>jq{3ndG}1&c2l5ApXQ@g1`49RqH|}=xqsp} z*WBnWiPLcA@fyX)YaiUITNvh@*ka~--5B0#`_8+x@#ZFa$qF2Yb|BMzeC=>~x}=cg z*#a?$cbo#--gMVX{id;?GOuZ{Zb9D2mm?W5Qnc07#&n|5S^$I1bp!`_CxQV+x`Jw- zB{<;Rx_zxU#wRQqe+ZSCsnBM~Q2A@Z9W}OZkPM_FhW|-~6aoQI4mB#b9Ez0`rkV|| zjo>p}f(Qoa9$W3NK^mWBx zxXA*zSs84)k=8XhR8-CS8dIVee&m z3r5PCOv78j^-5FKeMZ>Y4C&(Q3|Kkrd0`w`txrtkZ`4zI(*F$`97Jbl!6^0FzBk| ztyd-|`EK$LA5VE4|HB(E;W#pam-+M!|3}i?Zrs4F!pwSIlIQ3H``27Wmi9v_n< z(OroDq4>gZ)c{B?d22$tWd2&8wt<{+p3UU1>!CGRn)4v;`4sR9>y&S|3V(pU#}{EG zCiI)sOZQ<lr5&z})qza+WfW{fWEG0myG76QC>PHkDB7K1?*8A$fPgdojg2az%tco<3i>oyPG#o zeg=9z8^4cyVSeAha>aNz!^AgJBDXzz7c zGw$DN-@lxWOmeZ6havqzk_1`&BNYCzh*f7V{K0hA?OI37__lteiAA|aq(EJNq55H8 z22Ey3S`5W&7t>3N^9tF1A8uw=-W{|ytvXIE76G)GkrW<9ORz7UNNP!E7-QA191Qz`lF zzk(gGv+j9V^;Qm7m<3kb02WMIr;!BRtn&rAkf4DyfYOO&0k|K!SkQ0c5Ela)*KG9& zcQc*0PB}SYrCWoq-N%IRoP7T;{{G{*&+gf<->jlEj7j@TrAW2d z18a@3P#~yOw=GNFS;*3JyDK2as;gHO8=J|O=ecCTD;+|kr=zQoVUvcfVC{JzRs33F zE3r0yiby^-zPiwp&y-Zas3UmcE)b^6aG1)QA1AnONkwat1Wz{%z@6c3=EFj_d z!g%pQ6n4FG6t=9R?FLw#?icO-iA#Nmldi8dwhlu~&ArwOIDfkw<0c#>(9wwmS&k6& zH{*!^l_H0?dBOi9k?wAN(?pX)WI0hL0E*c*@gR|P+R!=6zG^%@7G;RLBO0Z`7oSJT z{x}eb6lJj4$uFUfY8ww~2qss?_Wn=~tRxKKOoW5Y{01xTAxpMW0B=S=^P68mFXzgt zW#;(5U}p3hHJGOVIziIwwp2}dy0ms!M4d}$xgPZtiGCQ5SsF-#0$;+qwO-;rY_`fz zVVokkcwAOJ=6uYH_%!Dif;lqpH8+nOb2^|S5m6WO;FZ=c7`c-Jy_@d3Lq0*=f z5)x2&z+TeR>fj8=Zl26j%7d+F}atgm`5pZsvpLNTC*>BEtZto;xp8)mmcdM$JL{$5%m2j z_upX~-~Abj%V+_JiSRq2DebypM5a+*E_SSOrVF>lEAZJT@X+-}&n`$5A-@}@o3iSt z?4ZqeH4jC5F(U0@{kxNeSG$$-m80kXkEFByYw~^Hzlw_V3nio#kPaoJnMDgoHxrPY zbi-td(j_f9rEBy+ax?-G(jhG!+lVn(e7^Vl@%;nX4{Y~+o!4)=B44QPA@sz>9$s;3fK|+WP8eRb@O%rHyaZE!n*5_cv9WMsZOF!m$^K znyA#53r3DTR8x7#(~rVa9zv-i{d|IrfpUao+;)W66=iSZf3Mm1gG}#d@?{lWJ|~XB zsEMQEORB@T7bn>Y#tWte;ZLP1*ADb6eACHH! zD4H$2bs%IL=MM>krqHnDFTAO3$6;aP&JIo+cZy7&pF|{mrF<(r7kklCko;%VPeWuc znOVr`rhu0@EnM4n67HjNup1J1n7jd|UnFYetY0LY%Y5$T22K9MG)H>~WQw{-*sxDt za5r6)L!O56Y8_bPi*{b-=VND}&0rbX(0%WGAq;)Ty8iwBu-n+M+}YOZ^ibJiQn{g} zXmrt&U%4Sta0EoV%K4T={IKqz1IL@mn)gqa25EDaDcl9ORlD^CRnv<~nVLBtQK{$~ zkPy1)UKO4mSbg!AWIjCaC|ddL!!#aHU*>R%t>h1aGQ`tKh4$_ynti=@+Q+AYJi8L- ziSjLAEE&K1Khuxe!nL*Jb~r$k`ioRtWj^8vElJGdx7EDszC0!3ov%{SQDu5Kw6gPe z6{81ceYpv`X%!T(aRfHSJCaw=YWS#t_b z9*j>?xlQ1y0r~}P)7Kd|g1~R;=FVtDaW@2M0^iqj{Z#f{;zL54BupL}X*gtFXZL?F zojyLI^MT$uml$#9uOZ`3knjD7r`F_qeq0NQ)d@} zu(Cw!frPy=VL#BTsuT*CTgv8+m&0Gxi-`;7{c-cB(AW32HBW1piM)6RY*G)fz}+bA zJ)-Gr^^4)nQ3-t=yZ`96I-x-AQCQ_?v?W2lY@yI)u1397hJWhBIb{S`fp21JdV?(q zI8FQou(JOm6}i&t^a;^aT+k5mG_Q<}Z|N{Tf7${`cGjO;)*#@8gBQoqV8j5!eOR|9 z`3^*qCxOg_7u{6Ps8t6ww$lJtjXSvdKewSz>f6QLMNfR{es$DYoN6h-y2+g-v zo^0|U6|)u8uOn3s;QsLf=E!g_s9<&dVgSqt;kl!%=C!1rfDL?+qxSbNt%lD!!s)8& zr);_<@#CM9^p{GLG@zr z!F8Mah4h!V+b^BcA8IWA+|R3Wsh=ONsoP$*-ARCcAmxYg1Z|}VN2w9K)7#M zbnmySW4>%j+Rj2!+xqE)ukNFf-@zkqLe+S^`yI{b^vq7l&416zoTl>A*NQzV|Hq$k z6~m7#2!TZYm&N1>0C0*76WtS8a>BB9lZ-9g=z`?RZ*Ki0m>QP18g zoN9ddgu)_JSwm9n+-A1)$C39p7hgknfF8Y(ba2I8Q$?fzJ~$o99w~=+Cujg!9g!cS z0I?rCsD6T!X1#bjd-(LVo}$dB!P%DbfiHJ)?%kIvsz)da%WoC(2~U_(Pr(>}Le{4W z@=_QJ-X#S{w3|CTzzVK)^oqV(Tps%dHCm4n6m19ZmE)rC2|gIP{=i>$f!05_L82U+rqRVYotO#44t?FCiCjT~0MgEOKObTw90jJ&dXNAg%^JZ`mt9EW|Wmt?jq7ZY~Z_Cp5o$a%JwN) zui%UQ;bh%L>wU4;Mdj05ABvlS2V?~gCU}!aR`2_pVpLY_)Dut zM~Q|n4Q=VGbWI+U?u+6(JsxH!q}N<-jfQE!8({*YPWsG;Hwgd|^*k3T`cX6--rnoy zE#yVaSro``@1knOG9TWW{8-UMUQ3*A*1lpdIvk!qNdQJ>8IK?{Trvq6c5R>Ac@VS^ zyEGNIIB@a+KB*Ul9E|W(mIZQFp`;&G+#DzhS3rj8>A-*bL8{TX6#Kr6 z3(fIqHg$i?L)kaRRk|3Oy?+R$gD zWL0UX-K0N2&hi|NmlI{NTrrW0n}ghxbGLukL)((F?O>&!{9V+&v)1WVf<|4zRPjG( zEDwGkbZw-qkt+?9&|GjJ?&;+(F+k=ifZuCp#Hx}x7+5Tb1{nX$82%}!s9?h1ec$S2 zT;!8r#SB9{t(g1ozPr~&ATv=609InZCr2e4u!$r+eT>N35Nf8zcC@On9jLOCNOnhHG(4dyfU3DxCk$y+*3pgfE%Tv>;qA|pzaX`{fkv*P)Y1p^3^FO zUp4;KMElK%oG`uZmfXy1-3pz1%E3x4GF_qQqrV;sTayC9@hn!#?FEjaON!bM`B;OI**&6U^*Eanp&p*dOqs=KJcxUyif`%Y<)(vWIKF z){br!vce_lq6^5jhJh2BR$($-S_ z#UV0oV577ky@Nh_3oqn0LjsKB&I3Fgdl~uM@K>HOfpUR*!vm9(mysL~QVhB3J|$W9 z8*7)M-=RBN^OR$HFT6ERl=K2^_5~Vow~~xf4?%e@b&U>TnprwjrtZEYFU|~t z8U_~eQ$*SIxSXK{6GJZ5ncU`U0Yg=yn-woS_D5QfoZ^CX`jtQwfKA}$U^kbfC1y4c zOVg)HIdcSkRsVOdVPR0EXv}?GNTO=TrXE`KpHJ2GU$RV(E2ZL6Gs?CH&5A#J>rra~ z6sSPx2-F2{hkdclfm+iboaRnJxG*ijufPb z`JuJoE4jb%BRZ~p^aTQbGE%b(uvEK}ktkNOJkWOk2Kom796QnjYJ^3GP2oVI79CFk zELz>V3bbgtZ>yzheG?V={Hua3a{EoXr4dqK-QB$%#xptav&_z$CX-b^y|eP_|E@_- zkg3Q^s?7K}tUUt*#8y@R4j8=eB!|)H|DZ&mG_JiB@U04+Mv5}L{;}(nFZ~lp@VRX! zF54Jko1?chXiPFa0NnrJs3N#3iyNdFd@y|gH6q-B@&Re$N1ePbmL4cf>c*?4uF(w` z#R|-EU#yP@e-)#V98$`2GW+x|!%Fq4=L>|Yn~$MJ7OlE81IW?BCLo2_T9c~kjE};W z;`%YDZaPs@d>aO>gGEP4`1?V??07xdhFOEctm)#}Y^#yvn41|Nt9>tg%_lSK2F9qG z-T&;8z?8AYthy(v~eM5w=@#o zbIE@tg#cpB4)n0_k78tA=o5TY5&q)Ul&r#Q0C|=uZaG?iXBa2{&}nLmF2!(LX73|= z+r!vy2NC{NF+{^3A{?CD9gRrrYAU8FJyr9Jbl7a}rQ^No8SF0K%wxEy43%vZb+1^e z-fSV(zcRB<37RLKRRaq`U4diNz0tl8I``2)ELNxFxkfcGFM}FuB4AuFx1^gRqC?(+ zMSCZ@UO2RBUb(rx$Da|Z55)p%Yw_<2>7~?yTmJ4%cWWD1E{poBh;_&YIiE_CLPueF|E z;je8IWqw=rrM&kBJ;O~#BRSdQA#)@LHyFFRSvrsu0Y~n1jZ+6v4A!|Uf}#;nEm&E% zK)Sov94otf&d80bl&>Z_%)^qaOG^SRBIH#?-Q_>)}B1ZQZNH{XmZ|*R|N_2RJT}8!hOxk_9{Hn>V9{5t=xd#*O z%B+}D(ffk$1FID`{oQm$;;?7)LYoQ-=bCBq8Rv_kWyjPvce-Dl;8)dz2o?Kvvh7u&&f9b8}5}3c2C3Ju1sq zzqLQ^FKka-T)uX?-YfP*Ns1?6(6W{Bjk~biMVKZ|S~b`(&Q%<`sxgzlMc@b<f8(MVy6+8s z;tkeEb^3e{%<@^Av(LkWQ?=XX*Jx><@KNlFkQ&|~yL&=8OvAWzWi6GgTz))zb2IY4 z!ldv0FSFBLO-Hm^iJF2NQ-UvjTqT@qvv%N|z`6y1{V#AXEOIb5qEG9C8I!`P|Mr^Y z==^!VQma2qAloH(4_XsulZzD)bY<)N8~ih}p`7F0a3EWFpIlM%16Zj#@!jn_8$ zY~3;=ll;C?TB$6C@o&q6flH-l_qmY`y~B*{(KYJk{v5~}hkE>q{| z)t+j1_<^^2)NOOG_iLrlH4OjHyR~ET3TOkj&Z+cAbEtDXkA;q4x4P{~z^OA%OnRD{ zxO=XcMYFNY0%O))7xnyav4hkO;lFbE7W}K&hr`1+{y*PwOWlIZA4ynsAO+J{)X^2I zzVfFq3x4PxNYPq;&7=2$QV`!{f^A>tE2KgV4PGB-fmJrrUjwEEdRw-V8(QK>p>4xR^Br6YD5PkvfvyO$k*5MPHf(3^jP<8gZWVWN-f7<`iAJGtql8HVG@^H+ucjnc?{yet-yLk|+Wgbwk*2zFwVU8?rZe>?Hj^`7v+R$!y58xjUwAPnRr`xh$+>K&V9rF533Ilz;Qs+! zzBhx=pmN0O6p>=yAN@+~Lf+WCXme=ktW4lC{M6@bC2zw>c(6Xxj;)nwOFS69d2 z%4JLSK5fBZ3&ejrzhQZ1qpAO1&@+znDaw=^#rZR%E5JKs9kYLqmQ^Kl4U@ybVp8J& zu6-S6Aj(Ym#g#k73Ol6)$Ik__-jiu&ZIBa}nUovlOFfwIy2fdWW_(1Wp+7aT<;SOR zs$_G3l zVh)gWX|{~vc4Fc#F_-iOP-56HU?TIlF+LEpvX377(=JzSVY|?#-1O(|;?wzJ1*4Di z4>-$jGWLH^39X`(UY_45S3LLH8;4W|?gydcK+Zhz@W$~YM=Wdqe~VTt)_eJ4?c5Kr z9<_g5uS^qYePx8E#-7ElUU-*Lw-x)Sn%G0kXM5L$1_(=PZDEmhd6sF@EYVkTy`Er#L-~`ev0s@Fy$mPYsJZmLu2Ho;nJ(qk5+6abFn8C6XsPq zl_s8zuu*axT50c3PHDhlTLT35k`%4_m^=$+5+n16O<5)k@1D9nwsEt3KLvCpZ~ivC zyWxBK^!WLkXB52kzunX$+4?=*@9ru~2xRvO8JOt=j8CFt0MiB#Wrf6?ntx#Ez7k9% z-W|P`vO?&xm1{#9Q}S&^{Bs$&v&+hS!dNWawg3VHSrah_`Yd~U0#G%q5)k|d1GdZ@ zqs7q2q@P5WIUiO0QM*A=bs=qWy}F~&^UZR8`_4?d!w<1OC5SDOHKx+uRl71SVRe*K zKN{#+={6?cm*(>ARlSMrXtb6_q-7Y%4_3Xu4WmAe5aZ8mJ+u>y2yFspmCh&s6ZFCa zgL=CzfI=+Qu-`Do_9u2h8n}d=-WulUgyE0sgW~sH`TnJ{xtDfA3htYi`wHZ>RgzzP zVe&6E02#%RGEx6qweldH5Z-_&i_aO9Yo(9#%V^G)j6dT2baYI8`H?~BR(il@ioCLE z^^=m8(n?2rX(+@k zxmF|m`uk1hlDmcZeCY?J`@t2(uX53q3Q2egbT7^7{jf0@<@e8eEf6z&xvQhEZ2Mbx zY1fm8>(Pr<0i4cL@*6F}GbNQjb>@KcGdv_qS7F6hN6+kv+kl`z9=<|uC&)!Y8P;uP zn`ZA?Llj512v&R9c7hb6`A!S$AHmf60S|T9MMe#)iaA6(LK_PFZ7c&q;GX1uZV>Q! zAAs*D<_x{Sx0!jAzP7tU2Qr<4YPNPnkn>7x)k0;Cc%O%g6f}kkENwe#J*cIKJ&~qW zf4J#rw$Nr{RlTCQU-&s)bHFWl9(4fLXYRN{q85g-2TbG24o@UnaVOsz`-HP%VL9?v zo>WOrxcPLKHnmA}-8jjb9ujp=9T_M;Wfn++Q54dc=5bpX2bhu=vdFYR4c$V)-eO)v zb1Yo1VaDG#;3~h=?w%XfodkzOA@}abi)F8D!M~w9|CrCxy_uYTjB?o{AbTH{JOj&5 z_jBTls}IjTuR~cU8fkWBWsVdf2*a&sZL>(>#n5t6w%O1iK{SFZ&5YSvJ;PIP@RhJ$ zDBo97og~VGCkn>!ZyM%^{&aP_&6&T40|6Mt`&hQOsoHB-Tk3M`pIpPB`FvEjg0cBL zjL}H-sa+KC?An&rykuZ!Quue)a%r|%Lrq=+HR|_^zk=%iId4-jTqVCytci6zb^3JY z?<+TkOm>Ho-x7+{=jrt3i%$&{XXS3a$eY^sEKs4r$&*q$>G0?c`9G63FZ-Ik_L4rR zq5|LdjP?xkE>QWf>*wabh`7`jX!bKFH-T&6)@Hp+IRMhD^{--{^;|l)*s~Xt9CJMN_12kqUwaHx@3!c8D zg`B>Sq@!+E|26%4_}6=^_ja@4G00GzV1S9mc|)59lx0k#z7RTk0aQ)RO2E5Fa)hwvOOU2npAd`}6d zn!0{1TuQnBpP7J&wwC!(PyfJ9Lwo>Fgb&w8eHEAMF4ymSg{57;+#+~E^|4K#v67pE z5z1U^dDLfle6RB_tdeYE>5OzfszEZ$xpegJDX2ZXL*aA0FBJdeUInMC)3thru{s} ze_u}F0MA@_z#b5E(hgj>nV<%x8fCi%ZZrUc@g&B zS$6kLjj*a!kprtqn+CY+k}Zr03V1lIH86yYjMPx^a($#_@z?_5B3BTYWi?NNIKIBa zh)%@9O=`Dn5rXLc!aQu|;m`)+wm@sFY`WQ34iU}s9eAHGp zi>~a3e$Q({v#ANh*cl zoG9L|u<=MfN9Hz*USnY(a7p7k@>0WJ2J5 zbcCFYXiat(J2!_kL6WYi#!F(1}kt-}Q#1bOn5;emp;@y{L`Uly644gG9sBS$|_D z%}Pf-MS(w;ehYlN+Ck5ixq|HoDq%Ajt)xam=dV_x(>pc3h|{VPe+qz~sAL=Z#T)B) zX*cr7f2SOxlqcwx_7{Bq_cCg;lz4XsH-uUKXU5L@Q3ici?RFmZvhKQyEnA#+WuzSi zQ)=q`Bj!D0Z`)DGTuF!CFxwctYq|Cq2{ulq0`jf8R_XVz^t(K7xpY3L{fX>sz+}L0 zZ51yvXRxI#GjDnY)82XTc`x>SZ>X&BpLe}szn(#e4cU?8tbI3CbPfxONCA)+ztAk6S(jWmdNJ0PT`)eZMqo7=~yVA!-nw6Gb2;Q)HIKeX?RlOn5D(BzJPL(yw=UsGjkhc4koQ zBpxn)r}ckXR~>u!{9+0AzNsix5raY=vs9)tio{%T#LdvKZmO z-c-U2=70_^-F%fn8R4N3vXd^h!)l|gYnad)I(`PunmP&!z5cwc+$`|mScAB_<~&GH z!0VfKL|I@-W91vm8orO)u)3!Oip(zt_>Ckl&|m3r6i)NdM%50V*P~@RlC8^$$m257kv03+cf&Gms6SqFV>E%6TBijv{)Cl4uGXOnOdgjDt; zRpWQBNqybPAidO8$bms&7h0Y{jyrW(vjH?YqDBJn%k;kl6Bhcv_ z-cz!}-|1|6PhfD9=Xh=P*X7b6tVttWIka5Y7lT@#i&3_aVdRU8qj^%gC>7~d^mmzV zNlQ$9-pA{MXt=_*K>MYaaj~S5MaVKR4vXgRum66^o`*#`@Z_xm#M+kA49a!X^kMA!Ayb-*kv|X6 z!I^=I`4#jTNVIDg+(-~K!Ea)3>)$)55+Hza$Atn2zrM{81CO?*(_FfO7UxgDYE5{t zQn*y|sSivDs2@;bkyIV{1D~-wTraLlGlRDS$(Xw`HOy|!k6}(kQ9M-`j%>wii!U*m zM5MhvsZE%Yzq(apdA~|m?L70WmRa0Z60>z=PLC7i78Qx^XG{RD6^({?FzzedGnVrSvR5$&)$FN~4B+ zs$|kO^-j=|!K9OxHGBCeg?^0;6KjV>)qO&GVz?xogL&|nIb!ylvV1qFI(_8!q3_6| zX}J5}b)wD&Iub;WMvup~dly@1c~{zM*Xjh&&IjM7%xLimIusp`bpO;Ntd4jEm!7I7 zWt3JLJ@{QWSt=rvV_gn*Yz{EN%njs_jQTR1*PVN~Lc!mLZ%Xf9_iNMggyCH?-_{$2akta`H=_r`625P23aW9(XG8`Knz;2te!;_X z?LwX4-TaQbB%KvLQc5Ss;=*4DS&Te|bt7c00^cqdlnV;A$8*AMly zVEYtJjB{My#-mX~-R7Bu31vxAR;g_NdZK($TkAKauS~*OwL14c4I=EQ)5=Sh>XzaP zqY(yb0?V23mlPKGO-!6-J9(%HtG%Du^STMXj^`#jOvOKAdp^!tTg|?3Y^81;3q3hv z`UmW;Dj9kens_-+qxeHd%WC?5V+E5sB_OS$JU58S{J(#AyR+=9 zCFj;|$_^Pl8Lcyh&(snt+m}(d0x#yzFqe9|;Z>atG20of&%vdEKc<(65Adi>l^0g< zSTGmz`L=?qANr1!Kn}}cZcR>PR%FnA3BvI*-35FPD4q=ms+HS_2IFFLBHe_a$|A6p zvcK@<0uThW24GEh{AxaeG1`E9&eCf-?dOD*@m5>HqF41|CUb<0az0 z+qgaH1;tIuWv}xJ@T)y-5zqbLYb%vDrPc37;Haq0t;*aE<0CJGq#p!L>EfRk1htZ{ zM!Eug&B3GF7VnN`c)OuNS_VI{s}a_|~6Z@3S@1E$S~+=8;#t z89&yCIG^Upt`y#MlByqQ78JYF&9*d1*^Dr2(6W$9ceUN)n^#rcV=wI=XTZP2B~8la z)EqI~UC84ZXi)P4nyK{?g^F`OP5fO%BK~Y<1nWCkGuam^7#vlc!Tt@W>%4@d1Nka6 zd$u%KiBc?j;K&zNLX@s!|CbRM_!Q~$Pi`&5!zb7cG&Q9LU4iXWl(f7e*@ z<7(DKe0>)re_|6nU@Sp}CT&=jmJJ)rV;p&3r}Cg&(#r2tNqXp^VA~TXkmbIyaPg0+ z-n%woYZVZ)KGo+OTwtro7;9NV!PvIVOWPFj{vs~_uIck6I2kp)=dF3_5yk?|PwjeJP~5$gZ&R2#LfqOL1fy%Nf9n(DKyy^3Kd z_XEwdYGLBKHyGv*a0&PXOnG&oP8^rC?i_tX0kc2-$Gxk}>>rPNqyOnC+IK)e@2Zd6 z$5ZoF#wtzL*&rQNb{uRnzuXzq^FM;;D!NLJ6l63cCWl*TaJmtK?svw9@* zu=>45uHMpqJ+^j7@7Q)sicr=)uSA=Rs149b;j>Co|T~O~~CoiT6X;MbBY)U;z^eEw6tk)E|JmcdkAa0ly$eRyYq;?comrW0y{{t5a~gu=c&i^!QaC=p(!@*0b$VTl6{=RJSluF zw=7w&M~S(+ysU7fu9_PWa?kKfwsX2GxNZfBvGs@JrC{BaD)pcD}{2~-^enq<3z>L+Xt&J$DG zcf|DvxF_8uip_%R&zU34?@sPnet!S;E4?WjCX{+Bl5#;;eii7;4)_1yOc8Hg0j+7w z+(!*@BF|tL4bR2T8!~}ra2LEV)?$k^+J6=pb_08NB)@Kq*6S~KF2H$OC*J?oGim*Y z03bj4vH21iwIQ%Io%80k5d9ePUEm`3DvV+e1L3|-Dk46?*7P3m!yG0$WnCWmD_plj zKAe-8;;hNP7M$_?AbU7ZM9OoanG%3unus@ohMC{j$)wuMonPf;MxoX!@|o~DN%Z7p zaJ_zF7{ll=DB6A!w$6{)%-!_rtc@R`P8~Ed8EkVZV5gX0cE<;J{O*!}>PIKvf@` z34L9bTNF>b>X*BJpE<4AkXa^#>wsCkL&;vabh{DukGv7T+9-KshjB<+biiq}%=(SM z&O4>>(olbhk5YTJ_-=u?0voM)e6& z7Vb?QtH$8b1uj=W4FEMSR$8_++|SA-wg`YDubg~=bl=U z8t)Eydk4D*G~2rVExk*dX;^gQ<;Re@3H!>)$}gE>)j{cA_+0)P`9|mz;SJH^1H&eL z#|HfV?$>=BdQ+j1U={k*N|^W4qqIs<^$3fuO|d9Gw(~LsH6Hp1;}RC)0bNf4|!sh4lr0k-(UnIQ0otBJ9PrF8c}{V zhX<8y&dtf~S>Ip0{~LAL-XAXaFWd`KN|!!8vR`9oaDv2im<@I4QDe`MdMD>R71+sue1!C#?NO+J>%V%H*JfF1dg( zk=B-}>eM%}Yu^eq1y;RMnSLb{fZA_vCf-qr0RS3VvG+UfQ|BE?4peL!ly`6^^~f=G zB|q>};Q=nQ`*z{3BUAm~6}XZBv9KPhWH#EPel zUGXfsA9*yGHqQmP8`z? z5=qo97AWODIJe3}eI!0|z%sm|GI!@bt*+YZdP`-&b<4+RA&Dq8wcD`Xx0X zQ?S_4j54CnsEv5*{7~<%yC(;NyVCT-bAmKci&RPs#_$+Uc8WlGF`h@1Yn7F!bhw1_ z?%VKy$wwkmgs#$LQm2{qs1tY7F281a2yw8LQMwHN=^zI|xYZ);TkCu%$C zV0Am>Zlz+}1=i%@st&*&Hz+W~!8nvzzvDyDIA2l;k)Z<0I=4B8K!2b0tUgB8P%dj$ z9lm14s_iWBH4bk5j0n%CZ8!7aV2kZF#ieQ&gxEgS-)=?y+#&z&wcjZIk_SIQ9T3OA zkyXQft?>PM?+51sioFF+b+WOMNt-a*eX2lLza+2U>`QMNd?ISs(pT>LP&>!sT+O<+ zsR(ivms-$fDSfVw0Vz`rGu)63amo$P$m2uA8J(`OX0zODL!~LM>LU2liGocIft!gb zA}P-yK4shGqH~w`|nLfO9~pb+OoS!*D37EE}2Lt72$Xz}V(Fx|e96_D&ye?_0BtTH7+`TU+MY!zG#I-b@!pgLl43n_3EqO?eQDKc zZpBaPER2skRFaZWPJoSoXoVkLM@Q$gVQmvO5e&Vx-W&SVZuhL**xx7TVa5Nw>JNR_ z^X&G*8$Rdj-%Om?64^T$PpU05EkOh0&fo27=l|0AvtmHmAX}KHQX~@J54rnf5XY&Y z)H0YObd`MxZ52%c&%G>_3K`tFgeUM|ti|uy&ca;Lkx$v_Q_F1y3Ng-obl%R6o-&m( zBdP__hh=vp9#>GYtubg{L9?nuV)Z>|g)$GKEDnL!!Ck}qu8-f_ zWz9BOF3Is3bq#%QpM1S7D^nzxZ7d|PT5L#d11y{k!<*@(e_b-DVCPJzs?ciRsER zztCE4*a9s%kncRf2HIl(U1ekfzk^rvkfh4ACY>UJx;w&wLgEV`)fb);RYYfcoQ<(> z;?gV|PNWcmpK}Y4tw6QTsp=bGvaIB=VcFD~1L`Ubw~YcfY{0)_d(Lj3zOZ6r9=~>t z`kI--PU6n)4^xpb#Y(=x5eMNH-g=|vSD`o!EH%CmXNC9PNQLlny?hlKJ@Kph7kltE zqmPuF^pw|VXX*7!_(>qX(f+}d_QHkyNb$_==bjv*ntC|9!O?v^X|l|*Prd^dC)pI_ zvpp^HBvo&Qm#Y0g8rL~$l_YCib*s*WJIpFwZLuN@a;i!XkR7ycaN00oH^l^U4M1QSpGohZkR{hkyB~G(rL@ zS3K&mSp3gxx&4GA$IqV6|DAEK_eU%F9pwFQ1P>Q23(4Orkt|6KrNW_q$0vt>lT1kI z?RFdbtmNPMH?go-bjh^8jeZX<&@%7v>z$Qt=V!Jru3h&D?xJ8`pNTbLS6=Kq(h@=d z_=|K8Y^?y+G}n(_sN4kif+E3m$BmWumAxT87bmNG+|d0$x?4%&F^k_nr+y7)o(umG zQ2|GWtg68tmYJl>$q%{@f!4mE8prz?7R}b^o3WG|&GE;wdAiDGkE)DvgpMZVGgbuV z>-xT5qe-0-RB@dx)|Rr4d+x+Ut^qF`6{yB$9p}M#EYgSKb{2 zvBtu}J2~;NUQ5Wz{*$1R&=|3!s4U)B595O)p8v8f41A5XEwSDx7Qm^{-rUsB*IjxJ zTFU_@PVz&d621;=)t@g>YkmkdK!~p-i@mFFx8GQAQF>9nB!W!|OD}nfPF8*ZxXa`y9XEO)!6q&(+2nfV_+;B+p5v7c=6mwLajPBBz9iH~B?`J+O!U)?4#Qjaw*>JA~Li{}O!{;#K4Wry=pK!p+?bi>|$ zD9}ip4>H2}O@rLIGzLOg`)HxBr`jc%t2@@)KA1#9sGhkvXUzY*aU-E#Lhi()l`{8t~WW`rz^zT2IP5xjr9+jxZsn8Wackf{EBN%CI0)yDMd#Tx{J%; zLYa8y`?8YBS2^oXoiJnh7QqBw=M%(h+Z{e^X^*WCR*jq_@aad~x1)U1)+~=ceV%J& z6qWB1r}I(;pv2DO?bV)W{{z_d`Ij4&!U*IodI`IH!{3PZ3;ur&rGoKBZo){ea0zH! zPFSh>bx>dMcV~Fe7w@tspp!{`(w$j(p3D0h(@PxWEyA zR|y-6t8R-I(JYgp&nIYH@})Ui$frMPb|FW51D|ILFaMW$^$`kvUtBRkESNz#FeF-z zKv4H#E=!N5{X=!l5n~blWo)w>c3uyIC7ca)2dI9TJk-2K5qr+NCz2d~Fh3h~_I*a2 z6?URJgSWuIy8z4s`s9J>%4y*Sg$Xn zQBdMb!E(bPn+)M((N^HN%hTw68qlgcGdi0mQ2#ayv7Y|yRG?YVC0&YI7!>L%=4)7~ zYy73Gt!=>-)}8Yr)*z*r46)CV_XwL>Wv=_?@mTTM9&JHYJx>HN3Bc zFi8(|#avLd*wbDbQ##8Yyy@;qcQLI>KW>JFHhUTkgrb2F> z;rFm|wo~Vl9D6G~sHv(jc9*#r-g)G&C~3FMU!zy2Q>#lw!== zhB)u|@*ir6OQX|c_?z7ZGT0yMfZ;~75#^z^mT)ydm;g{CU?iZ#U*II-HuXBn_8Irt z$75?AOrN(|{o$H4*ML5BnKYx@`W}B859Ew+xl{@pWQxf(+maXrANQGLNM?Yko8UDY zVJ$>X3@ECdxnPf-GNPIm_jJ#rY3{wx+?}VlzUKd{X4nKv$CN8Jr(Gywrq}hfG+K_p zjZGgt8Y{Vcgt}ddUHCzV&A&l!V2Y=;qrwY$^FIlhs$N*uFETObu%qoJ-rehjiJh;v zA8Tlz{}2`eiZ`{tCdtVeMPmn}#E}WA=+`YV0e_c<7{%JJ4Vz&PZ2aKj*}J~RZLhJS z3=4#wmH#G>WrAcvH4^4I2Z|^@B^qNu43=jqRizRR$*296dOQ9EDWcpTWu+2`Yq4uN z^>~H)$rtN)(I2<-LQ-69&Zylx#tsHh6hsBA?t8Iz$iJbYJ+tI}T~FCoI}hIFt>2FC zzlBr6+QNa{uwPh-s17ciV)m7a1(`Ymc%|PX#hoYJ*aKZ}RJrZRGrsP5e<>)! zxo#$VPKWTJ@m?>xzSNDW0p*Q;UcN`yByK|hS5kW&_oCjS)$gm<%xnX3U;OlIh!m&N zI3NxsJPm4ykKhbZFWh`i%6YfdxXQ36)Rb+TA42!Fbl4mg+}v_Jvo{rQ7wo=$K^WT) z(q_siBjk{&6bN*?Jjmul?+u1Uxs8%6o> zF)yJD8|}ZR7}@_zXq8zyk@~Vl`f<2fq(8>9$bkz{Wx`itUP^)d+mn z%d1Nr37KDb<;1sB{T$5g9`wKeJ|rym{Vl`BPOcXCoNInPnEycxh{9l_V%%#G2DDc(6zecc^4g@ z4{IW$*XP>mAyb2J!{&nd({#mj$K%!QfGf}N!>SqE-I)8ZJGP>UB?5+jxY97SiS^US z$^$YNrteKBveMGL==6?z*p$@Z&TxqOM|j@&g_%HYyogDNXim!u8XLwd?iytEne4_c%N$=;1Us7r_r{(Y5dT-;Fmdn}`Y<9Q+DLGK( z0khzLTyKY4WW7ridY!5`_`u-H8;g#|l-6c?j?sm;*D33Fz1M|D7xi1Z$o(PXy~X&1 zvLM)tnIEoaT=xuYEDF9LkWD0$qGwaN0>r1(H?+TYt;L%a#+57ne06E5JFqIWUojmkRWVO8c6JmOd*fNwxmJLWc`AqGHS;Fa;JL(|Vs4$0h0M|7uBE&lvH)n4Dm zsA?qAW?7mWv-L)tNnrs>oGL|}iXBOscrAkH^EKE_K;)Q(>WjEs`Im*$ap?GZ-uTXc zl=2L^@SH!jB|P^8*&X}a#O?pFbl%}?zVG|jYOAFvsa0WRjpP*{wtMd4}$pv?ezy z6e+fMCI?X0WM5Y+K7$G~5E&qcDH|57Pp;3mQ{GEZc%94rwvh%7-kBf!)A6r~XLf&e zvO2kJJCJCd_&M9I6paE)m~yyUlM7{L4aMBQg3-th10f}|ZbA(q1f3-7;MW^Qd;%rw zt}XOk8=*H|e!U@py%0FK434Ua$l+^<&M{=kagZA@={+jY%M4+Sno<`U%AzMu0VpyA zMYG`w(9sWobPY-&FJURuiPHBK=rgI{5hMkDll+6V%Fuqx_?B zplPMW%MxlURAr_<=bqQ29@A662z-^EzwIWPyvZXPmn&7E>1Pkk^tWdu5Vkpo_JH_Z zbch>@5YoS@utz1w}3l`N!qxSP>hBInHDMxu-KBJ3m z-FG41LUlr&*Lb^%+N z$gBR<%)y!POu?7{N^W?WUerBju+GuS|y@7{gZ{Ex%}yqf8Z;e+57q~bmQ5;+MhmE)XKLN=!&o(CPKOY2sH<*m%}iE(0n zZbLrWl;oe)sdk?lXStH`TPO~%GFKhR^+yJ&(m-(DH zQe(k558=72&`CO#@q>TIh|l{n-TcSCH3IV-X;bQ136c{c;BR-fp=<6GI=B?4dNB^O@a_D5+|cqg6$Brp7#95fftoC@&Ra< zUcJhuAilT*?NjHu90jTyo;yH4bUH7_S>nMvD=g-Su2GTa9$JPYi*^Ok1_(UEYxF-)t8b5m(m9&$KtlgA#n1yKuIHc&(N?=^`_(=80D3Ney zf2C5Y1CJmxhBo!4nC`?%%+}1lb5InWV#jdAyDieLL~xOjeo4|0?34wZQks_#zH$e9 zb*ol-;6bjJz0?jms9VXIO@t#qQ0y7H^&_j;3BwQQ1Aqxc9dq?Gh)TF7p84SBjhhQlZB6^N$F19p#DjJjl)<)YJ_u> zhCtt`Co$|+7+^*1<}!-tIK?;*4mn*+9wC06+1p>*pkZgZ2n;X@`IIqRj!>>osb* zU$(%XLq{SjD%?x1lfaU{TTuXy<4U9h$D{!kf@LKz7IddJdhuSt>-?Q=Bd~p{)!COB+%e z(y7Akx(xT1gM`6v6F_SgdMYWM>~t07C%>ERZE9)_JVGo@h^L@en%*BO52>hhupsc7@neFn;H7l%B%BDWb63HD!ggu6#DH~dRz*}67PHIQkS$QZOG;?itTm|pzl z9$&O0Bvj+QG}$ za>$nOBbW&^2U@fpaR*0!g2uUa8crX1Y2?!7e#o6IX;Q%s(BNjY%#v0=yZck9o$LUh>!m1s6y%bs5kys)a zC%noMz`4>3p*>627|?{EK<}lBg*&N*C+xx$#^DSXzTL2GL9vdtdA&49>bZ=K_Ro(S zeCp{wX7dBbeh+Y`8)U$xiZq@ECU%`B?@?lJgb_1^#+!^IE2`%{H&<$SO8t9wJ&6!W z_GiY$TZaZ`r1US>&7c(^=Qh%&4*8PJ@3UNeiOhj~Q5p;=>UACFk#%S4P8zj_*M4k4 zE%iF_P1}nfUV;zv{K}F8qHsIR_WzLxG~t)Cf`;yEQ>>;O?G2ZtnAo*$UHy=k!Yk~~ zZ!i2u6497kulLeC&nro2hN_q?Y+$NpBbb}7$SkoSK)o$U3;4)*GVh3%~Gw$-}6t6seYlN?MHO=GwG`pCb@a>8I*onfGcP(6ulC+?|C*C7@qpSinMyCQ~L(7t8u1>lCR586WdbKY^542 zYUN$m>dVX+**?q#&2v>bd2?vL_Vfh0bsqEXsH9!pNmrG9U`_J?ATJLV!J{i z-W&A^i#rV?+%pR*H9S?Sd{uul2MY=b(!Rery!@?AsE>Z->uf(B;mUHDIS@}igw?=* zOpmuRnaESfIVSgBfLr3EsBXx6%=vC8o@>y*Jb&(1JT7`0@7;oDY zWJeZ*26OM7@V^|SLR7Kt_W*q_*=w?Rf@pp5yG0qx_>XuWH$D{-y+)}#P)OeUy7BSp zFxAMG$#4r_^~^Fuu@t&OSdjwu=6kI%RMhmN`w*)ld-I35YtEf0j))vkb?X^#(RsAE zcvc9Q=3e}}^tO3?>*@dt)CGNqElj@1ORycqbCE6UCAkGmiXGm@sOrVHEi+8l%!(eK zgD3|6XE0XbRcN2`^spvwalp}w7uU`q?DM+IcDstSm?Y5gX>OLhl}%Q23Gw`5-@{)Z z0il&wI+h8P!nYT3;b^j+OnIE6RQoZzJ@N6BCyGL6qUM+2+c+ip2bW`-td(TSN9g^vOD#kiCgJqN=DbTXmo33jBBX0s+I+Iz^jkjw4=b3@^paAZwI@9o|Cvs26+h>x$xxxML0IxU?SS;9xhORJp`Xd%JuqpuF7bWP-X;3G2>g+} z#CnUY*$mXI^QuHoEc-lCI~6qcg9h?4csuS9xqmLK^@EBh<~gjC_iVI&`rFcOT4?Cx zhjp(Q4bn0l;^(LRP{j}$Qv{u$h+Uf9E*h}DNdJ_lOxiI%LWzarBWz9F%ZQWPU zKVV{0)}v(?iNA)0Bf=nfdpg^eC+&IJORSx=DMDFdC}H5HpVJ0Hzk>$@MpbYspoVq5 z57V2l3XL2K;P6tAck=G_eZSLCm?9h3Gg_EDlhVRKw&c*dL;To>hl0Y% zqw(f}gG71UC%Uaf%Xn>o#|wVt;`Ap9BP+AH$2?3BP*-R17$UOzMSE8TZLX1e7T-k* z{+cd9L8f0&e9x9SG#rDQNIBJR5F91QqcW0|hw`(gcXHIrB%`%r5Fo<6z*++JhsnVE z|0C&$H1nOMFnM74j^mfvK2h3!z(BOjC_lcbXbZO($6ofbF?)VvKkvJ(l2*g7PCa07 z0dEse=As0Cfp2bB8WE{St$W?j%(lw(cy*9YY zV0nBeAwzs=Qfj|q$_+uMTMk+J3H!XhJA$ZdbAPRtrST9G}v z7fcRw&B0Z@ddfr{Ay1r^? zu6XBtj}Xy$+h>QgoI5ez^wLRCXD9%5nd_fa-7zn^RH^t0S5VsSlLN8$qmFjwX)eb} zthN{JqAgTr9y96u5F>3NxebxiQu6b>Vx@~lJe+PFFBnkz*Q=Ldf2u$i6KLBDrwAm6 zN#aT|3Ur3`KyO;-Eq0j`jq04+fA@32!#R_)bRzyI^Tji$gXKu(d`89KGij)Ve=h*1 z@L)*QM#E#yA=K&7O??{}@y-3Z84B(TIqMIp=1+wABNT{ikFzu_6qE~EbuMX?$;A`)IzHfk$Tt-W- znFZ7M-pkRn7A#>naNyNU8M_2CM#yOr^_AyUCl^J^qQ^nhoQk%$yVTvofOV9 zd1Y}5IMF!%%zm4$siKnkz)TM5-D|h2xJxE~Ua}LC!{e3RBIE^KNaaduo+Linhd(%S zK6kV~6RcMGHbjX?ckW`kA9Oca9X6)r23bRJ?h5Hu24kP3BWQ}6F^{ikGmz= zdC|w6@CVQ$qJ`z8YR<^ouG$OoZxu`CYHUr9dhU2XQ;4f0><%82f3wk18o)tKMqsx$~mRy|Rpi8g-~a zPQnqgI59SlIVw$0L)CGKub5aPCeO7_$cY=PnG+#yHV>&~db#x0Mjf3d{U-w+OB4MH{~9VY~twn%;0fg$*ndZUNJ~x|Go> z0CaeVTy@a$ri}{+^D{wzoVDgbOCI9M(s+HRzxzI%|LSkq6fo#&2}pcII5W%dt)izK zR;YDHN~{YOvG5>layr>z9^L~cWK64l7p6AmoI@c_TjE2vH|{B;6dld4LQOb*uk5Zm zr{*n_cfLqzcpgn`J>7)Qi<;wV@VqedCL9D^)vbp^w7V%gvjJwAeC8U(FIlM;V1E&J z@%jR+(ky8Pq&3Pg#QcN-f0NWKwj6pTk%QlzyD$ZU2vsv+?6@R!c-z||mJg~D8|&qXu^DT1206$?3qrg*BhU-p zcvPfXwL$>!3j{9s&z@{@Vc-fQ@ovdedmlkY90E;6 zx2WAtE6myB42Wz1Pmab6ymdzcMr9W1Ffun#HQR^0&Jxdx1_Tv^En1{%4GGN9hOLz$ zcF;$cF5;zq%&8(JJo+u=AL_gRu~Av>ukCst9)H%3e!F>wZjNT{0TBv?U#>R=53@~vj5qyYE@w{%+_oA1Yk&!3}{R5bidgrVueB56L$*D~nTX0wU3OucIdlL5U zg}KYD`uFc?jr4o6{Ay+=vR0v4Le?tgeO?C_E>PR(YBnj=tUfe~koLa5-p29M+l4nT z^agLC^b#+=mFnftbMMIoLfm#=fz;j4{jnc8n&6euPLqW zqa|xMqJ1MSPsd$FOSEbVmWo%y`|hQ<5sW6B&e99wxY3(;x$CLLi*6+ZCG2o-6n@n5 zn;F@1c@R?8NDSF7a!nX%IJK-m>$REYH+p3;+V`4dx%SW3Y$mEQZmxY4(zzicP4U(D zz;e=!&h3J}g_^BLC-AJyk>|QKD8Dy<_uGQmLRXivtLt5Tos2IxW2hQdb(qbE4k(UzAf!mI zOD{?C0+L#LTPx2%FI8o*Vl^Jef82wJ;oRxA6uVA1I`e1Q<4(jIbrVG^Cpc;&TlZb; zQlKw`nq16Sr=Jb*kE%aQS@rxV*yF{ry&d@Gl7dLiyXFTh< zde5WQf-K^gKr%aX@`P3j1K4UZO(8x5i4EwPKn*KALz(Hh|1gvI{imq-GSCiZiv#E)-a#fo;LoCn&?j(!z(Z=0ogPrk?gyX5BA zrzD^69t_#51hyBuUUMe%7r7`5N3Vhp2hao94`}+{FM;%XAA7Yk@hFd%v`_V(DZkom zYN89VEOE3p)bq=jEviI-?S+S%l_)#;ZH4?`JFQ?-pNcO1luj&VaX`K!)Kuxg^;(RJ zPG(T!RAH+bdFPQ(DxV?kue{H1_!3_wje0%76@6E`FAx=)x`a>aynhHTvDff z0;GQUSatkm(=;{mqvThc14-cyh~%;OJ5X9Mu)f%^@pGo6r(C1r`1EbQ>)nmHEF8UA z;awLXNl&R##zxj(Wx3$&ag*DHW}s6*!&VwYkdrugKHU;?2%+58Xz|ys{pt!>JXWlJ zox0h^;-+(&y!yqx0CDG!fq={tPl#KkMgnSI6|W7&ce9g3D>b5rTiibE0K78P8}%F~f4X!$II>axX`gFJK;{T){&B7Ss&wbq5>j}x z?53Lq{jP3^UV-4=L1BjA(2#O&fX+sfv)DmL3dR9jZvH};$0lrDY!{~#+kb=G4;`4) zsgp-hRVHv!u>~T7JI04184gq0P2pV-s(r=B8cc(YUQt?Q^11JazrJ(NR$U%ZI*!uu z_#u)Us+Ar*i3Pm-iOl8ichdEbQKqFamOF{W8F+2V7r0f|m?)9c7@}rXY__6xA?as+ z!Fj7D_S3hz1g4ZNmpc>nF;srXs?NmvyB%P482`29$aPJ!E^p?eLdU$lgc13) zvO*uXO`hDF?kLgJhF9P8-zShMT(K>AY3T$QuDFE?=%zb7xunL%16SY7T}7&7*APg> zYbn35s-maS?=a2ZQoShE8b6L12Od3}HzY4oTo+yb8%my(H)OWO9zAn)uF%hDtXnX| zXFXNb3Rqp;4xCa{yiS8@V61w;wV-(M+Gx}Ay76X--_Tl(SQ#Cc{-s{`DyCb5D?Xb7 zHz;Q$x+C=MHa6Imi=6i^jQ2Bn^xFqg^s6U(C3gp{Q)MmZP4|imp9#a+? zUu;}zF#fIOQ(=5s`Rt3&^Y7mr6Vgi~LjIPftQ8m$Z6%b|LvjoN(dv0JhK^u>ODtS5 zIcTi84ofK-apS&vQ?KLY;VP7uESPGwE?tX)aEd|6JmV7tkrb-buhQJ7%32gP&f(m? zxDsW*8gu(4z6%20j|t8U(?+jg^{z8vnwaRGD}4_;;=@tv#&pdftJqI3Zk9HZhTfk0 zdLMJ@slY#p(5*(XBYhvD$MVZAz%*cM(a1m=V1-D8}-&d5**pvi`U@JmdF-YKl2-q>Y_B(+p05J5`!`>tf`cQrzxd zz#b;$6z_-Smobq{Qw(foWr^PP2;`}W5v*tfBHZWH_T99kR4I$?e9~g~XZLE|&9x<8 zyD2f*SRLN>?s1E8<+Doo{Nqav11JJ{ZAFg ztM&a|8|gT|qGR|6b+^I@`(EXx^E1^zI#ThLtzyL|xGB6_;B;2)^%;>GouMo*Idr<` zXR79y$4PZ62NF9VE%d0Wzgd$LreR#%dVEEQx9Ft^j@?)A_rk}gz*qAj700oP)P(0~ zaCEc5IzM0Y%z1RNS+w0lRg!xymA?%v75uKIk3zUh{b!-~hoy^7zQ!gPDLMk~@REQh zt|^gox>-OC_ai2aplxV#mdS(&13B3EohqvlqY*e36d_tcNS z$r^>HjTcJpsqG)Op2q!pGdU=O%D$|_ds8S)~=CvVX8jHD#wK<+PXf!2fMJrlzBt!;xM{jPqgvFBJ)fWx=VgZf}~aF9|! zZIE2%08v*D`0t%lh^6Qhb$1D|-g(i0&%Gbu*fZ$Z4^8{7z0|bes+aIfx?reDVJJIp zoimZL-}mta7NMZly~MJRYLcobftd*gW>Wojx-3PfSIa9as*<;z=R~(u@_r>t475I^ z^$s3SOj<5+5d8#2cEEA`)Q1?1-+v^=aT6xaR3mClG^#!bZB||sxhw78KAQX+YqOG{ zB{zeNmFQpTy0zxlJUuVW^J>@xvB+!S6=5dVdDY-3;v>viTF6^@8Cf$+ZQfa)IJtrb zVOI&yHJve< zgJo^{==2MAr0+lqCj)zc&IqV8iy9_7Ay2t>xfyO0cWIr47u0fAVc{3${qV??@Gbsa7=MhxR%2IOb^%hTFtCkomYlW?o!xt!O45{Xz3kF7SdMb@Vg zC7Qo5x$M}pt8s_*aQ9hpc>D_4%#d)78nPRWN6PUO1T+tR#*xn!#V1JFj%3jTQ>+cd zJIKlSaO9_S#^nH6YjzF{Lsa$DP?4bIt}`m_-MuF<8vmf}22AEz8G{}OTXnGzm(0GU z0AfLl5r9i(`fKtOIo&J`LdD8HGr1{V zD)hPVwgs%Y!jLS$K4II_ZPrKE^YFL^@HP5HO{)GJhT6Me)oyPAu*d5{&n9>z^GXzD zXnt*fuhFEJsH9`9`^|V+rIe3vNbYB37)=*ZxoKyIanXmgk9>C+!-^gvfeo~L^hn}o zjVpb1ik^y+rNyE(=1>YwvqOq0ahS{t4MlllvKu&xX4I8E5Hq;AHKyoTNP%X=X0+kzKr?DY~|KCCmqVD=g{H5mGu*5bQZq5VoL z;%(z=L;fXr%BDkw&$vzl`U0f`=(G=kldGH91FwFBL?g6unyVvGmTY4MK~6ORk~@b! zJ`~(ELp7*vk1&>>umUnxJ>5=a_x@sCvlWAjU)ANaerK1ckKnKsw1>r1=sM1SW9RUc zA-pDn=fq1>;P_qIw3&&2HV?a)Tkx#AAly2#@`q`{^URy+IFmD~MBw9%fscm~CuNli@pl)dSHh)m}~6^*Y@Jqcst+?DS1& z*APXiku{qsSLY*>5`uw3=%nuJK?5s>_GAgUS$a}3i6rIFE~Ny24&AGxM~IrQGgpVu z3lz|6z6FF|{UI3o4P%$8N zEiFyES|hWs_ujU=iX=2udD^sWN&EXb9LF_-I>z56cs5Kb-nI*5#f$`>r!zWB2-ctf zO?>xgGyF4W`r)cG z04v8OZivoptSiRnK1mzUiNkkP{$w(J{KyOXy5jHR9kamC!3u7cGkEzmd;_ohs-W_? zTW0*=&VMBK2g%dm)u>h)pI>QvaC-#{TXVMlPK}BfwYD-zX;4#sI?E~1_*+prxxbP2k#rWl_CP4CE* zZ_-Cjxx9yJrwFV|&x8rxb5UE1>~`PaFboyn0HXM^cRvVr(xO}rtp0(F>)Qo2SJu65hG~EFnznk880EBm!Io3O;B2l%}5Ah36AS7cJnM*=8IaFXzQd0oN@nxN>Q$ohAgU zh_eA(#6zfM@q_AtC(p( z(qrhtQ|i<=4NeaOj1KpTG@6%@IPxa^yaGe`Ke2h8SQESoBG+JM`HXNM(A?xOe=8Z_ zAhSFeo9dC&CN3u-E~FWNxtPcF5DdEuF?0vpC;KwZ0x8gfZ`;NwhuF6GHWYr83EOsnz&;0Mga4 z7C#r>*(!_)om%Mvfd$T}Uby(ByZf`{<7MXM#sX1dTpuI%V|S6L@`>>&yGh6Q03 z%EKtgv!K))Yp$u*Z@|5f;^PsCi!Ou7;EdK;`kH+f3B9-uoexep5o)Kn6#|oekU=?I9%CJ6pyae#K(I}MS#~xfX?@U%nie zRrFB)@5GYA-zF?g5$gtqT*D23K)R(D?-w3E?DjmmP(sr?stLbx`3Pe!7o4Y;kWp0Q zcq+$x{RkNe1P0qe?(fg6%(KfR8elBuHGGW*kG&(-d9H4i&3=MDnk=pZ4qx9D z^a5HwZBggvN&N>aW*y?DE<6wr+2>}Vk63i>B<32wy!CeXo7qe9UJxyUk&*pZabxb2 z59s6X+$mOrc@bUfZfaABi2+MjEJU#xdEwQj=oY2!<;N8h!pdDCnuQj5jWmg)4NL?< z)1Unh`T6w|qE5YK(75}S0>z<>GGOkxEgxjHPp4VkQyh!hbhDmJ$`%o@CTXM2u2262 zy`r(1yWlj_^9I zRu{nZImZhLAB5G{zLq)vs8}-;R`_e(yupfD{W@Uh0_Ys?_9%sw!&;|xO9cg=lo?#K zXe=|}i1Dv~g{kxwe%vRQ%wh%)b-VE1*)iX=OpzFEAaQEYMuAg+??4 zmTUsmeBoMk8$jg`mDvXzo;N|hK<*OmiH5~@{znofYnk!{bJwS_wwm2P$d&&x&#CGD zMqx=#%4+%k*=mX&ldVj?u*Uq9J5npXELv&*7?^OmC0ln`0I09w%yH>nHq-X4%l`R; z9$yl^zS|_sxwW@%=>TO5uJ=1Ljq=KGKq6s$;!P~^5Y4rNnihA>LcBIz%&0&@yL0(wYLvc^KdSB zy_tEz!nwqbMxmLaA@01k)4Y>EWZ$z=zi>A5bX641cfK+JUFbO;*C6Tkcsek_ExvyR zMI-YnQN?1%L@t6G=IKZ<@qvlGoA?6lPPgoYxkep+#kS_|7tGktDSs`#9>E^+G~#I! z9-xZ)=*Z25zXqON=bV@Z9Cl3s$yEmi;}R@cv@pl1(%XgarZbtt6vRjnoH>GwFT8K7 z;fIVhIJ;(I@}j!>YQ`m_t|9B*oeJ&a8TM=C`y-b%{sFy{Ahde?TrbvV8UO*{VeI5% zAJNy_&6%8%9`GLtP%8q>_pj+Nv+G2-T?^@&5fG9=wmbhXv7>x> zg-t^_`RL7dn(rI^lkIpWeWl>cz&}V1AVRlz%!_wcskMQtfV`(I=*&ZF- zDGUEP(+yneiCOT!;>3qZsN?N;@I1DUvHsF>cJakas<{W|JMuJR=dvO?E`&1RA}tH( zD;(;&u_7OTAqn(?*gAh-t%B8K63wTiPKB!r8MccoWsW&`DYB(&;IFAf%ha!ofiJ!K z7g8(tmktMB8;@JTD4QpcS%N2k`Hu6^lV-tv;(sJK(yO&wS!jLH`OP~Ib|KX5TvT*z z7hEf>%N_@M*C`>b#{jnZ1!Nu&#Q;X@uPo3$xeaVd@O7IEq~r-yv7gpV|KEpF zT&;XdQzbkc!Pd2en_@)cU7C5Q!dDWj5AF!Jhaxk@D(kd-* z3Rrv6s*Cx!B9|St9~6vk6Zzro7Dy-HrGr8`*d@`o>%t(N%R=ZYi&vGnX9bcz=!QCE zl?`2-RfEch?}-m95;N7_4Lm*4jdt0)*c(f0OiBK?z6w08rNE_&=fT|U_rI$#QLMhZ z%LM4}R`a#QzIGtO%~x^S;(uSb^Ac7wTx~DnB2-BP&3Jew$9br zeQF^(cP9Cr@u`)KPkDxoCLZ6aPL?FyEeB%}bgRkJ%9k$YO;XE}CU zpm&Izqh1FQ=z@EZl>zZ>pasi=HZJq3>2r=8zIgHONZz`HmqLLSn-N@wlw7fy4)r9g z?}Lq^Lk%EHMp`qfQELz&bjp(u?~Q{4cNyZOJk6RJN(_E zcu(;ykYXwN!Z@XUehi}LDD~@u;6+CW*?c3%2pPVp)K|gilE^3iA4%0Sa8F)89)SaG z+A8A%0tctrc`W2M0%qa@DfWkMeQr&~M7Pa6s&x!=C*Q9H*;Rj%i@3l3tk-4fSlM352sQ`v;})V*rHb^t{P_Ah@9ygF0l$VLkUZi?5iYFKTfc% z`llJ&m5IMkE={r9%01FqsJqL3CskX>`4PZ2EICjDrZeR=5`nzodDrWoE2}DE_nl<= z-;PU=n8iF}-pFKDp8ro~jr~zKSE~_3eD}L9E&jcLI*5mS8DuURn~$@|voI$PLu&Ku zdY&!rH?&mq)P;zwM21vHQ%AhUkAfypk-**>UMqO;VmEU@}Ek+jK`t0G^Rz#rhC^uT>C#A5El{# zcn$4dt6X3}&WYIn9|;p*Bf2iQRm@(;@z3;2zA&%rE5rQQYC`@r#_C(vg_53ov|6e* zX;d~4RC!=S7HF{IcB`F`cU@086vYd}Opxh4jewZFB-`0# zPpZZc1rtB9XHI)cMv0A5H^Zt>sW?*i8y3^NVJ{TWOGPEC5#XqslwvOEw{OGtA;KfafcwW~pm`hW>; zlU(n`7F@>=%(7?Y3)x1Zh%Cdc{NvbUCM#ABQ4U6?&Q~j@snef>9laJG-3j$IjeUJQ z1_(!NU^<}m{SwG^9R+s?P#9?&nFp!Q)G$t7=coni#wom7s<_~({K?bxiT!uJPCmx=kb)Pq%?WYz^>MZI13+<7W@;SYmm}DaN?5=xpAP17qH-i~CgwlAS(UC70=L0hz@BFZbC<7kEy5 zicev0nXAWf!B|&ZsXVd?*&KJ!*4Xsc(xOs+M6`}6Ex)LNl7ZS@b|nH6Biz&@Gk z(hCI;QeccCg+SeQhLURoh6_RA$s=V@(e<5RMLDRK2)m#^IMQ25ZQ6zY#pQ&__^aN} zW?z`?K3(uuY=$zK(tbXh3K$`h$l~6b>vrj0A`Z^w@z`3xG>LK@cp_I>?f;R?KVO4H zE8cK4O3uZErfrMY8fG?)*2D3a$>AY!r(oTd zHJ!q+2Bi zO24sYje2gaW5K(5E-R=!*6A;d`UK0tSYfSjw=p^T6&Swmm9Xb({fkfN zrsVWxt9jO*nU=cTGrfx)?-^=<3>PstoeAGvb6(QAL#DyHXBIai!v_& z`D8B~au)V^i0=LLQ$Z9vsJSXM&UGpFDC(jFpZsfo>`bbdS{Bi-CtWm=r+(p_{IRKt zINE@Bsd}DUjz|;Uc+&|=Z>0!)JawYhGRWp&Zx_#wi?u4SfT>P$)THS!zhLw|?20W9 zo;*>3lV4_d@@t4C_%EC(B5&{uwbDYS^IgN5Uv4On>W5vln}#k*xdf46{S%I4ovqD} z$nd!j0t81g3YhrlFW95i-#M6pT!>xl&nhO^Dd6);O7&=BOdVQ7;cPy5Hv)qY8h-fu z2i4+DIp$`VV?Y0d>1C$e*O~7t7`alHPAnX^fY*gCy9TXPON9zKoolL0!I)b)FchYy z%XdrGOq{2$P%&!YG_8M|-&~j;2L)*hcQ@YwT^Fn$Si=V}6~-~_d^9TL8J~HV@>>QL;f_$)F3LTn#R}x z(QYmDtqK)FIL&Yx5C1ND2;?DvV+>^vX<<^BJ1J$0^Y)Dsi+h1je=Ibb@n(r;>K@$^ zGVT~8Nn&*&_P$;p#dH{2Cz)pjKE0hw@D17faAJ>b8&3r_|yX(uE zpRENzEFPU4%&*@QpLNmkCX3eplJ2dOG<*{BmFf=vhM-<4b)blthStc{uJ38vJ zZ1b}zdl(ot#pOT5NJj}zBrj#Icql@y>*dMtZ*fwZHIp!<4K~nvYou*)=c80$$ji+> zlW&2p;>~6n{iC|z&sGgdj2H6L(tb%FB7V>>HF{pM=aK&uI7@W=ez62kBWPzFDvIIQ z_b1wkbm6Ep7ldtq2ey>Yw9<|{Lk)IR6omAVz5Vf?;fGAYG2t=S5j64IA zvb~jpWp6*5B1LLw^8xZ!E0=>JY0G5Uk>$~V)+gD3!N@I)$S>)q^_L9-G;!KPY1@U# zYmR~nOb>e3)6`33)|-x6{nHW%7Nan=(h)%Fj0cgGIZ5C|>BZsE;5$dWbluRm;Ung~Pau@0kBCOsIU3g~)cSBT`G^@y|MnA&Mu90BaoZT|j?O**K*RrN_8 zii6*m7&bQqvHb^(J)VpZ$rbSW#IY>$z~^>>H*k6w{%Qp-ee|8Y!X*}syOwJ%Yk1wB zKEXnP-#y_jvcYGFqK*%LhbjBmt$CP#=r0rcV5z%sv^FRrQx5kX&w-QcK|YW-gCiV$ z)-i~4wpY%lZwI^tzG{)Q8Ias3A!*B@(aI30&l_WvPFJPlVJrIxZ+|BaiU8oYG*4j< zEEL0AtqA0hi0hBZOZ+jRXb?SgVWv;bB&GZMcTDh(^wyi5Isq5@a~!i#U_3HM;eO4; zX9w?trjtZKuY{RlFBTz z)j3z0Hy-imyEF4QWu{*(WFjQDybY#-KZm+`uf}%?e21|^N}7^@n=aOW_)b_7-Ky0@ z{Hq1bo%u?r;Sf(g(9rAuKGnnzAa>@e8_y6V=42f~?S6&3JnaLGjgR%;ee`!QHqJ$! zlh}ElIsoWi=>En>wu%8qx~fqiBe;7A^I}9laaAu z21C3VZ&XoVYQH&lu0{*x2brNwHUx;uaZWB~h~3qlskH>zrg4eX76(T2wH%y?8odKfpp9kHE#Pk!-wLFVUm zm!pzewGU;~&zLNYDymZy;dr6Ip2K)Fy@nfIe6U2fXRPH?n|sN;Xs|lXjy1myBmwK-Tv79s@PgB`Na4=^rp+-j&8mgRNb#FDw2+mL%o&+V-w zK?lz=COPad!m0m#%kqi#wCX%LlZ!s+Pyj7KCHnov#8H? z;T1J^^9yZ`Z_}IT^A^W^q#j$7mU4r)IwyXBz#nQR;afUVY=AY~_=B!DUl1_3wZAX_nr+B4AsF!WYZ1}XDVw}X|vZ^UXS+ssPMbzytD7;4t_pTWK{OeA(s#O91qPDn z)F^Lk{4vgMfjCZy{Hab+&&GZ|BFen|^!WM|8L=XxPi0{fBJ~eiHv%N|j+4|Z@W%dr zU$@8bc`Me{W1AOR#u^cc^M)^-;!6BQ5Iv43@(^|)kK=z7Fnt;D#vwAX^phI{)N$S= z_0}i)uQimvzG$r(noLJ6?L#eH|1stoN^*C6kew*3yrUnz!Z z3`dbn%X(Dop88fhKP7eo_*njGVFRb+#~#*$)PGNVK6(fWvrIa!L%ja-agj@O1&0I5+)$$v9A zt^Gbef9qHNok^mN{mT9`>rBH~o0FkO48vdQirrH7m>5}X2K#O|ec-f<@%iH_o!&aL z;NZlMwBIts3omz4YB)>G0D91C4J|m@;ToZ6adBBR%|G+o>#y1p3o-iA^7C#<%Yn>jdl^hH0YuY=%`Yz5`ZYp5x|r^FkICEr=sVk zrfoIW`phnad51qv;z9469ZXWued25$*h1er4Lh@*L1X&#V5vP;li0<*R?v8AU0Z0A8 zpw~?EOkAabg%B`jCvy^VRyH9UW^Not4)mdSTE&ptnP);DEYG7?T7(VEu)|a%&p=XI znKJGwGLwjyJTcg?1~4mueF*^cJ?dgvvKo=>9%$=<{m@((x)A=@;Go^>q z)#enV#j+Ha(j$ zh`*pZ-GNP-NH4Be2`7qumY7>6aC(=3i9_w^m^@F%zxha{$#3*ZGl@FK7%ztPmz}pr z8^Ou!<@@*4r10OfP#mb%(jGYXk%`+Zkgd=OhB(!w^&IP5K$DN@A|N;3*t!grI6nx< z^KoxW1d{)EkDrQG+$!#nAsRSnSTvb|fxd*^4Gcw{MX z=g5e*-v*;QE~8?D%KwoB#;e`A3fvZzRW8Jfv{Ptjwdn`>>3^Dx-jxAKWv@$~O6_<2 zYl2d9DF*w$b4}!StC)v&NJCdrEIr_>BW(DuyZMS^Rm>dJD!Fdz_f@oswI~?BBT<_D}7w8nixs&R@sY_6rEV7qRm4NrcN1;J*a>U4nK#d) zLzTYU@@J06nq`@P2pYbgi>69WoXW)>ClqH?sI*7(xAo5+cmaMnaCX2lom#`82_g){ z0}kh{?yJw6xEa#hs?uQM60d=u-y@GX|2bpD5oP*W(l=d1w=xmw;OkFGkb5My2pe#~ z_Yj_frwMvEKy#{~U$H&n{yj)R23%-HkX1J!=Yc=a;u*{tgarh!_$OrCAn*FRT5@0z zBA>I@;y#a6!9su#0EBtQ7Cjc)%P!xzQh741s_Xal10S>z9B(}Fv@dl-XR|^ymaStc zqEd$86Uy)g!th}LOm6WE#Ig|V-LWYHlT)?mBz@OvIh*J*1(a$*YK_wezLXEjNfSGc1$KfmD{}mnCLxfmIQT zO}%EyCAAl)3J?w=1vb9~M=ud7QU!+fum|}~Y_+$fw-2b){*j~+Wo8LT%9zk@y^g2d&!=ci@;scy1?~?ms-W4YA#7Bi^~nf-r+s)-!Ud@hLk86Z$z; zR>-?}M|Vf(^|W8n)Ux`7{!Ed)Bri4}tx>lPSG(`yWe@wb8fr;Ze&d5uKGo@dd5z6= z+I`Cnm`+1_u+#c7te!5KTLwo%KLc*?+%sfE%r-aK$U~L*p2;qJ6Q23Sn^$#9$sWNe z#&$G`mUeSm_8pIMf2iRt;tKBDJ0@@w1HOR!^v6Rz%XZ`e<=Eylf5S1mO3v5y4;pC+ zNvfmoX~;u=jtoUHW%yML%a%~i9ZWMGvl|rVW>l?00FNn>28PI&2uxqZTyV#yEvxlaURJsP+Vl1U3r<|C|=t{E?jrx+n zbH2-aV??#Gf6N-QbAH$875q2>BI{J{IHg>;cJoX5c;Z8!?o-3rSI{2c@818BNru7* zm#F@DywQBb^viRk>#9nX+?qC_GgT)+lJTZ(cvAh@HA7ywD;e?cRSogc8j^`LOH$6! ztVuc;(45%!w{a9~wa8a_ShaebM^2tWwnZj2tSGl>S3ou5ZW~=0QL(Dkw>i=aA|nl; z8QaA|U*LK(aVaDEurAVr+6J8LWw*QgogB3tXrZ=fbwyU%bHa<2G>`NXR=@4l0xGS2 ziQQu*Qse7$y=T<_bCC{nRTmg7!g+o|?wz`e?|Px8{i5G|`%>QZ;V0~2H#a5i7qDVQ zy5+0%l7f1v+Pxt)Pv9;=v2?&F;J5!lsr|V0`eF30EQLowEaV(Hp@SUTU(_lUSFopL zLqivIyNt!>sx}(#pn0LyfNDT7sW+gs&VM+u5~9k9efHGELrrEmdyh2S+5f?1|51DC z{vnamkl+Uv())=`s>34;oBxcDwHrm}c-R+r`zZVNhZ$J$w4%DvEXT_@7)T60)F*Di7Z@J}@}&^`GZ zJPi=sHy5wM(ay_Jt58?NS;0-v9sP<6Pr;gkIoE)vgn@oOaAZUa-4c)dl1$tZ@V!&Q+c&QA0Sz@B>@TMS|08RD zPL+7(!$#p8Z zwNO5-NVlHHab-7?wZMYcMl5GSikhLNFy?GBrC|h%Y8`Hs7opW{2@G%v+Zw)v?P(B9 zfOxF(@zZ7QP$t0kRJO~_lVSI)*&4w~p{8W?XT-Bf{iyb8k2`&WO{@CRABjR@QaXs1 zliEP1rA_TkEbe$!BA#>~T!KR0#?KqjOGYi(2%hmuCO-m6MPw~qg^(Y=wMTdwr&|I* zu2r27bxc`wbZrWx@^TaljlqJz&up7U+9IpMq`o=7 zm%G@38UdTum^~Xr?rp4a;e|+d5wd?dlia_YBJHxz?`i*9f4?MMRw;^4=~bfUtM-xf zQsn!IK=>;AI%Vl$2fEa$NByZKsJ55w8#9!6_QslotLZ`Vefe7^Lt(I;%`-2O(~-OEs+i!Loudc%_&_KYRI zTgNy&)jj{&8gxE&XkbROeTJNU&s&GYQm>mE1LF& zQS+ToCdcQ*)UVJC3k6+@F-Gmu-lc$yEMQAv%`g#)ite5Tlu*z+fU>#e4gHHu({vQ# zF~!?!N0Ztg%5qnt`w)t&$9u--xh{PG?+*2;CB88VmHU*DJM|vDKSNT^cfe71Y0wtn znA(v0GPtc*II)EWh|`(aX5nz*JK;#viM_|vM;@JNThmQDZ+)!g-q)n(nL8B$d#>O9 zvNV{nrfEqq9DMtBny1^`oYh6K3tpzjy|}GC8LM*U)0D&{UbD2jlPy=U9WC`RXu*%f zB-kcww!vZYYqiOKtlvkX#T?J=$VW>h9@@v6v(FQDb*{r~_^Dk3Txm2_jMMJ%8(n*` z_soTKyOtpRB4M1^9@?>a;WZ=Ds8Tm$R>kZPTe0Z6P^r(0z_$S5jD}MESX2AcV9v`H z<)o`-5s6gsZD?I|m%BvwVI>a@;&i=BDC_&KblYi{lt`4cfyLI1BdO`;`>76-PQwL3 zRzV>nhk;5J-glfV;X)dsp7mi<=X^~lfPnY^Iqgry7e!Y)FEXMMscG7f=wp#rx!u2S z8@x(qM#jhOACg(7{f`_a zer8!`@F(YPWuHp2K|s+}3%tnX!1KCjnPC}KM{f1;BGgj6=0xGB2WoY*EfV$>7@y0~ z{%sUKg}yx9UbE(-ZiC5OqcW&O&C9If_py8(&1-L5xnwJ zlr%{=iHw{( z-+EwN0Ry;lU0^t0bs;ReQ`yG?x%85B)i@ZO5 z?zq?H|JJv6D?M)QLof1sqk@Z?ycZ_-j;fm;hdE#Wp_*M72Kv4^R-Fe&Fo`goccY)_UhUu zaJS?Tk@);{?t49&kJk8sO*T$EB~pc&6U>S4afuu0nV;Gz03Xx7vy=~>p$-VvKe|6! zGUOYe^77;#-|v2Oi=K1(*(9#38he_0#kBl4*zboD1x0S2?$X$)k@@c8KXyRXv=7DE z%KpHI6SUnVXSyrvbg+qWE@PUkJB6CG5>JB`v;UQK$>laxV3r}zi=a6zM56(5{*G~& zI1f$zuKWhxIf=ytm~B!dN=@Gf5K(ZZR@j@8dxqjo6=ChCIk$ND*!YDMN!;~I*VG3*Ms9v}-m=CD^P~ROVoh0?u3SAna zWu$o2I%s>nymIY;hoHgC@cgCf-aE-W10Z2~-^04J0-!V*S^Ls(XB!3okQv z-h5o>bNVW+a|pV>Ccr6p>rv6u2u9N~MCSY19WQwyuCMmHYf?-CBK+ygP%)U-RVAQ6 z1r8)`An5%5Rr!HB8(#T8G6Kizqxuj)9%^1GH<)208enJT&?vfn^_4*t*C z8pn4}2ERS}l~+rC(z*x^dx7B)_R}9fE|-{b-}f8J{Wx8QT9lmiab0I5z#kAAqd=mI zK6`~dLzF)Jy!(909_K$^T~KEIyl&1qlAzR!fB)3WfWvEq$@E8hMURFnrr+cJ56KV+ z2x}mY0j$wiV)xJKX3o2oB{_%I25Nn`Nk!pSR|Wtkk_kHyA}CWM0XXr-k7caM;Vof) zPXZfWKa-RVt~gZhyD}`1D4#^*Kr6<-I{b-upuHfhkqDGgmiz@^2Pjq)V>B4+xu#e6 zeuSL=7nqY1fjZzt*_#Ea{!y>*o~neT(X6NnztUo}{f$Lno?a z+8(elj^`mjiHi7w6&O4CcHbF4R`lM#VAcFbfV*GRot7|B7M~|5{|5=C&3b2QbvIu< zi`O2er1+6>r`{2c%4k+78^95Vgrbae53x$gK;0{kxAG*lkf;W*h_7TN#nYY_>#)^L z#9JwzW76{~QTL|X&<>+^p1m*Hz&dT>jhf6kFlOjqy#J9k;k{flC;$*HkvILeTi{jL zrg@CUN;#U=E^q%m&`typB?GdgNe1QLfqIL}+w7FR(%e$hq_eyi5a57Mw~hE{#-wq<+{p-UjW%4K7&GbWsR<7v(J4%YWK z{3;V!o@U1f0v=85<54_IEf*G-;b%bU|Ji|Pf#1M>oTR4v8v7rH$(r?qU)} zlPI>=l=(-_^Xkv2p0@6$zrNay;!nWjeID9=C*?-VKi8JJe z7u+L2h~MD~ca{WEh=;FPs1a}v}0A#lU(aCIZzThmK#p+-La*?38L%?c7RYxVN}d>Z-qrUGeWEo2lmf88Ly@E}G~kB@ANA_5dBsjqodk zs?~pFRE>N6IJzzf53Vum=W?hV&bplyQvf~NF9HiL&^g6S>aV@yFiXTNurk?uqtfbA*YB>P+O2<|y(Nv~f1 z-K?>ADfl2EuSv{pw*9JsNS$QYR%rG%{}PGUD3WZoA((}_jmiZbYPi8>4ErD)KY#jQ zY(?;zA#@3{0Uk#j+D8%vw$hJ}DNp23G+IJbH`#qn;tq>|4v+KHhgip>pg53X*bdK! z#};Ad&%R#ew#z*WS%rsd)GLI`?b|`cOu7`ZbDXnh-aSYuGnl&B+7n&qx!vp5pp??; zU@5L4f^6gT_o2}gA;=e_k(q13%&219e<=d!nEC;PxFbgq>{UIOI;0v)PUoF$Q}1mm zQaOB5bt)*E_rfBVcyMO*^230}vAD-)?5?8o-*@fO zYG$7h*6-9<|E+nmIt>}Pa|7#7^8kQ33UxFbpmSDhJYA-*EXD4+hTD$G%!EZ7AFHDF zV>W;Y-N=z85_+p?6gO5$40g43)5b%St%;9;N8@v-KwTbS?`GctWs4T**%d2t zjr+>mVgX8}&L`OCI-%~RW$d0(nhfj`8Gz{Ac|d3O!G#BFL^qr3>IF7gYbZm8N@D~s z?8n<5;(fwcRk-_odF5+i{%PY8>jDLG(nMYN9$yI|=zz&T!&^J-<}oMx3f7~i)FHb{ zp7%327L_*ylO9(g(o>{OPxjn|8#Ypoq{`T|Dh!(dWSkZ4;0dTIv+AtSiJ;ovAKXO z6kTOQ-Js0d8B(sF#8hQ)^eo-YuJW6dEuH(hyX$%T$@rCvp|xr~EBy-OT5Q?m1s58Ndze(1#r z+~TrN*MwCgAB3=ckz0wy~v>Nq(2(;p$^!n^L@SA`CpdvwBlM1 z6Juou3dD*&_vJp|o@MGYp)>IIu)NG~m3jH{ecE^?P)`TfDH_hh*0lGRv0G<$IF?9t zHGE(Ph(1)tXPRDbO^kUCM7QfD)s$G|ROc&DG9paQx+LC2j`A_;Ffmiwc5~Z?Zs#Lt zUUQ=~nHPBeUzQjMZz#b;Ze4wLZ`CPwKEKo|T)K%7vZAIm zx9V}jU*0w)H& zy`s@fa*NLY(<26bO=2&29XjI*m)JEqg#*iUD}ty;kOEU1V?haiQ2K3=)f}rAsJvUR z^aePJ7)3aOe1!&hX^J7Nyne{2-UeK10BSz?0&f2FP9AHoRdFgG0C`K1Ml^U-6@;SH zC5gPFtxxQLgI0U;md<6?mUsOhHiN}4uN+M=*}J1e;`Xca7p&j^=<-k=Ni9`D*n#srue{` zXD>Pk9?%Zp6meai8Cf0930&V+l?y7g#(%W5a0|$u>*1^wYfTJi>~Jvo;dGm)%{hopBlAOE5u4%R&U zkF33NI^Q#To5jzoOR%S9aaO|+FPM>qEz+#b*RdNr-8a8)#__88^O&}6K;iG1v&HPK z49_=2kwazslvg^wYN6<2UpQMUPcfLIGc#Yc9`C!UzJV8gQKAn50Y?Wdd3D-RQxXgbPL<5;2Ob$vPMOxXJXjU3|o zOL{cX&frS5whTDE)Rq>l#2zvq>lku|a%oNZl~3<1?*DbE59w!ie#V!}5t7kCsL8!% zIo4-iPH6p8xHO`@?0;F5QcZp>k;It`a=NluxJo`$e}Grf!BKo7$nP$Z;RjaTUz@>A z#_BIhl+zpT7O5>Id)3&KvP4ll;`@)xqm3!+t@rE1kcmwA#a@ubUJ*+)WLyCfJ=o5T zhq?eVlqY(R|WIJN(N+I-mSwatbb!zygNtO5z~1p z2j=(59a-LLYgSv>3HPzc2@P$yx6!OdcA5qhUx1uQ&`lUi6At!S)t$CIRlKfvH^6HL zzAdjXy*m3KWnGj%%Ix0LF2#OwGIMP?_H*;5nesKSX?M9YLxWx4BAj{TUZ?~`8iWIU zRX^b$=$FwfSZz@7_FL_Di+CRSYY9&F$)o#g>B=%iLj4k{Q*64e-cl&bK$~e85kAD$ zY~I5$LWegeiG%^Ym>!H^?4bX8DDfcYNSpP8G@bH2it(4pk$*!cm-sSXS0FY~n%dVl z(cU5#YCIQVU2v;0R9QQ|O#VlWtF}!~beyb``j9koc6q}p$A|6HTPouhYQ2i(89dZ6 z=9K0=tJ%dF8MBucIq^6?Bb-NM1<-x{vQ+5d5sJy)X2>kV9Lo1 zTH8=k1*Zhf?LetiwaW};egA>z4{r`f`W)EXeQ|rG#dK{YvNcXLn(Yh5UvwI!i1xhW zu%uA|T+2WIR%Q+(+oJLgC(3mVXQ^M~O(=@KgZrLL6R88HQ*E4s%cAEVeLxj2=%zbJ zxP>P6-ey)j5GiDmJT1=WwmNhtxez#z%$pmu!)->4gLT9PiFTl0u zaT+5*nWT*!R4JwGNvm%d|LHJiu=zfK^%nJ9&5)CA#vKF8c|ZdAqtmS0Hm42%>9in2 z0Dr3wm^zQX9$^0o#cPXMIkRf)I`y3*^M0ec`Y%W^BkHxeESWo@_Baq=9TwP&W}C-j z`i!)_y~|vDT&AUR7y7sk=A^q#`1%Hx8fFKqiDQt$nd#h2y7+iO#?D|b-2JHCJR;{O;NEvCx>ihI5lpoVb93D|32bgNX&?F5I(?yHR`3I|rR5;`u7`xKr^mWC>Km z@kC(e3PHTh*Ecx2OO~)cWqM3vTKjHFdL0706$^b&{GVE<2uu$6WXrdGTM{h4ISoh} zs3>Z@O9yCt>R$3&NhW=hK6qNB`dOz}Is39z?8d(yy$~_=-*i5 zcw;RJY31JCOou@+9^YKj|elwy%a{Ceajb2{1Jde7+woAZ+?8V3oowZ1B-%VtA{-Flh6eRtCFc1)K~MKOEuox}n|ds#md6oYAR>(F8Wk|>~1NxGrf1cyu8HdV3^1k zA$bh*bs|x90k-nHDo3Br<|12|P&0knObt+dBR~eP#70~b`i%WKVTg6j!JmH6Asy>uU{= zsQziNwBMNvwf@{Ah`ZSnzJ182HTsyJuJxhP4cI}_sZRZgWG>?r><;YgI?k!fN@)$x zgQGS`(i<`m$@xvx@^F0mjku<6-TPvD_}Z?O>hmoR{}AzPAoR|pWtK+|Tt$JMF24Ew zE7WO(5M>>!;kSIB>v#fJWtM6#u0K0N{C5=*$^yVNY@_XJ&dgA54X1rjM?U3*A7Cs! zB({+m=TTOVcKg}7>wMroG&trS8&8?U*bRAnGtdrF#;QM&lfLhUKwvz|v{fCV6M~H0 zkWju8`%a)WTxFdYfQ}S8!CY6YSk*>Yu9|?U&@kv(?O3Z^>A$&Nm}@gF5yPNasV#9B zk-RsDU~gEGrgY#9pJ$qi>Q+_F(LI;0)Or2dV?MtUm`R!dQ~zqnXMh{lpa`;cwH>A3 z?>=Z9Ug5p{lSke=sTiZ;VX*gIJLR@oQrb<${TFSbLCY~p0Ax)A#psL>DW_S1+))XW zP)|Zc8x2R0z%{#j^1bhx)%x7Rw4dQInD(vT9;fO;cof#g>KR5BMu88Y@;o^0%`|LC zy3Q9Axs|KH$n$`R$WSCFPtHDRYc@$JKC!x*R%B8T;723$(5w)?&}&y;t46vd<^Yf1 z#EOMCt?Zr=^)9Ld@!tbu<#nZL;#;o|5+2;J-|PwU@UM|bNttN5(x}Xz=ArtN>IRaS z9LB!`{s|jwbRQ_(Rsi-3UDMaiR=+Q7BaJb|5H-HfE^bfP>3G-joVLG=q@w+)Rn5YB zA{6^}XQEeA*Uf6~3W_wDMi``YqH0byiXoDoF*-%AB&Ikn3M;FiDu0I-(eql_d4Aa2 zSA1sVY@!yay|-jbls!^6AV=Ht`gCe0+2u?EMM~SM&sOMW54CW&y5QuXm*>aTh1s;x zGwcUDI{djj>JC|HwVrfYn{TThcf9*({SedFDIL5YSbG8p5988Z6(8v+EDc-|N95og zAV&53PoR}}n91{>*?++9RrP}pV{~8rwp@t}Opb6nSFJauU`d?XpT0y0y9gXZH&E?o zU_UjKZX*;kNW8kL0W8i(5`q7aq%aTkuQy1yZSZ=%M^>&1uOYlm?KP9Cx@V1|v|ZHk zF8nZ^$SD)4Z}-y4H_65ewB+mu7Y`?#w|CK%1Xw`2s+ywGWJY}8?gWXIh`9nHbk>1s zZQ`>@BHh{u-OJ0tzz#XKYLC457b{YM0Ru1kyp)85rdv!UMo-@vGnAI-|AXW~JA~CK zMsU<5Dz8)*5~JJh)U>}y|2isyInjQ~&iHRWBh9)u??e6+GQqlTOcZmKbzUZsB6L$4 z7?V*C%>e>LcHmuxG<38s%{$?j0-q6%zh5-LQ782?i_W+m0Aw}i`Ljv>^r{Rx}e(R7`Rq2WN-z`4SiD9#ix*UJA;eL zDA^XJBwGzmXG*%&)BIc^W5RNwr%6Cd+g9rdtLj!M?+D7hZvj51`(-+wq4!r&d3;*7RkbwhkjGfBI-6Y%LE4%WwtT@_05pIgqkG0`A zR`@~eh2un#${yzrqNo=rhRrt@DHpg(;Tw)BciofE9W3${tN7wC>--s}rwPMf$NVvT z<}WWMNYsE!+8OsKi5efc64(vQpxm?E<>tgKB4d&D5|lIA-*++}c{=&Be7XBm&#u?u zVq?|x9utgdYqb20oqCNxNfmMz57&u^C?EAIZrnK|j12MI1u7mZ$iwY9r5{%@Bt{Fc z(95=FcAuSqK)d7a=G;gf`XMkrTe1sPtI2J!km54kH}31<(}u!$9uW>aX}DN*d{xlD z&PVV4m|j# z1if(nGcznTX&+r+W*1fjYjLw_fp!r;S3k&=Y%M4BFU{{k9+5ChLO?n3b%*o-bp@YW zWayeRR?lb-Z7y;ZxZjXhwk#9%K*-L{Q-I^P{S!7@-@WPIIM$fCh|u50V! zY2^r;rJHt1Ix!QFR^D-#A@br~zJs-Z&?U?2qMMi)57|n+$`*~gJNq~2^;?-U1Om8q znZ4Lv(Ihq<+9pvy`XgEI8CBR;n%R5~AMqXPbDX_;36kB>u$$M*)I7Geb!-n`Z&Ud- z=Lol7x#BTCDtdU%?ol2v)bI;yieaXRtpWaDNm@fM25(+2O|5&^fEgAY<4FC?R`m1Pez)=(y-zrtASBd`| z;u0N$8ER;%mEV0B;umN5rAO#%!h9126WMfH#Q?2b$@o8?0imwR(sjB(s}!R0RQuiS z?3X?>R`?t}42omEQs38T;-GKlK(?PZmRTV7_K#!-9nK@8zKox1E$d&6(hiNOdc+to zCd1`j6Gpl+E$EeCx{vK_kda^v>@PM9zEAcJyU@nUgyP+Pcx>MS9e=uzaFcxr*Eqz|yVt?dPl+&ei>5pGH-IJzwFp zqfVu61iqTHvReMvkZ&RK;G%ZHGixwXzPsgV;*4PPKSw!%&vhw2F4Y8ddi|+V#XB>q zUbu*^$g%peb9&)1r~B`V*p(2Bbnrj<>R_k6+0`qn7r3yE#e*DQMj7Wn@A56!?7zsy zb=h-sB!Ty>f5z3M7%Bfa*`RI+F@%Vu?cVYJ{f(TQ>*3wRT<`6rPw*@d_7zVIw=_P8 zU=Akjc4Rj-WSUPDjic@*YYXK$$wfR_d)rYnvvn={279NG3A}B>zBazzeE|=(!3VB- zUSB3nkQlGN6;6oOmxs!&fbN0S5B0HoTI;5hC3@XIP_53oI?_@s!VW>?-7NQOI!>eq z4LG>;m7$E*g{S-OiN^_allKiXtp9i$&&~fwmVEgPU^}F7>7Pj*?f0<2fwT*l@lBnU z^VUl0i~R(lbnaiR*C?sxaxGgPdn-oLgnpMp5^qj^T@k+0wBxKsbM4n0@YDmI)c^@= zinVR@U5CyNJO_H&`k=Cg=$GU6ZdoAvppfe^dHr4#O!3}_)~8bS|Mb$^%_lBv8W@E8 z)*qDUs*bfaL$fY?*O8ykgG1$|h<;b8CyC;2=Vlo@U6#|T^7l7l1NCjGTi&ug-8)+R z(&?5*S3B^c(LyTN3G{N zC>mFH^<9^Z8s3a{U4Q3RtSG2VPkcBr;>rq^xLdi6dfHF{niL!tr5;2Vs z7<^2A)qf5fZU`}Ci>H;&R7Iq=wf4!0VY=$n9+02hO6N$}Y9j`t^}8@8<#e};F22LRz5kPPZ`xPp!k zwOcap(THDqF#W3VBHKS=U9VeZ-$dA(cr(ZKNo|X4V&jrd;_SX zhflfPef17A;6BPck?@iBm`~2gUaPO#vhRz5M~! zMK^!8^wSoXk?ynqfo{(UK7~9ZzF9*@Lun6++HjbJ6NG@---XOZ7tSO@KC1JXE5<2I z-#f{<$!w6u=m>R&J#Gxe?qM5mh_=s3J&PSjwIB@USG7Bl^!N;&j2VtugjSwoLFiEN zfPWP4f#N)y&<#uu&76N_|GRSC5U79H-kH#sF1n~_j7V=j^7#eaAf7l#h=b(c}iWf{ge%&OP@I1Fy}2nRq4i&d3<{H*1U%G zRl!YGO@Y5)24r0Kq))m0{J}hz6Tq|I>V&h>0_0}57?19vuX{7wL0=x~e#iVhkK`o7 z$4zUkJNP|uc7#Dt@nZAtId>vwnN;t)a)PjNKzqXkWJ_-iJy*Eg{rU&AGY?O_?s@My z&)uEoqgP)pK5g&>#umAhR~} zB_}mpL0tIKodJthEGB$4ZkXA*UPNosLq3!M4fAf0T=aPkMm#hcs>B3lmm? zBtL+QJzjmxT8)bCT6Hj-EzZoyqmynBVM{16nbYrY@i?5EP}Xb8I2-??{fWvkkAa@| zJfM@Vdm81P_Q>rKUw)KL4B~yE_mUv~0&CKR(RmlL-a?&IZ+B>45IrUIo9}Z&L2~f5 zfut8mYL@P=lv<|S?Jfc4sf6^Aq7JWKIh1k5hHU`oYvVFI5xSNU0wW{dnp#qcEq-v` zGnX6u!FBdOGI$778agyxwi|RNEMKIZ9GGfEl!Jc0zd=;`d|rv!3@gkU1d$P zuv@ykc4Fb#d8MXrtkUe z=BG{<-E7;KzsM}duLA_jTBw@(dh?G_+2d~|J^SO8iCTM!eWKk4eHylIEm=Z^ilT=B ze@Oh(p?s_QQl6+q}_zrP-8iP@jX(?w~U6aYZ9+57;MPi&IOv7V= zyDMBWZM!+v#FD5lbnXFZhjyS7p$H-~J{`9X!pa?d_5gAJAfZ4>KkV5OwYNvhwy0OSCIPb;jYvs zIT(ddv#YcZp-(>KJEE`^r?O%Cuf80EA!l#+e|))&52^G05F)%_1=F2Y-+suAO-nkCKAqJf&)E*3}&PU!#P(=&W-Z}L7T!Ro|bv_N20O2`O z-CP@0qXFGSFNld~htENVTH@@AgQH{o0c4=@wFp;}@6qF|6>Y|Md{1WWjpkx{o(hW; z%rd5IXrezu*;K8tdTS%m5OHVbn#F~G>{Wq|Jsqsfhi;~K@-HvY&yBTeCy zJlQ3JhFMcWP!6Cu2Ba97#^HW{N+#d$Q_e7z%ofH4OIMdyEvfE4n7_ZwbEAC3HqTAh z+r(f)Ojf(z1;d`%F*397>6rFxO(LPObZMFGo)y@(bA`27kTD;v=GcP{VA95e#h~Oj_D8klmyeGuxwN}w}In+v_>%Wy@;4d zFTk~`!6Qy3qb4lJ4qJsPM8D2(Yo@#F?En7S2S1xM?^^%1y*_UKV`MuS7{2BY!*+68(#uxK9?m;ZI5@p-R;q35)G2+++-{pP_)84 z`v;F+zT3)z0}>o!@~N670ARsq`b8tLwsXmkkc_FQ{i2OF>Zle@D|_NI&_Yc1axLM1 z0zmj4cyintqhTC~iYT%c%XF^oTkhgD%pLbmg41 z!@U6-r%MprxB9xgWCvac-8aEW{Mw}%VrmcnKbp?Mt;zQd`zRJFAV{Z52}mj(vuFVU z=@`;50qNdUq)R|Ra?&}F7!8w_?#_+wjTi&QzVGvU-{buUIN0;t&wbz5b)Dzu3_?&p z*uuFe%a|&>S09bOZzc2I5*LdMF%kP|GP-=R$X-*;i!9aD7<2#>R3P%4M105<3d%%R zNBD|`p*OpN6y*;ln%PSS(S!OaS(^EW=}!Bxz2es)u?1#njg3TDZ{~~28G+crdXz%z zDM^JAw}}Uiqii6JA#s6DaaqU21+?_IA_? z4jg)Cub};8;dL>ouL?>(tTVQRR0!A`OqO~8f3`28Z%=?04dS#afa>Np;Z^oRKTZVi zO|ZvVs~V*WdsT$a?X}WOy|e%JADMLnBLgieP$VU>haSm1;Vd9w5|m%Dio#f%FzZ7u zjoi=w2lCUaxdN7hovCT~3ve_G5X=sx+!a@B%MWzMhIGffm=?^Os@}kh|3}trA+{%2 z!nF56Q8uu@8PL)LmC_ANal9^~oFfOSO}Y)t`J4-ueS`m=DL%ti&F#){C+jkKEmMMD zl^Fe*`K;8H+snkMOX;OIAnK8zWe}7Vhm&tu_uZ45Vl`kEjh`^lpC9rjM8O-Qg>ctB`e%D4sn#&*G+EGUtR|IqLjJ5Qlz_4SjCaJ zJAuXoFIl`4?i>c`Q`S5pqth$1P@#onz~2m5g~ZxtaF)~P(JW`QTS`AlDpo7I2U8| zrFgKpIkh4};O8Qc^!jT!ij$mlpXfFo8iGqidw<15y-c_nWihteAjVd3_cIT2W;i>(8uj_Rvva$aBCe}FN#Rh#+%9~+6b_g2G__c+qP`=7N=aeLkXR+ZnL!nO` z0lNva?|4@$^P~;Ho2XPE1(*E$^8)rU=E1Pb4*savcJ`QW;3e~*yKehvr%W-Z4m5DK zZMCi(Bi+ZJPj?C~-!KGdol^LWR@^%LE72M2(E)$RcdT)h)z6}wE32#@YwapNraV7P ztYY{7fDunoPE1HjIlXe>w-VLo&P$KFoL+9g9RM?yo8(t{ARCdnhg}BCH=t64{=Z{< zk-~GEO2|o=2ZgxQ0UwfA!OShTTr4}kS zccb%)1JocJ^S7vW$z}b@bH`GG?pYT=b5FoSG#rt4`hr-tIM;yn6CAogi@AT*gRWq);pId+ksk^ix7%Ew$5TmvW~1SdzrS{Kd#& zo0bOE&vieuBmOcMOF8?O(aqx09aI6alk0sy$IPa-{M8(SY%j?Pj4SX633Gm;$4bIBCdSSq^0ZN6IrIcGF-H&Zj{V)?fOtUGx)@9fJlPUra5}Rpq{{a3t*_UpMQ| zIbiVh(GsTaHKbJ(fq9jaj^H9h-3Fs>RoF>p(A`PsOZ$LEDsZS-#%#t(dL+bqFfm80 zu1d6lMY8EOwN*%V%jTuJ1_-TPZN9TCL>_4bMMaYIeW=q!*uH#ZJY42j3wNl-^>p}n zHC8tKNKtzym)jI9(krUQ|98u`g0~hNk^kb*7jJJXfQ?3|=feRZ*%B5M+bT~uwFig5 z=!y3(UlO3BuQkxH2-)c5CH_A*KIUjD^TeKuC6F~5GseCuH!7+3@u&TKw0-7GV2sG3 zb(%@@2i(kzT^4c#%GJ2!nR3z>5v&bOgY4V8;nm1&~@$)pDt*i%w%^s=QI>IsLnX$K0H z69TlcsC`DM4yI;9G$k`qh`Nj6I$pX!yY6+R@aU7wm0VE4_@JzQ?yaqsB@`D*q+n-} z-@R!u5DDUKrpA$X&2dK{0;TImJPTv5a;vh2J8**n|E&G4r}8OpeL3C{mnq3rv_I%I zb!HqsQcNi0A9NqAJBDSS782=1Fkz98u&rOY!E{L1`zB^i591^k7T(q=A)F(~+Le!} zjK29Uh)uPyB<8*r&}T8>lt|I>a0ha-e7u9qFZl^Wo50w*`u11kWsv%Yk#LRBi1xGZ z$#3Ixbmtqmzu(x**hF~L-L2Y;9a@gxu===HNgI|fdrre`aGaT$Sr@dhc82htXWw_)!%O_maCOoc;QDi+UkS1Jg+o8f`47`yl1J6$Lw zWl*4H((VPAI^;OFJGeC%Zfs|v&_-xJU5^B}b+E|4vufWrGu?xAFvS7Dc_et1rN{)~ ztWnsEBLDo@ar#%SMC-)Qocyzp=e`G^}>&Ll5aP$K(9aq;4^Ufu{%N*@2* zT=-AvBWY6`kl4ks*`&Zxudtqzrz^vOwG-Z8o31qAMk()*B(V^P{WO2znrgI}X5b@} z{?(b*IXYj96&I zOWGdx_Rence_G5w*OFExUSKly87JCaq;1R)T?o~{jY$D0x4t^jnx3OLevgkGE&Rjz z+P|wo9#L)RM*j<$tREK2pfNJI=#qjIUIgvK&9$HXMSM^^zT~}x!bOB-PnVL;r{y^| zEBmV65N0=SHrHuIlY%@o0^1>3W$L_V&|UpVMPMkCVUnCi&ioE8p57M zvYGRZh@-)_;#FLwgpqy2*n!Y~xdA_SotK)qlmKnsEw1|8836_l2~it;nu#rr&u?=~{LNA1iexh1xhHxeAiI|Slg zO&y)-iG4agpDy40rQH!(i4nl)h}!>&`Bl5O7Cj9=6nd{{nk91S3Z1f0xJs7*Qxt}t z-g6K-Et25!Q_Qtz`|;K?R_gWMUj8+101JnkLVg#V_?{sF$@WaTtt(cvm#!cOz^L0W z;3)8|8rN_Oo^L(-jgbR(3}WJMz16qwej8AJ9Xv7hzEnnKNy*A#tkAfdYU^NiYWg$v z?W?27oT6ChoA9Z1WA4`YS7iOXw*f_&G-F`9y9VPN1TJzm?K2Dj}5wIodgNDV`6YJyLv4~PY{>mz@A1-2J~v&W|s`T^|m zbHpy=MQFtXR93rTJmwcO{RcC%AM#V&@WqP0>scA((@*s}bUeJPw!W2Hdl!GK3$h@U zR$c^MDiH5Rt!VFMV_=~s-)4FP3U|eniX`E58h4WA+HW{;G2Q)glRUA9PvY1MQl=$K z&oJoVOs~r%8=rMHT|DpGdWf-)MwU8Dy`3%x{EUuM_Z(bwJrgjPSAwc`b+4P8dlwi7 zf)0;}C7GJK`N~P_B7Uuzia}SB&k+^~ji*~Fr`d)oK*_T&e&pyZq+T}8%oo3ySKs{e zG}+N8C8_tIGi}ExRha>dWz6mspea^#gj{(&Zxtn^x0z^%3X@m~VLG^5zvlke7kXPg zDX-utE0M19Y37HyvSiy+@7KR;@oj$}vGj=|Ow2~B9TDtJ_#Mwe_3wIFQKyvzz*Kqz zOVG^mbtT=+yoz^Q_C)W2iL{Na?w0f zz7|kxXpyP??5g1;N;@1@E7i%aHQfP}nV(-_8l00w#B4IN=A9cX|2ivKGk^S|dSBeb z1YPuWEGoryU@De>ESu@=6)@2MW(I1fo?RtTRHK~(R;Nl`bBr}AoX))Qjl~~%wl7V8 z5$jc#-Q~*3`Q?w>DsGD!)BnAFPwPOkL)jBvRK4*xCLZu3k|6+%ssIWHoPYz z)mt(6V0*bPY!8gPiTAa}Cu5@%R27Ycy=-a|N$0<^htcNmvn^OVk9Xc9=*z$h4wTj% z7E)<)uD5olOlnfhOjYt1c{VYDhSx^U`+53twZgmQdw+0#oQ5?3o{%C z!s@%urQi!ET%a7pTchh(e4J=eTt*m9{7$XrQ~L#Jz+VuZ6j9DNX!(~Zi>fXpEOyZIq^3T3Kc@@<+V$Gb@q zN5(@U%(^HZ`T(yD7y-Xi$gL))Z%81rCi5P4qWG0@xg?Tg-#YA!f;8?N|eHV4fNst?dhx! zVt@a9dE&-oz8>vll5^ACT;MKgMPpPSA}qqB*AjYxXuL)t;foNX?0={ymj2`_vEW^WVxpi0VXJu1#R_wW*^^(477k zbtF>`vwV|Ab@%Z?qRgI!%(NmSX%Kb?>B_pp@W-K%D#CGNNzK~QEGOZ?gZP-CuGE)* zhqNVzwdbvN^P8+bhse67ygAaqhhF71^I-a~td@bRYv|_BB@M6pCiprQ73k;W6 z)3>!TygvoH?_E1nAEHq^EOIn`+JNxBCs!CR5k5 z$FvDeGj9*)LqDzek6a=wLd^AaYo|{P8yZ8}*N}P1$6R9EPjCK=zV_u++v~tGl^I);f z`FhLgnDTAXdLHVnO&E&@*blY=D}qr#%XI z0j(m0L2Ddmmn%Zs|3alBJY*7??HMDVDgw443+B+czUZqLiU0HK?$2yT$1897cOM{j z^dHcyf-b{9P)@D{8PIBB^v&*IY^0{#->G-TbPi7?DBs5g6o)0zoW+W&ApB`US+Xur zyM^b~(v}Wwq$9(i_(5p*GS>KzAV_LaI3luL<++5yvrUz_y*cD3vd)Fy{Cm&s{6g!N z4EJZT<$S;TEp$^+^_yCn zC*!=eZ70InBd}$oVoyN?FvkG_wqM!Ntsn{PCBFRX7wK7<3OZ$z#JO~6T6@8)o@8{8ih(0lh!5>Hfv-ENlxToG>q6%*?i5f^W-i5Tw6~hwd(av2 zi2K3sqr&21#}*e^FD~}cBiQ~vaC}0q$`yIHP4LxNA9d^ys$|Ds<$KMkEshzPV06+e zGSFZ=YW@D^K!6NS)!$XJX->+IB{n}YWl2XrH@T;^>=5%1qtoNSo_nc{E)+e<{4a=g z^9`HesskkOVD*3>>>0?Ef)NpH z^58CcXXcTLy|sf=d#GV_ZdBgp9i+3w(a42hx8bxQ2>Uwd37(Ip5jyU}Dyk|J^XOEf z!{wdEe`I(6BO8mM8z11zKDt3$p6$$=i)mT|S1#@&BdM$9VsPsbv4$~u?-@(}bUdJ5 zqAQgGJ^}Jm2-e;->Fw2U&xO5IF~OrvXFdwS*iG9q&ybWm>Depv%FO1`{KmJ<$_2)> zqx{!27NZKTlM*DmKb;>oe8Lt0OG!i^1-fC}z*&7o#f^Qy;+>nx!rKGxPY()2=X>7t zni&@U6!65kXR5ifde)tjZYO0bBmFrW7Uf#gSeBk(m(pTK%{!;cU!A)k=D5bM{s?Z_ zv&mo0XHnj*p99gE5@B4ln;os}tx;aF*)E$*?ds2s`YD1tRWzR0G7Z@BId)aV4?twK z@z5M+L+QCfkPetD)sla-+r7(Er75IrcWmQS@h`#SlEwj`KZv1WOeU%O<)=bati^Vb zuPN+rY_vox(szH?-HUbH2uw1U8h;Hm-v4sOa#C|kaZnJ7OWr zJb_k!E!&soq5?&Mk%nP=+~E*OmcjJb`U6UAvOiw+Mn|72IHAKk7x|5UmwxSEOOJGf z2Z($RltIT)Zzp3NBx|QcjoywiVN{<)`$_XXx@qCjTQOcF>$xRpEK*N=PPc2=+1u1x zds+KAOY$lQWQVxd!KXA9_<{6zit)qOL@g{b(MkONgX`7p_Z^HfD2K!$LtPsu{1ZCC z8%MFI_}vwPk7)62fgfuIORg!$(^$b>MPb4r<^@+9?Aj-y#BEkrqFZUOB*o6Ny)&8< zKP8^Xf!!wEf}EyaQWWu@(Yq*MA;HWC@!!S)sa(oAn^#H)C~`>@XNCtqRD8ZOZk+j4 z-SZIWiFKANqM&rSOc6=b8OOXH8aqrSgeWVBBm&^95g>%jszEH%J5I@a)O6obcWZhj{s6nCFkeKAz!$wfolWJNYItEC+fC>Wk*l z*`Zxlf3PvqGIA}6_TFn9Td{8rMuyxE$~v~RE}rL=u^;ZaTR(l%Y?nf+ zUr7daPyl2_#aV?>S+D#otsjd!%S%C*67SB5bPmTUil&)T-zCZdSqPt^m`za+7F+f% z->F`EFrV~pzpX>2M?F$HdifzAlU_8VpB$`~-Ja$^5LC49r)$Ewx#7jC=rrZ~Lfib?(}M}3wtRUv>d1}GBKKbrya871sts(rng z{vunY5K0MTIaPqnefC^&S&n*TH1VROR?rD zXtPCW?#t85GwI6NTKm}Co4U@0L6Ts1#SolO|Bj^h%0Cy5M?T>ry)^-=(#2kmx{EU_ zg|Ct3T&&fdt-OH&1fG>c8ZgY2s5-jR7+{1*8)9wqa@%<9{_@+58ZY$Y#9ef8){5xl zr*)rMC(?TH0h-_{+Bu@T4zXwyX_@5+C?k#3rF|FT`%1b`$Tf;i;A)=aic_t1Q9L^g z?EPguN;gISJi4C_HH$r1TtBGj0slS0p7WZACY4UdT#ERSSfD)2LMTTN-Lf&9pjxAS zugja40~}V<-P9DLFAjtGWQc94Kicl%w`~{_QkpLR4OcBi9{WRY!klb=DM^pyY)m2( zt6)4AsnF*HZET@ZJRhL@x6?FOw^|79=6LG3pa}am?|u6ZOlAJn-03EB2Es8Sga6AXfCXZp|Otzk5#53A^Ow zpqtxuu|I1{Zf3>8+Lms&Oju!2-}gSL@A^DVFf}Q%Ea^r1z<+(6Pupv=ond2N6mXQo zUujE;4|>SM1d4U$`ZY4`;?YK4ada~?3#~w>Fgj*7kaMbO6DXTF#0!PerAW`W;gnG3 z{@>=lb)EhOu}>zL*QBO(Ue4dwEmw7Ciu*;Cm9&Zxn{b5ass#@F2=(KPlBCCi{XH!l z`cQ;3Y{=fac9;b#jxjQQLtu#=JJC&D+>oL4fCC-#xeSx3;-s#30xs{#sSlvh8m5s3 z^t}nFh4LX4BOD-1`j3opE{EWXE|2>CW`it+98^Kx$GMQnmCPRt!EW0uL=SM2$cxOq9sYfarr%imIh8s>>7<@d;+g!hksc5 zjp!>}^d!uFwY2|?5VlR1gEAz%)t&oL@w%DWv8TkK0QVP0JIqFN7WK`~RdO;b4e8beootuR)5J7Vp zF1>Yn8e&O9vf>vvQ-l0FA9tRX(u8&DXYmFnHcg*`>_ID8S%8Wn#0R+V^^92tGb9qS zg%3?$%YYyaNAE8aY41bn3DgW$$z0)reHTizf$^6dN-8_&3Qt?+P|L+9<<*LC?Cwfv zB|^5$;6gi0_yFvNHW2iIY7=j@DyMCx9ozpojfvY3>>)j>#nE3vWb>Xt(&tl!?cz88 z-rqBiAZkLRIKTJ4?(0NV+jqgq0ax#7Z6@yKeJBl1Kf09-m!87cH|}~@*~M+#tGWGN zzCsMDMbpGRiSOwF(xUXDvQTiAO{EKPbN)}g5aWu5$G&K3to>T7VeKCQXp5Ei@>3>F zul+m`_e-`pgE@u{}!^OYG6kKz~PtI8s7<-_+oVQTcmkPI* zMAOc?1t(D`gP^K6=oUpgQ-|IihMg;$pK%xsrnom|7n5bns@ul_SN+EVG-f1t>T$c1 z$0Ao*a^*MK^(f8`ZtAg`_4pP{m}6a||3c9%^VwaxbXd{{s{_f=lN*f5C=QTylh$Kq>l`{H2DXGTP;TOgte~!8~2_ zc$$v8YJv~{(oE?U@BLnr;iDh8V5i=v!PRwu7!<`Ub~*0+xdes0Xc7$KYO6*3_;h0W z;(^KI6K|zsFuP6Kn}umDhV&5b^y!M?U@e+zQtAZ2`Fd76-U@PXdqLBl67!7q+@6`o z{Wj=e(jX)^AVZo^jJCPttXr<^`3t{G^e4DtT(A44cc!f;N`KQ-bQUp8UNBKr-a5Gc zn5lACS4xcI6zUi+%O6<0((VV7IRd4m*QKUY)_oj%zwvIR z)7(aUkoZH6`4rQnB`J4u$@b@0EB-8(jb6F(F9h^vXGzLlTX}_y zbvAluN=84_p3raSW<4-Bk$5_w%C)hwcl!pJTbF;0{hjw}S>pZMlRndWn;}zyGC0M9 z%^t&6>d}OwjW^HIVv`r*#{t@n2S5_C|l6 z33)o1Q?ttsT7llKhxWm1y7^sBUzU z{eDVj$Y2eA$ilC#CcL$ppKKf1^f_I-CS@nCgap);ZN{zCN|$B?*S2K_Bt(7{*EE(n9&mBDe%q+Il>hD%8e zzo~`@F}H}eHnb2dL|MEd5`cldltj84jzZ^@hR0#7S@s<5WL*MRG9 zG{hem)^gUOz6DbIiFAPG#X-zlBgV-7Z4e_-j_UWu4c5P!T7TOV@5Zuswl+wtm+@7X zWay$63GDa8JFH$5-$Jzm^d#88KJQg+tALSX@az?n+A^8n@H0okNs&TQ@)LT8m^5wLj$0ojUdKLMd&Q(&-6Y= ze@@`DtKahcCA-d~>W+)h@(b_EhyRgzmAN*jhkV?6aBN{~@@vlJC`tp60^HWd+e)iI z&X-T6QJh;BKt`0GvzL)@SwXr<^pnN6*ncb4M^a=)G_jB!(a9~$qXuB6$rs*XkS#To zHi1J$fhxoH25}xnt`7+)G*uE+eRg2nLx=D=i(;DLCDSI!NHaiCIG|99P!cluuGftz z7UVbg_OEEjs3wwKl_@eVy;ZzPnw|?qTGNV!b-@+*VO3xv$AFJ zq@kqnw#k^1@oFGe7|7O*Be7`XzY-k%)<`4&kyS1=3uV8y#c{T$PvUq|*=*A$!dMz z*k8Q<_CZ>Dcb-0vf4ta>Cy42f#Lh@pTUU+Oa&2si{cl*?GtPJ8`%_Q%1BKAOIT4K4 z^lfY2lbw*W8N!o5_!hb0Q@Kj#A=LB5B9cmIAPfiY&b&Q@93jy;Kn1V>4}d)I$+Wg3 zhPQI^*&|xs@hUG-vqX^d=#MgS-$7foUMpAEb3Zx1CSc!4%MZ(9kRPvUupZmRPMja& z4GEdply*3BDr}XS&9_~fg4^G0>W~_MF;!36cnOG!36Tf)3~=|1wU`+^*8ja~moB}t zQd+_glaKgc3+Y=RY85^k*3QYID7h2YfgSk%9?M?@?TJRBWJLXyjR|ij)e*8+a6KPyRyG> zfByiZH^+6fZK*jh6#vSilLy*|SU*$Tm^d%!LaES5;Qxc)r(~ zsP72lKg)G_vWGM!-g!oLW3QLKm7z3DLZz|la)`}YRwDOMh?7X(jO8TKjbmIA3rq?2 z-4;w^$fv(!bmg|JeeLvj)ZWhnJN>f6!5hZg!Uk~+1$tV#?%&}9_~C0Lz>+{o;&ZxF z3u6Rp)n`fE>OShGRG6&J%+5ciZ>eo@R!0alJ^xlfmCu6(51j#pK^3kbBAZaKsTO3Q zh6J?BHTy=2+0e5)Zfw!2%(KzgMhs#Vj9-+f^XC`->jI+r>aco1^w?A#2W1WN2}U!{ z+J&yzGB2t7&d}}Gaue=Kd(NkQ6UmK$#=Y*6(xLU?WPb7?KE{=5TQZh$FGcZ5oTj)i zM)g>O>ueA9(9Af-UY$l=3g(v~Mpfmgf|XClmsM6{Q}!iRAtGTQ8mp$U_32M0V+ZD* z<_lmE{3jVP4H+TXFaz_y8J1tinyMnll2|{C;%6Fb*4gA0mg2@eo`~G`4SFF64`&(N zTb?^oq0jG{{39EP-%}6m=+p_90R=oN_m4c?`RJ%M)>=sUEXd1vbp6aL=sz-Xk&v{C z$P-sK$22Hh5?+pI>D;HUEtNqgJZoP`YN&h7`e?-^rblxcwN1jurDCUVGQ(6QzaoVEha8jUNX5BLY2BYFZS8Hmqmuc zi#FoJ^&ZwKGin4N(yWt_qAmn7 z(koL}BSPc_^V`Oo3$$`cp=ce8DchYpjbDAqr8k-vv>5VbgnccRVI}tFvZnp#rY(_d@T$&4vzVKRl8!Sj} zO8b8GR!)`(W2pLgqZ2+E1qkX=6GLz1%{jJPq;YuoTuKv6yBU4JREpF@gK>Ga;(uFw zSdqwVMNZr^%C(&68E_S%|D%fJm=>$Ny~M80AQs8xgj+ve4B9HH8>#1`k4XUW@AGoCN8O z6Qc!zF)&M|?&2_VHrmFt$#hp)j; z{?NYds1D2>IW7IUZK#gF(wS!Q;_scq6Djv~`*oYglR2rE%?2IurG+}aZ@8aPHqn%t;ZJ!$6ZY7}ENV{R4yt_^^R0J;2-+Z>_3W_gPe4lr; zUdOrQqOFT|MdfjhkCl)M*8Q+F3i6ld9oO65uwCuoJo=<#k|gy^gu8pTZ1Bb7Efjt*qydo*7Rlvtji%xW-!3Vr(sENchs=DhBuD)zK#UgdfJ#&iDoj9ZrBOffUuPdO%sP24gLnneCaCgPE7 zOZy88IPkY-DV$svi(v;UoJAKRd-I?PBGet?C&;R1bGx+rjv)xFKBS%evygqvKZJis zf>yhD0%(=rSi1WDVo)AY2xyvaXs-A5po_YxAF+{dcLxdf#Xf(qj^pUaGzF(#ZEi9W z8MM)e8iq#BZzN9Qi!}ULfA__o+Nv@02lL9cwGMQtTtP*$_bqX8>K80#Gm(O+9+D}p zikphp^Bgd|3keo5>=r(5rmiE#`SMYq^!VvLSf!dX8XpO9w4t&Tluy-F7I%vc+Fp8} zt_dkz^Q-SJj7ZcjRk-derN+~UzP|RYes@{^(jY~8PJS34RvoHMp?VR$Wc8~eu=Cul zW@f?W=q1^GxcXLpnTf>jwUR|Yr~|2{?4>_Ds)<8o&1sZK_P zh&`qi-a8qVDchY6tHo>9Uh-UIg)-2@P|95ixX*20lXAVU5d=LlOl&! z)1OY9)mF@3a{u{$ESVA5G-Kl}F`tB94UfLcnd=c2WM`w({jTTUT9KU&yvX3G(@aym z56-R-BN8sV94=ymt2h)!F6tj_e8d}7UiMN*AI4_DO`6-IpH4?x)>KA|dAYfHq^a%O zlr_TNziZ1~sCK^jN6CGL`X_7!fuacfc=GnZ`on5e$c4*( zp=kDe@zzrFCey7(hb1ZR?TcKL2tq4HO+6?UK&=5PvcUHQM%*e!q>GcagL9_Y_Si@T zueK^?wVu~;Ui3W^L3|V|J2{!)k=)covg)>SoX%Dk^gTS|4hpH5G25|t*fi#x@rI`> z??+y%k*mmOF7NTSZtYtQtHLH3J>(`v=Wu1+Cj=zX)q(U_pL$-Otv;=l9Iq^ei5uYOah zb!?~2JojfyND*j>6XL|`bIzg$fcq3G40)xfsqvn{JAT-j{$GObRxp_;w@bWV4+8Rx z$1^LXsyB%yl-QTrUuR-}qOYUB-Qo&mSCOBZ*dBhc%-T#Oy=fl;*b z5(N5zPUU?GQ`SXVz;|lAXlz;|){C6wysNMJc=GE%wqPAur=JVFWmCJ>s=Y&Zb$qn# zV!t?EeEROEYYj&y6eduAJXT}lK+?7eoj9pocO>Jx+UdBC_@y$j%v^rmA}kg8%K`oY3P0H7I6HUS?`l`7(ZvH?5V_VNx9dPgyrMP zE_vlAh=r_a#YBQB+LdO3_&Tf`PK9`Jeli~<4sjHzu>A3cu3g_ILGt#)lHZ^8mBm$t z$R3?D&9>=!?#P)VfQN|%A*h<^`S$5m5rzu^o&KK;!Pf)TN*&YiNu@!x4zA@Do>A$N zYIy;<+*Ne7Ru4CkNVZRHI6r%SqS z)Aj$xCz=I1B-?vp3QR0j+|x=!Jrj1yYy&;6fDwkR>vu4d zyavFR66x>*sOQdxorY5q%MK1#YU)F5 zUfM+1%&b+@BrL2d!cC5z%WKOfJ^fVfZh6(BUVqoZdQ)B0VU6eye&EdR!S!>B>#{tfO0$Sw+eHpY`C=*RtTPT;^Y?~5ukbC>5BLN0H1V0S9N%w`z4654Wx){$Ni)G&*t zD+ZaXoWb$CCJ|%JN(FNRpAHVD7F_PtcXO+<4y_1YppdF|W1?Iz8M>-*=tl z(DXm`GfQu>9|k@;V^G+IRu~$5gAloDR5_M)XCt!jwA`k~%lEgzbuL=bq*y$cfaHlD zm_4iKLB3kI(9U=j3J%-#Sp1hzYN8Vqe?E&9#3#V0d{b0MiJG}xh?!Jxr( zuXMahx}^7i7k_B8k&iX+*=fsbG2|BV<|R!h9_|F0;@y+tmg5M#-I?Wqz-8>4?aqZ^ z*o!MM-f2%5>vk4r?RcRV(!QSY&wNh5)WEBRm-pjFHl?pu+`jv>>f(Jd)F!tjalFyg z!B4Zux?!$LC6zP;{3MlMiX23WQBT;sDW*G>DiwW2FH~`|Ots7;l&jxsEt&0BN45r! zf5?Q!SzNINnYcrHe6BvZtp;T}A&w4$rm=SY=z=6{N{7FFn@?q8J3}LTGnCm`cxBM# zlfD>DOfS#4>*ENS-NdwwqD_IA;eg#8w_f8J9GD=G(&MUD#nnh5Rdz#<5NC<;%*?B@%y z_|mf1&R#{lt)@ce(a&GbkADhJe?!)FhqC^@edKokrbNVgu+wfq+AqxZ@hD2a5^E|I z>80A0oLe?D`t)x^J~z}{a0?yUIRz!2$oHzy@bvSu`+RSvMz2xu>;?R~Ht;30XT;x7 zUzTngLDS6Ne(!CN_2n(?Px5*g-xuBD&-}SrAF?Sc{oQ0Q?Z9xie0N?rXj_KsZ3$l9 z3f(?s_KZ*e{@yN}a_<$ld&A28(|s^+K6jbFfs&@Fp(LK-zF`W@Tcfzg%TG6BB`Z5V zi;a~F38}dSu$lm(E--*vdyYjbiu-cmjYo;vIrq||_+1V9dsBvDz6Q!F#Y$aESk1UF z^a8+CJ!%qXGw2GFO#Y)@4r`1EfzLI(nc7d3lU$LTpo^Jj&Bq?(zsROqkyah(yl-WB$BTcj1Yp<)gcM zsl!}1skNT#pAOj{j#`wGt`$~g>o|-n^q|j(4D+OW@z|ULLDu2utn0X|GN<}5i*c*E z1hX%n&2yB8K=X91mETglt^x;azZUZ3fFl)p+CW$@*ZqhU6n`rS7-Yyin)v-b2Xoox zKN0r%;4gp1{nZ&aO$};=$2x&0qRA%B|B>DDKMaGd?1BkAhh1_G#OIgq0#p@9TGc#Dr_Q!S> zv?r%N17lS!iIMmkSb12_vD=F1|agJq-(RVK?WRj1cNNdm7 zk)W3*%8}sQuM3%YbN^S0(-Y#oKGcpKcE>?HXzQ!Tgv~$R42AB>Sliw$u$NYLh#GW|HIK)hc)@W zZ5%~JL_h?jL8V)zTSZzxT3SR}x<;!=mvl49fy5+6!)TUico8~mov0`n^}#w zx?yC?w8rS`RQD7Q79ekdu`~9bD^B)Pp84nN-{oquuVak7i+11~D2$DWCO7wjYC2!R>_Xk#><)yDjl6U`0gZFx^drk#eug$)We! zcJ7Hldcw;y^G#;-(rxv_cNp8jJ>1M$e~ZN4>vx=)PsCtm3$?pq|s-=`By))>gpuI6rA%FQi4UasRoSsgw_v-kK3 z6)fZ5{+SkkK2I3>M|aL#=ruLeKxs@MiP=oI4J#4wvbZpXcOI7f+yX_NdU_7Dwa;AE zjTo=HB?81DtvUoRiKPjC0EIj^TV=Eq&d+%;Jsw>gL2-{3UZRubVx=m(+@P9;^Abm@$;jg{Z9&{j*vZkWfyD4LI zqMl^xaE#llZPaV?Hks5Cu|3<&RCwRVGOYpPNH^`IO{>7hJrC5M4|~(8bq_QWTBW_@ zTLI<60|s>hvx%IwBkUvO1dvVS5=?t27rlcA`2}y^16{RXV}pDz3rB`2D`~|E7GPuk z<9>PxkxAU7yRLOmxVOI|+B5|;OF!b@V0W~5yiFEfXHmOII3dwE^Lpyc8*Lbx*D1-4cZKo1Qwl0ZYly!UxNTXXfbC;N}) zvVE4e+g+OTWf$&5hK6g2$U0vh`G3e=d;wheA60_W&Tt7SeQfkGgcY?^0a5L*$Dc+o zBd(;q2Xp!rq$j=MXS-Ax{$(l&Dmu%FT#IPa&8o!i_f~EH zGX$KXO4<4VMe4b2LRM?~mI?m=2t_!3y^}zKk&KGYOv@fuc6RpVA-?fhh+|v6Rn2Js zuC%;5;-dyk*4mJWX zmx{yZ_ zHRKB0^F4YpJOp|#x|A;kHPZh9z@^-|{4*JX`d@}qE>f_Pg%0TmSW>1WYgykWVX4^ITb=mk;U{L)fgLWll}aGk&B zCwoEi4-6T)w2N~lFJk^bFZh~qHi!`gcvIG`c8`BoV8$p!mM-tQJEl)9W0NPc~ zfd{YH(U{V+t?h7jOtGqRl2iU@^^^L|FC0T<+-v@286(hr_wu+OE^{Yh?Gp9#gwP=E z?4)pn6{RCLOVZYB@o{$Z_TV9H?Z0E9#mm*lC(_KZWmOPskF|X=B#24cT6Ci2i`I;H#|6;K81b{AqF}|Kw`3&8rHhdY~BI0XRHkM zp*_w0V5$uWyPovLrV3CQj%>mQ(yjH)kZlA7zu z_N4fVD2iXP}|c&HUvwD)rNvO`}Bwh`TM6%#a`#X__fK=(0lw!ZN9 zl%9@?UfEVPT&W$a37HQWhu1Ym5hR7PT!CU8<)-*Uj)yFIdZ6@)>a1%RnWS~k>(7<< z{v)z*m+q?k-DLn}C@J;{X;&OS;%Z3=syc*TvANv9iu>UXVMwE}$R{qzn(f2j;$``G z?`|@o!E&Y?p3qi&LJ?r^;Ui!bEu&pg1oC@5W!pGi@bg8Czv+YLMgm(}f4j!WN_53w zen8lScG#Ai8^=Y(1r;`Y-R&+mZ?#vko+Kg3#=j)h|0&jwc2(x^vlSNmDIkC5)Fh4F zAw{=Ur+Mw;{=X8vSr2&Le?&^C)x{&VHV&Lu59U5qbPXt3bN-Cg4)+1}uV^Zpue5^WJZ1!XXD@p*5Qp?be9x+-~prnr9VX$NYx)z+vYjVb)e;Yv910J7EPu>^jIRaFTNIbEo zB^n;tW{;lh2_XGW5ZEyd@6Vre@hZvbar0+M{6qA#g<6(9L(X;J-Koh`?_`C5<%nL9 zQECaF^1{J&2)zQZ6MY9^15v8q+TPyHLo(wQ2RY(YNk&5Le*`rRtKn}A?q(0LYowwH z_=7}xdc&5LJq73tULN-bn?kt%dQDAE2Pr~iwQ7N;f{1jLfbu$i3fxw&l|z!NIMQJeP8z?k1r6XMJcJbsu$SOG}jVhtOKB)7V|2;$eY zqEo8?iYV!de6CTCr)vW7Lxay7wVPC=Nr;X}(nyG$7#EqOH*5i}Un-S7mUt|zt}ih1S9kuYgMw(c(%FL&`ulPn4XbPw5gu33=nCYa#o-=5+ltH#@A-^-W5X z@+nj(&LhU>&rAo8BLL=#4)og^KABMyF%y7Xn&UDqjIdMaqq#Nv?`^~w=6-}xA_};& zblD5%1bW*feYK$#WbB_6j)}ZKkfLlV&ZDRQ-9@xJ*MM`nUS1Lv+N~I|N{eUrFA6e1 z-;D-P)`Lv}x9Z*Z%Ta&zzvnyEC><43n``It%L*;DGo7PPx8e|I_B2TFJSK#J^Ce+a zkyYUtUc`$*(HcD-!?yiSh%lR1Ms|of_zl)IpX|}gPgcLq{~>Cwyegv=JbtW_7)9U= z?RpbLTrkw}M3F*)e^gtGUAB%=B7hS*IUb&&H^IOK2+_t<&mF^3{X3X}MaV^(a(44fsdB{@$0)qja# z^det?$|kz7iZKKXzRL5qA31&#a3vpdsQAq7b`UYz;xIiMjMj!?d5vQ#y<-;(Xam^t z)@9uo93-|Kzewbi-4qQmFd(X^*=E4CdU|;dCRJ|EA-oIg&idIuCev`oK&)w1MIX)| zFPJ%iA-@Ph)AupoOQoM7Fgbf-t&BOO2B(fgCTs)(Il8G}QlEb76IhL1Cuf4M6??}@ z>G^w0H%S@&Ljhr#;~oK_ShtmjG83Xf!2t^pbdhe3XLTMXr8{M3Li!V2Fd&sXSV5Ns?Hq}jit zLU`>@kD;YS(E%WX!&pnul_`MFW<#7XBn-PJpWl;G*M`|s>25w}WG6uwLr5!hJ_&k=E)Mu2v)G>53ikG7=Qg?B^WufO%86%F zzp@tJ5Zz(0d@=Bt+K$uND$x_=49h@j!y20;n!anof-ol|oUu;9RecuQPM3>Vy~R}w z5z2i!B-MG=7ck#9`bLXIv_eXEN;NbK$xdN2bx4rxax675GhI}|8Shb>nVR)-#PCLB zJTXvyf4hvB=+-wxhk!)MJ=Dgv6Z}N~@Z>rrpE4(9cKAd}(>Ia8xJ%ChUO4XV-7XkN zkS3%Js9>f7n?l|lLj1UH{1m)yDlMiiim-`k`|Isy(uaf$Aznp~4_uOuKVf~J`k)&v z8U#HND|zunJW*(qwetifh4my~naT1^PO_2VsF5iP&YA5#yCm4K1X~1;L0i5=o ze*1*k;R7(=Zhl&1gF54>7*L8S2;z8stQT)==Zb8{pLnuNGynY0%rj~fn;rU6oc65y zjpWh5ImUKk_e3<0UtEDR0N%sC2sf+AXO&&23SaCss*-XPt~w{P&ZN9`v+^GiA0gAK z$_Kc)7KwX-sef!+wfKfa?keJGM1lKimrnHcKo6n4D~kUg;qg+SK)_T%)lrdn?onH@Bybp1j_Eg`p^( z>!5Xp#rSimQfZTlQ^E|Ycvk^~!72^0jrIjIpzD?meAngJ zrzr0FDe**dCDgpDtDV_<#OJ-)IY08P=e9Vxg3mnGdhQHty|YQ>Zz?MmKH*H zY6@*ob+eYft`fBf&8${CePX@&x0(2uXI%-R@}gbRe#7?A zBY|wXzNj>@v3loRhi+$;x{^Q&dU?IBiH?jC+g}V+pE)ygJ80K?xfV`YX^OBOcu>kQ z^{lCEx>xn#;$=*#dzuIxs6A-zieR5<4qDZ$1w6u>d8h05H=-lw#leYaO zVw(-Su@@FlYL$}d`jC%*VCCJrrLEA6@nc!dt+^oH*$zeQ>vAUridnZd-Hlm$snf3@JF8u`&iVFOWyaxCj~!}Mf=>1h6R+CN-ty_P>ve>?kTZ&NgS{j z!qGZ?O)&7oVKi=S_3-{hwt@cQ03?VD5E4IMHVpMK2l;O8_Rb@-_Dh04&P`;9E9n6#G25 z_i~kr6Jr$nI1vS=+!YNj6rl%^>uP@oAJWMw4}8A!$qeLY*?*gJ8PZFkEsLYTv1pbTXg zlh9|2>@~Q-~<~4!on;He?-Huyx zFe)ldg+@0H3ckYUOJ#YIG_>DPJ;ExR=1D8fUI7dNAihy~p<2n#b%E*Lvf21^fc*kj zv7_}wXdES0VG)gxrBM&g*=x)E2kwiaE+Zx^-x9pC(Y0!td&Z}B()%6H1cuKQw6Tpi ztB_%<+rm@tu;Z9IRrFDTpnw-!MwwWZC*}n|i|Tz@7cR9i#UFDu!$KM7m-$*OTmgIN z_=$f(cd?u3)r&|pEjw+OhYP1R_vff1F6!vDQ2ItD zJ>4{Jcm-R62}8pMD!;;O1O6Ro8ybTjVTn7ttztS9uy)T`1*@TUM_+R@9JB+%hLh3vKe22jR zIb1Icg)J*X39Dt+LTQJUC2vmEpM5^*@p?YCG*@CcTfk=eyd!qF8M%or((}BiB~*_G z-J~%0%Ge)NtTE!<3*`-VP9%zjj%?D1#VUI!E4ykdA?}}~D~;=OpNzG!P`%NME5MW#UlmM@}1+w3*rZI$exI*_2!GtdzgGgMnHJ(Yr0vD zf|ascY76LvaaPkucrqM|;vp+$z3<`DzQnaT+mji)=BabgL`nV%@ASi=FxNSuzp|08 z{51xsX$Tio>x+RGnf0GPF*96tKyXXRYMtA+>JW1L1N3-ztCro-uAE|#>Zc69nmg(4 zB^`F})$VNP>&&)Y^$YEnugz5Or`gIw%XLuDgJa})LjIE}SZEa6llCSHx`q1K4~JF0 zh`Kc4U5@S}#uz@i^-YF8$NRM<%u1SBxLPa<48==N;H9vtNRe<;gBG42-dCSuj2~%k zt0#}#z12@-Db;zq(1%NRxyDrfk!7UXg?=q9H3=fbWr=zhtdZcrW7oS$*D8QO$oE%% ziWGjw;rW(KP7>y@{7ZhmvEgUQhVDBF^$6RzpA3m5oJW*gR5aK~b#!%DVDj4 zhG4wD1Xme?Bw5GlZn6~}biRku0a1Od_Q+h|5>vg1Qv7k|urZ^+HCT+e#}nhAo4#bu zan;%@99xrelt3v^M-!39%h!0+Sl9vgpyh9#SPh;l0RCtF_Q5!s{vu`SESP8AXL*D4 zUACiGv|y0NwO54ucb%3_jpxxlcZo68AOr8^DY4}br=w;BG9R4m-eXfA$k%G&dS^`v zWszBOGjcOnwvUh7i{do$?;0nDkte^e`&@jMKcvwX=j;S?RVsMzm$Q0Ow1r26E{LZ% zs%&yDDtMtKdlC`*-7*6|#6syop`FGAMsVk)&4A2GPWkd{KfwM*GwM@aLz2eQ;vas- zjnD3{zkEDoP4m#LP_8g*gn+YB9rVLhdFy67Sg<*rlOQXdiOTcL;YCxH=oNetD1NsWs)P#Ctj3g$RyY~gc>5>iPtB|= zX1XPI&u<=hi1DIOY05SK2;+)(zJ%Nf0_axST?Ot${m6HYBYyFu$)8W{{I%bUl1O_> zNv$_(^tb)~Bp{Os_&>d!p=uk zNEX?dFU9-!zhxA}(pb;kAg!#05`U_52RY*O@c}paiuMMr(;+gT{AJs~W>*(E=`SeF z{fVs?ca)llB5@~4>>(a82XT8^A;-r%9ibccN~HWy8x&P6xDk99j0;$0kAM^5Ux@s` zGmKa#$V#(vq;qxl*6|uOcMcq_le1SJ!3^BrL;TyV{I1#B)ses_%({9~v!SX;m z*%=9cL-?@6>q0VsB7|W<+@u=G%obNUiYG3(nQ%VjbiL!qLHT;{sqqtIHvY=8Em|bo zYVasmbd@0I%8I7VK@z61%apXwLPw_sD|gYDK4BuJ@T?(%6po>}`=#p+HL+Nd3Qg9g zZM+%zz#WVrt7D_%&M`#oy0HYGUMfPPr61cczD2Nzl5?)We+1l8mKRyIaXr_rCEHim z!QmG-ZyY$2a)$GFLq5=czZJ8}Kz!pk>WzHfWJ(M8w;hXL1}}$%di2Hgq4*7NW;1}J z$r>%RgAPQ~wff*Zs!bi4Sih6rBEE!3PlP!3ua7l;$SP&i_&!zhs<)af=bzo}& zd|$b?s=VyPDKrgY0o~T$mAkpgLW}c*p47FiVZzo^mAh)Ao~Zqycn2A$i@L*-d`N6m z5!t%k)?r~|&Ot~4h`A@au&ZQOV(chA3DL#e;v)F)+3i<5?$Xel3faD9|GdoUpG0E$Gsi4J;XA+9^B|jUTZ;T^1;QqI^HE+?_M-|<>a3gS)+gHo?8A*D>~Eo* zm?NTh zG9j)N6S~#_#<&h^PWTKn^VI&CPR7FeYSLfx-!(Ke|ItOc*l1sf_Rv>>*Q6u|WJpP? zrd}}<$T@K0I>4kj5)u)_Q;gR_gCkT@erx;W8TYnSC|w9R7QB*BeN>-8iS*dy&rQtP z>=YljEM_r0!Y3VkMwe^XWeC)%4uVNTSOLx%Zd2!6wafOP4cmiS&5@MZY z*23IMi>@+m-6JtYy|d@Bm#Qpcs?*b1*71h91hjXkwoA=b6i#p)Bre!o+yL+AH(npD z7<~?S)it72;tR3*J(di!uzEHgbV*u&I@{2!bBZHL+l!|^)IQlVTW#`q9D^lU!+It+ zJ&ima9SFwLI|cksAwxzk0pNTqSm+@M&NXD}^1_k_i^HVoV_5Q^z+x_XbQU&tTm15F zk2WyB?Ny_FL3GITEjeJ$m1(-TT+fs>sVE|jRi$zQ_Y@})B#&XozXTtATPMcIS~b?Q z(N0yJi%{;)^?h-JM7^$cOd~pdrOv8R!*^*$6gTtcy-&@HWUZ>KlgwSIp+|{`6rE#P zAjO?uB~PLRXdLWdIC@+-#G$cggKg)HD^JZ|HmrkFS?9+?(xe5OMTbHhiv-Q3PX-mn zw%5NzYSVj4=Fd%5j&@7ALx3nBt6wXUN1*f+O-)96_x(o6M=M%^kHIdDcPehrk4yV9 zuz#&wOz{)b5O`ZX_& z{k71fZEAth)i+kP!$Yf_Muv8sX4~Mt*YnomL}aI^4r+UV#=_D`r;|J2>SuW+g8|ZWJohIaFOeU6VsP} z%93f+cl99lBhu{8Exi!G!qXxQG8I_R7F_x5Vlfte-&sx9p zbw5w$`D;ueiBf4&jHf|+f3w%cRuvjg&v6onQX z%VZo{Mkz|N@9F5vRlcYJV)yb&<$n5-_ccwL`WwX)@@li#^sje z0hh6Kz^^4E0^f+^C>+hUNRTE}#Ki1@Wu2_5Fi)=)Bl{`d-I_Zc!FyU>v`O(;sYFI8 z9-d9P(DO1+O>btl85~DwmjZ#8ux!aN$AjjHZV&mS#E~jbEZoP+$Kd zykx6Hl>?zG=1!SVOljQmM0v3F4QMWnV}Vxm9mbn7yomg0dNYm#8)(v$y|5xs#U}mK zQ6f!nPw)B5Tf6Xr>NL}0i)qBUDu2JVQ_%Zq{Phi>>3_CLV6S73qv%WQhSPzJW)XkY z%OaXz3e_F+n+3Ge>8Ii5`vS2{Y1=wE*~cx?FX(v3oWwRyfCQT{P2@P9mh@s9E4>Nr z2}QIHWE;E(C$FsbHr^Es@c+{H;xOjWXJ72telJDty2;_D3tw4rx$ zOtCK2c-;xS?){rh3{ON=i7(s9+Zyg@iMW7;sA+RU0_x>!TZfXr5mcl zeO*}BL%UpnNTnrE_V% z2xY<0Z!@R?;E0m8nK`7Bou<JaXk;Iy%Y>w4`i=zVYe4?g6}k8C8f z(ta}D9qoNoNx9i+{&B0tz|lafoO{)-+HS=wQbVG}67X(B!I>4;G8IVKAALCrwGr|O za$K`;TIQHOIut(?F`BMdHTmZFL^+>3llJN>u^)-L^xZ-Rzxx$wj@y22ZM%>xb$#cD z&7a%#Lc?ePP58SucDSp9uQ9RbKO#0fSA_**%E7g7Yw@bX=?Hz<6)K7KVtaEH(f&nV zqkhqK>;g~8xMkqn=hdw)JnL}69uH_Jp$N;+$E(h8Dg~B>eN!bD2j(8a)4H~g#Xg7x zhLpKm0n{JX`9ASaZ^gMLED76(g^QDEjE{;11L$r~_G)CPJ%IoESxnm1bWGs|Y)B5{ zdu=~Arg8KX@ohYpcb+RL;e~Q+dKhvDns4MyeW|H<{p_!SM?U30XM?JyBC&}9(AdzS znAzZ=wTbQH#<8?v(gchCOB3}x6L5J<%eBh=P>F}jx4)!90Ldi?jrVP3)rcO zRTSJ7eh-_7Tml-gBJ|jzzBxEL2{BM-K3DAgDozD0^ohE&nf-v~o36fK34aA*aJ(9N zX3AuJir3=eiu~bNp%@`^y}V4|DIHz|-vTKN;Mh9}OjGqy91IC_?`jh0`axGV#ES7g z`UcN2^?H_(8Ahcdi~?iYI-`wO`Ht(Wk3po!j+X1jgdi=*&hIa5PY_iHz6a`Q4AvH5 zY_w;0vimz+!g>s}z0^M(_Iw86ZSNM*2j=^g6Q z>Hmn-T3+yIdlLIpn{3xrl`^G5PHJ(>Nqf4;sDD<6J~qt$`7U}o!18jT%ir~?USkbf-vh}FyD>fDVe5>J}TrJ){F*AFp)FK?>Z}WoU zO4<|J{9!iTCi?eeCo*|1#F*!@j-x9Z(wRu+?Drz*CDy)t|H~};-jSFP>9FcEt|hI} z!MKmP4F?Tg`Cf(*73s)|(3JwFHe6YHHWllP33a&PNBWqF19S9kxc_%s{-fJ4i_!~Rl0q!)vH@I9<; zPrK;EyyDpJGaD&Zd|iaa`8p>^1zP}h`jEe(_{XtPRjVPzTlRbAVMF@BD{}Ase3;k? zB27U1Lw0RCf@cU$bt=(oZ{UDj`%`bjdhVQcyqsqT27Ix-x|5at3h;6@^+|cd+JE@c zI%-*(_m?Z2Kyn>Fp!WbDEh+n)Erv{~u_EU=omLxI1Nv<`_)ES+G^yq{_08yK_EM;p z8G{PP`BNUovFu~NE0&C2_UKTuHqNS2P{u%ja>-wyGx*lI&p(RuEJl7ZbRCxWWt>=5 z-N5*;6_>R5eXvgMEtE-n8S%eGkOv9*mmU(_p7FioAvVJ#S<_^4at}4=y&sguoT=`u zMBO++WqIBuH(O%*FaEw>+Hr+>1xB9zfM2Y96y@XdNA2u)?3NAK-n(AFG1P}Gsi_ZVcPGI`+q;)Y1uue2V z>V*AAM1`mF6SSm7YiC&t`X!6xxqZ&J?t1e0=l4Twie>l%I7#Fz?F?>FzprnbG5-bO zq$0$4>S(^zufVlcHX<}&d;91W5=8Tc{ z_JoJ@pn+A6e{-BQnE`w)$(l1oHMXE7^TKld)Os`SPaps}{7MyDzl#^TTZ4*>*kI@B zF%_FL8@t!}GdxxfaJi%FF_!6;f@z$FE^9&IHZ3eK;^NFJhQxr>NWiNbNZID;4UK`b z!5G^_sUj8aqw0C9#fuZhaD6LJqu^OJW0r`i5%;DC{_b7_0jK;ZkMmCe1q1ZE{v#5| z!^%C@jM%zpN(ffywep!+geD!b!x|C+Ut-;Cm(YP#m~b?%O4WxQ%g3tUdb`1Oo~bl0XKu&SXI^r1g7KD4-n0l!6UqOGiYtP~ld41R zf|zw*tbhtvPJ3zM2Szb$74kcztiG~WHt1IZ2Z}ZBFJ}t@_JGC>y@-~R>@`U?DjC-D z{h^2V!)v$ptUN%&!-F^+5R@s7HY|;o3z}+=>7;VM-g_kzlD42k6Ti;QxNI=87lmk% za3A@XnEH0V0h!M)mxCjesFl-ft(%0YhG|$HpviV9f(B^pyq{-DJbNE)iZQy{)gU?f8hb zVpyAgFx8^XR7sFl{m4XP`f$R%k1wXFuZ)h0b)jM|<-ob67AWmi<0cgOhV9DXRZVECxr_-sfQOL@BH zcCd+pGVYq%^q}0L>NJr;kC)yUnNdjGRh_jRyR~$D5h#fHIY(Smk(&19tsX)Ke;o>5 z;vH4oKazVS@`FvRsa`}O%IGoUe?$i33I4dEn1iiE4=?pr8U&tZj@ygp!f?b&LO>B+HnPn(;0e3zZq4M(xM2h$mhYK?e_e0o*o1W)#O!xUMt?HKJ@aDg$+Vyh zc&PGXs)p9pp_w)Q;vQeV7^YfX| zslRA0Dgy0ngpP;KQyK?zRpswUoivf8^kzq)?hR}8)= zM~n2_DD^5ZVSL(4t1d>F`ZW{l)Mni)ccqkt$fMJB+DM@R*I(Fd!U_oE(#7kg)hm&C zRuoYgaNx$7C%)q*1gl8A>)b&Bk8qaGdQiQ<;CcWd@wc|DfNB?e&oI29a~#gTfF}(H zy>3lkMDj$Q4ev7?acC|k!pzM3YrneZBD>BN)7+){#5Sq}42n1P3bhBOL(w`S-vU(Q zeK1sE9X#08PCrK`F+T-Tj9mH-vjc8+(*LK_@%P+01sjb#Ihj=B;ew5ERwKGAelD&p z81Bq|mOen|FbN%baf23)Md~C1yMG6_a~1mZy^Qi@A1ghMP0i(9GMV6J%M^=%+Pq-( zzm)WiPi?mBj;UHr;%qK@D>pOOelj*@r2Ko=VvQ}008G*y+DJDBL4_`Qp(tShrY{2y zZv%Ba@fUYte}hwKFIDFKaPlsbA z#5_)HIRFm^O>AZN=T(7-d;d9DzNnw}UMxRKmYRD%^*M^qj>UC@I&Av0(HPl&@F?Gm ztB`8|Pv@vvXUJ3RK3zsakRpB58PeGk)r|sWFIT_)^5?3<&i9vR&1N*GPg@BDop z>Zpo0kz(uu3Z+=-b;bEb6ls*$I5`&h8w%LhsGQ;A+Jw-E>)xc@sgYN`FEK`-tSZqiZI3QvO2WV#TZ8JB8fi}P`r$_BYQ70g)T{k{UvLl@Z9Zv^O-+lJQbRo zkWGTBi{RuT|4&>!o^^s1e#nE<0E|PlNDrxTjJpJ}NvK$goBV2bm8)#$US;K^MAmPA zJ+^zyk4&gaos*EZbO*bwCaYGbssZ_rV32WpSa#$3Z+wD)>I8f(nIM7bvA_}!v_KCo z*Z0e{H*4GB*udZQ#bf+=kRP^70 z!b8Gx2vco}1)6l=m^8>}G8s^9!%&S8;jo+T>ZOqG|+8; z2^n>Ewfc)v5CJLREV2HM@?&7@GDpAAJ3&%hjnjhZ-f54wo&^2rtX8@^$WidD7Q(M+ z>Yh%R3{9#}e@2^%LYUVmyu<3FpY>>CuaI!6AbyNp^BQ@c%A|962YTiz?om~Oi@A97 zUs4V`iU4f(!+3fwpg)#nQ^N0tD3K3<&Uy6{Sh;2(0|J5MqpwzU+;AT(mAQ5s)tL5P zm#S3>aE3k;rA{up{au@g4zp0qBWREufLp!RIZLeW)E0j}y-8|>U%`+C}yLI#+Jz4@r zb3ybKyV=5EFCV^HK~9INqNO+Ys^>h;7(a?mfdkH7VuuQoO@X=Pm#IZ`zQZDDXrEV< z*5rqUf`}=P)|sbDCw$8%5kg%T(AP*O4aX}bv}p>XW9XZeSTx^JVSfQC(07UU%bzJo zlPg2=%c0oAylGXDl=vJAMN&V)n{9QbmW(bd60DL+u-p3@zytIdc$rb?;75!nrQ+Q4 z{!k4>zLj>~R`qgzj++;cY`YK^ej?pBhksfk6Hm2v@pGi=n=q_=*+O!OD(^Su>G}=0 zyEcJMY@_*OMul6+#lIX4E9WE4^X3XioF?85J(e$ad>1`!UMvb`qBnIqqiMZOKfQ!nkGlpT+NA;%BGx7(n4EVYCVdzxUh--UIKUc~hP$~Y>7*2&Vfe*)MBwVWMJGXEMReyDwfkkENr z^7!hEZcbAoSFDQsYQU;%|0+fQmQ2#kNGkkg1z`wC1(D-IuNr5dLVKjntL|^1NGI^> zHk*40i)mZJ8GXYcCy%Sw*R{3mqoSzJb&C|^gR@Yt>Gg{9I6)|L(eU{y87Q_3{*b!~ ztrP7kh)lnB$apuihBJTOH)wcU#YFcW!xg9Hy=tfpKc7Z!hgog~^#co}rL2!>XeXXZ zb$WeHjB4SsTY+niaQh}^R>~!RwQq%?4di!)RSCMiz-Jdf=swrZea4(-XeNGu&o#MP^_0TEXYzdo=AxR#aGI`VV^?~VNT2%Zt z_shsq9b)POdu^8~Uoo%n&odt&S2vqC0=+<3;T>Q4j%Vm=rzGLJ7n-ANJ8gBY-;B2! zQzIDe-&^Fk{*+y1l-qtDswDm<+ySPwICyvoJ(0cf8wg>?mfBB>akx|{`J>)uooQy$ z96tY#s3_`h_N+Ur%Ij@Ms{oiWg+5AZGotUGv8iMG8SdYWXg~YIkUNfz#vzX}z6Hfg zB?s>2ARA-DX|ZvhgDthL?`tcPt!C6a)^fJ_?AHo3yg&WvZCUg54ymKwWErnLn-<6ARmc!}HHXFGww z&-gk04!RQUA)1y$ks(}&YB^pJJF~76#kAbFITt4P6ocrVym)zik+!kJ#`geILB?A3 zugiT;WztnBEV&IXJ_d>E=~GEXSmamW=LW-_7?_66=QzQ-1o}w@3MU1UxejJ5>42Y% zWl5#rPiVM;0HW{La#k(8DZx(&vceKa(MVnMA5p%IRCQyfQ~ooS4rfDxGe(*xLleQD z`nfp6Weku>%W)ET6|5G{4=;uugBI@R-)q&OG0Q4Y`yl`-Rhy@a@pf2|xRdx&e8bym zdvrarDt)Yk$7d6|=51Z0531IvX$_uT6+MFx?!U>9i9FOrsr~4Ert~RB)l%puc-!2B zW3vltl-mqp>^~B~;^~aUpvIfhNa5Q}GUBae4T`#BXIugfO#B-Je?x zwYhBWs#SsUhC$V`PA+LP5Y2nj%P@s`pisRJlEI93ht3!EC{p45iyOedP4}2m>k#Qi zC$pNR-qL!i{I4tdkE&bP>|~0aP$j&FfX_GS;V4eVd9~guPL3Yps2~der~fV=)oqqT z?wzh4j_YEi=#aeqygcPAm7I44bHUcpHfCj3VyQB6i23%zfJZv-j3@X9c?X4<Aqa_1LF0$3wBK3tw5>MP;8L|q9IFuL;x2WdCly%9RiXX=%_>$Uf8`URer8}ROF^N zAPwc9v6u{Mm_F$!r#DrXr;%1%biU|D!w+oB93Q{L^G?gXYFPn$$+s_eKj<&ieE(H*kP-kB5c?JBvn|YoHUA= zRd^wYk1-9(Jl<4mmeeLO^OB;^_}9{{Cuh}JZysta2j-r;PouF>-9=N-!TA%adHahw z>>Q4DY2T6!oAs+PhG}oJWICZyeh|=1g-1F?E4Ir(ItpKn2e+k-IM@xfMLnF42<;^L z-_hbPQu>kmt)pCa$E>oxxbb4VGw@*mKi^$JJ+G#!6lAbwCTPs`idwOYeh>Xi$I%Ex z)#HNClxX+G4nu)P2qa8U@sTb1l3$|T0#1`c-_xAVoc_W8RNXbj)OV=_ExBg(wM`3f za$c?HIj||P#Kt1$qJl_VSP<#qzlSSKP4{Z7GQGcnPT}!@N4Y!Z% z{%5?M0ongIOcPxtPIo874{y{8yqzpOD<&kd)Y0-WHnz-R(o!|FY)^rF!u7G#0wnJ0 z(a*k&Pet}NF4j-?q@Xr?S+=&IlXBBlv_{W5zcOyF)^GYI92<^P1No_=g=@-(?@ZJ> z8VkoLQ3j<;4V@_7zcNAo9`wwQdtuO=@(%BI6QQ^U1Awl`K6Zq#$U-KANPWAF(o9>l z>Gg$Ks#zf8MqIcfqf#>M^Cw>a+yxd3dQzV^8S+T1ZWA> z=vw=;Bi!py8O=M65^CXL)MM@oqZT@LrIP{dQq3FHL1177n$E#psfeA~NM;r7Vnt$V z2Hb4RS)HtiZ|eKwm}u_hzF~M265LGM9?1CCb5|wQL^sg%LVCYVYw}0cUZ4)126_>9 zQx>ENWV{CUDl)eDq11ykxt33?pwa8(zP~esYXoCQ~o|FDjVP zq>hRU-n9U~*@f2wt`fJ2R~9UYq#l|5)Ik*+=Lphq*GqgDiaL`gMLmv2jXt;FE_b~& z=4Emy^5~6BH}_e?V2#7VA$p84T0Zgz21SDH3uki27ny*Sxmu7G+6~X4SO*!9r|-Bm@vBLDiQsCOrCnl1xy$k$+f zbnM#kS0G(&4xt$3L%~<+?GSW-qI1{jkhOO(l>S=I=~qNjhU0t@mjUKmHnPv4T%TO3 z$3*f{z*U8QrLOF({l?@R8Yaig{v*_Wm3e?PYtt!&D_HNI?bPFmf`o0|WP`Zg>aP3c zmRExt#C<_0sU0va^}V##gG8rB!9OrA)|}=VTVx)&N_*Rk_n|OtYx__6&3|$Jbqz$! zi{(T_L_4G!yFNT(srj)sk;%_zp0U&H>jO8xx$B$AaF~{znShsIwrlhku9npAcj-)0 zDb)r)5s`9dh)E}>CR?oZ{dP6pG?s?PbcoO4Z~ZdE8`ooQ@{>w-O%)(sDEXJiIwq{v z|3}eTI5gF^VH`#25RfjFl9ra7ihzKGARQACkeqZgm6Dc5Y9gIOx+mQr-L=uVfxuv6 z?{~hxU_0kL=REgw-@og+a6&aBBhTN_nd`q%*JRycDKBL6w%^kgU7dA|HUQYgDW@Al z&_mEW@HaNSK3c4>i^>CZdyUTjN6;GH{}CNp%vC%4i{*WM@ZO3w>fk%M5w8!tyw|gz z9G*C+p!-x&6E|mK)u_Y_P=J|$1Ru2MaIu7$3sqs>RhWyF>BTgZG@gY^1;;PSXFknz zw4hshkr>Xt{IiSZV@mbEC)HVw9}zs|)UwFr3GR>(K*dwv*m;8GOE@&jBaC&(VgT6+ znB6fTt=Roj2NU9~Zpqf&W3oUmz{DlK?3rEIE6FFctZ+&?b<;BZ5TFCb?QIbpAhkLE zXKHL~w}773PY~J=yy%JYE?B$e4adHejyd>d)0AYz##9}@h5A~k$OjsI4`V#1@PGli@A_O&%&LO<-O7H zSUW?uonI9giT)xzt!oz*uGpWIa%URjv)64!HwQt8fwL780>x61qunoT9*!qS<8Mar zWkY>qM_lk}k{}O(*gEW!t0=F>F!d;UOnk>C_a5+F%nTXkW)9MTtdCPKW3!!2Dr=Tr zHKDz)niAV@_cQEpf3M8f?2>cksQ>gdrGvYdYj%yJgNiU}Zv9h5%CC!Bf#7fOu?_Um z_`rbJ0bds(tD?E-E-cXQF1l7k|v-(jtu_1$>(z1+YjQy1y~Vg*|-u4@J^Vq zd@u1Jo$~s8Yo{~z*6a$EckFB7SL(8#iHJW7d%t*7W2_NEOBY@#pi6V1qK|2eBS<*q zK7df~2lV_^cg0VMP;Mm^e@Wvcow{Fmq}(Xt71s#d1m8t5pN7ce9XwsatNQE_vm13V_M00bCL~8f0-$J&1E*$K2_U`D1#r1B82VM^Y=@!3-eX-Py z*7kLUTCXW5qD->O7w^UYc3r;GxR?Mgr;{*@;PRqG zEC60UQ9<6AN0(Nuuh@HvK!-WRx=D}tMIj%227P*Mg;@U*aVw6i?%GZBP+8gyrNXx_ zj{hTi;k@ClO)IEt+^8El@_p55QoUwzZ^G;)x6pBC26671H`M$(tG3TQ?kF(hc##q; z*o0HB^x^?|UVgDq`jA8iqA-cW)w-FNDW{*GahDEPjtkH~x1kvU?3iq0x8{jJx3E)g zAz|Y7Y0-zf9kfLW+~3>;C`G69^;EpNB-h`?+GJJH(2%GFjWZVBz}O*P!Q9jeFw4}7 zhW`AICZ6WjuG8oO+Ze6+C{y{D0oV_G zLP9zhJ*1^)OqbTeEKNDzG2CELDk0LQGyvLmntqTr7rU!?8t`=n0p zJ&zLY{`8!~BUoY9?eTj)memdGP`{VeIEyrgpr}Dv?h10u}-^bk5ob_?zaY5PvW&H7LYGL=i`7-MN z5EFB(pE~!B3q78QJ|0C+wAHC(HqZPER8sCC;a0|%B=U-GtB`jN?7JU z?TfZH%&?_cR=KMt*SsqI%};mO*-255Q_|x%rXE#S*V7?pf1CoY90Px=}71#vmoMkT@89HtJ zu+|iWy?ze&&Z=0Me0G11fBT>cz7<08&hIR}q^(N+HpeGF@A$rMK^<>>9w(0VfU=z$ zT_x1x?n)GEd?>6m!he_j{V{@=p2Tl&@Z?B0zojWJ#8sCa1wRr%tu37BHD>)$sIP}# zw9m7J(a-m~Qx!d}E_T_S|6@DF>AW(q+f`vVR^`7C#v>@4+X=i@YrxBp5cCPNT8vy# zG{tPgi)2&t`1-Oy;oeK_Vo*g-&M*0i`TDkTSi1Ffhv(?LIkVkM(uOeTIQqMPvfa#UGUW*((N~v9jNNWmY6S$=YGbRX z%|pocnylz{0_rSji?ATe4zo^u{!{uA^f_$68RxSal>4%-9 z-wq$Pq8<9+clV{VZx6U+S!nyGe!G)rcER~4JA`phsU}YC`1SU6&;87l50zWcfq}Z4 zj1V~|1rckWi8fkaf7_@0!dYr(_t(GsTcW-@XZou@65E3hG+Kv!K#f#+D0E~Yp?938 zK3-SIDfr|$@Gt!0?dNrkz1aMu=20KhrJeqxc;CS3&D7hm@y@mSxufUncTAP|Fu2}^ zPjGF!IeS0E$*asJ#01K_NYw8jJ9Na5W$>PK zoUthsv+y$Xyy`kgQ{$);-h+hE8muzl=I{~=dq8M0Z76^SwH$w`bTr@~ku)#Bd?EaE zqb0~&{X08saW=DT7W zw~piRp@DZw6C9LIN33MC5)Q7o!b=ECFw)Js#t9`#n<~GeZQ&1%r)_e-v=x|5yRyf{ zQ*VD+j&!=F@E^SylHQWr%;~r+Mh2x|oqi>kS{FF>j~-mQc`RP`oh+L4EE=VSZone~ z1S0B|+TTBcBRP#u+`7N}G)Mf^U?GOANOINf+|)-W1^q6bGV#3>1u>Z4Z-SCS1B}e| zJ|yA2@l+7jj|63hq_d0An=%<;O67g?v8gwq-4|oUcjBs#Qu}Bx2M^4~MY|_WdXem> zEzx)xyiTdTk&y7aCo!{QdM5!Pr0g5R;Ds|yjB9&;7d)~hAsT+Saw6?S^KY)9pk#l9 zTzVnnXQH^yCHCK|(c&U`W=f)@at>t)gcb2KnH~)}cqG)asBdK>-ie}*j({4n4w8xeBrp~=D+uVJv)3sWo9$inYAwO=0fS#+=SMdD5 zhvJR~MqF89MwhLKKlOHK&pxh4v*(m+96=UyRp~g{Iq#zA;lgKsu9}Q3-f^b9Ly74L z@J`0xF4TfA%_dK{9>crAJqBZs|K@R*Zy-}w31@q2dVktCz@OJ>g2ZKdXA{?Rl*QVL zMmPVG@7N}05A*LR2W+>LY|T@tRDVVImg8278H08tdKR?u8(q_v>l8@Qn$cI@w@5ab zp5$wO_Bjgo@SKVl{;1$}(BS#@V&>Cw2jmQ3$XJ7nu*w_XUBvO8MT7nvd0BcjO*qS~ zMh7mdCLhvyWKCt(x?rn(5l$4m4hbLdeEkAZB{-#gG;(S{SPmV{@i2Vro8*84`=MC(}e<H;%ZpujW_|WERNulwVqv=S+Gtr-r;+ZdbKf4GqKIgE zUmcuSOb$JsNtZFx3W4i2n^9x#27LOD$f20R>DtU0V&cPB+yyki!OyhyD6#K{dbQ%# z-dD#z(&W_CCkGig&qOegzhDZZzvB8(OV!P2el9d*U6}(3Ym>j2{kr}_iaKY)uJ6^& z5S*nf=T)D+gJSGrNxDUdy+9N}Fz6xL1-aG>x>r{sK*xyVUSiT53+74i+*x8|^nA@o z&G!a;0(GB=81z)qt=m)d4G?e7Foz#8{?d6jg;m{vMAwIF>PIbUGwCxlz4K3h9SPHq zXuH0uE!D)a8K&n{AlSKz*dJVYo6Nf33q1-%bZsptsp6htfB8e+Pv8YNO14^jAPsu% zWx78EKtlc!A3X8u4Y9SE6UJ}8UJVkyZRdz_b`P5XMpyRE*Jg$rRS(9aqF8Bp` zGLMZAw11VF4NOgMKeNQKotDiN{X_*%;p0d6xhk?8T_K}fsW=_zPPm@vxYdRV+)#%Pf))}VD|^+a{=U@IfL zpDO36oB;o7matWLbAUB?ez>(268hfTZ7*47>umXO4wucnw zkP*}#6@auau&74tZnWdA)b6*)BKUkv{#qb+Vk$yL3;Zb9AG^Yp$ifxWA$)UOlPT+IV`LVRI(oftvX1TOQ(}kyLihp=2^`E($8P)P)(>d6}3KrB>q$4{9!L2A)8-nr=wwaKlNl2VYmQY&x4{3^&+4oAZHMVAEOGT zz&A(`sKjD#YQ@~IN}I%%vn8j3e&)}^AN^}C=cu3f1Io1N@<@Z7nt;XrT^h|+i|wEV z6gL(i3Oi}PHDEMQ@Oi0MnA;I52F}oXch}OMcP?!&NW2LA68mLbYd_w?Kv=8c%HmvF zYh-2;>O{M6P03Tz3zS8zXucL}izDx3)2})M>zu^|z8%tH<=}o9uwjpe(>MlLxy4^R-hk4;6Vd^^xe8Qac#878>UN(S?LmSrRTi%+kM;YMNMR#UYA6co$ie5 zysV=xqaZLUz%2F6{sn@rK$W1#g+Foj;GoQgP0Nb&2=%7^Jg;8UPW z1eU;=DW`7{Y+ZnJ0C%nMYA_HMB^`2K!WJee7@D(e8(KspI4lyV@c&yUp-}(sfS)r#w4}bbJSJE~14PFL5=ZZ3z_IXjPm*w~D|F$QBWq zOEraups-$|vM9|ZGT&%&0}EWjKed}4`qk&R-jVmt^pVZ~!ORWkk&2l$n?bdM|A|Re z%GrP75&*6`DM$cq@(qH2hy-Ez1-b%VRn^-w`>y9pjK6-g?B{hL@CE;PHU6`bC+&qM z$W;_th4L=DAatA-z|cksU%O=Dfg4teP8{|q>sQuz13Z&)t(6be4XImz5iOzCNSXQk zGPMBsosys@A4kf8g*1oNFJvYjru~DLo-hNH6TJ{)us_r+=cxGn?BV}U+D%w8_4lACg6i?{v+zN?;50)in5_whXhPZGGqfBc?DAn^0;Xb0Xd2IxP*J`$AfAN zZ4fj6JCuz+9=ywjvDL0e zNH^E^Y}FF--tZZ4!?*ouqW~Fg?Xn}Z4vc4D%yzsaCn+rpBEc+= zUic)^O%OWE3Wg(S$jBA`@$kf+PxaX5yO~E7%^I3!YCZBBbUkem z6m1)Uy2u9dYNgxsYd><|Z{rU96}b?;csZ-SO+x(H1CwBWSe`JFue&-bx8jVI>W3!_ zO?t#0cL1m@H1QnLeX_v5j_A`{lG`}x1%3JM$KDU46$!dky5Ky8HSCeiYy-IkkKRct zFjQ*&{h2kz_Q2Zv^%PUhRbN3tnJ0haQe|$BNSXB3;6S!Dp(6{H4MrP)zFJFRWpJOc zTR{SOPO{hL*fgW5qpFEbqev&o`;vCwScPZ;h!jm`?J`oo{h7*2-Es}q1>2VvYxWHW zCD3EdO80$}{eBJitujrW*d(Ymr#(KYVC)(w%(w^tPP?(#;`AcNsI1u_N6R3AH`DhO zvP~YjG)ipN@VjQtTa2~Y4?)&6@d%^R z1Ma(ZI?jC{X3@HYTe~5&a}c;F%~HETmzCJ3LbD~WG!6S_FML_3HE>3>0rUova6?K3 zO=E-jcFs8z!G5kgM@}F61)1>(hK-RC6!*uGS~_IJL7&s4|G*7&bq5QG^C)XUcQL7cc`sYF7dBO{5@Enk>l7TQjU>Z2OFtA@Y&Z*;HuoMbPg5BwrP4l%T z#aL%KIJ&cnUM!g{YqCEi9ZnN`OL7%YL$+OAtl(~(ggD>*fIOFnvEqr*atYF|QkvK! zbaGebKk|}q8%-UPw#}5RO7Ej;zF0XNqUMKK;3@p5bW|j3C3DJo2D}pRRI=O_W3nzgvsU>92_u0SNJOu={4*z@KC3$cw%v=!GHblgr)LpCohZ3JT9^aXImg8<%~+w+F-~qfJhr#~T2Z zSXBC z^Y7|M+bGDWCVrdb4$bcYR=q8qLQ!*xupOOMdgs5VfqL_EKs6Yuq~Q%n^8K=UVU$&y z2utorYyQlxzx3Ze&5CcEH4X0CoS5l`%Xc;(9F#7fDZMr~0H|%;Y_TZLYb9g_Mh>-u z(W#XQ20v4MsxcA+1d;B>hLNCThZQRnYs!Vs*^90irY<3<^!bQqnb|eIsCXe zK#CPJN+Z{-=B{!;N3E560RTnI(8V;P#OQjbzbk}2jn|jHzSO>+PtKJH#p_1ozSw$d zPA%s<>w6{Z?;mc&(d%&$2OC(&YeI0(tnknODly~aL*{*3?vrltN4l5bm8L5XW!kv} z=pNm1729L!-p(^4Pq1;b=y2}qQBNs*TmE>z=-gZ}0HzrM9}X)jQ{OA_n9b$E4x`VI zA<4cN-wSHsN}}OjJ+{tBAmd3OSp#Ovw9Ne)Fw>{^SF}xfn43{)8{HGglxhMw5hf^r zMxrxb*V5;-FX0iQAmVNI@kl659VC8{sSrKa%QlU6g4NYJDfA^GZy2RlRA01Y>1Je+ z-|+-K<&Ur0=Cey#1`K=svCSr>Rx>%x6|1>v2it+BP7;MLB#LXa@d>;&=*IB$i@@il z*i}ZJi@=Euzay7bV|JyFY;v5$!i__;cRXI5e=F(xWtANga=hbW<6sBJOKgGbsS^%= z+X1JBSu0glY-E|UEArrSx>DQRY)S25&air+Z!6KV8!Fy$Do(sE>(rdJjM3r#A%YuA zn(owK%|3&dDRaubkLKCa?=D|3?{sw!nxhZ7V28IIlK87V?R(0&^y2L_+vdUCM0^E@ zElX`(3-$&*J8#zeGw4aK9Fwtri*$7_i@V!5Q&(eNDIPi7Gm|`ym+w-nu0s?#mK%+m zw#0O22WMK$INgTMmMa*{HBPtYaaG1NAC0>I2@1c zDi6v;7nzcW8XDs7`J90M0978X=VBhxol#KPHGc`%k2WI@^BKM3%`N;X8g^Le2gkv! zT+Z=tQnKcN&3{tI6>=~D*!wK7U+C4|}c@QsrDM-ykc)9;J7 z5MZ+LIWc9wFS+*ohW0HGbs5e5g#ml8VbZn7kC^=D8X%MO@q~UOWw5a8sC7ty$NjALNB0#1vr-`(l3jP3bhv zAs;EbEjwPiRSPClyWeKXesWhAE9vWfU>*D#o^%#^DswUY=%~V~(VP%K5GV+e#rEO^ z91*l_&r#wL27b78NDOLP7{S;t3(#IjWjwKU{*;oPC+{ipP>zH6>OTTYGwByJQCwb5nN>%fI%v z_G$e`9Sxq|Ga( zJ`H8Zx23!{Ti2O?3w6hnOwK3%BT7dGTz2gen1l49wV~XOK7e%%A4Xe`Vv$a%`uJJ# z4fy1p%8!LnwO5lBRhi9$)(ukB1!8rCwjbk!sSwhMf5A{gbYm#qsBG}pRa!Zu7~5bN zfN5NqXsFl-!^FQL9qzl|L%9M?6eVodANDTMo0FxW(eaB*lA1dN()Vfqd-a1)!aKE=3Wbr$ z?zIg&rIFc1$t{^DbHGeR>Yv=jo*Dm5Y1>;nasCBYeZ_YSF|YjBDW-tqhI>Leemrw* z4QJPuh?>1-%8^d+r-_ZQo&9*!EvFmyCG*_EA)(w@B*x#?{@qd1ry-4pO$P>SFxikb za2>3Nb|JwE?GPO#g&x+zybS0lLq7KA^sumn$mDkls#v-wKT7o)Tvd$qt$hC zPZY&={u&LJs3)g;3C4eEZ95&z-=WB}EtHB-tzk6Wzl&2JYIoE3Ji8iA9g{ej;_&W;-2GUqMXit?0?t&Sxru>pIIQB| z<$^f@>mdyWteXdH(L^GAWm|QUm#FkoCYSDgaQ;PlV-A8h@G47YmDU{n&t#FrItQWt?_>``_bgNQ46n~p-~dnY>f%XtO3m&< z!If_ycQat)rKe4qaF@_eAfAvpqB+rQuSV}{$R?K@n^kK1J`$iFe8=jU>kk)a=L)D= z;v!YzG52u0zS+qIY)%PeehC-w^zIH0bXAroz)X>C`c7Iqfo!9Y?h*}lZ^f1T-`TjX z0K=0rD;B|FN>(|zOiaWh@--bm4UVYxJ#0pDFJyHpz{Ag1o-I@EiBO3kpLDt&&aSzW zjg&W49ezmMcdjZx@mBsl!!#vS%xs_It;WH?cvdemMDesr39|0WZkEaQFx_D4QSM8w ztRI?viVln^=C8XL%MG!-6JtSESn>^U?6oLxNVM_i4dJNqJAU~0T}_?ru(VB@oKX_# zyph%Poj=`N!lt8YRx~+|Q*A9BEpcdv!!2~ zaJ}8OlV;;v><2n-_x{4STV;jOo*(J*)k1%QcC+w8b^w0BwoSAze<3#M(BG zmR4$h8-CSi!-5>PgA)`%+-+}=#2av|xI;`3HImx+RC`qKd5x?1Kx^Vd{Y(R`t$at> zT$0uM4Hm$nUD)skRZm)hMlcd>rzv*M!U&jcAy8`rwh5ijJERF+voP9vP?)(}R8R*` z)3oi3Xnngx)vbFXcPZ|t$r|GN$H>Py42C7IP3L43_gp*dgcOqH8s7 zz5xcD{}C}Q>?&j}`enVImfkCfSJZZpB>B(~?JaVzlqhkWH~M1VuDv4cqA@mr3}Q>JDx*-j3PEy*Je%=eY@uk~bQH71hbnvZz~5UvSWVTUk; zjjKb~>?#PWT;`m%%HPnDCjXDq`my!=;+0*eSqjPB4|i<744uu%OoR_@#l|+<*|+B5 z>~o8Y3B%ltdR_k!Euz*N(lPyAtMqeqH{vE~NX0-`Cl)U6CqokwHXN}{L)o5FoC+qg zJj5o{MqN7KfvLs53uOiZJtUkhKfJY}ULBPcr<8~PQ{gYH_EF492lkjSW^CI~WHFg`WouajRlIA`JFRCT5y_=C7# zAM=gVWF=@bP6S&&T{3nn-G74JclQWb3si)5Uvq^!ZdlX%_%^!j%wo*2LrX{(Ci4m= zf$qjdyY{|ZjPTXzYq!@PA{DxSi7fBF8ITvK*Upi**@8rYkALr!XvzG7bxjOA5guSc zXvOXh2`qTs)$r}t(|ytR)Z*HKngZ?22BY6`_sc63`;5)ZZV@Xcm^V%I+2)fE3OGAY zuI;Qm9O_^um+!k+n zy`H%JnsXgbhdOd&MQDKobev|{#{lD!7XG-BeaTfTzrb!L9-S$>ro`d8S~c!b?}zU- z{TJ2c_Z3WXSSNHZTg}0MKpU>QkRQ=CVO+oPZwJq?v;GoH2YPREQ-(M0e~Xd37#)$& zD;3BU-O!$Y*Yj~r=sUpU^YDCko-7V9h^}8cIa3lDW;Q%N!d(r70D-#nXz+^Y zj-(b#LEbqDb4|WMeYR&Wo(vMvTsS2oQfC_-{vzs4B6!k} z-90fBFbV6`_a;iE%guOle0g72yGwxSJg#lv%C{FrU1xz{kc$?W5-H3`NZoAUdVjC= zIdv??dPcrO*CLk+b#lfPh!NNriz(al)fda6e0_0TUHvB2qu6n9Z%nu)wqjz`;J~nR z11k#m3+!6#h;l_i>32_^-+c2n^KyMYMeIBr2dD^6hFT8wXq^rP_5Z zgrS`ppvF>zv$B(YJ7}jfo|O3iY8Wbky2(t<@dVeuFMhfu!d_>j?0nX=^jxhj6rKT; zyXHAROj?ayeH{9LM_QAcjxu|XfyYbZ0v)F6uE;Eul9~RRx}^>h-|;rG#?QUwA(ipV zjkA1jz}D-KHQLQG@UzRhOV=hg<6>1`|xTNqMT zVrmk%uk`uxM||C+O22*&2hQmVRkHoN5-RV9H0_(}`H!}*47bddZp_Yz@&H?3ukeb? zUVwYu6bd8FELGn|?9>mTvi6khkzf4T{h4-npkgZ~j9c8(Pd`j4_Zq0L4tF-d41OmU zpV2Fo>7U8IO)#UZ5eYrTV&TFx-49V4$U$h_|ic(C>S)M(R&Q9Gt$I~kAKhax>OFy69QgTF} z^oFp-&wXG@8}z*O>34$6FY70o8|t2OiJfpg%D7^%tB8LpI(PKMGox*ylFqgrkz_HG zz+RYs_dfcmeV4dEz1J|q3);Y1mUkF$hMFy~`#y|>a36bt+c+-AH0ng^>af3R`8`#| zq+y?0(1v^dE%tK_mHBW^^HS=#wTfP}#J{q?ag^SO2&&^<8S$av*PaP_ii=D75Prr@_!`(>#CUiUv2|L{&(&5yHG+oz6f zJ|4UL_~!GkT@A%E@-{A;xbn1q9j~}^LEshmdkD*DxJ=<#u$tl+m(Z|Y;+jr;m46AtPk`q!7(6|nI>xyg*3~i!AgvR&u zIMY~{latwwFFsF{cL?NHwFD+HgmbW;D>9glb;Nbd*!zKP(_sJKOpNEiY8coa5{dnB zPLdBHn^GA`6kV3=TQZ7HQ|E|O7gBi_c>U!BEJ6OXH78z3x0e&tZ#?y!9K#$|%lodf zC&~?7dqm{G`gA9Wly%cRTA(Amj~9ryyp93fK#}D}m10efzc|~x!soiT zd_|42j#=?b5NM=AcHL{tJr?bpd%RnIoH9&QI)Qw|di*oAsNU^1H*mLM?ZRM>vr#Z!(MzWDRIwS}!ec`j z`iJG5Q^@@FkoA~m>azG#7MAt*g$o?9=e$^#mi{ltO1cb=4RvO>8SlDp9V>^Vo|j3a zN@sS!^7<8`rGEce^6T$erJuEfbzPqyXCDX*U6?>9X?69Z(Gq_9^FfvyoXO&8QrbT( z3z4E=qq%yG+4E5?CtL0s{7)i4Yv1eDL9MN%($I4KcJrCg~tn7hAJQ{A$C0fD)yo5G6{!R zX-K33X{61Q(&!!V3>V>3>$8ySJp5f>#a;cmGt;nEvGIlH1GS zvL-#GW)x;%n-_m?MG zKZ8DG*TOEyXJ5^IT&C+qP?_a;ozdEQz*`Tcp+b52?nK9m%xL^88^DO#%KG|x?avzV z`6KhiW#yA^C&;NOH(rXMCj6eRhhJB&e6Q_!wzt#h9wt^*8kXdrU@@b-_}IYi$|U?&sbr_ncUpYNZp?EK_BL`46$bES<_-cks|@WxvY`ILzAjB0Rpy2RQ^fPWC^;>|v;v)jI0{Q#qBQ ztAVTMjq189%M_>k_I2`=%p*8H&juLnHjUEEqo1v#C4_)nXOwunwIYV5$|Z;sO{?Fa zDe_(PGP<6uLRDj1g?%Vy>^pT&>^*8PgI;?^=|YVi0Z6y8vr?^4zV10ju;Z^TIHpD( zN~eZ7z0@&-;C=HQ$@(G5c^~Z^h(TwIds#4dmP!E)nR52AvV;_qeZUXTOM;b?BCS~6 zFnIF_D}E-tfTx?pYg|ymIQ$~5=1jZ2&eY1Cla)jpMF03pq{LF4#UXOI7gz$at11dX z#z&Vff*2a1}o+>!K=z_J44~gWkGzjnTl*%B@5totC0g- zTU~mWvzhgjCMLL{)O~=dgQK=-dL@eJowVi_bW`ihq35Z;;u~Gapxl)sHg`pgwbIRL zJk@^@1ibYIS*Ud2h*C@mqQtYz?r3ZOm?@e)R}7XRJ{czF2=R*Kp!wCjXY1)yrklg= zMBq~}dt_1kfGhC9 zp7wt8sK0fg5#xd|0_cw=Ld^#s3%{VTt{OfDZ(CrvJ68hrThKQdKn(7Tc z3J%c@l#6?x`ZXnHIL_n~cx$!HOqPZr>^GyG*kx+^az%xW_S3$%;cDUeEQ_;sZnNd( z&E0E$sC96Jc$M^c1dQ^iz{?@-L?rK9VqIbrnSmpjz;}yEhx3tiYQK#=V6fp0KGn&2 zdwPhYb3`7P`9KJ)oF-lHcvYh}KX*YC-kf?SVI+xsxr$_rMnTn@Fi9Ae%6euhVzgYx z!{F!ASshdvN}SG_G#R&JaW5q(IT=WJ(LqEc1%a_K)Z2&xY;xB%b<4hqzS@PNptmLm z>vIPU-{?njrTV?JLeA!lQbBK*oAd5unOlS7W6<&vhtSQQo?mNTkFpBae=+8vA@LxCf6tXHaLG3+_t7XHto)}! z1&l)g=WDJBW@GoL*PCOs`Ieb%P3V{JuO0+D@0L#W zoBS$fD;viZE9M*f&Or};^XCC5kK)be<0>i$P88c8qPyO~Tg?TyIq=DR?bje!!<)Ws zO=#;)qe6ffCJm5nyNQN`pWKBD#xA9*o06gU z$)pNf$lO}Zb~w7$1lx)_`O@()OM7ms8Qm9JyyVn?v0fEl=-y{2&%Ybb8}Z8KJq_|w z?fFKzl8%y*qmb8TvU%ebn+-ao&vnQIH#)w6xTpn=`cUjrF9`ipNf`GCo5T)gN|vdQ zC`LZb5tp&Ba4e{a76A>4Ale&AA23Lke|X=t6FTBpI)A6$ z_bVge<+_F2;ns5RvQKMl#FKly-wDi4gW(*Zof36RricB9+QI1u1>^8Uq^&B(6`~VFME|t)iSTIfr`=ege(=>X#dr_%nrS|3N5b`N1 z=yw0M-QXC};E@%^H2N+4O|f0MJYP5*8ppRAVA3QZbz~A{@(iiM}Vi&tBuJ4f(jwwep|9~ zjJOBJ3Icqa_dK9i|LV8Tvg{*>QMj$Q{@9dbyb$t7kKC{l!H|LmCm`&_V^$x*jL_VN zXDE4|8hd)jJ*2jp;)g+_0ZL6Ir4T?+p|h zJ8jV#*3l81sx*&C))gN(EttYfAt9mnR9ZIp+2D?c0`Sw%<^45sK)VNLHGgjB&Y^8n zvX-MYbL(hxpInwXH@cf^#>ittD&}JsOSA5;xR0U%mE7wAI>krnn6(Ysh+o(*C^)Gf zbDt=(H6w2KD`h*^ku}-h+e!_&L_U%U=T0itGdmSE^;VDmSpK`krczF&8jx#-Na94*u{|A6%6bma$Ch8IIM8FuP?A1q6D1Qw&@ z)kD2`P8@AbP5KRz+ZS;YC%F%?nm9KIXn#cdLs?VpJnVk zw3dFw#f%gW=SJ(U7yxmzWdUC1K{t)mw)9(C7F|a_vx)`6zT1DmiM3LTf`SewRL09Brs)p zd{1Q-cXroel&IIaqgI(Z{s#GOSP59yIGa%{I%j&BxZl3F9{$6W_*i&6<^7SDzqHeA zzHpZgNR(DVZ{BddF|s%sx4xZ+L_{>YWQ`zbmCQVCZb1w`_Guemvs61j?Rzr;nm$TX zsaQKPNH3c^F}BamL7!c0q0_Pen>PXotJpuwe=OPp>Cq!&r!4A;9#UB;tTyl<9hvQ) z{hg9+Sum&ZyTa~E`Qu_{PUEoy%p67~bqeaNmw=#>W{^92h$HcvT^+i^ztaPvtQUqb znf}^IfAZ3%{rMV~Djiq?7$A=?!w7dOvHJ^N}t zau|C5iKWRX8^!bsXt_#(32fu4Xwmatcn_SeFR|Bi3+mdD%AfAQ<9hdfgztz6_1U|P z^zUz(gq(}~%)PxLV2as^7k@R|AxodIdFbH_4Q#(yA_^J>robzf@NF6j&e~1AH2MDI z)r!TDY=IUHdAIQ8`gs-0h8(Z4tt^Bi7=s>Ol_7BOg)FXaVrP+j# zxrU!A?OaUX)F}y|#1}%rSUU`{CI}xrn zvY+U`<>S95GABB1IbWTscyFFyAy}?*9K>~^;g;@d!oZL=CpsyWo( zO8KfvJjW9qn_Cf_AHBbG{R361`5s_r-{2FnLC&-b+x@#DTU|JGyRQw5Z({8DA|#fAReB`RY~Ihyupq{pr3$@wkl!_wz}QY-U%0 zG5mt%@-B2rvLsBr@*Z?Ou2;J$MX{xhrie4PHF7UVMzKlz_`H0&p)J9I@9S`2DeWux zg`dlByy7+rFV*$?=y8awyb0j4a7C7gblf8OJ(*7wGPd|O-0GB7FYfJKo?_C>RAai5 zs+PXBr#Z{}dO9+Y6OG6aU~8hQZ@4KUJbdmVS~>04txr7k+3i0f%Wk*~UGLj4f1^5j zz&HUuzZoP|zORt*1;{sTNpiI4$u$0Zzm{QZ)t1P2yXDilfSHQh!MSAiazV}rvBgRubt_hP}i7 z+qLG!%ylY*t=rnuk5)OFY>IVmWo+Eh6w>Etk&?HJ)Po)ark0$%d-e2z^HMqe5?AgC5;`>3UG zD)c^&$!RKGrc4L_+KvVWVfvkpBV75D%W1Q{@pAaVh}&;;rqboMwJSpgJH%?+ll!17 zL8LMr31ZdB9|?RD`Tl7emf7FDDf#UnZyH`GmzU0Ty`L%70UtxR{m;syI)y!2Lr5b- zW>mNl)fgQ@x&wTFu|0pqqCgz^aRDN6@m5HuOGwdmY+_p&eb-9CJ5PsqELJ8!#%S4f z?_mD)ZSBkF2Vbapl z9iy9#9I);8KJOpEXFSjLx$kqXbDi&1p~PYeGPiU}6Eoj~3j%=0KutsMz*8YvTfqc! z&hvfqvMQ}{oe;I7?6&+L=6=9WpLVKN@0%RBC*8#b2Ppss#K{dbi~e5*m?~~}!|6!H zsGHhfH1fqSQAtX2skvxzd>uTG!9sj`>aW@Kx^g3zxs>mhy)^ip z%A+4doJ|dnWS70RdY1@Ju5c&GADl<6LxSasHj@+aHzB2jxa%&${hGCSNyzH2TuLDy zAg_l72J6;YktD1tt{8(p_y6J6&?xZ9%sN0c{P5H=ZN&r^(#+!wU zg-Pi8MJeW2xaq-EvO+lFu=Vk&MaFBFZ;7L)3ay(fta$1xKcGYWjzI!&sdY%C?=k~s zq^Y2*6l-XeMwrl@-u@;S{XtAfcPu~L?yWne_@6UG>7e6ysjjQj#ln%SgJ#K`pQXa6 z6HxbSJ7pHZZb<#5jzN+CkDk%TB7)H?UCofrrXc&fP(&FyUSxW;!-L!s)Irg@`;>#K*gBI2wBb+4F#3%k$V2z}zK@aPti?81$d$eeqG_72M02OC~lBE$~}1LDO<&h*0H zI{B{Ar*t+5{9?{X%ilf{O~oKzuCzu}S8 z-7Va1slvOgELrYeBuW(d5V5ZN(Op$GlDG}FA*^dIF8CQG?4sm z8Q)UptJWGIRk^r_+iN^$23U17v~Eryzu9|czV7I9?!(%s?cCxQN){#`d+g~_H*$w* zU6btRLnNCRpp?i=mY%qdVl4x^bQa%k_qkD5O6R`t?5P{VZ=NH0j%;w%D2_%Dwf#pg zJ`GYEk$z+AZ{H_X54hYZ4#R8p3;*2c)Rf2ZL>#@izwGB~v93rFSa(X68a!$@4Ld!P z$k7dwk2O|SX=ffre*_clGSsik_0#!MmwzhRxzDsA&2+t;d9rr{aat~tz-JXDD&dQf zAO0hnO}VIP89Qtjmq=OKb+_P65K^$a@XXVCryWLhGjwQGHv0$ejvex45S=@?{O3xy zF_N-Mbzp+-yYRwV+oDrYYAxlwu^$vp=K9LC(#804o+N$!epg7EHZCER9#i+6UUnK&ExqRBAI4{z1Z>=kvc6lNL1`U0(T0UiZ>cuqkeDR-Y^KT^Rmf*6{~-aj=|? zKG>UoXI^m0{I;=is*YaVg5>lYD~)e&%&pFnjigc5vhz|DdZLtVtRDa|a2QJNbm>(7X&9}s|tnZc-4kh%fK*nb{am(ji46g<$cxfjs<_zHaFKsxO}S;mlp;M%Ab75(5> z$$c^LWKH_ML^zMJVCG`|XP<*aC3pQEEzd;BL!`0}6gmy>24B)tNp| zy!?3uy*hXOvo=k>1WkpRP~&oIhODU^Z^r?zEp2V+5@r-YUo7NOxxH1-aM5UtqaGaq z9B+M^6=Y%?nf5*orxOlW>fOG9p+vWO0^b!*UR_t!RQ>T!`&(VT{#|pejm*t3CXn4_ zU65m`p7y)UqkYTCEOiR)bYKx5&*SQH?)@;r!|&nC$z*E(w2$o9yP%06rn`r*a8ZpxGb*8a1u9z7*u8dYj zXhT!U=(pha7qOuifbsX+UmO>{FofNagH-80VU$LQnJPy3Jdo-U?!}L|s6$tmZjado z>HEu0^;aUqf@)1~Y}noGWpxJULE2`YSFUHTKOt`k2?cM$aEV{qd4s$#9Pt)ZQGiCQ z9yP9V>M&j1>ihl3FgKO{@j%0qh|>e7?WjV*Vqpj(X-+qlOz*YL4w$ianEpj93jc3T z#D#nO{OYmMgWn+T-%p~M2IvmIdsvKL+|2LnITq$Aa;%wj<(PCTk-O1jYu0`kds=>K ziqyIDRWSKix;+K=pWD*332ppS7jNUs6gjLTsXHFuigVnzIcGWGC<;?lnuut}uER?31EKG6j$jS+o` zu|EW%5Y!ecmcy%TWJi|M7nz3r+*CZUJf@g0QvH17O^FSkFP_WDjVSCnEir;F&p6{9 z`)k)>`=?5U7{)^{H~3<4DB#agelr%PFLh|rWBx;5^&u<6!`@k966_*v+${?UbT$;P z3I4b1F#-NFiDvw2vPQn(A8Ub8$_kL*Em%}9{CM7NEzkQ@FZEO0uj+eDMoM)B`vZb$ z@{jt}C@&OayOfE%K?P&S_T#*%nM>LIest;88ciPP;B%oO#XUrg9@@JA6Hy!$doMo_qQth4sAVL_OEhSB`gGUZaxVqqR9H+n!hnxjo&Q&cQX^1nQno%W-t3?eVts-DD>fllCJa z&h{>?ZWK&wa_dX(u`7)c?vzeKmC7nt7zL;iTDS}qcw@c7Z?iuix zXUjFk^ZnLaySl&TYUIt*z-QsTZ!}Z--h?KND0+Y;SroZ_r6!s=KIHl9b=O-PO$4b5 zsCzN&^mGN>Va?uTQHZ;hp!`r!*6Zb5TF!-dopR(v*JsuGLdhY6UOim(C+Q&SzXz0% z-ok;MI`4tL7gM$0W=u52dv%HYhd$+3$UJ(l%u%TQG~cVlOr$(%G1`nTN}k?Izx`9` z9ZGc%XsY?_YYkzVrJ&Li;*ZbX`7G^Tk6lFmGYjuYi3U-o^DX;GU6E~wXkfuHij1G&enVVa^8mozH7mR2y(u> z4cJH7oUBVu!v4S@ng?Uwbv#efZIav&8zQAr)O{rGxVm&t@U1_`$@1#3XvyD&@v=uj zmU?SOju0OZ#*gntMF6;;NGOJGhX2pGh^)qE;-~`F@1JupbU@Zr=-WDk*L2iCXiM9; zdkcc}BwLDfK5%1DX#DG~?3K$bNJiV68&)*jz$vqNoL@cvz(>wL^q~A)UQn3tP0T#~ zsnN%VX#IC?JM=Hua{zoyxB&RJ_CL(t$13{YqK>@BONmphI_PcG^-4o*t4G1EDyrda z!^~Lsw!;r}g$hTj+-+xQy)uQC8`KdrG@oFS*fSAZsB18FCi?`lfWo6P_3k@ZJ;BJ% z&$_U@P9IS44BEvtV$Q5h6{fS#3Q6_G94}kg!#oAflKo@87Zdme@dF3H0Yh%w^0T%; zH>x1tE;7E)lX{h}-| z7Wnj&f8xTlp9|73665VVBTX|{wChJJVA_q4Fh1P;O)Jm(cUE=voUhHG=U-mimaoAe zM$)k$-Ecs`8k2>xN?w_3-tJDM=y)b`BP54dC^pP(*_aa=&b5wNN94X=&Hi|VtAltd zW^+)kvuq_peA1T>ye^O&oK0}Hf%EH>QuSO5t}r+#*t|CIB0j70zDeJ{#?8~Gk$8M z^m!i}NeUG~?z4gSDG+=@8>e)oJa)%E=>vh?5t;lSk(AL?2n)_~QbO?1uqT(xwo*qmAEWn6@kU3%eSf(rPWz@vZ+68Cx@9bUD+- zTdhwLQNLY}*EmAQcmc7V4`m-Csj09{-H%Uh4kAjXl(uM=-bkG~p9RoonKTd)BkaP- zvxIwrCfzUnOtv5qxzU5Wz_@8}9VXbq#;Hisagnr_PGh;W!=-KFVFiGIMb0bA(Ny#2S?cC+nQ zip+mRX)(;kijd8s&&Hz^`n^*g!q*Z=VF)dU+avjj4uAv|Esa%FCMFdoFs|S<|838l z?MF_OXF?kG2#>|U!9^yoID?aG!^bq)Ui9}7GgU}O4z{%_E-d&7L*#QRySE@lrH;;m zX6o9aspZZ=AF!qCZJZbhjr|@}JC|hm^N^oMVO*Q#SIQ zKSMOkeBYM!O!n}5fy();0>Km}T7SlrFiD9J&i~kK5%>2TraM z9>kIODoc4P?ZAyW>*!rwjV@WeI#I9&S;H;YQKSl4*B@mH7a!mHI*jU3BdXo*-}}I* z{!wEGYgxXf_JSE=ctm?OvIv>9+qEx3Hn#a65q6%()LgH8V>H3XN|96~>f|sJ`{`?vgPYZr z@D&PSS3r5*%XHcWWJDh(A6Xt-hc$WI;Eiuckw@GVPCa}<(t(b7pSb;CH*rG(4-lBO}?X|H@u zCHq{VY%jG-e2<@^_C?~f_dW;X9F85$TYPskQi*jpzw3fg{{b97t}*V!m=6uwpULrCopus3dSw{t{@p3X=5$(1yVC)C1LAC?|sj=_bs)w z=F_HfMy>JbN$uQ@O2YUw1eBknH}kWT71gWNfDq1!{A3O4fSVa(xStcG^_c2ch1~v} zrqLlX|34z(zomHwmdc1fCuw6ZUsxw7u=^e{vHGzk2$qdiS*)4u&`QjSGTk{3m?1uu z)F~_#(G-O4-cSHd9Y*f*rICp?jNUeZiMTacaGi)aJ7<=7xe~?`2(`1Pa#jU-T@&LY z+Ua)$Z$zAwNsiY{(l8=thdvFi#!!D>tyn^5K*Te-kOSyBy79U?O@4l%1}q#I{x+V< zo;{Nz0!j@Sd{8VC3SO(hcFWkoLbJlIq8vLB9#Fj8`A6%`<5z#UYh363thtHfOm-or z<2fL=i79p$Ev1=E(%Dl*aNl)&UsgWIf2Avq=W%eZp=0gfw(`H!dm7s-z3?*10Uz zq3ua&4>P1S^$dCSgFuX<#-#V=KAd%c-X9yD8q-whwlgxVmamc_mV|$@6jG4gQ>1jt zp7Bs`@pmJTe#Hz-tmj4ojkJqS>$CZlm>`}&xM|yYKXi(-Awxy&=;M3V@J~dA8VZ>w z&i0SUeo9AqxIRyXW-jGO0qo&F*e-_omTaGMYs;f zPJ?+cjpqKH9zaSPAfohM&6?|u$s6}Z1)rx=-!5%xNn*PVE$W1MvsQ4Ia>us`vp_&m zbe#iEu{20)TtSZ^R}kDo6^j##6_gOzu-oeXgNy&OY2LKA`8F@B=rEWZ2p1VfI5Hrn zl!4v%j4^*N0$JoL-fCP?aGmeqxO9O#Z7d*N>CyD#$tUxgT$hZmNS_7Yax1Nn%W&l- z*W157ll!2RdaPT#;&WwDjQRhX);IegueRK7UXBNj?YudM86PlG@gk9ajdHFF+$Bl0 z4GPgzRX~hgS;u_dzrFZ3-k^1X$@8(H9Ze4+GY_xd&wSSJ_M zfborrdVUh?Jmzs96K4xS@&?eS%9JkoO3@ zyO`ITN5bW9txRPaVb<~onOnn)i69>)r62k*e$A)4+5@;jz;+=ED{pr?cLWVX{xt0A zXRY^Et&Y(_n2>gmIQILU#1}WhG!wmYP6^$^h5c*;iSUYGSka?BjHWbG&?0!<+iSAF zQnF%qa`PPEwOGTjA8y`+jI7Xz9JY$1FE3)z?65L?*)#7n%r!~_P2}Y( z<|gapP_MAG#6sXg@X9pf6`-+ziys^csLar@qt+TuSP5i1Nnc&+1J0_#Mbne_}aQvq_~cOxSy7roNQ=A3T#m#dh# z)tMPo0Nc|g*TkPN^ER>*_Y~cm{4Fz7HXBt;-?(-K<8j>P9{Ke!9#k z^i91Vg>V5p=hv6$4n=?ZmBCk^RT~LUM`Y9ZAq*4e=J>r)i~!X=!ZbTeWq<-bMo$%E z!R()8SB-&$fwYhfcC%vR^U~>0m+z6*KmHEdx--6kAcfUVNEw~%Rr-bf!sP(%0%Fb6 ziUS+EKFnZ>6UF==c+>44cR~Axz=K{h$JX<2P~^&@ROmbNs$2#tBi_=9JWm-DGBOuj zZ8%?|W#y%!=G`^Y>%T!@CNT1W$_p@*RrQcJGG2VyiHw$65-|s_BQ<;XMAR9=to82v z@wbq-a>=?9g=#u5QQ*^66x4{>Sfm+U_l++1-r`FMqI*y&e3E32au4)Q<5-0c)4_U} z#2cDd)hZ&LvnNZf4R^wK{5!Up1?X58;wsAf|4hLjyc4Nw-?_+Lur~M?Bn}9KZILfp z+9RexE0q4OGjAHaLgmZTj`T@_IIAvhw|*)TyI%NV96frjs9=*-QE~31oH|O3U4h~B zBl{c+u;Ob)NzS&?f2bZ>Tcw)U;K??w||j}6wIrwoW;hjr4~n}bS1j+V~1UYa~C9< zgg0aK4*FlUbnE@Bp$=X7=k8(U${8;7%F{XD9v%rZAys?UUM2{i##6GaaU86y$}2zE zv%39HLEEbc)Q5J~9bbc@g-UNDqPd!lxa4C43gT}nsoReSN16ZdJ2Sc%wQC#~|7!%(RE zrPoVKmM;2N)w&l*uYuZJ3jY+;QAX(wRAS84d$2{B&XL2Zt~EN}KMIs~^_4ZKSmMKz zr^Q3?a@`ggv#Xyp12a~pbrG847tf^BbngrI&19R{{3w=KL#CYbD1yuQ=gh4XfAk$# z@H9XF_{Zh;>g~_h*~ZU)n{@=XAac~xJ9P-K3+7Br-Bul0o)rNjO%D*<@&M6uX1`?$}fNb{@9~z`npmF1v(Bf?QIxyglnygMtjb`0W5HwSZHyS#ZEfn}(o_dI7HR;ZgR!v{C z%m3}r99Fr|RW_0~T|@16M=K`$RY7+u5si|ug>QwrmcDUp)tqj*t&S{gclU}t6+`j{ z(}#PiLv|rb?f|xFuB^@wm0;6ZYqYEmdwbFFrXxX3EQPY^PdVMb3bj2vDzr;SA_v;? z9}$oj!8I79xduC=>V~p18yEAmbWseH`~5CIx+N|j)NV)rhg(EHE6LKSPF8DF&tP56 zBA#HL!x*oiU4gakomY?YUT_}1w{I{bV&ekVO#_if|M>Zha4lA(y4g}WOhx+2^@5Xr z??wt*8Uz4O<_YYCDP^WJa=4nX;oC6Z&aT5?z+;#i`u59Uv6fc0YrqG- z(1wW$*&OYV6Anq>NtB1iP1U(KbxuEvs~h7JS}j)*6#lVmjNPK)(${*kLA;XVhol3zO_gH=n(52w;bl=*RVCQ|<)2}H z3)Se%E>J40Etm=<+O<>6#4oy^uQY*29OdU;{Kj+`?XEGsLk9{F<4OkUE8m{s%~19f ztwHVJBvgn5_Q|RntA8dHHMT;2un8Wj?!evbQa{iq#JLa=N83+yqA9ui3a%me`qWL( zbhlL&)yC5K`Tc~1HWlZ*@Pf&(ovcDi8h6T(W{Icg;^!m(nM1Z4O@Ee)0Bp+dJ%aGG zZFm-em*SH*EGzYfzO{_Ek&|AQI^95hnX6c`Omi$bI3Zhvy)YoK?LQ*+NV6LSpcnu_ z>>#nw2gyK8xa9hwg&c#_~8Bb2Xb-N&^Da_vCheD{G#`%!?_d6 z$spuLdkZ;qB~BnqME!|0=7;{cRgb@|NZ>)K9Kg>7?#00GIR<_s9q=zn}1hnC*Ufr2D?l@@MG%zjG1rd zU$InIwSxFqfQWo*0r3EKOKN9_bz2E$&+f&jzB>V}0beEY%Irt$u!9 zcZejabp)Rix!>DTFsA8wm)%r2#fRk(jOj8o+Dc2a4+p*!<5r?!jP$C}L9=SlxcV9( z=1PH_{l3%D&bi;*T2G0Kdys2>_RNQFZ6y=0)zvfc+X(C}P9P;m4I-&<92nbzcG}4^ zoAjP7Q2;@YtM*iF~BjK78bNvnIvb`*NrPo{UMkl@Q}3kmTW}~ zsp`@>c*7gzBw)B@FMIQZFr>tXRm6n$0JPWh+`22Jr{VPPTk5~jk_!#+L+8Bl#tFDyguy`08UEyC)SoW;FnM2G8 z00-%S=kj}%q^Ff0`*(HC4^RItb5j1){?q?k;Ok85xF6b{Spmc+716^wW;vBZ9zS+V z)Qq+N62e6!8w(n2lb6sYHDtKr`HH?}&w$)q2nT^>Z~pQSIC@Dpi+c|lgymJ58=7)E z`1BHQUe1-X-)c5$TH4$)d`dxjMiFPd_e`c3pLKBM*N&72cm_}gvCQ}YLFc04cu0q- z@+wprFqgRLaQz8Ii6*u_&(}kl)!l0j?T*-09ay~oe6y{&e!N|O1T~`Sv)Op<&nIHD zbXXPksm{I!Op9Di0HY0ash!P*w`08_cm2~SsBEOF9h8J3c%}ZXR%|rAUR?CB8uALF zTUv15(0OXmRs6SMW-A04q+Zj2L`&kK#rCXYY$7iuTVu%n-cf(*d4D?zJ2N-|Y1Q$g zJ4=XM2No9q24nzsJC86P!h)HJtre!ytDM4#BFsPzVEY@&LYrep`4_G(&}qIqAAabP z->$xu{fz$N(a;;gx5f~P`g8L~lNat`>nuwxEeB`2u!i5)D`?p2addeIlY`W@QC0Hm z@jS|w#h}^UoL0Q^)^qw_``WriKYrmemEHpN5CYO6uk6GzpRbQryzIy&*=5ee`ck|A z^YT_pBDTgk#%DO?g3r=8+W*@|&TkY6gUr%h zZZRRGlio{ydXtFdtw*jse@S_|6l^qUA9j6sw4IRsvFY@I8V7ZZXIP3kb(K=U zDEs-5N%bEyhyb3_AMhrB&Mo*}#_-BS`I$oE=c{R7j{Csy#>}V0F@$>}Nb+}K&&6+; zg=Be%A-z}@;+c4AhtZX$@OKjSx-+`Ho3WHY(20WX>&29P$k4%=TX=D&JK$=i!+o$_ zZIK6&3U8&Y7|pINE!pr3cYTkVQw7xGmg_ILnUtvR&Vp?IVo}TXILsTt=Vb2McY!p-0-x~;3}#r<64hI)~zxm=HFrQxB;NCQ8OZ9#tXrnA0Oqtc;`RJOu`ZxR zDIEmQX6~)vm1uHOSvGe?suZQM4S0q%DAZgOVuyoQk>T@%a8#SJYE$Ds99Q|C)TtAt z(m(V0F_t4nGjmxs#>Z5sj~bGDDEH_A$(*CZU4+*lEPAVrTm*z8sBe(qXgJyQfVBs- z{vk^bGxU4XUh{JJ8WUgIi1K5tT)U_*F^_U!|DFrYj_BQP!+~q^Uk-q>))lyPc=%nKhg0&NqS~ zgFqM=wLP9mt_$-Id`JHQGmv;(nW^%7upuC(SI{o9HFOWFefe_A+u@$tz%GYa!_Q%*_ z4|LwKX2YFfNcsG5!4o!um(=3Ttz1BTQ6V=9EI%#O1@Kmd+&AXiU!6J7mTuH--Sdy} z&{`MI1GU$TnS4?9Aif|e$}5*Hv21oj*&T{csXR4u%9Uk$CZb&gQlN%oQ3fFDK%E+O zrhNlkmh!hmVv&uQ&T|9HJ!CFYG;UTaP z`@!bXUeF`X#ul_&_!0BT9z<^6xM|AVH>u&sV8@T~L$Wwm)poKo)M)EGrs+T}CwX(u zx5|8`E0>8N-F4^Max341_Sr-8H+z-esNP2Xrcypgv5+a(VU-khHV=Xgaii$!Y7}Gt z09$~A%8!C1v$~;N7?JAc^VYjZ2QJ=VC5oOY{h*y#IuiH0IYxfZEVemYji4VrmHjyJH!|roEO>{@yfq#28d^K$N`q0`qj~&YucRq7sDKl@&X+_KGv?czFe_ z%V^#T+D=2{fx|DZ@^?n>0L2SgD{-Fxz9u?7wq3^3KhdX-P#S1mu**BDS7)C}0}2du zD3Ve0I3+E7Ohl5tFDmJprTrQj?NGP!k(D)glU!cd3clbnvJV)NZ-jBY_&DSTYdG#H z*0#8OIz({%ee8|SU|A$h+|{##Fi(TtVBHPdfe+>MX2_@dOFx@C6~T6!;6{hC8P zy(n1^g1x`pN)_blVkhT)C;V}>L{`X0IeU&m{~A|4!%2sf9%k3y0j?)(x1QYQjr-$D z9lZ;svf57EHORDl>GZeuP+IN%#i1)_W0+XKD;+P@n^ktb-@Av?HCdUWYIV{g5;uau zz*M9}`RC5}44&+8u1YQiZzeXGVQc=88C%ba$RQ52F_R?FF*yWkJ7?qzbA$;S{b3S# zb4gNi){n4{OqZgl!wto~((<+MPhe!J&yYHMQZwKFW&7V{;w;Hqk*$CZ~mpfq7!OHS!r4U=!r z>t+YCOE;)~&`>H;>DHQ>s0yp?&2KHnwmmL??&kJAzKe?$^LHEfTq6%L@2w~7@+;yc zW2O~94RPN9U0kVx$7LYLn@q*!yvbZmXNaVMD0QuE6v^l3>@9yEV-62r)sXB2RRNm@ zPsSxdZc)tls(fIDn{B-bV_i|52R>dcl^fqEf~7Qh4!D~aPcZ$Zyop)F0*!WW60nj7 zR-^9%W@;J-8{+6s8Yn5G*8g?Zn44A%fBni!)n>PnF|w3I>q)6DnURnu;t{tN|A}b% z>?cLxFUkb<=QVtt8oaB&I5$zS9c5#GItY`CnTdKAjvyh3+F@QZ8tl^!1G7UL(xT)Z9llAmwZZoV4@7Q)r-; z<=woFo2XBS6x&*2Li2PUcjBMiTdklVaw3uQ#=P+le8kzhy%yF`uJR{w2&4H_Ufgml zW)gYO$_5O>Yd?N$%@0uS((69G1a`xpz_DNEf1~>%4(FE*MqQjm3dIs7Z?P1dw`CI?K1T<6An8W!^iOpi8EwTo&G`eF;n18r z`%B^MNjt*at)W{=Q&fi|T1N9>MC)H9HfxoGScebC-TrJ`qMWlAQs<-b z-cH~Pt9oOL_YNaGU`jlQjY*oHd(?`FU7A{lhhh3!beDDN_>gTiYvq~0Q(zmRV3{H=%8`9P$Jd+Vm{#u za0mhyYmyW)+5YUrcDh|cvslG_90+Jh3%&d6ZGp$O25-gutd2mJzU?6t zVxqPef9GOa2ial94q2zV8$?n+WnGW0!iXpu+}tQJ*?_72V=P}8x)1eWsQu<=7dn4k z8`D1v5ax4AHb~F%g!lksgyu9+c^HX+#GNs*;@NaJy_+iL zGa|b7hKdp=G9e+HJRrTFnLA&|HyBi->PkoTgI)Uk*hrf?L#L3;BNEnfla?E`w|eqd zKLu`J_#Y8j_08P0a-@==^YdYkHPKjUDg9sXF<3v1hRV11N5wRFzEcISH51@*aM9(N zkR(k=mI4yKiM45qU{jWD5baXM0&n9`bk*jw&v0Z+s|sJVq~j-~dwS+Zb6lRPkkuQB z2#L<5SzjU(o*;J1yH1Fls}{hHruargRHFP?O(E$dCgx<<*IRmpjX>?M)~mzv0v*2r zw)@^iU(Qf};V`6k%X2j(b>)GpWn_41pKCwY-vC{Ym|RKC; zIxVB9ZTQbi>5Fo|^rxV>Fbe^w;#Gxt#!$iGeV*;Wn#nHo@cqDZ0a?lMX>bUDdFjC( zqqd`LY9q~{X2ziCO-Sux61!LccN6>h`gB>HXKEsZO09rH$l7P&-&QN%hr%7G=tS$G zvtG;dA#(KxaL*%1bJd^X+|mjG{{exrINKpy9gcbhOkwOF;N`e~T_32_w1$`0MdJ(W z`a0W;!FAwXn8H}c$AlMGFYj)o#IYvlHNc|EXIeC`TST#Z89;`(5wlNzgEsO69G#D0 z(D|%Ldi*i5>w;nQLHM*yV-q)#XTB&6N5%Z6Grh<(5>YgBTA`;nOaT`;A45GO3o=m@n?9cDRQ93!^eKZ*+sQYQN%U6i>d zeMXr_DPz5#Og#R|^>tq6&Fi@JFC@B+>+~xE9&s!RF`6T_K7qNd%~Tz56I26^7KySy zILzPesi4&ydp!9uF*FKw*;S*8rB!xp}I&G&N(E^>@Zx}1&DT%F`Xo{el@e8a8; zqhkrAy8znD@gm?{n7EUX-!*-Jo&V_1!_EY%Wn=pn>h3xLKOAl>Y#jSw()rQ?q%~J4 zJffAP02{bQ0|b*BgUPTdZz4hH&U+(+g7Mu8(3@Wwb`2lq;G^*15oVXJD|dd}4qIcF0&X-p3{&`KY^hIH_{WsV&qi*dBQheric2g9YQPq8Xnv`OcRkP2s? z_M(It(&GxYdB6Fr9r?p1|P#rcO?_>zye;F)pc(%)#G^N!&8()KQlG zJAz^{Y+Bbg-$vHVZ0$_phld-ynl@f_)-Na1xQXObRFY$wbV-jsn;hyR%&>x{W6HM2 zRLi6;O3Y?$2~{2sG7>Jqjhs5h7H991qYmjVw4Wr@4M*w}>*EoFzaL(m2RW()XqPF}Wk!Gu=v;^bBztyUb z`|`_j$Md`w*VZoXp$47Vvu$jl}M2;krtBp^c0=(NAr+ z>f5w``d%2tUDBs98@zSTnwEp4uiBIN&mGk&G>;5%3o2At2 zi<%YdlQ0qc>p-6e<(|Ot2{ACgQBxAF8(dl&pj02?q}K6WudLU{y=r`Z(rP4gzA}MW zsTz*SN?_N!{)b25V_Nw+;#w60td(QyZiw%=FRJ2`%IcbYW$!K!9ew&bGu^Jup+8ZQ zslAoRLVVXuQ)(u^>dNv)HHbA4#fPIKUsLWVMTm&F94ly-JN7FsBuY8dvDjzwef)J> z+d|Eggxdq`@)dp_SDj-ujeE3*u-EVVdu83tDC+cN0%UsgiOQ4ZASEyDjp*a-#14Drw#&_y;7l_woH*E7pJKD^!k24l@lN=}pM7jX+tORU++$YMWp$BXv?O^K)MR z*4Kqk`l2bGY4Vsz8UXhZRkjZR%urzydB0?A&f!hhrH(P!_IPS~!OA|Et&rQ!aDARav`l98l!2@%9_3rR@ml zm&JC2d*^ZI`sM^-rmfM)Y{Ap|?|w?BF{BbE)R~ zK{d!SW3VKS>{#`Q% z&EK?1-9EVIwa%?_IqxCquf_i*h?4NjoPwqx=~qBCOow#jm?K|n2;&82EQgFYV%YQ- zjyBP*;J(}kklIhF4?;skKcyYfKN=k}Qzm=*7IyEvx#r|-xi^(duvks&5==gW8$J$4 z5-D4Y(f}(Mm5@UZI96mwLu(eti$w_OtIh3PTa0TzWH0+irPWznw~0R!-9sAMgQ-bi zK*FxLFp$RrJ{(?M$kH~!cC1oG?FI)jt5bDT-ENOBmB`>0cVZT*wD}_5bhyG-B3rEH zq3>C==rXqyJhCxa8df$A*O9tL>;YcWa5zpK+q25LfcuD#4+<{ogr!Xp*!JfkvE{xS zw(X;$vu^Kf&bs5zE3oTT6avCZT1dh_I6 z^GeOri4GEatSVk8=PN&rxENaFm^&YzEpm@2xeD6;)NwS((jHvKA^&cdcAZbUX*q#s z&L@w9OjhsLflPz6*C0eg->)7B2fbt~1sIJgeSY`eehDCwC1IoR`8VW#tnuy&^2a_M zB+_e$tStg2pFJG1{wo(OKpwLw^$v4xtisCzXA;%MrniH|J!(m&h-`; zyVEoM4iYlS97O}+d+ZG8Zg#F|=x#&S>xk(W%LXMeJdQz?`o77!2h=ee18Y-ypTSPP zmZE;w%+{*xG*GYvNiJ5sLQMiFq`354c4jbdb-L82Mj;nvpAgy2F%RpS-~L8;f^`K_ zBkF6sUF1g1Ot;O<8Hj`1MpLCc)t>!iKR+-+XnC`KhU&awGp7T2_#xe9tmj-q*!*LF zSdvF$L6&HcI*4W8v{l8eT&Ec9aH+P&2hz`qn)}u0l1!TxmDa}%b?$)k49gmp9s9z) zXBN-F0S9BS!HAd~rD%&yrDuRwl`kqt$8QxY5@durG&t@Yw6zmCo2?7v{kEbXIy_Vf(>vHdeRHV5)gHh_hRpwughEF^NFUoZ&7w178G~JAyqIZ`9Z@r`D5s5y`Yc z94fC>d9zjXM}>Mpw|zszouW1EjY7~((^bbmsdx1FfF8whOr`96(3{vi(Su95-xmi) z)@Qh309vP*?&|4T5zw#lnTsvzOpW`JhxqCXs5vqMSI2%mCzJOI41!Jt8bY+9M zPx1a@mGaL}$k9NS%f9QPDcglPT@=>nrXys3NBJL7+}yn`HKbhQoWo9Qt&OwH2Lx>+ zRvW#jilv49BXSKO?vhQ}9)uTalpp97+9#HICA`wu1I4v$lQlK*x2+tDH0*mb3#LfA zavgvcsQPUlw1b=p3fQSi91}`6TDVf`hcH}uec2p5^z3`I&9W94dY`f0*A#OkIMLuW z=&7MoPj;pULBy>T8}YB>d-d8x-Bu-iS}wbD7r;G!$okagJe)q(pwy*MLkNtt59OPv ziEHlN`BCl@dCtEy8y^#sfn?4RVVRCfw5o%8x8U@sZs}-UdYcg1?tw_5wx^N#2igW0 zPxNWHA`encLQZXsibg5KC-)Ik@MHZm@#lX67+M&dzhu_oSB>2J-FpTbSl|q0yNp2D zcO!u;UcVk)5-uf5btvnbO!yE>hjcyA-c7X(BRld#pZ^Ea-1jM+iAs5P{(8{pK-IEl zMls%IxEEWIz}I83pjrwp7jp6DHaL7EX`=m`*WYsS=$$$j&%}9@j7z7mn<2YEw~=eZ zKO$cL9KPn}=(W^{a#IK|{CBc5N+A`&%3JFCINi+1TK%Oi^K#!RPlOJbX@mE$k*Cp) zM>S1CFB{hYjmwSPToFV=BSos<3XEY%Iy3Ja+O%J?J}+o~Z?=?OQQ2+}p`B6NwNjkS zR&%AWRhiNrJOon!hBGbK`vy}GiDL65=hR%(_t7b{#n&tP{Wq{eCEmSo@uefu92YBk zW^0k&$#MauW}$rqj(xPXJ7}lceO=1}CZ{$f%I>>3|2p+d!`b6t;PdF+08=*fCl0FF zTQY%@;{%ChT?_i#6Eo;GxFZO=6*1L)hs<^*@+>tz^RZM_fdp9bNd zx5#w7{gIFKiK?e&g@B1ho%7e^(%!C<# zig@I4S5yIQXWcFsaov;jC~%-s<}Hi$p{$djL2A?r7#BCSZqf$|U!j;0!C3&>1}(OG zZ4um(q0EST)R^NI%Wq2ey4K<)i;R+8E3JhcxstqzFy!%s4oD(k7B*x*eLQiBhm7f? z_FJ)te4B$g1iAceG?#YWv}r>#>hO&&`Qa1l@VP`GPoA$^<>cX??|gV*YV46J_~la2 zW&prvk)p*aerprXM5reBuE7Md3Ps8QC(IFQDTpcxuICVp366F`HAX`iJ>7$91a*_x zd-Iy=np8STu70Ub`o*xEdslooST__@9X&KWL5!Wt{{Eq;x_hUvB6#=Mpj658=2ZZ4 zXL=VJdHReaEArkyBF(?zbu0I>Z#YFWp@`SmTnq|drzlDoUIDUCUkDugEhN7K;=7SK z1)ho}4%{`}JiopRiY(CkHO!2vs_IY#CGU5+u3k@WuX!X_(^+nZu-F7E+{Z9tXEvco zPK+aJwRiPfty#8-X>dV6Mo4M+t?eaw7wWs*kTThvdU`s;x+8Bp0o8C`pUoO*-Z}_n zu*i9D6=I0`$|0256U6P**|OYL5-kblYxy$vy(G;+oXI}Yu%$pEv4Xyjtiz>AYQX+z z6kb0lmZYIz9Di<}`(uRzn|GrbATnhP)XK?w!rrH%sj%rtXBvEr#uBSf}$Q@q*BbQ&5PYkK74Eb~uj59;CDKd;3Xaaji5^b-qD;mVPQlpvg3-8J| z4AB&QBbN(`!j$Qxkgd4&k8ET81vG&v33YU>i~*sg8e^eORHQBiW~pfIsP%X7^h}?L ze*XAi+EJY@jl*;QiUNHp(dS1;f%6ACsXV=Z6&N<`{iRV_A5GVZ&(xI0f+n9WXIa#K z!Y&ARPRt6u$?K_A$<7jxuKkjg<3ZuBEyprW;JaAn%(eN=7gr%g6>~ZJ8!MqU_1NbA z^6k{Y<(|aGbV~a4h1#4Zj+~k9PgN`_+f2ROt)de9=jLwDeXcTRIA0LP{$B?QjfU2F z%n_bqHE=2-Fn``5vlHu;74CVzj|mUVjDixCp1oeW5L|iUN1#<_+oNOX4~D2GJl=e2|^CD4;F?X%2?$! zcRK9H<$&(c&2E zP;&L5RtdjyhD8d^^{g55qb3a|ju8U=#F@;Iacf&mIIYz3 z61B(_5G1kV)OSfvIg(n*hgXM(v1sqKK7`+9>-Znq9 zzm#$lx5(2JuW@~^u^G>_2c?3rmSJytpNUeY6gW@WxJdNUYEE?0F#3_ftBGho4g4)t zBGW9Kwwt~x?*$|o_XSSvSs0wh&VNH_S(EUbyS6U6`n)x5@2$V5D=jGu zWqmY$Zp*;^oeTC>j54dFDCGj-I=1JnKW>{dGJ8K#FDi@r3ts3f-huWMU^X+hKXYy= z2}i800me=<{94GS#rAU- zrW~j;=WWbNEb5b@OIy66OZpZBK>Cnn*Of$a1w+nW@O z$(h~!e4ZVBOgHsjSqglkg_kzDKaG-8_=XrAR#7)&4T@9{D|Gg5HwCF)TF=A!zBINN z7~6-RIRPX-RdTd1@4-`A()COEw9Rrs&`u4|S{aDrAJMxIi%zXIQBtglO(UAUJ%8>u zICZK($l}UETAoIL`5b6c8~3SF799BHC_kw0S&yI*V`_|uMI!Q!II9_tmp4U`P>k1j z=re5pdSyz%@*&M~zesNJ>g$Of+w6@$&bRpF{Jp21@4`Gc&-UJ;^$UxFS@f%pol6(J z7mgKW_9x%TwXqz_><%`Wa8?S1t=~u(8D4Q>9A*supXm6CZ(q>t^+YqiNl?ZgG30)h zCALvAmT&gQw;+_$q0G;g@Wj|`blSRFCnp6cCR7;ma#CKQq$t4GeS(v0L+3Qii8EbrTtN>=sEDrnls(=xIAz^fM5yt@V^mmy5BTc>(qKJnj9Gb|4T&o zxH`%Am+C;dBDGRt2gMgY1pv#G&^6gTpFa6y7ID<(rR+9@L#%b!PQfx-=ebB zpjK%E&R4ZdQ3WrP%FQGZpu=GR{1HD(c>W$r=etTA5dB6#D()BNa;kXatdUcqmS$Kd zC{b53SjO_=mvMo9VwUuKya@0(yu#f=QAI)D3iDZ_XPTqKz-8TMJhMkYE|9v1nr!-jYW*+=>i{_>h@ycM*nQZ|OeWl)_i-x1=7rs!gMOEjXNns8BN5~5l~w3okflX;U={Jk)4yn6E>Txa zdb`2ZZUy~d$+3?(?HhW+{6C@w#3!G4WW=UZ?{RP+x|zQ;6BIwtb?lH9E{kW+nQM=wgROhwigqpyctR&>XG!<@Lx zBC_hCet(X9ML8fmz{_BMXw5UJ$Oe%@Wz`77ic|6fg4G(LC|qvzNJkSloEqaa2APV! z*DyE=kvqvn@}*H{tfM72BT6*A%Kf&5f=d-({*`U6Guh0cy0LvGzU78``KhM}8!iA{ z`3)eRKpTyIwU}nE`+qJmw#f69%#f#jrRx8u89bm$#fs#4zU5ny%HRTO%SJE+Bdphl z8<+F6XL6y~5D@Xc=sf3o{1?Kly=!RqDHYCk5@+IG_r7@ug{>=x_Q8x5P0LkMSXaC6bKs6b9x9BDU(fB) zU8wCc36-7mxoM^>XjM)eQc?kb6@Oj*G%)MR)6G|G%UwQ;+}paf>RyYQ$<**k#?ESS zNikv6<_<)AZIv85IJD7Ql*K4J`YRPl8gaCha|~OdKWF|V$kp^gGrILXnPJXGKK$UN z=Hc~)3_ibN>dOR2D`j5UK9okXb>zNg%bWjfM-tg7&L3Jkf(MwD zlzjYgR3^mWa?rt_^JCVYOC)W}{?msmYqA5ha*EKnTbhMkWty)uaygkwBz4Zv9Py4M^nuGe6R?(j?<8K2J!7VeK1$L$a zi|7p%$eCnk?PQJ{ISGS%EeTJdD3u_QsziKJryeu6<=Lj(Lw7SXHrNHnHRKei;^a*V z_cBN$t9+mo+EnwdC$Ift-FdeJ#l~|AWOmy2RaEAEEPRsYFR8G6ODx*`J@M2kFm1_n z)Y;bu=r5Qb=ZOlnQE2Z0O{VwtONZSHgTvQRryAoh*PYral5n9P=s>!odFrh#j0^yx@j=f(f#)6HOi9aCU+`z>?mmK^UXo%pl%_!diACL>*gA>q_176ITTCq|cdWxmcN&Jkp7u zldfir5UMWRy%u2+pDM~WJ{0*n2Jt4!Kd~HwscehW3nh~?g&6KOZLY!~bs2lX?wNV% z71oQ+HBhJhT1`E^E8VoZTRG49Wcoc^CN1+@-@R^3WBo9K65z0`+YZ%NdM?v{{>vi8 z0i1+1JCv67G0w57oA_ukdfUt2ryuleHvI2@NiB=R;Wkut<#hHf$VDv)4@%Q~0Y2tk zW+JcmF%En{o#s=M4_6?}KO!_l@gcf6x@5sdNjSSbr;pAulIwc|yQ$c699_((>A5NU zzilbZ-a^u2LhSnD&Nj-sJEr|){i}RMLC0!&yJ!9OFBkOcq;&#G42vgX(gbVlKX7{f zAw?#&jrwK(ndfL#bzzS|GR>d%K30lk_tf}J%UtBxp_ys=U*1RkTjQ;2f-RrEcK~Lo zGpQn>vIKAo%S3L8cj#Cs#f;Q_p)r=BvVeRI*Nx=HNZ-IyItSGkkv~)wGd-_Nj;CvI zLQyHNws4Ek@cvEHm`k>j=X!PYt6hnQtI(c{066{n>V4e9-%~!?v^rC+v^{>qZ|goi zGzeEnCZDYhyXQ+2rMVohm~H7M=#{*+g$!=!gXp18Qr6iYyS}@g8WxHX?j1JP>}MKC z+)nr}ZZ|it;=s-W8(^)|YwH!`C{h+>On}GdiXc8fzh2Yhr*rtx#$U)sm@NQQ%<@RN z*iiWcbEY1%s~78NYX~;&ez2O27Gi)?gOVD?&wYAcg9B=Vs;TtTYQqEXcHI9fg9It zN0$0qJSYG=(_gp#c;~!^LVqp__gXbWOqeb<@_TC9J;%flT$fMRW|dpxi~q*9I>kxVJ0@3OVs7{-Zuz$=#I8WdWih0({|RwS+k9c_;$zTlEYRJ}g#O@#HR)=J z%k%dnM=Oz!vDdl48olk)SwE86X7E@eWc7*(LC|!?zId*kU$E`cX`JRja*CS8n zZl_xZzK-ekBYmQAYA=W&nOE4_rzKC>EGQoDPlQc=JzK3hK9=$Kp~-tocX8$2-xh3I zs#C5Ah1_0qRbFF{2>YAdJ|)FmZ!sdU(cs*!{z_~x zW{^JI<`*gVmn@UsEl%V;Ut@7yRoF1zPhnv+W%I}`xbhor66-A;u{K8Ie90L4xH?gt zdx0Jn6YKrtQ|Ij$-=2;sjG13IZJ?%i3K*f~?)m3+KoB zyX2Q=?k&@fQIp~(+sIoYyQJK>w!>nks2cagq*YkjRqbebSRSjujExWiOX_(ei`4=W z8LZIv@wXs?wuM~~gH0<5okX&C8SA)a5rbi#AAJR672b7oA`Ui;%EbER8fJ>8C4UY& z^gG6AnJS$vCPb$RNd!^w^=J}Ws0+y#E`=c5N1N|onn+O5X?WZ+e!u?h)gy<2u6C~= zJ9=!UNr_+PU%YNra%pK1pWQ}0_K9wkbNt*aE#wp=Xl?i{5PO-Fj?ZmTdrg9$coHURKoTu_Vlojd(r3oPIZKrP} z%wyd>2#-+bV-@N!e7rBW$3a41B=eI;P118pe&0zN$;C!OUhVhAJ<`0^(#=>zjn_+0 zZbKuM0vda=8P`uEMCX(zPyQ~uY#1#*L8{jKO7eRVZLhuP+0EZA@-^dMes9Eb{_E)P z6<08(QkM$yEFNg+u5l=8>+K4-!(0imQphBnKp$9_DXbdFJXKA_eBq0)MZC_~?d}|D zX=3|koXYxK8Yfam6cjYC@+dCs~wZ-~}D87!LZS>g=UUH|t-ORI(dOcb9 z04rx;wD{Hi`1U)6ApQ|WvrEbVt!v=a^#RPq5dUHv9e@BwM6KK%KY`ZcAM8 zj0Q!FwamB{hrRm7XuZ5@q*ToH%e8xdy9rB9Ooq-N?m%v#5F5)YKp9FmdpaGX^f>aV|Cz); zG=VsA9wOHewfRa57O>O{=rxyWB`*!Ta=nyz7MPz~=my2S64aS?Zzp6!|D?%PTI}Iq zB?etZ({*<%cbaD)&xEII)F(Bb&SVWdiP3QMo&|SXkx!1PFf|nw?S~e)f zH1x-srfTY{VHd=5tB9(Q-J=AAe<7Zgc9@(!v#BKkCP#6z@$vDW39^pHpOLOS`Quc$cv|Y0L$6 z&L;0bH*Mj6`j3bR{d7J`vaEGk^zhG>DB)hM-?hmxHk7Y-vyIU@L|1dd*9-{P3xc1o z2m8HeW)Ub#Y5e3?Vc|z++i`kopU`f(KVV_9+YB?CD%I1W-0fba^HBi3#zt;XaG9e- zl3I0V`NAw-BU+~lQ;d!8)`5_A+?A9>dSkZM$vj3=+U*f)CkAzXq4BtA1dVGu4fab1 z3)P}4&UrmNYNntrH5hEAKWT7w;);o@{n__a{=~3wp6W48b8ivzx-vZj0sKP6gww-uJ`m}d0 za!t}Xz~uWeWNZzwaK7#i0A|8F20lnXd6;LVD_>5c61#DVJmDI$>g7Ba$^4-!^grfNq94FqlpDh?Stv#(w{+%D~m`cskR7 z#W!<5(SR0Fy2uw%>7df~S?=4+jOB@b=jVnOGHi2JL6SQa6A!X}>4*r!bcM#@!O->T zdMo1IpuTS`R5`4!s!De~sBkr26Ppe9HtW5oyOk^w_fEoe9Iqy!Tr;8fu(drVs|-JD zt0THtl26^@*+;9_i{iXn#AdbbKIGp0=$G4Hq*)Rfw&c+0EqK;7nBlD*1UheC#XUk@ zMk(?`)O0Daa_hb4meeA`^3OJc1C3IY9PK0C+{o45N@N^$KeQ61jqL8#DRhI!OE+-d z)~66m4FzAAD59`pfVoZ)ONDY=TzBs$gV?Q?)-B3KzrWz55BTqFbhb!g|HYg6P_4oN^nhD|rnO12PLKk3i(15BC(gsF6Rv?*%Ql zO$m|P)5i``_1x=Mp=GHnGsrZE)*aq+^$`e5PW{fEFd|zPMhdnc=*SxsGYKKTvfsA% zYnR7=hKQl#`m|2J<=%yeRsOm4erNjVVaB=#rSzc5umRzaGG!Y+bf3{aDEW7Ktb(mj zpv_--wO&xo%x<@p^vdQsUq5Fg$Ni?M3v~uoRuIF`ulb&10p)0g*Oq-x?{-+_x6BCo zaxF_O?mXz9j>)Z$@;j@=k>O0xC71=QmA|`#|0XB`@c;&|662ba2YLT=p}e(qx57Mt zxdl4Z5?|~Lb?B-Pz3r}c4LYY8@rZ)dYKMZh-hz&!^RTVGq9vgdpz7RcMD41s^xWNo z`GtT+9dR*|@73ZX*<~7cC_4N~bM8~CCVmcD!N=|!bsLo)3(Q!x0xZLRtX4M^r3s}C zh>Y)uk6lHT%4>LSwWWo@Eq(<&{znA0lu90Pi}Q{ne@)fqq4T`%A5kEO!(RIS&Fj}j zC&(M1unWsO4D9|8E+d>8(^5dNKbO-76eT^rI&eEXqF48J$N6ho=DzB}Oqoc&`z=bM zud~ja2l^@WC)}QC?A=_+6-e1o#YUX&m%xDE{z7nygM`fC)DidLx&@&VoHbRkIMJe& z6jzfT5CzW6VZ-9S8GXvv+;{B^{(>JjA320#M|`J-t36W+c!WgCMps48=)5W_jp){v ztT64lvB1S33t!VN9-zMn=t=UoDa#>mr*Twkf8fu3V+CM6->;k{<4Vu*Io@H*tQwPw zuus-G20_U)Wqdxp(EDYsZkq=Nr=?cNmaaKCdXW_EDytanhm zU$Y;S<(If*=b!#=LiK7sHZ5#`tBSYDDQya4ocD|~dv0m8UDL}39_2QN>>KMnT{OW+ zV^h$fTJGO=dkGIRyDu5dCB3WyLKl0?9lGl~dden#xaIvLGU-1ldiYEqOsXuFr#a!G zwUc`gU7&m~P0}rM&N~%2H=`kHztN)I?tn+2>pQ*#CYAjkg?eFzbo2%|thKTAJzE5r zwN7LGWz?N54r^73M2TVxvVLj-rtccL68E5ih`cII$uh%Mb)7a@myyG*ciG^M40$)C)8~^yF(NbguT8ey zCK0t+*qdKps|~jt2BAc_`y`}5kV#JtPX!}1(q(-S(GtzdS<;?xZw!$L>gH>x7yH`F3bCN5e7`$`H& zq~NXgwUk7HgWas*N}G>cYYu$CodYm8&v%C)zc(|Iz;i!IxJQ^pa7YGU!Hs?e6zHHy zG4CXws%=7N??79cUPW`W|j+t*jI4>60 zs-AyD3m(obi-*SNvHsnPR*Mzj$C9nL9xV0s-XbcOAwdPtk)wP|8$*oZGW4?)@8$B9 zTovqtC?L96?Tyti^VkSrwq10@V8B%5ZKIihEp=m>`tYgs>nP2hROFVUXX`Dsg<^v# zQmGwTsnQwac;S^p-9PO?v7wl|m4}2|JrDtMHEK@6o(WsV#ptBSVPK-G-th%%|36yu=B9F$V=R=}4oS;tsZ?PhNn zY|BqinKA{fDO7cD>=C7zorZ}2{)s=4sz@N$N~`mZXUwT_rgg?Yq9h!-L+ad)8_jF< zDN+Jsf$awRc91r}ss{IX&UjJBFJsmC^MIS=%{MDdW12rDmb3Q1#NauIClk4ToqZ-Q z^mw4S+AuS=&WR5#E~j4MBPV3#7mCh8QvJx*{qKdikjhKVS^Fs% zMPNbIGCriQ@{4nb!%z6rfWS)3iu#ymv5T@NWi#o~nyl_f#SxHJk=#5^Pcqhg6z=vb5u$WuiatY^6A$#Ex1Le^b^*V>c zv-w|KCFhC}xmRg8tFo1VVC~7pR};m*rCE-0e2cCFCteuQ2AJhLk?uUit&{zsBUFP0 zglO4hGn4e&=Cnb?Rj8k6zF3Ha)8>HBpAWaQ^i`$sBHM4%c_kn}wcR=ir}9~TWne06 zqjg7%^{TW!oS;^MmO{y7kS#{xW zGL>wbKc{$pRP_Q+M!)elLHvzD%`fN`uB9G>n*LIK%DpGgb0dorno^_*uz3>;lk7|S zqb$K;|GgDjkuZ-N)_oF$**6=IQHTK>We3H1E&qTr_`nQ$KrHfH&ZSr(fNmXsT>c?Y zdW_q6)baJ78y&i*tU4$qVm2c_`iQh(2^U6_+11jEnYknU8aUI84JSIK_29s7&*Qsc z*7sZS%|z!*CS!f&?Nw+w-w@qF5LU>&JF|R99VfBgCce!<^=6mp zI{n;Tr2qRnzP^Cuv<9z|W`r?vBv=LKMBGqeE#I%!M0}A<`?Pw5vQgX7@~N1&Xgn|^ zKZA}6CSu%EZ%of??|N?(&RtaRH%=@f-!a>nc949g8X5a=!CoHV;?c&uyUMg?yFL|g zsYEB$cS)%+wjd&dtHmAW3v-X~Hy#V`Ulpu#E`YjL?pI^;o=?f!Dwg}=zsNDI8q&UX zkLDJvBqe1Yaf%4z(Lc~eJcD*zlS2-Jg*2s2j?^}(kP#cZ9~Jr8S-Wgll3q5~!EdM= zQL|YayLL^+FVBSB-j%SiIThK)R8c}5ciNu#u0Nf3ezTJ-I%gc(8`{Z9gA0Zc1{JBM zAx0bJ%bEuv!WjqW79Ml8Pjifxh5R8zR8#b8n;w5d8or%xTfZrPUT%u!Ts*`KVry@n z;ohKlqfsYTw+hg4rNY3zWmwVv`;{))GUG6D(hh#|`QoW{F)hW*BD#|Owm4ZmOik7@ zei^zxjF_jwlw(_O-a#bMqOkInWXq747A2JpXT5B*kn9Z$ei1#hHOEDcP z+4utW%B)BGcHf%VI1Qsh6UPjkEl*QNZvQGLPJaWPn&ub?6b^ZH_h6v)RlS+9V2#$s zhKwPHuX7BJJjwTetE&nUd#HKOHk1ks`qC~)xi?jGFW`;ih2}~zm&fcs!HWF&9Ek6_ zD221P&4Fy%*ZTVwLj0=cfrXzE9#HA4)5oyvYUhNq|1yaV;-0t)qr%Y!V;W`&{O-WpY z2@Mw{@TsGf%_Fba@;^qPNd)_L;$BGX#@O%}U`MGp=><^(w>W8HP39Tnls96{NNPd1RVpWSCR4z$ zoG7mbd|4YVan#VhRmUc5DQdA>Hu!*yr!ljK^KOr$QXg3&l5sa-Rcan3)5Z?0g*y<# zj{pLGUX}OZYUErC34%g&yJcD*IlHNzHkjnRBSB34DJH2l%T95*e5A0jTv)W~Kt=00 zCoy4gg#nnXL<9VLWgQ}puFzNR5UUcE;3q-6HE!k`&LedQ7fVZXuBT*^C|0J;??fE% zLq~}gPk`WCRq9)6gt44zFAd@h!HHrKsEyP0zNpWAo^FzRJ&F#W9~hF8^UIU_^#=Ox z85wOKs0j2g@YsFD7b^mnhfZm`rb)>vuSA~ldZ_7H z*yg1dF5kf&by@f68u~zQNm9)>*n~GEgpT-!(s9r^7lTPq?PbQ}>Xzv*DX^r0GQ@df z^h}YP*(S$TBRloCS+v}Tk0ZLqNNif#!nOw!z2wWMzlZ*urG&kz7fKbi+gx369AyXK zR`mE3lHnnDH0zsK=08J3PHge!*McWkuK$QyVi?iy;A0aY7J#vDf!3U*klTpw22lni zuJGcAIUbH5pBl?2WarzvHe-4r(=LW#R~9xB%{;-m={BtYh#U~%t7MY8)GIhSl*@ax z+D2d@^`0>~xu?`7MN~EU*Q*qdr}Um#MBsy8#@c;&gmP!O?1fWB75F5Ws&nl2N=d&Q z;u{A&3NCw+i;qhEULjVeo~9+@HAgOwc)|}r*=?6n_lO40JyWW}G5U}e0!JnuBl|nq zyrPT;%C%=hg1r^W7CI98WIX43V?(2A9iF4rW(=OC(G5LIrWy86e$h$CX8XoNXm|Vh z7^}{*zr_ZbDiX`aAc1w9gp5zKM@4oOlmH~LGryb>1v8)TH%oc=P!;7nBJcACsX@~t)RSMCD*m$%tjtthoN5q)^RHUIFx zh)9BB)A%OJXt{p5@mrGd=fJ`+-YEV}Cu#?MV$5f5KN5ldhcqtx69Ex|U=3j-IKt{b zBZbc~vyFa@e{dgwXB8U2*9{oNO%XJELA>ANOL|?alx<5p0}@rd804=CYz68Ql0_zO z5kIf0%2vl~6y3K;vl-I~f4;9%Oe5~qj)YnTC%5zNfhgroZj>Oeu@Pvs&Ke7{P(j}4 z66m|Jc9q;?v5v%~=R(y@Ps;Klp4(+y9j#JFb=*+dx`z~=E)Yug2R%3X#jV(f)}?Xu@Yjb-xscBbD6TU5`X&yh%Fk zZ+tpxKJalhc-jalv&M%p;~hC>`gBwA0N|~v=O&bQU6FJ6d`Z%S-k3!s*~kfubjhuA zRq=5dShUDO^yeZowXqbw6*$8=-&?TWbwIDf0yzbRJ^|B7*f!$2RQ11>C2K2rH_Owb=|&?rCHRiL2TWc${-f{+Zk-??9Sb zCT_=b;!35(grxrIBIBnq`kzng=Pty19a0`8S6I=*92D&v>g;FBYy5r#n*dOq`{&|0 zi2Dt<)OPP_6aYauxE>1={;OKu9FU_vh|lVkeQH|r$}vz}`pRXK*b}7CeU-x2Uaz4c zCmUZ-YqBgg!wKFLo$=0Sw*Ng9ljUJ(CnQyv=&u_ZzXc&J3Y|1Y@^yQok~ShDV1HA` zt15j;wCyw+8onjJ>jOX~uUy5%i20pOJqBra-hz+uRdn!v7<*qEyTm_4VU$`X&CEih{bv1-dKS=fQBP+0T2WI8-fsP zdU>g?iN$cCG3j4{C*k;Vl+vB70^%3|=ul|Qx1S~n9+ zo8-qbT=(DswdFsIU<2i`?K_AyPVKOv-%S-P+2&E1(X%&_Gjj=lsk%fXbD0&N1l(Wm zkAuE<|1Xxh@I%Ed^y%VD`>^Z_#G4h>g*OTJolGh!{Wz+N0_XMjk(9?pn z$qZ9xnLZ=}bfysBW33SXYWa5kc50F{33uB_A0-pH2k9W$pA!JN&H{l?&0ypO>s@5d zx?hC`5avO3q(^h8F%0lg3(rWyWQ_Y9Tj-8w>WCKZDVt31q_mr)8=F}0^H6`H8QdNn zm9{6gs+@?6PMcYPrXRjt5wE_hTp@HsRNP z$Nvd?^#Z=Z!2)F5>Zu7&WPPjGHZNWGlgu;?3t{DdCqOy7R`P87?mV2j=kFjd#}RA! zpgM-?0^t7JKzgiE0#TTRD;EkA;(vBv>r6Ah()7C5tSoYWYVPcp=@T>6@9`?$SJPTp z0AJRcD&N;Mi3!X&#fL_mo35G!-ME=>V#AnD<->0R-fur7 zCvMj0c)lGcQ&rs2>GdY1e(Iz;RRkt$8kCe~my68>qlqy*XyCw(buv%ud1|TkYq_%+ z3WiJfP9#3wp_5B1v(GC3&>?S9^+T7!%1c>oPI+W7MRPp4D1Wm5_WCMPZsW8EN@rtf z9nf$6JI-0J;5RBP?Nk;&KOg?SgZT6g=?eTpC&ReH_vdr%-e?lO;a<8flt)KWG(Tp`ipnpV^6+jYcr6`OqSu~g| z%23~Jl9Ytuyrd7SC|yz+X+~kWbEtZX3~oQnx@b(3sRi-Y}V-o%Nr7?^b5Uz zME}`gvkW!zT2=BiBk$xIH zbpeWd)hu-I^Kv~OzQ32*SjQ{iN)N_XK*Yq<&vYT_9HIoH z0yMzSj@WYpti=t`jn{{1@DFN^SyubCFU?|LZMpPfyk>~*!AJi=!{7Sl30dfv*}4K? z01x7dc)AnEjEe&k?k(TEB@C?AMRY@>%&lA3LY@&A?&NMnXF|yiWktVkndaA8j0}N& zJzhv(4lrC~@DlG>OJv-{WZn`Ca0_0M_BT0n>+c&3__6b}wl1g&%TclwGc28G@GwWf zdbd_OafVu``%i*8rkBU9_@2*23)65qk1mlD-Kua*X1wwW;Am{U(OlVUU^xjZcD|f& zdCJ|ePd`8vPV~|1sqFQf6D9<_&jTz8I^}nNtUuz-g4uP}3$bR4T!ZiT{AbGje*2Ag zxWQ+Tn5C5SVAhgDi|nO|ir+sXf2sc-B;aIzjgySJ_!AX9y!TNQ>wuHvXm%q!X>3c= zB@dnA$QI-te(FJ=ZDx|?rL-w;TxY3J7kCQ(yNaf3ZnhEG-T%x0C` z!T!dNB~d*F$$R5p8MTTRZ>}NnbZBU7I|cYVtR_I`k7XoDJe21MnKJxCU%K|U!XLif z-oP0_2RF9gCBt(TGN3j<**kvIz4Im`MKkqmf-8H@*A>)VmO79(#@&D>I^*fl>m4BR zAWjTT$*qIAd*$S~igsF_CciBi5;zH3?MB3KHc<79aOt3^!k*MSPCQP1ZdEtJ08aca z{_PK7KyU4M@m$E#*MpwVXx2}^Q3VRPQWHFS*Y|nu%85R+8^;OVa1*8xG@_>#{n9MG zJs|WU6{bI$gWi-n*Zsuxhdrd@Nbto#pM(KE%{X6sU}>-znrgf4I+uz_Zz~M#BoJeT zHUr?no4WC#jHn9fDXz|vm2c!9kGm@m(_)&qbJuxWptXAjMMFkKmt2wP+d(s+1?Ok@ zK=xU#ETLYvrDsw>bl#H}&X|SFlojp!6V!W~@Z|(47saRX9p;E0T~aLn(f}87(V2ri zxS50K6RuNgDO~Dy=G!|D7c5i$Yk6u`=gDzlGQ`OPC_xMet|$JK@{&-mwn9W3&|xJ+ z;QJs?WxEk8KBbRF^o=nGWFW5!jY)g;%@(qMI*FMIw;c0)j@hE|%vv)k`P{qRH2m%- zzQFwoMt{lG(Z6<{MS0KkTNya5@ZA>S%CZlR)j~yg5*}yVbc3iQg`791xOmq;=$l=p zuW}FZ?k>l8S;*hJhKmprYqok8HylHUuLQ4BoovXH4+ajd7xRx@DOQQVs)zm8?Bz?f z0th1`$2E^&pUNY<_!-_byNLUDLtKP&7H{-I$ADtIe?(Z`LEw{m9(^ryc*qgZ|DcSH-FZ8V!H_#F~b?1``|+rt%2#+ z;f~!$g=_5d%tsW#GG8sTLei(c>}OS?4a)|EYQr5v6WjY}NzA1eQFw&e3Boi8@YvAK6<*#HKVae}@p_;;(jfVc3baxwV_2o{89F*v zw0dQE946}#({@)>_%Xo zWp`{m{kJ?8nzofph1{hO+G4D3F9$CN#}q^tP1^Is9b#hZ>`BLx@R^IGl0I4Ozx-X& zN}+N_<Gn}@ERi^|F>OmH3mx~do?f9>f+s=y4B31Xj z8#&>C^zv}kIN&_mh$GEBRBeV6^-4568cj;L=Zd-n!T~$cI;i8gQkZb>(v#`|dFfue zdp)k)@;_1Dy^ww;;}rR#J|OL@e(A;HVzkuC32$h>GY&CATj-(hz}6472A+I4K62e@ zt~a~)xHRG86UsaLcQ+6Z%LQyw6sXGdVv4sWu0nwL?t{Vx8(KIgsq zR_I`NzVwYjyCCLRjZ@i1<$Ld$j{Ep-DLqTva{S0@_%mdG7gc17Ne@?k=8&8K2fMcp zQWq1KE9p+LUCNFd3gpqfOxJZ&Oe|zKmxmor4g3|PiR)KdvsuVfBqfXk_Mv#GAGD^Z z)9y^4xxdVXmi?6)5(4ANIbpns>b#!#KfI)Q6(we~1x&E*g0mCzWZyKKgWYg&4lUZR zC5cAgL4;7!Lqa8fgMzn30eT#=D#X15X zBnravDD^(1z}d@q=c0PM*&z8e64#-1+0h2-2M`%RSTb$?-RZl)pM(0KjHun3U{|nyi;@Zy6&iS6_ z`#kskxrJ}j_?$viX;jeKpu*x@GgJ1$|Ese2#*(cAlv=RM`}uCZH4(b1l$r?T+;@tV z|FCnJm30Y!>6@*gmk5~-=(P9ElZ_h*&g@sygYJuk(9gQI&C}m?q#1p} zt$*F1_JftdJ9p9p{L7{5Fu_d_v#3h?OV%up+ zIjvb9rbW6M&jLRb@}r*zRfu?bSXaaSB+c)BeePHLf2xzGvJcz# zLG{=Q?ivyauhY*<0RK_dRAJ>_rC)z7$NTGG$|A(-mzzIge$Fg^iWcHFede*poaMT`8Qjhmqqqw z^tqqv`#@F~P|P1ZtjEaQRv|Mw6Ej~jB1*vGaxr;aG`MC2i6@QMYPu;=%73jR_AzU3 zXxpkE?C107H=D$0>cJkjxPjO+6L?#> z4Rrfyv3ha-MtP^1cfNT#E#eupczL8V3v!Alc;pa-PvzmaO3RnythTY5xYlTcF9H)> z(*DdEZZa?KX|pch=y&z86Db_cPaA5Os!D9ms7(Pjr6TS!Zp7L{H^@e5Zx45^dAu~} z25gE8MDPP7NmEs5Ke4O&FRvc6v+$>OqjstL#F5%4zF`{Wy>_JN?Ll<+9YvH|XQc)cJe)qh_ zDXV<9Z0WQ4*`)?kgcvyjGt6MEt0O{bor~A;Vm}!=x#aOOKbpU5GUeo>Er7JQUvVUKTM`>(}Aitia^xeBj2ev6KIHGip*wLqjo${!=`h zBfOJKu2OgtV=BM})$~K5&Mhul4Jt0{$SlqpwxH7w1Vikg#Y4wnI6J``+j*8j!JFiV z9F$VJQ!?2WAXk>Xnh)&j?&ywz+kvWgzoF_u>4t|jyiMgDVT7nnvcR3Dd12_H;1w;6 zOldwv-To~Pa5Bw~7*S=cWo=?O4MVch%IB8~=G75hud;GjU8*2OCrifdaY8J$f}_RE z@cIkoR)(Xp)6~m4m>{&%4$%d_t-@!~EoGk6oSpJehN1u77V|g%yILk6>%@8EPfoMv zuCU$G43$;-D`Ogy;<%UVx8TxB8Hv-}W5p-6!>-_&yHLh$7qt=9q2{{fUpmh8E9&Bz zv&31~Qsz@%wK-Havi7p@a@Y%*@&zMXB65|eV@xLdcWT{ef5Vr5BN&w&S7dR$Jqrw- z**uj{E*VV4tzoX5BUt!I8^Tfw_fY-EhDxYa{+>4I@!8U`n@TX}Qx-hm& zK)C1XXYnv?7j_??vj2_#2e04tSCZCR({^gl?|&mbK%-LL2n$-e%B@3-o){J$fTR%T zpsow5({w@x(FiKJ468?OFL54^aBK#3=|Yr%1g?qt2DhQOR`)+nT5qc2hS)di%F^>c z=4~%h4~6z3)i^a!T7?>m&SZcf`~wTzm3s_$73}F}+(!GQA?o#L8H|(Qa%d~|*z83O zf~agus%L%ioi8Y94BhPdE7^H@-fr7yYW+erx+oO+&L)4Tqb{CyJv?wDDI>(Tw?dXnf8`U2v7ME1c|c*@DDLt+bP2an8D1QT z{2U?FPyq;wKKW(S{kbf+Hm#j%q9mF)A?}IVo9b!;`M|}$#dexg^J155 z8WZ=pSOb5kSJvs#R`}LwJVDe2KJ}L%aQcIg@fzd`+C#CoS(%4R$4T};AQ;vrL6pml z5##2gUr%j%ImZ*VT}p1=xW`jAm@OH7_NU54;hw3(P?BT0TNg}+c^FpadU$KB;| z*9v;N(S1?9*HS2DZe*DYNiBx{x+46vfR}1NTXkEJ?Reu;=Rj664BPjGzbLKiFZb-z zgU)Qe@f+oCE7r<_h%Q`|2BOs!ec+AGTK%de_khD|w(1M#^JoKGt?OLu_xV0= z3ZX9hN3ZI`4XcmUnV){ByDNXNl)h#dQ}{k;-zZMny(cZ~WZL{?ZG!HEMa4Ajj#Gt} zWcKF=4=!((PWODy@!;u0Oy*h+j-XnNLdAQ`g*}Alp$;A|e^VwQBX3_pV9Z`}hp=tL z@lK36+H6Zp*DeP3Mv{z|>y_S~1=)RryZK1v?=RP9@x}8^YpnTQsoORwRPu!M70Qiu z%PBiRND1x<2ajhj0z@`1R8XkS0Q;2#W~Yl|>-UGtlJ4oxnqt+wDxTdu?#E94K|UTS zdViRxTcn(JD&l6Z+S-D6^-oF7(fd7@UB=2K8)LGh;PoG6jH4z#?I*>kJ1z=UEt*+& zkXhbpKnD8_4I5p2n$(G4AU~Yl@q%~_{oY|>Fz~<(2D4{;y8elR_lZW4#CYJ#uxpe_ zLrOG(Z|8Yitl5Gqa&MOsWtT4Iu^|klPR3A(brbk@R>s$uEOBEAHxFrv?_!J}S$n*M zFpc%a?c1fXNNRnZkpplMAZP=(vt=hR<-bu{6t1oCYe>O_x{vO`4wru?yMNC7n1E=O zjzm@+)7hIM2gvm?NzvWws zrpt?4h1>2Gc7=EmMzA9@#2%FgXc!I9KrzAX%D^NVYGU*%#r89CVPcWs+5}Ug!pvnAQFkTJk@5MOuWC>2Cn#71I=qGcX;O zR&19AVfnh8?Xgq)NNJy0rQ0iT)O+j~CDad+M`TiBwX*mdrnuy0iaI zAL`#4OvSu*2}81$lBh2cyVZdt88SEF8xCuP-nS2)@#9p2BDG!(yn7{9)omR)<`GaO zN12_nWFXo7T(SwTb(Gn@%1qROl? zt-LFCPryDPK)<~_>n3S80R!zQ9FTbTL{Vv<{pYRioN-EfKb~YD)iu}yxSLpN_Vq$) z={3AErN@lN2G{h){LNt2z%cmUfz??r+t5)Ctyl4a?lG-o?Ma#WHB>~zFH%BEZzGnU zG_#DTLhPY%$WwDXf6PikBp2J1cqvKyO+a8ir_dyG9Jbm_a^LZrf6Ck#$Lib0x0y>q zOBe6{b?7&7jG0++GVgX0pF@p-KowPcd~v%SNBx-8p4mP|7!s9=@~w#r7zRh3cBTe~-WML_3Hm z&=;{o?1i-3In1i;1zRkNv%i3)sZIGpOJFd9+Uf8ZncenxIl&qlTj*9=iFh5<#C-i_=NHjQb42%itkJ&IB zuYQqzF=a3Yq$h~XswaoBhq+QD{w&{Ah9K#8jG}#0mPqo;YXhH9M$&fKuo56eARgN* z11~@On2V2PHk?a`PNg@LJ2p)7+WmP+pL#r3Ex+BC zVY%ubA8bait+FvRRkUN4qMkp@e42NeBn>cOFwCDr)QYSud+9!Ua2;r8RY&C>@qNqn zr|wToQciGvhRvO36R3iYH&ih|LV$HI{l~bQ)$*EP$jeRlHw+r1ITR<;ioquQ!Yr~@l(s^AO%gQ*55E`~ zPs5}Qv%=rQdJRg8pLIYCV|}7P7Zc|J)%yu!S(1kvr=JOiL_QY~&a8MTwiB~@+R7** z6{E%7zJ6&Xzn9+EmBJ<)0uN zkbpy`=3G9YCP0h``9)AL`CjPr^?kwPA$s9auZ^C_{zrX-RkWFRefm*S#>>-`+uk8hElRm3Z9Fk)1Zrr`JgQ5fGU z$UOw{gX|9o{NTNfWduOcgtL)_Nuo7lRabJiHBQM>W)(j~o5w)s>t~Bsd8aPU(AtZFMiB$&V+b(KNHTVtYd6$e;|Eaj0R1qRRYL_Kq<;SCKLd97?o6qNoBmu_Y+3n{ z_-^p^HN+l30)m7xXO4T1jzJ}&Lg$M;g zlGYK;=b;-_TVtKQXNiX3s4aNKQVj5n0cr!d1DqZ3I4|v`NXaOKoXRNZhXdwZg;T+2 z4Y$0L^rTzU^UbfkbbaFOgRXDw)RnF(c5i5F3T?Q6>jY1l{< zva-=>Kn*=xG0iOBN^Bm9lv-eZ7G{tLNfnpvQ;JmmTDW?S`Z%oXWhG=0tAjKIuB{dX zZ0VuC@9&0hNi|#Cw7~VC4wP4|Gf`v)Lgn&7w+EM{Ua<@8PAmEWt~A_JTJ)LC2n~cm z|Eol8)eGpq1eI4<5&zZbGpxE{rNPD2#?-$fTwREn(63DU{Iejqbs!?yj^?s}EFVIJ z4^8Vj2oDM`3p*&OYRq7_HO#9`4^8UfNqU{7?1Ezs}o-j_f3myr--DHf{#Tb0{Yc|pYcaId7=3{R5XBaj`PwP8gRcj{u$tAhO z?bb0K8IBx^*h#N2LI?6h_ClG}-6JL)&|Pa)MHJAh^DEwZ#Vx;h~~s}GX=E1wXnFdI>_Ozvb#FO_K*n3(5-3g854IFw4XCW1 z%y#B}D$qkWYmH5dkSe1jsGJ_zggq}O4_CJ07897$AR;%M_U2tAcWa?Zt`9U*|9T|f z>}1@1E2nndtW`#)ICUgd{0MUF7#=xXH0f^g6U(&Jwbxwcv|qMWzt>ukK%z&UHjW#= z0vPcaI6-XZnBDtBT=WtQ6%s<=Y+Nr^+R^~#58Z-#5IHxGZNiebs9%hcUiiBQmDcmB8uCYQC+#D>H^XGv6MQZk2lv7ov)*+ zL^*t>kX%$plq$T51fyq6_pZm43{ zS3>U|HCp0EASCn6Bu$tliiIuI2-Cz# zEwbZGSFJvbA4m=6a;Oaw@8=l%Zkr<9Ib79yLW^CB?w4=r$)uxaPn6CvraCsG0h6{H5qzAib9J!Cl%dEY8a5rMwgKp4;rV#O$1Jp?ut{;U;zdgQ?p zZ=!;b7`tz&WdaL(pj>fr-h3Vkw*Fmftn*EC`un}JEg~Ch zIL>)_jy?Lm9F8!OkTqrVb0iz8!0rC(tm71SC8$d=ffLpRQ>pzC7GuCf(9-k#mvZ!D z%EIwY(ubdG&t6gVa_+PZ71o)UZ6ns>OGJ~&N4KBh&Ko}k?!Ads9I(_%hV9i;e4N55 zt4d>PzHK&ExS6h%H(KmpL)#Q&zvz&))8GAc#~T^@A4R5_cj%Xtp;kJu^OLP1M+e5P zZ^I>v)*VkQ@Cdd3cE+&v`hqmt=Nr#k(tC-_S{@SaJY8NZnJZs*Z*0!v|CxEO8wQ9e zW(xzha_+GvBLuzDp197(OS^#%!2hG==InfqLyX59sFGU5ZWt)!*7l%tN#_xYfD-tgfHO9}FROnk1AIv(87qLH<1z)qsZ9mJp)^0Fu0jL3)R z!+!&>6pH6`ehN-Uh#+^s#$R8h*eIq+S|JoOTOF;=Ha!t^DuN*_c-c-=KpW^fjAmPf zwQ5WWI&~2-O9JyFIgcx5`|l85jtY0xg(+%>Y?Qf-Dd#_aQzi(ucD1u)Ez$7~&Mp4u z=G*gcm908y-I9GE1#8Aj@-d>q*EOOjdX0GzTVhed&{?O5+dJUi&>95OXguaE41?WKwHX`4bGAg?6qOAI|6-sKw`^oORd+F5@`> zX+%XMHz(;0A;un0cgk{!Ec<$kA5<;U5b<4KTQ{|V2N4=^ST>52!m`QQ^6;H=-?j=E z78Dmh0x9Pk-B=*BZ$pNHBsck+cAuS_b;yM3$rkiVm1f6dwch5f1X5+9E1kY%RfF^Z zPp`yfX%+Yr8*>7Tn>@|-HC~*?+C@8edse-A)l*n?gV)7DL-Co7&lcE{%M9(MBFzTfzWkV`XbQ>}4q@VAiGArjG$WyX z*j<^Am+f$_;{MVA@9LBO?pQr8MhgG%WHEv!kOF@OB$0SGKtp6}J|q72utW|QBi#&# zp%C>+l6sldW(&tC|9Dv`-)%R04@#XQS=$`*q%ox+^R(yEE@rXLy+2N6l5=m?YtL}o z+K}!53v)z>lScJ;lX;<~^ZwnN`zKl@U-=cJ{M+a?xjVu6`f}0bE~dP|yk($wprgPr zJWa~E8>CAXY0ihYOE)pB020?)xKrzFZf83GtF&m#B+m=>i01~QdfrVc+;n1rd`Gq0 zPDfS~Q=%+@=7gD975GTg5P`25t(=f-`NoeRX!<*beg>}*i9ACrnaWC&Iie>0f***i zrX|Jle2sz2BXQLMA)TrjE9NR_yD zzXYoRl7MQ@{FeC<_mlQk?9b^EDn=?eCgooXL zbST4cIbn6at(<-+wxgAX^agKtsbugoqWS9N`h3Q#(I#j2=o!(TH9iZ+TIFJN&PmE= zeQ~|`KplyqKx9|KZ9vD{I==2fqxpN*s-Gjg=}$Ro+9z@7V;^s9cJ7-*-b}n3=;HT9(&l+*P7HZat+( zMCI9m>YM2MCH%lZoX{T&u5bz6jr&ak$3!B!JlJl zd>MbTWjj7m+10&VaRJQXsvBM0pqi(?_PPl6-TViZE`1UGdH#PO(L2@jqq^pdp zjxj%^$IpHsB|gZ+bNnFJ^`vzcfdTJv)Zj9ZN=OF}6(SBHkTz_~{tt`JSk5~q!w zz0RL8)P2PFX=ks8T*P@vICkP-yu;pFTX(-gEL#@9A~dUYm;o||XmPPOcv!7ZP|n+X z?aFgnMMFX~d&5+$+;R8+uz_69n{EH@V2##%t6HrsCdQQ%z48bRMAgbM9;V4NZ?T7w z4=F<0@F(2?MxUKG6Saa+2*3B?RyoxOy zS|`wAM;M*09M&Up<`;_3!)FI3);4<^1ObZKWI|QNu7^(1uhqGwdY@;6TX@P26``sL z(wpKr0<7nDcp(3zbcQugRS<6?)qfPdkhE+mp`&3`;^wUSL^8zC^RxTxmVYoKq9|`rgA*`Dd5yQ6b}(PkH3KuRM$Tnd$HE~OWu>f z;VJ}N4c4e{n}}L4iBS>AbBVz8k&JUgDDbu=U$@E}cv^DZJWlJ*B+R^xo>NCW@LFv8 zTYMcXmbYabi$tANnXfM``42Qb%d`Wb)*bWf?)5!#WgoFnjn9QfdW{R) zb8}PU7dD@A3nP+u6A!gv8pxgmg6P?&5LQ46X$1~fVI?GPiINP0=@11_JSz9Qn&b;k zhTWHU?|#^$@ybS`pi+l{!|Cq2?mz}`pfm}Y1#Ki#PZ1SKCKKje;QOF=5LB=+6Gpsh zCtJX}&`2UvgEvV}z^Px3iX(l&LE4^O1J%p`45H;tyaHB9vBhwLp!u$O0ia2902XVQ z6Lu|hhYRVX&G{e2I#UqQM{f<9yuSlb9r{n_=Qx$isakXdYu#9NIm|J$H1 z(!kDt6#rhf91!?4ngj5vj}RoKm{T6DSVMTba202CNJj;5n5GyMKa%%)zG)Q^dc(LGn{K2hXU6u1lN((?%Ju=}j!60H0$@ta zfaf!ry1turfdp`AlkawpDR1WsO%xtB3@SRk}P zPQWcg{s(3u-yyjZ+yYnV=v=J4EnKp%)lQ-WqJ7`+BAmxcUw+^}5n$R#(69ddr>^@` z%FV-mZDjDwrrc{B8X?73I`@k%Vx&^Hyj*4dXsOwfDf+l)Tx4~iMnd^VItSMiwd{#aP07I`ry^d`F=<#Q zx%?~+>jz6m2tjL4Lo?LId27Gzziq62%W<_(Y#;t%ISgU7pN`~%DqgU4-jmyUTn*dG z#u8}>ke7JSp1@D2c+W-9Hk0W4b*NwP-7Vo>!Cl7*8d-~L#;7BJZMhcL&eYF{{42L=AF5a5;CdJ3@Dr4EYLLT}&SG!O_2% zS$gx%8P^80P_jzX7^h)yQ(lV|9PIU05ab4;v9$g>h@0y9ifTxGHg$1*j>hu}$n|q3 zyiO%W!rKr4t9{6<^&-LhCPrJG;cQU<$@vhi%fyyP&i`Vj&2*coZ`%eZ$8L9twYIagX~77e1XXajfV64xR^wA>9u$b<9OE6x_2oYQ;s^N|O{`jMS*J2Kz`k(k+z7S3m7mhdi!6IhYi@Vfqi3v*HG z0qN!p^JZ=Fjy2@tm0UhjAsj5Z#yykNS#vS9cdx)HzYGYycwS-aT>Et9Ww+ZPjV`6| ziQ!_ijXvAwLc7@{W7f!g4Siz3I2H!d``Jl!++pMEbOF7s!lQm^`uPN(7M>vl#Ca3r z4t*A8zMt85+v_B+T)%&+_|Qz+v*~oAw_rif;O^F}+axlSGrKU9u_-7oJUh@#>is;F z{TUBZZLT?Jc$<3jP;d$1>qsDWG??X6ICJtsPgW#_U%s2qv5uAC;noqo)y*%bQ^G$V z%q7oX3;9I?HADJXuHo6R@9e$!nJGf$%4DPk|79fCC=VoWPku5CrB&wc@}E@j%k1}B zD|Xf*ych1|Na#fc`7X$-EAA&y=PL~4nl=A0&?6)j&Xm_wq4}DPDf(XBu@)H1K8bbd zc1jse3okS_L!T%em`p^F_?cxJ;xloq4;>Dtc+2)9IoQq{Ca^ReHltgueHTLaYB>2W zUEVtzy@-1fg|nLIyc3r1y^w3Oq!E^ki_Ub zdzVgni4ZO=mePK-Pc8(!9%zx*{HvO*wFifIuxxQNs3;JKU3Nm%Xg|w>B)!9ZU)|s# z(dYS}pPhTn7bki@<5y=dPid3FJ;@TXDYp(>09eIr0d5`*wj;{8)2!vA<>r8wW72U( zZ9}}l8HQ*pr+ZD^iZ5%r`?lI2OYYe&&g2(y6xN&SSprDo;a+vzS-T2vw6*Z%?N?(b z$S;;nJ)_koKe`;`{&MK#+2;UM8Q(ld*~gm`HS>EaR5Q>==$%&pgv=cxOi&VXNBs~8 zb_P8Dl=LqQ+ZV#7W-AIcp1RC3DoogOZD0DyAIy&W0#BxxhKXkK@7anuLUgc`b(cg& zzf6&ORn@lHdsnWKT~8{jS4g8L+7jq2S-LN?zGI}(1?SYtIr4~==^#n2lF6gM`lZyW&AWxW9&7iG`oNP+D*U8-hn#K zZ;DKH&MXFZQf9CwWCbh(JBg193c%D>aGbO-Jf zC$2l;?pNIyp+<-)n1|Y(U45K3Xx=oG8LLAtWBWuN)A;ZQU{DORgP0N^1eOxccjrIH zQyN$=dUuDg2VvQ_YZ?g%oR7&E$HKgHZS*nvP5g?*7o%D;fRXV@;^+xzq$d0&W8fl# z`Jun#9sUBbjOx-xX+HwuHyr22_yu)YjxA%Ajk3cGEOnH3xb0U>U+X^0jc^{lH+`jt zg<(nhkfd#VhDZ7@mK`gzokFFdFA;7T|Ygdv0+uuT8GrH%btdYUF+x z9WotNyMW+=x2wT{Q9cK36u}sB{Wp|pcI^$W;77@Y_P8An z18%*4N|zRFe_&rY^0TA_%Yq!W*yu5h3weR$%nCa#xXe8Mk7CxmONHfMlN!cNW5i%g z?7jAzu{K)JEREAf;F~|YEPegw@i$SSrX3Itk3Idr1ZrJrHVa@I(oG~{o!EvRDiHi=;Sy28T#Z7Wt zsdm0|QrBBY9}jyEHjzlJ&YR;LXG5VhJ016bu1#>9Tlop;p@6M>09lu57fU=zYJWb%8x#+mEAJ)L8;7ktXNHBo!gF_F)- zkG<`|#y_~#wpn$89EL2d?HM9co(RuAP`*k@1mJMm>UsC~Me&gX&@^Ggx~W))XX^&U2R?Fe=DA|Cc5C2+d>KEo z>hqq@V3vaCZ)}55h%Et6lqZi|)I|Lxy~0~>$+ieL$jn~j(XY!~dYON}mphG}ChXBW zdKDbfU~W8!n#ImfP~EBeT?;clI}Jp*WxNBu$?C+Y)mKEk0)DjKoCQtq>EUI4(_h8=9*8&=Ie9nvK?U`Re@i&7&00 z-!F-;R=qtXvNdPc_7SH#+A}-IzvuJaJ%02_6QI9GWdt!GEnO2#08(@EiAqj(lJ(hx zrsF_W=^ny*9jkQn%?Aw!nWmyd_G=qoy=;Gg%1s4^r*!QWLx-K@7SYoLwvE#fU~3W| zB0Da6Jm(RIV61wli%t_P9)iWNt=h+gKR8xOKQ&{f6tsOVzAs}K-n^HvAkMk8ID%VT zU-8pMojH{pEofYE7;4d_F!>ZztJX&nUgf#JJvVY9zj`@_C!XE}-v29X2F?iVXzO8j z2^rYlD8JS_>h{HvJk5!-7K@Kd#Immo><$XaY)-V_k*MUnBfMF(yeX`wZntx!DDfnp zMz|*7qSg51_VP3#hN=TWw>004QsZqf(cd@nO4QK)kK$x1BkJ^N8D9ZeGeb{WkNXL{ z-4p~FnPWJGjyK(sZ9_!c@uD9!M;N*}KNzFmmX~1($$gN{dKD`k|6>Cc;86FH6XxN3 zpU9?RU|l%{EEU=C>ZRVYIC#ZyIG!7Wh|8Vu8*H2-l!@`7QOk;N>!JTxurH{ef6TlS zG$o@*6_Fe1`KjXkbHVt+kNwmCC^$pjuon$E*vo>By3;^O<_w+20<(I72vJzyED>nT z7|Mz58{XSjd9>7Ldgpn$EEVN!bCXVu^?wxZW&ggHEq0$Ha#}fBZZ491amO&GFsw&h z6DuWo9|OO>G-o~dw45xEzGx&tZU>`67KF<44hHhKgJ^9LadvXR*$%XW!hkN_SWk;k z3;unMV~I{pug!bkR0-d==6=tWdS^aq_X#K$ZzT)Lt1G*ED=k*oBx46sfa8|jO!xr4 z0b_xhpElPJJku(+PSfEZxeZf?Ev$s)Rv0?UWWP_x1UlYo@1xjY?2j!Lf@)w&=PI6d z^c3)$7gwLSUUY1j5=4m#Fu=Xb;MWZ4CbI(f@_v({@_v+`S8<+9+53wysrQm%=<`?l z6EuM=!|EZJ6szeXo2{CZ>@3&dmi}Ps^1RXvbZ-Z!8t5MZKZaXDtymUO-btaiOE?BX zY47-Z_L&k08F*#(S>oaoqThJ%pv?5-wY|pXAYYvCpPg)7^Hy-Z+j+Wi`&+yyAU-W? zy&xupwWz?B;I+(q>MJoZdM-y+Xe9w3??2iAVO;^@d}^$OT+`0`IE%q0En4zXB|h8H zCF)++DB}hC1&cM{w7vsm@@NiM0DH^s(RcW}gE%(WN0myhEQgiIN9UhhU_ut|Zt)nD zNGd+fZ!RqLT!MgUa>i%tDwL+M)~jrbA~#PR%_~h#(t+>{Yh8l*G98O$hz5=-5*SYK zbT^n@%xhk2c-|a4kZb?MIb}K}nJp~cyu}(Nya~w z(}^~A5w3J>Ca|AI5$3R4)u9gv$<7xod8u0{fzCbo6SwD^H}mu=>Ktmr8C)M6BucFP z?S{SU_I7AtS@z_JZq~q58;;JjOir$0Z%O8mP&SVoB6t5$6E{_C&nQIDRTRKLpeef4`_~uO1=SSA(ICsH7#ZP zD*mMokwpjcvca~Z%!?;ZMB$ZQ(!GNYtHm6uC;$?~&9R-W+#FAa9LHE@>N#H@|I6n5 zrqGoa8HEYVY^I=I-V{VqM>*%G4Rx|G-z#zT96zp*nj4&kJUUuv#3qReW`x2rE zxsU6)s!OAxJ?<5&vzBLD_0pBqoT2-zV5(`%p+{+4^@)biLO#C1_*GFM;_9U`Z62o_iq zK|I*F%sobJt(|N*iU%AK<9|OdA+sn31o8B$FaV3qe-y6bvq{*pFhJO|w9MBU1~fjQ zjr!FS)uQemOG7Sah7l&~T*ZelFq6 z;NjVllPc8E5p#lh@sd+|mkI~bHtsaCL-@nLzHG--(_5lz9-NX}!@})@<#6+&U#IXg z5<~92&+(6(tAk+zs~hbeGeBsZbV9UJphM0g*w)!jKo^2wgU0V68)|8Ni&O#!=buoH zz3vH~`iCihk}oGv4Dm>t_ii^ywn7W~YL3E0F25*gW6Gk;FA}0!L~MGm=J^||*}F0> z`1cZPzQr_(nejAwdL&(zn8zti-rt&iQaQgE&-vT35s|ZWwS{hOv-M9v1eseKDyAQG z`xH7S3xU=cFmCbfIXyJF|q2&Knv8doS?ka<>x)9Z0TQ#$q zk;j}|!L|?+O$&Q~Dh1;>A9&hmsy+Ke+lGcA{o-$FvrwI%V^Ir2a-hpFOTKeGu)3`G z;0v2T$H+Z`B++iE>)v7qkH;=b1+%L4sOIpB_w$>z5^{=tomYdSPaK(*tkSpGVaTt4 zCUPU9Q?rkPE;j8+viJkQXEaX&RS;}((Zj-pB6kqpXV?91E~wZqWXy%$_lh;i(+a2~lTbbC1k&Y>&4w0HDtAY^aOW)zIr!Pqs<#;UI z9sH9rR|h+C;>t@umPlEV${5GAk7n`CZL4Dt;b69w2VzmBAsTqvma>&PBj$4;xYa|2siaI*V&Wk@T>+P{2nPLY&gYb|cwaSMy7-uITbNPfTZNpQJjW`w1(vd0 zg)LU54Z7c?o@58o53b>=Ek`?vmmuzT95Lm9JTni!{b{g`U-#zaknU785m*_`X0O9}fR)Ud)cfZ=1NBZvP; zen?}I%Z7iNM2NY=Wkf-oW5;Nk6Y|^ayy`bz7Ye~oQ2YMtq4GobsdKz{L#&@PUuVxZV-KxR$xjTb}>4y$WUtUm$fsP!hc+yx`J`6*9B&UtF z^SzDrrUw?$9W5bAw;n!!p7$cPlc6d_DKp(Ft$d#wr%e||z5@_SeVn-%@TNU^>G0DV zjlMB?+qFz-4>1)1dKC|8p7bht264njPsVPrrA2jrS5*?Woh6MZ0p$;p+=IeR=@I5s zYVpS1Y30!1_KQ2^KYP9Ss_wZAdi_>Jb!G4j?Oy6?|g==cTUsAxq?(QdA`y$Q7nxQOIJV9v2bq5JLv{!Zc%l> z=eW)~xM^~6R57iNAnuNT1ZM5>`0Y-;_;sZiZH#u`e7=z#^@*IuaaqMD{h>f^)~Gh3 zPSa>1chtGx+$ziytg#iq>n%pzr%LsEy~ThzAPP~e()#P+YlDT}6`LWOYdjQQMrhsF zSG^^SR!eTAg^9RUi{GE#x=3XD1o@Eo!K=OWZ_T~JgwO9v5$E?z>&D!;KH}L|9K%V9 zL`8xwMkVWh%s7RSAYD%XbVquCmI77@^)DJN}#vQNpVd4BSwV zdvol9Y%8uIHG@4JT7UmX(OHKz)xTj}MMXeBKqQ4%0Z~%AnTnFa1f*jk-O|kzq+`;O zdyxiVbi?Ql$;s%^y^#a9y}$GO|6JFuopWvH`#kr3f9}jQ8S+i$0hZfmy{@m(I-83L zdcA!jFeS@X-tR6;Dl-S-{KI`M@fr^ss_X2T+i!A*k>9wbXu14tvZmj-T3h3zIYq0) z2Cu7ra6D-M^Z;OlOsy(r=b95FXNwveCIo&PZN2;U;LQbf?7(Yj`r;kP6WD63zHEcI z=M0HAzY#_jKIx%SIEeGoc(fO;fuiQzT}eqFQqrHY_d5hGHOc1q8nIN8E2#$ z@a+HoQRH55ObmR53Jel>uXL;aD$uQ?tig6EXffG~lydshg}pm~z^L;^##O}R`SBo@R@kQ1-JoU`}A+{^#u@khy}C+VQRz9?-&nz10QOw14dU=7m5 zWIM-_^8i1AZRw$chl0pkO)&Y6DfK4=&`N6f-Sob7B@f?E?^8NiEc@j2$63A??+H(sZnfH9n*eo|1*4m=BGOobp_x&Qig++D&dKfPoPS8Fo5sM=3F@<6 z5rc((i+lt30k%3+`v2 z?zu0RQK9&KRxDmN-zyXKtC|qM{b3M$fVAbzL8gb51B{8>e@BaHAK_PPsbnxV#{`u% z_pp55a~4*atwDh%(;r%*vTnu`;hZ!x>Txf8TnPgRW5$1WCR<=u$bl2s13c5}9Yk^l zvcHXGL$9Z5XV@=r%wy-_8;~m!9sQSZ`vNXiu)J=qocfG^A*@XYlG()jwN(S_(cx}p z<_lHBsYF^C&YFbOdtU`waLHA(s$|2YNp$L|FP;zook-f71Z5Jb%9Vfb?`jGyLirz? zH{f*6144_pA-BY(d764)l6B>aOCk$52MuE>rv64Bd>C<1-gy^vM1U!blWQIiInP&X zoHQkP;lOLjiU0gT)CxYa`G?O=k*PNR-CnHf!0{I8PR8I$RgyW;5gNvGxiBdm`xq|3 zcIJBerzaJJChxz>FvMT)IqN)CG&c;K$lbJ zk#-gI{bW1auY&A?^P&mdKX-Cc<|$7z>Hul-SmUJX`_8O6(KyO* z7u8e$<|Z)-yJT<^I=gH9>t8P7-#lLIqFF_|DC9o<8Fbz6i1usziR%P3-Lm^?IsQyg zXLerAj9<;W@nc-MfU(g>sUfYM?1=Y3JD)aQirnS2iF;3={D!(eD}bnW=krLs~_C=l*An$JiGyl z1?2T`SxAR4o);7!EN*Aa#RjL_yGqTy?OhfnbSI^_A?#z*Mr>|}fLrQ1YO@tA4VL^6 zAN?YjcXH#n*O^r!uKcv&s)jqpx z#B2I8;`Gd1>}I`>o94kQDE+|DHDF^KL8AD!ia!&)b#cy&3(MZfN-`XkZmIp*`=wxQ z?A;;T{roLy=?g?~Jh^ywe%Vg@qT*VPw$7y7|AB7QgttVPpuDyRj^lb26)Ri|yJHVR zqcD9b?+VyI^D6q_FvtNv7Yy(u+Tz@~f&^ zF7rICy(M!0<(TbV!LWma?@!smp2+tC}?3#BBH zD4zgEi=NcCMo0@muXK|eZ1dnAXn#jJDK{N?3B^XbjEB?$=LUm;ttA7b84MS>d>;=bmj5xp*Nfv2(B&TpKW!4qneAlfm~N7Yilzs!b{D$BEO-r&bQ*D ztyScvX|=4VYCetL^hIe=+NN${0qgap7^AuZtq>L#Ng^XnE^*J)aejl}4g}xVPZAI5 zBkgH6s4^bwygXK=S|PjiV%+JH&UiSPl>`+VLuh_TL&`nVz%h|1q^`k%%6Lh5?RYor z`=f~+5@Tw>b(J4xPqG-5~`I;)G6sWlGm zT;-6hiFq-7V=$VuZVV5gc4v9gQrnbB@knOXi+m(5CD|oPmZNB?J-qJubV*4zPCj5U87rNa2I`CAExUxB6&i!XOgt*eAixV^oLS{c z(aU|l*juzmvVHe|H`2R65zO+#Z4L?Ca)+j+R%rK55Ks3u>scLoi0A8DsE>R7QS1$6 zDh6!-EB39`Eh#md z@7Q;?6-h50!#zb3;>VAqiqzX=%;~S;1d$O3;P(sIp!kQ&L4BZVrXDIYeuJbQ?;X!z z#=tj8VE8}+D!}hi!@XUDq@h?2x3^59Zl%o-z3JsW!(vbX1W*~upew@Yadqr|^DE+S zf*wXAz)ovkI5vl2vQ^hc(cVTxtcxbRarcU3Ol49Y>ybhAW|$# z)Cp;))9b;!{TQHV<~xMEypHXN+Sg_XL$?-W#Bv~fxbc~CN3!C}>_$SUsi_cm++!}7 zW0O_!Y~kj#*&Gj_bJBt{v|($YHxBvnRVn!$+qJT_H@ySwpMe;`3$w`JK2wU zj>(o$w62JIhGbYdLU*rh#VV2!oZGPx=hMdduD8Z5d@$5c+44M`R;tPPe!F9pr_yOy z)W(${8WBZ06&zwklFg14{etq=VYyDNz1-Yu@#b0S;UpT+ShREr4Gel&cRSoJ=MMkIqh&xX&IB+pfc{p;V z%|Ihn*XN&r0#|{!MD~pYFi3Z{)`dp0DMflz(dwvSJBaMs%>gn8VvLA*Qq$-ToWxq6 z2Cm15^!*y89a+37-GSg2Qd8Cf4grw#0^gH?KqHjBCzUyi^ru=Edxf%9= zkcy^_%Ha30EY9>!byQe7J33a*-GVW*)e2AsH9cuylY&)o5zYM16e~-R0Y@UGm5IMD zr#6m#0RPI!4(U0mJLe8Q6c@O6LeQU)m%)^O#!&n3X~8?wSmRR%%IRxNmW+l4J7OQb zzTVTb$Z?lJNNoCMhz4RcA$h1nhvleUi{e#23;H6()aiA3AY5}BjSurHHQ!!(1az$) zF*!)39enXD7w(lD_Ac%Ja%&8?(lkDDcbPlKu{p;r%#FC09HbBTZ?BVX4p5$uv#d$6vt z0-@e%hWtecx+L(nPU`!G^}Km~QPt-L`?q3Wk>lZHkg36Yn62}jI($Tcqra12 zt5|^VL{TbrmXk+Ffb%G*V(QmEhV;hIOTDT&(Y#1D_%Xov1VufYvA{c*a=X7;5t&*N z|L=zWNBXfFg9_mC!1E{iWj|%3S&a}K=Pv?e#UHZQ^9gq@v+lURoVA+RmwNk}sr_k9 zTsU;@L?bw5IK1ogi@_lWv;sgk6kU3jI&?GvfaufCHSsZ6)VbgEp%;|R_ejmpswFN( zyh?C7j8W^A9p)d8__JjmCe2>8z&b*_>`;Mz*606j2#;J)1^Jx&5G#WPe1|dhO>4BQ z+i3G&v)dYvl=QQ{m;U4T z8&$1W?Dzfzy?Cb=>)e!Ot=22yRfM<{Yn=LLYK@pFu+fU`j}mY`bmDp>yEvAS_5ol= zD}fyjamOO5k)Dh|$^C3glj7J}&}`;4e2rxLZBLOIc%-nOn zh-P0tPhMk2;Ue1p5}G8te9tj0&A`1O(o@rR4Av(y3_6#IK9&O6@O^kLGJ4@RpggV~ zHJftwRy`!ODsjFdJ9sS;9~WfpjPu9HQ9Rld33B9}<24A`U@6D?%#YWfgeM%hH3Aic5Kv_U`J6P)|TPrw4 zw{xnv0`tDgUQvHK@iM1ol@kp>24Z%aVR7ZHf*7hG+YfWaN|7Rts25m>UpTsiIduGEYAxul9f6}W`K4`q5)^Sn(#D{|C@9FWr5JxKyUuI$RU)=Z|;N0r2C_CyIhl89KVvXmWMn`0s zy6kz=(@H+9|FYfd^>fQHyW=C=k`COhJ-rSiiF*yZlY~g9voHrdQWhNU6(`h3?f3zw z60?~)%fMI-t(ZEnHrg=argC}NFA%KPO*3<}^swL_Pr#gTf55&Uv+59EUQ%`RENXk% zx@0Mk3cs^L8v=CAL=ebuG?=A%qk1U=9|~(P_S7zxEn&9&s&Ip$wZr&)8ghvl_7*xB znfk;t`F%}8gWs17juWIJgy9|;1n;%F96gJ6P_n?3nJEX|ViBU!5cd`%=Gb_VU3?n; z(XR9k5>T0ZaKzB}kg@27d|{WtlB+m(vm?zGtJsajKGfVn0N#9XC+u2ykOoC*bx zaNd;H#%lB_K1ZFI47@kzYYaa;{9{f*Xu`mT?|*;ItjDMITEGLQjxK+vLm?E-$U`A9 z3^aG4bQd^w4OhIYTNBZ%$&p(TM?F23?uqvX4iY*mT+F=wGR_ts3o4yEVHpP#w+wMi z(OxoEygu`RMt%*( zKQ4B~=~NogIQ;TYy!HW48R|sQQNk_d9iOAg-gX=q|J;`FP^+Irv9k&y_pSMeH_oJTbr~R~0W3UuXE9p?6FpWA-u&8=6@yU(^G_nlFb0GleR1 zJ`5(uk1Yv$&)8Hxl1<6JYR+zbFv`N|>(#GhhTthD&rid=WvWLCmAeFG;-o&-WUf{e z`6y=kiF?=`i_W8+P7KAl!){cvboQGUA^eYD^r@Gg@#IfnUH99rUqd^^3UTGB>DbV7 zNgPv%JjDJ{E<4lmTxB;W`kyIdBQ#j(5;pEagYu0G%wk_hRTK5WG$`o z7c0Zxxi$?Rh1a@vYk;GnG@g3}6J9TD4B2$B0}Tl|QqM1AUAXSw8xQ=5>iTRqp6UwG z_L$V_wA*|lvC!I*7D_Gy(<>P+MC7k=|-d2;^Kmz54=m)G40wp@%acSofbRdX+UjDO}nKp zO(#=;%kd5*rz>_LU9Cj(8Mr(_aXMI*v`FHcC0MS3SWWkuT#?0k#l^-t-sVnA zzCG3mytSpC5`5WJ&9O0w162&bKdnlOhrzq6j@>fP>fp9R(JC=M9}m z{1asNHG)eIe}rL!J*cHSfN4hagm>{=2J3}9VV8TQ$L!|zqb$|QriI_8+HE6#+5I|U zQ+a2Ja=c}Rcyy}Rf!Dm|Al$->6?PZ+s&vRYQ8|x1PmSCZ6$>eAu(DmGa~vs&Luebx z2{$5b7McnV$KTuCRt+9>Dc+*A{+a477XTk?5}KcG5lk2iv>@gNlaaf1X}-* z7h|YchZ#>#ve=%--+5*f99^!bm937raBFglanuBpVc`VEq7~O(&RApG&gBpYt-SW{ zc}FIpG!B9GsqoCA`JUpD$$SrJzUlp9vI{%W?oEU;i~h4O9;vA!WyW#LdpyC**ggp1 zp(}~vGT{2vf-f!R9EL$Y?9cZt>jF8?p8B5kJKkwjsub z0yxuhrOyxr1+3zePM0Gtt}#8lL+$_FI96ag55!({b21RzCTolHgOp6LMKR(h(y8a4 z&#MK|&ipNuL-)8gOvw_=b0o6`6d~H3+*uGX*A|xfw+)v_!GYDmNUgCT0fvI1d9}=x ztwVHwu1~nmto1KlQZV92eH^qFVY4NOAkKI?f;L`hMUxyO)m3)%*l33e6Htx&JG8DT z_N;JXc;nm2U9y~?9c$8v@)E7uQk~+N1swv6Bbj?j!?9+*9q_XU%i|E=1?xs>I}pWO zW+olYDW^yqjq1u?w)gjc+FZ^=UD5^z7{tVNO@#Rz1-3kHGy>0|RhHn@%aLcxEWy30 z&0CR92md0og>^9ek1QW;9~#S79Qxg(RTw-l{rOWlE6cJTo?9n1g4hlAg?1VeUSRa_ zuvJaR4vzaX^5BwXynY`r7ia%Nvv>6_0s+KGpb0 z7^%`!e(5~lw1%VwSuLY!`#7m31aF`>={}RU?JCHJ>B%uM+P(^lvNFFhXGm==ilBX$Ej98&PkSPNu^#e|fNwMdAo9NhZ zFN(wa-_+MirDGl`em4bU$zp|=8WDw^pmWu;3DzOuOeK@fc51wv+c|=PVtJLgQt-L}$UiX#<*UCrWFU*tIMLbENTO)L$EHc{VQ62z}Pf^05s#?V7#mUC!F z$Cklg{6CuckT*?kKR^pk4Z9VFMCOgz4J-^Nv?R)sjR$8-|F#_+&Q&v383IZU43(Un zuQiOsQ6Sr}RxXFX-hY`hV`7uCJhD)A-9HjLWu#i++gdLQwBgTQd)W)Tanz^JbxnOM zqk9V4DhT2>&tUffe+*bAFdPPCx<*}{|I7N;uvL8j$QAyBWsOB~t}i%cZOeEyN?VT|bO45m#P)`(xnvB`lTw&^3*n4n9J;Bwjjd&bK|D@dCX8 zyR{gofa56fvvn((*RVhLvN3VQ8&$Q^>W zSvs4wVS;*psycuB!n)3VMt=@)n{roFObm!V7QMG_iC|%$%7`^l3(=W^BB-ZI6D{m!437%&-FkKFoJ^~v~z7|@B%;t7`?ggXEQ$GgGHu~vqwT!8G|+_ zw+%jXr_oX98GXp^NPML`Y8`>$GZc92?`t=lz4J>=YGY(FxP?}5GBdBW`=D$~xMF_}M;)!6!d_*M9|iu~`Uu-S75c4XlV zjb+O1n`X+SBq}PX3ucU8^ex3+4vf=DaL-TG7+j}@TSs&pg*G4N(MBN@sVVjkpC~i= z+nLO3{Or0+6jifXPwRN{vnTA;x^2?_^k~&-akCq|jd;Kc6}KNZrVw(xI{N=au3|*Y z`tOESo2_cw%qe&H5=PA`V>;Vim+r^F{YSkl7RR$6I@Q1S*uHqOV_JKX^E^+VvY?2m z?N>^gK}!qr*RhapOb+74n^0jiCS~K+D(N$+E)rRT`y*j}( z*1)v;$MlS>4=fw|=0fTjWL(6qG-;$dN==u>z?!bsrDs9l^q!46$4+HI^W!8}&Bw^$ zT--&^(O<4U$za|YFAZo^J9}MiKx*P*>uc^=T~j8(XESk@NfwmKZ)3yMF25pR1^tHi zyYh=D#he%G7y}%afcZl3ic?90E#ll>5R!n&SnlGCG-f>L{k_E8*ceaITGv*|X;+_h zNO@mZB{`YCgZld!B0tM%t~ zqVBAw`ybsu2VZDtEBK8KqnRT;bTSeT0XOKA!i?tUKUB1}UYTPTbb-07pg#BU@66*g z`g+ED>-3H_0-L^nkB8HOjKmtanw#eFV~{A_K)Q)fD6as&TDE{lbl0Nuv>JmdFV`j+ zcOU{a?Qc*P=UZa^z}+!TE2quHT_@}wW*yVEgPi&4xgfvD57+4Z*0`B-)pOAjjWZ++y`i}}vrT=eTyE=g^%W(m5I52@+hI*_?` z#1~e%Sl$jkpmgC+>g*tAVZ5Tz(`tSBLC?}Aa4}GyHEV;z z1>yV-?{Q7B%Vd5BatmM9o1iL>O7!!be}mWOKaTr*x@Z17Gt0@3mWkCXDBo-6@2(f; z9N9StAG8G_=;3M~9DX{1I^n~Y2Hdi!zm^5p4NGW&7%F$xs%AWk*sh+9w7}7vfHI8r zg4UeE9@rURy{f9_t(3H_sHkpcgd;k2;yHKniBE1FPCY-`vo#`z5h_~p*z+a%|;m^rE?yOIXL?!}f$E3_%(VB~0o{O3}r0p_m zpab!jyui})7zh^pt=6X@+}EmUs=`a7;UqtsMGUBjyQ@p)QTOdW|7HybU+=0zqfRa~ zlSmst-P!n}SGLY1SRb&Y~)Q__>cE}{r{*YtICVOyJin;CLo+b|1GEoA%v@_dnW4+mlk3?{-ov!U8e_y7!& z!k*vFp{gT?FrHuWw%dCcONF;K3r@e5&@UecCUqAvaSQsgixyt2O>;s{B0aN!A}ToGlwx${c37@u{2|QF-)SE;k0G)_e3p1{~S|s-V6j)TM*lD?$&|jdNh#ISzwS{Ko5)Sn0Mihpq8AUJ+OeEb8?AFoilsz72(B~eSF2<0 zQ!Gag^<2wK#*Nn2NqT{pea~?P)|tvRb}Fg*^Qy{da(0#sB|OfA&#)v=PjEYJ^Uy=K z@gorp{XYjOdloRC`8j`p;4eOUeR|XF>TB^z4A#P|jsGbBkQ*U02&hj({qN*;+j4KW zD+?GKwoJEA6pNX;q|f9xd+^gM%u8eo(6DA}K5afiY?|WqvIGO1t5Q}YW`qf^AHkfz zFdfi~3R&K!X}jZxm!08>KKHpWyAs+z?0xgHTQ;@D+_u^mx@z?2w4BMfIbkDX^IWyS z@7@i<_fIq-Z39#5HErX!3=z(wkIIX7y*Om>M$m$vD-)hAeY7k~|AggpuV=-Q?HGM5 zc|O$F=z#Y^QaW0bQ;?d`LCm_S%Z=%Z_tRGI8)8fBKACa*xog4rzdt8oHuwIXm}?O z>4W>BRD!Ksz&5%JZ-Onn8VV4@aNgf3BrUtee{ki#wklQ63V*IDPm;isETg?@Wb4v= zTvH=v0)%bDKax~R2_LbLkoJ3|@to&)`07^UgbP7#HFH#%`VIQ{eg2P*vCL2rnu4#l zIhqin$)zX+bDPT~ZQ0a!*T=M5ynR>m<4}p7dSxRa_CdMyp)#4vC`F{CW^j}i>&_o- zAM2x-jI;i3*YD<>c-3eoBb-P~Zw_xm>iyibj-nRdL8ZveDH!aw6N9bPgq&$#W@>-C3EPk20N+qV z?|n!Ni0%tS|90=|F!|Q_gZX_wIj8!}KO0q(!K3Xg6B3-9KIIr_9;u=!WsSDI{<~4b2|LA;xP(Ij-HNFI#>B9C zTDSSL?5u;@@SUXni$<4oRFtb*&M;g2S&FfX_GUZ|b#?X-lgBCc6GfoFKq8j-rd#RO z;#lpxf;c~941cU2R5Zm7X!n7ghrR^F>Yq+#J#1#+OGvHyJ0_KpXnHBx&a4Ar`LXcH zGUqRIk^Qnog??Q^4e;KjV6YPR#wza(dJF$h5P^e@3yc2rnU5SOD(pUjQ<7MHUC&)= zrnrMXpA6z`<2&>@%ocl?rw%x$25O+<2z%k5mi(qa(&~!0jv-~2$brdZjv9YYz-u*p zP)ijPp&Xz(*a6`dQ)}Tp{K235y54U0`I$mPUzHNhcEvVSQQQIjS*RqB&ll8t!E~%a z6BzkELv!Al#eyfJt||EFQ$R*nvNf2F&sAd=3F$wPDSF;@D0}6&>kq8{7`m0FJeQ-B z&_WIWnwmfi%ZldCw7JBTiIM{yr!HUhEbYg{n-Cs-eW*BNd!xdZGS2$tDwn82Jbb0F z47-ULq%IiNblGE#i(?#l$L`keP1wV@;h@G_q*{q#n?(wh8W0@H31na@Cjsv&s<*l= z(Y{*ESpYMs7OOL7_AN2tM?cXdHZ~#gi@(8kQZnEq&{1$2>PAba#yft%9)(%rU#|v< zb-`Hz<-7#L7LGM+q37iy>%7eOP?fz5YiK2OU7oR&+M?lD8*6<2#xQdHSi$yOjhJDD zpIS3<1TpN04i>60pFpe5m|bqCE65L|<52P*#-H6Liqsm_Opp1y%AcjcfWyUKeqd|8 zb#Q=nU1tQNuzVMprQj<$8dOnX&V_xx9TSj4T03T#@A+!({$2g2j$tdi${E{ z(U^G7pfH+^StxtY?S0>h!{To)Y)E7@%%R0S>rsPGjj^YJ{&sw<3tt_%vp{+C!U6DI zLcRqGwFCgKdLJxjO!=D3qjnj*x09_~XlLW3?N?g`LelB)0x;!lf+Jv>`?(ecap81Z zMY55&0+m|v-K*9>GaLKvBp&vmJ;#|!4{xzHtf0&(DSnCCzsi?P{D<%6{1*Gk_^mc} zNiI4t&5TTio@0sdu}ta8@$L-!;#9-g0v0}>bG-uVAqKpw!N=f~4De={IF8XZ5rP)> zSy7>ixDH_e=~SgL|3<9wQ1s@YJmq<%Q9Bo{=guN%!=B_V{YXWiaC^ek-yn*jABm*i}XaT zRn2MKiOFv=)op-Z=G% z@_8$u8y~GNCrr)xU`J%{=n_ z`T{>5p2Bn631oeGYb`$9a@s51B_A9fOsmGz@?^6SWCi}&)G3&d=r$%|9&B<)Q-Zh? zY-5Swh-E3POdexH{H_?4u0nKg{JNWpFL!DIUDwF7KlXWZLRwB zhfTC47)Xv7O<)QMgVFA-c+GQ=L zj)%6n5i#+Mx+RRi0BsUF4?h>gf4f#Th7iD55bTt#4L~Wz%Ls@Q12hvhQ|BhZ>E$-B zSpN~J8Xxh)019uvZowcE(^e_8#B){oBXJh6zbpO5L3`n08L&Rb7{uKC`3!a|yj(}& z4Yg$#Dp(4Mod}q1BrZ9->d3Ktk?&od(+a?u2BxfOBo;g(?87m2vi5J(%(RFGx$7XT zjx!a;^}8ZF-nB;-)+u~z_lhG|;deu@1o*DK2Qg3kc#D>NzP36+t%)fZb$_vQ1*N6O zCsu)y)8C%2Yhx*ZIF!gCT0FK6bZ9BJ!PM=UIPj~6u-a>TE>_32ht6IN4dBFE;A-iZ zB(TU3mz8IVWCHxNDD@ZJzETZ!Z*OSCz}(c_q*R)3)ypT9!Pj(2;}7*Z4Z`FEN6b`Q7sr+wh&0zK_-icN>Zx;4@EEjqIbM-v z+^f9%eg^v$kp#DV_jz6>y2%2{ntl0U+g$#^9_NX&21S_q^p>k`QZt?m%V3U|vR{FI2fWMButRxmi>HFW z6`xKEiBq9&={8F=%syHY8&l@;89a0>Wl8h``7tr>KnF%wszl00%6Zm($@`A}DgpI| z!RHyMND|X7zs+_Rwf^w{F=E(0=8;Lk;)9M;k1U*-cKP?7KnBgLU6<0K#EV}Oi?BIV zABP}zCL-d1U{tJWcX-^MWDgAg8XvVcoSz6W_eIE6e}J_r@K-adCk5}>;Y3*a816Og z8u{%5W=E}O7hPAp5u>Q?baBT3iz469p(GCtYfwhM+>7T^-LXGJ>HMcsAVS7m^vDrXSEguOLG+dBiQQnb*;8E@|6% zIlfj&rH}ERFkgmWW{n?^(MJ4>@ANCjTlO}PxKt9yUQoWR8U5x|I?OFb$M=tnskkL` zxxEsVj%KN;fOlI88Cm9gplJX7hG5}|aY`e&$%ZTjy4<&9f4QKYFjs6tTJ~L+bmw{D7 z7Y{SD1grS8%P7P%rceOXHNf=$ zLEOdq-*%K(^y`+ej`6x6of%GY;YfTDi85&w zLhp;jTyzb}gI2DyP4lxVcE@Y)jQ zk}@2Xn5Q|tS*=m6Fd|7s^%IlDu6NboF;ExecwUO%!@cPTq9*ht3Ez-w-FO+x`u5qg zrVR}%>*c3;E*-kHwyw9o?U;LWGMO;yDT_8_BUfSi_3D+(_8&J)OXq{{WfcH)-HTFCC&%ZW6NRTi2EZNFB<2v9fHYkN z?opgYKA@A?8qGhCcD87rqzuYfm#y*pWN}_aIdl{KQdG>`#a`ROUNUpvbByNW+T_+0 zq)rMbzd48EzvcSY7>9P0{Tj{hV4c^-PRBVl+1kkc`^i#TPrD0oT+;Q~QRWT%xNh8x zXT?6eWD{8pY|Dahyeq``a<^4M$Ac?*61%g$AirK)c8|8Tl~uSGI882MXrgh!BVo3! zAS&)|>V>zwsa0;Q`jrIHNu$&kGi-zehvO z#J@%;Gw8O#Bvv<+15wS;%|NzmrscgyaL$TPGY3L~){4w6ZVxZS#7a|R5j4KHZ>SXi zbAgb%sqfyWE^5ZM*xr^CdG&rW!|)>kWw{Ugd+{D?@SP-P?8x-PUiMRCeM@4H@~&a7 zsOn($kwD`x!=EjAoO!kv^OUzrjJaN!c0FR?8hF)*=N2scDn6=h3t6Kd+*p`jjM6t% z?a1y9mtp3eX1yfnYUMdvK37S?=*wxKrk+(NApX+DKU9kkaN9Gjj7`y`=6T*|lx0TD zuUt~wFn+(g*Lkm>Y|p$-;j>?2w2qh;_<^s-o45*zQTMK1M)%2O2kloNPLVK!f2W_# zMq+@88yFluV+#fWA8N#T9F`|jz)IHCw|X=Z^zH|IGCRA%o?Yk}SQXT`)(Qre(SpS9 z@}ifm#6p6?mle7i_4q?<5xIYd84dcGZR7MFx)>A}a4sBT_!>bH zbcxsMcI`Bc=5GCBm!D30jU9}IfzM3%HSFed@w?q_{SdT*Al*iKD?TQswLdc#QZo_~ zEO$=+@5Zv$GJHqx`K*Sj)Q;=SFJz4n@hSll0Lqsk09BIK8O)LYoDCobiM1`9e)|)b zCf8u(z9Dp_423=*);DnW@oNHMDUJzY^X~mgW9BKp8}qk53&?cav=8&8_@~>%ECL5E zzmvHvhc2z7MQ88j6A7fV@SNkh9`Sde@G9bd@RXupraDZmHD~QrBJHDh1+9s#cGZ?6 z1DTXevFx@>wcWEl7MqI_0hjC_l2fY`{h;`NZ1;UChR+eV2m!b*xYWqI82za;Zc|_f zD<3{_`m_a9=O*HlY=DW;vu;-0#?_~JBWaHWPEYN5Le+dRi?LOP>LDsFUs35S!gh!m zQXvC40iN;y+#G=}4QO*@!5ygs)`q8nAF!KM|5B4_H#BSTXNEO4gzrwirOffFXD55Y zru0?u;#y)~Z^VAcwBAS4=fIl zfdtxqA^z>xIxA!nM}#5yv`Bg9+D>!COwgww^7Bvl*A`gEE-0NBwQ|2!b5q9Bmi`o% z8Z7(Ck1{`}hbxIUZ)lr57I>%SrvlNIHSlRdYhr~>;=a}69%p5RhDV_YjuMe(QJ(pM z+1HQ%F53YTtoDFsO!|YihMpMw#z&d^uN&7n)i2y6Q}vfG47Q&mmXxM1V0eB=w=kXW z@ai;rqraCk5*_iqqE5q1&gc(d5RC+Ml($r2=@l7h;oA4yi>YE_-0!{w*2#d_V){{? zD~qPWd?g&a7f7GUCF84{$rVMdMBQh~Id&RmlDsF3)I+Bs6I2RXAL1QWSdn zm|VvZU$Hvqo%+5ZOFMJelmpp%ozvo zW%}UjYB()?^jomb@ugvupl9F5#7TPZcI)G6=6EpK&M_hB4*25duwG*QjvZlH-%sy^ zM$MRJNgs8j_!}<;JbuU4X~BKysw=+pS6xHsK2TBL^K5LPzVZ_?ZA!mJbaY2@=M8bk$Oe`rytg$_nxCgoP{4%HBEq^e`QG zdGV`peA$Sy8RR~Bf_TGTRBG?*UHnbf(;ATtd+^t1I6V|NUqIA zP&bG{97?s<0DUNL;wq3-#*>|s_8?x)?wbPh&Fr3w^*fAb!6*uy+D9D1qwT*h)sy#h zbEWi%{R5oU#(M^!+TOa&$Z`9CARNoV;lgbW&qu~#$s@7-_vdHTUiWi3#HS-1#mh$1 zX5wnKp-C!tO(MeNohhUO=H{n~Rm5_kPu18q;@QTU$^R%i7k{ST|BdUTk|IfRCOPGt z^J%t95kk&qlH@p(;~ZDc=Y^1SV$O#g=R9XQ$1vu&IiJmO7~kK1|G@Uxd)s}#4%hX( zy0cj(?+sP|zyebGY3?ZW6#|oqJ2=5gAN`X%^1bRc1Y6u<$6^d?d<{O133t{Zoc4K= z^ip(1v7nydxB>27+MgGE__vUqQU5Gze{@ERKUYv=Nuv zyPb@Ok+G^T>yiu-uXX~Y3R=5Lm2L~KTQKVWU5Ok~A9kO}Ba?cw3g*j8dA9XJ!8iR{ zV5|XJ2lhB+c*n33{`McN)A=U5wPVaEME0|Nie5?VmYvI&&XBJXJvtK`BZW%VE1#>p zGJTCAqzFz&cq2IEV-VBVu_0ocEtsvX^KWq-;zQ}#^iueUlJT2o=u2zNoLwF<9!4g` zGm`i&m5BxmLI21-j#U^gu!_ByY-&|b_$^2~^$OHrKKGPFCajYvk=mJejm5UD-mdDXH%2AgSu? zdu*nrZ{A3quyq7U!|{crhp3L62cEmKng#@>aL@Ty!b*uOIMdamn=Zx_f97kK8!8iq znMBnq#;K^t3YTSd?jd&x2xmSz} z`L{>h)EJL{3ZhEJb+=Mg90f{ud?TXUZjxT-80Ng20)W3%TErBoi zA(?LXy-)D1)Fa`n)XnoTw5-W1=ibVnNIHa(Z^e$++~^bQ`#t93(BAw05S6NNX74bZ|HvYX(PI*1 zb1#wsZ&Z`g@Ez6(ROSBuU*0G@`{nY%zLl6KW-_%H6JeZoyk&*$a;P#<|68Km%|LQCquqEX_d^=13}$#kI$qWP7%Agx)6r1?a!Yan&7@z{wP>VwQV0ld)4j) zoL$W)5|wyL*(J6=sH0 z%API%u*WOEcfpLw@F9C9&HXDkHJ0mSy!1RAaV%`H)g-!d>r-{M;7ynmA-gUA^5hJ` zyIb@+Nh?A#Qb|Snk95v2v|FDUv+e1~7Kpg=J~r$8{^+}*yb;GJ z#s4U>j}aC4y0H;5do`7CAL}n3!9@*F@UMi{ukq(-k!e?Ac2X_QYd`UySbXnTCqH_i zA!SF-^`HwbkI!se9b`h(P7|br8nO(`HS19N?I=fa=Ac>BEzf3U0sLu1CDh(%GOr%9 zTY&z6jOL+AW*p`@_fOn;;z*hS;QQ{qksB+e ziH3!`dZ8$v^5ortmZpHTlCHy!m*PIZvAxL7;*-U=sRU?OC+MD+xw7%wbo0UOL1A-d z&kp7UpLbTC)(XkmG%%@zkv;h%4`y6-l)u6xT%=aLQ2|^Zw;9yTLI2)r8D zwq)pHH84{PhfjmwtH8j;8}5CyQHgK=YWjF54Oo(WF)zkkz|G%n0luHbXBE^Zw6#xb zldpFdbM!Sd!Zf1zFrH`U?BY=^N(B35qXbUGk{9}R)^AI#)0j9FtN5+4xf_=adoPSW zwcoA!A^%MK3wk14K)l_+lOXAnXk-p*wr*SJ@CwW0&p!!-BY@20z0ormSlNHcI_z3- zgY|aEa`}G(EfafW?T-GqL4jtT=r@t=YR}|-}s(jVr$7P*a9#RQs=ExM{IsB zUqyWm2(#iH*u>khsJ?HD){D{9x&ULWTY^dnN$Nz~N{fIywM6?OsL-b8Dl)0_S}37x z9gRpdm>U;X1us9`+fw~EYa+QWbG|0dGg4~cRh67XCM5`)@>V1-pzQ=5GMfC@d?_cs|%RFf^;3J=3_A-PJ!?&w2Z9YwNCFbNnUQL2%h&(4(K# z#&_if$XTY^p}u@YqK(m>l;OA~^9;g)*)=j6J%zq?5o*lRr|HTn`}M7V>2qsYQhc?@ zcv+st@7U#2JLkFuY$?b0N{xaj5}c=%U>`{pv3g*ze|ILZLLr+O_cF@XDE7I{&Tys| zAQLkO=xuco_=8RjWQ^GPRpN0X7QjcQ?vuEQ5d{HiW5?Uh%~@i`iNgNF3+5?tNwl>g zu@V5z$!sP@k;hMEepg^%4Tg@YtpZdvz;76s3mm(3c;(4Oy*Q1Pc+Cw^z}2ScCL|06 z8GI>qfyD5lU5I$I+{&zSo=Uc6R`LzJ?a%t8# z&6m}*VN#5x3N8DuX?=01?7A-X$c$F~To~0pCSsAbE9|?0V!EJ9>RhBO+hKJ)p<^M2 z3>iUyeXo&!)Vh{%>*=cOgzHLxXD(jh$+=_y;#knIfFilC1v{jRM_pZ|CX_m}ExPS$%0d4$cC?9afmM*c_fhOpk3 zP$K&cw`;96R=!kYEdurF`T~KkePkH=`EKdHwnw&>X4hoa%1+Ww>Uz-?LVj=M%KS>i zm89EBen;Hy<53f0O@+*gkvrD|APPSft0N&C_ooae`z@0qWR7*MkTqKGbW(bw!r4zz z(V*@ag&$S?=cRLlsE6OyK3I<}#|p|YL-M1$UN~b!B41bzGYu{h+m(APY(m1`$gmBL zr3(FQ)bl*m86%I^I~Na7VSN6r!ky{ax$FtPVi3`#$PWW?hpThJ8ei3|Zd43FD?jZO z?=O%ebu@^IKY!#YU`H<4+88IjEPeVEM`MrUgw<;tT+?~nFc0T*9T`Mx=>***VwYl% z@vStx!XvdM{K>WZWJ+;-vJli^EYW>?7SggsdbyOt1dX2ox9F5wM20}3O+1^S3DnFZ z@3j3mcP&qzCzhambxCC?mHs?<;VbK=V4caDo&YUemd>SUS`eR3$qNd>FOXvSuf^YE z!OZVpQ1Wm%cXxltz2hh+ZZw+TiEk}y-7vjiF|#}N^TIn$WwW7ILI;*c{v_~^kv=W0 z1F!31pHFOJ)%iSpqTStt{b5GJ#Cva?H@$Axqmw_@N9&m@ALMgY%2(Rc_OtZ}n;d=t zj(^cUn_j~nSu`cvgqtV!iZ>LQ!iVE!W7Bcj{7yz|{y~MF&nM2!SIslX+Y+W2SCYAX z(Kf5rWL)|jclM?Je+$nG+4p{Y8?P#iis>#MeBIOvlG3P!M7U}0DZw9Mp^CG5Z3%5p z96HQ=4oRiUKvigam^HSQdf7oV>q=}?k|oetxYRGRqSE(Z^#jrz{&+!~{%6&nF|LFO z3bdr3SC7XaYkqCaC2D9VFIcyA1y$K%{Q!!_eRTZSmVr|aI@=v zv7(@`FIKLWMqX9)(dxc?WA&1{;jCJvrQoV#pD>+RfDRb<*Ncn6Nw#W^*sN3MZ!T=^ zFHef%yT=b`=n8-Goy}WKW^eh~kpb z5%w~0qoJ%pHSBV2%qgc1GRm&_9g$#PU2hh)CpJ`i+Wx1NsW_43GG}d9*E$k-+b%y}b>P6+Bu78L}trKah_$o#_{>Cgg zlxTWzy4^<>L5v2M?HZ}eEHVa$8PFt-&-HN~dYIw2$RZ+-oeTxHEw3+CF^8bSIFByx zCadD5|4~pl=Bt4bszcxTDd;=y&i3{FnsYuV9?-t8Q+!&-h_!^Xljrs$0cu<{sHJQx zu|M?<)LwW~mt!THoEH8xGcwj7=(pc?f3d$sC#PA0k;NYnHINIcsYy083EdNCvH}Eg z{Rs~=?vc~%n>lVakg`a)MhitIO|HG1z|2jhRu}G-Tg6N!=-`?F$lf+Z@=_8NrHJVs zWt`?~!LH@;_17UGiCC#_qwPNGN3Y~3yy>H-lI6#Pqc@y~?Kbopnqsu-YypVdLGH}3 zILq%IJYz6BaW3LVSY!=}nP5}|1}G7PwSa6Bd+YDs*!u8BUw{ds=)bKd>dJX3uH6_h zAxVSDw-6>+s^J+U;WaKmKcCpu1>|izD5&{0Z?>iAwNjrtwP1Ri<+peIYk-%r5m%U( zs_qYcb7rKlgYDcb^xN}9O@QwxO~w}@`eq^6bkq7lUK`QyQkkr?d#&?iGT`$Vw5G?- zdOf~Fr69p+{#>=8g)ElSc>wb?76mO}lGUomf>0|Cb=UuI@&WMganTRMPKhFWr2LNr z^{4E&MifT3%?2dhQ7R?(?~-ly!YY>5FMxsJHwno$fD$<|H(&Ncp>ZRHbp_Re*i){! z9Uy;z@&SC8QDoyR_0$=yrzCGqBb&CQlCe z-41Tj|S(FX-Ql>if{nsLlhj7S6wm6CLAD}{O*D)=65n?DvI+H69Mz#oWtSvu=xyr0OQ50m`c zGkqiT77Lcj?!A&>Cw<{9#%kFbjlYBG`#4l&SpvAuzZ|$GdtM=XV2vEedqO!UK6u(h z2eh@fverN_6e{ZVX^KG&RxWupNuRUla+y+3?0nJm5F^L24%~O6Nd+nmi53Im!AJf-d9Z|He4lb5IW~^3*Ay2_(T+l?lo&I z&zc>wbM$#T)RB30$T6eoBcv5rPd!p#Nv&?$kXIm!h|$bFGLH5dw!MBN7Y6p6N+y-Y zd_NuVUcq@}Ubw;T9zWYwSE4tfwG|SV+Q^wseN9v-hQ{|oqI2#Y@0yQ>F@i@T1+r$j zI#%P(_p{nBr{tUNBbWyB08PZQH+Snpvs!g3%scn#_I$)0h^p53FO_K)J z&j|!pe5ZM86iW;7)*O<)y+r;KmNH%z6QP&K9c z7dQ;0`wm+AmHiCkIXbJYu)SdsN|xc1^PRQuTH9 zzx7N^@z;XoPkHLOmFh-le$~j+4Id z@;~~J-^ABbd(Pu_uDKlh$yoDZVA5o~*5NX9yuP)vc*qf})5Rjrj~s7%LabCbR=-JI zyrJ&DD&|I=II@xy>vb40UTe5jSf-iGk5MDzG>*kXQ)HW9J@=lX*jo4rDl&P!GS26< znDcvyvI{+&Qwqz8bmb0J-*uhTD--&Rsr1y{``Q){=$c_mKT?3)2iaBlzb%@0TE22G z;rf)$MIDUj-sGHO(Fbmy8$Y@J`Wq|@+ibmu^Gw1Lj)>`u#dt>iuIqyROtwNTQjvCh z9?MLymlE`B$5HQFd3rfAHwy}oi6jx_U@^~mpE08=Fs--JYo@ju<05m}d@ zznkQZVe6}T%$i$HtrP>7?$&k2yQu^wTyNoT zr^Q;ic3LuUUq@Rk2`b+0YqI<@#gw}>j=~1@z2-St1gJmYG$1~su_-Bt|1-HxkS1Zy zWdpzju3p$5x?Y`FMR<2*R1>cvM=TbcRjl)XsOa#{cw35mqSj7F<@HA{dlSyI{aFn+ zJ{EVp($t^n)UHNcHd-yf@|0mXtE7YLHMR`#8O`gv4ESAo8V#3PIBkHX+~a7s8LpYL z@wcI#Y&3!L6|6swTi=Q|V75)d2x<`Fpx0K+I@nn}N7m#%{1efB`O)}(rRYu6gKHXd z^SL4JCWpzMwI434mV@D=LmvN@rnWO^#tRjMxAS00jZ&qdMOQ>?9ex`q64w^>+kt_& zh)>;-tUon+wY;mC(>WR|nZSu3YY84TtIx=^tB>ki*fvv>=u>bnNj*%oPXCh^I{4{o z9(Z#7Szz}Z*D7lr;|GD41B6RE3b#2a4!X@mF3Ou)PRr^wn-pSsdn;pu-zO}_VhWQd ziWLLUi|NM5;x)V>pSZoYxmXitBS8fh5gH`0DX9h_IJejP?KNJCZJN60#F0dMf5!9W2^UKX{}xQYbc`uscARHIR5lE8T9ao_OUwbmk-)$@cXgz5XB zZPX&>?|BzF8D@|m(7srQi8>JuwBc(&dzpCtEkDUHsTjW_+t)`3C)~wr)(#`s$Z7c@G@&?$ ze3cYd*LxomYd2A(p%;Cupo5j`X`>|w#E{+;L3OkyTzHbq5-OfHwlcW>oKxU45yHu4 zhuSM|6lDqm?I%3NhgxYC9}rXDXSAc+GGM&_VZqN{{HqGh^Od3uZXj(dMk&WF4+jQ} zXmCYxN}yLwSP9}h^kTMcVFDKPqhi$T7xbnI2C-!=(eFc(2dklHudXqYPS^K>U%e96 zw1x2sP)_e#kJn|{-%Xhd(@f_sunG{HXi-}qF1B{$H`P9Ctzn|?Md%DSv4bq!9-LI@ zK;Gc9&dBmj9@P@ntnw?EmEEwoDW=Y}aBQc=&bgS|hd$13HJL?tvC|0w&EcH@=g#~dPlr?E1zmPd4x`-ttbM0iUe~}8E1l`4S ziU}sUeXjjeyffM)jA@_WRxiv{-866*)-D9K*C6yZ<3+_52GvqF?#%!vJR8S1y~8>L z21L3F+*Fy3JTaw+S? z^BgJ2pTFSJ=qxbT9UgedH<35&T>C$Y$`?ckA?MT)?NtslM2iDF4v;1jb!o1ml>iRW z$;`(D=@1tetVKEd*9XgI-btLq#P2%hEAxDG1-jcQQ{E9 zbXDBOMeJmA_;o!T(Z|X02dui8%^X7q94-@&XKomz0zKPaykppH^ASO+Pb8jH_by;#;)++r}4g>i`)S;8?lY#(kAhH!rSNJ&{nyK{iVh)>GxCBa zn(V{9VrGjf^tFiJaHWfMb1q)EMDrhsLn(Kkzv*CSn8xUwPFR2yA(Kw1(F6W^b)kOw zI^JeZ*rodQUs&yEY!IJ0iH!9P^}g&)XCKFg6Rc8s&E|^@Lj{LU?Z#dJXsVCb(|O|C zC&DT!XEx8%aR-wJ|5lNLBLPB0=VGU9C4y>1F)_yk8KcrV`&lg1C!zFa7ajke!h718 zC0hzNC*0$ubnk{LnLMok!E3JMcr{D3*->A*h`61dKOkE;c{zKoH8k8>5O~1p^5VgZ z&fj0(I2#(oU!>b0Gz>C~&B%KFBw2v2(q@XBpN7>I)-lzvG1z49pM`mzZ+-*AYij`I z(IXwRpHmvFrT4Z*y!4IyeL=l_yT+u4`+8&25F**{(%tIwcB-tBeWt@1kRnxKI(`~uZ)ld(O8Tmj$$nf}s;RP+(Kxahbn8I7 zymHH|w+bgJw6(j(7&N9F3gP)EL3*PO8n69<7)bb?nON;|?tD5y6mTZ6(mmSD<{GOk zXknfDbrIN_6?@q8X!};qk4syvlH70S5l`SQMlzX&OxmYSW;r^EwvX?Y2}7KNAQ$%J zu@N=wLr&axk_!Vg24~zIXZ{L3vx}P)X%QEurZnH9<@z}W7m*O0pdn;SSx9fTNT27S zO0MV-J?jncTv>H96H#d!j`QsiLabz4Z+U-)+G2Jlr7h^KYsMvNsKyx>R@kC z3sc9aaU<3Bcbe7F38OI4L53zs?mfrgTnBbQqy^tR?8+f9hR>{W_h9D zRv#lHEBkVi?*S_2`cZ%&A?%Etrcu5LhBTV@SuVhmXTS&Za|qYO{m#eRYl`q}xiEQUxOUs*mNBY6xj9E38=K#% zlL!OD?-EryxE}XKc+xVPbrnH9tu!Beo{qatjEfJlz(Lu+WKZs|qBH-D==)14^w%dG z+IKC+T2q%@OOdG@$@`)Fjht-b(!)yHXmLY6)BJ=d$OMEz((0W*e^t%dei{S0Sk#pu zrOj=v;KK8qH&N|)p{|);v-BXLt5N_%!FD}RjtE=g;L=9==Q+C^Iw(4;-|CXELwVv;_P`NIUVV8$|OXjLsiH7ixf5>!!4iXJ+=@cbi| zpFeko^5`bZrwYk#uJR>Oe;iXdfP;`>br1lQBLJ|#O4*nqU$6*R`FHBdgR+D{ZW@WR zaDU@s)*s7{r_R&^$V0lMlz*|yK}K~b zcJX;`-wO;_NFS0ug-X+TFcqb`5V-<@eMZexk9BP>Qj3sTqzu4v|1aJvbe4w?l)TH^ zidmEfbpc-HW@6p?BvB%$pf~3O5t5tNclS4V9IvFb!cow~$oj>MCvB>ne_!A%xve92 zv*ylmAm{kRTWX*1F^2EZ4XSc8&0m(-!-?TZi1$mk1se;ETsKl6PWRcKr#{&bYqeEj z2kmbDp|A{Kbvl*P=sW2varC1-2~FUBnJh1;Ky{A6x75y@WTMqpAiGkRz@UE%Y~&eD zsS_6?0A$P9*EO>`9-rqURt({-651SB{U1d$WZ~O7bI=}?Wi$QKrG{Q>HJZZ<=ppI3 zhri|{OWWH4+t>GWFL{Fgq3V!bu!tsOvUqjr2A=wu*6KP?k8xrbyuh2ntb6w=cLJy( zM{&woH<^mbd!=_8k3nvE;I^J=)sF@Tn3GF^|B)AD!AW&fKhq<2Lh!?4qQYmNm%G-e zwZ^}M!=CDo4$dlT`R#LsWTv*%%KhHZ(+ikA+X%uF%SFLKOhf6zrRUE#Oj{%Cr?B<^ zqflJup`wUybzYsStKGlI)EiGDl3{B%yNGE7;l7-DGos&m54L{zd1;48`B97wF1@?Er0P4!J4!}PXHtvir8?S<1;Gm{>F}T>QuhPnB9%MF5t|XGGW=;s(Hr zDjK}EuSzB&Q}Zmy%y9ZMpRs5@lx4g(@?03;+%?kdR@e600Bqn*qI1`Y;(Fl1EKK}; z^#bI*oYS>#wsLB)_$sh0RsTq(kDNs(YEE`em65av4C)6IQvj{s(6z(E!Ao})aN&Gv z;>*T-z5I|y)MO?BEn^b3ZiqN>GDt*xYRuU1Gk9jRt|7H{)-3uCLK*P+3I%gQQEa!- zk6p7nft(4SYfiVXvqE03`!?dyX%Nxw@@{}&AdKwra{U_Mghe1Kl8T%X z%TmcSM2#m=tSaHN_3HV7L#o`o2l6ZBiqkyrY9%1JB ztiLaJYod?^6E{YrFAQL8K3MNgLDyE^n>N?*`dPjqu7*5$&RGUs9a z8;4E4Gb}nrnBFlvP0~;DZp)IBBG;)A;w29KRMB;VS+4}kYK`NmEkv9W7hR_5DJ*OO zwkWerqj#$*Pth%mZQ_3`m#zOJ&mq^tY~#012Q`B`2fN2M)ul_B9Unpy<$uT-@qDG? z)z^FLx%E*%U$eQvn$Xy@*(MUAN#IW_beNL!i-LEbGJzak)92B1YPbflr^qu?<*p;> z6MvL>8syIl%I@yf5wjaFxt$gtoaDfB?lb5{X#c4W?lTIXGmr2^gzcqeHcPYzu22}N zQJhI{2@K3muV%U(geEroz!xEhAfFas-2W(Ocn+?z)E$nQUs`x%<=Y-tjz|FaoIwQ8 z(50Evc>sh|bY6p>KYD}Xcn^3YiA~H4(pl&ugU)8W>u_5E^&iV45`i*TF?j@+oLaHG zLZ_)BtTM9uc0)}IJ?%fMieH0IXgl-<-upe6R@goEjah9UKGO=^IC2}f-}I21dKKcLS?ao+Lj`^2+n&8qcJuQz_)PmRBk-tfl%xvuf@xm*PHg3n8mX51e zmN|M`Bb9wTnS|W|qPH`OJwTs`%qMD4dpts>S2Tz$o4eiqhf=(MN1)htEUMg=@l#^s zgRDgn!%-$8*^YOs?JE5GvE_o}`tl$#ds8gmT$7H%LC1TT6Xwmj1`~VG*EYT|nS{_5 zwM5kIU0m=~WK%I2zb@Z;dHI@HcsfknJfOnCcM~opiBj4ToeQ%6Vo&|V>i3ZK)#b+n zolD)%w|_*xc=Rp2*FOzmmQ$b1*R;P8hf|{qC&P;TfFNQO;pqBqAz^TN;Ck3f{tB_! z@qDyw6Kg?$zQXLhe7wu^>^zb;p5i-YlS`tqu+yI`MZKcmWyzP<_J()ts)K*n`kw)u z@yH$hgRahN-qhCwG7b(D*`h(zbPxDk2$x?#Vv2u#!ZW(AmhBm~QnBpOp*y(ivNaX0p0_#S$^f@xpd(r&c`qDiAF zx37*zyBLWc1pzu&D3UXd)@ea?tir3+#9By6b=w80;HoyKtguCWT3Onm@AZ7bY$J(8 z^Q9pHU%(CWfzb)p>}oQO;L~Ix$YyzzjC`V)yUKE9wAC9@f0lb1tg0hZ z;T2iP$9%Z`P#!#$Q=f_O@=TpCUITGTw~7Wmb~ppgIzRs9YHEk{7O~UI@pxkMR-sp7 z5#if#7e1@x;y?Yf&0y63>bn>1Q|svrymrQ~>4a0*Ln2UcLMV8A*_6gj+oKtfGte?O zAbEP0nzJD zvOM!}j{QI8U^i7Nj&Q09VFk0b@6#w8xj`;_xTVfV? z7-T)2uRjE!UFg-Bn%QmgOC;;L8h|1Y?l)jf`KG5i+vn09`gw|NpLKg=zzoywV-5&= zlAomcfJdO>#kJQ7JKw&|3bb+V+zD-E-%WOf%m?u}OVo3|^t{pQ|MY(pVg8JXr$gv_ zkkamB$n*;f@-rTo3N&zWh!vmcf@)T~;aC;R$R?d1kmT}oH#&2J&sfg7~ZO(Vr6YM<&Mg_ViugNI@- zXD4ivat;NB=iG(!eZKrk=a9a$x@uY7oaVRkEgK~6#4NU+dp!)Q#l)g)L6Kdj=|m6Q zann=)A8uG|2=GrH^D|1xiTW; z(ZcV{%3f>dtEu^huP`$k#ft>8afBrmlFo1PA%2*)=9V(||CFO2Yx^I%8&MCn&tfp@wi8N)vf) ztbAKbmlug_i@Y~i7ts+} zL#M9=oiwYOZJx0WyF0U#wvuaRY2R=-0lst^#TSN(4=^uwya;`3lfI~4-x%FF4xk-7 zPu-&&$#4(CAH@o89z!#06k#nLdhv16^BE_r@%1o}k)DT^My8jg-^C2amxG)RRP^Bj zH0O1~&c1!TJbyJoJaQRXm*h>|tXZmnz3t9iU4nai^RZq&lRhvn8D~$^3*XQCoW<(u z6nOq46=0Pit>!4ZtS>K?iD)0tBnK?I;L&;#W9RDU>E>&|vbh!K= zPXAN3K}y+z@v9kug(0c?oc(id4e9P0j?Fy^`6R6CXjQgl$e_C!XJ@Fdt@m!}`l9t&E<YUJQww=UgE7xAsWP$D=YaTXeo=a1o%lw&{*;BK~Q+Zf7VD=_Ciku5P;Z+d3PxtSGR9QfAA6+n_j3Y<+Y88`QaAM`BoE+zfF?*Fh zd$E7UMTUso&pkl(>0&qh)>2C>%-gno%O=H^=l^2+pE7>S9D?LqqyK{0m`jQ|Q4HS8|X^V%&T(n3iH%ZMRBlQ*@++lZ7)9rf)#<%U26bks& zzW)`(7YA}qnaIN3C(}Z& zpK8)GmcE@o2r51}?8vV}lO&3)MiNT*f4p(J^W?+&Ss~Q{NqD@&N~=VA*BL@)=lZVO z+V3p2<{v`}P%DnaBfM3kGfrNlJbbf?s)VV<_&01# zgyx_Il0wD^{1^iYLf7=T-c91rfXamXX?Bm^{W<^!BK}8VcF2Ux=>avXV8ayk;!D>3 z{R;+5O0Bn>)(}OZ@zU1yTMq{spCldD&|~U_*0ljhKT;0|-={<=Jgav4iplirulN6S zG90x(%DaR3Evw<|Z8QN;E1KRUI9+^>O-!q!e&Q+SQTHfdhLWeKB17($ZSnxxhs6T~ zH+flP2K|q)l4hhv=Zcr+0A5lk3$qOO@YzDVu{HmK9y_t}C*;LI9zsLjA)8tz6AEhJ zhViBW)nDSir@D|*!a2=*@-O@OIYYxLe(^ z?~vYqin=3K2YeejN_)zMs=)5xwZJJx{nAHQzh{5L4(`8{xs(^#fH@z z@4jVhlU+o&`u`~CNoDac=Ln5CB&P8j9>f%&iAt0KicYTRrAZ)WpN8}u6i{tiOvloy zVuT@U&YFzc>PM!GBqrSDl}`7!I)8P6@9^Z$O8xy5C!;Q7p@S2`3KMX|$y}zk;3a6j zriAc0_Ea%!_jm83H=cj<0B#=Rtr3h&xhtLd1tTD%nuJ~4+xkTGb3+b444>Uz-uSQd zRC~x0pJbwNXR78c0-V4zU1p7eW!rH zOYRqY^gk!@r`dZc{9t+hP%c`sKqd1=1AF#ln=q5Q9ymy+Y8mHdIK@}c6zqgW-S#DD6IHyyfZ66NUQ;*H)($K5T zI*V2hiU@T1&kLU?omvXZJzrmH_3NlJf7T*{+hqB-AHDv*l|Ag{)%3p$Z%|wyA8Xwf z-yoZ~-1Te2yjKqc4lffPr{e;~(p_`FlP@P@@<~>FaZ4DOVIE4Br?@CVVhUP?7o&Wu85;t#8=)=>+(UOltgk4J1y% zXh}e#`Iky4r2AA#%d7OSr@v+vXdwBK3g;nu7!~2pbob?+ht-tIOZAc8S}u{rimu*) zbR&!OPWN!InSWUEuvgC34_&{dOO(hy{kP*PdEfhX&+t~@;+_d*B5Pal^W=AL_VZzK z*P2ISVwo&!Rnz9?olkN)zWoP3w=Zk+^ZQ9;oE$W6m^b?rQ?RKg)*ryYDbcT3TXufZ zuVGPFNnqG@oX&K(=4eF98go*84>!7%H#tq8EeZ0$pvMut)#ld}B^}CidRMtmxEQ3l z?gfq6cM&YCq3OfqeI9FVsvbq#ld8Alj(4o6u;BEm{a=HcvWl$uT%n1%Vry_K*NIJ| zzFA%-QTHIVYmuJhYlqusn1$IB{RS4mIz7fyM+&kRcGWBu8o@zFPtVnpuB#2$*XoLm zYPmg6{KSo(jmX&saYIuri8ITVkiMqEaL-xUDaeBU$2Qx0Cc&ZM^V(|tk2KjeZr^^O zXE4uPRQShV!);+*LEu|9&7Ax`X?RU^<+hcgIJ~3qJaV`QI8Q}4$@J;Lxjt8?#IapW^3)O7$ zSBd|<32PEgZ`Fv_DA`2iEs}aO!L|c3T$E1y@4*3b4ipqNmFqNg0ec%Bvvr=Are3hG z=;%G4Hr{^~L63t*n;>10BngowWV~xGfs1@$9p}bq#rQdf|-~{V%5cngC-^D?|2N!Qgl|r`kzQuatZo^nN1IFRqaXf|sjpUxa zQ_zbYfg^tI2!F|A;zoUO!?Z-N6)nCkeR+Lr9;A`86Zh=E^!<8-i{)C;p-p@YRMX;t+rT$)8qQ4x zJ!nca_y5?C^15epFqG#5cE($q)^~bN`If5j;w0pZ^YO#?h80PcC#a2pDDnv+bCB=H zvU9?~G8JVe*a7?vBg;xTDddy(Hj79HEb6ORrI@&$ zfg5_ZKJBzNk#}^&BO!K~Qs!tp=6bO7Cb}gBIp()8rR0Fa7G;__&65M4h~!9nq)jQw z^Qx`wNq{bqtCZ-`ZN`c4DO4^KFbbbKX5RT7|0Z#KGq)iwZIxxhY#G; zd#KUI-yz^~zijaXeH^6siqrZrGAiiKw(M_F?iss~*FQxvE8GSUCNv%)%%&`HyY@_r*OvVE;yBYW+v*x$j=rwjFPnk%OM)xrft zLPV5T@5OuBMENI~SNl_SvD^X>p6HgXSIMN&iP2fA9#joiCrf}JR}bi0HWy~UMYqg! z(>r`w6)AqVU*yZM+u@Ie|Dq%*Rx@Jb-yS}n204>=LVQ;|{e@9I9@vL|V(T6y*8?z` zV^Oa6?)?fQD$p9?fMq80)o-@847<4BWPl$Mb)9 zPR;hRL!LvJRaA}K3>%)aOc6LlH9O9op2eVW=QZ-bPug!xtru3OvrB!D2#dkm$ICRg8h809YPWv5 z4p|1#S#3USYN1-8{ceCgfCWA6&Nu^*Zp{`e^aH5~aVUGpl(T z{SW1ki(^=V)6OmMWyPYM3Kk3-q8ChGQM!H#@jm>fE_&wnCh+lX=^|C#b?u!aK9vV0 z9@?U&-q*E2Zo*kt#wdFi4A)>LD(dRx>>rt*#$x*^ULpCr|s!-&qPXi(Kt4o_4QS$n9QH`jOCpxh>ZIpV7 z_C3=Pd7U>@efyT_bNV(yN9EIc&b(6N1nWguctqZ}tT!RSvE_vx-wy&%f8vuWbczFb zh?@dk+xYh(xc!G)+05yW`&Yh>sVZ^i+slj`oYZG}UXCPNGu^5{c>qiIuv2#}z)Tz{}7$-}HgrYKn_aJC3b~&%0h>iU&KG zyq7W$e@cJ{pIj;R`juCn@^vTnl(u)?3#^e~(a)Jr8O2%d3i6YNmIV;?Rbd29g`gR{ zaBA?|{;4~{PlRAoNL$?~^)XbMiGNATq2QMLAgIf~KkFM87(HQo-7sun664Qy!SN+| z^(-^6^T$s{sy)Fg;c&#V`TP!w=XL)GB0%h2MpXYTBn@2qq^8su8*D~X+o)1poBBML zrgD)YprEnXs9yPquLiTCAh5F&sb}~x&xT#juQ$$MEyMDE6nfak69|bx<8AFei)OK7 z)ixcBV@T`HSgmmuIRFy2r_9Gldg}i=jERZBI9w zyemC^vC+OANO+JAY=(T{d6veUBg!?zLC5A{6>Co=`fkfS&HB)xw_0&3gK&Ffv3r5N z@f%s^R}h$+CTAk)cP7eZ2F*9` z+bbAHmOU)yrMN>QF)@M8(s9~ni1%FDmMv&ybta8)sr)&}n#y(bEed#D7y94pv3cyE z<5Rf|?k9DfLfLnEnb*^IQdEuz~*)Bkbz(TZiB^@;4Rb92BVRo~P$Hy|) zN*6LAs5<|xY(0y?S2~uz6`9H+%BoYb=N4V`@m+kPww37sO;chio?JAOyR14|IvlE7 z)Te8kv;K)WSkB1n>+e|}fjz!O>eZiDBiAS40%Bbg8Ai&aW)8E8`wT^mSxuF|%M>rj ztPkEe94Iie;Czaui^)$v?d-IlI6nH^!4s9`K2^p5m-%)zCIFmVpBM-nF&RYR{f?`o z?eEoMEV<6f9P{=1oLbnsIzKA4I{+evN5B0k=Mz0gN zb})~&X}9K7%1JVWvZ-b}Xa{rsq|ut>^VWx(z_#=jD@h^JfK};bXtN9jYb7PE`$kN?b2IGP`D# zoMId`QI`(N*jQxs+@JBdro|CP;Q<2VTBFCT0`5_u^2NSjn=ohAGAfpJyGy27j*I6H zWg^qBVQ9mrsx%T0qcgHCbv|PP!Hg4NjYE76QirBq-=n_N0_+2G4)Qu4-vMWv#3n3S ze7(`DkmY~&wC!ru@M&GDW)9a~C_gf(8TsZ&UWc3y^9JTx8O8crJPZ(!es4CyzZ62_ zC=8+GUpz_jO;lJ~`tL3KQBt&CyQ;7$Vhxj;q4=y!vgtHnp?u+N(+&*(1+vkyzP<}y zwvJz584u#U9tS-jN#QtDwNz)-35=n#+WZqDwMRkUOGY0>k2BA3^uI!U(&|gFsB=^B z<}b|?%DixP7Wh1_gYw8>f~T0LUVTnxWFgBMCog6T3s5}A9;bXn%1cdhkccRuAZ8gd z%TI_1n;J5mng2@-HwrFo3K<&-z8&UW(IYxuYAnYx+9%qHT0-(Ns`kdob)g!9Kf?IK8?Yzg)Bp2FW}+g$K@Y|%Vp&QlzhEE zhq(8?n-%!R`2CaXtwTAxmjELuLIgwmY}{vca^9TKEZ1QWZypN=hz|euX+ydHyRctI zee;BKl0*piBb00T1jhD03~e^asYZR9Q)GOC8Bi58j7?P~1Las_jzGYmyHG1w1c=%b z6tQ3O(!B{71^!gs?!&|UkEWPIjh%kinw*|^#C0Q*tW0d%&5ABL|H6?)|ne z=fj@!oOAB`ey;2K33rsJxUd=HLVeON&BfOwiCUU*s%7H??|f|WwPTmPq&(78Ig6_I z`{gM?SSSPJB*J76#5XHPugabg0~D}|4zLxW8utM|FN);^lCfyX2=Tnk*_H`W-O_z^ zcu{&>Q!%@&bF{`naoq)-op>{N^Ae$v^s_i=YxGe-jnyDx^L6XoOr?h^4WJM^=`!sD zz9ykEJf_w1z>V?It!r1Ap66rjYrhn5Fgsk&PkD8YTnO14})ho#fb z;e?t1zCOO!22ZK1lU0T#yK9tB8HlRi=ap5i6+Ts7BK<~RAn`i;Z&GMtiBlb!fkeFW zCj?b=@d4dHhELgXhH-V+yyv2+MK_%?$5KfYB^&1-(i%oj%}wplFdYNC?;aIg{e`V& zHTH|bx$xUKIo{>P64V=Wy!y_pvyr)*IcGDiFWV}6v0fiGlNNJLg_^Ls8Px+8z9{i~ zCg;j_p#NdDTsd$4E}zIbT?e4<$(*|Q5xPyTY^I-T$6N?}d$ zD2()nd48{?@MvyMTb(g$Xr%CzjMy1|tM=<4*t3kOWC!Pz837)^tnhOe1V`^WMq+_5 zk1kecjy&;p!(TF`f}Ne&)usn9*djE1{rZRhex9l>Y;3n@%FR%GL zUm1-LeelKboWfDhHv}kAuYOMn6e339|s0$;P+#DzE)2N*D%~q$vWuXw2V$o zZ8O~Ig~c0*Oy)ESAO-dZFvs`(zaAl*ZeM{~Z}PFkYnSLp4eC>N@94iw;ONZwR^MkT z;x4Ca!mSI`bUd}EmjfUrT|%>G{Ai|?l~`Pk&9}`qyLS;XfM_7nysrFi}>KKD3sI=eY=u(Wbhj?*Bd$HHKLl z;+VP~E_FIB;0_q<2URg=OO;#NYT{#lN`XN3i|e>x2NIeiX2L7!+gjLUZV4-HAEDU3 zjQeUuENMhY6+5VeNGkc0$|cD%W?_mdK!bDlzWKrMl#lb4?Xc?VJqs5TTNW0YCgxY}crC51T@)>Ut*nC;+S6~&Ym& zfX@HepL#tA3}fu-YKWRY05C2R1nc>SMS{{IYDBkg^F(I4o)v~jCjF{wa_B3tIfjVo z(MQv38beO6!wQ%jywm_YU6*tLnsqtl?+X%(&-Xkb80It6fjA}^?;D0VSa;h`?$jm_ zXIrl>(0g-Ohzy*q^7|s-;>KX5=RXUt>)7X(*k|#Q@=vU2LpZ)Gf|&vTVGSMh%oK31 zq|cA9)|21-pIxc2>I`XgOBAW1nxGMh0&02r6`SyWvrM36aOoj_vZVZK}LC&V0gj-W;r|e64`p|0knY!o9;KqSiktnzmjic+Zb>!JtTn0^^ z!GudjK;ViNQ9_kc=Y7zad*75BlOZ>%UWMPzi>ZA-@NK>i((LDaU9Ff*4^|U;ToE{O z<9(LOEPXJ)7HH6`xgfvE+!G`#J>VN#lDRtmki7>vPr_HtNFa$Yfc$YtIONpet?gvIt zHF!`+78Eq^1YdJ*a9L4u^_+Gt!_MS*kZuq3{se>2237|!Q-|#qNmN#4;GcT0Qi~N+ z*_C))3Egj5?`3*=A3rk?-j?=Dl{3JCN%V77f}~+FfWPR9RvmxKngec z0N-9vER3SNAEDO|KXd=u5vD0d8GJiQ?%L|w}K&XlaOAl5T6Xmu7U4FLf`o)t!b0*jqylk}qWDX7CFGs@I0 zUcNzn4MLG+n}K2te#7JFc5+SESH299GAOSqHeqdk^7PL2v&4SWM7pEJlxxl*(_ z-{$Pcv%t`=kDKI)6Y`8*_>%X&n7%BO;MP55j3B}3bl)tI;p5PM$QxHts_evwPuEYp zHiFKdqX*Zi&s<%NI9d>sVY52YF_giUo&X=5lq-2-qcs0HkKF_4(6)E3WWT)p-#Pdm z6zqCVK89^HWSugp{s+q!vPTpk)>WL&?F@Q_A-yX(6STgJ3e)aq`$<^Fksv(Dc=xQ) zT1VMh<%`pS0bS8)f=ksa54Ih5JvBtKkW^0SfktqJyw8~q@0!Wjyi@=ceAi94MP)VT zqU7fw##kaJJ*Vdrs|eE%%nNvMM*;@dgfU`LdN(3W;=8mmq?el9$v4T-qa)+Jq;*e5 z%2^^r5-WIWt}7!9Q$$p-|ethl<&!{6m>q;YkbDqZ1Q z@?h)aMU7JdXevzsDd=!bvS7@~FZafo)a*!zGZ_1;?rHbsHfuiPqw~N-C46+|v{$U0 zS%(8seEt@hX~1)9|AXkKbqNR74x|X!T((vjqd!-}|MPOt!@<^*GD|$J;_ZgVX*Wt; zZ24V5(tQx-xo}4^25o^CQwG*pTae!>md4AR>kpgs#i$3CaP49wGWU`ShI37&_y@2B zGQJC`mX$=sODpz$;EU}u-W{*Sn$p+(2E541c)GT=Q^%$4tEOib{G@xkY_eHRJ5j{N0~#o{u#NKB zyaQSk99eHY#-ru{PIG~-r{)SbK}M`@SE&&zZc9I@*l#&;UWoCkzy(E*Hw3i|#a(L@ zE4n7MmmVBzG7+tfs#?jqyTM?l`9L6)e6J>!i2_MmbZp;i&e$1DXEQx5?t=4)`t7<3 z;wfO1m8$nUO@YLMs#%N@&*Cs*@!BxR7~!Suwq;t){b1yKH6N5G!o9Vzl7$&Tjox3} zWisI)G{0Tt+G*nW+xKR@dU8Efq{H#&yq9!%YXsA3% zL(_}b*xzT%yXebY_?o3k*R4-Ctvi`qYV zdF#YnY!2wM+1{QRUawh<{BCOIx}?OnndhI*`N?H@G^IIB;7?6a@3#A_(DnOV+QOPj z-YypoU$p*}6qjxZolK_;bc2zk*G&A6Mg3~kO(a6V$b!^A3*lM->7g?nkmhl4r4H~` z?P$!}TBn~?(&~LNTvOPmHB`^=OS=eV>lQ82u-IA!Qq9z_GC9VZHs1!An5|!3OK3(x zsLngs%N0fY8+44#9ks@bRu0>Uit_TUaP^W3Z7ulUBq^Cb8Gijuf2ihrug#UP^aw$^ zmT#7;2AQ)n-)ft1ab<8*Zm@}xM*M?@$#Ip~_dKqqskx(FSCNNUb)hA|H_u#(p=CW9 zd-t?qwz#L6)iEe}{cwt1Vpp@XCH;%0nkmp5d0i(0!2QZ~HkcHp4!_2Dao{yEBC;I1 z@Y&PiR*wRwIqjvRm!|Jy+m04dCBF85z5@uF_N?$vyX8K<{@T6e$TM;6TEOX)a!`0y z)mi!AG|oL$m}=@)esF{CxDnq(*vDvOV8Vu&kOcj0^EZ$v5m_}^lXvKe+1xc-A?l~s z*kWVhPut4E-SG&8gbnRz<(`pH9A9+m>@|q^HPr&A=iAcfXSUKfXHpUp&rprv=x%@I zn*j=X*uuOjUQ z24_=6cd%r9yf!e2H;Tgvy#V{&G0w*}j=w|6QWX@V-X>~Klij&kXd{8zkEwz`o8O02!J(HX3hkZKYLu;2kvVN9!Ia$G3+ z$8;Yva`jF`Mz1sp;fPN`$%i)f`0LK`z7&k(f_WmDAa!*?Y$xGA3P`F!L53AF#%JgE zb>}Z9^eulbZn;G>ESw*K$sGD|c)*wS4) zgvaXplKaBGi%Zzzyprq(!M={M>O8@-vgk;^iPOP&VoWrf5-$nm-slwWieG|D-q%Ec z?IxKHyU5xwE$YVT!r6B27U}4h?fhq0+c@r$*kl-5AkUHKZuot9g?jPojXgW?WBFER zszqDcun$RiU}7ZjVYCyV0ozUHgpIV$x@^CC^^8q;KV?GD%%ksp>S}HtEuTJ1BZB*9Cq;q#bYa>DmT;~E;bOOLpw z$+^ihz5Z_3e7I&u`t_z}ai>A?(}MdoW9ky``I9{ppaH)$t%Lsf(#01BDqa`5JyWf& zRLuC6hQEL!Ci1haV$yGz+3oLdQC0PpyJ>>?ROCKgb1ZZ;I@QYQBOqITCo3;?f6aDS zJUMEd*yKb|b_p2(hu#-vp_X#1cJD5C!IDL=CYrRu=TZFseR+~}yw<^M&(rqt!L+i^7!?dc&n zqCm`pU+6VcOzoaI`k%gz0@3=)+;61;Z5?23p(q>x5g=c7ea#!QbEu=Noj_; z3fL#GOy!yw2e(IKk=3&7V_$K+XmJ;s23rz+T8so)>!D8`Me}W}A(|WsXGQ6H{8?fT0zj4KgPE37?GS4W*UA zDD2D6CM^5fXbN;=H>ax7*_SJpd1*DyD!;8n3jb`?EQ}z0(4g&mg-V^7lh6&0Q=RvWPRO z*M~o_2w&(X^saTa#RX_5T1y?Oowwd&`hyqCD5306k2R=w+p<9#c|-nQ-3AeT7R#8X zF(cz`Pm%aHNRrJy)ai~`q-r>{1kh1)%ajMe-sj>^S3Z*eQxipHE{@#aM%H*QPz=^g z@VY8Og_pXUp0#Y}whKefAWocKq=6y@!o`^kQ{C1`IJIQ-nQ z3Ff+i9!b{X;wc<%S#3z+!g@_5)bB2y z2BP6RnM%QQ$K8-8mJP5|cJvG~QEKw7;lx3Mv?|!QBrdVRyg-m~x?jFiVDRKWF z))Ua@bDAHR%?c`PGfA<3#bQN3apW#rzRTysZhW7?0r$D+4|Uz3lB6frR5OTWgxLyj zjO$p9+$2VPdHU%aGZo^zipPR zI-IfuG*)ep(pSfLdfw?cCH(Du33RHLV5ix{=q5?{27)6@Minl$YjatXf+k}oc&}mT z)bzGC5Bs*Ij*QSRNJZIHU$k&jTU1UHa~o2)<*s2Do&A;UsU?^_)A;Fyki-1v@kxD9x0MXy2^q3t;7O zD@V#*^zWy`E3uL(!&P^w+wnTah>Sq zBgc0RW%n{mOf~T}$;wsfRVi#KBPgR*r@ozAXk+s4z1(xAgR8yX&Bb+5-!ip7kOIk& zt((l`hDhJlT{!A@Hyyy!l7!dBU6=I{c3l)x6Pdu+?8rZu7!$Xze}8@uY)}crZNa3v zgv0?~V%#y&9l_f~8nS@y`(+C!GG{Uc-XNCL@_x1_z;F)i(udXKA;ZyKz4G^@@mY0E zx#C@WGo1V&Rk8Cu5D?sLgr)&(S|B<1`$&juVg*ELSX*H40b77W{xdecy06uDri@7J zH<}X9M2~hSB;p9)oMa!QrJv^?`~?j##N3PT`IG!{W&|tDUrWB8=LkK~Pvliln|t%M z;Ay8!y0*k*qbvMxw&TK4RgAlq@9MIylOwc&WT2FPH-;qMxT(tZ;;mR#+KIu4Zs^h} z`_N&(13Z0>Ovp85`jZ7FHr)|QdVU5BaC!sJ2o*S68kmi{&7*vfj(^n48ZiM;Y$V7_ zIi$?cES zd_0hAQ&!;vLO(5_+}W2ZUGNx03T;xgaV*e#svkK*dzwL+AhfPuips2}C(yI{eB~%w zuWVZbbVMp_fvKI*v{N81|G+)80GXMIsgcQX`l%O1ng79vHA$!8TUKlz%1K34ORIla zZBUk4U7lbkgVZWFu(NX%(hGWi?LaE4PPUdMJOh1XBssw;%s zH*{ULDuq%0>e@%!YZaLRg%F)oUojxr=42wEt&&Y9X)@zX}#-Jcvt z+2vH|hO~d1m~jp&cRqK%RBi&T&>2L^s3V$SgT5?|`Xu2X$_&kP|2%5^xo>zjpK&+x zaL2uNVS&qcg|<<#C2At;)@#5ZIJG9SxY@X?Xrnz?n-glYOdl`zADNNm?CCY0Iga6M zGp#<08e(L>%0r{FAZBXm+UKeccX$ww-p%a~(jLvG3ac1vh|K1;^inp z!u4`E**Xo&HF#3(24hO6RqNEO7(RZK+k>3)JWzvRn1p@rG(<@cI5Z=V^LNV}Ya25> z*3{&PT!HLt3lL-7w)Z*50XbRvpVzBRdWUU%Ne12F z!6n1s=KyU11SgH4FyTvZSdw87Er2n|(f;oFbV8xnT(cj4?b5O;k5_m+0hoIyCOOqu z{Y>mit_Jg34Fn3nu5$x7(JY7eadhBitM%u7^-H}hCtp%RvLiK0C{Oi#f+JgU*OPX) zihrF!6sEuq%!>m3^3?K<0@O&>8vwj3t(3h(jM`U9EU8RkZ{>psGTpv8s@1V+2-l@O z$~w+2j$QG6hS=-Hu3hbl$%y!x`4Y$-ld{W$EaitL4pyK&n5=wyhGXJ$1y+X2~i?w51*83iqt1097m%os$<9W)gcylw_ zA`PXh&Q9>ezR8vupeGN5QwrcO+H4=<2REG2#8aETVAAu zH?~W|S#9K4e2jt)UAwsTqUq}%lR6~bei5nl_;tKsv^Isq`iX{B>37MOMSDVo!a@z?&aa%BD)A%!?}%Y9{h~ zrg*vb0=WXCe9y(zSON0}9wIXI+v<_g75@H5w$dgi!<&AB-m1M<@>yKM5s?p>;wSRz ztG;5M+z;Aq<|5CT^fv@1!d-48qXo_gOeOynlYqeUi=!`Io4qAbDNTQ#%8T1{ImA*X z`V{aa$NtA)7tsf&VK*x8&HQnK0oC)}yByKHq$)#y$!%EmiNKWGY!;)qPK*)Gkg{Mc z8S}$lW4M~OukC~=`C?w8`W}7w&973SyrhgvL+_IySc@#+>>D9mkITxW<)Hu%)P@G8G_yw+pxpsuyQz z<^KF@>&|dfpJ8sd?gF}7b}xWA?WScCfbXN|!S+P~fr`cXTQyNl9!ZvaQASi3c5IP% z(L4?k`z1OS(#g8sUTXn7(7<&+6!~=OYZC&_{)Sc`Xc;mMzOFs%EjBB%s=WDqz7g+N zb1>7{h*$!EIzrDE7-rRvNC+giu-9RZ^>WpOQ0? zt39A`#BfALoVRT?35?WK`B(>&p}l+G%2#uxvB3N8*p!Ve+*I%A@JhLX7#Vu@Sr%j8}$oK&looayna( zUd2l`X1g^w@|3OdH81^*+a>%#bQ?)KDY~PTQUm(1+6=RvuTt`Mnasb8L{SXtBXFzP@P28hvX#u$)Q5FJw|Hx;KqU@MX!W(ombYmrJ*Y8c6qU z9!Ys=918R^b0c{MzneQk9C^#X3E|`)NiZT3c#drq(l{ZkQX_io{3o08UtE|0i1|MP z6pQAyEX#m|v&GOa{)MVfR^lXehG}tRX0>CrRSvpmoyn=%A-Kqj8&|k%{+6QvOUkFW z0DMxCo5oQk+>w396vpy&Ml}PuisQ?0S#9VqPROFgrVY1UE4(PDkl&~%c1#|5<7HgQ z&Oe|%h9I%?m}{Fn$^MC)0x@^{6vx{?d@ziq@h;|Vmc9wF4RINAC6TByXG*mIBwdf$ zY>qA0o_QFnJHjD`@aw1x?}x8e$+A1jx7%zk4EDQ^9_HzEq&u}6);4Qgs^^&QDjy3wtqu06Xk<4fk9?oS+=TLv^`u38My z8y}sLiQG2kMQk)n2i4gdQfr3f7IY&rqbc+1EJt$$x^%k*{!`_Q#P( zj`~?*KhdJ~ArPG{uhM#jhEF4p~r$_H(9NSx8yMXSet>5k-vr7NHJCWtOoe$k4q+Hg_TJcpaiQNJ)y}b` z*AN%JTZytDadmO)h{s}i`*q}-$bsR8D5zt$0QRc7RZ1?QvpJtLb)4K3SFAYczQlhj z6B37NX&=4i2p-qrMERmG?r32^+{bLN&3Oc7Q&s_q;4d!Ln2AkRKHj)H=J8P1DqTnh zJZ+cByo;6?9&o6L>en!xrRqu-PLA94y}p)Wrt|kxLjpGVzynNVzdPrAXuWIgOB}V= z*&Mw@=3kcQrwW|iGyll3$J!R{jjqt^Rt<&(oqaqXJ=95avsrC@T<aGM1lZry#-w@uqcEwltV{h^LZ2{y` zSDlqb4Q{{MIy+FP#HKupWZRkC=aH%9(j{E&Y?$sRX`8wE97WzdfTnmXMe`V<6c8CP z9VVCp85{6rPQhdj!0%dwMPbrLScVwxNL>lt{lW)e zIdHi&L~AgORlNhOtP;FodQ*=#k!QiBvyR5Q!}xHq=aH>Jj(J*a|VoMW1V>UFw0a+5@D*~ zuWiDjvvPHA0mz)G(Ba7t?uxyV^W%xL%u-~Zg{Xt3j0@WY`htkG>E$JVetLgCpc*|B z9Pk;8k2F-y)sUTR%4ub%Wq#uChsG;{JFCu`U}TkOmZPky-QAv*amO!*mQU44zhfKT zespL2de^ArLB9&V`KtFJ?k&~+SA%PS#^8qC*4V{@E8ZRBa%_yoW%C``p?;s z>~)Y2p~sk^J=VCSqd%>)9?gU>V)DmHHd*8`3TzkO+nAx_xDSo<|R1Kpw0Aj=31& zImSv-mznpy;1V3Be~Uk|u$l2{BVnK+!h)iPqiI*+*k`q@S7FC376Ny#PAXHo7w8rU zHD^b>if8DYMU^?aZp(rW@04MkzFOT{#zkNS$Ir(=Q729`$026hoo^XL%ZY)zUyCHh zfcU0P8%`Dah-6pivh80xxGYwG#l?GAz?YOg?i=Jcokc-e?KMQ;8l-+|_ozt=Om!G_ z#ry=+Z~OvUqjBiwSW*k-6PM0ueXZ+b9cqdU6!kC)2^0U)b{Wq=o^p^Fc>;BUhR9=> znhGlL^Z2gb(o>$t?6PlelKV*UWK8q&gl!&Uy|>z<;Z923^uIMO*eth`FjbV~9GR?_ zNj3|XVSG?RiOle!I4GBonWRHMrk}i3wIo+14`^@7MG6w*J!8bJQGVMy(q*DOxfu)g zw4>!y8DzA(uL$19JR5Kmk_aV?I5H#7$DbEF+Q-pWf$hY-cbOm)Shli=!{%`Oja6IH*KD_Wx)OgUg!PVPO%D~}hfBQ*RrFzU( zRU@^bE24!*EmAmm+$~DXn4^~@0VFWp7}O~=cMO2^HjkauxUu&U1klq=3k~v9M!aM5 z7?7w|@tWymWeUdoGyl`tY)#3Q?#8C>JY~R#nC~|vP0<~vd-`d zqQzOBgg@7L^_H)*Hlgu!cb4%Bqr*(vG;~F=KwUYFIS0%jV_W0jz6Fj#`BYlOuDa>W zo$;TaUA1$bvI1%Zb1I#Fp2pL-w;pL|8sEq9(P;M$kj@%`l!=U5C(U@7Uv^OWENmUHT@cNtZ-+MW7)NG0A%{CIFGR~tFr11o^= zr+vnS(YVp@eZ{sAL;h0~dA?!*VeM~k9&Q|M97&uw=0Fro96EQjeh1kLW+EEUcXk$r zL$@CDN=iYC>n~a6lPO^5KC#!olWY?mvL}@-q;m$u3PSUgKN^&1(ncl_XG44K=IUBdsbzAED=Slc4(!D>uRe2RLAb9}hj!9NM64lRn;`aq*QCF2FM~a0L$a=eooAO znsRNWRnp}=ilShfBpywN^2+EzlXo>lU}(YLsm0w~+0q@V+3x;6RVyY`Ae8Kuxepd6 znkfU|a4=O~A{LAdv!W+Y+95RlA?Qn!nKRLNebl(jMJ7i|@s|JavzVJA4i4XsmUJFk zCYV_=(T@UTQsvN+x92Yhwmk!Gob&Ddgm;uXd+TS%GfRmB!OEqpj`fFv+y{ioXT+m> z@Z)CMyRYZ>f%D^yGp7dHoU&D^Bhy50?4A>A6)JuXjG)K7A;EMPIU2MO{Wo0i{1x){!3E{> zSj{UkNeJ{tC>AX_c#eu?1TM+=)(uRTD(MSa8op)j>u@>Z>MqPOQ%#`DrS#Snqak!PXm_FNY{K4-eII>(Oa6bJKu8V64`gk6* zAcUiB5M|%I@E6ie%4Vj}^1fo zOEQ#2O$YEW?<5E^Zk(|>FMbl;kjND!4eTG1WJ7!voCpTxXdB))tV8MVna}}ODrMKI zdP81{+NwZNmSm7A+(jTqlM9(x=A^vko3^P=-A&~QV5oGl(4Sq`Y-stu8%_PxFs<%| zZk|v%v2f_T4go;;&v1E1^tGy3mpW!RI>6xAV}yQ}r8_E2#~<(DT8JTg!88j@3icsO z)V*sQFc7DigE`Az>)*|tGllJ6IigtG!E0g+!@DX|mEm9SzUmLi-Mo`GNU;^XagUdZ zF=h{z-;fSqrk3IRC`!$Bmf`#*_}!KTk|k|0qEXhInH)W9960_H`K@791sWn6?eZK= z^CNx*z;9Toq3iNIjR5O8sI7x@!o!=hgK$&c`ME?1=X=vE=b_!kB~94gW!#~~V1oBZ6iIIDg)`JCVJ+>K=)y~}JlMPS_?cHFwrY7k@po|n@ z9xu{mD~N}Y3camgH!Y*qOkL$jS+D9PV)Za&jrkymgh(WLHM?p`qL!n9EC_Pm0t2Bu zCfym{^Kpl@dydhd;?>4hSoju04Sf`bE0>bfq;YiW{Hu9yl6@8va*dA!U2fifYcvDR zm@0f((l0A@{N3-dduM6Is^iwzL{YE49gvst(Jh zWy{04jjRv-Z&KFo(XnO^c>&-Ddc`e)Ckmw~)yH2baqBV@`bg(-g+2m5;=dcpIA=M( z9kDhxJwk9_*U2n(c+t_;7lr13v=~Lw^mx=uxQZC{$6_UwN@{_w0?AMvE@m1 zfe(>rSyOA9Hd|cCx5)HGZoxlHdDh_r@8c>qoTNPKd|eicYIxe>(%Wyu``=eGq}rS_ z%QElyty6TUB7}RubP1W87U3CPya0FhskQx&Z&$LZrLA*;h06hMyA`&qK1s|^zS>eQ zhUj_RiL=&>`UTTD0;<*yYh)++BPcb9)h|k*_O~bhu%5awW8(aJNaC6Be^0xinZ;^< z9j9lc`}&@{!(s#S!-iZsn$sDCi5^txCx=Fa2n=L->*Ys{b)B6Gv!{5Dp#?`>7yB8r zy}Dju*VB*kHA5F9OF`<7=_2xx7tRno5xmVAn+WV6f-2=92byXaXS9}@R8nMoD385o zTTT_IwdcnKU#|JbaYbeQ9BUV8S&I?1)ttbb1U-B0X>i#kaneu!=Ds|J8Bui-jda`Q z*8lVg{4#t`_P>+-tZB$8*DK(0xMzxcRW=jLJ|#!*f4^tzqTGAA{B?1B!^Gno#y_Dp zkIkyha~ls*E}&gIE<0$Zvxs;#^}MNM`xJj|H}l;$pC{7c&*Gve;lUNZ^vXC!!885u ztFB@NUx#*!wK$?IWiFolsheW|@<>=LXjGomIPH>k0jTP_;PV<-ds;VD0IQObtXhex zUVmgUsR#<5`0viW;tft$5X{FUzBTYx$lU`XdQY3=zuj}6*3}2si}}&b-xg8eCG4>h z<}ib1(3RB9nq|MOJ8U`kGU=74LYdw!xn>p^IW&n`>wl^!IrxM}d4pwSlV%qB5^Ewz zZ|Y`c)C>d11|*xAB^IJ+w`COum>81h2LjL9{bVahGp~=smEwqnqK-lt-{KSnT{&zX z^|uzUSI7xa%c$dzE{bHN8tgmg;XJ%Uau4dv6m?BqJr?-x*y?}o1(EP-fExF#-5c1; zm8WbQ5yXkSi~ArZcvDNgCPmh}IMoILnqj8d2(oNFAAM!JH>M4_nKeIAVsjAvjyx4I z_P1m*y$NEMXwie7I7?%lvw)QHeO2Y(%j*&5oU^Y0X7n1Zoyq!}yk81)Hoz^#4Q0=@ zWy-=iPD;imA~y$5RuOa~XuzXi_kB@X`ztN6d{;hd=};y+o&|l0Kni%WC+7J3RiD-C zsPO8B)3U#)|KP;gegW=Tk%=8VR^qu3CxltPm8{x_v-JobwU!Z5^Q-waYmM}A#mBK7 z>ObqxuaMj5W#nf5(BG#0*pJiK1a)f#avvQ3VI>++)c#;+s+khMXG}`qYMQZF%Q&)V zo%@Gndmu6cD{Mi4@^^Q4#iSUhN>On{FjGk^`-ev1K^+e#ik)dpB;Vfx1=3T=&e==o zPJ{!L8ia?`zM)?y0FrdIq(5n+^+_cA6`HWicZ%7PgHSqMglMw)M6!9^KP7mnlv~f{djDrOUil=y)y=UBksB^a4$a*wdm~DZL$z4gdq8w~iMbqAI zF$|q$@P;o)38&Y&1Pc7sWI``sr10zglN6W%bUa#UwA6{3YSVoGL1;!I+LQ8GfX&wz z?y|>HhIFaPMR=Z7SE}I5!lE#(eRrt33D2QBN+033#4n?Ykne-Nul@Sc$+Mq!!hb1T zNus)CLq4w%GO?bP0Ir0^-Z~atv_2?c6h%EiiD@}1^f;Iv>L6=owAG5RT8@n_5~6B^ zd2dTst4coEcNLz4N^bq=eb5lef5bSN{>VX|bIGvTJZciOVakBc4{uToY9AxLf4Z>+ z*tW--w8ahCurDOnUYM{!%pD@McPfwNTfv#rN8Pg8($H_vCXH}}Z!oI?LjEMQz|q5h zvd@4{G`p!lrgl}xu!Cjmpg~4qPm?HJLu0XM-|3}$O-S0C8KNh=2kVClhQ z@U%s;)9n6XS@caO$my9U)z*s-Vr*R)o$Hj08sv9Pc%w=qJs00jup({s7rW-Pq^d$o zxA^>zp7}J-?HHbA?H5Hl9nRI8HK9hUVt1Cr*)z5b!dL}+F$FpHC0xP?@2;bj>pN!)#Ud1^L&herdz7x<)6=I&H?UVPEK97PQOQB?}M7f<@x(=_fQ25!WxoN^Lz6C(w6#rmQ)QE-v(3ll6)(}@auT8=v8B+J&e&8EK zk%Rw)F#&s$DVGQ3k0#}2>w0hcTHNOpJKT|J6b~DDyN)C=9wg8=v0}#L@L)Ip=#~!yhscQmIcI@hmW+`n1RI@# zCm-74+GeYE%J?A+q?vRM3nu&HLyGT`GLn=6Dr;$^5XG?S)vJ1w_5Io^86Z2@&$=AG zJ`lA2QlZ$w-|dDOp0%)!1g-7XxS`(pFfZ;z%VfH+^#mWVM{m*4aF;4Qdt%7Ts#;>S zDx0x?NeOhJVO!CW!#t-UDL@SbNkWGOd{2`K_;kwKkhmhisjV2YMNqM07v%ooV@fr} z4nGZP!jE(FIrVp+%IC$!%NKSlq9a)1T4k3(Y!-F5z2nw{AclGQO?pIPyf@D(zmGEj z`U2Vf3ASTI!==zPXRH5;Yu{1g$e(id$9vN1Y=HS8xiYyigT$xlBP0Xj)n>BH3 zv@SY*%s43fn!)EgfiJ4IEFzq(MSuUfEVyh~-1uW_C82PfaP9L}*Nls^nWo*$^tA;M zXRCx$beGh@J!X^AgE{)o6Ct%Eku}$+#yoaiok%buB1n8i?R`tAHtdWX%VmPWo_4E- zB&sSbrbMHpt){~bSwVZTVbAZP1D^L9z81ik8S4^zW6LlkCXCH8k%>ZG%l5Y_eNP~B z)XAE@9=FUW!Eykx=UbWIs!SaQW-^o1I=0l8&Zq%+i&MPk%rX>3-Y*JSxV({sHU*8d z-u!{DCGn8ckwnRpU}&m;a9_QgmQ971F%Eyn(llO^Y{=+WUG&9#&r-NP9|JaX(E!v$ zN;flHv&!BOq25#rufO?%;B&^__S>Vd32b3%zf2exNMn>+n#an-uN@i~+ zQ@%Lg-(%!awQIq@vZd5=SzFH>jO(?sRj*dQgX9~pL4S4SdRdocG^U(P3-<;Qd>DC} zmk(ET=PKhV@fu3wPC}+AVYDrb`pddA9kR}wkG}MN8G5j3`s5Im0lTOd%dHBDUlObA zV@z8dFZmNM2;a1nvaeFeu>oZ;H-`Gb(0_k(GSbI65vj7{NVl&X;`1YRki#(z!1c-# z?@aR5oCw*CYL)Ez-=jXg3c`=cDeKp=qZ*HKXlzqfbELwCdG=;d2r+*L&z6~jVuoA` zY%kvH`b7tqL6DjYDg`xZCtN)j4V=sb$pZ1_DjP?kC(s0Qsm63zUpium$UwJwPG8cj zQlF zB7G>57S)68`604VO$1Hs$+U&>-^c~`-hw^_3^Lu2b#WKkp7TAp?RkDG2+0NcyvS`| z4IV?z-EKj9nIp5*_nKeCZ@CboCCRu%`REOsIunKPu*NWvzz~dS>@((9_Cep4pFutuux=0DjQ%|K8Uk|%H)0vFv=(U7n0R7ukjrl=bVNY!c-)V zvVOGF82QflZXBlLNeYN{Qxf;ro4LB_sSO;f+J+Ga& zwzoQDdQJ<{O6916=t}?G7D!3jOhqXd;kj^-4jevyQWtMTfZ$Obfb#Z9mp)RD+12;k zt)KpobI4}kdy4+2yTqis@*|?IhYux% zR6@kO70P|9nRneMzpZG=D#?cB`>%2w3ZFrg4$69Il3);9l*)b41F-bbvmy>ON9 zivrn;*0KtV9iEY6`MPJRYQ@10x%E!`1!!n_baCiz(HqR$E_cvTBo;j{07}_D2zZUEjD<6%G~N0!DpD=kt+Ux> zxt-wtOEHXenx9az{Icfn`;R`G&I6!~KJ)j_v`lprcCNXmfG|ddab!g5sbEZ-Ahhbk zw)*Tg^0iy!ruy-KoFYBfd>f0mGa}GkWm7`PQ5^S0%i_8yZ!6&@zNHj$SA(u&J!8R1vlN#Q$O9CF{Nf7tSpPf37>WiVtPu^Y@lv$h!?*)&u#@UNW^i}xya zPH%r6p^$f@ZE>&MqQBe@fk<2VWkoB3c_I76i_dCSN((vjZ`u3b+`Q=}JpJ;C`vLu` zC^aPSu@5u%RD9T@{pd`a!eT|OkWyu9FE*Tw; zRKr7+(kjc}!W`HCYpRQ9npVs3XZS(EupKg;azt$@$8%%sr3txKF_K;@wUEOfG=xYT z$Lp>@mtzXx_Pgghf=3RMt$$g}Zr?f%strA}7-H1QO#ij-y|z0t88iU0)@KmcQ5JoU0;ynBhnM*5uC{kWf|2krrW#I?KV)*?Ol< zc&wz38$dHC?K;pp>Sliwsyo#_CY{9}4mSDiq{&?1ryov^O?$E`rZ~Ge3Hz{2SI#i8 z12JE+**OQvjo|%PYZZUZTTO(zPBho+j##!4c74p)rE$VQWdV*Pv5vE9jh}txk_Yg& zJqk|k?N9tMqZD~EF4liR-P%ubAy&#pp3~MUvS|g>ITMR6kW<%GqSP5l-fH1b(DPl~5QJDWy>3 zP>q;v`e)c<>uS`>htIXH__r(oBL6)5MEIBY>hFVio~*u9zTi8q@^?R;a3^~md!A+cV^%=g3VOq6doaIwL6{M2c61;#Cy2#n^<)UC@Nz&MmR=7Mno3^n)o%gP6z0o>He9=@p4Xj`pBXROi+;ix2 zYyxh?bMQ+f$T1l9d%khZ^(ptu2V#_ZRxF2By$`75yzG zsg5a^=MOUHA&t}P8R41_NAx|#o2?y~lrrY|-H#rLdDZSi+%=vjd@}5nUcEISNB0O? z94|b&U~pr1q)NJsJKfYb%1Qh(<6aqBHGg87Rym1nSc7Xz)vv18bb04r~zIrlQCsE_mUyNduK2D3*=qkK1#STwpfLcwf^-81G zp|qVtZc^92LwYj4TiQO&&2$arP027ejm0X7T^d`mqAe-RevFeLD!8 zk;qo6{%9rW)ntnHgESuXi~*HzrJJ!=>}TOtlOjLTl}sv{PY+$FrTiOH*mJ|J{kogo z5*{$m>=!({%As10G;4H8P*PBAA)_YodQuNwK&VYnGMPyUn)eYid=x@-Io} z^&_x0qSQgE*F{9W!j-Z6#U+c#`5||R#Mf+uUIdOQTVb=D-BN)MG9a8Ad2U(ua;;^E`B}=#FKrzbM4Qv9;GPPuW5{{&b)quw z4hU-`3_g#=sz>h^V3YfR8V9;FzA~CL`prV;kzic$6AB(R%D2IjJ;605HpxRN^1DG> z4$pf%Lzf^If7juw<>;U4-D3-VYk6N<1+iVd&3BW1)~es{9rJ_pg%xG|>GfY0d%^LwXi6$^!5jDq#w5zr!K|EhB3a z4l+MfGx=-LN0EGtnBN%_i|pUGRUn;_4m^e6jHRe*3R?@^D-t;WsvcXoN**oL&iD_2 zY_Q*4ij&{OzUcnpw|+RA{Hxm&woUG*meHtx{fw9eQon1d=TcT z^v0S^+v0`9bupI-#di)s-#;qW2vRNum@%N)yUZMKyV zZ-*_(C=HnglR@n#8iuF{h{u1e^dMEL!nKJT)6k6*OswcpR9Cp~rOeL{r&4S7`sLK^ z^%c|ehgl1Ce+i3M4FZntbJo3t;?k9cKZFw!l`6J7R!3bV&%{%2BTT>obA9vr~cqgh0*{_Fzh0A8$kCiR?_2Z=(z@Wq{z_;KIOh+5T z*E#keh!I=*<^7aToH^7!;_7;W74qK~86k)Fy8F+VOzcJg@}U}dKDxzM8#mE6Rl_Y$GI^G%>#)Ald^_qLI`*Dw*-QhhOEJIAjB+UJ9sXQef;=AGB?Dq23S($wEL^;caPRLO9X&aY`q*z(Po}l0r$kCU zlZ)lM&M}Zehzw0^55ME6A9-3_QpyEfEkM5hk`QEmolN4KA1DZ7o+9cMK$3;nnP(cZ z@Tyf4cb$pp0)Ca`aUFb5L%%_`>K27rzNHkSjf2DAYPIR=ITuvJ6E9^mmy&T=VUH_?Co5GsEL-rU22zK}KP@?5>$Z;XkI7X%UQem;zqsO zQrvVg#`!ctZpgG`{_mel`!s3Hp>3-6kXj97KM(wF{j&*Gz^m&z` z@08exP`lZz3ibj6>dHD#Iy^F%diV8a&ugvG-y7b1x6sugml55)23mX@Cglwa!8&uW!hEM7d=TzHXi zzB4XNR9_XgRBKK&R7jw5Rmdo$`BDh`zRtlyUe*RFgsp6-rGt_igl?@V8=QA20F@>-|f6J zf5|lyibO^DJO)PA1R1S5jUP$opQD5`IbUeIsd99)=I>dqnc!%IeNSY$*AHxiO~%GW z=>VZGu#3^PbQ$6$IzbBo`!9OedOJWRsHOw`#Lkh5!?wDO*opG3hdZN&QRU(@hOFdPZ~`N64~Lx zeNPj6yn2hBr=fyYr_O)km~F&c8$WEk$?0F{ zT0XC7fRZJbte8FbSTJJL)io5f3Zxt`?V4`L-FJh1)!Nzjn`b;QS-aDKoCejx115_6r0cEA-ph8l-KC3!sEL7jKYyROt4G<-aQFMOZ~nN4Hc1{qRe0b381=qrzb0`EHh4(-ADPKd9j=$? zmgqpqCbPymKU1}hk74V8#gJpO^J=9@$tHUylW~thv7pZ1P&M2gWY1h<+vE|n=FJbL zt;P&(_F~I`xKgrg`%~pqsTbd)4YpD~M8~-rO^8ojo8lPbKu+KY5cZAe+}6o?JT@#~ zJCbk0eOwVF`B1j)7lctvv_HJy-9FPBb_sThp>5llip{Jo>yU$lhm@^*dUHzf)jWFQ z>zH#t{3ed76Af&c??pee^I{KcF>R`n<;6e%)t$>U^J0zZr}`3~rHeJ>;z4{w-E)IOy zZ-#V&>zpEpwuO5kjOiHqz8E(*PDYY|p{4dD%d0;Y3wJ)K3WzMtYDZb8%NZQc+JOFU z$s2zmpsmNU`|*=8FbE^Hu6ca9mVpbQ-bEUnDYKb$Sd{6swQ>M#u0YoE6i|MH7U+Nh z{k5R=PNwl;$M$J8{5A=6S~`zQ{M)u3IV2;y_W+-tw1 zvaTf4`O#|08jN?s^hF|2^PCjsf4TS9-8zAI$>>{Yqhwb^MkQ(sT~~hO_ys7`1G)XR zx#XbK#1GHmON8NDu*;&K;SWRDw5vNatNXeSUagQG;4#A}iI@cRVTwOtW0RfpQoD#^3Mg_?uR$FmP~6O&F15EMd{Rc@zEj{1WiKQ z=4fU){IEyXa%|XhubuoCa0?W>N&sfhvyvK=J8pViyZ=aUK2!?z-7Vw3=3S0cXe;lu z>FAoZK)k%NSQ9}rP$pu2`5+l35a=QrLRkJc4>k*WUig1zJx7Qx^wQzEV$7=I$ujZH z&&i~JY9jkm5MLK&-?C)QHeJ7^#~Jg58Sq>gXD7)O!p7qkADVY!MW|$t?SDTlU;0J^|1O&?qVS?- zJ)-h?<5|mQKydo-R6FDlWEU$>L?xTz=a~Se0sbl$M6uw=nbtRr#r)$F`F*c!jON6 z$%^sJz@R4^+1|nTG283z(XDj(JIgHCqi$jFT5r9F|8?qC9)tC6TG{}Uy};_Ts1tnWR@(5Do7B=*Zq<_j1T?i z8SdsHc!{^Xz}fWtUp05dc!R6GMop3mtKffjI#nuy5AOyFIK2%J^V!sOrBSuevt~do z&$M6oN&E2k(gq8co>lPT^RU|IVK}u=Xg=ghEfSRI!drZ^E07^Wbe>KIlu8E_`U;eE zES!Vupl*sQWp)g8d@ff`FCgihzo-ikl$vc;6Gvzr0Pj=H^%y@kuV>{eJ3Uq^qPn2x z4ze$DGtg2{Nvo&yxX}M)5}yl`^o05%*DY=jFre}N$y65nUS1QJZB1?G+A^D->&jaK z7A*ateKztqhww_P1qjxnzP9hLyVFXwUxpX={| z(Ti$skMk61HLucReio*#pQ>N}UU~IdV1QYMkYbZ%>dNrhnjmt}-X-9Et(O-m@!g@{ z33n(riMJq!G59@Xc&$Z=B1ja@o^m0vaEFTXsmO2Ny)oCl4P6>$FTz5i3!0W_RAVjR zBG0xt?)GJ3R1yBV~#S=K}?e^F@9V^0cmV zYxChnqwY2O=jnQ-XSJWnJE}R<%(Y6sV(%utw<(${l>Iu1fH(|aUhEA(;hEPc!d>>J}Ph!mppKXI#V9(ooGIL5@=RUc}6ed z{IX&CtnOOxehF1>#dfBS_cSSzQS?B4?b_|GwaluDwbL`6=^!0`R`UN0?*UlSpC*LZ z`&yr~IPP?S0nT%kThZC9HCVcc9;p+A$AyTscR8=z3%XUDJSds@<|0XSYDssM1P*t9 zl`CFV4eQ&4Peqdkfgp4_P*aFT&Hu>g|3~IxZMX()Sb0$WQ~WVi0nBlfrVw$LNnAc) z8t5OjEfAaT$IrCFc6P{5K7{s2qZ`tSOa15by7L%^=$=ZNSv25Y`}e*u*AJ1BjpboT z&M`YlMO;Web_5nHlD_DX2Hd$JLLOd=s99JP=kOxx=xo7H+3iKs{5~XY?tOCXqD>sc ziR5Gni%3mHzS%`cj)l&g|9RD}IH?(NN1ecs=OgC%_J;N3mDR##|;ti-fvXA%+0{`x^tCUetscn zV%wuiEEQ{hDq7rrWc!7q+3j}Gqu3DoCAD1XYMuiJcWwYcllGjhj3|{Etm*AnmfcPN z$=ebPf5I$h37c7>gC8W-2;^%a8mvyB0il(uFORvQcY-q4HCOCbzK}UV?+j(ZjT@-ETa1o?nGs+E9^-X1J%Lc45IdZ6wIik zT4?JV_j`C+ch{NCn`ugF%_W~?`!^o{)6w$WYWpAAt^0cwQ3(Tl9o&!W<6FImz0lk_E1;|v*EYtIF=K+Gi{)_yzR_DjS=zpjtFa%l9PhVAv zrbok{Vdv5E71Rb3A>AD z)BhdNg-;++=GbD#UjAv9;QRd&fJoR4cs;LAuAq-(!uCHNrj*re|bH zJ*e*Y&>woV|su~EAyiHdR8)xT|c6ZNJE9di)@@IG8%*o?tOi` z%E4Us@xKnahV?y5^~j}m(C?1P<ξX63RHC;KGBZOr(d-qa4~aJB*1!uqTdGIp$Aws zxPsY5BarT&u>Y_&>O3>0HDj23apz2E1+$x*Zxz`<-BY|(Y?DFWcQeD^t@J#DM^}vw zXMBdxCh#WS%{+lbrCIhCW-2WB22W#q`{Q#KAz{psaCLzm{)`&!`1Au6M^I9!5`-tI zB58Yz)O@{lNTW3hjwC+X0nEtx)8i3AphDO-P@>EaU zEv0*-*Z9KX`mRj_F~9PY`DNIlMvVY?%yME}3L$Y|wd&v<+U+6>ov3Pp*ba5ECQoZH zN->uG!|wmcY8e)LDUk|CczDP2F#z$C#G{1_bvX7rin95+NP_$Ke;v3S=@FPkk$Cz8 zeiSZ*1FNfokvSN{1@<+|{c#659S9B){!15JM}JQoC%@v;)flr$9oH82=J6ih$T#u_ z4tTS~x_;3OioANGEHv4EYiA6ODe;Hb7vMZ7>`GNdo-Oc)rMr}WSoOEwF|rB= zDfj7MmHN&%8bR1Z8*8h*Ha*dwu>GZ)CgIN2OQrtnj2ywmOh%afD{s83x2(=mX_3lXKGn_~KekA>?5O7ntVn6T^Z-_;>*4 z^8u1PfG0I3kHbazkpwLBq9-6N(JOFukM@D{mBVoQOXkz!OTeK)vrbE;r|768$-g-dPhN96u)~SmgMQddx*ds8**$mo)%))#ZrJ|aX|LE@{S-cfS4EtNnHhL~ z_#2Y|gO-^k772vnGt5z>jQ}=25+e%e#@hMPjd98e%zw_@Bd=bwq>L*q{q&2*49ZeI z7OJu;yzwVA+eGoT%S1}fM7{R1Z(D8}JkcXZ9=YzUc41LmAx07>nu8-{u23;SPCsBY zr$*~kSYNiyT^9Atl0%H1=X|hb0>d7h!mD*IWm8FRhLEmEr&WO7v z3m;q1Y5}5MV7$O~czX90<0nNuth+hm)pdVkeR5X_cm4FZeTQ9>mSsQLn|9yCPkoBU zqezg$0hb`LO4g(kHCW@Z!WJSA> z9$|D8^d;t8E^K6xlOigTLPh@aiH(kO3%yE^<=VJP7bv#RjHZAs4{J*DYP8>cSx zBhc#il?LcmoHVK|=r&He)}iS|F5_n(I>8%H)oGoN%XK~P`(xTb2Z}ZI=mv25wp~Rk zb!Y5{!tzb|g#AjH&>;S@()f`3d-AGFZ6ggHJ=MB1hKLnv-{EMl$ymGjmYvxS-9cdJ zBx!4~Zfj)bo-F77Fi0+0NB)fw%;Ibv`8l`ukRlAX+P~85Ll!T0`I#h=t-q$T^tNm^ zi(pBN%ew&!Ip;rcAdNC8&~&xD6hoz^P-q>9(c6Wh(8UglQv4lDw|YmjR!|wIh=UAZ zBtc8Rb0xL3Rn3c#>2#+OE|;OXtlqyr?nOohTY7PI!fP_wlNJY}^<<)MIE_R93d`!f2o! zOP$xYK)-8z)hALe?y45kB{kx(1MkO#@Pte&zraHXTD$T&B?-m5d2=2;KN_Q3j9hV<%5lBY3P}-`Sf1*x$_H* z^;mR64x}gd?xfAKk^6K@Iwo0RLwHm7p$Vp***FjpRa zmH;OG0nxSI@>xaDhx{Rl;O>4dg)pGxZE`Te@3rxT->ANJf3k9WdI@8TRN}ujqfuW8 zGfel6v*XteL1Sr!08OW*FK*5?EsZ5f#jTPf=TW7=`seRC0p3?0rbScxNrW%@E%=Pb zByKEVSR*u#_$(4yW*{-Q`}fwrx?VhSXV7!|uht`EQ}i&v|E%%x=Zi6(t}2m8>J7ZN z^_oeEMaHyWmc+7o-VjnNSRJg`8tGagT?^N1m2iQ-Yrv!IJRSM284VxSyu}t}V4jm5 zYEx!Paqg6z*zC*$^{U#0E)hN3e*v1~=m;U3-fGY5v$=(>L6^OKZ6D1fiE6%Y_N1(? zp9|CzYcf+xuL^|=K1t;>o9DSZL25|@l7Ac3F$pn;Aq@YTLz10A^~{o$>C)Ow)rCu& z)!iN*$Lwu-ujWSF(}$9>rudk3A8fa*fbkGOeLx1VnCmsLd2vV%yxDx^g31pue<7|% z`J5U}!>XUj?kbwS&&-_49HsOylcONId_XfuW}Io;IbyTmQirx;a@|@Kd^ai_?rE7i z&p#|Hm(JJ$-vGISV=^6bPNmULTHmClvpjQb&~Y>8;ww}eAGW6artviXZ0t-?al++} zxw3nJ;GvQ>FnvI6_qs=rB-*gO#Z~_TMoO{*#w}~|^VJ{cS_p(Kp2yM3t^;|oGM}T( z-tJEm?^+O>R&{i4V2 z^q*Xnz`I>J>5S^d;t^)#wPpSe8qgc{g6DV#fqLBJXF{J11yuLkGVTT5Lg`fpbahc} z!n-BSD1vrcEMc(848ZRNqK>rO?^)#NUDFDZagvGPe7fy@V+a(~sO zFV~A9*QGHZTcRNYNW22cF}dSUW~+eZ)H)GLkO{gurTlyZ!$!Uig#K1LhNq#~?F z)(GFRVKg|`Z!bBx>5d20+uW%~vm(*VqClO%CG)wrHzyx3q3R0*zEX6>`FC5himOtp`m~vpv7>w&FBX`O_gq-_>w${C zp83GjFe#-+VLn!RTSh*&I@k~D#CF=atgT@i-+8>N-?YdTr9#u&k)G0Zg z<6Zy#XoUnNLizh=MX!GT{ILs1%3J({VCUlCN9w0nIbTACA@zZW+_C z2nc-rtHZ>4;gDVTps0znefH^)1a&CI6E@8j6kHfuu%dFZtcZET$hc6G9&@;l zRPMUYhC8|Ap9A_LG(dn~VcWA|!3wVIfoVmvy4l%qqR|$6mI<23Uzrn@|Ah0uGlW@b z=(kAUyG)@=1}mt zr{_|aC0K{^fNwAux;|pD(%a7VCkP^qbb=_Ou+3W-jU;c1CzF3);q@)Kgf;|{^k&d+ z@^wAqlH5%$^Tz0_!z-UFClTX;$XD=vNq34J-vD%v@NLce;V#q_SHlXaY4p^sGUTB> zRxglNOFu4x?^7nFEI^E5>AiaK9Mle<767%$!v=E)3AtzP$@y}-fgw`6YuMw6-Cl#R zO~GG{ZM3;WbDUn6AuP-~A(}<1;YA@?IYzc{RHN6#GWR+dQeIY5d8F|XC!|JB>+Ue&-9 z?C!_FC6O3PQZ_8Z?`E_NqQ519z*TIvc=*1Py7 zTyk;PC8R7~hZzO7JN}PMum2Bt9W_#g3(t& z-Z>%|WdKzvdmqQN5g7mIT6eNsqaO!Z>6AnC zvQLB#q(|n>ZCwzo)cgC>&!0e)TM>azEH{i7R)X*2H>UXmcdOeT%Io2+*|{ z)jva%EKLGUvJ71;Z4DAqB35t89$16lcFP=2g5}`9#ox;N1x?$N)ZC+hSPPYzc?vgW z#voZu;r!!jo8V_|)O3f!NR^(>Lr2*&J98b3tJX;=)#ct5jV-p}FjaG}EeCD*7(ayT z9K1oFLZU<-7pfXLtu@@Gn^SuXWe+X2G6A!~YcD|fn{O5GkXA^*FmQMTC)$IERp!&k z$ED@3#RWq@Lo|?3Y7JqDaG_7z&a!0LUZ2gU<3$Rtx4GMlCQqdE!#XD5&4zIo^@~~O zK{!W%;4;2Uhr&@?NHY8!@zr;>urlq+@|TFKxG`|E#gi|JG*`&%S&Znc{)5FYhqDAd zi%xNe`}wZStDmb>I0sZQcxt+0>%)0odV-2WnD&X^R1J<7&do1|En6E> zh)M=?PHLiRr(ZV2P4q${{0;1HrafN$CI4oFl-^OxaT$~_ z`@7!JnZ0$Hda5it1z&AMH)g69E#S%57v*Dng)=)L?5vZE>LQGX96X-NX8}gP-%Y33 z?KL5V1U-|>8g?8*hGC)LsbW0z{GZ$TqSe2D$C?|0WMgDP3jsdd>+|iwuaqa2;pN-9 zI_fH`@Hux9r4KG0!;2^;3eJ*b@urvC4O7A;lh6iM*dg-|R8G2`$ctCKu>n~BJ)7a< zeLm5K*(}|5M`Wr7ZwjF4YJWgiUMO@wvgK{D-VO5yw-+>TC(=~*{v0HUUUvUE`A(t&idrO z|K84943;T?KAWC|jWgHegRp8&%yDw<;!{520)^@pQK@PndpA1bAXfLLG9(qa$j zbez%@AeLF4F~YwFd>sw-?eFk$zr*|j2I;Z2vN7C6S#_sQf7F#ajl+cmlD#Z!mWV5M zrxzqjqry4ZvbiD!#z#h8c*8*WFmtR?A*b}?Lul8FQQ6z~@A%8<$SPWvLrs^}{8P>Q z?iaFU9GmSUR{`BCjP<+@R$d&HAK*b&;-a%HVqAwyh$(i4W6lD^g41%%A2Ix&? zJs}^y%-*9)r7jX>AVHHTh1bU91RBg7AP+PpWrf#g)FWG!JOYG@(j<=y(^L%}>vq0= zX5P^i8tVn-Peuw5)2G{LD~FwRy;B-(-1>UZKT!vTemKziF5YEz?0yhi`=k&rZn}su zApI+nJKp=wcU$4L`!a51K@<1eWDzwZZKVK5v05mIWENgX?af;5?^e~Y&~ydC&7c1X zGHPZN;}QplMg0shB&fUR%kBI|#CKR5`YN?LwAH=26i^`e2L-xZf9+*cUNN$5peg;> zJcr`g-*+E2TarbWw?pTzX`|fmE!Bvt+#G^M$e46qgUo&t_MK8>-Z?n-{QYIL6GNQW z$3xB2K|9bv;B5C00~VHfL_o)-CN$@(FW9=EMLY76(Mahy8pHu;eKUShlxSS)8h+~* z!NOp^eO6F&b86+n;NorV`y5hr18i{4e1w*9+u2$0bXNm(tIM za>^>N9>eY1{JL3C2ZF12V>)MNW}xdz5;NB|} zGl`f9(woz|5A5==D<7p~1099D`W37(;wy5wBdo06|Qd1de^%_ejgrN~l5JCq zQ)^vvz}K+VjFK;g^ujg$ioM?5jy+4cuo6i>^E?vM4Gl%i@L>u+YGXF&uKs2 zEI$+{R~kUX47-$VO>>?B6Xe9x7lx&wv4EDOD=(P?*ilwX(6m5+(HMg(oVHbOP08JG z_CQfRXja~#B(cu+b{%;fcj6+g#GTrPx`V&|h|(MjYxg?YG6&gctWk_OLtc~Iln z!OKcoa_hYS-aP7KHWNG4gt4UIJR*a&67+p7B{np#ZD0$TFe~YY%12Ef$I7=BhGbsm z{Sk=?T({OH-D|=|kAlBi@U->juO2)is1j8?O^`S3U+vdXBxb%G{!Y0zn94=Yb+ULR zk;_@-4z(eyH2qs`i{2?+v%}G1HX9R5h(S11S1`F{=DGFFtwYFMjx^6os(4iq)9A(f zSlAQkKXOmZ)E+%ID%C1>;TwVKBKHf)pQnegz$CgX+)@LSS)F<3U5+*aX99V{MgF87 zpEHw*+eUbNdb#gqoiTmqm3~~q4lr9g6^{zE@NAiWLf%7rKM3589ZiO=Rr6xJwws#k z#@{{ArZc?daEtEuv!Ck2FQ51*>y#19q`ham2pW~l7KZ@3$`-_g%Zu2YmCOf4`smOc zd?_Ib`|;XPEXiPe?^?oZH5d5uMjcCm~)y^+atw2eyI(yK9jwX^63Vdr*ToL@w(tj>1CFhSeVjb z_%EsTH6Y5)0=A&`D>_))FoI7Tuw3AI<56?tAy;DBjhBmR;M?~@<+Q^1bd5Kvw@GT^ zRXM8t{UJ|@A91GDn3gzNH7wJtPoRs`=^%;$1D~Znx{;K_Jb}Y{RiPnT>lby)Y z&)>CVc`3AZHw>AA6jO@5k@MRkGW42dgHTZ&Jw<#LLD+h)aRr+R)5h4u1=PhQ?jZcR ztP0dxUZ$CHh;hFY8xV|5w)(Ct(xqtGsT+%#okukj(=$?qW@)wlxBxo)o1%aFRHlMN zamnC6XAl$r1EO-!8qMG@z2)AQXQ)auXYU~1pF#3+R-5W|B08drBp6rAG z>Sm(uAMKF;v8#v}SfcqcshQ*cN%=1RQJ)P>a$oy1 zd}(mWuPF|_FM?odDU3i5wO$&hgCGe-Mh3GfXxp#zjN?seZ`+5-RU*AxV~+q!VQNLW z)jaZ-829@@+M(vC=2_M3dbWpwj1jLJ(*Cp3&bc)7H~jc=pt_!SiAvLaXJ%tFu2r=a zZFFk6?!G^|(g2vaPoBHsJ;=L-6}p5S*0S0RmB7X~wT+!m|7JaU{)|}vE0oh|h)44_ zyW*niVy5*l_AEG!(};vpHoHz!=CC34gRw?=VIcsA8iS@@QNN3J5ZKLSo-LRXvQVg( ze1XpV{`YmPj3AjA^S_rM1;gwzrxz*bP|zRJ!m2sE3a0*Hz?Mf7ny4%GU zrycb^a1;(-N}}|`7Os_4uI16~=wOdb+owd_kb=xWE^*tWdjmy*4&;EB=Ziv1;I_3q zj|*VoF;Q|8w0u+fSShYWyYrx z?1{X1{yP}t#W{26+hdKD$1;8kcI2BM*lPQK)4R9czwZHN&MOAf>!$d@D?zCC`1lf? z)r&`4-&0*5#wN9o^roa#uVA9j{@~)^=TCr8Vd0?nq%mxIj8x^4nL1u|T_NGYPUcM9 zJKpHSb+uOK)(og|RQixd3S9O&2Zd((z@?JM#CxSQ|BMk|XA9>baqol8z*Mc$_#Q20;-S}<1 z|KYL_iWPC@!H$x~Q>34ZA`9V{4yphH&$)VPe(wEd_n=Jan46922*hUA$eOL?Okha| z+tSH_Dv7Kn-kvC$Br*p3JJjHHyNo~ezpHJYU|D;gCYNzRHoR*PLrqhZX#IUYqeh~0 z(OyE%>-{szZ&{`@`Z)+62P9IW^vohiQ|+yftJ}vEqx}gNpS}Fcv0|9ps~BbBY0~N z$1az7^}+8SyEG@~4sEsOd8JQEq34{`r=^zU30=xhCk}|hj%hX=v)+~zQmZ2LdBMov zZBY!8Zr|e{-^q#JFOxd{)%?VoQ8iFQ%Y^kj5#CgH#BREf6udcEo8z+Xm>i=^C_UWS zgpi!dV0R~#hMI$4v(&q~%d#cHLNv>^%Iy1Py3>)5U> zVSY}RTrzY0o(}dJe8@dQyQfX#Jv>t~llUR^&?U{k@d04X&rVGY~h!dk-bU{Z} zSt6Qao}r~<*U-*{$Sm_!nQz?3*Kg1JFrFLX+7m*b%JM{7Kin{JUbIH#kZA{(vB-^f zRA>IYCrO(u7BP_j3`opewCuIuENsFDAs^$k8!xPvKV2L4y0IPU@bSZ+SmR$^4)0Ts zkA90Yd`hb@iudg-T+GXSJ%jRjUiP_HJ2p;R`!WEyH5fq>Vbg$fSIkOa2hA$x5!5rZ z>NO&~$Huq5zP+jS(|B>fbDkQ+AHnX+60c`E-$A}3KPYt}bI4XY0ev{{ zp0M>dkIFZL6kr4P4TNYOC|m;B28c?}@^2!s$F7{{u` zes_4yzgsdsZr`K~en%EO`&E=AIA?ljx*2#jY`~nTc3XD1WKuV@CRl_-P|9w69O9M_ zn@#pK!h->6NgRcJQp686w}B3rg6At+>KMzgB8r}Fepm2}*B-AheTb_E#18_Rr=Qqg z_Op11`W7U37cp<;8WjaxQjj@CQMJ^83S&8bXF;6wq!&9-sxYP{IGKl&2`{~rQ$8Xv z$*kd4S6|R`v$eNwIHHR>KyW4P6Zk-$=^DPS8lmlmxMvaEse|-Wh&$FHJOat$r0GwS@_jh|He}eyL@U!gOc)X7)VCMf_;}wvBn!f-Meh8XGkHwnc}lo9*gk)T zr!|Yg{)N^vnaVXnt(#$LS;1_S_TC;xx z@3vv8f4y^-k@HX?#x5}eXW1K5JJ* zLY8(gSqK*dkWTB~tkbY{*OLY!{S%j%Q!=p1A-WjV>{P|B5N<7R&Wk1<$%ZeBKbFkk zxnf!t)4Q_Og|>-~i|n!6F=<>avYpv14qJdxcK{9iKqloj&MHi-eIhE0;}6r)Qyjxm zs_*Nsb5HMl?hXf;j*X06XINctjmLlYGjO&!TnVrZ+8(AZpIYA_>mO5v*NPq@UZ=i* z>9^%CcxZmP!|WaQR^rGpMZ@ECPhn{{C2kTK=k~;&RqU0e3w^$v!{&(dcY6bjj z@Z|Rgr|QNKuAgrT(gvOFcp=KxB43YKe4+v;R~Bv zrQF%BbqVH-bEJ!<*Lu}fq!v?(BJDICu4`<$r7O zwV3;6z5DFin&-OH6)jC?-z*b4a*(8ZSzw3jEQ@z12P|`d)|G@;Lq)|N1iIUOsh{tW_f(kVA=cCygm^37&YUuO zU**%2e$WUNMM-As=UQiN&QQcA$fuD@##D#5{`~pc|J|h1R{R-0*rxQ7Q0> z{-5~uI|Hg^QwJ(5=9H04S^YP0wGiDFnZM6NYdlv-TK|1d{Bk#E>h+lp|K4<;ekI~; zLIohId3`6=lX_7rqu>`4TxR*0SL320yxD5qFYk55aF%@M2}yb z0BhQNy0SL0DJD)yy_iPj+I)vd?H2*=nq7CpZz&|F4uswG6BuY6W> z8XmDYB!)M#qc76F3=TedtglrT%D4ebL_Svw#kL;QoV4t_qhE5uKJsFhZciHsXw<8h z!*CBnCQ39?vP~s(m8)|T#sJH6KjttYXQp7tU6GL}QVTcp$gg-VnR~%ncXhd@XVI!ev@A-`+m7QdN7cZ#fcAn=dR~N9<3y+38#3O4~NxDpW6H0=$T@?dZ zcZK6Otu(xDJRhQVZZ8=PUTM2!tgH#Ym6GP2-FVSdGi%?L&so-}>(Y^w1zj#hI}uSN z^T4Wp)UDAtEX@U8GwLAuL?IQ|-A4Rm}(9ACav?bly; z3Udf59jh2-mhgDF0ll&wwP72kIIYK2#@k%iqi>XE2}W&M67S+YyJbuX0b$ZVV+j-U zwi&LoonN)<%FyOn|K#L<-5^cm35<&N)Ue`p)#hJZmXdApMLkPW5m?(U41J)O4Q{j~ zkh?zT7i&V>h|7o<^17c}c}nkgiqb@U>HrLT|lXTtDo)1{{Ncvjs@?@r*-JBRu1gviNTiRuhLHVPetC zzrL4xXA*M*($iyy4-_gBa_N8nTE2BN|4I5ilc#b<=N8&}i>VWo(rKs4^q>q_O=1$| z&OS*4qGQWO7RTS+ok2(CJ(^tF%?!BsVJpg`Sh86Dnr$u9wcq3k-NR?GJsUji5FS0a zlx=$ax_YivUc2Q5rJeH(Uq$$gFWV!`qG2(Rph_2lO#U<3jOHWslgwC1Oik{U*WUeM zBWXl$l_Ul3KDBj<%*ePn_pyZ~r87 z+MQ=1%!#6w{NJaZt8W`*ulk8=u(K2@&Bi8`#i)^6tRn#7Av&z1oZlf^`SLIHj;u^?pi z652(1%<7M-aK^(pAv6;X&i1iyUT?U{)$pEYvPYeAU-*-3?H%q&RX3$REpd4mc0!Lj zo$C8bp?6lnWtuyo=mF8?;TN2l?aRus&|0EoZy4`HX|tuS!p8pC+!FRcvQuR46O{?o zkIH<9gaWk|-Ofh;kao{^B~in5#s=#MRBeWg%5vfV(@06rq(=ZmyJ!BcNI;iAi0ZGK zn6x#IiLC8h>0JkZNkt77p#XBqJKk8Ms)w3v>nxoL`TM%OYvkJZ3ByJrLnoT^Gh|be zQlP!|gp_9jNO`uA#=aNYAdj2!uOreMpc*tcQRx|LOaBI*qf1_Rt*_s?zA<79QPYTV z*HAOe@e9q!kmy-n!0o(EL8D=cWYFbz$~`lP|AdnLO47W_^7?{*$-kbez&YQX!Wy>9 z4GsfgQ>tgrZ~3ISPGoqgdz}^VUW%Ptjn z>!gw{mad5yVmxu0qx)+1ZIk%}3$t}ZhFbq8dG6zhro<{&$I z0;9jyH?!9K`FjOk{YiXwlfTxrv|5C5eL-+UkZ(=as>3pgX7TsWc;!)a^Ryt0w_80KXJq+c)J9;34pJ;uwhM%;S-d;2CSFQ0N z|NJ_fy#Aa^w$}OmZet2UDu(YS3je^d{5jo z`L_G_{bZY>+zeJ3+n~+ac;!lO(XfeN6GSP*7!OLu9gLYzyV+ZduP2MvN>hE!F>+HX zZsn0*&h@MLnTVhD(QIk+Lgt*ai~U-(JM78el#Vu^xLMO1EX*9)%W3uPH!rwN^IlDO z5VLfroVsZnhn7yZOz=Zuz^ZNB2Rx8Mt7INVu(YS~R6+(nSSR;>xyZT)aAzw0`|C@lRaDWhdCeDzu`OIg6Tc*VQH#)D8F~`^RVHUQM?fmjpFG&qXIP#%{sVc6uJZ|>ENM(6EtNP{jOnT-d!ss`>4_L@RKfDF z?VPO|j*wdI!fF)_Zpdfbw-{QoulvX?E>qtTp>jGlSyx>oSkcU9XDl~VGYJlrA^(AW zxj>Yr+ZT>GuhuY-MGQyood{(q03-8x@&{Pocdg6UQJq;vh1`1%}Yv8zzB zhraE%?6G|~o~fs;v`nl|EK-5CD9AtA($*3iB746e`R_g*FH~lg%=Nh>fO3#& zwX|-_1GwQ;Oa#{hq{z+^&m@I$A<)T+7+~Dc7Ru=~V=GCLS^3r@(wr*x{lkO$%gHom zrP*Iz)1KuTcScZ%xO1DaW0m(fxM2UrNrRA4$p}PgI(rwDKjT;m5xxA8^fl~iAl!BW zP|k?BU|u%kZKHXj4zV|@gG)Cuh7D~S0DlzIn})(ISGs~%{`*~vPEY6LGc&3g)7wG2 zz><$9hBghuk?jJ4dJI<9?TY@#pai^-Gv)DRB8bakE>Ncn`OF9}lSPxa|HWt9WThb5 z=802A7a=*f@LH6T;&U5yg%7*>y++ezj+-bkpY;kMW5KFY_~ZrzsFbO!C?lvlpxYEo zJ}sUp!sBstKc_M=#Ib^SurzD%bkTFw$MMncRC!mwz;`cRKGqxgbuW9h%X>cCvnB&G zYuGtw7@vPpqf`yaByoiO2HYNyDz2Ogxc#JXvR36Tg>_=Tm(f3iv03a<0z1ahBxRk$ zKw>Lm-QlK|{4!t#=W6HFs_}rIqb5XIDF?M2*s{~O!tnIO9b?kzzi`1s@FEJXCe6{U zf@3j+`pXnZP`Qf&rib|dX3q@K-NSUuGXDh;%8OlLKkF=I|2!XImXNW>wBLv&QY43t zmCy)zi@X3Z{><)nUuQZ(Vi6bSk2v$9IDIt5;!kL zFk3rf_#XND7SaTEZ$nCWBHhE{le>*>(_zTo>80pc;{Y+b=YD)Xr(vFEzm{6RxXD_& z+}zX5Ey*okXbU??aMUgA zTgkZzB@}(WB?q4q7^-eG=BTatNKnbB3rcW7tWDR14U@l8o~Y_IWpktD8d zB)=;mk!`&}r>fQc&R0pzt)o^uJ@qTs!?oBQOAM-Ehir9&st;m&jl2?UEQ5K54h~TE z7*?>C!!m4cx2NsH%!RM1B;P=!eLVNacW@JI?VUb8SK-c5QAMxyc{n5tvr?8^#DoNaDNV|7c>cFe8^e7=I!4ltea+2e9 zh0%xY?%PuvWM%wrj|J^l3MTj`GkpK|M(mgeS2JAt|v@pNhCG0#Z#>Q@FV zx>f}zBGaoo68pYf^chtOlQGy}(>|4XS<`ylJz(+E!S5q%ZK30+^ljIFn4X2(>HF7J z^><}_Kf$l47*xhPZDT`E6xy)P{ zL_7kDthhesGLgCX%CC0GD-IHMUXj1HbMZC?X2JC?Fr6^|W<$xEDE*Cy0RJ=Ny>}8$ z?%aSxDN-V%>*^p9-&Wp@AJ$;y{Bfi(rEd1Ue@NVxa7Mmf8iuYi%}e?Ls5hY0C!VpW z#uqcvbl10jI@>&&wAF7llirQ%Pw{zD{GhF|L?(;&h&uP&3~tX`qGa-zWGT&whKct{ zuV=0=t<~Bz?+X(3Q&?l@)NHBvxbtwz3cIxes;zr*V(Zvv;36bL6AC zd?>%$Kr@!9++JB4Ru9jm-eaTGh3IrI( ztm0eqY5lzDy`9mAVW^qSMPgp&GBG5!D05}o+lJbzju_-IeQ62eoU#~xiA)U94bYwD zYiOroSTGIYeaGbScRqSJp)7rXD$#ZKyofc{y>t>uprCkGEDV!`^aL{S71(jTzJ)8LwN0n)obVFD71S%oRL3tHNp9nJn8a?`|W zjoz8xCy#hnk6oqipiBszp?siKW2qTquhI{bHq1RNhBlr)Y)BS8a0>WM9Y8d_ zGy{uwRkS5%?{(}0&zJKmzSY2KPsM@m;leOUE%2?{df~65f!lYwlNyHqrH(!A1ToZT zmjHm(`ZWAr^0jcZyD(wWezA1qxX`4--u>}q!9>xi>$|U^z~WSpq-D zFY$WQ@zi)edkPYR_HHGx!dIX^paHzyR&-Z@=$miz9MT;H_cVm^_2(n6tX^kk27LAK zo14e-yoEDmfP}cgGy=MuMq!*ev3*45oKdoN$7=3Jzntvecq;l zNzUMG!p0>HZfT^u1eJEAa!-qnEHxXs@~yk(va{q?*V6y4;PIT2HY1kRg(dBp%ROR5 zld`Zaf*4U$6=)bUyAK&5`ZyGj_r2xqjG2=G>agw{IGApn)OWT6!;%!p(^(}|$0`?Dd#rQ;D=OwR zNEFWVUaB(Cn`HK1&DVBjD!lIhSfy)%u|hEJx+1Ox}+z z6wVkG%_uHx)oA+=8#{A^T`5f-gUM*w1@BWO@7j9i44u2bCWV!sFQgl#n`yaw>P7ED z_to&iEATI%C%fK(^H|!{A3aXDb~{y#60dInu7akdp73Dyd%5)e!W-TToKF$F+g(HZ zd#K-sf5aaZm{(}eXlw!j)<~s5!`GMPN?a>+_W}=QO*3s~YW8esc=V&*KS)_ANne|5 zeZdS?jpDwq1s^X8uXt8jyvgQW))vZ;6m2XP9}9->gk?b_jaz^+M1JF`7dG;J^54r^ zZE~E9KU^hqEostwnleJCit8ba%ycLghE2iluTCMV*qysf zn|{G*$ak5e{l6Zfja(oG{j@_uz1z`#f!>(nV>0d^ZIebc`^mUX+(!OOiYge+aCn;5U z(3Q)>^Zqne>4P?{8C=D9aJGbV96ZJiKt;i^&8fsD%|GbUMh6l{p~gl(Z@gx-;!if7 zf-w%)lV|Dj4vqU|ZID_JLJo`eYTvMhs)r$=T?$IFrGZe&?U6z!i?G9nfg4=`O<-B> z+tSwH5#BptRjF^n4?+vcfjCW|B zER7vvk@%!@nRVU%Un?9@mSxhfVcvWUvZOa&@h#I6Kewhl#dIG=!0OAoFtL;ejXE$I z%blKHljmFGI~UznOXpGBGSyEUgRV1D4ub<@8TcYAq^TO(n=^f2cjNn}d%KnPt7;hM z&z(YLfp^h28752g+2>*kW43mZ3E<>HeAzxTo%uSM)*{~X{Mdun>^=3bhx@-?%<-Ux z9OS;gU*~hhm>z-3IJ6TiLrf-)CyEOHLIb~olpqVwVh?#zb^EDpb@YIn};Beh(HE>4Uxd1XnFC_=yI1>)i&VBiUiQQWZNW-r)P4ZVK+^ zus8sUgnnT~W|DjZF;H335-edZXObXkQME`A2^@(@+&i*G2VUp zuSDis3JiQgBvh!!R&1k@Pnzm8EoW%k2$^>v8M3>c?jCu}LCGt~g8*6$4lgiA_Qyvq z{I7ByfH&8EpyFWD5TM29KGUoMK#Wc*j1V#6|D$!^0n3&Sz!%Yb*$!`}lSzcsI&#@_F63P93b>9bVl$vKo(Y9kg{|eNUr1Rhv z=fDE+9~q372~+|*6f8P7YqHqGdS;ttChI+^%Rj^yyl)Y`jlRlq?}f0{_u$h{2EIl5 zLyMe)XEq;QX)JQ30+N;kd;)V!aF{PA?ZR{nL{|fn;*zb+ycI^<12SjLe5d5aQrHW( z-)2Y556fcr`ad$~8u3u41lVY(-|{YyZvk1iu>(5p0|~4HIOBv-`WXW;}Z)!J4Y?2}n2#EUe zq0D8VvX^Yp>Y|=lm0MVC!A$vvZPVQP)H7U*tA_ zR#I8jweQ32+FY4AsBQecByyJV=?;1WaNrOJ3sn66ZP0Gr6#kDxIKNZd_tR+c{)gt^ zu#diZOjOd!N+;yeo_^%Lx=F+^jAo83(l`OsQHbxhx*?u?!`#Ci$ zI2w~k!|rs~=VgpL^P@*MGvogV9rNjFiSfYjjH%0q(FeZJ8!kv8XHP6iy`p+<8>w5D z_U`-Ic}#*g@u9*)TDkcVujPg}^Rk7Tu|3^N@Yjor?Nxqqfbb0KY-8dsX*brJNuV%K zNuRa<)k`RTNzkvD+wLZ40ErH;VwL%j5umvTJ9gKWrpsvMo(tMpEItt53T7q5IHBjr(SP!p+4Zt~YXB~PELsptO85T&2Ivo*ZNeMh~sB3c- z)|EL>y4OG6KUA$F7g)A({<<%a<3 zl$$S@TyL`1`n1r;;`ws04sn6TYTCum)^ZT3b5%8ODmP>+4ppszk7ft))H9L7I01ix z+i_}(+|4ONATsXinQXsZaX4mI=)ZOQw_EtFm6>*YqohlV@6X)2fR5S=(9*}0kvbu2 zDV|{l`0#HuQ5kQF1@Kr-C!0IC{N~V-KsGbHn}y#LS|<8FauVT8m3sU*Tgq;Ohgn3Z ze}Ls3M(|*0CBE!So|4}7Nr0|z!=8OiVD5+6Mr16de6Pb1yNh88R6ksqBA9^v3WkPf>QG}FQkjVa;&!S75%%GB=|kuIdNj>Wo^uKje6!`<*`dmSR7)8aNzf0(x}ek zXacB6J&8h```0OV4oQ+u6BrxwpzJr_M!EB_yiiBWbxY?img|q}h1;3r%@IHp5POr5 zSq#(~JgO_93+j2>+9YxJodeyCagFtJkCyAaw2}kLUpY^Yi5K)WE_Ksz;Pig&9MY;3Ec1b|i(kTDDm9o^>5 zw^jv1O%R)`-l_G-rZTw-wVv~!>eZ&w!##k?ze&L#{`bEt_Czut$rK_9w8pd8(by5! zlHIpfY6KCRc@O(mq<7``XxX}7%44WWJgZbruh~u}y@7Vw0=ER_3dFyOD6$NXL*1iDSP%i2)y^U?LI#|L)V)NoJqaCq1hQ1P=`4HyZfbntr9V9tze!GxmX9z-=K>(&wL3Lfo;K~Api+)O zFyLklB1_={`fbr?gm7GDQW%#xu|cFYnzdy!lA@%sP(!eCc zr72eQee57n^=VaP<+ip&WUhgG*v72Z)_%YlEdA3cYoe?q5YGB2HNMfk_6^!wk=ga)CJ8r;Z7K zAW#0_TVjq!4XO`aty@(s`AU|6P%t7{`W_eK`|?Svx}^Gvv!*1t;gQO~tO{ZYfxQ7} ztV8XM8gb?IjWW#&wVe((1V8+APt^IzH5?7m%w_mDO1roye9oE4{x|ZDo>|<`zEt77 zyK+iX)2?UMMW~s>X%Wk)0vtGQ44HaV>NWbfn4N-~a#qC9vOPyH?XkClAQFB|ZLi>; zn^Oj<`ST;L+L*1r`vUo8hjgUxoeSwz8>5jGgvVtpwKqG~j{a$mFZolv8Y+uGzNG6( zLJzEP^$OcQKt=8Y?P}Hb=Usmg7yeOfc4R5_t*j#Mr?Z15?3?);m44p${AtG178Mms zXO^;EU>{xiqSB>K#<%_ICdi_=vS0A~M3>o>!&qN2mMs7T>}ZRDJeEoGyDegE=H7|O z(&q}+1RYgDzEmAB^d;tdMpc~VDy3@~Y8?xDA8+FZm8FlH+Nzk_((R3>tZEni&!s#9 zR|%mwWD!v5w6)^Ox^>L_LaJbBI=%cc6B1u9osw%I=H;hCo$u3G@padp=;?tr-mY#- zR1>_7IYCx6(tc&_zS%@icLh|(iIdSqpT?akWu>!Y3oZ^<3jJRtfx7MF-I)l3>}M`s z8dZlnwioX#xB)>~;}4mM7LnZ8ixzE$GT+*Kbl$1p`>h_|_1(gwN$RMl;nLDiAlEjef>0$Ig)Xxf-_zE!b#yuT{E-eiA|`oHu3Cwc6i zB&juQ>dd~(;bzmNubh`ui9#j)_(DS^5s!QlcyNg2>s*TPD;@OBk#&Ki(hg z)PZ&vc8ky87!n%GDQ!lrhj57m#+l$vzQolK!8VPdtZ%VB=D;lHapJye{A#eI`YQ2T zUQgmb{u64ma{G$oS4FxWsTN^eF^$}X=MD_ej*Sgs#HyD0awe9x{-xa;FWcX-U{bl! z$LQO8YnVTK33BlIID4JuX{n_BoZn^bp<76Y;l^knK^5z=svZ|Djd(nj>*Bo^d)s}# z_z$avy5hGh6yv+;$`8h!rK`B{x1xh8obLwQeI*(A>*4>d?8VMFlZ1=1YF%<`PPivJ z#IaxZW@g58ThlUlrDPJ9VK4u)n#nazELRs#EYn}X0N2X>r2#N2EK0P%T-sMc3ja0T z{#}^ehXKw@;mX|5-jdGK6FFg>XAozMq0z{;Zu{l*`POWCT#_ulWnsOH68*^2M) zEQ{$WH&=v-P|FQYdFa=z*xo;(yKduTU}g)^!mT3?4o^)o&h&1vl?~rvIpt}Eb1_+@ zTj)KUplD3KcQOKJi74xj1v=^w14>nCVSad4%V_6U8v`%Cl@Im@yuky;f6PKd2_Vff z;ULRnDY({@%K>Kg4@r#h@G@QH12j<*O{DM5F8k_7qiR0QT{k5y=aF%9l6|4rfm5Jo zg+nJY`TJVAP;e|UpBvjTFVbJ`El_%bGG5vcinkZ`C6B@^fIH;V7PNuC7kricaoXKv zQZu4=lcXgbYV)3E3^Qf2VgZ%&;{E{k#>UK zVQDy}pH*cq6qky1F(XUQ^2QRBUx}!gv`vdprg^mgE6lycGVjT);#(ew$*o_W9rmL2 z$+G_xJE(>zfqU$R6{e(y5oTH|fIDCBvW7w*2%!x7VXiS1@uAMnbc4U3AcT;uACC)hi-cO>V6RI##tT16MX$9M$iSzDsXb8##Vo zjQJR9j%(=2&Ku~NcQ&=j<8H!((xBc~X%9brO^8^$v!Fa6eG-@%s95t1K)E(?6WWzJ zAlOV43A$=>L%<-=NWY0b=GDsc8JN~O50!i;2pp|8~II- z;knD(XrcCT4!>3&Q&WFP9dH`Y60ODhVd&kJ!=9HOd`af`(qwm~5J_M~lmhOtlMX&F zfmW>}Ttt%{-WQC-#;TOq#&dGSVO91`moaqU`|c_|*&_WlzIV?!S(IJ&X`$F?T#;tvZDViHf`dBcB8IX3{ zZ^MaK9?h$CW~#Gxp3R7V+vmd`$Lk&sNP8<`Ue*kcS<|e7#mBwA?4^$u5pr9braMea z$?tIQP?Ka8Jd-x-WnM{ycr>`p(dlrnuEqVi4et(>KFimW_f}@kXxfLtH7bLb1D2(; zuY;N+5yB&MCaHUEd8EGJJ<)g<{VcEs75@g+H?Ym=L}h_d?58=W;M&xHYBD`h5etr; z2&^(}nI`LTbt7py?n}kj4L%&KSW>?Zz1dLmlb<)%GEdhO{4?h? z;w^Ub`C41V$FMZ!OrF1)G~e7;@Ecek@wIMlEv`=ALmulX17oCxvFaV(pYq3zUw^9L z(UF2>t#Odikud%O2-nOhR}AJxhZe4Z^pQmJ{MDd^h2KLUnp1h(-1_AZu73KTAx(_4 zpJ_49AVgehk+H5aU)fmMIqP(3u3_`(-?ewsekHB9Jegf{G;C$=eUm&`%B!j|a@zz9 z*#!1MoLfuJi80tk;a@f!_@<&qXv9$WtdC`6;?gt5jFm*KJM1n;vLpf5>=HHRR!MSr?o1-MmZL{j-CGKksCcMd6clz~0d_JqNw#qCfRP?=K@-$okF=*HW z)65VQ5mwp9YZ@jHw@0WR3Q#Rk73CQ4BE)_Fb*A&?#3j4l*tKLr1xCJko-7^m(qr`I zsSfmkI)9LZ-Od=h-U~PSW+k8f>~W-f-|*1LVR)5SA;fqB4$z(Vl{<%a9%y(9sHOf+ zk~_LcxlW%Fj8hg?7}QIB6B|R4^*QY!Jf7^}z~-?6k>fVP6C#J}1b?FjZAo);B{m)S6-v|DhcLz^?ZEy0n%7(}HvDN4a1+tLCZ zSh!14V7O@_C;AA?n)L4J^)2DU`nECpOv9W2|0!&Fp3nv7evoa_^X>>$`%SJYhuiWms~mB-eHVTP!NDxXF9 z%~*b!VnlD;)U-kqS%d%qyS7Io+UTSCkZ~25NGS0m_ z?~R(mL9Up?%;q1|Rfu!(aQRN*SZ_d6{k-#;gvMo7^}>8%x}5E)0XMHtyw^OsjW4=z zX24JT-}g~jXt2EXbwUaeR&jgDGxlPgu)J4MF~UIHqP^X&1>VfIH3>(+j~rFg9w8ad zIR7gpn@>Sh@YJJ=Qt;bLF?;(F!k!k z>WbveWueI{HTW?t95~UB3g`HxWU}CkTZp@=F%!M|?;q}%8E&GhOk^>dAQ+*^CEA+>?> zRfgs9VJ8P-kow&s&zS*@XC5h{VdJ*!AR0`d#%e%Mp5@9+Of@mO7s@DY24M=QbiNic z!s+a}&ScQh9^U=D(nPle|4r^j5^XILL+q#^R#2;7P}EbZ>GXI@&@jyb7-`yO{esZq z!pd-Tsx7FdP6RS#bVIRSJ!y22?~g&@p7CS-_~eey3?gKqUyK%e{YQE(BIvCVEh9T1 zZe50$j$bt)+T+>&Of`-@n5R)Vx{!GFD`nm-W<^Ef$CcOWdn@lZ{jaju^;8B1P8aX3 zPIl&(STGvsSdXK*zG5CJ@!?27|JwWCiio2gF0Xj@!qo{an$Rt}%fPW0?h4EY{BK7HA@h!+uT5u0GNTL>G7_3Kcq-1kzB|p9 zjW9Wj7+!Lv?!**4Q=?vJ#{5B$UOSn>8vIL^^JG_G`!uzxMS*d;srtC+c!){>)YBDv zmnj>Jv19SNmmIIAM00F8%vR*p*euNu-TShlPmup(JM`DyXsZseN1K&6hnjK$jG!!` z9M=di74QfZr~P2c&fvl3M6I7+^OT|gocmnUQkUrU*P|tRFHN~m3xjMPHd?VRjM(L| zG+`T?GuMKl-L^ylOfTvmJt6%s5TgaA-M$!zK7{ZWt5s~v$PC|c7sbx|Xt4ZxWq0+9 z|3S^I8S(ww>VNR^He3uEb6p7DlQ1Yw?N!G*iO}o`&pMSI(1G0~zs5I5biBj?N_V~1 zTDqwGu%wlL(rh)NlU9?CQ+)mky1jKux_*y-X^7^CYrXe>(0iQlgIGtH$}O@)!u=a} z+CiJ9btMLwZF{iI3lGRDo(lNTUo7z?X%Z7~*L!DJBfsG1#~gg@J;Utsj41m>>C5RH zpSQnNHmL`t)YhNq3T8w`Di}Cdg4A5v8mwBqT_p z3R|CCCsZ)`5paED-Bp_tjUiR?x2it+BQ|p*z2tb(spR|RPpgIcNFpcF37usyviRoY zy*CmAX*ay)Id(H3LnS%e|K`-iUOi<=y@`s8?bZ6v1ILxqmdBk9jZ~@NXrC=KQ|Ko_QRW2 z&vn{6{`qc})n2gc$RK7>7qGr&{e0`B5pycU+&%8TE=_&4mG$V{7~ z*%zP}cktdtZzh(6`n|eG5k~Jq@9&q)AlZl(D+^VFpM1p{e*18#;CFCI0}Lq!1Q<`4 zS!ICk|AUX-wo%!b?!{LdTUxk-O}!v)PUlG_^<{-kz=I}}s(EQZ%3#x?kG4M4fe7v4 zu$mmZM-SO z%#~hQuot&O#-Z*jQx|S7saW~lzq2K;@~9K`#$rdr&Ct|J4PFhQW7Nd;Rb`!DNZ#p2 z0YB?k{gWhbRrk_?a;c2nJBWm|uT~vqA^^%0+uy_}RJ8v0;!PQc5K&GW-a(qL8TDK# z>)m3)vi<|R7G0I@%ZlBwrLAtL6aR4E{f~N!utCM68lE|W;>nJ%O-g_yQek)n#^j0~ zttt<+Il8l7j3BA4XB5ulJSwV8YFHG8*`#pU+!P8!-#-u-N;vU9a{1qtSVia@y(Z3g ziNT$zTcNbQ+=WS}b|>?Y<1?TGURt`VS@^GMZ-nO{#dP(?&1FA$FGRoB&UKYXOHrU- zroFzS7_*#Fb_yNesbMdf>a%-%pgU}ogW@%wZiX@rolOxqz+JZY{A}k?tAxm973R4G zk(#kD5Venqx^b!!R#w&H=~-`!s)n>)T{ZrscNMM@-H;n53>q$ru{nzWv4%d&XbRY` zKUL^ZAC#zO1ZQiA#1af(jq6&Z+#!*^?b6XWsaLBD_Z>?nkojeC(5@ipI}|#H(0N%8G?UJ-FDmu$_|+LD-IW%5 zeC;<8%N;lWTAD2InvQF6?XJ1A9NMdwzyXc{pq6Kn^<0b;}wekz+gWR-Q zJlRK*@ia~=6)!_(^8a^5c43%C`q@x%%4Bkwo9Dg=Fl(T>%op=3Nd;Ey~M z$%MvmaB~AXP%Cvr$ircB9>0{$%HN? zv2=cLCUEqO1qH!3het;+%`D ziPwJ-UJdcbFIx4vOuk_YdsDp^kcpchAA0;ZLfPJi_y_mDgyFFy)U&Dz! z|GM98Po|YI)wDNc6O*~3FxXGlwBx!B{Zw}o7riFuffzR9GOC0IQ$>466DEs)Bp^c4 za)m|HIJ|3Hm&811zGXjaabE>e=}u^f1HZ6s9YO$Hs6LfYa1AmT&)As@#*61Hh!!nAqi|H9@kXp5w7+QYg{3YT7iD0AyHvn~ARrh|bo2F6?c1}0WX$EcmK zxMhS;pc^)#On4Y=eXdxHq5+!%9ZDf36VWB{ZJ8?VJA(<)J#f~fy*SV4 zBg=*Pxhzq;j6snfLEc|pqzbiZ4*WpNvowj%{La=jzz8QOv$kmH!7_C~NdFEnq7*q3q9G!(jlkeBY zQACtfx=|@6ysqZtjXXY8HiWsR-Jio24ZclPPbttJacEV*Je4~+1`asD6^wtu zPeTN0PlnxJB0^iFy?xafopQSar0BM}zO*m+eb_iz-E(sR6$Z=B*TlAV|k8uRtsNa`k;&-ryO|Rb0-4rfZ`q+KGCSf{&cNjw-m0b1ltR(`UiO;}M3UfIAxLy&T*p zrRl~?rq( z&l-VWdl>-tW$hEis5_;3w!;9QOzi+H>ZE39mHWc=nmes-xzzU6kGkTgk5ABz!{%vM z%UTe~e#no0mJLDFo6vCJ7R)BXE2MiaZM(RR9C(rqYmtUedL$iA4noJ&#FQk z#XGLD*1GudS~yy( zrVn?MRyqH4b2Al_Qz$q^)FW-q%BIOW?qqP{+!HZQ$CzO7p*mF~c|5E%U>dTn}p; zYGA%lCe`&pkDkB_{$)9k$!2o)WM)wLxpd39nm}P?pN<8T^UNFgBZm+}@zb4Po}&v} zO~6Org}hshr*Gj(D_?DWD3~5e2VIwV!TtG$cM@IPRlK%b@5l0pG^qj=!q~a(2;3+u z*}(`UoQ2LH6n#84X0o;qXZ#TI0^#^>NCV|dnbwf_nBnp5{nzVg0o6y_4mAT_B_mn0 zUViR_NEdXFsM0?xd^xgNsasF&@p7w@S-Rz9?M_;xmZdIvfSkbgGNS!3`g!W`;$t5F zBL{AUj`27bJ$+FaRKq?aLD*d8#b#^jdL>+mlA`pEdBk-7yJ zi~~FVGG+R~(^t19_E>=^jJdsg{;PUd??(NwxT`I`4tec)tG5k8@7rch+F$y0>T+M3 zM%wq%^-}JzcNPAgEKcIMENB7e0W154o2d}#DEGISl2U5}3vY{HX)Moj(@&ePy}YUv zj%hq~HOmDtaw?Qw4ChbWbuRAtSJZoMU`Ld*Z^{%;!``+vF75U?4E!lk%I1InP%yrl zLd?ShbcgGpw9Q${iFPhDF+$%ho2B?^=4BIW9U#hwgc3A9VTEfeCna0NzxQqKaK$f# z+eoK=;lBP(KJvXE{m*qpW8vCd%g^_+3s@TK7Xf3!2$xlKcPZr0W+73*dlmP@-g^bv z>>EfwN%D4ZP3O={x#}^h&swR?591fxTC6OJM;l4yxY!m<^(siaa$$$_-;ok79Ef0a zi1O4?tL^eg%rUQ{`Gn1$x2u1##EaN~-vSvl4K$RzpV+ASZ{46XcZ@6jkVa$D)BJb_ zI!Vfy`?}(BJPVOnYLj^;!sjH}ilBvPl)Wta%6JlP6=4pzrR`D9#=7MhN| z+wgTR?}J1sSI6@qj=4D2&}M{cX?xdnUsDI4j=!{$mT&j-O@^vW}s))zNWr&?0N;dJdVsJ$(s%T#O zZ4Ci@L|c?(g_JdiL#38WkCJYGR_fa;Mtri3G;%+?RY>BoMW5rJOI&7uPc8S`pWVat z_AR!HS$sH=h1dZGG^3+AxlS)uuR7AntU*6+?Y`^-5l%KVPoB6Pos zkDHM9tGV=3m#9!XE^z)$nixNNeC=jl){3WC51Xh^P2%%royET%T?mJdjXVihX_cA_9}?&l5~?rLdS;Gh zBwYm|mS6o_q$N(TE#V9S_?`0aUHN^5cUx6Wb-JmqU1Hf0HxHEtThgz6(SF23&S=-5 zb!^y?N|U2Dl{xXMD-d-f?ILsb5D0?!wo)$vb>i;)bvng~yUwsD+orX3&%t)do?+x< z2ao77j@M91e?j!Bw24w<&Hd|t?w98=3q3NO`Fm1dBc5TEdwB$_WwrlhQO!UVs*0yf zKuYh(_&8IS*}2)P+vE0jr)`0G)9vc)=Z!*KiF(H|qsNB8Y-g%>0Dkj7iZ{lypq2C< z1kKJl>hqt!Ck{g66?L|MVRxJ{pX{FsUVQvz|FNV>jrZpp21qMWr-!9P8%CF(?y7}O zD+*fU<3sCVOuEmyfhu_ZVVN-w&J2J1AH}SJ4RIeYy;jueBJExWwKVW+CHNS^0wLa> zg6|EkAsq;jpev2q?aR~qXN8Pns|-8^X`2CRIuefb79s)tG6s6$=Nf-WbCl8DPJgDs zjHY6s^jSmsxdk|Kuxdqmj`Cz3&yIM96?BEyvm#5TGBI;mx)WsCnW4gkDzBcK&;l&N zM?^62WgG=XkN9BE8wcLC2Tbh~KaFzM28JsqS*A0S3NQB+gIHu{HpKc1#P$qT=Vpab z$wmgo0_?z-;nBDsVse=;4R-^2OC@~VY1JRM^y*MlFPGVzZ8t-Dz?~XQw6p_Qe9$*u zz<%&~!?iTDl3F+Zv)0O@h`>OJg6NYzeYv>x`Me>KfNpPV*!NMcmCB4MN7Q(?WjHJc zfSUloFL9+eP5g=H7#!tlVBOk}?caYEW`&wHPeLr2W^D%NWKEV4c>>JYx42(XMY)k5 z=XDaLL9_9UNjzsf zY%%jK43O@fy(YJ9Q~qf>T@f`$@5q*1to!20sJ(W@OT?A%>s0Jv`e>8G;|AGVd^N&L(=lUeI9Q3VG`Oaum2WX(OI!{|1Icx|kI2yYsnlpYH_}l&Hdva*`_>ub7 zD&U%BCFuYkG9+MUO#@M4PmFwqU+TuOcUIdz+2#qFP|6G)9Pz$~drZ~keMekA*gkdm zFiFdA#p|6-dyhw*7_Pb5VF#k|Z-I0AbLVJ&V_Li%93gn{z0t6cSF0|^(v)F+ zL9J;8B{S&sik+;zGLcvJ-ecUm7ruyJX&bWSpwl+eQRz1C&o5B(+Wb5kpHdH}*`KkB zd;WLTwaKd%lr+6jJVpw<|yZ@4|A6{w@e0AV-5ySnaXU_W^XE<8R1B@ol*;v%JJ{m>?2LOEM9E- z`6m&Zb=uNbgB#tsxnsh8el*rr%-X`iv41__RM`JP2HsarEJr?>lE5jbyUqViYtl}I z6x~Pe1-AL|2n~LmQL6`k4f!Vex1e+~cNcG^3FH1zcRE+Sztp&?Pg5`1?cVBh<^l`( z-&oM!4Mkh4YCA#~LQVXzinwJcvE({li?gAB@{mcGR`ks{F0S8Xfu)hpT4cl9Bx11m zwVSe}x>50~dG@Zry1ht(amTD+lhgF>oKz}|rGJR6>ifU)dk;9y;v%SFj~xbOXlC^_ z(i?wmiyCAs;gxL>T*S|dmIp`tblb#Nzwji%;uE<@`LV3=uWbvxd8FrXrVx8#7PMe< zq&NNMt(G?j?=tVdxb=ShMylsDYpSnh4xdZ^`Khcs&&h_m$cYrOfMBz;MvqN)^e=`0 z9_kD=zbPec16&P#vvb0Ak>Ml-SI%3MX_R+X8>)PT7_9riI@5JcIV`y}X|bbp0Pc%z z$mzn$ew$1??p{%`zgJ$A^)%K4h(JNd=gxO`UalcYYm_1}XIy9964mAFdvmi}xt1m$Ynzal7jz^a{8ooCvrRz4 z=D$^1=TP$9gb^d5%`a+T=Y%`_RG7Qo4NO+b+(8KBYOh)+m1xiW!cCuzA?Jfj<3_mi ze%vD6WkVhjb)gnwOqiPs;J<)e2ty4l9H}P!l=LL3eqrApKV|uD2~Lq-*mz_^nwAaN z6$VF^8WUqi41H}>&lDO`HJvSG_csGj9Z>$0XTYu~|7sf1b(M;+*ydQ~&|V&}W?sog z=ybWg{_$bg`>I10f%MttERly4rs$_C!=5kF1WrAxYb_UH=W~uBPts*S88}=aCNE3h zc5V8Pq8r6(T(QH|rAhBV{OdP+JNub%+PtCgE~R*bgva|Er@9NoQxm4K$89YxKDVb4c8ONAy^sxY!Q%?+R@J%S*NG*IY)Rv$VN#xtKrgE+U)xs4Co0S1RO(gh!=Ytd&kegcUM;2CSYf zDef*064x)LCk8kpPt4KOPW4O0!#{@1vzjJ)Yubp$)KM=J)x^>E{qB^EwU7s0k=b#d zFph}a3g_LnI;Qmy+=AlKMbf2?AQ>&VnD)1hH1Y$>2jN=S`q`YL(~+s2{K_3G`a3Ua zF~GgZ&$&gMCu`Q6(vg1d$x0Il9hd5pG2VbaC$raM9fk5bVeX%|WQW`j(k|D- zZ|r>35y&K+m#pV<&tWmxBCkweR8xo{FhZyzMpW=eW2uSGEBo=8ZPB>e5r&~qPuOZX zwV`CufZ(c7v?Z;sJ~NNcGfkiVcjJdX)g$(T+N(u_RsXRKUVR@}?Gb7-kCS9<@#?a5vzflAw+s9j@yhiQl@y z_vNl6k1Llu8_9%+?6Pubp!ZeVVl$C>tJ19Pcu>2e9lsULH;dG zmWwjH-E)K5D%y9qHp>2*nTC6%p}{-r$_?XsP7YC7~oxUj_ah9Zq8DO$#=Rv(E zA`|R}wIB^A_kcatFgY4>DEfj>(1%nR4NzbmXRiQ8z( zH4vM>{X;R3oI}3{81)aYJ@ZI!VkpG&MU&@>j5#u=?5c*JOTAARu24126E(`23kxe! z*VUE=4=&-IdZTtVn3sq(=C)SS$H!TZe{aEU}_~1VZSw}aMCfl=YR%B$kP(BD9oY%j*$Ho3T)tcctx2t1f@3nKE@<#BXoap_& zZT{{YaJMb5tuB5);%L;r!0yITQA4J9==Gb5oIDiQJIds0*OTB3E*?pScda=yJzCkX-?=3%^aF!OxHlMWwt+JHE1sdD?)(n;+&jeB^tsfd8?-oc3p-0ev2eyhV#X_3-;LE58 zhX+K|no9^}=;{WB{qVML;B^$&Wf~RTp+r_rOL9Mb>T9fm24^O>EP({Bc!R-NVpV4{~PQ&E-BKP88^ssz@oiT zv!gi%4P=Rx3I)dKDy%*h7bSZA=iI#7ca9#_Gj_4fF-X zfMsgDXVVtSAW{4NLsI`^lC6SlOsEcSWxyTWb;$-)d>z8mj`K-GOfIo*)iPqYJ8r*- z=x@}WlaJ%uK_J;yg{_ttI6Yeuefqkxu8N@F|F{-fQ@n;_;;*w<_wod@_tVHWA7&@XfFE}ryADWgSdO-$&%c7= z^~??Ps875AIXaS9P%;-#y6PU8XSLlU!&d6QoTG+(^o}={ZP%Hv#bPzr^o3`v*Foce z&BFi%H@E#EPT;nKk4MErvBcExSs=TCqMTa!0ubHmhI7D)h9*#i5h2ES%`W)tbT{%oF&#f{ zp)ync`*8dcT1fM^+0)DW*{_!#E?nZw(kHqUt2$|6bN~I6Ulq@~9 zL9*jN^3QDh+P|`dN7XNeX0PP<*vqas&aZhhr6(p`5%|`(D_&s%k*@L9uQe|_OTrXy zRgpM|s=+?5@NGD${!;EhkDV~uw)!w_+2{A1coG83nSbOoTDyPucV7xpdQIf!4tZ8J zRi^1;961)Kc=D^t9&%vSZ+-pBoIhO%69a>r!#&ZNg^=(WbDyJFAOlaJiDewPI%A&;FyZ=0-`N z?#62b#XJn9_=>GA zIG2Wa1A#v8aWP4M0tYfqGELG^PL%rGXo&K~5o z1YppK`>Q&gFc#7?V(_Z6BaCVx6nmllF*JY1SU_;>n@EOZR?r%Ej==-|<{=3+mV*AZ zVDU(?yf^3MQ0yA^@EvA{{hL^*J0LUWXyR%JvAy+Rx{9MY zTTEk>S^j*lAo*B9_QSoyEN0Vzo&taZQ8}a2)$(;3T z-$O#}3eWSBr`DpR%<9oZE%O}4NTV$Uf}8gbVvRo0`NHg}NYq*kZD5NW;Ly!1s2i^0 z4bQz$__=fspzUoB=BFft*7RJl+KNxXf0pTT+0_IkxVD>c4WFvwu=PmZv$R)q@J!zIEeG@}LjxMYT$zLjtXO*XmA*`|Z$EOR%S0 zM~4zhp>{6}4nb9mbRy_?m|QYz!_+eW-N<`gS~T;Blb5n*Nv?)2PqdvP?g$N=(=J0h zvg+Gm48w%|3hAzDO>i1~NjbnjT-Y{`dDdcaQ)wNsqZ)qPUBV;$_d6Gbb z-JlZ%+dP(y7R;!+itmABhYVR@9Pk3kZD_K)P_Jxk^q|VfgJiDShN|YYsdLqZr>3d6 zqWBm!Qvv&89lEl7*#z_HA|1x3i3+TzHEH_(VTTv#XSayXCrAS7effeK<%;wTmoOL; zw>tBn^R?R}D8Y=Qa(jgVS1-U0FDGj16;vOp1sv}wp*I1mv`7r^$=vUT(gF$C&Gi5U z`=T>Qy}P2={Z%4$2E?D!+U5?60DAC4!i^y>%eb=EEKIO!n0B(yj}Eop*pt?oBeq=p zfGwEIHh}9tiW5iT)AGmVb@Qffii?bs@{uynN@kXdmI5Dr@lHi>QpfRt=PlOowoMEOq26jN zOF--zFGHQXlLCNb&N@WItJirQxjUy)c4kY#cq;mJtURlE}{isM!ikfHU zUO`*DJEM8F)RvZ?R;NoIR!QG#%rx4n3ZeZ?63(O=0BcWyY?J%hP7fXtUa<>uEO>Ys zK_+q|J4bB!xpN%7#mr*D{iX~4qmU1j#xbw%GtClFX1|>$-b_lon)t+41!4QW*i&^G z&;L17@e8TzKMMXjCkKS&+iy#Y!Htr}(D$E8w7`2i>w%}8D89eH13K86@Tka@^pV;b zUlt_~nX?BJx1a0q_1P&{fF@3rT^m~eqhLIc3IP)Uf!De?ARaAmZ#vjAbv3X|YRck@ zrD3yUV~oi9mNNYL+Z6ThADd)fe0n#&-$tS(>l6bv7qPniYot4u#T&$4D1ip=s&NzV zS6;T`<;L~YHdg$ZRkGxUp7d8i*JsWzh5Yw=sKUU&2Ec3YI0cmk^ULok7PZqLBBb~N z6wzY+ejv1vQ7*|mGhMuSv`^A+w6Fr*TJ8;ARqEn~|8Mt?tVr^l3X#iqvnh(f-nFqK zLhM7mbT>xVlW5ZwU#;KHYqk|D?BS5vdnwD#^Vzii}&c zd5Gj4ylbFiQ(fzTPEJqzH$5ZnLY~5CWDuz?#E4lZz&88GAR>HOJ0fDWVprap5 z)!LfyFuw_U?@~zT3!4eY!Mc5?G6m07$We)PJ?PUQPZea|d>#r}IFueFG1W6FX4`f& z>kSzM+bF_iG`QjIx^1qSMB(0^fhD2{8dtg&yWp&Yk2tPnPq!T6tAnrn;(F+O5av5q z{CNGBV)(tGn_s@{ZZX7nM_11XnSb<5N45ehY!2 z$_onJXiI-{Yg2IH)QIt33;Wl#0@DX63+3<}WYLV6`I>@YUDb*IZsUcDD?e}Ba+b|W zP2fsC@=%umz3j?F&%~7ORerw@FZm1LBYz!sm>kuZ^%lKv;#QDas+|P&yo4a;FSPhyo#4@gU40oN~6Rv!j4ZOcZFkR}%C~#$A0J z?^F^T>YNmde-J<7=jP@z3X`nYy_oL?Tss_~IeHaQwyiwu-Us&kkK#qPdNxbed|#R* zFGlvCzif3}_UxL#Kbz{94)eIyGgWcimOJ?^wDh09W=&*gYw)U4{9f&U6xY9EM_mhR zaYDF`POgfh=gEDV!QZx8gEH7GY!!PRzMPx|`B(owICK~2Z*ZnR&h~bb4JjGOSSUR@ znm=N^P3{KYmLE_z?rlQF`j|oU|I9Dgb)IZLuL--(>VrU5}4<#$wkF=~|#nQP6 z{L>pxlN^R+{QPZ<+%KdOW=}NL1PL19u)=n<8&(CW8dwq1ENVLE)bgWR>^9eX(4CEd zEzyb73l!`zOkjhD$LZI%`hE1^zYwKm*ezmncRlhZemH$K>(b1;);3H0{<{Ui96d3? zEAOcuv;}|Y7JdCg%WY7|My6nB&sx=A1@O=P$y)oI>C`l#LA&!nIVGZDLhA1GI6u{4 z+vFt8az_aV2AG}zvQXJP#zr%lT;{oStIbI>ZrVoTT&uTpXN4|Y>Q1!CFKTs*hC2u9 z;v#1B3T4qn4krH5TksoXDj>iK-7P$+fM8gf={kpYNx7HhKe5l?^csBNT{~UyrRU@D zkABAD70&`!^Obj67t&3C$ynd`>z5LO5boN;tEA@NYe(pg%Vc|F>`7@A5$G?eZo{KB z>EO#n=}1lRr*r8j1;e)^hM4gRuI1YD^~VA?KzYx)n64;4U!$xDE0z507}+WM`?R=q z+G4RcA|XdYYsJ!XgIp2NOJZ$1NhbJr0bRS2A<)$Zu4*y{BzI!c$BB`K;}sQU6`apK z@BQRr!g_zUzG0SdJF0@zru1{N^!|>|?j91cb)bs$|#P)IfAg zXH@u=WY46OxR&}U!LUJc#MH=m71Eh5q>PaSvO?s3xef{O&YTHdFq7x_Yp3JkKv}m~ z6eAuIo?49C*U^S58A1d4iUdt&?174-q?1y=fp|M@Ul2$gb6RRLU}{=8xqvd-acpCL zQug4${if}{rY@FdHsl3hOEvjsKW|M;bV@diM?U2pw#q&v9#`-fd@mh<{X9s;eTPRM zPU99X9+Q9jC0YFi8u8N}V=k*5F5d2SjeBDx%}@`iffQpQE*>_=X36or^^ZCZ5~V7? z{%smlM#Wh0^`Uz%*iF;!J|1Q?mTS6BG!IK&Plg}Q6z2!9*vYINMh^qAdB|{aaoUY22G!Q zsuAzfe(>#LIyoBPu@tUi$4D8|5y?r#=ox4B<$-A1lPY{6n-{oiR!>-)rctiU;mZ<%k~d^s2yUuwEvSDM)g75Uy{T-j7>+ZtemW#fF9k z|M(|;H-2^{8t7EtZy@k%nHMd6-ft#_PyYu2?=pPrnO_@^Bl3I0+n-)fFC=MWr_tXr zm1jHd>fmm|4D70c;~XA3J!b6d-(-35YD`x4WBh!%8} zaTj&VcFC|{+rR(RkVe-_Kbw{Mn}~>JX98qy_;8S}x-nSP+k3l)oVH+`*;#c%XBFMG;N3$Ah=QaWyl(m=XS0n9iigpCio3?JBpcqG zq8V@)XI6~V&v7-+UMLv1wHratf%}lDJ6rRv(Q)V&jEm*!FFT3_ET+h*$gln# zS^tkh8@jvGuQ`3jH(eYy>j!2Hkz7I0xGu6PvU8cubj{A%)b*EHj*2~%fQlOk%Os0+ znJV+gM}EWoobEC4+S~y7V{!iEI-Wf1K7AWk$CJpDpv&50&B!IZKKd%jl8A$bt{SQw zc0nM{<;0+ePX0H8r8*zVelKmLcDLZj`Sq*p11eb_Jz#1yZ3DS{*D~@Xd+kZKttMyN za-rs&!^6u4HRm;T=1!&2S+~Xe=_VLV>g|O);v5Xm-}V3UOXAgY$Wy+K-4`76@EXWv zSJ*36Hx|FuSfX4}gi|6hbNAS=Vo0~xz3wW(Bk@fpH*!^_@%l3D%suTw6_1y~|vuJ8bxHlDFx7?Y1?MnKr`sUsvV7owxhr;{3$37y}+FR8cIzb$?F<+9e2ahRf zzFmsf5Fl*zO4G~|1pr4{%-!F>Dh;ziX7C6TSnZT;i6CF!APc)+@<@h-<|a)X#kNDC zU=!uln38C-c1?La%yStrD@-Ip?_Ny)_$kS%V^vw#bO{$FaZoA+06hCS;FEd@a z^R^9D()_sX>G8jyKK{X8oC$Tp@qR2;)+!<=TjWLDytY7~0abJ8SHX%aA{TY%X$<@H zw0_{kgK?i%Abb0DPY@Slj60}{>p594t1sDPe65kKN+Nh9gM;HGEqw#^M->pn)HQpw zSX(V#Cm-<_O}^>$!v%Q@XrOfi#MW%5S7U}dJ5C|~#cuw&pqubJjDppQ)DC5k!{__Y zhf6~Lqxf|m!qSNUon+Z~1_ZBBmEa{2U8q^+P8)Q4=ylj_H#P@~N`yI_zQ=t`RLRIx z#O0}kyM|-sml@?(_A^qnwDv|8rt`hr%00L0>NNx#F2BMd%?p+b--!xv2yL!a9lehE z$LrSMJIeG@%bgo%9}#evTc9O-PKk%*&ZVu{XQXV7(*6uG5>HLO3ET-_lIL$p$?_28 z%ktv3KX)r96;=nw=22qGf=Lf^OeibQ8ke2bK)(77AyQ0+y$c4pFOtzhT!uxVv+4sq zLFpafnf(>ZXgtb>7)=m)Ow3(@8cpj@*P@PsLzxX)>YEeYh3b1raQQyjN+z9DQ^v0m z8MX)Wp;};O++B>^PM$G3JyRo#)&V7Jakm^((>O{}27XHmy)`g`kL~h1Fxj46`x!=y zXY47r+2iHXttbe6`Xa$POuOdor`cJ(yU}dIIj2%qEb~`E&2;*uA5DskNcBf&$MQM4 zPuy>}0x7l`|KJ!+((Rg)S45!;?tq$;0%9=1u}g!60RAN3>6}ub{rTo&Yvu3 zHrItyi|Q)-ax9^7kV$w@R}|kOmY)uFuiJxJjLd4^@;@RSX-bfs0n$3^b8X|RT7qvO znxXFdW6v<(8%2tKQ)AkSFrB!1Qcj`@Q^Kzc+n9evslj6LT3!oF2KLxfi~*XE37{@29+vyF%NdFPSdH>5OeyZWw;Wb0s>_(^kZlx;_2`f1!JcMegEl;E}7 zW&{6B<2M(}=j=~fFSvT*e$-AhqAdTTFe1MRV!!}5U~fJ3s$!yIov&}9t|ZL;onSn9 zDn8=ib)$vun>f{*x9IkK-|>7=YYBCe>FCp26rBO41r*b)u|HeHBS670=&^<`ao|Eb zAZVb=CLwVJPG=nKBp5R-13AyKGn)QjVbJ90etq9cCe|c=h52 zTJzE-SBI%Jj^%FonPoY)!lt!@GuW4g{Nf)QxDu#$=I$I2^? zcCuWfb!qzUef=;$a+Q)(vS%fND&}}Gp5`l;X%VY0ylrIg*ds7hj77PM<`j2+q&9sL zK8@uF5yy_9v9uviTc)JSkH+byG2>2Ug~QI++l1^{so5U_iiNn;rBdthk1Rwm`=`|5SMOpgoBlzk-=8PGajn8gdE22?<-w;~ z1ZuF~D#$0PzHEl5UcT7Y1yvmAPRo3E?w5P@EV_(TW&3lN9mlcwUiQ=Qs^=q%$KklUa^m&mN?lc^WBWm3qJ63trOGGM zmNbgEGqFMqlZ~W0>|sd-H?6Y$3?GzWaAHnO#LspBj*BqS-*pDTeMsGRTWuKIK!I6q zpWysIR(x|KFCGim#s|EH0Xa($@4g-jZOBnwdv}HI&6VFE!B-}ZDY-UB3+3F> zLwsZ=h0yIjpWQHkc-iivxjx(GY$#>*^X-_F)rLnvZJk;81V~#^G1dWID%+Q{qj$!S z#IPy8U`Z4Cl17nTL!}wDcFp(b2ra9)8_IyWpA{-A`!?8W)xzDR;O(OE#T~emO3?4q zO2rYM%g;D6mrcM=#u&2XSS^Cl?OZd;XS)vSwXjiN+mNLnY-OXRJO7?{;xp|*J%f%7 zxd7jRbk(GX3`iD$GoODl{p5z}v-U+p_bLDuQ8Ly<*gR_@%>61*J zIsO|K3rI@9gzQ=-5kZjqd1w=mx58K8ELB>f6kTzwF10A=!jLHM5u27NBpBFy^|J^A zGtX)ZunN9fZ=3!apjo^ei@axK40g-fFo6~9yQgn^zV-}ZkLmgCI-bXiXfv^UAF-n#`mVCnB{sYKuYCtK3yOR9(l=xsjQr>v=>hYVa) z*G_@5>_B`pZa zlh{+lpYSe0FB%R^27ty$ZR?3k-ofO^SNTT%ujk687!4^fqiefI8A0> zN$)Lc^$zqW)Db3$2h8O-(G@34ntru5Zo`@WAxVLjB>(zpWpd;0t05}C#Y^b4_c*SF zbs2F5I4%A#(Ev{k(QQ9SG07jlaFQ!uOt+UNmie1l1Q+{UMA!EcWrsp9)ziDv@>*`lRJ489(Mo*@!VnH`kSHy}xRv4?ePUk5z{u_?z+GSo@tx9K@s$sXC@jw14k}8@EGXUnfnksI3+ZEH)oSqg zkK%sgjcVPPf>TBBQ}HX>*6^Be!(OP5gKeu?)6KC0w6r1Ohff=g>k_k%I(yF&6PeW| zsI$i$h+(~3lQ6bAZTO|~L+ov)&u>j4`#6&+7*fw#2%Ks5Dk%>vwyqr;F=pu7zsorS zz~2ig*^c5t{yM{ORt-ukBB1zmHG#v+1r^21G*gT6sk*Cq+{fkVK@lbqK+ZQ zt%MkcI5U_b?*UhrC4a$TPBV;2_F+fC{SY#9Bth4V4#X7WZuOSc)MPhFnE>->jKyC zcM=9TPNqmeeq08o+jtW+&0h#BFgc>`n)a8x-@jl#@8-tLdn0Z1gJyKabh?w_%(z3z zx&p|TR~34mLysV_V@~EjvqW~IYMmonY`Jdn(Sw)Yrus2XRxn9SE1hUxH9Zv&I;_<2 zEl&sh@5`wQz@D|#UU@KrXpO4E{Dg5l@IKtpq?8X1UE{0L|D&MbHT%LcRj+_7eJH9h z2zFf^VSEsQd(IHESW|~6f0Xk zKb7paZGUHJJ5iVDQOZrR%0hV$3;Dd(#p)e23bnp};BbmIoIWcm%l%E22V5F<(y+I(J87+zpsX5XhOk^h?7 z!MHWlHz)(gzp5`8gerKEz}b812}YbD6PGn3fpdOV?%eUE=zphP7$%W6TD$!YC)E;+ zN7|N}GbkoG++RU>>^8rrE}8D$oUyPQD^k!;kR7+`S0cfGjsGc}+ZgXlfx?$F!IfbJ z@IY^T5t-HmKVraSMQfh7K(J3D z&d$P39{((5P%rm;jT3#l%!sYd2m}%7pKS$R<;&^sYMDUiTCs=IVU#4! z(J+<(GfN_36&ArKmj0v;PtLteF0psGMoU-4lKDXU`j{C6X89svK}TW3vOKD5B3?vr z9aoiVQ{^_g5Kp|o@1H;~i{XxK^bj!Jk>1h6jR^rZ|8s287kjGc7&{q@)Ha__wJ!fh z(OCvG+4fN!0}&||krGf+TDqBvw19Lom1cAf7)(XF1O${+=^Wi5jF67e&FJ39!N#8V ze!uMF{b6@p*Y!W={7zRsA&#VvHA^$Dd*kQ#!eI^Fx+2itrmb$V$Yu%xu?@S#>j0|= zUmGus%Q$>>I$|FNvCVSOJmDpH!Xpe`R}#okXn;3GW}95DS4>&q^vmq#D8yd8AMTwCK|y3urb_%>+&0K2u4 zVK!B^Cd>r0#GI#l1qFI3B)1;sCp4>y5AhG)VryFF3t3P-0@Fw3$qYSL*$TR=&0CjM zuoX_At2ZBO6Azwlx`-u^7rrVsnRoOxGHQxT%X0Qpw2)8s89rv2f&UGd9$#OmdEq4H z>r$Oql~LTvwlI=l+{wz`nkFGh|CWK(E_Rw{r#`-?74E2W*-i_x*9}U&c(jVsMTk3J zXo{t9(w;lIQwM$sfXmXE2-ifdr^6}mvBG3H#7Qey}Y8*$3z5I7ToD&L6$P+RQ_2>d@c zjZPk0>Pfx$hh$V2IA|NE-v8);J};MuFciFVwg;F?rEtuqwRUmLND$SLxTWasFnPIO zT?g5mUFVydYe_K}c(PCN*rBzqhTAHE3KZ3Tx7;oT)y?GkJIMX2tV*JzDjnwNeuuM% zp5vEwkLW~>S-OiwPlio$hVQYMcy=hZ-*}{H@-g(cv)H^yFNQuj18t;rl6}N7f(eGU~>9UP!LPuXgxq@IM>0P6<>qK(|f~x*h4l(<#fHT^8%s zF;{AoA|flQu#^Osd0`K*6KdD~h2tx&RA-@`hK^%}^TB)5o9#nP4gDTkhu%y4W8w}z z0}5=KQwaJun8S=Fmyl|Paf8@M$BLH%$Nl4jOUIvQ^b7R(n0L=)_=<>as&zSViOu(B2>qu6?twr%)vs`P8gvPpYmx)nD@Znqlh3a$0K1U<&MS=l#0+-3)lGqUQaxT4Muq`J2%fp{^eReYYQI+ayWDPCoO^9c zX>z~d0~y1xYT=PZZDm$pxk>%DhfxQ*QgXvp^4QKV3ML0wXW1S<3uE!qXuzB;h&e2A zWNWt2-xCm$%$6|;T6235wql=s>M1vsSjIQ;Jtfu&aqR-L&q(E0(kYZ;GH4@<&!0F=PvghH>{7ZdPi@O1#;_J0+}73I@BmHGBQ} z19;lLyUzM`ndx*kyRfqGAhST2H8Jj0_xg(JupX(D{lK-D07Jf{-8lLuuag(p7Oc17 zx7!|CS-vW?AoySg#b8T;>P0yj>+jz`2~t;FENXc(HD)_(QlPT}kDP%9uE0A=6f}-i zaR;ln>qL8>znNSi{ZjsdfKlgM+c9m?hui+pkgnGfQiZDospI9KK;3ru62!%N&G;+R zOs7kpW9^>9lz}&r+QK6~rNttMZ!+Z@++*@fsENk$TTC{Nub_)9tW9XLjS12u6)zt9 zaZ4@45VLW8m|djgDfD>pU^C33XQ<&vuHI72IxA#ywOdv@*QP8`toZ?>MBo$nz9XJz z5xUiVLa@PP$H)u9Aw`z)Qm-1O1wXb`Ckhr1p4UGVNH-5RCa(=~*O3^D??M#}kp&Xj z{E=X)h|-(^+TCUP;GuR##D64i@XyPSyqCkSCZ|GvL;cL_CeHYo$L30CDJgDYVdh9;|B9cfP0y9jyXp zU;|H$NDv<(JD!oKxSQnaL3_y6$aX8;}S6>O~ z<*d3;rQBkn=LdhD-CtEf$nL`uupp$O1gM5A_AH)a=fK5-t?NLy%!j9;Ka75w*|+$M>`t}_+1CG9$+f4Z?Z^7*Re5XjHz9TmLq5vPXlw~ zZ*4n*CtaTHKg^jUZfHLF)MeydK+l(OJYNa|+2EC-{ruOYt*$gKG`@wXF%l1xCRhRybnSEFM z-Mzh)qMD$`yvu5BqVzg7TI`w|6<iww%og)QAN1AacQ5Ggsah*ocDz(hiQEzH;3(FFl6k1IYSBA%jSMtXOkM>u`K1k6) zFwGd?){FM0kP*r=Y`p$f&=mT$l#VCFxS1k_ET%~QzKZJ8X~AHJkCsi7;3!oIb>;U- zLDc$c`c&5N_T_7Ch|A zNjY?3-??*beROIt?T^><1wDM8Eo&D12O<`J2WB7ENyhe-fZd?)+r)oO|~j# zr8Zux9aUbITi;d15-(U&rQ{y!Tj3@Q;We`QHNAz~t;~}3jGb%CMk$s@wbBi>>reR5 z&=VX+z0G+?zIbct=!%J2nwkSX;i_AiWpv$xa-#|VkqB&DzQUI-l8JdFHZ?kO37!gq z30hd+$lvo2rmfCvtEsaMkp;)cZV-P?0Tod$T24J78GQc?k$RF^e!RxEAS*PF;qd>p zM5IgC`2@-3D!Zhdr6pW6lJ(hmi}{_L54pQbwC(ljhU)BTGrg33%t%%x`A^NC(2psS ztcI2EMKh0;NaV1$Jd^c>|GuPR>uLq{cvAdF!h|arZq5V+iBA*FrIjjg2t3MQe|~iX zY|rE#_wS@Ywh||P$#S%Rf}!aEynt;SZIOQ)Wer(@-*hyd<3Wzx z?PLA9l1-)M$9^g4x>3;FX!D-CwaMKs>uq*MsnhE>Us9OK?-|UeR0Y&u33H9=&>2p^ zn(5AHC{z@Oe+5kG#mO+4K4*+nlj9^Wm!kpsMUHK`P@B44`dv*$XwG42}6^UR;?$kWpwuT2>rnpVXV0k3Q-#vOJUxGQtS&$u@ohm zJRFnnNIbeFgbuh3&@4F8_5f~_i+HF`7Oy`M+_ub(-RV~5HMPLouhI}6>Gvp#U8e$_1srQarCHpg z?KKi^cVK#PEbOzcf6}&siwbtnJ4KkddS(&UbM8qLIsym(d`^}uNi92*Y7@T)n~4+Z z@Q1c~y2%SE^~84CuVf{M>B#EXm&hszG1VjTSY0xJV=dY!r#7-_7{i{?bXD94yasR z&p@A=7PM^9GVTz^{k@~Nau4|CIuy{9E4Sz?!@uD#u|7#ESSr??dtzFg{vW=)F`-r+ zyg@Qm)w7!SvopunBGxJELIuD@{6ddi0ZI1ThS!<3%ak~;RhRazWin+qAF|lt@*=M% zo(wi2TGQ;5zUwOUx$(ENJYQ(Rh;CM~us4ln5F(}NSZJ)ttNQ%#bvWTM0$mP-Krlw| zIf@=*BTvgeFr_BcgO5L<$AZ7>hyB-HWbwE2ASk)0?aDLHPZXX6KZeE#uxFMgDT1() z&3U`P22?VCjuPQkKS10SP{4tXJqsZ|;RgKdrrznpz&&uN;bG454 z;yX%?rc&$WBNDi4;LqB})Q1uUpwa3$9}I1`S!=V?^E$8PZL<)eo=8s7!`L;Y6SbYs ze`m*A=0x*My|kPzrYEipbv?P)>*P^r(0*X)j%MEW66tlakLj7Q5q;Qk$FInBKFNr# zlf(Dq@(F!(qZJ-SWKwj$+A2f79`F`yJHtq?!$1yHs^_0D`O!thf$ejuLiu`(nn1_% zgol68&a2uqWIUflp$H|xFms&;Ba!v&tyiZgtqXa=7GuO!v-0#yJZ6GSnfQkvf8GKxEplqW0#PuU!)fAv#6lS)}-2WF0M9lJK86H z3u`s)5x$Ru$tPN5yz*1i4!h=&?9!dLINci7;T1tdr=u|0#7^y`#r*b_B+EdDUdzm3 zWeepN8UyCZr`saWl859o-)1{#aCJnb44Cx!PPUhC?anG~Ao&rOfoy$QlRzXx0hlUV zV^h)eofJoa|B~)0rY@EHvxi_PA(34ke?ye7^aqiVT`@;Kim)cwHJPW3DxkIxBtE{T zK|R-VE!|pAMF)F31wXsafN@}?kZiYM!g*3Lr7dzLxUkJ>lkwAL$9%l)P%gUPpP`OH z*^Be-{rklnRAD@16Jf%1cdm1tYfdV~29nJZGq@b(f~FN9MDlKINv|R^>I^{}Jia7T zJ4yIJo#W)vqKoD<&8@C@tn+Z@=(g;K_#Yfkg{Ti}w+u?6!oD9KwQF}94HQa0?lEyU| zMBnbJ$fI8yK{S=We|!+3-H5zA!h?fRiqcqn!Xqz3oc?d%%P&tCSg=C^(PmOV6r$AP zP^C;z`xul*hQTH!EwvRqLxiV1c&%4+R(0raI>nmin(If1{{dPlLIK@*4%4S#hWUjB z@Q&=o+`R$BfZ$BlD&5=ChjfFlr59BI3e*>m7${?ku~nHdlS{XhALkT)UQcv`DOJbY ze`LS!|0Y~qC&)Y`w;+kgoe6q!sOTfj~IClPDqRG~c+ESIQzbgNs zF=*#t89SqdOUbCQ_O@A^gL&_Ax0H#gHiQS41tpL<>HD=*Oy&WHTCt?@3+rB&dx-Tc5B zF@raI7^}WmyJdYu2B_3=P~$E*xj+jIh7COuDlfLiAmBGQ5B-f)eG1SJybCK2Df;+^ zX1uxE5;VfBb(`p5=knPf%xNAK(A&^9=Ki*O2@t31NUg9? z_IRXyPkijqksX}A{w?Lk6D*2N_=lae#bZSVX9H{5i;IuhElGRjS-z45uMNQs7X)po zRbW*@qUmFUxwheyKF@M3EEaY>G;E?C#(Lz-^ogqdN5b>tehl3W^}U!x*~*6_98sat zuT%uftjMIq25w=~F>^&31Fdeq@DKi~l&%%SEJ& zuZnn%1hb1qUNsvu)i;e$U_L~l&YLiaVC6^VFvHxEmJ3rp81Ayy>FVCG4oBh9xs88= zs`Dmm;S~juf&*L7#d-^K6b%bpp^03&`2~-hx(e8tlgvvmY3@mT6ZhJh{=xUVCJCYL z?xL#fZDh~8$4xdgrZ@NIl@72C4hBfC{wr?~ry?6LqELrbtFYeZ<%1qg zB4r|`!drPqd)6agGq@ZEboTzOw!8uk>`kdjXz-2Q zCht^w*OV7Kdj1KE4?iKUUfIRl-RC<<<++U=4OE<~pPcxGItd77CX(r8I_%xaKAUg< zS1JKvBLnbKm8&CWHF5sqYok3K*WB>x zkWtmRdVuM7`>7h==5YNnAqhd*DadAISsABkqTSL%HOg3SM)iB188%-Y*-K1Spfb4* z%6OI*jS~=)o4<>-QpHE^5a_UVMPePRXRVI+S`M2smL0=XnAP21KIO-5tgL6r-Rcl9 zlDl^R8X&~j8`El)+u8)Uh1CwxAcwAjKsJpMmWf@NE<8f$jFvKGxtZ%A$Dga0>T_&_ zXpBcvU84n4VToRnrf=C5HQ$3+^m1NYul99mu>4+8LGWPkoyi)+ZJa2EYdOMB(gV!3 zj!nE@8cUPO`1H0R+OVLn<7vR)^DyCb3kYyS3xJ#))J z4@dg>)-lpxnxawZ|+ zO*Qi;*4UyFa>v)O_RHah^uivb6^MFjJ}sU6wK zUpv+lS=;MSZpoRP4N?!(ZgmX~ma%i&i0t$E9?(p?bz4I=O)b?%=);1$Ya0I?mIWqJ{a8tVzlkFBMOj^RBYCY^+^LB50`%;jSqT2quE-MBfV zU90V+JYEy%e9Bo_YHOnJ6~6BXqHbYEDCL_Hgi#X0)jKG`jk1G&(TFfLyV}@)w_Q)j zcXJe}oF6mO{j8T>>;oTGDQML2d_wAnss`2|=FP>16lv#h^RF$P<~x=hYK)ILV-emu zqUL#tYzFE zqG8o=)HZ?(jpze*1Dp7{=#>-%UJplOLY!+J6PWI*^V8Qv^K;iZzO#JO^RcTAbH{V` zZx0#CJs&L2*~(InUtN4Z`}Ya%ts*zWkA8FT?<)`WMq>>)^nbk4J6`^%*J0NbS z4c4D$aaXszkpE~tZku4wb65=~lQM zAOG9}_6kcAsrcA2OK@C#AdtbQv7q|P_|?W6>}_A0&s=_fRJ1OXP_rw_+a({ii@FP2 z;Wwu8NVWBJ^26W+I%H=S6OIFvo$#IfI6$v z=KEDus+#xK6m`{|JrbDV(&cucJ+0v;llTwnyb1!)vguH`J?-icy~z}ynQOL-9bBZ$ z4P{RF_KD_dza`b+kf$8Y7R)qUcVARLaf7yPRm=i>gYQIA0zIx| z6*N17eu>piLIe1F37kskHh_>T8r!8D}@b_)lwUB8e| zWe^-JpG$WF-^yo;`qgD!l%2LKqnhlK&7#Z5p4aEMO2~OvmjV#v%j~_q#zt^qndqx=>xk^?C$v3fn zyc*EZQQck2#IqQ8BFJHsnEFq`!s2cuj~WA*Bh4Q_pE-QXJnvwPj?|st zy{Azr&sh7mAKLF-G?Cg;zF?X2D68Jmd_TZvw?CWzOVGSIzpGC+CJE<;wxL<2I0zme zwyTa(u-Al^y-)1fAv<&>C*kUp@pZvdPpv03M9trN;`=~Cu3u`bZgG0YwIg++%dpH5 z`sE%iyh`I-#E35ra{#QS~ti-3veR|(Z z7IOB3X|nPW>RlBuc;Z+n3Pp~==~u5gx+H?QW=GBXC`FYX&l<^yma1ZJW#v9e=;3ee zguL-EDB!I@@4G;~kQYRW`CQZ4+R63%AwHb8%LAV!|9m66_iL?a_a%#miQ#5}kYk@Y z#6ROWjw8MC0LT-!+X_F(N&^xq3Vj9?5$5LAoZX33o-62}cx3v69HT%wTlG^BZ2H#^Ub0lc8obzV&Ac ze5M(@x=s(800(X*8^%H|=L07299GBMY!_MRrhP{e=|ugCLqTNE)Q*W~k7&DY?3wxp zB>V7Oru?Df$L}fcyYkvzK&4mKsTcPKT(Z?a)*^o`y;uJv>iX{Z$tOiU&l_uT1P_fX z($E^LWI;}f3&^aYo|(`aD$J?8_=)1ZJNb=3@9w}xFfI0urq=iXRzHu?HHSMX=%8}L z`dA=aJXKQkE1v>_GrhhjJZSAGT2{M~yQGky)|RB+(BZE*8dV3D-Y^R4G}^r#n4?6{ z_9P9m6{dp{Gafmt<|hbA`3@_X8rDKR$6f2;BksG6!fD)9>K~+k`sJ&Twh~JN%j@ZS%^oYMFP;cl z7k?z-=lTG0A+OwSA=vMl1_q*qJC%{0*Mh38vf091DIa@SE$t~jX>UuWgxfBmxuZ7x z-YP=BNZyrU^Gj6ib?*LfozG7b4#AIUA~FvUml@z)YNJB0VwBDXQSH*6cu#6=B(hBq zH{@uKRb9<0S^c?xIwILa74Y$5+83o}>dG_FHszA*vfxgikp*x+zAIo- z?|u%GZEpW}rO5Wr!NwpzM|Z-@vF-phy4prcc-w~a@Jw=SyJM*=B&1cB>vE?4tf8^) z=j))1_p&*z9j3ZcMJpLkjJIY8d|kp(LoUJb?LW`ndBo^t&|0;xJ45Z!wyB-)n3ORq zoUkQIoZN>y-V_7OPk%nqWxVn7&zjt_oMi~#dikikr?dxyY(tBjUShjC|I#%)ch)2z z;hcDOX_W={UmzIZ5a{+hF#T!b|23_pyaMH%1qz5D&3>9mmZ|ZVRo8^i-`|% zf;n{sO%6-XCxZbBOvke}5nMgmD5r3FH$bYVozzUINa0KQZ_*-^+w5dj$>zglF|q68 zTOu-xR^@D@n)m)}cMI8F%eq{dY$H3PVNK@1?35DL``aOn?6bUtBbH(%zU$gm!ShHJ zUb~GorTCsO?yOcF+8NP*+l|j4LDXHHLE_&DWe?-m!s*;({#l*$RG++5xYv$P{VzfD*INeSg%;I#V8hJpZcet`qhYD+zWo8a%ySU>uUMPPtP>%fU+*ADM z@kf%|AF+&f6cRbIhPegfSC)bYKJ!PSMSO-I2A=aQw=elm$Fx0%WJye)9()|rV{p#% ztwL?Jq@npOj~bI`6K@`i(tnXXv8sI{NGZTp6^FkF@HyHw|L*<$p(-%Iq9O{;Lg|s; zpch~a7h09>dw>@%X}{_^OD*K)JnNJQv+}2{ffNB1l8tP-W7D=<^V4v{w8NZgossHO zX+9OP~P?Y(5rf2XzWML)v>0rk1MD)tmK;ZEBrrA#Mg>&7Z|HBfiI9`dmCUZhOg-#rp32>hT z1nQ7N_w=f3TB?CksmEVDSG2`MzGK3@Yj-8{hFg^IdXCqnl3!1^%G&~p%xkU%|9RM zGSN-6#O4@s`@MtGm}YA#t%o6>-nhYu9l6;Qlsp;fGoHYO=s03=3cZuLs-?H)KD=F1 z^y8rpzLqcS_gNuVAfhGJzx!a!lorEmji=v=&!0AmdDMnmQAp3I z{$!@={&WEVn@(+$fWp__D&8MGESFdCO?_d4OE*JJO{qV8#l* ze?|>VsvXPBt0277WKLvF1g3?v9_HreNI<&f4zumb78RJrGV2czSYP3Jx%2SW>pbE! zTyuvRb$v-$4&6UcPM`-W zKr=Yf5M+^b$t(c83T*$`TOUbeG!aOtUuN~5`aF4G$xSjxwvutZ_*G3-5M(M#PAIoA zS=o)hz3-m1g~dfkFrZC|?YPjNHv?cLyXBd*<-c>_FXHWwp(%kVAD3b+hpF+If7Hf( zqJK>rrF&le6xL3ai#Z!cct)-a@%LB-p#;WzpC1!ylOS&-UB3~srG|@{ z>AJ%QU(9H*8HTDinwv`Rz>!xoOQ(xz_H*#cqmKBS4)7}YfkXBK4i|fkkj^FMz#R@L zA?j4gid4TB-ON?__l|l~=+vLQ-)wE+tdyv-g0w+~guffM=NmoFwT=2}Uj;d-#Oizn z0W{KCihPB|w$XTb+=Rdj!Ezi9iM4UQ1LNOwL6>V@gj`?0X{l z8tHkj|IPkS!Xg@EoGb$;UaO@e0=+?YUV35m)sy_LNlVKKz56~Fsb@fHtsA$q3MN}} z^6KD;boKtH$Y!}byM5(TlfY-iY@)85qW+R{_b{P^kE+9*=PB(pSr`&8qayiz93Cjs zR%yKSHTlRI)ka3JK@oWIf>zKYT`U~|QtbG`(XnvpYvu;314ta(C$!nfG{imLsBnMz z8j8U}XFrHho1FPo&0RCqTdR#X`I%+KmI8BN%vKaZ2aD3g(yeFlVhcjW%fyvRdmru? z>9&qG29DpjDf896M(ODt1LfOKwx<7LN#E)l@Tt#9B_{9CYcEw{8oUK9II>>3PDa_M>H8VnN-Z%Jk3{nWYZE@Bl%%}5k`Ts)qf z)4EV|T5pR>*Dc`U7itC+jNg}IUn7{pzFiE8?4{IZX z#1+w4&!X}?QKzZ>6tKv9kRLa5|HO{~9Fa@tEn}Q5ATqUJN4nf@msRZnr~1bw+>u^h zj3#O3fp6;S?G_rJbK4E8a!8z5sGDUvPpaR;KZ0_{i(I@|DQiv;{U@KW+b7cZh~6!^7q z^fq59mg8BuZ(}qZ%rt<`4cUP#P=DJ6@#EE^k{M|BsI&U%EOwyFfk5b0LD3LVdzy1f zmvDOGhqK6Ky$QBzsSBfj3 zR?|jF9ai*>jcKcsYayNIApblk!_uX%faG__i`}NZ-Fk{_Aq&VH@dD^mgc_I z=i2ADNh5-v)wWD!Jl~I1D3E?&16I? zZEb3}tQCrvXn)au{A`HV^v%#@@Kbn)X-&j>^8}F^XT%S2n9cRWG=2L0igW8gL1aY3 zBTJu`GxrF9NBpbjOrDb-p$eX8|G$rcZMSGO``)(VoiDqVujdv@vmS`vPweM#lw=P5 z_ilDgrlY)n#)9R!SO4DTzfdQ!%#?yZds))J4T*4~e@39ftSMC(Kz<;cCD>@f6AbO) z)guY+IW`rKxL#h`MCqdFIv8zJfNHOE{mkS8uNiOPn`=$H=T&H;Kg77@>j<*6m+hs7uXT8!GYXFM1eqdbJ4>rDtpEm{{?_uTL(2KnXSWJ>`sv7oA z`igMP8xKywl|E7F5$Wc=e~8y%G-Q$C;>`6$L-OO|1q0HiSJ}eBlWeq#GSChpGh|5t zRYSuGcG7`+NC_Em%rtk8X$A@0PKdkXwPQQ+>~)Fm>`sYPiK$_x zs^2GIsIL>XM4yO9pNFsbpG61Ohw@U#vFlbi3O#IIB*5|CL!b zzS-b(5-Ml0Nqj~e2GN`zMP-rI;~1uVeG`|g%9~&uYqqsE5icpQh1EX)ZqGsvYz*{ z{ch^67ayTH_dN`J{kwhT7hv~b6OIxDIn%H?iNc*`=2{fRN4+yGeMh{W2uNA&>?7}W ztx5me3{|0ZoIe~3zVoe!DOo~QwGd`?T|5}eTD?Z|we4xFx-NYr$UdHCJtNC+RoiepV@@^%Bm)Pv^V0LJ9XPp$tDdnQGDK3LOjq&~QIu+Fbnb*&IiDknR zPq)&JIkzHnCsKC<#$x;*?hXSGK}}pJo}VCijewD1@vBpLSXLG#EnF(ab`w03z?R=j zdU_)~lVfQfEaRvPzSih5781Rt3SeE5NyZcpECvSnjP|(Z$?7F0pA)Xw6p2%5l*`pX z;~q^L-K_qaRC(V-vz`2Qgm#_uW1%uto6~^n>y~y7{mv97 zP-F{d$X_E`OY;Rsvw^)jKi0P|z#nNO=^P&1n!hYoboh}d&8}3lHRLi{badG0e71L) zk>Z)s2A&?cQWeI~tm%A8UD0j^mI|ir(U&Ro(QbJx3U5T`wB#w{iVZg2c;2;(4JTQr z?JF8AGAJ<;M>WF}^pH!&@kP6=&>9La;Ofj;+=-WSK@5RR{v@c%ep5$hP zt&JVYfh_|l&@VZ~25eZOS91!%ik(YkH`OYJW5EYEunz=@qPSi(5As?S8Nd=&l~xc^ zW_=@hKjZ!UGiUNwQM&whqseZ4d;PrJ+2yX0_bPedqFRw^R=->;-eL$x1I!b^z44)D z#QIfG80`-ImAt#q_a=ug$LELS$z!Rs(&4^(JU)DbOLp2CJ+wMb7?UU`9nG`0>&03z zZyxP~Rvji>AEy655;d$_=#d2Y=7O?|WVY{!VouK8x3ePx<*l!b$dXWT{O1-qv`Q?Y z?V@loGTDi>!SWz3Y{}|*EM9A7JNuTi9jay|Qr54N>fsTR$U9y8ntl2dyO}bc=arax zpU-aY?fo&vXYgj)yLpE1OZp)uUO*|R#NPA~8C&T)y`+gGD-@A;C!j5MMGdB04h>jS zx=wWyu4Q>{weV_V#I0yCC#S2x5w=42Ubl|WzrZw=r(ww76m76sdaXCH<>8H4C=*Uo zw8!*zgCiB6;UaBUHEZfjFVM_;%hVh-q{fuyhk4{Q=HC&em37j& zTn1^F%JGwkJbn5B>q32#BB@9C0vGS)=@SAm{FbyP4WqfH53x?Z+zlrU0(4)DPFH=_ z9b7Cn`yEqOwwO}kj-nXGD$Dhm2U3+?-MPHAgRIQ6Nd|W2U3TKIm#m@dy8+n@4BsyR zY$Yba<4oWPJ529^;VK*T(zf5&-TfA&)gvnOmQrd#n#*l$-aZ*f{-)XwYHJ@5Z%;lM zxxPt$84#_#Mfj&5dfHfo_XXx37I24H%@uhU;OW!AX<~&}5m7BV5dS=a1|~nRXaN_D z>v+=aEFbQZtfxa%F7CzjP=_%fFs5GPXo-=8GM%W2bW=cac2kD zo_Q2}S;w`9HE`eMsa|;uCaLOLNBO!+-Vh+x%pg~@vhf1D!K_%S`tY;9UlT1pSYd6< zDLs=;Y^}qzw~?e@MNt?UsUxsm3?QO52m3`HbI?R}P8RP@C1)$Uq-LiRVs?=aw9^bG ziS|QjI`RLJ*isz$0j3b@2&ohfho z@dF78O?xUar!3~GpTZ1MSDj2$GmLWn!!q(|``zP3=_o8mHMTyytVP*Q zxQzy?M?|B?dAS5Xc-)Ldl6p{e-ufJ;w)-5m>swhMV5^QFf-Dnn94=S1WRc-&9oI%? zTNPObtlh92$kH^eSlQoM?@-Lc)>@9rOYI!Wd%S&0(ZpnujqVc$2l$E2lOEY7vUQC zeWe1i*}cbliXWP5QXVJdhP|XFf2o_C^Nl~}`FI?cQL02*U94|VjJ-C**d7i#;R_xK z7Q##=twyxb!1S@_v1L$U(}^QjA)Bh7p~TOHM~0SqU6!05)(yJ6=C^FStgY#MBF82z z#?Na`(~c&6;aj6xipJWSS~O;3Fj6!;RBCTEQ`2(%@K5_EtL?e6uwRL05F=5S`%80@ zXZDfjqN}N%qO#J|F*(zJtzS$Q&7DKMFLVZRrAN1-W3_D`uZ`t&ft<9+%uz?RECEM< z$NMOgUQb;hHMykgJYw-WG8cPM{5`Q6Y2qX1JVj;<(nXSKfgt@zoZnh|M2JpfJtjO_ zB9nVn*!xU1#G>&Nr!D8nqucH>@2N$m8tlV_Wq%c)z(zR`$8REJoMO<>oQoi7T%%Q4gp8Bv4fak z)@9pEER7T5fI&I!q@<&u_Ses6$7<9Z-zkH!k#je;=IJ)Zm@g_cjSI2{2Ax`K zYZQpjL1smHfL7P`8Vn z<@V3`&8BpR+wNj<3XsJC_tV`~g-g%e6vW_Z^}Q2hVK@KM07l+kFCK}3q$R4Of7GSx zr@kTES}L%=JVj`&9?uM&7@I@Z{gZk>Hs(16I>ZILSk120M1J_u;to*nNaEAy5fYol zGnzf}Rj$*E{+CSnfL%>U02=^%#k_%@LP0A)P6caMD7YqTAMN9Rz}Z?G_+xUdqV~I3 zSBQ5+X`zX*^j59!icLwA0XkbCGi~t*hvBBr3vq6%G=Rq>F9Fk5Rm#I-w#LnFDx#Isw#%+SM zR@{K|1a&#caryHSeGA4l*&_$n`|bnUoMKUkv3na2!@`ExQ*C^vKgyfmU{olH<)~#Um_m-pUNF=3AD5a~rgN6ZbKLQ7 z`JYS1e2i6(414q+$paR=aU{7xQ!}wfF==)@V}fOWWqz_Xa5v}%7LFe2bh}NQ`;X)< zp!OdE}OjExG4aF`I54R|$U9lyhbBTi9OZU; z?RlbG)tJ?x)a&$~mvSsL>a~ywBi*Zy9VUsNXhuArSW;SWZ)?e!x5lGR+89O}tRGf1 z=Ch0!aSbLpoi`hgH9N)kD+r%=To*5|<}JpBVpWw#YXbdALq}%3F9l~>I@TE+M!(Id ztXm&OU08@b2q_t2VW|s>C)coAPCx|0n~6_$&i2~p^;p22DT@5Kqdb#E=$;yCYt;5j zkGfrJO~!Q^Bde~nnssdH@I0=sFpsa_DOKKYA85%l9j<3r2frz;S?b@UuEd<2r=ehA zpt|J&?0tr%`I164KjdM)sYQV@1B)Cb)5SBb@u-$^_g*?CEY4-ud_wUq0Y1K!LUF{F zU8B+gCi3yhoJsfYSl&ly^(rwc+J6jm3j?zV-jXG#n;Mg?gCDfbDi~9?s=7m};`qLs zZlNoP{FK{5Qo@P|t`9kEEB?`mDJeB7`4 z(nsclMwx6zk!8Ce(LMqfhU_9zRnX5FBk|-n<3R>4ua~AS`s@E0DSrHx72IoNqi1r* z^=1N?o=l0(%)Nm7&vG-Qq%HMWLCsTB89s2O+9VUQ|cJaFBk$^>R^xU=#Ri-#@PgOp`l(Xuhf# zjm}i$noRj0M`sz=pIWl_#Vdk3tQ~<-*=wU@AFlp^=dp}t{1lGdZ$-e${MfH)jfvp z(G(o(Q2%>7g@aVsYKcU-yKbIG2U7hNJm$Axif8UjSBoBe%H|XD4o8JPC9YaUNU4{! zm*CBaOT{uX_+!yQRb+o*9~Dk!nOh9O{vp-s2Pnt+;Sd=ksBe!EeqR)4zZ$X6#5k zUqETXXF>A<&UniQ{KHlSezbvHR7ZB48~z!V>U@f^Ov%Y_H>?tVeu=(9h{l=p<%ssV z8CM7;KL&23DhhfodP2wA=8-_)J61WEe{(<5pBPONd;uak#8OW-e$dIk;g3~R?p|He z5K7ZnA*K#83&%+{>3WDVJi2dw1gR>VunT*{(BpOUg3tTt7^jQj`;ih~Z04^c3!5`3 zOB7*XQ~wTd%V@o^)CTGP%CM7H=r_Rt@qyXFFS``Yi@LLpO$X*Qlp&Y1afucaGq8=bDn>On|vm>iu$^>Q6b>^$M6@=!z_iKJL7xH zi_u~e7C!bkj$?%M)RiR8Wra84F&w3ylMvHQflL^jb+}(k41hMxkf!RL8C&{}DiKUj zKEg_#Ff{z3&{Fjifgw8;IP@N>E!9Zb`#RBfOGUs z{qkzRP3b?fb{RuG4W_n>W|}jv$30y9e*Ey$K`-q>nfI=%v}S$Tj1G`~Na9~G$rg0* z=NZ6_I>)bcH%x8yDT?K+>w9U)m}z)%78GDWDoH3(t^7}-Ui&6FHEY_~xdS-#^wa!@ zpZUg`q-HdH)ka9nx*(%-_M-b- z07EF~#|)EY3569^KT+HuJC0MfZl|%|%%{Ko5U2hzD75p}FnLMEiKjZtkFujV{#<^<> zDNdyNO&~mJaFd4s>8Clr`Q3P=%Ju@9<;v!1_coQ17A6#lDu25FoXxbup|>h%$VO09 zvT_su^lQ8AEb0MM;8@jN7!8^g1;92G{^t2$3ocn>I5eDL_WD%+biqg}HE`>bE+=Tz zrMGHJf@64UBCaw_vBsFAFuaQGFH}@iyWTCSxw}JJ_fjxa2kNl4YJ{%#qyLT;JzA%b zqBR9m8^eVXe%TYl2E8IJ!xvzFp0SLfR(jvqvFKSq7WBM7*{1$jluhvrcYZ3LED|yv zfkKY|*vY44pL+)8;8GF9dpyK}exqq-oCMCvzk5GuCGd@aY zUV?rL5(mqPY;Fve3m;%^Z^@weA|;2FX9SHIRx%u2i@ajnZF4Z0+o;;FK&i9LpqT)z zG1pGqc0#mo3Do9G@FwRqt-YbfNb6>j5NB8fYvRiNqSRZ8P7@lM^Gh6fq3lMq>K&sB z5HId9gs=-ES* zG|n>sa2e7~iuB&h!$(enLI591NlhVFe2%-jRT4Kt)srnO~YUmUrqD{}-hw!Aza%52WrjQQs%Azb`#NpOdl zI={r>?HRee6L~)GMts;9q5VSW-PP%?1;C(OEu^Mie=f!C&joi5^EZV0tH5*O8(0b< zg<7q?UU34lH3b)OXUmGb!?Hh+kk3v zkknv#P{>8j$Kmafox?9Vi?<(HGl-Qn|C**+hG_`}B{$|eO!jYd*XU`xIXy0;$YrAg z*D9C0)6wm=Zf4|vIZ;Z_*Wt0piNj?w&GjK(`Oq|7o;^-{IQtu-!Gr0oUdX^Qn`P~l;qePyvc(U86ktQRCP<@4Y{4UDj9utY$wVTIepE^~Sx_tr%wHhEWYXo-nRAcE)461y&*PkLY5|@z z|0tRY|5AJpN()EG2`tIpL)=Ez`T_1Z_xlG>QnN$J~{=zAI`dJ++s5JaelYivlS zq98|l@oHsiy8HbynC^y<1T1qmc(FopetPysA$*T^;QKa(i~QeyQC8N!3tIj2Rl+!B zZcLT4^ZaQ!CRXe|5F@(9BLB}wAmCy!s+usgMK5WR(R=PHrr%5J(>p^dY|_vlaB@40 zpxL!}4GQP@_Ob+! zC-j|3By4dSU_4EXclos|+O3}FmwRgTB`bfH-^|x~Qd>P~C=52L0N&g%h( ztI8c*OYEy4Yz6~32B^q;38V6Gn>fVBdb2|0; zrkyA_OwqP26%9y<@!GiUM#;QCKdJx)^Ug@gd{aHh*QoAOg8aPYka*2f_{$+*%j+6? zT8{pGv`tlFg__C;edf(#OEau29NU{>{mWNL1(2CK!58aqktsH3^p3I6zju4^rZG1r`B?oYi-F8Z?*&~L_nwR z10^yBgkVLzk$zcqh3|VQQ=cwtxj}g~{DX1#-wPymns5KcUf%uPY0$qeU(*k2TgrJ7MRUU0sO%7neFH1i+203|+ zVm{=*99pn&8Q5p%*ei!mP$lIUmX12Enn?$ot?jgni2Kz#bgUpi(R57kns|ThGI0Iq zgKk*04VQzpH#)h__lNaY?bw~5#%&SSwtEvvVdbRI+_8d3F(N$yp0k!)dRKoI;MqX} z$GVx}W-(QV^dz2=;u>=T6+TXdGl6do&&-tGnjSZdV=AruE_@R7Lp8vp{xiOT1Npl9 zc7@H)BhnQQSJiV$?jHWF^;iDy5ID!a^+*oW#)b6Hb58mX-0RxJYmtsSjN=!P_-{i^ z(muHSN)7^XL}~WxrZQbAENO-webgyA_Y?P&iU(056*izTC~HK`VD9r73B!D3!tjI* zS-N0~gX9XIaZE)&wJNTY;${lN^HRdM!e$Qp4V;)J{^rW5hB8WK2q4_+^uYJuy--LQ zEz`2fr3gKRKlx)GO21rn8{i27E&I&|aQG@=u!QuMpVg%ermTXi_s%b}=Gb5I$=N=| zvESJlzIy0MV}^&)1QZ%~EbmvHp|?j;v1KxI6u#a&US3IRZE{vgZzT0lH#$GD)r%`I z27uI%n_MW=AANx=UuOryDofaL%bm%7 z;PD;*K4i&wTPPiVX-tKG+fOTQ|WAp&2b&@YBxed(Tomxm<-MHj?R-%M<#iz@M|Z5!<>&8#bcq& ziSiq`e+afnKkWDqDP7x(q?-w8dK-19gU)= zI*;W|l1iW0;32(7(Se!*!tQyfz-{_szXY+N2_xQUi12;B!V_g~)D#>jPg3jKSOZ;# zd1#`%h|JgQ$aUI?P|H;C4t=O@?>`=n3sz%bZiM zrd|vZtQRuZ4(}VYFQudlOXVu@{LQN{uc_Jl4@1um*f8{ijyV_>0I40>@@tbI*D9_g zM0Tu1B05ELK(|9HtNl_SPJ*jyH1AK}TqXM5T3gIO&nqG&k>yhV58t;}LR{RnDn1^w zEib52U1)@u9X-ScI!C1G>nG9LZ0UzHjJI)dH_mQYF1${b4s%gI@?^Q&%USnJWn-?# z_Q!^gQvAuv9!D|@PjkKJpO9u8K`cCTZD_jX4<{0{!GI;=K7A3dlQ#)|1@Ji4CeZZJ6I zClRX|iu%h0ph+5qC#gNeCmHmF7vhgoUucdAXr~XjnQ%GF!8|mnX>T_M+<-E>O zCDD^~lZJT%m_#W82P%ayPYPzgN6f~a)0eS@qlV`NtpUG&JadfFhrUTtV0Rd)NYkhR z!PJcfP7m{o4lfq=RA$elR)E6y0rd%S8`rZD2LvPM+_Y4yd;1h2$tXO^s`Dl;ETR@P z@{Oh6S*VFWEY{%Y%(J^HkBownL~S@Me3BaKQB$Fv{QvL4>+gOw-|2&x9cU37j%Csb zkd|v?=h{-hdQ&fS{@zJm-ef4ukXBNJgHxycot9oScL{f~a_-R`u+lGDo z!^|)tQLyULOwZgb8&5xIUo*sRuBnZsVI5sWnDIt+)C$vUv{JVEnf}E7{Lw-gj)vLg zt#`dT8auR5OCx3P^kSL^DV?ajkr3BO{$PZ3P+sU}0Sk@k!{-8-k`>b@=iVD zGh?t$@NR6g4<^Q=vh$t^^;x_JE1a-w8u8AIWlnqp%4A}WuS-ABNIr&cxdBCHy)Pl6 z2RD$%fxZEBQnfuc^$I1@w3r2S;F%xR<%-3Na9zK0WAJ`9XE)i5(mG%gPs!Zqt(@Zh z-A^759n()8v~z%=FI5~)58~UCp%i8QJ%2j3&S5=U&XFie%dIJVWFVsYn= zY~@o655e!~_g=%~;@7^@b38>J&I$(3<&MS+8y@>i$b@Aqsd?%oXk@Zh+q_bIGy;G*K_~}l2 zB9151o$+;`f+&JyQ!NUSuCRc9h3x-mOi#aLdn+~{U*W^3ATme#wY5VDm%V~>i>tS_ z7e8picS*`o8#_8SI4+l9jg!sf37WM~Bo zo5Stik`tS%bD`>;408G+3ptf!Q;)wptfUJ5+$R;|g5VRxelAqNEnD*E1oCv&DNJGD zV4g5Ec~d8uGY~@8UR}emqR5`qeki3?p549s^^FjQcb6AWheUXkS*+q~7lHb6}FrM9@tNRI3q#G~kiaCvcrr?JWcn zgN?-L1*PUC!<#Cm*yUQCtzr+xx`KDYIQiuH_!D{XtCCSY)tew;Gh?ehcWd*xmaHdNQG>Y5UnTzJ3!a~^$*CO{ z2NudNb|bxl-Rc)jr8m;$p^XD#0zk5#)BrpWMI?;IzAOagk)wELIzK`s=Yt|S1G&X= zO0_<6GPaZ81!JsGGbZLb3|GWe=t4NUP)U%R;n_R6O3*9lrKx$ z?i_OVG?Se)I|B1|xD9Tsq=_IKt39;H$HppImB$VzfgJfUmEfV1Y`Z64=VT!(u;*x8OkvZEy9hC^^^x7s1W4#myQffLni<`@x!g zr>6AJsVSk5lIe^dx--lkG0>g@YBL)ky`RR9G+S+K+uJy2h58q5?3sHV3Zn2^H2x^!Jed1hRZD%joqD-rmH$L9Sva(s{KWPQ zzn|y+tM>@i-NztI-JP=)PZbe&d&IO)+-!)RW?dQF8I8Y;IPdErUj-*YmK_CEs5@e) zQ|j~j^rbu68#@h8cl3or17-y{Tkn$GS8ztFZOi3`6S;=p$!InuOiS9x&o};*h><2m z+E2>;mWE9pVLhu&RP|{roo#Lj4CnF^;facRkg=7*oI^Qo0$Febx$A1RY1`H{q31kC zj^A@4^=_Xh2mRfy^45qqW*;SG5Q<{c*V1GJlvcu`L9KoJ7hw$*X zVDO}a3vvuls{;ViSYJs%_oLg~Fz1QA!w*1$1&XykKaK9T?ZxfDl2mgY)WsY8Td!9y zN@qwpx1a3Ybt6%;1ws+UY$y!U2m1~O@kp^A9@qT*4`a)COIOBx1{yavw71HNQU3ND z`y?M9c+gp0Xi%$$lEcvB{89iK48;}|TDBPnl5hdukaYcGcsDbEX9+;m4BsF_wz!`4 zi+Qzwh0oD1!4KKoC4N+@`7bT_(8?$UwOFJ~dT;nPxqo)Fl_?00cC7O3N*s$TR!eav zo8tWc>q&de>?8-?NF5|IJd=yxXs(lOEAE+IvcAfroW!}%yJ|xs>v%!-p0~Lf$5R4_ zmUV*f`KwPS$gQD%l(Us(Wm-L!^F4MvNCs&CPg$T*XM|vbf78>O6vU-fzSuf2Ri?oN zugaVM{`2N+3M<|{jan$lzo~E{a6#TZ$J8o!cm&b{LXjlgG(M&_);v8DOFw;m>k3X7 zZfDzD85C%F>FZniON5dSkyeGVri&34BtDTx=lgCyoPCoL%6Io}{3^Lm^T z!g6uz5Iv`&@b!~>`Co-95&A+@-$vL!3*Xs{uoCFvGX9_>P-M)^P{EE&E$#Ss)~~Cb z(|+aw!tJr*iR&SdASynBkV)Z~fb|t3lng!nrd}a^JsRIU%kb`R{8PY7_=nFl-hEPD zXFn`IBH6tI2tXOP-==R?7Uw75>Iv;8b;u=3{s`xZA~O}1tMfURSr%hnohjoDR;i8p z1nP3_T6klrI>iK~v*z@$*V8F#bGo^BR2)zt6`lYd8=jBN2~pATgL>e)G+{SA@_0ah z#*X~yw&HB}#~i-pllqf?ukZ&=!dK^eO$U;P>)2nz1@^Tf25ZI-^T!V_ruJ`hQ-R_0 z3-kmm{RHp_U<%H6dT*R+?Q6|S_~Z{(*paulW8bW>oJyhb5+kr(9o}dxeW}i1ip}-s z(}0fOHuZo84Gx_IEtcR`kk_5sB_NYE+xvtci`tDB?H%js9F~lf{cKm&7!$rZMjuxmMVTTiyl|1%0f6B07h9;zDq$bvi!}%K< z3*asq>oGq}C`-0pjQd=Vbpi%hWefT}>p|>6qp7=PadTQ*6Fq;St!B6)Ak0v2JkqCF z`IDWppQeU%d+)k@wz_OdL||>T1A?lz`H=-?PBHh<@k)32FGhQ0T?k%wyff(=QzX z+{b)bUaN2aybaim{z0H5L8bE_Mw4yDN9B<_*nw7YL=~;>tVkCR8XHh$K1a^m09?AD zPL2XOS{TKtpee_oTP1O-xC!@N^e$NYH)HH|^-mk00S`CldC-;U(e6L?iqv7*KWIQt z)!PZFwK?V3CPb=xQ~-xY+r=B0zuv8WF3zH3u6RY*SL@sWxH8qYo#{Bv8BS>IZdR^O z8r!^k-oPV-u{?*$<5wYR!Q00U>5b4p;>U)QPTo?K9P+XnhV1W$c>o|Qv2OS{3Fz2s zw63bt+uS;edi39*q5SrqRKUAo!$L&yN@7M!njTwU^7vHQko^ThI^kzmeW^qRJ_IxOC+}Ul@;ya*g%<(8c&U zZG%$Fw{d)3i2zakCWW(Q^|VFc-C8LsxCM3^poQW6#r}jP9yIR92Zn$KRXE|vHG*JW zX^vpRreCE%uF4ixkQm$|gulOR66=~CoA@te!b62L%(pBMG;?QfImUE_`r|JLhi+mG z#Drj-Qa@0jBigrzBeq?> zK7pVpC86v168b?xB$M!|?gstR#qmuQJfJxNfxFq1ImR^=(@6qhs<3vd7#y6antQ*p zJe*y|MRBo2A+?4Li}NK;v71uzfGuOs+VAO~@KzziCG8{_iU&(uJG+SuN36aja-IFg ziM4K3xR{T6iKN9zB7ohn5Bf2WPa3V12|GOQH-ZyxVir6gu|_R@AlUHc37QAqp#mMj zj~l361A)K#RMk426o-qv7Jm&An>&qmEaD}`Op&MJ; z`^*SPUoH*YT}}do(LCR0_uUT_lE#-&y?^nZ#RtFhNRfD1rP&}W7$?>1 z>R^lY9n9HmSfcc!_+XPWGbCfuK2y547!lUBP_;?;ibKwhlFts!5IR&UPyXmw?Vf}| z-6kDJN^^J9!JV93GLxG6;Bc3QrZ^5Hgeyb?znG{V0)Lw=NrKycSZdQvjB`MNvC@r? z?+w~tLN&8wWi^S)9bcjn-p)(g@FYO+{f$e&fMJ5P23C3I%q?*$Y|zpgel+79 zZR}TSBs|`H`N{v!4sL|@5W$C|;wZquoYUoTM`2+%nVA-cN+^PS6-d^GrvM9`lnB`E z!kJKVAYII?>@oQ!su6eiBB(X={a7FJ@v(MG<5@Mc9BYArgUa%>Lyl9sl2>3r-huxb zKRMI9SX60OX4lrk;cVM>UK1q9GcO!OEJ**eAWj?lJ7T3LO#S!FL7uxYhp>3{2w?#FA5(_|i^74(Sd zJ2cfE=qD9oB{WOy+Z6_LR6uP5u%UdK<|TQ@TSCz+8UpFaoellJyH~Tn^&@TxDsS_S zb=ve{-dA;7MoBF<@%i5&3-ph8`pJ6Pk5!J+6$M{s-O%l+JEBRPkSQ97n5H_cA0=JL z(53l+3H+1v&5Pe4=8u*Gm#fRoF*e)ykO!H`!<$0r&1dR(*Iv=5T`TEJIyV9f$!^nk zmwAi>IIcIz&Z|4#4}g4#_p!j=rUYgEnB7fon|5>W6;TSVT?R)_H^vx;b+rVzVxFWOWoTMNOv`sk6MaC5Ct`jm2;o)|@22mjGr z+lE}bAF3#2zACONY&MSY(YX2cMk9iwZL!LKl8ksjU&EC0#$b`=1(5~Q`I+72fhD9@ z56#ZJ7>A}rajL%hB#>BfL^PRfCAOww8zhu?ar!`Mu_PWFikL$|qrf7X!7T=8P(|C# z8n)#=o@&jw^sa?w2SVwYo&(KkH~KY|Bd$9G z_1_G}WE>aAWRq}nV%K?|_K3sJk_;&4OgXC`n(p#|m0Zcl^8isz*39s(JS8hEXOZ3a z(v-{T-fYn*j~-AINe@1{1Cb&A%!U3u^Lqh z=tttfNdrT<5!UhCDlSfl(4_N&j38OvZc_WAarIin96eq4bAJ;APq-8&IAIgg?+|r{ zVuN=mHY{jK)(MtWV2;mBP#WT-S&#BA|M12mG4rR9>YAFY%sgsmVrD8+BL-wX)7KKt z13iRN+{WN(fAwwkXY0lS_rYT>x3w$ALj&FF=R|620a=G2IZAnll_VP;PP+>J%9i+D ze^uJ)n$0^eq!bf4uQl-hU$E5wpFGGPc-^1f+w<@eQm17 zKVa4qz^gL|<#3YGnRYm>5Wg(G2(4m(J#)m%6T)_!zhlug65*^TefKvrX}aY4($Q?a z?6CAB7h~PuWhDQNIeaY&Fj~fR^R^|eRu<@`1O+&9&LsRC&0-SY=1H-@{ypSFIw-Lo z=?X5JE`-{6-rBdY8BIvFdy{KGNc}zG-_WA)niv$-8ga5d*&>;%i7cctXS04LE5(jc zWYeIH;k(3HdG=AIMLb8&LepK&oTR|?JuL!ALWndrDpP9N>;m@GpXIm}s zJKd}Kq*y0IALrKv#dpJmVn3o(oVmG8tNW#gnjL1QjE2ofh<(lTu`&?&*-g^iNn;Ex z&4^@PtjEZSnauZYE-T!(lh5!rWBtOP@c@x)eEmB=kIG5moioWwqq*JsshJLl+O0$P zr3&FCbU<7}c;E{JXsCkz75Hd&_&%p={{en%TleuxEgrjYz6bNWo2-TJCD z%MwSL4o;|iO1_^Rt(URnQueN0=@JAKv0;o5=%Hp(QKh>b2wpUtwP+Xnd}GG`s^8Y~ ztAbD9blV=Rk{TzpasAKSd^h11i$I`Y7}e!K|`0Slp8iocs46)E;?J z|6$N^7mKA2o@&ds&EE97^2A*8a7oNX*hQ1KBslg9kH2Oe>wV+DB)(JeEa`83K4qJv zWM;>1cig(JGana@yPE6X)#By9jjQ$WTb|9Ajcrm)2Smpg6>^pgX?w;Uf2Lm&#JPl7 zMTR++QFHf6eWAt(;B-x|m^iTl+K)~}c{#a&*L5yOq}wUSm-#lZg#F-|%DhdC8bT_j z%#bwph+LRh!CKU^H>3XKgGK9?ST}ijTq3i=?264hn7wI>aGXB7FH4>p)D(U>NJra^ zEZ!)U5Zo4jWHg;U-|jH{wU9gg-LQosIyw20`DYVA zgR8JbHc!&Cj+aOHlN#COoist-*LB;uZ;+Y@{^4$xRFAm(OIr04*VV%`67?k4#?xk{ zr`5hsM&4x8ajZkbl76LRTRaFq+B!bpCLMdxDAwhDV~N~_XAS*00yM7_D7l5e(Zq%$ zo6Va-tN1D63`V&mlDFSgzTmVYfB|~|I0*2^?WjLZP`|_(X85Do_=_V}KbfY3P|k=)efFA^ljchv z&sFC`_F@dgh91T-)Xfkw0P~Kx{^3R zpOX%bEGb(Kk)GCb0re2+M%u3ORexnfDs0V&H+X>>h@x;88hKBtr>Bea{?{gj<2B`e z|G*fQmVe5@DH2rmA!laW?e5=hnslO(x3rVC&8o|NBog=rw5&gIHqOC$iFGjbtgG*rbuEH^(U7C-Uy+JRVvqxH% z=eHCWGOQT=myW)zzNsyT$EkCoR+(aTi0Vs2Gdar}%3xxzocs=pE@zvN!tZ9QZWV^Y z?N^sV(1?;GExne&yhZJVZiG}vg`D%|In{cOh{BNO+xfJ1s&2N&M8>(sj+&_Z)0~B@l4avO z?gdlDHGzl`KJ%yLb<|NSK;BHyQJeX`)VshX^HSrCrV72|nslh!;asMFmzu(6O+08UJyZ*d+ zo$pB3u2uQ=aQ~LB_<`RRL?cDxZ`6%As{j&c5rQ>Y0_|Sii?3E*yOfV7jv7XCQWFed z{G(iHyBoi6R*C(sfXl|Sy0#b(b8zIu(b1K*xsbH%%e;;Ogo%MP;F39SWj zhYZes7}xArJ7s7M`Ok8L@GnD>|Clb`o0(=1sgEhIyeG2o$2W!A_<|s}o zwFIo@{Tb9Md@*M=eK}Zj(qgwY@@D1=LiQmoQ+Lz!>+4A6X>sMO+AYC<(jh6jYY`Zi zd3B==(lkV8u)(vW9#UV5)CYQCxMlN}JDk zJN82-=_iJ7p7Kp#YgwrwD064S+{j~F8RsDn%U={ZyV-+zOf>_r49ITNyoIz3WuDVi z1TPbge>lH%BM{U7#4k);63^*GP{L55k~XC+-tT3`fM|)O19(ws$>w(E(9SV-`8xJr z%WWp56wC<-8c)$0w)t>6;?iB)D!-n@hNQyhyWZYMf#?1dK$Gc5;Di|w@JVFoj|s0C ziUCG`U_aUB+6RI>8z$$QS+AMoXLnx&I4HdyKFCt^-i=vwThb>KMrM^^A|!L~y-yE3 zwacJV%ZEpS2DZ5@@C7L1vbTM$>_zJuZ-Avz-hgj-VJTDH%GhIzEuvf0oxNH!yLJ+b zlCq|zPe!x1V)U>&{LC$f@VM?;0YyH0q5t!+dh6z8- zG;Hq0mkhHz(hF{bvY~7{Q>QGm&zplos)KS}`m&eM;Tfd#P&ZwND&gi@x?QQdBSl@y zOykAZT)8KiI-28=8^oqk=Q6Et7R?B*sBcoU*7XZa(;cNrME<4<`>5SWKy>~Js>m6h zRefU7;fvJb!?Tx^C*Ti>%^emzHWh3uGWKOs+VE@)@MP$s`$mkX^6fXFgy%nlydN}f z{XfL45QeG>soj=Pf|+E;1J5-&1na;#K$MgchJOvB(U@{z4&Cb;=zKrefG6)pVhie4 z+f1HfDbRp26|x?9cB+KIn%kMQ7bJj8Ug;BFn@!wD<>gO7fr~Go-pq5}+IgM(qXwwb zNsO1+B4#F+hNa99{xEq@9_t=UE6}m#!M(q4dJGR^8d3AQOt?$g(}uXeeQs1sh})E4 z#pT=K&%4U_UF2o;`SQ8->t&~25FDOrDJs*!O$gDEuT);al<>fo;5#xhUfW7l{ELuv=;4!5{!kpj9ZetPJG;kwRIgGj=LJ~x`(6v zKf~kBzc(#E8ZBxkG zsLBjaaC$g#9ulU);964Dc|B!4TPSq7)DZm zANe)cCDp7 z=jb~wt;|(jE%POml@zk>QRDA689mu-0}`zRiopH7H{Lf?a{#MR_%FHcy0hTq1L9bU!I5^5oy z87$j-C4Zzz7Q>)YbV`$<;t12%eMhtfUP|loXW=IrO)0rWcd6%1l=hKwk^bG3fIJ8y z^KLxhQxT{qRmh}U{e}i)gyV}C@L7eUH%1HVWSkKC6iy~AXGy{FLy?_iuJUj`M@rvO zcX9l(ej%SK4#FWd1N2J53jHdaLw>x)VpLn8P5i_3^kzHu_B0b-=cTiFy>eZzY9swA z&_04pn0Fca^N8tA<_E52Vh7znnr920XV7V*!HV74^UWn1+{Pc8Mo-!(lCyt^`##Jw zy)EuRG3xQPuS`Z$hR+c-Yl=N32n3C0eGD81bZos0OO`Fd8c>GEy= zaLU9TRiVs1&pnAZX2O(sv<~;^Zm_FF%J0ntyj65+EdBQO;d8!vZv59To9!D`)sk@m zw*>1)o>WWg7g7Y}Dni98sOLXgOn>WrzNcJo!^;>F4p3EjpSzrxGvEU5-J#<8H@KQt z(eu2=`h00>0MdXJ=Krw<^%9;lk3wTNwzhSr%Oy;v={2vIW@D(3j4EUs$z&*X?S zxAXi#EmHp6F55nmC#6zWugSOz*pSp8Fv1#e02IkaYd6MKtXlE+yijuDw}Wroe%EmP zepqb);b+M6)oAf_NGtU#D_2^z8$9T50my|;yD}inK4S|KEXs{g<*+_k)J_poQ@H=FO`SuS{}4j`~$Z(^iM@lY~5r7!~Z zuKx?!RtWc3?!k7v=9o}WPf^FesVH3;L&ry!IeiN9{#_3^0>5H6Wqfwy+aUZoXo+mW zj4nBP7&(~Jx?7+197QXPU2gGE>NfPOKXRu%BtRZBBq%r50d{pSADY=N)A{$rTWP#0 zglyk4of%CYVvfU`HCWf*_D;^)`p=)u`81?96rWo{sV?UuQq_Fqs`O&6jH+txY<-iU z>Z*bb2jIL2Y3ucWd-NncQJt&^ph?%e_NJkk*kJjP>bfzJF%A4xp2eZeJeOto&-e&C z@00_knQOeGZAYucgL;v*3k(eCN!&Bd^aDTg!Z>v)H zo)v9Swt5?Nq(oU$JdEBe@KVnJymRhU{IS*P@~%?|n=Kt*&`mZ^Q7=uk+5-g7fRQA( zBb2%!&(|rO4=flJ+h)1Md?0GUAl5z7QOAmWKr~C1_7Hm-yHY&DU?Sh296UF7HJN9O zF6jvnTFfu9RD)42f&ibCy`umuZ=i-~g+JcN(P?A<_;OK#T~tQ-Y{afY@%5KxdAj^9 zd`nH~Ls;=#AuUV0H`;1Z;22=WuvMJsYn70tv$ei@;hH(`CoH2Y&~9<`p0i%+6`AFd zsC2Qr`>6WQuT>Et{?_Hj*p2JBM=ejXcEOy?E|6Cx?FCRyaXaz#28;F>VH6>}WvC9^ zqS}Vg@0TW4Dk+93ffEmAosyVEtufOn-&p1u?I%?>+Cld+H0BScbdWt&C@{jTr&N|F z1lIpCdN(X))liN+t&D2urAg_|ubud!B;Q4~XB_%_Wzge=eL;KP99qvq^x0j+u9@O}SQG#1i|uOH6+p$C z7a|WjZ4l%G?NYhx_%;42m^aBcn2INk8$|t%?F?@Vh$eN5zPK4PxhKbpDQ8#TIkr~c z_|X?h!{x*Sl*iE6ybo@&l4W5L{a%?O4LL=!o%G`#5{n*%B0~v$EdW!4F}kQwtKCfH zKMZAQZclYeaKnI^YIt20R+C>&WzpMaDGl{EUgst=p@m#T1<;pj2t7$*6XZj+>c%lW z0W$DdEke=OCR$u6-x1~>88|*j_$Uykn^nsBJJ(^%@EfzPTA`Cl4FqXvymm-82yAXA z5hV>p$QXH~LYdvo;=O!f`ADU4{mKcUU?<)nZF-7$3acnaEn{6Z%~l+%s*ba1EXPOT z@dx8`Ns=3vgh4VhHh4te{`9%_Cj?82r+3AA{~iU`Uap~a=DN6RQ2V=XjUGPtkjzV0 zT?VbfY@?Y!p6_a`S?3-1+#tj#h3%;bDF%3Y-}%zA3=o|)*BCRls;xZ7IkWk#$l*A` z@Ke!?cuk@;p*E3EOvJyqrTPgILd&;WRE<_WPVAIEvQ9wrM(9R1@dKB)Y3n>XYEgBI~_cphC zNJR8Pnn3aBH$ah+_jG;*Ch1?4{zo3jGFM<>ooK;*Gy9uz>F2vK^WZd$mV75kN^@I{ zv5o91F8aw`5wql;Pk~i|y*-UJgUb$(a6Nijp6UTA?h5ZB1=6spf?+%C#xxj{;y*>& zPoEiK#xBqHoV#-0?Q0rDz3W)_dpt)?dJF6%`;tTKrDH*KK<3uJ{;lCt^#@_}O#7#( z0_4!T;+zC;HIi@i_VYYLTjH0v{EGo+yundG+oW;q24dI6^p+LI>k5DO+-~r- zJCZL{K#7+v@qpm1hQ2ws(6f9QnWY8quD#VKX1bj{5Yru4BuX)WF|dUhEVozVeUzzX zW!w`zjyL@%_pYRBTG-)s9l{STHM&$j58yOMYNK%yALNjJsx7k~ab%`!`RzUvXCb9r zA>7wEy>j){y^Y(p3N!vQaKV?6eYZ~Uf26fKjkFH*8Mt9qY6QXDUrz9qW z0=6ZBPcTfy+DYQsm+>~qpGKwEk|I@PhTm0yhJ9gdRn0XrQybDd41gjz4CJa>5>BeQ zpNu6S_0w!Z&TllNwE~-p+&Y`@d(kXzadPF5#Wfw^h`q51C?ba=uPWk5^buXZ!Z$y= z$zg?@7K{>wTrw8`Qugn)g%83{DE(?7k=d-wHjjZUf=NC)7LN>UNi+Rs!sgH(UgFecXljcF~raWfT|1(Ca-98#Dn2a2r!) zsYcup-XHY8sHdzGID+Uxq^&h4EFZIijQcNn(mszZ^la>akZf`}mCf|q6$bDKG?$`yU2yt0)m`l?t&CTZak0e|;LOhDaIA zSJ&dfvM9hsp?As%0s&H0s(Kg04&AAP_Hx*17>@+H_uVvKN}MEHggasSm!nrz*^| zrqUOdNtMtV4pa}{WCWnLV&#cApF7CI>HM7OqK9q${63&{c|;c<_ni#(PPzLO4Z>{` zsk%A_Qom%d;CQ#xGq4p17(jZ5r5k$^{8jk8w_zMbMOr`_ zL8YXno2f_(C=H`SN*JAkDM;5tOFxp*(#@nx7(IH7ZZ;4YGWNXZ{R223cFuNw_kG>h z{k>wLIj*}|6hrd(28@ce$2y;>AyHdtRO_p#xPm7i?eCw0-=ltWa`MvBn9cN9 z^XXtP_sl@7;gKB>T6g)8XKFy3(0w$qqy?4q6T{ov_7 zl`Po8&qXU&cR!8x6^WmU*T*qRvbsEt7u^MPFt6#MsL!=##ca;67Xtwbmi`86fp`NH z6Uq=eMNniXo_6o#hLqq%u#)p7=x-tn=fQjPkN_ce@V9U2&eiIIL=Gc;o`~wiGQt3< z_PKnuA8Kay;xVV0JFTMKy4A7ijVfUo)g;nau#|)bef?A`$?*_pNUtEjN&f9q4R`*n zu(agYWHmMsmb5dv^wS0rbP_MdGVO1W$RIo3(!MsIEz>+uI)W z-2rR+vgMy%)TpG)MdY1c!LlOM5e9__z$6&<9oF*!WXrL1dMOMEZ`X}~s;#Z?x_A{_ zlj#Ggp|=sNfo45#erglVCAz%l`ia2`Ol_v0J^dR+RmPIs^arSRMu7jk0o8KVhe|5A z(9+&ton~2zmwv}w55|2a%k)`4yx-9nk%axuPIsOv;Tv-`zkLmK*ioU>@Z%@I zMK>qm&XiiOa^7L3druRBn$v4o7p^qu6C2@>1TnbiYfi8of2%Xq11g<`zaB-gKIn?A zIHNNoSn@yy()T6w*d4VCo5gG6r;)M84%F#e136yHRg8* zterPRO=1jd8QLK9zVL#w9c>vwMcu$vz)_Zk3h+0>RbydqrY^{>XkM2dNXu0*cq|;! z40v*7w2=KW7c67?OsmXmp7N`16v-}?NcMGA_Mqx=?> zQUi+mmi$^=eK$Ov?4}wu*tt_y7o!RuM^U6mXrJf*et3`UdU2*t!BK)|v*ZGndCkl{ zE(|%;Cte4j-rBJ5z_hzl)Na$6r!~)7Y~e8IRX!`EVfBY|QKWdgvB~B7_8=#x(#3Yky`>_Hw@*aIe-|>bo4C zo!xYUy^LP{uBq^U(OWKLiK6`2x-A`*n;N@(4M%sLc)!srGPbbWO5(){t=BGv9vmxJ zttYVllDlp6mu7hWM0tbqE6wls^=*r{MHD$Y(}sz}cOOo;p1K(1B;>S|{h4S__effG zt4#%diFF}bm#x@|?>}&k>bG&m#szQYj1)C3NX$FuY&BkKFw>N^wa1gZ%5rLt_wtM# zC5%HLeShAbqwQ)NQB$GO;g+}E&=Aa|3+$mUJOc2yg?_i58uI@R#+`wksTg+q(HTNt;px{7(YsNne-L+ZeH&4c!Xn2C9pzO` zH{dS03iJBIGVs^6_fFcL;J@j} z)IfYgtt#bpqhJ_ISe)5>eP%u{;LW4d>=l^V-B0k4h;jb_21b?=-;B(Ue^F48lH7MC z%hGwG_Vzy_(UG~>rh*m!dwmbyI@%oh>bEh|o!H&5RrNtrD?$CsY`6&SIgn$%CkesvqmI(64wjO>G$loF(CFm1 zP}`NG4lJ3zn$`c)(Yg0-{MkxEUSh$^^$TXJ#c!d4p)h_w*gcJ=%f!bymzZ@yiFF*VOzavm36h=n~ z05ruYJ%vJVi4bR<>?|@$h8u*dy|^b z669)^pTMUdXFT&A35DFofYx(hq)H^Xa9xaJzq&oVZJINTnhK0pkM!y8$bPI|b|V;% zd*(OHM)aQQA-#!UpHyXRJWn<2p>O>KF!l*AJ7%bbXQiW0anCsVs9EunEyz$Iyl(eo zQ%nhX-+KCaol|w%4|`Sr4_(a{{L3C5-KCXSZYNuo67uS%)*ooQBc%B37|^nZLmD6A zB?BR7NFt+4rqo2;czM9vR8ps}F8zHT4_>pj`znf>{zp_bv!mUI1?pn=pZiWK*d)S3 zUu^IO<1Y&mbOPX;r!aTTr=NF!5Vs*PeEO7FH6J7fW>C?fQrX#0Zum+&T*R8-tQGyE zw<9OK!K_;P^vX$hu4_zu{1mhvYt@8^B(Rr7rf`rQWXDsp+*b7ULzsae^+$yPla9`8 zY{o$w3it9`tT@xx56;*Al4B4A(zu)Vhxw%8>zT(w7%N~YQmqY$vI`h{*H+(E&{t|o zA5k33EhL;LEWvnL)1ks^6H%0GBg4B45F8gNV#|K@c= z&(m3BKTw4uC|3YHbjFWZwTMPOh#n9}Q*k+c&DiIEK6IYtFYGu|lFIG_5{*eJc(lT$ zA>-NI%M=AB=ejALhhu_6h9({OJAcxcd^_Apl4q9#c;_E=*>O>5NOb4hr?Z_mOk1ML zW#f<^V7Z1NPqzAB&;@gwsVKWiw%BPZrs(os-P75nYJS}{AiyaR^`#$ov*{lr346S< z2LOdpk(TmKHf=G*KMg}pS^376JD+Y*eF?ab?C>?y%G%Rrk)ZYZFbCu-eM~y)!IJcN zIa#q7KowiQA~4~GkvqU*M;nK89HMU2R#()HnR!J#K8OW9^rom>`DD?D$NlYIDX=o2YH&;5AgIEJ2V**L7DF8a8#F6_U|H|rY)H7 zlvr$l#h-Jlt2-W}Mr3Oj-nBGqfP2HT33CCES z)8xZjKT7?}x0t!wFzD-zW6*|=aV`3oN^6FKl!n$VMPk8kcv<6I{6C^Qk_n$ES>Ee+ zEg9jN^!h8(?HE~MmQj1BcpC68q+9`>c5^__EMV;QbfzA5r@=O1Ls5@a-kZ~T{)?eQ z`mDP`u9pYt5IrJ&hshlNM6<+x)^=vbsxdI|(lGuv-$Wvfx8?^I6wH>AUe#);_E-Hln$`PBNo7FTl8x+*z^}H4tQ^6-B=Me>yhsnPu&+DS2O$ic_wx*Q zHNR$xA3-TMKo4+ZgDAG91loZWA6~J+qK#ZF-nbDTO=(|(Gd~ClS_ONM4j&FzVVO#FbRsl0 zHKm(RjgiWZ9}LSF=^;wBBQa%ra#5G&S7%PhVp>{KhPhaAf94@B-=Pw38=EmrFXz=j z$mCK^35(Z`&aFKA_6@tU^j|~7{~hE_D#C}s;yWrGA2o+PN5lWop=M)?y=CqDYv}yZ z*N&&4V+Jz9k%dc=I1AFzM0HxFN~R21U|M2}X9bn`0)lnmP3>a+c9grXpN1T)C>e%Z zhcDA#GR2Dsnexqrb^QrGMCtE1+3wHx^?vA`18j8FZuE^;y1=r^dhY+d>kJK>AXexb zES-x#xs5Y@RqRlblm@pycUH{mb}c9KE3i+h1WiM}ef2)R5jh-1daKC)~~FE^LPMf%duiWg;ppsNQ;j;h1=W?jfgrMn|G_q!@i zGoJX(uh5LyrxgETMwsmdDl%fV;reGV>y1AtvTnKrGT3G??gVl{N#4`^vmwiE8H^pu zk(!of8WonNNuGJ~sz-K6MG#J@Q8s?fG*?C{ps8X-8M+4S+m|tzA^P&D!F74CVAryM zFtEizpggz0^YS6>vDhnTo9F+QXqx4_0mGI4qmG59vOV~HUk-Y3K!Xkz5lvv%hWH3S ztH(urmmCO#%c#uxY>K%duv(8fpLotU|GhPH&8Sj3J%jCdhrHG`^U?)^idlw!A!0*$ zI;~j1P}wG|(zk5{p4*bVt!1`4FHlz6C`lMq9HIN8x_tAceo}`3NRea1de7EbqkL^O zNvUoY{;?5DfBKa`1O0GgFrAM|4G1_*G$Bw$SaASyLnS}zd$UT+9A3+zRB$sTNy1nxGEsp+Pbw2Js=DS1We4lz z8T~-#S{We^{b9pT_q9slfukB2@&N)TR;sQF>UY~oU<m!+|Hg2tu8xp-*Xe^k}sF`{kSV9)1>L@(|FmNE_LoP$F;)~ zalG@5Iic54t$nh(kvf*Z{j>cU&ty%fF;$Lrr*gF`@{mma?nAt(GIP_&)diJGqA$_!_lOjDF(RwaK~dQLp1 z{^V)-`{lQXJVhjsbU5dC>*w>e7?o9J0$JO}t?=bsH%BP2YWol>PoEnsgs#JRmbIkG z46?lS3Xzqp6=vXH$-K@E(IgK9bq^I222mIbt7r})N!TOlL6Jo`8rdH$ne{A~y8c38JPMBTFZtVB z@N^>RG_P`@Z~w-qdgqslz2e9VLDQnKaN69@IG0$B3Dji3V{t0=miirtYHqv9T_&@}-qK!tX`} zrxQZ}9sha2-xPlC&x5LRBcNmvQq`-r7Bmbe0uU<52g!B$7^ZStAz|g zc3c?98JP~buK?joXjRIe#SzaaaH%NUFbDq#q8+ zdY6GPdIbxy6ZB1UN_4pI+}6^9mSQs}s<3s&@edpjke~ct&>7!)8i(Yc3*bE|hrGnx z0+pbWKL(kY(0S(m2z*E?lJd(<#xQqN2Elyb5?UJ{*P)3*{Ok^%mfstr%06JEKS&$A$M} zj521{8|SN2XE~nVW0KkOk(A7wFB-G(7Lh7AQ0|>`8QyLDk0=75ohu(Am@Ta=@CKNV z5kL57mPdZ5RqPwTvcCI7d-{(Jk}RY$wnjH>VEWSgd%(5G*>e+F$e8yRToE8-p@3WA zga>1%1CoBhFdtC&aA2)GLx(9J3)NwuI_0DKwc>6K_LSw0=1Pvw=1$j(;MS4YO1Xe# zaeUAY-x5#iH@D>Fcq&f~ZxK@+|LvxFC)A-y~zL7fhB!L^f70 zB7&eTDVCYH6bII>h8Zn&=cmU4H+KStF3m669ZSEDtK04kApUl>y${O)ug6&`Yd*+H6Nci>XWj`@3>k4J2W%)rZ({@Nyjr>_EY-w8htGZ=g> zlE(QdR@%;=WO4MoQ^i%kgd@0H-RH1+D6mcW)v!m&f!Nc`hq?Hn{?Jb~9GRAxS`ybicl^A{UA9-s-*NK%C?qu3?p`5EXeNZQd@QVzjav&*{T~tCIS__M6#CfJAN0s~ z6}GWD+wRa3c5(p@)&}>I+p%TV({72L^)$lC+Z1ydYk|JCY5;>HP&i6t?N)Yazj@;r+3LVsNsppp#09>dpjEFazew7D&$(_w!eJAd3M&n2eq z>|j0fyXsit>^kKgm;7h#Ha12@*UdUvKaM-GX|wtn$VCFnlgE4dd0L8u%?*w?7?2%_ zL2Nd1EM_M*{BQw`e-bS2`tMp7E0=GxRWf-$#nbAh0%IFl#GG}yVWb6}af^k{ z$cw=Ok>o#C_$TDwaV%q(+wI7vv3muGmGFVhw#q|bMYImX+H-p zF)Eztxa=E!=kU)y=`jLit3>sEH#|ZW7l9E$lk`0iG0Z>>$Ym7S{Mb8J>{>w{IZr`9SzN(=vS*i2^oAi_vHQH&XO+0$5`=`KnWyouJ%6YQ z?qtk^SH1>p#Cb>eZ8|^mT$ZVJyDwEZ@d;FiEIJ5+9SNX0sBuX{gr}HGIQn~ysZvB# zOP;}7QSV0-znULVD^E~suK#w_%V5@|n%HglTy$SR(MM5vv)~tGak)p3Ad0O?4fzh% zF&|@3@_*jr@oM9)l&#cW&#$NFJ%^T-tjr0O!f#I|I#pRIna&%HZ}Z{K@JIwYSobbi zS+ZauoXHZ<`a}A&c3tiHf0}!Sk&-a28*F+6w9Wg{wI4%<*ZVf@blgO~-ev%&fCXV1 zc0ZI6)}shjvBC0g3`GHb;qfW+0mou{$b5q0&UZ0ZR~0e-=NY7(^c16y>1|Q~8%rYH z{Rao5Cbe8Ck{qV3umFaXk!)( z!vn*HcjE6oUGs%>NV^k10Q1gS5XPgqoVyc6;#T;Ixl!A6u`ab`;V=D_g!Rgzmu-~NH?oTI1!B0`mf{`G=DywcGM?OB10ZA1l7y*(1mutR7jT-m zADz?bN{0T(ia#JS$HZ4*Hmvsq4b5xsB^Irm2{5zcmmJ3+I|zdI$^%^q;5GBdA5Zgn*5Bl0jO8l~kF8*%0?{CMd3 z7DbHa@jZ@jlygzz4KC1yKwD0umti_Wt=hWUPYj)!+)zTNTTlmeYk`e2Sv}`flqK97 zpEOpG2&cF}MXt$rw#;6Tv?V&XETWX+Jj>!5W#m)%?B3bQJoCDpgjN3KBP*KosKKSy7B8PJg{j7Md%!8z*M0dZ9U4%v=;# zlq?c~hSo#g6*kR!dtx_(y5PHre|M1?bCB(R=nZ!?mr5I!RHJhwzUZHBElU zTc>o9fGWz3>nza&a7c-MPMI#7d zo&Sjb9Ye$d88V2z*2Z!9b=7=5!8@0$wtrPXvWj{p6RuN+{8d?ULC!6}rb&6v=1TtU z-y^k3Tv>0%OBtSX7q0uc*F`8{ZhyDhe#yS7L4nUDFNsIZ?{_ zS90Q1W@&8eOYx@dZS65LHe+87XN@E;MB##FV-q{AC%wC=Q)yT<}sVl;&3E?CH%f`9cY?SDjP zD8sz-g338*-YD-Kf4Comv6#E$6P@jrRZHDxyj&v!(&v(4xh?Mh5s5W_-0iJ>cmR6@ zg_Q-UX{KlF>bITI{PTIy+IwVwFbHe0AfR6+cdEr>XXZlVb`XRbfGv_6VRXOP&iW)+ zsfZ6yw6s_GXRo%kB{1HxBWoM(Vb95`o46nFb0XbkB0Hg}8QJDD@^>r4vcZ@12_&!V$pd+02|}7{doD*muf)ec=(5sHy65n)Nu7Nc z5y=;}P&+DSu^7EhLh;$Ibj5ckw_FaARU9nIRTAkJ?5>Of+$}LmJg#)OloN^O=9VPi zDkSDaL-^&JA4Wc6)M>lUGEYCY)iM3B;buS%G$$#Kw?wC&I@ZiK&kOQ+s@H^p@IuKzgU^}W=oS4RRh-E!0Up$ZsKWzu;2oEy*^!?o8fq#V03*=N0y7QJxRFX#`Ucm{{qoLHEs(+`Gsr! ze=PMz4m#N-2Dp7I9zgqeu^5qkGp8uGrb3&aP4FQH-z4&|b^Ns&X8}1fmq_?=)LR|9 zD#$&VJBb)z%v#TD{6Bk5n(r4ShZ+ZIManFrgx@~r8a&SsbEozJD32wQoe6=zRP6qXOc*t zuBCO(z*X?VGf`m4Bw&apU~tMaIJAt-IxR;_HH7s>ac_+k_Y939H^*B85x|d^4$Zpe zD;c8;!!}HwTK#cw%740dV&*lHZ`gd7m@f9LE?udP??s1OkyuU|s`c1S(02sux{)~) zCqlab)yD+_^1s?7VT^T8i32nEZNAgD6xmZJMRw`oe8 zHPf#hF$wEEr*i_?7lqXjK#S4wK`mJYG=u8Yj&mMYWP%#h`UQdmhhxFvX!+h)QnnPj zf1h&nHkQeC&ZkcY!7Srjb+T`?ti;=ZZ^zLt_V6`^eywN|e*b{LJg>k{_?YTlvj=(1 zII3|wnPJj=o%@og<#$QIFUdKT`E8BHB|--@vBK9HDKzuvBSUx@VcAl28ieKtG9283 zEvEC;Odvjphk|<+p?HUkm4pKwW^W{>YFELwLr-_RcFR$ZpK?v>lzYCD_aBX=+7zc#r^RL)H0qE8~j$^YgB=F5M_Q_P@*+p zH`5|Q(2NR@EQZq{0A#^3$}my3ia?EPH+0w?#oS>9w{B1cIbtizV~12H1j-zW$d!xX z95^m*%;x27+g)j#^rmnC2lj0@Oe@IBWT?CDCi9vh4FY7>lftr^*5QjC1Ty-K-OeUJ zi~N`rZ8nZIjO-mm{GuC0aI)Jk{d9Esp^%)=Ppo%Nq4IEKHf6?*7G5yis-klsOo&Hf z8IL#s_o4wND#{&du?bnY*?FSgjl%ID@$@1aQAg(+AmDJIhuew7)4Hs2WT5)l zA9T;+1^g^x`OVh$$2jk5q@YGJBoxiYoNj&@RJlLMGkh`b+BUjBQhWFp$U;)+rN(gr zMjGppueV=9g=*h-bn<%0)*y}*Nbq=7s@xm4wX7Sm&`A_^sFHKRL%54>1iLUsLUggY zX@jY0TnZeRs`iD&c`M0(?c-a~f1lXtQFz;z;_k zGrIl_NE(u3&vkDc1Gi@XM`YF#F7|d?{d$WHJ;XlPNyXVWTFf`We^X7(!JS%WSUjKx`l9Iv1PSX69DwbEsWLC=DO8V8QOS=W3gqEH~OMB%JRWXC=$y6xGoFV zzyf0lQaem3YY!hq##5HQI#~nnQoN=giH#KQX7}026c6HFH0d-nOO7*4?_h>wJd=`? zSVMu9l17R7@IRuvN|HDua0qqZ-;(O9%jWiWutHKm;yswlLvALvbS~na%CQ&5J^E=b zs^joOyCibGJk@PR-?9TJCB}c9vA-H*)Y@9mpHJIyWB9L@RRdIYYDaL*dh_n-)6INO z%M!9!?GAW0tQ;v*+APa(n+|vW{KyOnniU@5x<7OAP?+lV)BlJn(ksB_td@j=88$~v zojwV~BI@$n4D?NNc5M%cmBIenj^+MrM;p`NtVH>QXKmoBfbWz2u53I-9MBcmU zW&theg4pBK<7&1;r8sZaXTqxDTmkw8W?Px32WMr-E$8N1JD52R{e2myt2w10fEm-B zY+|Lg&e)h727ic-T(LJL543K5SJ5J)NHh>g+cO(qAd%BC#WYuZFz40<(q939-tC7_ zGob59g9_txHO({a zF~$*|IA_la{RptMu>CtdXqa9kY6*PJ?;_gmBR?=Xa)~q8(i_vG?ZnMYq7A~qny84m z8>_MnpUEP_wS!Z_oiPH^s?i#$BoqJ}v?RmItqGMzxH)?Y(mhU7Al;Jq^nhy6km3%4 zYHZS4M?cIYNK8k{%k6fjzMwwrYev+R(2X*bdKLh}>poQefwNPaac??}&R~H=3%f}a zceXc0sygqaz+P^c7b-vdO7vB|GVkC>7WDJq^9S3Z2DKf=AyNxlmlxJ3fnavnjVJUG z2GI+@vj>0dbN^=@`Q{Tf^*J9cat%|#3jyVaere{6PG9T9G{30p#mkWR$-Q*zR4)6y z)O2xthO(flkYtTBWS{pxbIcEb^v~dBa3v+Ka>fa7hx)uj8jB}wS8XV`!yc;|CL=$F zTGLx`-V5187?a4Qm7PF!yHGi>`6%;kjX{JmGE|8$eaX&_3+E{*JTQw7rJJv@o2wDb z+SK<;gf@%Tk@!sgQ>@jfL>##yp55axSZ;=FjkwBX0e|Zjz=dFZ@gUGK9Xi2p zQ}Z8-+xj7JW6N2lUSqCI_Sy;RIaga!%Ct%o7qh(dlkc{6W{+370j@bd(Vv-X({;J* z8gwp~w9Ip*hE@CA$+5BE#$klnjjA!DG=&ZqX8d6d7%k3W%c2@Du^+j%n(j*|+c%KDOGtR5W!QDOrt=R*`O^<%*v$qiESfmK?biLSBr6}e^*$YI;Qo`=EQYRm=4 zU8v>c31@RR!`G3NFWZffb}^0JwL*TlcR*`b)|*3Z?C+;Sf0kVD%!U-Ma16P|&Vx)( zZ$q|&f!GDbogZZ(b2a&IS}0ohK_cJg6HU@;j^6kn_0ra!efg52Ew#*+l(JQDXnJdF z)X}o06kv8Gpwv)2{0mW1@i$r6#WALoz!hz1;{|r}*KYnt%QcX@j&dlS=OO;};|u|E zSNZ3+)$;B>*}Q`gwg6pE3~W%BZhxHbcahF~jm_$EUJ3>FP+N;!y69OuZP0<$^nXMy zNeOaP<-&EPcyBDHg$~^@qqMZDf2LFKiP(wIXAkk|vF*AZE^JGrRL0&|WqC!x@ zx|-n@gr1tm1rMz$&f*=)R~PWsIO33I_2Y~k0&d?!w@x|cyZNh;tLBVnI>t=vESXmJ zr3Jvmi0zL7Z3ChET)B^fK}l-0dbd9Y@HL~18e?$RPpOj3W!nmMrEaVa-9pY`OYtrqk5Z>OA3)S-7tY+Xf; zR=CzuTu*HEAol(&)ObeD*I4eknrNj*IB(P06QQMz%Mkeu`eHvD!*pot|JB*w^-!UoaN%9)QcOpV8m&3%^`&6ZUa4^XnuG!;>i>PqsTL zNu&6^HmoEf&L&*SzRg9-(dHUnTlvlfic3c7Qf!ozWjijy>h33ouj}HtjgRdZ!x=75 z`(^?tzfYY?#u+rV=dmw2Ineg8)kiOAPS>n%X+0XJysFiA+$o>4w+eXQ0^kIg-7Z}cQWvLTQ%7lyFNx*QMLhSIYvn7&rADD8IR z;MRRvQ&FzzwrrJtfhU8L5!i5g0BVxu(;7>oYg^+B;l33!&f&A;ReoAy-cwo5L6-5l5lsq2u3c*~y+lg~xUaWrn<&kEm~Xk>wZ zbFyuY?Vp-2R=-%nObzKzj~+}+?f7@NVw9qA4x8G54cQT=0!VW2=Do3@J0~)dNo3sp z{Hj?G@9VMVd{ko{UeOX}3KNfqPI!J!%l>h3F;iL(7)4b4OZYGr6&fK8XHPds3cyCnkT(YyWfw*oydvLi_?#b+se zwHM%#&gCrT$0^IK|MEWZ9+I5WC9y0aHPlc7`x2UEDmNdCvX7sfco`QoKfz~u>z3j< zFeN{d|G9R_6ux7=wKbNSOJJ&%lUZ|?EWBB?oYrs`g?)msf-ArSnDbuIqZMr3OsQ>0 zcZ1PXj&B>cLt#kJk#2LUv0}lcH|}czZ6`NugPPV!&Yq>11)lmi+af8YTO)>pazxOd zZWe15(v!xkESCmu--3O=M#dQCS+Ylk`d*6-9dB+X(FSPs!0sL6X=<#ToPX>seVfzQ zYIlV-*B_j{aE5ku+mN1Z*L#TOdRl_mjH;EDV!tl!xYpu8>&fT~e(w>-iB#uHxc8y% z0>23nwx-~&u$D<)h3HM)H>&_=!K2&N2OcaupA|-29W9L1wP-X9-rJGzq+u z4xHx!I-2V`rPAe7n^`Db?b1l{B07o_AkfuN-8Y~0Ob*E;thfz$dGrHrFumIk__cuG zb?NY$Q0jvMx{GCPhozZ*DImG3EAKa%xKPLFK-MNF?j_Mqr|kNka6#rZ2Xw#Isl29Q zx7`_r(S>}ThdqFjV=ZA%4(nF}YWqgYQO>FxtD&Rg62qMLIVbKGit^q&J+^37=uS&J z$^RQNlodT-^xd$Rl+7^)SZ?INY$4@_B8$5tpGaLkq%~MuGfxqV9-%-5)UhR*o&2p~ zNHfZ?pBdP2F_U9Qt%Du~057?RJ|PfQtVug~U&J5m!tls~D_=Rntu2Gu?z)BV*@EYl zw~1}0aCOdlI*t3Cz#L$^yka3}Wcrkc-Cm&i!YbfYw-dJp(5t;2*`L**# z?lyP1f6Y_zRn{-wr}18a=r{CEZIahM(i8kfV|BDe3`-h{(Eo^PqQZHPl(v}cYu zo13SH(xGnUvEV%L5Yi)X(MZ2rK$MocGsrrzAJ`@fYs&GuX4Nmz6UL*y1oy)*h7fwx z{`_A^6bN8>6PuCCC{)Tefk}Oxt%+qET(2E^c5B3c{bAZF3Ln9wrtN*u7&H1~9O}0c z5mDR@?_p~K1Oc_nNwED-%+HRl@N5E6s0WDU+`eoVfNHqao#K^Oe_7!qi!G9 z9Ebp#w@FkMT!m6D2bmly_8}T9iC+V9vhqC9|ju)|cq?dEX@8uGf6CEW&Y^$2B z4-HSGq}#F$V|o1iWDNDZwBNbt=x>9QgHrrdhOJw*OpT21w7q{9Ud!gFG&fnq%?SH_ z_|@Ua!N0crj~bqi^-^ydq?EA>jYV5Dt8)()@CvKNpASgxBCOHS-;959guxmy^WrErj9T*D3rEk4< zmQGmwFtMBTzAe4zb@H5X*vp_hsp0wxZ=W}YwH_GfO2w?=jDgX7)De_(Lzm7K#dN{! z8|S7oP06V;)A(B%Mp5@@=C%rZw-*ibo61NA-}$GU_r*pXZNvMitJRSHQMja}fN4YP zZ8r4DjTT`}NfA@fcN(<@YHw}@Oq%iQn9Fb*&uT%i>4IRY#`ALDw?eZbS^jw-SX%o`UgD(5!pFjRL*pQszGnuc4t$R?Pq$kZ+;8#pRW~`Z9e7}lh%gHqLg6q9K%vixw-A zbHy2JJQ*M*i^*Y|hs!LolNDh_zn_KK`||b;Xq4{FmGdAw{2wo!n{|{nsrrKBn;^;p zfVu9`F*~LH+j%H65L#Vp(9|lhK`Fdpbu`y*9+J1FY9)L(v4pJs^BCXz1=5c8$8|oO zItEC|$8&|#`r9`e!Y!+&1Y5YBo%6i1*=$d2k02!;VL+Nmbi97Uan1~}n;VRw4W zJAIP0y9cHowt9Bf35`V#x|UX85yIkDA0O9D=BaSz$Hr^d_Jahc8+yH4g?^kB8vZDN z*Gj7U5qA1OF5G-+ta@(=8EMbR@Kavnp%dy^{sZOQv#I(!cz)fFVlB=6WoB&uAlKp> z_fFjpOOf<}z5Z#6bJGYww+ss%gY`%Q+Q2A`0=}ME=Y)C``qVkj7hP>^)PzkKo+jn< z4-B9Xk?`dCbFFT1LvIktcE`#N%o;gRVif1jU<3)~>Vp1ls7dfCFCWvjIy_N&0bF$n zs)FOh^7bt~$2o3@w$3?Xs?#$Pmn4tg%#(w?x#~{h={Q%!x=;DFqbvU1^b_dLc%COH z_C88lybGm^dq6i}SgxPJe|f7ruI=AXV2)D{@9UQCY@KaV|MyKoC0Ij2+Ux#sbac(b z_y6v4vgHfZ$Mpw;XJb9~(%XHfTx5DX%W4WhIFd&Ev)go-O||h2?}pl-?h>6^bE3eD zwcTE1R5A$&bp58?-B5%V*EqUUj_{za;qu zG*2H2aJ+aJMipED2*vjSqp1~1X~X(0oztWdIg&8(c8>X(IDabF`?`SMVJoI&9UYHQ zeTlO1ZwYS~N%N2T*O-V9VXDvVktqP^*O#ap(w_<%(`>@8AJ=@rVR$s$yc+!_c)+P;7EO${u{Zk`6VG=57*Ime3s4 za`?=Z>m|MtPcz@`IdOonTiQ;qO5(Y#Z3MCGp%%=L;gVUDEisaBXN3Q(`f0FiC>H%b z7p71#SZ;JkeP$RVMynfwk@%U~p6k9@{RgjrAZN@pNDuW51f?hUSXw~=?)RBVfYgme z*KEyNz;UM{I?l)m|D(Wl_)1^Z-YISCh45>x&(xBxzZ40r%WEV(M(yCyza(|EY}Cmk*&wsM_ZF~YeyN_-;Bc#l@y zI@I=I%@I3KK7UTylR1QHK%fo!)K|<$@xj>Z);M#{QHN=EgN*5Oc?Z$vg^^e4|NM`l z>tJWIZNoaWrADpVw6$vQ9Tc^T+9OC&BhuJg(3-W2qIT`QSMAzGQM*pJHpss5IUN>de&L!s|Hi$oMA<|}sIN!clv-QOISm5P&c@|W_+rAQ{RdGR$6;jwS?d{%e`S_neC z!y1~}Y2wLLvOQ%bsSSs|sXv!>tPb;qr;HZ3$;B)Lq0Si_uMD*t;H@@f)yrUyYF zuQ{8T_`0fww1K6UN-gJZv|EUDMJxH}Uk!BNw+68lx*4*FJjjcZY=Bn{cE*8r;+$v5&`USXx(m<8G5fn(38`>z5nCBfMx!O(z z6;pdfF zD31=Yy0>3!LS_|(XU9~gLBUmsxk#bZXWxAiu@I;%2cJitoLNQ2;^4-9i=mnRC}9QL zwR4F6`n5>kWbsC0A`lb{W8HunV%270){splinZ4933;RG-8P+)hudi)7BxF8X~`7Z zlN8$mWq-;(54>D9nm)-2oe6Q?sxC6Au$j@|saf(@zSPM;u7Cd3a30fatwK+8|A?jV znA7{$PnpRF?zHK|y}p&#Wq4J?W}o>C9OITQA)9Y?1p^rt1*(+~Kkt$HUYs)QNlHTc z;FYrMoeYHuFVg`8-}2>)<3s%G9xY&|b5cc@G}Z(Y1&R-$#`qzt41-w7;xv7jyA?(K ze8dA{sioVqNk`L^+cm9_kB{$mky&x++_CXY+g8Bt?^g_6k|_xTGJ;tB20=vr!ozG_ zb6q4AIE{|xsPiFpS*8`!_N-ZuY28BJL0!Or|3J$o`e zV~<8Po6LKkW-uiS13?ysDSk^qGnb8l*Dm?V^D%>1&C)`GGWQ$duJ(oTqx|~xF?@?h z+lVCkeK1&Icd+K}rp(qn^)Yu8@F&&4i%7mP4V9mXxQ(DpJ&*7SBz~P@MXROK!>_fX zG*$fv_`I)W8FZtg1S4bEhl;1RYl#qTgUkYMGy^@;t7P)b{PKTnG2~OQFtV0UDv?N zs%QhF2O|mBXUBuQ-Y1usf?0qPUE?DF7c(Pera--6UI^Nn2B!8J3%%QVGPb z?XgooyyepmEul+el+oeJb1hSh;~axhI?y8XksmQy*Wp&83~1S%ZdtQ2mWSElgAOvZZ*~HioHfuRJS*3cNO^J!w0a4La7}5D@#( zfRv6aX4pMud)Z6H)qU_o)x;RM|p zkmtOXc5gV8oS-D$>E-0t>D|!xAXGi|{vGPcMJo0YJ^OWjcs28sqx4m>Mo52ie120} zQE9G)zKLBp=DdF^E;PJ{RWIZsgDD~c?`M9?FKZI5DV+Ns(Zqe%yzK@QNI!P;Sqq^H z9n=3lAX+C&o%4!YYeixub--F(s@Dzk;;S2fGG)AFvFQ$cwl9P#p72ujbAdT1hhN*9 zcbqJ26TI@V+Y7s@$j+_*hz6neK(W?LtfWtkzo?-@$^P~mWRjjxvhZzu^rQ$}tom30 zuyfBCm>0~941NE7`-K}}*Qf5%-4dp6?W_g8SRHYreKNojPWGMX6?=cRvYpI5z@4o9 z!3}qR?T{nGjLiXZLm#{ExzhufN}U>J<9c1i%R-UAz|nikqH6@NU=l~sd-T2y=gz!& zM9d62;!%n_E$Aj_M^=-IPy376rMwa> zU&x<8zkYHfV>f!2<+df)>M>>3I5$s>%)KDuc>V?aGCD?!via_?oXv_K zJ!OaaIA$zL6){|e1%wbdPO8gW=`kceY2($^Ccjrlka6fH#j#lO!8G%4z7K&;; z>ds&DkCXz=xegYhB?`tZ1WyR=)G~AuW~vxJ)5|1T7n?=b=&ZG9@;m(4EyO zMr=%0Bh>#`sr={u6q`wSp3$c$Hn%L_`Rlys7d_EIgp@f_eKy$hPK-3N73kB0BJRmA zw6p>O>3$@R{!Wt6ZGP$|f?yyZ(uvA^u&Ylg!vbo4#X#TlJ-hk?YUp+DRR8(|m=#6= z%LIEhgA?3h@PXX&8?^qI^X8r{qh~UIrN11mc~^(#T~da;_<5Sl13rXp{78Q*cRr`h z3-RAai;>c%VvL#FKq)7NP3Unc7u)T?hIy!w5yl-EXN1QEir#l8@%HHgzD1~pQ6(j(L-OnbFpKub_#l?>TE@yfC#I}Usr|>B~XxyOfVY^yTLkm`d0P9ml z`XKr14$l;0QDyOpw5`cVEZSgpVZapSK2y>(FFEa~IaAo!Dz4!&PCETWm>Gg*Gh1Pzzk9x9OSVjqkCZ0^Vka5^R8BHq1!ts{sO} z27;hx4y7{cD)rIERPi#7>2y+)sIdf=aO(FTtH;lhKUZ0dS)DDW6N<)S+O;aQ*bE5! zk~!vjOL%E(>p?VD9H-EPyd3Juu(vPQ4}u~X1oIF(5!e?bT%}hDtA{(FgCAbD$U@dlMP5)EKnsQv3 zY9uAqDGK*iK(wwGzPd_++5~>7z86QE>!ZuGZhYGyIbrUi0*q>z?cuU18QO04dzu{8 zV&)i-ZhkUjoJp;@rT2bW(`dIx_-7@BL0XnsOGkI=@lL?w!Rk~R?W(d!5BF`Yu?ZUk zPu&^`UCU)zkZxw*fl}ktaef63go#1+zPYW0x$(nfP_m8l$0uE&P;_|NI7^c`yo}*} z`wCr`lM5byz*26C(2spi#wFLnY%^^QE(-3!V|^6B9zE94WA1-5ZBx@+{7f;%b6=fU zeXM$)b`AkO7mo>6o%`pv)%bh+JpfEbLC9qq!>UsPSDT zA+VeF@XzB1a5X!I(i1>_oHOB7>4?ja>%N#(3l&`Gq#D2lefoW9Fkm`R2bOl+?4IvD ztc?){t~s~lo#RR5v2IE9$^>EFKz^%DYQ^ekPyjT*HBX@nc6Q=$B)}oAgLYJ zoE%2yXH4;ZTS%n;<>BwTmig0~^hMz9npOz+w#a~XjTK8#vE_o$fo}2a%)ZabNqTt$ z0)*jOJZ48x&+1}kk!I-cY|k+PRV@o8g?*cADz~mBGc`-pTCPX9l=VZhFJYBh-YP_5 z!xS=!!bRa_44cE-g81aqXCbSS^EZK%Ie%X-$x+b7%qFXh#hsdVZi z6d$fa>bQ3027RfxOF!7|iMYwkPHHw@sFZTuFWx$&FWO(UcOl3fcd-P2Z@;`x9i|E0 zmh>h{iPj~MuGrAVW#+bWOP^j}c9mm^`rFZt^Y|CW)&jnfBvKeSGE#%#yc5{iE7sBS zulB~mr~9ZyQUA_JoK%I3!;*s~d@`PYZrcF%B{#*h<-#z1b@!*CCHTLe+@4NA6aI(+{3E}@frb2pKpi2Ew(a#+o;Zhy?^W{=bF3{L zhe9UJd8aoT?6}umJq%_s6`xWftc+`3O0};TG+OpXwn3}Cy+ZrALLtZOM=1X(^kDr= z$()Z4Gr1fiOf~3vNBVIl2Y*WYUGv%(&;5E1E!>OA=Jex{?%N)_DSq>UDZRd(-recD z@+f=W+%*=mZQ5*Cl&RKDAn1Lq1BL^wa!V+_L*4A61Kg69Pck5o7-5*LSIxTeyTPTJ znZf&sk+o8dgD)ll{q(>4)~tm;i(Dcb>U>Xn=$(YyrLR|NraA{u_aW}yUNy^JVES8bYZ)n{?$;$rh_*Ot}NB|EM zYk_>`pXFK`t&h6(jrcZ61K><11zLSP<5h`=K@!KMi`XQ)+qD0P-n%UuA*B0s70(e< z$JFnjq52s^Ap|sfu7zI;yq(C%<`gAT`ijGYnvQ&s^y7}^==q@&t+k)Oyv?{PTG6H~ z#=@G#7}->y=&xwa1jeCpr&l1SS19&lH{Uq-Wm3x=HAJ`Ym(-gD$o0a9>peO&Co|YGP_Xxx~peJmAfWar` z@t`PUXb@M&&$k5i)u&tTM=*BT`d_IqB7|L63et+aIE#*A$49dEH19N6EdEAB4OFJl zcir%ZbOfAu8Ex+U8Ao1k zvwvfwp79w6Jy|-SdNl;CHPoQ+@2}^1c6np=2g~@kZI@qyfCr-A&(fX5{mzkwd%+iaLos8g|XD=+jz3gPgPtOQzpNFXv1 zK=MmH6kQ>Uk@d!?BBOej#ARrAZ(QY6Ld#I=Al}N28rz@0Z0kSf?3XcxB_HugVIevwLK@m(Ngl-y9j1!hacbXZ?y}V)RA8Oo@CqZWZeq5Ad zYDA|0;%9l9%tD5=>dIIH)sSt#3B1lbj_w|CsKQoI(X z$zbsy;BM95+4%PS9bY?I7UqV&!^P#An*_U?8!ethQ=lv-v+CK7 zHLDpWc0!cIovp+xJn1Yl5crWnh!Aj`&O-G#{vSRx&BLx_A~HMJ{-(%Z+H0i6Ee`*z z0TWYc4GEO}f!xlIcO3&3lhaBI@AP1O(}KPsv0Acx;#V=%xiZ>@W>>8^y>gSCR6}ds z)8#hwca&>OB}T$u@49eSP?1)x;58mdoaq=~v$v5GO(SZQ=l7ZtV3r>~zK^(GU1&^A z?~UFtvAitTJ?kd86MkMF>UBMpi;#<`k1>^1mH40u7ymWoa``mw8zR1jziACm;S43r zYxJLSl!(76l=X*!j&%WK9xR#YDIyb&G{g1}X9bBQjCbqP%m-+gFLgu89GE1kMzsVJ zd(rc^g+6t3s@0gsgL#aN5Ac-aRv?$BS5%BUovpKPlpw^4goN6A&mDgba6g)ooXSAF zNUb~QxwW z5q(Mwtg=0onG|d3^f_~)ZBNTZzd%Y4K1~`jwd{>MN;t`OY~&k~llYuCHl)?ZAU}yX zkz;br@3^LmLwB7lD2`&-QI!2xaMD(co6_eRNkN{si%{5jrr`I;8ifByCR9M|B=Nof zN}woF^yhowoor9R5xJJoA<3Z2pqmTvw@LDDUVrhNE}+Jd!2~A#JFpi>-T#O_OY|Nc z>R9`|sYeb)nAMMxJr7x=t*{_6d2V(uIZToNWfhQng2S?@$;>zHvS(kx2s>D* zlDpYUW$U{N)SGGdxDY4i1%Ty-V6(4&a1JV~D373SPZ6g*#;GyBq6-s$O{@MrX9tZq?ehQG!xpb~W znlh-E;G;iWeR^mx`=~7yaJ2+wJe;d7$+|mP(mAm~Ai;g)gDX&s_4nHk<4*2dGW*>c z+Qo}6tSVNleXk>BB)TR}$wL0H$@OGWlG)%OJuUdrh5o+-0UKEUY4Ywa=s(efFS-4% zDt~FcD$dV#rR4XhG1R6$INiTa7$PXpZ+bINvaXI5P!M!=b0bQ4Fn^hTqh_^-su7~V z4Zr#+WeG?it7FKr7?es@AC!PJr+Y2lcYSv0kVN^Zf>)hFi(si4M>%C@AzXH7?X^Y+ ztmm>qfNZqA#3w$#0AO3`!P97I%k-ikh*Yj%ew;VvyZx^G==ODDsU)fI@rLI^mt~W3 zZAsZIJ=2!-<-@jBFsc8yvDmWTTlZ(XPc9lS=N50XlXT=@7qXsaOhZnx5l^) zNeK+ay^9~={~~&fSrk;S=sWBEvsV#QUT^}xZIM@6p+Q42E6BsGF8BisEnXZ%u>xlD z`Pr2^Nbg4_P#rC}!_Shtb&_bDM?`A~GB25c^qTEBMAvZXU3v#*gxUi2m+uWPM-M5m z5B12PEJ4zJ36?8wy5@Jfy&NY3?9)}YI9Sm+3k-D*>QDBrGY$f^w4eBynch+YQ9|vg zs}1_2NCLP9-sXE9y|+2d!sW<tRa)wim2$?i_6Tq&_E7 z&gcC`O!OYR_&_W?(L*Bxp??O>LKNpR`ZeK_rs`P0Ge9s?Vx8ChR1HWuIIB5NJ6&vP zc!K35cjXdmx*0bW#9bzNzoaG`mt@(3GK-fK#_$jiEq<)^ZomA|qqzDty8nqF z{2hKI!6H_NndO1nb-ifv6ad%b!_;IoZcROF(z_F!@o4tv+(eG3(Dc8a+BJP4OdsI^ z=rKhbW)U#yGK}4hg1tVb*RSG0Wc2-uba@K_i9ukr3O%0ukT2W+PzNbf9qLD%aN^z`3FS{Lz;|k z$jZ$$o3Cwjosm?6CXP4Hv+@HX7f80A3i7_KLaz1o7y`&}yZw`t#v#dI- zf!F$z{x_-VI@)5PXDI027@@0EQ4nT_f`8gL=Fx0wX>a>8gI;1&cnUY7%6OYL=jQEb zvo`VuyZC94Ah7e&2S05N-0QGhDVt{7C3E-&;I=HFo$(Fo_Fim2KRkNAbU=AA+q^FP=UeytJUbM6R>866=%u)&`@DQPcy)*zpr%he`!B)90G36>Pza37(uoay1c}{FJrtPB` zgVPr?y7-D=5pcH!8f5Dbva!zKLgSzA)Jl~rCB3lV9q{&}x*hYUz75lM1q(hg z6D9iXzXP#*!>vL^MW;M;EqPVHaTk!x^;22gVcg1m5F3AXP(4UaHF8w)t$EhuAG7D3 zu0PXblD=hr@W`7NC-@C3YP5Alv|f>gOctjOYi*Vor|7RSd00O9}|s$oh=mdq|#PZ^l?*Rq-CXt(43?3`!q+)A6Q(XRrd z<`0HoZ#uhoAEAIe5xz7YhQ9*KEcIf~<^4JD%}N@SjnlukjBj`KUVjW=gBfi)H=oUn zq+i>}iVTGLZ+6!E`?vmESdc2Adpvq^u6PlLCvn<{OQ0Xf!sjE)EIN>DBLky8>{Kp) zZ1n%FxHvAoZw=raJ;U{z-$!V%@@IJt3|#3Rz!zW8(e6(GUr%2s;b`R1K#U~vbc1r3 zkmyRt<$wm0U#=f5dX%}OXu8=;>z3<4X*fSzGk%bsVAxL_G<(Wr6zQz~9}zf&7^?>? zugU)hv&91O!|V@wSaAx|lIz4cK>LjAiO+CLN4s3)xhiLf*1G~%<0r=PDPjsT)#sUA z#4jhwA-CR6(V08c1BQlS3%jY(N5RE$#jVkslu-_=dX8~}AJt{wifMb~t{2qNV-2g8 z1_}S278Ji9`{9m768gE$n!o`X^aS^UgIZ3)(|?RM&9}jNf>~&TLX3h!`9Y=3(Q7yg zdwi2MJ0U6-o6(6$whrmPX_lLwuI>s(WJjM3hWP_PkZmYun4gr0GD~=P7{wzARgo&$ zvsw_4;K-K1&khMC6ZD5UYXmd%wsb_-hdkB=*O>#LsYb3~U13L$Bzk7C9hV34CKw*5qTLKW6@+?-qdv5lR&p}MOn_0QH#-{0e@un@ipFz3Q(idW42{RWuw z+N$CEzKW^1>ypm*hW73F#SYi!lJoeIY~ZQGlvEQEYM~b0h1#*3^_e@bP+qw2?RZ^cL1gkHprGyRLJ&=nM<=ke+7>I9el9y8w3eoAm)+NiT1 z-@&S4s?dR5UC7;me+|}VZ)faN7O)y~gL&p(>K#R{^;!OiK^>Uu8QXXPpGqG;FB=pu zvuSjtf}XYXLS3`Kr=`oHGXulbLYIqfhbY-&r>&%ciI5S!3`A{Qxj(;owq6i0!5vHz zo%nvuo%9#p#*2Z^=zZi@B27m6h*5DC+R9*XWkdJOVcEd!Da-zZ)W4HX(8&s(;h*9& z=N<;+$Vb<#l}*K}nu%cQ;7-$UgFNCN7J6^5-}pvY(Yar9l#28nHj%`P*flIv=&JL- zpXq45xjMdmt|IQ$UEQr@Sel7E-!v)fk2}nLJR+yw?nM4uFw_?6_hR)G*=Lg(b?Y)O z%}m*ik6wLuxn+I^!t!g2>AI*fi zXreynX2y1?7rDU&?uqj%C_kj@krpVkjMyw=heLg?L(OQv8u_}+oHbn3^{q4er*5?! zC7}*SLMd@tc19`<$cf#U)_pq?r!YZ1O~l$L&6CD29B;*xi9Gp3*hlvq%(ZM?*0>k> zJ$H1vJB4ljVdeg00X0B}rvRW8<`ar-1YwRTK^_oiyiWMnvH-2&d_bE9+)hq^FUITn z^U>TEprhDxys(O~$d)6s6vx;d4&1c#6qVIB-CyWkE?wgM z{Bm;C(fn_d?Z;JPYNB8F6Fmptr7=MTL3`c^zK+IJ-+AD4({boh@1`|A8})EQ~RfeS8wMW`6AlkH&{Zvbu)C1U4qu<*9y0YFY5d{@OMwe=fvmIV=Dx0>c8f5 z#lr-pxux-YK+fnU*NEpP5GMDm)uTT@_hQd#c?Vhv>7I;}_oq0+6rmg6ph0?zzB zp>3My7>Ir{!;|8V!^`hNyDA4BwzdO7=Gnn!*ZFj6(rR_T2_>u(1Tr!mV>ynXD8lk% zAc!2fgrjAL^0*;!5EXf|7^j(t4w zfKrN4a#~N4&gfWe)TPa%IJ5Xj>{U)UQoShyQQ`r-$~?8v4dL1TX)E}93eqYaT`7zP zmkeY{&#vLreLpxJCMUT!TR{mpdqn=7J$HYgan?l1oU7^OmLXX^bHF{} z-xPN!!;`wm12at?nO0wP$5$DDg}P;~!`M+$nH%fTcxL2rek}CjU+XN?L{M0gE9;J@ALSt6@45Coy70y=}%9*55Dh?)0M4{1MD-)>lv#PQRa66OKH)&HuR|4r}N@uEPFF}Fu$N=Tg53VbjGWHRY(hn zWfm=o882OYOZ;0|EdUW zkb);FS-W7TH@EunwjG-!@B!EgrwE2P@A{Jn0 ztA~+?`J}DDDZSz|R!Rkv&h>#fqR%SXPRZGzwIEyUj@As0VE0R||uP5Nl& z4T}6NlIFvecFwMOn2q;03G;Iy*3aAH-;fON6N=wGnDA%l606IyE8O=wxZK&+#P1I{ zwlu;Y{W`3kG1r`=-5MulgPY`cw40rkmsL*7!>=?p%5Zd!Zq4|GMZby{jjPT~LD2>u z*E@zowQne%eoeQUIlbXPO%<=vYYZ|GIx~Jm<1-A{B{SUKn9X?o!uvD|>~+AhhO694 zxz?H=1el6Su5P|eRajbyWZTIRmMt$$!|wGUeKjvmSz)4$^JW@Rvzwvef50~qrj4hI zba9&1NBv~=vUIMs^V=xUpTWyhDDFEH;fZ}lSOYG9P7pdD5Af%UMlJ|_&WhA=(j zX*%6*AJusDM=?&q7yl#T{8Az}3Z@)-Dk&Tt`q2Bae{Ur zypR>?DxFg~x41ky0s(plb@%G0(%l{|NQiXQywnN?p*(x!TKre%+H@B9IGh2%-<}tetx&CUnzV-4g{nRC$B~7lL&HJt8b)-J869JU!NW}BHa`Krn8g4l*PQd}J z1B_dV-H@p?&Gt6=RvbDQH*p=nn#`S6?wsB@d6N;{v%s13fe79apnH4raN(l_aCp06+C>U!4)@+B7gcn^5%$mG|; z_IHK1KpdgED)uV(cemon%Yq=V#7cn0UptGo6NAKXvWLBT^Ak}iP0@UQr=jPPZLdT6 zL;E@dt!zYYKlgrMr%ZJ!iCd5KBlJdao^2|uRfJ{) zabdm%jWz17>(AlVk-quJ@SnZZm#5Law8zcs?9N#LLqWn=6YXPhRCB^Z`Y@kmNA&qC zEkx@5#Ba4Zy}~82UM42RDc62-qCS;e&Q}`c_yL}Qh1NVCWKzFBnGMgvv5?Kcpjie* zn<+Ym`FT^5C^F?2W7-J~HPlD#FXIGkG9aofx`OFTh6K$@+0-AKvFgI?6`gz_j#EE2 zgzvV#%V47}eEsny)aB(xHmj68Io}e~xN0jzM~hQ@P4o5BqOr{B!GsKN)u_IQJ0+3B zj$+Y#T?9bX8jA65fY)OzW#s45GM6yf_(#WBy^!DNn~dX!NPd-B98j^lV6FQMaoEX&NURkmSS3M!RtP@8lj<#vgzS9I+38`RhTDMu=;k zHEATsZno@TqL(;i4*r}V-ij?lmHehDZW5U0M6!!m#AJ+Lo19TRAtL#A#Ok3}O5CNy z7wG)DJ59^FXm4sM6rF_hZ7A~}S4X86IXDy_`ciRD>oX)Spb^kqTOW1u^X6o_`9%nOCND+_K(>#-8z~Pfy{)CJwYIiqCI*d!E_AUf))C>1H;wgbJzCC2;FQHnUalwDHonbn1 z?E)UB3*96`XOg~5`PKx5oB%R9{*qwH@Gl~O^1~ArRRm~U;(H%~HXj@?npyB}-IR4f#ev5d7azDr4$Kq@+k znrl2tC1=s&?({9Kt{bae&7S6RE!)c>L4-c`aAaoB+(DIvjn`Mw4BGMNiN(5FHK!F- zm;O6uWmXsJM6z3AY%5zXuZ~ZP{6o+?!!sm`vsI9%S4vJFt1N%+$e2^nr!v2I@GeS{ zKcR@pwqm1F#oL2+OS?o?TRfsVhqIX=8Ht)MA~Y#ch^$iO5TfDi+#BlDwMCD6`X#XS1RSK#(^~yl;d^%A=FoMVl(n|aJ&>~@`Q_C`>kr2v%M1&a z5967Esc&chBXXUhTv^i%R+zgQ7+fy?a79yCeJ*|tjQjPu^7QK4%llu5WgV7a;FgKU zmg_=;89TG9WW(k<6#<3QA;2w=ze@`@ASQ^8 zc!6_|J%yx8feI1Mz zBAYV76Vgl4BaL5BWWhvlveUjG=xh}HD7pju%1bsi&W49~xX9V&tjO1SjXs?-9YnbQ zu+)y{Y&X-%rLF(=fn3-ra^OtOWj@97P~P;<$Lfh1bg{1>C6^J*r4_ z`vvBI^E%5Zfxsk`_b?%AlWQTqZE}eT54vmC^wHlroQ2#LWMG}X%CxV?c@;rlOX{E4 z{~g*15Mnhlv1im?(AOVdK+gszrC1TCJN~#iB*{>#v_f0OtwpXKm%`7n>%PGtLWK#> z`XJ?}9-;+U5JGtQU}exWJy0BOy|(OM1nhxezFP>r<*0tKDzpz*`w+<%Bz2mTy0a;I z4TZ5(B4(!Lfoj1m1c9|TawK|HJk!JUvB2=giz35n4z5w!Yhc20$UZ+TsUa0De47Cv zCLC*K81j-Sk5ZWRpDsy1FGN!8g51%x4af!vCJB;k5?+=n=B4?}Hpe~i0rjghfPd@< zgp%y>*TUP9_O#bWE9b4t`_L>UP|c>JIAHR5x^|j$s&RR_&Ye+8CsNN0PD`tbb3!7c z+wamW*JU=Uf{?!dh?+rh5_J@qFr{VF*|D$%K{MspeSj**{;?d1pL)pHPo+s^2Ob%~ z7s&L0od{`)uU2!NV|56BraRgob>~MH7a73VUUoL*$V@CgYXKfvMPM20Mp&JOZ+t2V zM>Sg~O593(pLnuS*#1kW_8EuH-LK2TS_~&PUX!}c2O9;t!=k3grDcMEUSVU_M}K0= z1Q+?5F4f&elJ0~|C{ki(6j`0uTl^xrsFXgsMfT#jK~E&BQmg#ShG;1H&dy{DHQot6 ziPJ=ym{QyYkPmZ%{vD+v2_ z_G@V7rm)%1Do)4GbkA@eri83ROeOjVQVy;o&4i<}*khbhWG<`Z^Pe0pWYkV4tyNc` z-FMyORVnUVyOV=ei4JCrinLLC^I7L}1n-plO&N;Tj^oLn|)J5JM&R45H0O`hQ zFI4~ymYiuR7ke2$n)de=p5&;2*{5a#exWg&LMm z9Bm23h)%kP$yqmDRrw^J-sZ5LTmZTpEWJ|Gq?)fooF`x>$g5}=30M5|dnanG@{aqzlva6?hoDAc74#0oSLb+(;<9A^^Xl^aw8s17moVA}_G(;pR@u>n6I)2D<#z@Fa^R^?bt)8JxjDh zo*wODUxD%WP^ImPX-|{N4w+19>zpbl*m6a4b|4;J491k)zc_VEVjGe@tgpk0m=tFU zJ#`9wkL`}eG-gW zfBia60Hao^?6-w-Sy*1|*X19NU}TWkd!ZSo`91g~$IB*vUSZv56grPDagdFCqZXJm zotWGcI|AM6#qhHCY0MLXY%B?dbqYtMf;Fwqer*}Nq$$)~Sk^_-BBDDViHO{Z!TNj# zHb=!h5L}X!MXflM6F>q~*|sy4((BT@l8v_O#WV_a5nL7b7m;S4@9j(Vm=;tXb&F*PM9*9@Pfp4=}sR@4yC9^(zV0&dpeZD~H_F~yJ$E;`XQp0)fiY97A zU_q~S*msrY<3!FE=7%{f6hG>?o7=Ngn>7BiBVT1cZzH^8H8_FHnF3w@*JH42<8AnQ@T`%9(HhkM$NqvV~vs)vX88;@SM)VY=5<=`-jv%$~n!ZLXi@ z>`6As5E`S|F*Brdzw=Nah#Wq_;HB2OxO*$|^M$&sQ|$#wo*P@?h7B@qv5gAm_=fXtt4yVR{)m#KEg#RjmY^o}e&TcgFdwNmFxD zbTu*1Fg4b+J@TUAF9y=j#*e%`6iV=NlVS1%*;uaLdmLcXt3>u7FwB!u+n9UVRi4T~ zMT`4tW$qaE9A)T6e$d)vzVF*(7E@!mDPswjNL;|&jpN=yyh`>%9|XQ%@F_Y5bFL-0 zqpW=h(ECCDBb@GLOek2FT@w{LQ1fES`o}DHwBC>D76@=W=m$4^ywyJ!;TPw5f51V{ zEA|@asKNL3n%UR&rnY;r4(JS?P~-6qez*ZzdWg;@V2vLVI0$u$&4L8Er7G%Sn9t+2 zhi_-yY*QyPG3rlDvIzSLp2nWPgzkqk;_ln9*KfCVi2hEJ z5G|$}Q88g+WaP6)meq3toniPH-F9HWF96F$d3L@SJ>WDb@!XZtLJK`wdAr39z~(OY z)h%H+d4{_^S=k2`Eq$|DMm|_3c9%Z}`g*#TGv99#-5`EgC&RMn%Pu&w32J8+R-mvl zRbI&*P+P*Zm>pabsQeUFpjwtShZL%yb@K+})M`nbDM(=4_L=W`h#T z)OaiFjpC-$0n!L|TK`V-@PQEOX<Al-$@$2t^P?U~dc81KV^qu5WAVBE(h}&pL8S5KY65&m5 zpECR-!Y)HB7&WY*eudUT=~h#6&!uBlUXlDq)S4u_`KBioc6o#3TS>Gj6N;WbK=*e&DRlrBF;z-J+tLM1engORcA{>@^6{sDY8 z-|x_qb2edaalI(r;<#yK3{-{u7d zcRE8REII&NZ0y@Wj5^*8HZ^!YR*>?g)PwcFyJ*znO|C*#qsIXQf}d}^$u;&1`+`1s zmU%_PJNRBbek3-)4&DAN#>*F{%SRX(^P9G1I4wz|mGpd*D~;oYeWktzhs zk((TK+GxMX35IIeZwO|$yvjFPX{rDe+lqaX^dN&Z>t zf+(Pv4?4FZ)5E(KQFfBRCG|LaUys!$tSDrfelVAl`lj`_tP}TpaLP?>wBkhKQsVq)g$>3G!djOeeS$8jRL#+m3Ih@#VY0nxLQ7` zAE6dhzk;(1Lstih8n8kSE=;T#R1#@4!DE{JMX~2be?!lI{YOEqAx(mI^>Vfy;mLvc z%rsBVsE;UFEj7`ymTQJV2V<1!X#NiVjrCy(P2p!j%JPt4+q2?)I)ww&MUVs;OsdB& zMx*gY(#)iAb(Is#7J_bStEkt*LcJcj2eyA5=6}f_9ci88RG`Zafe+e&#?aqiTxFiHU8&Ykf6hV~bX zl5m`MIT*@EV2g=V#qSLoyzfzA&a)tA=Sck+dstk6S4=|8s|Da*j`El>?HOcc972xd zO0{*ss8c==(C|vN(?&9q#?D#2e93J{^(RQu4&KhAWyUwS6Oel|R^5@M>u%UB+`np*jy238Fd9y(ZfezyXIkb_Rc=uY6- zAMZSE;Hw2PV7}OVr{XOZ;zDwDgzzyQ)O5|WgX)5 z!aHxJ`hYEl8SAf8P~IIyvmwckJKTOP>~Etgj&Cs{kN+(Mar&KrHleUS19RE%7pZOg z$o`yGMZ7GC#ZEhDxsm)LG_Q1w_4=X_%A{U{4Bb?w7ZKsRuSS?|du`|cTGDN265Ix5 zsa_xJ-l*R^m?$-wA3Hw?o^bbOQb|_C0#i9OfLbC{MPm_OfMs}IS5DzFl5SndrFZN% zN8cT(V}1(XfVVvX?V|kwbbk`lljMv_sxEH524blil?O`7JCCJ?1b^XUb)+TQ%ih9%d~bUB$dQ?tpOsLdBN&)vRXEf%%5sY2#zsZI z#C*{V>m8W~3=TV(>a&oTm)f?>KmUFb;SDLtS`i*twC9{KdH9gne1SrPft6S=%gIx;2&Xz!0Y$ce_cr;!xxIh+j}?Txne4u`%wb zW$fgFVSAK^tg-w$mL_YRBZ_@IXgN63G$HaMDMDe+zhR^MQjvuC5o!gB?Q5r>tV{dR zqhND3aG*RRTcR+P5pZ8E>0S8odi!>0d6Ob*8^cEUQSZ}Go;%&xlC&2yy zn8Vg^z1(${a&;+Sf}_f&wj89dHLI!lXSI<5jW(kDuIju+p|5Pn?P5H(AQJ$pxM)}h366vGQcN+J2qyMrntN>$aJF}ymYF*P z1Ji#ux;tB!vQ+Kz?dqyCEM-0Rg|f$cZ%PWhO8Y}N9#(VN#Pq5BoR+oWVFnw^36!?Q z^gEq-PfGi-G4Srn#_(l1nlhH!$Zn2J4gQ|$N8+3kZb(;l(C&4`{o2?XX8BynnFx7e ziT#{sN$G-7d5TI~jdQgtxYD<*-(iplce@igIcv{Q3R?m`6SZofdN`Sx?w95jWUG}z zqIczJ@C2yOapUdktkHcl4p)Z4PaT3)UfgaEx6OGxD(1dn1Z0Bl3P*TES>Y+M)V;$@ z9cUD2cdiWjN9D&@q$GY7yxiuwZF#SA(F8L-tE-24D8>~sJJ7`5d1e)#;8&SYY$Ga; zZr=WnVnX4=*Dt~Yb*NEebZ-8+ICPSa{St`i=n(sl!fQX?Mg&LoJv2u07VLVc?XR<~ zcZQBvjl#$E1QK2}->ts7M6?+Q+oz=3bcsmRti#50i8#vs#IoZCt9=PPY z;R$Ri$EBqmc_VXX@%B!c<)(v4udd$Qj#$tyawys>Ecsi|`C8ZXwpFfm;4L=QqM!yW`%&Wa@Nw1OkqPeWQ2PBdM zghXUF2-CY&D<&qm~L80cO8f1aUyq` zeuRdIc;$|zV$o(eG)WLezC*izNgKZe<0W;OlfKFY;h{}lrN6TC{I$l7giQ5%pB5=7 zu|MurL6!PB`M1)G75t2?Y7k-ixLQ}twi|-Bx^y1|@n$TC?9LFFx_NI*x6-UA1GzqN z$Urdi%d}iE_rznhkE&u9Id@<7cDtk6B2Mq!;n29pPQI66Xt-0nsN;tX1&JW_djpZs z5zxA?0=$l)W7rcWc*(fW-nZ^T_4u11+#y)R^W5YZt?FfL1&q6qhibp^8oHw5X6Z-y znog}xfI$KNq6q@z88BSi$rDMAWYBz1Hd?Nfk=m`NXAx+tpKz~Z(oy^C<~>1CRubKd zHGXhQgJs<>TYjpXSlYZjw;Lt#AoG6TOowe2xMJ%-Q#z9Evq&QP|L-fW+%+vJH4ear z3bBsM{P#O27}H?#ru88Bs(OV5ZKB%q_bAzP&^`ES;Pi{L`m;rH3i|R!mp4{3X5q#~ z89>qVnt%LRgZ?6?RjWB58mn4CeAmlY?4(7Fkl$XHt1v4ymM`2FBBvW(vSYt(`L~2j zk`kBqflyeWT5X48(G2=RA=9pmBDUH3R}WI+RxT`$l_ajOZI_zJcO-NTa#W@@O zuGoNSViZ#|niQ-T_;YgEcs#@FY&T4yl;GTbhDt6bv^QsC6sv9fZn}EEVAYh=690Oo z+RmFgm_ew(J#PmQ9nA?HDICXCp~EDF_rB5xU_%nr49na0or3jTT%XHY zsWBy`tFG5aOX&&!iR+b{j)g5t^F^AFqL=Thaa5}RE8=W8HH<3KcT8gV^faNOPKH0N zfLlS9Dom+BSVGduH2q|498gKi3$pj?tD8I-j}$qVSBwo3#>XZLwoMC9h&Zx-#<0rf zJe95;Fa^SpX-iN;kN!0}d2Rehu^i^?h+FXpkW7y_-QFE4#+_nhYtY}-d`Y&wL_^-n z&mIrK?STiKL$wSNgg*+#k4AY+IF69xWozHt?sv+VriU*q-U~4{XX_m!ZjhN`iQNRn zUGzB>IfxX32<7ZKzA&_z5Sc*Ad+GUj3mV2(77KsLR>KcZ#)=NmgUhleuPuCuYvf$cARcPM@sC%;KdsfB0b}j36PWr}j zukpT!uw@8^2j^4PaNdgL{Kt@c%=YtI7S1Ctub}ziAcy)R&mzufd3OJj)-h~nn?V*A z{NYj47B4S8q-&8SQUt&CC(>ehXKob7HQiV@5mW(2#9u3GDPnda+*P~&iZXcA=D<(3 z*y_%dLLmxunh($~Q`>~bBY2t4uWdFPjgpyFmq%lcD?Ij&w#bpwsD>PNk5#I*BvI-Z zcAuh{R&IMKJqLzUBQ@X0 z4{GE!H0fbEPKTOSGg2sk1*p}%((;1szC0YCHgHd9s2LJC`<6jH>WUo>Ty?GE`w%th zix$a=kB(2<8)a}EBQLXe!)cfLx)@Z<0)oNfVcUCwufz;Odj{$zPo&v5Pf#{I)%CHC zhl3CG)^D359X_dR-n1I*)%S@Ku-Ob_z(FqBzLFpQDV%vyRiS3;lOx7z7))#3a^?L5 zvNFP2E(ev>!u_|U%v9v{(} zR1U#sbM;Hq-@l8RK9*$pnr+RE6tIQO>zJos&1j6~4gick5JIe*@Ene2~xu+8aH3Z~QfaQZG(Vd?6X^Iwd8HphN4 zh=g)^wm_l`;)R%}{uc1rKl*b1h|J#>U8%Y3W%EmLge08)@-p%x)Y2|0U^vqDm$P6i zLy)sC5_cC!0+_;|ULz7g%ymx<%Z5zjS52vBpos@L<{bZ!E6UI@{(_C5 z2VqCDu;(z&EfgJMOOa7{d)rsdFGplmy2UelmqDaHqESLVB-6sKQp2MN7>`h;#xz^Q z5sTGm07&k+NP`1*7!0$VgGOU=g$9mcfKE@LApxbr+9W_R?x55+E3vMmL*H${>~f!; z@7VpUFmgMQO|AMVfv9^1A6*?Fnbp(%1!-afv&Y^>}N-UGp_Sg`PeZ*)Y&t@F* z6do$?15uB}P!UkeY`qLKu~_ouEyCqnS63|k^*ydRk^Vf6Bp;!Mwm0c&f34H3ZOb~$ z>ff@Q8Jpz06gZ~`jAvwt#rGP1Z>}qr8n?Qzj2&<~AVW=3*YegX=*`F_aC2bKscwwA zq{}6UYG{PQh+tB_cggh}d(x}3p(*#A>jWid^zgGAh=C!HN5RL9Ne8$C; z{*$P2pV7VQizl7(TW+V%WP$|pGX;)qRlOjEqd|_;8MqIB`nUkGpetr^1r#N`5v(XlDv<>j#FY{D?}_YjCXn5Eq@`WOF(h>&w36qz-H(gvYm zaKk$Ud7hjnf1vEJ4gf=MT?pwWLRo4qkbBbKCK0zgXHR15c0T_;+9wn^ z@8V#Jj;*$()c10Z57oPV!SHq<(*1@)LXHt02E@lQEo)EB_ht`%3r#s$9?5?=E8OLn zHTFTf*!j+WhaH8oW^n87j%0C`Zr+3Sh`RhK7<`~N@Q}u$WaGx-KF~$xTvT2PMS?Dn zN66ce2BZtVE_JDm&StypW|4S}JCT|xom|tP1)Xtw;r_IHr=Qr996yGz^rx?fNc8P#ywB!&QJlB??}S;JXEL+dKm$Aw~4-a3P?=k~cy( ze`J`1`F4D&wq}EH=?)ZgW8g`hPQt_9&NE>|ozSwWpna|b9E3z|1;}KQ&u%LR067(?FIh#(Ql11AH6;U4{E{!oe7ZDy*3eZ^QPTdJxi{vgfcwoL| zv6@uis<0usiwi8u7q^EeXyRWg2ik`an;=Z&MJl1xRVUg}P=d}G>J008~zE9FN1=r zyaSUVa-OVdf^($cvPY{UHeZuri_LFNy}Kjwd`3(A&fA=9eVMqiM-oG!&uK&`^40=< z?fQEykL}UYe;W5IH0sBWMoISzE*0=pu`$QE*QaNJ`%ATDTgh%tar-FW8Y5cP*?!cz z)7Qs4_6aY+Q{Hkp7L!|L<$a5r5wT<@kT$6wTLDVoW7hN-BrmZyHEUNWm|p2oQGv9ejD=BuGKm~T{*@P%=HV?TdPKj#zs1zabWs7gRfm)_(DKg z5QN}N8eAS4JZ)3+>0KQv(NmMRf8Ba`HB4fFkL!*17sHDwN{?A<2QlW!ZF%-B%q10) z#9dXdY&>REaMH~{(vA%I{v>pfjjZ?$Ok}NaFZO6q2+yqEn*Of;vWx4LUHZ`8Movhu zS_5UYil1o?Dz&r(cM(J-s))aQa!DVlash`x`JeFhKxPFECIaIm*We?-7A;4{&iD;` z`>_~ z_U#!4C>jm|Z`Xcx>Ldj2OUYSWvG8YMF~3DohHxkzJKmW%L@z0_&u;79g0e&^%x7PG zYZXsX@i^;+9VNu;*d8LghtYy!eAJ;dUnKnqZc{Jyx?YFN&$&=`U40(3lTvS2*CYWP z%k*mdMW;~mU3{8Z;C~eCZlfno_@Tbj-(t!Dl3jDDFD#gcF9v!`aX>@dGv?VU(n#tCE-A7F_T;0UzuDtjiYld@;II*|cjlt6JR2?6(HAY3?(VXg zW;&3h%65*vo0|AH+j+RI^hFQO`bCIdBJ!ItLlM{-m^f5Yp0 z;fR0R3VFcKzX?evt`nRavxO8MLed0{-V&?yo+WoX`;PK7CDwT;{YRk)N*m<`TVYV! zksM#3zfnc<_>CBO2*pkVG0&u%L$k)aO1=?y1gmqfiJN`Svzq4IAnE7%Y%Rv*)6K9X zpZzZLjZ#ZRLnH4w%whFZa~wfw%tGJ#$KDX5sAf+xH~ zs)?hWusC$BNMd~pEQXh!G>qRcobc`_vX`3Z;q*@aN&Efk{X>?>UM@BfX_SbXrRi`@ z0hRoqJTGSAP#IktAYs0*q<^u0p#BwdCsH;&7}ZL`;s4bf155ho_>!fYE|K3>-cbAe zim*~7F4#>?X`ke^7V{SUgarV~fn^4g7`hiZgXo3vlGV>eBVS+SL^7@zQFrq)Hn%sB z`pQWu%FAPW0(ZPosJ03CNa~=NT2Gj-B64q_aB3{JZ>@gTvkGNs=tD%8@2rKf!V)Z4 zIrAewX6f>@{T1(@nI+ns>_%FhKLh%Q`;m8-&?FHc<=UJ~K|@^&wC=tQa5{SXMl3dq#lPOwMaMBh+XOev*NllT$_(slO&&y}xTI8++6PkEn) z7eVlYOU#$Tc!n4#r*&H$TXS-0{X*eQ;-Xx~Op}Ri(Rf${ge&p zc_QB7DC02weroMz=Oq7qLi3Gzz`GFgBNUhbSolY8A~Fcy-g|cG>cG zLt>o;)q!n=V#710c{vZW=6~!~vP3!L^ZnuFT_%{~C%CK_j6=&`Rh#?C{|v-#sJZdY zn3rrGSRXz%_B1jFY=-HJT2jLfkq*{mf@MKoC>vA z@f|&!1d#UN8pHnW{JE<~;hN(?Ic0_On&8;70f+q4jZYJ13EAI=`%ACSH$}X>3>qd_ zCyDE@gAZCf_bLg(7}%42Z^cU*6FO8}U@F~Z5Bz%MLzpA?pTC}YseN8F`q?jU=vt&c zy}wLJeSa>Xu;kET$h|X@MY&Y8T-~%w)#frts>MFMD9R>x` zHh;pub;00ZjG&pC3?`LhV6R zYP>-yYx<8TGZO3tXW;dI?#!-a-Aorkr_PHaK6+XUpLEj#`+Y9OAb0QA`%xuE%0A}%VtFST!d8_u@*y(- z>ivQp+LxyQd|{}>FY+OpuQmUUu1LSrVB6tiZe{w9;s&x8Lho6`8u3?vK=n0D)3YIg z=j*Id&XwsGhp%%V(Dd`FhqE|KyDNU3u!pcA7gCYGLt`ZdMA1K%3#~ZBGApGlXey;8 z`Q+@gR!V0VhT$L1bo+4b%hK_!ws_P^cB~)vs1CE|+|&er?$YSB>7$SXQ_{c>a#yE! z`Ty88-lamM{C1AZD>tx92A2Zwn&!cS4nH47Is^0XJ?6$n4f`QcEA8=ZxcNfeU7!Ew zx+fC%@qNFf-@{p9%QRC^{?Iqz+1D60Z^^Te>rr9 z>;`=ptkj5;u<8q*z24BAp!GAVAXVLwqB`zW$EaoD&hN*{;RJVGo@1Efy{3qrVaT92 z!RwgzG0TUN*-D= z9k1{2@FZCM!?_0L4x&S9PTu$X6TK}@37PE7Abrf6(V9dAoKB@kJ=rx z_4QuWC~3?;yLGEL$o;W$NchEUg}6t66*9j!p;)Un$!RZpOQQ<&ubW_kb1x=gdd~Qw zHMm0EpW~m}AQL6$y7O8WRM1mW^*2O<4=r7TQf}ww>AXrSck1@9Pc~pawIK$h(zn)5 zJ)N~UK8TfLx&s<;Uba!T5L5)*lI(ba2!zZ4zC6@>HCNY_HqFOItP4B}X3pSJ?|Z`6 z#pACRx#bM#3b7X^xG|2<71@3L-o3h=rS5_{sjoi=nUMT8X5>9j+nzlurH3{DbI3mN zb|rC-#=v|QXCB()vun#q`9vtjDR<3V>ggo8&s;Ujc{7U0-BG$b%{ng09L&G}_OS+?t zE)TDa3TdmuyL;x7dj zBV`HKzeIfrO;EqJKBrYPA#cxmV)WjG4Re>*RbQ%$l2exDl(D)FBSlFi_IIY&=RvdQ zzkZZk;ci1)LUL#+uVEc-&3OYh)Af83=8ooq4#DeUJ2n4WSxwCXJ+K)b^PyF{*sk<5 zA^GUJ+{5iV)&;F&WuJ6Jr0=|bo3ei2tCr71)g**>5yP-O9K&!!<7wm8ipp3- zCw*>Czm)80cxXabo>bscM)h{YC_Js_$FnAI18y~Ebr?Tmw`pLNy}bbU*R2SJT++hM z?}vuZ2#j6Qky4-1-_Cqo3|xM%A1C1kPIY~c1eMP)SBE@}jd!&F9eDbdxVHrZ7)P^i zG#HcuszKsZ2~vDs$9YXvN6>?M+onnT-7p+@o_lb8l zzsON&!(F=Zy$>{r*5Ge!8>@q{&f5z$$0=lNFEBlAjq3%ifmzqyJ*jsVe!Mm^#edZ# z|C5A~-BU*cVz>q%Xj`L)NNT|Fw0Q}Uw+Wyae*9=6REme?hg-naIntdFM($Tq&N&-G zYl#Kv#wwPEQrVn85F+h`pyLBk1Y6YT7uZrVoS~h04tNsAP)?x46i)W&|8A7eJm$0e z@(PmzcF$LryUZsbCAacWO$G4=t_YdpVfL&ydm8zeV6d>Th*hZNDXQSv^)4Ig#NMBO zEU}u^^#*EcP$ZMqt3&T^@omd|?OAWJk9X~{)#VLCEW_UkV#GzRJSYKH$Cg~@&E_=x?73QvB1;kbhkO^lhv{80wnwLx}5OqwcgMM$H`ufga*b$ z#%TWPZE6ng5dg~KHa%}*MfH1s(IodUCoYoVM`*;e`e}LbdHM9M0m=FX@+e19cBQgCPO&0m>DcYBh03A17H)cmL)fZ9MHD z-D#Nk;X~J#w`hL#1UWv~worWG;4U9zatrsO>li=&)flXDfX%ZE*uBZOq2_K%eR z3hXFpa7X=eC2!P9X>+^Nb!-$?lltl~E~3*Zd|BVl!PRRkBF6AGF69uk3EFIHk?Ioo zlwFn9T>3@?{9wl>^xH*(`1#S@Ls;2AdruqOR7Zy8led{)+0ae z>jYRvPS4KT<-JURo4495mZpxFywSKxLLkW2e7R6 zB$zthQfiY47jv(b_9!jHseefc?wOD(d4bzLVOXZy+mI>Ti z^6R7ho1tpksGJMKbemAqYwVQ4>rS@OEAkkfEV0CsEM<^(<>J5G;rJqfe1k#_uhYM0 z4?7z`czs}7cNE@(O4J0;KmO8uuAM`KeK^Wzp=r#r0DnuvtN3jDfy~|~t>}wM4$Qw^ z+)R~byC`Nqz}{sSsh_*dZCc*v0S>4@5G2klmFn_0fLo%DCqJ$*QQxd>AONgBlP*I+ z3CrIj=J$g|3dGV)u3_ZEVD1AJo{C)C7Z~p-hZx_NGvhCkmR-MW7hNayoZp3xUfyfT z=+MOLfl{31^se-k3#9=uC zBFXUQKZ?H@#A6Z@VPh#dmi#dG7l>y&JS2yh%D9=0$@3g6o_|;uanCx*OI**t}Tx=HE8g(~+!a-`b4a+`V}?ClPkNz+@J@^TbTk0oGm^!NxY--p(_ z*S4jCDq&p>Y{9|p;Fl}z9xjorZZsn*sWt}-capXhjbC^N8hr~HKO4$?m7V%$gcNiR zFw{H5FQvD#+lBBLoa@&)tpvPDi9;U?dZrhvukB{~Io+6nx|$j(ukQ@j??D!hOl6mg zH=+$0H1TE(e^0tj7F>YJm4{Y8dG)7>=a}42U3Q`SR6pnRuKYCgcKRh_$GK2+t27AW zPTF?0$rea7O~!4$B)H?0&nd~C`0Vl}NIZ-SN*~%{f^J~^SA{N}{eDB_)Ied0A@Uu^ zOXs^a5A~O1r2YpUZEzlfC-yC^8M34Z56K~&XYE@T)0UWnj~Zyy@dYT z(#=;(9i!>7_+dc+Bd@fFTOn|D@U$ip%O;`m)WULA7tRyqnGX!8=p_Aw#?oa4|3J7 z{_y5rc$aQwd0M;(NIpO$0VHnjoZ_FS=AC*Ywq-yl;1g87REH-PJ7Tw1>Jm18ywg-~ z|2@Rq!q3h=az(rVlNkTO4>F_9IfXQ_46*2bo^^lVESyhz2e^FzEeT09wUgef`z$B1 z{VEA=7iDWK$q?7dB4HDafGazz)lfMq(;@}3ULIJVoghtFJPyulYN6r9Us>=t2icn4 z39^P8dKYLBu3eCrmXt7N1O@;s445Bn{jlsuv3~^dyA8yp?xLV><5!L6PxNoo{%EwY ze8u(ADfmXn$OWJ`EpExDQdWq3dgPs{wy#wib=@tGhR11L?t1oRy_ zX+{#{TmZyK7MXr6m*1voGg0L#%VTK#@y3w<5aka~+jWQBorEOly}Tr0dT;SdcYFBM zIvnx`bAf2T1|7Q{$wtB~L#~k+`Z(+Vf$DB02Dq=!j>_ZKKB%yk(%QvDo5^r6m)(8T z&$Hzy!+5qTW-!}x76oriQkVOwmL3f3c>xtBj)zce*+$aGpLB(P4+V9GG-S{A!oP3J zJQ}SmZP;4Na{DOb`fwn=C@zdEw?gc%1V*LX{Hz3Wqs1rfNJ+xjBHhtZ;@PRYd{q9# zYGED9+k}OH+C>oH%c$r*vNzC7F>DcMgT8eHj_p|1G~HUJU@Xq|c^SwZ1U!eD!`5^L zCZTlO^ZtcPd!uPZ(cz6<{y7LJ#?S`^mhRq{AamfKfxRF^?}b#S%lp#Gx>@;u99&kM>2GB-&@ES?skM)&qh+gG80%BVwJ(>00>yT40EVAA!# zHm7T{d)*{r8fEm@^xozOy?=M(H@~lMge7}HzoYnEF{pgi=|N4m(_N*u7X<3gWRYc` zdO+=KPf%#XpId3-lL%pYnj|d$dY+t z`vrqeJEy@9PA~V?D7E2AlV#-Y)UqV?Qb=4?J1?nu4Ju(PKRi0C!OwV+U;8q>Bh$O~ z>Wdl~5q^KY4Q_&Yw-bv;hk+5e6>h5@v43(6EKH+cwso;6h-|v}ra=WA;=`NrF-Pi7 zK)L!$J(?N1HE-M47?$e$2^AU0{VX@sN%Q{0vvWWhJ<9%zWh(YV6KvMycp~_?2A%US z0L#C#9Oipomp2C)I`zVyBw|(|J;}}h?P(UpM0ft~56$a;HBXCglt@!jL{Wi7m+to* z4(c`}?Z4}>s7aD`X)aEN-O9YV6F&DyNTx318YO1S0W>)Q#d%x|A=I?20v8v8cyE%_ zS(|u@P-UbPzTK_Dr@b@!{*gUqchYYh`gSzDDq!rBUvIVZB_WKez>*3z$47GC5Y`?) zLfWqqbQ1AiUA$uWU5KB2clfWE0eY>OFGGo+{*8;gpt>Rr8qThb1jTVqFJ8VHWG(|605z;K(Vv)!`*2{r4EJ> zLe=_02G#xEcY|COnyzgKhdAo`6vOj6-E*@z%B}p@Z04G9mK|nUs**#aDVC=4h=f+% z@~81qh>H4O4TjZnhSIY+Cz}*k75_eSf3pg!@!H(k2&`>wVHCt7Dr&+klfu^YEN&i%k>IBz_zXEolcjv8{`V)x?Ohm+_NP=YBlvomUH%c(Gk&#S$FrnQ_C(T@)%W1@hKH8G&6ia!B zUfAN;N-=dDslcG%yYu7(4vNNa^r~pXJNwZt^j=s?6tMQS3MeM))lPH=FNiSOD>crWztwiwxQHmUv@TxXk)XSI^@ZNnP7!b@ zz~hy%->}Uud!_@o!#u*W(T-B^@Ak95zjH{tYL(43%kb#h5d27Djf%pmktTQ^m1-oF z(lKUVr0o6KL;vSLA*Af!c7y~^9#$BO8rL@kH}JRvGTdK z=E$~yww%+-K&K_R_^y;U2WzGCT4?wX`)>dc*Z11xKZ;EYc}Es)sh$9hCx0~E`DVKM zKy~+!3~yTnefW)@n8y6xMg<>m0l{GD0apz+5#W!%w%?blt8lJY#+62QDoTSidNaSS zAp&+aN&KnrCCQS&i1!uAsNA-hrsL`Lz;tZW_o;kw*( zW13NQDqmwW!|aGs$mo%>r+)ME#CdzDNRMVcz)8&^1gs!?Ojtwb(O`58F&-J3eQ0K= zS}x7{@{U)o+l>`BN~cE*?4t&I#rb09*d~Zepjh5!s>u6GdRG$Wvq`@6Eah@w4kLu7 zeed{&Pzay9##F@!cEy#B`TJv4_)iTH{5QlhV9M`Uya9pierv;D!oP0i$lB;VGbR$- z4L==R5i=-op-gh2#aER=Y%lN0=IjegZNWzoyM0R)7hFWE3sfZE)j6&>Ak!r@Wm+-l zBZu5Yu)uI_*~P#8QPjpU{Xn+60n!b(<6O)}8}#5o%_6L^=OUkM7Phoc5@f?c2qMFe z1F%ufozPpT#)P}kt(C zZ|EW;;YFfst09tse?MOF`5+W<_T$ zCpQALZ7iF%HE94w0p|+QmxL)Z#F`P|w>Hm&=Z`D1FrQG{LGt!Lt0}1-O9b>@f6PzV zT5B9gM@W0*n__A$F=*4aB*cC5-TC&FZm3$Q&0v?qgNDRswKCcv#Wwag{`$AOgl#M| zKcuBARFWJgCzyJp1ykzNoUJSyto~i$ibcrxX^A}uNrlgsm$+q3Ap@+Q|Jj>(l4=Ln zJHR%Eu__lo`!ef1|L*#@4*nJc*Bhm(ndQw3qhW37-q~V8-F&lZa9F zxl$+*xM;S4;)RuHa(oHJ| zTB%UI!$ot{p+Y&wliQ2(qs^L2E2AmRBU$*9rPPi#N`qQMK-$fOKVE36Qp&*P$jlf? z&-@rwy~C0XzQ=#FcDKLVQ+%j6Hnl!;m6(|o7p+t7U)pr)jGXgO5sCfwr(jmMjDuwe zaY=ffdNGlWfO*@_4rqPrk)$PuA3yC#9y1q(CVX2t zR|fCt>}Mu197Glb(URf}WWvGY^Y$s^_LBS9jGSB?l$zAPw4X4mRvW59)HfBNqe~2q zFCHjB@>lSglt%W7Fxb+GKRe3{5;Rr&y`t$Yo(%{H9(y(na)^KbW%*d(_mw$*p{vwB zy=^zs`d1`Z1Dr5>J}GlcR-KDA|CI0HKEo|x@gnDRkkC>&CO}t{?qZuzE@E3Hk}aDgKYMtkM@^qLX0kY70DZZzAd!{LFcio@UTsdgk*nxMp z6)2>LsI#3TGnA0*b9Uf%$tk%lVb#x*K7vBLJK~h&vh>K&jnje*{|z^1L;mg6r0~hz zC*D5cCU50(kuY~Y?i~k1*;!9c4=JW-X(^e4SMKnEHaoRR|Jj^{og?M%Do7Ti%1Y@! z=kJL+7e6og$gZTYZve7%L8xwmZ2j%8E*Rzv^RK4ECEPZl@xPXzdG)u(tC^+p>*xw4 zzT}z(fkE&@#S2|V=FG42`Ka0C6BGPjvU^-;1Y0I{P3iGKhWEED95l7Q;ZS$R27$B3 zjwbNYMY5bzlQ2g3f6e5g`*pQ=wgmaMCn{|pOf|FbkztFM`GzU8vtfRGa|aBK8%^^9Jl5jQq4cy3bc4dw$$9;sDa z-pa#g7vn>EV6`Hh$e56v9mwZM@y7bzqH)nsY-4QT52nu|0R>0>$hDhpuMP{KA`iNS zhfRyK+m!23gU%;*aE6PVcQLGq3Y&@r5+}%gi z59d8I6`iU#dVbs7_tw9FNnfwg&hN67VrdD`Ls;5oMEGP`Sr6b5ENbVn4Gqu&t|MDQ z_Y!dV3Ljo|2fSss7^E3E0q~ zSZ7PReq9kdt6i6;;u82M@yQj4Ie92$c&|8BJm?$&;3?K66y0i4@+W1EM-bg07> zdT(oxIYVEgqBI&L?dN=v=K70g%axJnBW1HU_yg%y_lMMpF;3qOj(&XYs>whoM-L?S z>yBX-%wYB4-tnJ3w0jxOY=t4FNbfhJ=Np6IbiLVmnf|Rm0S*oHX3=`!TFjoihJxm9 z`r2-ka==RJ)dlDu)?k1d*Ygcg>~YEERcK{d`)7f8IUv6 z;1RSQ3x05W??P+Yqd!E{PoT1pt7E+gefm~%pTb%z;S!h%%~Izl($Iq zle52g`0nDl2x(ds%?=1oEtU&)tyG98mYxxW*ScKOq`QvP2b{lF^tE?d=lA9HVXM!YgQwW zSGc`W)JRE5$xg|#<(d|)WTr2?4=w8-G5cJA))ay|lKs6GS?l{ueIdpG2O`i48d?xw zkQ@fp>!OD_@;#yMvT3OPxlN_0tM{%*p;08e)GS(<@@;BZ9V=J@!zI7>id-= zW&6%YpkI7!PWYT%zVk<0Xo~+)bQTUxwQU$jK~X8`4oPW{uI)vnr8}o0Qqo;RK|oqs z$(PPCiH!#7k{lroqog--z~KGP_b;6Doafy4bzj%-R+K<9yXZjfo>nP|n$OuXmgJp` zm}p2btCsBiPyLp1kC6;-DJW=x6nihzyU^X}29L$e4 z48L*X1 zVqNRHWqSMrjC;SWBF=t8FNTTyv!`!az)NQOnVP~bD+6x@RYo`OD1jahwj6Ya0C`s0 zZu`pWk3A#n=}oT+?-zf)tR6Gl*%ZCl34bXK7Rnz(#-{$#`Huh!P8CO~OyULCZ>bG% z5}~~9?rvXpsmIG~Ksl$cd85`lUirS^G+iN-c*sDQn0{uVYZdwXg>!vQ=wH=_8|N_= zsMNZ{%g1o2>0R5nh-VbnN{56P4d`D_=}q6LLSgY{>)m|?FPLOJl=m}_n_dE!Fs{O z!HF$2)D64*eO`~479&^kIMmbnde6`>a`Fl99C4G9;AnyjBeS}X&z%H@ylnmW0nWeQ zzm_NtA`|w(An{v^APa>bSH4yx*olwX`N!@D8l^P;kt<;FLo}W;_#zTO7aYvoaD;ea z*?Vr5K?^&^n9<+$HqKd=D*|5)j5%TwXH7}{-%|yVnoSsul-vFMmTP)Ddw3c43#2FB zZ`N(cul59g(RoJ{g1s>c*azy-w_)KP&hlHOa3>cSE=$|oO#7ri=MrLIR2`bX`rYlQ6F1 zV;rYnEoKotcc^V&7$S2UcgK!14JA9fH8{5#wbP$*V-T9O2oE=mt&SaDj-cIvgXwd& zW*p^xOF&NE+;Akk(PT5&qvnc-p6^5c)~(CLEh9F1AiW6}v7y6kewztmaNaN8YZOxt zRH`aQsUd&%s^FtZCx;sH9!?O;!g;M{o*l|@ESfnrS2?)|O5OQCny4s@FLPPAw84)8 zR)_J``v6!OQg>7VKnvJ!1aR`fU~-7fUJzTRtMFD^m=j>2Znkh;;UiyM)(+{3UrV-H zuWcHf%C&q#>AAABY;w7cKZ?oaQ=xp~=5=|t?2kYKy*ZZfj$9FEv6dfg%MGl2FI$K7 zSP7HpqCl)A8L4(9qmmO=uNJlo4QZT4Kr;>>sl58eg6=_zJdiT9S(u&KDurRA`o>hx z&ZVTB-|H;W4gw@)wyj*=7s27jec*<8CbvjZ550A5$)9E^ieCX%8L_qZusGx8IUG?_ z^n~dk1Zrn0lG_3p(uj`3*2=2# zQ6dYt=x!a$OHq?EtU7P1IBdq1G*upw1|{?;viNMA)@bq~n$MkbJG)0E*4&TmaqwWY z1#e4QoH<@x^2zL?Ilme0i=o|69X8#r{gmbxisjs9vaRt**M=pl9r?xxsbW#g%^CZqu7Z zS3;s1E48Nu(@GdNO!e{#wOP5iNpx5*>xCz=F@~RZfgdQ^po4=+uGo$?bf!vuslOKS zl=viZq$ilC{^37^yHI?8Cq|K%tNx(O3W69HDSeVBUc7tCgP5Fk0|?xo`4F|d+Hd3@C%MY-FV56R(jISt&BV&)6<6IS=MH>@llvVvu*9rD zH74j~efUWup1cfsH@C`gbSHcFe*tvt2iAGpm5w61^ZrpoC;3u<-|ARXTeFT@SY7sK z$@1EYZw~_XGYn3N>^^}E6CD!z&{ald4|q${vi;g@j~)Cnbwr>EeJt#mn~b_vu|=jj zXvbhpn9}^RpxW$Z$V%DoJTlB`Z&IB6m)Q~Amw~v)${6BUN&BJ$q9K0AdpYM&Yf%X zqKicr@BY795X=@ph<4~VDu7sr7^7I%{2IToAKEw8A>NbwgVVWnc3yl+=DM%#haQ;u z;@mGY1EaU%Ldt>c;<`rY)zV7Ta?`dmTZ#D!Q|DzG+*>EvNy55xJKyKC8SB<1Pt^#@X4_gGZXt$W=+NI$x3a6s# zC`2b=HU+&e5sa@WRCuAU6ZdRWJ_AtI9{}szEAe2QQRVz!&wwKBNkx;&rGMPt$at&p zJDjpTpo{YQp;6y{|EHOoi;$jB(ZRm4uK#xI{Cpt9$~TzFY^O-e?dhfKhijKB_UUTN zmu+TyS?{96ixwkFm&oEdKRo#C*||;lIWarvn@gUXurpFIM`;mNfm6b6T(Dx@4{HHT z&9UjRSf`FgUfW6f-r>D;tKs0x-hVdb1r_c~r`iPkRuu@e;lA8; zyF?u+eFRI%+JNFu+;Ku-hdOI6kVIQ<4Do?>L1UC8n7(>qKW6=VDP2%{^;2{p9YvPx zW{Xb!>&ePmMEFGKD(}~c(!Vd${r#C`w&p|Hu9w;bv)%mbW<;m2#(~6`=ITP+hS>qO z0Pl*k!=QAgxv&qiZJp*Gqg&1GGZurN^DfV8a7VhWXF>3=H_ z-a`n$I<^u0D=7~8cnVh0U z5w3t{60tVPY|Q@Hxq0I*pR4-C!V@2E{C@?8ftI@Gtv!xgR2`D_7+Ix2lZ6|ET~ zuVTk$HY2Iui+|CWATsE#{3KyJMjl<~)o29!JGs5{UWL@(Gd=<}+w^{Sa>B1xNNe)y z1?I7b8nf(9XNixIvoQ+ULO!dY7kwu=8KO|`;U8TJV19UUZUMm-k3+<8?V<@?;Z&ALs6oD zl!It1evwjlv7N|-n1PNLE}85qi|YdFa6GlT(Y%P=WOn>kan;KdFJ( zl1Fp?B3XcZX>>_(M|O&n!0Ze_YI|*^GP^t2@=YW9t|Qw=R|?jf-1rF8ohQrF?_3M4 zILIFcTyFKEQW3=m*B=9a%s7qEb#^Dkg{^f!S!yxIhx2F`AgQ{rAiloO_+-ISNI+X@ zf;)0g!(hA-5zN5AlPP-zjTotv11_Pk0(5>YOUeKy3|-$VZMzik_Tzzwed;69)XJ8; zKpxEj*5E`$cj1;U<-zK@_g{|;V>Eu83K!?m$o6bjO46R}79qX#d}CV<4}>k?k8aIY zcDWK8;L>wmUGuOLnr* zdFYaFcTEWB3KV$fR*dLDI~t~KN$$a7HKPjfyZ0s*<{O^SCzq=%V>Ph+|sx9ZC^w@BX1Bu|Rkzp5bKcbz-mE$6Chy*=7NhXXTW9 zxtdXF{@*}{C_Dw)oo+OkH=@vbMYY7@7H*g_JD+2v(#}N%l0bwEalJkp`Mgpp76&~A z{{6Kf2{RhW4P@^B%w!s%j))gOx^uahv(5L&>RW3O)-3-Ef9Vw}p4C|~T+Acea9Dz9 z)o~Anoi^>htF?gI>9#*`Qm#;)m&~zrQTI9D{m?LdMgnKLn_z!>#!787SDH}06>G&x z{&#_2;pX1T zfYAe=Iz0m5@VXTh21FQRx?+Cd#Y@$_GUjZpPZo!G&jL4=Dxscu#e0Jl-53#5%&v%W zZi&MrtmP<)nK5Uw#MJn%W;wT^qti<^i5A+`Ndnk!-8*KX640f~tbv#iswgQ5VyI16yPmR-k_4cOD=kQ5nI95#3g&S^z zyvqGX4Z1WNM)7RoyuiNDe0-hJ-STLa*mv-RL4e>NA}>u)`bNJ;ud%bQ;g)-_FmkmO zl*t;?rypxv;SCq$+K1ryWbm|nYXC1*W_>lbO$KnkKsm9Mdn^2TD6I|*J_EU}@#aIa z+mqKw-NF^RSV>GO5B%k9-;wlX286A=+a zEdE=wEMd+)2+wz;is(#9+f2}1q=RYv`^(yu5Ct6ZhG-m9;PHTwl6^ zUpLN>)-7691b#5@7|EdgS14dmUsqNNH050iliJ5Ij(>w2c_0+Opl8dj)7VB*lo zAR7H*FS)Icbiwy_q*9EKQ6%;rS6K*oIysUvm(TFUq=JpioyLOfkLi%QcKqSp$3dXv zIBdPbxMV)s$sO_=4pXsBmmklz_>W+7kb7&SxxxvXgziW))saB^brRku5OXoA7+5=( zjrZfsp-#|6Hp=MjSHu>n8MemWB+omoB9jiC3M?$moyZ# zzb&^UIWMdE?D2c^gsBZYpUR=J4kK)fxO*}LRL?x9v*M@F8IZ6!-6YIV51A8a-}p3` zO3yG*77ps1eLk=t%U5$@dLp@5BI|V`OaTW82V|~)h(RZP$(kwa13ny=JQ-}*mr`tI zZ?25_B&TD;zN>e4GWSAc`w4Bz7URtO3~8Q?0Fr;XLzXIwJ=2|S1q2kp>ZMU^(!V~P9a*}otbztWpdw&?|X`&U@4TETu}zV`b0p=94p@;`i8 zg^(dVCa~V04UY{vJD$_=`8ap!OgEngRHZ}(IQunbcq~XFvyYvs+F|M#%D##$s0?s( zX_atIP|@9ufuiDO_H1vgwFhHVod zE++}6!y8qLcEspx%~9QB$yHHuN&5oMMua0Nu5;-h@3LiQqm0l=VU%JXfs-qHxNUUD6K>UhYg+n!bK>Q> zJw1$-jeXH)kdc{wjvQM}K4bI?R11${rf#tW?>CO^41#H(j1LlqScpw6$guch;#5Tiw{P_L)gwrzHK<_Cvvu0!(H9xVY-}Mrn<5=kkCwYusd+g zMci@V`h3ay5gViIu2quXz%fETKi*L;9o(ZSqVs2ax%TZPuz^QIR@Z4DSs~;gOyV%zoGVfA&%e)l191xS7gk@CW!x55H6RwEXEF>n}yK=8SjG zUM4oWtF~WsLVj$|lviphd~D743+v(!k?_ZW*Dm9sM7A0WGsj=0bkz0hX3j<)zePTo zecC;!L z=FL_1jt4l3_2`HWR?7f*AJb$j&cNCAa6N#?)0TglyMuHKwRu%?g4=M8n3I~tR3frl zw3b_}LKWjNxZ!l(4d&pRJDYJ@TxAR7&=-B{zmZWPc}JhwYb!D*wQM?tQqH<&mDLe$ z{m6SSEs`d+9RP?E%T@haub3%w8tN0-`;Q>B#mT#j{%Z!6lbV1fPfOz5Vymn+@OCW2 zA{&aZgzC6BMN3m#B?+?@%;Bcr97?$H$JPLUeE(wcLq)dlLufc<#+sn=(9EQ3Q9Y_N zdm;zq6jx@Itg^C~mOj;vJev+_>CXg*b2fG2cI>?UgFkj3t7fbCK4oe8^WJ#my}(IR zKQ?c>i6_n8Io?6H&gkl|pCal-uBK5g-_WvD%>ZeLHYl!KPc9=K}>qvqk`n43Wagq}K5mG6J&si$Xz}lc$1Z#*|LH6&7`NOlw{e0#y)W2;JcwlEet(2_ zDdHazlg$Y#3szm(6ZP_BjC_sE?lp+r*4946ncp%3g)88m?~;KMKu3UPKqu+b>eD-> zA+(O^zSZootw=lU*+1-h)OGz_G54vAG2Y*r#sUFfUi1sRh$m#ebhUl%W?&u*iOtdL z&yo2ue9G>?WGu8k!mPc%Wj%JBHPqRLuf>_HMMwA0Luho1*fHAe!M|SEs#oA0 zFiSG@Eh*O7&)dL0hJPyS4vd)6x&9K{rbj-(_6)pQ0QN}PjaS4aa+)C;YA^W?K4bFk z<}Qe^><6LSZPytE#V+EaUtvC1bTftRO#*e??lH_Grw`XmlsP`>Sz^VTz8m-57+<)& zbV56+Qfg4dU%tYvgiSA~ZjoN6%S|jU_HMe?k9pnquL5hBJ(pwH}59he$e*F>qv#}dt z{uWpg91+i3JvN+_)qd?5X!eyzCg>Ij(c0iT{a<-*CL`Houd1?MH_k(e{ z0p-COQk!Ls^404P{-G3JIMp)khmmyI-fnO(o`Y$>o|shm8M1tUXafK=P3f1(GsvPc z?i%rljE#yf^N^ElGBpd!<26g8E~PI7_v&6Ht1z?Y>Io1V25+o%c(d~xe<@CHzv$Sy zKJr633p)p?_bU9sYhwisW`#=w|IKre4p&oSPAiDVtg&@0SFzD{p~Wnu!nj8v&{2J<~(Mc5xO(> z)FJ@fB`>kEXVy|$F6?SDqy5O$(3J7r!+Or5*dMH18{_ zKnF)*Yq_@U?KsApumJyl%dIw3(-w!`LuW=ecfO~+->h~s^(#IkeTtiEVyW#U2=p``50RFYJLBLUZpy!Tfrp@U7swVU^Z}^?U_sMC}48!-f zp{G{z6nnL%b9y#Hc4mw!^X02HWDLMRB=0{0*2N1|AiOQ;{@6mp74H%XgQ$|%5|%r0 zXcXBYeu7Mt0*m)~EQXhbYqe?B7v)ZUsMmM!RAw8XOtg)Rd3M)=moVbIZ9MlKfk&Mn zJNk?^^5ZLKqcqE))go#0J?o)Ub~ETo7(oAy1JX${hfe6uq&#XYUr%;|s1;rRu#(jP z)^dcTq*|;#?a|WKll3H(Jj77u2B<13f&ZnM?JHn&R%mfj0oak^@!q%HRRT!}DH)eO zI|UpszcA&rFip) z@ZHw|>!UEt+EH4x(s{%yiq#byP{8oe_4u-Rhk-2|(PvcgH7g}Y;4p1*mq+&bmx1BdG`86 z{f5gbqs<$OD?} zFGe=A!m87jTNS3-X+0-PpIGLUtVwr=By$tEY?@m0b64x!qZ@SW(4GCFQ5j~JRw1Dn z!TuJ<#^;Q-8ZgVvH>CNQgEmF5P&Vm!r?6>QSCMOoWutHr=ad8`tzUpYzVe?QFFg4*Vs^}CGpp)2Ql_m&UKG8%8mN;HGb zHj~Dey)|4Ys1pPR^kYq955M?pGwOS-Rd6JE_W7;b8CIi@9d`EYV@fL)lzf{}A!;`& zj_<8C*vyX$spLhJdDvy~3BiH&sb7qayw_9WnQbOQ)aoPC zH%)||sts$CHNWd2WO;uEPp{67(>QBSt%2gC!@v9lS)|BybiauGE+naOMT^I*qJqg7a?iSL_mWQ?PgiQ=r zdgC0|-}fZ%u-wbplv)0WP0hN>`5>RbV(GbUwvV;EQ_p9@=w+MS`pJq?;lfYmem%vx z=wou|=w>Z57sz5E_x;0_L%(GFQM+fW+{JO?GTHrhi{(}2jTs+LI}#!+VrjVD5~jfV zYqo>ZWrZ#g2=K@oS?vjbs9)+T7!uNRm)$zC5B>K|}RO+x$+41bMxA|Grf!#38i_a#GPrGKelI*gcpz2JU*4T$ZRdq+rUs zRQ!Bse{g4F&~w#t)RW=ioTMGSFnf>S!iob_x($#j`A8IomVHs$SE5|Kz}k^x(xF1! zrCI|b%81660yV>WT_>RNZ;Db%M-shi!&Q*z1iDAp5zy^RBO5t=g`Y_jHK;T2g|oWGe>JV*}|zsaC8m_Ba(&q-nv0c zCtne7Gt;Jt4vSskz!JwE<|%1iTDE2DH>Q|+v-CT>xc^&I_G4mM$@{-rIa8J;sM08G zd1b>~@-;Isyr9wcuM7d*ep7twO8qJ;|KOI0&3sHV)|ZIw*4)F}R;8uNKy)W8A(~jS z0W7|ewY?mn%pJoU79Cr<^XLXvHZ3xFlwTLt11R%qIM0o~DWB=4iE4NV7>FuxlMh!9 zUV1R(QalyjW z;^bHI;L;zZFjA=0iEov0@AP)w&UClHlR+S-S?60>_B0jcCUM*Gxv)u~>J#g(wkI{JOtYt}M(uU3(KZ0xC9biX-tXFT z27Nc!J^|xNRY#fHC#pVAqR1Kp)PRBH$jyfgOTP$hk$m9pHznuJmoDn|$aa6lC0l07 zEHAVNzhRD**@>mp>EZ+~tam~9%yM)=(|HfQ_s`y~@{$)>px0K#vG5PtpHq4&lbsIk z6#H2ZJ42b#a%a{J!};(p^Z_OUBh# z_DpWq`Uyh%AkK%jA#83Xl=?=|0>|9V4%EpDcIy;<3i}G8^g0y*fo*~%)}US9_NY7J zv|o0EUdT?z4|3h5n)?QZCAT?+XRddU9bERySRCXB8vGatw1~#uNq0_39dc>J?&~$p z3Ku#FyP^G07L3U_40~ir$x-3T#0*0nd%J$2Dk;>nxdZP*lB4P*FD?4DY#P=N_v6`^eG=M zO5MtUhbEcD%f@(uq%Gnr1iUh^2@9PP{;lVYgFx4|wx{<<5AD8SwZ_sC7I)N8)fz^q zHL2rl@uc5vVz^&bA>zTWCj~KMK~HurR(ePTtKc{$b~!cu)@?r!P(p?$JFeDW9txw6 zqv$$VuznS#18eXo{Q!3pl!#=i<6&jV%<@uAsi90N?e7Q0_WDaFkM6e(2OO9Xk3^M> zhFU@VmP4XVVX|F<5Y+F?3!~dipQHum3mR;6k0@Z<$J!!XJ<+%1DDx)NzZnDl?By0J--6Ai+(`ZkUDEq?WqYcNdf^tiO;wQ z;G8?*1}X!BR?RT?+C#SQCJ zo3gprYaj2sUQB0Cd*3nF4maW{k1s|;6Z>?WLlIU z0C^M<+$z)Vs>he#JfM#*M}*lyOphDC6&7!ej)?9Lwyv?`cx4WGFi9JJ$>jlw!_!Vd zs+%$s&O@$#^!m!YPm~#>!@e^UL_dz-k=<@A>1Xun>4w);K&z6MgZ?9Uy_dF7G+cNL zSJ~@au(}ZYfASX)yxeBN&X0?+wsC6-R{B#%1=*UI+l9SUb=t@rsyKCVhA+R0(s??g z7p3}}Iw?N)@Ew${>iO-Pm5g|KIV-~Et=vyRPB?$yAqC$Sx*}ZuBVfV}C?~pdj-8+Z zptaAasvECOFW2EyQKPxMM?>A|d=n#z8iRGeyPqJKlJa#p4swq?>@c{6KmJSxPWTAm z7mcT8zxX@>6)f#6bE5lcL1y4CbU>D{v%rabGX5!~)N#}3YjGIrzO$2&gR zmmxKlmZEz5&EjQWGiVKSxVKzF#_D^)b!CTqf#|9@Fiim6fJtpjxL`BSbemFuh!h`t zdm`$03dgF$eEsjoTPY0pB5c)UzSa$O85i#G;(H2K8P3eyR4sWEV{c;hmb>!!=@7}bWXe;3H2h7@)LxxAI>&)% z6Q#9pC2Vz9?R%^1YpBcYREgINbB8<)K&=lXC|a$F(&I(4#?8VP#vz!Q2}Fvp)|hsV zI#+x5D@9zULOR2JLVh)CN}E6t3oRt0F#s}R>zu172~p^l?E__9+_bQBINb^1;C9%T zs14QSu_Ax8FxUb)UD(!vDoz_w6sZ#w6Ksfl{=?{VqIm4}9?i3tlkqm0sdA_-KQIIs zpx{K{c$yJw;B)l9n+#)ARKa%7_Vj~DrX{nFi7k58NMxgYS@pB$?=$FS=Zk+Lee{nq zZMx&oJN~=lW&e(pd13j?N0VDR9Xnf>hb1=wcXOSMoxL`q=tf`_;7C68ehcfjT9hd7 z#J>nJ%b2XUbR04F?k#^E)B7D*)8UA6o#&zY42AKDhiBI?cw>F$b*P zs@KIF&h*#PmLPMbkT)Y&#fE0@s46SIm0RV|v6w~o23~Mc#BL|hgIui^hWzCaMGqKW z?ZJS1=|?9OOv+Vl-w;=}t^`7^$>FbK*@i~UT<(UlvTU|iXpoeBl_>1X zrL>_ATq(={)P`K3Y41<`&VCKksy#IN89+*@x_FI4ZDb!mwZOl^B{?V|OTzro*-BZm@~`_y?KLnBopI5;Xg%XM4@Urstw_R)6ykoXWBmoNP{kUX)Hi}|}2L;4_N zO%6B~GhA*`iqU!L=?OiV(sQ$6m%4!xi@beo$EW442LJ@N=T!P#!E5>Xq`Zw-A$l;2 zuX0%NUP@1~6+0Iswmpyhvn4RlUsbD`~z}0Jn$sj!?%W^=6{Ic7Z21fnh7dvIMy3-Imae zsLzOSMf9}fRjvPP@AOK!%<9kE<_`_#IcYB_#DgSgjIxe18KVf0`$@nEW9toOH@0hr*y6?Z^uiEVtjTNR+IkLSfIdbd0;YpFq%IEjM?9ytD+k$&0{q) zz?|xR7;dI4LUe>Q`k5IF5s$dGCeq-ybS3-r%MSO~@3bs$M+L94Q2oYH;7ouX z%^Yt`E3$9ke0BJGE{u4V;W45X!fpu2a+PINJ*T0k=%jWyDNfG@>!E00*Ge-h_x$icyUzxmZ@ zxz9VYuIqQph|R1H?Q($Az=FSzOV~i-)-iMF#$Q#ppsAg8YG8$6f2447ORy7ZW!KiL zQ^rSTYpE-3iQ>PN5CShEGX+~4-zRAclo(2}X3us0xS+r@Utt>m!8jbw!OflK=xgFI z-DBsL+U@HO^0_hgM`AK;^4D`?+qCvpWV(7+sQ(CtitZeKPSu}B+r9>vkIe^V372pOeLUGnE!rTzxd*c7%8>;*%*m(_JJa|f<4=awIVu#av0 zfl|N7E%GFz-kEWqc!+_Y{OwUzWDT&r)W*Kv>>a8OWwe|Ps{{k8%3AaF&L^q-MT&Kq z#KSg9yK<+eIH#Hih{HIAILGtsHS7TW_u3d`jw*2lhWqz+AtfFO&axlFB`f-ehVFuH zk0D$;wM|YN;xhu?S0QJ!JHz?JosNQGk@-v_9sEmH&ZWZI5P}d{oce~9k_bQ-j5Ex; zcE3N)X>%Z=JBLuCqS~bLj%ciL8O^~+qV((Be+RJSb+DBwIajn=m|wX8PCxLWaOLXr zNf3R&F!wjLa9YemxS;p~q1f#&ZaSh3r02NhkZz`Ee<%FMzHYo|zz|m<7^COT5JH3r zfpXp!LhlDu>3!MPbf-g<2lyLJO`bB#BGrD-5*2fSbWeuOAJ`OB_4TjUYt39?7)ppz zQRzy-ja65IL>^=A%PDwZ`U!X$Y5yZ|p@_`m?!YBs@-JRBTZz)*rKZoQPyu`WdLqK6 z(=X?eAAXqUTpZ#cX$qer{dSLdut$H?l(vUHA$~g-rSD|nG|!fOAn z{>;Qvk8I@QseAf5p3mNK;U%z}ba_&^w>1G=TCp1g@~?j?hn3Gacxe3d;}uB8s%^uROnW!>_kVn#no%4+b%Wg+3pP6a^lGR|J}FDjI!&TJjfd` zYDP#ubt3U+;gz#satI@6YDm9|1%ZEG zv)?@#7d?PsDb^YfF3X^UBG`bio;!k0RKq#;L(E0o;`2a`y`+Ka+mJ+2@5OdEX!Y(6~Drs8^|LiQy;`^c>1YfmMnA;n#1=E7gG#n%}H-9Mil zm;%=~9-N}}sGwb|OaL*=#vLuG9l9p0*PUe>;acWM*~3z6V|w*aeQz{~A%ym| z;uiBwlF70*K5GKE7q_|{3zA|Y?jzx9?1D;$Djl6`h|~zfjztQ>Pt5%T4M(4dQ3wV9 z>7QTu@{Kv`ID`Iy;%jm0(j0V_VVx^qi(b8eQFife=@mpbx+CN@4t%5P2>Gf02`cLh zrWN9A#8ULO`wcU^Z=ZJKvk->4_Qnqct(#Xpm65^hG{Z$nA}UBvkk2|j`?x!f@;5^h z!Cy~u)Cu35SkhQ~(m3mSfK}OE?~j8CPWa!&fGkK% z7?m&JvC51+yCqU#v3$$R7d0Em7s&nAnTh5DA(=N9ur?#2l#AH1Lt#;}*$z{4JiZ-b zWtb-C-f1)dr~(RlI9_BUdXa(}+9%H*2NyYi(3aiD6y2LkX zJ=yISg8r)0DmnKHVw;~9$ctZAdItpqi3W+GqTAX|r~J>hL?}Fe5p=?gNj>VUX%rb( z{AY2wQtfkGpn)3iJwQU_HT|6AxonXjN107|uZrrIgYdO3pzHA z*ZJ?3p>yD$UPLp#;}2afJ2+H`yaUSgF+PUQX1vccq^LAbwaA|e?0}_zdA(2#_|5`n zkM1%m;9pF4EtC-Q33B4fglaCd%b+Uhrh*1fk3|N35W{5YzMq z2le&ia0n^5PDpZ`xew+fGuz>^7qp#TA-rH6^>*u?^Te}gcP{_$H!W)>lfSfooFdyv z_uf{O99dlFSAsDrqDc_K4vM`6(F4zQy_hgcMV)HgG1?}#mnkep_@z@8PcAY)m>bn~ zN>w-9XY!5W`-6{o#7NvP9kYv}6>+Qf#lyev%hAttz^cL1V~j^4t?8vLLg%cU{b zA!WOV9_d-70!%s|uhmlA%+*>xRFo}|wPx;c?kzEW4J_gWPSz=*@`(8t69sv&fj@};%qR`)!e=^m(gY4Sx}LXTNprgU>m z2VP;$nN1x?M0;#38D*^Z{GL>*q3!LG;3Kx$UB!KyM$I;D613rNP1CM_j)?-@ z{tTeOPxcEUBV~gZuVdD?=&Mx2vy2t`+6Pm|gqzL9IX<)&2+$lA9z!?fjnckKrH31v zC7>y0|7qSKUR|i~lbue?PN~r1ugU|oSE8HQ7ig)Uf+yk*+ zYixPv9gId*e6$sPNg)l)?Md`eHd1(HPw%P>F>UVbS;eTUM!Uv$s(}Hqinth1bV*d& zTlV1EYe1+WasVD*Cv+J6GxMOQ3eSbxa7F*{b;4WS7TDcJ6cuB?b4NYOsjshL)RM3x z<{%)~7?7FaQ{bMu`Hx`mR6^dU*EFseZtr@-E*{op5aycy@c*x(;qog~B0xqtqery^ z_3@ygR?bs0jv@I{gW4d9%nQ!QQ6`?NbCe`VZZMZ9>poTtgU?%)Zj_8JM>a7IIYd5Y_V?d zG0`M}RA8(KhWX7$2gWn5)0)bT;Zo-GPDEI8q}ESgrj9N67rIM72&1Bsoxen{5aO#v zw%=@gwDndr7Xy2Spu(_sB=0dpnQL2vD8*pqY1i@eEl{O~Q>?TD89V#18rx;7hUkrl zKP%t+>L0hPzDw@c{`QZ-&>_SqJSBq_b<(&E_3ZQ78s##YyaQKUO9KheBE~4zXLrMg z+x)?uFC0>R-cxM_5{}sKPJX(h%;%M3<*CYV-?euQf&f}MW?M?OuyE2Sq@&Rv1#8Pc zi!%su(H>Qv-RXKK+0tY|^lkb6MEb`gNZQ+G+08c_Q>E5mL&@|i=S>{`zEp3iBD)Y&rR`TuSscN zulW9(6`$>Vy}LhsXA<_o=EV^tsfFlHe<5p~EMk?yh-gDjx~2Z?8hKr1s~&u#8Nvvd zEa1$mxJ%s$5~puY$n~AmhXk)Ua>9P;1e|ZNyP+KX*c!NW)UI=n4|r~*@fKF__!a7z z5JGR-v06-*YlDS@K38+vewOl+!~i+#oVnb%UQ}uN%GB!J@`r{>THplNZo+6o zBysj-xCkRAzaM-taCGx@xJ0(GL(*lWel!Q02ZgNck>LE0%kUQg9_EGyn{h%}T>~AT z+RfFc9b`$-P)V%A7eptmq)76% z_^}9L6gvNrNx|SWm3O%arO-kyC{)33lKEnJcc)?>?aZeVUGe>qat{^dI5Ow?HXvnpzlwbAJ+Rbf*$yF{K&;HL2c(EAsg6biqz&OGGh`{=T^S7`}qF(Yr!|)W)>~e zEd#An=NGQ`gUjw5ey~WX=NVSdP9LnE@7Qex2OugMW*mJEXHWDHELQQ7U+f%ZH#ZP= zx*5DB+#3%ZHj@f2e(Ek*e}G@~8Mp?PRa3o`)&PyyM!50iLsuhpr4!62wo|k_vYjc* ziyK%gc$vqN>~?S2%g3k;SC3^VGn{Trd{&KlKg>3Lb*!Z$IN>uj=XOTKT@)`-{0 zJ2jZ5i87g|I`U+Cz^u&bIfqaU`cthcT~c>gQ2cIo;14@hh>GYyyTV#@)E$G0ugq5= zAQ>=treiAIn8mU@uUSd+-u|kD#D$yv#aWj@4%4D=VdWcVlvUX^*UWD*hTrvM(eSU< zwJR^>-Qoj;&V}L}5a4$B z3U-7f$&Vjep*x@K%G<`F!+-XbB-jdWH#!PEi$5|XyoVI?8ZLJG1ve9}ARXW=ip?>M z(^H2b9Hf0SjRw7ke^~Qw$$GUe%o&YPaE8YdNt@+RF2r-c#Ye zn4j#kP%_WyUu!%jLz?`O4Ks(e3GxzU7SjnLPD;$3?#7UY+oGDgXN%I=X!k|TE(z1C zABzu|7}(EUIy>XD>J z3Z{SjY55EdH5V2-@`b@9dA=bc>`PyqK<0ZH*|$6Qu=N-9xYHXgYn%))<#ms}4vRfg zdeWmeb#@a*zWYCl&cmP0w~gXDwWU>5)ozR0d(X5KHB);8san<8GgeX*wKuh^YKvI0 zNA04hy@gn{6DmT&@6G!k)hh`qI{FYFy5y9qu+M=5K;9m+%mUk z%e3Bxew=+Vi88P6rPQ0@4m+?}?}%8c*LuHGUkwm_+W2H(R!T@M?e6@%0#7rd45~ge zXd68e*Q5F5gR78m>c#`}XqP2MN|p$9BjP7%bkfA%7YFpS00%2pns{dFo?c(SaSk!( z!_TdjDIeDg7bpeWY4k(`XA6_a9(*TNZC8&iefaz-OQ6WqCAn!U6xme>Chz{qJ2J=Y zT-Zim$za(J#tF4+Y3WSfn)*Xka?akPxBaDdvF*&$(D-)#zz(-dJ`SOL(|8W24j zZf7^3$xoHdz@W6*C_PWZlt}HAHL#yu3ONWkt1^jMqMkZa`%R_2XWy3 zpg_I195N^GUS;u;q$9#0otX;Vdi>!ZAf}VmrOokSQ^XZ(=8xivP6nab?i%@f91W4N-fY5?KhfA0SCV3uTFB&n5&81$S!?lfl*^8O(OTW{ zTD7V?ojiq@{wXzwVvaRp87U#CB%fNmc~5b6c^Pu{H7jyJ3P-Gi02)yZsaQS4P16-x z95Yoy#u3M}Es7iexK2jA0|EArz8%44F7+<-OSeblskSB+1J^!>w{alViav4HPJ&08 zpqwY1ITqGw_f}o!n}I`jOrA>cJ+=LfPxSG(9cQa8`7mGA89pXCxn7Oq>8mi$yJZNY z{qg$kwZxL&FWE-#k|6ms{BWz*W#quslZjfR+!?%72M@ta6!9{M80Ij`8Y`;zWdo#U4Q7G?CtWLzx|&bmD>KjK$OTZb{6ab?tXW%{n;TKE5@4yCrEAv-s>mFS0%{&ZwFWPwx4c(S&P)}s| zz@2}|h4z4+yn6&8ti+mQZyc~&8iHX{z<9e256G;z`j-|%fZ*3j!AtENsg)C3L{oJa^N;r22r{3>qEMR|TLQ~TF~oz?~~ zCvnvOAnO!MfDWhsXptf0nLHcIPQMQ}gzH>(Vsus3jsJ8|EcW>Ld7g~;&iONI$T_Tx zC*M`_T{SJzOJ^6;pZSF=U&GP+d1+|;fOo0GxaaxO(LZZBWpH(_oIA(VCgf;f*A%%X z&1O&4Y>+9Sk@QFgW8R#;eMKv$+C0cFmQV6+*;&Q1Hq?yCV*Iw$CCS&Ow?}b|wZZwC z*zn1k)&20V$PLsq>x1h=*5fpvw%9mZe9C2s&t62*q11gjdzJZY$53UbXaUc?9E4TdlqPUbTKX5aUB_ zOL)-?yv%CePB|}x;@GLq;m?8l@C6mxEp1G$8AVP?gz|$ z4jhgFohgx)9SrkH0nH`JV@2^_aW8I*7!#N~Zehm`C`8R_=ySE+KRwXqGF|@ zfnFycDm58qXKe4zBSEvKY}-w8(QAgj|NJcN!=UmvthFb6U5<5 zu(qp!o-ukthW?ar+p9Gfh$)V(xUjSbmLk<(C*FI!X#I@t+M{QRbA|62Hxq-(Uk6)= z^%$4v@o8sr5zQfcUYaJcH4oe%E^eG-3!^$2&)cJZw*lSOhI+2OFpz7FKPGz}$*+6p)vrzpW#OyY z46?@M_fzPG`5$j9*Da<4(yR4|<_Rftm(BDim~;u+CR9+;i&>Z$D&(&}G*Y@mJ@wtT zzxH=c)V53Jp1uDIn=e0ypX_wnGCB%KHX~rxF363bK@7*-(Hh&?fq5yEM`KFScpxMde z=SA{|n&9og;Jt!<4%94(j))QIt%w3f4MPJ!GGezmA`zY5lx~XFYzP^lf4V@?gX|V>9%P^ z38S?1NHMe!7-(jfq^a&d;rnL(fw{$71~cBH=!+Jp&I?*%kec-LDGKQ(0!SL>_v|gv z`#i<3l#|jp;zV|zHXe|@{x>@b2jmO6;-X` z;IuvI_%5j5iPO{ewLx^I;5_RiT&8irVLF>K#7Eca6ir%*^!)jr*Cw^Rso5`n1uU_R zCPV+bAEWPbPdfu@XLi~`K2$?$m{>gC`l)k`Dm%z>3WVgP9h!8HZ??U!@~?ju1x@?i zj#k|lA@BhEhT&29)p#WFF#*yeq~g=AJGJ*{ob+T!5*Ca3Hji#xDaFgD#< zdeaA;S2hLR?Ul_5*7h6{)o%ItAI0pdkHaaSA~&;urrNOHP9Awmxb=bHh&@?zD8L?C zQT8+YY}LWBTU}DE3IK`U4VmGCz2UhbO7YV#MP;|zp_p<#gmo~zi%3(JWZ3|98+l{B zWksnw?gI|JNITw2Jhn_+c9{+kFB`rd?#7H(4S1hwxIZn_6$2MX@XfLKl_`jPF>yemeB6Vd>D9`>~>^ z#cn%yc)Qxx)d97=R{gG(GCF_PgkX%57=Tj+@vU!9DnI=yeDGeMW$f7v{Z_^yuBSr< z8}EyL9FK8PS1ah+W@sU(g*1C=|FtjwNAY_=vgqD;ftE*m4szM8b${$x^Rz2!pVY}UbXB(I!iB!);|ELORQb6v@9fy$Ao+#cHD_vFPP|!d2OEJWjxkUm zUV)&2?R+^C1ShHzM7mq_T8k}THvnkbtOEU=N(Uv2U&I`kgsLUce%>KzG2IYPzGY$< z5y3BP9&TQ-veZCaYGH>-ZPC!)gTAr;kAgl}Npflr_BiMz7TFDd0>sw!$UF9AD+%;5 zhv#%TljfT`}3*X zi-UP@Nw_O{&>$f3zLy23z)<*2vXFKg(&CdI_2VPQLRLxSQBeydW<;K)*;cSozrR3n zxxC;u#f_8{Fq5HBH>N_%J6XTA_MZy}C=3}_6qeAKz1`4QgDdGxSn$J)MM(+7iS)Bm zO-L@9w8VpQ#TRvwZaPPXem7?grF^N$K8=uP@0T~!TCj3+Ym0g>=GTVOn1ruEtUJT0fm}Q&jyv;v!kADO46ef5)E&Aj)TD>n;D1+5-V-b9W7$fNtQGo2>4+?xpt|gezDvTQlKG`W6)+ z*~m!k(gA8v5s@5VJx}cV)3@dK){NRuP+|6#v+#{9fEnt72i+cfo*^DXjDvp;$WQR* zc(}CNAz0hg+&Hnn(G)*v>Uf6-DE#_z1q(IshzIchb04E*l>ZZ*qMxD^)JVn)#~W?W zYM@~&8v7y#3`A=y*dH|3%x%7difk4CipT{28dWJB6AH;w^D^mG31=92bi{Mck?mF5Zj8SK z_M;g!gu+od=~q&apSI$IA1460kf&VE@HL*CLk`u2cE$VF<_&9Z%6q>KLbD>J62N4J zmW<_O=R0If-nEG!%NdE?D|u|u!eUH>M)R9n1mF8jE@r=L(mC^U{gF27qN#tI#{w6R z>MkG1qjoEeqy8;zd>0)lFSJ+c~zHcbd^x zXrFko>DA#Q_U+oscZ>61)J#^97UmtyQljp2a(uXa$sUXIC*x3vwm{cDEUcc{h)}kVs>DZ9hFRK{C7!8k2`1q+Z!zm zj+&lRC4PTVWCIq(8iIGIaMJ~mK{jsUA*-GHk;MCZaIE&xU6RFRYEZC;KiLy{z-i$E z?xSB^hDHQ_*~pS}alSAAPeIs({tY&wbZ042P2xcmPmh`OfH$cXy3Gu@Q@!~hMZD1+o$>QSrUzjKXsz&81 z-_I=I3STA1eavHvMONNXyb=tU1TFl;w~vLvS4+|CfYnOCHRb1BxG}t89hQ8;cLDG2 zTm%oqdzXf%W{pe;?Z|(wE}Dof@2VARc>UACCRv<&rl*@eO_y%((m!tom@zpb_OPp4 zrb2&#eCG)i_>Usl!v}d&_g9tvj*|o@l;lQyN zJd7#_8jL*hK9CuU=d;h$c@q-!!*AuW%2)nvmM5$4+kYdeKvWssDQO#(i;Ku}_Q!q} z^uIUodeTRKaQ`B^vxIXoLNYHWF%5Zmh2{e(bBEjJ+%R(AQ5uEl#)IKMVPKH1mZ$E& znqwcXi(HPMP|^(?C7wJ>;m9TN6qCg`)6dS{ypmS_hy^DEX)%$tckZ0wE8WZWJSe%} zi7r=hB9>E#JFsxF=MPZ0d_ma;cUV^d0)aoum*vi|_-`;ufYQvS^`qVw=7fx~Uicyl z-li1KEU-U%CZnW~pFg4NK_3T-0&Z-S_kFuur0m3*=MU434H<_V(cV>T#}i zOZCqPZa8$`nLP0?P0{?0*wPNotyp>E=FetB>ANvpAAk4#E_6?pve}aC%YJ&zV%>9> zK0#sS3C9?r!OZMzBCm_**`X^gW za!AdmhpdnHHf@i&E%M<;&1k$FmO87lfl3jK9cvckreSzjyQV|vTIq9^6P777)a7bORb z6=Q3Am-IcpjOh!O_~e}c`^zDX%>frN0|S?F`PMrVYAp8{?y^t#vQASMN7ftj?+LM- z9!7hEvRY3X|BWJzE=%(m`3eg(JiyGaCUBe^_fTsG!t03gs-wA$J~wFeHcyyjizCM#(zM$ z)dStUlXfN(e^t|RWPjXEa(*^=UGCMrqA$#=;;hmN?Bzx=8({n8k1ZVuhB8bqHqz>? z{-YohhIc05j)CxN(D>o*W2nN~Y;2H8gXl_MCAn#I;#)M8sridH%PZ1m=5*3(J)8K5 zpMyxGzlqTf>WS0hsk|ExWFReo!}*H5F~jPi=O+7<=?F5oK(ZyFcA$q)8Kk;4i0Y(Q z^;-MYyAU^)I`(K(+C@0L`Zh(En`Qp*GsHo9_0p@{80 zzAiA}Ozxx2(r%;6;}z3=XbynoR7hr^5R97XD{5e8=#VBBC5xjaizxUVh~KpIK_6d8 zr#-<}*qiyUHS_n$6dt#bTsH2-q>{x1B!S&@=@c9RuD32&Pq;_!qX|+sAX@5BrA`RcwmyG^3G$AoG?q(SJDGOVZ>HXn->bl;c-T}gw$WIgzqHpw)pR;F6 z%OJ6Jt~z;r9arXu4$<7(4REcnb@9w{$oBUXMx?5Q}+sog>Q1tGtf zfLc}HS4Ob~t&rfh>2$KDW#lxZc@P+US=qox;>EdHT(r z^(`Nat?lEoKW3)*XVPlbmcA`$SgZYAX8#WhFzr?FQet0dXB^yLSsrm@_TD+x+&c>h zYLQrm-MgA)r^JDKS&kTX&@?Ux9}!mbrLMr@UDKp&NZD#M;HiedAj?b8{)R-FU~7c< zXw$jia3s#mnYr+8BXd9rKG_Wn7J_p!hL^89{Idp=2i$I5N*w^XZ}b|Dv%BT=p!18O z$Z8DBu!2uhvbnQ~e_=B3=T4C%E(1|-tCD+ODY5x~px044%9^MCeZp1Sws{!fix8T|Ll+Z5u)|gA5r~3T~z1Dhpmj*=D}ziZ`gc z!5U(;5xQ%Hb>tta$&3fH>b^NvXlEyOWX~h?k5p=NoeXy~wzvGy*w>v4b?Y1lWf;Jh z|Km4RoyziQoL~>g{ZnL$?a?CLx7(*MO)^br3O`2Rq};bBzJZN$)JHVp!1%%$p;1KDoN(B8b0J5ZrFIQ2l#+`FH@TWg77Sj-0HppvzFd z+O8qoC0}B<2xV(-Vd%$KOgkOCjh#d-sD{xOkb1P8vgsF*j4g#vHy?T>{4$+$UzTBQ zR?!KO-cVz^l&nN`4{&=i(A(ACR~i?+1OD)NWZ|}_OwR3zyOVZ zWF_pTA5MkzhWwj?NKbIq38jLbnrly!y1XB1K8-(Kd$2VK=m}Yj4OX^g(Gp-#@Q3kl zNpa;MU6}qIW|VvYJS0i^toaMBO?fXH>cLTprnd|*6E5Q!=C*Rrs`t{~c|Mr9Gva0N z`J6OPpB!JZUP5Avc@anM7o#JvtOCNVStk+RfiBv;CY-?3VcC#$0f%3HiNAhRBhTim zK_v_an-}G^DKmSg!fF00dXSn67NTU3I?gQ)ZtoV}n8i@_y%bIT&)m)BlK7Un3$K^yo9p0&Ds(;e-EqV~cGj^oovyeMH__<9Pu28JyW@2)qxhn9 zoMo1OfgOinp@=&wIjQ;fyJW{!FSdA7Z+I9BxbA~qcndwk#Mk%~5~Meg$Wvl#nc%m# zbTY|)z6Jr$`JBCWtm{krsZ48j2kd+u-{x%=LK@;67jAZ#ssIfM9;bU|A4~?u0jQ(y zIDs|vz86uH96ivPIXwJ8P4a6`mSHu)2WF+tc4ucu zGc3Yu;fjgSx;}py-yw*M_%`()#oCRgsUYb*f#iviTbXUz&B`NN9ZUVIVd1w_$vXpq zfnKA&%H7XS=%g|)r=klENSY172CHsk$S{05ZIJvuJ7_8XYBJ4w#Km_em*!!Zk*y6| zZ}^)*+r+yz@u>YJLUE;8$BeUJ$p`P{3AY&9W(wLr2ePcJu{TsdeCcZ+v&NP5gTLhQ zkQ>Bkuz|fCwqP0peBh$L@rHTm1vc4{W zEOquo9LLIBdsi2205?OJRK93V(Gn%Nuvp0~w<>?Z@%r3xjMxWK>zDH$&zpX`x)PgI zsz58#E#!>#b+Ro$pD_mM3T^&&VoOW4rFo%z`10=qh?$ZUqblV~tZPZYOoucfgn#)X z%h-J7+?K$r{1(P1%S+RNdSB$cmFUL6t+mzZTjQ~MxF-`IY!|goTzM;*ea=OX zEDB`Glp`SsH9DoVtV3dta6!VPq=#XRvF68o9lmaJe8CLG`8LagUGK99bA1Q0BZsa9rNN7 z0z}y**eJ!N{k$?BiPe%dzj*Q<9y*q!XuqC0+8S)*^yQBp4%@^-Cj+op))G)zezP=I zhbvnCvSc?*eGJ?t1RA!e8got|%E&X~-msc&_}g~*1T4Pj;CXDxm(aP<7987V&l{b% z2sxI;^NXpLk(GYW-iEiyyXLiap1~64a?P$@T0e@Ks+ScFZZL5&=w}=J@yL$(lcH1I zG<|w!|9!HQ6ZqOznyuQIgYzx+tyE6_lp0}BLokXce)SW;a&-^($K>kitheO!zY*bu zMWUD1PCO#1=SxN~{aYtuvSKu}lf zE8lpTo+iTnb|KfPp7=CqX6zRs@03$!Vt~n(`FEF27$uWZFwH4axuo61x@5Zlz&t)M zMoIquUSw{^Zc-v8!X8Wyq`WVcGS9pqYHiOFrvfR+oNKzr;Mbs)U_0ltULu9jYuAc9 zft>$G0S<|YTOOTUqwJyK2y&k-Bm?LEY5NO5japel>qn1UNTgrOGBu`n7cYNZbH}L2 zLci@j`n!@KlDlu4Ay*L~-~?VtwLO!Q@+G>ukhBO4IGNRh!=wswVM3r(M=nN}*+rx0 zJ?2!gwbed3FnE|t@aOO&tXAdci2Jk#x7D0L_sJ~JQ80P=@#)}8A+=&^k-%Dx*O}*W|2~LKpTF_R>FJdczJ31RdU0edV%~p19M+ zu)EnjW205u^R~|O?@Yc7`FX_R{MEs+VP&99RD1Ro>VhlZ@DNS@gk75O)e1QEp)xlV zjWH#M>Tm7kF%k5U3m>hO{vZ_H9AoAVB{v%*riE?O3iHqbh@PS*|CmqNDt0s$C>@`G zj5LN3?hnU}<12fUtvpoeHq`{EVQjXkOS8~XA#m39*T4KvXsj1JHI*GL^B3}`K0Bj=G*(w(F=YVpX~r+3_m$vC z5_RL{H$@ks-W&ng4dcvXc@(p&5O6lMCUmjSKCKA*W9s z0p{%!Uq{zSP%y3cZ4YqVN9`_HsuXZy(XgzF@s z#(H8f8Kf%p>vR}`ya^(J3}f`iGe%VEbhsL+WCbF@Ts8V}b0dMW&hLv%EexzgT$lsU z9gz%XhE+u)Qp4V7psNhUbu$7D5lH?xF69t#9XzgT2ETs5DDyavb}DJm{yaljJ>ZlK zDCA=HOucN;6xKjYAGS5{Gkj3bZJuaIcVWVVYrzL>#dEK`JcxXR3-iwrj(K3JUD`V} zXNK&0G_rCefoSLxBJZ*K!S0!f)8C{yaszeyo6EnEUGQ4KfjKS=6t1X*RqbP>f(LSG z2VRDFHtfB?Sm}g|Hp$&|l*6?Bwu7wg$fu=jTI5cZ8z7{B3+h+p|50oO{(s5uNJg~R z4fGyx>P>Y#gvb+x4p4Kg*t1Ba+xyR4-)fVeTf1NTIYv2U;{U)_^-22=;pAZWuQqQ{ zLXc!xvru5Gw*tpP<0`N(|4xts4iJtK3B7t2rb{ST=bk1>P{w*AIrS%y2hqXhm`Bk{ zqsapzi88mA5XnUul6953@_JJIL*uO-`C9=bp(H~LtK!bv98QC*_}T#Tf1Sa10IP|Q z;g70dlF&1}F2R-@KV9L-z?_9|W8+&zzBu0ug>Y_Z%7&P^5?|iwQVID*k(71bAvX%a zM&6ymP>UNIE6A|790Uip${>=C+-E@DUZY}9Sda2_)ynlUy0`Kg(`Oo%_k(vRNi0WL zgRKi1D)7|=oL-ogx)$_99+svcQSPen3dNNYHUNl&ajZoqkgNulT!5S-yl=yqRDPsH zXGmeHGTIhk0qi2Q?j2S=a`rkf%KTi(#(?E>&=u=8fUGnSo>J~#uA$@eZ%B^FV3563 zG01oh+Gl^Nd^+iN@Yh#(M?PmTy%92D{1Tc}{O9_oQHooT3%%5x$u3b$P)we!BjQMg3w*d^aRvQSm>Krs815!IJhjeP?~J+PA~@piEn?1k7K3kSfhO0%j8K!GbGzc2oaLZip(+cp z7uSx|641_O%N1?rX6b|7u8| zD*ac(pZ&%BVzHol1J^y&VIxdq+V*%~%JOyDyYu4Yv%DDB=-K9_-F&RuRwFKBUA^>* z<+9S77)ND}-M8lY)217^I$U8>uI8!wOq)#N`_=4Bw`yAwfK`0G{=^+fIVRWp2VY|l zD`(VfwQ+!xoXxGYPhEAgt>gamdCK15pwLOU!RkgA80&o22WAX<HQhRQ7uxRmP!vMxrUTd}hKro~veuY$VZdkO@R^ ztezWf5FcSM5DV$fXR7CTJO&9AO3jK0hj?vhE4u0zCU`nniW+lYBNtmf?vlFL(#70n zlpW@bPG>ISmV%jJRw{Zv&74SEQ}n+9`KiV`;_Z| zeH8rFQL=0b8l;d>@8{&kzU(q-c!H*_(`hkwmvf-&Y%B^Z*>5jGFiG+746oeNoo}C1 z#Bbx@T!t%ZJ3U5VC&?SA$8=P8)MjH*_f@UxJL4yMT{s}0EI`-C51~m}FMmju`(9kg zMLu$zci}azi0}woMnU}Dn$J@mt?S!+v(Ga-9|GRd%+;yQEa+0MyG1Vy{ECNsK`zjs zf+n5iIpp#oR7V7J>Q15ppJ zNL?v;K8%=UXIpe<+E^2Ol^m750k8>nTpg{$p5TKCBUQV~&l+)~nPrRCgxrEjpVUdt z+NqB5`(ca2#5tpS1aItZ4mtaKAIfquCxTp%(QHi~7Ntf|;o@-VN`;&HQDdOrQO$`T zi9u$SGK@q+)Flk`!zmTjzVn0%8ETm+O01o@uzgmyVjuVo@%g+TlrHESGCekn6k1oL zloU66)m*%vmSeRzaVC2LM^60a2C*>(Y6~=jv(;vHi7sAUr{pAz_JH5xmc}pMzp=5FyKF*Vgl@Iv?QjCP^C zZB&BLxt^--nT)^ib zTdsH(pwm6Js_wNrluL(*a)-AK@fiG6Rn_2r2P@&{AtN*2AQyl8?{~P_xM^AEp1UkW zO*)(z^pwOj9wdyK4x+))XyfchBC{W7lxuL|XH4%+%9jl;PI+@V)>KsF*_3uJS6tnR z!j#FH`<$~~72za$*q_Z7w)D0b=fqY}jfi}GXTSZ<;9DarZm*9H^Rc?VzwQj%r+f&CbP_qi~r z%D5ZoFhMJw&vSqF7vUbwe8OsE0;aK!;6~Ig!q+HP)OH_rF`5htn;l+%#TnX@N3qRT zF^ovm6%lMircc?&d^?T~rx(OWE4GWTX@*fC zM<&Jm>}wta7RNid+omAeK|NhkrBRLRL4O_@Ul3jdrBQ4AldqD${;=^xL=hjq{yNiF zlhuwZM*K0r=d1J0>n}&$1<*fgFAn64JzyU2g4jA87v2sF%axB7c=@r26F2M_UFSILJdw8r z(PnjPEVO6Nv}(TquFKZ|uZ9sfAp;rHQ!{DlNY9p~Nba+E#O zwW*AeYI1J77at_KDO~xr*>a<&{V0h7F&de7WEGu2JWd50YV}8HH=l z`!BW{<2t2ZN9k%6&@ z{OkWNfjuT2H>Ran4h*|Y1B6h&8Krj{l2)Fc2s66-_)#~_ExG$|CkS^i(wpdSWVGZS zOkYKoXT|0q5J?kPzw_iKJ0$klUl6XXnxj>5GQBf(4HHr{v}lm|4&G~_XwYoIEqgnE zl%I-1W|dBLRcB8t_sx`tuO_kson-K1TesQCMK4&=EjEw7&Pu^((pfU*Qs6D)!#&y$ zIIw@X%dLv*TrW$nSG}4~B$xd;w7;?cgFMpmCF#j+@hk6!6aVq=04O`eNLn~AXvV9i zT(`k!1^<7Sl)qljpWHTnTZ6R3C0HDo1sD}L8Od(P80M}6frdLEnow}PMra2oK>?rB zNT?`=C=1n27G_;3kzEU#4)Nxu!%6R*55)ElS&}`)1%4s!LBD9l_=4DsY96g|d^#D6 z&VWB8(G!)Nly6K|31-de;P8m5HhkicbzsGh#_L?m{pjVCl(FU#ZOSLJULEP$hf){6 z9sXI=b)POfVmjI@$np=yA=&7Di1QrK=I^b5kGTzUIXlPupA-5!AO8z~=DK;KN%|mq zMbgzvb0YYQD@>MTQ?0`k)wO=f*4f|kOj9^gab0t#AO%i*MKaB}v>#-$ZM|g0lOVOJ zoO2sxTDceWbFhg{CT}_F0NA&hoLE}tR{(@hDFnh=6~X@T*dY#mP=Xuv>|BsfH53<~ z@^|@~sHA)<(4Ra`MO6MgRC_f?CbMr^AX7^#&{j z1&}ucvz0ut!S~lv)&Qwd0B3kit!_5L-qJDg{eKjDvywFv8b;!kFP4hqGl-@^DtW4{ zZ*^#Mg42K}m3i{trjp8QF<}xx})y+bqAsFcj9KN8?%akwG8~?V+Yc6?0tA<%jO{f z+KuU|ASU<^s7aS=cvrA>pp~4E<*$pdUk)!GU0bT)J3sk#?iSPx=Kh|%mOa>N(mMjH{SC6|1N*;LirxZsb{-S9F({HC^rgMXcr4&>r;)irQ5@A z=^mCbR3=Xll`=pVdD6lN{y2G0h+5$B(ael#V+DVZCZPrg#M} zXZ{yZH`YBCEx&zmA9rGoJqtnI7wF4UPwY^fY7_E$QMj#Ju(-mZ9ZePS=RJl85RL4=uz-kRuDZ=7z*so#{xO%U{f9P z1nCPCq*GO&O_5BjeGF0W5F@0*05L1cqIIe%OxL`dbl3f}D-m_-#&EBx+{44Eb=m2x zZlFX_$1>Hf65){2xRkfmx|awA;O}BTTi+uDI@wCsltaUaCLes17=-P`zzeCW^dKt8 zx6;xf4S|#G#Nrkk^&Ahf*TitMcD8QcYYJ(CGV2yG+dbPOd>=T-z?K-Hu#R2GSeXmG zlo#0;n#h3rx$PbKYa`5?2OAMLlad{qLqrd23tL{A8~;#%KCkYol)zWV9gT?W!IR~= zK@ZDI0m2B*l`BzLe<#%;+^L;spo0%<9fhG1VY-^k$a^&HVp}`mFdkQLg0H{ia~3hkfDdcuSiy4zpAMr`w0)D(Z~E$TujpLqoL%A-k3#EY}e zUb4?XY{F~9lWdQiIswd~@$be-wyVJSg*>t;bwO94yOSzwYf^nm`L_AaudMJXPnC>K zp1fBc8v~D`>27R`HCF%QH&-K^t>|UuYc!08Y}QK zkLxlA{y|7xB+Qy_8kO(>Dnia&A0EQ)qb=Z$VHN$g5Dqzr~g1*_@cw_u5ph9!e6q8$Gg6HQSzLV;qs%uNG$9D zVQ(!zS1V%e)!Ds5{%<#Fm&1DX zFDGOD-<{XHHNt=A7;{Tc=H%y}lVMSdtKfL@0cA!Oc3DXJ5T|k|>}1V*;c-Tl2Hc+^ zRs2<;k5KNqfVsMrsrxgAVcL*9kidM@fL;;rL_#YQU(kMi<9ku4<~y-}xCi_Ou_>mr zMn`qNj)x2hk%uHoY)p?b+hkkt>ZDuAhxAa;*kh=}jJa)%*-MSDYVthG$EmVUS+`UA zg4Ef)%T&bj%KqP2AVUt%-^6<<8l6ygSMg*dO{Mt89r#sj0zu#sy(|tT=-zrp7Y7R( zT0794_ng4FZl%$4#nLv-Il=N%`Z{Cu^NNwTR=&8bwIS$>Y6VEBAaoB7-_ z6ewO-x;k5?H|6g7z3jz0cOa>ac$>eiCOXIdQSvD~HQ05QeB}WwHXbXPb{MWA=m>F4Dp)#`U>JL?u_sP~jT3T0@h5D_rr>(Prdt%Bh zRa%1gXLgt^%zynV?WK59EhsknhB9ld`%kQske_lS!`JEFroqYhK_5kJavREh7%P}3 zpE4FTH-2tNEnSg7g0(U{S@gOUl})6=$#ydQza#R#)O|J|Z6pWTOjDFrkZBt_pT%(F z$aaLytKXeZn?}#VazVDGp*EDH7pZ+2^&f=;G6sB0`8f$Pt*F2LxeW`BtS`>fHmXr^ zNZtpvFC|JeW-$WVEG$pTp_8rj@VDgqV0Xk-e?nG5JXhEWR^=o)TvgH97~Sq3!klbyurNvo3eU~2f9*cJC%w6)7^=Zp z!X#Bpe@#7KvIr^egfyJ&o`!1eR$9$p>=0F8qt?^}WAddDdzs^M#U5Ox#839HNBZHZ zhRa-mS%Qa{leU5PuLS7$Zp2Hhv^nPsblcBcIlZ0KfVH>gS{nDBH$Iw*=M+s&okUF; z8Rz66>@rM7wXYu3V)5-&uyHW;KLk%Nc)n&3JBVpb;`E&CbqzU=GG)^Jg$T>fR8zct zU3MtwaAj}eDl%M4Y|G^wR;{?iE6oU!D# zA2c#XN$?t2p{db*0bpFvECE^74;P^=6c(2xcrE4mOnxpPLVM|MYgnGV7w0!#_q`+s zP&XH+GS`d>A-TZr&MyHAgjIqG5u*LLh()68nIdZW#k9%j_)iKuY|lh1Hg)B3=(mpU zH#-}VJO%%xI>W9cNP$yQ;CYd?{^YFBdHnf$turn|rBKN)jwiYkOkBpdS>nD7q%^#w zU>fnUsrhQj&Mzg#!ZZ7Ol1eWb!JKR%G}hAjK0oY=`!eT>*(!($r}wGF&O+^?D9b;o z0WXSNxR>U;`uj> z5fPY*t$&CPy$%QYSjdcmV9_G9s3PRfY;@0g<-n~-XYzQNFTv+BaY5BvsA*Udj_Az>y z;g3eYo7V)K$LKB#l%K)=G@zM%*eJWIM2@3e#x|m|I*=`+w~r9??46CgtUX zsmNxd3zi?yz%i1v4u#YAJkk!*+=G7ed7lLrZXsjK(v4@SEb81{Eo*hl`bF$ETRj4m zXF3MvG{lPd)PFor0quCBGmu6>A;CmGc-PAyB{%8JwLK0x)e_5Yyc5J0IVQmUBO30j zO8q!I%IH17pLSvHr&JXqWv{o%*S=tu>3LM~%($NXph$!Tf*N8x#NRlk3mUiLsk*eZ z9xETue+E4wt2QDbFrgOgS#JWh#m)kvDDmr##lRrv0Dr^4o5fr4%Jydi7WiFzLR8?; z#QD)*k5c|BL#q60rNUrE(#feNr_=%@#jw{vH!8W=%0d#s&wvV`cF2Aq*Yr5;1G?TN1j-YPn3;^=83%PRcz!PEmPjH zqFr5yLG}dCwdN(4xrdsg9{`}X=}c0 z?eg8hK|lc)KQizb~uspH>5*y+9GEh29i+Jn1%r^+4 zxoq|Ze9outxCxTZfcw@E9zc;KxgX1l{c_e@uj5}lGqYhxGix@vb^B5B%WZRGOI^j+ zFqT2{&Vh@$^*-COKfNlTc?HtgR?0vgCxjf#`aDwnOL@A=S|?GPsh7LRD`^r!y^5O) zFwK|uEYYt}VgdQ*g`qV03e)L;k#S)hVj<39$$@Zr?L2(LrdewtA)S1KscmYUY-_Sl z|L_BZiaZmrqI44mTUUJ&CN(&UG+h$V)7~+ck_J~OSMuRrtxI$-$7SJR`RtsF~UQ z82!?%W}o9j80u=2xgX(2WDSC2BjXi^(T^LuweO4cF8C$kkLo_^D=g{JIVtwI({a)_ zzt<5GRq5qlpI&vAh+tXh-+fTIfh>-f)>;-J9NET5{-{pDyZM`6@t#NGJ1$d|<@Nwr z_567VaJ-F$Yj%YLhm4UtFx8ULzbu{s;auR(Z+Na*FmUC>RjMRq{j2fsw@NoGF#e>#F4vNULfiBr=#R~5h!lsK*5>$0sI%1dRp#PTo9@+L}`QXc{VDpWK=?l&oZ$a}U zrHRa{dy4P+;p3jyOvy&DRgV$RekpFroV*S=_P#a!%|hrTm<&UcIAOe^YA2e*CeP4R zFjkWI|0p`oKsMjMi|emLsZq75(V{lBYEx}d6tzc;Dr!b*2O+Ipvv$qY-clp>jy-GF z-g_lxNccbZ^U^!v&UIhk^F8Nt($}6iGD*e~Br7bT9h{h+Oq!HS5nTKM$zA^p4QE#x zP&{3<+J~fm>FcMgl;rB_W{u^j6HAOX0%@3&m`&cc!j@>EIX6V7Jf~sD-Qv46t(hT| zq_LlUV*>BEBf$>_-9Eg+sPJZ#3I!Fl?}$qBIo3t^uuzc0Zbj-MAQLAtOjR2F0jio< zBnW4P=Y+kkoOF>>&UR>}`ZKnP(8hepS7>>}UlgJv@TKl2=$#~I*IQl=SOcqtaT>aK z20Se3T{?05RA8gQsE+`QlR+`J641hn#G9x9Qi27RF2TWGD1ZmrIoQ?GJ8PeJ*JZ{^D{POqd!r66Yy=J5ru7l9XNgUM)txN2VSux!SS2U z9DB5du(C-4{f$RKqyx*dwaa{}3cnNR@a>`R=4&?GNLFH~^xZPDqAz@%mZnK#@+^lg zz;^Ao^f!gbX4x`mZ-;4la&)16ifNj;mhRl@aomR97i`6@i4HY0g9aZ8f&q}3ib9^Z|c5eHZjYZ3?Pa;k|vr)ZUG7eX&8n_~8yzv6t<8 zTaD{Ys=|XkR*AsX8Xa&2@N9UJ`z~o1Ti=dFNzTp;KQqYKC|b$L;_pGbvIrH5x+vf5uc$DD)g1dOFq8lXI$nzf@*_lSU0cB%-W^Fw`fo8Z_7{evCs7X z9K2W>f;}?ymm+cJvw;j{d!r+>$DkHa7ka=(oi;YM!bu}`=$7U;#FF;2- z+x`@GkIsVha1MTc<EpjwC4<1yw0bQ)QbY66 zYqd6%bKc~NwL2+I_)`&20W!NJ1}R2%JNEBWpe|N=bf;Uf#lRCCUs?0R@mge)~ zaX~Qmg*R>%0u@sIwiQps`IGs(xFFr;K-~x%L*Gg)TB2#af-YJ@G9spA*U9^2f%SRd zB0>xHK~t~C5~HCV(srjtlWxnB7OJ=A)l}p}7eU=mcbOb9y(OI#@!paMY~lTqn2~YA z%)66tR9I)|YcVoo*xG8Y{iRj;*QXOl=_&nIq=jxU%hY^WH}oj}=u$xw>)m-Ao%SLe zt%Wo9afcUaS=WWC#wZFVvK+tAvVO-Pz|3%uHEE|pV%1|4rY}F4KGV8Xx9gN8p?+pv z{SS@VKIp}2pqWt1;V}5>?2+eW>gU$1jf!~*#RXy<#j790cTterx(x~5;y2CCfTc`W zSV<-S(Tmyf1;RrdqG)cIEsP-VRPsn|?!QJuBv`D}N_)|0p?&)}Dkzk#(O>W7x7yudSnQXH|Ml*RIrMJ7hKT4}rx^}lnx$aI_TACuB z-f62bQoMgFszfS+5$tQj^v12#t4LQ=zqSWqAb;#$AHGiAKA$ z7y+aM6EO3>}h}s^iUTd9y2M!hW4yq|e>t;c--6%(XYFH%FD!6YuYz2C@anjTW94Qnaj=A-YWuZk znVZDW#OosPP~{=Bb%P*##2fWkuGGY0+THO&RtH|O`7agyCouNKj;H<5uNv<`!JracjheKNp@>5^%yA>r% zMT8rFnQQYIujB-6D%qfJ>X(e$_hN#L5FkeN*ycq5;G}m}-2KKB{I^WJ{L5z>@T<*l z=3U_oD|SR@yIK4LNw(6bT1E|$Z{S}Xvn)rg6}lI`S~ag>ulzp3koXR(`4<*`_hiJz6pv(xS^H2vu#`5+&67xcoJ9NJpdOxAS7FhRQMF z!iH*}&%!TuznU=qLL__@tRZ?NOC9h2vG@&jV6h}m!T3RD&51W49r;OMlSF7HZIUh_ zhqC7ouTfRpJq1eKap#g)6*j{(u~o9UN^j+m{{7#TSE9|Y#g1jia=_nftHL(?$KP|z z4gN_yjgZLYm#Kv$an?lOWgw?=N9sT0KSsFj&3juowWansz#liOV&J{LkZ^+ZlR>|N zD>v=J{aPw>)4qkD@$&vyuS+Sb8`yh7#t@{S~ zd}iZ85H+QfeudpL0zzL0E7|Su-IXQRhzly;eWgAZS|;%*T4V`I0-6$%Et20e_@{i{bYhJTw8lgZ>(TP+S#j z<_pq*E~y)<>r`7?!w!%HD$p8RsG=QE^GzRXI}M~j@5>2uz@4}wVv^i_K3T^+nGtJz zO=dU{MEZVVcylwH0Xf2L8bbOL-5|(jQFq%y;VbpQP#T*UzEKXCz{95QYtQ$bBOQ^o#>*SRd-)c&Wu}9^16rJQZ;E+Zr)l)gIe1htIjd3XGMS-2JsY!X#!&v z=}pdN@*Y|fBOiTO`0uT$Wo{3hgZka-`}Jn=lB`X>Zv0)@YuXI@g^ZuYxU>o-@+qxK zqAy$O>fYvmZB?nw^;}NP2teRXa4A50QKT*QLFCH5hW4RsV#B0?6eSNEwAk%?%X^}% ztK#f#f^FLB-dpNOcgvO9tYp=~;C|5v+Ry7+)29mQm=pp{YV+F_#+u_Nc~te^uG|EN z*t2^-KC)rUcUwKBc$Q69GzD8^(k8@OQw0u`0NaA**;AuKLEtmcV2{zrd+Epr&_{mAc6*G2>g<3F_|9}^jzZv@`=-fZSh$Etj8t1X#KV%VE-)6y(|a?n%*G_R^d z1(@JQYQAg;8OWhF-WY1Pe*d!PI8;HQC8&pLSOMvcbhx0~cO_E3*@#5_mvb;s^&OS? zQ>lOSOhWDfYa6*iU;Z13mlI+9Q7K}Z8hME3vgFH#mCr?1>%Yc(-3P>i#>X86Td^&O zq_Jz@WqJ<|sPP%Fw>Q~}PL%&i9?Iekp)M23SeE2$7Qn!S($vza0yNm%lF_G{^2C1BmnWWa6KS(An{bO zHQ~H%AwVZ!27xhPW87V?5&oe7bhC6wq2P~U5L{u&+#aXBk*^s&6I*bwkPGX@hi?gH zZ^?9@_gD^?@w%BkoZn5Rqp7MdsWb&mUAO*N1_Ne$8b>}{MS#J*rPwcoc!GAf2HX7h zMST@kC3bBKw_MuqoikdZQOL;nDtj_i_&f90PFpGGZ6YF(?|VGZqC6?0-DzU{4}BHQJ#C|C=4iJyuAdp^EmL{Edop{Xve=e-)gmiYcwS2! z{E|Q!k(-94Retj{J}ogmK2m2Za?^2m+5X(Icc+f;cfG2yVcYwO9H^f|+ zQ0$p-Wsdj-{k|4UjZ6Ju{DDjDE%Cz>Nf#r-qr;lE%>91v@$HUf%vVdm_IY88O*s@? z6(sGw@Wd>4<1NW{>3?Qwo6LC1f_Q9_J%o}6ZC#m$a_z2X@ATsf8MzBP$kL+Swe>EcvyJUCo3qkf(nQAikqYOKC0hH|bqwMuSVdJE-7bvF0yk zc{c1~{U!m%y^08DV+r60=vtoqHQ4TTLB7)@nkswD4;pXNf!})i7b^lJ(Le(l* z;(~QR-=jxTZ;;HYBvBo=H)<1YbFfjDALZA=3bh{yB^e@6pCUhvy4D~3KIaOoxNN*Z z$9fyB(~>MkwF5zklQo|r=m?d9%XZR|e^2aQlE1dn?s=oBc5@%mf1@Y6!Axl$8JWWo&Qb0W83N z!!K3uLOIpT3y6U{r8}fHN1{qmdhxJ(%qdCdCBd`^#-#jLwadb#T9zp!l0$O zlWu6_Yre<86_fuXc;D^hMY>vBX3hIEps?3+jqUI*UMyg8u9rYPsz0vq6c@9s!laPo zHoD5Q5qi*)R5RFULdE6Q`iXg-?4|2>OJQ`XCm9QqxUI^Q;_{7&*}7}C-?->5V+x_Q zf!S83C;3`=4s(K~`An`sbNdz`BtNSOu)Moit}Z-OE!yA3#G+GP)uyZpdqBwc>F3PT ziGDRyQq3>a3Py@`T7P}p^Xrzw5~N2PhAs>(RaQK9SFlOGHb=JOn9iK0N=kG})|pKg zD!p4rE;J=tw{=QjdN(n*Tm*&q-nF`eLnq8=*IZC2<~STiY$bt;O%PfvSX)|ixEEJE zV)}Ca+xopPjU}H%eG|{k$`7xfigteS*yq-AbOjZ*+!*O~DLe;S8US3>vEnK#RwapZ zT2icdT*AKKe?)JZ(JxP*rGHY>KO0eE={3D_{$g%PqPJ}7;eX^SQSje!APRMb9grPky=Ugo4wa`CXyDa zn?K8pKh?^(QLbK3S5PLm?+R(Kw6(|5638)>-Pz^0e*-A6#6RQ&=D?Vmn!o4wP;p1B z^v0Z&JbXLxNdgo~|5TW>T_ips**wo08|%!038B}JarKE46$MyE*3n9%T+^up$0rj1Q0lz>z|m>dj>&Q0Qf=q!D7of~^r_~GouJUXy(UwOItow(iWlo$ewiwEUn*h8Gh92wJ>1RB$w1OqWMN7MLH zAPN#Ip2u_b+Lnj%QfaNxJ*qWJ_+d+uELZOIVQZsM7Mx=QtuEG!XR1!j7xr8JP@M<=zi@)vt&mLaoVZJ94A1hEfMuq6q)JK1WWqDzACx$XPw=X0hze6 z$%B0%mb8=WC-xEgu zGeKK>(w@la$hWL%vU79Xb^Q5oR0=t^9^0vsv99a2g(|NYx>YI%;+L2VujtFu4~K9E z$hTGn%;kYQW`ET?oFG}W?4)p)sl2(;{?ARhOWM&Pw;`+6g@OLP$FHR?%5p)JMoYoS z91zGljYfpDxuMqgrteB+zjJP?HCEzgB&n!FqB^G;lGis#leg|9^5!mh14&$=`XIEl ze^%+HCnkmK=u8CsIbCy#Zi_`|m+YjJ?*_5yT)UiToh{uizW7ub6@*U}da2{>3vug7 zSQFG@F+-IFGJ?zJBs!z>>!@pDaJxZ-VhwT~<$_x2h2oLvDaos>{X(e5swGfnN#4D2 z`)rzBCWCFR(IO1|G(LR1^JR9rTgjF!`w7E;uA>&kI^Ft^WJ%R`rGE=rc4tvDlV_Ba zw}Wg?J)JZF!6a1i(YXqSkOppvNs>P*wgdZ%HrJ8%u{(&aBzbaaJ)n1G4sp6E49v$j z^cU1kSSLdr`WtqROU{J|`hb=I(i<0tFca9Ytcj6!oQ7F0XlID3nZ6Qhcy|u6Z@;3VhZE0Odo)rW2>&xT|pru{Kdjv}PN$=C=n(ie| zm7?PIoYCmWRGQQ~_l+Dn7iPu{N--;H9Lu26f*pHkf=tt=}@eRW*fAJQ{} zq}kR;Hf&nHy)yyu2!NYA;nlT42%-b=7=RlKXUuT|&a0ZiR8HeuR;y%2j__i}KCTlS z?P%mc=>(GJP0QgD;L_?`vj$O=Xk}*9O=T6Y%d!#eDv%_sF^-|4wUv_unWjOYbej5` z6M;y^@0+R%w70hRR@^flJEeXCLKg>x;%O(og#N;a&dK~kc7$d7iSQ3r5@4ifp+I*b z7!){hgF53~&<Z<{w0A^)=j6_T!Q(29HHhl;5(boAjcEyVT)xjVQ(b zQs~DrYdKqqsi&sgIhnvK3>yEw z{g0?3>1mQ+BYrqrD`z&P=8)bX%V4$y9SDzr>6eJQwE#>*o4sCd9Lr^}9C@jE4rDsV z?0-aFxQN9!A`5!O0Dr4p9@NS95LwYlhgJFjpHwQj(i!GE*=f5wL6F8PIQk|&3yXQ_ z+HpJi6VB(TqivmRz%`Fis0T(Vf7r7L4>o3;?{RN2?agpS-Wvbtp$TIbm^qs~@Gh)O zbvO&P`Gq>6P{^FbO+I$D@W2WabZFXBSO|NIZI8c1UmC_jN}vT!gV1~NT|LHABP$(0 zt-KG}e=5;-KlOS+(w+a=iDxp(Z_z_~l;O6+G&6DO1?Dp3R(#HK33sWFSIMNk$u;(& zdULwKU>El2LLS*(_IcZk{PCEKjIBfb9t+eZ_hK;dFN!UQ^$*g^?Y4W7T(g? zVZrW?)GQZwJ!cxdm9>Ev?Ogyq3%0z_#@YUMfX{f|hAe)`z8VKd_J zVEv&W$r8Ztko~sQb*D*u$C_8UVYhTy`Q-GRrdWAxPi44N2zgysyuZYR6J7@_0ryO> z+UOQg_g8JWYw@UHeagFJS(-SBdHU1ozB@er(Wr1|syZS!ZCYnjlP%q0Kfc$wovbjWc6qlm)TBhAju42kJjJ4UrojDqQ#GhtyGcaN@pmAW`RRBzMFTem$={a|EDZfOH*4x3 zNdFHRtn=TWzHxpZeiD5hcF}-iSI&6;uEHPXWMJRKC%Ub5{*!ECw5&s zNT}u**l$ss&1)*EOvc0KCLO8w>3v^F*&_1$@4so zlOx&OlZD!j=NYx*lv>u|xqOqG-k!9Vi*R)6MAVhE3v`A+{dT1;oFIl54j8|nv!wXs z<%IvM4Y~!{?hxF^S_6W#fWVxsu_U z&7rc;e~d=XC;U8#&L2VBkAl{D#&5?FVzq!@X-ut&pY{Lovw~x{BDC92C zvD-VhGw?fY)|7K^dzX0s%0aA4M)Po@>u9XQjI~MD-UWaEYEuZAZR=#nCdDpabkldn ze-)0k4k2B9UxO2Lw%Rl-C#SQRrVQ4be5nHl+F0Q$m07$uzkstnVI2_zbINxzRs3Fa z6~F=l&6SsRLeF_}<2XY|9K2s|st@FTQ*1IDyB%=hRg<@rOil}UalUGpv6i95zp8pj z417e!Nl$>JYEICdM*TY4z*!ZW>|UyNj&+@w%XY^~!fez{4C218CdJb3sAO4Wv#Qb| z-LslM&pC)6SF}({;+|n8FX}Md-I`)+UX=yRY98I00LDkQ^8%~wJPZ+VG@w=aYSYKi ztFzQpqDm=4kvZ{UME^IU$?v)rKPTkzMXJbHcxF+0~J9O&dT}FnHm;NH^TG3?( z_C-qEHn%6*47&(=IlZ;{VW%$BwoJi=L(Zz!&<6)uEzo?%H+%!#T(r!b-I1$um#_XZ z<4f(xDBe2!wm$K7DQWE+x$rd`tHx>n2AOKw3+KG6@16Th7tBwIKdLO&RXdX@YPBt~ z%Ykv@#8wX3R*kwWDO2eWSa~p;sDh#xHs{)YpQlk&!QXNpkhXw0K^wr-ZYrZX_xTpYcY zhSRD$ZOvV6kQ3^$j{}4Gz+nQ1Z6kKP)hU=&QgX0Tr`SMNt=DCG=IxmxLzQ!3aOFSy z75fvtVl6SplYmqIO*mSs*A;j;E@l)cq4-|KN4L+QgR3$5<(fqVDM=>(%+@x+jJWIu z-9A{}rw!_i>wv5R)i-6^hH1rvgZ%Q;gwYXO3;kl=q9bJS)n5Q=_nTup>jZsa)8ca% zapo5r?j8AT<0-uOQH(YWu6GMpB;0>mHSEX>iVJuFOCT_%W|=5{@%h;FO`o9J z*z-V}xKFw~H+j+t7ki`vk;pu>9#!DkVux1B5o({R zpWIlhx%Wgaqn3`F-8xWnZrSC{>#Wd6G}y-}B4^&6i11~~W`1mGHyb@cZ!N(IBH59? zNUa>JGV3ijS5~LS8DP8o*+e(^w}OV0U?My987y&B*}5FWb5 zuZ|LEm{(__TUmD%xUkA4OSsyTPH8zM2bRP98idpKFuMjH#rr<=W2JQ#;s+cY6_ui! zW|g~>9iP|1N9Jue^)QL%hqolSf|X)2SYBm=VXt#Jmi(+JMnmTY1&DJ$<=(KTU;K>) z{U|>>{%-l0-H`jTcIj@+3eR=VIOznQMQ_@G1BiPXCxt_7T(iWn+=0ztswq$H`%AOd zFHGb>m_QSf(a)Xia0_>Hk7v4pn_F#pL)&)$PGTRzJA@S2mS7^-{}J^-f`MSwSvuIe z>!V{U9cDU}JB(>yWXMsCEP>eD#{QdXbBwf&g1+nHyvjS;h=?vN29#!ZzSD695-acP zVXyI^L_OgAqD>p;$C`>)B+!OkK&Fq+b8~mZl!_eFC{niW%(Kxw2J=&;u%~UoV>dn zKI~6)_XLNQix;oA zHVrEK*HNyMBY$*@<{~2i5sPC2-6PKH)?l^{yg65XE@M7EVn|a9pqTqGI3@_w_;R$Y zv_&@6E8X6*al2(dDVu7vjQK!0Kl&l6575!PkfP6z9?YFgYxz^m1~ikRGB)=Nw+Rdl z(n%AdM{QQfc}euxd(YTeMEA~{EUWS6B~_&pk^TK)4}qC`7inS_j>q~|X1BwZH6v+x zmbar8(ouo5K{$(@^W!)cFj)ZAp^pECj4m9r$v+y5V07-#7!79Suj6#%!YuydK8+o( z^ND$~%!D7~3sJ4&orB5Xf_q2mF`?x|(Mr~?1w+3Wdjf1}vScX7b~2&~_Zr!ARSCwcQSgWta7+k5+zCGYEC$xW8NO8plhTdt{J0_kt> z2FloPxfUDdE9jTomCtA%`A97wpQO|{UM~KR2*j2apn!8-v!sMxnvO~A*i0M=O33Eb zqgsBfC)1sRHf>$>S7Im?P!s2g=cc(kMOF*N%7tSLhD`S+)UicA-;zRC=?A{bQh)z9 z)l=i6%qQy7QyaTt{zPeOZzFKDQV&8@`+ni|&3$XW{uZhnw27m6BL*Jg{M@Ntkja6< z_&z7!HUp7$t+t-tp?;%qJxb}_*dOz!yAYlU!6zc9jGIi+yzhru%drwqYp(MzX|5&= zg=d%HHjY$gyImk{Quc_o31^qEicQ-NVvf4!1z&S{P6l|9uVZUkCKQ0(S)lVS8?BrX zUI6BTwMg=Ja?Rg0HSd~RNZ8Y6Ip_r0gon3pee`

  • 1z7^`txg8D<^@$u*){F>mvFVYmMy5D^woaF*9u9b; zy~U#J(fJ!#EaO&|I8raemgEo8Ex`R`qo^4n@bpXDfU7on_8A+=bxlKv9D+bFxigz; zTLWZCJALCK-$-w!_0Y#)4_{1O)X8*Nc?20Qn2lm3GV-rmesP{LXV4mjBGAU0#cuw& zN6yaeiA}%ls=00rM>iX_dHn#~Ij$dUyW8^{Cva=e0#VkO!du&G%^9xbieL34AzmO>bxMLJIxn^br?Q%nwLyp1IXT=f3IlDq{h>%>@u}T%J6m4PYb#h z8~Z*=H|ol!*mUx7G(+d26nVPYvt#X<%j0i8LD($hU8+jp!#Rh=g_i>8Ja*JQ?EGE2 z^Pi-cxQlqM97d)~G)OEp?i$~sC~6yIbkJznOEl&U96A$ZUdC=DN9)%?#J^!=U7CN> zb%4j8{a}-br1pmq?Bs>kbV=Fm(BM6b%s0J!gz;snsTl9ZxQ*T`91@f|6bfbij9g#) zZzPYcm-W*ay!p~brTLP*btxBrp7si;#5RQG5k95t6h3Uyp`xk@`ebujXI;<_KN!@N zcqOJ(60~eWa~YJ)6m`MA(*WC#b8_n8Z#v98{x;{`SlnqImh9d&CLJ%)z;vZ!NwYr;C_3@dc^LCqNBM^C{_2yV=py+zT;Xj z-Y9*ZUsndk&eFqnCc+MDM!t>SSHG0JMUdSmj8vMEZM%vKMGs}&HP8&YA(hFVv~%`Y zuYcx4K=<@XdhwR?{EOro@xBXQjG*V$vBaUxR~@N+*GE;AskkzKBh67obrVapDc0K} zPL<^al{a$a;)77_C7Po9aU2p*hXvnma$F9To(yEgn(?RaVX%Y=_m5y6$`JZ3J2v28 z#M#w(89tO+M!HqW87t@g@rN1(HwA@T`q$ZKdWkd5nRV5}f@0@)PF)IZ)1$Z%HP_w1 zTa1-uae=r2!HG<^M%BktBa0Gs#?4sQw&%itv8*Z>GHLzPha8%d;TV$~D-wDH&(pl;^&S<+zx*8? z(Okh%J+i_M{4Y%Ak1wqaDM{smCw-l|^2d*j$#AKiL>!-1ndKlFc(zikTXQJHYU5im z5Q!1>PIbUie+XjN+X&#RyXU;`5Zd}!3z(J;YwGeD=koJZr>1c;@(*VlVe|3HzJC=_g-e zvldl3@AFAO#t(%>51Z^P?J`W}A}D7F8KDm+vh@?eW$QPjW(?=t`OsWpa7@_I5DPn7 zBn+RYJHUC=o&D@dS)_vJB2?w)@JO64vs&DtkF+Vm>b{bh%y(Ju1h0B;-<7;1+67no zF5ekS>=Ew*=ijWgA%LX^f5N?o{rS7$vfapLMzwNTZf!2@TRXc0>cmA#8kzvoe4nU! zRrvSq1a7A;FjO{6{j@Z zuZ2_A7$a6`eoj?A5yHc61czLrTkb^;1{}WkASymf1o{`f@)Zrsj>&vFc?ZeY{XPAX zNpz+&HDOxZV<^EXb9huM=iMmQ_{lejGl13U?cJtAfbzBy3!1SE^5ybqkZcI>ak+b_U-tEs4+|S!(ZdV$ha7hv*(Dv2&wwK_Kl*2C0 z1skVZS@O?ib*f3!h}4%&`;)mSCI#mvL z;;Jdfa@IB2$cs9|GQ#ZwE}pkHJqH#zzB~R?uvlZViI~%ES*WqnprDMITGqiR82cTF zc+)NR5pxP3W`Fd+dzGV2u2#FlF>9_A+Bc%=%vMrt7V1j54={rbGnI2qKmpM5lFxMd zLB@S3D@h_qLDmd+Xp_5~&}}~8oq%y(!LjIE8$j<;&??ZM!g-rqbED(ZFIgUqZnj5F zkl@PhoRM*z+AXv{-!f)&JT-NUW+@5P9cu&PT8zH{cmo)Cg)TbVvrXxLb31l!3;3%A z1$g(J$tHwMe=BEx#^3WQeRakF;1Ugom$L!;*MzQ4D^b2-pp&!iq=?oyXL9b&Hl~F>d~L+1#M8W3 zSdyX9V=eFcOomx!SD^1C%+@f8LB^Si2e^GD62u3Vlv8iwN&E)F_nV>9r3GyGPT?U} zGz-{`RF&MR^CZTo^=+~k^gUo?*QX=j%+0jeQ$m~ zrDX31lGLyu3jzajQHW#1$PD-JyT!i35RA+zpL13CeA~BBEowo}J=BjYsnUR{eD25D zLKdS>RyjCon`eHVGCE@cn{=O5UEH`a_xf_klz=t60aLq z;-3Qi%`|#40A}s$fF1dF39{9E)v>NQuyLlW8j3dyM$l3}cMruu=fN~ln$DaX{ttb% zeIW`Dq0oHlg%QeEKP$}KeaLr1>et^8pdBPP-4*UOOx0yna;XG$v&}9x#+f-bJaqd~ zH!UV*xBY$H=7`sD|WBz;OMZr7#d|cVuoK?S%V^ToN*=lfN8rxY8;1~tRCYh^ zCZMW68K$$U_Li^}HsckMZzN8Iw1kC7=lY)IHofkMrw8yrL_Acb<(RRHF~o3lVpZJ= ze5O2Zhp7N00tVg<&q%ea%MWi+sv5PAnTvMRZ~jm95B(h8hlte zGv^|mT0~0V_*V?@ai+!cO6`oi2%!Mf#K962hgcL^*6ZAb^IEY~r0(wH|o*AOc0#YQ8PxX_4I^rh3tUOW=P%$m$mW9r)9>hIp11ugA71edg-^P|%+3vNwNJt5q zrU7&*!?LK*jb)7qlz9wSN6F2sKV!xtlB>Ab1JOn2U)Eh%y5BfGtQB5=PP0=bG9W4H z$}-734id?uI6)9!A{w7mpQRTVx?rsdwa&zYP7*vLKe>swEE^uW+Fr)#kz1z*o+1^W ziC&VX*t4~B@hhObZj~x$0rF@|mVNfvIPpxm^Sw*8T4uYGB}~a%C{w@7Ogo4!W=5-qsJ#9VEV;UMi`@$3LwqJN`PsIdFSkS#6 zEL)o6-^>Xg<-7`N-nU@57IR_Hu8@JXs$PR}-}56KUB{w}89mMY%2WdH)vUo_w!539_$`8xEXdG;v@MI{8k8zrwTo*5ef(Hk)ZQ zH7Sy$f*NNdm<-A#%p#*csU=BSh!W?`b=%64JL9ZrAsFtEu~LniPm?sKc6A$r-kYX- ziK~fl{oRZg8d}Q;cDtU)oEg9h+eAwOn&V z1$JtV#d*sUByX3j?*a+V;_xjkdpbOQuYS8dd?4fZ>m6Nexp}TgAloN#%cxRk{K+zvLkmfTG(IcqufG+FygwelnV`c9pfphk*6z!x#9jYR4$)!35!+9i zY4ZFUZ3p%G3r@%(b4(fhH_Kc^o~Ul?o(uCpGf79?aBv@gErKuLzpf6EpaN*1a(eMl zuJvFbCjByhwVj6IbJe-f2IhO@WFSux9uA`%&KmOjPn>H3y&g7R6NUzgNY&7@o+u9?T7K&2nU3Tr5Vzm`&K4kojohJUUmjt?D zm3k4?naLD$p8d@(_HHv`6V%fM!>=Pvyc_@M^qa3v_#N};hYjC8WQbEcvoZ42K{3Lb zP0wZMg3`_aQidK`d`!fVn>z_o0Ojw6Lb?$>#dCuiY484W{Lv;U0Sj<7|90L4i)%P9 z+nN;LKpSq445bBp`OaT8I(wrEG&V6}SEbc!`kv;b%|6tK z%)NVp$EZ#Q5CgwhMza(+v-lrhSRvyQZI>>ugEsOox0jk#$$fgDn%U|LoO(Y8OL^J3 zIkAAkhh%fztnC6U{jvfLDMJno6;K*Db8!C;OR27Tj+<_0m!>rZii`$KWEFy^^C(HV zmEN}n4R-?``(04sZU(}JYR44LOfx8I8h!OF0<#J6jDs^O&{?6=CgMP}&Yim*T6&aq zN`f88ORj9d*tg|_=_CIDyqPa)!7dqaj1v3a*SD(J$0Ae7mSW36s03f)c=W;y3HdT6ueK#Z%o*IydYoBVWe=?#_-wRj1)K<1+pbgZnoR=EeDO5^3^n%9j@vn_xoI^> z#r(k3ZOuK<%gPLJ<(`HbpS&v)QQuEBAfF^sSKWAyL#|%?wDC9gu<#i010weBdz}`CJ zmwIu+Wo6%|6?6)>*w(K%1n=75z1ya%1Ug7DKvk!*c%b_)L!X}J2O_wf~WJF4{|7E_*;i0=x@!FLlB8E~Ib>4VDb-70HOR9o>HU0shf+HNF+PR3qUGYvQhGHyg$~z4?kd;@Zo+Dpj z;dakXhu3}b2)q;dAiN1MtX*;F$b@(bHyewXyA>a|X4bK{c(Ac%;e zT(!mrUhO}*dq%9U9^t^STeG=Vln$rb{s%zj#?TN%&z~RnomOH^>)ZPB$5Y{fpE zInW~Pey8qX^ce!}(^0pjW3)it0U6_TNcP;;fE{yAL!63A%$HHsc@tl6+^4FSAI&NU4`UfzDYM0OfM z?_7SyPRqc~OI5my4PB%<2g*R|?z!SO%-;_2QO%^xE#b`o!e2=jnZ}QR1ND}f`MoR$XXoP;$fV+}<>{mQgE9b%z z6Vd)5)q+GhHu?7jwy!|Q)$fSNO}-a8ww4(ZF$aZ;@j=V*?a)KkCz$%l(Z3)#*=ylDv24g^(DtBVRAUeGjbJ1dy4@+Rv^Pxx!9R9 zd=&@Tb?XWpXPSS$mXkCc`}rMn#I??A*~N%PF&gQ()C*3Zr6Xi!PM-Tk#tb#$g(|i`7JKeQr~azLgnG=-_bUvG3^ezuv_vI8@Hp|6o!%J zADr?%ZLM*%g;p=^2)yv7c#q`V_4)c}S`;bZsM`yx2~@gtS4G4NcqGY9iaEX&kDRHj z>wvJ&M%)hlwNBjfjr&4eRYZtl{m={RSB1uJ=$mQ1DJ+lIuV)Ujyh*DS#%0<&Y=mw~ z7HqYr&d7l21<8#=RmqUM|U$|%=dZ!fbkihJ@J%WtF%pBB?h~B4W*q8f@9FfM5Y&`+&BR!7WIKUi&C^MEfu2MfiRR0EZjvZ40&6&}vk~n`!g5-t7S~Ybknu1f}CVqq`c5R+g~RADPo^*Oxa5~yyDp;NI;+AZxYo4;qW&_8qSLTxBO8{+FGVOkg3m!@oA@+nE*Ui`_a{z) zS})lIH@fU%q4X*IkK7R%!MouqJFuO81F#(GaQL8n)(t@)-B?wUH$f;OW!TyQsPM1y zO?P4vrTx*)U7DWO-Hu%4&6$Av&z+Mr_Frm+k6z|K78!A*9uHqsL4c|F`)2BoH%5M+ zSw7UVvZZSH=z$5Y&OXDLm2jm5^-ZYmP;If!33?-+sn+ZacqyFu6DH^f4XJc^o|pUYP&&y`;)r=S_Uy-P7mw@KBh!c(uA;sRg);hGYsU zSJIGM{0vGv@oJbmnA_@E&W_`}`x zkh=0INVk+nIip%5=Yn@*FORKr0?Z15)*LHwkU&q5KG$LJt+~2MVT&zK|FPjo)c{k4 zOs^+t-QXYS*Msz<9?}SL&DTkRBsfnyZu2N-{|FUPeV%ujF!T=hzhG^yl+|f58UHbK z{1jMHyFRk!<+=f+yFQsEKiFn736?73>uuQW({WPe7)O@LSxIir2EI1;q%Zz*?HOwL z;ysI0FVI`=8F|SA66u4uZ*QYz7w#FT$9%cr$!0Z<6bJxPucR@&i`NR3pZohvPX%>k zsYZ!oZE!tmDALiB(2_$Pl_o`!64U6j|_Y1)0IsWszXI+`fOq;VmS+mRLD{wqK$ z_macRaA+W7$NE$5n`8rsN#crux17m&cJKZ3!z-CmyHS#u%__47Y}XGi-4<7g2Q^iD z;dcK(t0uoRTnh2M1b?-$l&iYy2YBjWNpMedF~<2+%nFt#j=FzK?%{@6lV%i)1U?O+ zEoZ{l3bg41A~MU(SgDfzvF78@BH0Ayrml15IhGT zXptfcSAKxRgP-hrPV?e!VlG^EnrD?*2l|)O%pMs*m5 zEB-t4m^LN)`!7|dh0c~3){aZtdf`!}lwc1pR6TRUXX9A@-{ruu{T>e|?Zubd)0lO% zWF)YtqUA#B-Szwa1LWZ9MaHE?jH2j;g5N zXLCZs{Ju!^h)+F!r$P+q`O8B;n%fJ441EGd*(I8 zdSgR*^3mRM%~X~#yp6{db<&9^8L@l6gr$&w?UO~rp3&|C=xyt2^`vY@_nWe%N z_!~LxJ#?Ph!4};v??YDnzaS_JeDqW5GDo*maSI0}&lnnh;izij(?f8}t5VYH)S**I zKz3V(92n=Do88!z!#08KR!A48KS!m3zdJ(U_3TWi697hb-=x~S&oDe+cCLgL_*q;+ zH<+#~Jr%UWp%vgM$h?W>UM3AXspYvA#JzJUU7UH!-6WRgwQ6)r%~NZi_?ziJwHE{v zjAtC~Q_q$TvrmL$WXFjYG-}KtAXbf_|-+d^QM)U^H+L& ziJH_;V(bNf=aRE}2n!>-CNxs9_xNudk3KO)FRp5E@i7Ic4dweds)D~BQ99moUpWA4 zSNW5qoqL69>m1pvK#_kn!9Z~#GH!_xE0n4;flKt0XFGz?y#^8#AJtoYG%IG=R=Cse zF3T*Lhh#Zc(_1bB;(7RTHM00(3OZ=NdBr2qv(D#!xojEn14edWyM1a0{S;$!`}t^I zFQ%i~)}1mPFw2MDMF~3&Qh%M&b(n&1%u*5M*(wSab$To+P3PWw2*)En6rLz=sxF+} zc82O-Y!d;buKdVb(m49V+lHjU4(+Y@&D1qZU4Y5<0xA1{^ieTITHXooOzvUpy;yef zwdQvJ#>sn++Uv{fRoW^P&-uXbO=?FYnp^J*eoSvCwgp~Yb?%5bcW_@^xZ#Thczr;H z@=wi?bFOk~no-ZM9+!ZYQ-G&OU|8JVsM^BKt+1qv0p*!%=l3aJ2~E#%ndHJEECb}LHq)EWHf?U--Dvd`n+JOg$T7J zv_4EaB3Y0SNuvZ_6fCt1^-9{}leRWJBza2m1$?JIxw}Rz$H$cgq`X02)igo-(n|v?v zCa)1cDldYXE7RA4L_`mlD;#Y21qc{s4G<{G3^Aeu+6Kkz47BJNa?co=rjnK_qRXo* ze$cTG5|YAlOVQ9967EoA%^06?Fn?3rY34}RE#$}*nt2Tl=d68EV+iamI|Drw`xJQH z!60#5YM0RXi~O7k?(qAbJ<-qybLfr{S}zZ#pb+XsKU<=hJ#T}`3Y;8l2xMzibB-&R zv|XUt9Ql+4pO8&-L_T+gGob#<6DeJ=7q3YvesoFMr(i%767Nj;aE*qee)*zx9(^io zT~dJ)^qi7bKr=bo{`nLxp4Y4SdXd;up#%@@E|d1;6HTufWgASXhFOLXLBU+Ls$W1E zW*ofYV@T6R*`1*;oL0<+vGg2TYqaO=x9upH&i{J zz+0Ofg9@-jj%JOwzE*`|Ho3}421{e+TuoDVZJXy=^R@;PDBJ*Amg04~peBt1j2iYy zqsmY^_5IHnTKxbF&dtD2Q16Fn#Z3pf6QDH&>Ay z5WdNuVC`Q(x0I7yQFpGd$3Rmpbi^ic)F81`5un-&!31=Ju9&RfDr=e33(}lN#xfl@(+NfP%yj8l0wKnxabXs;ZsUgh#*!((tays3rI zq3K?P2C$1~Bx4x=I@@}n$v#UAorcatuq!4}nWD$mxl@=^?a?{&WKOqFgkcoz$Zt=6 zjq*mPit(k=uzYXoZ%UOQXRq$k{vX-kAkQS>g+aEvSruvn{5HQDvXz~qNCZA43kW-VbaJ$n;=@5 zs7K>}m3)-M^kysmr-x{8kTTthTHaNY+j=8#go7hga9PIu@X&K&B5ll|ekhVY81wV{ zV_Or+r5=GbI1t>{?ltosAa7Kf+RwXt|Wc$(ficZcq*rqRBp=0q$D89U9&FuT%oh6%2m^o@J)$g&x8a>ZTpsdC_lhn8}{+u3vIrV z+LmbB@wJLl@VJSu-S*GU=b~=E{khI%%P;Wzd2p_uC?q*I}LHw(8&rf2v`k$ifll zmWte=Xm;Ns*w4KQi*^;=h(g)qJ}u*8{wr%)pXhRZC0xnJD@122E#iZ5Y~`VFYH?ZM z6z$7;;s*KoDL}+!UA1lzJwtyig^F=9ztv1zviREC`q(+2=$4OpT!R#@QChn`xjM8& zFiRGEUPn#R2(R)D8_Ks(y^6oN!_MZ7JIo5e?W(|g6=TNgU|rfCFV*Ig-aWObe~XM$ zAwx=TIk+zvz!)BOo0+(IzWju{WxiSld#7JC^de4Mi!*@@T8<<2V);_Ys$z1lbh9a`^itiOe&alo{t1h87x_@V@h1an5xsic${zJViNf8y zsFi%m?A*xt2g0eNB{CsCJ|pyozMreqC2LN%mlk>TG*QDHpYPK=v;U;?Ie;x-9wGq5 z3_Lc>bSn9|3oh-}6!%WkPKE%B3k{fZEjXgo{drpv)}=@Kkp|z~>EW9y) zWeuU;FD}Muy3kB)BW|_ej!s<{r8`Z9B5PouG3krP0hhK5J>;|5&pYpbR{wYd+&Ogz zEAj=$H@}FY>+Ge5)4uT6MSR;LGp}nw@CBerhFf$dLhoThVjl;*qgs1D9AT&BpJ_u} zzMGXJm1?fu^lrL$3igOj(X0Z9Is&yrxbX#c$S`=w%rZ7*B68)4s;&Sg6^1m`bh#;+-$ zfvgK4?zUrY2fQzQ+)X;)pez^L2p=^hYFN|ehHD)1dJ8ih;et;SgB7--|8*=02NbB~ zmJ2-j4|{e#>$HbFPiBklNA~XAZ%k4huW*BdJVmu&uPIb!-_y4Jn&{Gs-BdA|ABmg4 z)p#o48#-lcbEvdyP+RV1NGPu59OfIqiM23a|A>*w;QCtGR+pMcYh$|8K`NG2OyIoL zCl-(#b}sf{`WgpwYofC+A7wqN=G|MrAqQ%k)o^<2a$V&!zR1GfR?kqR=!C}e?#>RE zM#qvbaVonD`{8kF z_P1rr#kaQ0yJNZ;x~Z3)gXy%3p|}6l{s^eln))>>r{pbn!}sT5wk~qlO_jT1_2(@D z|B-CjFyknr)XHJ;-Yo136dX?IL|f6Ar@LZ(b65%(+AjdD4Ig4zYHNHZF%3^z8{lhd zb$h1ooHmB9C#>~NZwh-_>4y}#(xeoNS& zd#GEYx_k9yyW(;-T`@dIch4gPD5L$PED zABv{cHOHKVCpeHV1sb|D%kSIvWYPG^tS+Ny&jfBOUbaDFuE99|zKH3IS26;|BnUsp zd49R$rO`6W?%Fmr(Y`J!`haV($w=p~iJMhg>u0ouH`~_6S$bfP{o8BalQ!u`O~cZs z?9FZT;RL5)h0Esv(M+*UPN#ZF8;@pof#ZIrkJtQ*bWrV zUGnafel@#qjsz6>a4LY^=?IEo`ZQnWSQ_FG5PWz=L*J@*DGp&R#Hy= zQyyLV;iaoqz5mTQnn$ml8N^OaJ!{fSJ1vGew|`yemSNVFVXoUzU;ZP!9-l52AJakV zjecuCy%kMMVna)0aX}lgQh__`2aG$`3X{u2$bqkmKW>*fa|fz^v16ON;io62|;b>yutqIY9`33h8$^9_jxZ+<@~%4PX+ zl{$ZtY{nnVFL?M_LQGPY*0=rBoA+~ZEq_JsE8_PMyyGt$$jv`00{hw(6O8v3YMbh3oHB>b3By~j&bncN&G7$G}6q8bFIvk7J{Sx9G7R8>*t~f z=_5U%sge^7LXPxB)%NAne8Xw)3f*)$k;`Y{kjAHv!pdVq40@C_x#wT zwSGpLHo!eTQF!5nisqtjSV}2(}x#g<)v}pfe*by3;h)6R`hGPfYgKgL- zu9p#Ma!G5$1Fl`-9#GMMcx|#h;-Jc9y1nuMd%Gv|=%SAI%~$Lp-R8z`OfV|o53rqy z@(U%2^UglDXUkjTk^bP(04H`-Luj2m6aCu zMDHqyl<)=o9QJ?@iT*kbg^T&92Ry!kqi(2Sl=$qY_2;Np2fM07s;&^fa&Kn=E?3t} z{c3b-{|4GsKDgyVT8dTXKhWi2siLvw0S9z^B<7AouZ@v6km;~pxH9!<*AM=YNUd1# zu*=2dkFCX3e&h_pphorwhDmAud`nj)TosQ{cJhZrNM52N!ww@VDMsxQZ1u0NtmK?|VxpK+28 z+9r~QZePB9`8Y)7{-BkI!@v-srot6(=!JwlTu(gU;I}#ny_XmZuvwOp1L26|nfjj4 z7ySbX<#8p+>j51!U1r_XGQ4fwB3#`u(bymXI-;2d3yJCw#i9+Upy;F8f(`F8z2wVO za*!*R>Y$BLzQT5B-KI+-FoEW~%eQ06%DQ3$1MLh}hXO-Vm#+o#wxCR-3Vq&h4;vl& zgQS9zq+w1-lsH3lG5~|1f8iGy0oo8Xq@2>8!0`3>UpY|}FZ9n0zdwQ{25R8N0Es0< z^LlIYD~kR!cwAq{V!;M26D~%?wcr6(bi4&!cA3M#egJOh!$P>iAcM0nybvz;6LxQ= zWEt!j6n9Z`tT!xa+HE4V*>YLp{M*y1*(^BV2BkP! z*NjxAZu`Dduc+E8R!!5VX<+vZ zJ-i!;ze=xQ;*ZUN`~W?LtlWyS!!2|Ix@zlAmIv~Ti9gRBkx&@GJNLD27a`DIlXV#a zkIy9&%22DQ_#hAT0YG)3cxHA!o1P8Rjx#R3AOi(ndml?^^2z8kUn0%A2q|aD?r}Ss zoOCjY)no6mkI82L*~=5;7V;Vq{->6?DXY+}CIZRSpbp0;vj`U)f=$KRi#>mhhen4s z&ue^)@s`Arv=RMbdfmk)jDA;;tSjf!Ye~2jh@96BUx!AcBr|acoaP%K_m{b7?D$#? zQ|Wbm6V^B*!%6pUR=6`AaVC?H7)<~9iJ2#;kinvp`XdP)V-Z=`fWnyVLdJqI?vjea zL3&b9@-X_fD1Z%C`VxHQd3%#%qlQgb7vGzXMns7-=mZnHkhk#sXc&W*8E4Z}CP+}o zF1Z>q5SJ@;K|=_e z$YFUspN_gN$(3ioJI6w0G_NL3jQB`SU4JQ>lp)C$nh4O_kER?q1SnUi zTdQz+jRyrNh*Z!XOs@;8!s%$Up}z)mY|$HbC^O>jsU}iF&B7y`M}rDUjZ zDP+DokRo&gmEz4{^O=LsCM;9I`ETGjF3c$C*H7P{FkcvDv>p`|5bm3vM&To09Deb} zwIUBe>74;;J6fRiZe%Eu4}hc?g!a7AthMu9S-xRu&H!6S3f;%s6I54z@17`)Dp~eQ zo}Z*GvS88d-n^Z3KYgH|^mp+4dVy~+i9$z;wp{viZ7yUgcx1A~?D_#RhV5Y2xapsE z7`R+f(AyU0?4fpV#xl5&)yT+B)pBprKTb*K5!?^(lw>v_L{2s5yUD3gT|qt57_&Ub zMLKKog0_)QsTQ&BoB4ug`<)}#oD)8dxZ1_#pHWW8Xvp(6%X~zyu0bij34O0IZH&Qz zXJkBQd<)L0!hOd1>pk-$R--_f^Z#x*^?+i+z0}&o%1uIT@z)4^or{Qe3!oS7?71Y_ zH1+&$LnK>s4jK-B0jEx>UM-S=kDh~ z!=J33iW12f;u(=Ibk^{*C>F2ZGp(v;Ryi?toxP`@>)-llw$I1*uI~O?9u?l{bdMCd zSie<7NMBs3Pa3Gj>z(&0(90z^D3qHgduoN?4ZnKs){AEH{)gn`$XByR@K6MM-W&xV z-8eQv`9fgRxORh#vVR?2SMTC|{WP$&_F^ErErT+*iLPnsgKBngY&XpAmSv)kxiYm> z>CY4K2W@7COby}SEeQ4^gXgVDEw6pI9>x-T3fhMQ%vGP zcFj%Mh%jlRPPgb))X-hwjjzbxPB@_TM{1JX(w6wEA(jbKM~QFUqCxVwH6s_xb@b@a zjuf!=aB594b-ahlb{d|2XC1Oq_eRont?&1}9%q4zs zSH-a`O^99DZFSi0QO`wS;U90n;nlmU(bl@gMM{hXJLU;4PqZqM8^sTyA_ituPa!cXa1@`E1C3%$Owsbo7eqAE;@J zh^TiZC5$s9Rxwft<1$}Z|aP{#};L9;~vq64bLu)o8r&)Oy%#QA6kw(;CRG~ zU^NGwy&mD4(^7&d3CEN4kGMYXh@PKfed1v7x~`}^kvX1~?*te!vuSm<{cqgY7ioI+ z&r9}~{7KW^aIUpYt>V5g_UYJUYf22KWkMIjJu|!Ij zSCVy?N3IE3ZrRQ~R`c7pQIw4gJuyn_O&gVl7!|fw^`^%^<%mZr7Rw+Oo#+MVx&{&q^LIv|ZH}@SPtRSB4IlG3gq#YVfIa_6X(i$A#oSaNiP$~f zzMr4j>bue?CTBEPT@3Bfrw!|PXJ=Al-Iv!W9FbysyN-33ya=PWOaBZz9qwF9A_%|X zIuVO?vtZG7*Y*ueGWxZAd@yX%npHW*|5g&tLxZA&>q>wg02M7o9F3E|ryeSb+omXxv zvaeOjBo-eA{(460?X{IQU?e`?o5ULLBASLqA4x{g$8o6B(TlBgi0~ktxcXS!Jm$KX zIe!AI4yIi^>}{{5r$ z4B>!EF(^7fl*Poxo z?kFH%RIGM@tNf*DhrbG1+`V3Yu5egR={f2>V=c<3HMM+UqtPr4>HaR#x@eh##8S%1B4iMb0THVCd;IO4kUD4@EI z+tl?X%4qQ@iOX*Fb4PWS6A9O7t+;T_aco_wS|7GRtc9!aWr zi!D{6l^E%OuZ*XT_IsMM6l}fm+(YB4b^28vFttf^q;`XDEZ{34 zlIuF<_UAf-Qw8t|V0bI;nI5XOs5)z0(nt%0!Ud_?IrzKB{+TE`oLZbrQ!QNeA(dg# zF50i|)8FzqsWa?+zY9m`+kPZBa-8rVsBY6tC;P&-y_4^X+n@M?5l(w-{it9Iq41{` z*7vUMdRS^pEPX}2kA4^RlujA-omh&xUB-tzj$Gj{kMR*8*qg)`pO}8t=-*6ZS=S1j z+K0Rpr$7b(YjfjEJR9|Y8zV%&7CtpB&3++x@EG%4`K%BZPtcmS>e(o5JSG`eY#jRA zXwCh)(__knuQO{rc-$Eu_xo;SFGu%{6y0hUT@X)*{DJYKD4X5}k!Rv^sJ!$Kstpd4 zKpDDSbE*WgV3^ASL>~jwSxE3~lrYG((2u~H%-rWTzlq2kMlk3L^y0*X6RWsg(b{=Y zhb`Av$-^2U>e9YAu0K|^8ViBxF01PkX4gjb*n}9+Ao+nGEttx^8=OTEl=JiMUGera zd77-E`Wu#?YMyW>4EIwR7Nh7p3#l+ypy0jwL2y%|<&ealqYG3CTv`2T zmwWAeR>yBKtmN>z;9f$fe$y=&k<3BFgL3qM!!Bm$f%XW%_|OFReX|GB)S7~ID}2#usxy*l~!cbOKq(JAF!lOHt&I-*WCntSC&#DZ%W%q@Q0WnXNyu*chsd`eub+b?f@(PlC)Zt`o% zV)6&%u;YvWf!?Lp4`7cHwu)c_w+EAQyt(I5O>{U2YQO}#7O5iPvLq*`+6YG;7^vU8 zb~XWdz_F{&9;Tnmm(-YoRK(3T z+f;D5?jkXrZw2%b#lPV}b|ld)Nk{W*9KD`Dd_oOmsu$>9U&SEG^Bis5*jDd%jU!d2 zE4Ry7z{ful1Ox;x;y}M6aucX5C1`#?LuX_eo$qD+Ox^D93KIC4PX|Thsd3(t^!v5OBH=C7kqy9N)Ik+;8%yO_E*^=`$OYAy89tPXS0tEh{VB8e(MhgRh}ROwrAY}c1pnQ=_`ATshX`7>2XLmbMgz63ED zN;>K{q#?wc$OAFitZ;WVZpz@fuz@KFxz8ZRLdbzUtKe_x1fIB`CsG#mK|xr~xF^tS z0ts$(cn<2+hH(UBMrJC<*gS?wS*1?|LyMdyi8Mn~bEzY6wL$CKP7d*fGuFS6KIEH? z)Q|%TrnvGOkj)3{!Wa#AA)Wz@0bIuFNj-b#PP#oyKdO8zcj(7a&^^jms5nY0dOqt3bki-Dl-CjLr z`STqNA5s@kyu0Gj`jyUGZ!K`*`s+98#a(2Ze0QPr%4AntGATjOajAg z_TONklhNlK?Au5;b$RmZCdo-7v>n6Dkcty_DW;?XFt*S7JyW#d9cZso65ABEUJkgU?=?hKKLe|cB1@et zZ>YfU5PPL(j=df_0*b9;#6voBn~qWj1)vvm$8wI^Hfl$!9JA&bE>uj zXyuUJlIMuMuK+QG?ETHLQopkP^Oo304~TdKN7UQqbK(edgk0`eY}pY(?bkadxl=fp zyGylk-N~P5psmbsCoHF`ZoQLjeb@J=4UE#{=#}xYCp`kP8Oza^KD=UQZ5`n+MElG2 zAL#0eZjWXs{&?CzD1X z`6rdwqM?jHVD!2BAyz=G{&X@7ZXH$jH0XXURI-c~7V#$fZg0N+&XW4&U*hi_;F-V= z-h2Eg@`>>*?^ofb#6u3W_E3^Qj~LSV>bQ30x5VQp>|I-R7<(^_SjN~DRWW9=CD7-C zdh0!Pwe=ylK*j;riBWpm)MVA*52*T2{OOTOcE=KSiO~KBhn8nf?&P$) zDWv4w2AyY;NA*9wDpfpC&9Wamzu7!0p@?9iQf^^8%1>zsTD{Ny!sn_{*DPWXnYOQ` zB7-jtl%gDYsH!KDoOhLzLF{T<=KYns3w&;j+?*@cOv1vhVkNK_er*A*ztJ<4s|N@v2F6D%hu#$$y>LTc@XYOc zxG~E#7=f76VsHPVlMCmX|O-x=33GiLK{!}NJylGJAW zz%!K|YrwvoktQx~w^qGv&jR_@!fhR2XUT z5v0zsv&eXVNww=A2wPFMe#>I#7rp4BKH4v9hJZD3wE$&rJp;*>t0nMvvA@u#V)o9& ztHSu-GaawjlsCRPY(yyOVYa=Dl4Xd@u^g|2_}-ph>J_==4wutfs`o=>;KXt14tr5` zCgB~TGf=pMUnk<{vT#JKMK`9ZTMA?JEt6^fv87IWT?N+Ft zN~uejca5apuLmPC@9qkpVue(Hjh}Psm83RuY`KVYKUG{m`StlizPXPRu;urMp`6$K zDP2!7IM9!b7W~_%3z-Dmkug?>DvAa?Dd%@5shxNb8)elk$M9VJ1q5Uu0cN}9@UhZM znh?b=S@eZCE$O9nd`ov{*mP;CYykyl@*IcU{KVSJVv+pLy`6{Lc@D@%L9Mr|<-`{R z#3orEjo^=iT1*Wx??q#rj4O;j|9zm>-K&!eT!s)h3XifBkiZo@MKUtM{kNU%y$tw-=o06Kptkfzkr!J_eE2OMyXw85w!~UmOV@ zb&{18eJK^yOBIE?ilOZ$+wotGki_`z%fE#@iqlcU$0Z9)uhNOOO~o>kqcuHd0p-En<4@e>?FdFA0sw)oWmTo%ZMgMcC{KNh> z>88GX57O%PBwfCYF_-((-j-V&=YUs{-on#y?ODjo=JBhp6@z`1w)t!2<)X ziwnt8GO%NA@IngBo_d5^67`x-+qOSn1=r}FC_tAo1!rSU2?hvJ080h8JM$tis{+Yl@=?HVCU{vXr@km__1Nta$Ti zWtnJC8GV`NptFC!ZRtkX)9CS~i@~?}kY#*?v*P9Mw-ZajzuwVyk7DzV`!}?4t_R=- zr{e?bN8=?u-t`wKs&1!Tq+T81N5p50iqf*r8yLFn{(dH;2ccl0?KEtnNKGo_(CZj4 zdD0!F&<^QUo^o1EUEg^iY`)M#jBbdi#!ntvfk_bV%eE+RYu)Cs%PpZVC%EldDRhL4 zw%z#3c#7GN4*|YBY-=aZ2+>nKBbaYxX+l-AAT7_wzF)9wA-3n#mRAoo`Lp2oEKWE4 z`bFCPW0O-XDNEfgma%T;Omfeg=dZ`wh(72kZJv3w`8D0%7{$vyMW2a+9~BV7S18=x zi;@%i)&PS?i%p$kZv?+@&Xxfi>=fof#w4dI^!y))+W$#uv!vt};SS&}QPt~HdsT;m ze%H5Yd%(>ANKoME8G0|PT#z2GmMy8$eru!k@d1ZBIFXbpVYmvmOcO!AJARQ|+18yl zErGpIm~uRE*p27m&S!n|PVgu4RZUv*{@?jDPGDiq_Yzkb7UfS}SSB1y&V5MnK`w>s z)Uv^z-fKDf_=nEBc-BUf*)c_j4K7_1jMe!ct^VV=z?y#~xc);p@IJQUnjc>xrDy-d zOCy3Idk7`9RFhR(6rD`Z09huh7w%)HayQFvzD9w;H@&E@LoH{dE%%Nc*2U=?xj)VL z3@V#}aLg$56-Xi=nO=%r}7)W55lbOQ8hXKU*huY;!G#9G7* z{KI>^l`}7^!j)tR>^uP;qAQqaW_n(2uA9nrfd3^KjVtlZ@4AIDW{}DR4rNo% z;?y1#;YmG#iRqkk?vl7X6{H`x zq(BBwm!=$$?Vc_kmz03UxV$yMQB{xg$;~0eAv;x(5Ka2Hq9e7P(!@)_#f^!HZ!rW|pmW>R1R)YG!{?9-qn57eI}0;Jm!`h*Ipb%P(<(a$x#S?1SDyMONnn|K`)=> zrNTfP4{CsouGJ{!65`gq6+#o^S~=P*2=e${H3v_T<%h5HR@elmr0v?@cJUfw3>XGa z5EUYC3fTXoXq#+4wzozb$@a0t{uPe*#bB2lpv-g|_cdjbwdxWQYd^5(66PWweDJ!? zF_Lqn!?b@^n0dDwya4KXwGc>_TOUcsYeQEd-s#q7 z0)|;RG`__8G3Mq*c!_w;RiI{sGX{?pb}S&I4{npH6cx z9=GUp8f&wFe!v{C>+X>#cj&B6mT*$*fX+SRllz-@F##)>)a7Sj_H`b{-t-?e6~7-P z5j*~iZ#L(pLmZP-T>VFAehWXj7?K>mCpSOxsYh9R=qQ2!QF0sww!RJ30W`k~ zS(GchBaB9qvuk_$vVYz(p3zDgdlID>>ahG``RnIHKhZarAKKf+r73^qbAO0h)98ta{ zW(T_sKp2rE`OLq7@%~+BopNijhDmV4pdmGVb%($`b4?X8oA-YdorPah{};xG zNVn3d0@B@GN=kQwpmcYRMv2kg(k%kgT_V!mFuEBzVC?(5zdvBxYj?Zne$F}1^L`R? zxOfNEiXUr*E=C=8d$#g0B5It)!8N7`L)hV$sU}aoct+vZz|cqkRrnmPM*`3)d9j=7 z#}0z=Me7Cqd@JQpWQEzeV2s6Arp8iMJzGmXD}r3#zy!f8frRroSm*CeeU!hsW2Akv zmbr)udAbIeZPlw2zg1(HN6IAuwUg+b$Lw0wtlv9JIVNaQ5OB0%FT@W z+xxu5NbpvXXxC)SdCjSmO_$GDPq)dMsTqTvbC>{HiI^)lipyAAo&Cc{@@dt1BhFax zV7q{Wa`7*t$4pAHGYMGL;_%}^?2qT1W)3~$)pTQ(^n4wi77WZnKbyFKd&y?4UJFKL zo-_yJvV>dW^4PeXIPItL=;zx1K=!JdyT)A0Cd2rce$LML+@f@e{yMI;$i2so5> zmX7HcLLKO+?0Qylb|x}v)Jp?p;JW3uWInMj9=7l8I{(aY{H5`+dXq9a)Ag?dHB@J= zVtkaXzH@s}fk>;gDi|Xdj)TM|f^qc~&dkpH1FCT(Fk=J;gSia6t=!!#Y>G5KU znmk``cX9RBYAj=Kzw9{C%$J74*^4Qyq@<9C>Rs@tZc3lD^}v)29T6yVx@ zbS>twf%*Zkf&TV|Skx0iO&Q0P_+0A&Y}~-4l*|^o9NOFKTOJYdca>^6cHZE6vyt*! z6O&DT8>GE)!2595Ql;VN z+h;XLdF=N4D)pSlD@k@(R5;YIQ<;NHAg3j7Kk;HcL`_Z2&D>OJAo=k6;cau=>IIhX zvdgJg0GL>6<>sjKgim0A*dwe==s%F_5?!^%5U6buvWXkAJH2AQC(F44yo6}DLYe3s!wb#}tPzQDn4E4x{b zR}b@A-sht+`7MVoP}HdsmE5Y167aHBc+Z3uYWl_elq3w*&vSti8|S~k`lB@9>^a!x zqcU$n=Wp<=gvv<%>*m>}Aimyg)wb--Pq^3Pl({OdOV@OpOyxgOn=PZO$Cd+@53X6&&G+(>rMS1>P7kLPP_ z)YTO`xDuGHRuRhx{pek@kl{8G(TdHh=tXN10{*$#??C5*ckVra`mL5Y*GqoC9Hz4U zAsAr8wX$;kg*k^BUb1$?JbtHShei%(=E9B21gls&_A zXwBp4ZQC7ZUnTSb;dj&M>Ie4H37z3%Dh{e*^5uYN37DEe#eCUxt#~7mvPs=Su+7(C zsiSQ9glahLz;^Vvv$~Rb>!=5-7Q@cM%t5pi;Wt9T|5QD+D$nd$lLIL9dUYclvm1|{ z0y&;bo9iPNc-M{!0B1dzVK5^g!gu78)w8~Ru1>k>%CP1b_qAR7C|^d--A|bQSv*V( z5al(s0MLDh?b}QJ0Vn%S)tSfv6>1z@0te!_2^993HD`L7kW%V*y?co7QvRmkdV0lv zHuB0!b0>8gxLB>d)Nl3E8A*a;8S@>wJ{m!X1T6ktG8jR$)yuUbr+jN);-(~skL)SN zTJ6uy7lviIi2^`@g zmu(2{#P108t>^a+2{=vFSppnf^b?I%8;bafG~O_yWxcYauIbd0OW`!bz}La|){jzI z|L>fU9QNjoQp2l2pf%&KV_ModdIv7j!(XFU_SsG&=XD&*>fR=mOy}+N`r}YL0A3>Xr)9+aq?y;o~ni~LM*wWZa`)(fgf`gLFqtr>!e(CKRljyzu$0HaYS+O(E7m#Q#)=5Wj=AgBo_}^5W$#eio=#IYx`y5O*?W}uXF0zk zIlAg9P@Aj*1~k(>_Nu{~JDUUb_`oPjLGqOnUVaCDJzBz$fny@u(c`6t<=k)l#C29@ ziHIM%0{a$BxAuRNk7~>_3=lo<{dMiCn)YPNS`_kp6AUv3kgU@^b_J1-jyx+TK3X~J zOtx3Gw;Ziqvn4d*l~d`T9^*XgtG!+;H<8`W({W*|Y38F6-s&}89WEA)1zKEwjow~8 zp`$>sDLLMBDGMx!iv+!PN+K~nkX3kR%c#}eN>PVvMkD;B$U$3Pp8+lBKh%d81Ct1; ztS81xK4{AzUA#F;Ckadp+EtgI|9(DD$mxBvTbYSp()wRA+uWr7KgT3_3MgY9W_2o& zk9Dt?*H<2yW*%2(8!ofvjl6&;OTD8L=W-42ikC>a%6ff0KRvuEwMFWkY@_q<7K3~= ze?{-5%505Z&rv9$v;@C#m8wN0tV2;PujA{epS>x2yJ|pqaTZr_S?V?A9~J^)1nr`| zxi2|?;kXt0=O{mm-!#NsE=^?gBy_Trd+y^}iA@~-&K0r=R8qA2qHT+|jUR+tkIR#r zs0^DeMX}J@#_ZiidV0M)MKK`C1r0##{6V1e2VAwCVY|bKSLhb#Gbkd$hdfFKr4`}# z7Tm$bOjFwHkOf&1+}$6!DDye|o^$!dzrVy<7wC;Bi((oW@+!I36u$}bKe(w(wvx-r z7GlL>jPmH9ovU@bMbikzaMU0-G<*jdV9islc#Px{b)F`%nyX>)w0j~fh z3DG>Oarbbl5%|9*w7}4v@K|&?QIMwARY4_{ehF&r9dX%He#9S8w*HMsbc1*x17=@F zojHaXFG{H!`AFXrDoR0Suqv(izc{X(qkm0 zq-28_teWak>p>cc*~EJ~k<`u)jT=c^GCYkHpoF&2mAt=3)EjFwy`DE0W(i5X&2p(u zjw!SCG%N(tBb9&7K_#GYxVtM~K1*yNA=Vp6c``G3k*m7|HvzbotQEVBC5~tkY-B2P zh(ccZ)_c1Rqgkxv1@YVNyC7Smkm|TpoYwovQe3NFI3RrC6G&>!DN{8e%U5zOZr`1R zQV9(MwIbJEAl{n_bY3iSylw|7rs11{9VxB(;B|aQ^S|A>Db%wFw@;Zpk_S>1-7&@& z={Pt*I_f#Or~n4OjK7XWb9lPoKalR*W()1e0czAy1`XBBijE8m+Vy}Lf8K?Dnks3W zDent)cY`e1k}&l)5ay0RVK9Sxb(0X_n0iBRNMl18D+XIT* z7twApt64h4BB*J%#6a+(dAmH{8d%vV&H>%2NFPI@?OhfxYUta)R!m7TqA%8b^`xom zf}>-M$fjIUm8kC~@Whg5ht+P!`Bc$hhSA60?6&o)~za-wsG(eU2w+tMqsAXa6<=e5vQ z{E%!ACN}08@CL2D=*;@b_ykfDvBz(fR@$uJa5cXnMEfkqq&+qL({_Y>%3VKn3T*WH z^Dn$&5yt~+DHaTj?9;V_cxdv#EsPBM!7ls7)Ct~{8?2aamd+ z@o@`;u_c1&nN&sxfRN7#GnuE@aq1>X3$amsA!^X|ilvt;#2|U!ofwRtp>jdn5a0bw ztS0A!xG9DZ7JU(C#bGp1BKMnDYBCb>WVAm>I8p9*lRloJ;`6#oc4{-pl!RV$mG6D> z$DSCHBOa0ESxIXq9gwX?Ey(ENw#h^;{{O5V4gSIv>fbUX@!59e*~%dZeL{YJAC`JX zjy!(8yCc6)){3xXncR-)0Oke-57|>i+GJ+@b_gwC&?s~zMdaB5)OJN!@(NBRm$(Y_ zSvsS&H868VVbsQIR)k&M(wySsXFgo3N{KH_<;my4jrzySYG^WSvRLMe4S-N>XC_dt z*7iS8qy7L+8YMwA5puPXAk|bA_%QvNAS^2V=QNV@aoMKrh?3_&=fFoI6(*+A?1>K& z>bf3Idl=kSPK%)1MR=neES@`pHty7lQ49D_|8D z(DeDzK;1zbp1cSg8bA}UmTyfx#K(~}ZwTR51Df9)ohD!S(4dPY2Y*FWPYmlCR2`=V zV_sZ|ar2weCN$?arf=?>OmV)0TW&o~(%Q!Yj)0{vP4eV|Q@Jz)Qw5jxMhWi?Bhut+ zMUa@+tZn<5&1#%Cz|!oJ#p~f+e6iByLBEhB>zw?$hw-;>y3vzPsGg6cCl7jV-G-4~ z}H4*4%cl~Dgm+YFdAeM>A$@Cwq$wpVM z`qLL%i=XFH3AY}@0}99dO!0%&6Xr9Do3P<}AJ~fvX#n}OGMD2dx&DUHUxoQUkRcn< z@RY~oj`0o?>s1sE!DX$~c1Osd@7=uASPI5~o557` z7Q-%@CY#s@ZgSRY`x5=*`gH>I|G7nQ_bhJ=LvFIc!EtxIK4xxrw=ETSr|ooQ1x;jU zI8SW8f=`3ySb<-lQaDE|6Iq_qrpAgnUm>5c2ovci--e!q;RV*2M-Gk3Hfc8kn+ZPL zejoR87gYjs`2CY*@IQbfjwG~OcqD*0Hf>V+8tqG{3{W=L=Ddu#dK<@s$wwWV>UAhb zc~%;khkfNd!8={P#4Jaqm#ZD#|0OR1d$De}1$GeQ;%RKWE=#qpHbcX+#t??t z;~kCai_dp-Z~IuIquxLk7s^6jk_y2hi=iExY|efBFBO}vm@w@Ho> z<>g%nD{`6$)9MSGuAt&?f>$L3xr=j&$g(w_(laZY&JRVUIN92F#Us6BDoFS)kZ}t#l z5JPO2EY+Zc*@9mqXVLY+Mu1qm66{(W@#K>XdzY zLLtga9$$lfk9{v{f7|+d`xc=*mTi3jA-cT#Tl3HhE&x8U4gcp{>V$JgX<%uMP2UQW zMx_t&)r1Hm*m9nAi(H^eh>VBKXaBAXk&i*A+ucmyJ~Oa=K}@#r6d>~YB87J}%6TiF zGw4E(`1{vm3ME`uJ=!w5fOjA4);>5>OXvUN;eFtJE&S;YGIy@6ld?@0{mRg=+p@ZQ zGp8HPf7)xSO$+SLs5O=vEObx7ce2^ETc<@3ZAPifkdSSc8Eg^cum3^h?1JgOIN!BT zsAO}^NJV{xum8%0?KkMYWrgI` zUmrWL`hJn~0cuZ;Bz5q7%e~gi>C?29--hh(nHa7o)BcQm{#|D+f!Hqe$tkGzWPKgj z@;P&==%|@tERpAHx1KJUq>0)i85d(d(&e*-{@TASh5rcPTK2drp4-MizK%B;oES@+ zm8Pa0Y(0t@|4i)ZES2y;#ubPv$; zs?yTl3j;68l|}KTu_$(In=f7H!{dLf`i>2NNxY;^tM|UPkhRCzu{)C2Bqmm%ExuAJ;{KNiq5Ad-1s?o&myQU&uzzRx?yF*oL1LJK36#gM{g%Fj z>spc2QogRUp(pXEXDhz|cmLj-R8!5bdFYd5#Kr`o;ZWYH%NL4jN%N&xY8tQ zYm)m5zsyztEzLdePcG1()HKqM&HGX0l7lUh&ePYXlo}c+zf^m_f zk8$_12ih%7ki|@AZMAUg3CzDQ=*6#C?bRt>=Dx`Z5({SH=XsrXzHIA@bN6MI^Q(%f z{N7aV&#-a*ll#xNRdKLKA(H37e@upd1v_X2%1@VFet(>4X3>)j$&#i=z6fiHbAvpV zUdhuLtCKlrZuG`HJ9dJnq;=^aP3xsd#f8? z6F3;f)82#KfpRPIS&!DemLo0c3Q*f8bYmbsOoMHuqR50O6}|^@RFuqCRdTtot6tOB z!<=>rgAvaCod{JXd7s}o{6X(2Jz<`vEMl8Bn~#XeLMgi-G8tHY?bZdHdGU0xLh&rC{4}NpW<=!LIf;&42w`8ZRG z?c?hDStR=5UwB*wfzOZNIXcW@$`7JZ6*Klmfwly9OyB6uH;r2EEpyV%{!y)TwTZ1X zN!6cx^-U!kL1h=RiEywVjz7rPgtS zznuNKsSE5+XbG#t%UVu>GDf)%ECk;;*{ploI6ZMqNZDb2|(`bWpYkeJsAYxI)wg__i8WH7uWdfE&}Bs{^H{ z>w)>UliA!+_q)rp@pa&u*KiIqs8mco21Aw)90DgP3$)k{?OG=!$4^#gTgI*=!8Gc} z&7^O+yp2?DlGc_7C7A>HRbTa^a<*+7i`YyRr+!vBqh~rZ3h?1I?lx2~jb6zKuT)Pu z2Zlj*_tY7_Ci+c)paZFOh_oSldLO8NN!Kd{S!^d8{KGJZBo9=WwVv*DD2K$_NvQyn zhePWZ);GS(;FxZQ*U`Dgai-bxQc_m|QtyL|s;Z{69dyiKLIZ#V|4V&BF!OT~lKVt+ z-B;fXvUZgJCN`6n$#liJ5!FYFLXHT5uW-58m}*6D7_h=(=R9+EkBqx&w11UKA6pEQ zGuNFb-@v?F{07Z1dd}(u`(Yo~Rw?;y`&ny{uIlQJ{+?9lJmwh|<|JF_5;d82FOodp z+;xQ>&!$?&7dHLU0xqs(6L9rD22Wp`9z8~%mhU*!vtFw!2@v4aJZQbci_HqqeU;Ex%1N@_srKqIu7^(Q`X8tKhxZHq>Z%m(H^(gtcV-SVYkupsgj75 zt?v}whsS6rmgrl3x-yJyW159GvW4{QiWFi7kY4a(g{3ze`rEKL)Wx}M!upB@)o&AI zNt<(;9WNBWq3APsqJ2BMLBO;*3u{EyLhuI?xph1N5A<_YptnF`F|*FIEG+l^JkLl}gyw;ePpoXzm4pb2tK;z>UtX20(#C zG`JOrLr7c;8>n-wA-NhaBH5)DJf)aldW}?DajQS`|lzKc-j zr#2II{94jX8gV)J7?C299+y5LW%9L)c?H<3f&ctv@Sj;@}_@QU=qPt$p52i|JGTN<7Py?mcI!_zjD|k z<`V|mw zodtD~KkBd;|{&4vz;6~^3?o1z*t!ZA@nOkEP_E-CTMpdoIZ_+21k zV&*t*k+t&B5hlb<(Jup%4VCkYVRR3bKX!+2))V{usX+wh!`0IIAah&Ql0Xwv@HK9O!FFoH(UDJDN;rmo_S6mipB6w~Q zLXC2jbW^esLVsq$2NHSdrl5h+po9^3Ghzh#K%oGkS8axhqb1Ou`?hr<|g$^IK8edkRiuiTQv8o z_Z7N=@Q_+KsN@Q4b~7A-LVm?F!X#lk=Wn7>$T=lEV%F52{1#*l;T4@l(az8^{#iPO z!5oOv^!oNf8jm@zl}6-o+U=V>lu*$3U~iZuq{E;nD;4iI|SG<-{gvwu@9h-R7p= zzbBDq?Yx_`7x;Y0GrSWD51_RC%qzSTrvAyNjC2aqw4=qQz}%jzB9no0NtnhT=#zb9 z+Tg%M0FC9jn)Ck>@&utruWAz+;8sUdVl0hJJ)Um5swO=D>xX;JE3?ZQYKHC>p@uWQ)g%9h%OD`Wd3xY3@D7#2%Q?_lF{+tUE2aQpo*g#d@x_qjO zqq|UuBHd=#Z{BV^f_U;-mkD0Z3FGC+gR z0}$Ft+euCBKd<%XeXza*1&+h9uTRD;x&KB=K>+dJ3Zd_*!tabenl23BHBlK*r;l|4 z?Ddg>?D^P5eWG1JV2p-h^A%I$wrFsb|@rrBbz@8Dr}&63RY4zj?a7B}#{Bi4GIeRWRy@nz92*Wx3Rq z{JbVfbqgLx$}#E#Mrqp##f4^F_J1X>aX(nOG#p$%YBEt*zbNK{PJ%iAWOALESfwC| z1y46Us&ZF?Cwp+W+ru=OVgrrK=+jT$7dQ@HN>B_-9MEs|U81x%+mj;e2OcV|iA{vs{PwP{ zL#Gh?Yj5wh{eKOTf0ZP<2r?PrC{Myi?tXV)R4=JKE{=Abi%WSN&u$z&>>i+ucr?gs21iq_pPd?k0Y(c4KU{U_W@csg=S!!!FO&Zc63TW~ z8gd=9W7LYB&MId=>btwA)j$-W(Xn2CfX#X*c>4k+;Y>nIdVKX1&or1|$3po;hFg>`<{z#bkb!Wh}&%Zy|wfoN)OcXqwegEzAze%FOXLkVK3m%#{nk7_mcL5>hLeq7%W=xuW zwOT@E#k9XxY_;VIOF_u~u2#p2a@Hk1;IMttAIB&@^vvgngP)WPY(4C==Wlv!jNSj~ zjq1=1&JDZ{t>jd6wz;*F+pxbA9Vgfp8dA0C|IKIHLs$|v$@QB>lcdGPX`K+3?+{kU zL_m3wEo5VDw~_7L5DhI@K7s!Fp!Ecub+mdKR6W?cNLUZe^*pF!^WC|G>1!aqLnxHN zmwU0B%LPL|XYb1dV&U6Qw5txF98DSh zqBWAV^UbRAV=^$o-zPM4uUb`TtZXr<5(U@Z0lF^#x91KG^Lsh2%`-h?^$&&Gx`&)z zRT9YrOFxWhWGU+F1-|#johvPZXrHYG4kr0^=}WusOj!PMAz$$CJ;!)vIT_hG*3Wp8$SS^1xB=s?0&`* zk)4m8k;yM#M}aD)46D~0r(RkVSDP%mElf1yU$4KL>H9yDu=1toEnS1ZZ~jVeaDvk4 zfw7HNN9uipUsu>+vAxPrM0sUQ1kw8Nx%PI_(llvAUdKwPaXL%$o=rJ*Bf11R6pV9; zG3sadEBDB_OPFKy^5%>I`*_U5@Jy(I;nhO zgbU(C)2lUN8-s!}a}SQ^2OC+(!F~McBg3nnycFp{MUHpV04|jh7{_h0@#-Xfj+ke2yxiNJe{6B+j;J>;@=Uy3 z>>Q5mPK*C0NWoj4B;odW`ZCD*1GTxLCz6d-PZV9aFp$UekbTj+!>XM2ao*k?`l?7T zH)Xnj6*=?Urw3OY3u?YRFhr*2%+D5tr08%hK3lPlcvlAHoy2nLywa$@R}Jv9?rzXt z&{y7-Mi*%7bHp=Wojz5&DVnWG?%W(|Shk#^Ve}KqC39 z)9~KU9-MC%y);&d76(Oo0@FrBgW6rSYjGrg7AG}gJ|`IK-pKacmeXjM@c{URB%?z? zqtJ+$ch0uU;Guj$4eB*#f;+*v0Ot3@DL&^vPnR9|{hgG~zW#T|zn}GsSI6Xo1VvNb zT6N9xPacuoJFO|Q-Op*keDH)j+vmcyv7+NI{F{UTp+yM8 zRA(LQWN&lq;2{YXO~_<*+! zCm+W>1{|nHB|;=j&z8OyQzMUdfqU~HsJLJM;E8woK{DZ>@qu>ENzL1T=iIlZ^=llhHd$_I@jyF&5VLknuO)h<1I6F)crh1!(O$1)HRQrwX z)T*fd#DNKJ;Tv6n?|<|;e7`1HQy0Ibt3Q(Oja0nsLyxq2k62im2|AB6&Yoq5h z6xPf$Fc|(%ZF`@fG4*Y$4g*9@?Nc=;mntgx0vD2+mw9I)#KYhWq9y3Io#Mpq%L>-) z9dW)9uzqo7CYaXe$cM7INLLEN6~fOGweUKqrNUzv^{$Bf`I0LT+Ss+U^3Dq{18agn za-(~=$uwdLKK&^`Q7n|+!vk{5(KP%*co>C(K16m0_TyAB0Ln}A{h_g-mZ47LMZ}9= zw4g^yc1DYpe|e($D9{Ye8%lJ)LxQ4bH@LP1Zkv~mTU!Ey#}JJG4i@1Xi(E)}#iLi* zVB!{qyxX;t$Y&N4^b5|RpP;iv2y=7dX}DuV`otP6;rdKIgi46#lQrsQkG;=NZcj{Z zZfWtI2c)Oj7AxuMY_(OnvRYqlI5yeXsAMNtS%4%nQ+iv7Hcx`(m`9#EB%D=>%bqrT z3WOFex)b*`Llq=lC4=oAfU>%HB3~g$6RFuzDHVv4EL`eMBhQT+IE*2J!7kafXo=l% zM{~ebF7bTSVd8D^;sr78rOZfhsy$VxW{)$v>=w#Q;%S75MYXVG(^BZ~qV>i)x0@pS zsG9d8S348ZCx8kAmHI`CFscN4kW?*4M1Hwouw`3gHjw2P`QfFdFU7FBJ=NSRAA-!d zEgRupi7s2vRR@4!h*jlTlK+%U@qI_~N9;GQD1FkX4I{#Uut?cBp^!v#vRq;a)0_DGFyh%wzTZbS?RiVfRlR70za6cvSDshq zXw9cQ2tAqjz2YCHMU2~0fH0u{GARr_$S&rO{G_z(o#f374z`XBQ~0ECX@%jMTima6 zh8rY3Fq1JWyCW?mj;1&qNCy6o&cdW0`W?{t@SZ%57VwVK65)v${-XE8`4T!?X52!sJH5Y~$PBCj% zL)Q~N-Ho#qD#dh|?4pcNfM6S;q4LbF!c;(@9p90B1{v$;DrazxFf~3890)^UmKC-d zb&gg1jM6|-Al@P^rDk{gk_yXlHz_XnQ8Nf680N||`|{C48qbHS+fh)RT9<*U0o~QR z>=HxPmx9;?B;Usqev4o+*Pt1U4NoTP1{&>LO<bHUqactVSg`@ z!2UxC5=1!d`un#1Zwh$#6LaC@sGii!% z^@wksd;lO3;lv^$2Q!haLqv7G3fimWKORF$IAMvR?x2h3;M8W4!3TGo*I}ah+~Bkq zpELv$@%i#?$*rl;9bx%-A5krQ_+0cx8PYHwW^rOd)x}~hb|7<^IB~DvTDVG{yGi4* zRt0+wc=Pvqe8BwUETKSL|5b~sA>q?*To{^I%srW{RWAe4@JEht&HAt<3gO#>Y^ymv zX=1BT2%qfQ%P*6TTUO!f(o3?~h(e#;ormdGezb^i1b`0Zu#}L$LZ^FqFFA*!S)_YO z78dZRu{7u@vV$R+JF7NeoOJb?ZevJa(~vr2WHO$T?)3Q*Yzl9zCmby?ByA4OaarLs z-ivyB>&|zI^@AteC#6ZR_JQL+(5T;cmcRCd@ch`t$2lNrw@GfNeDH!W@C&@`-v-_E z1;c!&x~sJL8P$lp)*9IN55jF)MxuITV75GdSZ7exy-%!Xn(M^l!cCy+OIDCL4TV`r zTJh$@r||ySwLryg7~PoyOz8A(MK3l`s?kvp4RUpxaK0T6ZlmPfIRw$1u)dC0nj4fd!W2w!S#MrX zvNv0?DahM0hL|*K($ehLGOb6-qbFEGB|LPE#q^U827?(>E=0zRdq)@=P8E0a2Tn|c zS#{kq^L=VcZmvux)^v>wsKwM3ha3);Xu*=`bi^;K$} z8rl^o=TS*bf|p@Fj_Be0TL?Id8|D`~AN@QPN9Rv%VCa?Q2yD3Xu%ezjV zyF&-cW8s);v?#dMvk+2#uI*>jm$<<|_eDgK)DVYM+yOz8#>rE zC-+r>miph~+5G)Z#6-;(#;~FiJ!HY9T1^WcBUx;H4FDXshV!Y-YD~gZ2JgPI;gHMP zF2qS1V(;nG7SbZy1g1jK6)rt?ig7M9Byi3r6Q0C)cR}QUqAeN74u_2pV-ruci z?b)Ta=@;tWxvOt9$Neb@7I_X%yU}GH;OuQ3gQp2ynI`1M`|bNByCO-%R>upb7e_Xu zx{06bkQfM7_0= z4Mw;&j81h{e>fQ9d7;>iGoMyfZ9Y`+F)TUQg-4z|G~{@rdFM#|d622sgCG@<&GJ9F^S(^Wwe5p*AV?EA#V%zv z8g9*wf~EGEWV7wZpAWdU%_IDo;ss6~TGXF2EZG>eqBLfdC9hu)yYhrcb~hbEzu*Y8 z{U}Lw^106{ph2P>@xn!%PxX9Se`TsujdCiY_&vLVv5&?Yei_6{WR1p^%~RD*k0IzU zH$pGzpmkY=_LA;!0x0;RNnc2<;mGK2ZOnO)@Wll2uM~v6f?lngcJ;ToHuD~WVW~?z z<}2k~>pR;=QgFluA;k3H)0#J}bru9{1Vc8P)_+@{DJ8oslG-+cOA>XPlCDQnT)!4B zJ|QX4<5YGzEl#*x3>OyySasj-7e&nqoU^~?NcMk@U{3eaph{XKM~v3m>r|4nbs4(G zY1z>n!;KY^MLeI@MOofvQBV=#>%>{WOxDhi$}9348YN}nBfzYd4EfKTlD{Bklfd(? zt@RR-qV_w98f<^WH9nr={}a`pb|OEjyXtjm=GIC<@$KOxYfAcSqSMvs>Szu?a^|DaNhlQ~K7Ixa*(V<1sMLx!fh5Aaq-|05Bp)fR)zsN=4% z2TuszwMd~gt$wGcZW>{#-#~9`IID4tzpU+KeK*HW4=@M^F>k&RgTEd^ewjJZvA59m z=RYYht<7|lt6g|&&95CdpK&fNue}>?yXr?dn`sR9k>PI^XBv{i66b*mcYe8a8Pe;h zX%3R8b0VjyB_6$2ct>0Hcj*m8o^3VWPI$H!Z?;i<$tcfG=CRo2P6u98=es!Yn9y$? zi(9>u@bXW3_695*j6&Dit+{Tkd2Ll3MKk37m6%@nN43gU#?})}Q?^^fabq7zR{>U^ ziRXm7Lzs{|rz(TH{?y2hI`zkG;e+us$Z|7%A}Z0nm6R5*LbKyT5zehO6V=LrUyw)f zs=5tvdt{TPwKJucNnrei0jo#yG@p`ggwZ@LAM8T+5(qm~aoAY}zcN6jE@PQ@p=Zo+ z5x2=*Yz&E1PR(N?_492jHPi_gXS-8_cWs-86i_vDk=jeLHmYO78;xT>wYLbd#fxcm z=<%$hRw?p+Zx#^xg#@`(1W!x7s8Ok% z1hn)7(MpQGJ^sOt-tgOMcVoH1ID83nIYeBuyF9=X5&W3K2ZK*Nydmh&@xbI;9R5J`ZT)9|Z@0fotQTb+NV-ZzYBgUg$67G|j-fo>TZB{Qk04mNF1Ru7H>K;nY(Kt7%Q?`PoH zdan7n3Zh`&&-{$>ve5|c2Q9wbUz02@?`k*mwHkB{oL;lrbqO6szE2QS6Rmu6L$YUe zc{QU%CzEFNRxicFJ3s(f#Js%UjCjnOJllI>Er`A+R1g|g4|}w(E$*XtP8kfQ(#$$l zI$=-mJy$E~-#pb9ByBI(nwO-oMdXhHnU1ScVv;30hr{t|wg|3AgwRb}pKZJgY;3#V zSBr|i!ndRE_p7lVO*_2y?SvQ;znu3C)MW2R1a4TK?A2buGoU^7gO^oYrw9e!nb(_t zO`j?3zcjH{^mf?g>!dJE?mOsg>C9e-`1cffB&ohfrT(Rug+<2re~#@6x+ z=E@e8bve&?;EQ_BMheS42_P&e>%TdzYQcSWm=~2`=W)5uRTH0;(zMGi6|$q@*0NGD z-QG<$vbE`X1vbwvyFn5L3UraP(C_DxESIG{r`s?a9k{|yz;q3qz&BOKq;}WAQr8LMj(!|U2Mjnl5$yLsJQOBsUg9|3Ierbb8Sr;XFG~ zn2Az_FV3)$aPo?Cw|5%-7rNQWri?JrZ3F#j-I!7##>=rsg>bA%G9?x}y&MGK`(vR6 zMh!2I;Maang27WlfchB7-!OYy2>*=~uB{84T$8Ef1sAUsiTnBRoN4(x&-ps1~fR!9^qf z#>a24g|US!!h}cou~)GBV#xb;^F3AHui@>_uesS;Jpmk9n7j zcC$YryqkjeSd7UkdH{|5<4iCyFMDevUN_JH;kdUq^FvcMqVu zvOA%XS4>KYpWfOD@%K8>T4Ipbpx$eM6jEE?mSs8$ljgaX;M!D75Gd<4zM8X)e#!Ij zT|8;ZEhcaUEt-p2-fiiiKt_=yn%`Cp#OjBNT8q_ztImPEj@v2o5C1rz+vx9TfL7fg|Ikk??PjItbIi#ilf$~MOf)Cyrmt=(KI^d zKacxqD=+v)AELMez_(S+luLrUVPlhOzCRv`nbxV)Y5XBgk1->_pdvJ>Z)c?orz4kC zTGCAM0+Ks}VvtYb3ZgN%6e)>XA7b?n&j(Ui>co}=o04{@t#V_yzEXvKsNls|Ecly} zVr%jvgp3vQ?x6Jj$PXeVoF-f!5#q=10+uGMx$lFnHzJrUbs9lx9>)si_WU2sTWRTb zL9jWk*UdxLBX3i!J?YZOQ2vyDo8T+ZgrsJg9m*CN*NcJio3NpgEOC$;^x4gP+cjHh zv1HMF)|f_`rdBb(KNBb?+COWTd{J7(>**4Re>1Db^(hVWMM?s@ep>~t!VtHVk;RQ{ z#*H0aR}^PV>gzve>hd5IuTjgnE&Q81=ESNrO!+C$=#c6yO@sjiVcGC!nAt_vh-N_K zv%fnEU1H@SznC3vA$7954=je03{4BmDT^8cp5!;NTYFJ4wnfVeEK{V6Kt$YqskG`8 z&UP)HOb#)xaazdf%D1)MV*2h}i^;{UfD8>(ixL*ov&m08^~x_Z`K`l@*saJNJ@28h zQBb-Js%YA*lM{8fGGU_oVa%Oeu<|F1{!cV<-do$zF82I{T=WdEmY-(|8iZAd0dF2@ z+jn?-sd3?paUN^d+D@_F??$fTE3lJtKj-)-{PAFBNI44em?=S9Lk+C$m0Xvw{fY8X zL`_ml5yhjxWg#~FCodCTtJ~V=2)4K4VHFha%XGf9P3KDjo+7DXavf#NczWDee`3bIdh% zbwhU$!(}Pn-K2go{31bQfvL3d7;AdC6IPRs#GFG1BYOp2tNH|jc~k` z9v4Lavy5A0n5<=E=q-n=8li|p0Df43hLs{?fBFHrxaLo6={KZ1`5XinB2R4~?bkN@ zEeKMayMzTvHiXeMKrx8;)qIm3v=Xl;X7hKfQst_~8q%#rO(*~Lrj9*G2_W1P#OS%q z{&)`FIcx=Ez1&NvEqRk|7PNWTZ8P4@KecHz&(F1Vy)}QzySi+`pM6&sfqCu%`VXYk z;Z1in%z#^^{)MT_(g@!jf}Ri*1m5}|N9P?+_4~hZE0R@4$f}6!y~hb5glrKfNmh0? z=NK7T$5xU<#<3+kh_`TXAB-~Z>F$9cTxeP6HZx}Fe+lBg1v(r=ag z0UEy6^e52dUjG%Tp%@$S8XPmG*(eET{ycr=$o^6_23r2(hUzUmk7<1s8S>?-Q1-gf z-4%(rtJnc0Jhr{hE7A=GRs>Z5I~S z+4@l-(fYG@CK}WM{kCcLeLy@`5a$8q*TpC6FU+m@Met!|DwMfE9Q>(68@`kY1 zp`Y<#yDl)1_8}(o4EK=tgDw3W2Dj9(=0O^M_Wu#F4FYJuU{_bnMd!W3%7}c_Z&}qa zcHMqO&VA^&%K4XwZ|^4V1RBLooP#k2l61E>EX-}HTFu;#0LqB@Y{*oXJF^8|2=nos zB9+;_K5YC`(z0qoQM&I5yAjH8G|j9{mq0nDBi@fWY&8!|!GrO{0C7ROmC9y9xQ!EM zW*?1OWdD45Au#`@vEAWf9%6dld*~7;*@a?wZR@ym+noTG%ojoZakhv>GR7gP@F2vS z0_1%>*qM7&sw!3I_u&24S{j_F%k`;}4BHZ;=*i92X}n##-!rtYEm{86 zcgBYkselhV;2ADfO#yByj+-tVuo0Rk&W4bD7(F`VO?6Lq<(M(M{BmiKDseJwzA^Jd z)FG$05aMcd2Hu4IGz1&fw)O5^fnh3C{#+d++tI7;QOn}Fnlu$w;raofz^43g^yH5T zeo(4Xlbu+S*_IX)Hg)x)od!q(luP2lnCUF#)Y-5y&3~^$h?Fn}I{O`Ot530%e~jvf z)H9i5P^P&D!hxI|*s1d$IPP300?SQN3k?>m{k<#eR^wQU-cQSamabMWGO3h;o?Yfh zkd@@@hPbq`LIfm#@T2Af5i_SEiM-M!Jyfd@E#y35iR-u74>HZ8HI5ibRmR=qx&BAu ze<(CB&GXF2TfV-(j5LT6JklJxM|R+F!QRkKH+Qo9WGmF|41UYMb942PZ-%fR=Qn|v zMGc;GYVy@$O1YinUBRCjda(&MuPv_+zap%U7c_2qWTTPG!20sHLAa7o7EM%P)k`Dg z!k@!Dm)}|Vgfz7)Hc&J1TmLR0{}JKHLDt$<$>~a_z)Vl#CR_CMC{+_H-Cc|6y*F1- zy3Q!LaP#74jz-*P0#6pO>UcDCPavs*d;Azg51EHjKpx_6Pqb0v;#Rg|IbX96{9Kyl zQPX8hcg6fe_?jlSD+Nsz3jOx%F2xpShHxTe9+>Wop1a9TH7x`KPOfmoF5v2>0^CA6 z5NekP4KWq@3ecEDxJ0pTWBX-ax=@(_Q?h}22I*neN`{7}PoZr6$D zultIy%q^=aXG-W!D8>j$kAElUTS_QBG zhLxdf&0sc6Q8k9!s21qJfHKT4IJeP*?vQ*Yv%^Ul6So z>G@9=ZwxW0I9@L)vaRI39yRkd{}2^{0V+ZH^KX6%^PvN8#Y@ij3M3>+;s=r&)A;11 zMHy10s>qjs>q=64W$!d|RSqu#oWlt43$E8UxgSUQKE6o49X&9|_O8^TB};H2|0ZOU z%dC8{1{%-8yC6yvCZo(m` z1B8U4v7+Z6Z}JE+^vGbxSA6H4!+St_|3sK(gE+ZmyrxS&o zoSvG*w?I?hr!-4KGp&WC>mtBXofpM39QOCvOCPweCf3*qomWTI)P0MI7YJqc^lT36 zRZ4v`JS6Z+Uo6&syu+wW@God(c8RLO$I8Noj$_YH?KP{_K$5RfQ0fj~11pznQoSxy z|FJBFP0@fc5Za++Qe3nE;9zm_+y24APYIo`ayxTbS@JzHg%;g~4(swO#l}VJe*$t0 zFjnX9aqd{Eu0SM8*k-!dq14iVty$)dSlEx-?Q7Jz1g7l|)3IsWJ)R3zC-TRCey2Nl zTP?eX67E$XVpTYU-7uR=?EVTNS?Q>k#@Chujp0~EB8g?!U?>Y8u573xw(B~zP}BONhb+JvT$}cWuLxJ zH5jw@)3|6?P+4w;BHt@ZNL%3fe>N`4(#hR};TR@5i=1T3XW~jCEqi1yxpH!N#wcR( z<~I?AduB4*KDvb`Pnr|%KgExlq&5?|5=_rd_d3($bN+C1*_pjU3SKAjo%iGHm#c1B z;Y19`@g`$+6>irDUsN*f{n&q7VTynMQhPydQ9QJ=n8D0u)T)hOdr~8X&_1@&-u(os zB~Ms}&ndpd!uOHO5r`T5>l-*&<@R)J*=hnOo1@twFgZs`iM)RZeIS2W)OfsmTrm3m z50KFa0%_Ik?+^a`Pd;%qp3n;s<`+mh_u8qu4!HV=uTxS&(+QCa?upy%jXDJ!i0+k?Eh`qcN%>2F zXZmh34W^`aJ~U&v7d)R-%m)t@R4X0uJt5w`&6M!8et{B?tP=g}UxXR8Xmnw=7xb}y za^s^khXUPg@w^tt8;n4df~D#IcX35YM`i_+CNX?@lnni1E>ytP%J%EPhF6rf*u>A$ z#|Aug3D=4$V~21UyWJS$VO}@I!AylaZIT#wJR|A3-ng+g#y!#9@>p3~tTz|;#U!Nc zWhR#|pS)ns19{@gfA@I{vf}*GpvUjeA+20lN`19XgYny@iO8vqKgVLhzFLuZb%4g9 zwfx!1p}?hKY~bcA7XQblD&Bg>=szM~e#krGT~=T=;hm~yifGsb6e#R3Y=Vw==Q~;J zpvr_mh*l0{n2Y+8Vq6>@8;<4yh!XdE_VuT|m%-;#Y&FW?Kqwv~>f%G9v&uIpnmg5| zwl&Hh;cNnKCeC;dXyEpc!A*J#xR@}$M8bEIb~a-NjRD9>`Hd4Q%=3CvW@G2y+@(Ik zTUccc?p$3KE8aQrm}sk#*{B%>r(|y9%da@T;w6mElW}0+twup$@53BcIADX?PyB6Y zrZ^vC^ggFL$uK}Gki*B2vG+Isl4Nu)W{Eij=K(3>=VIBh(w)bD183>!YPku!|2^X2yN863`}3y1DAyCz^+8?&!_t2( zN*kZMo>p-4`D}=kjeK3IUI4}is4NSbVG1jviXRwIXBe;> z=CJ+F_q9jGw^qOivenJ`W6I(`qRbyKM2WF;{h35LHCIg*`$v){A1QU1`{qOMf&h1yzFoS8vmq?liwX7+4%bKQ-|1mK~Bo-3t7@BTb3Q01UZv56P0mj0YU3l zV4BC7y%89dvo}Pb+k~Kl#eZWtqETSF8Gm&5tG%q+K;b{mmfbDnQf*%!(mb`9;l=_% zY*UdBvu4LCyv_o8T5dT}lje_JVULz}H0yaxHKov^0%TgBh0hmMV6@%Kaa^Fr6N3CO;v z4x5X29EGpJNt$eaNGX>P(ma9RBZTaW5;W z-$PUDH%!sgl9z(Fw^)a8u~yC;TFWKV{|uDT&Oa2Wjh?-lX5pM4CiN9$Vo^T!hK%*RA zm1@kJU$~{_7pJ#E)h9GtqiqwEQqtk=ct>R&$fb7lZvS8 zX7O8|`23dmw){Cq*@#>gi5Ohu#jYy*aKqi^5DN8<9sCXrZO223Wm<0lIr@l*#3HhN zjY8_S$3u4F@l(9Q=(g!Zmq61zirwq>jnl6F_k>xC^~A4x`sdGX=~7bz)ScYi+XQ>V zF~01P#(H*AcJ}!5j-64sVcF6vaCY|7wd^}lO zR5a%8Oy~+5OB7Qav7JRVayzlkl535PhDXq%M8v~VXA{WI)T4qsq7<9GhjcQYyuDqh zX%3`5u5Qo7XG}|IYHC$T7gtoE93PfZd&d*F27g?|lO#a`#1o?@qfUnvV8{6SJG&@8 zp0M^K`l=9MmcDDfUl)%4E;OQPOOZN8kZ{|m}#{JM($ z`sva;Npq6}^uQn}_OB8`sM7rKtVdj9GXHs)1%e%Jne_Wt9JPJaq;d#o=u+zPYlZEd zuqF?Mh(t#N!+GoIAQHKKt%U-TY}mK2@t?M)64M-sO#K2w6=_x4#^0EaYnV-2r3@s) z0XM^xdI-rBL;u5Nan@xb1!(qIV|RidY1CRHN92Pd5`hdDgqFg{ypYZ_O6-~OUo>$O zSENcPcZqGUvgf$>fwtSDSC7~j+3$r~#gF+t<6r)9d9F;Sf7(F&Q)a`oY3Po^Jv8Id z2U0b`&VN>6!*e z&&0)38d^cvD$z-l)NQ@yz!V7uxXw%Id#e;>Uj93iKYFBk#ItD))CUwpH%;%bvj=)l zEyl&Wh5XO1qxqXYv8jj>2#nl{#T>W$IKedR|C1;qWSN1O!8^`8}5}YWGM>Ff+ z31h`|7T7xzn*48J&HyvkAs(ze_6pi*ysE}!@eL+3oC73();8VS1E=C*O3tW3zoY7& zAWQaF@^131Co(aU$)|@Jn6=JXaEuQ(v?K~l?f>>NlV0IJBJ=?o$p0W;nl;(b-_x%E zM=2m>r-x*^P0aGO)-vMyl)?WR@~q)sRD@e`-&UJHMQe;caj36H_X?p7pK?t2^O$RL zv}n9u6BP9l)mS*aH77VJzZ$0uL_GTrp4C)P}(_uXOyIvl)Ji z=QQp@qJHO#x*A#Z0e$Fm0~e>(G%mBBA4TLfTV9Id_}D6NnXf0$oLam~73X(nTgtPZ zliBBM%AF7$+)Pwa4i?EW9c)xA{6vEH@($E~C~>j@grJb*$z5YrO#aHQKb;!+T9?9n ztdBPLMnAlnOnr{h5tDx+)3p`fVtrV9SHQjn*Y(!TZoIWd+VV}LY+%aL0Ix@NM5s3*5?6 zSsI%WYdk^Abj@m}jSmMmz?m*TZK)9Gc<%Vh)>M;JXK}N2UOmG$#===a17bZyLB*85 zf{5=@93Y5RgL^J2s=zbBtT-pv&Dptzbk-QIr9Kt>Kw_>ptm~o}ZF+tv$1X7f)x#%9 z?21IIfPfko%zpB<9#B?yy6A7$gRGwF0nJdDk6WIj^-^xNL|Q#j8T()q(zYk$Ovz4q zS~b*I8vje~O8Vis*=2=6ZvSoz0HjV?0%xkv8Q>Y9=SKC31#240CRDt<>$<2vBPl-Tdl^cv%C*8uoD8=@$j)6k_rNhe`{27 zluQx+uy!*)dM90>j3H0o%X^Vep0P!FHk?(?YbtU{>vg(h zY_A3U*?J&PFcdHq_R7LsEw4Rz|p=jUKZO<39=|$7C?UR=v$cK5H$UKCl zJcEtNEX%pDa4IO(%rsy4(I=-}u6p=Bv`C=xJ4OW+ML~Bf{5?d-G3s?pX1Dc!MC(2D zRk1q;Sa~Qrv_q|pk;*i61%axfnpx5i<5f1Z3gDg#r|V~7anq#r>~=R0%F~{$Gn-1E z+5`?pq{7~XM?=n5_71oK6kF?le-T%vo7rApW0Ukg($zG7jpCtiW!Cub-cggog_gd; zj1S4*vlcE{WI*+>xK9R&MtFy6pp=#4yaYibYyErlK<>}y_uWrpNH{I#vGXOih6-|A zrNzhBB}?9wEJ7}B60H}@ z)~^5d>j2i#zG^0>ql=mcqMX6X;dI!AYe3?{WQUw=5nzp4hwlLM_GY)M6Zh-GrgU$3{-gNbcbb zrdP2xBNhis1gcxuo*kWONMAF#2ia^sq2&&IU#7w6I>~G0pu+w_l6Q-6C;$32I3!2@Z;>_%uV9oz6VAW@|8M$ z;$4Lr%|4?`6EMvjnTVfFxhYTyQ7S@5CY%v3Yrh7g4z_M?8m;3wDYtK(S{j&1k?H#> zSvL`8_U4TI4*|KqBy?`Hf-f&tgT~CWA7ZhUDA-c6*J&YD;ex@O>pY@0>b; zy>z&WJ?5wb8ZFC(F{A=f2TM2jj=%V5lkYi2g9c&7Lv$2$l+XLPbnp@n9Poh7r8)g@>TqeLx) zh)BbjnyyZ)LCP9R#_^t`rv`Ccw}0YJ3Z1GuO4ZBbz%gcK#dqfBzmlN+iT0?QmU7_Y zOzHk;CWCLHdqCR>w`hq{Gt<7+A1K{YP#^&zdrcqgjLAen@4G;&mkx+t!l@unAJ4IU zVe=TSdvrYKe6M=t<;xBWSSyv^99ZQNb7tDcb9!>v2L18v6jv(Bpu5L-VFkQH&Ne?y zsW49<9pJH?PjAvejuT=#v*mks75^l9$(EtHdmcHFFP?Hl-?EZEwXi(hQ^P{`k)W}f z6BTb(wS1k{Cr4VxyGYY@uSJgfR5e^=IiU~w0CCNCJ}{#jq8fd8dSLqOTIFZLu$I_t zMPk!{6Pub_{36U9yoVLfezUE`s&3AKpE5n(4#@oCfct{cT`fc;D1n3rVQXCEyB&wz z^+r|H!++Vl?236P8LIn5)oo-XBJzyC2@=Y#@N|fNtW8A?XnZH5)+}TiZ%e$;Mr44l7*)8d8$9SyR;H})6jgm#_{My-oUfUzX4RyZTg~An z!6~Rxh8(b!={Xp9_+)_$L3SXRr7Rl!+1K(s*{kdi&ECg>=&1o3e5Ey}UiNQ(%P7TdU1t4TZm{+MnQQKCqh zk-7;{Op=_dP_AdH?0WP|TaFazrd&cJtR+xQRxFQJnTIN{oZsr8_H*5$+E;eG8}|I! z#`#$Xci!ohVdFccl0{?_wQ990?g~D- zr|)|&Y$uD2ex6kmlD(dz?^Gn-W)*6Y+rc53=l8yFz?4poG!F0o+Kh3# zWS$dJFlvjiqe^>tI0W)fOgDS^EL$s^-n-Wj2JDGx51$QE{^iCNkeZsX*U&faQWz8} zR(}cqY%3f1kwfx8RmP8@_1x-)}@2AxmLtJ9=f#bhbLd&7tiSMdA@VhF)&u61Ru`BeEFVq^ed6S(ksL zd-BEG=5F)}iEY_k-!XVVbNIe4rpD<2kSLP{_f=YcEYY z?h3^PN5NdxMmM(w5AOlemxj0buTc%$RD0+;_StPg*b~qA6on+Mvyx_x_8u1dU*$w^ zQsIcpi#+j1zsZ4&*hBXJ$#F(BS|wy}>8b8z2u|(1>VO%kQjH*^0j9BSY-D!S!;@@U z#Ar!vQgrStSt5QtNqN^QgzWpX!fAVw9PbRqt6iywraa+I#?y2sv0ko^VynY_?|M!H zuF>;xg+ze@ny*|o^CKQFpOvxDb9FQuHj=j!IkvaUvu-J$Xk153zv}q<^j%9fou#nr zGuIBH71bWG7pHlob|kJ`T^4I(oS>`mQw9!KZu#k51HQyl9e(Fk#e+i z*#%W>F8SZnU1r2&VQ6`IfMERD0A*-)4y$;gmK0HS(dY}lDga3MlGud8wuj=Q@iu9U zbrWSy3$W#Q$f8Y^LhcDi;KqneyfYpq5~1DEt)zELNJ*3Dw^VA~9v-7;Rk^vVbVO|v zO*_|@*{^)h3yaBI(mVFDKkeyF2kui)C?<*-DDTke(stOUh>uBq)HP#kNNCoVj3oIw ze7EIrXDssP#%(nZwro$d(knsA^oP|PSFnv(a*?jf667lD^J>V zhVZ0JMRWXiygSPBeya$2$DZaP`9sgWmp|Opi=7o9FvL)q3-gYPlM|_dpErM}20g!n zuW~36yffR5zgJV>V4vo=44#Cny+Au6-G^rVUSXq}LX_bsIugs~=j`d-DY6tCN_*eL zi1xxMFjKcIP^>ZMPK3jpqx=x?c1x>4d8bj1LFiW9-o%K=LT10;<`7R@7kU*9^WjQ> z$c(EfAN-G@!C?0JlkS+^T;zksH&2u}j zyK)M!hMmYKD2#P;KAxDImdaFlj1|1ul6UcEOZgXcpB=7hV{<>@qnqF?DAp=KWUDZy zL`$@DZXXR*`MVqZF?OI3PlgNdc)&vIUYS_{o7A4ZB2E&Vt>Clq=&(JvLIM(owZVhW zHk{emX;`df;pOx26FoTEaxxPmxzh5rCgE?^x@=!bij5ZNTW@(;(>n+DCmh^d{bgrC z+?Lw5{JN}GYZ*wDxRJZ~H&{@#k5vqW9jE3l*lEK8yEu7>p4~WH+}{^dW(;xZ9S|3< zkd8tWJVGMyTzlRleVD;)o5u~^!q8<#2-hsCaC#otPd*k%<5lJyK82AIg>91);r0CN zYu6(3&iddCqm-xCgKv7uv5oLjW1LwHG)1a~>W9eU-daPPm%X3;aK#3wdw3w?lCJB@ ztT7+Fxm{2At@! z=)MJu_9~4tQ;4Rid)DnQtB;m=Am1v=yf)-OAL>f}mm*{}bXPzNG#f>CA`Q5{Y$>dE5Qj|5mx{mra9rfpidPRFlADqHdUv1O7FEBYCXVm!@!XtIq0gs`bJKM=s{n4cP` z@2vFdx7cx1xHn$$t^G%|FTF}dHJ~=sfn;kjr7d$=ZN{CkQ4JW9J)S8PrBXj3$rU8> zb2u#*V=32-&EEPnS`RbePGyMgFfQKdi~X|~GRV~luBL4b@;F)r#pXOo@ao9MWr^vA z2DA@qy0lsRsW#UKc&I?XoMe^{Mk3Hyi=ztCu|%J8ZdC^QGIpCPTl%oN^(*9dNZIei z#|auoe8*#F;#V62q6^xLLQuPc%xB{j(nm4ki#Bg&QwxWr;xU$K!I$OD9rNVt|1zY)oCTO^WBqP_ke%pGEO_@0%EjKxu zzLP!)fWT@I#DCl)ai#}N+WI~yy4W!9V@zm=lRUcRu4Mf#M&J59Lkb;2B6gI?ldZTP z*vp4{8c6AuUWao{XP(=TJL!@H1;LE?RjD|2aQAGTMXx|Ny00USoHRWtFQXd}Oix3TPiYodOv4S-kt;%YBb z&;~WKZ4X-0(_)Bf5`z(ceWG z+{9IwuE7lcq?4vJ1|ZKZx?Mi@|H0F#_-roh_xgz5h4fnn8^*No`FO_sq7v?1W98_6 z^VIIgks@>%w64}=>ay|_76Ym&O6AFcc3$#5X>iNxGoCA=PRn3seu6jHJCwTW_A7Yz zrA2YA>T_0WTVa(G_>Swt`mt5cHx=)hy4nwgzImq2G)k2xpKwhcaCQ}Q*8P4Dy#{QDh@3 zIQKoS*KGCGD0E29yhvAtVp#mZFy?Rm=Z$!-R$=Dd{*KLYEdMwh#V|zR4|c$U6Y;FP znZ;chMM3FF22R|U$vTuiN%a2q9_4h!OjD67xK3BT;nHk%PJ5}uG{Ovs&1ZbU zV0Mkwuj;Afyngk-7|PTPE}p*UWpkUhc)H~nJrQ0dG*xMM^w0$4m|vk4_xq+mweX&}uN2?cx)P#HSk}G-(P>C& zMT>btZx_PHQy5TSdWazI!Y~xV1+knsBK-mTYBRwNmzQw>onu84U3mg z*m^imMgnWzaN3zOS%D*+Z*DWMna8zQRW0fKnXfY(I>`P;`mX&wyo7LE!t~*Oo4RdOrEmb#p(vOYWV_-7R?k z=4s#6%Uo!`j?Zz63~h^Z1|Q=)UDt;HMux;A23|N5o7JL-g~Io!K1{4(^|{KE;VNTOar@39=qx+wGLIHZ95 zV!#*Y-fZN)eX;cn?xY9#fWc5^blcLcx!lsGZ)x{^_{eJ5Z~s+uoy(WAwDg{_i`o#r zodD}yTmDj*Pt`wgd>bPsx_jsr(Bh`+?}yrPtt`OK_+J}DYT%=J&p;?l=gM^yYairp91$V$YMYqnq?%+mf0R@MwBiyi#83%aes zH}^xbJIj-;yO<}fImR~w=wtlsHIfO|x!k&wCK&Wb8o=4`txv*^wnLQN&$D!DRe(_% zk|9_L3*M)>wtN#Tg9X^2+?c|HFOf$F=x^>-{vUi6ZjFDG^Lzd%Jz9>;yg{9bP1D86 z5ubImS%0GS{p-pKtV1EmH^mPO1pjz_s;!_XDZKjqslF?qj=pYBlGw4$@hpVIbg}A4 zNbz^$`rE{bDfcq7&1+HU-qkSXdq56z?OIgc$1N9M&*CZFwyFBZ`zJi8`#zvu%DCX#$p_rVUl@S`BN%SHW-Yi_#oCZr!+n0*-FY z2_>dVJP%Nz5B_df8jB%|!i+=w$_}i{x$Wvk#FQ#_ZOfiofhtJ}hU`>5K6vkhjyRSpeS~>qqS$wXLNKCW2{?BqC=lB^@17jY~-DT1V&n)eDPYOj% z--w(DM$)^t(09yph;Kla(oE^m{3c|{V?A zM=sTCUFuIgS{w$gf}xWM;mhKjUzNu6-p~^j-W6B!53U5S%oPuDPloGpU1kyid3NILzHVjh;s_;{`?U$79_7|Y}xe?_kW zIA}>cw0T1KZ$+h`OZeD*N{7ox*5p6ln-2_pKxqdrvT&e)e;iepPhw1BAwD>=$w1Km zI*3>0VdwP=GHSGHoFM(TzJ_<&vlT|?3N@S1x5twjT?pn9eLn2v=94R(oMefsg?}g7 zB1;@szU}B?HqFfH_LaN1Fn9EqK+;^jotuXugg2_&vz;cInn;PBVnerhSmOSZ`Ylf~ z--D~M)~KG_v?Pc(7~(yH?@fv@>b|+8x5?qeyUsc*@4Tjbc-KHF zRo9odl1$z`lZ^lGS}OVyUovAM^ym%${5QPkfbuy_PiO&=fA7{JJXbn*-P|s1i2LEI z*TO8th1I*0NEY$3OL5w>%yqEAdj+;#{%r#%$2I6OO zz^Z?56ZUGJDUP4MGDJSF?4uyhQ$r+8D%u7L2vDU3z7z?pZEuc&Z1)aY$N8mb@iwYT zv1i_c(P$(zzEa*s-=BjLksB>07(Ud?@yEzAvQkc>2BRv!4izx_%@Hb4y+}j`95c@> z;wPT3wFIW+l~NahxEZ|x5#Y=yBzaqELR`a5k>ahnHo4N^{gxf$y_Y3IQY4{MuPqO> zZ$B^%6QK)&|<$*xDfQhOgwZ_9kFMVP;((L0vQ#aE222CYcbC{91sg4Ybmqp0ac``1Eu*SFR z>?66KU-kJd`>b)`ZXCDobENkgP0MX%y(GKyPkYuk=QcN2y5h9(yxdz) zTROhag8`%zq=mxaouTaqJoZgwBaO7P2yQOv6A#_O`TYj04(k z*tSYk(C{x`X^pfv7pMkyB!m4m+9nMfROh5X$gPH*(d4ctdifW6zR@tB_0siWr*+zv zVzDl4qENcG7&h%`^3+2jXx(UXxl-1H+gE;IfHiI}r?y8thTALrh0?Y0FL9PN9=|-wc#lBhB}9eTJ0fjv zPfk_$s!AQSP(CZTNpl%HGsm^ zUnD z@1E?!x#9`C6>4k)fo*+^H1<*l#yG~^+PQO`le70zbgh50i*zsFI_07JYmQ(6IKHb( zvdub*SD$pJN>E1bBAq?r7p46gn^(x>4}#h%68>L#GF7gluZOoBAto@1%z*h%5JP4`x5zKu(&~6y- zJ~x+`GjVG1Knf!Vt}wAVvDw{k&LOwAEOLmoP|(MK*$%H6@zRL-xt&ZdAl|U4m9dhk z-SF+#hj+B^<#!bzq&o(8TGMP)09uDVq+m7M1++iQCYn(7SA}gmV-`OfjduUCKalU_ z{^#~m#la9pv*`jK%7=3iQfe*VNbLGpXXB3S&nw~&y5rgZYl*QIqI)&J+G4tTW8Sm) z=npP>m7Y4Kx4!chmq0p@FF$gN`=#XbBfM^&l zyq5wQf;NCV;V~*tkaGd6p!+~DGa3MXzv1qh0a6IL@ZdmmH}6bM7~O!0Ux_sId7V;= zh(eL1L}m@RIojr^{dbw_#3l9iUE@HiSd+s+6Y zC>kAa-As(IC80MkF|Wi1yqKUPR?kmUmo-`80bx>ta*GxxXRf~qOwfU(w7 zrBu{^M5Mw%gDKCH(wnT$ocAZr8ux=Wd>({K_4g3F0+Sw+wqOKb=pB0hD)oETi>I@0 zQ@Tj+taPwDdDaBi3oT$~xs6Ht6(JH?*`LkPb3Ee}ctOFmuCxjL*S1CYu-NH~6ehUf zzgQ6{ZZ6Z`e?d23XaC#yXK!W#iigf&uMV3D+`Z9 z)b=`F#Vp5v<4LuKd^@#3ORZ#2e#b4%fBtp!JrB78nqJd|YyV2d%epXC)HUh~I=wz2 zvu}92cH|(>bF9tVDDc6{b@y# z4qg(<4IZ=iZv(?!#!;K%{x1e~cF&=k94xF5@$areg@XLFH=xnfkU3~ zO?UV>^nh4J*5Rw!B6*gY~in_5D#2tbArm8{a9CiK+ven6KBgFK)H>(wy&KUG4>XE zRKwAicx=@q0&0oUI2445jY!G)crf!4bg;I8GCnIjsTov2=u}3O>Cg3ybn}35pV6j z-$LyqnpjjdRy~MQxP}z1$&oK=a3|5)J#O|CyMQ=u0VhP<{V~iqQBTE*%WnD0yLXlG zw5H?dZ`;L`Rf)#RbfldcRf-w|YdTj=9hD8oc8wNrV`@MN&!DeiiPfMG{$;W#m$P7# zNO%|{=|x+5Z@THH0!$renY;dy=wD!TMn$P6*T+THa4ZL97(9QVu`sgs_sjg+ zGy{CkWxY_Q$I{~e5fjasOsO!P%Yoc*~=;oA^%dB4eLoLmWEamD1Go0*6 zum4uNpWiWX#&1cKQLZ_a__-e*ZIoQQai;r4I%jrez`6N!tFZ?ALDy;v{t&`~lJ@f4 z0)Jj>Iylh9k}*R358Y}84-a;bnd6qCE?ta~%Rf4^XA+X}=s zA2^%y%@=Xt?u}V+{&CH=kKMKaS8I3+7?^C+Y$1$6D?amZ2Ed5tKt~^eaItjVpUNT4 zT0d}MI~|&pYFHTIBFj}N@U8k;cx02-2A;}X4<-nHr<9J3st(i>DFJNPmH91f#c%Ln zoE>Ptx^#|;!&`qGfy5|HaS6^YK2G&4XoH6R6$-stEs_GXBR^SydIeFhkd7>^_M8N{ zjQsBx+7RhDidA?5(jFF@r3Kso(S|bcRWP;ls!O%VYKmGhy_L4zc5nD@`_1-3G$s~< z{pvWDYT$r8yYW-0p)s|4>eahcb7Nq8^D~$)4=1}C9f5R%&KMiH(A~nVzILzGlk{-> zl;98+lK*Dyr}z_1|M$skd6oZYAAA3HJ5KzMXwjN$2;-0(Q^;zVekU0Sz8#<94ZoG^ zx?=j#3VdjT&-DYMk->T#U4PtQVr;^Pls$PrhmJ1lNeR6iF5}+onYD>aSp*~l`m>op z+OM-VxifqL68yhbQ^%ul8~WdWeqliobxxbZEqY{G(a|vvzvgPP#w3oZb$1w#^KXu-7q%i|Tk5M^4FxOqFglVoC)2VRxma?N*(5>14vkAr&0xzcY zM7nWELfe@|!SDF1-66Zz@}6e8uC9}EFkI_oZgK&gfC^H`26)&&$6Hl zT*nrDS335uX~$}~tY*H6OEAz{ROv0{gDT8)<|ogXobvu3M`s-s)%SMsL6A-*l~Cyh z=^Q|5rAtyk1Vp48W{_?a1e6*&rMsH}5r*zg=^1i>VZQJEz5lXUu;#8a_dI8xy+6BS zhTAay^i&X0yoPl^l})4)H`OIw+m{`|3;~&CsNzluUW`#i5}~h|VWf%P6Z5{egM?}( zm!Myfx~~Uc8|x+neBtcmWqfTL-M6}i1Xm4B3H(4d4=CLR!L-V^KViq%AQM)24Oa8X z{k3q~&N@J*#t5}_^wzH88)ay*U6}ox!tp2Cvby=_w72I^Lt|JwX|-{B$aF6dM4cY5 zWnU*dq8TmE9VpX`OsFW(Smi*8e1@3Q|wx z0$ag{Lr4_$ECCHScw>6)kJUC}0)ggGJ$@}Ok0E9zMyV9l`4;y;EGn>jH3Vy%H;I&J@tY^F3^H!q<^phThxJyYM zDu3nuEVcDfH)7Z__>R1*f;aS`a-x*GyYO7PpzDF;*X!@Ta#~Og#hkJ%@oMvI@UT>F z$SXAlxDB})bvN;jtG{6By>HG#@CwDC4AyGzPyv6I04I_W<}Z5iB&{0v*1vI2NsWR{7~qxJn;V&2i$yRl$3O zLdO4Ox$*o$6BWAl0Qv)&0$-HY9HInqs1lE#lj|K#O%CHCsL)*PnOr|?+Ku;NB>kq4 z`-$|6A1J|XM8Ag1y^Vml-?fikE(ogemY2p|l`)NzGx5_8opBHzRh*{|ca$2|oej** z8m!8SNoNkBqE*m(TBRU^dgb8cwj{%ecY!FLjg8civTnmsW4P6ch!~Pw)@Mt2>4qq7 zAY_8`IaNPWQF|Jdx2eR8^Hh54Vaq6?^)Rk)kDNygK_2Nh$sy*DU@CWyoo{ZLaaR|` z#kwGNxYqLdWNP0sp+IKB8utU3&azIkx$}Y4m1wZR)8U)C{fqqfYxenk&p zSE{VZ$7-^nj)SNW=`A^jE`@&}O3+b0gQ$aW>^G7Jkml{HG8}jG)8Rz|N$PY3-ue$T z#Ok=R%S2wag!a1ZCM&dt#7|a5}j%t8R0FDw3Bsd zt(m@|xh0+ex-@tb2h%@oljL1Hli!9%?kcqqgFuX~V2zAtl-nGWIDI0(R9JoIk z41>MC_DB^w#pxB4kkwzkmjYtW;IZV#G~a?rbrYm_lY;0g!>JmHlb3dv1N1&Kb(iSI z=XY6|8b7SANd70epN@}rd=t{>|G*FU5crzkyv(tc)Ar|k@W^94cx2iOQvx#i$xV*$$0SX0z8cZ3M^8zh6-jNSKqF2` zy}c)^U)}$n#ICxSekH--A01Ktm?3C?Oq+g`9a2!gz(6X0;X5SLHbvk0j#NeA0$%KI z-ed2sU|#p_*YFUcLZ&D(poUPdvw2Wk!`O#1^x2m&j{yo-8vVG?V37ej5aHvKEm^ON z96URzo0x64OwXb=QUm>OY;GxXx9NOeP3Q^CbDw$lfKV!Z)FppH;lOzyQ|~clxpR*P zqVNeJ@k4sM?gN5Dm0W8BM!PP?$FpA}mR(iHw~8A;{q(E}9@DneLJ#mEcI%9`lE(_~ zVvHqu3bwu?G+xaUGp+I3<6acIuEZ$akBf}qtD2e?@e-G&krOc{XuJ61N8~PW;wFT# zR7lh)=;LJr2=2w$WsvyBm_G$PU8z}s;E&{1sJ3p@A2XRWHh-Na9D3eweXI^r^hLPZ zcp>fHqM)fHcNJA_!2A=z7-v5lOs^o{;g9>4kcuhVobdwWF^5TaE`RU_18im?RggK# zPr$@s*3-#6Lv^wCFtxGH;B&!k2JW8rzg|8H!%+Yk&%Z7ueb~g&l+9e+jfGQ-(1GDm8N3BzOqG3R`wM40pi^<3UbvFKAtL zE%26&m7`0tpBhZNsmBPW#c(v%M9AK{QTp)B7yt{9xKKRtCd9elVo4W3*YR!&FlF02~4bS zQsOJB?~>oh|I_j1X@`L0J#~N7&~V0AA>nraOKlPF>x2o3%5w|)U0GO_W1<6Twm*4% zvZ@F7(+^LHwvhTW{q7Jr>52qh8Xjmj*eN-m+d3UpIbEM(RZ=$S&(<9rgD`2fF{GiV^5Xo+yFQ^n0%Tl_m*(7K;30wGaW{5d&7sNIaUe6$BJyN}K+#(0cK8ISBER=% zlJew?FGCp`roFxu*wGFJ2GRP&DEa3}7FwsnNLYmJc>@E&EcL+cz$CF-fB5Xci*4_J zIH=v>F_9-fxOqI&PTBL$EJiiIyP*y@W$yE=YJF{$-z+n3ya@MycAT8xH2ul1lE1}K zOXk*FHlvTdhwGJT-BQPGZBg?ate&%fNt@6?jbBtw)X#N`gpsmj*mnLAb#gW=+}d&> zn_tmU>*+1DM_QBExK(Qv! zC}3HWVICJ%uef^j!z^Fc0^M0OE16Qe()HWbqAaJJZ5DKx$7SfJn~9GPt>}J3giI~u zDznz_ex4jNX5zA$aCKR}gi@I57Mn@LYfNGp^^H#ruO&}_u! zS#B)(RQ0DN8pr_CTKmtALQw)e=&9r?dI`nTMz zah)w+eb}pT-*W7IYr~BZ!LZLT$8qFkT4^8Np2@wk>Z+})wYjE>yZM0c`ck6m*&MYk zx2CmLg=mvhypPVLEEI)5*UMeD6w4%*bZF?^s!+LNo0yFF2o5)k+t9l5fv8lw?zTCc ze8K3hn^7lm2fiy%p;EwUkW>Mq4)#m}U#E3rcg+T@0qfSOZ26WCaE%y-rAHZsZWW+Y zHcX!;BJ)$tM*=WzA;eI58C8AV1_ygv@lo_P>UNG8fW}#o$aDCPm`!#*HAg_NvY2;Q2YCbN^bAzWx_n8=rRQefb0G+{GRh|F z-X8AyO163ld%#|-DSPaUB;ugUp2fQrHS^_^vU$GfytFr=tAo0o)odL3NDMsn|8-b^ z&R6Sbn)8%-+nSvL&a&SXT6o@L96si!PFX8-;qqyFaM$FGGP9Y?g-k6b?QwX&rM`KU zN_*G(lk8{6>6e6Jqr|HprW)|hEAR?j!a|JHSekt^Ukb@hGhbNO9e8ms>IROuyDHKle2jRYvB`u%E)s8W}yIxE7884QmWnQ(p$7xCG^r;_h)HxG8k}bx^xTgw7 z=s){S4LKT??eQ$uPQ%E&_B}(NClYhuj!=R1D4J+sSIajSUtOMemzWwt@r*+^1`8=N zTE}kHfxF#X7XLV!P9jwFlCM<)e8w-?OewKf$tD zex6+&Et40~5unNZrtA2$9_6d^s^24S$FGDLzPtle)#24eFmP;91+Y6zt5ut9^3S95 zr;a>4N+@%_gi9^Vg&c=r)Q`2FW^Fy!P7>cujorhl%0J~AKG~~ktK7AU#WMPi46bsu zp*X52CFu0idRsxU6I7}>IyvOsM$MlsMMxC&i;lj-V+xZt%Ue@ey|ve2p-(~&3DZ;* zg98x)8#p^=^qZ-yLh!Rd<;mRSs)&dDP8)cs_#EG;Uk2vR>Zn@E7{Z?>rY$}7GcfG< z&W3$3-N~rQ8E@Z|bgh++IO=>+-DorU)}~+BlYUpt?7GB1iNRmaZL`eAPViIVsX(ze zapi-0Ncm7wfMX#L`T7N;lP4&g`+7MdCu7=}#4XyCzNY^*I>E_1(f>~Yl;k-cOQ1oY zQ2$I(!8X>Vw6<^kpAEHKk`)_gFU!K(JM{J43nwft+G~^70b}M;Ru$#RLh%M2WHa)n zNoe^6H%og@8+%%%6hlwt6LbvJLZfK5;g(}H?aaI3E_+l`BVOLOLi)NXt!R%9DZQzk z2%!PjrIwatuu%RJ)(%4M9$+>dcH=_De{NqcMJ!SnitSI8(oxvT%_2sy_=ur%w;!wI zRkOCg?Fy2XEW5yeSI{yXFqCm`npN$8pajs=7wnX1HgR(^9utd^&YML)&hONjwe~f< z)5IFfmGR2|Q&zafT2qyj_LZ}(Icl^A}>?m$aN z)vAq`F@#{OT-iUI%B>=y3s2!mlkXE8m>jTfVXkpf2@<}0B^U{HObl66#ZU`w;90%z zNY;&*+w9CJjE_{Aoe`leh-!~2g8!7kU+pLlB!BTAsMW>rw^h>qA4&$9Y?PDWRj67^FB@P#iSkS#-HpytaudVktS?B85+ z1=rXUv1=es;&AvNQNF(lQ;k+McZ4=fo-i4 z)08M8)*f>t&^PdY{eheIjmr%X*1k8)wR zGm^|S-XPPejo-M+1-6d(IiO!kV#8hK5BP7&cczB^A~}AQ95BBCio+;k#NQVG^>SWh zE|s8iTs+wORPG(IZM)=wYfM;auVVHEKph#b@pIWaIIZ|3-sF$`Zg)a)URk48iZD({ zx%PCUmJKR-L%*9>kv;Ro?a9^eTtJBvE zoBg?P7_M7=I~M@?V?JU47{LMkFYe5y%*N5XlmKXk7X&&>CD-CuC;}~zw(y?%Ec4F7 zoME!v?-lQ)aCK`x%T+ADkv`GMXU)&Mo6CsH>y)h0pXs*Ak18JFbiz`U-D|{J z;aw2`q7a5J!2kP%W7@U}g-xVZP<7sXAk6xbJoS2F_l+mHo#hNX&4xX+va~o49k?|M z7W@PE`Xq{KcCy2R0kTF?o>fE^@^7e<1x`-l=R6B0e$YyG3ZC{lAIZl??@b>?8I?a{O-W~?% zhKC6^O3Agbc_>fOgp+g|fvCptJ?08=tEtUtE>E-TIY<NRxc%5o3y9LSL7lvMF^jKs;m?WxJC3P4zuAi>~_TPK-iff{@!% zl^A~!{G)6sfjjPT_H>nd*yrONfAR~^Y@F>gN@0YY<4Sa{Dg*Ax)>+O&w$QAC^J~ZF z@gInKnC|`cpWrfBl-IE_i%iCbQqz8XhBLIDXi6V0X)t6czdm{JT&TNgbb70b+JT5r z1v-P;hfC&^6Qt_w;gP=om^DS76C3yKr90sk^-n_SV0Bg|@V#dbNsFt{ftI8sg8KIZ z2|nNBY1Erh8< zZ~q?2RJJQuGokG;xgy>*!ljUortdxfpxXf%oi|D5)d0N|-pQET?OeXccQzSP`46@U zXx5Sfkg<)k+xg>cnem1XQO(OHksm!`p6x=6>z2wgfy!2Cn+Gd)ZfK=3#LB3 zj&sG?wk;_RaEN(gq=4g`FUe+qGu8TDvs!SOlam0)-@x)NifAF}pQGs}ne>_(l-+5t>!0S+XpyacG z-kT3NW9$C41_Cjw^i=qb)(AuIf(*83!rEridObWoVn*r-0ljhM%^09!rH!h3KrGW$w6* z`Q>L=ycXp|G0Qz@@-L6mEA}Q=;EeMry#VpBntyYZ##v3Dez=#J$(%#J8}T(#l9B5B z(4l5Ym~1d$(g9ih2y8}7H9Q-quF{i~Yn!SjG+;VN1|bz1dCaRwY&=_Z^cwd}|&M5&}dH97u?@6m>&k{^GXtAO_a& z$;$x~Zp%0XJniQRfa*N$%C<$o7{pDWTc$-sPcRRu2W8rCuj9P2d8EeB%?aA-5PG6O z_8kEhr-P0CB&Pl##F;$#?Sa7g+`q2L>~5i8{m}mrvO!;_=HK5=HIvEzqDSby#o1+P zWPu+FF0`%F)}hEM4aFEJ7aY{!rxruxbC=KQJR|QX4oxSwH>A92~Pu~DD|7`wOcAzrL64a1&I@{v;EylzRKRZ1b2}g=DbF|(Ay9>$<(zHxuj~q0&buFAYO8h?j37xOI!V zdL$NxP2o|EJj`TygXyfe_|5&+uG!J%lOV** z?}?4U|M=5=>j_r}V_)DZbC)Cy$c8A#hGTDq#W;AfGu588oGOb5#BguDdj7YaQ&)n^ ziE3f&fKHEf29OdOxKK6TyxEu-sOm;UyigZlJKN~|F8Nr4i2Y|mt~#Ki9~!qryLqvG z?R9b)xP-EH_b%vUTgOjy1kt_jP{k;B0RABwShoufcXNBXj+f)+_OdzD6Q($QFZa+X zuJq_RBkfb8>+>L&{pk@L72iLT@J&z64U05QzuLKhEHIYgyeAckd%>V*MeSs?4}_=0 zMi!$%!b^`AV!n-m!)Ww}tu2kLW3h-{J~=Ww{xxHO(rZDXiKBU^NsTh3$!B`eRSC~V zzv@Z$9kGb*F%|9lHv#@tW<`!`TZ$;QMyGH8Ia~WZbEWCLJ+?e0oIpap*S5&pCM`&7 zzKq_ptV3%eZ(s5`59t^L7UPmVhr4K_#7;I3w1uk}X_-uU&n&F|`O@u@!r~D)Z*3l+dl(PE;=xFDZM-!M`)mb2#&KiBU}834;N1(K+7>52nx+q=15Nt_ z5W}B(ee1pv1-!h2w^fE%`^h5IJ9jtlLywr*-TO|@AS-QPq(*G6X3%tujwfh3OB23H z?j+*LQSH8zS`V0WulS*napmcC-U*A|;d!hVI0c1b9%z$5{=%9BqUap}_{eKh=l0t6 z3Ox4*iZ zsS^DfFDFu=P6FC?hqecF`X-W+XR*bjEc6#$Q7oi^K0&A#TbmzSHn}dA1}DTAIwz#f zEf!i`viaI}m=s8(v}F6?N^kwEOP?U)^O75G&5$qBYE$;z7evM}ukOGOY3V*;E}q~x z>9r`n%N02>&802hUiPUBc5%#h#AoN8e+yeNn|>);?@E<9veHUB_}Ez-Drky!5F|i| zOd{5+LbJb%5zFrMT)U%pPnV}D0;g;BhR2TdYVoWJhM@{_A)L9-?A*eI3j)7+ zQG=XWL_?KP1&c6w^V+_%R0Jf`rYZNnwv1EHZAYX^Opjtg-v<&Ik47jWIqC|AJXwgX zlpS5otX)^_(}F>qHF&gm??V$c4!jBuO!Z!b^y`1J&@h!ti-xeS?B9y@ey>uO6_>6b z3lCiTQSXz(=!%NqPux?cgiQy&iLR@ka!vYOx1cLh^5Ea*!xz+`MQ;| z({z2^HtVnZyAE}lQAPJADNQ3gOTBVIj}H=8?B z)mt4#5>zbZ4kssZv`?Bu9GTW)JhgEa>qa=EMY$TkCf#N=W2F2Ki(^6(d$GH|?mb)C za~LfO_1GR-<0KU<$M}N8qe_?OtSr}apCJtkvWB#c)1&LCxdkkTO2wuip0A+g^cOo+ zLZZOe3RVjXKcAA_KlhKLL*kN>@}ibWF+=eQWbUd|S~M+5mvZ631DmcInRD%p=Vx-{ zBb$OfW-KJ8`;A?XL{pl?mkN_T?6#c?l5#zkii;llb(zNwNGGoXoaq^Tj=>SqQvHO~ zx#@xFPR>A_Dg9$(*dzW0ok-@lKaOudSE(?hN!LR~Mgv8DR`_YqLF*Am@Xx)g+D|M2 zn)8xqsdplRq3|+hZbGn~g<|W`b)L;ZSAF8q68nDVWT0}XOcyC^fk3Wi4C7rvEB)Kn zQT0SLl6kqP)WEVkumr-I20Qdh4%v_ zuJA?e^BkTB$xPgVrd{F0j69tMyH>`&){lrYGJ4Zw zRo75Yd+^ioRIH~y&X%5Rlrt7S?Y(0M=NKv-7BgH%u_R{8qI=e%k<3g;qqIU3M}O7m z%Xjac#J(4%PmcZ^n#fPxlz5>;N8rGjNy+<}`f#jHFR|+TN?ecKd4t2BvzV#Bp_^5S z@~n`t*2o?xOCa0KZuK07VIw+FQ8aqY=<4j94-NL&i||*RD)IBi96aXpzlO`=HfmCXxi6`qxOAGcvm8 zfSy91z-$q|FnotRT$N)PaSXcGeo`oGMMZ& z(`B@yO|{b10%Qh21EswLI<9O+*Q~Q0sw0-^PF}arw9Q2FxWcgC$lBSL=)lv7TP$e> zYNRil>^@H(P{sRHR6j<-JLx(?5QB~0nxiWT| zSgUZ}?KIq{+z$szoGxA1lil$IdLyro^0&}l2+DU^`Wx5r`9UO`KH)ulO|-RHYoDT+ zaUTQ@{Re7e``p3Y32{x~={!kYxPtDiwSK-etugsyTIC1fZ36BdSqsnufd2+o?Q{H) zY3$dBKr7@_zmX<;Y9WbB;~YlBGyDg|sU|&Ju#}OWWR*QhoSufWSwY&zu90F--v;Ca zT*v7bH{9@WZEx;x3Ca`;ICd$wXxC7>XuAGIr>BmuaG7g1Zd5iq&%3oj?!@WGK7G^w z3(TEkn^bWd!Q{6Fv3G@lu}>Cu6^3U2jaD6a>Fc80Om|B&kaQr=I5$(rr|!C_(yOVbA^LYehXx#MmXYkXK@x+o zNWD*a8UmjL^>-B@U_Y3xqI98nD|2=L zcsd0uxUY+`MEgR7*uF12`SVdO_@bWaV$;5;@QZm_ZbUrN4&1A-w`6&jciOtV_E7)8 zq|3hE?sp)}B=h>nr7BQ<#>H!GJ`M1XMbS?6LaE-o&2dU2r@*kvzle>MX>i#{^rKQg zq%MP>7>5!~=gSnA?XP%Qm7OGAs|Enj455-qc*ZK+bXXNj)&Hth1= z`I^y-{fSsdy?655@I_iaU<@6FkOu0GcTxmuv>^rix!5}Ymjdi|%;tF;-Z@Mi|Fi0w zclxUKnqXi-G{$RVi%Ww>%IMIf3w#zJvR~5Wth%VWm9Uc!tVu9_C!25Dl>mAmfZDrh z?hqV?QDeiO@gn>B`_u-4wCElBtxDj|JlGLePDgxkpK;i5D_?$lc;M&P$gJx&IB8lH zI|fEdvjA#b4;$3MIY84{|4Ip+Po3%`?c6_SNg1<)J>VW4{mEH0D{mv1>!NWjH0kY@ zdU&>f?ffq=+b^P+p|?XY!U>QjLT_MRTzX+4N_(=*PWh$l#PnMp!ibNoKpB$!ddb~a z{Wwodz<(fVf{y}I^}+bdn4+I%iYCWQM7YKDo8K&Z-OF4R;7a&!g`X3DO$uPXc=)ZE zqz897QR5Yjj<~B7YbN=HlPkRNm9U$Kk@gd z(&k`#dvAZwvM;^VWy!r3s5htscyhCps})VS0ig0(GxeG(l1 zR5;$1q1N9&gu5cxRlgpzRb>ST8loNp?%l3_-FvvJ9gpJ}6j?vvCTGUb2D5m6xL+4i zKUJDG3mF7X8f80)m)Aw}Cfy1 z5hA<9HBrMyLMw6ym6f~)eD6~qC@wt=XvYT^}5}rnhN!j-ry~|)9v&e zpQ^qjBk;nj-fIzi-W*3FNb*gQfE94XB)^q=rNBcpBz52`X7s8$l23?YG+PAgTbM`L zOqTfoSZ~vyU@fAq`UCMZa{2lr zc!7r34jw2+qae#N<@V1YhJ^%Y@ppM{j{ww#Q{m%me3TJu>}u48v@{4>NFn z18_vYqz2_J!>)_n;)xkl=+OSmMcFwI#HEHubX}i}wp4><0jxJk6d_}7_lZpUgFc3U z6IpWZ_~)zoGG#A<*5#E?96C~Z;X5uEnpa!bQBX(0Men{VC$zfo^z#V;@-$mUvY)$M z-VZiEUo3{N0qz}aGqlEMtmhgUBsG@`MwZP*JQsgkC}IzY&ucJc?XI4%J``BwUu{_m zXBYq%j?cu>EPU?zyCwe&ovef+FKLCuGp`Z(8on_SrdbrUKiT$gxk=0m<{ccIPT**& zj_hFqq^>I@wS8n{Q#oqHR#T(dDh%?l9pznt3+>h26ytsL{oHg(T!`A+e(09?VwyG8 zS_+2Z3EKC(sr#E*n7$=tjLe-YD4g4lNp67m!tgUVtVH@dpZ8gSa2yOfw^_%p<^Ka| zM4zv_Vi8zN1auO->!c26urRRdi&*>JHPlg|>4x;!SPT@M5QowE<`9Y9g#|XW6YQFJ zV5C??0^a+GMF_NxRL4?KY$BkCH75Srq62q+z+L21=&x7+x-AWjzua(k6Idhl^}Sh) zA3rtaEw%mvrkmeW{=p@XW0|I!D)`ClVAO4+m#b=ldm zpAYMOt=17CUu4ayMqpHjjvW$Bh%b?u|AE?}u*uF8&Xf%?XnQtRv*x@UODnttImnK^ zLzFXY>~o^!HcBzjs+_kz@51ClhF;E2FrFhkdT#G|fCEvjYb9`L7Apo&Yw|t`9>VVK(2=Bdgw;R9lGoaT5`XprWj?XKe{L16QsiU1{<4{L z68chCx4hc4`1r`~yY{FP`eW zxa}lJeb%{1yCVo>D||*Ck{dtyq$OBqiY3Udo-S3obYi;)uV*#Ib*<;ZnxJ8#Bw$KQ z$QXpSsc~A9ME&8^A9bdT`{&+sa*WKx9dXRyf;#Es|UaFN=TxO}`p$Ef6&nWx57WO6W@pImxE(d3=1G91< zcH>y9aV8pPO6P4aH3D17Og^+Q|5@~V=dlBVr?9{V$Q=A?ZWTNRuZvD#nH-q;u_N`< zqCP<~+7@DOGwED-N7&P0e2rI$Zo1>Gt%*=+Scmv-a^21C+U@vJS@p~KNvA1HOfrV% zzRK$rA)Ul03uLEuWMQAU)S!;{sbz6vJ`Jj>{cKO01oOL%;0S(axHiyuJt+SyiYkTj z-+(mI<2+`s)HE6WDP6xpDSbBPV6h7|78_OXZzvNfy);ax zn8~fqjE)r`Cx)LMy+SQ|IbH%3negYsD_8MGgxzu;BbmgjS!x*BYry;XF7upG#^*}c z3XH~^#12Sz#;zmK>X-3GcSbY(f?KUgL=8RdCVAp$8_(`Xe;9sgOY+iVSxpT3rBj@V zWCR7ekmNDGF~sS5G3INN0)T9Z)Ye?1-8bswK+Yw)2zpj%;k8V;6r*@>*(m>EWG$&+kL^8oH`M;+k~?x4Q_p^~@B|4gImcU|kLT^p;}L;)`a1S?qkzP1M3RsDSLu_U@BtphnoTNOP1t+Z0r?0Wwd zOYOKTS?P7mRl2bKH5Wk{G|W=&T(lNgLSI(8qk&(WyHutz@B0+Ur_pA?c)pAUgRijJxGu zPJ0f_VEFko(koUoh@?}q*ZAn({GDHIKC`O&8>78O!*5tTBKR@uKhR6wO{Xr1h$GZk z)rzyHYe7PpJ$ca7U=)_-Tv$1Q2Kg0jM5SXNS#h}CL#YT*!k>;Jwuf#s$|lqsr10Ks!x0Vu1CBvwj4d{Sh+p5 z+1wm5!4O!=D1xlQ%`_Q^)Bu~^9(o1T^6xkUe1jFFGMh}dbj+3<-N6yIdcV$o3r zEUy0MNOsrdyEqN#f=^X}+JEkIVPYJORGXClXZNW%sTE}=x?MM)Y#Ai1_digav`d^F zGHaQcZjOz1mG@U%^m%e@z*dq}e6*_ERx;u>eXUxM*aE7q(Tr^2Yu?E%Q%^@mdsg4Mr$Y_i`6 zUqTtk-XI%hFG<23z0^F{DBHmwEGKo7MNdx+F})tnj<(5joxD!1 zm4&p4#h4e^;kOlRO&Z_Dhkn>aJrpuQ=1*5w&ZuN@Ng)2NT`up1*%=vkBrT(tu70D^ zqT7Q|0ZPcL!aNdPJEoaGJ<|p8jiS2Ug9I$$0g^nzh3ZeoitF8z{2db3u*6hI2$b}| z8%8b53Rz5z&vR&GWKS;=0Sw=ROsGFYrH?v`;Ye8 zr-Nfz-Bl6*N~f45`coCUc>4;agC5 z5^bhmyFz-E6wTkRx>0KU_kp;q`U_TqxCFJK)0k@{`lmri1sR>et=QTqxPyg1rdO3l zebE0cBHGxRK?@BVGQ% z`1RfqPif(y%i(T&99PLM{X5;Vn@_4;UU|^`yD^`u3^c6xVhO+7_Pi#bM4^)qN z283ZrymgL=F1|BFF>F)c&e2*c(XfbtfBoBDh=4gM06Bul7epA5lHp#0+{pit3lZydDJ1QoP8vhS>6S1`6- z5+*WrZfQTbM`Q}{Mv!j#Qbj-9Y%i7r5wB3lR7G|=&mB%50%6B8ltKCLI11{f1j zC(Z$@Sy(LLQG5PLXPcj<&ow~ZjwyYs+b`{owrjdX2f=O2ee(z8xsg{Hck2IqbQaK6 z+MTscsQRnFc;2mfC3npA&5V6+^ui#q1)}dQV-% zX64Jhc3olhk-_g#3FVF`if(^%Z)t)Uj$fzs<5Cl1^`PYi&O5&OblFQI`U59f3j!lz z-RaX2VclGRFNye0r~Df)X)@;C^Q%Aisfm4ZDsTS-QDG_HF?dE(W3P>nLqStY6svyx z^wE#Iz8!&gzEwRmxNY!~Sx{fN0gCgEFh>Z#KUB$KowW79CYFjs#K^Px=GIdz%5>`k ze~L&uGEmbo4;^D-EBRJg_(}$rcIr2=D@CBBE$4JtGUnw_hO|6efk6H3hiyv6`{uHV z8^3)*LFepi?npL*URlh_3Kt!8@*zZ)g-g3wmU0`{N7DvV{(v$b9^oYw`de^z8aN=i%at zq||}jzXO?g-6R}PHc;BA;P6yY=7wJKDu>cFpV1R2Q8!&DWl&MrKj2aj9GO2O14X1P z=SB_U>?;qloMbm|lmB@1ZIrBZ$LY?sLZ%O^OhjJ@ z30Bh^Lf^u<)+T&=WZf>QvqNg%n>nnKuY)*Q8;Hnzb|RkTu6xXhS}p~*DdH?#mF-C# zK!>E+=g-&BG$D*ol^S<7Y*+t8GQ8%>k|z;wWE*<<&y*;-LDTD*Z7AB1<4DF_??Gl9 z?6aQ#KY@^HfY>B;5-=T+GaUX5_bk!UL+gmPghZIdCto#8(`+m5!R8yP*mK2@dUh!E_GR*v34NsC3pFBw94PQ8m(4Xv3QBnmQTsOJq z9MHDA@v_@AmKwAmE6Q)ovk3n=mN;dkEPgu?bW2y2M%P$X4lx(`CCLeTzv2q zt|nTv0cP)<=Lb049Wdg^5Hzo5mf3*3fO3$j{`HZw_KO$(r7rEO-Q<_+MkPp3=MHsj z@w9H7TSH|^Y2TMcItYXBE4A4wnB@#L3$d@-O;VEIv_M^^$8-%#@Bk3!u`Y?OPlC{8a)UQP*e!(zANNt`sr}r8E%L(Lka!A$}Hf2M9j6FA9DD5+8vdSFvYAKei2+1btG^uxH zBE8)$h>T`}+$Cd7qzsvcud6sk`jwX+MtWNSrC`~qRuLILYD~h*DZ(L7r^I5f(9xS} zm@bNczbpi1->?Xkt_Ngh?zP++dmDyDFteDIbPQp5+fLj+&j0zDeu%5SsE3A~!JGb$ zBkv^otsYwi8lgrgj+i(sW|3Pv%|C*M2K~QU(EBhdzq54%lX{;+k>uu@Da1P6)-=U} zJwP#Dnmi5q17y65szERc7!NL!tpTNs>{AO0xf zK@W0SRtGiP{sTR&dpz6z`K?RU+%EKi%kCYZr&lBz^_~?C-VG>{P+-9 z)&-_~)HvkZtOv?Gar!={N8y8;96}TA?uOA#=Mwkm3pBKFg7_c;9Z0w-@N&w`m#qp0DRwA1UNb#ex`9D#8OO*B15%f9glJ3M#VYds=kmLIcv-=`TWyP;) z#S2ON{sRfNlNH3~<>oD+U?G9WB>lO|q;Hifbf(kl$J_HR)`=rFOyxz1npO${Yyv;4ch(J;{t{qDAcNS#B+>S3X0zp+E)Er9DJluxyyY@)<1LPr`e zpi)tn&w>JVD|cuwv&(Y@6n)8rY?8_{*11>%5M+-gqm3cJHTpmJipZg}bdP|IWe z=G)v3QEjMeJ`c7FDv>Z$vU|@igXR6mb-f+E<==^UnFA9;vF`5l3r~$}#P5KRXTFAC ze8fYXZltk5E6KR;11n|^1C=aMfs8h4e&@n(k<}nCi+`?e_cTz*pOA?LT4hC|FEV0RKC_bZ6*jZ+QYAVRJfJ*o5b~E)uli2oBG>X z=e8CxUh4y&=Asm*#@k4te0CZWhn8vZUHMeN=p$GPg*)@s5DW3o=m{=|xJh^p z+e^KlSpe#_A3xG4$J--GA-}Cyr@Q;S(WQy9#&r+Pxm#WlFobmO7i%nOJqp#Ra?Va1 zZ$EcC!zEX#uCF$z-C#qFuMalh#VU;gO4yubpHGDwb`v+~kxW zjM-DIQf7E`@&xybi*FRSXzv^OI_Rj4vOYlCBg4ToZ3M+3T39Gri>#8*wAMVA0cMb$ z>x8ERJ*a^54$g)%m;Wx$w&R}i+2Zou_6vO@YEqL5-tR(FQsT^ym(okHe*IidOAhLc zs{EjT*-PqRxk@Mb?#kE9s`LBynkj;UJYw76IjNPbZc6HaQ*}3Gty*GJ_ov8g8h6$Y z;UE%u8$mfg+EsgOg$nlo@P(QvFonu~%nNJ-aBL&^$M``c+0mKSKyHs3nmqgvmDSc zN~B@Cj!X%e#`4eAlOo&v6BbZZvA#S@xpkSSWc;6&te!pH7)2Q@0S4Z6@e4cBX{Nn6 zoe}I$;V@aZkrd_d9Cz}vQ+4srK3A2?D9WIs#%OOWtC=$^4FC<{h8(BivX2at0mBdU z98qw-9D!#Jpg2V@WdwsG&n6`LQ{BV}-bFqV=SDRI=UlZ+IrEO!6$E z@f<6JF@VMd4Y`$KmG$c0`Yf8!E!fv^`3OdNo~Wh$35|Wn2NUV3=ishnJ;$;PYkyUy zQu%X{wg~L@x)dTW_%NZcgV#(YA(%Zo>3AF_XngA=v zPA#-beu*WxWS%p8l|B+$SODlvBSY;8y>lG4&S%Qr9>y5(f_YQf+e-FcbWJXHGN z@(dct+P#;MP|0q5o1rNE(r2F8T0f1CEDmqIuiz6pO9N}A!7=%es~?$YlIAVSoX=n5 z^yxE8))KxSu9csrz;b3`-~izIAY8|+y&uLsUguaR$;*@qU4#z#6LV^PT2L>3(&Sk% zhK%k!N3b);W{@_jUne4IwP<6emMDQBV*%2MW)$p(49f%`>$4JcR|nK81-pr@`K7~o zG*;UB1?sV>K_v61tmstB;K>!f12wk=YnM=1=3bl6wwG}suY@JTE^H0@e+5pgmoCV^ zA4Y*VpxgL??RlZ@7UIhh*7MyG`C+VwsVqa4;M8jywg05Mv8a|rwizV4D^Tb-yG+Cg zCLI7akn7R5yMX|>Bb&RF51PCuf8#7j}^#Kifv=Qti=_Tcg<;e!)uQHKjH4KF4I7M zTeG~gy2CA(W?qqOUWAX z%o-pAX?%i9W@IJBHk`Z#;G9SCJ05nG3cWe8VZ~q2{Jw%A^9)ix@$1AOpT)#CO+Fj< z^?tU^Trs|L(0K$;?%8d~fndjIz(<$@e)qR$7k&V4)L=^zc7;FKBRr2@7H^L z?L_nEH4@WD13hpOr~g_gl2r3YuC)UTcYtT8XV#+y-!@X(!R7=ZzJ=l0c9y9WSq1u= zkAqhgBQApo)tg;zDbN^SxYVuuoOW8|PsfoD2sNU3z{(9}YZRF$J?sIjK_16(MEDxaePWfB&`7Xa4 zomwJ)-zs3uSHHGduiONeG;6@?mB`0q{`?`_U}8aMFhMzkn%zwqq1~cz*!Cey zlcG@b44!Hy>@d2UQzbmUg3aH}mCS*_@)q@Uh-UJ}Ji1pB6|Gghd^;SX377Y5yXnLWbv-jmnOPvSf6gXI#X zvp!)vC3e{AAxW`_D>sO`wRBteyiou9d+GI$<`W349{FPlyUFX5z|xHU$4vTOnFCvi zIk_ESXxc;@=qlnEEeVKtz`|DTa-#xK!}rPM^6UP9%Kk}r zp^Evc8TF#+hxZ-WBXw554{%(Gm~{2bUIV}NHTdg^QAd@*MZ|EL%I*AvC7ni6Rq0vP|B4eRp>6 zm6ZiBoxHH{QmydN*VzY%>S}D`w0-(v0iE-ciI)X2i3XDSBp?W@nU>zX4SNKNEyyAL z^&R_ErBo)Wh4ks1>K@y7L_${guKjV2ZlDc|QX8*)ATeT=r8nt9NKC8vbsIWzR@S0i zebB@zx4uH2uD`AIGBLk*t7eVnX*rwzNwj{7S@1659ik%<#loK>S9o8ul<(XB>>Sxr zY)8h63y3M8y#_(V-C^tYH6vT9VPv&OlIEC;GG+5vqB~4m(-{$S1d5fDxE~ogw6VM^ z6eJ{xdW-$fQiL8%0tbDtS#ZQC$fKn+d5be+G?w$iMfc=DI@Nx^4{6wL}ZhVE+% z1}S@UnPF2s;W(MCV$zRHHsL)95BQ*A4H)(F2=N;R^3omZnlN!g3b6JHeMUXD{wN zW~W5Kor8QSg$b1Ia6hNW{wq}mvhto+2w02HeEQ;zOeZ@NmF9sX;a&H_nZz8Ye@@#x zMDpn~@IY01I?$W7~08RN~D&(*k;CAOM-LOW0D)zOf*ZPa&f1O7vRU z@x$+}dbtb2{MM@Ne40_A5X03_O+EoJ?YgvG{H_6E4=E2nO0frC#Z%0qp(g9)IUYEymOGKlywQD*#-G zE+*7^XUbHVYG*@zDC^5DBa?^X=b|NCTb6)cbr7oS!xB3&ky)3RsyZYmj7N{)mC7l z+k*NF;E)j*MU|ve3&h%>LqDmPa%s5N_mJ)w@$rXg&REyjIG_I&@uZWi}@owDyxLrH6J=iNBG26E6cH ztLd_y+cfQ?#Yscg$B(u@y>m&4RwU20o|+t3)qPl{F5h1FIzZPV|32=nd+wm;95A~E zUuv9PWiQ_t()!}K-Dc}&#vWI?3n>!e6u$N~x7n}Jx7Cu8w-?t+(VsaeDEtcLOKZ2@ zPvl2#tpkn^b~B&_jxM2RX^2Ge>feXvz{Rv@!xHVkAL%WDPk=3Qu_P~(!Jzl=o!5B%L{lUvy+JfKf zC+Vob9e=n>T~`Bw)(lTe0Ydz`5(<4c7QK%)A5{P{YW(R4_)p5y9F>zp5_g|Tl9 zcsFz5jrE}MYvIh0nrqXpc)1aMw#Ft0J5(j(74ma%uS9*zUKJ85v(3mH8Gv@}ZEgG8 zH#xVgdI^~{X5nNqjxW1&po!<~t4UTOPUuQvv5NpxXa)OK+5*hba`p{jT70iDo=Ni5 zfzvCcYes(+}8N;uhFdWxZpAf znmu^9{*NQJpz`g(GVXN_S^}A3B~y1S6sw0Sc^j>I(*H;rWw?DGwLB!*lUM==%~%wHNq+#U$A~M>zb;kecZt?rh2tx7wuNa zvc!|(_jrJO>ly$%%O|?b6Q3-KvnR2ee(o=Z|X+F%4zx7ST}a*={WAU zywu|#;%^DiZ}>Xhy4+_!*gy$(EG)Fl0)a)OP5VF9y^Yehs-&65s`5w6xvi%_L$QZP zRL7HcY`N{KrHT5Z*~J%QyBGvvz_$!$^BG=s9N)@`*{^`W307(z-`=e5+fkc2RQC{AH$(sWn57yo?BVOgCt*_RCx)Gj$8ZKMmOATKS!%D39bg4xEq?J)8~dVbY=Gqk{&FakYUe`!dSS0-fLU< z+ujcPY1hg+>$uD~5D#I@tjEu2qDbm*RZxJnd5yZ6)g4Tc5`>u!tK}P~2lnF3j6(6JP(9+&`80Z~tI*#xhf4pjLkEwkCeUgqq{S zu)(kh&@pi2+vC*o{D-uzapuap$R(-tNR{)3E_OGgP}NRI1NR16|?E4S8#L+yC3geS2jl zBcZ24!9@)ngis!bD+cVf$i;~8zmFm!8`z8AtX{}Sk;A-1^n#!Cq3Po!Wu53`KkI)! zf~AS!{`$c8Z6OuIiYKm%$8}VLt59k)4kRvk(2;^}dQpduw`y|b7Ajma@nr_S?!6>Y zUw^FIXUWy?PAhQE-B&s5dUuO#81kdFdSs7Y#&EY@?eWw87(oeH1%|C;n7uJE zS=v5_)aZOMvfA(f3{G82iucU1)dGEwITi(z^rj?tjygf zgZd_5?Io}I#hO>z%^XikbR&*^f;Pvx^!T$p%|Gs5ZpZh$Ulx1HY0wu#ag@{gb3LHh z#2~NG!x~G%5n_1p;3aUeLZ^xhw_if+>H4hasQaOeK8u2z-X#ISy+PlKTf4H!%$-ht zgcK^g_eudS*TFw3i5nT$5001lI4Ao3i*sNj!10O207oe($SveSxpn1oFZ7NR;ZYCW zMAh@@vq_?%@SD2S)S8(p$;Ov1lZgceuwSJ}=w9L8rq{H=pjZBM&h0{@Wjk2nk^x41 z{ug`^HfnNVi2+VhA0~Y^bGAAgO^U7>E~yYl;{9BC6q*!!iJ@~%Z+ret?%YCHKi3H7 zKZ4J2@8gB?N4BnD^4Ja`R_x1@>C;zrSt=N{C||(7v$RPkvS2pygnEPhKhV9UA4Y)c zAIjI)Z~KjBx%AwWNn74n@XZke)I_lc+W>hCeEToJALya($U9h9u3l>jOS4&=`KZr^ zh^!`Ugfmdv_+y|B`Qvv*o{fV%t&?m`&%kzl#ckIr`-!;E>|g|eYT@6L4?=CY0Z3o?YK!$c@Wc$ z@noWxkI@I9G7bXHE+(xPt@x zD5HSGQjNobgxwl6%HI>4i#AE{QJs_*@aC5DT_oPx41SDaapm%y3p6oMDF4^J#-Yzs z@1AZ6%i3&9A){5LA7YR6%LxK2{s$^NrBCm=Q3%nmn+}mKv^XY-6OVC`{w;7@S@_yp zqL3orw?jjJCeb9=IchQsIBWx+WJ^lH`)k$1qT@x@3p3U*Yq1fiGv#aps&hux9RYk! zT7iqma`XD-7@>C-bq!_SOi`EbAJk-xGM?1(iy3aloyiEkFE{imYu^J5Xx7v4N=I1$ zw$Z4&U$w;6*60Kg#IcUug?-x319l?4`3x^=`k z59IbAs5mG_G@@sE0(gV(4LWRW2YB=gQCZ@=j^9J+1SFhFFs$JR1rs>4V~oIJM73l~ zkzHvT=N!|GLo*;_W;pA3LC&m@TepGv&boI$8F3>04bkU-cBTwoweQR7*Nu$>ybP}! z;t*+$`)$E?L>Xh((xw2lkV zkb=LDS*rxEk%UVKVYxhdzZscYI5$>ShR{z-5H;R#^^!J8a^xPOd`P|wP7ImOWB-Os z$qbSi8(T_QuHn5F11(vW6l3dC8mwn<;H&%SMLB&;#6k$kbRA~{#w2E=Ew?8qbeGoi zH|0fgjM5glQs&dc7l`7NUzOUbm%Fem9OdsT=PFZ;8;@E(9!T0PgH*gtBewDwXcwju z7_LEE3Ot*-6gsL`05R8Cq)x$Wp^NIW`=A^S+Bbrg5C}37cuJA zn(II4@o7PootqCsTWaQbA>7k)P)r5FU_p|__8yhm3% zTKZv&X*3ZsB;viCI;(#|)w$}K3D;8o5bUHF{^i?Mhyqb4t>eY-$tY;BU0?jzz6*-^ z4Ppw9w~=y`0onL@IBP^lzm63Q3f4PQaV79e4bP`!z<;q?WgZRbB~SMLt85lF?fRM6 zQ#Qv*j_muLH+V4s6JFr*={HRpJ;le+_MOA~Wc7fgO@C9AqdZBtw$ZtUkY5d3(96|X zT?q2~F8(q+Z;Pm!<&2OKgy+x0oR^rqcyYf|h8`feAvD4s(t~JL{D~v1BEmDSa+$$I zYTrL|%SFDoTS_8k=eEmZt-R+bOYYU!NJHs)=lw&a^FG3VE`k$LEB@fEY1mH`NMqe5 zzpjeVdz58y8#MSx_A?3SvV=48?k|Ow@w-2sY^>wf*cBegg*E-LIq^!5#FaWSf=DSA z?h+kh;z4@EOR5C&W0Rq;jCrM*n^47cO{DC4(jcZ&jp~1@TZbpWVb|G_Dojsk$i#~z zF(2MI-u@)dQ8JkVWZ^Xu1oE304su%wSLr15Y@%oLe8A?YN-o?+HN!fHyD@$qW+3(~ znuw*yr_lcAHN{*f<)S4nx9y$ z=GL*=73H@6P$WGuhj6&tdyx9GEZS+u1+?;9KY9fQ`H~TBtLlgAB&Xo^YudlVvo{G_ zUCS{`@S<3muc@QTcdlaz>+52N>7SR9ku`2`jHU(I;ZC*hMv*l)o$sk;k~va*W%UWR z83%y$oahvYq z@g$)yk*ap>KK>}1HyQ?_=Uoi8!Ke#(%6&P}xR8Gr=Fg;~dZ^2M3uPqoq)-BJy9X!N z5&p9*&Evdx=%w1O%C`M6C>iJ!bp&k_QRp)3nt_-^))L7vJ1-ve8*K!xd+(^}Jxs*4 z{sv(H374IFnBfW~4w`;q`Yn3|sq~uovBHz^ot&aD=!5#MwGxqZnC53if8fMf-~yqm zzfF@s+;#c5z^v6LrRQ{gx4v>fEpsm*w3ot40+eYL%d5Z_BpuZBbyzq{Fb8P`Q|vI| z&3q>9`ii${Ib&(WMG(2MWp{FO@#(lPKhgs&^e+KzxjPtYW3Go;+)dqRzxg@fxA&>= zw?d59jKunfGh=##PD9A)W$}7T=*@fse0JTJE56cPs#kRk>r}N@1&dt@MD;Rz_vA!X z1Bc2ZfC&$c?1~@rTf5ObUh|3a=T{B=%zb1n7oX?y*S6po1r^)%^x3*6udSOL9LR1p zXAY=55Q?n6oXOxe-PK%s7hnBsfl3&gDv91-6#5LI{n5trCioOb=aIeTlKrl#_@>Ev zY!LZ_d-=(741}76VWKb)_jc965L%n{Not|d8Xjb9RP94czh@A9TX=Pi|G(J`qxvKE)+m7d8CSJ_COGW8O5X38DK8nB#?8rM zRz&e_VO&6b{Ah9?Yjpm@u@H^Y|3KZwRcaep-R`TCsaPCjScb`;e*xys`)gl9*30-q z`#<1KI6-G%a6!|-^B-uvhX0?nE{3|d@jnn~!Rzw(!k&%0q;8rLSJw z?%7R zXq!MHLpG@~8Sx8{qRuQ8PxcJg^*e1ZU936gwc)__@&}8sc2P!;9i}lm>qICq{BJx#B_T1#J5SnA# z<4jnbyjlg-ZGpT+wTb>s0X7XRn=>Bh$GSTH(S)5XQoIH~!+@jG0d zM?@SIJX-;cy{X|*8wY5wq{5~TBt)Z+g5%eFr(z5vz1nxRpjHV$X6?>0rA}Z8hq3eI zT9FA%s6_-VMuEx&Ch%J2DS;X zN#W7aa9xtvOfdcJW%=#1Px65w`3!Y+Sb^gW@`)NEy$sm_L78K9rRzklpH)h_qH(an|>3IHOV?}-s)gFP69UI5}$BH=*vgiVn>rz zlkds>t|=#Hva&WNfJ^23|D^^?<9zukn5Qxq>HK_`AL2|4wW_hq$8!sTuT+JW6v-!S z9syBNAExvpnC7K7lZh0kb)=P<@A-+PZvJ3(d|ugyfUT&Ga}eltizNgTSi<*NqoU`?egDo+5C!1Dfhj%s1gXZ zj=N=t05%y~MJ6ZKdv!ty`D{5mXGhdKV@aZJvO^0*{56$BfnD7Z#WAa1b4d0-+*8;4 zr7A^h?Pv3{-vj zm|8Jcz@nCosAhKpwd~?DIz-#Xy9S z8V7~V5dr)^PBxOV{Qt~f9p39?D+N0Lpf*ODhebN@gv!76+PB;Nm`fZD@#(5i&tP*K z`>|A?u&VF91N)fuAAh~5HZ8+NjR@*Bz)P#&iu5W^<}2|1h|$lS$iUZLL9<8RRLK?v+S3=^>gM4* zZd`FL06Xo&C7Ln;!m=|RB(N{45?r)gR9s9R^vF|{vXQghKf{*S$oSpiO4SDhme$4v=e-|JDtMreh0t!@U{NvkZVCwdW@z0WF`L@bOVlDGUjWaF% z-tu#IE`N@%C&8QTQeQUCCB9fM1^x$mTek6+!9A1+Ekq66Qr!@L^q|Khr;ew`(QPK` zEJA0dqTiFF-ml#FAw)e05kdzQuu0{Bc>aT8~E~B5*0<{wM7D#_)G3*DeyGLE-Dnx(s{}P3VYPxY#JRdXRpF?ZK!|kvF0&=nNL6Mz^;3<0` z$&!&i9&BBgz1EP%-MuJhMHeL|h8`wm zLX8yrXch-mClo44AS~-|wYfC&X`3e7Zw0-VspP>oqJzbMy@GEn0uYACME97#b%8m; z-g$(7Q5Hl8meR)AJjMIt)~hluMm^F}_Zn^~?DUV3`<1J#APt3-ekjwxYHqN%;+Ju! z<(9^FFh6^}@3nhyGays-m2)TyLo2i{nauEagJ2!}o2u4K$r9`NhzP z{mbLaRkdWC7@EEk02CTYl;0Se=&AcOo(@Ve)jo<<2tzq9neLvUWx(+RcuAQu!^CF0 z@e9Q;z+w~u!SU5(J=;A{dRbBZ+Odm>LFD=9HRTGbTQ?%8175n97Lfib zQtd`9gJ{vpjI!<-Az29O&igzjujw{tY}@;aG&cmNpCMeE>+ycF*u|1=I14#e3(A>< zA?soJ*zJ{DPPy3sQ%9#O?`&(Xoj+;S`5nNj_kaP=pvpqE%zOmk|39_{rsKoQ3w10H zM(U#O8283R=*LLGPNt-Zb0smH_OLj&+aO-j!D{e&bfO^h3vV`TFf6tn;f2YFg!f& z$&X?@6UN5IN5kC%b~wi1by?|qv-zQBnvZ;VajiQOQ|_&WiMK^<0xPh%tOjrcysKO* ziSwW;L*BaZUkB%?#4FPN4baW+C*+i>hUZnY6B*84c>w6q3KBXj&m8pCpP$yvsN>20 z#Lnr?Y+8utL?zM*8liRb0;{XmVEq{Dw_%5kF8Y@kS|IRg$=)X7!IX&|4;o_M9QRjJ{%dplZXtE8 zfQNa$)J*P3I{BhtV9Z<#`&Owv{;gq3Vo@;(P>yH+JVc>$vU<~jg#o@@w+Ii|9HI7< z@qpbOb0fD{QnLc4@1KK39BqUs``gOG>YNPM!ulFjjZV^jO6;LUs1YpCx^G3uCkU>V zo0N=7RS8>O+F&4YZf#t9m?DiWwnKzG#9Tz)7(#}!K7(U?W$?4`dCT>{N5B0Rc0|Lw zGhLJ5g%k?6q%G1@5ff#2WO+7PA)oilv1yi56*3*)!eGs!$Q+<+InJ*r6T%wBN)j;t zSKytRtlJt7oum#p>~JUl>+c;?yXs?v?wlIp{5J3#gN|q=Y03lhwb)f8qH`Pi&N_|} z+_!w!0@@`Fk=`R_5b`kB!-}nHW%W1(4M^X}Jjc~oJfzL~F(d|%uxvMv&zoV|tU3RI zqz~JwQXE8nEQGdmz^(UyN0(D~#pOxv;5Xe1J#1N_%2bv~ruN+`CDk#Bb!m~)ak5BM z$*Nk=wWdK7dcQ>hc79p7iE%=&*BDKWk88F32a=dM5(^;|#6L4z!vA4WOgdZqIDX=S zAkz9+Y|vw*stEbkgxPql#H)bOWcsyPpqLv3?Zm|+gzN^B3o5MpHe0VRPvr-@!L$%g z$R8MEooW$cB-aFe~VqTa}3+phx`W`>?_JcKr`Dvti80@Gu42w9)sBvmWG5EevQ|$;ZEyN`4NO}8$vPp4nxz)5FS)F-F)>tTTEJajWL zK={(`4iDFp6c5dt)ad=^v~@Ij$X@>%B*a0B|Dxn$B1;w zFwEyYk|~f&upP>_@Y)$D_KDR0Lov~Wr~et8-0e2Pfb*J8h`V1+6~n;BS}A!>zv>;C z(*LSK2NRqaSYZ&MP zR0#Mk8-9mEX>UifGZLuBTdS8;0F~tz<`?P7eUh=w*y-$3AbQ~{^|ubN2&xN$SoU=r z>p}E~v%@myG|q%}@`7U9cggRt3$$|mq+w%HrV3w53;Oi({;>3jnH`9R<)hyj+lMd^ z+#Q`Pcdg%ae^~1Az**7#|;qlIjzAdWs|xO=qBNRJeya!&5&K9O!-(a?@)yMf{N&Ce}SEs`RY>UTrx$ zOnIFABS9eYJCBXuR*Jq#l>k8#K}};GxxQ_^ZO2=WuS|LC7-LVm!FMRWFtIf05lumI zF9Z07e04vx_~{w#i`no-BDjLHX#)*J#>-_6Jp=AS`<_5q5HA22A8IpUL}u_Vb6~xjEVTIC&l_1LcgUr zB{=c}u_1?~DSi0-z1t_r! zVwkrTIUPnqV`{gLkQ~ZnuX2*&!V{xiEm=W?3p?$=-kDm_=}Cj zZu!aXOrS#Hwc^sT{cPy#HD)GxE5L_#Wz%xq0b^fv$->Zuhse7fa%4i8LS7hph5A3w z4%XtKuOSbL*(Pc0Xw;LF!D8obebL0>*7?6br5reqK*>5%iT%&4AJR?`d`qkwWl5%K=&@n+m}@bRIeGq%O*9gBKatYQ@*%99-_6af$OHy`WzVZ4jt(y@K2P6o z4XX7<>o)*FnNZz}-`D~|i$(bpvj8%!R)!nPL*l&%c!d`s{dJAXp-akKnSQ2V?F{^U z5wE5l@TXmU<)_;P?0sNW^pAj)e*9Bl#CHE<(u5)T#Nl+F(98<9|MYFc^kR*FISc{5 z8(W%)7y-vyM<|fHIlqN4PG8z#J5YhEF5Ect@*OZpkx?qWVdi2Ld_O5EX6PKtd`7P}O2Z0hv>&*|&4OBP{j4!eq3>sPAmbDXUYPl(;;f46y z?FMd5NF=?fnVKSn_QY=BUAK!z!n#||O^zI{F3wb?dPk^sScH(;)T(b9j{Rc{2NT&) zb4<|vL$wv8CZ^VG*`loa>L<(@JO-xlQjA7$`LDx(x6w`?ni``@ZhzMg-*of|kx<*+ zojJIRA-hbg6&^i+v-6|CZK#tyw>MU;OJI# zxS6dC$$Ay>Ff%a8ulHSwZ5SV1VTW%0DcrIF(aIb>~Yk@7dAmgkl zeaSe>bn>Z(4e~wxjK~VW$W#-wfVw?OC!~igf zPKwPcxlbE%7OsNydU^l8d;nh`cIbrFXLXOv&acMC`!I|3v9Lf1v1$8zX3Bkjze&AbYm5h2e0|!7EU{%OHRMeIK^!)4>GD2(f^smK7&K z`D73JP<&R%7buOm$Kpk19sK48kx|qL#GYtUgOQeHyt^2BQp7g5Htp z5Xj;4$sH2SX880}ot0NrA=F9je$2-X2}ibnNR z`u8mHVEtDuHKFv|E#p;LNEX5rBjJPH~;o)aSttl zKErfvN8ClD;WUI3(CyS9^Z`|8*yPimmh)ONlUU7~{9(xx{KsFvHJk7LDh}AGi?j%M zO_p4yfoF-K&trLtN}J0k@W5oDI|`~gii3->nJd5FezTpJe55hF8n|=qhtMg0{fe%Y zT2{thvSKp@9wG%uug2}X2}EoTw5Jn;WyWP2 z9M6|pIPeZ3!gV_n8pg@7pYdbh`r8@Q?Z;({89b|V0&SH_eHni*VbJM%Wr%812M zkBklPGie)3>6g2~afFJcyxJ$4;K15qJb+HGGl_6JqXg|OQ8!Ml9#F>O4>HB^d7lSTBVbDZ<^a&t#mgGour^NQEOwZX^%PT0_6gK09=6i?GQDu=FM0KcU5=G83q?~tAUaZCtt1~t+0NgcMzIVU&wJgS=UN8vqp}U=! z?n?RN)UE+16LPhZf4Rq1zjb~z>}?{4PPcRkhUQ=^{W~*YhO^O_nJ&f;QXxOb)9coL z_94YLbd13pYt~*Y6AyGv0jrHw$wkU4>l`&YE7H9U3U|3=p>Ld)&6u@*?D4R z$;@f0kma4~Aw4%!nZ`cfV6V;O?uqweRVCMn0;zP4ScE~u^u^?SGdA|d-RZi=`C^&Y zy>ctrueqUpeAVYI!z6dU6gj~I7U7<i0tKj|!M&no zd)9T0iR>@eg8NGU6nT$+aGtf%9Nfecci1y)qAoIHZVt3=bOHvZ z?TO#OENqt>?9a-Rcn!?@LQ)g=&>jJ57_mbiXo}Q4I{hMXrXg0wWzp@4JSMLOoMch` z^{s;8l_edMcS-v{M3e6Q5Frfh?ZHwbhG>;0rz7Qk^z+)ZUC}Im1HzhDeJ0YwTkb(z z?cS@u_L;tyqOzs7ejPQ>C`kfKzxdX7j)7usEJpZ2cdry%QYodF+jH5Q`zScg>tE7zY;L&3G z^)nn;J)j#{ew;4 zO=(9v?qE~L>7&1{0Bmd0N_lM=%aw8vT#jSM)}wiRk!03y2W(fFqtvrnlx>QK90~^* z(c!FtpmRhJ?aHK!p+}|}d~R_j^DnF1r=C!6@@u0=Tu58~-jIJ>otys!D|V~IWr-|J z0osLUiz^;0)=*Zea2!W`oh~{P{C=1+x*iliX9DLikn{cjxprrfDGnvtBWo<42US3v z?s{6+H}21r1ejYNZ}lEUP^*;%(4qY3q^1+s5>(%X%s&GEkE642YwG{o_z;kg5CuVr zp-71|NDW3viF8UM($Y0@NJ~vXK#@{n^rX8}k?xMsonye*_c_1kFW9+uo%4zNec!J; z{F<=eMsyHpXDx@J_V8r89~#0g3#WWCe9v~U-lvjBSkAg0S1MRr=aVShLpbL9WVboP zNzlA$;HwkGn-zQG*{51Z&|UQR+8!?a<5y5mb4AIjE`41!=jk)$y5c1nUo%Y$fv(On zs4L}vAWpm{Dz$||ek||-HX9Y(zg+WD*kMiy1&B#|zieK7tYLl3Tf=oLBp=o1P0|v? z_oPL-Jj1p+xTOVtH}H@n{!OA$4EcDJCVR65Qj?8sRi=t_|MEnt8(MjEK<7ac)vV@L z>tBlfE9W&3t8Pm*Z|eMjrd?cmx54a1!Vj#))_)+9V_Wf9bP=$KV9_W5(ruBr1!oLq z#7?im5&X?`L6(2Y?5DZit&3$#=_Z&*-zHHvR+bCFn~VL!%wJhYVuW=p*tSnIJ_vp@ zJNFm8^}!*K5F6BN@KSb_BYq0c6w$V7jb)jl6hlAy?$X3L@p0myZfaCn=6$8}7ev#u ztz7arI-9#i(hsL(G=0HSP|=aK9;>a$(v=I%Yn%_9!+l9)>L^$W2b}C9eiTRm=lk3a zp>BvBd&s=#0wto#@q}P#eWt0Ui*Tx?1ftwpXORwxh87xNc+DRIu@WFkJNvDT@n;2g z_;?OFM?S_iuKU}_>nIxYYNvsyUPh@ftl6XJs%^C`@Tf0FruaZze6Ly&a-u`EPAav@Zs52bHgFRqMH%B>@sj+o;&p zitVqi1qtutIgU#&A7I~1oo8<3Zk{Q5_&u%I?55ToFC!=S%6#lndk&z8^;Jvx*sZzS zJPdShfxQ%%MG|#P1u7N<&rB^-rfb%~IQ!B?my%Bym73*yFW=CpKDE)jx{6;THaabD zz_VHKB9JfHJk3NktIXia3)fHnrt(ny@ZT?+x`pa_8TTUc0*SDnf`G3|vVIEB09)?D zT>85-xscts#ET7E7b(vVRojxT1a>GC-PD{LIWA4|IrHb92Hk>#r|kZ{-~Q7#r;7y~ zNb_$rlQr~F>nC~|4qRe{u z(N0TE-EP~!rj2?2ldNGH;_)SOi!E?}%gsIfDEvP31AK1&^>iTT%A!TLF*s%&-+qD$ z+qdF%_jWlY`tl4u4CA=-8e*9vK@bnSI5sTJrML51yHU$M-^P94AE42wC3h+KU^w-I>8pifm3{ZPgg#Nseb+=!*Nuv+j0wGEzRm~DS>ai-IiGsm zPism06mW$gf=`@a?F9P;Yw{J!Sq99}t;2$Bv8KH0-XFZ)N8a`=qEqqBH0`KGR@y#k zlNJGDLc8Z)=q%9B1^G`kLaGujw+^qma`-k)p}~@)W#+egVN-$`tvf4rtV|_OZaf@py4M)XQJd5{zoHrfJz zLF`P-Ty?EOTpvz@Gh!}EXordSp<_UD_h|f5jC(ctWK_o;)losRdLe4l~@%BVr@*C1i=p&^-n9GkrLl`((u6BGIQg6@LDr zBjf&0e}7L|`w)sa_lqON4gx|>IAnB_x9c&13h?~jLz|Sy(9$53>^d#+7ncDK$@Boh z1+$#6HiVnMR_PtCt(05;k%JME_>w;$3c{E~G8`+Ar_DMCdAl^Qe9Iwzkp~X6OVC`E z_YcYAcKy2LD=nF!Z7ag6J%W~Q7@`z&V^V%hnc;bncgM>AH^e$_H0U+CaL329KRsf+ z%7yt1MSpPa$^sYm@}xtuL!L+SA60ak=q0wsca-+|-RG&uSkKQdkZ#*z#O{5}gVJ}o z^cntuHTP7vBPwaRO+PYOhvEJMrSM+fd#XaLL{dRm!~2bd=k%a`SYatOgjj|3fgBV; zJJKGiwBjE2H`{dF`0g*J>^0hRxg5MKAU*OV6eJtoqtv0c9-m4HasRM7L2yu)#Z^Tq zTlg`BC`8&`qu*hMj#THKW%hp{efqcZb${1C_EKBC;SJ9J__Uv4E8Ve^Nlg-Mf8N9S zfyYQox{j*8$nq&@6_Xf-)z!>l1&Q%_?xnvC_(Wi`X^Q@R5JR+2VB!9U;qh<|GUx6g zQlbO@bSkr4>t`rsr{H+p#B4|ch%Nc-!xlJSwD?iGk~nM7f`{a2A-}*(zVIf&JV~4X z!>R{9^0Xa`ai0C>1?kM)g2^G>7w!MUs?F7O$+B8Ls6QtJAWb@gW0WD59>h`$gacd8 zJuh}t3?>}Q-NS}pYu^YM7zmF%G%pHzEZN;?FZZRW-zfYpE?xQkN4)=8$nVkxJ706? z@Scjn?{5QVL*nAM5(QfMdQ1{mk+37|Xg#^liiey3I{qt#Qv^@Qcg|4%?9LFn%!bZe z*&X@&BT+v|h#n%QLgYh144hdKd*?aU!SV`B7aRUsti3V@;ulbhJx#e82at6f!OY0h zQi6U~>muZDN*f~j#V+d%t#3>g2V?=jVUMkMI&sPGEoE4=XBb1#T!8bB=LtfRLd3Pn8hrXQ%B>1 z6I(aag&jY6KfdM~17GDFudZ@fMNs98;U4B>>AkRX5Wg8r`rw1-gugXJd@io2IbgP; zzpR>QU!5YM927emFaV~biX&scRf9>ecUP8;rLb+?>akz^l0*XOJ_p^iOTVO*$&d0{ zYx9%Fp(>S=IWP8=Yh5q3<~N$GFQ&6s>O!VF8~tuHV{wKxHOg@|tA;nfsWqB!UlcDB z%V|ZOaJFs79b@{|SU3v4t{yL+*up;paxFzOCrJl_syO?>9&cN>q5VQHGLaC7IC@tr*g6}7 zklVS)%Po{gw>jcznR;4MbOof@0=rpfu z4*sm8rw3cDniR`brI?m?2fLTa^y(uu)N|Hrr81AlqGoV{zm$Iz z)uzPUgI&Fc6C^L^>?&HlKnQg=Xui?H1@NDpO6rT-7%4J1>Atai_jF%&^sAH4dGhIsUrTDVLG7&m)?m2{RBrodq*=uE#B}RqP7~kOF#6=d zpkSL0AWiOxE&d1M{+=`cAIQn^(t;`YX=msBT{8}DD#)PLu1QJfo9f7BQy&ZhjwiX2*lpWKcsN-B(Ae2QS-x|JX~(*P}Wc zaZ|xx2-*PHYSKK#P2t6&d~XVq*Oe#$RUx>L9@qxt#phOaA7IM=a_G0*~Y zt7O5cRw1_uL4~V~*b!ks6czY910&e5RFC8ZJObPYIB11VL><;)it;fns?KM?ADl?v zz05L?-7^a7ye9k>D3ND3@b};>K%^AfygEUsh+A#tU6J2 zG63H@gSxh@gj|=0-RQwP*n!FUAj{KQlh^>By*>TvFR9P&{RsMVrAi>dytjJR|0Yr< z9=79sB^9h(^~QgYUw1Q8c_pobncbWLqVo9}IMd+o%9kJ^Q?H&NMToQn&)<7T5aaI& zqH2q-$FIELq1hB(aI!^VN00Jcl*2y8@Yj;8vt@LelD?g|tvB@{jq=Hp&7#O$9aIys z&DD?6E;bZ5(7{Vnx)kWl7yl=_ z$f!7zn4Qfb|CxV|slXTHd-Y%u#>NhVJ-7ni2E9KTqKC9zk45S$aV9h2A6G3dN zqGcJ{3ahY5-$;aW9w^>gq*@l{Ewpy@c^&$oW^UQ-Wow70AH(9&MT0Jo~^Gw&9a{lol< zW8NyZ%EB`=Ckw94nE8D2yJ`eig81T%eK1No`q9y54TL{=f586Vn-EAfr_Coj$g zYCMoH60rCJUd#nson*RTVW)yz+UB=1&K>UwtIP%{Cvb#}zp4vO#d6`%f(scU|SHk#p%d}jcVcZ z#P&dgTf|`?cZp+`=rJm43Ge)DG69J+o*!u4?XKN<|6W7PjhWgm&Od!0`HfqNX*jq* zWZokM(0eHYhi~2oG9TxoA|axsFhhgL8;ywzQoaKhwpuO@L@4$1Q?d?{pG1ZuE4xF* zfqw^u6ZAL8haT(?0moSE=i_m8z-*H}V~w^+DK(~!Z3Xug^^_z>jnxFq&qsdBm(EQR z`K)kK)0q`Mxx%CPeoxBmjlqSg^KMp2YafSIRQd0T6OnueWhCGm|A!sGAa1h*Rac;l z7PzM;7tP0xjl$peFEqK{8_9LP6`n?1<}3eWx(=9)wfj&4t9yPnE? zxlL_-2Jh-`vrW1EiVG;>&F)1-yn0{?Bhjh{<}2kpzxj+izMY=RHhdU*`z1-T&s5y> zO|JGC?t%Y*ARiNMf9d?wGIaV_ zRUln}lykD&6m6;#t0t~8vGN2nv~gs9A-2B>Fq!vGEMjDQ>B)4`dq$_*(u3f`!@5~m zv9<5b_f9x2F|Tj)n+JJRPngC{Ixk7cY>F!@6})MnKHQoTOn3XrBt5+xCHeKoacP_J zf_m2Gp}nh@Cf9yfsQy#x1Sl!M!o1XP!+NfbW1KCNCJ1U9Zc5x%?k98aC-Ko$jKpD3 zJm5(8lxe_ec>c~nD1ieZrrdb27>M{;GyI?fQ1=CI6UuQm?nvJ0KI-r}V-r}x&}gJ&_GBEROaq2oNz{aX(Y|6E(|^*zYZlhvUr_6#a*wq_P^NU_f#r|*5E8pzg!)!47gdUafoiOIaPcH;i3E?2QBC>E%)fT_`h z{Q1XaCdlqKYXnEdz4~*d~6O0HkYMl$FhPi*K@Zz z$s+w?F>rKk&25i4%dvTiGtv&vX(dY>j5dK*D);L2}lFhKb=y>Lh@q@+6^vGmZ zsKfX-mPar$zRc4+!=il2tWoD_;Qm=2l|u5;2Rt+U<_qoyhk^TTSX4vX!4%l1=yBXb ze?BkgH`E83D?)+BScQTfB=&m5ZfM$z)+S+D2c4QeTdT}Q^(K1Z7M<|%(bMtU#r>=$ zouy^z>CDkl3##824HjMedw8a`<^VVfyWCl8QSI_6fVnO

    #P%%OCdoFyz}8KhtfHjQ zUVH6z0hVl^lHIm-n z)^C33`R=t7?*!s$*}aUknbnf~h8Nd^{M|DaYtu6Nbg|ccwT%16QUc!i@FnWm-}voc zh-&Xyudtf1lzxcN+_YLpQi+hLk>cC6FEl@GR z_XKYC5B57M$3+Qp1=x6isNUm>Cx6AT5I+`q`GubO6)-{|>DKLAJRX8+o^Yuhbz{Dg&EMt)Haa>xB{*Y6 z%*k%eV6~8^rBjv>zi-&E(N3H`<1s7*(=i{5(14NeHj>#>N=Hf%>lMcS_{W~G8&|K{ z>>RN$s=F8{F)P=4`X_8_MY^>$_1kd7oQ*BdScVi)c3Qk8t2xqzfs&BIScqKGv&0Ny z9?zwszDY}nvXQAJSr>z1&>Xcz3@=c@GjU<|_x5;TDGKYlp8wewUQnHu+`4mjwCWDC z5qMi(R^lEfmXG7bAaE8dl$AJ)Eglwfk1)AIU(=T`=V~O5s~&3=tM#meB6G^mJo}6X zJ72$kT>@uH3Y_`nSlhB?i(R^O$z9IGI>6-A8!O8Jk;azihWB<-(h*62tS&3RV>P+e ztopc1U+)2q?66Heh)E#m7jF&$ztAFy`i>txVV5sob%liG{J?<+-FudinWOt+Nd};s zjV%lEOKh-z)JjXsjKEd`8U2w0bg}Wo%Mf4~Z#VB;H)28-89)JdJWo=K?v|dNoReam z@M%iob7u8=_{b3{s20&_k1G{&XLQM`1tu=2-YnZK6!^Y+>6(?7l)3;V=r=k#-rdw# z@2twWa^h2Ss#0{=CyO;kf;vuhF4nlr*}2o_B*a^djX426i=qcS8{`mT{~_I4 z_m(0NaO>=9^{FHBve5Cw47n)+&+0V@Ob!C5>3f1_iA7mjWRie!P7Vp#KXWY;8(?`w6D6R*5wNU<1c*n*X)^Rp0oe*pZ}8$^!Ipv9=tUeUcME83?@7g z@CUR3Z$Ky zc=Ogx0mmrI6%Vi9u+Hu_-&4QGT5fKZ^DJ#i(fP?5rwPC+_k|b5hfE2f*O3VkfE>|C z@5q!ulw_G?BZf?IL7wD%gl{X5Bap#3Ov*sT!>kd~_^S;oG6NtHWGM#F#5i9M$xuWN zL5Dn(6@$d`;3Y1SoM$ZYXmM`63{kdYAeg;FeSudUeN!xe2|aXnw7E_pmW@qL`}%qX zih7;D0YtO|nL-KWQZT*rZceH>$!6r2$ID5FkRCzJ(D*KRW?|Y+=ZE?-Ea7MF`43q> z==p1Zk9zJm-vuwL8@0B9AEmr!=lK8cmiKx_`2E^f2xawm4EpNN;Xz@TdGEu$EQKe+ z#F812)lVWPtZW1-C_G3LALoLdl?Nh$#so2nj}`AGsg%o|i6O zu$Nzc+2`R=mRKT}FJHC`=g$kBXV?P=57@3F zj0hc+F@m~6Ryr=yeFqNM*$Wrl!eUy5VA+w8F;A<_3IklPAa4(}6|sKe$tT<+LB`v7 zwyei$S+~LNT)%018cJj(EZf!YdloCfy(FtRHzV7!MDvjgvfS|`U=3sast}1!5bV^X zEJRuPX#zo4uHFz3oASU^+@I^}*ZDHjyqrAMYsjs8ESWATxG()?n*Ye82ed$w#@v#%fJjcu@Klw?w zfE(3ktQy$4bEj`RK;L3nk^Bh@3G2^kNaM;YW5Fxq%t4k+zT@CoE-h8)9bKgk3OoTm zA1wjr@dA<;Se*zk&SAP_YLa{&QBqJTvXqu(_1?2%$4&}J9JTS$aVssUwDs#ZOCgr3 zKSYaD1Ud(SkQJ3x#y(m+6U8&PFr&Jt9%6>LgjfORLD5&AgkIn*!;=zBGYBZFeE@YV zclv?j?IUmLbFd_wRY5KHTCJ~lK#Fw1GSf00Xm@q?O1NiRs%W1j>*M2-&I6Y(U9qqI z)z|F0`WlOwl}g0mkj=UIUX!no*|4rb{X61QYOIh@cS^w%U`UW~oD>jyOtI=F$UsUk zXmVoii0s`3Q8>$U8oOc0E&y2nw%-#PO`L=Y|G6lmSW40 z%n?|L#1J7(0r^I_HkcdrW#j@Yx}}4a#YI-2kkxru{B%#s^NKaKHX7RsK$pF}gYNz( z@ggx?BLaXFU+Dp;*L!FK#l(~jeM&+~j3B2g8qYaS3BkEx;WO=eht~9r5z)fcYuBZS z;slfmEMHc8qMjck0J9|eV`_$+P)Cj(wO3wy-3~l(&=O>Tu*!|89H6gHL5Ubpu*f-2 z=BWEazko16eX4*E^!bAy{J=pDGVXx~AF|JX;h%_4dhBOEJLIb(H*H*JJ9cbSKlH2a z=JJc=ZQKj_MSI~%rreQ>C~?|^hayYhJToIp{T=O|R}w`2;UE5?_bb2vZ)jm*fj#ul zLspQRZHL}G>;Q`-b$fR2wmyNRd+qH`|Ij-dF(yhDWs1HR7S&F*CGfBW1`n&QB6Ka@ zc2;6elJjPan5+mlNXfRGPmJF@UQ&S|fqc?g;59=pc#bHIE8xImBn9;F)H1yVcteKc zVWIuV8$e3mK))NB^fjOHmQ+?&y8L2GgVuY^P@T*2^0H#RkI)zox!04v<6OprYk8&L z!v4jRgZDP18K);*AAV-03Gxa+OR(P=o;5t!yb{n&fOkNF@0O4zKU{hLb63;zFH=6~ z`nA7DJ^LHKbzkrjmXFrBpsc+n{Jgem_d75AZtbfV-UFvsUPZHxH2o|6%xn1BU-gDp zPUi#~Pi9PF6+BUxh@CX*SlS-cr3y|@PdIbwCu4_F5>(-lU}-NqHAB=e>P=ZWufO)H zojHA4L>^_k#bC^np1W|~bGMYpN`36{$8D1YISudb>GG)x=B|s2OWfMPa$%V?mJ8M( zZS`n%fdNwGL%awWKn*!uh&!sRuD0fuHg_45ULQ|RW>$`ahvA`NS-B-1FOw$g2k^CL z_f8iSSEOLlCH!V&neN%L-3B{)Y-uLJHf+wZE3F+iG0$qHMa#~}vErm?i&KBiE=p-c zNeGaWBvM)!DG(7Yh8H8qB+ZC72?VVAVFzp|K{5)fJ8gV&Tz#D2OOiAjPD-H6hmj1K$jRbQPw3cPH2SBcn1)&xb4XbOTG=PU;5fz4my}m)(JlL2raxD z2y6%d0Ybpqr3;q?82eo)KJ)ZbE(GY$J9qB5QbAA?(}3`xIK5$@=nwJ0=TMcb&076@-bBe$%(`v-hQ19C6I-8ypXjDDf+^?Rqe)8=kOm0&)QtF$KxKAp z#U|@rXblb8`ZH0xhKR7oM@%c>%h?Zfj|4RR7%+UHAKvc4CV9`nv^WZi`+; z*cwadjMX^Q1;s@{QDd1Cc+83}lsI4)PbI(r?~7Ba`hJCK0rO`Xzob?d;*}^V3o~Q zncC*L>}RjPW);;n_AmbBzqBVm{*?Xb#UI=20xqmLV)YF% zFquZCzIM%WatoaA0AR_I7r6wxiZ5rS{7K5mw5PK# za$k*&7C44o+0tZabV7y@284K7<5!rMC= z+(PIfVjyWhyaJ#~a)TN9gR$mh1U2b3Fwl7=juX(r_zX!$4eP-3=AIb!1#-tbWaa$7 z>+(V1Q^kt@I3`!LJ58g4hjm)KLbhh6=N3s zvglSI-WJ@BD6I&cJtZYSCq)WVL}>7fL^SIg>U~}R9MeWZt)zWssqCp!r|p~H`i8q$ z%Sub_$tRz10zY)`49pOhbKj%A=@9t6kBdkPB-qP0YbJ{Fx#I-vxG~$^maWj(}0?z@{MiWv{JGXE1 zDEXtOPgz0DIvW)*sx2zB{Im>NYcJWJ{hMtrGQn;)HcE>!AD(Qv2}zd3f*uizgTP3Z z6faBo611z zIBEawzx<4V%#58sch*ORDLSk}1S-M+i-iFrODyeY$tTON*(#p%=uf~#;D!&pAoLds zoZ^Z?-{ZmIx32C^J8|NKu8p>5pMAz2e)wSrlGh{<5jHh7)$W~Q9Q=Mdc!h#OnxgO) z8dlT&_wdkv{v3WJ$eZti1c)fRm235e@gdVG=Mx*VC@_dXCFMR-jVS+=lync|9UYw% z@Va7eA3JUrFI@Mf^#%EPmX(ujx$0A<8WB>xJ)$qsGqD8(h_e4lXJ?1#iMWZtqk+Ok z(J-w67#<&!Rjg|Rp25Sn;0XiCWx}q!_4Re`qDBCd<7CH<9oE`>SHL(=0(Q_YU%nD- zMM0d3gemm~fZ$c6JI#Lfi$JM_>vT~E$@?-a36cs=d&r_0kDp+L{c+Y~k5MoTE zG}I^o&@AG;UNiq6;oHPSND1hk9FCFDy4Sh58gQY7Tl)YGxzWxzt5o=0G0 ziuX0+3SBWStTKyB&{#z-=sA6!0Ij+Cwj|=R41o;K%|rX}cA=OnDr&8)tXiOugoGK+ z&-CS)GiU6@7hklW{`9AI>cmN34MX3t87m6jV;}TP03H@TR7Ib8T~-cgV@con-ZT<% zOe01K$YebA{vsRgXiJw#Y^_qTgUC1z!X3@Lq-czjtPm$4nU#5VApEN0r3a? z1l{`Pg9))l7HOtFSe}mu8o5Iq$T>BudjI$Tum8b;&!2wv&#bYj$?|1r5fnWt!>qoc z&a*BfzsQtLAU%o}euR(kD?i1Y+RZVS!CzI*@07^2dMd_k?fpRzPdd zKmVM?N(TN&{Ye(<`gIMKotxv+zD$u9sxHV!Vs=Uka)W29PZOB-74N%OM0A6aW^c9# z(Ge11Y;sPA`c|FGH3@2aR(i6pQep*TN@9X&3QyUbMuOS6U<#UX;??D<`ZHQ}@D*MH zI-ElRv_iYc8hD<5=Lq*sLr&3N+DSc0B>>O|*pSWu@J7F}D>gEOe!!!J3}HnUzi}-d z81xCx;x~8*c@?F5VkqIE!V@$k07QmjKqa6hN;;0k6L_KkWBSkUvATqxd44Fh&r`kp9zJOqFkEE`6dKtf!n^c&Mq&;}bnrs^I?4j=KH5hTNU>Zzx_Zx9-70)r^Y zKzT-Z@GY+)9qDZ#%%CE@N8oc`&uk0fslfQu&8Lf88S6{r#mXN+i_oW^gH~U;4^|=` zni!4YfW~e}f`;8;ZYTG};83vQ1FMnvp``_lO+<{8SE}Xb7JKH}A^~wy@3YcG&C_$2rO5PN z=W@-=bfCQPbOP=GbrI@*;;E)*#-$)yt-bS}6l=f0LZ*)iw8nHL_a)fAvZ~&}OALDu z=@|gsv**s)>p%OMgJRAnhe@fF4l!QKYL5q4Y77B6cqTZqCNnelmncPlOk|TI2Xe&u0@$A7H z&>~8X%_do0gU1PQff^f>K|qjll?<*@@oR|y!(ac+*X?cbNV0gC=Kzp-Wpxc8bj#Mw z&i{BJ@Dg;iw>e#*)N_$_=@}kd#vWEvqANT-Jd8}g#Kn0>jFU2wrAg74`gj_X>lWtW#IG?d`^l0ye2HNkp1NHVp?$X76MTgv1v!f> z0F+QK=oLWDG#PvVSY*nF-}oK?2T;LSC6Z6qVT^D}0wrcNpE`|4NKd*j;m?`gk@BgpeBj!04bY5ryvC}ckk7W~N$&B>hd>3Yvo?rp5ZbhoN=SBsWIDLy? z!J5s>%k@|nu6^Z|SNy)e^;^H?!iiil1Pk*#EM~3?X$J-Eb&(*TAlTgdql4eWLgG9Z zfV!UgFt!}LryxA2A)dP6cdVyix{z^ajPVX(>9UNUfIybmhk)1nM%S{Xo%REZUsV>yYj{BLFW2t@HYO2UXW-ozvre zNArj+xpVi1`jm|(#|6eS9k}G?WmtBOKtq16_g7(Ip*7U6^Ed?p)62?BjNQ8T?%nNP zmoo8Ft$;R3@3wE>;Y-Bp8#dbwfz{S~ZSK9GjqR-+4tfyuc!2Oe5(CEaSAY!)&ojJE z%~@t@wm=V?1J+w!PO<8aw~0NWn0|{=-^Kd1>RAU!Y^-r4`=4fL>xjnEt@{KoKvhme4jHM}mt<5AmJve8*z~;i*y?i^LQ@{;?+=fYHA- zbv3q4VCGgM*~dpjcR7KVd4ACiu>@9rss4$22C;Ae7dClCK6q*m2QLDr0-EEKY>FC8 z2}i0n>`hdV!3sI`i)cMZ{nFdl?Xm&@18+lz$Y90_aKg3&AR2%IQ-ZV+aDvx_K6c=u z^YC0kLwsLWR_0^C^fc$=bqR7aWqQ1nX9rim;B_Jg4zizTcJ*|>a}T_rcvb*fkpggw(BW$COu3qT8bfFz@I9`6bCR@2_Md?@hpE0hnq{3C;xr+@v+ zzZVMWwPo#h_d92Gx!?J#zvG=xL+G6!dXM$$-*K)pB+b9GXnc}N`3|gVE7K0s(?Z+2 zL#zm#cm)n(UI^Ij>g=#jKKHyGIeOfZ(((l~lEplOmM<$SzaYnszWugk=N8)L+I$=A zmW3kWbyrsCLQK5XdM z^)ckD4-iHuQUnUZ3~&H=48TZ`9|K-P0F!2%*bhFti&;u01R+6!L!GNS_z6(76ez)> z2ue7CfK*p*I*0chOr5ZNSDzfr;f`ne5+%np2s98WB{n=XYS(Vuw9}`~%A&m|L7O1@ z%aszX(!C?Cvx_N_F3*jDXK#2|7T~a61!izBx3!ZahyZM+5!f$A{jOtveo9s+%V3#q zP~9RHoL(qc&%`k?4-eohDJ`~&@(SCyVWY2>Aa;Qi?Q7c%?#VbJkXhkG+Zf}qu_--2*|u)pAp@h%k`vNJLsDLllfX29njM)D z2^xBr2gnXAXySgzK-@prYi}JrtbS;54;*njIKQ&=dwx-Yj~@y>BO}|Ysv4|XM@B}z z#xPlRT(DcWTJ6M%vv%zGabL!dCzTCS3BqTSPXb4wlUF4(&Yw9eFg5Fd=3_E+m^Sr& zXGC|@E97-NCeSWRmn9IKk4W~|(cNRGMVH4;owDZEHji0|#cP$8F6AzT$~Dn(4uEu9 z=QY}`8_TGwb1NHJEG$PUry8*d)A>$h%uU@%ir zBjyA2B*0lt|6BX#_oAf9BOmfYZwpRCI;1yzA#{^seQltqe%**#aLGJXc?gNt17?S7@ zrgKT&NA4Fu3*esvc`~N94hmqC?U)^`nU2HT#TFDEXe(jMcoTbs$CTup0DIDYkXfBR z=TX>_9)*Dw;7PBzp$hUs|26r!$v6oiQi)f0A zN}Z8l;vxwS6#s;8*-tKp1$*e>hwb*=CMm5MF0@g=%N+36Ap!PE#t00_Zd9OT--+aLf_S7|3to_Cie z%*C92VNr?i%Ty$VhBqsW10w$fLV{(@RaG_i`Op2D3(4lDCSBX-013t=pqHsP1Z*&t zfft1SVO$Xe4qT~#G?>%JN+H(3>BI#*^aJ>c^ks|8osY>vrjPG73P?#=JpcUjcHqDP z37{+=59XWkGB5^#XC&5@6z^dqrntB_eb4jV(hL-TFVk{lj1&Ah?oxX zIN-$d>F}Kj-WaX}&>(Q!)1wmsG|u+Aj-|yqP3NI(*@+pTuKNhIVp$Qla`fm4DWW41 za1#P)^-^dJsza&-Ed4+l^I01bc$u1(A{4;l{s>=!0+UmdtgDOFL_->%T!Hl*0ptnQ zby;Aj)P+24hqkFN+Z;gm2z+OtrX1PyFh9T8*f(fKK!W9Ok&#UM#_Jq}tOylhtv~1;Wq|i+Xn0V4 zM26lp@nx~q)K=N-!mORUaL#VsxowHb2?8=qsYUqer^4dW70{BazD$)Oo)jRwXg_)J zRe`Nb9%x!pQfOPZZnpjV_UYUz^?S5i)z_|GwbLh0*(UMk-o1Mr)Ic}T7W4rfgy4ng zKp_J3n|N3FU-Zfj&ji*UJ$}M&-fgs|do5CAQc41GYznBW1pJm{cqBR>u;D6351CXw z&P8+r-LrWsn+)>2dGS`j7fe~=nPOTe%e{?w`1oy5ZDN@Mo*;h>TK=xZay6%k-t&Rx{GxWsi;n@VNu_yt#2tdKx#5N~@FcK7!?fZ>Ghg^1* zSCm=(x^>o|19~OMf6tyhzS0Wg0$O9*g~b&F^W!0p^|tb8C?DF#6BT8oYm16fyVS?T zRnMutOp#CNx$e2pHAUG3#j92Njrcjf19;6!=0ZCxFu+U4f(eXBKx(L82*w_toLJ%M zL^o8CA;I3xZ6=n@=>$0fx>Z97 zXa{Vv%CotxT|j)mhQ~x#x__dKJJJK&Y@=T-RkfCvk3BiU&GV&UocPX!y*z^L)4)@?1Ub=ME&Y!<%O-;?dN`sgc+^*z4xOMxE z#}6PZ2)w&;^_p9V2ocSh863zNX2Q5j=x_9SpyL|4V$DeFnUt|`WX?NS2Wv$HE zpp;l4o+(-4SI;YOF+PSqrOFWsB0}zM`muZw-X`F3XKh$HhaBstuoC9v9sS2 zULzD6VCdwDlj@UO_UTW5+V=0??}@)|-M;0P8&e_l%bmM-(26chU|fU^mN`P7J$VR* zW_tv2t|%e^D-cQuTsWvMbW>GT?aBzD766k4zxMT?z2^0N@Nf(cOL0SjnSMNX?ws8fjh7ae zIPhgt(f~Xy`f_&iz~Ctb+!E9t8BIJ7$|O?YDb-TMuWVL&?&1}D?PrJVp2losoTa*I z51wGBIb8n&2i~Wm1NAdT3Z6j53sAD86X=76x>~2-MS);)GQkOW8%eIVaa}d+;06%# z!>5>M=AEYjGgq(OkRfqSa!li){(#TnP3R6f866o?``B8dUa|ngNI+Z9loW6|iV>Kg zIubv^bm!!h6usnEc22Ihfo%hllhf^(0NOE+sYw-RSuaB{&z^hc3H#3Xf9O0%j812J zyXrmd*?tp}f=s}GF4FgVn`y7w?W_4PAXE!-DX~O+PP8$r_Z|o@P=Z1xbwO5|>LPj` z>hJS=z-vtFlR^Pm3N7JX24JM7ri(wwB|}OLz@ZEi^#|?il;H*KAdd+uMy@c01kfU{ z4+Ss-=%S!ci2VV8F-1o16+H2HK^Y5xp=TvlKM`LQvI4NMn=amz?K^e|A@@trrh4oKRwoI;nAZh`101k4P+YjYGbEIV zRXBa-jJ@*mYf|R-JP8;c1*RpKlEB(yNSPvm&|xy_gz)o3a}p5bKEM;hQakS7-O=M- zgVdCCyQ2Cr->FOdSxmomNkH7bd)wW&DYBwb5LloHp=X|Y+FpL~6-&#>wx|qQFe!=F zbi2{&tLkihZG*l18TxFe1PS0C?VXnofpV>N}IaB~6L9JMP z>Uarr2sy%LWEhv^CRv=U`Qn98OYk-9dcl86$ z!)pLgL5T;h@?bgw!AN`+aS2Qrk&7o_TGefZt~nPW?e*1X{-6)e<5UiWgikB!yx{v_ zI*eQ=1n1%jy4TWXJzYI+v6G~1aAee1lHJl+WBF!^4>oVzVY_zjvHFH}R$5Z#UNM&T z<5}6XX@k|&R<8h-BCD&b@o8218Q?^Jaqw)PsuRD3uO$7OkkVph4?*Oy?j0c^980K4 zfHx>0%kIOIR##u^(~;v7BT|SBQex~4#tO3_ehUH4maAiJM`ueftC(QVpa|cpsAk;+SP>)AXrXMdznUHb&P`* z(HR|qykoT%GJ{w>ydEMCH^|5xk}Y0m6H;gv0|I3^B-sM6hKm6uEEK@wiP3c7(j}h? z#PbpuBr#4?SnQ)?gH}~hWSiHocds@yn<`mH90x(KcmY`=-A^(^(Y$XkDo{G5v0%(G zGzd!n$xnakMjMLUS8IO!W4=<6aoV`CL2~zo^Bcgx`AltRk07!g$B5@d6q0rDw`fE4 zf)4OtkzIG5m2=)_qQ%K^r$szZ*_r89kV=580Gq~z)kPS%v;(<|!iJ9kF6`V-5IZzQ zJG_teT#Q7v96`ZTSL6e-f^nz+eg7%-CqcK!22w-tJG8*I27r1DSyB{mEi1uNWpuH! z5cy1CHb62_&u3pKGA1KK+dG)nmA=t43E;-t0zEN}ME)pb64xUmoi$bp{7L8VN_`y4 zYRr%?p-iOkTPXjKUDOS5#xyl@jO!U|_bdsZ@i{zJ7e24P@BPZ!Ybf{o?!C&|a|K?$ z^mE`PENdG{`Jl>u(DmxNl|S^#&%gSa)J=zfbDviPfS<1cqaiWsaI8R9*3hxZ8q_6O z1k7&&W{6`U%DyN+*NO`ZT$!m-)+Pb};~)LlzW2TFx)R&GX`_RdO`A8mg@5(hRav9) z`n<*6qgdDwEW!~1FS=79BWId17tAtV0>+5mhxiFn{r(SrU{_?tO$kktZ5Kh#Tq%Kf z2$B4Pe5}rC;bbtUZ#JQGfOmx^VHLTP;~a?Dy`q z`dln7U_39RB?nvuF(eTVgg)`qC#2-3?AoncR$5bO6B2~vf9PoMwg&K2* z)rM`hbA5%KJ9E+cBmfdfU^NzFB?ZY+z6^sDh=c_hLc#S>KJ9^`UAClzD4S5%m*=P2 z^n$>E#)K^kV8%3oGz2LI}%k-!x zC6uxw-%BQf7BGS0&>wX~d9tLKd3dK~0TjSA^gFKpC862S(5OK0th>AMSdxB#9jj-i zparu{8`n$tXS%U5=VL+Qyi=FZ)%I`-c5x z5X4umUUF|JtF8)5$c9_#{KwMtwDc_Rk5^uO-QIfpgg{@fdmd`4YMo~*%2>*pCYeHZ z+dgY-yd@<)<2g7Uc;Er|v@lh`Gz!~cAm9Nk#N-jDh4%$ICaz*puN6U&1^1BeQJ1--ErCy>O9c}-c>e?+_rVA zFF;`2*o8bxb!TrhR{C*1h7dHIl$7e$yHC;SGk0!kzUMN9u_u0lX-yQG$6x7{Y3Sno z99!3bcPYrEi@co^T{Fc_JO|6VecvfPD?KyAJ$iVR$wPzJXk>K4{_?NB=KQv6&mK=( z08e1p9X$A;446jer`+sZ8Fwjqzulk1)e06^pN_EEiT|WfC;>drw@uNe98ZJ;+-7d~^q zZ?v6yW1IlUkbQWLRs$KQ37xz8KD3`>?Y-BQ`~Chw*Q_pU&yD)T7k&}EtOXr>Ui;ns z$_HJ)`rEbV-tU^Vuc1p>AN&<{M5jUI2pFQrAy{G~(vy>{M3!S!MX3j?;i_)D(P(_Crfqt=d);$| z2PBwdjc`{pOnv#%Wlw^ZnU$&be$4hCIHJ$hD_mBqcn%uX zcXno8^@_J_jTvBA4|o0ph{GR%KHj^KUyktc?e6W903Y-|X%w(-*1@K9qf&q*o)dX$ z{QDeql$RG7iR}QxzE6{yf@>XM#}a$rh*AB7Cp9LTK49vQI49=#gVkMrh%QmI^kv^b zujgMOri|Um*EMYLy}#lT(tPR$BdANX_txQ~_QM~(sBwt!pyCG(9Prg|EO~b8dTdA* zbd%0)6RnJU=HQJobntLYjE;GbC!Ur}g6}m>&@ih&wcKlwED3h_#zPe(m7A494CEKndhBG(v z6#MwZur<_G+WPvsKp~30MUm6e16aMSl6lC*AO7Hn0+40) z+rRzW-Y@rBT8zz9@topuX2~$yA;2SKBu`C@(HZ@v^2`%ymZM99Xf2c zZr<`d0Z)D6DS?!A&fr(BTy<9^S#s;@Y8_RBvU75CeDK)kgH71l+FE?>mjGJkUG=t9Fq{~G zP4rY>cU4QFvdz1@Fx4k>s&{!=t__Wgu_er|Ucaf|0yj0AlEM5e?IhO$UKg^)`ch%F z13*Ck;$|faC-d>erN#F7&pjb!ROq0CzGGe-+Taxn0k9I##|lF^6R-TQ&j@YKXDX2F zmSiM`5re6Z1%EC=Ed)L8_E&o-o}1#k-*K1f_U+s3*M9BS9AF}x5Nt3#3{FXmOOSP! z=s+Z(UkMcT6MMT*Hvlf438s7SVxS!8H`>phMve~7aErg2vFv7ge64N1s%bhhbrK!T5C zZ7hohw8d&XCq=UpZe+j<@CS+$F9A&j$gq**+#CuA0J@;_$Y~R+KEvg$hN|s&OfOzM zZ;j1Ou0V;O+O%o243I?e*0dDqjGe!5+5Y&C|HMw5IBD!7g+*Ui+h9*V@ua6pAYha2 zDw-N^+SJ5|WJQ|o-MihM{Mh5(k4|5z6AH?g*9uu6hnR*y$YYh`K?T&X#Fwevlc!GE z;iJc_qbFEV0w0i$0L4Y{J#~oE*h3Q@&!F}OIXQ^mn0EjZFQpqHSwV*o&x2+zy5P3uMTb;kZbEi%U11vv0LW1JD>&KQ%kB|SC4hD2xg+FGqw{2?LZwDz~( z`di<|PoTW`Om*N0s8b;%GQ38U9XfAnuglK4UOn3`gWS$rta%1{HgV2{OR z(TD)9KvBP5nXaCiUC?W=Py*vEJuTVk2^qB@xfCtFNli}k0Ap6UArl!N=mh!4o@Cm%> zjOoBo+;K#`+8o&@rv0TI!lqgOm0 zpmE%p3?LN;^xzt1j+gmM&O_ngQlFWgvm7a7VjKAFf&?VMh4;8W5%3H&jEhhMy+iyA zJZRU03|EMChlEh^O6~;|G{UA^ggqmIO3?ivu&Sym%M=q`x_m_dE6)SuNX~>(#LGf_ zg>M^>k?zkaC@gRS2PnPp!e`yuWPX`Xmhe;VHA3f?4axyMdsqGH*QN< zC5gNc=p*RWxZ9e zxMHVVx#6+FE$hLps*~?4r28ZIoj>%S2MMd)Sl9jitah36e#hEEKrJa_LG$P&}5|q8hwh*%H%gZb5OJDku2XnJ;ORqoxD+dtbQyM4woV*Kw6BIGe2x342 z&q9RykR`2vV7wZ5@}O%rwIe49pbmwJmy5h4fD<++MX}RP0<~S5tG;TcD?Jn_3Ws)( z*_6UYmbA^!*LgnGNqoxKq<)jYRNu3iA9+&RJG-Ue*=f2%&tPZkVymdExAhx0OM#Iw zblC=_0N76pYZtdR!IDf50A?6F3<0*`pi*(_LssVX_jQY=BP>aDG(A0LHPz(;3t2YU z-y@z%k#bG45dj;Hp}~If)r1E*W~8%YafATQm_-P*5W|3H56haRvTg0HzFP0pnbY3x z>bg4HxBsBk)-`yHMQ{JGC-pmV=7JqNbV(Bgs=1YY8R4#>XE)KK7Aj?#GvdR|dM zzU|qw%N~CCLGeSS%Z=;T*(QLv7J&(98d~!)XWu0O70Eti7T!nq5W)|V6VMLl;;DK2 zt+yS#;K>0%PzMjnMb1r(T6IOSZQH!T*s9~kwdlf~Hme3*zINO0 z;>8xIA=U|+U?=LYf9-E<^QKMqPk-lk?8?=v_Q1h|&fBb@A#-%1=v_^;!opljj+Zeo zx8$Bb0%hHsqP`&V$-PvPG0-2Lml@)1^b9<~c;%ACtI!ll>BdBpv@b86g$^SQx|tHC z{cKkNfWUhM53rkdFwGkn#2RApdzUNpe6m|-XBrzOvcin9LYCwG_0>c&$hL0Y>`6M2 z*T@QtP*w}!If;_7fH6a#Fts%{F=fL#ru3{OjZHNCD!NgVZB#O3T*r(WI3>B-FMjLL z_)JJ9_De_g4oEMkPV)k77&~Df#0u0f&XM9tUYA8@WF}r>r6018-o-Lfp`SSb58;7~ zfQQ0Y3?PrgS@FU^k0DSA&*yuWvufin14MqAYr+!o2S0v;Hh7^DVOjk?Ea7)+e+xga zuE>YEe(ftAu(qr|2hc*2r3DQlOWjb;cv*Z84J`l32{BTZD|nXRlKm2koK-lPVh(oo zWWErk2l0`H87rK`Ys{H5V7M)B-oE87Z(>EZ%c?=pElUAZmzT@hXfv`bf~Ij5@+>l3 zGN@RoxOkarICt)XFKGn4gabY-#z8^T78iOe1uFwa*eYPPAOStpKjh0g2PFVeex&pU zM2Reo4Zfa!<~dg;|NZ~-f3O%4eT0Y=cktZ8l6y1&UfAQfcCkzW8jB)sa((=V|L`BJ zwXMVcmp}YNd-CZ|I755-Z86m5O&je0@vpyRN6z22?|%P#_UOY;*mIBXwC}%h*$$sP zW}A0zw{n6zlhds-H^mY)G|Xhkz_HH3NlQvk5|fBUbT4Rul;q+ok9QcDoU_0B-s{%Z zJ?L#la3BO2-gJSKvEd-X9alK@jnaKsHIb#ZFh$bb)F?0!B|$xA4fVD5`Okmewr$yD zO?R8@ji0@4w{G8XWkL+X@W`NhP>6ZLwF_N&T68h`gqWVG!gEq~eLekR%y^p>00ltO z$0!pDfwk0~0#!1CWawbO8paPABExY(L7qMF#1jHAk2pPDxpKu0A3khn&Yt(w`sxVL zU9gmLK~_srVz4wAkilnY1EIoaXu|tX_vf6@eT$F)oc6FZQ{Q8WIZZ9&-VO@1hegD> z!LGPwY3V8cIxT>XQo>wiMFjNDxzIb`BYf!tfFZ3#NRz#kJ)#>+JU`$tiHC+ic1Q;AD9wgx9sgZ zcSs42T5cx!Pv+Do0-vfY<42qiGz0h+v)b_ZguV3I&#bAX)uLszJe^z$fv&Ec6ujINz>cyX%G&d8d#&@E+~r`qy85&3^dp@7hoDw>aKky8Imn`Fe7M_m`D^P#nt;I;99-K$~6G64&P|4UJS=<%r7xMd@l2N#z zF)6C3u-48lk3$563=amYmnKwaKpT0408r5wkg6LVGw2h~3j9gNc)|kkkdSf!e#uaM z&;#T&N)bP(`)q0)@3gK{-vvAvcoBVRw)%@HHO9+9jtc)n+w>I&n~Y*~aSk$rzCpJ7 zHF`z%{9jq3KK}XN^dxnZ@O5=r{oUH%?|1&%a=+`}@AVy~R$2W$2MOnJ1+ogFthB_k z(pcW9YeXO@DzeI+JaNpv`HgSd$&)92KmaauD#C-Q36uy5o~UqMeSTI90nsr4ufP7f zTR*JyiISB>@~oPg8r^H&Ui{&Y^!ya7)@PWTWO6JyWD3OtqC^f5EdtjSj);N)#ZmT~ z7-PdO31$&8zd>jqa}-9MtVN#JC1H%Wg^Y;=U*Z8E02po(%Q|tXHza_@Z1{+p^dRTQb-@+cJSZ>QmmbJ=EQN|`v~RH-`nHBuDxf( zKKJxNF>A7&Id#gW7NhL>N48qu@T8qMcV3ouf=^Y=FGN~;mXNoq)Y>&^MR`e5=E0ma z>AHCpl#_B2XpnHGPIVhM+SzlLeB(>vh%~6~Z6L0JP0d&`OP`VdCCK6{OH+Lb!_aTU z2ow|*THnBsz4)Ua*`+JjthT<+4nFvhPvHKZ0}#wqy#DsRd{c zzCoe7Vsnd{1anMX5jPRIc!`&w?t$kJONr&pZ0yKX1xqg@1x7kOfP7g%FDpCG(lT;v zNEZE_J56qx^E=7X3X4juu3??0ZO7G)*9Y$x(@mM;L$(=Ur)l^Mel003kYbE;FR3jH z(8OSTq*!W7f_qVz4gL$o2q5EfcX|_z;J?mD`d#1zlH|-_1r+_VCj15_S`&QP37tD)z3q^7t?SA*)FOddt?}V>-#_O zDU6QZ0a?{E7MqwV<)r?PWO|D@hhPd4`2w8>V;w2p2;wYI_{4MJWnl`uyrkIn?%r(= zJ@}yQ-M&FrM!MIQ_z+gUkQW8n#fl#Kp2TykKw;xW04`(9^pJYj$Db(x$Qq!7H--$k ztUv)gFcq6EzQ)5q%oA~gSlTSL9_a70DanR?ySG|tNs*nA93W=yfrlQkvdSvMAAa=2 zS)VGJo>koeEuu-}FS3g%i#OjmamL#?T(B)lA8_;4oEhY zh$a^NzCaYeP9PZX9P-aSzxt!_e`v@d50Q(=K4^+@4P##%1c`=M>+Sa{ALg8oQX>Ah z7Y~U?-vtS4%j)me{(isnSC{uX|Gi!Vf%)!1On#X#D8!vtUo{l^S~f-;#4RoGk!zaa4q1*=QRaLNc&w; zQmT6eDf~GX;(=H}!hiypk-`cIo(C8JF_VCaz%|mCvziEx4VDIN<#(obu=1!If)N)V zuYiug0+T=x!j9AfNxU~HV*daA&;Qx};;+7D-}>%%ZM`hALQ=y^aBvTixK6 z&DXy6J!@>bXSw-B*55xUg+Aw&3vn2XA&Sda*Pz(N)NH1Sl^vfD>q3OS;T)_UgzEkS zd+k%tKW|$$ZM4f`*wdv-J8|ytW zVZDyLoJ{K<=(hH@d)Cp>BHCMY8fRq+du@%VPMO&P^~`>P)>zx)xZ` zC=xO(r+QzqFV57&q74i!Sy6F~Cp9EDMnQIgCnxKaB5G~#uq)SYSZ~jO@B0HUEQsEH zTr@BQ&o0Z%BtZW1g$o|g|IdE=x2(FnRQ)1#Dk0w6)8!r@+J_vVkJ)p}SCnXMV};c5 zbkNuCqSyEkjDG3LRlD8PBz~W<=RWmm&)0I}c9W&3j?gw69^wH=P`56rofP;Ova#7*o(Q9+LLPiOa_wKm_AGMAwu#l`t}P5}Jy^DWU9{RfceKGIG;-Y9-( zi+Dit3}O5*O-^7c=R=oHSL%1##B>Qt7f&+xp?xH5cL4)NHq zDkdcjP)G23v}Z2o{z4Y+1?X&VwXc5ltL~lr-QWG^cH_ofzc=UT(Y9_KLBK0BpenE% z1}W`uI?-qLD~b}}9hzG7=_+U@THon5eh=DPn3ZZhgQITD<)kP3vWBAQH1(}F=G0TfcUny4tx2vL-wbC@s~C$`Lh-SHDxAX|;oX3SwXc3L_Tm zV^2P6`}gcuA4TZ*8TWJ{YY9My_PG!INeRIVKnEEYwH)M7Mtq!e-%5thiBK^OsAP>2jRk>LOp4!5WUNFaEu0fZF{Sf%^L3B{Ak zAq;3@&YJglNnBWH5FvVkzo<)`fDVY3ATLsGGeyM~1Kb~lgCYx87x5j!p7WVwWS}8H z&f|BMKtp6?vBWh#B@2GXj$Iz;#XdqT`4f5Qx4_DRkgyb4wnq#CpIM&A{43KLk39C6 zgSQ|2;0N}o-V<<)qJ|Kea?2~Owog8}+uFN_?U4GqqIR=AvA^E>M(6C*&iB`_4k z1R-Fy@7O8JIp4>_m$ask<+wxrOY*3AjU(IaPs^eTz>C<@1wqJahz0(z9Qn@2Uj5|O zvkGGeAQhGR7y<~GcEpPZkYZ}CNJ{C~S3EN8YRx!zc6Dm}x?G66lGgnx&>;7L1`$5c z6-o*kAR{Ps#p-8StOpDV1d*qO*aGSXt#cj86e)8|KS&XHGAaEIC0Yb%VzwTIVOFWZAY|4_Rr| zI?F34_GPg*?l#&_UVY82{+qWOWr<7CPS43oEdm4Eumm!JoOmHgquwd7OW?hPi7TuM z@ng9RAV3qb3Ukv^U>RxNAFR$nE6%7d)mZ{U%hoe6Y^iEH(?M6S->{z&hjsRXjY=*h zrKG#nyJOd0>mQQ!D@B!>js?z=WEox>rkvoR&c|G~{%IA+>Mc9(z)T#J+vI zth%Da4V255u8M}QIiLi1xWbllgI?hS2fZ?w2s{_tIWKSy?Q=!3A~%tH$W7v^;7elj zLb`(X`0R9}@nA}vOEWUqM3a5j%y$`o^09rMZlYOzc>4TB``XvPX_sZ))7Rt=LfH~i zL!F>CfG>Q{w8imb$6WdT^Z)L@u@+s=!USX-#zIALsinsYSgYE^qO-IJuaK%O<%!2d zazkIw>WhIPWNY9>giG`_#zSrV8gC2Y2F{`bqvx@@NBOZ6almQkCU}a`bR*D9mz&_ml5D~TaRMQiIYnR|pBn&QZz=5w$Qrno9 z#M&ZW0s_GU)2`o$Z6O8(VMl-~^WMy3W5r^b;xhfh7d~fa5T1G;?A^o;qU9Yr;>^Wd;Ia8x<1Z+ z_~MHen_g&-J-ET9E#A(aIiq$;si?naW;Ie0bcsn2x|+EtB)-7hDs!dugvJk0CA!B- zT9$y?xux3U7}{FyS&GI2_jFonvds$x4Gj-zJo?=Vhq)Mkmi#hpghfp-8g6oOB)Ae+ zzmgcRMg4Z-sU{z%I(4dIL^!^YdKUuu|!bH{P(H{`e=p z9Rwbh#~y#o_fvWd5V-=90XcZ|c<&ap1O=-Icm~2LUdo>Xw>7jwHdE*Ufj25}N75?* z0*Z;>nVO>DQg^Vm@(Le8YqSuc#47@q_s}28gJ&}Bgz!V*5s)n^R^3Lew|Btj=95!o zZO6n*@ef(cy*9gfqtTk1+r)c-fE=r@-6#WMgLsMQ43<~VNa5gm#+pU2rs+tP@Ql!N z$Ms#3o<(pjxsaG@L@5@Ff9tHQV!fqjR|r6i*|`f>?aaB0cK*^88xml_3y_spAVVd= zK~J2N%fQg6`g2s@#fyee>Hz;7fxURU*VN?G%*pw`- zTpK6;nNrbc*4@h5ii$~BABy>rDc9@8Q#KSAg3+y8*EGk9xjo9H#jxkKKjc+pCn zfO&*WE5La}y?E=9NA0mkAJ+RikBeeDhz$!*o;+hsjZLmdp)m@cLzEO_#Q~p9>vxPd zKyR!RCChN3Uz7kq)lX6ZL_j~DA4qf${h|aNu;^MmFnlIp7X5(?>mBIxboh0uTWx)% zjcH6@Ida7Q>g(UIt2b^sFK*nt)e4G=eSaUk&nSGRq411DKPXMwO}xvlJ-ck(mQ8m3 z_Dx@z#OAm~WH(NZu?6Yc2(c6%7N05-KND=q)YF_0&9v$Zh@761oTWcCJ^*;Y194Nd zjUaM(tuQacgS0VR;9PcP_UZb08CjBZL*lKzo?czczFdhOdk1gN$l!`s9}*u$j2QaH z1D;X*`W^2B?F;%d01FsV@J)j50oVfsI`9GX>30C}1pyL57_MBu>VT6N7>qi`hLwM0 zCVoruDO>XWsgFNp{i@rvXemoT6j}u^VU)1?60nIb;aZTr z!RvZ{P=WhZWc7DzfB$7azt`*P!gm}X>+n56geYJdIX^2xMzQD^>>uz|Aidq4?%g18 z4Yxhl0!k=&Kj4xnSwFWlaO`D+b&SQZVZ#OwN+h`(Ovkb~7=r;vm;(T~-{{!LJN4nW zSb-$Y2N0kP!urC{LtiJez#MRJU*6wcq_W|JIYhky;!9%5w%~T@2}9brR2k`M4JcLJH-@GiV<>Dq|7< z@gM)OedaTtu|N2OKk#Rv#Aq|u{JVem?`(ZTu^l>g*dVad7)uueM9KhLAS&Iq#6ThJ8EeKr>{oy( zb)wHguN^`Sx(JmI*D(dgTsvFdGxo$fZP~KLgTk36VA?SZ_{Cc5lf@l?4FQ-q-0@^( zM!6thf>(YgxfLr6m9xVXfpdB{04GBIPv&)%}Z(MfA>Y4^B_8J%BIMLb&I zJ?QD~bNawop*@omZ1R}sKr&cLFRM8v(eBFHCClo^pLpEzB^R>ra>**48lRAX5G;8| z(U8I(V})tmJ58;2?)qJUrE#xgMq0}MpSk~l_w2gv!`?mp&YhV%?N0AA00w2yD*+aO zB-lie6e&@%q^MewExE;slgM%M{G#WQd>s2ZiEUYN)Fq0fBvKS5ik$?(g5Jvj(|hl| zzTbD9dj=OHfW>nBvVk+_{!iIw@3mLoYp-22yCW8TeRIW%O2+oXAO34?T`cNve(Rwq z*fTmW+RWKCg|~e1{1_s$s!wRsMv3?qexvUc)AFv2c*KkWyzxEtoITYA-|Ewpj4l7* z%X?lh1_KOb0S0PNW^j&|H+aso}Q=qbTbG@A>TE zC~Il6I5zE`KWkdsxP4FC9Qf;-aR)=n1mn+!tEQ(-N%B%z#b))~z{IpQy1bZ`DxrPC z8(h3!`wI<<;}KXdVPlkod{1sBhR4A8fr6)Nf}AMoT{@I_mIrA3cI#C3dwIBG<54MM+@I3L%(>1MZx=b7JZh6N1?ORH%C`&)# zQvMCzo~ZF)+_=VA>H5&crc4VT6tE31BnB0vFR0lfj9YH*_z>E*-ANhpQHHAi2{A@9 zFz|zNsxIGg*2n(0wtc(eng5h!-2ET^@k;@_%ILq9@AjVZ?VeToYp-`6U0l2T5Nrpz zrGJJf0*`31Rx-#&E9(7lh=^ih4-MH{7li@JTR>oxUYGY}7QOMto7$?Ct1`G}DzoFW zmj1=kU_tY|5JD6egNKpuu*kW<;+KV!MJ2Q7`Dm$-36f%Fis=X*7aA)~nWtm>j-6@q z`L=Y~@)BBvifN7)!bmACn2#;>Szx>wHgyzfzCQv?G&saqxL|&HW4MuP{eSxYmV57Q zU;fe;OUaRxPGA^O>=n?|Rd%ZG0HOCqMPcHe+CBd-vUI+J)oe+xjR`WdTl}*be8Nb5Yz( zujLd(#}I?y0X(!V&u5qs;+Z@y!v6S~wqWj1yY-f9qe$*5Lepp778~~QgqY_Q+$#r0 zZ3dT`Si)6eWh-Jhq#`%1!Q$Z=lY3%Qtlv+5@=x0KZ98f?^UwYqWo>>fo41Ojf@sqy zOilx}i**`m%u)ZRAW#-g#x(?u085$3_<O?kG=6>Tr+3 zV?0^ftg_F4@eA$GKl7RL$YF*b_}~Ylbp2Gj|Ni?+F@#^ojvTI?wU1|5(Y2ML0eg8lmy?^Zpq5Dhv!h=EwP6`6n{9(@+L5O^9W{2hPua$>2`YN z=>iK%lYnvoiKb_5jAt(*<8t)yiMDm?uC{L7<`@evx2K*CeI3i#k2NJWKgy$B%~wQl z%t(JM9iJY-zO*f0M%lTkEnIX(U_C7`+S|VNwI|wVKKHdYVPIOU;&Z|8qiu2EB4A!Z zH7<6ZA(k-3V1CB}had=kXIA4sk`$vu)2~20VJMX-`Ese6ZJ$(m@ zQ&IYthCfUTtl0X)QCQ|LTvU7tk14P3xz1ohN2Yqg^OD5ZkkN-~`Lj(Z#R;9@Z3%7R(KS^ZCB?>*@Q!iJKQi=HVxw zZ(Fu*ZMI(FIYS3F5gI;b{S@voU({ zcgZv*3&kr-CIx(WlBMZzMy#S~B((3_XbikfkD|}L`}dR=&gP6)MD{FOyf{kqV0-@A z=iBMrKc9X+6XWHBKkx(X`s>!TZ$A7`@&2J1L+N4Q5?EMOWsu>DxSirzfq;F|@N3g* z-YIyQ%g<;{i5##E0p(h(mNu6MH1+W8n<|tw9L-~N7R3nKRwuma_@FLELDBF04M%(B zr9-*=?fh+u=l@fdQeH;>u7>nw^xv14%kTBSU+bOMs`K^EJunpK%MT1068RhBL_{Sx za+s5*z0Qq*U$$&T_~-cc>~k-)Z$vok*}cDn3fCM#iixC(QfgMMT3Ob;<)M@q$=tZW zDIbWAholslSYQ~8(rdm7BxO1Ap0Lm`8||yumz*&kt3u@ZxMKCydG|tjepuL^;rZbG zDIpQ$Ws&wmk066kj@{NW#N4?pxs+qiKbu;^ zfsfTzvZq!Kh#($@gW(`S}zv33ztm>A|TnHw3Bm%dV3KILU#pz}l= z&2NMwaLkC`dhHc$c)^lpr`z%ng;0#E_!QGqG6Bz>GrxooVM>64v-ku`4xwtR1pTjM zO{VeE9>Q7@w$FU_FKTb8x4h*o?ZZF(Bb6&hs()51ToTksF(%|W_Z7d(-0*+SlcQ7` zdt*bGa8rXLW@!98PO$`6xLjVDz`s|3jj!>hB=m7sWrb&82}4RO#rvZl`&j$4Kl`)7 zh3l`szJ1^KeP8?j_kVx8=M8sVvaT_0$rI(1;bP~B5X+)1MIZSlSGM06nRguBy$&ZR zK5$G>JEes+3-<^!?FZ*F5(0B8l&om5e-y=%(heUf(3qbUP*!(!LNTBQs5 zPeoDO*PeL%=~$Z^qNF`tO3j!t1I>nr3m2_y*IavZ>YWpsT$r&O-=2GZef!#jkF=+s zi4t-6bm(^|0&`yI@NjvD7B5;{aZ7~e-i#|n?R@$n?}pqmyLau3Qf8_pc#^i7ZjK1A z#BGF-*o7OezoAVHe1<|#;^{0=JsRN+c1L4?FjNRsbi8@{&i2B(jp^5z5@2Gf@FUv= z%$Po-T@}G@+UeF?Zi?cvv@MJ=WvW)*m~}A{?A$K-ovCNArhM`)p?zMs4v$P_%*yZC zh4ZGr2dALpDK$-F&n0#E4aU;=_a2ktW9D)L zBZAiN@>*YIn&@~10^EVQF}k zDS4}e{mMmIOUV(}3=b`-vkH%P&o*+Uo%{Ud@v5BKCR8B?k68g1sdafhJ!3fl4 z3x`w3n2K)^7`tHcy!12p@`4RNPZTV9I4R?U0}QurNxQfhV{MVagb9>HUZx90%VCeAIy0R&ZKg#U_+i=? zJf0gx3f|ln1^2mUpKS*sN8srbPd*jJer`=E@7%q!g8k8QWi(F(6c%tVwI$z?ugCb6 z?8!HK`q%E_k&&4am=2`x;xXY3c~n`Kb5L^0g>QZ9o5lNPhbK)7-;G2r+M%@I2{Hz& zukWL?zW3L@Q~7S5`CiJn`+o38|1sk1HLA=1E@3coZS=kV82$U(-5dS;+nq-r{kLDa zm(B-}lor-U2^VG5HC~y#)@*pVZ29sEl(nSo8{hm!+qiyRkS^9)gxs_UXV!`UE2|0? zFIm!7N4dbjxzQo;x(MZM5pWa$3CY9?lqHkzVcNb=lXezgv-;|5%FBXaq+#C~h9{Vg z01+=?$)4m*y@iMvAh$qVF)oOLOLo!x1vQ1mb!VH(;-nN=P4go^ z{KM^ce&=^fumlVhYoT2%Q||_A+R_M20c85i0<&tx5@gd8mROgvk~-y@dHm5w>phke z=7A|anr}Y&mDGPuSCZ+?S zYO@T-h|K15ED*U9jJ+k~n28;VkqH5d;CN#&X0a!q_~a+bBlC`Ty}SLyPkcB`Vp(~> ztSYe#nc`EyZD|nZ4Erzv<4c&p8Nx%{6?~ASkQV}hb31#EXO04i5gUivbA;f}J$3+5B)R zVE4WC?d{5|u4?uG@*S(@DA|^PnkK=l;hK%*iqU0EjWe$y<_t9`cW8pQj+Y11J9PM9 z30D1vqo`N^v=vjP7@Mv|7ZoRwF`yWOgBSz!Ar7mI1dJ}f1>{a0oR;qmMqr$c(zvtY zV;=naH>1dGs?AGzYy z&$H*4IdiBi#~nMOl&0Mi(+4Y8#8MrK``^~?yZ0^aj$3bSx7~6};U-$zylG?m(?9)_ zwk>$JfA5|^{$k;!CFDHBR&`Nac?&CWHHry(q%6S|OL|?m`}1RuKORMFPbqG8Xs4vh zV9Xeipi<^q_(=GQ;luwdm1l)h(ki8W#@9ITSE3Vus({}JF?=M=D?a(wH{KZ~Vtm`Y zb$blB&Fw&xIc6FqopETXu3&4=3kF3ag+v!Ax8rL(Z22Ib#U{5rNAnlVtN6kBbEdZ` zv0hBi@S@_;Q>S)&I-N=tMpJ2s8A%(>fy^H})A z#tNz@pc%4ab$BT$0G73j#3`<6aJY#!nJ&(rg&06 zrGeZ+_l6(6x?YM-c%+MYq{dAw(PNK2+E%VuUQ_FoDSfw9h(0J37o}HP@QnJ#cR0RN z`EH&WUBjK~$KPN>I{-c}NHWRypJmozGh4_Ut_zh){4X zrG-_^LdSFnZyp_%fk0i)t$p!@$_h;Qt9x7+jUd~f|GA%UFXkQrEZ|LU5N%+AtXR1! zf_7#YMn_=Xw1GWv4%Od?_sJ+QlomvBo@)zw$GH@)TF_KtVHyZyiiKUgc7uDt5X3QlBgax?p` zZ|>bEDPW9(zzCD&O;NvTC+*Pw&P&(f3D1lE$V0-j;W@5oJN&Xh(HOk%yfqoP)ZJTq zJO}7bf7l#^F?^~Z^e|lYo{pg7Ie7N@XUg4=$#00@KNv-Ul4P3rY~U~O@pu%~(#whvHL*2l{DQWnJ=3OIT`{hf!{#Glz_aSRJS*@(e1k^Xzj)U&gLh-KBp=GFEt5d7s1g?8<&5N^C!E1OF(I#-HM9JY-nbM|jRy zyZYK|+BGYew6&YI2d3L9v-t5-C!$bw_yIUIZ5!n?Lt8kE>+*yI$n9MC4M8e1?}{kE z%hTSe(XZUJmSERE9#>3-w3-?mlCFO!<2aGBm3C7u&}h+V z-tAU5jl`#lydf9~ATAPcOc5xHkIw<!IdXT z!2qIEo18mqcA%yTR)zVP%Y5>wXWBQv`A|(ISVAnlyUe46KE%XSB^+B4Vr1E~n7{V5 z2itb>DM1qRn}WIs5X7Q>fx6zedoQ>C{CNw4bd!Skn`$}lihSSP=gaHXmDPIfHP@6C z#?_4>$y>sGD38I48}#)}Fk zOeYyz8~d@m`Gr@7{ac zyWjn;_O5rmv)y{jE$xkOx+lk*%4@K6>9P?etV?2N+Q>Nbyl5vYPaA_|)n8MnroyI7 z<7Mg6008tr1hVN0V_;>3RPWl&op06C6bjGT)46{(%FpCjkcR^6T@l6$V?FPVf-uk) zFPR_3WkdROsNHbmb)mK3!`KULXvUQEbxhl_XGhu);dbg++AOKvl=kp9zuDe#|J&QH zDC>f)DHEnR@dmhJskME`PK0Kpd1q~dp`ChXMv$>4t<*BM0(5a7aVl2zS@kEwEDzGm zp{eb_;bRq8`Rl*&TkSvm=C8MJJ@jySCSQ2&xk}j}CXI4P0El0(a>x`9I<;K}qrvtM zRz69{cI?Ed`ddOuF?slaAZW_LOE0gh9n~#owJPqOd)`>3?30s2uXh^s60~WoRBhR#?bFGd5-I_J+x~o@&=Ek*WVxVma|KY)~qjl94 z0y15Sm%=+Xz3Ek%v*qU*=bO1dJ-EIg#-3@jWsByuX%ok_37V2)AkT&LqClQ&AU$qO zl&-Yz)VV0VX^SZ$J8sK~!mDYU34DiADe!mx?7=p5;@Gxs-Ok$NQk{nn9S!VvS29H~ zV8GNSmg&2A4pS-=tcj_Y@@nPIKYq0S%B* z`h-S!8GW;OkCx_I;ZJ^f*D6ElG{l3M;y!geM%y$VTbw)X%rkZFkIR4m#~$BnJ-_mi zKkFbjs&t+D%V(7<{qMe9{@my?`r75sz219%zt%x{slS84orVh$Ub$Zub1<}Hyj+9k z>|;G<&BShQeXS)dT1qRPXV3&BzdG}#MnxMjM=zC25o zEUH9BnD+oHA&8FQBaG8QwkMx_yn=Eq;eOjY-`VCZSX9Wb9irdGtw?f2h)7{i2(lCi z6U(U`tW|+T*}YW5yF4+sZX_!ee4h0UwrPfZRzrrMMU;fu}kTgunojD zHo{=r&K(sj#|q>9kp))&Sr&KPc3b-!f8%eo`Sa}}-P+&!#a}7`>)X4w#>%aL*=YVz z>~` z3p1J-W+1x%^yv#xNV;8}rME7xO!^;kE7(k)5(b!WSg`XnyKv{CAf03pbvMVB5QY@<3<-*^yCWh_1O?svVT zec*lH-)_0-iuT-7FSkGV$Vb|v4}Ggv=|~{PlBFbhAN(mIEHp}naZ%tN1`7u$ik?L` z`e}SUYurj9Oh5f?C4#eO;P9?kl-^|(_tr9|EC!$~_0&_Ir6@DJhLjy13h@(y_?~|1 zi3)}ks3&`@Y`2y4EXwTUC=|8ZdB#+rJLW7sJkO6Jc5BPlO=WRoR=j^!2k9>|phOFx z^cqc@sb$qu^G^g-7su!-{Ir^dw*YHww%le-i z{F*m=h!`x-iXzhp9#VWa_4>fHC=h4Q+OOwqJALtNJD0XwQ3Q8+z3@c}ByY>iSTMNF zo;^p}@dHQNl4XnAk>LHF{rf70?dXZ41p^xu>NDKqsWtT%tD;uQm?o0?-+p%*r!8<1 zz8d2SekJV#Cw=NyUt?Stvo4Y#JKRAUk~p8-tYf@uBHu>r?wyaiJvVc^QD(w zEI#7UKDcLWtVmRMf9Ox&mWaym!YE%Ojq3ZU4c(XRBXzP(56mdyrm9vhU)p~9Cx5E8 zZZTzjJTO;YdABQ<|Ng(L{H5>yPrv`^0;8gned+%meeLpc`MuYAe{^x}wVt{B+G`zE zG8lj?SW{Z$UU}(Ipc5R0JV9K8Mzd9VrN)|E5i-nxu2lwxdLbAS=JxYIV zUYt^5j+2WM6J<%+*bV?O@{M7{>tEW?4j<`aT4v5PuRA~A>4d#`Q~3&5t-j3?-w|bH zMid^uAC2`!17_t3z`~p;6`1$N^&2YilNAXu?Mq}@V$xu@O2v{&#q$`RHr;;Lo$Y`4 zAOCUt#lQ8pgQ&b2VJ-Mib|70cSs{H61O%cC?lA7qnZK z4`xhS`{D!7wimW-XyfNhYXgDDys5L=!r{4X&McmzFvkc%T0aYkM+Nhd@ln7ht0Bz` zBW-PRhWA8tGX6&$>I>&|vG3X7E|C(fL2$4;Gz)qf&N)ba9QfRR+z9B`BJ``q~` z630%qNn^Y1?a!40*eQ&JAAu@P;Lw466(e!iowv8Y{!>5I?!J9R+q~sy`{O_QqxQ`Q z9&FpTY$ye$R%@kzpVAZ6gfManh~I>TxCCc~U>lz?>6H|PwFmCn;T@hFZ8O&TP-7o_ zmS&t%Cg#T3l!olSM>CE`jbHGBiyLFM6!-Zs)S=+p8B=L#+P>hFX~s!WD0~xX_~vlN zg7P~wZASIwh8u1eVb4ehtJDUjr+)Q6{D=1Z%NyE?E3Ry_rh^w@X__+P zHwpoJKm{^S>CIH7kIKRrXX#Lq3FIGR{3wXiwnKR0> z01j|~0*gmcYAHO%$uTAa3zxthp1U?Nc!g(}9;s!rC#|*_Q(g??FVD^OYgU(0@Ypji z6)kDE_SIBbp5b-zU3G(>`q8pYaVMo-Wi;3g+MY=-zPzcO%(K2WabQC6 zG~*PMExN={#Sdx^MPpu!%GtA~w}CVz%?Pd@sqsI4>XmHh_(jn~-ZhpzJ%T}>P2090 zl%gpVyTEu++G$mk%}ps&k3R8u?SD0POz4&Q#T`c;p{-` z+6E78%^@$;@BQvaDzDJq!zbI{`>+0+3LUWM1C1~`x@{#oFR41vtv*NqS?9DFUF(w) zu{5f5*K)O{IVo&s!V}3P^5w7p%+Ho$uWs9WD1Dpza{2H7TxHDv`}h7d{qC6X=+a*s zeIDJ&@8+Gpyw>&abnWs3kjG?DyT3CK0rn*YCV+O`AVD@8`Y8xan`Ll?P-Dk;84vv} z&x67Ao2EH^`m_?>wt45S^RCR7H{7tMEnc{=v{qKXcfE&T5DLqbXJy02btQ~3CGK}S zDRW(7JPv|vTZH}cFen5<&>#wR@diK+bC-kxWXDL%)vKSo(n#WJz;gq(KbJp{E@)g4yZr$qd(H_yydob zBK0nxJFnfiI*c}B@XVG2?dgp#wj*H#7h_A!h@g}KbJmP$(ekIX$#MuF_S93Z-JqE1 z6?4_%5(u{$Gltq=^ab@D3SZn7VYDfV(t7*wgdv?iKemEnkH&(QF9s~NGuTmrl*a?S zP94j23TVE=>e6q^AjNUO5iuTcVXx_kLkHR$Zoj?#%uoG9yW_UoOL6<`r#{ub`sFXR zC!Tt;>Ic8R5CT@Hz(EYdK^eg;!PIyUgc)EWg_FTo`82f4?_!qPlSBK};~T|rf{c?R z@K&$Bq3sK^QXlJYY7}PfYdJUcK{jGRx?lbB7YnYGrOA}lJde@s3@(|{LO<}Ba)3#) z7~uoq=sE?2;F8r7e$1U~^+6QSFfY$r{UUClTZuPROZ5HieFtGm`4pexZ}}$(`U`2J z_$|)}hP?91Rh=<$v9ow79J~#;-g0{>JX4~uOw)!_=gN)EiWaZ(+;cBfoQC{PvV!(` zk|^0c6^i!1v~FE_7QgnjuNAy!=DXm!KT3n0k>B&KceT6kxV`NX+#6WQeL-+w?s&_h zMN3L(iZl8BkAA#8`s6ch@zP~Qn}`%$cE(gUm1Zp8@$Ppu%eEhS^M-hQflmcht(hH>g-{ITHcn6H3 zpDr(on3Kf|7q!(f#uhH@QrE9vzbQ)QmQKOQ%i7-Kfp%Mo*45o9)DD%RiN zr^EMlm$!|fW^+vo9VQJ7rQU9}l&wtg194N@Yx{*tLn}S2rjB#-z-G$np6c%7?a6?Iatbv^T7}NK)dah zn~J`~H7SJ?qsryK|6|K{sz-lEmofjZ-}_Xqz51fkUmJZMUHNzOPG4T@`ggi^`C)Fg zl$Q)Pp!2q1F!b5p^MXMrT~KETId@z;8%?qsOiX5K-J@OV4@H1y7#RNLb|6JP{ zWq>tkJAVv-Rdn5T*Vnf_&s|*Y0+SFFgn90nXTm(Ul)|A%j%J5ijKMOx86haUxLQ6a z{>Ic5E!vzV4O){P)~{D`>a>^EV^3 zzxF^oc;aw76oMT$W@4K?eO5abOL)8u{ALcP+y=wYsT$+QgyCgG1?Nu9eZ+%s2|jJ*Yn>2_ zi{FDkW9^nhZT;5mZTl|U#2+Z-6r3p$#svd6ZGl-@B71nh*pp+${1z+-V~hfOzzUY5 zhbz9~O zQE(%TC|q+WC-ZIX%H2!2TK!5XJPqC%pC0FpnW+U{kcpF~RDw3%7akr;i(pPuPNq#T zZ?NM9|I<(WacJdC?E)K{EO0no^^DKBQ{3$OTb{%Smzq*ZQz*ffZ&PBVuE(?~jjmfZ zsXg!leh_Tlx1`s*JTBS@uLWD%gNF4dV3;CAQMA%%f5yqm3d!FNMJc%Mx@(How(r_j zjQ8HRzO}Yfxc>SZi#`a`Z++{bYUj+nvvl!-_Uv;{wkP-yWnKQ4Zb$DNX z^LKu?J@mwL?TRZ`S6}rDUg{gz$lVcc(BAc)cbAZU_|Zp#Ut*<oQAjR_BkcX(?b^1uZOOm6bRpe>&K#f!SwGkXtR4D8^`>g#T5 zYd7y|FK^sdyNFZx7^85+_`u!5wX_>9bV}~X6l3s%5uqROwx+0@^I`jaX`{l^;%{LJ z68)Ww?0Df!RxpcnIcLv|SP8BNdmvFCMP31W69%Hyb{mFuZq3e0 z5#i4zDiU1amsLlCT&0^|vUEw9+KeV``%5pq+@5{rxgr9=ZnhrxSpi-G60J;5*05ug+N*RjmS<(X+aGa#E-5J8cm_5~hGdekSg zvQ&~KVOgOdYU&XZ&J*xkE!S05lar3FFuRzBE(nS3MH zU4KVgJa4GoantIy_u#3v_T_a2H$!sb*a@tuG?SA@>?*yWy}0&;wr%&WW)t~v_6km% zIeSi<9cDKzO3Lgoz6oO|)T)uwVWRpfc+U4M#|#MD%%Le6Ndb4ATbF<)a495mTbw*) zN-)eW8q9*}18vpPxoytudF8b^b^LG?kAYI^WC&&T4or?Bm1`HnD8(q*Jk3f6D{ojU zRul;=r3@f)%b8h`mYh-wEUUM~{jtX$YajW8kF|9#Z)i)Ft*n(jAO4XaY1iL$OFNae zZjYkF10h&knsJOsF`o}B)oocZuZ3|eB{3bB*`@WJX2RwVpHA;-dSF>N_nFklL=Z4ulg zAOteAn8j-7gH;`NF7{h?(K8Wxm5eU1#-IuDN=Y9$FJ7{^b_ZT)hhRJJdM05GdPnn%Nc2q`TOPlxaKTx#qc}&5w zVv2-KR84VM1+{L&=C&>G426!l>CvAh<5uL13sV>WVERS61$exD`_2e*I6$3{5&UeW zLtvzsHnR7ccX>=@h@BtdXSz!OJH<=x4)+DfD)^q@;tXh%l+Lrlh~i}ylXWU}2$;Pw zir>9&zNcNiY<}7?zA^(p8D-C2OhL5>%du52xDfbgetgbWXsKT;i)3lFv1agf(Y(2B z$-;SU;hcdsXDIzmcTAa_IB~XvO)BN}td*Tnh%6DlSduczPk8OI6Fi~#E6;+JgHfFF zty#gFc{3-sX;Co3e#3|4qd61)Ijx#$K;4o!!jM}ged)?KR08s!+;Y+&+_zFnQ(J2z?P_9=%eSVeq zB5lSCjk6VPcAvJl&*0$1wkLQgv7Ln;6N3XX<}y62j>8-AGeI_O_k79Xo5|%q>yKH*MM4)^Au}@mrpe8|>wE>)YCO>+1YcjPrHtHsrh^ zd~IDN@3gx1sVARmyZ7v@HVgVc76XtB1&dOE3L)#?D!tqtUGzS8UUjJN^-A3tUFXR8 z+m&%|`M{6<;~K#nq0u_jWa(CS?ta(bmmLsj^zXi&zOKuE*WuaMIrsHB*WbB*>D_b( zlN4U0Y2A@~xz@EcdS{TX4wZNnxav7p1TA%7LNJIF<^W8IdkV1b63}{ojWSlgw=t_MC@Z2 zh8UwdD(RC3r4cqPqgB^VuwmFD;stWafN8n*P>7i_WCetOeSy$o1VSv$00!OTbJ#jA9!Pp4Uv@~Pb z+W9;*_RNJgSzp4C=1(2pu3VZinlmd*Q7)d~M7lI4jP86Cf-_Ne&SXppF&2lQRnuoy zYzTI>v>rnf)XK##PY=sR@M3xQ@*NxR4bNTJUf!^+eezR(-ah+<2ilR7XWO+AtoOh3 z{`Q{tzCQve7XPUe?WHh@Lq`vnS3r_618eNg0svriTm$g;LTmdDbIkg_12xvVx&bjnzFEfxG|E;Wlr zt}M@%7_n)Sr`3v(+OHFqoi)}E(_6^UR(QXbL-*org?d^Bp7zK28+qPwAd;F>A+p|wTTRE=MwKg@1>Dds) znBeq;;9lWDT28exB_y)tT*h+dl!3Nv(VTYeswHjp%0+GA46A+eOvcVehEf`w3GIPb zSVz%lq;DEMu^o-Twfg3G_}PhQBv!<*>`e=v&v*|72j>Q_=JMi9>fjX+)U?yMfhhOW zCbZ`^>}lV4{K>XE{9{7!bKJziC@D6O?1G6Y784`vYu~Q)U%cGp@X_=6=G9lOYBNLI zQwKZmEWuBhTZ%m)-#wdmX${3Qb06-hud>yKe#nJhhKRqLGB^-kDbZc%C475U#{S3= z0oY?}kpOvswvHS*7JQa~GPGgJF1T0Tj~wDF&!3M$D8?t+6z_%Un+q4tgocg;#}5Y& zy5Ql*AA3AX?zy&T>9X)uM$TXqq?wU5d)nq5d%_FH#fUuAY*=bVo8|Ty$S8N=WdmaI zqS#UJ!}m(jf7RLZ19>idEj-70Y>bz&F)CX48zqraeJFBhMwIqRY2&;(vjfwWZS_?v zgU9E1s82LjSU}Qh$4Cq>R4Tm+y4#wf?^Ro!9&A+$$q#Nd4Vk@6VUN z+n4@XFOPoi@^?MuQm;f|O7+b;##TVn{Q2`L)KEmYWYTh5&eZAT^{Kjx{kfG_&fYshbNo9@B$i4!7yU^NP94!GYi@7w1Cc-6{eW?f7;!44p-d z*`GZdgdIDfvq1A5LAG4ggsu7h;ptOqqc(!l@<`r~a`~oH;so-4U=<-j-~@aVLZC8( zn$I={@^f&R@?@P1Bc{|?%`kWVqKbbw9_3@flBMN&IhyZ&>4C4dKl#+3wx?fM+YU$2 z-gNU#?fc*Vf%c&v{7`LlwmS+Vt54l?%5GR7u?@0(S`{t@gNT_3ALxTu9-?F}1}N&!Rq^I%m$BQ4CFDx3i%G zb=eBwx#ym5OP4H(a&kDdVYO5jggqzLv3wZzgmI7Hh8q%W)yA2jMRYEq*Y=&;+tS60 z+SC{V#vLt{(4hndZ+UpEG-7@8jJ&Y+#kOhF#!`ml_rMAgg?}&?02b$~XJ&IHCqIf~ZlGQGs&Z!eeD;|MhC0yjWdD~m> zYxmrJN9C~MO`}l1{POyWiJ)-7FF0}uSAxs<2JgrD;G9*MA%Th!VX)kA-Rib5bUAzG z^ze!BB~uy^xaZHGDzDV(C@mNA9mbA8*EF)|)9NA1o{NUlJ}CxF-7A8K1>Mew;=Fv; za2pE0k+cvhz$5=tUZS(NFFyEa+rE2O#=i67j2~|bFZ3Fv2@O@|@EA+RPupisn-aJj z3q7A}H?Fy^rlP^i7*|rg@a1EHx6~H+lsX7nhJ-V?cL$c32B3|M14X8rLboKji?Ly- z2{;z(S6fl!SsQm!nqOS|QhVs(hw2(d$CRlAoBM*xy~4t~PuN>J&(P&@84!>Y<&F|7 z#lV~1^ycdK;X^T0r5uh5W^ux{9lP5=@bqwK^I*PjDl^@yJ_IxcL%*H7e>(Z4^k;-e zf$_5(0D+T!nEo;zywCEBtys3S9gP8N5zAZNcz0W~W_9iMZ!a&oa(DtShF{n(jS&Mc zyieYdF@TAmh~IOD1#p>i-+65uTG$;*^&y3K*Uh>=a#s5DrLK&W*Hm7V{_j^^8#(u7 z^u5vL^6THO-plWezJB>LuXRuPc7ON3>+ez5MqlsG09LwRe{Iy^pA)gFF$wNM`+rba zOgrodvv~TMr}79TA{K2J5++#tTEuda0o8KV3QWsk_}uIEq6u+CGiH4mrYf$8` zd&mZH&7UiKcI|D?#&UgV?Z!5J(TX-Sb1)3Awc*L*+Ui)2gGzNMDbq-6z68PlchK9W%b2%J=N0B(KEqN|CXTz<1}BYcQ^T~yII(IchMAZ?6T853#$#rDDV>%mZ`-lG zwm#T*Xn&Z<(KdC~w6=KZ;x;*o;kF%H+ar%W+&=%s&$n-U>ziRjr`kRD+|&NrU;9vd z<30DLjxfHod(*aUZQs#@?P#pfi)qI=j65)$GGkgBo*nmP~*D}o}H*s-5!Ag#9jynQ3hlGV#AK~XWFEkC5dfGzeDW@(=4jqAg-UT; zziC6!+TMM8%UeU}4M!Q`-4HY@L+{j##l}sWiY5fnQ{oBUO&c~;S_9v-;VPI+PyMEF zP0Px?LOC&ACG7!49Mcs~g8tyAsnj*sUR%MkmdRH_KVH#1cWIBIobBqXua&zgZ8fFG zb16eArtG;qSW3b48AEN=6;W&>V60x0^ov0NuZ)ch!Nx><4Xd8l#{NqbYC)0C-zMo4+(9LFVm8iXxn-LO~{wU8&G`=-^5?#(AmCYSCj}_b)>&h z$QWrCE;@>%*Z7s;=qtg$^0=hEVi0So`3QaaTR#pTI#P-U_~M(CZ0)lmP9G|1UEn94 zZdsIo#fuh(_J@Ld8H)&ZN(!3OM&4<(M(FdzkrCUpcmKgQFgUGA;JJ0%&UPe*-PrIr zUQZq^LG5IR9`yZCD5`+wN{31G#5Em=!iCFTcg^Z{ z+l@EHAeh<4M7~shA2=VFfDyhzA?d&;<}-?G3=DYCDVmgT-e7Via0-s_Ccdgvz;art zZ8`T%?Mwgn<*)T++?(G2!~fZo7w1>i_Zq+Z^XPk*pZjw8Gq3fxGWz=Hb6@__vl-;k z#WjcmF`Wgn0Xu7YN{GswD8~9i1oVzD&Ar^{8O++mF$awtda&78p?G1O`+%|6B zQ_1tV==bJX2qwLLxr)Q=1az{JS@R1QE^2%BA8MQT9co|w#={W^W7_H~m)FXI=wfYX zaD4UGF>zu@Cw-%!iK{tvyxTo`+_+d(X&Q!iI+hb>{RNZ8tQyRn)1g*eE?xznC~{L>A{SeDMqIsVARrgHdz|ocDa+TiX5a zd4Id(o;S4lVQLja5=J8Uc3Ol8JUX41# ze-sLicPN(diQ;qc!2Ss8Zf9LMS@;#fMj?Wy>Q>Ognc&)R6v{3>XlyMF6%@?EzW#>m zn`Ns@moIBWGp4tzR$tW)gf0XU!_O5_BpSr++kdeI6l)Y1tJDZH$l#xJjz6{Li}i7h-A+JZjiQ3-yXJ|F%O z9&#eI({059w*h_~LTXf26bn@h}w0%zcu&7Oo0Wodrq&66(!U6?~u9aLt(+X%8 zU`}zUjdIftV>kNHaA&k+Ri2G;;RF6CQ79pN{D@pRr;7F{g@#E4*2hvva{yQ>}O3etWz3 zO>d0ynZ8CTl%wff#++hljCgn@U^KQ8EOshW=f#C{;8rp#=lrbuye{4yn@2l{d#C@m zE3dS_EB&umUwx&N@`4#TMwkBg=N+daE0~&td)Yg@83yx;E3c}-lM!?Mx^7=2h-o^- z&Y(R2y=&@##!cW;Onl$e6b3{Puuc$2w*n=?8ZnJnv!3xy$l&`9jI*~KDItiE0Db%Y z_qVs+cVGL+M}EJU?(ySYq9GCX+@f-E@D9n=%MFfk3qTtlo>R=pF(-oHo8S0Gn98Jf z`>j_8Nn3lzeYdn{U)qGgX5zmg_Clnv%>cr+Sg8uiPbQUkiiVcw~Hqu zw2q&PRv)5>rhg(ZIu{;#ZrsIo>fFh8=EU(f{%l|o3Y`_9Hh1>)C>g_LZO$8xvNSUm zZY*H4tzru>%-s=Wo3_{huk%EJqty=+%+Zg#&?ZM2;t?2(av_(Gv-#~)Vdhsv5ZNQk z))LC*EnC}DPd!~p1fP0#ZQHSXM_ayXdAskf8`^Dm-`!SUeRXAUM(p<6A@qxJhdB^* zwTWE%iUF{CEX^$oD6plJux|2dAu0UqJs$SzalOl|*-aDh7_#oTrE9~)R0{WMdNXIP zb<m2Wyug{fK^&EumCrmnej<}}-7h{2Mtq};=SsNJR|Zln;gWEU-7 zoH03DLB(sXzo8U=0lu>$NLj>IY6{%W@@!4rWlUDCTv6?j0F#H)yOxae5b>VOn>V-i zjk)T|D@s|J5aq%YvOr>9nB&J}>m5_mj#sZ<9p!&^l+Q7hnC%;nJkefU`+RLu8Wpr~ zbI#n^Wwew>Axezva6#Oc?LMYVo!q92k()8Cty;3MEfCNO_lJVJ6R5wP0b!3Z{h+kC zNQpU$K=q$snDgEABu~BZ&Q^ldq&Tpqn7+1 ztf?KIP66+X0qup;#uTE|RAuU}ByJfi-W7b6v1W?T>aGB>;5sErm^c(hA=)yw-cbkI z9Gp6($@FcLP<&f^wEy7#12vuLcP*JO8k`W`Z2D?^g%a4#!9HilqZrJXHM=cZx}v@K z^7_i+e(nPAQ53fDPKwUXC}TV?yj{cyo}ZS~SW&n;g~lDnWhKT|r#w`*tB9jAU9Ofh zr%$xAr;fL=Y45tvXoCWWp?BxAZ4ng~7w@FjOBKMWj8%6TO9 zzl`g^9K7%#{Ax_DckRoe9cfJc8flY0jV}GKS6_XljJxOif9R6uWpqIRqtD7Ke|2T_ zz0u|J>!a&>Rei7VyFZV<_gd%vZ{^$l-T$t0pwM4)0LrWGzecI+Bg%_FPZpv%M@PjF z(8?(p1p{dL#1+itm`z3HAe zS3ZvUbLSTEpUC)gk)MuWGo>9aXzu`b;ba>@dsWx5Z8eeT((%iH2v)@1lc zO*>inWNfUA6R7Mx@hS+LKw*_pUhI)#>PFveI)~}|&hcZXN^$Z61sMYqry|*!zI&eM z15Uz23Y}u=(UeZqj1q!Y?q2H6vL+jOqj zAYP<(8#aWN5473&o;HI684odA4?tY;)OGn<8QGVRuXktaL;G_B#`Ul zSj5}#9^i#oX=hy%N-~Sf(=s$PsRD8He;FhA6GP|dA=@Jys>KerDe*1ArQ?Fblw>%` zYq?}GFUr&i)wC~tlO*m!lqG^z+>DIeyrtlI&FU-jUDKjsl`gbrpM9YcAM)VT)*R_4 zZ-=qNKuquQgiz2f2}uGv-$yqL12K*GA3j=B{OJ>3%7X~T3_f&(o~VgIV^P442G0%_@1Hks zVc>tER^$=z$AgR7Q|%A`?maO2KoPsVbk9*3d_BB1VtYY)$u+3vsh zE$!wTuFn`wY{xQQb7PQLaxVW@)s=DU_y_N7xV8S{4I}(vAn)OOcrSx4m&0N7`+ONF z=(IO3{F~}7)vJH?_o&kU>d%+U=y7*Pd2y*O=j9qCf2Z^hkG^(!xxB)@yw>&6^?j%F zYyGWU{`YG=H~Meo()BUKWA4#d^KS<}&%XM1e{`_S{S1^UL}GLEiHTr2^2C^ruO*g2 zAjoCq1jbKmx6hD(U2a_-h+Prl0<#EPo&xUXZfEN=LDn$N3_Pn&OarS%pdiKz1+0#! zO|$ZRfA}t8Q`Slf0f~qRP0Y!hDq{T9pZ;n4U;oAbQcJ0A+=jVAI$PyKB6UzKSOSEd z&A3<^EOHk2_9$K}B0x@sQSR8WwY{`{d%NkTJ9DqK``&bOnA_xvtuci(IfQ&V3QEoA zj_IZ@YPCd;NP;#Hf;oR7)<-zpvhZJdagbC^o9tcl~FDxwyB}-=aGm8^z{SzJ2u6yz2 z_Vuqm*fzhsIZ9RpaTvw**IeE1zvqVb<~QBdu3m9%n=QaMLIMwhm8?@14aEVzVicIK zgH+%Fc=3hjYaA(*=BT|%3AOUTG!={7^b9XVxvz7^^x+LRJH})+lKFapvzQXE4St0w zi<#+St&LNDLmx@B`QIcfbVQC+gN zF|~5&rL}7dFX62%ANK6oSQTPuvR?j`u3!I11Iyno8kyv1FV}AH7jD z2r<(Nlts$MF-ufKZ#qa><_T3iPjI27U9pfKf8y!DYjV*K!O?kEI`4{SSne`&``*mp z2Jeb%ganVL=_z=U7i&ss^_45zb!)CIC7Qw!eqXtzzVVHR+hdPE7VCX~#xJxJzF^e~ zp$LW*R32Cp#FQ9H=U{}O`*sGV+{~FXT&ebFNh%jw8#KL|w~ZNiYJZmu4dgoy((&V` zqttdwgn45bYVggN5=4W+C7S};pNJr0f8SxyidztBrzB__}H-Gw`Zc z26>LfBz4nDJh5b`CHXvF+UuWg6r3IKOG`(W{#Spl=SP)s_q^}J-?iuE^72~uzSFhK z>%IK>%b&gc_vrKYQtF*B^FanG>$Y%k8bl#jt`fZe<8h8iV@%Pq{O6As;Xj3fnO#*nE0!6Fiy-cg9$?-*wn zn^4EdZ{Nq9w`|^0-@+)h%e}8Y@U`|o|I`0Zd+1x=Y@4@kE~}C7fP~zem+96n~jZEJU1JI}u1?t4Pit=)0+>IlVI?XgE5E!eP3ZH{MW-!!jNrb5)` z&z=Z@pR8|ok@rzBLf~!8gb0w6?a{}cYP&c z3^4CXRnJPdWS7vH6quchg(EdMS8uJZ$%r03d%hh_zfOm6Ea635losWzbmbI-j;7k| zDHGa~`Lo)!SFdQxSFCCaqSVY592n+ozrc%PQUd?!8JopnI&)^uh*i;fNhH>zyoo&_ zC~b_%@?`;9u_LDG!l^TrC~eO0y!5{dcq7~{q#c_#ZEP>EeL2GV<+k?aZBcah<(^d~ ztJ^I%UtI|jmn>bDI_H(}Piu;iVT`3n1lKSL*1voX6cxBdz)&h!OuSw2fiew$ONivR zsUsdTV-J5U`FEeSN_dxb6^17W8xDHL_q0L4E34YZbp#FgR?2_?mG{qYE13XT{FV*z z2t0wh_Diwxrrpwcd#=3V%G#V1>9N*!MrmIA!i$KoNhKgdvFSX9!0Oej+wRa2{Fk!@ zPDnhbT~-@ux9L?LBErYC7&=1Nly(_hP1{+ivtNu_o?)bPR&1Dc`r>(TK)>RBEWN+s z#v9t2HEY^6*Q{>WUw?hOA(pB@+M92>p_GR!u2`8m#ZoZ4~4*9 z`=H5d!eh65>C&8Mw>d*o+falo+QHd)Q~IQL#;}x?2x>+V+!6bL&i!42IscV>$v+gT z5`Ka6xE#_vObsm#1tvC1^*f&_#faDxH*@sZsdg~8@#LF8s4Rd5rI3sEGRw^9Oeb*X){&Q!L-{T(=O$p zVfxbV+UqWgjY7GS)KNR7(crsb=OS;)p*t4`s=q=MNUM4WAxcJ0zSRrj$7LY-v9mW=IgGlDI=Sl;%~!I zyaja|4|}Dh`Z9RXFF8>qFf4^B-%z_Ttk3zj>v>1JCdLXBaE&%7U!JXD$OE29H3i>p zWI8zarT^8RtNKx8%s=?Gk7X>o0qqA#@%!@9U%UKX|NA?=ud~YK^^AUY^tJxDyj*^7 z^fSIO`nSI!FrpOr=fq&lj%;>gKUNC>VuW}c)^rtmjW3nDKlqHuRuf3Y7e53=YgwIK{&P#aNnVBMDBZKDdk{T z5G;!82o$kszo5YnfAIb7mw)-cX&?H~hugZ18!9Q7xo5deOb^JcDX&SoRhGG&80v#m zUBq}4lQ70(N5kx53EX=79qng+=4ZlGRu*D?OT$^=;t$46 z>fnV*wu@oHQ)jkmGlxSNVI1l2*l6q%1~9IP?dp|FYij3>x82;Xm?QsgUde%UV&Au8 zC(pLprT5683iz}W_snUt%JUnGn?Jym&5WR{6A8ud(F{EU)82a%Ra*jDOpSfR-cU^-d~y0N<@DB@Zf;LK`%JrX<%&w8__@!0uEyeh z?|*Nz=a(rsD}yNCrgwON`xO3qhK74Z-Hkh%M5=04Bf$>lK35;u1NvZ3O|BZC1MC9w4G~p zZ-g&W6g`)275vx}c;wmi$M{mfOVG;^ldt$jbpE0df1k{^ko1lnyK4;4CES@EW!`j? z95?ugpl^bU0j6HKSwat24ZXnKP(X~nj;9iwlPB|ZPtVzxyKf3;efEXt3-7^zH{5rp zOh+qK!F*BR4kTuT*%nyF9mkRl1256UAy;J@;~yS3fRPg z;n4vz?=irf{YLk`Bi2h>o`2zmwsq_F>Yq3Ix3<7>RMQEzRK=ulA-3dmgdDYZUU$PCody7$Mhk9n-|D~oe*d>puE7A&q0|5dz)Ar!(C{oq3-}I$$7*)Ho*C(b0qLh> zYLN1*WrKlmJ?pnKVyh*6`P+9fHQ((A+|j>({!G^v&p~F0W*{ZmVx^{{3KBJs&+?*N z>62It&x!g*7?>dCp*9~(JJnVFF7oc$>(G}{W~vQm+rGU!+t2^?pKbsBFaP~^?|tuS z+rvcd!(<~kd*_@y5ke1giEPh5d2LL^NvPX=_=IuPmJhuhEo z><7KlzW(6L?O*-t|E+Bgp-S;yNyx%%#z%3yI366%wMpZwK$x8Fr~VM?m|y?@hNHlj3^>+zWbiGY+0xL8HQBb#)l}4w6y7jbM0%BMx4+1 zo~N`;oZQAlAse6fjd?qMBnpHv=>h}6PCSeLF+>G_x~{J*N{mY^0k#RUz8j;z9gg6( z5#;_TWCsr)3K8bL5dO*2Q8)v?qCM@%TNo&OD4ei*AoXKP+R)<>#kT)j!Q4G>Zzs$_ z0HOAs3ZpBFZ(1zt=`-8R*~4vk_M9jN!(ot}z><&WOAoFs+@ScFuZAy#_r3#r+w>XJ zGS1*-*XzzQ#dIhb6bZuqz`=cmH_-p20LfGg?+Ab168Bsq1ho0&NDw%9!e5?6f|epg zd4b#FJqRPpi2a7_roL*`ib@RlHHrr2n=Wwuvebw!iALjDw%XpK?oBgAB8 zR`0s?8){nNt6%>{d-AF0BESOwfyqtsK~}XSag2^>QwK{Rh@ly>tUoXXvm?P{F+mRP zBSr`Wo~%knmvaS(1`kV61m=X3>r*C2z@~k?0s6$NSU8!#CrzXhcR0zjV(fY0w0|@% z^~GkbC&TMl_C3Gi2Eo5r-Ss=zCYDQ){|W3UE$*bk*3MEmVoisXaI(Y4TX|Nj9Fl#Q z0D?bqhu~Ro*7z=8vZVOoi6h5Lp_2u=+L=c4>=+mI!YOU2)rC?GcKl@MB18_4 zy)RaZ^0i>m!gk`U)tG53-jeUa6KyWui-$zvCF-f=`oHUU z@SC?CtjHU=cXl7xS5y4pP^)-7Hd5htR9^n8U;AjTUG~&S`AgT+>At+)JEP0x&x|Ih z{@&Q_8hj3Nxu#*TiM<)Uvv68-jU-+oGmoqc5n{>T6LAGi0u_r2}IANrvPlfAKW z7quO`_Jm2q5{VXUL$%8F5T-!*suK(^T;zf1w#7&M0?sUDoj-43S)0G`H-E8Rxooh- zKyUxzU;g{rJdDtR)MxX3+u)122r$}-SfDaC)~?SXAhA75qU_9DytsYqiKp7!v`KbZ z>G5aHm>s2HOq;iGQCoA})$I+}Pj9o*IuQUTqD+*VGMbF9965EY?WbIX_|Jw2#*Yi5 zk7YYCV<$srG3-mO*T9P0$eCg*voRbA`{~XYeeUbKCCam>VR-do2rar$Xw`It)dHpo zZ4q!fO5(|k_sIwWOiA28jX~bOaFIge`)Hw4FpXRPjPJmmVuTqxcx8F2vvloK1Pg{i z*^ZzRWx+}K7E8%^_se)c^O?^SBNHqt2$7Yk-K^NzbB1#kBN3&JlA6-*RU}|mdk9?h z%9?xV(199r%#*@%K2~Z^V|}a#{Pn!467|Awu3~j+m%#AC<+OuhL#ciF<(J!vrOQfr ze&msds-ExrzVEB+6_grSvs`0 zHt|dUx&HAJ&!8FKKNZ%sY0KWuo0NX;7LSzrlucB;ankP@7qQ8hs=eFPPw3+-XHK81 z=~CmS?`R3$F#_ySCrizo*j=Xqh75WHKkxH` z`IfOqH|Pj`+r(GUuy`U0_?E5PQ(uI1a1VTVx{Y_ye?Dj$yPM*aD#0QSp0%lkbEbx@ zz=N0jgIoI5k8K)O-!J1P=Q4QHMhOSeArDH=Pw=#3!B68};~#NX-a5maQN+<(7AXkB`vJ; zE6PjPjt=u*DP#WrzyE{acK1|$WaRI@yz2KTm z2Z6K!zzmqb4Kzk;M@-SH{=PXvC`HB!(6LyMz|9jupe)LCwya)^PXSuL_Fat+@ zi?Wd~pH9EDWxOebJjc4ifLJk*mEtyS`i%BdKlM}XjytXo;kWjsuRPy=`?r6)n7W9J zF;OB;goy}n9ZWqJ!RqLt;8g^3goWK&Km6BzynXH~54I;>c)87Awz6&Ad!Q{@d1V_v z;C@t=FpBy4?oF##wm06qqAi{gB1{W0)U)ZgRY|8~oyg6C7-Z%ZKy0bz;FLTZ27^Em zFUE|JDR$+4&3i192{|xL#4A9}GhlG`#Q8Q90b_rYRKvNF`+-;PQf6E`7GWlLMW2L9 zhEJB)>9qS)+IJ>L&wSt~Wf7c>RgHNmH?KU?<2L3qA&gea@lr0Mc+{2`xsAb9Hq|gb zF+Fw6jumPZmizF}y_qwHD=4y? z!=94wcT=41!M~}4f?3B^9nOLsE1_24imotMQ=jq>S&=2M6#i`3V6~c6Ufl+evU#dQ zy{2C*eHH8|GpbcLFFyZ5C8@J9Bd^GbV>aCEGSE_{)y4Ayey)QrE0(ecPpjV0xbJJ8kj|8e$0OufLU%Aurr=s5}4X2Ab~-BJkFap5HnAtv(KB&XwR$gqa~$v9WlYbu!$*&_^&2<0BT)kFuKe=4b?vUZ z?rLkUzqVpIcJAC>Icv^k9Cq#A892{uv!_h2gnNW4Zyf_cVl;iTqd(X?#GHVk5`8Q5 z)A8l4+qVXu$7AT=&3F}qAV48#1J_C65#X)A>d{C17`^jEESxtS-rey<^%+MNzbQhV z))TgD2)>rW5gxf?dzb%*0k&e*$~I$Ga3zX3d;@3k9LCTpo*w=bn35~uIqEiz#M{90 zxp7P272e>!sakE6q4-$nUM?YCHud7Y`oIGYm*ExpF=KZ4S4!Q>w`$d4_!N1j|CGPt zDd7b*{-FnFbp}wC2M3QMm+(KSA;8%;@H}`3X6mRZs3p+XXT}DP+$BWUFv==z1H=Pr;lKAjSZg5V4Rf*UaZ}he>OED4M(L7#k}|V6EMV)$YBXF^sl+ zF)i+OoWuYdlsZa)jSN(-WAqdOh+z4h??6_oHpYz~=mL3DH)Nxj1*gWY+2 zC{w+6MICmPcArZRLhF~`>hQc(2>RrC2*M(D9f65|IClI%n`O>_*X{}y{5!w&ciNBr z*pIcp`3t{TQ!cc9fv)8V3A5KH7R1;v^=dc9oo~^^SvZJZKlR1;5WQWp|G_`_2kjSs z;Rh>E#OBS%$`kOpFMct~QIyF5`P_vlTTwD5jK5GZH1opPX5`xkckc}o8E7B+@Ly{m z`_!Mc$JecI^RK$9y}V;rTeNt2i&$;bCQm6CPZ}5(VL73#TDqv+dc(DC&9X3qj31T< z)njCbu?8Mzq}>;=I;I^xbUJ++A+Q`)jZjeXfBkk2z%o9aQmJ1R`w=)J@bjnaFivpAW2cM+wyf-5P7X{Ves0vpi<8c?{RS}A3Hqla2V_hcXD_h z?3JD$j((Phg$Jd-W^9a~qn=6s;V+uiy>zRJnvUn6f}P4U;NfxM*=d7(OW*?j zgsShJ4($}31V<@=m9R6<3dA-2C}#}1#-H>HEy8zjSC{^p2BYAb-WyEa3`D$2vG>%p zD6gru3Ps6Apf9d{`BGb|zSJ#N482};)fMf^E3U{jDFC*YchI&3bBE^?{H1{~#x@V- z>4Udck-7)3@mX|s=;*N#9FfPR^9uLlM#=7Zy5jrj2yXLM7_adeARa65D9@e#hfZsJ z^S(2Db*@B(8E>8Rg;9Y$y2Y8Jx zuGKk*YW%Kbg!!(q;uzRtN-WAtZss!`(!HX*j10`B(!rxIWB$uu{Ycu|HTd%Km#!Dl zcIEZn8C@=aX7um=?{9a_dGy~pfBC)9zabn30?GV_M3Bed=Yzz@4jm4vT&($ad(J>8 z$O)-127>_+45EQ3h6SimUc`P#^WF~{qG0KX>FAV%&boA;r^b8QBiK;j+5jsy2%4(u zeb1U6@;u~%kSu|&PaRTtxJMAz1;VKpB5GexU=X;j=d4fq;$T5y;;sckZT9fAa%;~_ zKQIMp`+w#qf2#fUpZU4=5C7pmY|lLNTnP^=owzL1Fb4Yk&9#yL(Jzi@<;$4*5tkl&^Ya0c5V6@n`8H=RN`1M42<`reb1Kw^wl z0aF$Z1r_`~$pfZ67=f`Fn2>SJvufzR)LFBHlx&)vVj4^CR2X}#ctM=tOG#FLWx@@9 zb$^3<+UHBS8-^9jY-|{#cn1F8P7#^V{`}AXyxPy3Q@ zVk{^Mgsb+6OVSTP)`VPne}bPf-hTi0y|<m;vfuU6~yj+Y1!ZAaW?`QBw3Vbl;=v3XtmlCO7^;4|VwHi~; zm~tTGGE|pfdI?8I&W_QghphvKP9Ar$lweA3#oEMpD(|B@^E~|QakS_r{~SDYr0vHSh=We+_=3Iml^UPg`S3^(5zmyGK#~*&La>w zfel#WYfBa{Z1d*~S0L@wD3%O9%doY>DnNK(5rMG-IO8y3AVw+PNcj$396NrxrmZXx z0KbkO7#9kmed7e_4wmw1`R>`1ogxAr#@U9Uo<)mjZ(WQf{E6|<^9P&nsuOPWIx0g` zrdIoxE*A7Up&bdn;CT`PDiU()k61fmpGNWmaC^6w#F^09#R4W5ezbG-~ zT^@l;hew^9?G+eDH!hv$5YE6k@bR2$4)rOc@zCFDslRi0&L)g_9*4o<6ZZHE&WBgk zck}Rft-SobfA{3pqdFjjOXTRh7ql#;zuV4Om|NHXil-IiF4AGqd zh)~xaOp>;XXm)Se)>cPzW;qZvyapJ9XT2-157PGo;jE6{1B0n4t~r7-g-m+ww>m18 zAxa74SGV?*>n#L5Fm;=~Q%Ddut+%| zJ=EHP-1_4``SbRTuRWM{Ag*!E{v!f8A(^*Z^nidIWyxc zg?Z(m2{Q_f7enYRBMP7xhHiQXW65iQm2p)C0Y}Lq)Cga2;Zhb`bRu;gK7FhdA3K2~ zaB(y?pu_m&gOIV=d^yjHF|iC3!z3I{H`$38vt{wai-{Av=^!yllozXn2u_|r{lq{^ zG08i|Rn|`dkeHS%wId8|t)Y#~o5=8*hCGrnu${-YUAx+jJ$oy^ zmCYB=ht6b##jozX^Uikbt+!OR-v_?@m9{O4uW8DKf#;%mbKCscGb^{#f&IHnZY*55 zptJUaUwF>3qleqdWlP&_H{B45CfJV#f2M|?@HX4Lkhiq!2j#{2BFlayOnw z)BQ&dA1kGUlBBN`bW@vRr|e%QHG}Eq3xO-e0ngM9&svg9iJ+jFx~Yvp0|c3K74*-T zP>4Gv(J3uzw=7 zE-={YHuTcbZMahUTfC?ORICIuTCgSK2tN5|T*k%k^7N-JcuWpS7)N>LofIgo-*`0R z*L!3^x>I-qMigWPik2dQ!{uz+sPnwMB8&P`@D6`-ex-ExM?Y63ztNL1+p%kBl+P1o z)DOgHHJ$#Ql$TDCd!>}}@|Qj`s=VqRY#LR*-Ftm`t!Mgcm!JFMcYpN1>)iF}mFIPs z4Kva%M2%q?9LTt7{f4$<_pZ7=5C*U>0K5AQZ)m#(RtAB14-f@q0@H$co;?$d-+h0N zwrU6=XV>be=4QO1mv& zj5Qu1+Y_DVF>^|UXA}Wf>eQFM&Duh+*idZWp*{5;7cPcp)r3g%^)Ib&?|kPw+dum! z|Fr$aZ~R94(?9*wns>D<7aYvpO15?`g8f7|EaK{fAD6i0vg6W@V_o2Ih{hD1c6iQr z-t(UKwD-OL{q347DIcvp@b#zLAN=0O+Dk92YqN&ul-9l5%8`ktqs$pcc!nMiN8x$!l zwLu>Dv@E0cVS>-S=LIeF480WEz@=ASj15<{=Z+pdUaNa}G`w$#GiJ-3>|J=S?kUq| z2F5o3?BWXKE+S+wf6(C$9tzGJ$+P$l0Rms)ilx#+5olYtZ;4Vx2y}`!M(Z2Ljvr}D z7B0$oSdKr`wr<_pZn@=_E(b>H6w-MvZ_& zvw=Wxg5lzh{%IHZsFzYHSQZUyC-?yp+V>2)1P8GOo_F*#oLBOV(0~5pCDcaNb^na| z9M$$*Q;+Aso)Sv5ap*_Q&);~a`ocqUw#@ld-i2QWjvOyH{~bV~Y(7&rP* zD;Gmc7kFaw40<;nE0-@TJV$F{g1Y#s@ZgCfu`867;DPb+-E(KU@PVSS;GA>Gw2^U# z6Zktt#)1Y@)txalGTz~2g)^yx7si=)Ybb5jZZzz>UF;qsi&}vH;5ofq>tqY%1fPSG zg;T|o(0*>j$W-7yd^O`x&*yuke2*v_RbPw)#+>`U*_95T6`PwHBin0C4BzMJmRh31 z5x_O&yH{TR&F|%#-Njcv)-~kvqLY7>Qi_K2NZps8`|tbRAD4b3w*2%rW@^qB6B(N} zoeM)V1ta*bmL=}k*!=KY;8vaW3e#mRlj!#0nzmW7)!Y`gn_%FEu+tW z^Kbo9yZi3D+u}Ks+P=fB{qY}vs(tyZUn%00&6nZ>`3bOcdj_rt)2A8v-fef>-tKzK zn=6I(x4!jo`g%C;#M;hSU5o`L?!)rdViM^S*ntUH*au}%jvKC7)fO*W5Jo%DWN*+) zP1QPNl3^)0*|d@u%v2##D%=Tyji11B?}SIKL`uK<=|az_pV-srf3sGJorH!k-p zL0C8e#?v33r?6;`DjaG4rDA%*&ewUg4!os6?Or_*K@@3p>eRW)XbQJ6iDJ;PIM0Mh z9X);g(lk`j@(82Se%E@XL~$OioQKV}34>8qVufPluJz;U-7ZcjmTX|hqc=9f!c>yJ zx$hgpGiT+#bnh5>cdr-1;4R@A(DVW9?iGB%GHn^0Fs4n9vavscb;XM1q4QmJmWdWV zVs4%<1p`wJ+?}hA98;za)!DW3EMe? z``up)_OxSxOSi1Kk5i$_Q-tzdEMbD20o1iO?HGB#e&@M!XTw`YemncF`{QdGp_|UC z=iyuoh^`e;dUIUNho`!i@1IGNjzn8I5_&!pC40}YBW+_~xohA4cJRQFno_4|k579K z?%v-fXS`Nkb!EHj?Qd;cV^BQ##AEHn=bwwRex@y2Ft@F~VntiFXkpv8dq*WXvvKCM z!O88mn{O^2dHBe|+5nTc;+oZ06;C^I=y2YR@tC%)->|8aP0A|%DL}WzWz6^}8Qmfb zW5y$BI;|huE;Y;eXf^lk;^F6zE7eY**8sjtHJrqM3ZkJ~>&#hj4Wt%h0)+Q61idrOD&>s{ycEwBofA*_ zt_2&FtS@!SS5x_^f-{V^sne!c&YAK&SKgtCc_ws!5szbxr46-GH}Foq`AF5H6s_c% z-+8?V~f05fggSNpuIy6UPDDqLrj7Zx?mmGxdLi6}3zPRzMpiib(*m6t-~TnnmJn^+oP z05SDJd-ZS5tU1+ANQPN#-qfYD=klb?6hm3GsQvT*`JWbn{o8;0Z%Y}p%+w}lr$Y79 zVp;fxZ*rp|a;u{V57+vFh?E|uYHUMbH{5t*d;k02-`@77HFf>5XSTIZe(Dpo3pQ&( zfAn2ly-+3C4j(<%X3v?|?tkYy+D$j!(gX^A<$k?D5=L?6 z{P>#l_gmm!mmN58&)J_=vpLsTjNq<=I4r9t%r@j*@ON~Av-^8AoE-i2?z#N-sf<5m zy?&$=tkPoNlg^)uI4Iwh^eL|vJ8;R!5Mopey0$X%$*#YFGojMAx%xQju*~~R1n}tq ziJ^cAV^THc7JMgUOyRJQC2t#jzmmCSEG2969k_^2ScGs?90{DV`bb|(d7)ewzYL5% zI0hzQ)al2m3vKFT%b0B;k>6>*>&DP?N)HCb2srfH**)iUH2q3{13zb5N0bGaTh9Ic z{f&V4z0{6ZzAB!rKr?qeCZgC|e7ZF}~# z&D(aiV<%3AmL|7-VuE(<32n@6x7~PiTfSsz#oK)OTVJoeyN(<_*yhZh-mbmk%C=(p z;&$x7-uA@fkF*_IHn;b@gBuUcRJl$}@`=EvYfz5hVvdLib{v zY^rD_n(2GEX!;bcpcBGfJ+&o6@DCn=8~nkGi-y8K3;uyQe6p{VGaffPJdO~S1I8G_ zM||B`{pvBbiBCJ!PYX5<3{OjW@e|9z<*qS3BUXh1an%(o+w;#p*9Ip~3V&JHcJ1su znBayc@YlKX=e6Te5^!mocIw~4`3vefJaqQ(%t~5VhH=J6!Mn*6{o!r3y$PdMUzI*T z6eFar1;N#)IA8iZ9maR;dnL0pIL??gvkZLg;$7YsOrv>v&WsN8<@>V3HY2;pnjTwh3P4-9|=Q1w7+$mw@4Nc@Jp3WVkr&~H;r7fyF>KA8>` zgayelXIi#g0@}*W?YjajY4a2r&$2+c^=QewAZJcR2&C@mVcPQ+E~vr15awMuJkn## zyIkVo&XdB-X~?6K6k$`ohiLt_%c=GwZUoTE#sJJsKhm4dO>ISA>1*p@Pb zEm*wqjc;r}_0vDyZoFoGi!5pnJ@jJx_y6aw6|4}KHlC#EdpC@ax5!i$1#a%#`R(>Q zWHP<6=DNT2&4=2sk$--JN!2@I<*OGnt|Wur;eK#^WIRaNfpHVVY+s>4xU32;YyBJ??CKg_ zJX(h?q=bhZ|YXvFBVqMSQTH%~m>YlTsf8IUC zb1;qqa54`{dw=3og!zCtB~z)UQ8Pa9GQ2_Q75l!g&fubb6l?T_Zg@kT{WhKJe*b&) zxmIKX zE^yqrz1wbK*^1@u#@lagL-U5)<~=*x)~;P!yqE!m7xPdHAZ9G# zEBNiq8M8~s^Bx)r!o0)RZmcP}c(lJg$7oa!Wk{jC;5VMJi}S$1l*;UiPVfd(IK~FA zBp<}4c)$1H@R;C-XdcWqtlw0|oheOQH&C?IBZ%Df!6`BDq5!JPxb2J*!;@lzT!F<) z!ea?_?bC-t>AzS+-xD)M837N|t$25RJ9WA5J4JhNCT-E~9{+kzf6td+;l1el6&}(v zAMfF3Glyq{fAXT{cW#-2d-$;@qo8GMB10F1-S_bKSd*q>SwdbO^0Gc^Y#i}4>$>ODz5bK%eo-bk{6d|)`c?uu~ zty=vUgu2~>1ds*NyXUNk-Zr-`uA&!8?&q%>;3G#5Rhsg{u^=G0?e8J=xe&QS5-;^1 zkM)BI&7L`2`@+~sbWSwjnITv)G4jc11Es)}6y=3c1|cXf?sc$wMR{?ScSApFPBw*- zg{U3g!LTR=+U@t6HP^Oxy#4J3lTUy8)9smOo+;OT#jk{*fB1)gxcyK6(?4v#`m4X$ z{=={TMv!!Tn=&;0Qk??9zy=Jp$KMD?Tl(T#T-;hKr@_$783lKimN9r+zW>1wez4uL zW>G!=g$JK)fAmLxRDqhtW5x`zLDMR)jQ6<21r%e<%a*Qa_r2|{wbzU#-oNqNzg2Vf zGTmCTI5=4VAjZ@!v!wWlvL~d<;!S%dXWV86CNqLNRuC+S60<5}xL`q;NH0B82nMnx zdfg@AO2IKr(=$I~TY?UA%{X0*A{B9t%EKH&dX&ouKc$D!Xjs9a8ppgp`mAurPsqE` zS)#zC1(9Z9W2K~kG5IN$#RG+xC_VU!=7KgQBqv@7Gb>y%F1c1XtPNc|1T6Y3E~J}E z>F(!B&gsV(o~Taf!ZSyGEAKksxZnNJ7k`()42&eY>Q_;iKJ^}@xt6p>aMbhF9&qcF zbjR5|H)bHhH*F+f7!|UmN`&S&d^APq<(`>$ZP4Cs#QHY9a_^OE3OrW&{y6&IsU^eM zrOu}=xZ}_638kwC+^hZ(ETLppdom8=&z-6>PvGd%&*f9H74Mq`uqvqMGs-yAhB^0# z0x!>;$tZ`OO@+w*T&dSXJ5~%%h#>U-sl0JA@Y#Lfa67dBU`_38+qk_Q-gl^r(+M)) zci-D8lkD^u0WWRZ(7ybwueCifxCUoV4{XP`YZflabEnFia5jd;;RAcxvPBEp>MK?S z*Uz?nyLPn4AAKZrxw!q%2R~H2@5IUQ+gR`elg8In?aS-ewe3-oc)0Oniz$qq;B0#Z z!71a7ru5%)1iGYora^0$`SeGB1DT?ko{tOkhJ(hd;8qao=!#&rADd*H>QSftr6>~U z7Vom%N6%Zm?>*;=Qwk3`ALG@xeUGQQyi1JRV1Z}*9AB%hxT3t(_%VKKbt}1mUbT&( zX!{FowSl8=*k8+c*&O<in=QRo|HHXi)uH`<=P``eo9Z|HdJAu9uyR2<-`qX*j$zwh0pyr3uFVtChg z@@;&F*AD*Uvqz5vKaO@eZO}VoQl6upUb=RDZ{;u1&42lCUprv;yS?^36$~(?ujkvH z`=kG@OdLO{b2AQf88RP@;<9nWx*+}J3Ie10K}yRbKm6ejw}a6dO-JmH1wasTNvaFr zdL-?pRR-&COweG~H-gjv?>$6jnq`pY9&LH%P?xuXW)5lGhs@k^1{*@lV}X73?_YiO z)$R1T({0P9P3^>yV{LKwsUBAP$O`hi5H0=Xl+ez;@3i}?uDG&&-~%6M_uhMNrCtB^|L`Bu|HJhRBDLSm zFaPo{=i2f1EC1}D7fdM~h_&BMSdbdHxJEdRF4|GNIejwiS5{QoB!~@s^;2foE3Uk< z{rHdnc)RiX#pz>fpa1-$wdc*+mtV{?QF@|WfF;7f3~BegH1^8jMY{F2JK7Ka;19N! z*R5}lJ^4g?@ujut>!ETJv+QO}o6!y*JTl^%?L2KVnaWW=9b@)fh`vl|@esma)YT`i@LsU)R$I-Hs>wqvv(+DA&kWz?bc zV>fyXN8jgBs}c#C5zTX*l2T)w%PbF(;fjZFv46QeFty`+w{~mq4 zJPGN?*mgR#5SOo%9={x=ypFWBgTY8_jgo$k7oeGXdO@F^u@xA`uS9zN-^3y1%>lpUOXUsfMnowG`+au;A<|tHio| zL00JS$`Tl+KE^}|GQHs2R-@^I4M^AR+}k#8-PSg~w4v?ZzN-wVYp+?;Zn^!o^86l- z!tjlUztvuR@%i!~*p9%|(aOb3Dg*AOP3tm7XDa4n#`G!e-Z$RU=FFPjHb)`ZvwKHd zv3PO21o;iAO|;Od@n*}HdN#e?C`J#Sb4oEVvS5JdxC zRbs_F?_EdXcW8NF?8MqQbeb(T0{78-XIVNvciwPY9vSn@^UswR*t;9T?^mo`Ub{ztX^Ii0gCqa&v_5NUI=U^ zOrGw~_R)|1Ve!tBr%$$PuDPZ>!WLzaUE6o;Y&MXbA0>9n<{ib?PsL!LJv7+vz5V7k z;bPd2}rMMx!uUJY(%3K2qwv@3Fk5@-p)Gs{ry^zU>FZ4!AsY1&;=QGX$wH_?#1M}Ay_W_daAB%He5az-kHzYTyo8(k?m^0J zTQ|42yyY#0JiHhfkn8G&n9El!j{rK;_J@cBYYk4awq4}>nUaDN^Xza4Nffq#DnnI> zDpEO$pJkF<$B4EQ3L~0t4!^CK&=+m;TaZ?NkDHL^1)(5N0{@m}c)-g0z6tg{Li%PYEGe!z zg6Bx%1oQ^4q=ZN(_ zd7$oFnNuE%@e!6$luT7zxnN$K7hGde!ik|Noh6*%2n@RTi@uPPXPn^(**&{Pgk4G)!5+h_zF4H`A1GsP`ClSk$#! zJI3WdDh!@(TCB!J6Vo5(3YbqJu=>&~G2rgp!?$=jWW21OHJvzeeKdStbxs=tvHE?f zU%fI~&*Z86?E2j)I{h&|?@t=bAmMo#nF7ET!$>-?hr>9MhKG|Me_j1wta0Kbh@S@p+)7rEMpA!cT$LQJ+#p!f;f9|^N)^8JTaCn z+t_v5z|=Cpd1!p!Gro(L3iu@}#3%AJL#>k;=i?`jRX=!~#6;;QqZa=7Tidj=>KgIf z^#!+3;Gcl;7uRoVzxUBUtOSB@fBV}*J{Q{)Pdwh<``-6dJejB0Z{F2D@{y0UJMVl$ zd&hluwe?%}hX+n8Gw81+uzn6dE}8G?WqE0Z~eQEfk04z<4qyF5loK|VpjSA-~sWSefv6h8|4M^ znMxvf#c24wf8V~UL(GeM{LQPw8o&CgtIBfO9t&vR@Vp|dT_K`bbA~Iw!s2C1quI}_ z!LDR?mnkoZxEFZ6a-wZTU_tJJSBSd1Hp+#X{;_yul;py6f9={A3bZpr)L^)2^M*>h z{!4%J7mKie>$iTZed)8G<#$c{r?z*z<6Z3^{qjF7CGdazAOFWvcvvjnW#y<->Du-R zGCC6>=}k2JZYNjoDl~r2gF_{o%99wHeQpHyE*Ng@VCZ-6{$uU8fAhE63$fs~Z{J#D zWh@YpaUvXz)zQG3cLpPR(_7wL%u@RD7hYc1HtyKd#-^Q=7E=t+kv4DDl_@X*oA3!! zwC75*pZ)3@ zZLevcl)lehHc(@bXM_K6#pZC77IeV9PMOyR@AUZBw=2CUOVe2qQ&453zj`$`8nOO5 zpE`N^Qh)pV;N#3=lCS4)M<+OZ1N{B1jec7KU*C=*=6WY&ypd`n#L9w>AkiY=cd$r# zNC@Urr$_cIJJoqq2uPV#PvA%CjAf-_M)bGxodln4@4(|SZTie8Uz4y1NL$lh18B^Q#y}R2to_M%z-nO-9clxxcZF=ZpTyTDBc$g*6 z_~iQaFIQXU&z;?Fza_l!$f0&Hyn!d?hBeo<6-y)V!~2F)r=(+Z(PYZTC_6UUlucHQ z8on|wJnoa9{A7gm^!BDVy{Ty4H}GNoF|C778b=BX4=W`GkG9DtoB&I-&-meS>lG8Q zo-wU6h~S~?QdJlW%8sMo4W5GOdC%g_yy_L-Vzo`KGi(G6TTJ0Q-my~Ef(^m66g*QR z+Py!0u4&Bhm~|UouKY8>-j4t0UE?Q&fU#ru@Ljw1R9iZEaIWg|Tigs@Vj+O70~Rct z*XGZe-^NWG6Q%5A;1qbkC6t{$^|{JrKWf^3)|^?z$FEt!v+|d{4^DU%8A- z8!3JLul1eL_xfX8UbVxp#8kW~5L}KCKye>{#J30#`|<-{Erg)m3Jismf>IGNCP~4t z4+jDwr2pbC{-RbO5!P~KeCku5s?3pBMbY@xU;Whr>fimlf46=0%MVogdnuwJ_&2}# z&HCnbS6|b<{N*nPVUHAHnalT`X<-1~r5tIG7!>WhaOP~KAU}I5h#CdQE~7T`lf`o7 zl~)9j=9cnO#K+1$*NOgKdFkQ91ckI<;amdAy&xOHfSlS%$kXa)4$mnB#Zb5dS-hV2 z4edra-jfFhd_MG{4;3S&iJMY7bMj1Ev3ym*0yFycU;p*?$AA3CHD#w?2v#8v`_dz% z^Vl%fE)i0P%&t|tjj#FnSS6U5YgS(&Y-z`}W5x2RHD$A9=h^nv2fkdMA#pJnKL*3n zRNvY30rSF4jQ>!q8sq%Nd+%)%!Zi2p+h0nKl~t$0Sjw`BQmW0A8BE2rB*xGSR_#N0 zQtVffCoZ5Wonm7NwDGm|f~=}@hr7++EZv_xIsMAx7|FQQ?|8iul*zYJ>j+HxbA3N` zP+rbP!ytt9+kJ=9<%j9oMNz0JrJVa~N_iIYoAOZ2@Qobhj(v^m{h1OiC{@63O?9U9 zZBxL&(JNt&{@SHBsX3Y*%S`DMwQiXxceinHO)(DM8+}A(MZpNJ$7&_835CvJ=z=ee zxw=X)<^5OA8KY`5=H7kN&D2zVk?+EF508&BH2U}G^VldYlg6B_bGhe7l$KtR@x8A7 z9enzt-*8JU=}4aM;6VwsBv|SJG-d-xv?*A>1afFtU1iw@)|JF7IF?h|*m-RRVhHdQ zign_)e)Y7D32nyQ;WjwE zixZT6c3j#p6j<)xv9s;jxua;>PT9tj@U%COja0>iQC#K?4~5qRM`A447Qr->M2C+( z@=$p^B|enQ&NLxo)ADM+tpr6c3=HFkj?w*+B})qrN(m1ivf4=B@unFwhYC)oqDXm{ zw?dw(USWj;f@A&muJ;PBQ{aX=X{5z>(ubZljGe!|BL|6Z^ntp@i-KZ0g)%cCa8{3J ze9t%)--P%1RK>uIB$-nmub2KYawWP;lZqeftLxtNeeENYq^!_x{ll-}H-6+89AG4$ zj4U`)N&z{bFWTXGxF;4A#wq&bgS~7x8^!Bq|Hj{GfBWzL{dUW(H|1Ifr+@J;{+Hm? zxpw>Qx0m7XyYkWe+OPdu`>`MUFCsf;7c8cSzs8!2VV5Jw4u%0xrTDOd?eNj#m9~OM zybP$^wc4nxIdqoxl1qL2!2a^`TGzf^8F%-4fAAlV{QauZGmY=%=$X~)9jN$Kzc2gF z<-ZMxvw>g@b7em8}d`i3Sx;1V4wr#aZ z+|cwHCA4X{5YN=f@BZ%ZR`yQUX~(p1$X5GL1PLiO5Ez2lwRio74Q+V#tRifPXy@bw z3m4Wp{(XD)6hYb%R+dFw(tb#y4`(C%CWXMvdDG;r{OA&(#cGbQu7K8AGlM)GQ6fH! zGSCQQE*7HN7z{E(+(5+#BJ}&^f*q_Xn`so5#fuh}X9PmJZ`*o_$a=;7JvX}RaNRqgHXx<9a9QOsoj0q)=ZT|I#{*n0oATW@Li-1COI{$P~Ld4tp2 z>P3s&9oJsht_uUcV#(q*KVvy1{pU@APX~`3YNtb>hhk}*h$6Io|L%5S(zrGuN(rlr zqA3W{sw+DWPo6R@LdTA?0~zP@Wr>Nk;X>WMb7$MV_h376^mG)d6JhdU^r2z6nc*n> zfVU1q9P$YxYGGu&WEd?WHLjL>J0`{Qk<4o#M{TO+S`HQ&m$ALO&WC|bOdH1va0)C2 zcmPs;SZBKsE$Zy}D7It5U?>7(^S5&Z_L(senitO0&fI6i%=~uU{RuM=4hMkn0yr1LfRbJCiYYK9%~%Op5TB7)Bdrb{<{?|E;h~2l9>J zNRCLsk-vlE1Pw-+%afvbOwQk?uExWm;L~96)8DQ+;MLe%M`IJyUR93|f3Q?tz_UG! zCIu$q(*{F}&fq2q-EXl?-OO3DW8lmQPE2f@!rQ+3;Md!y|NJl7(I`Um7A$D@zU}Sp zZTG*UEs8QAhT(w+zSchbxzDxdUtSv}CjxoaP@9srPb4%$KgSR3YkRhBj$v`UZQ8m% z-;BVW8~(9iURyFeyX}uMG=FGXyYa^B+HJSr+-|(?nl@t^xTlAK^T7!Hm)EZCrgxus zEPU;JyXnRo+tsUAx1&dnww=3nm4LnJ#v6)nnjRu6C^$Ugb_qAlKOEx<|G{_BHP4dg z@UOE`kklawqW3=g+0Pa~x#9ZjY8>!H#t2^PZv`*(w=>>CLCDoo{>4{SjFtQ82U#OI zB6%_`-zXt&@kDsZu3bCZhK(BvFLip#P>j;xZn#%F9c4n+U-(uTnR&S)C#HojOrJ6o zT8)yEagq4c9!G-KwF$rLl(9}}@A!GD56)$f+QArCe%r^%o?Oe9FHHYV73?O4&zeG} z;GQ{qE=teQ@*GYYm{hR9Yu(4^hXT)2>BICGQk2}MpL()Zi!EL_Fa19k_+48bu^X>n z6aGD+Eu25Medg1j4xNl`Yp%IE^c96ZeJtZSZ6AmtH7N%pWLIQ>0AJITQ(~xF7*VV& z-v)0?tuuZK>K)(D`sDAo%zow55P^7tAjugI9*YHE9VrYzxvg$ zmNgZzydITi!Y0>N(;4$af_0}Zmi8wCQ<(V$HqiE~k&eC*Nk#Aq|? z9wXHkiW1~J8=+{5f`uaHu|E8^t(l%qk!uFFt`IF^##7utk*MFlJgm3FF#^C!3OOPAf957DH?4~4^g_303!^zzlG2?K3<#>KAE0-d#a zXvDK-O8{OPV`^GJ@+tv_zC(mjq6fnGhSFE7E-)ZL=98oRIQuO|z>?p9rUb6{Mi;*e z4N_{1T4Azv5mECgTE`y|PO3=IDV~MDOp8DstYf{FDTti}7)IAl$F~_TG3~W;e zI^j0wMn{k6%WmRzJva{!B>a*NJ)I1GN1>#YroFr<{Vk$2*P{WSq1R3`WYir zrgfVGS`6^qi!Zc|n>MwvX(SKv6<4m#bMwlJ@#Is_lrlh>?&(p?gxp1YcWx_Xi~)8& z0%&uT7T%_Li|0pSy4dD~cUZM~Jj&G6@srw(Q9u?C&uceacWoOQo^lBmM~)nC&&QB? z?2(5n5Eswj9pL4?_2yfO_V7U74DG^i2}?9Sb?Q)g!cFb-KJboPeY0iD)=D1gU7i)0 zb}13yC(jFm^6=q9bq#;EV(Nt#UZ~ZE_yXEyWE#WbA;FEpi4i`;05H~$(dBZSF%F)m zSQty=XsPd(@C4(AAIi?Gjg|7E=se1L+UtFPJCr^+8~@uKS#kJy7sCTz@i<4{KJ}3& z`}ZF#!y5eHxBh+lQ-9Lla?jo27lT#z@>R>q)6(~cF)4h3hYF4`#MQlJ%ceFQWtZ|i zH{!`id*sk`+tZuI)RR61C&Iov+pN_IJLk0c(uVq zn=6T3;KdhIF)-;iTvoa)y?$#k`hPXtFE8Nqy_7Nk)vtEDO8;jmArj^C@AbdS+YqF4 z7*L0MI>q(AErj{CFMXxW7>VSjWpZCxBDi$%MHDO0?KUZ_R z(`U}A?;sdUr)6~P_jLKiU;M?I9x*>@U??kh+;Kb{s4o)_u-d2nc(MGWZ&M6v`~f;vHpQf{9=6(VDKru+7;86U))6D3S0PzoAmU&A?~ zydWk)VLf4CM&JXX^?Anhq52Nu;9-%ema-#ZO z%8YmXcD(Cd?`pT*c3Ux?Kl`&kYnua`1yKrr^^v*J^thq?eWJSEhbO`E%2Q=eMXx-XLi~%T=^C-K}#8VNPORzNn*HS`O3B|m72)6OcMUcoJ0f%_5z?#>?GI>keDFYNv3J%zrqZV&4IAv0k#A>|F z@nQkhPOmvn%y?R2=q#^=0AhQ6NaOFiv$_9?>EDznHt-=brUYr7p~k2(LP{Cm?r&#@ zX9eZC7O<4!lA#Z*xw|7sbMA6up;3xVeW8Ara7DYp^U+F4&um6c>9cn_C1&*bQa!O0 z%ZnU3g?HYEcZzZ7{~lfX_B-Tqkw3hyYpxVs)sD&T2S${2d5O^M{1{Hdv*%W07#ubZeCnwuIvx<(Sh8$s#jZu76#sg8 z{f6Rc@`%{S#xsOJdh^b>(9xMg2iwY}i`&HT#cjK{mzQz&oLRNO;83m|4b2P$mur{g znX_ve!8e8i17-iQC{8=JwtFwRd+>p;6`y9v;QJO0PyoPB;cfRmK7&UZt16JBPVmU6ccpl4kOI%bgN&i~y>}|c z#JNFp(Q*9xff^-3e|w z!$(2RzAKK>5@>yq98@2Ai1x}$U;e7f%jI{+{MY~fqZz-h($NF?A5*^5$9v^Pd980j zl+y5mIPTYg=Ik1a>!oL&ZeRb(S0cDpmG)=lfppER8-Nt(B*~G#5iRA#rhv~q{ZtXh zzJt6kODdwBrVr87PiUG~l(p4h8)!m_*8w4DhXLdsc8~W1fw@jdS|tJLYzbd3&L9K9 zWtvQ1N)oR$Kus) zu(m3I5LFP|_#m(A6fR2G;lo`pnP61+(~M%E`l3w)t>w2p5osfW6Pu&|erum`!A!jC zOmU#Zus|@D2fp&vwmr=1{Xg_WHN7-90{-J4|9E+|6wmn{cxs35Yo~eEjI0yi+X3biHXuS0C;KBV>_Z!}LPtDo#fX$jYwlc0h_Sp07OHp(;Zd_k=Q(R`u ziXu0?TXK!T){f4BWqG5bOd>>ELkx!5%EG$@v%HQwbuxc$+ZU!}$sq=8eC@~MeOo^0 z3+qBZ;j3|C39@KvRapje@}Ss+bPXAY7U&0^Y0vIV0Irgj}jFFx+Ev8fmiGaMGQGomOY2)w;{kk^#oFS;n zsVA=KXMY$k2W9S+_qsp&GhBwBxl$fQ^_gJNNbM}OCmLcY4}Rx8XBTGAy8c zcxKzPYg^mCXIJ6ll4VQUl0^#(E+?XR%?vNODtLdxn(L!H#XwA(_XjUzU){ESOMB$& z-)I|OeksE6Y`gB-Yukz_P~p@y#nx|X%k!cw=xgiN?WKe*jd6osKJ#avu0(a$U3Y!E z=bn42oxI)JObCm4DV`8o$6qCd6Dvc3BAi|O`qv+<^cQ%MUBSzk3=HsXt5DSiR_>bu z0)M~3;*xR<8S3=vv#I-6T^ku!1rC||G%jZ%Z`8#AC2t_vtiX8j;-yji?CmrK>#zR7 zAx4Vq%)yMJZ=N@vb@%ZPN~Sg%Yy8dFGN{A~@kGrIY)x^kec{DgP-0IztDP)7U<6Tg zuD$l^`sSMJuPvE`0w_*L!=p~0JX0QdJb>{G#&Xb9rufk0`6zA2PDl?jt;P-PX3dyY zQ{WX&v2bzG!G_H{!%sSzS3f=iNo4Q^pT3|yrFcdan8fok>Y@LLQnL`F%9wxfYaa{! z^`HB{xr|a?`ZD_4khWJ|0LX9mU9&^!-ff%PAAS6zZRwKbrPZ15GuKAASxH3rc=pVx z&ZWgOVY4?0?N}tD^zCL@3?|3`@emyZf=IM>?;9`z6~bdIgl;h*NSO1qAy)U~Qi3QC zbBE{DGrcFH-!RcUB;@ZI9b~CszdR#;!s?|WkRX}a!Yi)1rj3hr&UK6kF?sWh0!r<` zD>zC%01A?J)MjHTELw2d5vz!@VfBFaNCj=WNSmypftgrkY(B5?irT}VeIC?&qPr?68PDCb7JtwdHk4&(eP7e!lZ`GA_^NQTS6wm{F=NmgF!Im|o}KSLhn<_|F}_G^1K+?}N`{QyGpx zdB7Y8jHTZ>>YSU-6d#N*uT{arycaYHtkWhpQ(uo4e2H+#(TzptIYQ%BqM-%(J_wr1 z8x)*_2k6$4dloz^T%1C!`pI>>s-Lkz-PkTTR{t^YzMsyfhTvlv5;=Ga(ST{~bEi*b z6uXTv3E|FDI;)gVMf?Im&A{RjR6Hj$toAc}o{ZH^xa^B?@_kdEWn7%^XjLIl&t;75 z2Zk@^yS1 ztqYAm`0%&d`psL~OV2;oZocY@wmAHfQK-K|Q>T;yGi&Dbg0+B5v~n~?0XkY7+98l1 zc;LYZ;dSli8*gZ9uDvF7x}=P&63nw_moWrxlL+ISrI}zzGDdH@>84U_9(wqjHQmp1 zWty6oSI|8;<5Bo6&kv)^p*>SV13WIC>BmWN&+q<9;b;yx>3V-(DLfbFlzYd?h*>iW zr|`dn87p<0GNYWy>`sO(oHxI`A68X)-*|Lc*)O!SXHKX7C>DVaWz+rIJwEv7Z*Uo! zHlz9@j#54Te(9xkZB3Lu<9{;0S45$EHgH-L<4JgbWvie?@_SzL#O~4;YauazE;L;3}#E6;h?Pvo{8dQ6I|QGcm{C_LY8;TuGW^& ztM4xr8ddPO{zSNch4Pn_m;dJf{CN8E3IYCA%6Dp9zf}72@ASWQzK|sc1nQAUy{vE?gLd?bU8XhqOtSo30a*Io-@_TDpCz3{cJ2om}}+Xh*0s4DT3ar@mt;&9to>=Fi@VCYO`R!5Tj?bPqx^D`wx^B zO*^-W$dWsOpK}*3XhXxpwYSmnAhS)gCJR_gJ%pR>=1X7=baU8{QJ^Z~A+&r0VMBC* zYx-sCLLWSf5wrL)l~Q~#SpqHfYnwjS9yNKdU((iJm#+c*2uf3SgfyiOVsj6#x#rr6 zL-8Af`NNNWyd91}|FIwc@rsGTz&`fzKWL9X{O~1sBe3z~y0{t{g^dRy(Y9WJv3qQf zQ}92sp#+C#ih%NWwL8!0zjr8Wg37Fx67O{9owsD{Vl9WafBF-D(zb8g)HZI~5;k(N zEnK>!Vx>$+5fbuU96ffTymVluZpy1Mphz<134h9qu{RE;9i8}SaZSISD`l3G$->I>RprovTMo%04!O-vf?^%paF-GXXek)c%&6pt}R;QF< zwv=@6heO7s7ye-GyUzXJf)Xn}D~E4XoAO@&x95zDcJ!sMqq{Gtv0GUIuUuEsAC$?dF_7@Cn#xZ7hrb7X!Q2LuTrOn@ZVr_fo(;j|J9f6y zf%lplZfrNMxwf4=u&3>hfy8@6I9|D8Wxf?Y7Ji{W@J#IB_*!0jz5<0`TK9632=A^t zZ?9dK#l5Usx1kga9u+*pv&P_=XP&L;An=zeVQIec#8c0gQ8a7zj518#{N^_m?t%|5 zf-^j1(AjGUe0p5Aw-UJF_r1XfZv9a>mg4U!!4IX!%}dW^yq$dqJ~&UGIivWK@sq0x zzVMXn%{cbCYG%ynwte9pX1ETd-qHJ2$Hu(suavVB`Z@fByMrYema(D6UZ{KyG_=zC#F~J!|b{QM_Z$zArDzEUeOGG=Wbf(Vhmmcn~ zS1!L>%FD>#qk#G!SH9!Nzk~A9pGPB4F$vcL-!;w4yn6o5&^QT1x&c6BEtO49YTynv0zR>tPDEO3q@i2V3<(e zr@RbCahW}5I2OsqLS}6e#D*{k1yX_Zul^BI2lwqSi`)?Clm1&_QCFB{@JI?)oZCI#$r_g7|CIw)ani6F=E;JzW644KXv;%bwb+V9?yWk z1&sNfVXEvpzBAA774-)#*u)^G0T#W`lom|4o8or+n1 z8`p0r7d)oBa>bH%B85|O2;&NxVH1WM4ea7p$_LB{=N0w zzkNA zeA1SJUB2o2qYu{v=GjpiK6y{QeLwtmT|4{toz>SL+KI00Ds4*Cv)%I@oqJ~LlrB~w zoqR=UNq-4t_Xk7&=Ihn(-Ld0GrUcR!XP%>K8!b15vZAmkS-zAn)6H-NzKXX{4+R6f z;Gi);8`{+O%URx&Q=whkG`QEd**m6roqKwj9_yS?Cd|MGd~NKvVbiwyK10X%PDZKF zmr{IES6S8JA1ra#;Ff@0OMqqFE||w6793pf#oF~l)8ZRHhLM3I?L;%4KXgKhKHEfr7k=%bGZ#^>6Cx%1nsnZvb(i4A1W zpFJ6+eNJ1pWMO$)DCkl?Sp8EQ&8Fxlp7`jakChU#c*(N%-uJ$@rul8Ix*yAldJ3a*`@I?`!Yj zZCAqZk>|xKF!I4tX`VcBcT>~$74zp+Fh8D<57aor533JtU!Y!xW%Kw4BG|KMZ%soU zOWg;f)GS)Kq`W>8CU!Ffrq1yfixQ0A_kG{HySz2IE{=~PrLF~Y=Y_A$?8b-@6jnlp zj88qrp|(H>GN6lDv*#3?)^FTWu)|06$<`+1l~4noOyLrqv(#FUIrOegER&VQbK6Npq~)V zcdb>gOo15*gK_pum!!yZ2Grp36c}X63WQLXt;Z3R4dRMO!$hRrch7XfsSuNQXV02b z+PMskCxXa?6gMRVcT_vmFWdLq(G=rF_|6m-xmj42FTD6%!D~hCL00WM9$4v3<5#P1M$B1 zy|09%{5PNY#3$OO7uUA;e&GG>!yo>^5Y_7Txi5U7ef*;zZCkhRsJ(_L00PtqQSM0X zA$*ESj}5a)|4)SxS%%k-mG+7c@T@+vU|86SYm}Lu@#yR7Yp$vwUkcXjSrglVqZb0x zXWL_8*cc+%z#kUNf>@>$4w9h?E z6Kt0(TimXT16ebdBcyuD^Tq4I^V;~d|P|8SsxYf z>~Y;8uZZtYG&LDo>F{(sm-fMx!{MQ_suRMD(4wor^jMUlso@{q>kkDSyJAJo?rJys zb5Qp2h2E2PdGT(4gyL#rUSr`m#if=jQ)d0nxcGbjfkQPV>6yVOD*2;+AKrhU9Sbc= z2s$qc*>GS0@8CTeGS;<^QGUY%I71G3M!0~f>~T?^wrsJaJPPIB-30^v-?3v`;iKzM zJ^f_it`%I*J@-t>5dG$@Id|%Gn>=ZtjL*TTwzN4|p1x{B`bF7}@F^PD8imrzB3@~+ zcob&$&{d>)@#do4z^|ust6Mw3jljN6t_44o|J2IMfA{Mj%_mf<0dDsn`^#rai1X;V z`PVyNK8NpjzL57{zw`*FjQ(2*>IC?widb3gvPWXf28_jJ2UE-t5&$N^85E2{UC|d> z&?ATz!4@EMCq&{@$V7ZOWO)Eza6Rd}8^#Voj#Ia5=f>lo} zCG7KeY4K$R5MTn>E{1@H(zYpW-~K(FfY0;3Z@NhP1l>LL#FOQDkr!cWm=%u~=4I-J zg|ubc*7mRdw|`ZN4~zG&|NPIjyY9HNmUaHoAO2y^UEp3RMIl(@Y-|t`;`TQ}BB1@P z4cg0-f#@+z#BLniHx`~z^rM6THkEsX&+T{KQLgD*Zn-+bqorNDYxz4yN|Dj8;aJct zKT4Pw1qz3_7_g&Y?BBn)o+bFSUAw_l0IzR@)zK42+uXo?MJ!(ysIm8qvDR1p(+}?w zhTz|yeNVqUUjk&;?usuu5rv#k?BO7fNLfg!Lp#3qjc?YuAKOxrFx!mfxZtBY)h$aZ zSWr}bPb>{)F$}w%)c~?4bf%Z=f(`^7KgHdF4}re`@JePlqR=VY zsa-sWrz8Ao*Yn^kIN>s-j27HF0mjJEF9F29<@@Tuqo$=jEO$Ia+r^NTK#ySGy=!Ni zKRmmpW^TOh+O}%N@>&Tb?j!QLib$>()*mS4_G@4JYJ}>+;#Er*Eh=6yXZFmtZ+DcI zjOX>&UQ^o$@S?J?zx>s&wEc&Vv^fjs2cL%{1Un_1m-e}5o@x(&>s#&Ekt6MW@BO~^ z#y8!aHXSPA8FVTod3tDI{IuZ+ZP~ofv@gVXc{cAYU%Is2eb*gr;rs>d|NAfhWya`q zEqfL>w{XGiw*TOf;_Z@oQXnWAHHAA;YCI|P`4C+68~hyoSoep3dEY`Cly9Fn%FEOlJ10*buj#7to{Y;_q#rz3;Da|m6h)F^Ls5M4 z>8EP>`wdsGZqq~ag~#VR554-uv5+Nr>p>o*qrsGX2TV$_3+H;AW@WMwFb)a zID$g}B+V1k=$R$ttw6?{A;p<6+6(!+>dG-L%tDPNfD2Z$cAg#t zP7v7nH~|@LTYdVkKc}N~oI5k7J@@H|OYq4wh1wdINVa+ud}h|7LTJR!a%r;e2b0`@Qx-$wZ0 z;{M*f`|I1GjopMVV){pXdMA@maNPiVdrMN5K zFZk!#*})acv*)aAGqu5k*S*jQ1!Kk|;h7RzF%s0-DJ~hj2rvC6RDF{GWjU6Tkg@9b zt5T1{=A67Y_Lk{9shvUxj^#lKZ4kup-n6Jb!XINvIe`hU~*VT|NN(oSP$Rmk|U6t2KHqv0J%`KE?O zmM-dcL%%LUf7+DEZE8>)r|VfQ_y5x`uWMg<`02KO`|ir;!ApGgYRi1*)V@om8ODS+ zEnmF2U9oaSyYYrKwX*H;#~*8Z!xJXs8RI6k6)OeocZ&JuO&i*mzVxMbFiQMwx7^x( z_=kQlLi=Fbym3?UISQ2ERqY=)X|P?GG}J!zna|e}=T$3~wGX`i`%C%yvp@Y*d*CZy zZa?_J54L;X{HC^e!Ej)GupQVdVW>EtF8&a#l>Xco%8MBRp1Tf~-BI`(AOzZVHoalm zsgieY?{_?lS{PJ&n>=NWh55jAe@1(rER^vur<6irA#eiI1 zMz@Lb;u$Mq3@*h*ZUY--8RTh$BJ(>h2;}T7Er?0GH0@A`5avgR53daI2qa89GdSvi zoQ3EHs{W?Di~uf5i1({aA((P&hk+Vo&zgrc&0t=ir9?5}>NZVuA@9bpt<^#_V?rKM zv#e^BP1=dbt%B*52LcRoYd_&IZE$+qzHLV-ZM*mF&GpH(BdWP+NG}FPY|QB>4qLZv zsbz_SQ@SY~#3v9~x@X^p_z>1NieSPdwZY$t?}9I;0oDQz>zTj_VtdZ24EHbxg)l^r z$6}$WAAAw7Z*Vsfrf+)ln`=sm(4fS~t>e3b%qTJx2;amM&4aUEj3;4isi!t<(|K- zIYx~DpJ_t-omD{YNL!7+Hi@%v1{btS@#)8+j*N}* zaeyoQCIoz!@}wW$@9}AHa<^%#-_DNyn|F(!pqSc(gY#p&%$gBpG~=h{y+_Ws?OQgNM{vWs^<_Z7#bfFBxs3bZ z(Db%!$vulV7A;;{OPnoz{-ck5ycC&x-~7h*lRxp})yF>J zrmV?gR=ULl;U)RI#x|W~@xQv@2@Hr=#-*<2d0vqcx_ET@^WXuIvBN9EVSwZO2m|WyoR?!^R$Ow z2lqQ~=!}YYQirM6ASV3n7qUd6Crqxog3_sr^3o|wg79A5 zIu6~gP+k<%NEyKz%$_mn9|q%_ga8W_6T+OiyG8qp#P6)UN$u9#Zf^7D54UMyg62UH z2PQ>uigO_xJzIPBq>T`E&;EUt-0ch|cIrY9cd!V=Dg^!RqV2mtJppN^sHDG6bD&fu!K#aKFQg!5TYt_3Z<9btsspX$kL0_+>iI zbK0hOR~BLQ`CB_*cz$gu!KSZxnkcWA#w^d6N+1BczKyIt3v;SD><|~&lu|RoE_ztW zH$!m=DC>KK1#8c5@HHlcMBjJy%KEHOekYIVR?q31{_fnqv-+ofwcK;3#EPd2N38DQ zeKdWdz6*ICE!fzx7c@%2DRiujVAsRmGiVUM=wWH|!*1hBZO}$z)wiD#hOvv68JDqP zAejOnAi8;e(_00bjB!8C4t;lkZ+}hEN4Qw<&EMjsH{Ee43cDT|hP44sJ7>nKj z5L4)xzV5zww?FrX@AThOe8)J92_76hak>mheT19v58tYB3cPrH$b?cPg3D-^Var$% zD>D@SDTJVM_?+zw0>-KKsZ*QrS&Knr3HR=@#q-K^pcdNYorH_vM#yGy0a(R1d^RFNQ zB&)$4)4BTq*dXvoVDg6#9IkgecX+qdSz;-cI_9Z8lD^fPbDlF5%>N*={dnO1-lSc#yP@WLNaPgA)K~Q`#g8b--s-F<@T~k5? zyFMZEFMjdMrED!)uuu!j;^S(sWOZ5;PSi)BOC+T4J+Yh}Vb~MGv_znnvcdhyH5#qm z%8Z`*7ow(7-t|r?9=Yc?xPhN*gsE>>nq9EVQSb`5+&7(s5gbd~^;=z@LF_#-dmb?g zkaVxNXiT43VIZ5QDH>UO|Kc;BNk`7Mo9?)yEIaA3DHR9y?`=;$_IO!+Vtv#(7==td z^>;D6E_Z_ZwOLzwh3wFQgY~y5hn~4QdqzN-b{Zrw&>!E$+-Hq!XgPiQv|34mDX3d; zA+HQ?lX@sJJV&PU2pfF|5A7?)!ulE!Fygi-tH#{7w5w;Ro^@8Vsoa z2qnLZP06+VuDN?=y%@dl70jAYF#Sn+}-x?>oz65`s%C7`vPBW2zWX|Pey4gGjF=- zhKg&U6vD4(o_wl(Eu3BB~wwo~HZfM5LNu+>{hVhu9QC^(z877iz z#-J}FAk8}`F7bEh&;_=K?-bW$2z0b)Y>Z1ODk&WebxI0cbGUEH5)YI)HeW2^?Yo6z zBj5L}{^-YF{rz)}!p&TlS4u)b_jpN<)`oshxX`)zdf&if_o`?#>=kJ zgxsMmTiS#u0;Y`K_=dY`^#KnArpE(fm+u!}URTNhV)m|VrGz`iqdoP#FgAk0SXZ1z zloey8U;1L1qjs`fw0T_Gq)+Z$d+nNb=Ns;*cB%_g;L@d-4$bWLBjKiJ0ke7~Or+ot z3>Y;?jVVT|Ee?VRY$#j@ExXLSrsuQ~3<~$hb%BUtNQ~J- z-+H9*iQBz!Jm3D%gk@641Olmi|-EKGzNfmkC~$ zsZ|e@CmsPso3&j~dWWao)R4_8{brqFvi1c1P@YY_4~2{rae75!=3&p9y69w-+M2+sTj-aEk}l%HuQtD zQ)9?XAKH4pZok5+MfLf+B>4GUbE)9_W0vZwg*1{ znRexpx$XV$?sn@Jbk0l4C4_h3g>X|oB;z;5lu49q^ahsr-LcReJQ%G&I%*|o&Qegw zK~mnc5f2vpga5pWwR`-iv4ih@5#XO8YIamMKImzGVB-5=g%$^cbIRy39)0$me!T0O zp$VnK(eTpruj0aD1YcUAmNBDz9tym*OaIhIUnnJdgm$SCU{AT^+2UmvKWC}>#VFx6 z>_rd0DN!M>6=efH;kAOTXU|*E4(B_@8t*NdPLZ0TTiMxt8(8$Are^ga%DcdBGe?(~ z9+uxt`Cgt?E`R>=x5xYszw^gk4^sL;c)jx7cwYX}2S@$>t12&nXd!_*F)x6HTn-Eh zvUk>H=YHI^y|Zu$bpl5K7GI)f6hleVs?BusoG&5DNR#oozF6ZvZeVI5p8&!0L6!?= zFtdC&L(ef!SRpe+&p|FQQU;GP}VVc=OE zUca0>=Zw(EIS_#az?>veftGAp_BiMp?^rYAnVp^8{l3}t*q-%xR>6`i(h?Ock)p&b z1~3C4i9lqakvr$~`gOn1?{(huJNH%Np^3yGIm{Mt`@a9Zbt{}YsZO0bRM$ zd%sg2eDJ|UD$Je0vxLGCQ9l}H%%gpz>@9_;oRh;Imczin%@y_B#GnG;Cb zC?^tFCLH2h{l`3%?|D;R0~dMJ>Ci8C%m#B4QeS@gz#P*-kY-Z80RtxHD)ghUBpS&$ zDN8x(GoFY_ehP|ZBXD%^8b#*mr=H5wYdLJsU$`KxBF{y+Z5|EXLYmas5B}ai$Qk(7 zt=r0nKJ=mTfBV1xKbxS22M?tn=HQ#lfq^^Sq4XaxCPcSnXtFca=~v!-g0FBq%MAExgNcl=3;eOPN8m*fh1aiMQLfyuCjM@gT}?vp2KnJ7 zI&ucupzJ!!Y&vBV=$|+%%;-v&2Qx?!`EGZL%IEq zw2Y+pr^T%V-(<;_eS8wu%k0b}&ew@Cfor@v6NUjoBfV1Hin-J4B6OkU}Y^1o^21*2$&>a|lHOzG7s zek0Xodi}4~7FspL@y;Lta8+XbZ7>N_?;(=71qPj9ICA80*}CPW)Lfgbo}mo~)&wg{ z!4)ccej}MhXzlquU=meF?s^L5*VofomM>mVRxVu}1lpHOA~|6sOqUr~+=ld0kA&&+ z{)SMjGK8D*&~N#rgkxOBF9lL0@Js>B=)nid#%G_& zcGb45U9&C~iz}|aYRbydI75qzW9CSqIU3{d{FakZ4}gGY`_wKMM5=B?YuA$YSYy|| zbWEktooxi9{yB2u;!7_H1#xwLr!LBjzEDay)4DTLbH3&)LrAd7$g5mS0oqE4v(E5g zQ5HC0F7i@>2(Dx{(WW!OIJH&#;LzNdu_w;PjLElx8EV7RPd=4->bSN9lhPldyv^up zs$(ohh`Z!Fg4(?%?PY>LdkW5oS=3nAYP=bL%fkuUvPibCBb3ZV`n9O6Sg|Y}K|lY= zPnF#}x2I1N3)}zYzy5DB0NFqKhyS>I5sG!WsqyiE8}L!wn4Xw$xCT;*%VRm_#4I>)=XkW=Sw$nE zgp7|(rp1q?&ME5?6HOc%eq8#P6R^M^xG)xYaqM)!);L7J^tHkNmTWVjIndkq&vD#` zcdSOj7vME*F*YYghsyEs(R288DTja9KuS~1)U;gD^CT{+{zxVgcHCJB}_&-|C9v=-H4gM0)#dBL) z+oL~rVWPoM3PM4T2hsONSfV@hqAz<6>@Nq8jy7W$SMJWDJkPEU=rckowBbC<^TT=!`JGIZwS!JUu@V8VaPr@qdXpJ_U zpM3Xb(+`tZdZYX^{+B=f+z)CAuaPJZHNBaJ{IHFEc~D}c7FMs*V$siyYM$pqgkcinGGY`meIxv&aXL-rP z$AY*qGmOH4f|DmF%Ho*y5R4QNNKe>tv{I&{2b425I+9MF%-jf@&x?Lhq9AHT)~dXC zSD(8QUh%vV;W^@*%4-yS3(=L6h#r@3JU8R@TidFV;<=@>>B+a#FJ-I8-x4N^p|EtU zTf4g4`PR1uvkJI|a%0B>Sn_>gfr<~ytYDU`HEY*hkO!D?3id4~N*F!=%(G?J&K>z} zo+IOsHM6AXGNynj5%R{oVGz;(7)vnGHhq9U$D>~uw^MTo1_HoVYC?yiR+pX#F-nSy zvLp(pKJj^>lvpYPAML|n>M{|_3}uEO0>e~dcJB@$zNZ`rA>yDwZPOmGqMZ271Vfq_ zYkZXIxH6BY1tS=~nP0WYD8nTWI5fKvUS_z)(b&}_$lm$Ni#C9lOCUo-r%h+hhO!!} zLbEewaaq1}Nm;XURr%h1_om>)ROb%NOV|;9mO_5<7k??2i}HLQJ7EGoc0y=_CC5`U zI9fIqLKe7|Xa`|r>uZo?*2}aVn49C>^dsmv{);SGXWhNxtS}Y@z6ZyT!Ao$8o8>Y- zJn@5aLTJf9BNPNP^;xseM&0e{D2Z;Jb7rf$;Ab4`StsGs;o+Ewgc2mQz_Ibkn3(J> zlT(WR=vXNG#-z0~w;<0BrAPGdLx+#%IElRK$be0oUrd^Yi*2kEp}bhmv{Q_=$?Q8s zS_tjFvT*)jD(L(7?#VW7xbVWVWa*;7seoJ1oe0}IHocUGjl!>l|KR*ofHpq$RQdM3 z_XZAiB+bBSe8+MI#oDeWbkN4}Cg2T6_C`G{G|u8N$++w7cjP$U_w8>bF8%aR{Zx6| z+uoM=jTeEPBTj4)o*6jQX6chH3w{M3I}tp4_{d0}`aT?!GIWBL(7!t#eKLBBP9>i; z*0mg+9Jd+KEIo#trI2b&$La1wBR>dfUA{e;Gatwt~#-m0<{v)n*LBq-Q$rfey|7&dPs>e z789)6A$xM7rFGeNu!}FEzuL}c$+$Yx3f~*-?+!j(ihy=_4U1{5N1fBt6ziBuP5ZOW zkslO}JlU}VMZ`8Qy-@jUVBjx2>`BQ6m(z$2B_|BfT zizAp+5DUkt8NvK03_QS-I0BK)mMydRp2Mq<+f2oCAj!m783>{?t8#?A*0cxGb9Orw zSTZ=bKW8F4w(rW=B_{)^<^+P9`S^%@AB~wy6jtWMSS?zzIFF9E zTyxD8m#30vNlly_4AM-K0>pXt(I*~HM#=dRgHpdfPz=F89n*ypF?^y=*Q(M3bT)>eK0AFSM-eGLHw6u4B3IrFXWUFyT zL8hd|Q2ExZjZcy~^urAAL|_fP0e>)6Pi3^e%O#YlaX~}A^}fN480S!gF?m8vU6cp# zfCuhkp|t1OI+osM1_Ks<Q^qx}s0nzv!=icfi}?HpSZ`N91KLnwIoYeQd-uoZ~Va{ucaDDNTW#!P(@$|8~|GVEUPe1)+x#F_R%RAnASJ@Wy^Cy4wv9vP1|9$T%x8D4g z0REX&yeM_bf*a9+GAHQTt}iQn;%*%c#cuC`p)wki$o-L@|Bm{Mowm5NfkH79iY-o* z_y`5yY>aD-etzcEiBy)=hbO0%Gw?;97ss`J$)Ym9udnp=bOdi4$xRUL#+C*&g+t2A zFd30vw!SpK!FqW3aMG9Y*UmcDXkNRFb>(A8N0A!(iFQs2|Edg-U`-BnPT_Jin0kUv z;T1=9eCBveJPwbJr;@8YI2*UDgEHn@JVI<77J2nK=^9?MHc|q?^3_t)hUsal|51kY zpRDro|N67f|6to+BmH$-Ufw93ue{V$l^BCs5hf8afL+@FA5WYV9oFoL*E*9~3@b$^ z5W=zwgv_&qAO!RDiQ`d5XuN^k?ZGU2f^eg1}pk*kVzo($(Lhx1UN=QiE&mBrfzAgA~A#qC*`Zh@7j(^ zgr0fl0_pR|w0`TV0?{3@R3_wIGNK?%<<)v!H7OSp05jkD-PGBPr4;fvg+16Qk3;Nb zp^$92_|hB)%8M<68#g|iJ241)>)RYMd2Y3gsndPdBgPrHW#YMCa-(+oO(QMUM}+$d@kwI5 zUV8q8R3N~BB})G&e3syp+Y!u|B?2tq@&4`GV-gX{MZnz5TAkp}x)^AkGg58k`{sM^ zMS^wbWZ&1-ojc>?p%@CvXI!+8UzupDl2|tCoQ|vdb>Ptcp!Jv$#~9~qIL5`LEU=VU zUB=(v>d9r^c!uwf$9T52c9f2u{yYS6+s-|CV)N;lv&+Ez1?AZnH>c9VQTa>=oODQz zNee5B^6&!=`IMHnw%O%SC_Q!$EuKGEF1~1eS-WakS|GLN?q$~)O`#27Sk=S=SS;qwAE4Zl5} z_~Y(7IOpErdqX1}LE@}g1U!C%SrM7xreZt;sN?5!i{l`^a&VM`O|NZeVRQSDN`cGYXnO+}6IH%Wo z9*BARbPOH=>P@_7bxEXWf)1pd2&NJ2qRff!T4$dv-EFfUc#8W|nY@nXBMZ3FBbKW*#gc6p^J%m!}e7OE~KlCB}@N zWkTE?&TI(TascASc>J9wXGa@Z4Ja~8moCYrJK!f78pGMfE` z7s|Gb2d6ybsI^wpg*1FqKb-JQRr3S%B-;5mg)g7{ToHa*EtfR4wERDbH_*orEA)a7q@mt&{i zXeWotR34&VoTWpQoEt~=gPY6uF6H{Z;<&$+No(w%J1=)m?Tm5R2EEDLoNm#afy03&FG85-34?tU0%gVzS|)3(Jy)^Flca7)C#K?cAE7 zAG$(NJECOyvL$8N(#2`%_|`Y?EjxEKv32;7EnBfX+pKwTf9~MCv{GoVeh6t#G0uRI z-@U(FbHh#L=C|CM-+%fqKb6tE-}~-&m%HwGYx)p5wA5JGs@oakZ;38LJj6sW7-Kme zyz-Af{>f09j+J#6UR1_H7#|flb8tbKH76!6IpJz}5E#Q3f2VR9^gSH(-Xy%M;ak-T z3`QnL3HKOl@0heb*SGfIiI3iUPbj}<%4HiaF7JzWx3$bDr!1`pA5VwuK%4yDvSFm^ z`_dd26DjgovQxHkRj;za3NLYGd*c~CfNpc_0+-~mTh7j{nyQ6o+M~2I%HtlbiSpua zUD2(WtlFLqH_*z7fR}I8(O5>KZIKbBc}8y3wi=7ZBH75wHCzU+-Pay7=iat5wqnP5h$z z21v{z*=n0XNMeuj-D^T*7?-lZ4G|`cf=Kgs%;Y&S`Wr#i8K>X!h>MU+Kb|SWC6E3b zp9sYv1fBZojezIkP(JvL_|_Qg z-*=!K4p`?*d1_g!5!}%~juOG>;3&DP7PHlOQX-TKUF(P5et2QcJ^;La~V z8}=V;wmpZwl=V2yLVv0tuYHxLDp2}D8LRL0-6d581NNIy8WU~8AUP-Nuiq>ctQddViT=gRH)gw(U6GIp?8b6q>8Xi+tFLu@U1?GeIPm>y#-mwQ z>FMds)7?dFPQ@kqV0&dVu8mTw&+^V`Ye~~O{A3-Hr!Dfr7ZxJ4LZMN26%gP;d0@rS ze^wdKwao=SlpcR4F2wID)GGWcPU8)|?afww&(v=`!GT50H~g49*KX~g(56K;u6WVF zBHHGid|79d<hlw-$Fh0?OU>^pFXn2x@dv^rVZ z&LyzGNdnv%Mavc~2<2e73?0~)<9_9pmzRq}S$EpG@chRDmv+Y_#WrV4H5A>8FI=B6 zeDMAU@+AI=V<*dHS6rF>hI{%=;axC)VZs;Bf{!&4@e@xxQSQJ0{=}u9`MIAhTes~< zMFu_H@z%HH(zx%0P_U$+ulSA#<7kNWrBNtnl+h^f^z63szy9lgT^@Yov2y**x0b7} zy&?E$OPLHfI5D1I2Z0N|%{Vr^g)=tTQl`P&LB)~zc4?LYY^Wnn0P$HyCgIdOc@7wb!MltB2Gm6sgCD6*XCESF7N;(KtBi!v4ETTbF%Hxl%$PRCr>jACgq z+Z4)Twkv9ObPU=v0er1AU9pn1`IYGhzx}~HKYDtjvd(`y<6r*y7td?*YbOAy>CH6y z{5)@@yu4nS1~ukiIe0alue{WVxfRH@yi{Id@Ubw+O-p57Bv5Ar!nL=~DBW{rm3h7G zWp3x}GQV?HX*)AsCJyf{hj(u)L;H5*wqU1vu35Jsw@lCM2t+yCT3+0_uYC8Br^}Vs z-(2<_7%Io337DTy^BtkI5G<64wvL|i#B(o}`@jE4!qIcgZ8(U@-)8p&z&-ceQ|@}_ zI}+i|@G*P}&b;|^v&~GsOwY4}D4vh$;Nm^v zlQ3As)xe}-&Xo~2LaGtU6^>?a)1M(A34wT)&Y`Wlm3+ za{Wfx+6Ok;nE7K2t8hp&Yy9K4OMbpUyyr0xWvB;37CxVIw5@~(LQv!qg>8vZ4(k;E z07PxM4Z~%T$jGy~^f5IHj7#Y9Y@cPhfD=Z`;j*{4FXK{Z58sUT&cY$kEzrKUrV9cZ~hp^VA z)APD@8L5+!U>w^5UfLtsp`efYr#^?_QKaFXb{s#>3L`Qo<)?9^3{@qaSK+O5rEbos ztCllu8J$eUNc(X`{Ua#N#Ix6-fcE$GB*PSi`nY^iKV_sD<6yv3D3W6k{ZuFVN52go z!NVz2e~cgaQ$%xyIi*Cg%*+BG&!SE+Ph5>Vm}nz-<*DU_&JUtxCS_Heav8Jwch(=t z_xkRcKGgTdbl;(&a`5PInHS21rHB__+ESi>X=^S6v;{A*^M=2jwo&fj;^I(PmMvLS zjs^eNy6O2c&^4#raQ!vq;)^fNvF7K-cSEwwXZaIuao{zUV&@3C0Pn?CS-ZB0&`fbb z7nB%da)wnh%7d%M>!p`Am+yV=dx;~C@<3aE_=kTO%FkGN-}~O1yT$b1Ql&gDeTPf% zM;~0C!5wXB?F^n7fEzO<@i=P*{>j=u^}WPGI+cTIJ>Z^ky19 zJx}7r>!jB!@69ML=UZNs*IfB4W;G!YgGn^uuVcm*jIxX4+uXjgs4t$M8ZEPqA1$Yb zcbBofTgtKh+slmj-P76}oHcf0W;rn<1mujC(mj7!Y3pBD4vwEG_dWb%d2Z{ja>cbb zm03|fqQxA#;+u7AR^iTNG7x?H-r@4i`@Wm&%7luxVf;Me#kIiXM3}wh*0-cG!+B3W zv%|I^nohAk0y+2XI}qCTcqldt%8_7fk3ITS5-MT=V+ST8BK*DXp_JJbV7G~5@H@MEv+bBp!f18_ zANC??di&(73K~J;H~e7XG4|j@nK^XmKz!KD_`G+4Rr*LAIT}o?u`qBt2dji<)Jsqq z2h8j2lphR+&awRH(b22}Ol%jeiic;Sc+Q*KZ0GiTPW$XKetJBVq{i|RrAN6ZQutf8 z6f|w$fyQTo^@oB)nYBBMz+{n{92d~>R9PAVc`{(e0XJh)jN4IUhRw_!0wIu?wFS&P z&)7-^3TB;KQRDZSpo_}L@e>mR?Mme(@F($Q z>N82X=Tf}rZg*<^%lHTvB;UE0jV@HOP=Ep;UG>&#HIor%q zX;)WsJcTo~M4{ffb9ZiE7G!bf&h0rCxicwn%b3awuHdQ7U;XM=(|MX-9HqrLe*EJf zPromYxNm#QjcEmeXCkxOO~o3k->Ah>tuZ4oIhtBd>=HyRU^hBGUdE3{{Rq z3t)E39v&G@3m-mUnX{#>IX}r*8Sht3=P5K*iBbP6(<}2yKbYr7Pj6J#`EO_Zt51IE zl@NTLRGF@Henoyye=q$&o;RrJ^%{?EQpOII?o-Fg@V4j5;cd^9854)f+|E+^xv7r z=&=xJ?OkPdXJ46|F{gCQTUt)e=`P=T_~}q!_LbiGi_3z=wqTByo~WZE2z%YCm8G@4 zvuxe7zZ^SxIyC>m;`|n-VOv8nP!T679gjctWN6ak<=Shn&6%ONBjTnY4Avj#T8PSc zBoI`1X9x0$XJgmR&h6WisO;b%gqY$HwJm`dmcUQ6asm)cFo8O=M_}ryV}M97YQltt zf%&}da;o8?Lrf%*R^_EK3YT&aawQnViy7H2tv(lDm732*;Asau@;sSN^jjGiq}^K+ z!6f8qzG+G2CB5yVU7o22517de9E7bbODFomiB;QebH(hJEOfY`ZJ&F~p541bN!TAa z)HrEY#TYo?mG)3<^s^-djx$}H?c=$)J1h_a+<~p#INFN|>jU9iX~Vttul|-toi2UN zHpkewDqQ%F5b7)wRlyP2)Hr1uqTUp&0WUCzFltZ|KHp&id=`Gr=D_`a{_W9aRu9!rncXi2|mS#`d<3RJ1X2O#PC}F3B0cwo&j1 zY5p4gBZdzi2w{A&31r#6`K8j|ZPt1`mujGlc2GFgT>~r5nIeAwf@c1THj@cCK2vag z8McjuE?U@pAMMpo`ONSwD^e`%HbKg)JbmFc^I z!Fi#`PL^k1dLbS7`vwNH+yjS)%Y6@iw+T`f0);{qpN3Fr=*9QTmn|#H7A_72a^u8r^bh35jbpV=qq3ON=_I)_`wfm93x>J9DQ-qO*e(&^1d<<3hnXH z!^upYJ|KURcqxog?*6ror{_aO| z+3dO-Zz-!UxFD3d-g0sZriq7OA43w=CGL*|eNr4mkaa>jdd357y+1s3Bpt^ojh0eV zp)w|M!C@1*$;fM$mSC0t&9DBWvTntapox$Ny%11~Et@GF$uRA7T9<6pFB z86JM4KMEjPt4fRHo;Vx0pbv=`aY=8eyiC1jMay7{@i#uxJPt)M+R~KQd|7dnlQX!r zg%Tw<#Zg=r=jS=ID6KWo1ZT;4(%@Edp8B4?u}W)jMBfLvz%=|6Us%*vQ7;|c>-I7 zzzL)|5$!oOCj@@q{BovuaTz+@SsvT8w+tN%f}Yt{4j(vJPKBUYy|_8^hUv5|7>3;< zVvJBS>_(zMm~{v^WCo8IIoMk6c*||K=9X8xUmknp@tidh{0Ij8l_QcO$H~56P>6OU z%ChX>z2BCv`uhgU(xofXxfHWByFNBCmITO|)K=qdn>RJWHw548Aa=8B9NKaI>f@kH zkaqX>1q>)ZjR{vBzN1)ZpP4x#W770KnO!gt$0%Sv@=|onh7h~$jq>x&ITeb@WGHVK zMDwmW>m+z=IYCL8CM=rK*TiUJTvcf2>Cz$8#mi8RluRYY3p1}}clUK?-_5`=z5NIF zT-MG0sLJWIia?F1uH7x-x-Q?5Qr6+h2U1egBlLxqXEXZ5+ZWnIzd zgmqm0mM93w=Mv#E-nHY1lmJYIUiIE{vaay|r9>ztP@S$O{XA{28wz=}!>&nnbCfI6=Scw(=i?|Y}r<}A3R*z1_ny^qQzxj(B>mgZ7f^2Y%j|fEsXERQ`rts zmQyFd<7``jjjUzA+x-O!*Mo$0_mP0ACj_UX(P<`e6Bp ze+oX*8H#f*56&G-KH?dl71zn=DT)!C&l22~7CFp&NXiy%Sgz@0umu?ocl5jC^wA z^W{^Y{#<$Vi6_hDS6y4)a{F6t;mhsP#&>q`wDI6k()@V?&z1%A7G@ZU z)vMP8uLzt7!Ayx`1vTb%Hyk{MgXl$o&C{ojm-%!1au?~}|GR&uES*0Piq)CY9m@3C zcxNY@0HisoBJgL$1Tfms1SRAMwTj-Ta+>Xrlj@)Vh(_1HE2zAuw6q7~6Mv;WnBVBpBc*lboU$m0d0{9DcD$Tv z4Q79QteiSKQM!VO?tgY;dE`r9C~I10mW$@~lofq*Vnj#E(TUKqXCEtPI-=n%fyk%g z`MI#HP>8MKKt3vrtrhuMU8BPbR+aPZ{3mt=bmrhn`UQQdI>9$LRnTI zJS4-^#FpXc>$j6x?J{wGlE6`rSMV<(rPGAl(N~r(S)NQr+rf*#XTnz&%Y$TnS)NLW zi70`{=^Y<`+nq%LA*8&kQE0`oK?oK3Gb&{CM>{YraUeW5Yeg*DoPsVGh8g?N!9!VY zPYANQyg`Y;EaokkpN`VXSC{XltY@l?2$xj>vC8AO^7Vy4B$&h|kyluCc}@K(ATEAG zltAB7V76}Gmdhf_X>V^U$3yURcQiYJlv$ZpmOoX0WdybEI#!;U5y|TU7xl<5$xi`+ z2in3Et<3tZ{Dd{dwP{adchL;HiaCUcoJIed)C%uom@%lskC7%klqfnt}`^6LdI(-Sn6C@nQl{jELPP1)!V z+9ce~WX)c^qxkY$^0#;32N%10+T;6^Wpw0lOh^Kk0}py)rq5b>@ZeBPB94?7wr($j zi?(JW7jk#uHc)9jjqn;6Hj}9gx=;vB>p? z;5Iqp3-i72d^h`eM<@)77cI(jxjy;vPn7GgzrNi0wmULVok+H5P(I6w$-jf|RfPo} zolaO&!D8s9#)0AqpBz^KzxhLPb}chbB|Z7Bmk(O-vj-n~xP0n!UnpAwcIz&>q+GD! zlG54RTMi8$PCS^qXhGuXv5_NX&(`P4pZxwuqhEuiJ(RRlp@g@#cSo%u7K5%`#?Sa> z{Q*N^63|j-M?9YyJmYK#@u2(v?w|hGW$p51<<#VOnHl^iFoGE@d9qWPrHM&P!XfxW z(NY%cRizu{gNwUo^@3~ix+HC>&mw33UFipI;X%s4_mo%5@Jw>|+jEhWYx3;;yre~fg_kH2BW$)8Zlr`P0<%(qs z%2jKYltqIbF<6u3QWo7(K2#5BrT+(^?@kfIwd&>1U-I(jjg!T2;-&nr>^{?krj%~h>2;zyZ zOKG|E^2-u&{`Y_VZ}Pci9f{!LAAvAfSTI>(u|>k9$Y5}Uny8kTk0k<5czgoPP%I%y z-tFGAGnEFjI0#J85g=9QtHa-jnp53Gl*^)`J`TGY#@I}5;Q^eRQwqW)I#k_?Jvd@_9rp=pkJ$=!_`Ppw}fQ$0MMpBM)>wE3dC&{zS z-|{j;&>mwXUxjfqlYZG6BaghEfunN3QC@vwWz+_OE0+aB`H`nOYNoGL^r6;&IyjfV zT?vP2Ga+ra45mHxHzrmYE#+^|!Gm6$>!&hndnIktE@fz!cXe#+COLNUY`NyTYs>Z5 zTvhseLZHkEhCDG^Mve@X{_arL%<5|!LIY{yFE!4{EKaA7A0sxi{_`*C)$Y^(4pyD* z(RLOiV-2@Ft9igy*m$_WX&a8)jd&=O5&hFAii7@94qtfb#ZU+)(wfjScWyZlO3VX~ zJXv1azB7K$FLOf4nT(mcWxEq2N6W<6XjvSJ_$3=IiiuDuJ9lge4ss?fFBf05F8Y5e zWa#m-b<^fhpm$~*7LK^+{PN4M&h}F1MVCg`6mCHq^}%y@iY&zi4jDUmW&9p{;_>pW zd+*7mk9WW0ow+nk`T5%2Urm_**T4F!Wzm9#p+t6OJz(H_4&f(H9gj)dlm!s41=jPF z7Z#A@6QQJ0!cQKbin2XtbC>1PWh>IEAY=t+=Lw-9VodV9tq{n@ z$3=PJD9-_U)zU>}ba*HaY5nj2=|3r#T(B;88_ha%Dq}$Lhv5flJG=f*9&ap(POjIV zW5*gRP~uYHeA3Vqet{o)t-mGh_Pt~*W(NGwvr9gBIQ@HR`uEeHscX9OB2CX*)AVQc zZ+Ct%TozbhvTrdi=@t-KP)3tC1~cf*-zKD%yQNC&%@HZnm6s{H$$wvNuT=l~YgJzU zw@-ih(`eP zV@J!ry}L@!KyPVnYboFU=H2C6U;Sbk-@B)@9Um)Q!tZy^F6-v^hE_hmtXwg#^!1D9 zG7${On*C_$?U++~TVepm$I6Kyu2U0sMRb?bt%GIX@%FO!WM^4&*)3)LjdzrzXIjb= zFKjLwV^;IxwryqC{=H?S|`0*`Ijd6T+VI3O?{iKIOZ7@A6Elf4lULHDgBfRk;i14wjY67M1I+ zzOt-XvalRJaG=bN$pD8;CVNXYQ-w755R!ynvnZ!k0rQ!!uDqQ8_qpHk6$k4a`{)nf zA<8j&;UuM9q5?aO-I8c;S993snC0hyS6~0UPbqDRuDYK(pqhpihL=-S{PJ4Ok+2_g^ z@4mZi*|xoO_Yah-uf96tSUIOD&v(r(l*dZE-%5 zHd9XVDZZ>i2=sP#lw*g7N_X)6{+LAmy}$EIW!=hUp%5QWD>|Q;Q=us7XP#{pc+)Z` zWJxGBFb*E`$pTZbahIpkiwiG8bLy|~mj@o9LCTA<^c$Qdyj~tWtn!UoZbO3&Ex9ax zc{e>x|2_S?>EC9a!2Ox5%KYM@op!cS3>`sWd%pIuyhdhU<+(=b+i3YNfS6~aiPtlg znq{K~A8HF~osz$No_|l>f8xr^|NiN(yjAcuq@FZ+VZ!*`K@v^H2hV|mIq^OFK@l|=F;ESl?-b*g!gbTl*b5s{@-A7C3^_4}T$jl9b>u*0>+D;6W(7(%!$a^AYjLgTUV)i;Qv!jg6 z>?-?Dcc4(=+51xciEC;aw+_y9}5>O$hr{_re*dOMP->_s?8HI^TiCA zz$K2uh)$gnhhAmOi?R?U&EB`E=mesRcf)upKO$G=&R|yJL{PX0MJ9T}L%G@p$LxME z3m1_XH>w1w9A#JKr3z6AA=P%t3n$Ko;)m$+yI^d-@pm$ZP|lp->$G3x96oZS90}#l zY|iYKRf|A!a2lmgTh)P4fmtm_pFB_HEnwxHdUC6CVripHdFS$t_b%T}e^=it+occ2 z)wr2W8z(T*9u^|7W+AeZ2u$?Dcgj|danoLxWPG$Y`=9l^k`=JbB$Ghr*8b!DybzY^ zR&Q09YTwTE)Gxr_qNqgIzbPj#TU3ZovhYp6obV}|?D+M|JmUoqr z4$&Mu= zhb=n0i$X+MMLXz?MM(c7W5hD_=YRg^i4zXMy!QI*vz&YHy*Kj-Fvn_>DaKZv6c@^h zzE|3s6ZoPXc4%f+w3PSChZ}fL@T&-1`|vOPVp@QetxZ>5epO5amz5QZ=jX)4d2+p> zIF7Ld1b)nF>nP8@_)^)vV|RHjls|Zb<^~4lCLZ{Y_3Ly@b`~#KSU&x^&!YqV%Xf~_?%XQ4BY~g3x~tc7bX9TRbGYxFOP?s=%B^$>wqTrf#y66`UG+Oj*`B@L zvXS3-hcx}$nkbsdeIj4ehu}NWH~vYK7fad{K{S(Rg+*ED$rz(OdF}d|p3eEaG`Dkg z)|&s?m6w0>nY&-v%O4`WQDx_+A6I#q8PI<%ugfiMGM=^p@R0%xBVC zK=_VK#0;;cHT_=x?9cuzk$1`RWr?)cUVD8iDTjj*VeTTLvXmeI%8eKzKlOnRmaDG3 zJk7-z7(@|^;cH*}TFlz!mv_GNojF^R5Cn#IBw|jA1#+(b!A#rngb1w zW_=>_GEevQ3hxd{8Yj0?7DyviqTCy>l4#^f0D}l<-wFFFPN5P2mOR6mWO%;uOAz4x}Q{w-Ur%qs7oJnVtMCFlbrVv48-K7hM*dbNcw$bq zeC0O5zM5qeSKU43@5~o7US-s=wruD`WMvYL>4YBjIR1iA^h|kmY$;dn%HwEzJd|G+ zPjy=sg>$S2c0j%Lt+$o^dv~iQfYU6U%sg`{XT*Fz>_V~(q3n9aKQI3sDR%{(`#bJY z*ty@hPbe>7sy|hEnFwVRYi|^mCj36j52Z|7jjLtVXJ6P-cI`V>)@``5wDoqEr=!1* zKKE=WGJ(_4M^<2UO~yD3#0<7K#;7Hj{=(kA(i49Z+NXnotzEmiTzugLX%QVda4`D3 zvz!h*V0EH|z`2BXB=})z2(7}oOE0}V6&hAAxNeN#f;O6{fGb*u3${I55;94;{r20l z9OoFxYr=EmjW_1F$ZPo)4%K*2>4Y42?22lgH)dv|RwmxZ!6e{i7mm{bLf4;>vVvxB#tig9~l<1=OG$Vl=BQNx`p z#Tv|sUsPqA7N*Ir^4q`t+o`0lT)isc!RbGPO-4#XT{N8%!t+$n{FTFIk z>N_5QkC8sj2|S_rcL!`G7Rj94#Grx!{~G;*GY#FGKF9MU z_yS)?G^t+sjEld|(OV?txGD}$cZikFJ)cT`*Jsn;DMNDju;;0q1f11lN0vzmOBG%= z8Mpw4{HDBQz8GKQjE0PRRa$DQHR*>`Ur)yolSWGD>!tJibAI}k!>w|w!c)4A3j)GLKwFOqIC!2FPb%3*3CRtE?C@F z=7rL65^=S3l-UcHmCm)7lsSvnm01f`mZ4KE<-Ug=D=%%?Q7&G;uB=|Mw4CIicPf;G z&fW}4#qWeq!WX{qg(M0=#LS*;`-1?Y=ZaqWzW03~6%t6capP0vsV5&#M_jWKj1E~r zs-*w`#2M!M948?bZjJ`=2G&pjsHlE(g55~Ur zjL>m#oLwf`>{7OO;0w+KiBuVuaxgVYjqeE+ecO9re~!00TxQs2?U*9iWF+LNHmF}8 zl^1OET-^<0Z2p$l)j7507Cc;bC7t^_#?8?e#t7rqH+4~1;G*_X=D^>(q{Zl8W$f{1 zD2D+XXWqn2oAS7N)!Ou75&`wrTW>A5-EwOv&|SH#awZgsiLs;QY$!2&g(xwV8`eI= zKQI5C&l^0f&t85W{S6k&rwlxrF^$QIWy(-qGM2`aV6Zem=@PF8?HE_P=mzI5E`tkJ zl^3_|DjP*?4SKbEBN|ptM&I}cP>@#y{q@Y5UCvG(D_z0-+v8n#^q;TC>I>Fno9(7M zeE3iXZFHWJT}AWf4Q9O*Q1CXUk39N#!uQInuT8k`2qh8B`8To7_#50^=n)OEsyJ|w z)q`aVUQlExyCyi7T)ZLi2_AukL}`I%EJpA^{Yi&`KYpWq_nIH&HAB$|wfY-;@tu!- z>|^CufAv>`ZW~JwYbsmK(~mc&z_$l&t-bi-vS8(kfZdGp_;WAhvQc}q0S{#9=wii< zcDBX@i1Gq9e7WI09{1h*zEeK)*-zzxmy-c&4!IQHj<~bj*`?$hswJVQTzB0y<;qJh zDeIRmj|ogiTKLkE6F5jCq8OcGm5qA9Id{6nIGsAvC=r&qJa@otLpKe5!lSC3_#6FI z`f>N%cm76;mT81#kPq*`L%c&z%8{p*nK&Eo>Xq#{rzX6dDvnDvpJ(-&o|K(!n?^?_ z;kNi^+?cp?PBuXiR>LlVw_iH1^tGKW zb9x6#=c1)$?z&4#|Jn`ZRNta9RNBhk$x?P47%89l)Thc5Pdrwx+Hg_1Xw9dTRwt3PI3JY|KUGmL|wM6NZ{tZC8Ujo~a@xVYT(mK#f35cYwg#`KJM2rsjjI*Z@@!lqm| z=aYk(F&EobiYTl-*Sr)McZ5LrcIF|GO+Y!sN{A4|n7)2hhf;nI`kD+P2m%9Dw&f&u zj5Y;J%y6n8C)iVwXzfVGmN5<@ujGz7>Z7}FmFqd?tDWj--i4eA?q-H&3nxOrBrO#< z;IdupmxW7mYjkT%TX6=^_~@}vy2f+HFP@CPP6RFx&dS$kV_<9v6SG@&dasWJ52XZL z1jTbmpfT}IS-!`pFfWX&GC}VM7-LLu=-=^Rw!3%i%(0_rwFE;YT=_0&i~4KcjE58O zQ?9bqA((8Id$h*DbwDYDJGMME5M#`q`*`r=o@wVTYVI5b%Hr1wkmJ( z@q2JkV0TYvI^m9m0(sM0ZY#4waNPaXucsBqp@~;q788wYt}aU#%?(v6lqOEPXG7r# zmZ-hw;;x)`uc`8w+V1*W66-=AJhLSme8EK-`e)}wd*G}1EH8#a&)Q}T#qAO2>8Xvu zGxi-UW0S{I&7wC^E1kDj(Z3u3Ljd3?z!jEU+kJ|uTT6D6UDf%4Z1X*)A2;2Jd3nVaj~4l z+9I*a8V9_@c6G{?@u&$LjGyI5b=y${4~>03k2?JJjl6KB3JW}#(3}3dBjCg`?10dJ z`cMC9*}rFh;+7>T)}49$dIAQcfh&(kA2;pZS!UTa1dqDA(kBEhjyNkU;JRRNZkgNL zpTPyQ4WYc-EMNlS?502c!#^(j_U_Ju6}y6dEei|8XQ^q`s%7Q6Yp*R=Uwvg+9+OSV z&8e7F9X;F}5z-y-6$*<=`v&T47kYwI>RWT^f~VDG(4@~+aF?<+6z z9xN%A_yS)k`~t3ki+nEMgMZ}*F5mlBc`k|aG990#>A!vVYN_T4G=D{TNjLG%Qhwrp z)G3?s^?|d6pMX(_Qn{;tR@(Xu@;<7N~DjgCm0Q7MOzUh8ZjQqo*4{k?fP}e z6gkyN2;LRBlJGEP`7O&SuM(p?oaoX!KFTt_p2_2z$^f#SskSIb9ROgIN~ zqm=R$0FR+51tJxhsH-iQafMA&Z%5V*K9pU|$N0G919SOuY*-iqh8Ugp8)JQ_eN&G+ zrOS+x@~gedB|z=6X_>-{nZdX%LERY2i;(bN|Hik|dZVt%m@x}jcimN&mfLT+sjLcm zw6)s#J+|7LO>@?qHG5_rZ_qMlcC<6b|77DVseFR6;*)+*PNW$znCkGnt-Vpgn8)#v zIRS_9fYBxgB#uv(zGx2%mO~U@cxiLly;lTlR$aJjTPfwWqpV!%gyNnQiaWM!E`$9& z<+`h{Dg(V8rK1)7NA@!(%HxkeUfSEb%bIl;1RjVM+nyl-PE0l@Qywo>PQ|Yn94sKvnuS#d|veKA3SWuZdIKF!iFH8zdqMWaUZ&A`D z2P>jo{G0DYN3{KTe0wzT?qeVSM41e{nHRiHz&jJ1wmI#kHNLU&Vpa?tUq|sqjs_k$ z-F)oGa9S`~Qa=-u)1!wEhN9RX%I?|RdVcFoHk+h04q-2Uv- zZ+!0S=W02>!t>J`75+x=E1=#e)pE3_wkaDMnmO}z4oqaJ$_ylQAxw8Z4UmWeWAGi_ zK73@T>_4#>uekq2Qs`s|aTlq@J0hLF8r#p<%6r@yq? z?zjJN85!PF4o>VW>n>UyNHhs{=&=4^404@ITCcuge({SL zi-bVqY-inCWKshN`62zbZ99_T@il?;>9-P$>7fT7P5}zBF}a&>eoI-lVp-X?V|#h# z`DbEg_d*DZf!uXKXz)$J%$Q)U$^O+}{Z&TYa5>WkRO35?GcGDSH?ve}x-o=ZT=GYt(@Xj7_{8zDd;g(w z^R2g)6|2^kZ+z?9xgENrP0XL@Zz_(V2z7UqODvcMvm^0<^Cy1}cw@N|y&5yiJ$nxv%*n>e6>CfX;6MnFQ~B;lD67Ux zzaDz%q4aq(Zg<>qNAi?UeBu)sWIGDVk*YWhIeUGD%8d z8cMA9>LF02%1@FWC@t}xu%i4?NaXG6>M4Kvr+-@ReCyk?y(}&X|G4ATA`2f4JUkx1 zCnEo3z~Pgh`CKY8%Y&y3A018pJ|pPJw(O1=$JS_b6cS2A@QAj+#ZW{{09xal+420I zuYWZUU0fe@_cQN%Us*J7ZtyYjxT1~01N4_Q1`Rk&Rr}M@7T;1_Bz=+31ux?NP+Ssg z;#t6KMx)Gh^fU@w%9hCFJGkhbC5RvxO~a-WYo^J5uae$^5xl<$DV$&JpIhZvLyt&-9iwpx4S2|0RGyq{kLh&@EwFU zgK-!A7BNs_m|y?&Pd}c*ig3e##H`_0;akWLG39R*id9Ky{09hS%#vb*$uZ|%8TDRy z?bW&DuzP!G_W=h>LVSD2a?EHU%=6}LFG#b&?(9kDac#f#bVSGZ4*kILYBmN ztckQsIXgv}456Is?4e|VgR#YwS1ene$_&$nJeBxo2GjSqHfWcGQHU3z&xnA}f}w3@ z)r~U4*G6ocCfHwNd84$*XQzu(xd#WEz+KAI78k-s{P0P=qR=MZM1qsa+=79%MxG>^ z_`=NJ(oK+i&ca8>gl!Kz3?<6@!B7sDEnOb7>+VouN6UeO`_nAX`eLl>n5tJlwS(aI zx2q;A3nXWo~9FM_?nLXUfHl!4!_c$Hfa5 z1uR?2c;LaaFT7aRt-ql3&zoQF`)&x~zQHV?Z;LtH_*f`h(f2tmGs>z^yjQMRUViZx zf8J)ZsJmGzoE=&~)*t=n;ETCwn-Kom=T7+ID&WGOlM}danZKkq@ zdkzhk?|uK#vUT_VGPr0-;9^@D9vLsQTh5fu){|wy+}^Tm{^DH9IIv@PX$i)(;erdx zMQhe(`CGSaD*F%Y37Y6G?Om;t-sbul9 zXo+^RyrdO9=zB(MXhnlc#me4WgNiG z*uu4u;pVVac#dalm+$#IqJ4>#9IwpDMwFu+wLX)j${Und>CiiQl$Gs{-}R~~{|-4g zJxzZfXx!Z6`@CXo!N;znCSM?GOuSj#(2~#qIIh5CpP}kA~6`vuA@XMgrzMa zuDd#r#EG!amj~{@uRQnc(`DE8ZOLHQu3b~QLiyogfB6+x<*CoRVJ6SH0I1e;{SmGMmB zNB$jc-~&(@8(616jJt0z6$hmC#8_~kb$*B$5klq^+&j>pySXsB@xUQWz)8+IKG6f%`XQ-1T&0t z(UPS(21^$#%6gQ`PlC^nG1LzDU^zxUxTY>l8%@DUiW31PfeqNXD_@)S1Dwq<93Tgu)v5Fv;&|vUGH|mb>n{ zBNb>nfyRQyA;Iiuhgl`RHfQhHE}~vR@1*1;fiuRqZBFBd;JqaZY0HkC<@pyjm6vwx z3jPxLT02W;|3DyMM>!S~omq1_qTO9((cHFj^4O6w7DD`Vz;5~cMdhjumzKW3`-6M; z1PyJC$;*ayJ z@DCGja<(6Nd{66~47_ZMcG%rA9?ItM=&|yrpZsK6w^prNmj{}PaLwn;cgEh_MA>aI z_6H6h%!!R{&nJTKuM34_^^(Pg|N6CcFDh;nRvvZ4Q=2UoQ|uo`8G-(ab2?lm=eW+Yto+uzmdC?DDavm?<4<)S&T zCA-k6XZVBs@Dd+LSr)K0Zt@$G?V)5V8$67KG7?UaPd&!b_fnO`wXL;{QqK3>r+(KY zmW%u@$@_EVL{^g})?M|O1XEx}Cy!;Un2i0!e@F^Cmss$c^yc(}^V@TNG9jIwXU6aR z)wj-#!t?=owe&`XztQ_w>P<)$!!eQM7>(hr}q4P3AK)e{UvTe`5 zRQg)l%WXH`RIa=E`cOz(%HE+pW!LVl<%y>rEss3=?Qefaww2I_u*+AhN?~rMtzC3*a+W$_^~8h)*oyB90Lh6q3`oNsAHosd%L#0 z?|ttppZU~ZB*U~DgJNafbJxy&seoVzAO7%%%U}pNc{oB6cAO0LbK}#`<_urow8hR6 zaZ>nEY5z)1z%3xRS$Rrvk_IhdCI-%yX}zotOu_>FeyyrA1@m`Qwj2nKOONN_h@q z^qhjGy^BI=r!3WV^(|XAWxHKqf}t8ue^*POdW@B4Re-`x{t%WC#X{jjppF}Ex;d4f zZ-xM#zVkwRjDy*ClbYFOyp8sSfS)%%XzZ=!<{Pfh?d>Kkl$PV;qvT8Ju&fZ{e=6`r z;7ZQI>Nm#9);4A00~oeCIpKcsOLv#ULGS&83(LuX#oj|l%Ib9&m9^_GEPMCuD2H}$ zE*)(%%JRia^3><<=;xfkp;^J3IE!+=W$~c!ix>3dGaJj`{CQ<=T+HqF-uu0T4PUaW zuevf7?5}*~OX-W@^kW<%?hbQYbCoOBjCe1Me@FZnz|a)P3%ApG#ix zp7*>bColS>AI2}oGVq4N2zPwz$dTUOzEA{Dq>!{+WO?|1{-6KngbO~ZJbC%uaRgVc zi3(wtG!ys*e#V*NcQ)9wZvh=HeB&Em%h7t3+t)x>tx-)ppk>N5gCJ(EZEh~fFp=c7? zfoqnG4(;0;_;4cm5qg1VcnzgUAUmg`Q_79M<>bmQnmRbJH&zT+l|TCIqWqkg!cXtD z30%-HxWjkwOT}fbpoXUtAG}i%WffkdP4psvose{ObOl`xrvl`?=f+MRJON&4H#$Lc ze&Y|u9StSE#NWmvd0W(@{hn!W(oa06giQGzpX*;u=s_NrRKLmZg8F99iT($joeVx} z%pF7<01N&#Q4YtLjD~_PP0bmio++iJDlsu3dA)Rgd(KbBs3v(|p}hRK$zZ--dNaxk zKm%3<9N-&3hw_b#9ZQq*(O~)r)69zkGZBgm$2YSxmjMiAJk84Bk>v&AHfx-X_T2bc zFvYQA^oC~NmM3x2wmFnyI0*N`i!W&ea|nc;p+tQDdk>T|v(A<~-g#HK@#Y(12Hq74 z)p!{`axfhWX9R!~abn=oOnNqu+(B^B4@!dN6*C^NV#ejCufO4@M1FZOxu>6f zCVgSVJ#eJJsUS+TV8Trw&5oFgH*B~l;o)1#g0gIDhV+mc5xf{P%Lg8MqTF-uck($V z;CaU1h*|UMH7m;pKJbB1epZ(Izk6T#=tn=2L~+eESEbW0LjU(4{i7l@H-eQ`hN7hX z&Mu)eL2$~Fj;L#9GJ4oVMLzCT&uyqxZLyac<+L}{lOe}I(>To zfy5I^7~z*|`th5u6#`A=xT`aTtTUOqJDW3|2yd{baJW+f)M30`EM3MIW1|FMg2vBS zV`wZ=80A&hG`>n(L%{*Z1tClcABz3aP;4+6))N9Im7D!`s0Cw-nGzTg5O8NjD9hSm zwrxu=2UvJV@PMoKf(=+|$D&0G8bKe76O)B=;3f|t;ah1s?2ME0T$Z<5+d5Jyfv4AA zcU>}WTX}O_;<=?0%YNcZFy9jZ%JAM&VgEpHIT6C|(82v>`O+ojeeZd9x$26`Ln(~W zjXq8u8%aE2VG;73l51S;BszU+Mmk`!2()lKiL$j5K2VxPi2cU5?k&&0xVfymXhT`G z_TuvVrcHT98G5>C)zVOSO9ql#Fh2y#Cj*L^4&SU@BhFD(_;F3;DW)x$%gP$E9I-32Y-2C3}{a!lNngkgO?KQS8D<%~SA zFvjrg6i-F(IlcjBIPm9x{_!kNAUSo64DSXOW}v3mX^CiIWhK@3t3aTLoqxZczJzHz?Lis{uQw63_cpj{IODDkzrEL9 zwCEYS*EaRD=uc1bRYgXc>T)Le^NMG_&kz?e@xtfmBGqA=`^M3bzr#mHlD;!RkVur5 z!mlVytuRl;2{a(OU8eABo!Fzn8QPdi$fTl zQ-LXq!Z`zwt$kA<0#Gxj7?i}c+%mH@1D-K)&4_n|t}a<#mNI~k1ZcrecyLF66njV}Oa zT8_8MrBU(h|Jpack-{FLQe2|v$!G{{r@3a-!{{?D83IG*)vMR$^2EiVOqrEi=YIO> zCzDt%zx>i%yRNfdgidH7jsQk^;DHB9U+-YK>mBbezyAOI&0MNFa`bRomu|iFEoE8E zB9|>&l9rE$9(ths$shk=wBwR;$DMD@e%sk}`0$ZXF6PFJ?8TTZel=$lb`T*Lbs{j) zXc1i{91fqx4{>8Ck3agvIYoii4wf!kr8)m1VCG0x6U-8fC^Q1c4GkSCJ;BIoNb1Uf z;EH}L2gCEXI@F7Ks2j6k9qA0AK5=X;-+AVnB=EqAd=}%C#EwY^VkpNYFM8Y>%yDF5 zESHNo9JAb5HnJokS~5a+EWcw0#ETK1#uh_6N%kE$7)nVqQ_^<0fzcQziUTDT6EmL1 z4YQKB3LpLC49s#e97;Ru+?qA(%3$Ee_FcQPyuJI(=1#^qw5P)DhyySZv04B2@7i;Y zu@hJve(gwsUlb8DeED74NV%^x=n`npxUj@wzKuc^Gw3Kw`#l3U@G{0=tKG(c@Z$GC zFi}$EzwD9?+1Cdiyg%_K#~~C-er;%LX3R8mGBFiG0HXvWM}PE$ayWW)D5KL}9?JWj zcf2*}u+6L`=>OD-iNqB_%1l};>$S9sV-t!?JhS5`20AA_b;4mh>;`&%)7J7x;Hp#L zPsgNXZ2Wkh`Lki&T2r5BoAb6t(*c~2>+N$qMibOce5r}?$=nTwdG~bnmO0V>(eY3q z7B4J=^9R#+>yv-+=ViyX?d4~F=BLUvS6vx(jKySZBqukIJpM%X_vW|Un#+QlHgCyY zMK&8)9=hU+E3z(dt+)(t2sQB67ta!x17>+eyE{92((#(`bb7Qva*5}mm%2v;0sFPDft5by&IirlHe#latbz z7v<3f{^lP@DYvayY^b#A#CW$xf9CZMl%)$7$5_lO7sXhFwwU4lkByGxnA$mMA|zBm zYxKoIjh1gy=?Iv_G%{gQFKweF^Me8}eX-NA!TlKLz#nj+7zH8*508E)J&h$?(2;Sn z6vvw7Kt~D_iwL^aM|>SDz;xHPt@#YjFPI+_f#3~w2~Yj3DqyZ%%1;-9XeWAGwq#k^ z8+=%uV4ahesB=z~eI&l8%qSZ^_+B~MR&gLZk(TP0lYCXNNF`=UIq-MFCiYOI|T?VZ;BgXzYsxvQr$op`NPLt0w3r4NWZ zZ|?jw7jNCVy{r!b^$Wl7x618zye&0zjDG*VgDE&1&kwP?f_Z=b^Pexd$Qa!)dz%$G0^@IjKAGIm$aoV;0dmlakg*U znf?}tkOG6aZC?a?0u1pJ3=)RS`XCaqZK4N)p|KRf6Xm%mAmAb&!hHqKM7upR&V&vV zKgLSA@~ymZOfIEgEFXc@eFqJCUDJHBa zm=mSqnVrBZtJQWJkKl^9@UEt{coJCu@6_hM_DQJYmsq|pXj~*Q@-}u@$b3$QR-FRth zG$$sM6Sz0@cl_+`sN^6f(!0|)yY#6Q+%OugdH7mCYu;7J*m7Ha}y#81*Lx^ z%J6(NCaD7E4RrRERm+y9MRO#S*1danm!*pq=Ej2l{wC_RZ!_pxj4x;G+2}g%iIbrv zfgQTnH^QCe)ZdAF!KeKl1KHd&1@DNWygxEJRz?Hv&S_$SnH!U(zTjWzivN!#%7dY} zh_dX!$-%fNI|qXY7~_@E_NvTKa9k2T2bS6+AKrk!;3w!_dp*Mw@CKm}&@~=YmyXb* z%OpYDD=)4*4&Kz@bTz%)#~6`@>=FivL#)a1-uO$Q>IKp95t@-PnhphjFd;yf=qm9o z3wXKAs=U-Ry}nmVZ}gsP!1O#be)r4wHr(M&q^29MOw$X~>DNo?tob_a11La%U;vJ2 z5GkZ2i1vlx^qbWM@(N^h`s9gbIVgzJ85Qg%X$FjXFeSuOH9rFap4n#1OnaiuOp5A@ zIb-HaPwOB82Mt;)wY)PUkem;}vXv{+%CT(1>vGWsRqx*-&gYeN}W6Zz~; zv32*vL@@qfZmn$wH?-8_P5g`9yZ5HDVwr`xUtLW9Kl}3^E|*_#iM`1twU9Ip*S> zq;8BxdFsVP>54ohYoSN)zGpG+EJDT&6! z%sLdGAU(`l_ySfWLXa{K&-Ah3A<@WSiu!2>Lyk*4PX-)!EW|T>6^_@-Y2*|YOJXb( z>(;If!5K62V6vR$Pfi>u12KW%Sj`{fR0u?2`S~Gn_*DiNQN4`0@xY+>?LQd(8Vcbf zOu~3Da{gp}f#-c8v}_|6nKl%k;1Bvn`9;t0V&rgh23BiFXYR1-?(I)JS-EO?;?NV1 zK9*toEn&X*z3(rVUwT>M^;f>~l_;w(1I!U%6qC_VpsVt(|B|v(aKs%yfai6rQ#c3A zJR2CCm(jh?#%Ic2yLwHIwQ|7YG{FGw!3)Lv;TWI1Gu}6_o>f}gd&@oF`A+VHG|r1c zaX=&g)qnM0#YF0}<=N*pmf!e|-^iFg@XlrclO(u;zs{r(McK8@O$VaRNbo`*DLQ=Q z}Z~Pe##aH17ejzw1H-@w%#vuCMWLJW7cw&Zxh<_kf;X;wF~ztAbhqT*H^BY!9SgBC_6PL<)nLC4PIBqW}@z!3b5Nz(4$Q2Mcy z7ae=EX$n43^HzVW*2b4kaVuaMy5BLsEK)MF+rzqlmUW1Ts(Z{Pl07hezz;qZ}>^5FL$ zPUYpw5MUU)x% z7r*$0@=L$`w@d%R{yf>5mTd=sc2F9&Z`ocx{_#(ghrj=5T5#^T@g1?d!m^A1C>eQvPn4gGJ7{Yp@WkPWejkl`;Lp3>@%EhY znf)hBX1AnI0c&O|WNn=ZL+wGgg8mVR>({JJ+7V!_Iv$Tl`@}YJz@2xPtDSjF-yBE5 z-Z)p9th~S-d|k#(%6C&V+FXt0v^B;F6V)E$L!si(x^(%X;Y%zq6IbA0z5>ww9Meo#>123pYW zr=NNzm++jTyy3D-vwVI=ls33@-PPA+jFrtVZAxn@pQ*+XcUAUFJB+7zF_f3uZwV~w zMQEW7LQlPD0{%%Hb!T_9m;Ir1-1Dt(W%(u{lvk6z_&<3`#IRIs0W?wPW5+2Wl1*j1DG5WLQK_&duEoX2}=+o$(I z!rQ@5`#l4j%IDDF=;4>oE`vjSZS>PK`Oe`-6kB29UHzLMqOvVRX%|HlTpj8NZkDIL zS6{vldVuGYhr@>smQ_LPe4C7`2?LsAJqLH?R12_vh~9gjE@{G zW5Y+w{E%T_IUa2U8%maOpy0FEvUn*=8HxXK2aAbNes=CVR8FK~+u#MBI351}e!W!3 z`zMutB<1D&Mx2j?ua=;kd=TrkQUyZ2Hw4>g)y!d|Q)~D979ig7_&pH_=XW|IhJwKC zY3-afMtfLbC@~e-%626($Fq9*J^iW)lk|O>ontV~#%RZR7DOmEl$c9Gfq|r$p#ir= z))wU*Tel_RU3c|04(cQwa}(nn1PwPBS+v4yc!nPdydH@_2dj@h1|=fAN<-oK}XQEX^7^LWv^y@44r`@{x~zG=%QvvhKnQ%IY=ilAytw z*3Ue@Z0X`8+V$(#rUeSoiDJwmBnAmWu_ahL)PYzbKg9&|hTyj3n&~+Z5>GokG+g!{ z*jIK2@v#V;2@Pk#!ue@#U$uH=#vfU}Vp$0Bi5y?!1%67p9<0j0_XS6yO^{OCjKoQI#1&*H~C8F)qfL!>uvl!y+FG09>PV zI?!+?^?dVZ$fO z7eD>eA50j1>z;3?PX^(JQBy9#+maO+sTXbpXj92G+r;E84;(nSuRQzgGua0;1pZ>x zP=@aL_Pq&DRvhosKP(cMOZiP)xs5v0G$uKXhV>tvG&|PjWWC1FGR%A5dspf0h#C3W z5T=m_k1!i0pxcA~9GZF3M?FD_>3A`_PBpAN+yUs+3(jwxu%9N&sdZso*uc2GI<^#LA27 zRm+$36HOXJ<5&BG|D>fN@YZve#6M2E)rGek_bNBsy~|{2BkJnuXtsK5w*>c-#)GGL zZb=ya`(7QEiqV05i-XVi1T4Fv4t1e(lN4}<<7uIe=O$8?)4?77<2!H$f1+gL+w$tG zvW=^Dy6{+c6Cmx-=4!?EeCv*_*)R1N(`Mo_BbD{46v?Me-6mdvkNhoJgAarvG_P+U zCzzJ$^cSo-NaF`~N1ibrf%4jBxmVdHnA&n=EN~_GGQS`7*Rj){>Eri$$u~dAG~?fW z<-VroH<6|{?MG<{R05pWOLZVCU;sF0hjACbg0rpl^5dbX*xg~~G#C1%x%)ydo-X={{cZsRwf5W97L`*(jYiD%K0 z#mUHTyY05Lh_DP%GR%yhdG5KgKZr-9T#O%s)L*+IFvfrW&;NOD!E}ZaoZ>&TJZA6w zOw5AxiHY5k7&u~hW|s)%E1^7b>g9xr2s~E?X15}gh`;-{|4z1ROUx7-Uz=6ghRs`E zN^65S76^#~P#KBC&Il)o(6eQk`Ll6!#5@VY$(&j6ZCJN%O`f8=G?XRzjvO8eC^d>k z#SaV-gM%9woE=$|34I|n)PL7qcja=@bI(5;uxlJx>sb36BU2tG=F)%PX>$XUm&1KK zP%u8tzrDk#+*v0C=)(}S$Bqlk#nK&xii72K*IidG+i+Qqd2Z{r%obzc8Z&oe&xC7s zE>4Dc3d;kgW$KdSPAO!e6_{b&-}4P=bx36JP&rCY+m60rWJ z;ES1u@$-FW$DHzkP+%@tvoaL$r8(v&C|=Q4%dNImhm4Eznlg#&hA~rOLV1}nyR@}- zCeAp$*sOT__H8M+^o?+}y_iBaI4~~-*pekpr~}FJ?<0>rQeNErV&VgZiqiiFfA9w( z;QG_Y%r;+HL*al2`k@@-(kL_Q zvR?E~@c}bd77AZmw4ZfSxoA*3C^?iL`8+=yIK(pTtUAj_{E#R=`YV66*x-w)e8oGw z2@O!J7eu@GinYe16^&`LB|7wLVk7oe4NB+uj#L`s5)X<~c6%s2>DLko9k}!dY{7B* zc>X9!y+2Hv@q2fF=S|nx4Dl<|^a|go@qAw1Oj3@kB4S?F)k5=2qz+;*Ae0!}M;*NA znRRSiVuju2kC97Ckv|>!q6|J5Rgp3Cv}}TT*ZP`aiGHGzspPqzk*mxOEmhz(LIY#4 z4KE$UE0qrMNk@BQVLTW?Nc@~xSYawspBryvyv zT#R;J%p9(|?%J|u-P-h(kZ(gMHsewE#;2doactIQTg$yMGbEU;=F1tLJXb^_-_;r9cg3(UMkC9?Z2o{2Kykl`<{&p9Dj1Q1; z5W!cFueEE|XTU$pX(vxL#AO!%f2OwfX11gr@J^-{ZP$PGU?BQWX}~lQG6uxqkpkpo zSZ$q7boz|gDJ8za?A@iRAW^==iBJ#5gPG_j^S^$ogEaz^5{H8lM@Tta1_MIqr=!hq z);4PRNAVTzTs!8)7(e;+#zyJt3?>;2Z`;-#*+(<^^%q_c0)Ha=s_mXj?)u|9{g{aI z^~Hgjo-5loBV$L?G|XI`eGD3DVz1b}*UZ`kS%YhYS6X-m22)7^&!sDtW_=TpUywMn z#0MXEDEm)Q0!PYF)4s+@)6N#-Bz_D*wtV^0ocRq7&MTb(r=?59{yAN~{FS>C##?vn z%)a?P`xqQY|LSEInxqa_awMkJsl+#opn((42$Bc>@zCdNTAb{$b$@aHT(Q==^50ii-=*?10IrF+h`-_fiC{5y z(Mf;#mw#EV4EkTPbWy^D!eYXvZylXezEM+(WTnlSApq-G);?7HbScMkv{DrUsnRDt zp6v`=bNSX4P0NICrCJ`Pq~`Ve^zp`V)!$kF)O+ny7v7Gp(Fa8U{NSbEtZVy%?(J+s zL&h4s!H%WXcxgXA(9_jZHf`CIyxgSL1P>lk_TdXAV><-3M~#XuXhcy89}iNJYLND6P4^2{g+5Q30XoOS(+)?bjps?M~`DEmT@c;fL# z%ZtxFpJw7)V+M5PWtW!TKu(B-Aeb0!JACA^M^o__4J4-ISfl0_piDD041oz4gCa;V z8-y>0i+*yX)TiJ7{ogNlfBkFevqPZ1|NS2fcuki3zI{&;(Tz9UkO<51SLkt`^#AxD z|KoJTVu1nUZQHh#GXZ0DfB5HrzV!AFByk~FOjo^@^$?llS(;#@3`yU#k7bMlFGn~S z6(Gx*C+EjYF1ak;nQ^g>Si@!+YKSZye?!PLLZdm;YC3-CCjv!q#)0xhaYMwIHzxg- zn{JN2HNFhWAQXIqIT~+7UkOkiW9nWNnvfpBl(wZ}VwR2Bm|;;um0>LOo3$&?qKfjB znK&2aa}EW|j5z|=0(Q2kf+JB)K_Upddj~QfUm!Dfr(1K7!%VyTde24hWob-{O=njs zxtw6Z+w9cLiX&rg6^%P#ZdVeeL*Mm>rGIt(60{Z0EJL$fLWo4$;GOY>H#gk$mb^ds(D!r9&IEmf z%M=?(rYcbaUfyZY&}Kf5{1peJ-k$z6(esZ(f7-4+D4LJToLQ%XH^g{^l7G&rXt zdV5SFuFr81k-IJ0q8?7T@DFd$uH*%A&5m|(bmzd%GLd!mIsRcRCmY6l?b>zev}tGL zGtWF1G;lN~D~rlymv0EAW^ei8m%osB!}1}Nzy6L*EpNd$_{)L{u6&c~vVvnY%z|Gp z!6U*_`2tv?e}^@KvF*usf9)H2aN@uC7ylxK?EDaF`iACM5hw?VtFSTd{8J=<+ppK& z-Cp+Y7x=C}l%tQ9_rLeOQD0BC5xlkAt}AWNeoQ$L!UOM|HB`q+ItSaSJ03z%qc`wC zo0JwX!rujttlxR>?iy;-rS^V$vdf9Zt(>c?zZ;MbaAp&ZM(CbMDWPp z)qy$4Im^edjbGwOz||PId*_-C>sL$4dc8CqH(o8BU;d1beC>x&Ue3#TeqnD^Ib?dh z1gJV#%dLRQD`1yq;eaHBk{8h#d|O7%&>_BnYk;3bkbesn6iQ7n9Z`A39P3JMcvZ~I z)?a#IS-50z5&$9a{f8dRsJS99Qg8%>!@wNX4zb5V;4n?g3mK1va$q~Fc0*`q5Q*XP zE5Gt9Ni_9&Dhg9Dg!BmJp+_Dqzy2G)mBePIY!<6sZ+qL@%J|qw`S`~_p0iQGuYT%h zK9~v=MFv4pctivJY3cjzlN& z!38v#j5T=1*$||x0~8hE6~L1P^Qy})D{sH+&T{4Dm!{)#mKJ%FKLp;TB_hhhAMge~ zVsM5MtdAUZ)k}y_8iWF{wRzK~EisOZ%GFn28{^bje(T@Gd9{2(8g?3Oz(saPFH55+x=kGwQ_}@M12>iCqnv?N6-tmr{6mkeR&fv`g z!@1aZ@SG(^J=2$=YWwBaes?qk4%#ABo>pm+l&#;X%Q8>$|0$kenfv_mr^5$L!dZQy zTu=h=Y47E)mX@C2nNszmlb@AjCBM6<3vKw;^Lms<;(fFU|I?SW#Pto7Lx&F~zt9)_ zFzF?fu&q0q6Y245-@^gCUqVZGKAMo6Y|kPoATMVPDuwF?i$9iHzr9Hmeb)|$G!67 z*Gh2t^-?YSwNkCKrXN{(IlrJclMvqPB>~cyZ7wOpjZfyiP;uS40YL(Mdds9Hs`4z>cvZ!B_qzdqAW^= zBNpsJu|{gGRN^;7ArpsV=gu9;6!gh@F~0}nO_=I$9W!u74BCqL%~mcBxEN>2_r^zl zcSP%%vfzZf-xL_i#i0ZH6Ry^b)q{C~kE9;o=m&=6JN3w8`ODVO=VFZP`nmkd#(zb9 z%B5^j0$E#p-^@50b9u#MW0LU~0v}GqJC21cA!g@%T6XQ(myFmfT`Ue~R4HRJ6b;OA z{=9`O+!_9yGVT=Ov%x2vnbZ{m2wf_llRBRk!OljGjWmv!f!9vMwzYFdFjj%`D70pe zmM7-TTaXNnb167J`u&H?#TRWz$5H(g2ZWHeyDSJK;kRhfl4PuyFI+epILZ1X{sh=r zK4K9v+b1w2A^XKu;V?{)Vz{@z?anB7sBGElMDCabgm5wzW`t+Xn$hK_NmGO)aMp2c zu13Mk7m;iY)mE@qUX7~CF+2~_3}#)Ie4Jo?_|Q-}cwk=$fw|?9OE;7cyyx9fCSQ%1 zQTjf{Ei}L^8~kU+7*S?eWKNuJLNxH%;&2at)NLa3#N$t;Vs2YBzo!Qtc(~kh%gyCo z@4mD24fG~XO0_Rwk(P_-uR0gbUy#0UAN}aRPk)G{!4O_OQC_tsRNSh((4`G{jdrk( ziR6vOOfpz{T4uJCXPQUAT) z``wIq4j<(6y^bi?Gc-m?LKoGN<mfQjlT6;`z%XJ=q{~R zXlzO@xyvWHyW~?BK~KrhCW78%1`kxX@0>9Oe(Gd}p=fFcT*0R(sm28lm*6-)At?uK z!7+SGJ(7Avv{pXZLHPl5Wt$-Cm$J1@TP;D0&t(D&UnoZt$4;cu;v2A;3_giRDF-}+ zk?`L5tAiUsdq=a(P63%QXLdU9@-gJkb29on6yG}#*ttYvF_|S$UaFhM*#M`$pdGFm z#z3mD)gR?+e~$g@Bzayh)iPfz)v>K<#z(*Y-PiwOS~}nIa(+6$@E^14(ArqO`BgTqHMBA$jj9I-~ZY_O+wthV{5{1&6?Foyi%~6(i$9`l4nNy^{;=u zeC5kuP0ImCTZdWRe*0Sk@q_UMleB!~bZp-{)Y0-!sGg;#tFd@cVC>G(m&_Z=iJ1>3 zL~#LU31NU`GP=oT+oiwj7$AsBJf7t^2RsO5eNYz0!Mx4%Z%Z~|AwSqP8kfS@N7Hi{}lL4HvC1OBO9oOUt1H0lU8LvU2%~JP43dzG=%# z@m=(-y)|*yfp(i-*qrfw^zU$#TbGU=y8nS(hV}QizI9JBcPD+@!cVEBL9_g`Lu(zLUp~m9AEY3x+ZlaGlfEl6O8-oO$7yK5H-K zbKkxL<(_ZclXYEx{Y_=w!g;}KCeJNfW|>opfjrsY;3LLJSz!K~G0`AIfB9GbZu$Fv z|L>V+X)N!u5VR|_qTiUy||PsZ(beU=Y-GnR4vTLAX6x45`N#nJ-Qk<@Y6^1 zg-@u9!okvFG_*(E^*h!wNgrL)l@W>qTmmmN?}9riDC6?IeD2y+pW|ur8CQMs%u;FA z8-3Mh30@M$VC;M4quXjFMbmgw;z+d1dwudw|CB3_{&|k?nm8znRl}wI_?W)oF(!$| zq2}ic!*YoS<2jUh3XL)>zq6<~FjAi=J!l?`)QJ|AgFe7qe+K%S^P0d=I}ZeIsE;MA zDl`&U@DYTc6@HXX+nhtl1ECv;#WwJ2(nJU4DPX*ZMh#8s(<1{ z2IYbn6QR|L@nDN6XUg0{Y;8RTDTaSa(+>d}{~_q6{wbju?J>A1oMMFCX9mK{<8L{6 zW+!tEWV77V-qV$4I$^{4?I?f2+`$Z{wIUGQ?A1xAkod`sPbOgu#;ow_tFJ56m)((19cpGcH6y2#F%9Z-ukvXa;qj^miN8? zy=8UO&Hv~3|KJbG=1ni=fs3|To0;n8;lo2o%$6iNgL#Q-p*}><1kItdt)nw%FWYzS zN(+SLlX>$OCc)wUEMu5#Tg;w05@XKFAO!hJ>q zE`MX1F73>52$+M1t1>hWcV>u`H8T&(0`6wc@kzdK4k~;;+GDATkIC}f625HNic}H^ zlC&ZPv#1PLAJvT+Ywz@=Ew04N80$R;hs)5|u~1wNTxr?_Fvd{5vkhhlAD z5fMuR?44w6Y*{&4XEkGnIfEDFMcbd=*leM;Bn)1aZj{B>=PcuA;3!&`8aiwe0c8@Q zTzw?SSjdzkdFEmT)u$OzHUq2tbApj4J)LTH$aDw(IjhKV8Si}iUFC-Bu1ow&U#r=n zyw8p@&se6I+5ix2!S{qe9B2<*fP=Q8QpD``M;b4E|lc<=1944@f(CV1c;90YrJZBU-RD^nY@pCQy7Y2ny{A50COlQRD_ zCSU)|G9wePJ65Hh;y%l=L-dD|r+rm;valGV8k44hzi*o3P6&O^&^s9T7LNI?4U)1d zJ;9Z#?4W7*qwn(K3%E4_tpDzn=HQ_5p|n`)kryqnP8e4(Q-^p*lnvi&w>*>)JPY2d z7d-iWtzNM@+w{!y&*UVN0>nD1f9izKcyG0+ELpUq3=I!uIV`K{q!d+U#WJ+A)6x=k z8hhm^L%YF2Ie3mqA?wV6n6wDK$WP64eF0DH2Mh4m9?$eA@gZbd5N%A_CsX-jr9vWx zIP;{^Qk9jEYi@tT%F7R%X8ilF-~Z-njMSjt-)x!=kfxJJmjmhV zAPh*G1VVWUgv{;Lan-vStM%^mi3!HUagE~{&6O$DZi%E64^E8CgH9^8E&GrE z@Q=!U-?=Bt$Glkh;UHz;>W-b0Uei9gW z-;5Pzszk9C_LYYodbm9L=)=KCHU%?U5DLqM#W_ONVnhH@auzO{e~wvHhO6wH*)#=a zs`%)g%UDrfzW?;IW!tX3<@pz0EQgOAEi2cqDL3D8TPT%%W$U)>$>5ll&19D?Sz7k* zZMI;u)Nz(RurrjZ6BD_G9R6U!H{N*tIVP*$J9chQ>(OPGU6PC*3@D7Y;oI%-i9i4I z+$y|3nDyh2K3;CU{kGhi3kL}gekx{_6kg0$e=*ue9(^<|MJraV&aLsR83JLct6FbL zjI(lrB64O3KR9uF)=6oN@sW@4!9aiZLqC_wnJw}< zp{?rs0w>}}{;p+6#==~`(lRRFm_M!z-%of->@g|eMT zbRZ@kHUr4-x#c6}P&)Bm6EAe9er?3tJa2ZRHBPz|Pkc^4)F-d@fB}BhSb4^iz9~n> z5uKrPm)%Cn;k=J#l>1@MI6I$68z?Z+ z%UJPp^5(x-<>g0h#A~G=1V;0FdOh+?&u5?vM(%Ps-NXVAkji~5W`T$yk>J=wZu{iO zYnRfA5RkUP5tMcmFbDIApM9Gxhi`N9{|NtYS%$dTdP#lY$y%A~EatTKP$(6}Ia z%Q((nA*h(qJA$~(P_-A)V49RI%8R?c=|{paE)Jn>LC7IWVg`LYnVRp70m33|m6Jph z-?22AiHLQAxG@4wv4ka9t5@0Jgkd09m z))UeGj-K9fQH-f&9lLV0fA`K^@%OAei1UT#pD!IT&LJks=)ryE=9{i7*IspPnKfrt zjP~V16cM#wHW!i3K9)C?^PK(O2B8+gsY? zn-TSini~bB(DvT4BfO_9SZX#d>Jzs``<(CNBxKJ7oOFt@Ne!plcfRA!a@pk@%+AJ5rV|V>z5re;+o59>O*W?tP zfFHQosmK?`?m`wylbT99+FxI87=kG$yRtudVnWo=Bmo6ENS`GAKQGTvd21 zlUCT8ggQfxQlfv=8X5C}e9x!OlC@cQ9=4c}i6IVHQb*k>Jm)7^a&DvopMMfbyQZh} zf4|xEpOo@azfV9;OZ7J=Iz)ATJ@vgo^S3K~PvYV|?JzcXr(#-DhX}ThrVkF0Is>Urbr_~Y+b{trg6Tp4#BY`y5B|&wJC^u&=kLVZ1>!eQ`e$NNyQy z{`|Qa)5SMEef{O($DS_x4jf9STFV8@mz2EJ(1R&-bv8nV@cR1QUroOnj<%~;uF2p` zX3rZ!II@UPpn9f=8sQ--+fXZGOJ*G4;Z%1jX6EvF=LA>vC48pFO7gqTK5&wD2A4;n%xcR(9h}2RNXbze$_sn4goea5`r(VVCU{#<$;GEDLZ%V&h3w(W|bW~ zcPGOn7+XRxn%6pe#|{w784KqQl*=x>FmUi}D3XJvKa`bCFTRxL9*MWZQg=GqApE|W zKYX{AFAVsuP)J5&Ob>-ZVQ1Ix{Lb%$K)yP+%jzEs9RDNzhUahs+>MDo5e!g$Y>bc) zzoj`I!Hy^XF%)hwAgu9I$}s|P6Ho$`VKQ$pgNyZ@ptG*>4p+JaeAX3$_B%1UsiMfTF3-Xvaml1-pbve$yyhoaw>V60tJCwbFr9aZj55 zw?S-l5&fO^Tnav=ZYdSQz{$p<)jX4$@rW7wl!Z;weo6Z%huYz9&qt3O&Gz{%2wINa z6wSb`nkt^b0W|9y2`#F}d-W<)`K)K?P2YUuTkqkx?~S9poKmYIpib6P3IL@=zW$(n zJka-e$1_iFOhskkyk=R)cWrapLUG@JPQkW3PNDa`i4QzRwcd~uMFFM!7(4vNcX+As*T-Cr4SIqHqWmVD<}{lVSUSM~{`mg1@tyLsWM@++ zKbxcRJw;ePC$+;-W9%DnGaX=k^!F=MLqAm+6|&$bk*1HmbpG!*n`Zp}Hy$_-i(fmv zk@E86rdR94%fuJ=nB_2+pWl+2XF8$!d-_G0VY*M|76=3xsxJoS%<|%IOco-u#z0WM z2axeZ%rb37Gs{W>3?w38nyuH3Y16uL){T))4ZONBceBn@!Nkmd5CO)Z9S!4(jKSQx zx^02&OXb2@63$Tyb*OO=TQEN(?Jf#}(7sJCy^wJ@db&Hy%{Si|T76rYKX)+saesVo zO>`^-n~1yG_T2L?mjC6S|8M2eE3Zk#NZ5JpSg^2(;^^e&p&(L(X&m?{?2B16$5jf@ zk|0pd#n)eVP0rSrNB-FX1H^?`JmVCrzqX+28}sMT;e+V|VCHf1coTLTfvOuJCVZxd zNIR88PNJeiwEqE9QM%+v8b<&u+}10(0A&&$AIZ@`xD$RU13yZv3S>1q0J%;ZFj z`JsRlv+t2;=hM$TSDtzPxlk6)mfm2b%-8U;m(ULdrYDqIJG|zHva&SpL&4-OykK2! z$5l4w2%ZZT&P!Yc1B$BWeq(yxgU>S?p9=xr%5+A0CneX4fFPWk5z?IboomIi( zzF_|1GBO&o?lTkzOKGiX%`;nkD)7+#L`)8hk6ke-hyn*Q0AZvQGI0l2-@>mCedt4F z>$c71u}1{Di?@N7`jx>XgCtA_z}L4NU45IDm*|K5EGShN5{wj4W1GLH6cgXuD(#Nu zG6qc)F2)W82yNyBC+a1vz>t+fof$7DhLGjQPD9IX9GB6+JKlb0S+a024`ZBp_GG{( z{yuat{kklT24^VkAt;ji11|i4kh*qA%GXZ69mbl1X0jO@cnjvjFrXEA(T0GR#t-}` ze5{jV@KCX%7vd&!id86O7v{fGz(1Aw!r7)U$0Ec1tXW`Fm3WoyBgS9PHX&E zw8L}tlx>cy)*~rPpYU+sdG9-aE9*cg4wMJ^EP3-6 z^xOreJ9joqNb=)(A_Yt64xg|*3y1g);_f?k?a1Xi?d8C3!bmZyTcwpjY3a9Ye&$qK z9KACUVo~w@@R7sG2Q4ev*=MPV(xR{GC402j1Pkpb6Abv%P_p!&1>FIztb6*xvJ_oN zn8NpT_6OgPPAo6@*Z9Pgg?ef%_+`#^wp_r^)hwA({9Yd0>9_z7YBG+Loxg77rH=h; zr62h2Z&G=w8r*9ogILoKb|ik!zz6~L2lKg8CZ?wx;QBrW*9`YWFd>7P1A3}iJH{v| zGKfxyY`!secld3238L9reQexGv@z3(yclc7h>7AcC$nC0AS5Pf$yh@Y0}lb(qkohg zYqhjph>59LXQVZs2<}E{X%C?_F9>B;5Zp)zATwbIuP--TdtEwVE(xJ~I+)~>k3AZ~ zY*X%@xaO)WGmgpP`9jG@ol%c9Y0Ag`5Eg&(XMd41{^cuI4DQIHStY5n>V;nfl?%w;pUH;|2{Fgav|EUjrFqd>FO^Eu~SQ9J7R#S=aV%%Wy$dw-10+EpuKj2GoB zX+{WKGyj1ezC{$}GdW`fKXvP~WgbFJyTH-17VmXvMWutbx=(CTFp*JV^M@3dGxVlu)PC=$&?)|ik2uf`cBEgAkmue^V+9u zeLT2-Z+ZXw-(R+D+FTxg?2)7e+o{n}WXd|zVjBIGEYpNojdB}Bqk(PEQ{XwAaVdLF zYkR_jFfcyakLk*9%XC#<%-)kH#2{nro++;iM0Cx1nec7x$QVvX#-@C)LdodrZY#IF z<)-rPciveR&h08ghYpvX&bFZI-~)I}@D*`wfX}Jg+4stCVzMKtN55IA)T1qM+V~mY zzL@=^1p-%Jw8sn?t~&u-lxvd<%MX@Vrzicbcv)#IEyK|-eCg%%vXH8&QC?nt-oPf> z8iM-QJw5c8XOgXgF2-kcEFXi(MUg2+J=NkzelnX}s&uXrI zV+5WOI;R}CvmO)ll!wHR=!b9B=e_Oz_>es6+7om@0i-lgb~wh%zkko(#A|gXZ)tB% zz26&3e&spJF(GShY0X$J%7JtGIDhW^=x5_>jV>*_QhXfq!J?zDlo@c%<*I0J#kHNaa zPk``x>HP0s*_i-eP8}M-mrvq-bNL<5txKS#BnSp6!hK0!bLGoq8?Sh2IjQ z#$Tf4i5yJq9II?;6Oc-5j*i~$XlF2mAbK-LM2Fa%{d3(l*Onzq7pITI?wBR)*|{Tq zCFai?EElX>l{=U+cvJ|J!0u3tPM5#@)Mv^)_uZRBsD2@*A-9nAoJ3R0@9QtCR;0covMhQIf{?m##l!JDi7EPFY{1=n z<4_s3yqJc5DkB+WC0uKZ@ksQ`xX zHn!kRAdZIu1(tlrC{FKv=evTzzf_)k=Gk1bOe^M;vSR5gquBCenWFjAXB)-ecpD#O zyDFShz(@IY83x`6kk-|1d8;`tLsq+GSYA#AjYjclrQr`mc~yp_+@y>6&fkuz=m&PP!G8JrX%EK)~`A|+*&@tZ@3W{%(#hR(zepBwz5!#{H zgOg<=d{>{9L!nWw-`dUJ3{S%IC{vU>Wx*4>Br}3>3_f`9kK%AkaXA^!@s9%shtlmJ z=`hAhxPNjlY2pNa6mX8oGTK+Ka=qi!koYw<>Hb0Gg?ut8e&zCe2`t|Oa`As(NwbGCKeWq8Kwx$yGE1nZ7`99ULA54&3f2{q+UkR)v z#Hqg_&Z$6d!V@y5;u3dDN+J@DaqO+WGJ)s>ivV~uSI)Bw=FZD)*bpw)%cJb(OdclC z8Kq;+>?ClE8eysnQe(Cp{2;z<-;k^hWJ?H14zYHmlv#7qIwQ`ClZ5SDB0yL{oW6`` z55??YTL`S-P-r;YUbvpsWJM4}$E)v2?7zgoIMy@V1 z5lql;Fv@(G%LoO|Y^o(@a*c_cAx|< z1T7y~#;mwQaQT}hNN}}1dz?xh%srGu@m|)fS{v;Ph8#?s1#0w26DX{Akku$?B&4bS z%nnA+62St|GP^Bc$-m%q;K9;>@$9m9&%yG=FMXxlcmMrm!Qw^bf(tH62V-OHD2W`W zpaEk*c|8_=BnUYX8eey7?Gphf=M2pV9NxWSXSwa>x0LN$wv@*neKhe?IobgE1QN&Mw$_ejrW#D1LTQ^iIO@No z4E0b_{9PwRXjFL<`~4c#>X>xl$nZk zvO{ZZ&0jEgYFWBj zlElY%#bi$O=H8%7ad*(Rwt^EYG39_YMH%>%^7z_WqQ^6|i8Y0yPqC8MA-ENG^0Vw} zBTG0%!?I$vc4oWgH&!71WziON5^dut@}pU8VinS6`Q+DT--Ac(KMQ8480VhN3T0ax z#b$AY2uI+vd|;w&%}&<_&&WCB>u>F@viue4)nw|q6!pjVRiXWlnZRLsn(;?J#In(k zn*i^xGgYE_%{1+O4s2XWBvYDZ3K|3%jK<%h5h5}dVR1ZWpODRxQVn*OLNJ879R|*p zu?@99W)LHRkTiS*g$W3HXI5!R1>z15H_IXfdlKvvRxuAo!>0ZY#VTf625nXdmDY~# z(%#*dRst3T&ajpvY=afK^XeW*+W|SEZbtzS=<4Mxs{Phk&0fU$zyJ~WP%y}^fAgE=u_vBLhPrZP<2`@r#g_&H z9n2ZFbUNS`bJ^(2WC|8A#xyVh@W)uyUo97yg*=EFLBku$V5>;R!E1fTxzRy`&ph{R z&O9k&l_{)Tv8v1sB@06^P7;OBIUeHyGx0dm2P(=w70RVkl(d^pR`eu8*Q@dNE9nHB-P99gEF{g-(hQPtd zjMXzwK9hZ%7Ydh|9ERT?GqW6<&W>oy+{CZr<1zaW;S1*^3uWo{oC<@7!H(f6Fap zZ_G9w?r3I7cW{oE=>)$QLIqg}jwp$0OL2ym;1z#nqL5KAvJLT#cq)}<`Q;}4#W?u} z!*A`FvgXa0ljR9l+$cp+Pvpr&AqiZ~^Vp*7s4X7Oj_fb{U{KJs*>3`RGWfs+fg`uP z<%V3s?e7kSA#g&FL49bSUCPOc#>c@i1)Q3nG~`(>4S{}+Hazj%QP{;G|B1-WzXaQ{RsehaOhwvD79_Mf)~nAUhQ4Xz9*hjmh@rCqNQ0L-zCx5En}$z z%yW_yu#j?TG(czKmr6FdbDSKAiAm7m?0Dt`YL*WhS!#78-}RO@?A1AzZ}elw^dGel!7J3Qn@gU?37-0qwvj zXSTGJS;4pv2tk}D9Y@=b2huVdir9F;h3hleoj_Ymr?!6|452m@glZQRtBN&p%RIKy zLI_p`Cf+Z9`OA57s&?IV$DJ|5Uf+b8k3OhVV7<HH5N>T zX_o-$>*-H8i!zI`jfc{p{L8MmJWbrAAsn<{@|=)hfwNS1HpU~D4a_`atk0f3S=L{$ zHk7Mo>#)Q4;F0gY^PTTxzbHxijA7Xg2IiCj&+KG5aV%!e!Gx3tAM5(NF`x)hC@B-0 zHousbmLs9SNZ`>Dv-kEn&9?9E?hxK>@htG;=WdkGmZslw`bAWi7o>GyFuaD8a+ z{&Lf`*OvpK3{$Y|{;@-dlW%;KmcLV!^MK2&z&H3!sX?oFa4kFj4>&i1lGO`*z>?Ar zMwDK-MCo+=2YiPMmND8|yE4uN<%Q*_ncYV9Aq*Alu0QcvR)vGT=pHvC_AI zX5|*o%9s#K>rkH%7f=c@NaNiaD|igsE$cAN%YBYu-QDE4T_C9&El&pVR`))`7q zUGAY^Dr@`ptvNB!CiEtciGgU!;DWDu&T6Y4tTyVvPw`t0!T9X(NHejhe9+RM`XzAD z2l$TBQrcQ#LXnn_7;g%Z@3;|g%0)AfF)f9`+Zx%{C@*PsnM%eIpZm`_fz9;vH>$k+ zxZl4~GC;4F&ecAx9loi9oPT2!2Ht&&s3;?5EoTCQl2Ajy5gLM1`EBP!uD|Zzm$3ol zw{(HY(%KzJn9qWVVETxWL+Ikr#GU&wbnsBr#o;%Y1|}VK&yI1bL7}o=F>nxW7ZdYYO^bG={>>!Ah%a@j`uDT-6^RX2c!tdL=yX@GpE!$>xaNX6{q`+s1;P>E= z$j^WN^XW5k)T1R!M@5{ zZ+lz0{jIl_k>Syt4bPp|pUWD)leAfal*$Ji@6=akcGb*kY0j|)-}~No%V$3G*%(9C ziMi39o)E5=$T-lqg%q67sC2c^UAAdbwo_i_a6>+cF>=SW$zrioc& z7g1M7;KgJU%uo9d9wAXonEKA(-_$=|P)=u^J!!F?NBl`P+D!8Pbp-XMe-;JCF0l+~7XwMK@!t`NnodHAp%@4l zXPdhAQeJXti}FGUAlzwpWjDdQ;AvoXx2G;0AnSQ(cEsu8NTQzy7PP`I*9gY65M&frSg*`!2Cj-A&xAz~| zoBV>$UR^@9H13@?EnT!Y6$l4t)?GaEnbg#Fz+Zfe<(A^JVBUhD?S`iCOL-_o6dL`Z z(3o_(1hYi94q_Y~9}PaSKWSNCJx6n_(0g|7P97~#9N1ER(h3v`v@+4l>`<(IhhD%0 zd@_=8+%4r=9-@4KSu5o&`gbyT4l6YH8I9^#d%p4lonJ3iym+mojK9wGM)iZm^z>hp z^74kM0{^^r)Iq_(>fi3JYK3u~wM8V7oga4>Hs3+B%aMsg_o&P>V2h>+E`-huu+E!Dw)l%G%h*~jDgobpS5>u;5{tJcI!x2+r+ zI*`H~kyV%?;>ry53!_p#Mn`!2J9oA`^8NDI;}0d=)~sGvE)0dm($1m7BW2glz2)Ly z&^KIvQ|=z(=xHf$M$B@%JDZ(KoX%QXI^x-^Mk(rO7(FLzjK=JL4b(-{_ z2%4GMGP4{R87)VHv17!_V~ykxU!A_~q^O||C^ea;t=Biq**_EyMm96W8g(2<{O<2_)>>cUo|H>~ zAuF=)0nda>zydyLyWK;qsQAz6vyH+C?y#he8JzSTz5#=z$ok3@{N?qMa$YZ~_pdX( zQT<>sJm2>cjudCu=}9hB*sYE6&?QeeENaj!s(8mNr-zi*RC z#kFYB!kl$m;;ZoRL3|c)>M(~Wk zbE{kkV6iEx0+am??HmD`VVHSocXM2SbKE{6yYc25bJ++1OGCjN2r>+p!X)tArI$2e z6Cer!y)a2>X*DV%Eyp35bzn&MjyjY%ndSk|0@ht}Ev}cD+ zvcz0|#TCJ52Fk`~o(+i2E{m2d&%+d-e`!;04PF_F8H9b%zqUAOplXKTGVKf!>~EzLt=T0ZSXW_?8mNTz)Fx3ns_MCbE4PAI2^Q zj>}OEm@#IVCh?J@8GnKqTmI1)8@p*J7sB-$msM-l25e@h^4AeFc*5}ae($5@-uu3r z_;c;`*X21^FK*hDU6SdHz@^DDZb?Fwv32 z!)5t`<~$~Gcv>SrXI09}IMcd*gmTRZ*U}|?pjg1?YJH&0tJhH;?u1|d4%~DPOp9>| zx(ESp7vAak&XN^hF?hxiHgPa6e^+Lov^S-^G)hc94c<=>M}KEcDKD_hdkRfFtGFu| z8bMfL!WrN4X-|81dDmTUFK@g3wxFXJ-;rav)YK}%Z`8pDrX}!oR+P=E>-%)_ij;H{ z&r;AwecrJqa*|Gm-spqm93_HZzZT5vD-S>XSO$F5wqO3`zmwm?tvWW^>yq>-c}XPv zEGIz$XW!@#2Vl>^*SMp1cWv=p^0&HNmCmceBah#n%U5wI`xMEz;sfv$&-4yWru8~- ze&|TE)MK)tT@)GC6Ff0JY!+4xD5Bf z5^v&LmXnC!S>nD}e$)>AqMYEd^0LJETRqyUP5xduKj-OYhxh>-9_5Z;S$Y7N$M0pYSRGHjuX^%#v?C;N)JbqONIa({7-T$0SQEkUwYO^Q&CH-H83SfR zvllRF_1ZNVAs2D?Of8*Y6m}%os@K!mkyaS(L#W^U<~PgMU6FN|4y`pm3ZndVUS z_+A^;gZW@o`X`MY<YbQnN3|fbe(nv$l_ok7PMBVs?FW^gvm)a%o0J zwG)ikr{vh$?%XH4QhZ|>a%^lgl}PO}eoWcm`mGQ|BH4nMB`k`Jcp&;T8cGZ+8+d7h zWf+XMGEgT`clY+k826OHc?-+%;n6ZOY6n+KdGPy>l+S+lbLjv`;rS>3%|A(;HJ7tJ z{dh3hp8mOM9l@|M`?My8P-7C$yg?6DC?)O0fXHiUOb{<|0wPylDSTfiv3rgWkoJC%%i zZ{PyH=nBmp4m{BQ+6S$By%< zNy7__Ew~vQ&rL=sIe4#Bl@xjYOG@B6J^hU;FaNQDS?jO&M2e|P^1S{n`CXq;Vr-MF zgbk4Hh)xJ|#DF+GW0`?i1d%(z0+|IVO3Oqr=O#$l&U5Ruf^*&fo$sD=2DU!$TP=mG zW?*f})EdRf1=+Pj-L4Z;?LmOdh!_B7qfQL1C1!*NhniDT5vZ{8mtTHq3PuEI4H*&d z*t#XlBM1pHX40oOKA90-nYoo~=K-e3zl0@8A3R4uEKh`sWe_`CEU)C2*60l8M3B~* zmHgm?39urVJt0~IZ$^ZPP_*XG8z^^w^{-O#y7#{Or0!;^UptlO|kCDwd9hkB*0spGF@6i zrKG)_I5`mvOgxyjR7!8X<>nCT$I4)Dce(D`tBaG(38#^fqbacA97c$Fn_X{?c0YLk z{RuN;&rb#X8!N)uG8nTuN~dS3RK|1;L$`zl)*KxNVvH7qQZ+eostg@EQVtzF8cNKf zfYqt;>%Z|^x#V{=n7-|{AN-jQrjHK)f#at_2vVv-8Epv#K%0yY7{P17(^83vu{4fV zS+`88z3|u$i4$j!r!#Y~_f#U5E(pAfJR6^VuACwKLxGt%6-q_mehRwyLz%PAG_f<7 z&nYj0MZzxv1wGck2`tRr->#}ygC%-ui#E-QzdcW-D)ML_<;D2x&lKUGqy40R8b*wD z#&cq2@hsX)dCBavEE^F(Ged}kvJ|sm@R%LKrbdJH-PtpdZO$wlkSd*A)8 za_Pk@ZN_VMB89R=WyDQpQH+A#!6E6ty|Ge)U0Q!EhDCqW3&!G_p#R<&A9yHlNMFYJ9WzYV7$rF_YZ_q;n@5Vn84QR6o58jF< zjTs*<-?&&>0*MmOIeo(={LzlTqoL>u>42_Nxrz3rg=NZGQ^!z0T=7>vtN1(J!lK{* zrKF~>FQ*xQ@~wx?b+rQJwbEZVAb#BPe^TvxwNgMvgi=H!^gg1a&`c*z=NLhH?-0?f zVAPlZxLSr-x@370%;7_a%R>)6lxOUW1c40p50v?H=jE)QL#E{tyM7Q>W#Db0ES#Pc z=&E5jF7>z&gFF}p!H-yk8n+z}6V*n}o1J|<#Th?*2+ZuOWuxvsqR1d>htgprW;xn` za7BIHwR3wiU5tizsVUWa1_wSDuJfbR>*aE#-7-t(Tac*(*XBXHC=O4Q`U ziBJYMWE*GCXcSWpr!Q^U8ZaIW<)J;J_8vNNG_3~1Avo;*8X1ZEtY)h>V(aSeEGL7h zoeiP1e1(H9V-_5Y>(WauE<3huDOX)~NxAu^8_Ln)!)2U9Y|OIlqTp~mIx?QPP{)Cf zm2u{zr)>B*Ht$+LPQef=Zy(?kzp%49ZIW)8{I7SFhl0WJj8xQ3p$^bjc85~UO(nvGj>H|aV zkc8O>2e3UGcyRhGKaG>6HI%z}ST?M`D9aJ+=6EP>GeX$2xL6QmrK7qlE1Hmab8u)l z@!j7pe-oONJHO$WX9RT>!s=#~pcrrmwc`$+QHEUb3)`TK*&!uW`l^3ZTry4Jh+_$o zkrF_WGNwk{DR$sQnem<7Rq}AWcRzXB(m>VYP^p;~2bW6BuvvHU)#jB+3$JBFU z09KXOt7S!9=oHT~&S)^lGA_@3Babmszq@zJ^uFSPzm1Qj66Ja(4?XR^wq@4elsnXOBlV0zepQ!TkqcrX(nSN6B zzg8*Zp$uT~eIW=SGToY}K=^VW0gvzQVl z%I}2`;CEu?A!ZEg3<68UkC|3SC_~3Xd1!W3V1kX4TobITvASRwm`^gJxDXwo!r8H< zquEl6Q6MaYN0?yr+Ti)}F7CUS+T=}uLD?V69veuN_#N|{URjYeamma5|*+SFI`z) z+O)0QbMJRcSI=OXJ8x0hv+qDK?(saUNdURNzOE2j!Nf!IIZSWaq6KBy!UbjLw#|7^ zAz{jynV*t2Sl-cQeWp-7_2kB~bkUL=uP2{;y4?1*x0bn!=7plOER~n%UfNWid}?D_ z4MOUc-cUgI9T>_ps2Km#N91(F_`wi9aKz>7!Wn!0x>c#HT(Evkx#E%yL3=05%B9Ov zsXP*}#-KNEYW#h`lm*OLQUbtX_6wt(8D}EuQzX9^%WYzVz!%P>;0hPg0vLT94*ar% z$a0aG5#{Xcc-|Vy%bxNZ|Ms`bytxa~soGZizx(%oIqKe3`a&@9Q#p8es4QB%v~1tG zBdsNNYuWKr@e2+aSHIzvx*ZIutuF8moi1qWY-x?U&j!O^y=qnByyZ4b{8WrBCZ5WR zJ_JAF|HZ_3;zXmIoD4j#;ptuIQ2iNWW(wDQXDt18QAFXwnV8jvW{^(O9IowjnjgyY zkr*q>sp@o9VWS-QCyaV?k1JW^l$eNq!5s=6r(jDMX^kO};y0&d-&W;Dph-tUpchMo zp4xq6Sx7*`+i$tC+;Quz0hjsZ*jOkA(N3a_zf4z0OnQQsI2;u{=({*L8H6ti*H(_m z;LaIa|3^a5%Ljj021NVSH@Xq)3 zS&nUdYk~l;{f&p9Iqkzkddbyu40&qso7j z#!XK@?)N`xdaYU;M%5&UQv-7$Oo&^BtTSmaLrCfw9|5yp3c`i9BFA?-Ll~Vn(R_zs zCK|hs(1~%m=;< z4xuB&ti=z8a+3mPYP)tvS9=n7E=6tMULO43{aFWwViv{ejj7j#!Dt&HPl-X;`hTuZ>~*zsezt=++qqoX4!5HLW>l|Xxo7cVJKJob3NrYHMg*=ye71sPZ7=#fx# zf-#Mb$1E!Z`N2cO8FOZEa9&xmYGr^u~>;6#cXR;lB%b91Pet zJCu~EKCw1z2VNM;l-+8CjCP?5<0y}I5C$$u{US}<;l=9IF{izp3?Xi}6?|}1f=J1; z9qAt&*byG^;T%5-{9-*3Ni@p}?(XhAWd_c>w9}ms_s-wOF3XB%6G2~`<{dct=o62p zkBKd~qEHXcA56jQf;+ymMc%g@^;tkEO%`iH|I6{v*K;Xo!qS|2DUO28vBb%923=}* zJZIhUi~4?6~?YFhQ36QD(9OEq| zX`A*+%626@rrM9gCH_P?soYE{BydxIjcpx6I3tgKRCvmdKE!B}-!o(Dxo;ES;74e-Ms z<%ePjgmpG~aQ?q@=1keMXU}(L_UsXk9+bX!(x4x_lUB1wF`I0L#5>O&TT*4Sf=F!) zUjS7)hVG=>v>AGLM-ODk2U+!8zJ-1J?YA?J01>^12f_g~?$V=&Du3z{BiRK`vOXg` z+c$BzQZ_?J$PeDxS!95rT}qP;qHp)^JCJf>((RNbT_drav9n{}1okam` z@^;Sq`kbxg^(1_`T)NmdXMvZir7Ou?KV7fyFZ9)LAu*-RVO?wRItIdQTAh$;eAZ<- zpIUa;@-l78)UrN0qjX#s!diDX)Gf3cIf2wLwnk@_$UZt34M9WJiAI!VNi^2Q(V1%i z&ph>$+#$37z`j&=HXs?vn|X;GBxI+=&&iHRvI~2Q)_tsE0!h06IK~C$l^ml~(%uu>}_v{LuR6hkfD+2K*P_(=#nxKu8p_=7E{2Kh5X@-(T%(SSx)2Lxnpl0M8^Qw*3ea#;|l zNTp`xYbfg4R>gIjKFYG+vgFn>W7g~d4ExH=Spn*X#wB?9`OklmqwPJr>h6YFGwaCh z&O2_;!!RuZEV||9oJF&hd-1|~(HR{mZ?1YH6mE1R3H**_N6Wqn57^I;Gs}H<2N1UF zg8b-om22njJ;}!j6DOw;C%+$vA*c4h$WJ+yjU9}w^(T(hnHfrvJUa8}Cr>|Be)hBH zQmK=fKl`))vE29I0|~as{~3T3V%vI7pumv7O@P{+dA zH8+0rxN z&3;JVyT;S#YO@SK|Jl#Vs<&2#OpQ(>_V4}iA4mHH#A|0Syh}XVwBsP^tWRxYX*652 zSKFO?qz@Q{GKhi$dU2V3QU08Li9nI3(IG#c>Dc=92>AnEfD^M{w=P~({_Fqhk3$ac zjloDg8|h@c8#UrY&S>#tW8iWmo-yv97=T^84S0!nY}Bo1mXGmebjU*kBHma2^=6kM zoVM0}d*Apc&IAcVwJwGA-i3s5(KGlZeSd4);v}bRM8vKA0|(^HJ9@7TntV$K`Oa@? z;*t1V+%e#lzv&5}EoXmYfFis+&^3JLcrL6wHhpHNo%Sex?bu+2UQ%A|-V9HjS+9dI z%eC?+9-syg5|>?G@=R~xr*G&gGoaqfN9E}m@NOBDT!6ofaDgZ@xQy=Q5qLK%(_H)K zcfB^ComOghRA*q$!XpE~%h}(5{0Ps6)A^n?8u1^Ve(`is3BbkZViEmo(ACC&rQZ+# zswt*^As{3akm+~nXjnYc`deeD4fR-=GjDE=s`%g76eB$A@p;N}C@@0Gs7r&?cr+x9 z+`(ZQk%PZ9qCEj(G=kl`_LdD14{*X};mOCI%*Oe_`|qa1I{;=R@N)8KDrYk?lrLol z2#C{EYkHPdhA2cj*@}Y6w?;(~R3&jF%b;`8P&LR=W9ngX8XCh;TUm9GJm=oMd|7s; z^JdS=T@eRExpHUyt6#kkfa0fR_395Y{qz<)Wl}DkJ@)V;d2E12FMrC97nE7;bn28k z#YV|dA^-$lxVX2s+@y>PLecC$a;W_BgkN$I$k3$8Q&Wa4Q+PIRLhZ23w1~q< zPx%f-M@NXA<)Z^m@65qdovinpHf}Cdy=7EX{Tu!}z(YwZN`s1&G=t<&A~Prr3eqAB z4MTT|l$1z`bW0;0Lnu814Barq&@nJ{AAbL{&N}D3-)rp```+KU?)&;&cem&}!5IZF zfg!nz1i5~W7rlbNJ97ZW)xB)}$qt4Ds&dBbf=1to@n4pnE*q*yynSYlDRbxB4~SzC zPF#Za531x|<1IG8G-eQw(28O_d&dP2qo;@*%1`-&9x5qIo=UHtJWVL6i6ysiEzD05 zVEwu0WL@fj15e+foIEyS+^FfPTRwfAS32&+0_T%ixlgaZKhIKp3VY^ zosxYu!1Ge%HNvCP9_PyBPTTdL7@*3flw+>WX>|ja6bJvFa#|#3CF`PRL)^I3)2aQ; zrrYvB$4fVBhUiOOeUGbL5fOygOB{&>3)zfkS&)90=x)sB^oVH3&+E;@x7PtRDPx>< zp4DSg&h0WOvL)#87N0Tj8d8m?@)8NPT%#D~&Wy73#XCKdQB z)5s`n065Oaf>_%a$>WKA5WYT2e)ic15UE$Y44Pbl7oM9IOMVd3%*~fUAaCZAN`A}f zm!n0I5l6+ZL@bK4HVYW*gA-U!Z=&C!`E@&!93m;n zJr+d0u}@;WXB<=%gIQu|u6EY;l6aBJH@>5K%9k0DQ7&TqUXo5>iggfe){VG6^IiTZ$DtY})sYI*8Yzw1+Zl~4wb1-O z1HXVkY1^lr{LHGE^?4FX-t(A98jOWh3!^k9aZP6J);A@Ez8m zzm5--KkoaJIoNgH97Xn1^?=E}6AC)WHQ6(GYTBz9mW1rDxz;`qORHu==)qSWnizxb zRw@y9x9vAESd1(ZH&O2{EI@Nd+_aV@^pXvUz>ZsD~PX&%M?xF7s*sZ%4Py3Cg!9~Qw5@koX} zZp8BNti1&J^y}xjW1e_ksi&m~uw=7%3zjixh8LC8=#OybbEQiad4|>;2DjDN3$j*o zIMxWo4)-m5#FM4qv(2D_O35qpR-PwD4YYjCb9DiDZYmG?yd%rnB)tBe*%-G5gNl}d z1=0dec0ZA`iWxe_wmUdbI;*9+ojH^rEfycQ24s&EpUXU-Rqa?hUt6mRkiwkuHM-y( z;9!n3o8qMK+U6Z%j^72d@+x`DOQB>QRxR|weRgS<;IH$`-@ax&{q-3G;V_m97dl$p ziDt`_kLjE(gnb`zdYMXX;wh~!`k%AIbgeKG6=8$Bq1(Kj+)L@t<3i@Mi7vh6QAhBs zg}H|0^0cXxK`@5atMZ;Ys(B&#FeCNI0l-D^PRicW;5I3o*rfdxXG(jh`)6FfjSlh{ zAWRfZo3gd%k2m14H*XT#6JbhlKT~5;!7gax=gM71*c4?onJ&5IkXX=a%o#*g04`Qe z7|ouKw&o^!5G|5ak6vuq@P2a`z4GzVC!4i27-q8j?HE^zo{4WknMn&LV6l*UBNEqy zy7S;J;KAEpBm>lNdexNk83yR3wtq6wX9kVgI8Ijy1S27A<%2U%dqqF$rD)h_1|-hz zrUnhhmMIFLc@{+h6s-2Ma2d$zYHpiH=w}fZk#}yw9VTtp`z}{M3=wItHWt6Q%elJp zd6zlL7OpruXx^+ zSWtr{k%mOWsKQQ}%f{=z?fCC%aM$#&mm&`~9-_tT2uehzXqhr~9MN~TXJeIvUoOay z^(@jyBvJPaCAs_fS4V+_p3q$gB*%F3KU-OFQp2LR^v%({NAKwSX{k>xR>`B-X5=q>V8CG%w7)z`d-BHe`kUUUsQKsn7qR;l zzwwTPNKUWj3vw>M<^(XPm?pb>5VyNIsehKE_Y@OJ{?!%uvLZ4^e3z9`_+^I^=E4hO z`cBcDGco78vrK9#6H6X!JS$$Ns@iq#9-;MRW^Dw*%BLZFYMqL$8lsnwpokA*H{+$sHI9|>y#lta3gYI(J?4K( z(u8Fgxpq2%Fz+(}B$ljS9e{ARWEg;T=|8VRw(I(@JZzS>TU|t)e2V==qUVD&VJWUa zP;zimXt=RMeA!R$nR<5!;(Ij!JX+-0mvx-^t4JT>%YAf!1fpMx6WCz8 zqvU*O(JhJk*M_gfVnc6P9-n{$2F?N8coO(8r0vJW|4p7ogoRLDO0G!j&kfsr3;St2 zE>!h=f6?>;yQLA9mum|AuxP|;yqi|jft(mkvZ%aHGC_YaWpU6CX@t${3i}%$!4hn=+M?(H`!|FU6Cb>dE<(lLf?% zYEb1W+z!S5O>|4t__gax&c=`_#VDV7fKm?pLgO|Zsky11Z$h8lq3}KV$@HuyCpqbb zX&*FM^VECgbpE10q1AWi$%hAzgmTD5{SYJ{)-xc(45FMb3M>vjnIFJ$=9j3CEKts8sxX)!BL#ZYTS$Tg-iSpjJ{iO_)EisyWZ? z5XGIP@H}&l<79d@i=^r?dy^Jd9)W)=$O+y0cZWWnWm=C@BVE%m&IKUQ7S|>fl<4|< zvM2+wJL8Hd1H>k;kAIjGA(artcZ|Uek}t6cR}U=K-)+wyX?A^oCI8L-V{-9>Q>U9Xd%mc~Q4M>_<_DKdey6N>Qxq$PA!-0VJ$A>Jxhi z_(J|IrEGQZrxqSQ{!jiU8?9tEiCX)voj(Qah@aPFX*%>H3|DE<$pD3wcy(ivGUHbu`V!`1Nl>=VG<1w+#k zX2AwFhZP2Y>-kwM3UeQaCBJg@iQ$C`wXx65J`QlEMPw3o z45D+`BI8Bu(fXc(1S3;v=`v?5_uZvO%oM?z^3>^ z_@|`_P2Eu?Yt8k_e5a`|0*O%y7p2$iLec!@77yiWbTZG#KKRcr#{@f)uY7d@g_v3iF%1unERcq(rcURcz)%=g5svTU9T}3OlMkHn! zYrR~>xB(&8eFQCZb26`f+kYJ)-4Y5SVfEl5rkA8K<4z+zjQ-&Q$PWwL`O%$Yy?zXq z;(9GfMcDT<2?4$xJ2Ws-Z(Gk91+L|T20{HH)kt254OsGi^w;B10*-UyzPpHj(w$3S z(*BGVooV}M_3S>xImG(+P~QyO(xI34`LafSd?u7NT+ea(}$$UHgixi<5&`wk9Q}s+G6AyM4!L}U=MI+ z#r8LP?RL2^6UfQ9ZlHMC{HmHkH^*ZHTmCSpy*0 zv}S85B2SF6i_z%gXMFqJ^tWP!Y^5d)@c>HGajQ}t7Q@N2KH;@DK^cEmxgbR?(h8%a zbB==O%bqEuITc!ulRT*!rU$SMYq{QHmZc7QNd(AKl=Zm=Ig3c`{k97dy4ieV;8k&r zP_W7tYnk{xp;$_Xj@N775+VR}{HGE8fZ&N)AMpk8!!8H!+U-*MMTBFTH=Zdwo3Gi@f`hY7xbI|RlK3iQ!xWT1;I2y@&E2bxtdoa(BzFVHBUqxGp!ihTW;^Kyx@YXkf}wQl7MmmvN1w;f{hpN| z!AZ7)d4ZB+lSKY<5f!Ib3gd!0A)DI&ZVjwVDo$@s3Xdh78QkiH{*#jP`Yq0`l>wo# z2MROFhE5miz0#(bhM9?K>TYEovFEand`t_(TXvHohcM`g2pwm{8gx!hQ!3?21vtSN z9>=KXDHWdZ+)UCiO9qH4e76E0P*SBo{PrA8=rmpDpu&23I;=<)`r{V^wg@s`R1N&3 z_?ZklpbvaLP{B;W6UF264q@%vQ>&@$(elP;+h9Y=8HYJHmTr9i;BYA7k!f@grdv!O zG5jq29BkvRd2cM7<*62}d>gR= zPM&OU zBo@c7=4{fUeRoclR)g=ilqQF*J)3L^o0ZyXJ6N_$8C9NLc*p_al9L2yCcqE(ij&r+d<+nUS2(S(6c_S(kgV_~sgw(4iBFBbhposp z322l@QFi9UdBm{9Hl9lw(6f9e;LQ;3W@%n9ItQGW2)b059P0Ro(HD-gO1?aIN9@;c zPrSb&0O01N8pMvmJTuQs<7YOX_N1&9&ibmDSr}Pa_a?Taa&%BzTd@7trGg~MFwO8y z5#&!O8sA%e{9b9}k#K^z-vZ0i6umVYpk>nC0oxr4SCb{1;_>7>aH?7wk*vlvhNW2i zPRvr0Dw0tlHY4Q}{xslnENjSbm2383qNu!H1V>MRMPi@~s%BB+MUTO`^` zIg`1qgtdo|4MV5=j~%NuskoWVT=wxtv}j(Cd!*PgM|jfKkLLj!*-6WeUmrC@)gYH^ zZrQj>_I78r+EtAoP&_~fr^qt?Y+t;2EqZ-b6S{0M>)=!m*0LUF%mi=2%+!*!KQfXM zsu!Od((li_;+x!Jd>Z}*0*-0h=-u3(EeGIo51!cFXxlS zecq(iOJGYlw_2VR(TLRinXH!_cx4s$^xwS#%T;COR6?2GJ&h6|Y!4P$>tKQsxQz2a z-}M83*Lv)WcdxT_uN&TL$!&SH!TocuQ<+kw%0^Ci?}O!D`LEA6V@}KT^4ir58=x77 zXP?BwMt*4-?Ei{vF&3w-;ZRYbz!f?cgmfj$x%fh#^VaulNAM}?f0>>lATFFZ92T>? zK8%IWh%Hzue>I1(v#2~nT<*`oQc_I3@4FRd`vEoNBIfJI+>pezdJb>XDyM*-%*>wWeK`RA-Vjf&=NjY?NY?&G?V;E8_vu-kg5&#}))y>Cn(j@Z~0rA&#eTf^eb+gv5MuhZHuOp*1!6PjE%HlmC8 zu}tFSR0lG3_xq|DKD&E|aw_{<@9%6bC2bQoR&rM}wZ$XCRu8n~I--th{ZvkC>6VRG zoUoOqQ0mIloY(q~~tDI$_Y zD(dyg75Z<)jBko25=sjL&sP*2#6Ra1_MVH|02z7M;>F#S=~S~s>dNN&Qa;ojIuWb$ zU2(@*?M&&y>Vxq7^M?A`j+2Pbe=JAVw=3SVRw&W--Ct`A6VICjqXXXXE$qD+bvW;O`D`0zlZI^x5vvDN>J2 z<}b~Q;m36|F@8Q_Rig-Y902!wXN8HMH1s%S^^&HU+W$ChhBP7#ae>fTSfe;XNiU|-0m z%5nsgDREwJ(kSW^eX^S@n_=*DjF-{&WYS+W+c19{_Pjb%HB!_5JUfpt`XCHqWT;!D zQJzL0gB(D|d~wf#i| z^B-T5UgFg0rlRwnw3|eS0n6hZC%`kHxcu;XOj_=!24*)#i*t3DfMz|IcwePmPCbF; zvAjkrz|eANm+@UUGlGrkqWDm@XGy=;qcOE#D7RDa0?+nfA(|-QWn7DT_Lt;t(!L-w zxK{h3VYBkaN3FPXJ6oneA%ehA1szVkUN`EtA?U2;h7ejRq-bMB)Ix+y7;`=kBU+56Hh@g1&lL0TmrBXE9j_EnL+> z3Ahwd^i@h>tWg|-ef!xuT+?iCb`iE7IpgZmxv2C0zW-T$mEt)<- z!>i!eIF+@$S9Zu%4OuO*GDB0@Gs7&wyDjY9Gh_DYy@wx?i0y_9h1#!Cfv0i>{AnCI zenPI(+sFdrCAPMu1{doPsoBYZP^}Gt8bxNPWh*fW9w)t-o!t5BCx?5brWe{5H|Q&m z*}T2!wmMZ3hF^?+49>ewPW7{8Rdei9d2ZEsmR%YF(@d`n8w;t@i~#*^34S(g$6q{x z&Twj#+;N^3f2G6babQ;F%WW1(y}-8S4A zztOzWWId5w`<2hUUs1PW)YA`7u9tsJJj;4iGbkp>L3b{|M;u}qGsiQ$4KVfU`2ZVw z_PLX!aTp3vOW-;y!!EI;<;MY?6v{IzAHVW$rmj0i(GArsU+i?Kuu)tFPXJh^I{@OOK9AvDKd1ATa=Q-}L zA7mTXs?1U}EU*Peo@lTG_|r!H-psJLQh3){FbCjUu>ZFaX=umCgGFC#Y?v`F`_28O z#HB%7Wfa`~{Ajo0%H zv2AO5XO&{FdeWKP#|*e;oaN8xf$`9gCu_dkiMAhdKY)XtT#S>}OG!VT)%1qwzsuHS zkHZ1QrEE`LU$Buk3F8PE=WxsC+?|b^^7%1TE%+aC!(@pOQ$L~_2gr+o6<6-hX)BG* zXK2oL*)bm==5sz#=;OBQry_+F?z8(AdN&*z>}dO33`BBZV0agyG*L9D?slBXMjFs; z72c3H`}QD0we3)Ge%nYgqlU1t@qqfS`cWjzyPAcH1Wbz4HyT``t31RerI_*t9*GA& zf@Z}BJ!E57PL*}AyqLF=V`*<#i`)j?;|xkodE{=F;~sXwk0$4!6Na#4W4sbR{u19a zxyw#0XJzmb=T2X%v2s9l1v`00P|A6Q8iK%k1~mjlohGXAu|9SfsNje_=!wfpRAHxDO^qI|htakBPN(IO%c~nwW;JYXYa%XxUjQQk~de^BY4w&tiy*{_0#Oeyswx zu`8O{bUBPaHxjEq2ZO+$l)c&+L~N}kMI@_Qt`{5Hbqh6$!>W_1{UDNM28Uqptu?x_ zM^&*w!TH8IxAiRP_&(=w zA3@*SdfM}C^H|KXX&q(yaWddoi#tuKPK7~JK23ZIm~hbNe}RLpoz5jEw(P^%rQoYg z1m^$Vyo*{;b$`l@O>UF8MTXq1%v@pH=<>RoDSjx5vwv>!cI#7Dca*K^Ta zMh2GdzwBJduWxm#qdgK>A{tpTH`2M#l@|vgZa$tUW6#7EY+I>nmK1+OByiV{U8<34 z(*ETt*A&4*A{FeEZFA2gk|yJr8)PGft)Qrl{-#w4if74i^kYPo3_=)Ldb8x_w=KE1(+kn02jw-W zW5qvuir_Fb@tE=lAHObuYm3KTq))>OZAkY&JWd1zTw|m~C-6oL)R}TRkIrnWc71TL zW-lDrKvval<;`i=W)@N~)Ex|&eOq%RKZ=6pH4;?*yN8^V-{;R?D~+SB2iW7Lw!azO zhb6E>w^$k=tpX??O)E?H0qxrf)0+>78g=bUOEt`nFZ#-)hgZ!LgG~=w~6e;D=nKs-o9c49aC}jRt%4a?}j|vKCrgk zwTYO$IUpXTtnU1FJ(n9N?u-;=FZ@r?(sUaf@}O*Z^UtH|@+Dwf9rDa8*8#uwm||hV z^7;UrVIL73>trz?eWGTv1+1JMqRR}^mTk8U!}=>ksak#P|Vs_t#1N%NnxeN z{0R4dmeNZZzCYj05s)Gxw~YV;pv&MOBL>ii-T*CeVIkooyFw)sK7};1Kb`7nC&mdQ z9b)~&@V6-d%bG8>YdzBA^2?#hGXmfn=Zv`jUEhhi1MA#4)^_eJ&(B!Aw%G9lg`4N+ zGmIHNkdAL1HYb;lu)jluf)c1G3dO>j{gzfdJB=0JCbGRy2S+o;Yl#buR@Qba0yB|Q`7W^F-l9(@_~{-Ft_M~xN2uz z)Z)#ROUXwrzcb@A3!lkCo&}x+t|V_)s}%IzP=jll81-NORu1B|Ivs$VsrOo4HRjYu zAVEE>S4}ztlXWByd{F3d$XlH})_rc%09c%MR(h)z5zmj7e$=Bew0dy(NZ5c#nPo~o zXOYHc!5@XIK3`W#rTgYNkp|0mSts?}|H1*q(L#ixhZGkvBein3P66EIV*v`$6{}5a zF)zhAj>=tY%Q_)3J_wFTo=0OLe+X{fh=@ObC3RD!?5<#^sWg619Lr46#!8}OPgEt) zE6n#o4`?r#jTb^=xTz6ffFHjC6X@L_iO2L zToS?6&OUYZ-gb)jp&i}1dU9Wk%4LAK)0EqrwYM<0bor85tg?oG{oZ6IPZR^6Gemb) z|3r}>eWH2-d-573b7pkW(tZ`b`^oCRbJeFJ{+5W9*0Y5K+32o~)~ZZop1wd0aZn;? zHtD3U(x3n6Cn&}z!3wjOb*H<33cpKLSp>&M4Efy+rKisR@wf863#o$|*NPXVVrP7X zsM!i1@i7Hcec2PW@*;B{S0b)|_-ud}KjE)Eo*+WiU-lnQyI^QW z=6F*ZJlnnjHlaK}jH%S<$zoVY=M}%{V60S$`u=p`PZ|(C0bxyT2l;`gQ7fj*ax+X> z#pk$dazWZvKHuSGJJ}4Bo5h`371hW)!9WihWt}~IK$i!VSJw9_(qMF71yB74|~FuP?*r-+NYFFabIb7hgGjP9Y4+ z`D+JH1Qn=8UKw&Zoe#GS+w~&bub1SC@V0Kw<_+5}24Tri&v^zl`!}rDVue%F4AyP8 z+jd(aodbxB2EjqFoXxNJspa=zoLx&Ha-4Sgp#l8by;7r zeCp#1N&OCp!;_Cb9=CJT?>Bs>ZLD`uj8cV(>uYJWc-X7lx?Wou_?oG`n8baHF9nyD!gGzAsVOIYPx z_4A_h7W*YDZ$RKM*Dv3Gp-nmi=!kAA^=q_r z*#G&ts={cf(^jQH+S8tg9Um@x(Zx0T{k%dtrGVIU&t&>{>VN$36QcG0_IPy69sJe( z{Md#2a*PYRv(40O%*JeB%lKp2x|t`3qf7!IQK#oqv*a>C`2^WjH0Jj6EAItt#=K{9 zM5>*&<5pbG)R}09DE~D9i?S*RDro)8)dt0^qzPs^^gWm!$antDst>Is4N(6&6yv1< zHeZnr=fw{p{*N3v)o*UKP5w&J2bz6$8_K+@I@BRkh zJ@}+5>IN4|zz^c)gA7_10Etj5WiobHvh z{79EuYt^S(PRnAbd0xC55<^?IH<`$1$dLJUgYaO~xxanLR3GcV^jCykK7Ng*r=C~0 zjb_Q(cosBZ>ZJ2hTRL1_Dc>tp!~TQ1(#9t}8m5PcVRGd?fGx3LnKU4js)G>K<}LOl zOEBK_lTNEh8PpC4UCEy>k+quKeP2k7-=Vp?{SC4a8U=gX2}9BEShhW9RiPX_E!0k` z5yK4y@L6oXZ)>Z<$*^T4_p?GF3=dlGO^vFFQ#Ihu_5`ka5`NgL%DS4$@f`~dWWe1S zjuowhH$NwiNJ9TSqtb?)uZy$lvvQ2t$zBV2vK6yERSB3NU3z{OB+z7r9cfSN=1}!W z4qDJ;i58VgI8({yyN5El{YfO&ux|O;Ud+h6TVy7p}oX|2}Eu zWzv45lbCMyR`K31LV3dg>){NZks+?s2%XJDk%dj+# z5X%>(nkpulk~00C{_n?Cu?0KM^~{!i0rX9$9CwYC>R{)|DYm>Nf7fC}Uo(014P{#% zt(q_@iYCLUFo}u?APf|4-dKv3A$EEyxFhZ`#1W)sC}zdwKK4&(D;qX`m=`L2wFR_X zcNvdPb#*=aKC<6@!h{HCE9YfjJxjD1Lt+4S;A7wC4k`*BcM=`i#3LBaqU;c2E6i_? z6=lhDrwM`(Z`?M`vTlq*rN2Uv46Vbu^2Xkb^>C#N6b!x1o z#dk4wa*3{Q;M*yQwf>h6X8~h$7XMs*9#HjH1;=?gt^o&JSKjbvj{kdT$#qGdDbgHZ?p`fNW&paHbuy5=XD2q8{SiZZ*Vr*5Zt z%Q&KB)yyA6)-C0EnqKXCb&BiRsZ6rU3~0VTi*q6M+HgtL*FyyiSAYG7-Z2^%sh)g5N(~u}FArrfD5ZkX@UvfTtxi0o>nwF9nEYA%(RadBkSh ze@K)gs!!Ijm$BUJf6}W9X2Dl9J(WUy;`~}3MUw}m`4%_A%>kWK!sljRp`VFNaj9Wa z<^uX}A6LuJwzxQ_sB3BCmfv8lPMH>$4-` zoX=RLUR%<%iTo(Z%toW_$a6laG-;tV>vGOF!#x^%DYZYgjN(1Bk{fdiLm6cf2`cQH zhXkHeFy|7fAK(S5svN|PEj~jXE|9Rrb+1-{+8(RRhBA3?lRLfcMEVMkj<7~81+Cj? zZdDJgdeVZWmr9jbYuT=oD>x=QM;O}gmYZ>lS8Vr#oy4^nR8A%JO#X!@G{r0QQ zd&P`ek`c`vvNyR>GXXzTY2~TGk*?yHUuAN%e@TqLW|e3ZTzy4P(<3eqPLr`wsR)WZ zeHlH&hqYyh&F3eVZP0(>qa@*MU9<9N@ks3IWu?3tq3$bzE+I6IIzD;vRuS*pYqSKL zDhoj~BHpm>OZ7rmYh8SR?WgW|nv={1;2TRtuwYSJC2^e;oSFi0_rGdP=}cHQ3oKuP zQfE{?y+KucmAny+(E2}>85Yj=v%SVA1etFQ*Z>EfhA8x9E*FCX_!1*~2Im}NU*wrd z6)9QWj_YWw>1qOjrZ+e`WG9sz^E-bx(cM-&P0FMh*KKc(pk7|V*7T2sz#w+u zURe35-o#zn+Tu|dzkDBk^S*~r9$%IZ$&w^1YEKP_ml7`zP0yB-Q#;)!%|_I`Fq_dL|mwc^gyTO zJOq5Pl4Ydr@_j8)Sdr93v%Rd(bZ65j07+J$a>$OtqZpTpe?oll1>KexBQq7rVErrR z_oo+9P4v)pag5lC?V<5QFNLOE{iDF*aWuHhsY>mS3TedhMt4QFG7pXrzB%7*dSti0 zJphABGQraeRhVf>+?%6uNuT&KPrUjgKYDcGb=^GS?CgepdPSwb=RRH@ayo}D2gLS2d9*!kx?J~F!2x;j^O`R`3SygyJ|A3+{_sMgOHK{5?uj}c>c94mWtXn zcb9zlbN}g$Ct6*;%C7g+J|UT<{b&!CR2g_;=Y3GBPhR6q`bE)W*D=AThi;48jyDit zRSC*WF!kQdiWKhcwJZrH1&wlU{kNxKL?k_%MK&Th+j8Dzo^7#Cizl^M=aE}(5QZy1 z?&1|}TgAjdY{mG?TNxTZ+RoLvYRq_k3LM8yC&tf%VOxB&0^VAJM9L5rltL z;=-oRdSe7Q1Fbc0iTwj*o0&7o|KH796m;EjO%V|&WW0IxYrko!;N{@E9I0IF2*8-p z^OA+6d>!^+PRx;*>T+)Po^hg^kGmM)%Hq=iU3f(!_}0dY=NMOu|065aEq@?%q(0O& zUv2F?^hJ~Lp1o40(H?opzQ_#ib<7wGz-jy%@a^j;&QScVPMX(ZyG0>pX;NDpAkW{}m+NPkA~AXp7O* zZ(R@BesaB;GeAtJOoOj-hW0g;&3n%!UBkU%c(FdW7D{)IuaT~wrwi(^vo^ zVgv@fW(0)&8epJ84E-Lo4uG?;6nEUu-JG{fL~3zl0^Ucs=sBK*WZgbth2BKA3sSNS zPmj3My;1A@pb#A2xCU4rgkx0SXrw=cZ>F=~zN-tde|KK{k;ALW&DL8YM+@keCEVNp}=fu&ciRDQ&V7 zQ9$JvL*iXIH*d#mX$wevT-o}BAUOru1Hjl#mG$d?$KH&vC1L$Gq@kw+#n0j(I$X?> zjpCz{?3ER|L^geaQFAb?2;1nCI>CEqmq_yGUyDqy9jH6Q$k9d=!^4keKLZobD5_p# z`=m3+g#W!zjyx`yvg9?C4Q`9i>m~MLKuF>FFsE-u^JK!kh2)s`dR0}zxPqVUCwpk| zBb!dfcpYx%wy~hUKVC}QosV{7sOp;As3|UQ{Y1Hk0vK8A4aK(eg0a45;Cpr=FL$7v zapQR_-A1%L>ed(n&*{nCz<1+*ZkFC;#>7Slg%A>oyBZjy19k?*ANAQUz?-gz#M_cj zIp@o%Vi;)H*`BUCc{oa?S!MZ)DUd^P{al#?t})y+h_5tDwLA$fT+tu^DOiWH8F*RU ztssGj(4K`m*tPYVqb6=Pt*>|OxuvBuEdQ%INY4@A@Y*SF*dQOMkntUxxZ3=)iipi< z(ZQR2^)!%NSMCIpKw8VKd{JPJ(TBtFkG5@$7x|*Rcz_;4g78c5{=1KGueY)L01;w+ z_00DWpYt%>b;hduSH~AyBF2>VbzA1xU!bUVnNn!^)4xEhCK+}n6pd}A(gXHPO8a=ig1*&3;liXZ%2y3#K0cIO;27(x{J#KsT3E8>7{ zFSG>w=ndF@d?q>p9S4en?uvNGxGFaLLhf#0hKw-{bpj<>kAuc!vSLKGE0+GWtKOhb z?!ZNB^;6I2PDUX&hvd(de%~6cw3zs!W>U^;3XRqt6r&#%J;yqyROTegalI$#o&XcF zG>q{htR|B{?YG;!-8q%>^zh?SQz+9-2KvJC;uIUu!q;MM!|*tSMZ^hC+}Fh((2lop z+On3H)j+w#{Gj%$+Q0Km$KjqjDuRcXM4#|fwM_`hK3)n3Ih~cw)G8+|9t^Pr`lFRu z8PDlXhvUEhaZW&F5`?>m5es4zS`kzZeL)Mm`7lf>fs`2>CDiH>Ih0&Q3C~tQXT=E= zQT%@vHn*9zrZ2cN9sV{;Aanllxd;IM5!^o{A;nw&f-%3wQvHpUo!acAB{-=!uSWXG zH~u2`-WUx+bBAlSRUjhU z5c7+|?4vY)Vtj^3;=@oS;RC*%HrQR}1MAnpny&>=Yk#A^j>Hdji8fdTeYY`x7e^6Y zg>5}kcxgsd1B$Kixyry@eoGqn;jYYUdXK@Z-8W}lw~oL4m~V7elyY~S{o}GGP;@Sx zr0Zw(_P!oHO|4 zHxj^B62YGWy||aG7Y$o$eel5(z5-NW$ky4P-(#I4j_2*Ev<|81hO-kMwTeg~@*lwg zw~-(&PeU=smvXmH|kK<1xVs#PE-m0NHy;;ZwcFW8ANHA8!|nv7l!0lyS0XCFbB!_sQ& zG5?O^OjG;rqFx;OyI^*&cJ{q1+Dg?3C8QXHwt1kRL)I5A$>1g%^jX45;akN0)P;bt zIuku>J%OOV=>Ji1s*$dQYuKWiC~Wxo5D4VkKq%EBto4ufztQYNogy(Gj3xun!%d)H zl+|uNC>lK)_&bBs2zWg_%Pmz*cqCGAbdkHp za;Pk=J|e4ROEDF}$({7K0MN*v0~e;eON5cr@ds5n!^h2#Ykx^6u?&hQss zy=B{*x86iOU81<`#@hc<-+QC=?C5))QUf1Pn)%m2wEtOBiiwZp)IfpRf8xID(V&L@ zK1Ux=FZ%=cz3qu6wMn$4S>eDh9m=Gf>a46}%{Pkj3g)ddq$JAYpf=#D#pO5N%djF?E>E>-@)hg=ZhQUJylmEKmwX+*cpB2`Vlq|W(+x1_z{73JcrC$Hbfb3%oF<>8o_QSs!T@#%Kyf6R}s^4u)Wj`h` z>0W@AG-@eTdvHdP3>&N`DRL+jAob@tUT&o6<0q%~+YR zy!9EISceUt>8<4NyKLfc8o^rmR=m|wTBYckv77-rE01Tk#;F|75tgrEEk}Y`S4!Sj zd*VnI6&SDS<(^BG-HGntm}Hzv=)Kg{2+n)9h2Pd@R>3!VZo}&WI&)s!~Uh#NT||8vmtU*YDjyo>413N$Buks79L)K%Yu z$RhBb=MIo$x${Z=I5cM{0CUm8OP_aAV!RR`M@Yn@gb5-x+kIh03z3`j%zW1C-?CDh z{+?w#gOK<265qAPsZM%`?Z#$+PPTs^F#UEHuX%yS!7j$0c=a;$aZ4xgDJ62;Om`8} zm4}qRfZMvY)%)eBSB_+#20puqrb3`KijXscY}@d-unkB?1E{fKsAW+jY04y^;QE|P z?j>8>odW)?+~s~dFI8{$8<6kW-rFLF=*^5C$5iDuz{7D5g$WNM=sUw>^5JYf08M+r zmZK09{~WN6Tk{gxi(Kqv0e3s$dj)xXt)Iate%?{hz*fd~-r9XvLd_EYNN5 z9BX>tmg-UuH}3*M5g5>SXY^w0nqIqK+x;1U?sq88^mfq`LDzmTXS4dbxWAefy5_d_ zm{*r}5f;ZPWx(on9_(^fy;htay^o1`#;@3Xb9H8!IZHab*fhWl5K>e$9}S|4kff*c z*{hqv*WBB>2uV#A;}b{2C6X{m!S?hAuz!tzF0KmGo+P#GH?{CJt<}G;C4RkCVRWMF zy05L}&l0B14Jgm!CDG%o@P&nLyA29KVn{2)3o7+k}pUIYYlb0$G z(>{%9cc-Ug?{9Fjh!~9Gz(1L;XUx+@cizd)=q$>YV`Wn6qoNsPd>#K2h*n7zsT?Ve zyc>UI;Vc)3>fKRbL1$mu_%%+BkH%+tVV zo53RPqtn$^XSef~gW*4X@Z`rs^nukFm`j2BKyGs>9V%4MbT(CVP4T0<$`B>9?0092 z#$lqS6S-N-+2Vsd+Nr;t;iG@&GXVnEZ&>26c#B%~pfopD06+kIjB+oagr_UrH=*+s z(07F)boDG{m)$k4Q>V-}Y82E!*~H;^MdJT$nWl?AuF&WpNV1^+A=%bS;N>{ajJ}q9 z0;ei@(4Rc`CC+Y*uHCPKIZ}N+(-%9q#{4Nnho2>t<;^6#+~#TsIJKKPrqi!~>bex=rdb~c|tC!=k)x-a)zl9NJ@ zEa_ykJocyKV`(WkgIHUr9x0z%bi3sEBv&BiUuSqv0$k*ZrQP|WXOeRMnCG@qLKnnP zjl=|15*#d5k;`BKNLmJsRX%gP+tS**Era?Dl^oX&WUo!>@l(e4lK*pt2Opm8)8*P_ z+@25#(guM@Dj$`w-usdzo=nBtsyys4@7}3QDayQbHsiibstn*!7${=^A{UKY9=$ox zZIP2oq%-yVbB&`z5l2Y;46BwO=%QbcEamdt_?qjoHBLWuktuv&jKsd3VS)Xcwor70WE65*$@I2yeV1lIxEw zHC;5SM{a*-+%yw)xEL8Q^bqjRm^grIr&IROa-{++CnDX9|J4{i=fwqojrUxR{=eF} z@^?1#Elv%pwsx4(Y8cg)wu)jbv1HV=YKyH#YpYHhp|(nd#1d`ogQym%CblT5DmrSZ z3Zb@EY$+A7Z?Ti0l#t}6Gq?A-_kXzW58vl`pXd9Y^L*d$_q?C;p7S}U5!bw2P2d_! z_kxa-X75E=a%O^fpY2jH=`n_y}&=85M+h^|2 z!o6*(R7;4-<~aiRI}dKv0XM^zp7tqRML&wXZlh@8?OtOyb%J|W?(<&<{lvo4Hc15H z1tsMGxwj6|zM>(zjY(!7+I*0xg#LV|f(kU<{hn^M_hU%K%ZRifI|pX%$ktPRzbuZ%YuK^sGm{^opC&l0V3 z2p5+dbN~I-^&45O{1^er$MO$)B?Pk1XDNr?e_3u6_S=ktM@_&;I>jY}2@t&7#afXP z_KOYGx{~Z`eo>8$&9EmbD6I&XR#VU0 zq%FLrYL-I&%BT}`&;Tzpu`Z+friV`QBVPaq3~iPb_?c|NOtTG>fvit^WsbG}0~Rrj zJlmUk+ByX>M-)HwWz!)7P4+)$#I8~icOtdS5~-|Ce#ZnI5bCABJGmh8Ohz^Yfc{PMY z-q5q^dC|A+%_yoGi)+XVDc!nPq^rgqq>3jft?GN_@2g@?U?vc%36y$%cMA!c^7Ki$ ztI$@6$^8QEKzaBRj1-H&R@E($67%{N8frmOUJ!i++V-}-6q z-*TQgt&;%>szR+pj;oW7B4o66c{R^(Oze@2emPS#K z#NfurbaFEFXYPnI@`CR@wo(uaR$eNkDOd0h_*gZ+5M9(#D=#Pr{~>BQe|r_KM@@9+ z7W|s>@B&EP73qY6GH?tiKV7Y{Jc^)gY}8Ne=fEa7VT_GW<0kb4A>1RkWPmDb4tJhU zy^x<;>)gaC#O4P1?9OK%oGlh9qV>$S;w4Qy!d74h6Z<05di@MuuI3IJPSF2vxRr>cG1 z=93OeaVn0&P8-a!GgkTW?!&xtlhctLz__dl8BjC{sbL_1VvQl&IcZJ@HhXLj4dOa(}15 zT=+RjW-y{gllEAnT9KF`(w3&=t)6kigIzwl1kBqaomD}MHes};*Jw%{@(7@!jj3Pv z7b2%YoPL;%!G!RkQ{cdoZVCuJ* zb}v*AQwl58=;{-Lo{1IY^({C+7-bb%eDYhCFnqpf#)?8&YMXqpZc6|4LeJcS171`L zaJEc8@LWl&!g^85d-*S~gQuboYJCRlOr$T+Q9&E1VAjP%o>CY~o75QJ-?Ssz*C9;$ z8M3P{?5U9%kDYO({Gv8cJ=dF`-cnt>a3DN->jgHC>&|z-;YMsHis7ak9G*>Z?z zUPC3jMS3G-p*Lzxhv8&r>UlKbkCC4M&k&o7f>tX>D>JILIluTm@^jtoVNg0N>zU`A zgh=>A&+ZTY`_GdY907G^)LS5@g~gdRVboGEg-K54+3^QVlT)E+ykJQKcvqVqwYtn3 zZs%7V-svWTdL`Aui(@Ls0QWA6!+jz3r1W{i;47jL7msHolzmQ9=W~H$rpbf4S{x^6 zEpIdDac{O4h$=daYyN;grqkKJwcI&pi+k*1yigfo)xwgmdwN9pcd+Izz$o{PAe;#Bj*f7s8 zX47xn&V*U3@o^=zWPWVXsU+*RAR3?A>Zc)$9Y?AJiqsgHH*+@H-i%H$y-ua0IRAytCnAv|Xsw3f*b03s2Q~JdvY!&)Z`~S63VwpHX

    g@$86YnXV&w;NVDY(dw))|61w zL$lfnbcR3xSIj6~g^!PGPB`u2PSz`Y&z?SDw(L_Cdet`~I`;4XXZD0f4H~#-Mi|j5 zM;=)9XhuK2tHWWNW{j&@+u1dYiHRvS>!lOAVMFTe+jgco?;yHy@$qliA5aW4E!z(kw_W0Q7Z$IyZE>5|>>aNwjEv^f{q$ejTXdgiZ)@v* zV_l0*ojM&Hd;A$cP538=uXXL^s3o);?}ZCx0iB!}vm!ja6`#xz8LE_*x4etEyt2|R zZ)m-7C!RRfOpdl|0fOXA4HdxAJ3?a6@->jS81?|V$L1Y7TF{x2UQWmlypkG!_3BX2 z0SkIPP-#Ayew@*e6DN953>z$8zB~Y1wrFy&Q-06gn`6MQ@bm5ZPFn%JoZqxG;p){2 zLd)M8^=s3%?MKZb=TnXvMVD7OpZaIl9-oB^qdjh{1DURYs+TgbH$OMIj$)b93bM3~ zp+^?0^=pEyqOP;}4%keJ^=!cJX4HEJ)1%9|^J9*VYF|}d4H6#U8>iQ@H+xWDe*-D+ zujM6E_Z$1KfGPv6bFns#a11cqns>BV!YYFY>cC3#phmt*@ZYw} zz}3q(L3OL&K*i*|$tRwWfE{nQQy+M&MpUdDS>AV?;L)i|7tLnPmQ$DvToY5XvrV(R zWT_mUu4mHqb=Os3E802tUvLhzg*1pO$=ZfyDD*xLn<1`Zs^h91dpWGxV~T`?)#W>&K5DmCUtO1m^2; zturn-7k!#Yy==`pLiX?9-)^vPD5E6iUWRK;d0B~+3Qo9lW8UZR;luaoLbK=0 zq3A|~2ab*JPX1&Vw5Lh?)9IGG4)O}O##Dbw=1^8!i%F9vAv-}dz3^F_ybN~fJ3YKM zX1$td9fgH6q!Rl2_Jc`@Ey8IDO%Q%8~7{&AZORxQ>du4~c>O5#r zI6wI2%a>7ft?x~WnP-;~EBD#6M>sfa39P$vdszCUtfBh>MERmR{`~ndXlHo14gb1= z0q<5r7M;{hZmtvl#kr>P`z%H*M)^oOVqbWoBl!^W#~BA7bbp zY>EJ^Sf7)9!s54;cYrCe!dIx9`jx!Cr9nBv4?I?P{vHa63Nwi+$@b}VpdhjP52dF+eE3i?BP+p302u-J@uyv!lCE~j`l>bAzm~PN^{9wJ!vHbJpyaSE zk~T(1cV@*r>GGFnf?3v)`0O>SR^_~XTgME1$7X`qC<Gfw4j+U2r-S*@@IH&Ro*-`;Kk;#jU6@(-ZrCYlv;FIUsK zq*s=G)C13oOP4PTQDdcnkaXCVPV7}0C?ZOB&p7?HWf8e_C?PT^CwPR`bpB`O|I$R3 z(Vu)}JCOVAf`UxOsW4W;ZqrF}J$%&Vs&Wy!6M2q{1%@ z0vsEET!Z=j4n{`1JKOIR#DR6-R_JgesW|_Z=CZT|06a;zmDtSEJ~&Rr9?n)=R#rg2 znf)qmj934BW@}0t0rMJf7gXY&c^EgM16sKR!J(9Z`7v z$%zl{N3K`Pp^R`X)QDEjm*$QHs-h7brWz4Mwl%F~@^#@bt6^`ocek971t*8nii}QS z9?J&go>+l#yywr4%ajjze#)OI`haJRCQozLo|k0uU~(+ow&oU^V`(Y2Cx0KTer4_E>Liy0;?-MJw1B^ z+GRBW)yv6*`|$$iontK@>h#-?@%dtKuwqJ5;Ktp%TW{L535LCf)`oPAczUGq_VPxE zW6I+hEpHVUdvjK{IsOmyOBMttZmq+W9%Wit&8WgrWZPihBVT*G?stScIxfazIF0HS z{?T!l%Y6_yEKWJf<^46gK!aZ(_6W*-F$ELSCC8lmSCt!r_9V|C;5sMAEg>PH>$oG0 zMWTEbV{t_5-7p^i5%eIm+Py67yrLp0T%zzP+}+&;<3ZQl{`zaJ^C>S{SFFuw6Q9z2 z+kk+8`i&buKA?otMFTgbNJ0kRYZmJ*Mtc)H0PrUp(AwO>LPQfx8ic~$9;x+3bYQz2 zpB#VjRXv}B8T(4GhXhH3^RbuS(vSj3$s@=;ys~f>^{alvhN5shKI!y`#nq1Ix|CNp z?&|*M-|B7J+(r>*M%$R;mUnwc4~(a}vu4f8%gd{e@|c=xX?HijL$6-Fc#D<-Bvw^b zHORlT6PGWj8tm-A?aMr1DkFx452G7>`SN9=v-9o#CI{~CI{}#n7LQ?Zz?^OY9|eTr z5Al1@>>$$P&rI3J)@n8QQ^3f@bG_zXdT(dTVdtxnRt1xDP^;yL5sleqJFbrnGGE<% zy>i3cNp}#|LT8sH|Vf1p55=o$Ze-P(y;x}!)~h57p$3iIhBuJNHFDrRubEn|qFUFRTH4Dc&I}uc zm}@<5QE%U8di5R-O$Y8##!0q%Qm51Ktjd}EgBpAA!$`{Se{SPdCD+r_ZCfYr=#HpFVvO zL8g(GzS$|qH#s@iXo=713hXK`=;7+7M%j<{?S=TIym*1r`Hy1D_U);%fsmG9O$XU| zygs!R)!$xvXcJ;y2~mgweZvZSCxm>9R0=UUq5g>DdV!B~Geoi>m;4xd73(p@6&y zb#_kSjieS-P@ZM*rR?PmTXesVN=?%08m1Rf)FvX#jdE!kJ?rQ^YBE06d!0iHza>jz zVZAF>t|XSzACbQ64!gh3tu1@_T2){Rv=t0^6pa>1`N73GlVq`SpZI1T;3`pa?<77P zmC>4*?=b2=FK8G-xta!U5_U(m>x0k?JsA{KV~o}#+WASRzKP13rQP~(+gw=pE*p6R zEc5|@O0Q$bG2M4aUBhv$3u)xQ=(`Z!?>}#;4oLC4lscNNj*nR{tJkrUd-q{Ac~doP zdAY=lhld-8YC1ms@{04TEH6IlxpUi=E!U_gF=x;6;w=^KJDtr8wNCgA!auih6H@5l zMW2qjy8Nk8q+f2w?d}QZmK9U@01c{E=$+Obhy}QGg%Iu=2SLa!)R7mTEH}6+2jer3e1v zw=zH51ZDq<0qbW+KbiS`p$NjmscWK-prRiFlqf`jhxz-UZ}9O_z;A-bL#<4ZT0+;a zPvIuR%ms|m(L@--!*Pl8R)M7cJ^pwyL_ID@X+nLAobligdmOT5F|g<4I%l0YV)gIk-6FreHLI8a$3?(+OdI>kbFgwWCDc8aK)c#$+oeqwmgQ|j4fI^`yEf*c=oK-Myr+Fk%l4iU7gR*xDLW}!ubbcC`6&^)VcGR zi?f|nt@kZWUvWb3W#QHWXs94F3f-FzAMAX5`mn>9>KP~tvGTK~hQ_z(I-Yi8vT#f1 zFI?DJS9duD(S6peJCw4up`iycR@ssvwdyo1uBupo+VPxjjZ{q4zkTeuORojXY5=_= zYn8CWk!gm{o_$jP^d9SJCj0wN&+OE*XA>Ar&YYEZ@x(d(^5Gd*Qx3No2HfJo;tRFv zGrMFt+>54C*KSAmkaOqy7BBMr44M+V6c;`9)vI=XlQfNC5~5(kMe(nWJD%F3o6<69 z*y7huXY}L6O`P1{dNNm)sw>cc!M&PdF~i|?>&PNL3ZOST>CTe1lt;9Zccnr+*z zhg4FF-hg%4F89y6TLjirO#kPMtHI}sL1tTv^d=R~y#|hqyK?1W-2ABs6YH#^a(P?Z zL7+Xfa2K#%4h|~&(xWtyk`ERW+6IrKNWaO=y^aN2_~JqjH0q<6C6%B1o;lmILHVnm zUkw}AukVK0ExiIla_f+j|0~E#1*0Vbhk4iUj+z2|wrSi%XjvEvoPD4En?>4Xt4Ok` zZ{NN=0DFWI;H3vtrt)Jo^<5-L`WS${HND-~*x2t|VKel1pq;}B$DS5Sqr7>f{TPng z;`8=)45kTw%MG}1@z<|p)vivQI8j|gV}*I7RKGq;y4SO#@bKsDhA!ET7d&;^G~{~& zK%;04udXiL1uZN=NEN*S@vHdTx9yp6<&)6BEKmh#Uvh||D7~0244sR_kEVxLk#XOB zooQs-TPN)wekLvl+Q@zTb~u-NnH-sfcKA?K!58;)*Qw5{XsQ8Cc3;7*nL=VfY-eLHr5i89A@m{q{Ldq%pZxq=JQ;?t5qkMxJ- z&^Xq=JsPp%+ed}$2n4NG-CatSOL7Y9#bf47JCs38mv``cmju5szO1|wP~|=d93CP| zr<>!+R!GyFj4|e*nF{f+4H0*8`z*ealAPRozyKkD2vheD+iLQ(Mge$$Hy-Fa59i;> z#So(-)v@2HFP+KH&rhr&L3kWh;dEhU3+Rnx*0y&Yvw~!x&5Dr;yS}{GvU8^uO^b{7 zLLh41(|J4jzHvwu5ZG>i{@r}?72inW6oP9AJXEbE6AASa9;RT~OrxKrrls{=`eSy^ zoJmEv3uE65)e(=(*f_#9s9Me^R`ka25nUPxe3uNH>?U!W4GqIM@MdCNkGCDDf_(T& zq)3POMRTeR{i`ecX9p>Vl1SQ`^mA9IsLrt)PwPgveLgWUz@KBmd!T9Dg-tmeAD?l+ z)YU2_f83SIY>@OctbgK{Ti~-AWL*FuklX_eh{^$CUV{5l6ymZ*Plp!d9y8mP&J(1g=Fsub2ARCnwYc@_$^H^`_m2FYzLmDZ9;+fmEpeq+ce>Kp&Kk9 z+$p+K&{ZlC;eq{BRvw|`R)!!RqE|<={3Un9gUfyM#sb<3J0E_^5hUGq=F`(X*DfxZ za%GkUq6oFuivupDsJObiO35wA+-F1}k4}e&=<(NIwoq4|%fm};LvpXi2QOkF5+Y+~ zDU_GuyfE_U#4MRD;o)7MRtDhOtz>{S_uadjoTH5AY8Cas;p&ow5cM-fT^^s9u$hcp z;k^Z1Q)BdCRL)qWIk@7%qBCTN^n3QSwYTrvDoJ6vk`y09RlfgfE`PfrgU?I!F|gb?w-V zHAL1lrzH4Y=gbl-?lsUN8FQZIIF73mi<$rY{_>-j$*q*juXOP)qsOjwJRz^ls|-7d zg!C4O0>S@yM#&}xnZmxeeAs2=%7UJFadvAqwA?zxCswBfWJJA#+4l1d)my`vPGr5B zL;pC@Wh(xwEk=)QOj+vO?YG2k@s>mB@YA19_@ZKD@orWXz`~E+!2UdfjB#?x)jfR1 zp|Qsmp`oD?-Dx+-TS5AwwapH-LZ2a5>I_LkcR>8!OmvN?gxtvH22&#V+4)RVW`8y) z@Xr+d!N5d1>y-DkG^E42vjFIjAD&LtP)0lsX!(35U0;eC)c!-u3H$ob(qgyYNKX%4 zqo$LWo2xr8FJRP!z%9rX|AO-#Qztz?3!o{nkYb|L-P!SOd2BWZE9zf44q~+yCa<>?14i?=-$0; z*^V8Fh+w~nJ&FD#Oy6eID6d;vJ2&q(b`>nI)!^|Z27mQygZq@swvg1F0#zo0WFZg+ zyGDHb#Kc5m*1r>*`ZdQ<0a0dyk#PyIMS{S9A1ER-3h!Gsy@cv&Zf-7kS3x(CHx7y% zj2|S~S8%m8+c{coOG;tood2sEd=xENVntwxu}Oi;@YR!Pz0WT%=%TaiTUew;OP%1; z*)=)WRRx!0Jz&cvXJ&4K@T#0$@_pu^s3`m&-qp|yW%4;rRMOV)@N|BI5p)?0p97~n z4BTAZw8sSE?dgsHU2*y)eDgb=^sA5t{_F`S5mXJTuz!8Y_)AfzdkdRf2JOg-2Wm%O zT-vL7ixwfU%i=;`ji|KzL;yY;+{_D5TejZ!L z?`QFMG(psYQcQ1&p^@B~@hUFn@siBxyho`EPJ0@yM`R!Zh56Va_!PU5Dy))1hKD72OY%JHp%XZ_tDD;9*CI(k z7FA%Y1b=bP1kXZ`qku>Rz{e$>YMgw_$al_?Q;zFdNQj6ypFo@xPF32letjdZ?F~q@ z(rF_np+vH?S2uA9aNyCVT)(~?Q09SeMxg~n9O7oObL#mmoub4Fp%{*~%Lomy1#7;H zK60c~-Gvuz(|!I*Fx{ z#yz{VY%WMAc6Qm^yk%fCdR2O*+GQ8|G~gzyVYTbPOdLJAm209OU zyzEz^hg<*4Hr}n1+PO;?30$z>kGY1R{nt_SG3wR)5D z;}F(6bkM*{Zt>|xk_w<|)3=Shyu1{2>jNlkz309f#Ee&ml^;vH?XU|0_Mqb(=PA$J?r%H~t(R*y(E9u+JHH@5+%jtdC=hxXz~dbR5MpsC+ytrJ$uFyP=t) zW__nGh;7IcfbNS78)Y8S5DL&2fr_wa3h3Q%z<@tUGUE~h%O3k>rT|opuwH=XD4p=S zo2+`W|B)cXxXYL46FJ3hRxzW-?Z!8SiT_pvQy_dWHDEt=3HB?2eQc$bM~`+vBmKu9 zp)sD)ANxKVC%<^%tWlJAwa>1D-aHy2@DW26Z{lj*K$0v5lq7DI8Yu!$PX0iT%>stpEl#ZU-r(G zfP~pUUnjk&rDwWTdsF#6KsSkl`i!QCCxv%2GwJP^k`j@KRWO8b9|g}L$%OCT&Cix( zEj#ag%H$Rr)t%&!MlimLE$-`sY|6YXFCEk{!(2X2)D7=6k7>Q@H*c=yzJBH2=P27a zbMZGHJ<p=^N$b~?sIABTYEwP&&iDgSkrg_gP;08 z`+uR*RXWG&EgrP2vL6@oD?LHRU(_OYm;^TYrDQIQ{QUiMKYrZ%cE9eb^p`T)(Wuc> zqMzG)PLi_>Jf=^#Cag&!k^pexH6{a?Gm*p&Z#%6Swm-eKZ<_hjDYO1L*;>d9or5%m zi|drSZvS-}IV}5pN$K*%_3kjt-~f(9=H#wDC@cDim<&;j?zdZAd0_j#W=f+A&OHad zF&;tan+7gbmV^n@w~}+k$iSFtP!%}yd3;plgp(7OZ{EE5u`;s`zs`whuM{;(1P_T9 z+|Ny{{xJz7M#9w$@Q(j`{8}Dv)RURgE-0i-dfI4Td#keh&WcYjFKq_RNREkiUV+LF zm=ozex6HR@UU9<-qke2jZ zsOpHaYRRTiIgZd=1?VVBs1bdyb=jr>FqkXwFb+Z-}+r8N=xZT0vp2p4#S6e)eZc5p-K$94r2zx z+sDV8%&n*A_UQdV&dz%htq!MO^=?1c-{;431JAo+9LzB!Rxxk7?(65eIB1VA3$cjtN>Kd3^3YdFAC zJgD^C*#}H%Qhjl3!O(*H?Hg^hvY>%>1@M8MQFO$;r6A+nwtzS35on}|jKyTN zSku!){dHN#PMua!AcT(MCyG?chIqpg5}=40@o$>;S&S<7j?+Es`ZArFURO{!IGWUS z42OLvKyQ@K6mULkOy-3?JUufS&a84=x$h+j_)xy>{11=2(O<*?diU-fDfq@nFU=c< z=pWmgR=DXX!Zo1iaCGz-Y%?~m1pvc{W68-(vWz5%j#viw7~uOXPqluNCO6=Pz)1Mh zYBJ9hUdfVCFn+zZ_v2O1FFE$p^%sW^oTn|sn`s!yg0h&;lG7J%3uEs#=1}e8MOvv` zEgUKLH<-5Z7#V6j;^_dQ@)pO(Gy0WGrxOVqUV517B?M4hRszen8RYlKIdf8(AmV=M62xt7e1p647+fsnNm@%{eMp+|1QYM^?#DB~lY@SR@-FdEK01<@BYa zd|hdUzsJ#VSR*-bbahjws)COW%w7XHk3Iy2d^M)1N6Fv zw8apNPkFI>&gT^y2# zu(ZD}ywG2Ng1ge1^5EunFfi2@W-d<|>sE%NXw21(2Z!|~@l zwx#r_TK^Hd&GE!E=z@@DN*XUD>Vl)OiI^--k%W(%_i&V46F7WEp?8Q%q4w<$R@Wvl zCI%0|d)rKZL_ys7VAJIh?;dQCFo|hkJ4!R2b|EAf08!Ts;fII&D1Pxg!g2Y78ikFf zV)NSG`eI_YYu{dYA=`&5Ud{oiGTkTvSyJebh;16pjYhoF@Rm5{jd_!P8z(X6&ZXSA zQ70I6`y2-qkdI@B9VSw*gGILMa!++l%@hJ1aSK0caTxKPhwn_O1v0R4US(Ces!xHY zdDWaNV|wv{?4bPsXf)2-Y%Q^-$(yhR4morUH}>xX!HGgasH|Q%a6ag+{ch_sS(HR5 zDCn}Q^Z8@BD>R;e;SDYY2rOcoq355Q`J}t#KIj0bNmIGG6awi57HhgUwmd%GtF?-$ zdva~L&AWEB1kGP7I(l(^M31j|w?+8?2JjX-ZR$81lNvGX_;?u~rKoKn6@>J%?M)9$ z6N$Y91Q@d+^^A;K<5RKm{7Ulba2s>k%mUbwu3AOG5t<&Fl@cEp=KzV=Y2Z2v6@i5< z(^rzLWQ~fV0-4MJrF6#A^z79w4yYxU=MvXj)NuO7Nter8*|22#ZOMA8@L;FzTo$74 zbnEr#`X!gTHE+m24`-Z{M&$|I$IFVDeowoXYogTQ)+Pai#23YjlH)Dz)b#nTUqtzo zAPs6E`%ca8QmzZ_lQCyO%e+k2jmIWXJ(zf4t={-@wuuGvgPug*jtDNpKL*V>4gT=3 z^_})8j@Y08Bs|{XGiP?E3qW$$kUti%$u1`GmP6*VRok|j>gvHEAtA^Y=2dI5CZ9+_ z(L<`yY}qmmHAcESX#EY&Jc>@e5c9CNiMrLn5nZ^w5M8)e@Fm6^A2)|bWn^SvWPk^I zH%PU^h2~iKSJLMSV&=te`4QZysM~=uS=8sR$qq4Dd zxAQ?`;=J8Ox)I?Aq}?IPWmWnq3BMs~&-eDu0hdVPn;-sYoye@ma%Qdp*Mwq@M5eS* z>e3H50DT0aHIJ`j&z_%0U%K~dOi)E>=QbPPB{d!6srh=WL(5(+*OHUXl?w8stI$9s z*ak82E6r~pGlztJ4l;GJy0KIJ5*=RrW$ah12$nX=%&qvvfTGp&~-H z$<0+hpU(tBWi6v{W*n#uG7pUMP`H^F;v_$OSZYvIrdM>o=c<#FRt+Rb1@>0lXZBPa zei^AIkc8$NjSj>x%~-85T6y!f4vAFHQ$tx48VJNg7ec_weg9q{!|46S?yQ?itLG@D zGa!5@6uE2)@m!%ae|a|wvrl;G4UZZKVCd4V+gg#kK7YQ;`o0G6kx^EvJHD+d`$BcN ze$A}^N0QyAi<}rC%&uFvZaUb<28EeHuUBqk9G4u5LQ1ZTC9++{pK#nL<(;N&blNo-M!~y~t=#6#8;!CCK{k(c*uq5n#*HI) zR!2YHpdK_b@=25V&CEl~>Z_?ioJxEYb4 z4+=8^)WI{=f1miOoa+>mk-Y|*%h)5lS&igI|Mct*HQJL$dNFiL8x`q?%>>$5P*FNf z%V0_dO-@DdJ3RpBeY{qdrk)O~f>W5f$sp(j=ezU)rb<<^GG~8)qa(6MBHZCY#csQ7 z&!oSAZzNIab<(TBRc!|Am#7rJm`mvuQJu@lC1?gScS6HPl@bYC!Mvl)3;<_4<@QQ7 z?X=iZH}$|3U=E9DI&uRpP8@7`^|Z3O(@uoPPTXda~;Bgn1LwS zEb=g*SVi#M>P zO$qv{K(Y%Yr_rvRyo8;TtLj2zWrD)~t_{;;Nuz(kzQ@Rxyz;#{@QjiC zO>lC`$aVHU;pM5~#m`yz$X-_JuDtGynK~t!!s~fvkg&@Va&zpCT9x3hzx$UX&QH*Ly ziS-84P&w+EQFW1Pr}B)Pv@bT&EgkTBs1ka`MsdJQ;0Vf%a7zW-H(Fwqg9o=6;GmnT zlom-|V?DZtWQACdE1gdB+kK+&=_i& zQTbVJd2AHPzVh=2$9IR2Ocz1>*Nob(K@7Ue5E(0ig&~t0)iW*%N9VvZd}}kJjv^*7 z5)ZdSXL$dm5sNmBfEJiscnaHyQcvY_)tGOdKX!M$CvuJp+EWRa!3`cwKUMlJrA%~L zY|B3B)4zW-f)@*kooo#Y;{SQeGexU-c0ad)ZcRseqz8Qzrtdy&+HgF_!wdGMy&pUt zX9eWV%hLJ@D4_-J#voRRIS%ub+l^@lSz1GMl~(}YKo-&{x}3plqL*VT$*$|yuen+F z@m}y(puI%UNE5Z{GeUQj3JN$hm%B0*Oe(rDS5H}mKCca&|7W*hx|Uy}h9nU_09A=? zj8Y+D!;-`@xD5tHik#hIeP$sB2`zKpW34%xX!6jHEEH zZaO;Dc-ZaC`nok27a!eio5$%+KBkCU=8+vxeONV8k;K4_@wg!eQIH#B`Yo28Bd!f4 zfs8{)V9@Rr5d&dL5%e@k=ga5^#}B4KMLhplsqX&_FHG`0OuAt-96$d4z+8j1i*$Xu zOrBKqT6s@@!O|~)2pJd7T&x?r_Lq)#Tj%xp5Owo>6LeV7zsR*(ZE9!BX%4cfAtth^ zAtfY1h3^w;jW_nY8zmuj5oAehk-ERm`E~boSyC3LQSayl669xlJOX3@duzOZX56|g zqFJn`t$%rU%ci?7pF9X#L`SGene$d#ey%em`vQ{vgD?NPWDhUa{e9{a-A{-BufY@qSJj(EIty0*4G0$+AQeQ;BCFUy zjRDp|0T9laHjjp+z!t2N>$f@R;N{c80*Q{-B2 zU*E%Gx;Q&;Wg3fuD2@HvQk}D2`%Bu8Iuzi!Xweb3>nn7O1KHCE*8e6=cz5_tWQq^< zoT?uDxbiiC*26}sp4P29|E%NCE^>-kXnIPCC&e0S6(rlMlV`kH(b!E>ukEcBCw@P1<{*~FF}%k(WC7$fE{Yt^@)|1RMwj z7;eImAY%5T0l=9a%{y^I%^=!ql{!;1owK5F+?zI)(=jCP#%Ge!t<-N&PWlxRz5$>Q z9IirHWO!gBsM*$hRA{>qi}#-x|F`~y7n5CF%JBwJ?maMBWp*F2oPPWLrA$I0e>7{= zs%zg#tIE}E4D4jv=pB&A5VYhlku#Y-0s@W21A@QDoIjrtdrHQYvqIGMc5%)d)f6-5 zIfEEtp;KvO%$ZSGGUDOLfo#y83a}Az+flA%@}^r74wTiw&9x_<>>!D1%$m9zTtX8@{-@etn#oB4;;T!JfPLyt zD&NX#b>QPDcKWLx-MTd(W+P5C_erJ^08%cA0lTTgBEb@~dIq&&vF@6cr0y?A-$^?p zAueekY7occWXfRMz=7704hK0@uTu^NPy2sQjLe@}v}yKsV5@ol+}$n51blth1bE{K z*r?p9fepr!mLr2Citpp|@M-AIrNQd{E3Kl2MLLMUF9YT9Jvj`Ak=j1KGtBdc^jS0F z*MiWw6XExC=7p`kFe8@{muwdCSin48`u7*iLo3m)9>DAr4|x;z>Q@;|opwiy^`de( zV}rW?D)UIx1;KrcnaMLD2*3<_$En^Sngr=?EI_0wb@vgBV)`hEa3BQ z1n_Xpa5U498Yf;|av`wU&HuY{sJB_-3!UP@xn$Sb+#E-!_j#zUN$=J#I{o?#{!hLS zCJ$i^bV+s|V=&sxY>)>`<@d)eC}@g%{rK-c*TV&xY8%&=XgCUAM+SA#aaENq%tJqI zHM$juiOv_~5gwx7uWn=)8elW?zvp)PU;96-LLTe?twL-FW4ova-VAu5x{hXPHfg^} zy<(Ge{$GX7Jkm zPi@BU?TnGhA(d?fFe!L8BwYM<&RO_-N0nrUh5gSlqn6r-;IHKLSnP6;5)4sN91;U; zzlZM=b|$^5&wqbCV|-mWqz8aI=9q)-vb>=kJEq)^Y`{OLShwMK#rw5q$;fYu-oF&Q zaP#I^e@FSATmH9$OY_}-oj~bc*qg@`8elCb?BA#6A1?LAynf0Sj?4UgKYst+{|6_Z zmKeY{#puDatnrQiox!*F_Aais?o-MYpSKNJYe5yRyr^QrpxH}~5W z6RG;|H_mT@@pzOX9#p=BlfX=D+A;1oo!I!GAwxK-;-^~a{@<6DVE=DLF%O+RhG;3X zEz=8o(;kOKJ!mz!@voZ_cF*>|Px#l5>Fxb>7O8x$Do|${&E5CYvoHzvlgs@r!&enu zyl~-y5VNG8{$%p`>JV|$JNGc0WMGn)BedWzeTco8U^J+_7665uI{};i7N31!&mNiQ6{iI4 z_#mzw$Bu_n9czB7jsCR`^8Lmxl65cF&Sa9CC=NI=oDg)M-y(i4_`-Y9BJngCc>Um7 z{RPn5m-!Cy&A?^!wR{XL=(tR3b1ugQiimg)*5@5fVRn_J%Sy#olsrmMOvA@6nd}J|FX?Fm`h64g$_5*=T z=NpI_fPFX)vp=YvoC3j&r_69tIjZkX&j^>J`os`Ly04oRK%GDp&eqHLKNkL{GD zLS!NMl3HKiwTl%HWe(S{QPxz;c?Ybn$2#jl`5JB8o={Gfz$Jc7<vRQ{Y)g9j{H-RW6Z9v}6DSlB; z5CBM7OK>-0^ZQHjKxzfLVNv^-{Sgt3MH^N+mdcCRfs}6yF8w@OG>Ib%W#SWL1Y(n6 zRh(K)2C=CWDx?U5DiW1e3<%cru7Mb7MfdsG#~B)<5DMWpX?h}sReBBF@IDhUj8F{& zq~RC63(`3EtAeJt{!g<=t+#W_7KI2gSwEM6ZUYP z$V?~Oe=K2lW(1aBT7QmQ+IO`ec`;(mpY4M34-fi zu!$4HO&;uj4i!*9Tvpdi=gwjTR?mGYhnrPg;+Q0&ye)b-DkKJowj_tLfb$fU58eS) zYGwW77IXkHTSkj4EmKXaHRUR@L8!zEZ&L4REEh~ln##0gj`G7R)u3>7W&D9$SIIST zIx$m`pBA4P8dMX(ob75VZLMO8Ppn^w2j}`sP;hgk0m<5>=yV!7bRT=_t@WGSS3f~ogAH!@-ns`DBPR>>~R<2`aP=TM+!O(Dwasl!@+WT`R;vojA{8=*=Gp%*ow8vLD zHEG`0#4Dx0dwtoq|D2%SDwy1`luu?Vgmp5!5{~DEwQs?}QZ$95jO$l^mbnjHpH@Sc z^rK|mgila^#+;uqW?AdD`#4%tCOYv2+1F_dtkd$np$f?LBC8b-7*m9wL=5}i{2Z%I z`i(L6&SBXUGB@PInl~W$@)Pe!JIr;gu%{X27?74GqC=@d92wy`l zNu{cYmB3T(3@Aw7uO@gBc;EG3j;)@okbz$WrDq)CMtpKAJxTN_mReq6p$*>Bx!KvA z_=3vGggP?nIPM1S%Qa%)@)EM0bN2T8%lvm7R=Bln7DlJ;i|)2rdnC5n_m}^0x(h8{ z^ehyzIIs<4CmhWQ%N#+Cso9pKJdjX?x!jcm7Y~S5TMwm1&IRUSa8Xe-Cy5NP3k#Js zx)!U?g0qp%jw22dH7&Ph14x`2EMYio*f0+EuI)Eug}iG7g_P81qnytxSFB2B>p2q@CKB2A=2=uLVFL3#_IC@2UBQl$6ZTOz%QH0gvE zNDxpuNbhiG{O$eid++(iIOCjg{ydI>D=gNUYt1>|`n=DZ4{9p%6r>EK5D0`qQQ?^e z1VUH{ewZ$ifHMs5`QyPs#8p<;RTFOI>S5+=2~jq4b#j2aI@rEsb+>eOv4uN6<`L$3 z_<+^M)z!&Gl$RIwUl;JeovnEV%B#VMkjqXAdM*$Ml^OnrAWtgS76O4wDn5In<(afL z?d7Y5K0V*u@3mkfNQ97nFe%Q~E>hx_V-E=lIpPv94b&P53AuFp>+3gF--*MZPqJnm z31BNvn_gz{bMqAI3ov{eDJ?FZgcfRDQ)|6_p`v#R$I|wKuj|3SiWQ%Sm2rPZV6c_* z@4l`nJ<0u~{zJw#eq~MYRslqo?6pMTgY^9i__uU=@J1UPgm1KPf&*iyDGfM;%a-BS zr{lIRF}TD0Y7rp>(p-KCN&rEGG}u7KpOlfZ-cgR{lWhy8qB`(cOb;%|%6cYswi&T| zj60Y79igYKo&B>dcqNp#@zTU^@c+P{pKaRO+BDl8CS|6tRU~#tjG5*}G*#C&>zTaf zBSlYlhN~^Qu2mzEBvnS>isHHRB~|~S-7ynfp(LRKZ~TXK2;^IjSuj&hBD`_pyb`lE znxmY!b1)ZSzdlvN@X$0sMRY0aiv+goUTP8UY!5XFZ#sSH{^J?lW2=u=y$Qe0YpScY zS4NA61F0nQ!fpyJr}(UYI2w$($Ah6niuJk;NjF#51OFzs6{wNNv>StjcU8FfmO`@IsGj$F z&B93&RV>M$Atheh*0-0Bu=|a70;}bUIm2<&t75z7bl3i6-b`^Y5U~AfIC0)FmfG~<>cTPe1DbAb+esz<#Zp1 zIuUpC_;yvklV4dtP>|&Gv@cm~cRTgmFgMvf0slTRF)_Bg%V+}sVX=++Ob@Kry+s^3 zq~&1+DXV3C4*eB}qag^h=L~^>kkCp|W#88MdZaw_;83=bTMIGmVy@I_K6n9{X%8I2 z&cR`X$z$r4VuBDnB_Sc9%IW9RUkeNNy$J%fXGbgAT3T7^nR2_HCpyMnvN}d?F@56O zFYrrqw3r#e569N$oy8t*FW8?R?bhy1+PlrXzPMc3FFD+>k1Z5&`E9c{S`lI(2Rg;f7W zq{Bo8S82V*MMkH9vx5$)<)E961F_r&{4T#=O#5#4o;98SPK1woG;Sx~Pq_?P3NodU z?$&SeYoL@m`4fO4ZyUH3%$VV`(Jjs>};}t)nxKJ_^DrE@qztNlhRkp06jXI z^ZU2ewC7yd(N8M>`--A_we~B@8x`gCkeb?ii?Z?P8ICyQseRZusjPQ>yi2Q#jMXNq%{={VBzs^?S|IY zA)bhaQMcnRG_iCcm@0wXHxQN z?)%}k>q37j%jPD~;F^FP62ZbvB4qs(Ux&WIf|d} zw%6oBUUEoDnaDGHWw9@HvPF#G)o4`DdMQeYN8Qb>+W)Q7@!ncg7X4$Z3le>CCVm`> z`n9h4%zg)E#YS~d-ugdp`1tr-Pc}PNVhtRZ9tkv>cTmRXOqf&iO}do!Th6ySgqP z>gFanhgkKeaCeDan=Unx!cV%px0k{zl}XIq=Fd!vgya779x$PpBOik1d%ptFM@Qb= zx@FQg1s%$KQ)_EQ@xL@3wDYtb&Jc0I)jP(ngN$ANRwo$5+>4mK=C3k& z&b*Gw0tQn9tdCr0lgD_OnSQ-z`IIB->}afM83@Q25Rl^Y!_@Q3^k0sT*2%VtkG=~v zruR#o*LSP|-H2h&FDn}u-GnsX%Pu6)($QI|T`3t(5^?c9SuaLmhq4quyZ(68vH0V0 z|44#>{YjG#*de!{?`Z9Qe0ju2E|Z;|?Y%c)eQI(A5;aC|os@oERa{*_K;R6$D9_{; zT~Sd{<+W{vcU))wdU|?zt!+G*C4)_URX6|sagdC+p0(@dC6!c3qYf7TdO_Ia$lNPu zXJ`JG-!3)m3@H(?rIyxjJ(m_Up|l>O*%NbL9RSmvJwF73u4Zpv$Wymk5zv3jB#ptr zV)q@bv6`)Ie&f+HSB)W07~P|%s43@A@OG(br)$NLZ1Q$<-@^(@OR2shfK>$&y=Ag! zZIQJzMj0TiuoQ{Dt|I(ot|LOn%F0T*`Djp{WeI56*lc^KfcvU$!}-}USb$hkGBUT> z5BHW!{Z9+!!WgoFJTC%IF*cAcuTM)b9|PYJ+c7t|I#DTL{+%4}Z-7CZtZ~Wh z6Q27xE)nmeoFuG{H-PvD8v#>}bVCGg}?k%gp8y!1wSXqmT%(A1u6 z^=KOy6i!rH+xI1jG!&>_Y8DBixS7MDnX{OBev+HwIeS@gNMOt`lbGzrBCv6zJ4?gW zo|`XYqN5i-+)MdWngkU4`0xJU*ZEGIVMcDMpT3Uat9MdOm38LfB63Y9zj&*GNE*Fr zr_ryri)kW{jp+F`RAJduh4VYM1rZY1u#vB?<_HP9;eOkRc!?E+V~cutn+%1fT|cug z2{j#t0e4on(TJHV-^akExJ?@WDmI1CR2tZ>7k{lbFpl|ERs47R&2@lF9tK0*#2bFR z&*f=4aYm1gt?XgoV=+3$OYr^AsVC2XcHoVQvH$7rmwh7XZjr{(UOGHWIk=^dfm?{YI62v@8*q2r-`=N4jL4If3srYbr;Ouy#G+QZdZ~XE_ z5JGRp2#VmtYz0Z%czl8pFfaYzh1MEK25HS!xtAs z!Qu1gje5Pvik1Rf&ShE{d_8o&?NEg`X=A6Q27eflWdMW!&%<}fjPCzx)X#T)8Z0H` zo=aVJt!SJeT#(=5eg2RJ%CO|wJ|_Z1%@D|2HOhkWdLu?q5V4*#G)_>#rzIE`vMy^3BV~H5C;x-i3$&Q@X{t4bLyLpH>+GZ;C1ea_d<2p90NcX&4*y9fivZ%p=====k;I?-0L}$G`)7AQ z{!fy#|Bcqt86ZfNUdv zylSyiQVQj1*wMf{XS|iMv$Ly09J`;cT1zRpj)98?Iv8n-1o`l&bGuh;RO;a5-G#i_m7P~PP~ZB!^X#T%Ua}#q%j}psKEM_(umb3RNsu+K=&^?&M0L zap!0Id4%YkoaBm|K{tc=Z3Y7J{{O~geqIa?73R~OE;9?vQB5tGoqbts+@KF4@G1oP zu+|9gBzB6nD|kEESQxhy=z>4w_q-x2a$g-!59O&<01ac{4o6;y;6A*|m$m>*>ky&`F@Ty!s zCZ?E^Yem7d9|C#LG6V@=$J<6=@6ZFL7pAb|Ha3%0hUgKe>B|rWtKIF?AJ!H3f!Ic zd)SKUMJ|Z6{w-bNsP{d0!kCpEIU%h7nEC$>FZw^UD^RNpF-Vpe%Alao#dh0DMkeSB zC%0SAujj6%0Ky`9qs{u-&W=x8Ju)*Ws82B**mhvQwV|Vt%_#(s8FFA!FKhg_`@nq} z0%_s=1aU-Zft4SQ&T2MA^EXK8Xw7%7tsggno7pcEO4EWr8?0z(Yv=)|`d&@m1ga7hCL=aZ(M-`-b8{6{1YTEy0s3;N>z5ZNM;A(*m<5)Wn0GP={79b)Ufa>FG>P5wGN zbl)7C$e%M6mZX)P)r*%@`K_n4##mO%bj9U+?*$6gC-GXA3sSB8!0a zr}yW_2_fyf$KFER5J(bml;KxkeKrN$;m^N0>Vt>T%kVpWv~iI`ye{#Wtbg3h#mV>C zakAc}Mb`;SY#s#EJ6r*nBUTUt{JcN-`=coAl~&cY>ckrmhzi)V=%3N;>J5>d(^Wv+ zZaYH>E-JPYn?oQwBtX|#^O2_HkN_+|OBsXkS1f{=%t+@~{MT7dnj0SpAOi+K4*w0L z0>#K8Nb9eezD;`_0?`GNl+@PzT;pLd()Z+a_ND3&EEHJJBNAK4;$vW95(K$*C@5YV zyb}~;z<(AHFciza4fLVdEx&+Mv$~q6M(;5Rr0n$~1kw8c38!uW^#^+KYED$)vcj#8 zSws-;&`9l_54ECW*nsv+M?S;+BLkn(YejFPwOSNJA*?qpK?m;%!YP@v+dH*DFB zw$8AQ&mkPdkWYSelhUblz|c%}%83aZEGT$8VIy5-+}wD2ZnAs=So+cj{Mi4Ebf;Hn zU0I2A)gT4d;%ZTb>Q_SzOUpv`-AlR%DIF-X;wz`@H)nPUWAGGwj2t4V2^~!b_D4&L znl6o+CLWljcllG)*LosdZ!8cp3CdPsg>y#}m>h#~&SkNH) zenrVexZBTuqXf1pEurA0KvdtXI79*dv54?}qVC76V+~S3Kp^bEl0$@3DTK9qK|ZBig1%<|+$ScoE0_&| zeDYNwf<#>s6Cr>Mg=Ge!iw#iAJHx7DwQeidrfFDzj(1&#dC-TuQgpe$9`S7CePc?`8(o7bA()}x{NL&UtbaQR*^UN+VJ9xMW*~$*+S07kJA_3pouRiazMvhy9=Me6{{?SaqlVq22HsoV8E*e57rfvOcNp0G+zAveuY64 z+hw1xLs+wcb&a|uQ)E=44;#C=iM1P1G>AVEBv_QxFSGre-X2<6{ZdwGD9nNgVj4Ub zhz7+2;X$K-tbgR)&VirM`3{1-4Y(4avd~;lxWIB&@e4K>p($MsNO1Ta4KHREm>uv) zHl7Rt;8+27S`z)UGXnvT)`Lzts+Q%v+P_+n)z>aA*_g`3WiZFU-|ka5h-H*wuC|`I zkhcFH({JRiCzb3R;<__<=%7RfQG9DkLs08i)BkUeu<2J57vpBr9&&?*hM1%f*lcK# z&4-mvb2yTr`kKPt?}MKyl~`8QuO73AS45D-o4)#Oyjp%)8$HvspHg1Q1vC3RP)bF_ zrUz1P*({H^TUvLZ;K`XETfF4yDbQ$QDBC5WVktjgYp3bNIRmf0jGtNJKP_ZPi6L2( za?o2{N1d|?0`UN}_MP@LFM$?yj)n>SULH4}lPYHDy`PyJS#1-JOB~eYk_&g`Vrz@0 z=A;vdi8QmDSGb|;CjWPsH`)pnXTSWGvOmN_tHru)gg$+=qJE4e7(CkL@e-F1GF!Ch zoO@K|Cqba&k);NaUVhK1dpZ+H#ja@Le_DNm*SLs=3!0Z1Xyg(V-@v;z9&uZ4woq;W z@hYxKJ}4gq2~7;IW2BwuzLPg>%DHyL&9Yp%>LeRM4I&;UWFR`2*;@e*PqF7$RA`ho z9u)wX!fnjRqrKi`QEarS>iXkiI~2ofG^C{bQSF@4Ce`~(Uo&WX+b=?z;~g#*0=&?B ztLq*f$EP*%RmXz|e!GPxOH}>`GU7+UlGm1cBwVo;X`bO*?+WD9)J*NL^@1RC6sd&^ z1aNVN_@1btDZQ^>(aTqpZl;mA7p+eO`4+Thx(h&?k@R5Z0)Xb?!7=cfc_b7JSrR^b z-!lCd*`SS6#qZst`|Xm4Kq!D76S6-$fznWWvMXYcmNtVKNdeC4P{M}O{r$yn*8^Fa zYQ0g+ex4Bpg&u{CjUtO7XEsE)3$sfuef7RK(k}n%)rnFu0pw+edzq+3=apiUCgXmI z{iJZQbzw#9;3yHLFzfGR862rl#aCZ1r75|?)lm+kIzi1)T5J2`y#cZY@9T?y9k!!# z(s=q{W*fZP&Vzr{ajpN^C{mf&h*y%?%Ob)Up?!;262t%&U##{?BY!pkL_R^vztP#n zWf#~_`|aPo36IQ!@D;RV->t4!%Q*;qkfMIfcdhLc2^I4dG(z(O+^4%Y5dZ?S(@)XA zmdUHwi5+T|$<8t^rx310%Sq;7xMQN{Hz@X=!jJV$aH|_GUquVcMRDmVmFuw8o$2+> ztIQk!22}7lQ0(L+1@umSHCpUt%;(RUMs@CZd=Xz)TxGsnatS)eX86ZiNGer1<_LSQHv2r6A8_E_rJNJ10FnT>ZZ?;B&`{^7ZfpkSE zCj~40Cz31oCnIA#!#clC4_%d?FU;rIVrW{|JOY6o-f(SMi5;pK&Yz4mO5!4qn0c%P zCU)SFXY0GoMHX)kt^BMtOhdII zmDmH%KeniEQAW^hzJAHN2Khg~xfZn4Oi!;(syw9bXO)Nt3&>}B&jhvc>NN<)$Itc< z2S0<|dIiSrgQ^Zly~ku}jk4N9Y3+9w2k~Ryn(7ScN5X=5YS?wSblgdvN6J|Mdk!)* zkomm#rXH{}{!Qg~Mf@p)P>GDt)F-x$s-|7YJ&lLdoTU}%x7@vA$_=w_@Rs+vyx8}h zel`P^zo1N_;s~u{vXl|ZGxVy1DHoJG7C~M=2I`{e)+t_hnNMYSpE2ldE{iaY)3WhF zkscJNE@`7=rLeHbGh|9DvCPjvADJ8uBM+kkTg}4ENT?w5dwI?`G@EqV)+^(U9mIqI zT4rLpO#C*VKxqzNQ$0Ufkc!Fzc{{K{cx%P9!glv{i?zwe&S%{?{*QkS6Wv+r>>rK@ zT=HEL(4!o>BV&NFvRN8hO=}9XJdzgIyxRIfC&gTJVdX9%Ynq63C}rH4l8dI`0&X z%r!>6iQU|csY{S*QVzZGYv-%~!caJvbIB0MVR>@XdB!V(OpXjx&jM_ zmo0D%a(zX3g-6Pvi+_vc7<`)7DxY+tgj{QJFROK!s0c{)0Ei868+ln-Z%xtZzS&W+ zJiVit5mv+>8H30qGdapf5;;2he7k1q52Nro(itz-=}u8C$ye)?3Ff_W#MvfQ94V>z zWTV6hzwekScLF0$t$&!9R(Hj^9_n>_VcqjiCNWLO@jL7> zu>+-3VC4OZj?nf?DI{0yp7r!8#7(Q0V;$FQ1WdL%q#TDOj}<0ZzT?=PSAtUm%lYFXRXzDkEYt%Y81+^XM{0$I_j_rXtz z?!MUKCY)V(X$-N}yLUNAM*#~uL?Z8$5qwDGT8+YkXe}>)HokvDaV-UFL)tAs@y;X7 z%E&^lf6G`^=kL(1yW4v!@L8c{d{K1JWUYYA_5$io{kP9CVPtR25>-JOKhdX`%xC#r+H?|& zEdc?j?)AGb-rIJVnp9!3+?k$WJWMo&rc5{J98svfJQ`Z#FNHoEF!bBY5=13Vhf&E- z?D~_lpPu*eXtuW}ALhB!X6trsR@XkX8-Ex9lKRiiuQW1fKM+7PLf1^)0G)zB%G$zW z5nz#{fU|I;QstH?l=gnZZmbeLJ=XN+uP6$FB=e54NLga@S?up0wn`z9BkM1X&PV}3^Wb8k)ajBc8}jh5 z-yd7pm*!CvuI1Ik=VmF@ymF+wC*N5gfiis(-X~tkW+Of7rnOmEO0LwhygPM6c?O-r%W#zERNpF><+h*LZqo5L=+v#DO>j?PJmZqp)%Pd_!hrTFFbK{K`$3fl~-heXwwkk0$0zG%6>x3l?6lNWEPsHjGprR>g zY3+e*0!N8I(u;eQR@F=MpEFI$MiP_bhwkJ)PEfw{)GUwyqF{oQhmL`Inx=}#of+g@ zxR?sQjA%Z}@$5!HeKb4-hw5)oH8a~FN?p$c&MF=NSz}p>UUrU@ae?#+F#$z6cQwIw zSMMLZj);s*PYbPfY^+fRa>bE};S$&K5%cx;@bXHr>RSa=DRB_q8E}%_mE{?vao7>n zlQlRiDAbKMCxWo^Vp6w`H=3G8ONWCzgL-G>V5v9V9Ic5!rH?g zK#R)CK}d&3t{V+Mx7djeZ?rrx7|q}|@D2|lURR?IYvxl=f9uD%K|v)so&gjXxRSla zxn3dEQmzzi*gV2=sj{EXb>IoJa`NOl%j+Yq&*eTMe^f=Vf04kmqjZ5*oU1)&mT!J(PER7ljUVH(A zfjqZ`=#qU=%m-51yo2S!zJwUAh}>D-_Ojtgt*JA=mlt0XGv&s}L~;$Of#%&Hj; zDtP2p?6Wi>3UVN?DL3!115|;dHkPwA-lh``JY@lpwTkhvJP1avKxwhA>u{V=nRs7w zKz@C_kBWGHOoKH1Q2#gw+q5F}ztvc=z*G2a%X> zWZbzK(dZHFj;)7M-28o+;nTZ>*pGK1mjzqt?f94WFa~a$?V}M)5zQQWWas-au6iGD z!0}VEiVZ|>&ULJKG#w}7iG=~cb>k^0)Ro~aT)M1dBhNo|fyflu3a8)sPI{m8q zK*6lW^F72g&m(iH+mw~$ZU!943CHpF57C;?dCy0t5V(UfC4eW;zyaM$ralp#PCaf3 zyqt8zaFhHS$r3drD*l(L+xL(3QT1ZF???fn&_Y;~aXUg^-&g7#saEl_NbBu*;Kxr! zd@OQEN$X>X!lfj4s@$_|yG+h1?l`1f>jLR;(E3ko)9!L%wg*l-qJSVh<@m%`^-K4~ z98xmnnrYJ78M3`{I&MLQT*#*%>ojE^dX@ovoKmmI z=#`u8+JSjnp0pQJ(tGE>j(D>_@sRMiYc^*5eS0hGy@sY^eOR#)0GY31v~@OAK18Bj zCC8TD|AWqG7}T{ao1AUYPJ6Eu<0*`I_Sv*^4>z8Y#p}08mh3)htL`Su93`UbR+k+W zb<$AyEt72EXn)^ktYmS6rT9spxPJXtfwUX;`>bu@%gfV~$lk?QfGp&)FSl60_(byTie zh|kFf)U9WLb(c#@N?HX7rt-vvT@SW64?5k~x<5^?srqyz4g(t9*lMZyUQA{Hr@IUn%5n=MFc|hjtenO{mVx;C7oqwq!zSzRJ_$6F@mzUM?&h1!Rl@ zZUf{Z;Ay4fpNarH%gsd-{pXGKk2d0_lRc0}MCd;P8pYc@cUNkz552w2bo7hY;AO?* zIE%dWTWu`l9SI(rA^Qi?83%U9H)x0(t!p=4T!g5Y`&giVIp^2Z=#@5|)i$1=Zg7c- z8Qc_d)H**qof~YbvOoxUWi2@tY7=?)_{gcx+E;o6Ws43ZA@=71V37daSmkZI z>E3}HZ0^n>&(lwKd23{>^b?d&Rk1aGJP%^>>#IyoPR^YT|8s*%>wYL;Y=|Gl#R62u zet@+ftKL5I6RWX;xit>+8eZR`_L(D$a1xgK_^~F4drL~{)@wa?c-KZo zEC4RFy}y2irdDOSFFA-@hCvFeucfPY^}dWmK0+UX$*q50KQ zj`8hb0bwd}<2**=wng6uCXOb5%-?Rn?;Ax>K_IK;OhvVZJb0=PzGw^hXlX=L;%ZWd zU8?ghne)ed$)al4X;}Jll!N^C>mDe_))4b$%P=S2b1tNKy!P{%t1_S%C z5|Ay$QVP#NlAXIbYESntco7+_VeK-0XqE6Cn^snNK{*b0B)@CyJLvB1Tv}vg5Bnw* zO+>YNVld@+NThh&Vs{{J6d~_D^V)&QUAM8jXPe)}N-8F9AwP@Vgts9&zdh8zl1?HO zlhW^Iga2I!>(r$TY9tUOkSIJUb=qqo`Dhf?c&F`QbWBV(p3wyNKQ;goCFotJAueUo z-Lt|hP2b%c!|chb6d^fTH#1l}o<)CghY7NmVV0~Q{xwSHX782CK3}&`B3?AI& zu&7Br+%En_wt-Dfuk7y|9+Y1w%*lcC0$zlIJF-bcf;pmM|HkkR%n!XQ_$(L2)t;D` z-Iw&EuemV0T@8USAyFt-e0-mi&%7c(KtSSns``sR0^u^?EETo0n5j3}I6Wy~@{h&e z-G~L8l-rdO6(Hj*Fn~8``|Pbont3+O`)`JtERLH;gn2CteJHii*kSuDhdRGo3QQP- z$Pm+KWn%9(lx`7nl%|R&yXQ{tmqEw5_t>VnNqZLsP-bkt4V=EJ|B)u%gfoaZXSuIW zCtKswfM ze)rrRMsgdtPo_u;{>y8iP=vYl*ICli3!6tsakHGb8!@jFsddFX<~mTe?IBR~h($rh z?R%!E(tir8iZt)bpEWiOqW%NZllHI`viKdOe-CFW#D{r!{l>>vc7S!<-P1EX-}Si~ zu<-N5l2qP=WyoqGNz18A__g~P3XFuLoa!3f^mIyAYc6pm;ZAv!$Y`xD78kA>hQc&2|z2vJ3l^tPdR~2R);xh-DdJ77F6k3XHUVX&;|+K@y7VH;4@&RXLlSiB6dL58F4eC?zD4~? zPo$DMQ3Fv?1qmf%o(z?Q7OkPvYtRIshqslrzZ2}EBhAE41&ZJ5PvEQhgSS^=sOtr^ z10xP@38Tb@wk>Q1SR)b=L@_kfUqD{GwSD~kW-?jnY7EQcRuvtuKrH`hBIqKYA!mcR)ne;T{t zui`cRs$`f94?x_pM(gBs-{ay^(#&~LK32(3@lD-V>Mo;dlW3k>(4O7hppYS+#fXJIxPC>oMs;X@>BR1EM?dj zQ-J3OZ@T+na6LUlHJ65Szk@?1zq!OD@h9CcQywW8-D# z*(^)5c|MKYMVDh-`ko5&8hb!y+qZHZf zHkbT1V^+`eQ||80Pt1rBY@gkc>3 z%q3%;j5a&;+UTYwZv=@jfCe}@^?{Dqv;~n%>}usCBqo=Cc{mc+hz`xfI&LQN+*XDk z^Ed*7URHm=O|w}`bcGkhtf1xLPRgl*El(VtF9#A{OFFB!%^%c*b?Jl$0B>6FXx(EP za6Yv7L+b%~jzV{eI#GRNoLi7=7r#oK59>oapDQUcS7o?(i+xpKn_hZ@U-Vbsuc$NJ z2Z(YA%^qn78$-_4wuI>Zlwa-UcSDf->V*gjlN;A^)|%4?<+nZs95_SDqFr;q6?y8n zbj%a(3#-HFY@JCa%M+}bdSe*y8}QDwn(ALjh06l+ZY>u__wl>&DTmIvrL#I4!VkLK zX?&ImLs55%Z}I4^@-~O=WV0;K=H+!(C7Uc65Hxwa{eq6+*Gf28U}D?TXAnt*j){3rrQFO6#y0>sJ5Jq}-tS zHBk`v8-^_jEazX9gIU%Gxl!|AB2VZhYtf0rUtx(?`3}f>4T9`}qs5pU@x*2HWs+AD zVsq1PNkChJdqk|k8e@Twq=^kduFaopWA;f1TDE9w_^a%9mmdJ~ab+f8YCD0JlPO2b zvMi?sF}60aiQM=q=yD5_{cR+j}z_eNNG=qH#FsvN^Rf#%DO@8 z;}Aie(}Uj&g0ziC^<(m*MO`Bw>1(z~?ksJ#r|7oy$N*+Z4v5C_I2fS9Pfz-vo5IX7 zRKwBk>s3B|6!dbwx#I|t{ORFq3^yqxj`A9cqxCLRLEh88K})J>&M~R)dS22vmdiWJ z3j%`!@{I?nN6!tJ$5sb^EUBjUsfesMZx+Lu`Wr^r*1Flfwk>@|->wbzlnDUvWRZIa zGTXTpi}miwu5od>HXXxHEq*60y=6QxWYEjNEIl77DAU_pzR^BrvhT+(!K}F&>7s$C zwnLDeJplF#o;NE(t`J1t5B{PEAI6^r*;bUuSbRI|ucH*UKUcRlCY@ z4j~=Xb!f;zMbD&`A>;BU1alO1^9wllu?n61>%r6mBUzJr<55+O}O0`vg;uft>o>1bI1axZWNOa*y1E8E2P z!KZ&v_IJh*n}nc*grbHVueEz|Y69+v(k^Vpk@t)n5$m-#Xu3?SMFn3>~RB_*$tZ9?sM#CZ9 zkIM!Ki9fXjS1#K^9$9hIUgem=RU&P1*Kt zyN;mbD#oW4Q*@E~`rQlu%3>l{XP)jGRPTi!Ya2Qg0BG2L%nIb@E+E$1U8%95%@sEDU?~iRB@K+( zv>%-&7Xd;VCvSh~cuB3d$B(VN<0H4Wf5;tp5@%U6XSi>umE=JH!RoweUV6(w)SZdi zW5+^TT0AI``K*HleoiKwKr^v6}VEg_xefT*Ab<=SZVYT_2NhRHT8=Hkx&Z*j&zzrXPHRC5YIT#r?@}aelPyg zafk?^&WZ%WS8X9ifXYL`SFVu~xcY4iJCP!2=7Ybo#hqjO zuYkzW8oW!-tuf_w+VrtI#bj%P8~{_4yaKUv?o^aAs?(!mLLK6!AE|YZ0r|uAcnv$& zblt_^@aam|hXsxs|B7fYL1}QN0web|_pg>DFdT=vUa@Zp6f1mU${!LU4(KpORFYqq zwgmVP-gV3f{yo}<<%ZOA=59~I=Zk|Lg5<5Bu#!>eWe2VPze~R_Uu!eUa^}JQ5<%uS z72=E&5R*j3n+|HMD6E}%F4?4KA&)r-*jON0?+XQwWw&)BL;J~XxlL!u{!4T4X^&*%6?8WjD$+U z$oiUMM1Vj-z%Xcf-JGc9gBo1wu(M_d1jSbtW#0JuDKD=ozI_c^YFrEkGr+geX4Ku` zkYv+Qpq4p5Ed`0=%OL?k5_$phpq$r4L?)o%0C24~;@}oIt`-f7g7MCE4PH6_B)GfY z?3F7#I)lVRuV*6*KvriIZeaSi7x3fbz5#p-<1LvWg{ZSX!BRGxv+ek!&^X2L7)TIu$*p6*cAFr6K z=8&(cFT9}3Yd^eT>Lubn5sCSfmWAB&uMA??_OWwT1r16Dn)E^QOB%R} z^X3PqHc^206Z|~F7TqJ@XyoU$jvakX)-oAgOzE}#)M!~Pe9tki)+6vu5~J;~6`TbV zU3?m1gl$)z)6b5L{dB4gjh!lSK%;AREHmY0-}$(%mOEOmHe?}wzI!q4tQ0N?>r<<% z7->XN1&J@`O5CEtG^}l_3cX_{==%}vyq7cZC8x^AWASX#cE!1CF%ENhhD9?XVR`-U zncw)z={nZ=pq`eHJR;}d<*h~f>?x!SZ20_IkRL;4%bJz?u2%K-Z0{LF=^JD_J+^kA z+*`S4Y2hi=v)?rs`@J}wc4`&IrD$jWc~Zt-?!J)D8Q*31NhHb#6CCw<4#9+hVFrI9 zc%F9k#a2|TqTK4({N(P7VSu!B9P5Y5VpunhKamwV_{r(|;kN0o)))8oUuv5hoPkqb zo^IqCHZ%4+wA=;>H^tYr%m_(7Dv$xXbc8dFQt_Jx*m|oPH8+h8_dRSnTDCuzQZ+Un zaL=(oGWkE1HrP*latqU#Y5t<^&zGo<=oi~kM^>Fkmc_DwM9BfOTbMI>9QoHJCZ_8Z zYjF&WPQ!%^;1ka;;wi06mLLcF=LAw`rFY-K5_65tSXhQ-%`lXsac3+WV?|}Kru_2* zf5WVmR;0uWmIMEKJ)vNj&qwU$xo7f?cQ7%z(gdQ5wY_f$Q6ftF!LVZ)G`L0~;vMYR z{B)F`JmPTNysnq2$DandChPs~c3IxG0 zd}s2%W4TQdb8NlOZ|1=2CD|q$rEaIeItVTXIbbAD1_F?4ZB!H!$hiO_qDdse|5+z; z{YfAphS~pVCo-kJJ^)#qn|yW8Yh@B?c@oizIxQN+;UCb3oZkAGdxosbHD*AIrNCObuX|1uI!da@v2DTWq?&s=s z^!N2u8FJp@>Y*7Qy(ERGIX?rv@=rk@0(R$$ihH|*ZL0)5NHS>eDICc-gxjwhMT3sl zQ+~@=P4CxWOc;I(x}okEk)tPH-1|@9u?!EaNR%Zz20~Eeh|PD&DRh&KY$uz?yFE}T zoKGM5V>>nuAt9xjM&xNLi_pD$nj(Squ!|I==VuXP*3Y0;C?tJ4#;TT&5L5f~98p5f zRtB?LOqwCjG{6)Mz$o0fxIQzTt$@u6e}`;TkDUS%cadV5_psmPz!^?-(cSju6EibE zYfODo8H|jywyKv3w|5iQx#ED4@(od!#t{6(tXHZw^&yYno`0l!$f`r+3v0UCxN3NQ zRK%tCIOe8W+Wi_nKJd7Cn}Rid2;%%JlFJ5T8&|bV<=?3>mqYH4L6DLI8e`pW!@(j9 zJQi9+e)fw7bnN+J7E(|3JK}bdO7MLDtr{<%VMx8nAERN&o25xX8ApjGJNstp`qKL+ zs}nUx&OXS=m^pYN*9PtDTN^<{@Wv&?X{pJ^P)?2m1>>^BdMvLp4ek19XC!tmHhSJ3 zv)2~_0b}vakCtUjdvEt%Nu>QILeYGFc9){r55ulRM90r6ubikrq!7m+5U{cS5GHe* zB2AMehk#skK%XICP7X>Xd0+~|H5wTp9R_Dw0`DlM`fhyyNSmFAS`7PRUf!Kxtuf4Y zt+-cE)`@Stk9hJv1saM)+h(flI$m??7;2Wl){%UP9JgKR4GlwJpn4`27P+uQ=aHO0 zY*z=XU^+-CNQgD&7<$yFyg;+Qw>D(t@e8!+SGs{p>?AC`pQ(H6Vpt@G3v{+&Mu44BG zk-cGm8Y7S}mACs1$w(uN^@8Vldp!*KqyA(7M`VPtvh+FE6DdhX#_M7I%N=}^o7T9JmL;s<<7Jm?fs z0`(66T|now1O3_`*7enX3SO4xykx}dwxA;8flDq1v>QU)yN2rpv(Lt~4+mrG0K~xv zaF`&0&Acc%^l?+^it5+F&&ssrTlOXaKN%r#7#~1BeZ`y?#nCkR_-=31lb-w0*#y}`J@2-T5o_am>+7;f`*x6aW!S@LC|_+LK-W>vXsHJ z6lhu<=WC!I#Gpucdqu=~3Bet&UzNA;GU{)sllmnCPVK?Ab!f;7Bc~@m1AeXxbxzya zoSsddqQ@Xl+-e{0xCHq`?klo0&HE8Sy9RnC|9C6AWD&StUDJBA5q9@O01bi_%5gD0 zd~W)(J>V)c`TJUnaMo!atK1w^LglwML(d2n8YEV-9_j>oK>`feJJ%f*R)15G6$ z@@K4R=A3w|ze9Mz`Z=H5a{eF*DU=93Q!3x~P{1jz^fQCe#<%HL_&8b8JCX4)iqmHfKEsSt|$E3aB7d z0)DLh_m6^ygxAvQ0M`ica%@M79uha3v+F+O1mA}+T@b_NV{8g)?ziNpNJ+iJzumY& z0yhB&PgImID52N_#u>=eG!+#ao4(N$ec1B?;dDjX6jRYmB3qClkL`{P3S_K>pfwd> z9#sf2c-e@lWlVzr24xLcyNm#5h)&&@FgW6LFTIYdngA8t<($OUg|P6OV^?1lNNP#O zTiC6PrkvhAe<0|+Eq)Ecs;9P23H?+#DOH;npd zu7__=`+U$fm+mW&`N+IBn)bwOZ$x(JE8v6B+|WOzCaHB`z zp6XxrZ=nCd+nx_qV#z;tTpV`xymquXmTHFM{o-rS>0&q{%=L_eJsqNJ`DvsRm`!c zz@p)v`#Ih(JPa!t0dl9i={Gond(!0{-cEYg9YZHS$dxfzU%%@LzIWn)H|xpC1H&(w z)%KY_Z7K=W5iT1Peze@(gXJB+?J&cp8vC}TSQIck{eN0J^Kh=Zw(oC>$`lnMq$rW0%#xvGp2rLs(jfCprVK@jkU}9c zWF9kSCS^$GS;#z7=Gl8LUDtiw*L&R0d%Vx_Jb%{DZ}0uvYprvgYpwJ9`8JwR{%&wV zJ8@n5(QygqGmZu;F8ifE+8*H*T9R|fq}w?)_-oRa;YUjP3SL8L=38SPrp0%T;r6rH zolA9TqtS3;0Ow-Vr?&Ey+&IVbzMKuroXL(R|z9UfpgldiNDiF*_gDs^X}p-D{y`=CrevB6DC_UU&Nb!t0#8Y(5qwAuy!PS z$%okC+Oh44HpPYJ3eO?EqeGO2;yDlM8lS%IpBhz~drHDn%&KC$`uf%J_;1{gI9ca0 z6=lv4Vg};(er1s|zvRD{{_>IyygGc!O?JD3(6CawS5(5sm+4oF;|s*Qy`o$rBd2AC=@kk?*v9F=xW2|XW5>do6Gc!wc6;t<<7|%#@F- z)+0}tnV7P-N|^kl`~?41*DLk*CymuH{i2p!<4-Paxz2i*u6!^#Y>bh>UQdks_UDKu zZ6#6N&WBVY1ANzy?|fK07nWO-z!eNqB0Bl+4L4r%$|Nu|RiEZ@@~oB(wPWy7fBI`I z2M)su>}vd}%*`&4-hslI)U0MWwr@EEFoOU|uKU$z4PNNJHwkaWqs*Pzn3!Wzn3_4t zOwbXRdRO}gPW;Ea7fwk)k5c&NVr=><;0lYrynHr0OLUoQrLILrd+XUAH$5me*J&)B zCEVDcqw>i$y}5kv{U!@j>s%BQDWBJ}>CW?iHvtxjLXSJZzsqfA7j<@6lZpQd{ROV5Astc)}`ud|cI`>ZijTUk( z6~)Ex|CmXu(u%E%zz>S@eL~|u#bLCuX(~1m`6|&UI!}94#l9%h@Au$g1iy>>UVc21vRmzWmaau*@ulEy?WK68s9G7(rk@AvJ{BGjHGGNx z(?BD!E|kr*1rGGbo0>Z2`~AOu)#&0-PHjqeOmXjGx7_l=U5HH+u>&9$o`5ktGR&0<2RHk_PXfHz=HNY9e}dR0dnQK+nm zqo)RcUCFTEKoc=^FE%YK`x>>!=bpFcBQC{=K}Fk&JtZwWS@MaPf@A6F#QHj%KQBmd z#}!rLrD{>JgthY>JLT8zc^8mxlug7~1+~mg`=QZAN{0l7F4((=EnOvPQ57?d!5UzU zq(hFuWFsd1_>fEPJz2A+7)x1=L0*>ugN6ZK7Y9ARX9JBKzp~Rx%Uza!R8U23YXx+V zAT{}iRNwo-Pb|aD_SJH zky{SdMa!+LbjhcO-qzP0abquDAR(7$H_lZZsmmW0e7j_ZLr?zlVaV`Vw$|xLPU}uP zC#$+X$-(yDP^6!4PPoGNu<5B~{ACrM!_jaI50oE`dv~Q!RwJbF>&wG3GP&YU@k267 z-Z~XyujDS4z2a%2z*NW?QjO_<)OMmC_UYrqLS)?(gi97Uao4dl?~v#7&OCU@>V2~H zND0G>p@imQiuS#qkMGOBX})cGu#NKYQ)=tA7u7}mNDmy!(KNl%UieNe^v1`{A6Yra zuw`Ps_R@SrOls1ln8jW znYDDVv53yF6L!_5SmT-z2a6vS;Q> zYP%&K=5kVN&MP%1>hF`Hhbp)2cwWz6GfkrJl<8N6&ArNR)IjKnrPdxivHE%lo{Gv@q_sJ47)%eI;OkuXq$9HIF$dm?s&DWMFzWcJp<;48f ziUOKIU0q`>OQi{A$rB!xfkxq13c;%?EfihiV4a&-5fud$B3QC@yWt30Ho=hrc} z45(cgtb2AP)i?Rb@hiDD_xzswJ$5HJL9uCZwCwPO^*M)?FHAuNnPK_^og9RRZggeXQ%P=sIE+jdaDX=J};_~L$UTfLhc zF`e0TsE)S%(suz9laE{c1IOf`2KIyFfN|&MN@b#^Ta!4f+MtYp%7<@oZGD76@w4`K zZ=#zl^}9=yMWuYAoN6~G05D?lO(3z-#)eFfb-G|R|H(;=5vC?h3Ntbdgkw=`BIaB% zG}&?xJ9mywU5$Ioc4l{@iKyQ;FmFy`?()5pt+C<*>T4|)JTrs?otci_xBSmLMf<%{ zuz@oA*)WceDz>?{Co(M8apR@(blp@t!t_9ObGNN*Yqji=X?&OXn%_}O3J=8DCK?iZ zEG#9S$(d#2&zM%{3GIfeC}7>6ich?F@Q2>59|GjGe($`8O9hpa!s9Fo_$+fX6K&jZ zR5&dH!-?RX*?%D)x@fAIJXk-kjkS_hvcyuzljy~J&AhZxJ^hGZCr-j?x$@BW6j(w% zJv|Ty$CfFXmaB>}HLCP7fgRWf@NX-cl84L3t4VWCYTV_wW!#;y>uOQRZYTnAGOOnOv3StO>v~o z`KO&VX$e?-LjCC?J1>umgHCt4{^N9m1rRCMf9rEwn|yR|Z_hhoe3kqM2S-y|!`mG- zy{JT}nkwUi}31h0wA`>9>=oIjccQnTsT zi~j)?oY7Y-B{N>FH0t3rW$26t{k(E)t)ZN#_-!6W5d@U+1$s?LD(e)9|*9!fN)bgjmk~ z6~FF8wMOe@p+Wse#*;x}@e7Y`LTT}4fxUk))m*+@`_vet=>Bxi14{rWoNsxwWslzh!nAzZ16uM_hcy~X-&eHd z+$L>H$V*O3W0KZUvVbBIPSv~FC0{oR z1jIxwG>Y=<+RKb=Y(FjPKH#Ay*2vmbE*t z_(20)s&i3gZm;xZylKFl(TQTmVkxbVj3yDR`dB54;n`3>Yv(0AOP=moy^Ok=#w3gQ z{wMK`-Ucrzd)IN3y79R!3LKfTsknN%tqe9_$9^ozVt%bT{!4{`2y=eQjq$7GPT^@h z{yx?Ac%kC1QEz9X#dVFx(O$S*^lb0>rcPA09*6NXIh#|u5s(}?(%omk)hSRi`UY1N zxJN^pEv}W41iYoN zT{(M}>7z}{@V!hgZ(R+_K^*KlgAqA%BD}hs`*^1XLVyd{5TN-(q&4<(u}kUN*!749 z`IYiK8c_>XRqNwH+PbcXu)~1{%<=wk4j+n=2XytD9)LC;=ht^_|hga8{NOFKJOZF~2!3h8i;nUj{Hy!L8QOwLM-_(tirNMnW(82P`wGE)f0j^?}%GQbTlG*afpyD~19Vaq;ua z93Emo8k>yaiG#lw{C&1_%KG1fxfzDa~hr}g3R<|e|O{f z>E@AICg+=T20e#oJtXs$=KG)L!aO3?D{cq#NOIAQd0e=B5CeP}4ddGaPyZSc&Dj*Z z|NQSBTkb#43<9Lcx7+yf$!fJN{$EHm-K^y>QJej1sONk7OA64-5CPfZEHP$9YQv3# z9R_|FKaoJVZ)hJIWL9eXWg1}&sS=onE|5e>ZUmg4mHGOD5vw5ZQm=@qZF!Q>e!&;@5eNUH+y zzvq5_$NOn9to0bW;AV-PI$*c}YDlx}i13UgLd!~}o71U)N^Jph7sblRN#*$Fbp*+H z=?dT~;7bVecV%-ua($|iVb%f_h zRU9}vncJq|S2sdL%}sx1O?(khT%hZQGya;dUnrr7Qp&RA3=gl2xOnR`ru(&H(_xbt zct2eeGvGRsP!*1F5%YmM$=zvi3MHZXY`R)FFu>c_2B-CP30nY<}a)aY|xTseI=tLz^bfoy;H{~W%t2I zIebdQX&(&32cqGMqY3j)x7OKD6orZhU*R}mVnQR7fcyR^j87?3d;5%12Ioq@-M0xb zK0ZVp9haGCO>bSmvY-=)YWJ1&Xx}qQoim_?8>B(U59;(G%GQ|qY9go!&$iz&J>`g#nVVk)2v zr_QRZ-vVmq-7STNq6qPc5g802)F z3~hf4ANGobvEsoWE2pynZx&)3*}Yz80FD8pDBwa{r{F%u(fY>Q`~euYAVA=n7LW`y zfiZ`zZ_gu_ z>#i?Vo5McF4GVGrt{ZT;YA<;miu1Xh0?*Z|60GspH)+FUp^h^oo(?BNAr8e@@; zZ_YotN7Z!*0-mgz2r{2QsD_Q>ao=?{?=RwM>AxOX0z#F|-+}IFP~xGDlse`G{RyF= zp@3Jk9(5?@xmSMzFxB)ey4NB})8_Zt4gazB$eSM^$X!Th0Aj-%j(FCst*x=L9HnXu z68_EL8IT+vPK{1%MYejHj`j0YR|4l14pYPSMFfDoO$C@i=~AO00u3LB&s%_hoC%m~ zzLtJb8nQH*O#pVRGzu;}7$|X??#hftLK{#~$|{25E4J8&KRF|#6X-CBfTd?Fy66ia zI(%A?%!UiOaFFwD;&UDcu*U3X1A{lq#da-G1mZdV~^|N^H2a_ zP|JXIo&gEkZNNtHQ}dd=3FXjd5BoM&J_l6u_MxYzqbl^yL~X7ua7a^wCBoOh)0u8- z{Wp&@Dacu6k{*Quv7#ZLQ%EBRcw3H^{%hz*n^;)P|GvJqQ{u8Vf5YyGbv{tiS-7~k z;GLZ2lvkAvV@I6!lv5UkXW$!=2yX4Xv(gm;THVx)A{O{Rf2XT--y`@G5#kY`HQ|%< z^o@r#&W(+Y88<}<;S_8~HzSBYVBx2bkP|_X!SCQ|i|+NvvGH*e_}R!p zVBp~h@mzN{1N=9U&|)n^ePd(iYi3noYc1pWgfh~){;KRPb1Ozz|H{XQWP^n_Mvo%~ zH4w_BtQN54uYlL&cH6Wgr=*0k?T%57ge-(k-s}PS2#;y!1(4STw*#;zEsZtdnQ8-2 zO)`-}wuZ*mpK;@&@HX_*yV>dlhIiFluN|U|2j+f1AUzP?dKZi@rV&OT*y7N=u+l6b zy(9C5D_~`iXZVExx8nq#>$(--Gal3hpEEHvZTtG-6v7D^!}0d+Px52{W9l^{EhVb0 za9-UZcf*Dkb*L4@~SXET_$m}kHqqyvm4_BB$~zGVB? zMl^H4qlI0iQ*59!0v`;-?Prum3~PXsB>1j50j`|eyf-)LbPiC#6Qi6>0{hlxd*Tqh z6~<8Jmv^&KDf0qlL+<|I!#xX{Mk!>Re20T6jVphX&9_@OEq{wMaVSb#c2^eAe`gi z%%Hf57~Ou99G!p}Ujeu@w7C`wD{DKD!IRJrLZSD5!<(43L3e$?Vs`+0I~n9&)tw_; z;Mb8(1g0Sjk^${t&T>?GK)D4e@?NVdv>=-lL^S$~u7X61Akr6y5e=~Nh`p2O5s{b+ z>5?{QGP|OLT(-+~z?p@DRrBZG#?A805F~Cy$Xf^@?R}Qz=};g9xCcuOF|o%I{wHH# z)TgGW%Ol4KbRpCLZHbCqV7oCd(g=X`SOB0ufOe%8c~nxqR~hNPyRix0E9off2agjN zo=8aep|w?|6!KM&u-MxFu&$X(iVJ`Y6-Q^mZIMgful)YZLzDnz{Gz&4mzF}6N>=Q_qU(gC_AQP2a>|p`In-AXE zHVPni*Ewm#=6_Cp(GF^$QuFgQKp@)*y8UHnhdyUl=%vPSrKM;HsOsvzlL(}nE8l?z zZ%t88MdXKje~~kg^GBDyyDmb`4>-@T?Q!p+_l2~D0LMpmA^}&XFF;IpC)|7p%OPjL z0LjIX&jOMTqT!HU1F2$A zD+T+l$vsjb1cT}`FEE~NPcHiDMYwGaRzHlyRGc?}6cwoFGRFfR0Elr9OFhW-Um`^N zo>V0=b~s%K;|Mm`m+ZT5KgDyKg*hHUmmwukLd^E1XMja@ zv~UmS5Dn>aA@a_Eb@c%YL725%a{It1#Q_Q_VUE|PqI!4dFsSd4q!cjwYMPoSNk=8L z-&=uoMru-$6riTi7=@p!Xbfaac&8!8;VH?UwHmC=&A8uF1uh^3&ZFM|biR1)~Ph(k!r+tI`#@4+mItc}3Jfr!?9`!|p? zAEU5`f)--B*n{oMRDPdD8~P%O8DP7hU10HUyz!msj5RC`;)On6+TIhfn^Z!f8)2xo z3s9>;;zP}E^&Y8Yp}ER&)&{}Vi9~q)CtVF23(KP7(+yVLA~k^Q94<`H%2E;#5J1iW zNQ}Q_xd&`I9-!hOsu=R&36F>X1D6H&2B}Ajuc9ZB0o0qzchtcB0e+TDFrtqjIJct6 zPA(G1$^=^!&+#JY$E-C`*tc^~No}eMW;l$-efj1P_)YPvdB2qg$ zHFhA?=wvJS5!=upw*$N(WpQzDR5J$*0#?I49R9xl!mnW0VEMl?D=7RK_yjhKCWoOX zD%;xTz;u+6pU>+Cxg3%v^B6VKK$?oCE_WC+K&;42iHj41$@2^)p&TgeQ4CoDfT%je zlP2M=ruIAlZAI@DWj@H%#ce`x zu!X~YLzb9^UkT0BV7bE$V8C?kJQgc0i2M}2Rt(e-Io8NnR;iBXQIgf!;2xz0@0pI|& zJ&V3DZK9Bjz_rTJr?IJ;OC!pYz+k|9abR2af6HK?bMMd*q9|v|#;hCYqSE3DH!`jp Gc>N!857J)% literal 0 HcmV?d00001 diff --git a/images/Residuals.png b/images/Residuals.png new file mode 100644 index 0000000000000000000000000000000000000000..376e1aebc1897bbda3f150ff1bf228c339177d5c GIT binary patch literal 31283 zcmd?RbySsam@d5O2I&q#I;9jOrMtV4ZY893JkF6ow3X%K1YZt3pt+5TqEd~;^L zS>HK-%=zQ67E3q#ec%1W9oKc;_p>9E6{RpxNl+mW2!@QbxGDq!TLyl~krBaPNW!^O z!9RR1651|mjutNOP2QP96ii&4>>OR}tWBxh%-=a%J34T&y=3EHp|WyuadPHoXSe?! z7qB_Lvt;L~t_M$qpg2kEI71*By53f6eRFg5vg1*3(R~eL!N~b^ zb9j5K01cDuywyV?siFV&b~<~9dvpo` zq7(x+;)=El-E#eA9L%uq_m^wEac_E}iMQt(+1Wbo-pzZT4!iHyPtW^l$-=pBWxnTd z*;c;0XzY+MF?rhlaAR9JJ>TZ_qQzw=aN+BFuLWVxGplF{!C9ZL4GjcfRl9RUgPdl} zQ$9<@Q8e8id_4wZzFrt%@3_Nxzvw~#&e?gi&FlTV>$JhupV|@i4y9oOw;A&%64+sw zaj%3H3ow?X8wBTb296@SoYe&Dncg&uCTn@r=I&8Z%JzDPi^!yDXbjm{+d|dfH zsXVp>7Y7Sbw}%~+TiJd>zBfDc0@v#a3`|Vl8tmt&kOQYLG&D4bUO13>ULM5YGi&C2 z{tQ#5RoU~q`c1XZty`VVq^vWk@7=K!L|K*|= zmhxJ|3oQvh?akN%)?dt?f*e#h?WbGS7%~Vqd?zx2IxY5EDk}OY~yF1sAeBz+5Tr z>dHgm_2)U+E4QJon!C#-zc{D?oo$cy4G$wgT>kvVCVk-`4%VU5xZdM~k&aFT`71Z$ zwVs&1kr6Fvt4$2S!FZHH1E0h1v<%JHRf^G;|rwE_Qt`$z|d~@=JP#GUutT+1)Hy;rWUkU*|Eqhoe(sW`RaYH zT9M-R!q*p?75WjC9Sonqu0;dR(Hz4vf;=RMqI^X?tzRHYFX z`mDYR~3o`|F3$^iI9e#fJUUK5=tWN_cp^LTN7tg@R zsM4xlw7%cC)H9I8{C2q$rp|tj0GD3zM>sYO^}H(en3|_2Khy&tof|1eu?GuZ*EZ7~ zdw@wQ>+0@OJQeUbc?L257K{=(;(WHP0_i;27_7D!Cb64qz;J9kCtx8!t7zF}5;*Cj z5lZP%%H&5-!Sj)PDwg>Pcmd@K`0akUzm3nzie)osp%N4%_kXuA1{|XGYBfr`&68)* z`&7Yhz6smf+M0;pg<*3jH7GF=ucOj+!FAeXccKK6AHQ8!$DQGI&@8Q>aDMvLLvBb8r)FekMswc!*Q*`!-< z6OzhhX$pq*yTea-5d`OQ-Fnp1t&!dq*S%JX1Yp)t-GPyjsFk-Ho!WF;X)XF}mA7SO zWeZ)~AQlCds1=!Z`op+yrdm2ZTm$Pe^gfpG22106+4!b6R=dUwB}0*3=<&|kZl(qS z+`;+t)uBK~K=ZsCU!T?<*w&sA;m1GDkJWE_A&}J6)U>QPFyHA(h^(C4^EW-{c=-6& zcl&E`!aZO^f7MzlL4&Veql4??e)Cq=ck=i10bu>bp1`kfY^;D7>FOu?B;Esqgd2HU z-x=eN+gC5%8+wO8mX${K+_VixaH-ppzWm&;YH6qR){LqOW!+p zeb-41kc6s6_VV-dbG$AOpwYWkQb_n}8Lo1FolJ3r_@YQL^Bb1%-E#YVH=$8ZMFl3X zxHEpN{(#c4zFj@Xwvg6V0pQx`nq~MPy7vOJ4y^sjFIU~RvO8Hu2u)Nzw-+7@9j<$t z&uD3z{kHX3-rm=XiDN&RrYQrVmM0XQ7&d))6Tiy${(SnAfCpzXi%uX69O82Ah|u>$ zMzs&AsS&mn&4}544}8!liGoW9eM{{2V*k1QEVs+SJYT4nn7F6M_UABY=1ELU%&Dux z0}Bj|t6APBGU^%{pWh!Y9*}8?KKTVQJ&3BP`*V#_GBPNorKQl#T#I6F?-YJG#*)u? zsdDUEsFWT1>aZ2}a^4wBGL|eN+xG?qMCFUwLXfWde*WxHQxXi({G!`sT5Y^PTQ4mq z=j`abQ;_n_qSmDUBP|h^1v-d?)gGr7-d8JO5Py(Bu3FvVC^@kfZ5sE z`Q2bos+cVlBN~Lbb7{d#BINzj&~t|t!~?-55YX-}SbHY|ZO989o;?EsY`Jt8)5}KkVlkSnYV1+`U2QB;qiJAYzcfmrX`e2zoAK z`CY+5%@s0M+;elj_uS*e?9Y5NE^t5z6%`fjbCig_m;7#j!bkI@)W33X(zy4V^|Z{B}!UFD4yHPWofAW12^5K`2mHm*NeTc7Y=+uRv-QvOs z4cGk%^luL4n<4%nUs428Ehi`m9eeD9JCFcw5i8UD!eRN74D1rNk?%DvG+YDoGgy>T z0ztTL| zU%W6VFzLA8cZ4Q@o;b?5ni|eZ6hy@$TxiN}u$u{lM$*_<2S+3^nH(mtY%SZ=8eG;; zs3}ePHWP7K30R_vwstrI8bQ2)Ct^iT18037^BkQ^S4&g@VIqpq1HNv%MR3s1#d zrtxjRai%JJD9Fbg^AEkVv2dyw_pOXCE6*ygHonBOb(r|#TYKI=^ryx~sc^UbWWSX* zjq7|(Ng&`;u!;ZousRq<)c;?wKV!N8fldT9dmJS(N$2f)xWC)J`1%H)NqtX?#>$(& z9Kh_I+gFV4Zbk-n#}=!sgtgZ)GUTYJWY6t%u0A1(KuLrtxZq81VQ#DbQOo16r!e6E z-yB|C{(klk*+_WDAF#TL7fuavM=Hx@SYTsQ3>YWAZ`cX>JI;8Sq$C|u_ItEQKSBwZ zjSYgtq|_H4N&oU5IbSYWerQW3_CLggvjhy#pplFEAO1p@l(HqR7>gE|Ll%u17@k2! zcycn7UN-A9pGZ5^G6U)u-7s3T~6Y9WTs9*-szL-YOqYzUwgNI{4gk*;cg z9aGY-+QI+hz<}&fDi;z6G2cJ{CLD7{4s5sQblojH0jr2$fDo|G z_U8!E2-(E#?d{9c|Hc&+izef901-aDd`s={b)VP!q@SLFm9-mKY?a&otoDl-sH5c$ z5$qvyPq(<*dIMx`HB&U5(`?Vw z(uZPER_yS>KgD6?V*CH}NwFsqD$)9C-_!t22H?g7s1(vNGF<@Rn=U+qhQml|F{H8@ zfWyh4lc@#@0Te=&QmE;8kn}8Z-6O+(NSb6?xtOy9PT1AXiFAXw5fDm9vj31g(g(9%wRS2&a)s44P1Gq@h0lE7c*4R%Eu+(@#1`iSPb%H#Pf61W17J zqI^X7@YsBOZ0j4(t&^l3|0;ZeRk{ISypSUl?TtBFTG#SMSv;7(@2E2{I2nWdXJ+Yz zR5mk14bq}{rbaHZiONebr6iE)`$pb7Au#7M{FMar113?=_6O(HbFEDN+i=SN&2i+v z6lVXceDV~b%*gu~0kS-86tOT&^M4Q`CopVH zi|)}pSpN5jZ0$rNIxnmWJmk<=1Fv8XAYv!}yrqUs z?y#Yb+l50Xpyt9tR8>`-fC#;Of4S7lx0R767c?+9I0_~%pUIC8=zf2HKM~)%XBNY0 z1%s!5=}AisXW4YYMU4HAQhsfq3^;anJl>s-Y=e#Zjj{W?ng&Gt zE!QQ$He=-2+tkNTkzXI#uST?XL^S+Q*hxStu5>RtPbwt*EIoNkoxB`iA^yH7)T`aH z%88B|)Le#DAP#i`x_A5yjor%A4uCL&Ia7lF0K&*JUzIJeVc5@#H?Vdg=Q5Zx6DeqD z;8S=XiFyOt1=X+s7tGx`PD&~=84`>_7yY0J`yYp+NdGHOiXW34XP&P#3tkjpb|7(- zn$+(;-keyzj`>jNF*z}@JW-&-290p4%QV6#+Zt2T$md*x zMZf8ZtE;QwrKP#~4o-O%zbh(KF+Vvufy!Xo(dtRbAnh_Jg3w;&>tp{WbF$EwhhFN( zw~(Ha+EPAkgIWuWhqEH#r$EdD>Q8s(`^5-ax#S$jrS=wXD^R9jU}x_ILiN#+cseH!qkf0$u_5owRe+&D_!h0TBEofTgpw9=&b_QXzmF5|WaV@M%&|SC5c) z{<#~3B^188YO1cK^#-VZpSZ1Y0CXJcdYAw7NYFGmY^Dd5w- z2gQI^hp60e%WNM4dZnz1G6m>(#38SX5r1V+ArrlFV*#2%u9O$_6T;_Rbh4LwDgA<} zkh@;|MJQt;&Lo}Nqj_zx<51H%9ex4C)Zz*Z=zyum$jU)IVQ#OX+qBEz{Xz(-Lz8Hu zBsBkH!#ssA1A3LxvsqE-=dFvmR^5QHATETKX+z(S&*E09;(xme-{7ziIbNg$75Rbf zRL$)JFcK$z3mpwZKnaCTl9U2Hs3U+W8UwlWpyU2D`|(E_kL{TwIrKTS+`}|wU*8}0 zfO^c9t5LR)&k<0Ycc&P@@N$*;GCO}}YT7N@eFy)%%&d064iN*v6RJbZHP{e z6Y4t!IK)7wgBr5nAm-q}kBX*eJeJRmN6;VwUj1KOcXoUJkc<$x>zu=R->FL~@PVDp^l|Jsca!eu)2moo_8d?S+K&3uA zT%rUo&r3R>#XvmPfA9-Yv1er|W8~OAAoYdtpOmHFtb*c$SsRoPaYlm(HZXV}*A*1le zzTV`t{bBj1%K0;7>Y7>!fPfG>?Z6)1KoKagM;HjN!+bb!wl`2!8Zg2$2U6(GOq$Hf zs;WpLsPcmSjdHTP#`ThI)_8QoUAtoia&JLoe~l+0a5}{0{-?V4XhKbC1rX%ufA(LU z@!#X8LCw@pn>G+oOY8-Tpg*XJ*By3O5>K{vnb(9aU+#Mt9Ozy zBq2daSkO8YsGSNHDrQCo1_u6fX*kX&;EXF_ls(C;dLPo#BGVmOP=xQ#a2?vtHRs>< zlE+(7LdQZ|^jsN8hu91=2jp zm~Wtx6%35a^zq^TUmwE()@!vp>h0zbF|lpsV5AuI+?0iTe z;pmFMd7+62r1mwS_=i#nonWr_euo_~x0GQ6Q!Thq%BMi_B3X%M@RD7~Ku-yOkup6`Z$IFJVd z|L?Ew*(uzY1O5*1o4Tfjed`%J!-D}HLSl-ZvSv>y+t3azXVwQ%8K;9!Rg z??7Tz>Wsp#u+LgV!4h>N7Pf=eufc4(yqZf@0x!B9t;ry+A%Rtj8SYi^4J!}=*xAQrtGvLlUY_-pjT8S-EQn3mR4TK3v z;!*B37Oyh=?YZfQmG9)BoX@DNu--2b|8s|DU@NJwTs=F03=_%FYoF(GALOFSIS7Z{ zZ;s3~3Gwx86-n+jlVqPN5!ol=c!Wh%!b{kV%}M`uD^eLq@?DYm%=3+0TwHAqXn~y| zN#=fIph-IkpZ_ctsO3+C3y(cBll$3nhU>$}KE5_pCUG?*3(F{zqSr(lr?O_6r9qQW zQ2TKoRCb5KjmI2=Spn(^B7AKt9DfJ+GA27*zE|2+Y;vgP1t+5FqJXpK=}86yGg=3K zU_5lvcuP8`;&>_1yt%|B*v(eqVd|mMziRmdN1<NrhZG2=LRs)%#cqdPl^K>+ z*N8FZnJx>penp}GaJZ}1`2l?qZr`wiBf9#19QWaz7WvrL5CgNe#8>hNH-S`*f24D$ z=3Gb@XQk>cphnzaUu&{I`>aWSaqih`m|JNrDUNSjJn@A7RL*}@beIpYC9MKQz2*l$ zn2jk9C$VvSV30ZKq2lq|&K-ES19ZPl&+)$8cN}yvEV_Whe9YI6S#9Qr)f%I&T~z}4 zIYF(ZJUxB|RDdxUm`bM;qlgY^qPl)KyTY?UL@oZRfVijcbuQOs&EDM76+Eyk(w?&#O`SK+sygci>Cxa-(cd43 zA*W*e>zn(jMoeEazRc5YQmZ=OJ$-HQE#vQP>CoGTht7n(D2>^uu~YxbCs-CN3+l?t zoqi8$F*>!oAL3U|ZuD{$BB^t)zC+a$ti^)#WuDQ2zPv zv$bj)=E|W=m`4pfA{3+E{c44~@@JyJh6AChGr}GL67({|e-t^Z0$TenOenpE)i2V#+YZBEGpV zAu2%{VgNGw-n~S`BnyWYcUu^NhJGR)Y6;`q>0Tz&4OfKwyLmivINcungK8OFgAzT4 z85v!u+cQuwm9N{gtEC@BP}}f|g6M*!!*NMyC`*vED92y4KLAL6d+ch2E3t=+HK(TaD9k z+J|4Z-yDhMw9Y>+NvL#o1;Mso<>DivBR`&JC@!yrtyrFfK02~DlNe%LL zR6s_?Sq=>`p^<(}B&v_mE0vqwIY)cQSfIlT(_pm0l(6gF-Yw`aY^wBHya6u9rV^w+||E&H5W3PN2;u{@-3Nllhv8pr{N zU}rqA9};5xW!0-T4`SYW_NbPzicL0NIj{Yj(8>HEDt2}!3PW5Nk*i6<*O}hb(^W%* zZ^+BsO{egu*WKp!d0BKm{=xm-p8z}DF72;ER09-0iP+J-vhh>zhkXoFKM2%f`{G>W}b0dq0JOnY|J; z>DYda*yeQ^>&g|r8aS#{5ipA+&GoSFmcF7&FjN8ZF+d9O@t++gxH9-ZW_7(i_19?6 zOx^MEb88@~#%5v@5&3Lt-L?&6NEKLX{${2G#R}Mgf%50g+?Hn--L;^^2YM<%qfZyT zaEP9iDrRhfdR!s9Ctp2{un}LJild}b*wZ&_)G(vpjguGxi0;=(_AWdW`E8dB#YIKM z4STlgqdB|2I4&)_K06;EWo2-JN0+6!fAhoWi`FK|M_v7ARGuItrGA?7@7<=KwyIa! z=gi*9L}Jmm`o7$CgUBjLKAONj8b_YK+jtY0<&jsNrvKgCTL!C(j{co$jxTz4t*rP! zVshEgumaXgQKsMP1SJk7%ogBLbxMPr*+^KhZ+f<0?F?<>&acaz&CHArlE(0ElB9*j zJ4a5g8#$}y2thwzxfmu6tX{lBcE{!LBWL!Q-+7vgMLvo{K%hTZgNyw#Nw7!dI%;pW zchMA!>QGaXjp?R#=<*dAg!}SXv3=)>1E?Y;nQlw7BO`z44vRnW=e5_Ro%c*DtRFbvC|2tbzTiLurc0Nn)rmXU&uY{D^1F5Rm~AjAWcT?F z%M|YX5D`2B%6s8l!FZPBGZKk7i_SqDw+S+5%?NqAG?=)>1k&92pv^;`i$kn^m!hrw zT5TmK=*M{ek)mEF+2u)PpKZ>QY=RZ-`39g(Lc|oUeA_8W-rH-wU$(&fqle@P6|>ZR zm(r52&dAIY9?GT}^vb2qR%wxc*$PKzVd7%8NshjW=QRyxesX-3%E1*2_C%iB;%v{r zkddTzd9pQ>N}B6#lI_%E(F3He8(-qycjD|*qW*>x4V4P%%X9rZbl<~Xfx^WdJgsN6 zP;aTH1WTpJr_ZpW)BrY^y^cqBr#?o&j~N`XFhUTOg-#$&}Wxa5xrq+_gJumf<1S+tNb|ACx}9;gbR}-QiiIdw)vtt%L>0g)*8%Ln-pMtK~@} zF7T0QCPnCsBHqK}cE?K(ZO8o}RA(^Ch}V~$TDmRFC`xzueUtZjeX3v7zb;$B=Tjyt ziJNdz-|cftMN~}klgIA^Eclpbg;EY)EGfbbx_RkpL#XgQpvb`>xsH4GSqzqm8Ntk) z$H(Kxi5w3Yrf$bevDA6|gOu8t-MCOL7`Bh1BHZ*vK%R5Dn4xxP?)D3K6vyB^`!qxt z)1T2L)H}*lO~{^rwT3?q2{-NJitrmqF3IWl?1V&+eU5jy#gRI)Gf9iT z+B^y)PB@F~yud8T02WWe_~s1H`z-$X6de|QqavGBgLzcl@bHVhl+Y(p{fzkd=$v;b zm#UuS$-=P`u~x0}LeX0K4m^rZ%^J>6;Ej7@HHn_TR!5J1Mh*Y8VGw1&h#GY(xWpZ3khbVFerx&BfEU$tT9o$e)M^OuABlJ8O{wOQk?k9#%INqY*^ z;85Pz>BWsGoE|a=CdW)A%x4+r^^Mvnl@qx(Yao`r4eToAYtk11ebY|M{_i-Z#KjdA z?UbTDk$Ah>GwP5D+~HBr5)YPIXF@^3S8r=jJu0{?I21Ybu_z=OYq^L=r+Y)}-q$